On The Cost Of Simulating A Parallel Boolean Automata Networks By A Sequential One

Florian Bridoux Thesis first year student in Marseille University

Collaborators: Sylvain Sené (LIF) et Guillaume Theyssier (I2M), Adrien Richard (I3S), Pierre Guillon (I2M), Kévin Perrot (LIF)

$$(N', \underline{S'}) \rhd (N, \underline{S})$$

The Cost of simulation K^+ and K

Confusion graph $\overline{G_{N,S}}$

5/6

5/6

Confusion graph $G_{N,S}$:

Confusion graph $G_{N,S}$:

Confusion graph $G_{N,S}$:

Confusion graph $G_{N,S}$:

Lemma. $K_{N,S}^+ \geq \lceil \log_2(\chi(G_{N,S})) \rceil$

Confusion graph $G_{N,S}$:

Theorem. $K_{N,S}^+ = \lceil \log_2(\chi(G_{N,S})) \rceil$

Conclusion and ongoing work

Principal results:

- Regarding K_n^+ :
 - $K^+(N, S) = \log(\chi(G_{N,S})).$
 - $\lfloor n/2 \rfloor \le K_n^+ \le 2n/3 + 2$.
 - $\omega(G_{N,S}) \leq \lfloor n/2 \rfloor$.
 - If N is bijective then $K_n^+ \leq \lfloor n/2 \rfloor$.
- Regarding K_n :
 - $|n/3| \le K_n \le K_n^+$.
 - $K_n \leq \tau$.