أسئلة مراجعة لمادة نظم تشغيل تشمل الوحدة ٥ + ٨

Q1: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)
P1	0	9
P2	3	3
Р3	5	5
P4	4	2

a) Draw a Gantt chart illustrating the execution of these processes using the First Come First Serve(FCFS) algorithm

Q2: Suppose that the processes arrive in the order: P1, P4, P3, P2

Process ID	CPU Burst Time (ms)
P1	15
P2	7
Р3	8
P4	3

a) Draw a Gantt chart illustrating the execution of these processes using the First Come First Serve(FCFS) algorithm

Q3: Suppose that the processes arrive in the order: P1, P4, P3, P2

Process ID	CPU Burst Time (ms)
P1	6
P2	8
P3	7
P4	3

a) Draw a Gantt chart illustrating the execution of these processes using the Shortest Job First (SJF)algorithm

Q4: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)
P1	2	1
P2	1	3
Р3	0	5

a) Draw a Gantt chart illustrating the execution of these processes using the Shortest Remaining Time First (SRTF) algorithm

Q5: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)
P1	0	8
P2	1	4
Р3	2	9
P4	3	5

a) Draw a Gantt chart illustrating the execution of these processes using the Shortest Remaining Time First (SRTF) algorithm

Q6: Suppose that the processes arrive in the order: P1, P2,P3,

Process ID	CPU Burst Time (ms)
P1	24
P2	3
Р3	3

a) Draw a Gantt chart illustrating the execution of these processes using the Round Robin(RR)algorithm Quantum = 3

Q7: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)
P1	0	20
P2	3	14
Р3	5	6
P4	4	4

a) Draw a Gantt chart illustrating the execution of these processes using the Round Robin(RR)algorithm Quantum = 2

Q8: Considers the following set of processes:

Process ID	CPU Burst Time (ms)	Priority
P1	10	3
P2	1	1
Р3	2	4
P4	1	5
P5	5	2

a) Draw a Gantt chart illustrating the execution of these processes using the Priority algorithm

Q9: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)	Priority
P1	0	11	2
P2	5	28	0
Р3	12	2	3
P4	2	10	1
P5	9	16	4

a) Draw a Gantt chart illustrating the execution of these processes using the **Preemptive** Priority algorithm

Q10: Considers the following set of processes:

Process ID	Arrival Time	CPU Burst Time (ms)	Priority
P1	0	4	2
P2	1	3	3
Р3	2	1	4
P4	3	5	5
P5	4	2	5

a) Draw a Gantt chart illustrating the execution of these processes using the **Non-Preemptive** Priority algorithm

Q11: Considers the following set of processes:

Process ID	CPU Burst Time (ms)	Priority
P1	4	3
P2	5	2
Р3	8	2
P4	7	1
P5	3	3

a) Draw a Gantt chart illustrating the execution of these processes using the **Preemptive** Priority and Round Robin(RR)algorithm Quantum = 2

Q12: Referring to following figure find out whether there is deadlock in the system. If so, what are the deadlocked processes?

a) Is there deadlock in the system?

Q13: Referring to following figure find out whether there is deadlock in the system. If so, what are the deadlocked processes?

a) Is there deadlock in the system?

Q14: Referring to following figure find out whether there is deadlock in the system. If so, what are the deadlocked processes?

a) Is there deadlock in the system?

Q15: Referring to following figure find out whether there is deadlock in the system. If so, what are the deadlocked processes?

a) Is there deadlock in the system?

Q16: The following matrices illustrate the situation of a computer system.

Allocation				
A B C				
T0	0	1	0	
T1	2	0	0	
T2	3	0	2	
T3	2	1	1	
T4	0	0	2	

Max				
Α	В	C		
7	5	3		
3	2	2		
9	0	2		
2	2	2		
4	3	3		

/	Available				
А	В	С			
3	3	2			

NEED					
A B C					
	_	-			

Assume that the total number of each system resource is < 10, 5, 7> where and Ri means the amount of resource Pi

a) What are the contents of the matrix NEED?

Q17: The following matrices illustrate the situation of a computer system.

Max					
	RO	R1	R2	R3	
PO	3	2	1	1	
P1	1	2	0	2	
P2	1	1	2	0	
Р3	3	2	1	0	
P4	2	1	0	2	

	Allocation					
RO	R0 R1 R2 R3					
2	0	1	1			
1	1	0	0			
1	1	0	0			
1	0	1	0			
0	1	0	1			

	NEED					
RO	R0 R1 R2 R3					

Work						
R0	R1 R2 R3					

Assume that the total number of each system resource is < 10, 10, 7, 8 > where and Ri means the amount of resource Pi

a) What are the contents of the matrix NEED?

Q18: The following matrices illustrate the situation of a computer system.

Allocation				
	Α	В	C	D
PO	0	0	1	2
P1	1	0	0	0
P2	1	3	5	4
Р3	0	6	3	2
P4	0	0	1	4

	Max				
Α	В	С	D		
0	0	1	2		
1	7	5	0		
2	3	5	6		
0	6	5	2		
0	6	5	6		

	Available				
Α	В	С	D		
1	5	2	0		

NEED							
Α	A B C D						

Assume that the total number of each system resource is < 3, 14, 12, 12> where and Ri means the amount of resource Pi

a) What are the contents of the matrix NEED?

Q19: The following matrices illustrate the situation of a computer system.

Max				
	R0	R1	R2	R3
PO	4	2	1	2
P1	5	2	5	2
P2	2	3	1	6
Р3	1	4	2	4
P4	3	6	6	5

Allocation					
R0	R1	R2	R3		
2	0	0	1		
3	1	2	1		
2	1	0	3		
1	3	1	2		
0	4	3	2		

NEED					
RO	R1	R2	R3		

Work					
R0	R1	R2	R3		

Assume that the total number of each system resource is < 12, 12, 8, 10 > where and Ri means the amount of resource Pi

a) What are the contents of the matrix NEED?