Exercise 4.1.1 Affine Cipher

Task

Crack the Affine Cipher

KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK IVKSCPICBRKIJPKABI

Solution

Using the background knowledge that the text is in French but we can still use the English letter frequencies we start off by counting the occurrences of all letters:

```
C: 32
B: 21
K: 20
P: 20
I: 16
```

The letter C is the most common so we can assume it's the letter E. The next most common letter in English is T so let's check if T gets encoded to B.

We can try to break the Affine cipher with the above two assumptions:

$$\begin{cases} \mathcal{E}(E) = C \\ \mathcal{E}(T) = B \end{cases}$$

or by using the mapping letter \rightarrow number:

Letter A B C D E ... T ... Z Number 0 1 2 3 4 ... 19 ... 25
$$\begin{cases} \mathcal{E}(4) = 2 \\ \mathcal{E}(19) = 1 \end{cases}$$

where $y = \mathcal{E}(x) = ax + b \pmod{26}$ is the Affine cipher encryption function.

Substituting in the above function we get

$$\begin{cases} 2 = 4a + b \pmod{26} \\ 1 = 19a + b \pmod{26} \end{cases}$$

Subtracting the first equation from the 2nd we get

$$15a = -1 = 25 \pmod{26}$$

Using the Extended Euclidean algorithm (or Wolfram Alpha) we can find that the inverse of a is 7. By multiplying both sides with 7 we find that

$$a = 19 \pmod{26}$$

Substituting a in $2 = 4a + b \pmod{26}$ gives us the equation

$$4 \times 19 + b = 2 \pmod{26}$$

Using the same method as before we get the result

$$a \equiv 19, b \equiv 4$$

Hence the encryption function is $\mathcal{E}(x) = 19x + b \pmod{26}$.

To find the decryption function $\mathcal{D}(x) = a^{-1}(x-b) \pmod{26}$ we need to find a^{-1} .

We can find it by solving $19 \times a^{-1} = 1 \pmod{26}$ which gives us $a^{-1} \equiv 11$.

Hence the decryption function is $\mathcal{D}(x) = 11(x-7) \pmod{26}$.

Using the decryption function on the encrypted text we get:

OCANADATERREDENOSAIEUXTONFRONTESTCEINTDEFLEURONSGLORIEUXCARTONBRASSAITPORT ERLEPEEILSAITPORTERLACROIXTONHISTOIREESTUNEEPOPEEDESPLUSBRILLANTSEXPLOITSE TTAVALEURDEFOITREMPEEPROTEGERANOSFOYERSETNOSDROITS

Which seems to be the French lyrics of the Canadian national anthem.

Code used for this exercise

To find the number of occurrences of each letter

```
from collections import Counter

input = """KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP
KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP
BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF
ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK
IVKSCPICBRKIJPKABI"""
print(Counter(input))
```

To decrypt the message

```
import string
input = """KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP
KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP
BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF
ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK
IVKSCPICBRKIJPKABI"""
# Clean up new lines
input = [x for x in input if x != '\n']
result = ''
a_inverse = 11
b = 4
for x in input:
    # Map [A-Z] \rightarrow [0-26]
    x = ord(x) - ord('A')
    y = (a_{inverse} * (x - b)) % 26
    # Map [0-26] \rightarrow [A-Z]
    result += chr(y + ord('A'))
print(result)
```