

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 June 2003 (05.06.2003)

PCT

(10) International Publication Number
WO 03/046220 A1

(51) International Patent Classification⁷: C12Q 1/68

ROTMAN, Galit [IL/IL]; 5 Yair Shtern Street, 46 412 Herzlia (IL).

(21) International Application Number: PCT/IL02/00904

(74) Agent: G. E. EHRLICH (1995) LTD.; 28 Bezalel Street, 52 521 Ramat Gan (IL).

(22) International Filing Date:
11 November 2002 (11.11.2002)

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GI, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SI, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/993,398 26 November 2001 (26.11.2001) US
10/201,605 24 July 2002 (24.07.2002) US

(84) Designated States (regional): ARIPO patent (GI, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): COMPUTEN LTD. [IL/IL]; 72 Pinchas Rosen Street, 69 512 Tel Aviv (IL).

Published:

with international search report
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/046220 A1

(54) Title: METHODS AND SYSTEMS FOR IDENTIFYING NATURALLY OCCURRING ANTISENSE TRANSCRIPTS AND METHODS, KITS AND ARRAYS UTILIZING SAME

(57) Abstract: A method of identifying putative naturally occurring antisense transcripts is provided. The method is effected by (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and (b) identifying expressed polynucleotide sequences from the second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of the first database, thereby identifying putative naturally occurring antisense transcripts.

METHODS AND SYSTEMS FOR IDENTIFYING NATURALLY OCCURRING ANTISENSE TRANSCRIPTS AND METHODS, KITS AND ARRAYS UTILIZING SAME

5 BACKGROUND AND FIELD OF THE INVENTION

The present invention relates to the field of naturally occurring, antisense transcripts. More particularly, the present invention relates to methods of identifying naturally occurring antisense transcripts, databases storing polynucleotide sequences encoding identified naturally occurring antisense 10 transcripts, oligonucleotides derived therefrom and methods and kits utilizing same.

Naturally occurring antisense RNA transcripts are endogenous transcripts, which exhibit complementarity to sense transcripts of which are typically of a known function. It has been established that these endogenous 15 antisense transcripts play an important role in regulating prokaryotic gene expression and are increasingly implicated as involved in eukaryotic gene regulation.

Cis-encoded antisense transcripts are encoded by the same locus as the sense transcripts and are transcribed from strand of DNA opposite to that 20 encoding the sense transcript; as such, cis encoded antisense transcripts are typically completely complementary with a portion of the sense transcript.

Trans-encoded antisense transcripts are by contrast, transcripts, which are encoded on a different locus and as such, may display only partial complementarity with a sense transcript.

25 Natural antisense RNAs were first described in prokaryote studies, which suggested that such transcripts play a role in gene expression regulation. Prokaryotic antisense transcripts are widely distributed and are involved in the control of numerous biological functions including transposition, plasmid replication, incompatibility and conjugation. In prokaryotes, antisense 30 transcripts are typically involved in down-regulation of sense transcript

expression, although involvement in positive regulation was also suggested [reviewed in Wagner EG. and Simons RW. (1994) Annu. Rev. Microbiol. 48:713-742].

The first example of transcription from both strands of eukaryotic DNA
5 was illustrated in human and mouse mitochondrial genes [Anderson S. et al. (1981) Nature 290:457-465 and Bibb MJ. et al. (1981) Cell 26:167-180]. Since then, examples of antisense transcripts have been documented in a variety of organisms including viruses, slime molds, insects, amphibians and birds as well as mammals. It is thought that these antisense RNAs are involved in extremely
10 diverse biological functions, such as, hormonal response, control of proliferation, development, structure, viral replication and others. Some antisense RNAs are conserved between species suggesting that these antisense RNAs are not fortuitous but rather play an important role in gene expression regulation [Kidny MS. et al. (1987) Mol. Cell Biol. 7:2857-2862, Nepveu A.
15 and Marcu KB. (1986) EMBO J. 5:2859-2865 and Bentley DL. et al. (1986) Nature 321:702-706].

Antisense transcripts can also encode proteins. Examples for protein encoding antisense transcripts include *rev-ErbA α* [Lazar MA. (1989) Mol. Cell. Biol. 9:1128-1136], *gfg* [Kimelman D. et al. (1989) Cell 59:687-696] and *n-cym*
20 [Armstrong BC. et al. (1992) Cell Growth Differ. 3:385-390]. Such antisense transcripts typically include a distinct open reading frame (ORF) and polyadenylation signal for cytoplasm transportation.

However, it is believed that most antisense transcripts play a role in gene expression regulation. This assumption is mostly based on spatial and/or
25 temporal distributions of sense and antisense transcripts. Indeed, tissue distribution studies suggest that high levels of sense and antisense transcripts rarely occur together, as was exemplified for the *dopa decarboxylase* transcripts in *Drosophila* [Spencer CA. et al. (1986) Nature 322:279-281]. Additional studies demonstrated that changes in sense gene expression correlate with
30 presence of antisense RNA. Furthermore, an inverse relationship between

levels of accumulation of sense and antisense transcripts such as has been reported for $\alpha 1$ (*I*) *collagen* transcripts in chondrocytes under chemotherapy has also been reported [Farrell CM. And Lukens LN. (1995) J. Biol. Chem. 270:3400-3408]. However, it will be appreciated that mutual expression of 5 sense and their corresponding antisense transcripts is also reported and may involve a different mechanism of regulation.

Evidence for involvement of antisense-mediated gene regulation in the development of pathologies has also been presented. For example, endogenous antisense transcripts may be involved in regulation of the expression levels of 10 the tumor suppressor gene WT1 observed in Wilm's tumors [Eccles MR. et al. (1994) Oncogene 9:2059-2063].

Natural antisense regulation of gene expression can be effected via one of several mechanisms.

Nuclear regulation

15 Nuclear regulation can be effected via several gene-processing pathways [reviewed in Vanhee-Brosollet C. and Vaquero C. (1998) Gene 211:1-9]

dsRNA-mediated DNA methylation - complementation between endogenous sense transcripts and antisense transcripts of sequences as short as 30 bp may initiate DNA-methylation, a well-established phenomenon in a 20 number of organisms [Sharp A. (2001) Genes Dev. 15:485-490]. Methylation can be directed to different portions of an encoding region of the gene or to the promoter region. DNA methylation results in complete suppression of transcription probably by recruitment of histone deacetylases.

25 *Transcriptional regulation* – in which case antisense transcription hampers sense transcription. Such interference may involve the collision of two transcription complexes. Alternatively, interference may result from competition on an essential rate limiting transcription factor resulting in premature termination or in reduced elongation of transcription, the transcripts with the highest rate of transcription being predominant.

Post-transcriptional nuclear regulation – involves antisense intervention of either maturation and/or transport of the sense transcript to the cytoplasm. Alternatively, antisense transcripts displaying similar structural features to sense transcripts can bind proteins expected to interact with their sense counterparts, thereby depriving sense messengers from proteins necessary for their function.

Cytoplasmic regulation

Messenger stability – double stranded RNA may affect messenger stability via “RNA interference”, which involves short segments of double stranded RNA (dsRNA) homologous in sequence to the silenced gene. These undersized segments, which are generated by a ribonuclease III cleavage of longer dsRNAs, can guide a single stranded target mRNA, via base pairing, to a multisubunit complex which participates in the degradation of the target mRNA. Alternatively, messenger stability may be affected by RNA degradation, which is mediated by double stranded RNA-directed RNases.

Translation – masking the 3' untranslated region (UTR) and the polyA tail of the sense transcript is believed to modulate translation efficiency probably via direct or indirect interaction between 3'-proximal elements and upstream sequences or structures [reviewed in Jackson RJ. And Standart N. (1990) Cell 62:15-24].

Realizing the fundamental role antisense transcripts play in regulating sense transcription, stability and function, resulted in a number of attempts to systematically identify natural antisense transcripts. Accordingly, differential approaches were taken for exploring non-coding antisense RNA transcripts and antisense transcripts including an ORF. Although the latter carries ORF consensus parameters, uncovering antisense data from general sequence databases has proven to be a complicated task, as many of these sequences include an evolutionary conserved secondary structure rather than a conserved primary sequence, therefore primary sequence alignment methods are often not

very effective. Indeed, only a few attempts have been tried to date with only limited success.

Maziel's group [Chen JH. et al. (1990) Comput. Applic. Biosci. 6:7-18 and Le SY. et al (1990) Human Genome Initiative and DNA Recombination Vol. 1:127-136] has experimented with methods that look for regions of a genome with predicted RNA structures that are significantly more stable thermodynamically than random sequence of the same base composition. Although this approach detected a few highly structured non-coding RNAs, as well as few *cis*-regulatory structures, it appears that it is of limited use for large-scale applications.

Another approach examined coding dense genomes, having suspicious-looking large regions with little or no coding potential termed "gray holes" [Olivas WM. et al. (1997) Nucleic acids Res. 25:4619-4625]. Fifty nine gray holes were tested in the yeast genome. Northern analysis detected distinct transcripts from 15 of the gray holes. Only one transcript appeared to be a non-coding antisense transcript illustrating the low efficiency of this method.

There is thus a widely recognized need for, and it would be highly advantageous to have, methods of systematically identifying novel naturally occurring antisense molecules and methods of artificially generating and using same for detecting, quantifying and/or regulating sense transcripts, such as for example, mRNA transcripts associated with a pathological state.

SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided a method of identifying putative naturally occurring antisense transcripts, the method comprising: (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and (b) identifying expressed polynucleotide sequences from the second database being capable of forming a

duplex with at least one sense-oriented polynucleotide sequence of the first database, thereby identifying putative naturally occurring antisense transcripts.

According to another aspect of the present invention there is provided a kit for quantifying at least one mRNA transcript of interest, the kit comprising at least one oligonucleotide being designed and configured so as to be complementary to a sequence region of the mRNA transcript of interest, the sequence region not being complementary with a naturally occurring antisense transcript.

According to yet another aspect of the present invention there is provided a kit for quantifying at least one mRNA transcript of interest, the kit comprising at least one pair of oligonucleotides including a first oligonucleotide capable of binding the at least one mRNA transcript of interest and a second oligonucleotide being capable of binding a naturally occurring antisense transcript complementary to the mRNA of interest.

According to still another aspect of the present invention there is provided a method of designing artificial antisense transcripts, the method comprising: (a) providing a database of naturally occurring antisense transcripts; (b) extracting from the database criteria governing structure and/or function of the naturally occurring antisense transcripts; and (c) designing the artificial antisense transcripts according to the criteria.

According to further features in preferred embodiments of the invention described below the criteria governing structure and/or function of the naturally occurring antisense transcripts are selected from the group consisting of antisense length, complementarity length, complementarity position, intron molecules, alternative splicing sites, tissue specificity, pathological abundance, chromosomal mapping, open reading frames, promoters, hairpin structures, helix structures, stem and loops, pseudoknots and tertiary interactions, guanidine and/or cytosine content, guanidine tandems, adenosine content, thermodynamic criteria, RNA duplex melting point, RNA modifications,

protein-binding motifs, palindromic sequence and predicted single stranded and double stranded regions.

According to an additional aspect of the present invention there is provided a computer readable storage medium comprising a database including 5 a plurality of sequences, wherein each sequence is of a naturally occurring antisense transcript.

According to still further features in the described preferred embodiments the database further includes information pertaining to each sequence of the naturally occurring antisense transcripts, the information is 10 selected from the group consisting of related sense gene, antisense length, complementarity length, complementarity position, intron molecules, alternative splicing sites, tissue specificity, pathological abundance, chromosomal mapping, open reading frames, promoters, hairpin structures, helix structures, stem and loops, pseudoknots and tertiary interactions, 15 guanidine and/or cytosine content, guanidine tandems, adenosine content, thermodynamic criteria, RNA duplex melting point, RNA modifications, protein-binding motifs, palindromic sequence and predicted single stranded and double stranded regions.

According to still further features in the described preferred 20 embodiments the database further includes information pertaining to generation of the database and potential uses of the database.

According to yet an additional aspect of the present invention there is provided a method of generating a database of naturally occurring antisense transcripts, the method comprising: (a) computationally aligning a first database 25 including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; (b) identifying expressed polynucleotide sequences from the second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of the first database so as to identify putative naturally occurring antisense transcripts; and 30 (c) storing sequence information of the identified naturally occurring antisense

transcripts, thereby generating the database of the naturally occurring antisense transcripts.

According to still an additional aspect of the present invention there is provided a system for generating a database of a plurality of putative naturally occurring antisense transcripts, the system comprising a processing unit, the processing unit executing a software application configured for: (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and (b) identifying expressed polynucleotide sequences from the second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of the first database.

According to a further aspect of the present invention there is provided a method of identifying putative naturally occurring antisense transcripts, the method comprising screening a database of expressed polynucleotides sequences according to at least one sequence criterion, the at least one sequence criterion being selected to identify putative naturally occurring antisense transcripts.

According to yet a further aspect of the present invention there is provided A method of quantifying at least one mRNA of interest in a biological sample, the method comprising: (a) contacting the biological sample with at least one oligonucleotide capable of binding with the at least one mRNA of interest, wherein the at least one oligonucleotide is designed and configured so as to be complementary to a sequence region of the mRNA transcript of interest, the sequence region not being complementary with a naturally occurring antisense transcript; and (b) detecting a level of binding between the at least one mRNA of interest and the at least one oligonucleotide to thereby quantify the at least one mRNA of interest in the biological sample.

According to still a further aspect of the present invention there is provided a method of quantifying the expression potential of at least one mRNA of interest in a biological sample, the method comprising: (a) contacting

the biological sample with at least one pair of oligonucleotides including a first oligonucleotide capable of binding the at least one mRNA of interest and a second oligonucleotide being capable of binding a naturally occurring antisense transcript complementary to the mRNA of interest; and (b) detecting a level of 5 binding between the at least one mRNA of interest and the first oligonucleotide and a level of binding between the naturally occurring antisense transcript complementary to the mRNA of interest and the second oligonucleotide to thereby quantify the expression potential of the at least one mRNA of interest in the biological sample.

10 According to other aspect of the present invention there is provided a method of quantifying at least one naturally occurring antisense transcript of interest in a biological sample, the method comprising: (a) contacting the biological sample with at least one oligonucleotide capable of binding with the at least one naturally occurring antisense transcript of interest, wherein the at 15 least one oligonucleotide is designed and configured so as to be complementary to a sequence region of the naturally occurring antisense transcript of interest, the sequence region not being complementary with a naturally occurring mRNA transcript; and (b) detecting a level of binding between the at least one naturally occurring antisense transcript of interest and the at least one oligonucleotide to thereby quantify the at least one naturally occurring antisense 20 transcript of interest in the biological sample.

According to still further features in the described preferred embodiments the first database includes sequences of a type selected from the group consisting of genomic sequences, expressed sequence tags, contigs, 25 intron sequences, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

According to still further features in the described preferred embodiments the second database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA

10

(cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

According to still further features in the described preferred embodiments an average sequence length of the expressed polynucleotide sequences of the second database is selected from a range of 0.02 to 0.8 Kb.

According to still further features in the described preferred embodiments the second database is generated by: (i) providing a library of expressed polynucleotides; (ii) obtaining sequence information of the expressed polynucleotides; (iii) computationally selecting at least a portion of the expressed polynucleotides according to at least one sequence criterion; and (iv) storing the sequence information of the at least a portion of the expressed polynucleotides thereby generating the second database.

According to still further features in the described preferred embodiments the at least one sequence criterion for computationally selecting the at least a portion of the expressed polynucleotide is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

According to still further features in the described preferred embodiments the step of testing the putative naturally occurring antisense transcripts for an ability to form the duplex with the at least one sense oriented polynucleotide sequence under physiological conditions.

According to still further features in the described preferred embodiments the method further comprising the step of computationally testing the putative naturally occurring antisense transcripts according to at least one criterion selected from the group consisting of sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

According to still further features in the described preferred embodiments a length of the at least one oligonucleotide is selected from a range of 15-200 nucleotides.

5 According to still further features in the described preferred embodiments the at least one oligonucleotide is a single stranded oligonucleotide.

According to still further features in the described preferred embodiments the at least one oligonucleotide is a double stranded oligonucleotide.

10 According to still further features in the described preferred embodiments a guanidine and cytosine content of the at least one oligonucleotide is at least 25 %.

According to still further features in the described preferred embodiments the at least one oligonucleotide is labeled.

15 According to still further features in the described preferred embodiments the at least one oligonucleotide is attached to a solid substrate.

According to still further features in the described preferred embodiments the solid substrate is configured as a microarray and whereas the at least one oligonucleotide includes a plurality of oligonucleotides each 20 attached to the microarray in a regio-specific manner.

According to still further features in the described preferred embodiments a length of each of the first and second oligonucleotides is selected from a range of 15-200 nucleotides.

25 According to still further features in the described preferred embodiments the first and second oligonucleotides are single stranded oligonucleotides.

According to still further features in the described preferred embodiments the first and second oligonucleotides are double stranded oligonucleotide.

12

According to still further features in the described preferred embodiments a guanidine and cytosine content of each of the first and second oligonucleotides is at least 25 %.

According to still further features in the described preferred 5 embodiments the first and second oligonucleotides are labeled.

According to still further features in the described preferred embodiments the first and second oligonucleotides are attached to a solid substrate.

According to still further features in the described preferred 10 embodiments the solid substrate is configured as a microarray and whereas each of the first and second oligonucleotides includes a plurality of oligonucleotides each attached to the microarray in a regio-specific manner.

According to yet other aspect of the present invention there is provided a method of identifying a novel drug target, the method comprising: (a) 15 determining expression level of at least one naturally occurring antisense transcript of interest in cells characterized by an abnormal phenotype; and (b) comparing the expression level of the at least one naturally occurring antisense transcript of interest in the cells characterized by an abnormal phenotype to an expression level of the at least one naturally occurring antisense transcript of 20 interest in cells characterized by a normal phenotype, to thereby identify the novel drug target.

According to still further features in the described preferred embodiments the abnormal phenotype of the cells is selected from the group consisting of biochemical phenotype, morphological phenotype and nutritional 25 phenotype.

According to still further features in the described preferred embodiments determining expression level of at least one naturally occurring antisense transcript of interest is effected by at least one oligonucleotide designed and configured so as to be complementary to a sequence region of the

at least one naturally occurring antisense transcript of interest, the sequence region not being complementary with a naturally occurring mRNA transcript.

According to still other aspect of the present invention there is provided a method of treating or preventing a disease, condition or syndrome associated with an upregulation of a naturally occurring antisense transcript complementary to a naturally occurring mRNA transcript, the method comprising administering a therapeutically effective amount of an agent for regulating expression of the naturally occurring antisense transcript.

According to still further features in the described preferred embodiments the agent for regulating expression of the naturally occurring antisense transcript is at least one oligonucleotide designed and configured so as to hybridize to a sequence region of the at least one naturally occurring antisense transcript.

According to still further features in the described preferred embodiments the at least one oligonucleotide is a ribozyme.

According to still further features in the described preferred embodiments the at least one oligonucleotide is a sense transcript.

According to a supplementary aspect of the present invention there is provided a method of diagnosing a disease, condition or syndrome associated with a substandard expression ratio of an mRNA of interest over a naturally occurring antisense transcript complementary to the mRNA of interest, the method comprising: (a) quantifying expression level of the mRNA of interest and the naturally occurring antisense transcript complementary to the mRNA of interest; (b) calculating the expression ratio of the mRNA of interest over the naturally occurring antisense transcript complementary to the mRNA of interest, thereby diagnosing the disease, condition or syndrome.

The present invention successfully addresses the shortcomings of the presently known configurations by providing a novel approach for identifying naturally occurring antisense transcripts, methods of designing artificial

antisense transcripts according to information derived therefrom and methods and kits using naturally occurring and synthetic antisense transcripts.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood 10 description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art 15 how the several forms of the invention may be embodied in practice.

In the drawings:

FIG. 1 illustrates EST alignment along genomic DNA, generated according to the teachings of the present invention. Alignment results identify two strand groups of transcripts i.e., sense transcripts and antisense transcripts 20 with an indicated sequence overlap.

FIG. 2 illustrates a system designed and configured for generating a database of naturally occurring antisense sequences generated according to the teachings of the present invention.

FIG. 3 illustrates a remote configuration of the system described in 25 Figure 2.

FIGs. 4a-k are sequence alignments of overlapping regions of selected naturally occurring antisense and sense sequence pairs identified according to the teachings of the present invention.

FIGs. 5a-g are sequence alignments of overlapping regions of selected naturally occurring antisense and sense sequence pairs identified according to the teachings of the present invention.

FIG. 6 schematically illustrates two transcription products of 53BP1 gene (red and green) and their corresponding partial complementary antisense transcripts of the 76p gene (blue). Numbers in parenthesis indicate length of sequence complementation. Schematic location of strand-specific RNA probes used for northern blotting of sense (53BP1, Riboprobe#1) and antisense (76p, Riboprobe#2) transcripts is shown.

FIG. 7 is an autoradiogram of a northern blot analysis depicting cellular distribution and expression levels of 53BP1 transcripts. Arrows on the right indicate the molecular weight of the identified 53BP1 transcripts relative to the migration of 28S and 18S ribosomal RNA subunits. [Numbers on the left denote the size of molecular weight markers in Kb.]

FIG. 8 is an autoradiogram of a northern blot analysis depicting cellular distribution and expression levels of 76p transcripts. Arrows on the right indicate the molecular weight of the identified 76p transcripts relative to the migration of 28S and 18S ribosomal RNA subunits. [Numbers on the left denote the size of molecular weight markers in Kb.]

FIG. 9 is an autoradiogram of a northern blot analysis depicting tissue distribution and expression levels of 76p transcripts. Arrows on the right indicate the molecular weight of the identified 76p transcripts. Numbers on the left denote the migration of molecular weight marker in Kb.

FIG. 10 illustrates the genomic organization of the 53BP1 gene and 76p gene, as elucidated from the RT-PCR analysis presented in the Examples section hereinbelow. Black arrows indicate the location of the primers used for RT-PCR analysis. Asterisks denote stop codons.

FIG. 11 schematically illustrates two transcription products of CIDE-B gene and their corresponding partial complementary antisense transcript of the BLTR2 gene. Schematic location of the strand-specific 430 nucleotide RNA

probe used for northern analysis of sense (CIDE-B) and antisense (BLTR2) transcripts is shown. Dashed rectangles indicate the predicted coding sequence of the transcripts.

FIG. 12 is an autoradiogram of a northern blot analysis depicting cellular distribution and expression levels of BLTR2 transcripts. Arrows on the right indicate the molecular weight of the identified BLTR2 transcripts relative to the migration of 28S and 18S ribosomal RNA subunits. Numbers on the left denote the size of molecular weight markers in Kb.

FIG. 13 shows autoradiogram of a northern blot analysis depicting cellular distribution and expression levels of CIDE-B transcripts. Arrows on the right indicate the molecular weight of the identified CIDE-B transcripts relatively to the migration of 28S and 18S ribosomal RNA subunits. Numbers on the left denote the migration size of molecular weight markers in Kb.

FIG. 14 schematically illustrates a transcription product of APAF-1 gene and its corresponding partial complementary antisense transcripts of the EB-1 gene. Schematic location of the strand-specific 366 nucleotide RNA probe used for northern analysis of sense (APAF-1) and antisense (EB-1) transcripts is shown. Asterisks indicate the predicted coding sequence borders of the transcripts.

FIGs. 15a-b are autoradiograms of northern blot analyses depicting cellular distribution and expression levels of EB-1 (Figure 15a) and APAF-1 transcripts (Figure 15b). Numbers on the left denote the size of molecular weight marker in Kb.

FIG. 16 schematically illustrates a transcription product of the MINK-2 gene and its corresponding partial complementary antisense transcript of the AchR- ϵ gene. Schematic location of the strand-specific 280 nucleotide RNA probe used for northern analysis of sense (Mink-2) and antisense (AchR- ϵ) transcripts is shown.

FIGs. 17a-b are autoradiograms of northern blot analyses depicting cellular distribution and expression levels of AchR- ϵ antisense transcripts

(Figure 17a) and the sense complementary transcript of Mink-2 (Figure 17b). Arrows on the right denote the migration of molecular weight markers in Kb.

FIG. 18 schematically illustrates a transcription product of Cyclin-E2 gene and its corresponding partial complementary antisense transcript. Schematic location of strand-specific RNA probes used for northern blotting of sense (Riboprobe#1) and antisense (Riboprobe#2) transcripts is shown.

FIGs. 19a-b are autoradiograms of northern blot analyses depicting cellular distribution and expression levels of Cyclin E2 antisense transcript (Figure 19a) and the sense complementary transcript (Figure 19b). Arrows on the left denote the migration of molecular weight markers in Kb.

FIG. 20 illustrates results from RT-PCR analysis of the expression patterns of CIDE-B transcript and its complementary naturally occurring antisense transcript following concentration dependent induction of apoptosis. Lanes: (1) 50 μ M etoposide; (2) 100 μ M etoposide; (3) 250 μ M etoposide; (4) 500 μ M etoposide; (5) 10 nM staurosporine; (6) 100 nM staurosporine; (7) 250 nM staurosporine; (8) 1000 nM staurosporine; (9) untreated cells (UT).

FIGs. 21a-c are results of RT-PCR analyses depicting expression patterns of AchR α and its naturally occurring antisense transcript following time-dependent induction of differentiation. Figure 21a illustrates the position of riboprobes used for reverse transcription reaction. Figure 21b shows the reciprocal expression pattern of sense and antisense transcripts (indicated by arrows). Figure 21c shows the expression pattern of the antisense transcript alone.

FIGs. 22a-j illustrate results of northern blot analysis of sense/antisense clusters revealing positive signals for sense/antisense genes in the microarray analysis. Diagrams describing genomic organization of the relevant region for each of the sense/antisense clusters are included above the autoradiograms, and regions of overlap (including GenBank accession number) from which the strand-specific riboprobes were derived are included. Sense-antisense pair numbers are as they appear in the microarray (as depicted in Table S2 on the

attached CD-ROM3 and in conversion Table 6). Figure 22a reveals expression patterns of randomly selected sequence pair number 235, denoted as Rand_235 in Table 6. Similarly, Figure 22b corresponds to pair number 173, Figure 22c to pair number 248, Figure 22d to pair number 6, Figure 22e to pair number 216, Figure 22f to pair number 239, Figure 22g to pair number 202, Figure 22h to pair number 114, Figure 22i to pair number 188, and Figure 22j to pair number 223. Eight pairs (Figures 22a-h) evaluated revealed positive signals for both sense and antisense expression, while two (Figures 22i-j) revealed a positive signal for only one of the genes, with the counterpart being a known RefSeq mRNA.

FIG. 23 is a Table depicting expression patterns in various cell lines and tissues as probed with a subset of 264 pairs from the putative sense/antisense dataset of the present invention. The pairs are denoted by the pair number and described in Table S1 of CD-ROM3. "C" and "AC" denote the two counterpart probes. Expression was also verified for positive controls, including the ubiquitously expressed genes *gapdh*, *actin*, *hsp70* and *gnb2l1* in various concentrations, and 11 previously documented sense/antisense pairs. Expression thresholds were verified and indicated as "+", if the probe passed the threshold in at least one cell line or tissue or "-", if the probe did not pass the threshold in all experiments. In cases where both the sense and the antisense oligo passed the expression threshold, the antisense was declared "verified". In cases where only one of the probes passed the expression threshold, but the other probe was fully contained within a known mRNA deposited in GenBank, the antisense was declared "indirectly verified". Normalization for microarray signals was conducted as described in the methods section. *Rji* ratios were obtained for each cell line/tissue assessed. Cases of flagged-out spots for which there was no information were marked "-1.00". Data represent values of the two reciprocal experiments.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is of methods of identifying naturally occurring antisense transcripts, which can be used in kits and methods for quantifying gene expression levels. Specifically, the antisense molecules and related 5 oligonucleotides generated according to information derived therefrom of the present invention can be used to detect, quantify, or specifically regulate antisense and respective sense transcripts thereby enabling detection and treatment of a wide range of disorders.

The principles and operation of the present invention may be better 10 understood with reference to the drawings and accompanying descriptions.

Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings described in the Examples 15 section. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

Terminology

As used herein, the term "oligonucleotide" refers to a single stranded or double stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring bases, sugars and covalent internucleoside linkages (e.g., backbone) as well as oligonucleotides having 20 non-naturally-occurring portions, which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of 25 nucleases.

The term "antisense" refers to a complementary strand of an mRNA transcript e.g., antisense RNA.

The phrase "naturally occurring antisense transcripts" refers to RNA transcripts encoded from an antisense strand of the DNA. These endogenous transcript exhibit at least partial complementarity to mRNA transcripts transcribed from the sense strand of a DNA, also termed sense transcripts. *cis*-encoded naturally occurring antisense transcripts are transcribed from the same locus as the sense transcripts. *trans*-encoded antisense transcripts are transcribed from a different locus than the respective sense transcripts.

The phrase "antisense strand" or "anticoding strand" refers to a strand of DNA, which serves as a template for mRNA transcription and as such is complementary to the mRNA transcript formed.

The phrase "sense strand" or "coding strand" refers to the strand of DNA, which is identical to the mRNA transcript formed.

The phrase "complementary DNA" (cDNA) refers to the double stranded or single stranded DNA molecule, which is synthesized from a messenger RNA template.

The phrase "sense oriented polynucleotides" refers to polynucleotide sequences of a complementary or genomic DNA. Such polynucleotide sequences can be from exon regions, in which case they can encode mRNAs or portions thereof, or from intron regions, in which case they typically do not encode mRNA or portions thereof.

The term "contig" refers to a series of overlapping sequences with sufficient identity to create a longer contiguous sequence.

The term "cluster" refers to a plurality of contigs all derived, with a high degree of probability, from a single gene. Clusters are generally formed based upon a specified degree of homology and overlap (e.g., a stringency). The different contigs in a cluster do not typically represent the entire sequence of the gene, rather the gene may comprise one or more unknown intervening sequences between the defined contigs.

The phrase "open reading frame" (ORF) refers to a nucleotide sequence, which could potentially be translated into a polypeptide. Such a stretch of sequence is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG "start" codon and terminates with one of the three "stop" codons. For the purposes of this application, an ORF may be any part of a coding sequence, with or without start and/or stop codons. For an ORF to be considered as a good candidate for coding for a bona fide cellular protein, a minimum size requirement is often set, for example, a stretch of DNA that would code for a protein of 50 amino acids or more. An ORF is not usually considered an equivalent to a gene or locus until a phenotype is associated with a mutation in the ORF, an mRNA transcript for a gene product generated from the ORF's DNA has been detected, and/or the ORF's protein product has been identified.

The term "annotation" refers to a functional or structural description of a sequence, which may include identifying attributes such as locus name, poly(A)/poly(T) tail and/or signal, key words, Medline references and orientation cloning data.

Naturally occurring antisense molecules can play a role in sense transcription stability and function (e.g. translation). To date, most, if not all of the information relating to naturally occurring antisense transcripts was obtained by either low efficiency computational approaches (described hereinabove) or by approaches utilizing RNase protection assays, northern blot analysis, strand-specific RT PCR, subtractive hybridization, differential plaque hybridization, affinity chromatography, electrospray mass spectrometry and the like. These methods, though highly reliable, are extremely laborious, time consuming and are directed at individual target transcripts. As such, current approaches for uncovering antisense transcripts can be used to detect a negligible portion of the number of naturally occurring antisense molecules thought to exist.

As described hereinunder and in the Examples section, which follows, the present invention provides a novel approach for systematically identifying naturally occurring antisense molecules.

Aside from large scale applicability, the present method can be used to identify naturally occurring antisense molecules even in cases where the antisense transcriptional unit is localized to an intron of an expressed gene or to a different locus than the complementary sense encoding gene (e.g., trans-encoded antisense), or in cases where the antisense molecule lacks an open reading frame or appreciable complementarity to known sense molecules.

Antisense transcripts uncovered according to the teachings of the present invention can be used for detecting and accurately quantifying respective sense counterparts as well as for sensibly designing artificial antisense molecules suitable for down-regulation of sense counterparts.

Thus, according to one aspect of the present invention there is provided a method of identifying putative naturally occurring antisense transcripts.

The method according to this aspect of the present invention is effected by the following steps.

First, sense-oriented polynucleotide sequences of a first database are computationally aligned with expressed polynucleotide sequences of a second database.

Following computational alignment, expressed polynucleotide sequences are analyzed according to one or more criteria for their ability to hybridize or form a duplex or partial complementation with the sense-oriented polynucleotide sequences (further detailed hereinbelow and in the Examples section which follows).

Expressed polynucleotide sequences which are capable of forming a duplex with sense oriented sequences are considered as putative naturally occurring antisense molecules and as such can be stored in a database which can be generated by a suitable computing platform.

Final confirmation of computationally obtained putative naturally occurring antisense molecules can be effected either computationally or preferably by using suitable laboratorial methodologies, based on nucleotide hybridization including RNase protection assay, subtractive hybridization, differential plaque hybridization, affinity chromatography, electrospray mass spectrometry, northern analysis, RT-PCR and the like (for further details see the Examples section).

Information derived from the sequence, sense position and other structure characteristics of the naturally occurring antisense transcripts identified according to the teachings of the present invention can be used to quantify respective sense transcripts of interest or to generate corresponding artificial antisense polynucleotides, which can be packed in diagnostic or therapeutic kits and implemented in various therapeutic and diagnostic methods.

Expressed polynucleotide sequences used as a potential source for identifying naturally occurring antisense transcripts according to this aspect of the present invention are preferably libraries of expressed messenger RNA [i.e., expressed sequence tags (EST), cDNA clones, contigs, pre-mRNA, etc.] obtained from tissue or cell-line preparations which can include genomic and/or cDNA sequence.

Expressed polynucleotide sequences, according to this aspect of the present invention can be retrieved from pre-existing publicly available databases (i.e., GenBank database maintained by the National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, and the TIGR database maintained by The Institute for Genomic Research) or private databases (i.e., the LifeSeq.TM and PathoSeq.TM databases available from Incyte Pharmaceuticals, Inc. of Palo Alto, CA).

Alternatively, the sequence database of the expressed polynucleotide sequences utilized by the present invention can be generated from sequence

libraries (e.g., cDNA libraries, EST libraries, mRNA libraries and others). cDNA libraries are suitable sources for expressed sequence information.

Generating a sequence database in such a case is typically effected by tissue or cell sample preparation, RNA isolation, cDNA library construction and sequencing.

It will be appreciated that such cDNA libraries can be constructed from RNA isolated from whole organisms, tissues, tissue sections, or cell populations. Libraries can also be constructed from tissue reflecting a particular pathological or physiological state. Of particular interest are libraries constructed from sources associated with certain disease states, including malignant, neoplastic, hyperplastic tissues and the like.

Once raw sequence data is obtained, sequences are selected and preferably annotated before stored in a database. Selection proceeds according to one or more sequence criterion, which will be further detailed hereinunder.

The editing, annotation and selection process is divided into two stages of processing. One stage comprises removal of repetitive, redundant or non-informative and contaminant sequences. The second stage involves selection of suitable candidates of putative naturally occurring antisense sequences.

The following section describes the different selection criteria which can be used for sequence filtering.

Vector contamination - "chops" vector elements and linker motifs used for the process of cloning from desired expressed nucleotide sequences. This selection can be effected by screening manually updated databases of sequences included in commonly used expression or cloning vectors.

Contaminating sequences - includes sequences which are derived from an undesired source. Such sequences can be recognized by their nucleotide distribution and/or by homology searches such as alignment searches using any sequence alignment algorithm such as BLAST (Basic Local Alignment Search Tool, available through www.ncbi.nlm.nih.gov/BLAST) or the Smith-Waterman algorithm. Other contaminating sequences may include sequences

exhibiting high occurrence of di-nucleotide distribution mostly related to sequencing artifacts and ribosomal RNA sequences.

Repetitive elements and low complexity sequences - eliminates or masks expressed sequences comprising known repetitive elements (ALU, L1 etc.) and low complexity sequences (i.e., a di- or tri-nucleotide repeat). Such elimination is preferably effected by comparison with database of known repetitive elements. It will be appreciated that this type of selection is mostly species specific. Masking of low complexity sequences can be effected by substituting an N (i.e., an inert character) for the actual nucleotide (i.e., G, A, T, or C). Masking of low complexity sequences facilitates further computational analysis and maintains the spacing of the molecule.

Sequence length - preferred expressed sequences are of a length between 20-2000, preferably 20-1000, more preferably 20-500, most preferably 20-300 base pairs.

Sequence annotation - expressed sequences retrieved from external databases, i.e., GenBank, oftentimes include an annotation which indicates direction of the sequencing of the insert clone (i.e., 5' or 3' direction). Sequence annotation, though "noisy" by nature due to multiple entries from various sources; artifacts taking place during directional cloning and incidence of palindromic eight-cutter restriction sites located at the end of the sequence, can serve as an important tool for deducing strand identity using dedicated computer software which are further discussed hereinunder

Intron splice site consensus sequence intron splice site sharing - intron sequences nearly always begin with a di-nucleotide sequence of GT ("splice donor") and end with an AG ("splice acceptor") preceded by a pyrimidine-rich tract. This consensus sequence is part of the signal for splicing. Intron splice site consensus sequence on the complementary strand (e.g., antisense strand) begins with CT and ends with AC. Thus, combined with genomic data, expressed sequences having a GT...AG can be considered as sense-oriented sequences, while a CT...AC pattern is considered as an antisense oriented

sequence. This selection criterion is very stringent since only negligible portions of introns have a CT...AC pattern. Sequences that share a similar splicing pattern, as deduced by alignment to genomic data, may be considered as having the same sense orientation, also termed herein as "intron sharing". It
5 will be appreciated by one skilled in the art that using these selection criteria requires a careful and accurate alignment of expressed sequences to genomic sequence.

10 *Poly(A) tails and Poly(T) heads* – most eukaryotic mRNA molecules contain a poly-adenylation [poly(A)] tail at their 3' end. This poly(A) tail is not encoded by DNA. Therefore an expressed sequence which has a poly(A) tail can be considered as sense oriented. Similarly, poly(T) heads, which are not encoded from a genomic sequence indicate that a sequence is of the opposite direction, namely antisense oriented. Notably, genetically encoded Poly(A) tails and poly(T) heads provide no information as to the sequence orientation.

15 *Poly(A) signal* – some mature mRNA transcripts contain internal AAUAAA sequence. This internal sequence is part of an endonuclease cleavage signal. Following cleavage by the endonuclease, a poly(A) polymerase adds about 250 A residues to the 3' end of the transcript. Hence, expressed sequences containing a poly(A) signal can be considered as sense
20 oriented.

25 *Rare restriction site used for cloning* – for example, eight cutter endonucleases which cleave 8-mer palindromic sequences and are characterized by a low frequency of cutting often used in genome mapping and EST library preparations (e.g., NotI. Commercially available from Promega: www.promega.com). Therefore, when a cluster of overlapping expressed sequences is characterized by a portion of sequences starting with a digestion site and another portion ending with the same, these sequences may be considered as encoded from the same strand. However, any endonuclease capable of digesting a palindromic sequence (i.e., XbaI, SalI, PstI etc.) may

also affect distorted sequence clustering, therefore strand orientation is preferably effected using other parameters as well.

Sequence overlap - sequences that completely overlap are considered to have the same strand orientation.

5 The above described parameters are used individually or in combination to analyze the expressed polynucleotide sequences so as to select anti-sense oriented sequences.

Selection can be effected on the basis of a single criterion or several criteria considered individually or in combination.

10 In cases where several criteria are examined, a scoring system e.g., a scoring matrix, is preferably used.

15 Since in some cases identifying an intron splicing consensus site may be more important than both sequence annotation and NotI alignment, while in others, detection of poly(A) tails and poly(T) heads might be the most significant criterion, the use of a scoring matrix in which each criterion is weighted enables one to select qualified antisense transcripts.

20 Such a scoring matrix can list the various expressed polynucleotide sequences across the X-axis of the matrix while each criterion can be listed on the Y-axis of the matrix. Criteria include both a predetermined range of values from which a single value is selected from each sequence, and a weight. Each sequence is scored at each criterion according to its value and the weight of the criterion.

When using such a scoring matrix the scores of each criterion of a specific sequence are summed and the results are analyzed.

25 Expressed sequences which exhibit a total score greater than a particular stringency threshold are grouped as members of either a sense-oriented sequence set or antisense-oriented sequence set; the higher the score the more stringent the criteria of grouping.

It will be appreciated that the above described analysis can take place
30 prior to computational alignment to sense oriented sequences, i.e., during the

process of editing the expressed sequence database which is described hereinabove. Alternatively, selection can take place following computational alignment, thus further facilitating identification of proper duplex formation between the sense oriented polynucleotide sequences and expressed 5 polynucleotide sequences.

Genomic DNA or a portion thereof is preferably used as sense-oriented sequence data according to this aspect of the present invention. It is conceivable that the present invention can determine sense orientation and antisense orientation of a database of expressed sequences simply by 10 computationally aligning the sequences of the expressed database onto the genome, and finding whether two complementary expressed sequences hybridize to the genome (e.g., virtually generate a double stranded portion thereof). Such two overlapping sequences constitute sense and naturally occurring antisense transcripts.

Utilizing genomic DNA as a sense oriented template is preferred for the 15 following reasons: (i) identifying trans-encoded antisense transcripts; (ii) analyzing intron splice consensus site and intron sharing; (iii) omitting genetically encoded poly(A) and poly(T) sequences; and (iv) analyzing sequences encompassing eight-cutter restriction sites.

Computational alignment of expressed polynucleotide sequences to the 20 sense-oriented polynucleotide sequences (e.g., genomic sense sequences) can be effected using any commercially available alignment software, including sequence alignment tools utilizing algorithm such as BLAST (Basic Local Alignment Search Tool, available through www.ncbi.nlm.nih.gov/BLAST) or 25 Smith-Waterman.

Assembly software is preferably used according to this aspect of the 30 present invention. Such software is of high value when complete genomic information is unavailable or when handling large amounts of expressed sequence data. A number of commonly used computer software fragment read assemblers capable of forming clusters of expressed sequences are now

available. These packages include but are not limited to, The TIGR Assembler [Sutton G. et al. (1995) Genome Science and Technology 1:9-19], GAP [Bonfield JK. et al. (1995) Nucleic Acids Res. 23:4992-4999], CAP2 [Huang X. et al. (1996) Genomics 33:21-31], The Genome Construction Manager [Laurence CB. Et al. (1994) Genomics 23:192-201], Bio Image Sequence Assembly Manager, SeqMan [Swindell SR. and Plasterer JN. (1997) Methods Mol. Biol. 70:75-89], LEADS and GenCarta (Compugen Ltd. Israel).

Computer assembly and alignment programs can be modified to incorporate sequence criteria for determining sense or antisense orientation of expressed nucleotide sequences, as described hereinabove. Thereby, avoiding deliberate inversion of sequences during the assembly process, while ignoring the natural orientation of the sequences (i.e., sense or antisense orientation). Figure 1 illustrates results of expressed sequence assembly against genomic data and final distinction between sense oriented transcripts and antisense oriented transcripts of a single gene.

Following a proper alignment of expressed sequences to sense oriented polynucleotide sequences, duplexes are identified. The term "duplex" is used herein to indicate that a sequence identified according to this aspect of the present invention is complementary to a sense-oriented polynucleotide sequence. Complementation may be to a portion of the sense sequence, i.e., a region thereof, or alternatively, to two or more non-contiguous regions, which may be separated by one or more nucleotides on the sense strand.

The formation of sense-antisense duplexes does not require 100 % complementation nor does it require participation of the entire sense/antisense transcript sequence. The sense or antisense transcripts can have a secondary structure (e.g., stem and loop) generated by intra-sequence hybridization which can prevent specific sequence regions in the sense or antisense transcripts from participating in duplex formation. Thus, the antisense of the sequence identified, according to this aspect of the present invention can be

complementary to its sense counterparts in several regions, which are not necessarily close to each other when the sense transcript is in linear form.

Although any length of sequence overlap can generate a duplex, overlaps of at least 5 preferably 20 more preferably 30 even more preferably 40 bp are 5 considered more indicative of true sense-antisense duplex formation.

The method of uncovering putative antisense transcripts of the present invention is preferably carried out using a dedicated computational system.

Thus, according to another aspect of the present invention and as illustrated in Figure 2, there is provided a system for generating a database of 10 putative naturally occurring antisense sequences which system is referred to hereinunder as system 10.

System 10 includes a processing unit 12, which executes a software application designed and configured for aligning sense oriented polynucleotide sequences with expressed polynucleotide sequences and identifying expressed 15 polynucleotide sequences which are capable of forming a duplex with the sense oriented polynucleotide sequences, thereby recognizing putative naturally occurring antisense transcripts. System 10 may also include a user input interface 14 (e.g., a keyboard and/or a mouse) for inputting database or database related information, and a user output interface 16 (e.g., a monitor) for 20 providing database information to a user.

System 10 preferably stores sequence information of the putative antisense transcripts identified thereby on a computer readable media such as a magnetic, optico-magnetic or optical disk to thereby generate a database of putative antisense transcript sequences. Such a database further includes 25 information pertaining to database generation (e.g., source library), parameters used for selecting polynucleotide sequences, putative uses of the stored sequences, and various other annotations and references which relate to the stored sequences or respective sense transcripts.

System 10 of the present invention may be used by a user to query the stored database of sequences, to retrieve nucleotide sequences stored therein or to generate polynucleotide sequences from user inputted sequences.

System 10 can be any computing platform known in the art including but not limited to, a personal computer, a work station, a mainframe and the like.

The database generated and stored by system 10 can be accessed by an on-site user of system 10, or by a remote user communicating with system 10.

As illustrated in Figure 3, communication between a remote user 18 and processing unit 12 is preferably effected via a communication network 20. Communication network 20 can be any private or public communication network including, but not limited to, a standard or cellular telephony network, a computer network such as the Internet or intranet, a satellite network or any combination thereof.

As illustrated in Figure 3, communication network 20 includes one or more communication servers 22 (one shown in Figure 3) which serves for communicating data pertaining to the polypeptide of interest between remote user 18 and processing unit 12.

It will be appreciated that existing computer networks such as the Internet can provide the infrastructure and technology necessary for supporting data communication between any number of sites 24 and remote analysis sites 26.

For example, using a computer operating a Web browser application and the World Wide Web, any expressed polynucleotide sequence of interest can be "uploaded" by user 18 onto a Web site maintained by a database server 28. Following uploading, database server 28 which serves as processing unit 12 can be instructed by the user to processes the polynucleotide as is described hereinabove.

Following such processing, which can be performed in real time, nucleic acid sequence results can be displayed at the web site maintained by database server 28 and/or communicated back to site 24, via for example, e-mail communication.

5 Thus, using the Internet, a remote configuration of system 10 can provide polynucleotide sequence analysis services to a plurality of sites 24 (one shown in Figure 3).

It will be appreciated that this configuration of system 10 of the present invention is especially advantageous in cases where polypeptide analysis can 10 not be effected on-site. For example, laboratories, which lack the equipment necessary for executing the analysis or lack the necessary skills to operate it.

Thus, data extracted from the database of naturally occurring antisense transcripts of the present invention is of high value for designing oligonucleotides suitable for transcript detection and quantification and for 15 sensibly designing artificial antisense oligonucleotides for down-regulation and elimination of a transcript of interest or changing the balance between sense and complementary antisense transcripts. The possibility of up-regulating a transcript of interest using naturally occurring antisense based-oligonucleotides generated according to the teachings of the present invention is also realized.

20 In addition, data extracted from the database of naturally occurring antisense transcripts may also be used for assessing endogenous double stranded-RNA also termed interfering RNA, which may distort gene-expression due to either RNA-degradation, DNA-methylation, polycomb mediated suppression etc. (for details see the Background section hereinabove).

25 Antisense technology is based upon the pairing of an artificially designed antisense oligonucleotide, with a target nucleic acid. The use of antisense technology requires a complementarity of the antisense nucleotide sequence to a target zone of an mRNA target sequence that will effect inhibition of gene expression [reviewed in Stein CA. and Cohen JS. (1988) 30 Cancer Res. 48:2659-68]. Based on empiric experience it was shown that the

success of antisense technology relies on: (i) cellular uptake; (ii) stability of artificial antisense molecules under physiological conditions (i.e., cellular pH, endonucleases etc.); (iii) complementation between the oligonucleotide and a single stranded target sequence (i.e., tertiary structure of target RNA will not form a good target); (iv) binding specificity of antisense oligonucleotide so as not to compete with other RNA binders (e.g. proteins) to thereby maintain an effective antisense concentration.

Various attempts to employ antisense technology while considering the above discussed limitations included using large amounts of oligonucleotides to overcome cellular uptake and environmental barriers and chemically modified antisense nucleotide compositions, for obtaining higher level of cellular stability. However, even in case where uptake difficulties are traversed, the step of target identification (i.e., RNA-target sequence region) continues to be the major bottleneck for successful implementation of antisense technology.

U.S. Pat. No: 6,183,966 discloses a method and an apparatus for ranking nucleic acid sequences based on stability of nucleic acid oligomer sequence binding interactions to select sequence zones for antisense targeting. This method however systematic, relies on thermodynamic analyses combined with numerous predictions which cannot be considered empirically accurate and reliable.

Thus according to another aspect of the present invention there is provided a method of designing artificial antisense transcripts.

The method according to this aspect of the present invention is effected by the following steps.

First, structural and/or functional parameters pertaining to naturally occurring antisense transcripts are extracted/deduced from a database such as the one described hereinabove. These parameters may be generally deduced from all sequences stored in the database, or extracted from specific antisense sequences or preferably groups of antisense sequences.

Second, artificial antisense molecules of interest are designed according to the extracted parameters.

Such parameters may be divided into three groups, topographical parameters, functional parameters and structural parameters.

5 *Topographical parameters* - (i) position of sequence overlap on the sense transcript (i.e., coding region, 5'UTR, 3'UTR); (ii) position of the sequence overlap on the antisense transcript (end overlap, middle overlap, full overlap). (iii) length of overall sequence overlap; (iv) continuity or discontinuity of sequence overlap.

10 *Structural parameters* - pertains to both sense and antisense transcripts (i) tertiary structure (i.e., hairpin, helix, stem and loop, pseudoknot, and the like); (ii) single stranded versus double stranded regions; (iii) GC content; (iv) tandem Gs; (v) adenosine/inosine content; (vi) thermodynamic stability of tertiary structures; (vii) duplex melting point; (viii) methylations and other 15 RNA modifications; (ix) RNA-protein interactions ; and (x) transcript length.

16 *Functional parameters* - (i) alternative splicing; (ii) tissue expression; (iii) pathology specific expression; (iv) antisense promoters; (v) intron content; (vi) open reading frame in antisense transcript.

These parameters can be used individually or in combination, in which 20 case, each parameter is preferably weighted according to its importance. Due to the multi-factorial design of artificial antisense transcripts according to this aspect of the present invention, employing a scoring system (described hereinabove) is preferably used to simplify and increase the accuracy of the process.

25 Synthetic antisense oligonucleotides designed according to the teachings of the present invention can be generated according to any oligonucleotide synthesis method known in the art such as enzymatic synthesis or solid phase synthesis. Equipment and reagents for executing solid-phase synthesis are commercially available from, for example, Applied Biosystems. Any other

means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the capabilities of one skilled in the art.

Oligonucleotides used according to this aspect of the present invention are those having a length selected from a range of 10 to about 200 bases
5 preferably 15-150 bases, more preferably 20-100 bases, most preferably 20-50 bases.

The oligonucleotides of the present invention may comprise heterocyclic nucleosides consisting of purines and the pyrimidines bases, bonded in a 3' to 5' phosphodiester linkage.

10 Preferably used oligonucleotides are those modified in either backbone, internucleoside linkages or bases, as is broadly described hereinunder. Such modifications can oftentimes facilitate oligonucleotide uptake and resistance to intracellular conditions.

15 Specific examples of preferred oligonucleotides useful according to this aspect of the present invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone, as disclosed in U.S. Pat. NOS: ,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717;
20 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466, 677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates,
25 phosphotriesters, aminoalkyl phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having

inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms can also be used.

Alternatively, modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts, as disclosed in U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.

Other oligonucleotides which can be used according to the present invention, are those modified in both sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for complementation with the appropriate polynucleotide target. An example for such an oligonucleotide mimetic, includes peptide nucleic acid (PNA). A PNA oligonucleotide refers to an oligonucleotide where the sugar-backbone is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The bases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and

5,719,262, each of which is herein incorporated by reference. Other backbone modifications, which can be used in the present invention are disclosed in U.S. Pat. No: 6,303,374. Oligonucleotides of the present invention may also include base modifications or substitutions. As used herein, "unmodified" or "natural" bases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified bases include but are not limited to other synthetic and natural bases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further bases include those disclosed in U.S. Pat. No: 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B. , ed., CRC Press, 1993. Such bases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention.

These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 °C. [Sanghvi YS et al. (1993) Antisense Research and Applications, CRC Press, Boca Raton 276-278] and are presently

preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety, as disclosed in U.S. Pat. No: 6,303,374.

It is not necessary for all positions in a given oligonucleotide molecule to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide.

The present invention also includes antisense molecules, which are chimeric molecules. "Chimeric" antisense molecules", are oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target polynucleotide. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. An example for such include RNase H, which is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable

results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense molecules of the present invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, as described above. Representative U.S. patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein fully incorporated by reference.

Finally, chimeric oligonucleotides of the present invention can comprise a ribozyme sequence. Ribozymes are being increasingly used for the sequence-specific inhibition of gene expression by the cleavage of mRNAs. Several ribozyme sequences can be fused to the oligonucleotides of the present invention. These sequences include but are not limited ANGIOZYME specifically inhibiting formation of the VEGF-R (Vascular Endothelial Growth Factor receptor), a key component in the angiogenesis pathway, and HEPTAZYME, a ribozyme designed to selectively destroy Hepatitis C Virus (HCV) RNA, (Ribozyme Pharmaceuticals, Incorporated - WEB home page).

The oligonucleotides generated according to the teachings of the present invention can be used for both diagnostic and therapeutic purposes. For example, oligonucleotides of the present invention can be used to diagnose and treat a variety of diseases or pathological conditions associated with an abnormal expression (i.e., up-regulation or down-regulation) of at least one mRNA molecule of interest, including but not limited to diabetes, autoimmune diseases, Parkinson, Alzheimer' disease, HIV, malaria, cholera, influenza, rabies, diphtheria, breast cancer, colon cancer, cervical cancer, melanoma, lung cancer, ovarian cancer, pancreatic cancer, prostate cancer, lymphomas,

leukemias and the like and any other diseases (see Example 8 of the Examples section) which are associated with aberrant expression of multiple mRNAs (i.e., sense and/or antisense) or with unregulated formation of endogenous double stranded RNA complexes.

5 Present-day mRNA-based diagnostic assays utilize oligonucleotide probes which are complementary to one or more regions of the mRNA to be quantitated. Such probes are designed while considering interspecies sequence variation, sequence length, GC content etc. However design of such prior art probes (i.e., riboprobes or deoxyriboprobes) does not take into consideration the
10 presence of antisense transcripts which can effect probe binding efficiency. Discounting antisense presence can lead to inaccurate diagnosis, which is oftentimes followed by an erroneous treatment protocol.

The present invention provides an mRNA-detection/quantification assay, which is devoid of this limitation.

15 Thus, according to an additional aspect of the present invention there is provided a method of quantifying at least one mRNA of interest in a biological sample.

20 As used herein, the phrase "biological sample" refers to any sample derived from biological tissues or fluids, including blood (serum or plasma), sputum, pleural effusions, urine, biopsy specimens, isolated cells and/or cell membrane preparation. Methods of obtaining tissue biopsies and body fluids from mammals are well known in the art.

25 The method of this aspect of the present invention is effected by contacting mRNA from a cell type or within a cell with one or more oligonucleotides that hybridizes efficiently with a sequence region of an mRNA transcript which is not complementary with a naturally occurring antisense transcript.

In addition to the limitation described above, prior art diagnostic/detection assays also fail to consider the effect of antisense transcription on the protein expression levels of a gene of interest. It stands to
30

reason that presence of antisense transcripts in a biological sample can substantially reduce the resultant protein levels translated from a complementary sense transcript. Consistently, diseases which are associated with endogenous dsRNA complexes, are also very difficult to detect and 5 moreover to treat, due to insufficient sequence data pertaining to duplex forming transcripts.

Thus, for accurate quantification of gene expression, both the sense and antisense levels must be quantified and/or their respective expression ratio must be determined.

10 By contacting a biological sample with one or more pairs of oligonucleotides, where one oligonucleotide is capable of hybridizing with the mRNA of interest and the second oligonucleotide is capable of hybridizing with a naturally occurring antisense transcript which is complementary with the mRNA of interest such accurate quantification can be effected.

15 Contacting the oligonucleotides of the present invention with the biological sample is effected by stringent, moderate or mild hybridization (as used in any polynucleotide hybridization assay such as northern blot, dot blot, RNase protection assay, RT-PCR and the like). Wherein stringent hybridization is effected by a hybridization solution of 6 x SSC and 1 % SDS
20 or 3 M TMACl, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5 % SDS, 100 mg/ml denatured salmon sperm DNA and 0.1 % nonfat dried milk, hybridization temperature of 1 - 1.5 °C below the Tm, final wash solution of 3 M TMACl, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5 % SDS at 1 - 1.5 °C below the Tm; moderate hybridization is effected by a
25 hybridization solution of 6 x SSC and 0.1 % SDS or 3 M TMACl, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5 % SDS, 100 mg/ml denatured salmon sperm DNA and 0.1 % nonfat dried milk, hybridization temperature of 2 - 2.5 °C below the Tm, final wash solution of 3 M TMACl, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5 % SDS at 1 -
30 1.5 °C below the Tm, final wash solution of 6 x SSC, and final wash at 22 °C;

whereas mild hybridization is effected by a hybridization solution of 6 x SSC and 1 % SDS or 3 M TMACl, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5 % SDS, 100 mg/ml denatured salmon sperm DNA and 0.1 % nonfat dried milk, hybridization temperature of 37 °C, final wash solution of 5 6 x SSC and final wash at 22 °C.

The oligonucleotides of the present invention can be attached to a solid substrate, which may consist of a particulate solid phase such as nylon filters, glass slides or silicon chips [Schena et al. (1995) Science 270:467-470].

In a particular embodiment, oligonucleotides of the present invention 10 can be attached to a solid substrate, which is designed as a microarray. Microarrays are known in the art and consist of a surface to which probes that correspond in sequence to gene products (e.g., cDNAs, mRNAs, cRNAs, polypeptides, and fragments thereof), can be specifically hybridized or bound at a known position (regiospecificity).

15 Several methods for attaching the oligonucleotides to a microarray are known in the art including but not limited to glass-printing, described generally by Schena et al., 1995, Science 270:467-47, photolithographic techniques [Fodor et al. (1991) Science 251:767-773], inkjet printing, masking and the like.

20 In general, quantifying hybridization complexes is well known in the art and may be achieved by any one of several approaches. These approaches are generally based on the detection of a label or marker, such as any radioactive, fluorescent, biological or enzymatic tags or labels of standard use in the art. A label can be applied on either the oligonucleotide probes or nucleic acids 25 derived from the biological sample.

The following illustrates a number of labeling methods suitable for use in the present invention. For example, oligonucleotides of the present invention can be labeled subsequent to synthesis, by incorporating biotinylated dNTPs or rNTP, or some similar means (e.g., photo-cross-linking a psoralen derivative of 30 biotin to RNAs), followed by addition of labeled streptavidin (e.g.,

phycoerythrin-conjugated streptavidin) or the equivalent. Alternatively, when fluorescently-labeled oligonucleotide probes are used, fluorescein, lissamine, phycoerythrin, rhodamine (Perkin Elmer Cetus), Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, FluorX (Amersham) and others [e.g., Kricka et al. (1992), Academic Press San Diego, Calif] can be attached to the oligonucleotides. It will be appreciated that pairs of fluorophores are chosen when distinction between two emission spectra of two oligonucleotides is desired or optionally, a label other than a fluorescent label is used. For example, a radioactive label, or a pair of radioactive labels with distinct emission spectra, can be used [Zhao et al. (1995) Gene 156:207]. However, because of scattering of radioactive particles, and the consequent requirement for widely spaced binding sites, the use of fluorophores rather than radioisotopes is more preferred.

The intensity of signal produced in any of the detection methods described hereinabove may be analyzed manually or using a software application and hardware suited for such purposes.

In general, mRNA quantification is preferably effected alongside a calibration curve so as to enable accurate mRNA determination. Furthermore, quantifying transcript(s) originating from a biological sample is preferably effected by comparison to a normal sample, which sample is characterized by normal expression pattern of the examined transcript(s).

It will be appreciated that the detection method described above can also be used for quantifying at least one naturally occurring antisense transcript in a biological sample. In such a case, the oligonucleotide used for quantification is designed to hybridize with a sequence region of naturally occurring antisense transcript of interest, which is not complementary with a naturally occurring mRNA transcript.

The diagnostic assays described hereinabove can be used to accurately distinguish between absence, presence and excess expression of any transcripts of interest (e.g., sense, antisense), and to monitor their level during therapeutic intervention. These methods are also capable of diagnosing diseases associated

with an improper balance or ratio between sense and antisense expression and diseases associated with endogenous dsRNA.

Further description of oligonucleotide-pair arrays is provided in Example 9 of the Examples section which follows.

As discussed hereinabove oligonucleotides of the present invention can be also used for therapeutic purposes, such as treating diseases or conditions associated with aberrant expression levels of one or more sense and/or antisense transcripts and conditions, which are associated with endogenous dsRNA such as unregulated formation of double-strand RNA (i.e., up/down-regulation).

Accumulative knowledge shows strong correlation between a variety of human diseases and mutations, over-expression and function of the protein building blocks (i.e., protein kinases, phosphatases) and their effectors and regulators, which constitute numerous intracellular signaling pathways. For instance, inactivation of both copies of ZAP-70 or Jak-3 causes severe combined immunodeficiency and mutation of the X-linked BTK gene results in agammaglobulinemia. Many genetic disorders are also associated with mutations for example, in protein-serine kinases (PSKs) and phosphatases. The Coffin-Lowry syndrome results from inactivation of the X-linked Rsk2 gene, and myotonic dystrophy is due to decreased levels of expression of the myotonic dystrophy PSK. In addition, over-expression of ErbB2 receptor tyrosine kinase is implicated in breast and ovarian carcinoma [reviewed by Hunter T. (2000) Cell 100:113-127].

Given the importance of activated kinases in a variety of disorders such as cancer, it would be anticipated that phosphatases regulation would be found as tumor suppressor genes and as promising drug targets. So far this has not proved to be the case. Furthermore, a number of diseases are associated with insufficient expression of signaling molecules, including non-insulin-dependent diabetes and peripheral neuropathies.

Thus, it is conceivable that identification of naturally occurring antisense transcripts of signaling molecules participating in specified signaling pathways may serve as promising tools for both identification and particularly treatment of a variety of disorders at any gene expression level (i.e., RNA, DNA or protein).

The term "treating" refers to alleviating or diminishing a symptom associated with the disease or the condition. Preferably, treating cures, e.g., substantially eliminates, and/or substantially decreases, the symptoms associated with the diseases or conditions of the present invention.

The treatment method according to the teachings of the present invention includes administering to an individual a therapeutically effective amount of the synthetic antisense oligonucleotides of the present invention. Preferred individual subjects according to the present invention are mammals such as canines, felines, ovines, porcines, equines, bovines, humans and the like.

A therapeutically effective amount implies an amount of agent effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the individual being treated

The agent of the method of the present invention can be administered to an individual *per se*, or as part of a pharmaceutical composition where it is mixed with a pharmaceutically acceptable carrier.

As used herein a "pharmaceutical composition" refers to a composition of one or more of the agents described hereinabove, or physiologically acceptable salts or prodrugs thereof, with other chemical components. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or

aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

5 Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

10 Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

15 Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

20 Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

25 The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations

are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of
5 many possible dosage forms such as, but not limited to, tablets, capsules, liquid
syrups, soft gels, suppositories, and enemas. The compositions of the present
invention may also be formulated as suspensions in aqueous, non-aqueous or
mixed media. Aqueous suspensions may further contain substances which
increase the viscosity of the suspension including, for example, sodium
10 carboxymethylcellulose, sorbitol and/or dextran. The suspension may also
contain stabilizers.

In one embodiment of the present invention the pharmaceutical
compositions may be formulated and used as foams. Pharmaceutical foams
include formulations such as, but not limited to, emulsions, microemulsions,
15 creams, jellies and liposomes. While basically similar in nature these
formulations vary in the components and the consistency of the final product.
The preparation of such compositions and formulations is generally known to
those skilled in the pharmaceutical and formulation arts and may be applied to
the formulation of the compositions of the present invention.

20 The pharmaceutical compositions of the present invention may employ
various penetration enhancers to effect the efficient delivery of nucleic acids,
particularly oligonucleotides, to the skin of animals.

Penetration enhancers may be classified as belonging to one of five
broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and
25 non-chelating non-surfactants [Lee et al., Critical Reviews in Therapeutic Drug
Carrier Systems (1991) 92] as disclosed in U.S. Pat. No: 6,300,132, 6,271,030,
6,277,633, 6,284,538, 6,287,860, 6,294,382, 6,277,640 and 6,258,601 each of
which is herein fully incorporated by reference.

30 Other substances that enhance uptake of oligonucleotides at the cellular
level may also be added to the pharmaceutical compositions of the present

invention. For example, cationic lipids, such as lipofectin [U.S. Pat. No. 5,705,188], cationic glycerol derivatives, and polycationic molecules, such as polylysine [PCT Application WO 97/30731], are also known to enhance the cellular uptake of oligonucleotides.

5 Other reagents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.

Certain pharmaceutical compositions of the present invention may also 10 incorporate carrier compounds. As used herein, "carrier compound" or "carrier" can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or 15 promoting its removal from circulation. The co-administration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For 20 example, the recovery of a partially phosphorothioate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonic acid [Miyao et al., Antisense Res. Dev., (1995) 5:115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev. (1996) 6:177-183].

25 In contrast to a carrier compound, an "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., 30 when combined with a nucleic acid and the other components of a given

pharmaceutical composition. Typical excipients include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, 5 polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).

10 Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, 15 magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. 20 Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration, which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not 25 limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at 30 their art-established usage levels. Thus, for example, the compositions may

contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as 5 dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, 10 emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation. Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The 15 suspension may also contain stabilizers.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a 20 cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50 found to be effective in in vitro and in 25 vivo animal models. Persons of ordinary skill in the art can easily estimate dosing and repetition rates based on measured residence times and concentrations of the oligonucleotide in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo

maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses.

The methods of the present invention have evident utility in the diagnosis and treatment of various diseases and conditions. In addition, such methods can also be used in non-clinical applications, such as, for example, differential cloning, detection of rearrangements in DNA sequences as disclosed in U.S. Pat. No: 5,994,320, drug discovery and the like.

The oligonucleotides generated according to the teachings of the present invention can be included in a diagnostic or therapeutic kit. For example, oligonucleotides sets pertaining to specific disease related transcripts can be packaged in a one or more containers with appropriate buffers and preservatives along with suitable instructions for use and used for diagnosis or for directing therapeutic treatment.

Preferably, the containers include a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic.

In addition, other additives such as stabilizers, buffers, blockers and the like may also be added.

Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.

25

EXAMPLES

Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.

Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical,

microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Maryland (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, CT (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, CA (1990); Marshak et al., "Strategies for Protein Purification and Characterization - A Laboratory Course Manual" CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are

believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.

5 *In-vitro expression substantiation of computationally retrieved naturally occurring antisense transcripts*

In-vitro expression assays were conducted in order to validate the existence of naturally occurring antisense sequences identified according to the teachings of the present invention.

10 Table 1 below lists polynucleotide sequence pairs that were selected for the *in-vitro* expression validation assays described in examples 1-7.

Table 1

Name of sense	Sense	Sense	Antisense	Anti-	Overlap	Start of	Start of
antisense pair	transcript	Length	transcript	sense	length	overlap	overlap
		(nt)		Length	(nt)	sense	anti-
53BP1_76P	53BP1	10394	76P	6837	3046	5463	2018
	(SEQ ID NO: 15)		(SEQ ID NO: 16)				
CIDEB_BLTR2 (1)	CIDEB1	2289	BLTR2	6530	2254	17	1
	(SEQ ID NO: 19)		(SEQ ID NO: 21)				
CIDEB_BLTR2 (2)	CIDEB2	1511	BLTR2	6530	1410	1	1
	(SEQ ID NO: 20)						
APAF1_EB1	aAPAF1	7042	EB1a	1752	141	6889	1612
	(SEQ ID NO: 24)		(SEQ ID NO: 25)				
AChR_MINK2	AchR	2457	MINK2	4863	236	2175	4853
	(SEQ ID NO: 29)		(SEQ ID NO: 30)				
M-AchR_Anti-AChR	M-AchR	1590	M-Anti-AchR	2227	672	934	506
	(SEQ ID NO: 35)		(SEQ ID NO: 36)				
CyclinE2_Anti-CyclinE2	CyclinE2	2714	Anti-CyclinE2	5773	1855	565	2006
	(SEQ ID NO: 33)		(SEQ ID NO: 34)				

15 Sequence alignments of overlapping regions of each sense-antisense pair were performed using the BLAST sequence alignment algorithm (Basic Local

Alignment Search Tool, available through www.ncbi.nlm.nih.gov/BLAST using the default parameters) and are exhibited in Figure 5a-g.

A microarray-based analysis was conducted, as well, in order to validate the existence of naturally occurring, antisense sequences identified according to 5 the teachings of the present invention. The results are described in Example 9.

Materials and Experimental Methods

RNA probes generation and northern analysis

RNA probes for northern analysis were generated by PCR amplification 10 of a desired DNA fragment and cloning into Zero Blunt TOPO (Invitrogen Corp.) or pSPT18/19 vectors (Roche Ltd.). Alternatively PCR products were ligated into T7 RNA polymerase promoter-containing adaptors using the Lignscribe kit (Ambion Europe Ltd.). Corresponding RNA transcripts were synthesized using T7 RNA polymerase (Roche Ltd.) and labeled with 32P-UTP 15 according to manufacturer's instructions. RNA probes were purified on Mini Quick Spin RNA columns.

Commercial membranes containing Poly(A)-RNA from various human tissues (2 µg RNA per lane) were obtained from Origene (OriGene Technologies Inc.) and Ambion (Ambion Inc.).

20 Alternatively, 2 µg of poly(A)-RNA prepared from various human cell-lines were electrophoretically separated on 1 % agarose gel, and electrotransferred to Nytran SuperCharge membrane (Schleicher & Schuell) and subjected to fixing by UV radiation. Membranes were stained with methylene blue to ensure quantitative RNA transfer. Membranes were then 25 prehybridized in a hybridization solution (UltraHyb solution Ambion Europe Ltd.) for 30 minutes at 68 °C in a rotating hybridization tube.

Hybridization solution was then supplemented with 106 cpm of labeled 30 RNA probe per each ml of hybridization solution. Blots were hybridized for 16 hours at 68 °C in a rotating hybridization tube. Membranes were then washed twice with 2 x SSC, 0.1 % sodium dodecyl sulfate (SDS) and twice with 0.1 %

SDS at 68 °C. RNA transcripts signals were detected using a phosphoimager (Molecular Dynamics, Sunnyvale CA).

Microarray

Oligonucleotide design - oligonucleotide design tools (1) were applied 5 to each pair of sense/antisense genes in order to select two complementary 60-mer oligonucleotides from the region where the two genes overlap. The design criteria included the following: low cross-homology (up to 75%) to other expressed sequences in the human transcriptome; a continuous hit of no more than 17 bp to the sequence of another gene; balanced GC content (30-70%) 10 without significant windows of local imbalance; no more than 2 palindromes with a length of 6 bp; a hit of no more than 15 bp to a repeat, vector or low-complexity region; and no long stretches of identical nucleotides.

Microarray preparation - 60-mer oligonucleotides were synthesized by Sigma-Genosys (The Woodlands, TX), resuspended at 40 µM in 3X SSC, and 15 spotted in quadruplicates on poly-L-lysine coated glass slides as detailed in the online protocol of the National Human Genome Research Institute (<http://www.nhgri.nih.gov/DIR/Microarray/Protocols.pdf>). To avoid local differences in the hybridization conditions, the probes selected from the overlapping regions of each sense/antisense pair were spotted in the same 20 block, next to each other.

Human cell lines - The following cell lines utilized were purchased from ATCC (Manassas, VA): MCF7 (breast adenocarcinoma, Cat. No. HTB-22,), HeLa (cervical adenocarcinoma, Cat. No. CCL-2) HEK-293 (embryonal kidney cells, Cat. No. CRL-1573), Jurkat (acute T-cell leukemia, Cat. No. TIB-25 152), K-562 (chronic myelogenous leukemia, Cat. No. CCL-243), HepG2 (liver carcinoma, Cat. No. HB-8065), T24 (urinary bladder carcinoma, Cat. No. HTB-4), SK-N-DZ (neuroblastoma, Cat. No. CRL-2149), NK-92 (non-Hodgkin's lymphoma, Cat. No. CRL-2407), MG-63 (osteosarcoma, Cat. No. CRL-1427), DU 145 (prostatic carcinoma, Cat. No. HTB-81), G-361 (melanoma, Cat. No. 30 CRL-1424), PANC-1 (pancreatic carcinoma, Cat. No. CRL-1469), ES-2 (ovary

clear cell carcinoma, Cat. No. CRL-1978), Y79 (retinoblastoma, Cat. No. HTB-18), HT-29 (colorectal adenocarcinoma, Cat. No. HTB-38), H1299 (large cell lung carcinoma, Cat. No. CRL-5803), SNU1 (gastric carcinoma, Cat. No. CRL-5971), NL564 (EBV-transformed human lymphoblasts) and MCF10
5 (benign tumor breast cells).

RNA purification - Total RNA was extracted from the above mentioned human cell lines using TriReagent (Molecular Research Center, Cincinnati, OH). Poly(A)+ mRNA was purified using two cycles of the Dynabeads mRNA Purification Kit (Dynal Biotech ASA, Oslo, Norway), as per manufacturer instructions. The removal of traces of ribosomal RNA was confirmed by agarose gel electrophoresis. Poly(A)+ mRNAs from human testis, placenta, lung and brain tissue were purchased from BioChain Institute, Inc. (Hayward, CA). mRNAs of all cell lines described above were combined in equal quantities to obtain the reference 'mRNA pool'.

Preparation of labeled cDNA - For each hybridization, labeled cDNA was synthesized by reverse transcription of 0.5 µg of mRNA, in the presence of 100 pmol of random 9-mers, 1µg of oligo(dT)20, 1X RT buffer, 10 mM DTT, 3 nmol of Cy5- or Cy3-conjugated dUTP, 0.5 mM of dATP, dGTP and dCTP, and 0.2 mM dTTP, in a final volume of 40 µl (Amersham). The reaction mixture was incubated for 5 minutes at 65 °C and cooled to 42 °C. 600 Units of reverse transcriptase (Superscript II, Invitrogen, Carlsbad, CA) and 40 U of Rnase inhibitor (RNasin Promega, Madison, WI) were added and the reaction was incubated for 30 minutes at 42 °C. An additional 200 U of Superscript II were added and the reaction was incubated for another 15 minutes. Remaining RNA was degraded by the addition of 200 mM NaOH and 50 mM EDTA, at 65 °C for 10 minutes. The mixture was neutralized by adding half a volume of 1M Tris-HCl pH 7.5. Hybridizations were performed in duplicate using fluorescent reversal of Cy3- and Cy5-labeled cDNA from test cell mRNAs and pooled mRNAs. Pairs of Cy5/Cy3-labeled cDNA samples were combined, and

subsequently purified and concentrated to a final volume of 5-7 µl using a Microcon-30 (Millipore) concentrator.

Hybridization and washing conditions - Microarray slides were prehybridized with 40 µl of 5X SSC, 0.1 % SDS and 1 % BSA for 30 min at 42 °C, washed for 2 minutes with double distilled water, then rinsed with isopropanol, and spun dried at 500 g for 3 minutes. Prior to hybridization, the labeled probe was combined with 10 µg of Cot-1 DNA, 10 µg poly(dA)80, and 4 µg yeast tRNA, in a final volume of 15 µl. The mixture was denatured at 100 °C for 3 minutes and placed on ice. Formamide (final concentration 16 %), SSC (to 5X concentration) and 0.1 % SDS were added to a final volume of 30 µl. The mixture was placed on the array under a glass cover slip in a tightly sealed hybridization chamber, and immersed in a water bath at 42 °C, for 16 hours. Microarray slides were then washed for 4 minutes with 2X SSC, 0.1 % SDS; 4 minutes with 1X SSC, 0.01 % SDS; 4 minutes with 0.2X SSC and 15 seconds with 0.05X SSC and spun dry by centrifugation for 3 minutes at 500g.

Image processing - Following hybridization, arrays were scanned using a GenePix 4000B scanner (Axon Instruments, Union City, CA). Scanned array images were manually inspected and areas with visible artifacts or deformities were marked. Images were processed using GenePix Pro 3.0 (www.axon.com) software.

Normalization - The intensity for each spot was calculated as its mean intensity minus the median background around the spot. The signal for each oligo was calculated as the average of intensity values of the four redundant spots of each oligo. Normalization of the oligo signals was performed at several levels as is further described below.

Normalization of blocks was carried out in order to normalize the gradient of intensities within each slide. For each block i, an Ai parameter was calculated as the average of intensities of 56 positive control spots (oligonucleotide probes for the ubiquitously expressed housekeeping genes gapdh, actin, hsp70 and gnb211, in various probe concentrations). An average

A of all A_i averages was calculated. Based on this, a block normalization factor B_i was calculated for each block, as $B_i = A/A_i$, and applied to each spot in the block.

Normalization between slides was performed to bring all experiments to the same scale. For each experiment, the average of intensities of the 192 negative control spots on the array was set to be the 0 (zero) of the new scale. For a subset of highly signaling oligos, with intensities between the 70th and the 95th percentiles of the oligo signal distribution of the experiment, the average was arbitrarily set to be 500 in the new scale. The intensity of each oligo signal was accordingly converted to this new scale, to obtain the normalized signal. A ratio between the normalized cell-line signal and the normalized pool signal was calculated for each oligo in each experiment. To avoid misleading ratios coming from signals that were too low, the ratio R_{ji} for oligo j in experiment i was calculated as: $R_{ji} = \max [100, \text{cell-line-signal}_{ji}]/\max [100, \text{pool-signal}_{ji}]$.

To normalize between red/green intensities in reciprocal experiments, the ratio R_{jk} for oligo j in cell-line k was calculated as the average of calculated ratios R_{ji} between the two reciprocal experiments of the cell-line k . In cases where only one of the two reciprocal experiments showed an elevated or decreased ratio, while in the other the ratio was 1.0, the average R_{jk} was converted to 1.0.

The actual pool signal for each oligo was calculated to be the average of the normalized oligo signals in the pool channel of all experiments. A virtual pool signal was calculated as the average of the normalized oligo signals in the cell-line channel of all experiments. The virtual pool signals were found to be very close to the actual pool signals, indicating consistency in the analysis.

Threshold determination - To determine an expression threshold above, in which a normalized signal would be considered a 'positive' signal indicating expression, the distribution of all 16,512 normalized negative control signals and the standard deviation (neg-std-dev) were calculated. The neg-std-dev

obtained was 38. An oligo j was considered 'present' in a cell-line k if $R_{jk} \times \text{actual-pool-signal}_j \geq 4 \times \text{neg-std-dev}$.

EXAMPLE 1

5 ***Identification of 53BP1 and 76P RNA transcripts in a variety of human tissues and cell-lines***

Background:

The tumor suppressor p53 binding protein 1 (SEQ ID NO: 15) is one of the various p53 target proteins. It binds to the DNA-binding domain of p53 and 10 enhances p53-mediated transcriptional activation. 53BP1 is characterized by several structural motifs shared by several proteins involved in DNA repair and/or DNA damage-signaling pathways. 53BP1 becomes hyperphosphorylated and forms discrete nuclear foci in response to DNA damage induced by radiation and chemotherapy. Recent reports suggest that 15 53BP1 is an ataxia telangiectasia mutated (ATM) substrate that is involved early in the DNA damage-signaling pathways in mammalian cells, attributing a role to 53BP1 in the development of various mammalian pathologies.

Results:

Two 53BP1 RNA sense transcripts with dissimilar 3' UTRs were 20 previously described [Iwabuchi K. et al. (1994) Proc. Natl. Acad. Sci. USA] and are illustrated in Figure 6 (red and green). Leads™ assembly program modified to uncover novel antisense transcripts was used to uncover three such transcripts for the 53BP1 gene, which transcripts have different 3' UTRs (SEQ ID NO: 16, 37 and 38) and encode the 76p gene product (Genbank accession 25 number NM014444)(illustrated in blue).

To confirm expression of computationally retrieved antisense transcripts, two RNA-probes were generated. Schematic location of the probes used for sense and antisense validation (Riboprobe#1 and Riboprobe#2, respectively SEQ ID NO: 17 and 18, respectively) is illustrated in Figure 6. These RNA 30 probes were used to identify the corresponding full-length transcripts.

As shown in Figure 7, Riboprobe#1 detected two transcripts of approximately 6.3 Kb and 10.5 Kb, corresponding to the sense mRNA. The absolute levels of the short messenger were rather homogeneous in all cell-lines examined. The 10.5 Kb variant exhibited a more heterogenic pattern of cellular distribution, and was mostly expressed in K562, MG-63, 293 HEK and Hela cells. In general, the longer sense transcript which is an alternatively polyadenylated variant was markedly lower expressed in the various cell lines examined.

The same membrane was used to perform northern analysis with Riboprobe#2 in order to validate expression of antisense transcripts of 53BP1. Results are shown in Figure 8. Three variants corresponding to the 76p gene were detected in most of the cell lines: 6.8 Kb, 4.2 Kb and 2.5 Kb. Minor fluctuations of expression were observed and the largest transcript was expressed at significantly higher levels than the smaller transcripts.

A sense strand probe was used to detect expression of the antisense transcripts in a variety of human tissues (Figure 9). The three alternatively polyadenylated variants with different 3' UTRs were expressed in most of the tissues. Total levels of these transcripts varied in the different tissues assayed. For example, highest level of expression for all three transcripts was observed in the brain and testis, while no expression of the 6.8 Kb and 4.2 Kb variants was detected in the spleen. Expression levels of each transcript were summarized in Table 2 below.

Table 2

Tissue	Transcript Mol. Weight (Kb)		
	6.8	4.2	2.5
brain	+++	++++	++++
colon	+	++	+
heart	-	+	++
kidney	++	++	+
Liver	-	-	+
lung	++++	+++	+

61

muscle	++	+	+
placenta	+	++	++
Small intestine.	++	++	-
spleen	-	-	+
stomach	-	-	+
testis	++	++	++++

Reverse transcription amplification (RT-PCR) analysis was performed in order to substantiate the northern blot results. Primers were synthesized according to the scheme shown in Figure 10 (indicated by arrows). The 5 expected amplification products corresponded completely to the observed amplification reaction products, supporting the existence of the various 53BP1 and 76p transcription variants.

EXAMPLE 2

10 ***Identification of mRNA and complementary transcripts of the Cell death inducing DFF45-like effector (CIDE)-B***

Background:

Cell death inducing DFF45-like effector (CIDE-B) (GenBank Accession numbers AF190901 and AF218586) is a member of a novel family of apoptosis-inducing factors that share homology with the N-terminal region of DFF, the DNA fragmentation factor. Although the molecular mechanism of CIDE-B induced apoptosis is unclear, mitochondrial localization and dimerization, both were shown to be required [Chen Z. et al. (2000) J. Biol. Chem. 275:22619-22622]. Notably, over-expression of CIDE-B in mammalian 15 cells shows strong cell death-inducing activity, suggesting that aberrant expression of this protein may be associated with a number of mammalian pathologies [Inohara N. et al. (1998) EMBO J. 17:2526-2533].

Results:

Two sense transcript of the CIDE-B gene were previously described 20 with different 5' UTRs [Inohara N. et al. (1998) EMBO J. 17:2526-2533 and

Lugovskoy AA. et al. (1999) Cell 99:745-755] (SEQ ID NOs: 19 and 20).

Computational analysis recovered a potential elongated BLTR2 transcript (SEQ ID NO: 21), showing full complementary to the CIDE-B mRNA transcripts (Figure 11).

5 Northern blot analysis was done in order to determine the distribution of the CIDE-B sense and antisense transcripts in various cell-lines. A 430 base pairs DNA fragment was selected to generate RNA probes for identification of both sense and antisense transcripts (SEQ ID NOs: 22 and 23, respectively).

10 Expression of antisense mRNA transcripts was detected in various cell-lines and especially in the mammary gland adenocarcinome cell line-MCF-7 as a predominant 6.5 Kb transcript, although higher forms were also visualized (Figure 12). Low hybridization with a CIDE-B probe was detected (Figure 13).

Conclusion:

15 BLTR2 was recently identified as a putative seven-transmembrane receptor with a high homology to the Leukotriene B (4) receptor [Tryselius Y. et al. (2000) Biochem. Biophys. Res. Commun. 274:377-82]. Although the mechanism of action of BLTR2 is poorly understood, it is conceivable that BLTR2 mRNA plays a role in the regulation of CIDE-B apoptotic effector and vice versa.

20

EXAMPLE 3

Identification of mRNA and complementary transcripts of the apoptosis inducing factor APAF-1

Background:

25 A conserved series of events including cellular shrinkage, nuclear condensation, externalization of plasma membrane phosphatidyl serine, and oligonucleosomal DNA fragmentation characterizes apoptotic cell death. Regardless of the circumstance, induction and execution of apoptotic events require activation of caspases, a family of aspartate-specific cysteine 30 proteinases. Caspase activation may be regulated by the mitochondrion and

specifically by the apoptosome consisting of an oligomeric complex of apoptotic protease-activating factor-1 (APAF-1), cytochrome C and dATP. The apoptosome recruits and activates caspase-9, which in turn activates the executioner caspases, caspase-3 and -7. The active executioners kill the cell by proteolysis of key cellular substrates [Zou H. et al. (1999) J. Biol. Chem. 274:11549-11556]. Evasion or inactivation of the mitochondrial apoptosis pathway may contribute to oncogenesis by allowing cell proliferation. In this instance, unregulated cell proliferation may occur by inactivation of APAF-1, which has been suggested to occur via genetic loss or inhibition by HSP-70 and HSP-90. Although aberrant expression of APAF-1 was found in a variety of malignancies (including ovarian epithelial cancer), no link was found to accelerated protein degradation.

Results:

One RNA transcript has been previously described for APAF-1 [Zou H. et al. (1999) J. Biol. Chem. 274:11549-11556] (SEQ ID NO: 10) (SEQ ID NO: 24). Computational search for natural antisense transcripts has revealed two complementary transcripts for APAF-1 messenger RNA (SEQ ID NOs: 25 and 26). These antisense transcripts include an open reading frame encoding the EB-1 gene (GenBank accession numbers AF145204; AF164792). The overlap between the APAF-1 messenger RNA and the longer antisense transcript is of at least 300 nucleotides.

To validate expression of computationally retrieved antisense transcripts for APAF-1, as well as expression of APAF-1 mRNA in the assayed human cell lines, RNA-probes of 366 ribonucleotides were generated (sense and antisense strands, respectively). Schematic location of the probes used for sense and antisense validation (Riboprobe#1 and Riboprobe#2, SEQ ID NOs: 27 and 28, respectively) is illustrated in Figure 14.

As shown in Figure 15a, the sense RNA probe directed at visualizing the antisense transcripts, identified a clear band of 3 Kb corresponding to the long computationally retrieved antisense transcript as well as other transcripts sizing

from 1 Kb to 8 Kb (Figure 15a). Transcripts were essentially found in all cell lines but especially in 293 HEK and LN-Cap lines.

Hybridization with an RNA probe directed at visualizing the mRNA transcript of APAF-1 resulted only in a blurred patterns (Figure 15b).

5 However, a 7 Kb mRNA transcript consistent with APAF-1mRNA was seen in Ln Cap and 293 HEK cell lines.

Conclusion:

A reciprocal pattern of expression was observed for both APAF-1 and EB-1 transcripts, exhibiting an interesting expressional relationship between the 10 sense and antisense transcripts suggesting antisense-mediated expression regulation.

EXAMPLE 4

mRNA expression of muscle nicotinic Acetyl-Choline Receptor ϵ subunit and its complementary MINK transcript

Background:

The muscle nicotinic Acetylcholine Receptor ϵ subunit (AChR ϵ) encodes for one of five subunits of a ligand gated ion channel receptor located at the neuromuscular synapse. AChR ϵ is up-regulated in the postnatal period when it replaces γ subunit of the receptor [Witzemann, V. et al., (1987) FEBS Lett. 223, 104-112]. It is also up-regulated in synapse development, specifically by the trophic factor neuregulin [Martinou J. C. (1991) Pro. Natl. Acad. Sci. USA 88, 7669-7673]. In an attempt to decipher AchR ϵ function and mechanism of regulation, computational screen for AChR ϵ K complementary transcript was carried out.

Results:

One mRNA transcript of AChR ϵ gene was previously described [Beeson D. Eur. J. Biochem (1993) 215, 229-238] (SEQ ID NO: 29). Computational analysis recovered a complementary transcript belonging to Mink, a new 30 member of the germinal center kinase (GCK) family (SEQ ID NO: 30) [Dan I.

FEBS Lett. (2000) 469, 19-23] showing an overlap of at least 280 nucleotides to the AChR ϵ mRNA, as schematically illustrated in Figure 16.

To validate the overlap of the two genes and to learn about their tissue distribution, northern analysis of a variety of human tissues was performed.

5 Poly(A)-RNA containing membrane was hybridized with a 280 nucleotides RNA probes, corresponding to the overlap region in either antisense or sense orientation (SEQ ID NOs: 31 and 32, respectively).

As is evident from Figure 17a an AChR ϵ transcript was expressed as a predominant 4 Kb band and had the highest expression in the heart, kidney and
10 brain while surprisingly only a limited expression was observed in the skeletal muscle.

Hybridization with a MINK specific RNA probe revealed a major transcript of about 5 Kb, in accordance with previous results [Dan I. FEBS Lett. (2000) 469, 19-23] (Figure 17b). The mRNA transcript was ubiquitously
15 expressed with strongest expression found in brain, liver, thymus, spleen and pancreas, again in agreement with Dan I. et al.

Conclusion:

The finding that AChR ϵ and Mink genes are antisense each to one another with a significant overlap, and the fact that the two genes are co-expressed in some tissues (eg., brain) suggest the possibility that one of them
20 may regulate the other under certain conditions.

EXAMPLE 5

***Expression of Cyclin E2 mRNA and complementary transcripts in a variety
25 of human cell-lines***

Background:

The human cyclin E2 gene encodes a 404-amino-acid protein that is most closely related to cyclin E. Cyclin E2 associates with Cdk2 in a functional kinase complex that is inhibited by both p27(Kip1) and p21(Cip1). The
30 catalytic activity associated with cyclin E2 complexes is cell cycle regulated

66

and peaks at the G1/S transition. Overexpression of cyclin E2 in mammalian cells accelerates cell-cycle progression. Unlike cyclin E1, cyclin E2 levels are low to undetectable in nontransformed cells and increase significantly in tumor-derived cells suggesting specific mechanism of regulation.

5

Results:

One RNA transcript was found for cyclin E2 (SEQ ID NO: 33). Computational search for natural antisense transcripts has revealed one complementary transcript for cyclin E2 messenger RNA (SEQ ID NO: 34). The overlap between the cyclin E2 sense RNA and the antisense transcript is of 10 at least 72 nucleotides.

To confirm expression of the computationally retrieved antisense transcript for cyclin E2 as well as of cyclin E2 mRNA in human cell lines, two RNA-probes of 800 ribonucleotides were generated. Schematic location of the probes used for sense and antisense validation (SEQ ID NO: 44, Riboprobe#1 15 is illustrated in Figure 18).

As shown in Figure 19a, Riboprobe#1 detected two transcripts of approximately 3 Kb and 4.3 Kb. The absolute levels of the transcripts were quite heterogenic in all cell-lines examined. Both transcripts were completely absent from the Ln Cap cell line, while significantly high expression was 20 observed in MCF-7 and DLD-1 lines, especially of the short transcript.

The same membrane was used to perform northern analysis with Riboprobe#2 in order to validate expression of antisense transcripts of cyclin E2. As is evident from Figure 19b, an antisense transcript 3.8 Kb long was observed in most cells assayed. Significantly high pattern of expression was 25 observed in K562, MCF-7 and DLD-1 cell lines, while only a very moderate level of expression was detected in Ln Cap and HepG2 cell lines.

EXAMPLE 6***Co-regulated expression of CIDE-B and its complementary transcript upon induction of apoptosis***

The discovery of a novel naturally occurring antisense transcript to the apoptosis inducing factor, CIDE-B (see Example 2 hereinabove), suggested that the latter may be regulated by its complementary transcript, thereby establishing a novel mechanism of regulation. To address this, differential expression analysis of CIDE-B expression and its endogenous antisense transcript expression was performed following induction of apoptosis.

10 Materials and methods***Induction of apoptosis and reverse transcription analysis -***

Monolayers of 293 cells were either left untreated (UT) or incubated with increasing concentrations of etoposide or staurosporine (Sigma IL). Twenty-four hours following addition of the drug, total RNA was extracted as described hereinabove. Purified RNA was further treated with DNaseI. A reverse transcription reaction were carried out with equivalent amounts of RNA in a final volume of 20 µl containing 100 pmol of the oligo(dT) primer, 250 ng of total RNA, 0.5 mM each of four deoxynucleoside triphosphates and 5 units of reverse transcriptase. The reaction mixture was incubated at 65 °C for 5 min, 42 °C for 50 min and 70 °C for 15 min. PCR was carried out in a final volume of 25 µl containing 12.5 pmol each of the oligonucleotide primers derived of exons 3 and 7 of CIDE-B (SEQ ID NOs: 39 and 40), 1 µl of RT solution and 1.75 units of *Taq* polymerase. Amplification was carried out by an initial denaturation step at 94 °C for 5 min followed by 35 cycles of [94 °C for 30 s, 68 °C for 30 s, and 68 °C for 130 min]. At the end of the PCR amplification, products were analyzed on agarose gels stained with ethidium bromide and visualized with UV light.

Results

Amplification reaction yielded two major PCR products of 740 bp and 30 2285 bp (Figure 20). The small (740 bp) PCR product derived from the sense

(CIDE-B) strand, whereas the larger (2285 bp) product represented an intronless antisense transcript. Evidently, an increase of sense transcript, concomitant with a decrease of antisense transcript, was observed following treatment with etoposide (lanes 1-4) as compared to untreated cells (lane 9),
5 while no change was detected following staurosporine treatment (lanes 5-8).

These results suggest that following induction of apoptosis, antisense regulation of CIDE-B is abolished thereby allowing CIDE-B mediated apoptosis to proceed.

10

EXAMPLE 7

Reciprocal variation in sense and antisense expression of mouse nicotinic acetylcholine receptor, epsilon subunit during differentiation

The mouse nicotinic acetylcholine receptor, epsilon (mAChR ϵ) subunit (SEQ ID NO: 35) has a critical function in a variety of differentiation processes. To address a novel concept of antisense regulation of AchR ϵ -mediated differentiation, expression patterns of AchR ϵ and its naturally occurring antisense transcript (SEQ ID NO: 36) were examined following induction of differentiation.
15

Materials and methods

20 ***Induction of apoptosis and reverse transcription analysis*** - C2 mouse myoblast cells were incubated with a differentiation medium (Dulbecco's modified Eagle's medium (DMEM) including 10 μ g/ml insulin and 10 μ g/ml transferring) or control medium (untreated) for 48 and 72 hours. Total RNA was extracted from treated and control cells and reverse-transcribed. PCR was
25 done using F4 and R3 primers, derived from exon numbers 10 and 12 (last exon, SEQ ID NOs: 41 and 42, respectively) of the mouse nicotinic acetylcholine receptor, epsilon subunit (mAChR ϵ) and directed at detecting sense and antisense transcripts (see Figure 21a).

Results

Amplification reaction showed a gradual increase in AchR ϵ transcript expression, concomitant with the differentiation state of the cells. A second amplification product, which corresponded to an unspliced transcript was seen in untreated cells and disappeared following induction of differentiation. This fragment corresponds to a putative antisense transcript of the AchR ϵ , and may represent an alternative 3' UTR of the Mink gene , of which the known transcript terminates 400 bp downstream to AchR ϵ (see Example 4). To overcome possible competition between the two transcripts, another PCR reaction was carried out using antisense specific riboprobes F4 and R4 (SEQ ID NO: 43). Reverse transcription products of this amplification reaction showed a single band which corresponded to a naturally occurring antisense transcript of the AchR ϵ . As expected this transcript disappeared following induction of differentiation.

These results imply inverse regulation of the AchR ϵ and its naturally occurring antisense transcript, during muscle cells differentiation from myoblasts to myotubes. Regulation may proceed, possibly through complementation of the sense and antisense transcripts to form dsRNA which can serve as a substrate for double strand RNA processing enzymes such as RNase H.

EXAMPLE 8

A polynucleotide database of sequences corresponding to the naturally occurring antisense transcripts identified by the present invention and their complementary sense sequences

Naturally occurring antisense sequences identified according to the teachings of the present invention and their corresponding sense sequences are provided in the CD-ROMs enclosed herewith (file content: CD-ROM1 includes a "seq" text file which contains the actual polynucleotide sequences, and a "table" file which contains summarized data pertaining to each sense-

antisense sequence pair. CD-ROM2 includes an "alignments" file which contains sequence alignments of sense and antisense overlapping regions. CD-ROM3 contains Excel files: "Table S1" and "Table S2", further described in Example 9.

5 Table 3 below exemplifies the format of the Table provided in CD-ROM1. Each row represents a pair of transcripts. The columns of Table 3 represent (from the left): the serial number of the pair, the name of the first transcript, its length in nucleotides, the name of the second transcript, its length in nucleotides, the number of base pairs that overlap between the two
 10 transcripts, offsets of overlap beginning at the first transcript, offsets of overlap beginning at the second transcript.

Table 3

Serial No.	First transcript	First length (nt)	Second transcript	Second length (nt)	Overlap	Start of overlap in first / in second transcript
570_0	AV705532_0 (SEQ ID NO: 1)	190	Z44352_15 (SEQ ID NO: 2)	783	OL: 52	OF1: 1 OF2: 1
570_1	AV705532_0	190	Z44352_14 (SEQ ID NO: 3)	1649	OL: 52	OF1: 1 OF2: 1
570_2	AV705532_0	190	Z44352_13 (SEQ ID NO: 4)	1861	OL: 52	OF1: 1 OF2: 1
571_0	AW070860_0 (SEQ ID NO: 5)	214	T81142_7 (SEQ ID NO: 6)	1934	OL: 54	OF1: 1 OF2: 1162
571_1	AW070860_0	214	T81142_6 (SEQ ID NO: 7)	2353	OL: 54	OF1: 1 OF2: 1162
571_2	AW070860_0	214	T81142_4 (SEQ ID NO: 8)	2500	OL: 54	OF1: 1 OF2: 1264
571_3	AW070860_0	214	T81142_3 (SEQ ID NO: 9)	947	OL: 54	OF1: 1 OF2: 171
571_4	AW070860_0	214	T81142_2 (SEQ ID NO: 10)	1366	OL: 54	OF1: 1 OF2: 171
572_0	BE046369_0 (SEQ ID NO: 11)	422	W26553_3 (SEQ ID NO: 12)	1532	OL: 52	OF1: 1 OF2: 1532
572_1	BE046369_0	422	W26553_2 (SEQ ID NO: 13)	1753	OL: 52	OF1: 1 OF2: 1753

572_2	BE046369_0	422	W26553_1 (SEQ ID NO: 14)	1832	OL: 52	OF1: 1 OF2: 1832
-------	------------	-----	-----------------------------	------	--------	------------------

Pairs of transcripts are numbered, (within a contig pair, right to the underscore) that belong to a pair of contigs (numbered left to the underscore). Transcript names are arbitrary designataions.

Sequence alignment of the overlapping region in each sense and antisense pair of Table 1 is demonstrated in Figure 4a-k. Alignments were performed using the BLAST sequence alignment algorithm (Basic Local Alignment Search Tool, available through www.ncbi.nlm.nih.gov/BLAST). Interestingly, alignment profile shows high level of variability with regard to overlap lengths. It is conceivable that short overlaps are due to technical reasons associated with insufficient sequence data.

The putative naturally occurring antisense transcripts identified by the present invention and disclosed in the enclosed CD-ROMs can be used to detect and/or treat a variety of diseases, disorders or conditions, examples of which are listed hereinunder. For example, antisense transcripts or sequence information derived therefrom can be used to construct microarray kits (described in details in the preferred embodiments section) dedicated to diagnosing specific diseases, disorders or conditions.

The following sections list examples of proteins (subsection i), based on their molecular function, which participate in variety of diseases (listed in subsection ii), which diseases can be diagnosed/treated using information derived from naturally occurring antisense transcripts such as those uncovered by the present invention.

i. Molecular function

defense/immunity proteins

Information derived from proteins involved in the immune and complement systems, such as acute-phase response proteins, antimicrobial peptides, antiviral response proteins, blood coagulation factors, complement components, immunoglobulins, major histocompatibility complex antigens, and opsonins can be used to diagnose/treat diseases involving the immunological

system including inflammation, autoimmune diseases, infectious diseases, as well as cancerous processes. Diseases which are manifested by non-normal coagulation processes, which may include abnormal bleeding or excessive coagulation.

5 ***Immunoglobulins***

Information derived from proteins involved in the immune and complement systems including antigens and autoantigens, immunoglobulins, MHC and HLA proteins and their associated proteins can be used to diagnose/treat diseases involving the immunological system including inflammation, autoimmune diseases, infectious diseases, as well as cancerous processes.

10 ***Nucleotide binding proteins***

Information derived from ligand binding or carrier proteins can be used to diagnose/treat diseases involving dysregulated expression, activity or localization of nucleotide binding proteins.

15 ***Nucleic acid binding proteins***

Information derived from proteins involved in RNA and DNA synthesis and expression regulation, such as transcription factors, RNA and DNA binding proteins, zinc fingers, helicase, isomerase, histones, nucleases, ribonucleoproteins, transcription and translation factors and others can be used 20 to diagnose/treat diseases involving DNA or RNA binding proteins such as: helicases, isomerases, histones and nucleases, for example diseases where there is non-normal replication or transcription of DNA and RNA respectively.

RNA polymerase II transcription factors

Information derived from proteins such as specific and non-specific 25 RNA polymerase II transcription factors, enhancer binding, ligand-regulated transcription factor and general RNA polymerase II transcription factors can be used to diagnose/treat diseases involving RNA polymerase II transcription factors, for example disorders involving abnormal transcription of RNA.

RNA binding proteins

Information derived from RNA binding proteins involved in splicing and translation regulation, such as tRNA binding proteins, RNA helicases, double-stranded RNA and single-stranded RNA binding proteins, mRNA binding proteins, snRNA cap binding proteins, 5S RNA and 7S RNA binding proteins, poly-pyrimidine tract binding proteins, snRNA binding proteins, and AU-specific RNA binding proteins can be used to diagnose/treat diseases involving transcription and translation factors such as: helicases, isomerases, histones and nucleases, for example diseases where there is non-normal transcription, splicing, post-transcriptional processing, translation or stability of the RNA.

Chaperones

Information derived from proteins such as ribosomal chaperone, peptidylprolyl isomerase, lectin-binding chaperone, nucleosome assembly chaperone, chaperonin ATPase, cochaperone, heat shock protein, HSP70/HSP90 organizing protein, fimbrial chaperone, metallochaperone, tubulin folding, HSC70-interacting protein can be used to diagnose/treat diseases involving pathological conditions, which are associated with non-normal protein activity or structure. Binding of the products of the proteins of this family, or antibodies reactive therewith, can modulate a plurality of protein activities as well as change protein structure. Alternatively, diseases in which there is abnormal degradation of other proteins, which may cause non-normal accumulation of various proteinaceous products in cells, caused non-normal (prolonged or shortened) activity of proteins, etc.

Motor proteins

Information derived from proteins that generate force or energy by the hydrolysis of ATP and that function in the production of intracellular movement or transportation including microfilament motor, axonemal motor, microtubule motor, kinetochore motor (like dynein, kinesin, or myosin) can be used to diagnose/treat diseases involving un-normal chemotactic movement or

motor dependent macromolecule operation such as of dynamin, which affects the regulated endocytic process.

Actin binding proteins

Information derived from actin binding proteins, such as actin cross-linking, actin bundling, F-actin capping, actin monomer binding, actin lateral binding, actin depolymerizing, actin monomer sequestering, actin filament severing, actin modulating, membrane associated actin binding, actin thin filament length regulation and actin polymerizing proteins can be used to diagnose/treat diseases involving cytoskeletal malformations, aberrant cellular morphology affecting extracellular interactions and dysregulated intracellular signaling.

Enzymes

Information derived from proteins possessing enzymatic activities, such as mannosylphosphate transferase, para-hydroxybenzoate:polyprenyltransferase, Rieske iron-sulfur protein, imidazoleglycerol-phosphate synthase, sphingosine hydroxylase, tRNA 2'-phosphotransferase, sterol C-24(28) reductase, C-8 sterol isomerase, C-22 sterol desaturase, C-14 sterol reductase, C-3 sterol dehydrogenase (C-4 sterol decarboxylase), 3-keto sterol reductase, C-4 methyl sterol oxidase, dihydronicotinamide riboside quinone reductase, glutamate phosphate reductase, DNA repair enzyme, telomerase, alpha-ketoacid dehydrogenase, beta-alanyl-dopamine synthase, RNA editase, aldo-keto reductase, alkylbase DNA glycosidase, glycogen debranching enzyme, dihydropterin deaminase, dihydropterin oxidase, dimethylnitrosamine demethylase, ecdysteroid UDP-glucosyl/UDP glucuronosyl transferase, glycine cleavage system, helicase, histone deacetylase, mevalonate reductase, monooxygenase, poly(ADP-ribose) glycohydrolase, pyruvate dehydrogenase, serine esterase, sterol carrier protein X-related thiolase, transposase, tyramine-beta hydroxylase, para-aminobenzoic acid (PABA) synthase, glu-tRNA(gln) amidotransferase, molybdopterin cofactor sulfurase, lanosterol 14-alpha-demethylase, aromatase,

4-hydroxybenzoate octaprenyltransferase, 7,8-dihydro-8-oxoguanine-triphosphatase, CDP-alcohol phosphotransferase, 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidonone 5'-phosphate deaminase, diphosphoinositol polyphosphate phosphohydrolase, gamma-glutamyl carboxylase, small protein conjugating enzyme, small protein activating enzyme, 1-deoxyxylulose-5-phosphate synthase, 2'-phosphotransferase, 2-octoprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 3,4 dihydroxy-2-butanone-4-phosphate synthase, 4-amino-4-deoxychorismate lyase, 4-diphosphocytidyl-2C-methyl-D-erythritol synthase, ADP-L-glycero-D-manno-heptose synthase, D-erythro-7,8-dihydronopterin triphosphate 2'-epimerase, N-ethylmaleimide reductase, O-antigen ligase, O-antigen polymerase, UDP-2,3-diacylglucosamine hydrolase, arsenate reductase, carnitine racemase, cobalamin [5'-phosphate] synthase, cobinamide phosphate guanylyltransferase, enterobactin synthetase, enterochelin esterase, enterochelin synthetase, glycolate oxidase, integrase, lauroyl transferase, peptidoglycan synthetase, phosphopantetheinyltransferase, phosphoglucosamine mutase, phosphoheptose isomerase, quinolinate synthase, siroheme synthase, N-acylmannosamine-6-phosphate 2-epimerase, N-acetyl-anhydromuramoyl-L-alanine amidase, carbon-phosphorous lyase, heme-copper terminal oxidase, disulfide oxidoreductase, phthalate dioxygenase reductase, sphingosine-1-phosphate lyase, molybdopterin oxidoreductase, dehydrogenase, NADPH oxidase, naringenin-chalcone synthase, N-ethylammeline chlorohydrolase, polyketide synthase, aldolase, kinase, phosphatase, CoA-ligase, oxidoreductase, transferase, hydrolase, lyase isomerase, ligase, ATPase, sulfhydryl oxidase, lipoate-protein ligase, delta-1-pyrroline-5-carboxylate synthetase, lipoic acid synthase and tRNA dihydrouridine synthase can be used to diagnose/treat diseases which can be ameliorated by modulating the activity of various enzymes which are involved both in enzymatic processes inside cells as well as in cell signaling.

Protein serine/threonine kinases

Information derived from kinases, which phosphorylate serine/threonine residues, mainly involved in signal transduction, such as transmembrane receptor protein serine/threonine kinase, 3-phosphoinositide-dependent protein kinase, DNA-dependent protein kinase, G-protein-coupled receptor phosphorylating protein kinase, SNF1A/AMP-activated protein kinase, casein kinase, calmodulin regulated protein kinase, cyclic-nucleotide dependent protein kinase, cyclin-dependent protein kinase, eukaryotic translation initiation factor 2alpha kinase, galactosyltransferase-associated kinase, glycogen synthase kinase 3, protein kinase C, receptor signaling protein serine/threonine kinase, ribosomal protein S6 kinase and I_KB kinase can be used to treat, or detect, respectively, diseases which may be ameliorated by a modulating kinase activity, which is one of the main signaling pathways inside cell.

Enzyme inhibitors

Information derived from inhibitors and suppressors of other proteins and enzymes, such as inhibitors of Kinases, phosphatases, chaperones, guanylate cyclase, DNA gyrase, ribonuclease, proteasome inhibitors, diazepam-binding inhibitor, ornithine decarboxylase inhibitor GTPase inhibitors, dUTP pyrophosphatase inhibitor, phospholipase inhibitor, proteinase inhibitor, protein biosynthesis inhibitors, alpha-amylase inhibitors can be used to treat diseases in which beneficial effect may be achieved by modulating the activity of inhibitors and suppressors of proteins and enzymes.

Signal transducers

Information derived from various signal transducers, such as activin inhibitors, receptor-associated proteins alpha-2 macroglobulin receptors, morphogens, quorum sensing signal generators, quorum sensing response regulators, receptor signaling proteins, ligands, receptors, two-component sensor molecules, two-component response regulators can be used to diagnose/treat diseases involving abnormal signal-transduction, either as a cause, or as a result of the disease.

Receptors

Information derived from various receptors, such as signal transducers, complement receptors, ligand-dependent nuclear receptors, transmembrane receptors, GPI-anchored membrane-bound receptors, various coreceptors, 5 internalization receptors, receptors to neurotransmitters, hormones and various other effectors and ligands can be used to diagnose/treat diseases involving various receptors, including receptors to neurotransmitters, hormones and various other effectors and ligands.

Receptor signaling proteins

10 Information derived from receptor proteins involved in signal transduction, such as receptor signaling protein serine/threonine kinase, receptor signaling protein tyrosine kinase, receptor signaling protein tyrosine phosphatase, aryl hydrocarbon receptor nuclear translocator, hematopoietin/interferon-class (D200-domain) cytokine receptor signal 15 transducer, transmembrane receptor protein tyrosine kinase signaling protein, transmembrane receptor protein serine/threonine kinase signaling protein, receptor signaling protein serine/threonine kinase signaling protein, receptor signaling protein serine/threonine phosphatase signaling protein, small GTPase regulatory/interacting protein, receptor signaling protein tyrosine kinase 20 signaling protein, and receptor signaling protein serine/threonine phosphatase can be used to diagnose/treat diseases involving non-normal signal transduction, either as a cause, or as a result of the disease.

Small GTPase regulatory/interacting proteins

Information derived from small GTPase regulatory proteins, such as 25 RAB escort protein, guanyl-nucleotide exchange factor, guanyl-nucleotide exchange factor adaptor, GDP-dissociation inhibitor, GTPase inhibitor, GTPase activator, guanyl-nucleotide releasing factor , GDP-dissociation stimulator, regulator of G-protein signaling, RAS interactor, RHO interactor, RAB interactor, and RAL interactor can be used to diagnose/treat diseases involving

signal-transduction, typically involving G-proteases is non-normal, either as a cause, or as a result of the disease.

Ligands

Information derived from ligands such as opioid peptides, baboon receptor ligand, branchless receptor ligand, breathless receptor ligand, ephrin, frizzled receptor ligand, frizzled-2 receptor ligand, heartless receptor ligand, Notch receptor ligand, patched receptor ligand, punt receptor ligand, Ror receptor ligand, saxophone receptor ligand, SE20 receptor ligand, sevenless receptor ligand, smooth receptor ligand, thickveins receptor ligand, Toll receptor ligand, Torso receptor ligand, death receptor ligand, scavenger receptor ligand, neuroligin, integrin ligand, hormones, pheromones, growth factors and sulfonylurea receptor ligand can be used to diagnose/treat:

(a) diseases involving non-normal secretion of proteins, which may be due to non-normal presence, absence or non-normal response to normal levels of secreted proteins including hormones, neurotransmitters, and various other proteins secreted by cells to the extracellular environment;

(b) diseases which are endocrine in essence (cause or are a result of hormones), or may be ameliorated by raising, or decreasing the level of hormones and proteins;

(c) diseases which may be ameliorated by modulating the concentration or activity or interaction binding, etc. of growth factors, cytokines, interleukins, interferon and lymphokines, typically diseases such as autoimmune diseases, inflammation related disease, Graft vs. Host diseases, diseases caused by infectious agents, cancer diseases, as well as disease originating from improper concentration of growth factors causing non-normal (either excessive or too little of) growth of various tissues themselves, or causing untimely death of a desired cell population; and

(d) diseases which are manifested by non-normal development, which may be non-normal development of the organism (genetic diseases

involving non-normal development of a fetus), non-normal development of a tissue (a tissue which is not properly developed) as well as cancer diseases.

Cell adhesion molecules

Information derived from proteins that serve as adhesion molecules between adjoining cells, such as membrane-associated protein with guanylate kinase activity, cell adhesion receptor, neuroligin, calcium-dependent cell adhesion molecule, selectin, calcium-independent cell adhesion molecule, extracellular matrix protein can be used to diagnose/treat diseases where adhesion between adjoining cells is involved, typically conditions in which the adhesion is non-normal. Typical examples of such conditions are cancer conditions in which non-normal adhesion may cause and enhance the process of metastasis. Other examples of such conditions include conditions of non-normal growth and development of various tissues in which modulation adhesion among adjoining cells can improve the condition.

Structural proteins

Information derived from proteins involved in cell structure, such as ribosomal proteins, cell wall proteins, cytoskeletal proteins, extracellular matrix proteins, extracellular matrix glycoproteins, amyloid proteins, plasma proteins, eye lens proteins, chorion proteins (sensu Insecta), cuticle proteins (sensu Insecta), puparial glue protein (sensu Diptera), bone proteins, yolk proteins, muscle proteins, vitelline membrane proteins (sensu Insecta), peritrophic membrane proteins (sensu Insecta), and nuclear pore proteins can be used to diagnose/treat diseases involving abnormalities in cytoskeleton, including cancerous cells, and diseased cells including those which do not propagate, grow or function normally. Diseases involving non-normal sub-cellular proteins such as non-normal ribozymal proteins.

Transporter proteins

Information derived from proteins such as amine/polyamine transporter, lipid transporter, neurotransmitter transporter, organic acid transporter, oxygen transporter, water transporter, carriers, intracellular transportes, protein

transporters, ion transporters, carbohydrate transporter, polyol transporter, amino acid transporters, vitamin/cofactor transporters, siderophore transporter, drug transporter, channel/pore class transporter, group translocator, auxiliary transport proteins, Permeases, murein transporter, 5 organic alcohol transporter, nucleobase, nucleoside and nucleotide and nucleic acid transporters can be used to diagnose/treat diseases in which abnormal transport of molecules and macromolecules such as neurotransmitters, hormones, sugar etc. leads to various pathologies.

Intracellular transporters

10 Information derived from proteins that mediate the transport of molecules and macromolecules inside the cell, such as intracellular nucleoside transporter, vacuolar assembly proteins, vesicle transporters, vesicle fusion proteins, and type II protein secretors can be used to diagnose/treat diseases in which abnormal transport of molecules and macromolecules leads to various 15 pathologies.

Ligand binding or carrier proteins

Information derived from various proteins, involved in diverse biological functions, such as pyridoxal phosphate binding, carbohydrate binding, magnesium binding, amino acid binding, cyclosporin A binding, nickel 20 binding, chlorophyll binding, biotin binding, penicillin binding, selenium binding, tocopherol binding, lipid binding, drug binding, oxygen transporter, electron transporter, steroid binding, juvenile hormone binding, retinoid binding, heavy metal binding, calcium binding, protein binding, glycosaminoglycan binding, folate binding, odorant binding, lipopolysaccharide 25 binding, and nucleotide binding can be used to diagnose/treat diseases involving improper intracellular or extracellular accumulation or removal of small molecules such as calcium ions, improper incorporation of metals and modified amino acids (i.e., seleno-cysteine), dysregulated signaling effected by improper steroid titration etc.

Electron transporters

Information derived from ligand binding proteins or carrier proteins involved in electron transport, such as flavin-containing electron transporter, cytochromes, electron donors, electron acceptors, electron carriers and 5 cytochrome-c oxidases can be used to diagnose/treat diseases involving dysregulated mitochondrial activity.

Calcium binding proteins

Information derived from calcium binding proteins, ligand binding proteins or carriers, such as diacylglycerol kinase, Calpain, calcium-dependent 10 protein serine/threonine phosphatase, calcium sensing proteins and calcium storage proteins can be used to diagnose/treat diseases in which intracellular or extracellular calcium storage or release is improper.

Binding proteins

Information derived from various proteins exhibiting intermediate 15 filament binding, LIM-domain binding, LLR-domain binding, clathrin binding, ARF binding, vinculin binding, KU70 binding, troponin C binding PDZ-domain binding, SH3-domain binding, fibroblast growth factor binding, membrane-associated protein with guanylate kinase activity interacting, Wnt-protein binding, DEAD/H-box RNA helicase binding, beta-amyloid binding, 20 myosin binding, TATA-binding protein binding DNA topoisomerase I binding, polypeptide hormone binding, RHO binding, FH1-domain binding, syntaxin-1 binding, HSC70-interacting, transcription factor binding, metarhodopsin binding, tubulin binding, JUN kinase binding, RAN protein binding, protein signal sequence binding, importin alpha export receptor, poly-glutamine tract 25 binding, protein carrier, beta-catenin binding, protein C-terminus binding, lipoprotein binding, cytoskeletal protein binding protein, nuclear localization sequence binding, protein phosphatase 1 binding, adenylate cyclase binding, eukaryotic initiation factor 4E binding, calmodulin binding, collagen binding, insulin-like growth factor binding, lamin binding, profilin binding, tropomyosin 30 binding, actin binding, peroxisome targeting sequence binding, SNARE binding

and cyclin binding can be used to diagnose/treat diseases involving non-normal protein activity or structure. Binding of the products of the variants of this family, or antibodies reactive therewith, can modulate a plurality of protein activities as well as change protein structure.

5 *Transcription factor binding proteins*

Information derived from proteins involved in transcription factors binding, RNA and DNA binding, such as transcription factors, RNA and DNA binding proteins, zinc fingers, helicase, isomerase, histones, and nucleases can be used to diagnose/treat diseases involving transcription factors binding 10 proteins, for example diseases where there is abnormal replication or transcription of DNA and RNA respectively.

Enzyme regulators

Information derived from enzyme regulators, such as activators of kinases, phosphatases, sphingolipids, chaperones, guanylate cyclase, 15 tryptophan hydroxylase, proteases, phospholipases, caspases, proprotein convertase 2 activator, cyclin-dependent protein kinase 5 activator, superoxide-generating NADPH oxidase activator, sphingomyelin phosphodiesterase activator, monophenol monooxygenase activator, proteasome activator, and GTPase activator can be used to diagnose/treat diseases in which beneficial 20 effect may be achieved by modulating the activity of activators of proteins and enzymes.

Cell growth and/or maintenance proteins

Information derived from proteins involved in any biological process required for cell survival, growth and maintenance including proteins involved 25 in cell organization and biogenesis, cell growth, cell proliferation, metabolism, cell cycle, budding, cell shape and cell size control, sporulation (sensu Saccharomyces), transport, ion homeostasis, autophagy, cell motility, chemi-mechanical coupling, membrane fusion, cell-cell fusion and stress response can be used to diagnose/treat diseases involving premature death of cells, such as 30 degenerative diseases, for example neurodegenerative diseases or conditions

associated with aging, or alternatively, diseases in which cell apoptosis is not turned on, such as cancerous diseases.

Metabolic proteins

Information derived from proteins involved in carbohydrate metabolism, 5 energy pathways, electron transport, nucleobase, nucleoside, nucleotide and nucleic acid metabolism, protein metabolism and modification, amino acid and derivative metabolism, protein targeting, lipid metabolism, aromatic compound metabolism, one-carbon compound metabolism, coenzymes and prosthetic group metabolism, sulfur metabolism, phosphorus metabolism, phosphate 10 metabolism, oxygen and radical metabolism, xenobiotic metabolism, nitrogen metabolism, fat body metabolism (*sensu Insecta*), protein localization, catabolism, biosynthesis, toxin metabolism , methylglyoxal metabolism, cyanate metabolism, glycolate metabolism, carbon utilization, and antibiotic metabolism can be used to treat or detect diseases in which metabolism of small 15 molecules and macromolecules such as toxins, lipids, proteins and carbohydrates is abnormal leading to various pathologies.

Channel/pore class transporters

Information derived from proteins that mediate the transport of molecules and macromolecules across membranes, such as alpha-type channels, 20 porins and pore-forming toxins can be used to diagnose/treat diseases in which the transport of molecules and macromolecules such as neurotransmitters, hormones, sugar etc. is non-normal leading to various pathologies.

Tubulin binding proteins

Information derived from proteins that bind tubulin, such as microtubule 25 binding proteins can be used to diagnose/treat diseases involving abnormal tubulin activity or structure. Binding of the RNA products of the genes of this family, or antibodies reactive therewith, can modulate a plurality of tubulin activities as well as change microtubulin structure.

Kinases

Information derived from kinases such as 2-amino-4-hydroxy-6-hydroxymethylidihydropteridine pyrophosphokinase, NAD(+) kinase, acetylglutamate kinase, adenosine kinase, adenylate kinase, adenylsulfate kinase, arginine kinase, aspartate kinase, choline kinase, creatine kinase, cytidylate kinase, deoxyadenosine kinase, deoxycytidine kinase, deoxyguanosine kinase, dephospho-CoA kinase, diacylglycerol kinase, dolichol kinase, ethanolamine kinase, galactokinase, glucokinase, glutamate 5-kinase, glycerol kinase, glycerone kinase, guanylate kinase, hexokinase, homoserine kinase, hydroxyethylthiazole kinase, inositol/phosphatidylinositol kinase, ketohexokinase, mevalonate kinase, nucleoside-diphosphate kinase, pantothenate kinase, phosphoenolpyruvate carboxykinase, phosphoglycerate kinase, phosphomevalonate kinase, protein kinase, pyruvate dehydrogenase (lipoamide) kinase, pyruvate kinase, ribokinase, ribose-phosphate pyrophosphokinase, selenide,water dikinase, shikimate kinase, thiamine pyrophosphokinase, thymidine kinase, thymidylate kinase, uridine kinase, xylulokinase, 1D-myo-inositol-trisphosphate 3-kinase, phosphofructokinase, pyridoxal kinase, sphinganine kinase, riboflavin kinase, 2-dehydro-3-deoxygalactonokinase, 2-dehydro-3-deoxygluconokinase, 4-diphosphocytidyl-2C-methyl-D-erythritol kinase, GTP pyrophosphokinase, L-fuculokinase, L-ribulokinase, L-xylulokinase, isocitrate dehydrogenase (NADP+)] kinase, acetate kinase, allose kinase, carbamate kinase, cobinamide kinase, diphosphate-purine nucleoside kinase, fructokinase, glycerate kinase, hydroxymethylpyrimidine kinase, hygromycin-B kinase, inosine kinase, kanamycin kinase, phosphomethylpyrimidine kinase, phosphoribulokinase, polyphosphate kinase, propionate kinase, pyruvate,water dikinase, rhamnulokinase, tagatose-6-phosphate kinase, tetraacyldisaccharide 4'-kinase, thiamine-phosphate kinase, undecaprenol kinase, uridylate kinase, N-acylmannosamine kinase and D-erythro-sphingosine kinase can be used to

diagnose/treat diseases, which may be ameliorated by a modulating kinase activity, which is one of the main signaling pathways inside cells.

Oxidoreductases

Information derived from enzymes that catalyze an oxidation-reduction reaction, including oxidoreductases acting on CH-OH, CH-CH, CH-NH₂, CH-NH, NADH or NADPH, nitrogenous compounds, sulfur group of donors, heme group, hydrogen group, diphenols and related substances as donors, oxidoreductases acting on peroxide as acceptor, superoxide radicals as acceptor, oxidizing metal ions, CH₂ groups, reduced ferredoxin donor, reduced flavodoxin donor, and aldehyde or oxo group of donors can be used to diagnose/treat diseases involving non-normal activity of oxidoreductases.

Transferases

Information derived from enzymes that catalyze the transfer of a chemical group, such as a phosphate or amine, from one molecule to another including transferases, transferring one-carbon groups, aldehyde or ketonic groups, acyl groups, glycosyl groups, alkyl or aryl (other than methyl) groups, nitrogenous, phosphorus-containing groups, sulfur-containing groups and lipoyltransferase, deoxycytidyl transferases can be used to diagnose/treat diseases in which the transfer of a chemical group from one molecule to another is abnormal and a beneficial effect may be achieved by modulation of such abnormal reactions.

Transferases - one-carbon group

Information derived from enzymes that catalyze the transfer of a single carbon from one molecule to another including methyltransferase, amidinotransferase, hydroxymethyl-, formyl- and related transferase, carboxyl- and carbamoyltransferase can be used to diagnose/treat diseases in which the transfer of a one-carbon chemical group from one molecule to another is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

Transferases - glycosyl groups

Information derived from enzymes that catalyze the transfer of a glycosyl from one molecule to another including murein lytic endotransglycosylase E and sialyltransferase can be used to diagnose/treat diseases in which the transfer of a glycosyl chemical group from one molecule to another is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

Transferases - phosphorus-containing groups

Information derived from enzymes that catalyze the transfer of phosphate from one molecule to another can be used to diagnose/treat diseases in which the transfer of a phosphate group to a modulated moiety is abnormal and a beneficial effect may be achieved by modulation of such abnormal transfer.

Hydrolases

Information derived from hydrolytic enzymes acting on ester bonds, glycosyl bonds, ether bonds, carbon-nitrogen (but not peptide) bonds, acid anhydrides, acid carbon-carbon bonds, acid halide bonds, acid phosphorus-nitrogen bonds, acid sulfur-nitrogen bonds, acid carbon-phosphorus bonds and acid sulfur-sulfur bonds can be used to diagnose/treat diseases in which the hydrolytic cleavage of a covalent bond with accompanying addition of water, -H being added to one product of the cleavage and -OH to the other, is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

Hydrolases, acting on ester bonds

Information derived from hydrolytic enzymes, acting on ester bonds, such as nucleases, sulfuric ester hydrolase, carboxylic ester hydrolases, thioester hydrolase, phosphoric monoester hydrolase, phosphoric diester hydrolase, triphosphoric monoester hydrolase, diphosphoric monoester hydrolase and phosphoric triester hydrolase can be used to diagnose/treat diseases in which the hydrolytic cleavage of a covalent bond with

accompanying addition of water, -H being added to one product of the cleavage and -OH to the other, is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

Carboxylic ester hydrolases

5 Information derived from hydrolytic enzymes, acting on carboxylic ester bonds, such as N-acetylglucosaminylphosphatidylinositol deacetylase, 2-acetyl-1-alkylglycerophosphocholine esterase, aminoacyl-tRNA hydrolase, arylesterase, carboxylesterase, cholinesterase, gluconolactonase, sterol esterase, acylesterase, carboxymethylenebutenolidase, protein-glutamate 10 methylesterase, and lipase, 6-phosphogluconolactonase can be used to diagnose/treat diseases which the hydrolytic cleavage of a covalent bond with accompanying addition of water, -H being added to one product of the cleavage and -OH to the other, is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

15 *Phosphoric monoester hydrolases*

Information derived from hydrolytic enzymes acting on ester bonds, such as nuclease, sulfuric ester hydrolase, carboxylic ester hydrolase, thioester hydrolase, phosphoric monoester hydrolase, phosphoric diester hydrolase, triphosphoric monoester hydrolase, diphosphoric monoester hydrolase and 20 phosphoric triester hydrolase can be used to diagnose/treat diseases in which the hydrolytic cleavage of a covalent bond with accompanying addition of water, -H being added to one product of the cleavage and -OH to the other, is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

25 *Hydrolases acting on glycosyl bonds*

Information derived from hydrolytic enzymes that act on glycosyl bonds, such as hydrolases hydrolyzing N-glycosyl compounds and S-glycosyl compounds, O-glycosyl compounds can be used to diagnose/treat diseases in which the hydrolase-related activities are abnormal.

Hydrolases acting on acid anhydrides

Information derived from hydrolytic enzymes which act on acid anhydrides, such as phosphorus-containing anhydrides, sulfonyl-containing anhydrides, and hydrolases catalysing transmembrane movement of substances, 5 and involved in cellular and subcellular movement can be used to diagnose/treat diseases in which the hydrolase-related activities are abnormal.

Lyases

Information derived from enzymes that catalyze the formation of double bonds by removing chemical groups from a substrate without hydrolysis or 10 catalyze the addition of chemical groups to double bonds including carbon-carbon lyases, carbon-oxygen lyases, carbon-nitrogen lyases, carbon-sulfur lyases, carbon-halide lyases, phosphorus-oxygen lyases, and other lyases can be used to diagnose/treat diseases in which lyase activity, expression or localization is abnormal.

Ligases

Information derived from enzymes that catalyze the linkage of two molecules, generally utilizing ATP as the energy donor can be used to diagnose/treat diseases in which the joining together of two molecules in an energy-dependent process is abnormal and a beneficial effect may be achieved 20 by modulation of such an abnormal reaction.

Ligases catalyzing carbon-oxygen bonds

Information derived from enzymes that catalyze the linkage between carbon and oxygen, such as ligase forming aminoacyl-tRNA and related compounds can be used to diagnose/treat diseases in which the linkage between 25 carbon and oxygen in an energy-dependent process is abnormal and a beneficial effect may be achieved by modulation of such an abnormal reaction.

ATPases

Information derived from enzymes such as plasma membrane cation-transporting ATPase, ATP-binding cassette (ABC) transporter, magnesium-30 ATPase, hydrogen-/sodium-translocating ATPase, arsenite-transporting

ATPase, protein-transporting ATPase, DNA translocase, and P-type ATPase can be used to diagnose/treat diseases associated with abnormal activity of an ATP hydrolyzing enzyme.

ii. Diseases

5 Various types of diseases can be diagnosed/treated using the teachings of the present invention.

Inflammatory diseases

Examples of inflammatory diseases include, but are not limited to, chronic inflammatory diseases and acute inflammatory diseases.

10 *Inflammatory diseases associated with hypersensitivity*

Examples of hypersensitivity include, but are not limited to, Types I-IV hypersensitivity, immediate hypersensitivity, antibody mediated hypersensitivity, immune complex mediated hypersensitivity, T lymphocyte mediated hypersensitivity and DTH.

15 An example of type I or immediate hypersensitivity is asthma. Examples of type II hypersensitivity include, but are not limited to, rheumatoid diseases, rheumatoid autoimmune diseases, rheumatoid arthritis (Krenn V. *et al.*, Histol Histopathol 2000 Jul;15 (3):791), spondylitis, ankylosing spondylitis (Jan Voswinkel *et al.*, Arthritis Res 2001; 3 (3): 189), systemic diseases, systemic
20 autoimmune diseases, systemic lupus erythematosus (Erikson J. *et al.*, Immunol Res 1998;17 (1-2):49), sclerosis, systemic sclerosis (Renaudineau Y. *et al.*, Clin Diagn Lab Immunol. 1999 Mar;6 (2):156); Chan OT. *et al.*, Immunol Rev 1999 Jun;169:107), glandular diseases, glandular autoimmune diseases, pancreatic autoimmune diseases, diabetes, Type I diabetes (Zimmet P. Diabetes Res Clin Pract 1996 Oct;34 Suppl:S125), thyroid diseases, autoimmune thyroid diseases, Graves' disease (Orgiazzi J. Endocrinol Metab Clin North Am 2000 Jun;29 (2):339), thyroiditis, spontaneous autoimmune thyroiditis (Braley-Mullen H. and Yu S, J Immunol 2000 Dec 15;165 (12):7262), Hashimoto's thyroiditis (Toyoda N. *et al.*, Nippon Rinsho 1999 Aug;57 (8):1810), myxedema,
25 idiopathic myxedema (Mitsuma T. Nippon Rinsho. 1999 Aug;57 (8):1759);
30

autoimmune reproductive diseases, ovarian diseases, ovarian autoimmunity (Garza KM. *et al.*, J Reprod Immunol 1998 Feb;37 (2):87), autoimmune anti-sperm infertility (Diekman AB. *et al.*, Am J Reprod Immunol. 2000 Mar;43 (3):134), repeated fetal loss (Tincani A. *et al.*, Lupus 1998;7 Suppl 2:S107-9),
5 neurodegenerative diseases, neurological diseases, neurological autoimmune diseases, multiple sclerosis (Cross AH. *et al.*, J Neuroimmunol 2001 Jan 1;112 (1-2):1), Alzheimer's disease (Oron L. *et al.*, J Neural Transm Suppl. 1997;49:77), myasthenia gravis (Infante AJ. And Kraig E, Int Rev Immunol 1999;18 (1-2):83), motor neuropathies (Kornberg AJ. J Clin Neurosci. 2000
10 May;7 (3):191), Guillain-Barre syndrome, neuropathies and autoimmune neuropathies (Kusunoki S. Am J Med Sci. 2000 Apr;319 (4):234), myasthenic diseases, Lambert-Eaton myasthenic syndrome (Takamori M. Am J Med Sci. 2000 Apr;319 (4):204), paraneoplastic neurological diseases, cerebellar atrophy, paraneoplastic cerebellar atrophy, non-paraneoplastic stiff man
15 syndrome, cerebellar atrophies, progressive cerebellar atrophies, encephalitis, Rasmussen's encephalitis, amyotrophic lateral sclerosis, Sydenham chorea, Gilles de la Tourette syndrome, polyendocrinopathies, autoimmune polyendocrinopathies (Antoine JC. and Honnorat J. Rev Neurol (Paris) 2000 Jan;156 (1):23); neuropathies, dysimmune neuropathies (Nobile-Orazio E. *et*
20 *al.*, Electroencephalogr Clin Neurophysiol Suppl 1999;50:419); neuromyotonia, acquired neuromyotonia, arthrogryposis multiplex congenita (Vincent A. *et al.*, Ann N Y Acad Sci. 1998 May 13;841:482), cardiovascular diseases, cardiovascular autoimmune diseases, atherosclerosis (Matsuura E. *et al.*, Lupus. 1998;7 Suppl 2:S135), myocardial infarction (Vaarala O. Lupus. 1998;7 Suppl
25 2:S132), thrombosis (Tincani A. *et al.*, Lupus 1998;7 Suppl 2:S107-9), granulomatosis, Wegener's granulomatosis, arteritis, Takayasu's arteritis and Kawasaki syndrome (Praprotnik S. *et al.*, Wien Klin Wochenschr 2000 Aug 25;112 (15-16):660); anti-factor VIII autoimmune disease (Lacroix-Desmazes S. *et al.*, Semin Thromb Hemost. 2000;26 (2):157); vasculitises, necrotizing
30 small vessel vasculitises, microscopic polyangiitis, Churg and Strauss

syndrome, glomerulonephritis, pauci-immune focal necrotizing glomerulonephritis, crescentic glomerulonephritis (Noel LH. Ann Med Interne (Paris). 2000 May;151 (3):178); antiphospholipid syndrome (Flamholz R. *et al.*, J Clin Apheresis 1999;14 (4):171); heart failure, agonist-like beta-adrenoceptor antibodies in heart failure (Wallukat G. *et al.*, Am J Cardiol. 1999 Jun 17;83 (12A):75H), thrombocytopenic purpura (Moccia F. Ann Ital Med Int. 1999 Apr-Jun;14 (2):114); hemolytic anemia, autoimmune hemolytic anemia (Efremov DG. *et al.*, Leuk Lymphoma 1998 Jan;28 (3-4):285), gastrointestinal diseases, autoimmune diseases of the gastrointestinal tract, intestinal diseases, chronic inflammatory intestinal disease (Garcia Herola A. *et al.*, Gastroenterol Hepatol. 2000 Jan;23 (1):16), celiac disease (Landau YE. and Shoenfeld Y. Harefuah 2000 Jan 16;138 (2):122), autoimmune diseases of the musculature, myositis, autoimmune myositis, Sjogren's syndrome (Feist E. *et al.*, Int Arch Allergy Immunol 2000 Sep;123 (1):92); smooth muscle autoimmune disease (Zauli D. *et al.*, Biomed Pharmacother 1999 Jun;53 (5-6):234), hepatic diseases, hepatic autoimmune diseases, autoimmune hepatitis (Manns MP. J Hepatol 2000 Aug;33 (2):326) and primary biliary cirrhosis (Strassburg CP. *et al.*, Eur J Gastroenterol Hepatol. 1999 Jun;11 (6):595).

Examples of type IV or T cell mediated hypersensitivity, include, but are not limited to, rheumatoid diseases, rheumatoid arthritis (Tisch R, McDevitt HO. Proc Natl Acad Sci U S A 1994 Jan 18;91 (2):437), systemic diseases, systemic autoimmune diseases, systemic lupus erythematosus (Datta SK., Lupus 1998;7 (9):591), glandular diseases, glandular autoimmune diseases, pancreatic diseases, pancreatic autoimmune diseases, Type 1 diabetes (Castano L. and Eisenbarth GS. Ann. Rev. Immunol. 8:647); thyroid diseases, autoimmune thyroid diseases, Graves' disease (Sakata S. *et al.*, Mol Cell Endocrinol 1993 Mar;92 (1):77); ovarian diseases (Garza KM. *et al.*, J Reprod Immunol 1998 Feb;37 (2):87), prostatitis, autoimmune prostatitis (Alexander RB. *et al.*, Urology 1997 Dec;50 (6):893), polyglandular syndrome, autoimmunity polyglandular syndrome, Type I autoimmunity polyglandular

92

syndrome (Hara T. *et al.*, Blood. 1991 Mar 1;77 (5):1127), neurological diseases, autoimmune neurological diseases, multiple sclerosis, neuritis, optic neuritis (Soderstrom M. *et al.*, J Neurol Neurosurg Psychiatry 1994 May;57 (5):544), myasthenia gravis (Oshima M. *et al.*, Eur J Immunol 1990 Dec;20 (12):2563), stiff-man syndrome (Hiemstra HS. *et al.*, Proc Natl Acad Sci U S A 2001 Mar 27;98 (7):3988), cardiovascular diseases, cardiac autoimmunity in Chagas' disease (Cunha-Neto E. *et al.*, J Clin Invest 1996 Oct 15;98 (8):1709), autoimmune thrombocytopenic purpura (Semple JW. *et al.*, Blood 1996 May 15;87 (10):4245), anti-helper T lymphocyte autoimmunity (Caporossi AP. *et al.*, Viral Immunol 1998;11 (1):9), hemolytic anemia (Sallah S. *et al.*, Ann Hematol 1997 Mar;74 (3):139), hepatic diseases, hepatic autoimmune diseases, hepatitis, chronic active hepatitis (Franco A. *et al.*, Clin Immunol Immunopathol 1990 Mar;54 (3):382), biliary cirrhosis, primary biliary cirrhosis (Jones DE. Clin Sci (Colch) 1996 Nov;91 (5):551), nephric diseases, nephric autoimmune diseases, nephritis, interstitial nephritis (Kelly CJ. J Am Soc Nephrol 1990 Aug;1 (2):140), connective tissue diseases, ear diseases, autoimmune connective tissue diseases, autoimmune ear disease (Yoo TJ. *et al.*, Cell Immunol 1994 Aug;157 (1):249), disease of the inner ear (Gloddek B. *et al.*, Ann N Y Acad Sci 1997 Dec 29;830:266), skin diseases, cutaneous diseases, dermal diseases, bullous skin diseases, pemphigus vulgaris, bullous pemphigoid and pemphigus foliaceus.

Examples of delayed type hypersensitivity include, but are not limited to, contact dermatitis and drug eruption.

Autoimmune diseases

Examples of autoimmune diseases include, but are not limited to, cardiovascular diseases, rheumatoid diseases, glandular diseases, gastrointestinal diseases, cutaneous diseases, hepatic diseases, neurological diseases, muscular diseases, nephric diseases, diseases related to reproduction, connective tissue diseases and systemic diseases.

Examples of autoimmune cardiovascular diseases include, but are not limited to atherosclerosis (Matsuura E. *et al.*, *Lupus*. 1998;7 Suppl 2:S135), myocardial infarction (Vaarala O. *Lupus*. 1998;7 Suppl 2:S132), thrombosis (Tincani A. *et al.*, *Lupus* 1998;7 Suppl 2:S107-9), Wegener's granulomatosis,

5 Takayasu's arteritis, Kawasaki syndrome (Praprotnik S. *et al.*, *Wien Klin Wochenschr* 2000 Aug 25;112 (15-16):660), anti-factor VIII autoimmune disease (Lacroix-Desmazes S. *et al.*, *Semin Thromb Hemost*.2000;26 (2):157), necrotizing small vessel vasculitis, microscopic polyangiitis, Churg and Strauss syndrome, pauci-immune focal necrotizing and crescentic glomerulonephritis
10 (Noel LH. *Ann Med Interne (Paris)*. 2000 May;151 (3):178), antiphospholipid syndrome (Flamholz R. *et al.*, *J Clin Apheresis* 1999;14 (4):171), antibody-induced heart failure (Wallukat G. *et al.*, *Am J Cardiol*. 1999 Jun 17;83 (12A):75H), thrombocytopenic purpura (Moccia F. *Ann Ital Med Int*. 1999 Apr-Jun;14 (2):114; Semple JW. *et al.*, *Blood* 1996 May 15;87 (10):4245),
15 autoimmune hemolytic anemia (Efremov DG. *et al.*, *Leuk Lymphoma* 1998 Jan;28 (3-4):285; Sallah S. *et al.*, *Ann Hematol* 1997 Mar;74 (3):139), cardiac autoimmunity in Chagas' disease (Cunha-Neto E. *et al.*, *J Clin Invest* 1996 Oct 15;98 (8):1709) and anti-helper T lymphocyte autoimmunity (Caporossi AP. *et al.*, *Viral Immunol* 1998;11 (1):9).

20 Examples of autoimmune rheumatoid diseases include, but are not limited to rheumatoid arthritis (Krenn V. *et al.*, *Histol Histopathol* 2000 Jul;15 (3):791; Tisch R, McDevitt HO. *Proc Natl Acad Sci units S A* 1994 Jan 18;91 (2):437) and ankylosing spondylitis (Jan Voswinkel *et al.*, *Arthritis Res* 2001; 3 (3): 189).

25 Examples of autoimmune glandular diseases include, but are not limited to, pancreatic disease, Type I diabetes, thyroid disease, Graves' disease, thyroiditis, spontaneous autoimmune thyroiditis, Hashimoto's thyroiditis, idiopathic myxedema, ovarian autoimmunity, autoimmune anti-sperm infertility, autoimmune prostatitis and Type I autoimmune polyglandular syndrome. diseases include, but are not limited to autoimmune diseases of the
30

pancreas, Type 1 diabetes (Castano L. and Eisenbarth GS. Ann. Rev. Immunol. 8:647; Zimmet P. Diabetes Res Clin Pract 1996 Oct;34 Suppl:S125), autoimmune thyroid diseases, Graves' disease (Orgiazzi J. Endocrinol Metab Clin North Am 2000 Jun;29 (2):339; Sakata S. *et al.*, Mol Cell Endocrinol 1993 Mar;92 (1):77), spontaneous autoimmune thyroiditis (Braley-Mullen H. and Yu S, J Immunol 2000 Dec 15;165 (12):7262), Hashimoto's thyroiditis (Toyoda N. *et al.*, Nippon Rinsho 1999 Aug;57 (8):1810), idiopathic myxedema (Mitsuma T. Nippon Rinsho. 1999 Aug;57 (8):1759), ovarian autoimmunity (Garza KM. *et al.*, J Reprod Immunol 1998 Feb;37 (2):87), autoimmune anti-sperm infertility (Diekman AB. *et al.*, Am J Reprod Immunol. 2000 Mar;43 (3):134), autoimmune prostatitis (Alexander RB. *et al.*, Urology 1997 Dec;50 (6):893) and Type I autoimmune polyglandular syndrome (Hara T. *et al.*, Blood. 1991 Mar 1;77 (5):1127).

Examples of autoimmune gastrointestinal diseases include, but are not limited to, chronic inflammatory intestinal diseases (Garcia Herola A. *et al.*, Gastroenterol Hepatol. 2000 Jan;23 (1):16), celiac disease (Landau YE. and Shoenfeld Y. Harefuah 2000 Jan 16;138 (2):122), colitis, ileitis and Crohn's disease.

Examples of autoimmune cutaneous diseases include, but are not limited to, autoimmune bullous skin diseases, such as, but are not limited to, pemphigus vulgaris, bullous pemphigoid and pemphigus foliaceus.

Examples of autoimmune hepatic diseases include, but are not limited to, hepatitis, autoimmune chronic active hepatitis (Franco A. *et al.*, Clin Immunol Immunopathol 1990 Mar;54 (3):382), primary biliary cirrhosis (Jones DE. Clin Sci (Colch) 1996 Nov;91 (5):551; Strassburg CP. *et al.*, Eur J Gastroenterol Hepatol. 1999 Jun;11 (6):595) and autoimmune hepatitis (Manns MP. J Hepatol 2000 Aug;33 (2):326).

Examples of autoimmune neurological diseases include, but are not limited to, multiple sclerosis (Cross AH. *et al.*, J Neuroimmunol 2001 Jan 1;112 (1-2):1), Alzheimer's disease (Oron L. *et al.*, J Neural Transm Suppl.

1997;49:77), myasthenia gravis (Infante AJ. And Kraig E, Int Rev Immunol 1999;18 (1-2):83; Oshima M. *et al.*, Eur J Immunol 1990 Dec;20 (12):2563), neuropathies, motor neuropathies (Kornberg AJ. J Clin Neurosci. 2000 May;7 (3):191); Guillain-Barre syndrome and autoimmune neuropathies (Kusunoki S. Am J Med Sci. 2000 Apr;319 (4):234), myasthenia, Lambert-Eaton myasthenic syndrome (Takamori M. Am J Med Sci. 2000 Apr;319 (4):204); paraneoplastic neurological diseases, cerebellar atrophy, paraneoplastic cerebellar atrophy and stiff-man syndrome (Hiemstra HS. *et al.*, Proc Natl Acad Sci units S A 2001 Mar 27;98 (7):3988); non-paraneoplastic stiff man syndrome, progressive cerebellar atrophies, encephalitis, Rasmussen's encephalitis, amyotrophic lateral sclerosis, Sydenham chorea, Gilles de la Tourette syndrome and autoimmune polyendocrinopathies (Antoine JC. and Honnorat J. Rev Neurol (Paris) 2000 Jan;156 (1):23); dysimmune neuropathies (Nobile-Orazio E. *et al.*, Electroencephalogr Clin Neurophysiol Suppl 1999;50:419); acquired neuromyotonia, arthrogryposis multiplex congenita (Vincent A. *et al.*, Ann N Y Acad Sci. 1998 May 13;841:482), neuritis, optic neuritis (Soderstrom M. *et al.*, J Neurol Neurosurg Psychiatry 1994 May;57 (5):544) and neurodegenerative diseases.

Examples of autoimmune muscular diseases include, but are not limited to, myositis, autoimmune myositis and primary Sjogren's syndrome (Feist E. *et al.*, Int Arch Allergy Immunol 2000 Sep;123 (1):92) and smooth muscle autoimmune disease (Zauli D. *et al.*, Biomed Pharmacother 1999 Jun;53 (5-6):234).

Examples of autoimmune nephric diseases include, but are not limited to, nephritis and autoimmune interstitial nephritis (Kelly CJ. J Am Soc Nephrol 1990 Aug;1 (2):140).

Examples of autoimmune diseases related to reproduction include, but are not limited to, repeated fetal loss (Tincani A. *et al.*, Lupus 1998;7 Suppl 2:S107-9).

Examples of autoimmune connective tissue diseases include, but are not limited to, ear diseases, autoimmune ear diseases (Yoo TJ. *et al.*, Cell Immunol 1994 Aug;157 (1):249) and autoimmune diseases of the inner ear (Gloddek B. *et al.*, Ann N Y Acad Sci 1997 Dec 29;830:266).

5 Examples of autoimmune systemic diseases include, but are not limited to, systemic lupus erythematosus (Erikson J. *et al.*, Immunol Res 1998;17 (1-2):49) and systemic sclerosis (Renaudineau Y. *et al.*, Clin Diagn Lab Immunol. 1999 Mar;6 (2):156); Chan OT. *et al.*, Immunol Rev 1999 Jun;169:107).

Infectious diseases

10 Examples of infectious diseases include, but are not limited to, chronic infectious diseases, subacute infectious diseases, acute infectious diseases, viral diseases, bacterial diseases, protozoan diseases, parasitic diseases, fungal diseases, mycoplasma diseases and prion diseases.

Graft rejection diseases

15 Examples of diseases associated with transplantation of a graft include, but are not limited to, graft rejection, chronic graft rejection, subacute graft rejection, hyperacute graft rejection, acute graft rejection and graft versus host disease.

Allergic diseases

20 Examples of allergic diseases include, but are not limited to, asthma, hives, urticaria, pollen allergy, dust mite allergy, venom allergy, cosmetics allergy, latex allergy, chemical allergy, drug allergy, insect bite allergy, animal dander allergy, stinging plant allergy, poison ivy allergy and food allergy.

Cancerous diseases

25 Examples of cancer include but are not limited to carcinoma, lymphoma, blastoma, sarcoma, and leukemia. Particular examples of cancerous diseases but are not limited to: Myeloid leukemia such as Chronic myelogenous leukemia. Acute myelogenous leukemia with maturation. Acute promyelocytic leukemia, Acute nonlymphocytic leukemia with increased basophils, Acute 30 monocytic leukemia. Acute myelomonocytic leukemia with eosinophilia;

Malignant lymphoma, such as Birkitt's Non-Hodgkin's; Lymphocytic leukemia, such as Acute lymphoblastic leukemia. Chronic lymphocytic leukemia; Myeloproliferative diseases, such as Solid tumors Benign Meningioma, Mixed tumors of salivary gland, Colonic adenomas; Adenocarcinomas, such as Small cell lung cancer, Kidney, Uterus, Prostate, Bladder, Ovary, Colon, Sarcomas, Liposarcoma, myxoid, Synovial sarcoma, Rhabdomyosarcoma (alveolar), Extraskeletel myxoid chonodrosarcoma, Ewing's tumor; other include Testicular and ovarian dysgerminoma, Retinoblastoma, Wilms' tumor, Neuroblastoma, Malignant melanoma, Mesothelioma, breast, skin, prostate, and ovarian.

EXAMPLE 9

Microarray analysis based validation of the antisense dataset

A microarray-based analysis using oligonucleotide probes that hybridize to the target in a strand-specific manner, was conducted in order to experimentally validate the predicted antisense/sense pairs of the database. Two complementary 60-mer oligonucleotide probes derived from the predicted overlap region of the sense/antisense pairs, were designed. Single 60-mer oligonucleotides were previously shown to offer reliability and sensitivity for detecting specific transcripts (T. R. Hughes, *et al.*, *Nature Biotech.* **19**, 342 (2001).) Initially only pairs of clusters with an overlap greater than 60 bases (2,464 pairs agree with this restriction) were selected for array construction. The overlap region of each antisense pair was then verified for the presence of 60-mer oligonucleotides that matched a set of standards, such as minimal sequence similarity elsewhere in the human genome, uniform GC-content and Tm, and absence of palindromic sequences, in order to maximize the hybridization specificity. Oligonucleotide probes meeting the criteria set forth were identified for 1,211 sense/antisense pairs and a random sample of 264 pairs, which constitutes roughly one-tenth of the original dataset of 2667 sense/antisense cluster pairs, was selected for analysis by Microarrays (Table

S1 on CD-ROM3, an excerpt of which is shown in Table 5 below). In this sample, the proportion of each of the nine subgroups depicted in Table 4 is similar to that of the original dataset, indicating a good representation of the various subgroups.

5

Table 4

mRNA/	No cluster	1 cluster	2 clusters	Total
Splicing	w introns	w intron(s)	w intron(s)	
No cluster w mRNA	48	132	197	377 (14%)
1 cluster w mRNA	17	490	1039	1546 (58%)
2 clusters w mRNA	1	85	658	744 (28%)
Total	66 (2.5%)	707 (26%)	1894 (71%)	2667 (100%)

Table represents the proportion of sense/antisense clusters in the dataset of 2667 that contain: 1) a known mRNA and 2) expressed sequences spanning at least one intron, in one of the two clusters, in both clusters or in none of the clusters.

10 Table 5 below is an excerpt of Table S1 provided on CD-ROM3; Table 5 exemplifies five of the putative sense/antisense pairs that were selected for microarray analysis. The first column provides the pair number. The next two columns provide the accession numbers of representative expressed sequences from the overlapping region of the sense and the antisense genes, respectively.

15 The two columns identified by the "RNA" header provide the accession numbers of known mRNAs in the sense and antisense clusters (if available), and the last two columns provide the GenBank descriptions of these mRNAs.

Table 5

Pair no.	sense seq. from overlapping region	antisense seq. from overlapping region	RNA in sense cluster	RNA in antisense cluster	description of RNA in sense	description of RNA in antisense
235	NM_6227	NM_308	NM_6227	NM_308	Homo sapiens phospholipid transfer protein (PLTP), mRNA	Homo sapiens protective protein for beta-galactosidase (galactosialidosis)
					#DV L26232.1	(PPGB), mRNA

237	NM_	NM_	NM_	NM_	Homo sapiens	Homo sapiens
	4703	2532	4703	2532	rabaptin-5 (RAB5EP), mRNA	nucleoporin 88kD (NUP88) mRNA
					#DV X91141.1	#DV Y08612.2
217	NM_	AV	NM_	NM_	Homo sapiens	Homo sapiens ATP-
	14885	723808	14885	2940	anaphase-promoting complex 10 (APC10) mRNA.	binding cassette, sub-family E (OABP), member 1
					#DV AL080090.1	(ABCE1), mRNA.
209	BC	BG	NM_	NM_	Homo sapiens	Homo sapiens
	8865	717574	32231	3099	hypothetical protein FLJ22875	sorting nexin 1 (SNX1),mRNA. #DV U53225.1
196	BE	AL	NM_	NM_	Homo sapiens	Homo sapiens
	885605	527611	17832	3640	hypothetical protein FLJ20457	inhibitor of kappa (FLJ20457), mRNA enhancer in B-cells, kinase complex- associated protein (IKBKAP),mRNA

Table 5 Cont.

Microarrays were constructed by spotting each of the 264 pairs of oligonucleotide probes onto treated glass slides in quadruplicates. The two counterpart oligonucleotide probes of each pair were spotted next to each other to ensure similar hybridization conditions.

As positive controls, each of the blocks contained oligonucleotides spotted at various concentrations for four ubiquitously expressed housekeeping genes: guanine nucleotide binding protein beta polypeptide 2-like 1 (gnb211, HUMMHBA123, NM_006098), heat shock 70kD protein 10 (hsp70, HSHSC70CDS0, NM_006597), beta actin (actin, ACTB, NM_001101), and glyceraldehyde-3-phosphate dehydrogenase (gapdh, NM_002046).

Two random oligonucleotides were used as negative controls. These computer-generated arbitrary sequences displayed no alignment to human genome sequences but had the same physical characteristics as the other

100

oligonucleotide probes. In addition, 22 probes for 11 previously documented sense/antisense pairs were also analyzed in the Microarrays (entries Pair no. "known 1"- "known 11" on Table S1 of CD-ROM3).

The Microarrays were hybridized with poly(A)+ RNAs obtained from 19
5 human cell lines representing a variety of tissues and four normal human tissues
(see *General Materials and Methods* section above). Each poly(A)+ RNA was
reverse transcribed by priming with oligo(dT) and random nonamers, and
engineered to incorporate a fluorescent marker. A pool containing an equal mix
of the RNAs from all cell lines was also transcribed and used as a reference
10 target. The resulting fluorescently-labeled cDNAs were combined and
hybridized to the oligonucleotide Microarrays.

The experiments were performed in duplicate and utilized a fluorescent reversal of the Cy3- and Cy5-labelled cDNA. Stringent hybridization conditions were utilized in order to minimize the appearance of false positive signals,
15 despite the possibility of compromised detection of low abundance transcripts.

The raw data was normalized at several levels; within each slide, between reciprocal slides, and globally between slides (see *General Materials and Methods* section above). Non-specific levels of hybridization were estimated from the negative controls. The threshold for significant positive
20 signals resulting from authentic hybridization was set at 4 standard deviations of the mean normalized signals for the negative controls. Processed data was presented as normalized signal intensity and as normalized signal ratios (Table S2 on CD-ROM3).

To further substantiate array results, several pairs of oligonucleotides
25 were also utilized in Northern blot analysis. Figures 22a-j illustrate results of such northern blot analysis. Figure 22a reveals expression patterns of randomly selected sequence pair number 235, denoted as Rand_235 in Table 6. Similarly, Figure 22b corresponds to pair number 173, Figure 22c to pair number 248, Figure 22d to pair number 6, Figure 22e to pair number 216,
30 Figure 22f to pair number 239, Figure 22g to pair number 202, Figure 22h to

pair number 114, Figure 22i to pair number 188, and Figure 22j to pair number 223. Eight pairs (Figures 22a-h) evaluated revealed positive signals for both sense and antisense expression, while two (Figures 22i-j) revealed a positive signal for only one of the genes, with the counterpart being a known RefSeq mRNA.

Figure 23 represents an excerpt of Table S2 (provided in CD-ROM3) which summarizes the results obtained utilizing the array generated according to the teachings of the present invention. Expression thresholds were verified and indicated and normalization for microarray signals was conducted as described above. *Rji* ratios were obtained for each cell line/tissue assessed.

Taken cumulatively, the data presented herein revealed positive signals for both sense and antisense transcripts in 65 cluster pairs. In another 47 cases, significant hybridization signals were detected for antisense sequences with known counterpart sense transcripts, i.e. RefSeq mRNAs, which did not give clear hybridization signals on the Microarrays. Thus, 42.5 % (112 cases) of the 264 represented on the Microarrays, yielded detectable antisense transcription.

The conversion table, assigning the respective serial number as it appears in the "Table" file of CD-ROM1 enclosed herewith, is shown in Table 6 below.

20

Table 6

Rand_#	Serial No	Rand_#	Serial No	Rand_#	Serial No
Rand_1	2326	Rand_179	3266	Rand_258	3807
Rand_10	3647	Rand_18	3073	Rand_259	2621
Rand_100	2758	Rand_180	1794	Rand_26	4009
Rand_101	1595	Rand_181	1585	Rand_27	3393
Rand_102	3686	Rand_182	3554	Rand_28	3589
Rand_103	2331	Rand_183	3377	Rand_29	1837
Rand_104	3496	Rand_184	3466	Rand_3	3046
Rand_105	3134	Rand_185	3159	Rand_30	3297
Rand_106	1339	Rand_186	1413	Rand_31	3692
Rand_107	908	Rand_187	3645	Rand_32	707 2376
Rand_108	2929	Rand_188	3880	Rand_33	2052

Rand_109	2537	Rand_189	3009	Rand_34	1904
Rand_11	2806	Rand_19	3641	Rand_35	3718
Rand_110	3594	Rand_190	2549	Rand_36	3898
Rand_111	2819	Rand_191	2874	Rand_37	1821
Rand_112	3019	Rand_192	2515	Rand_38	3092
Rand_113	3815	Rand_193	3914	Rand_39	3262
Rand_114	2606	Rand_194	2751	Rand_4	3558
Rand_115	1662	Rand_195	2091	Rand_40	2474
Rand_116	2171	Rand_196	1966	Rand_41	3568
Rand_117	2539	Rand_197	3778	Rand_42	864
Rand_118	2802	Rand_198	3877	Rand_43	1864
Rand_119	2761	Rand_199	2248	Rand_44	3045
Rand_12	1947	Rand_2	3172	Rand_45	2854
Rand_120	3228	Rand_20	2360	Rand_46	3852
Rand_121	2076	Rand_200	2064	Rand_47	3096
Rand_122	1835	Rand_201	3597	Rand_48	1987
Rand_123	3029	Rand_202	2826	Rand_49	2893
Rand_124	2898	Rand_203	2388	Rand_5	2060
Rand_125	1568	Rand_204	3889	Rand_50	1058
Rand_126	2456	Rand_205	2211	Rand_51	3560
Rand_127	2019	Rand_206	3512	Rand_52	2604
Rand_128	2346	Rand_207	3452	Rand_53	3397
Rand_129	2460	Rand_208	3886	Rand_54	2040
Rand_13	2429	Rand_209	1600	Rand_55	3784
Rand_130	3374	Rand_21	2952	Rand_56	3659
Rand_131	3292	Rand_210	2432	Rand_57	2005 2688
Rand_132	3259	Rand_211	1651 3968	Rand_58	3187
Rand_133	3591	Rand_212	3074	Rand_59	1350
Rand_134	3340	Rand_213	2341	Rand_6	2202
Rand_135	1958	Rand_214	1984	Rand_60	3183
Rand_136	2274	Rand_215	2803	Rand_61	2275
Rand_137	3527	Rand_216	3806	Rand_62	3882
Rand_138	1533	Rand_217	2186	Rand_63	1044 3899
Rand_139	2622	Rand_218	857	Rand_64	2811
Rand_14	2058	Rand_219	1744	Rand_65	3232
Rand_140	2578	Rand_22	2285	Rand_66	3242
Rand_141	3492	Rand_220	2977	Rand_67	34 112 2727

Rand_142	3928	Rand_221	3863	Rand_68	3909
Rand_143	2282 3790	Rand_222	2846	Rand_69	4016
Rand_144	2820	Rand_223	3986	Rand_7	2337
Rand_145	1329	Rand_224	579 3688	Rand_70	2101 3707
Rand_146	1783	Rand_225	3984	Rand_71	3703
Rand_147	1527	Rand_226	2889	Rand_72	3477
Rand_148	2662	Rand_227	3869	Rand_73	2437
Rand_149	2031	Rand_228	3994	Rand_74	3808
Rand_15	2677	Rand_229	3818	Rand_75	3905
Rand_150	1303 1659	Rand_23	3890	Rand_76	1138 2194
Rand_151	1767	Rand_230	3152	Rand_77	819
Rand_152	3378	Rand_231	3445	Rand_78	3704
Rand_153	984	Rand_232	3663	Rand_79	2309
Rand_154	3759	Rand_233	3410	Rand_8	3441
Rand_155	2046	Rand_234	1112	Rand_80	1219
Rand_156	2528	Rand_235	3918	Rand_81	1416
Rand_157	283 1798 2048	Rand_236	2316	Rand_82	1543
Rand_158	3710	Rand_237	3673	Rand_83	3269
Rand_159	3178	Rand_238	3990	Rand_84	532 732
Rand_16	3336	Rand_239	4012	Rand_85	2607
Rand_160	1645	Rand_24	3250	Rand_86	1867
Rand_161	2074 3464	Rand_240	2932	Rand_87	627 3006
Rand_162	3436	Rand_241	3836	Rand_88	2068
Rand_163	2738	Rand_242	3424	Rand_89	2296
Rand_164	2749	Rand_243	3982	Rand_9	3741
Rand_165	2206	Rand_244	3472	Rand_90	1076
Rand_166	1349	Rand_245	2071	Rand_91	3385
Rand_167	2773	Rand_246	3904	Rand_92	2334
Rand_168	3305	Rand_247	2056	Rand_93	2833
Rand_169	1954	Rand_248	3855	Rand_94	2626
Rand_17	3940	Rand_249	2980	Rand_95	3671
Rand_170	2813	Rand_25	3453	Rand_96	1923
Rand_171	3868	Rand_250	3565	Rand_97	1863
Rand_172	762 1424 3942	Rand_251	2459	Rand_98	3437
Rand_173	3872	Rand_252	71 3147	Rand_99	3469
Rand_174	3801	Rand_253	3967	Rand_260	1975 3171
Rand_175	2547	Rand_254	702 2867 3088	Rand_261	4013

104

Rand_176	1251	Rand_255	3156	Rand_262	2418
Rand_177	1603	Rand_256	2324 2998	Rand_263	2451
Rand_178	2769	Rand_257	2284	Rand_264	3832

Table 6 Cont

Rand # = the name of the pair on the chip as it appears in Table S2 on CD-ROM3, column "Probe"; Serial No = no of the pair in the Table on CD-ROM1 (could be more than one in case the antisense event was separated to more than two contigs).

5

The sensitivity of the experimental approach utilized, i.e. the ability to detect a given transcript, stems from a combination of the stringency used in the microarray analysis and the level of expression and tissue specificity of the RNA. This can be estimated from the positive signals obtained for 65% of the 10 oligos representing known RefSeq mRNAs on the Microarrays. This level of detection is comparable to that obtained in other studies, such as the 58% of known exons verified using microarray analysis (D. D. Shoemaker, et al., Nature 409, 922; 2001).

Thus, the present methodology provides a level of detection for a pair of 15 genes that is $0.65 \times 0.65 = 0.42$, a value supported by the detection of positive signals for both sense and antisense expression in 5 out of 11 (0.45) clusters of previously described sense/antisense pairs (Table S2 on CD-ROM3).

Of the 264 cluster pairs analyzed in the Microarrays of the present invention, 65 clusters (0.25) showed significant signals for both sense and 20 antisense transcripts, which is 60% of the proposed level of detection for a pair of genes (0.25/0.42). Extrapolating this figure to the predicted antisense dataset of 2667 clusters, predicts at least 1600 sense/antisense transcriptional units in the human genome.

Although the invention has been described in conjunction with specific 25 embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications,

105

patents, patent applications and sequences identified by their accession numbers mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent, patent application or sequence identified by their accession number was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

106

CD-ROM Content

The following CD-ROMs are attached herewith:

Information provided as: File name/byte size/date of creation/operating system/machine format

5

CD-ROM1:

1. seqs	327MB	15/11/2001 Microsoft Windows Internet Explorer
2. table	13.5MB	15/11/2001 Microsoft Windows Internet Explorer

10 CD-ROM2:

1. alignments	382MB	15/11/2001 Microsoft Windows Internet Explorer
---------------	-------	--

CD-ROM3:

1. Table_S1	79.5kb	10/07/2002	Microsoft	Windows	Microsoft	Excel
15 Worksheet						
2. Table_S2	334kb	10/07/2002	Microsoft	Windows	Microsoft	Excel
Worksheet						

WHAT IS CLAIMED IS:

1. A method of identifying putative naturally occurring antisense transcripts, the method comprising:
 - (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and
 - (b) identifying expressed polynucleotide sequences from said second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of said first database, thereby identifying putative naturally occurring antisense transcripts.
2. The method of claim 1, wherein said first database includes sequences of a type selected from the group consisting of genomic sequences, expressed sequence tags, contigs, intron sequences, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.
3. The method of claim 1, wherein said second database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.
4. The method of claim 1, wherein an average sequence length of said expressed polynucleotide sequences of said second database is selected from a range of 0.02 to 0.8 Kb.

108

5. The method of claim 1, wherein said second database is generated by:

- (i) providing a library of expressed polynucleotides;
- (ii) obtaining sequence information of said expressed polynucleotides;
- (iii) computationally selecting at least a portion of said expressed polynucleotides according to at least one sequence criterion; and
- (iv) storing said sequence information of said at least a portion of said expressed polynucleotides thereby generating said second database.

6. The method of claim 5, wherein said at least one sequence criterion for computationally selecting said at least a portion of said expressed polynucleotide is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site, poly(T) head, poly(A) tail, and poly(A) signal.

7. The method of claim 1 further comprising the step of testing the putative naturally occurring antisense transcripts for an ability to form said duplex with said at least one sense oriented polynucleotide sequence under physiological conditions.

8. The method of claim 1 further comprising the step of computationally testing the putative naturally occurring antisense transcripts according to at least one criterion selected from the group consisting of sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site, poly(T) head, poly(A) tail, and poly(A) signal.

9. A kit for quantifying at least one mRNA transcript of interest, the kit comprising at least one oligonucleotide being designed and configured so as to be complementary to a sequence region of the mRNA transcript of interest, said sequence region not being complementary with a naturally occurring antisense transcript.

10. The kit of claim 9, wherein a length of said at least one oligonucleotide is selected from a range of 15-200 nucleotides.

11. The kit of claim 9, wherein said at least one oligonucleotide is a single stranded oligonucleotide.

12. The kit of claim 9, wherein said at least one oligonucleotide is a double stranded oligonucleotide.

13. The kit of claim 9, wherein a guanidine and cytosine content of said at least one oligonucleotide is at least 25 %.

14. The kit of claim 9, wherein said at least one oligonucleotide is labeled.

15. The kit of claim 9, wherein said at least one oligonucleotide is attached to a solid substrate.

16. The kit of claim 15, wherein said solid substrate is configured as a microarray and whereas said at least one oligonucleotide includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

17. A kit for quantifying at least one mRNA transcript of interest, the kit comprising at least one pair of oligonucleotides including a first

110

oligonucleotide capable of binding the at least one mRNA transcript of interest and a second oligonucleotide being capable of binding a naturally occurring antisense transcript complementary to the mRNA of interest.

18. The kit of claim 17, wherein a length of each of said first and second oligonucleotides is selected from a range of 15-200 nucleotides

19. The kit of claim 17, wherein said first and second oligonucleotides are single stranded oligonucleotides.

20. The kit of claim 17, wherein said first and second oligonucleotides are double stranded oligonucleotide.

21. The kit of claim 17, wherein a guanidine and cytosine content of each of said first and second oligonucleotides is at least 25 %.

22. The kit of claim 17, wherein said first and second oligonucleotides are labeled.

23. The kit of claim 17, wherein said first and second oligonucleotides are attached to a solid substrate.

24. The kit of claim 23, wherein said solid substrate is configured as a microarray and whereas each of said first and second oligonucleotides includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

25. A kit for quantifying at least one naturally occurring antisense transcript of interest, the kit comprising at least one oligonucleotide being designed and configured so as to be complementary to a sequence region of the

at least one naturally occurring antisense transcript of interest, said sequence region not being complementary with a naturally occurring mRNA transcript.

26. The kit of claim 25, wherein a length of said at least one oligonucleotide is selected from a range of 15-200 nucleotides.

27. The kit of claim 25, wherein said at least one oligonucleotide is a single stranded oligonucleotide.

28. The kit of claim 25, wherein said at least one oligonucleotide is a double stranded oligonucleotide.

29. The kit of claim 25, wherein a guanidine and cytosine content of said at least one oligonucleotide is at least 25 %.

30. The kit of claim 25, wherein said at least one oligonucleotide is labeled.

31. The kit of claim 25, wherein said at least one oligonucleotide is attached to a solid substrate.

32. The kit of claim 31, wherein said solid substrate is configured as a microarray and whereas said at least one oligonucleotide includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

33. A method of designing artificial antisense transcripts, the method comprising:

- (a) providing a database of naturally occurring antisense transcripts;
- (b) extracting from said database criteria governing structure and/or function of said naturally occurring antisense transcripts; and

- (c) designing the artificial antisense transcripts according to said criteria.

34. The method of claim 33, wherein said criteria governing structure and/or function of said naturally occurring antisense transcripts are selected from the group consisting of antisense length, complementarity length, complementarity position, intron molecules, alternative splicing sites, tissue specificity, pathological abundance, chromosomal mapping, open reading frames, promoters, hairpin structures, helix structures, stem and loops, pseudoknots and tertiary interactions, guanidine and/or cytosine content, guanidine tandems, adenosine content, thermodynamic criteria, RNA duplex melting point, RNA modifications, protein-binding motifs, palindromic sequence and predicted single stranded and double stranded regions.

35. The method of claim 33, wherein said step of providing said database of naturally occurring antisense transcripts is effected by:

- (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and
- (b) identifying expressed polynucleotide sequences from said second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of said first database,
- (c) storing a sequence of said expressed polynucleotide sequences identified in step (b), thereby providing said database of said naturally occurring antisense transcripts..

36. The method of claim 35, wherein said first database includes sequences of a type selected from the group consisting of genomic sequences, expressed sequence tags, contigs, intron sequences, complementary DNA

(cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

37. The method of claim 35, wherein said second database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

38. The method of claim 35, wherein an average sequence length of said expressed polynucleotide sequences of said second database is selected from a range of 0.02 to 0.8 Kb.

39. The method of claim 35, wherein said second database is generated by:

- (i) providing a library of expressed polynucleotides;
- (ii) obtaining sequence information of said expressed polynucleotides;
- (iii) computationally selecting at least a portion of said expressed polynucleotides according to at least one sequence criterion; and
- (iv) storing said sequence information of said at least a portion of said expressed polynucleotides thereby generating said second database.

40. The method of claim 39, wherein said at least one sequence criterion for computationally selecting said at least a portion of said expressed polynucleotide is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

41. The method of claim 35, further comprising the step of testing said putative naturally occurring antisense transcripts for an ability to form said duplex with said at least one sense oriented polynucleotide sequence under physiological conditions.

42. The method of claim 35 further comprising the step of computationally testing said putative naturally occurring antisense transcripts according to at least one criterion selected from the group consisting of sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

43. A computer readable storage medium comprising a database including a plurality of sequences, wherein each sequence is of a naturally occurring antisense transcript.

44. The computer readable storage medium of claim 43, wherein said database further includes information pertaining to each sequence of said naturally occurring antisense transcripts, said information is selected from the group consisting of related sense gene, antisense length, complementarity length, complementarity position, intron molecules, alternative splicing sites, tissue specificity, pathological abundance, chromosomal mapping, open reading frames, promoters, hairpin structures, helix structures, stem and loops, pseudoknots and tertiary interactions, guanidine and/or cytosine content, guanidine tandems, adenosine content, thermodynamic criteria, RNA duplex melting point, RNA modifications, protein-binding motifs, palindromic sequence and predicted single stranded and double stranded regions.

45. The computer readable storage medium of claim 43, wherein said database further includes information pertaining to generation of said database and potential uses of said database.

46. A method of generating a database of naturally occurring antisense transcripts, the method comprising:

- (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences;
- (b) identifying expressed polynucleotide sequences from said second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of said first database so as to identify putative naturally occurring antisense transcripts; and
- (c) storing sequence information of said identified naturally occurring antisense transcripts, thereby generating the database of the naturally occurring antisense transcripts.

47. The method of claim 46, wherein said first database includes sequences of a type selected from the group consisting of genomic sequences, expressed sequence tags, contigs, intron sequences, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

48. The method of claim 46, wherein said second database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

49. The method of claim 46, wherein an average sequence length of said expressed polynucleotide sequences of said second database is selected from a range of 0.02 to 0.8 Kb.

50. The method of claim 46, wherein said second database is generated by:

- (i) providing a library of expressed polynucleotides;
- (ii) obtaining sequence information of said expressed polynucleotides;
- (iii) computationally selecting at least a portion of said expressed polynucleotides according to at least one sequence criterion; and
- (iv) storing said sequence information of said at least a portion of said expressed polynucleotides thereby generating said second database.

51. The method of claim 50, wherein said at least one sequence criterion for computationally selecting said at least a portion of said expressed polynucleotide is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

52. The method of claim 46 further comprising the step of testing the putative naturally occurring antisense transcripts for an ability to form said duplex with said at least one sense oriented polynucleotide sequence under physiological conditions.

53. The method of claim 46 further comprising the step of computationally testing the putative naturally occurring antisense transcripts according to at least one criterion selected from the group consisting of sequence annotation, sequence

information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

54. A system for generating a database of a plurality of putative naturally occurring antisense transcripts, the system comprising a processing unit, said processing unit executing a software application configured for:

- (a) computationally aligning a first database including sense-oriented polynucleotide sequences with a second database including expressed polynucleotide sequences; and
- (b) identifying expressed polynucleotide sequences from said second database being capable of forming a duplex with at least one sense-oriented polynucleotide sequence of said first database.

55. The system of claim 54, wherein said first database includes sequences of a type selected from the group consisting of genomic sequences, expressed sequence tags, contigs, intron sequences, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

56. The system of claim 54, wherein said second database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

57. The system of claim 54, wherein an average sequence length of said expressed polynucleotide sequences of said second database is selected from a range of 0.02 to 0.8 Kb.

58. The system of claim 54, wherein said second database is generated by:

- (i) providing a library of expressed polynucleotides;
- (ii) obtaining sequence information of said expressed polynucleotides;
- (iii) computationally selecting at least a portion of said expressed polynucleotides according to at least one sequence criterion; and
- (iv) storing said sequence information of said at least a portion of said expressed polynucleotides thereby generating said second database.

59. The system of claim 58, wherein said at least one sequence criterion for computationally selecting said at least a portion of said expressed polynucleotide is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

60. The system of claim 54 further comprising the step of testing the putative naturally occurring antisense transcripts for an ability to form said duplex with said at least one sense oriented polynucleotide sequence under physiological conditions.

61. The system of claim 54 further comprising the step of computationally testing the putative naturally occurring antisense transcripts according to at least one criterion selected from the group consisting of sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

62. A method of identifying putative naturally occurring antisense transcripts, the method comprising screening a database of expressed polynucleotides sequences according to at least one sequence criterion, said at least one sequence criterion being selected to identify putative naturally occurring antisense transcripts.

63. The method of claim 63, wherein said database includes sequences of a type selected from the group consisting of expressed sequence tags, contigs, complementary DNA (cDNA) sequences, pre-messenger RNA (mRNA) sequences and mRNA sequences.

64. The method of claim 63, wherein an average sequence length of said expressed polynucleotide sequences of said second database is selected from a range of 0.02 to 0.8 Kb.

65. The method of claim 63, wherein said at least one sequence criterion is selected from the group consisting of sequence length, sequence annotation, sequence information, intron splice consensus site, intron sharing, sequence overlap, rare restriction site , poly(T) head, poly(A) tail, and poly(A) signal.

66. The method of claim 63 further comprising the step of testing the putative naturally occurring antisense transcripts for an ability to form a duplex with at least one sense oriented polynucleotide sequence under physiological conditions.

67. A method of quantifying at least one mRNA of interest in a biological sample, the method comprising:

- (a) contacting the biological sample with at least one oligonucleotide capable of binding with the at least one mRNA of interest,

120

wherein said at least one oligonucleotide is designed and configured so as to be complementary to a sequence region of the mRNA transcript of interest, said sequence region not being complementary with a naturally occurring antisense transcript; and

- (b) detecting a level of binding between the at least one mRNA of interest and said at least one oligonucleotide to thereby quantify the at least one mRNA of interest in the biological sample.

68. The method of claim 67, wherein said at least one oligonucleotide is attached to a solid substrate.

69. The method of claim 68, wherein said solid substrate is configured as a microarray and whereas said at least one oligonucleotide includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

70. The method of claim 67, wherein said at least one oligonucleotide is labeled and whereas step (b) is effected by quantifying said label.

71. The method of claim 67, wherein a length of said at least one oligonucleotide is selected from a range of 15-200 nucleotides.

72. The method of claim 67, wherein said at least one oligonucleotide is a single stranded oligonucleotide.

73. The method of claim 67, wherein said at least one oligonucleotide is a double stranded oligonucleotide.

74. The method of claim 67, wherein a guanidine and cytosine content of said at least one oligonucleotide is at least 25 %.

75. A method of quantifying the expression potential of at least one mRNA of interest in a biological sample, the method comprising:

- (a) contacting the biological sample with at least one pair of oligonucleotides including a first oligonucleotide capable of binding the at least one mRNA of interest and a second oligonucleotide being capable of binding a naturally occurring antisense transcript complementary to the mRNA of interest; and
- (b) detecting a level of binding between the at least one mRNA of interest and said first oligonucleotide and a level of binding between said naturally occurring antisense transcript complementary to the mRNA of interest and said second oligonucleotide to thereby quantify the expression potential of the at least one mRNA of interest in the biological sample.

76. The method of claim 75, wherein a length of each of said first and second oligonucleotides is selected from a range of 15-200 nucleotides

77. The method of claim 75, wherein said first and second oligonucleotides are single stranded oligonucleotides.

78. The method of claim 75, wherein said first and second oligonucleotides are double stranded oligonucleotide.

79. The method of claim 75, wherein a guanidine and cytosine content of each of said first and second oligonucleotides is at least 25 %.

122

80. The method of claim 75, wherein said first and second oligonucleotides are labeled and whereas step (b) is effected by quantifying said label.

81. The method of claim 75, wherein said first and second oligonucleotides are attached to a solid substrate.

82. The method of claim 81, wherein said solid substrate is configured as a microarray and whereas each of said first and second oligonucleotides includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

83. A method of quantifying at least one naturally occurring antisense transcript of interest in a biological sample, the method comprising:

- (a) contacting the biological sample with at least one oligonucleotide capable of binding with the at least one naturally occurring antisense transcript of interest, wherein said at least one oligonucleotide is designed and configured so as to be complementary to a sequence region of the naturally occurring antisense transcript of interest, said sequence region not being complementary with a naturally occurring mRNA transcript; and
- (b) detecting a level of binding between the at least one naturally occurring antisense transcript of interest and said at least one oligonucleotide to thereby quantify the at least one naturally occurring antisense transcript of interest in the biological sample.

84. The method of claim 83, wherein said at least one oligonucleotide is attached to a solid substrate.

123

85. The method of claim 84, wherein said solid substrate is configured as a microarray and whereas said at least one oligonucleotide includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

86. The method of claim 83, wherein said at least one oligonucleotide is labeled and whereas step (b) is effected by quantifying said label.

87. The method of claim 83, wherein a length of said at least one oligonucleotide is selected from a range of 15-200 nucleotides.

88. The method of claim 83, wherein said at least one oligonucleotide is a single stranded oligonucleotide.

89. The method of claim 83, wherein said at least one oligonucleotide is a double stranded oligonucleotide.

90. The method of claim 83, wherein a guanidine and cytosine content of said at least one oligonucleotide is at least 25 %.

91. A method of identifying a novel drug target, the method comprising:

- (a) determining expression level of at least one naturally occurring antisense transcript of interest in cells characterized by an abnormal phenotype; and
- (b) comparing said expression level of said at least one naturally occurring antisense transcript of interest in said cells characterized by an abnormal phenotype to an expression level of said at least one naturally occurring antisense transcript of interest

124

in cells characterized by a normal phenotype, to thereby identify the novel drug target.

92. The method of claim 91, wherein said abnormal phenotype of said cells is selected from the group consisting of biochemical phenotype, morphological phenotype and nutritional phenotype.

93. The method of claim 91, wherein said determining expression level of at least one naturally occurring antisense transcript of interest is effected by at least one oligonucleotide designed and configured so as to be complementary to a sequence region of said at least one naturally occurring antisense transcript of interest, said sequence region not being complementary with a naturally occurring mRNA transcript.

94. The method of claim 93, wherein a length of said at least one oligonucleotide is selected from a range of 15-200 nucleotides.

95. The method of claim 93, wherein said at least one oligonucleotide is a single stranded oligonucleotide.

96. The method of claim 93, wherein said at least one oligonucleotide is a double stranded oligonucleotide.

97. The method of claim 93, wherein a guanidine and cytosine content of said at least one oligonucleotide is at least 25 %.

98. The method of claim 93, wherein said at least one oligonucleotide is labeled and whereas step (b) is effected by quantifying said label.

125

99. The method of claim 93, wherein said at least one oligonucleotide is attached to a solid substrate.

100. The method of claim 99, wherein said solid substrate is configured as a microarray and whereas said at least one oligonucleotide includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

101. A method of treating or preventing a disease, condition or syndrome associated with an upregulation of a naturally occurring antisense transcript complementary to a naturally occurring mRNA transcript, the method comprising administering a therapeutically effective amount of an agent for regulating expression of the naturally occurring antisense transcript.

102. The method of claim 101, wherein said agent for regulating expression of the naturally occurring antisense transcript is at least one oligonucleotide designed and configured so as to hybridize to a sequence region of said at least one naturally occurring antisense transcript.

103. The method of claim 102, wherein said at least one oligonucleotide is a ribozyme.

104. The method of claim 102, wherein said at least one oligonucleotide is a sense transcript.

105. A method of diagnosing a disease, condition or syndrome associated with a substandard expression ratio of an mRNA of interest over a naturally occurring antisense transcript complementary to the mRNA of interest, the method comprising:

126

- (a) quantifying expression level of the mRNA of interest and the naturally occurring antisense transcript complementary to the mRNA of interest;
- (b) calculating the expression ratio of the mRNA of interest over the naturally occurring antisense transcript complementary to the mRNA of interest, thereby diagnosing the disease, condition or syndrome.

106. The method of claim 105, wherein quantifying said expression level of the mRNA of interest and the naturally occurring antisense transcript complementary to the mRNA of interest is effected by at least one pair of oligonucleotides including a first oligonucleotide capable of binding the mRNA of interest and a second oligonucleotide being capable of binding the naturally occurring antisense transcript complementary to the mRNA of interest.

107. The method of claim 106, wherein a length of each of said first and second oligonucleotides is selected from a range of 15-200 nucleotides

108. The method of claim 106, wherein said first and second oligonucleotides are single stranded oligonucleotides.

109. The method of claim 106, wherein said first and second oligonucleotides are double stranded oligonucleotides.

110. The method of claim 106, wherein a guanidine and cytosine content of each of said first and second oligonucleotides is at least 25 %.

111. The method of claim 106, wherein said first and second oligonucleotides are labeled.

127

112. The method of claim 106, wherein said first and second oligonucleotides are attached to a solid substrate.

113. The method of claim 112, wherein said solid substrate is configured as a microarray and whereas each of said first and second oligonucleotides includes a plurality of oligonucleotides each attached to said microarray in a regio-specific manner.

1/48

Fig. 1

2/48

Fig. 2

Fig. 3

Fig. 4a

3/48

570_0 AV705532_0 190 244352_15 783 OL: 52
 Query: 1 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 52
 Sbjct: 52 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 1

Fig. 4b

570_1 AV705532_0 190 244352_14 1649 OL: 52
 Query: 1 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 52
 Sbjct: 52 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 1

Fig. 4c

570_2 AV705532_0 190 244352_13 1861 OL: 52
 Query: 1 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 52
 Sbjct: 52 ggacccaggatatgagcggaaaacactttctacttagatacaacttttc 1

Fig. 4d

571_0 AW070860_0 214 T81142_7 1934 OL: 54
 Query: 1 gtaagggaaaccttggcgacttagtgcgatcactgggagaattgttagagtccact 54
 Sbjct: 1215 gtaagggaaaccttggcgacttagtgcgatcactgggagaattgttagagtccact 1162

Score = 22.3 bits (11), Expect = 0.66
 Identities = 11/11 (100%)
 Strand = Plus / Minus

Query: 146 acttccagagg 156
 Sbjct: 760 acttccagagg 750

Fig. 4e

571_1 AW070860_0 214 T81142_6 2353 OL: 54
 Query: 1 gtaagggaaaccttggcgacttagtgcgatcactgggagaattgttagagtccact 54
 Sbjct: 1215 gtaagggaaaccttggcgacttagtgcgatcactgggagaattgttagagtccact 1162

Score = 22.3 bits (11), Expect = 0.66
 Identities = 11/11 (100%)
 Strand = Plus / Minus

Query: 146 acttccagagg 156
 Sbjct: 760 acttccagagg 750

4/48

Score = 22.3 bits (11), Expect = 0.66
 Identities = 11/11 (100%)
 Strand = Plus / Plus

```
Query: 100 ggaaaacacac 110
       ||||||||| |
Sbjct: 1900 ggaaaacacac 1910
```

Fig. 4f

```
571_2 AW070860_0      214      T81142_4      2500      OL: 54
Query: 1 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 54
       ||||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Sbjct: 1317 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 1264
```

Score = 22.3 bits (11), Expect = 0.66
 Identities = 11/11 (100%)
 Strand = Plus / Minus

```
Query: 146 acttccagagg 156
       ||||||||| |
Sbjct: 862 acttccagagg 852
```

Score = 22.3 bits (11), Expect = 0.66
 Identities = 11/11 (100%)
 Strand = Plus / Plus

```
Query: 100 ggaaaacacac 110
       ||||||||| |
Sbjct: 2047 ggaaaacacac 2057
```

Fig. 4g

```
571_3 AW070860_0      214      T81142_3      947      OL: 54
Query: 1 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 54
       ||||||||| | | | | | | | | | | | | | | | | | | | | | | | | | |
Sbjct: 224 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 171
```

Fig. 4h

```
571_4 AW070860_0      214      T81142_2      1366     OL: 54
Query: 1 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 54
       ||||||||| | | | | | | | | | | | | | | | | | | | | | | | | |
Sbjct: 224 gtaagggaacttggcgacttagtgcgatcactggagaattgttagagtccact 171
```

Score = 22.3 bits (11), Expect = 0.66

5/48

Identities = 11/11 (100%)
Strand = Plus / Plus

Query: 100 ggaaaacacac 110
|||||||
Sbjct: 913 ggaaaacacac 923

Fig. 4i

572_0 BE046369_0 422 W26553_3 1532 OL: 52
Query: 1 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 52
|||||||
Sbjct: 1481 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 1532

Fig. 4j

572_1 BE046369_0 422 W26553_2 1753 OL: 52
Query: 1 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 52
|||||||
Sbjct: 1702 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 1753

Fig. 4k

572_2 BE046369_0 422 W26553_1 1832 OL: 52
Query: 1 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 52
|||||||
Sbjct: 1781 aatcttcataatccccatgtgtcaaaggagagaccagggtggaggttaactgaa 1832

6/48

53BP1_76P 53BP1 10394 76P 6837 OL: 3046 OF1: 5463
OF2: 2018

Score = 1659 bits (837), Expect = 0.0
Identities = 840/841 (99%)
Strand = Plus / Minus

Query: 7432 gagacggaattcgctttgttgcggccaggctggaatgcataatggcacaatctcagctca
7491

Sbjct: 3113 gagacggaattcgctttgttgc当地qqctggatqcaatqcacaatctcagctcact
3054

Query: 7492 gcagcgtctgcttcccaggtaagcaatttcgttcagcctccgtggaa
7551

Sbjct: 3053 gcagcgtctgcttcccgaggtaagcaatttcctgtctcagcctcctgagttagctggga
2994

Query: 7552 ttacaggcacatgccaccacacacctggctaattttgtattttagtagaaatcgaggttc
7611

Sbjct: 2993 ttacaggcacatgccaccacacacctggctaattttgtatTTtagtagaaatcgaggttc
2934

Query: 7612 alcalylggcggtggctggctcaatccctgacttcagggtatccggccgcctcggcc
7671 ?

Sbjct: 2933 atcatgttggtcaggctggctcaaactcctgacttcaggtgatccgcggccctcggttt
2874

Query: 7672 cccaaagtgtggattacagggtgtgagccaccatgcccggcctaagaaaatacttttaag
7731

Sbjct: 2873 cccaaagtgtggattacagggtgtgagccaccatgcggcctaagaaaatcttttaag
2814

Query: 7732 tatattttcattagctagaattggccaaatctgtgttaggtataaattacttggtataggga
7791

Sbjct: 2813 tatattttcattagctagaattgcccaatctgttaggtataaattacttggtataggga
2754

Sbjct: 2753 gagagaaaaggcttatcttacactgttgctttttacttgggttaacatccagcagttagtc
2694

Fig. 5a

7/48

Query: 7852 tatttataaacataattactttcacatataaccataaaatattaactttctgctct
 7911 |||

Sbjct: 2693 tatttataaacataattactttcacatataaccataaaatattaactttctgctct
 2634 |||

Query: 7912 atattgttgttaccgctgtatctccacagcttgaacagtaccaaggtagtacgttagg
 7971 ||||||||||| |||||||||||||||||||||||||||||||

Sbjct: 2633 atattgttgttaccgctgtatctccacagcttgaacagtaccaaggtagtacgttagg
 2574 ||||||||||| |||||||||||||||||||||||

Query: 7972 tgctcaataaatgactattgaataaatgaacatatccaacaaaatgttctcaatgtaaagg
 8031 |||||||||||||||||||||||||||||||||||||

Sbjct: 2573 tgctcaataaatgactattgaataaatgaacatatccaacaaaatgttctcaatgtaaagg
 2514 |||||||||||||||||||||||||||||||||

Query: 8032 atcagagatgccacatgttctccttgcggagagaccctccacatggaaatgtggaa
 8091 |||||||||||||||||||||||||||||||||

Sbjct: 2513 atcagagatgccacatgttctccttgcggagagaccctccacatggaaatgtggaa
 2454 |||||||||||||||||||||||||||||

Query: 8092 aggagttgtactcctggatgttcagtaactgcttcttaggagaaaaggtagagtcctatca
 8151 |||||||||||||||||||||||||||||||||

Sbjct: 2453 aggagttgtactcctggatgttcagtaactgcttcttaggagaaaaggtagagtcctatca
 2394 |||||||||||||||||||||||||||||

:

Query: 8152 ctaagccgcagatatttatttgcgtggctagaatggatgtttgaatcttctgttac
 8211 |||||||||||||||||||||||||||||

Sbjct: 2393 ctaagccgcagatatttatttgcgtggctagaatggatgtttgaatcttctgttac
 2334 |||||||||||||||||||||||||

Query: 8212 aaccttggaaacgtggctttcaatttatgagccagaaatttcacatcccgaaac
 8271 |||||||||||||||||||||||||||||

Sbjct: 2333 aaccttggaaacgtggctttcaatttatgagccagaaatttcacatcccgaaac
 2274 |||||||||||||||||||||||||

Query: 8272 t 8272

 |
 Sbjct: 2273 t 2273

Score = 1655 bits (835), Expect = 0.0
 Identities = 849/856 (99%)
 Strand = Plus / Minus

Fig. 5a continued

8/48

Query: 5903 agatattgctttagggtagtttatgtgtgggtgacggaccctcatgccagcctcggt
 5962 |||||||

Sbjct: 4642 agatattgctttagggtagtttatgtgtgggtgacggaccctcatgccagcctcggt
 4583 |||||||

Query: 5963 gctgaagtgtgctgaagcattgcagctgcctgtggtcacaagagtgggtatccagtg
 6022 |||||||

Sbjct: 4582 gctgaagtgtgctgaagcattgcagctgcctgtggtcacaagagtgggtatccagtg
 4523 |||||||

Query: 6023 cctcattgttggggagagaattggattcaagcagcatccaaatataaacacgattatgt
 6082 |||||||

Sbjct: 4522 cctcattgttggggagagaattggattcaagcagcatccaaatataaacacgattatgt
 4463 |||||||

Query: 6083 ttctcaactaaagatacttggtcttactggtttattccctgctatcgtggagattgtt
 6142 |||||||

Sbjct: 4462 ttctcaactaaagatacttggtcttactggtttattccctgctatcgtggagattgtt
 4403 |||||||

Query: 6143 ttaaccaggtttaaatgtgtcttgttaactggattcctgcatggatctgtatat
 6202 |||||||

Sbjct: 4402 ttaaccaggtttaaatgtgtcttgttaactggattcctgcatggatctgtatat
 4343 |||||||

Query: 6203 agtttatttgcataactttatgataaaaatgttgaatctcttgggttagtaac
 6262 |||||||

Sbjct: 4342 agtttatttgcataactttatgataaaaatgttgaatctcttgggttagtaac
 4283 |||||||

Query: 6263 tgggatttcttcatactgnnnnnnngagcttaatctcagaacaaatgacaagacatagtc
 6322 |||||||

Sbjct: 4282 tgggatttcttcatactgtttttgagcttaatctcagaacaaatgacaagacatagtc
 4223 |||||||

Query: 6323 ttctctgagtcttcaacaggcttattcacttacggaggacagtcaccaaggaaattg
 6382 |||||||

Sbjct: 4222 ttctctgagtcttcaacaggcttattcacttacggaggacagtcaccaaggaaattg
 4163 |||||||

Query: 6383 aaaatgttaagagtgaacLLlatLcLgtggcatcattccaaaagggtatccagggtgc
 6442

Fig. 5a continued

9/48

Sbjct: 4162 aaaagttaagagtgaacttattctgtggcatcattccaaaaggttattccagggtgtc
4103

Query: 6443 taaaatgctatgcttcagaaaactcagttaaaggtaggtgaaggcccagattaacagttg
6502

Sbjct: 4102 taaaatgctatgcttcagaaaactcagttaaaggtaggtgaaggcccagattaacagttg
4043

Query: 6503 tgccaaaagttgagtggaaattggcacagctctgtttcctgacagttaaaaagacctca
6562

Sbjct: 4042 tgccaaaagttgagtggaaattggcacagctctgtttcctgacagttaaaaagacctca
3983

Query: 6563 tgctctctcttgagctgagatcacagtcacactgtgggtactccccactcttagagct
6622

Sbjct: 3982 tgctctctcttgagctgagatcacagtcacactgtgggtactccccactcttagagct
3923

Query: 6623 aaaggggagaacgaaaggaccactgccccatgaaggacagtgaccataagcttgcattggaaat
6682

Sbjct: 3922 aaaggggagaacgaaaggaccactgccccatgaaggacagtgaccataagcttgcattggaaat
3863

Query: 6683 gacccctcgtaagataaacatggaaagcacaagtggaaacacccctggaaatgttacacgtt
6742

Sbjct: 3862 gacccctcgtaagataaacatggaaagcacaagtggaaacacccctggaaatgttacacgtt
3803

Query: 6743 ctagtcaaagacccaa 6758

Sbjct: 3802 ctagtcaaagacccaa 3787

Score = 1211 bits (611), Expect = 0.0
Identities = 625/632 (98%)
Strand = Plus / Minus

Query: 6778 gtcacaatagctggaaagcagttccctcccttcgtggcatcactgateccctgcatggct
6837

Sbjct: 3767 gtcacaatagctggaaagcagttccctcccttcgtggcatcactgateccctgcatggct
3708

Fig. 5a continued

10/48

Query: 6838 ttcattctcaaaggcaggggtcaacaaggnnnnnnctgtaaagggtcaaagagtaaat
 6897 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3707 ttcattctcaaaggcaggggtcaacaaggttttctgtaaagggtcaaagagtaaat
 3648 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 6898 attcaggcttgcggccatgtttatccatcacaactactcgcccttgctgtgagggcat
 6957 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3647 attcaggcttgcggccatgtttatccatcacaactactcgcccttgctgtgagggcat
 3588 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 6958 gaaagcaaccatagacaatgagtaaacaatggcacggctgtgtttcagtaaaaactgta
 7017 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3587 gaaagcaaccatagacaatgagtaaacaatggcacggctgtgtttcagtaaaaactgta
 3528 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7018 caaaaacagacagcaggccatagttgccagctcctgtccagagacagcagtggaaagg
 7077 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3527 caaaaacagacagcaggccatagttgccagctcctgtccagagacagcagtggaaagg
 3468 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7078 gtatcttagttataatagcagggataagttgtcagagcttcccagtgtgttagaa
 7137 : ||||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3467 gtatcttagttataatagcagggataagttgtcagagcttcccagtgtgttagaa
 3408 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7138 tatgtatgtatgaaaaccagatgcagtgactataacctgtgccagaacactgcatttt
 7197 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3407 tatgtatgtatgaaaaccagatgcagtgactataacctgtgccagaacactgcatttt
 3348 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7198 ttccatgtttggagggcggtttcagtgaatatttttttttttttttttttttttttttttt
 7257 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3347 ttccatgtttggagggcggtttcagtgaatatttttttttttttttttttttttttttt
 3288 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7258 tgattaccagtgtggctggccatattaagataacttcaacccatggttgttaag
 7317 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Sbjct: 3287 tgattaccagtgtggctggccatattaagataacttcaacccatggttgttaag
 3228 ||||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||

Query: 7318 atggtaatggcctgcaatcttcagtattaaaaatctaacaacttgcattcaatttt
 7377

Fig. 5a continued

11/48

Sbjct: 3227 atggtaattggcctgcaatctttagttaaaaatctaacaacttgcatttcatttt
 3168

Query: 7378 ttcttaaggaccccttcttggagaataatac 7409
 Sbjct: 3167 ttcttaaggaccccttcttggagaataatac 3136

Score = 404 bits (204), Expect = e-115
 Identities = 204/204 (100%)
 Strand = Plus / Minus

Query: 5556 cagtgtAACACAGCTTACCACTGGATCAGCATGTCGAACCCGGAAG
 5615
 Sbjct: 6169 cagtgtAACACAGCTTACCACTGGATCAGCATGTCGAACCCGGAAG
 6110

Query: 5616 tacttcctgtgccttgcagtggttttgtgtctcatgtctgggtccatgatagt
 5675
 Sbjct: 6109 tacttcctgtgccttgcagtggttttgtgtctcatgtctgggtccatgatagt
 6050

Query: 5676 tgccatgccaaccagctccagaactaccgttaattatctgttgccagctgggtacagcctt
 5735
 Sbjct: 6049 tgccatgccaaccagctccagaactaccgttaattatctgttgccagctgggtacagcctt
 5990

Query: 5736 gaggagcaaagaattctggactgg 5759
 Sbjct: 5989 gaggagcaaagaattctggactgg 5966

Score = 291 bits (147), Expect = 1e-80
 Identities = 147/147 (100%)
 Strand = Plus / Minus

Query: 5758 ggcaaccccgtaaaaatccttccagaatctgaaggtaactttgttatcagaccaacagc
 5817
 Sbjct: 5159 ggcaaccccgtaaaaatccttccagaatctgaaggtaactttgttatcagaccaacagc
 5100

Query: 5818 agaacttcctggagctctggctgagatcctcatgactgggtgcagcctctgtgaagc
 5877
 Sbjct: 5099 agaacttcctggagctctggctgagatcctcatgactgggtgcagcctctgtgaagc
 5040

Fig. 5a continued

12/48

Query: 5878 agcaccattcaagtgccataacaaag 5904
 |||||||||||||||||||||||||||
 Sbjct: 5039 agcaccattcaagtgccataacaaag 5013

Score = 281 bits (142), Expect = 9e-78
 Identities = 142/142 (100%)
 Strand = Plus / Minus

Query: 8920 ctgcccagagttccaccagcctgggtatagtatttgtataatctagtcgtaacagtagt 8979
 ||
 Sbjct: 2274 ctgcccagagttccaccagcctgggtatagtatttgtataatctagtcgtaacagtagt 2215

Query: 8980 tgagccaaatctgagttgatctgatgattccgaacactggagagaatcttgaacaggagt 9039
 ||
 Sbjct: 2214 tgagccaaatctgagttgatctgatgattccgaacactggagagaatcttgaacaggagt 2155

Query: 9040 gaagactggcggtaaagccct 9061
 |||||||||||||||||||||||
 Sbjct: 2154 gaagactggcggtaaagccct 2133

Score = 226 bits (114), Expect = 5e-61
 Identities = 117/118 (99%)
 Strand = Plus / Minus

Query: 9673 cttcacgagaatgctcagctggcggtccacgctcatccagtggcctaggttctgac 9732
 ||
 Sbjct: 2135 cttcacgagaatgctcagctggcggtccacgctcatccagtggcctaggttctgac 2076

Query: 9733 tgaccagcgaacaaaaactgtgacagagatctaggattcattcaggcagtgaaacac 9790
 ||
 Sbjct: 2075 tgaccagcgaacaaaaactgtgacagagatctaggattcattcaggcagtgaaacac 2018

Score = 190 bits (96), Expect = 3e-50
 Identities = 96/96 (100%)
 Strand = Plus / Minus

Query: 5463 gaattttggaaattcctcattcaacaaggcagtatacagaatcccagcttcgagcagga 5522
 ||
 Sbjct: 6812 gaattttggaaattcctcattcaacaaggcagtatacagaatcccagcttcgagcagga 6753

Fig. 5a continued

13/48

Query: 5523 gctggctatacccttgaagatttcaatgaagccag 5558
|||||||
Sbjct: 6752 gctggctatacccttgaagatttcaatgaagccag 6717

Score = 52.0 bits (26), Expect = 2e-08
Identities = 26/26 (100%)
Strand = Plus / Minus

Query: 7668 gcctcccaaagtgctggattacagg 7693
|||||||
Sbjct: 5312 gcctcccaaagtgctggattacagg 5287

Fig. 5a continued

14/48

CIDEBl_BLTR2	CIDEBl	2289	BLTR2	6530	OL:	2254	OF1:	17	OF2:
1									

Score = 2727 (753.8 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 547/549 (99%), Positives = 547/549 (99%), Strands Minus /
 Plus

Query: 2250 TTTTGTAGTTGAGGGGAAGGGTATGAAGACAGATCTCAAGGTAAAGTCAGAGAGGGCT 2191
 Sbjct: 1 TTTTGTAGTTGAGGGGAAGGGTATGAAGACAGATCTCAAGGTAAAGTCAGAGAGGGCT 60

Query: 2190 GTCATCAGTATGCTGGGAGTTAGGGACAGGAGGCATTGGTAGGGATTAGATGTAGCA 2131
 Sbjct: 61 GTCATCAGTATGCTGGGAGTTAGGGACAGGAGGCATTGGTAGGGATTAGATGTAGCA 120

Query: 2130 GCAGTCAGGCTGGGATCAAGATGCCTGGGGACATCTGATCTTGCCTTCAGGGCAAG 2071
 Sbjct: 121 GCAGTCAGGCTGGGATCAAGATGCCTGGGGACATCTGATCTTGCCTTCAGGGCAAG 180

Query: 2070 TGGGAGGCTAGAAAGGTGGCTAGGAAAGAACAGCATTCTCAGGTAAAGGTATAGACTTG 2011
 Sbjct: 181 TGGGAGGCCAGAAAGGTGGCTAGGAAAGAACAGCATTCTCAGGTAAAGGTATAGACTTG 240

Query: 2010 GGATGTGAGGCCTATGCTGAAAGGTTCTGTCACGAGGGATCAGAGGACAGTGGGAAA 1951
 Sbjct: 241 GGATGTGAGGCCTATGCTGAAAGGTTCTGTCACGAGGGATCAGAGGACAGTGGGAAA 300

Query: 1950 TTGGGTGGTTATCTAGCCTGTACTGTCTGCAGGTCTGAAATTGATGCTGTCAAGTC 1891
 Sbjct: 301 TTGGGTGGTTATCTAGCCTGTACTGTCTGCAGGTCTGAAATTGATGCTGTCAAGTC 360

Query: 1890 TTTGCAGTGGCTGGATGATTCTGGGGCAGAAGCTCAGAGCCCCTAGTAGGAA 1831
 Sbjct: 361 TTTGCAGTGGCTGGATGATTCTGGGGCAGAAGCTCAGAGCCCCTAGTAGGAA 420

Query: 1830 TGGAGGCAGCCCTCTGCTGCCACTGCTCAGCCCCCTCCACTGCATGACGAAGGGTGGAG 1771
 Sbjct: 421 TGGAGGCAGCCCTCTGCTGCCACTGCTCAGCCCCCTCCACTGCATGACGAAGGGTGGAG 480

Query: 1770 GAAATTCCCAGCAACATATGCCAACGCCCTTGCAAGCAGTGTGGAGGTCAAACGAAGGAGC 1711
 Sbjct: 481 GAAATTCCCAGCAACATATGCCAACGCCCTTGCAAGCAGTGTGGAGGTCAAACGAAGGAGC 540

Fig. 5b

15/48

Query: 1710 TCCCTGAGT 1702
 |||||||
 Sbjct: 541 TCCCTGAAT 549

Score = 1322 (365.4 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 266/268 (99%), Positives = 266/268 (99%), Strands Minus / Plus

Query: 757 CCTGTAGGCCAGAAGGATGTCGGTCTGCTACCGTCCCCCAGGAAACGAGACACTGCTGA 698
 ||
 Sbjct: 5426 CCTGTAGGCCAGAAGGATGTCGGTCTGCTACCGTCCCCCAGGAAACGAGACACTGCTGA 5485

Query: 697 GCTGGAAGACTTCGCGGGCACAGGCACAGCCTCCTGCTGCTGGCGCGCTGCTGGGGC 638
 ||
 Sbjct: 5486 GCTGGAAGACTTCGCGGGCACAGGCACAGCCTCCTGCTGCTGGCGCGCTGCTGGGGC 5545

Query: 637 TCCCTGCCAACCCCTCGTGGTGGAGCTTGGGGCTGGCAGCCTGCACCCGGGAC 578
 ||
 Sbjct: 5546 TGCGTGGCAACGGCTTCGTGGTGGAGCTTGGCGGGCTGGCGGCCTGCACGGGGGCGAC 5605

Query: 577 CGCTGGCGGCCACGCTTGTGCTGCACCTGGCGCTGGCGACGGCGCGGTGCTGCTCA 518
 ||
 Sbjct: 5606 CGCTGGCGGCCACGCTTGTGCTGCACCTGGCGCTGGCGACGGCGCGGTGCTGCTCA 5665

Query: 517 CGCCGCTTTGTGGCTTCCCTGACCGG 490
 |||||||||||||||||||||
 Sbjct: 5666 CGCCGCTTTGTGGCTTCCCTGACCCG 5693

Score = 1316 (363.8 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 264/265 (99%), Positives = 264/265 (99%), Strands Minus / Plus

Query: 421 CAAGCGTGTGCTCACCCCCCTCCTCACCCCTGCAGCGCTGCCTCGCAGTCACCCGCCCT 362
 ||
 Sbjct: 5762 CCAGCGTGTGCTCACCGGCCTGCTCAGCCTGCAGCGCTGCCTCGCAGTCACCCGCCCT 5821

Query: 361 TCCTGGCGCCTCGGCTGCGCAGCCCGGCCCTGGCCCGCCCTGCTGCTGGCGGTCTGGC 302
 ||
 Sbjct: 5822 TCCTGGCGCCTCGGCTGCGCAGCCCGGCCCTGGCCCGCCCTGCTGCTGGCGGTCTGGC 5881

Query: 301 TGGCCGCCCTGTTGCTCGCCGTCCCAGCCCGCCGTCTACCGCCACCTGTGGAGGGACCGCG 242
 ||
 Sbjct: 5862 TGGCCGCCCTGTTGCTCGCCGTCCCAGCCCGCCGTCTACCGCCACCTGTGGAGGGACCGCG 5941

Fig. 5b continued

16/48

Query: 241 TATGCCAGCTGTGCCACCCGTCGCCGGTCCACGCCGCCACCTGAGCCTGGAGACTC
182 |||||||
Sbjct: 5942 TATGCCAGCTGTCCCACCCGTCGCCGGTCCACGCCGCCACCTGAGCCTGGAGACTC
6001 |||||||

Query: 181 TGACCGCTTCTGCTTCCTTCGG 157
Sbjct: 6002 TGACCGCTTCTGCTTCCTTCGG 6026
Score = 920 (254.3 bits), Expect = 0.0, Sum P(13) = 0.0
Identities = 188/193 (97%), Positives = 188/193 (97%), Strands Minus / Plus

Query: 1708 CCTGAGTACTTCTTGGCCAAGTCCTTGAAAGTCACAACCATAGAGTAGAGCCGTA
1649 |||||||
Sbjct: 724 CCTGAGTACTTCTTGGCCAAGTCCTTGAAAGTCACAACCATAGAGTAGAGCCGTA
783 |||||||

Query: 1648 GAATGTGGCTTGACATTCAAGGCTGCCAAAGAGGTCTCGAGGGTTTGCTTGTACACGTC
1589 |||||||
Sbjct: 784 GAATGTGGCTTGACATTCAAGGCTGCCAAAGAGGTCTCGAGGGTTTGCTTGTACACGTC
843 |||||||

Query: 1588 AAAGGTGAATCGGCCGATGTCCTGCTGTGCTGGGCTCTCCGTCCAGGCCATATGA
1529 |||||||
Sbjct: 844 AAAGGTGAATCGGCCGATGTCCTGCTGTGCTGGGCTCTCCGTCCAGGCCATATGA
903 |||||||

Query: 1528 CAGCACTCCACTC 1516
Sbjct: 904 CAGCACTCCACTC 916
Score = 753 (208.2 bits), Expect = 0.0, Sum P(13) = 0.0
Identities = 157/165 (95%), Positives = 157/165 (95%), Strands Minus / Plus

Query: 1529 ACAGCACTCCACTCCTGTAGGGCTCCAGCTCTGACCAGACTGCAACACCACAGGCACG
1470 |||||
Sbjct: 1139 ATAGGCCTCTTACCCCTGTAGGGCTCCAGCTCTGACCAGACTGCAACACCACAGGCACG
1198 |||||

Query: 1469 TGTCATCCCTCCAGCAGCTGGAAGAAGTCCTCACTGTCCACTGCAGTTCCATCCTCTCA
1410 |||||
Sbjct: 1199 TGTCATCCCTCCAGCAGCTGGAAGAAGTCCTCACTGTCCACTGCAGTTCCATCCTCTCA
1258 |||||

Query: 1409 GCACCAGGGTTAGCAGTCCATTCAAGCAGTAGGGCTCCAATGCTT 1365
Sbjct: 1259 GCACCAGGGTTAGCAGTCCATTCAAGCAGTAGGGCTCCAATGCCT 1303
Score = 746 (206.2 bits), Expect = 0.0, Sum P(13) = 0.0

Fig. 5b continued

17/48

Identities = 150/151 (99%), Positives = 150/151 (99%), Strands Minus / Plus

Query: 1369 TGCTTGGCTAGCAGCTCCTGGCGGTGGCAGCTGTCAGGCCTTCCGGATGGTCCGCTT
1310 |||||||||
Sbjct: 2146 TACTTGGCTAGCAGCTCCTGGCGGTGGCAGCTGTCAGGCCTTCCGGATGGTCCGCTT
2205 |||||||||

Query: 1309 GTGATCACAGACACGGAAAGGTCGCTGGGTGGAGCTGAGGTCCAGACCCCTCCGTCC
1250 |||||||||
Sbjct: 2206 GTGATCACAGACACGGAAAGGTCGCTGGGTGGAGCTGAGGTCCAGACCCCTCCGTCC
2265 |||||||||

Query: 1249 AAACCTCCGAGCTTATATTAGATACTGACCTG 1219
 |||||||||
Sbjct: 2266 AAACCTCCGAGCTTATATTAGATACTGACCTG 2296

Score = 737 (203.7 bits), Expect = 0.0, Sum P(13) = 0.0
Identities = 148/150 (98%), Positives = 149/150 (99%), Strands Minus / Plus

Query: 1118 CTGCTCTTCCTCCTCCTGGTCGGAGGAGGGCTGGCTCACTGCTCTGGCTTCATT
1059 |||||||||
Sbjct: 3257 CTGCTCTTCCTCCTCCTGGTCGGAGGAGGGCTGGCTCACTGCTCTGGCTTCATT
3316 |||||||||

Query: 1058 CCAGAGCTGCCTGCTGCAGTCACACTTAGTCATCTCTCACTTTCTCCTTTGCCG
999 |||||||||
Sbjct: 3317 CCAGAGCTGCCTGCTGCAGTCACACTTAGTCATCTCTCACTTTCTCCTTTGCCG
3376 |||||||||

Query: 998 ATTAGTGGACGTGACAGAGATGTGAATRTG 969
 |||||||||+ |
Sbjct: 3377 ATTAGTGGACGTGACAGAGATGTGAATGGG 3406

Score = 714 (197.4 bits), Expect = 0.0, Sum P(13) = 0.0
Identities = 146/150 (97%), Positives = 146/150 (97%), Strands Minus / Plus

Query: 166 TTCTTTCGGCTGATGCTCGGCTGCTACAGCGTGACGCTGGCACGGCTGCGGGCGCCCG
107 |||||
Sbjct: 6018 TCCTTTCGGGCTGATGCTCGGCTGCTACAGCGTGACGCTGGCACGGCTGCGGGCGCCCG
6077 |||||

Query: 106 CTGGGGCTCCGGGCGGCACGGGGCGCGGGTGGGCCGGCTGGTGAGCGCCATCGTGCTTG
111 |||||
Sbjct: 6078 CTGGGGCTCCGGGCGGCACGGGGCGCGGGTGGGCCGGCTGGTGAGCGCCATCGTGCTTG
6137 |||||

Query: 46 CTTCGGCTTGCCTGGCCCCCTACCACGC 17
 |||||
Sbjct: 6138 CTTCGGCTTGCCTGGCCCCCTACCACGC 6167

Fig. 5b continued

18/48

Score = 638 (176.4 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 130/133 (97%), Positives = 130/133 (97%), Strands Minus / Plus

Query: 962 GGGCAGGGGATGTCCTTGATGGCATCAAGACTTAGCTCTGGTGCCTGTCCCAGC
 903 ||||| |||

Sbjct: 3404 GGGCAGGGGATGTCCTTGATGGCATCAAGACTTAGCTCTGGTGCCTGTCCCAGC
 3463 ||||| |||

Query: 902 TCTGATTTCAGTTGCAGCCGTGATGGACAGTTGCATGGAAGCTGAGACTCTCACTGACAG
 843 ||||| |||

Sbjct: 3464 TCTGATTTCAGTTGCAGCCGTGATGGACAGTTGCATGGAAGCTGAGACTCTCACTGACAG
 3523 ||||| |||

Query: 842 TGAAACCTCAAA 830

Sbjct: 3524 TGAAACCTCAAA 3536

Score = 537 (148.4 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 109/111 (98%), Positives = 109/111 (98%), Strands Minus / Plus

Query: 1227 ACTGACCTGAGTAAGTCACTGGGTTCAAGAGCTGAGAGGTACTCCATGGTGGACCGGAGA
 1168 ||||| |||

Sbjct: 2590 AGTCACCTGAGTAAGTCACTGGGTTCAAGAGCTGAGAGGTACTCCATGGTGGACCGGAGA
 2649 ||||| |||||||||||||||||||||||||||||||||||||

Query: 1167 GTTCCTTCCCTGGAACCTCTGGGCTGGGTGGTCTCTCCTGTGCTGGGCT 1117

Sbjct: 2650 GTTCCTTCCCTGGAACCTCTGGGCTGGGTGGTCTCTCCTGTGCTGGGCT 2700

Score = 394 (108.9 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 82/86 (95%), Positives = 82/86 (95%), Strands Minus / Plus

Query: 839 AACCTCAAAATGAACACAAATCCCTGCTTCCTGCCAAGGATCCTGTAGGGTCCCCCAG
 780 ||||| |||||||||||||||||||||||||||||||||||||

Sbjct: 3526 AAACCTCAAAATGAACACAAATCCCTGCTTCCTGCCAAGGATCCTGTAGGGTCCCCCAG
 3585 ||||| |||||||||||||||||||||||||||||||||

Query: 779 CTTCCCCACTTTTTCTGTGTCTG 754

Sbjct: 3586 CTTCCCCACTTTTTCTGTGTCTG 3611

Score = 370 (102.3 bits), Expect = 0.0, Sum P(13) = 0.0
 Identities = 74/74 (100%), Positives = 74/74 (100%), Strands Minus / Plus

Query: 493 CCGGCAGGCCTGGCCGCTGGGCCAGGCAGGTGCAAGGCAGGTACTACGTGTGCAGCCT
 434 ||||| |||||||||||||||||||||||||||||||||

Sbjct: 5691 CCGGCAGGCCTGGCCGCTGGGCCAGGCAGGTGCAAGGCAGGTACTACGTGTGCAGCCT
 5750 ||||| |||||||||||||||||||||||||||||

Query: 433 CAGCATGTACGCCA 420

Sbjct: 5751 CAGCATGTACGCCA 5764

Fig. 5b continued

19/48

CIDEB2_BLTR2 CIDEB2 1511 BLTR2 6530 OL: 1410 OF1: 1 OF2:
1

Score = 2736 (756.0 bits), Expect = 0.0, Sum P(5) = 0.0
Identities = 548/549 (99%), Positives = 548/549 (99%), Strands Minus /
Plus

Query: 1384 TTTTGTAGTTGAGGGGAAGGGTATGAAGACAGATCTCAAGGTAAAGTCAGAGAGGGCT
1325

Subjct: 1 TTTTGTAGTTGAGGGGAAGGGTATGAAGACAGATCTCAAGGTAAGTCAGAGAGGGCT 60

Query: 1324 GTCATCAGTATGCTGGGGAGTTAGGGACAGGAGGCATTGGTAGGGATTAGATGTAGCA
1265

Sbjct: 61 GTCATCAGTATGCTGGGGAGTTAGGGACAGGGAGGCATTGGTAGGGGATTAGATGTAGCA
120

Query: 1264 GCAGTCAGGCTGGGATCAAGATGCCTGGGGACATCTGATCTTGGCTTCAGGGCAAG
1205

Sbjct: 121 GCAGTCAGGCTGGGATCAAGATGCCTGGGGACATCTGATCTTGCCTTCAGGGCAAG
180

Query: 1204 TGGGAGGCCAGAAAGGTGGCTAGGAAAGAACAGCATTCTTCAGGTAAGGGTATAGACTTG
1145

Sbjct: 181 TGGGAGGCCAGAAAGGTGGCTAGGAAAGAACAGCATTCTCAGGTAAAGGTATAAGCTTG
240

Query: 1144 GGATGTGAGGCCTATGCTGAAAGGTTCTGTCACGAGGGGATCAGAGGACAGTGGGGAAA
1085

Sbjct: 241 GGATGTGAGGCCTATGCTGAAAGGTTCTGTACGAGGGGATCAGAGGACAGTGGGGAAA
300

Query: 1084 TTGGGTGGGTTATCTAGCCTGTACTGTCTGCAGGTCCCTGAAATTGATGCTGTCATAGTC
1025

Sbjct: 301 TTGGGTGGTTATCTAGCCTGACTGTCTGCAGGT CCTGAAATTGATGCTGTCA TAGTC
360

Query: 1024 TTTGCAGTGGTCGGTGGAAATGATTCTGGGGCAGAAGCTCAGAGCCCCTAGTAGGAA
65

Sbjct: 361 TTTGCAGTGGGTCGGTGGAATGATTCTGGGGCAGAAGCTCAGAGCCCCTAGTAGGA
420

Query: 964 TGGAGGCGGCCCTTCTGCTGCCACTGCTCAGCCCCCTCCACTGCATGACGAAGGGTGGAC

Sbjct: 421 TGGAGGCGGCCCTTGCTGCCACTGCTCAGCCCCCTCCACTGCATGACGAAGGGTGGAC

Query: 904 GAAATTCCCAGCAACATATGGCCAGGCCTTGCACCGAGTGTGGAGGTCCAACGAAGGAGG

Sbjct : 481 GAAATTCCAGCAACATATGGCCCA ACGAAGGAGG

Fig. 5c

20/48

Query: 844 TCCCTGAGT 836
 |||||||
 Sbjct: 541 TCCCTGAAT 549

Score = 1787 (493.8 bits), Expect = 0.0, Sum P(5) = 0.0
 Identities = 359/361 (99%), Positives = 359/361 (99%), Strands Minus / Plus

Query: 361 ACTGACCTGAGTAAGTCAGGGTTCACTGGGCTCAGAGCTGAGAGGTACTCCATGGTGGACCGGAGA
 302 ||
 Sbjct: 2590 AGTCACCTGAGTAAGTCAGGGTTCACTGGGCTCAGAGCTGAGAGGTACTCCATGGTGGACCGGAGA
 2649

Query: 301 GTTCCTTCUUCCTGGAACCTCTGGGCTGGGTGGTTCTCCTGTGCTGGGCTTAGTGGTG
 242 ||
 Sbjct: 2650 GTTCCTTCUUCCTGGAACCTCTGGGCTGGGTGGTTCTCCTGTGCTGGGCTTAGTGGTG
 2709

Query: 241 TTTTCTGTTACAAACCTGGGATCTCAGCCCAGGACAAGGTGGGAATGAGTCAGCCTGGA
 182 ||
 Sbjct: 2710 TTTTCTGTTACAAACCTGGGATCTCAGCCCAGGACAAGGTGGGAATGAGTCAGCCTGGA
 2769

Query: 181 CTCTGGCCCCCTGCCTGGCCAGTAAGAACGGCAAAGTCCAAGGGAGGGATGAGGGAGG
 122 ||
 Sbjct: 2770 CTCTGGCCCCCTGCCTGGCCAGTAAGAACGGCAAAGTCCAAGGGAGGGATGAGGGAGG
 2829

Query: 121 GGCCAGATGGGTCTGGAGGAAGAATTGCCTGGCAAAGCCATTGGAGCTTGTATGTGT 62
 ||
 Sbjct: 2830 GGCCAGATGGGTCTGGAGGAAGAATTGCCTGGCAAAGCCATTGGAGCTTGTATGTGT
 2889

Query: 61 GTCTTGATGACATGTGTTGAGGGTAGATGGAACCATGTAAAAGGATGAAATGT 2
 ||
 Sbjct: 2890 GTCTTGATGACATGTGTTGAGGGTAGATGGAACCATGTAAAAGGATGAAATGT
 2949

Query: 1 G 1
 |
 Sbjct: 2950 G 2950

Score = 965 (266.6 bits), Expect = 0.0, Sum P(5) = 0.0
 Identities = 193/193 (100%), Positives = 193/193 (100%), Strands Minus / Plus

Query: 842 CCTGAGTACTTCTTGGCCAAGTCCTGAAAGTCACAACTCATAGAGTAGAGCCCGTA
 783 ||
 Sbjct: 724 CCTGAGTACTTCTTGGCCAAGTCCTGAAAGTCACAACTCATAGAGTAGAGCCCGTA
 783

Query: 782 GAATCTGGCTTGACATTCAAGCTGCCAAAGAGGTCTCGAGGGTTTGCTTGTACACGTC
 723

Fig. 5c continued

21/48

Sbjct: 784 GAATGTGGCTTGACATTCAAGGCTGCCAAAGAGGTCTCGAGGGTTTGCTTGTACACGTC
 843

Query: 722 AAAGGTGAATCGGGCGATGTCCTTGCTGTGCTTGGGCCTCTCCCGTCCCAGGCCATATGA
 663

Sbjct: 844 AAAGGTGAATCGGGCGATGTCCTTGCTGTGCTTGGGCCTCTCCCGTCCCAGGCCATATGA
 903

Query: 662 CAGCACTCCACTC 650

Sbjct: 904 CAGCACTCCACTC 916

Score = 757 (209.2 bits), Expect = 0.0, Sum P(5) = 0.0
 Identities = 161/173 (93%), Positives = 161/173 (93%), Strands Minus /
 Plus

Query: 671 GCCATATGACAGCACTCCACTCCTTGAGGGCTCCAGCTCTGACCAGACTGCAACACCAT
 612

Sbjct: 1131 GCCCCAGTATAAGGCCTTACCCCTTGAGGGCTCCAGCTCTGACCAGACTGCAACACCAT
 1190

Query: 611 CAGGCACGTGTCATCCTCCAGCAGCTGGAAGAAGTCCTCACTGTCCACTGCAGTTCCATC
 552

Sbjct: 1191 CAGGCACGTGTCATCCTCCAGCAGCTGGAAGAAGTCCTCACTGTCCACTGCAGTTCCATC
 1250

Query: 551 CTCCCTCTAGCACCAAGGGTTAGCACTCCATTCAAGCAGTAGGGCTCCAATGCTT 499

Sbjct: 1251 CTCCCTCTAGCACCAAGGGTTAGCACTCCATTCAAGCAGTAGGGCTCCAATGCCT 1303

Score = 746 (206.1 bits), Expect = 0.0, Sum P(5) = 0.0
 Identities = 150/151 (99%), Positives = 150/151 (99%), Strands Minus /
 Plus

Query: 503 TGCTTTGGCTAGCAGCTCCTGGCGGGTGGCAGCTGTCAGGCCTTCCGGATGGTCCGCTT
 444

Sbjct: 2146 TACTTTGGCTAGCAGCTCCTGGCGGGTGGCAGCTGTCAGGCCTTCCGGATGGTCCGCTT
 2205

Query: 443 GTGATCACAGACACGGAAAGGTCGCTGGGGTGGTAGGCTGAGGTCCAGACCCCTCCGTCC
 384

Sbjct: 2206 GTGATCACAGACACGGAAAGGTCGCTGGGGTGGTAGGCTGAGGTCCAGACCCCTCCGTCC
 2265

Query: 383 AAACTCCGAGCTTATATTAGATACTGACCTG 353

Sbjct: 2266 AAACTCCGAGCTTATATTAGATACTGACCTG 2296

Fig. 5c continued

22/48

APAF1_EB1 APAF1 7042 EB1a 1752 OL: 141 OF1: 6889
OF2: 1612

Score = 705 (194.8 bits), Expect = 3.9e-52, P = 3.9e-52
Identities = 141/141 (100%), Positives = 141/141 (100%), Strands Minus /
Plus

Query: 7029 TGTTTTCAAAACAATTTGTGAATTTATTTACAAAAATTAAATTCAATATTT
6970 |||||||
Sbjct: 1612 TGTTTTCAAAACAATTTGTGAATTTATTTACAAAAATTAAATTCAATATTT
1671 |||||||

Query: 6969 AAAATGTATACCAAGGCACCATATAAGCTATATCATAAATACAAGAGTTCAAA
6910 |||||||
Sbjct: 1672 AAAATGTATACCAAGGCACCATATAAGCTATATCATAAATACAAGAGTTCAAA
1731 |||||||

Query: 6909 ACATACAAGAGACATATAATG 6889
1732 |||||||
Sbjct: 1732 ACATACAAGAGACATATAATG 1752

Fig. 5d

23/48

Hum_AChR_MINK2 AChR 2457 MINK2 4863 OL: 236 OF1: 2175
OF2: 4583

Score = 218 bits (110), Expect = 2e-59
Identities = 110/110 (100%)
Strand = Plus / Minus

Query: 2254 aagggttacttgctcacactatacagatgcaagcaaggggcgtagatgggg
2313

2515 |||||||
Sbjct: 4787 aagggttacttgctcacactatacagatgcaagcaagggcgtaggg
4728

Query: 2314 ctccctgtccctccctccatggggcatgggctagaagaggaga 2363

Query 2811

Sbjct: 4727 ctccctgtccctccctccacggggcatggctagaagaggaga 4678

Score = 133 bits (67), Expect = 9e-34
Identities = 74/75 (98%), Gaps = 1/75 (1%)
Strand = Plus / Minus

Query: 2384aatgtttggctg-cggggtccccccattccatggagttttggggaaagggaatcat
2442

Sbjct: 4657 aatgtttggctggcggggtccccctccattccctggagtttgggggaaggggaaatcat
4598

Query: 2443:taaagtgtttcaga 2457

111111111111111111

Sbjct: 4597 taaagtgc~~ttt~~caga 4583

Score = 103 bits (52), Expect = 8e-25
Identities = 52/52 (100%)

Strand = Plus / Minus

Query: 2175 agctgggttgaattgtctttatataacaaacaggatatccaagggccactacatt 2226

Sbjct: 4863 agctggtaatttgtcttattaaacaacaggatatccaaggccactacatt 4812

Fig. 5e

24/48

Mus_AChR	Mus_AChR	1590	Anti_Mus_AChR	2227	OL: 672	OFL:
934	OF2: 506					

Score = 1221 (337.4 bits), Expect = 3.7e-254, Sum P(4) = 3.7e-254
 Identities = 245/246 (99%), Positives = 245/246 (99%), Strands Minus /
 Plus

Query: 1587 AGTTCACAAACCAGATTATTGTCAAGCGGCCTGTTTCAAAATCTCTTCTTGGGGGTG
 1528 |||||||

Sbjct: 506 AGTTCACAAACCAGATTATTGTCAAGCGGCCTGTTTCAAAATCTCTTCTTGGGGGTG
 565 |||||||

Query: 1527 GGGGAGAGGTGGGTGCCAGTCAGGCTCATGGTGGATGCCACGGTGGTAAGGGAGATCA
 1468 |||||||

Sbjct: 566 GGGGAGAGGTGGGTGCCAGTCAGGCTCATGGTGGATGCCACGGTGGTAAGGGAGATCA
 625 |||||||

Query: 1467 GGAACCTGGTTGAAGTAACCCCCAAGGAAGATGAGAGTAGAACCAACGCTGAAGAGCACC
 1408 |||||||

Sbjct: 626 GGAACCTGGTTGAAGTAACCCCCAAGGAAGATGAGAGTAGAACCAACGCTGAAGAGCACC
 685 |||||||

Query: 1407 AAAGCTGCCAAAAACAGACATTGTCCAGGGCCTTCCCCATACGCACCCAGTCGGACAGT
 1348 |||||||

Sbjct: 686 AAAGCTGCCAAAAACAGACATTGTCCAGGGCCTTCCCCATACGCACCCAGTCGGACAGT
 745 |||||||

Query: 1347 TCCTCT 1342

Sbjct: 746 TCCTGT 751

Score = 954 (263.6 bits), Expect = 3.7e-254, Sum P(4) = 3.7e-254
 Identities = 198/207 (95%), Positives = 198/207 (95%), Strands Minus /
 Plus

Query: 1249 GCAGAGGGCTCGGGTCCAAGTTCCGTGCCATGCCTCTGACCCCAAACACGAGTTCGCT
 1190 |||||

Sbjct: 1007 GCAGTGCTTACCGGTCCAAGTTCCGTGCCATGCCTCTGACCCCAAACACGAGTTCGCT
 1066 |||||

Query: 1189 CCGCGGCTTTCAAGATGAGCTCCGCTCTGAGCAGAATGCCACAGACGAGGCACG
 1130 |||||

Sbjct: 1067 CCGCGGCTTTCAAGATGAGCTCCGCTCTGAGCACAATGCCACAGACGAGGCACG
 1126 |||||

Query: 1129 CCTCGCTGGTGAGGCAGTCGGGATCCTCTGGGGTGGCTCGAGCCCAGGAGACGCGG
 1070 |||||

Sbjct: 1127 CCTCGCTGGTGAGGCAGTCGGGATCCTCTGGGGTGGCTCGAGCCCAGGAGACGCGG
 1186 |||||

Query: 1069 CAGCAGCTCTAATAAAATCTGGCGCAG 1043

Fig. 5f

25/48

Sbjct: 1187 CAGCAGCTCTAATAAAATCTGCAGCCG 1213

Score = 591 (163.3 bits), Expect = 3.7e-254, Sum P(4) = 3.7e-254
Identities = 119/120 (99%), Positives = 119/120 (99%), Strands Minus /
Plus

Query: 1053 ATCTGGCGCAGCCGAGGGGATGTAGCATGAGTCGTTGGCGTCCTCAAAGATACTGTTGAGC
994

Subjct: 1277 ACCTGGCGCAGCCGAGGGGATGTAGCATGAGTCGTTGGCGTCCTCAAAGATACTGAGC
1336

Query: 993 ACGATGACGCAATTCATGACAATGAGCGTGGCAACCACCATGACGAATATAAGATACCTG
934

534 Sbjct: 1337 ACGATGACCAATTGACAAATGAGCGTGGCAACCACCATGACGAATATAAGATACTG
1396

Score = 546 (150.9 bits), Expect = 3.7e-254, Sum P(4) = 3.7e-254
Identities = 110/111 (99%), Positives = 110/111 (99%), Strands Minus /
Plus

Query: 1346 CCTCTCCAGTGGCTTCTGGTCTTGTCAGCCACAAAGTTCACAGCATCCACAC
1287

826 CCTCTCCAGTGGCTTCCTGGTCTTGTCAGCCACAAAGTTCACAGCATCCACAC
885

Query: 1286 AGCAGCGGATTTCTGGGGCTGCAGCACCCAGGTTCTGGCAGAGGGCTGGG 1236

Fig. 5f continued

26/48

CyclinE2	CyclinE2	2714	Anti_CyclinE2	6773	OL: 1855
OF1: 865	OF2: 2006				

Score = 7885 (2178.8 bits), Expect = 0.0, Sum P(4) = 0.0
 Identities = 1577/1577 (100%), Positives = 1577/1577 (100%), Strands Minus / Plus

```

Query: 2714 TACAGCTGGCAGCGCAGAGAAGGAAAAAAAGTTCTCCAAGCAATGGCAAAACTTACT
2655      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2006 TACAGCTGGCAGCGCAGAGAAGGAAAAAAAGTTCTCCAAGCAATGGCAAAACTTACT
2065      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2654 TTTAAGCAGTTAAATTTCACTTTAACTTTTAAACAATGGGCTAAAATAAACAGT
2595      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2066 TTTAAGCAGTTAAATTTCACTTTAACTTTTAAACAATGGGCTAAAATAAACAGT
2125      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2594 ATTTAAAGGTTAAGTTATATAATACATATGTACACAATTAGTGGTGTTCCTTCAGA
2535      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2126 ATTTAAAGGTTAAGTTATATAATACATATGTACACAATTAGTGGTGTTCCTTCAGA
2185      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2534 CAAAATACTGAAACAAATATTAGTTAAAAACAAACTATACAGAAGACTTCATACCGTAA
2475      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2186 CAAAATACTGAAACAAATATTAGTTAAAAACAAACTATACAGAAGACTTCATACCGTAA
2245      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2474 CAATAATGTATAGTTCTCAAAGGGAGAAGAGATTCACATATCTGATAACAAAATAA
2415      ,||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2246 CAATAATGTATAGTTCTCAAAGGGAGAAGAGATTCACATATCTGATAACAAAATAA
2305      ,||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2414 CTAGCAATCTAGTTCTAATCTACTTTATGAGGCTGGATTTTTTAGAAAAGCTAA
2355      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2306 CTAGCAATCTAGTTCTAATCTACTTTATGAGGCTGGATTTTTTAGAAAAGCTAA
2365      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2354 TTTAAAATTTAGAAATAGCTAGCCTATGTACAGCAAGTTCATGTCTTTTAATA
2295      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2366 TTTAAAATTTAGAAATAGCTAGCCTATGTACAGCAAGTTCATGTCTTTTAATA
2425      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2294 AATAGATTTCTAGGAGTCAGTATATTTAATACTCTTCTTCCTTAAGAAAATAGAAGTT
2235      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Sbjct: 2426 AATAGATTTCTAGGAGTCAGTATATTTAATACTCTTCTTCCTTAAGAAAATAGAAGTT
2485      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||
Query: 2234 TAGGTCAAGTGTAAAGCTTATCACTTGACACTGTCCTTATCTCACAATGGAGGAATT
2175      |||||||.....||||||.....||||||.....||||||.....||||||.....||||||.....|||

```

Fig. 5g

27/48

Sbjct: 2486 TAGGTCAAGTGTAAAGCTTATCACTTGACACTGTCCTTATCTCACAAATGGAGGAATT
2545

Query: 2174 AGAAAGGACCTAACAGTTCACAAACATAAATAAGCCTTAGTCACACTAAATTAAAAA
2115 |||||||

Sbjct: 2546 AGAAAGGACCTAACAGTTCACAAACATAAATAAGCCTTAGTCACACTAAATTAAAAA
2605 |||||||

Query: 2114 AAAAAATTCCCTAGGGATATCTTAGAGTAGTAAAGTGACTTCCTCATATAAAATAGTTGA
2055 |||||||

Sbjct: 2606 AAAAAATTCCCTAGGGATATCTTAGAGTAGTAAAGTGACTTCCTCATATAAAATAGTTGA
2665 |||||||

Query: 2054 AAGGGTACTTAAGTTTCACCCAAATTGTGATATACAAAAGGTATTACCAAGCAACC
1995 |||||||

Sbjct: 2666 AAGGGTACTTAAGTTTCACCCAAATTGTGATATACAAAAGGTATTACCAAGCAACC
2725 |||||||

Query: 1994 TACATGTCAAGAAAGCCCCAGTTAGGAAGGAGCCACAGCATTATCTGTTATAATTTC
1935 |||||||

Sbjct: 2726 TACATGTCAAGAAAGCCCCAGTTAGGAAGGAGCCACAGCATTATCTGTTATAATTTC
2785 |||||||

Query: 1934 TTTGGTACTCCCACTGTTAGAGCACAGGTGAACACCATGTCATCTAACCTTATTAG
1875 |||||||

Sbjct: 2786 TTTGGTACTCCCACTGTTAGAGCACAGGTGAACACCATGTCATCTAACCTTATTAG
2845 |||||||

Query: 1874 TTAAAAAAATGTGTTATGGCAAGGCAAATAACTAGTTAAAAACATTAATTTCACCAT
1815 |||||||

Sbjct: 2846 TTAAAAAAATGTGTTATGGCAAGGCAAATAACTAGTTAAAAACATTAATTTCACCAT
2905 |||||||

Query: 1814 TTGTAGAAATTCAAGTTTATAATAGCTTGCTATAGCAGCTATAGATAAAATTAGTCACCT
1755 |||||||

Sbjct: 2906 TTGTAGAAATTCAAGTTTATAATAGCTTGCTATAGCAGCTATAGATAAAATTAGTCACCT
2965 |||||||

Query: 1754 TATTACAAAACAAACCTTGTAAACAAGTTAAATTAAATTTCAGAACCAATTGCA
1695 |||||||

Sbjct: 2966 TATTACAAAACAAACCTTGTAAACAAGTTAAATTAAATTTCAGAACCAATTGCA
3025 |||||||

Query: 1694 CTAGTCAAGAGTGTAGGAATTGAGAATCTAACAACTAGATTCAAAGTACTGTATCACT
1635 |||||||

Sbjct: 3026 CTAGTCAAGAGTGTAGGAATTGAGAATCTAACAACTAGATTCAAAGTACTGTATCACT
3085 |||||||

Query: 1634 TAGTATAACCTTTAAGGTAGCACTTATCCAGTCCAAAACCTCCAGTGACAAAATTCTAGT
1575

Fig. 5g continued

28/48

Sbjct: 3086 TAGTATACCTTAAGTAGCACTTATCCAGTCCAAACTCCAGTGACAAAATCCTAGT
3145

Query: 1574 TTATCAAGATAAACACAGTAACACTGGATTAAAGGAAAAACATTGCTATGGTATAGACTG
1515

Sbjct: 3146 TTATCAAGATAAACACAGTAACACTGGATTAAAGGAAAAACATTGCTATGGTATAGACTG
3205

Query: 1514 TGGTTGGCTTCTATCCAGTAACCTGGGAATGAAGACATCTTGTAAACAAGTCCTGCTG
1455

Sbjct: 3206 TGGTTGGCTTCTATCCAGTAACCTGGGAATGAAGACATCTTGTAAACAAGTCCTGCTG
3265

Query: 1454 TTTCTTAACAGCTAACATAGGAAATAATTAAATGTATTCTTAGTGCCTATTGTAAGTT
1395

Sbjct: 3266 TTTCTTAACAGCTAACATAGGAAATAATTAAATGTATTCTTAGTGCCTATTGTAAGTT
3325

Query: 1394 TTAAAATCAGAATGGCAGTGTAACTTGTGAATTGGCTAGGGCAATCAATCACAGCACTAC
1335

Sbjct: 3326 TTAAAATCAGAATGGCAGTGTAACTTGTGAATTGGCTAGGGCAATCAATCACAGCACTAC
3385

Query: 1334 TTTCTGTAAAACTTAGTTAGTCAGTGTAACTTGTGAATTGGCTACCCAACTTGGTGAATTCCAA
1275

Sbjct: 3386 TTTCTGTAAAACTTAGTTAGTCAGTGTAACTTGTGAATTGGCTACCCAACTTGGTGAATTCCAA
3445

Query: 1274 CTTGTTGCTTAGTTATCTCTTAGTGTGTTCTGGTGGTTTCAGTGCTCTCGGTG
1215

Sbjct: 3446 CTTGTTGCTTAGTTATCTCTTAGTGTGTTCTGGTGGTTTCAGTGCTCTCGGTG
3505

Query: 1214 GTGTCATAATGCCTCATTGCACACTGGTGACAACGTCCCCCTTCTGAAGGTGTTA
1155

Sbjct: 3506 GTGTCATAATGCCTCATTGCACACTGGTGACAACGTCCCCCTTCTGAAGGTGTTA
3565

Query: 1154 TGTAATTACTTCCCTCC 1138

Sbjct: 3566 TGTAATTACTTCCCTCC 3582

Score = 805 (222.4 bits), Expect = 0.0, Sum P(4) = 0.0
 Identities = 161/161 (100%), Positives = 161/161 (100%), Strands Minus /
 Plus

Query: 1139 CCAGCATAGCCAAATAGTTGTATGTGTGGATATTATGTCTGTCTCCATAGGAATCT
1080

Fig. 5g continued

29/48

Sbjct: 3967 CCAGCATAGCCAAATAGTTGTATGTCTGGATATTATGTCGTCTCCATAGGAATCT
4026

Query: 1079 TCTTAAAAGTCTCAGCTTCACTGGACTAGTAGTTACTACATTGACAAAAGGTACCA
1020

Sbjct: 4027 TCTTAAAAGTCTCAGCTTCACTGGACTAGTAGTTACTACATTGACAAAAGGTACCA
4086

Query: 1019 TCCAATCTACACATTCTGAAATACTGTCCCCTCCAAACCT 979

Sbjct: 4087 TCCAATCTACACATTCTGAAATACTGTCCCCTCCAAACCT 4127

Score = 581 (160.5 bits), Expect = 0.0, Sum P(4) = 0.0
Identities = 117/118 (99%), Positives = 117/118 (99%), Strands Minus /
Plus

Query: 982 ACCTGAGGCTTCTTAACCCTCAATGGAGGTAAAATGGCACAAGGCAGCAGTCAG
923

Sbjct: 4615 ACCTGAGGCTTCTTAACCCTCAATGGAGGTAAAATGGCACAAGGCAGCAGTCAG
4674

Query: 922 TATTCTGTACTGGAACTCTAATGAATCAATGGCTAGAATAACACAGATCTAAAAGCTGA 865

Sbjct: 4675 TATTCTGTACTGGAACTCTAATGAATCAATGGCTAGAATAACACAGATCTAAAAGCTAA 4732

Fig. 5g continued

Fig. 6

SUBSTITUTE SHEET (RULE 26)

31/48

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

33/48

Fig. 12

34/48

Fig. 13

SUBSTITUTE SHEET (RULE 26)

35/48

Fig. 14

SUBSTITUTE SHEET (RULE 26)

36/48

With Apaf-1 specific riboprobe

Fig. 15a

Fig. 15b

37/48

Fig. 16

38/48

Fig. 17a

AChR- ϵ

Fig. 17b

Mink

Fig. 18

40/48

Fig. 19a

Fig. 19b

Fig. 20

SUBSTITUTE SHEET (RULE 26)

Fig. 21b

Fig. 21c

42/48

Fig. 22a

Fig. 22b

43/48

Fig. 22c

Fig. 22d

44/48

Fig. 22f

45/48

Fig. 22g

Fig. 22h

46/48

Fig. 22i

Fig. 22j

47/48

Probe	Probe pass	Anti sense	Actu al	Virtu al	Y79	ES-2	HEK -293	K-562	HT-29	SK-N DZ	MG-63	SNUI	NJ564	HeLa	MCF10											
Aldin lUM	+	CTRL	472	442	0.56	0.71	0.89	0.89	0.62	0.95	0.71	0.73	0.41	0.47	0.66	0.62	0.78	0.8	1.01	1.12	2.24	2.6	0.91	1.09	0.92	
GAPDH	+	CTRL	1847	1710	0.97	0.96	0.82	0.78	0.53	0.51	0.97	0.86	0.47	0.52	0.87	0.73	1.03	0.8	1.88	1.65	1.28	0.87	1.38	1.33	0.84	
300um	+	CTRL	2245	2282	1.43	1.42	0.85	0.78	1.16	1.06	1.26	1.02	0.82	0.88	1.1	0.95	1.95	1.28	0.88	0.75	0.91	0.54	1.37	1.25	1.14	
HMM	+	CTRL	378	426	1.82	1.49	0.65	0.54	0.94	0.91	1.32	0.82	1.03	0.66	1.61	1.57	2.34	2.37	0.8	0.65	1.06	0.55	1.15	0.9	0.79	
RBA123	+	VER.	95	103	1.04	1.27	0.78	0.84	-1	1.51	1	-1	1	1.16	1	1.78	1	1	1	0.74	1.01	0.79	1	1.49	1	0.58
Known 9AC	+	VER.	852	959	2	1.84	0.81	0.69	1.07	1.26	1.56	1.14	1.11	0.85	1.55	1.27	1.14	0.83	0.76	0.63	0.89	0.49	1.28	1.25	0.77	
260AC	+	VER.	154	197	1.34	1.95	0.35	1	0.9	1.79	0.84	1	0.71	1.42	0.87	1.35	0.47	1	0.59	1.3	0.78	1	1.14	1	1.31	
260C	-		33	48	1	1	0.93	1	-1	1.8	-1	-1	1	1	-1	-1	1	1	1	1	1	1	1	1	1	
261AC	+	VER.	344	357	-1	1	0.65	0.53	1.34	1.22	1.76	1.09	1	0.69	1.65	1	1.04	0.71	0.86	0.64	1.32	0.39	2.09	1.01	1	
72C	-	IND	63	69	1.28	1.15	0.46	0.78	1	-1	1	1	2.32	1.14	1.78	-1	-1	1	1	1	1	1	1	1	0.6	

Fig. 23

48/48

	Lung	Testis	Placenta	DU 145	T24	G-361	Jurkat	HepG2	MCF7	PANC-1	H1299	Brain
68b	70	74	71	75	72b	76	82	83	51	80	60	88
0.98	1.34	1.37	0.45	0.55	1.51	1	1.19	1.1	1.52	0.94	1.41	1.36
0.82	0.37	0.31	0.36	0.28	0.55	0.44	0.93	0.69	0.96	0.57	1.4	1.19
1.04	1.44	0.9	1.16	0.71	1.19	0.9	1.12	0.82	0.97	0.55	0.95	0.71
0.78	1.74	1.22	1.87	1.34	1.42	1.13	1.17	0.95	0.77	0.35	1.42	1
1.61	1.59	1	0.89	1	1	1	1	0.57	1	1	1	0.85
0.84	2.11	1.27	1.54	1.16	1.04	0.67	1.05	0.9	0.86	0.52	1.38	0.79
3.64	1.01	2.58	1.43	3.45	1.52	3.07	1.02	1	0.56	0.72	0.84	0.5
1	1	1	1	1	1	2.46	1	-1	1	1	1	1
1.05	1	1	1	-1	1	1	1.02	1	1	0.99	1	1

Fig. 23 (Cont.)

1
SEQUENCE LISTING

<110> Levanon Erez, et al.

<120> METHODS AND SYSTEMS FOR IDENTIFYING NATURALLY OCCURRING ANTISENSE TRANSCRIPTS AND METHODS AND KITS UTILIZING SAME

<130> 02/25320

<150> US 09/718,407

<151> 2000-11-24

<150> US 09/732,938

<151> 2000-12-11

<150> US 09/785,439

<151> 2001-02-20

<150> US 09/907,923

<151> 2001-07-18

<150> US 009/993,398

<151> 2001-11-06

<150> US 10/201,605

<151> 2002-7-24

<160> 44

<170> PatentIn version 3.1

<210> 1

<211> 190

<212> DNA

<213> Homo sapiens

<400> 1
ggacccagga tatgagcgga aaacacttgc tctacttaga tacaactttt tcctgtgcgc 60
atgcctgtaa tcccagctac tcaggaggct gaggcaggag aatcccttga acccaggagg 120

cagagggtgc ggtgagccaa gatctcacca ttgcactcca gcctggcaa taagaacaaa 180
 actccgtctc 190

<210> 2

<211> 783

<212> DNA

<213> Homo sapiens

<400> 2
 gaaaaagtgc tatctaagta gagaaaagtgt tttccgctca tattcctgggt ccacatcgaa 60
 gaattcagtc cttgtggatg aactgtaaac agcacccttc ctcttaagatg ccgaagatca 120
 tagtttgggg ttttttctt tcaggcggtg gaagcagggc agagccgaag cagcccgctc 180
 ctcaagagggc cggtgcggac ccaggcggtg ctggaccagt cagatgtgtta cacccatgtc 240
 ctgtcagcct tcgtggaaaa gaaggtgggc cgccagtttc cgcccttttctt ggactgagaa 300
 tgctcaaaac aaggaagtgc ctgaaaacga ggagacttca tgtgattaga gtcacttgaa 360
 gtgatttagaa tcactggagt ttccttgggt gaggccctag agctggtagt ttggcttcta 420
 atgctgaggc ctaaagcata attgttgcacg ggtgggtctg gagcgatttg tgcaaaacca 480
 gtgaaagatg aacactgggc cattttttaaga tggaaacaag gtgggggttg gatagagagt 540
 tatatgcagc ctcttttgc ca cctcggttgc atttgtaaga ccacatcccccccttcc 600
 gagatgcctc ataaattttgt gatagccgtg ctgtatggaaat acattcggttc tcttaaccagg 660
 tttcagatttgc cagtagact atgttaacttgc gtaagacagg gagaaatattt aatccgttag 720
 tggctcccaag taagaccatg gccaaataca tcctgaagta gaatatctgg aaaattttag 780
 att 783

<210> 3

<211> 1649

<212> DNA

<213> Homo sapiens

<400> 3
 gaaaaagtgc tatctaagta gagaaaagtgt tttccgctca tattcctgggt ccacatcgaa 60
 gaattcagtc cttgtggatg aactgtaaac agcacccttc ctcttaagatg ccgaagatca 120
 tagtttgggg ttttttctt tcaggcggtg gaagcagggc agagccgaag cagcccgctc 180
 ctcaagagggc cggtgcggac ccaggcggtg ctggaccagt cagatgtgtta cacccatgtc 240
 ctgtcagcct tcgtggaaaa gaaggtgggc cgccagtttc cgcccttttctt ggactgagaa 300
 tgctcaaaac aaggaagtgc ctgaaaacga ggagacttca tgtgattaga gtcacttgaa 360
 gtgatttagaa tcactggagt ttccttgggt gaggccctag agctggtagt ttggcttcta 420

3

atgtctgaggc ctaaagcata attgttgacg ggtggctctg gagcgatttg tgcaaaaacca 480
gtgaaagatg aacactggc cattttaga tggaaacaag gtgggggtt gatagagagt 540
tatatgcagc ctctttgca ctcgttggt attttaaga ccacatttt ttctccctag 600
gagatgcctc ataaatttgt gatagccgtg ctgatggaat acattcgcc tcttaaccag 660
tttcagattt cagtagccat tccaaattcat ctggggccaa gttaaaaacag aaggaattta 720
aaaaaaaaaac acagtcactg tcttagaaga tgactcata gctaagacag gtctgcctcc 780
ctgactcaga atgctgagtg actcctgaca ttattagttt gaatggaaag tgtaaggc 840
agttgggtc ttacactgca tgacgaaacc acttcttgcata atgacagact ttactgtt 900
tggttagaat agccagtcct tggggagcct ctagtctgtt gtagctgaat gatttggaaag 960
tgttcttca cttttactt ttgtcctcag cattacctac atgaacttgt tatcaaaacc 1020
cttgtccagc acaacctctt ttatatgctg catcagttcc tgcagttcca cgtcctcagc 1080
gactccaaac ctttggcttg tctgctgtt tccctagaga gtttctatcc tcctgctcat 1140
cagctatctc tggacatgct gaaggtaact ctgatgtgtg aggtttttaga ctatggaaac 1200
taactctgtt cctgttgttt gcactgacct ggacttctct cccttactgc tagcgacttt 1260
caacagcaaa ttagtggaaata gtagaaagtcc tccttccaa acaccaagtg tttagtgc 1320
taaggtttat ccggggcatt ggtggccatg acaacatttc tgcacgaaaa ttttttagatg 1380
ctgcaaagca gactgaagac aacatgctt tctatacaat attccgcttt tttgaacagc 1440
gaaaccagcg tttgcgaggg agccccaaatt tcacaccagg ggaacactgt gaagaacatg 1500
ttgctttttt caaacagatt tttggagacc aagctctaattt gaggcctaca acattctgaa 1560
atcacttgcgt gtttttttat ataaaaatgt gtacaaagtt aatttattgc attaataaaag 1620
ctctttaaac tataaaaatgt taaaaatgt 1649

<210> 4

<211> 1861

<212> DNA

<213> Homo sapiens

<400> 4

gaattcagtc cttgtggatg aactgtaaac agcaccccttc ctctaagatg ccgaagatca 120
tagtttgcgg ttttttctt tcaggcggtg gaagcaggc agagccgaag cagcccgtc 180
ctcaagaggc cggtgcggac ccaggcggtg ctggaccagt cagatgtgtta cacccatgtc 240
ctgtcagcct tcgtggaaaaa gaagggtggc cgcagctttc cgcctttctt ggactgagaa 300
tgctcaaaac aaggaagttt ctgaaaacga ggagacttca tgtgattaga gtcacttgaa 360
gtgattagaa tcactggagt ttcccttgggt gaggccctag agctggtagt ttggcttcta 420
atgctgaggc ctaaaagcata attgttgacg ggtggttctg gagcgatttg tgcaaaacca 480
gtgaaagatg aacactgggc cattttaaga tggaaacaag gtgggggttg gatagagagt 540

tatatgcagc ctctttgca cctcggttggt atttgttgaaga ccacatTTTT ttctccctag 600
 gagatgcctc ataaatttgt gatagccgtg ctgtatggaa acattcggtc tcttaaccag 660
 tttcagattt cagtacagcc ttcaaattcat ctggggccaa gttaaaaacag aaggaaattt 720
 aaaaaaaaaac acagtcaactg tcttagaaga tgactcatat gctaagacag gtctgcctcc 780
 ctgactcaga atgctgagtg actcctgaca ttatttagttt gaatggaaag tgtaaggc 840
 agttggggtc ttacactgca tgacgaaacc acttcttgcata atgacagact ttactgtgt 900
 tggtttagaat agccagtcct tggggagcct ctagtctgtt gttagctgaat gatttggaaag 960
 tggttttca cttttactt ttgtccteag cattacctac atgaacttgt tatcaaaaacc 1020
 ctgtccagc acaacctttt ttatatgctg catcagttcc tgcagttacca cgtcctcagc 1080
 gactccaaac ctttggctt tctgtgtt tcccttagaga gtttctatcc tcctgctcat 1140
 cagctatctc tggacatgct gaaggtaact ctgatgtgtg aggttttaga ctatggaaac 1200
 taactctgtt cctgttgttt gcactgacct ggacttctct cccttactgc tagcgacttt 1260
 caacagcaaa ttagtggaaata gtagaagttc tcctttccaa acaccaagtg ttagctgcct 1320
 taaggtttat ccggggcatt ggtggccatg acaacatttc tgcacgaaaa tttagatg 1380
 ctgcaagca gactgaagac aacatgttt tctatacaat attccgcttt tttgaacagc 1440
 gaaaccagcg tttgcgaggg agccccaaatt tcacaccagg tgagaatgca atgaaaagac 1500
 ttggggtaac catagcctca aagagtagca gagggcaactg gcagctggtg ggcgaggacc 1560
 ctgggttagc atttttgtaa acaacacaat ttgataacag cccaccttagc ctttggccca 1620
 ttatttttag tagagtgaat tcagtatact gacagaatct ggattatgct ctggaactca 1680
 ccgaggaggt gtgttttgag tcaagacaca ttttaggaccc agatcaggca cagcccatct 1740
 cttatagcag atcttggaaat atctcttaaa gccaggaata agacggcaaa tggtggtcaa 1800
 gggttttaaa gggctgggg cttattaagg tttcagtttt atgaagtata cattgggttga 1860
 t 1861

<210> 5

<211> 214

<212> DNA

<213> Homo sapiens

<400> 5
 gtaagggAAC tttggcgact tagtgcgatc actgggagaa ttgttagagtc cactggagag 60
 aaagaaaaat ggtcaaaaag agccccagaga gttcctgggg gaaaacacac cgcagcccag 120
 accttattcat aactgcacag ctggtaacttc cagaggcaca tgcaccaggc gcacgtggtt 180
 ctctttgctg acaagattt taaaaagaaa agag 214

<210> 6

<211> 1934

<212> DNA

<213> Homo sapiens

<400>	6	
aagtcaacga aaggttccgt tgccttgc acgttattcc atcacgtaaa ctttgtggag	60	
atagattatt ttggctacg ttactgtgac agaaggccatc agacgtattt gctggatcct	120	
gcaaaaaaccc ttgctgaaca caaagaactg atcaacactg gacctccata tactttgtat	180	
tttggtatta aattctatgc tgaagatcca tgtaaactta aagaagaaat aaccagatat	240	
cagttttct tgcagggtgaa gcaagatgtc ctgcagggcc gtctgccttg tccccgtcaac	300	
actgctgttc agctgggagc gtatgccatc cagtcggagc ttggagatata tgacccatata	360	
aaacatactg caggatatgt atctgagttac cggttggttc ctgatcagaa ggaagaactt	420	
gaagaagcca tagaaaggat tcataaaaact ctaatgggtc agattcccttc tgaggctgag	480	
ctgaattact tgaggactgc caaatccctg gagatgtatg gcgttgaccc ctatcccgtc	540	
tatggagaaa acaagtctga gtatttctta ggattaactc cggttggtgt tggtgttac	600	
aagaataaaa agcaagtggg gaagtatttc tggcctcgga ttacaaaggt tcacttcaag	660	
gagactcaat ttgaacttagt agtactggga aaagattgtt acgaaacccctc attcttttt	720	
gaagctcgga gtaaaaactgc ttgcaagcac ctctggaaatgc gtgtgtggaa acatcatata	780	
tttttttagaa tgccagaaaaa tgaatccat tcactgtcaa gaaaactcag caagtttggaa	840	
tccatacggtt ataagcaccc ctacagtggc aggacagctt tgcaaatgag ccgagatctt	900	
tctattcagc ttccccggcc tgatcagaat gtgacaagaa gtcgaagcaa gacttaccct	960	
aagcgaatag cacaaacaca gccagctgaa tcaaaccatc tcagtaggat aactgcaaac	1020	
atggaaaatg gagaaaatga aggaacaatt aaaattattt cacccatcacc agtaaaaagc	1080	
tttaagaaaag caaagaatga aaatagccct gataccaaa gaagcaaatc tcatgcaccg	1140	
tgggaagaaa atggccccc gagtggactc tacaattctc ccagtgtatcg cactaagtgc	1200	
ccaaagtcc cttacacgcg tcgcccggaaac ccctcctgtg gaagtgcacaa tgattctgt	1260	
cagcctgtga ggaggaggaa agcccataac agtggtaag attcagatct taagcaaagg	1320	
aggaggtcac gttcacgcgt taacaccagc agtggtagtgc aatcagaaaa ttctaata	1380	
gaacaccgga aaaagagaaa cagaatacgg caggagaatg atatggttga ttcagcgcct	1440	
cagtggaaag ctgttataag gagacaaaag gaaaaaaaaacc aagccgaccc caacagcagg	1500	
cgatccagac acagatctcg ttgcagaagc cccgataatcc aagcaaaaaga agagttatgg	1560	
aagcacatcc aaaaagaact tgtggatcca tccggattgt ccgaagaaca attaaaagag	1620	
attccatata ctaaaataga gtgagtgct ttcaaatct tctcacccaaa gctttattag	1680	
tgcttgcgtgag taatccattc taattctca attgtgttcc agacagtgc ttaatttgc	1740	
tttacattt aacccaaaact aggtgacagt agcggaaagag gaagaaaagt gtgcattaaa	1800	
gctacttatt ctacactata atcactatca tctcttattt gccaccttgc tgcgttgg	1860	
aggtaacaagg gggctttcc tgattatgt cagttttaaa ataaattctt ttctgagatt	1920	

ctcaactgaaa aaat	1934
<210> 7	
<211> 2353	
<212> DNA	
<213> Homo sapiens	
<400> 7	
aagtcaacga aaggttccgt tgccttgac cacgtattcc atcacgtaaa ccttggag	60
atagattatt ttgggctacg ttactgtgac agaagccatc agacgtattg gctggatcct	120
gcaaaaaccc ttgctgaaca caaagaactg atcaacactg gacctccata tacttttat	180
tttggtatta aattctatgc tgaagatcca tgtaaactta aagaagaaat aaccagatat	240
cagttttct tgcaggtgaa gcaagatgtc cttcagggcc gtctgcccctg tcccgtaac	300
actgctgctc agctgggagc gtatgccatc cagtcggagc ttggagattha tgaccatata	360
aaacatactg caggatatagt atctgagtagc cggtttgttc ctgatcagaa ggaagaactt	420
gaagaagcca tagaaaggat tcataaaact ctaatgggtc agattccctc tgaggctgag	480
ctgaattact tgaggactgc caaatccctg gagatgtatg gcgttgcacct ccattccgtc	540
tatggagaaa acaagtctga gtatttctta ggattaactc cggttgggtgt tgttgttac	600
aagaataaaa agcaagtggg gaagtatttc tggcctcgga ttacaaaggt tcacttcaag	660
gagactcaat ttgaactcag agtactggga aaagattgtt acgaaacccctt attcttttt	720
gaagctcgga gtaaaaactgc ttgcaagcac ctctggaaat gcagtgtgga acatcatata	780
tttttttagaa tgccagaaaaa tgaatccaat tcactgtcaa gaaaactcag caagtttggaa	840
tccatacgtt ataaggcaccc ctacagtggc aggacagctt tgcaaatgag ccgagatctt	900
tctattcagc ttccccggcc tgatcagaat gtgacaagaa gtcgaagcaa gacttaccct	960
aagcgaatag cacaacacaca gccagctgaa tcaaaccacca tcagtaggat aactgcaaac	1020
atggaaaatg gaaaaatga aggaacaatt aaaattattt cacccatcacc agtaaaaagc	1080
tttaagaaa caaagaatga aaatagccct gataccaaa gaagcaaatc tcatgcacccg	1140
tgggaagaaa atggccccc gactggactc tacaattctc ccagtgtatcg cactaagtgc	1200
ccaaagtccctt cttacacgcg tcgcccggaaac ccctccgtg gaagtgcacaa tgattctgtt	1260
cagccgtgttggaa agcccataac agtgggtgaag attcagatct taagcaaagg	1320
aggaggtcac gttcacgctg taacaccagc agtggtagtg aatcagaaaa ttctaataaga	1380
gaacaccgga aaaagagaaa cagaatacgg caggagaatg atatgggttga ttcatcgccct	1440
cagtggaaatg ctgtatataag gagacaaaag gaaaaaaacc aagccgaccc caacagcagg	1500
cgatccagac acagatctcg ttccgagaagc cccgatatcc aagcaaaaga agagttatgg	1560
aagcacattc aaaaagaact tgtggatcca tccggattgtt ccgaagaaca attaaaaagag	1620
attccatataca ctaaaataga gacacaaggt gacccaaatcc gcatcaggca ttctcattcg	1680

7

ccacgaagtt accgccagta tcgcaggccc cagtgttcag atggggagcg atcagttctc	1740
tcgaaagtga attcaaaaac agatcttgc ccaccacttc cggtgaccca ttcttcggat	1800
gctcagggtt ctggggatgc tacagttcat cagagaagaa atgggtctaa agatagcctg	1860
atggaagaaa aacctcagac atctacaac aacctggctg gaaaacacac agaaaaaca	1920
ataaaaacta tacaagcttc ccgcctcaag acagagactt gatcctgatg aagggtcaag	1980
ggtaggggtg ggaagggtgt gtgcgccact ggtactttt aaactgtgaa ataggatct	2040
taattcaaatt ctcagacccg caagtatttc ttcatgcata gaaaatacat tatctttgc	2100
ttctttttt ttttttttg agatgttatac actctgtcgc ccaggctgga gtgcagcggc	2160
accgtgtcag ctcaccgcag cctccactta ctgggttaag cgattctcct gtctcaggct	2220
accgagcagc tgggattaca ggcgtgcacc acaacacccg gctaattctt tttgtatTTT	2280
tagtagagac agggcttgc catgttggag gctggtctcg aactcctgac ctcaagtgtat	2340
ccgcctgcct cag	2353

<210> 8

<211> 2500

<212> DNA

<213> Homo sapiens

<400> 8	
gacatgggct gtttctgcgc tgttccggaa gaattttact gcgaagttt gtcctggat	60
gaatccaaat taacccttac cacccagcag cagggcatca agaagtcaac gaaagggtcc	120
gttgtccctt accacgtatt ccatcacgtt aaccttgtgg agatagatta ttttggctta	180
cgttactgtg acagaagcca tcagacgtat tggctggatc ctgcaaaaac cttgctgaa	240
cacaaagaac tgatcaacac tggacctcca tatactttt attttggtat taaattctat	300
gctgaagatc catgtaaact taaagaagaa ataaccagat atcagttttt cttgcaggat	360
aagcaagatg tccttcaggg ccgtctgccc tgcgggtca acactgctgc tcagctggaa	420
gcgtatgcca tccagtcgga gcttggagat tatgaccat ataaacatac tgcaggat	480
gtatctgagt accggtttgc tcctgatcag aaggaagaac ttgaagaagc catagaaagg	540
attcataaaaa ctctaattggg tcagattctt tctgaggctg agctgaatta cttgaggact	600
gccaaatccc tggagatgta tggcggttgc ctccatcccc tctatggaga aaacaagtct	660
gagtatttct taggatatac tccgggtgtt gttgtgtgtt acaagaataa aaagcaagt	720
gggaagtatt tctggcctcg gattacaaag gttcaattca aggagactca atttgaactc	780
agagtactgg gaaaagattt gtaacgaaacc tcattttttt ttgaagctcg gagtaaaaact	840
gcttgcaagc acctctggaa gtgcagtgtg gaacatcata catttttttag aatgccagaa	900
aatgaatcca attcactgtc aagaaaaactc agcaagttt gatccatacg ttataagcac	960
cgctacagtgc gaggacgc ttgcggaaatg agccgagatc ttcttattca gcttccccgg	1020
cctgatcaga atgtgacaag aagtcgaagc aagacttacc ctaagcgaat agcacaaaca	1080

cagccagctg aatcaaacac catcagttagg ataactgcaa acatggaaaa tggagaaaaat	1140
gaaggaacaa ttaaaattat tgcaccttca ccagtaaaaa gctttaagaa agcaaagaat	1200
gaaaatagcc ctgataccca aagaagcaaa tctcatgcac cgtggagaaga aaatggcccc	1260
cagagtggac tctacaattc tcccagtgtat cgcactaagt cgccaaagtt cccttacacg	1320
cgtcgcccggaa accccctcctg tggaaagtgtac aatgattctg tacagcctgt gaggaggagg	1380
aaagccccata acagtgggtga agattcagat cttaagcaaa ggaggagggtc acgttcacgc	1440
tgttaacacca gcagtggtag tgaatcagaa aattctata gagaacaccg gaaaaagaga	1500
aacagaatac ggcaggagaa tgatatggtt gattcagcgc ctcagtggga agctgtatta	1560
aggagacaaa aggaaaaaaaa ccaagccgac cccaacagca ggcgatccag acacagatct	1620
cgttcgagaa gccccgatat ccaagcaaaa gaagagttat ggaagcacat tcaaaaagaa	1680
cttgtggatc catccggatt gtccgaagaa caattaaaag agattccata cactaaaata	1740
gagtggatgc ctttcagaat cttctcacca aagctttatt agtgcttgac acaagggtgac	1800
ccaatccgca tcaggcattc tcattcgcca cgaagttacc gccagtatcg caggtcccg	1860
tgttcagatg gggagcgate agttctctcg gaagtgaatt caaaaacaga tcttgtacca	1920
ccacttccgg tgaccattc ttccggatgc cagggttctg gggatgctac agttcatcag	1980
agaagaaaatg ggtctaaaga tagcctgatg gaagaaaaac ctcagacatc tacaaacaac	2040
ctggctggaa aacacacagc aaaaacaata aaaactatac aagcttcccg cctcaagaca	2100
gagacttgat cctgatgaag ggtcaagggt aggggtggga aggttgtgtg cgccactgg	2160
acttttgaaa ctgtgaaata ggtatcttaa ttcaaattctc agacctgcaa gtatttcttc	2220
agcatgagaa aatacattat cttttcttc tttttttttt ttttttgaga ttttatcact	2280
ctgtcgccca ggctggagtg cagcggcacc gtgtcagctc accgcagcct ccacttactg	2340
gtttaagcga ttctccgttc tcaggctacc gagcagctgg gattacaggc gtgcaccaca	2400
acacccggct aattttttt gtattttag tagagacagg gctttgccat gttggaggct	2460
ggtctcgAAC tcctgacctc aagtgtatccg cctgcctcag	2500

<210> 9

<211> 947

<212> DNA

<213> Homo sapiens

<400> 9 gaaagatgat actaggtcag gaaatagcat ttgaaagtca ttctcatctg gagggatgaa	60
gccaagataa ggcggAACCA gggAAAAGCT ttaAGAAAGC AAAGAATGAA AATAGCCCTG	120
atACCCAAAG AAGCAAATCT CATGCACCGT GGGAAGAAAA TGGCCCCAG AGTGGACTCT	180
ACAATTCTCC CAGTGATCGC ACTAAGTCGC CAAAGTTCCC TTACACGCGT CGCCGAAACC	240
CCTCCGTGG AAGTGACAAAT GATTCTGTAC AGCCTGTGAG GAGGAGGAAA GCCCATTAAAC	300

9

agtggtaag tttcagatct taaggcaaag ggagggaggt cacgttcacg ctgtaacacc	360
agcagtggta gtgaatcaga aaattcta at agagaacacc gaaaaaaagag aaacagaata	420
cggcaggaga atgatatggt tgattcagcg cctcagtggg aagctgtatt aaggagacaa	480
aaggaaaaaa accaagccga ccccaacagc aggcatcca gacacagatc tcgttcgaga	540
agccccata tccaagcaaa agaagagtta tggaaagcaca ttcaaaaaga acttgtggat	600
ccatccggat tgtccgaaga acaattaaaa gagattccat acactaaaat agagtggat	660
ccttcagaa tcttctcacc aaagctttat tagtgctgt gagtaatcca ttctaattct	720
tcaattgtgt tccagacagt gctttaattt gtcttacat tttaacccaa acttaggtgc	780
atagcgaaa gaggaagaaa agtgtgcatt aaagctactt attctacact ataatcacta	840
tcatctctta ttagccacct ctgttactt ggttagtaca agggggcttt tcctgattaa	900
tgtcagttt aaaataaatt ctttctgag attctcactg aaaaaat	947

<210> 10

<211> 1366

<212> DNA

<213> Homo sapiens

<400> 10 gaaagatgt actaggtcag gaaatagcat ttgaaagtca ttctcatctg gagggatgaa	60
gccaagataa ggcggAACCA gggaaaagct ttaagaaagc aaagaatgaa aatagccctg	120
ataccCAAAG aagcaaatct catgcaccgt gggaaaaaa tggcccccaag agtggactct	180
acaattctcc cagtgatcgc actaagtccgc caaagttccc ttacacgcgt cgccgaaacc	240
cctcctgtgg aagtgacaat gattctgtac agcctgtgag gaggaggaaa gcccattaac	300
agtggtaag tttcagatct taaggcaaag ggagggaggt cacgttcacg ctgtaacacc	360
agcagtggta gtgaatcaga aaattcta at agagaacacc gaaaaaaagag aaacagaata	420
cggcaggaga atgatatggt tgattcagcg cctcagtggg aagctgtatt aaggagacaa	480
aaggaaaaaa accaagccga ccccaacagc aggcatcca gacacagatc tcgttcgaga	540
agccccata tccaagcaaa agaagagtta tggaaagcaca ttcaaaaaga acttgtggat	600
ccatccggat tgtccgaaga acaattaaaa gagattccat acactaaaat agagacacaa	660
ggtgacccaa tccgcatcg gcattctcat tcgccccgaa gttaccgcgc gtagcgcagg	720
tcccagtgtt cagatggggc gcgatcagtt ctctcggaa tgaattcaaa aacagatctt	780
gtaccaccac ttccgggtgac ccattctcg gatgctcagg gttctgggg tgctacagtt	840
catcagagaa gaaatgggtc taaaatagtc ctgatggaa aaaaacctca gacatctaca	900
aacaacctgg ctggaaaaca cacagcaaaa acaataaaaa ctatacaagc ttcccgcc	960
aagacagaga cttgatcctg atgaagggtc aagggttaggg gtggaaagggt tgggtgcgc	1020
actggtaactt ttgaaactgt gaaataggtta tcttaattca aatctcagac ctgcaagat	1080
ttcttcagca tgagaaaata cattatcttt tgcttctttt tttttttttt ttgagatgtt	1140

10

atcactctgt cggccaggct ggagtgcagc ggcaccgtgt cagtcacccg cagcctccac	1200
ttactgggtt aagcgattct cctgtctcaag gctaccgagc agctgggatt acaggcggtc	1260
accacaacac ccggctaatt ctttttgtat ttttagtaga gacagggctt tgccatgttg	1320
gaggctggtc tcgaactcct gacctaagt gatccgcctg cctcaag	1366

<210> 11

<211> 422

<212> DNA

<213> Homo sapiens

<400> 11 aatcttcata atccccatgt gtcaaaggag agaccagggtg gaggttaactg aatcatgggg	60
gtggtttccc caggctgttt ttgtgatagt gagtgagttc tcatgagatc tgatggttt	120
ataaggggct cttccctcct ttgcttgtga agaagggtgcc ttttttcccc tttgccttct	180
gccatgattt taagtttccct gaggcctccc cagccaagct gaactgtgag tcaattaaac	240
ctcttttctt cgtaaattac ccagtcttga gcagttctt acagcagtgt gaaaacagag	300
gaatacaccc atacatgcta ttctctgccc agaaggccagg gggagcctgc cattaaaatg	360
aaagtcaactc cttgactcaag aaccctcaaa tagcttcat ctcacccaga aaaaaaaagaa	420
aa	422

<210> 12

<211> 1532

<212> DNA

<213> Homo sapiens

<400> 12 aggtttctgc acaggaatat cgagagcgac atgaacccga gctatagaga aaggagatga	60
ggcgtgagcc accgcaccccg gctgacaagt gtccttctaa gaaacacaca gaggagaaga	120
cacagaagag gagagcacca tgtgtatggta gacacagaaa ttggagttct acagccacaa	180
gccaaggaac tcctggagcc accaggagat ggaagatgca aagaactgat ttctctcag	240
agcctctgga gggagtgtgg ccctgggtgac accttgattt tggacttctg gcctacagaa	300
ccatgcacac aggaggactt cattttccag gtctccctgc agtgaagttg aggccatgtg	360
actggtcttgc ggccaatggaa atgggtgcag aaggacaca gcccatttct agactcagcc	420
tgaaatgtcc tccataatcc ttactcttgc tcccttcaact cactggctgc aggaagctga	480
gaattatcc tggacttaca taaagcattt tggactttat gtaagtaaca acctgttgc	540
ttaagctact aagatttac ggttgggtt taaatcagct aaccttaaac atcctaaca	600
ctacaaatag aataacctgtt actgcataca taaaaataca aaaattagct ggatgtggtc	660

11

ccacacctgtag	tcccagctac	tcggggaggct	gaggcaggag	aattgcttga	acctgggagg	720
cggagggttgt	ggtgagctga	gatgcacca	ctgcactgca	gcctggcaa	cagagcagga	780
ctctatctca	aaaaaaaaac	acaataaaaca	tttcttacct	actgttagttt	ttgtgggtca	840
ggaatctggg	agcagcttag	ttggatgatt	tctgctcaca	gtgttttatg	aggttgcagt	900
caagatgtt	gctggggctg	tagtcatctg	gagatttaac	tacggctgga	ggatccactt	960
caccatggtt	cactcacctg	gtgctggttg	ctggcaggaa	atttcagctc	ttcttctata	1020
tggatctctt	cacagattgc	ttgagtggtcc	tcaccgtatg	gtgactggct	tcctttacag	1080
aaatcagttt	aagggaatgg	gcaagtaaga	aacagcaatg	ctttttatga	cctagtcctg	1140
aagttccccca	ccattactta	tgttcattgg	aagccagttg	ctaaggagag	cctgcactca	1200
aagattgggg	aaatagactt	tatctttcaa	agtgttgaag	aatttgcaga	cgtattttaa	1260
aaccaccaca	caatccatca	acacatcatg	tcggctctat	tcttgaataa	gatccagaat	1320
ttgaccactt	ttcaccatct	ccattgctat	tacccagatc	taatcaacac	catcaactgc	1380
ctggactaga	gatttcctcc	tcactggct	ctctgcttct	atctttagcc	cattgctatg	1440
atttggctgt	gtccccaccc	aaaatctcat	cttgaattat	aatcttcata	atccccatgt	1500
gtcaaaggag	agaccaggtg	gaggtaactg	aa			1532

<210> 13

<211> 1753

<212> DNA

<213> Homo sapiens

<400> 13						
tttcttaggg	ttttttttt	agttggagcc	tcgctctgtc	ccccaggctg	gagtgcagtg	60
atgtgatctc	ggctcaactgc	aacctctgcc	tcccagggttc	aagtgttct	cctgcctcag	120
cctccctagt	agctgcact	acaggcatgt	gccaccatgc	ctggctaaacg	ttttgtattt	180
ttgagtagag	acagggtttc	accatgttgg	ccaggctatt	ctcgaaactcc	tgacctcaag	240
tgatccacct	gcctcggtt	cccaaagttt	ctgggattac	aggcgtgagc	caccgcaccc	300
ggctgacaag	tgtccttcta	agaaacacac	agaggagaag	acacagaaga	ggagagcacc	360
atgtgatggt	agacacagaa	attggagttc	tacagccaca	agccaaggaa	ctcctggagc	420
caccaggaga	tggaagatgc	aaagaactga	ttttctctca	gagcctctgg	agggagtgtg	480
gccctggta	cacccgtt	ttggacttct	ggcctacaga	accatgcaca	caggaggact	540
tcatttccca	ggtctcctt	cagtgaagtt	gaggccatgt	gactggctt	gggccaatgg	600
aatgggtgca	gaagggacac	agcccatatc	tagactcagc	ctgaaatgtc	ctccataatc	660
cttactctt	ctcccttcac	tcactggctg	caggaagctg	agaattatcc	ttggacttac	720
ataaaagcatt	ttggacttta	tgtaagtaac	aacctgttgt	attaagctac	taagattttt	780
cggttgttt	ttaaatcagc	taaccttaaa	cattcctaaca	actacaaata	gaataccgt	840
tactgcatac	ataaaaatac	aaaaattagc	tggatgttgt	cccacctgta	gtcccgacta	900

12

ctcgggaggc tgagggcagga gaattgcttg aacctggag gcgagggttg tggtagctg	960
agatcgccacc actgcactgc agcctggca acagagcagg actctatctc aaaaaaaaaaa	1020
cacaataaac atttcttacc tactgttagtt tttgtggtc aggaatctgg gagcagctta	1080
gttggatgtat ttctgctcac agtgtttat gaggttgcag tcaagatgtt ggctgggct	1140
gtagtcatct ggagatttaa ctacggctgg aggatccact tcaccatggt tcactcacct	1200
ggtgctgggt gctggcagga aatttcagct cttctttat atggatctct tcacagattt	1260
cttgagtgtc ctcaccgtat ggtgactggc ttcccttaca gaaatcagtt gaaggaaatg	1320
ggcaagtaag aaacagcaat gcttttatg acctagtcct gaagttcccc accattactt	1380
atgttcatttgaagccagtt gctaaggaga gcctgcactc aaagattggg gaaatagact	1440
ttatctttca aagtgttcaa gaatttgcag acgtattttaa aaccaccac acaatccatc	1500
aacacatcat gtcggctcta ttcttgaat agatccagaa tttgaccact tttcaccatc	1560
tccatttgcta ttacccagat ctaatcaaca ccatcaacttgc cctggacttag agatttcctc	1620
ctcaactgggc tctctgcttc tatcttttagc ccattgtat gatttggctg tgtccccacc	1680
caaatctca tcttgaatta taatcttcat aatccccatg tgtcaaagga gagaccaggt	1740
ggaggttaact gaa	1753

<210> 14

<211> 1832

<212> DNA

<213> Homo sapiens

<400> 14	
gggttttgcg ggtataatta cattcaggat ctcaggatac tgcattatct gtgtgacccc	60
taaatctgtat gacaagtgtc tgttttttgt ttttgtttt gagacagagc ctgcgtctgt	120
caccaggct ggagtgttgt ggtgtgtatct cggctcaactg caacctccgc ctcccagggtt	180
caagcaattc tctgcctcag cctcccgagt aaatgtgatt acaggcaggc gcctgccagc	240
acacccagct gattttagta ttttagtag agatgggtt tcaccatctt ggccaggctg	300
gtcttgaatt cctgacctcg tgatccaccc acttcagctt cccaaagtcc tgggattaca	360
ggcgtgagcc accgcacccg gctgacaagt gtccttctaa gaaacacacaca gaggagaaga	420
cacagaagag gagagcacca tgtgtatggta gacacagaaa ttggagttct acagccacaa	480
gccaaggaac tcctggagcc accaggagat ggaagatgca aagaactgtat tttctctcag	540
agcctctgga gggagtgtgg ccctgggtac accttgattt tggacttctg gcctacagaa	600
ccatgcacac aggaggactt catttcccgat gtctccctgc agtgaagttg aggccatgtg	660
actggtcttgc gccaatggaa atgggtgcag aagggacaca gcccatttct agactcagcc	720
tgaaatgtcc tccataatcc ttactcttcc tcccttact cactggctgc aggaagctga	780
gaattatcct tggacttaca taaagcattt tggactttat gtaagtaaca acctgttgta	840

13

ttaagctact aagattttac gggtgttgt taaatcagct aaccctaaac atccctaacaa	900
ctacaaaatag aataacctgtt actgcataca taaaaataca aaaatttagct ggatgtggtc	960
ccacctgtag tcccagctac tcgggaggct gaggcaggag aattgcttga acctgggagg	1020
cggagggtgt ggtgagctga gatgcacca ctgcactgca gcctggcaa cagagcagga	1080
ctctatctca aaaaaaaaaac acaataaaaca tttcttaccc actgttagttt ttgtgggtca	1140
ggaatctggg agcagcttag ttggatgatt tctgctcaca gtgttttatg aggttgcagt	1200
caagatgttg gctggggctg tagtcatctg gagatthaac tacggctgga ggatccactt	1260
caccatggtt cactcacctg gtgctgggtg ctggcaggaa atttcagctc ttcttctata	1320
tggatcttt cacagattgc ttgagtgccc tcaccgtatg gtgactggct tcctttacag	1380
aaatcagttg aaggaaatgg gcaagtaaga aacagcaatg ctttttatga cctagtcctg	1440
aagttccccca ccattactta tggtcattgg aagccagttg ctaaggagag cctgcactca	1500
aagattgggg aaatagactt tatcttcaa agtgttgaag aatttgcaga cgtattttaa	1560
aaccaccaca caatccatca acacatcatg tcggctctat tcttgaataa gatccagaat	1620
ttgaccactt ttcaccatct ccattgctat taccagatc taatcaacac catcacttgc	1680
ctggactaga gatttcctcc tcactgggtc ctctgcttct atcttagcc cattgctatg	1740
atttggctgt gtccccaccc aaaatctcat cttgaattat aatcttcata atccccatgt	1800
gtcaaaggag agaccagggtg gaggttaactg aa	1832

<210> 15

<211> 10394

<212> DNA

<213> Homo sapiens

<400> 15	
cgtgttttgg cgtgtttttt tttttgtttt ttgtcactgc ctgcctgggt cctgcccag	60
gtctccatcc tcggtttccc tgccttgc cccggccctg ggagtgcctc ggaaggctgc	120
gcagtattgg agggacaga atgaccttc ggccttgagt ccctggggag cagatggacc	180
ctactggaaag tcagttggat tcagatttc ctcagcaaga tactccttgc ctgataattt	240
aagattctca gcctgaaagc caggttctag aggtgattc tggtctcac ttcagtatgc	300
tatctcgaca ctttccataat ctccagacgc acaaagaaaa tcctgtttt gatgttgc	360
ccaatcctga acaaacagct ggagaagaac gaggagacgg taatagtggg ttcaatgaac	420
atttgaaaga aaacaagggtt gcagaccctg tggattttc taacttggac acatgtggtt	480
ccatcagtc ggtcatttgag cagttacctc agccaaacag gacaaggcgt gttctggaa	540
tgtcagtggaa atctgcttgc gctgtggagg aagagaaggg agaagagttt gaaacagaagg	600
agaaagagaa ggaagaagat attcaggca atactacaca ttcccttgggt gctgaagata	660
ctgcctcatac acagttgggt tttggggttc tggaaacttc ccagagccag gatgttggagg	720
aaaatactgt gccatatgaa gtggacaaag agcagctaca atcagtaacc accaactctg	780

gttataccag gctgtctgat gtggatgcata atactgcaat taagcatgaa gaacagtcca 840
acgaagatat ccccatagca gaacagtcca gcaaggacat ccctgtgaca gcacagccca 900
gtaaggatgt acatgttgta aaagagcaaa atccaccacc tgcaagggtca gaggacatgc 960
cttttagccc caaagcatct gttgctgcta tggaaagcaaa agaacagttg tctgcacaag 1020
aacttatgga aagtggactg cagattcaga agtcaccaga gcctgagggtt ttgtcaactc 1080
aggaagactt gtttgaccag agcaataaaa cagtatcttc tgatgggtgc tctactcctt 1140
caagggagga aggtgggtgt tctttggctt ccactcctgc caccactctg catctcctgc 1200
agctctctgg tcagaggtcc cttgttcagg acagtcttc cacgaattct tcagatctt 1260
ttgctccttc tcctgatgct ttccgatcta ctccctttat cgttccttagc agtcccacag 1320
agcaagaagg gagacaagat aagccaatgg acacgtcagt gttatctgaa gaaggaggag 1380
agcctttca gaagaaacctt caaagtggtg aaccagtggta gttagaaaac cccccctctcc 1440
tgcctgagtc cactgtatca ccacaagcct caacaccaat atctcagagc acaccagtct 1500
tccctcctgg gtcacttcct atcccatccc agcctcagtt ttctcatgac atttttattc 1560
cttccccaag tctggaagaa caatcaaatg atggaaagaa agatggagat atgcatagtt 1620
catcttgac agttgagtgt tctaaaactt cagagattga accaaagaat tcccctgagg 1680
atcttgggct atcttgaca ggggattctt gcaagttgat gctttctaca agtgaatata 1740
gtcagtcccc aaagatggag agcttgagtt ctcacagaat tgatgaagat ggagaaaaca 1800
cacagattga ggatacggaa cccatgtctc cagttctcaa ttctaaattt gttcctgctg 1860
aaaatgatag tatcctgatg aatccagcac aggatggtga agtacaactg agtcagaatg 1920
atgacaaaac aaagggagat gatacagaca ccagggatga cattagtatt ttagccactg 1980
gttgcaaggg cagagaagaa acggtagcag aagatgttg tattgatctc acttgtgatt 2040
cggggagtca ggcagttccg tcaccagcta ctcgatctga ggcactttct agtgtgttag 2100
atcaggagga agctatggaa attaaagaac accatccaga ggaggggtct tcagggtctg 2160
aggtggaaga aatccctgag acacccttgaa aagtcagg agaggaactc aaagaagaaa 2220
atatggagag tgttccgtt caccttctc tgactgaaac tcagtc当地 2280
ttcaaaagga aatgc当地 2340
tttagtattga ttccccctcaa aagttggcaa tacttgacca agaattggaa cataaggaac 2400
aggaagctt ggaagaagct acttcagagg actccagtgt tgtcattgta gatgtgaaag 2460
agccatctcc cagagttgat gtttcttgaa aaccttggaa gggagttggag aagtgtctg 2520
atccccagtc atgggaggat attgctccag aatagaacc atgtgctgag aatagatttag 2580
acaccaagga agaaaagagt gtagaatatg aaggagatct gaaatcaggg actgcagaaa 2640
cagaacctgt agagcaagat tcttcacagc cttcccttacc ttttagtgaga gcagatgtac 2700
ctttaagact tgaccaggag ttgcagcagc cccaaactca ggagaaaaca agtaattcat 2760
taacagaaga ctcaaaaatg gctaatgcaa agcagctaa gtcagatgca gaggcccaga 2820
agctggggaa gccctctgcc catgcctcac aaagcttctg taaaagttct agtgaaccc 2880

15

catttcattt cactttgcct aaagaagggt atatcatccc accattgact ggtgcaaccc	2940
cacccctttat tgggcaccta aaattggagc ccaagagaca cagtactcct attggtatta	3000
gcaactatcc agaaaggcacc atagcaacca gtatgtcat gtctgaaaagc atggtgaga	3060
ccccatgatcc catacttggg agtggaaaag gggattctgg ggctgccccca gacgtggatg	3120
ataaaattatg tctaagaatg aaactggta gtcctgagac tgaggcgagt gaagagtctt	3180
tgcagttcaa cctggaaaag cctgcaactg gtgaaagaaa aaatggatct actgctgtt	3240
ctgagtcgt tgccagtcctt cagaagacca tgtctgttt gagctgtatc tgtgaagcca	3300
ggcaagagaa tgaggctcga agtgaggatc ccccccaccac acccatcagg gggaaacttgc	3360
tccactttcc aagttctcaa ggagaagagg agaaagaaaa attgggggt gaccatacaa	3420
tcaggcagag tcaacagcct atgaagccca ttagtcctgt caaggaccct gtttctcctg	3480
cttcccagaa gatggtcata caaggccat ccagtcctca aggagaggca atggtgacag	3540
atgtgctaga agaccagaaa gaaggacgga gtactaataa ggaaaatcct agtaaggcct	3600
tgattgaaag gcccagccaa aataacatac gaatccaaac catggagtgt tccttgaggg	3660
tcccagaaac tgtttcagca gcaacccaga ctataaagaa tgtgtgttag caggggacca	3720
gtacagtggc ccagaacttt ggaaagcaag atgccacagt tcagactgag agggggagt	3780
gtgagaaacc agtcagtgtc cctggggatg atacagatc gctccatagc cagggagaag	3840
aagagtttga tatgcctcag cctccacatg gccatgtctt acatcgtcac atgagaacaa	3900
tccgggaagt acgcacactt gtcactcgtg tcattacaga tgtgttattat gtggatggaa	3960
cagaagtaga aaaaaaagta actgaggaga ctgaagagcc aattgttagag tgtcaggagt	4020
gtgaaactga agttccctt tcacagactg ggggctcctc aggtgacctg ggggatatca	4080
gctcccttcctc ctccaaggca tccagcttac accgcacatc aagtggaca agtctctcag	4140
ctatgcacag cagtggaaagc tcagggaaag gagccggacc actcagaggg aaaaccagcg	4200
ggacagaacc cgccagatttt gccttaccca gctcccgagg aggcccagga aaactgatc	4260
ctagaaaagg ggtcagtctcag acagggacgc cagtgtgtga ggaggatgtt gatgcaggcc	4320
ttggcatcag acagggaggg aaggctccag tcacgcctcg tggcgtggg cgaaggggcc	4380
gcccaccccttc tcggaccact ggaaccagag aaacagctgt gcctggcccc ttggcatacg	4440
aggacatttc acctaacttg tcaccagatg ataaatcctt cagccgtgtc gtgccccgag	4500
tgccagactc caccagacga acagatgtgg gtgctgggtc tttgcgtcgt agtactctc	4560
cagaaaattcc tttccaggct gctgctggcc cttctgtatgg cttagatgcc tctctccag	4620
gaaatagctt tgtaggcgtc cgtgttgttag ccaagtggtc atccaatggc tactttact	4680
ctgggaaaat cacacgagat gtcggagctg ggaagtataa attgctctt gatgtgggt	4740
acgaatgtga tgggttgggc aaagacattc tggatgtga cccatcccc ctggacactg	4800
aagtgcggc cctctcgagg gatgagtatt tcagtgcagg agtggtgaaa ggacatagga	4860
aggagtctgg ggaactgtac tacagcattt aaaaagaagg ccaaagaaaag tggtataagc	4920
gaatggctgt catcctgtcc ttggagcaag gaaacagact gagagagcag tatgggcttgc	4980
gcccctatga agcagtaaca cctcttacaa aggccggcata gacatgttac gacaatttgg	5040

tggaaaggaa	gcggaaaacgg	cgcagtaacg	tca	gctcccc	agccacccct	actgcctcca	5100						
gt	agcagcag	cacaacccct	acccgaaaga	tcacagaaag	tcctcg	tgcc	tccatggag	5160					
tt	c	tcagg	caa	aaagaaaa	ctt	atcactt	ctgaagagga	acgg	ccct	gcca	agcag	5220	
gt	cg	caagtc	tgcc	acagta	aa	ac	ctgg	tg	c	ag	gg	5280	
gt	gag	atgg	ttgg	ag	ac	a	ac	cc	tt	gg	gg	5340	
ct	ct	caacaa	gacc	ttgtt	ctgg	ctacg	catt	tcct	tac	cat	ggcc	5400	
aca	agtt	ggcc	ctcc	aa	act	gccag	atgg	tctac	agg	aa	gagg	5460	
agg	aa	tttt	ggaa	att	ccct	c	ttt	caaca	agc	agtata	aga	atccc	5520
gag	ctgg	ct	ta	c	ttt	caat	g	ccc	atg	taa	ca	ccat	5580
tt	c	taat	tc	gg	tc	at	tg	ttt	tc	at	tt	gg	5640
tc	ctt	gtgt	gt	tc	at	gt	gg	ccat	at	tt	cc	aa	5700
acc	gt	taat	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	5760
aa	ccc	gt	gt	gt	gt	gt	gt	gt	gt	gt	gt	gt	5820
act	tc	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	5880
acc	tt	ca	aa	tt	cc	tt	cc	tt	cc	tt	cc	tt	5940
acc	tt	ca	aa	tt	cc	tt	cc	tt	cc	tt	cc	tt	6000
caca	aa	gg	at	cc	tt	cc	tt	cc	tt	cc	tt	cc	6060
caaa	at	ataa	aa	ca	ac	at	ca	at	ca	at	ca	at	6120
ctg	ct	at	cg	tt	tt	tt	tt	tt	tt	tt	tt	tt	6180
tc	tt	tg	at	tt	tt	tt	tt	tt	tt	tt	tt	tt	6240
ga	at	tc	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	6300
aaca	aa	at	tg	tt	tt	tt	tt	tt	tt	tt	tt	tt	6360
gg	ac	at	cc	aa	at	tt	tt	tt	tt	tt	tt	tt	6420
caaa	agg	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	6480
tga	agg	cc	ca	tt	tt	tt	tt	tt	tt	tt	tt	tt	6540
ctg	ac	at	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	6600
gt	act	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6660
gt	gac	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6720
ac	ac	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6780
aca	at	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6840
catt	tc	ta	aa	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6900
tc	agg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6960
ag	ca	aa	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	7020
aa	ac	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	7080
at	ctt	tag	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	7140

17

gtagtgtatga aaaccagatg cagtgactat aacctgatgc cagaacactg cattctttt	7200
cagtttggag ggcgttgttc agtgaatatt tcttttact tacactgata tgaatattga	7260
ttaccagtga tggctggcc atattaagat aacttcaacc cctatggtt gtgtaaatgt	7320
ggtaatttggg cctgcaatct tcagtattta aaaatctaac aacttgatct caatttttc	7380
ttaaggacct ttttcttggg gaataatact tttttttttt ttttttttt tgagacggaa	7440
tttcgctttt gttgccagg ctggaatgca atggcacaat ctcagctcac tgcagcgct	7500
gcttcccagg ttcaagcaat ttcctgtct cagcctcctg agtagctggg attacaggca	7560
catgccacca cacctggctt atttttgtat ttttagtaga atcgagggtt catcatgtt	7620
gtcaggctgg tctcaaactc ctgacttcag gtgatccgcc cgccctggcc tcccaaagt	7680
ctgggattac aggtgtgagc caccatgccccc ggcctaagaa atactttaa gtatatttc	7740
attagctaga attgccccat ctgtgttaggt ataaaattact tggataggg agagagaaag	7800
cctatcttac ctgttgctt cttacttggg ggtAACATCC agcagtttagt ctatttataa	7860
acataattac ttttcacat atgaaccata aaatatttaa ctttctgctc tatattttt	7920
gtttaccgct gtatctccc cagttgaac agtacccaagg tacgttagtag gtgctcaata	7980
aatgactatt gaataaatga acatatccaa caaatgttct caatgtaaag gatcagagat	8040
gccacatgtt ctccctgatg ggagagaccc ttccacatgg gaatgatggg aaggagttgt	8100
actcctggat gttcagtaac tgcttctagg agaaaaggta gagtcctatc actaagccgc	8160
agatatttat ttgtgtgtgg cttagaatggg atgtttgaa tcttctgtta caaccttggg	8220
aacgtggctg ttatttcaat ttatgagcca gaaattttca catcccgaaa ctacaaaaga	8280
aaaaaaagagc cttattaaatgt gtcattgtttt cccaaagacta ccttcaaaga aatatgaatc	8340
aggataacct gtgatctaaa taatgtcatc taaaactga agagtttctt ttgactcttc	8400
tgctacaata gcttagaaaaaa aaatctgctt gcagacattt tagagagaaaa ggacaatgaa	8460
gtgattttct gaatggaaat gacagacctc tggaaagcca gctaccactg aatctcgta	8520
tcagttttt taaaagtttta gagttagaag gggtggtcgc ctcccttac agatgcggaa	8580
gctagggacc agcaaggcgg ggtgcccacg gctgcacagc tagttcatat cagaatttggg	8640
agtggaaaggc ccactgcctc ccagcatagc aatacataac ctagcaaagg acttaacacc	8700
tatctcactg tcaggttttt tagtattttt ttagtgcata gacttctact agaaaataac	8760
ctccattaaa attattaaag atggtcacac ctctatctct aagccttact tataaaatga	8820
gggtattttgg actaaaatgt tcttccttgcgtt cttagatttca acaactcatt aaaaagccac	8880
cttaaaaatgt ctactgagtt acccaagggt tgctcttacc tgcccagagt tccaccagcc	8940
tgggtatagt atttgttata atcttagtcgt aacagtagtt gagccaaatc tgagttgatc	9000
tgatgattcc gaacactgga gagaatctt aacaggagtg aagactggcg gctaaagccc	9060
tgcagagaga aggactcagc tgcattcca ctgcgtca ccaactctcc atatggagga	9120
tggggccggaa gggaggagtt tcttggaaaaa gccttgcgtca aaattctaca gaaccaccc	9180
gccttccac attccttattt cttagtttgc taaaatgtac ttgtacaaa tccatacatg	9240
catgacttcc tatgaaagta ctcttcatc agtaggaatt tagtagctgg ttccagttt	9300

18

atgtattttg tcaagtactg gggttgggga gaaccgttt tgattacaag cagataatta	9360
tctcagttag atgggggtta gttcaaggaa gtaaggaggg gggaggatgt gaggaagtta	9420
gaacaaccca atgcttattt gatgggctga ataaaactatt caggactgaa ctattttgaa	9480
gcactgtgag gtggcacagt aattacctgc ttcaaaatca actgatacca acattttat	9540
ctttgtatct tatctctgta cgtgtgtgta ttgagggaaat gctttactga ctcagaggaa	9600
agatcatgaa ttctccattt gcaaaaaccac ctctgtcctt tcggcaaggc tgcatacttc	9660
caggcagacg cacccacg agaatgctca gctggcgcc tccacgctca tccagtggc	9720
ctagttctg actgaccacg gaacaaaaac tgtgacagag atctaggatt tcattcaggc	9780
agtgaaacac ctacccggga aacagagttt gcatttagaa aggaaggaag gtacatccat	9840
gaagttaaaag tggtaggaga acagtctgat taatagctga tctaattaaat agctgaccc	9900
ccaaatctga caggatagac actgccacgt gcaaggcctg ccagccccctc agacgcacaa	9960
aatgcgtaaa acaaatgcat ctttctgg ctaagcgagt attactctt tagccctgca	10020
ccaaacctcc aatctagcca catttaactc ttcatttctt agacccgcag agtgtcttcc	10080
tgcctctgag ctgtgagtgt tggcccttt gcccggatg ctcttggggtaataaccagt	10140
tcaagtccca ctctctcgtt gaagcactcc cttccctact atagccttta gtgaaccctc	10200
gtttcttgcgtt ctgtactgtt gtccacttgg caattgttca ggcctctgtt	10260
ttgttactga tttttgtatg tatatatata tatatgtttt gttttccaa ctagattgtt	10320
agctccttaa gggcagagcc atgaattata cctcttggta tccccagtc cttgcataca	10380
gtaaggcactc aata	10394

<210> 16

<211> 6837

<212> DNA

<213> Homo sapiens

<400> 16	
agcatcgagt cggccctgtt gcctactgga gtctccgcag agcccccggcggagtagctg	60
gtggaccccg ttgagctgcc gaacttccgg gactcccccg cgacccttc ccagcttccc	120
gtccgcctccg ccgcagcgat tgtctcggtt ggttattcg gcacaaaaccg cccgacccag	180
ggccgggtgc gcgtgtggaa gggaaagcac tccccctcggtt gtcgcctggaa ggtgcgtgg	240
aggaggggtt gacataacca gggactcgag gtccgcgtt ggaatgatcc acgaactgtt	300
cttggctctg agcgggtacc ctgggtccat tttcacctgg aacaagcgga gtggcctgca	360
ggtatcgcaag gacttccctt tcctccaccc cagttagacc agtgcctgaa atcgactctg	420
ccggcgtggc acagactata ttgcgttac tgagttcatt gaacagtaca cggggccatgt	480
gcaacagcag gatcaccatc catctcaaca gggcaaggt gggttacatg gaatctacct	540
gcgggccttc tgacacaggc tggattctgt tttgcagcct tatcgccaag cactgcttga	600

19

tttggAACAA	gaggTCCTGG	gtgATCCCCA	tctCTCCATA	tcACATGTCA	actACTCCT	660
agaccAGTTC	cagCTTCTTT	ttccCTCTGT	gatGGTTGTA	gtAGAACAAA	ttaAAAGTCA	720
aaAGATTCA	ggtTGTCAA	tcctGGAAAC	agtCTACAAA	cacAGCTGTG	ggggGTTGCC	780
tcctGTTCGA	agtGCACTGG	aaaaATCCT	ggccGTTGT	catGGGGTCA	tgtATAAACAA	840
gctCTCAGCC	tggATGCTCC	atggACTCCT	cttGGACCAG	catGAAGAAC	tctttatcaa	900
acaggGGCCA	tcttCTGGTA	atgtCAGTGC	ccAGCCAGAA	gaggACGAGG	aggatCTGGG	960
cattGGGGGA	ctgACAGGAA	aacaACTGAG	agaACTGCAG	gactTGCGCC	tgattGAGGA	1020
agagaACATG	ctggCACCAT	ctctGAAGCA	gtttCCCTA	cgAGTGGAGA	ttttGCCATC	1080
ctacattCCA	gtgAGGGTTG	ctgAAAAAAAT	cctatttGTT	ggagaATCTG	tccAGATGTT	1140
tgagaatCAA	aatgtGAACC	tgactAGAAA	aggatCCATT	ttgAAAAACC	aggaAGACAC	1200
ttttGCTGCA	gagCTGCACC	gtctCAAGCA	gcAGCCACTC	ttcAGCTTG	tggACTTTGA	1260
acaggTGGTG	gatCgCATTc	gcAGCACTGT	ggctGAGCAT	ctctGGAAgt	tgtAGGTTAGA	1320
agaatCCGAT	ttactGGGTC	agctGAAGAT	cattAAAGAC	ttttACCTC	tgggACGTGG	1380
agaactGTTT	caggCttCA	ttgACACAGC	tcaACACATG	ttgAAAACAC	cacCCACTGC	1440
agtaactGAG	catGATGTGA	atgtGGCCTT	tcaACAGTC	gcACACAAAGG	tattGCTAGA	1500
tgatgACAAC	cttCTCCCTC	tgttGCACtT	gacaATCGAG	tatCACGGAA	aggAGCACA	1560
agcAGATGCT	actCAGGCAA	gagaAGGGCC	ttctCGGGAA	acttCTCCCC	gggaAGCCCC	1620
tgcAtCTGGC	tggcAGCCC	tagtCTTTC	ctacAAAGTA	cagtGGCCAC	tacatATTCT	1680
cttcACCCCA	gctGTCCTGG	aaaAGTACAA	tgttGTTTT	aagtACTTAC	tgagtGTGCG	1740
ccggGTGCAA	gctGAGCTGC	agcACTGCTG	ggccCTACAA	atgcAGCGCA	agcACCTCAA	1800
gtcGAACCAAG	actGATGCAA	tcaAGTGGCG	cctaAGAAAT	cacATGGCAT	ttttGGTTGA	1860
taatCTTCAG	tactATCTCC	aggTAGATGT	gttGGAGTCT	cagttCTCCC	agctGCTTCA	1920
tcAGATCAAT	tctACCCGAG	actttGAAAG	catCCGATTG	gctCATGACC	actTCCTGAG	1980
caatttGCTG	gctCAATCCT	ttatCCTATT	gaaACCTGTG	tttCactGCC	tGAATGAAAT	2040
cctAGATCTC	tgtCACAGTT	tttGTTGCT	ggTCAGTCAG	aacCTAGGCC	cactGGATGA	2100
gcgtGGAGCC	gccCAGCTGA	gcattCTCGT	gaAGGGCTTT	agccGCCAGT	cttCACTCCT	2160
gttCAAGATT	ctctCCAGTG	ttcGGAATCA	tcAGATCAAC	tcAGATTGG	ctcaACTACT	2220
gttACGACTA	gattATAACA	aataCTATAC	ccaggCTGGT	ggaACTCTGG	gcagTTCCGG	2280
gatgtGAAAAA	tttCTGGCTC	ataAAATTGAA	ataACAGCCA	cgttCCCAAG	gttGTAACAG	2340
aaggATCAA	acatCCCATT	ctagCCACAC	acAAATAAAAT	atctGCGGCT	tagtGATAGG	2400
actCTACCTT	ttctCCTAGA	agcAGTTACT	gaACATCCAG	gagtACAAct	ccttCCCATC	2460
attCCCATGT	ggaAGGGTCT	ctcccATCAA	ggAGAACATG	tggCATCTCT	gateCCTTAC	2520
attGAGAACAA	tttGTTGGAT	atgttCATTt	attCAATAGT	catttATTGA	gcACCTACTA	2580
cgtACCTTGG	tactGTTCAA	gctGTGGAG	atacAGCGGT	agacAAACAA	tatAGAGCAG	2640
aaaggTAAAT	atTTTATGGT	tcataTGTGA	aaaAGTAATT	atgtttATAAA	atAGACTAAC	2700
tgctGGATGT	taccACCAAG	taAGAAAGCA	acaggTAAGA	taggCTTCT	cttCCCTAT	2760

accaagtaat ttatacctac acagattggg caattctgc taatgaaaat atactaaaa	2820
gtatttctta gcccggccat ggtggctcac acctgtaatc ccagcacttt gggaggccga	2880
ggcgggcgga tcacctgaag tcaggagttt gagaccagcc tgaccaacat gatgaaacct	2940
cgattctact aaaaatacaa aaatttagcca ggtgtggtgg catgtgcctg taatcccagc	3000
tactcaggag gctgagacag gagaattgct tgaacctggg aagcagacgc tgcagtgagc	3060
tgagattgtg ccattgcatt ccagcctggg caacaagagc gaaattccgt ctaaaaaaaa	3120
aaaaaaaaaaa aaaaagtatt attctccaag aaaaaggtcc ttaagaaaaa attgagatca	3180
agttgttaga tttttaataa ctgaagattt caggccaat tacccatctt acacaaacca	3240
taggggttga agttatctta atatggccca gccatcaactg gtaatcaata ttcataatcag	3300
tgtaagtaaa aagaaatatt cactgaacaa cgcgcctccaa actgaaaaag aatgcagtgt	3360
tctggcatca ggttatagtc actgcatactg gtttcatca ctacatattc tacacacact	3420
gggaagctct gacaacttat tccctgttat tatcaactaa agatcaccct ttccactgct	3480
gtctctggag caggagctgg caaactatgg cctgctgtct gttttgtac agttttactg	3540
aaacacagcc gtgcccatTTT gtttactcat tgtctatggt tgctttcatg ccctcacagc	3600
aaaggcgagt agttgtatg gatcaaattt cccacaaagc ctgaaatatt tactctttga	3660
ccctttacag aaaaaaacct tggtagcccc tgcttttagag aatgagaagc catgcaggga	3720
tcagtgtatgc cagaggaagg gaagggactg cttccagcta ttgtgacaat aataataata	3780
ataatattgg gtcttgact agaacgtgtaa acatttccag gtgtctcac ttgtgtttcc	3840
catgtttatc ttacggaagg tcattccatc aagcttatgg tcactgtccc ttcatggcag	3900
ttggtccttt cgttctccct ttagctctaa gagttggggta gtacccacag gttagctgtg	3960
atctcagtc agagagagag catgaggatct ttttaactg tcaggaaaca gagctgtgcc	4020
caattccact caactttgg cacaactgtt aatctggcc ttcacctacc ttaaactgag	4080
tttctgcaag catagcattt tagacaccct ggaataacct tttgggatg atgccacaga	4140
ataaaagttca ctcttaactt ttcaatttcc ttggtgagct gtcctccgtt agtgaataag	4200
cctgttggaa gactcagaga aagtactatg tcttgcatt tggtctgaga ttaagctcaa	4260
aaaaacagat gaagaaatcc cagttactac aaccaaagag attcaacatt tattttatca	4320
taaaagttca gcaaaaaaa ctatatacaa gatccatgca aggaatccag ttacacacaa	4380
gacacattta aaacctgggtt aaaacacaat ctccacgata gcagggata aaaccagtaa	4440
gaccaagatctt ttttagtgag aaacataatc gtgtttatat tttggatgct gcttgcatt	4500
aattctctcc ccaacaatga ggcactggat cacccactct tgcacacca caggcagctg	4560
caatgcttca gcacacttca gcacccgggc tggcatgag gggccgttca ccaccacatc	4620
aaataccctt aaagcaatat ctgcaaggag caagggaaag tgaagaagga aaggacactc	4680
aacttagccc tccatttagaa agagagattt gattctaaacc aatacatccc actctgcaca	4740
aaccaaagcc ctattatgtc aaacacactg ctactgatca tgaccaaagg cagagttata	4800
atcactatgt gctgacccctt tagaaatatt taacaaatat acgtccagtg ctccacttat	4860

21

gttgactcac	ctcttgaagg	tggtaacttt	cttcctctaag	aaacatggat	acggtcaacc	4920
tattaggcct	gagcccttgg	ccacaaggcc	taacacacctac	aggtctaagg	agatcccctgg	4980
aacaaagaca	ctacacacaac	tctttcaggt	acctttgtta	tgggcacttg	aatggtgetg	5040
cttcacagag	gctgcaccac	cagtcatgag	gatctcagac	cagagctcca	ggaagttctg	5100
ctgttggtct	gataccaaga	gtaccttcag	attctggaaa	ggatttcac	ggggttgcct	5160
atgaaggaga	caggaaagga	ccttagcatg	acaagtaata	tccaaacaaac	tgcctttctg	5220
caaaggact	catgtacatc	tgaatgcctt	caaaaataaa	tgccccatca	gacatagtgt	5280
ctcaaggctg	taatcccagc	actttggag	gctgtcggtt	ttggatctct	tgggcctgg	5340
agttcgagac	cagcctgggc	aatgtggtga	gaccccatct	ctacaaaaga	caacaaaaaa	5400
attagctggg	tgttgtggcg	agtgcctgta	gtcccagcag	cttgggaggc	tgaggttaggg	5460
ggatcacttc	agcctgggag	gttgaggctg	cagtaagtcg	tcactgcgcc	actgtactcc	5520
agcctaggtg	acagagcaag	acttcatctt	aaaaaaactaa	gccctatatt	agggtcccc	5580
ttctcttcct	tctttctatg	aatgatctgt	attccttgca	ttcctggctt	tctaattcc	5640
atgtttgttc	tggggctgag	aataatccaa	atcatgctcc	tgagcctata	tattttaat	5700
gcttgcttaa	aacttagttc	tctgacttta	caggttgaga	atattgaacc	tatataacaa	5760
tcttcacacaca	tttgcaaaag	gttccttagcc	aatgtaacct	agggaaataa	actagataaa	5820
ctcctgaagt	cattcaaac	ccactcaaat	ttatcccaca	gacattccaa	tttctagaaa	5880
gctttactct	ctcacctaga	ttctcttccc	tccaaagctt	gctgtcctcc	tgcctatata	5940
attctggatg	ggcttcaaata	acttaccagt	ccagaattct	ttgctcctca	aggctgtacc	6000
cagctggcaa	cagataatta	cggtagttct	ggagctggtt	ggcatggcaa	ctatcatgga	6060
cccagacatg	agacacacaa	ggaatcccac	tggcaaggca	caggaagtac	ttccgggttc	6120
gacaatgctg	atccgcaatt	agaagacact	ggtaagctgt	gttacactgc	aagaaaagaa	6180
gcagagccaa	tgggttgg	gacttctgtg	gaaagctcct	aagcagcagc	cataatgagc	6240
catgaagagc	agatctgaag	actcccaact	actacccaaa	atgtgattt	gtctatcctg	6300
cccaaggcca	ctcttctcac	tggaaaggccc	aagtaatttc	catagatgtt	ctctctgcct	6360
cacctgcagc	atactgagga	cctaaatcct	caacggacaa	ccaaaaccta	tgaactcagc	6420
cttcaggct	aaaaatcagc	aaccctaata	ggggttctta	ctactaaaca	taaacatcaa	6480
tcttcctttg	tcccagcaac	agaaccatag	ccattaacta	acccaaggtc	ctaccttctc	6540
ttccctatac	acaacaaaaaa	ttctatttca	tgcaaaaaca	ttttggcagt	ttctcagttc	6600
ctgaaatctc	tggctacttt	atccaggttc	cccaacccct	cccaggcctc	ttctcaacac	6660
agcaagttgg	ctcttatcat	tgccactata	ttaggttaca	caaagaaact	cctcacctgg	6720
gcttcattga	aatcttcaag	gatatagcca	gtccctgctc	gaagctggga	ttctgtatac	6780
tgcttggtga	aaggaggaat	ttccaaaaat	tctatattaa	aaaaaaaaac	caagata	6837

<210> 17

<211> 733

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 17		
cacaatctcc acgatagcag ggaataaaaac cagtaagacc aagtatctt agtgagaaac	60	
ataatcggt ttatattttg gatgctgctt gaatccaatt ctctccccaa caatgaggca	120	
ctggatcacc cactcttgc acaccacagg cagctgcaat gcttcagcac acttcagcac	180	
cgaggctggg catgaggggt ccgtcaccac cacatcaa at accctaaag caatatctgc	240	
aaggagcaag ggaaagtgaa gaagggaaagg acactcaact tagccctcca ttagaaagag	300	
agatttgatt ctaaccaata catcccactc tgcacaaacc aaagccctat tatgtcaaac	360	
acactgctac tgatcatgac caaaggcaga gttataatca ctatgtgctg accttgcata	420	
aatatttAAC aaatatacgt ccagtgccttc acttatgtt actcacctct tgaagggttgt	480	
acttttcttc tctaagaaac atggatacgg tcaacctatt aggctgagc cttggaccac	540	
aaggcctaac acctacagg tcaaggagat ccctggaca aagacactac acacacttt	600	
tcaaggatctt ttgttatggg cacttgaatg gtgctgcctt acagaggctg caccaccagt	660	
catgaggatc tcagaccaga gctccagggaa gttctgctgt tggctgtata ccaagagtac	720	
cttcagattc tgg	733	

<210> 18

<211> 734

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 18		
gctagaattt cccaatctgt ttaggtataa attacttggg ataggagag agaaaggcata	60	
tcttacctgt tgctttctta cttgggtgta acatccagca gtttgtctat ttataaaacat	120	
aattactttt tcacatatga accataaaat attaactttt ctgctctata ttgtttgtct	180	
accgctgtat ctcccacagc ttgaacagta ccaaggtacg tagtaggtgc tcaataaaatg	240	
actattgaat aaatgaacat atccaaacaaa tggctcaat gtaaaggatc agagatgcca	300	
catgttctcc ttgatggag agacccttcc acatggaaat gatggaaagg agttgtactc	360	
ctggatgttc agtaactgct tctaggagaa aagtagatg cctatcacta agccgcagat	420	
atttatgtt gtgtggctag aatggatgt tttgaatctt ctgttacaac cttggaaacg	480	
tggctttat ttcaatttat gagccagaaa tttcacatc ccgaaaactgc ccagaggatcc	540	

accagcctgg gtatagtatt tgttataatc tagtcgtAAC agtagttgag ccaaATCTGA gttGATCTGA tgattccgaa cactggAGAG aatcttGAAC aggAGTGAAG actGGCGGCT aaAGCCCTTC acgAGAATGC tcAGCTGGC ggCTCCACGC tCATCCAGTG ggcCTAGGTT ctGACTGACC AGCA	23 600 660 720 734
---	--------------------------------

<210> 19

<211> 2289

<212> DNA

<213> Homo sapiens

<400> 19 tcgcggccgc gtcacgcgt ggtagggggc ccagAGCAAG ccGAAGGCAA gcACGATGGC gctcaccAGC cggcccACCC gcGCCCGTG cgcGCCGGAG ccccAGCGGG cgCCCCGAG ccGTGCCAGC gtcacgCTGT agcAGCCAG catcAGCCGA aAGGAAGCAC gAAAGCGGTC agagtCTCCA ggCTCAGGTG ggcGGCGGCG tggaccGGCG acGGGTGGCA cAGCTGGCAT acGCGGTCCC tccACAGGTG gCGGTAGACG gCGGCCGGGA CGGCAGCAA CAGGGCGGCC agCCAGACCG ccAGCAGCAG gCGGCCGGCC agggCCGGGC tgCGCAGCCG aggCGCCAGG aAGGGCGGG tgactGCGAG gCAGCGCTGC aggCTGAGCA ggCCGGTGAAG cAGCACGCTT ggcGTACATG ctGAGCGCGC ACACGTAGTA cACCGCCTTG cAGCCCGCCT ggCCAGCGG ccAGGCCTGC cGGTCAGGAA ggCCACAAAG agCGGCGTGA gCAGCAGCAC CGGCCGCTCG GCCAGCGCCA gGTGAGCAC AAGCGTGGCC GCCAGCGGTc GCCCCCGTGC aggCTGCCAG cccGCCAACG tccACACCAc gaAGCCGTTG CCAGGAGGCC ccAGCAGCGC CGCCAGCAGC agGAAGGCTG tgcCTGTGGC CCGCGAAGTC ttCCAGCTCA gCAGTGTCTC gttCCCTGGG ggACGGTAGC agACCGACAT CCTTCTGGGC CTACAGGACA CAGAAAAAAA gTGGGGAAAGC tggggGACCC tacaAGGATC CTTGGCAGGA aAGCAGGGAT tGtgTTcATT ttGAGGGTT caCTGTCAgT gagAGTCTCA GCTTCCATGC AACTGTCCAT CACGGCTGC ACTGAAATCA gagCTGGGAC acAGCGCACC agaAGCTAAA GTCTTGATGC CATCAAAGGA CATCCCGTGC cccATTcACA yATTCACATC TCTGTCAcGT ccACTAATCG GCAAAAGGAG AAAAGTgAGA gaAGATGACC taAGTGTGAC TGCAcAGCAGGC AGCTCTGGAA aATGAAGCCA gagCAGTGA ccAGCCCTC CTCCGACCAA GGAGGAAGGA aAGAGCAGCC CCAGCACAGG AGAGAACAC ccAGCCcAGA ATTTCCAGGG AAGGAACTCT CCGGTCCACC ATGGAGTACc TCTCAGCTCT GAACCCCAgT GACTTACTCA gGTCAgTATC TAATAAGC TCGGAGTTG gACGGAGGt CTGGACCTCA GCTTCCACAC CCCAGCGACC TTTCCTGTc TGTGATCACA AGCGGACCAT CCGGAAAGGC CTGACAGCTG CCACCCGCCA GGAGCTGCTA GCCAAGACAT TGGAGACCT ACTGCTGAAT ggAGTGTCAA CCCTGGTGT AGAGGAGGAT GGAACtGCAg TGGAcAGTGA ggACTTCTTC CAGCTGCTGG AGGATGACAC GTGCCTGATG GTGTTGCAgT CTGGTCAgAG CTGGAGCCCT ACAAGGAGTG gAGTGTGTc ATATGGCCT GGACGGGAGA GCCCCAAGCA	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560
--	---

cagcaaggac atcggccgat tcacctttga cgtgtacaag caaaaccctc gagacacctt	1620
tggcagcctg aatgtcaaag ccacattcta cgggctctac tctatgagtt gtgactttca	1680
aggacttggc ccaaagaaaag tactcagggc gctcctcgt tggacctcca cactgctgca	1740
aggcctgggc catatgttgc tggaaatttc ctccacccctt cgctcatgcag tggagggggc	1800
tgagcagtgg cagcagaagg gccgcctcca ttcctactaa ggggctctga gcttctgccc	1860
ccagaatcat tccaaccgac ccactgcaaa gactatgaca gcatcaaatt tcaggacctg	1920
cagacagtac aggctagata acccacccaa ttccccact gtcctctgat cccctcgta	1980
cagaaccttt cagcataacg cctcacatcc caagtctata cccttacctg aagaatgctg	2040
ttcttcctta gccaccttgc tagcctccca cttgccctga aaggccaaga tcaagatgtc	2100
ccccaggcat cttgatccca gcctgactgc tgctacatct aatcccctac caatgcctcc	2160
tgtccctaaa ctccccagca tactgatgac agccctctct gactttacct tgagatctgt	2220
ttcataaccc ttccccctcaa actaacaaaa acattccaa taaaaatatac aaatatttac	2280
cgtcaaccc	2289

<210> 20

<211> 1511

<212> DNA

<213> Homo sapiens

<400> 20 cacatttcat ccttttacat gttttccatc taccctcaca acacatgtca tcacccaaaga	60
cacacataca agctccaatg gttttgccca ggcaattctt cctccaggac cccatctggc	120
ccctccctca tccctccctt tggactttgc ctttcttact gcccaggcag gggggccaga	180
gtccaggcct gactcattcc caccttgtcc tgggctgaga tcccagggtt gtaacagaaa	240
acaccactaa agccccagca caggagagaa ccacccagcc cagaagttcc agggaaaggaa	300
ctctccggc caccatggag tacctctcag ctctgaaccc cagtgactta ctcaggtcag	360
tatctaatat aagctcgag tttggacgga gggctggac ctcagctcca ccacccccc	420
gacccccc gttctgtgat cacaagcgga ccattccggaa aggcctgaca gctgccaccc	480
gccaggagct gctagccaaa gcattggaga ccctactgct gaatggagtg ctaaccctgg	540
tgcttagagga ggtatggaaact gcagtggaca gtgaggactt cttccagctg ctggaggatg	600
acacgtgcct gatgggtttc cagtcggc agagctggag ccctacaagg agtggagtgc	660
tgtcatatgg cctgggacgg gagaggccca agcacagcaa ggacatcgcc cgattcacct	720
ttgacgtgta caagcaaaac cctcgagacc tctttggcag cctgaatgtc aaagccacat	780
tctacgggct ctactctatg agttgtgact ttcaaggact tggcccaaag aaagtactca	840
gggagctct tcgttggacc tccacactgc tgcaaggcct gggccatatg ttgctggaa	900
tttcctccac cttcgtcat gcagtggagg gggctgagca gtggcagcag aagggccgcc	960

25

tccattccta ctaaggggct ctgagcttct gccccagaa tcattccaac cgaccactg	1020
caaagactat gacagcatca aatttcagga cctgcagaca gtacaggcta gataaccac	1080
ccaatttccc cactgtcctc tgatcccctc gtgacagaac cttcagcat aacgcctcac	1140
atcccaagtc tataccctta cctgaagaat gctgttctt cctagccacc tttctggcct	1200
cccacttgcc ctgaaaggcc aagatcaaga tgtccccag gcatcttgat cccagcctga	1260
ctgctgctac atctaattccc ctaccaatgc ctccctgtccc taaactcccc agcataactga	1320
tgacagccct ctctgacttt accttgagat ctgtcttcat acccttcccc tcaaactaac	1380
aaaaacattt ccaataaaaa tatcaaatat ttaccactaa gacttctgac tccaatttaa	1440
accaggaaaag gnatggggtg gatacccccattttgcctcc cccatcaaca cccagtc	1500
gatccaaagc c	1511

<210> 21

<211> 6530

<212> DNA

<213> Homo sapiens

<400> 21

ttttgttagt ttgagggaa gggtatgaag acagatctca agttaaagtc agagagggt	60
gtcatcgat tgctggggag ttttagggaca ggaggcattg gttagggatt agatgttagca	120
gcagtcaggc tgggatcaag atgcctgggg gacatcttga tcttggcctt tcagggcaag	180
tgggaggcca gaaaggtggc taggaaagaa cagcattctt caggttaaggg tatagacttg	240
ggatgtgagg cgttatgctg aaagggttctg tcacgagggg atcagaggac agtggggaaa	300
ttgggtgggt tatctagcct gtactgtctg caggtcctga aattttagtgc tgtcatagtc	360
tttgcagtgg gtcgggttggaa atgattctgg gggcagaagc tcagagcccc ttagtaggaa	420
tggaggccgc cttctgctg ccactgctca gccccctcca ctgcattgcg aagggtggag	480
gaaattccca gcaacatatg gcccaggcct tgcagcagtg tggaggttcca acgaaggagc	540
tccctgaatg gcagagacaa gaggaaatca gatgatttgg aaaacttggg aggaaggccat	600
caagctggga gatgaggact ttccacaagc aagagctaac taggggttagg tgggtgcaag	660
aggacgaatt atggggacta tccaaactgta gggatgggg cagttatgaca tgggttgc	720
tgacctgagt actttctttg ggccaagtcc ttgaaagtca caactcatag agtagagccc	780
gtagaatgtg gctttgacat tcaggctgcc aaagaggctc cgagggtttt gcttgatcac	840
gtcaaagggtg aatcgggcga tgccttgcgt gtgcggcctt ctctccgc tcaggccata	900
tgacagcaact ccactctgtt ggcacaccctt gtcagtgca tagatcctca taccagacac	960
ccaccactaa tctccatcg cactgggtca gaccctccct cgcttggact ttctgtccac	1020
tgtgtgacat ctttgacat tccacaactc ctctgtcacc tggtccccag gatcagggtt	1080
aagcttagaga ggaagcccg gaaagctcta aaggacaggc atttggaaagca gccccagttat	1140
aggccttta cccttgttgg gctccagctc tgaccagact gcaacaccat caggcacgtg	1200

tcatectcca gcagctggaa gaagtccctca ctgtccactg cagttccatc ctcctctagc	1260
accagggtta gcactccatt cagcagtagg gtctccaatg cctgcccata ggcaagaagc	1320
aagaaggcga ggtcttatcc catgccccctt ccctctttag ctgccccaca tccatcagtt	1380
ggctctagac attggtcgtat gtcccacttt gactttccgg cactttgata cctcctaaag	1440
tttgcagctc tccgtgttct tcagtttttg ggggatccta gctagaggct gaccttttc	1500
ctctttgtctc ctaccatgtc attggcatct ccccttgctc ccctccaaatg cacttctgg	1560
tttggaaattgg aaagcaagcc aggttctcac gaagtccacc cttctgtctt atctacaatg	1620
ctgcacccctca cttcccacac cctcaagagt tctccagaag tggtttcagt aatagtgttt	1680
aaccttttg agtccttact ctgtgccagg tatgaggact ttacctacat tatcctctta	1740
ctcccttcaa caacccttagg aggtgatgta ttattattgc ttttttatag ttgaagaaac	1800
ttagggttttg gtaggttgaa caacttccca aggttgaca ggcaggaatg ggcagaatca	1860
gaatttgaac ttgatttgta acacaaatca cctttccata ctatgtctg aattctgtcc	1920
ctcgaaactct ccctatctcc tgctaaccctc tgctccata gaaaagctca ctgggtggaa	1980
aatgaacaaa ttgaccagag ctcattaggc ccactccgct gcttttagcc ctcagaggga	2040
ggggcagctg tgtgacttca gccctctgct ccatcatcac aagttgccac tggtgtggag	2100
cccttggct acccctgcta taggaaccga ggaacttggc ctacttactt tggctagcag	2160
ctcctggcgg gtggcagctg tcaggcctt ccggatggc cgcttgtat cacagacacg	2220
gaaagggtcgc tgggggtgt gagctgaggt ccagaccctc cgtccaaact ccgagcttat	2280
attagatact gacctggtag ttgagaagaa aagtcaagaa gggcgagga ggggcttgg	2340
gagtgtaaag ggcatgatga gggtagagtg gctagagggc tagggaggga gagatctagg	2400
tttatcgatt agggatgagg gagagaccat ggagtgcagg tggggcggg tggctcagga	2460
gcttgacaag cccactgtgg agtggggagc aggagaggaa ggggtactgg ttagtctcct	2520
aggggcttag tggagtattt tgccctgccc tatatccccct aaaggtggag ggtagagcgg	2580
agggttagca gtcacccctgag taagtcaactg gggttcagag ctgagaggta ctccatgg	2640
gaccggagag ttccctccct ggaacttctg ggctgggtgg ttctctcctg tgctgggct	2700
tttagtgggtt tttctgttac aaacctggga tctcagccca ggacaaggta ggaatgagtc	2760
aaggcctggac tctggccccc ctgcctggcc agtaagaagg gcaaagtcca aggggaggga	2820
tgagggaggg gccagatggg gtcctggagg aagaattgcc tggcaaaagc cattggagct	2880
tgtatgtgtg tctttggta tgacatgtgt tgtgaggta gatgggaacc atgtaaaagg	2940
atgaaatgtg acttctggtg ttttttatt tctatggagg gaatttctgg ggacggtttc	3000
tggctctcag gctctgagaa gctgcagttt atgagtgct ctgtgtgtgc tgccacccat	3060
tggagaagcc ataagctgca gcttttaggaa aaggaaaccc gggcgaggt gtggggaaagt	3120
gggatggcag catggcaggg ctttggaaaa tgagaggtga gactgtgtcc aggaagggtg	3180
taaggagagg atggatcctg atacatggat tcaggatcat tagggtcctg tctggacac	3240
tggccttcct gcttacctgc tctttcccttc ctccctggc ggaggagggg ctggctcact	3300

27

gctctggctt cattttccag agctgcgtc tgcagtca ctttaggtcat cttctctcac	3360
ttttctcctt ttgccgatta gtggacgtga cagagatgtg aatggggcag ggatgtcctt	3420
tgatggcatc aagactttag ctctcggtgc gctgtgtccc agctctgatt tcagttgcag	3480
ccgtgtatgga cagttgcgtg gaagctgaga ctctcaactga cagtaaaacc ctcaaataatgaa	3540
cacaatccct gctttcctgc caaggatcct ttagggtcc cccagcttcc ccacttttt	3600
tctgtgtcct gacaaaagaaa cacagagtaa cttgattgcc ctgtgacccg gccagttgca	3660
tttccccctgc aggcttgagc ccaagccaga gccttgaaaa ggtattcagg ttgttgc当地	3720
aaacactgaa aaaaactggc cctggccctg aaccaaatac cttaaaccct cgtaaactcc	3780
ataccctgac cccctgttt tggatataacc caggtagaac aactctctct cactgtctgt	3840
tgtgaggata cgctgtagcc cactcattaa gtacattctc ctaataaaatg ctggactg	3900
atcaccctgc cagtcctttg tcttggcaa tctatacttt tctcagaggt tcccaaggcc	3960
tactgaaggg acttaacata ctcttaatgg ctccctctc tcttgggttta ccttatgccc	4020
tcacttcctg agttaaacctc ccaaatacag gatcacctgt acccaagccc ttagctcaag	4080
aatacaggat cacctgttacc caagccctta gctcaagctc tgcttggaa gaacccaaac	4140
taagacagtg ctccgtgtgc cctcccaag caacctaag ttctggctgt tacttgagca	4200
gaggccttcc tttcccttc cccagctct atccatctgc caggcccccc tcaaatactct	4260
tcatttccaa gttttgcttgc acctttccaa gaggagaggg ctgcttctta gtatgtccct	4320
actcatccctt tcctttcttgc tcttgtatcc tggtgccagcc tggtaatggg gcctcttcat	4380
ggttgtgtgt catgactccc taaccattat gcctccatgc atccctgtt cctcctggaa	4440
cctagcacca tgccttacat gaaaaagctg tcattgacag cccgggtgaga gcccgtgaggg	4500
tggagtgact gggcaggggc ctgaggcaag aggtgggagg agtagggagg ccaggggctc	4560
agccggacca ggagactgga aacaggcaag gataaggcag gtgggggact gagttgtttg	4620
ggtcacctct gcaggccaga gagaccaggc aacatacaca ctgcagaagg tgggctggaa	4680
ggattggggc cagagctggg ggagggatga gaacagaagc aggaccagga ttcaagcagag	4740
tcctcctatt tccttccacc accagggaaat cttactgccc cacttcagct tggctgttt	4800
cctggcaagg caggctctca catgccttggc cgcctgggtg cgttgggtat gggaggagc	4860
agggtgaggg agggccccca ggagggccc agatgagcc tcattttgtc cctcccttatt	4920
cttgccttac cctctgcaaa tgtgataggg acaggacagg agtaggcacc tcgcctactg	4980
ctgcatttacc ttccatgttcc tccaggcccc caatccctgt tgcctccagc ttggtaagta	5040
gatctgtgca cgtcccttta cacccacca tccagtttg cccagatgtg cttagaatggg	5100
gctggacaaa gaaggagggg ccagactaga ggagtgggtgg tagagatgt gacagcctgg	5160
ggtgatgact ttatgcctgt ttaccactga gctctggaa ggaggccagg agtggggcag	5220
gtcaactgac tgggaggcagg ggatctgggt tccaagaagg agttgtgttt gaggtgggggt	5280
ctgggtcctc gtggaaagtca ggactcccag gcagaaaaga ggcaggctgc agggaaagtaa	5340
ggaggaggca tggcaccttc tcatcggca tcacaggtgg ggtttgc当地 caccctgaa	5400
cgccctctgt ggcgccttcc acccacctgt aggccacgaa ggatgtcggc ctgctaccgt	5460

cccccaggga acgagacact gctgagctgg aagacttcgc gggccacagg cacagccttc	5520
ctgctgctgg cggcgctgct ggggctgcct ggcaacggct tcgtggtgtg gagcttggcg	5580
ggctggcgcc ctgcacgggg gcgaccgctg gggccacgc ttgtgctgca cctggcgctg	5640
gccgacggcg cggtgctgct gtcacgccc ctctttgtgg ctttcctgac ccggcaggcc	5700
tggccgctgg gccaggcggg ctgcaaggcg gtgtactacg tttgtgcgcgt cagcatgtac	5760
gccagcgtgc tgctcacccg cctgttcagc ctgcagcgct gcctcgcaagt caccgcggcc	5820
ttcctggcgcc ctgcggctgct cagcccgccc ctggcccgcc gcctgctgct ggccgtctgg	5880
ctggccgccc ttttgctcgc cgtcccgccc gccgtctacc gccacctgtg gagggaccgc	5940
gtatgccagc tttgtccaccc gtcgcccggc cacgcccggc cccaccttag cctggagact	6000
ctgaccgcctt tcgtgcttcc tttcgggctg atgctcgct getacagcgt gacgctggca	6060
cggctgcggg ggcggccgtg gggctccggg cggcacgggg cgccgggtggg ccggctggtg	6120
agcgccatcg tgcttgctt cggcttgctc tggggccctt accacgcagt caaccttctg	6180
caggcggctcg cagcgtggc tccaccggaa gggcccttgg cgaagctggg cggagccggc	6240
caggcggcgc gagcgggaac tacggccttgc gccttcttca gttctagcgt caacccggtg	6300
ctctacgtct tcaccgctgg agatctgctg ccccgccag gtcccccgtt cctcacgcgg	6360
ctcttcgaag gctctggga ggcggccgtc ttagggaaagg gaccatggag	6420
ctccgaacta cccctcagct gaaagtgggt gggcaggggcc gccggcaatgg agacccgggg	6480
gttgggatgg agaaggacgg tccggaaatgg gacctttgac agcagaccct	6530

<210> 22

<211> 424

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 22	
ggattagatg tagcagcagt caggctggga tcaagatgcc tgggggacat cttgatcttgc	60
gcctttcagg gcaagtggga ggctagaaag gtggcttagga aagaacagca ttcttcaggt	120
aagggtatacg acttgggatg tgaggcgta tgctgaaagg ttctgtcagc aggggatcag	180
aggacagtgg ggaaattggg tgggttatct agcctgtact gtctgcaggt cctgaaattt	240
gatgctgtca tagtctttgc agtgggtcgg ttggaatgat tctggggca gaagctcaga	300
gccccttagt aggaatggag gcccggcccttc tgctgccact gtcagcccc ctccactgca	360
tgacgaaggg tggaggaaat tcccagcaac atatggccca ggccttgcag cagtgtggag	420
gttcc	424

<210> 23

<211> 424

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 23		
ggacacctcac actgctgcaa ggcttggcc atatgttgct gggaaattcc tccacccttc	60	
gtcatgcagt ggaggggct gagcagtggc agcagaaggc ccgcctccat tcctactaag	120	
gggctctgag cttctgcccc cagaatcattt ccaaccgacc cactgcaaag actatgacag	180	
catcaaattt caggacctgc agacagtaca ggctagataa cccacccaat ttccccactg	240	
tcctctgatc ccctcgatc agaacccccc agcataacgc ctcacatccc aagtctatac	300	
ccttacctga agaatgctgt tctttcttag ccacccctt acgctccac ttgccctgaa	360	
aggccaaat caagatgtcc cccaggcattt ttgatccac cctgactgct gctacatcta	420	
atcc	424	

<210> 24

<211> 7042

<212> DNA

<213> Homo sapiens

<400> 24		
aagaagaggt agcgagtgaa cgtgactgct ctatcccgaa caaaaggat agaaccagag	60	
gtggggagtc tggcgactcg gcgaccccgaa aagacttggat gtggcgagc ggcattccgaa	120	
gtagcgccgg gctccctccg gggtgccagcc gccgtcgaaaa gaaggcgcc acaggccggg	180	
aagacacctt ccctttgtgt ccagtagtgg ggtccacccggg agggcgcccc gtggccggg	240	
cctcaccggcg gcgcctccggg actgtgggggt caggctgcgt tggtggacg cccacccgc	300	
caacccctcgg aggtccctgg gggtcttcgt gcccgggg gctgcagaga tccagggag	360	
gcccctgtga gcccggacc tgccccgggg cgaagggtat gtggcgagac agagccctgc	420	
acccctaatt cccgggtggaa aactcctgtt gccgtttccc tccaccggcc tggagtttcc	480	
cagtcttgc cccggcgtgc cgccctccccc actaagacccctt aggccaaag gcttggctca	540	
tggttgacag ctcagagaga gaaagatctg agggaaagatg gatgaaaatcg ctcgaaattt	600	
tttgcctcaa catagagaag ctctggaaaa ggacatcaag acatccata tcattggatca	660	
catgattagt gatggatttt taacaatatc agaagaggaa aaagtaagaa atgagccac	720	
tcaacagcaa agagcagcta tgctgattaa aatgataactt aaaaaagata atgattccat	780	
cgtatcattc tacaatgctc tactacatga aggtataaaa gatcttgcgt cccttctcca	840	
tgtatggcatt cctgttgtct cttcttccag tgtaaggaca gtcctgtgtg aaggtggagt	900	

30

accacagagg ccagtgttt ttgtcacaag gaagaagctg gtgaatgcaa ttcagcagaa	960
gctctccaaa ttgaaaggtg aaccaggatg ggtcaccata catggatgg caggctgtgg	1020
gaagtctgta ttagctgcag aagctgttag agatcattcc cttttagaag gttgttccc	1080
agggggagtg cattgggttt cagttggaa acaagacaaa tctgggcttc tgatgaaact	1140
gcagaatctt tgcacacggc tggatcagga tgagagttt tccagggc ttccactaa	1200
tattgaagag gctaaagacc gtctccgcat tctgatgctt cgcaaaccacc caaggctct	1260
cttgatctt gatgatgtt gggactctt ggtgtgaaa gctttgaca gtcagtgtca	1320
gattttctt acaaccagag acaagagtgt tacagattca gtaatggtc ctaaatatgt	1380
agtcctgtg gagagttcct taggaaagga aaaaggactt gaaattttat cccttttgt	1440
taatatgaag aaggcagatt tgccagaaca agctcatagt attataaaag aatgtaaagg	1500
ctctccccctt gtagtatctt taattggtc actttacgt gatttccca atcgctggga	1560
gtactaccc aaacagctc agaataagca gtttaagaga ataaggaaat ctgcgtctta	1620
tgattatgag gctctagatg aagccatgtc tataagtgtt gaaatgctca gagaagacat	1680
caaagattat tacacagatc tttccatcct tcagaaggac gttaaaggc ctacaaaggt	1740
gttatgtatt ctctggaca tggaaactga agaaggtaa gacatactgc aggagttgt	1800
aaataagtct cttttattct gtgatcgaa tggaaagtcg ttcgttatt atttacatga	1860
tcttcaagta gatttctta cagagaagaa ttgcagccag ctgcaggatc tacataagaa	1920
gataatcact cagtttcaga gatatcacca gccgcatact ctccaccag atcaggaaga	1980
ctgtatgtat tggtaacaact ttctggccta tcacatggcc agtgccaaga tgcacaagga	2040
acttttgct ttaatgttt ccctggattt gattaaagca aaaacagaac ttgttaggccc	2100
tgctcatctg attcatgaat ttgtggaata cagacatata ctagatgaaa aggattgtgc	2160
agtcaagtgc aattttcagg agttttatc tttaatggc caccttcttgc gacgacagcc	2220
atttcctaattt attgtacaac tgggtctctg tgagccggaa acttcagaag tttatcagca	2280
agctaagctg caggccaaagc aggaggtcga taatggatg cttaacctgg aatggataaa	2340
caaaaaaaaaac atcacgaatc ttccccctt agttgtccgc ccccacacag atgcttttca	2400
ccatgcctgc ttttctgagg atggtcagag aatagttct tggagctg ataaaaacctt	2460
acagggtttc aaagctgaaa caggagagaa acttctagaa atcaaggctc atgaggatga	2520
agtgcattgt tggcattct ctacagatga cagattata gcaacctgc cagtggataa	2580
aaaagtgaaat ttgtgaaatt ctatgactgg ggaactagta cacacctatg atgagcactc	2640
agagcaagtc aattgtgtcc atttcaccaa cagtagtcat catcttctct tagccactgg	2700
gtcaagtgc tggcttcata aactttggaa tttgaatcaa aagaatgtc gaaataccat	2760
gtttggtcat acaaattcag tcaatcactg cagatttca ccagatgata agctttggc	2820
tagttgtca gctgatggaa cttttaagct ttggatgc acatcagcaa atgagaggaa	2880
aagcattaaat gtgaaacagt tcttcataaa tttggaggac cctcaagagg atatggaaat	2940
gatagtgaag tgggtgttcgt ggtctgcgtga tgggtcaagg ataatggtgg cagcaaaaaaa	3000

31

taaaatctt ttgtggaata cagactcacg ttcaaagggtg gctgattgca gaggacattt	3060
aagttgggtt catggtgtga tgtttctcc tcatggatca tcattttga catctctga	3120
tgaccagaca atcaggctct gggagacaaa gaaagtatgt aagaactctg ctgtaatgtt	3180
aaagcaagaa gtagatgttg tgttcaaga aatgaagtg atggcccttg cagttgacca	3240
tataagacgt ctgcaactca ttaatggaag aacaggtcag attgatttac tgactgaagc	3300
tcaagttagc tgctgttgct taagtccaca tcttcagtagc attgcatttg gagatgaaaa	3360
tggagccatt gagattttag aacttgtaaa caatagaatc ttccagttcca ggtttcagca	3420
caagaaaaact gtatggcaca tccagttcac agccgatgag aagactctta tttcaagttc	3480
tgtatgtgct gaaattcagg tatgaaattt gcaattggac aaatgtatct ttctacgagg	3540
ccatcaggaa acagtgaaag acttttagact cttgaaaaat tcaagactgc tttcttggtc	3600
atttgatgga acagtgaagg tatgaaatat tattactgga aataaagaaa aagactttgt	3660
ctgtcaccag ggtacagtagc tttcttggtga catttctcac gatgctacca agtttcatc	3720
tacctctgct gacaagactg caaagatctg gagttttgat ctccctttgc cacttcatga	3780
attgaggggc cacaacggct gtgtgcgctg ctctgccttc tctgtggaca gtaccctgct	3840
ggcaacggga gatgacaatg gagaatcag gatatggaat gtctcaaaccg gtgagcttct	3900
tcattttgtgt gctccgcttt cagaagaagg agctgctacc catggaggct gggtgactga	3960
cctttgcctt tctccagatg gcaaaatgct tatctctgct ggaggatata ttaagtggtg	4020
gaacgttgtc actggggaat cctcacagac cttctacaca aatggaacca atcttaagaa	4080
aatacacgtg tcccctgact tcaaaacata tgtgactgtg gataatctt gtatttata	4140
tattttacag actttagaat aaaatagtta agcattaatg tagttgaact ttttaaattt	4200
ttgaatttggaa aaaaaattct aatgaaaccc tgatataac tttttataaa gctcttaatt	4260
gttgtgcagt attgcattca ttacaaaagt gtttgggtt ggatgaataa tattaatgt	4320
gcttttccc aaatgaacat acctttaatc ttgttttca tgatcatcat taacagttt	4380
tccttagat gcaaatgaaa atgtgaatac ataccttggt gtactgttgg taaaattctg	4440
tcttgatca ttcaaaatgg ttgacataat taatgagaag aatttggaaag aaattggat	4500
ttaataactg tctgtattna ttactgttat gcaggctgtg cctcagggtt gcagtggcct	4560
gcttttggaa ccacacttac cccaaaggggg ttttggctc ctaaatacaa tcttagaggt	4620
tttttgcact cttaaattt gctttaaaaa tattgtgtct gtgtgcatacg tctgcagcat	4680
ttccttaat tgactcaata agtgagtctt ggatttagca ggccccccca ctttttttt	4740
ttgttttgg agacagagtc ttgctttgtt gccaggctgg agtgcagttt cgcgatctcg	4800
gctcaccacca atcgctgcct cctgggttca agcaattctc ctgcctcagc ctccccagta	4860
gctgggacta caggtgtgcg cacatgccag gctaattttt gtatTTTtag tagagacggg	4920
gtttcaccat gttggccggg atggctcgat tctcttgacc tcatgtatca cccgccttgg	4980
cctcccaaag tgctgagatt acaggcgtga gccaccgtgc ctggccaggc cccttcttct	5040
ttaatggaga cagggcttgc cactatcacc caggctggag tgcagttggca taatcataacc	5100
tcattgcagc ctcagactcc tgggttcaag caatcccttgc cccctcagc cccaaatgtac	5160

tgagactgca ggcacgagcc accacaccca gctaattttt aagtttctt gtagagacag	5220
ggtctcacta tgggtcttag gctggctttg aactcttggc ctcaagtaat ctcctgcct	5280
cagcctccca aagtgtggg attgcagata tgagccactg gcctggcctt cagcagttct	5340
ttttgtgaag taaaacttgt atgttggaaa gagtagatTT tattgtctt ccctttctc	5400
actgtagctg ctggcagccc tggccatat ctggactcta gtgtcagta tctgagttgg	5460
acactattcc tgctccctct tgtttcttac atatcagact tcttacttga atgaaacctg	5520
atctttccta atcctcaactt ttttctttt taaaaagcag ttctccact gctaaatgtt	5580
agtcatggag gtggggccaa tttaatcat aagccttaat aagatTTTC taagaaatgt	5640
gaaatagaac aattttcatc taattccatt tactttttaga tgaatggcat tgtgaatgcc	5700
attcttttaa tgaatttcaa gagaattctc tggtttctg tgaatttca gatgagtcac	5760
tgttaactcta gaagattaac cttccagcca acctatTTTc cttcccttg tctctctcat	5820
cctctttcc ttcccttctt ctttcttctt ctttatctc caaggtaat caggaaaaat	5880
agctttgac agggaaaaaa actcaataac tagctatTTT tgacctcctg atcaggaact	5940
tttagttgaag cgtaaatcta aagaaacatt ttctctgaaa tatattatta agggcaatgg	6000
agataaaatTA atagtagatg tggcccag aaaatataat caaaattcaa agatTTTTT	6060
tgtttctgtt actggaacta aatcaaataatg ttactagtgt taatagttaga taacttggTT	6120
ttattgttgg tgcatttttag tataactgtg gggtaggtcg gggagagggt aaggaaatAG	6180
atcaactcaga tttttttttt ataaatctt tagcccttga tgaatcata aatacagtga	6240
atacaatcct ttgcattgtt aaggaggTTT tttgtttta aatggtgggt caaggagcta	6300
gtttacaggc ttactgttat ttaagcaaAT gtggaaatgt aaaccttaat tttatcaaaa	6360
gaaatttctg taaatggtat gtctcccttag aatacccaa tcataatTTT atttgtcac	6420
actgttaggg gctcatctca tggcggcaga gtataaagta ttaccttttga gatTTAAAG	6480
ccactgactg ttataaagta taacaacaca catcaggTTT taaaaggcct tgaatggccc	6540
ttgtcttaaa aagaaaattAG gagccaggTG cggtaggcacg tgcctgttagt cccagctt	6600
tgggaggctg agacaggagg attcctttag ccctggagtt tgagtccacg ctgggtgaca	6660
tagcaagacc ctgtcttaaa agaaaaatgg gaagaaagac aaggtaacat gaagaaagaa	6720
gagataacca gtatgtgga gctgcaaATT tcattggcagt tcattggcagtc ggtcaagagg	6780
aggatTTGT tttgtatTTT gcagatgagc atttctaaAG cattttccct tgctgtatTTT	6840
ttttgttatta taaattacat tggacttcat atatataatt ttttttaca ttatatgtct	6900
cttgtatgtt ttgaaaactct tggatTTATG atatacgtta tatgatTTT ttgccttggt	6960
atacattttta aaatatgaat taaaaaaATT ttgtaaaaaa taaaattcac aaaattgttt	7020
tgaaaaacaa aaaaaaaaaaa aa	7042

<210> 25

<211> 3019

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<220>

<221> misc_feature

<222> (2846)..(2846)

<223> Any nucleotide

<400> 25		
tttttttttt ttttttgaa aaacatffff ggattgttc attcttgct tgtcatttat	60	
ctgttgatta gaccactaaa gtgaaggatt caagctaaat acatcaacct ttctattnag	120	
gctttatcag ctatatgtaa attcaattct atcaaaattt tctgagtgcc tcctcagtgt	180	
gtctctctga tggttcctgc ccggtatggc tggcatgaag aagatccacg gacttgcgaa	240	
tgctaacgcg gggcttgggg atgggtttgg agggtttgg ttcaaagctt tctgaaagtg	300	
tggaggagtg tccccctttt cttgcttgta gtgctagctg gtaagcgact tcgaatgcct	360	
gtcccaggggt taggatgatt tcataaggcta aattcacatc aaaggcagta aacacatgac	420	
agtagtggtg attagacttc aaatctttt tgatataggc aaatgttgag aggtcttctg	480	
ggtcctgggc agcacaggag atattacgaa tttcatgctc agcaattatg ttcttatttg	540	
ttgcatcaat aaatttgact cctttatatg agacagaaag aataatagta gggaccttct	600	
tcatttgctc ttagacttc tgacagttt cccgcatttt tgccacaagca tcttgggttg	660	
attctgtccc cctaagctct tttatcagca tagaacctaa ataaaaagct ttgtaatcac	720	
acgactggaa gataagcttt tctgggtgat gctgccagta ctgtaccggg gtagaggctg	780	
tggcttcatt cgagggtcgc aaggtaatgg aaggttctcc ccagtctcct gtctgagcca	840	
tctgcctctc cagtttgat cggggaaatat catcaaagta gttttcattt cttctccctcc	900	
ttgcatcgcc ctgcatgata atgtgaggaa cgtctaggaa gccaccagtg gtgtaaagtgc	960	
tttggctaaag tgatggagac aactgaggag gagtgtgatt accactgggt tccctgaggg	1020	
tgtggaccg agggggcttc tggggggat cgtcgctcag cctgtctccc agagatgcca	1080	
aaatacgttt cctgtggcca atcaaattga ttttaaaac attaataagt tcaacctccc	1140	
agatttttt caacagggtcc atcgaagtgt agccattaat tagaaaggct ttgggtgtagt	1200	
cggccagttc aatggaatcc agccactcag ctacagaggt gggatggtag ccatcatgcc	1260	
caatgggtct catcttgga aggagctgga ttgcctgttag aattctttgt ctgtgcccag	1320	
aattaaggat tccaatttcc aacaaatcct gatcttccat aacattgctt cccataaaact	1380	
gcacattgtc aaatccatta gccatcaggt ggttctcgta ctgaggttagc ccaatgctt	1440	
ccaaccattt tcccaactgtt tggacagggc atctgggtct tgggtctca ccattcatct	1500	
ctttaagttc gttgttgatt ccaacatcta tggaactcat tattttgtca atttcttccc	1560	

attccgatgt gaaggatggt gttctttcag aattccctt agaactgtgt tcagcagtgg	1620
aagattcaact ccagttaact ctgtatgttt tctcattgga aggataggca atgagatca	1680
aatcagattt agagacactt tttgacaaat gcatgtcgat caaggctta ggcaatgacc	1740
ttattctccc cagagtacag gctctctcca caaatcccc tgcgttcata acccactggt	1800
ccccattccg agatccactc ctgggtgatc ttgtgccaac aatggtatgg tttcgagtt	1860
ggttgtttt tttgtaaaaa attgttctac tgaccactt gggttaatt ttctttacca	1920
aaggttctga gttatTTTctt attggagact gcttgaaagg caaaggactg tttgccaaac	1980
tgacttcatc ttgtcccttt tcacattgtt ctctttccc atagagatga aatggattt	2040
caggggactc acaggctgga gaggatccat ggagcaggcc tgcaaattgc ccaggatcat	2100
attctttgg gggatcattt tcatcctgtc gggagaggc atctgtatgg ttagttccct	2160
cattcttgc ttctgtggtt cccacagaag aggtgggtgg actagcagga ggactggcag	2220
taaagcttgt gcaccctgta gatgtgttga tttcaaaaata ttcttggttg tgattcattc	2280
ggtaaaaatc cagagaagac acaatggatg ttgcgtgtt aggctgggt cgaatgactt	2340
ttacaatatt tttgagggca gtatcagggg atggaggtga acaatcaggt gttgggcctg	2400
ttgagctgtt tctatggta ctatccctg gagtagtaac tgctacacta gaggcattat	2460
cagttcttgg ggaaggtgcc cttgcaattt ctaaggagca aggtttctt gtaacagctg	2520
tgtccatgag atcacacaga aagttctcat ttctgttggaa aaatgtatcc agagaagcag	2580
atggtaaat ttccatagtg taatttctct tctttggata ggactcctgg gcaagcatgg	2640
ggaagccaag gttcctacat ccattacacg gagtaatgc ttcccaaagt cctgatggcc	2700
cacacgtatt ttcatcatca tcctttctt ccacttctcc tggacaaa ttgattgttag	2760
atgaggttct tacactctgg cttccatTTT tcccaagtcc ttccctgttca atcttgctca	2820
aattatctaa gtagtggct gatatngtgt ggcacaagtc ttccaaacgaa taatccttt	2880
cttgacagag ttttatttca tccaaagagtt ttgataattc tccagtgacg gtttcacttt	2940
tggcttttg ggaaggagac tcaacaggag atgaaatgtg tggctttgtt gttgcattt	3000
cctgtacagg ctcttcgag	3019

<210> 26

<211> 1752

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 26 agaacgcaga ccagcccaag ctgacagctt gagtagtcct tcttctgtc cctggtttg	60
ggggctgtat gacgtactgg tcggtagtaa agattaatat gtaagaaatg tggagctagg	120

35	
atcaagtcat actccacagc ctgcctggca aactatgtt tacttctgac tttgctctct	180
cgctgagaac attaatctgt caagctggcg ggctcccttg atagcaactt tcccaggggc	240
atgatgtggc aatgccacct ctcagccca gactaccgct attaccccggt ggacggctac	300
tccctgctta aacgcttccc tcttcatcct cttacaggac ccagatgccc tgtccaaaca	360
gtgggacaat ggttggaaag cattgggcta cctcagtgac agaaccacct gatggctaat	420
ggatttgaca atgtcagtt tatgggaagc aatgttatgg aagatcagga tttgttggaa	480
attggaatcc ttaattctgg gcacagacaa agaattctac aggcaatcca gctccttcca	540
aagatgagac ccattggca ttagggctac catcccacct ctgtagctga gtggctggat	600
tccattgaac tggcgacta caccaaagcc tttctaatta atggctacac ttcgatggac	660
ctgttggaaa aaatctgggaa ggttgaactt attaatgttt taaaaatcaa tttgattggc	720
cacaggaaac gtattttggc atctctggga gacaggctgc acgacgatcc cccacagaag	780
ccccctcggt ccatcaccct caggacagga gactggggag aaccttccat taccttgcga	840
cctccgaatg aagccacagc ctctaccccg gtacagtaact ggtagcatca cccagaaaaag	900
cttatcttcc agtcgtgtga ttacaaagct ttttatttag gttctatgct gataaaagag	960
cttaggggaa cagaatcaac ccaagatgct tgcgggctaa ctgtcagaag	1020
tctacagagc aaatgaagaa ggtccctact attattctt ctgtctcata taaaggagtc	1080
aaatttattt atgcaacaaa taagaacata attgctgagc atgaaattcg taatatctcc	1140
tgtgctgcc aggacccaga agacctctca acatttcct atatcacaaa agatttgaag	1200
tctaattcacc actactgtca tgcgtttact gcctttgatg tgaatttagc ctatgaaatc	1260
atcctaacc tggacaggc attcgaagtc gcttaccagc tagcactaca agcaagaaaa	1320
gggggacact cctccacact tccagaaagc ttgaaaaca aaccctccaa acccatcccc	1380
aagccccgcg ttagcattcg caagtccgt gatcttc atgccagcca taccggcag	1440
gaaccatcag agagacacac tgaggaggca ctcagaaaat tttgatagaa ttgaatttc	1500
atatacgatca taaagcctaa atagaaaggt tgatgttattt agcttgaatc cttcaattt	1560
gtggtctaattt caacagataa atgacaagca aagaatgaaa caatccaaaa atgttttca	1620
aaacaattttt gtgaatttttta tttttacaaa aattttttaa attcatattt taaaatgtat	1680
accaaggcaa aaaaatcata taagctatata cataaataca agagtttcaa aacataacaag	1740
agacatataa tg	1752

<210> 27

<211> 367

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

36

<400> 27
 ccgcgttagc attcgcaagt ccgtggatct tcttcatgcc agccataccg ggcaggaacc 60
 atcagagaga cacactgagg aggcactcaag aaaatttga tagaattgaa ttacatata 120
 gctgataaag cctaaataga aagggtgatg tathtagctt gaatccttca cttagtgg 180
 ctaatcaaca gataaatgac aagcaaagaa tgaaacaatc caaaaatgtt ttcaaaaaca 240
 attttgtgaa ttttattttt aaaaaattt tttaattca tattttaaa tgtataccaa 300
 ggcaaaaaaa tcataatagc tatatcataa atacaagagt ttcaaaacat acaagagaca 360
 tataatg 367

<210> 28

<211> 367

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 28
 cattatatgt ctcttgatg tttgaaact cttgtatcca tgatatacgct tatatgattt 60
 tttgccttg gtatacattt taaaatatga attaaaaaaaaa ttttgtaaa aataaaaattc 120
 aaaaaattgt ttgaaaaaac atttttggat tgtttcatcc ttgcgtgtc atttatctgt 180
 tgatttagacc actaaagtga aggattcaag ctaaatacat caaccttctt atttaggctt 240
 tatcagctat atgtaaaattc aattctatca aaatttctg agtgcctcct cagtgtgtct 300
 ctctgatggc tcctgcccgg tatggctggc atgaagaaga tccacggact tgcgaatgct 360
 aacgcgg 367

<210> 29

<211> 2457

<212> DNA

<213> Homo sapiens

<400> 29
 cacgcagcag gatggcaagg gctccgcttg gggccctgct cctctgggg cttctcgca 60
 ggggtgtggg gaagaacgag gaactgcgtc tttatcacca tctcttcaac aactatgacc 120
 caggaagccg gccagtgcgg gagcctgagg atactgtcac catcagcctc aaggtcaccc 180
 tgacgaatct catctcaactg aatggaaaaag aggagactct caccactagc gtctggattg 240
 gaatcgattt gcaggattac cgactcaact acagcaagga cgactttggg ggtatagaaa 300
 ccctgcgagt cccttcagaa ctcgtgtggc tgccagagat tgcgtggaa aacaatattt 360
 atggccagtt cggagtggcc tacgacgcca acgtgctcgt ctacgagggc ggctccgtga 420

37

cgtggctgcc	tccggccatc	tacccgcagcg	tctgcgcagt	ggaggtcacc	tacttcccct	480
tcgattggca	gaactgttcg	cttattttcc	gctctcagac	gtacaatgcc	gaagagggtgg	540
atttcacttt	tgccgttagac	aacgcacggca	agaccatcaa	caagatcgac	atcgacacag	600
aggcctatac	tgagaacggc	gagtgggcca	tcgacttctg	ccccgggggtg	atccgcccgc	660
accacggtgg	cgcacccgac	ggcccagggg	agactgacgt	catctactcg	ctcatcatcc	720
gccggaagcc	gctttctac	gtcattaaca	tcatcgcc	ctgtgtgctc	atctcgccc	780
tggtgctgt	cgcctacttc	ctgcccgcgc	aggccggcg	ccagaaaatgc	acggtctcca	840
tcaacgtcct	gctcgcccag	accgtcttct	tgttctctat	tgcccagaaa	atcccagaga	900
cttctctgag	cgtgccgctc	ctggggcagggt	tccttatttt	cgtcatggtg	gtcgccacgc	960
tcatttgtcat	gaattgcgtc	atcgtgctca	acgtgtccca	gccccacgccc	accacccacg	1020
ccatgtcccc	gccccgtgcgc	cacgttctcc	tggagctgct	gccgcgcctc	ctgggctccc	1080
cgccgcgcgc	cgagggccccc	cggggccgcct	cgcccccaag	gccccgtgcgc	tccggggct	1140
tattgctccg	cgcggaggag	ctgatactga	aaaagccacg	gagcgagctc	gtgtttgagg	1200
ggcagaggca	ccggcagggg	acctggacgg	ctgccttctg	ccagagcctg	ggcgcgcgcg	1260
cccccgaggt	ccgctgctgt	gtggatgccg	tgaacttcgt	ggccgagagc	acgagagatc	1320
aggaggccac	cggcgaggaa	gtgtccgact	gggtgcgcat	ggggaatgcc	cttgacaaca	1380
tctgcttctg	ggccgcctcg	gtgctttca	gcgtggctc	cagcctcata	ttccctcgggg	1440
cctacttcaa	ccgagtgcct	gatccccct	acgcgcgtg	tatccagcct	tagctgcac	1500
cgacttcaat	ttcccaccca	tctccagtag	gaaattgatt	ttaaaaaaagt	aggctgccgc	1560
caccacggca	ttatgateccc	ttcccccgtc	tgatcaatct	gcagtttg	aacttcacaa	1620
gaatggtgtg	tgcccgttcc	ctggcgtgt	taggcctggc	cgcgtccag	gggtcagcag	1680
gaggaaaggg	ttcacatagg	ctctcaggt	ccagtcctcc	agaaagcaag	gactgcctt	1740
cattcagcct	tgctgacctc	ccagccttcc	taaggctcag	ccccacggg	ctctgggtgg	1800
tgccagcttgc	ttagctatct	atctatattc	atttcatagc	caaacaggag	accctttgc	1860
aggacttgca	cacaggagg	ctgtagccag	gaaaccctct	tctccctgg	tctggctctg	1920
ctggagcggg	tgggaaccaa	acacccctcag	tgctgggtggc	cctcaggccc	acaggttaa	1980
ggctgaggct	gccctgaccc	ttcccacagtc	atttcttcta	gtttttcttg	gcccagcact	2040
gcccatccca	ccccatgagg	ctcaactcatt	gcagatccca	gcccacccctg	cccccttctt	2100
ccccacccctg	gaggctctct	ctgcctagtc	tacagtaactg	acagaaagca	aggacatgcg	2160
gcctgcattgg	tggagctgg	ttgaattgtc	tttattaaca	aacaggatat	ccaaggccac	2220
tacatttgagg	aggggggagg	ggggagggag	gagaagggtt	acttgcgtct	cacactatat	2280
acagatgcaa	gcaaggggcg	tggagagtga	gggcctccctg	ctccctccct	ccacccgggg	2340
agggcatggg	ctagaagagg	agaggggggt	cggaaatggg	ggaaatgttt	tggctgcggg	2400
gtcccccttc	cattccctgg	agtttggggg	aagggaatc	attaaagtgc	tttcaga	2457

<211> 4863

<212> DNA

<213> Homo sapiens

<400> 30	
ggagatagcg cctgtcagtc ggtgggtcg ggccctcccc ctccccggtc	60
tccggggag gcgcgggtgga gtccgcggcc ggggttctcc gatggggag aagcggcgcac	120
ggcggcagtg gagtaaccga gccggagcgt gagcggcccc ggtgccccgt tccccacgga	180
ggccatggc gaccggccccc ccgccccca gctggacgac atcgaccgtgt ccgcctgcg	240
ggaccctgct gggatcttg agcttgtgga ggtggtcggc aatggAACCT acggacaggt	300
gtacaagggt cgccatgtca agacggggca gctggctgcc atcaagggtca tggatgtcac	360
ggaggacgag gaggaagaga tcaaacagga gatcaacatg ctgaaaaagt actctcacca	420
ccgcaacatc gccacactt actcgagcccat catcaagaag agccccccgg gaaacgatga	480
ccagctctgg ctgggtatgg agttctgtgg tgctgggtca gtgactgacc tggtaaagaa	540
cacaaaaggc aacggccctga aggaggactg tatcgcttat atctgcaggg agatccttag	600
gggtctggcc catctccatg cccacaaggt gatccatcga gacatcaagg ggcagaatgt	660
gctgctgaca gagaatgctg aggtcaagct agtggatttt ggggtgagtg ctcagctgga	720
ccgcaccgtg ggcagacgga acactttcat tggactccc tactggatgg ctccagaggt	780
catcgctgt gatgagaacc ctgatgccac ctatgattac aggagtgata tttggctct	840
aggaatcaca gccatcgaga tggcagaggg agccccccct ctgtgtgaca tgcacccat	900
gcgagccctc ttccctcatc ctcggAACCC tccggccagg ctcaagtcca agaagtggtc	960
taagaagttc attgacttca ttgacacatg tctcatcaag acttacctga gccgcccacc	1020
cacggagcag ctactgaagt ttcccttcat ccgggaccag cccacggagc ggcaggtccg	1080
catccagctt aaggaccaca ttgaccgatc ccggaaagaag cgggggtgaga aagaggagac	1140
agaatatgag tacagcggca gcgaggagga agatgacagc catggagagg aaggagagcc	1200
aagctccatc atgaacgtgc ctggagagtc gactctacgc cggagtttc tccggctcca	1260
gcaggaaaaat aagagcaact cagaggctt aaaacagcag cagcagctgc agcagcagca	1320
gcagcggagac cccgaggcac acatcaaaca cctgtgcac cagcggcagc ggcgcata	1380
ggagcagaag gaggagcggc gccgcgtgga ggagcaacag cggcgggagc gggagcagcg	1440
gaagctgcag gagaaggagc agcagcggcg gctggaggac atgcaggctc tgcggcggga	1500
ggaggagcgg cggcaggcgg agcgcgagca ggaatacaag cggaaagcagc tggaggagca	1560
gcggcagtca gaacgtctcc agaggcagct gcagcaggag catgcctacc tcaagtccct	1620
gcagcagcag caacagcagc agcagcttca gaaacagcag cagcagcagc tcctgcctgg	1680
ggacaggaag cccctgtacc attatggtcg gggcatgaat cccgctgaca aaccagcctg	1740
ggcccgagag gtagaaagaga gaacaaggat gaacaagcag cagaactctc cttggccaa	1800
gagcaagcca ggcagcacgg ggcctgagcc cccatcccc caggcctcccc cagggcccc	1860

39

aggacccctt	tcccagactc	ctcctatgca	gaggccgtg	gagccccagg	agggaccgca	1920
caagagcctg	gtggcacacc	gggtcccact	gaagccatat	gcagcacctg	taccccgatc	1980
ccagtcctg	caggaccagc	ccacccgaaa	cctggctgcc	ttcccagct	cccatgaccc	2040
cgacctgccc	atccccgac	ccactgccac	gcccagtgcc	cgaggagctg	tcatccgcc	2100
gaattcagac	cccacctctg	aaggacctgg	ccccagccc	aatccccag	cctgggtccg	2160
cccagataac	gaggcccccac	ccaaggtgcc	tcagaggacc	tcatctatcg	ccactgccct	2220
taacaccagt	ggggccggag	gtcccccggcc	agcccaggca	gtccgtgcc	gtaaacccga	2280
cctcaggagg	agcgaccctg	gctgggaacg	ctcggacagc	gtccttccag	cctctcacgg	2340
gcacccccc	caggctggct	cactggagcg	gaaccgcgtg	ggagtctccct	ccaaaccgga	2400
cagtcctccc	gtgctctccc	ctggaaataa	agccaagccc	gacgaccacc	gctcacggcc	2460
aggccggccc	gcaagctata	agcgagcaat	tggtgaggac	tttgtgttgc	tgaaagagcg	2520
gactctggac	gaggccctc	gcctcccaa	gaaggccatg	gactactcg	cgtccagcga	2580
ggaggtgaa	agcagtgagg	acgacgagga	ggaaggcgaa	ggcgggccag	cagagggag	2640
cagagatacc	cctgggggccc	gcagcgatgg	ggatacagac	agcgtcagca	ccatgggtgt	2700
ccacgacgtc	gaggagatca	ccgggaccca	gccccatac	gggggcccga	ccatgggtgt	2760
ccagcgcacc	cctgaagagg	agcggAACCT	gctgcatgct	gacagcaatg	ggtacacaaa	2820
cctgcctgac	gtggtccagc	ccagccactc	acccaccgag	aacagcaaag	gccaaagccc	2880
accctcgaa	gatgggagtg	gtgactacca	gtctcggtgg	ctggtaaagg	ccccctggcaa	2940
gagctcggtc	acgatgtttg	tggatctagg	gatctaccag	cctggaggca	gtggggacag	3000
catccccatc	acagccctag	tgggtggaga	gggcactcgg	ctcgaccagc	tgcaagtacga	3060
cgtgaggaag	ggttctgtgg	tcaacgtgaa	tcccaccaac	acccggggccc	acagtgagac	3120
ccctgagatc	cggaaagtaca	agaagcgatt	caactccgag	atccctgtg	cagccctttg	3180
gggggtcaac	ctgctggtgg	gcacggagaa	cgggctgatg	ttgctggacc	gaagtggca	3240
gggcaaggtg	tatggactca	ttgggcccgc	acgcttccag	cagatggatg	tgctggaggg	3300
gctcaacctg	ctcatcacca	tctcaggaa	aaggaacaaa	ctgccccgt	attacctgtc	3360
ctggctccgg	aacaagattc	tgcacaatga	cccagaagtg	gagaagaagc	agggctggac	3420
caccgtgggg	gacatggagg	gctgcgggca	ctaccgttt	gtgaaatacg	agcggattaa	3480
gttcctggtc	atgccttca	agagctccgt	ggaggtgtat	gcctggggccc	ccaaacccta	3540
ccacaaattc	atggccttca	agtccttgc	cgacccccc	caccgcctc	tgctggtcga	3600
cctgacagta	gaggaggggc	agcggctcaa	ggtcatactat	ggctccagtg	ctggcttcca	3660
tgctgtggat	gtcgactcgg	ggaacagcta	tgacatctac	atccctgtgc	acatccagag	3720
ccagatcacg	ccccatgcca	tcatcttct	ccccaaacacc	gacggcatgg	agatgtct	3780
gtgctacgag	gacgaggggt	tctacgtcaa	cacgtacggg	cgcatcatta	aggatgtgt	3840
gctgcagtgg	ggggagatgc	ctacttctgt	ggcctacatc	tgctccaacc	agataatggg	3900
ctggggtgag	aaagccattg	agatccgctc	tgtggagacg	ggccacctcg	acggggctt	3960
catgcacaaa	cgagctcaga	ggctcaagtt	cctgtgtgag	cggaatgaca	aggtgtttt	4020

40

tgcctcagtc cgctctgggg gcagcagcca agtttacttc atgactctga accgtaactg	4080
catcatgaac tggtgacggg gccctggct ggggctgtcc cacactggac ccagctctcc	4140
ccctgcagcc aggcttcccggcccccct ctttccccctc cctgggcttt tgcttttact	4200
ggtttgattt cactggagcc tgctggaaac gtgaccctctg accccctgatg ctttcgtat	4260
cacgtgacca tccttccc caacatgtcc tcttccaaa actgtgcctg tccccagctt	4320
ctggggaggg acacagcttc cccttcccag gaattgagtg ggccctagccc ctccccctt	4380
ttctccattt gagaggagag tgcttggggc ttgaaccctt tacccctactg ctgctgactg	4440
ggcagggccc tggacccctt tatggacacg tcaggggagc cggtccccc cttgaatgtt	4500
ccagaccctg ggggggtca ctggggccta gattttggg gggtcaccag ccactccagg	4560
ggcaggggacc atttcttcat tttctgaaag cacttaatg attcccttc ccccaaactc	4620
cagggaatgg aggggggacc ccggcagcca aaacattccc cccattccc accccctct	4680
cctcttcttag cccatgcctt tccccgtgg agggagggag cagggagggcc tcactctcca	4740
cgcccccttgc ttgcattgt atatagtgtg agcagcaagt aacccttctc cctccccccc	4800
cacccctcct caatgttagtg gccttggata tcctgttgt taataaagac aattcaacca	4860
gct	4863

<210> 31

<211> 283

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 31	
agctgggtga attgtcttta ttaacaaaaca ggatatccaa ggccactaca ttgaggaggg	60
gggagggggg agggaggaga agggttactt gctgctcaca ctatatacag atgcaagcaa	120
ggggcgtgga gagtgagggc tccctgtcc ctccctccac cggggaaagg catgggctag	180
aagaggagag gggggctggg aatggggggg atgtttggc tgcgggggtcc cccctccatt	240
ccctggagtt tgggggaagg ggaatcatta aagtgttttc aga	283

<210> 32

<211> 283

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 32
tctgaaagca cttaatgtat tccccttccc ccaaactcca gggaatggag gggggacccc 60
gcagccaaaa catccccccc attcccgacc ccccttcctt cttcttagccc atgcccttcc 120
ccggtgaggag gagggagcag ggagccctca ctctccacgc cccttgcttg catctgtata 180
tagtgtgagc agcaagtaac ctttccttc cttcccccctt cccccccttcaatgttagtg 240
gccttggata tcctgtttgt taataaaagac aattcaaccca gct 283

<210> 33

<211> 2714

<212> DNA

<213> Homo sapiens

<400> 33
ggcacagggc gaggttttat acacctgaaa gaagagaatg tcaagacgaa gtagccgttt 60
acaagctaag cagcagcccc agcccagcca gacggaatcc ccccaagaag cccagataat 120
ccaggccaag aagaggaaaa ctaccagga tgtcaaaaaa agaagagagg aggtcaccaa 180
gaaacatcag tatgaaattt ggaattgttg gccacctgta ttatctgggg ggatcagtcc 240
ttgcattatc attgaaacac ctcacaaaaga aataggaaca agtgatttct ccagatttac 300
aaattacaga tttaaaaatc tttttattaa tccttcaccc ttgcctgatt taagctgggg 360
atgttcaaaa gaagtctggc taaacatgtt aaaaaaggag agcagatatg ttcatgacaa 420
acattttggaa gttctgcatt ctgacttggaa accacagatg aggtccatac ttctagactg 480
gcttttagag gtatgtgaag tatacacact tcataggaa acattttattc ttgcacaaga 540
ctttttgtat agatttatgt tgacacaaaa ggatataaat aaaaatatgc ttcaactcat 600
tggaaatttacc tcattattca ttgcttccaa acttgaggaa atctatgctc ctaaactcca 660
agagtttgct tacgtcactg atggtgcttg cagtgaagag gatatcttac ggtggaaact 720
cattatatta aaggctttaa aatgggaact ttgtccctgta acaatcatct cctggctaaa 780
tctctttctc caagttgatg ctcttaaaga tgctccctaa gttcttctac ctcagtttc 840
tcaggaaaca ttcatcaaa tagctcagct tttagatctg tgtattctag ccattgattc 900
attagagttc cagtagacaa tactgactgc tgctgccttg tgccatttta cctccattga 960
agtggtaag aaagcctcag gttggagtg ggacagtatt tcagaatgtg tagattggat 1020
ggtagctttt gtcaatgttag taaaaagtac tagtccagtg aagctgaaga cttttaaagaa 1080
gattcctatg gaagacagac ataatatcca gacacataca aactatgg ctatgctgga 1140
ggaagtaaat tacataaaca ctttcagaaaa agggggacag ttgtcaccag tgtgcaatgg 1200
aggcattatg acaccaccga agagcactga aaaaccacca ggaaaacact aaagaagata 1260
actaagcaaa caagttggaa ttccaccaaga ttgggttagaa ctggtatcac tgaactacta 1320
aagttttaca gaaagttagtg ctgtgattga ttgccttagc caattcacaa gttacactgc 1380
cattctgatt taaaactta caattggcac taaagaatac atttaattat ttccatgtt 1440

agctgttaaa gaaacagcag gacttggta caaagatgtc ttcattccca aggttactgg	1500
ataagaagcca accacagtct ataccatagc aatgttttc cttaatcca gtgttactgt	1560
gtttatcttg ataaactagg aatttgtca ctggagttt ggactggata agtgctacct	1620
taaagggtat actaagtat acagtacttt gaatctagtt gtttagattct caaaaattcct	1680
acactcttga ctatgtcaat ttgggtcttg aaaatataat ttaaacttgt ttacaaaagg	1740
tttagtttgt aataaggtga ctaatttatc tatactgtct atagcaagct attataaaac	1800
ttgaatttct acaaatggtg aaatttaatg tttttaaac tagtttattt gccttgcatt	1860
aacacatttt ttaactaata aggcttagat gaacatggtg ttcaaccctgt gctctaaaca	1920
gtggggagtagt caaagaaatt ataaacaaga taaatgtgt ggctccctcc taactggggc	1980
tttcttgaca ttaggttgc ttggtaataa ccttttgc tatcacaatt tgggtgaaaa	2040
acttaagtac ccttcaaac tatttatatg aggaagtcac ttactactc taagatatcc	2100
ctaaggaatt tttttttta atttagtgc actaaggctt tatttatgtt tgtgaaactg	2160
ttaaggtcct ttctaaattc ctccattgtg agataaggac agtgcataag tgataaagct	2220
taacacttga cctaaacttc tattttctta aggaagaaga gtattaaata tatactgact	2280
cctagaaatc tattttatcaa aaaaagacat gaaaacttgc tgcatacatagg ctatcttattt	2340
ctaaatattt taaatttagct tttctaaaaa aaaaatccag cctcataaaag tagattagaa	2400
aactagatttgc ttagtttattt ttgttatcag atatgtgaat ctcttctccc tttgaagaaaa	2460
ctatacatattt attgttacgg tatgaagtct tctgtatagt ttgtttttaa actaatattt	2520
gtttcagttat tttgtctgaa aagaaaacac cactaattgt gtacatatgt attatataaa	2580
cttaacccttt taatactgtt tatttttagc ccatttttaa aaaaataaaaa gttaaaaaaaa	2640
tttaactgtct taaaagtaaa gttttgcatt tgcttgaga aactttttt tccttctctg	2700
cgctgccagc tgta	2714

<210> 34

<211> 6773

<212> DNA

<213> Homo sapiens

<400> 34	
caagcatgtg atgttcttgc accttcttct gatagtacat ctcaacagtt gactccatat	60
agtcaagtcc atatttgc ttgc gagatctggc aactatcagg agttaataca gattttcatt	120
gaagacaact taacccgttgc tttacctgtc cagttccgac agtcagtcct aagagaactc	180
ttaagaaaag ctcaacacggg aatgaagct ctagatgaaa tctgtttaa agtttgc	240
tgtatatacg tccgtatactggc agaacaatta gtgttcaatt taaccagcta	300
tttcttagac caaataaaga gaaaatagac tttcttcttg aggtatgttc aagatcagta	360
aatttagaaaa aagcttcaga gtcttgaaa ggaaacatgg ctgttttctt aaagaatgtg	420

43

tgtctgggt tggaaagatct gcagtatgtt ttcatgattt cttcacatga gctttcatt	480
acattgttga aagatgaaga acgaaagcta cttgttgatc agatgaggaa gagatcccct	540
agagtaaatc tgtgcattaa acctgttaact tcattttatg atatcccagc ttcagcaagt	600
gtcaacattg gtcagttaga gcatcaactt atattgtcag tggatccttg gaggattaga	660
caaattttaa ttgaattaca tggatgact tcagagcgcc agttctggac agtgtctaat	720
aagtggaaag tacccctgt ctatagtggt gttatcctgg gaattaaaga caatttaaca	780
agagatttgg tttatattct tatggccaaa ggtttgcact gcagtactgt taaggacttt	840
tcccatgcta aacagctctt tgctgcttg ttggagttgg taacagagtt ctcaccgaag	900
cttcgtcagg tcatgctgaa tgagatgttg cttttggata ttcatacaca cgaagctggg	960
acagggcagg caggagagag accgccatcc gaccttataa gttagtacg aggctatctg	1020
gaaatgagggc ttccgtatat tcctttcgta caagttatag ctgaggaatg tggatccttt	1080
atgttaaact ggagagaaaa tgaatacctt acactccaag ttccgtcatt tttgcttcag	1140
agtaatccat atgtaaagct tggacagctt ttagcagcta catgcaaaga acttccaggc	1200
cctaaagaaa gcagacggac tgccaaagac ctttggaaag ttgttgcata aatctgttgt	1260
gtgtccagtc agcacaacg aggaaatgat ggcagagtta gttaataaaa acagaggaa	1320
tctacgttag gtatcatgta tcggagtgaa ctgtttctt ttatcaaaaa attacgagaa	1380
ccactcgtt tgactattat ttatcactc tttgtgaaac ttccaaatgt tcgggaggac	1440
attgtgaatg atattacagc tgaacacat tctattggc catcttccat tcccaacactc	1500
cagtctgtgg actttgaagc tggcaatc acagtggaaag agctagttcg atatacactc	1560
agtataaattc caaataacca ttcttggta attatccagg cagatattta ctttgcac	1620
aatcagtatt cagcagctt tcaactattac ctccaggcag gagctgtgtg ttctgacttc	1680
tttaacaagg ctgtcccccc tgatgtttat acagaccagg taataaaacg aatgataaaa	1740
tgttgcattt tgctgaattt ccacacacag gtggcttattt tatgtcagtt cctcagagaa	1800
attgactaca aaacagcggt taaatctctg caagaacaaa acagtcatga tgctatggac	1860
tcctactacg actacatatg ggatgttacc attttggat acttgactta tcttcattcat	1920
aaaagaggag aaacagataa aagacaaatt gcaatcaaag ccacggccca gacagagtt	1980
aatgcaagca atccagaaga agtgttacag ctggcagcgc agagaaggaa aaaaaagttt	2040
ctccaagcaa tggcaaaact ttactttaa gcagttaaat ttttttaact tttatffff	2100
aaacaatggg ctaaaaataa acagtattaa aaggtttaat ttatataata catatgtaca	2160
caattagtgg tggatcccccc tcagacaaaa tactggaaaca aatatttagtt taaaaacaaa	2220
ctatacagaa gacttcatac cgtaacaata aatgtatagt ttcttcaaag ggagaagaga	2280
ttcacatatac tgataacaaa ataaaacttagc aatctgtttt tctaattctac tttatgggc	2340
tggatcccccc ttttagaaaa gctaattaa aatatttaga aatagctac ctatgtacag	2400
caagtttca tggatcccccc taataaaatag atttcttaga gtcagttat attaataact	2460
cttcttcctt aagaaaaatag aagtttaggt caagttttaa gctttatcac tttgacactg	2520
tccttatctc acaatggagg aattttagaaa ggaccttaac agtttcacaa acataaataaa	2580

agccttagtc acactaaatt aaaaaaaaaa attccttagg gatatcttag agtagtaaag	2640
tgacttcctc atataaatag tttgaaagg tacttaagtt ttccacccaa attgtgatat	2700
aaaaaaaggt tattaccaag caacccatcat gtcaagaag ccccagttag gaaggagcca	2760
cagcatttat ctgtttata atttcttgg tactccact gtttagagca caggttgaac	2820
accatgttca tctaaggcattt attagttaaa aaatgtgtt a tggcaaggca aataaactag	2880
ttaaaaaaac attaaatttc accatttgc gaaattcaag tttataata gcttgctata	2940
gcagctatag ataaatttagt caccttatta caaaaactaaa cctttgtaaa caagttaaa	3000
ttaaatttc aagaacccaa ttgcactagt caagagtgtt ggaattttga gaatctaaca	3060
actagattca aagtactgtt tcacttagta taccctttaa ggtagcactt atccagtcca	3120
aaactccagt gacaaaattc ctatgttata aagataaaca cagtaacact ggattaaagg	3180
aaaaacatttgc ctatgttata gactgtgggt ggcttctatc cagtaacctt gggatgaag	3240
acatcttgtt aaacaagtcc tgctgtttct ttaacagcta acataggaaa taattaaatg	3300
tattcttag tgccaaattgt aagttttaaa atcagaatgg cagtgttaact tgtgaattgg	3360
ctagggcaat caatcacagc actactttct gtaaaacttt agtagttcag tgataccagt	3420
tctacccaaat cttgtgaat tccaaacttgc ttgcttagtt atcttcttta gtgttttct	3480
ggtggtttt cagtgctt cggtggtgtc ataatgcctc cattgcacac tggtgacaac	3540
tgtccccctt ttctgaaggt gtttatgtt aaaaacttgc cctatacatg ggaagaaatc	3600
atgcactgat ttccataatc aaagtcaaac cagacttctg ggtacttatt tgagattatt	3660
taggcctaatttataatgc ttctatgtc ttgcaggta tgaagggtca tattctgaaa	3720
gtttctgtt a ctttatatat ttctttaact ctttatcttag actgttggca ttgatcttgc	3780
gacacttcac aaatcttgc ttgatttcaa agtaatttta ttaacttttca tacattttga	3840
aatcagtgccccccttagaa ctttcttcc cctgaaactg cctgaaggag tactctattc	3900
ctaccatcag ttgggtgtac ttactagatt cagatagcaa agccaaaaaaa ctcacaaaaa	3960
aacataccag catagccaaa tagttgtat gtgtctggat attatgtctg tctccatag	4020
gaatcttctt aaaagtcttc agtttactg gactagtact ttactaca ttgacaaaag	4080
gtaccatcca atctacacat tctgaaatac tgccttactc caaacctaga tagatagaaa	4140
aaagtttagaa aagcatgaag gttgtacatc agaaactatc ttacatatgt ctgtatgtact	4200
tgttgctgtt ttgagatat tttaaaagaa accaaatcat aaccaagaag tttagcatgt	4260
caaaacagat tatcactctc aaactatttta catgactatg ttgaaggaa aaaggacttc	4320
agaacttctt aaccagtacc ttctacatg gaaattgaaa tggtcaaatac ccaaagaact	4380
cttaaaggcag aactataatg ttgatttattc tcaactgtat ttaaatttcca ttgggtctt	4440
ttgttgatac acattcagga ttggaaagta cttctaaacag aaagataatt actgaacagc	4500
taattttttt ttggccaaag tttaaatgc atgttagca gaatgttaaa gttcagagac	4560
tgtgtccca ttagaagttg tgaaaaggta agaagacaac aaatagagag tcttacctga	4620
ggctttctta accacttcaa tggaggtaaa atggcacaag gcagcagcag tcagtattct	4680

45

gtactggAAC tctaataaat caatggctAG aatacacAGA tctaaaAGct aacaggaaaa 4740
 aaaaaAGtAC aagcaattta ggagaaAGat gagtactaaa tgtctttgc taaaacctta 4800
 gggatctaga gataaataAG ccaccacccg gccaggcgcg gtggctcAcg cctgtAAtcc 4860
 cagcactttg ggaggccgag gcgggtggat cacaaggTCa cgagatcgag accatcctgg 4920
 ctaacacggT gaaaccccgc ctctactaaa aaatacaaaa aattagctgg gcttggtggc 4980
 acgcgcctgt agtcccagct actcgggagg ctgaggcagg agaatggcgt gaacccggga 5040
 tgcagagctt gcagtgagca gagatcgcgc cactgcactc cagcctggc gaaagagcga 5100
 gactccgtct caaaaaaaaaaaa aaaaacaAGc caccAACCTG aaggaAGtag acaaggaagg 5160
 actgttgcaa tacagtgtga catgtactag caggaaggGC acctaAtcca gattggaaaa 5220
 gatagtgtatg gcctcaaAttt gccataAAatg ggtctaaaaa gataaggGGag ccaggaAGAG 5280
 taggaggcag agaatgttct aggtataAGG acattacttg gaactcagtt cacagttcag 5340
 aactcctaAG gtgaaaaata aataaggAGt accttcattt cttatcaaga aagatgagg 5400
 gtggggctA gaaagaggca tggtctAGat tggatcacAA agggtcttA agaagtcaGA 5460
 attttatAGG ctgattcttG aagctactgg aagatTTtta aatcaaAGtt ccattttAAG 5520
 aaagataacct tagaatgcAG tgaAGcAGAC agactAGaAG aaaACATGTT tattaAGcAG 5580
 tgagattAGT taaaAGGCTG tataatctAG gcaataAGAG ctgAAactAGt agcAGtggAA 5640
 tggtataAGtG taaaAGGGGT agatTTcaca gatttgAGAA gatacttGtG cAGtggAAtt 5700
 aaacttcAAT tctctttgtc ctcatggc cagaAGgtAG gagaAAatGGG agaAGAGctG 5760
 ggaattggAA gtgAAatattt actgttatAt acctctAGAA agtccacatt gtttatcgGC 5820
 ttatcaaAGA ttaccatCA ctatcAGAAG ggtatAGctG cctaggacAA tttggatgc 5880
 taggaattct ggatgaaaaa attaAGctt taataAAAAG ttttataAAAAG taaACCAatt 5940
 tcagtataACT tagtggttat ccaatttGAG tattcataAt gtgctAGatt taAGcAccAC 6000
 tgcccacAAA ttttaaccta ggtgacttAA taattatccc cAAatgtctt ccataAtgttA 6060
 gattttcaca tcccacatAG aataAGAGGG tagattttct tcactttgt tataTggcAG 6120
 atacAGcAGC cttaAGatta cttacgAGAA gtaAGcAGA aAGAatGGG tctccttctt 6180
 tttttttttt ttaattttttt gagatggAGt cttgctctgt tgctcaggct ggagtgcAGt 6240
 agtgcgatct cgGctcactG caacctccAC ctccAGGtT ccAGcGATTc tcctgcctcA 6300
 gcctcccaAG taACatgttG gctaggctGc ctcaGGcGCC cAAactcctG acctcaAGtG 6360
 atctgcctGc ctgcctcAGc cgccccAAAGt gctgAGAtTA gAGACtGAG ccACAGtGcC 6420
 cggccAGAtc ctccctctcc tctacttAct tacttGtta aatAtgtAG cctggAAAAG 6480
 tttaacttGtA atttAtgttC taaaaAAAtt ttttaacAAA gtaattttAA ttctgatAtt 6540
 taacttGata ggcactctgt gtatccAAAt gtaAAAGACAt catacAGAAAt aattctAtGc 6600
 cattataAAAG cttaAACACA actggcGAAA AAAAtgcttt tccccatttt atatcaAAAAA 6660
 gagataacttt agtttggact cctaaAGAAt gaaAGtACTc agaaaaAGtGt aaggactttG 6720
 ttttctaga aatattaAGC aacataAAACA ctggggacAG aactttatGc gtc 6773

<210> 35

<211> 1590

<212> DNA

<213> Mus musculus

<400> 35	
ctgagaacca gacatcagga tggcaggggc tctgcttggt gccctgcttc tcctgacact	60
ctttggcaga agccaggaa agaatgaaga gcttagcctg tatcaccatc tcttcgacaa	120
ttatgatcca gaatgccggc cagttaggag acctgaggac actgtcacca tcaccctcaa	180
ggtcacccta accaacctca tctcactgaa cgagaaagaa gaaactctga ccaccagtgt	240
ctggattggc attgactggc acgactatcg gctcaactac agcaaggacg attttgcagg	300
tgttaggaatc ctccgggtcc cttcagaaca tgtatggctg ccagagattg ttctagaaaa	360
caatatggat gggcagttt gagtggccta cgacagcaat gttctagttc atgagggagg	420
ctatgtgagc tgggtgcccc cagccatcta ccgcagcacc tgcgcaagtgg aggtcaccta	480
tttccccctt gactggcaga actgctctt cattttcgc tcccagaccc acaatgctga	540
ggaggtggag ttcatctttc ccgtggatga cgacggcaat accatcaaca agattgacat	600
tgacacggca gcttttaccc agaatggaga atggggccata gactactgcc caggcatgat	660
tcgcccgtat gaggagggtt ccacagaagg tcctggagaa actgacgtca tctatacgct	720
catcatccgc cggaaagccgc ttttttacgt cattaacatc attgtgcctt gcgtgctcat	780
ttctggcttg gtgctgctcg cttacttcct gcctgcccag gctggtgcc agaaaatgcac	840
ggtctctatc aacgtcctgc tagcccagac tgtcttcttgc tttctaattt cccagaaaat	900
tccagagact tctctgagcg tgccactgtc gggcaggtat cttatattcg tcatgggtt	960
tgccacgctc attgtcatga attgcgtcat cgtgctcaac gtatcttga ggacgccaac	1020
gactcatgtc acatccccctc ggctgcccac gattttatta gagctgctgc cgcgtctcct	1080
gggctcgagc ccaccccccag aggatccccg aactgctca ccagcgaggc gtgcctcgtc	1140
tgtgggcatt ctgctcagag cggaggagct catcttgaaa aagccgcggg gcgaactcg	1200
gtttgaggggt cagaggcatc ggcacggAAC ttggaccgca gccctctgcc agaacctggg	1260
tgctgcagcc ccagaaatcc gctgctgtgt ggatgctgtg aactttgtgg ctgagagcac	1320
aagagaccag gaagccactg gagaggaact gtccgactgg gtgcgtatgg ggaaggccct	1380
ggacaatgtc tgttttggg cagcttgggt gctcttcagc gttgggttcta ctctcatctt	1440
ccttgggggt tacttcaacc aagttcctga tctcccttac ccaccgtgca tccaaccatg	1500
agcctgcact ggcacccacc tctccccac cccccaagaa agagattttgg aaaacaggcc	1560
gctgacaata aatctggttt gtgaacttgc	1590

<210> 36

<211> 2227

<212> DNA

<213> Mus musculus

<400> 36	
tgtgagcagc aagtagccct tctccctcct gtatccttc tcaatgtagt ggccttggat	60
atatcccctt tgtaataaaa gacaattcaa ccagcttcca ccatttttag agtctactat	120
tgttctctct caatcctgga gagatttgag agttgagaat gcagagggtt gaggaaaggc	180
ataggctct gtgaagttac tgtgataata gagacgaagt aagggtggatg aataggccag	240
ggatcagtc tgacacggta ggacccttg agaatagttt ttaccagccc cagcagggcc	300
aggccagact tctggcttca gtgtttctat atctgggtct tgtaaaaacc tcattggcta	360
tcaactagat aaacattctt taggttagaa ggagccaaga gcaaaaattga accaattgcc	420
tccaaggfgcc tgaccaaacc accccacccat cttctacttc cctgaggagt tggaccacc	480
cacatgacca cacaacccct cgggcagttc acaaaccaga tttattgtca gccccctgtt	540
ttcaaaaatct cttcttggg gggtaaggga gaggtgggtg ccagtgcagg ctcatggtt	600
gatgcacggt gggtaaggga gatcaggaac ttgggtgaag taaccccaa ggaagatgag	660
agtagaacca acgctgaaga gcaccaaaggc tgcccaaaaa cagacattgt ccagggcctt	720
ccccatacgc acccagtcgg acagttctg tgagagagag cttagcgagg gaggagcctg	780
gagggcgggg catctagcac tgctccctt caacccccc acccacctct ccagtggctt	840
cctggctctct tggctctca gccacaaagt tcacagcatc cacacagcag cgatttctg	900
gggctgcagc acccagggttc tggcagaggg ctgctgctaa ggcaacagca agcgcttagt	960
cattaaaaga ggcgtttaac ggcgagtgtt tgcctttgac ccaagagcag tgcttaccgg	1020
tccaaaggcc tggccgatgc ctctgaccct caaacacgag ttgcgtccgc ggcttttca	1080
agatgagctc ctccgctctg agcagaatgc ccacagacga ggcacgcctc gctgggtgagg	1140
cagttcgggg atcctctggg ggtgggtcg agcccaggag acgcggcagc agctctaata	1200
aaatctgcag cggggcaga gagagggtcc aagcccgctt cccacccctg ggcagtactt	1260
tctccaaacca ggcgttaccc tggcgcagcc agggatgtt gcatgagtgc ttggcgtcct	1320
caaagatacg ttgagcacga tgacgcaatt catgacaatg agcgtggcaa ccaccatgac	1380
gaatataaga tacctgatata acagaaggct gatgtcacag caccccaaaa acaaggcact	1440
agctgccttc tacctcacaa ataccaccc gcacagctgg tggcggtact tcttgatcct	1500
cctcaacgt gccagtattt tctggccct tctgcatata ccatctgtt cggacatgaa	1560
ggggattcccc agcaatttgg acaccctgtgtt gtcgggtctac cacttccaca gctccaccga	1620
ggtgagggtt ttggatggc agaatctgga gaggtccccca gctttccctg ctatggccct	1680
ttccatgtga tcaattccact cactaccctt gtcctccag tggcgttac agcctccact	1740
tctatcttcc ctggaaacttgc ctgtggccgc agtcacgaa tatctggtgc aaaggttcag	1800
agagcttaag tcccaggacc ccctggaaatc cgacaagtcg cccacccaga aggccaccct	1860
agggctgggtg ctaagagaag ctgcagccag catcatgagc tttggagcca cttgttaga	1920
ggtgctgctc tgggaggctg agggatggga ataaaagggg gagagggtca ggccaaacaaa	1980

agcaaggacc tctagcccat atgccccat gtagatctcg gccctgtggc tgcagcagga	2040
ggtcagcga ctggacggcg gcaacgactg cccaggccc gccccagaca ctggggatcc	2100
tggtagggcg ctggcccgta tagccctggc cgcaaggcgag ggatttggc aagctgaaac	2160
ggcagctggc gcaagtgcgg ggtacctgat ccagggggcg tggttgtacc tgtgtggacg	2220
aggtttg	2227

<210> 37

<211> 2472

<212> DNA

<213> Homo sapiens

<400> 37	
agcatcgagt cggccttgtt gcctactgga gtctccgcag agcccgccg ggagtagctg	60
gtggaccccg ttgagctgcc gaacttccgg gactccccc cgacccttc ccagcttccc	120
gtccgctccg ccgcagcgat tgtctcggtt ggtttagtgc gcacaaaccc cccgacccag	180
ggccgggtgc gcgtgtggaa gggaaagcac tccccctcggtg gtcgcctgg ggtgcgtgg	240
aggaggggggt gacataacca gggactcgag gtccgcgtg ggaatgatcc acgaactgct	300
cttggctctg agcgggtacc ctgggtccat tttcacctgg aacaagcggg gtggcctgca	360
ggtatcgac gacttccctt tcctccaccc cagttagacc agtgtcctga atcgactctg	420
ccggctcgcc acagactata ttgcgttac tgagttcatt gaacagtaca cgggcatgt	480
gcaacagcag gatcaccatc catctcaaca gggccaaggt gggttacatg gaatctacat	540
gcgggccttc tgcacaggc tggattctgt tttgcagcct tatcgccaag cactgcttga	600
tttggAACAA gagttcctgg gtgatccccata ttcctccata tcacatgtca actacttct	660
agaccagtcc cagttcttt ttcctctgt gatgggttgcgtt gtagaacaaa ttAAAAGTCA	720
aaagattcat ggttgcataaa tcctggaaac agtctacaaa cacagctgtg ggggggttgc	780
tcctgttcga agtgcactgg aaaaaatcct ggcgtttgtt catgggtca tgtataaaca	840
gctctcagcc tggatgtcc atggactcct cttggaccag catgaagaat tctttatcaa	900
acaggggcca tcttctggta atgtcgtgc ccagccagaa gaggacgagg aggatctggg	960
cattggggga ctgacaggaa aacaactgag agaactgcag gacttgcgtcc tgattgagga	1020
agagaacatg ctggcaccat ctctgaagca gtttcccta cgagtggaga ttttgcattc	1080
ctacattcca gtgagggttg ctgaaaaat cctatttgcgtt ggagaatctg tccagatgtt	1140
tgagaatcaa aatgtgaacc tgactagaaa aggatccatt ttgaaaaacc aggaagacac	1200
ttttgtgcga gagctgcacc gtctcaagca gcagccactc ttcaagttgg tggactttga	1260
acaggtgggtg gatcgcatcc gcagcactgt ggctgagcat ctctggaaatgt tgatggtaga	1320
agaatccgat ttactgggtc agtgaagat cattaaagac ttttaccttc tggacgtgg	1380
agaactgttt caggccttca ttgacacagc tcaacacatg ttgaaaacac cacccactgc	1440

49

agtaactgag	catgatgtga	atgtggcctt	tcaacagtca	gcacacaagg	tattgctaga	1500
tatgtacaac	cttccccc	tgttgca	tttgcactt	gacaatcgag	tatcacggaa	1560
agcagatgct	actcaggcaa	gagaaggccc	tttcgggaa	acttctcccc	gggaagcccc	1620
tgcacatcggc	tggcagccc	taggtcttc	ctacaaagta	cagtggccac	tacatattct	1680
cttcacccca	gctgtcctgg	aaaaaaatag	acaatttaa	aaaccaaaca	aatggact	1740
gtcttctgca	agcttaccta	caaacaggtt	caatgttgtt	tttaagtact	tactgagtgt	1800
gcccgggtg	caagctgagc	tgcagcactg	ctggcccta	caaatgcagc	gcaagcacct	1860
caagtcaac	cagactgatg	caatcaagtg	gcgcctaaga	aatcacatgg	catttttgtt	1920
ggataatctt	cagttactatc	tccaggtaga	tgtgtggag	tctcagttct	cccaagctgct	1980
tcatcagatc	aattctaccc	gagactttga	aagcatccga	ttggctcatg	accacttcct	2040
gagcaatttgc	ctggctcaat	cctttatcct	attgaaacct	gtgtttca	ctgcctgaatga	2100
aatcctagat	ctctgtcaca	gtttttgttc	gctggtcagt	cagaacctag	gcccactgg	2160
tgagcgtgga	gccgcggc	tgagcattct	cgtgaaggc	tttagccgc	agtcttca	2220
cctgttcaag	attctctcca	gtgttcggaa	tcatcagatc	aactcagatt	tggctcaact	2280
actgttacga	ctagattata	acaaatacta	tacccaggct	ggtggaaactc	tggcagttt	2340
cgggatgtga	aaatttctgg	ctcataaatt	gaaataacag	ccacgttccc	aagggtgtaa	2400
cagaagattc	aaaacatccc	attctagcca	cacacaaata	aatatctg	cg gcttaaaaaa	2460
aaaaaaaaaa	aa					2472

<210> 38

<211> 4165

<212> DNA

<213> Homo sapiens

<400> 38	agcatcgagt	cgcccttgc	gtctactgga	gtctccgcag	agcccggcgg	ggagtagctg	60		
	gtggaccccg	tttagtgc	cc	gaacttccgg	gactccccc	cgaccccttc	ccagcttccc	120	
	gtccgc	cccg	cgat	tgtctcggt	ggttgattcg	gcacaaaccc	cccgcaccc	180	
	ggcccggtgc	gcgtgtggaa	ggggaaagcac	tcccctcg	gtcgcttgg	ggtgcgtgg		240	
	aggaggggg	gacataacca	gggactcgag	gtccgcgtg	ggaatgatcc	acgaactgct		300	
	cttggctctg	agcgggtacc	ctgggtccat	ttcacctgg	aacaagcgg	gtggcttgca		360	
	ggtatcgcag	gacttcc	ttcc	caccc	cagt	gagacc	agtgtcctga	atcgactctg	420
	ccggctcggc	acagactata	ttcgcttcac	tgagttcatt	gaac	agtc	ataca	cgggc	480
	gcaacagcag	gatcaccatc	catctcaaca	ggccaaggt	gggttacatg	aatctac	ct	ct	540
	gcgggccttc	tgcacaggc	tggattctgt	tttgcagc	tatcgcca	act	gt	cttga	600
	tttggaaaca	gagttcctgg	gtgatccca	tcttccata	tcacatgt	actacttc	c	ttaaaagtca	660
	agaccagg	ttt	ttcc	ctgt	gatg	ttgt	ta	aaaaagtca	720

aaagattcat gggtgtcaaa tcctggaaac agtctacaaa cacagctgtg gggggttgcc	780
tcctgttcga agtgcactgg aaaaaatcct ggccgttgt catggggtca tgtataaaca	840
gctctcagcc tggatgctcc atggactcct cttggaccag catgaagaat tctttatcaa	900
acaggggcca tcttctggta atgtcagtgc ccagccagaa gaggacgagg aggatctggg	960
cattggggga ctgacaggaa aacaactgag agaactgcag gacttgcgc tgattgagga	1020
agagaacatg ctggcaccat ctctgaagca gttttcccta cgagtggaga ttttgcctac	1080
ctacattcca gtgagggttg ctgaaaaaat cctattgtt ggagaatctg tccagatgtt	1140
tgagaatcaa aatgtgaacc tgactagaaa aggatccatt ttgaaaaacc aggaagacac	1200
ttttgctgca gagctgcacc gtctcaagca gcagccactc ttcaagttgg tggactttga	1260
acaggtgtg gatcgcatc gcagcactgt ggctgagcat ctctggaaat tgatggtaga	1320
agaatccgat ttactgggtc agctgaagat cattaaagac ttttaccttc tgggacgtgg	1380
agaactgttt cagcccttca ttgacacagc tcaacacatg ttgaaaacac cacccactgc	1440
agtaactgag catgatgtga atgtggcctt tcaacagtca gcacacaagg tattgctaga	1500
tgatgacaac ctctccctc tggcactt gacaatcgag tatcacggaa aggagcacaa	1560
agcagatgct actcaggcaa gagaaggccc ttctcggaa acttctcccc gggaaagcccc	1620
tgcatctggc tggcagccc taggtcttcc ctacaaagta cagtggccac tacatattct	1680
cttcacccca gctgtcctgg aaaagtacaa tgggttttt aagtacttac tgagtgtgcg	1740
ccgggtgcaa gctgagctgc agcaactgctg gcccctacaa atgcagcgcg acgacactcaa	1800
gtcgaaccag actgatgcaa tcaagtggcg cctaagaaat cacatggcat tttggtgga	1860
taatcttcag tactatctcc aggttagatgt gttggagtct cagttctccc agctgcttca	1920
tcagatcaat tctacccgag actttgaaag catccgattt gctcatgacc acttcctgag	1980
caatttgcgt gctcaatctt ttatcctatt gaaacctgtg tttcaactgccc tgaatgaaat	2040
cctagatctc tgcacagtt tttgtttgtt ggtcagtcag aacctaggcc cactggatga	2100
gcgtggagcc gcccagctga gcattctcgt gaagggcttt agccgcccagt ctcaactcct	2160
gttcaagatt ctctccagtg ttccggaatca tcagatcaac tcagatttgg ctcaactact	2220
gttacgacta gattataaca aatactatac ccaggctggt ggaactctgg gcagttcgg	2280
gatgtgaaaaa ttctggctc ataaattgaa ataacagcca cgttcccaag gttgtaacag	2340
aagattcaaa acatcccatt ctgccacac acaaataaaat atctgcggct tagtgatagg	2400
actctacctt ttctcctaga agcagttact gaacatccag gaggacaact cttccatc	2460
atccccatgt ggaagggtct ctcccatcaa ggagaacatg tggcatctct gatcctttac	2520
attgagaaca tttgttgat atgttcattt attcaatagt catttattga gcacctacta	2580
cgtaccttgg tactgttcaa gctgtggag atacagcggt agacaaacaaa tatagagcag	2640
aaagttaaaat attttatggt tcataatgtga aaaagtaatt atgtttataaa atagactaac	2700
tgctggatgt taccaccaag taagaaagca acaggtaaga taggctttct ctetccctat	2760
accaagtaat ttatacctac acagattggg caattcttagc taatgaaaat atactaaaa	2820

51

gtatttctta	ggccgggcat	ggtggctcac	acctgtaatc	ccagcacttt	gggaggcccga	2880
ggcgccgga	tcacctgaag	tcaggagtt	gagaccagcc	tgaccaacat	gatgaaacct	2940
cgattctact	aaaaatacaa	aaattagcca	ggtgttgtgg	catgtgcctg	taatcccagc	3000
tactcaggag	gctgagacag	gagaattgct	tgaacctggg	aagcagacgc	tgcagtgagc	3060
tgagattgtg	ccattgcatt	ccagcctggg	caacaagagc	gaaattccgt	ctaaaaaaaaa	3120
aaaaaaaaaa	aaaaagtatt	attctccaag	aaaaggtcc	ttaagaaaaaa	attgagatca	3180
agttgttaga	ttttaaata	ctgaagattg	caggccaat	tacccatctt	acacaaacca	3240
taggggttga	agttatctta	atatggcca	gccatcactg	gtaatcaata	ttcatatcat	3300
tgtaagtaaa	aagaaatatt	cactgaacaa	cgcctccaa	actgaaaaag	aatgcagtgt	3360
tctggcatca	ggttatagtc	actgcacatcg	gttttcatca	ctacatattc	tacacacact	3420
ggaaagctct	gacaacttat	tccctgctat	tatcaactaa	agatcaccct	ttccactgt	3480
gtctctggag	caggagctgg	caaactatgg	cctgctgtct	gtttttgtac	agttttactg	3540
aaacacagcc	gtgcccattt	gtttactcat	tgtctatggt	tgctttcatg	ccctcacagc	3600
aaaggcgagt	agttgtgatg	gatcaaattgg	cccacaaagc	ctgaaaatatt	tactctttga	3660
ccctttacag	aaaaaaaaacct	tgttgacccc	tgcttttagag	aatgagaagc	catgcaggga	3720
tcagtgtatgc	cagaggaagg	gaaggaactg	cttccagcta	ttgtgacaat	aataataata	3780
ataatattgg	gtctttgact	agaacgtgta	acattccag	gtgttctcac	ttgtgcttcc	3840
catgttatac	ttacggaagg	tcattccatc	aagcttatgg	tcactgtccc	ttcatggcag	3900
ttggtcctt	cgttctccct	ttagctctaa	gagttgggga	gtacccacag	gtgagctgt	3960
atctcagctc	agagagagag	catgaggct	tttttaactg	tcaggaaaca	gagctgtgcc	4020
caattccact	caactttgg	cacaactgtt	aatctgggcc	ttcacctacc	ttaaactgag	4080
tttctgcaag	catagcattt	tagacaccct	ggaataacct	tttgggaatg	atgccacaga	4140
ataaaagttca	ctcttaactt	ttcaa				4165

<210> 39

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 39

ggagagaacc acccagccca gaagttc

27

<210> 40

<211> 23

<212> DNA

52

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 40

aggaatggag gcggcccttc tgc

23

<210> 41

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 41

cggaggagct catcttgaaa aag

23

<210> 42

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 42

gatcaggaac ttgggtgaag taac

24

<210> 43

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 43

tgtgagcagc aagtaaccct tctcc

25

<210> 44

<211> 793

<212> DNA

<213> Artificial sequence

<220>

<223> Probe

<400> 44
acagagtta atgcaagcaa tccagaagaa gtgttacagc tggcagcgca gagaaggaaa 60
aaaaagtttc tccaagcaat ggcaaaactt tacttttaag cagttaaatt ttttaactt 120
ttatttttta aacaatgggc taaaaataaa cagttaaaa aggttaagtt tatataatac 180
atatgtacac aattagtggt gttttctttt cagacaaaat actgaaaacaa atattagtt 240
aaaaacaaac tatacagaag acttcataacc gtaacaataa atgtatagtt tcttcaaagg 300
gagaagagat tcacatatct gataacaaa taaacttagca atctagttt ctaatctact 360
ttatgaggct ggattttttt tttagaaaag ctaattaaa atattttagaa atagctagcc 420
tatgtacagc aagttttcat gtctttttt aataaataga ttcttaggag tcagtatata 480
ttaataactc ttcttcctta agaaaataga agtttaggtc aagtgttaag ctttatcact 540
ttgacactgt ctttatctca caatggagga atttagaaag gaccttaaca gtttcacaaa 600
cataaataaa gccttagtca cactaaatta aaaaaaaaaa ttcccttaggg atatcttaga 660
gtagtaagt gacttcctca tataaatagt ttgaaagggt acttaagttt ttcacccaaa 720
ttgtatata caaaaagggtt attaccaagc aacctacatg tcaagaaagc cccagtagg 780
aaggagccac agc 793

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IL02/00904

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C12Q 1/68
US CL : 435/6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 435/6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST, MEDLINE, BIOTECHNO, CAPLUS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	MILNER et al., Selecting Effective Antisense Reagents on Combinatorial Oligonucleotide Arrays. Nature Biotechnology, June 1997, Vol. 15, pages 537-541, see entire document.	1-113
Y	VANHEE-BROSSOLLET et al., Do Natural Antisense Transcripts Make Sense in Eukaryotes? Gene, 1998, Vol. 211, pages 1-9, see entire document.	1-113
Y	KUMAR et al., Antisense RNA: Function and Fate of Duplex RNA in Cells of Higher Eukaryotes. Microbiology and Molecular Biology Reviews, December 1998, Vol. 62, No. 4, pages 1415-1434, see entire document.	1-113

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
27 March 2003 (27.03.2003)	11 APR 2003
Name and mailing address of the ISA/US/ Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703)305-3230	Authorized officer: <i>Telicia D. Roberts for Sean K McGarry</i> Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet) (July 1998)