k	ัน [[ชาติ 60 เลขที่นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2560

วิชา ENE 334 Microprocessors
ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ
สอบ วันพถหัสบดีที่ 28 กันยายน พ.ศ.2560

เวลา 9:00 -12:00 น.

คำสั่ง:-

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 93 คะแนน
- 2. อนุญาต ให้นำเอกสารใดๆ เข้าห้องสอบได้
- 3. ไม่อนุญาต ให้ใช้ electronics dictionary, smart watch, อุปกรณ์สื่อสารใดใด
- 4. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 5. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 6. ห้ามนักศึกษานำข้อสอบ และกระดาษคำตอบออกนอกห้องสอบ

คำเตือน/คำแนะนำ:-

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำและควรอ่านคำถามให้รอบคอบก่อนเริ่มทำการ คำนวณเพื่อไม่ให้เสียเวลากับการคำนวณที่ไม่มีประโยชน์

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	14	38	20	21	93
คะแนนที่ได้					

ชื่อ-สกล	รหัสประจำตัว
อ. เดชวุฒิ ขาวปริสุทธิ์ (โทร: 9065)	
ผู้ออกข้อสอบ	

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.ราชวดี ศิลาพันธ์)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1.] Consider two different implementations, M1 and M2, of the same instruction set. There are three classes of instructions (A, B, and C) in the instruction set. M1 has a clock rate of 95 MHz and M2 has a clock rate of 110 MHz. The average number of cycles for each instruction class and their frequencies (for a typical program) are as follows: (14 points)

Instruction Class	Machine M1 – Cycles/Instruction Class	Machine M2 — Cycles/Instruction Class	Frequency
Α	1	2	75 %
В	3	3	20 %
C	6	5	5 %

1.1.) Calculate the average CPI for each machine, M1, and M2.

(4 points)

1.2.) Calculate the average MIPS ratings for each machine, M1 and M2.

(4 points)

1.3.) Which machine has a smaller MIPS rating? Which individual instruction class CPI do you need to change, and by how much, to have this machine have the same or better performance as the machine with the higher MIPS rating (you can only change the CPI for one of the instruction classes on the slower machine)? (6 points)

		10M 10 M M 1 3/0
ชื่อ-สกุล	รหัส	เลขที่นั่งสอบ

- 2.] Please answer the following questions and show your work in details.
 - 2.1.) For the binary entries below, what MIPS instruction do they represent? (38 points)

2.1.1. Hex: 0x0304b027 (3 points)

2.1.2. Hex: 0x71b21802

(3 points)

2.2.) Translate MIPS instructions into machine code (use number only in base 16, and program start at 0x400034) (9 points)

	Mnemonic	Oncode	rs	rt	rd	Shamt mmediate	funct
Label		Opcode			immediate		
			Address				
main:	slt \$v0,\$s5,\$t2						
	nop	0	0	0	0	0	0
loop:	nop	0	0	0		0	
	bgtz \$a3,main						
	nop	0	0	0		0	
	j loop						
exit:							

2.3.) Fill the values (in base 16 only) of any registers that effected by the following

sequence. Note: initially \$5t0 = 0x007A8B9C, \$t1 = 0x80123456, \$t2 = 0x7FEDCBA8

(8 points)

Label	Mnemonic	\$ s0	\$ s1	\$s2	Overflow (Yes/No)
begin:	clz \$s2,\$t0				
	and \$s1,\$t1,\$t2				
	sub \$s0,\$t1,\$t2				

2.4.) Translate function funcA into MIPS assembly code using calling convention.

(15 points)

Note: a function funcA calls another function funcB. The function declaration for funcB is "int funcB(int a, int b)"

```
int funcA(int i, int a[]) {
if (i >= 0 && a[i] > a[i + 1])
    return funcB(i, (i+2))
else return (i + 3) }
```

4	v	ط ا
ชื่อ-สกุล	รหส	เลขที่นั่งสอบ

- 3.] Please answer the following questions and show your work in details. (20 points)
 - 3.1.) Show the IEEE 754 binary representation of the number
 - $-1.0977500096487347036600112915039 \times 10^{5}$ in single precision: (answer in hex.)

(3 points)

3.2.) What decimal number is represented by this double precision float?

9	Α	2	4	2	0	0	0
⁵¹ 62		5.	2 51				32
£	0	0	0	0	0	2	2
31	28 27 2	4 23 20	19 16	15 12	11 8	7 4	3 0

(2 points)

·	•	
ମିର ଶରୀ ।	หน้า	6/8

ชื่อ-สกุล	_รหัส	เลขที่นั่งสอบ
3.3.)Use Booth algorithm (4-bits) tc get the produ	ct.	(15 points)
(assume there are enough bits so no overflow ever on	curs)	

Iteration	Step (Booth algorithm: 4-bits)	Multiplicand	Product
X	Initial Values	xxxx xxxx	XXXX XXXX XXXX
0	Initial Values (110)x(-140)=	0110 1110	0000 0000 1011 10100)
1			
	•	-	
		-	

F	roc	luct	=	ten
				(CI)

- 4.] Answer the following questions: (21 points)
 - 4.1.) Assume the following latencies for logic blocks in the datapath as in figure 4.11 on page 315 (4th ed.), (if you can t clearly see the figure, look at the book or lecture note):

	addin.							Contract of
a.	400ps	100ps	30ps	120ps	200ps	350ps	20ps	Ops
b.	500ps	150ps	100ps	L80ps	220ps	1000ps	90ps	20ps

- 4.1.1. What is the clock cycle time if the only type of instructions we need to support are ALU instructions (add, and, etc.)? (2 points)
- 4.1.2. What is the clock cycle time if the only type of instructions we need to support is lw instruction? (2 points)
- 4.1.3. What is the clock cycle time if the only type of instructions we need to support are add, beq, lw instructions? (2 points)

4.2.) With the following sequences of instructions, and assume that it is executed on a five-stage pipelined Datapath as in figure 4.60 on page 375 (4th ed.), (if you can't clearly see the figure, look at the book or lecture note): (15 points)

and \$14, \$15, \$16 or \$12, \$13, \$14 add \$11, \$12, \$13 sub \$11, \$11, \$12 lw \$10, 10(\$11) sw \$10, 10(\$11)

What is the values of control signal?

4.2.1.	Clock cycle 3, ALU control input =	(1 points)
4.2.2.	Clock cycle 3, ID/EX.RegDst =	(1 points)
4.2.3.	Clock cycle 4, ID/EX.AL.Uop =	(1 points)
4.2.4.	Clock cycle 4, Forward3 =	(1 points)
4.2.5.	Clock cycle 4, ID/EX.MenRead =	(1 points)
4.2.6.	Clock cycle 5, MEM/WB.MemtoReg =	(1 points)
4.2.7.	Clock cycle 5, ForwardA =	(1 points)
4.2.8.	Clock cycle 6, EX/MEM.RegWrite =	(1 points)
4.2.9.	Clock cycle 6, ID/EX.RegisterRt =	(1 points)
4.2.10	Clock cycle 7, ID/EX.MemRead =	(2 points)
4.2.11	Clock cycle 7, IF/ID.Write =	(2 points)
4.2.12	. Clock cycle 8, IF/ID.RegisterRs =	(2 points)