МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **КНІТ** Кафедра **ПЗ**

3BIT

До лабораторної роботи № 1 **На тему**: "Моделювання логічних елементів в середовищі системи Proteus. Синтез та моделювання простих логічних схем"

З дисципліни: "Архітектура комп'ютера"

Лектор: доцент кафедри ПЗ Крук О.Г.

Виконав: студент групи ПЗ-22 Коваленко Д.М.

Прийняла: доцент кафедри ПЗ Крук О.Г.

«_____» _____ 2022 p. $\sum = \underline{\qquad} \dots \dots \dots$

Тема. Моделювання логічних елементів в середовищі системи Proteus. Синтез та моделювання простих логічних схем.

Мета. Набути практичних навиків моделювання логічних елементів та схем в середовищі системи програм Proteus; закріпити вміння складати за таблицею істиності логічні функції в досконалій диз'юнктивній та кон'юнктивній нормальній формі; опанувати синтез простих комбінаційних схем за логічними функціями.

Лабораторне завдання

Для групи ПЗ-22

Z. 19311110 22																																			
Значення аргументів				Значення функції																															
x ₂ x ₁ x ₀			-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10	20	21	22	23	24	25	26	27	28	20	30	31	32	33
_	_		_	_	_	-	5	0	<u> </u>	-	1	10	11		13	_		_		-	19	-	-	-	23	-	23	20	21	20	-	-	-	\vdash	33
0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1
0	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0
0	1	0	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	1	1	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1
0	1	1	1	1	1	0	0	1	1	0	0	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0
1	0	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	0	0	0	1	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	1	1
1	1	0	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0
1	1	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1
Частота f, КГц		16	18	56	28	36	38	46	48	99	58	99	89	92	78	98	88	96	86	106	108	116	118	126	128	136	138	146	148	156	158	166	168	176	

Теоретичні відомості

Основні логічні операції, визначені аксіомами алгебри логіки можна реалізувати основними логічними елементами - інвертор ($\rm HE/NOT$), диз'юнктор ($\rm ABO/OR$), кон'юнктор ($\rm I/AND$).

З принципу двоїстості слідує, що будь-яку логічну функцію можна задати лише двома основними операціями: АБО та НЕ або ж І та НЕ.

На практиці замість елементів AБO та HE використовують елемент Пірса, що ϵ їх поєднанням, а замість елементів I та HE використовують елемент Шеффера.

Proteus - це САПР для проектування найрізноманітніших електронних пристроїв. Інтерфейс програми є дуже подібним до класичного графічного інтерфейсу найбільш поширених програм.

Хід роботи

Період цифрового сигналу

$$T = \frac{1}{45 \kappa \Gamma \chi} = \frac{1}{45000 \Gamma \chi} = 0.0000222 c$$

ДДНФ заданої функції

$$\overline{x_2x_1x_0} + \overline{x_2x_1}x_0 + \overline{x_2}x_1\overline{x_0} + x_2x_1\overline{x_0} + x_2x_1x_0$$

ДКНФ заданої функції

$$(x_2+\overline{x_1}+\overline{x_0})(\overline{x_2}+x_1+x_0)(\overline{x_2}+x_1+\overline{x_0})$$

Рис. 1: Схема 1

Рис. 2: Графік "Inventory"

Рис. 3: Графік "Dyzjunktory"

Рис. 4: Графік "Konjunktory"

Рис. 5: Схема 2

Рис. 6: Графік "Syntez"

На графіку "Syntez"
криві $G22_8_F1$ та $G22_8_F2$ повністню співпадають, тому можна зробити висновок, що ДДНФ та ДКНФ мають один результат при поданні логічної функції.

Висновок

Під час виконання лабораторної роботи я навчився моделювати логічні елементи та схеми в середовищі системи програм Proteus; закріпив вміння складати за таблицею істиності логічні функції в досконалій диз'юнктивній та кон'юнктивній нормальній формі; навчився синтезувати прості комбінаційні схеми за логічними функціями.