UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Ingeniería Industrial y de Sistemas

DEPARTAMENTO DE CIENCIAS BÁSICAS

CURSO	ESTADÍSTICA Y PROBABILIDADES		CICLO	2021 – I		
CODIGO	FB - 305		SECCIÓN	U, X, V, W		
DOCENTE	Y. CERNA, M. CUTIPA		FECHA	27 - 05 - 21		
El examen es personal y en la resolución de cada problema se debe justificar el desarrollo y requerimientos necesarios						
Duración para desarrollo: 120 minutos EXAMEN PARCIAL Duración para envío: 15 minutos						

 La distribución de salarios semanales de empleados (varones y mujeres) de acuerdo a la oficina de RR.HH. de la empresa "Nos pagan bien" en el distrito de Los Olivos en el II trimestre de 2018 se muestra en el cuadro. (8 P)

Salarios Semanales	empleados	varones
de 81 a 120	19	13
de 121 a 160	20	15
de 161 a 200	51	42
de 201 a 240	46	37
de 241 a 280	24	21
de 281 a 320	8	7

- a) Si los empleados solicitan un nuevo pacto de 241 a 280 colectivo donde se establece un salario semanal mínimo de 124 soles. ¿Qué porcentaje de trabajadores se beneficiarán?
- b) Se quiere decidir por una nueva propuesta, aumentar el 15% de los salarios semanales a todos los empleados más una bonificación mensual de 200 soles o aumentar el 12% los salarios semanales a todos los empleados con un bono fijo semanal de 100 soles. ¿Qué alternativa conviene a los empleados en esta última propuesta?
- c) Suponga que se integran cinco nuevos empleados varones a razón de 220, 295, 350, 380 y 405 soles. Determine si hay o no distorsión en la nueva distribución (con los cinco empleados) bajo Ley Normal.
- d) Represente gráficamente la distribución de salarios según sexo que muestre centralidad, dispersión, forma y observaciones atípicas. Según sus resultados, ¿qué empleado según sexo está mejor remunerado?
- 2. Un sistema de n componentes tiene estructura "k de n" cuando funciona siempre y cuando por lo menos k de sus componentes lo hagan. Los componentes de un sistema con estructura 2 de 3 pueden fallar independientemente y con probabilidades iguales a 0,2. A su vez un macro-sistema con estructura "h de m" funciona siempre y cuando por lo menos h de sus sistemas independientemente trabajen correctamente. (3 P)
 - a) Determine la confiabilidad de este sistema, es decir, la probabilidad de que funcione.
 - b) Determine la probabilidad de falla del macro-sistema con estructura 3 de 4.
- Un componente importante de las computadoras personales (PC) es el microchip. La tabla siguiente muestra los porcentajes de microchip que cierto fabricante de PC compra a sus cuatro proveedores y las probabilidades de que un microchip sea defectuoso cuando es vendido por un respectivo proveedor. (4 P)

	Proveedor	%	Probabilidad
•	S ₁	20	0.03
;	S_2	25	0.05
)	S ₃	30	0.01
	S ₄	25	0.04

- a) Determine la probabilidad de que un microchip adquirido sea defectuoso. Especifique a qué tipo de definición corresponde la probabilidad hallada.
- b) Si cierto microchip es defectuoso, ¿a posteriori cuál proveedor es más probable que lo haya vendido?
- c) El fabricante adopta un plan de muestreo para aceptar lotes grandes de microchip, para ello, elige al azar 5 de ellos. Rechaza el lote si encuentra al menos dos defectuosos. ¿Cuál es la probabilidad de rechazar el lote?
- 4. Una imagen que es recibida es procesada a fin de identificarla. La imagen transmitida puede haber sido a, con probabilidad 0.6, o bien b, con probabilidad 0.4. Para ayudar a la identificación de la misma se usan dos variables distintivas. X e Y. Si la imagen transmitida es la a, X varía aleatoria y uniformemente entre 10 y 15; e Y lo hace aleatoria y uniformemente entre 12 y 18, sin importar cuál es el valor de X. Si la imagen transmitida es la b, X varia aleatoria y uniformemente 14 y 18; e Y lo hace aleatoria y uniformemente entre 16 y 18, sin importar cuál sea el valor de X. Cuando una imagen es recibida, ésta se clasifica como a, o bien b, de modo que se tenga la mayor probabilidad dada la información registrada sobre las variables distintivas. Si fue recibida una imagen con las variables distintivas X, entre 14 y 15, e Y entre 16 y 17. Determine como debe de ser clasificada dicha imagen. (3 P)
- 5. a) Después de cubrir 500 km de recorrido en una pista de pruebas. 3 autos obtuvieron el siguiente kilometraje por galón de gasolina como se indica: auto A, 50 km/g; 62.4 km/g; 77.6 km/g. ¿cuál es el número promedio de km/galón? (1 P)
 - b) La producción de cobre durante los meses de enero, febrero, marzo y abril fue de 1000 Tm, 1500 Tm,
 2200 Tm y 2500 Tm. Respectivamente. Hallar el porcentaje promedio mensual en que aumentó la producción.

$$\frac{1}{121} = \frac{1}{124} = \frac{1}{160} \Rightarrow \frac{1}{160} = \frac{124 - 121}{160 - 121} \Rightarrow \frac{1}{20} = \frac$$

$$\Rightarrow X = \frac{2 \times i \cdot f_i}{\eta} = \frac{32808}{168} = 195,29 \quad \forall X = \frac{327.24}{169} = \frac{194.79}{169}$$

$$\frac{\text{der}_{\text{aumento}}}{\text{aumento}}$$
 . $\overline{X}_f = \frac{115\%}{X} + 50 = \frac{224.0085}{318.1648 \times 4} = \frac{1272.6592}{4000}$

Se raibe entotal más salario.

C. Considerando los 5 dotos: 220, 295, 350, 380 y 405, La nouva media $\bar{x} = 199-179$ y $S^2 = 3311.618$

lucy se aprice el coeficiente de centoris, si existe distorsión respecto a la ley normal.

$$K_{\mu} = \frac{1}{n} = \frac{\frac{1}{2}(x_i - \bar{x})^{\frac{4}{5}} f_i}{3^4} - 3 \approx 3.521 - 3$$

= 0.521 >0

Se interpreta que la distribución el leptocurtica, portento existe distorsión.

d. Se realiza d'agrama de cayar de cada distribución de varones y mujeres, para comparar sus salartos.

Se observa que las vatores presenta mayor concentración de salunos mayores que las mujeres.

- 2). S'estema de nomponentes , tiene estructura " K de n " funciona siempre y cuando por lo menos K de sus componentes lo hagan.
 - e). Estructura 2 de 3., tiene 3 componentes Ai : No funcione la componente i , e=1,2,3P(A,i) = 0.2, e=1,2,3.

$$P[sistema funcione] = 1 - P[sistema falle]$$

$$= 1 - P[alo mas 1 componente]$$

$$= 1 - P[Rlo funcione] - P[funcione 1]$$

$$= 1 - P(A_1) P(A_2) P(A_3) - 3 P[A_1^c A_2 A_3]$$

$$= 1 - P(A_1) P(A_2) P(A_3) - 3 (0.8) (0.2)^2$$

$$= \frac{112}{125} = 0.896$$

b). Un macrosistema hoem funciona siempre y cuando por lomenos hoe sus sistemas independientes funcione correctamente

Si: El sistema funcione correctament., P(Si)= 0.896.

Macrosistema 3de 4. funciona si por lomeno) 3 sistemas funcionamente correctamente.

P[macrosistema falle] = P[aloman 2 sistema funcione correctamente.

= P[Ninguno] + P[1 sistema] + P[2 sistemas]

funcione

 $= P[S_1 S_2 S_3 S_4] + P[S_1 S_2 S_3 S_4] + P[S_1 S_2 S_3 S_4]$ $= P[S_1 S_2 S_3 S_4] + P[S_1 S_2 S_3 S_4] + P[S_1 S_2 S_3 S_4]$ $= (0.104) + 4 (0.896) (0.104)^3 + 6 (0.896)^4$

= 0.0562

3) of probabilidad total.

De chip de fectuoso Si : chip de proveedor i

 $\Rightarrow P(D) = 0.20 \times 0.03 + 0.25 \times 0.05 + 0.30 \times 0.01 + 0.25 \times 0.04$ $= \frac{63}{2000} = 0.0315$

b).
$$\rho(S_1/D) = \frac{P(D/S_1) \cdot P(S_1)}{P(D)} = \frac{0.20 \times 0.03}{0.03.15} = \frac{4}{21} = 0.19.04$$

• $P(S_2/D) = \frac{P(D/S_2) \cdot P(S_2)}{P(D)} = \frac{0.05 \times 0.25}{0.0315} = \frac{25}{63} = 0.39.68$
• $P(S_3/D) = \frac{P(D/S_3) \cdot P(S_3)}{P(D)} = \frac{0.01 \times 0.30}{0.0315} = \frac{2}{21} = 0.09.52$
• $P(S_4/D) = \frac{P(D/S_4) \cdot P(S_4)}{P(D)} = \frac{0.04 \times 0.25}{0.0315} = \frac{20}{63} = 0.317.46$

Esmas probable que provinga de S2.

c).
$$\eta = 5 \text{ chips}$$
.
 $p = p(D) = 0.0315$
 $\Rightarrow P[\text{Rediagan el tote}] = 1 - [P(a lo mas) 1 depetuso)]$
 $= 1 - (P(\text{minguin depetuso}) + P[1 depetuso])$
 $= 1 - ((1 - 0.0315)^5 + 5 (0.0315) (1 - 0.0315)^4)$
 $= 1 - ((0.9685)^5 + 5 (0.0315) (0.9685)^4)$
 $= 0.009312$.

5]. a). Promedio =
$$\frac{\text{Km recorndos entotal}}{\text{consumo total}} = \frac{500 + 500 + 500}{10 + \frac{625}{78} + \frac{625}{94}} = \frac{61.33434 \text{ Km/g}}{10 + \frac{625}{78} + \frac{625}{94}} = \frac{10}{10}$$

$$\Rightarrow \text{ Promedio}$$

$$\text{ de Factor de } = \frac{3}{1.5 \times \frac{22}{15} \times \frac{25}{22}} = 1.357$$

$$\text{ crecimiento}$$

Jen trasmiteda.

$$A = \begin{bmatrix} X & \text{dist unif} & [10,15] \\ Y & \text{II} & [12,18] \end{bmatrix}$$
 $A = \begin{bmatrix} Y & \text{II} & [12,18] \end{bmatrix}$

$$\Rightarrow Para la ima gen (Carrot)$$

$$\Rightarrow P[proviene du =] = .p(a). p(x).p(x) = 0.6 \times \frac{45-14}{75-10} \times \frac{17-16}{78-12}$$

$$= 0.02.$$

$$P \left[piviene deb \right] = p(b) \cdot p(x) \cdot p(y) = 0.4 \times \frac{15-14}{18-14} \cdot \frac{17-16}{18-16}$$

$$= 0.05.$$

A