

Kapitel 4: Vermittlungsschicht - Datenpfad

FFI_NW WS 2024

Vorlesung "Netzwerke"

20.09.2024

Disclaimer

Der Inhalt des Foliensatzes basiert auf bzw. ist adaptiert aus:

Computer Networking: A Top-Down Approach

8th edition [Global Edition] Jim Kurose, Keith Ross Pearson, 2021

ISBN-10 : 1292405465

ISBN-13: 978-1292405469

Sämtliches Material: Copyright 1996-2021 J.F Kurose and K.W. Ross, All Rights Reserved

Mehrere Ausgaben (auch deutsche Editionen) in der Bibliothek verfügbar

Übersicht: Vermittlungsschicht - Datenpfad

Unsere Ziele:

- Verstehen der Prinzipien hinter den Diensten der Vermittlungsschicht mit Fokus auf den Datenpfad:
 - Dienstmodelle
 - Forwarding versus Routing
 - Wie ein Router funktioniert
 - Adressierung
 - Generalized Forwarding
 - Internet Architektur
- Instanziierung & Implementierung im Internet
 - IP-Protokoll
 - NAT, Mittelboxen

Übersicht: Vermittlungsschicht - Datenpfad

Vermittlungsschicht: Überblick

- Datenpfad
- Kontrollebene
- Was steckt in einem Router
 - Eingangsports, Switching, Ausgangsports
 - Puffer Management, Scheduling
- IP: das Internet Protokoll
 - Datagramm Format
 - Adressierung
 - Network Address Translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+Action
 - OpenFlow: Match+Action
- Mittelboxen
 - Funktionen von Mittelboxen
 - Evolution & Prinzipien der Internet Architektur

Dienste und Protokolle der Vermittlungsschicht

- Transport eines Segments von Sender zum Empfangs-Host
 - Sender: kapselt Segmente in Datagramme zur Übergabe an die Sicherungsschicht
 - Empfänger: liefert ausgepackte Segmente an ein Protokoll der Transportschicht
- Internet Protokoll in jedem Internet-fähigen Gerät: Hosts, Router, ...
- Router:
 - schaut auf die Header-Felder in allen IP-Datagrammen, die ihn passieren
 - bewegt Datagramme von Eingangsports zu Ausgangsports, um sie entlang des Ende-zu-Ende Pfades zu transferieren

Zwei Schlüsselfunktionen der Vermittlungsschicht

Funktionen der Vermittlungsschicht:

- Forwarding: Bewegen von Paketen von Eingangslink eines Routers zum passenden Ausgangslink
- Routing: Bestimmen der gewählten Route von Quelle bis zum Ziel
 - Routing Algorithmen

Analogie: Eine Reise unternehmen

- Forwarding: Einen einzelnen Autobahnknoten durchfahren
- Routing: Reiseplanung von Startort zum Ziel

Vermittlungsschicht: Datenpfad, Kontrollebene

Datenpfad (Data plane):

- lokal, individuell per Router
- bestimmt wie eine Datagramm von einem Router Eingangsport zum Ausgangsport weitergeleitet wird

Kontrollebene (Control plane)

- netzweite Logik
- Bestimmt wie ein Datagramm zwischen
 Router entlang des Ende-zu-Ende Pfades
 von Quell- zu Zielhost geroutet wird
- Zwei Kontrollebenen-Ansätze :
 - Traditionelle Routing Algorithmen: implementiert in Routern
 - Software-defined Networking (SDN): implementiert auf (entfernten) Servern

Kontrollebene per Router

Eigenständige Routing Algorithmen Komponenten in jedem einzelnen Router interagieren auf der Kontrollebene

Software-Defined Networking (SDN) Kontrollebene

Entfernter Controller berechnet und installiert Forwarding Tabellen in Netzelemente (Router)

Dienstmodell

Frage: Wie sieht das **Dienstmodell** für den "Kanal" aus, der Datagramme von Sender zum Empfänger transportiert?

Beispiel-Dienste für Lieferung einzelner Datagramme:

- Garantierte Lieferung
- Garantierte Lieferung mit weniger als40 ms Verzögerung

Bespiel-Dienste für einen "Flow" aus Datagrammen:

- Datagramm Auslieferung in Reihenfolge
- Garantierte Minimum Bandbreite für einen Flow
- Einschränkungen auf Veränderungen des Zwischenpaketabstands (Jitter)

Dienstmodell der Vermittlungsschicht

Netz-		Quality of Service (QoS) Garantien?				
Architektur	Dienstmodell	Bandbreite	Verlust	Reihenfolge	Latenz	
Internet	best effort	nein	nein	nein	nein	

Internet "best effort" Dienstmodell

Keine Garantien bezüglich:

- erfolgreicher Datagramm Lieferung zum Ziel
- Verzögerung und Einhaltung der Paketreihenfolge
- Bandbreite für einen Ende-zu-Ende Flow

Dienstmodell der Vermittlungsschicht

Netz-		Quality of Service (QoS) Garantien?					
Architektur	Dienstmodell	Bandbreite	Verlust	Reihenfolge	Latenz		
Internet	best effort	nein	nein	nein	nein		
ATM	Konstante Bit Rate	Konstante Rate	ja	ja	ja		
ATM	Verfügbar Bit Rate	Garantiertes Min.	nein	ja	nein		
Internet	Intserv garantiert (RFC 1633)	ja	ja	ja	ja		
Internet	Diffserv (RFC 2475)	möglich	möglich	möglich	nein		

Einigen Gedanken zu Best-Effort Diensten:

- Die Einfachheit des Mechanismus hat die schnelle Verbreitung des Internets ermöglicht
- Das zur Verfügung stellen von ausreichend Bandbreite sorgt dafür, dass die Leistung von Echtzeitapplikationen (z.B., interaktive Sprache, Video) "meistens gut genug" ist"
- Verteilte, replizierte Dienste der Applikationsschicht (Datenzentren, Content Distribution Networks), die sich nahe bei Endnutzer Netzen befinden, erlauben es, dass Dienste von mehreren Orten zur Verfügung gestellt werden
- Überlastkontrolle von "elastischen" Diensten hilft.

Es ist schwer den Erfolg der best-effort Dienstmodells zu bestreiten!

Übersicht: Vermittlungsschicht - Datenpfad

Vermittlungsschicht: Überblick

- Datenpfad
- Kontrollebene

Was steckt in einem Router

- Eingangsports, Switching, Ausgangsports
- Puffer Management, Scheduling

IP: das Internet Protokoll

- Datagramm Format
- Adressierung
- Network Address Translation
- IPv6

Generalized Forwarding, SDN

- Match+Action
- OpenFlow: Match+Action

Mittelboxen

- Funktionen von Mittelboxen
- Evolution & Prinzipien der Internet Architektur

Router Architektur Überblick

Grobdarstellung einer generischen Router-Architektur:

Funktionen von Eingangsports

Sicherungsschicht:

z.B., Ethernet

dezentrales Switching:

- Auslesen von Header-Feldern, nachschlagen des Ausgangsports in der Forwarding Tabelle im Eingangsport Speicher ("*Match + Action*")
- Ziel: Eingangsport Verarbeitung mit 'Leitungsgeschwindigkeit'
- Eingangsport Queuing: passiert, wenn Datagramme schneller ankommen, als sie durch das Switching Fabric weitergeleitet werden können

Funktionen von Eingangsports

Sicherungsschicht:

z.B., Ethernet

dezentrales Switching:

- Auslesen von Header-Feldern, nachschlagen des Ausgangsports in der Forwarding Tabelle im Eingangsport Speicher ("Match + Action")
- Ziel-basiertes Forwarding: weiterleiten ausschließlich basierend auf der Ziel IP Adresse (traditionell)
- Generalisiertes Forwarding: weiterleiten basierend auf einer beliebigen Kombination von Header-Feldern

Ziel-basiertes Forwarding

	forwarding table	
ge		Lir

Destination Address Range	Link Interface
11001000 00010111 000 <mark>10000 00000000</mark> through	0
11001000 00010111 000 <mark>10111 11111111</mark>	
11001000 00010111 000 <mark>10000 00000</mark> 100 through	2
11001000 00010111 000 <mark>10000 00000111</mark>	3

11001000 00010111 000 <mark>11000 00000000</mark> through	1
11001000 00010111 000 <mark>11000 11111111</mark>	
11001000 00010111 000 <mark>11001 00000000</mark> through	2
11001000 00010111 000 <mark>11111 11111111</mark>	
otherwise	3

längstes Präfix Match

Bei der Suche nach einem passenden Eintrag in der Forwarding-Tabelle, nutze das **längste** Adress-Präfix, dass mit der Zieladresse übereinstimmt.

Ziel-Adressk	pereich			Port
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
ansonsten				3

Beispiele:

Welches Interface?	10100001	00010110	00010111	11001000
Welches Interface?	10101010	00011000	00010111	11001000

Walches Interface?

längstes Präfix Match

Bei der Suche nach einem passenden Eintrag in der Forwarding-Tabelle, nutze das **längste** Adress-Präfix, dass mit der Zieladresse übereinstimmt.

Ziel-Adressb	ereich			Port
11001000	00010111	00010 ***	*****	0
11001000	000 0111	00011000	*****	1
1100 Über	reinstimmu	ing! -1***	*****	2
ansonsten				3

Beispiele:

11001000 00010111 00011000 10101010 Welches Interface?

00010110

10100001 Welches Interface?

11001000

00010111

längstes Präfix Match

Bei der Suche nach einem passenden Eintrag in der Forwarding-Tabelle, nutze das **längste** Adress-Präfix, dass mit der Zieladresse übereinstimmt.

Ziel-Adressk	pereich			Port
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
ansonsten				3
Ubere	einstimmu	ng!		

Beispiele:

11001000	000.0111	00010110	10100001	Welches Interfa	ice?
11001000	00010111	00011000	10101010	Welches Interfa	ce?

längstes Präfix Match

Bei der Suche nach einem passenden Eintrag in der Forwarding-Tabelle, nutze das **längste** Adress-Präfix, dass mit der Zieladresse übereinstimmt.

Ziel-Adressk	pereich			Port
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	0001	00011***	*****	2
ansons Üb	ereinstimn	nung!		3

Beispiele:

11001000	0001(11	00010110	10100001	Welches Interface?
11001000	00010111	00011000	10101010	Welches Interface?

- Wir werden bei der Adressierung sehen warum längstes Präfix Matching verwendet wird
- Längstes Präfix Matching: wird oft mit Ternary Content Addressable Memories (TCAMs)
 durchgeführt
 - Adressierbarer Inhalt: finden der Adresse in einem Taktzyklus, unabhängig von der Tabellengröße
 - Cisco Catalyst: ~1M Einträge in der Routingtabelle im TCAM

Switching Fabrics

- Transferieren eines Pakets vom Eingangsport zum entsprechenden Ausgangsport
- Switching Rate: Rate, mit der Pakete von Eingangs- zu Ausgangsports transferiert werden könne
 - Oft als Vielfaches der Eingangs/Ausgangsverbindungsrate angegeben
 - N Eingänge: gewünschte Switching Rate entspricht N Mal der Verbindungsrate

Switching Fabrics

- Transferieren eines Pakets vom Eingangsport zum entsprechenden Ausgangsport
- Switching Rate: Rate, mit der Pakete von Eingangs- zu Ausgangsports transferiert werden können
 - Oft als Vielfaches der Eingangs/Ausgangsverbindungsrate angegeben
 - N Eingänge: gewünschte Switching Rate entspricht N Mal der Verbindungsrate
 - Drei übergeordnete Arten von Switching Fabrics:

Switching über Speicher

Router der 1. Generation:

- traditionelle Computer mit Switching unter direkter Kontrolle der CPU
- Paket wird in den Arbeitsspeicher kopiert
- Geschwindigkeitsbegrenzung durch Speicherbandbreite (2 Bus Durchläufe pro Datagramm)

Switching über einen Bus

- Datagramm wird vom Eingangsport-Speicher über einen gemeinsamen Bus zum Ausgangsport-Speicher übertragen
- Bus Konkurrenz: Switching Geschwindigkeit durch Busbandbreite eingeschränkt
- 32 Gbit/s Bus, Cisco 5600: ausreichende Geschwindigkeit für Router im Zugangsbereich

Switching über ein Verbindungsnetz

 Koppelnetze, Clos Netze, und andere
 Verbindungsnetze wurden ursprünglich entwickelt um mehrere Prozessoren in Multiprozessor-Systemen zu verbinden

Nutzen von Parallelisierung:

- Fragmentieren des Datagramms in Zellen fester Länge am Eingang
- Switchen der Zellen durch das Fabric,
 zusammensetzen des Datagramms am Ausgang

Switching über ein Verbindungsnetz

- Skalieren durch paralleles nutzen mehrerer Switching "Ebenen" :
- Beschleunigung, Skalierung durch Parallelisierung
- Cisco CRS Router:
 - Standardmodell:8 Switching Ebenen
 - Jede Ebene: 3-stufiges Verbindungsnetz
 - Bis zu 100ten Tbit/s Switching Kapazität

Eingangsport Queueing

- Wenn das Switch Fabric langsamer ist als alle Eingangsports zusammen
 - → es kann zu Wartezeiten an den Eingangsport-Puffern kommen
 - Warteschlangenverzögerung und Paketverlust durch Pufferüberlauf
- Head-of-the-Line (HOL) Blocking: wartendes Datagramm am Anfang der Warteschlange blockiert das weiterleiten der anderen wartenden Pakete

Ausgangsport Konkurrenz: nur ein dunkelblaues Paket kann übertragen werden. Das untere Paket wird blockiert

Einen Takt später: dem grauen Paket widerfährt HOL Blocking

Ausgangsport Queueing

 Puffern erforderlich, wenn Datagramme mit einer höheren Rate aus dem Fabric ankommen als die Senderate des Links. Verwurfs-Policy: Welche Datagramme sollen verworfen werden, wenn kein Platz im Puffer frei ist?

Datagramme können auf Grund von Stau, fehlenden Pufferkapazitäten verloren gehen

 Scheduling Disziplin Auswahl unter den zu versendenden Datagrammen

Prioritäts-Scheduling – wer bekommt die beste Leistung?

→ Netzneutralität

Ausgangsport Queueing

- Puffern wenn die Ankunftsrate, die Senderate des Links überschreitet
- Warteschlangenverzögerung Verlust auf Grund von Überlaufen des Ausgangspuffers

Wieviel soll gepuffert werden?

- RFC 3439 Faustregel: Durchschnittspuffergröße entspricht einer "typischen" RTT (z.B. 250 ms) mal der Linkkapazität C
 - z.B., C = 10 Gbit/s Link: 2,5 Gbit Puffer
 - Neuere Empfehlung: bei N Flows, soll die Puffergröße folgender Formel entsprechen:

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

- zu viel Puffern kann die Verzögerung erhöhen (besonders in Heimroutern)
 - lange RTTs: schlechte Performance für Echtzeitanwendungen

Puffer Management

Abstraktion: Warteschlange

Puffer Management:

- Verwerfen: welches Paket kommt in die Warteschlange, welches wird verworfen, wenn der Puffer voll läuft?
 - Tail Drop: ankommende Paket wird verworfen
 - Priorisierung: Verwerfen von Paketen auf Basis von Prioritäten

 Markieren: welche Pakete sollen markiert werden, um Überlast zu signalisieren (ECN, RED)

Paket Scheduling: FCFS

Paket Scheduling: entscheiden, welches

Paket als nächstes auf den Link kommt

- First Come, First Served
- Priorität
- Round Robin
- Weighted Fair Queueing

Abstraktion: Warteschlange

FCFS: Pakete werden in der Ankunftsreihenfolge zum Ausgangsport übertragen

- Auch bekannt als: First-in-first-out (FIFO)
- Beispiele aus dem echten Leben?

Scheduling Policies: Priorität

Prioritäts-Scheduling:

- Ankommender Verkehr wird klassifiziert und auf Warteschlangen verteilt
 - Beliebiger Header-Felder können für die Klassifikation benutzt werden
- Versenden eines Pakets aus Warteschlange mit der höchsten Priorität, in der Pakete warten
 - FCFS mit Prioritätsklassen

Scheduling Policies: Round Robin

Round Robin (RR) Scheduling:

- Ankommender Verkehr wird klassifiziert und auf Warteschlangen verteilt
 - Beliebiger Header-Felder können für die Klassifikation benutzt werden

 Die Warteschlangen werden zyklisch betrachtet und jeweils ein Paket bei jedem Besuch versendet, falls eines vorhanden ist

Scheduling Policies: Weighted Fair Queueing

Weighted Fair Queuing (WFQ):

- verallgemeinertes Round Robin
- Jede Klasse, i, hat ein Gewicht, w_i, und kann in jedem Zyklus je nach Gewicht eine bestimmte Anzahl von Paketen versenden:

$$\frac{w_i}{\sum_j w_j}$$

 Minimale Bandbreitengarantien (pro Verkehrsklasse)

L4S = Low Latency, Low Loss, and Scalable Throughput

A new IETF internet protocol to reduce queuing delay to near-zero values

Ausbreitungsverzögerung

Begrenzt durch Lichtgeschwindigkeit

Schnittstellenverzögerung

 Begrenzt durch Implementierung der unteren Schichten

Warteschlangenverzögerung

- Größte Ursache für Latenzabweichungen, die durch Warteschlangen in Netzwerkpuffern verursacht werden
- Adressierbar durch Vermeidung (GBR/Slicing) oder Verwaltung von Warteschlangenverzögerungen (AQM, IETF L4S)

Was bedeutet es, L4S in einem Netzwerkknoten zu unterstützen?

1. Entfernen von "In-Flight"-Jitter durch Priorisierung

Klassifikation

Identifizieren von L4S-Datenverkehr

Isolation

Verwenden separater Warteschlangen für L4S Pakete und Nicht-L4S-Pakete

Priorisierung

Überspringen von Nicht-L4S-Paketen durch die wenigen L4S-Pakete zulassen

2. Netzwerk-Feedback zur Anpassung der Quellenrate

ECN Markierung

Korrekte L4S-ECN-Kennzeichnung für Bewältigung von Ratenengpässen

ECN-Markierungsrückmeldung an die Verkehrsquelle (durch ACKs)

L4S zeigt >10-fache Verringerung der Spitzenlatenz

Latenz	P50	P90	P99
Kein AQM	196 ms	247 ms	273 ms
L4S	4.7 ms	8.6 ms	12.5 ms

L4S ermöglicht es Anwendungen, zwischen 2 Arten von Datenverkehr zu wählen Das Netz muss in der Mitte keine Kompromisse eingehen

Einschub: Netzneutralität

Was ist Netzneutralität

- Technisch: wie ein ISP seine Ressourcen verwenden/teilen sollte
 - Paket Scheduling, Puffer Management sind die Mechanismen dafür
- Soziale, wirtschaftliche Prinzipien
 - Schutz der Meinungsfreiheit
 - Fördern von Innovation und Konkurrenz
- Gesetzliche Regeln und Politik

Verschiedene Länder haben verschieden "Interpretationen" von Netzneutralität.

Einschub: Netzneutralität

2015 US FCC *Order on Protecting and Promoting an Open Internet:* drei klare Regeln:

- **kein Blockieren** ... "shall not block lawful content, applications, services, or non-harmful devices, subject to reasonable network management."
- **kein Einbremsen** ... "shall not impair or degrade lawful Internet traffic on the basis of Internet content, application, or service, or use of a non-harmful device, subject to reasonable network management."
- keine bezahlte Priorisierung ... "shall not engage in paid prioritization"

REGULATION (EU) 2015/2120

- 1. End-users shall have the right to access and distribute information and content, use and provide applications and services, and use terminal equipment of their choice, irrespective of the end-user's or provider's location or the location, origin or destination of the information, content, application or service, via their internet access service. This paragraph is without prejudice to Union law, or national law that complies with Union law, related to the lawfulness of the content, applications or services.
- 2. Agreements between providers of internet access services and end-users on commercial and technical conditions and the characteristics of internet access services such as price, data volumes or speed, and any commercial practices conducted by providers of internet access services, shall not limit the exercise of the rights of end-users laid down in paragraph 1.
- 3. Providers of internet access services shall treat all traffic equally, when providing internet access services, without discrimination, restriction or interference, and irrespective of the sender and receiver, the content accessed or distributed, the applications or services used or provided, or the terminal equipment used.

Übersicht: Vermittlungsschicht - Datenpfad

- Vermittlungsschicht: Überblick
 - Datenpfad
 - Kontrollebene
- Was steckt in einem Router
 - Eingangsports, Switching, Ausgangsports
 - Puffer Management, Scheduling
- IP: das Internet Protokoll
 - Datagramm Format
 - Adressierung
 - Network Address Translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+Action
 - OpenFlow: Match+Action
- Mittelboxen
 - Funktionen von Mittelboxen
 - Evolution & Prinzipien der Internet Architektur

Vermittlungsschicht: Internet

Funktionen der Vermittlungsschicht in Hosts & Routern:

IP-Datagramm Format

IP-Adressierung: Einführung

- **IP-Adresse:** 32-bit Identifier assoziiert mit jedem **Interface** von Hosts oder Routern
- Interface: Verbindung zwischen Host/Router und physischem Link
 - Router haben normalerweise mehrere
 Interfaces
 - Ein Host hat normalerweise ein oder zwei Interfaces (z.B., Kabel-Ethernet, 802.11 WLAN)

IP-Adressen Schreibweise:

223.1.1.1 = 11011111 00000001 00000001 00000001

Subnetze

Was ist ein Subnetz?

 Geräte-Schnittstellen, die sich gegenseitig physisch erreichen können ohne einen weiterleitenden Router zu passieren

- Subnetz Anteil: Geräte im selben Subnetz haben gemeinsame Bits höherer Ordnung
- Host Anteil: verbleibende Bits niedrigerer
 Ordnung

Netz bestehend aus 3 Subnetzen

Subnetze

Vorgehen zur Subnetzdefinition

- Schaffen von isolierten "Inseln" durch abkoppeln jedes Interfaces von einem Host oder Router
- Jedes isolierte Netz wird Subnetz genannt

Subnetz Maske: /24
(24 Bits höhere Ordnung = Subnetz Anteil der IP-Adresse)

Subnetze

- Wo sind die Subnetze?
- Was sind die /24 Subnetz Adressen?

IP-Adressierung: CIDR

CIDR: Classless InterDomain Routing (ausgesprochen "cider")

- Subnetz Anteil einer Adresse mit "beliebiger" Länge
- Adress Format: a.b.c.d/x, x ist die Zahl Bits im Subnetz Anteil der Adresse

200.23.16.0/23

IP Addressen: Wie bekommt man eine?

Tatsächlich sind das zwei Fragen:

- 1. Frage: Wie bekommt ein Host eine IP-Adresse in seinem Netz (Host Anteil der Adresse)?
- 2. Frage: Wie bekommt ein Netz eine eigene IP-Adresse ((Sub)Netz Anteil der Adresse)?

Wie bekommt ein **Host** eine IP Adresse?

- Konfiguration durch Systemadmin (z.B., in /etc/network/interfaces in Linux)
- DHCP: Dynamic Host Configuration Protocol: dynamisches Anfragen einer Adresse von einem Server
 - "Plug-and-Play"

DHCP: Dynamic Host Configuration Protocol

Ziel: Der Host erhält eine IP-Adresse dynamisch wenn er ein Netz "betritt"

- kann seinen "Lease" auf eine benutzte Adresse verlängern
- erlaubt die Mehrfachnutzung von Adressen (Adresse nur genutzt, wenn angeschaltet)
- Unterstützung für mobile Nutzer, die das Netz betreten/verlassen

DHCP Übersicht:

- Host broadcastet eine DHCP Discover Nachricht [optional]
- DHCP-Server antwortet mit einer DHCP Offer Nachricht [optional]
- Host fordert eine IP-Adresse an: DHCP Request Nachricht
- DHCP-Server sendet eine Adresse: DHCP Ack Nachricht

DHCP-Client+Server Szenario

DHCP-Client+Server Szenario

DHCP: Mehr als nur IP Adressen

DHCP kann mehr liefern als nur IP-Adressen für ein Subnetz:

- Adresse des ersten Routers aus Sicht des Clients (Gateway)
- Name und IP-Adresse eines DNS-Servers
- Netzmaske (Netzanteil einer Adresse)

DHCP: Beispiel

- Der ankommende Laptop wird DHCP benutzen um eine IP-Adresse, die Gateway Adresse und die DNS Server Adresse zu erhalten.
- DHCP REQUEST Nachricht über UDP, IP, und schließlich Ethernet

- Ethernet Rahmen Broadcast (Ziel: FFFFFFFFFFF) im LAN wird am Router mit DHCP-Server empfangen
- Ethernet wird ausgepackt zu IP, wird ausgepackt zu, UDP wird ausgepackt zu DHCP

DHCP: Beispiel

 DHCP-Server erstellt DHCP ACK, dass die Client IP Adresse, Gateway IP Adresse, Namen & IP-Adresse eines DNS-Servers beinhaltet

 "Verpackte" DHCP-Server Antwort wird zum Client weitergeleitet, der sie bis zu DHCP auspackt

 Der Client kennt nun seine IP-Adresse, Gateway IP Adresse, Namen & IP Adresse eines DNS-Servers

IP-Adressen: Wie bekommt man eine?

Frage: Wie bekommt das Netz den Subnetz Anteil einer Netzmaske?

Antwort: es bekommt einen Teil des IP-Adressraumes seine ISPs zugeteilt

ISP-Block 11001000 00010111 00010000 00000000 200.23.16.0/20

Der ISP kann dann daraus z.B. 8 Blöcke bilden:

Organisation 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organisation 1	11001000	00010111	00010010	00000000	200.23.18.0/23
Organisation 2	11001000	00010111	0001010	00000000	200.23.20.0/23
Organisation 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Hierarchische Adressierung: Bündeln von Routen

Hierarchische Adressierung erlaubt das effiziente Verteilen von Routing Informationen:

Hierarchische Adressierung: spezifischere Routen

- Organisation 1 wechselt von Anbieter 1 zu Anbieter 2
- Anbieter 2 verbreitet nun eine spezifischere Route zu Organisation 1

Hierarchische Adressierung: spezifischere Routen

- Organisation 1 wechselt von Anbieter 1 zu Anbieter 2
- Anbieter 2 verbreitet nun eine spezifischere Route zu Organisation 1

IP-Adressierung: abschließende Worte ...

Frage: Wie bekommt ein ISP einen Adressblock?

Antwort: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/

- vergibt Adressen über 5 regionale Registries (RRs) (die ebenfall an lokale Registries weitervergeben können)
- verwaltet die DNS Root Zone, delegiert das Management einzelner TLDs (.com, .edu , ...)

Frage: Gibt es genug 32-bit IP-Adressen?

- ICANN vergab 2011 den letzten IPv4 Adressbereich an die RRs
- NAT hilft beim Sparen von IPv4 Adressen
- IPv6 hat einen 128-bit Adressraum

"Who the hell knew how much address space we needed?" Vint Cerf (gefragt nach der Entscheidung IPv4 Adressen 32 Bits lang zu machen)

Übersicht: Vermittlungsschicht - Datenpfad

Vermittlungsschicht: Überblick

- Datenpfad
- Kontrollebene
- Was steckt in einem Router
 - Eingangsports, Switching, Ausgangsports
 - Puffer Management, Scheduling
- IP: das Internet Protokoll
 - Datagramm Format
 - Adressierung
 - Network Address Translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+Action
 - OpenFlow: Match+Action
- Mittelboxen
 - Funktionen von Mittelboxen
 - Evolution & Prinzipien der Internet Architektur

NAT: Alle Geräte im lokalen Netz teilen sich nur eine IPv4 Adresse im Hinblick auf die Welt außen

Alle Datagramme, die das lokale Netz verlassen haben dieselbe Quell-NAT IP Adresse: 138.76.29.7, aber verschiedene Quell-Port-Nummern

Datagramme mit Quelle oder Ziel in diesem Netz haben die 10.0.0.0/24 Adresse als Quelle oder Ziel (wie sonst)

- Alle Geräte im lokalen Netz haben 32-Bit Adressen aus einem "privaten" IP Adress-Raum (10/8, 172.16/12, 192.168/16 Präfix), die nur in lokalen Netzen verwendet werden dürfen
- Vorteile:
 - nur eine IP-Adresse wird vom Anbieter ISP für alle Geräte benötigt
 - Adressen von Hosts im lokalen Netz können verändert werden, ohne das der äußeren Welt mitteilen zu müssen
 - ISP kann gewechselt werden, ohne die Adressen von Geräten im lokalen Netz verändern zu müssen
 - Sicherheit: Geräte innerhalb des lokalen Netzes sind nicht direkt adressierbar, sichtbar von der Außenwelt

Implementierung: NAT-Router muss (transparent):

- bei allen ausgehenden Datagrammen die Quell-IP Adresse & Port Nr. mit der NAT-IP Adresse & einer neuen Port Nr. ersetzen
 - entfernte Clients/Server werden mit der NAT-IP Adresse & der neuen Port Nr. als Zieladresse antworten
- sich alle (Quell-IP Adresse, Port Nr. & NAT-IP Adresse, Port Nr.) Paare (in der NAT-Übersetzungstabelle) merken
- bei ankommenden Datagrammen die NAT-IP Adresse & Port Nr. in den Zielfeldern mit der entsprechenden Quell-IP Adresse & Port Nr. ersetzen

- NAT ist umstritten:
 - Router "sollten" nur bis Layer 3 arbeiten
 - "Adressmangel" sollte durch IPv6 gelöst werden
 - bricht das Ende-zu-Ende Prinzip (Manipulation der Port Nr. durch Gerät der Vermittlungssicht)
 - NAT-Traversal: was, wenn sich ein Client zu einem Server hinter NAT verbinden möchte?
- aber NAT wird (vorerst) bleiben:
 - wird extensiv in Heim- und Firmennetze, sowie 4G/5G Mobilfunknetzen eingesetzt

IPv6: Motivation

- Ursprüngliche Motivation: 32-Bit IPv4 Adressraum vollständig allokiert
- weitere Gründe:
 - Verarbeitungs-/Weiterleitungsgeschwindigkeit: feste 40-Byte Headerlänge
 - Ermöglichen von Andersbehandlung verschiedener "Flows" auf der Vermittlungsschicht

IPv6 Datagramm Format

Flow Label: identifizieren von Datagrammen im selben "Flow." ("Flow"-Konzept nur vage definiert).

Was fehlt (im Vergleich mit IPv4):

- keine Checksumme (Erhöhung der Verarbeitungsgeschwindigkeit)
- keine Fragmentierung/Neuzusammensetzung
- keine Optionen (verfügbar als höhere, Next-Header Protokolle am Router)

Transition von IPv4 zu IPv6

- nicht alle Router können gleichzeitig nachgerüstet werden
 - keine "Feiertage"
 - Wie kann ein Netz mit gemischten IPv4 und IPv6 Routern funktionieren?
 - **Tunnel:** IPv6 Datagramm wird als *Payload* in IPv4 Datagramm zwischen IPv4 Routern transportiert ("Paket im Paket")
 - Tunnel werden extensiv in anderen Zusammenhängen genutzt (Datenzentren, 4G/5G Kernnetze)

Tunnel und Kapselung

Ethernet verbindet zwei IPv6 Router:

IPv4 Netz verbindet zwei IPv6 Router

Tunnel und Kapselung

Ethernet verbindet zwei IPv6 Router:

IPv4 Netz verbindet zwei IPv6 Router

Tunnel: IPv6 Datagramm als Payload in einem IPv4 Datagramm

IPv6: Verbreitung

■ Google: ~ 42% aller Clients greifen auf Dienste mit IPv6 zu

IPv6: Verbreitung

- Google: ~ 42% aller Clients greifen auf Dienste mit IPv6 zu
- Lange, lange Zeit für Ausrollen und Nutzung:
 - 29 Jahre bisher
 - Änderungen auf Applikationsschicht in den letzten 29 Jahren: Web, Soziale Medien,
 Streaming, Online Gaming, Telepräsenz, ...
 - Warum?

Übersicht: Vermittlungsschicht - Datenpfad

Vermittlungsschicht: Überblick

- Datenpfad
- Kontrollebene
- Was steckt in einem Router
 - Eingangsports, Switching, Ausgangsports
 - Puffer Management, Scheduling
- IP: das Internet Protokoll
 - Datagramm Format
 - Adressierung
 - Network Address Translation
 - IPv6

Generalized Forwarding, SDN

- Match+Action
- OpenFlow: Match+Action
- Mittelboxen
 - Funktionen von Mittelboxen
 - Evolution & Prinzipien der Internet Architektur

Generalisiertes Forwarding: Match + Action

Wiederholung: jeder Router hat eine Forwarding Tabelle (aka: Flow Table)

- "Match + Action" Abstraktion: Matchen von Bits in ankommendem Paket, Aktion durchführen
 - Ziel-basiertes Forwarding: Weiterleiten basierend auf Ziel-IP Adresse

- Viele Header können die Aktion bestimmen
- Mehr Aktionen möglich: Verwerfen/Kopieren/Modifzieren/Loggen eines Pakets

Flow Table Abstraktion

- Flow: definiert durch Header-Feld Werte (in Link-, Vermittlungs-, Transportschicht Feldern)
- Generalisiertes Forwarding: einfache Paket-Verarbeitungsregeln
 - Match: bestimmte Werte in Paket-Headerfeldern
 - Aktionen: für entsprechendes Paket: Verwerfen, Weiterleiten, Modifizieren des Pakets oder Senden an den Controller
 - Priorität: Zur Unterscheidung überlappender Matches
 - Counter: #Bytes und #Pakete

Flow Table Abstraktion

- Flow: definiert durch Header-Feld Werte (in Link-, Vermittlungs-, Transportschicht Feldern)
- Generalisiertes Forwarding: einfache Paket-Verarbeitungsregeln
 - Match: bestimmte Werte in Paket-Headerfeldern
 - Aktionen: für entsprechendes Paket: Verwerfen, Weiterleiten, Modifizieren des Pakets oder Senden an den Controller
 - Priorität: Zur Unterscheidung überlappender Matches

Flow Table
Src = 1.2.*.*, dest=3.4.*.*

Match Action

Src = 10.1.2.3, dest=*.*.*

Src = 10.1.2.3, dest=*.*.*

* : Wildcard

OpenFlow: Flow Table Einträge

OpenFlow: Beispiele

Ziel-basiertes Forwarding:

IP-Datagramme bestimmt für IP-Adresse 51.6.0.8 sollen an Router Port 6 weitergeleitet werden

Firewall:

Blockieren aller Datagramme an TCP-Port 22 (SSH Port Nr.)

Blockieren aller Datagramme gesendet von Host 128.119.1.1

OpenFlow: Beispiele

Layer 2 Ziel-basiertes Forwarding:

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	VLAN Pri	IP Src	IP Dst	IP Prot	IP ToS	TCP s-port	TCP d-port	Action
*	*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	*	port3

Layer 2 Rahmen mit Ziel MAC-Adresse 22:A7:23:11:E1:02 sollen an Port 3 weitergeleitet werden

OpenFlow Abstraktion

Match+Action: Abstraktion vereinigt verschiedene Arten von Geräten

Router

- Match: längstes Ziel-IP Präfix
- Action: weiterleiten über Link

Switch

- Match: Ziel-MAC Adresse
- Action: weiterleiten oder fluten

Firewall

- Match: IP-Adressen und TCP/UDP Port-Nummern
- Action: erlauben oder blockieren

NAT

- Match: IP-Adresse und Port
- Action: ändern von Adresse und Port

OpenFlow Beispiel

OpenFlow Beispiel

Generalisiertes Forwarding: Zusammenfassung

- "Match + Action" Abstraktion: Matchen von Bits in ankommenden Paket Header(n) aller Schichten, Aktion durchführen
 - Matchen über viele Felder hinweg (Link-, Vermittlungs-, Transport Schicht)
 - lokale Aktionen: Verwerfen, Weiterleiten, Modifizieren oder Paket an Controller schicken
 - "Programmieren" von Netz-weiten Verhalten
- Einfache Form von "Network Programmability"
 - Programmierbares, "per Paket"-Verarbeitung
 - historische Wurzeln: Active Networking
 - heute: generellere Programmierbarkeit: P4 (siehe p4.org).

Übersicht: Vermittlungsschicht - Datenpfad

Vermittlungsschicht: Überblick

- Datenpfad
- Kontrollebene
- Was steckt in einem Router
 - Eingangsports, Switching, Ausgangsports
 - Puffer Management, Scheduling
- IP: das Internet Protokoll
 - Datagramm Format
 - Adressierung
 - **Network Address Translation**
 - IPv6

- Generalized Forwarding, SDN
 - Match+Action
 - OpenFlow: Match+Action
- Mittelboxen
 - Funktionen von Mittelboxen
 - Evolution & Prinzipien der Internet Architektur

"Mittelboxen"

Middlebox (RFC 3234)

"any intermediary box performing functions apart from normal, standard functions of an IP router on the data path between a source host and destination host"

Mittelboxen sind überall!

Firewalls, IDS: Unternehmen, Dienstanbieter, ISPs

NAT: Daheim, Mobilfunk, Unternehmen

Applikationsspezifisch: Dienstanbieter, Unternehmen, CDNs

Load Balancer:

Unternehmen, Dienstanbieter, Datenzentren, mobile Netze

Caches: Dienstanbieter, Datenzentren, mobile Netze, CDNs

Mittelboxen

- ursprünglich: proprietäre (geschlossene) Hardware Lösungen
- Trend zu "Whitebox" Hardware mit offenen Schnittstellen (APIs)
 - weg von proprietären Hardware Lösungen
 - Programmierbare, lokale Aktionen via Match+Action
 - Trend zu Innovation/Differenzierung in Software
- SDN: (logisch) zentralisierte Kontrolle und Konfigurationsmanagement, oft in Private/Public Cloud
- Network Functions Virtualization (NFV): programmierbare Dienste über "Whitebox"
 Netz-, Compute- und Storagehardware

Gartner Hype Cycle Networking 2021

4

Hype Cycle for Enterprise Networking, 2021

Gartner

Gartner Hype Cycle Networking 2024

Hype Cycle for Enterprise Networking, 2024

Gartner.

Die IP-Sanduhr

Internet "enge Taille":

- ein Vermittlungsschicht Protokoll: IP
- muss in allen (Milliarden) Internetverbundenen Geräten implementiert sein

viele Protokolle in den Bitübertragungs-, Sicherungs-, Transport-, und Applikationsschichten

Die IP-Sanduhr, im mittleren Alter

Architektur Prinzipien des Internets

RFC 1958

"Many members of the Internet community would argue that there is no architecture, but only a tradition, which was not written down for the first 25 years (or at least not by the IAB). However, in very general terms, the community believes that the goal is connectivity, the tool is the Internet Protocol, and the intelligence is end to end rather than hidden in the network."

Drei Schlüsselüberzeugungen:

- einfache Konnektivität
- IP-Protokoll: die enge Taille
- Intelligenz, Komplexität am Rand des Netzes

Das Ende-zu-Ende Prinzip

 Bestimmte Netzfunktionen (z.B., Verlässliche Datenübertragung, Staukontrolle) kann im Netz oder am Rand des Netzes implementiert werden

Das Ende-zu-Ende Prinzip

 Bestimmte Netzfunktionen (z.B., Verlässliche Datenübertragung, Staukontrolle) kann im Netz oder am Rand des Netzes implementiert werden

"The function in question can completely and correctly be implemented only with the knowledge and help of the application standing at the end points of the communication system. Therefore, providing that questioned function as a feature of the communication system itself is not possible. (Sometimes an incomplete version of the function provided by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end argument."

Saltzer, Reed, Clark 1981

Wo liegt die Intelligenz?

20th Jhd. Telefonnetz:

Intelligenz auf den Switches

Internet (vor 2005)

Intelligenz am Rand

Internet (nach 2005)

- Programmierbare Netzgeräte
- Intelligenz, riesige Applikationsinfrastruktur am Rand