National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Electronic Devices and Circuits	Course Code:	EE1004
Program:	Electrical Engineering	Semester:	Fall 2024
Duration:		Total Marks:	70
Submission Date:	02-12-2024	Weight:	4%
Section:	ALL	Page(s):	1
Exam Type:	Assignment-3(CEP)	CLO#	3

CLO	Description	Domains & Levels	PLO
CLO3	Analyze the single stage BJT amplifier	C4	2

Instructions:

- You are required to submit both hard and soft copy of the assignment.
- You can take the assumption if some information is missing but state it clearly.
- Report can be either handwritten or in typed form.

Problem Statement

- 1. Find the component values of a single-stage audio amplifier using a Bipolar Junction Transistor (BJT) for an audio application. You must fulfill as much of the following requirements as possible.
 - Open circuit voltage gain should be 5 times sum of all digits in your registration number e.g. your registration number is 23L-1234 then voltage gain would be 5(1 + 2 + 3 + 4) = 50
 - Input resistance must be greater than $40k\Omega$
 - The output impedance should be less than 500 Ω
 - The circuit is powered by a +15V DC supply.
 - Consider a biasing scheme that provides the thermal bias stability.
 - As a starting point take DC operating current $I_C = 1mA$ at room temperature.
 - Assume $\beta = 100$
 - Take $I_s = 10^{-14} A$ and $V_{BE} = 0.7 V$ at room temperature
- 2. Select the standard available resistor values with 5% tolerance and Analyze your circuit. Find the input resistance, output resistance, open circuit voltage gain and signal swing to check if it fulfills the requirement.
- 3. Analyze how variations in temperature from -10°C to 60°C affects the performance of the amplifier.

Objectives: To help students understand the concepts related to the design and analysis of single stage BJT amplifier.

<u>Deliverables:</u> A complete report that should include the following

- Schematic diagram
- Detailed Calculations showing how each component value was chosen
- In depth analysis of your design. It should include the explanation about the conflicting requirements and tradeoffs. Show which one of them are met in your design.
- Temperature analysis: Clearly explain, with calculations, how changes in temperature affect the dc and ac parameters.
- Simulation Results (Bonus): Verify gain, input resistance, and output swing using a circuit simulation tool of your choice.

Complex Engineering Problem Attributes

WP1: Depth of knowledge WP2: Range of conflicting requirements WP3: Depth of analysis

WP4: Familiarity of

issues

WP5: Extent of applicable codes **WP6:** Extent of stakeholders

WP7: Interdependence

Knowledge Profile WK3

- WP1: Depth of Knowledge Finding the component values according to the specifications requires the knowledge of circuit analysis and deep understanding of BJT as an amplifier.
- WP2: Range of conflicting requirements -- Requirements are conflicting. Adjustment of specification will be required.
- WP3: Depth of analysis -- No unique solution due to conflicting requirement. Detailed analysis is required to verify the design.

Rubrics		CLOs	Marks
Gives the correct schematic diagram with proper labels.	WP1	CLO3	5
Finds the components values according to the requirements	WP1	CLO3	20
Selects the standard resistor values and provides an in-depth analysis to verify the design.	WP3	CLO3	20
Identifies the conflicting requirements/ tradeoffs and explains which of them are met in the final design.	WP2	CLO3	15
Finds the parameters affected by temperature change and analyzes the circuit at -10°C and 60°C	WP3	CLO3	10