Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

«Вычислительная математика»

Выполнил:

Студент группы Р32102 Гулямов Т.И.

Преподаватель:

Рыбаков С.Д.

Цель лабораторной работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Порядок выполнения работы

- 1. Вычислительная реализация задачи
- 2. Программная реализация задачи

Вычислительная реализация задачи

1. Исследуемый интеграл

$$\int_{-3}^{-1} (-3x^3 - 5x^2 + 4x - 2) dx$$

2. Точное вычисление

$$\int_{-3}^{-1} (-3x^{3} - 5x^{2} + 4x - 2)dx$$

$$(-\frac{3}{4}x^{4} - \frac{5}{3}x^{3} + 2x^{2} - 2x)_{-3}^{-1}$$

$$(-\frac{3}{4}(-3)^{4} - \frac{5}{3}(-3)^{3} + 2(-3)^{2} - 2(-3)) - (-\frac{3}{4}(-1)^{4} - \frac{5}{3}(-1)^{3} + 2(-1)^{2} - 2(-1))$$
Otbet: $-10/3$

3. Вычисление по формуле Ньютона – Котеса

i	x_i	c_5^i	$y_i^{}$
0	-3.0	0.1319	22
1	-2.6	0.5208	6.528
2	-2.2	0.3472	-3.056
3	-1.8	0.3472	-7.904
4	-1.4	0.5208	-9.168
5	-1.0	0.1319	-8

$$\begin{split} I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}} &= \sum_{i=0}^{n} c_{_{i}}^{i} y_{_{i}} = (0.1319 * 22) + (0.5208 * 6.528) + ... + (0.1319 * - 8) = -3.3336 \\ \Delta I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}} &= |I - I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}}| = |-10/3 - (-3.3336)| = 0.00027 \\ \delta I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}} &= |\frac{\Delta I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}}}{I_{_{\mathrm{H}\mathrm{H}\mathrm{O}\mathrm{T}}}}| = \frac{0.00027}{3.42} = 0.000078 \end{split}$$

4. Вычисление по формулам средних прямоугольников, трапеций и Симпсона

i	x_{i}	y_i	$x_{i-1/2}$	$y_{i-1/2}$
0	-3.0	22		
1	-2.8	13.456	-2.9	17.517
2	-2.6	6.528	-2.7	9.799
3	-2.4	1.072	-2.5	3.625
4	-2.2	-3.056	-2.3	-1.149
5	-2.0	-6	-2.1	-4.667
6	-1.8	-7.904	-1.9	-7.073
7	-1.6	-8.912	-1.7	-8.511
8	-1.4	-9.168	-1.5	-9.125
9	-1.2	-8.816	-1.3	-9.059
10	-1.0	-8	-1.1	-8.457

$$I_{\text{сред}} = h \sum_{i=1}^{n} y_{i-1/2} = \frac{b-a}{n} \sum_{i=1}^{n} y_{i-1/2} = 0.2 * (-17.1) = -3.42$$

$$\Delta I_{\text{сред}} = |I - I_{\text{сред}}| = |-10/3 - (-3.42)| = 0.0867$$

$$\delta I_{\text{сред}} = |\frac{\Delta I_{\text{сред}}}{I_{\text{сред}}}| = \frac{0.0867}{3.42} = 0.0254$$

$$I_{\text{трап}} = h(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_{i-1/2}) = \frac{b - a}{n} * (\frac{y_0 + y_n}{2} + \sum_{i=1}^{n} y_{i-1/2}) = 0.2 * (7 - 22.8) = -3.16$$

$$\Delta I_{\text{трап}} = |I - I_{\text{трап}}| = |-10/3 - (-3.16)| = 0.1733$$

$$\delta I_{\text{трап}} = |\frac{\Delta I_{\text{трап}}}{I_{\text{трап}}}| = \frac{0.1733}{3.42} = 0.0507$$

$$\begin{split} I_{_{\mathrm{CHM}}} &= \frac{h}{3} \left[y_0 + 4(y_1 + y_3 + ... + y_{n-1}) + 2(y_2 + y_4 + ... + y_{n-2}) + y_n \right] \\ I_{_{\mathrm{CHM}}} &= \frac{0.2}{3} \left[22 + 4(-9.2) + 2(-13.6) - 8 \right] = -3.333 \\ \Delta I_{_{\mathrm{CHM}}} &= |I - I_{_{\mathrm{CHM}}}| = |-10/3 - (-3.333)| = 0 \\ \delta I_{_{\mathrm{CHM}}} &= |\frac{\Delta I_{_{\mathrm{CHM}}}}{I_{_{\mathrm{CHM}}}}| = \frac{0}{3.42} = 0 \end{split}$$

Листинг программы

Метод прямоугольников

```
struct Rectangle {
  let function: Function
```

```
let interval: Interval
let position: RectanglePosition
let tolerance: Double
func run() -> Output {
    Methods.common(tolerance: self.tolerance) { partsCount in
    let delta = self.interval.length / Double(partsCount)
    var x = self.interval.from + self.position.rawValue * delta
    var result = 0.0
    for _ in 0..<partsCount {
        result += self.function(x)
        x += delta
    }
    return result * delta
}</pre>
```

Метод трапеций

```
struct Trapezoid {
   let function: Function
   let interval: Interval
   let tolerance: Double
   func run() -> Output {
      Methods.common(tolerance: self.tolerance) { partsCount in
        let delta = self.interval.length / Double(partsCount)
        var x = self.interval.from
        var result = (self.function(self.interval.from) +
self.function(self.interval.to)) / 2.0
        for _ in 1..<partsCount {</pre>
          x += delta
          result += self.function(x)
        return result * delta
      }
   }
  }
```

Метод Симпсона

```
struct Simpsons {
  let function: Function
  let interval: Interval
  let tolerance: Double
  func run() -> Output {
    Methods.common(tolerance: self.tolerance) { partsCount in
     let delta = self.interval.length / Double(partsCount)
     var x = self.interval.from
    var result = self.function(self.interval.from) +
```

```
self.function(self.interval.to)
    for i in 1..<partsCount {
        x += delta
        result += i.isMultiple(of: 2)
        ? 2.0 * self.function(x)
        : 4.0 * self.function(x)
        }
        return result * delta / 3.0
    }
}</pre>
```

Результаты выполнения программы

Вывод

Во время выполнения лабораторной работы познакомился с методами численного интегрирования. Научился использовать и реализовывать программно некоторые популярные методы. Получил ценные знания, которые несомненно пригодятся в будущем.