# 합성곱 신경망(CNN)

2021



# ■ 심층 신경망(DNN: Deep Neural Network)

- ❖ 딥러닝 학습의 일반적 절차
  - 적절한 네트워크
    - 구조
    - 비선형성 획득 방법: 활성 함수
  - 그래디언트 체크
  - 학습 파라메터 초기화
  - 학습 파라메터 최적화
  - 과적합 방지
  - 기타
    - 학습률 감소



- 미국 국립표준기술원(NIST)이 고등학 생과 인구조사국 직원 등이 쓴 손글 씨를 이용해 만든 데이터
- 70,000개의 글자 이미지에 각각 0부 터 9까지 이름표를 붙인 데이터셋

- ❖ 데이터 전처리
  - MNIST 데이터 불러오기

```
from tensorflow.keras.datasets import mnist

(X_train, Y_class_train), (X_test, Y_class_test) = mnist.load_data()

print("학습셋 이미지 수: %d 개" % (X_train.shape[0]))
print("테스트셋 이미지 수: %d 개" % (X_test.shape[0]))
```

```
학습셋 이미지 수: 60000 개
테스트셋 이미지 수: 10000 개
```

- ❖ 데이터 전처리
  - MNIST 데이터 이미지 보기

```
import matplotlib.pyplot as plt
plt.imshow(X_train[0], cmap='Greys')
plt.show()
```



- ❖ 데이터 전처리: 데이터 구조
  - 가로 28 × 세로 28 = 총 784개의 픽셀
  - 밝기: 0(흰색) ~ 255(검은색)

```
for x in X_train[0]:
    for i in x:
        sys.stdout.write('%d\t' % i)
    sys.stdout.write('\n')
```

- ❖ 데이터 전처리: 정규화(Normalization)
  - 케라스는 데이터가 0에서 1 사이의 값일 때 최적의 성능을 보임
  - 0~255 사이의 값으로 이루어진 값을 0~1 사이의 값으로 바꿔야 함

```
X_train = X_train.astype('float64')
X_train = X_train / 255

X_test = X_test.astype('float64') / 255
```

- ❖ 데이터 전처리: 원 핫 인코딩(One-hot encoding)
  - 0~9까지의 정수형 값을 갖는 현재 형태에서 0 또는 1로만 이루어진 벡터로 값을 수정해야 함
  - 예를 들어 class가 '3'이라면, [3]을 [0,0,0,1,0,0,0,0,0,0]로 바꿔 주어야 함

```
Y_train = tf.keras.utils.to_categorical(Y_class_train, 10)
Y_test = tf.keras.utils.to_categorical(Y_class_test, 10)
```

#### ■ MNIST 손글씨 인식을 DNN으로 해결

- ❖ 1차원 배열로 전환
  - 가로 28, 세로 28의 2차원 배열을 784개의 1차원 배열로 바꿔 주어야 함

```
X_train = X_train.reshape(X_train.shape[0], 784)
```

■ 1차원 배열로 전환하고 정규화

```
X_train = X_train.reshape(X_train.shape[0], 784).astype('float64') / 255
```

## ■ MNIST 손글씨 인식을 DNN으로 해결



## ■ MNIST 손글씨 인식을 DNN으로 코딩



## ■ 심층 신경망(DNN)으로 구현했을 때 문제점

- 변수의 개수
- 네트워크의 크기
- 학습 시간
- 글자의 형상은 고려하지 않고, 글자의 크기, 회전, 변형에 취약함



## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

Mask(Filter, Window, Kernel)







# ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

## ❖ Convolution 과정

| l×I | 0×0 | ı | 0 |
|-----|-----|---|---|
| 0×0 | l×I | ı | 0 |
| 0   | 0   | ı | I |
| 0   | 0   | ı | 0 |

$$(1 \times 1) + (0 \times 0) + (0 \times 0) + (1 \times 1) = 2$$

| l×I | 0×0 | ı | 0 | 1 | 0×I | IxO | 0 | 1 | 0 | l×I | 0×0 |
|-----|-----|---|---|---|-----|-----|---|---|---|-----|-----|
| 0×0 | l×I | ı | 0 | 0 | I×O | l×I | 0 | 0 | 1 | I×O | 0×I |
| 0   | 0   | ı | 1 | 0 | 0   | 1   | ı | 0 | 0 | ı   | ı   |
| 0   | 0   | ı | 0 | 0 | 0   | 1   | 0 | 0 | 0 | ı   | 0   |
| 1   | 0   | 1 | 0 | 1 | 0   | ı   | 0 | 1 | 0 | ı   | 0   |
| 0×1 | I×O | ı | 0 | 0 | I×I | IxO | 0 | 0 | ı | l×l | 0×0 |
| 0×0 | 0×I | ı | ı | 0 | 0×0 | l×l | ı | 0 | 0 | I×0 | l×I |
| 0   | 0   | ı | 0 | 0 | 0   | 1   | 0 | 0 | 0 | ı   | 0   |
| 1   | 0   | ı | 0 | 1 | 0   | 1   | 0 | 1 | 0 | ı   | 0   |
| 0   | ı   | 1 | 0 | 0 | ,   | 1   | 0 | 0 | 1 | ı   | 0   |
| 0×1 | 0×0 | ı | 1 | 0 | 0×1 | IxO | ı | 0 | 0 | l×l | I×O |
| 0×0 | 0×1 | ı | 0 | 0 | 0×0 | l×l | 0 | 0 | 0 | I×O | 0×I |

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- ❖ Convolution 과정
  - 컨볼루션을 만들면 입력
     데이터로부터 더욱 정교한
     특징을 추출할 수 있음
  - 이러한 마스크를 여러 개 만들 경우 여러 개의 컨볼루션이 만들어짐 (Feature Map)



## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- Padding, Stride
  - 패딩: 합성곱 연산을 수행하기 전, 입력데이터 주변을 특정값으로 채워 늘리는 것
  - 스트라이드: 입력데이터에 필터를 적용할 때 이동할 간격을 조절하는 것



## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- ❖ Convolution 층 추가
  - Conv2D()



■ 컨볼루션 층을 하나 더 추가

```
model.add(Conv2D(64, (3, 3), activation='relu')))
```

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)



## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- ❖ 풀링(Pooling)
  - Convolution 결과를 축소하는 것
  - 풀링 기법 중 가장 많이 사용되는 방법이 맥스 풀링(max pooling)
  - 맥스 풀링은 정해진 구역 안에서 가장 큰 값만 다음 층으로 넘기고 나머지는 버림

| ı | 0 | ı | 0 |  |
|---|---|---|---|--|
| 0 | 4 | ٦ | 0 |  |
| 0 | ı | 6 | ı |  |
| 0 | 0 | ı | 0 |  |

| 1 | 0 | 1 | 0 |  |
|---|---|---|---|--|
| 0 | 4 | ٦ | 0 |  |
| 0 | ı | 6 | I |  |
| 0 | 0 | 1 | 0 |  |



■ 불필요한 정보를 간추림

model.add(MaxPooling2D(pool\_size=2))

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)



## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- ❖ 드롭아웃(Drop out) , 플래튼(Flatten)
  - ▶ 노드가 많아지거나 층이 많아진다고 해서 학습이 무조건 좋아지는 것이 아니다→ 과적합 발생
  - 과접합을 피하는 간단하지만 효과가 큰 기법이 바로 드롭아웃(drop out) 기법
  - 드롭아웃은 은닉층에 배치된 노드 중 일부를 임의로 꺼주는 것

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

❖ 드롭아웃(Drop out), 플래튼(Flatten)



■ 25%의 노드를 끄려면 다음과 같이 코드를 작성 model.out(Dropout(0.25))

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)

- ❖ 드롭아웃(Drop out), 플래튼(Flatten)
  - 콘볼루션, 맥스풀링, 드롭아웃 층을 거친 후 기본 층에 연결
    - 콘볼루션, 맥스풀링: 2차원
    - 기본 층: 1차원
  - 2차원 → 1차원 변환

model.add(Flatten())

## ■ 컨볼루션 신경망(Convolutional Neural Network, CNN)



## 2. MNIST 실습

# ■ 코딩으로 확인하는 MNIST 이미지 인식



#### 2. MNIST 실습

## ■ 코딩으로 확인하는 MNIST 이미지 인식

- ❖ 결과 리뷰
  - 0.9901, 즉 99.01%의 정확도
  - 심층 신경망 코드에서는 정확도가 97.86%
  - 100% 다 맞히지 못한 이유는 데이터 안에 다음과 같이 확인할 수 없는 글씨가 들어있었기 때문



#### **■** Fashion MNIST

- ❖ 데이터 셋
  - 손글씨 데이터셋 대용으로 사용 가능



#### ■ 개, 고양이 구분

#### Kaggle site

- 2010년 설립된 빅데이터 솔루션 대회 플랫폼 회사
- 2017년 Google이 인수 (<u>ZDNet 기사</u>)
- 기업 및 단체에서 Prize를 걸고 데이터와 해결 과제를 등록하면, 데이터 사이언티스트들이 이를 해결하기 위해 모델을 개발하고 경쟁하게 되는 시스템

#### ❖ Kaggle 구성 요소

- Overview: 문제에 대한 간략한 소개와 문제 정의
- Dataset: 예측 모델을 만들기 위해 필요한 데이터셋 및 field에 대한 설명
- Kernels: 다른 사람들이 어떤 모델을 써서 구현을 했는지 힌트를 얻을 수 있고, 또한 내가 구현한 모델이 과연 올바른지에 관해서 코멘트를 주고받을 수 있음
- Discussion: 게시판 역할
- Leaderboard: 모델 예측 정확도 랭킹

## ■ 개, 고양이 구분

- ❖ 데이터 셋
  - 훈련 셋: 개, 고양이 사진 각각 12,500개, 총 25,000개
  - 테스트 셋: 개, 고양이 사진 합쳐서 12,500개



## ■ 개, 고양이 구분

- ❖ 데이터 셋
  - 훈련 셋: 개, 고양이 사진 각각 12,500개, 총 25,000개
  - 테스트 셋: 개, 고양이 사진 합쳐서 12,500개

#### ■ Cifar 10

- ❖ 데이터 셋
  - 32 x 32 크기의 컬러 이미지
  - 훈련 셋: 10가지 종류의 50,000개
  - 테스트 셋: 10가지 종류의 10,000개



- ❖ 데이터 부풀리기(Data Augmentation)
  - 원본 이미지에 인위적인 변화를 주어
  - 변화된 이미지는 충분히 학습에 활용될 수 있는 데이터가 됨
  - 적당한 힘으로 학습 면적을 아주 조금 골고루 넓히자는 의미
  - 대부분의 경우 인식의 정확도가 올라감
- ❖ ImageDataGenerator 클래스
  - Keras에서 제공
  - 파라메터는 객체 생성시 전달
  - flow\_from\_directory 메소드를 활용하면 폴더 형태로된 데이터 구조를 바로 가져와서 사용할 수 있음

#### ❖ ImageDataGenerator 클래스 사용 사례

```
datagen = ImageDataGenerator(
    featurewise center=False, # set input mean to 0 over the dataset
    samplewise center=False, # set each sample mean to 0
    featurewise std normalization=False, # divide inputs by std of dataset
    samplewise std normalization=False, # divide each input by its std
    zca whitening=False, # apply ZCA whitening
    zca epsilon=1e-06, # epsilon for ZCA whitening
    rotation range=0, # randomly rotate images in the range (deg 0 to 180)
   width shift range=0.1, # randomly shift images horizontally
    height shift range=0.1, # randomly shift images vertically
    shear range=0., # set range for random shear
    zoom range=0., # set range for random zoom
    channel shift range=0., # set range for random channel shifts
    fill mode='nearest', # set mode for filling points outside the input boundaries
    cval=0., # value used for fill mode = "constant"
    horizontal flip=True, # randomly flip images
   vertical flip=False, # randomly flip images
    rescale=None, # set rescaling factor (applied before any other transformation)
    preprocessing function=None, # set function that will be applied on each input
    data format=None, # image data format, either "channels first" or "channels last"
   validation split=0.0 # fraction of images reserved for validation
```

#### ❖ 훈련 셋

triangle012.png

triangle011.png

triangle013.png

triangle014.png



triangle015.png





#### ❖ 도전 테스트 셋



■ 원본 이미지:



■ rotation\_range = 90, 지정된 각도 범위(90도)내에서 임의로 원본이미지를 회전



■ width\_shift\_range = 0.1, 지정된 수평방향 이동 범위(10%)내에서 임의로 원본이미지를 이동



■ height\_shift\_range = 0.1, 지정된 수직방향 이동 범위(10%)내에서 임의로 원본이미지를 이동



### 4. 데이터 부풀리기

■ zoom\_range = 0.3, 지정된 확대/축소 범위(0.7 ~ 1.3배)내에서 임의로 원본이미지를 확대/축소



■ horizontal\_flip = True, 수평방향으로 뒤집기



■ vertical\_flip = True, 수직방향으로 뒤집기



# **CNN Architectures**

# **AlexNet**



# **VGG**



# GoogLeNet



# ResNet



#### AlexNet

#### ❖ 개요

- ImageNet에서 주관하는 ILSVRC (Large Scale Visual Recognition Competition) 대회에서, 2012년 제프리 힌튼 교수팀의 AlexNet이 top 5 test error(5개의 예측값 중에 정답이 없는 경우) 기준 15.4%를 기록해 2위(26.2%)를 큰 폭으로 이기고 1위를 차지함.
- 이 대회는 1000개의 클래스를 가진 120만장의 이미지를 학습하고 15만장의 이미지로 테스트하여 정답률을 겨루는 대회
- AlexNet의 등장은 딥러닝, 특히 CNN이 본격적으로 주목받게 되는 계기가 되었고 여기서 소개된 ReLU, Dropout 등은 지금도 표준으로 사용되고 있음.

### AlexNet



#### AlexNet

#### ❖ 특징

- 5개의 컨볼루션 레이어, 3개의 Fully Connected 레이어로 구성
- 2개의 GPU로 병렬연산 수행
- ReLU 활성화 함수 사용
- Dropout 사용
- Max pooling, Overlapping pooling
- LRN(Local Response Normalization)
- Data Augmentation
- Stochastic Gradient Descent

#### 

#### ■ VGGNet

- ❖ 개요
  - 2014년 ILSVRC 대회에서, 2등을 한 모델
  - GoogLeNet에 밀려 2위를 했지만, 훨씬 간단한 구조로 이해와 변형이 쉽다는 장점이 있어 많이 응용되는 모델
  - 깊이에 따른 변화를 비교하기 위해, 3x3의 작은 필터 크기를 사용했고, 모델 깊이와 구조에 변화를 주어 실험. (6가지 모델)

# **■ VGGNet**

| Com/Not Configuration       |           |           |           |           |           |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|
| ConvNet Configuration       |           |           |           |           |           |
| A                           | A-LRN     | В         | С         | D         | E         |
| 11 weight                   | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |
| layers                      | layers    | layers    | layers    | layers    | layers    |
| input (224 × 224 RGB image) |           |           |           |           |           |
| conv3-64                    | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
|                             | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
| maxpool                     |           |           |           |           |           |
| conv3-128                   | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
|                             |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
| maxpool                     |           |           |           |           |           |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
|                             |           |           | conv1-256 | conv3-256 | conv3-256 |
|                             |           |           |           |           | conv3-256 |
| maxpool                     |           |           |           |           |           |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |
|                             |           |           |           |           | conv3-512 |
| maxpool                     |           |           |           |           |           |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |
|                             |           |           |           |           | conv3-512 |
| maxpool                     |           |           |           |           |           |
| FC-4096                     |           |           |           |           |           |
| FC-4096                     |           |           |           |           |           |
| FC-1000                     |           |           |           |           |           |
| soft-max                    |           |           |           |           |           |

#### VGGNet

#### ❖ 특징

- Small filters, Deeper networks
- 8개의 layer를 가지는 AlexNet에서 16~19개의 layer를 가지는 VGGNet으로 발전
- 3x3의 크기를 가지는 filter를 사용
- stride=1, padding=1 인 convolution layer
- 2x2 max pooling with stride=2인 pooling layer
- 3x3 을 깊게 쌓게 되면, 우선 비선형성을 더 많이 반영할 수 있으며, 실제로 필요한 parameter 수도 적게된다는 장점이 있음

# ■ GoogLeNet (Inception)

- ❖ 개요
  - 2014년 ILSVRC 대회에서, 1등을 한 모델
  - 22개의 레이어
  - 노드 간의 연결을 줄이면서(Sparse connectivity), 행렬 연산은 Dense 연산을 하도록 처리하는가 → Inception module



# **■** GoogLeNet



# ■ ResNet (Residual Network)

- ❖ 개요
  - 2015년 ILSVRC 대회에서, 1등을 한 모델 (Microsoft)
  - 152개 층
  - 망을 깊게하면 무조건 성능이 좋아질까?



■ Degradation 문제 해결

### ResNet



