

Science Enabling Center for Agriculture Application

Jennifer Wei

ESDIS Project Scientist GES DISC Lead Scientist

Outline

01

WHY & WHAT IS

SCIENCE ENABLING
CENTER?

NEEDS & STRATEGY

02

HOW TO

REALIGN EOSDIS
INFRASTRUCTURE
& EVOLVE DAACS

INFRASTRUCTURE ALIGNMENT

03

HOW TO

SIMPLY SERVICES & ENGAGE USERS (AGRICULTURE COMMUNITY)

COMMUNITY-ORIENTED

ASA Workshop

WHY and WHAT Science Enabling Center (SEC)

- Data Volume Needs as the NASA's Earth Observing System Data and Information System (EOSDIS) archive grows
- Open Science Framework defined by the NASA Earth Science
 Data Systems (ESDS) Program to be a collaborative culture
 that empowers the open sharing of data, information, and
 knowledge within the scientific community and the wider public to
 accelerate scientific research and understanding

Science Enabling Center is a newly proposed science information center with open science framework design in the cloud

Evolve

Realign

Simply

Engage

DAACs should shift from being generalists responsible for all aspects of science data systems for their discipline to being specialists focusing on improving the usability of data and software for their communities to support open source science

Each layer of the EOSDIS architecture, from infrastructure to science services, should become managed services, allowing for a more modular and agile organization

Services based architecture combined with common data user interfaces (web and APIs) to improve user experience and make ESD information and data more accessible and easy to navigate

ESDIS/DAACs Infrastructure

Evolve

Realign

Simply

Engage

DAACs should shift from being generalists responsible for all aspects of science data systems for their discipline to being specialists focusing on improving the usability of data and software for their communities to support open source science

Each layer of the EOSDIS architecture, from infrastructure to science services, should become managed services, allowing for a more modular and agile organization

Services based architecture combined with common data user interfaces (web and APIs) to improve user experience and make ESD information and data more accessible and easy to navigate

ESDIS/DAACs Infrastructure

Community Resources

Evolve

Realign

Simply

Engage

DAACs should shift from being generalists responsible for all aspects of science data systems for their discipline to being specialists focusing on improving the usability of data and software for their communities to support open source science

Each layer of the EOSDIS architecture, from infrastructure to science services, should become managed services, allowing for a more modular and agile organization

Services based architecture combined with common data user interfaces (web and APIs) to improve user experience and make ESD information and data more accessible and easy to navigate

ESDIS/DAACs Infrastructure

Evolve

Realign

Simply

Engage

DAACs should shift from being generalists responsible for all aspects of science data systems for their discipline to being specialists focusing on improving the usability of data and software for their communities to support open source science

Each layer of the EOSDIS architecture, from infrastructure to science services, should become managed services, allowing for a more modular and agile organization

Services based architecture combined with common data user interfaces (web and APIs) to improve user experience and make ESD information and data more accessible and easy to navigate

Five Tenets for Science Enabling Center

Guiding Principles

Ensuring quality and fitness for purpose of the organization's data and metadata assets

Data and Metadata Stewardship

Capturing and cataloging scientific information from publications into searchable databases linked to data resources.

Information

Management

Managing and supporting open-source software development projects: cataloging, documentation, review for long-term sustainability, and user support

Open-Source Software Support

Addressing crossmission and division science as well as dedicated support for discipline specific communities to better integrate and fuse data.

Cross-Mission
Science and
Modeling

Answering scientific and technical questions about data and information, evaluating and merging community contributions to opensource software

User Support

DAACs Support for Facilitating Science

- Support open science initiatives by providing open-source software and documentation along with the data
- Data Service: dataset documentation, developing discipline-focus services and learning resources
- Data Access: data quality and dissemination, developing value-added products
- Data Curation: Meta/data curation, domain-focused user support, publishing data

DAACs vs. Science Enabling Center (SEC)

- Target specific science application
- Infrastructure
 - Provide open access and modular services by leveraging ESDIS core services as necessary
 - Develop cloud-optimized data services
 - Produce higher-level, valued-added datasets
- Community
 - Leverage DAAC discipline data services and user support
 - Develop and curate learning sources

Communities

Evolve

Realign

Simply

Engage

DAACs should shift from being generalists responsible for all aspects of science data systems for their discipline to being specialists focusing on improving the usability of data and software for their communities to support open source science

Each layer of the EOSDIS architecture, from infrastructure to science services, should become managed services, allowing for a more modular and agile organization

Services based architecture combined with common data user interfaces (web and APIs) to improve user experience and make ESD information and data more accessible and easy to navigate

Open Science Community Guidance

Enabling Science Together

NASA Earth Science Data System

EOSDIS/ESDIS

DAACs, SIPS, EOSDIS Users

External Partners

ESA, JAXA, NOAA, USGS, PNNL, FEMA, USDA,...

Internal Partners

HARVEST, ARSET, POWER,...

NASA Science Teams

External Stakeholders

Universities, Private Sectors, local governments..

User Resources Alignment

One Stop Shop - NASA Earth Observation Website

One Stop Shop - NASA Earth Observation Website

https://www.earthdata.nasa.gov

Data

Topics

Learn

Engage

About

Learn

Whether you are a scientist, an educator, a student, or are just interested in learning more about NASA's Earth science data and how to use them, we have the resources to help. Get information and guides to help you find and use NASA Earth science data, services, and tools.

Get Started

Backgrounders

Data Pathfinders

Data Toolkits

Webinars and Tutorials

Data Stories

Articles

Data Chats

Data User Profiles

Earthdata / Learn / Get Started

Get Started

Explore User Driven Resources

An Earthdata Login is required of all users before they can download data or use selected tools from any of the Distributed Active Archive Centers (DAACs) that comprise NASA's Earth Observing System Data and Information System (EOSDIS).

Questions

Jennifer Wei jennifer.c.wei@nasa.gov

ESDIS Project Scientist

GES DISC Lead Scientist