Car Price Prediction

Problem Statement

A Chinese automobile company Geely Auto aspires to enter the US market by setting up their manufacturing unit there and producing cars locally to give competition to their US and European counterparts.

They have contracted an automobile consulting company to understand the factors on which the pricing of cars depends. Specifically, they want to understand the factors affecting the pricing of cars in the American market, since those may be very different from the Chinese market. The company wants to know:

- Which variables are significant in predicting the price of a car
- How well those variables describe the price of a car

Based on various market surveys, the consulting firm has gathered a large dataset of different types of cars across the Americal market.

Business Goal

You are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

```
In [48]: import warnings
warnings.filterwarnings('ignore')

#importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Step 1: Reading and Understanding the Data

Let's start with the following steps:

- 1. Importing data using the pandas library
- 2. Understanding the structure of the data

In [49]: cars = pd.read_csv('CarPrice_Assignment.csv')
 cars.head()

Out[49]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	(
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	_
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	

5 rows × 26 columns

In [50]: cars.shape

Out[50]: (205, 26)

In [51]: | cars.describe()

Out[51]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000
4							•

_	columns (total 26	· •						
#	Column	Non-Null Count	Dtype					
0	car_ID	205 non-null	int64					
1	symboling	205 non-null	int64					
2	CarName	205 non-null	object					
3	fueltype	205 non-null	object					
4	aspiration	205 non-null	object					
5	doornumber	205 non-null	object					
6	carbody	205 non-null	object					
7	drivewheel	205 non-null	object					
8	enginelocation	205 non-null	object					
9	wheelbase	205 non-null	float64					
10	carlength	205 non-null	float64					
11	carwidth	205 non-null	float64					
12	carheight	205 non-null	float64					
13	curbweight	205 non-null	int64					
14	enginetype	205 non-null	object					
15	cylindernumber	205 non-null	object					
16	enginesize	205 non-null	int64					
17	fuelsystem	205 non-null	object					
18	boreratio	205 non-null	float64					
19	stroke	205 non-null	float64					
20	compressionratio	205 non-null	float64					
21	horsepower	205 non-null	int64					
22	peakrpm	205 non-null	int64					
23	citympg	205 non-null	int64					
24	highwaympg	205 non-null	int64					
25	price	205 non-null	float64					
dtype	dtypes: float64(8), int64(8), object(10)							
memoi	memory usage: 41.8+ KB							

Step 2 : Data Cleaning and Preparation

Out[53]:

	car_ID	symboling	CompanyName	fueltype	aspiration	doornumber	carbody	drivewhe
0	1	3	alfa-romero	gas	std	two	convertible	rw
1	2	3	alfa-romero	gas	std	two	convertible	rw
2	3	1	alfa-romero	gas	std	two	hatchback	rw
3	4	2	audi	gas	std	four	sedan	fν
4	5	2	audi	gas	std	four	sedan	4w

5 rows × 26 columns

→

```
car-price-prediction-linear-regression-rfe - Jupyter Notebook
In [54]: | cars.CompanyName.unique()
Out[54]: array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
                  'isuzu', 'jaguar', 'maxda', 'mazda', 'buick', 'mercury',
                  'mitsubishi', 'Nissan', 'nissan', 'peugeot', 'plymouth', 'porsche',
                  'porcshce', 'renault', 'saab', 'subaru', 'toyota', 'toyouta',
                  'vokswagen', 'volkswagen', 'vw', 'volvo'], dtype=object)
          Fixing invalid values
            • There seems to be some spelling error in the CompanyName column.
                maxda = mazda
                ■ Nissan = nissan
                porsche = porcshce
                toyota = toyouta
                ■ vokswagen = volkswagen = vw
In [55]: cars.CompanyName = cars.CompanyName.str.lower()
          def replace_name(a,b):
              cars.CompanyName.replace(a,b,inplace=True)
          replace_name('maxda','mazda')
          replace name('porcshce', 'porsche')
          replace_name('toyouta','toyota')
          replace_name('vokswagen','volkswagen')
          replace_name('vw','volkswagen')
          cars.CompanyName.unique()
Out[55]: array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
                  'isuzu', 'jaguar', 'mazda', 'buick', 'mercury', 'mitsubishi',
                  'nissan', 'peugeot', 'plymouth', 'porsche', 'renault', 'saab',
'subaru', 'toyota', 'volkswagen', 'volvo'], dtype=object)
```

In [56]: #Checking for duplicates cars.loc[cars.duplicated()]

Out[56]:

car_ID symboling CompanyName fueltype aspiration doornumber carbody drivewheel

0 rows × 26 columns

Step 3: Visualizing the data

```
In [58]: plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
plt.title('Car Price Distribution Plot')
sns.distplot(cars.price)

plt.subplot(1,2,2)
plt.title('Car Price Spread')
sns.boxplot(y=cars.price)

plt.show()
```



```
In [59]: print(cars.price.describe(percentiles = [0.25,0.50,0.75,0.85,0.90,1]))
```

```
205,000000
count
mean
         13276.710571
std
          7988.852332
min
          5118.000000
25%
          7788.000000
50%
         10295.000000
75%
         16503.000000
85%
         18500.000000
90%
         22563.000000
100%
         45400.000000
         45400.000000
max
Name: price, dtype: float64
```

localhost:8888/notebooks/Car Price Prediction/car-price-prediction-linear-regression-rfe.ipynb

- 1. The plot seemed to be right-skewed, meaning that the most prices in the dataset are low(Below 15,000).
- 2. There is a significant difference between the mean and the median of the price distribution.
- 3. The data points are far spread out from the mean, which indicates a high variance in the car prices.(85% of the prices are below 18,500, whereas the remaining 15% are between 18,500 and 45,400.)

Step 3.1: Visualising Categorical Data

- CompanyName
- Symboling
- fueltype
- enginetype
- carbody
- doornumber
- enginelocation
- fuelsystem
- cylindernumber
- aspiration
- drivewheel

```
In [60]: plt.figure(figsize=(25, 6))
         company_colors = ['cyan', 'yellow', 'lightgreen', 'pink']
         fueltype_colors = ['red', 'blue']
         carbody_colors = ['cyan', 'magenta', 'yellow', 'brown']
         plt.subplot(1, 3, 1)
         plt1 = cars.CompanyName.value_counts().plot(kind='bar', color=company_color
         plt.title('Companies Histogram')
         plt1.set(xlabel='Car company', ylabel='Frequency of company')
         plt.subplot(1, 3, 2)
         plt2 = cars.fueltype.value_counts().plot(kind='bar', color=fueltype_colors)
         plt.title('Fuel Type Histogram')
         plt2.set(xlabel='Fuel Type', ylabel='Frequency of fuel type')
         plt.subplot(1, 3, 3)
         plt3 = cars.carbody.value_counts().plot(kind='bar', color=carbody_colors)
         plt.title('Car Type Histogram')
         plt3.set(xlabel='Car Type', ylabel='Frequency of Car type')
         plt.show()
```


- 1. Toyota seemed to be favored car company.
- 2. Number of gas fueled cars are more than diesel.
- 3. sedan is the top car type prefered.

```
In [61]: plt.figure(figsize=(20, 8))
    plt.subplot(1, 2, 1)
    plt.title('Symboling Histogram')
    sns.countplot(x=cars['symboling'], palette="cubehelix")

plt.subplot(1, 2, 2)
    plt.title('Symboling vs Price')
    sns.boxplot(x=cars['symboling'], y=cars['price'], palette="cubehelix")

plt.show()
```


- 1. It seems that the symboling with 0 and 1 values have high number of rows (i.e. They are most sold.)
- 2. The cars with -1 symboling seems to be high priced (as it makes sense too, insurance risk rating -1 is quite good). But it seems that symboling with 3 value has the price range similar to -2 value. There is a dip in price at symboling 1.

```
In [62]: plt.figure(figsize=(20, 8))

# First subplot: Count plot
plt.subplot(1, 3, 1)
plt.title('Engine Type Histogram')
sns.countplot(x=cars['enginetype'], palette="Blues_d")

# Second subplot: Boxplot
plt.subplot(1, 3, 2)
plt.title('Engine Type vs Price')
sns.boxplot(x=cars['enginetype'], y=cars['price'], palette="PuBuGn")

# Create a new figure for the third subplot
plt.figure(figsize=(8, 6))
df = pd.DataFrame(cars.groupby(['enginetype'])['price'].mean().sort_values(
df.plot.bar(color='teal') # Adjust color as needed
plt.title('Engine Type vs Average Price')
plt.show()
```


<Figure size 800x600 with 0 Axes>

- 1. ohc Engine type seems to be most favored type.
- 2. ohcv has the highest price range (While dohcv has only one row), ohc and ohcf have the low price range.

```
In [63]: plt.figure(figsize=(25, 6))

df = pd.DataFrame(cars.groupby(['CompanyName'])['price'].mean().sort_values
    df.plot.bar()
    plt.title('Company Name vs Average Price')
    plt.show()

df = pd.DataFrame(cars.groupby(['fueltype'])['price'].mean().sort_values(as
    df.plot.bar()
    plt.title('Fuel Type vs Average Price')
    plt.show()

df = pd.DataFrame(cars.groupby(['carbody'])['price'].mean().sort_values(asc
    df.plot.bar()
    plt.title('Car Type vs Average Price')
    plt.show()
```

<Figure size 2500x600 with 0 Axes>

- 1. Jaguar and Buick seem to have highest average price.
- 2. diesel has higher average price than gas.
- 3. hardtop and convertible have higher average price.

```
In [74]:
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Assuming 'cars' is your DataFrame
         plt.figure(figsize=(15, 5))
         # Create a new figure for the next set of subplots
         plt.figure(figsize=(15, 5))
         # Handle 'aspiration'
         plt.subplot(1, 2, 1)
         plt.title('Aspiration Histogram')
         sns.countplot(x=cars['aspiration'], palette=("plasma"))
         plt.subplot(1, 2, 2)
         plt.title('Aspiration vs Price')
         # Ensure 'price' and 'aspiration' contain valid data
         if cars['price'].dtype == 'float64' and cars['aspiration'].dtype == 'object
             sns.boxplot(x=cars['aspiration'], y=cars['price'].dropna(), palette=("p
         else:
             print("Check 'price' and 'aspiration' data types or handle missing/inco
         plt.show()
```

<Figure size 1500x500 with 0 Axes>

Inference:

1. It seems aspiration with turbo have higher price range than the std (though it has some high values outside the whiskers.)

Step 3.2: Visualising numerical data

- 1. carwidth, carlength and curbweight seems to have a poitive correlation with price.
- 2. carheight doesn't show any significant trend with price.

```
In [79]:
            def pp(x,y,z):
                  sns.pairplot(cars, x_vars=[x,y,z], y_vars='price',size=4, aspect=1, kin
                 plt.show()
            pp('enginesize', 'boreratio', 'stroke')
            pp('compressionratio', 'horsepower', 'peakrpm')
            pp('wheelbase', 'citympg', 'highwaympg')
               45000
               40000
               35000
               30000
             을 25000
               10000
                5000
                                                        2.8
                                                                                                           4.0
                                 200
                                                                               4.0 2.0
                                                                                              3.0
               45000
               35000
               30000
             을 25000
               20000
               15000
               10000
                5000
                             12.5 15.0 17.5
                                             22.5
                                                                                                5500
                                                              horsepower
                                                                                              peakrpm
               45000
               40000
               35000
             분 25000
               15000
               10000
                5000
                                          115
                                              120
                              100
                                  105
                                      110
```

- 1. enginesize, boreratio, horsepower, wheelbase seem to have a significant positive correlation with price.
- 2. citympg, highwaympg seem to have a significant negative correlation with price.

```
In [80]: np.corrcoef(cars['carlength'], cars['carwidth'])[0, 1]
```

Out[80]: 0.841118268481846

Step 4: Deriving new features

```
In [81]:
          #Fuel economy
          cars['fueleconomy'] = (0.55 * cars['citympg']) + (0.45 * cars['highwaympg']
In [82]:
          #Binning the Car Companies based on avg prices of each Company.
          cars['price'] = cars['price'].astype('int')
          temp = cars.copy()
          table = temp.groupby(['CompanyName'])['price'].mean()
          temp = temp.merge(table.reset_index(), how='left',on='CompanyName')
          bins = [0,10000,20000,40000]
          cars_bin=['Budget','Medium','Highend']
          cars['carsrange'] = pd.cut(temp['price_y'],bins,right=False,labels=cars_bin
          cars.head()
Out[82]:
             car_ID symboling CompanyName fueltype aspiration doornumber
                                                                            carbody drivewhe
           0
                            3
                                                                          convertible
                                  alfa-romero
                                                           std
                                                                     NaN
                                                gas
                                                                                          rw
                            3
           1
                  2
                                  alfa-romero
                                                gas
                                                           std
                                                                     NaN
                                                                          convertible
                                                                                          rw
           2
                  3
                            1
                                  alfa-romero
                                                                     NaN
                                                                           hatchback
                                                           std
                                                gas
                                                                                          rw
           3
                  4
                            2
                                                                     NaN
                                                                              sedan
                                       audi
                                                           std
                                                                                          fν
                                                gas
```

5 rows × 28 columns

5

2

gas

NaN

std

sedan

4w

audi

Step 5: Bivariate Analysis

```
In [83]: plt.figure(figsize=(8,6))

plt.title('Fuel economy vs Price')
    sns.scatterplot(x=cars['fueleconomy'],y=cars['price'],hue=cars['drivewheel'
    plt.xlabel('Fuel Economy')
    plt.ylabel('Price')

plt.show()
    plt.tight_layout()
```


<Figure size 640x480 with 0 Axes>

Inference:

1. fueleconomy has an obvios negative correlation with price and is significant.

<Figure size 2500x600 with 0 Axes>

1. High ranged cars prefer rwd drivewheel with idi or mpfi fuelsystem.

List of significant variables after Visual analysis:

- Car Range
- Engine Type
- Fuel type
- Car Body
- Aspiration
- Cylinder Number
- Drivewheel
- Curbweight
- Car Length
- Car width
- Engine Size
- Boreratio
- Horse Power
- Wheel base
- Fuel Economy

Out[85]:

	price	fueltype	aspiration	carbody	drivewheel	wheelbase	curbweight	enginetype	су
0	13495	gas	std	convertible	rwd	88.6	2548	dohc	
1	16500	gas	std	convertible	rwd	88.6	2548	dohc	
2	16500	gas	std	hatchback	rwd	94.5	2823	ohcv	
3	13950	gas	std	sedan	fwd	99.8	2337	ohc	
4	17450	gas	std	sedan	4wd	99.4	2824	ohc	
4									•

Step 6: Dummy Variables

```
In [87]: # Defining the map function
def dummies(x,df):
    temp = pd.get_dummies(df[x], drop_first = True)
    df = pd.concat([df, temp], axis = 1)
    df.drop([x], axis = 1, inplace = True)
    return df
# Applying the function to the cars_lr

cars_lr = dummies('fueltype',cars_lr)
    cars_lr = dummies('aspiration',cars_lr)
    cars_lr = dummies('carbody',cars_lr)
    cars_lr = dummies('drivewheel',cars_lr)
    cars_lr = dummies('enginetype',cars_lr)
    cars_lr = dummies('cylindernumber',cars_lr)
    cars_lr = dummies('cylindernumber',cars_lr)
    cars_lr = dummies('carsrange',cars_lr)
```

```
In [88]:
          cars_lr.head()
Out[88]:
               price
                               curbweight enginesize boreratio horsepower fueleconomy carlength
                     wheelbase
           0 13495
                          88.6
                                     2548
                                                                                  23.70
                                                                                            168.8
                                                 130
                                                          3.47
                                                                       111
           1 16500
                          88.6
                                     2548
                                                                                  23.70
                                                                                            168.8
                                                 130
                                                          3.47
                                                                       111
           2 16500
                          94.5
                                     2823
                                                 152
                                                          2.68
                                                                       154
                                                                                  22.15
                                                                                            171.2
           3 13950
                          99.8
                                     2337
                                                 109
                                                                       102
                                                                                  26.70
                                                                                            176.6
                                                          3.19
             17450
                          99.4
                                     2824
                                                 136
                                                          3.19
                                                                       115
                                                                                  19.80
                                                                                            176.6
          5 rows × 31 columns
In [89]:
          cars_lr.shape
Out[89]: (205, 31)
          Step 7: Train-Test Split and feature scaling
In [90]: from sklearn.model_selection import train_test_split
          np.random.seed(0)
          df_train, df_test = train_test_split(cars_lr, train_size = 0.7, test_size =
In [91]:
          from sklearn.preprocessing import MinMaxScaler
          scaler = MinMaxScaler()
          num_vars = ['wheelbase', 'curbweight', 'enginesize', 'boreratio', 'horsepow
          df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
In [92]: df_train.head()
Out[92]:
                   price wheelbase
                                    curbweight enginesize boreratio
                                                                    horsepower fueleconomy carle
           122 0.068818
                           0.244828
                                      0.272692
                                                 0.139623
                                                          0.230159
                                                                       0.083333
                                                                                   0.530864
                                                                                             0.42
           125 0.466890
                           0.272414
                                      0.500388
                                                 0.339623
                                                          1.000000
                                                                       0.395833
                                                                                   0.213992
                                                                                             0.45
           166 0.122110
                           0.272414
                                      0.314973
                                                 0.139623
                                                          0.444444
                                                                       0.266667
                                                                                   0.344307
                                                                                             0.44
             1 0.314446
                           0.068966
                                      0.411171
                                                 0.260377
                                                          0.626984
                                                                       0.262500
                                                                                   0.244170
                                                                                             0.45
           199 0.382131
                           0.610345
                                      0.647401
                                                 0.260377
                                                          0.746032
                                                                       0.475000
                                                                                   0.122085
                                                                                             0.77
          5 rows × 31 columns
```

In [93]: df_train.describe()

Out[93]:

	price	wheelbase	curbweight	enginesize	boreratio	horsepower	fueleconomy
count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000
mean	0.219309	0.411141	0.407878	0.241351	0.497946	0.227302	0.35826
std	0.215682	0.205581	0.211269	0.154619	0.207140	0.165511	0.185980
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.067298	0.272414	0.245539	0.135849	0.305556	0.091667	0.19890
50%	0.140343	0.341379	0.355702	0.184906	0.500000	0.191667	0.34430
75%	0.313479	0.503448	0.559542	0.301887	0.682540	0.283333	0.512340
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

8 rows × 31 columns

In [94]: #Correlation using heatmap
plt.figure(figsize = (30, 25))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()

Highly correlated variables to price are - curbweight, enginesize, horsepower, carwidth and highend.

```
In [95]: #Dividing data into X and y variables
         y_train = df_train.pop('price')
         X_train = df_train
```

Step 8 : Model Building

Fit the RFE model to your data

rfe.fit(X_train, y_train)

```
In [96]:
        #RFE
         from sklearn.feature_selection import RFE
         from sklearn.linear_model import LinearRegression
         import statsmodels.api as sm
         from statsmodels.stats.outliers_influence import variance_inflation_factor
In [98]:
         # Create a linear regression model
         lm = LinearRegression()
         # Create RFE model and specify the number of features to select (e.g., 10)
         rfe = RFE(lm, n_features_to_select=10)
```

Out[98]:

```
RFE(estimator=LinearRegressioh(), n_features_to_select=10)
               ▼ estimator: LinearRegression
               LinearRegression()
                     ▼ LinearRegression
                    LinearRegression()
```

```
list(zip(X_train.columns,rfe.support_,rfe.ranking_))
 In [99]:
 Out[99]: [('wheelbase', False, 3),
            ('curbweight', True, 1),
            ('enginesize', False, 13),
            ('boreratio', False, 10),
            ('horsepower', True, 1),
            ('fueleconomy', True, 1),
            ('carlength', False, 11),
            ('carwidth', True, 1),
            ('gas', False, 17),
            ('turbo', False, 18),
            ('hardtop', False, 2),
            ('hatchback', True, 1),
            ('sedan', True, 1),
            ('wagon', True, 1),
            ('fwd', False, 16),
            ('rwd', False, 15),
            ('dohcv', True, 1),
            ('l', False, 19),
            ('ohc', False, 7),
            ('ohcf', False, 8),
            ('ohcv', False, 9),
            ('rotor', False, 20),
            ('five', False, 6),
            ('four', False, 4),
            ('six', False, 5),
            ('three', False, 14),
            ('twelve', True, 1),
            ('two', False, 21),
            ('Medium', False, 12),
            ('Highend', True, 1)]
In [100]: X_train.columns[rfe.support_]
Out[100]: Index(['curbweight', 'horsepower', 'fueleconomy', 'carwidth', 'hatchback',
                  'sedan', 'wagon', 'dohcv', 'twelve', 'Highend'],
                 dtype='object')
           Building model using statsmodel, for the detailed statistics
```

```
In [101]: X_train_rfe = X_train[X_train.columns[rfe.support_]]
X_train_rfe.head()
```

Out[101]:

	curbweight	horsepower	fueleconomy	carwidth	hatchback	sedan	wagon	dohcv	twe
122	0.272692	0.083333	0.530864	0.291667	0	1	0	0	
125	0.500388	0.395833	0.213992	0.666667	1	0	0	0	
166	0.314973	0.266667	0.344307	0.308333	1	0	0	0	
1	0.411171	0.262500	0.244170	0.316667	0	0	0	0	
199	0.647401	0.475000	0.122085	0.575000	0	0	1	0	
4									•

```
In [102]: def build_model(X,y):
    X = sm.add_constant(X) #Adding the constant
    lm = sm.OLS(y,X).fit() # fitting the model
    print(lm.summary()) # model summary
    return X

def checkVIF(X):
    vif = pd.DataFrame()
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.s)
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

MODEL 1

In [103]: X_train_new = build_model(X_train_rfe,y_train)

OLS Regression Results

==========	=======	==========	======	=========	======	=====	
====			ь.				
Dep. Variable 0.929	:	price	R-squ	ared:			
Model: 0.923		0LS	Adj.	R-squared:			
Method:		Least Squares	F-sta	tistic:		1	
72.1 Date:	Thu	15 Feb 2024	Proh	(F-statistic):		1.29	
e-70	mu	, 13 160 2024	FIOD	(I-statistic).	1.23		
Time: 5.85		22:45:30	Log-L	ikelihood:	20		
No. Observation	ons:	143	AIC:		-3		
89.7 Df Residuals:		132	BIC:			-3	
57.1 Df Model:		10					
Covariance Typ	oe:						
=========		=========		========		=====	
====	coct	ctd onn	_	P> t	[0 025		
0.975]					-		
const	-0.0947	0.042	-2.243	0.027	-0.178	_	
0.011	0.03.7	0.0.2	212.3	0.027	01270		
curbweight 0.402	0.2657	0.069	3.870	0.000	0.130		
horsepower	0.4499	0.074	6.099	0.000	0.304		
•	0.0933	0.052	1.792	0.075	-0.010		
0.196 carwidth	0.2609	0.062	4.216	0.000	0.138		
0.383	0.0020	0.025	2 707	0.000	0 142		
hatchback 0.043	-0.0929	0.025	-3.707	0.000	-0.143	-	
sedan 0.021	-0.0704	0.025	-2.833	0.005	-0.120	-	
wagon	-0.0997	0.028	-3.565	0.001	-0.155	-	
0.044 dohcv	-0.2676	0.079	-3.391	0.001	-0.424	_	
0.112 twelve	-0.1192	0.067	-1.769	0.079	-0.253		
0.014							
Highend 0.298	0.2586	0.020	12.929	0.000	0.219		
		=========	======	========	======	=====	
====							
Omnibus: 1.867		43.093	Durbi	n-Watson:			
Prob(Omnibus): 0.648	:	0.000	Jarqu	e-Bera (JB):		13	
Skew:		1.128	Prob(JB):		4.27	
e-29 Kurtosis: 32.0		7.103	Cond.	No.			
		========	======	========	======	=====	
====							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

p-vale of twelve seems to be higher than the significance value of 0.05, hence dropping it as it is insignificant in presence of other variables.

```
In [104]: X_train_new = X_train_rfe.drop(["twelve"], axis = 1)
```

MODEL 2

In [105]: X_train_new = build_model(X_train_new,y_train)

OLS Regression Results

=========	=======	=========		=========		=====
==== Don Vaniable:		price	P can	anod:		
Dep. Variable: 0.927		price	R-squ	areu.		
Model:		OLS	Adj.	R-squared:		
0.922			J	·		
Method:		Least Squares	F-sta	tistic:		1
87.9						
Date:	Thu	, 15 Feb 2024	Prob	(F-statistic):		4.25
e-71 Time:		22:45:32	log l	ikelihood:		20
4.17		22.45.52	LOG-L	ikeiinoou.		20
No. Observatio	ns:	143	AIC:			-3
88.3						
Df Residuals:		133	BIC:			-3
58.7						
Df Model:		9				
Covariance Typ		nonrobust				
=======================================	=======	========	======	===========	======	=====
	coef	std err	t	P> t	[0.025	
0.975]					[0.025	
const	-0.0764	0.041	-1.851	0.066	-0.158	
0.005	0 2756	0.000	2 005	0.000	0 120	
curbweight 0.412	0.2756	0.069	3.995	0.000	0.139	
	0.3997	0.069	5.824	0.000	0.264	
0.535						
fueleconomy	0.0736	0.051	1.435	0.154	-0.028	
0.175						
carwidth	0.2580	0.062	4.137	0.000	0.135	
0.381	0 0051	0 025	2 766	0.000	0 145	
hatchback 0.045	-0.0951	0.025	-3.766	0.000	-0.145	-
sedan	-0.0744	0.025	-2.983	0.003	-0.124	_
0.025						
wagon	-0.1050	0.028	-3.744	0.000	-0.160	-
0.050						
dohcv	-0.2319	0.077	-3.015	0.003	-0.384	-
0.080	0 2565	0.020	12 742	0.000	0 217	
Highend 0.296	0.2565	0.020	12.743	0.000	0.217	
	=======	=========	======	==========		=====
====						
Omnibus:		48.027	Durbi	n-Watson:		
1.880						
Prob(Omnibus):		0.000	Jarqu	e-Bera (JB):		15
9.802		1 221	Duals /	JD).		1 00
Skew: e-35		1.231	Prob(JD):		1.99
Kurtosis:		7.556	Cond.	No.		
29.6		, , , , ,				
==========	=======		======			=====
====						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [106]: X_train_new = X_train_new.drop(["fueleconomy"], axis = 1)
```

MODEL 3

In [107]: X_train_new = build_model(X_train_new,y_train)

OLS Regression Results

========	=======	J		:=========	:=======	======
====						
Dep. Variable 0.926	! :	pri	ce R-s	squared:		
Model:		0	LS Ad	j. R-squared:		
0.922		_				
Method:		Least Squar	es F-s	statistic:		2
09.5		!				
Date:	Th	u, 15 Feb 20	24 Pro	ob (F-statisti	.c):	7.85
e-72						
Time:		22:45:	33 LO	g-Likelihood:		20
3.07 No. Observati	ons:	1.	43 AIO	٠.		-3
88.1	.0115 .	1.	+3 AI(••		- 5
Df Residuals:		1	34 BIO	••		-3
61.5		<u> </u>		•		
Df Model:			8			
Covariance Ty	me:	nonrobu				
_	-			.========	:=======	======
====						
	coef	std err	1	P> t	[0.025	0.
975]						
const	-0.0305	0.026	-1.165	0.246	-0.082	
0.021						
•	0.2593	0.068	3.796	0.000	0.124	
0.394	0.2460	0.050	Г 06	0.000	0 222	
horsepower 0.462	0.3469	0.058	5.964	0.000	0.232	
carwidth	0.2488	0.062	3.995	0.000	0.126	
0.372	0.2.00	0.002	3.33.	0.000	0,120	
hatchback	-0.0922	0.025	-3.656	0.000	-0.142	_
0.042						
sedan	-0.0711	0.025	-2.85	0.005	-0.120	-
0.022						
wagon	-0.1047	0.028	-3.721	0.000	-0.160	-
0.049						
dohcv	-0.1968	0.073	-2.689	0.008	-0.342	-
0.052	0.2610	0.020	12 00	0 000	0 222	
Highend 0.301	0.2610	0.020	13.083	0.000	0.222	
				.=======		
====						
Omnibus:		48.6	37 Dur	bin-Watson:		
1.909				<u> </u>		
Prob(Omnibus)	:	0.0	00 Jar	que-Bera (JB)	:	16
1.444						
Skew:		1.2	50 Pro	ob(JB):		8.77
e-36						
Kurtosis:		7.5	66 Cor	nd. No.		
27.2						
	=======	========	======			======
====						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[108]:

	Features	VIF
0	const	26.90
1	curbweight	8.10
5	sedan	6.07
4	hatchback	5.63
3	carwidth	5.14
2	horsepower	3.61
6	wagon	3.58
8	Highend	1.63
7	dohcv	1.46

dropping curbweight because of high VIF value. (shows that curbweight has high multicollinearity.)

```
In [109]: X_train_new = X_train_new.drop(["curbweight"], axis = 1)
```

MODEL 4

In [110]: X_train_new = build_model(X_train_new,y_train)

=========	OLS Regression Results							
====								
Dep. Variable	•	pri	CE	R-sa	uared:			
0.918	•	P		59	aa. ca.			
Model:		0	LS .	Δdi	R-squared:			
0.914				Auj.	N Squar Ca.			
Method:		Least Squar	٥٥	F_c+	atistic:		2	
15.9		Least Squar	C 3	r-3t	acistic.		2	
Date:	ΤI	15 Fab 20	2.4	Doob	(F statistis):		4.70	
	11	nu, 15 Feb 20	24	PIOD	(F-statistic):		4.70	
e-70		22.45.	2.4		ا خاردانا ا		10	
Time:		22:45:	34	Log-	Likelihood:		19	
5.77		4	40	A T.C.			2	
No. Observati	ons:	14	43	AIC:			-3	
75.5							_	
Df Residuals:		1.	35	BIC:			-3	
51.8			_					
Df Model:			7					
Covariance Ty	pe:	nonrobu	st					
========	=======	========	=====	====	========	======		
====	_					_		
	coef	std err		t	P> t	[0.025	0.	
975]								
const	-0.0319	0.027	-1.	161	0.248	-0.086		
0.022								
horsepower	0.4690	0.051	9.	228	0.000	0.368		
0.569								
carwidth	0.4269	0.043	9.	944	0.000	0.342		
0.512								
hatchback	-0.1044	0.026	-3.	976	0.000	-0.156	-	
0.052								
sedan	-0.0756	0.026	-2.	896	0.004	-0.127	_	
0.024						• • • • •		
wagon	-0.0865	0.029	-2.	974	0.003	-0.144	_	
0.029	0.0003	0.023	-•	<i>_</i> , ,	0.003	0.11		
dohcv	-0.3106	0.070	-4.	125	0.000	-0.449	_	
0.172	0.3100	0.070	7.	733	0.000	0.445		
Highend	0.2772	0.020	13.	550	0.000	0.237		
0.318	0.2//2	0.020	13.		0.000	0.237		
====								
Omnibus:		43.9	27	Dunh	in-Watson:			
2.006		43.3.	57	טיוטט	III-WatSUII.			
		0.00	00	7.000	uo Dono (JD).		12	
Prob(Omnibus)	•	0.00	00	Jar.d	ue-Bera (JB):		12	
7.746		4 4.	74	D I-	/ap).		1 00	
Skew:		1.1	71	rrob	(ng):		1.82	
e-28		<u> </u>	0.5	<u>.</u>				
Kurtosis:		6.99	95	Cond	. No.			
18.0								
========	======	========	====	====	=========	=======		
====								

Notas.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [111]: checkVIF(X_train_new)
```

Out[111]:

	Features	VIF
0	const	26.89
4	sedan	6.06
3	hatchback	5.54
5	wagon	3.47
1	horsepower	2.50
2	carwidth	2.22
7	Highend	1.56
6	dohcv	1.21

dropping sedan because of high VIF value.

MODEL 5

In [113]: X_train_new = build_model(X_train_new,y_train)

========			_	sion Re	esults	=======	
====							
Dep. Variab	le:	р	rice	R-sqı	uared:		
0.913 Model:			OLS	۸di	R-squared:		
0.909			ULS	Auj.	K-Squareu.		
Method:		Least Squ	ares	F-sta	atistic:		2
37.6							_
Date:	Th	u, 15 Feb	2024	Prob	(F-statistic):		1.68
e-69							
Time:		22:4	5:36	Log-l	_ikelihood:		19
1.46							
No. Observat	tions:		143	AIC:			-3
68.9			126	DTC.			-3
Df Residuals	.		136	BIC:			-3
Df Model:			6				
Covariance ⁻	Γvpe:	nonro	_				
		=======	=====			======	
====							
	coef	std err		t	P> t	[0.025	0.
975]							
const	-0.0934	0.018	_5	5.219	0.000	-0.129	_
0.058							
horsepower	0.5001	0.051	g	9.805	0.000	0.399	
0.601							
carwidth	0.3963	0.043	9	9.275	0.000	0.312	
0.481							
hatchback	-0.0373	0.013	- 2	2.938	0.004	-0.062	-
0.012	-0.0170	0.017	1	1.008	0.315	-0.050	
wagon 0.016	-0.0170	0.017	-]	1.000	0.313	-0.030	
dohcv	-0.3203	0.072	- 4	1.460	0.000	-0.462	_
0.178							
Highend	0.2808	0.021	13	3.402	0.000	0.239	
0.322							
	========	=======	=====	=====		======	=====
==== Omnibus:		2.4	142	Dunh	in-Watson:		
2.024		34	.143	Durb.	in-watson:		
Prob(Omnibus	<u>-</u>).	а	.000	Jargi	ue-Bera (JB):		7
2.788	٠,٠	J		3 G. 9	.c		•
Skew:		1	.018	Prob	(JB):		1.56
e-16					•		
Kurtosis:		5	.841	Cond	. No.		
16.4							
		=======	=====	=====		======	
====							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [114]: checkVIF(X_train_new)
```

Out[114]:

	Features	VIF
0	const	10.82
1	horsepower	2.39
2	carwidth	2.09
6	Highend	1.55
3	hatchback	1.23
5	dohcv	1.21
4	wagon	1.11

dropping wagon because of high p-value.

MODEL 6

In [116]: X_train_new = build_model(X_train_new,y_train)

		OLS Reg	gressi	on Re	esults		
=======================================	:=======	=======	:====	====:		======	:=====
Dep. Variable	: :	pri	.ce	R-saı	uared:		
0.912		·		- 1			
Model:		0	DLS .	Adj.	R-squared:		
0.909							
Method:		Least Squar	es	F-sta	atistic:		2
84.8	_						
Date:	Th	u, 15 Feb 20)24	Prob	(F-statistic):		1.57
e-70		22:45:	27		ikalihaad.		10
Time: 0.93		22:45:	37	Log-i	_ikelihood:		19
No. Observati	ons:	1	.43	AIC:			-3
69.9		_	.45	AIC.			,
Df Residuals:	:	1	.37	BIC:			-3
52.1							
Df Model:			5				
Covariance Ty	/pe:	nonrobu	ıst				
		========		====:	=========	======	=====
====		-4-1		_	P> t	[0 025	0
975]	соет	sta err		τ	P> T	[0.025	0.
<i></i>							
const	-0.0970	0.018	-5.	530	0.000	-0.132	-
0.062							
•	0.5013	0.051	9.	832	0.000	0.401	
0.602			_				
carwidth	0.3952	0.043	9.	252	0.000	0.311	
0.480 hatchback	-0.0336	0.012	_2	764	0.006	-0.058	
0.010	-0.0330	0.012	-2.	704	0.000	-0.038	_
dohcv	-0.3231	0.072	-4.	502	0.000	-0.465	_
0.181							
Highend	0.2833	0.021	13.	615	0.000	0.242	
0.324							
=========		========	=====	====		======	=====
====		25.0					
Omnibus:		36.0	19/	Durb:	in-Watson:		
2.028 Prob(Omnibus)	١.	0 0	000	Janai	ue-Bera (JB):		7
8.717	•	0.0	000	Jai yi	de-bera (Jb).		,
Skew:		1.0	67	Prob	(JB):		8.07
e-18					` '		
Kurtosis:		5.9	943	Cond	. No.		
16.3							
========		========	=====	====		======	=====
====							

Notes:

====

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [117]: checkVIF(X_train_new)

Out[117]:

	Features	VIF
0	const	10.39
1	horsepower	2.39
2	carwidth	2.08
5	Highend	1.53
4	dohcv	1.21
3	hatchback	1.13

MODEL 7

```
In [118]: #Dropping dohcv to see the changes in model statistics
X_train_new = X_train_new.drop(["dohcv"], axis = 1)
X_train_new = build_model(X_train_new,y_train)
checkVIF(X_train_new)
```

		OLS Reg					
====			====	=====	-========		
Dep. Variabl 0.899	e:	pri	ce	R-squ	uared:		
Model:		0	LS	Adj.	R-squared:		
0.896							
Method: 08.0		Least Squar	es	F-sta	atistic:		3
Date:	Thu	ı, 15 Feb 20	24	Prob	(F-statistic):		1.04
e-67							
Time: 1.06		22:45:	38	Log-l	_ikelihood:		18
No. Observat	ions:	1	43	AIC:			-3
52.1							
Df Residuals 37.3	:	1	38	BIC:			-3
Df Model:			4				
Covariance T	ype:	nonrobu	st				
=======================================	========		====	=====		=======	=====
====	coef	std err		t	P> t	[0.025	0.
975]							
const	-0.0824	0.018	-4	.480	0.000	-0.119	_
0.046							
horsepower	0.4402	0.052	8	.390	0.000	0.336	
0.544 carwidth	0.3957	0.046	8	.677	0.000	0.306	
0.486							
hatchback	-0.0414	0.013	-3	.219	0.002	-0.067	-
0.016 Highend	0.2794	0.022	12	.591	0.000	0.236	
0.323	0,2,51	0.022			0.000	0.230	
========	========	=======	====	=====		=======	=====
==== Omnibus:		29.3	85	Durbi	in-Watson:		
1.955				20.01			
Prob(Omnibus):	0.0	00	Jarqı	ue-Bera (JB):		9
8.010 Skew:		0.6	92	Prob(′1R)·		5.22
e-22		0.0	<i>_</i> _		(32).		J. 22
Kurtosis:		6.8	12	Cond.	. No.		
12.9	======		===-	====-		======	
====						 _	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[118]:

	Features	VIF
0	const	10.04
1	horsepower	2.22
2	carwidth	2.08
4	Highend	1.53
3	hatchback	1.10

Step 9: Residual Analysis of Model

```
In [119]: lm = sm.OLS(y_train, X_train_new).fit()
    y_train_price = lm.predict(X_train_new)

In [120]: # Plot the histogram of the error terms
    fig = plt.figure()
    sns.distplot((y_train - y_train_price), bins = 20)
    fig.suptitle('Error Terms', fontsize = 20) # Plot heading
    plt.xlabel('Errors', fontsize = 18)
Out[120]: Text(0.5, 0, 'Errors')
```

Error Terms

Error terms seem to be approximately normally distributed, so the assumption on the linear modeling seems to be fulfilled.

Step 10: Prediction and Evaluation

```
In [121]: #Scaling the test set
    num_vars = ['wheelbase', 'curbweight', 'enginesize', 'boreratio', 'horsepow
    df_test[num_vars] = scaler.fit_transform(df_test[num_vars])

In [122]: #Dividing into X and y
    y_test = df_test.pop('price')
    X_test = df_test

In [123]: # Now let's use our model to make predictions.
    X_train_new = X_train_new.drop('const',axis=1)
    # Creating X_test_new dataframe by dropping variables from X_test
    X_test_new = X_test[X_train_new.columns]

# Adding a constant variable
    X_test_new = sm.add_constant(X_test_new)

In [124]: # Making predictions
    y_pred = lm.predict(X_test_new)
```

Evaluation of test via comparison of y_pred and y_test

Out[125]: 0.8614595209022033

```
In [126]: #EVALUATION OF THE MODEL
# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test', fontsize=18)  # X-label
plt.ylabel('y_pred', fontsize=16)
```

Out[126]: Text(0, 0.5, 'y_pred')

y_test vs y_pred

Evaluation of the model using Statistics

In [127]: print(lm.summary())

		OLS Reg	ress	sion Re	esults		
		=======	====	=====		======	======
==== Dep. Variable	:	pri	.ce	R-squ	uared:		
0.899							
Model:		0	LS	Adj.	R-squared:		
0.896							
Method:		Least Squar	es	F-sta	atistic:		3
08.0							
Date:	Thu	, 15 Feb 20	24	Prob	(F-statistic):		1.04
e-67							
Time:		22:45:	44	Log-l	ikelihood:		18
1.06							
No. Observati	ons:	1	.43	AIC:			-3
52.1							
Df Residuals:		1	.38	BIC:			-3
37.3							
Df Model:			4				
Covariance Ty	pe:	nonrobu	ıst				
=======================================	=======	=======	====			=======	=====
	coef	std err		t	P> t	[0.025	0.
975]		J CU. C			.,,,,,,	[0.0=5	
const	-0.0824	0.018	_1	.480	0.000	-0.119	_
0.046	-0.0024	0.018	-4	400	0.000	-0.119	_
horsepower	0.4402	0.052	g	3.390	0.000	0.336	
0.544	0.4402	0.032	C		0.000	0.550	
carwidth	0.3957	0.046	8	3.677	0.000	0.306	
0.486	0.3337	0.040	·	,	0.000	0.500	
hatchback	-0.0414	0.013	_ 3	3.219	0.002	-0.067	_
0.016	0.0414	0.013		,,,,,	0.002	0.007	
Highend	0.2794	0.022	12	2.591	0.000	0.236	
0.323	0.2/54	0.022			0.000	0.250	
	=======	=======	====	.=====	.========	=======	
====							
Omnibus:		29.3	85	Durbi	in-Watson:		
1.955							
Prob(Omnibus)	:	0.0	100	Jarqu	ue-Bera (JB):		9
8.010					• •		
Skew:		0.6	92	Prob((JB):		5.22
e-22				•	•		
Kurtosis:		6.8	312	Cond.	No.		
12.9							
			====			=======	=====
====							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Inference:

1. R-sqaured and Adjusted R-squared (extent of fit) - 0.899 and 0.896 - 90% variance explained.

- 2. *F-stats and Prob(F-stats) (overall model fit)* 308.0 and 1.04e-67(approx. 0.0) Model fir is significant and explained 90% variance is just not by chance.
- 3. *p-values* p-values for all the coefficients seem to be less than the significance level of

In []:	
In []:	