창의 공학 설계 프로젝트 소개

1. 개요

A. 주제

- i. 이 프로젝트는 '미로 찾기'와 '건물 감지'의 세부 프로젝트로 구성되어 있다.
- ii. 각 프로젝트는 구현 방식 및 결과 출력을 바탕으로 채점한다.

B. 의의

i. 이 프로젝트는 아두이노 실습을 통해 학습한 내용들을 재확인하고, 학습한 기초 지식들을 활용하여 주어진 문제를 해결하는 것을 목표로 한다.

2. 미로 찾기

A. 목표

i. 아두이노 자동차와 자신이 작성한 알고리즘을 활용하여 미로를 찾도록 한다.

B. 진행 방식

- i. 미로는 쉬움과 어려움 두 단계가 존재한다.
- ii. 시작점에서 끝점 방향으로 2번, 끝점에서 시작점 방향으로 2번, 즉 난이도 단계마다 4번의 기회를 제공하여, 미로 탈출에 성공한 기회 중 가장 빠른 시간을 최종 기록으로 인정한다.

C. 미로 형식

- i. 미로의 크기는 3m * 3m이며, 라인은 마스킹 테이프로 만들어 두께는 약 2.5cm이다.
- ii. 미로의 시작점과 끝점은 약 10cm의 정사각형으로 표시되어 있다.
- iii. 각 교차로 사이의 길이는 약 50cm이다.
- iv. 미로의 모든 교차로는 90도이다.
- v. 미로의 막다른 길은 끊어져 있다.
- vi. 미로에 cycle은 존재하지 않는다.

D. 평가 요소

- i. 미로 탈출 여부
- ii. 미로 탈출 단계
- iii. 미로 탈출 시간

E. 주의 사항

- i. 아두이노 자동차는 라인을 따라 움직여야 하며, 라인을 벗어나면 실격처리한다.
- ii. 라인 트레이서 센서는 자유롭게 배치할 수 있으나, 개수는 최대 3개로 제한한다.
- iii. 키트에 있는 다른 부품들을 추가로 사용 가능하다.
- iv. 블루투스, Wi-Fi 모듈 등을 이용한 직접 조종은 불가능하다.

- v. 미로에 대한 정보를 저장할 수 없으며, 각 시도 마다 아두이노 보드의 reset 버튼을 누르고 진행한다.
- vi. 시연 도중에 아두이노 코드를 수정하여 업로드할 수 없으며, 부득이한 경우 조교의 판단 하에 재업로드가 가능한다.

F. 비고

i. 미로는 301동 실험실에 연습 용을 하나 설치할 예정이다.

3. 건물 감지

A. 목표

i. 아두이노 자동차와 자신이 작성한 알고리즘을 활용하여 격자 형태의 길 사이에 배치된 건물을 감지하게 한다.

B. 진행 방식

- i. 격자 형식으로 된 도로에 건물을 임의로 배치한다.
- ii. 아두이노 자동차가 도로를 다니면서 초음파 센서를 이용하여 도로 사이에 있는 건물을 감지한다.
- iii. 감지한 결과를 아두이노 자동차에 장착한 LCD에 출력한다.
- iv. 2번의 기회를 제공한다.

C. 도로 형식

- i. 도로는 3*3 격자 형식이며, 마스킹 테이프로 만들어 도로의 두께는 약 2.5cm이다.
- ii. 각 블록(격자) 사이의 거리는 약 60cm이다.
- iii. 건물의 폭은 약 30cm이다.

D. 출력 형식

- i. 건물이 있을 수 있는 자리에 1 ~ 9번으로 번호를 부여한다.
- ii. LCD에 각 자리수가 건물 번호를 나타내며, 건물이 있으면 1, 없으면 0이 되게 하는 9자리의 2진수로 출력한다.
- iii. 예) 1, 4, 5, 8에 건물: 100110010

E. 평가 요소

- i. 건물 감지 정확성
 - 1. 기본 5점으로 시작하여 각 위치의 건물 탐색에 성공하면 1점 추가, 실패하면 1점 차감하여 정확성 점수를 부여한다.(최저 0점)
- ii. 건물 감지 시간

F. 주의 사항

- i. 아두이노 자동차는 라인을 따라 움직여야 하며 원하는 때에 임의로 정지할 수 있다.
- ii. 라인 트레이서 센서와 초음파 센서는 자유롭게 배치할 수 있으나, 라인 트레이서 센서는 최대 3개, 초음파 센서는 최대 1개로 제한한다.

- iii. 키트에 있는 다른 부품들을 추가로 사용 가능하다.
- iv. 블루투스, Wi-Fi 모듈 등을 사용한 직접 조종은 불가능하다.
- v. 출발은 최외곽 도로 어느 곳에서나 가능하나, 조교가 지정한 번호대로 결과를 출력해야 하니, 출발 위치에 맞게 결과를 출력하게끔 알고리즘을 작성하도록 한다.
- vi. 도로 및 건물에 대한 정보를 저장할 수 없으며, 각 시도 마다 아두이노 보드의 reset 버튼을 누르고 진행한다.
- vii. 시연 도중에 아두이노 코드를 수정하여 업로드할 수 없으며, 부득이한 경우 조교의 판단 하에 재업로드가 가능한다.

G. 비고

- i. 도로는 연습 용으로 2*2 격자 형식에 건물 자리 번호만 있는 상태로 301동 실험실에 설치할 예정이다.
- ii. 도로 형식 및 건물 번호는 다음과 같다. 굵은 선은 아두이노 자동차가 출발 가능한 구역이다.

1	2	3
4	5	6
7	8	9