	Ecole Nationale des Sciences et	Technologies Avancées à Borj Cédria (ENSTAB)		
ENSTAB	DEVOIR SURVELLE:	NOM DES ENSEIGNANTS :		
-1/	Circuits et Syst. Elect	S. Saidi, H. Khéchini et A. Ben Rhouma		
1 //	MODULE:	CLASSE :		
	Sciences de l'Ingénieur I	1 ^{ère} année		
DATE	NBRE. DE PAGES:	DURÉE DE L'ÉPREUVE :		
17-11-2020	4	1h30		
	DOCUMENTS	AUTORISÉS :		
Calculation	0111	NON		
Calculatrice	OUI ×	NON ×		
Autres docume		NON		
Nom et Prénor	<u>n</u> :			
EYEDCICE	1º1 :7nts			
EXERCICE N		enté sous la tension alternative sinusoïdale V _e ,		
de frequence 5	UHZ et de Valeur eπicace 230V L Rs	(Prise comme référence des phases).		
		∟ ^		
		c V IRO		
	Ý. 60			
	⊻. ⊘			
		十		
	<u>오</u>	<u>오</u> 오м		
	_			
On donne : C=125uF, R _s =3Ω ,R _p =10Ω et L=15mH 1. Déterminer l'impédance complexe totale <u>Z</u> de ce récepteur (module et argument); (1,25pts)				
	(-(-a)			
7 9	Z 2 2 2 2 2 2 8 2 2 4 2 8 0 1	4 –		
3 =	I RS (Ze+ZRO)	Rel		
		A V. T		
***************************************	B(F) . T()-	· · · · · · · · · · · · · · · · · · ·		
	· [(- 2	457		
	2 2	DB 184		
	(-1)			
	T.(2-)\			
	104			
2. Déterminer l'	intensité complexe <u>I</u> ; (0.75pt)	(9)		
	, ,	42/e, 6		
	I = -	. 1, 9		
<u></u>				
3. Déterminer l'intensité complexe <u>I_{Rp}</u> circulant dans la résistance R _p ; (1.25pts)				
		1,, 6		
	Ez V	(ZL + ZRs) + ZRP//C		
	40	6 2		
	·	(E, + Bs) + ZR=11		

· · · · · · · · · · · · · · · · · · ·	
	••••••
•• • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••
	I NAC
	t a dépardant de R
 Quelles conditions doi (1,25pts) 	vent satisfaire les données pour que \mathfrak{l}_{R_p} soit indépendant de R_p ,
······································	
	tion at afactive B. at O-consommées par cette charge. (1.5pts)
Calculer les puissance	s active et réactive P _z et Q _z consommées par cette charge. (1.5pts)
	7. 2. = I V. (12)
	Bz = I Usu ?
80.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	
	ion de Fresnel de <u>V</u> e, <u>I</u> , <u>I</u> c, <u>I</u> _{Rp} et <u>V</u> _{AM} (sans respect de l'échelle);
5. Donner la representat	Ion de l'resner do <u>Far si sor site</u>
(1pt)	
	1
	Fig.2
	Fig.2
	Fig.2
EXERCICE N°2 : 4pts	S continué de trois radiateurs monophasés. Ce
EXERCICE N°2 : 4pt s Soit un récepteur triphase écepteur est alimenté pa	S continué de trois radiateurs monophasés. Ce
Soit un récepteur triphasé écepteur est alimenté pa	s é équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment
Soit un récepteur triphasé écepteur est alimenté pa	s é équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. I. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	s équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé récepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	s é équilibré en triangle constitué de trois radiateurs monophasés. Ce ir un réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment
Soit un récepteur triphasé récepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé récepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
récepteur est alimente pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé écepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé récepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);
Soit un récepteur triphasé récepteur est alimenté pa 6kW chacun. 1. Calculer le courant dan	é équilibré en triangle constitué de trois radiateurs monophasés. Ce run réseau triphasé 230/400V à 50Hz. Sous 400V ils consomment ens un fil de ligne (noté I) et le courant dans chacun d'eux (noté J);

3. Calculer les puissances active et réactive (P_g et Q_g) ainsi que la puissance apparente (S_g) pour l'association des deux charges; (1.5pts)	
Tg = Pp + 20103 = 3.5 pl KXV	
Pg = J3. W. I. C. L. P. J. a. A. B. Lg P = 2010 VAR	
4. En déduire le voleur du confront clobal I. de l'installation: (0.75pt)	
T = 50 = 19,3 f #	
5. Calculer la valeur du facteur de puissance de l'installation $cos\phi_g$, ce facteur est-il	
tolérable par le fournisseur d'épargie 2 (1nt)	
Cos Par = 19 = 0,87	
6. Pour relever le facteur de puissance de la ligne triphasée, on ajoute trois condensateurs	
identiques (est Z _c = 24Ω) montés en triangle sur la ligne a- Compléter le schéma de câblage des batteries de condensateurs (Page.3-Fig.3) (0,5pt)	
b- Calculer les nouvelles puissances, active, réactive et apparente $(P_{g1}, Q_{g1} \text{ et } S_{g1})$.	
Por 25 934,3 M	152
Q = P g - P3ck / P = - CN U	
= \$\sqrt{0} \	
20 Up R	
c- En déduire le facteur de puissance et la valeur efficace du nouveau courant de ligne à	
l'entrée de ce nouvel ensemble (noté I _{g1}). (0,75pt)	
Ign = 191 - 51,86A	
(cosPgn - i)	
	ų į