北京大学光华管理学院期末答案

- **一**(每空4分,共20分)
 - (1) 设 $\vec{a} = (2, -3, 1), \vec{b} = (1, -1, 3), \vec{c} = (1, -2, 0), 则有(<math>\vec{a} \cdot \vec{b}$) $\vec{c} = (8, -16, 0), (\vec{a} \times \vec{b}) \cdot \vec{c} = 2$,
 - (2) 给出满足下面条件的 f(x,y) 和 g(x,y) 的例子: f(x,y) 在原点 (0,0) 处偏导数存在,但不连续,例子 $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$; 函数 g(x,y) 在 (0,0) 处连续

且偏导数存在,但不可微,例子 $g(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$.

- (3) $f(x,y) = x^3 x^2 + xy + x y$ 在 (1,-1) 点处的二阶泰勒公式(带Peano余项)为 $f(x,y) = 1 + (x-1) + 2(x-1)^2 + (x-1)(y+1) + 0(\rho^2), \ \rho = \sqrt{(x-1)^2 + (y+1)^2}.$
- 二 (共 24 分)计算

(1)
$$\int \frac{1}{\sqrt{x}(1+x)} dx = 2 \arctan \sqrt{x} + C.$$

$$(2) \int_0^{\frac{1}{2}} (\arccos x)^2 dx = \frac{\pi^2}{18} + (1 - \frac{\sqrt{3}}{3})\pi - 1.$$

(3)
$$\lim_{x \to 0} \frac{x - \arctan x}{\sin^3 x} = \frac{1}{3}.$$

(4)
$$\lim_{(x,y)\to(0,0)} (x+2y) \ln(x^2+y^2) = 0.$$

$$(|(x+2y)\ln(x^2+y^2)| \le 3\sqrt{x^2+y^2}\ln(x^2+y^2) \to 0).$$

三 (10分) 设 f(x,y,z) 有连续偏导数, z = z(x,y) 是由方程 $xe^x - ye^y = ze^z$ 确定的隐函数, 求函数 u = f(x,y,z(x,y)) 的微分.

$$du = (f_x + f_z \frac{e^x(x+1)}{e^z(z+1)})dx + (f_y - f_z \frac{e^y(y+1)}{e^z(z+1)})dy$$

- 四 (12分) 1. 求点 P(3,-1,2) 到直线 $\begin{cases} x+y-z+1=0 \\ 2x-y+z-4=0 \end{cases}$ 的距离.
 - 2. 设一平面经过原点及 (6, -3, 2), 且与平面 4x y + 2z = 8 垂直, 求该平面的方程.
 - (1) 距离为 $\frac{3}{2}\sqrt{2}$. 直线方程可化成 $\frac{x-1}{0}=y=z-2$, $P_0(1,0,2)$ 是直线上的点, $\vec{e}=(0,\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ 是与直线平行的单位向量, $\overrightarrow{P_0P}=(2,-1,0)$, 距离等于

$$d = \sqrt{|\overrightarrow{P_0P}|^2 - |\overrightarrow{P_0P} \cdot \overrightarrow{e}|^2} = \frac{3\sqrt{2}}{2}$$

(2) 设平面方程为 Ax + By + Dy = 0,

$$\begin{cases} 6A - 3B + 2C = 0\\ 4A - B + 2C = 0 \end{cases}$$

得 $A: B: C=1:1:-\frac{3}{2}$, 平面的方程位 2x+2y-3z=0

五 (10分) 证明不等式: $\ln(1+x) > \frac{\arctan x}{1+x}, x > 0.$

六 (14分) 设 0 < a < 1, 直线 y = ax 与抛物线 $y = x^2$ 所围成的图形面积为 S_1 ; y = ax, $y = x^2$ 与直线 x = 1 (三条线)所围成的图形面积为 S_2 .

- (1) 试确定 a 的值, 使得 $S_1 + S_2$ 达到最小.
- (2) 求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积.

解: (1) $S_1 + S_2 = \frac{1}{3}a^3 - \frac{1}{2}a + \frac{1}{3}$, 对 a 求导得 $a^2 - \frac{1}{2}$, 显然 $a = \frac{\sqrt{2}}{2}$ 时最小.

(2) S_1 旋转得到的旋转体的体积

$$V_1 = \int_0^{\frac{\sqrt{2}}{2}} \pi \left(\left(\frac{\sqrt{2}}{2} x \right)^2 - x^4 \right) dx = \frac{\sqrt{2}\pi}{60}$$

S₂旋转得到的旋转体的体积

$$V_2 = \int_{\frac{\sqrt{2}}{2}}^{1} \pi \left(x^4 \left(\frac{\sqrt{2}}{2} x \right)^2 \right) dx = \frac{\sqrt{2}\pi}{60} + \frac{\pi}{30}$$

所求体积为 $\frac{1+\sqrt{2}\pi}{30}$.

七 (10分) f(x) 是 [a,b] 上的连续下凸函数, 证明

$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a) + f(b)}{2}.$$

证明: 令 $g(t) = \frac{f(a) + f(t)}{2}(t - a) - \int_a^t f(x) dx$,由于 f(x)是下凸函数 $g'(t) = \frac{1}{2}[f(a) - (f(t) - f'(t)(a - t))] \ge 0$, $g(b) \ge g(a) = 0$,得右边的表达式.

令 $h(t) = \int_a^t f(x) dx - f(\frac{a+t}{2})(t-a)$,由于 f(x) 是下凸函数 $h'(t) = f(t) - [f(\frac{a+t}{2}) + f'(\frac{a+t}{2})(t-\frac{a+t}{2})] \ge 0$, $h(b) \ge h(a) = 0$,得左边的表达式.