ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007

Mohamed Essam Khedr

OFDM Basics I

Textbook

- OFDM and MC-CDMA for broadband multi-user communications by Lajos Hanzo et al
- Additional Readings:
- Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House: 2000 (ISBN: OR90065306)
- Orthogonal Frequency Division Multiplexing for Wireless Communications by Ye (Geoffrey) Li (Editor), Gordon L. Stuber (Editor), ISBN 0387290958
- Ahmad Bahai and Burton Saltzberg, Multi-Carrier Digital Communications: Theory and Applications of OFDM, Plenum Publishing Corporation: 1999, ISBN: 0306462966.

•		Wireless channels characteristics (7.5%)
	_	wireless channel modeling and characteristics
		 Large scale and small scale models
		 Common channel models
		 Channel categories and parameter calculation.
		Prob. of error calculations
•		OFDM Basics (10%)
	_	History of OFDM
	_	OFDM System model
	_	Discrete-time signals & systems and DFT
	_	Generation of subcarriers using the IFFT
	_	Guard time, cyclic extension
	_	Windowing
	_	Choice of OFDM parameters & OFDM signal processing
	_	Implementation complexity of OFDM versus single carrier modulation
•		Modulation and Coding (10%)
	_	Linear and nonlinear modulation
	_	Interleaving and channel coding
	_	Optimal bit and power allocation
	_	Adaptive modulation

•		Analysis of OFDM systems (15%)	
	_	RF subsystems, amplifier classification and distortion	
	_	Crest factor (PAPR) reduction techniques	
		 Pre-distortion & adaptive pre-distortion techniques 	
		• clipping	
		 coding techniques 	
		• partial transmit sequences (PTS) & modified PTS v. selective mapping	ing
		 nonlinear quantization (companding) 	
	_	Phase noise and I&Q imbalance for QAM	
	_	Performance of OFDM in Gaussian channels	
	_	Performance of OFDM in Wide-band channels	
•		Synchronization and Estimation (15%)	2
	_	ICI and OISI problems	
	_	Timing estimation	
	_	Frequency synchronization	
	_	Frequency error estimation algorithms	
	_	Carrier phase tracking	
	_	Frequency domain and time domain approaches for channel estimation	
		• coherent detection	
		• differential detection	

•		Multi-user OFDM Techniques (10%)
	_	Adaptive modulations in OFDM
	_	Power and bit allocations in OFDM
	_	Scalable OFDM
	_	Flash OFDM
•		Diversity (7.5%)
	_	Limits of capacity in fading environments
	_	Channel models for multiple-input-multiple-output (MIMO) system
	_	Receiver diversity techniques
	_	Transmit diversity techniques and design criteria for fading channels
	_	Block, trellis and layered space-time codes
•		Multi-carrier CDMA (10%)
	_	MC-CDMA versus DS-CDMA
	_	MC-CDMA versus orthogonal frequency division multiple access (OFDMA)
	_	OFDMA and MC-CDMA performance evaluation in wide-band channels

- Physical and Medium Access Control (MAC) for IEEE 802.11 Networks (7.5%)
 Physical modeling of 802.11 networks
 MAC system architecture
 - Frame exchange with RTS/CTS
 - Power management
 - Synchronization
- Physical and Medium Access Control (MAC) for IEEE 802.16 Networks (7.5%)
 - Physical modeling of 802.16 networks
 - MAC system architecture
 - QoS guarantees in Wimax
 - Power management
 - Synchronization

Grading

Type of assignment	Percent of Grade
Home works	20%
Matlab Assignments	20%
Midterm	20%
Final project presentation and term paper	20%
Final Exam	20%

Matlab Assignment 1

- Develop a WGN channel that accepts symbol input, adds noise to it with certain SNR and produces the noisy ouput.
- Develop a Flat Fading Channel following Rayleigh and ricean distribution
- Develop a Frequency selective channel following Rayleigh and ricean distribution
 - All inputs to the channel are baseband signals.
 - Compare with the matlab functions (if exist)
 - Plot the probability of error vs SNR

Lecture one Fading channels

 Impulse response: Time-spreading : multipath and time-variations: time-varying environment

Propagation mechanisms

Multipath Propagation – Simple Model

where k = 0, ..., K-1

 α_k : path gain (complex)

 $\tau_0 = 0$ normalize relative delay of first path

 $\Delta_k = \tau_k - \tau_0$ difference in time-of-flight

Impact of Multipath: Delay Spread & ISI

Max delay spread = effective number of symbol periods occupied by channel

Requires equalization to remove resulting ISI

Stochastical (WSSUS) channel variables

Maximum delay spread: T_m

Maximum delay spread may be defined in several ways.

For this reason, the RMS delay spread is often used instead:

$$\sigma_{\tau} = \sqrt{\frac{\int \tau^{2} \phi_{h}(\tau) d\tau}{\int \phi_{h}(\tau) d\tau} - \left[\frac{\int \tau \phi_{h}(\tau) d\tau}{\int \phi_{h}(\tau) d\tau}\right]^{2}}$$

Stochastical (WSSUS) channel variables

Coherence bandwidth of channel:

$$B_m \approx 1/T_m$$

Implication of coherence bandwidth:

If two sinusoids (frequencies) are spaced much less apart than B_{m} , their fading performance is similar.

If the frequency separation is much larger than ${\cal B}_{\!\!m}$, their fading performance is different.

Stochastical (WSSUS) channel variables

Maximum Doppler spread: B_d

The Doppler spectrum is often U-shaped (like in the figure on the right). The reason for this behaviour is the relationship

$$v = \frac{V}{\lambda} \cos \alpha = f_d \cos \alpha$$

Delay - Doppler spread of channel

Statistical Models

- Design and performance analysis based on statistical ensemble of channels rather than specific physical channel.
- Rayleigh flat fading model: many small scattered paths

$$h_{\ell}[m] \approx \sum_{i} a_{i} e^{-j2\pi f_{c} \tau_{i}}$$

Complex circular symmetric Gaussian.

$$h[m] \sim \mathcal{N}(0, \frac{1}{2}) + j\mathcal{N}(0, \frac{1}{2}) \sim \mathcal{CN}(0, 1)$$

• Rician model: 1 line-of-sight plus scattered paths

$$h[m] \sim \sqrt{\kappa} + \mathcal{CN}(0,1)$$

Fading distributions (Rayleigh)

In a flat fading channel, the (time-variant) CIR reduces to a (time-variant) complex channel coefficient:

$$c(t) = a(t)e^{j\phi(t)} = x(t) + jy(t) = \sum_{i} a_{i}(t)e^{j\phi_{i}(t)}$$

When the quadrature components of the channel coefficient are independently and Gaussian distributed, we get:

$$p(a) = \frac{a}{\sigma^2} e^{-a^2/2\sigma^2}$$

$$p(\phi) = \frac{1}{2\pi}$$
Rayleigh distribution
Uniform distribution

Fading distributions (Rice)

In case there is a strong (e.g., LOS) multipath component in addition to the complex Gaussian component, we obtain:

$$c(t) = a_0 + a(t)e^{j\phi(t)} = a_0 + \sum_i a_i(t)e^{j\phi_i(t)}$$

From the joint (magnitude and phase) pdf we can derive:

Channel Classification

Based on Time-Spreading

Flat Fading

- 1. $B_S < B_C \Leftrightarrow T_m < T_s$
- 2. Rayleigh, Ricean distrib.
- 3. Spectral char. of transmitted signal preserved

Frequency Selective

- 1. $B_S > B_C \Leftrightarrow T_m > T_s$
- 2. Intersymbol Interference
- 3. Spectral chara. of transmitted signal not preserved
- 4. Multipath components resolved

Channel Classification

Based on Time-Variations

Fast Fading

- 1. High Doppler Spread
- 2. $1/B_d \cong T_C < T_s$

Slow Fading

- 1. Low Doppler Spread
- 2. $1/B_d \cong T_C > T_s$

Multicarrier Modulation

Divide broadband channel into narrowband subchannels

No ISI in *subchannels* if constant gain in every subchannel and if ideal sampling

Orthogonal Frequency Division Multiplexing

- Based on the fast Fourier transform
- Standardized for DAB, DVB-T, IEEE 802.11a, 802.16a, HyperLAN II
- Considered for fourth-generation mobile communication systems

Subchannels are 312 kHz wide in 802.11a and HyperLAN II

An OFDM Symbol

Bandpass transmission allows for complex waveforms

- Transmit:
$$y(t) = Re\{(I(t)+jQ(t)) \exp(j2\pi f_c t)\}$$

= $I(t) \cos(2\pi f_c t) - Q(t) \sin(2\pi f_c t)$

Introduction to OFDM

- Basic idea
 - » Using a large number of parallel narrow-band subcarriers instead of a single wide-band carrier to transport information
- Advantages
 - » Very easy and efficient in dealing with multi-path
 - » Robust again narrow-band interference
- Disadvantages
 - » Sensitive to frequency offset and phase noise
 - » Peak-to-average problem reduces the power efficiency of RF amplifier at the transmitter
- Adopted for various standards
 - DSL, 802.11a, DAB, DVB

OFDM can achieve large delay spread tolerance at high bit rates

Converting single bit stream in N parallel bit streams

- Symbol duration is increased, so relative delay spread decreases
- Each parallel bit stream is modulated on one of N subcarriers

Adding a guard time to each OFDM symbol

- Inter Symbol Interference (ISI) is avoided
- Guard loss is made small (<1 dB) by choosing N large enough

Use FEC coding to correct for subcarriers in deep fades

- In a multipath channel, subcarriers have different amplitudes
- By using coding, performance is determined by average received power rather than lowest subcarrier power

An OFDM Modem

Coded OFDM (COFDM)

- Error correction is *necessary* in OFDM systems
- Forward error correction (FEC)
 - Adds redundancy to data stream
 - Examples: convolutional codes, block codes
 - Mitigates the effects of bad channels
 - Reduces overall throughput according to the coding rate k/n
- Automatic repeat request (ARQ)
 - Adds error detecting ability to data stream
 - Examples: 16-bit cyclic redundancy code
 - Used to detect errors in an OFDM symbol
 - Bad packets are retransmitted (hopefully the channel changes)
 - Usually used with FEC
 - Minus: Ineffective in broadcast systems

Typical Coded OFDM Encoder

• Reed-Solomon and/or convolutional code

• Intersperse coded and uncoded bits

• Map bits to symbols

Typical Coded OFDM Decoder

Symbol demapping

- Produce soft estimate of each bit
- Improves decoding

$$\begin{split} L(b_k) &= \log \left(\frac{Pr(x|b_k = 1)}{Pr(x|b_k = 0)} \right) \\ &\approx \log \left(\frac{\max_{s_k} Pr(x|b_k = 1, s_k)}{\max_{s_k} Pr(x|b_k = 0, s_k)} \right) \end{split}$$

OFDM Mathematics

$$s(t) = \sum_{k=0}^{N-1} X_k e^{j2\pi f_k t}$$
 $t = [0,T_{os}]$

Orthogonality Condition

$$\int_{0}^{T_{\text{OS}}} g_{1}(t).g_{2}^{*}(t)dt = 0$$

In our case

$$\int_{0}^{T_{\text{OS}}} e^{j2\pi f_{p}t} \cdot e^{-j2\pi f_{q}t} dt = 0$$

For $p \neq q$ Where $f_k = k/T_{os}$

Transmitted Spectrum

Spectrum of the modulated data symbols

- Rectangular Window of duration T_{θ}
- Has a sinc-spectrum with zeros at $1/T_{\theta}$
- Other carriers are put in these zeros
- → sub-carriers are orthogonal

Subcarrier orthogonality must be preserved

Compromised by timing jitter, frequency offset, and fading.

N sub-carriers:

$$S_{BB,k}(t) = w(t - kT) \left(\sum_{i=0}^{N-1} x_{i,k} e^{j2\pi i\Delta f(t-kT)} \right)$$

OFDM terminology

- Orthogonal carriers referred to as subcarriers $\{f_i, i=0,...N-1\}$.
- OFDM symbol period $\{T_{os}=N \times T_{s}\}.$
- Subcarrier spacing $\Delta f = 1/T_{os}$.

OFDM and **FFT**

- Samples of the multicarrier signal can be obtained using the IFFT of the data symbols a key issue.
- FFT can be used at the receiver to obtain the data symbols.
- No need for 'N' oscillators, filters etc.
- Popularity of OFDM is due to the use of IFFT/FFT which have efficient implementations.

OFDM Signal

$$s(t) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=0}^{N-1} X_{n,k} g_k (t - nT_{os}) \right)$$

$$g_k(t) = \begin{cases} e^{-j 2\pi f_k t} & t \equiv [0, T_{os}] \\ 0 & \text{Otherwise} \end{cases}$$

$$f_k = \frac{k}{T}$$

$$K=0,\dots,N-1$$

By sampling the low pass equivalent signal at a rate N times higher than the OFDM symbol rate $1/T_{os}$, OFDM frame can be expressed as:

$$F_{n}(m) = \sum_{k=0}^{N-1} X_{n,k} g_{k}(t - nT_{os}) \left| t = (n + \frac{m}{N}) T_{os} \right| = 0...N-1$$

$$F_{n}(m) = \left(\sum_{k=0}^{N-1} X_{n,k} e^{j2\pi k \frac{m}{N}}\right) = N.IDFT\{X_{n,k}\}$$

Interpretation of IFFT&FFT

- IFFT at the transmitter & FFT at the receiver
- Data symbols modulate the spectrum and the time domain symbols are obtained using the IFFT.
- Time domain symbols are then sent on the channel.
- FFT at the receiver to obtain the data.

X(k), k=0,1...N-1, then the transmitted signal Assume the information data sequence be s(t) can be expressed as

IFFT Operation

$$s(t) = \sum_{p=0}^{N-1} X(p) \exp \left(j2\pi f_p t\right) \qquad \text{Source} \Rightarrow \text{Encoding} \Rightarrow \text{to}$$

$$= \sum_{p=0}^{N-1} X(p) \exp \left(j2\pi p \Delta f t\right),$$

$$valid \quad for \quad 0 \le t < T; \ 0 \le p \le N-1.$$

The received signal r(t) is

$$r(t) = s(t)^* h(t) + w(t)$$

Decoding C to Sertal

Channel

The received on subcarrier k_0 is $Y(k) = \frac{1}{T} \int_0^T r(t) \exp(-j2\pi k\Delta f t) dt$

FFT Operation

Assume h(t)=1, w(t)=0 (ideal channel), then Y(k) becomes

$$Y(k) = \frac{1}{T} \int_0^T \sum_{p=0}^{N-1} X(p) \exp(j2\pi p \Delta f t) \exp(-j2\pi k \Delta f t)$$

Transmitted data can be fully recovered from above euqation, if P = k in Y(K).