1. Which of the following alkyl halides will undergo SN1 reaction most readily?
A. CH3CI B. (CH3)3CCI C. CH3CH2CI D. CH3CHCICH3
Answer: B. (CH3)3CCl Explanation: Tertiary alkyl halides form stable carbocations \rightarrow SN1 occurs easily.
2. Which of the following is the best leaving group?
A. F ⁻ B. Cl ⁻ C. Br ⁻ D. I ⁻
Answer: D. I $^-$ Explanation: I $^-$ is the most stable anion \to best leaving group.
3. The major product of the reaction between C2H5Br and alcoholic KOH is:
A. C2H6 B. C2H5OH C. C2H4 D. CH3CHO
Answer: C. C2H4 Explanation: Alcoholic KOH causes elimination (dehydrohalogenation) \rightarrow alkene forms.
4. Which compound reacts fastest with AgNO3 in ethanol?
A. CH3CI B. CH3CH2CI C. (CH3)3CCI D. C6H5CH2CI
Answer: C. (CH3)3CCI

Explanation: Tertiary carbocation forms fastest \rightarrow SN1 mechanism \rightarrow faster reaction with AgNO3.

- 5. Which is most reactive in nucleophilic substitution?
- A. CH3Cl
- B. CH3CH2CI
- C. CH2=CHCl
- D. C6H5Cl

Answer: B. CH3CH2Cl

Explanation: C6H5Cl and CH2=CHCl are resonance-stabilized → less reactive; CH3CH2Cl is primary alkyl halide

 \rightarrow SN2.

- 6. Which of the following is an aryl halide?
- A. C2H5Cl
- B. CH3CH2Br
- C. C6H5Cl
- D. CH3Cl

Answer: C. C6H5Cl

Explanation: Aryl halides have halogen directly bonded to aromatic ring.

- 7. Which of the following statements is true regarding aryl halides?
- A. They easily undergo nucleophilic substitution
- B. They form carbocation easily
- C. They are less reactive due to resonance
- D. They are unstable

Answer: C. They are less reactive due to resonance

Explanation: Resonance between ring and halogen lone pairs \rightarrow C–X bond gets partial double bond character \rightarrow less reactive.

- 8. Which of the following does not give white precipitate with AgNO3?
- A. CH3CH2Br

B. CH3CH2CI C. CH3CH2I D. C6H5CI
Answer: D. C6H5Cl Explanation: Aryl halides do not easily ionize → no reaction with AgNO3.
9. Which product is formed when chlorobenzene reacts with NaOH at high temperature and pressure?
A. Phenol
B. Benzene
C. Aniline
D. Benzaldehyde
Answer: A. Phenol
Explanation: Nucleophilic substitution at high temperature \rightarrow –OH replaces –Cl.
10. Which reagent can be used to convert an alcohol to an alkyl halide?
A. NaOH
B. KMnO4
C. SOCI2
D. H2O2
Answer: C. SOCI2
Explanation: SOCl2 is used for halogenation of alcohols \rightarrow R–OH \rightarrow R–Cl.
11. Which compound undergoes SN2 substitution reaction most rapidly?
A. CH3CH2CI
B. CH3CHCICH3

Answer: A. CH3CH2Cl

C. (CH3)3CCI D. C6H5CH2CI

Explanation: Primary alkyl halide \rightarrow less steric hindrance \rightarrow SN2 favored.

12. Which of the following does not undergo SN1 reaction?
A. (CH3)3CBr
B. C6H5CH2Br
C. CH3CH2Br
D. (CH3)2CHBr
Answer: C. CH3CH2Br
Explanation: Primary halides do not form stable carbocation \rightarrow do not undergo SN1.
13. On heating with Na in dry ether, alkyl halides give:
A. Alcohol
B. Alkyne
C. Alkane
D. Alkene
Answer: C. Alkane
Explanation: Wurtz reaction \rightarrow coupling of alkyl halides \rightarrow alkane.
14. Which compound shows optical activity?
A. CH3CHBrCH3
B. CH3CH2CH2Br
C. CH3CHBrCH2CH3
D. CH3CH(Br)CH3
Answer: C. CH3CHBrCH2CH3
Explanation: Contains a chiral center → optical activity.
,
15. Which of the following is most reactive towards SN2 reaction?
A. CH3CH2CI
B. (CH3)2CHCI

D. C6H5CH2Cl

C. (CH3)3CCI

Answer: A. CH3CH2Cl

Explanation: SN2 reaction favored by less hindered primary halides.

- 16. Which of the following halides can form two types of products in an SN1 reaction due to rearrangement?
- A. CH3CH2Br
- B. (CH3)3CBr
- C. CH3CH(Br)CH2CH3
- D. CH3CH2CH2Br

Answer: C. CH3CH(Br)CH2CH3

Explanation: Secondary carbocation undergoes hydride shift \rightarrow gives rearranged product.

- 17. Which is the correct increasing order of reactivity in SN2 reaction?
- A. CH3CI < CH3CH2CI < (CH3)3CCI
- B. (CH3)3CCI < CH3CH2CI < CH3CI
- C. (CH3)3CCI < CH3CI < CH3CH2CI
- D. CH3CH2CI < CH3CI < (CH3)3CCI

Answer: C. (CH3)3CCI < CH3CI < CH3CH2CI

Explanation: SN2 is faster for less hindered \rightarrow tertiary < methyl < primary.

- 18. Which is not a correct method to prepare alkyl halides?
- A. Alcohol + SOCI2
- B. Alkene + HX
- C. Alkane + HCl (in presence of sunlight)
- D. Alcohol + HNO3

Answer: D. Alcohol + HNO3

Explanation: HNO3 does not convert alcohol to alkyl halide.

- 19. Which of the following is an example of electrophilic substitution reaction?
- A. C2H5Br + NaOH → C2H5OH
- B. C6H5Cl + Cl2/AlCl3 → C6H4Cl2
- C. CH3CH2Cl + KOH \rightarrow CH2=CH2

D. C6H5Br + Mg \rightarrow C6H5MgBr

Answer: B. C6H5Cl + Cl2/AlCl3 \rightarrow C6H4Cl2

Explanation: Aromatic halogenation \rightarrow electrophilic substitution.

- 20. When 2-bromobutane is treated with alcoholic KOH, the major product is:
- A. Butanol
- B. Butene (Z)
- C. Butene (E)
- D. 2-butene (E and Z mixture)

Answer: D. 2-butene (E and Z mixture)

Explanation: Elimination (E2) gives mixture of stereoisomers.

- 21. Which of the following shows both +I and –I effect?
- A. -CH3
- B. -Cl
- C. -NO2
- D. -OH

Answer: B. -Cl

Explanation: -Cl shows -I due to electronegativity, +M due to lone pair \rightarrow dual character.

- 22. Which one is incorrect about SN1 reaction?
- A. Follows first-order kinetics
- B. Rate depends only on substrate
- C. Carbocation intermediate forms
- D. Inversion of configuration always occurs

Answer: D. Inversion of configuration always occurs

Explanation: SN1 gives racemization, not complete inversion.

23. In the Wurtz reaction, coupling of CH3Br and C2H5Br gives:

- A. CH3CH3 and C2H5C2H5
- B. CH3CH2CH3
- C. CH3CH2CH2CH3
- D. Mixture of CH3CH3, C2H5C2H5, and CH3C2H5

Answer: D. Mixture of CH3CH3, C2H5C2H5, and CH3C2H5

Explanation: Cross Wurtz reaction gives all possible combinations.

- 24. Chlorobenzene is less reactive than alkyl halides due to:
- A. Inductive effect
- B. Resonance stabilization
- C. Electronegativity
- D. Steric hindrance

Answer: B. Resonance stabilization

Explanation: Lone pair on Cl delocalized \rightarrow less reactive C–Cl bond.

- 25. Which of the following gives white ppt with AgNO3 solution instantly?
- A. CH3CH2Br
- B. CH3CH2Cl
- C. C6H5Cl
- D. CH3CH2I

Answer: D. CH3CH2I

Explanation: I^- is best leaving group \rightarrow reacts instantly.

- 26. In aryl halides, nucleophilic substitution is difficult due to:
- A. Low electron density on ring
- B. Resonance giving partial double bond character
- C. High bond dissociation energy
- D. All of the above

Answer: D. All of the above

Explanation: All factors contribute to resistance to nucleophilic substitution.

- 27. Which reaction is used for the synthesis of alkyl fluorides?
- A. Finkelstein reaction
- B. Sandmeyer reaction
- C. Swarts reaction
- D. Reimer-Tiemann reaction

Answer: C. Swarts reaction

Explanation: Swarts reaction replaces halogen with fluorine using SbF3.

- 28. C2H5Br + Mg/ether \rightarrow ?
- A. C2H6
- B. C2H5MgBr
- C. C2H5OH
- D. CH3CH=CH2

Answer: B. C2H5MgBr

Explanation: Grignard reagent forms.

- 29. Which of the following is not formed in the reaction of CH3CH2Cl with aq. KOH?
- A. CH3CH2OH
- B. CH2=CH2
- C. C2H6
- D. None of these

Answer: C. C2H6

Explanation: Alkane is not formed with aqueous KOH.

- 30. Which of the following compounds will undergo nucleophilic substitution most easily?
- A. C6H5Cl
- B. C6H5CH2Cl
- C. CH3Cl
- D. CH3CH2CI

Answer: B. C6H5CH2Cl

Explanation: Benzylic carbocation is resonance stabilized \rightarrow reacts easily.

- 31. The IUPAC name of the compound CH3-CH(CI)-CH2-CH3 is:
- A. 1-chlorobutane
- B. 2-chlorobutane
- C. 3-chlorobutane
- D. sec-butyl chloride

Answer: B. 2-chlorobutane

Explanation: Chlorine is on the second carbon \rightarrow 2-chlorobutane.

- 32. Which of the following will show fastest SN1 reaction?
- A. CH3CH2Br
- B. CH3CH(Br)CH3
- C. (CH3)3CBr
- D. C6H5CH2Br

Answer: C. (CH3)3CBr

Explanation: Tertiary carbocation is most stable \rightarrow fastest SN1.

- 33. When chloroform is exposed to air and sunlight, it forms:
- A. Phosgene
- B. Chlorine
- C. Hydrogen chloride
- D. Dichloromethane

Answer: A. Phosgene

Explanation: CHCl3 oxidizes to COCl2 (phosgene), which is toxic.

- 34. C–X bond strength decreases in the order:
- A. C-F > C-CI > C-Br > C-I
- B. C-I > C-Br > C-CI > C-F

C. C-CI > C-F > C-I > C-BrD. C-Br > C-Cl > C-F > C-IAnswer: A. C-F > C-CI > C-Br > C-IExplanation: Bond strength decreases with increasing atomic size. 35. Which halide does not give white ppt with AgNO₃ in ethanol at room temperature? A. CH3CH2I B. CH3CH2Br C. CH3CH2CI D. CH3CH2F Answer: D. CH3CH2F Explanation: Fluoride ion is not easily precipitated. 36. Which reagent is used in Finkelstein reaction? A. NaBr in acetone B. Nal in acetone C. AgNO3 D. SOCI2 Answer: B. Nal in acetone Explanation: Finkelstein reaction is halogen exchange via SN2. 37. The hybridisation of carbon in C-Cl bond of CH3Cl is: A. sp B. sp² C. sp³ D. sp³d Answer: C. sp³ Explanation: CH3Cl \rightarrow tetrahedral \rightarrow sp³.

38. Which compound reacts fastest with alcoholic KOH?

A. CH3CH2CI B. CH3CH2CH2CI C. (CH3)3CCI D. CH3CHClCH3 Answer: C. (CH3)3CCI Explanation: E2 reaction \rightarrow tertiary halide gives fastest elimination. 39. Which product is obtained from chlorobenzene by reaction with NaOH at high temperature and pressure? A. Benzene B. Phenol C. Aniline D. Toluene Answer: B. Phenol Explanation: Nucleophilic substitution \rightarrow Cl replaced by OH. 40. Which of the following is most reactive in SN2 reaction? A. CH3Cl B. C2H5Cl C. (CH3)2CHCl D. (CH3)3CCI Answer: A. CH3Cl Explanation: Methyl halide has least steric hindrance \rightarrow fastest SN2. 41. A compound C2H5Cl is treated with alcoholic KOH. The expected major product is: A. C2H6 B. C2H4 C. CH3CH2OH D. CH3CHO

NEET CHAPTERS PRO

Explanation: Elimination (E2) \rightarrow forms ethene.

Answer: B. C2H4

- 42. In the nitration of chlorobenzene, the major product is:
- A. m-chloronitrobenzene
- B. o-chloronitrobenzene
- C. p-chloronitrobenzene
- D. Equal mixture of ortho and para

Answer: D. Equal mixture of ortho and para

Explanation: Cl is ortho-para directing \rightarrow both products form.

- 43. Which halide cannot be prepared using Lucas reagent (ZnCl2 + HCl)?
- A. 3° alcohol
- B. 2° alcohol
- C. 1° alcohol
- D. Allyl alcohol

Answer: C. 1° alcohol

Explanation: Lucas test is slow for 1° alcohol due to unstable carbocation.

- 44. What is the product when C6H5Br is treated with Mg in dry ether?
- A. C6H5MgBr
- B. C6H5OH
- C. C6H6
- D. C6H5Cl

Answer: A. C6H5MgBr

Explanation: Grignard reagent formation.

- 45. The compound CH3–CH(OH)–CH2–Cl on reaction with NaOH (aq) gives:
- A. CH3-CHOH-CH2OH
- B. CH3-CH=CH2
- C. CH3-COOH
- D. CH3-CH2-CH2OH

Answer: A. CH3-CHOH-CH2OH

Explanation: Nucleophilic substitution \rightarrow Cl replaced by OH.