

第6回 ユーザの認知特性1

木村 朝子

認知とは?

◆ 知識を得る働き、すなわち

知覚・記憶・推論・問題解決など

の知的活動のこと

第6回の内容

認知(人間の知的活動)特性を学ぶ

- 1. 注意
- 2. 記憶のしくみ
 - ▼ カードのGOMSモデル
- 3. 知識の様々な形態
- 4. 学習

1. 注意

情報の図と地

- ◆ 頭脳の中には目や耳などを通して、大量の、色々な 種類の刺激が刻々と入力されている
- ◆ これらの大量の刺激を均等に処理するわけにはいかない
- ◆ そこで、脳では
 - ◇入力刺激を情報として主要な領域である図と 副次的な領域である地にわける
 - ◇図のみを処理する という戦略がとられている

情報の図と地

◆ 図

- ◇注意が向けられる領域
- ◇それが何であるか、どんなことを意味しているかなどの進んだ処理が加えられる
- ◇記憶に残される可能性が高い

◆ 地

- ◇注意がほとんど(まったく)向けられない領域
- ◇進んだ処理も加えられず、情報として特に意味のない、単なる背景として扱われる
- ◇普通、記憶されない

事例1:ルビンの壷

図と地の反転が含まれる例

事例1:ルビンの壷

図と地の反転が含まれる例

事例2:婦人と老婆

事例3:骸骨/鏡をみる女性

バットマン

老人と女性と犬

ギターを弾き歌う二人

テスト

◆ 白いシャツを着たチームのパスの回数をカウントし

てください

Another example

◆ The door study

カクテルパーティー現象

- ◆ 周りで大勢の人たちがしゃべっていて、それらの 話し声が同時に耳に届く
- ◆ なのに、自分が注意を向けた話し声だけ他と区別して聞くことができる
- ◆「カクテルパーティ現象」と呼ばれる
- ◆ 注意を向けている話し声が図として浮かび上がり、 それ以外の話し声は地として背景に退く現象

図と地の分化によるリスク

- ◆ 図と地の分化は、頭脳で効率よく情報処理する ための基本戦略の一つ
- ◆ たいていは無意識に処理されている
- ◆ しかし、ある情報を図、それ以外を地と分ける限り、 本当に大切な情報を地として処理してしまうリスクが つきまとう

注意の限界

- ◆ (+) を見てください
 - 1 右側のグループの左から2番目の線に注意できますか?
 - 2 左側のグループの右から4番目の線に注意できますか?

注意の限界

A	В	C I	D I	Ε
0.097793	0.717585	0.511518	0.008243	0.263581
0.120234	0.412597	0.278328	0.159065	0.851526
0.602612	0.741693	0.657536	0.74333	0.124459
0.170002	0.69453	0.800677	0.920663	0.021941
0.078006	0.058044	0.486486	0.828415	0.447489
0.888079	0.199471	0.027516	0.345178	0.328572
0.670362	0.676186	0.135922	0.918621	0.6405
0.624478	0.707096	0.953464	0.63922	0.725267
0.721103	0.265489	0.870931	0.708698	0.65117

A	В (C I	D I	Ē
0.481015	0.405921	0.050815	0.646148	0.129384
0.703936	0.052512	0.359827	0.698604	0.808775
0.441306	0.482092	0.319565	0.054251	0.368071
0.54608	0.820616	0.559668	0.393008	0.052928
0.991606	0.134663	0.93995	0.277512	0.210765
0.429254	0.853203	0.450646	0.31124	0.018889
0.96314	0.292539	0.879165	0.289757	0.025614
0.81497	0.956185	0.048378	0.598751	0.52755
0.067571	0.47662	0.523803	0.055595	0.548987

2. 記憶のしくみ

記憶のしくみ

記憶のしくみ

視覚:1秒弱

聴覚:約4秒

感覚記憶

- ◆ 目や耳など感覚器官を通して入ってきた情報を そのままの状態でとりあえずキープする サブシステム
- ◆ 感覚記憶の情報は1,2秒で消失する
- ◆ 頭脳は、情報が消えてしまう前に、多量の情報の一部に注意を向けて拾い出し、それを次の 短期記憶に送り込む

感覚記憶

◆ 例えば

- ◇本を読んでいると人が急に話しかけてきた
- ◇注意を払っていなかったので何を言われたか一瞬分からず、「えっ?」と聞き返そうとした
- ◇しかし、その瞬間、相手の言ったことがまだ耳に 残っていることに気づき、聞き返さなくてもすんだ

記憶のしくみ

視覚:1秒弱

聴覚:約4秒

短期記憶

- ◆ そのときそのときに必要な情報を保持する サブシステム
- ◆ 短期記憶では、数秒~数十秒の間、情報を記憶しておくことができる
- ◆ しかし短期記憶は、<u>記憶容量に限界がある</u>
- ◆ 限界を超えた情報はファストイン・ファストアウトで押 し出される

短期記憶

- ①電話番号をダイアルしているときに、誰かが話しかけると番号を忘れてしまう
 - →別の情報が短期記憶に入り込んできたため,短期 記憶に入っていた番号が押し出された

- ②知らない土地の市外局番も含めて十桁以上の電話 番号になると覚えられない
 - →番号が長すぎて短期記憶に入らない

記憶のしくみ

視覚:1秒弱

聴覚:約4秒

S. K. Cardの 人間情報処理モデル

1946年~

- ◆ コンピュータとのアナロジー として人間を捉える
- ◆ 定量的特性 (具体的な数値)
- ◆ 従来の心理学や人間工学の知見を総合し、処理時間と処理容量の目安を大胆に提示
- ◆ 作業時間の予測などに 利用可能

実験

- ◆ 紙と鉛筆を用意してください.
- ◆ これから数字が沢山並んだものを一度だけ 読んで覚えてもらいます.
- ◆ 頭の中で普通に一度だけ読んでください.
- ◆ そうしたらもう見ないで思い出して紙に 書き留めてください.

問題1

問題2

問題3

短期記憶

- ◆ ジョージ・ミラー
 - ◇短期記憶には記憶容量に限界があり、 その容量は7項目前後であることを発見
 - ◇ マジックナンバー 7±2

先ほどの実験, 実は・・・

1248163264128256

- ①数字を一個ずつただ覚える
- ②「いにし」「はいろ」「さにろ」とブロック化して覚える
- ③「1」「2」「4」「8」「16」「32」「64」・・・と2倍ずつ進んでいることに気づいて、「1でスタート」「倍々」「256で終了」と覚える

記憶のしくみ

視覚:1秒弱

聴覚:約4秒

記憶のしくみ

視覚:1秒弱

聴覚:約4秒

短期記憶

- ◆ そのときそのときに必要な情報を保持する サブシステム
- ◆ 短期記憶では、数秒~数十秒の間、情報を記憶しておくことができる
- ◆ しかし短期記憶は、<u>記憶容量に限界がある</u>
- ◆ 限界を超えた情報はファストイン・ファストアウトで押 し出される

短期記憶

- ①電話番号をダイアルしているときに、誰かが話しかけると番号を忘れてしまう
 - →別の情報が短期記憶に入り込んできたため,短期 記憶に入っていた番号が押し出された

- ②知らない土地の市外局番も含めて十桁以上の電話 番号になると覚えられない
 - →番号が長すぎて短期記憶に入らない

短期記憶

- ◆ ジョージ・ミラー
 - ◇短期記憶には記憶容量に限界があり、 その容量は7項目前後であることを発見
 - ◇ マジックナンバー 7±2

情報のチャンキング

- ◆情報をいくつかの塊(チャンク)として扱うことで、 より簡単に情報を記憶できる
- ◆ チャンクは、大きくても1個、小さくても1個
- ◆ 短期記憶の容量限界は「約7チャンク」

情報のチャンキング

- ③「1」「2」「4」「8」「16」「32」「64」…と 2倍ずつ進んでいることに気づいて, 「1でスタート」「倍々」「256で終了」と覚える
- ◆情報をいくつかの塊(チャンク)として扱うことで、より簡単に情報を記憶できる
- ◆ チャンクは、大きくても1個、小さくても1個
- ◆ 短期記憶の容量限界は「約7チャンク」

情報のチャンキング

- ◆ 短期記憶の厳しい容量限界を乗り越える唯一の手段
- ◆ 例えば
 - ◇ 文字を覚えたての子供が本を読む「む, か, し, む, か, し, あ, る, と, こ, ろ, ···」
 - ◇ しばらくすると 「むかし、むかし、あるところに、おじいさんと・・・・」
 - ◇ 同じ時間でずっと多量の情報を処理できるようになる
 - ◇ これもチャンキングがもとになっている

記憶のしくみ

長期記憶

- ◆ 長期(一生)にわたり情報を記憶しておくもの
- ◆ 長期記憶の記憶容量は, 事実上無限
- ◆ 短期記憶→長期記憶への移行
 - ①リハーサルを何度かしたとき
 - ②情報を「符号化」したとき
- ◆ 長期記憶→短期記憶への転送 ある情報を思い出す(検索する)とき

3. 知識の様々な形態

実験

◆ クイズ~学生代表募集

知識

- ◆ 長期記憶に蓄えてある情報
- ◆ 知識はネットワーク構造になっている

知識

◆ 一つの情報が活性化すると、それがまわりに波及 する

長期記憶⇒短期記憶

◆ 知識は、すべてが同じように取り出せるわけではない

- ◆ 取り出しやすくなっている知識
 - ◇「その知識が最後にいつ使われたのか?」 最近活性化された知識ほど取り出しやすい
 - ◇「その知識がこれまでにどのくらい使われたか?」 何度も活性化された知識ほど取り出しやすい

ヒューマンインタフェースデザイン へのヒント

人間が如何に

- ◇知識を長期記憶に蓄えていて、それを検索しているか(長期→短期記憶) は、人間にとって分かりやすいUIを作るうえで重要な手がかり。
- ◇情報を短期→長期記憶に移行しているかは、人間にとって学習しやすいUIを作るうえで重要な手がかり

知識の様々な形態

宣言的知識と手続き的知識

- ◆ 宣言的知識
 - ◇自転車とは何か?

- ◆ 手続き的知識
 - ◇自転車に乗るにはどうしたらよいか?

宣言的知識

- ◆ 頭の中で「命題」の形で表現される
- ◆「○○は××だ」「○○には××がある」など 例えば)
 - ◇りんごは赤い
 - ◇自動車にはハンドルがある

手続き的知識

- ◆ 頭の中で「プログラム」のかたちで表現される
- ◆「もし○○ならば××をする」 (IF・THENルール)のような条件と行為を セットにしたもの
- ◆ 言葉より「体で覚えている」知識
- ◆ 視覚や触覚など言語になりにくい感覚をより利用しているのでは?

例えば)

- ◇車の運転
- ◇キーボードのブラインドタッチ
- ◇プロテニスプレイヤーにとってのテニス

宣言的知識	手続き的知識
言葉で直接表現できる	体で覚えている
	(言葉で表せるのは概略だけ)
いろいろな状況で利用	特定の状況との結びつきが
色々な仕方で検索	強い
柔軟性が高い	柔軟性が小さい
いったん定着しても 修正が簡単	いったん定着すると 修正が難しい
他の情報が間違ってくっつきやすい, 忘れやすい	変化しにくく、忘れにくい
意識的検索が必要なので、活性化が遅い	自動化されているので、 活性化が速い

プロの世界?

- ◆プロの写真家
 - ◇写真を撮る技術が手続き的記憶として蓄えられている
 - ◇そのため言葉による執筆が得意とは限らない

◆ 名選手が名コーチとは限らない

知識の様々な形態

エピソード記憶と意味記憶

- ◆ エピソード記憶
 - ◇頭の中の日記
 - ◇自分に関連したことの記憶
 - ◇いつ、どこで、という情報が含まれる
- ◆ 意味記憶
 - ◇頭の中の百科事典
 - ◇一般化された知識の集合体
 - ◇いつ, どこで, という情報は含まれない

意味記憶

- ◆ 意味記憶の特徴は、高度に「構造化」されていること
- ◆「記憶力」と「構造化」
- ①情報を構造化して入力するほど,長期記憶の意味 記憶に組み込まれやすい
- ②構造化するほど多くの情報をしまいこむことができる
- ③構造化されているほど検索しやすくなる

記憶力アップ!

意味記憶と関心

- ◆「ジャズに興味がある」
 - 意味記憶の中でジャズ関連の情報が 活性化しやすい状態になっている
- ◆ 少しでもジャズに関連する刺激が入るとすぐにジャズノードが活性化する
 - →興味のあることは意味記憶の中でのネットワーク が成長しやすい

意味記憶の中身

例えば, 友人から

- ◆「朝食を食べてきました」と聞いて、 何を思い浮かべますか?
 - ◇テーブルに座って
 - ◇パン, コーヒー, ハムエッグを食べている
 - ◇新聞を読んでいる

スキーマ

- ◆ 人は行動する際,多くは過去の経験から生まれた, 基本的な知識のまとまりをもとに,予測対応しようと する.
- ◆ それら、外界からの情報を処理するために使われる 知識のまとまりを総称して、スキーマという。

スキーマ

- ①意味記憶の中にある情報のパッケージ, 集団ごとに その典型的特徴をまとめて表現
- ②個々の情報を貯えなくてすむので、情報の節約につ ながる
- ③どの集団かさえ分かれば、スキーマに含まれる情報から、 いろいろなことを推測できる
- ④先入観から、本当の情報を見ない、誤解などにつながりやすい

4. 学習

学習曲線

習熟度

Rasmussen O

三つのレベルの人間行動の制御モデル

Rasmussenの)のレベルの人間行動の制御モデル

利用者の学習状態に応じたモデルになっている.

- ◆ 知識ベースの行動: 学習初期
 - ◇状況を認知・解釈して、問題を解決する手立てを考える
- ◆ 規則ベース(ルールベース)の行動:学習中期
 - ◇ 状況を再認し、獲得されているルールを利用して行う行動 反復により次第に「スキルベースの行動」に
- ◆ 技能ベース(スキルベース)の行動:学習後期
 - ◇ 意識せずに、時には反射的に行われる行動熟練した行動 など

人間行為のタイプ毎のエラー

- ◆「知識ベースの行動」のエラー
 - ◇「黄色の点滅信号」を「一旦停止」と誤解するなど ⇒ 錯誤(mistake)
- ◆「ルールベースの行動」のエラー
 - ◇ Shift キーと文字キーを押すタイミングを誤るなど
- ◆「スキルベースの行動」のエラー
 - ◇なめらかに行為が遂行されるが、
 - ある段階を飛ばしてしまったり、
 - 近くにある別のボタンを押してしまったり

といったエラーがしばしば起こる ⇒ スリップ(slip)

わかりやすさと学習のトレードオフ

- ◆ 始めは豊富なメッセージを提供し、ステップバイステップで作業を進めた方がよい。
 - ◇ダイアログ
 - ◇エージェント
- ◆ しかし慣れてくると、これらが煩わしくなる.
 - ◇ ショートカット
 - ◇カスタマイゼーション
 - ◇ 適応的インタフェース(?)