Floyd Warshall

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Objectives

Your Objectives:

- ► Implement the Floyd Warshall algorithm.
- ▶ Determine when this algorithm is "safe" to run.

The Algorithm

```
0 // From Competitive Programming 3
1 for (int k = 0; k < V; k++)
2    for (int i = 0; i < V; i++)
3        for (int j = 0; j < V; j++)
4        AdjMat[i][j] = min(AdjMat[i][j], AdjMat[i][k] + AdjMat[k][j]);</pre>
```

- ► Each run of the k loop adds node k to our shortest path collection.
- ightharpoonup On today's machines, this can work up to V=500.

		0	1	2	3	4	5
	0	0	2	5	9	∞	∞
	1	∞	0	1	∞	∞	∞
= -1:	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	∞	∞	∞	0	3
	5	1	∞	∞	2	∞	0

k

		0	1	2	3	4	5
	0	0	2	5	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = -1:	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	∞	∞	∞	0	3
	5	1	∞	∞	2	∞	0

		0	1	2	3	4	5
	0	0	2	5	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = -1:	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	∞	∞	∞	0	3
	5	1	3	∞	2	∞	0

		0	1	2	3	4	5
	0	0	2	5	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = -1:	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	∞	∞	∞	0	3
	5	1	3	6	2	∞	0

		0	1	2	3	4	5
	0	0	2	5	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = -1:	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	∞	∞	∞	0	3
	5	1	3	6	2	∞	0

Example, k = 1

		0	1	2	3	4	5
	0	0	2	3	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = 0	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	4	5	11	0	3
	5	1	3	6	2	∞	0

Example, k = 1

		0	1	2	3	4	5
	0	0	2	3	9	∞	∞
	1	∞	0	1	∞	∞	∞
k = 0	2	∞	∞	0	4	6	∞
	3	∞	∞	∞	0	1	∞
	4	2	4	5	11	0	3
	5	1	3	4	2	∞	0

Printing the Paths

```
ofor (int i = 0: i < V: i++)
    for (int j = 0; j < V; j++)
       p[i][j] = i;
3 for (int k = 0: k < V: k++)
    for (int i = 0: i < V: i++)
       for (int j = 0; j < V; j++)
           if (AdjMat[i][k] + AdjMat[k][j] < AdjMat[i][j]) {</pre>
              AdjMat[i][j] = AdjMat[i][k] + AdjMat[k][j];
              p[i][j] = p[k][i];
9 }
10 void printPath(int i, int j) {
    if (i != j) printPath(i, p[i][j]);
    printf(" %d", j);
12
13 }
```