Problem 1

Let $f:[0,1]\to\mathbb{C}$ such that $f(x)=\frac{1}{i-x}$. Find the real and imaginary parts of f. Compute f'(x) and $\int_0^1 f(x) \, \mathrm{d}x$.

Problem 2

Show that the maps $Tf: f \mapsto f'$ and $Sf: f \mapsto \int_0^x f(t) dt$ are \mathbb{C} -linear maps from $C^1([0,1],\mathbb{C})$ to $C([0,1],\mathbb{C})$ and $C([0,1],\mathbb{C})$ to \mathbb{C} , respectively.

Problem 3

Using the fundamental theorem of calculus for real functions, prove the fundamental theorem of calculus for complex functions, i.e.

$$\int_0^1 f'(x) \, \mathrm{d}x = f(1) - f(0)$$

for $f \in C^1([0,1], \mathbb{C})$.

Problem 4

Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{zt} = ze^{zt}$$

for $z \in \mathbb{C}$.

Problem 5

Consider the integral $I = \int_0^\infty e^{-at} \cos{(bt)} dt$ where a > 0 and $b \in \mathbb{R}$ are real numbers.

- 1. Calculate I using integration by parts.
- 2. Show that $I = \text{Re}\left[\int_0^\infty e^{-(a-ib)t}\,\mathrm{d}t\right]$ where Re denotes the real part of a complex number.
- 3. Calculate I using the formula above. Which do you prefer?

Problem 6

Let V be a finite-dimensional inner product space over \mathbb{C} with inner product $\langle \cdot, \cdot \rangle$ and $b = \{b_1, \dots, b_n\}$ an orthonormal basis of V.

Using the resolution of the identity formula, i.e.

$$v = \sum_{i=1}^{n} \langle v, b_i \rangle b_i$$

for $v \in V$, show that the matrix elements of a linear operator $A: V \to V$ with respect to the basis b are given by

$$A_{ij} = \langle A(b_j), b_i \rangle$$
.