Rattrapage 2022-2023 - CYBER1 (1h30)

Algo et Structure de Données 2

NOM:	PRÉNOM :
	1 1021 0 101 1

Vous devez respecter les consignes suivantes, sous peine de 0 :

- I) Lisez le sujet en entier avec attention
- II) Répondez sur le sujet
- III) Ne détachez pas les agrafes du sujet
- IV) Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- V) Vous devez écrire dans le langage algorithmique classique ou en C (donc pas de Python ou autre)
- VI) Ne trichez pas

1 Arbres Binaires (10 points)

1.1 (3 points) Indiquez toutes les propriétés que possède cet arbre, puis écrivez les clés lors d'un parcours profondeur main gauche de l'arbre dans les 3 ordres ainsi que lors d'un parcours largeur :

Arité	: 2		Ta	ille : 1	16		Haut	eur:	4	Nl	feui!	lles : 8	3			
□ Arbre binaire strict / localement complet ✓ Arbre binaire (presque) complet □ Arbre binaire parfait □ Arbre filiforme □ Peigne gauche □ Peigne droit																
Parcours pr	ofond	eur:														
ordre préfixe : ordre infixe : ordre suffixe :	X P P	А О Т	O T O	P A G	T G E	A E U	E A A	G U A	U X L	U L G	E E E	L G M	G U S	E M E	M E U	S S X
Parcours la	rgeur	:														
ordre:	X	A	U	Ο	A	\mathbf{E}	E	Р	${ m T}$	Е	U	L	G	M	\mathbf{S}	G

1.2 (4 points) Dessinez le résultat de l'insertion dans cet ordre précis des éléments suivants dans un ABR (insertion en feuille) et dans un AVL :

Éléments insérés : 32 - 8 - 16 - 96 - 64 - 72 - 24 - 4

1.3 (3 points) Écrivez une fonction récursive « parc_prof_rec » effectuant un parcours profondeur main gauche dans un arbre binaire, et affichant les nœuds dans chacun des ordres :

Il faut expliciter les éventuels ordres au format : « Ordre : nœud » (exemple : « Préfixe : 42 »)

2 Arbres Binaires: Parcours Largeur (10 points)

2.1 (2 points) Effectuez les opérations suivantes et affichez la structure dans son état final :

Pile					File						
i	push !	5		ix	pop		i	enqueue 5	i	x dequeue	
ii	push 1	12		Х	push 2		ii	enqueue 12	3	x enqueue 2	
iii	push 1	14		xi	push 8		iii	enqueue 14	Х	xi enqueue 5	
iv	pop			xii	push 11		iv	dequeue	xi	ii enqueue 11	
v	push '	7		xiii	pop		v	enqueue 7	xii	ii dequeue	
vi	push (6					vi	enqueue 6			
vii	pop						vii	dequeue			
viii	pop						viii	dequeue			
			\rightleftharpoons					\longrightarrow		\longrightarrow	
			Tête		Queue			Que	eue	Tête	
			8	2	5			1	1 5	2	

- 1) Quelle est la spécificité d'une pile concernant l'ordre d'entrée et de sortie des éléments?
- 2) Quelle est la spécificité d'une file concernant l'ordre d'entrée et de sortie des éléments? FIFO
- 2.2 (1 point) En admettant que l'on dispose d'une pile et que l'on insère les données « $1\ 2\ 3\ 4\ 5\ 6$ » dans cet ordre exclusivement, décrivez les scénarios permettant d'obtenir les sorties suivantes :

push 1, push 2, pop, push 3, push 4, pop, pop, push 5, pop, push 6, pop, pop

2.3~ (2 points) À partir de l'arbre affiché, répondez aux questions et effectuez le parcours largeur :

1) Quelle structure est requise pour effectuer un parcours largeur?

File

2) Effectuez le parcours largeur de l'arbre en détaillant pas à pas l'état de la structure associée.

Structure:	Nœud traité :
	Ø
3	Ø
	3
8 42	3
42	8
20 2 42	8
20 2	42
21 11 20 2	42
21 11 20	2
15 21 11 20	2

Structu	ire:	Nœud traité :		
15	21	11		20
15	21			11
4	9	15	21	11
4	9	15		21
36	4	9	15	21
36	4	9		15
36	4			9
36				9
				36

2.4~ (1 point) À partir du tableau et de l'arbre affiché, répondez à la question suivante :

15	6	20	14

Dans le cas d'un parcours largeur, quel nœud est actuellement traité d'après l'état de la structure?

55

2.5 (4 points) Écrivez une fonction itérative « $parc_larg$ » effectuant un parcours largeur dans un arbre binaire, et affichant chacun des nœuds dans l'ordre hiérarchique :

Il faut expliciter les éventuels ordres au format : « Ordre : nœud » (exemple : « Préfixe : 42 »)

Vous pouvez utiliser les structures externes :

stack_t (create, push, head, pop, delete)

queue_t (create, enqueue, head, dequeue, delete)

RATTRAPAGE ALGORITHMIQUE ET STRUCTURES DE DONNÉES 2