6.006- Introduction to Algorithms

Lecture 2

Prof. Constantinos Daskalakis

Menu

- Problem: peak finding
 - 1 dimension
 - -2 dimensions

- Technique: Divide and conquer
- details about the 1st pset in the end of the lecture

Peak Finding: 1D

• Consider an array A[1...n]:

- An element A[i] is a *peak* if it is not smaller than its neighbor(s). I.e.,
 - $-if i \neq 1, n : A[i] \geq A[i-1]$ and $A[i] \geq A[i+1]$
 - $\text{ If } i=1 : A[1] \ge A[2]$
 - If $i=n: A[n] \ge A[n-1]$
- Problem: find *any* peak.

Peak Finding: Ideas?

- Algorithm I:
 - -Scan the array from left to right
 - Compare each A[i] with its neighbors
 - Exit when found a peak
- Complexity:
 - Might need to scan all elements, so $T(n)=\Theta(n)$

Peak Finding: Ideas II?

- Algorithm II:
- Consider the middle element of the array and compare with neighbors
 - If A[n/2-1]>A[n/2]then search for a peak among A[1]...A[n/2-1]
 - Else, if A[n/2] < A[n/2+1]then search for a peak among A[n/2] ... A[n]
 - Else A[n/2] is a peak! (since A[n/2-1] \leq A[n/2] and A[n/2] \geq A[n/2+1])
- Running time ?

Algorithm II: Complexity

Algorithm II: Complexity

Time needed to find peak in array of length n

• We have

Unraveling the recursion,

$$T(n) = \Theta(1) + \Theta(1) + ... + \Theta(1) = \Theta(\log n)$$

$$\log_2 n$$

• log n is much much better than n !

Divide and Conquer

- Very powerful design tool:
 - Divide input into multiple disjoint parts
 - Conquer each of the parts separately (using recursive call)
- Occasionally, we need to *combine* results from different calls (not used here)

Peak Finding: 2D

• Consider a 2D array A[1...n, 1...m]:

10	8	5
3	2	1
7	13	4
6	8	3

- An element A[i] is a 2D peak if it is not smaller than its (at most 4) neighbors.
- Problem: find any 2D peak.

2D Peak Finding: Ideas?

Algorithm I: use the 1D algorithm

• Algorithm I:

- For each column j, find its global maximum B[j]
- Apply 1D peak finder to find a peak (say B[j]) of B[1...m]
- Running time?

...is
$$\Theta(n \cdot m)$$

- Correctness:
 - B[j] not smaller than B[j-1], B[j+1]
 - For any k, B[k] not smaller than any element from the k-th column of A
 - Therefore, B[j] not smaller than any element from the columns j-1, j and j+1 of A
 - But this includes all neighbors of B[j] in A, so
 B[j] is a peak in A

12	8	5
11	3	6
10	9	2
8	4	1

Algorithm I': use the 1D algorithm

- Observation: 1D peak finder uses only O(log m) entries of B
- We can modify Algorithm I so that it only computes B[j] when needed!
- Total time?
 - \dots only $O(n \log m) !$
 - Need O(log m) entries B[j]
 - Each computed in O(n) time

12	8	5
11	3	6
10	9	2
8	4	1

Algorithm II

- Pick middle column (j=m/2)
- Find global maximum a=A[i,m/2] in that column (and quit if m=1)
- Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
- If b>a
 then recurse on left columns
- Else, if c>a then recurse on right columns
- Else a is a 2D peak!

Algorithm II: Example

- Pick middle column (j=m/2)
- Find global maximum a=A[i,m/2] in that column (and quit if m=1)
- Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]
- If b>a
 then recurse on left columns
- Else, if c>a then recurse on right columns
- Else a is a 2D peak!

Algorithm II: Correctness

- Claim: If b>a, then there is a peak among the left columns
- Proof (by contradiction):
 - Assume no peak on the left
 - Then b must have a neighbor b1 with higher value
 - And b1 must have a neighbor b2 with higher value
 - **—** ...
 - We have to stay on the left side why?
 - (because we cannot enter the middle column)
 - But at some point, we would run out the elements of the left columns
 - Hence, we have to find a peak at some point

Algorithm II: Complexity

We have

Recursion
$$T(n,m) = T(n,m/2) + \Theta(n)$$
 Scanning middle column

Hence:

•
$$T(n,n) = \Theta(n) + \Theta(n) + ... + \Theta(n) = \Theta(n\log m)$$

$$\log_2 m$$

Faster than O(n log n)?

Idea:

Reading only O(n + m) elements, reduce an array of $n \times m$ candidates to an array of $n/2 \times m/2$ candidates

Pictorially:

read only O(n + m) elements

Faster than O(n log n)?

Hypothetical algorithm has recursion:

$$T(n,m) = T\left(\frac{n}{2}, \frac{m}{2}\right) + \Theta(n+m)$$

• Hence:
$$T(n,m) = \Theta(n+m) + \Theta\left(\frac{n+m}{2}\right)$$

 $+\Theta\left(\frac{n+m}{4}\right)$
 $+\dots + \Theta(1)$
 $=\Theta(n+m)$!

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global max on the cross

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global max on the cross
- if middle element done!

Towards a linear-time algorithm

What elements are useful to check?

- find global max on the cross
- if middle element done!
- o.w. two candidate subsquares
- determine which one to pick by looking at its neighbors not on the cross (as in Algorithm II)

Claim: The sub-square chosen by the above procedure (if any), always contains a peak of the large square.

BUT: Claim 2: Not every peak of the chosen sub-square is necessarily a peak of the large square. Hence, it is hard to recurse...

First Problem Set

- out tonight, by 9pm
 - part A: theory, due at 11.59pm, Sept 21st
 - part B: implementation, due at 11.59pm, Sept 23rd
- deadline policy:
 - 6 days of credit can be used for delayed homeworl submission
 - at most 2 days can be used for the same deadline (total of 12 deadlines: 6psets x 2parts)
- details on the class website