Lezione 3 Fisica Generale 1

Federico De Sisti 2024-10-04

1 Cinematica: Punto Materiale

Astrazione che usiamo per descrivere un corpo, non ci interessa la posizione di ogni singola parte del corpo, ma semplicemente la sua posizione nella sua compattezza.

1.1 Legge Oraria

La legge oraria è una funzione che restituisce la posizione del nostro punto dato un istante di tempo

$$\overrightarrow{r}(t_1) = (x(t_1), y(t_1), z(t_1)).$$

 $x(t_1) = r_x(t_1)$ si intende la coordinata x al tempo t_1

.

Esempio

 $t_1 x(t_1)$

:

 $t_n x(t_n)$

In questo grafico abbiamo i valori misurati, cerchiamo di approssimarlo ad una funzione con meno parametri possibili con meno parametri possibili. Proviamo a descrivere ora il moto

$$\begin{cases} x(t) = at & t < t_3 \\ x(t) = \text{const} & t_3 \le t < t_4 \\ x(t) = at^2 & t_4 \le t \end{cases}.$$

dove la prima costante ha dimensione $\frac{l}{t}$ e la seconda $\frac{l}{t^2}$

1.2 Velocità

La velocità è la variazione dello spazio nel tempo, ora definiamo velocità media e istantanea

$$\overrightarrow{v_m}_{[t_1,t_2]} := \frac{\overrightarrow{r}(t_2) - \overrightarrow{r}(t_1)}{t_2 - t_1}.$$

$$\overrightarrow{v}(t) = \lim_{t \to t_1} \overrightarrow{v_m}_{[t,t_1]} = \frac{d\overrightarrow{r}(t_1)}{dt}.$$

Quindi

$$\frac{d\overrightarrow{v}(t_1)}{dt} = \left(\frac{dx(t_1)}{dt}, \frac{dy(t_1)}{dt}, \frac{dz(t_1)}{dt}\right).$$

$$\overrightarrow{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{x}}{\Delta t}.$$

1.3 Accelerazione

Variazione della velocità in un determinato intervallo di tempo

$$\overrightarrow{a_m}_{[t_1,t_2]} = \frac{\overrightarrow{v_1}(t_1) + \overrightarrow{v_2}(t_2)}{t_2 - t_1}.$$

$$\overrightarrow{a}(t) = \lim_{t \to t_1} \overrightarrow{a_m}_{[t,t_1]} = \frac{d\overrightarrow{v}(t_1)}{dt}.$$

$$\frac{d\overrightarrow{v}(t_1)}{dt} = \left(\frac{dv_x(t_1)}{dt}, \frac{dv_y(t_1)}{dt}, \frac{dv_z(t_1)}{dt}\right).$$

$$\overrightarrow{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{v}}{\Delta t}.$$

Esempio:

$$\begin{cases} x(t) = at & t < t_3 \\ x(t) = \text{const} & t_3 \le t < t_4 \\ x(t) = at^2 & t_4 \le t \end{cases}.$$

$$v(t) = 2a(t - t_4) \quad t \ge t_4$$

$$\overrightarrow{a}(t) = \frac{d\overrightarrow{v}(t)}{dt} = \frac{dv(t)}{dt}\hat{v}(t) + \overrightarrow{\omega_v}(t) \times \overrightarrow{v}(t).$$

Dove $\frac{dv(t)}{dt}\hat{v}(t)=\overrightarrow{d}_t$ è la velocità tangenziale e $\overrightarrow{\omega_v}(t)\times\overrightarrow{v}(t)=\overrightarrow{d}_n$ è la velocità normale

1.4 Moto circolare

$$\overrightarrow{v} \overrightarrow{\omega}_r \times \overrightarrow{r}.$$

$$|\overrightarrow{\omega}_r| = \frac{d\theta}{dt} = \omega(t).$$

$$\overrightarrow{a} = \overrightarrow{a}_t + \overrightarrow{a}_c.$$

$$\overrightarrow{a}_t = \frac{dv(t)}{dt} \widehat{v} + \overrightarrow{\omega}_v \times \overrightarrow{v} = a(t) = \alpha(t) r \widehat{v}(t) = \overrightarrow{\alpha}(t) \times \overrightarrow{r}(t).$$

Accelerazione Centripeta

$$\overrightarrow{a_c}(t) = \overrightarrow{\omega}(t) \times \overrightarrow{v}(t) = \overrightarrow{\omega}(t) \times (\overrightarrow{\omega}(t) \times \overrightarrow{r}(t)).$$

Dove θ' è l'angolo tra il corrente vettore della velocità e quello dopo Δt

$$|\overrightarrow{\omega}| = \omega(t).$$

$$|\overrightarrow{v}(t)| = r\omega(t).$$

$$|\overrightarrow{a}| = r\omega^2(t).$$

Velocità angolare

$$\omega(t) = \frac{d\theta(t)}{dt}.$$

$$\theta(t) = \frac{S(t)}{r}.$$

Dove S(t) è l'ascissa curvilinea

$$\frac{dS(t)}{dt} = \lim_{\Delta t \to 0} = \frac{S(t)}{\Delta t} = \frac{d\theta}{dt}r.$$
$$a(t) = \frac{dv(t)}{dt} = \frac{d^2\theta(t)}{dt^2}r.$$

Nota:

L'accelerazione angolare è uguale nel punto materiale in A e in B

1.5 Moto circolare uniforme