

Departamento de Matemáticas 4º Académicas

Global 3^a evaluación

Nombre:	Fecha:				
Tiempo: 50 minutos	Tipo: A				

Esta prueba tiene 9 ejercicios. La puntuación máxima es de 26. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	Total
Puntos:	2	3	3	3	3	2	6	2	2	26

- 1. Calcula $x \in y$ para que los vectores \overrightarrow{u} y \overrightarrow{v} sean perpendiculares a \overrightarrow{w} :
 - (a) Siendo $\overrightarrow{u}(x, 2)$, $\overrightarrow{v}(-6, y)y \overrightarrow{w}(2, -3)$ (1 punto)

Solución: $x = 3 \land y = -4$

(b) Siendo $\overrightarrow{u}(x, 4)$, $\overrightarrow{v}(-10, y)y \overrightarrow{w}(4, 5)$ (1 punto)

Solución: $x = -5 \land y = 8$

- 2. Calcula el vector que une los puntos P y Q y su módulo.
 - (a) Siendo P(-2, 0) y Q(12, 0) (1 punto)

Solución: dist(P,Q) = |Point2D(14,0)| = 14

(b) Siendo P(-1, 1) y Q(3, 1) (1 punto)

Solución: dist(P,Q) = |Point2D(4,0)| = 4

(c) Siendo P(-2, 2) y Q(3, -4) (1 punto)

Solución: $dist(P,Q) = |Point2D(5,-6)| = \sqrt{61}$

- 3. Sean A, B, C y D los vértices consecutivos del paralelogramos ABCD. Calcula analíticamente su perímetro:
 - (a) Sabiendo que A, B y C son respectivamente: (3, 0), (5, 0), (5, 2) (1 punto)

Solución: $\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(2,0) = Point2D(5-x,2-y) \rightarrow D(3, 2) \rightarrow dis(AB) = 2 \ dis(BC) = 2 \rightarrow 8 \rightarrow 8$

(b) Sabiendo que A, B y C son respectivamente: (3, -3), (6, -1), (1 punto) (5, 4)

Solución:
$$\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(3,2) = Point2D(5-x,4-y) \rightarrow D(2,2) \rightarrow dis(AB) = \sqrt{13} \ dis(BC) = \sqrt{26} \rightarrow 2\sqrt{13} + 2\sqrt{26} \rightarrow 17,4$$

(c) Sabiendo que A, B y C son respectivamente: (-1, -2), (6, -1), (1 punto) (5, 4)

Solución:
$$\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(7,1) = Point2D(5-x,4-y) \rightarrow D(-2, 3) \rightarrow dis(AB) = 5\sqrt{2} \ dis(BC) = \sqrt{26} \rightarrow 2\sqrt{26} + 10\sqrt{2} \rightarrow 24,34$$

- 4. Sean A, B, C y D los vértices consecutivos del paralelogramos ABCD. Calcula analíticamente su centro:
 - (a) Sabiendo que A, B y C son respectivamente: (3, 0), (5, 0), (5, 2) (1 punto)

Solución:
$$\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(2,0) = Point2D(5-x,2-y) \rightarrow D(3, 2) \rightarrow M_{AC} = Point2D(4,1)$$

(b) Sabiendo que A, B y C son respectivamente: (3, -3), (6, -1), (1 punto) (5, 4)

Solución:
$$\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(3,2) = Point2D(5-x,4-y) \rightarrow D(2, 2) \rightarrow M_{AC} = Point2D\left(4,\frac{1}{2}\right)$$

(c) Sabiendo que A, B y C son respectivamente: (-1, -2), (6, -1), (1 punto) (5, 4)

Solución:
$$\overrightarrow{AB} = \overrightarrow{DC} \rightarrow Point2D(7,1) = Point2D(5-x,4-y) \rightarrow D(-2, 3) \rightarrow M_{AC} = Point2D(2,1)$$

- 5. Escribe las ecuaciones vectorial, paramétricas, en forma continua y explícita de la recta que:
 - (a) Pasa por los punto P(-3, -1) y Q(3, 2) (1 punto)

Solución: Solución orientativa:
$$Point2D\left(x,y\right) = Point2D\left(6t - 3, 3t - 1\right) \rightarrow -3x + 6y - 3 = 0 \rightarrow y = \frac{x}{2} + \frac{1}{2}$$

(b) Pasa por los punto P(1, -2) y Q(4, 4) (1 punto)

Solución: Solución orientativa:
$$Point2D\left(x,y\right) = Point2D\left(3t + 1,6t - 2\right) \rightarrow -6x + 3y + 12 = 0 \rightarrow y = 2x - 4$$

(c) Pasa por los punto P(7, -2) y Q(4, 4)

(1 punto)

Solución: Solución orientativa:
$$Point2D\left(x,y\right) = Point2D\left(7 - 3t,6t - 2\right) \rightarrow -6x - 3y + 36 = 0 \rightarrow y = 12 - 2x$$

- 6. Calcula la recta s que:
 - (a) Pasa por P(-1, 2) y es perpendicular a la recta que pasa por Q(3, 2) y tiene como vector director $\overrightarrow{d_r}(-2, 1)$ (1 punto)

Solución:
$$s \equiv 2x - y + 4 = 0$$

(b) Pasa por P(2, -4) y es perpendicular a la recta que pasa por Q(1, 1) y tiene como vector director $\overrightarrow{d_r}(3, 1)$

Solución:
$$s \equiv -3x - y + 2 = 0$$

- 7. Responde a las siguientes cuestiones:
 - (a) Las calificaciones de un grupo de 30 alumnos han sido: $9\ 6\ 5\ 1\ 5\ 7$ (3 puntos) $9\ 10\ 7\ 5\ 1\ 2\ 5\ 7\ 6\ 4\ 6\ 8\ 8\ 6\ 4\ 4\ 6\ 5\ 3\ 5\ 7\ 7\ 8\ 7.$
 - Realiza una tabla de frecuencias
 - Calcular los siguientes parámetros de centralización: media, mediana y moda
 - Calcular los siguientes parámetros de posición: P70, Q1, Q3
 - Calcular los siguientes parámetros de dispersión: varianza, desviación típica y coeficiente de variación
 - Realiza un diagrama de caja y bigote.

	x_i	f_i	F_i	$\%_i$	$\%A_i$	$x_i f_i$	$x_i^2 f_i$
	1	2	2	6.66667	6.66667	2	2
	2	1	3	3.33333	10	2	4
	3	1	4	3.33333	13.3333	3	9
	4	3	7	10	23.3333	12	48
Solución:	5	6	13	20	43.3333	30	150
	6	5	18	16.6667	60	30	180
	7	6	24	20	80	42	294
	8	3	27	10	90	24	192
	9	2	29	6.66667	96.6667	18	162
	10	1	30	3.33333	100	10	100
	nan	30	nan	100	nan	173	1141

- (b) Las calificaciones de un grupo de 30 alumnos han sido: 3 2 2 4 6 6 6 7 7 7 2 5 5 5 4 7 8 8 8 8 4 4 7 7 8 9 9 9 10 10.
- (3 puntos)

- Realiza una tabla de frecuencias
- Calcular los siguientes parámetros de centralización: media, mediana y moda
- Calcular los siguientes parámetros de posición: P70, Q1, Q3
- Calcular los siguientes parámetros de dispersión: varianza, desviación típica y coeficiente de variación
- Realiza un diagrama de caja y bigote.

	$\overline{x_i}$	f_i	F_i	$\%_i$	$\%A_i$	$x_i f_i$	$x_i^2 f_i$	
	2	3	3	10	10	6	12	
	3	1	4	3.33333	13.3333	3	9	
	4	4	8	13.3333	26.6667	16	64	
	5	3	11	10	36.6667	15	75	
Solución:	6	3	14	10	46.6667	18	108	
	7	6	20	20	66.6667	42	294	
	8	5	25	16.6667	83.3333	40	320	
	9	3	28	10	93.3333	27	243	
	10	2	30	6.66667	100	20	200	
	nan	30	nan	100	nan	187	1325	

- 8. Se tiene una cometa volando en el aire y anclada al suelo con el hilo. Calcula el ángulo que forma el hilo de la cometa con el suelo:
 - (a) Sabiendo que la longitud del hilo es de 16m. y la cometa se encuentra a 8 m. de alturala hipotenusa mide 16 y un cateto 8 cm.

 $(1 \ punto)$

Solución: Los lados del triángulo miden: 8, 13,86, 16 cm. Y los ángulos: 30,0, 60,0, 90 °

(b) Sabiendo que la longitud del hilo es de 24m. y la cometa se encuentra a 12 m. de alturala hipotenusa mide 24 y un cateto 12 cm.

(1 punto)

Solución: Los lados del triángulo miden: 12, 20,78, 24 cm. Y los ángulos: 30,0, 60,0, 90 °

9. Resuelve las siguientes ecuaciones (solo las soluciones que estén entre 0 y 360 grados)

$$(a) \frac{1}{2} + \sin x = 1 \tag{1 punto}$$

Solución: $x = 30^{\circ}, x = 150^{\circ}$

(b)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$
 (1 punto)

Solución:
$$x = 60^{\circ}, x = 300^{\circ}$$