郑州大学 创新创业基础与工程设计实践项目

VisionVoyage-基于鱼眼相机与其他感知技术的自动驾驶仿真系统 产品测试报告

公司名称:	IngenuityDrive-创智行科技有限公司
小组编号:	21 级计算机类 09 组
团队成员:	徐梓航 郭顺 徐梦蝶 郑辰乐 陈自豪
	赵柏茗 郭晓卿 蔡从轩 华勇 李景尧
指导老师:	程楠
所属学院:	计算机与人工智能学院
编订日期:	2024年5月

目录

—、	引	늘 	. 1
	1. 1	编写目的	. 1
	1. 2	参考资料	. 1
二、	测	试概述	. 1
	2. 1	测试范围	. 1
		2.1.1 功能模块测试	. 1
		2.1.2 交叉事件测试	. 3
		2.1.3 性能测试	. 3
	2. 2	测试目标	. 4
	2. 3	测试环境	. 4
		2.3.1 开发端环境测试	. 4
		2.3.2 运行端环境测试	. 4
	2. 4	测试进度	. 4
三、	测	试策略	. 5
	3. 1	功能性测试	. 5
	3. 2	用户界面测试	. 6
	3. 3	可靠性测试	. 6
	3. 4	易用性测试	. 7
四、	测	试用例	. 7
	4. 1	功能性测试	. 7
	4. 2	用户界面测试	. 8
	4. 3	可靠性测试	. 9
	4. 4	易用性测试	10
五、	测	试工作总结	11

一、引言

1.1 编写目的

通过对 VisionVoyage 项目进行的一系列软件测试,获取相应的测试数据,得到测试结果。通过对测试结果的分析,对 VisionVoyage 项目进行包括质量、性能等多方面的详细评价;对测试计划与测试流程进行详细的评估,并对其结果进行是否满足预期标准进行判断;分析系统存在的异常和功能上的逻辑错误,为修复和预防程序异常提供建议;最终形成测试报告,对产品的质量、使用性能进行全方位地分析与评价,以判断其是否满足项目需求。

1.2 参考资料

表 1.2.1 参考资料

资料名称	出版单位	作者	日期
《软件工程导论》	清华大学出版社	张海藩 牟永敏	2013
《软件测试》	机械工业出版社	Patton,R 著 张小松等 译	2006
《VisionVoyage 详	创智行有限公司	I	2024
细设计说明书》	凹省有有限公司	/	2024
《VisionVoyage 需	创知 亿方图 八司	I	2024
求规格说明书》	创智行有限公司	/	2024

二、 测试概述

2.1 测试范围

2.1.1 功能模块测试

根据软件需求说明书并结合用户需求验证软件的各个功能是否实现,具体采

用如下的方法验证并评估功能测试过程:

采用对不同子系统进行业务分析的方法,模拟构建软件的使用场景,对比软件的需求说明,构建具有一般性和典型性的测试点及测试用例,并明确测试标准。同时,借鉴同行业的标准和准则,对软件进行客观、全方位的评估。

根据被测试功能点的特性列出相应类型的测试用例对其进行覆盖,如:涉及输入的地方需要考虑等价、边界、负面、异常或非法、场景回滚、关联测试等测试类型对其进行覆盖。在测试实现的各个阶段跟踪测试实现与需求输入的覆盖情况,及时修正需求理解错误的地方。

下面给出软件的子系统模块清单,以及各模块的主要功能。

对于各个功能的简要描述如下表所示:

表 2.1.1 子系统功能清单

从 2.1.1 了		
用例编号	用例名称	简要说明
1.1	普通图像转鱼眼图像	使用 PT (投影变换) 算法
1.2	普通图像拼接为鱼眼图像	使用 Cubemap (立方体贴图) 算法
2.1	拍摄鱼眼数据集	使用仿真环境拍摄
2.2	单通道标签图像转彩色标签 图像	使用 OpenCV 对每个类别的像素进行填充颜色
3.1	上传图像进行分割	使用 MMsegmentation
3.2	上传视频进行分割	使用 PyTorch+YOLOV5
4.1	仿真传感器	仿真环境下提供

5.1	虚拟驾驶	仿真环境下提供
5.2	自动驾驶	仿真环境下提供
6.1	切换主题	通过 QSS(QT 样式表)实现
6.2	点击跳转到邮箱客户端并指 定目标邮箱	通过 webbrowser 库实现
7.1	付费注册会员	通过支付宝 API 和 Crypto++加密算法库实现
8.1	打印日志文件	通过 HPDF 库实现

2.1.2 交叉事件测试

在测试中,选择具有交叉事件性质的测试样例,进行交叉事件测试是评估软件事务处理能力的重要手段。执行干扰的冲突事件不能导致软件应用软件系统异常、软件系统卡死或者无响应等严重问题,还需要注意各交叉事件的优先级别,检验系统是否能依据各事件的优先级别依次进行处理,不能因执行优先级别高的事件而导致优先级别较低的事件卡死。具体的测试操作如下:

- 1、软件系统运行时执行点击操作,是否会干扰正常运行;
- 2、软件系统运行时打开其他系统资源,是否会导致软件系统无法正常运行;
- 3、软件系统运行时修改系统资源,查看是否会影响软件系统的运行。

2.1.3 性能测试

1、性能评估

评价 VisionVoyage 在主要功能上的工作效果。

2、压力测试

- ①长期且重复操作相同及不同下、程序运行是否占用异常;
- ②对软件系统的各个界面进行反复点击操作,查看是否会影响系统的运行;

2.2 测试目标

- 1、为测试的每个流程和功能模块制定一个现实可行的、综合的计划,包括 每项测试流程的对象、范围、方法、进度和预期结果。
- 2、依据项目的测试需要,建立一个合理的方案和计划,分配每个组员在测 试项目的责任和工作内容。
- 3、对于测试的每个阶段,分别设计有效的测试样例和模型,能正确地验证 正在开发的软件系统。确定测试所需要的时间和资源,以保证其可获得性、有效 性。
- 4、确立每个测试阶段测试完成的标准、要实现的目标。识别出测试活动中 各种风险,并消除可能存在的风险,降低由不可能消除的风险所带来的损失。

2.3 测试环境

2.3.1 开发端环境测试

硬件环境: Intel-i7-11800H、32G内存、200G以上硬盘、NVIDIA 3060 LAPTOP 软件环境: Ubuntu 20.04.6 LTS x86_64、GNU bash 5.0.17、CUDA 11.8、CUDNN 8.6.0

服务器: Intel-i9-13900K、64G内存、4T硬盘、NVIDIA 4090

2.3.2 运行端环境测试

支持软件部署在 Linux、Windows、MAC OS 等桌面操作系统。

2.4 测试进度

表 2.4.1 测试讲度

子系统名		开始时	完成时	负责	タンナ
称	检查模块及功能	间	间	人	备注
普通图像	机 剧 亦 执 始 外 和 0 1	F 1	F 0	郭晓	无特殊情
鱼眼化	投影变换算法和 Cubemap 算法	5. 1	5. 3	卿	况
拍摄鱼眼	仿真环境下获取鱼眼数据集	5, 1	5, 3	陈自	无特殊情
数据集	刀具小块下须取 巴眼剱船来	5. 1	0. 3	豪	况
上传	上传图像或视频进行分割处理	5 . 1	5. 3	郭	无特殊情
上1岁	工作图像现代测过行分割处理	5. 1	0. 0	顺	况
仿真传感	提供众多自动驾驶感知技术所	5. 1	5, 3	徐梓	无特殊情
器	需传感器	5. 1	0. 3	航	况
驾驶仿真	仿真环境下键盘控制汽车行驶	5 . 1	5. 3	徐梓	无特殊情
马狄切县	或者自动驾驶	5. 1	0. 3	航	况
我的	定制化服务和个性化体验	5 . 1	5, 3	华勇	无特殊情
4人口7	是明化服务和1711生化PP顿	ə . 1	-0.0	十男	况

三、 测试策略

3.1 功能性测试

表 3.1.1 功能测试

测试目标	测试功能的完整性、逻辑无错误
测试范围	对各个子系统模块的功能进行测试
测试内容	通过选用不同的刺激源在不同场景下对软件进行测试

测试方法	第一种通过直接运行的界面进行操作测试、
	第二种通过集成开发工具进行调试测试
完成标准	对所有操作完成测试
测试重点	仿真传感器、驾驶仿真、拍摄鱼眼数据集、上传
特殊事项	无

3.2 用户界面测试

表 3.2.1 用户界面测试

测试目标	测试界面跳转无异常、无错误响应情况出现
测试范围	对各个界面的显示的功能进行测试
测试内容	在不同界面上进行不通的点击操作测试是否正常运行
25d 2-2-2-1-	第一种通过直接运行的界面进行操作测试、
测试方法	第二种通过集成开发工具进行调试测试
完成标准	所有界面跳转无异常,界面显示效果正常无卡死情况
测试重点	仿真传感器、驾驶仿真、拍摄鱼眼数据集、上传
特殊事项	无

3.3 可靠性测试

表 3.3.1 可靠性测试

测试目标	测试特定环境下完成规定功能的反应时间
测试范围	对仿真环境相关功能进行测试
	使用仿真环境内不同的天气条件
测试内容	进行检测
测试方法	第一种通过直接运行的界面进行操作测试、

	第二种通过集成开发工具进行调试测试		
完成标准	对于用户敲击键盘1秒内必须给出反应,不能延迟过大		
测试重点	仿真传感器、驾驶仿真		
特殊事项	无		

3.4 易用性测试

表 3.4.1 易用性测试

测试目标	测试程序操作方便程度
测试范围	对每个界面进行检测
测试内容	让测试成员进行运行和操作并感受操作手感
254 24 24	第一种通过直接运行的界面进行操作测试、
测试方法	第二种通过集成开发工具进行调试测试
完成标准	操作无明显不方便之处,界面易于理解
测试重点	所有界面
特殊事项	无

四、 测试用例

4.1 功能性测试

表 4.1.1 功能性测试

测试目的	测试功能的完整性、确保运行的业务逻辑无错误
功能特性	各个子模块功能法的正常使用
预置条件	已付费成为 VisionVoyage Plus

参考信息	分割正确率要在70%以上,各个功能延迟要在可接受范围内		
子系统	检查模块及功能	测试效果	测试结果判断
普通图像鱼 眼化	投影变换算法和 Cubemap 算法	实现	功能合格
拍摄鱼眼数据集	仿真环境下获取 鱼眼数据集	实现	功能合格
上传	上传图像或视频进行分割处理	实现	功能合格
仿真传感器	提供众多自动驾 驶感知技术所需 传感器	实现	功能合格
驾驶仿真	仿真环境下键盘 控制汽车行驶或 者自动驾驶	实现	功能合格
我的	定制化服务和个性化体验	实现	功能合格

4.2 用户界面测试

表 4.2.1 用户界面测试

测试目的	测试界面跳转无异常、无错误响应情况出现		
功能特性	界面跳转流畅无卡顿		
预置条件	已付费成为 VisionVoyage Plus		
参考信息	界面切换无明显卡顿		
界面名称	测试操作步骤	测试效果	测试结果判断
进入加载界面	反复打开核心的 操作模块,观察软 件启动速度,以及 信息同步情况	由于需要加载、同步资源,因此会等待一段时间	运行合格
功能选择界面	反复打开软件进 入功能选择界面	无卡顿	运行合格

4.3 可靠性测试

表 4.3.1 可靠性测试

测试目的	测试特定环境下完成规定功能的反应时间		
功能特性	软件反应速度及准确度		
预置条件	已付费成为 VisionVoyage Plus		
参考信息	仿真传感器和驾驶仿真子模块进入仿真环境后可以流畅 运行		
界面名称	测试操作步骤	测试效果	测试结果判断

仿真传感器	切换所有传感器并进行拍照保存	正常运行	可靠性合格
驾驶仿真	切换天气、加载和 卸载图层、切换视 角、切换传感器、 驾驶仿真	正常运行	可靠性合格

4.4 易用性测试

表 4.4.1 易用性测试

测试目的	测试软件主要操作的方便程度		
功能特性	操作便捷		
预置条件	已付费成为 VisionVoyage Plus		
参考信息	界面无逻辑错误,易理解操作		
测试名称	测试操作步骤	测试效果	测试结果判断
整体界面操作感受	完整运行软件的 各个功能,并进行 正常用户操作,感 受是否有逻辑错 误,或操作手感不 正常现象	操作无逻辑错误, 界面简单易理解, 无操作不适现象	易用性合格

五、 测试工作总结

本报告详尽地介绍了本测试小组的测试范围、测试标准、测试计划及测试工具和技术,对于相关的测试用例、测试模型进行了较为全面的说明,对于软件系统的可靠性、易用性、功能性分别进行了分析和评估,并对测试的流程进行了较为详细的说明。本测试小组依据用户的核心需求,并结合文档中的测试内容和计划,对 VisionVoyage 进行了全面而详尽的测试工作。经过测试评估,在软件的功能性、安全性、可靠性、易用性等多方面进行了改造和优化,均满足了各项标准和需求,符合项目的开发要求,基本满足了用户的核心需求。