General Disclaimer

One or more of the Following Statements may affect this Document

•	This document has been reproduced from the best copy furnished by the
	organizational source. It is being released in the interest of making available as
	much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

A STUDY OF SPACE STATION NEEDS, ATTRIBUTES & ARCHITECTURAL OPTIONS

Final Briefing Cost Working Group Discussion Session

(NASA-CR-173713) A STUDY OF SPACE STATION NEEDS, ATTRIBUTES AND ARCHITECTURAL OPTIONS. FINAL BRIEFING: COST WORKING GROUP DISCUSSION SESSION Final Report (General Dynamics/Convair) 60 p HC A04/MF A01

N84-27810

Unclas G3/18 00855

GENERAL DYNAMICS

Convair Division

A STUDY OF SPACE STATION NEEDS, ATTRIBUTES & ARCHITECTURAL OPTIONS

Final Briefing

Cost Working Group Discussion Session

National Aeronautics and Space Administration George C. Marshall Space Flight Center

18 April 1983

GENERAL DYNAMICS

Convair Division

TASK OBJECTIVES & APPROACH

Economic benefits

- Parametric analysis of significant cost elements of alternative approaches & identify cost drivers & sensitivities
 - Research & production
 - Space-based OTV
 - Satellite servicing

Programmatic comparisons

- Generate alternate program costs with a parametric cost model (element level) & a phased funding model
 - Mission payload costs
 - Architectural options
 - Evolutionary options

Business opportunity assessment

- Examine alternate approaches to industry involvement for financing, developing, marketing & operating space station resources
 - Business assessment (Space Station Propectus)
 - Government/industry options (i.e., SDC)

AGENDA

Economic benefits, cost & programmatic analysis (Task 3.3)

- Economic benefits
- LCC & program comparisons
- Programmatics/business opportunity assessment

- M.C. (Mike) Simon
- R.E. (Bob) Bradley
- M.C. (Mike) Simon

ECONOMIC BENEFITS STUDIES

Economic benefits, cost & programmatic analysis (Task 3.3)

- Economic benefits
- LCC & programmatic comparisons
- Programmatics/business opportunity assessment

Objective: Provide an initial assessment of economic benefits (both cost reduction & value added) associated with each of the station's unique functional capabilities

Approach: Conduct parametric analyses of significant cost elements of alternate approaches & identify cost drivers & sensitivities

Tasks:

- Research & production function
- Satellite servicing & maintenance
- Space-based OTV

ECONOMIC BENEFITS SUMMARY

Research & Production

- Near-term benefits to commercial, science & applications users
- Long-term benefits in materials processing & space industrialization

Space-based OTV

- Significant reduction in cost to GEO
- Benefits to shuttle users
- "ET tanker" concept

Satellite servicing

- Developed servicing benefits model in conjunction with GSFC
- 80% reduction in TMS servicing costs

ECONOMIC BENEFITS: RESEARCH & PRODUCTION

Cost per kilogram-hour for materials processing in space

↑ \$2 - Space station (90-day production cycle)

Space station research & production

- Research & production has great long-term potential, but near-term economic benefits are difficult to quantify
- Greatest economic benefits in
 - Materials processing in space
 - Life sciences
 - Astrophysics
- · Expected annual benefit
 - 1990-2000: \$285 million
 - 2000+: Potentially very large
- Evolution to permanent industrial base in space, utilizing nonterrestrial sources for raw materials

30033258-22

RESEARCH & PRODUCTION BENEFITS ANALYSIS (1984\$)

	Cost/kg-hr for Materials Processing in Space							
	Mission (Capability	Cost					
	Hours	Kg	Trans- portation	House- keeping	Total	Cost/ kg-hr		
SPAR Rocket	0.083	454	500,000	N/A	500,000	13,270		
KC-135 Aircraft	0.014	7,600	6,000	N/A	6,000	56.80		
Space Shuttle	168	19,500	83.3M	N/A	83.3M	16.80		
Space Station (90-day)	2,160	14,125	53.1M	9M	62.1M	2.04		
Space Station (2-year)	17,520	14,125	127.4M	73M	200.4M	.81		

	Cost/kg-hr for Upper Atmosphere Research						
	Mission (Capability		Co	st		
	Hours Kg		Trans- portation	House- keeping	Total	Cost/ kg-hr	
Space Shuttle Space Station (90-day) Space Station (2-year)	168 2,160 17,520	25,500 25,500 2,500	12.1M 12.1M 12.1M	N/A 4.5M 36.5M	12.1M 16.6M 48.6M	23.81 3.07 1.11	

	Spacelab Accommodation Cost Comparison					
	Transportation	P/L integration	Housekeeping	Total		
Space Shuttle Space Station	83.3M 36.7M	16.7M 25.0M	N/A 1.4M	100M 63.1M		

ECONOMIC BENEFITS: SATELLITE SERVICING

Average satellite servicing cost/value (per mission)*

Space Station Satellite Servicing

- · Satellite servicing from space station expected to cost 75% less than servicing from space shuttle
- · Results of satellite servicing (per mission, average)
 - From shuttle: \$600,000 loss
 - From space station: \$12 million benefit
- Expected annual benefit: \$240 million
- Significant parameters
 - Satellite capabilities restored by servicing
 - Value of satellite
 - Satellite servicing mission model

SATELLITE SERVICING BENEFITS

Net benefit per mission: $b = [m \times (e/d) \times (1 + u)] - c$

Where:

m = Mission criticality factor

e = Life extension factor

d = Design life

I = Launch cost

u = Unit cost

c = Cost of servicing mission

Preliminary result: b = \$10-20 million

SATELLITE SERVICING SENSITIVITY ANALYSIS: MISSION CRITICALITY & SATELLITE LIFETIME FACTORS (1984\$)

30033255 43

SATELLITE SERVICING SENSITIVITY ANALYSIS: COST & MISSION MODEL FACTORS

SPACE STATION ECONOMIC BENEFITS. SATELLITE SERVICING SENSITIVITY ANALYSIS (1984 \$)

Variable	Low Value	High Value	Expected Value	Worst- Case Benefit	Best- Case Benefii	Sensitivity
Mission criticality factor	.2	.6	.44	\$ 48M	\$368M	High
Life extension factor	1	4	2	\$ 64M	\$592M	High
Design life	3	10	7	\$134M	\$709M	High
Launch cost	\$25M	\$ 75M	\$ 40 M	\$202 M	\$328M	Moderate
Unit cost	\$50 M	\$150 M	\$100M	\$114M	\$366M	High
Cost of servicing mission	\$ 3M	\$ 10 M	\$5-6M	\$152 M	\$292M	Moderate
Number of servicing missions/yr	10	30	20	\$120 M	\$360M	High

ECONOMIC BENEFITS: SPACE-BASED OTV

Cost-per-pound to geosynchronous orbit

Space-based OTV

- Greatest quantifiable economic benefit of space station program
- Expected annual benefit of over \$1 billion
- Maximizes efficiency of space transportation system
- · Significant parameters
 - Shuttle payload delivery cost to LEO
 - Propeliant delivery cost to LEO
 - OTV mission model
 - Competitor cost
- · Benefits generally insensitive to
 - OTV production costs
 - OTV operations costs (ground & space)
 - OTV spares/refurbishing costs

ORIGINAL PAGE IS

OTV ECONOMIC BENEFITS ANALYSIS (1984 \$)

	Missio	Mission Cost			
Cost Factor (per 10,000 lb of payload)	оту	Competitor Average*			
Upper stage cost Upper stage delivery to LEO Payload delivery to LEO Operations/spares costs Propellant delivery to LEO	\$ 0.5M \$ 0.5M \$45.4M only \$ 3.0M \$13.5M	\$ 17.0M \$108.5M 0 0			
Total	\$62.9M	\$125.5M			

^{*}PAM-D, PAM-D II, Leasat, PAM-A, Atlas/Centaur, Shuttle/Centaur, TOS, shuttle-based CTV

Economic benefit per OTV mission = \$125.5M - \$62.9M = \$62.6MAverage number of OTV missions per year $(1994-2000) = .75 \times 23 = 17.3$

OTV economic benefit per year = $$62.6M \times 17.3 = 1.08 billion

Convair Division

UPPER-STAGE TRANSPORTATION COST (1984 \$/LB TO GEO)

SATELLITE LAUNCH COST COMPARISON (1984 \$)

Satellite	Lower Stage	Shuttle/ Lower Stage Cost	Upper Stage	Upper Stage Cost	Total Cost to GEO
TDRS	Shuttle	\$ 90M	IUS	\$ 55M	\$ 145M
INTELSAT VI	Shuttle	55 M	IUS 1st stage	15 M	70 M
INTELSAT V-A	Atlas	55 M	Centaur	Included	55 M
Hughes Leasat	Shuttle	28M	Unique	Included	28 M
Hughes 376	Shuttle	17M	PAM-D	6M	23M
Modified 376	Shuttle	9М	ОТV	4M	13 M
SX	Shuttle	6 M	ОТV	4M	10 M

Convair Division

OTV SENSITIVITY ANALYSIS: VEHICLE PRODUCTION AND MAINTENANCE COSTS

Conclusion: OTV economic benefits have extremely low sensitivity to vehicle production & maintenance costs

GENERAL DYNAMICS

Convair Division

OTV SENSITIVITY ANALYSIS: CREW OPERATIONS COSTS

Conclusion: OTV economic benefits have <u>low</u> sensitivity to crew operations costs

GENERAL DYNAMICS

Convair Division

OTV SENSITIVITY ANALYSIS: PROPELLANT REQUIREMENTS & COSTS (1984 \$)

Conclusion: OTV economic benefits have moderate sensitivity to propellant requirements & costs

OTV SENSITIVITY ANALYSIS: SHUTTLE-RELATED COSTS (1984 \$)

Conclusion: OTV economic benefits have <u>low</u> sensitivity to shuttle price & <u>high</u> sensitivity to cargo by length utilized for delivery of OTV payloads to LEO

COST TO GEO AS A FUNCTION OF PAYLOAD LENGTH

SPACE STATION ECONOMIC BENEFITS: OTV SENSITIVITY ANALYSIS

GENERAL DYNAMICS

Convair Division

(1984 \$)

	Low	High	Assumed	ОТУ	OTV Annual Benefit			
Variable	Value	Value	Value	Worst Case	Best Case	Sensitivity		
OTV unit cost	\$60M	\$180M	\$120 M	\$1.08B	\$1.09B	Low		
OTV delivery cost	\$60M	\$180M	\$120 M	\$1.08B	\$1.09B	Low		
OTV lifetime (flights)	60	480	240	\$1.03B	\$1.09B	Low		
Spares cost (per 20 flights)	\$10 M	\$30 M	\$15 M	\$1.07B	\$1.09B	Low		
Crew hours per mission — space	50	500	200	\$1.03B	\$1.11B	Low		
Crew hours per mission — ground	500	5000	2000	\$1.08B	\$1.09B	Low		
Cost of crew time — space	\$5,000/hr	\$25,000/hr	\$10,000/hr	\$1.03B	\$1.10B	Low		
Cost of crew title — ground	\$50/hr	\$250/hr	\$100/hr	\$1.08B	\$1.09B	Low		
Propellants required — per mission	20,000/lb	35.000/lb	27,000/lb	\$1.02B	\$1.15B	Low		
Propellants cost	\$250/lb	\$1500/lb	\$500/lb	\$618M	\$1.20B	High		
Shuttle: dedicated price	\$70M	\$100M	\$83.3M	\$927 M	\$1.21B	Low		
Shuttle: payload length (average)	12 ft	40 ft	24.5 ft	\$588 M	\$1.48B	High		
Competitor cost per mission	\$75 M	\$200 M	\$125.5 M	\$211 M	\$2.37B	High		
OTV missions per year (average)	10	25	17.3*	\$627 M	\$1.57B	High		

^{*}Assumes 75% market share of 23 OTV-equivalent missions per year

IMPACT OF OTV ON SHUTTLE UTILIZATION AND COSTS

	CTORS FOR 10,000-LB DELIVERY TO GEOSYNCHI	
ELVs	SHUTTLE UPPER-STAGES	SPACE-BASED OTV
	PAM-D 1.09	
0	TOS 1.00	0.41
	SHUTTLE-BASED 1.32 OTV (REUSABLE)	0.11
	SHUTTLE-CENTAUR 0.71	
AVERAGE: 0	AVERAGE: 1.03	

WITHOUT OTV: 3/4 SHUTTLE, 1/4 ELVs - AVERAGE LOAD FACTOR = 0.77

WITH OTV: 3/4 OTV, 1/8 SHUTTLE, 1/8 ELVs - AVERAGE LOAD FACTOR = 0.44

OTV REDUCTION IN SHUTTLE UTILIZATION: (PER OTV MISSION)

(ANNUAL)

5.71 (17.3 MISSIONS

(ANNUAL) 5.71 (17.3 MISSIONS/YEAR)

MPACT OF 5.71 FLIGHTS/YEAR DEDUCTION: 67M COST/FLIGHT THEORY

IMPACT OF 5.71 FLIGHTS/YEAR REDUCTION: \$7M COST/FLIGHT INCREASE (BUT \$324M ANNUAL REDUCTION IN TOTAL SHUTTLE OPERATIONS COSTS)

SPACE STATION ECONOMIC BENEFITS (1984 \$)

Total economic benefit: \$1.685 billion

ECONOMIC BENEFITS CASH FLOW Undiscounted

ECONOMICS BENEFITS CASH FLOW Discounted (7%)

ECONOMIC BENEFITS CASH FLOW EARLY SPACE BASED OTV AVAILABILITY

LCC & PROGRAMMATIC COMPARISONS

Economic benefits, cost & programmatic analysis (Task 3.3)

- Economic benefits
- LCC & programmatic comparisons
- Programmatics/business opportunity assessment

Objective: Provide relative Space Station program ROM costs for the architecture & evolutionary scenario options identified for comparisons & determine implications

Approach: Generate alternate program costs with a parametric cost model (element level) & a phased funding model

Tasks:

- Mission payload set
- Research station cost
- SBOTV & research station cost
- Annual funding requirements

COST ANALYSIS GROUND RULES

- This study is a requirements & architectural study and not a configuration study
- The economic benefits analysis will be conducted parametrically
- The space station LCC estimates are therefore very ROM & are intended for option comparisons only
- The space station LCC estimates are generated from a parametric model using generic, very ROM input
- Costs are estimated in constant FY84 dollars
- Costs are estimated for the entire space station architecture including government costs
- Annual funding requirements are provided both for specific elements as well as at the total NASA budget level

SPACE STATION PROGRAM COST ESTIMATES

Approach

- Determine relative program ROM LCC costs for the defined options of:
 - Architecture (hardware)
 - Evolutionary scenarios (programmatic)
- Including:
 - Space stations & mission equipment
 - Free-flyers/platforms & their mission equipment
 - Transportation system
- And use annual funding requirements as a measure of program reasonableness

Methodology

- Use a cost model tailored to the module level to estimate LCC (RDT&E, production & operations) & annual funding requirements
- Calibrate to JSC SOC, Boeing SOC, McDonnell Douglas MSP, etc.

FUNDING REQUIREMENTS Full Mission Payload Set

FUNDING REQUIREMENTS Mission Payload Set (Station-Attached)

BASELINE SPACE STATION PROGRAM

Calendar year

21033258 41

SPACE STATION MODULE QUANTITY

Module/Item	Research Station	Research Station + SBOTV Operations Station	SBOTV Operations Station	Baseline Combined Research + SBOTV Operations Station
General purpose	1	1		1
Habitability	2	2		2
Mission	5	5		6
Logistics	3	3		6
Passageway	2	2		2
External booms	4	4		4
RMS	1	1		1
General purpose		1	1	
Habitability		1	1	
Mission		1	1	
Logistics		3	3	
Maintenance		2	2	2
Hangar		2	2	2
Propellant storage		4	4	4
Passageway		2	2	2
External booms I		2	2	2
External booms II		2	2	2
RMS		2	2	2

SPACE STATION PRELIMINARY COST ESTIMATE (1984 M\$)

MODULE — GENERAL PURPOSE

Cost Element	Size Parameter	Development Cost	Unit Cost
Flight vehicle		•	
Structure (PRI)	16093.6	159.68	28.32
Structures (SEC)	881.8	13.08	2.08
Tooling		40.48	
Thermal control	28659.8	56.76	38.61
ACS/GN&C avionics	881.8	46.21	13.60
ACS AMCD	5000.0	13.26	2.67
RCS	11023.0	42.17	19.57
EPS solar array	20.0	43.06	26.11
EPS batteries	2.6	4.17	3.04
EPS cond & dist	1543.2	33.44	11.20
Comm/data mgmt	606.3	71.63	12.39
Cont & displays	10361.6	45.78	20.37
EC/LSS	4850.1	212.11	23.31
Crew accommodations	440.9	54.98	1.48
Flight software	200000.0	103.60	
Subtotal		940.41	202.75
IA&CO			24.33
Sustain eng			17.03
SE&I		141.06	
System test		457.66	
Test article		366.71	
Test operations		90.94	
GSE		188.08	
Initial spares		60.83	
Program management		125.16	17.09
Total	•	1913.21	261.21

30033258-120

RESEARCH STATION ROM ACQUISITION COST (FY 1984 M\$)

		DEV	UNIT	QTY	PROD.
GP Module		1913	261	1	061
Habitat Module		619	125		261
Mission Module		350		2	250
Logistics Module			123	5	615
Passageway		330	63	3	189
External Booms		280	55	2	110
RMS		100	10	4	40
		20	10	1	10
Power		-	26	8	208
	TOTAL				
		3612			1683
	GOV'T	903			118
		4515			
					1801

6316

GENERAL DYNAMICS

Convair Division

SBOTV OPERATIONS STATION ROM ACQUISITION COST (FY 1984 M\$)

	DEV	UNIT	QTY	PROD.
GP Module	1913	261	1	261
Habitat Module	619	125	1	125
Mission Module	350	123	1	123
Logistic Module	330	63	3	189
Maintenance Module	345	114	2	228
Hangar Module	248	39	2	78
Propellant Module	595	70	4	280
Passageway	148	60	2	120
External Structure I	151	40	2	80
External Structure II	75	20	2	40
RMS	20	10	2	20
Power		26	1	26
TOTAL	4794			1544 1570
	1199			108 110
	5993			1652 1680

Convair Division

RESEARCH STATION & SBOTV OPERATIONS STATION ROM ACQUISITION COST (FY 1984 M\$)

	DEV	UNIT	<u> </u>	PROD
Research Station	4515			1801
SBOTV Operating Station				
GP Module	-	261	1	261
Habitability Module	-	125	1	125
Mission Module	-	123	1	123
Logistics Module	-	63	3	189
Maintenance Module	345	114	2	228
Hangar Module	248	39	2	78
Propellant Module	595	70	4	280
Passageway	148	60	2	120
External Structure I	151	40	2	80
External Structure II	75	20	2	40
RMS	-	10	2	20
Power	-	26	1	26
TOTAL	1562			1570
GOV'T	391			110
	1053			1680
	1953			3481
Research Stati	on 6463			J401

GENERAL DYNAMICS

RESEARCH & SBOTV	OPERATIONS	(COMBINED)	STATION	ROM	ACQUISITION	COST	Convair Division	
		(FY 84 M\$)						

(FY 84 M\$)		OTV	DDOD
DEV	UNIT	QIY	PROD
1913	261	1	261
619	125	2	250
350	123	6	738
330	63	6	378
100	10	4	40
345	114	2	228
248	39	2	78
595	70	4	280
280	54	2	108
148	60	2	120
151	40	2	80
75	20	2	40
20	10	3	30
-	26	8	208
-			
5174			2839
1294			199
6468			3038
	DEV 1913 619 350 330 100 345 248 595 280 148 151 75 20 5174 1294	DEV UNIT 1913 261 619 125 350 123 330 63 100 10 345 114 248 39 595 70 280 54 148 60 151 40 75 20 20 10 - 26 5174 1294	DEV UNIT QTY 1913 261 1 619 125 2 350 123 6 330 63 6 100 10 4 345 114 2 248 39 2 595 70 4 280 54 2 148 60 2 151 40 2 20 2 2 20 10 3 - 26 8

PRELIMINARY SPACE STATION PROGRAM COST SUMMARY

Case		Cost (FY84 M\$)
Α	Research station (to IOC)	5,485
В	Research station	6,316
С	SBOTV operating station	8,140 7,673
D	Research station, then SBOTV operating station	9,949
Е	Combined SBOTV operating & research station	9,506

STS TRAFFIC MODEL Combined Space Station Program

Year	90	91	92	93	94	95	96	97	98	99	00
NASA	10	7	12	14	14	14	13	5	16	6	6
Commercial	11	11	15	12	12	10	8	12	0	7	10
DoD	14	14	12	16	17	13	13	15	20	12	16
 Total	35	32	39	42	43	37	34	32	36	25	32

RESEARCH SPACE STATION PROGRAM FUNDING PROFILE

COMBINED RESEARCH & OPERATIONS SPACE STATION PROGRAM FUNDING PROFILE

PROGRAM FUNDING REQUIREMENTS Research Station & Station-Attached Payloads

NASA BUDGET PROFILE Research Station & Station-Attached Payloads

PROGRAM FUNDING REQUIREMENTS Baseline Station & Station-Attached Payloads (Combined Research & SBOTV Operations)

NASA BUDGET PROFILE
Baseline Station & Station-Attached Payloads

NASA BUDGET PROFILE Research Station & Full Mission Set

NASA BUDGET PROFILE Baseline Station & Full Mission Set

PROGRAMMATICS/BUSINESS OPPORTUNITY ASSESSMENT

Economic benefits, cost & programmatic analysis (Task 3.3)

- Economic benefits
- LCC & programmatic comparisons
- Programmatics/business opportunity assessment

Objective: To develop space station program strategies that utilize the capabilities unique to both government & private industry

Approach: Identify public & private space station investment criteria, structure joint government-industry programs which meet these considerations, and calculate costs, benefits & risks to program participants

Tasks:

- Identify space station marketable elements & systems
- Program definition
 - Space Development Corporation
 - Joint Endeavor Agreements
- Space Station Prospectus

IMPACT OF ECONOMIC CONSIDERATIONS ON SPACE STATION DECISION PROCESS

Space station function	Near-term (1990-2000)	Economic Return	Long-term (2000-2050)		
Space-based OTV	High	•	High		
Satellite servicing	Med		Med		
Research & production	Low	├ ┐	High		
Space station decision process Near-term economic return					

GOVERNMENT INCENTIVES

	Benefits	Costs
Financial		

Financial

Government offers financial incentives to encourage investment in space; e.g., guaranteed loans, tax credits, or cash subsidies.

Logistical

Government offers free or reduced-cost transportation of the services as an inducement to private investment.

Market

Government guarantees or "creates" a market by agreeing to purchase space products or services at an agreed-upon price.

Highly effective in reducing investment level requirements and financial risk. Costs to government and benefits to industry are relatively simple to quantify.

Allows government to use its resources to develop systems (e.g., Space Shuttle) over which the government can maintain control and that show a return on taxpayer investment.

Minimizes risk to government since public resources are not expended until program is completed successfully and final products or services are delivered.

Often present political problems since financial aid is highly visible and is frequently granted to private sector long before projected returns are evident.

Not as effective in stimulating private sector interest as cash assistance and dependent upon government's ability to provide services on schedule for agreed cost.

Does not reduce investment level or investment horizon for private investors and usually requires long-term government commitments, often requiring special legislative action.

GOVERNMENT TASK SHARING

Benefits

Costs

Developmental

Government performs necessary R&D to demonstrate technical and programmatic concepts; hardware is purchased and assembled privately.

Pre-Operational

Government develops and builds systems and transfers ownership and/or control to private sector after demonstrating operational capabilities.

Elemental

Government develops and builds core system elements and permits private companies to develop other components to add to main system.

Allows agencies such as NASA to perform basic R&D functions while greatly reducing private sector financial commitments and technical risks.

Greatly reduces all aspects of private sector risk and investment requirements, while giving government greatest control over system development and production.

Parallel development can offer the most equitable means of task sharing, also affords government and private sector full control over system development. Can present difficulties in distinguishing "R&D" from "production" and could result in technology development that is not optimized for private sector production and operation.

Entails greatest cost and liability to government, offering none of the advantages of private-sector development or production.

Private participants dependent upon government to provide core system elements on schedule; can also create technical and programmatic compatibility problems.

SPACE STATION PROSPECTUS

·] 中 · 对门 [新] .

- Develops alternate concept for financing a space station program
- Establishes Consolidated Space Enterprises as general partner in ten subsidiary space station companies
- Investment in space station companies open to interested firms
 & general public
- Government investment in \$9 billion space station reduced to approximately \$2 billion
- Seven of ten space station companies appear commercially viable without government financial support
- Net income of space station companies estimated at \$1.87 billion per year on annual sales of \$3.87 billion

SPACE STATION FINANCIAL SUMMARY

					Return		Government	Government Requirement	
	Capital Investment	Operating Costs (annual)	Operating Revenue (annual)	Net Income (annual)	on Investment (ROI)	ROI Shortfall	Option A =	Option B = Market Guarantee	
Space transport company	\$1500M	\$ 750M	\$1400M	\$ 650M	.43	_	0	0	
Space repair company	\$ 200M	\$ 280M	\$ 350M	\$ 70M	.35	_	0	0	
Space research company	\$1500M	\$ 100M	\$ 300M	\$ 200M	.13	.07	\$ 500M	\$100M	
Space products company	\$1000M	\$ 100M	\$ 50M	-\$ 50M	05	.25	\$1000M	\$ 250M	
Space service company	\$1000M	\$ 200M	\$ 400M	\$ 200M	.20	_	0	o	
Space fuel company	\$2000M	\$ 250M	\$ 600M	\$ 400M	.20	_	0	0	
Space hotel company	\$1000M	\$ 300M	\$ 600M	\$ 300M	.30	_	О	0	
Space power company	\$ 300M	\$ 10M	\$ 100M	\$ 90M	.30	_	0	0	
Space phone company	\$ 500M	\$ 10M	\$ 20M	\$ 10M	.02	.18	\$ 450M	\$ 90M	
Space systems company	-	-	_	_	_	-	_	_	
Total	\$9000M	\$2000M	\$3870M	\$1870M	.21 (avg)	_	\$1950M	\$440M	

Convair Division

SDC ORGANIZATION OPTION

SPACE STATION: FUNCTIONAL RESPONSIBILITIES

CONCLUSIONS

- The space-based OTV function offers substantial near-term economic benefits
- The research & production and the satellite servicing functions also offer some near-term economic benefits, great long-term
- The initial recommended research space station cost will be about \$5.5B at IOC & \$6.3B at full capability
- The SBOTV function incremental cost is about \$4.5B. The SBOTV & the propellant tanker will cost about \$2.7B
- The combined space station break-even in terms of economic benefits occurs about 2004
- Several options exist for creating partnership between government & industry in a space station program
- Potentially attractive business opportunities have been identified in the development of several key space station capabilities

RECOMMENDED NEAR-TERM ECONOMIC ANALYSES

- Refine & continue to develop current cost/benefit projections
- Conduct space station & SBOTV operations cost & user charge analyses
- Develop cost modeling for total mission payload set (including free-flyers, etc)
- Identify & estimate funding available from other than NASA users (amount, timing, investment reimbursement, etc)