answer.	
A quantitative analysis phase that represents the problem into a mathematical model. *	1 point
Definition of the problem	
Model Solution	
Model Construction	
Model Validity	
A quantitative analysis phase that involves manipulating the model to derive the best (optimal) solution to the problem. *	1 point
Definition of the problem	
Model Solution	
Model Construction	
Model Validity	
Linear Programming is defined as*	1 point
Constrained optimization technique	
Mathematical technique	
The technique for economic allocation of limited resources	
All of the above	
These provide choices available to the decision-maker in terms of amo of either inputs or outputs.	unts 1 point
constraints	
objective functions	
inequality	

Non- negativity constraints means* 1 point
O Decision variables must be equal to zero
O Decision variables must be greater than zero
Decision variables must be greater than or equal to zero
O Decision variables must be less than zero
The objective of the transportation model is to the total cost of 1 point transportation. *
compute
minimize
maximize
earn
These are indicated by the number of rows in the transportation table. * 1 point
○ cost
demand
sources
destinations
These are indicated by the number of columns in the transportation table. * 1 point
○ cost
supply
ources
destinations

These are indicated by the number of columns in the transportation table. * 1 point						
○ cost						
Supply						
osources						
destinations						
In the Northwest Corner Rule method, the allocation of the resources 1 point begins*						
at the cell with a minimum cost						
with the highest opportunity cost						
from the extreme left corner or cell						
at any cell						
In the Minimum cost method, the allocation of the resources begins 1 point*						
at the cell with a minimum cost						
with the highest opportunity cost						
from the extreme left corner or cell						
at any cell						
In the Vogel's Approximation method , the allocation of resources begins 1 point*						
at the cell with a minimum cost						
with the highest opportunity cost						
from the extreme left corner or cell						
at any cell						

pete	transportation problem is said to be <mark>balance</mark> d when the	1 poir
•	supply and demand are equal	
0	no. of sources is equal to the no. of destinations	
0	shipping costs are equal	
0	no.of rows are equal to the no. of columns	
trar	s method makes use of an unused cell as a point of destination in asferring units of truckload to evaluate if the current solution can still be reloped. *	1 poin e
0	Simplex method	
•	Stepping stone method	
0	Northwest Corner method	
0	Graphical method	
	btaining an optimal solution for a transportation problem, a negative provement index indicates that*	1 poin
0	the table is optimum	
0	the allocation is incorrect	
•	the initial solution can still be reduced.	
0	the initial solution is final	

Find the mathematical model of each of the following conditions Department 1 has a capacity of 48 hours and Department 2 has a capacity 2 points of 46 hours. Product X takes 8 hours in Department 1 and 10 hours in Department 2. Product Y takes 12 hours in Department 1 and 12 hours in Department. Department 1 has a capacity of 48 hours and Department 2 has a capacity of 46 hours. * 8x + 12y ≤ 46; 10x + 12y ≤ 48 8x + 12y ≤ 48; 10x + 12y ≤ 46 8x + 10y ≤ 48; 12x + 12y ≤ 46 8x + 12y = 48; 10x + 12y = 46 The company should produce at least 50 units of Product x but not more 2 points than 100 units of Product Y * x ≤ 50; y ≤ 100 x ≤50; y ≥ 100 x ≥ 50; y ≥ 100 x ≥ 50; y ≤ 100 Company ABC aims to maximize the profit from the 3 products they manufacture. Product A contributes 150 pesos profit while Product B and C contributes 100 and 120 pesos respectively. * Maximize P = 150 A + 120B + 120C Maximize P = 150 A + 100B + 120C Maximize P = 100 A + 100B + 120C Maximize P = 150 A + 100B + 100C Minimize the cost of Product A at 100 pesos and Product B at 120 pesos * 2 points Minimize C = 100A + 120B Minimize C = 100A - 120B Minimize C = 120A + 100B Minimize C = 120A -120B A mining company produces 100 tons of red ore and 80 tons of black ore 2 points each week. These can be treated in different ways to produce three different alloys, Soft, Hard or Strong. To produce 1 ton of Soft alloy requires 5 tons of red ore and 3 tons of black. For the Hard alloy the requirements are 3 tons of red and 5 tons of black, whilst for the Strong alloy they are 5tons of red and 5 tons of black. The profit per ton from selling the alloys are \$250, \$300 and \$400 for Soft, Hard and Strong respectively. Formulate the objective function. * Maximize P = 100 x + 80 y Maximize P = 250 x+ 300y + 400z Maximize P = 5 x + 3 y Maximize P = 5 x + 3 y + 5 z

INITIAL FEASIBLE SOLUTION

Answer the following questions based on the given problem.

A company has four operating plants and four distributing warehouses. The capacities of plants A, B, C, D are 180,170,190, and 210 respectively. Warehouses D, E, F, G requirements are 180,160,200, and 210 respectively. Find the initial feasible solution using the Northwest Corner Rule method with the shipping costs given as follows:

To From	D	E	F	G
A	13	17	19	11
В	15	20	23	16
C	18	14	21	20
D	15	19	21	13

	B C D	15 18	20	23 21	16 20	
		15	19	21	13	
low ma	ny cells are	with allocation	on? *			
O 4						
0 7						
5						
0 6						
0 0						
low ma	ny units wer	re allocated in	n cell (1,1)? *			
) 10						
) 160						
) 190						
180						
O 210						
0 0						
low ma	ny units wer	re allocated in	n cell (2,3)? *			
) 10						
) 180						
) 160						
210						
0						
) 190						
low ma	ny units wer	re allocated in	n cell (3,3)? *			
190						
0 C						
) 160						
O 210						
) 10						
O 180						
How mu	ich is the tot	al transporta	ition cost?*			
0 12,3	75					
12,4	90					
) 12,8	00					
125	40					

Back Next Clear form

Solve the given LP problem. LP Problem A company makes two types of furniture: tables and chairs. Each table contributes 50 pesos to profits and each chair, 35 pesos. Each product passes through two manufacturing departments, cutting and finishing. Each table take 1 hour a unit in cutting and 2 hours in finishing. Chair requires 1 hour a unit in cutting and 1 hour in finishing. There are currently 6 hours available in cutting and 8 hours in finishing. What is the maximum profit? 5 points 230 280 300 240 Clear selection

