Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original): A process for preparing a compound of Formula (I):

from a benzazepine-phenol of Formula (II):

wherein the benzazepine-phenol of Formula (II) is prepared by a process comprising converting a compound of Formula (III):

$$R^{PO}$$
 CHO
$$R^{4}O_{2}C$$
 $CO_{2}R^{4}$
(III)

to a compound of Formula (IV):

$$R^{PO}$$
 CHO $R^{3}O_{2}C$ $CO_{2}R^{3}$ (IV);

wherein:

R^P is H or a suitable phenol protecting group;

R³ and R⁴ are the same or different and are each independently H or a carboxylic acid ester protecting group;

 R^2 is R^7 , C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, A- C_0 - C_4 alkyl-, A- C_2 - C_4 alkenyl-, A- C_2 - C_4 alkynyl-, A- C_3 - C_4 oxoalkenyl-, A- C_3 - C_4 oxoalkynyl-, A- C_0 - C_4 aminoalkyl-, A- C_3 - C_4 aminoalkynyl-, optionally substituted by any accessible combination of one or more of R^{10} or R^7 ;

A is H, C₃-C₆ cycloalkyl, Het or Ar;

 R^7 is -COR⁸, -COCR'2 R^9 , -C(S) R^8 , -S(O)_mOR', -S(O)_mNR'R", -PO(OR'), -PO(OR')₂, -NO₂, or tetrazolyl;

each R^8 independently is -OR', -NR'R", -NR'SO₂R', -NR'OR', or -OCR'₂CO(O)R';

 R^9 is -OR', -CN, -S(O)_rR', -S(O)_mNR'₂, -C(O)R', C(O)NR'₂, or -CO₂R';

R¹⁰ is H, halo, -OR¹¹, -CN, -NR'R¹¹, -NO₂, -CF₃, CF₃S(O)_r-, -CO₂R',

-CONR'₂, A-C₀-C₆ alkyl-, A-C₁-C₆ oxoalkyl-, A-C₂-C₆ alkenyl-, A-C₂-C₆ alkynyl-, A-C₀-C₆ alkyloxy-, A-C₀-C₆ alkylamino- or A-C₀-C₆ alkyl-S(O)_r-;

 R^{11} is R', -C(O)R', -C(O)NR'₂, -C(O)OR', -S(O)_mR', or -S(O)_mNR'₂; R^{1} is

$$\xrightarrow{\mathsf{R}^{\flat}} \xrightarrow{\mathsf{G}} \mathsf{W} - \mathsf{W} -$$

$$R^{c}$$
 N
 R^{e}

$$\mathsf{R}^{\text{"}} \overset{\mathsf{N}}{\underset{\mathsf{G}}{\bigvee}} \mathsf{W} \overset{\mathsf{W}}{\longrightarrow}$$

$$G \longrightarrow W \longrightarrow W$$

$$\begin{array}{c|c} & & & & & & & & & & & & & & & & \\ R' & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$N \longrightarrow NR" - CR'_2 - W - CR'_2$$

W is $-(CHR^g)_a$ -U- $(CHR^g)_{b^-}$;

U is absent or CO, CR_2^g , $C(=CR_2^g)$, $S(O)_k$, O, NR^g , CR^gOR^g , $CR^g(OR^k)CR_2^g$, $CR_2^gCR^g(OR^k)$, $C(O)CR_2^g$, $CR_2^gC(O)$, $CONR^i$, NR^iCO , OC(O), C(O)O, C(S)O, OC(S), $C(S)NR^g$, $NR^gC(S)$, $S(O)_2NR^g$, $NR^gS(O)_2$, N=N, NR^gNR^g , $NR^gCR_2^g$, $CR_2^gNR_2^g$, CR_2^gO

 OCR_{2}^{g} , $C \equiv C$ or $CR_{2}^{g} = CR_{3}^{g}$;

G is NR^e, S or O;

 R^g is H, C_1 - C_6 alkyl, Het- C_0 - C_6 alkyl, C_3 - C_7 cycloalkyl- C_0 - C_6 alkyl or Ar- C_0 - C_6 alkyl;

 R^{k} is R^{g} , $-C(O)R^{g}$, or $-C(O)OR^{f}$;

 R^{1} is H, C_{1} - C_{6} alkyl, Het- C_{0} - C_{6} alkyl, C_{3} - C_{7} cycloalkyl- C_{0} - C_{6} alkyl, Ar- C_{0} - C_{6} alkyl, or C_{1} - C_{6} alkyl substituted by one to three groups chosen from halogen, CN, NR^{g}_{2} , OR^{g} , SR^{g} , $CO_{2}R^{g}$, and $CON(R^{g})_{2}$;

R^g is H, C₁-C₆ alkyl or Ar-C₀-C₆ alkyl;

 R^e is H, C_1 - C_6 alkyl, Ar- C_0 - C_6 alkyl, Het- C_0 - C_6 alkyl, C_3 - C_7 cycloalkyl- C_0 - C_6 alkyl, or $(CH_2)_kCO_2R^g$;

 R^b and R^c are independently selected from H, C_1 - C_6 alkyl, Ar- C_0 - C_6 alkyl, Het- C_0 - C_6 alkyl, or C_3 - C_6 cycloalkyl- C_0 - C_6 alkyl, halogen, CF_3 , OR^f , $S(O)_kR^f$, COR^f , NO_2 , $N(R^f)_2$, $CO(NR^f)_2$, $CH_2N(R^f)_2$, or R^b and R^c are joined together to form a five or six membered aromatic or non-aromatic carbocyclic or heterocyclic ring, optionally substituted by up to three substituents chosen from halogen, CF_3 , C_1 - C_4 alkyl, OR^f , $S(O)_kR^f$, COR^f , CO_2R^f , OH, NO_2 , $N(R^f)_2$, $CO(NR^f)_2$, and $CH_2N(R^f)_2$; or methylenedioxy;

 Q^1 , Q^2 , Q^3 and Q^4 are independently N or C-R^y, provided that no more than one of Q^1 , Q^2 , Q^3 and Q^4 is N;

R' is H, C_1 - C_6 alkyl, Ar- C_0 - C_6 alkyl or C_3 - C_6 cycloalkyl- C_0 - C_6 alkyl;

R" is R', -C(O)R' or -C(O)OR';

R''' is H, C₁-C₆ alkyl, Ar-C₀-C₆ alkyl, Het-C₀-C₆ alkyl, or C₃-C₆ cycloalkyl-C₀-C₆ alkyl, halogen, CF₃, OR^f, S(O)_kR^f, COR^f, NO₂, N(R^f)₂, CO(NR^f)₂, CH₂N(R^f)₂;

 $R^g \text{ is H, halo, -OR}^g, -SR^g, -CN, -NR^gR^k, -NO_2, -CF_3, CF_3S(O)_{r^-}, -CO_2R^g, \\ -COR^g \text{ or -CONR}^g, \text{ or } C_1\text{-}C_6 \text{ alkyl optionally substituted by halo, -OR}^g, -SR^g, -CN, \\ -NR^gR'', -NO_2, -CF_3, R'S(O)_{r^-}, -CO_2R^g, -COR^g \text{ or -CONR}^g_2; \\ \end{array}$

a is 0, 1 or 2;

b is 0, 1 or 2;

k is 0, 1 or 2;

m is 1 or 2;

r is 0, 1 or 2;

s is 0, 1 or 2;

u is 0 or 1; and

v is 0 or 1.

2. (Original): A process according to claim 1, comprising preparing a compound of Formula (I-S):

from a benzazepine-phenol of Formula (II-S):

HO
$$R^2$$
 CO_2R^3 (II-S),

wherein the benzazepine-phenol of Formula (II-S) is prepared by a process comprising converting a compound of Formula (III):

$$R^{PO}$$
 CHO $R^{4}O_{2}C$ $CO_{2}R^{4}$ (III)

to a compound of Formula (IV-S):

$$R^{3}O_{2}C$$
 $CO_{2}R^{3}$ (IV-S).

- 3. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (II) comprising the steps of:
 - 1) treating a compound having Formula (a)

wherein R^P is H or a suitable phenol protecting group and X is halogen, -OSO₂F, or -OSO₂CF₃,

with a compound having the formula:

$$=$$
 CO_2R^4

to form a compound of Formula (b)

$$R^{PO}$$
 CHO $R^{4}O_{2}C$ $CO_{2}R^{4}$ (b);

2) converting the compound of Formula (b) to a compound of Formula (c);

wherein R^5 and $R^{5'}$ are C_1 - C_4 alkyl or R^5 and $R^{5'}$, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃;

3) converting the compound of Formula (c) to a compound of Formula(d):

$$Z^{R^5}$$
 Z^{PO}
 Z^{PO}

4) converting the compound of Formula (d) to a compound of Formula (e)

$$R^{PO}$$
 CHO $R^{3}O_{2}C$ $CO_{2}R^{3}$ (e);

5) converting the compound of Formula (e) to a compound of Formula (f)

$$R^{PO}$$
 CO_2R^3 (f); and

- 6) converting the compound of Formula (f) to a compound of Formula (II).
- 4. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (II) comprising the steps of:
 - 1) converting 3-hydroxybenzaldehyde to a compound of Formula (aa)

2) treating the compound of Formula (aa) with itaconic acid to form a compound of Formula (bb):

$$R^4O_2C$$
 CO_2R^4 (bb):

3) converting the compound of Formula (bb) to a compound of Formula (cc)

HO
$$R^{5}$$
 $R^{4}O_{2}C$
 $CO_{2}R^{4}$ (cc),

where R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring;

4) converting the compound of Formula (cc) to a compound of Formula (dd)

5) converting the compound of Formula (dd) to a compound of Formula(ee)

$$R^{3}O_{2}C$$
 $CO_{2}R^{3}$ (ee); and

- 6) converting the compound of Formula (ee) to a compound of Formula (II).
- 5. (Original): A process according to claim 2, further comprising a process for preparing the compound of Formula (II-S) comprising the steps of:
 - 1) converting the compound having the formula:

$$R^{5}$$
 Z^{1}
 R^{5}
 R^{5}
 $CO_{2}R^{4}$

wherein R^5 and $R^{5'}$ are C_1 - C_4 alkyl or R^5 and $R^{5'}$, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃, to a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

3) converting the compound formed in step 2) into the compound having the formula:

$$R^{PO}$$
 R^{2}
 $CO_{2}R^{3}$; and

- 4) converting the compound formed in step 3) into the compound of Formula (II-S).
- 6. (Original): A process according to claim 2, further comprising a process for preparing the compound of Formula (II-S) comprising the steps of:
 - 1) converting the compound having the formula:

wherein R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring, into a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

- 3) converting the compound formed in step 2) into the compound of Formula (II-S).
- 7. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting 2-amino-6-methylpyridine into a compound having the formula:

wherein R^P is a suitable amino protecting group;

2) converting the compound formed in step 1) to a compound having the formula:

3) converting the compound formed in step 2) to a compound having the formula:

$$R^p \longrightarrow CO_2R^6$$

wherein R⁶ is H or an alkyl carboxylic acid ester protecting group;

4) converting the compound formed in step 3) to a compound having the formula:

5) treating the compound formed in step 4) with a compound having the formula:

to form a compound having the formula:

- 6) converting the compound formed in step 5) to the compound of Formula I.
- 8. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting 2-amino-6-methylpyridine into a compound having the Formula:

2) converting the compound formed in step 1) to a compound having the formula:

3) converting the compound formed in step 2) to a compound having the formula:

4) converting the compound formed in step 3) to a compound having the formula:

5) treating the compound formed in step 4) with a compound having the formula:

to form a compound having the formula:

- 6) converting the compound formed in step 5) to the compound of Formula (I).
- 9. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting a compound having the formula:

wherein X is halogen or -OSO₂CF₃, to a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

wherein X' is halogen, -OSO₂CH₃, -OSO₂CF₃, -OSO₂(phenyl), or -OSO₂(p-tolyl);

3) treating the compound formed in step 2) with a compound having the formula:

to form a compound having the formula:

$$\bigcap_{N \to \infty} H \longrightarrow O \longrightarrow \bigcap_{N \to \infty} H^2$$

$$CO_2R^3 : and$$

- 4) converting the compound formed in step 3) into the compound of Formula (I).
- 10. (Original): A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting 2-chloropyrdine, N-oxide to a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

3) treating the compound formed in step 2) with a compound having the formula:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

to form a compound having the formula:

- 4) converting the compound formed in step 3) into the compound of Formula (I).
- 11. (Currently amended): A process according to claim 1 any one of claims 1-7 or 9, wherein R^3 is H, C_1 - C_6 alkyl or phenyl- C_1 - C_4 alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl and R^4 is H, C_1 - C_6 alkyl or phenyl- C_1 - C_4 alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.

Claims 12-15 (Cancelled).

- 16. (Currently amended): A process according to <u>claim 1</u> any one of claims 1-6, wherein R^4 is H or C_1 - C_4 alkyl and R^3 is H or C_1 - C_4 alkyl.
- 17. (Currently amended): A process according to claim 1 any one of claims 1.7 or 9, wherein R^4 is H and R^3 is methyl.
- 18. (Original): A compound having the formula:

wherein:

R^P is H or a suitable phenol protecting group;

R⁴ is H or a carboxylic acid ester protecting group;

R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃;

or a pharmaceutically acceptable salt or solvate thereof.

19. (Original): A compound according to claim 18, wherein R⁴ is H, C₁-C₆ alkyl or phenyl-C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.

Claim 20 (Cancelled).

- 21. (Currently Amended) A compound according to claim 18, wherein R⁴ is H, R^P is H, Z and Z' are both O, and R⁵ and R^{5'} are methyl.
- 22. (Currently Amended): A compound having the formula:

wherein::

R^P is H or a suitable phenol protecting group;

R³ is H or a carboxylic acid ester protecting group;

R⁵ and R⁵ are C₁-C₄ alkyl or R⁵ and R⁵, taken together with the atoms to which they are attached form a saturated 5 or 6 membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃;

or a pharmaceutically acceptable salt or solvate thereof.

23. (Original): A compound according to claim 22, wherein R³ is H, C₁-C₆ alkyl or phenyl-C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one

or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.

Claims 24-26 (Cancelled).

27. (Currently amended): A compound according to <u>claim 22</u> any one of claims 18-26, wherein R^P is H and R^3 is H or C_1 - C_4 alkyl.

Claims 28-30 (Cancelled).

31. (Currently Amended): A compound:

8-[2-[6-(methylamino)pyridin-2-yl]-1-ethoxy]-3-oxo-2-(2,2,2-trifluoroethyl)-1,2,4,5-tetrahydro-2-benzazepine-4-acetic acid,

S-(-)-8-[2-[6-(methylamino)pyridin-2-yl]-1-ethoxy]-3-oxo-2-(2,2,2-trifluoroethyl)-1,2,4,5-tetrahydro-2-benzazepine-4-acetic acid,

2,3,4,5-tetrahydro-3-oxo-8-[3-(2-pyridinylamino)propoxy]-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetic acid, [[or]]

(S)-2,3,4,5-tetrahydro-3-oxo-8-[3-(2-pyridinylamino)propoxy]-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetic acid,

methyl 2, 3, 4, 5-tetrahydro-8-hydroxy-3-oxo-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetate,

(S)-methyl 2, 3, 4, 5-tetrahydro-8-hydroxy-3-oxo-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetate,

2-[(2-formyl-4-hydroxyphenyl)methylidene]succinic acid, 2-carboxyl-4-[(2-formyldimethylacetal-4-hydroxyphenyl)] butyric acid, bis(dicyclohexylamine) salt,

(S)-2-carboxyl-4-[(2-formyldimethylacetal-4-hydroxyphenyl)] butyric acid, bis(dicyclohexylamine) salt,

<u>dimethyl 2-[(2-formyl-4-hydroxyphenyl)methyl]butanedioate, and dimethyl (2S)-2-[(2-formyl-4-hydroxyphenyl)methyl]butanedioate.</u>

32. (Cancelled).