2022年数学新高考I卷

一、单选题 (本大题共8小题,共40分)										
	1.	1. 若集合 $M = \{x \sqrt{x} < 4\}, N = \{x 3 x \ge 1\}, 则 M \cap N = ($)								
		A. $\{x 0 \le x < 2\}$	B. $\{x \frac{1}{3} \le x < 2\}$	C. $\{x 3 \le x < 16\}$	D. $\{x \frac{1}{3} \le x < 16\}$					
	2. 若 $i(1-z)=1$, 则 $z+\bar{z}=($)									
		A2	В. –1	C. 1	D. 2					
	3. 在 $\triangle ABC$ 中,点 D 在边 AB 上, $BD=2DA$.记 $\overrightarrow{CA}=\overrightarrow{m}$, $\overrightarrow{CD}=\overrightarrow{n}$,则 $\overrightarrow{CB}=($)									
		A. $3\overrightarrow{m} - 2\overrightarrow{n}$	B. $-2\overrightarrow{m} + 3\overrightarrow{n}$	C. $3\overrightarrow{m} + 2\overrightarrow{n}$	D. $2\overrightarrow{m} + 3\overrightarrow{n}$					
	4.	4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0 km^2 ;水位为海拔157.5m时,相应水面的面积为180.0 km^2 .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m J升到157.5 m 时,增加的水量约为($\sqrt{7}\approx2.65$)(
		A. $1.0 \times 10^9 m^3$	B. $1.2 \times 10^9 m^3$	C. $1.4 \times 10^9 m^3$	D. $1.6 \times 10^9 m^3$					
	5.)								
		A. $\frac{1}{6}$	B. $\frac{1}{3}$	C. $\frac{1}{2}$	D. $\frac{2}{3}$					
6. 记函数 $f(x) = \sin(\omega x + \frac{\pi}{4}) + b(\omega > 0)$ 的最小正周期为 $T.$ 若 $\frac{2\pi}{3} < T < \pi$,且 $y = f(x)$ 于点 $(\frac{3\pi}{2}, 2)$ 中心对称,则 $f(\frac{\pi}{2}) = ($										
		A. 1	B. $\frac{3}{2}$	C. $\frac{5}{2}$	D. 3					
	7.	设 $a = 0.1 e^{0.1}, b = \frac{1}{9},$	$c = -\ln 0.9$,则()							
		A. $a < b < c$	B. $c < b < a$	C. $c < a < b$	D. $a < c < b$					
	8.	已知正四棱锥的侧棱比 $3\sqrt{3}$,则该正四棱锥体		一个球面上,若该球的	J体积为36π,且3≤ <i>l</i> ≤					
		A. $[18, \frac{81}{4}]$	B. $\left[\frac{27}{4}, \frac{81}{4}\right]$	C. $\left[\frac{27}{4}, \frac{64}{3}\right]$	D. [18, 27]					
<u>.</u>	多	3选题 (本大题共4小题	i,共 20 分)							
	9.	已知正方体 $ABCD - A_1B_1C_1D_1$,则()								
B. 直线 BC_1 与 CA_1 所成的角为90°										
	C. 直线 BC_1 与平面 BB_1D_1D 所成的角为 45°									

D. 直线 BC_1 与平面ABCD所成的角为 45°

- 10. 已知函数 $f(x) = x^3 x + 1$,则()
 - A. f(x)有两个极值点
 - B. f(x)有三个零点
 - C. 点(0,1)是曲线y=f(x)的对称中心
 - D. 直线y = 2x是曲线y = f(x)的切线
- 11. 已知O为坐标原点,点A(1,1)在抛物线 $C: x^2 = 2py(p>0)$ 上,过点B(0,-1)的直线交C于 P, Q两点,则(
 - A. C的准线为y=-1
 - B. 直线AB与C相切
 - C. $|OP| \cdot |OQ| > |OA|^2$
 - D. $|BP| \cdot |BQ| > |BA|^2$
- 12. 已知函数f(x)及其导函数f'(x)的定义域为R,记g(x)=f'(x).若 $f(\frac{3}{2}-2x)$,g(2+x)均为偶
- A. f(0) = 0 B. $g(-\frac{1}{2}) = 0$ C. f(-1) = f(4) D. g(-1) = g(2)

- 三、填空题(本大题共4小题,共20分)
 - 13. $(1-\frac{y}{x})(x+y)^8$ 的展开式中 x^2y^6 的系数为______(用数字作答).
 - 14. 写出与圆 $x^2 + y^2 = 1$ 和 $(x-3)^2 + (y-4)^2 = 16$ 都相切的一条直线的方程
 - 15. 若曲线 $y = (x + a) e^x$ 有两条过坐标原点的切线,则a的取值范围是______.
 - 16. 已知椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0),C的上顶点为A,两个焦点为 F_1 , F_2 ,离心率为 $\frac{1}{2}$,过 F_1 且垂直于 AF_2 的直线与C交于D,E两点,|DE|=6,则 \triangle 的周长是______.
- 四、解答题(本大题共6小题,共70分)
 - 17. 记 S_n 为数列 $\{a_n\}$ 的前n项和,已知 $a_1=1$, $\left\{\frac{S_n}{a_n}\right\}$ 是公差为 $\frac{1}{3}$ 的等差数列.
 - (1)求 $\{a_n\}$ 的通项公式; (2)证明: $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < 2$.

18. 记 $\triangle ABC$ 的内角A, B, C的对边分别为a, b, c, 已知 $\frac{\cos A}{1+\sin A} = \frac{\sin 2B}{1+\cos 2B}$.

(1)若 $C = \frac{2\pi}{3}$,求B; (2)求 $\frac{a^2 + b^2}{c^2}$ 的最小值.

- 19. 如图,直三棱柱 $ABC A_1B_1C_1$ 的体积为4, $\triangle A_1BC$ 的面积为 $2\sqrt{2}$.
 - (1)求A到平面 A_1BC 的距离;
 - (2)设D为 A_1C 的中点, $AA_1=AB$,平面 A_1BC \bot 平面 ABB_1A_1 ,求二面角A-BD-C的正弦值.

20. 一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:

	不够良好	良好
病例组	40	60
对照组	10	90

- (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
- (2)从该地的人群中任选一人,A表示事件 ''选到的人卫生习惯不够良好",B表示事件 ''选到的人患有该疾病", $\frac{P(B|A)}{P(\bar{B}|A)}$ 与 $\frac{P(B|\bar{A})}{P(\bar{B}|\bar{A})}$ 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.

- (i)证明: $R = \frac{P(A|B)}{P(\bar{A}|B)}$. $\frac{P(\bar{A}|\bar{B})}{P(A|\bar{B})}$;
- (ii)利用该调查数据,给出P(A|B), $P(A|\bar{B})$ 的估计值,并利用(i)的结果给出R的估计值.

附: $K^2 = \frac{n (a d - b c)^2}{(a+b) (c+d) (a+c) (b+d)}$,

$P(K^2 \geqslant k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

- 21. 已知点 A(2,1) 在双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{a^2-1} = 1$ (a>1)上,直线 l 交 C 于 P , Q 两点,直线 A P , A Q 的斜率之和为0.
 - (1)求l的斜率; (2)若 $\tan \angle PAQ = 2\sqrt{2}$,求 $\triangle PAQ$ 的面积.

- 22. 已知函数 $f(x) = e^x ax$ 和 $g(x) = ax \ln x$ 有相同的最小值.
 - (1)求a;
 - (2)证明:存在y=b直线,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.