Arquitectura de Computadores I	Exame Tipo – 2002/03	
NOME:	Nº:	
TEÓRICA		
As questões devem ser respondidas na própria folha do e múltipla, e apenas uma das respostas está correcta, valen de valor. As questões 5 e 6 valem 2 valores cada. A quest alunos que, justificadamente, não fizeram a componente teó	do 1 valor. Uma resposta errada desconta 1/3 ão 7 (4 valores) só deve ser respondida pelos	
 Qual das seguintes afirmações, que co transferência de dados numa operação de Ir 		
Usando polling o CPU é responsável por estado do controlador de I/O e pela transferê	-	
A vantagem da utilização do mecanismo de é que o primeiro liberta o CPU da transferên		
 A utilização do mecanismo de interrupçõe verificar activamente alterações no estado de 		
 O DMA liberta o CPU de qualquer intervençã Qual das seguintes afirmações, respeitante para gerar código optimizado (mais rápido), 	es à contribuição do compilador (gcc)	
O compilador tenta utilizar instruções que minimizando assim o tempo de execução.	minimizem o período do relógio (T _{cc}),	
O compilador minimiza o número de instruçõ	es (#I) a executar.	
 O compilador minimiza o número de instru acessos à memória, este último para diminui 		
O compilador empenha-se apenas na condicionais, conseguindo assim maximizar exibe maior localidade espacial.		
 O desempenho do CPU pode ser medido u Qual das seguintes afirmações é verdadeira: 		
O tempo de execução de qualquer programa aumenta a frequência do relógio do processa	a diminui na mesma proporção em que	
Um algoritmo com menor número de instruç equivalente, resulta invariavelmente num pro	ções (#I) do que outro funcionalmente	
Para o mesmo processador obtem-se um algoritmo e um compilador que reduza o nú CPI.	n programa mais rápido usando um	
O desenho de processadores com instruçõ número de instruções geradas pelo com tempos de execução menores.		
 Qual das seguintes afirmações é verdadeira: 		
Os processadores com um desenho CISC o alternativas RISC devido ao menor núm programas, conseguidos usando instruções	nero de instruções dos respectivos	
Os processadores com arquitectura RISC ap instruções e na regularidade do formato das Unidades de Controlo mais simples que as a	s mesmas, para permitir o desenho de	
Os modos de endereçamento mais comp CISC (e não nos RISC), permitem obter me redução do número de instruções necessária	lexos, existentes nos processadores elhores tempos de execução, devido à	

Os processadores CISC, com uma arquitectura mais complexa que os RISC, têm também mais registos, permitindo diminuir o número de acessos à memória.

O	ME: N°:	
	Indique os vários estágios de execução da instrução lw \$s0, \$t explicitando os elementos utilizados e as operações realizadas em cada figura anexa), e indique o valor dos sinais de controlo RegDst, Reg	fase (ver
	ALUSrc, PCSrc, MemWrite, MemRead e MemToReg.	
ſ		
ŀ		
ŀ		
İ		
ŀ		
ŀ		
ľ		

NOME:		N°:	
6.	Explique os vários passos que têm que ser dados na invocação funções e indique de que forma estes são codificados seguindo adoptada para o IA32.) е) а	retorno de convenção

NOME:

N°:_____

	Apenas para os alunos que, justificadamente, não fizeram a componente teórico-prática.
7.	Compare os conjuntos de instruções do IA32 (CISC) e MIPS (RISC), no que respeita a complexidade dos modos de endereçamento, número de instruções, formato de instruções e número de registos, analisando o impacto destas características no tempo de execução, nomeadamente nas seguintes métricas: número de instruções, CPI e frequência do relógio.

NOME: _____ N°:____

PRÁTICA

As questões práticas devem ser respondidas em folha separada. A questão 1 vale 4 valores, as questões 2 e 3 valem 2 valores cada.

- 1. Considere que o código assembly IA32 (sem optimização) obtido após compilar a função da Tabela 1 é o que se apresenta na Tabela 2.
- a) Identifique a funcionalidade dos blocos 1 a 4 de instruções etiquetados.
- Sugira duas optimizações no bloco 3 e uma correcção em cada um dos blocos 2 e 5.
- Escreva em assembly do MIPS o código correspondente à seguinte linha de código

```
list[i].eq = 1;
```

Assuma que:

- o registo \$s0 contém a variável inteira i
- o registo \$t0 contém o apontador para a variável inteira list

```
typedef struct {
                                                              calcEq:
                                                               pushl %ebp
   char eq;
                                                                movl %esp, %ebp
   int db;
                                                               pushl %ebx

      subl $4, %esp
      # B 1

      movl $1, -8(%ebp)
      # B 1

   } dBase;
                                                              .L3:
int calcEq (dBase *list, int n)
                                                               movl -8(%ebp), %eax # B 2 cmpl 12(%ebp), %eax # B 2
{ int i=1;
                                                                                                                # B 2
                                                                jg .L5
                                                                jmp .L4
                                                                                                               # B 2
   while (i<n)
                                                              .L5:
      if (list[i].db==list[i-1].db)
  list[i].eq = 1;
  else
    list[i].eq = 0;
  ++i;
# B 3

movl -8(%ebp), %eax # B 3

movl 8(%ebp), %eax # B 3

movl -8(%ebp), %eax # B 3

movl %eax, %eax # B 3

sall $3, %eax # B 3

leal -8(%eax), %eax # B 3

leal -8(%eax), %edx # B 3

movl 4(%ecx.%ebx), %eax # B 3
   }
                                                                movl 4(%ecx, %ebx), %eax # B 3
                                                                cmpl 4(%edx), %eax # B 3
                                                                jne .L6
                                                                                                               # B 3
                                                                movl -8(%ebp), %eax
                                                                imull $8, %eax, %edx
                                                                movl 8(%ebp), %eax
                                                                movb $1, (%eax, %edx)
                                                                jmp .L7
                                                              .L6:
                                                                movl -8(%ebp), %eax # B 4
imull $8, %eax, %edx # B 4
movl 8(%ebp), %eax # B 4
movb $0, (%eax,%edx) # B 4
                                                              .L7:
                                                                leal -8(%ebp), %eax
                                                                incl (%eax)
                                                                jmp .L3
                                                              .L4:
                                                                                                               # B 5
                                                                leave
                                                                                                               # B 5
                                                                 ret
                                                                                                          # B 5
```

NOME: ______ N°:_____

2. Considere um programa escrito em assembly do MIPS com as características apresentadas na tabela, executado numa máquina sem *cache misses*, com uma frequência do relógio de 100 MHz.

Instrução	Nº instruções	CPI
Lw	900	4
Sw	900	4
add/addi	100	3
slt/slti	100	2

- a) Qual o CPI global e o tempo de execução deste programa?
- b) Se a *miss rate* de acesso às instruções for 5% e de acesso aos dados 12%, com uma *miss penalty* de 100ns, qual o CPI global e o tempo de execução do programa?
- c) O processador desta máquina foi substituído por outro com uma frequência 2 vezes superior, mantendo-se constantes todos os outros parâmetros do sistema. Qual o CPI global e o tempo de execução do programa?
- 3. Considere uma máquina com um espaço de endereçamento de 32 *bits*, uma cache com uma capacidade de 64 Kbytes de dados, palavras de 32 *bits*, blocos de 16 palavras e uma organização *8-way set associative*.
- a) Qual a distribuição dos *bits* do endereço pela *tag*, índice, *block offset* e *byte offset* para seleccionar o *byte* correcto na *cache*?
- b) Qual a capacidade total da *cache*, contando com os campos de controlo (*tag* e *valid bit*)?