# SMT Solver raSAT for Polynomial Constraints

Vu Xuan Tung<sup>1</sup>, To Van Khanh<sup>2</sup>, and Mizuhito Ogawa<sup>1</sup>

Japan Advanced Institute of Science and Technology {tungvx,mizuhito}@jaist.ac.jp
University of Engineering and Technology, Vietnam National University, Hanoi khanhtv@vnu.edu.vn

**Abstract.** This paper presents an SMT solver **raSAT** for polynomial constraints, which aims to handle them over both reals and integers with unified methodologies, (1) **raSAT** loop for inequations, which extends the interval constraint propagation with testing to accelerate SAT detection, and (2) the Intermediate Value Theorem for equations over reals.

### 1 Introduction

Polynomial constraint solving is to find an instance that satisfies given polynomial inequations/equations. Various techniques are implemented in SMT solvers. For solving over reals ( $QF\_NRA$ ), techniques vary **QE-CAD** (RAHD [15], Z3 from 4.3 [10]), **Virtual substitution** (SMT-RAT [5], Z3 from 3.1), **Interval constraint propagation** (**ICP**) [1] (iSAT3 [6], dReal [8], RSolver [16]), and **Linearization** (CORD [7]). For that over integers ( $QF\_NIA$ ), we have **Bitblasting** (UCLID [3], MiniSmt [17]) and **Linearization** (Barcelogic [2]).

This paper presents an SMT solver **raSAT** (refinement of approximations for SAT) for polynomial constraints over both reals and integers. For inequations, it applies a simple iterative approximation refinement, **raSAT** *loop*, which extends ICP with testing to accelerate SAT detection. For equations, a non-constructive reasoning based on the Intermediate Value Theorem is employed (Section 4).

In a floating point arithmetic, round-off errors may violate the soundness. To get rid of such traps, we apply the outward rounding [9] in an interval arithmetic. We also integrate **iRRAM**<sup>3</sup>, which guarantees the round-off error bounds, to confirm that a detected SAT instance is really SAT.

Currently, **raSAT** applies an incremental search, *incremental widening* and *deepening*, and an SAT-directed strategy based on measures, *SAT likelihood* and *sensitivity* (Section 3), but does not have UNSAT-directed strategies, e.g., UNSAT core. Note that the sensitivity works only with Affine intervals [14].

At the SMT Competition 2015, **raSAT** participated two categories of main tracks,  $QF\_NRA$  and  $QF\_NIA$ . **raSAT** is originally developed for  $QF\_NRA$ , however  $QF\_NIA$  is fairly easy to adapt, i.e., stop interval decompositions when the width becomes smaller than 1, and generate integer-valued test instances.

<sup>3</sup> http://irram.uni-trier.de

As the overall rating (Main Track),  $\mathbf{raSAT}$  is  $8^{th}$  among 19 SMT solvers<sup>4</sup>. The results are summarized as

- $-3^{rd}$  in  $QF_NRA$ , **raSAT** solved 7952 over 10184 (where Z3 4.4 solves 10000).
- $-2^{nd}$  in QF\_NIA, raSAT solved 7917 over 8475 (where Z3 4.4 solves 8459; CVC4 (exp) solves 8277, but with one wrong detection).

# ICP Overview and raSAT Loop

Our target problem is solving nonlinear constraints. First, we discuss on solving polynomial inequations, and that for equations are shown later in Section 4. Let  $\mathbb{R}$  be the set of real numbers and  $\mathbb{R}^{\infty} = \mathbb{R} \cup \{-\infty, \infty\}$ . The normal arithmetic on  $\mathbb{R}$  is extended to those on  $\mathbb{R}^{\infty}$  as in [13]. The set of all intervals is defined as  $\mathbb{I} = \{[l,h] \mid l \leq h \in \mathbb{R}^{\infty}\}$ . A box for a sequence of variables  $x_1, \dots, x_n$  is of the form  $B = I_1 \times \dots \times I_n$  where  $I_1, \dots, I_n \in \mathbb{I}$ .

**Definition 1.** A polynomial inequality constraint is 
$$\psi(x_1,\cdots,x_n) = \bigwedge_{j=1}^m p_j(x_1,...,x_n) > 0$$

where  $p_j(x_1, \dots, x_n) > 0$  is an atomic polynomial inequation (API). When  $x_1, \dots, x_n$  are clear from the context, we denote  $\psi$  for  $\psi(x_1, \dots, x_n)$ ,  $p_i$  for  $p_i(x_1, \dots, x_n)$ , and  $var(p_i)$  for the set of variables appearing in  $p_i$ .

As an SMT problem,  $\psi$  is satisfiable (SAT) if there exists an assignment on variables that makes it true. Otherwise,  $\psi$  is said to be unsatisfiable (UNSAT). Let  $\mathbb{S}(\psi) = \{(r_1, \dots, r_n) \in \mathbb{R}^n \mid \psi(r_1, \dots, r_n) = true\}.$ 

**Algorithm 1** ICP starting from the initial box  $B_0 = I_1 \times \cdots \times I_n$ 

```
2: while S \neq \emptyset do
        B \leftarrow S.choose()
3:
                                                                        ▷ Get one box from the set
        B' \leftarrow prune(B, \psi)
4:
        if B' = \emptyset then
5:
                                                      ▶ The box does not satisfy the constraint
6:
            S \leftarrow S \setminus \{B\}
7:
            continue
8:
        else if B' satisfies \psi by using IA then
9:
            return SAT
```

1:  $S \leftarrow \{B_0\}$ 

<sup>10:</sup>  $\triangleright$  IA cannot conclude the constraint  $\implies$  Refinement Step  $\{B_1, B_2\} \leftarrow split(B')$  $\triangleright$  split B' into two smaller boxes  $B_1$  and  $B_2$ 11:  $S \leftarrow (S \setminus \{B\}) \cup \{B_1, B_2\}$ 12:

end if 13: 14: end while

<sup>15:</sup> return UNSAT

<sup>4</sup> http://smtcomp.sourceforge.net/2015/results-competition-main.shtml

#### 2.1 ICP Overview

Starting with a box B, ICP [1] tries to prove UNSAT/SAT of  $\psi$  inside B by an interval arithmetic (IA). If it fails, it iteratively decomposes boxes. Algorithm 1 describes the basic ICP for solving polynomial inequations where two functions  $prune(B,\psi)$  and split(B) satisfy the following properties.

- If  $B' = prune(B, \psi)$ , then  $B' \subseteq B$  and  $B' \cap \mathbb{S}(\psi) = B \cap \mathbb{S}(\psi)$ . - If  $\{B_1, B_2\} = split(B)$ , then  $B = B_1 \cup B_2$  and  $B_1 \cap B_2 = \emptyset$ .
- ICP concludes SAT (line 8) only when it finds a box in which the constraint becomes valid by an IA. Although the number of boxes increases exponentially, ICP always detects SAT of the inequations  $\psi$  if  $I_1, \dots, I_n$  are bounded (Fig. 1a). However, ICP may miss to detect UNSAT in cases of *kissing* and *convergence* (Fig. 1c,d).



Fig. 1: Scenarios of solving polynomial inequations with ICP

# 2.2 raSAT Loop

ICP is extended to **raSAT** loop [11], which is displayed in Algorithm 2.

Its implementation **raSAT** adapts various IAs including Affine Intervals (AI) [4, 14, 11] and Classical Interval (CI) [13]. An AI introduces noise symbols  $\epsilon$ 's, which are interpreted to values in [-1,1]. AIs vary depending on the treatments of the multiplication among noise symbols. For the multiplication of the same noise symbols,  $AF_2$  [12] describes by  $\epsilon_+$  (or  $\epsilon_-$ ), which is interpreted in [0,1] (or [-1,0]), and CAI [11] describes  $\epsilon \epsilon = |\epsilon| + [-\frac{1}{4},0]$ . Mostly, the product of different noise symbols are simply regarded as any value in [-1,1] (e.g.,  $\epsilon_+$ ).

Although precision is incomparable, an AI partially preserves the dependency among values, which is lost in CI. For instance, consider  $x \in [2, 4] = 3 + \epsilon$ . Then, x - x is evaluated to [-2, 2] by CI, where 0 by an AI.

Example 1. Let  $g = x^3 - 2xy$ ,  $x = [0, 2] = 1 + \epsilon_1$ , and  $y = [1, 3] = 2 + \epsilon_2$ . CI estimates the range of g as [-12, 8],  $AF_2$  does  $-3 - \epsilon_1 - 2\epsilon_2 + 3\epsilon_+ + 3\epsilon_\pm$  (= [-9, 6]), and CAI does  $[-4, -\frac{11}{4}] + [-\frac{1}{4}, 0]\epsilon_1 - 2\epsilon_2 + 3|\epsilon_1| + [-2, 2]\epsilon_\pm$  (= [-8, 4.5]).

# 3 SAT directed Strategies of raSAT

Performance of ICP is affected by the number of variables because the initial box  $I_1 \times \cdots \times I_n$  will be decomposed into exponentially many boxes.

**Algorithm 2 raSAT** loop starting from the initial box  $\Pi = \bigwedge_{i=1}^{n} x_i \in I_i^0$ 

```
1: while \Pi is satisfiable do
                                                                                                                    \triangleright Some more boxes exist
             \pi = \{x_i \in I_{ik} \mid i \in \{1, \cdots, n\}, k \in \{1, \cdots, i_k\}\} \leftarrow \text{a solution of } \Pi
            B \leftarrow \text{the box represented by } \bigwedge_{i=1}^{n} \bigwedge_{k=1}^{i_k} x_i \in I_{ik}
if B does not satisfy \psi by using IA then
II \leftarrow II \land \neg (\bigwedge_{i=1}^{n} \bigwedge_{k=1}^{i_k} x_i \in I_{ik})
else if B satisfies \psi by using IA then
II \leftarrow II \land \neg (\bigwedge_{i=1}^{n} \bigwedge_{k=1}^{i_k} x_i \in I_{ik})
 3:
 4:
 5:
 6:
                   return SAT
 7:
 8:
             else if B satisfies \psi by using testing then
                                                                                                                           \triangleright Different from ICP
 9:
                   return SAT
10:
              else \triangleright Neither IA nor testing conclude the constraint \implies Refinement Step
11:
                    choose (x_i \in I_{ik}) \in \pi such that \forall k_1 \in \{1, \dots, i_k\} I_{ik} \subseteq I_{ik_1}
                                                               \triangleright split I_{ik} into two smaller intervals I_1 and I_2
12:
                    \{I_1, I_2\} \leftarrow split(I_{ik})
                    \Pi \leftarrow \Pi \land (x_i \in I_{ik} \leftrightarrow (x_i \in I_1 \lor x_i \in I_2)) \land \neg (x_i \in I_1 \land x_i \in I_2)
13:
14:
             end if
15: end while
16: return UNSAT
```

#### 3.1 Incremental Search

Two incremental search strategies are prepared in raSAT.

Incremental Widening. Given  $0 < \delta_0 < \delta_1 < \cdots < \delta_k = \infty$ , incremental widening starts with  $B_0 = [-\delta_0, \delta_0] \times \cdots \times [-\delta_0, \delta_0]$ , and if  $\psi$  remains UNSAT, then enlarge the box to  $B_1 = [-\delta_1, \delta_1] \times \cdots \times [-\delta_1, \delta_1]$ . This continues until either timeout or the result obtained. In **raSAT**,  $AF_2$  is used for  $B_i$  if  $i \neq k$ , and CI is used for  $\delta_k = \infty$ .

Incremental Deepening. To combine depth-first-search and breadth-first search among decomposed boxes,  $\mathbf{raSAT}$  applied incremental deepening. Let  $\gamma_0 > \gamma_1 > \cdots > 0$ . It applies a threshold  $\gamma$ , such that no more decomposition occurs when an interval becomes smaller than  $\gamma$ .  $\gamma$  is initially  $\gamma_0$ . If neither SAT nor UNSAT is detected,  $\mathbf{raSAT}$  restarts with the threshold  $\gamma_1$  (Fig. 2 (b)). This continues until either timeout or the result obtained.



Fig. 2: Incremental Deepening

## 3.2 SAT Directed Heuristics Measure

To reduce an explosion of the number of decomposed boxes, **raSAT** prepares a strategy to select a variable at a box decomposition. (1) First, select a least likely satisfiable *API* with respect to *SAT*-

likelihood. (2) Then, choose a most likely influential variable in such API with respect to *sensitivity*. We assume an Affine interval (AI) for an interval arithmetic (IA).

In line 3 of Algorithm 2, let an AI estimate the range  $range(g_j, B)$  of each polynomial  $g_j$  in a box B as  $[c_1, d_1]\epsilon_1 + \cdots + [c_n, d_n]\epsilon_n$ . Then,  $range(g_j, B)$  is obtained by instantiating [-1, 1] to  $\epsilon_i$ . We define

- The SAT-likelihood of an API  $g_j > 0$  is  $|I \cap (0, \infty)|/|I|$  for  $I = range(g_j, B)$ .
- The sensitivity of a variable  $x_i$  in an API  $g_j > 0$  is  $max(|c_i|, |d_i|)$ .

Example 2. In Example 1, SAT-likelihood of g is  $0.4 = \frac{6}{9-(-6)}$  by  $AF_2$  and  $0.36 = \frac{4.5}{4.5-(-8)}$  by CAI. The sensitivity of x is 1 by  $AF_2$  and  $3\frac{1}{4}$  by CAI, and that of y is 2 by both.

Our strategy consists of three steps:

- 1. Choice of an API with the least SAT likelyhood.
- 2. Choice of a variable with the largest *sensitivity* in the API.
- 3. Choice of a box with the largest SAT likelyhood, where the SAT-likelihood of a box B is the least SAT-likelihood among APIs on B.

The first two steps selects a variable to apply the interval decomposition and the testdata generation. After a box decomposition is applied, the last step compares SAT-likelihood of all boxes (including newly decomposed boxes) to select one to explore next. At the testdata generation,  $\mathbf{raSAT}$  observes the sign of the coefficient of the noise symbol with the largest sensitivity. If positive, first take the upper bound; otherwise, the lower bound. The rest is generated randomly.

The strategy is evaluated on Zankl and Meti-Tarski families of  $QF\_NRA$ . As a comparison with other ICP-based solvers, we compare  $\mathbf{raSAT}$  with a random choice (Random),  $\mathbf{raSAT}$  with the strategy above  $(\mathbf{raSAT})$ ,  $\mathbf{iSAT3}$ , and  $\mathbf{dReal}$ .

Note that (1) **iSAT3** solves over [-1000, 1000] due to the system restriction, while all others solve over  $[-\infty, \infty]$ , and (2) SAT of **dReal** is  $\delta$ -SAT (SAT under tolerance of the width  $\delta$ ); thus **dReal** sometimes answers SAT even for UNSAT problems. The experiments are performed with Intel Xeon E5-2680v2 2.80GHz and 4GB of RAM. The timeout is set to 500 seconds, and the time shows the total of successful cases (either SAT or UNSAT).

| Benchmark              | Random |           | ra   | SAT     | iS.  | AT3    | dReal |         |  |
|------------------------|--------|-----------|------|---------|------|--------|-------|---------|--|
| Matrix-1 (SAT )        | 19     | 230.39(s) | 25   | 414.99  | 11   | 4.68   | 46*   | 3573.43 |  |
| Matrix-1 (UNSAT)       | 2      | 0.01(s)   | 2    | 0.01    | 3    | 0.00   | _ ~   | 0.00    |  |
| Matrix-2,3,4,5 (SAT)   | 1      | 13.43(s)  | 11   | 1264.77 | 3    | 196.40 | 19*   | 2708.89 |  |
| Matrix-2,3,4,5 (UNSAT) |        | 0.0.(5)   |      | 0.00    |      | 0.00   | _ ~   | 0.00    |  |
| Meti-Tarski (SAT)      | 3451   | 895.14(s) | 3473 | 419.25  | 2916 | 811.53 | 3523* | 441.35  |  |
| Meti-Tarski (UNSAT)    | 1060   | 233.46(s) | 1052 | 821.85  | 1225 | 73.83  | 1197  | 55.39   |  |

(\* means  $\delta$ -SAT)

We observe that the strategy is effective for SAT-detection in large problems, like Matrix-2,3,4,5 (in Zankl benchmarks), which often have more than 50 variables (Meta-Tarski has mostly less than 10 variables, and Matrix-1 has mostly less than 30 variables). Comparing with the state-of-the-art tool **Z3 4.4** on Matrix-2,3,4,5, the differences appear that **Z3 4.4** solely solves Matrix-3-7/4-12/5-6 (which have 75, 200, and 258 variables), and raSAT solely solves Matrix-2-3/2-8/3-5/4-3/4-9 (which have 57, 17, 81, 139, and 193 variables).

# Extension for Equations Handling

**Single Equation.** A single equation (g=0) can be solved by finding 2 test cases with g > 0 and g < 0. Then, g = 0 holds somewhere in between by the Intermediate Value Theorem.

**Lemma 1.** For  $\psi = \bigwedge_{j=1}^m g_j > 0 \land g = 0$ . Suppose a box B and let  $[l_g, h_g] = range(g, B),$ 

- (i) If either  $l_g > 0$  or  $h_g < 0$ , then g = 0 (thus  $\psi$ ) is UNSAT in B. (ii) If  $\bigwedge_{j=1}^m g_j > 0$  is IA-valid in B and there are  $\mathbf{t}, \mathbf{t}' \in B$  with  $g(\mathbf{t}) > 0$  and  $g(\mathbf{t'}) < 0$ , then  $\psi$  is SAT.

If neither (i) nor (ii) holds, raSAT continues the decomposition.

Example 3. Let  $\psi = f(x,y) > 0 \land g(x,y) = 0$ . Suppose we find a box  $B = [a, b] \times [c, d]$  such that f(x, y) > 0 is IA-VALID in B. (Fig. 3a). In addition, if we find two points  $(u_1, v_1)$  and  $(u_2, v_2)$  in B such that  $g(u_1, v_1) > 0$ and  $g(u_2, v_2) < 0$ , then the constraint is satisfiable by Lemma 1.



Fig. 3: Example on solving equations using the Intermediate Value Theorem

**Multiple Equations.** Multiple equations are solved by repeated applications of the Intermediate Value Theorem. Let  $\bigwedge_{j=1}^m g_j = 0$  and  $B = [l_1, h_1] \times \cdots [l_n, h_n]$  with  $m \leq n$ . Let  $V = \{x_1, \cdots, x_n\}$  be the set of variables. For  $V' = \{x_{i_1}, \cdots x_{i_k}\} \subseteq V$ , we denote  $B \downarrow_{V'}$  and  $B \uparrow_{V'}$  for  $\{(r_1, \cdots, r_n) \in B \mid r_i = l_i \text{ for } i = i_1, ..., i_k\}$  and  $\{(r_1, \cdots, r_n) \in B \mid r_i = h_i \text{ for } i = i_1, ..., i_k\}$ , respectively.

**Definition 2.** A sequence  $(V_1, \dots, V_m)$  of subsets of V is a check basis of  $(g_1, \dots, g_m)$  in a box B, if, for each j, j' with  $1 \le j, j' \le m$ ,

- 1.  $V_j (\neq \emptyset) \subseteq var(g_j)$ ,
- 2.  $V_j \cap V_{j'} = \emptyset$  if  $j \neq j'$ , and
- 3. either  $g_j > 0$  on  $B \uparrow_{V_j}$  and  $g_j < 0$  on  $B \downarrow_{V_j}$ , or  $g_j < 0$  on  $B \uparrow_{V_j}$  and  $g_j > 0$  on  $B \downarrow_{V_j}$ .

Lemma 2. For a polynomial constraint containing multiple equations

$$\psi = \bigwedge_{j=1}^{m} g_j > 0 \land \bigwedge_{j=m+1}^{m'} g_j = 0$$

and  $B = [l_1, h_1] \times \cdots [l_n, h_n]$ , assume that

- 1.  $\bigwedge_{j=1}^{m} g_j > 0$  is IA-valid in B, and
- 2. there is a check basis  $(V_{m+1}, \dots, V_{m'})$  of  $(g_{m+1}, \dots, g_{m'})$  in B.

Then,  $\psi$  has a SAT instance in B.

The idea is, from the Intermediate Value Theorem, each  $j \in \{m+1, \cdots, m'\}$ ,  $g_j$  has a  $n-|V_j|$  dimensional surface of null points of  $g_j$  between  $B \uparrow_{V_j}$  and  $B \downarrow_{V_j}$ . Since  $V_j$ 's are mutually disjoint (and  $g_j$ ' are continuous), we have the intersection of all such surfaces of null points with the dimension  $n-\sum_{j=m+1}^{m'} |V_j|$ . Thus, this method has a limitation that the number of variables must be greater than or equal to the number of equations.

Example 4. Fig. 3b illustrate Lemma 2 for m=0 and m'=n=2. The blue and red lines represent the null points of  $g_1(x,y)$  and  $g_2(x,y)$  in  $[c_1,d_1]\times[c_2,d_2]$ , respectively.

| Benchmark               | raSAT |            |       | Z3 4.3     |     |          |       |      | iSAT3 |     |          |       |          |
|-------------------------|-------|------------|-------|------------|-----|----------|-------|------|-------|-----|----------|-------|----------|
|                         |       | SAT        | UNSAT |            | SAT |          | UNSAT |      |       | SAT |          | UNSAT |          |
| Zankl (15)              | 11    | 0.07 (s)   | 4     | 0.17 (s)   | 11  | 0.17 (s) | 4     | 0.02 | (s)   | 0   | 0.00 (s) | 4     | 0.05 (s) |
| Meti-Tarski (3528/1573) | 875   | 174.90 (s) | 781   | 401.15 (s) |     |          |       |      |       |     |          |       |          |
| Keymaera (612)          | 0     | 0.00 (s)   | 312   | 66.63 (s)  | 0   | 0.00 (s) | 610   | 2.92 | (s)   | 0   | 0.00 (s) | 226   | 1.63 (s) |

Table 1: Comparison among SMT solvers with equations

## 5 Conclusion

This paper presented an SMT solver **raSAT** for polynomial constraints. There are lots of future works, including

- Support mixed integers (QF\_NIRA).
- Implement UNSAT-directed strategies, e.g. UNSAT core.
- Set search bounds based on QE-CAD.
- Apply Groebner basis to overcome current limitation that the number of variables must be greater than or equal to the number of equations.

## References

- Benhamou, F., Granvilliers, L.: Continuous and Interval Constraints. In: F. Rossi, P.v.B., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 571–604. Elsevier (2006)
- [2] Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodrguez-Carbonell, E., Rubio, A.: The Barcelogic SMT Solver. In: Gupta, A., Malik, S. (eds.) Computer Aided Verification, Lecture Notes in Computer Science, vol. 5123, pp. 294–298. Springer Berlin Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-70545-1\_27
- [3] Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: IN PROC. TACAS 2007. Lecture Notes in Computer Science, vol. 4424, pp. 358–372. Springer (2007)
- [4] Comba, J.L.D., Stolfi, J.: Affine Arithmetic and its Applications to Computer Graphics (1993)
- [5] Corzilius, F., Loup, U., Junges, S., brahm, E.: SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox. In: Theory and Applications of Satisfiability Testing SAT 2012, vol. 7317, pp. 442–448. Springer Berlin Heidelberg (2012)
- [6] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)
- [7] Ganai, M., Ivancic, F.: Efficient decision procedure for non-linear arithmetic constraints using CORDIC. In: Formal Methods in Computer-Aided Design, 2009. FMCAD 2009. pp. 61–68 (Nov 2009)
- [8] Gao, S., Kong, S., Clarke, E.: dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina, M. (ed.) Automated Deduction CADE-24, Lecture Notes in Computer Science, vol. 7898, pp. 208–214. Springer Berlin Heidelberg (2013)
- [9] Hickey, T., Ju, Q., Van Emden, M.H.: Interval Arithmetic: From Principles to Implementation. J. ACM 48(5), 1038–1068 (Sep 2001)
- [10] Jovanovi, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning, Lecture Notes in Computer Science, vol. 7364, pp. 339–354. Springer Berlin Heidelberg (2012)
- [11] Khanh, T.V., Ogawa, M.: SMT for Polynomial Constraints on Real Numbers. Electronic Notes in Theoretical Computer Science 289(0), 27 40 (2012), third Workshop on Tools for Automatic Program Analysis (TAPAS' 2012)
- [12] Messine, F.: Extensions of Affine Arithmetic: Application to Unconstrained Global Optimization
- [13] Moore, R.: Interval analysis. Prentice-Hall series in automatic computation, Prentice-Hall (1966)

- [14] Ngoc, D.T.B., Ogawa, M.: Overflow and Roundoff Error Analysis via Model Checking. In: Proceedings of the 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods. pp. 105–114. SEFM '09, IEEE Computer Society, Washington, DC, USA (2009)
- [15] Passmore, G.O., Jackson, P.B.: Combined Decision Techniques for the Existential Theory of the Reals. In: CALCULEMUS. Lecture Notes in Computer Science, vol. 5625, pp. 122–137. Springer-Verlag (2009)
- [16] Ratschan, S.: Efficient Solving of Quantified Inequality Constraints over the Real Numbers. ACM Trans. Comput. Logic 7(4), 723–748 (Oct 2006)
- [17] Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic. In: Clarke, E., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning. Lecture Notes in Computer Science, vol. 6355, pp. 481–500. Springer Berlin Heidelberg (2010)