User-level Internet Path Diagnosis

Ratul Mahajan
Neil Spring
David Wetherall
Thomas Anderson

University of Washington

Diagnosing performance of Internet paths is hard

The Internet as a black box

- Multiple administrative domains
 - operators may be equally clueless
- Policy routing
 - asymmetric paths (round trip tools such as ping don't work well)
 - path to intermediate routers may not be a prefix of the end-toend path to the destination
- Performance may depend on the application
 - packet size, inter-packet spacing, protocol, port number,

Our goal is "user-level" diagnosis

- Diagnosis: identify and localize performance faults that impact applications
 - loss, reordering, queuing delay,
- User-level: without privileged access to routers
 - useful for both end users and network operators
- Diagnosis is useful (even if you cannot fix yourself)
 - transparency will lead to faster problem resolution
 - intelligently route around the fault

Existing diagnosis tools have limitations

- ping/traceroute/pathchar measure round trip path to routers
 - path asymmetry conflates forward and reverse paths
- Effective diagnosis requires router support beyond packet reflection

Approach and outline

- Architecture
 - what minimal support is needed to enable user-level diagnosis in Internet-like networks?
- Build practical tools
 - tulip
- Explore Internet evolution to improve diagnostic support

An architecture for path diagnosis

- Start with an ideal solution
 - routers log all packets they forward
 - users diagnose their paths through trace analysis
 - complete but impractical
- Reduce to a practical architecture
 - 1. all routers on the path embed diagnostic info in packets
 - timing, flow counters, and path information
 - 2. the source samples one router to embed diagnostic info

An architecture for path diagnosis (2)

- Lightweight, in-band packet marking
 - almost as powerful as the complete path trace

field	comments
sampler	selects the sampling router
timestamp	local time at the sampling router
flow counter	# of pkts processed for this flow
path signature	to detect path changes

 Timing, flow counters and path information provide effective diagnostic support

Approach and outline

- Architecture
 - what minimal support is needed to enable user-level diagnosis in Internet-like networks?
- Build practical tools
 - tulip
- Explore Internet evolution to improve diagnostic support

Overview of tulip

- Localizes reordering, queuing and loss (so far)
 - single-ended: works from a host to an arbitrary IP address
- Infers link properties by subtracting path properties
 - path to router should be a prefix of the end-to-end forward path

Queuing on the forward path

- ◆ ICMP timestamps are used to access router's clock [cing]
 - 1 ms resolution; supported by over 90% routers
 - prefix path property may not hold
- Queuing inferred from delay variation
- Engineering clock calibration, response generation time

Loss on the forward path

- Loss measurements use the IP identifier field in IP packets
 - over 70% of routers implement IP-ID as a counter
 - common counter for all probing sources
- Unambiguous detection of forward path loss for data packets
 - when control responses get consecutive IP-IDs
- Robust to response rate-limiting at the routers

Experimental evaluation of tulip

- What is the resolution of fault localization?
 - diagnosis granularity
- Is it accurate?
 - end-to-end correctness
 - consistency (monotonic increase along the path)

Diagnosis granularity of tulip

- Granularity: uncertainty in the location of the fault
 - when a router does not support the required features
 - when probes take a non-prefix path to a router

Diagnosis granularity of tulip (2)

- Median is 2 hops for loss and 4 hops for queuing
 - ICMP timestamp probes do not have the prefix path property

Round trip probing can further improve diagnosis granularity

Experimental evaluation of tulip

- What is the resolution of fault localization?
 - diagnosis granularity
- Is it accurate?
 - end-to-end correctness
 - internal consistency (monotonic increase along the path)

Consistency along the path (queuing)

median queuing delay to intermediate routers in an example path

- Tulip's one-way measurements are consistent
- Round trip measurements are polluted by reverse path conflation

Consistency along the path (queuing)

queuing delta = delay at the far end – delay at the near end

- Tulip's one-way measurements are consistent
- Round trip measurements are polluted by reverse path conflation

Tulip in action

Tulip can help build more scalable network monitoring and overlay routing systems

Approach and outline

- Architecture
 - what minimal support is needed to enable user-level diagnosis in Internet-like networks?
- Build practical tools
 - tulip a tool to diagnose reordering, loss, and queuing delay
- Explore Internet evolution to improve diagnostic support

Recall: an architecture for path diagnosis

- Lightweight, in-band packet marking
 - almost as powerful as the complete path trace

field	comments
sampler	selects the sampling router
timestamp	local time at the sampling router
flow counter	# of pkts processed for this flow
path signature	to detect path changes

 Timing, flow counters and path information provide effective diagnostic support

Tulip approximates the architecture in the Internet

- Approximations (and tulip) have limitations
 - measurement probes are out-of-band
 - ICMP timestamp issues (next slide)
 - IP-ID counter is shared
 - path changes can go undetected
- Moving the Internet towards the architecture improves diagnostic support
 - identify small changes with big benefits

Better timing information

- Problems:
 - timing information is separate from flow counters
 - ICMP timestamps require directly addressing the router
 - routing issues reduces their value
- ♦ Simple fix: timestamp TTL-expired messages
 - backwards compatible, incrementally deployable
 - use 32 unused bits in the TTL-expired messages

Better counter support

- Problem:
 - IP-ID is a shared counter
 - what if all of you start using tulip?
 - the architecture suggests per-flow counters
- Simple fix: maintain N (constant) counters
 - hash source address and probe IP-ID to pick the counter
 - backwards compatible, incrementally deployable (today, N=1)

Summary

- Tulip enables end users to diagnose Internet paths
 - co-opts router support by exploiting well-deployed router features
 - http://www.cs.washington.edu/research/networking/tulip
- Architectural arguments:
 - features used by tulip approximate a lightweight architecture for user-level path diagnosis
 - approximations suggest evolutionary changes to improve Internet's diagnostic support
- Future work: extend tulip with
 - tomography to improve diagnosis granularity
 - higher layer protocol diagnosis