Data Modification Work space

> Import Data

```
crop <- read.csv("../data/Crop_recommendation.csv")
print(head(crop))</pre>
```

```
K temperature humidity
                                         ph rainfall label
## 1 90 42 43
                 20.87974 82.00274 6.502985 202.9355
                                                      rice
## 2 85 58 41
                 21.77046 80.31964 7.038096 226.6555
                                                      rice
## 3 60 55 44
                 23.00446 82.32076 7.840207 263.9642
                                                      rice
## 4 74 35 40
                 26.49110 80.15836 6.980401 242.8640
## 5 78 42 42
                 20.13017 81.60487 7.628473 262.7173
                                                      rice
## 6 69 37 42
                 23.05805 83.37012 7.073454 251.0550
                                                      rice
```

```
str(crop)
```

```
'data.frame':
                   2200 obs. of 8 variables:
##
   $ N
                : int 90 85 60 74 78 69 69 94 89 68 ...
   $ P
                : int 42 58 55 35 42 37 55 53 54 58 ...
##
##
   $ K
                : int 43 41 44 40 42 42 38 40 38 38 ...
   $ temperature: num 20.9 21.8 23 26.5 20.1 ...
   $ humidity
                : num 82 80.3 82.3 80.2 81.6 ...
##
                : num 6.5 7.04 7.84 6.98 7.63 ...
##
   $ ph
   $ rainfall
               : num 203 227 264 243 263 ...
                       "rice" "rice" "rice" ...
   $ label
                : chr
```

Crops currently In the table

```
cropsLabel <- unique(crop$label)
print(cropsLabel)</pre>
```

```
"maize"
                                      "chickpea"
                                                     "kidneybeans" "pigeonpeas"
    [1] "rice"
   [6] "mothbeans"
                       "mungbean"
                                      "blackgram"
                                                     "lentil"
                                                                    "pomegranate"
                                                     "watermelon"
                                      "grapes"
                                                                    "muskmelon"
## [11] "banana"
                       "mango"
## [16] "apple"
                       "orange"
                                      "papaya"
                                                     "coconut"
                                                                   "cotton"
## [21] "jute"
                       "coffee"
```

> Load Kenyan Cash Crops To be Used

Original Crop	Matched Kenyan Export Crop	Conditions Rationale
Rice	Tea	High rainfall, humid, acidic soil (pH ~5.5-6.5)
Maize	Coffee	Warm climate, moderate rainfall, slightly acidic to neutral soil
Chickpea	Avocado	Warm to hot climates, moderate rainfall, neutral to slightly acidic soil
Kidneybeans	Macadamia Nuts	Warm climates, moderate to high rainfall, slightly acidic soil
Pigeonpeas	French Beans	Warm climates, moderate rainfall, similar legume characteristics
Mothbeans	Snow Peas	Grows well in cool climates with moderate rainfall
Mungbean	Passion Fruit	Warm, humid, tropical environments, moderate to heavy rainfall
Blackgram	Mango	Warm, tropical climate, moderate rainfall, slightly acidic soil
Lentil	Pineapple	Tropical climates with good rainfall, grows well in acidic soils
Pomegranate	Flowers (Roses)	Moderate climates, well-drained soil, moderate rainfall
Banana	Cabbage	Grows in warm climates with moderate to heavy rainfall
Mango	Sugarcane	Tropical and subtropical climates, needs high rainfall and warm temperatures
Grapes	Cashew Nuts	Warm, dry conditions with moderate rainfall, grows in well-drained soil
Watermelon	Tomatoes	Warm climates, moderate water needs, similar soil preferences

Original Crop	Matched Kenyan Export Crop	Conditions Rationale
Muskmelon	Spinach	Prefers warm temperatures and moderate moisture
Apple	Carrots	Grows in cooler climates with moderate rainfall
Orange	Coconuts	Thrives in tropical climates with heavy rainfall and warm temperatures
Papaya	Sisal	Grows in semi-arid to dry conditions, requires warm temperatures
Coconut	Sesame Seeds	Thrives in warm, dry conditions with moderate rainfall
Cotton	Tobacco	Grows in warm to hot climates with moderate rainfall
Jute	Chillies	Grows in warm climates with moderate humidity and rainfall
Coffee	Pyrethrum	Grows well in high altitudes with cooler temperatures

```
# Mapped Kenyan export crops based on environmental conditions

kenya_export_crops <- c("Tea","Coffee","Avocado","Macadamia Nuts","French Beans","Snow Peas","Pass
ion Fruit","Mango","Pineapple","Flowers (Roses)","Cabbage","Sugarcane","Cashew Nuts","Tomatoes","S
pinach","Carrots","Coconuts","Sisal","Sesame Seeds","Tobacco","Chillies","Pyrethrum")</pre>
```

```
print(kenya_export_crops)
```

```
"Coffee"
## [1] "Tea"
                                             "Avocado"
                                                               "Macadamia Nuts"
## [5] "French Beans"
                          "Snow Peas"
                                             "Passion Fruit"
                                                               "Mango"
## [9] "Pineapple"
                          "Flowers (Roses)" "Cabbage"
                                                               "Sugarcane"
                          "Tomatoes"
                                                               "Carrots"
## [13] "Cashew Nuts"
                                             "Spinach"
## [17] "Coconuts"
                          "Sisal"
                                             "Sesame Seeds"
                                                               "Tobacco"
## [21] "Chillies"
                          "Pyrethrum"
```

```
# Ensure there are no duplicates in the Kenyan exports list
if (length(unique(kenya_export_crops)) == length(kenya_export_crops)) {
   print("No duplicates in the Kenyan export crops.")
} else {
```

```
print("There are duplicates in the Kenyan export crops!")
}
## [1] "No duplicates in the Kenyan export crops."
# Print original and mapped crop labels to verify
for (i in 1:length(cropsLabel)) {
  cat("Original Crop:", cropsLabel[i], "->", "Kenyan Export Crop:", kenya_export_crops[i], "\n")
}
## Original Crop: rice -> Kenyan Export Crop: Tea
## Original Crop: maize -> Kenyan Export Crop: Coffee
## Original Crop: chickpea -> Kenyan Export Crop: Avocado
## Original Crop: kidneybeans -> Kenyan Export Crop: Macadamia Nuts
## Original Crop: pigeonpeas -> Kenyan Export Crop: French Beans
## Original Crop: mothbeans -> Kenyan Export Crop: Snow Peas
## Original Crop: mungbean -> Kenyan Export Crop: Passion Fruit
## Original Crop: blackgram -> Kenyan Export Crop: Mango
## Original Crop: lentil -> Kenyan Export Crop: Pineapple
## Original Crop: pomegranate -> Kenyan Export Crop: Flowers (Roses)
## Original Crop: banana -> Kenyan Export Crop: Cabbage
## Original Crop: mango -> Kenyan Export Crop: Sugarcane
## Original Crop: grapes -> Kenyan Export Crop: Cashew Nuts
## Original Crop: watermelon -> Kenyan Export Crop: Tomatoes
## Original Crop: muskmelon -> Kenyan Export Crop: Spinach
## Original Crop: apple -> Kenyan Export Crop: Carrots
## Original Crop: orange -> Kenyan Export Crop: Coconuts
## Original Crop: papaya -> Kenyan Export Crop: Sisal
## Original Crop: coconut -> Kenyan Export Crop: Sesame Seeds
## Original Crop: cotton -> Kenyan Export Crop: Tobacco
## Original Crop: jute -> Kenyan Export Crop: Chillies
## Original Crop: coffee -> Kenyan Export Crop: Pyrethrum
# Create a named vector for easy replacement (map original crops to Kenyan crops)
crop_mapping <- setNames(kenya_export_crops, cropsLabel)</pre>
# Replace the 'label' column in the data frame with the mapped values
crop$label <- crop_mapping[crop$label]</pre>
# Print the first few rows to verify the replacements
print(head(crop))
      N P K temperature humidity
                                         ph rainfall label
## 1 90 42 43
                 20.87974 82.00274 6.502985 202.9355
                                                       Tea
## 2 85 58 41
                 21.77046 80.31964 7.038096 226.6555
                                                       Tea
## 3 60 55 44 23.00446 82.32076 7.840207 263.9642
                                                       Tea
```

Tea

26.49110 80.15836 6.980401 242.8640

4 74 35 40

```
## 5 78 42 42 20.13017 81.60487 7.628473 262.7173 Tea
## 6 69 37 42 23.05805 83.37012 7.073454 251.0550 Tea
```

> Export The new modified Kenyan Cash crops Data

```
# Specify the file name
output_file <- "../data/kenyan_cash_crops_conditions.csv"

# Export the data to a CSV file
write.csv(crop, file = output_file, row.names = FALSE)

# Confirmation message
cat("Data has been successfully exported to", output_file, "\n")</pre>
```

Data has been successfully exported to ../data/kenyan_cash_crops_conditions.csv

Data Cleaning Work space

Load Data

```
kenyancrops <- read.csv("../data/kenyan_cash_crops_conditions.csv")</pre>
```

Check for Missing values

```
missing_vals <- sapply(kenyancrops, function(x) sum(is.na(x)))
print(missing_vals)</pre>
```

```
## N P K temperature humidity ph
## 0 0 0 0 0 0
## rainfall label
## 0 0
```

Check for Duplicate Values

```
duplicate_rows <- kenyancrops[duplicated(kenyancrops), ]

# Count the number of duplicate rows
num_duplicates <- nrow(duplicate_rows)

# Print the number of duplicate rows and the duplicate rows themselves
print(num_duplicates)</pre>
```

```
## [1] 0

print(duplicate_rows)

## [1] N P K temperature humidity ph
```

Count Unique Values in a Column

label

<0 rows> (or 0-length row.names)

[7] rainfall

```
label_counts <- table(kenyancrops$label)

#print(label_counts)

# Print each crop and its count in a well-aligned format

for (i in names(label_counts)) {
   cat(sprintf("%-20s %d\n", i, label_counts[i]))
}</pre>
```

```
## Avocado
                          100
## Cabbage
                          100
## Carrots
                          100
## Cashew Nuts
                         100
## Chillies
                         100
## Coconuts
                          100
## Coffee
                         100
## Flowers (Roses)
                         100
## French Beans
                         100
## Macadamia Nuts
                         100
## Mango
                         100
## Passion Fruit
                         100
## Pineapple
                         100
## Pyrethrum
                         100
## Sesame Seeds
                         100
## Sisal
                         100
## Snow Peas
                         100
## Spinach
                         100
## Sugarcane
                         100
## Tea
                          100
## Tobacco
                          100
## Tomatoes
                          100
```

Data Visualization Work space

```
# Packages Installation and Loading
#install.packages("ggplot2")
```

```
library(ggplot2)
```

Bar Plot for Crop Counts

```
#label_counts <- table(kenyancrops$label) # Count unique values in 'label'

ggplot(data = as.data.frame(label_counts), aes(x = Var1, y = Freq)) +
    geom_bar(stat = "identity", fill = "steelblue") +
    labs(title = "Counts of Unique Crops", x = "Crop", y = "Count") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))</pre>
```

Counts of Unique Crops 100 75 25 0 Red Color Colo

Scatter Plot for Rainfall vs. Humidity

```
ggplot(kenyancrops, aes(x = rainfall, y = humidity, color = label)) +
  geom_point() +
  labs(title = "Scatter Plot of Rainfall vs Humidity", x = "Rainfall", y = "Humidity") +
  theme_minimal()
```


Box Plot for Temperature by Crop

```
# Create a box plot for temperature by crop
ggplot(kenyancrops, aes(x = label, y = temperature, fill = label)) +
geom_boxplot() +
labs(title = "Box Plot of Temperature by Crop", x = "Crop", y = "Temperature") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Histogram for Soil pH

```
# Create a histogram for soil pH
ggplot(kenyancrops, aes(x = ph)) +
geom_histogram(binwidth = 0.5, fill = "lightblue", color = "black") +
labs(title = "Histogram of Soil pH", x = "Soil pH", y = "Count") +
theme_minimal()
```


MODEL WORKSPACE

Load necessary libraries

```
#install.packages(c("dplyr", "caret", "randomForest", "e1071", "nnet"))

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
library(caret)
## Loading required package: lattice
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(e1071)
library(nnet)
```

1. Encoding the crops

```
# Encoding the Kenyan crops
crop_dict <- list(
    'Tea' = 1, 'Coffee' = 2, 'Avocado' = 3, 'Macadamia Nuts' = 4,
    'French Beans' = 5, 'Snow Peas' = 6, 'Passion Fruit' = 7,
    'Mango' = 8, 'Pineapple' = 9, 'Flowers (Roses)' = 10, 'Cabbage' = 11,
    'Sugarcane' = 12, 'Cashew Nuts' = 13, 'Tomatoes' = 14, 'Spinach' = 15,
    'Carrots' = 16, 'Coconuts' = 17, 'Sisal' = 18, 'Sesame Seeds' = 19,
    'Tobacco' = 20, 'Chillies' = 21, 'Pyrethrum' = 22
)

# Apply encoding using match() and convert to factor
kenyancrops$crop_num <- as.factor(match(kenyancrops$label, names(crop_dict)))

# Drop the 'Label' column
kenyancrops <- kenyancrops %>% select(-label)
```

2. Train Test Split

```
set.seed(42)

# Split the data into training and testing sets (80% training, 20% testing)
trainIndex <- createDataPartition(kenyancrops$crop_num, p = 0.8, list = FALSE)
trainData <- kenyancrops[trainIndex,]
testData <- kenyancrops[-trainIndex,]

# Separate features (X) and target (Y)
x_train <- trainData %>% select(-crop_num)
y_train <- trainData$crop_num
x_test <- testData$crop_num</pre>
```

3. Feature Scaling

```
# Scale the features using Min-Max Scaling
preProcess_scale <- preProcess(x_train, method = 'range')
x_train_scaled <- predict(preProcess_scale, x_train)
x_test_scaled <- predict(preProcess_scale, x_test)</pre>
```

4. Model Training

```
# Define trainControl
control <- trainControl(method = "cv", number = 5, verboseIter = FALSE)

# Initialize models training algorithms
models <- list(
    multinom = train(x_train_scaled, y_train, method = "multinom", trControl = control), # Multino
mial Logistic Regression
    rf = train(x_train_scaled, y_train, method = "rf", trControl = control), # Random Forest
    svc = train(x_train_scaled, y_train, method = "svmRadial", trControl = control), # Support Vec
tor Machine
    knn = train(x_train_scaled, y_train, method = "knn", trControl = control), # K-Nearest Neighb
ors
    dt = train(x_train_scaled, y_train, method = "rpart", trControl = control), # Decision Tree
    gnb = train(x_train_scaled, y_train, method = "naive_bayes", trControl = control) # Gaussian N
aive Bayes
)</pre>
```

```
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1392.408808
## iter 20 value 598.356510
## iter 30 value 150.617383
## iter 40 value 55.836509
## iter 50 value 38.091154
```

```
## iter 60 value 33.438349
## iter 70 value 29.610064
## iter 80 value 28.283051
## iter 90 value 26.890468
## iter 100 value 26.337094
## final value 26.337094
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1620.387125
## iter 20 value 1323.793859
## iter 30 value 1239.678862
## iter 40 value 1227.263072
## final value 1227.259944
## converged
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1392.681822
## iter 20 value 599.782698
## iter 30 value 159.468580
## iter 40 value 83.815674
## iter 50 value 74.126553
## iter 60 value 70.984657
## iter 70 value 68.257749
## iter 80 value 66.503559
## iter 90 value 65.564606
## iter 100 value 64.853803
## final value 64.853803
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1270.997584
## iter 20 value 537.301229
## iter 30 value 155.727432
## iter 40 value 51.942930
## iter 50 value 37.937947
## iter 60 value 31.757848
## iter 70 value 28.958859
## iter 80 value 28.040536
## iter 90 value 27.207469
## iter 100 value 26.309986
## final value 26.309986
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1595.961910
## iter 20 value 1350.933947
## iter 30 value 1253.354404
## iter 40 value 1238.460747
## final value 1238.454841
## converged
## # weights: 198 (168 variable)
```

```
## initial value 4352.187774
## iter 10 value 1271.365506
## iter 20 value 538.654138
## iter 30 value 162.768179
## iter 40 value 82.878064
## iter 50 value 73.370040
## iter 60 value 69.494957
## iter 70 value 67.743029
## iter 80 value 66.315128
## iter 90 value 65.558255
## iter 100 value 64.855441
## final value 64.855441
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1272.989713
## iter 20 value 526.192296
## iter 30 value 160.174664
## iter 40 value 44.444669
## iter 50 value 34.713022
## iter 60 value 27.276522
## iter 70 value 24.824351
## iter 80 value 23.317571
## iter 90 value 22.226929
## iter 100 value 21.539301
## final value 21.539301
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1593.634817
## iter 20 value 1301.165551
## iter 30 value 1250.613661
## iter 40 value 1237.111829
## final value 1237.107858
## converged
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1273.348060
## iter 20 value 527.715026
## iter 30 value 168.524326
## iter 40 value 78.727028
## iter 50 value 70.246736
## iter 60 value 66.969109
## iter 70 value 64.566851
## iter 80 value 63.236505
## iter 90 value 62.490037
## iter 100 value 61.929925
## final value 61.929925
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1271.051589
```

```
## iter 20 value 570.766415
## iter 30 value 148.769994
## iter 40 value 48.544839
## iter 50 value 35.122404
## iter 60 value 30.783834
## iter 70 value 27.375370
## iter 80 value 25.351904
## iter 90 value 24.145112
## iter 100 value 23.962318
## final value 23.962318
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1584.445402
## iter 20 value 1321.608227
## iter 30 value 1251.227296
## iter 40 value 1236.093686
## final value 1236.090414
## converged
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1271.403532
## iter 20 value 572.320457
## iter 30 value 156.153562
## iter 40 value 78.166344
## iter 50 value 70.634138
## iter 60 value 67.424252
## iter 70 value 65.236406
## iter 80 value 63.678617
## iter 90 value 62.804415
## iter 100 value 62.178644
## final value 62.178644
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1245.363270
## iter 20 value 647.702621
## iter 30 value 201.920854
## iter 40 value 51.156329
## iter 50 value 35.153663
## iter 60 value 29.944133
## iter 70 value 27.153899
## iter 80 value 24.563437
## iter 90 value 23.932465
## iter 100 value 23.526161
## final value 23.526161
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1582.958661
## iter 20 value 1328.318534
## iter 30 value 1247.448714
```

```
## iter 40 value 1231.786529
## final value 1231.782708
## converged
## # weights: 198 (168 variable)
## initial value 4352.187774
## iter 10 value 1245.746993
## iter 20 value 649.103196
## iter 30 value 206.961866
## iter 40 value 82.152265
## iter 50 value 72.258901
## iter 60 value 69.056201
## iter 70 value 67.068855
## iter 80 value 65.702499
## iter 90 value 64.862654
## iter 100 value 64.280272
## final value 64.280272
## stopped after 100 iterations
## # weights: 198 (168 variable)
## initial value 5440.234718
## iter 10 value 1486.926432
## iter 20 value 784.057704
## iter 30 value 181.109043
## iter 40 value 92.753697
## iter 50 value 84.413158
## iter 60 value 80.846252
## iter 70 value 78.543801
## iter 80 value 77.291348
## iter 90 value 76.415418
## iter 100 value 75,755693
## final value 75.755693
## stopped after 100 iterations
```

```
# Evaluate machine learning models
model_accuracies <- sapply(models, function(model) {
    if (!is.null(model)) {
        y_pred <- predict(model, x_test_scaled)
            confusionMatrix(y_pred, y_test)$overall['Accuracy']
    } else {
        NA
    }
}, USE.NAMES = TRUE)
# Print model accuracies
print("Model Accuracies:")</pre>
```

```
## [1] "Model Accuracies:"
```

```
print(model_accuracies)
```

```
## multinom.Accuracy rf.Accuracy svc.Accuracy knn.Accuracy
## 0.9795455 0.9954545 0.9840909 0.9840909
## dt.Accuracy gnb.Accuracy
## 0.9022727 0.9954545
```

```
# Select the best model based on accuracy
best_model_name <- names(which.max(model_accuracies))
print(paste("Best model:", best_model_name))</pre>
```

```
## [1] "Best model: rf.Accuracy"
```

5. Fit the Best (Random Forest) model

```
# Fit the Random Forest model (as it's likely the best)
if (best model name == "rf") {
    rfc <- models$rf
} else {
    rfc <- randomForest(x_train_scaled, y_train) # Fallback to RF if not best
}
# Define a predictive function using the trained model
recommendation <- function(N, P, K, temperature, humidity, ph, rainfall) {</pre>
    # Create a new data frame with the exact column names from your dataset
    features <- data.frame(</pre>
        N = N, P = P, K = K,
        temperature = temperature, humidity = humidity,
        ph = ph, rainfall = rainfall
    # Ensure the input columns match the training data columns
    features <- features[, colnames(x train), drop = FALSE]</pre>
    # Scale the input features using the same scaler used in training
    features_scaled <- predict(preProcess_scale, features)</pre>
    # Make a prediction using the trained Random Forest model
    prediction <- predict(rfc, features_scaled)</pre>
    return(prediction)
}
```

6. Predictive System Testing

```
# sample input
N <- 20; P <- 30; K <- 40
temperature <- 40; humidity <- 20
ph <- 30; rainfall <- 50
```

```
# Get the crop prediction
predict crop <- recommendation(N, P, K, temperature, humidity, ph, rainfall)</pre>
# Crop dictionary for output
crop dict rev <- c(</pre>
    '1' = 'Tea', '2' = 'Coffee', '3' = 'Avocado', '4' = 'Macadamia Nuts',
    '5' = 'French Beans', '6' = 'Snow Peas', '7' = 'Passion Fruit',
    '8' = 'Mango', '9' = 'Pineapple', '10' = 'Flowers (Roses)',
    '11' = 'Cabbage', '12' = 'Sugarcane', '13' = 'Cashew Nuts',
    '14' = 'Tomatoes', '15' = 'Spinach', '16' = 'Carrots',
    '17' = 'Coconuts', '18' = 'Sisal', '19' = 'Sesame Seeds',
    '20' = 'Tobacco', '21' = 'Chillies', '22' = 'Pyrethrum'
)
# Print the recommended crop
if (as.character(predict_crop) %in% names(crop_dict_rev)) {
    print(paste(crop_dict_rev[[as.character(predict_crop)]], "is the best crop to be cultivate
d."))
} else {
    print("Sorry, we are unable to recommend a crop for this environment.")
}
```

[1] "Macadamia Nuts is the best crop to be cultivated."

Save the rf model along with the pre processing scaler for use in the Shiny app

```
# Save the trained Random Forest model (rfc) to an RDS file
saveRDS(rfc, file = "../models/random_forest_model.rds")

# Save the pre-processing scaler (preProcess_scale) to an RDS file
saveRDS(preProcess_scale, file = "../models/preprocess_scaler.rds")
```