24.09.2024

STATUS-UPDATE 01

BISHERIGE FORTSCHRITTE:

- 1. Erster Entwurf und Skizze zur Softwarearchitektur erstellt
- 2. Analyse der verfügbaren Datensätze abgeschlossen
- 3. Lokale Entwicklungsumgebung eingerichtet
- 4. Framework-Entscheidung: Aktuell YOLO vorgesehen
- 5. Erstes Dockerfile und Grundstruktur eines Python-Projekts erstellt
- 6. Prototyp/PoC für Standard-Verkehrszeichenerkennung (z.B. GTSRB) gestartet

NÄCHSTE SCHRITTE:

- 1. Weiterentwicklung des PoC-Prototyps
- 2. Festlegung und Dokumentation des benötigten Annotationsformats
- 3. Evaluierung verschiedener vortrainierter Modelle
- 4. Zusendung der Auftragsbestätigung meinerseits

BENÖTIGTES FEEDBACK:

- 1. Ist die Genauigkeit auf Bounding-Box-Ebene (Object Detection) für den Anwendungsfall ausreichend oder wird eine pixelgenaue Instanz-Segmentierung benötigt? (Siehe Anhang 2)
- 2. Bitte Beispielbilder aus eurem Datensatz bereitstellen
- 3. Funktioniert für euch folgender OneDrive-Ordner für den Datenaustausch? https://drv.ms/f/s!AgSq5Bt2wYQ_pcEWSJCCMyjsGYl66g?e=wn7pDM
- 4. Auftragsbestätigung bitte an "Alexander Melde IT & Medien" senden

STATUS-UPDATE 01

ANHANG

1. Grobe Architektur

Kurzfassung, wird natürlich noch detaillierter. Rückfragen gerne schon ansprechen.

- 1. Eigene Bilder werden z.B. mit dem Annotierungstool "CVAT" beschriftet (=händisch Rahmen um die Verkehrszeichen zeichnen).
- 2. Diese Daten werden in einem geeigneten Format gespeichert und zum Fine-Tuning eines vortrainierten Modells verwendet Hiermit wird ein Modell, das z.B: zahlreiche andere Objekte des Altags unterscheiden kann angepasst, sodass es Verkehrszeichen unterscheiden kann.
- 3. Das hierbei entstehende Modell wird dann während der Inferenz (spätere Anwendung) genutzt, um in neuen Bildern ebenfalls Rahmen um Verkehrszeichen zu zeichnen, wobei dieser Schritt dann nicht mehr händisch sondern durch KI erfolgt.

2. Unterscheidung Bounding-Box vs. Segmentierung

Ich vermute, "Object Detection" ist für uns der richtige Genauigkeitsgrad.

 $\textbf{Bildquelle:} \ \underline{\text{https://nirmalamurali.medium.com/image-classification-vs-semantic-segmentation-vs-instance-segmentation-625c33a08d50}$

STATUS-UPDATE 01

3. Allgemeine Datensätze für Objekterkennung/-segmentierung und Bildklassifizierung

Vermitteln der KI ein allgemeines Verständnis von Objekten und Strukturen "unserer Welt", Grundlage für das KI-Training. Eine Liste bereits für YOLO vorbereitete Datensätze findet sich <u>hier</u>. Für diese großen Datensätze gibt es i.d.R. vortrainierte Modelle.

			RELEVANTE		
DATENSATZ	# BILDER	# KLASSEN	KLASSEN	LABEL	LIZENZ
<u>IMAGENET</u>	14.000.000	100.000	Street Sign	Pro Bild	Non Commercial
COCO	200.000	80	Stop Sign	Instance Segmentation	Flickr Images, Labels CC-BY
OPEN IMAGES	xx.000.000	600	Traffic Sign, Stop Sign; nur BBox: Street Sign	Instance Segmentation	CC-BY
OBJECTS365	2.000.000	365	Traffic Sign, Crosswalk Sign, Speed Limit Sign, Stop Sign	Bounding Box	Flickr Images, Labels CC-BY
LVIS LARGE VOCABULARY INSTANCE SEGMENTATION	164.000	1.200	Stop Sign, Street Sign	Instance Segmentation	CC-BY

4. Datensätze für Verkehrszeichenerkennung

Für den Test des Prototyps, solange eigene Daten noch nicht beschriftet sind, und für den Test der finalen Modellgenauigkeit. Für dem späteren produktiven Einsatz Lizenzen beachten!

DATENSATZ	# BILDER	# KLASSEN	ART DES BILDS	LABEL	LIZENZ
GTSRB GERMAN TRAFFIC SIGN BENCHM. (PAPER)	50.000	42	Zuschnitt	Bounding Box	Free to use
GTSDB GERMAN TRAFFIC SIGN BENCHMARKS	900	42	Dashcam	Bounding Box	Free to use
BTSD BELGIAN TRAFIC SIGN DATASET (PAPER)	7.000 (+)	62 (210)	Multicam- Sequences	Bounding Box	k. A.
LISA TRAFFIC SIGN DATASET (US)	6.610	47	Verschiedene Kameras	Bounding Box	"academic"
SWEDISH TRAFFIC SIGNS DATASET	3.488	7	Dashcam	Bounding Box	Public, must cite
DFG TRAFFIC SIGN DATA SET (SLOVENIA)	7.000	200	Dashcam	COCO Poly- gon Segment.	CC-BY-NC-SA
CCTSDB CHINESE TRAFFIC SIGN DETETCTION BENCH. (DOWNLOAD 2021)	16.356	42	Dashcam	Bounding Box	k. A.
TT100K TENCENT TRAFFIC- SIGN DETECTION	100.000	127	Street View Panorama	Pixel Mask Segmentierung	CC-BY-NC
MAPILLARY TRAFFIC SIGN DATASET (PAPER)	100.000 (52k)	300	Dashcam, Weltweit	Bounding Box	CC-BY-NC-SA