Activité 3.7 – Utilisation de la radioactivité en médecine

Objectifs:

- Comprendre la notion de dose absorbée.
- Comprendre la notion de dose équivalente.
- Connaître quelques utilisation médicale diagnostique et curative.

Contexte : La radioactivité est utilisée tous les jours en médecine pour diagnostiquer ou pour soigner des maladies.

→ Quelles sont les doses radioactives utilisées pour diagnostiquer ou guérir des maladies?

Document 1 – Dose absorbée et dose équivalente

La dose absorbée D se mesure en Gray noté Gy

$$D = \frac{\text{Énergie reçue pendant la désintégration (J)}}{\text{masse du corps recevant l'énergie (kg)}}$$

La dose absorbée mesure l'irradiation brute reçue, mais certaines particules sont plus dangereuses que d'autres à cause de leur masse. C'est pour ça qu'on introduit la dose équivalente H.

La dose équivalente H se mesure en sievert noté Sv

$$H = w_R \times D$$

où w_R est un facteur de pondération. w_R vaut 1 pour les radioactivités β^- , β^+ et γ . w_R vaut 20 pour la radioactivité α .

Document 3 - Réglementation française

En France, une dose efficace annuelle H est préconisé pour le grand public, en plus de la radio-activité naturelle et médicale.

Grand public	Personne travaillant avec des sources radioactives
$1\mathrm{mSv/an}$	$20\mathrm{mSv/an}$

Document 4 - Utilisation des radioéléments en médecine

Radioélément	Cible	Dose	Demi-vie	Application
Technétium : γ	Peu Spécifique	1 à 10 mSv	6 h	Scintigraphie
Gallium : γ	Colon, poumons	30 mSv	78 h	Schrigraphie
Fluor : β^+ et γ	Détection des cellules cancéreuses. Neurologie.	7 mSv	110 min	PET par détection des rayon γ de haute énergie
Samarium β^-	Os, poumon, prostate, sein	2 Sv/séance	1,9 jours	Radiothérapie métabolique
Yttrium β^-	Foie		2,7 jours	metabonque

1 - On cons pour chaque radio		offensive passé 20 demi-vie. Calculer $20 imes t_{1/2}$
_	oi utilise-t-on des éléments avec de cou	
_	que les examens utilisant des radioéléme	
	ron los doses regues lors d'un evernen di	
		agnostique et pendant une radiothérapie.
	er comment le personnel médical se prote	ège des radiations émises par les radioéléments