2015 级计算机学院《数值分析》期末试卷 A 卷

ΙΊΤ	ΔτL	<u>ن</u> ح	4. 口.		hh <i>5</i> 7			广 。/李	
功工	级	=	学号		姓名			_成绩	
注意	① 答题方③ 将填空	式为闭卷 题的答案				在ダ駉纸	F.		
	● 村墳工	医门石 未	且 汝 揆 仁	W. C. J. ,	1 开心百	11日 12511	<u></u> °		
Hart I	, 1	T .			-	•	· ·	74 44	
题与				四	五	六	七	总分	
得分	}								
			-12.ZY						
– ,	填空题(每		,	分)					
					,则其绝	对误差队	見为【゜	<u> </u>	误差限
	与【 <u>3.04%</u>		`		آ لا				
2 =	コ 4n ァー 2 1 /	1 + 0 005	⊞ ∵-	. 12 14 14				则其绝对误差	美限
۷. ۱	\rightarrow AH $X=2.14$	F±0.003 ;) /n <i>y</i> –	V 2.14		lv – j (以且,) 		
	(<u>1.7 x 0 }</u>]	,近似值	有【 <u>与</u>	_】位作	j 效数字 ⁽	70 - Z 1	2.14)	1. 7 X 0	1 < t x 10-3
3. 3	成 $\sqrt[3]{a}$ 的牛顿	遗代格,	式为【	$ \zeta_{n+1} = \chi_n - \frac{\chi_n}{2} $	3/2].	3 - RE	- V ,		= 0.5 x
	目迭代法求	解 x= sii	$-\frac{1}{100}$	在区间;	.6216 69 8 [0 9 1 5]	rg. 7~18 上的根,	要求误	差限为 0.01,	则需
/\/ }	失 <i>任</i> 【	P 1	φ #:	(x) = sinx	+0.25			9"	(v -v 1 < 0.0
^] 	_)=0, bub		1-9	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
6 F	用平方根法	超线 烘크	大程组) [*]	4x+2y+	5z = 12 2z = 10 lb	t	, 2	Ŋ _v =	•
0.	日 1 万 1K1公	肝気エノ	7 往祖 7	5x+3y+	2z - 10 m; $10z = 1$, <i>u</i> 11-	_		iono.9 + v.15
	_	7	(•				1	1. 0
	$\begin{vmatrix} -2 & -5 \\ 1 & 0 \end{vmatrix}$	4	II 4II - T	q	T 11 411	- 1	1 -	2° · △ < ° · · · · · · · · · · · · · · · · · ·	
1. A	$\mathbf{I} = \begin{bmatrix} -1 & 0 \\ 4 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	$ A _1 = 1$		A , $ A $	= [1-9 · △ < 0.	· (1- <u>2)</u>
								$n < \log_{q} \cdot \frac{2.01.449}{6}$	٥
	5	5x+2y+2	z = -12	.	d. 1831 - 18	. A. T	'N	Ü	
8. 4	线性方程组 ⟨ - │	-x + 4y + 2	2z = 10 件	Jacobi J	医代法环	、解, 迭1	弋过桂是	否收敛?【工	<u>E</u>],
	(.	2x-5y+1	10z = 1	. , ¬		<u> </u>	1/A_		
		ĺ	- 0 -0.4	-0. L -0. T		Ŧ,	7 / [2 1	
ì	迭代矩阵是	[-0.2 Qu.s	0]。	. F	J -1 4		
			9.5	J				. 0,27	
						/	1 0.4	0,27	

- 9. 向量 X=(1,-2,3), Y=(3,4,0), 则向量 X 的 1-范数||X||₁=【_____】, 向量 Y 的 2-范数 $||Y||_2 = [\underline{\hspace{1cm}}]_0$

- 10. 设 $f(x) = x^3 + x 1$,则差商 $f[3,2,1,0] = \mathbb{I}$ 】。

 11. 已知 f[4,3,2,1] = 2,则 x = 1 点的 3 阶差分值为 \mathbb{I} 】。

 12. 对于积分 $I(f) = \int_{-1}^{1} f(x) dx$,求积公式 $I(f) \approx \frac{1}{3} [f(-1) + 4f(0) + f(1)]$ 的代数精确度为 \mathbb{I} 】。

 13. 已知 n = 4 时的牛顿-科特斯系数 $C_0^{(4)} = \frac{7}{90}$, $C_3^{(4)} = \frac{16}{45}$, 则 $C_2^{(4)} = \mathbb{I}$ 】。
- 14. 高斯求积公式 $\int_{-1}^{1} f(t)dt \approx \sum_{i=1}^{n} \omega_{i} y_{i}$ 具有【 2h 一】 次代数精确度。
- 15. 用带松弛因子的松弛法。 $(\omega=0.5)$ 解方程组 $\int_{\lambda_{1}^{(b+1)}} \frac{x_{1}^{(b+1)} x_{1}^{(b)} + \frac{1}{2} \left(-12 \frac{1}{2} \chi_{1}^{(b)} 2 \chi_{2}^{(b)} \chi_{1}^{(b)} \right)}{\frac{1}{2} \left(-12 \frac{1}{2} \chi_{1}^{(b)} 2 \chi_{2}^{(b)} \chi_{1}^{(b)} 2 \chi_{2}^{(b)} \chi_{1}^{(b)} + 4 \chi_{2} + 2 \chi_{3} = 20} \right)$ 的迭代公式 $\int_{\lambda_{2}^{(b+1)}} \frac{x_{1}^{(b+1)} x_{1}^{(b)} + \frac{1}{2} \left(-12 \frac{1}{2} \chi_{1}^{(b)} 2 \chi_{2}^{(b)} 2 \chi_{2}^{(b)} 2 \chi_{2}^{(b)} 2 \chi_{2}^{(b)} 2 \chi_{2}^{(b)} 2 \chi_{2}^{(b)} + 2 \chi_{2}^{(b)} + 2 \chi_{2}^{(b)} + 2 \chi_{2}^{(b)} + \chi_{1}^{(b)} + 12 \right)}{2 \left(-12 \frac{1}{2} \chi_{1}^{(b)} + \frac{1}{2} \chi_{2}^{(b)} \frac{1}{2} \chi_{2}^{(b)}$
- 二、采用牛顿下山法求方程 $x^3=4$ 的根,初始值 $x_0=1$,计算过程保留小数点后 4 位。 (10分)
- 三、设有方程组AX = B,其中

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 3 \\ 7 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 4 \\ 17 \\ 1 \end{bmatrix}$$

用高斯消元法求方程组的解。(8分)

四、设方程组 $\begin{cases} x_1+0.4x_2+0.4x_3=1\\ 0.4x_1+x_2+0.8x_3=2\\ 0.4x_1+0.8x_2+x_3=3 \end{cases}$ 试判断此方程组的雅可比迭代法及高斯-赛

德尔迭代法的收敛性,并用能够收敛的方法进行计算,初值 $x_0^{(0)}=0$, $x_1^{(0)}=0$, $x_2^{(0)}=0$, 计算结果保留小数点后3位。(12分)

五、己知函数表如下:

x_i	0	1	2	4
$f(x_i)$	1	9	23	3

用三阶拉格朗日(Lagrange)插值多项式计算 f(2.2)的近似值,假设 $|f^{(4)}(x)| \le 1$,估计结果的误差。(12 分)

六、 求满足下表条件的埃尔米特(Hermite)插值多项式。(8分)

x_i	0	1	2
y_i	0	2	1
y_i'	1	1	

七、 用龙贝格方法计算积分 $I = \int_{-1}^{1} x^2 dx$, 计算过程保留小数点后 4 位。 (10 分)

```
\exists x^3 = 4
   f(x) = x3-4
                                                                                                     A = [ ... | ... | ... | ... |
  x_{n+1} = (1-\lambda)x_n + \lambda \cdot (x_n - \frac{x_n - \varphi}{x_n})
                                                                                                       4往充了: X(b+1)=(I-DA)X(b)+DB
  80=1 , y,=2 , f(1)=-3
                                                                                                       D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad |D''| \neq \emptyset
  2=1, 8,=2, [f(2) |> |f(1) |
  \lambda = \frac{t}{2} \; , \quad \  \, \not \lesssim_{1} \simeq \frac{t}{2} \; \varepsilon \, I + \frac{t}{2} \; \not \times_{2} \simeq \frac{2}{2} \; \quad , \quad \  \, \int (\frac{3}{2}) = -\epsilon \cdot b^{2} \mathcal{S} \; \quad , \quad \, | \not f(\frac{3}{4}) | < | \not f(t) |
                                                                                                      \left|\lambda I - (I - D^{\prime}A)\right| = \left|D^{-\prime}\right| \cdot \left|\lambda D - D + A\right| = D
                                                                                                    \left| \lambda D - D + A \right| = \left| \begin{array}{c} \lambda & 0.5 & 0.5 \\ 0.5 & \lambda & 0.5 \\ 0.5 & 0.5 & \lambda \end{array} \right|
 BI=1.5, Y=1.5925, f(1.5)=-0.645
 No1, No = 1.5925, f(1.2925) = 0.038), |f(1.2925)| < |f(1.2)
                                                                                                    = \(\lambda^{\frac{1}{2}} - 0.\frac{1}{2} \left( 0.\frac{1}{2} - 0.\frac{1}{2} \left( 0.\frac{1}{2} - 0.\frac{1}{2} \left( 0.\frac{1}{2} - 0.\frac{1}{2} \right) + 0.\frac{1}{2} \left( 0.\frac{1}{2} - 0.\frac{1}{2} \right) \)
 1=1.3925, Yz=1.58)4
2=1, x3=1.58)4. f(1.58>x)=-8x |0-6, |f(1.58>x) < |f(1.58>x)
                                                                                                    = x3 - 0.64x - 0.16x + 0.12f + 0.12f - 0.16x
                                                                                                    = 13 -0.962 + o.xt b = 0
 XL = 1.58)K Y = 1.58) F
                                                                                                   f(-1) > 0, f(-4) < 0
N=1. 18)4
                                                                                                           ヨx E(-x,-1), 枝e>1
 X=1.58)4
                                                                                高斯~: X(b+1)=-(D+L)-1UX(b)+(D+L)-1B
                                                                                  |\lambda I + (D+L)^{-1}U| = 0, |(D+U^{-1}) \neq 0
                                                                                (D+L)-1 - | X(D+L) + U | = 0
3. ) 2x, + &x2 + X3 = 4
                                                                                         | N 0.4 0.4 | = 0,
    4x1+2x1+3x1=1)
                                                     -1
   7x1 + X2 - X4 = 1
      Un = 2
                                                                                      0= > (x1-0.64x)-0.4(0.4x1-0.32x)+0.4(0.21x1-0.4x2)
      1, = 1
                 u = 3
                                      U13 = 1
                                                   2.=4
                                                                                           = 23 - 0.642 - 0.162 + 0.1282 - 0.0 222 = 0
                                     u_{12} = \underbrace{\zeta_{-1}x_{2}}_{l} \xi_{3} = \underbrace{\frac{17 - 2x_{1}^{2}}{1}}_{l} = 9
      14 = 2 Un = 2-2x3 =-4
                                                                                                   >(2) - 0. f(4) +0.12f=0.
                  lu=1
     La = 3.5 ( 1 = 1 - 3.5 x)
                                                              2x=1-3.5x4-2.375x)
                                                                                                     X = 0, Av = 0.628 , Az = 0.203
                                    2(1.1 -=
                                                                =-34.305
                  = 2.3)5
                                                                                               P < 1
                                    la=1
 12×1 + 2×2 + ×3
                                                                                  X_1^{(b+1)} = (1 - 0.4 X_2^{(b)} - 0.4 X_2^{(b)})
                                                                                                                                                     261,0-
        -4x_{1} + x_{3} = 1
                                                                                                                                                    -1.081
                                                                                \chi_{2}^{(6+1)} = \left(2 - 0.4 \chi_{1}^{(6+1)} - 0.1 \chi_{2}^{(6)}\right)
              2($.4) = = 3x 2(8.8) -
                                                                                                                                                    3.319
                                                                                  Xx (6+1) = (3 - 0.4x, (6+1) - 0. fx, (6+1)
       ) ×1=1
      Xv = -1
       X2 = 2
                                                                                                        -0.13b -1.07f 3.91b
                                                          - 0,209 -0,215 2, top -0,144 - 1,026 2171
                                                         71.95 7.715 3.658 70.14 -1.04 3.895
                                                                                                                                 3. 31)
                                                                                                                     -1.079
                                                                                                         -0.136
                                                         -0.17 3 -0.827 2.725 -0.129 -1.069 2.903
                                      -4.16 1.011 1.25}
                                                        -15) -140 3816 -112) -1.06) 3.90)
                                                                                                                    -1.0fo
                                                                                                                                  2.918
                                      -v. 208 0.217 2-8)0
                                                                                                        71.135
                                                       -0.160 -0.891 3. 1890 -0.137 -1.07 2.913
                                     (25.5 fbio- 215.4-
                                                                                                                    -1.080
                                                                                                                                  3.912
                                                                                                        -0.117
```

= 0.75xx + (-2-1.5)x3+(1+2+0.75)x+x

= 0.)5x 6 - 3. 5x3 + 3. 75x + x