WHAT IS CLAIMED IS:

1. A compound of structural formula I:

$$R^{1a}$$
 R^{1a}
 R^{1a}
 R^{1a}
 R^{2}
 R^{7}
 R^{2}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

5

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof, wherein,

 R^1 and R^{1a} independently are:

10

- (a) H,
- (b) C₁₋₆ alkyl

(d) §

15 R² is:

- (a) CO₂C₁₋₆alkyl,
- (b) H,
- (c) OH, or
- (d) C₁₋₆alkyl,

when a double bond is not present at b;

 \mathbb{R}^3 is:

- (a) H,
- (b) (C=O)OC₁-6alkyl or
- 25 (c) C₁₋₆alkyl optionally substituted with OH, N(R⁶)₂, or CO₂R⁶;

R4 is

(a) H, provided that R³ is not H,

(b) C₁₋₆alkyl optionally substituted with OH, N(R⁶)₂, or CO₂R⁶ or

(c)
$$O = V(R^6)_2$$

 $-C - (CH_2)_n - C - R^8$
 $O = O$

(d) C NH(CH₂)_nN(R⁶)₂

R⁵ is:

(a) H,

(b) OH, or

10 (c) OC₁₋₆alkyl;

R6 is:

(a) H, or

(b) C₁₋₆alkyl;

15

20

5

 R^7 is H, or $C_{1\text{-}6}$ alkyl optionally substituted with OH, $N(R^6)_2$, or CO_2R^6 ;

 R^8 is H, C_{1-6} alkyl, CH_2 -phenyl, CH_2 -hydroxyphenyl, CH_2 -indolyl, CH_2 -imidazolyl, CH_2OR^6 , $CH(OR^6)CH_3$, $(CH_2)_nC(O)NR^6$, $(CH_2)_nCO_2R^6$, $(CH_2)_nSR^6$, $(CH_2)_n(N+R^6)_3$,

n is 0-4, and

___ is a double bond optionally and independently present at a or b.

25

2. A compound according to claim 1 wherein \mathbb{R}^1 , \mathbb{R}^{1a} and \mathbb{R}^3 are hydrogen.

A compound according to claim 1 wherein R4 is

A compound according to claim 1 wherein R^2 and R^7 are

hydrogen and R4 is 5

10

15

5. A compound which is:

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof.

A method for treating ocular hypertension or glaucoma which 6. comprises administering to a patient in need of such treatment a therapeutically effective amount of a compound of Formula I or II:

$$R^{1a}$$
 R^{1a}
 R^{1a}
 R^{1a}
 R^{1a}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{5}
 R^{5}

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof:

wherein,

 R^1 and R^{1a} independently are:

- (a) H,
- 5 (b) C₁₋₆ alkyl

 R^2 is:

- 10 (a) CO₂C₁₋₆alkyl,
 - (b) H,
 - (c) OH, or
 - (d) C₁₋₆alkyl,

when a double bond is not present at b;

15

R³ is:

- (a) H,
- (b) (C=O)OC1-6alkyl or
- (c) C₁₋₆alkyl optionally substituted with OH, N(R⁶)₂, or CO₂R⁶;

20

 R^4 is

- (a) H,
- (b) C₁₋₆alkyl optionally substituted with OH, N(R⁶)₂, or CO₂R⁶ or

(c)

O ||
$$C^{\text{NH}(CH_2)_nN(R^6)_2}$$

25

R⁵ is: (a) H,

(d)

(b) OH, or

(c) OC₁₋₆alkyl;

R6 is:

5

(a) H, or

(b) C₁₋₆alkyl;

R7 is H, or C1-6alkyl optionally substituted with OH, N(R6)2, or CO2R6;

10 R8 is H, C₁₋₆alkyl, CH₂-phenyl, CH₂-hydroxyphenyl, CH₂-indolyl, CH₂-imidazolyl, CH₂OR6, CH(OR6)CH₃, (CH₂)_nC(O)NR6, (CH₂)_nCO₂R6, (CH₂)_nSR6, (CH₂)_n(N+R6)₃,

n is 0-4 and

15

___ is a double bond optionally and independently present at a or b.

7. The method according to Claim 6 wherein the compound of formula I is applied as a topical formulation in the form of a solution or suspension.

20

25

30

- 8. The method of Claim 7, which comprises administering a second active ingredient, concurrently or consecutively, wherein the second active ingredient is a hypotensive agent selected from a β -adrenergic blocking agent, adrenergic agonist, a parasympathomimetic agent, a carbonic anhydrase inhibitor, an EP4 agonist and a prostaglandin or a prostaglandin derivative.
- 9. The method according to claim 8 wherein the β -adrenergic blocking agent is timolol, levobunolol, carteolol, optipranolol, metapranolol or betaxolol; the parasympathomimetic agent is pilocarpine, carbachol, or phospholine iodide; adrenergic agonist is iopidine, brimonidine, epinephrine, or dipivephrin, the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the prostaglandin is latanoprost or rescula, and the prostaglandin derivative is a hypotensive lipid derived from PGF2 α prostaglandins.

10. A method according to claim 7 in which the topical formulation contains xanthan gum or gellan gum.

11. A method according to claim 6 wherein the compound of

5 formula I is:

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof.

10

12. A method for treating macular edema, macular degeneration, or for providing a neuroprotective effect, which comprises administering to a patient in need of such treatment a pharmaceutically effective amount of a compound as recited in claim 6.

15

- 13. The method according to Claim 12 wherein the compound of formula I is applied as a topical formulation in the form of a solution or suspension.
- 14. The method of Claim 13, which comprises administering a second active ingredient, concurrently or consecutively, wherein the second active ingredient is a hypotensive agent selected from a β-adrenergic blocking agent, adrenergic agonist, a parasympathomimetic agent, a carbonic anhydrase inhibitor, an EP4 agonist and a prostaglandin or a prostaglandin derivative.
- 25 15. The method according to claim 14 wherein the β-adrenergic blocking agent is timolol, levobunolol, carteolol, optipranolol, metapranolol or betaxolol; the parasympathomimetic agent is pilocarpine, carbachol, or phospholine

iodide; adrenergic agonist is iopidine, brimonidine, epinephrine, or dipivephrin, the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the prostaglandin is latanoprost or rescula, and the prostaglandin derivative is a hypotensive lipid derived from $PGF2\alpha$ prostaglandins.

16. A method according to claim 12 in which the topical formulation contains xanthan gum or gellan gum.

5

10

17. A method according to claim 13 wherein the compound of formula I is:

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof.

15 18. A composition comprising a compound of formula I as recited in claim 1 and a pharmaceutically acceptable carrier.

> A process for making a compound of the formula Ia: 19.

Ia

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof, using microbiological strain Aspergillus alliaceus (ATCC No. 5 16891 or PTA-4210), Aspergillus nomius (ATCC No. 15546 or PTA-4211), or Aspergillus nomius (ATCC No. PTA-4212).

> A process for making a compound of the formula Ia or Ib: 20.

Ιb

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof, using microbiological strain Aspergillus nomius ATCC No. 15546 (PTA-4211).

15

10

21. A process for making a compound of the formula Ib:

Ιb

or a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer or mixture thereof, using microbiological strain *Aspergillus nomius* ATCC No. PTA-4212.