

Docket No.: M4065.0479/P479

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Stephen L. Casper et al.

Application No.: 10/076,486

Group Art Unit: 2818

Filed: February 19, 2002

Examiner: M. Tran

For:

PROGRAMMABLE CONDUCTOR RANDOM ACCESS MEMORY AND METHOD FOR SENSING SAME

THIRD INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents Washington, DC 20231

Dear Sir:

Pursuant to 37 C.F.R. § 1.56, the attention of the Patent and Trademark Office is hereby directed to the documents listed on the attached PTO/SB/08. It is respectfully requested that the subject matter of the documents be expressly considered during the prosecution of this application and that the documents be made of record therein and appear among the "References Cited" on any patent to issue from this application. A copy of each document is attached.

This Third Information Disclosure Statement is being filed concurrently with an Amendment.

A brief explanation of relevance of certain non-patent documents listed on Form PTO/SB/08 is provided and attached hereto as Appendix A. The brief explanation provided for each document is not tantamount to an admission that a document is "material" or that it qualifies as prior art. The Examiner is respectfully requested to utilize

Appendix A only as a tool by which to better categorize the documents for substantive use in examining the claims of the application.

Documents discussed in Appendix A marked with an asterisk (*) are indicated to be potentially more relevant than others. Such marking is provided only to assist the Examiner; however, the Examiner is requested to thoroughly review all documents cited herein.

In accordance with 37 C.F.R. § 1.97(g), the filing of this Third Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 C.F.R. § 1.56(a) exists. It is submitted that this Third Information Disclosure Statement is in compliance with 37 C.F.R. § 1.98 and the Examiner is respectfully requested to consider and cite the listed documents.

The Director is hereby authorized to charge the \$180.00 fee as required by 37 C.F.R. \$1.17(p) to the undersigned attorneys' credit card. Form PTO-2038 is attached. The Commissioner also is authorized to charge any deficiency in the fees filed, asserted to be filed, or which should have been filed herewith (or with any paper hereafter filed in this application by this firm), to our Deposit Account No. 04-1073, under Order No. M4065.0479/P479.

Dated: September 16, 2003

Respectfully submitted,

Thomas J. D'Amico

Registration No. 28,371

Salvatore P. Tamburo

Registration No. 45,153

DICKSTEIN SHAPIRO MORIN &

OSHINSKY LLP

2101 L Street, N.W.

Washington, DC 20037-1526

(202) 785-9700

Attorneys for Applicants

APPENDIX A

Japanese patent application publication No. 56126916A by Akira: this published application generally relates to, <u>inter alia</u>, diffusing selenium with high accuracy into a chalcogenide with silver by use of photoresist and thermal treatment.

*Axon Technologies Corp., *Technology Description: Programmable Metallization Cell*: this believed publication generally relates to, <u>inter alia</u>, use of chalcogenides doped with metal much as silver or copper to create solid state switch with lower voltage requirement.

Helbert et al., SPIE Vol. 333 Submicron Lithography (1982): this publication generally relates to, <u>inter alia</u>, hybrid ultragraphic process using both electron beam and conventional optical exposure within the same device level with a photoresist.

Hilt, dissertation (1999): this publication generally relates to, inter alia, stability of chalcogenides such as Ge_xSe_{1-x} with Ag doping by photodissolution and thermal diffusion.

Hirose et al., Phys. Stat. Sol. (1980): this publication generally relates to, inter alia, switch and memory phenomena in amorphous As₂S₃ with photo-doped Ag, including new mechanism, electrical reliability, rapid memory performance, thermal characteristics and durability

Holmquist et al., 62 J. Amer. Ceram. Soc., No. 3-4 (March-April 1979): this publication generally relates to, <u>inter alia</u>, reactions and diffusion of Ag in arsenic chalcogenide glass below the glass transition temperature, including solubility information and concentration dependence of Ag diffusion in these glasses.

Huggett et al., 42 Appl. Phys. Lett., No. 7 (April 1983): this publication generally relates to, <u>inter alia</u>, reactive sputter etching to develop silver-sensitized Ge_xSe_{1-x} photoresist.

Kawaguchi et al., 164-166 J. Non-Cryst. Solids (1993): this publication generally relates to, <u>inter alia</u>, deposition mechanism of Ag particles on Ag-rich Ag-As-S glass from a view-point of electrical effects.

- *Kolobov and Elliott, Advances in Physics (1991): this publication generally relates to, <u>inter alia</u>, photodoping (photodiffusion/photodissolution) of amorphous chalcogenides by metals, particularly silver.
- *Kozicki et al., Superlattices and Microstructures, 27 (2000): this publication generally relates to, <u>inter alia</u>, solid solutions of metals (e.g., silver) in arsenic trisulfide and their physical and electrical characteristics.
- *Kozicki et al., Microelectronic Engineering, vol. 63/1-3 (2002): this publication generally relates to, inter alia, the photodiffusion of Ag into germanium selenide glass films, the amount of Ag that can be incorporated in to such a film by photodiffusion, and the characteristics of the resulting doped films.
- *Kozicki et al., Proceedings of the 1999 Symposium on Solid State Ionic Devices (1999): this publication generally relates to, <u>inter alia</u>, physical and electrical characteristics of metal doped chalcogenide films (photodoped Ag₄As₂S₃) between electrodes, useful in memories, configurable connections, and self-repairing interconnections.
- *Kozicki and Mitkova, Proceedings of the XIX International Congress on Glass, Society for Glass Technology (2001): this publication generally relates to, <u>inter alia</u>, the physical effects of introduction of Ag into chalcogenide glasses, where introduction is by photodiffusion.

McHardy et al., 20 J. Phys. C.: Solid State Phys. (1987): this publication generally relates to, <u>inter alia</u>, sensitivity and high resolution of metals in amorphous chalcogenides by electron and UV radiation.

Owen et al., Nanostructure Physics and Fabrication (1989): this publication generally relates to, <u>inter alia</u>, photo-induced structural or physico-chemical changes of amorphous chalcogenides when exposed to light/irradiation, affecting chemical solubility.

Shimizu et al., 46 B. Chem Soc. Japan, No. 12 (1973): this publication generally relates to, <u>inter alia</u>, electric conductivity increase by increasing Ag-photodoping of chalcogenide glass.

SEP 1 6 2003

Sub	Substitute for form 1449A/PTO			Complete if Known		
				Application Number	10/076,486	
١N	NFORMATION	1 DISC	LOSURE	Filing Date	February 19, 2002	
S	TATEMENT I	BY APF	PLICANT	First Named Inventor	Stephen L. Casper	
				Art Unit	2818	
	(use as many sh	eets as nece	ssary)	Examiner Name	M. Tran	
Sheet	1	of	4	Attorney Docket Number	M4065.0479/P479	

		**************************************	U.S. PA	TENT DOCUMENTS	
Examiner Initials*	Cite No.1	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant
	ļ		40/0000		Figures Appear
	AA	6,469,364	10/2002	Kozicki	
	AB	2002/0168820 App.	11/2002	Kozicki	
	AC	2000/0072188 App	6/2002	Gilton	
	AD	2002/0123169 App	9/2002	Moore et al.	
	AE	2002/0123248 App.	9/2002	Moore et al.	
	AF	3,622,319	11/1971	Sharp	
	AG_	3,743,847	7/1973	Boland	
	AH	4,269,935	5/1981	Masters et al.	
	AI	4,312,938	1/1982	Drexler, et al.	
	AJ	4,316,946	1/1982	Masters, et al.	
·· ····	AK	4,320,191	3/1982	Yoshikawa et al.	
	AL	4,405,710	9/1983	Balasubramanyam et al.	
	AM	4,419,421	12/1983	Wichelhaus, et al.	
	AN	4,795,657	1/1989	Formigoni et al.	
	AO	4,847,674	7/1989	Sliwa et al.	
	AP_	4,499,557	2/1985	Holmberg et al.	
<u> </u>	AQ	5,177,567	1/1993	Klersy et al.	
	AR	5,219,788	6/1993	Abernathey et al.	
	AS	5,238,862	8/1993	Blalock et al.	
	AT	5,315,131	5/1994	Kishimoto et al.	
	AU	5,350,484	9/1994	Gardner et al.	
	AV	5,360,981	11/1994	Owen et al.	
	AW	5,512,328	4/1996	Yoshimura et al.	
	AX	5,512,773	4/1996	Wolf et al.	
	AY	5,726,083	3/1998	Takaishi	
	AA1	5,841,150	11/1998	Gonzalez et al.	
	AB1	5,846,889	12/1998	Harbison et al.	
	AC1	5,920,788	7/1999	Reinberg	
	AD1	5,998,066	12/1999	Block et al.	
	AE1	6,077,729	6/2000	Harshfield	
	AF1	6,117,720	9/2000	Harshfield	
	AG1	6,143,604	11/2000	Chiang et al.	
	AH1	6,177,338	1/2001	Liaw et al.	
	Al1	6,236,059	5/2001	Wolstenholme et al.	
	AJ1	6,297,170	10/2001	Gabriel et al.	
	AK1	6,300,684	10/2001	Gonzalez et al.	
<u> </u>	AL1	6,316,784	11/2001	Zahorik et al.	
	AM1	6,329,606	12/2001	Freyman et al.	
_	AN1	6,350,679	2/2002	McDaniel et al.	
	AO1	6,376,284	4/2002	Gonzalez et al.	
	AP1	6,391,688	5/2002	Gonzalez et al.	
	AQ1		7/2002	Thakur et al.	
	+		7/2002	Li et al.	
	AS1	6,487,106	11/26/2002	Kozicki	
· · · · · ·		5,314,772	5/24/1994	Kozicki	

Sub	Substitute for form 1449A/PTO				Complete if Known		
000	strate 101 101111 1-4-407-01				Application Number	10/076,486	
IN	IFORMATIC	ON DISC	CLOSUR	E	Filing Date	February 19, 2002	
	TATEMENT				First Named Inventor	Stephen L. Casper 2818	
	.,	_ , ,			Art Unit		
	(use as many	sheets as ne	cessary)		Examiner Name	M. Tran	,
Sheet	2	of	4		Attorney Docket Number	M4065.0479/P479	
-	AU1 2002/0190	0350 APP	12/19/2002	Kozic	cki		
				Moor	е		

AU1	2002/0190350 APP	12/19/2002	Kozicki
AV1	2003/0027416 APP	2/6/2003	Moore
AW1	2003/0001229 APP	1/2/2003	Moore et al.
AX1	2002/0106849 APP	8/8/2002	Moore
AY1	2002/0127886 APP	9/12/2002	Moore et al.
 AZ1	2002/0123170 APP	9/5/2002	Moore et al.
 BA1	2002/0163828 APP	11/2002	Krieger et al
 BB1	6,072,716	6/2000	Jacobson et al.
BC1	5,272,359	12/93	Nagasubramanian et al.
BD1	4,671,618	6/87	Wu et al.
BE1	4,800,526	1/89	Lewis
BF1	2003/0035314	02/20/03	Kozicki
BG1	2003/0035315	02/20/03	Kozicki
BH1	6,314,014	11/6/01	Lowrey et al.
BI1	5,883,827	3/16/99	Morgan
BJ1	4,112,512	9/5/78	Arzubi et al.

PTO/SB/08A (10-01)

Approved for use through 10/31/2002.OMB 0651-0031 U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	estitute for form 1449A/PTO			Complete if Known		
				Application Number	10/076,486	
١N	NFORMATION	1 DI	SCLOSURE	Filing Date	February 19, 2002	
l s	STATEMENT BY APPLICANT			First Named Inventor	Stephen L. Casper	
				Art Unit	2818	
	(use as many sheets as necessary)			Examiner Name	M. Tran	
Sheet	3	of	4	Attorney Docket Number	M4065.0479/P479	

		FOREI	GN PATENT	DOCUMENTS		
Examiner	Cite	Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	
Initials*	No.1	Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	MM-DD-YYYY	Applicant of Cited Document	Passages or Relevant Figures Appear	T⁵
	ВА	JP 56126916	10/1981	Akira et al.		
	BB					

Examiner	Date	
Signature	 Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Sub	stitute for form 1449B/l	PTO		Complete if Known		
				Application Number	10/076,486	
IN	IFORMATIC	ON DISC	CLOSURE	Filing Date	February 19, 2002	
S	STATEMENT BY APPLICANT			First Named Inventor	Stephen L. Casper et al.	
				Group Art Unit	2818	
	(use as many	sheets as nec	essary)	Examiner Name	M. Tran	
Sheet	4	of	4	Attorney Docket Number	M4065.0479/P479	

	011	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the	
Examiner nitials	Cite No. ¹	item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T
	CA	Axon Technologies Corporation, TECHNOLOGY DESCRIPTION: Programmable Metalization Cell(PMC), pp. 1-6 (Pre-May 2000).	
	СВ	Helbert et al., Intralevel hybrid resist process with submicron capability, SPIE Vol. 333 SUBMICRON LITHOGRAPHY, pp. 24-29 (1982).	
	CC	Hilt, DISSERTATION: Materials characterization of Silver Chalcogenide Programmable Metalization Cells, Arizona State University, pp. Title page-114 (UMI Company, May 1999).	
	CD	Hirose et al., High Speed Memory Behavior and Reliability of an Amorphous As ₂ S ₃ Film Doped Ag, PHYS. STAT. SOL. (a) 61, pp. 87-90 (1980).	
-	CE	Holmquist et al., Reaction and Diffusion in Silver-Arsenic Chalcogenide Glass Systems, 62 J. AMER. CERAM. Soc., No. 3-4, pp. 183-188 (March-April 1979).	
	CF	Huggett et al., Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF ₆ , 42 APPL PHYS. LETT., No. 7, pp. 592-594 (April 1983).	
	CG	Kawaguchi et al., Mechanism of photosurface deposition, 164-166 J. NON-CRYST. SOLIDS, pp. 1231-1234 (1993).	
	СН	Kolobov and Elliott, Photodoping of Amorphous Chalcogenides by Metals, Advances in Physics, Vol. 40, No 5, 625-684 (1991).	
-	CI	Kozicki, et al., "Applications of Programmable Resistance Changes in Metal-doped Chalcogenides", Proceedings of the 1999 Symposium on Solid State Ionic Devices, Editors - E.D. Wachsman et al., The Electrochemical Society, Inc., 1 - 12 (1999).	
	CJ	Kozicki, et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, 27, 485-488 (2000).	
	CK	Kozicki, et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering, vol. 63/1-3,155-159 (2002).	
	CL	M.N. Kozicki and M. Mitkova, Silver incorporation in thin films of selenium rich Ge-Se glasses, Proceedings of the XIX International Congress on Glass, Society for Glass Technology, 226-227 (2001).	
	СМ	McHardy et al., The dissolution of metals in amorphous chalcogenides and the effects o electron and ultraviolet radiation, 20 J. Phys. C.: Solid State Phys., pp. 4055-4075 (1987)f	
	CN	Owen et al., Metal-Chalcogenide Photoresists for High Resolution Lithography and Sub-Micron Structures, NANOSTRUCTURE PHYSICS AND FABRICATION, pp. 447-451 (M. Reed ed. 1989).	
	СО	Shimizu et al., The Photo-Erasable Memory Switching Effect of Ag Photo-Doped Chalcogenide Glasses, 46 B. CHEM Soc. Japan, No. 12, pp. 3662-3365 (1973).	
	CP	Michael N. Kozicki, 1. Programmable Metallization Cell Technology Description, February 18, 2000	1
	CQ	Michael N. Kozicki, Axon Technologies Corp. and Arizona State University, Presentation to Micron Technology, Inc., April 6, 2000	
			-

Examiner	Date	
Signature	Considered	

00P2 P311177

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.

Atty Docket No.. ..14065.0479/P479

iventors: Stephen L. Casper et al.

pplication No.: 10/076,486

Filing Date: February 19, 2002

itle: PROGRAMMABLE CONDUCTOR RANDOM ACCESS MEMORY AND METHOD FOR

SENSING SAME

ocuments Filed:

Second Information Disclosure Statement w/Form PTO/SB/08A and 100 references

ia: PTO Daily Run

ender's Initials: TJD/SPT/rrl

Date: September 26, 2002

RAW 9/26/02

Sut	ostitute for form 1449A/PT	0		Complete If Known		
				Application Number	10/076,486	
1	VFORMATIO			Filing Date	February 19, 2002	
j 8	STATEMENT	BY A	APPLICANT	First Named Inventor	Stephen L. Casper	
/	(use as many s	sheets as	necessary)	Art Unit	2818	
				Examiner Name	Not Known	
Sheet	1	of	8	Attorney Docket Number	M4065.0479/P479	

Examiner	Cite	Document Number	Publication Date	Name of Patentee or Applicant	Pages, Columns, Lines, Where Relevant
Initials*	No.¹	Number-Kind Code ² (if known)	MM-DD-YYYY	of Cited Document	Passages or Relevant Figures Appear
	AA	6,388,324	05/14/2002	Kozicki et al.	
	AB	US 2002/0000666	01/03/2002	Kozicki et al.	
<u>-</u>	AC	5,500,532	03/19/1996	Kozicki et al.	
	AD	6,418,049	07/09/2002	Kozicki et al.	
	AE	5,751,012	05/12/1998	Wolstenholme et al.	
·	AF	5,789,277	08/04/1998	Zahorik et al.	
	AG	6,348,365	02/19/2202	Moore et al.	

	-	FOREI	GN PATENT	DOCUMENTS		
Examiner Initials*	Cite No.1	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	1€
	ВА	WO 02/21542	03/14/2002	Kozicki et al.		
	BB	WO 00/48196	08/17/2000	Kozicki et al.		
	BC	WO 97/48032	12/18/1997	Kozicki et al.		
	BD	WO 99/28914	06/10/1999	Kozicki et al.		

Examiner	Date	
Signature	Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

¹Applicant's unique citation designation number (optional). ²See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov.or.MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶Applicant is to place a check mark here if English language Translation is attached.

Attorney Docket Number M4065.0479/P479

Sheet

2

of

Substitute for form 1449B/PTO	Complete if Known		
A SECURIOR OF TOTAL TO	Application Number	10/076,486	
INFORMATION DISCLOSURE	Filing Date	February 19, 2002	
STATEMENT BY APPLICANT	First Named Inventor	Stephen L. Casper	
	Group Art Unit	2818	
(use as many sheets as necessary)	Examiner Name	Not Known	

8

	0	OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the	[
Examiner Initials	Cite No.1	item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ²
	CA	Abdel-All, A.; Elshafie, A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.	
	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.	
	СС	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.	
	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.	
	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.	
	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.	
	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
•	СН	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.	1
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.	
	CJ	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.	
	СК	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
	СМ	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029.	
	CN	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	CO	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	
	СР	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	
	CQ	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
	CR	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	
	CS	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
	СТ	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	
	CU	Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.	
	CV	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4I5, Solid State Ionics 70/71 (1994) 72-76.	
	cw	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x	

Sheet

INFORMATION DISCLOSURE
INFORMATION DISCLOSURE
CTATEMENT DV ADDITOANT
STATEMENT BY APPLICANT

Substitute for form 1449B/PTO

3

(use as many sheets as necessary)

of

8

Complete if Known				
Application Number	10/076,486			
Filing Date	February 19, 2002 Stephen L. Casper			
First Named Inventor				
Group Art Unit	2818			
Examiner Name	Not Known			
Attorney Docket Number	M4065.0479/P479			

		Glasses, Asian Journal of Physics (2000) 9, 709-72.
C	CX	Boolchand, P.; Bresser, W.J., Mobile silver ions and glass formation in solid electrolytes,
	-	Nature 410 (2001) 1070-1073.
C	CY	Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in
		Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703
ļC	CZ	Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in
		steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F.
		Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132.
C	CA1	Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous
į		chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54
		(1987) 415–420.
C	CB1	Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical
		order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978.
С	CC1	Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in
		GexSe1-x glasses, Solid state comm. 45 (1983) 183-185.
С	D1	Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg),
		network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of
		ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030.
С	E1	Boolchand, P.; Grothaus, J, Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses
		compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36.
C	F1	Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in
		network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496.
C	G1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen
		chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196.
C	H1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and
		cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392.
C	311	Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-
		Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science
		258 (1992) 271-274.
C	J1	Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and
		memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627.
c	K1	Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films,
		Appl. Phys. Lett. 37 (1980) 1075-1077.
C	L1	Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped
		chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936.
- lc	M1	Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass,
		J. Non-Cryst. Solids 220 (1997) 249-253.
	N1	Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory
		device, J. Non-Cryst. Solids 8-10 (1972) 885-891.
	01	Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic
ا ا		conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786.
	P1	Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J.
	-· •	Appl. Phys. 38 (1967) 753-756.
	Q1	Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155.
	R1	Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide
	1	films, Rep. Prog. Phys. 33 (1970) 1129-1191.
	CS1	
	701	Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180.
	CT1	**
	<i>)</i>	den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.
	CU1	· · · · · · · · · · · · · · · · · · ·
		Drusedau, T.P.; Panckow, A.N.; Klabunde, F., The hydrogenated amorphous

Sheet

INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

Substitute for form 1449B/PTO

(use as many sheets as necessary)

of

8

	Complete if Known		
Application Number	10/076,486		
Filing Date	February 19, 2002 Stephen L. Casper		
First Named Inventor			
Group Art Unit	2818		
Examiner Name	Not Known		
Attorney Docket Number	M4065.0479/P479		

 	silicon/nanodisperse metal (SIMAL) system-Films of unique electronic properties, J. Non-Cryst. Solids 198-200 (1996) 829-832.
CV1	El Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag2-xSe1+x/n-Si diodes, Thin Solid Films 110 (1983) 107-113.
CW1	El Gharras, Z.; Bourahla, A.; Vautier, C., Role of photoinduced defects in amorphous GexSe1-x photoconductivity, J. Non-Cryst. Solids 155 (1993) 171-179.
CX1	El Ghrandi, R.; Calas, J.; Galibert, G.; Averous, M., Silver photodissolution in amorphous chalcogenide thin films, Thin Solid Films 218 (1992)259-273.
CY1	El Ghrandi, R.; Calas, J.; Galibert, G., Ag dissolution kinetics in amorphous GeSe5.5 thin films from "in-situ" resistance measurements vs time, Phys. Stat. Sol. (a) 123 (1991) 451-460.
CZ1	El-kady, Y.L., The threshold switching in semiconducting glass Ge21Se17Te62, Indian J. Phys. 70A (1996) 507-516.
CA2	Elliott, S.R., A unified mechanism for metal photodissolution in amorphous chalcogenide materials, J. Non-Cryst. Solids 130 (1991) 85-97.
CB2	Elliott, S.R., Photodissolution of metals in chalcogenide glasses: A unified mechanism, J. Non-Cryst. Solids 137-138 (1991) 1031-1034.
 CC2	Elsamanoudy, M.M.; Hegab, N.A.; Fadel, M., Conduction mechanism in the pre-switching state of thin films containing Te As Ge Si, Vacuum 46 (1995) 701-707.
CD2	El-Zahed, H.; El-Korashy, A., Influence of composition on the electrical and optical properties of Ge20BixSe80-x films, Thin Solid Films 376 (2000) 236-240.
CE2	Fadel, M., Switching phenomenon in evaporated Se-Ge-As thin films of amorphous chalcogenide glass, Vacuum 44 (1993) 851-855.
CF2	Fadel, M.; El-Shair, H.T., Electrical, thermal and optical properties of Se75Ge7Sb18, Vacuum 43 (1992) 253-257.
CG2	Feng, X.; Bresser, W.J.; Boolchand, P., Direct evidence for stiffness threshold in Chalcogenide glasses, Phys. Rev. Lett. 78 (1997) 4422-4425.
CH2	Feng, X.; Bresser, W.J.; Zhang, M.; Goodman, B.; Boolchand, P., Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses, J. Non-Cryst. Solids 222 (1997) 137-143.
CI2	Fischer-Colbrie, A.; Bienenstock, A.; Fuoss, P.H.; Marcus, M.A., Structure and bonding in photodiffused amorphous Ag-GeSe2 thin films, Phys. Rev. B 38 (1988) 12388-12403.
CJ2	Fleury, G.; Hamou, A.; Viger, C.; Vautier, C., Conductivity and crystallization of amorphous selenium, Phys. Stat. Sol. (a) 64 (1981) 311-316.
CK2	Fritzsche, H, Optical and electrical energy gaps in amorphous semiconductors, J. Non-Cryst. Solids 6 (1971) 49-71.
CL2	Fritzsche, H., Electronic phenomena in amorphous semiconductors, Annual Review of Materials Science 2 (1972) 697-744.
CM2	Gates, B.; Wu, Y.; Yin, Y.; Yang, P.; Xia, Y., Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. (2001) currently ASAP.
CN2	Gosain, D.P.; Nakamura, M.; Shimizu, T.; Suzuki, M.; Okano, S., Nonvolatile memory based on reversible phase transition phenomena in telluride glasses, Jap. J. Appl. Phys. 28 (1989) 1013-1018.
CO2	Guin, JP.; Rouxel, T.; Keryvin, V.; Sangleboeuf, JC.; Serre, I.; Lucas, J., Indentation creep of Ge-Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow, J. Non-Cryst. Solids 298 (2002) 260-269.
CP2	Guin, JP.; Rouxel, T.; Sangleboeuf, JC; Melscoet, I.; Lucas, J., Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85 (2002) 1545-52.
CQ2	

	Substitute for form 1449B/PTO		Complete if Known			
					Application Number	10/076,486
	INFORMATION DISCLOSURE STATEMENT BY APPLICANT				Filing Date	February 19, 2002
1					First Named Inventor	Stephen L. Casper
	(use as many sheets as necessary)				Group Art Unit	2818
				necessary)	Examiner Name	Not Known
She	et	5	of	8	Attorney Docket Number	M4065.0479/P479

CR2	Haberland, D.R.; Stiegler, H., New experiments on the charge-controlled switching effect in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 408-414.	
CS2	Haifz, M.M.; Ibrahim, M.M.; Dongol, M.; Hammad, F.H., Effect of composition on the structure and electrical properties of As-Se-Cu glasses, J. Apply. Phys. 54 (1983) 1950-1954.	
CT2	Hajto, J.; Rose, M.J.; Osborne, I.S.; Snell, A.J.; Le Comber, P.G.; Owen, A.E., Quantization effects in metal/a-Si:H/metal devices, Int. J. Electronics 73 (1992) 911-913.	
CU2	Hajto, J.; Hu, J.; Snell, A.J.; Turvey, K.; Rose, M., DC and AC measurements on metal/a-Si:H/metal room temperature quantised resistance devices, J. Non-Cryst. Solids 266-269 (2000) 1058-1061.	
CV2	Hajto, J.; McAuley, B.; Snell, A.J.; Owen, A.E., Theory of room temperature quantized resistance effects in metal-a-Si:H-metal thin film structures, J. Non-Cryst. Solids 198-200 (1996) 825-828.	
CW2	Hajto, J.; Owen, A.E.; Snell, A.J.; Le Comber, P.G.; Rose, M.J., Analogue memory and ballistic electron effects in metal-amorphous silicon structures, Phil. Mag. B 63 (1991) 349-369.	
CX2	Hayashi, T.; Ono, Y.; Fukaya, M.; Kan, H., Polarized memory switching in amorphous Se film, Japan. J. Appl. Phys. 13 (1974) 1163-1164.	
CY2	Hegab, N.A.; Fadel, M.; Sedeek, K., Memory switching phenomena in thin films of chalcogenide semiconductors, Vacuum 45 (1994) 459-462.	_
CZ2	Hirose, Y.; Hirose, H., Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films, J. Appl. Phys. 47 (1976) 2767-2772.	
CA3	Hong, K.S.; Speyer, R.F., Switching behavior in II-IV-V2 amorphous semiconductor systems, J. Non-Cryst. Solids 116 (1990) 191-200.	
CB3	Hosokawa, S., Atomic and electronic structures of glassy GexSe1-x around the stiffness threshold composition, J. Optoelectronics and Advanced Materials 3 (2001) 199-214.	
CC3	Hu, J.; Snell, A.J.; Hajto, J.; Owen, A.E., Constant current forming in Cr/p+a-/Si:H/V thin film devices, J. Non-Cryst. Solids 227-230 (1998) 1187-1191.	
CD3	Hu, J.; Hajto, J.; Snell, A.J.; Owen, A.E.; Rose, M.J., Capacitance anomaly near the metal- non-metal transition in Cr-hydrogenated amorphous Si-V thin-film devices, Phil. Mag. B. 74 (1996) 37-50.	
CE3	Hu, J.; Snell, A.J.; Hajto, J.; Owen, A.E., Current-induced instability in Cr-p+a-Si:H-V thin film devices, Phil. Mag. B 80 (2000) 29-43.	
CF3	lizima, S.; Sugi, M.; Kikuchi, M.; Tanaka, K., Electrical and thermal properties of semiconducting glasses As-Te-Ge, Solid State Comm. 8 (1970) 153-155.	
CG3	Ishikawa, R.; Kikuchi, M., Photovoltaic study on the photo-enhanced diffusion of Ag in amorphous films of Ge2S3, J. Non-Cryst. Solids 35 & 36 (1980) 1061-1066.	
СНЗ	lyetomi, H.; Vashishta, P.; Kalia, R.K., Incipient phase separation in Ag/Ge/Se glasses: clustering of Ag atoms, J. Non-Cryst. Solids 262 (2000) 135-142.	
CI3	Jones, G.; Collins, R.A., Switching properties of thin selenium films under pulsed bias, Thin Solid Films 40 (1977) L15-L18.	
CJ3	Joullie, A.M.; Marucchi, J., On the DC electrical conduction of amorphous As2Se7 before switching, Phys. Stat. Sol. (a) 13 (1972) K105-K109.	
СКЗ	Joullie, A.M.; Marucchi, J., Electrical properties of the amorphous alloy As2Se5, Mat. Res. Bull. 8 (1973) 433-442.	
CL3	Kaplan, T.; Adler, D., Electrothermal switching in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 538-543.	
СМЗ	Kawaguchi, T.; Maruno, S.; Elliott, S.R., Optical, electrical, and structural properties of amorphous Ag-Ge-S and Ag-Ge-Se films and comparison of photoinduced and thermally induced phenomena of both systems, J. Appl. Phys. 79 (1996) 9096-9104.	
CN3	Kawaguchi, T.; Masui, K., Analysis of change in optical transmission spectra resulting from Ag photodoping in chalcogenide film, Japn. J. Appl. Phys. 26 (1987) 15-21.	

S	ubstitute for form 1449B/P	TO		Complete if Клоwп			
Ū				Application Number	10/076,486		
1	NFORMATIC	N DI	SCLOSURE	Filing Date	February 19, 2002		
	STATEMENT	BY A	APPLICANT	First Named Inventor	Stephen L. Casper		
				Group Art Unit	2818	·	
2/	(use as many	sheets as	necessary)	Examiner Name	Not Known		
Sheet	6	of	8	Attorney Docket Number	M4065.0479/P479		

CO3 Kawasaki, M.; Kawamura, J.; Nakamura, Y.; Aniya, M., Ionic conductivity of Agx(GeSe3)1-x (Ocsy<-0-577) glasses, Solid state fonics 123 (1999) 259-259. CP3 Kluge, G.; Thomas, A.; Klabes, R.; Grotzschel, R.; Silver photodiffusion in amorphous (December 2014) 241-259. CO3 Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731. CR3 Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731. CR3 Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030. CS3 Korkinova, T. Sn.); Andreichin, R.E.; Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CT3 Korkinova, F.; Aff, M.A. I. Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTI chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146. CU3 Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instin Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lai, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 48 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 1657-1662. CX3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CX4 Masushita, T.; Yamagami, T.; Okuda, M., Polarized		
GexSe100-x, J. Non-Cryst. Solids 124 (1990) 186-193. CQ3 Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731. CR3 Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030. CS3 Korkinova, Ts.N.; Andreichiin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CC3 Korkinova, Ts.N.; Andreichiin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CC3 Korkinova, Ts.N.; Andreichiin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CC3 Korkinova, Ts.N.; Andreichiin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1994) 143-146. CC3 Lakshrimarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instin Electronics & Telecom. Engrs 27 (1981) 18-19. CC3 Lai, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CC3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CC3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CC3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.I., Reversible and irreversible electrical switching in TeO2-VZO5 based glasses, Journal of Physique IV 2 (1992) C2-185 - C2-188. CC4 Milkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids	CO3	
Solids 198-200 (1996) 728-731. CR3 Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030. CS3 Korkinova, T.S.N.; Andreichin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CT3 Korkinova, T.S.N.; Andreichin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CT3 Korkinova, T.S.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) R129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CX3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, Jt., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Later, A., Electrical characterization of M/Se structures (M=Ni,B), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CH4 Mityatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyat	CP3	
CS3 Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CT3 Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CT3 Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259. CU3 Lak,M.; Andreiching mechanism, J. Instr. Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CX3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CX4 Mazurier, F.; Levy, M.; Souquet, Jt., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messousi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of MrSe structures (M-Nti,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Milkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 293-302 (2002) 1023-1027. CE4 Milkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Mystani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 14 (1958) 1-1	CQ3	
Non-Cryst. Solids 194 (1996) 256-259. CT3 Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTI chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146. CU3 Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lai, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A.; Electrical characterization of M/Se structures (M=Ni,B), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory. J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Myatani, Sy., Lectrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. Makayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transiti	CR3	
amorphous GeSeTI chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146. CU3 Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lai, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M-Ri), Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ielectrical properties of Ag2Se, J. Phys. Soc. Japan 14 (1968) 1-17. CJ4 Mixayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 3	CS3	
devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19. CV3 Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CX3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L, Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., lelectrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CM4 Nakayama, K.; Ko	СТЗ	
chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304. CW3 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking AI contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 293-302 (2002) 1023-1027. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 293-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electroic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electroic properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Clonic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1969) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa	CU3	devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19.
with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132. CX3 Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 35 (1976)	CV3	chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304.
Appl. Phys. Lett. 46 (1985) 543-545. CY3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=NI,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Lonic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical paramete	CW3	with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29
system, Jap. J. Appl. Phys. 11 (1972) 1657-1662. CZ3 Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1958) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CX3	
selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606. CA4 Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CY3	
V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188. CB4 Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CZ3	
M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258. CC4 Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CA4	
and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CD4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CB4	
metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027. CE4 Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CC4	
glasses, Phys. Rev. Lett. 83 (1999) 3848-3851. CF4 Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CD4	
(1973) 423-432. CG4 Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317. CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CE4	
CH4 Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CF4	(1973) 423-432.
(1959) 996-1002. CI4 Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CG4	Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.
 (1968) 1-17. CJ4 Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853. 	CH4	
transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569. CK4 Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CI4	(1968) 1-17.
nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161. CL4 Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.		transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569.
parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.	CK4	nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J.
CM4 Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on	CL4	
	CM ²	Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on

	Substitute for form 1449B/PTC				Complete if Known
'	oubstitute for form 1443b/1 Te			Application Number	10/076,486
	INFORMATION	1 DI	SCLOSURE	Filing Date	February 19, 2002
4	STATEMENT I	3Y /	APPLICANT	First Named Inventor	Stephen L. Casper
اليا				Group Art Unit	2818
•	(use as many sh	eets as	necessary)	Examiner Name	Not Known
Shee	et 7	of	8	Attorney Docket Number	M4065.0479/P479

		electrical switching in chalcogenide network glasses, Phys. Rev. B 54 (1996) 4413-4415.
	CN4	Neale, R.G.; Aseltine, J.A., The application of amorphous materials to computer memories,
		IEEE transactions on electron dev. Ed-20 (1973) 195-209.
	CO4	Ovshinsky S.R.; Fritzsche, H., Reversible structural transformations in amorphous
į	004	semiconductors for memory and logic, Mettalurgical transactions 2 (1971) 641-645.
	CP4	Ovshinsky, S.R., Reversible electrical switching phenomena in disordered structures, Phys.
- 1	CP4	
	004	Rev. Lett. 21 (1968) 1450-1453.
1	CQ4	Owen, A.E.; LeComber, P.G.; Sarrabayrouse, G.; Spear, W.E., New amorphous-silicon
		electrically programmable nonvolatile switching device, IEE Proc. 129 (1982) 51-54
ĺ	CR4	Owen, A.E.; Firth, A.P.; Ewen, P.J.S., Photo-induced structural and physico-chemical changes
		in amorphous chalcogenide semiconductors, Phil. Mag. B 52 (1985) 347-362.
	CS4	Owen, A.E.; Le Comber, P.G.; Hajto, J.; Rose, M.J.; Snell, A.J., Switching in amorphous
		devices, Int. J. Electronics 73 (1992) 897-906.
	CT4	Pearson, A.D.; Miller, C.E., Filamentary conduction in semiconducting glass diodes, App.
		Phys. Lett. 14 (1969) 280-282.
	CU4	Pinto, R.; Ramanathan, K.V., Electric field induced memory switching in thin films of the
-		chalcogenide system Ge-As-Se, Appl. Phys. Lett. 19 (1971) 221-223.
	CV4	Popescu, C., The effect of local non-uniformities on thermal switching and high field behavior
	044	of structures with chalcogenide glasses, Solid-state electronics 18 (1975) 671-681.
	CW4	Popescu, C.; Croitoru, N., The contribution of the lateral thermal instability to the switching
	CVV4	
	07.4	phenomenon, J. Non-Cryst. Solids 8-10 (1972) 531-537.
	CX4	Popov, A.I.; Geller, I.KH.; Shemetova, V.K., Memory and threshold switching effects in
		amorphous selenium, Phys. Stat. Sol. (a) 44 (1977) K71-K73.
	CY4	Prakash, S.; Asokan, S.; Ghare, D.B., Easily reversible memory switching in Ge-As-Te
		glasses, J. Phys. D: Appl. Phys. 29 (1996) 2004-2008.
	CZ4	Rahman, S.; Sivarama Sastry, G., Electronic switching in Ge-Bi-Se-Te glasses, Mat. Sci. and
		Eng. B12 (1992) 219-222.
	CA5	Ramesh, K.; Asokan, S.; Sangunni, K.S.; Gopal, E.S.R., Electrical Switching in germanium
·		telluride glasses doped with Cu and Ag, Appl. Phys. A 69 (1999) 421-425.
-	CB5	Rose,M.J.;Hajto,J.;Lecomber,P.G.;Gage,S.M.;Choi,W.K.;Snell,A.J.;Owen,A.E., Amorphous
		silicon analogue memory devices, J. Non-Cryst. Solids 115 (1989) 168-170.
	CC5	Rose, M.J.; Snell, A.J.; Lecomber, P.G.; Hajto, J.; Fitzgerald, A.G.; Owen, A.E., Aspects of non-
		volatility in a -Si:H memory devices, Mat. Res. Soc. Symp. Proc. V 258, 1992, 1075-1080.
	CD5	Schuocker, D.; Rieder, G., On the reliability of amorphous chalcogenide switching devices, J.
	000	Non-Cryst. Solids 29 (1978) 397-407.
	CES	Sharma, A.K.; Singh, B., Electrical conductivity measurements of evaporated selenium films in
	CE5	vacuum, Proc. Indian Natn. Sci. Acad. 46, A, (1980) 362-368.
	CEE	Charma D. Ctrustural electrical and entiral proportion of silver colonide films. Ind. I. Of pure
	CF5	Sharma, P., Structural, electrical and optical properties of silver selenide films, Ind. J. Of pure
	005	and applied phys. 35 (1997) 424-427.
	CG5	Snell, A.J.; Lecomber, P.G.; Hajto, J.; Rose, M.J.; Owen, A.E.; Osborne, I.L., Analogue
		memory effects in metal/a-Si:H/metal memory devices, J. Non-Cryst. Solids 137-138 (1991)
		1257-1262.
	CH5	Snell, A.J.; Hajto, J.; Rose, M.J.; Osborne, L.S.; Holmes, A.; Owen, A.E.; Gibson, R.A.G.,
		Analogue memory effects in metal/a-Si:H/metal thin film structures, Mat. Res. Soc. Symp.
		Proc. V 297, 1993, 1017-1021.
	CI5	Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, J. Phys. D:
		Appl. Phys. 8 (1975) L120-L122.
	CJ5	Steventon, A.G., The switching mechanisms in amorphous chalcogenide memory devices, J.
	1	Non-Cryst. Solids 21 (1976) 319-329.
	1	
	CK5	Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide

SEP 1 6 2003

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

SEP 1 6 2003 She

Substitute for form 1449B/PTO INFORMATION DISCLOSURE				Complete if Known		
				Application Number	10/076,486	
				Filing Date	February 19, 2002	
S	TATEMENT B	3Y /	APPLICANT	First Named Inventor	Stephen L. Casper	
				Group Art Unit	2818	
(use as many sheets as necessary)			necessary)	Examiner Name	Not Known	
eet	8	of	8	Attorney Docket Number	M4065.0479/P479	

CL5	Tanaka, K., Ionic and mixed conductions in Ag photodoping process, Mod. Phys. Lett B 4 (1990) 1373-1377.
CM5	Tanaka, K.; lizima, S.; Sugi, M.; Okada, Y.; Kikuchi, M., Thermal effects on switching phenomenon in chalcogenide amorphous semiconductors, Solid State Comm. 8 (1970) 387-389.
CN5	Thornburg, D.D., Memory switching in a Type I amorphous chalcogenide, J. Elect. Mat. 2 (1973) 3-15.
CO5	Thornburg, D.D., Memory switching in amorphous arsenic triselenide, J. Non-Cryst. Solids 11 (1972) 113-120.
CP5	Thornburg, D.D.; White, R.M., Electric field enhanced phase separation and memory switching in amorphous arsenic triselenide, Journal(??) (1972) 4609-4612.
CQ5	Tichy, L.; Ticha, H., Remark on the glass-forming ability in GexSe1-x and AsxSe1-x systems, J. Non-Cryst. Solids 261 (2000) 277-281.
CR5	Titus, S.S.K.; Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, Phys. Rev. B 48 (1993) 14650-14652.
CS5	Tranchant,S.;Peytavin,S.;Ribes,M.;Flank,A.M.;Dexpert,H.;Lagarde,J.P., Silver chalcogenide glasses Ag-Ge-Se: Ionic conduction and exafs structural investigation, Transport-structure relations in fast ion and mixed conductors Proceedings of the 6th Riso International symposium. 9-13 September 1985.
CT5	Tregouet, Y.; Bernede, J.C., Silver movements in Ag2Te thin films: switching and memory effects, Thin Solid Films 57 (1979) 49-54.
CU5	Uemura, O.; Kameda, Y.; Kokai, S.; Satow, T., Thermally induced crystallization of amorphous Ge0.4Se0.6, J. Non-Cryst. Solids 117-118 (1990) 219-221.
CV5	Uttecht, R.; Stevenson, H.; Sie, C.H.; Griener, J.D.; Raghavan, K.S., Electric field induced filament formation in As-Te-Ge glass, J. Non-Cryst. Solids 2 (1970) 358-370.
CD5	Viger, C.; Lefrancois, G.; Fleury, G., Anomalous behaviour of amorphous selenium films, J. Non-Cryst. Solids 33 (1976) 267-272.
CX5	Vodenicharov, C.; Parvanov,S.; Petkov,P., Electrode-limited currents in the thin-film M-GeSe-M system, Mat. Chem. And Phys. 21 (1989) 447-454.
CY5	Wang, SJ.; Misium, G.R.; Camp, J.C.; Chen, KL.; Tigelaar, H.L., High-performance Metal/silicide antifuse, IEEE electron dev. Lett. 13 (1992)471-472.
CZ5	Weirauch, D.F., Threshold switching and thermal filaments in amorphous semiconductors, App. Phys. Lett. 16 (1970) 72-73.
CA6	West, W.C.; Sieradzki, K.; Kardynal, B.; Kozicki, M.N., Equivalent circuit modeling of the Ag As0.24S0.36Ag0.40 Ag System prepared by photodissolution of Ag, J. Electrochem. Soc. 145 (1998) 2971-2974
CB6	West, W.C., Electrically erasable non-volatile memory via electrochemical deposition of multifractal aggregates, Ph.D. Dissertation, ASU 1998
CC6	Zhang, M.; Mancini, S.; Bresser, W.; Boolchand, P., Variation of glass transition temperature, Tg, with average coordination number, <m>, in network glasses: evidence of a threshold behavior in the slope dTg/d<m> at the rigidity percolation threshold (<m>=2.4), J. Non-Cryst. Solids 151 (1992) 149-154.</m></m></m>

Examiner	Date
Signature	Considered

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.

Atty Docket No.: M4065.0479/P479

Inventor: Stephen L. Casper, et al.

Application No.: 10/076,486 Filing Date: February 19, 2002

Title: PROGRAMMABLE CONDUCTOR RANDOM ACCESS MEMORY AND METHOD FOR

SENSING SAME

Documents Filed:

Transmittal (1 page)

Information Disclosure Statement (4 pages; 2 copies)

Form PTO/SB/08A (1 page)

5 U.S. Patent References

Via: PTO Daily Run

Sender's Initials: TJD/SPT/kmc

AUG 0 7 2002 AUG

Date: August 7, 2002

coc 8-7-02

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	stitute for form 1449A/PTO				Complete if Known
				Application Number	10/076,486
11	NFORMATION	1 DI	SCLOSURE	Filing Date	February 19, 2002
S	TATEMENT	3Y /	APPLICANT	First Named Inventor	Stephen L. Casper
				Art Unit	2818
	(use as many she	eets as	necessary)	Examiner Name	Not Yet Assigned
Sheet	1	of	1	Attorney Docket Number	M4065.0479/P479

			U.S. PA	TENT DOCUMENTS	
Examiner	Cite	Document Number	Publication Date	Name of Patentee or Applicant	Pages, Columns, Lines, Where Relevant
Initials*	No. ¹	Number-Kind Code ² (if known)	MM-DD-YYYY	of Cited Document	Passages or Relevant Figures Appear
	AA	5,761,115	06/1998	Kozicki et al.	
	AB	5,896,312	04/1999	Kozicki et al.	
	AC	5,914,893	06/1999	Kozicki et al.	
	AD	6,084,796	07/2000	Kozicki et al.	
	AE	5,883,827	03/1999	Morgan	

		FOREI	GN PATENT [DOCUMENTS		***
Examiner	Cite	Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	
Initials*	No.1	Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	1444 DD 1000	Applicant of Cited Document	Passages or Relevant Figures Appear	Le

¹ Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

	OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS	
Cite No. ¹	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ²
_	•	Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s),

Examiner	Date	
Signature	Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.