Problem 1: Clustering

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage.

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import scipy.cluster.hierarchy as sch
from scipy.cluster.hierarchy import dendrogram,linkage,fcluster
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
```

In [2]:

```
bank_df=pd.read_csv("C:\\Users\\Shubham\\Downloads\\bank_marketing_part1_Data.csv")
bank_df.head()
```

Out[2]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	

1.1 Read the data and do exploratory data analysis. Describe the data briefly.

In [3]:

```
bank_df.describe()
```

Out[3]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit
count	210.000000	210.000000	210.000000	210.000000	210.000000
mean	14.847524	14.559286	0.870999	5.628533	3.258605
std	2.909699	1.305959	0.023629	0.443063	0.377714
min	10.590000	12.410000	0.808100	4.899000	2.630000
25%	12.270000	13.450000	0.856900	5.262250	2.944000
50%	14.355000	14.320000	0.873450	5.523500	3.237000
75%	17.305000	15.715000	0.887775	5.979750	3.561750
max	21.180000	17.250000	0.918300	6.675000	4.033000

In [4]:

```
bank_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	spending	210 non-null	float64
1	advance_payments	210 non-null	float64
2	<pre>probability_of_full_payment</pre>	210 non-null	float64
3	current_balance	210 non-null	float64
4	credit_limit	210 non-null	float64
5	<pre>min_payment_amt</pre>	210 non-null	float64
6	<pre>max_spent_in_single_shopping</pre>	210 non-null	float64

dtypes: float64(7)
memory usage: 11.6 KB

The dataset consist of 7 different attributes of credit card data. There are 210 entries, All data_types are float type and no null value present in the dataset.

In [5]:

```
bank_df.shape
```

Out[5]:

(210, 7)

```
In [6]:
```

bank_df.duplicated().sum()

Out[6]:

е

Do you think scaling is necessary for clustering in this case? Justify

Checking distribution using histogram:

In [7]:

```
df=bank_df.copy()
fig=plt.figure(figsize=(10,10))
ax=fig.gca()
df.hist(ax=ax)
plt.tight_layout()
plt.show()
```

<ipython-input-7-62fd5969bf53>:4: UserWarning: To output multiple subplots,
the figure containing the passed axes is being cleared
 df.hist(ax=ax)

In [8]:

sns.pairplot(data=bank_df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x24e05647dc0>

clearly from the above Barplot & pairplot we can see that all the attributes are not scaled and pre scaling will be required before performing clustring.

Scaling of data:

In [9]:

from sklearn.preprocessing import StandardScaler

In [10]:

```
scaler = StandardScaler()
scaled=scaler.fit_transform(bank_df)
scaled
```

Out[10]:

1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

In [11]:

```
plt.figure(figsize=(20,10))
wardlink = linkage(bank_df, method = 'ward')
dend = dendrogram(wardlink)
```


In [12]:

In [13]:

from scipy.cluster.hierarchy import fcluster

In [132]:

#Method 1

clusters=fcluster(wardlink,2,criterion="maxclust")
clusters

Out[132]:

In [133]:

```
bank_df["clusters"]=clusters
bank_df.groupby("clusters").mean()
bank_df.head(10)
```

Out[133]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	
5	12.70	13.41	0.8874	5.183	3.091	
6	12.02	13.33	0.8503	5.350	2.810	
7	13.74	14.05	0.8744	5.482	3.114	
8	18.17	16.26	0.8637	6.271	3.512	
9	11.23	12.88	0.8511	5.140	2.795	

There are 2 optimum no of clusters. Cluster 1 consist of higher values of "Spending", "Max_spend_in_single_shopping", "advance_payments", "credit_limit", "current balance." Clusters 2 consist of lower values of these attributes.

1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score.

In [128]:

```
wcss = []
for i in range(1,10):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state =10)
    kmeans.fit(bank_df)
    # inertia method returns wcss for that model
    wcss.append(kmeans.inertia_)
    sns.lineplot(range(1,10), wcss,marker='o',color='red')
    plt.title('Elbow Plot')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


In [129]:

```
ss={1:0}
for i in range(2,10):
    clusterer = KMeans(n_clusters = i, init = 'k-means++', random_state =44)
    y=clusterer.fit_predict(bank_df)
# The higher (up to 1) the better
s =silhouette_score(bank_df, y)
ss[i]=round(s,5)
print("The Average Silhouette Score for {} clusters is {}".format(i,round(s,5)))
```

```
The Average Silhouette Score for 2 clusters is 0.5279
The Average Silhouette Score for 3 clusters is 0.4814
The Average Silhouette Score for 4 clusters is 0.40699
The Average Silhouette Score for 5 clusters is 0.37058
The Average Silhouette Score for 6 clusters is 0.3755
The Average Silhouette Score for 7 clusters is 0.3602
The Average Silhouette Score for 8 clusters is 0.36539
The Average Silhouette Score for 9 clusters is 0.3657
```

In [130]:

```
maxkey= [key for key, value in ss.items() if value == max(ss.values())][0]
fig,ax = plt.subplots(figsize=(12,4))
sns.pointplot(list(ss.keys()),list(ss.values()))
plt.vlines(x=maxkey-1,ymax=0,ymin=0.90,linestyles='dotted')
ax.set(ylim=(0, 0.90))
ax.set_title('Silhouette Plot')
ax.set_xlabel('Number of clusters')
ax.set_ylabel('Average Silhouette Score')
plt.show()
```


It is clear from above figure that the maximum value of average silhouette score is achieved for k = 2, which, therefore, is considered to be the optimum number of clusters for this data.But statistically 2 clusters are not good for the analysis and does'nt full fill the need for clustering.Hence selecting 2 close optimum value of k other than 2.

In [134]:

```
from sklearn.decomposition import PCA
pca_2 = PCA(2)
plot_columns = pca_2.fit_transform(bank_df)
plt.figure(figsize=(12,7))
sns.scatterplot(x=plot_columns[:,1], y=plot_columns[:,0], hue=KMeans(n_clusters=
2, random_state=0).fit(bank_df).labels_, palette='Dark2_r',legend=False)
plt.title('Cluster Plot for 2 Clusters')
plt.show()
```


Problem 2: CART-RF-ANN

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

Attribute Information:

- 1. Target: Claim Status (Claimed)
- 2. Code of tour firm (Agency_Code)
- 3. Type of tour insurance firms (Type)
- 4. Distribution channel of tour insurance agencies (Channel)
- 5. Name of the tour insurance products (Product)
- 6. Duration of the tour (Duration)
- 7. Destination of the tour (Destination)
- 8. Amount of sales of tour insurance policies (Sales)
- 9. The commission received for tour insurance firm (Commission)
- 10. Age of insured (Age)

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it.

In [21]:

 $insurance_df=pd.read_csv("C:\Users\Shubham\Downloads\insurance_part2_data.csv")\\ insurance_df.head()$

Out[21]:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	D
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	
1	36	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	

In [22]:

insurance_df.shape

Out[22]:

(3000, 10)

In [23]:

```
insurance_df.describe(include="all")
```

Out[23]:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	
count	3000.000000	3000	3000	3000	3000.000000	3000	3000.000000	3000
unique	NaN	4	2	2	NaN	2	NaN	
top	NaN	EPX	Travel Agency	No	NaN	Online	NaN	
freq	NaN	1365	1837	2076	NaN	2954	NaN	
mean	38.091000	NaN	NaN	NaN	14.529203	NaN	70.001333	60
std	10.463518	NaN	NaN	NaN	25.481455	NaN	134.053313	70
min	8.000000	NaN	NaN	NaN	0.000000	NaN	-1.000000	С
25%	32.000000	NaN	NaN	NaN	0.000000	NaN	11.000000	20
50%	36.000000	NaN	NaN	NaN	4.630000	NaN	26.500000	33
75%	42.000000	NaN	NaN	NaN	17.235000	NaN	63.000000	69
max	84.000000	NaN	NaN	NaN	210.210000	NaN	4580.000000	539

Check for null values in columns

In [24]:

insurance_df.isnull().sum()

Out[24]:

Age 0 Agency_Code 0 Type 0 Claimed 0 Commission 0 Channel Duration 0 Sales 0 Product Name 0 Destination 0 dtype: int64

There is no null value present

In [25]:

```
insurance_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Age	3000 non-null	int64
1	Agency_Code	3000 non-null	object
2	Type	3000 non-null	object
3	Claimed	3000 non-null	object
4	Commision	3000 non-null	float64
5	Channel	3000 non-null	object
6	Duration	3000 non-null	int64
7	Sales	3000 non-null	float64
8	Product Name	3000 non-null	object
9	Destination	3000 non-null	object
dtyp	es: float64(2)	, int64(2), obje	ct(6)

memory usage: 234.5+ KB

Claimed is the target variable while all others are the predictors

Out of 9 datatypes 2 are integer type, 2 are float and 6 are object types

It seems there is no null values present in dataset

Getting unique counts of all columns

```
In [26]:
```

```
mn in insurance_df[["Age","Agency_Code","Type","Claimed","Commision","Channel","Duration","
t(column.upper(),': ',insurance_df[column].nunique())
t(insurance_df[column].value_counts().sort_values())
t('\n')
AGE: 70
8
         1
14
         1
83
         1
77
         1
84
         1
35
        94
30
        96
48
      108
       125
31
       999
36
Name: Age, Length: 70, dtype: int64
AGENCY_CODE : 4
JZI
         239
CWT
         472
C2B
         924
        1365
EPX
Name: Agency_Code, dtype: int64
TYPE: 2
Airlines
                  1163
Travel Agency
                  1837
Name: Type, dtype: int64
CLAIMED :
Yes
         924
        2076
No
Name: Claimed, dtype: int64
COMMISION: 324
126.75
              1
12.45
              1
46.80
              1
21.35
              1
17.55
              1
7.70
             57
23.76
             61
54.00
             61
63.21
             62
0.00
           1366
Name: Commision, Length: 324, dtype: int64
```

localhost:8888/notebooks/Downloads/DATA MINING.ipynb#Checking-for-Correlations

CHANNEL:

Offline

2

46

```
Online 2954
```

Name: Channel, dtype: int64

```
DURATION: 257
4580
         1
149
141
        1
215
217
        1
        . .
11
        81
10
        81
        81
6
5
        82
8
        83
```

Name: Duration, Length: 257, dtype: int64

SALES:	380				
271.00	1				
62.40	1				
491.50	1				
159.00	1				
100.50	1				
216.00	59				
252.85	60				
22.00	79				
10.00	163				
20.00	225				
Name · Sa	les le	ngth.	380	dtyne.	int6/

Name: Sales, Length: 380, dtype: int64

```
PRODUCT NAME: 5
Gold Plan 109
Silver Plan 427
Bronze Plan 650
Cancellation Plan 678
Customised Plan 1136
```

Name: Product Name, dtype: int64

DESTINATION: 3 EUROPE 215 Americas 320 ASIA 2465

Name: Destination, dtype: int64

Check for duplicate data

```
In [27]:
```

```
# Are there any duplicates ?
dups = insurance_df.duplicated()
print('Number of duplicate rows = %d' % (dups.sum()))
df[dups]

Number of duplicate rows = 139

<ipython-input-27-93b280984e57>:4: UserWarning: Boolean Series key will be r
eindexed to match DataFrame index.
    df[dups]

Out[27]:

    spending advance_payments probability_of_full_payment current_balance credit_limit min
```

0.8696

5.714

3.242

Removing Duplicates

14.85

```
In [28]:
```

63

15.26

```
insurance_df.drop_duplicates(inplace=True)
dups = insurance_df.duplicated()
print('Number of duplicate rows = %d' % (dups.sum()))
print(insurance_df.shape)
```

```
Number of duplicate rows = 0 (2861, 10)
```

Checking for outliers

In [29]:

```
plt.figure(figsize=(15,15))
insurance_df[["Age","Commission","Duration","Sales"]].boxplot(vert=0)
```

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0b2a2fa0>

Checking pairwise distribution of the continuous variables

In [30]:

sns.pairplot(insurance_df[["Age","Agency_Code","Type","Claimed","Commision","Channel","Dura

Out[30]:

<seaborn.axisgrid.PairGrid at 0x24e0b324eb0>

Categorical Variables:

In [31]:

```
sns.countplot(data =insurance_df, x = 'Agency_Code')
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0bf11340>

In [32]:

```
sns.boxplot(data = insurance_df, x='Agency_Code',y='Sales', hue='Claimed')
```

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0befb550>

In [33]:

#Type:

sns.countplot(data =insurance_df, x= 'Type')

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0d228ee0>

In [34]:

sns.boxplot(data =insurance_df, x='Type',y='Sales', hue='Claimed')

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0bed70d0>

In [35]:

```
#Channel
sns.countplot(data =insurance_df, x = 'Channel')
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0a07d700>

In [36]:

```
sns.boxplot(data =insurance_df, x='Channel',y='Sales', hue='Claimed')
```

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0b239100>

In [37]:

```
#Product
sns.countplot(data = insurance_df, x = 'Product Name')
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e08879eb0>

In [38]:

```
sns.boxplot(data = insurance_df, x='Product Name',y='Sales', hue='Claimed')
```

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e088a9fd0>

In [39]:

```
#Destination
sns.countplot(data = insurance_df, x = 'Destination')
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e062b1d90>

In [40]:

```
sns.boxplot(data = insurance_df, x='Destination',y='Sales', hue='Claimed')
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e0625d9d0>

Checking for Correlations

In [41]:

```
#construct heatmap with only continuous variables
plt.figure(figsize=(10,8))
sns.set(font_scale=1.2)
sns.heatmap(insurance_df[["Age","Commision","Duration","Sales"]].corr(), annot=True)
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e062910d0>

There are mostly positive correlation between different attributes. Only the "Sales" & "Commision" are higly correlated.

Converting all objects to categorical codes

In [42]:

```
for feature in insurance_df.columns:
    if insurance_df[feature].dtype == 'object':
        print('\n')
        print('feature:',feature)
        print(pd.Categorical(insurance_df[feature].unique()))
        print(pd.Categorical(insurance_df[feature].unique()).codes)
        insurance_df[feature] = pd.Categorical(insurance_df[feature]).codes
```

```
feature: Agency_Code
[C2B, EPX, CWT, JZI]
Categories (4, object): [C2B, CWT, EPX, JZI]
[0 2 1 3]
feature: Type
[Airlines, Travel Agency]
Categories (2, object): [Airlines, Travel Agency]
[0 1]
feature: Claimed
[No, Yes]
Categories (2, object): [No, Yes]
[0 1]
feature: Channel
[Online, Offline]
Categories (2, object): [Offline, Online]
[1 0]
feature: Product Name
[Customised Plan, Cancellation Plan, Bronze Plan, Silver Plan, Gold Plan]
Categories (5, object): [Bronze Plan, Cancellation Plan, Customised Plan, Go
ld Plan, Silver Plan]
[2 1 0 4 3]
feature: Destination
[ASIA, Americas, EUROPE]
Categories (3, object): [ASIA, Americas, EUROPE]
[0 1 2]
```

In [43]:

```
insurance_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2861 entries, 0 to 2999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype		
0	Age	2861 non-null	int64		
1	Agency_Code	2861 non-null	int8		
2	Type	2861 non-null	int8		
3	Claimed	2861 non-null	int8		
4	Commision	2861 non-null	float64		
5	Channel	2861 non-null	int8		
6	Duration	2861 non-null	int64		
7	Sales	2861 non-null	float64		
8	Product Name	2861 non-null	int8		
9	Destination	2861 non-null	int8		
dtypes: float64(2), int64(2), int8(6)					

In [44]:

memory usage: 208.5 KB

```
insurance_df.head()
```

Out[44]:

	,	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destina
()	48	0	0	0	0.70	1	7	2.51	2	
	1	36	2	1	0	0.00	1	34	20.00	2	
;	2	39	1	1	0	5.94	1	3	9.90	2	
;	3	36	2	1	0	0.00	1	4	26.00	1	
	4	33	3	0	0	6.30	1	53	18.00	0	

Proportion of 1s and 0s

In [45]:

```
insurance_df.Claimed.value_counts(normalize=True)
```

Out[45]:

0 0.6805311 0.319469

Name: Claimed, dtype: float64

So Approx 68% of customers have not claimed there insurance & There is no issue of class imbalance here as we have reasonable proportions in both the classes. The model is giving an accuracy of 68%. let see the performance of the model after using the best grid paramaters

Extracting the target column into separate vectors for training set and test set

In [46]:

```
x=insurance_df.drop("Claimed",axis=1)
y=insurance_df.pop("Claimed")
x.head()
```

Out[46]:

	Age	Agency_Code	Туре	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	0	0	0.70	1	7	2.51	2	0
1	36	2	1	0.00	1	34	20.00	2	0
2	39	1	1	5.94	1	3	9.90	2	1
3	36	2	1	0.00	1	4	26.00	1	0
4	33	3	0	6.30	1	53	18.00	0	0

Splitting data into training and test set

In [47]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, train_labels, test_labels = train_test_split(x, y, test_size=.30, random_s
```

Checking the dimensions of the training and test data

In [48]:

```
print('x_train',x_train.shape)
print('x_test',x_test.shape)
print('train_labels',train_labels.shape)
print('test_labels',test_labels.shape)
```

```
x_train (2002, 9)
x_test (859, 9)
train_labels (2002,)
test_labels (859,)
```

In [49]:

```
from sklearn.tree import DecisionTreeClassifier
```

```
In [50]:
insurance_model=DecisionTreeClassifier(criterion='gini')

In [51]:
insurance_model.fit(x_train,train_labels)

Out[51]:
DecisionTreeClassifier()

In [52]:
from sklearn import tree
from sklearn.model_selection import GridSearchCV

In [53]:
train_char_labels=["No","Yes"]

In [54]:
claimed_tree_file=open("D:\claimed_tree_file.dot","w")

In [55]:
dot_data=tree.export_graphviz(insurance_model,out_file=claimed_tree_file,feature_names=list)
```

Finding Best Parameters using best grid

```
In [56]:
```

```
param_grid = {
    'criterion': ['gini'],
    'max_depth': [10,12,14,15],
    'min_samples_leaf': [90,100,110],
    'min_samples_split': [310,300,295],
}
dtcl = DecisionTreeClassifier(random_state=1)
grid_search = GridSearchCV(estimator = dtcl, param_grid = param_grid, cv = 10)
```

```
In [57]:
```

Generating Tree using best parameters

```
In [58]:
```

```
train_char_label = ['no', 'yes']
tree_regularized = open("D:\claimed_tree_file.dot","w")
dot_data = tree.export_graphviz(best_grid, out_file= tree_regularized , feature_names = lis
tree_regularized.close()
dot_data
```

Variables Importance

```
In [59]:
```

```
rint (pd.DataFrame(best_grid.feature_importances_, columns = ["Imp"], index = x_train.columr
```

```
Imp
Agency_Code
             0.624673
Sales
             0.239683
Product Name 0.098589
Duration
             0.022802
Commision
             0.007980
             0.006274
Age
             0.000000
Type
Channel
             0.000000
Destination
             0.000000
```

looking at the above important parameters the model higly depends upon at "Agency Code" i.e 62.46% and "Sales" i.e 23.9%

Predicting on Training and testing data

In [60]:

```
ytrain_predict = best_grid.predict(x_train)
ytest_predict = best_grid.predict(x_test)
```

Getting the Predicted Classes and Probs

In [61]:

```
ytest_predict
ytest_predict_prob=best_grid.predict_proba(x_test)
ytest_predict_prob
pd.DataFrame(ytest_predict_prob).head(10)
```

Out[61]:

	0	1
0	0.309091	0.690909
1	0.682927	0.317073
2	0.787129	0.212871
3	0.309091	0.690909
4	0.787129	0.212871
5	0.655172	0.344828
6	0.554054	0.445946
7	0.682927	0.317073
8	0.686957	0.313043
9	0.181818	0.818182

Model Evaluation

AUC and ROC for the training data

In [62]:

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
# predict probabilities
probs = best_grid.predict_proba(x_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
insurance_train_auc = roc_auc_score(train_labels, probs)
print('AUC: %.3f' % insurance_train_auc)
# calculate roc curve
insurance_train_fpr, insurance_train_tpr,insurance_train_thresholds = roc_curve(train_label
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
# plot the roc curve for the model
plt.plot(insurance_train_fpr, insurance_train_tpr)
```

AUC: 0.806

Out[62]:

[<matplotlib.lines.Line2D at 0x24e05e6a5e0>]

AUC and ROC for the test data

In [63]:

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
# predict probabilities
probs = best_grid.predict_proba(x_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
insurance_test_auc = roc_auc_score(test_labels, probs)
print('AUC: %.3f' % insurance_test_auc)
# calculate roc curve
insurance_test_fpr, insurance_test_tpr,insurance_test_thresholds = roc_curve(test_labels, p
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
# plot the roc curve for the model
plt.plot(insurance_test_fpr, insurance_test_tpr)
```

AUC: 0.803

Out[63]:

[<matplotlib.lines.Line2D at 0x24e09025df0>]

Confusion Matrix for the training data

In [64]:

from sklearn.metrics import classification_report,confusion_matrix

In [65]:

```
confusion_matrix(train_labels, ytrain_predict)
```

Out[65]:

In [66]:

```
#Train Data Accuracy
insurance_train_acc=best_grid.score(x_train,train_labels)
insurance_train_acc
```

Out[66]:

0.7597402597402597

The model is tuned now and increases the accuracy from 68% to 75.9%

In [67]:

```
print(classification_report(train_labels, ytrain_predict))
```

	precision	recall	f1-score	support
0	0.80	0.86	0.83	1349
1	0.66	0.55	0.60	653
			0.76	2002
accuracy			0.76	2002
macro avg	0.73	0.71	0.71	2002
weighted avg	0.75	0.76	0.75	2002

In [68]:

```
insurance_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(insurance_metrics).transpose()
insurance_train_f1=round(df.loc["1"][2],2)
insurance_train_recall=round(df.loc["1"][1],2)
insurance_train_precision=round(df.loc["1"][0],2)
print ('insurance_train_precision ',insurance_train_precision)
print ('insurance_train_recall ',insurance_train_recall)
print ('insurance_train_f1 ',insurance_train_f1)
```

```
insurance_train_precision 0.66
insurance_train_recall 0.55
insurance_train_f1 0.6
```

Confusion Matrix for test data

```
In [69]:
```

```
confusion_matrix(test_labels, ytest_predict)
```

Out[69]:

```
array([[533, 65],
[120, 141]], dtype=int64)
```

In [70]:

```
#Test Data Accuracy
insurance_test_acc=best_grid.score(x_test,test_labels)
insurance_test_acc
```

Out[70]:

0.7846332945285215

In [71]:

```
print(classification_report(test_labels, ytest_predict))
```

	precision	recall	f1-score	support
0	0.82	0.89	0.85	598
1	0.68	0.54	0.60	261
accuracy			0.78	859
macro avg	0.75	0.72	0.73	859
weighted avg	0.78	0.78	0.78	859

In [72]:

```
insurance_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(insurance_metrics).transpose()
insurance_test_f1=round(df.loc["1"][2],2)
insurance_test_recall=round(df.loc["1"][1],2)
insurance_test_precision=round(df.loc["1"][0],2)
print ('insurance_test_precision ',insurance_test_precision)
print ('insurance_test_recall ',insurance_test_recall)
print ('insurance_test_f1 ',insurance_test_f1)
```

```
insurance_test_precision 0.68
insurance_test_recall 0.54
insurance_test_f1 0.6
```

Cart Conclusion

Train Data:

AUC: 80.6% Accuracy: 75.9% Precision: 66% f1-Score: 60%

Test Data:

AUC: 80.3% Accuracy: 78.4% Precision: 68% f1-Score: 60%

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

Agency_code is the most important variable for predicting insurance claimed.

Building a Random Forest Classifier

```
In [73]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

In [74]:

In [75]:

```
rfcl.fit(x_train,train_labels)
```

Out[75]:

In [76]:

```
rfcl.oob_score_
```

Out[76]:

0.7597402597402597

In [77]:

```
In [78]:
rfcl=RandomForestClassifier()
In [79]:
grid_search=GridSearchCV(estimator=rfcl,param_grid=param_grid,cv=3)
In [80]:
grid_search.fit(x_train,train_labels)
Out[80]:
GridSearchCV(cv=3, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [10, 20], 'max_features': [5, 6],
                          'min_samples_leaf': [21, 22],
                          'min_samples_split': [60, 70],
                          'n_estimators': [301, 501]})
In [81]:
grid_search.best_params_
Out[81]:
{'max_depth': 20,
 'max_features': 6,
 'min_samples_leaf': 22,
 'min_samples_split': 60,
 'n_estimators': 301}
In [82]:
best_grid=grid_search.best_estimator_
In [83]:
best grid
Out[83]:
RandomForestClassifier(max depth=20, max features=6, min samples leaf=22,
                       min_samples_split=60, n_estimators=301)
```

Predicting the Training and Testing data

```
In [84]:

ytrain_predict = best_grid.predict(x_train)
ytest_predict = best_grid.predict(x_test)
```

RF Model Performance Evaluation on Training data

In [85]:

```
confusion_matrix(train_labels,ytrain_predict)
```

Out[85]:

```
array([[1197, 152], [ 271, 382]], dtype=int64)
```

In [86]:

```
rf_train_acc=best_grid.score(x_train,train_labels)
rf_train_acc
```

Out[86]:

0.7887112887112887

In [87]:

```
print(classification_report(train_labels,ytrain_predict))
```

	precision	recall	f1-score	support
0	0.82	0.89	0.85	1349
1	0.72	0.58	0.64	653
accuracy			0.79	2002
macro avg	0.77	0.74	0.75	2002
weighted avg	0.78	0.79	0.78	2002

In [88]:

```
rf_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(rf_metrics).transpose()
rf_train_precision=round(df.loc["1"][0],2)
rf_train_recall=round(df.loc["1"][1],2)
rf_train_f1=round(df.loc["1"][2],2)
print ('rf_train_precision ',rf_train_precision)
print ('rf_train_recall ',rf_train_recall)
print ('rf_train_f1 ',rf_train_f1)
```

```
rf_train_precision 0.72
rf_train_recall 0.58
rf_train_f1 0.64
```

In [89]:

```
rf_train_fpr, rf_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(x_train)[:,1])
plt.plot(rf_train_fpr,rf_train_tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_train_auc=roc_auc_score(train_labels,best_grid.predict_proba(x_train)[:,1])
print('Area under Curve is', rf_train_auc)
```

Area under Curve is 0.8498848333006015

RF Model Performance Evaluation on Test data

```
In [90]:
```

```
confusion_matrix(test_labels,ytest_predict)
Out[90]:
```

```
array([[534, 64], [128, 133]], dtype=int64)
```

In [91]:

```
rf_test_acc=best_grid.score(x_test,test_labels)
rf_test_acc
```

Out[91]:

0.7764842840512224

In [92]:

```
print(classification_report(test_labels,ytest_predict))
```

	precision recall		f1-score	support
0	0.81	0.89	0.85	598
1	0.68	0.51	0.58	261
accuracy			0.78	859
macro avg	0.74	0.70	0.71	859
weighted avg	0.77	0.78	0.77	859

In [93]:

```
rf_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(rf_metrics).transpose()
rf_test_precision=round(df.loc["1"][0],2)
rf_test_recall=round(df.loc["1"][1],2)
rf_test_f1=round(df.loc["1"][2],2)
print ('rf_test_precision ',rf_test_precision)
print ('rf_test_recall ',rf_test_recall)
print ('rf_test_f1 ',rf_test_f1)
```

```
rf_test_precision 0.68
rf_test_recall 0.51
rf_test_f1 0.58
```

In [94]:

```
rf_test_fpr, rf_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(x_test)[:,1])
plt.plot(rf_test_fpr,rf_test_tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_test_auc=roc_auc_score(test_labels,best_grid.predict_proba(x_test)[:,1])
print('Area under Curve is', rf_test_auc)
```

Area under Curve is 0.8133016824920872

In [95]:

```
# Variable Importance
print (pd.DataFrame(best_grid.feature_importances_, columns = ["Imp"], index = x_train.colu
```

Imp Agency_Code 0.357309 Product Name 0.233230 Sales 0.189522 0.070150 Commission Duration 0.067550 Age 0.052655 Destination 0.017758 Type 0.011695 Channel 0.000131

Random Forest Conclusion

Train Data:

AUC: 84.9% Accuracy: 78.8% Precision: 72% f1-Score: 0.64%

Test Data:

AUC: 81.5% Accuracy: 77% Precision: 68% f1-Score: 58%

Training and Test set results are almost similar, and with the overall measures high, the model is a good modeAgency_code is again the most important variable for predicting customer insurance claim

Building a Neural Network Classifier

```
In [96]:
```

```
from sklearn.neural_network import MLPClassifier
```

Scaling the data using standardScaler

```
In [97]:
```

```
from sklearn.preprocessing import StandardScaler
```

```
In [98]:
```

```
sc=StandardScaler()
```

```
In [99]:
```

```
x_train=sc.fit_transform(x_train)
```

In [100]:

```
x_train
```

Out[100]:

```
In [101]:
x test=sc.transform(x test)
In [102]:
x_test
Out[102]:
array([[ 0.36080528, -1.24662389, -1.19074531, ..., 1.16973368,
         1.80654211, -0.442239 ],
       [-0.20256311, 0.73490928, 0.83981015, ..., -0.29350776,
         0.25597521, -0.442239 ],
       [-0.20256311, -0.25585731, 0.83981015, ..., -0.31339648,
         0.25597521, 3.04344005],
       [0.92417366, -1.24662389, -1.19074531, ..., -0.77651949,
         0.25597521, -0.442239
                               ],
       [-0.20256311, 0.73490928, 0.83981015, ..., -0.57763231,
         0.25597521, -0.442239 ],
       [-0.95372095, 1.72567587, -1.19074531, ..., -0.44977626,
        -1.2945917 , -0.442239 ]])
In [103]:
param_grid = {
    'hidden_layer_sizes': [520,100,500],
    'max_iter': [2500,3000],
    'solver': ['adam'],
    'tol': [0.01],
nncl = MLPClassifier(random_state=1)
grid search = GridSearchCV(estimator = nncl, param grid = param grid, cv = 10)
In [104]:
grid_search.fit(x_train, train_labels)
grid_search.best_params_
Out[104]:
{'hidden_layer_sizes': 100, 'max_iter': 2500, 'solver': 'adam', 'tol': 0.01}
In [105]:
best grid = grid search.best estimator
best_grid
Out[105]:
MLPClassifier(hidden layer sizes=100, max iter=2500, random state=1, tol=0.0
1)
```

Predicting the Training and Testing data

```
In [106]:
```

```
ytrain_predict = best_grid.predict(x_train)
ytest_predict = best_grid.predict(x_test)
```

NN Model Performance Evaluation on Training data

```
In [107]:
```

```
confusion_matrix(train_labels,ytrain_predict)
Out[107]:
array([[1189,
               160],
       [ 325, 328]], dtype=int64)
In [108]:
nn_train_acc=best_grid.score(x_train,train_labels)
nn_train_acc
```

Out[108]:

0.7577422577422578

In [109]:

```
print(classification_report(train_labels,ytrain_predict))
```

	precision	recall	f1-score	support
0	0.79	0.88	0.83	1349
1	0.67	0.50	0.57	653
accuracy			0.76	2002
macro avg	0.73	0.69	0.70	2002
weighted avg	0.75	0.76	0.75	2002

In [110]:

```
nn_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn train precision=round(df.loc["1"][0],2)
nn train recall=round(df.loc["1"][1],2)
nn_train_f1=round(df.loc["1"][2],2)
print ('nn_train_precision ',nn_train_precision)
print ('nn_train_recall ',nn_train_recall)
print ('nn_train_f1 ',nn_train_f1)
```

```
nn_train_precision 0.67
nn_train_recall 0.5
nn_train_f1 0.57
```

In [111]:

```
nn_train_fpr, nn_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(x_train)[:,1])
plt.plot(nn_train_fpr,nn_train_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_train_auc=roc_auc_score(train_labels,best_grid.predict_proba(x_train)[:,1])
print('Area under Curve is', nn_train_auc)
```

Area under Curve is 0.7958881685372977

NN Model Performance Evaluation on Test data

```
In [112]:
```

```
confusion_matrix(test_labels,ytest_predict)
```

Out[112]:

```
array([[532, 66], [137, 124]], dtype=int64)
```

In [113]:

```
nn_test_acc=best_grid.score(x_test,test_labels)
nn_test_acc
```

Out[113]:

0.7636786961583236

In [114]:

```
print(classification_report(test_labels,ytest_predict))
```

	precision	recall	f1-score	support
0	0.80	0.89	0.84	598
Ø	0.00	0.03	0.04	220
1	0.65	0.48	0.55	261
accuracy			0.76	859
macro avg	0.72	0.68	0.69	859
weighted avg	0.75	0.76	0.75	859

In [115]:

```
nn_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn_test_precision=round(df.loc["1"][0],2)
nn_test_recall=round(df.loc["1"][1],2)
nn_test_f1=round(df.loc["1"][2],2)
print ('nn_test_precision ',nn_test_precision)
print ('nn_test_recall ',nn_test_recall)
print ('nn_test_f1 ',nn_test_f1)
```

```
nn_test_precision 0.65
nn_test_recall 0.48
nn_test_f1 0.55
```

In [116]:

```
nn_test_fpr, nn_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(x_test)[:,1])
plt.plot(nn_test_fpr,nn_test_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_test_auc=roc_auc_score(test_labels,best_grid.predict_proba(x_test)[:,1])
print('Area under Curve is', nn_test_auc)
```

Area under Curve is 0.7933276951267956

In [117]:

best_grid.score

Out[117]:

<bound method ClassifierMixin.score of MLPClassifier(hidden_layer_sizes=100,
max_iter=2500, random_state=1, tol=0.01)>

Neural Network Conclusion

Train Data:

AUC: 79.5% Accuracy: 67% Precision: 50% f1-Score: 57%

Test Data:

AUC: 73.3% Accuracy: 51% Precision: 54% f1-Score: 52%

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

Final Conclusion

Comparison of the performance metrics from the 3 models

In [118]:

Out[118]:

	CART Train	CART Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Accuracy	0.76	0.78	0.79	0.78	0.76	0.76
AUC	0.81	0.80	0.85	0.81	0.80	0.79
Recall	0.55	0.54	0.58	0.51	0.50	0.48
Precision	0.66	0.68	0.72	0.68	0.67	0.65
F1 Score	0.60	0.60	0.64	0.58	0.57	0.55

In [119]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(insurance_train_fpr, insurance_train_tpr,color='red',label="CART")
plt.plot(rf_train_fpr,rf_train_tpr,color='green',label="RF")
plt.plot(nn_train_fpr,nn_train_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[119]:

<matplotlib.legend.Legend at 0x24e091dd1c0>

ROC Curve for the 3 models on the Test data

In [120]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(insurance_test_fpr,insurance_test_tpr,color='red',label="CART")
plt.plot(rf_test_fpr,rf_test_tpr,color='green',label="RF")
plt.plot(nn_test_fpr,nn_test_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[120]:

<matplotlib.legend.Legend at 0x24e0922dac0>

In []: