Building up models

Sean Raleigh

Tuesday, January 27, 2015

Introduction

In this document, we build up models for the NATSAP data, starting from very simple models and gradually getting more and more complex.

Read in data

Code to read and clean the data.

```
library(lme4)
library(rstan)
library(dplyr)
library(reshape2)
library(ggplot2)
## Import Data
natsap <- read.csv("NewNATSAP.csv")</pre>
dose <- read.csv("NATSAPDoseData.csv")</pre>
## Get rid of program with no NatsapID
dose <- dose[!is.na(dose$NatsapId),]</pre>
## Select only wanted variables and create diff
natsap_tidy <- natsap %>%
    select(ID = NatsapId,
           sex = GenderNumeric,
           admission_OQ = AdmissionTotalScore,
           discharge_OQ = DischargeTotalScore) %>%
    mutate(diff = admission_OQ - discharge_OQ)
natsap_tidy <- natsap_tidy[complete.cases(natsap_tidy),]</pre>
dose tidy <- dose %>%
    select(rtc_vs_obh = RTCvsOBH,
           ID = NatsapId,
           minutes_ind_therapy = Mode.minutes.of.Inidividual.Therapy,
           minutes_group_therapy = Mode.minutes.of.Group.Therapy)
## Creates new program IDs incrementing from 1 for loops in Stan
## lookup is the intersection of ID from dose_tidy and natsap_tidy
natsap_tidy_ID <- select(natsap_tidy, ID)</pre>
dose_tidy_ID <- select(dose_tidy, ID)</pre>
lookup <- semi_join(dose_tidy_ID, natsap_tidy_ID)</pre>
lookup <- cbind(lookup, new_ID = 1:length(lookup$ID))</pre>
```

```
## Selects only the cases in the dataframes that have IDs in Lookup
## and adds a column including the new indices for the NatsapIds
natsap tidy <- natsap tidy %>%
    inner join(lookup, by = "ID") %>%
    arrange(new ID)
dose_tidy <- dose_tidy %>%
    inner_join(lookup, by = "ID") %>%
    arrange(new_ID)
## Add sample sizes for each program
n_by_program <- natsap_tidy %>%
    group_by(new_ID) %>%
    summarize(n = n())
dose_tidy <- cbind(dose_tidy, n = n_by_program$n)</pre>
## Defines Variables to be passed to Stan
## IPred and GPred have a column of 1's representing the constant term
n_subj <- nrow(natsap_tidy)</pre>
n_prog <- nrow(dose_tidy)</pre>
sex <- select(natsap tidy, sex)</pre>
ind_pred <- cbind(rep(1, n_subj), sex)</pre>
minutes_ind_therapy <- select(dose_tidy, minutes_ind_therapy)</pre>
minutes_group_therapy <- select(dose_tidy, minutes_group_therapy)</pre>
rtc_vs_obh <- select(dose_tidy, rtc_vs_obh)</pre>
group_pred <- cbind(rep(1, n_prog), minutes_ind_therapy, minutes_group_therapy)</pre>
diff <- natsap_tidy$diff</pre>
ID = select(natsap_tidy, ID)
## Put data in a list for Stan
data_list <- list(n_subj = n_subj,</pre>
                   n_prog = n_prog,
                   n_ind_pred = ncol(ind_pred),
                   n_group_pred = ncol(group_pred),
                   diff = diff,
                   ID = ID,
                   ind pred = ind pred,
                   group_pred = group_pred)
## Wihtout having to load the arm package, we can still use the handy
## functions se.fixef and se.ranef
se.fixef <- function (object)</pre>
    fcoef.name <- names(fixef(object))</pre>
    corF <- vcov(object)@factors$correlation</pre>
    ses <- corF@sd
    names(ses) <- fcoef.name</pre>
    return(ses)
}
se.ranef <- function (object)
```

```
se.bygroup <- ranef(object, condVar = TRUE)
n.groupings <- length(se.bygroup)
for (m in 1:n.groupings) {
    vars.m <- attr(se.bygroup[[m]], "postVar")
    K <- dim(vars.m)[1]
    J <- dim(vars.m)[3]
    names.full <- dimnames(se.bygroup[[m]])
    se.bygroup[[m]] <- array(NA, c(J, K))
    for (j in 1:J) {
        se.bygroup[[m]][j, ] <- sqrt(diag(as.matrix(vars.m[, , j])))
    }
    dimnames(se.bygroup[[m]]) <- list(names.full[[1]], names.full[[2]])
}
return(se.bygroup)
}</pre>
```

Simple linear models

We need new ID and sex to be factor variables.

First, let's only consider group differences.

```
fit_simple1 <- lm(diff ~ 1, data = natsap_tidy)</pre>
fit_simple2 <- lm(diff ~ new_ID - 1, data = natsap_tidy)</pre>
fit_simple3 <- lmer(diff ~ (1|new_ID), data = natsap_tidy)</pre>
## Extract coeffiencts and st errors
int_simple1 <- summary(fit_simple1)$coef[,1]</pre>
int simple2 <- data.frame(int simple = summary(fit simple2)$coef[,1])</pre>
se_int_simple2 <- data.frame(se_int_simple = summary(fit_simple2)$coef[,2])</pre>
int simple3 <-
    data.frame(int_simple =
                unname(fixef(fit_simple3)) + ranef(fit_simple3)$new_ID[,1])
se_int_simple3 <-
    data.frame(se_int_simple =
                se.ranef(fit_simple3)$new_ID[,1])
int_simple_a <-</pre>
    cbind(new_ID = as.factor(dose_tidy$new_ID),
          model = rep("Unpooled", length(int_simple2)),
          int_simple = int_simple2,
          se_int_simple = se_int_simple2)
rownames(int_simple_a) <- NULL</pre>
int_simple_b <-</pre>
    cbind(new_ID = as.factor(dose_tidy$new_ID),
          model = rep("Partially pooled", length(int_simple3)),
          int simple = int simple3,
          se_int_simple = se_int_simple3)
```

```
int_simple <- rbind(int_simple_a, int_simple_b)
limits_simple <- aes(ymax = int_simple + se_int_simple,
    ymin = int_simple - se_int_simple)
ggplot(int_simple, aes(x = new_ID, y = int_simple, color = model)) +
    geom_pointrange(limits_simple, position = position_dodge(width = 0.2)) +
    geom_hline(yintercept = fixef(fit_simple3))</pre>
```


Let's look only at diff by sex. This is what Gelman and Hill call "complete pooling".

```
fit_pooled <- lm(diff ~ sex - 1, data = natsap_tidy)
summary(fit_pooled)</pre>
```

```
##
## Call:
## lm(formula = diff ~ sex - 1, data = natsap_tidy)
##
## Residuals:
##
        Min
                  1Q
                        Median
                                     ЗQ
## -127.401 -24.164
                        -2.927
                                 22.599
                                         125.073
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
          27.927
                      1.629
                               17.14
## sex0
                                       <2e-16 ***
## sex1
          42.401
                      1.700
                               24.93
                                       <2e-16 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.56 on 861 degrees of freedom
## Multiple R-squared: 0.5154, Adjusted R-squared: 0.5142
## F-statistic: 457.8 on 2 and 861 DF, p-value: < 2.2e-16
Contrast this with no pooling.
fit_unpooled <- lm(diff ~ sex + new_ID - 1, data = natsap_tidy)</pre>
summary(fit_unpooled)
##
## lm(formula = diff ~ sex + new_ID - 1, data = natsap_tidy)
## Residuals:
##
       Min
                1Q Median
                               3Q
                                      Max
## -128.96 -22.54
                    -2.00
                            22.32 132.53
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## sex0
              39.025
                         4.649
                                8.393 < 2e-16 ***
## sex1
             48.008
                         3.005 15.977 < 2e-16 ***
## new_ID2
             -3.740
                         4.990
                                -0.749 0.453803
## new_ID3
           -17.275
                         5.562 -3.106 0.001961 **
            19.992
## new_ID4
                        19.855
                                 1.007 0.314277
## new ID5
           -4.049
                         4.233 -0.957 0.339031
           -12.643
## new ID6
                         6.515 -1.940 0.052659 .
## new ID7
            -20.960
                         7.161 -2.927 0.003512 **
## new_ID8
              5.642
                        20.170
                                0.280 0.779754
## new_ID9
            -35.341
                        19.855 -1.780 0.075448 .
## new_ID10 -57.508
                        24.225 -2.374 0.017823 *
## new ID11 -11.580
                         8.026 -1.443 0.149448
## new_ID12 -21.305
                        13.437 -1.586 0.113197
## new_ID13 -13.358
                        14.636 -0.913 0.361687
## new_ID14
             12.797
                                1.156 0.247956
                        11.069
## new_ID15
             -5.420
                         4.977
                                -1.089 0.276467
                         4.914 -3.776 0.000171 ***
## new_ID16 -18.553
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 33.99 on 846 degrees of freedom
## Multiple R-squared: 0.5392, Adjusted R-squared: 0.5299
## F-statistic: 58.23 on 17 and 846 DF, p-value: < 2.2e-16
We use lmer from the lme4 package to create a varying intercept model.
fit_vint <- lmer(diff ~ sex + (1 | new_ID), data = natsap_tidy)</pre>
summary(fit_vint)
```

Linear mixed model fit by REML ['lmerMod']

Formula: diff ~ sex + (1 | new_ID)

```
##
     Data: natsap_tidy
##
## REML criterion at convergence: 8543.9
##
## Scaled residuals:
##
      Min 1Q Median 3Q
                                      Max
## -3.7631 -0.6638 -0.0647 0.6633 3.8548
##
## Random effects:
## Groups
                        Variance Std.Dev.
           Name
## new_ID
            (Intercept) 47.93 6.923
                       1160.66 34.068
## Residual
## Number of obs: 863, groups: new_ID, 16
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept)
                28.908
                            2.815 10.268
## sex1
                10.251
                            3.147
                                  3.257
## Correlation of Fixed Effects:
##
       (Intr)
## sex1 -0.480
coef(fit_vint)
## $new ID
##
      (Intercept)
                     sex1
## 1
        36.34895 10.25091
## 2
        33.87791 10.25091
## 3
       22.91950 10.25091
        32.08647 10.25091
## 4
## 5
        32.95377 10.25091
## 6
       27.01840 10.25091
## 7
        22.47676 10.25091
## 8
        30.64451 10.25091
## 9
        25.98757 10.25091
## 10
      25.19569 10.25091
## 11
      28.13625 10.25091
## 12
        26.31753 10.25091
## 13
      28.26403 10.25091
## 14 35.99240 10.25091
        32.62698 10.25091
## 15
## 16
        21.67361 10.25091
##
## attr(,"class")
## [1] "coef.mer"
fixef(fit_vint)
## (Intercept)
##
     28.90752
               10.25091
```

```
ranef(fit_vint)

## $new_ID

## (Intercept)

## 1  7.4414340

## 2  4.9703946

## 3  -5.9880203

## 4  3.1789487
```

6 -1.8891183 ## 7 -6.4307621

4.0462530

5

8 1.7369903

9 -2.9199515 ## 10 -3.7118311

11 -0.7712724

12 -2.5899934 ## 13 -0.6434942

14 7.0848797

15 3.7194570

16 -7.2339141

Hierarchical models

Now we add a group-level predictor.

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: diff ~ sex + minutes_ind_therapy_full + (1 | new_ID)
##
     Data: natsap_tidy
##
## REML criterion at convergence: 8543
##
## Scaled residuals:
              1Q Median
                               ЗQ
                                      Max
## -3.7689 -0.6642 -0.0800 0.6597 3.8790
##
## Random effects:
## Groups
           Name
                        Variance Std.Dev.
## new_ID
           (Intercept)
                          41.38
                                 6.433
## Residual
                        1158.80 34.041
## Number of obs: 863, groups: new_ID, 16
```

```
##
## Fixed effects:
##
                           Estimate Std. Error t value
## (Intercept)
                           11.4863
                                       9.7812 1.174
                             9.8440
                                        3.1264
                                                 3.149
## minutes_ind_therapy_full 0.2101
                                       0.1136 1.849
## Correlation of Fixed Effects:
##
              (Intr) sex1
## sex1
              -0.037
## mnts_nd_th_ -0.961 -0.104
coef(fit_hier_vint_ind)
## $new ID
      (Intercept)
##
                    sex1 minutes_ind_therapy_full
## 1
       12.692015 9.84404
                                        0.2100665
## 2
       20.321421 9.84404
                                       0.2100665
## 3
       4.436198 9.84404
                                       0.2100665
## 4
       14.782601 9.84404
                                       0.2100665
## 5
       14.548760 9.84404
                                       0.2100665
## 6
      12.631598 9.84404
                                       0.2100665
## 7
       4.704809 9.84404
                                       0.2100665
## 8
      12.257755 9.84404
                                       0.2100665
## 9
       8.818625 9.84404
                                       0.2100665
## 10
      8.591075 9.84404
                                       0.2100665
## 11 10.039295 9.84404
                                       0.2100665
## 12
      10.163037 9.84404
                                       0.2100665
## 13
      11.764479 9.84404
                                       0.2100665
## 14 15.708342 9.84404
                                       0.2100665
## 15 13.972065 9.84404
                                       0.2100665
## 16
        8.349225 9.84404
                                       0.2100665
##
## attr(,"class")
## [1] "coef.mer"
fixef(fit_hier_vint_ind)
##
               (Intercept)
                                               sex1 minutes_ind_therapy_full
##
                11.4863312
                                          9.8440396
                                                                   0.2100665
ranef(fit_hier_vint_ind)
## $new_ID
##
      (Intercept)
## 1
      1.2056835
## 2
       8.8350894
## 3
     -7.0501332
## 4
       3.2962695
## 5
       3.0624292
## 6
     1.1452673
## 7 -6.7815226
```

```
## 8
       0.7714235
## 9
       -2.6677063
## 10 -2.8952561
      -1.4470364
## 11
## 12
       -1.3232937
## 13
       0.2781475
## 14
       4.2220106
## 15
       2.4857339
## 16 -3.1371062
## The model for group therapy
fit_hier_vint_group <- lmer(diff ~ sex + minutes_group_therapy_full + (1 | new_ID),
   data = natsap_tidy)
summary(fit_hier_vint_group)
## Linear mixed model fit by REML ['lmerMod']
## Formula: diff ~ sex + minutes_group_therapy_full + (1 | new_ID)
##
      Data: natsap_tidy
##
## REML criterion at convergence: 8549.6
##
## Scaled residuals:
##
            1Q Median
       Min
                                3Q
                                       Max
## -3.7945 -0.6550 -0.0777 0.6561 3.8525
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev.
                           47.67 6.904
## new ID
             (Intercept)
                         1160.05 34.060
## Residual
## Number of obs: 863, groups: new_ID, 16
##
## Fixed effects:
                              Estimate Std. Error t value
##
## (Intercept)
                              26.03484
                                          3.66702
                                                    7,100
## sex1
                               9.17485
                                          3.26793
                                                    2.808
## minutes_group_therapy_full  0.01301
                                          0.01067
                                                    1.219
## Correlation of Fixed Effects:
##
               (Intr) sex1
## sex1
               -0.180
## mnts_grp_t_ -0.642 -0.272
coef(fit_hier_vint_group)
## $new_ID
##
      (Intercept)
                      sex1 minutes_group_therapy_full
         32.19759 9.174851
## 1
                                           0.01300868
## 2
        33.65476 9.174851
                                           0.01300868
## 3
         19.84313 9.174851
                                           0.01300868
## 4
         29.24788 9.174851
                                           0.01300868
## 5
        24.52858 9.174851
                                           0.01300868
## 6
        25.23230 9.174851
                                           0.01300868
## 7
        20.74705 9.174851
                                           0.01300868
```

```
## 8
         27.82258 9.174851
                                           0.01300868
## 9
        23.17545 9.174851
                                           0.01300868
      22.28396 9.174851
## 10
                                           0.01300868
## 11
         25.95519 9.174851
                                           0.01300868
## 12
         23.64197 9.174851
                                           0.01300868
## 13
        24.41831 9.174851
                                           0.01300868
## 14
        32.10732 9.174851
                                           0.01300868
## 15
         31.08569 9.174851
                                           0.01300868
## 16
         20.61569 9.174851
                                           0.01300868
##
## attr(,"class")
## [1] "coef.mer"
fixef(fit_hier_vint_group)
##
                  (Intercept)
                                                     sex1
##
                  26.03484110
                                              9.17485096
## minutes_group_therapy_full
                   0.01300868
ranef(fit_hier_vint_group)
## $new ID
##
      (Intercept)
## 1
      6.16275086
## 2
     7.61992062
## 3 -6.19171601
## 4
     3.21304313
## 5 -1.50626568
## 6 -0.80254248
## 7 -5.28779125
      1.78773763
## 8
## 9 -2.85938662
## 10 -3.75087803
## 11 -0.07964723
## 12 -2.39286836
## 13 -1.61653492
## 14 6.07248049
## 15 5.05085118
## 16 -5.41915332
## The model for rtc_vs_obh
fit_hier_vint_rtc_vs_obh <-
   lmer(diff ~ sex + rtc_vs_obh_full + (1 | new_ID),
   data = natsap_tidy)
summary(fit_hier_vint_rtc_vs_obh)
## Linear mixed model fit by REML ['lmerMod']
## Formula: diff ~ sex + rtc_vs_obh_full + (1 | new_ID)
##
      Data: natsap_tidy
##
## REML criterion at convergence: 8538.4
```

```
##
## Scaled residuals:
      Min
               1Q Median
## -3.7707 -0.6643 -0.0708 0.6585 3.8636
## Random effects:
## Groups
                        Variance Std.Dev.
           Name
## new_ID
                         55.09 7.422
           (Intercept)
## Residual
                         1160.24 34.062
## Number of obs: 863, groups: new_ID, 16
## Fixed effects:
                     Estimate Std. Error t value
## (Intercept)
                        27.371
                                    3.966
                                          6.902
## sex1
                        9.779
                                    3.219
                                            3.038
## rtc_vs_obh_fullRTC
                        3.091
                                    5.273
                                          0.586
##
## Correlation of Fixed Effects:
##
              (Intr) sex1
              -0.232
## sex1
## rtc_vs__RTC -0.675 -0.158
coef(fit_hier_vint_rtc_vs_obh)
## $new ID
                     sex1 rtc_vs_obh_fullRTC
      (Intercept)
## 1
        34.04058 9.779137
                               3.090692
## 2
        33.88019 9.779137
                                    3.090692
## 3
        19.92421 9.779137
                                    3.090692
## 4
        30.83223 9.779137
                                    3.090692
## 5
        30.57035 9.779137
                                     3.090692
## 6
        24.48985 9.779137
                                     3.090692
## 7
        21.57263 9.779137
                                    3.090692
## 8
        29.14231 9.779137
                                    3.090692
## 9
        23.93332 9.779137
                                     3.090692
## 10
        23.05755 9.779137
                                    3.090692
## 11
        27.41238 9.779137
                                    3.090692
## 12
        24.13584 9.779137
                                    3.090692
## 13
        26.30809 9.779137
                                    3.090692
## 14
        34.64973 9.779137
                                    3.090692
## 15
        32.59463 9.779137
                                    3.090692
## 16
        21.39657 9.779137
                                    3.090692
## attr(,"class")
## [1] "coef.mer"
fixef(fit_hier_vint_rtc_vs_obh)
##
          (Intercept)
                                    sex1 rtc_vs_obh_fullRTC
##
            27.371280
                                9.779137
                                                   3.090692
```

ranef(fit_hier_vint_rtc_vs_obh)

```
## $new_ID
##
      (Intercept)
## 1
     6.66930227
## 2
     6.50890624
## 3 -7.44706594
## 4
      3.46095417
## 5
     3.19907154
## 6 -2.88142799
## 7 -5.79865148
## 8
     1.77102889
## 9 -3.43795740
## 10 -4.31372934
## 11 0.04110205
## 12 -3.23543706
## 13 -1.06319122
## 14 7.27845209
## 15 5.22335270
## 16 -5.97470951
```

Let's try to plot something.

This all looks fine, but we perform a check to make sure that errors bars really are correlated with sample size.

