ATTACHMENT F

#: 3028

The Jülich Dual Hardware Concept

Portfolio of applications can be roughly divided in two parts:

- · Highly scalable codes, sparse-matrix vector like
- Highly complex codes, adaptive grids or coordinate based, all-to-all or more intricate communication patterns, large memory, less scalable

Document 56-13

#: 3031

A Detailed Look on Application Codes Shows:

Document 56-13

#: 3032

- There is no pure highly scalable code
- There is no strictly complex code
- Each code has highly scalable and complex elements
- There is a continuous transition between both extremes
- Interestingly, highly scalable codes usually do not require large local memory
- On the other hand, many less scalable elements of a code do not require high scalability but instead large memory, and allto-all communication elements have a high advantage on smaller parallelism
- Can we adapt the hardware architecture of future systems to take benefit from this situation?

CONFIDENTIAL

Future of High-end Cluster Computing

- Standard processor speed will increase by about a factor of 4 to at most 8 in next 4 years...
 - ★ Clusters need to utilize accelerators to reach Exascale
 - Current accelerators not parallelized on the node-level
 - Programming very cumbersome
 - Integrated processors expected after 2015...
- Clusters going Exaflop/s will require virtualization elements in order to guarantee resilience and reliability.
 - ★ Virtualization software layer
- Flexibility
 - Have to tolerate over/under subscription
 - Requirement of fault tolerance if accelerator fails

2,9,2010 CONFIDENTIAL 7

Document 56-13

#: 3035

BOSTER Advantages

- Dynamic and static BN-to-CN assignment
- Virtualization of cluster not hampered
- Exploit accelerator parallelism
- Accelerator allocation follows application needs
- Fault tolerance in case of accelerator failure
- All compute nodes share same growth capacity
- Potential for O(100) PF in 2015

Requirements and Tasks

- BN-nodes should follow existing programming models to guarantee continuity
- IB network extension required
- Specific very fast network among accelerators required
- Specific boards for booster to be developed
- Enabling middleware layer, math libraries, compiler technology required

10

Technology Components for Cluster-Booster

- Intel Knights Corner > 50Core Server Chip
 - > 1 TF
 - 100 PF = > 5 mio cores
- EXTOLL (for booster)
 - 120 Gbit per link unidir
 - 1440 Gbit/card bidir, 3d
 - 0.3 µs latency
- Mellanox IB (for cluster)
 - State-of-the-art interconnect
- ParaStation cluster OS
- Intel Compiler and Tools

Tasks

- Board development for Knights Corner
- Integration of communication devices EXTOLL and IB
- System Integration (backplane, cooling)
- Development of cluster-booster communication protocol
- Adaption of ParaStation Cluster OS
- Development of dynamical scheduling and RM
- Development of programming models, compilers, libraries...
- Adaption of large-scale simulation applications
 - Space weather, human brain simulation, fluid engineering...

PROJECT PARTNERS

- Supercomputer Centres
 - JSC (Leading), LRZ (hot cooling?), BSC (prog. Models, libraries...)
- Companies
 - INTEL-Braunschweig: Knights Ferry Knights Corner and beyond
 - Mellanox: Inter-cluster communication, cluster-to-booster communication
 - 3d booster network ??
 - ParTec: Dynamical Exa-cluster OS
 - EuroTech: Board supplier ??; System Integration: ??
- Universities and Research Institutions
 - * Lausanne, KU-Leuven, CERFACS (tbc), etc.: Applications
 - GRS (RWTH-Aachen/FZJ): Cluster-booster comm. concept

Core Group: Exa-Cluster-Lab @ FZJ

Partners

FZJ, Intel-Braunschweig, ParTec

Mission

Have a large impact on the development and realization of a sustained roadmap leading towards Exascale supercomputers

Starting Point

JuRoPA Cluster technology (Hardware/Software)

Emphasis

General purpose, Novel concepts, Exascale performance, scalability and resilience

Pilot Project: ECEP

- "ExaCluster Experimentation platform" using "Knights Ferry" devices (2010)
- A Multi PCIX board will allow for testing the concept of a booster for clusters
- ECEP will be the first step towards a future Knights Corner system

Timeline

- Pilot System with KF running March 2011
- Project Start spring 2011
- Running booster prototype node with KC mid 2012
- Prototype (1 PF) end of 2012
- Running System (10 PF) 2013
- Potential: 100 PF in 2015