Bartolomeo Ryan 10208 Jeux et Sports

Modélisation de solides déformables

Plan

I. Présentation et première approche

- A. Inspiration
- B. Modélisation mouvement cohérent avec la réalité physique

II. Chute d'un solide déformable

- A. Mise en place d'un système résistant aux perturbations :
 - Méthode d'intégration d'Euler explicite
 - Méthode de Runge et Kutta
- B. Problème de la réaction du support
 - Force électrostatique
 - Méthode de Backtracking

III. Optimisation par assimilation à un gaz

- A. Modèle du gaz parfait
- B. Théorème de Stokes
- C. Expansion en 3 dimensions

Présentation du problème et première approche

<u>Motivation</u>

Contraintes :

- Multi-joueurs
- Simulation en temps réel
- Machine parfois avec de faibles capacités
- → Comment minimiser le temps de calcul dans la simulation de solides déformable ?

Modélisation réaliste d'un mouvement

Cas simple

Modèle informatique simple

Profil de déplacement linaire

Mouvement naturel

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

<u>Mouvements type Système masse-ressort</u>

Deux masses en mouvement l'une par rapport à l'autre

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

Problème à résoudre

II. Réalisation

1. Système stable malgré une perturbation

Structure du système

<u>Méthode d'Euler explicite</u>

$$x[t + 1] = x[t] + v[t] * dt$$

 $v[t + 1] = v[t] + acceleration(t) * dt$

Résultat de la simulation avec la méthode d'Euler

État initial

Force élastique en violet Force fictive en noir

Compression sous l'effet de la force fictive

Explosion du système

Premier résultat

Méthode de Runge-Kutta

<u>Approximation de Runge-Kutta</u>

Tableau des coefficients utilisés

Problème de Cauchy à résoudre

$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

Si z est solution, on a :

$$t_{n,i} = t_n + c_i \times h$$

$$z(t_{n+1}) = z(t_n) + h \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

$$z(t_{n,i}) = z(t_n) + h \sum_{j < i} a_{i,j} f(t_{n,j}, z(t_{n,j})))$$

Approximation de Runge-Kutta

Problème différentiel physique

$$\begin{cases} y'' = acc(t, y, y') \\ y'(t_0) = y'_0 \\ y(t_0) = y_0 \end{cases}$$

On pose alors :

$$Y(t) = \begin{pmatrix} y'(t) \\ y(t) \end{pmatrix}$$
$$Y(t_0) = \begin{pmatrix} y'_0 \\ y_0 \end{pmatrix}$$

d'où Y'(t) =
$$\begin{pmatrix} y''(t) \\ y'(t) \end{pmatrix}$$
 = F(t,Y) = $\begin{pmatrix} acc(t,y,y') \\ y'(t) \end{pmatrix}$

On a alors le problème de Cauchy d'ordre 1 :

$$\begin{cases} Y'(t) = F(t, Y) \\ Y(t_0) = Y_0 \end{cases}$$

Résultat d'algorithme

Déformation sous l'effet de la force fictive

Désordre qui revient à une position d'équilibre

Résultat de la simulation avec RK4

Comparaison des résultats par rapport aux méthodes utilisées

Force d'amortissement pour stabiliser plus rapidement

Mass-Spring-System model for real time expressive behaviour synthesis ~ Cyrille Henry

2. Implémentation des collisions

Collision "magnétique"

<u>Résultats pour différentes valeurs de </u> <u>K</u>

Position moyenne verticale en fonction du temps

Résultats surprenants car :

- → Force discontinue
- → Force initialement très élevé lorsque d = 0

Résultats

Liaisons des ressorts de la position d'équilibre finale

Champ d'accélération lorsque le système rebondit en l'air

Champ d'accélération lorsque le système est au contact du sol

Résultats

Nombre de frames générées par période de 0,40s durant la simulation (sans affichage graphique)

III. Deuxième approche

Modèle de la bulle de gaz parfait

Complexcité :
$$\mathcal{O}(m*n) \to \mathcal{O}(m+n)$$

Avantages :

- $_{
 ightarrow}$ Moins de particules au total à simuler
- $_{
 ightarrow}$ Moins de particules au contact du sol

Modèle de la bulle de gaz parfait

$$\vec{F} = P d\vec{S}$$

$$P = \frac{nRT}{V}$$

$$\vec{F} = K_{nRT} \frac{1}{V} \vec{dS}$$

Calcul du volume

Théorème de Stokes :

$$\iint_{S} \operatorname{div} \vec{F} \cdot \vec{dS} = \oint_{C} \vec{F} \cdot \vec{dl}$$

$$\vec{F} = x\vec{e_x}$$

$$\operatorname{div}\vec{F} = 1 \begin{vmatrix} \vec{F} \cdot \vec{dl} \\ = \vec{F} \cdot \hat{l}dl \\ = x \cdot \hat{l}_x \cdot dl \end{vmatrix}$$

$$S \approx \sum x_i \cdot \hat{l}_{i,x} \cdot dl$$

Compromis ressort/gaz pour conserver la forme

Les points sont stockés dans un tableau pour un accès en O(1). La navigation se fait en suivant :

$$i+p+1$$
 $i+p$ $i+p-1$
 \uparrow
 $i+1$ \leftarrow i \rightarrow $i-1$
 \downarrow
 $i-p+1$ $i-p$ $i-p-1$

Avec p le nombre de points par couche

<u>Résultat</u>

Déformation après rebond

Forces appliquées sur les points

Position d'équilibre finale

Profil d'accélération

Résultats

Comparaison du nombre de frames générés via les deux méthodes (pour un disque ayant la hauteur du cube)

Extrapolation en 3 dimensions

Conclusion

- → Méthode masse-ressort pour simuler un comportement <u>cohérent</u>
- → Méthode d'intégration de Runge et Kutta pour simuler un comportement <u>stable</u>
- → Assimilation de la partie interne par un gaz parfait pour minimiser le temps de calcul

Annexe

Méthode d'Euler implicite


```
v[t + 1] = v[t] + acceleration(t) * dt
x[t + 1] = x[t] + v[t + 1] * dt
```

40

Méthode d'Euler implicite

Effet de respiration grâce au frottement

gravité

frottement
amortisseur

force de ressort élastique

Construction de l'icosphère

On démarre avec un icosaèdre (20 faces) :

Pour chacune des faces, on applique la transformation :

Puis on norme les vecteurs des sommets pour qu'ils soient distants de R avec le centre

On itère ce procédé pour diminuer la rugosité de la sphère

Il y aura ainsi 20×3^n sommets après n itérations

<u>Description d'un solide isotrope : Loi de Hooke et équation de Lamé</u>

→ La loi de Hooke

$$\sigma = E\varepsilon$$

où

 σ La contrainte (pression)

 ${\cal E}$ Le module de Young

arepsilon L'allongement relatif à la longueur à vide

$$(\varepsilon = \frac{l - l_0}{l_0})$$

→ L'équation de Lamé

$$\sigma=E\varepsilon\Longleftrightarrow\sigma=\lambda\mathrm{Tr}(\varepsilon)+2\mu\varepsilon\qquad \text{ Le couple }(\lambda,\mu)$$
 défini entièrement le matériel isotrope

<u>Deuxième paramètre pour décrire un matériel isotrope : coefficient de Poisson</u>

Avec le module de Young (E) et le coefficient de Poisson (v), on retrouve facilement les coefficients de Lamé.

Une méthode d'intégration est dite stable de constante S si il existe S tel que, si

$$y_{n+1} = y_n + h\phi(t_n, y_n)$$

$$\tilde{y}_{n+1} = \tilde{y}_n + h\phi(t_n, \tilde{y}_n) + \varepsilon_n$$

alors

$$\max_{n \le N} |y_n - \tilde{y}_n| \le S \sum_{n \le N} |\varepsilon_n|$$

Où N est le nombre d'étapes durant l'entièreté de la simulation

Lemme : Si une solution au problème de Cauchy y est klipschitzienne, on a avec le lemme de Gronwall :

 ϕ est Λ -lipschitzienne \Longrightarrow la méthode d'intégration est stable, de constante de stabilité $S=e^{\Lambda T}$

Où T est le temps total de la simulation

$$t_{n,i} = t_n + c_i \times h$$

$$z(t_{n,i}) = z(t_n) + h \sum_{j < i} a_{i,j} f(t_{n,j}, z(t_{n,j}))$$

$$z(t_{n+1}) = z(t_n) + h \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

$$\phi(t, z) = \sum_{j < 4} b_j f(t_{n,j}, z(t_{n,j}))$$

Reste à prouver que phi est lipschitzienne. On part de deux sources y et z quelconques dans R :

Lemme:
$$\forall i$$
,
 $|y_i - z_i| \le \sum_{p=0}^{i} (\alpha kh)^p |y - z|$

Avec
$$lpha = max \sum |a_{i,j}|$$

$$t_{n,i} = t_n + c_i \times h$$

$$z(t_{n,i}) = z(t_n) + h \sum_{j < i} a_{i,j} f(t_{n,j}, z(t_{n,j}))$$

$$z(t_{n+1}) = z(t_n) + h \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

$$\phi(t, z) = \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

d'où

$$\begin{aligned} &|\phi(t,y) - \phi(t,z)|\\ &\leq \sum |b_j|k|y_j - z_j|\\ &\leq k \sum |b_j| \sum_{p=0}^{j} (\alpha kh)^p |y - z|\\ &\leq \Lambda |y - z| \end{aligned}$$

$$t_{n,i} = t_n + c_i \times h$$

$$z(t_{n,i}) = z(t_n) + h \sum_{j < i} a_{i,j} f(t_{n,j}, z(t_{n,j}))$$

$$z(t_{n+1}) = z(t_n) + h \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

$$\phi(t, z) = \sum_{j \le 4} b_j f(t_{n,j}, z(t_{n,j}))$$

Preuve du lemme par récurrence

$$|y_{i} - z_{i}|$$

$$\leq |y - z| + h \sum_{j \leq i} |a_{i,j}| |f(t_{j}, y_{j}) - f(t_{j}, z_{j})|$$

$$\leq |y - z| + h \sum_{j \leq i} |a_{i,j}| k |y_{j} - z_{j}|$$

$$\leq |y - z| + \alpha h k \max |y_{j} - z_{j}|$$

$$\leq |y - z| + \alpha h k \sum_{j \leq i} (\alpha h k)^{p} |y_{j} - z_{j}|$$

$$\leq \sum_{j=0}^{i} (\alpha k h)^{p} |y - z|$$