Data Science Bootcamp, 11th January 2017

Evaluation Approaches

Kriste Krstovski

How do we evaluate and compare models?

- Performance Measures
 - Extrinsically
 - Precision and recall
 - Intrinsically
 - Log-likelihood and perplexity
- Statistical Measures
 - Significance
 - Randomization test
 - Correlation
 - Linear and rank correlation

Precision

$$P = \frac{|Relevant \& Retrieved|}{|Retrieved|}$$

• Recall

$$R = \frac{|Relevant \& Retrieved|}{|Relevant|}$$

Model 1

1. Doc K	0.134
2. Doc A	0.187
3. Doc M	0.203
4. Doc Z	0.329
5. Doc L	0.348
6. Doc T	0.452
7. Doc E	0.484
8. Doc F	0.522
9. Doc S	0.593
10. Doc J	0.643
20. Doc P	1.322
26	

Model 2

1. Doc M	12.132
2. Doc Q	9.881
3. Doc P	9.343
4. Doc K	9.108
5. Doc U	8.884
6. Doc J	8.756
7. Doc F	7.453
8. Doc Z	7.332
9. Doc S	7.128
10. Doc H	6.845
20. Doc O	4.087
26	

Relevance Set

Doc F Doc J Doc K Doc M Doc P

Precision

$$P = \frac{|Relevant \& Retrieved|}{|Retrieved|}$$

• Recall

$$R = \frac{|Relevant \& Retrieved|}{|Relevant|}$$

Model 1

1. Doc K	0.134
2. Doc A	0.187
3. Doc M	0.203
4. Doc Z	0.329
5. Doc L	0.348
6. Doc T	0.452
7. Doc E	0.484
8. Doc F	0.522
9. Doc S	0.593
10. Doc J	0.643
20. Doc P	1.322
26	•••

$$P@10 = \frac{4}{10} = 0.4$$

$$R@10 = \frac{4}{5} = 0.8$$

Model 2

1. Doc M	12.132
2. Doc Q	9.881
3. Doc P	9.343
4. Doc K	9.108
5. Doc U	8.884
6. Doc J	8.756
7. Doc F	7.453
8. Doc Z	7.332
9. Doc S	7.128
10. Doc H	6.845
20. Doc O	4.087
26	

Relevance Set

Doc F Doc J Doc K Doc M Doc P

Precision

$$P = \frac{|Relevant \& Retrieved|}{|Retrieved|}$$

• Recall

$$R = \frac{|Relevant \& Retrieved|}{|Relevant|}$$

COLUMBIA UNIVERSITY Data Science Institute

Model 1

1. Doc K	0.134
2. Doc A	0.187
3. Doc M	0.203
4. Doc Z	0.329
5. Doc L	0.348
6. Doc T	0.452
7. Doc E	0.484
8. Doc F	0.522
9. Doc S	0.593
10. Doc J	0.643
20. Doc P	1.322
26	

$$P@10 = \frac{4}{10} = 0.4$$

$$R@10 = \frac{4}{5} = 0.8$$
 $R@10 = \frac{5}{5} = 1.0$

Model 2

1. Doc M	12.132
2. Doc Q	9.881
3. Doc P	9.343
4. Doc K	9.108
5. Doc U	8.884
6. Doc J	8.756
7. Doc F	7.453
8. Doc Z	7.332
9. Doc S	7.128
10. Doc H	6.845
20. Doc O	4.087
26	

$$P@10 = \frac{5}{10} = 0.5$$

$$R@10 = \frac{5}{5} = 1.0$$

Relevance Set

Doc F Doc J Doc K Doc M Doc P

Binary Classification

$$P = \frac{|tp|}{|tp + fp|}$$

$$R = \frac{|tp|}{|tp + fn|}$$

Log-likelihood & Perplexity

Log-likelihood

$$\mathcal{L}(x) = \sum_{i=1}^{n} \log p(x_i | \theta)$$

Perplexity

$$perplexity = \exp\left\{-\frac{\mathcal{L}(x)}{|n|}\right\}$$

Log-likelihood & Perplexity

• Perplexity
$$perplexity(x) = \exp\left\{-\frac{\mathcal{L}(x)}{|n|}\right\}$$

• Perplexity for topic models

$$perplexity(D) = \exp\left\{-\frac{\sum_{d=1}^{M} \log p(w_d)}{\sum_{d=1}^{M} N_d}\right\}$$

How do we evaluate and compare models?

- Performance Measures
 - Extrinsically
 - Precision and recall
 - Intrinsically
 - Log-likelihood and perplexity
- Statistical Measures
 - Significance
 - · Randomization test
 - Correlation
 - Linear and rank correlation

Randomization Test

- Also known as the permutation test
- Determine whether the difference in the test statistic used to judge two models is statistically significant or not
- Null hypothesis is that the two models are identical

Randomization Test Components

- Test statistics by which models/systems are judged
 - e.g. difference in the mean of some metric
- Distribution of the test statistic under the null-hypothesis
- Significance level
 - How likely a difference value as large or larger than our experiment's difference value could have occurred under the null hypothesis

Randomization Test Algorithm

- Create the distribution of the test statistic under the null hypothesis
 - 1. Repeat n times:
 - 1.Go over each data point in the results set
 - 2. Randomly choose an evaluation result from the two model results for that data point
 - 3. Repeat the process twice (once for each model) and compute the mean for each of the newly generated set of evaluation results
 - 4. Compute the difference between the two means (i.e. the test statistic)
 - 5. Store test statistic for the n-th iteration
- •Go over the n generated test statistics and count the number of times their values were larger than our original test statistic
- Compute p-value

Measuring Correlation

- Linear correlation
 - Measures linear dependence between two sets of values
 - Pearson's R

- Rank correlation
 - Measures similarity between two rankings
 - Spearman's ho

In This Lab Session

- Learn how to compute precision and recall
- Evaluate topic models using log-likelihood
- Learn how to implement the randomization test
- Compare model performance using linear and rank correlation

