CHARLIE COWEN-BREEN

(617) 909 0198 ccbreen@mit.edu https://github.com/charliecb

EDUCATION

Massachusetts Institute of Technology, Ph.D. student, Mathematics

September, 2023 - present

- 5.0/5.0 GPA, supported by NDSEG fellowship.
- Previously: Department of EECS, advised by Stephen Bates. Transferred to math in 2024.
- Relevant coursework: Generative AI in biology; quantitative methods in natural language processing

Trinity College, University of Cambridge, M.A.St. Applied Math. & Theoretical Physics 2022 - 2023

- Awarded (one of four) Trinity Studentship in Mathematics.
- Graduate coursework: general relativity, stochastic calculus, Bayesian modelling and computation, advanced probability, information theory

Princeton University, A.B. Mathematics

2018 - 2022

- Magna cum laude, 4.0 departmental (3.96 overall) GPA, Certificate in Statistics and Machine Learning.
- Relevant graduate coursework: deep learning theory, high-dimensional probability, probability theory, advanced algorithm design, computational complexity, statistical theory and methods, Riemann surfaces

Boston University Academy

2014 - 2018

- Summa cum laude, completed 14 Boston University courses, 4.0 technical GPA

RESEARCH EXPERIENCE

Ph.D. student, Massachusetts Institute of Technology

September, 2023 - present

- Supervised by Gigliola Staffilani, Javier Gomez-Serrano and Tristan Buckmaster, developing machine-learning methodology to prove existence of singularities in partial differential equations (PDEs) describing fluids dynamics via computer-assisted proofs. Builds on previous work in theory and applications of physics-informed neural networks (PINNs).
- Previously: Supervised by Stephen Bates, developing tools for statistical inference with AI models.

Research collaborator, UK Medical Research Council:

January, 2023 - September, 2023

- Supervised by Sofia Villar, derived theoretically optimal sample size for certain randomized controlled trials (Grade: 100/100). *In preparation*.

Researcher, Princeton University (Senior Thesis)

February, 2021 - June 2022

- Supervised by Ching-Yao Lai and Tristan Buckmaster, deployed physics-informed neural networks (PINNs) to construct model of ice-hardness across Antarctica, revealing contradictions in widely-accepted previous assumptions. Discovered undesirable overfitting behavior in PINNs, now named "cheating".

Co-creator, Λ **O** Γ **IO**N:

May, 2022 - present

ML-powered tool for detecting transliteration errors in ancient texts.

- Conceived and deployed masked language model to detect errors in and reconstruct the writings of Byzantine authors (PyTorch), under guidance of Barbara Graziosi and Johannes Haubold.
- Model discovered more than 100 peer-reviewed errors to date, including typos in online libraries, and errors made by ancient scribes. Resulting dataset received honorable mention in MIT Open Data Prize.

WORK EXPERIENCE

Software Engineering Intern, Meta Reality Labs

June - August, 2021

- Incorporated probabilistic and statistical methods in order to apply domain adaptation technique (to remedy disparity in performance between demographic groups) to Oculus hand-detection network
- Transitioned from software engineering to research, presenting results and discussing with research scientists weekly (invited to return as researcher). Known on team for combinatorial/probabilistic analysis

- Formerly employed at Facebook AI Research, AI Habitat team

January - February, 2021

Software Engineering Intern, Ava Robotics, spinoff of iRobot

June - August, 2019

- Developed and deployed image classification software on a 3D depth camera to differentiate office objects
- Collaborated on robot localization and mapping with a small team of robotics software engineers. Go-to team member for mathematical explanation of algorithms.

AWARDS AND FELLOWSHIPS

NDSEG Fellowship, U.S. Department of Defense	September~2024 -	
Trinity Studentship in Mathematics, Cambridge University	2022 - 2023	
Sigma Xi Book Award for Outstanding Research, Princeton Mathematics	2022	
Inducted into Sigma Xi Princeton Mathematics	2022	
Inducted into Phi Beta Kappa Princeton University	2022	
Peter A. Greenberg Memorial Prize Princeton Mathematics	2021	
- Awarded for outstanding accomplishments in mathematics by juniors		
Shapiro Prize for Academic Excellence Princeton University	2020	
- Recognizes highest acheiving 3% of first and second years		
Allen G. Shenstone Princeton Physics	2019	
- Awarded by the Department of Physics for excellence in coursework and promise in independent research		
Breakout Fellow Program in Mathematics for Young Scientists	2018	

PUBLICATIONS/PREPRINTS

Charlie Cowen-Breen, Yongji Wang, Stephen Bates, Ching-Yao Lai. Euler operators for mis-specified physics-informed neural networks. *ICML AI for Science*, 2024.

Yongji Wang, Ching-Yao Lai, and Charlie Cowen-Breen. Discovering ice-shelf rheology via physics-informed neural networks. *In review by Science*.

Charlie Cowen-Breen, Creston Brooks, Barbara Graziosi, Johannes Haubold. Logion: Machine-Learning Based Detection and Correction of Textual Errors in Greek Philology. *Ancient Language Processing*, 2023.

Barbara Graziosi, Johannes Haubold, Charlie Cowen-Breen, Creston Brooks. Machine Learning and the Future of Philology: A Case Study. *Transactions of the American Philological Association*, 2023.

Charlie Cowen-Breen, Ching-Yao Lai, and Yongji Wang. Navigating physics-informed loss landscapes with stochastic gradient descent. *In preparation*.

Charlie Cowen-Breen, Sofia Villar. Guidelines for Sample Sizes: Randomised Controlled Trials are nearly Optimal for Overall Patient Health, if the Right Number of Patients is Chosen. *In preparation*.

Charlie Cowen-Breen, Elene Karangozishvili, Narmada Varadarajan, Thomas Wang. Pattern Problems related to the Arithmetic Kakeya Conjecture. *In preparation, preprint:* https://arxiv.org/abs/2011.07056.

SERVICE/TEACHING EXPERIENCE (OVER 400 HOURS)

Teaching Assistant, Princeton University

2019 - 2022

- Selected by instructor to TA for Accelerated Honors Analysis I & II, the most rigorous first-year courses
 - Invited to return for three consecutive years
 - Hold review sessions twice per week, write supplementary notes and distribute to students
- As Social Chair: responsible for ensuring well-being of students & developing community during pandemic
- Additionally selected to TA for MAT300, multivariate analysis

SKILLS AND INTERESTS

Programming	Python: TensorFlow, PyTorch, C++, Java, knowledge of Linux	
Singing	King's Voices (Cambridge University), Princeton Chapel Choir	2018 - 2023
Jazz guitar	MIT musical theatre, jazz band	2023 - 2024
Sailing	Princeton Sailing Team, skipper; MIT	2018 - 2024
Humanities	One of 80 students nationwide selected for Princeton Symposium	2017
Astronomy	One of 36 students selected for Summer Science Program in Astrophysics	2017