

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 02 - Implementação de um meio-somador e uso de um display de 7 segmentos como dispositivo de saída

São Carlos - SP

### Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

# Experimento 02 - Implementação de um meio-somador e uso de um display de 7 segmentos como dispositivo de saída

Orientador: Fredy João Valente

Universidade Federal de São Carlos - UFSCar

Departamento de Computação

Ciência da Computação

Laboratório de Circuitos Digitais

São Carlos - SP 2017

# Lista de ilustrações

| Figura 1 –   | Ilustração de um meio somador                           | 8  |
|--------------|---------------------------------------------------------|----|
| Figura 2 -   | Resultado da simulação da etapa 1                       | Ĝ  |
| Figura 3 -   | Teste do circuito rodando na placa, no intervalo de 0-5 | 10 |
| Figura 4 -   | Teste do circuito rodando na placa, no intervalo de 6-9 | 1. |
| Figura 5 $-$ | Resultado da simulação da etapa 2                       | 1  |
| Figura 6 -   | Teste do circuito rodando na placa                      | 12 |

## Lista de tabelas

| Tabela 1 – | Tabela verdade utilizada para chegar na expressão de cada um dos |   |
|------------|------------------------------------------------------------------|---|
|            | segmentos.                                                       | 7 |
| Tabela 2 – | Tabela verdade de um mejo somador                                | 8 |

# Lista de abreviaturas e siglas

# Sumário

| 1   | RESUMO                                                                                                                  | 6  |
|-----|-------------------------------------------------------------------------------------------------------------------------|----|
| 2   | DESCRIÇÃO DA EXECUÇÃO DO EXPERIMENTO                                                                                    | 7  |
| 2.1 | ETAPA 1 – Display de 7 segmentos                                                                                        | 7  |
| 2.2 | ETAPA 2 – Meio-somador 1 bit                                                                                            |    |
| 3   | AVALIAÇÃO DOS RESULTADOS DO EXPERIMENTO                                                                                 | 9  |
| 3.1 | ETAPA 1 – Display de 7 segmentos                                                                                        | 9  |
| 3.2 | ETAPA 2 – Meio-somador 1 bit                                                                                            | 11 |
| 4   | ANÁLISE CRÍTICA E DISCUSSÃO                                                                                             | 13 |
| 4.1 | ETAPA 1 – Display de 7 segmentos                                                                                        | 13 |
| 4.2 | ETAPA 2 – Meio-somador 1 bit                                                                                            | 13 |
|     | APÊNDICES                                                                                                               | 14 |
|     | APÊNDICE A – IMAGEM DO CIRCUITO PARA A REPRESEN-<br>TAÇÃO DE UM NÚMERO DE 4 <i>BITS</i> EM UM<br>DISPLAY DE 7 SEGMENTOS | 15 |
|     | APÊNDICE B – CIRCUITO DO MEIO-SOMADOR DE UM 1 BIT                                                                       | 17 |
|     | ANEXOS                                                                                                                  | 20 |
|     | ANEXO A - DATASHEET DO COMPONENTE 7440                                                                                  | 21 |

### 1 Resumo

O experimento tem o objetivo de entender como implementar um meio-somador e 4 bits. Para tal, dividiu-se o experimento em 3 (três) etapas para facilitar o aprendizado.

A primeira etapa é para entender como utilizar um display de 7 (sete) segmentos, como dispositivo de saída do circuito, e como implementar algo similar ao componente  $TTL\ 7449^1$ .

A segunda etapa serve para entender como implementar um meio-somador de 1 (um) bit utilizando somente portas NAND e a saída sendo apresentada em um display de 7 (sete) segmentos e um LED para sinalizar que seria necessário mais um digito para representar o resultado da operação.

A terceira etapa tem o objetivo de implementar um meio-somador de 4 (quatro) bits, tendo a saída apresentada em dois display de 7 (sete) segmentos.

Para mais detalhes sobre o TTL 7449 acesse o Apêndice A.

## 2 Descrição da execução do experimento

Para a realização deste experimento, foram utilizados o programa Quartus 13.0 SP 1 e a placa *Field Programmable Gate Array* - Arranjo de Portas Programáveis em Campo (FPGA) Cyclone II - EP2C20F484C7.

### 2.1 ETAPA 1 – Display de 7 segmentos

Para representar um número de 4 bits na placa, utilizou-se 4 switch, cada um representando um bit do número. Como um segmento do display pode ser acendido em mais de um número, motou-se uma expressão lógica para cada segmento do display.

Tabela 1 – Tabela verdade utilizada para chegar na expressão de cada um dos segmentos.

| A (SW[4]) | B (SW[3]) | m C~(SW[2]) | $\mid \mathrm{D} \; (\mathrm{SW}[1])$ | Saída em base decimal |
|-----------|-----------|-------------|---------------------------------------|-----------------------|
| 0         | 0         | 0           | 0                                     | 0                     |
| 0         | 0         | 0           | 1                                     | 1                     |
| 0         | 0         | 1           | 0                                     | 2                     |
| 0         | 0         | 1           | 1                                     | 3                     |
| 0         | 1         | 0           | 0                                     | 4                     |
| 0         | 1         | 0           | 1                                     | 5                     |
| 0         | 1         | 1           | 0                                     | 6                     |
| 0         | 1         | 1           | 1                                     | 7                     |
| 1         | 0         | 0           | 0                                     | 8                     |
| 1         | 0         | 0           | 1                                     | 9                     |

Para o segmento 0 montou-se a expressão

$$\overline{A}.\overline{B}.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D}$$

para o segmento 1 montou-se a expressão

$$\overline{A}.B.\overline{C}.D + \overline{A}.B.C.\overline{D}$$

para o segmento 2 montou-se a expressão

$$\overline{A}.\overline{B}.C.\overline{D}$$

para o segmento 3 montou-se a expressão

$$\overline{A}.B.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.B.C.D$$

para o segmento 4 montou-se a expressão

$$\overline{A}.D + \overline{A}.B.\overline{C} + \overline{B}.\overline{C}.D$$

para o segmento 5 montou-se a expressão

$$\overline{A}.\overline{B}.D + \overline{A}.C.D + \overline{A}.\overline{B}.C$$

para o segmento 6 montou-se a expressão

$$\overline{A}.\overline{B}.\overline{C} + \overline{A}.B.C.D$$

.

Com tais expressões, montou-se o circuito conforme o Apêndice A. Depois foram realizadas simulações e execução do circuito na placa FPGA.

### 2.2 ETAPA 2 – Meio-somador 1 bit

A operação aritmética mais simples é a soma de dois dígitos binários. Um circuito combinacional que implementa a adição de dois bits é chamado de meio-somador (half adder ou HAD). A Figura 1 ilustra um esquema de entradas e saída de um meio-somador. Um meio-somador de 1 bit deve respeitar a Tabela 2.

Figura 1 – Ilustração de um meio somador.



Tabela 2 – Tabela verdade de um meio somador.

| $\mathbf{A}$ | $\mathbf{B}$ | S (soma) | CarryOut |
|--------------|--------------|----------|----------|
| 0            | 0            | 0        | 0        |
| 0            | 1            | 1        | 0        |
| 1            | 0            | 1        | 0        |
| 1            | 1            | 0        | 1        |

O circuito deve guardar o *CarryOut* ( o "vai um") da soma, representando sua existência ou ausência através de um LED, ligando-o quando houver o carry, e mantendo-o desligado quando o carry não ocorrer.

A representação esquemática do circuito pode ser encontrada no Apêndice B.

## 3 Avaliação dos resultados do experimento

### 3.1 ETAPA 1 – Display de 7 segmentos

Verificou-se, para todos os casos de entrada, que o valor previsto pela Tabela 1 como saída era válido, demonstrando sucesso na implementação do experimento. Isso pode ser visualizado tanto pela simulação, como na execução na placa.

out -D HEX0[0] B0out HEX0[1] B0out -D HEX0[2] B 0out -----HEX0[3] B0out -D HEX0[4] B0out ----HEX0[5] B0out -D HEX0[6] B 1 SW[1] B0SW[2] B0SW[3] B 0 SW[4] B0

Figura 2 – Resultado da simulação da etapa 1.







(e) Número 4 (f) Número 5

Figura 3 – Teste do circuito rodando na placa, no intervalo de 0-5.



Figura 4 – Teste do circuito rodando na placa, no intervalo de 6-9.

### 3.2 ETAPA 2 – Meio-somador 1 bit

Na etapa 2, o experimento demonstrou os resultados esperados, de acordo com a Tabela 2.

HEXO[0] B 0

LEDG[1] B 0

SW[1] B 0

SW[2] B 0

Figura 5 – Resultado da simulação da etapa 2.

Após o deploy na placa no kit DE1, o kit educacional da Altera, o circuito apresentou os resultados esperados, representando o resultado da soma no display de 7 segmentos

 $\mbox{HEX0}$ , e indicando a presença de um  $\emph{carry}$  ou não, através do LEDG[1], conforme Figura 6.





(a) Entrada 0 0



(b) Entrada 0 1



(c) Entrada 1 0

(d) Entrada 1 1

Figura 6 – Teste do circuito rodando na placa.

Veja o circuito no Apêndice B.

## 4 Análise crítica e discussão

### 4.1 ETAPA 1 – Display de 7 segmentos

Teve-se dificuldade para entender que era necessário criar um circuito para para cada segmento do display e na leitura do resultado da simulação.

### 4.2 ETAPA 2 - Meio-somador 1 bit

Teve-se dificuldade de como implementar o meio-somador utilizando apenas as portas NAND.



APÊNDICE A – Imagem do circuito para a representação de um número de 4 *bits* em um display de 7 segmentos



# APÊNDICE B – Circuito do meio-somador de um 1 *bit*



Page 1 of 1 Revision: Etapa2

Nota: Este diagrama esquemático, diferente do anterior, já foi feito utilizando exclusivamente portas NAND, não sendo necessária qualquer metodologia de conversão. O circuito utilizado, o TTL 7449¹, apenas substitui aqui o circuito criado para a implementação da etapa anterior, respeitando as expressões do item 2.1. É só um circuito já conhecido que cumpre a mesma função que o que foi criado para aquela etapa do experimento.

Para mais detalhes sobre o TTL 7449 acesse o Apêndice A.



# ANEXO A – *Datasheet* do componente 7449

The HD74LS49 features active-high outputs for driving lamp buffer. This circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions. It contains an overriding blanking input (BI) which can be used to control the lamp intensity by pulsing or to inhibit the output. Inputs and outputs are entirely compatible for use with TTL or DTL logic outputs.

### **■BLOCK DIAGRAM**



#### **PIN ARRANGEMENT**



#### ■ABSOLUTE MAXIMUM RATINGS

| Item                        | Symbol  | Ratings     | Unit |
|-----------------------------|---------|-------------|------|
| Supply voltage              | Vcc     | 7.0         | V    |
| Input voltage               | Vin     | 7.0         | V    |
| Output current (off state)  | IO(nff) | 1           | mΑ   |
| Operating temperature range | Tupr    | - 20 - + 75 | °C   |
| Storage temperature range   | Tets    | 65~ + 150   | Υ    |

### **EFUNCTION TABLE**

|                     |    |   | Inputs |    |    |   |     |   | Outputs |    |    |   | Note |
|---------------------|----|---|--------|----|----|---|-----|---|---------|----|----|---|------|
| Decimal or Function | D  | C | В      | A  | ВІ | a | ь   | С | d       | ę  | f  | В | Note |
| 0                   | L  | L | L      | L  | Н  | Н | Н   | Н | Н       | Н  | Н  | L |      |
| 1                   | L  | L | L      | Н  | Н  | L | Н   | Н | L       | L  | L  | L |      |
| 2                   | L  | L | Н      | L  | Н  | Н | Н   | L | Н       | н  | L  | Н |      |
| 3                   | L  | L | Н      | Н  | Н  | Н | . н | н | Н       | L  | L  | Н |      |
| 4                   | L  | н | l.     | L  | н  | L | Н   | Н | L       | L. | н  | Н |      |
| 5                   | I. | Н | L      | Н  | Н  | Н | L   | H | Н       | L  | Н  | Н |      |
| 6                   | L  | Н | Н      | L  | Н  | L | L   | H | Н       | Н  | Н  | Н |      |
| 7                   | L  | Н | Н      | Н  | Н  | Н | Н   | Н | L       | L  | L  | L |      |
| 8                   | Н  | L | L      | L  | Н  | Н | Н   | Н | H       | H  | H  | Н | 1    |
| 9                   | Н  | L | L      | Н  | Н  | Н | Н   | Н | L       | L  | Н  | Н |      |
| 10                  | Н  | L | H      | L, | Н  | L | L   | L | Н       | H_ |    | H |      |
| 11                  | Н  | L | Н      | Н  | н  | L | L   | Н | Н       | L  | L  | Н |      |
| 12                  | Н  | Н | L      | L  | Н  | L | Н   | L | L       | L  | H  | Н |      |
| 13                  | Н  | н | L      | Н  | н  | Н | L   | L | Н       | L  | Н  | Н |      |
| 14                  | Н  | н | Н      | L  | Н  | L | L   | L | Н       | Н  | Н  | Н |      |
| 15                  | Н  | Н | Н      | н  | Н  | L | L   | L | L       | L  | L_ | L |      |
| BI                  | ×  | × | ×      | ×  | L  | L | L   | L | L       | L  | L  | L | 2    |

H; high level, L; low level, X; irrelevant

Notes: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.



### **ELECTRICAL CHARACTERISTICS** ( $Ta = -20 \sim +75^{\circ}$ )

| Item                | Symbol | Test Conditions                                                                             | Test Conditions |          | typ*        | max  | Unit |
|---------------------|--------|---------------------------------------------------------------------------------------------|-----------------|----------|-------------|------|------|
|                     | VIH    |                                                                                             |                 | 2.0      | -           | -    | V    |
| Input voltage       | VIL    |                                                                                             | ,               |          | _           | 0.8  | V    |
| Output current      | Іон    | $V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}, V_{IL} = 0.8 \text{V}$ | он=5.5 <b>V</b> | <b>-</b> | -           | 250  | μΑ   |
| A V.                |        | 12 4 7511 12 037 17 0 037                                                                   | IoL=4mA         | -        | -           | 0.4  | v    |
| Output voltage      | Vol    | $V_{CC} = 4.75 \text{V},  V_{IH} = 2 \text{V},  V_{IL} = 0.8$                               | IoL = 8m A      |          |             | 0.5  | V    |
|                     | Ith    | $V_{CC} = 5.25 \text{V},  V_I = 2.7 \text{V}$                                               |                 | _        | _           | 20   | μΑ   |
| Input current       | ItL    | $V_{\rm CC} = 5.25  \text{V},  V_{\rm f} = 0.4  \text{V}$                                   |                 |          | _           | -0.4 | mA   |
|                     | Iı     | $V_{CC} = 5.25 \text{V},  V_I = 7 \text{V}$                                                 |                 |          | <del></del> | 0.1  | mΑ   |
| Supply current **   | Icc    | Vcc=5.25V                                                                                   | , ,             |          | 8           | 15   | mΑ   |
| Input clamp voltage | Vik    | $V_{CC} = 4.75 \text{V},  I_{IN} = -18 \text{mA}$                                           |                 |          |             | -1.5 | V    |

<sup>\*</sup> VCC=5V, Ta=25°C

### **ESWITCHING CHARACTERISTICS** ( $V_{CC} = 5V$ , $T_a = 25^{\circ}C$ )

| Item                   | Symbol  | Input | Test Conditions                               | min | typ | max | Unit |
|------------------------|---------|-------|-----------------------------------------------|-----|-----|-----|------|
|                        | tru.    | A     | C: =15-F P: = 91-O                            |     | _   | 100 |      |
| <b>.</b>               | * tPLH  | 1 A   | $C_L = 15 \text{pF},  R_L = 2 \text{k}\Omega$ |     |     | 100 | ns   |
| Propagation delay time | iphl    | ומ    | C = 15.F P. = 51.0                            |     |     | 100 |      |
|                        | t P L H | BI    | $C_L = 15 \text{pF}, R_L = 6 \text{k}\Omega$  |     | -   | 100 | ns   |

### **TESTING METHOD**

### 1) Test Circuit



### Waveform



### 2) Testing Table

|       |      | Inputs |      |      |     |     |     | (   | Output | s   |     |     |
|-------|------|--------|------|------|-----|-----|-----|-----|--------|-----|-----|-----|
| Item  | BI   | D      | С    | В    | Α   | а   | b   | С   | ď      | e   | f   | g   |
|       | 4.5V | GND    | GND  | GND  | IN  | OUT |     |     | OUT    | OUT | OUT | _   |
| tpi.H | 4.5V | GND    | GND  | 4.5V | IN  |     | _   | OUT |        | OUT | -   | _   |
| tPHL  | 4.5V | GND    | 4.5V | 4.5V | IN  | OUT | OUT | _   | OUT    | OUT | OUT | OUT |
|       | IN   | GND    | GND  | GND  | GND | OUT | OUT | OUT | OUT    | OUT | OUT | _   |

<sup>\*\*</sup>  $I_{CC}$  is measured with all outputs open and all inputs at 4.5 V.

### Unit: mm







\*Dimension including the plating thickness
Base material dimension

| Hitachi Code             | FP-14DA  |
|--------------------------|----------|
| JEDEC                    |          |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.23 g   |

### Unit: mm





| Hitachi Code             | FP-14DN  |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.13 g   |

\*Pd plating