

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ DEPARTMENT OF COMPUTER SYSTEMS

APLIKACE OVLÁDANÁ DVOJICÍ ROTAČNÍCH ENKODÉRŮ

SEMESTRÁLNÍ PROJEKT

TERM PROJECT

AUTOR PRÁCE

ANTON HAVLOVSKYI

AUTHOR

VEDOUCÍ PRÁCE

Ing. JOSEF STRNADEL, Ph.D.

SUPERVISOR

BRNO 2024

Abstrakt

Tento projekt řeší problém vytvoření vhodné aplikace pro vestavěný systém na bázi mikrokontroléru MK60DN512VMD10, ke kterému jsou připojeny dva rotační enkodéry pro ovládání aplikace.

Abstract

This project solves the problem of creating a suitable application for an embedded system based on the MK60DN512VMD10 microcontroller, to which two rotary encoders are connected to control the application.

Klíčová slova

Mikroprocesor, Vestavěné systémy, Rotační encodér, MCU, Kinetis, MK60D10, MK60DN512VMD10, Programovací jazyk C, Programování vestavěných systémů.

Keywords

Microprocessor, Embedded systems, Rotary encoder, MCU, Kinetis, MK60D10, MK60DN512VMD10, C programming language, Embedded systems programming.

Citace

HAVLOVSKYI, Anton. Aplikace ovládaná dvojicí rotačních enkodérů. Brno, 2024. Semestrální projekt. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce Ing. Josef Strnadel, Ph.D.

Obsah

1	Úvod	2
2	Rozbor a návrh řešení2.1 Úvod do programu2.2 Struktura aplikace	3 3
3	Vlastní řešení 3.1 Hlavní aplikace	4
4	Závěrečné zhodnocení	5
5	Bibliografie	6
A	Schéma zapojeni enkodéru	7

$\mathbf{\acute{U}vod}$

V projektu "Aplikace ovládaná dvojicí rotačních enkodérů" mým cílem bylo seznámit se s rotačním enkodérem vybaveným tlačítkem, propojit dvojici enkodérů s vestavnou platformou a vytvořit jimi ovládanou vestavnou aplikaci. Výsledkem by měla být jednoduchá aplikace, kterou lze nejen ovládat dvěma enkodéry, ale zároveň bude komunikovat s počítačem uživatele, a pomocí jeho grafického prostředí zobrazoval výsledky interakce s ovládacími prvky (enkodéry).

Rozbor a návrh řešení

2.1 Úvod do programu

Program pro vestavěný systém bude napsán v programovacím jazyce C ve vývojovém prostředí Kinetis Design Studio v3.0.0.

2.2 Struktura aplikace

Aplikace se skládá z několika částí:

- 1. Modul pro reakci na otočení enkodéru a stisknutí tlačítka.
- 2. Komunikační modul s hostitelským počítačem.
- 3. Aplikace, která kromě své funkčnosti bude využívat funkce výše uvedených modulů.
- 4. Případné moduly pro rozšíření (například modul pro generování pseudonáhodných čísel).

Vlastní řešení

3.1 Hlavní aplikace

Jako hlavní aplikaci jsem zvolil hru Hledání min. Podle návrhu bude jeden enkodér řídit pohyb kurzoru horizontálně a druhý vertikálně. Jejich tlačítka poslouží k umístění vlajky na vybrané místo nebo k otevření uzavřené oblasti.

3.2 Modul konfigurace a řízení enkodéru

Připojení rotačních enkodérů k vývojové desce jsem zvolil podle schématu a technické dokumentace k vývojové desce.

Schéma zapojení enkodéru^A

Porty enkodéru jsou naprogramovány následovně: enkodér 1 port CLK na port PTA29, port DT na port PTA28, SW port na PTA25. Porty enkodéru 2 se programují stejným způsobem. Program detekuje otáčení enkodéru ve směru i proti směru hodinových ručiček, stejně jako stisknutí tlačítek.

Při otočení ovládacího prvku o jeden dílek generují enkodéry dva interakční signály, takže program má horní a dolní mez čtení hodnot která se rovná 2.

3.3 Modul komunikace

Komunikace probíhá pomocí UART: v tomto případě je zvolen UART5. Kód⁵ modulu byl převzat z příkladu se svolením vedoucího projektu a jeho autora.

3.4 Modul LPTMR

Tento modul se používá ke generování seedu pro vestavěnou funkci náhodných čísel z knihovny stdlib.h.

Závěrečné zhodnocení

Výsledkem této práce je aplikace, která dle mého názoru plně splňuje zadání projektu. Jedná se o jednoduchý a uživatelsky přívětivý program, který lze snadno ovládat dvěma rotačními enkodéry a výsledek interakce uživatele s enkodéry se zobrazí v okně terminálu. Pokud se chcete dozvědět více podrobností, podívejte se prosím na zdrojový kód aplikace. Zdrojový kód obsahuje všechny technické detaily konfigurace vestavěného systému, které jsem podrobně okomentoval.

Bibliografie

- Příklad konfigurace a použiti modulu UART
- Obsluha platformy FITkit3
- FITkit3 Schéma
- FITkit3 Demo
- K60 Sub-Family Reference Manual

Příloha A

Schéma zapojeni enkodéru

Obrázek A.1: Schéma zapojeni enkodéru.