l SEQUENCE LISTING

```
<110> EVOGENE LTD.
         Ronen, Gil
         Rabinovich, Larisa
         Meissner, Rafael
         Karchi, Hagai
  <120> NUCLEOTIDE SEQUENCES FOR REGULATING GENE EXPRESSION IN PLANT
         TRICHOMES AND CONSTRUCTS AND METHODS UTILIZING SAME
  <130> 27120
  <160> 88
  <170> PatentIn version 3.2
  <210> 1
  <211> 26
  <212> DNA
 <213> Artificial sequence
 <220>
 <223> Single strand DNA oligonucleotide
 <400> 1
 atggaagtaa ctttgttgta tagtac
                                                                      26
 <210> 2
 <211> 21
 <212> DNA
 <213> Artificial sequence
 <220>
<223> Single strand DNA oligonucleotide
 <400> 2
gccagtgatc accataagga g
                                                                     21
<210> 3
<211> 376
<212> DNA
<213> Gossypium hirsutum
<400> 3
atggaagtaa etttgttgta tagtaettea etetetattt tgtttgtget tetaettgtt
                                                                     60
aaacttgttt catcaaaacg aagaaaacag aatctaccac caagcccact acttaaactt
```

ccaatattag gccatctcta tctccttaaa ccacmtctat atcgcactct tgctaatctc	180
toaactaaat atggccctgt tttctctctt caattaggta cccgtcttgt tgtagcaatt	240
tecteaceat etgetgeega agaatgttte acaaaaaatg atategtttt tgetaatege	300
ceteggacaa tgaeggcaaa atteatagge tataacteta etacagteat tggtteteet	360
tatggtgatc actggc	376
<210> 4	
<211> 22	
<212> DNA	
<213> Artificial sequence '	
<220>	
<223> Single strand DNA oligonucleotide	
.400	
<400> 4	
ttotttggtt ottoaatgtt gg	22
•	
<210> 5	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 5	
ttgtaatgt cattgggagg tc	
	22
2210> 6	
211> 410	
2212> DNA	
213> Gossypium hirsutum	-
400> 6	
tetttggtt etteaatgtt ggaaattate ateteeatet etgattttae aacaaaatae	60
tcaatatcc atgggtgcat tcaaaggtta attacttatg ggaattattt aattttgttc	120
tacettata taegtacaca tgaaaaaatt gaetattaat tttgtaggta tteataaact	180
caaatccca aattegeete tgacagtgte tgetegtgga etcaacaaga tttcatgete	240

T/IL2004/000549

WO 2004/111183	PC'
actcaactta caaaccgaaa agctttgtta tgaggataat gataatgatc ttgatgaaga	300
acttatgeet aaacacattg etttgataat ggatggtaat aggagatggg caaaggataa	360
gggtttagaa gtatatgaag gtcacaaaca tattattcca aaattaaaag	. 410
	410
<210> 7	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 7	
gggtaatatt catttgattt toc	23
<210> 8	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
o-Egondereolide	
<400> 8	
aacctgcttt acatgtttca ag	22
<210> 9	
<211> 431	
<212> DNA	
<213> Gossypium hirsutum	
<400> 9	
gggtaatatt catttgattt toccaetttt atttatatet tgtttcattt teccatecae	60
aacaaatggc tactccaacg caatcataaa agcttggtgc acccaaacac ctcatccaca	
	120
acettgtgaa taettettat cacaaaatee caaaattaca teteetatea taaaaaaate	180
	-
· agattttcta aaagtgtcac tagacttagt gttagaccgt gcgttacgtg cccaactgaa	240

cacatattca ctaggtccaa aatgtcgtaa cgagcgcgaa aaaaacgcat gggctgattg

cattgaactc tatgaaaact caatcaacaa aatcaaaagc acagttgatc caaacacaaa

atgeteaget aetgatgete aaacatggtt aagtacatee ttaacaaate ttgaaacatg

300

360

4

taaagcaggt t	431
	421
<210> 10	
<211> 28	
<212> DNA	
<213> Artificial sequence .	
<220>	
<223> Single strand DNA oligonucleotide	
400	
<400> 10	
. ttttttttt tgtttgttgt gggggtgt	28
<210> 11	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 11	
ggaagtttaa gtagtggget tg	
3 3 3 3 3 5 C C C	22
<210> 12	
<211> 17	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
Strand bink origonucleotide	
<400> 12	
ttttgtttg ttgtggg	
	17
•	
<210> 13	
<211> 20 <212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
	•
<400> 13	
gtgggettgg tggtagatte	20
	20

<210> 14

<211> 3284

<212> DNA

<213> Gossypium hirsutum

<400> 14

tttttgtttg ttgtgggggt gtcgctcagc ccctactcat ccaagggtta ttcaaaaaat aaaataaaaa taattgcatc aattttaaaa aaaaaaagat ggcaaattga caatcatatt 120 aaagatggta ggtgtaactt cactacatta tttattgtgt cotttaagag ctcaaatcct 180 ttgetttett aaataaaaat aaaaaaagea agaaaattat aetaaeteet attteaeagg 240 gootecattg aagtottttg atttggtagt tgataaagtt ataaccgaat gactaagagc 300 ctgtttggat cagtttaaaa gctggtcaaa ctgacttaca agctgatttt tgacttattt agetgtttga caataetgaa aataaettat tttaagttaa aaaaaaaata ttattttaag 420 ccaaaagtta aaagttgggg gagaggtgct tttctttttt agcttataag ttgttttaag 480 ttgaccacat ttttatgttt ttgcccttaa tatttttata caatctccaa attagaacat aaccetaaca tetetttett ecatttttee etttteaegt ttgacatage aactteagea 600 cttttatcca aacacataac tgctatattt taaaaataag tttcagcact ttcaaaagta 660 cttttttaaa gttgetttta ttaageeeat eeaaaegege eetaataaat etetttaaet ttgtcgtata ttagctctat atttcaacaa atatagttta tctttattct taacgtattc 780 atgttctttt caatttgtct tatttattac tattatatga ttatagtttt ttatacatat 840 gatatgtttc gtctagagta agtcatgttt tatctagaat aagtctattt taaacaaaat 900 960 ggatgccatg totttattta ottotttttt ogatttgaaa ttgtaatttt ttttataaat 1020 ttgatggtat accgctcaaa cattttgtaa tatttttatt tatacgtatc tttttttata 1080 gacaatttat tttttgatta ttaaaattta tgtttagtaa ttaaaatatg ttaattooto 1140 tgataaaata aatgtttata tttcatgaag tattcaatat atcagacotc caacatctaa 1200 cacaagattt tcatgttata ttttgtgtaa agttatattc ttatgttaaa cttacatacg 1260

aaaggattta gatttaaact tagctatata aattaaaatt ttctaatatc aattagggga 1320 taaacgtgtg atgcacgcac gttccgagaa ttagttatta ttattaatat atgaagtett 1380 attgatcaaa aatcacgcac gttccgagaa ttagttatta ttattaatat atgaagtctt 1440 attgatcaaa aagaaaaaaa ctcacaaaat acgccaacgc atactttcta ttttaatacg 1500 ctttgcatag ataaaaatat ttgtaggatt ttgtgttact actattagtc cattactatg 1560 acctattgtg aaaagtgaaa acatgatttt tacaaaagaa tctcttaata aaatttattg 1620 attattattt ctttctaggc gggggaaaat aagtagtttg ataaatattt ttttaagaat 1680 ttgtgatttt taattgttcg aaagttaaaa cottatagtt agottacato toatattaat 1740 tttaccacta ttgcaatatt ttcatatcta aactatgctt ttctatgaat ttctttaatt cttttaaatt ttcttaaaat cttaatatat tttctacata ttttgtatta tattataaat 1860 ttaaaaatat agggggtcat ggcttacgtt gcttttcttg gtcatcactt gattggttct 1920 agaagatgta gatgtateta tettggeata caaggetaca aageagecag agagteeteg 1980 gaatttttat ttttttact tttcattttt gaaaaaagta agaaagtaca tatattttt 2040 ttettattae aetttttgae atatttgtat tgeattaagg teaagtaaaa aagtgataae 2100 taaatccaaa gagagagtag taatcataca gaaaaaattt attacctacg ggatataatt 2160 attatcagtt gtatgaggct tatttagctg ccacatatta aaaagactca cctttcactt 2220 teattteatt teettatete ttttatttta acetttttet tetgtaettt taetetette 2280 coaactettt cttgtctttt tctatttgtt attaacattt aatataattt tattttttc aatccgacat ttgcattaaa attagaatat tttaaattta aaattgtgta aggctttatt 2400 caaagaaata tataatctat caaaaaagaa tttcatattc aaaatttgaa ctcgagactt 2460 ctaattaagt aagaaataaa tatcatcctg tactccatca tatatttgag gaaaaaccaa aataggtgtg tagaaatatt taaaattaat ttttttggat gagttttaag gaattgaaga 2580 aagtgcaaca acaaaaaata ataattgtga aattaatttt ttgtttttgc atttattttc 2640 taatttgatt tttttgaata atatcaaaag tgcactttat atatataaaa ctcattaaac 2700 aattaaattt gaatttttaa otattoatoa aacaattgat ggggttottg ottaactaga 2760

					•	7		
	. ggtt	ttaagt	ttcaaatttt	aaatacaaaa	aattcttgtt	gacaacatat	aatcgaattt	2820
	taaca	acaaat	attgaatata	aaataaaata	taagaagagt	taataagtag	gggaaaaaat	2880
	gaaga	acagt	tgggaggaaa	aagacggtaa	aaaaaagggt	taaaaatgaa	agaaaaagga	2940
	aatgt	aatga	aatgaagtga	aatatggatc	ccattaacac	gttgcagcca	aacaaggcct :	3000
	tatac	aaccg	acaataatta	tatetegett	aaaataaaat	tttttgtatc	acgcgtaata	3060
	aattt	gaacc	aatattttct	tgagtggacc	cataagttga	aaagtctagg	ctggttcaac	3120
							gagatatgga	3180
•	agtaa	ctttg	ttgtatagta	cttcactctc	tattttgttt	gtgcttctac	ttgttaaact	32 <u>4</u> 0
	tgttt	catca	aaacgaagaa	aacagaatct	accaccaagc	ccac		3284
	<210>	15						
	<211>			•			•	
	<212>						•	
			ficial sequ	ence				
	<220>							
	<223>	Sing	le strand D	ND old			•	
			-c scrand b	NA OIIGONUC	leotide	-		
	<400>	15						
	gttgag	gtcca (cgagcagaca (a				21
	<210>	16						
	<211>							
	<212>				•			
	<213>	Artif	icial seque	ence				
	<220>							
	<223>	Singl	e strand DN	M oligonuc]	leotide			
	<400>	16						
•	cgagca	gaca c	tgtcagagg					20
				•				20
	<210>	17						
•	<211>	1337						
•	<212>	DNA						
. •	<213>	Gossy	pium hirsut	um				
	:400>	17						
t	ttttgt	ttg t	tgtgggggt g	ttaaatggt g	ggttgggtt g	aaattggaa a	tattacaat	60

WO 2004/111183

PCT/IL2004/000549

gggtttgaat agaaattggg ttgggttaga cccgcccaaa tttactttga actcaaatga 120 gctaaaaata ggttgggcct tgacccgccc aatttgatcc gattaatctt agttatttaa 180 catattgata titaacttit ataatcacat titgaagtic egiteaagaa tittitgita 240 aaaaaaagtaa caaatggata gataaatcat aaaaaaaggca acaaatcgat aataatttat 300 attgtaaata taggaacata tottaatact aagttotaaa acgggttgaa attggagatt 360 gaattagget taattgagaa ttetetteaa ataggttaag ettgaatggg tegagattga 420 acceaattca aattatettg ageceaacce ttaaaattet gggegaattg ggeatgttae 480 catgtttggg ttcattttta acgcccctag cgtagtcgaa agaagtcaat ccatgaggtt 540 tgtaaaacaa atgcgaataa tttaccctac cattgagctt gttagtcata tggtgtagca 600 aaatggtaga ttatcgaaaa aatatcttaa ttatgettea tagttataat ttgttaatta 660 caattagtag ctacatgtta tatggaggag agtggtgagc gagattggga gaggaaagag 720 agaagtgagt gagacaaggt agagagtggg agagaggcga actgcatatg catatttgtc 780 aaaataattg tatatatgta actggtatac atacgtattc gtatatctgg tgagtgagga 840 gagaaaagag agaagcgagc gagattggaa gaggaaagag agagccgagc gagagaggac 900 aataatttat gtaattegea teteatttgt ataattaatt ttgttegaaa tgeggtteaa 960 tataattttt taaccataag cataaacaac cctatataga actattgatc aatatagaac 1020 tattgateta ttgateaaaa gagteataee ataattetat ttaaacaeea cetecettgt 1080 ttcacttcac aataaaataa atttgagtaa taaagcatga gttctttggt tcttcaatgt 1140 tggaaattat catctccatc tctgatttta caacaaaata catcaatatc catgggtgca 1200 ttcaaaggtt aattacttat gggaattatt taattttgtt cataccttat atacgtacac ; 1260 atgaaaaaat tgactattaa ttttgtaggt.attcataaac ttcaaatccc aaattcgcct 1320 ctgacagtgt ctgctcg 1337

<210> 18

<211> 22

<212> DNA

<213> Artificial sequence

WO 2004/111183

<220>		
<223>	Single strand DNA oligonucleotide	
<400>	18	
attcac	aagg ttgtggatga gg	
		22
<210>	19	
<211>	20	
<212>	·	
<213>	Artificial sequence	•
<220>		
<223>	Single strand DNA oligonucleotide	
<400>	19	
gatgagg	gtgt ttggggtgcac	20
		20
<210>	20	
<211>	1906	
<212>	DNA	
<213>	Gossypium hirsutum	
<400>	20	
ttttgt	ttg ttgtgggggt gtcattgagt cttttcaagg tgtgaatctt ttaacgaaaa	60
	tet gataccaatt gaagaaacet taccccagaa cacgaaccag gttcgtgtaa	
		120
lrrgerr	tta agtaaagaca gagtaaagac acaaacactt attgaattaa aaaccttcct	180
gctcaa	gga aggaaaaacc tcgttttatt aattcaacta taagattttg tgattacaac	240
caataa	tca aaaagtetta tetetaetae teeetegatt gaeteeaate gateteteea	300
aaggtc	aaa cccacetttt gttacaatte tcacagaaac tcaaccetac aaagagecaa	360
	cet tgtacaacte teacagaaac acaaccetac aagaagtcaa acceactect	420
		420
geacaa	ete teacagaaac teaaccetae aagaageeaa acceaeteet tgtacaataa	480
tegtaad	ett acaatcaaga acgaaacaag aagatagttt tacacgttga aaaccttctc	540
ctcaaga	at gttttaaacg tagtaatcct atcaaccttg aagacttcaa tttgataaat	600
attetec	et tgttetetge gtgaagtegt egttttette etetgeeteg tgetettett	660
agagtt	tg ttttgeettg tgeaateett tttgataagg taaggaagtt atgittaaae	. 720

aagaattccc ttttaaagta caatccttat tatatacaac ttccttcctt aataatatat 780 ttaaggtttt ccttatttgt atcaacttat acctttaata tattattttt ggctttgaca 840 aataactota ttttcttgat tacttggctg acccacttta ctcgatcttg gactcgagct 900 tggettettt tgetgegtae atttgetaet gattatttge gettettgte tatcateaaa 960 acatgaatta tegatteaat catattetat eagetaetat ttagttggaa tgtttgagaa 1020 cacacaaaag tttttcaaaa cttgaactga aatgtctaat aaaaacactc tatctatcat 1080 atttttagat ctcaattgaa ataacatatt atgattcgat tctctaaaaa taaaaatttc 1140 atctaacgtg tggtaggtaa tacatatagg aatacgccct ctctagcttc ctgttttcca 1260 ctttttaaag ttggttcctt gtttcatcag tttaatttcc ttatcaagtc atcaaacaca 1320 cataattacc cgcagaattt taattttttt ttaattatta catttatgat tagattattt 1380 tettecaaaa eetaagaaat ageeacacae gtatggttet eactatteat geettaagga 1440 aaaaaaataa aaaagaggat ggtgcatccc catcacttag tttttgacat tccgttgtac 1500 ctcttatatt cctatatcta tataaagaac ccaaaagaca ccaaatacaa tcacagtctc 1560 totcaaaaaa aaaaaacata ttacaaactc cttacgatgg gtaatattca tttgattttc 1620 ccacttttat ttatatcttg tttcattttc ccatccacaa caaatggcta ctccaacgca 1680 atcataaaag cttggtgcac ccaaacacct catccacaac cttgtgaata cttcttatca 1740 caaaatccca aaattacatc teetateata aaaaaatcag attttetaaa agtgteacta 1800 gacttagtgt tagaccgtgc gttacgtgcc caactgaaca catattcact aggtccaaaa 1860 tgtcgtaacg agcgcgaaaa aaacgcatgg gctgattgca ttgaac 1906

<210> 21

<211> 31

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 21

aatttaagct	tgtgtcgctc	agecectaet e	11	
•			3:	L.

<210> 22 <211> 35 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 22 aaattgtcga catctcaact tgttgcactg aattg 35 <210> 23 <211> 3157 <212> DNA <213> Gossypium hirsutum <400> 23 tcaattttaa aaaaaaaag atggcaaatt gacaatcata ttaaagatgg taggtgtaac ttcactacat tatttattgt gtcctttaag agctcaaatc ctttgctttc ttaaataaaa 180 ataaaaaaag caagaaaatt atactaactc ctatttcaca gggcctccat tgaagtcttt 240 tgatttggta gttgataaag ttataaccga atgactaaga gcctgtttgg atcagtttaa 300 aagetggtca aactgactta caagetgatt tttgacttat ttagetgttt gacaatactg 360 aaaataactt attttaagtt aaaaaaaaaa tattatttta agccaaaagt taaaagttgg 420 gggagaggtg cttttetttt ttagettata agttgtttta agttgaccac atttttatgt 480 ttttgccctt aatattttta tacaatctcc aaattagaac ataaccctaa catctctttc 540 ttccattttt cccttttcac gtttgacata gcaacttcag cacttttatc caaacacata 600 actgetatat tttaaáaata agttteagea ettteaaaag taetitttta aagttgettt 660 tattaagece atecaaaege geeetaataa atetetttaa etttgtegta tattagetet 720 atatttcaac aaatatagtt tatctttatt ettaaegtat teatgttett tteaatttgt 780 cttatttatt actattatat gattatagtt ttttatacat atgatatgtt tcgtctagag

taagteatgt tttatetaga ataagtetat tttaaacaaa atgtaattea attagtatga

840

900

WO 2004/111183

aaatattttt ctctatatat tttaatgtaa tgtcttttt ttggatgcca tgtctttatt 960 tacttctttt ttcgatttga aattgtaatt ttttttataa atttgatggt ataccgctca 1020 aacattttgt aatattttta tttatacgta totttttta tagacaattt atttttgat 1080 tattaaaatt tatgtttagt aattaaaata tgttaattcc tctgataaaa taaatgttta 1140 tatttcatga agtattcaat atatcagacc tccaacatct aacacaagat tttcatgtta 1200 tattttgtgt aaagttatat tottatgtta aacttacata cgaaaggatt tagatttaaa 1260 cttagctata taaattaaaa ttttctaata tcaattaggg gataaacgtg tgatgcacgc 1320 acgttccgag aattagttat tattattaat atatgaagtc ttattgatca aaaatcacgc acgttccgag aattagttat tattattaat atatgaagtc ttattgatca aaaagaaaaa aactcacaaa atacgccaac gcatactttc tattttaata cgctttgcat agataaaaat 1500 atttgtagga ttttgtgtta ctactattag tccattacta tgacctattg tgaaaagtga 1560 aaacatgatt tttacaaaag aatctcttaa taaaatttat tgattattat ttctttctag 1620 gogggggaaa ataagtagtt tgataaatat ttttttaaga atttgtgatt tttaattgtt 1680 cgaaagttaa aaccttatag ttagcttaca tctcatatta attttaccac tattgcaata ttttcatatc taaactatgc ttttctatga atttctttaa ttcttttaaa ttttcttaaa 1800 atottaatat attttotaca tattttgtat tatattataa atttaaaaat atagggggto 1860 atggettacg ttgetttet tggteateae ttgattggtt ctagaagatg tagatgtate tatettggca tacaaggeta caaagcagee agagagteet eggaattttt attttttta 1980 cttttcattt ttgaaaaaag taagaaagta catatattt ttttcttatt acactttttg 2040 acatatttgt attgcattaa ggtcaagtaa aaaagtgata actaaatcca aagagagagt agtaatcata cagaaaaaat ttattaccta cgggatataa ttattatcag ttgtatgagg 2160 cttatttage tgccacatat taaaaagaet cacetttcae tttcatttca tttcettate 2220 tettttattt taacettttt ettetgtact tttactetet teccaactet ttettgtett tttctatttg ttattaacat ttaatataat tttattttt tcaatccgac atttgcatta 2340 aaattagaat attttaaatt taaaattgtg taaggettta tteaaagaaa tatataatet 2400

				-	•		
atcaaa	aaag	aatttcatat	tcaaaatttg	aactcgagac	ttctaattaa	gtaagaaata	2460
aatatc	atcc	tgtactccat	catatattig	aggaaaaacc	aaaataggtg	tgtagaaata	2520
tttaaa	atta	attttttgg	atgagtttta	aggaattgaa	gaaagtgcaa	caacaaaaaa	2580
taataa	ttgt	gaaattaatt	ttttgtttt	gcatttattt	tctaatttga	ttttttgaa	2640
taatat	caaa	agtgcacttt	atatatataa	aactcattaa	acaattaaat	ttgaattttt	2700
aactat	tcat	caaacaattg	atggggttct	tgcttaacta	gaggttttaa	gtttcaaatt	2760
ttaaat	acaa	aaaattcttg	ttgacaacat	ataatcgaat	tttaacacaa	atattgaata	2820
taaaata	aaaa	tataagaaga	gttaataagt	aggggaaaaa	atgaagaaca	gttgggagga	2880
aaaagad	ggt	aaaaaaaagg	gttaaaaatg	aaagaaaaag	gaaatgtaat	gaaatgaagt	2940
gaaatat	gga	tcccattaac	acgttgcagc	caaacaaggc	cttatacaac	cgacaataat	3000
tatatct	ege	ttaaaataaa	attttttgta	tcacgegtaa	taaatttgaa	ccaatatttt	3060
cttgagt	gga	cccataagtt	gaaaagtcta	ggctggttca	acagccccat	catctatact	3120
attatat	ata	aaccaattca	gtgcaacaag	ttgagat			3157
<210>	24						
	30						
	DNA						
<213>	Arti.	ficial sequ	ence				

· <220>

<223> Single strand DNA oligonucleotide

<400> 24

cctagtcgac ggtgttaaat ggtgggttgg

30

<210> 25

<211> 27

<212> DNA

<213> Artificial sequence

<223> Single strand DNA oligonucleotide

<400> 25

ttggatccga gcagacactg tcagagg .

<210> 26 <211> 1320 <212> DNA

<213> Gossypium hirsutum

<400> 26

ggtgttaaat ggtgggttgg gttgaaattg gaaatattac aatgggtttg aatagaaatt 60 gggttgggtt agacccgccc aaatttactt tgaactcaaa tgagctaaaa ataggttggg 120 cettgacceg cecaatttga teegattaat ettagttatt taacatattg atatttaact 180 tttataatca cattttgaag ttccgttcaa gaattttttg ttaaaaaaag taacaaatgg 240 atagataaat cataaaaaag gcaacaaatc gataataatt tatattgtaa atataggaac 300 atatettaat actaagttet aaaaegggtt gaaattggag attgaattag gettaattga 360 gaattetett caaataggtt aagettgaat gggtegagat tgaacccaat tcaaattate 420 ttgageccaa ecettaaaat tetgggegaa ttgggeatgt taccatgttt gggtteattt 480 ttaacgcccc tagcgtagtc gaaagaagtc aatccatgag gtttgtaaaa caaatgcgaa 540 taatttaccc taccattgag cttgttagtc atatggtgta gcaaaatggt agattatcga 600 aaaaatatot taattatgot toatagttat aatttgttaa ttacaattag tagotacatg 660 ttatatggag gagagtggtg agcgagattg ggagaggaaa gagagaagtg agtgagacaa 720 ggtagagagt gggagagagg cgaactgcat atgcatattt gtcaaaataa ttgtatatat 780 gtaactggta tacatacgta ttcgtatatc tggtgagtga ggagagaaaa gagagaagcg agcgagattg gaagaggaaa gagagagccg agcgagagag gacaataatt tatgtaattc 900 gcatctcatt tgtataatta attttgttcg aaatgcggtt caatataatt ttttaaccat 960 aagcataaac aaccctatat agaactattg atcaatatag aactattgat ctattgatca 1020 aaagagtcat accataattc tatttaaaca ccacctccct tgtttcactt cacaataaaa 1080 taaatttgag taataaagca tgagttettt ggttetteaa tgttggaaat tateatetee 1140 atetetgatt ttacaacaaa atacatcaat atecatgggt gcattcaaag gttaattact 1200 tatgggaatt atttaatttt gttcatacct tatatacgta cacatgaaaa aattgactat 1260

taattttgta ggtattcata aacttcaaat cccaaatteg cctctgacag tgtctgctcg <210> 27 <211> 32 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 27 tttccaaget tgacetgete tgataccaat tg 32 <210> 28 <211> 29 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 28 coggatocto gtaaggagtt tgtaatatg 29 <210> 29 <211> 1537 <212> DNA <213> Gossypium hirsutum <400> 29 gacctgetet gataccaatt gaagaaacet taccccagaa cacgaaccag gttegtgtaa 60 gttgctttta agtaaagaca gagtaaagac acaaacactt attgaattaa aaaccttcct 120 cgctcaagga aggaaaaacc tcgttttatt aattcaacta taagattttg tgattacaac 180 teaataatea aaaagtetta tetetaetae teeetegatt gaeteeaate gateteteea 240 aaaggtcaaa cccacctttt gttacaattc tcacagaaac tcaaccctac aaagagccaa 300 acceaetect tgtacaaete teacagaaac acaaeeetae aagaagteaa acceaetect 360 tgtacaactc tcacagaaac tcaaccctac aagaagccaa acccactcct tgtacaataa 420 ctcgtaactt acaatcaaga acgaaacaag aagatagttt tacacgttga aaaccttctc 480 . actcaagaat gttttaaacg tagtaatcet atcaacettg aagaettcaa tttgataaat 540

aattctccct	tgttctctgc	gtgaagtcgt	catttt		f tgetettett	
						600
atagagtttg	ttttgccttg	tgcaatcctt	tttgataagg	taaggaagtt	atgtttaaac	660
aagaattccc ,	ttttaaagta	caatccttat	tatatacaac	tteetteett	aataatatat	720
ttaaggtttt	ccttatttgt	atcaacttat	acctttaata	tattatttt	ggctttgaca	780
aataacteta	ttttcttgat	tacttggctg	acccacttta	ctcgatcttg	gactcgagct	840
tggcttcttt	tgctgcgtac	atttgctact	gattatttgc	gettettgte	tatcatcaaa	900
acatgaatta	tcgattcaat	catattctat	cagctactat	ttagttggaa	tgtttgagaa	960
cacacaaaag	tttttcaaaa	cttgaactga	aatgtctaat	aaaaacactc	tatctatcat	1020
atttttagat	ctcaattgaa	ataacatatt	atgattcgat	tctctaaaaa	taaaaatttc	1080
gtagctttaa	gagattatta	atatattaag	tgataattta	atgttagtta	attagttaaa	1140
atctaacgtg	tggtaggtaa	tacatatagg	aatacgccct	ctctagcttc	ctgttttcca	1200
ctttttaaag	ttggttcctt	gtttcatcag	tttaatttcc	ttatcaagtc	atcaaacaca	1260
cataattacc (cgcagaattt	taatttttt	ttaattatta	catttatgat	tagattattt	1320
tettecaaaa o	cctaagaaat	agccacacac	gtatggttct	cactattcat	gccttaagga	1380
aaaaaaataa a	aaagaggat (ggtgcatccc	catcacttag	tttttgacat	tccgttgtac	1440
ctcttatatt c	ctatatcta (tataaagaac	ccaaaagaca	ccaaatacaa	tcacagtctc	1500
tctcaaaaaa a	aaaaacata 1	ttacaaactc	cttacga			1537

<220>

<223> Single strand DNA oligonucleotide

<400> 30

aaatctagac taccatcgct agtaatcgtg

30

<210> 31

<211> 24

<210> 30

<211> 30

<212> DNA

<213> Artificial sequence

<212>	ראוא			17		
	Artificial s					
12200	ALCILICIAL 8	equence	•	•		
<220>						
<223>	Single stran	d DNN oliver				
		a DNA OIIGOI	Incleotide			
<400>	31					
gttgaa	gaac tgcatccc	gg gagg				
						24
<210>	32					
<211>	1834					
<212>	· - ·	•				
<213>	Nicotiana tak	pacum				
<400>						•
tetagae	tac categotas	rt aatcgtggc	a ataactacc	c taactatag	c atttattgct	60
accaaat	aaa atttggcag	c taatcataa	t tttttgtca	t gaatcaata	g ttattgtage	120
aacaget	atc tcttagcca	c aataaatta	t ttaaaataa;	a atattatag	c taaataaata	180
ccccgc	ttt aagttotaa	a agcttgtgg	c aatagttaaa	a tgatatagt	c acagatttat	240
tootata	att maattate					
-330000	att gaattatgt	c gctaatttc	t tagttttttg	g ccacgagtt:	a aaaattacca	300
atageta	tag taactttt	2 252222				
•	tag taactttt	a accacaataa	a aatatttgaa	agaaaatati	gtagctaaat	360
gaatatt	ttt toottcaag	t tattaaaa	• • • • • • • • • • • • • • • • • • •			
	3	·	- tgtggeaata	ı taggttaaat	tagccacatg	420
tttcttg	ctt taatagaat	t ttgtaggras	testtasett	h		
		- J J - Guo	CCALCAACLC	ccaccacgag	f ttgaacttaa	480
tataacaa	aca ataaccttt	aaccataata	aagggattta	224224		
			. uugegaeeea	aaccaaacat	tactaaataa	540
ataactti	tgc tttcaagtt	: ctataaaatc	atoocaatao	tosttagest		
						600
aaccacga	aat atattgcaac	gataaattct	gtaactaatc	attagtttt	acasasas	
						660
aaatttt	cg tcacagtago	aatcttctag	gcacattaaa	aatttgaaac	aaaattttat	720
						720
agtcaaat	aa atatttatct	tcttattta	agaaaataaa	aatagttaga	taatagttag	780
						700
tactattt	gt catgaaaata	tcaatagata	caaatttaaa	gtgactataa	atttacgagt	840
						040
ccactata	ct ttagtcgtac	agtttgcaat	aatagtattt	taaccacaat	tagttatatg	900
-acadaat	aa cataagtgaa	taactttttt	tcaatgagaa	aataagagtt	gctcaaacaa .	960
uugt	ta caaaaattta	accctaactg	taaaagttat	atttttccaa	aataacataa	1020

1Ω

				.0		
actatagtaa	ttatatatag	tttgaagtat	taataaaatt	taaatatgca	aaagttaatt	1080
ttaataaacc	atttgtatgc	ctaacttgta	gcctctaaac	tattttattt	gctttattta	1140
tcaaactcat	attttattt	attgcacctt	gttagttttg	gacgttaatt	atatatattt	1200
ggtgtaaaat	ttaaaatata	ttaacatttg	tggagaattt	atgtatgcct	ggttcttaac	1260
tattttttt	tatataactg	gttagagtaa	tttcttatat	ttcagtattt	atttttaaat	1320
aagtcctcat	aaattgaaga	ctttaaaagt	ttttgtgtca	tteetettt	tatttaagaa	1380
attgaagaat	tccgctaaat	ttcatatttc	cgctgttatt	taactgttta	tttcccttgt	1440
taatataatt	ggtaagaagt	tttaaaataa	aggagttaat	gattttctag	gttcatggct	1500
tgcctagctt	ctacgagtaa	gcgccatcac	gactcccgag	gataaggaaa	teegggtegt	1560
agcattcact	cacaaaaatt	actaaaaaca	aagtttaccc	ttctcccaaa	agtaaatttc	1620
atatttggct	ccacataatg	tgttcaatga	gtcaagtgaa	gtacttttca	tgacaaaaaa	1680
aagttgctga	aaaatgcata	tctcatattt	tttttttaga	gaaatcccat	ttettgeeta	1740
aacgaaagcc	tataaaagag	catatattgc	aacaacagtt	tgcagaaact	atcaagtcaa	1800
ataatecece	ctttaattcc	ctcccaaacc	cggg			1834

<210> 33

<211> 32

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 33

aaatctagat aagttgataa agctaatttc tc

32

<210> 34

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 34

tttcccggga cctggaggca atc

19 23

<210> 35

<211> 1969

<212> DNA

<213> Nicotiana tabacum

<400> 35

-12003 35	•		•			
tctagataa	g ttgataaag	c taatttctc	a ttttagetad	categetag	t aatcgtggca	60
ataactacc	c taactatag	c atttattgc	t accaaataaa	atttggcag	c taatcataat	120
tttttgtca	t gaatcaata	g ttattgtag	c aatagttato	tettageca	c aataaattat	180
ttaaaataa	a atattatag	c taaataaat	a tttttgettt	aagttotaa	a agettgtgge	240
aatagttaa	a tgatatagt	c acagattta	t tggtataatt	gaattatgti	gctaatttct	300
tagttttt	g ccacgagtt:	a aaaattacc	a atagotatag	taacttttt	a atcacaataa	360
aatatttga	a agaaaatati	t gtagctaaa	t gaatatttt	tccttcaagt	: tattaaaagt	420
tgtggcaata	a taggttaaat	: tagccacat	j tttettgett	taatagaatt	ttgtagctaa	480
tcattaact	: ttaccacgag	j ttgaacttaa	1 tataacaaca	ataaccttt	aaccataata	540
aagcgattta	aatcaaatat	tactaaataa	ataactttgc	tttcaagttt	ctataaaatc	600
atggcaatag	r tcattacgat	aaaatgatat	aaccacgaat	atattgcaac	gataaattct	660
gtaactaato	attagtttt	gcgacgaggt	aaattttccg	tcacagtage	aatcttctag	720
gcacattaaa	aatttgaaac	aaaattttgt	agtcaaataa	atatttatct	tcttatttta	780
agaaaataaa	aatagttaga	taatagttac	tactatttgt	catgaaaata	tcaatagata	840
caaatttaaa	gtgactataa	atttacgagt	ttactatact	ttagtcgtac	agtttgcaat	900
áatagtattt	taaccacaat	tagttatatg	tacaaaataa	cataagtgaa	taacttttt	960
tcaatgagaa	aataagagtt	gctcaaacaa	tatcaagtta	caaaaattta	attttaactg	1020
taaaagttat	atttttccaa	aataacataa	actatagtaa _.	ttatatatag	tttgaagtat	1080
taataaaatt	taaatatgca	aaagttaatt	ttaataaacc	atttgtatgc	ctaacttgta	1140
Jcctctaaac	tattttattt	gctttattta	tcaaactcat	attttattt	attgcacctt	1200
jttagttttg	gacgttaatt	atatatattt	ggtgtaaaat	ttaaaatata	ttaacatttg	1260

tggag	aattt	atgtatgcct	ggttcttaac	tattttttt	tatataactg	gttagagtaa	132
tttct	tatat	ttcagtattt	atttttaaat	aagtcctcat	aaattgaaga	ctttaaaagt	138
ttttg	tgtca	tteetettt	tatttaagaa	attgaagaat	tccgctaaat	ttcatatttc	144
						tttaaaataa	150
						gcgccatcac	156
						actaaaaaca	162
						tgttcaatga	168
			tgacaaaaaa				174
			ttcttgccta				1800
			atcaagtcaa				1860
			cccttttcct				1920
atggaa	igaat	tccaatagcc	aaaccaaaag	attgcctcca	ggtcccggg		1969
<210>	36						
<211>	32						
<212>	DNA						
<213>	Arti	ficial sequ	ence				
<220>							
<223>	Sing	le strand D	NA oligonuc	leotide			
<400>	36						
tataag	cttt a	agtttaaat	cctattgtag	tg			32
<210>	37			•			
<211>	25						
<212>	DNA						
<213>	Artif	icial seque	ence				
<220>							

<220>
<223> Single strand DNA oligonucleotide

<400> 37
cggatccatt aatcacaaga aaaac

PCT/IL2004/000549

. 21	
<210> 38	
<211> 625	
<212> DNA	
<213> Gossypium hirsutum	
<400> 38	
aagotttaag tttaaatoot attgtagtgt tatttataaa aaaaatgaga aaagataaaa	60
atacctttat attaatattt gttatattgt aaaataagga tatttttaac aaattttcaa	120
ttgaatagat gtttgggtga atcctaatac caattaaagt atatatacac aaacaattat	180
aaatcaaatt acctttaata aaatggtatc attcaattca	240
aaatacatca aatgtaaatc tcatgtttat aagaaaacac gtagaaaaaa gttaaaccaa	300
tatttgagtc ctagctgtgg aggcatgatt gagtgaaatc aaatggacgc tggttttaat	360
tgtattgaaa gaaaccaata atcacgtagg ttggcagttg aacataattg aatggtetca	420
acttttaatg tggtgttaat gtttggatcg gataatctca acttacctaa tagctaggaa	480
agtaaaatto aaacatcaco cgctactact tttggctata aaaaccctcc taccctcaag	540
ccctaaccac gacaatcacc aatagtacta ctactccaag caagtatttt ccttacacgt	600
ttgtttttct tgtgataatg gatcc	625
<210> 39	
<211> 627	
<212> DNA .	
<213> Gossypium hirsutum	
<400> 39	
aagetttaag tttaaateet attgtagtgt tatttataaa aaaaatgaga aaagataaaa	60
atacctttat attaatattt gttatattat aaaataagga tatttttaac aaattttcaa	120
ttgaatagat gtttgggtga atcctaatac caattaaagt atatatacag caaacaatta	180
taaatcaaat tacttttaat aaaatgctat cattcaattc aatgacaata aatgcattta	240
taaatacatc aaatgtaaat ctcatgttta taagaaaaca cgtagaaaaa aagttaaacc	300
aatatttgag tootagetgt ggaggcatga ttgagtgaaa tcaaatggac getggtttta	360

attotattga aagaaaccaa taatcacgta ggttggcagt tgaacataat tgaatggtct

caacttttaa tgtggtgtta atgtttggat cggataatct caacttacct aatagctagg

420 .

aaagtaaaat tcaaacatca cccgctacta cttttggcta taaaaaccct cctacccto	a 540
agecetaace aegacaatea ecaatagtae tactaeteea ageaagtatt tteettaea	rc 600
gtttgttttt cttgtgataa tggatcc	627
<210> 40	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 40	
aaaatttggg atctagaagg tgagg	25
·	2.3
<210> 41	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 41	
ctggatccta ttgctagctt tggatgaag	
55 55	29
<210> 42	
<211> 622	
<212> DNA	
<213> Lycopersicon pennellii	
<400> 42	
tctagaaggt gaggaacttt ttttaacaat atataagtaa gcattggtta taatttcaca	60
acaacattac ggtaaaacct ctataaatta atacccgata aattaataat ccctctaaaa	120
taatattttt ctaggatttt cgattagggc aatgaaaaaa atcaccattt tcaataaaat	180
aatgagataa tatattttca gaagacccct atataaatac atgggtccta ttaatatcat	240
aaattgatta ttattcaaaa gcataaatat atctaagata atttagtaaa aaaatgattc	300
attotgttt tttttttgtt aaaatttaaa tgtagttgaa gttcatttot aacatttcat	360

WO 2004/111183	PCT/IL2004/000549
23	
attgetteca agagetecaa ttttgtettt tegaaettea eeatagaaga gtteeagatg	420
cgataagtgt tteettaege gtaattggtt ecaaagttat agtateatat teaaetteat	480
categacatt gettttteeg atggtateea taaattette taagettatt tgaaatggag	
5 55 more danagettatt tgaaatggag	540
taatatttta tttggcccca acacattata taaggcaatg tatagcccta tgaatcttca	600
tocaaagota goaataggat oo	622
<210> 43	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
bright strain DNA oligonucleotide	
<400> 43	
atggaaaagc ttatggacag actaaaacac	30
	30
<210> 44	
<211> 30 <212> DNA	
<213> Artificial sequence	
1101110141 Seducine	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 44	
ctggatcctg ttgctagctt ttgaatgaaa	30
<210> 45	
<211> 1050	
<212> DNA	
<213> Lycopersicon esculentum	
aagettatgg acagaetaaa acaetttttt tttttaataa tattgtttge aagtgtacae	60
cgaaagatct acgttattat aacataatat tacgggtaaa gctagaagtc taattacgaa	100
	120
tttcatgaga tttaataact tttattttta ttatatttat atttaaaaag tattaaatat	180
atacaaattt aaactettaa aaccattgtt acaaaattta gaatecaaaa tgttaatatt	240
atqqtttcqc ctctqctaga cattagtaat care	
atggtttcgc ctctgctaaa cattactaat caaaattatc tttttgttta gagcattact	300 .

WO 2004/111183

actgtacaaa	tctaccaagt	ataaatataa	aagctgttaa	agaatttccc	cacacttatt	36
attottaato	ttccacctac	ccaatcacaa	atatattaaa	tgagceteta	aatttgccct	420
attgcgggta	atatgatcta	cctatcaatt	atttgtaatc	tagtcaaaaa	gatgccaaaa	486
aaatataata	ctccatctag	attgaaaatt	tttgtcaata	gaaaagaaga	gaaacatgat	54
aactttataa	aatattttac	ctctggtata	gttttgatat	agcgtataat	aataatatat	600
taatattaat	aaatgatgag	attagttatc	tttagaatgc	attctatctt	atgtctggtt	66
tgatgtatta	atgacaattt	tgtttctaca	accatgcatt	attactgatc	aatgtattgt	720
taaatgctaa	tacgttgatt	tgttatgtat	tagttacata	tacctatatg	ttttgtaata	780
agaáaaatga	tgtataacta	attaataagt	agtattatca	tgagtaaagt	tatttttctg	840
gtcagtagag	agcttctaag	aacaaaaact	aaataattgt	attgtatggc	tgctattcaa	900
aattccccac	ctaacgegte	ctggaataat	tgatatgact	tgaageegee	tctaaaatta	960
aataatattt	ggtgcttata	atgttttaca	tattatataa	agcaaggtat	agcccaatga	1020
attttcattc	aaaagctagc	aacaggatcc				1050
<27.0> 46						

<210> 46

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 46

aaaatttggg atctagaagg tgagg

25

<210> 47

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

· · <400> 47

acatgaaact ttgaatgett tg

<211> 30 <212> DNA

<210> 48	
<211> 754	
<212> DNA	
<213> Lycopersicon pennellii	
<400> 48	
•	
totagaaggt gaggaacttt ttttaacaat atataagtaa gcattggtta taatttcaca	60
acaacattaa aataaaa	
acaacattac ggtaaaacct ctataaatta atacccgata aattaataat ccctctaaaa	120
†22*2****	
taatattttt ctaggatttt cgattagggc aatgaaaaaa atcaccattt tcaataaaat	180
aatgagataa tatattttca gaagacecet atataaatac atgggteeta ttaatateat	240
aaattgatta ttattcaaaa gcataaatat atctaagata atttagtaaa aaaatgattc	300
tattetgttt tttttttgtt aaaatttaaa tgtagttgaa gtteatttet aacattteat	360
_	300
attgetteca agagetecaa ttttgtettt tegaaettea eeatagaaga gttecagatg	420
	420
cgataagtgt ttccttacgc gtaactggtt ccaaagttat agtatcatat tcaacttcat	400
	480
categaeatt gettttteeg atggtateea taaattette taagettatt tgaaatggag	
- Lugocatt Lyaaatggag	540
taatatttta tttggcccca acacattata taaggcaatg tatagcccta tgaatcttcg	
tacageteta egaatetteg	600
tecaaageta geaataatgs caagtttgtg taatagtagt agtacatete teaaaaetee	
5 5-5 Statement agradatoro transactor	660
ttttacttct tccaccactt gtttatcttc cactcctaag ccctctcaac ttttcctaca	
o was sold successive and coefficients	720
tggaaaacgt aacaaagcat tcaaagtttc atgt	
Jane County Color alge	754
<210> 49	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 49	
atggaaaagc ttatggacag actaaaacac	30
•	
-210. Ga	
<210> 50	

26

30

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 50

tteeegggae atgaaacttt gaatgetttg

<210> 51

<211> 1179

<212> DNA

<213> Lycopersicon esculentum

<400> 51

aagettatgg acagactaaa acaetttttt tttttaataa tattgtttgc aagtgtacae 60 cgaaagatct acgttattat aacataatat tacgggtaaa gctagaagtc taattacgaa 120 tttcatgaga tttaataact tttatttta ttatatttat atttaaaaag tattaaatat 180 atacaaattt aaactettaa aaccattgtt acaaaattta gaatecaaaa tgttaatatt 240 atggtttege etetgetaaa cattactaat caaaattate tttttgttta gagcattact 300 actgtacaaa totaccaagt ataaatataa aagotgttaa agaatttooc cacacttatt 360 attettaate ttecacetae ccaatcacaa atatattaaa tgageeteta aatttgeeet 420 attgogggta atatgatota cotatoaatt atttgtaato tagtoaaaaa gatgocaaaa 480 aaatataata ctccatctag attgaaaatt tttgtcaata gaaaagaaga gaaacatgat 540 aactttataa aatattttac ctctggtata gttttgatat agcgtataat aataatatat 600 taatattaat aaatgatgag attagttate tttagaatge attetatett atgtetggtt 660 tgatgtatta atgacaattt tgtttctaca accatgcatt attactgatc aatgtattgt 720 taaatgotaa taogttgatt tgttatgtat tagttacata taootatatg ttttgtaata 780 agaaaaatga tgtataacta attaataagt agtattatca tgagtaaagt tatttttctg 840 . gtcagtagag agcttctaag aacaaaact aaataáttgt attgtatggc tgctattcaa 900 aattccccac ctaacgcgtc ctggaataat tgatatgact tgaagccgcc tctaaaatta . 960 aataatattt ggtgcttata atgttttaca tattatataa agcaaggtat agcccaatga attttcattc aaaagctagc aacaatggca agtttgtgta gtaatagtag tactacttct

ctcaaaactc ctttcacttc ttracettca	
ctcaaaactc ctttcacttc tttaggttcc actccaaagc cttgtcaact tttcctacat	1140
ggaaaacgta acaaagcatt caaagtttca tgtcccggg	
5 Was Galecoggg	1179
<210> 52	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 52	
atggaaaagc ttatggacag actaaaacac	
Sound docadadeac	30
<210> 53	
<211> 26	
<212> DNA	
<213> Artificial sequence	
•••	
<220>	
<223> Single strand DNA oligonucleotide	
<400> 53	
aacccgggag ccgatgcagc taatgg	
110 5 151150kgc Caacgg	26
<210> 54	
<211> 1299	
<212> DNA	
<213> Lycopersicon esculentum	
<400> 54	
- 	
aagottatgg acagactaaa acacttttt tttttaataa tattgtttgc aagtgtacac	60
•	
cgaaagatet acgttattat aacataatat tacgggtaaa getagaagte taattacgaa	120
tttcatgaga tttaataact tttatttta tta	•
tttcatgaga tttaataact tttattttta ttatatttat atttaaaaag tattaaatat	180
atacaaattt aaactettaa aaccattgtt acaaaattta gaatccaaaa tgttaatatt	
•	240
atggtttege etetgetaaa eattaetaat eaaaattate tttttgttta gageattaet	
	300
actgtacaaa totaccaagt ataaatataa aagotgttaa agaatttooc cacacttatt	366
	360
attettaate ttecaeetae ecaateaeaa atatattaaa tgageeteta aatttgeeet	420
;	

28

attocooota	atatostota			,0		
	- ucucyaccea	. cctatcaatt	atttgtaatc	tagtcaaaaa	gatgccaaaa	480
aaatataata ,	a ctccatctag	attgaaaatt	tttgtcaata	gaaaagaaga	gaaacatgat	540
aactttataa	ı aatattttac	ctctggtata	gttttgatat	agcgtataat	aataatatat	600
taatattaat	: aaatgatgag	attagttatc	tttagaatgc	attotatott	atgtctggtt	660
tgatgtatta	atgacaattt	tgtttctaca	accatgcatt	attactgatc	aatgtattgt	720
taaatgctaa	tacgttgatt	tgttatgtat	tagttacata	tacctatatg	ttttgtaata	780
agaaaaatga	tgtataacta	attaataagt	agtattatca	tgagtaaagt	tatttttctg	840
gtcagtagag	agcttctaag	aacaaaaact	aaataattgt	attgtatggc	tgctattcaa	900
aattccccac	ctaacgcgtc	ctggaataat	tgatatgact	tgaagccgcc	tctaaaatta	960
aataatattt	ggtgcttata	atgttttaca	tattatataa	agcaaggtat	agcccaatga	1020
attttcattc	aaaagctagc	aacaatiggca	agtttgtgta	gtaatagtag	tactacttct	1080
ctcaaaactc	ctttcactțc	tttaggttcc	actccaaagc	cttgtcaact	tttcctacat	1140
ggaaaacgta	acaaagcatt	caaagtttca	tgcaaggtta	ccaatactaa	cggtaaccaa	1200
gatgaaacga	attctgtaga	tcgaaggaat	gttcttcttg	gcttaggagg	tetttatggt	1260
gttgctaatg	ctataccatt	agctgcatcg	gctcccggg			1200

<210> 55

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

<400> 55

gggatgaget acaacttget tggat

25 ·

<210> .56

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Single strand DNA oligonucleotide

29

<400> 56 ·	
ctaggagete tteagttteg gag	
5 5 5 5	23
<210> 57	
<211> 511	
<212> DNA	
<213> Homo sapiens	
<400> 57	
gggatgaget acaacttget tggatteeta caaagaagea gcaattttea gtgteagaag	60
	60
ctcctgtggc aattgaatgg gaggcttgaa tattgcctca aggacaggat gaactttgac	120
atccctgagg agattaagca gctgcagcag ttccagaagg aggacgccgc attgaccatc	180
tatgagatge tecagaacat etttgetatt tteagacaag atteatetag eactggetgg	240
aatgagacta ttgttgagaa cctcctggct aatgtctatc atcagataaa ccatctgaag	300
acagteetgg aagaaaaact ggagaagaa	
acagteetgg aagaaaaact ggagaaagaa gattttacca ggggaaaact catgagcagt	360
ctgcacctga aaagatatta tgggaggatt ctgcattacc tgaaggccaa ggagtacagt	
	420
cactgtgcct ggaccatagt cagagtggaa atcctaagga acttttactt cattaacaga	
	480
cttacaggtt acctccgaaa ctgaagagct c	
	511
<210> 58	
<211> 592	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic human growth hormone gene	
<400> 58	
ceegggatgt teceaactat tecattetet	
cccgggatgt tcccaactat tccattgtct aggettttcg ataatgetat gttgaggget	60
cataggttgc atcagttggc tttcgatact taccaggagt tcgaggaggc ttacattcca	
Should Callaggage tegaggagge tracatteca	120
aggagcaga agtactcatt ccttcagaat ccacagaett etttgtgett etetgagtet	
	180
ttccaactc catcaaatag ggaggagact cagcagaagt caaatcttga gttgttgagg	
	240
tttetttgt tgettattea gtettggttg gagecagtte agttettgag gagtgtttte	
	300
caaattett tggtttaegg agetteagat teaaatgttt aegatttgtt gaaggatttg	350
- 5 - 555ucccg	360

gaggagggaa ttcagactct tatgggaagg ttggaggatg gatctccaag gactggacag	420
attttcaagc agacttactc taagttcgat acaaactete ataacgatga tgetttgttg	480
aagaattacg gattgttgta ctgcttcagg aaggatatgg ataaggttga gactttcttg	540
aggattgtte agtgeaggag tgttgaggga tettgeggat tetgatgage te	
•	592
<210> 59	
<211> 252	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PPOD lumen signal peptide coding sequence	
page page coding sequence	
<400> 59	
atggcaagtt tgtgtagtaa tagtagtact acttetetea aaaeteettt caettettta	
	60
ggttccactc caaagccttg tcaacttttc ctacatggaa aacgtaacaa agcattcaaa	120
gtttcatgca aggttaccaa tactaacggt aaccaagatg aaacgaattc tgtagatcga	
	180
aggaatgtte ttettggett aggaggtett tatggtgttg etaatgetat accattaget	240
gcatcggete ec	
	252
<210> 60	
<211> 84	
<212> PRT	
<213> Artificial sequence	
<220>	
<223> PPOD lumen signal peptide sequence	
<400> 60	
·	
Met Ala Ser Leu Cys Ser Asn Ser Ser Thr Thr Ser Leu Lys Thr Pro	
1 5 10 15	
Phe Thr Ser Leu Cly con Thu	
Phe Thr Ser Leu Gly Ser Thr Pro Lys Pro Cys Gln Leu Phe Leu His	
25 30	
Gly Lys Arg Asn Lys Ala Phe Lys Val Ser Cys Lys Val Thr Asn Thr	
35 40	

45

Asn Gly Asn Gln Asp Glu Thr Asn Ser Val Asp Arg Arg Asn Val Leu
50 55 60

Leu Gly Leu Gly Gly Leu Tyr Gly Val Ala Asn Ala Ile Pro Leu Ala 65 70 75 80

Ala Ser Ala Pro

<210> 61

<211> 141

<212> DNA

<213> Artificial sequence

<220>

<223> PPOA stromal signal peptide coding sequence

<400> 61

atggcaagtt tgtgtaatag tagtagtaca teteteaaaa eteetttae ttetteeace 60

acttgtttat cttccactcc taagccctct caacttttcc tacatggaaa acgtaacaaa 120

gcattcaaag tttcatgtgg g

<210> 62

<211> 47

<212> PRT

<213> Artificial sequence

<220>

<223> PPOA stromal signal peptide sequence

<400> 62

Met Ala Ser Leu Cys Asn Ser Ser Ser Thr Ser Leu Lys Thr Pro Phe 1 5 10 15

Thr Ser Ser Thr Thr Cys Leu Ser Ser Thr Pro Lys Pro Ser Gln Leu 20 25 30

Phe Leu His Gly Lys Arg Asn Lys Ala Phe Lys Val Ser Cys Gly
35 40 45

<210> 63	
<211> 261	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PPOA lumen signal peptide coding sequence	
<400> 63 ,	
atggcaagtt tgtgtaatag tagtagtaca teteteaaaa eteettttae ttetteeace	
	60
acttgtttat ettecaetee taageeetet caaettttee tacatggaaa aegtaacaaa	
de la	120
gcattcaaag tttcatgtgg gaaggttacc aatactaacg gtaaccaaga tgaaacgaat	
5 55 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5	180
tetgttgate gaagaaatgt tettettgge ttaggtggte tttatggtgt tgetaatget	
5 S S S S S S S S S S S S S S S S S S S	240
ataccattag ctgcatccgc t	
	261
<210> 64	
<211> 87	
<212> PRT	
<213> Artificial sequence	
<220>	
<223> PPOA lumen signal peptide sequence	
Poporde Pedreuce	
<400> 64	
Met Ala Ser Leu Cvs Asp Ser	
Met Ala Ser Leu Cys Asn Ser Ser Ser Thr Ser Leu Lys Thr Pro Phe	
10 15	
Thr Ser Ser Thr Thr Cvs Lev Son Con The	
Thr Ser Ser Thr Thr Cys Leu Ser Ser Thr Pro Lys Pro Ser Gln Leu	
25 30	
Phe Leu His Gly Lye Are Are Ton	
Phe Leu His Gly Lys Arg Asn Lys Ala Phe Lys Val Ser Cys Gly Lys	
40 45 .	
Val Thr Asn Thr Asn Gly Asn Gly	
Val Thr Asn Thr Asn Gly Asn Gln Asp Glu Thr Asn Ser Val Asp Arg	
55 . 60	
•	
Arg Asn Val Leu Leu Clu Tou Cl	-
Arg Asn Val Leu Cly Leu Gly Gly Leu Tyr Gly Val Ala Asn Ala	
70 75 80	

80

WO 2004/111183

Ile Pro Leu Ala Ala Ser Ala 85

<210> 65	
<211> 111	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Plastid signal peptide, predicted to direct protein to the	
<400> 65	scroma
gaceceteca eteccaaaaa caacacacaa tatteaagga tgatagttgg etatagaage	50
	60
acaatcatta coctttotoa toctaagota ggcaatgggà aaacaattto a	111
<210> 66	
<211> 138	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Plastid signal peptide, predicted to direct protein to the s	troma
<400> 66	CIOMA
atgagttett tggttettea atgttggaaa ttateatete eatetetgat tttacaacaa	60.
aatacatcaa tatccatggg tgcattcaaa ggtattcata aacttcaaat cccaaattca	120
cctctgacag tgtctgct	
- Sacrage Cg2Ccggg	138
<210> 67	
<211> 1834	
<212> DNA	
<213> Nicotiana tabacum	
<400> 67	
tetagaetae categetagt aategtggea ataaetaeee taaetatage atttattget	60
accaaataaa atttggcage taatcataat tttttgtcat gaatcaatag ttattgtage	
	120
	180
tttttgettt aagttetaaa agettgtgge aatagttaaa tgatatagte acagatttat	240

tggtataatt gaattatgtt gctaatttct tagttttttg ccacgagtta aaaattacca 300 atagctatag taacttttta atcacaataa aatatttgaa agaaaatatt gtagctaaat 360 gaatattttt teetteaagt tattaaaagt tgtggeaata taggttaaat tageeacatg 420 tttcttgctt taatagaatt ttgtagctaa tcattaactt ttaccacgag ttgaacttaa 480 tataacaaca ataacctttt aaccataata aagcgattta aatcaaatat tactaaataa 540 ataactttgc tttcaagttt ctataaaatc atggcaatag tcattacgat aaaatgatat 600 aaccacgaat atattgcaac gataaattot gtaactaatc attagttttt gcgacgaggt 660 aaattttccg tcacagtagc aatcttctag gcacattaaa aatttgaaac aaaattttgt 720 agtcaaataa atatttatct tettatttta agaaaataaa aatagttaga taatagttac 780 tactatttgt catgaaaata tcaatagata caaatttaaa gtgactataa atttacgagt 840 ttactatact ttagtcgtac agtttgcaat aatagtattt taaccacaat tagttatatg 900 tacaaaataa cataagtgaa taacttttt tcaatgagaa aataagagtt gctcaaacaa 960 tatcaagtta caaaaattta attttaactg taaaagttat atttttccaa aataacataa actatagtaa ttatatatag tttgaagtat taataaaatt taaatatgca aaagttaatt 1080 tcaaactcat attttatttt attgcacctt gttagttttg gacgttaatt atatatattt 1200 ggtgtaaaat ttaaaatata ttaacatttg tggagaattt atgtatgcct ggttcttaac 1260 tatttttttt tatataactg gttagagtaa tttcttatat ttcagtattt atttttaaat 1320 aagteeteat aaattgaaga etttaaaagt ttttgtgtea tteetettt tatttaagaa 1380 attgaagaat toogotaaat ttoatattto ogotgttatt taactgttta tttocottgt 1440 taatataatt ggtaagaagt tttaaaaataa aggagttaat gattttctag gttcatggct 1500 tgcctagctt ctacgagtaa gcgccatcac gactcccgag gataaggaaa tccgggtcgt 1560 agcattcact cacaaaaatt actaaaaaca aagtttaccc ttctcccaaa agtaaatttc 1620 atatttggct ccacataatg tgttcaatga gtcaagtgaa gtacttttca tgacaaaaaa 1680 aagttgctga aaaatgcata totcatattt tttttttaga gaaatcccat ttcttgccta 1740

35

aacgaaagcc tataaaagag catatattgc aacaacagtt tgcagaaact atcaagtcaa 1800 ataatccccc ctttaattcc ctcccaaacc cggg 1834

<210> 68

<211> 1969

<212> DNA

<213> Nicotiana tabacum

<400> 68

tetagataag ttgataaage taatttetea ttttagetae categetagt aategtggea 60 ataactaccc taactatagc atttattgct accaaataaa atttggcagc taatcataat 120 tttttgtcat gaatcaatag ttattgtagc aatagttatc tcttagccac aataaattat 180 ttaaaataaa atattatago taaataaata tttttgottt aagttotaaa agottgtggo 240 aatagttaaa tgatatagtc acagatttat tggtataatt gaattatgtt gctaatttct 300 tagttttttg ccacgagtta aaaattacca atagctatag taacttttta atcacaataa 360 aatatttgaa agaaaatatt gtagctaaat gaatattttt toottcaagt tattaaaagt tgtggcaata taggttaaat tagccacatg tttcttgctt taatagaatt ttgtagctaa 480 tcattaactt ttaccacgag ttgaacttaa tataacaaca ataacctttt aaccataata aagegattta aateaaatat taetaaataa ataaetttge ttteaagttt etataaaate 600 atggcaatag tcattacgat aaaatgatat aaccacgaat atattgcaac gataaattct 660 gtaactaatc attagttttt gcgacgaggt aaattttccg tcacagtagc aatcttctag 720 gcacattaaa aatttgaaac aaaattttgt agtcaaataa atatttatct tottatttta 780 agaaaataaa aatagttaga taatagttac tactatttgt catgaaaata tcaatagata 840 caaatttaaa gtgactataa atttacgagt ttactatact ttagtcgtac agtttgcaat 900 aatagtattt taaccacaat tagttatatg tacaaaataa cataagtgaa taacttttt 960 tcaatgagaa aataagagtt gotcaaacaa tatcaagtta caaaaattta attttaactg 1020 taaaagttat atttttccaa aataacataa actatagtaa ttatatatag tttgaagtat 1080 taataaaatt taaatatgca aaagttaatt ttaataaacc atttgtatgc ctaacttgta 1140 gcctctaaac tattttattt gctttattta tcaaactcat attttattt attgcacctt 1200

WO 2004/111183

	gttagttttg	gacgttaatt	atatatatt	gqtqtaaaa	ttaaaatata	ttaacatttg	
							1260
	tggagaattt	atgtatgcct	ggttcttaac	tatttttt	: tatataactg	gttagagtaa	1320
	tttcttatat	ttcagtattt	attttaaat	aagtcctcat	: aaattgaaga	ctttaaaagt	1380
1	tttgtgtca	tteetettt	tatttaagaa	attgaagaat	: tccgctaaat	ttcatatttc	1440
•	egctgttatt	taactgttta	tttcccttgt	taatataatt	ggtaagaagt	tttaaaataa	1500
ē	aggagttaat	gattttctag	gttcatggct	tgcctagctt	ctacgagtaa	gcgccatcac	1560
9	gactcccgag	gataaggaaa	tccgggtcgt	agcattcact	cacaaaaatt	actaaaaaca	1620
ā	agtttaccc	ttctcccaaa	agtaaatttc	atatttggct	ccacataatg	tgttcaatga	1680
9	rtcaagtgaa	gtacttttca	tgacaaaaaa	aagttgctga	aaaatgcata	tctcatattt	1740
t	ttttttaga	gaaatcccat	ttcttgccta	aacgaaagcc	tataaaagag	catatattgc	1800
а	acaacagtt	tgcagaaact	atcaagtcaa	ataatcccc	ctttaattcc	ctcccaaaat	1860
g	cagttette	aacttcttt	cccttttcct	ttttgtgtca	tttctctttt	tatttaagaa	1920
a	tggaagaat	tccaatagcc	aaaccaaaag	attgcctcca	ggtcccggg		1969

<210> 69

<211> 806

<212> DNA

<213> Lycopersicon esculentum

<400> 69

atggaagtaa etttgttgta tagtaettea etetetattt tgtttgtget tetaettgtt 60 aaacttgttt catcaaaacg aagaaaacag aatctaccac caagcccact acttaaactt 120 ccaatattag gccatctcta teteettaaa ccaemtetat ategeaetet tgctaatete 180 tcaactaaat atggecetgt tttetetett caattaggta ceegtettgt tgtagcaatt 240 tecteaceat etgetgeega agaatgttte acaaaaaatg atategtttt tgetaatege 300 ceteggacaa tgacggcaaa atteatagge tataaeteta etacagteat tggtteteet 360 tatggtgate actggegeta eettegeege etetgegeae ttgaaatatt etecaetaat 420 cgtctcaaca attttcagtc cattagacaa gatgaaatca aacttttagt tcgaagagtg 480

37

tttcacaaat ctggagacaa ttttgtgact cctgttgagc ttaagtccaa gctttttcag 540 atgtegtata atattateat gagaatggta getggaaaaa gatattaegg tgaagagata 600 gataacgagg aggcaaatca ttttcgggtg cttgtagaag argttatttc ktttgggggt 660 gtatcaaatg ccghggattt catgcctgca atatttctgk tgtttttcag gagtacggag 720 aaaaaaatag caaagettgg taataagatg gacaagstet tgcaaggttt ggktgatgaa 780 categeegeg ataaaageag gaatae 806

<210> 70

<211> 912

<212> DNA

<213> Lycopersicon esculentum

<400> 70

atgagttett tggttettea atgttggaaa ttateatete catetetgat tttacaacaa 60 aatacatcaa tatccatggg tgcattcaaa ggtattcata aacttcaaat cccaaattca 120 cetetgacag tgtetgeteg tggacteaac aagattteat geteaeteag ettacaaace 180 gaaaaacttt gttatgagga taatgataat gatcttgatg aagaacttat gcctaaacac 240 attgctttga taatggatgg taataggaga tgggcaaagg ataagggttt agacgtatcc 300 gaaggtcaca aacatctctt tocaaaatta aaagagattt gtgacatttc ttctaaattg 360 ggaatacaag ttatcactgc ttttgcattc tctactgaaa attggaaacg agccaagggg 420 gaggttgatt tettgatgea aatgttegaa gaaetetatg atgagtttte gaggtetgga 480 gtaagagtgt ctattattgg ttgtaaaacc gacctcccaa tgacattaca aaaatgcata 540 gcattaacag aagagactac aaagggaaac aaaggacttc accttgtgat tgcactaaac 600 tatggtggat attatgacat attgcaagca acaaaaagca ttgttaataa agcaatgaat ggtttattag atgtagaaga tatcaacaag aatttatttg atcaagaact tgaaagcaag 720 tgtccaaatc ctgatttact tataaggaca ggaggtgatc aaagagttag taactttttg 780 ttgtggcaat tggcttayac tgaattttac ttcaccaama cattgtttcc tgattttgga gaggaagatc ttaaagaggc aataatraac tttcaacaaa ggcatagacg ttttggtgga 900 cacacatatt ga 912

38

PCT/IL2004/000549

<210> 71

<211> 1269

WO 2004/111183

<212> DNA

<213> Lycopersicon esculentum

<400> 71

atgggtaata ttcatttgat tttcccactt ttatttatat cttgtttcat tttcccatcc acaacaaatg.gctactccaa cgcaatcata aaagcttggt gcacccaaac acctcatcca 120 caacettgtg aatacttett atcacaaaat eccaaaatta cateteetat cataaaaaaa 180 tragattttc taaaagtgtc actagactta gtgttagacc gtgcgttacg tgcccaactg 240 aacacatatt cactaggtcc aaaatgtcgt aacgagcgcg aaaaaaacgc atgggctgat 300 tgcattgaac tctatgaaaa ctcaatcaac aaaatcaaaa gcacagttga tccaaacaca 360 aaatgeteag etaetgatge teaaacatgg ttaagtacat cettaacaaa tettgaaaca 420 tgtaaagcag gtttcgaaga attaggcgtt acggattatg ttatgccact aatatçaaat 480 aataatgtgt catctttaat aagtaacget ttagetttaa atcatggtta ttatactgaa 540 cctactaaaa gtagtactac tactcaagtt gatggatttc caacttgggt atctcctggt 600 gatagaaaat tgttgcaate gtcgccgtcg tcgtcgtcaa cggcttctca ggcgaatgta 660 gtggtggcta ctgatggttc aggggatttt aagacagtga aagaagctgt agatgctgct 720 gccaagaata aaggaagtgg gaggtttgtg atatatgtga aagctgggac ttataatgaa 780 aatgtggaga ttggagaaaa ggtgaaaaat gttatgttga ttggagatgg cattggaaag 840 acaattatta ctggaagcaa aagtgttgga ggtggatcca ccacctttag atcagccaca 900 gttggtgctt ctggtgacgg atttattgct caaggcataa caattagaaa cactgctgga 960 ccccaaaagc accaagcagt agccctacga tctggctctg atctttcagt attttatcaa 1020 tgtagcttcg aagggtatca agacactttg tacgttcatt ccaataggca attttacaaa 1080 gagtgtgata tttatggtac ggtcgatttt atatttggtm acgcagcagt tgtattacaa 1140 aattgtaata ttttcgctag agaccctccg aataaaatca acactgtgac agcccaaggc 1200 cgaaccgacc cgaatcaaaa cactggaatt tccatacata attgtagaat cactggagct 1260

ggttcttcg 1269

<210>

<211> 930

<212> DNA

<213> Lycopersicon esculentum

<400> 72

atggcagacg gagaggatat teageceett gtetgtgaca atggaactgg aatggtcaag getgggtteg caggagatga tgetecaega getgtattte etagtattgt tggeegeece 120 egecatactg gtgtgatggt gggtatgggt caaaaagaeg cetatgtggg agatgaaget 180 caatcaaaga gaggtatttt aactcttaaa tacccaattg agcacggaat tgtcagcaat 240 tgggatgata tggagaagat atggcatcat actttctaca atgagcttcg tgttgcccct 300 gaggagcatc ctgtcctcct aactgaagcc cctcttaacc caaaggctaa tcgtgaaaag 360 atgacccaga ttatgtttga gactttcaat accccagcta tgtatgttgc tattcaggct 420 gtactctcac tgtatgccag tggtcgtacc accggtattg tgttggactc tggtgatggt 480 gtcagccaca ctgtcccaat ttatgaaggg tatgcccttc cacatgccat tctccgtctt 540 gacttggcag gacgtgacct cactgatagt ttgatgaaga tcctgaccga gcgtggttac tegtteacea ceteagetga gegagaaatt gteagggaeg tgaaagaaaa getegettae 660 atagetettg actatgaaca ggaactegag actteaaaga ceagetette tgttgagaag 720 agctatgage teccagatgg geaggtgate accattggtg etgagegttt eeggtgteet 780 gaggtccttt tccaaccttc aatgattgga atggaagctg caggaatcca cgagactaca 840 tacaacteta teatgaaatg tgaegtggat attaggaaag atetttatgg aaacattgtg 900 ctcagtggtg gtactaccat gtttgtatgc 930

<210> 73

<211> 1017

<212> DNA

<213> Lycopersicon esculentum

<400> 73

atggcaaacg gaaagatcaa aatcggaatc aacggattcg gtagaattgg tcgtttggtg

gctagagttg ctctacagag agatgatgtt gaactagttg cagtgaatga tccatttatt 120 tecaetgatt acatgacata tatgtttaag tatgatteag tacatggaca atggaageat 180 catgagetaa aggteaagga tgagaagaea ettetetttg gagagaagge tgttacagtt 240 tttggaatca ggaaccetga agatateeca tggggtgaag etggtgetga ettegttgtt 300 gaatcaaccg gtgtcttcac tgacaaggac aaggetgetg ctcacttgaa gggtggtgcc 360 aagaaggttg tgatctctgc tcctagcaaa gatgctccca tgtttgttgt gggtgtcaac 420 gagaatgaat acaagccaga getggacatt gtetecaatg ctagttgcac aacgaactge 480 cttgcacctt tggctaaggt tatcaatgat aggtttggca ttgttgaggg tctcatgacc 540 actgtccacg ccatgactgc cacccagaaa actgttgatg gtccatccat gaaggactgg 600 agaggtggaa gagctgette atteaacate atecetagea geactggtge agecaagget 660 gttggaaa'ag tgctcccaca acttaacggc aaattgactg gaatggcctt cagagtacca 720 actgetgatg teteogttgt egatettact gtaagaeteg agaaagaage eteetatgaa 780 gacattaagg ctgcaatcaa ggaggaatca gagggtaaat tgaagggtat cttgggatac 840 actgaagatg atgtggtttc cacagacttt gttggtgaca gcaggtcaag catttttgat 900 gccaaggctg gaattgcttt gagcaagaat tttgtgaaag ttgtgtcatg gtatgacaac 960 gaatggggtt acagttcccg tgtgattgat ttgatctgcc atatggctaa ggcttga 1017

<210> 74

<211> 657

<212> DNA

<213> Lycopersicon esculentum

<400> 74

atggtgtcac tgaaacttca gaagcggctc gccgccagtg ttctaaagtg tgggagggga aaagtatgge ttgaccctaa cgaaggcaat gaaatctcca tggctaactc aaggcaaaac atcagaaagt tggtgaagga tggtttcatc atcaggaaac caaccaaaat tcactcacga 180 tetegtgeae geaggatgaa ggaageeaaa agaaagggee gteaetetgg atatggtaag 240 cgtaagggta ccagggaggc taggttgccc acaaaggtgc tgtggatgag gagactcaga 300 gteeteagge gtttgetteg taagtacagg gagteeaaga agattgacaa geacatgtac 360

catgatatgt acatgaaggt gaagggtaat gtottcaaga acaagogtgt totcatggag	420
aacattcaca aaaccaagge tgagaagget agagagaaga cettgtetga ccaatttgag	480
gccaggaggg caaagaacaa ggcaagcagg gaaagaaa	540
ttggcccagg gaccaggaga gaagccagta caacctgcag cgccagccc ggcaccagca	600
gcaacagcac ccccagccaa gactgetcag ggaggateta agaagtcaaa gaagtga	657
<210> 75	
<211> 132	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PPOD stromal signal peptide coding sequence	
. Popular popular coding sequence	
<400> 75	
atggcaagtt tgtgtagtaa tagtagtact acttctctca aaactccttt cacttcttta	
	60
ggttccactc caaagccttg tcaacttttc ctacatggaa aacgtaacaa agcattcaaa	120
gtttcatgtc cc	
	132
•	
<210> 76	
<211> 44	
<212> PRT	
<213> Artificial sequence	
<220>	
<223> PPOD stromal signal peptide coding sequence	
<400> 76	•
Met Ala Ser Leu Cys Ser Asn Ser Ser Thr Thr Ser Leu Lys Thr Pro	
1 5 10 15	
	•
Phe Thr Ser Leu Gly Ser Thr Pro Lys Pro Cys Gln Leu Phe Leu His	
20 . 25 30	

Gly Lys Arg Asn Lys Ala Phe Lys Val Ser Cys Pro 35 40

1

42 <210> 77 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 77 ccacatgcca ttctccgtct 20 <210> 78 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 78 gettttettt caegteeetg a 21 <210> 79 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 79 ttgttgtggg tgtcaacgag a 21 <210> 80 <211> 19 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> .80 atggcgtgga cagtggtca

19

<210> 81 <211> 25

<212>	DNA	43
	Artificial sequence	
	writingial seddence	•
<220>		
423 3	Single strand DNA oligonucleotide	
<400>	0.7	
Cacte	tggat atggtaagog taagg	25
<210>		
<211>		
<212>		
<213>	Artificial sequence	
-222		
<220>		
<443>	Single strand DNA oligonucleotide	
.400		
<400>	_	
rrerrg	gact ccctgtactt acga	24
-27.0		
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
\223	single strand DNA oligonucleotide	
<400>	97	
CCLCLLC	aat taggtacccg tettg	25
<210>	94	•
<212>	21	
74133	Artificial sequence	
<220>		
	Simple and	
	Single strand DNA oligonucleotide	
<400> 8		
	ge egteattgte e	
J	-30 Vycoactyce e	21
<210> 8	25	
		•
<212> D		
	rtificial sequence	
• • •		

44

<220>	
<223> Single strand DNA oligonucleotide	
<400> 85	
gggtttagac gtatccgaag gtc	
	23
<210> 86	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Single strand DNA oligonucleotide	
business of the control of the contr	
<400> 86	
gctegtttee aatttteagt agaga	25
	23
<210> 87	
<211> 21	
<pre><213> Artificial sequence</pre>	
Actificial sequence	
×220>	
223> Single strand DNA oligonucleotide	
400> 87	
tacgtgccc aactgaacac a	21
	21
210> 88 211> 19	
212> DNA	
213> Artificial sequence	
allo allittial sequence	
220>	
223> Single strand DNA oligonucleotide	
3	
400> 88	
aatgcaatc agcccatgc	• •