Trabalho individual

Implementação e análise do algoritmo de busca A*

Trabalho individual

- Implementar o algoritmo de busca A*
 - Entregar o código do programa
 - Legível (identado, variáveis compreensíveis, etc), comentado (padrão JavaDoc), parametrizado e orientado a objetos
 - Entregar um gráfico detalhando resultados de tempo x distância
 - Data de entrega: 06/05
 - Cópias ou programas similares serão avaliados com conceito zero

Descrição do grid

- Considere um mapa em 3 dimensões (grid ou cubo):
 - Usando o algoritmo A*, determine uma rota de S até G de acordo com as seguintes funções de custo:
 - g(n) = distância (real) entre pontos consecutivos (X, Y, Z) constante e igual a 1.0
 - h(n) = a distância (heurística)
 em linha reta entre dois pontos
 (X, Y, Z)

Descrição do grid

- Funções sucessoras
 - Para cima
 - Para baixo
 - Para frente
 - Para trás
- Movimentos nas diagonais não são permitidos

Parâmetros dos algoritmos

- Tamanho máximo do mapa
 - Grid cúbico
- Percentual de obstáculos
 - ex. 40%
 - Obstáculos aleatoriamente colocados no mapa
 - Sem repetição de posições
- Posição inicial S = (X, Y, Z)
- Posição final G = (X, Y, Z)
 - S e G podem ser informadas por usuários
 - S e G devem ser diferentes
 - S e G não devem ser posições de obstáculos

Resultados tempo x distância

- Gerar aleatoriamente pontos S e G
 - Executar algoritmo A* para esses pontos
 - Anotar a distância (real) entre S e G encontrada pelo algoritmo
 - Usando as bordas dos quadrados, as quais têm custo unitário
 - Anotar o tempo que o algoritmo levou para encontrar essa rota

4

Resultados tempo x distância

- Selecionar todas as rotas encontradas onde k seja a distância entre os pontos
 - Por exemplo: distância k = 1, distância k = 2, etc
- Para rotas que possuem a mesma distância K (no mínimo 50 rotas), calcule a média dos tempos T obtidos para calcular essas rotas
 - Por exemplo, T = SOMA DAS MEDIDAS DE TEMPO / 50
- Construir e entregar um gráfico
 - Distância encontrada (K) x Tempo médio (T)