

Regression Shrinkage

Jan-Niklas Dörr

Technische Universität München

Why to use Shrinkage Methods?

- Dealing with "fat" data, i.e., large number of regressors p compared to the number of observations n
- Two cases:
- p < n:
 - OSL/2SLS is prone to overfitting based on the comparable large number of regressors
 - Lasso and Ridge reduce the overfitting tendency (by Regularization)
 - Lasso additionally improves interpretation and helps with the construction of instruments
- $p \ge n$:
 - OLS/2SLS not feasible (underdetermined system)
 - Ridge and Lasso do still work

Main Concept of Shrinkage Methods

- Constrain or shrink coefficients by introducing penalties in the objective
- Normalize variables. (standardize by $z = \frac{x \mu}{\sigma}$)
 - Centered means, i.e., $\mu = 0$
 - Unit variance, i.e., one unit is σ
 - Required for comparability of penalties
- Partial out the constant (we don't want to shrink it)
- Results of Shrinkage methods are different to OLS due to error terms (unless $\lambda = 0$)
- To compare, use Post-Lasso, i.e.:
 - 1. Lasso to select regressors
 - 2. Use preselected regressors in OLS

Excursion: Norms

- Norms are used to measure the magnitude of vectors
- · Ridge and Lasso are utilizing a norm for their penalty
- Assume we have a vector $\vec{x} = [x_1, x_2, ..., x_n]'$, then the following norms are defined as:
 - L^0 is the zero norm $||x||_0 := \sum_{i=1}^n |x_i|^0$ (not a real norm)
 - L^1 is the absolute norm $||x||_1 := |x| = \sum_{i=1}^n |x_i|$, (Manhattan distance)
 - L^2 is the Euclidean norm $||x||_2 := \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$
 - L^{infty} is the infinity norm $||x||_{\infty} := \max_{n} |x_n|$

To generalize
$$L^p$$
, $p \ge 1 \left| |x| \right|_p \coloneqq \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}$

Available Shrinkage Methods

- Best Subset $= \frac{RSS}{n} + \lambda \cdot ||\beta||_0$ (not really a shrinkage method, computational expensive)
- Lasso $\coloneqq \frac{RSS}{n} + \lambda \cdot ||\beta||_1$
- Ridge := $\frac{RSS}{n} + \lambda \cdot ||\beta||_2$, with:
- RSS := $\sum_{i=1}^{n} \left(y_i \beta_0 \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$
- and λ being a tuning (or hyper) parameter
- Find best λ by:
 - K-fold cross validation
 - Rigorous lasso

Source: Hastie et al. (2009) - The elements of statistical learning, p. 71

When to use which?

- Ridge works well in a **dense** setting, i.e., many true values $\beta_j^* \neq 0, \frac{||\beta^*||_0}{n} \gg 0$
- Lasso works well in a **sparse** setting, i.e., many true values $\beta_j^*=0, \frac{||\beta^*||_0}{n} \to 0$ or $||\beta^*||_0 \ll n$
- However, if a model is sparse or dense is not known at the beginning. Has to be estimated (by experience?)

Exercises

Exercise 1:

Assuming our whole dataset looks like the following. What is the issue with OLS? What are suitable alternatives?

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514	4	71	11	Male	No	No	Asian	580
3	148.924	9504	681	3	36	11	Female	No	No	Asian	964
4	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331
5	80.180	8047	569	4	77	10	Male	No	No	Caucasian	1151
6	20.996	3388	259	2	37	12	Female	No	No	African American	203
7	71.408	7114	512	2	87	9	Male	No	No	Asian	872
8	15.125	3300	266	5	66	13	Female	No	No	Caucasian	279

Exercise 2:

Luckily, the dataset contains more observations. (see separate file)

- a) Perform Lasso to determine the impact of the variables on the variable "balance". What are the regressors with the biggest impact?
- b) Tune λ by using 10-fold cross-validation. What are the implications of the tuning process?
- c) Conduct Post-Lasso with $\lambda = 10$ as a penalty term for Lasso.

Additional Material

- You will find the code for the exercises here: https://github.com/Jan-Niklas-Doerr/Regression-Shrinkage
- If you are interested in more material, you may want to check out this GitHub repository with sessions to multiple topics: https://matteocourthoud.github.io/course/ml-econ/

Regression Shrinkage

Jan-Niklas Dörr

München, 25. April 2024

