CSC0056: Data Communication

Leaky Bucket Flow Control, Time Synchronization, and Course Review

Instructor: Chao Wang 王超

Department of Computer Science and Information Engineering

Outline of lecture 17

Leaky bucket flow control (illustrated using the blackboard)

CSC0056 Data Communication

- Time synchronization among communication hosts
 - NTP and PTP
- Course review

References

- Mills, et al. Network Time Protocol Version 4: Protocol and Algorithms Specification. RFC 5905. (https://tools.ietf.org/html/rfc5905)
- Mills, D.L., "Computer Network Time Synchronization the Network Time Protocol", CRC Press, 304 pp, 2006.
- IEEE. 2008. IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) (July 2008), 1–300.
- **S.Y. Wang**, H.W. Hu, and Y.B. Lin, "Design and Implementation of TCP-Friendly Meters in P4 Switches," IEEE/ACM Transactions on Networking, Volume: 28, Issue: 4, August 2020. (using ideas inspired by the leaky bucket flow control)

CSC0056 Data Communication

The need for time synchronization

Some embedded devices simply do not have battery powered hardware clock

 In many applications, to measure end-to-end latency performance, both ends must have synchronized clocks

NTP: network time protocol

• Goal: minimize both the time difference and frequency difference between UTC and the system clock."

UTC stands for:

- Coordinated Universal Time
- Temps Universel Coordonné

NTP accuracy

- Conventionally, can achieve milliseconds accuracy
 - With improvement, may achieve an accuracy up to tens of microseconds
- Primary time servers
 - Synced to national standards by wire or radio
 - Accuracy: tens of microseconds
- Secondary time servers
 - Synced to primary time servers
 - Accuracy: a few hundred microseconds to a few tens of milliseconds
- Clock strata

2021/1/4

NTP topology example

Synchronizing clocks along the synchronization paths

NTP topology (cont.)

- Master-slave subnetwork with synchronization paths determined by some spanning-tree algorithm
- "As a standard practice, timing network topology should be organized to avoid timing loops and minimize the synchronization distance. In NTP, the subnet topology is determined using a variant of the Bellman-Ford distributed routing algorithm, which computes the shortest-path spanning tree rooted on the primary servers. As a result of this design, the algorithm automatically reorganizes the subnet, so as to produce the most accurate and reliable time, even when there are failures in the timing network." - RFC 5905

NTP synchronization basics

- Suppose that host A is going to synchronize its clock to that of host B
- Notation:
 - δ : one-way delay
 - θ : offset between two clocks
- The mean offset between two clocks is determined by message exchange between A and B
 - (see the blackboard illustration)
- Synchronization is performed by gradually reducing the mean offset

NTP: network time protocol

- "Reliable message delivery such as TCP can actually make the delivered NTP packet less reliable since retries would increase the delay value and other errors." - RFC 5905
- If the network is very busy, or the server's CPU is very busy, would that affect the performance of NTP?
 - Ans: Potentially yes, because synchronization is based on messageexchange, and software timestamping may be delayed due to preemption
 - To address those problems:
 - Network: out-of-band synchronization
 - CPU: pinned tasks to certain core(s)

PTP: precision time protocol

 Designed to achieve microsecond to sub-microsecond accuracy and precision

Spatially localized

Administration free

2021/1/4

Accessible for both high-end devices and low-cost, low-end devices

CSC0056 Data Communication

PTP topology

• Synchronization is performed by syncing each slave clock to its corresponding master clock (master-slave relationship is defined *per link*)

Figure 10—Simple master-slave clock hierarchy

PTP topology (cont.)

Basic synchronization method

- termed "delay request-response"
- Mean path delay

$$= [(t_2-t_1)+(t_4-t_3)]/2$$

Mean offset from master

$$= [(t_2-t_1)+(t_3-t_4)]/2$$

used for synchronization

Offset from Master time

- = time on the slave clock time on the master clock
- = t₂ t₁ mean path delay (- correction)

Optional, by the use of transparent clock (next slides)

End-to-end transparent clock

for intermediate device, e.g., a network switch

 A transparent clock records the transit time (time interval from ingress) to egress), which may be subtracted later to correct the path delay

Figure 5—End-to-end residence time correction model

Alternative to delay request-response: Peer delay link measurement

• Idea:

- Following slides 16, if we can determine the mean path delay, then there is no need for Delay_Req/Delay_Resp message exchange.
- This may both speed up synchronization process and save some processing load.

Offset from Master time

- = time on the slave clock time on the master clock
- = t₂ t₁ mean path delay (- correction)

Peer delay link measurement (cont.)

- Mean path delay may be calculate peer-to-peer at each pair of ports
- Mean path delay = $[(t_2-t_1)+(t_4-t_3)]/2$

Peer-to-peer transparent clock

Used along with peer delay link measurement

Figure 8—Peer-to-peer residence time and link delay correction model

Timestamp generation

A timestamp may be taken at point A, B, or C

Figure 14—Timestamp generation model

2021/1/4

Choosing NTP or PTP?

- It depends.
- With support of hardware timestamping, PTP may provide submicrosecond accuracy
- There are many public NTP servers and built-in NTP clients for easy time synchronization
 - Amazon EC2 offers one for its VMs
- Example scenario (combine both PTP and NTP):
 - Use PTP to synchronize local devices, and use NTP to synchronize both local master clock and remote devices to a global NTP server

Outline of lecture 17

- Leaky bucket flow control (illustrated using the blackboard)
- Time synchronization among communication hosts
 - NTP and PTP
- Course review

Course review

- Data communication as a network of flows
- Point-to-point communication vs. end-to-end communication
 - ARQ at the data-link layer vs. Window flow control at the transport layer
- Error detection vs. error correction vs. retransmission
- Data retransmission and/or Passive replication
- Free-for-all multiaccess vs. Perfectly-scheduled multiaccess
 - CAN, Aloha, TDMA and its extension to improve throughput

Course review (cont.)

- Theory and models
 - Data communication as a network of flows (a graph)
 - Network flow algorithm, shortest-path algorithm, etc.
 - Little's theorem, Queueing theory, Markov chains, Poisson process
 - Scheduling for timely data delivery and/or data-loss tolerance
- Protocols and systems
 - CRC, ARQ, multiplexing, CAN, Aloha, TDMA and its extension
 - Real-time communication
 - Fault-tolerant communication
 - flow controls, time synchronization