Aritmètica: Problemes Àlex del Olmo

Exercici 17. Sigui n > 1 un nombre natural i p el menor nombre natural primer que divideix n. Demostreu que si $p^3 > n$, llavors n és primer (i p = n) o bé $\frac{n}{p}$ és primer.

Solució 17. Ho resoldré per casos:

- (a) Si n és primer, com p és el menor natural primer divisor de $n \Rightarrow n = p$.
- (b) En cas contrari, si n no és primer, aleshores existeix $q \in \mathbb{Z}$ tal que n = pq, i $q \neq \pm 1$, vull veure que q és primer.

Ho faré per reducció a l'absurd, suposo que q no és primer i per tant $\exists q_1, q_2 \in \mathbb{Z} \setminus \{-1, 1\}$ tal que $q = q_1q_2$, d'on tenim dues possibilitats: O bé $q_1 \leq q_2$, o bé $q_2 \leq q_1$.

En el primer cas $(q_1 \leq q_2)$, tenim que $q = q_1q_2 \geq q_1^2$, amb el qual $n = pq_1q_2 \geq pq_1^2$ i com $q_1|q$, aleshores $q_1|n$ d'on $n \geq pq_1^2 \geq p^3$, el que contradiu l'enunciat!! L'altre cas $(q_2 \leq q_1)$, és anàleg a aquest.

I per tant, $q = \frac{n}{p}$, és primer.