PENGEMBANGAN GATEWAY BERBASIS EMBEDDED DEVICE UNTUK INTEROPERABILITAS JARINGAN SENSOR NIRKABEL DAN PROTOKOL INTERNET

SKRIPSI

Disusun oleh:

<u>GUNTUR DHARMA PUTRA</u>
09/284593/TK/35393

PROGRAM STUDI TEKNIK ELEKTRO
JURUSAN TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
FAKULTAS TEKNIK
UNIVERSITAS GADJAH MADA
YOGYAKARTA

HALAMAN PENGESAHAN

PENGEMBANGAN GATEWAY BERBASIS EMBEDDED DEVICE UNTUK INTEROPERABILITAS JARINGAN SENSOR NIRKABEL DAN PROTOKOL INTERNET

SKRIPSI

Diajukan Sebagai Salah Satu Syarat untuk Memperoleh

Gelar Sarjana Teknik Program S-1

Pada Jurusan Teknik Elektro dan Teknologi Informasi Fakultas Teknik

Universitas Gadjah Mada

Disusun oleh:

GUNTUR DHARMA PUTRA 09/284593/TK/35393

Telah disetujui dan disahkan pada tanggal 3 Februari 2014

Dosen Pembimbing I

Dosen Pembimbing II

Sigit Basuki Wibowo, S.T., M.Eng.

NIP 1976 0501 2002 12 1 002

Bimo Sunarfri Hantono, S.T., M.Eng.
NIP 1977 0131 2002 12 1 003

HALAMAN PERSEMBAHAN

Karya sederhana ini kupersembahkan buat Bapak, Ibu, dan Adik tercinta

KATA PENGANTAR

Segala puji dan syukur semata-mata hanya untuk Allah SWT, karena atas segala rahmat, hidayah dan bantuan-Nya jualah maka akhirnya Tesis dengan judul Analisis Teoretis Pemantulan dan Pembiasan Gelombang Elektromagnet Pada Bahan Magnetik Non Linear Orde Dua ini telah selesai penulis susun.

Telah banyak bantuan yang penulis peroleh selama dalam penulisan Tesis ini , untuk itu tak lupa penulis ucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Sarjiya, S.T., M.T., Ph.D., selaku Ketua Jurusan Teknik Elektro dan Teknologi Informasi Fakultas Teknik Universitas Gadjah Mada.
- 2. Bapak...selaku dosen pembimbing pertama ...
- 3. Ibu... selaku dosen pembimbing kedua ...
- 4. Bapak... selaku dosen pembimbing akademis.
- 5. Bapak dan Mama yang selama ini telah sabar membimbing dan mendoakan penulis tanpa kenal untuk selama-lamanya,
- 6. Prof. Drs. H. Muslim, Ph. D, selaku Pembimbing Utama, yang telah memberikan ilmunya kepada penulis serta dengan penuh kesabaran membimbing penulis,
- 7. Drs. Kamsul Abraha, Ph. D, selaku Pembimbing Pendamping yang telah memberikan inspirasi kepada penulis,
- 8. Dr. Pekik Nurwantoro dan Dr. rer. nat. M. Farchani Rasyid yang telah memperkenalkan sistem operasi LINUX dan LaTeX kepada penulis serta memberikan bimbingan penggunaan LaTeX tersebut dengan sabar,
- 9. Segenap staf dan karyawan di jurusan Fisika FMIPA UGM, yang telah banyak bekerjasama dengan penulis selama belajar di FMIPA UGM,
- 10. Sahabat saya M. Rizal Ginanjar, yang selalu bersedia membantu penulis ketika menyelesaikan masalah-masalah komputer.

Tesis ini tentunya tidak lepas dari segala kekurangan dan kelemahan, untuk itu segala kritikan dan saran yang bersifat membangun guna kesempurnaan Tesis ini

sangat diharapkan. Semoga tesis ini dapat bermanfaat bagi kita semua dan lebih khusus lagi bagi pengembagan ilmu fisika.

Yogyakarta, 15 Januari 2014

Penulis

DAFTAR ISI

H	ALAN	MAN PENGESAHAN	iii
H	ALAN	MAN PERSEMBAHAN	iii
K	ATA l	PENGANTAR	iv
D	AFTA	R ISI vi	iii
D	AFTA	R TABEL	ix
D	AFTA	R GAMBAR	хi
D	AFTA	R SINGKATAN x	ii
In	tisari	x	iv
Al	bstrac	t x	V
I	LAT	TAR BELAKANG	1
	1.1	Latar Belakang Masalah	1
	1.2	Rumusan Masalah	2
	1.3	Batasan Masalah	2
	1.4	Tujuan Penelitian	2
	1.5	Manfaat Penelitian	3
	1.6	Keaslian Penelitian	3
	1.7		3
II	TIN	JAUAN PUSTAKA DAN DASAR TEORI	5
	2.1	Tinjauan Pustaka	5
	2.2	Landasan Teori	5
		2.2.1 Wireless Sensor Network	5
		2.2.2 IQRF	7
		2.2.3 XBee	8
		2.2.4 TCP/IP	9
		2.2.5 Access Point	9

	2.2.6	TP-LINK MR3020	10
	2.2.7	Web Server	11
	2.2.8	AJAX	11
	2.2.9	OpenWRT	11
	2.2.10	SSHFS	12
	2.2.11	Bootstrap	12
III ME	ETODOI	LOGI PENELITIAN	14
3.1	Alat da	an Bahan	14
	3.1.1	Perangkat Keras	14
	3.1.2	Perangkat Lunak	14
3.2	Alur P	enelitian	14
	3.2.1	Pra Penelitian	14
	3.2.2	Pengembangan Aplikasi	15
	3.2.3		15
	3.2.4	Pasca Penelitian	16
	3.2.5	Diagram Alir Penelitian	16
3.3	Tahapa	an Pelaksanaan	16
3.4	Jadwal	l Kegiatan	17
IV HA	SIL DA	N PEMBAHASAN	19
4.1	Analis	is Kebutuhan Sistem	19
	4.1.1	Fitur-Fitur Aplikasi	19
	4.1.2	Use Case Diagram	19
	4.1.3	Diagram Arsitektur Sistem	20
	4.1.4	SDLC	20
4.2	Peranc	eangan Aplikasi	21
	4.2.1	Persiapan Pra Pengembangan Aplikasi	21
	4.2.2	Pengembangan Aplikasi WSN	26
	4.2.3	Pengembangan Aplikasi Python	27
	4.2.4	Pengembangan Aplikasi Berbasis Web	31
	4.2.5	Evaluasi dan Perbaikan	33
	4.2.6	Screenshot Aplikasi	34
	4.2.7	Kode Sesumber	40
4.3	Analis	is Unjuk Kerja Aplikasi	41
	401	Instalaci Peranti	41

		4.3.2	Hasil Uji Coba Aplikasi	45
		4.3.3	Masalah dan Penyelesaian	47
V	KES	SIMPU	LAN DAN SARAN	48
	5.1	Kesim	npulan	48
	5.2	Saran		48
D	A FTA	R PUS'	TAKA	49

DAFTAR TABEL

Tabel 2.1	Fitur perangkat keras dari TP-LINK MR3020	10
Tabel 2.2	Fitur komunikasi nirkabel dari TP-LINK MR3020	11
Tabel 3.1	Jadwal Penelitian	18

DAFTAR GAMBAR

Gambar 2.1	Jaringan sensor nirkabel	6
Gambar 2.2	Contoh sebuah simpul sensor IQRF	7
Gambar 2.3	Jaringan bintang menggunakan WiFi	7
Gambar 2.4	Sepasang peranti XBee	8
Gambar 2.5	TP-LINK MR3020	10
Gambar 2.6	Tampilan antarmuka $command$ -line OpenWRT versi $BackFire$.	12
Gambar 3.1	Diagram alir penelitian	16
Gambar 3.2	Arsitektur WSN dan WiFi dengan sebuah AP.	17
Gainbai 3.2	Austektur Worv dan Wir Luchgan Sebuah Art	1/
Gambar 4.1	Diagram <i>use case</i> dari penelitian	20
Gambar 4.2	Diagram Arsitektur Sistem	20
Gambar 4.3	Diagram SDLC	21
Gambar 4.4	Konfigurasi SSH pada Mac OSX	25
Gambar 4.5	Diagram alir aplikasi Python untuk IQRF	28
Gambar 4.6	Diagram alir aplikasi Python untuk menangani peranti XBee.	29
Gambar 4.7	Diagram alir aplikasi Python untuk menyala-matikan lampu	
	pada kondisi tertentu	31
Gambar 4.8	Peta situs aplikasi web.	32
Gambar 4.9	Entity Relationship Diagram dari basis data untuk aplikasi	
	web	32
Gambar 4.10	Diagram Alir Penambahan Peranti IQRF ke Aplikasi	33
Gambar 4.11	Diagram Alir Penambahan Peranti XBee ke Aplikasi	33
Gambar 4.12	Halaman dashboard saat belum ada peranti terpasang	34
Gambar 4.13	Halaman dashboard saat belum ada peranti terpasang (dibu-	
	ka di layar kecil)	35
Gambar 4.14	Halaman dashboard saat peranti sudah terpasang	35
Gambar 4.15	Halaman dashboard saat peranti sudah terpasang (dibuka di	
	layar kecil)	36
Gambar 4.16	Halaman daftar peranti IQRF yang terpasang	36
Gambar 4.17	Halaman daftar peranti XBee yang terpasang	37
Gambar 4.18	Halaman untuk menambahkan peranti IQRF	37
	Halaman untuk menambahkan peranti XBee	38
Gambar 4.20	Halaman untuk menambahkan profil	39

Gambar 4.21	Halaman yang menampilkan daftar pengguna	39
Gambar 4.22	Halaman untuk menambahkan pengguna baru	40
Gambar 4.23	Halaman login	40
Gambar 4.24	Koordinator IQRF saat belum dirakit	41
Gambar 4.25	Koordinator IQRF saat telah dirakit	42
Gambar 4.26	Koordinator XBee saat sebelum dirakit	42
Gambar 4.27	Koordinator XBee saat telah dirakit	43
Gambar 4.28	AP saat sebelum dirakit	43
Gambar 4.29	AP saat telah dirakit	44
Gambar 4.30	Sensor IQRF saat sebelum dirakit	44
Gambar 4.31	Sensor IQRF saat telah dirakit	44
Gambar 4.32	XBee relay saat sebelum dirakit	45
Gambar 4.33	XBee relay saat telah dirakit	45
Gambar 4.34	Uji coba aplikasi dengan ponsel cerdas	46
Gambar 4.35	Membaca temperatur yang terbaca pada sensor	46

DAFTAR SINGKATAN

 \mathbf{A}

AP Access Point

 \mathbf{C}

CLI Command Line Interface

 \mathbf{E}

ERD Entity Relationship Diagram

F

FTDI Future Technology Devices International

FUSE Filesystem in Userspace

J

JTETI Jurusan Teknik Elektro dan Teknologi Informasi

L

LAN Local Area Network

R

RF Radio Frequency

 \mathbf{S}

SDLC Software Development Life Cycle SFTP Secure Shell File Transfer Protocol

SSHFS Secure Shell Filesystem

U

UGM Universitas Gadjah Mada

USB Universal Serial Bus

\mathbf{W}

WAP Wireless Access Point
WIT Western Indonesian Time
WLAN Wireless Local Area Network
WSN Wireless Sensor Network

Intisari

Penggunaan Wireless Sensor Network (WSN) untuk gedung dan perumahan semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan seperti home automation dan home surveillance. Oleh karena itu, untuk meningkatkan fleksibilitas penggunaan WSN, diperlukan sistem pengendalian yang dapat dikendalikan secara jarak jauh. Padahal pada umumnya, WSN dikendalikan oleh sebuah pengendali utama berada di sekitar tempat WSN itu berada.

Penelitian ini mengusulkan integrasi dari WSN dengan *Internet Protocol* (IP) yang memungkinkan WSN dapat dikendalikan dimanapun dan dengan apapun asalkan masih terhubung dengan jaringan internet. Penelitian ini memanfaatkan infrastruktur jaringan data yang sangat populer dan terhubung ke internet, yaitu jaringan area lokal nirkabel atau dikenal dengan nama WiFi. Salah satu perangkat utama dalam jaringan WiFi adalah *Access Point* (AP) yang berfungsi sebagai koordinator simpul. Selain itu, AP juga berfungsi sebagai gateway yang menghubungkan berbagai piranti yang terhubung padanya ke internet. Oleh karena itu, penelitian ini akan mengembangkan perangkat lunak yang akan ditanamkan ke dalam AP sehingga menjadikan AP mempunyai kemampuan sebagai gateway untuk kedua jaringan WiFi dan beberapa protokol WSN ke dalam jaringan internet.

Kata kunci: wireless sensor network, Internet Protocol, WiFi, interoperabilitas.

Abstract

Wireless Sensor Network (WSN) usage for buildings and household has been increasingly popular because it offers many benefits, such as home automation and home surveilliance. Therefore, in order to increase WSN flexibility usage, remote controlling which enables administration is needed. In fact, generally WSN is controlled by a coordinator (sink node) which is located near the WSN area itself.

This research proposes integration of WSN and Internet Protocol (IP), that enables remote controlling and administration through the Internet Protocol stack. This research utilizes the wireless local area network or commonly known as WiFi. One of main components on this WiFi network is Access Point (AP) that acts as node coordinator. Furthermore, AP also serves as a gateway that connects multiple devices, that is connected to the AP, to the Internet. Therefore, this research will develop a software which is going to be implemented to the AP so that the AP has a capability as a gateway for both WiFi network and several WSN protocols to the Internet.

Keywords: wireless sensor network, Internet Protokol, WiFi, interoperability.

BABI

LATAR BELAKANG

1.1 Latar Belakang Masalah

Jaringan sensor nirkabel (*Wireless Sensor Network*, WSN) adalah jaringan simpul (*node*) sensor Spinar et al. [2009] otonom terdistribusi Hwang et al. [2003] yang digunakan untuk memonitor kondisi fisik atau lingkungan misalnya suhu, suara, getaran, kelembaban, dan lain-lain. Selain itu, tidak menutup kemungkinan untuk menambahkan fungsi tambahan pada setiap simpul misalnya port masukan/keluaran yang dapat digunakan sebagai pengendali aktuator yang terhubung ke piranti elektrik atau elektronis.

Penggunaan WSN untuk sebuah gedung dan rumah semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan. Contoh penerapan WSN dalam rumah yang sangat populer adalah *home surveillance* yaitu pemanfaatan WSN untuk mengawasi tiap sudut rumah secara *realtime*. Dengan ini, sang pemilik rumah tidak perlu lagi khawatir karena rumahnya kurang pengawasan karena mengawasi rumah menjadi semakin mudah dengan bantuan WSN ini. Contoh lainnya adalah *home automation* yaitu proses automatisasi segala urusan yang ada di rumah. Sebagai contoh, sang pemilik rumah harus menyalakan lampu di kala waktu sudah senja dan atau menyalakan pendingin ruangan saat pemilik baru saja pulang dari bekerja. Segala sesuatu yang mungkin untuk diautomatisasi, dapat terealisasi dengan bantuan WSN.

Pada umumnya, WSN dikendalikan oleh *sink node* yang berada dekat pada wilayah jaringan sensornya. Sehingga permasalahan pada WSN adalah jika diinginkan pusat kendali berada pada tempat yang jauh dari jaringan sensornya. Solusi yang mungkin dari permasalahan ini adalah penggunaan *Internet Protocol* (IP) karena jaringan IP sangat luas dan dapat diakses dimanapun dan dengan apapun.

Namun demikian, pada umumnya jaringan WSN tidak menggunakan IP, melainkan protokolnya sendiri, seperti protokol *zigbee*. Oleh karena itu, diperlukan sebuah gateway yang mampu menghubungkan WSN dari berbagai macam *vendor* dengan jaringan internet.

1.2 Rumusan Masalah

Penggunaan WSN untuk sebuah gedung dan rumah semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan misalnya home automation dan home surveillance. Permasalahan pada WSN adalah jika diinginkan pusat kendali berada pada tempat yang jauh dari jaringan sensornya maka jaringan internet yang memungkinkan untuk menyelesaikan permasalahan ini. Namun demikian, pada umumnya jaringan WSN tidak menggunakan IP sehingga diperlukan gateway yang mampu menghubungkan WSN dengan jaringan internet.

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah:

- 1. Penelitian ini bertujuan untuk mengembangkan purwa rupa aplikasi berbasis web untuk integrasi beberapa WSN dengan Internet.
- 2. Peranti WSN yang digunakan dan diujikan hanya IQRF dan XBee. Untuk XBee, peranti tersebut disambungkan dengan XBee Relay Shield dan Arduino Uno sebagai *sensor node*.
- 3. Aplikasi web dibangun menggunakan bahasa PHP, basis data MySQL, dan berjalan pada sistem operasi OpenWRT yang berbasis pada Linux.
- 4. IQRF hanya digunakan untuk mendapatkan suhu sekitar dan XBee digunakan untuk menghidup dan mematikan relay.
- 5. AP yang digunakan adalah TP-LINK MR3020 dengan sistem operasi OpenWRT.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah mempelajari kemungkinan pengembangan perangkat lunak yang akan ditanamkan ke dalam sebuah *access point* untuk difungsikan sebagai gateway sehingga mampu digunakan untuk mengintegrasikan jaringan WiFi dan beberapa protokol WSN ke jaringan internet.

1.5 Manfaat Penelitian

Dengan terhubungnya WSN ke jaringan internet dimungkinkan pengembangan aplikasi WSN yang dapat diakses melalui jaringan internet. Terhubungnya WSN ke jaringan internet akan membuka kemungkinan pengembangan layanan-layanan yang lebih beragam terutama layanan yang berbasis IP. Hal ini sejalan dengan perkembangan teknologi komunikasi yang menuju konvergensi penggunaan IP.

Selain itu, pengintegrasian gateway untuk WiFi dan WSN dalam satu piranti juga membuka peluang besar untuk memecahkan persoalan interoperabilitas perangkat keras dan kemudahan sistem.

1.6 Keaslian Penelitian

Penelitian ini tidak untuk menguji hipotesis baru melainkan merupakan pengembangan perangkat lunak yang akan ditanamkan ke dalam gateway sehingga mampu menghubungkan jaringan WiFi dan WSN ke jaringan internet. Penelitian ini akan meningkatkan fungsi AP menjadi gateway yang menghubungkan WiFi dan WSN dengan jaringan internet.

1.7 Sistematika Penulisan

BAB I : PENDAHULUAN

Pada bab ini dijelaskan latar belakang, rumusan masalah, batasan, tujuan, manfaat, keaslian penelitian, dan sistematika penulisan.

BAB II: TINJAUAN PUSTAKA DAN LANDASAN TEORI

Pada bab ini dijelaskan teori-teori dan penelitian terdahulu yang digunakan sebagai acuan dan dasar dalam penelitian.

BAB III: METODOLOGI PENELITIAN

Pada bab ini dijelaskan metode yang digunakan dalam penelitian meliputi langkah kerja, pertanyaan penilitian, alat dan bahan, serta tahapan dan alur penelitian.

BAB IV: HASIL DAN PEMBAHASAN

Pada bab ini dijelaskan hasil penelitian dan pembahasannya.

BAB V : KESIMPULAN DAN SARAN

Pada bab ini ditulis kesimpulan akhir dari penelitian dan saran untuk pengembangan penelitian selanjutnya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

Secara umum, cara untuk menghubungkan WSN dengan jaringan internet dapat dikelompokkan menjadi dua. Cara pertama adalah menggunakan gateway dan cara yang kedua adalah dengan menggunakan simpul sensor yang sudah dilengkapi dengan protokol internet. Cara yang lebih mudah ditempuh adalah dengan cara yang pertama karena pengubahan yang dilakukan relatif tidak terlalu besar. Sedangkan cara yang kedua akan menemui banyak kendala terutama pada WSN yang sudah terpasang karena harus dilakukan penggantian tiap simpul sensor.

Salah satu usaha untuk mengintegrasikan jaringan WSN dengan jaringan Wi-Fi menggunakan gateway misalnya dilakukan pada penelitian. Pada riset tersebut pengintegrasian dilakukan dengan sebuah komputer yang didedikasikan untuk keperluan tertentu. Penggunaan komputer khusus ini adalah hardware-solution yang membutuhkan biaya dan kerumitan sistem.

Riset pada juga menawarkan pengintegrasian dengan jaringan IP. Namun demikian di dalam riset ini diperlukan perubahan yang signifikan jika konfigurasi jaringan sensor nirkabel sudah terpasang. Simpul sensor yang digunakan harus diganti dengan simpul sensor yang mendukung IP. Hal ini jelas akan memakan biaya yang cukup besar dan tidak praktis untuk dilakukan. Terlebih lagi jika jumlah sensor yang terpasang jumlahnya cukup banyak.

Riset pada sudah berhasil mengembangkan sebuah AP menjadi gateway yang dapat digunakan untuk menghubungkan sebuah protokol WSN dengan jaringan IP. Protokol WSN yang digunakan adalah protokol dari IQRF. Penelitian tersebut kemudian dilanjutkan dengan penelitian yang sudah diterapkan dalam sistem domotic.

2.2 Landasan Teori

2.2.1 Wireless Sensor Network

Jaringan sensor nirkabel (Wireless Sensor Network, WSN) adalah jaringan simpul sensor otonom yang terdistribusi digunakan untuk memonitor kondisi fisik atau lingkungan misalnya suhu, suara, getaran, kelembaban, dan lain-lain. Selain

itu, tidak menutup kemungkinan untuk menambahkan fungsi tambahan pada setiap simpul misalnya port masukan/keluaran (I/O port) yang terdapat dalam setiap simpul dihubungkan dengan aktuator sehingga dapat digunakan untuk mengendalikan piranti elektrik atau elektronis.

Secara umum, WSN dapat diilustrasikan seperti Gambar 2.1. Pada gambar tersebut terlihat adanya beberapa simpul yang diwakili dengan titik berukuran kecil dan satu buah simpul yang diwakili dengan titik berukuran lebih besar. Titik yang berukuran kecil mewakili simpul sensor sedangkan titik yang berukuran besar mewakili gateway yang berfungsi menghubungkan jaringan sensor nirkabel dengan pengendali utama yang dalam gambar tersebut diwakili oleh sebuah komputer. Contoh sebuah simpul dari IQRF ditunjukkan pada Gambar 2.2.

Gambar 2.1: Jaringan sensor nirkabel.

Pada umumnya, WSN adalah jaringan yang berdiri sendiri. Untuk menghubungkan WSN dengan jaringan yang lain misalnya jaringan internet, maka salah satu cara adalah dengan membangun gateway WSN yang mampu menjembatani perbedaan protokol yang ada pada WSN dan jaringan internet. Cara tersebut adalah cara yang ditempuh dalam penelitian ini karena lebih mudah dilakukan dibandingkan dengan cara yang lain seperti sudah dijelaskan pada Bab Tinjauan Pustaka.

Sementara itu, jaringan WiFi sebagai jaringan lokal nirkabel yang digunakan untuk komunikasi data dalam suatu area lokal dan sudah tersebar di berbagai tempat. Lokal yang dimaksud disini adalah area yang tidak terlalu luas yaitu dengan radius sekitar 20m atau dalam sebuah gedung. Untuk membangun jaringan lokal menggunakan WiFi, perangkat utama yang digunakan adalah Access Point (AP). AP adalah piranti yang akan menjadi koordinator dalam jaringan lokal jika diinginkan topologi bintang (star) seperti diilustrasikan pada Gambar 2.3.

Gambar 2.3 memberi ilustrasi sebuah jaringan WiFi yang terdiri dari tiga buah komputer dan satu buah AP yang terhubung ke jaringan internet. Dengan konfigura-

Gambar 2.2: Contoh sebuah simpul sensor IQRF.

Gambar 2.3: Jaringan bintang menggunakan WiFi.

si tersebut, semua komputer yang ada di dalam jaringan WiFi dapat berkomunikasi dengan internet dengan aturan yang ditentukan oleh AP.

Jika dilihat lebih dalam lagi, AP ini sebenarnya adalah piranti tertanam (embedded device) yang didalamnya sudah terdapat pusat pengolahan utama, memory, dan penyimpanan (storage). Dengan kenyataan inilah maka AP mempunyai potensi untuk menjagi gateway bagi jaringan WiFi dan WSN ke jaringan internet. Untuk mengembangkan aplikasi yang akan ditanamkan ke dalam AP, maka diperlukan sistem operasi yang sesuai untuk AP.

2.2.2 **IQRF**

IQRF adalah teknologi komunikasi nirkabel berbasis paket melalui frekuensi radio dalam pita frekuensi sub-GHz. Teknologi ini dimaksudkan untuk penggunaan umum saat konektivitas nirkabel dibutuhkan, entah *point to point* atau jaringan yang kompleks. fungsionalitas lengkapnya bergantung semata-mata pada aplikasi berbahasa C yang ditulis oleh pengguna.

Peranti kominikasi dasar dari IQRF adalah sebuah modul pancar-rima terma-

suk unit mikrokontroler dengan sistem operasi tertanam yang mengimplementasikan lapisan *link* dan lapisan jaringan yang mendukung jaringan jala (*mesh*) dengan protokol IQMESH. Tidak ada tingkat komunikasi yang lebih tinggi seperti lapisan *transport* yang termasuk kedalam teknologi ini.

Fitur-fitur yang dimiliki antara lain:

- Kecepatan, daya, dan ukuran data yang rendah,
- RF yang berbasis paket data, maksimal 128 Byte per paket,
- pita frekuensi sub-GHz (868 MHz, 916 MHz, dst.), *multichannel*, dan modulasi FSK,
- bit rate 1.2 kb/s âĂŞ 86.2 kb/s,
- daya keluaran maksimal 20 mW,
- maksimal 65.000 peranti dalam satu jaringan,
- konsumsi daya yang rendah: 380 nA saat standby, 25 ÂţA saat menerima.

2.2.3 XBee

XBee adalah sebuah merk dari Digi International untuk keluarga modul radio. XBee pertama diperkenalkan dalam merk MaxStream pada tahun 2005 yang berdasarkan pada standar IEEE 802.15.4-2003 untuk *point to point* dan komunikasi bintang dalam *baud rate* 250 kbit/s.

Gambar 2.4: Sepasang peranti XBee.

Pada awalnya diperkenalkan dua model, yaitu 1mW XBee dan 100mW XBee-PRO. Sejak pertama kali diperkenalkan, beberapa buah XBee baru juga diperkenalkan

dan semua XBee sekarang dipasarkan dengan merk Digi. Contoh peranti XBee dapat dilihat pada Gambar 2.4.

2.2.4 TCP/IP

Protokol internet adalah kumpulan protokol-protokol komunikasi yang digunakan dalam internet dan jaringan komputer sejenis, dan umumnya merupakan protokol yang paling populer untuk WAN. Pada umumnya hal ini dikenal dengan TCP/IP, karena protokol utamanya merupakan protokol jaringan pertama yang terstandarisasi. Terkadang hal ini dikenal dengan model DoD karena pengaruh ARPANET pada dekade 1970an.

TCP/IP menyediakan konektivitas antar ujung yang menspesifikasikan bagaimana data harus diformat, dialamatkan, ditransmisikan, dirutekan, dan diterima di tujuan. TCP/IP memiliki empat layer abstraksi yang digunakan untuk mengurutkan semua protokol internet menurut jangkauan jaringan yang terlibat. Dari terendah sampai tertinggi, lapisan-lapisan tersebut adalah layer link, layer internet, layer transport, dan layer aplikasi.

2.2.5 Access Point

Access Point, disingkat AP, atau juga dikenal dengan istilah Wireless Access Point adalah sebuah peranti yang memungkinkan peranti-peranti nirkabel untuk terkoneksi dengan jaringan kabel menggunakan Wi-Fi atau standar lain. AP biasanya terkoneksi dengan sebuah router (melalui jaringan kabel) sebagai peranti yang berdiri sendiri, namun juga dapat menjadi bagian dalam komponen router tersebut.

Penggunaan secara korporat melibatkan beberapa AP ke dalam jaringan kabel dan menyediakan akses nirkabel ke LAN kantor. AP diatur dengan WLAN *Controller* yang menangani pengaturan daya RF, kanal-kanal, autentikasi, dan keamanan.

Sebuah *hotspot* adalah aplikasi dari satu atau beberapa AP, di mana peranti dapat terhubung ke Internet dengan mudah. Konsep ini sudah menjadi hal yang umum di beberapa kota besar, di mana kombinasi dari warung kopi, perpustakaan, dan AP milik pribadi memungkinkan klien untuk terkoneksi dengan Internet. Koleksi dari *hotspot* yang terkoneksi dapat disebut sebagai sebuah jaringan *lili pad*.

2.2.6 TP-LINK MR3020

TP-LINK MR3020 adalah *Portable 3G/4G Wireless N Router* keluaran TP-LINK, perusahaan asal Shenzen, China, yang bergerak dalam bidang peranti jaringan komputer. TP-LINK MR3020 pada dasarnya adalah Wi-Fi router yang dapat meneruskan internet dari modem 3G/4G yang terpasang di port USB-nya. TP-LINK MR3020 termasuk AP yang populer karena bentuknya yang kecil, seperti dapat dilihat pada Gambar 2.5, sehingga mudah dibawa dan harganya yang tergolong murah. Banyak forum di internet yang membahas AP jenis ini, sehingga dukungan untuk memanipulasinya luas dari komunitas. Pada penelitian ini sistem operasi OpenWRT guna fleksibilitas dalam pengembangan aplikasi gateway berbasis web.

Gambar 2.5: TP-LINK MR3020.

Spesifikasi teknis dari fitur perangkat keras dan komunikasi nirkabel dari MR3020 dapat dilihat pada Tabel 2.1 dan Tabel 2.2.

Tabel 2.1: Fitur perangkat keras dari TP-LINK MR3020.

Fitur Perangkat Keras				
Antarmuka	1 10/100Mbps WAN/LAN Port, USB 2.0 Port for 3G/4G			
	modem, a mini USB Port for power supply.			
Tombol	Quick Setup Security Button, Reset Button, Mode Switch			
Suplai Daya Eksternal	5VDC/1.0A			
Dimensi (P x L xT)	2.9 x 2.6 x 0.9 in. (74 x 67 x22 mm)			
Tipe Antena	Internal Antenna			

Fitur Komunikasi Nirkabel

Standar Nirkabel IEEE 802.11n, IEEE 802.11g, IEEE 802.11b

Frekuensi 2.4-2.4835GHz

EIRP <20dBm

Mode Nirkabel 3G Router, Travel Router (AP), WISP Client Router

Sekuritas Nirkabel Support 64/128 bit WEP, WPA-PSK/WPA2-PSK, Wireless MAC Filtering

Tabel 2.2: Fitur komunikasi nirkabel dari TP-LINK MR3020.

2.2.7 Web Server

Web server dapat mengacu pada perangkat keras atau perangkat lunak yang membantu dalam penyampaian konten web yang dapat diakses melalui internet.

Penggunaan web server yang paling umum adalah sebagai host untuk halaman web, walaupun ada beberapa penggunaan lain seperti game, media penyimpan data, atau penjalanan aplikasi perusahaan.

2.2.8 AJAX

AJAX adalah kelompok dari teknik-teknik pengembangan web yang digunakan pada klien untuk membuat aplikasi asinkron. Dengan AJAX, aplikasi web dapat mengirim dan menerima data dari sebuah server secara asinkron tanpa mengganggu tampilan dari halaman yang ada. Data dapat diambil menggunakan obyek XMLHttp-Request. Penggunaan XML tidak diperlukan, malahan JSON lebih sering digunakan, dan rekues tidak harus asinkron.

AJAX bukanlah sebuah teknologi, tapi kelompok dari teknologi-teknologi. HTML dan CSS dapat digunakan dalam kombinasi untuk mark up dan informasi tampilan. DOM diakses oleh JavaScript untuk menampilkan dan mengijinkan pengguna untuk berinteraksi dengan informasi tertampil. JavaScript dan obyek XMLHttpRequest menyediakan sebuah metode untuk pertukaran data secara asinkron antara browser dan server untuk menghindari muat ulang halaman secara keseluruhan.

2.2.9 OpenWRT

OpenWRT adalah sebuah sistem operasi untuk *embedded device* yang berbasis pada Linux kernel Hwang et al. [2003]. OpenWRT pada umumnya digunakan dalam routing *network traffic*. Komponen-komponen utamanya adalah Linux kernel, util-

linux, uClibc dan BusyBox. Semua komponen sudah dioptimalkan dan dimampatkan untuk bisa muat dalam *router* rumahan yang memiliki keterbatasan media penyimpan dan memori. OpenWRT dapat dikonfigurasikan melalui antarmuka *command-line* (*ash shell*), seperti dapat dilihat pada Gambar 2.6, atau dengan antarmuka Web (Lu-CI). Terdapat kurang lebih 3.500 paket-paket perangkat lunak tambahan yang tersedia untuk diinstal melalui sistem manajemen paket *opkg*.

Gambar 2.6: Tampilan antarmuka command-line OpenWRT versi BackFire.

OpenWRT dapat berjalan pada router CPE (*Customer Premised Equipment*), gateway residensial, komputer saku (seperti Ben NanoNote), dan komputer jinjing. OpenWRT juga dapat berjalan pada komputer konvensional atau komputer dengan arsitektur x86. Banyak patch dari kode sesumber berbasis OpenWRT yang diubah kedalam Linux kernel utama.

2.2.10 **SSHFS**

SSHFS (SSH Filesystem) adalah sebuah klien *filesystem* untuk *mount* dan berinteraksi dengan direktori dan arsip yang berlokasi pada server atau *workstation*. Klien berinteraksi dengan server dengan SSH *File Transfer Protocol* (SFTP), sebuah protokol jaringan yang menyediakan akses ke arsip, transfer arsip, dan fungsionalitas manajemen arsip melalui aliran data yang didesain sebagai ekstensi dari protokol SSH versi 2.0.

2.2.11 Bootstrap

Bootstrap adalah koleksi gratis dari alat-alat untuk membuat situs web dan aplikasi berbasis web. Bootstrap terdiri dari HTML dan contoh desain berbasis CSS untuk tipografi, borang, tombol, navigasi, komponen antarmuka lain, dan juga ekstensi JavaScript yang bersifat opsional.

Bootstrap merupakan proyek paling populer pada GitHub, dan sudah digunakan oleh, diantaranya, NASA dan MSNBC.

BAB III

METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Perangkat Keras

- a. Kit pancar-rima IQRF TR-53B (3 unit),
- b. Kit pengunduh program CK-USB-04 (1 unit),
- c. Kit pengembangan DK-EVAL-03 (2 unit),
- d. Kit pengembangan CK-EVAL-04 (1 unit),
- e. XBee 802.15.4 Radios (Series 1) (3 unit),
- f. XBee Explorer USB Board (1 unit),
- g. 2 channel Relay Shield For Arduino (With XBee/BTBee interface) (2 unit),
- h. Arduino Uno (2 unit),
- i. TP-LINK MR3020 (1 unit),
- j. Kabel USB ke Serial Prolific (1 unit).

3.1.2 Perangkat Lunak

- a. Arduino for Mac OSX,
- b. CoolTerm.
- c. Driver FTDI for Mac OSX,
- d. PHP, MySQL, dan uHTTPd,
- e. Python dan pustaka PySerial,
- f. IQRF IDE v 2.08 for TR-53B,
- g. SSHFS,
- h. Sublime Text 3.

3.2 Alur Penelitian

3.2.1 Pra Penelitian

Sebelum penelitian dimulai, dilakukan studi literatur terkait dengan sistem yang akan dibangun. Selain itu, analisis kebutuhan juga dirancang pada tahap ini. Setelah semua selesai, dilajutkan dengan penulisan proposal penelitian.

3.2.2 Pengembangan Aplikasi

Ada tiga aplikasi yang akan dibangun, yaitu aplikasi berbasis bahasa C untuk masing sensor-sensor IQRF dan Arduino Uno, aplikasi berbasis web yang nantinya akan berinteraksi langsung dengan pengguna, dan aplikasi berbasis bahasa Python untuk mengomunikasikan sensor-sensor dengan aplikasi berbasis web.

Aplikasi untuk sensor-sensor IQRF Widyawan et al. [2012] terdiri dari dua bagian, yaitu aplikasi untuk sensor koordinator dan sensor simpul. Namun demikian, aplikasi sama-sama ditulis dan kembangkan menggunakan Sublime Text 3. Setelah kode sesumber untuk aplikasi selesai dibuat, kode sesumber dikompiliasi menggunakan IDE IQRF untuk kemudian diunggah ke sensor menggunakan bantuan aplikasi yang sama. Aplikasi yang dikembangkan adalah hasil fork dari iHome, aplikasi rumah hijau yang dikembangkan oleh Wibowo, et. al.

Sedangkan aplikasi untuk Arduino Uno, yang bertugas menyala-matikan relay dengan komunikasi berbasis ZigBee, dikembangkan dengan aplikasi Arduino for Mac OSX dengan bahasa pemrograman C. Proses kompilasi dan pengunggahan dilakukan dengan bantuan aplikasi yang sama.

Aplikasi web dikembangkan dengan bahasa PHP pada server (terletak pada AP) dan JavaScript pada klien. Halaman yang tertampil pada web browser disusun menggunakan HTML5 dan CSS3 dengan bantuan pustaka Bootstrap agar halaman dapat bersifat responsif, yaitu dapat menyesuaikan tampilan sesuai ukuran layar web browser. AJAX diterapkan dalam pengembangan agar halaman web yang ditampilkan bersifat dinamis.

Aplikasi berbasis bahasa Python dikembangkan dengan bantuan pustaka PySerial. Pustaka ini diperlukan agar Python dapat berkomunikasi dengan *port* serial, yaitu antar muka untuk berkomunikasi dengan sensor. Kode sesumber ditulis menggunakan Sublime Text 3.

3.2.3 Evaluasi dan Perbaikan

Evaluasi dilakukan dengan melakukan simulasi dalam skala laboratorium. Simulasi yang diujikan mencakup semua fitur yang dimiliki oleh aplikasi untuk memastikan bahwa aplikasi dapat berjalan dengan semestinya. Kemudian Perbaikan dilakukan dengan bantuan SSHFS agar AP dapat mengakses direktori yang tersimpan pada komputer karena *coding* tidak dilakukan pada AP itu sendiri, melainkan komputer.

3.2.4 Pasca Penelitian

Setelah penelitian selesai dilakukan dan aplikasi siap untuk diimplementasikan, naskah skripsi dan makalah skripsi ditulis sebagai manifesto penelitian.

3.2.5 Diagram Alir Penelitian

Gambar 3.1: Diagram alir penelitian.

3.3 Tahapan Pelaksanaan

Rancangan arsitektur yang akan digunakan pada penelitian ini diilustrasikan seperti pada Gambar 3.2. Pada gambar tersebut diilustrasikan sebuah sistem yang terdiri atas dua buah WSN dengan protokol yang berbeda dan satu buah jaringan nirkabel lokal (WiFi). Protokol WSN yang akan digunakan dalam penelitian ini adalah dari IQRF dan ZigBee. Pelaksanaan penelitian ini akan dibagi menjadi tiga paket pekerjaan (Work Package, WP).

WP 1: Perancangan Perangkat Lunak

Pada tahap ini akan dilakukan studi literatur yang dititikberatkan pada sistem operasi (Operating System, OS) untuk piranti tertanam (embedded device). Langkah selanjutnya adalah rerancangan perangkat lunak yang akan ditanamkan pada Access Point (AP). Perangkat lunak yang akan ditanamkan harus bekerja secara efisien karena kemampuan komputasi yang terbatas pada AP.

Gambar 3.2: Arsitektur WSN dan WiFi dengan sebuah AP.

WP 2: Implementasi Perangkat Lunak

Implementasi perangkat lunak dilakukan pada tahap ini. Langkah pertama yang dilakukan adalah memastikan bahwa WSN dapat terhubungan dengan internet sesuai dengan yang direncanakan. Langkah selanjutnya adalah memastikan bahwa jaringan WiFi tidak mengalami gangguan setelah perangkat lunak yang baru tertanam pada AP. Penambahan layanan-layanan yang diperlukan dapat pula dilakukan pada tahap ini.

WP 3: Integrasi dan Pengujian Seluruh Sistem

Jika jaringan WiFi dan dua protokol WSN masing-masing dapat berhubungan dengan internet, maka pada tahap ini akan dilakukan pengujian sistem secara keseluruhan. Pengujian dinaikkan dari skala lab menjadi skala *test-bed*. Pengujian dalam *test-bed* dilakukan untuk menjamin bahwa sistem yang dikembangkan bekerja sesuai dengan yang direncanakan.

3.4 Jadwal Kegiatan

Penelitian direncanakan akan dilaksanakan selama enam bulan. Rincian rencana jadwal penelitian dicantumkan dalam Tabel 3.1.

Tabel 3.1: Jadwal Penelitian.

No	Keterangan	Bulan					
110		1	2	3	4	5	6
1	Studi literatur						
2	Desain						
3	Pembelian bahan						
4	Pembuatan prototipe						
5	Uji coba dan perbaikan						
6	Penulisan skripsi						

BAB IV

HASIL DAN PEMBAHASAN

4.1 Analisis Kebutuhan Sistem

Bagian ini menjelaskan hal-hal yang terkait tentang pengembangan aplikasi sebelum penulisan code sesumber.

4.1.1 Fitur-Fitur Aplikasi

Kemampuan menangani sensor-sensor:

- Mampu membaca dan menampilkan suhu yang terbaca pada sensor IQRF,
- mampu menyala-matikan relay pada peranti yang diinginkan,
- mampu menambah dan mengurangi peranti baru baik IQRF atau XBee,
- mampu menjalankan profile tertentu dari kombinasi suhu dan relay atau waktu tertentu.

Kemampuan menangani pengguna:

- Mengharuskan pengguna untuk memasukkan nama dan kata sandi sebelum masuk ke aplikasi,
- dapat menambah atau mengurangi pengguna yang dapat memasuki sistem.

4.1.2 Use Case Diagram

Use case diagram dapat dilihat pada Gambar 4.1.

Gambar 4.1: Diagram use case dari penelitian.

4.1.3 Diagram Arsitektur Sistem

Diagram arsitektur sistem dapat dilihat pada Gambar 4.2.

Gambar 4.2: Diagram Arsitektur Sistem.

4.1.4 SDLC

SDLC yang digunakan dapat dilihat pada Gambar 4.3.

Gambar 4.3: Diagram SDLC.

4.2 Perancangan Aplikasi

Bagian ini menjelaskan hal-hal terkait pengembangan aplikasi.

4.2.1 Persiapan Pra Pengembangan Aplikasi

1. Konfigurasi Router/AP

Penelitian ini menggunakan AP keluaran TP-LINK seri MR3020. AP jenis ini dipilih karena bentuknya yang kecil sehingga mudah dibawa atau dipindahkan dan kemudahannya untuk dimodifikasi. TP-LINK MR3020 juga terbilang populer di ranah komunitas sistem benam (*embedded device*) sehingga memiliki dukungan yang baik dari pabrikan dan komunitas.

Sebelum digunakan, *firmware* bawaan TP-LINK MR3020 harus diganti dengan sistem operasi OpenWRT. Proses penggantian cukup mudah karena hanya memanfaatkan menu *firmware upgrade* dari web admin yang sudah tersedia. Sistem Operasi OpenWRT yang digunakan adalah Attitude Adjustment versi 12.09 dengan Linux kernel 3.3.8. *Image file* sistem operasi tersebut bisa diunduh secara gratis pada situs www.openwrt.org.

Setelah OpenWRT berhasil terinstall, langkah selanjutnya adalah mengimplementasikan *extroot*. *Extroot* dapat memperbesar memori penyimpanan dengan

bantuan USB *flash drive*. Langkah yang harus dilakukan pertamakali adalah menginstall perangkat lunak dengan perintah sebagai berikut:

```
# opkg update
# opkg install block-extroot block-hotplug block-mount
```

Kemudian dilanjutkan dengan menyalin isi dari memori internal TP-LINK MR3020 ke USB *flash drive* yang di-*mount* pada direktori /mnt/sda1 dengan perintah:

```
# tar -C /overlay -cvf - . | tar -C /mnt/sda1 -xf -
```

Langkah terakhir adalah mengkonfigurasi file /etc/config/fstab dan menyalakan ulang AP. Konfigurasi diganti dengan detil sebagai berikut:

```
config mount
    option target    /mnt
    option device     /dev/sda1
    option fstype     ext3
    option options     rw,sync
    option enabled     1
    option enabled_fsck     0
    option is_rootfs     1
```

Setelah proses implementasi extroot selesai, berarti AP sudah memiliki memori penyimpanan yang cukup (atau mungkin lebih) untuk menginstal aplikasi-aplikasi pendukung lainnya. Penelitian ini menggunakan memori USB 4 Gigabyte.

Agar TP-LINK MR3020 dapat membaca dan mengirimkan data dari dan ke WSN melalui kanal serial, dibutuhkan Python dan pustaka PySerial yang diinstal dengan perintah:

```
# opkg update
# opkg install python pyserial
```

Sedangkan paket aplikasi 'at' digunakan agar AP dapat menjalankan perintah untuk menyala-matikan relay pada waktu tertentu. Namun, sebelum at dapat berjalan, pada router sudah harus tersedia file /var/spool/cron/atjobs/.SEQ dan pemilik dari file tersebut harus diganti menjadi daemon.daemon. Aplikasi 'at' diinstall dengan perintah:

```
# opkg update && opkg install at
```

Langkah selanjutnya adalah instalasi aplikasi pendukung aplikasi berbasis web yang nantinya akan dikembangkan yaitu Web Server, PHP, dan MySQL. Web server yang digunakan adalah yang sudah terinstal pada OpenWRT versi Attitude Adjustment yaitu uHTTPd. Sedangkan PHP dan MySQL harus diinstal dengan perintah:

```
# opkg update
# opkg install php5 php5-cgi mysql
```

Setelah PHP berhasil terinstal, buka file /etc/config/uhttpd dan pastikan baris yang memuat baris di bawah ini tidak dalam keadaan terkomentar.

```
list interpreter ".php=/usr/bin/php-cgi"
```

Aplikasi yang terakhir yang harus diinstal adalah SSHFS yang berguna dalam uji coba dan perbaikan aplikasi. SSHFS dapat diinstal dengan perintah:

```
# opkg update
# opkg install sshfs
```

Zona waktu standar pada OpenWRT adalah UTC yang belokasi pada kota Greenwich di Inggris Raya. Agar zona waktu dapat dikonfigurasi sesuai dengan zona waktu kota Yogyakarta, maka isi dari file /etc/config/system harus disesuaikan. Pada file tersebut, zona waktu UTC diganti menjadi WIT-7 atau *Western Indonesian Time-*7.

2. Konfigurasi Komputer untuk Pengembangan

Komputer yang digunakan dalam penelitian ini adalah MacBook Pro dengan sistem operasi Mac OSX Mountain Lion. Sedangkan aplikasi yang harus tersedia adalah Sublime Text 3, Arduino for Mac OSX, CoolTerm, Driver FTDI for Mac OSX, IQRF IDE v 2.08 for TR-53B.

Sublime Text 3 berperan banyak dalam mengedit kode-kode sesumber PHP, C, dan Python.

Sedangkan proses pengembangan dan pengunduhan aplikasi untuk Arduino sepenuhnya dilakukan dengan Arduino for Mac OSX karena aplikasi tersebut sudah mencakup editor teks dan alat kompilasi.

Agar komputer dapat membaca kanal serial sehingga dapat melakukan tugastugas seperti konfigurasi XBee Radio dan pengujian aplikasi Python, komputer membutuhkan aplikasi CoolTerm. Sebelum aplikaisi ini terinstal, pastikan driver FTDI untuk Mac OSX sudah terinstal, agar komputer dapat mendeteksi XBee yang terhubung melalui USB.

Walaupun kode sesumber untuk IQRF ditulis dengan bantuan Sublime Text 3, proses kompilasinya dilakukan dengan aplikasi IQRF IDE v 2.08 for TR-53B. Proses pengunduhan file ke IQRF juga dilakukan dengan aplikasi yang sama.

Semua proses instalasi aplikasi yang dibutuhkan dilakukan dengan prosedur standar dari Mac OSX. Yaitu memperoleh file binary-nya dan kemudian menyalin file tersebut ke direktori Application atau mengikuti prosedur standar dari masing-masing aplikasi.

Langkah terakhir yang dilakukan adalah memastikan AP dapat mengakses komputer melalui SSH. Pastikan *remote sharing* dalam keadaan tercentang di *System Preference*, *Sharing*. Atau untuk lebih jelasnya dapat melihat pada Gambar 4.4.

Gambar 4.4: Konfigurasi SSH pada Mac OSX.

3. Peranti XBee

Setiap peranti XBee yang akan digunakan harus terkonfigurasi terlebih dahulu. Parameter-parameter yang harus terkonfigurasi adalah ATID (alamat dari jaringan/network ID), ATMY (alamat peranti itu sendiri), ATDH (destination address high), dan ATDL (destination address low).

Proses konfigurasi dilakukan dengan menyambungkan XBee Radio dengan *XBee Explorer USB Board* ke komputer dan menjalankan aplikasi untuk membaca kanal serial, misalnya CoolTerm pada Mac OSX. Setelah CoolTerm dibuka, buka koneksi kanal serial ke XBee dan jalankan perintah dengan format:

```
+++ #masuk ke AT Mode
ATID <id jaringan>
ATMY <alamat dari zigbee>
ATDH <destination high>
ATDL <destination low>
ATWR #tulis ke non volatile memory
```

Contoh perintahnya adalah:

```
+++ #masuk ke AT Mode
ATID 1234
ATMY 5
ATDH 0
ATDL 1
ATWR #tulis ke non volatile memory
```

4.2.2 Pengembangan Aplikasi WSN

1. IQRF

Peranti IQRF dalam penelitian ini ada dua jenis, begitu pula aplikasi/peranti lunak yang tertanam di dalamnya. Aplikasi tersebut adalah *Sink* dan *Node*. Aplikasi *Sink* akan ditanamkan pada koordinator dari IQRF yang terhubung langsung dengan AP melalui kabel USB dan jumlahnya hanya satu. Sedangkan aplikasi *Node* akan ditanamkan pada sensor-sensor IQRF yang akan saling membentuk jaringan jala (*mesh network*) dan jumlahnya lebih dari satu.

Aplikasi *Sink* lebih ditekankan pada pembentukan ikatan (*bond*) antara koordinator dan sensor-sensor, pengendalian sensor-sensor, serta pengakuisisian data dari masing-masing sensor.

Sedangkan aplikasi *Node* lebih bersifat pasif karena hanya akan merespon perintahperintah yang akan dikirimkan oleh koordinator, seperti pembentukan ikatan dan pembacaan temperatur.

Data yang akan diakuisisi dari masing-masing sensor adalah temperatur yang terbaca di masing-masing sensor.

Aplikasi yang digunakan adalah hasil *fork* dari aplikasi iHome yang dikembangkan oleh Sigit B. Wibowo dkk yang fiturnya tidak terbatas hanya pada pembacaan temperatur sekitar.

2. XBee

Sama seperti IQRF, peranti XBee terdiri dari dua jenis peranti, yaitu koordnator dan sensor-sensor. Koordinator bertugas menyala dan matikan relay-relay yang terdapat di masing-masing sensor sesuai permintaan pengguna.

Koordinator tersusun atas *XBee 802.15.4 Radios (Series 1)* yang tertanam pada *XBee Explorer USB Board* dan terkoneksi langsung dengan AP dengan kabel USB.

Sedangkan sensornya terdiri dari tiga bagian, yaitu XBee 802.15.4 Radios (Series 1), 2 channel Relay Shield For Arduino (With XBee/BTBee interface), dan Arduino Uno. Ketiga bagian tersebut saling terhubung dengan pin-pin yang tersedia.

XBee pada hakikatnya hanya sebatas peranti komunikasi antara AP dengan relay-relay yang tersedia, sehingga pemrograman teletak pada masing-masing Arduino pada relay. Bahasa yang digunakan adalah bahasa C (Arduino). Aplikasi yang dikembangkan akan menunggu perintah dari AP untuk menyala dan matikan relay.

4.2.3 Pengembangan Aplikasi Python

Aplikasi Python adalah jantung dari penelitian ini karena menghubungkan aplikasi berbasis web dengan peranti-peranti IQRF dan XBee.

Aplikasi terdiri dari tiga bagian.

1. IQRF

Aplikasi Python IQRF memiliki kemampuan untuk melakukan *bonding* antara koordinator dan sensor, dan pembacaan temperatur pada sensor dengan ID tertentu.

Diagram alir dari aplikasi berikut dapat dilihat pada Gambar 4.5.

Gambar 4.5: Diagram alir aplikasi Python untuk IQRF.

Aplikasi dijalankan dengan menjalankan format perintah berikut pada *terminal console*:

```
$ python iqrf.py <perintah><ID node>
```

Aplikasi ini berjalan dalam bentuk CLI dan membutuhkan satu parameter, yaitu perintah yang langsung disambung dengan ID node tanpa spasi. Perintah yang tersedia yaitu membaca gemperatur pada node ID tertentu (g), *bonding* node ID tertentu (b), *unbonding* node ID tertentu (u).

Sehingga contoh penggunaan aplikasi pada terminal console:

```
$ python iqrf.py g3
```

Perintah di atas adalah perintah untuk membaca temperatur pada node ID 3.

2. XBee

Aplikasi Python XBee memiliki kemampuan untuk menyala dan matikan relay pada peranti tertentu dan membaca status relay pada peranti tertentu, apakah relay tersebut sedang menyala atau mati.

Diagram alir dari aplikasi berikut dapat dilihat pada Gambar 4.6.

Gambar 4.6: Diagram alir aplikasi Python untuk menangani peranti XBee.

Aplikasi dijalankan dengan menjalankan format perintah berikut pada terminal

console:

```
$ python xbee.py <perintah> <ATMY peranti> <ID relay>
```

Aplikasi ini berjalan dalam bentuk CLI dan membutuhkan tiga parameter, yaitu perintah, alamat peranti (ATMY), dan ID relay (terdapat dua relay di tiap peranti). Perintah yang tersedia yaitu menyalakan relay, 'on', mematikan relay, 'off', dan membaca status relay, 'status'.

Sehingga contoh penggunaan aplikasi pada terminal console:

```
$ python iqrf.py status 2 1
```

Perintah di atas akan membaca status (on/off) dari relay 1 pada peranti dengan alamat (ATMY) 2 dan menampilkannya pada layar dalam karakter 'H' (menyala) atau 'L' (mati).

3. Profile

Aplikasi ini memanfaatkan aplikasi *at* pada Linux yang dapat menjalankan perintah tertentu di *terminal console* pada waktu tertentu. Dengan aplikasi ini, pengguna dapat menyala-matikan relay pada waktu tertentu. Jika hal ini dikombinasikan dengan bacaan temperatur dari sensor IQRF, maka pengguna dapat menyala-matikan relay tertentu pada saat temperatur pada sensor IQRF node tertentu mencapai suhu tertentu, dan juga bisa hanya terjadi saat waktu tertentu.

Diagram alir dari aplikasi berikut dapat dilihat pada Gambar 4.7.

Gambar 4.7: Diagram alir aplikasi Python untuk menyala-matikan lampu pada kondisi tertentu.

4.2.4 Pengembangan Aplikasi Berbasis Web

Aplikasi web untuk mengendalikan sensor-sensor IQRF dan XBee dibangun dengan PHP dan basis data MySQL. Aplikasi ini dibangun tanpa menggunakan *framework* karena aplikasi ini tergolong tidak terlalu rumit, aplikasi ini hanya memliki lima halaman utama seperti terlihat pada sitemap Gambar 4.8. Penggunaan *framework* juga akan memakan sumber daya komputasi sedikit lebih banyak, padahal aplikasi ini akan diimplementasikan pada sebuah AP yang memiliki tingkat komputasi yang rendah.

Antarmuka yang dikembangkan adalah hasil *fork* dari *template* halaman administrator buatan Vince G. Antarmuka ditulis menggunakan HTML5 dan CSS3, dengan tambahan pemrograman JavaScript pada sisi klien agar menambah interaktivitas. Pustaka Bootstrap digunakan untuk membuat halaman web menjadi responsif, sehingga dapat menyesuaikan diri secara otomatis sesuai dengan ukuran layar. Pustaka jQuery digunakan untuk membantu pemrograman di sisi klien.

Kode sesumber untuk aplikasi berbasis web ditulis dengan bantuan Sublime Text 3.

Peta situs dari aplikasi berbasis web yang dikembangkan dapat dilihat pada Gambar 4.8.

Gambar 4.8: Peta situs aplikasi web.

Basis data yang dikembangkan tergolong sederhana karena hanya dimaksudkan untuk menyimpan data-data yang sifatnya kecil, seprti tampak pada Gambar 4.9.

Gambar 4.9: Entity Relationship Diagram dari basis data untuk aplikasi web.

Sedangkan diagram alir untuk menambah peranti IQRF dan XBee dijelaskan

Nyalakan Peranti IQRF

Masukkan Alamat Node yang Diinginkan di Web

Mulai

Tekan tombol di IQRF

Sukses

Pesan?

Error

Sukses

Selesai

pada Gambar 4.10 dan Gambar 4.11.

Gambar 4.10: Diagram Alir Penambahan Peranti IQRF ke Aplikasi.

Gambar 4.11: Diagram Alir Penambahan Peranti XBee ke Aplikasi.

4.2.5 Evaluasi dan Perbaikan

Evaluasi dilakukan dengan mengujikan semua fitur yang dimiliki oleh aplikasi. Jika terdapat kesalahan, maka dilacak dimanakah letak kesalahan berada, apakah pada aplikasi berbasis web, aplikasi Python, atau aplikasi C pada sensor.

Masalah yang timbul adalah saat akan merevisi aplikasi yang sudah terlanjur tertanam pada AP karena AP, dengan sistem operasi OpenWRT, tidak memiliki aplikasi teks editor yang mumpuni untuk melakukan pengeditan kode sesumber dengan nyaman. Oleh karena itu, seluruh kode sesumber tetap berada pada komputer agar tetap bisa dibuka dengan Sublime Text 3, namun AP me-mount-nya dengan bantuan SSHFS sehingga seolah-olah kode sesumber tersebut berada dalam dua tempat dan saling tersinkronisasi.

Untuk melakukan *mount* pada AP, menggunakan perintah:

sshfs /direktori/pada/ap <user>@<alamat IP>:/direktori/pada/komputer

4.2.6 Screenshot Aplikasi

Bagian ini menampilkan beberapa *screenshot* dari aplikasi web yang dikembangkan.

Gambar 4.12: Halaman *dashboard* saat belum ada peranti terpasang.

Gambar 4.13: Halaman *dashboard* saat belum ada peranti terpasang (dibuka di layar kecil).

Gambar 4.14: Halaman dashboard saat peranti sudah terpasang.

Gambar 4.15: Halaman *dashboard* saat peranti sudah terpasang (dibuka di layar kecil).

Gambar 4.16: Halaman daftar peranti IQRF yang terpasang.

Gambar 4.17: Halaman daftar peranti XBee yang terpasang.

Gambar 4.18: Halaman untuk menambahkan peranti IQRF.

Gambar 4.19: Halaman untuk menambahkan peranti XBee.

Gambar 4.20: Halaman untuk menambahkan profil.

Gambar 4.21: Halaman yang menampilkan daftar pengguna.

Gambar 4.22: Halaman untuk menambahkan pengguna baru.

Gambar 4.23: Halaman login.

4.2.7 Kode Sesumber

Kode sesumber dapat diperoleh pada situs GitHub dengan alamat URL https://github.com/gtrdp/wsn-ip-interoperability.

4.3 Analisis Unjuk Kerja Aplikasi

Bagian ini menjelaskan hal-hal terkait instalasi aplikasi ke kondisi sesungguhnya, hasil uji coba, masalah, dan penyelesaian.

4.3.1 Instalasi Peranti

Koordinator IQRF yang tersambung langsung pada AP terdiri atas kabel USB to Serial Prolific, kit pengembangan CK-EVAL-04, dan IQRF TR-52B seperti dapat dilihat pada Gambar 4.24.

Gambar 4.24: Koordinator IQRF saat belum dirakit.

Semua bagian disambungkan pada tempatnya. Untuk kabel USB to Serial Prolific, posisi kabel *ground* terpasang pada bagian bawah seperti terlihat pada Gambar 4.25.

Gambar 4.25: Koordinator IQRF saat telah dirakit.

Koordinator XBee pada AP terdiri atas *XBee 802.15.4 Radios (Series 1)* dan *XBee Explorer USB Board* yang tersambung pada AP dengan kabel mini-USB seperti dapat dilihat pada Gambar 4.26 dan Gambar 4.27.

Gambar 4.26: Koordinator XBee saat sebelum dirakit.

Gambar 4.27: Koordinator XBee saat telah dirakit.

AP yang digunakan adalah TP-LINK MR3020 dengan USB Hub guna menyambungkan USB *flash drive*, koordinator IQRF, dan koordinator XBee. Urutan peranti yang terpasang ke AP, dari atas ke bawah, adalah USB *flash drive*, koordinator XBee, dan koordinator IQRF. Posisi tersebut tidak boleh terbalik karena tidak sesuai dengan aplikasi yang sudah dirancang. Kondisi AP sebelum dan setelah terpasang dapat dilihat pada Gambar 4.28 dan Gambar 4.29.

Gambar 4.28: AP saat sebelum dirakit.

Gambar 4.29: AP saat telah dirakit.

Sensor-sensor IQRF terdiri atas TR-52B dan kit pengembangan DK-EVAL-03 seperti dapat dilihat pada Gambar 4.30 dan Gambar 4.31.

Gambar 4.30: Sensor IQRF saat sebelum dirakit.

Gambar 4.31: Sensor IQRF saat telah dirakit.

Sedangkan XBee relay terdiri atas *XBee 802.15.4 Radios (Series 1)*, 2 channel Relay Shield For Arduino (With XBee/BTBee interface), dan Arduino Uno yang tersambung ke sumber listrik dengan kabel USB seperti dapat dilihat pada Gambar 4.32 dan Gambar 4.33.

Gambar 4.32: XBee relay saat sebelum dirakit.

Gambar 4.33: XBee relay saat telah dirakit.

4.3.2 Hasil Uji Coba Aplikasi

Uji coba yang dilakukan menggunakan satu set AP lengkap yang sudah dilengkapi dengan koordinator IQRF dan XBee. Sensor yang digunakan adalah dua buah IQRF dan satu buah XBee.

Uji coba pertama dilakukan dengan penambahan XBee Relay baru via aplikasi web dan menyalakan relay 1 dengan ponsel cerdas seperti dapat dilihat pada Gambar

4.34. Pada Gambar 4.34 dapat dilihat bahwa relay 1 dalam keadaan menyala pada layar ponsel cerdas dan XBee Relay.

Gambar 4.34: Uji coba aplikasi dengan ponsel cerdas.

Pengujian IQRF dilakukan dengan penambahan dua sensor via aplikasi web dan kemudian melihat temperatur yang terbaca. Salah satu sensor digenggam dengan tangan untuk memanipulasi temperatur. Hasilnya dapat dilihat pada Gambar 4.35.

Gambar 4.35: Membaca temperatur yang terbaca pada sensor.

4.3.3 Masalah dan Penyelesaian

Masalah yang pertamakali muncul adalah tentang extroot. TP-LINK MR3020 memiliki *bug* yang membuat memori eksternal tidak berfungsi saat *booting* pertamakali. Setelah TP-LINK MR3020 dijalankan ulang, memori eksternal baru terbaca. Penyebab dari masalah ini belum ditemukan, sehingga solusi untuk masalah ini adalah melakukan *rebooting* jika TP-LINK MR3020 tidak membaca memori eksternal. Masalah ini tidak ditemukan pada AP dengan jenis lain.

IQRF dinilai kurang stabil, terlebih saat menancapkan kabel USB to Serial Prolific ke USB Hub pada AP saat AP sudah menyala. Jika kurang berhati-hati, AP justru akan menjadi tidak stabil. Gejala yang muncul seperti pustaka PHP yang tidak terbaca, sampai jaringan Wi-Fi yang terputus. Untuk mengantisipasi masalah ini, sebaiknya semua kabel terpasang sebelum AP dinyalakan.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1. Diperlukan pengendalian yang dapat mengendalikan atau mengakuisisi data dari WSN secara jarak jauh.
- 2. Solusi pengendalian WSN jarak jauh adalah interoperabilitas dengan protokol Internet.
- 3. Namun, Internet gateway untuk WSN biasanya hanya diperuntukkan untuk vendor WSN tertentu.
- 4. Dengan AP yang rendah biaya, kita dapat membangun aplikasi sebagai gateway WSN bermacam vendor ke Internet.
- 5. Penelitian ini menunjukkan bahwa dengan TP-LINK MR3020 dengan sistem operasi OpenWRT yang terinstal aplikasi-aplikasi pendukung, seperti Python, PySerial, PHP, uHTTPd, dan at, Gateway WSN *multiple vendor* untuk interoperabilitas dengan protokol Internet dapat terwujud.

5.2 Saran

- Penelitian selanjutnya dapat menggunakan AP selain TP-LINK MR3020 sebagai gateway dan membandingkannya dengan performa TP-LINK MR3020 yang memiliki bug pada extroot.
- 2. Penelitian ini menggunakan Python untuk berkomunikasi dengan kanal serial, penelitian selanjutnya dapat menggunakan pendekatan yang lain, seperti membangun aplikasi dengan bahasa C.
- 3. Penelitian selanjutnya dapat menggunakan jenis-jenis WSN yang lebih bervariatif.

DAFTAR PUSTAKA

Kwang-il Hwang, Jeongsik In, Nhokyung Park, and Doo-seop Eom. A design and implementation of wireless sensor gateway for efficient querying and managing through world wide web. *IEEE Transactions on Consumer Electronics*, 49(4):1090–1097, November 2003. ISSN 0098-3063. doi: 10.1109/TCE.2003.1261201. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1261201.

Rostislav Spinar, Panneer Muthukumaran, Rodolfo de Paz, Dirk Pesch, Weiping Song, Shafique Ahmad Chaudhry, Cormac J Sreenan, Essa Jafer, Brendan O'Flynn, and James O'Donnell. Demo Abstract: Efficient Building Management with IP-based Wireless Sensor Network. In 6th European Conference on Wireless Sensor Networks, Cork, pages 1–2, 2009.

Widyawan, Sigit Basuki Wibowo, Muhammad Ihsan Zul, and Budi Nugroho. iHome: Low-Cost Domotic for Residential Houses. In 5th AUN/SEED-Net Regional Conference on Information and Communications Technology (RCICT). AUN/SEED-Net, 2012.