

Cálculo computacional II

Unidade 1: Retas e planos no \mathbb{R}^3

Cristina Vaz

C2-aula 14/5/25

UFPA

Sumário

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação escalar do plan Equação linear do plano Equação vetorial do plan

- 1 Planos no \mathbb{R}^3
 - Vetores ortgonais
- 2 Equação do plano
 - Equação normal do plano
 - Equação escalar do plano
 - Equação linear do plano
 - Equação vetorial do plano
- 3 Cilindro

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

Cilindre

Lei dos cossenos:

$$\|\overrightarrow{AB}\|^2 = \|\overrightarrow{OA}\|^2 + \|\overrightarrow{OB}\|^2 - 2\|\overrightarrow{OA}\| \|\overrightarrow{OB}\| \cos \theta$$
$$\|\vec{a} - \vec{b}\|^2 = \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\|\vec{a}\| \|\vec{b}\| \cos \theta$$

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

Cilindre

Usando as propriedades do produto interno, obtemos:

$$\|\vec{a} - \vec{b}\|^2 = (\vec{a} - \vec{b}).(\vec{a} - \vec{b}) = \|\vec{a}\|^2 - 2\vec{a}.\vec{b} + \|\vec{b}\|^2$$

Logo, a lei do cosseno torna-se

Planos no \mathbb{R}^3 Vetores ortgonals

Equação do

Equação normal do plan

Equação linear do plano Equação vetorial do pla

Cilindr

Usando as propriedades do produto interno, obtemos:

$$\|\vec{a} - \vec{b}\|^2 = (\vec{a} - \vec{b}).(\vec{a} - \vec{b}) = \|\vec{a}\|^2 - 2\vec{a}.\vec{b} + \|\vec{b}\|^2$$

Logo, a lei do cosseno torna-se

$$\|\vec{a} - \vec{b}\|^2 = \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\|\vec{a}\| \|\vec{b}\| \cos \theta \Rightarrow$$

$$\|\vec{a}\|^2 - 2\vec{a}.\vec{b} + \|\vec{b}\|^2 = \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\|\vec{a}\|\|\vec{b}\|\cos\theta \Rightarrow$$

$$(\|\vec{a}\|^2) 2 \vec{a} \cdot \vec{b} + (\|\vec{b}\|^2) = (\|\vec{a}\|^2) + (\|\vec{b}\|^2) 2 \|\vec{a}\| \|\vec{b}\| \cos \theta \Rightarrow$$

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$$

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plan Equação escalar do plan Equação linear do plano Equação vetorial do plan

Cilindro

Teorema

Se θ é o ângulo entre os vetores \vec{u} e \vec{v} do \mathbb{R}^n então

$$\vec{u}.\vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

Observe que, para o caso de vetores são ortogonais no \mathbb{R}^2 ou \mathbb{R}^3 , tem-se $\theta=\frac{\pi}{2}$, o que implica $\cos\theta=0$ e pelo teorema acima temos que

$$\vec{u}.\vec{v}=0$$

Planos no \mathbb{R}^3 Vetores ortgonais

plano

Equação normal do plan

Equação escalar do plan

Equação linear do plano

Cilindre

Assim, podemos generalizar a propriedade de ortogonalidade do seguinte modo:

Definição (vetores ortogonais)

Dizemos que dois vetores \vec{u} e \vec{v} do \mathbb{R}^n são **ortogonais** se, e somente se $\vec{u} \cdot \vec{v} = 0$

Planos no \mathbb{R}^3 Vetores ortgonals

Equação do plano

Equação escalar do plan Equação linear do plano Equação vetorial do plan

Cilind

Existem três modos distintos e equivalentes de definir a equação de um plano π do espaço \mathbb{R}^3 :

- **1** Usando três pontos de π ;
- 2 Usando um ponto de π e dois vetores não nulos dados;
- Is ando um ponto de π e um vetor perpendicular ao plano π dado.

Vamos usar o método descrito em 3, ou seja, o plano π no espaço fica determinado se conhecermos um ponto $P_0=(x_0,y_0,z_0)$ do plano π e um vetor \vec{n} que é ortogonal ao plano π .

Planos no \mathbb{R}^3

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

Cilindro

O vetor \vec{n} é chamado vetor normal ao plano π

Equação normal do plano

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano

Equação linear do plano Equação vetorial do plano Como vetor normal \vec{n} é ortogonal a todo vetor do plano π , logo, em particular \vec{n} é ortogonal a $\vec{r} - \vec{r}_0$, o que significa que o produto interno (escalar) entre eles é zero. Logo,

$$\vec{n}.(\vec{r}-\vec{r}_0)=0$$

é chamada **equação normal** do plano π

Equação escalar do plano

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano

Cilind

Em termos das componentes dos vetores temos que: se $\vec{n}=(a,b,c), \vec{r}_0=(x_0,y_0,z_0)$ e $\vec{r}=(x,y,z)$ então a equação normal torna-se

$$\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0 \Rightarrow (a, b, c) \cdot (x - x_0, y - y_0 \cdot z - z_0) = 0.$$

Ou seja,

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

chamada **equação escalar** do plano π que passa pelo ponto $P_0 = (x_0, y_0, z_0)$ com vetor normal $\vec{n} = (a, b, c)$.

Equação linear do plano

Planos no \mathbb{R}^3 Vetores ortgonais
Eguação do

plano

Equação normal do plano

Equação escalar do plano Equação linear do plano

Cilindro

Efetuando as operações e agrupando os termos na equação escalar do plano podemos escrever

$$ax + by + cz - (ax_0 + by_0 + cz_0) = 0$$
. E logo,

$$ax + by + cz + d = 0$$

com $d = -(ax_0 + by_0 + cz_0)$. Esta equação é chamada **equação linear** em x, y e z.

Planos no \mathbb{R}^3 Vetores ortgonais
Eguação do

plano

Equação normal do plan

Equação linear do plano Equação vetorial do plan

Cilianatan

Note que, se a, b e c não são todos simultaneamente nulos então uma equação do tipo

$$ax + by + cz + d = 0$$

representa a equação de um plano com vetor normal dado por $\vec{n} = (a, b, c)$.

Planos no \mathbb{R}^3 Vetores ortgonais
Eguação do

plano Equação normal do plan Equação escalar do plan

Equação linear do plano Equação vetorial do plan

Cilindr

De fato, suponha $a \neq 0$ então podemos escrever a equação na forma

$$a\left(x + \frac{d}{a}\right) + b(y - 0) + c(z - 0) = 0$$

que é a equação do plano que passa pelo ponto $P_0 = (d/a, 0, 0)$ com vetor normal $\vec{n} = (a, b, c)$.

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plan

Equação linear do plano
Equação vetorial do plano

Cilindre

Em resumo, a equação linear do tipo

$$ax + by + cz + d = 0$$

representa um plano no espaço com vetor normal $\vec{n} = (a, b, c)$

Planos no \mathbb{R}^3

Equação do plano

Equação normal do plano Equação escalar do plano

Equação linear do plano

Cilindr

Exemplo (equação da reta)

Determine a equação do plano π que passa pelos pontos $P=(1,3,2),\ Q=(3,-1,6)\ e\ R=(5,2,0)$

Solução: Para obtermos o vetor normal \vec{n} ao plano π vamos usar o fato que o produto vetorial entre dois vetores v_1 e v_2 do \mathbb{R}^3 , que pertencem ao plano π , gera um vetor $\vec{v}_1 \times \vec{v}_2$ do \mathbb{R}^3 que é ortogonal a π . Assim,

$$\vec{n} = \vec{v}_1 \times \vec{v}_2$$

Planos no \mathbb{R}^3 Vetores ortgonais Equação do

plano

Equação escalar do plano

Equação linear do plano Equação vetorial do plano

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano Equação normal do pla

Equação escalar do plan Equação linear do plano

Equação vetorial do

Cilind

Note que os vetores:

$$\vec{v}_1 = \overrightarrow{PQ} = Q - P = (2, -4, 4)$$

$$\vec{v}_2 = \overrightarrow{PR} = R - P = (4, -1, -2)$$

pertencem ao plano π . Assim,

$$\vec{n} = \vec{v}_1 \times \vec{v}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12\vec{i} + 20\vec{j} + 14\vec{k}$$

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação escalar do plan Equação linear do plano

quação vetorial do plar

Cilindi

Logo, para
$$P_0=P=(1,3,2)$$
 e $\vec{n}=12\vec{i}+20\vec{j}+14\vec{k}$, a equação do plano

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

torna-se
$$12(x-1) + 20(y-3) + 14(z-2) = 0$$
. Ou seja,

$$6x + 10y + 7z = 50$$

é a equação do plano π que passa pelos pontos P, Q e R dados.

Equação vetorial do plano

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação escalar do plano Equação linear do plano

Equação vetorial do plano

Citina

Para obter a **equação vetorial** do plano π , considere dados um ponto $P_0 = (x_0, y_0, z_0)$ e dois vetores \vec{u} e \vec{v} em π .

Se P=(x,y,z) um ponto qualquer de π tal que os vetores \vec{u} , \vec{v} e $\vec{r}=\overrightarrow{P_0P}$ são linearmente dependentes, ou seja, existem escalares $t,k\in\mathbb{R}$ tais que

$$\vec{r} = t \, \vec{u} + k \, \vec{v}$$

Então, a equação acima é chamada **equação vetorial** do plano π .

<u>∂f</u> ∂t

Planos no \mathbb{R}^3

Equação do plano

Equação escalar do plano Equação linear do plano

Equação vetorial do plano

Cilindr

Em termos das componentes: $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ a equação vetorial torna-se

$$(x-x_0,y-y_0,z-z_0)=(tu_1+kv_1,tu_2+kv_2,tu_3+kv_3).$$

Ou seja,

$$x - x_0 = tu_1 + kv_1$$

 $y - y_0 = tu_2 + kv_2$
 $z - z_0 = tu_3 + kv_3$

chamadas **equações paramétricas** do plano.

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do pla

Cilindro

Definição (superfície cilíndrica)

O lugar geométrico dos pontos do espaço tridimensional \mathbb{R}^3 gerado por uma reta L que se movem ao longo de uma curva \mathcal{C} dada de tal modo que a reta L se mantém paralela a uma reta fixa que não pertence ao plano que contém a curva \mathcal{C} é chamado de cilindro ou de superfície cilíndrica. A reta L é chamada de geratriz e a curva \mathcal{C} diretriz do cilindro.

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais

Equação do plano

Equação normal do plano Equação escalar do plano Equação linear do plano Equação vetorial do plano

<u>∂f</u> ∂t

Planos no \mathbb{R}^3 Vetores ortgonais Equação do

plano Equação normal do plano Equação escalar do plan

Cilindro

Objetivo: Obter a equação do cilindro (ou superfícies cilíndricas)

OBRIGADA