DIGITAL ELECTRONICS AND LOGIC DESIGN [EC-207]

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

Expt. No:	9	Full Wave Rectifier
Date:	22/10/2020	

AIM: To study, design and implement Full Wave Rectifier Circuit.

SOFTWARE TOOLS / OTHER REQUIREMENTS:

1. Multisim Simulator/Circuit Simulator

THEORY:

The circuit diagram of the Bridge Rectifier along with inou-toutput waveforms is shown in figure below. The four diodes D1, D2, D3 and D4 are arranged in a bridge configuration and hence the name. The circuit contains a transformer that steps down the input ac magnitude depending on the requirement and provides the necessary isolation avoiding any risk of shocks.

Let Vi = Vm sin wt be the input signal at the transformer secondary, it is a sinusoidal signal with maximum amplitude Vm. During the positive half-cycle of the input, the point A being positive with respect to the point B, the diodes D1 and D3 will be forward biased; however, the diodes D2 and D4 will be reverse biased. The pair of diodes D1 and D3 start conduction resulting in a current ID flowing through the load resistor RL in the direction marked for the entire positive half-cycle, i.e. from wither with will be positive with respect to the point A and the diodes D2 and D4 will be forward biased, and the diodes D1 and D3 will be reverse biased. Diodes D2 and D4 start conduction resulting in a current ID flowing through the load resistor RL again in the same direction (as earlier) for the entire negative half-cycle, i.e.

from $wt = \pi$ to 2π and the diodes D1 and D3 will be in OFF condition. Thus, between wt = 0 to π , D1 and D3 conduct and result in an output, between $wt = \pi$ to 2π , D2 and D4 conduct and result in an output Vo as indicated in Fig. (b). It can therefore be observed that for both cycles of input, there is a current flowing, hence the name full-wave rectifier.

Exp-9:- Full – Wave Rectifier ECED, SVNIT

CIRCUIT DIAGRAM (FROM MULTISIM)

Exp-9:- Full – Wave Rectifier ECED, SVNIT

WAVEFORMS (FROM MULTISIM)

CONCLUSIONS

- 1.) In this Experiment, We have studied about Full Wave Rectifier Circuit and its Working.
- 2.) We Verified the Theoretical Knowledge of Full Wave Rectifier Circuit by Performing Simulations of Full Wave Rectifier Circuit in Multisim.
- 3.) Hence, we have Successfully Designed, Plotted and Verified Full Wave Rectifier Circuit.

Exp-9:- Full – Wave Rectifier ECED. SVNIT

ASSIGNMENT-9

U19CS012

1. Calculate and Plot Vo for the following circuit.

A.) Multisim Calculations:

1.) Circuit Image:

Exp-9:- Full – Wave Rectifier ECED. SVNIT

2.) Grapher Image:

B.) Calculation Part

Exp-9:- Full – Wave Rectifier ECED, SVNIT

DIGITAL ELECTRONICS AND LOGIC DESIGN [EC-207]

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

Exp-9:- Full – Wave Rectifier ECED. SVNIT