# Plano de Ensino – Algoritmos e Programação de Computadores

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Campus Taguatinga



# 1 Identificação da Disciplina

- Nome da Disciplina: Algoritmos e Programação de Computadores;
- Curso: Licenciatura em Física;
- Pré-requisitos: disciplina sem pré-requisitos;
- Carga Horária: 72 h/a;
- Período: 2022/1;
- Professor: Daniel Saad Nogueira Nunes;
- Horário de atendimento: terças-feiras das 14h às 16h.

## 2 Bases Tecnológicas (Ementa)

Conceito e desenvolvimento de algoritmos. Tipos de dados. Operações de entrada e saída. Estruturas fundamentais: sequência, decisão e repetição. Vetores e matrizes. Funções. Implementação de algoritmos usando uma linguagem de programação.

## 3 Objetivos e Competências

- Desenvolver algoritmos utilizando estruturas da programação procedural na linguagem C.
- Adquirir competências na modelagem de um problema em termos computacionais e na sua solução através de um algoritmo escrito em uma linguagem de programação alto-nível.
- Familiarizar com os conceitos básicos da Ciência da Computação.

## 4 Habilidades Esperadas

• Ser capaz de desenvolver soluções computacionais utilizando uma linguagem de programação alto-nível.

# 5 Conteúdo Programático

- 1. Introdução à disciplina;
- 2. História da Computação;
- 3. Aritmética Computacional;
- 4. Atribuição, tipos primitivos, operadores lógicos e aritméticos;
- 5. Operações de Entrada e Saída;
- 6. Estruturas de decisão;
- 7. Estruturas de repetição;
- 8. Vetores;
- 9. Strings;
- 10. Funções;
- 11. Matrizes.

#### 6 Metodologias de Ensino

Metodologia híbrida: aulas expositivas e aprendizagem baseada em projetos.

#### 7 Recursos de Ensino

Os recursos de ensino baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

# 8 Avaliação

A nota da disciplina consiste em três provas.

A nota final é calculada como:

$$N_f = \frac{P_1 + P_2 + P_3 + 2P_4 + 2P_5 + 2P_6}{9}$$

Em que  $P_i$  consiste na nota do i-ésimo projeto.

O aluno é considerado aprovado se, e somente se, obtiver  $N_f \geq 6.0$  e presença  $\geq 75\%$ .

# 9 Observações

Será atribuída nota **ZERO** a qualquer avaliação que incida em plágio.

## 10 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

| Semana do dia | Conteúdo                                               | Total de Horas |
|---------------|--------------------------------------------------------|----------------|
| 05/abr        | Introdução à disciplina e História da Computação       | 4              |
| 12/abr        | Conceitos Preliminares e Ambiente de Desenvolvimento C | 4              |
| 19/abr        | Variáveis, Atribuição e Entrada e Saída                | 4              |
| 26/abr        | Operadores Lógicos e Aritméticos                       | 4              |
| 03/mai        | Estruturas de Decisão                                  | 4              |
| 10/mai        | Estruturas de Decisão                                  | 4              |
| 17/mai        | Estruturas de Repetição e Projeto 1                    | 4              |
| 24/mai        | Estruturas de Repetição e Projeto 1                    | 4              |
| 31/mai        | Vetores e Projeto 2                                    | 4              |
| 07/jun        | Vetores e Projeto 2                                    | 4              |
| 14/jun        | Strings e Projeto 3                                    | 4              |
| 21/jun        | Strings e Projeto 3                                    | 4              |
| 28/jun        | Funções e Projeto 4                                    | 4              |
| 05/jul        | Funções e Projeto 4                                    | 4              |
| 12/jul        | Matrizes e Projeto 5                                   | 4              |
| 19/jul        | Matrizes e Projeto 5                                   | 4              |
| 26/jul        | Projeto 6                                              | 4              |
| 02/ago        | Projeto 6                                              | 4              |
| 09/ago        | Projeto 6 e Encerramento da Disciplina                 | 4              |

Total 76

## Bibliografia

- [AdC08] Ana Fernanda Gomes Ascencio and Edilene Aparecida Veneruchi de Campos, Fundamentos da programação de computadores, Pearson Educación, 2008.
- [CCR17] Waldemar Celes, Renato Cerqueira, and José Rangel, *Introdução a estruturas de dados: com técnicas de programação em c*, Elsevier Brasil, 2017.
- [DD99] Harvey M Deitel and Paul J Deitel, Como programar em c, LTC, 1999.
- [FE05] André Luiz Villar Forbellone and Henri Frederico Eberspächer, Lógica de programação: a construção de algoritmos e estruturas de dados.
- [Sch97] Herbert Schildt, C completo e total, Makron, 1997.