

Unit-7

——Multiplexers and Decoders

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

7.8 奇偶校验器

奇偶校验器

- □ 用来检查数据传输和存取过程中是否产生错误的组合逻辑电路。 (就是检测数据中包含"1"的个数是奇数还是偶数)
- □ 广泛用于计算机的内存储器以及磁盘等外部设备中

∫ 奇偶校验发生器:可产生奇偶校验位,与数据一起传输或保存 └ 奇偶校验检测器:可以检验所接受数据的正确性

被校验的原始数据和1位校验位组成 n+1位校验码。

n位 1位 原始数据 校验位 校验码: n+1 位

偶校验位逻辑值的表达式:

 $\mathsf{P}_\mathsf{E} = \overline{\mathsf{A}_3 \oplus \mathsf{A}_2 \oplus \mathsf{A}_1 \oplus \mathsf{A}_0}$

偶校验位逻辑值电路是 在奇校验位逻辑值电路 输出端加非门实现

4位二进制数校验码真值表

$A_3A_2A_1A_0$	P _E P _O
0000	0 1
0001	1 0
0010	1 0
0011	0 1
0100	1 0
0101	0 1
0110	0 1
0111	1 0
1000	1 0
1001	0 1
1010	0 1
1011	1 0
1100	0 1
1101	1 0
1110	1 0
1111	0 1

奇校验位逻辑值的表达式:

 $P_0 = A_3 \oplus A_2 \oplus A_1 \oplus A_0$

奇偶校验器一般由异或门构成

异或门真值表

A	В	F	
0	0	0	
0	1	1	<
1	0	1	
1	1	0	

异或门特性

- ◆ 两个输入中有奇数个"1",输出为1;有偶数 个"1",输出为0。
- ◆ 扩展: n个1位二进制数中有奇数个"1",输出为1; 有偶数个"1",输出为0。

7.8 奇偶校验器

奇偶校验器/产生器: 74xx180、74xx280

74XX280功能表

A~I	EVEN	ODD
偶数个 "1"	1	0
奇数个 "1"	0	1

例)用9位奇偶校验器74LS280设计一个8位二进制码的奇校验位发生器和检测器。

7.8 奇偶校验器

奇偶校验实际应用意义

- ① 能够检测传送出错,但不能确定错误位置,不能纠错;
- ② 数据在存储或传送过程中,发生一位错误的可能性占 96%以上;
- ③ 电路简单,容易实现,且有实际应用意义。