Operad Theory

Labix

August 20, 2024

Abstract

Operad Theory Labix

Contents

1 3

Operad Theory Labix

1

Definition 1.0.1: Operads

Let $(\mathcal{C}, \otimes, I)$ be a symmetric monoidal category. An operad in \mathcal{C} consists of the following data

- A sequence $P = \{P(n) \mid n \in \mathbb{N}\}$ of objects in $\mathcal C$
- A composition function

$$\gamma: P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \to P(k_1 + \cdots + k_n)$$

• An unit $\mu: I \to P(1)$

such that the following compatibility conditions are satisfied.

• Associativity in the first symmetric product:

$$P(n) \otimes \left(\bigotimes_{k=1}^{n} \left(P(i_{k}) \otimes \bigotimes_{t=1}^{i_{k}} P(j_{k,t}) \right) \right) \xrightarrow{\operatorname{id}_{P(n)} \otimes \gamma} P(n) \otimes \left(\bigotimes_{k=1}^{n} P\left(\sum_{t=1}^{i_{k}} j_{k,t} \right) \right) \xrightarrow{\gamma} P\left(\sum_{k=1}^{n} \sum_{t=1}^{i_{k}} j_{k,t} \right) \xrightarrow{\gamma} P(n) \otimes \left(\bigotimes_{k=1}^{n} P(j_{k}) \right) \otimes \left(\bigotimes_{k=1}^{n} P(j_{k,t}) \right) \xrightarrow{\gamma \otimes \operatorname{id}_{\otimes \otimes}} P\left(\sum_{u=1}^{k} i_{u} \right) \otimes \left(\bigotimes_{k=1}^{n} \bigotimes_{t=1}^{i_{k}} P(j_{k,t}) \right)$$

• Unitality:

TBA: An operad is a monoid in the monoidal category (Func(\mathbf{S} , \mathcal{C}), \circ , I)

Definition 1.0.2: Symmetric Operads

Let (C, \otimes) be a symmetric monoidal category. A symmetric operad is an operad (P, γ, μ) on C such that the following are true.

- Each P(n) is an S_n -module for each $n \in \mathbb{N}$.
- $\gamma: P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \to P(k_1 + \cdots + k_n)$ is equivariant in the following sense:

$$\gamma(c \cdot \sigma, d_1, \dots, d_n) = \gamma(c, d_{\sigma^{-1}(1)}, \dots, d_{\sigma^{-1}(n)}) \cdot \sigma(k_1, \dots, k_n)$$
$$\gamma(c, d_1 \cdot \tau_1, \dots, d_n \cdot \tau_n) = \gamma(c, d_1, \dots, d_n) \cdot (\tau_1 \oplus \dots \oplus \tau_n)$$