Elon Denso

Davi Sales Barreira

March 22, 2021

Abstract

Este texto é um resumo condensado do livro "Análise Real - Volume 1" [Lima, 2004]. Todas as sequências, definições, teoremas e proposições supõe que estamos nos reais. Assim, quando se afirma que (x_n) é uma sequência, está implícito que $(x_n) \subset \mathbb{R}$.

Definition 0.1 (Supremo). Seja $X \subset \mathbb{R}$ um conjunto não vazio. Dizemos que b é o supremo de X, i.e. $\sup X = b$ se:

- 1. Para todo $x \in X$, tem-se x < b;
- 2. Se c < b então existe $x \in X$ tal que c < x.

Definition 0.2 (Ínfimo). Seja $X \subset \mathbb{R}$ um conjunto não vazio. Dizemos que a é o ínfimo de X, i.e. inf X = a se:

- 1. Para todo $x \in X$, tem-se x > a;
- 2. Se c > a então existe $x \in X$ tal que x < c.

Definition 0.3 (Axioma da Completude). Todo conjunto não-vazio $X \in \mathbb{R}$ limitado superiormente possui supremo $b = \sup X \in \mathbb{R}$.

Definition 0.4 (Sequência). Uma sequência de números reais é uma função $x : \mathbb{N} \to \mathbb{R}$, onde cada $n \in \mathbb{N}$ associa x_n a um número real. Escreve-se (x_n) para representar a sequência $(x_1, x_2, ...)$.

Definition 0.5 (Subsequência). Uma subsequência de (x_n) é denotada por (x_{n_k}) , onde $(x_{n_k}) = (x_{n_1}, x_{n_2}, ...)$, com $n_1 > n_2 > n_3 ... \in \mathbb{N}$. Dado $k \in \mathbb{N}$, temos que $n_k = n$ implica $x_{n_k} = x_n$.

Definition 0.6 (Limite). L é o limite de (x_n) se para todo $\varepsilon > 0$ existir um $n_o \in \mathbb{N}$ tal que $n > n_o \implies |x_n - x| < \varepsilon$. Assim, escreve-se $\lim_{n \to +\infty} x_n = L$, onde dizemos que (x_n) é convergente.

Definition 0.7. Dizemos que $\lim_{n\to+\infty} x_n = +\infty$ se para todo M>0 existir um $n_o\in\mathbb{N}$ tal que $n>n_o\implies x_n>M$.

Definition 0.8 (Limite Superior e Inferior). O Limite Superior de uma sequência (x_n) é

$$\lim_{n \to +\infty} \sup_{x} x_n = \lim_{k \to +\infty} \sup_{n \ge k} x_n = \inf_{k} \sup_{n \ge k} x_n. \tag{1}$$

O Limite Inferior de uma sequência (x_n) é

$$\lim_{n \to +\infty} \inf x_n = \lim_{k \to +\infty} \inf_{n \ge k} x_n = \sup_{k} \inf_{n \ge k} x_n.$$
(2)

Theorem 1 (Unicidade). Seja L limite da sequência (x_n) . Logo, L é único.

Proof. Sejam L_1 e L_2 limites de (x_n) . Tome $\varepsilon = \frac{|L_1 - L_2|}{2}$. Logo, existe n_o tal que $n > n_o$ implica $|x_n - L_1| < \varepsilon$ e $|x_n - L_2| < \varepsilon$. Porém

$$|L_1 - L_2| < |L_1 - x_n| + |x_n - L_2| < 2\varepsilon = |L_1 - L_2| \tag{3}$$

Theorem 2. Toda sequência convergente é limitada.

Proof. Seja L o limite de (x_n) . Logo, para $\varepsilon = 1$ existe n_o tal que para todo $n > n_o$ temos $x_n \in (L-1, L+1)$. Assim, $\{x_1, ..., x_{n_o}, (L-1, L+1)\}$ contém (x_n) .

Theorem 3. Se $\lim_n x_n = L$, então toda subsequência (x_{n_k}) converge para L.

Proof. Dado $\varepsilon > 0$, existe n_o tal que $n > n_o \implies |x_n - L| < \varepsilon$. Para $k > n_o$, $n_k > n_o$, logo $|x_{n_k} - L| < \varepsilon$. \square

Theorem 4. Toda sequência monótona e limitada é convergente.

Proof. Seja $a = \sup(x_n)$. Para $\varepsilon > 0$, pela definição de supremo, existe $x_{n_o} - \varepsilon \le a$. Como a sequência é monótona, então para $n > n_o$, temos $x_n - \varepsilon \le a$.

Theorem 5 (Intervalos Encaixados). Seja $I_1 \subset I_2 \subset ... \subset I_n \subset ...$ de intervalos limitados e fechados, tal que $I_n = [a_n, b_n]$. Existe pelo menos um número real $c \in I_n$ para todo $n \in \mathbb{N}$.

Proof. Tome o supremo das cotas inferiores de cada intervalo.

Theorem 6 (Bolzano-Weierstrass). Toda sequência de reais possui subsequência convergente.

Proof. Dem 1: Seja $D:=\{k\in\mathbb{N}: x_k\geq x_p\ \forall k\geq p\in\mathbb{N}\}$. Ou seja, $(x_k)_{k\in D}$ é uma sequência crescente. Se D for infinito, então (x_k) é uma subsequência limitada e monótona. Se D for finito, então para $i>\max D$, para cada x_i existe x_p com p>i tal que $x_i< x_p$. Constrói-se assim uma subsequência monótona descrescente e limitada. Pelo teorema anterior, qualquer uma dessas subsequências converge.

Dem 2: Como (x_n) é limitado, então faça $\{x_1, ...\} \in [a, b]$. Divida em dois intervalos, $[\frac{a+b}{2}, b]$ e $[a, \frac{a+b}{2}]$. Pelo menos um intervalo vai ter infinitos elementos da sequência. Suponha que seja o primeiro. Agora repita o processo. Logo, criou-se uma sequência de intervalos encaixados que contém (x_n) . Usando o teorema dos intervalos encaixados, existe um c que pertence a todos os intervalos. Tome (x_{n_k}) para cada passo da construção dos intervalos, logo $\lim_n x_{n_k} = c$.

Proposition 1 (Propriedades dos Limites). As seguintes propriedades são válidas para limites:

- Seja $\lim_n x_n = a$. Se a < b, então existe n_o tal que $n > n_o \implies x_n < b$;
- Se $x_n \leq b$ para todo $n \in \mathbb{N}$, então $\lim_n x_n \leq b$;
- Se $x_n \leq y_n$ para todo $n \in \mathbb{N}$, então $\lim_n x_n \leq \lim_n y_n$;
- Se $\lim_n x_n = 0$ e (y_n) é limitada, então $\lim_n x_n y_n = 0$;
- Se $x_n > 0$ e $\lim_n \frac{x_{n+1}}{x_n} = L < 1$, então $\lim x_n = 0$;
- Se $x_n \to +\infty$ e (y_n) é limitado, então $\lim_n x_n + y_n = +\infty$;
- Se $x_n \to +\infty$ e $y_n > c > 0$, então $\lim_n x_n y_n = +\infty$;
- Se $x_n > c > 0$ e $y_n > 0$ com $\lim_n y_n = 0$, então $\lim_n \frac{x_n}{y_n} = +\infty$;
- Se (x_n) limitado e $y_n \to +\infty$, então $\lim_n \frac{x_n}{y_n} = 0$.

Theorem 7 (Sanduíche). Seja $\lim_n x_n = \lim_n y_n = L$ e $x_n \le z_n \le y_n$ para todo $n \in \mathbb{N}$. Então $\lim_n z_n = L$.

Proof. Para $\varepsilon > 0$, existe n_o tal que $n > n_o$ implica que $|x_n - L| < \varepsilon \ |y_n - L| < \varepsilon$. Logo, $L - \varepsilon < x_n \le z_n \le y_n < L + \varepsilon$.

Definition 0.9 (Sequência de Cauchy). (x_n) é de Cauchy se para todo $\varepsilon > 0$ existe $n_o \in \mathbb{N}$ tal que $n, m > n_o \implies |x_n - x_m| < \varepsilon$.

Theorem 8 (Convergência de Cauchy). (x_n) é de Cauchy, se, e somente se, (x_n) é convergente.

Proof. \Leftarrow) Seja $\lim_n (x_n) = L$, assim, para ε existe n_o tal que $n > n_o$ implica $|x_n - L| < \varepsilon/2$. Logo, para $n, m > n_o$, temos $|x_n - x_m| \le |x_n - L| + |L - x_m| < \varepsilon$.

 \Longrightarrow) Seja (x_n) de Cauchy, então para $\varepsilon>0$, existe n_o tal que $n,m>n_o$ \Longrightarrow $|x_n-x_m|<\varepsilon/2$. Logo, pra um $n_1>n_o$ fixo, temos $|x_{n_1}-x_m|<\varepsilon/2$ assim, $(x_n)\subset\{x_1,...,x_{n_1},(x_{n_1}-\varepsilon/2,x_{n_1}+\varepsilon/2)\}$. Portanto, (x_n) é limitada. Por Bolzano-Weierstrass, existe (x_{n_k}) que converge, chamemos $\lim_k x_{n_k}=L$. Para n_{k_o} , $n_k>n_{k_o}$ \Longrightarrow $|x_{n_k}-L|<\varepsilon/2$. Para $n_{n_k}>\max\{n_o,n_{k_o}\}$, Finalmente, $|x_n-L|\le|x_n-x_{n_k}|+|x_{n_k}-L|<\varepsilon$.

Os números reais podem ser construídos de diferentes formas. Começamos supondo o Axioma da Completude onde todo conjunto superiormente limitado possui um supremo. Esse Axioma é equivalente ao Teorema de Convergência de Cauchy. Assim, poderíamos ter começado supondo que o Axioma era que toda sequência de Cauchy converge para algum limite L e então provar que todo conjunto limitado superiormente possuía um supremo. O mesmo é verdade para o teorema de Bolzano-Weierstrass e para a dupla Intervalos Encaixados + Teorema da Convergência Monótona. Em resumo:

$$AC \iff \{IE, TCM\} \iff BW \iff CC$$

References

Elon Lages Lima. Análise real. Impa, 2004.