Desafio A3Data

Felipe A. Petri

2023-07-27

```
library(tidyverse)
library(readxl)
library(caret)
library(ROSE)
library(randomForest)
library(kableExtra)
```

Introdução das análises

```
churn=read xlsx("Customer-Churn.xlsx")
head(churn)
## # A tibble: 6 x 21
     customerID gender SeniorCitizen Partner Dependents tenure PhoneService
##
                               <dbl> <chr>
                <chr>
                                              <chr>
                                                          <dbl> <chr>
## 1 7569-NMZYQ Female
                                   0 Yes
                                                             72 Yes
                                              Yes
## 2 8984-HPEMB Female
                                   0 No
                                             No
                                                             71 Yes
## 3 5989-AXPUC Female
                                   0 Yes
                                                             68 Yes
                                             No
## 4 5734-EJKXG Female
                                   0 No
                                             No
                                                             61 Yes
## 5 8199-ZLLSA Male
                                   0 No
                                             No
                                                             67 Yes
## 6 9924-JPRMC Male
                                   0 No
                                                             72 Yes
## # i 14 more variables: MultipleLines <chr>, InternetService <chr>,
       OnlineSecurity <chr>, OnlineBackup <chr>, DeviceProtection <chr>,
       TechSupport <chr>, StreamingTV <chr>, StreamingMovies <chr>,
## #
       Contract <chr>, PaperlessBilling <chr>, PaymentMethod <chr>,
       MonthlyCharges <dbl>, TotalCharges <dbl>, Churn <chr>
# Transformando variáveis categóricas em Os e 1s (fica mais fácil para futura análise)
churn=churn %>%
 mutate_at(c(4,5,7,8,10:15,17,21), "ifelse(.=="Yes",1,0))
# Alterando tipos de colunas
churn=churn %>%
 mutate_at(c(2:5,7:18,21),~as.factor(.))
```

Introdução aos dados

```
churn[,c(1:10)] %>%
  summary() %>%
  kable(format="latex",escape=FALSE) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3")
```

customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
Length:7043	Female:3488	0:5901	0:3641	0:4933	Min.: 0.00	0: 682	0:4072	DSL :2421	0:5024
Class :character	Male :3555	1:1142	1:3402	1:2110	1st Qu.: 9.00	1:6361	1:2971	Fiber optic:3096	1:2019
Mode :character	NA	NA	NA	NA	Median :29.00	NA	NA	No :1526	NA
NA	NA	NA	NA	NA	Mean :32.37	NA	NA	NA	NA
NA	NA	NA	NA	NA	3rd Qu.:55.00	NA	NA	NA	NA
NA	NA	NA	NA	NA	Max. :72.00	NA	NA	NA	NA

```
churn[,c(11:21)] %>%
  summary() %>%
  kable(format="latex",escape=FALSE) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3")
```

OnlineBackup	DeviceProtection	TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	Churn
0:4614	0:4621	0:4999	0:4336	0:4311	Month-to-month:3875	0:2872	Bank transfer (automatic):1544	Min.: 18.25	Min.: 18.8	0:5174
1:2429	1:2422	1:2044	1:2707	1:2732	One year :1473	1:4171	Credit card (automatic) :1522	1st Qu.: 35.50	1st Qu.: 401.4	1:1869
NA	NA	NA	NA	NA	Two year :1695	NA	Electronic check :2365	Median : 70.35	Median :1397.5	NA
NA	NA	NA	NA	NA	NA	NA	Mailed check :1612	Mean: 64.76	Mean :2283.3	NA
NA	NA	NA	NA	NA	NA	NA	NA	3rd Qu.: 89.85	3rd Qu.:3794.7	NA
NA	NA	NA	NA	NA	NA	NA	NA	Max. :118.75	Max. :8684.8	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA's :11	NA

Valores Faltantes

summary(churn)

```
##
     {\tt customerID}
                          gender
                                     SeniorCitizen Partner Dependents
                       Female:3488
                                                             0:4933
##
  Length:7043
                                     0:5901
                                                  0:3641
## Class :character
                       Male :3555
                                     1:1142
                                                    1:3402
                                                             1:2110
## Mode :character
##
##
##
##
##
        tenure
                    PhoneService MultipleLines
                                                   InternetService OnlineSecurity
## Min. : 0.00
                    0: 682
                                 0:4072
                                               DSL
                                                           :2421
                                                                   0:5024
   1st Qu.: 9.00
                    1:6361
                                 1:2971
                                               Fiber optic:3096
                                                                   1:2019
## Median:29.00
                                               Nο
                                                           :1526
## Mean
          :32.37
## 3rd Qu.:55.00
## Max.
           :72.00
##
## OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies
  0:4614
                 0:4621
                                  0:4999
                                              0:4336
                                                           0:4311
   1:2429
                 1:2422
                                  1:2044
                                               1:2707
                                                           1:2732
##
##
##
##
##
##
##
              Contract
                          PaperlessBilling
                                                              PaymentMethod
##
   Month-to-month:3875
                          0:2872
                                           Bank transfer (automatic):1544
                          1:4171
                                           Credit card (automatic) :1522
##
   One year
                  :1473
   Two year
                  :1695
                                           Electronic check
                                                                     :2365
##
                                           Mailed check
                                                                     :1612
##
##
##
  MonthlyCharges
##
                      TotalCharges
                                      Churn
```

```
## Min. : 18.25
                    Min. : 18.8
                                     0:5174
  1st Qu.: 35.50
                    1st Qu.: 401.4
                                     1:1869
##
  Median : 70.35
                    Median :1397.5
##
##
  Mean
         : 64.76
                           :2283.3
                    Mean
   3rd Qu.: 89.85
                    3rd Qu.:3794.7
##
##
  Max.
          :118.75
                    Max.
                           :8684.8
##
                    NA's
                           :11
# Como temos apenas uma coluna com 11 dados faltantes podemos remover todos os dados faltantes
churn=churn %>%
 drop_na()
```

Verificando Balanceamento de Dados

```
churn %>%
  ggplot(aes(Churn))+
  geom_bar(fill="darkblue")+
  labs(x="Churn",y="Frequência")+
  theme_minimal()
```


Nossos dados não são balanceados

Treino e Teste

```
# Separando dados em treino e teste set.seed(1)
```

```
ind_treino <- sample(nrow(churn), 0.7 * nrow(churn))
treino <- churn[ind_treino, ]
teste <- churn[-ind_treino, ]</pre>
```

Análise descritiva

Tabelas de contingência

```
contingencia=function(x){
 table(treino$Churn,treino[,x][[1]])
}
categoricas=setdiff(names(treino)[sapply(treino, is.factor)], "Churn")
tabelas_contingencia=lapply(categoricas,contingencia)
names(tabelas_contingencia) <- paste("Churn", categoricas, sep = " x ")</pre>
# Função para deixar as tabelas bonitas:
beautiful_tabelas=function(tabela,nome){
  tabela=addmargins(tabela)
  rownames(tabela)[nrow(tabela)]="Total"
  colnames(tabela)[ncol(tabela)]="Total"
  tabela=kable(tabela, caption=paste("Tabela de Contingência de", nome), format = "latex") %>%
   kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_opti
  row_spec(0, bold = TRUE, background = "#D3D3D3") %>%
  column spec(1, bold = TRUE, background = "#D3D3D3")
  return(tabela)
}
# Plotando as tabelas bonitas:
kables_contingencia=imap(tabelas_contingencia,beautiful_tabelas)
for (i in 1:length(kables_contingencia)) {
  cat(kables_contingencia[[i]], "\n\n")
}
```

Table 1: Tabela de Contingência de Churn x gender

	Female	Male	Total
0	1767	1822	3589
1	664	669	1333
Total	2431	2491	4922

Table 2: Tabela de Contingência de Churn x SeniorCitizen

	0	1	Total
0	3127	462	3589
1	1001	332	1333
Total	4128	794	4922

Table 3: Tabela de Contingência de Churn x Partner

	0	1	Total
0	1703	1886	3589
1	840	493	1333
Total	2543	2379	4922

Table 4: Tabela de Contingência de Churn x Dependents

	0	1	Total
0	2374	1215	3589
1	1109	224	1333
Total	3483	1439	4922

Table 5: Tabela de Contingência de Churn x PhoneService

	0	1	Total
0	345	3244	3589
1	121	1212	1333
Total	466	4456	4922

Table 6: Tabela de Contingência de Churn x MultipleLines

	0	1	Total
0	2097	1492	3589
1	725	608	1333
Total	2822	2100	4922

Table 7: Tabela de Contingência de Churn x InternetService

	DSL	Fiber optic	No	Total
0	1328	1263	998	3589
1	318	933	82	1333
Total	1646	2196	1080	4922

Table 8: Tabela de Contingência de Churn x OnlineSecurity

	0	1	Total
0	2398	1191	3589
1	1122	211	1333
Total	3520	1402	4922

Table 9: Tabela de Contingência de Churn x OnlineBackup

	0	1	Total
0	2276	1313	3589
1	944	389	1333
Total	3220	1702	4922

Table 10: Tabela de Contingência de Churn x DeviceProtection

	0	1	Total
0	2292	1297	3589
1	953	380	1333
Total	3245	1677	4922

Table 11: Tabela de Contingência de Churn x TechSupport

	0	1	Total
0	2387	1202	3589
1	1122	211	1333
Total	3509	1413	4922

Table 12: Tabela de Contingência de Churn x StreamingTV

	0	1	Total
0	2269	1320	3589
1	746	587	1333
Total	3015	1907	4922

Table 13: Tabela de Contingência de Churn x StreamingMovies

	0	1	Total
0	2258	1331	3589
1	733	600	1333
Total	2991	1931	4922

Table 14: Tabela de Contingência de Churn x Contract

	Month-to-month	One year	Two year	Total
0	1543	877	1169	3589
1	1176	122	35	1333
Total	2719	999	1204	4922

Table 15: Tabela de Contingência de Churn x PaperlessBilling

	0	1	Total
0	1676	1913	3589
1	329	1004	1333
Total	2005	2917	4922

Table 16: Tabela de Contingência de Churn x PaymentMethod

	Bank transfer (automatic)	Credit card (automatic)	Electronic check	Mailed check	Total
0	898	906	910	875	3589
1	177	147	797	212	1333
Total	1075	1053	1707	1087	4922

```
# Conduzindo teste estatístico para ver se as variáveis categóricas tem correlação com nossa variável d
testes=lapply(tabelas_contingencia,chisq.test)
testes_df <- tibble(</pre>
 Variaveis = names(testes),
 Estatistica = map_dbl(testes, ~ .x$statistic),
 P_valor = map_dbl(testes, ~ .x$p.value)
testes_df=testes_df %>%
 mutate(Var1=str_replace(Variaveis, "\\Qx \\E.*", ""),
         Var2=str_replace(Variaveis, ".*?\\Qx \\E", "")) %>%
  select(-Variaveis)
# Plotando os resultados dos testes estatísticos
testes df %>%
  ggplot(aes(x = Estatistica, y = reorder(Var2, desc(Estatistica)), fill = Estatistica)) +
  geom_bar(stat="identity") +
  geom_text(aes(label=paste0("P-valor: ",round(P_valor*100,2),"%"),
                hjust=ifelse(Estatistica>500,1.1,-.1),
                color=ifelse(P_valor>=.05, "red", "black")),
            size=3)+
  scale_color_identity()+
  scale_fill_gradient(low = "red", high = "green") +
  labs(title="Testes estatísticos das variáveis Categóricas",
       x = "Valor da Estatística do Teste",
       y = "Variável") +
  theme minimal() +
  theme(plot.title = element_text(hjust = 0.5))
```


Podemos observar que as colunas gender e PhoneService não são correlacionadas com churn

Análise de variância

```
numericas=names(treino)[sapply(treino, is.numeric)]
teste_aov=aov(
  eval(parse(text=paste0("cbind(",paste(numericas,collapse = ","),")")))~Churn,
  data=treino
)
summary(teste_aov)
##
   Response tenure :
##
                Df Sum Sq Mean Sq F value
                                              Pr(>F)
                    393430
                            393430 753.43 < 2.2e-16 ***
## Churn
              4920 2569140
                               522
## Residuals
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   Response MonthlyCharges :
##
                Df Sum Sq Mean Sq F value
                                              Pr(>F)
## Churn
                  1 174706 174706 198.74 < 2.2e-16 ***
## Residuals
              4920 4325101
                               879
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response TotalCharges :
```

Todas as variáveis numéricas são correlacionadas com o churn

Modelo de Random Forest

Balanceando dados

```
# Como temos dados não balanceados, vamos fazer um oversample no treino:
freqs=summary(as.factor(treino$Churn))
valor_oversample=freqs[1]-freqs[2]

treino_over <- ovun.sample(Churn ~ ., data = treino, method = "over", N = nrow(treino)+valor_oversample
# Checando se oversample funcionou:
treino_over %>%
    ggplot(aes(Churn))+
    geom_bar(fill="darkblue")+
    labs(x="Churn",y="Frequência")+
    theme_minimal()
```



```
Ajustando o modelo
# Retirando variáveis que não iremos utilizar (sem correlação significativa)
treino_over=treino_over %% select(-c(customerID,gender,PhoneService))
teste=teste %>% select(-c(customerID,gender,PhoneService))
# Fazendo o modelo
modelo_rf=randomForest(Churn~.,data=treino_over)
pred <- predict(modelo_rf, newdata = teste)</pre>
# Feature importance
importancia <- modelo_rf$importance</pre>
tibble(Variavel=rownames(importancia), Importancia=importancia) %>%
  ggplot(aes(reorder(Variavel,desc(Importancia)),Importancia))+
  geom_bar(stat="identity",fill="darkblue")+
  labs(x="",y="Importância")+
  theme_minimal()+
  theme(axis.text.x = element_text(angle = 30, hjust = 1))
   600
   400
Importância
```

Total Charges tenure Paymen Internet Service Balling Online Service Paymen Dependents Contract Online Service Paymen Device Protection Internet Streaming Notice Protection Device Protection Streaming Stream

Verificando precisão do Random Forest

```
confusao=table("Predito"=pred,"Observado"=teste$Churn)
confusao=addmargins(confusao)
```

```
rownames(confusao)[3]="Total"
colnames(confusao)[3]="Total"
kable(cbind("",confusao),caption="Matriz de Confusão") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3") %>%
  column_spec(1, bold = TRUE, background = "#D3D3D3") %>%
  add_header_above(header = c("Predito","", "Observado"=2,""))
```

Table 17: Matriz de Confusão

Predito	Observado		
	0	1	Total
0	1318	228	1546
1	256	308	564
Total	1574	536	2110

Com esse modelo nós seríamos capazes de identificar 57.46~% dos novos churns, sendo que consideraríamos 26.73~% dos clientes como churn, porém 12.13~% dos clientes seriam identificados como churn erroneamente.

Outros Modelos

XGBoost

```
library(xgboost)
treino_over=mutate_at(treino_over,c(1:3,5,7:12,14,18),~as.numeric(as.character(.)))
teste=mutate_at(teste,c(1:3,5,7:12,14,18),~as.numeric(as.character(.)))

treino_dummy <- model.matrix(~ . - 1, data = treino_over)
treino_dummy=as.tibble(treino_dummy)
teste_dummy <- model.matrix(~ . - 1, data = teste)
teste_dummy=as.tibble(teste_dummy)

treino_boost <- xgb.DMatrix(data = as.matrix(select(treino_dummy,-Churn)), label = treino_over$Churn)
params <- list(
    objective = "binary:logistic",
    booster = "gbtree",</pre>
```

```
eval_metric = "logloss",
 eta = 0.1,
 max depth = 50,
 nrounds = 250
modelo_xgb <- xgboost(params = params, data = treino_boost, nrounds = params$nrounds, verbose = 0)</pre>
## [19:16:21] WARNING: src/learner.cc:767:
## Parameters: { "nrounds" } are not used.
teste_boost <- xgb.DMatrix(data = as.matrix(select(teste_dummy,-Churn)))</pre>
pred_boost <- predict(modelo_xgb, teste_boost)</pre>
library(pROC)
auc_roc <- auc(roc(response = teste$Churn, predictor = pred_boost))</pre>
auc_roc
## Area under the curve: 0.7998
# Considerando threshold=0.5
aprox_boost=ifelse(pred_boost>0.5,1,0)
confusao_boost=table("Predito"=aprox_boost,"Observado"=teste$Churn)
confusao_boost=addmargins(confusao_boost)
rownames(confusao_boost)[3]="Total"
colnames(confusao boost)[3]="Total"
kable(cbind("",confusao_boost),caption="Matriz de Confusão") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE, latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3") %>%
  column_spec(1, bold = TRUE, background = "#D3D3D3") %>%
  add_header_above(header = c("Predito","", "Observado"=2,""))
```

Table 18: Matriz de Confusão

Predito	Observado		
	0	1	Total
0	1353	258	1611
1	221	278	499
Total	1574	536	2110

Com esse modelo nós seríamos capazes de identificar 57.46 % dos novos churns, sendo que consideraríamos 26.73 % dos clientes como churn, porém 12.13 % dos clientes seriam identificados como churn erroneamente.

```
TP <- confusao_boost[1, 1]
TN <- confusao_boost[2, 2]
FP <- confusao_boost[2, 1]
FN <- confusao_boost[1, 2]

# Calculando as métricas
accuracy <- (TP + TN) / sum(confusao_boost)
precision <- TP / (TP + FP)</pre>
```

Comparando performances

```
tabela_rf %>%
  kable(caption="Métricas de performance do Random Forest") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3") %>%
  column_spec(1, bold = TRUE, background = "#D3D3D3")
```

Table 19: Métricas de performance do Random Forest

Métrica	Resultado
Acurácia	19.27 %
Precisão	83.74 %
Recall	85.25 %
Especificidade	54.61 %
F1-Score	84.49 %

```
tabela_boost %>%
  kable(caption="Métricas de performance do XGBoost") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE,latex_option
  row_spec(0, bold = TRUE, background = "#D3D3D3") %>%
  column_spec(1, bold = TRUE, background = "#D3D3D3")
```

Table 20: Métricas de performance do XGBoost

Métrica	Resultado
Acurácia	19.32 %
Precisão	85.96 %
Recall	83.99 %
Especificidade	55.71 %
F1-Score	84.96 %