

Chapitre 1

Présentation des paramètres estimés par le modèle Sortie des paramètres Openbugs - Modèle 2016_01_20_thin
200_Standard

marion.legrand

8 avril 2016

1 sigma_juv_moy

Figure 1 – sigma_juv_moy

Table 1 – Statistiques de sigma_juv

2.5%	25%	50%	75%	97.5%	Mean	SD
0.59	0.77	0.88	0.99	1.24	0.89	0.17

1

2 sigma_wild_moy

Figure 2 – sigma_wild_moy

Table 2 – Statistiques de sigma_wild

2.5%	25%	50%	75%	97.5%	Mean	SD
0.51	0.64	0.71	0.78	0.92	0.71	0.11

3 sigma_egg_moy

Figure 3 – sigma_egg_moy

Table 3 – Statistiques de sigma_egg

2.5%	25%	50%	75%	97.5%	Mean	SD
0.30	0.45	0.55	0.66	0.94	0.57	0.16

4 nu_wild

Figure 4 - nu_wild

Table 4 – Statistiques de nu_wild

	2.5%	25%	50%	75%	97.5%	Mean	SD
nu_wild1	-0.63	-0.52	-0.46	-0.40	-0.29	-0.46	0.09
nu_wild2	0.29	0.40	0.46	0.52	0.63	0.46	0.09
nu_wild3	0.29	0.40	0.46	0.52	0.63	0.46	0.09

Figure 5 – a

Table 5 – Statistiques de a

2.5%	25%	50%	75%	97.5%	Mean	SD
210.90	292.28	356.70	448.40	799.90	397.73	204.99

6 a_juv

Figure 6 – a_juv

Table 6 – Statistiques de a_juv

2.5%	25%	50%	75%	97.5%	Mean	SD
0.13	0.25	0.39	0.58	0.88	0.43	0.21

7 Rmax

Figure 7 - Rmax

Table 7 – Statistiques de R
max

2.5%	25%	50%	75%	97.5%	Mean	SD
0.09	0.11	0.12	0.15	0.26	0.14	0.04

8 sigma_juv_site

Figure 8 – sigma_juv_site

Table 8 – Statistiques de sigma_juv_site

2.5%	25%	50%	75%	97.5%	Mean	SD
0.74	0.96	1.04	1.12	1.25	1.03	0.13

9 sigma_wild_site

 $Figure \ 9-sigma_wild_site$

Table 9 – Statistiques de sigma_wild_site

2.5%	25%	50%	75%	97.5%	Mean	SD
1.07	1.14	1.18	1.22	1.28	1.18	0.05

10 sigma_egg_site

Figure 10 - sigma_egg_site

Table 10 – Statistiques de sigma_egg_site

2.5%	25%	50%	75%	97.5%	Mean	SD
0.96	1.28	1.49	1.74	2.32	1.53	0.35

$11 \quad adjust_p_L$

Figure 11 – adjust_p_L

Table 11 – Statistiques de adjust_p_L

2.5%	25%	50%	75%	97.5%	Mean	SD
-0.66	-0.42	-0.29	-0.17	0.07	-0.30	0.19

$12 \quad adjust_p_P$

Figure 12 – adjust_p_P

Table 12 – Statistiques de adjust_p_P

2.5%	25%	50%	75%	97.5%	Mean	SD
-1.66	-1.27	-1.04	-0.79	-0.19	-1.01	0.38

$13 \quad sigma_p_langeac$

 $FIGURE~13-sigma_p_langeac$

TABLE 13 – Statistiques de sigma_p_langeac

2.5%	25%	50%	75%	97.5%	Mean	SD
0.07	0.13	0.20	0.29	0.54	0.23	0.13

14 sigma_p_poutes

Figure 14 – sigma_p_poutes

Table 14 – Statistiques de sigma_p_poutes

2.5%	25%	50%	75%	97.5%	Mean	SD
0.67	0.87	0.99	1.12	1.44	1.00	0.20

15 rho_station

Figure 15 – rho_station

Table 15 – Statistiques de rho_station

2.5%	25%	50%	75%	97.5%	Mean	SD
0.26	0.46	0.57	0.68	0.86	0.57	0.16

16 hel_effect

Figure 16 – hel_effect

Table 16 – Statistiques de hel_effect

2.5%	25%	50%	75%	97.5%	Mean	SD
0.97	1.18	1.30	1.43	1.69	1.31	0.18

17 mu_tau

Figure 17 – mu_tau

Table 17 – Statistiques de mu_tau

2.5%	25%	50%	75%	97.5%	Mean	SD
0.000003	0.000827	0.045490	0.556575	4.094100	0.572207	1.236248

18 beta_tau

Figure 18 – beta_tau

Table 18 – Statistiques de beta_tau

2.5%	25%	50%	75%	97.5%	Mean	SD
0.22	0.50	0.76	1.20	4.36	1.10	1.17

$19 s_{juv2ad}$

Figure 19 – s_juv2ad

Table 19 – Statistiques de s_juv2ad

2.5%	25%	50%	75%	97.5%	Mean	SD
0.0031	0.0039	0.0044	0.0050	0.0063	0.0045	0.0008

20 level_s

Figure 20 – level_s

Table 20 – Statistiques de level_s

2.5%	25%	50%	75%	97.5%	Mean	SD
0.38	1.00	1.25	1.49	1.97	1.24	0.40

21 rho_poutes

Figure 21 – rho_poutes

Table 21 – Statistiques de rho_poutes

2.5%	25%	50%	75%	97.5%	Mean	SD
0.13	0.33	0.47	0.63	0.87	0.48	0.20

22 sigma_vichy

Figure 22 – sigma_vichy

Table 22 – Statistiques de sigma_vichy

2.5%	25%	50%	75%	97.5%	Mean	SD
0.37	0.46	0.52	0.60	0.77	0.54	0.10

23 res_p_langeac

24 res_p_poutes

Figure 24 – res_p_poutes

26 zone_effect

26.1 zone_effect_Vichy

 ${\bf Figure~26-zone_effect_V}$

Figure 27 - zone_effect_L

26.3 zone_effect_Poutes

 $Figure\ 28-zone_effect_P$

Figure 29 - N_vichy

28 N_Langeac

Figure 30 - N_langeac

29 d_wild_moy 29.1 d_wild_moy_Vichy

Figure 31 – d_wild_moy_V

$29.2 \quad d_wild_moy_Langeac$

Figure 32 - d_wild_moy_L

$29.3 \quad d_wild_moy_Poutes$

Figure 33 - d_wild_moy_P

$30 \quad d_{juv_{moy}}$

30.1 d_juv_moy_Vichy

Figure 34 – d_juv_moy_V

$30.2 \quad d_juv_moy_Langeac$

Figure 35 – d_juv_moy_L

30.3 d_juv_moy_Poutes

Figure 36 – d_juv_moy_P

31 d_egg_moy

31.1 d_egg_moy_Vichy

Figure 37 – d_egg_moy_V

31.2 d_egg_moy_Langeac

Figure 38 – d_egg_moy_L

32 res_wild_moy

$32.1 \quad res_wild_moy_Vichy$

 $Figure \ 39-res_wild_moy_V$

32.2 res_wild_moy_Langeac

 $Figure~40-res_wild_moy_L$

32.3 res_wild_moy_Poutes

Figure 41 - res_wild_moy_P

33 res_juv_moy

$33.1 \quad res_juv_moy_Vichy$

Figure 42 – res_juv_moy_V

$33.2 \quad res_juv_moy_Langeac$

Figure 43 - res_juv_moy_L

33.3 res_juv_moy_Poutes

Figure 44 - res_juv_moy_P