

் தெரு இது திருக்கு வருக்கு வரும் வகும்புரிமையுடையது (All Rights Reserved)

ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ලියි. ඉදුන් ප්රචේණයක් සිදුන් සිදු

අධානයන පොදු සහතික පතු (උසන් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரி சை, 2016 ஓகஸ்ற General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

பும் තුනයි மூன்று மணித்தியாலம் Three hours

Index Number							
--------------	--	--	--	--	--	--	--

Instructions:

- * This question paper consists of two parts;
 - Part A (Questions 1 10) and Part B (Questions 11 17).
- * Part A:

 Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.
- * Part B:
 Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allotted, tie the answer scripts of the two parts together so that

 Part A is on top of Part B and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

(10)	Combined Mather	natics I
Part	Question No.	Marks
	1	1
	2	
	3	
	4	
A	5	
48	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	Total	
	Percentage	

Paper I	R.
Paper II	di di
Total	
Final Marks	

Final Marks

In Numbers	
In Words	

Cod	e P	ium	bei	rs

Marking Examine	er	
Checked by:	1	
Checked by.	2	
Supervised by:		

	Part A	
1.	Using the Principle of Mathematical Induction, prove that for all $n \in \mathbb{Z}^+$.	$\sum_{r=1}^{n} r(r+1) = \frac{n}{3}(n+1)(n+2)$
	· · · · · · · · · · · · · · · · · · ·	<mark></mark>
		<mark></mark>
		, <mark></mark>
		<mark></mark>
		<mark></mark>
2.	Sketch the graphs of $y = x + 1$ and $y = 2 x - 1 $ in the same diagall real values of x satisfying the inequality $ x + 1 > 2 x - 1 $.	gram. Hence or otherwise, find
	······································	<mark></mark>
		
	······	<mark>/</mark>
	•••••	
	•	
	••••••	••••••
		•••••••••••••••••••••••••••••••••••••••

3.	Sketch on the same Argand diagram, the loci of points representing complex numbers z satisfying
	(i) $ z-i =1$, (ii) Arg $(z-i)=\frac{\pi}{6}$
	and find the complex number represented by the point of intersection of these loci in the form
	$r(\cos \theta + i \sin \theta)$, where $r > 0$ and $0 < \theta < \frac{\pi}{2}$.
	<u> </u>
4.	How many different numbers with five digits can be made from the digits 1, 2, 3, 4 and 5, if each digit is used only once?
	How many of these numbers
	(i) are even numbers?
	(ii) have the digits 3 and 4 next to each other?

5.	Let $\alpha > 0$. Find the value of α such that $\lim_{x \to 0} \frac{1 - \cos(\alpha x)}{\sqrt{4 + x^2} - \sqrt{4 - x^2}} = 16$.
	$x \to 0 \sqrt{4 + x^2 - \sqrt{4 - x^2}}$
	······
	<u> </u>
6.	Show that the area of the region enclosed by the curves $y = x^2$ and $y = 2x - x^2$ is $\frac{1}{3}$ square units.

٠.	A curve C is given by the parametric equations $x = 3\sin^2 \frac{\pi}{2}$, $y = \sin^2 \theta$ for $0 < \theta < \frac{\pi}{4}$. Show
	that $\frac{dy}{dx} = \sin 2\theta$.
	If the gradient of the tangent at a point P on C is $\frac{\sqrt{3}}{2}$, find the value of the parameter θ corresponding to P.
	·
	•••••
٠	
3.	Let l be the straight line that passes through the origin and the point of intersection of the straight lines $2x + 3y - k = 0$ and $x - y + 1 = 0$, where $k \neq 0$ is a constant. Find the equation of l in terms of k .
	It is given that the two points $(1, 1)$ and $(3, 4)$ are on the same side of l . Show that $k < 18$.
	······································

у.	Let $A \equiv (1, 2)$, $B \equiv (-5, 4)$ and S be the circle with AB as a diameter. Find the equations of (i) the circle S, and (ii) the circle with centre $(1, 1)$ which intersects S orthogonally.
	······································
•,	
	No. 1
LV.	Solve the equation $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x + \sin 3x$ for $0 \le x \le \frac{\pi}{2}$.
	······································
_	

கீக்ற © கிங்கள் ආවර්ත /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

§ கூடை විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලීම අතුර් දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் தினைக்களம் இலங்கைப் படி அரத் தினைக்கூறு இலங்கைப் பரிட்சைத் தினைக்களம் Department of Examinations, Sri Lanka Department of Examinations Land Lanka Department of Examinations, Sri Lanka இதன் විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව වී ලංකා විභාග අදහර්තමේන්තුව ලින්න විභාග පරිධාරය විභාග දෙපාර්තමේන්තුව වී ලංකා විභාග දෙපාර්තමේන්තුව ලින්න විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව ලින්න විභාග දෙපාර්තමේන්තුව ලින්න විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව විභාග විභාග විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව විභාග විභාග දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර දෙපාර්තමේන්තුව විභාග දෙපාර දෙපාර

ரல்கள் கொடி கூறிக்க பரு (උகள் கைத்) 8வலக், 2016 ஒனின்று கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிக்கா, 2016 ஓகளிற் General Certificate of Education (Adv. Level) Examination, August 2016

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

PART B

- * Answer five questions only.
- 11.(a) Let a, b, $c \in \mathbb{R}$ such that $a \neq 0$ and $a + b + c \neq 0$, and let $f(x) = ax^2 + bx + c$.

Show that 1 is not a root of the equation f(x) = 0.

Let α and β be the roots of f(x) = 0.

Show that $(\alpha-1)(\beta-1)=\frac{1}{a}(a+b+c)$ and that the quadratic equation with $\frac{1}{\alpha-1}$ and $\frac{1}{\beta-1}$ as the roots is given by g(x)=0, where $g(x)=(a+b+c)x^2+(2a+b)x+a$.

Now, let a > 0 and a + b + c > 0.

Show that the minimum value m_1 of f(x) is given by $m_1 = -\frac{\Delta}{4a}$, where $\Delta = b^2 - 4ac$. Let m_2 be the minimum value of g(x). Deduce that $(a + b + c) m_2 = a m_1$.

Hence, show that $f(x) \ge 0$ for all $x \in \mathbb{R}$ if and only if $g(x) \ge 0$ for all $x \in \mathbb{R}$.

- (b) Let p(x) = x³ + 2x² + 3x 1 and q(x) = x² + 3x + 6. Using the remainder theorem, find the remainder when p(x) is divided by (x 1) and the remainder when q(x) is divided by (x 2).
 Verify that p(x) = (x 1) q(x) + 5, and find the remainder when p(x) is divided by (x 1) (x 2).
- 12.(a) Let $n \in \mathbb{Z}^+$. State, in the usual notation, the binomial expansion for $(1+x)^n$.

Show, in the usual notation, that $\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1}$ for r = 0, 1, 2, ..., n-1.

The coefficients of x^r , x^{r+1} and x^{r+2} taken in that order, in the binomial expansion of $(1+x)^n$ are in the ratios 1:2:3. In this case, show that n=14 and r=4.

(b) Let $U_r = \frac{10r+9}{(2r-3)(2r-1)(2r+1)}$ and f(r) = r(Ar+B) for $r \in \mathbb{Z}^+$, where A and B are real constants.

Find the values of constants A and B such that

$$U_r = \frac{f(r)}{(2r-3)(2r-1)} - \frac{f(r+1)}{(2r-1)(2r+1)} \text{ for } r \in \mathbb{Z}^+.$$

Show that $\sum_{r=1}^{n} U_r = -3 - \frac{(n+1)(2n+3)}{(4n^2-1)}$ for $n \in \mathbb{Z}^+$.

Show further that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

13.(a) Let
$$A = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}$$
, $X = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $Y = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Find real constants λ and μ such that $AX = \lambda X$ and $AY = \mu Y$.

Let
$$P = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$
. Find P^{-1} and AP, and show that $P^{-1}AP = D$, where $D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.

(b) In an Argand diagram, the point A represents the complex number 2+i. The point B is such that OB = 2(OA) and $A\hat{O}B = \frac{\pi}{4}$, where O is the origin and $A\hat{O}B$ is measured counter-clockwise from OA. Find the complex number represented by the point B.

Also, find the complex number represented by the point C such that OACB is a parallelogram.

- (c) Let $z \in \mathbb{C}$ and $w = \frac{2}{1+i} + \frac{5z}{2+i}$. It is given that Im w = -1 and |w-1+i| = 5. Show that $z = \pm (2+i)$.
- 14.(a) Let $f(x) = \frac{(x-3)^2}{x^2-1}$ for $x \neq \pm 1$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{2(x-3)(3x-1)}{(x^2-1)^2}$.

Write down the equations of the asymptotes of y = f(x).

Find the coordinates of the point at which the horizontal asymptote intersects the curve y = f(x). Sketch the graph of y = f(x) indicating the asymptotes and the turning points.

(b) A thin metal container, in the shape of a right circular cylinder of radius 5r cm and height h cm has a circular lid of radius 5r cm with a circular hole of radius r cm. (See the figure.) The volume of the container is given to be 245π cm³. Show that the surface area S cm² of the container with the lid containing the hole is given by $S = 49\pi \left(r^2 + \frac{2}{r}\right)$ for r > 0.

Find the value of r such that S is minimum.

- 15.(a) (i) Find $\int \frac{dx}{\sqrt{3+2x-x^2}}$.
 - (ii) Find $\frac{d}{dx} \left(\sqrt{3 + 2x x^2} \right)$ and hence, find $\int \frac{x 1}{\sqrt{3 + 2x x^2}} dx$.

Using the above integrals, find $\int \frac{x+1}{\sqrt{3+2x-x^2}} dx$.

- (b) Express $\frac{2x-1}{(x+1)(x^2+1)}$ in partial fractions and hence, find $\int \frac{(2x-1)}{(x+1)(x^2+1)} dx$.
- (c) (i) Let $n \neq -1$. Using integration by parts, find $\int x^n (\ln x) dx$.
 - (ii) Evaluate $\int_{1}^{3} \frac{\ln x}{x} dx$.

- 16.(a) The equation of the diagonal AC of a rhombus ABCD is 3x y = 3 and $B \equiv (3, 1)$. Also, the equation of CD is x + ky = 4, where k is a real constant. Find the value of k and the equation of BC.
 - (b) Sketch the circles, C_1 and C_2 given by the equations $x^2 + y^2 = 4$ and $(x-1)^2 + y^2 = 1$ respectively, indicating clearly their point of contact.

A circle C_3 touches C_1 internally and C_2 externally. Show that the centre of C_3 lies on the curve $8x^2 + 9y^2 - 8x - 16 = 0$.

17.(a) Write down the trigonometric identity for $\tan{(\alpha+\beta)}$ in terms of $\tan{\alpha}$ and $\tan{\beta}$. Hence, obtain $\tan{2\theta}$ in terms of $\tan{\theta}$, and show that $\tan{3\theta} = \frac{3\tan{\theta} - \tan^3{\theta}}{1 - 3\tan^2{\theta}}$.

By substituting $\theta = \frac{5\pi}{12}$ in the last equation, verify that $\tan \frac{5\pi}{12}$ is a solution of $x^3 - 3x^2 - 3x + 1 = 0$. Given further that $x^3 - 3x^2 - 3x + 1 = (x + 1)(x^2 - 4x + 1)$, deduce that $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$.

- (b) Show that $\tan^2 \frac{A}{2} = \frac{1 \cos A}{1 + \cos A}$ for $0 < A < \pi$. In the usual notation, using the Cosine Rule for a triangle ABC, show that $(a+b+c)(b+c-a)\tan^2 \frac{A}{2} = (a+b-c)(a+c-b)$.
- (c) Show that $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$.