Miniproject - Combinatorics

Simon Pohmann

We use the convention that $\mathbb{N} = \{n \in \mathbb{Z} \mid n \geq 0\}.$

1 Part I

Proposition 1. Let P be a graded poset in which every maximal chain has length n+1. Then the function

$$r: P \to \{0, ..., n\}, \quad x \mapsto \max\{k \in \mathbb{N} \mid \exists a_1, ..., a_k \in P: a_1 < a_2 < ... < a_k < x\}$$

is well-defined and the unique function with x < y implies r(x) < r(y) for all $x, y \in P$. We call it the rank function of P.

Proof. Clearly r is well-defined, as for every increasing sequence $a_1 < ... < a_k < x$, we have the chain $C := \{a_1, ..., a_k, x\}$ of size k + 1. Hence by assumption, $k \le n$ and so r(x) is finite and in $\{0, ..., n\}$.

Further, consider x < y in P. We have a sequence $a_1 < ... < a_{r(x)} < x$ by definition of r. It follows that there is an increasing sequence $a_1 < ... < a_{r(x)} < x < y$ and so $r(y) \ge r(k) + 1 > r(x)$.

Lastly, assume there was another function $r': P \to \{0, ..., n\}$ with this property. Consider any $x \in P$. By definition of r, there is an increasing sequence $a_1 < ... < a_{r(x)} < x$ in P. Now consider a maximal chain C containing the chain $\{a_1, ..., a_{r(x)}, x\}$.

Say $C = \{b_1, ..., b_{n+1}\}$ with $b_1 < ... < b_{n+1}$ and $x = b_j$. Note that we have the increasing sequence $b_1 < ... < b_{j-1} < b_j = x$ and so by the definition of r, find $j \le r(x) + 1$. On the other hand, have $a_1, ..., a_{r(x)} \in C$ and thus j = r(x) + 1, i.e.

$$a_1 = b_1, ..., a_{r(x)} = b_{r(x)}, x = b_{r(x)+1}$$

As $b_i < b_{i+1}$, we know that $r'(b_i) < r'(b_{i+1})$ and inductively, we see $r'(b_i) \ge i - 1$. However, $r'(b_{n+1}) \le n$ and thus $r'(b_i) = i - 1$. Finally it follows that $r'(x) = r'(b_{r(x)+1}) = r(x)$.

Now we will show some basic properties of the rank function.

Proposition 2. Let P be a graded poset of maximal rank n with rank function r. Then

• $x \in P$ is minimal iff r(x) = 0 and maximal iff r(x) = n.

- If x < y and $r(x) + 1 \neq r(y)$ then there is $z \in P$ with x < z < y.
- If x < y then there is an increasing sequence $x < a_1 < ... < a_{r(y)-r(x)-1} < y$ in P.

Proof. For (i), let $x \in P$ be minimal. Then there is no increasing sequence $a_1 < x$ in P, so $r(x) \le 0$. Conversely, let r(x) = 0. Assume there was $y \in P$ with y < x, then r(y) < r(x) = 0, a contradiction. The analogous statement for maximal elements is proved in the same way.

For (iii), consider x < y in P. Then the chain $\{x, y\}$ is contained in a maximal chain $C \subseteq P$. Say $C = \{b_1, ..., b_{n+1}\}$ with $b_1 < ... < b_{n+1}$.

Hence we find $r(b_i) < r(b_{i+1})$ and so inductively that $r(b_i) \ge i-1$ and $r(b_i) \le i-1$ since $r(b_1) \ge 0$ and $r(b_{n+1}) \le n$. It follows that $r(b_i) = i-1$ and so $x = b_{r(x)+1}, y = r(y) + 1$. Therefore, we have a chain

$$x < b_{r(x)+2} < \dots < b_{r(y)} < y$$

of length r(y) - r(x) - 1. Statement (ii) follows directly, as in this setting, have $r(y) \ge r(x) + 2$ and so $r(y) - r(x) - 1 \ne 0$.

2 Part II

Proposition 3. For a graded poset P with layers $L_0, ..., L_n$ the following statements are equivalent:

• For every antichain $A \subseteq P$ have

$$\sum_{i=0}^{n} \frac{|A \cap L_i|}{|L_i|} \le 1$$

• For each $1 \leq i \leq n$ and $F \subseteq L_i$ have

$$\frac{|\partial F|}{|L_{i-1}|} \ge \frac{|F|}{|L_i|}$$

where

$$\partial F := \{ a \in L_{i-1} \mid \exists b \in F : \ a \le b \}$$

• There exists a (nonempty) sequence of maximal chains $C_1, ..., C_t$ such that for all $1 \le i \le n$ we have:

$$|\{j \mid x \in C_j\}| = |\{j \mid y \in C_j\}| \text{ for all } x, y \in L_i$$

Proof. We show (ii) \Rightarrow (i) \Rightarrow (ii). For convenience of notation, write

$$A_i := \bigcup_{i \le j \le n} A \cap L_j$$

(ii) \Rightarrow (i) Define sets

$$G_n := A \cap L_n$$
 and $G_i := \partial G_{i+1} \cup (A \cap L_i)$ for $0 \le i < n$

We show by induction that for $a \in G_i$ there is some $b \in A_i$ with $a \le b$ and that we have the inequality

$$\sum_{i=i}^{n} \frac{|A \cap L_j|}{|L_j|} \le \frac{|G_i|}{|L_i|}$$

The base case is trivial, so let i < n. Consider some $a \in G_i$. If $a \in \partial G_{i+1}$, then there is $b \in G_{i+1}$ with $a \le b$. By induction hypothesis, have $c \in A_{i+1} \supseteq A_i$ with $b \le c$ and thus $a \le c$. Otherwise, find $a \in A \cap L_i$ and so $a \le a$ with $a \in A \cap L_i \subseteq A_i$.

To show the inequality, note that ∂G_{i+1} and $A \cap L_i$ are disjoint. Indeed, if $a \in \partial G_{i+1} \cap A \cap L_i$ then there is $b \in G_{i+1}$ with $a \leq b$, and further by induction hypothesis there is $c \in A_{i+1}$ with $a \leq b \leq c$. However, $a \in L_i$ and so $a \neq c$. So we found $a \leq c$ comparable elements in the antichain A, a contradiction.

So we get

$$\sum_{j=i}^{n} \frac{|A \cap L_{j}|}{|L_{j}|} = \frac{|A \cap L_{i}|}{|L_{i}|} + \sum_{j=i+1}^{n} \frac{|A \cap L_{j}|}{|L_{j}|}$$

$$\leq \frac{|A \cap L_{i}|}{|L_{i}|} + \frac{|G_{i+1}|}{|L_{i+1}|} \leq \frac{|A \cap L_{i}|}{|L_{i}|} + \frac{|\partial G_{i+1}|}{|L_{i}|}$$

$$= \frac{|A \cap L_{i}| + |\partial G_{i+1}|}{|L_{i}|} = \frac{|G_{i}|}{|L_{i}|}$$

Finally, we have that $G_0 \subseteq L_0$, so

$$\sum_{i=0}^{n} \frac{|A \cap L_j|}{|L_j|} \le \frac{|G_i|}{|L_i|} \le 1$$

$$(i)\Rightarrow (iii)$$