Machine Learning and Data Analytics ME 5013- Fall 2019

Lecture 06

- Gradient Descent cont.
- Polynomial Regression

The University of Texas at San Antonio™

Adel Alaeddini, PhD
Associate Professor of Mechanical Engineering
Advanced Data Engineering Lab
adel.alaeddini@utsa.edu

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

Cost Function:
$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x^{(i)})^2$$

Parameters:
$$\beta_0$$
, β_1

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$

Cost Function:
$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)})^2$$

Parameters: β_0 , β_1 , ..., β_p

Gradient descent:

Repeat until convergence{

$$\beta_{0} \coloneqq \beta_{0} + \alpha \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x^{(i)})$$

$$\beta_{1} \coloneqq \beta_{1} + \alpha \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x^{(i)}) x^{(i)}$$
}

Gradient descent:

Repeat until convergence{

$$\beta_0 := \beta_0 + \alpha \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)})$$

$$\beta_1 := \beta_1 + \alpha \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) x_1^{(i)}$$

...

$$\beta_p := \beta_p + \alpha \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) x_p^{(i)}$$

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean normalization

- Replace x_i with x_i - $\overline{x_i}$, where $\overline{x_i}$ is the average value of x_i in the training set, to make features have approximately zero mean (Do not apply to x_0).
- Divide x_i by R_i , where R_i is the range of x_i in the training set,

Divide x_i by S_i , where S_i is the standard deviation of x_i in the training set

E.g.
$$x_2 = \frac{\#bedrooms - 2}{5}$$

Gradient descent

$$\beta_j \coloneqq \beta_j - \alpha \, \frac{\partial}{\partial \beta_j} J(\beta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\beta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\beta)$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $I(\beta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$, 0.1, , 1, \dots$$

n training examples, p features.

Gradient Descent

- Need to choose lpha.
- Needs many iterations.
- Works well even when p is large.
- More robust to linearly dependencies

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if p is very large.
- Less robust to linearly dependencies

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.

Housing prices prediction

$$h_{\beta}(x) = \beta_0 + \beta_1 frontage + \dots + \beta_p depth$$

Polynomial regression

$$\beta_{0} + \beta_{1}x + \beta_{2}x^{2}$$

$$\beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}$$

Choice of features

$$h_{\beta}(x) = \beta_0 + \beta_1(size) + \beta_2(size)^2$$

$$h_{\beta}(x) = \beta_0 + \beta_1(size) + \beta_2\sqrt{(size)}$$