I. Автоматизированный склад*

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Склад представляет собой набор одинаковых квадратов, вокруг которых расположены проезды. В углах каждого из квадратов расположены перекрестки, образованные из пересекающихся под прямым углом проездов.

По складу движутся роверы и при проезде перекрестков они руководствуются следующими правилами:

- На перекрестке неравнозначных дорог ровер, движущийся по второстепенной дороге, должен уступить дорогу роверу, приближающимся по главной.
- Если главная дорога на перекрестке меняет направление, роверы, движущиеся по главной дороге, должны руководствоваться между собой правилами проезда перекрестков равнозначных дорог.
- На перекрестке равнозначных дорог ровер обязан уступить дорогу транспортным средствам, приближающимся справа.

Для тестирования был выбран перекресток, для которого необходимо определить в каком порядке его проедут N роверов, подъезжающих к перекрестку с каждой из четырех сторон в заданные моменты времени. Стороны обозначены номерами 1, 2, 3 и 4, если перечислять по часовой стрелке. Известно, что за единицу времени с каждой из сторон перекрестка приезжает не более одного ровера, а все роверы соблюдают правила и не обгоняют друг-друга. Поскольку это только начало тестирования, все роверы хотят проехать перекресток прямо. Роверы, приближающиеся со сторон a и b находятся на главной дороге, остальные — на второстепенной. На проезд перекрестка ровер тратит одну единицу времени.

Таким образом, ровер проезжает перекресток только если:

- нет роверов, которые находятся перед этим ровером в очереди к перекрестку,
- нет роверов, которым нужно уступить дорогу

Если два ровера, стоящие первыми в очереди на проезд перекрестка не должны уступать друг другу дорогу, то они проедут перекресток одновременно.

Определите, в каком порядке роверы проедут перекресток.

Формат ввода

Первая строка входного файла содержит одно целое число N ($1 \le N \le 100$) — количество роверов. Вторая строка содержит числа a и b — стороны перекрестка, составляющие главную дорогу ($1 \le a, b \le 4, a \equiv b$).

Каждая из следующих N строк содержит описание ровера, состоящее из двух целых чисел d_i и t_i ($1 \le d_i \le 4, 1 \le t_i \le 100$) — направление и время приезда i-ого ровера.

Формат вывода

В выходной файл выведите N целых чисел по одному на строке. i-ая строка должна содержать время, в которое i-ый ровер проедет перекресток.

Роверы занумерованы в порядке появления во входном файле.

Пример 1

Ввод	Вывод
4	1
1 3	1
1 1	2
3 1	3
2 1	
2 2	

Пример 2

Ввод	Вывод
4	1
1 2	2
1 1	3
2 1	4
3 1	
4 1	

Пример 3

Ввод	Вывод
1	1
1 4	
1 1	