Corollary: If $(x_i)_{i=1}^n \in IR$ and $\{A_i\}_{i=1}^n \subseteq \mathcal{F}$, then $IE(\sum_{i=1}^n x_i \mathbf{1}_{A_i}) = \sum_{i=1}^n x_i P(A_i).$

Proposition: If X, Z are SRVs,

(i) If $X \geqslant 2$, then $\mathbb{E}(x) \geqslant \mathbb{E}(2)$.

(ii) IE(x) = IE(|X1)

(iii) If X and Z are independent, IE(X2) = 7E(X) IE(Z).

(iv) IE(X) = sup {IE(Y): Y is simple and Y≤X3.

(note by (i), we get "≥", and for "=" take Y = X.

Remark: (i)-(iv) hold for general RVs, but for (iv),

we need X nonnegative.

Nonnegative Random Variables

Definition: Let X be a nonnegative RV. Then $IE(X) = \sup\{IE(Y) : Y \text{ is simple and } Y \leq X\}$.

Example: Consider ([0,1], 33([0,1]), λ). Let $X(\omega) = \omega^{2}$.

and consider

$$Y_{n} = \sum_{i=1}^{n} \left(\frac{i-i}{n}\right)^{2} 1_{\left(\frac{i-1}{n}, \frac{i}{n}\right)} \leq X$$

Then

$$\mathbb{E}(Y_n) = \sum_{i=1}^n \left(\frac{i-1}{n}\right)^2 \frac{1}{n}$$

lim Yn (ω) = X(ω) pointwise for all ωε [o]. Also,

 $\lim_{n\to\infty} |E(Y_n)| = \int_0^1 w^2 dw. \quad Does it follow |E(X) = \int_0^1 w^2 dw ?$

Example: Suppose Range(x) = IN U 204. Does

 $\mathbb{E}(X) = \sum_{n=1}^{\infty} n P(X=n)$

Example: Assume X is nonnegative, possibly infinite and P(X=0)=1. SRVs must have range in IR. If $Y = \sum_{i=1}^{n} X_i 1_{A_i}$ and $0 \le Y \le X_i$, then $X_i \ne 0$ so $P(A_i) = 0$. Therefore P(Y) = 0 a.e.

 $E(X) = \sup \{ E(Y) : Y \text{ simple and } Y \leq X \} = 0.$

Theorem: (Monotone Convergence Theorem For Expected Value)

Let $\{X_n\}_{n=1}^{\infty}$ be nonnegative RVs on (Ω, \mathcal{F}, P) . Assume

the IN, $X_n \leq X_{n+1}$ and let $X = \lim_{n \to \infty} X_n$. Then $\lim_{n \to \infty} E(X_n) = E(X)$.

This theorem confirms the formulas in the above examples. In particular, $X \perp_{(X \leq n)} \leq X \perp_{(X \leq n+r)}$, so $X \perp_{(X \leq n)} \rightarrow X$ Proof: By a known proposition, X is a RV and also $E(X_n) \leq E(X_{n+1})$ for all $n \in IN$ and $E(X_n) \leq E(X)$ for all $n \in IN$, so $\lim_{n \to \infty} E(X_n) \leq E(X)$. For the other direction, we show $\lim_{n \to \infty} E(X_n) \geqslant E(Y)$ for Y SRV such that $0 \leq Y \leq X$.

Assume $0 \le Y \le X$ and $Y = \frac{m}{i=1} v_i 1 L_{Ai}$ for a partition $Ai \}_{i=1}^{n}$. Let E > 0 be arbitrary. Let $Bi_{i,n} = \{w \in A_i : X_n(w) \ge v_i - C\}$ $v_i - E < v_i = Y(w) \le X(w)$, so $X_n(w) > v_i - E$ for sufficiently large n for all $w \in A_i$. Then by the

Monotone Convergence Theorem for Probability Measures lim p(Bin) = P(Ai) for all i, so $|X_n| \ge \sum_{i=1}^{n} (v_i - \varepsilon) \mathcal{1}_{A_i} = |E(X_n)| \ge \sum_{i=1}^{n} (v_i - \varepsilon) P(B_{i,n}).$ Now, $\lim_{n\to\infty} E(X_n) \geqslant \frac{\pi}{2}(v_i - \varepsilon) P(A_i) = \frac{\pi}{2} v_i P(A_i) - \frac{\pi}{2} \varepsilon P(A_i)$ = E(Y) - E Because €>0 was arbitrary. I'm E(Xn) ≥ E(Y). Remark: For nonnegative X, Z RVs, (i) E(cX) = cE(x)(ii) If $X \leq 2$, then $E(X) \leq E(2)$. (iii) E(X+Z) = E(X) + E(Z) is harder. Proposition: let X be a nonnegative RV. Then there exists ${X \over X} n {y_{n=1}}^{\infty}$ nonnegative SRVs such that ${\overline{X}}_n / X$ Proof: We prove in Steps. Step 1: Let $X_0^{\vee}(\omega) = LX(\omega)$, let $X_n^{\vee}(\omega) = \{X(\omega)\}^n$ (the nth decimal place). Then for all $n \in \mathbb{N}$, $\overline{X}_n \leq \overline{X}_{n+1} \leq X$ so $\overline{X}_n \nearrow X$ and $\overline{X}_n - X \le 10^{-k}$