Constraint Programming

Matteo Zavatteri

Math Decisions 2020

Outline

- Constraint networks
- Global constraints
- More expressiveness
- 4 Modeling CSPs

Reference books

More online:

http://www.constraint-programming.com/people/regin/papers/global.pdf https://www.minizinc.org (have a look at MiniZinc Handbook)

Constraint Networks

Formal definition

A constraint network is a triple $N = \langle X, D, C \rangle$, where:

- **1** $X = \{x_1, \dots, x_n\}$ is a finite set of (decision) variables
- **2** $D = \{D_1, \dots, D_n\}$ is a set of associated domains.
- **3** *C* is a finite set of *constraints*. Each constraint is a relation $R_{i,...,k}$ (defined over the set of variables $\{x_i,...,x_k\}$ such that $R_{i,...,k} \subseteq D_i \times \cdots \times D_k$.

To ease notation, scopes and tuples are "ordered" with respect to variable indexes.

$$\begin{array}{ccc}
\{a,b\} & \{a,b\} \\
\hline
x_1 & R_{1,2} & x_2
\end{array}$$

Formal specification

- $X = \{x_1, x_2\}, D = \{D_1, D_2\}$
- $D_1 = D_2 = \{a, b\}$
- $C = \{R_{1,2}\}$, where $R_{1,2} = \{(a,b),(b,a)\}$ (i.e., $x_1 \neq x_2$)

Consistency

Consistency

A constraint network is consistent if ther exists a solution. That is, if every variable can be assigned a value from its domain such that all constraints are eventually satisfied.

Given a solution $x_1 = v_1, \dots, x_n = v_n$, a constraint $R_{p,\dots,z}$ is satisfied, if $(v_p,\dots,v_z) \in R$, where $x_p = v_p,\dots,x_z = v_z$ are in the solution.

$$\{a,b\}$$
 $\{a,b\}$ $\{a,b\}$ $\{a,b\}$ $\{x_1\}$ $\{x_2\}$

Solution: $x_1 = a$, $x_2 = b$

A few problems associated to constraint networks

Given a constraint network N, we might address the following problems:

Decision problems:

- Is *N* consistent/inconsistent?
- Does N admit at least/at most/exaclty k different solutions?
- Is there an assignment satisfying at least k constraints?

Search problems:

- Find a consistent assignment
- Find 2,3,etc different consistent assignments
- Find all consistent assignments
- How many different consistent assignments does N admit?
- Find an assignment maximizing the number of satisfied constraints

In this part, we will only address search problems for which we need to find a fixed number of solutions

Search for 1 solution: backtracking

Assume a recursive algorithm that assigns variables according to the order of their indexes.

The algorithm stops as soon as it finds a solution

$$\begin{cases}
\{a,b\} & \{a,b\} \\
x_1 & \neq x_2
\end{cases}$$

Solution 1: $x_1 = a$, $x_2 = b$

Search for 2 solutions: keep searching up to the 2nd

Solution 1: $x_1 = a$, $x_2 = b$ Solution 2: $x_1 = b$, $x_2 = a$

Search for all solutions: keep searching up to the end

Filtering domains: node consistency

Node consistency

A variable x_i is node consistent if for each $v \in D_i$ we have that $(v) \in R_i$.

$$\{a, \frac{b}{b}, c\}$$

$$(x_i)$$

$$R_i$$

$$R_i = \{(a), (c)\}$$

- x_i is not node consistent as $b \notin R_i$
- Removing b from D_i makes x_i node consistent

Rationale: every solution must satisfy R_i and $x_i = b$ just doesn't.

Filtering domains: arc consistency

Arc consistency

A pair of different variables x_i, x_j is arc consistent if for each $v_i \in D_i$ there exists $v_i \in D_i$ such that $(v_i, v_i) \in R_{ii}$.

$$\begin{array}{ccc}
\{a, c\} & \{a, \frac{b}{b}, c\} \\
\hline
(x_i) & = & (x_j)
\end{array}$$

- x_i, x_j are not arc consistent. $(a, b) \notin R_{i,j}$, $(c, b) \notin R_{i,j}$
- Removing b from D_j makes x_i, x_j arc consistent.

Rationale: every solution must satisfy $R_{i,j}$ and $x_i = b$ (whatever x_i) just doesn't.

Filtering domains: path consistency

Path consistency

A pair of variables variables x_i, x_j is path consistent with another variable x_k $(x_i \neq x_j \neq x_k)$ if for each $v_i \in D_i$, $v_j \in D_j$ with $(v_i, v_j) \in R_{ij}$, there exists $v_k \in D_k$ such that $(v_i, v_k) \in R_{ik}$ and $(v_i, v_k) \in R_{jk}$

- Arc consistent!
- Not path consistent. $x_i = a$, $x_j = b$ cannot be extended to any $x_k = v_k$ where $v_k \in \{a, b\}$.
- The network is actually inconsistent.

Path consistency is not enough!

- Path consistent!
- Yet, the network is actually inconsistent.
- All variables must get different values. Four variables. Three values.
- Examples like this extend to networks with n variables, n − 1 values in each domain and a "≠" constraint between any pair of distinct variables.
- Enforcing consistency on n variables says nothing for n + 1 variables.

Node, arc and path consistency are *pruning techniques* to rule out (even many) values from domains. But eventually, we still need to search.

Global constraints

Global constraints = compact constraints

- they encapsulate several constraints in a single one
- they avoid writing an explicit relation of many, many tuples
- they typically involve several variables
- they allow for the specification of "high level" constraints

Examples:

- all_different (x_1, \ldots, x_n)
- ...

all_different

All different

A solution $x_1 = v_1, \dots, x_n = v_n$ to a constraint network satisfies an all_different (x_i, \dots, x_i) iff $v_i \neq \dots \neq v_i$.

all_different (x_1, x_2, x_3, x_4)

$$x_1 = a$$
, $x_2 = b$, $x_3 = c$, $x_4 = d$

all_different, more formally

A possible formal definition

all_different (x_1, \ldots, x_n) is equivalent to a relation $R_{1,\ldots,n}$ such that for each tuple $(v_1,\ldots,v_n)\in R$, it holds that $|\{v_i\mid v_i\in (v_1,\ldots,v_n)\}|=n$.

$$\{a, b, c, d\}$$

$$\begin{cases} x_3 \\ \{a, b, c, d\} \end{cases}$$

all_different (x_1, x_2, x_3, x_4)

$$R_{1,2,3,4} = \{(a,b,c,d), (a,b,d,c), (a,c,b,d), (a,c,d,b), (a,d,b,c), (a,d,c,b), (b,a,c,d), (b,a,d,c), (b,c,a,d), (b,c,d,a), (b,d,a,c), (b,d,c,a), (c,a,b,d), (c,a,d,b), (c,b,a,d), (c,b,d,a), (c,d,a,b), (c,d,b,a), (d,a,c), (d,a,c,b), (d,b,a,c), (d,b,c,a), (d,c,a,b), (d,c,b,a)\}$$

University of Verona Matteo Zavatteri

 $x_1 = c, x_2 = a, x_3 = b, x_4 = d$

Boosting expressiveness maintaining complexity

Main complexity result

Deciding consistency of (classic) constraint networks is NP-complete.

it is easy to see that the problem remains NP-complete even if we add global
constraints or we turn a set of constraints into a boolean formula where global
constraints and relations play the role of boolean atoms (provided that, given a
solution, the satisfaction of each atom can be checked in polynomial time).

$$F ::= R_{i,...,k} \mid \texttt{global_constraint}(...) \mid \neg F \mid (F) \mid F \Box F$$
 where
$$\Box \in \{\land, \lor, \Rightarrow, \Leftrightarrow, ...\}$$

$$\begin{cases}
a, b, c, d \\
x_1
\end{cases} \qquad \begin{cases}
a, b, c, d \\
x_2
\end{cases}$$

Let $x_i = v_j$ be a short for $R_i = \{(v_j)\}$ (i.e., a further constraint language improvement!). The formula:

is satisfied by the solution $x_1 = b$, $x_2 = d$, $x_3 = c$

The solution (certificate of yes) can still be checked in polynomial time!

Humanizing relations by means of formulae

Consider the following constraint language:

$$F ::= x = v \mid (F) \mid F \land F \mid F \lor F$$

Wouldn't it be enough to encode a set of constraints $R_{i,...,z}$? (yes!)

Consider a constraint network $N = \langle X, D, C \rangle$ where:

- $X = \{x_1, x_2, x_3\}$
- $D_1 = D_2 = D_3 = \{a, b\}$
- $C = \{R_2, R_{13}, R_{123}\}$, where $R_2 = \{(b)\}$, $R_{13} = \{(a, a), (b, a), (b, b)\}$, $R_{123} = \{(a, b, a), (b, a, b)\}$

C can be encoded in a (DNF) formula $F \equiv \underbrace{F_2}_{R_2} \wedge \underbrace{F_{13}}_{R_{13}} \wedge \underbrace{F_{123}}_{R_{123}}$, where:

- $F_2 \equiv (x_2 = b)$
- $F_{13} \equiv ((x_1 = a \land x_3 = a) \lor (x_1 = b \land x_3 = a) \lor (x_1 = b \land x_3 = b))$
- $F_{123} \equiv ((x_1 = a \land x_2 = b \land x_3 = a) \lor (x_1 = b \land x_2 = a \land x_3 = b))$

In general $R_{i,...,z}$ can be encoded in $F \equiv (\bigvee_{(v_1,...,v_z) \in R_i} (x_i = v_i \land \cdots \land x_z = v_z))$

Modeling constraint satisfaction problems (CSP)

In what follows, we will:

- start with the definition of some problem in natural and formal language
- 2 model it in the input language of MiniZinc
- 3 push a button to search for one (or more) solution(s)

In this order. This is what we are going to do.

MiniZinc

https://www.minizinc.org

- MiniZinc is a free and open-source constraint modeling language that allows you to write models that are compiled into FlatZinc: an input language that is understood by a wide range of solvers.
- MiniZinc is developed at item Monash University MonashUniversity in collaboration with Data61 Decision Sciences https://research.csiro.au/data61/tag/decision-sciences/ and the University of Melbourne https://unimelb.edu.au.
- MiniZinc is available for Windows, Linux and MacOS. Have a look at https://www.minizinc.org/software.html, download and install it on your computer.

Modeling CSPs: Map coloring

Can you color this map by using red, green and blue so that any two adjacent regions have different colors?

Constraint Network formulation

Modeling CSPs: Map coloring

Solution to the corresponding constraint network

Back to the map!

Graph K-Coloring Problem

Input. A graph G = (V, E) and a positive integer K.

Output. yes iff there exists $f: V \to \{1, ..., K\}$ s.t. $f(u) \neq f(v)$ for each $(u, v) \in E$

Example. G = (V, E), where $V = \{x_1, x_2, x_3, x_4\}$ and

 $E = \{(x_1, x_3), (x_1, x_4), (x_3, x_4), (x_2, x_4)\}$ and K = 3.

$$f(x_1) = r$$
, $f(x_2) = g$, $f(x_3) = g$, $f(x_4) = b$.

Modeling CSPs: Crossword puzzle

Can you fill the crossword puzzle, by only using the words CAT, LATE, TED, TEA, CAKE,

AT (repetitions allowed)?

Constraint Network formulation

For each x_{ij} , $D_{ij} = \{A, C, D, E, K, L, T\}$

$$R_{12,13,14} = \{(C,A,T),(T,E,D),(T,E,A)\}, R_{21,22,23,24} = \{(L,A,T,E),(C,A,K,E)\}, R_{41,42,43} = \{(C,A,T),(T,E,D),(T,E,A)\}, R_{12,22,32,42} = \{(L,A,T,E),(C,A,K,E)\}, R_{13,23} = \{\{(A,T)\}, R_{14,24,34} = \{(C,A,T),(T,E,D),(T,E,A)\}$$

Modeling CSPs: Crossword puzzle

Solution to the corresponding constraint network

 C
 A
 T

 L
 A
 T
 E

 K
 A
 A

 T
 E
 D

Back to crossword puzzle

For each x_{ij} , $D_{ij} = \{A, C, D, E, K, L, T\}$

 $R_{12,13,14} = \{(C, A, T), (T, E, D), (T, E, A)\}, R_{21,22,23,24} = \{(L, A, T, E), (C, A, K, E)\}, R_{41,42,43} = \{(C, A, T), (T, E, D), (T, E, A)\}, R_{12,22,32,42} = \{(L, A, T, E), (C, A, K, E)\}, R_{13,23} = \{(A, T)\}, R_{14,24,34} = \{(C, A, T), (T, E, D), (T, E, A)\}$

Sudoku

Input. A 9×9 grid in which each cell (i,j) must be filled with digits from 1 to 9. Some cells are prefilled (coherently with what the solution should look like).

Output. A filling of all empty cells of the grid such that each digit appears exaclty once in each row, each column and each 3x3 subsquare.

Example.

	5	9	8				7	
				1				
3					2	5		8
			6	2				1
	8	2		3		4		
		6					3	
9				7				3
				9			2	
	4	8			6	7		

6	5	9	8	4	3	1	7	2
8	2	7	5	1	9	3	4	6
3	1	4	7	6	2	5	9	8
4	7	3	6	2	5	9	8	1
5	8	2	9	3	1	4	6	7
1	9	6	4	8	7	2	3	5
9	6	1	2	7	4	8	5	3
7	3	5	1	9	8	6	2	4
2	4	8	3	5	6	7	1	9

Modeling CSPs: 4-queens problem

Can you place 4 queens on a 4×4 board such that no queen attacks any other? I.e., no row, column, nor diagonal sharing.

Constraint Network formulation

j variables, one for each column.

 $D_i = \{1, 2, 3, 4\}$ for $i = 1, \dots, 4$ (rows).

 $x_j = i$ means that there is a queen in (i,j)

$$\begin{split} R_{1,2} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}, \\ R_{1,3} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,2), (4,3)\}, \\ R_{1,4} &= \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\}, \\ R_{2,3} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}, \\ R_{2,4} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}, \\ R_{3,4} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}, \end{split}$$

Modeling CSPs: 4-queens problem

Solution to the constraint network

Back to the board.


```
R_{1,2} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\},\
R_{1,3} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,2), (4,3)\},\
R_{1,4} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\},\
R_{2,3} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\},\
R_{2,4} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\},\
R_{3,4} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}
```

Interpretation of constraints: each pair $(i,j) \in R_{a,b}$ means that the placement of two queens in positions (i,a) and (j,b) is permitted.

Input. An $N \times N$ board.

Output. A placement of N queens such that no queen can attack any other in one move.

Note. A queen can attack another queen if the two queens are on the same row, column or diagonal.

Example. N = 5

Two queens are on the same diagonal if one of the following conditions hold:

- The row number plus the column number for each of the two queens are equal
- The row number minus the column number for each of the two queens are equal

Modeling CSPs: (very) simple activity scheduling

4 tasks A,B,C,D to be scheduled. Suppose any task is scheduled at a specific hour and takes that hour to be executed

Constraints:

- *B* is either the 1st or the 4th to be executed
- D is either the 3rd or the 4th to be executed
- One task at a time (no 2 tasks are executed simultaneosly)
- B before A, A before D, C after B

Constraint network formulation

Assume A, B, C, D resemble the indexes 1, 2, 3, 4.

$$D_I = \{1, 2, 3, 4\}$$
 for $I = A, B, C, D$.


```
R_B = \{(1), (4)\}, R_D = \{(3), (4)\}
R_{I,J} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)\}  for I, J = A, B, C, D with I \neq J
R_{A,B} = \{(2,1), (3,1), (3,2), (4,3), (4,2), (4,1)\}
R_{A,D} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}
R_{B,C} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}
```

Modeling CSPs: (very) simple activity scheduling

Solution to the constraint

A, B, C, D resemble the indexes 1, 2, 3, 4.

$$D_I = \{1, 2, 3, 4\}$$
 for $I = A, B, C, D$.

 $R_B = \{(1), (4)\}, R_D = \{(3), (4)\}$ $R_{I,J} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)\}$ for I, J = A, B, C, D with $I \neq J$ (e.g., $R_{A,B}$)

$$R_{A,B} = \{(2,1), (3,1), (3,2), (4,3), (4,2), (4,1)\}$$

$$R_{A,D} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

$$R_{B,C} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

Back to the scheduling problem Constraints:

- *B* is either the 1st or the 4th to be executed
- D is either the 3rd or the 4th to be executed
- One task at a time (no 2 tasks are executed simultaneosly)
- B before A, A before D, C after B

BADC

SAT: A boolean formula φ in CNF (=conjunctive normal form) over a set of variables x_1, \ldots, x_n

A CNF is a conjunction of clauses, where each clause is a disjunction of literals. E.g., $(x_1 \lor x_2) \land (\neg x_3 \lor x_4 \lor \neg x_5) \dots$

3SAT: A SAT instance in which each clause has exactly 3 literals.

Consider

$$\varphi \equiv \underbrace{\left(x_1 \vee \neg x_2 \vee x_3\right)}_{\text{First clause}} \land \underbrace{\left(x_2 \vee \neg x_3 \vee \neg x_4\right)}_{\text{Second clause}}$$

Constraint Network formulation

$$D_i = \{0, 1\} \text{ for } i = 1, \dots, 4.$$

$$R_{2,3,4}$$

$$R_{1,2,3} = \{(0,0,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

$$R_{2,3,4} = \{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

Matteo Zavatteri University of Verona

Modeling CSPs: 3SAT

Constraint Network formulation

$$D_i = \{0, 1\} \text{ for } i = 1, \dots, 4.$$

$$R_{1,2,3} = \{(0,0,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

$$R_{2,3,4} = \{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$

Back to 3SAT

$$\varphi \equiv \underbrace{\left(x_1 \vee \neg x_2 \vee x_3\right)}_{\text{First clause}} \wedge \underbrace{\left(x_2 \vee \neg x_3 \vee \neg x_4\right)}_{\text{Second clause}}$$

Model:
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$,

Three Dimensional Matching

Input. 3 disjoint sets X, Y, Z each of size n and a set $T \subseteq X \times Y \times Z$.

Output. yes iff there exists $T_1 \subseteq T$ such that $|T_1| = n$ and for each $t \in X \cup Y \cup Z$, t is contained exactly in one of the triples of T_1 .

Example
$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3\}, Z = \{z_1, z_2, z_3\}$$

$$T = \{(x_1, y_1, z_3), (x_2, y_1, z_1), (x_2, y_3, z_2), (x_3, y_1, z_3), (x_3, y_2, z_1)\}$$

$$T_1 = \{(x_1, y_1, z_3), (x_2, y_3, z_2), (x_3, y_2, z_1)\}$$

Knapsack Problem

Input. A finite set I of items where for each $i \in I$, $w(i) \in \mathbb{Z}^+$ is the weight and $v(i) \in \mathbb{Z}^+$ is the value of item i, and two positive integers W and V. **Output.** yes iff there exists $I_1 \subseteq I$ such that $\sum_{i \in I_1} w(i) \leq W$ and $\sum_{i \in I_1} v(i) \geq V$.

Example: W = 17, V = 32

Item	Weight	Value
1	1	7
2	8	7
3	3	8
4	6	10
5	5	7
6	8	1
7	7	4
8	2	3
9	9	5
10	10	1

Set Packing

Input. A collection C of finite sets and a positive integer $K \leq |C|$ **Output.** yes iff C contains at least K mutually disjoint sets.

Example
$$C = \{\{2,4\}, \{1,3,5\}, \{1,2,4\}, \{1,2,5\}, \{2,3\}, \{6,8\}, \{1,3,9\}, \{10,7\}, \{10,2,3\}, \{3,5,8\}\}, K = 4;$$

Set Splitting

Input. A collection *C* of subsets of a finite set *S*.

Output. yes iff there exists a partition of S in two subsets S_1 and S_2 such that for each $C_i \in C$, C_i is neither a subset of S_1 nor S_2 .

Example $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$C = \{\{1, 2, 4\}, \{1, 2, 5\}, \{2, 3\}, \{10, 7\}, \{10, 2, 3\}, \{3, 5, 8\}\}$$

$$S_1 = \{3, 4, 5, 10\}, S_2 = \{1, 2, 6, 7, 8, 9\}$$

Subset Sum

Input. A finite set X of elements where for each $x \in X$, $s(x) \in \mathbb{Z}$, and an integer S. **Output.** yes iff there exists $X_1 \subseteq X$ such that $\sum_{x \in X_1} s(x) = S$.

Example S = 13

S	s(x)
1	-1
2	-8
3	3
4	-6
5	-5
6	8
7	-7
8	2
9	-9
10	10

Vertex Cover

Input. A graph G = (V, E) and a positive integer K.

Output. yes iff there exists $V_1 \subseteq V$ such that $|V_1| \leq K$ and for each $(u, v) \in E$, u or v is in V_1 (might also be both)

Example. G = (V, E), where $V = \{x_1, x_2, x_3, x_4\}$,

$$E = \{(x_1, x_3), (x_1, x_4), (x_3, x_4), (x_4, x_2)\}$$
 and $K = 2$.

 $V = \{x_1, x_4\}$

SubGraph Isomorphism

Input. Two (undirected) graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ **Output.** yes iff there exists a graph $I = (V_I, E_I)$ and an injection $f : V_H \to V_I$ such that I is a subgraph of G (i.e., $V_I \subseteq V_G$ and $E_I \subseteq E_G$), $|V_I| = |V_H|$, $|E_I| = |E_H|$, $(f(v), f(u)) \in E_I$ iff $(u, v) \in E_H$.

Example.

$$f(h_1) = g_4$$
, $f(h_2) = g_3$, $f(h_3) = g_2$, $f(h_4) = g_1$

Traveling Salesman Problem

Input. A set C of N cities, a positive integer B and a distance matrix D $N \times N$ where each D[i,j] is a postive integer containing the distance to go from city i to city j.

Output. yes iff there exists an injection $f: \{1,..,N\} \to C$ such that

$$(\sum_{i=1}^{N-1} D[f(i), f(i+1)]) + D[f(N), f(1)]) \le B$$

Example. $C = \{c_1, c_2, c_3, c_4\}, B = 5 \text{ and } D \text{ (see below)}.$

$$D = \begin{bmatrix} 0 & 1 & 7 & 5 \\ 2 & 0 & 1 & 3 \\ 9 & 10 & 0 & 1 \\ 1 & 6 & 4 & 0 \end{bmatrix}$$

$$f(1) = c_2$$
, $f(2) = c_3$, $f(3) = c_4$, $f(4) = c_1$
 $(c_2 \rightarrow c_3 \rightarrow c_4 \rightarrow c_1 \rightarrow c_2)$