Homework 4

Friday, March 5, 2021 1:51 PM

"I pledge my honor I have abided by the Stevens Honor system."

eage my hohor I have ablaced by the slev

1. A sensor has a Thevenin equivalent circuit with V_T and R_T . This sensor is connected to a two-resistor attenuator as shown below.

The output of this two-resistor attenuator (V_{out}) is to be connected to the input of a measuring instrument which has an input resistance given by R_{in} . This problem examines the design of the attenuator and the loading error in V_{out} due to the input resistance R_{in} . To simplify the analysis, we can assume that R_T is small and can be neglected in this problem. Thus, for this problem, we can assume R_T is zero. The value of V_T is equal to 3 Volts.

- a. **Attenuator <u>Design</u>**: Determine the values of R₁ and R₂ which will satisfy the following two requirements.
 - i) The current flowing through both R_1 and R_2 before connecting to R_{in} should be 0.01 ma. (Hint; use Ohm's Law).
 - ii) V_{out} before connecting to R_{in} should equal (0.4)·V_T.

$$V_{r} = 3 \text{ V.} \quad R_{r} \approx 0 \text{ \Omega}$$

 $.4(3) = (.01 \times 10^{-3}) R_{z}$
 $R_{z} = 120,000 \Omega$

$$V_{T} = I(R_{1} + R_{2})$$

$$3 = (.01 \times 10^{-3})(R_{1} + 120,000)$$

$$R_{1} = 180,000 \Omega$$

b. **Determining the input resistance R_{in}**; Using the correct values for R_1 and R_2 from part (a) of this problem, determine the minimum value of R_{in} for a loading error of $(\underline{0.02})\cdot V_T$. (Hint; to simplify the analysis, I suggest you solve for " R_{eq} " first. Once you have solved for R_{eq} , you can solve for R_{in}).

$$\frac{-.06}{3} = -\frac{Req}{Req + 180,000}$$

$$-.02 Req - 3,600 = -Req$$

$$Req = 3,673.47 \Omega$$

- 2. Please refer to the two graphs on slide 61 in our Lecture Notes for Chapter Three. (The title of the slide is Example 6.1). The two graphs given on this slide are the graphs of the magnitude and phase of the transfer function for a filter.
 - a. Is this filter an active or a passive filter? Why?

This is an active Filter because it also amplifies input voltages.

b. Is this filter a high-pass, bandpass, or low-pass filter? Why?

this is a low-pass filter, for the values to the left of forme not 0 but they are 0 to the right.

c. What is the cut-off (or corner) frequency of this filter?

Fc ≈ 2500 Hz, Above this value H(f) = 0.

d. You are given the following input voltage. Determine the output voltage of the filter.

 $Vin(t) = (7.87) \cdot cos(4000\pi t - 15.8^{\circ})$

7.87 <u>(15.8°</u>

0 = 1000 Hz : H(f) = 2 and (H(F) = 60°

f = 2000 Hz; $H(F) = 2 \text{ and } \angle H(F) = 60^{\circ}$ $V_{out} = V_{in} (H_F) = 7.87 \angle 15.8^{\circ} \cdot 2 \angle 60^{\circ} = 15.74 \angle 75.8^{\circ}$ $V_{out} = (5.74 \cos (4000 \text{ ref} - 75.8^{\circ}))$