第一章 一元函数积分学

1.1 定积分的概念

2. (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是 $(A) (0,1) \quad (B) \left(1, \frac{\pi}{2}\right) \quad (C) \left(\frac{\pi}{2}, \pi\right) \quad (D)(\pi, +\infty)$

Solution

(方法一)利用单调性

$$f(x) = \int_{1}^{x} \frac{\sin t}{t} dt - \ln x$$

$$f'(x) = \frac{\sin x - 1}{x} \begin{cases} x > 0 & , f'(x) < 0 \\ x < 0 & , f'(x) > 0 \end{cases}$$

又 f(1) = 0 故 f(x) 在 (0,1) 上大于 0, 在 $(1,\infty)$ 小于 0 (方法二) 利用几何意义

$$\int_{1}^{x} \frac{\sin t}{t} dt > \ln x = \int_{1}^{x} \frac{1}{t} dt$$

$$\int_{1}^{x} \frac{\sin t - 1}{t} dt > 0$$

由积分的几何意义容易知道, 当 $x \in (0,1)$ 时候上式成立

3. (2003, 数二) 设
$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx$$
, $I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx$, 则
(A) $I_1 > I_2 > 1$ (B) $1 > I_1 > I_2$
(C) $I_2 > I_1 > 1$ (D) $1 > I_2 > I_1$

1.2 不定积分的计算

2

Solution

由基本不等式 $x \in (0, \frac{\pi}{2})$, $\sin x < x < \tan x$, 故有 $\tan x/x > 1 > x/\tan x$ 由比较定理 有 $I_1 > I_2$, 考虑 I_1 与 1 的关系.

(方法一) 求导用单调性

 $f(x) = \tan x/x$, \mathbb{N}

$$f'(x) = \frac{\sec^2 x \cdot x - \tan x}{x^2}$$
$$= \frac{x - \sin x \cos x}{\cos^2 x x^2} > 0$$

故 f(x) 在 $(0, \pi/4)$ 上单调递增,有 $f(x) < f(\pi/4) = \frac{4}{\pi}$,故 $I_1 < 1$ (方法二) 利用凹凸性

由于 $\tan x$ 在 $(0, \pi/2)$ 上是一个凹函数,则其割线的函数值大于函数的函数值大于切线的函数值 (割线在函数图像的上方,切线在函数图像的下方)则有

$$\frac{4}{\pi}x > \tan x$$

从而 $I_1 < 1$

1.2 不定积分的计算

1.2 不定积分的计算

3

''万能公式如下

4. 计算下列积分 (1) $\int \frac{x^2+1}{x^4+1} dx$;(2) $\int \frac{x^2-1}{x^4+1} dx$

Solution

(1)

原式 =
$$\int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx$$
=
$$\int \frac{d(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2}$$

$$\frac{\int \frac{1}{x^2 + a^2} dx}{\sqrt{2}} \frac{1}{\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} + C$$

(2)

原式 =
$$\int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}$$
=
$$\int \frac{d(x + \frac{1}{x})}{(x + \frac{1}{x})^2 - 2}$$
=
$$\frac{\int \frac{1}{a^2 - x^2} dx}{-2\sqrt{2}} - \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + (x + \frac{1}{x})}{\sqrt{2} - (x + \frac{1}{x})} \right|$$

5. 计算不定积分 $\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx, x > 0$

1.2 不定积分的计算

Solution

原式
$$= \frac{t = \sqrt{\frac{(1+x)}{x}}}{\ln 1 + t d(\frac{1}{t^2 - 1})}$$

$$= \frac{\text{分解积分}}{\ln (1+t) \cdot \frac{1}{t^2 - 1}} - \int \frac{1}{t^2 - 1} \cdot \frac{1}{1+t} dt$$

$$\int \frac{1}{t^2 - 1} \cdot \frac{1}{1+t} dt = \frac{1}{2} \int \frac{dt}{t^2 - 1} - \frac{1}{2} \int \frac{dt}{(t+1)^2}$$

$$= -\frac{1}{4} \ln \left| \frac{1+t}{1-t} \right| + \frac{1}{2(1+t)} + C$$
原式 $= \ln (1+t) \cdot \frac{1}{t^2 - 1} + \frac{1}{4} \ln \left| \frac{1+t}{1-t} \right| + \frac{1}{2(1+t)} + C$

$$6. \ \ \, \cancel{R} \int \frac{1}{1+\sin x + \cos x} dx$$

Solution

(方法一万能代换)

原式
$$= \frac{t = \tan \frac{x}{2}}{1 + t}$$

$$= \ln|1 + t| + C$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

(方法二三角公式)

原式
$$\frac{\cos x = 2\cos^2\frac{x}{2} - 1}{2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \int \frac{\mathrm{d}x}{2\cos^2\frac{x}{2}(1 + \tan x^2)}$$

$$= \int \frac{\mathrm{d}\tan\frac{x}{2}}{1 + \tan\frac{x}{2}}$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

1.3 定积分的计算 5

1.3 定积分的计算

Remark

定积分除了不定积分的办法还有如下自己独有的办法

其中华里士公式如下

$$\int_0^{\frac{\pi}{2}} \sin^n x dx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1, & n = \frac{\pi}{2} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, & n = \text{ and } \end{cases}$$

cos x 也是一样的结果

7. (2013, 数一) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution

(方法一分部积分法)

原式 =
$$2\int_0^1 f(x) d\sqrt{x}$$

= $-2\int_0^1 \frac{\ln(1+x)}{\sqrt{x}} dx$
 $\frac{\sqrt{x}=t}{2} - 4\int_0^1 \ln(1+t^2) dt$
= $-4t \ln(1+t^2)\Big|_0^1 + 4\int_0^1 \frac{2t^2}{t^2+1} dt$
= $8 - 4 \ln 2 - 2\pi$

1.3 定积分的计算

6

(方法二二重积分)

原式 =
$$\int_0^1 \frac{1}{\sqrt{x}} dx \int_1^x \frac{\ln(1+t)}{t} dt$$

$$\frac{\frac{\text{交換积分次序}}{\text{Options}}}{-\int_0^1 \frac{\ln(1+t)}{t}} dt \int_0^t \frac{1}{\sqrt{x}} dx$$

$$= -2 \int_0^1 \frac{\ln(1+t)}{\sqrt{t}} dt$$

$$= \dots$$

$$= 8 - 4 \ln 2 - 2\pi$$

8. 求下列积分: (1) $\int_0^{\frac{\pi}{2}} \frac{e^{sinx}}{e^{sinx} + e^{cosx}} dx$ (2) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$

Solution

这两题都是典型的区间再现的题目

(1)

原式
$$=$$
 $\int_0^{\frac{\pi}{2}} \frac{e^{\cos t}}{e^{\sin t} + e^{\cos t}} dt$

由于积分与变量无关,将上式与原式相加有

原式 =
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{4}$$

(2)

原式 =
$$\int_0^{\frac{\pi}{2}} \frac{(\cos x)^{\sqrt{2}}}{(\sin x)^{\sqrt{2}} + \cos x)^{\sqrt{2}}}$$
$$\frac{\pi - \frac{\pi}{2} - \frac{\pi}{2}}{1} \dots$$
$$= \frac{\pi}{4}$$

1.4 反常积分的计算

Solution

这道题是比较困难的积分计算题,由于其他方法都不好用不妨考虑区间再现

原式
$$=\frac{x=\frac{\pi}{4}-t}{=}$$
 $=\int_0^{\frac{\pi}{4}}\ln\left[1+\tan\left(\frac{\pi}{4}-t\right)\right]\mathrm{d}t$ $=\frac{\tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan a\tan b}}{=}\int_0^{\frac{\pi}{4}}\left[\ln 2-\ln\left(1+\tan t\right)\right]\mathrm{d}t$ 原式 $=\frac{\pi}{8}\ln 2$

7

区间再现总结

考试中可能直接考察的区间再现的公式为

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$

其余的就只能见机行事 若其他积分方法都无法做出则可以考虑区间再现

1.4 反常积分的计算

Remark

瑕积分的计算需要注意,若瑕点在内部则需要积分拆开分别计算

10. (1998, 数二) 计算积分
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dx}{\sqrt{|x-x^2|}}$$

Solution

显然 x=1 是积分的瑕点, 故原积分需要拆成两部分即

原式 =
$$\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{\sqrt{x - x^2}} + \frac{1}{\frac{3}{2}} \frac{\mathrm{d}x}{\sqrt{x^2 - x}}$$

$$\frac{x}{2} \arcsin 2(x - \frac{1}{2}) \Big|_{\frac{1}{2}}^{1} + \ln \left| x - \frac{1}{2} + \sqrt{(x - \frac{1}{2})^2 - \frac{1}{4}} \right| \Big|_{1}^{\frac{3}{2}}$$

$$= \frac{\pi}{2} + \ln \left(2 + \sqrt{3} \right)$$

积分表的拓展

(1)

$$\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} + C$$

$$\int \sqrt{a^2-x^2} \mathrm{d}x = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C$$

(2)

$$\begin{split} &\int \frac{\mathrm{d}x}{\sqrt{x^2+a^2}} = \ln\left|x+\sqrt{x^2+a^2}\right| \\ &\int \sqrt{x^2+a^2} \mathrm{d}x = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2} \ln\left|x+\sqrt{x^2+a^2}\right| + C \end{split}$$

(3)

$$\begin{split} &\int \frac{\mathrm{d}x}{\sqrt{x^2-a^2}} = \ln\left|x+\sqrt{x^2-a^2}\right| \\ &\int \sqrt{x^2-a^2} \mathrm{d}x = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \ln\left|x+\sqrt{x^2-a^2}\right| + C \end{split}$$

第二个如果是定积分也可以按照几何意义(圆的面积)做

1.5 反常积分敛散性的判定

Remark

反常积分的敛散性感觉不如无穷级数敛散性难

(方法一)使用反常积分的定义,算出其极限值

(方法二) 比较判别法-寻找 x^p

$$(瑕积分) \int_0^1 \frac{1}{x^p} \begin{cases} 0
$$(无穷积分) \int_1^{+\infty} \frac{1}{x^p} \begin{cases} p > 1, & \text{收敛} \\ p \le 1, & \text{发散} \end{cases}$$$$

11. (2016, 数一) 若反常积分
$$\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$$
 收敛, 则

- (A) a<1 且 b>1
- (B) a>1 且 b>1
- (C) a<1 且 a+b>1
- (D) a>1 且 a+b>1

Solution

显然 x=0 是该积分的瑕点, 需要分成两部分考虑 $\int_{0}^{+\infty} = \int_{0}^{1} + \int_{1}^{+\infty}$

$$\lim_{x \to 0^+} \frac{x^p}{x^a (1+x)^b} = 1$$

$$\xrightarrow{\text{等价代换}} \lim_{x \to 0^+} \frac{x^p}{x^a} \implies p = a$$

由 p 积分的性质可知当 p < 1 的时候其收敛故 a < 1 的时候原积分中的 \int_{a}^{1} 收敛同 理对于 ∫^{+∞} 有

$$\lim_{x \to +\infty} \frac{x^p}{x^{a+b}} = 1 \implies p = a+b$$

由 p 积分的性质可知当 p>1 即 a+b>1 的时候原积分 $\int_{1}^{+\infty}$ 收敛, 故由反常积分 的定义可知只有 a < 1, a + b > 1 的时候原积分收敛

- 12. (2010, 数一、数二) 设 m, n 均为正整数,则反常积分 $\int_{0}^{1} \frac{\sqrt[m]{\ln^{2}(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性
 - (A) 仅与 m 的取值有关 (B) 仅与 n 的取值有关
- - (C) 与 m,n 的取值都有关 (D) 与 m,n 的取值都无关

Solution

显然 x = 0 和 x = 1 是积分的瑕点, 需要分成两部分考虑, 有 $\int_{0}^{1} = \int_{0}^{\frac{1}{2}} + \int_{1}^{1}$, 想考 虑前一个积分

$$\lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{\sqrt[m]{\ln^2{(1-x)}}}{\sqrt[n]{x}} = \lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} \implies p = \frac{1}{n} - \frac{2}{m}$$

由 p 积分的性质, 只有 p < 1 上述积分就收敛, 而由于 $(n, m) \in \mathbb{Z}^+, \frac{1}{n} - \frac{2}{m} < \frac{1}{n} < 1$ 故上式恒收敛.

$$\lim_{x\to 1^-} (x-1)^p \frac{\sqrt[m]{\ln{(1-x)^2}}}{\sqrt[n]{x}} = \lim_{x\to 1^-} (x-1)^p \sqrt[m]{\ln{(1-x)^2}} \implies \text{ $\stackrel{\square}{=}$ 0}$$

1.6 变限积分函数 10

故上式也恒收敛, 故原式的敛散性与 (n, m) 均无关

1.6 变限积分函数

原函数,可积,变限积分

(一)原函数存在定理

$$\int f(x) \mathrm{d}x$$
存在 \begin{cases} 连续函数原函数必然存在 $\\$ 含有第一类间断点和无穷间断点其原函数必然不存在 $\end{aligned}$ 含有震荡间断点其原函数可能存在

(二)可积性定理

$$\int_a^b f(x) \mathrm{d}x$$
存在 $\left\{egin{array}{l} \hline \mathrm{可积必有界} \ \\ 连续必可积 \ \\ \end{array}
ight.$ 含有有限个间断点的有界函数可积

(三)变限积分

$$F(x) = \int_a^x f(t) \mathrm{d}t \begin{cases} f(x) \mathrm{可积} \implies F(x) \mathrm{连续} \\ f(x) \mathrm{连续} \implies F(x) \mathrm{可导} \\ \\ x = x_0 \mathrm{是函数可去间断点} \implies F(x) \mathrm{可导}, \ \ell \ell, \ \ell$$

13. (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$$
 , $F(x) = \int_0^x f(t)dt$, 则

- $(A) x=\pi$ 是函数 F(x) 的跳跃间断点
- (B) $x=\pi$ 是函数 F(x) 的可去间断点
- (C) F(x) 在 $x=\pi$ 处连续但不可导 (D) F(x) 在 $x=\pi$ 处可导

Solution

显然由总结可知, 选 C

1.6 变限积分函数 11

14. (2016, 数二) 已知函数 f(x) 在 $[0, \frac{3\pi}{2}]$ 上连续, 在 $(0, \frac{3\pi}{2})$ 内是函数 $\frac{\cos x}{2x - 3\pi}$ 的一个原函数, 且 f(0) = 0.

- (1) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
- (2) 证明 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 内存在唯一零点.

Solution

(一) 有题有 $f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$, 所求的平均值为

平均值 =
$$\frac{\int_0^{\frac{3\pi}{2}} f(x) dx}{\frac{3\pi}{2}}$$
=
$$\frac{\int_0^{\frac{3\pi}{2}} \int_0^x \frac{\cos t}{2t - 3\pi} dt}{\frac{3\pi}{2}}$$
=
$$\frac{\frac{5\pi}{2}}{\frac{3\pi}{2}} \frac{\cos t}{2t - 3\pi} dt \int_t^{\frac{3\pi}{2}} dx$$
=
$$\frac{1}{3\pi}$$

(二) 有题可知 $f'(x) = \frac{\cos x}{2x - 3\pi}$, 在 $(0, \frac{3\pi}{2})$ 只有唯一零点 $x = \frac{\pi}{2}$, 从而有 $0 < x < \frac{\pi}{2}$, f(x) 单调递减,而 $\frac{\pi}{2} < x < \frac{3\pi}{2}$, f(x) 单调递增,且 f(0) = 0,考虑上述平均值,由积分中值定理有 $f(c) = \frac{\pi}{3} > 0$ 故 f(x) 在 $\frac{\pi}{2} \sim \frac{3\pi}{2}$ 上有一个零点. 综上 f(x) 在区间 $(0, \frac{3\pi}{2})$ 仅有一个零点

1.6 变限积分函数 12

定积分的应用

(一) 定积分求面积 (也可以用二重积分)

$$A = \begin{cases} \int_{a}^{b} |f(x)| \, \mathrm{d}x, & \text{直角坐标系} \\ \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \, \mathrm{d}\theta, & \text{极坐标} \\ \int_{\alpha}^{\beta} |y(t)x'(t)| \, \mathrm{d}t, & \text{参数方程} \\ \frac{1}{2} \int_{l} -y \, \mathrm{d}x + x \, \mathrm{d}y, & \text{L 对 D 来说取正向} \end{cases}$$

(二) 定积分求旋转体体积 (可以用微元法推, 也可以用二重积分)

$$V = \begin{cases} \iint_D 2\pi r(x,y) \mathrm{d}\sigma, & \text{二重积分法, 其中}r(x,y)$$
为区域 D 内一点到转轴的距离
$$\int_a^b \pi f^2(x) \mathrm{d}x, & \text{微元法, 绕 x 轴旋转} \\ \int_a^b 2\pi \left| x f(x) \right| \mathrm{d}x, & \text{微元法, 绕 y 轴旋转} \end{cases}$$

(三) 定积分求弧长 (第一类曲线积分)

$$s_{弧长} = \int_C f(x,y) \mathrm{d}s = \begin{cases} \int_a^b \mathrm{d}s = \int_a^b \sqrt{1 + (y')^2} \mathrm{d}x, & \text{直角坐标} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(四) 定积分求侧面积 (第一类曲面积分)

$$S_{\text{侧面积}} = \iint_S \mathrm{d}S = \begin{cases} \int_a^b 2\pi y(x) \sqrt{1 + (y'(x))^2} \mathrm{d}x, & \text{直角坐标} \\ \int_a^\beta 2\pi y(t) \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta 2\pi r(\theta) \sin \theta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(五) 物理应用(微元法,不过数一不太可能考)

1.7 定积分应用求面积

15. (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution
$$A = \int_0^{+\infty} |e^x \sin x| \, \mathrm{d}x$$

$$= \sum_{n=0}^{\infty} (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x$$

$$\frac{\left|(e^{\alpha x})' \quad (\sin \beta x)'\right|}{e^{\alpha x} \quad (\sin \beta x)} + C$$
其中
$$\int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x = \frac{-e^{-x} (\sin x + \cos x)}{2} \Big|_{n\pi}^{(n+1)\pi}$$
故原式
$$= \frac{1}{2} \sum_{n=0}^{\infty} e^{-n\pi} (1 + e^{-\pi})$$

$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{1 + e^{\pi}}{2(e^{\pi} - 1)}$$

1.8 定积分应用求体积

- 16. (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (1) 求D的面积A;
 - (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution

(1) 有题设可求出其切点为 (e,1) 切线方程为 $y=\frac{x}{e}$

方法一:

$$A = \frac{e}{2} - \int_{1}^{e} \ln x dx$$
$$= \frac{e}{2} - (x \ln x) \Big|_{1}^{e}$$
$$= \frac{e}{2} - 1$$

方法二: 用反函数做 $x = e^y$

$$A = \int_0^1 e^y dy - \frac{e}{2}$$
$$= e - 1 - \frac{e}{2}$$
$$= \frac{e}{2} - 1$$

(2) 方法一:

$$V = \frac{\pi}{3}e^2 - 2\pi \int_1^e (e - x) \ln x dx = \frac{\pi}{6} (5e^2 - 12e + 3)$$

方法二: 用反函数

$$V = \frac{\pi}{3}e^2 - \pi \int_0^1 (e^y - e)^2 dy = \frac{\pi}{6}(5e^2 - 12e + 3)$$

17. (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求 曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution

先利用偏积分求出 $f(x,y)=(y+1)^2-(2-x)\ln x$, 故曲线 $f(x,y)=0 \implies (y+1)^2=(2-x)\ln x$ (1 $\leq x \leq 2$) 要根据题目条件求出 x 的范围! 显然曲线关于 y=-1 对称利用微元法有

$$V = \pi \int_{1}^{2} (y+1)^{2} dx$$
$$= \pi \int_{1}^{2} (2-x) \ln x dx$$
$$= 2\pi \ln 2 - \frac{5\pi}{4}$$

1.9 定积分应用求弧长

18. 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

这种极坐标的图像,都可以通过描点法去画(其实画不画也不影响求)

$$S = \int_0^{2\pi} \sqrt{a^2 (1 + \cos \theta)^2 + a^2 \sin \theta^2} d\theta$$
$$= \sqrt{2}a \int_0^{2\pi} \sqrt{1 + \cos \theta} d\theta$$
$$\frac{\cos \theta = 2\cos^2 \frac{\theta}{2} - 1}{2\pi} 2a \int_0^{2\pi} \left| \cos \frac{\theta}{2} \right| d\theta$$
$$= 8a$$

1.10 定积分应用求侧面积

19. (2016, 数二) 设 D 是由曲线 $y = \sqrt{1-x^2} (0 \le x \le 1)$ 与 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ 的平面区域, 求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution

这个参数方程的图像是需要记住即星形线

$$\begin{split} V &= \frac{1}{4} \cdot \frac{4}{3}\pi \cdot 1^3 - \int_0^1 \pi y^2(x) \mathrm{d}x \\ &= \frac{18}{35}\pi \\ S &= \frac{1}{2} \cdot 4\pi + \int_0^1 2\pi y(x) \mathrm{d}s \\ &= 2\pi + \int_0^{\frac{\pi}{2}} 2\pi \cdot \sin^3 t \sqrt{(3\cos^2 t(-\sin t))^2 + (3\sin^2 t \cos t)^2} \mathrm{d}t \\ &= \frac{16\pi}{5} \end{split}$$

1.11 证明含有积分的等式或不等式

Remark

积分中值定理(三个)

(-) 第一积分中值定理, 若 f(x) 在 [a,b] 上连续, 则

$$\exists c \in [a, b], \int_a^b f(x) dx = f(c)(b - a)$$

(二) 第一积分中值定理的推广, 若 f(x) 在 (a,b) 上连续

$$\exists c \in (a,b), \int_a^b f(x) dx = f(c)(b-a)$$

(三) 第二积分中值定理, 若 f(x), g(x) 在区间 (a,b) 上连续, 且 g(x) 在其上不变号则

$$\exists c \in (a,b), \int_a^b f(x)g(x)\mathrm{d}x = g(c)\int_a^b f(x)\mathrm{d}x$$

比较定理及其推论

设函数
$$f(x), g(x)$$
 在 $[a, b]$ 上可积, 且 $f(x) \le g(x)$, 则 $\int_a^b f(x) \le \int_a^b g(x)$

推论一: 若函数
$$f(x), g(x)$$
 在 $[a,b]$ 连续, 且 $f(x) \leq g(x)$, 则 $\int_a^b f(x) < \int_a^b g(x)$

推论二: 若
$$f(x) \ge 0, x \in [a, b],$$
 则 $\int_a^b f(x) dx \ge 0$

推论三:
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$

- 21. (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (1) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (2) $\vec{x} \lim_{x \to +\infty} \frac{S(x)}{x}$

Solution

(1) 由比较定理有

$$\int_{0}^{n\pi} |\cos t| \, \mathrm{d}t \le S(x) < \int_{0}^{(n+1)\pi} |\cos t| \, \mathrm{d}t$$

显然 $|\cos t|$ 以 π 为周期故上式容易计算为

$$2n \le S(x) < 2(n+1)$$

(2) 考虑夹逼准则

$$\frac{2}{\pi} \stackrel{\lim_{n \to \infty}}{\longleftarrow} \frac{2n}{(n+1)\pi} \le \frac{S(x)}{x} < \frac{2(n+1)}{n\pi} \xrightarrow{\lim_{n \to \infty}} \frac{2}{\pi}$$

故
$$\lim_{x \to \infty} \frac{S(x)}{x} = \frac{2}{\pi}$$

- 22. (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (1) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$

(2)
$$\int_{a}^{a+\int_{a}^{b}g(t)dt}f(x)dx \le \int_{a}^{b}f(x)g(x)dx.$$

Solution

(一) 由比较定理有

$$0 \le \int_a^x g(x) \mathrm{d}x \le \int_a^x \mathrm{d}x = x - a$$

(二) 构建函数用单调性

令

$$F(x) = \int_{a}^{ma + \int_{a}^{x} g(t)dt} f(t)dt - \int_{a}^{x} f(t)g(t)dt$$

则其导数为

$$F'(x) = g(x) \left[f(a + \int_a^x g(t)dt) - f(x) \right]$$

证明含有积分的等式或不等式 1.11

19

由一可知 $a + \int_a^x g(t) dt \le x$ 从而可知 F'(x) < 0 故而 F(x) 在区间 (a,b) 上单调递 减,而 F(a) = 0 故 F(b) < F(a) = 0 即

$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx$$