Esercitazioni SHORTEST PATH e MST

Esercizio I

Si risolva il problema SHORTEST PATH con la seguente tabella di distanze

	1	2	3	4
1	*	4	1	6
2	7	*	3	1
3	5	2	*	3
4	1	5	3	*

sia con l'algoritmo di Dijkstra (scegliendo come nodo sil nodo 1), sia con l'algoritmo di Floyd-Warshall.

Esercizio II

Si risolva il problema SHORTEST PATH con la seguente tabella di distanze

	1	2	3	4
1	*	3	4	2
2	5	*	1	6
3	5	4	*	6
4	2	1	3	*

sia con l'algoritmo di Dijkstra (scegliendo come nodo sil nodo 1), sia con l'algoritmo di Floyd-Warshall.

Esercizio III

Si risolva il problema SHORTEST PATH con la seguente tabella di distanze

	1	2	3	4
1	*	7	2	6
2	-1	*	4	5
3	7	-3	*	6
4	4	8	3	*

con l'algoritmo di Floyd-Warshall.

Esercizio IV

Si risolva il problema MST con i seguenti pesi sugli archi

	1	2	3	4	5	6
1	_	6	2	3	12	7
2		_	8	9	7	11
3			_	1	11	4
4				_	6	5
5					_	9
6						_

utilizzando l'algoritmo greedy, l'algoritmo MST-1 e l'algoritmo MST-2.

Esercizio V

Si risolva il problema MST con i seguenti pesi sugli archi

	1	2	3	4	5
1	_	12	11	10	9
2		_	6	8	5
3			_	3	7
4				_	4
5					_

utilizzando l'algoritmo greedy, l'algoritmo MST-1 e l'algoritmo MST-2.