Guidelines for Report

Structure

- Titlepage: Name, Mat-Num., Title of Project, Course-Nr. (LV-Nr), Date
- Copy of assignment
- Mathematical Formulation
 - Governing equations
 - Non-dimensionalization of equations, non-dimensional characteristic parameters
- Numerical Solution
 - Computational domain
 - o Grid (structure, staggered, non-staggered, boundary points)
 - Discretization in space
 - o Discretization in time
 - o Boundary conditions (for velocity components, pressure, temperature)
 - Solution procedure (e.g. segregated approach: projection + pressure correction
 - Pressure correction
 - Description of Solver for Poisson equation
- Results (as requested in assignment):
 - Contours of velocity, temperature fields
 - o Profiles at selected positions
 - o Rate of convergence shown by decrease of residuals

Important notes:

- keep always the same terminology: e.g. v_{φ} should not be termed sometimes as "azimuthal velocity", other times as "circumferential velocity"
- use consistent symbols: each quantity is denoted always by the same symbol
- take care of correct indices, e.g., $u_i \neq u_j \neq u_l$

The report can be written in English or German.

The report is to be delivered together with the program.