

◆ 사물인터넷 플랫폼의 정의

- 더 나은 삶을 제공하기 위한 서비스 프레임워크 기술
 - 실 세계의 사물들을 네트워크로 상호 연결하여 사람-사물, 사물-사물 간에 언제 어디서나 서로
 소통할 수 있도록, 사물들로부터 데이터를 수집하거나 사물에 대한 제어 방법을 제공함.
 - 사물들이 지능적으로 서비스를 제공하기 위해 특정 서비스에 종속적이지 않으면서 데이터의 수집/제공, 사물 기기의 관리, 연결 기능 등을 제공하는 공통시스템

- ◆ 사물인터넷 플랫폼의 역할
 - 사물인터넷 플랫폼은 서비스를 구성하기 위해 필요한 공통 요구 기능들을 포함하고 있으며 개별 사물과 서비스에서 독립적으로 동작할 수 있어야 함 플랫폼은 서버나 클라우드 형태로 제공될 수 있으며, 디바이스에 직접 위치할 수도 있음

2.1.1 사물인터넷 플랫폼의 발전 방향

① 수식적 플랫폼에서 수평적 플랫폼으로 변화

수직적 플랫폼

- 응용서비스 도메인 분야별로 별도의 플랫폼 구축, 서비스 추진 함(수직적이고 파편화 됨)
- 수직적 플랫폼의 문제점
 - 독립된 플랫폼 구축에 시간 및 비용, 서비스 운용을 위한 유지보수 비용 부담이 큼 융합서비스 제공을 위해 플랫폼간 연동 및 통합 이슈가 발생함

수평적 플랫폼

 사물과 서비스에 독립적으로 동작할 수 있도록 개발되어, 다양한 디바이스 수용이 가능하며, 여러 서비스들의 공통 요구기능을 제공함

- 특정 디바이스 및 서 비스에 종속적이지 않 아 유지비용이 저렴함
- 공통 인터페이스 활 용으로 서비스간 융합 및 연계가 용이함

2.1.2 사물인터넷 플랫폼의 기본 구조

- ◆ 사물인터넷 플랫폼의 요건
 - 사물인터넷 서비스 구조상에서 사물과 서비스가 요구하는 공통기능을 제공하여, 다양한 사업자들이 쉽게 서비스를 생산, 관리할 수 있고 그 서비스를 사용할 고객(개발자, 서비스 이용자)에 대한 편의 가 제공되어야 함
 - 개발자들이 필요로 하는 기능을 사용하기 쉽게 제공해야 하며, 또한 서비스 활성화를 위해 적은 비용으로 다양한 서비스를 만들 수 있도록 편의를 제공할 수 있어야 함
 - 개발된 다양한 서비스들을 고객들에게 쉽게 활용할 수 있도록 지원해야 함

〈 ISO/IEC JTC1에서의 사물인터넷 서비스 구조 〉

2.1.2 사물인터넷 플랫폼의 기본 구조

◆ 사물인터넷 플랫폼 주요 기능 블럭도

 사물인터넷 플랫폼의 가장 기본이 되는 기능은 사물들 및 서비스와의 연결성을 보장해주기 위하여 커넥티비티를 제공해야 한다는 것

2.1.2 사물인터넷 플랫폼의 기본 구조

- 리소스 및 서비스 관리 기능블록
 - 디바이스 관리기능 : 사물 디바이스의 등록, 설정, 모니터링, 펌웨어 다운로드 등
 - 리소스 관리기능: 사물의 리소스(프로파일, 위치정보, 수집 데이터, 제어기능 등)에 대한 생성, 제공, 갱신, 삭제 등의 기능 제공
 - 서비스 관리기능 : 상위 응용 및 시맨틱 계층으로부터의 요구에 따라서 서비스를 생성, 구성, 관리
 - 디스커버리 기능 : 다양한 디바이스, 리소스, 서비스들에 대한 검색기능 제공
- ◆ 시멘틱 및 지식 서비스 기능 블록
 - 시멘틱 기능: 시멘틱 엔진 및 저장소를 제공하고 시멘틱 검색기능 등을 제공
 - 데이터 분석 기능: 데이터에 대한 고차원적 분석을 통한 서비스 제공
 - 지식 관리 기능: 지능적인 사물인터넷 서비스를 제공하기 위하여 지속적인 지식 습 득 및 제공

2.2.1 식별체계 기술

- 어떤 대상을 유일하게 식별할 수 있는 방법을 제공하는 기술을 식별체계 기술이라 함
 - 학생번호, 주민등록번호, 자동차번호, 사원번호
 - 인터넷 자원 식별자(URI: Uniform Resource Identifier)
 - 국제 표준 도서 번호(ISBN: International Standard Book Number)
 - 전화번호(MSISDN: Mobile Station International Subscriber Directory Number)
 - IP주소(Internet Protocol Address)
 - 객체식별자(OID:Object Identifier) 등

2.2.2 검색 기술

 사용자가 원하는 서비스를 제공받기 위하여 정보나 리소스 등을 찾고 찾아진 결과를 쉽게 활용할 수 있도록 제공하는 기술

검색기술 구분	내용
클 <mark>라이언트-서버</mark>	 클라이언트의 검색 요청에 대해 서버는 자신의 저장소에 존재하는 디렉토리로부터 검색 결과를 알려줌 일반적으로 글로벌 환경에서의 검색 서비스를 제공할 수 있음 대표적으로 oneM2M과 같은 표준이 이러한 방식을 채택함
P2P (peer-to-peer)	 리소스를 찾고자 하는 장치가 네트워크에 검색요청을 보내고, 검색요청을 받은 장치가 자신이 해당 리소스를 가지고 있을 경우 응답하거나, 모든 디바이스가 자신이 가지고 있는 리소스 정보를 주기적으로 광고함 네트워크상에서 리소스를 찾고자 하는 장치는 원하는 리소스에 대한 광고를 수신하여 리소스를 검색함
	• 대표적인 P2P 검색 방식은 Alljoyn 의 검색 서비스를 들 수 있음

2.2.3 장치관리 기술

- 사물인터넷 장치관리 기술은, 사물인터넷 디바이스의 초기설정, 소프트웨어/펌웨어 다운로드, 디바이스의 고장 진단 및 배터리/메모리 등 하드웨어 모니터링, 디바이스 주변장치(USB, 카메라 등) 컨트롤, 시스템 리부팅, 시스템 로깅 등을 위한 기술임
- 대표적 기술로 OMA(Open Mobile Alliance) DM(Device Management), OMA LWM2M(Lightweight M2M), BBF(Broadband Forum) TR-069 기술을 활용하거나 별도의 장치관련 프로토콜을 개발하여 사용하고 있음

2.2.4 사물 가상화 기술

- 사물 가상화 기술은, 물리적 환경에 존재하는 다양한 사물의 정보를 플랫폼 또는 디바이스에 표현하기 위해 추상화된 형태로 리소스를 생성하는 기술임
 - 추상화로 리소스는 실제 물리적 환경에 존재하는 사물을 대신하는 형태로 존재하며, 실제 물리적 환경에 존재하는 사물을 모니터링하거나 제어할 수 있음.
- 사물 가상화를 통해 실세계에 존재하는 사물이 지원하는 네트워크, 정보체계 등에 관계없이 가상화된 리소스를 손쉽게 서비스와 연결하거나 매쉬업 서비스를 구성할 수 있음

2.2.5 서비스 컴포지션 기술

• 서비스 컴포지션 기술은, 서비스 지향 구조(SOA, Service-Oriented Architecture)에서 다양한 서비스를 연동하기 위한 개념에서 출발했으며, Service Oriented 또는 Service Choreography 기술의 하부 기술로 사용됨

구분	내용
Service	• 사용자 또는 어플리케이션으로부터 특정 서비스를 요청 받았을 때 사물인터넷 플랫폼의 오케스트레이터가 해당
Orchestration	서비스를 검색하고 이와 관련된 서비스를 찾아 제공해주는 기술
Service	• Service Orchestration으로부터 특정서비스를 요청 받았을 때 정의한 순서 및 명시된 서비스에 따라 서비스를
Choreography	검색하고 이를 기반으로 서비스를 제공해주는 기술

2.2.6 시맨틱 기술

• 시맨틱 기술은, 현재의 인터넷과 같은 분산환경에서 리소스(웹 문서, 파일, 서비스 등)에 대한 정보와 리소스들의 관계-의미 정보를 기계가 처리할 수 있도록, 온톨로지(Ontology) 형태로 표현하고 이를 자동화된 기계가 처리하도록 하는 프레임워크 기술임

215701 HULDY

시맨틱 기술은 주로 웹 기반의 어플리케이션 또는 서비스에서 의미적 상호운용을 위하여 사용되어왔으며, 이후 웹 뿐만 아니라 사물인터넷, 빅데이터 등 다양한 시스템까지 확장 사용됨

2.3.1 국내 사례

- ① 모비우스 및 앤큐브 플랫폼
 - oneM2M 표준에서 제시하는 기본 기능에 사물 및 응용서비스에 대한 검색기능을 강화하고 사물인 터넷의 앱 생태계를 활성화하기 위한 앱 거래기능이 추가된 개방형 사물인터넷 플랫폼
 - 모비우스(Mobius)
 - 서버 및 클라우드 형태의 사물인터넷 플랫폼 기능을 수행
 - GTTP, MQTT, CoAP 프로토콜에 대한 바인딩을 지원
 - RESTful Open API를 통하여 기능을 활용할 수 있도록 제공
 - 앤큐브(&Cube)
 - 사물인터넷 디바이스 및 게이트웨이 등에 탑재가 되는 사물인터넷 플랫폼
 - 적용하기 위한 하드웨어 및 시나리오에 따라서 여러 타입을 제공

2.3.1 국내 사례

- ② 씽플러스(Thing+)
 - 클라우드에 연동되어 있는 하드웨어와 포털을 활용하여 누구나 쉽고 빠르게 자신만의 IoT 서비스 구축 가능하며, 클라우드 환경을 통한 안정적이고 확장성 높은 서비스를 제공함
 - 위젯을 활용하여 대시 보드를 꾸밀 수 있고, 실시간 알림과 디바이스 제어, 그래프 기반 센서 데이터 분석을 통해 시스템의 실시간 모니터링 및 제어 · 분석을 지원함

2.3.1 국내 사례

③ COMUS

- 사용자의 요구에 맞는 다양한 센서 자원을 동적으로 구성하여 서비스를 제공하고, 서비스 완료 후다른 서비스 사용자에 의해 활용 가능하게 하는 개방형 센서 자원 커뮤니티 기술임
 - 센서자원 상호운용을 위한 동적 관리 기술, 시멘틱 지식 컨텐츠 생성 기술, 모바일 저전력 통신응용 기술, 지능형 센서 기술 등

2.3.1 국내 사례

4 ThingPlug

- SK텔레콤이 전자부품연구원, 엔텔스와 함께 개발한 개방형 IoT 플랫폼인 모비우스를 기반으로 만든 'oneM2M' release 1과 자체 규격인 GMMP를 기반으로 한 IoT 통합 플랫폼
 - 주요특징으로는클라우드 기반의 애자일(Agile) 개발 환경, 서비스 부여 기능 강화, DIY 개발 환경, 주요 이벤트 처리 및 보고 등이 있다.
 - ThingPlug 외부에서 oneM2M 표준 기반 RESTful API 에 접근하기 위해서는 HTTP 와 MQTT 를 사용
 - oneM2M 표준에는 CoAP 프로토콜 기반으로 API를 호출하는 방식을 정의하였지만, 저사양 장치 및 근거리 통신에 적합한 CoAP 프로토콜 방식은 제공하지 않음
 - ThingPlug에서는 저사양 장치를 위해 SK텔레콤 독자적으로 개발한 TCP 기반 API를 제공

2.3.1 국내 사례

⑤ IoT@喜

- LG유플러스는 'loT@홈' 플랫폼을 개방을 통해 국내 최초로 음성인식 기능을 적용한 loT 전용 플랫폼을 발표함
- 다른 제조사나 앱 개발사 등에 개방하고 있으며, 2016년 5월 oneM2M에 대한 호환성에 대해 검증을 받음

2.3.1 국내 사례

6 GiGA loTMakers

- KT는 개방형 IoT 사업협력 연합체인 'GiGA IoT Alliance' 를 출범시키고, IoT 서비스 플랫폼인 'IoT Makers' 를 삼성전자의 'Artik' 과 연계해 제품 개발에 소요되는 비용과 기간을 축소함
- Biz Domain의 IoT 서비스를 이해해서, 컨트롤에 필수적인 Core Data 관리 및 Event Process를 제공하고, 대용량 IoT 데이터 관리를 위한 분산처리 빅데이터 관리 및 Rule Set 관리를 제공하는 등의 관제핵심 프로세스를 구현함

IoT Business 전략: KT IoT Partnership 연합(2016, 약 400개사), 외부 Open Innovation, IoT 표준화

2.3.2 국외 사례

- ① 애플의 사물인터넷 플랫폼
 - 홈킷: 블루투스나 와이파이로 연결된 가전제품을 iOS 8에 통합시키거나 시리(Siri)의 음성인식 기능을 통하여 스마트플러그, 스위치, 가전 등을 제어할 수 있도록 함
 - 헬스킷: 건강 및 피트니스앱들을 서로 쉽게 연동할 수 있도록 해주고 헬스 앱을 통해 다양한 건강 관리 기능을 제공하는 헬스케어 서비스 플랫폼
 - 카플레이: 자동차의 정보기기와 아이폰과의 연결을 통해서 메시지 확인, 인터넷 검색, 음성인식 서비스 등을 제공

2.3.2 국외 사례

- ② 구글의 사물인터넷 플랫폼
 - Google Nest 플랫폼을 기반으로 하는 'Works with Nest'라는 생태계 확산 프로그램을 통해 다양한 사물인터넷 디바이스 제조사들과 파트너쉽을 맺고 확산을 추진하고 있음
 - 학습기능을 내장한 스마트 온도제어기인 'Nest Thermostat' 와 연기 감지를 통해서 알람을 주는 'Nest Protect' 를 개발하여, 상용화한 네스트랩스(Nest Labs)를 32억 달러에 인수함
 - Google은 가정용 CCTV 전문업체인 드롭캠을 인수하여 화상모니터링 분야의 기술력까지 확보함
 - 웹에서의 글로벌 경쟁력을 다시 사물인터넷 글로벌 시장으로 확대하기 위한 전략을 추진 중

