ECON60332 Coursework Template

Group 11

Participant's Student ID	Indicate if the student did not participate		
10710007			

Theoretical exercise

Question a

When comparing the ARCH(2) model : $\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2$ to a GARCH(1,1)) : $\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_2 \sigma_{t-1}^2$

The following similarities emerge:

- Both models capture the cluster effect where periods of high (low) volatility are followed by periods of high (low) volatility (probabilistically)
- Both model capture overkurtosis, accounting for a heavier tail distribution than the standard norm
- If z_t is not symmetric, then $Cov(\varepsilon_t, \sigma_{t+1}^2 | \mathcal{F}_{t-1})$ would not be zero, and both model are able to capture leverage (asymmetric) effects

Though with key differences that

- An arch model implies an AR model for the squared residuals whilst a GARCH model implies an ARMA model in both squared residuals and variance
- Fir the GARCH model b_1 can be unidentified if $a_1 = 0$

Question b

Assuming $\alpha_1 + \alpha_2 < 1$ for stationarity

Where \mathcal{F}_{t-1} is the past history of the process, then the conditional expectation of ε_t is given by:

$$E(\varepsilon_t|\mathcal{F}_{t-1}) = E(\sqrt{\sigma_t^2} z_t|\mathcal{F}_{t-1}) = \sigma_t E(z_t|\mathcal{F}_{t-1}) = \sigma_t \cdot 0 = 0$$
(1)

Using LIE, we can obtain the unconditional mean:

$$E(\varepsilon_t) = E(E(\varepsilon_t | \mathcal{F}_{t-1})) = E(0) = 0$$
(2)

To derive the second moment, we can express ε_t^2 as an AR(22)-process:

$$\sigma_t^2 + \varepsilon_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \varepsilon_t^2$$
$$\varepsilon_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \nu_t$$

with $\nu_t = \varepsilon_t^2 - \sigma_t^2$ being a WN process.

It holds that:

$$E(\varepsilon_t^2 | \mathcal{F}_{t-1}) = E(\sigma_t^2 z_t^2 | \mathcal{F}_{t-1}) = \sigma_t^2 E(z_t^2 | \mathcal{F}_{t-1}) = \sigma_t^2 \cdot 1 = \sigma_t^2$$
(3)

Such that:

$$E(\nu_t | \mathcal{F}_{t-1}) = E(\varepsilon_t^2 | \mathcal{F}_{t-1}) - \sigma_t^2 = \sigma_t^2 - \sigma_t^2 = 0$$
(4)

Therefore:

$$E(\nu_t) = E(E(\nu_t | \mathcal{F}_{t-1})) = E(0) = 0$$
(5)

Which allows us to write:

$$\begin{split} E(\varepsilon_{t}^{2}) &= \omega + \alpha_{1} E\left[\varepsilon_{t-1}^{2}\right] + \alpha_{2} E\left[\varepsilon_{t-2}^{2}\right] + E\left[\nu_{t}\right] \\ &= \omega + \alpha_{1} E\left[\varepsilon_{t-1}^{2}\right] + \alpha_{2} E\left[\varepsilon_{t-2}^{2}\right] \end{split}$$

Using stationarity, $E(\varepsilon_{t-1}^2) = E(\varepsilon_t^2)$ and hence we conclude that:

$$Var(\varepsilon_t) = E(\varepsilon_t^2) - (E(\varepsilon_t))^2 = E(\varepsilon_t^2) = \omega + \alpha_1 Var(\varepsilon_{t-1}) - \alpha_2 Var(\varepsilon_{t-2}) = \frac{\omega}{1 - \alpha_1 - \alpha_2} = \frac{\omega}{1 - \sum_{i=1}^2 \alpha_i}$$

Question c

Using the covariance definition Cov(X,Y) = E[XY] - E[X]E[Y] and given the conditional variance $\sigma_{t+1}^2 = \omega + \alpha_1 \varepsilon_t^2 + \alpha_2 \varepsilon_{t-1}^2$, we derive the covariance as follows:

$$\begin{aligned} \operatorname{Cov}(\sigma_{t+1}^2, \varepsilon_t | \mathcal{F}_{t-1}) &= E[\sigma_{t+1}^2 \varepsilon_t | \mathcal{F}_{t-1}] - E[\sigma_{t+1}^2 | \mathcal{F}_{t-1}] E[\varepsilon_t | \mathcal{F}_{t-1}] \\ &= E[\sigma_{t+1}^2 \varepsilon_t | \mathcal{F}_{t-1}] - 0 \\ &= E\left[\left(\omega + \alpha_1 \varepsilon_t^2 + \alpha_2 \varepsilon_{t-1}^2\right) \varepsilon_t | \mathcal{F}_{t-1}\right] \\ &= \omega E[\varepsilon_t | \mathcal{F}_{t-1}] + \alpha_1 E[\varepsilon_t^3 | \mathcal{F}_{t-1}] + \alpha_2 E[\varepsilon_{t-1}^2 \varepsilon_t | \mathcal{F}_{t-1}] \quad \text{(since } \omega \text{ and } \varepsilon_{t-1}^2 \text{ don't depend on } \varepsilon_t) \\ &= 0 + \alpha_1 E[\varepsilon_t^3 | \mathcal{F}_{t-1}] + 0 \quad \text{(since } \varepsilon_t \text{ is conditionally zero-mean and independent of } \varepsilon_{t-1}). \end{aligned}$$

Now, if we consider $\varepsilon_t = \sigma_t z_t$:

$$Cov(\sigma_{t+1}^2, \varepsilon_t | \mathcal{F}_{t-1}) = \alpha_1 E[\varepsilon_t^3 | \mathcal{F}_{t-1}] = \alpha_1 E[(\sigma_t z_t)^3 | \mathcal{F}_{t-1}]$$
$$= \alpha_1 \sigma_t^3 E[z_t^3 | \mathcal{F}_{t-1}]$$
$$= \alpha_1 \left(\omega + \alpha_1 \varepsilon_t^2 + \alpha_2 \varepsilon_{t-1}^2\right)^{\frac{3}{2}} E[z_t^3].$$

Only with non-zero third moment on z_t , is the model able to capture the leverage (asymmetric) effect. Since $z_t \mathcal{N}(0, 1)$, the third moment is 0 and $\text{Cov}(\sigma_{t+1}^2, \varepsilon_t | \mathcal{F}_{t-1}) = 0$ so the model cannot capture the leverage effect, which is the tendency for negative shocks to have a different impact on volatility than positive shocks.

Question d

With our ARCH(2) model, the 1 step ahead forecast is : $\sigma_{t+1|t}^2 = \omega + \alpha_1 \varepsilon_t^2 + \alpha_2 \varepsilon_{t-1}^2$

Analogously the 2 step ahead forecast, where we take expectation of ε_t^2 , and use the unit variance of z_t to simplify

$$\sigma_{t+2|t}^2 = E_t \left[\omega + \alpha_1 \varepsilon_{t+1}^2 + \alpha_2 \varepsilon_t^2 \right] = \omega + \alpha_1 \sigma_{t+1|t}^2 + \alpha_2 \sigma_t^2$$

Similarly for the 3-step ahead forecast, following the same logic

$$\sigma_{t+3|t}^2 = E_t \left[\omega + \alpha_1 \varepsilon_{t+2}^2 + \alpha_2 \varepsilon_{t+1}^2 \right] = \omega + \alpha_1 \sigma_{t+2|t}^2 + \alpha_2 \sigma_{t+1}^2 \equiv E \left[\sigma_{t+3}^2 | F_t \right]$$

Question e

The news impact curve illustrates how a shock to ε_{t-1} affects σ_t^2 .

We derive the unconditional long-term variance $\bar{\sigma}^2$ assuming that $E(\varepsilon_t^2)$ at any point is equal to $\bar{\sigma}^2$. From the stationarity condition:

$$E(\varepsilon_t^2) = \omega + \alpha_1 E(\varepsilon_{t-1}^2) + \alpha_2 E(\varepsilon_{t-2}^2). \tag{6}$$

Given $E(\varepsilon_{t-1}^2) = E(\varepsilon_{t-2}^2) = \bar{\sigma}^2$, the equation simplifies to:

$$\bar{\sigma}^2 = \frac{\omega}{1 - \alpha_1 - \alpha_2}.\tag{7}$$

The news impact curve for the ARCH(2) model is then set up as:

$$\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \bar{\sigma}^2. \tag{8}$$

With the most recent shock ε_{t-1} highlighted, we rewrite it as:

$$\sigma_t^2 = A + \alpha_1 \varepsilon_{t-1}^2,\tag{9}$$

where $A = \omega + \alpha_2 \bar{\sigma}^2$

Thus with an asymmetric distribution, we can derive the NIC as :

$$NIC(\varepsilon_{t-1}|\sigma_{t-1}^2 = \sigma_Y^2) = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \sigma_Y^2.$$
(10)

Practical exercise

Question a

	Sample moments		Test statistic	P-value
Mean	0.10	Mean	0.83	0.40
Standard deviation	1.83	Skewness	-2.08	0.04
Skewness	-0.32	Kurtosis	4.06	0.00
Kurtosis	4.26	JB	20.85	0.00

LBQ test results:

	Returns	Squared returns
Test statistic	27.06	25.61
P-value	0.17	0.22

Plot of Daily Log Returns

Figure 1: Log Return Plot

SACF and SPACF

Figure 2: Sample Autocorrelation and Partial Autocorrelation Function Plot

Interpretation

Looking at the Descriptive Statistics, a skewness of -0.32 suggests that the distribution of returns negatively skewed, meaning there are more extreme negative returns than positive returns. Whilst a kurtosis of 4.26 is slightly higher than a normal distribution (3), suggesting the distribution of returns has heavier tails and more extreme values.

Looking at the Test Statistics, testing mean returns are zero $(H_0: \mu = 0 \text{ against } H_1: \mu \neq = 0)$ with a one-sided test. Obtaining 0.83 with a p-value of 0.40, we fail to reject H_0 at all conventional significance levels, since we do not have enough evidence to conclude the mean return is significantly different from zero.

Testing the skewness of the return series is zero $(H_1: \gamma = 0 \text{ against } H_1: \gamma \neq = 0)$ We obtain -2.08 with a p-value of 0.04, since the p-value is less than 0.05, we reject the null hypothesis in favour of the alternative hypothesis. Thus, the distribution of returns is significantly skewed, and hence non-symmetric. Testing for leptokurtic property in the returns $(H_0: \kappa = 3 \text{ against } H_1: \kappa \neq 3)$ We obtain 4.26 and p value of 0.00, thus we reject H_0 , in favour of the alternative hypothesis that the returns have significantly different kurtosis from 3, confirming the presence of heavy tails in the distribution.

Using the Jargue-Bera test for normality $(H_0: \gamma = 0 \& \kappa = 3 \text{ against } H_0: \gamma \neq 0 \& \kappa \neq 3)$

Obtaining 20.85 with a p-value of 0.00, we reject H_0 in favour of H_1 , that the distribution of returns differs significantly from normality, evidence by its skewness and kurtosis values.

Testing the autocorrelation of the financial time series returns $(H_0: \rho_1 = \rho_2 = \ldots = \rho_{21} = 0 \text{ against } H_1: \rho_i \neq 0 \text{ for some } i \in \{1, 2, \ldots, 21\})$

Obtaining a p-value of 0.17, we do not reject the null hypothesis at all conventional significance levels, thus, there is no significant evidence of autocorrelation in the returns of the series. We proceed analogously for the squared returns, arriving at the same conclusion, indicating no significant evidence of autocorrelation in the volatility (squared returns) of the series.

For the plots, there is no consistent pattern of significant lags in both plots, however a significant negative correlation at lag 13 alongside lags approaching significance at 9 and 20 suggests some evidence for a seasonal pattern, however the presence of significant lags informs us the time series is not white noise and exhibits some autocorrelation.

The Daily Log-returns plot does not display a clear trend or seasonal pattern, although the volatility appears to be clustered in certain periods, indicative of heteroskedacity.

Question b

GARCH		GJR-GARCH			
Parameter	Estimate	P-value	Parameter	Estimate	P-value
ω	2.53	0.54	ω	3.06	0.02
α	0.13	0.03	α	0.00	1.00
β	0.15	0.90	β	0.00	1.00
GARCH-t			γ	0.29	0.19
ω	0.24	0.58	GJR-GARCH-t		
α	0.07	0.22	ω	0.22	0.26
β	0.87	0.00	α	0.02	0.57
ν	4.62	0.00	β	0.89	0.00
			γ	0.07	0.13
			ν	4.57	0.00

Interpretation:

Where ω is the constant term of the model, representing the long run average variance when all other terms are zero, α is the coefficient representing the contribution of past squared innovations (lagged error terms) to the current variance, indicating how much past volatility affects current volatility. β is the coefficient representing the contribution of past conditional variance to the current variance, capturing the persistence of volatility shocks. γ is the coefficient specific to GJR-GARCH models, capturing the asymmetric effect of negative shocks (leverage effect), where negative shocks have a different impact on volatility than positive shocks of the same magnitude. ν is the degrees of freedom parameter in the t-distribution and is related to the kurtosis of the distribution, with lower values indicating heavier tails.

For the GARCH model with a normal distribution, the estimates for α and β are 2.53 and 0.15, respectively with p values indicating that only α is statistically significant at a conventional level (p < 0.05). Thus the model suggests that past shocks have a significant impact on current volatility, but the effect is not persistent.

For the GARCH-t model, β is signifiant, indicating persistence in volatility and ν is also significant, suggesting that the distribution of innovations has heavier tails than the normal distribution. Thus, the presence of heavy tails in the data is signifiant, which could be important fore forecasting . . .

For the GJR-GARCH model, ω is significant, but α and β are very small with correspondingly very large p-values. Thus, negative shocks might have a different impact on volatility, although this effect is not

statistically significant at the 5% level

For the GJR-GARCH-t model, both α and β are significant, indicating that past shocks and volatility are important for current volatility, and ν is significant, indicating heavy tails. Although, γ is not significant, suggesting the asymmetric effects of shocks is not statistically significant. Thus, both past shocks and heavy tails are significant in modelling volatility but asymmetric effects of shocks are not significant.

Overall, a garch-t or GJR-GARCH-t model might be preferred

Question c

Plot of NIC

Figure 3: News Impact Curve Plot

Interpretation:

Drawbacks of the GARCH models are obvious here, since the conditional variance is unable to respond asymmetrically to shocks in y_t , that is, a positive return has the same effect as a negative return upon variance. Since it is argued that negative innovations to shock returns tend to increase volatility more than positive innovations of the same magnitude.

This plot offers a visual representation of the effect that new information has on the volatility predicted by different GARCH models. The standard GARCH model with normal innovations shows that the impact on conditional variance is symmetrical, both positive and negative shocks of the same magnitude have the same effect on predicted volatility, leaving the leverage effect unaccounted for.

The GARCH model with a student's t-distribution is also symmetric but flatter compared to the standard GARCH model, indicating less sensitivity to shocks in general, due to the heavier tails in the t-distribution, reducing the impact of outliers.

The GJR-GARCH model with normal distribution shows a pronounced asymmetry where negative shocks increase the conditional variance more than positive shocks. The model accounts for the leverage effect, where bad news influences volatility more than good news.

The GJR-GARCH model with Student's t-distribution combines the properties of the GJR-GARCH with the heavier tails of the t-distribution. Showing an asymmetrical impact of shocks on volatility, similar to the GJR-GARCH but with the additional effect of heavier tails in the distribution of shocks. Heavier tails may imply that extreme values are more probable than in a normal distortion, and the impact curve is less steep for large magnitude shocks, indicating large shocks increase volatility less than what a normal distribution would suggest. Overall, both models with Student's t-distribution suggests that the models account for heavy

tails in the distribution of shocks, whilst the GJR-GRACH models reveal an asymmetric response to shocks, highlighting the importance of the leverage effect.

Question d

GARCH	Test statistic	P-value
Z	12.80	0.92
Z^2	16.87	0.72
GARCH-t	Test statistic	P-value
Z	12.39	0.93
-2	16.21	0.76

GJR-GARCH	Test statistic	P-value
Z	13.09	0.91
Z^2	18.23	0.63
GJR-GARCH-t	Test statistic	P-value
Z	13.04	0.91
Z^2	17.85	0.66

Interpretation:

High p-values for the residuals indicate there is no statistical evidence to reject the null hypothesis that the residuals follow the respective distributions. Suggesting the residuals are white noise, meaning they are normally distributed with no autocorrelation.

For the squared residuals, the p-values are high but slightly less so, again suggesting that there is no statistical evidence to reject the null hypothesis of no autocorrelation in the squared residuals. Indicating there is no ARCH effect and the conditional variance is well captured by the model.

Whilst the LBQ p-values for the residuals are very high across all models, suggesting that none of the models leaves unexplained autocorrelation in the returns, which means that all models are adequate in this respect.

The p-values for the squared residuals, which help to identify volatility clustering or ARCH effects, are also high across all models. However, in this context, the model with the highest p-value (corresponding to lowest test stat) for the square residuals is the GARCH-t model, indicating the least amount of autocorrelation and possibly the best fit among the compared models.

Question e

	GARCH	GARCH-t	GJR-GARCH	GJR-GARCH-t
RMSFE	7.32	7.29	7.32	7.30
DM Test statistic	NA	2.00	-0.03	1.83
P-value	NA	0.98	0.49	0.97

Interpretation:

The RMSFE values indicate that GARCH+ has the smallest forecast error at 7.29, followed by GJR-GARCH- t at 7.30, GARCH at 7.32, and GJR-GARCH at 7.32. Lower RMSFE values suggest better forecast accuracy.

Diebold-Mariano (DM) Test results are only meaningful for GARCH+ and GJR-GARCH-t since GARCH is the benchmark. For GARCH+, the DM Test statistic is 2.00 with a p-value of 0.98, and for GJR-GARCH-t, the statistic is 1.83 with a p-value of 0.97. Since the p-values are much higher than the typical significance levels (e.g., 0.05 or 0.10), there's no statistical evidence that the forecast accuracy of GARCH+ and GJR-GARCH-t is different from GARCH.

Thus, although GARCH+ has a slightly lower RMSFE, the Diebold-Mariano test does not confirm its superiority over the benchmark GARCH model in terms of predictive accuracy. Economically, this suggests that there might be no practical benefit from using more complex models over the simpler GARCH model for forecasting this particular variance, as they do not provide statistically significant improvements in forecast accuracy.

Question f

Interpretation:

The choice of GARCH model involves a tradeoff between model misspecification and estimation noise. On one hand, simpler models like the standard GARCH have fewer parameters and are less prone to estimation noise, but may suffer from misspecification if the true volatility process exhibits features that the model cannot capture (e.g., asymmetry, time-varying volatility).

More flexible models like the GJR-GARCH or GARCH with additional components (GARCH+) can potentially better fit the data by accounting for these complexities, reducing misspecification. However, they require estimating more parameters, introducing greater estimation noise.

While complex models offer an improved in-sample fit, they do not necessarily outperform simpler models in out-of-sample forecasting due to the increased estimation noise. The benefits of reduced misspecification may be offset by the noise from estimating additional parameters, especially in small samples.

Ultimately, the optimal model balances the competing goals of parsimony and flexibility. Simple models are preferred when estimation noise is a greater concern, while more complex specifications are justified if the true data-generating process exhibits features that warrant additional modeling components, even at the cost of some estimation noise.

Model selection criteria like information criteria aim to navigate this tradeoff by penalizing overly complex models. However, the final choice depends on the relative importance of in-sample fit versus out-of-sample forecasting performance for the specific application.

Appendix

For reproduction of said script, see https://github.com/oddish3/FE-CW/tree/master

```
ı # -----
2 # FInancaial Economitrics Coursework
3 # ===
4 #
5 # Author: 10710007
6 # Version: 13-03-2024
10 rm(list = ls())
11 # Packages
12 library(lubridate)
13 library(forecast)
14 library(rugarch)
16 setwd("/home/oddish3/Documents/R_folder/MSc/FE/FE-coursework/code")
17 data = read.csv("../data/group_11.csv")
18 source("fineco_fun.R")
19 source("../utils/latex-macro.R")
20 figures_path <- "../docs/figures/"</pre>
21
22
23 # Script
25 data$date = as.Date(data$date)
26 # plot(data$log.return, type = "l", col = "darkgreen")
27 # abline(h = 0, v = 250, col = "red")
28 # dev.off()
29
31 # -----
32 #
           Practical Exercise
33 # -----
34
35 # Use the first 250 observations as an in-sample (estimation) period and the last 250 observations as out of
     sample forecasting
36 in_sample = as.matrix(data[1:250, 2])
37 out_sample = as.matrix(data[(251:nrow(data)), 2])
39 # a) investigating statistical properties of the in-sample data ----
40 # i) descriptive stats
41 a1_results = dstats(in_sample)
43 # ii-v) moment tests
44 a2_results = test_moment(in_sample)
_{\rm 46} # Assemble data for moments and test statistics into a dataframe
47 moment_test_df = data.frame(
48 # descriptive stats
49    amu = a1_results[1,1],
   asigma = a1_results[2,1],
50
51
   askew = a1_results[3,1],
52 akurt = a1_results[4,1],
53 # t stats
amut = a2_results[1,1],
    askewt = a2_results[2,1],
55
   akurtt = a2_results[3,1],
56
57    ajbt = a2_results[4,1],
58 # p vals
amup = a2_results[1,2],
   askewp = a2_results[2,2],
60
akurtp = a2_results[3,2],
ajbp = a2_results[4,2]
```

```
63 )
64 # Appending the second section with its title
65 write_latex("../results/results.tex", moment_test_df, decimal_precision = 2, append = FALSE, section_title =
        "Moment Test and Descriptive Statistics")
66
67 # vi) lbq test
68 lbq1 = Box.test(in_sample, lag = 21, type = "Ljung-Box", fitdf = 0)
69 lbq2 = Box.test(in_sample^2, lag = 21, type = "Ljung-Box", fitdf = 0) # fitdf is the number of parameters
        estimated ???
70
71 lbq_df = data.frame(
72 aistat = lbq1$statistic,
     aip = lbq1$p.value,
    aiistat = lbq2$statistic,
74
     aiip = lbq2$p.value
75
76 )
77 # Writing the first section with its title
78 write_latex("../results/results.tex", lbq_df, decimal_precision = 2, append = TRUE, section_title = "Ljung-Box
        Test Results")
80 # vii) Plot SACF and SPACF
81 # Open a PNG device for ACF and PACF plots
82 png(pasteO(figures_path, "PACF.png"))
84 # Setting the plotting area to accommodate two plots side by side
85 par(mfrow = c(1, 2))
87\ \mbox{\# Generate ACF and PACF plots}
88 Acf(in_sample, lag.max = 25)
89 Pacf(in_sample, lag.max = 25)
91 # Close the plotting device for ACF/PACF
92 dev.off()
94 # Reset par settings to default for subsequent plots
95 par(mfrow = c(1, 1))
97 # Now, generate and save another plot separately if needed
98 png(pasteO(figures_path, "log_return_plot.png"))
99 plot(data$log.return, type = "l", col = "darkgreen")
100 dev.off()
102 # b) estimating the conditional variance ----
_{103} # Assume that the conditional mean of the return series is constant
_{104} #Use the et series to estimate the following conditional variance
105
106 # i) GARCH(1,1) with zt ~ N(0,1)
107 spec1 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
                      mean.model = list(armaOrder = c(0, 0), include.mean = FALSE) ,distribution.model = "norm")
108
109
fit1 = ugarchfit(spec = spec1, data = data$log.return)
112 estimates1 = fit1@fit$robust.matcoef[,1] # This extracts the "Estimate" column
113 p_values1 = fit1@fit$robust.matcoef[,4] # This extracts the "Pr(>|t|)" column
114
115
116 # GARCH(1.1) with zt ~ tv
117 spec2 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
                     mean.model = list(armaOrder = c(0, 0), include.mean = FALSE),
118
                     distribution.model = "std") # 'std' for Student's t-distribution
119
120 fit2 = ugarchfit(spec = spec2, data = data$log.return)
122 estimates2 = fit2@fit$robust.matcoef[,1] # This extracts the "Estimate" column
123 p_values2 = fit2@fit$robust.matcoef[,4] # This extracts the "Pr(>|t|)" column
124
125 # ii) GJR-GARCH (1, 1) with zt \sim N(0,1)
126 spec3 = ugarchspec(
   variance.model = list(model = "gjrGARCH", garchOrder = c(1,1)),
```

```
mean.model = list(armaOrder = c(0,0), include.mean = FALSE),
     distribution.model = "norm" # Standard normal distribution for innovations
129
130 )
131
132 fit3 = ugarchfit(spec = spec3, data = data$log.return)
133 estimates 3 = fit3@fit$robust.matcoef[,1] # This extracts the "Estimate" column
134 p_values3 = fit3@fit$robust.matcoef[,4] # This extracts the "Pr(>|t|)" column
_{\rm 136} # GJR-MODEL (1, 1) with zt \tilde{\ } tv
137 spec4 = ugarchspec(
    variance.model = list(model = "gjrGARCH", garchOrder = c(1, 1)),
     mean.model = list(armaOrder = c(0, 0), include.mean = FALSE),
139
     distribution.model = "std" # 'std' for Student's t-distribution
141
142 fit4 = ugarchfit(spec = spec4, data = data$log.return)
143 estimates4 = fit4@fit$robust.matcoef[,1] # This extracts the "Estimate" column
144 p_values4 = fit4@fit$robust.matcoef[,4]
145
146 garch11_df = data.frame(
    bw = estimates1["omega"]
147
    ba = estimates1["alpha1"].
148
   bb = estimates1["beta1"],
149
bpi = p_values1["omega"],
     bpii = p_values1["alpha1"],
151
152
     bpiii = p_values1["beta1"]
153
154
155 write_latex("../results/results.tex", garch11_df, append = TRUE, section_title = "GARCH(1,1) with zt ~ N(0,1)")
156
157 garch11_t_df = data.frame(
   bwi = estimates2["omega"],
158
159
     bai = estimates2["alpha1"],
     bbi = estimates2["beta1"],
160
     bvi = estimates2["shape"],
161
     bpti = p_values2["omega"],
162
     bptii = p_values2["alpha1"],
163
     bptiii = p_values2["beta1"],
     bptiv = p_values2["shape"]
165
166
167 write_latex("../results/results.tex", garch11_t_df, append = TRUE, section_title = "GARCH(1,1) with zt ~ tv")
168
169 garch_gjr_df = data.frame(
     bwii = estimates3["omega"],
170
     baii = estimates3["alpha1"],
171
     bbii = estimates3["beta1"],
172
     bgii = estimates3["gamma1"],
173
     bpgi = p_values3["omega"],
     bpgii = p_values3["alpha1"],
175
     bpgiii = p_values3["beta1"],
     bpgiv = p_values3["gamma1"]
177
178 )
179
180 write_latex("../results/results.tex", garch_gjr_df, append = TRUE, section_title = "GJR-GARCH(1,1) with zt ~
        N(0,1)")
181
182 garch_gjr_t_df = data.frame(
     bwiii = estimates4["omega"],
183
     baiii = estimates4["alpha1"],
184
     bbiii = estimates4["beta1"],
     bgiii = estimates4["gamma1"],
186
     bviii = estimates4["shape"],
     bpgtp = p_values4["omega"],
188
     bpgtpi = p_values4["alpha1"],
189
     bpgtpii = p_values4["beta1"],
190
     bpgtpiii = p_values4["gamma1"],
191
     bpgtpiv = p_values4["shape"]
193
194
```

```
ust write_latex("../results/results.tex", garch_gjr_t_df, append = TRUE, section_title = "GJR-GARCH(1,1) with zt "
197 # c) plotting NIC ----
198 # For GARCH(1,1) with zt ~ N(0,1)
199 w1 = estimates1["omega"]
200 a1 = estimates1["alpha1"]
201 b1 = estimates1["beta1"]
202
203 # For GARCH(1,1) with zt ~ tv
204 w2 = estimates2["omega"]
205 a2 = estimates2["alpha1"]
206 b2 = estimates2["beta1"]
207 v2 = estimates2["shape"]
209 # For GJR-GARCH(1,1) with zt ~ N(0,1)
210 w3 = estimates3["omega"]
211 a3 = estimates3["alpha1"]
212 b3 = estimates3["beta1"]
213 g3 = estimates3["gamma1"]
214
215 # For GJR-GARCH(1,1) with zt ~ tv
216 w4 = estimates4["omega"]
217 a4 = estimates4["alpha1"]
218 b4 = estimates4["beta1"]
219 g4 = estimates4["gamma1"]
220 v4 = estimates4["shape"]
222 # Unconditional variance from the first GARCH(1,1) model
223 ve = w1 / (1 - a1 - b1)
224
225 # NIC from tutorial ----
226 T = 500
227 e = seq(-5, 5, length.out = T) # Grid of shocks epsilon
228 nicG1 = nicG2 = nicGJR1 = nicGJR2 = rep(0, T) # Initialize NIC for each model
229
230 # Calculate NIC for each model
231 for (t in 1:T) {
          nicG1[t] = w1 + b1 * ve + a1 * e[t]^2 # GARCH(1,1) with zt ~ N(0,1)
232
          nicG2[t] = w2 + b2 * ve + a2 * e[t]^2 # GARCH(1,1) with zt
233
234
         if (e[t] > 0) {
235
            nicGJR1[t] = w3 + b3 * ve + a3 * e[t]^2 # GJR-GARCH(1,1) with zt ~ N(0,1)
236
             nicGJR2[t] = w4 + b4 * ve + a4 * e[t]^2 # GJR-GARCH(1,1) with zt ~ tv
237
238
239
             \mbox{nicGJR1[t]} = \mbox{w3} + \mbox{b3} * \mbox{ve} + (\mbox{a3} + \mbox{g3}) * \mbox{e[t]}^2 \mbox{ } \mbox{GJR-GARCH(1,1)} \mbox{ with zt } \mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensuremath{^{\circ}}\mbox{\ensurem
             \operatorname{nicGJR2[t]} = w4 + b4 * ve + (a4 + g4) * e[t]^2 # GJR-GARCH(1,1) with zt ~ tv
241
242
243 }
_{\rm 245} # Plot NIC for all four models
_{246} par(mfrow = c(1, 1))
247 png(pasteO(figures_path, "NIC.png"))
248 plot(e, nicG1, type = "1", col = "blue", ylab = 'NIC', xlab = 'Shocks (e)', lwd = 2, lty = 1, main = "News
                Impact Curve")
249 lines(e, nicG2, type = "1", col = "red", lwd = 2, lty = 2)
250 lines(e, nicGJR1, type = "1", col = "green", lwd = 2, lty = 3)
lines(e, nicGJR2, type = "1", col = "purple", lwd = 2, lty = 4)
"red", "green", "purple"), lty = 1:4, ncol = 1, lwd = 2)
253 dev.off()
254
255 # d) best model by analysing standarised residuals ----
256
257 # Extract standardized residuals from each model
258 # Conduct LBQ test for each model (21 lags) residuals
259 # Conduct LBQ test for each model (21 lags) squared residuals
```

```
261 # For GARCH(1,1) with zt ~ N(0,1)
262 std_resid_norm = fit10fit[["residuals"]] / sqrt(fit10fit[["sigma"]] )
263 lbq_z_norm = Box.test(std_resid_norm, lag = 21, type = "Ljung-Box")
264 lbq_z_norm2 = Box.test(std_resid_norm^2, lag = 21, type = "Ljung-Box")
266 # For GARCH(1,1) with zt ~ tv
267 std_resid_t = fit2@fit[["residuals"]] / sqrt(fit2@fit[["sigma"]] )
268 lbq_z_t = Box.test(std_resid_t, lag = 21, type = "Ljung-Box")
269 lbq_z_t2 = Box.test(std_resid_t^2, lag = 21, type = "Ljung-Box")
270
271 # For GJR-GARCH(1,1) with zt ~ N(0,1)
272 std_resid_gjr_norm = fit3@fit[["residuals"]] / sqrt(fit3@fit[["sigma"]] )
273 lbq_z_gjr_norm = Box.test(std_resid_gjr_norm, lag = 21, type = "Ljung-Box")
274 lbq_z_gjr_norm2 = Box.test(std_resid_gjr_norm^2, lag = 21, type = "Ljung-Box")
275
276 # For GJR-GARCH(1,1) with zt ~ tv
277 std_resid_gjr_t = fit40fit[["residuals"]] / sqrt(fit40fit[["sigma"]] )
278 lbq_z_gjr_t = Box.test(std_resid_gjr_t, lag = 21, type = "Ljung-Box")
279 lbq_z_gjr_t2 = Box.test(std_resid_gjr_t^2, lag = 21, type = "Ljung-Box")
280
281
282 df_test = data.frame(
283 # garch N(0,1)
     zone = lbq_z_norm$statistic,
     pone = lbq_z_norm$p.value,
285
    zfive = lbq_z_norm2$statistic,
286
pfive = lbq_z_norm2$p.value,
288
     # garch t
289
     ztwo = lbq_z_t$statistic,
     ptwo = lbq_z_t$p.value,
290
     zsix = lbq_z_t2$statistic,
     psix = lbq_z_t2$p.value,
292
     # gjr N(0,1)
293
     zthree = lbq_z_gjr_norm$statistic,
294
     pthree = lbq_z_gjr_norm$p.value,
295
     zseven = lbq_z_gjr_norm2$statistic,
     pseven = lbq_z_gjr_norm2$p.value,
297
     # gjr t
298
     zfour = lbq_z_gjr_t$statistic,
299
     pfour = lbq_z_gjr_t$p.value,
300
     zeight = lbq_z_gjr_t2$statistic,
301
     peight = lbq_z_gjr_t2$p.value
302
303 )
304
305 write_latex("../results/results.tex", df_test, append = TRUE, section_title = "residuals and squared lbq")
307 # e) 1 step 2ahead forecasting the conditional variance ----
309 H = 250
310 T = length(data$log.return) - H
311 f1 = f2 = f3 = f4 = matrix(0, H, 1) # Initialize forecast for each model
312
313 for (i in 1:H) {
    window = data$log.return[i:(T+i-1)]
314
315
     fit.g11 = ugarchfit(spec = spec1, data = window, solver = 'hybrid')
316
     fit.tg11 = ugarchfit(spec = spec2, data = window, solver = 'hybrid')
317
     fit.gj11 = ugarchfit(spec = spec3, data = window, solver = 'hybrid')
318
     fit.tgj11 = ugarchfit(spec = spec4, data = window, solver = 'hybrid')
319
     # forecast
321
     xx = ugarchforecast(fit.g11, data = window, n.ahead = 1)
322
     f1[i] = xx@forecast$sigmaFor
323
324
     xx = ugarchforecast(fit.tg11, data = window, n.ahead = 1)
     f2[i] = xx@forecast$sigmaFor
326
327
```

```
xx = ugarchforecast(fit.gj11, data = window, n.ahead = 1)
     f3[i] = xx@forecast$sigmaFor
329
330
     xx = ugarchforecast(fit.tgj11, data = window, n.ahead = 1)
331
     f4[i] = xx@forecast$sigmaFor
332
333
     print(i)
334
335 }
336
337 # Forecast errors
338 e1 = f1 - data$log.return[(T+1):(T+H)]^2
339 e2 = f2 - data$log.return[(T+1):(T+H)]^2
_{340} e3 = f3 - data$log.return[(T+1):(T+H)]^2
341 e4 = f4 - data$log.return[(T+1):(T+H)]^2
342
343 # RMSFE
344 rmsfe = function(e) {
sse = sum(e^2) / length(e)
    r = sqrt(sse)
346
347
     return(r)
348 }
349
350 # dm test
351 dm_test_12 = dm.test(e1, e2, alternative = "less", h = 1, power = 2, varestimator = "acf")
352 dm_test_13 = dm.test(e1, e3, alternative = "less", h = 1, power = 2, varestimator = "acf")
353 dm_test_14 = dm.test(e1, e4, alternative = "less", h = 1, power = 2, varestimator = "acf")
355 # Extract DM test statistics and p-values
356 dm_stat_12 = dm_test_12$statistic
357 p_value_12 = dm_test_12$p.value
358
359 dm_stat_13 = dm_test_13$statistic
360 p_value_13 = dm_test_13$p.value
362 dm_stat_14 = dm_test_14$statistic
363 p_value_14 = dm_test_14$p.value
365
366 rmsfe_dm_df = data.frame(
367 #rmsfe
368 rmsfei = rmsfe(e1),
369 rmsfeii = rmsfe(e2),
370 rmsfeiii = rmsfe(e3),
     rmsfeiv = rmsfe(e4),
371
    #dm test
372
373 dm = dm_stat_12,
dmpii = p_value_12,
     dmi = dm_stat_13,
375
     dmpiv = p_value_13,
     dmii = dm_stat_14,
377
     dmpv = p_value_14
378
379
380 )
381 write_latex("../results/results.tex", rmsfe_dm_df, append = TRUE, section_title = "root mean square forecast
        error and dm test")
383
384
385 # End of Script
```

14