Principles of Algorithms - Part 2.

Time complexity.

(Specification/
Description of
Algorithm)

Running Time
execution of
The Code That is
Using the algorithm.

operation count.
positive integer!

Ex: Sorling, comparison.

Worst case complexity: (WCC)

Input I, IC(I)WCC(n) = Max (IC(I)) $I \in I_n$

In = & set of all inputs of Size n.j.

Complexity function.
(WCC function)

WCC(n) associates an input size to the Max Instruction count.

7 (n)

Efficiency of an algorithm is judged by its complexity function.

A
$$7n^2 + 9n + 10 - f(n)$$

B $10n + 23 - g(n)$

How do we conspare $f(n)$, $g(n)$ values

For for large values of n .

$$f(n)$$
, $n \rightarrow \infty$
 $g(n)$, $n \rightarrow \infty$.

Asyp Asymptotics of complexity
functions are helped in
determining growth rate of
Complexity functions.

n	n ²	_w 3	
10	100	1000	
100	104	106	
1000	106	۱۵۹ ,	

$$\frac{10000 \, \text{n}^2}{100} = \frac{1}{100} \, \text{n}^3$$

$$\frac{1}{100} \, \text{n}^2$$

$$\frac{1}{100} \, \text{n}^3$$

 $0 \implies uppu bound.$ $-\eta^{2} + 9\eta + 10 \text{ is } O(\eta^{2}).$ $-\eta^{2} + 9\eta + 10 \leq 7\eta^{2} + 9\eta^{2} + 10\eta^{2}$ $= 26\eta^{2}.$ $(7\eta^{2} + 9\eta + 10) \leq 26\eta^{2}, \quad \forall \eta > 1,$ $-7\eta^{2} + 9\eta + 10 \text{ is } O(\eta^{2})$

7n2+9n+10 is O(n4)

 $7n^{2} + 9n + 10 \le 7n^{4} + 9n^{4} + 10n^{4}$ $7n^{2} + 9n + 10 \le 26n^{4}$; $n \ne 1$ O notation f(n) is $O(g(n)) = C_{2}g(n)$.

for c,, c2 >0. for + n > no

 $3n^{2} \leq 7n^{2} + 9n + 10 \leq 26n^{2}$ $7n^{2} + 9n + 10$ is $O(n^{2})$

fin) is O (g(n))
the growth rates of g & f are
Same.

O(logy) O(nlogy) is O(n) better than O(n²) o(n²) algorithm

if ht
$$\frac{f(n)}{g(n)} = c$$
, $\frac{c > 0}{g(n)}$

Then $f(n)$ is $o(g(n))$.

$$\begin{array}{cccc}
\overline{y} & \overline{w} & \underline{g(n)} & \text{is } C \neq 0, \\
 & & & & & & & & & \\
\overline{y} & & & & & & & & \\
\overline{y} & & & & & & & \\
\overline{y} & & & & & & & \\
\overline{y} & & & & & & & \\
\overline{y} & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
\overline{y} & & & & & & \\
\overline{y} & & & & & & \\
\overline{y} & & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & & \\
\overline{y} & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & \\
\overline{y} & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & \\
\overline{y} & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & \\
\overline{y} & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & \\
\overline{y} & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
\overline{y} & & & & \\
\overline{y} & & & & \\
\end{array}$$