

Communication costs energy

Protecting constrained nodes

Battery depletion attacks

Talk to a constrained node until its battery is gone

Reception is expensive, even if information is discarded

Traditional protection: Firewalling

- Hard to make secure for UDP (source IP = password?)
- Puts a lot of application state into unrelated nodes

Giving control back to the device

Device cannot protect itself

Energy expenditure is authorized by last hop router

Why not make the last hop router smart about that?

- Provide authorization to correspondent node
- Enable the last hop router to check it

correspondent node C uses normal IP path to device D

last-hop router R talks to device D over PHY X

R can "wake" D over PHY X — expensive

before forwarding, R executes a gating function GF

C cannot bother (deplete the battery of) D without passing GF How to make GF secure and controllable by D?

Crypto: COSE-based

Wake grant (D \rightarrow C) is a CWE, packaging a grant key.

Wake grant info (D \rightarrow R) is same, possibly with a lifetime.

Wake token (C → D, but really for R) is a CWS, containing [serial: uint, wake-period: duration]

Add some encapsulation magic, shake.

Demo Implementation @ IETF99 Hackathon

Basic SWORN scenario demonstrated between TZI and Lemonbeat GmbH:

Written up:

draft-bormann-t2trg-sworn

To do:

- Check the COSE structures that they really do what we want
- Check the "tunneling" (encapsulation) approaches

Acknowledgments

Thank you, Lemonbeat

Images

Wikimedia [^natteries], Makezine: [^arduinoserial]