Lab Report 1

Name: Shalin Jain, Shree Kumar Sundaray, Shridam Mahajan, Shubham Kumar

Gupta, Shubham Raj

Roll No.: 180107055, 180107056, 180107057, 180107058, 180107059

Group: 11

Problem Statement:

Consider a countercurrent-flow for the removal of acetone from an air-acetone mixture by means of liquid water. Tray tower for absorption is operating under isothermal and continuous flow conditions. The parameter values and process characteristics are documented below:

System	Acetone (A)-air (B)-water (C)
Total number of stages	5
Operating temperature (K)	300
Total pressure (kPa)	101.3
Liquid holdup in each tray (kmol)	3
y _{0,A} (mole fraction)	0.01
x _{F,A} (mole fraction)	0.0
G (kmol B/h)	30
_ L (kmol C/h)	90
Equilibrium relationship	$y_A = 2.53x_A$

Investigate the dynamic performance of the representative absorber with a mathematical modelling employing explicit Euler approach to solve the ODE. Consider the integration interval (Δt) as 0.0001h and solve for the following cases:

1. Obtain the start-up profile from start t=0 to t=2 hours for the tray composition in terms of mole ratio of liquid phase (moles of solute/moles of inert liquid). Consider the initial guess for the traywise compositions (mole ratios) as below. Compute the steady state concentration.

Tray composition	Initial guess
x1A	0.10
x2,A	0.08
x3,A	0.06
x4,A	0.04
x5,A	0.01

2. In this simulation experiment, the process is initially remained at steady state for 0.2 hours. Subsequently, two consecutive step changes have been introduced in $y_{0,A}$ (changed from 0.01 to 0.02 at time = 0.2 hour and then from 0.02 to 0.01 at time = 0.6 hour). Obtain the tray composition dynamics in all trays in terms of mole ratio (mole ratio of gas phase (moles of solute/moles of inert gas) under this pulse change in gas feed composition.

Algorithm:

The solution to ode dy/dx=f(x,y) given by euler's explicit scheme is y(n+1)=y(n)+dx*f(x(n),y(n)), where dx is unit of discretization.

Here we have five odes in terms of mole ratios of liquid phase x_bar and gas phase y_bar which are related by the equilibrium relation y_bar=2.53*x_bar/(1-1.53*x_bar)

The system of ODEs is solved numerically as follows:-

Part 1:

Program start

Initialize variable

m=3.0; // liquid holdup L=90.0; // kmol C/h

```
G=30.0; // kmol B/h
i=20000; // no of iterations = (2-0)/0.0001
NT=5; // no of trays
dt=0.0001; // discrete time unit
Initialize Matrix X = zeros(NT, i), Matrix Y = zeros(NT, i), Vector
time = zeroes(i,1) Initialize variable XF = zeros(i), Y0(i) = (0.01/1-
0.01)*ones(i) time(1) = 0
Initial guess:-
X(1,1) = 0.1;
X(2,1) = 0.08;
X(3,1) = 0.06;
X(4,1) = 0.04;
X(5,1) = 0.01;
Star loop for k=1:i
  XF(k)=0.0;
  Y0(k)=1/99;
  Start loop for n=1:NT
     Y(n,k)=(2.53*X(n,k))/(1-1.53*X(n,k));
  End loop
  Start loop for n=1:NT
     XM(n,k)=X(n,k)/(1+X(n,k));
     YM(n,k)=Y(n,k)/(1+Y(n,k));
  End loop
// For first tray
  X(1,k+1)=X(1,k)+(dt/m)*(L*X(2,k)+G*Y(0,k)-L*X(1,k)-G*Y(1,k));
//Euler's explicit scheme
  IF(X(1,k+1)>1)
     X(1,k+1)=1;
  End conditional statement
  If(X(1,k+1)<0)
     X(1,k+1)=0;
  End conditional statement
// For trays 2 to 4
  Start loop for n=2:4
     X(n,k+1)=X(n,k)+(dt/m)*(L*X(n+1,k)+G*Y(n-1,k)-L*X(n,k)-G*Y(n,k));
//Euler's explicit scheme
    If(X(n,k+1)>1)
       X(n,k+1)=1;
     End conditional statement
```

```
If(X(n,k+1)<0)
       X(n,k+1)=0;
     End conditional statement
  End loop
// Euler's explicit scheme for final tray
  X(5,k+1)=X(5,k)+(dt/3)*(L*XF(k)+G*Y(4,k)-L*X(5,k)-G*Y(5,k));
  If(X(5,k+1)>1)
     X(5,k+1)=1;
  End conditional statement
  If(X(5,k+1)<0)
     X(5,k+1)=0;
  End conditional statement
  T(k+1)=T(k)+dt; // updating time value by one discrete unit
End loop
Start loop for i = 1:NT
print(string(X(i,20000))) //steady state values
End loop
Plot(X vs Time)
Part 2
Program start
Initialize variable
L = 90; // kmol C/h
G=30.0; // kmol B/h
m = 3; // liquid holdup
iter = 10000; // total no. of iterations
iter1 = 2000; // iteration for 1st step change to Y0
iter2 = 6000; // iteration for 2^{nd} step change to Y0
Nt = 5; // no. of trays
dt = 0.0001; // discrete time unit
Initialize Matrix X = zeros(Nt, iter), Matrix Y = zeros(Nt, iter),
Vector time = zeroes(iter,1) Initialize variable Xf = 0, Y0 = 0.0101
time(1) = 0
Start loop for i = 1:iter1
Allocate:-
  X(1,i) = 3.0124e-03;
  X(2,i) = 2.1976e-03;
  X(3,i) = 1.5050e-03;
  X(4,i) = 9.1750e-04;
  X(5,i) = 4.2023e-04;
  time(i+1)=time(i)+dt;
```

```
Start loop for a = 1:Nt
    Y(a,i) = (2.53*X(a,i))/(1-(1.53*X(a,i))); // Equilibrium relation
  End loop
End loop
Start loop for i = iter1:iter-1
  IF(i < iter2)
    Y0 = 0.02/(1-0.02);
  Else
    Y0 = 0.01/(1-0.01);
  End conditional statements
// Euler's explicit scheme
// 1<sup>st</sup> tray
X(1,i+1) = X(1,i) + (dt/m)*((L*X(2,i))+(G*Y0)-(L*X(1,i))-(G*Y(1,i)));
// 2^{nd} to 4^{th} tray
Start loop for j = 2:Nt-1
  X(j,i+1) = X(j,i) + (dt/m)*((L*X(j+1,i))+(G*Y(j-1,i))-(L*X(j,i))-(G*Y(j,i)));
End loop
//5<sup>th</sup> tray
X(5,i+1) = X(5,i) + (dt/m)*((L*Xf)+(G*Y(4,i))-(L*X(5,i))-(G*Y(5,i)));
Start loop for k = 1:Nt
Y(k,i+1) = (2.53*X(k,i+1))/(1-(1.53*X(k,i+1))); // equilibrium relation
End loop
time(i+1)=time(i)+dt; // updating time value by one discrete unit
End loop
Start loop for i = 1:Nt
print(string(X(i,10000))) //steady state value
End loop
Start loop for i = 1:Nt
print(string(Y(i,10000))) //steady state value
End loop
Plot(X vs Time);
Plot(Y vs Time); // denotes comments
Results:
Part 1:
```

Tray Composition	Initial Guess	Steady state value
X1,A	0.10	0.00301240
X2,A	0.08	0.00219760
X3,A	0.06	0.0015050

X4,A	0.04	0.00091750
X5,A	0.01	0.00042023

Part 2:

