## Number Theory and Modular Arithmetic



#### **Divisibility:**

An integer a divides b (written "a|b") if and only if there exists an Integer c such that c\*a = b.

#### **Primes:**

A natural number p ≥ 2 such that among all the numbers 1,2...p only 1 and p divide p.

# Fundamental Theorem of Arithmetic: Any integer greater than 1 can be uniquely written (up to the ordering of the factors) as a product of prime numbers.

### Greatest Common Divisor: GCD(x,y) =greatest $k \ge 1$ s.t. k|x and k|y.

Least Common Multiple: LCM(x,y) = smallest  $k \ge 1$  s.t. x|k and y|k.

## Fact: $GCD(x,y) \times LCM(x,y) = x \times y$

### (a mod n) means the remainder when a is divided by n.

 $a \mod n = r$ 

 $\Leftrightarrow$ 

a = dn + r for some integer d

#### Definition: Modular equivalence

$$a \equiv b \text{ [mod n]}$$
  
 $\Leftrightarrow (a \text{ mod n}) = (b \text{ mod n})$   
 $\Leftrightarrow n \mid (a-b)$ 

$$31 \equiv 81 \text{ [mod 2]}$$
  
 $31 \equiv_2 81$ 

$$31 \equiv 80 \text{ [mod 7]}$$
  
 $31 \equiv_7 80$ 

Written as a ≡<sub>n</sub> b, and spoken "a and b are equivalent or congruent modulo n"

#### =n is an equivalence relation

In other words, it is

Reflexive:  $a \equiv_n a$ 

Symmetric:  $(a \equiv_n b) \Rightarrow (b \equiv_n a)$ 

Transitive:  $(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$ 

integers into n "residue" classes.

("residue" = what left over = "remainder")

Define residue class
[k] = the set of all integers that are congruent to k modulo n.

#### **Residue Classes Mod 3:**

```
[0] = \{ ..., -6, -3, 0, 3, 6, .. \}
[1] = \{ ..., -5, -2, 1, 4, 7, .. \}
[2] = \{ ..., -4, -1, 2, 5, 8, .. \}
[-6] = \{ ..., -6, -3, 0, 3, 6, .. \} = [0]
[7] = \{ ..., -5, -2, 1, 4, 7, .. \} = [1]
[-1] = \{ ..., -4, -1, 2, 5, 8, .. \} = [2]
```

### Why do we care about these residue classes?

Because we can replace any member of a residue class with another member when doing addition or multiplication mod n and the answer will not change

To calculate: 249 \* 504 mod 251

just do -2 \* 2 = -4 = 247

We also care about it because computers do arithmetic modulo n, where n is 2^32 or 2^64.

### Fundamental lemma of plus and times mod n:

If 
$$(x \equiv_n y)$$
 and  $(a \equiv_n b)$ . Then

1) 
$$x + a =_{n} y + b$$

2) 
$$x * a =_n y * b$$

### Proof of 2: $xa = yb \pmod{n}$

(The other proof is similar...)



x = ny iff x = in + y for some integer i a = nb iff a = jn + b for some integer j

$$xa = (i n + y)(j n + b) = n(ijn+ib+jy) + yb$$

$$\equiv_{n} yb$$

### Another Simple Fact: If $(x \equiv_n y)$ and (k|n), then: $x \equiv_k y$

Example: 10 = 10 = 10 = 10 = 10

#### **Proof:**

 $x \equiv_n y$  iff x = in + y for some integer i Let j=n/k, or n=jk Then we have: x = ijk + y

$$x = (ij)k + y$$
 therefore  $x =_k y$ 

#### A <u>Unique</u> Representation System Modulo n:

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

#### Unique representation system mod 3

Finite set 
$$S = \{0, 1, 2\}$$

+ and \* defined on S:

| + | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 1 | 2 |
| 1 | 1 | 2 | 0 |
| 2 | 2 | 0 | 1 |

| * | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 |
| 2 | 0 | 2 | 1 |

#### Unique representation system mod 4

Finite set 
$$S = \{0, 1, 2, 3\}$$

#### + and \* defined on S:

| + | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |

### For addition tables, rows and columns always are a permutation of Z<sub>n</sub>

(A group as we'll see later in the course.)

| + | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

| + | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 |   |   |
| 4 | 4 | 5 | 0 | 1 |   | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

### For multiplication, some rows and columns are permutation of $Z_n$ , while others aren't...

| * | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 2 | 4 | 1 | 3 |
| 3 | 0 | 3 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 2 | 1 |

| * | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

what's happening here?

### For addition, the permutation property means you can solve, say,

$$4 + \underline{\hspace{1cm}} = 1 \pmod{6}$$

$$4 + \underline{\hspace{1cm}} = x \pmod{6}$$
 for any x in  $Z_6$ 

### Subtraction mod n is well-defined

Each row has a 0, hence -a is that element such that a + (-a) = 0

$$\Rightarrow$$
 a - b = a + (-b)

| + | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

### For multiplication, if a row has a permutation you can solve, say,

| * | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

### But if the row does not have the permutation property, how do you solve

no solutions!

$$3*_{--}=4 \pmod{6}$$

multiple solutions!

no multiplicative inverse!

| * | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

#### **Division**

```
If you define 1/a (mod n) = a<sup>-1</sup> (mod n)
as the element b in Z<sub>n</sub>
such that a * b = 1 (mod n)
```

Then x/y (mod n) = x \* 1/y (mod n)

Hence we can divide out by only the y's for which 1/y is defined!

#### And which rows do have the permutation property?

| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 |   |   |   |   |   |   |
| 3 | 0 | 3 |   |   |   |   |   |   |
| 4 | 0 | 4 |   |   |   |   |   |   |
| 5 | 0 | 5 |   |   |   |   |   |   |
| 6 | 0 | 6 |   |   |   |   |   |   |
| 7 | 0 | 7 |   |   |   |   |   |   |

consider \*8 on Z8

# A visual way to understand multiplication and the "permutation property".

### There are exactly 8 distinct multiples of 3 modulo 8.



hit all numbers ⇔ row 3 has the "permutation property"

### There are exactly 2 distinct multiples of 4 modulo 8.



row 4 does not have "permutation property" for \*8 on Z8

### There are exactly 1 distinct multiples of 8 modulo 8.



### There are exactly 4 distinct multiples of 6 modulo 8.



### Fundamental lemma of division modulo n:

if GCD(c,n)=1, then  $ca \equiv_n cb \Rightarrow a \equiv_n b$ 

**Proof:** 

#### Fundamental lemmas mod n:

If 
$$(x \equiv_n y)$$
 and  $(a \equiv_n b)$ . Then

1) 
$$x + a \equiv_n y + b$$

2) 
$$x * a =_n y * b$$

3) 
$$x - a \equiv_n y - b$$

4) 
$$cx \equiv_n cy \Rightarrow a \equiv_n b$$
 if  $gcd(c,n)=1$ 

#### **New definition:**

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

Multiplication over this set  $Z_n^*$  has the cancellation property.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
  
 $Z_6^* = \{1, 5\}$ 

| + | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

| * | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

#### We've got closure

Recall we proved that Z<sub>n</sub> was "closed" under addition and multiplication?

What about Z<sub>n</sub>\* under multiplication?

Fact: if a,b  $\epsilon Z_n^*$ , then ab (mod n) in  $Z_n^*$ 

Proof: if gcd(a,n) = gcd(b,n) = 1, then gcd(ab, n) = 1 then gcd(ab mod n, n) = 1

$$Z_{12}^{*} = \{0 < x < 12 \mid gcd(x,12) = 1\}$$
  
= \{1,5,7,11\}

| *<br>12 | 1  | 5  | 7  | 11 |
|---------|----|----|----|----|
| 1       | 1  | 5  | 7  | 11 |
| 5       | 5  | 1  | 11 | 7  |
| 7       | 7  | 11 | 1  | 5  |
| 11      | 11 | 7  | 5  | 1  |

### **Z**<sub>15</sub>\*

| *  | 1  | 2  | 4  | 7  | 8  | 11 | 13 | 14 |
|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 2  | 4  | 7  | 8  | 11 | 13 | 14 |
| 2  | 2  | 4  | 8  | 14 | 1  | 7  | 11 | 13 |
| 4  | 4  | 8  | 1  | 13 | 2  | 14 | 7  | 11 |
| 7  | 7  | 14 | 13 | 4  | 11 | 2  | 1  | 8  |
| 8  | 8  | 1  | 2  | 11 | 4  | 13 | 14 | 7  |
| 11 | 11 | 7  | 14 | 2  | 13 | 1  | 8  | 4  |
| 13 | 13 | 11 | 7  | 1  | 14 | 8  | 4  | 2  |
| 14 | 14 | 13 | 11 | 8  | 7  | 4  | 2  | 1  |

$$Z_5^* = \{1,2,3,4\}$$

 $= Z_5 \setminus \{0\}$ 

| <b>*</b><br>5 | 1 | 2 | 3 | 4 |
|---------------|---|---|---|---|
| 1             | 1 | 2 | 3 | 4 |
| 2             | 2 | 4 | 1 | 3 |
| 3             | 3 | 1 | 4 | 2 |
| 4             | 4 | 3 | 2 | 1 |

Fact: For prime p, the set  $Z_p^* = Z_p \setminus \{0\}$ 

Proof: It just follows from the definition!

For prime p, all 0 < x < p satisfy gcd(x,p) = 1

### **Euler Phi Function** $\phi$ **(n)**

 $\phi(n)$  = size of  $Z_n^*$ = number of  $1 \le k < n$  that are relatively prime to n.

p prime
$$\Rightarrow Z_p^* = \{1,2,3,...,p-1\}$$

$$\Rightarrow \phi (p) = p-1$$

$$Z_{12}^{*} = \{0 < x < 12 \mid gcd(x,12) = 1\}$$
  
= \{1,5,7,11\}  
 $\phi(12) = 4$ 

| *<br>12 | 1  | 5  | 7  | 11 |
|---------|----|----|----|----|
| 1       | 1  | 5  | 7  | 11 |
| 5       | 5  | 1  | 11 | 7  |
| 7       | 7  | 11 | 1  | 5  |
| 11      | 11 | 7  | 5  | 1  |

## Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

How about p = 3, q = 5?

## Theorem: if p,q distinct primes then $\phi(pq) = (p-1)(q-1)$

```
pq = # of numbers from 1 to pq
p = # of multiples of q up to pq
q = # of multiples of p up to pq
1 = # of multiple of both p and q up to pq
```

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$

# Additive and Multiplicative Inverses



## Additive inverse of a mod n = number b such that a+b=0 (mod n)

What is the additive inverse of a = 342952340 in  $Z_{4230493243}$ ?

Answer: n – a = 4230493243-342952340 = 3887540903

### Multiplicative inverse of a mod n = number b such that a\*b=1 (mod n)

Remember, only defined for numbers a in  $Z_n^*$ 

## Multiplicative inverse of a mod n = number b such that a\*b=1 (mod n)

What is the multiplicative inverse of a = 
$$342952340$$
 in  $Z_{4230493243}^*$ ?

Answer:  $a^{-1} = 583739113$ 

# How do you find multiplicative inverses fast?

## Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

Now take n, and a  $\varepsilon Z_n^*$ 

gcd(a, n)? 
$$a \text{ in } Z_n^* \Rightarrow \text{gcd}(a, n) = 1$$
  
suppose ra + sn = 1  
then ra  $\equiv_n 1$   
so,  $r = a^{-1} \mod n$ 

## Theorem: given positive integers X, Y, there exist integers r, s such that r X + s Y = gcd(X, Y)

and we can find these integers fast!

How?

**Extended Euclid Algorithm** 

### **Euclid's Algorithm for GCD**

```
Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)
```

```
Euclid(67,29) 67 - 2*29 = 67 \mod 29 = 9

Euclid(29,9) 29 - 3*9 = 29 \mod 9 = 2

Euclid(9,2) 9 - 4*2 = 9 \mod 2 = 1

Euclid(2,1) 2 - 2*1 = 2 \mod 1 = 0

Euclid(1,0) outputs 1
```

#### **Proof that Euclid is correct**

Euclid(A,B) If B=0 then return A else return Euclid(B, A mod B)

Let  $G = \{g \mid g \mid A \text{ and } g \mid B\}$ The GCD(A,B) is the maximum element of G. Let  $G' = \{g \mid g \mid B \text{ and } g \mid (A \text{ mod } B)\}$ 

Claim: G = G'

G'=G, because consder x in G. Then x|A and x|B. Therefore  $x|(A\pm B)$ , and  $x|(A\pm 2B)...$  But A mod B is just A+kB for some integer k. Similarly if x is in G' then x is in G.

This combined with the base case completes the proof.

QED.

### Finally, a puzzle...

You have a 5 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?



Here's What You Need to Know...

#### Working modulo integer n

Definitions of  $Z_n$ ,  $Z_n^*$  and their properties

Fundamental lemmas of +,-,\*,/
When can you divide out

Extended Euclid Algorithm

How to calculate c<sup>-1</sup> mod n.

Euler phi function  $\phi(n) = |Z_n^*|$