CLAIMS

1. (Previously presented) A disk controller for implementing efficient disk I/O for a computer system, comprising:

a bus interface for interfacing with a processor and a system memory of the computer system;

a disk I/O engine coupled to the bus interface;

a bus master controller coupled to the disk I/O engine;

a bypass register coupled to the bus master controller, wherein the bypass register is memory mapped and implements aggregation of transaction information from a host CPU by using a memory mapped data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to coordinate data transfers within the disk controller; and

a device interface coupled to the disk I/O engine for interfacing the disk I/O engine with a disk drive, wherein the disk I/O engine is configured to cause a start up of the disk drive upon receiving a disk start up command from the processor, the start up command configured to hide a start latency of the disk drive, the disk I/O engine further configured to execute a disk transaction by processing the disk transaction information from the bypass register coupled to the disk I/O engine.

Examiner: Lee, C. Art Unit: 2181

- 2. (Withdrawn) The disk controller of claim 1, wherein the bus interface is configured to interface with the processor and the system memory of the computer system in accordance with a hyper transport protocol.
- 3. (Withdrawn) The disk controller of claim 1, wherein the device interface is configured to coupled to a serial ATA interface of the disk drive.
- 4. (Withdrawn) The disk controller of claim 1, wherein the device interface is configured to couple to an IDE interface of the disk drive.
- 5. (Withdrawn) The disk controller of claim 1, further comprising:
 a completion status register coupled to the disk I/O engine configured
 to notify the disk I/O engine and indicate a completion of a pending disk I/O
 command.
- 6. (Previously presented) The disk controller of claim 1, further comprising:
- a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a plurality of CPB pointers to extend to a number of disk transactions scheduled for execution by the disk I/O engine, the CPB pointer buffers directly connected to the disk I/O engine for control independent of the arbiter.

Attorney Docket No. NVID-P001159 Serial No. 10/725,663 Examiner: Lee, C.

7. (Original) The disk controller of claim 1, further comprising:

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs to extend to a number of disk transactions scheduled for execution by the disk I/O engine.

8. (Previously presented) A bridge component for implementing efficient disk I/O for a computer system, comprising:

a bus interface for interfacing with a processor and a system memory of the computer system;

a disk controller for executing disk I/O transactions for the computer system, the disk controller further comprising:

a disk I/O engine coupled to the bus interface;

a bus master controller coupled to the disk I/O engine;

a bypass register coupled to the bus master controller, wherein the bypass register is memory mapped, wherein the bypass register implements aggregation of transaction information from a host CPU by using a memory mapped data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to coordinate data transfers within the disk controller; and

a device interface coupled to the disk I/O engine for interfacing the disk I/O engine with a disk drive, wherein the disk I/O engine is configured to

Examiner: Lee, C.

cause a start up of the disk drive upon receiving a disk start up command from the processor, the disk start up command configured to hide a start latency of the disk drive, the disk I/O engine further configured to execute a disk transaction by processing the disk transaction information from the bypass register coupled to the disk I/O engine.

- 9. (Withdrawn) The bridge component of claim 8, wherein the bridge component includes a plurality of disk controllers for implementing a plurality of channels for a corresponding plurality of disk drives.
- 10. (Withdrawn) The bridge component of claim 9, wherein at least one of the channels is a serial ATA channel.
- 11. (Withdrawn) The disk controller of claim 8, further comprising:
 a completion status register coupled to the disk I/O engine configured
 to notify the disk I/O engine and indicate a completion of a pending disk I/O
 command.
- 12. (Previously presented) The disk controller of claim 8, further comprising:
- a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a plurality of CPB pointers to extend to a number of disk

Attorney Docket No. NVID-P001159 Serial No. 10/725,663 Page 5

Examiner: Lee, C.

transactions scheduled for execution by the disk I/O engine, the CPB pointer buffers directly connected to the disk I/O engine for control independent of the arbiter.

13. (Original) The disk controller of claim 8, further comprising:

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs to extend to a number of disk transactions scheduled for execution by the disk I/O engine.

14. (Withdrawn) A computer system configured to implement efficient disk I/O, comprising:

a processor;

a system memory coupled to the processor;

a bridge component coupled to the processor; and

a disk controller coupled to the bridge component, the disk controller including a plurality of bypass registers, wherein the processor executes software code stored in the system memory, the software code causing the computer system to implement a method comprising:

transferring a command from the processor to the disk controller, the command causing a start up of a disk drive coupled to the disk controller;

preparing disk transaction information by packaging a plurality of data structures comprising the disk transaction;

Attorney Docket No. NVID-P001159 Serial No. 10/725,663 Page 6

Examiner: Lee, C.

transferring the disk transaction information to the bypass registers of the disk controller;

implementing a disk I/O, wherein the disk controller processes the disk transaction information to control the disk drive.

- 15. (Withdrawn) The computer system of claim 14, wherein the bridge component includes a plurality of disk controllers for implementing a plurality of channels for a corresponding plurality of disk drives.
- 16. (Withdrawn) The computer system of claim 15, wherein at least one of the channels is a serial ATA channel.
- 17. (Withdrawn) The computer system of claim 16, further comprising: a completion status register coupled to the disk I/O engine configured to notify the disk I/O engine and indicate a completion of a pending disk I/O command.
- 18. (Withdrawn) The computer system of claim 17, further comprising: a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a plurality of CPB pointers to extend to a number of disk transactions scheduled for execution by the disk I/O engine.

Attorney Docket No. NVID-P001159 Page 7 Examiner: Lee, C. Serial No. 10/725,663 Art Unit: 2181

- 19. (Withdrawn) The computer system of claim 18, further comprising: a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs to extend to a number of disk transactions scheduled for execution by the disk I/O engine.
- 20. (Withdrawn) The computer system of claim 19, wherein the bridge component is a Southbridge component.
- 21. (New) A disk controller for implementing efficient disk I/O for a computer system, comprising:
- a bus interface for interfacing with a processor and a system memory of the computer system;
 - a disk I/O engine coupled to the bus interface;
 - a bus master controller coupled to the disk I/O engine;
- a bypass register coupled to the bus master controller, wherein the bypass register is memory mapped and implements aggregation of transaction information from a host CPU by using a memory mapped data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to coordinate data transfers within the disk controller;

Examiner: Lee, C.

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs to extend to a number of disk transactions scheduled for execution by the disk I/O engine; and

a device interface coupled to the disk I/O engine for interfacing the disk I/O engine with a disk drive, wherein the disk I/O engine is configured to cause a start up of the disk drive upon receiving a disk start up command from the processor, the start up command configured to hide a start latency of the disk drive, the disk I/O engine further configured to execute a disk transaction by processing the disk transaction information from the bypass register coupled to the disk I/O engine.

Examiner: Lee, C.