Routing Basic principles

Karst Koymans

Informatics Institute University of Amsterdam (version 1.5, 2011/02/18 11:08:38)

Thursday, February 17, 2011

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- Mathematical representation
- 3 Routing in the Internet
- 4 Different routing mechanisms

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- 2 Mathematical representation
- Routing in the Internet
- 4 Different routing mechanisms

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- 2 Mathematical representation
- 3 Routing in the Internet
- 4 Different routing mechanisms

Directly Connected IP Networks

- Configuration under Unix with ifconfig
- Packets can be delivered immediately
 by the data link (layer 2 software)
- No explicit route commands needed under Linux, because ifconfig sets a route automatically

ifconfig command

```
ifconfig <interface> <ip_address>
    netmask <netmask> broadcast <broadcast_address>
```

Karst Koymans (UvA) Routing Thursday, February 17, 2011

5 / 30

Data link layer "routing"

- Only outgoing interface and layer 2 address is needed
- Packet is (selectively) flooded by layer 2
- Bridges and switches use a lookup table to map layer 2 addresses to outgoing interfaces
- Spanning tree protocol takes care of loops

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection

Global routing

- Not directly connected networks need a gateway (next hop)
- Recursive lookup
 - In practice this is only one level deep
 - Hence the gateway needs to be directly connected
 - In theory a deeper recursion level would be possible and useful

Routing Table

• netstat -r shows the routing table

Route flags

Flag	Set	Unset
G	route needs gateway	route is directly connected
Н	route to host	route to network
S	route added statically	route added dynamically
	(mostly by admin)	(by a protocol)

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands

route command

- Syntax varies between systems
 - Adding a (static) default route (Solaris)
 - route add default <gateway>
 - Adding a (static) default route (Linux)
 - route add default gw <gateway>
- Adding a (static) host route (Linux)
 - route add -host <host> gw <gateway>
- Adding a (static) network route (Linux)
 - route add -net <network> netmask <netmask> gw <gateway>

Karst Koymans (UvA)

arp command

- Used to interact with the arp table
- Read the arp table
 - arp (without arguments)
- Delete an entry from the arp table
 - arp -d <address>
- Add an entry to the arp table
 - arp -s <address> <hardware_address>

ip command

- Introduced in the Linux iproute2 package
- General interface to kernel addressing and routing
- Replaces ifconfig, route and arp (almost) completely
- Has support for routing policies and multiple routing tables

Karst Koymans (UvA)

ip subcommands

ip <subcommand>...

Subcommand	Meaning
link	layer 2 interface settings (MAC)
address	layer 3 interface settings (IP)
neighbor	arp cache data
route	routing table data
rule	routing table selection

Karst Koymans (UvA) Routing Thursday, February 17, 2011

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection

Route selection

- Longest prefix match
 - Host routes are preferred over network routes
- Default route has shortest prefix
 - Route of last resort
 - Cannot be used in the Internet core

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- Mathematical representation
- 3 Routing in the Internet
- 4 Different routing mechanisms

Mathematical representation

- Graphs (undirected, labeled)
 - Nodes are routers and hosts
 - Edges are (point to point) connections
 - Labels represent "cost" of the route
 - Undirected edges imply a restriction to
 - full duplex links
 - with the same cost in both directions

Broadcast networks

Node reduction

- LAN with O(N) routers or hosts
- Full mesh of $O(N^2)$ edges
- Reduced with only 1 extra node to O(N) edges
- Works for LAN's, but also for NBMA networks
 - In many situations
 - But not always (take care)

Edge reduction does not always work

- Using a virtual network node is not always equivalent to a full mesh of point to point links
- Example of the introduction of loops

Edge reduction does not always work

- Using a virtual network node is not always equivalent to a full mesh of point to point links
- Example of the introduction of loops

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- 2 Mathematical representation
- 3 Routing in the Internet
- 4 Different routing mechanisms

Internet Routing (1)

- Based on top level structure defined by Autonomous Systems (AS)
- Each AS has administrative control over a collection of
 - Routers (and hosts)
 - Networks

Definition (AS — Autonomous System (from RFC 1930))

An AS (Autonomous System) is a connected group of one or more IP prefixes run by one or more network operators which has a single and clearly defined routing policy.

Internet Routing (2)

- Edge routers inside an AS can be directly connected to edge routers in another AS
 - Used for inter-AS routing
 - Using an exterior routing protocol (EGP)
 - Example: BGP4
 - No other protocols in use (except variants of BGP)

Internet Routing (3)

- Routers within the boundary of a single AS communicate with each other to provide
 - Intra-AS routing
 - Using an interior routing protocol (IGP)
 - Examples: RIP, OSPF, IS-IS

- Basic setup
 - Directly connected
 - Not directly connected
 - Unix and Linux routing commands
 - Route selection
- 2 Mathematical representation
- 3 Routing in the Internet
- 4 Different routing mechanisms

Routing Protocol Classification

- Static
 - A "human" protocol
 - Explicit commands like "route add" or "ip route add"
 - Side effect of a script ("semi-automatic/semi-human")
- Dynamic (automatically by a routing protocol)
 - Distance Vector (for instance RIP)
 - Path Vector (for instance BGP)
 - Link State (for instance OSPF)

Distance Vector Routing

- Distance vector algorithm
 - Bellman-Ford (1957)
 - Distributed shortest path
- Original ARPANET routing algorithm
- Decentralised
- Asynchronous

Path Vector Routing

- Like distance vector routing, but
- Instead of the distance the complete path (on AS level)
 to the destination is given
- The algorithm is still
 - decentralised
 - asynchronous
- The algorithm might depend on explicit or implicit policies

Link State Routing

- Link state algorithm
 - Dijkstra (1959)
 - Single source shortest path
- Complete knowledge is distributed to all nodes in an area
- Knowledge about the local network topology is flooded to all participants in an area
- Every node executes the shortest path algorithm and draws the same conclusions