BÁO CÁO 2 - NHÓM D

Contents

I.	Giới thiệu:
	Bài toán:
	Cấu trúc dữ liệu:
II	. Cơ sở lí thuyết:
	1. Ma trận hiệp phương sai của $\hat{\beta}$
	2. Khoảng tin cậy cho hệ số cho mô hình:
	3. Tính chất tiệm cận của tiên đoán η
	4. Ước lượng ma trận phương sai của $\hat{\eta}_i$
	5. Khoảng tin cậy cho tiên đoán trung bình
	6. Kiểm định giả thuyết cho mô hình hồi quy Logistic
	6.1. Kiểm định giả thuyết cho từng hệ số
	6.2. Kiểm định giả thuyết tổng quát
II	I. Bài toán thực tế
	Xây dựng mô hình
	Nhân xét kết quả của mô hình

Thành viên:

- 1. Đỗ Thị Thanh Thảo (23C23009)
- 2. Nguyễn Kim Anh (23C23004)
- Nguyễn Bích Trâm (23C23010)
 Trần Thị Thuận (23C23002)

I. Giới thiệu:

Bài toán:

Bộ dữ liệu "Churn_Modelling" chứa thông tin về khách hàng và được sử dụng để phân tích hành vi khách hàng và tìm hiểu lý do khiến khách hàng rời bỏ dịch vụ.

Cấu trúc dữ liệu:

RowNumber: Chỉ mục của từng dòng dữ liệu (không ảnh hưởng đến phân tích).

CustomerId: Mã định danh của khách hàng.

Surname: Họ của khách hàng.

CreditScore: Điểm tín dung, đánh giá khả năng tài chính của khách hàng.

Geography: Quốc gia nơi khách hàng sinh sống.

Gender: Giới tính của khách hàng.

Age: Tuổi của khách hàng.

Tenure: Thời gian khách hàng đã sử dụng dịch vụ (tính bằng năm).

Balance: Số dư tài khoản ngân hàng.

NumOfProducts: Số sản phẩm mà khách hàng sử dụng.

HasCrCard: Khách hàng có thể tín dụng hay không (1 = Có, 0 = Không).

IsActiveMember: Khách hàng có phải là thành viên hoạt động không (1 = C'o, 0 = Không).

EstimatedSalary: Mức lương ước tính của khách hàng.

Exited: Biến mục tiêu (Target Variable):
1: Khách hàng đã rời bỏ dịch vụ (churn).
0: Khách hàng vẫn tiếp tục sử dụng dịch vụ.

U: Khach hang van tiep tục sử dụng dịch vụ.

II. Cơ sở lí thuyết:

Mô hình hồi quy đối với biến binomial có dạng:

$$log(\frac{\mu_i}{1-\mu_i}) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

Binomial là một họ phân phối mũ phân tán có dạng

$$f_{Z}\left(z_{i}\right)=\exp\left\{ z_{i}\theta_{i}-\log\left(1+e^{\theta_{i}}\right)+\log\left(C_{y_{i}}^{z_{i}m_{i}}\right)\right\}$$

Với:

$$\begin{split} \theta_i &= \log \left(\frac{p_i}{1-p_i}\right) \\ b\left(\theta_i\right) &= \log \left(1+e^{\theta_i}\right) \\ a(\phi) &= 1 \\ c\left(y_i,\phi\right) &= \log \left(C_{y_i}^{z_i m_i}\right) \end{split}$$

1. Ma trận hiệp phương sai của $\hat{\beta}$

Ma trận hiệp phương sai của $\hat{\beta}$ có công thức tổng quát $\widehat{\mathrm{Var}}(\hat{\beta}) = a\left(\phi_0\right) \left(\mathbf{X}^{\top}\mathbf{W}(\hat{\beta})\mathbf{X}\right)^{-1}$.

Với $a(\phi) = 1$, ma trận hiệp phương sai của $\hat{\beta}$ của biến nhị thức là:

$$\widehat{\mathrm{Var}}(\widehat{\boldsymbol{\beta}}) = \left(\mathbf{X}^{\top}\mathbf{W}(\widehat{\boldsymbol{\beta}})\mathbf{X}\right)^{-1} = \left\{X^{\mathrm{T}}\operatorname{Diag}\left[n_{i}\widehat{\mu}_{i}\left(1-\widehat{\mu}_{i}\right)\right]X\right\}^{-1}$$

2. Khoảng tin cậy cho hệ số cho mô hình:

Như ta đã được học ở phần trước, khoảng tin cậy của các hệ số mô hình β_j được xây dựng dựa trên tính chất tiệm cận phân phối chuẩn của ước lượng $\hat{\beta}_j$, tức là:

$$\frac{\hat{\beta}_j - \beta_{0j}}{\sqrt{\phi_0 v_j}} \xrightarrow{d} \mathcal{N}(0, 1),$$

Tương đương với:

$$\frac{\hat{\beta}_j - \beta_{0j}}{\sqrt{v_j}} \xrightarrow{d} \mathcal{N}(0, 1),$$

(Do với phân phối nhị thức thì $\phi_0 = 1$) trong đó, v_j là phương sai tiệm cận của $\hat{\beta}_j$, và được xác định bởi thành phần đường chéo thứ j của ma trận $\left(\mathbf{X}^{\top}\mathbf{W}(\hat{\boldsymbol{\beta}})\mathbf{X}\right)^{-1}$, với

$$\mathbf{W}(\hat{\boldsymbol{\beta}}) = \left(\begin{array}{cccc} W_1(\hat{\boldsymbol{\beta}}) & 0 & \dots & 0 \\ 0 & W_2(\hat{\boldsymbol{\beta}}) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & W_n(\hat{\boldsymbol{\beta}}) \end{array} \right) = \left\{ \boldsymbol{X}^{\mathrm{T}} \operatorname{Diag} \left[n_i \hat{\boldsymbol{\mu}}_i \left(1 - \hat{\boldsymbol{\mu}}_i \right) \right] \boldsymbol{X} \right\}^{-1}$$

thành phần $W_i(\hat{\beta}) = \frac{1}{V_i\left(\hat{\mu}_i\right)\left(g_i'\left(\hat{\mu}_i\right)\right)^2} = n_i\hat{\mu}_i\left(1-\hat{\mu}_i\right)$. Khoảng tin cậy $100 \times \alpha\%$ của β_j là

$$\left(\hat{\beta}_j - z_{(1+\alpha)/2} \sqrt{v_j}, \hat{\beta}_j + z_{(1+\alpha)/2} \sqrt{v_j}\right)$$

với $z_{1-\alpha/2}$ là phân vị thứ $1-\alpha/2$ của phân phối chuẩn $\mathcal{N}(0,1)$ và v_j là thành phần đường chéo thứ j của ma trận $\left(\mathbf{X}^{\top}\mathbf{W}(\hat{\boldsymbol{\beta}})\mathbf{X}\right)^{-1}$.

3. Tính chất tiệm cận của tiên đoán η

Xét tổ hợp tuyến tính $\eta = \beta_0 + \sum_{j=1}^p \beta_j x_j = x \beta$

Ước lượng của nó là $\hat{\eta} = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j = x \hat{\beta}$

Ta có

$$\frac{\hat{\eta} - \eta_0}{\sqrt{\mathrm{Var}(\hat{\eta})}} \xrightarrow{d} \mathcal{N}(0, 1)$$

4. Ước lượng ma trận phương sai của $\hat{\eta}_i$

 $\widehat{\mathrm{Var}}(\widehat{\boldsymbol{\eta}}) = a\left(\phi_{0}\right) x \left(\mathbf{X}^{\top}\mathbf{W}(\widehat{\boldsymbol{\beta}})\mathbf{X}\right)^{-1} x^{\top} = x \left(\mathbf{X}^{\top}\mathbf{W}(\widehat{\boldsymbol{\beta}})\mathbf{X}\right)^{-1} x^{\top} = x \left\{X^{\mathrm{T}} \operatorname{Diag}\left[n_{i}\widehat{\boldsymbol{\pi}}_{i}\left(1-\widehat{\boldsymbol{\pi}}_{i}\right)\right]X\right\}^{-1} x^{\top}$ Với khoảng tin cậy cho $\hat{\eta_i}$ là

$$\left(\widehat{\eta} - z_{1-\alpha/2}\sqrt{\widehat{\mathrm{Var}}(\widehat{\eta})}, \widehat{\eta} + z_{1-\alpha/2}\sqrt{\widehat{\mathrm{Var}}(\widehat{\eta})}\right)$$

5. Khoảng tin cậy cho tiên đoán trung bình

Hàm liên kết

$$\eta = \log\left(\frac{\mu}{1-\mu}\right)$$

Ta có:

$$\begin{split} \eta &= \log \left(\frac{\mu}{1-\mu}\right) \Rightarrow \frac{\mu}{1-\mu} = \exp \eta \\ \Rightarrow \mu &= (1-\mu) \exp \eta \\ \Rightarrow \mu &= \exp \eta - \mu \exp \eta \\ \Rightarrow \mu &(1+\exp \eta) = \exp \eta \\ \Rightarrow \mu &= \frac{\exp \eta}{1+\exp \eta} \end{split}$$

$$\Rightarrow \mu = \frac{\exp \eta}{1 + \exp \eta}$$

Vậy hàm
$$g = \frac{\exp \eta}{1 + \exp \eta}$$

 \Rightarrow khoảng tin cậy $100 \times (1-\alpha)\%$ cho μ được xây dựng bởi áp dụng $g^{-1}(\cdot)$ lên khoảng tin cậy của η : $\left(g^{-1}\left(\hat{\eta}_{L}\right),g^{-1}\left(\hat{\eta}_{U}\right)\right)$

Vậy với hàm liên kết logistic, khoảng tin cậy $100 \times (1-\alpha)\%$ cho $\hat{\mu}$ là $\left(\frac{\exp{(\hat{\eta}_L)}}{1+\exp{(\hat{\eta}_L)}}, \frac{\exp{(\hat{\eta}_U)}}{1+\exp{(\hat{\eta}_U)}}\right)$

- 6. Kiểm định giả thuyết cho mô hình hồi quy Logistic
- 6.1. Kiểm định giả thuyết cho từng hệ số

$$\left\{ \begin{array}{l} H_0: \beta_j = 0 \\ H_1: \beta_j \neq 0 \end{array} \right.$$

Tổng quát:

$$\frac{\hat{\beta_j} - \beta_{0j}}{\sqrt{a(\Phi) * v_j}} \stackrel{d}{\longrightarrow} N(0, 1)$$

Do mô hình hồi quy logistic có $a(\Phi)=1$, nếu H_0 đúng, ta có thống kê của kiểm định là:

$$Z = \frac{\hat{\beta}_j}{\sqrt{v_j}} \stackrel{d}{\longrightarrow} N(0, 1)$$

Với v_j được tính như ở phần trên.

p-value =

$$Pr(|Z| > |Z_{obs}|)$$

6.2. Kiểm định giả thuyết tổng quát

$$\left\{ \begin{array}{l} H_0: \beta_1=\beta_2=\ldots=\beta_p=0 \\ H_1: \exists \beta_j \neq 0 \end{array} \right.$$

 $a(\Phi) = 1$ biết trước, ta có thống kê của kiểm định:

$$W = D(Y, \hat{\mu_0}) - D(Y, \hat{\mu_1}) \sim \chi_p^2$$

Trong đó:

$$D(Y,\mu) = \sum_{i=1}^{n} d(Y_i, \mu_i)$$

Với phân phối nhị thức:

$$d(y_i, \hat{\mu_i}) = 2\{y_i log(\frac{y_i}{\hat{\mu_i}}) + (1-y_i) log(\frac{1-y_i}{1-\hat{\mu_i}})\}$$

III. Bài toán thực tế

Xây dựng mô hình

library(corrplot)

corrplot 0.94 loaded

library(car)

Loading required package: carData

library(caret)

Loading required package: ggplot2
Loading required package: lattice

library(ggplot2)

Dự đoán khách hàng có rời bỏ (churn) ngân hàng hay không.

data <- read.csv('./Churn_Modelling.csv') head(data)</pre>

##		${\tt RowNumber}$	${\tt CustomerId}$	Su	ırname	Cred	ditScore	Geogr	aphy	Gender	Age	Tenure
##	1	1	15634602	Har	grave		619	Fr	ance	${\tt Female}$	42	2
##	2	2	15647311		Hill		608	S	pain	${\tt Female}$	41	1
##	3	3	15619304		Onio		502	Fr	ance	Female	42	8
##	4	4	15701354		Boni		699	Fr	ance	Female	39	1
##	5	5	15737888	Mit	chell		850	S	pain	Female	43	2
##	6	6	15574012		Chu		645	S	pain	Male	44	8
##		Balance	NumOfProduc	cts	HasCr	Card	IsActiv	eMembe	r Es	timatedS	Salar	y Exited
##	1	0.00		1		1			1	1013	348.8	38 1
##	2	83807.86		1		0			1	1125	542.5	0 88
##	3	159660.80		3		1			0	1139	931.5	57 1
##	4	0.00		2		0			0	938	326.6	3 0
##	5	125510.82		1		NA			1	790	084.1	0 0
##	6	113755.78		2		1			0	1497	756.7	71 1

Loại bỏ những cột không có ý nghĩa trong mô hình

'CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary', 'Exi
data <- subset(data, select=-c(RowNumber, CustomerId, Surname))
head(data)</pre>

##		CreditScore	Geography	Gender	Age	Tenure	Balance	${\tt NumOfProducts}$	HasCrCard
##	1	619	France	${\tt Female}$	42	2	0.00	1	1
##	2	608	Spain	${\tt Female}$	41	1	83807.86	1	0
##	3	502	France	France Female		8	159660.80	3	1
##	4	699	France	Female	39	1	0.00	2	0
##	5	850	Spain	Female	43	2	125510.82	1	NA
##	6	645	Spain	Male	44	8	113755.78	2	1
##		IsActiveMemb	er Estimat	edSalaı	су Ех	rited			
##	1		1 1	101348.8	38	1			
##	2		1 1	12542.5	58	0			
##	3		0 1	13931.5	57	1			
##	4		0	93826.6	33	0			
##	5		1	79084.1	LO	0			
##	6		0 1	149756.7	71	1			

```
numeric_cols = c('CreditScore', 'Age', 'Balance', 'NumOfProducts', 'EstimatedSalary')
par(mfrow=c(2, 3))
for (i in numeric_cols){
  boxplot(data[[i]], xlab=i)
800
                                   80
                                   9
9
                                                                       100000
                                   4
400
                                   20
          CreditScore
                                                 Age
                                                                                   Balance
                                   100000 200000
3.0
2.0
```

Không có dữ liệu outlier trong dữ liệu

NumOfProducts

0.1

```
colSums(is.na(data))/nrow(data)
##
       CreditScore
                           Geography
                                               Gender
                                                                                  Tenure
                                                                    Age
          0.000e+00
                           0.000e+00
                                            0.000e+00
                                                             9.998e-05
                                                                              0.000e+00
##
                      NumOfProducts
##
            Balance
                                            HasCrCard
                                                        IsActiveMember EstimatedSalary
##
          0.000e+00
                           0.000e+00
                                            9.998e-05
                                                             9.998e-05
                                                                              0.000e+00
##
             Exited
          0.000e+00
##
data <- subset(data, is.na(data$Age) == FALSE)</pre>
```

EstimatedSalary

numeric_cols = c('CreditScore', 'Age', 'Balance', 'NumOfProducts', 'EstimatedSalary')

corrplot(cor(data[,numeric_cols]), addCoef.col = 'black', method="color")

Không có sự tương quan mạnh giữa các biến

```
# Xử lý tạo biến giả cho các biến định tính
data$Geography = relevel(as.factor(data$Geography), ref=1)
data$Gender = relevel(as.factor(data$Gender), ref=1)
data$Tenure = relevel(as.factor(data$Tenure), ref=1)
data$HasCrCard = relevel(as.factor(data$HasCrCard), ref=1)
data$IsActiveMember = relevel(as.factor(data$IsActiveMember), ref=1)
```

```
logit_model <- glm(Exited ~., family="binomial", data=data)
summary(logit_model)</pre>
```

```
##
## Call:
## glm(formula = Exited ~ ., family = "binomial", data = data)
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -1.251e+01 1.970e+02 -0.063
                                                    0.9494
                    -6.603e-04 2.806e-04 -2.354
## CreditScore
                                                    0.0186 *
## GeographyFrance
                     9.185e+00
                               1.970e+02
                                            0.047
                                                    0.9628
## GeographyGermany
                                            0.051
                                                    0.9597
                    9.959e+00 1.970e+02
## GeographySpain
                     9.222e+00
                               1.970e+02
                                            0.047
                                                    0.9627
## GenderMale
                                          -9.673
                                                   < 2e-16 ***
                    -5.276e-01 5.454e-02
                                          28.189
                                                   < 2e-16 ***
## Age
                    7.270e-02
                               2.579e-03
## Tenure1
                    -5.519e-02 1.513e-01
                                          -0.365
                                                    0.7153
## Tenure2
                    -2.397e-01 1.529e-01
                                          -1.567
                                                    0.1171
                                                    0.4325
                    -1.197e-01
                                           -0.785
## Tenure3
                               1.524e-01
## Tenure4
                    -7.553e-02 1.532e-01
                                           -0.493
                                                    0.6220
## Tenure5
                    -1.903e-01 1.530e-01
                                          -1.244
                                                    0.2137
```

```
## Tenure6
                   -1.474e-01 1.540e-01 -0.957
                                                   0.3387
## Tenure7
                   -3.175e-01 1.553e-01 -2.044
                                                   0.0409 *
## Tenure8
                   -2.255e-01 1.538e-01 -1.466
                                                   0.1425
                   -1.699e-01 1.530e-01 -1.110
## Tenure9
                                                   0.2668
## Tenure10
                   -2.076e-01 1.764e-01
                                         -1.177
                                                   0.2392
## Balance
                    2.655e-06 5.147e-07
                                           5.157 2.51e-07 ***
## NumOfProducts
                   -9.610e-02 4.722e-02
                                         -2.035
                                                   0.0419
## HasCrCard1
                   -4.382e-02
                               5.939e-02
                                         -0.738
                                                   0.4607
## IsActiveMember1 -1.075e+00 5.773e-02 -18.616
                                                 < 2e-16 ***
## EstimatedSalary
                    4.792e-07 4.739e-07
                                           1.011
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 10112.1 on 9998 degrees of freedom
## Residual deviance: 8556.7 on 9977 degrees of freedom
    (2 observations deleted due to missingness)
## AIC: 8600.7
## Number of Fisher Scoring iterations: 10
```

Nhận xét: Với ngưỡng anpha = 0.05, chỉ có Credit score, GenderMale, Age, Tenure7, Balance, NumOfProducts và IsActiveMember1 là có ý nghĩa trong mô hình

confint(logit_model)

```
## Waiting for profiling to be done...
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
##
                            2.5 %
                                         97.5 %
## (Intercept)
                               NA 2.762040e+01
## CreditScore
                    -1.210467e-03 -1.105821e-04
## GeographyFrance -3.095710e+01
## GeographyGermany -3.018185e+01
                                             NA
## GeographySpain
                    -3.091985e+01
## GenderMale
                    -6.346203e-01 -4.208038e-01
## Age
                     6.766649e-02 7.777703e-02
## Tenure1
                    -3.494935e-01 2.440624e-01
## Tenure2
                    -5.374235e-01 6.253232e-02
## Tenure3
                    -4.163091e-01 1.816845e-01
## Tenure4
                    -3.737352e-01 2.272787e-01
## Tenure5
                    -4.880522e-01 1.120965e-01
## Tenure6
                    -4.472801e-01 1.569434e-01
## Tenure7
                    -6.200490e-01 -1.085735e-02
                    -5.248622e-01 7.829629e-02
## Tenure8
                    -4.677922e-01 1.325107e-01
## Tenure9
## Tenure10
                   -5.535202e-01 1.385300e-01
## Balance
                    1.645497e-06 3.663475e-06
## NumOfProducts
                    -1.889766e-01 -3.828365e-03
## HasCrCard1
                    -1.598464e-01 7.299393e-02
## IsActiveMember1 -1.188350e+00 -9.620336e-01
## EstimatedSalary -4.495796e-07 1.408397e-06
W_obs <- logit_model$null.deviance - logit_model$deviance
W_obs
```

[1] 1555.342

print(1 - pchisq(W_obs, df=10))

[1] 0

• Mô hình:

$$log(\frac{\mu}{1-\mu}) = -12.51 - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*GenderMale + 0.06766649*Age - 0.3175*Tenure 7 + 2.655*10^{-6}*Balance - 0.0006603*CreditScore - 0.5276*CreditScore - 0.5276*Cred$$

Ý nghĩa hệ số coefficient:

- Đối với biến liên tục: Khi biến X_i tăng/giảm 1 đơn vị thì $\frac{\mu}{1-\mu}$ (odds) tăng/giảm e^{β_i} lần.
- Đối với biến rời rạc: Tỷ lệ odds của nhóm đối chiếu là cao hơn là e^{β_i} nhóm tham chiếu. Hay xác suất của nhóm đối chiếu cao hơn nhóm tham chiếu là 1-odds lần.

Nhận xét kết quả của mô hình

- Khi Credit Score tăng 1 đơn vị thì odds Exit giảm $e^{0.0006603}=1.000661$ lần Khi Age tăng 1 đơn vị thì odds Exit tăng $e^{0.06766649}=1.070008$ lần
- Khi Balance tăng 1 đơn vị thì odds Exit tăng $e^{2.655e-06} = 1.000003$ lần
- Khi số lượng Num
Of Products tăng 1 đơn vị thì odds Exit giảm $e^{0.0961}=1.100869$ lần Xác suất exit của nhóm ma
le ít hơn nhóm femal là $1-e^{0.5276}=69.5\%$
- Xác suất exit của nhóm Tenure
7 ít hơn nhóm không phải Tenure 7 là $1-e^{0.3175}=37.37\%$
- Xác suất exit của nhóm Is Active
Member 1 ít hơn nhóm không phải Is Active Member 1 là
 $1-e^{1.075}=193\%$