# Ανάλυση Δεδομένων με τη χρήση της $\boldsymbol{R}$

Τελική Εργασία (Project) Αξιολόγησης

Αλέξανδρος Νέζερης

14 Μαΐου 2017

1. Αρχικά, θα φορτώσουμε τα δεδομένα στην πλατφόρμα της R με την εντολή: > nbadata<-read.csv(file="NBA2016-data-for-final-project.csv",sep=";") Ενώ για να δούμε λίγα στατιστικά για τους πρώτους, κατά εμφάνιση παίκτες, εφαρμόζουμε την εντολή: > head(nbadata)

```
> nbadata<-read.csv(file="NBA2016-data-for-final-project.csv",sep=";")
         Player Pos Age Tm G GS
                                 MP FG FGA X3P X3PA X2P X2PA FT FTA ORB DRB TRB AST STL BLK TOV PF PTS
      Quincy Acy PF 25 SAC 59 29 876 119 214 19 49 100 165 50 68 65 123 188 27 29 24 27 103 307
2 2 Jordan Adams SG 21 MEM 2 0 15 2
                                                1 2
                                                        5
                                                           3
                                                               5
                                                                   0
3 3 Steven Adams C 22 OKC 80 80 2014 261 426
                                            0 0 261 426 114 196 219 314 533 62 42 89 84 223 636
 4 Arron Afflalo SG 30 NYK 71 57 2371 354 799 91 238 263
                                                       561 110 131 23 243 266 144
                                                                                 25 10
5 5 Alexis Ajinca C 27 NOP 59 17 861 150 315 0
                                                1 150 314 52 62 75 194 269 31 19 36 54 134 352
6 6 Cole Aldrich C 27 LAC 60 5 800 134 225 0
                                               0 134 225 60 84 86 202 288 50 47 68 64 139 328
```

- 2. Για να αφαιρέσουμε τις γραμμές που περιέχουν τουλάχιστον και ένα ΝΑ, χρησιμοποιούμε την εντολή: > nbadata<-na.omit(nbadata)
- 3. Για να υπολογίσουμε τον συνολικό αριθμό πόντων, εργαζόμαστε ως εξής:

```
Αρχικοποίηση
> s < -rep(0, nlevels(nbadata\$Tm))
                                                         στο οποίο θα εναποθέσουμε
> for(i in 1:dim(nbadata)[1]) 
+ for(j in 1:nlevels(nbadata$Tm)) {
+ if(as.character(nbadata[i,5])==levels(nbadata$Tm)[j]) {
+ s[j]=s[j]+nbadata[i,25]
+ }
+ }
```

τους πόντους για κάθε ομάδα. Ανατρέχοντας στην στήλη που περιέχει τις ομάδες, βρίσκουμε τους παίχτες που ανήχουν στην ίδια ομάδα και αθροίζουμε τους πόντους τους.

διανύσματος,

Τα αποτελέσματα, που αντλήθηκαν, ήταν τα εξής:

| Team   | ATL  | BOS      | BRK   | CHI  | СНО    | CLE  | DAL   | DEN  | DET  | GSW   | HOU   | IND   | LAC  |
|--------|------|----------|-------|------|--------|------|-------|------|------|-------|-------|-------|------|
| Points | 8433 | 8669     | 7503  | 8335 | 8479   | 8554 | 8388  | 8355 | 8361 | 9421  | 8737  | 8377  | 8569 |
|        |      |          |       | ,    |        |      |       |      |      |       |       |       |      |
| Team   | ΤΛΤ  | MEM      | MIA   | MIL  | MIN    | NOP  | NVV   | OKC  | ORL  | PHI   | PHO   | POR   | SAC  |
| ream   | LAL  | 10117101 | IVIII | MIII | IVIIIN | NOI  | 11117 | ONC  | OILL | 1 111 | 1 110 | 1 OII | BAC  |
| Points | 7982 | 8126     | 8204  | 8122 | 8398   | 8423 | 8065  | 9038 | 8369 | 7142  | 8271  | 8622  | 8740 |

| Team   | LAL  | MEM  | MIA  | MIL  | MIN  | NOP  | NYK  | OKC  | ORL  | PHI  | PHO  | POR  | SAC  |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Points | 7982 | 8126 | 8204 | 8122 | 8398 | 8423 | 8065 | 9038 | 8369 | 7142 | 8271 | 8622 | 8740 |

| Team   | SAS  | TOR  | UTA  | WAS  |
|--------|------|------|------|------|
| Points | 8490 | 8394 | 8010 | 8534 |

4. Για να βρούμε τον αριθμητικό μέσο πόντων για κάθε ομάδα, εργαζόμαστε ως εξής:

```
> s < -rep(0, nlevels(nbadata\$Tm)) \\ > n < -rep(0, nlevels(nbadata\$Tm)) \\ > for(i in 1: dim(nbadata)[1]) \{ \\ + for(j in 1: nlevels(nbadata\$Tm)) \{ \\ + if(as.character(nbadata[i,5]) == levels(nbadata\$Tm)[j]) \{ \\ + s[j] = s[j] + nbadata[i,25] \\ + n[j] = n[j] + 1] \} \\ + \} \\ + \} \\ + m = s/n
```

Αρχικοποίηση διανύσματος, στο οποίο θα εναποθέσουμε τους πόντους για κάθε ομάδα. Ανατρέχοντας στην στήλη που περιέχει τις ομάδες, βρίσκουμε τους παίκτες που ανήκουν στην ίδια ομάδα και α)αθροίζουμε τους πόντους τους, β)μετράμε πόσοι παίκτες υπάρχουν στην ομάδα. Τέλος, διαιρούμε τις 2 αυτές ποσότητες

Τα αποτελέσματα, που αντλήθηκαν, ήταν τα εξής:

| Team   | ATL      | BOS      | BRK      | CHI      | СНО      | CLE      | DAL    | DEN      |
|--------|----------|----------|----------|----------|----------|----------|--------|----------|
| A.mean | 496.0588 | 541.8125 | 468.9375 | 520.9375 | 498.7647 | 475.2222 | 524.25 | 439.7368 |

| Team   | DET      | GSW      | HOU      | IND      | LAC      | LAL      | MEM      | MIA      |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| A.mean | 491.8235 | 588.8125 | 485.3889 | 523.5625 | 476.0556 | 532.1333 | 290.2143 | 431.7895 |

| Team   | MIL      | MIN     | NOP      | NYK      | OKC      | ORL      | PHI      | РНО      |
|--------|----------|---------|----------|----------|----------|----------|----------|----------|
| A.mean | 477.7647 | 524.875 | 401.0952 | 504.0625 | 531.6471 | 492.2941 | 420.1176 | 359.6087 |

| Team   | POR     | SAC      | SAS      | TOR   | UTA      | WAS      |
|--------|---------|----------|----------|-------|----------|----------|
| A.mean | 538.875 | 582.6667 | 499.4118 | 559.6 | 471.1765 | 449.1579 |

5. Για να προσδιορίσουμε τον συντελεστή μεταβλητότητας για κάθε ομάδα, εργαζόμαστε ως εξής:

Αρχικά θα ορίσουμε μια συνάρτηση, μέσω της οποίας θα υπολογίζουμε τον συντελεστή μεταβλητότητας. Η συνάρτηση αυτή, θα είναι η εξής:

```
> cv<-function(x) {
+ z<-sd(x)*100/mean(x)
+ return(z)
+ }
```

```
 > x < -rep(0, nlevels(nbadata\$Tm))   > for(j in 1:nlevels(nbadata\$Tm))  {  + l = 0   + for(i in 1:dim(nbadata)[1])  {  + if(as.character(nbadata[i,5]) == levels(nbadata\$Tm)[j])  {  + l = c(l, nbadata[i,25])  }  + \}   + z = cv(l[c(2:length(l))])   + x[j] = z  + }
```

Αρχικοποίηση διανύσματος, στο οποίο θα εναποθέσουμε τους συντελεστές μεταβλητότητας για κάθε ομάδα. Στη συνέχεια, ψάχνουμε τους παίκτες της κάθε ομάδας, και αποθηκεύομε σε ένα διάνυσμα τους πόντους και στο διάνυμα αυτό (αφαιρόντας το 1ο στοιχείο που είναι η αρχικοποίηση) εφαρμόζουμε τη συνάρτηση που ορίσαμε προηγουμένως. Τέλος, αποθηκεύουμε τους συντελεστές μεταβλητότητας σε ένα νέο διάνυσμα.

Τα αποτελέσματα, που αντλήθηκαν, ήταν τα εξής:

| Team | ATL      | BOS      | BRK     | CHI      | СНО     | CLE      | DAL      | DEN      |
|------|----------|----------|---------|----------|---------|----------|----------|----------|
| CV   | 95.32819 | 93.97472 | 84.6899 | 80.50222 | 90.1876 | 109.1452 | 74.40185 | 87.43651 |

| Team | DET      | GSW      | HOU      | IND     | LAC      | LAL      | MEM      | MIA      |
|------|----------|----------|----------|---------|----------|----------|----------|----------|
| CV   | 98.72945 | 111.0837 | 116.0387 | 93.5506 | 94.84117 | 79.29436 | 111.2367 | 102.1594 |

| Team | MIL      | MIN      | NOP    | NYK      | OKC      | ORL      | PHI     | РНО      |
|------|----------|----------|--------|----------|----------|----------|---------|----------|
| CV   | 101.9777 | 103.0156 | 99.461 | 86.95525 | 118.1999 | 81.31848 | 78.5716 | 99.15181 |

| Team | POR      | SAC      | SAS      | TOR      | UTA      | WAS      |
|------|----------|----------|----------|----------|----------|----------|
| CV   | 105.8698 | 84.11656 | 84.81179 | 96.60019 | 92.24712 | 95.02009 |

6. Οι εντολές, που θα χρησιμοποιήσουμε ώστε να εντωπίσουμε τις 5 πρώτες ομάδες με βάση τον αριθμό των παικτών, είναι οι εξής:

```
 > n < -rep(0, nlevels(nbadata\$Tm))   > for(j in 1:nlevels(nbadata\$Tm))  {  + for(i in 1:dim(nbadata)[1])  {  + if(as.character(nbadata[i,5]) == levels(nbadata\$Tm)[j])  {  + n[j] < -n[j] + 1  }  + n[j] < -n[j] + 1  }  + g < -matrix(n,1)   > colnames(g) < -levels(nbadata\$Tm)   > colnames(g) < -levels(nbadata\$Tm)   > colnames(g)[order(g,decreasing=TRUE)][1:5])   > g[order(g,decreasing=TRUE)][1:5])
```

Ομοίως με πριν, θα δημιουργήσουμε ένα διάνυσμα, στο οποίο θα αναφέρεται ο αριθμός των παικτών ανά ομάδα. Έπειτα, θα μετατρέψουμε το διάνυσμα αυτό σε ένα πίνακα, ώστε να δώσουμε τα ονόματα των ομάδων σε κάθε περίπτωση. Στη συνέχεια, θα εκτυπώσουμε τα ονόματα των 5 ομάδων με τον μεγαλύτερο πλήθος παικτών.

Από τα παραπάνω, έχουμε τα εξής:

| Team           | MEM | РНО | NOP | DEN | MIA |
|----------------|-----|-----|-----|-----|-----|
| No. of Players | 28  | 23  | 21  | 19  | 19  |

7. Με τη βοήθεια των πληροφορών που αντλήσαμε προηγουμένως, προχύπτουν τα εξής:

### Total points per team



# Arithmetic mean per team





8. Καταρχάς, θα κατασκευάσουμε μία συνάρτηση, με την οποία θα βρίσκουμε τον συντελεστή Gini. Έτσι, λοιπόν, έχουμε:

```
> Gini < -function(x)  {
+ s < -0
+ for(i in 1:length(x)) {
+ for(for(j in 1:length(x)) {
+ s < -s + abs(x[i]-x[j])
+ } }
+ g < -s/(2*length(x)*sum(x))
+ return(g)
Επομένως, εύχολα υπολογίζουμε τον συντελεστή Gini, με τον εξής τρόπο:
> gp1 < -NULL
> gp2 < -NULL
> for(j in 1:nlevels(nbadata$Tm)) {
+ e1 < -NULL
+ e2 < -NULL
+ for(i in 1:dim(nbadata)[1]) {
+ if(as.character(nbadata[i,5])==levels(nbadata$Tm)[j]) {
+ for(e1 < -c(gp1,nbadata\$PTS[i])
+ for(e2 < -c(gp1,nbadata\$MP[i])
+ \operatorname{gp1}[j] < -\operatorname{Gini}(e1)
+ \operatorname{gm1}[j] < -\operatorname{Gini}(e2)
+ } }
> names(gp1)<-levels(nbadata$Tm)
> names(gm1)<-levels(nbadata$Tm)
> gp1
> gm1
```

Τα αποτελέσματα που προέχυψαν, με στρογγυλοποίηση σε 4 δεκαδικά ψηφία, ως προς τους πόντους είναι τα εξής:

| Team     | ATL    | BOS    | BRK    | CHI    | СНО    | CLE    | DAL    | DEN    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.4996 | 0.6637 | 0.7484 | 0.7926 | 0.8282 | 0.8453 | 0.8697 | 0.8198 |

| Team     | DET    | GSW    | HOU    | IND    | LAC    | LAL    | MEM    | MIA    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.8834 | 0.7980 | 0.8998 | 0.8718 | 0.8213 | 0.9071 | 0.8252 | 0.9174 |

| Team     | MIL    | MIN    | NOP    | NYK    | OKC    | ORL    | PHI    | РНО    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.8878 | 0.9391 | 0.8970 | 0.9318 | 0.9458 | 0.8476 | 0.7485 | 0.5751 |

| Team     | POR    | SAC    | SAS    | TOR    | UTA    | WAS    |
|----------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.8985 | 0.9412 | 0.9277 | 0.7915 | 0.8748 | 0.9526 |

Ενώ για τα λεπτά παιχνιδιού κάθε ομάδας έχουμε:

| Team     | ATL    | BOS    | BRK    | CHI    | СНО    | CLE    | DAL    | DEN    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.4998 | 0.6651 | 0.7493 | 0.7981 | 0.8315 | 0.8518 | 0.8727 | 0.8707 |

| Team     | DET    | GSW    | HOU    | IND    | LAC    | LAL    | MEM    | MIA    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.8952 | 0.8714 | 0.9076 | 0.9018 | 0.8802 | 0.9232 | 0.8900 | 0.9357 |

| Team     | MIL    | MIN    | NOP    | NYK    | OKC    | ORL    | PHI    | РНО    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9316 | 0.9425 | 0.9287 | 0.9416 | 0.9486 | 0.9306 | 0.8475 | 0.7457 |

| Team     | POR    | SAC    | SAS    | TOR    | UTA    | WAS    |
|----------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9455 | 0.9555 | 0.9495 | 0.8784 | 0.9342 | 0.9594 |

- 9. Αρχικά, θα εντοπίσουμε τους παίκτες που εμφανίζονται τα στοιχεία τους τουλάχιστον 2 φορές, καθώς έπαιξαν σε διαφορετικές ομάδες μέσα στη χρονιά, και θα ενοποιήσουμε τα στοιχεία τους. Έπειτα, θα αφαιρέσουμε τους παίκτες που έπαιξαν κατά μέσο όρο λιγότερο από 5 λεπτά και τέλος θα εφαρμοσουμε τη διαδικασία που ακολουθήσαμε στο προηγούμενο ερώτημα.
  - > nbanewdata<-nbadata

```
> po<-NULL
> for(i in 1:(dim(nbanewdata)[1]-1)) 
+ \text{ for (j in (i+1):dim(nbanewdata)[1]) } 
+ if(as.character((nbanewdata$Player[i])==as.character(nbanewdata$Player[j])) {
+ po < -c(po,j)
+ } } }
> for(i in 1:(length(po)))  {
+ if(po[i] = 136|po[i] = 230)  {
+ print(i)
> po2 < -pos[-c(8,9,23,24)]
> inpo <-po2-1)
> nbanewdata[inpo,6:25]<-nbanewdata[inpo,6:25]+nbanewdata[po2,6:25]
> nbanewdata[134,6:25]<-nbanewdata[134,6:25]+nbanewdata[136,6:25]
> nbanewdata[228,6:25]<-newdata[228,6:25]+nbanewdata[232,6:25]
> nbanewdata2<-nbanewdata[-unique(pos),]
> v5 < -NULL)
> for(i in 1:dim(nbanewdata2)[1]) {
+ if(nbanewdata2$MP[i]/nbanewdata2$G;5) {
+ v5 < -c(v5,i)
+ } }
> gininbadata<-nbanewdata[-v5,]
> gp2 < -NULL
```

```
> gm2 < -NULL
> for(j in 1:nlevels(gininbadata$Tm)) {
+ e3 < -NULL
+ e4 < -NULL
+ for(i in 1:dim(gininbadata)[1]) {
+ if(as.character(gininbadata[i,5])==levels(gininbadata$Tm)[j]) {
+ for(e3<-c(gp2,gininbadata$PTS[i])
+ for(e4<-c(gp2,gininbadata$MP[i])
+ gp2[j] < -Gini(e3)
+ \operatorname{gm2}[j] < -\operatorname{Gini}(e4)
+ } }
> names(gp2)<-levels(nbadata$Tm)
> names(gm2)<-levels(nbadata$Tm)
> gp2
> gm2
> names(GP)<-levels(nbadata$Tm)
> names(GM)<-levels(nbadata$Tm)
> GP
> GM
```

Τα αποτελέσματα που προέχυψαν, με στρογγυλοποίηση σε 4 δεχαδικά ψηφία, ως προς τους πόντους είναι τα εξής:

| Team     | ATL    | BOS    | BRK    | CHI    | СНО    | CLE    | DAL    | DEN    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9491 | 0.9071 | 0.9468 | 0.9027 | 0.9321 | 0.9027 | 0.9427 | 0.7343 |
|          |        |        |        |        |        |        |        |        |
| Team     | DET    | GSW    | HOU    | IND    | LAC    | LAL    | MEM    | MIA    |
| Gini co. | 0.9099 | 0.9546 | 0.9294 | 0.8360 | 0.7197 | 0.9112 | 0.7495 | 0.9230 |
|          |        |        |        |        |        |        |        |        |
| Team     | MIL    | MIN    | NOP    | NYK    | OKC    | ORL    | PHI    | РНО    |
| Gini co. | 0.8703 | 0.9539 | 0.9441 | 0.9371 | 0.9553 | 0.8265 | 0.7116 | 0.5318 |
|          |        |        |        |        |        |        |        |        |
| Team     | POR    | SAC    | SAS    | TOR    | UTA    | WAS    |        |        |
| Gini co. | 0.8911 | 0.9410 | 0.9270 | 0.7835 | 0.8703 | 0.9526 |        |        |

Ενώ για τα λεπτά παιχνιδιού κάθε ομάδας έχουμε:

| Gini co.   0.9574   0.9356   0.9580   0.9499   0.9546   0.9372   0.9567   0.8962 | Team     | ATL    | BOS    | BRK    | CHI    | СНО    | CLE    | DAL    | DEN    |
|----------------------------------------------------------------------------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                                                  | Gini co. | 0.9574 | 0.9356 | 0.9580 | 0.9499 | 0.9546 | 0.9372 | 0.9567 | 0.8962 |

| Team     | DET    | GSW    | HOU    | IND    | LAC    | LAL    | MEM    | MIA    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9505 | 0.9590 | 0.9469 | 0.9100 | 0.8449 | 0.9454 | 0.8682 | 0.9573 |

| Team     | MIL    | MIN    | NOP    | NYK    | OKC    | ORL    | PHI    | РНО    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9447 | 0.9595 | 0.9573 | 0.9516 | 0.9592 | 0.9331 | 0.8282 | 0.7143 |

| Team     | POR    | SAC    | SAS    | TOR    | UTA    | WAS    |
|----------|--------|--------|--------|--------|--------|--------|
| Gini co. | 0.9481 | 0.9585 | 0.9512 | 0.8749 | 0.9332 | 0.9593 |

Αφαιρώντας από τους συντελεστές Gini που βρήκαμε στην ερώτηση 8, τους συντελεστές που βρήκαμε σε αυτό το ερώτημα, μπορούμε να πρατηρήσουμε αν οι συντελεστές αυξήθηκαν ή μειώθηκαν.

Ως προς τους πόντους κάθε ομάδας, η μεταβολή στους συντελεστές Gini, είναι η εξής:

| Team                  | ATL     | BOS     | BRK     | CHI     | СНО     | CLE     | DAL     | DEN    |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|--------|
| Gini co. dif. per pts | -0.4495 | -0.2434 | -0.1984 | -0.1101 | -0.1039 | -0.0574 | -0.0730 | 0.0855 |

| Team                  | DET     | GSW     | HOU     | IND    | LAC    | LAL     | MEM    | MIA     |
|-----------------------|---------|---------|---------|--------|--------|---------|--------|---------|
| Gini co. dif. per pts | -0.0265 | -0.1566 | -0.0295 | 0.0358 | 0.1016 | -0.0040 | 0.0758 | -0.0056 |

| Team                  | MIL    | MIN     | NOP     | NYK     | OKC     | ORL    | PHI    | РНО    |
|-----------------------|--------|---------|---------|---------|---------|--------|--------|--------|
| Gini co. dif. per pts | 0.0175 | -0.0148 | -0.0471 | -0.0053 | -0.0095 | 0.0211 | 0.0369 | 0.0432 |

| Team                  | POR    | SAC    | SAS    | TOR    | UTA    | WAS    |
|-----------------------|--------|--------|--------|--------|--------|--------|
| Gini co. dif. per pts | 0.0074 | 0.0001 | 0.0007 | 0.0080 | 0.0045 | 0.0001 |

Ενώ για τα λεπτά παιχνιδιού κάθε ομάδας έχουμε:

| Team         | ATL     | BOS     | BRK     | CHI     | СНО     | CLE     | DAL     | DEN     |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Gini co. dpm | -0.4576 | -0.2705 | -0.2088 | -0.1519 | -0.1231 | -0.0854 | -0.0840 | -0.0256 |

| Team         | DET     | GSW     | HOU     | IND     | LAC    | LAL     | MEM    | MIA     |
|--------------|---------|---------|---------|---------|--------|---------|--------|---------|
| Gini co. dpm | -0.0553 | -0.0876 | -0.0393 | -0.0082 | 0.0353 | -0.0222 | 0.0218 | -0.0216 |

| Team         | MIL     | MIN     | NOP     | NYK     | OKC     | ORL     | PHI    | РНО    |
|--------------|---------|---------|---------|---------|---------|---------|--------|--------|
| Gini co. dpm | -0.0132 | -0.0170 | -0.0286 | -0.0100 | -0.0107 | -0.0025 | 0.0193 | 0.0314 |

| Team         | POR     | SAC     | SAS     | TOR    | UTA    | WAS    |
|--------------|---------|---------|---------|--------|--------|--------|
| Gini co. dpm | -0.0025 | -0.0031 | -0.0017 | 0.0035 | 0.0010 | 0.0000 |

10. Το γράφημα με τα ιστογράμματα για τα ποσοστά ευστοχίας θα προκύψει από τις εξής εντολές:

# > h1<-hist(nbadata\$FT/nbadata\$FTA)

```
> h2<-hist(nbadata$X2P/nbadata$X2PA)

> h3<-hist(nbadata$X3P/nbadata$X3PA)

> plot( h1, col=rgb(0,0,1,1/4),ylim=c(0,300),main="Histogram of success rates",xlab="Success rate")

> plot( h2, col=rgb(1,0,0,1/4),ylim=c(0,300), add=T)

> plot( h3, col=rgb(0,1,0,1/4),ylim=c(0,300), add=T)

> legend('topleft',c('FT','2P','3P'),fill=c(rgb(0,0,1,1/4),rgb(1,0,0,1/4),rgb(0,1,0,1/4))))
```

Από τα παραπάνω, προκύπτει το εξής γράφημα:



- 11. Αρχικά, θα εντοπίσουμε τους παίκτες που εμφανίζονται από 2 φορές και πάνω, με σκοπό να προσθέσουμε τα δεδομένα τους, και θα κρατήσουμε μόνο τα στοιχεία των παικτών αυτών από μια φορα. Στη συνέχεια, θα αφαιρέσουμε από τα δεδομένα μας, του παίκτες που έπαιξαν λιγότερο από 5 λεπτά καθώς και αυτούς που πραγματοποίητσαν περισσότερα από 20 σουτ 3 πόντων. Έπειτα, θα εισάγουμε ένα νέο διάνυσμα, το οποίο θα αναδυκνύει την ευστοχία των παικτών στα τρίποντα, και με τη βοήθεια αυτού του διανύσματος, θα τους κατατάξουμε κατά αύξουσα σειρά. Τέλος, θα παραστήσουμε στο γράφημά μας τους 10 πιο έυστοχους παίκτες, χρησιμοποιόντας κόκκινο χρώμα αλλά και εισάγοντας τα ονόματά τους. Τέλος, θα προσθέσουμε και τα σημεία που αντίστοιχουν στους υπόλοιπους παίκτες. Όλα αυτά θα πραγματοποιηθούν με τις εξής εντολές:
  - > newdata<-nbadata
  - > pos<-NULL
  - > for(i in 1:(dim(newdata)[1]-1))

```
+ for(j in (i+1):dim(newdata)[1]) {
+ if(as.character((newdata$Player[i])==as.character(newdata$Player[j])) {
+ pos < -c(pos,j)
+ } } }
> for(i in 1:(length(pos)))  {
+ if(pos[i] = 136[pos[i] = 230) 
+ print(i)
+ }
+ }
> pos2 < -pos[-c(8,9,23,24)]
> inpos < -pos 2-1)
> newdata[inpos,6:25]<-newdata[inpos,6:25]+newdata[pos2,6:25]
> \text{newdata}[134,6:25] < -\text{newdata}[134,6:25] + \text{newdata}[136,6:25]
> \text{newdata}[228,6:25] < -\text{newdata}[228,6:25] + \text{newdata}[232,6:25]
> newdata2<-newdata[-unique(pos),]
> vector1<-NULL)
> vector2<-NULL)
> for(i in 1:dim(newdata2)[1]) {
+ if(newdata2$MP[i]/newdata2$G;5) {
+ vector1;-c(vector1,i)
+ } }
> for(j in 1:dim(newdata2)[1]) 
+ if(\text{newdata2}X3PA[j];=20)  {
+ vector2;-c(vector2,j)
+ } }
> newdata3<-newdata2[-c(vector1,vector2),]
> vector3<-newdata3$X3P/newdata3$X3PA
> vector3[is.nan(vector3)]<-0
> newdata4<-cbind(newdata3,vector3)
> library(plyr)
> newdata5<-arrange(newdata4,vector3)
> st < -dim(newdata5)[1]-9
> en < -dim(newdata5)[1]
> vector4<-NULL
> for(i in st:en) {
+ for(j in 1:dim(newdata3)[1]) 
+ if(as.character(newdata5Player[i]) == as.character(newdata3Player[i]))  {
+ \text{vector4} < \text{c(vector4,j)}
+ } } }
> plot(newdata3$X2P[vector4]/newdata3$X2PA[vector4],
+ newdata3$X3P[vector4]/newdata3$X3PA[vector4],pch=c(1:10),
+xlim=c(-0.1,1.2),ylim=c(-0.1,1.2),col=2, main='Scatterplot 2P-3P',
```

- +xlab='Success rate 2P',ylab='Success rate 3P')
- > list<-newdata3\$Player[vector4]
- > legend("topright", legend=list, pch=c(1:10))
- > points(newdata3\$X2P[-vector4]/newdata3\$X2PA[-vector4],
- + newdata3\$X3P[-vector4]/newdata3\$X3PA[-vector4])

# Scatterplot 2P-3P



12. , 13. Αρχικά, θα βρούμε το level, όπου βρίσκεται η θέση PG, με τον εξής τρόπο:

> levels(nbadata\$Pos)

[1] "C" "PF" "PG" "SF" "SG"

Επομένως, η θέση PG βρίσκεται στο επίπεδο 3 των θέσεων. Ο αλγόριθμος που θα χρησιμοποιήσουμε ώστε να εντοπίσουμε και να εμφανίσουμε τους παίκτες με τα περισσότερα rebounds, μαζί μετα στατιστικά τους, είναι ο εξής:

Θα αρχικοποιήσουμε 3 διανύσματα h,j,int, στα οποία στη συνέχεια θα εναποθέτουμε τα rebounds, τα ονόματα των παικτών και τον αύξοντα αριθμό με τη σειρά που μας παρουσιάζονται αντίστοιχα. Έπειτα, συγκρίνουμε τον αριθμό των rebounds και εμφανίζουμε στην οθόνη τα ζητούμενα:

- > h<-NULL
- > j<-NULL

```
> int<-NULL
> for(i in 1:dim(nbadata)[1]) {
+ if(as.character(nbadata[i,3]) == levels(nbadata$Pos)[3]) 
+ h < c(h,nbadata[i,19])
+ j<-c(j,as.character(nbadata[i,2]))
+ int < -c(int,i)
+ }
> k < -matrix(h,1)
> colnames(k)<-levels(nbadata$Pos)
> colnames(k)[order(k,decreasing=TRUE)][1:5])
> k[order(k,decreasing=TRUE)][1:5])
> 1 < -matrix(h, 1)
> colnames(l) < -int
> ve<-as.numeric(colnames(l)[order(l,decreasing=TRUE)][1:5])
> for(i in 1:length(ve)) {
+ print(nbadata[ve[i],])
+ }
```

| Players | Russell Westbrook | Giannis Antetokounmpo | Rajon Rondo | Stephen Curry | John Wall |
|---------|-------------------|-----------------------|-------------|---------------|-----------|
| TRB     | 626               | 612                   | 435         | 430           | 379       |

```
Rk Player Pos Age Tm G GS MP FG FGA X3P X3PA X2P X2PA FT FTA ORB DRB TRB AST STL BLK TOV PF PTS PTS PLAYER PLAYER
```

14. Από το ερώτημα 3, αποθηκεύσαμε στο διάνυσμα s το συνολικό αριθμό πόντων που σκόραρε η κάθε ομάδα. Εδώ, θα κατασκευάσουμε ένα νέο διάνυσμα, το οποίο θα περιέχει το διάνυσμα s μαζί με την μέση τιμή του s και θα το ονομάσουμε b. Έπειτα, θα κατασκευάσουμε ένα διάνυσμα a, στο οποίο θα συμπεριλάβουμε τα ονόματα τον ομάδων, μαζί με ένα "κενό", που θα αντιστοιχεί στη μέση τιμή. Τέλος, με τη βοήθεια αυτού των διανυσμάτων a, b, θα δημιουργήσουμε ένα data frame, με τη χρήση του οποίου θα φτιάξουμε το ζητούμενο barplot:

```
> a<-c(levels(nbadata$Tm),"")
> b<-c(s,mean(s))
> Data<-data.frame(a,b)
> library(plyr)
> Data<-data.frame(a,b)
> Data<-arrange(Data,b)
> Data
```

|    | Team | Points |
|----|------|--------|
| 1  | PHI  | 7142   |
| 2  | BRK  | 7503   |
| 3  | LAL  | 7982   |
| 4  | UTA  | 8010   |
| 5  | NYK  | 8065   |
| 6  | MIL  | 8122   |
| 7  | MEM  | 8126   |
| 8  | MIA  | 8204   |
| 9  | РНО  | 8271   |
| 10 | CHI  | 8335   |
| 11 | DEN  | 8355   |
| 12 | DET  | 8361   |
| 13 | ORL  | 8369   |
| 14 |      | 8370   |
| 15 | IND  | 8377   |
| 16 | DAL  | 8388   |
| 17 | TOR  | 8394   |
| 18 | MIN  | 8398   |
| 19 | NOP  | 8423   |
| 20 | ATL  | 8433   |
| 21 | СНО  | 8479   |
| 22 | SAS  | 8490   |
| 23 | WAS  | 8534   |
| 24 | CLE  | 8554   |
| 25 | LAC  | 8569   |
| 26 | POR  | 8622   |
| 27 | BOS  | 8669   |
| 28 | HOU  | 8737   |
| 29 | SAC  | 8740   |
| 30 | OKC  | 9038   |
| 31 | GSW  | 9421   |

Με τον πίνακα αυτόν, παρατηρούμε ότι ο μέσος όρος πόντων βρίσκεται στην 14 θέση. > barplot(Data\$b,horiz = TRUE,names.arg = Data\$a,cex.names=0.5,col=c(rep('gray',13),'red',rep('gray',17)),las=1) > abline(v = mean(s), col = 'green')



15. Θα υπολογίσουμε τον αριθμό των παικτών που σκόραραν πάνω από 1000 πόντους με τον εξής αλγόριθμο:

```
> c<-0

> for(i in 1:dim(nbadata)[1]) {

+ if((nbadata[i,25])>1000) {

+ c<-c+1

+ }

+ }

> print(c)
```

Το αποτέλεσμα που λαμβάνουμε είναι ότι **76** παίχτες σχόραραν πάνω από 1000 πόντους. Όστοσο, στα στοιχεία που μας δίνονται, μπορεί να παρατηρήσει χάποιος ότι ο παίχτης Tobias Harris αναγράφεται 2 φορές, χαθώς τη σεζόν αυτή έπαιξε με 2 διαφορετικές ομάδες. Συνολιχά, ο παίχτης αυτός πέτυχε 1116 πόντους, επομένως οι παίχτες με συνολιχό αριθμό πόντων άνω των 1000 ανέρχονται στους **77**. Από τους υπόλοιπους παίχτες, των οποίων τα στοιχεία εμφανίζονται τουλάχιστον 2 φορές, χανένας δεν έχει πετύχει συνολιχά πάνω από 1000 πόντους (πραγματοποιώντας έλεγχο όπως στα προηγούμενα ερωτήματα, όπου αθροίζουμε τα στατιστιχά των παιχτών αυτών).

16. Αρχικά, θα προσθέσουμε τα στοιχεία των παικτών, οι οποίοι έπαιξαν σε διαφορετικές ομάδες μέσα στη σαιζόν, με τρόπο όμοιο όπως σε προηγούμενα ερωτήματα. Ας

ονομάσουμε το ενμερωμένο data frame = newdata2. Έπειτα, θα δημιουργήσουμε ένα νέο data frame, στο οποίο θα συμπεριλάβουμε μόνο τους PG, PF, ως εξής:

```
> vpf<-NULL
> vpg<-NULL {
> for(i in 1:dim(newdata2)[1]) {
+ newdata2$Pos[i]==levels(newdata2$Pos)[2]) { vpfi-c(vpf,i) }
+ }
> for(j in 1:dim(newdata2)[1]) {
+ newdata2$Pos[j]==levels(newdata2$Pos)[3]) { vpgi-c(vpg,j) }
+ }
> pgpfdata<-newdata2[c(vpg,vpf),]</pre>
```

Με την εντολή > pgpfdata2<-arrange(pgpfdata,pgpfdata\$Pos) θα ανακατατάξουμε τα δεδομένα μας ώστε στις πρώτες θέσεις να βρίσκονται οι PF και έπειτα οι PG.

Στη συνέχεια, θα ορίσουμε τις σταθερές  $prodef{npg}$ ,  $prodef{npg}$ ,  $prodef{npg}$  οι οποίες θα αποτελούν των αριθμό των  $prodef{npg}$ , τη διάσταση του data frame και τον αριμό της σειράς από τον οποία ξεκινούν οι  $prodef{npg}$ .

Έπειτα, θα ελέγξουμε τις προϋποθέσεις για να κάνουμε ένα t-test. Αρχικά, θα πρέπει να ελέγξουμε την κανονικότητα των δειγμάτων. Με τον έλεγχο Shapiro-Wilk έχουμε:

> shapiro.test(pgpfdata2\$PTS[ppg:D])

```
Shapiro-Wilk normality test
```

```
data: pgpfdata2$PTS[ppg:D]
W = 0.89088, p-value = 4.847e-07
```

> shapiro.test(pgpfdata2\$PTS[1:npf])

Shapiro-Wilk normality test

```
data: pgpfdata2$PTS[1:npf]
W = 0.91845, p-value = 1.062e-05
```

Και στις δύο περιπτώσεις προχύπτει ότι p-value< 0.05, επομένως και τα δύο δείγματα δεν ακολουθούν την κανονική κατανομή. Ωστόσο, επειδή έχουμε πολύ μεγάλο δείγμα (n>30), ο επόμενως έλγχος που θα κάνουμε θα αφορά την ομοσκεδαστικότητα. Με Bartlett έχουμε:

> bartlett.test(PTS  $\sim$  Pos, data=pgpfdata2)

Bartlett test of homogeneity of variances

```
data: PTS by Pos
Bartlett's K-squared = 6.4841, df = 1, p-value = 0.01088
```

Βλέπουμε ότι p-value < 0.05, επομένως η ομοσκεδαστικότητα απορρίπτεται. Συνεπώς, οδηγούμαστε σε μη-παραμετρικό έλεγχο Mann-Whitney U-Test, για να ελέγξουμε αν οι διάμεσοι είναι ίσοι.

 $> \text{wilcox.test(PTS} \sim \text{Pos, data=pgpfdata2})$ 

### Wilcoxon rank sum test with continuity correction

```
data: PTS by Pos
W = 4347, p-value = 0.2569
alternative hypothesis: true location shift is not equal to 0
```

Συνεπώς, η μηδενική υπόθεση, που είναι ότι οι πόντοι των PG, PF ανήκουν στον ίδιο πληθυσμό, δεν απορρίπτεται σε επίπεδο σημαντικότητας 5%~(p>0.05), συνεπώς οι PG, PF σκοράρουν το ίδιο.

Ως προς τους μέσους όρους, αφού ναι μεν το Shapiro test έδειξε ότι ασχολούμαστε με μη-κανονικά δεδομέμα, επειδή έχουμε μεγάλο δείγμα, μπορούμε να το θεωρήσουμε ότι τα δεδομένα μας κατανέμονται κανονικά. Έπειτα, ελέγχουμε τις διασπορές:

> var.test(pgpfdata2\$PTS[ppg:D],pgpfdata2\$PTS[1:npf])

### F test to compare two variances

Παρατηρούμε ότι οι διασπορές δεν είναι ίσες, συνεπώς έχουμε:

> t.test(PTS Pos,data=pgpfdata2,var.eq=FALSE)

### Welch Two Sample t-test

Από τα παραπάνω προκύπτει ότι, σε επίπεδο σημαντικότητας 5%, το μέσο σκορ των PG δε διαφέρει σε βαθμό στατιστικά σημαντικό από το μέσο σκορ των PF (p>0.05). Άρα, PG, PF σκοράρουν το ίδιο, κατά μέσο όρο.

- 17. Ξεκινώντας, θα θέσουμε ως  $p_1, p_2$  τα ποσοστά των σουτ 2 πόντων και 3 πόντων και θα θέσουμε ως model 1 την παλινδόμιση μεταξύ των  $p_1, p_2$ .
  - > p1<-nbadata\$X2P/nbadata\$X2PA
  - > p2<-nbadata\$X3P/nbadata\$X3PA
  - > model1<-lm( p2  $\sim$  p1, data= nbadata)

Αρχικά θα κάνουμε έναν έλεγχο αν τα δεδομένα μας ακολουθούν την κανονική κατανομή:

# Shapiro-Wilk normality test

data: p1 W = 0.83807, p-value < 2.2e-16

Shapiro-Wilk normality test

data: p2 W = 0.84989, p-value < 2.2e-16

Παρατηρούμε ότι κανενα από τα δύο δείγματα δεν ακολουθούν την κανονική κατανομή (p < 0.05). Ας δούμε επίσης κάποια ενδεικτικά γραφήμματα:



Από το γράφημα αυτό, είναι ενδεικτικό ότι δεν υπάρχει γραμμικότητα μεταξύ του Y και του X



Με εντολή summary(model1) θα δούμε μερικά στοιχεία για το μοντέλο μας:

#### call:

 $lm(formula = p2 \sim p1, data = nbadata)$ 

#### Residuals:

Min 1Q Median 3Q Max -0.33622 -0.04529 0.03296 0.08050 0.74609

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.43000 0.03409 12.614 < 2e-16 \*\*\*
p1 -0.28134 0.07088 -3.969 8.34e-05 \*\*\*
--Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1409 on 465 degrees of freedom (58 observations deleted due to missingness)
Multiple R-squared: 0.03277, Adjusted R-squared: 0.03069
F-statistic: 15.76 on 1 and 465 DF, p-value: 8.344e-05

Από τη στήλη Estimate υπολογίζουμε τα  $b_0b_1$ , παρατηρούμε ότι το μοντέλο μας θα έχει την μορφή:

$$Y = 0.43 - 0.28134X + \epsilon$$

όπου το U θα αντιστοιχει στο  $p_2$ , το X στο  $p_1$  και  $\epsilon \sim N(0,0.48^2)$ . Έχοντας υπόθεση  $H_0: b_1=0vs.H_1: b_1\neq 0$ , για το  $b_1$  βλέπουμε ότι p<0.05 επομένως απορρίπτουμε τη μηδενική υπόθεση, επομένως το  $p_2$  εξαρτάται από το  $p_1$  και μάλιστα η

σχέση τους είναι αρνητική καθώς  $b_1<0$ . Ομοίως, για το  $b_0$ , έχουμε ότι p<0.05 επομένως και εδώ τη μηδενική υπόθεση ότι  $b_0=0$ . Επιπροσθετα βλέπουμε ότι  $R^2<0.7$  συνεπώς προβλέπουμε ότι δεν υπάρχει μεγάλη συσχέτιση μεταξύ των δύο μεταβλητών. Ξεκινάμε να κάνουμε έλεγχο, λοιπόν, για τα residuals.

Για την κανονικότητα έχουμε:

> shapiro.test(rstudent(model1))



Shapiro-Wilk normality test

data: rstudent(model1)
W = 0.87994, p-value < 2.2e-16</pre>

Είναι εμφανές ότι δεν υπάρχει κανονικότητα στα studentized residuals. Για την ανεξαρτησία, θα χρησιμοποιήσουμε τον έλεγχο Durbin - Watson: > dwtest(model1)

#### Durbin-Watson test

data: model1

DW = 2.0653, p-value = 0.7607

alternative hypothesis: true autocorrelation is greater than 0

Βλέπουμε ότι ο δείχτης Durbin - Watson είναι ίσος με  $2.0653 \simeq 2$  με τον σχετικό

έλεγχο να μην απορρίπτει τη μηδενική υπόθεση

$$H_0: d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=2}^{n} e_i} = 0$$

σε επίπεδο a=5%, αφού p>0.05 και συνεπώς να μην εντοπίζεται κάποιο πρόβλημα προϋπόθεσης της ανεξαρτησίας των residuals

18. (α΄) Στο πρώτο γράφημα θα παραστήσουμε τη σχέση μεταξύ του χρόνου που έπαιξαν οι παίχτες με τους πόντους που πέτυχαν.

### Scatterplot MP-PTS



ήταν αναμενόμενο, οι παίκτες με το μεγαλύτερο χρόνο συμμετοχής είναι και οι πιο παραγωγικοί

Όπως

(β΄) Στο επόμενο γράφημα θα δούμε τη σχέση της ευστοχίας των παικτών στις βολές, στα σουτ 2 πόντων καθώς και στα σουτ 3 πόντων.

# 3D Scatterplot



 $(\gamma')$  Στο γράφημα που ακολουθεί θα παρουσιάσουμε την ευστοχία των ομάδων στα σουτ των 2 πόντων.

# Success rate of 2p shots



- Ενδιαφέρον προκαλεί το γεγονός ότι η πρωταθλήτρια ομάδα για το 2016 (Cleveland Cavaliers) είχαν ποσοστό ευστοχίας μικρότερο από το μέσο όρο.
- (δ΄) Στο τέταρτο γράφημα θα παρουσιάσουμε τα rebounds που μάζεψε συνολικά κάθε ομάδα.



(ε΄) Στο τελευταίο γράφημα θα παρουσιάσουμε τους 10 παίκτες με τις περισσότερες assists.

### **Assist leaders**



Ενδιαφέρον προκαλεί το γεγονός ότι από τους 10 αυτούς παίκτες, οι 6 είναι PG, 2 είναι SG μαζί με έναν SF και έναν PF, και μάλιστα 2 παίκτες ανήκουν στην ίδια ομάδα (Stephen Curry & Draymond Green).