Linear Algebra Notes

Linear Transformations

Linearity Properties for Linear Transformations

- 1. T(u+v) = Tu + Tv
- 2. T(cu) = cTu

Briefly show: T(cu + v) = cTu + Tv

Kernel and Range

$$Ker(T) = Nullsp(T) = v \in V : Tv = 0$$

$$Range(T) = R(T) = \{w \in W : w = Tv, v \in V\}$$

Note: Every vector in Ker(T) is mapped to the zero vector in W.

$$\dim(Ker(T))+\dim(Range(T))=\dim\!V$$

$$Nullity(T) + Rank(T) = dimV$$

So, dim(Ker(T)) = Nullity(T), dim(Range(T)) = Rank(T).

Existance and Uniqueness of Linear Transformation

If ${\pmb V}$ and ${\pmb W}$ are finite dimensional vector spaces over same field, there is ${\pmb {\rm unique}}$ linear tranformation that

Let B is a bases with vectors v_i , $i = \overline{1,n}$

$$Tv_i = w_i$$

The set of all linear transformations from V to W is a vector space, denoted by L(V, W)

Product (Composition) of Linear Transformations

$$T_1 \in L(U,V), T_2 \in L(V.W)$$
, then

$$(T_2T_1)u=T_2(T_1u)$$

Properties:

1- Associativity:

$$(T_3T_2)T_1 = T_3(T_2T_1)$$

2- Distributivity:

$$(S_1 + S_2)T = S_1T + S_2T$$

$$S(T_1 + T_2) = ST_1 + ST_2$$

3- Identity Transformation:

$$I_v:V o V$$

$$I_w:W o W$$

Then,

$$TI_v = T, TI_w = T$$

One-to-one and onto

T is one-to-one $\iff T$ maps every linearly independent set of vectors in V to W.

T is one-to-one $\iff Ker(T) = 0$

T is onto $\iff Range(T) = W$.

- 1. If **T** is **one-to-one** \Rightarrow $dimV \leq dimW$
- 2. If T is **onto** \Rightarrow $dimV \ge dimW$
- 3. If T is one-to-one and onto (bijective) $\Rightarrow dimV = dimW$

Invertibility

T is invertible if $\exists S:W \rightarrow V$ s.t.

$$ST = I_v \quad ext{and} \quad TS = I_w$$

 \boldsymbol{S} is called inverse of T.

T is invertibe $\iff T$ is one-to-one and onto.

If dimV = dimW = n, then followings are equal:

- 1. \boldsymbol{T} is invertible
- 2. \boldsymbol{T} is one-to-one
- 3. \boldsymbol{T} is **onto**

Coordinate Representation of Vectors

Let $\beta = \{v_1, \dots, v_n\}$ is a ordered bases of V. Then $\forall v \in V$ has a unique representation:

$$v = c_1 v_1 + \dots + c_n v_n$$

coordinate vector of v related to the base $\boldsymbol{\beta}$ is

$$[v]_eta = [c_1 \dots c_n]^t = egin{bmatrix} c_1 \ dots \ c_n \end{bmatrix}$$

Transformation $L_0: V o M_{nx1}$ is: $L_0(v) = [v]_{eta}$

- 1. is one-to-one and onto (invertible)
- 2. is linear

Thus, L_0 is an isomorphism.

Transition matrix P

Let dimV = n, $\beta = \{v_1, \dots, v_n\}$ and $\Upsilon = \{u_1, \dots, u_n\}$ be two **ordered** bases.

Then, there exists a unique invertible (nxn) matrix P s.t.

[v]\beta P[v]\Upsilon, \forall v \in V

and since \boldsymbol{P} is invertible.

$[v]\setminus Upsilon = P \setminus \{-1\}\{v\}\setminus beta$

where

$$P = \left[egin{array}{ccc} [u_1]_eta & \dots & [u_n]_eta \ \downarrow & \downarrow & \downarrow \end{array}
ight] = [p_{ij}]$$

and \boldsymbol{P} is called **transition matrix**.

Matrix Representation of Operator T

Every linear transformation defined on a finite dimensional space can be represented by a matrix.

Matrix A is called the matrix representation of operator T relative to the bases β , Υ for V and β' , Υ' for W. Then, for each linear transformation $T:V\to W$ there is a **unique** matrix A_{mxn} .

 $A = [T]{\beta}^{\beta^\prime} = \begin{bmatrix} [Tu_1]{\beta^\prime} & \downarrow & \downarrow \end{bmatrix} $$

and satisfying

$$A[v]_{eta} = [Tv]_{eta'} \quad , orall v \in V$$

This means that, for given $m{\beta}$ and $m{\beta}'$, the correspondance $T \overset{L_0}{\longmapsto} [T]^{m{\beta}'}_{m{\beta}}$ defines a mapping $L_0: L(V,W) \to M_{mxn}$

- 1. This mapping is **linear**
- 2. This mapping is one-to-one and onto (invertible)

Notations for 2 case:

1. If
$$eta
eq eta' \implies A = [T]^{eta'}_{eta}$$
 then,

$$[T]^{eta'}_eta[v]_eta=[Tv]_{eta'}\quad, orall v\in V$$

2. If
$$\beta = \beta' \implies A = [T]_{\beta}$$
, then

$$[T]_{\beta}[v]_{\beta} = [Tv]_{\beta}$$

With two different bases, let P be be the transition matrix from $\beta \to \Upsilon$ and Q from $\beta' \to \Upsilon'$.

$$[T]_\Upsilon^{\Upsilon'} = Q^{-1}[T]_\beta^{\beta'} P$$

If $T: V \to V$ is a linear operator and β , Υ two bases for V, and P is transition matrix s.t.

$$[v]_eta = P[v]_\Upsilon$$

then relation between representations $[T]_{\beta}$ and $[T]_{\Upsilon}$ is:

$$[T]_{\Upsilon} = P^{-1}[T]_{\beta}P$$

Two vector spaces V and W over the same field that is **isomorphic** notated as $V \cong W$.

Isomorphism Properties

Isomorphism is an equivalence relation on the set of all n-dimensional vector spaces over the same field. That's, if U, V, W are any n-dimensional vector spaces over \mathbb{F} , then

- 1. $V \cong V$ (reflexive)
- 2. $V \cong U \implies U \cong V$ (symmetric)
- 3. $V \cong U$ and $U \cong W \implies V \cong W$ (transitive)

Then,

$$V_{\mathbb{F}} \cong M_{nx1}(\mathbb{F}) \cong \mathbb{F}^n$$

$$v \longleftrightarrow egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix} \longleftrightarrow (x_1,\dots,x_n)$$

Let dim V = n and dim W = m

Then,

$$L(V,W) \cong M_{mxn}(\mathbb{F})$$

and

$$dimL(V,W) = dimM_{mxn} = m \cdot n$$

Sum and Direct Sum

Let U_1, \ldots, U_m be subspaces of V. Then the **sum of** U_1, \ldots, U_m is defined as

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_j \in U_j, j = \overline{1, m}\}$$

if each element $v \in V$ has a unique representation as a sum \implies V is the direct sum its subspaces U_1, \ldots, U_m written as

$$V = U_1 \oplus \cdots \oplus U_m$$

$$v = u_1 + \cdots + u)m$$

where $u_j \in U_j, j = \overline{1,m}$

If V is a finite dimensional vector space and \boldsymbol{U} is subspace of V, $\exists \boldsymbol{W}$ subspace of V s.t.

$$V = U \oplus W$$

$$V = U_1 \oplus \cdots \oplus U_m$$

1.
$$v = U_1 + \cdots + U_m$$

$$2. u_1 + \cdots + u_m = 0 \implies u_j = 0 \quad , \forall j = \overline{1, m}$$

Let U, W be subspaces of V, then

$$V = U \oplus W$$

$$\iff$$

$$V = U + W \quad \text{and} \quad U \cap W = \{0\}$$

A mapping $T: V \to V$ that is linear, called **linear operator**. In that case $T \in L(V)$.

For U_j that is subspace of V, restriction of T to smaller domain U_j notated as $T|_{U_j}$

The subspace U is called to be **invariant under operator** T if $u \in U \implies Tu \in U$.

(In other words, $\emph{\textbf{U}}$ is **invariant under** $\emph{\textbf{T}}$ if $\emph{\textbf{T}}|_{\emph{\textbf{U}}}$ is an operator on $\emph{\textbf{U}}.$

Linear Operator Properties

- 1. $\{0\}$ is **invariant** under T.
- 2. \boldsymbol{V} is **invariant** under \boldsymbol{T} .
- 3. Ker(T) is invariant under T.
- 4. Range(T) is invariant under T.

Projection Operators in Vector Space

v = u + w

we define

$$Pv = w$$

Moreover, (I - P) is a projection of V onto U, where I identity operator on V.

Also, U = Ker(P), W = Range(P).

Properties

- 1. **P** is a linear operator.
- 2. $P^2 = P(P \text{ is ideupatent operator}).$
- 3. $Pw = w \iff w \in Range(P)$.

Eigenvalue and Eigenvector of Linear Transformations

Let $T \in L(V)$ is a **linear operator**.

- 1. An **eigenvalue** of T is a scalar λ s.t. $\exists v \in V \quad v \neq 0$ satisfying $Tv = \lambda v$. v is **eigenvector**.
- 2. The subspace W_{λ} that $W_{\lambda} = \{ \forall v \in V : Tv = \lambda v, \quad \lambda \in \mathbb{F} \}$ is called **eigenspace**.

The set of all **eigenvalues** of T is called **spectrum** of T, denoted by spec(T).

$$spec(T) = \{\lambda \in \mathbb{F} : Tv = \lambda v \quad , \exists v \in V\}$$

- existance of eigenvalues depends on the field $\boldsymbol{\mathbb{F}}$ whether is real or complex.

Every linear operator $T: V \to V$ where V is a finite dimensional vector space over the field of **complex numbers has at least one eigenvalue**.

T is a linear operator, if $\lambda_1, \ldots, \lambda_m$ are **distinct eigenvalues** of T, and u_1, \ldots, u_m are corresponding **eigenvectors**, then set of these eigenvectors $\{u_1, \ldots, u_m\}$ is a **linearly independent set**.

Fan of Subspaces of V and Triangular Matrix Representations

The set $\{W_1, \ldots, W_n\}$ of subspaces of V is called a **fan of T** in V, if the followings hold:

1.
$$W_1 \subset \cdots \subset W_n = V$$

2.
$$dim(W_k) = k$$
 for $\forall k = \overline{1, n}$

3.
$$W_k$$
 is **invariant** under T, that's $T(W_k) \subseteq W_k$, $\forall k = \overline{1,n}$

If $\{W_1,\ldots,W_n\}$ is a fan of T, then $eta=\{v_1,\ldots,v_n\}$ is called a fan basis for V, if

 $\{v_1\}$ is a basis for W_1

:

$$\{v_1,\ldots,v_n\}$$
 is a basis for $W_n=V$

If $T \in L(V)$ and β is a fan basis for V, then the matrix representation of T w.r.t. β is **upper trianguler**.

Let $T \in L(V)$ and $eta = \{v_1, \ldots, v_n\}$ is a basis of V. Then the followings are equivalent.

1. The matrix of T w.r.t. basis β is **upper triangular**.

2.
$$Tv_k \in W_k = span\{v_1,\ldots,v_k\}$$
 for each $k=\overline{1,n}$

3.
$$W_k = span\{v_1,\ldots,v_k\}$$
 is **inavriant** under T for each $k=\overline{1,n}$

If $T \in L(V)$ and V is a finite dimensional vector space over the field of **complex numbers**, then \exists a fan of T in V.

Every lin. op. T defined on a **complex** vector space V can be represented by a **triangular matrix\$\$.

Diagonalizable Matrices

A square matrix A_{nxn} is **diagonalizable** if $\exists P$ that is invertible s.t.

$$P^{-1}AP = D$$

A lin. op. T defined on a finite dim. v.sp. V is **diagonalizable** if basis $\exists \beta$ for V s.t. the **matrix representation of T w.r.t. this basis is diagonal**, that

$$[T]_{\beta} = D$$

 $T \in L(V)$ on a finite dim. v.sp. V is diagonalizable \iff there exists a basis β for V consisting entirely of **eigenvectors** of T.

 $T \in L(V)$ on v.sp. V with dimV = n. If T has n distinct **eigenvalues**, then T is diagonalizable.

 $T\in L(V)$ and dimV=n. Let $\lambda_1,\ldots,\lambda_m$ be the **distinct eigenvalues of T** and $W_i=Ket(T-\lambda T)$, $i=\overline{1,m}$ denote the correspondant eigenspaces. Then, the followings are equivalent

- 1. \boldsymbol{T} is **diagonalizable** operator.
- 2. V has a **basis consisting of eigenvectors** of op. T.
- 3. There exists one-dimensional subspaces U_1, \ldots, U_n of V, each of which is **invariant** under T, and $V = U_1 \oplus \cdots \oplus U_n$.
- 4. $V = W_1 \oplus \dots W_m$, $W_i = Ker(T \lambda_i I)$.
- 5. $dimV = dimW_1 + \cdots + dimW_m$

Remember for Matrices

- If A_{mxn} and $m \neq n$, then we can not define powers of A.
- If A_{nxn} is a square matrix, then we can define the powers of A, $A^2, \ldots, A^k, \quad k=1,2,\ldots$

Similarly

- If $T:V\to W$ is a linear mapping and $V\neq W$, then we can't define the powers of T.But,
- if $T \in L(V)$ then powers of T are defined as:

$$T^2 = TT$$

$$T^3 = TTT$$

:

$$T^m = \underbrace{T \dots T}_{\text{m times}}$$

Invariant Subspaces on Real Vector Spaces

- On a **Complex Vector Space V every linear operator T** has an **eigenvalue** and therefore has an **eigenvector**. It means, in complex spaces a linear operator always has an **invarian** subspace of dimension 1.
- On a **Real Vector Space V** a linear operator **may not have** an **eigenvalue**, and therefore **may not have an invariant subspace** of dimension 1. However, an invariont subspace of dimension 1 or 2 **always exist**.

Remember, T has a 1-dimensional invariant subspace \iff T has an eigenvalue(eigenvector).

.....

Every lin. op. T on a finite-dimensional, nonzero, real vector space V has an invariant subspace of dimension 1 or 2.

Every operator T on a $\boldsymbol{odd\text{-}dimensional}$ \boldsymbol{real} $\boldsymbol{v.sp.}$ \boldsymbol{V} has an eigenvalue.

.....

Inner Product Spaces

Introduction

- 1. Vector Space operations $\rightarrow \begin{cases} u+v & \text{(addition)} \\ \alpha u & \text{(scalar multiplication)} \end{cases}$
- 2. Inner Product Space \rightarrow Vector Space + inner product < u, v >
- In every inner product space one has Norm: $||u|| = \sqrt{< u, v>}$, Distance: $||u-v|| = \sqrt{< u-v, u-v>}$
- Most important notion in inner product spaces: **Orthogonality**: $\langle u, v \rangle = 0$

• An **inner product** on a vector space is a **function** that takes **each ordered pair** $(u, v) \in X \times X$ to a number $\langle u, v \rangle \in \mathbb{F}$ and satisfies the following properties $\forall u, v, w \in X, \quad \alpha \in \mathbb{F}$:

1.
$$< u, v > \ge 0$$
 for $\forall v \in X$ (positivity)

$$2. < v, v >= 0 \iff v = 0$$
 (definiteness)

- 3. < u+v, w> = < u, w> + < v, w> (additivity in first component)
- $4. < \alpha u, v >= \alpha < u, v >$ (homogenity in first component)
- 5. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ (conjugate symmetry)
- Inner product space X is a vector space on which an inner product (function) defined: {X, <.,.>}
- If $\mathbb{F} = \mathbb{R}$ then complex conjugation is not needed, else $(\mathbb{F} = \mathbb{C})$ complex conjugation needed.

If X is an inner product space with an inner product < u, v > defined on it, then $\forall u, v, w \in X$ and $\forall \alpha \in \mathbb{F}$

- 1. < 0, u >= 0
- 2. < u, 0 > = 0
- 3. < u, v + w > = < u, v > + < u, w >
- $4. < u, \alpha v > = \overline{\alpha} < u, v >$
- 5. $\$ \alpha u, \beta_1 v_1 + \beta_2 v_2> = \alpha \overline{\beta_1} < u,v_1> + \alpha \overline{\beta_2} < u,v_2>\$
- 6. $< u, \sum_{i=1}^{n} > = \sum_{i=1}^{n} \overline{c_i} < u, v_i >$

Norm of a Vector

Let X be an inner product space. Then, the orml of $v \in X$ is $||v|| = \sqrt{\langle v, v \rangle}$.

Then,

- 1. $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$
- 2. $||\alpha v|| = ||\alpha|| ||v||$
- 3. $||u+v|| \le ||u|| + ||v||$ (Triangle Inequality)

Hence every inner product space is also a normed space.

Orthogonality

Let X be an inner product space. Two vectors $u, v \in X$ are orthogonal if < u, v >= 0.

Pythogorean Theorem

If u and v orthogonal vectors in X then $\left|\left|u+v\right|\right|^2=\left|\left|u\right|\right|^2+\left|\left|v\right|\right|^2$

Cauchy-Schwartz Inequality

If
$$u, v \in X$$
 then $|\langle u, v \rangle| \le ||u|| \cdot ||v||$

Parallelogram Equality

Distance

Distance between two vector is: $||u-v|| = \sqrt{\langle u-v, u-v \rangle}$

Orthonormal Set Of Vectors

A set of vectors in an inner product space X $S = \{u_1, \dots, u_m\}$ is said to be orthonormal if

$$< u_i, u_j > = \delta_{ij} = \left\{ egin{aligned} 1, i = j \ 0, i
eq j \end{aligned}
ight.$$

If the set S is **orthonormal**, then it is **linearly independent**.

If the set S is **orthonormal**,

$$||c_1u_1+\cdots+c_mu_m||^2=|c_1|^2+\cdots+|c_m|^2=||\sum_{i=1}^mc_iu_i||^2=\sum_{i=1}^m|c_i|^2$$

Orthonormal Basis

Let X be an inner pr. sp. over \mathbb{F} . A set of vectors in X, say $\beta_0 = \{u_1, \dots, u_n\}$ is an **orthonormal basis** for X if

$$dim X = n \quad ext{and} \quad < u_i, u_j > = \delta_{ij}, \quad \forall i,j = \overline{1,n}$$

If X is an inner product space and eta_0 is an orthonormal basis for X then every $v \in X$ has the unique representation

1.
$$v = \sum_{i=1}^{n} \langle v, u_i \rangle u_i$$
,

2.
$$||v||^2 = \sum_{i=1}^n |\langle v, u_i \rangle|^2$$

TODO: Gram-Schmidt Procedure (Page 101)

Every finite-dimensional inner product space has an orthonormal basis.

Every orthonormal set of vectors in \boldsymbol{X} can be extended to an orthonormal basis for \boldsymbol{X} .

Orthogonal Projection Operator

If U is a subset of an inner product space X then the **orthogonal compliment** of U, denoted by U^{\perp} , is the set of all vectors in X that are orthogonal to **every** vector in U:

$$U^{\perp} = \{w \in X : < w, u >= 0 \quad \forall u \in U\}$$

 U^{\perp} is always a **subspace of** X. Take $w_1, w_2 \in U^{\perp}$, then by defn.

$$egin{aligned} < w_1, u> &= 0, < w_2, u> = 0 \quad orall u \in U \$\$. It follows that \$\$ < lpha w_1 + w_2, u> = lpha < w_1, u> + < w_2, u> = 0 \quad orall u \in U \ \implies lpha w_1 + w_2 \in U^\perp \end{aligned}$$

 $\implies U^{\perp}$ is a subspace.

• Note that,
$$X^{\perp} = \{0\}, \quad \{0\}^{\perp} = X$$

.....

If $oldsymbol{U}$ is a subspace of an inner product space $oldsymbol{X}$ then

$$X=U\oplus U^\perp$$

Let $X = U \oplus U^{\perp}$, which means any $v \in X$ has a unique representation.

1.
$$v = u + w$$
, $u \in U$, $w \in U^{\perp}$

Then the operator $P: X \to X$ defined as

2.
$$Pv = u$$
, $\forall v \in X$

is called **orthogonal projection** of \boldsymbol{X} onto \boldsymbol{U} .

clearly,
$$\left\{ egin{aligned} Ker(P) = U^{\perp} \ Range(P) = U \end{aligned}
ight.$$

- ullet Also, $(I-P)v=w\in U^{\perp}$ is an orthogonal projection of X onto U^{\perp}
- Moreover, one can show that
- 1. $P^2 = P$
- 2. $||Pv|| \leq ||v||, \forall v$

TODO: The Best Approximation (Minimizin The Error) (Page 106)

Linear Functions and Adjoint Operators

Linear Functionals on Vector Spaces

A **linear mapping** f from v.sp. V to the field \mathbb{F} is called a **linear functional** and we write $f: V \to \mathbb{F}$ or $f \in L(V, \mathbb{F})$.

So, a linear functional $f:V\to\mathbb{F}$ is a special linear transformation, where the **output** space is $\mathbb{F}(\mathbb{R} \text{ or } \mathbb{C})$

Notes

Since linear functionals special linear maps then we can use our previous knowledge to say that:

- 1. If $f: V \to \mathbb{F}$ is a nonzero linear functional, then $Range(f) = \mathbb{F}$ (one-dimensional)
- 2. By dimension theorem, dim(Ker(f)) + dim(Range(f)) = dimV. If $dimV = n \implies dim(Ker(f)) = n 1$, since dimRange(f) = 1
- 3. **By Existance and Uniqueness Theorem** for linear transformations, a linear function $f: V \to \mathbb{F}$ is uniquely determined by its action on basis vectors $\beta = \{v_1, \dots, v_n\}$ of V.
- The collection of all linear functionals on a v. sp. V over \mathbb{F} forms a vector space denoted by $V^* = L(V, \mathbb{F})$.

Linear Functionals on Inner Product Spaces

Linear functionals on inner product spaces have some special properties, which we will describe now.

First, let X be an inner product space over \mathbb{F} . Then, for given any $w \in X$, the inner product function

$$f(v) = < v, w >, \quad \forall u \in V$$

defines a linear functional.

This is because inner product is linear in the first variable \boldsymbol{v} i.e.

$$f(\alpha v_1 + v_2) = <\alpha v_1 + v_2, w> = \alpha < v_1, w> + < v_2, w> \$\$\alpha f(v_1) + f(v_2)$$

Conversely, next theorem shows that every linear functional $f: X \to \mathbb{F}$ can be represented **as an inner product**.

Riesz Representation Theorem (RRT) (for finite-dimensional inner product spaces)

Let X be a finite-dimensional inner product space over \mathbb{F} .

If $f: X \to \mathbb{F}$ is a linear functional on X, then there exists a unique vector $w \in X$ s.t.

$$f(v) = < v, w >, \quad \forall v \in X$$

The Adjoint Operator

Let V and W be finite dimensional inner product spaces.

If $T:V\to W$ is a linear transformation, there exists a unique linear transformation $T^*:W\to V$ s.t.

$$< Tv, w>_W = < v, T^*w>_W. \quad \forall v \in V, \quad \forall w \in W$$

If $T:V \to W$ is a linear transformation, then $T^*:W \to V$ is called the adjoint of T if

$$< Tv, w> = < v, T^*w>, \quad \forall v \in V, \quad \forall w \in W$$

Properties of Adjoint

If $T,S\in L(V,W),\quad \alpha\in\mathbb{F}$ then

- 1. $(T+S)^* = T^* + S^*$ (additivity)
- 2. $(\alpha T)^* = \overline{\alpha} T^*$ (conjugate homogenity)
- 3. $(T^*)^* = T$
- 4. $(ST)^* = T^*S^*$ for $T \in L(V,W)$ and $S \in L(W,U)$
- 5. $(T^*)^{-1} = (T^{-1})^*$

Let $T \in L(V, W)$. Then,

1.
$$Ker(T^*) = (Range(T))^{\perp}$$

2.
$$Range(T^*) = (Ker(T))^{\perp}$$

3.
$$Ker(T) = (Range(T^*))^{\perp}$$

4.
$$Range(T) = (Ker(T)^*)^{\perp}$$

according to that, these are always true

$$V=Ker(T)\oplus (Ker(T))^{\perp}=R(T^*)\oplus (R(T^*))^{\perp}$$

$$W = R(T) \oplus (R(T))^{\perp} = Ker(T^*) \oplus (Ker(T^*))^{\perp}$$

This proposition says that: $\left\{ egin{aligned} V = Ker(T) \oplus R(T^*) \ W = Ker(T^*) \oplus R(T) \end{aligned}
ight.$

Matrix Representation using Orthonormal Bases

Let V be an inner pr. sp. with orthonormal basis $eta=\{v_1,\ldots,v_n\},\quad dim V=n$

and W be an inner pr. sp. with orthonormal basis $\Upsilon = \{w_1, \ldots, w_m\}, \quad dimW = m$

$$[T]_{eta}^{\Upsilon} = egin{bmatrix} < Tv_1, w_1 > & \ldots & < Tv_n, w_1 > \ < Tv_1, w_2 > & \ldots & < Tv_n, w_2 > \ dots & dots & dots \ < Tv_1, w_m > & \ldots & < Tv_n, w_m > \end{bmatrix}$$

or briefly

$$[T]^{\Upsilon}_{eta} = A = (< Tv_j, w_i >) = (a_{ij}), \quad j = \overline{1,n}, \quad i = \overline{1,m}$$

If $T^*:W \to V$ is the adjoint of $T:V \to W$, then

$$[T^*]_{\Upsilon}^{eta} = egin{bmatrix} \overline{\langle Tv_1, w_1
angle} & \ldots & \overline{\langle Tv_n, w_m
angle} \ \overline{\langle Tv_2, w_1
angle} & \ldots & \overline{\langle Tv_n, w_m
angle} \ dots & dots & dots \ \overline{\langle Tv_n, w_1
angle} & \ldots & \overline{\langle Tv_n, w_m
angle} \ \end{bmatrix}$$

If $A=[T]^{\Upsilon}_{\beta}$ is the matrix representation of T w.r.t. orthonormal bases β and Υ , and $B=[T^*]^{\beta}_{\Upsilon}$ is the matrix representation of T^* , then

$$B = \overline{A}^t, \quad ext{i. e.} [T^*]^eta_{\Upsilon} = (\overline{[T]}^\Upsilon_eta)^t$$

• **Note**: With respect to nonorthonormal bases, the matrix of T^* does not necessarily equal the conjugate transpose of the matrix of T.

Special Operators in Inner Product Spaces and The Sepctral Theorem

 $V
ightarrow ext{finite dimensional inner product space}$

T:V o V linear operator

 $T^*: V \to V$ adjoint operator of T defined as $< Tu, v> = < u, T^*v>$, $\forall u, v \in V$

In this chapter we will study:

- 1. Self-Adjoint ops. ($T = T^*$)
- 2. Normal ops. $(TT^* = T^*T)$
- 3. Complex Spectral Theorem
- 4. Real Spectral Theorem

Inclussion of some classes of operators:

Analogy with Complex Numbers : $z \in \mathbb{C}$

- 1. $z = \overline{z} \implies z$ is real
- 2. $z = -\overline{z} \implies z$ is pure imaginary
- 3. $z\overline{z} = |z|^2 = 1 \implies z$ on the unit circle
- 4. $z\overline{z} = \overline{z}z \implies$ any z

Self-Adjoint Operators

T is called self-adjoint if

$$T = T^*$$
 i. e. $\langle Tu, u \rangle = \langle u, Tv \rangle$, $\forall u, v \in V$

- If $T=T^*$, then its matrix representation with respect to an orthonormal basis β for V, say $A=[T]_{\beta}$ is **Hermitian**, that's $A=A^t$, when $\mathbb{F}=\mathbb{C}$.
- If $T=T^*$, then $A=[T]_{eta}$ is **symmetric**, that's $A=A^t$, when $\mathbb{F}=\mathbb{R}$.
- Every complex number can be written using two real numbers. Similarly, any operator can be written in terms of two self-adj. ops.

$$\text{any }z\in\mathbb{C}\implies z=\underbrace{\frac{1}{2}(z+\overline{z})}_{\text{real}}+i.\underbrace{\frac{1}{2i}(z-\overline{z})}_{\text{real}}$$

any
$$T$$
 linaer $\implies T = \underbrace{\frac{1}{2}(T+T^*)}_{\text{self-adj}} + i \cdot \underbrace{\frac{1}{2}(T-T^*)}_{\text{self-adj}}$

Eigenvalues and Eigenvectors of Self-Adj Ops

- 1. Every eigenvalue of a self-adj operator is **real**.
- 2. Eigenvectors of a self-adj op. corresponding to **distinct** eigenvalues are orthogonal.

If V is a **complex** inner product space and $T:V\to V$ is any linear operator s.t. < Tv, v>=0 for $\forall v\in V$, then T=0.

• **Note**: This is false for **real** inner product spaces.

Let V be a **complex** inner product space and $T \in L(V)$. Then,

T is self-adj \iff < $Tv, v> <math>\in \mathbb{R}$ for $\forall v \in V$

The Spectral Theorem

- Our goal was to learn more about the structure of linear operators.
- In applications, one of the most important operators are the diagonalizable ones.

- If V is a **vector space**, dimV = n, then we have seen that $T: V \to V$ is diagonalizable \iff it has n-linearly independent eigenvectors.
- If *V* is an **inner product space**, then **the spectral theorem** gives the necessary and sufficient conditions, under which a linear *T*: *V* → *V* is unitarily diagonalizable. We shall see that these are precisely the operators *T* ∈ *L*(*V*), s.t. *V* has an **orthonormal basis** consisting of eigenvectors of *T*.
- ullet The structure of these operators depend on the field ${\mathbb F}.$ Namely, we have
- 1. Complex Spectral Theorem (Normal Ops.)
- 2. Real Spectral Theorem (Self-Adj. Ops.)

Let $V=\oplus W^{\perp}$ be a finite dimensional inner product space, and $T:V\to V$ be any linear operator. If W is invariant under T, then W^{\perp} is invariant under T^* .

Complex Spectral Theorem

Suppose that V is a **complex** inner product space and $T \in L(V)$. Then, V has an orthonormal basis consisting of eigenvectors of $T \iff Tisnormal$.

Real Spectral Theorem

Suppose that V is **real** inner product space and $T \in L(V)$. Then,

V has an orthonormal basis consisting of eigenvectors of $T \iff T$ is self-adjoint.