Maps

We will be using python package GEOPY \rightarrow geopy makes it easy for us to locate the coordinates of landmarks, cities, addresses etc.

geolocator.geocode("THE NAME OF THE PLACE YOU WANT TO STUDY")

- Note: this will return an object!
- An object, is something that has attributes

Maps

We will be using python package GEOPY \rightarrow geopy makes it easy for us to locate the coordinates of landmarks, cities, addresses etc.

geolocator.geocode("THE NAME OF THE PLACE YOU WANT TO STUDY")

- Note: this will return an object!
- An object, is something that has attributes
- Ex. a cat (attributes include : hair quality, color of eyes....

Maps

We will be using python package GEOPY \rightarrow geopy makes it easy for us to locate the coordinates of landmarks, cities, addresses etc.

geolocator.geocode("THE NAME OF THE PLACE YOU WANT TO STUDY")

- Note: this will return an object!
- An object, is something that has attributes
- Ex. a cat (attributes include : hair quality, color of eyes....

This location-object we are talking about has the following attributes: location.latitude, location.longitude, location.altitude, location.address

Use "dot" notation;)

For loops

 A way to iterate through your object to look at (or act upon) each item in your object

```
>>> list = [1, 2, 3, 4, 5]
>>> new_list = []
>>> for i in list:

new_list.append(i + 5)
```

For loops

 A way to iterate through your object to look at (or act upon) each item in your object

>>> for i in list:

For each item "i" in list, add 5 to this item and add it to new list

For loops

 A way to iterate through your object to look at (or act upon) each item in your object

```
>>> list = [1, 2, 3, 4, 5]
>>> new_list = []
>>> for i in list:
          new_list.append(i + 5)
>>> new_list
     [6, 7, 8, 9, 10]
```

Append

- list.append(...)
- table.append(...)

```
>>> dog_names = Table().with_columns('name', [Happy, Mochi, Doc], 'age', [1, 2, 3])
```

>>> dog_names

name	age
Нарру	1
Mochi	2
Doc	3

Append

>>> dog_names = Table().with_columns('name', [Happy, Mochi, Doc], 'age', [1, 2, 3])

>>> dog_names

name	age
Нарру	1
Mochi	2
Doc	3

>>> dog_names.append(['Lucky', 4])

Append

```
>>> dog_names.append(['Lucky', 4])
```

>>> dog_names

name	age
Нарру	1
Mochi	2
Doc	3
Lucky	4

Concatenating strings

We know strings can be added together!

Awesome_phrase = X + Y

print(Awesome_phrase)

>>>>

Concatenating strings

We know strings can be added together!

```
Ex. y = "Science"

Awesome_phrase = X + Y

print(Awesome_phrase)
>>>>
ScienceRules
....is this what we wanted?
```

Concatenating strings

We know strings can be added together!

```
Ex. y = "Science"

Awesome_phrase = X + Y

print(Awesome_phrase)
>>>>
ScienceRules
....is this what we wanted?
```