SF2940: Distributions and their characteristic functions

Distribution	Notation	Probability function	$\varphi_X(t)$
One point	$\delta(a),a\in\mathbb{R}$	p(a) = 1	$\mathrm{e}^{\mathrm{i}ta}$
Bernoulli	$Be(p); 0 \le p \le 1$	p(0) = q, p(1) = p; q = 1 - p	$q + pe^{it}$
Binomial	Bin $(n, p), n = 1, 2,; 0 \le p \le 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, k = 0, 1, 2, \dots, n; q = 1 - p$	$(q + pe^{it})^n$
Geometric	$Ge(p), 0 \le p \le 1$	$p(k) = pq^k, k = 0, 1, 2, \dots, n; q = 1 - p$	$rac{p}{1-q\mathrm{e}^{\mathrm{i}t}}$
Poisson	$Po(\lambda), \lambda > 0$	$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$	$e^{\lambda(e^{it}-1)}$

Table 1. Discrete distributions

Distribution	Notation	Density	$\varphi_X(t)$
Uniform	U(a,b), a < b	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Exponential	$\exp(\lambda), \lambda > 0$	$f(x) = \frac{1}{\lambda} e^{-x/\lambda}, x > 0$	$\frac{1}{1-\lambda it}$
Laplace	$L(\lambda), \lambda > 0$	$f(x) = \frac{1}{2\lambda} e^{- x /\lambda}, x \in \mathbb{R}$	$\frac{1}{1+\lambda^2t^2}$
Beta	$\beta(r,s), r,s>0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \ 0 < x < 1$	*
Normal	$N(\mu, \sigma^2), \ \mu \in \mathbb{R}, \ \sigma > 0$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2}, x \in \mathbb{R}$	$e^{\mathrm{i}\mu t - \frac{1}{2}\sigma^2 t^2}$
Standard normal	N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, \ x \in \mathbb{R}$	$e^{-\frac{1}{2}t^2}$
Log-normal	$LN(\mu, \sigma^2), \ \mu \in \mathbb{R}, \ \sigma > 0$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, x > 0$	*
Cauchy	$C(m,\eta), \eta > 0, m \in \mathbb{R}$	$f(x) = \frac{1}{\pi} \frac{\eta}{(x-m)^2 + \eta^2}, \ x \in \mathbb{R}$	$\mathrm{e}^{\mathrm{i}mt-\eta t }$

Table 2. Continuous distributions

 $[\]ast$ indicates either a too complicated expression or no explicit expression exists. Date September 22, 2021