

Universidad Nacional Mayor de San Marcos Universidad del Perú. Decana de América

Facultad de Ingeniería de Sistemas e Informática

Proyecto de IoT

Internet de las Cosas

Integrantes

Albert Williams Perez Santiago Miguel Stalin Soria Villanueva Erly Toribio Rivera Inche Nicolas Alonso Rojas Gala

> LIMA, PERÚ 2024

Práctica 1: Análisis de un caso de uso real de IoT

Descripción corta:

El proyecto "Comedero para Mascotas basado en IoT controlado por el Asistente de Google mediante NodeMCU" tiene como objetivo desarrollar un sistema automatizado para alimentar mascotas de manera remota y programada. Este sistema utiliza la plataforma NodeMCU para conectar el comedero a Internet y permite su control mediante comandos de voz a través del Asistente de Google.

Funcionalidades

- Control por Voz: Habilitación del control del comedero mediante comandos de voz a través del Asistente de Google, permitiendo la alimentación de la mascota desde cualquier lugar.
- Programación de Alimentación: Configuración de horarios de alimentación automáticos para dispensar comida a intervalos regulares.
- Reconocimiento de voz atreves del asistente de google mediante el uso de "IFTT" para detectar al momento que se dice "Okay Google, alimentar perro" se mande una señala a ADAFRUIT para que puede ser reconocido por la placa y poder liberar el alimento para la mascota

My Applets

 Usamos ADAFRUIT para una vez el asistente de google recibe el orden este le manda la una señal en este caso "ON" que va a ser almacena como un dato que sera almacenado y este asu vez envia el dato de "ON" para que activarlo y se puede alimentar a la mascota asi mismo nos brinda un dasboard donde se muestran las veces que fueron activadas

¿Qué dispositivos nos pueden ayudar para nuestro proyecto?

Componentes del Sistema

- NodoMCU ESP8266: Es el microcontrolador principal que proporcionará conectividad WiFi para controlar el comedero a través de internet.
- Módulo LCD 16x2: Permite visualizar información en tiempo real
- Módulo LCD I2C: Facilita la conexión del módulo LCD 16x2 al NodeMCU, reduciendo la cantidad de pines necesarios para la comunicación.
- Servo motor: Controla el mecanismo de dispensado del alimento, abriendo y cerrando el compartimento donde se almacena la comida.

Código del proyecto(Avance):

#include <Servo.h>

// Crear un objeto Servo para controlar el servomotor

Servo myservo;

// Definir el pin del botón y el pin del servomotor

```
const int buttonPin = 2;
const int servoPin = 9;
// Variable para almacenar el estado del botón
int buttonState = 0;
// Posición inicial del servomotor
int servoPos = 0;
void setup() {
// Iniciar el servo en el pin especificado
 myservo.attach(servoPin);
 // Configurar el pin del botón como entrada con resistencia pull-up interna
 pinMode(buttonPin, INPUT_PULLUP);
 // Configurar la posición inicial del servomotor
 myservo.write(servoPos);
}
void loop() {
// Leer el estado del botón
 buttonState = digitalRead(buttonPin);
 // Si el botón está presionado (estado bajo porque usamos pull-up)
 if (buttonState == LOW) {
  // Mover el servomotor a 180 grados
  myservo.write(180);
  // Esperar un segundo
  delay(1000);
  // Volver el servomotor a 0 grados
```

```
myservo.write(0);
}
```