Sequential Learning Under Distribution Shifts

Joe Suk NYU

joint with Samory Kpotufe (Columbia), Arpit Agarwal (IIT Bombay), Jung-hun Kim (CREST/ENSAE)

Long Term Motivation:

Sequential decisions under noisy, partial feedback

(Contextual) Bandits, Reinforcement Learning, ...

We may learn good policies if the environment remains consistent ... However, the Environment changes frequently in practice ©

Long Term Motivation:

Sequential decisions under noisy, partial feedback

(Contextual) Bandits, Reinforcement Learning, ...

We may learn good policies if the environment remains consistent \dots

However, the Environment changes frequently in practice ©

Long Term Motivation:

Sequential decisions under noisy, partial feedback

(Contextual) Bandits, Reinforcement Learning, ...

We may learn good policies if the environment remains consistent ... However, the Environment changes frequently in practice ©

Many solutions so far (in machine learning):

Detect (unknown) changes quickly, and restart learning process .

Usual Guarantees: Compete with *Restarting* Oracle who knows changes

Suppose we had an algorithm alg which works well in stationary environments.

Restarting Oracle Strategy

Many solutions so far (in machine learning):

Detect (unknown) changes quickly, and restart learning process ...

Usual Guarantees: Compete with Restarting Oracle who knows changes

Suppose we had an algorithm alg which works well in stationary environments.

Restarting Oracle Strategy:

Many solutions so far (in machine learning):

Detect (unknown) changes quickly, and restart learning process ...

Usual Guarantees: Compete with Restarting Oracle who knows changes

Suppose we had an algorithm alg which works well in stationary environments.

Restarting Oracle Strategy:

Many solutions so far (in machine learning):

Detect (unknown) changes quickly, and restart learning process ...

Usual Guarantees: Compete with Restarting Oracle who knows changes

Suppose we had an algorithm alg which works well in stationary environments.

Restarting Oracle Strategy:

restart	alg	restart	alg	again
change	#1	change	#2	

Many solutions so far (in machine learning):

Detect (unknown) changes quickly, and restart learning process ...

Usual Guarantees: Compete with Restarting Oracle who knows changes

Suppose we had an algorithm alg which works well in stationary environments.

Restarting Oracle Strategy:

restart alg	restart alg again
change #1	change #2

What was known:

Theoretical and Adaptive State-of-the-art (Wei & Luo, '21)

There's a blackbox procedure to convert a good stationary algorithm into a good non-stationary algorithm which matches guarantees of restarting oracle without oracle knowledge of changepoints.

Mostly Open Questions:

- Which changes are actually severe
- Can we adapt to such severe changes

What was known:

Theoretical and Adaptive State-of-the-art (Wei & Luo, '21)

There's a blackbox procedure to convert a good stationary algorithm into a good non-stationary algorithm which matches guarantees of restarting oracle without oracle knowledge of changepoints.

Mostly Open Questions:

- Which changes are actually severe?
- Can we adapt to such severe changes?

Non-Stationary Bandits

• At time \mathbf{t} : select $a \in [K]$, observe random reward $Y_t(a)$, with mean $\mu_t(a)$.

• Dynamic Regret:
$$\mathbf{R_T} \doteq \sum_{t=1}^T \underbrace{\mu_t^\star - \mu_t(a_t)}_{\delta_t(a_t)}$$
.

What was known:

What we show: A much weaker notion of change admits adaptivity ..

Non-Stationary Bandits

• At time \mathbf{t} : select $a \in [K]$, observe random reward $Y_t(a)$, with mean $\mu_t(a)$.

• Dynamic Regret:
$$\mathbf{R_T} \doteq \sum_{t=1}^T \underbrace{\mu_t^\star - \mu_t(a_t)}_{\delta_t(a_t)}$$
.

What was known:

What we show: A much weaker notion of change admits adaptivity ...

Non-Stationary Bandits

• At time t: select $a \in [K]$, observe random reward $Y_t(a)$, with mean $\mu_t(a)$.

• Dynamic Regret:
$$\mathbf{R_T} \doteq \sum_{t=1}^T \underbrace{\mu_t^\star - \mu_t(a_t)}_{\delta_t(a_t)}$$
.

What was known:

Parameters	Best Oracle Rate	Adaptive Rates	
$m{L}$ changes in $\mu_t(a)$	\sqrt{LT} [Garivier & Moulines. 11]	Yes [Auer et al. 19]	
S best-arm switches	$\sqrt{ST} \ll \sqrt{LT}$ [Auer. 02]	OPEN	
Total-Variation	$V^{1/3}T^{2/3}$ [Besbes et al. 14]	Yes [Chen et al. 19]	
$V \doteq \sum_{t} \max_{a} \mu_{t+1}(a) - \mu_{t}(a) $	V 1 1 [Despes et al. 14]	les [Chen et al. 19]	

Non-Stationary Bandits

• At time t: select $a \in [K]$, observe random reward $Y_t(a)$, with mean $\mu_t(a)$.

• Dynamic Regret:
$$\mathbf{R_T} \doteq \sum_{t=1}^T \underbrace{\mu_t^\star - \mu_t(a_t)}_{\delta_t(a_t)}$$
.

What was known:

Parameters	Best Oracle Rate	Adaptive Rates	
$m{L}$ changes in $\mu_t(a)$	\sqrt{LT} [Garivier & Moulines. 11]	Yes [Auer et al. 19]	
S best-arm switches	$\sqrt{ST} \ll \sqrt{LT}$ [Auer. 02]	OPEN	
Total-Variation	$V^{1/3}T^{2/3}$ [Besbes et al. 14]	Yes [Chen et al. 19]	
$V \doteq \sum_{t} \max_{a} \mu_{t+1}(a) - \mu_{t}(a) $	V 1 1 [Despes et al. 14]	les [Chen et al. 19]	

 $\label{eq:weaker} What \ \text{we show:} \\ \textbf{A much weaker notion of change admits adaptivity} \ \dots$

Main Results for Non-Stationary Bandits:

A new notion of Significant Shift (only most *severe* changes)

Best-arm-switches, or even large TV, *can be ignored*.

Adaptive Rates (unknown parameters)

$$\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathsf{Sig. \ Phases \ } \mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$$

- Always faster than $\sqrt{ST} \ll \sqrt{LT}$, and faster than $V^{1/3}T^{2/3}$.
- Adaptive: no algorithm knowledge of non-stationarity required

Main Results for Non-Stationary Bandits:

A new notion of Significant Shift (only most *severe* changes)

Best-arm-switches, or even large TV, *can be ignored*.

Adaptive Rates (unknown parameters)

$$\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathsf{Sig. \ Phases } \mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$$

- ullet Always faster than $\sqrt{ST} \ll \sqrt{LT}$, and faster than $V^{1/3}T^{2/3}$.
- Adaptive: no algorithm knowledge of non-stationarity required

Main Results for Non-Stationary Bandits:

A new notion of Significant Shift (only most *severe* changes)

Best-arm-switches, or even large TV, *can be ignored*.

Adaptive Rates (unknown parameters)

$$\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathsf{Sig. \ Phases}\ \mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$$

- Always faster than $\sqrt{ST} \ll \sqrt{LT}$, and faster than $V^{1/3}T^{2/3}$.
- Adaptive: no algorithm knowledge of non-stationarity required.

Intuition: various changes can safely be ignored

Best arm changes may not be "significant".

(e.g., when of small magnitude or duration)

We may have $\mathbf{R_T} \lesssim \sqrt{T}$ while $\sqrt{ST} \approx T$

Intuition: various changes can safely be ignored

Large
$$V \doteq \sum_t \max_a |\mu_{t+1}(a) - \mu_t(a)|$$
 may not be "significant". (e.g., if mean rewards remain close)

We may have $\mathbf{R_T} \lesssim \sqrt{T}$ while $V^{1/3}T^{2/3} pprox T$

Hard to Ignore:

All arms became unsafe to play ... a' first, then a!

Hard to Ignore:

All arms became unsafe to play ... a' first, then a!

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}$$

⇒ best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves
$$\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$

The same rate can be achieved adaptively by tracking a^\sharp ...

Definition (Significant Phases \mathcal{P}_i)

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}.$$

 \implies best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves
$$\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$.

The same rate can be achieved adaptively by tracking a^\sharp ...

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}.$$

 \implies best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves $\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$

The same rate can be achieved adaptively by tracking a^\sharp ..

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}.$$

⇒ best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves $\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$

The same rate can be achieved adaptively by tracking a^{\sharp} ...

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}.$$

⇒ best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves $\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$.

The same rate can be achieved adaptively by tracking a^\sharp ...

A Significant Phase ends when no safe arm is left to play

$$\forall a \in [K], \ \exists \ \text{an interval} \ I, \quad \sum_{t \in I} \delta_t(a) \gtrsim \sqrt{|I|}.$$

⇒ best arm switches, and large TV, but not the other way

Prop. (Sanity Check) An Oracle achieves $\mathbb{E}[\mathbf{R_T}] \lesssim \sum_{\mathcal{P}_i} \sqrt{|\mathcal{P}_i|}$

Key: \mathcal{P}_i admits last safe arm a^{\sharp} , s.t. $\sum_{t \in \mathcal{P}_i} \delta_t(a^{\sharp}) \lesssim \sqrt{|\mathcal{P}_i|}$.

The same rate can be achieved adaptively by tracking a^{\sharp} ...

Broader Research Tracking Significant Changes in...

- Multi-armed bandits (w/ Samory Kpotufe, COLT '22).
- Non-parametric contextual bandits (w/ Samory Kpotufe, NeurIPS '23).
- Contextual bandits with covariate shift (w/ Samory Kpotufe, ALT '21).
- Dueling bandits with...
 - Condorcet winner (Buening & Saha, AISTATS '23)*
 - Condorcet winner + SST/STI (w/ Arpit Agarwal, NeurIPS '23).
 - Borda winner (w/ Arpit Agarwal, TMLR '25).
- Smoothly-varying non-stationary bandits (SIMODS, '25).
- Infinite-Arm Bandits with reservoir rewards (w/ Jung-hun Kim, ICML '25).
- Lipschitz Infinite-Arm Bandits (Nguyen et al., NeurIPS '25)*
- Online Outlier Detection (with Samory Kpotufe, to be submitted).
- Two-player games and multi-agent RL (ongoing...)

Works of others

Summary

Main Design Element:

Track most severe changes, otherwise keep learning

Requires understanding the severity of changes (depends on problem nuances, not blackbox) ...

Thanks!

Summary

Main Design Element:

Track most severe changes, otherwise keep learning

Requires understanding the severity of changes (depends on problem nuances, not blackbox) ...

Thanks!

Summary

Main Design Element:

Track most severe changes, otherwise keep learning

Requires understanding the severity of changes (depends on problem nuances, not blackbox) ...

Thanks!