实验三. 空间曲线与曲面的描绘 函数与数列极限的求解

一、实验目的

- 1、利用科学计算软件 MATLAB 进行二维、三维图像的描绘.
- 2、学会用 MATLAB 求解函数极限和数列极限.

二、实验题目

- 1、用 plot 函数绘制函数 $y = \cos(\tan(\pi x))$ 在区间 $\left[-\frac{1}{4}, \frac{1}{4}\right]$ 上的函数图像,设置曲线颜色为红色,设置 x 轴标签为' x 轴',设置 y 轴标签为' y 轴'.
- 2、用 ezplot 函数绘制摆线 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$, $t \in [0, 2\pi]$.
- 3、用 surf 函数绘制曲面 $y = 2x^2 + y^2$, x 范围 [-2,2], y 范围 [-2,2].
- 4、求下列函数极限:

(1)
$$\lim_{x\to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}$$
; (2) $y = \arctan \frac{1}{x} + \sqrt{2-x}$ 在 $x = 0$ 处的左极限和右极限.

5、求下列数列极限:

(1)
$$\lim_{n \to \infty} \sin^n \frac{2n\pi}{3n+1}$$
; (2) $\lim_{n \to \infty} \left(\frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n}\right)$.

三、实验原理

- 1、plot 函数绘制二维曲线,调用格式 plot (X, Y, S).
- 2、设置 x 轴标签用 xlabel 函数,设置 y 轴标签用 ylabel 函数.
- 3、ezplot 函数绘制以参数方程形式表示的函数,调用格式 ezplot (f, interval).
- 4、surf 函数绘制空间曲面,调用格式 surf(X,Y,Z).
- 5、limit 函数求函数与数列极限,调用格式 limit (F, x, a).
- 6、symsum 函数求无穷数列的极限,调用格式 symsum(f,a,b).

四、程序设计

五、程序运行结果

六、结果的讨论和分析