11/09/2025 - Matematicas Discretas I (Ude@) 1. Repaso clase anterior

Demostracion	Enfoque basado en Modebs	throque axiomatico
Verdod	Tabla de verdad: A B es tautologia	M= B D= A > Identidades
Validez	Table de verànd A -> B Renglanes criticas deben ser Verànderos	*Lo veremos hoy

Ejemplo: Represente el siguiente argumento simbólicamente y determine si es valido

1. Proposiciones simples

2. Expresión logica del Argumento.

3. Demostración de Validez (Tabla de Verdad)

i. Variables: P, Q ii. $filas: n=2 \rightarrow filas=2^n=2^2=4$

iii. Tabla de verdud

				€ Pro		—^- رحم	Jusion
		P	0	P - 0	ø	P	
		0	0	Λ	0	Ø	
	~	٥	1	1	J	N CO	
Renglan	\preceq	-1	0	0	٥	A	
critico		٨	<i>.</i>		Л	1	
		*	٠ ٨				

Por la tanto el argumento es invalido

2. Enfoque axiomatico: Usar:

1. I dentidudes logicos (Tabla de axiomas) 2. Silogismos (Tabla de inferencias)

Equivalencias lógicas

Nombre	Equivaler	ncia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg F$	P) ≡ P	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \rightarrow Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

Principales reglas de inferencia

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$	Simplificación	$\frac{p \wedge q}{\therefore p}$
Modus Tollens	$p \to q$ $\frac{\neg q}{\because \neg p}$	Conjunción	$\frac{p}{q} \\ \therefore p \land q$
Silogismo Hipotético (Transitividad)	$\begin{array}{c} p \to q \\ \underline{q \to r} \\ \therefore p \to r \end{array}$	Prueba de división por	$p \lor q$ $p \to r$
Silogismo disyuntivo (Eliminación)	$p \lor q$ $\neg p$ $\therefore q$	casos	$\frac{q \to r}{\therefore r}$
Adición	$\frac{p}{\therefore p \vee q}$	Resolución	$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$

Egemplo 1

Ejemplo: Demuestre que el siguiente argumento lógico es valido:

Notación de Consecuentes

Notación Proposicional

P, P→9, 5~~, r→79 1 5vt

Demostración

Equivalencias lógicas

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	¬(¬F	P) ≡ P	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \rightarrow Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \rightarrow Q \equiv$	$\neg Q \rightarrow \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$		

Principales reglas de inferencia

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\frac{p \to q}{\frac{p}{\cdot \cdot $	Simplificación	$\frac{p \wedge q}{\therefore p}$
Modus Tollens	$ \begin{array}{c} p \to q \\ \hline $	Conjunción	$\frac{p}{q} \\ \therefore p \land q$
Silogismo Hipotético (Transitividad)	$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$	Prueba de división por	$p \lor q$ $p \to r$
Silogismo disyuntivo (Eliminación)	$ \begin{array}{c} p \lor q \\ \neg p \\ \vdots q \end{array} $	casos	$\frac{q \rightarrow r}{\therefore r}$
Adición	$\frac{p}{\therefore p \vee q}$	Resolución	$\begin{array}{c} p \vee q \\ \hline \neg p \vee r \\ \hline \therefore q \vee r \end{array}$

Procedimiento

Justifica cion

(7)

(8)

Premisa (a)

Premisa (b)

Madus panens en (1) y (2)

Premisa (d)

Madrs Tollers en (3) 74(4)

Premisa (c)

Adición en (7)

Eliminación en @ 46

tjemplo 2: Demnestre que el signiente argumento logico es valido.

$$\frac{P \to Q \to P}{\therefore Q \to P}$$

Equivalencias lógicas	w(n)	8(1)
Nombre	Equivalen	ncia lógica
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \vee Q \equiv Q \vee P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \land \neg P \equiv F$	$P \lor \neg P \equiv V$
Implicación	$P \rightarrow Q \equiv$	$= \neg P \lor Q$
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	

Principales reglas de inferencia

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\frac{p \to q}{\frac{p}{\therefore q}}$	Simplificación	$\frac{p \wedge q}{\therefore p}$
Modus Tollens	$\begin{array}{c} p \to q \\ \underline{\neg q} \\ \vdots \neg p \end{array}$	Conjunción	$\frac{p}{q} \\ \therefore p \land q$
Silogismo Hipotético (Transitividad)	$\begin{array}{c} p \to q \\ \underline{q \to r} \\ \therefore p \to r \end{array}$	Prueba de división por	$p \lor q$ $p \to r$
Silogismo disyuntivo (Eliminación)	$\begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \therefore q \end{array}$	casos	$\frac{q \to r}{\therefore r}$
Adición	$\frac{p}{\therefore p \lor q}$	Resolución	p∨q <u>¬p∨r</u> ∴q∨r

$$\frac{P \to Q \to P}{\therefore Q \to P}$$
 (a)

Procedimiento

 $(P \rightarrow Q) \rightarrow R$

 \bigcirc

3 7 (7PVQ) VP

(P 1 7 Q) ≥ R

(P ~ 7 Q)

(R√P) ~ (R√¬Q)

₱ R v¬Q

3 Javr

(3) : Q→R

Justifica cion

Premisa (a)

Implicación en A

P->Q=7PVQ

Implicación en 3

Ley de Morgan en (3) para la disymenta (v)

Commutatividad en 9 para la disjunción (v)

Distributivedad en 6 para la disyuncian (v)

Simplificación en 6

PVA

Commutatividad en) para la disjunción

Implicación en (B) (I CD)

Ejemplo 3: Demuestre el siguiente caso particular de adición entre implicaciones:

$$\begin{array}{c} P \to Q \\ P \to R \\ \hline \vdots P \to (Q \land R) \end{array}$$

Equivalencias lógicas	w(r)	B(1)
Nombre	Equivalen	cia lógica
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P$	r) ≡ P
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow$	$(Q) \land (Q \rightarrow P)$

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\frac{p \to q}{\frac{p}{\therefore q}}$	Simplificación	$\frac{p \wedge q}{\therefore p}$
Modus Tollens	$\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \therefore \neg p \end{array}$	Conjunción	$\frac{p}{\frac{q}{\therefore p \land q}}$
Silogismo Hipotético (Transitividad)	$\begin{array}{c} p \to q \\ q \to r \\ \vdots p \to r \end{array}$	Prueba de división por	$p \lor q$ $p \to r$
Silogismo disyuntivo (Eliminación)	$\frac{p \vee q}{\neg p}$ $\therefore q$	casos	$\frac{q \to r}{\therefore r}$
Adición	$\frac{p}{\therefore p \vee q}$	Resolución	$\begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline \therefore q \lor r \end{array}$

P→a	(a)
$P \rightarrow \mathcal{R}$	(P)
· P → (QAR)	

-	Procedimiento
	P-Q
2	$P \rightarrow R$
3	(P-Q) ~ (P-P)
4	(7PVQ) ~ (7PVR)
(5)	(1900) 17P) (1P00) R)
6	((7PAR) V (QATP)) V ((7PAR) V (QAR))
(7)	(7P V (Q ~7P)) V ((7PAR) V (QAR))
8	((TP) (BATP) V (DAR) V (DAR)
3	7 P v (Q x P)
(10)	$: P \to (B \land R)$

Hipotesis (a)
Hipotesis (b)
Conjunción de Dy 2
Implicación en (3)
Distributividad para el og In) en (4)
Distributividad para el gun en 5
Idempotencia para el yla) en 6
Associatividad pora el &[v) en 7
Absorción para el or(v) en 8
Implicación en 3

Justifica cion