Covid-19 Data Analysis

Vandana Jain

This project predicts the number of Covid-19 cases within US Based on Dataset using:

- Support vector regression(SVR)
- Random forest (RF)

Note: Using SVR and RF as my data is not running linear

Dataset:

Data: worldometer_coronavirus_daily_data.csv

Source: Kaggle

Source Link

Dataset overview:

	date	country	cumulative_total_cases	daily_new_cases	active_cases	cumulative_total_deaths	daily_new_deaths
84114	2021-02-27	Zimbabwe	36058.0	14.0	2005.0	1463.0	0.0
84115	2021-02-28	Zimbabwe	36089.0	31.0	1960.0	1463.0	0.0
84116	2021-03-01	Zimbabwe	36115.0	26.0	1742.0	1468.0	5.0
84117	2021-03-02	Zimbabwe	36148.0	33.0	1687.0	1472.0	4.0
84118	2021-03-03	Zimbabwe	36179.0	31.0	1309.0	1478.0	6.0
84119	2021-03-04	Zimbabwe	36223.0	44.0	1108.0	1483.0	5.0

Df.shape: (84120, 7)

Checking for Nulls:

df.isnull().sum()

date 0 country cumulative total cases 0 daily new cases 6469 active cases 768 cumulative total deaths 6912 daily new deaths 18399 mnth yr month 0 year

round(df.isnull().sum(axis=0).sort_values (ascending=False)/len(df)*100,0)

df.dropna()

daily new deaths 22.0 cumulative total deaths 8.0 daily new cases 8.0 1.0 active cases 0.0 year 0.0 month mnth yr 0.0 cumulative total cases 0.0 0.0 country date 0.0

Description statistics:

	cumulative_total_cases	daily_new_cases	active_cases	cumulative_total_deaths	daily_new_deaths
count	8.412000e+04	77651.000000	8.335200e+04	77208.000000	65721.000000
mean	1.695174e+05	1496.504939	3.953256e+04	4760.358292	39.267844
std	1.061905e+06	8625.447004	3.429721e+05	23170.304291	175.498224
min	0.00000e+00	-1417.000000	-8.260000e+02	0.000000	-217.000000
25%	1.180000e+02	0.000000	1.600000e+01	5.000000	0.000000
50%	2.937000e+03	29.000000	5.110000e+02	72.500000	1.000000
75%	3.907425e+04	418.000000	6.593250e+03	903.000000	10.000000
max	2.952609e+07	308301.000000	9.953473e+06	533636.000000	4513.000000

Checking total cumulative cases in US (Verified with CDC Website)

```
print("basic info")
print("total no of cases",US['cumulative_total_cases'].iloc[-1])
print("total no of deaths",US['cumulative_total_deaths'].iloc[-1])
```

basic info

total no of cases 29526086.0

total no of deaths 533636.0

Countrywide daily cases:

Covid daily trend in US:

dd=df[df.country=="USA"].groupby('date')['daily_new_cases'].sum().sort_values()

Predictive Modelling:

```
x=US['date']
y=US['daily_new_cases']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
Train Data=70% Test Data= 30%
Ir=LinearRegression()
```

Ir.fit(np.array(x_train).reshape(-1,1),np.array(y_train).reshape(-1,1))

Continued:

plt.scatter(x,y)
plt.show()

SVM (Using kernel :rbf(radial bias function)):

from sklearn.preprocessing it from sklearn.svm import SVR sc x=StandardScaler() sc_y=StandardScaler() sx=sc_x.fit_transform(x) sy=sc_y.fit_transform(y) from sklearn.svm import SVR reg=SVR(kernel='rbf') reg.fit(sx,sy) reg.score(sx,sy) 0.930073567204027

Random Forest:

Comparison:

Model:	Score	
SVR	0.930073567204027	
RF	0.997528468985273	

Winner: RF

Thankyou