How can we build NMT systems for language pairs with very little parallel data?

Maxim Ryabinin, David Sharafyan, Anna Klepova, Viktoria Chekalina, Igor Novikov

October 25, 2018

Unsupervised MT

Low-resource parallel data

- No parallel data (only monolingual corpora)
- Very little parallel data

Monolingual corpora: Neural Unsupervised Machine Translation

3 principles of unsupervised MT

- Initialization. The two distributions are roughly aligned, e.g. by performing word-by-word translation
- ② Language modelling. Models train on monolingual data and express a data-driven prior about how sentences should read in each language. $L^{lm} = \mathbb{E}_{x \sim s}[-log P_{s \rightarrow s}(x|C(x)] + \mathbb{E}_{y \sim t}[-log P_{t \rightarrow t}(y|C(y)] \\ C(x), C(y) \text{ noised sentences}$
- **3** Back-translation $L^{bt} = \mathbb{E}_{x \sim s}[-logP_{s \to t}(y|u^*(y)] + \mathbb{E}_{y \sim t}[-logP_{t \to s}(x|v^*(x)] v^*(x), u^*(y)$ sentences in target and sources languages respectively, obtained by Initialization

Dual learning

Very little data: Dual learning (reinforcement)

Corpus D_A , D_B ; LM_A , LM_B - language models("environment"); θ_{BA} , θ_{AB} - translation models.

- s sentence on A, smid middle translation
 - \bullet θ_{AB} , θ_{BA} pretrained on little parallel data
 - ② $r_1 = LM_b(s_{mid}) = logP(s_{mid}|s, \theta_{AB})$ how natural translated sentence is in B

 - use policy gradient methods

Zero-Shot Dual Machine Translation

	NMT-F	Dual-0	Dual-S
Aligned Data		en-fr (1M) en-es (1M)	en-fr (1M) en-es (1M) es-fr (10k)
Monol.		es (0.5M)	es (0.5M)
Data		fr (0.5M)	fr (0.5M)
en → es	44.06	37.05	38.74
es → en	18.24	32.84	32.03
en → fr	34.75	29.58	30.89
fr → en	13.58	27.95	26.00
es → fr	37.67	35.54	35.63
fr → es	40.85	38.83	39.00

- Train NMT model on EN-FR and EN-ES parallel corpora
- Train EN and ES language models

- Fine-tune NMT model using language models
- Fine-tune NMT model on small ES-FR parallel corpus

Contextual parameter generation for Universal NMT

One encoder/decoder for language — linear growth in number of parameters Let's introduce language embeddings!

$$g^{enc}(I_s) \triangleq W^{enc}I_s, g^{dec}(I_t) \triangleq W^{dec}I_t,$$
 $W^{enc} \in \mathbb{R}^{P_{enc} \times M}, W^{dec} \in \mathbb{R}^{P_{dec} \times M},$
 $I_s, I_t \in \mathbb{R}^{M}$

	PNMT	GML	CPG*	CPG
En→De	25.99	15.92	26.41	26.77
$De{ o}En$	30.93	29.60	31.24	31.77
$En{ o}Fr$	38.25	34.40	38.10	38.32
$Fr{ ightarrow}En$	37.40	35.14	37.11	37.89

Issues with setup: GML has fewer parameters, might be trained with auto-encoding as well

Main advantages

- Number of NN parameters is constant wrt number of languages
- 2 Linguistic similarities are exploited
- Ossible to fine-tune embeddings only on low-resource data