v			0	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	UN	IVERSAL		
speed of light in vacuum	c	299792458	${ m m~s^{-1}}$	exact
vacuum magnetic permeability $4\pi \alpha \hbar/e^2 c$	μ_0	$1.25663706212(19) \times 10^{-6}$	${ m N~A^{-2}}$	1.5×10^{-10}
$\mu_0/(4\pi\times 10^{-7})$		1.00000000055(15)	${ m N~A^{-2}}$	1.5×10^{-10}
vacuum electric permittivity $1/\mu_0 c^2$	ϵ_0	$8.8541878128(13)\times10^{-12}$	${ m F}{ m m}^{-1}$	1.5×10^{-10}
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730313668(57)	Ω	1.5×10^{-10}
Newtonian constant of gravitation	G	$6.67430(15)\times10^{-11}$	$m^3 kg^{-1} s^{-2}$	2.2×10^{-5}
	$G/\hbar c$	$6.70883(15)\times10^{-39}$	$(\text{GeV}/c^2)^{-2}$	2.2×10^{-5}
Planck constant*	h	$6.62607015 \times 10^{-34}$	$ m JHz^{-1}$	exact
		$4.135667696\times10^{-15}$	${ m eV~Hz^{-1}}$	exact
	\hbar	$1.054571817\ldots\times10^{-34}$	J s	exact
		$6.582119569\ldots \times 10^{-16}$	eV s	exact
	$\hbar c$	$197.3269804\dots$	MeV fm	exact
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.176434(24) \times 10^{-8}$	kg	1.1×10^{-5}
energy equivalent	$m_{ m P}c^2$	$1.220890(14) \times 10^{19}$	GeV	1.1×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416784(16) \times 10^{32}$	K	1.1×10^{-5}
Planck length $\hbar/m_{\rm P}c=(\hbar G/c^3)^{1/2}$	$l_{ m P}$		m	1.1×10^{-5}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.391247(60) \times 10^{-44}$	S	1.1×10^{-5}
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
elementary charge	e	$1.602176634\times10^{-19}$	С	exact
, ,	e/\hbar			
magnetic flux quantum $2\pi\hbar/(2e)$,		Wb	exact
conductance quantum $2e^2/2\pi\hbar$				exact
inverse of conductance quantum	G_0^{-1}	$12906.40372\dots$	Ω	exact
Josephson constant $2e/h$	$K_{ m J}^{^0}$	$483597.8484\ldots\times10^9$	$\mathrm{Hz}\ \mathrm{V}^{-1}$	exact
von Klitzing constant $\mu_0 c/2\alpha = 2\pi\hbar/e^2$	$R_{ m K}$	$25812.80745\dots$	Ω	exact
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$9.2740100783(28) \times 10^{-24}$	$ m J~T^{-1}$	3.0×10^{-10}
, ,	, 2	$5.7883818060(17) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	3.0×10^{-10}
	$\mu_{ m B}/h$	$1.39962449361(42) \times 10^{10}$	$\mathrm{Hz}\mathrm{T}^{-1}$	3.0×10^{-10}
	$\mu_{ m B}/hc$	46.686 447 783(14)	$[m^{-1} T^{-1}]^{\dagger}$	3.0×10^{-10}
	$\mu_{ m B}/k$	$0.671713815\stackrel{\frown}{63}(\stackrel{\frown}{20})$	$\mathrm{K}\mathrm{T}^{-1}$	3.0×10^{-10}
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.0507837461(15) \times 10^{-27}$	$ m J~T^{-1}$	3.1×10^{-10}
, r	•	$3.15245125844(96) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	3.1×10^{-10}
	$\mu_{ m N}/h$	7.6225932291(23)	$ m MHz~T^{-1}$	3.1×10^{-10}
	$\mu_{ m N}/hc$	$2.54262341353(78) \times 10^{-2}$	$[m^{-1} T^{-1}]^{\dagger}$	3.1×10^{-10}
	$\mu_{ m N}/k$	$3.6582677756(11)\times 10^{-4}$	$ m K~T^{-1}$	3.1×10^{-10}
		AND NUCLEAR		
		General		
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525693(11) \times 10^{-3}$		1.5×10^{-10}
inverse fine-structure constant	α^{-1}	137.035 999 084(21)		1.5×10^{-10}
Rydberg frequency $\alpha^2 m_{\rm e} c^2/2h = E_{\rm h}/2h$	cR_{∞}	$3.2898419602508(64)\times10^{15}$	Hz	1.9×10^{-12}
energy equivalent	$hc R_{\infty}$	$2.1798723611035(42) \times 10^{-18}$	J	1.9×10^{-12}
67 · 1" · · · · ·		13.605 693 122 994(26)	eV	1.9×10^{-12}
Rydberg constant	R_{∞}	10 973 731.568 160(21)	$[m^{-1}]^\dagger$	1.9×10^{-12}
Bohr radius $\hbar/\alpha m_{\rm e}c = 4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$	a_0	$5.29177210903(80) \times 10^{-11}$	m	1.5×10^{-10}
Hartree energy $\alpha^2 m_e c^2 = e^2/4\pi\epsilon_0 a_0 = 2hcR_{\infty}$	$E_{ m h}$	$4.3597447222071(85) \times 10^{-18}$	J	1.9×10^{-12}
27 27 27 27 27 27 27 27 27 27 27 27 27 2	—11	27.211 386 245 988(53)	eV	1.9×10^{-12}
quantum of circulation	$\pi \hbar/m_{ m e}$	$3.6369475516(11)\times 10^{-4}$	${ m m}^2~{ m s}^{-1}$	3.0×10^{-10}
1	,e	(11) / 120		2.0 20

_	21001		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	$2\pi\hbar/m_{ m e}$	$7.2738951032(22)\times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	3.0×10^{-10}
	•	troweak		
Fermi coupling constant [‡]	$G_{\rm F}/(\hbar c)^3$	$1.1663787(6) \times 10^{-5}$	${ m GeV^{-2}}$	5.1×10^{-7}
weak mixing angle § θ_{W} (on-shell scheme)	$G_{\mathrm{F}}/(nc)$	1.100 3707(0) × 10	GC V	0.1 × 10
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.22290(30)		1.3×10^{-3}
$sm \circ w = sW = 1 (mw/mz)$,		1.0 × 10
1		tron, e ⁻	1.	2.010=10
electron mass	$m_{ m e}$	$9.1093837015(28) \times 10^{-31}$	kg	3.0×10^{-10} 2.9×10^{-11}
anamari aquivalant		$5.48579909065(16) \times 10^{-4}$	u J	3.0×10^{-10}
energy equivalent	$m_{ m e}c^2$	$8.1871057769(25) \times 10^{-14}$		3.0×10^{-10} 3.0×10^{-10}
alaatman muuan maasa matia		$0.51099895000(15) 4.83633169(11) \times 10^{-3}$	MeV	3.0×10^{-8} 2.2×10^{-8}
electron-muon mass ratio	$m_{\rm e}/m_{\rm \mu}$. ,		6.8×10^{-5}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87585(19) \times 10^{-4}$ $5.44617021487(33) \times 10^{-4}$		6.0×10^{-11}
electron-proton mass ratio electron-neutron mass ratio	$m_{\rm e}/m_{\rm p}$	$5.4386734424(26) \times 10^{-4}$		4.8×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m n} \ m_{ m e}/m_{ m d}$	$2.724437107462(96) \times 10^{-4}$		3.5×10^{-11}
electron-triton mass ratio	$m_{ m e}/m_{ m d}$ $m_{ m e}/m_{ m t}$	$1.819200062251(90)\times10^{-4}$		5.0×10^{-11}
electron-helion mass ratio	$m_{ m e}/m_{ m h}$	$1.819543074573(79) \times 10^{-4}$		4.3×10^{-11}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m a}$	$1.370933554787(45)\times 10^{-4}$		3.3×10^{-11}
electron charge to mass quotient	$-e/m_{\rm e}$	$-1.75882001076(53) \times 10^{11}$	${ m C~kg^{-1}}$	3.0×10^{-10}
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	$5.4857990888(17) \times 10^{-7}$	kg mol ⁻¹	3.0×10^{-10}
reduced Compton wavelength $\hbar/m_{\rm e}c=\alpha a_0$	λ_{C}	$3.8615926796(12)\times10^{-13}$	m m	3.0×10^{-10}
Compton wavelength	$\lambda_{ m C}$	$2.42631023867(73) \times 10^{-12}$	[m] [†]	3.0×10^{-10}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403262(13) \times 10^{-15}$	m	4.5×10^{-10}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$6.6524587321(60) \times 10^{-29}$	m^2	9.1×10^{-10}
electron magnetic moment	$\mu_{ m e}$	$-9.2847647043(28) \times 10^{-24}$	$ m J~T^{-1}$	3.0×10^{-10}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	$-1.001159652181\overset{'}{2}8(18)$		1.7×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.28197188(11)		6.0×10^{-11}
electron magnetic moment	, .	` ,		
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.15965218128(18) \times 10^{-3}$		1.5×10^{-10}
electron g-factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.00231930436256(35)		1.7×10^{-13}
electron-muon magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.7669883(46)		2.2×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.21068789(20)		3.0×10^{-10}
electron to shielded proton magnetic				
moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.9234915(56)		2.6×10^{-9}
electron to shielded helion magnetic				
moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058 257(10)		1.2×10^{-8}
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.76085963023(53)\times10^{11}$	$s^{-1} T^{-1}$	3.0×10^{-10}
		28024.9514242(85)	$ m MHz~T^{-1}$	3.0×10^{-10}
	Mu	on, μ^-		
muon mass	$m_{ m \mu}$	$1.883531627(42)\times10^{-28}$	kg	2.2×10^{-8}
	_	0.1134289259(25)	u	2.2×10^{-8}
energy equivalent	$m_{\mu}c^2$	$1.692833804(38) \times 10^{-11}$	J	2.2×10^{-8}
		105.6583755(23)	MeV	2.2×10^{-8}
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.7682830(46)		2.2×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94635(40) \times 10^{-2}$		6.8×10^{-5}
muon-proton mass ratio	$m_{ m \mu}/m_{ m p}$	0.1126095264(25)		2.2×10^{-8}

rundamentai i nysicai Constants — Extensive Listing				
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
muon-neutron mass ratio	$m_{ m \mu}/m_{ m n}$	0.1124545170(25)		2.2×10^{-8}
muon molar mass $N_{\rm A} m_{\rm u}$	$M(\mu), M_{\mu}$	$1.134289259(25) \times 10^{-4}$	$kg mol^{-1}$	2.2×10^{-8} 2.2×10^{-8}
reduced muon Compton wavelength $\hbar/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$1.867594306(42) \times 10^{-15}$	m	2.2×10^{-8} 2.2×10^{-8}
muon Compton wavelength	$\lambda_{\mathrm{C},\mu}$	$1.173444110(26) \times 10^{-14}$	[m] [†]	2.2×10^{-8} 2.2×10^{-8}
muon magnetic moment	μ_{μ}	$-4.49044830(10) \times 10^{-26}$	$J T^{-1}$	2.2×10^{-8} 2.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m \mu} / \mu_{ m B}$	$-4.84197047(11)\times10^{-3}$	J 1	2.2×10^{-8} 2.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059703(20)		2.2×10^{-8}
muon magnetic moment anomaly	$\mu\mu/\mu$ N	0.000 001 00(20)		2.2 \(10
$ \mu_{\mathfrak{u}} /(e\hbar/2m_{\mathfrak{u}})-1$	a_{μ}	$1.16592089(63) \times 10^{-3}$		5.4×10^{-7}
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)		6.3×10^{-10}
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345142(71)		2.2×10^{-8}
muon proton magnette moment ratio		1, τ ⁻		2.2 × 10
tau mass¶	$m_{ au}$	$3.16754(21) \times 10^{-27}$	kg	6.8×10^{-5}
tau mass	πιτ	1.90754(13)	u	6.8×10^{-5}
energy equivalent	$m_{ au}c^2$	$2.84684(19) \times 10^{-10}$	J	6.8×10^{-5}
chergy equivalent	$m_{\tau}c$	1776.86(12)	MeV	6.8×10^{-5}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.23(23)	IVIC V	6.8×10^{-5}
tau-muon mass ratio	$m_{ au}/m_{ ext{e}}$	16.8170(11)		6.8×10^{-5}
tau-proton mass ratio	$m_{ au}/m_{ m p}$	1.893 76(13)		6.8×10^{-5}
tau-neutron mass ratio	$m_{ m au}/m_{ m p}$ $m_{ m au}/m_{ m n}$	1.891 15(13)		6.8×10^{-5}
tau molar mass $N_{\rm A}m_{ au}$	$M(\tau), M_{\tau}$	$1.90754(13) \times 10^{-3}$	$kg mol^{-1}$	6.8×10^{-5}
reduced tau Compton wavelength $\hbar/m_{\tau}c$	$\lambda_{\mathrm{C}, au}$	$1.90754(13) \times 10$ $1.110538(75) \times 10^{-16}$	m	6.8×10^{-5}
tau Compton wavelength		$6.97771(47) \times 10^{-16}$	[m] [†]	6.8×10^{-5}
tau Compton wavelength	$\lambda_{\mathrm{C}, au}$ Prot	ton, p	[111]	0.6 × 10
proton mass		1.672 621 923 69(51) \times 10 ⁻²⁷	kg	3.1×10^{-10}
proton mass	$m_{ m p}$	$1.007202192309(31) \times 10$ 1.007276466621(53)	_	5.1×10^{-11} 5.3×10^{-11}
energy equivalent	$m_{ m p}c^2$	$1.50327761598(46)\times10^{-10}$	u J	3.3×10^{-10} 3.1×10^{-10}
energy equivalent	$m_{ m p}c$	938.27208816(29)	MeV	3.1×10^{-10} 3.1×10^{-10}
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267343(11)	IVIC V	6.0×10^{-11}
proton-muon mass ratio	$m_{ m p}/m_{ m e} \ m_{ m p}/m_{ m \mu}$	8.880 243 37(20)		0.0×10^{-8} 2.2×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m \mu} \ m_{ m p}/m_{ m au}$	0.528 051(36)		6.8×10^{-5}
proton-neutron mass ratio	$m_{ m p}/m_{ m \tau} = m_{ m p}/m_{ m n}$	0.998 623 478 12(49)		4.9×10^{-10}
proton charge to mass quotient	$\frac{m_{ m p}/m_{ m n}}{e/m_{ m p}}$	$9.5788331560(29)\times10^7$	${\rm C~kg^{-1}}$	3.1×10^{-10}
proton charge to mass quotient proton molar mass $N_{\rm A}m_{ m p}$	$M(\mathbf{p}), M_{\mathbf{p}}$	$1.00727646627(31)\times10^{-3}$	kg mol ⁻¹	3.1×10^{-10} 3.1×10^{-10}
reduced proton Compton wavelength $\hbar/m_{\rm p}c$		$2.10308910336(64)\times10^{-16}$		3.1×10 3.1×10^{-10}
	$\lambda_{\mathrm{C,p}}$	$1.32140985539(40) \times 10^{-15}$	m [m] [†]	3.1×10 3.1×10^{-10}
proton Compton wavelength	$\lambda_{ ext{C,p}}$	$8.414(19) \times 10^{-16}$	[m] [†]	2.2×10^{-3}
proton rms charge radius	$r_{ m p}$	$1.41060679736(60) \times 10^{-26}$	$^{ m m}$ J T $^{-1}$	4.2×10^{-10}
proton magnetic moment to Bohr magneton ratio	μ_{p}		JI	3.0×10^{-10}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.52103220230(46)\times 10^{-3}$		3.0×10^{-10} 2.9×10^{-10}
•	$\mu_{ m p}/\mu_{ m N}$	2.792 847 344 63(82)		2.9×10^{-10} 2.9×10^{-10}
proton g-factor $2\mu_{\rm p}/\mu_{\rm N}$	g_{p}	5.585 694 6893(16)		2.9×10^{-10} 2.4×10^{-7}
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	$-1.45989805(34)$ $1.410570560(15)\times10^{-26}$	$ m J~T^{-1}$	2.4×10^{-8} 1.1×10^{-8}
shielded proton magnetic moment	$\mu_{ m p}'$	1.410 370 300(13) × 10	J I	1.1 × 10
(H ₂ O, sphere, 25 °C)		1 590 002 199(17) \(\times 10 - 3		1 1 × 10-8
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17)\times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}'/\mu_{ m N}$	2.792775599(30)		1.1×10^{-8}
proton magnetic shielding correction	_/	0.5000(11) 10-5		4.0 10=4
$1 - \mu_{\rm p}'/\mu_{\rm p}$ (H ₂ O, sphere, 25 °C)	$\sigma_{ m p}'$	$2.5689(11) \times 10^{-5}$		4.2×10^{-4}

Quantity Symbol Value Name Residence of the proton gyromagnetic ratio $2\mu_p/h$ 2×10^{-10} shielded proton gyromagnetic ratio $2 \times 577 \times 785 \times 18(18)$ $s^{-1} T^{-1}$ $4 \times 2 \times 10^{-10}$ shielded proton gyromagnetic ratio $2 \times 577 \times 785 \times 18(18)$ $s^{-1} T^{-1}$ 1.1×10^{-8} $2 \times \frac{1}{10^{10}} / h$ (14×20 , sphere, 25×20) 7×10^{-10} $4 \times 577 \times 3847 \times 4(46)$ $8^{-1} T^{-1}$ 1.1×10^{-8} neutron mass 8×10^{-10} $1.008 \times 669 \times 150 \times 10^{-27}$ 1.008×10^{-20}	rundamentai i nysicai Constants — Extensive Listing				Relative std.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quantity	Symbol	Value	Unit	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	proton gyromagnetic ratio $2\mu_{-}/\hbar$	·~-	$2.6752218744(11)\times 10^8$	$s^{-1} T^{-1}$	4.2×10^{-10}
	proton gyromagnetic radio $2\mu_{ m p}/m$	/p			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	shielded proton gyromagnetic ratio		12.011 110 010(10)	WIIIZ I	1.2 × 10
		γ'	$2.675153151(29) \times 10^{8}$	$s^{-1} T^{-1}$	1.1×10^{-8}
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	7-p/ · · (2-)-1	' Þ	` /	$ m MHz~T^{-1}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Neutro	` '		
energy equivalent $p_{mc}^{-1} = 10.08 664 915 95 (49)$ $p_{mc}^{-1} = 10.08 p_{mc}^{-1} $	neutron mass			ko	5.7×10^{-10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	neation mass	non	` /	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	energy equivalent	$m_m c^2$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	energy equivalent	Will C			5.7×10^{-10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	neutron-electron mass ratio	$m_{\rm m}/m_{\rm o}$	` /	1,10	4.8×10^{-10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			` ,		2.2×10^{-8}
$\begin{array}{c} \text{neutron-proton mass ratio} \\ \text{neutron-proton mass difference} \\ \text{neutron} \\ \text{neutron} \\ \text{neutron} \\ \text{neutron molar mass } \frac{N_1}{N_1} \\ \text{neutron molar mass } \frac{N_2}{N_1} \\ \text{neutron molar mass } \frac{N_2}{N_1} \\ \text{neutron molar mass } \frac{N_2}{N_2} \\ \text{neutron Compton wavelength } \frac{h}{m_n c} \\ \text{neutron Compton wavelength } \frac{h}{m_n c} \\ \text{neutron Compton wavelength } \frac{h}{m_n c} \\ \text{neutron Compton wavelength } \frac{h}{N_1} \\ \text{neutron Compton wavelength } \frac{h}{m_n c} \\ \text{neutron Magnetic moment} \\ \text{neutron proton magnetic moment} \\ \text{neutron proton magnetic moment ratio} \\ \text{neutron proton magnetic moment ratio} \\ \text{neutron proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ \text{neutron proton magnetic magnetic moment ratio} \\ \text{neutron proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ \text{neutron-proton magnetic moment ratio} \\ neutron-proton magnet$			` /		6.8×10^{-5}
$\begin{array}{c} \text{neutron-proton mass difference} \\ \text{energy equivalent} \\ \text{energy equivalength} \\ \text{h/m}_n c \\ \text{energy equivalent} \\ energy e$					4.9×10^{-10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				kg	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	пр			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	energy equivalent	$(m_{\rm p} - m_{\rm p})c^2$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(II p)		MeV	3.5×10^{-7}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	neutron molar mass $N_{\rm A} m_{ m n}$	$M(n), M_n$		$kg mol^{-1}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		* * *	$2.1001941552(12)\times 10^{-16}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$[m]^{\dagger}$	5.7×10^{-10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$ m J~T^{-1}$	2.4×10^{-7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to Bohr magneton ratio		$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	to nuclear magneton ratio		-1.91304273(45)		2.4×10^{-7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	neutron g -factor $2\mu_{ m n}/\mu_{ m N}$		-3.82608545(90)		2.4×10^{-7}
neutron to shielded proton magnetic moment ratio (H ₂ O, sphere, 25 °C) $\mu_{\rm n}/\mu_{\rm p}' = -0.68499694(16) = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron dyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.4\times10^{-7}$ neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar = 2.0\times10^{-10}$ neutron mass 2.2×10^{-10} neutron mass 2.2×10^{-10} neutron mass 2.2×10^{-10} neutron mass ratio neutron magnetic moment neutron magnetic moment neutron magnetic moment neutron ne	neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times10^{-3}$		2.4×10^{-7}
$\begin{array}{c} \text{moment ratio (H$_2$O, sphere, 25 °C)} & \mu_n/\mu_p' & -0.68499694(16) & 2.4\times10^{-7} \\ \text{neutron gyromagnetic ratio 2} \mu_n /\hbar & \gamma_n & 1.83247171(43)\times10^8 & s^{-1}T^{-1} & 2.4\times10^{-7} \\ 29.1646931(69) & \text{MHz T}^{-1} & 2.4\times10^{-7} \\ & & & & & & & \\ \hline & & & & & \\ \hline & & & &$	neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· •				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mu_{ m n}/\mu_{ m p}'$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	` /		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			29.1646931(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Deuter	on, d		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	deuteron mass	$m_{ m d}$	$3.3435837724(10) \times 10^{-27}$	kg	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.013553212745(40)	u	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	energy equivalent	$m_{ m d}c^2$	$3.00506323102(91)\times 10^{-10}$	J	3.0×10^{-10}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1875.61294257(57)	MeV	3.0×10^{-10}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.48296788(13)		3.5×10^{-11}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$M(d), M_d$		$kg mol^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	deuteron rms charge radius	$r_{ m d}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$ m J T^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>				
deuteron-electron magnetic moment ratio $\mu_{\rm d}/\mu_{\rm e} = -4.664345551(12)\times 10^{-4}$ 2.6×10^{-9} deuteron-proton magnetic moment ratio $\mu_{\rm d}/\mu_{\rm p} = 0.30701220939(79)$ 2.6×10^{-9}		$\mu_{ m d}/\mu_{ m N}$	` '		
deuteron-proton magnetic moment ratio $\mu_{\rm d}/\mu_{\rm p}$ 0.307 012 209 39(79) 2.6 × 10 ⁻⁹	, ,				
			` ,		
deuteron-neutron magnetic moment ratio $\mu_{\rm d}/\mu_{\rm n}$ $-0.44820653(11)$ 2.4×10^{-7}	· •		` /		
	deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820653(11)		2.4×10^{-7}

1 4114411411411 1 11,				
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	Т.::	ton t		
triton mass	$m_{ m t}$	ton, t $5.0073567446(15) \times 10^{-27}$	kg	3.0×10^{-10}
titon mass	m _t	3.01550071621(12)	u u	4.0×10^{-11}
energy equivalent	$m_{\rm t}c^2$	$4.5003878060(14) \times 10^{-10}$	J	3.0×10^{-10}
chergy equivalent	mtc	2808.92113298(85)	MeV	3.0×10^{-10} 3.0×10^{-10}
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.921 535 73(27)	IVIC V	5.0×10^{-11} 5.0×10^{-11}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.993 717 034 14(15)		5.0×10^{-11} 5.0×10^{-11}
triton-proton mass $N_{ m A} m_{ m t}$	$M(t), M_t$	$3.01550071517(92)\times10^{-3}$	$kg mol^{-1}$	3.0×10^{-10} 3.0×10^{-10}
triton magnetic moment	* * *	$1.5046095202(30) \times 10^{-26}$	J T ⁻¹	2.0×10^{-9}
to Bohr magneton ratio	$rac{\mu_{ m t}}{\mu_{ m t}/\mu_{ m B}}$	$1.6223936651(32) \times 10^{-3}$	J 1	2.0×10^{-9} 2.0×10^{-9}
to nuclear magneton ratio		2.9789624656(59)		2.0×10^{-9} 2.0×10^{-9}
triton g-factor $2\mu_{\rm t}/\mu_{\rm N}$	$\mu_{ m t}/\mu_{ m N}$	5.957 924 931(12)		2.0×10^{-9} 2.0×10^{-9}
thon g -ractor $2\mu_{\mathrm{t}}/\mu_{\mathrm{N}}$	$g_{ m t}$, ,		2.0 × 10
		lion, h		0.0 40 10
helion mass	$m_{ m h}$	$5.0064127796(15) \times 10^{-27}$	kg	3.0×10^{-10}
	0	3.014932247175(97)	u	3.2×10^{-13}
energy equivalent	$m_{ m h}c^2$	$4.4995394125(14) \times 10^{-10}$	J	3.0×10^{-10}
		2808.39160743(85)	MeV	3.0×10^{-10}
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.88528007(24)		4.3×10^{-13}
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.99315267167(13)		4.4×10^{-13}
helion molar mass $N_{ m A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.01493224613(91)\times10^{-3}$	kg mol ^{−1}	3.0×10^{-10}
helion magnetic moment	$\mu_{ m h}$	$-1.074617532(13) \times 10^{-26}$	$ m J~T^{-1}$	1.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.158740958(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.127625307(25)		1.2×10^{-8}
helion g -factor $2\mu_{\rm h}/\mu_{ m N}$	$g_{ m h}$	-4.255250615(50)		1.2×10^{-8}
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553090(13) \times 10^{-26}$	$ m J~T^{-1}$	1.2×10^{-8}
(gas, sphere, 25 °C)				
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497719(25)		1.2×10^{-8}
shielded helion to proton magnetic				
moment ratio (gas, sphere, 25 °C)	$\mu_{ m h}'/\mu_{ m p}$	-0.7617665618(89)		1.2×10^{-8}
shielded helion to shielded proton magnetic	_			
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
shielded helion gyromagnetic ratio	P			
$2 \mu_{\rm h}' /\hbar$ (gas, sphere, 25 °C)	$\gamma_{ m h}'$	$2.037894569(24)\times10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	1.2×10^{-8}
1. Hii		32.434 099 42(38)	$ m MHz~T^{-1}$	1.2×10^{-8}
	Alpha	particle, α		
alpha particle mass	m_{α}	$6.6446573357(20) \times 10^{-27}$	kg	3.0×10^{-10}
arpina partiere mass	πα	4.001 506 179 127(63)	u	1.6×10^{-13}
energy equivalent	$m_{\alpha}c^2$	$5.9719201914(18) \times 10^{-10}$	J	3.0×10^{-10}
chergy equivalent	παε	3727.3794066(11)	MeV	3.0×10^{-10} 3.0×10^{-10}
alpha particle to electron mass ratio	$m_{lpha}/m_{ m e}$	7294.299 541 42(24)	IVIC V	3.3×10^{-13}
alpha particle to proton mass ratio	$m_{lpha}/m_{ m p}$	3.97259969009(22)		5.5×10^{-13}
alpha particle molar mass $N_{\rm A} m_{\alpha}$	$M(\alpha), M_{\alpha}$	$4.0015061777(12)\times10^{-3}$	$kg mol^{-1}$	3.0×10^{-10}
arpha particle motal mass $m_{\rm A}m_{ m Q}$, ,	Kg IIIOI	0.0 ^ 10
		CHEMICAL	1_1	
Avogadro constant	$N_{ m A}$	6.02214076×10^{23}	mol^{-1}	exact
Boltzmann constant	k	1.380649×10^{-23}	$J K^{-1}$	exact
	1 /2	8.617333262×10^{-5}	eV K ⁻¹	exact
	k/h	$2.083661912\ldots\times10^{10}$	$Hz K^{-1}$	exact

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
	k/hc	69.503 480 04	$[m^{-1}K^{-1}]^\dagger$	exact
atomic mass constant	K/IIC	09.505 460 04	fin K j	exact
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 2hc R_{\infty}/\alpha^2 c^2 A_{\rm r}({\rm e})$	$m_{\rm u}$	$1.66053906660(50)\times 10^{-27}$	kg	3.0×10^{-10}
$m_{\rm u} = \frac{1}{12}m(-C) = 2nc R_{\infty}/\alpha + C A_{\rm r}(c)$ energy equivalent	$m_{ m u}c^2$	$1.49241808560(45) \times 10^{-10}$	rg J	3.0×10^{-10} 3.0×10^{-10}
chergy equivalent	$m_{ m u}c$	931.49410242(28)	MeV	3.0×10^{-10} 3.0×10^{-10}
molar mass constant	$M_{ m u}$	$0.999999999965(30) \times 10^{-3}$	kg mol ⁻¹	3.0×10^{-10}
molar mass constant molar mass of carbon-12 $A_{\rm r}(^{12}{\rm C})M_{\rm u}$	$M(^{12}C)$	$11.9999999958(36) \times 10^{-3}$	kg mol ⁻¹	3.0×10^{-10}
molar Planck constant	$N_{\rm A}h$	$3.990312712 \times 10^{-10}$	J Hz $^{-1}$ mol $^{-1}$	exact
molar gas constant $N_{\rm A}k$	R	8.314 462 618	$J \text{ mol}^{-1} \text{ K}^{-1}$	exact
Faraday constant $N_{\rm A}e$	F	96 485.332 12	$C \text{ mol}^{-1}$	exact
standard-state pressure	I.	100 000	Pa	exact
standard atmosphere		101 325	Pa	exact
molar volume of ideal gas RT/p		101 323	1 a	CAUCE
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.71095464\ldots \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	exact
or standard-state pressure	' m	22.110 00101 × 10	in moi	CAUCT
Loschmidt constant $N_{ m A}/V_{ m m}$	n_0	$2.651645804\ldots \times 10^{25}$	${\rm m}^{-3}$	exact
molar volume of ideal gas RT/p	700	2.001010001 × 10		CAUCE
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.41396954 \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	exact
or standard atmosphere	* 111			
Loschmidt constant $N_{\rm A}/V_{ m m}$	n_0	$2.686780111 \times 10^{25}$	m^{-3}	exact
Sackur-Tetrode (absolute entropy) constant**				
$\frac{5}{2} + \ln[(m_{\rm u}kT_1/2\pi\hbar^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.15170753706(45)		3.9×10^{-10}
or standard-state pressure	07			
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.16487052358(45)		3.9×10^{-10}
or standard atmosphere				
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670374419\ldots \times 10^{-8}$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$	exact
first radiation constant for spectral				
radiance $2hc^2$ sr ⁻¹	$c_{1 m L}$	$1.191042972\ldots \times 10^{-16}$	$[\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}]^{\dagger\dagger}$	exact
first radiation constant $2\pi hc^2 = \pi \operatorname{sr} c_{1L}$	c_1	$3.741771852 \times 10^{-16}$	$[W m^2]^{\dagger\dagger}$	exact
second radiation constant hc/k	c_2	$1.438776877 \times 10^{-2}$	[m K] [†]	exact
Wien displacement law constants	~ 4	3000	[·]	
$b = \lambda_{\text{max}} T = c_2/4.965114231$	b	$2.897771955 \times 10^{-3}$	$[m K]^{\dagger}$	exact
$b' = \nu_{\text{max}}/T = 2.821439372c/c_2$	b'	$5.878925757 \times 10^{10}$	$Hz K^{-1}$	exact

^{*} The energy of a photon with frequency ν expressed in unit Hz is $E=h\nu$ in J. Unitary time evolution of the state of this photon is given by $\exp(-iEt/\hbar)|\varphi\rangle$, where $|\varphi\rangle$ is the photon state at time t=0 and time is expressed in unit s. The ratio Et/\hbar is a phase.

[†] The full description of m⁻¹ is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been agreed upon.

[‡] Value recommended by the Particle Data Group (Tanabashi, et al., 2018).

[§] Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Tanabashi, *et al.*, 2018). The value for $\sin^2 \theta_{\rm W}$ they recommend, which is based on a variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2 \hat{\theta}_{\rm W}(M_{\rm Z}) = 0.231\,22(4)$.

[¶] This and other constants involving m_{τ} are based on $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Tanabashi, et al., 2018).

The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = 1$ u is the atomic mass constant and u is the unified atomic mass unit. Moreover, the mass of particle X is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$, where $M_u = N_A$ u is the molar mass constant and N_A is the Avogadro constant.

^{**} The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.

^{††} The full description of m² is m⁻² \times (m/cycle)⁴. See also footnote for m⁻¹.