Dérivabilité Dérivations successives

MPSI 2

Soit f une fonction numérique définie sur un intervalle réel I.

Définition 0.0.1

f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, on definit la fonction dérivée f' par :

$$f' \colon I \longrightarrow \mathbb{R}$$

 $x \longmapsto f'(x_0)$

- Si f' est dérivable en x_0 , on note f" $(x_0) = (f')'(x_0)$
- Par récurrence, on définit, si $f^{(p-1)}$ existe et est dérivable en x_0 :

$$f^{(p)}(x_0) = (f^{(p-1)})'(x_0)$$

Définition 0.0.2

Soit $n \in \mathbb{N}$.

- On dit que f est de classe C^n sur I si f est dérivable n fois sur I et que $f^{(n)}$ est continue sur I.
 - On note parfois $C^n(I,\mathbb{R})$ l'ensemble de ces applications.
- On dit que f est de classe C^{∞} sur I si f admet des dérivées à tout ordre sur I.

Propriété 0.0.1

Formule de Leibniz

Si f et g admettent des dérivées jusqu'à l'ordre n sur I, alors $f \times g$ aussi et :

$$\forall x \in I, (f \times g)^{(n)}(x) = \left(\sum_{k=0}^{n} \binom{n}{k} f^{(k)} \times g^{(n-k)}\right)(x)$$