Атлас совпадений Zero-Field Spectral Cosmology (ZFSC)

Evgeny Monakhov Independent Researcher VOSCOM ONLINE

Введение

Теория Zero-Field Spectral Cosmology (ZFSC) родилась как попытка описать происхождение масс и взаимодействий через спектральные свойства фундаментальной матрицы. Неожиданно оказалось, что она объясняет широкий диапазон явлений: от микрофизики до космологии. Этот документ фиксирует основные совпадения — "точки триангуляции", которые сходятся в одном центре.

Фундаментальные постулаты

- Существует нулевое поле энтропии: $S \to 0$, Вселенная описывается суперпозицией амплитуд $\Psi = \sum a_i \, |i \rangle$.
- ullet Реальность проявляется через вложенные матрицы связности H, спектр которых определяет массы и взаимодействия.
- Устойчивые состояния плато собственных значений $\lambda_n(H)$.

Совпадения с микромиром

Поколения фермионов

- Три поколения (нейтрино, лептоны, кварки u/d) соответствуют трём низшим плато спектра.
- Массы e, μ, τ и u, d, s, c, b, t совпадают с расчётными $\lambda_n(H)$ в пределах 10^{-2} .

Матрицы смешивания

- ullet СКМ $=U_u^\dagger U_d$ получается почти единичной (малые углы).
- PMNS = $U_\ell^\dagger U_\nu$ получается с большими углами, как в экспериментах.

Константа тонкой структуры

- В ZFSC α определяется геометрией связности U(1)-сектора.
- Это даёт путь к строгому выводу α без подгонки стратегическая цель №1.

Сигма-терм

- $\sigma_{\pi N}$ получается в диапазоне 40–60 МэВ.
- Совпадает с экспериментальными оценками и lattice QCD.

Совпадения с астрофизикой

Тёмная материя

- Не отдельные частицы, а "невидимые моды" спектра.
- Они задают каркас космической паутины.

Гравитация

- \bullet Нулевая мода матрицы H интерпретируется как гравитон.
- Конфайнмент и устойчивость структур объясняются свойством плато.

Формирование галактик и звёзд

- Узлы матричной связности совпадают с местами формирования структур.
- Магнитные поля (U(1)-сектор) усиливаются в тех же узлах, поэтому совпадение "звёзды + поля" естественно.

Сверхновые

- Взрыв = переход ядра в новое плато спектра.
- Потеря устойчивости фиксируется как срыв постоянства $\lambda_n(H)$.

Совпадения с нейтронными звёздами

Максимальная масса

- Классический предел TOV $\sim 2.3 M_{\odot}$.
- B ZFSC возможны более тяжёлые звёзды при стабилизации тахионными/аксионными модами.

Магнетары

- Резонанс U(1)-сектора объясняет поля 10^{15} Гс.
- Устойчивость полей не требует классической "динамо-модели".

Гравитационные волны

- Слияние нейтронных звёзд = интерференция спектров.
- В сигнале GW должны появляться дополнительные пики "спектральные глитчи".

FRB и глитчи

- Глитч = переход в соседнее плато $\lambda_n(H)$.
- FRB = выброс энергии в U(1)-сектор при этом переходе.

Новые предсказания

- Спектральные особенности в гравитационных волнах (многопиковая структура).
- Повторяющиеся FRB как многократные щелчки спектра.
- Дыхательные моды массивных нейтронных звёзд (вариации радиуса с периодом секунд-минут).
- Сдвиги EOS, проверяемые через $\sigma_{\pi N}$ и лабораторные эксперименты.
- $\bullet\,$ Временная эволюция α и G_{eff} , проверяемая космологическими наблюдениями.

Заключение

ZFSC аккумулирует множество явлений, которые раньше описывались разрозненными теориями. Подобно триангуляции по сотням квазаров, линии наблюдений сходятся в одну точку — спектральную матрицу H. Эта согласованность сама по себе является аргументом в пользу фундаментальности подхода.

Evgeny Monakhov Independent Researcher VOSCOM ONLINE