# **Fast Two-Time-Scale Noisy EM Algorithms**

#### **Anonymous Author(s)**

Affiliation Address email

#### **Abstract**

Training latent data models using the EM algorithm is the most common choice for current learning tasks. Variants of the EM to scale to large datasets and bypass the impossible conditional expectation of the latent data for most nonlinear models have been initially introduced respectively by [Neal and Hinton, 1998], using incremental updates, and [Wei and Tanner, 1990, Delyon et al., 1999], using Monte-Carlo (MC) approximations. In this paper, we propose to combine those both techniques in a single class of methods called Two-Time-Scale EM Methods. We motivate the choice of a double dynamics by invoking the variance reduction virtue of each stage of the method on both noise: the incremental update and the MC approximation. We establish finite-time convergence bounds for nonconvex objective function and independent of the initialization. Numerical applications are also presented in this article to illustrate our findings.

# 1 Introduction

2

5

6

8

9

10

11

12

Learning latent data models is critical for modern machine learning problems, see [McLachlan and Krishnan, 2007] for references. We formulate the training of such model as the following empirical risk minimization problem:

$$\min_{\boldsymbol{\theta} \in \Theta} \overline{\mathsf{L}}(\boldsymbol{\theta}) := \mathsf{r}(\boldsymbol{\theta}) + \mathsf{L}(\boldsymbol{\theta}) \text{ with } \mathsf{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathsf{L}_{i}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \left\{ -\log g(y_{i}; \boldsymbol{\theta}) \right\}, \tag{1}$$

We denote the observations by  $\{y_i\}_{i=1}^n$ ,  $\Theta \subset \mathbb{R}^d$  is the convex parameters space. We consider a regularized model where  $\mathbf{r}:\Theta\to\mathbb{R}$  is a smooth convex regularization function and for  $\pmb{\theta}\in\Theta$ ,  $g(y;\pmb{\theta})$  is the (incomplete) likelihood of each individual observation. The objective function  $\overline{\mathsf{L}}(\pmb{\theta})$  is possibly *nonconvex* and is assumed to be lower bounded  $\overline{\mathsf{L}}(\pmb{\theta})>-\infty$  for all  $\pmb{\theta}\in\Theta$ .

In the latent variable model,  $g(y_i; \theta)$ , is the marginal of the complete data likelihood defined as  $f(z_i, y_i; \theta)$ , i.e.  $g(y_i; \theta) = \int_{\mathsf{Z}} f(z_i, y_i; \theta) \mu(\mathrm{d}z_i)$ , where  $\{z_i\}_{i=1}^n$  are the (unobserved) latent variables. In this papaer, we make the assumption of a complete model belonging to the curved exponential family, *i.e.*,

$$f(z_i, y_i; \boldsymbol{\theta}) = h(z_i, y_i) \exp\left(\langle S(z_i, y_i) | \phi(\boldsymbol{\theta}) \rangle - \psi(\boldsymbol{\theta})\right),$$
 (2)

where  $\psi(\theta)$ ,  $h(z_i, y_i)$  are scalar functions,  $\phi(\theta) \in \mathbb{R}^k$  is a vector function, and  $S(z_i, y_i) \in \mathbb{R}^k$  is the complete data sufficient statistics.

Full batch EM [Dempster et al., 1977] is the method of reference for that kind of task and is a two steps procedure. The E-step amounts to computing the conditional expectation of the complete data sufficient statistics,

$$\overline{\mathbf{s}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}(\boldsymbol{\theta}) \quad \text{where} \quad \overline{\mathbf{s}}_{i}(\boldsymbol{\theta}) = \int_{\mathbf{Z}} S(z_{i}, y_{i}) p(z_{i} | y_{i}; \boldsymbol{\theta}) \mu(\mathrm{d}z_{i}) \,. \tag{3}$$

30 The M-step is given by

52

53

54

56

58

59

60

61

62

63

64

65

66

67

68

$$\mathsf{M}\text{-step: } \hat{\boldsymbol{\theta}} = \overline{\boldsymbol{\theta}}(\overline{\mathbf{s}}(\boldsymbol{\theta})) := \underset{\boldsymbol{\vartheta} \in \Theta}{\arg\min} \ \big\{ \, \mathbf{r}(\boldsymbol{\vartheta}) + \psi(\boldsymbol{\vartheta}) - \big\langle \overline{\mathbf{s}}(\boldsymbol{\theta}) \, | \, \phi(\boldsymbol{\vartheta}) \big\rangle \big\}, \tag{4}$$

Two caveats of this method are the following: (a) with the explosion of data, the first step of the EM is computationally inefficient as it requires a full pass over the dataset at each iteration and (b) the complexity of modern models makes the expectation intractable. So far, both challenges have been addressed separately, to the best of our knowledge, and we give an overview of current solutions in the sequel.

Prior Work Inspired by stochastic optimization procedures, [Neal and Hinton, 1998] and [Cappé and Moulines, 2009] developed respectively an incremental and an online variant of the E-step in models where the expectation is computable then extensively used and studied in [Nguyen et al., 2020, Liang and Klein, 2009, Cappé, 2011]. Some improvements of that methods have been provided and analyzed, globally and in finite-time, in [Karimi et al., 2019] where variance reduction techniques taken from the optimization literature have been efficiently applied to scale the EM algorithm to large datasets.

Regarding the computation of the expectation under the posterior distribution, the first method was 43 the Monte-Carlo EM (MCEM) introduced in the seminal paper [Wei and Tanner, 1990] where a MC 44 approximation fo this expectation is computed. A variant of that method is the Stochastic Approxi-45 mation of the EM (SAEM) in [Delyon et al., 1999] leveraging the power of Robbins-Monro type of 47 update [Robbins and Monro, 1951] to ensure pointwise convergence of the vector of estimated parameters rather using a decreasing stepsize than increasing the number of MC samples. The MCEM 48 and the SAEM have been successfully applied in mixed effects models [McCulloch, 1997, Hughes, 49 1999, Baey et al., 2016] or to do inference for joint modelling of time to event data coming from 50 clinical trials in [Chakraborty and Das, 2010], among other applications. 51

Recently, an incremental variant of the SAEM was proposed in [Kuhn et al., 2019] showing positive empirical results but its analysis is limited to asymptotic consideration. Gradient-based methods have been developed and analyzed in [Zhu et al., 2017] but they remain out of the scope of this paper as they tackle the high-dimensionality issue.

**Contributions** This paper *introduces* and *analyzes* a new class of methods which purpose is to combine both solutions proposed in the past years in a two-time-scale manner in order to optimize (1) for current modern examples and settings. The main contributions of the paper are:

- We propose a two-time-scale method based on Stochastic Approximation (SA), to alleviate the problem of MC computation, and on Incremental updates, to scale to large datasets. We describe in details the edges of each level of our method based on variance reduction arguments. The derivation of such class of algorithms has two advantages. First, it combines two powerful ideas, commonly used separately, to tackle large scale and highly nonlinear learning tasks. Then, it gives a simple formulation as a *scaled-gradient method*, as introduced in [Karimi et al., 2019], which makes the global analysis accessible.
- We also establish global (independent of the initialization) and finite-time (true at each iteration) upper bounds on a classical suboptimality condition in the nonconvex literature, *i.e.*, the second order moment of the gradient of the objective function.

In Section 2 we give rigorous mathematical definitions of the various updates used for both incremental and Monte-Carlo EMs and we introduce the main class of new algorithms, based on two
different dynamics, we are proposing to analyze and compare to baselines algorithms. Section 3
presents the main theoretical guarantees of this newly introduced two-time-scale class of algorithms.
Results are given both in finite-time and in the nonconvex setting. Finally, we illustrate the advantages of our method in Section 4 on two numerical experiments.

#### 2 Two-Time-Scale Stochastic EM Algorithms

We recall and formalize in this section the different methods found in the literature that aim to solving the large scale problem and the intractable expectation. We then provide the general framework of our method to efficiently tackle the optimization problem (1).

### 9 2.1 Monte Carlo Integration and Stochastic Approximation

As mentioned in the introduction, for complex and possibly nonlinear models, the expectation under the posterior distribution defined in (3) is not tractable. In that case, the first solution involves computing a Monte Carlo integration of that latter term. For all  $i \in [\![1,n]\!]$ , draw for  $m \in [\![1,M]\!]$ , samples  $z_{i,m} \sim p(z_i|y_i;\theta)$  and compute the MC integration  $\tilde{\mathbf{s}}$  of the deterministic quantity  $\overline{\mathbf{s}}(\boldsymbol{\theta})$ :

MC-step: 
$$\tilde{\mathbf{s}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}, y_i)$$
 (5)

and compute  $\hat{\boldsymbol{\theta}} = \overline{\boldsymbol{\theta}}(\hat{\mathbf{s}})$ .

This algorithm bypasses the intractable expectation issue but is rather computationally expensive in order to reach point wise convergence (M needs to be large).

As a result, an alternative to that stochastic algorithm is to use a Robbins-Monro (RM) type of update. We denote

$$\tilde{S}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M} \sum_{m=1}^{M} S(z_{i,m}^{(k)}, y_{i})$$
 (6)

where  $z_{i,m}^{(k)} \sim p(z_i|y_i;\theta^{(k)})$ . At iteration k, the sufficient statistics  $\hat{\mathbf{s}}^{(k+1)}$  is approximated as follows:

SA-step: 
$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})$$
 (7)

where  $\{\gamma_k\}_{k=1}^{\infty} \in [0,1]$  is a sequence of decreasing step sizes to ensure asymptotic convergence. This is called the Stochastic Approximation of the EM (SAEM), see [Delyon et al., 1999] and allows a smooth convergence to the target parameter. It represents the *first level* of our algorithm (needed to temper the variance and noise implied by MC integration).

In the next section, we derive variants of this algorithm to adapt of the sheer size of data of today's applications.

### 2.2 Incremental and Bi-Level Inexact EM Methods

Strategies to scale to large datasets include classical incremental and variance reduced variants. We will explicit a general update that will cover those variants and that represents the *second level* of our algorithm, namely the incremental update of the noisy statistics  $\hat{S}^{(k)}$  inside the RM type of update.

Incremental-step : 
$$\tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho_{k+1} (\mathbf{S}^{(k+1)} - \tilde{S}^{(k)}),$$
 (8)

Note  $\{\rho_k\}_{k=1}^{\infty} \in [0,1]$  is a sequence of step sizes,  $\mathcal{S}^{(k)}$  is a proxy for  $\tilde{S}^{(k)}$ , If the stepsize is equal to one and the proxy  $\mathcal{S}^{(k)} = \hat{S}^{(k)}$ , i.e., computed in a full batch manner as in (6), then we recover the SAEM algorithm. Also if  $\rho_k = 1$ ,  $\gamma_k = 1$  and  $\mathcal{S}^{(k)} = \tilde{S}^{(k)}$ , then we recover the Monte Carlo EM algorithm.

We now introduce three variants of the SAEM update depending on different definitions of the proxy  $\mathcal{S}^{(k)}$  and the choice of the stepsize  $\rho_k$ . Let  $i_k \in [\![1,n]\!]$  be a random index drawn at iteration k and  $\tau_i^k = \max\{k': i_{k'} = i, k' < k\}$  be the iteration index where  $i \in [\![1,n]\!]$  is last drawn prior to iteration k. For iteration  $k \geq 0$ , the fisaeM method draws two indices independently and uniformly as  $i_k, j_k \in [\![1,n]\!]$ . In addition to  $\tau_i^k$  which was defined w.r.t.  $i_k$ , we define  $t_j^k = \{k': j_{k'} = j, k' < k\}$  to be the iteration index where the sample  $j \in [\![1,n]\!]$  is last drawn as  $j_k$  prior to iteration k. With the initialization  $\overline{\mathcal{S}}^{(0)} = \overline{s}^{(0)}$ , we use a slightly different update rule from SAGA inspired by  $[\![$ Reddi

111 et al., 2016]. Then, we obtain:

(iSAEM [Karimi, 2019, Kuhn et al., 2019]) 
$$\mathcal{S}^{(k+1)} = \mathcal{S}^{(k)} + \frac{1}{n} \left( \tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\tau_{i_k}^k)} \right)$$
 (9)

(vrSAEM This paper) 
$$\mathbf{S}^{(k+1)} = \tilde{S}^{(\ell(k))} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\ell(k))}\right) \tag{10}$$

(fiSAEM This paper) 
$$\mathbf{S}^{(k+1)} = \overline{\mathbf{S}}^{(k)} + \left(\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}\right) \tag{11}$$

$$\overline{S}^{(k+1)} = \overline{S}^{(k)} + n^{-1} \left( \tilde{S}_{j_k}^{(k)} - \tilde{S}_{j_k}^{(t_{j_k}^k)} \right).$$
 (12)

The stepsize is set to  $\rho_{k+1}=1$  for the iSAEM method;  $\rho_{k+1}=\gamma$  is constant for the vrSAEM and

fisaem methods. Moreover, for isaem we initialize with  $S^{(0)} = \tilde{S}^{(0)}$ ; for vrsaem we set an

epoch size of m and define  $\ell(k) := m \lfloor k/m \rfloor$  as the first iteration number in the epoch that iteration

115 k is in.

116

### 2.3 Two-Time-Scale Noisy EM methods

We now introduce the general method derived using the two variance reduction techniques described

above. Algorithm 1 leverages both levels (7) and (8) in order to output a vector of fitted parameters

119  $\hat{\boldsymbol{\theta}}^{(K)}$  where K is some randomly chosen termination point.

The updates in (14) is said to have two timescales as the step sizes satisfy  $\lim_{k\to\infty}\gamma_k/\rho_k<1$  such that

 $\tilde{S}^{(k+1)}$  is updated at a faster timescale than  $\hat{\mathbf{s}}^{(k+1)}$ .

# Algorithm 1 Two-Time-Scale Noisy EM methods.

1: **Input:** initializations  $\hat{\theta}^{(0)} \leftarrow 0$ ,  $\hat{\mathbf{s}}^{(0)} \leftarrow \hat{S}^{(0)}$ ,  $K_{\mathsf{max}} \leftarrow \mathsf{max}$ . iteration number.

2: Set the terminating iteration number,  $K \in \{0, \dots, K_{\mathsf{max}} - 1\}$ , as a discrete r.v. with:

$$P(K=k) = \frac{\gamma_k}{\sum_{\ell=0}^{K_{\text{max}}-1} \gamma_\ell}.$$
(13)

3: **for**  $k = 0, 1, 2, \dots, K$  **do** 

4: Draw index  $i_k \in [1, n]$  uniformly (and  $j_k \in [1, n]$  for fiSAEM).

5: Compute  $\hat{S}_{ik}^{(k)}$  using the MC-step (5), for the drawn indices.

6: Compute the surrogate sufficient statistics  $S^{(k+1)}$  using (9) or (10) or (11).

7: Compute  $\hat{S}^{(k+1)}$  and  $\hat{s}^{(k+1)}$  using respectively (8) and (7):

$$\tilde{S}^{(k+1)} = \tilde{S}^{(k)} + \rho_{k+1} (\mathbf{S}^{(k+1)} - \tilde{S}^{(k)}) 
\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})$$
(14)

8: Compute  $\hat{\theta}^{(k+1)}$  via the M-step (4).

9: end for

10: **Return**:  $\hat{\boldsymbol{\theta}}^{(K)}$ .

### **3** Global and Finite Time Analysis of the Scheme

First, we consider the following minimization problem on the statistics space:

$$\min_{\mathbf{s} \in S} V(\mathbf{s}) := \overline{\mathsf{L}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) = r(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s}))$$
 (15)

It has been shown that this minimization problem is equivalent to the optimization problem (1), see

125 [Karimi et al., 2019, Lemma2]

**H1.**  $\Theta$  is an open set of  $\mathbb{R}^d$  and the sets  $\mathsf{Z}, \mathsf{S}$  are measurable open sets such that:

$$S \supset \left\{ n^{-1} \sum_{i=1}^{n} u_i, u_i \in \operatorname{conv}(\bar{\mathbf{s}}_i(\boldsymbol{\theta})) \right\}$$
 (16)

127 where  $\overline{\mathbf{s}}_i(oldsymbol{ heta})$  is defined in (3).

- **H2.** The conditional distribution is smooth on  $int(\Theta)$ . For any  $i \in [1, n]$ ,  $z \in \mathbb{Z}$ ,  $\theta, \theta' \in int(\Theta)^2$ , we have  $|p(z|y_i; \boldsymbol{\theta}) - p(z|y_i; \boldsymbol{\theta}')| \leq L_p \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|$ . 129
- We also recall from the introduction that we consider curved exponential family models. besides: 130
- **H3.** For any  $s \in S$ , the function  $\theta \mapsto L(s,\theta) := r(\theta) + \psi(\theta) \langle s | \phi(\theta) \rangle$  admits a unique global 131 minimum  $\overline{\theta}(\mathbf{s}) \in \text{int}(\Theta)$ . In addition,  $J_{\theta}^{\theta}(\overline{\theta}(\mathbf{s}))$  is full rank and  $\overline{\theta}(\mathbf{s})$  is  $L_{\theta}$ -Lipschitz. 132
- Similar to [Karimi et al., 2019], we denote by  $H_L^{\theta}(\mathbf{s}, \theta)$  the Hessian (w.r.t to  $\theta$  for a given value of 133 s) of the function  $\theta \mapsto L(s, \theta) = r(\theta) + \psi(\theta) - \langle s | \phi(\theta) \rangle$ , and define 134

$$B(\mathbf{s}) := J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \Big( H_{L}^{\theta}(\mathbf{s}, \overline{\boldsymbol{\theta}}(\mathbf{s})) \Big)^{-1} J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top}.$$
(17)

- **H4.** It holds that  $v_{\max} := \sup_{\mathbf{s} \in S} \| B(\mathbf{s}) \| < \infty$  and  $0 < v_{\min} := \inf_{\mathbf{s} \in S} \lambda_{\min}(B(\mathbf{s}))$ . There exists a constant  $L_B$  such that for all  $\mathbf{s}, \mathbf{s}' \in S^2$ , we have  $\| B(\mathbf{s}) B(\mathbf{s}') \| \le L_B \| \mathbf{s} \mathbf{s}' \|$ . 135 136
- We now formulate the main difference with the work done in [Karimi et al., 2019]. The class of 137
- algorithms we develop in this paper are two time-scale where the first stage corresponds to the 138
- variance reduction trick used in [Karimi et al., 2019] in order to accelerate incremental methods and 139
- kill the variance induced by the index sampling. The second stage is the Robbins-Monro type of 140
- update that aims to kill the variance induced by the MC approximations
- Indeed the expectations (3) are never available and requires Monte Carlo approximation. Thus, at 142
- iteration k+1, we introduce the errors when approximating the quantity  $\bar{\mathbf{s}}_i(\hat{\boldsymbol{\theta}}(\hat{\mathbf{s}}^{(k-1)}))$ . For all
- $i \in [1, n], r > 0$  and  $\theta \in \Theta$ , define: 144

$$\eta_i^{(r)} := \tilde{S}_i^{(r)} - \overline{\mathbf{s}}_i(\vartheta^{(r)}) \tag{18}$$

- For instance, we consider that the MC approximation is unbiased if for all  $i \in [1, n]$  and  $m \in$ 145
- $[\![1,M]\!]$ , the samples  $z_{i,m} \sim p(z_i|y_i;\theta)$  are i.i.d. under the posterior distribution, i.e.,  $\mathbb{E}[\eta_i^{(r)}|\mathcal{F}_r] = 0$  where  $\mathcal{F}_r$  is the filtration up to iteration r. 146
- 147
- The following results are derived under the assumption of control of the fluctuations implied by the 148 approximation stated as follows: 149
- **H5.** There exist a positive sequence of MC batch size  $\{M_r\}_{r>0}$  and constants  $(C, C_\eta)$  such that for 150 all k > 0,  $i \in [1, n]$  and  $\vartheta \in \Theta$ :

$$\mathbb{E}\left[\left\|\eta_{i}^{(r)}\right\|^{2}\right] \leq \frac{C_{\eta}}{M_{r}} \quad and \quad \mathbb{E}\left[\left\|\mathbb{E}[\eta_{i}^{(r)}|\mathcal{F}_{r}]\right\|^{2}\right] \leq \frac{C}{M_{r}} \tag{19}$$

- In that setting, we can prove two important results on the Lyapunov function. The first one suggests 152 smoothness: 153
- **Lemma 1.** [Karimi et al., 2019] Assume H2, H3, H4. For all  $s, s' \in S$  and  $i \in [1, n]$ , we have 154

$$\|\overline{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \overline{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s}'))\| \le L_{\mathbf{s}} \|\mathbf{s} - \mathbf{s}'\|, \|\nabla V(\mathbf{s}) - \nabla V(\mathbf{s}')\| \le L_{V} \|\mathbf{s} - \mathbf{s}'\|, \tag{20}$$

- where  $L_s := C_7 L_n L_\theta$  and  $L_V := v_{\text{max}} (1 + L_s) + L_B C_{s}$ . 155
- and the second one suggests a growth condition on the gradient of V depending on the mean field 156 of the algorithm: 157
- **Lemma 2.** Assume H3, H4. For all  $s \in S$ , 158

$$v_{\min}^{-1} \langle \nabla V(\mathbf{s}) | \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \rangle \ge \left\| \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right\|^2 \ge v_{\max}^{-2} \|\nabla V(\mathbf{s})\|^2, \tag{21}$$

See proofs of this Lemma in Appendix A.

#### Global Convergence of Incremental Noisy EM Algorithms 160

- Following the asymptotic analysis of update (9), we present a finite-time analysis of the incremental 161 variant of the Stochastic Approximation of the EM algorithm. 162
- The first intermediate result is the computation of the quantity  $\hat{S}^{(k+1)} \hat{\mathbf{s}}^{(k)}$ , which corresponds to the dirft term of (7) and reads as follows:

**Lemma 3.** Assume H1. The update (9) is equivalent to the following update on the resulting statis-

166

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} \left( \tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} \right)$$
 (22)

Also: 167

$$\mathbb{E}\left[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\right] = \mathbb{E}\left[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right] + \left(1 - \frac{1}{n}\right)\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] + \frac{1}{n}\mathbb{E}\left[\eta_{i_{k}}^{(k+1)}\right]$$
(23)

- where  $\overline{\mathbf{s}}^{(k)}$  is defined by (3) and  $\tau_i^k = \max\{k' : i_{k'} = i, k' < k\}$ .
- See proofs of this Lemma in Appendix B. 169
- The following main result for the iSAEM algorithm is derived under a control of the Monte Carlo 170
- fluctuations as described by assumption H 5. Typically, the controls exhibited below are of interest 171
- when the number of MC samples  $M_k$  increase with the iteration index f. 172
- **Theorem 1.** Let  $K_{\max}$  be a positive integer. Let  $\{\gamma_k, k \in \mathbb{N}\}$  be a sequence of positive step sizes 173
- and consider the iSAEM sequence  $\{\hat{\mathbf{s}}^{(k)}, k \in \mathbb{N}\}$  obtained with  $\rho_{k+1} = 1$  for any k > 0. 174
- Assume that  $\hat{\mathbf{s}}^{(k)} \in \mathcal{S}$  for any  $k \leq K_{\text{max}}$ .
- TO COMPLETE WITH BOUND 176
- See proof in Appendix C. 177

#### 3.2 Global Convergence of Two-Time-Scale Noisy EM Algorithms 178

- We now proceed by giving our main result regarding the global convergence of the fiSAEM algo-179
- rithm. 180
- **Theorem 2.** Let  $K_{\max}$  be a positive integer. Let  $\{\gamma_k, k \in \mathbb{N}\}$  be a sequence of positive step sizes 181 and consider the fiSAEM sequence  $\{\hat{\mathbf{s}}^{(k)}, k \in \mathbb{N}\}$  obtained with  $\rho_{k+1} = \rho$  for any k > 0. 182
- Assume that  $\hat{\mathbf{s}}^{(k)} \in \mathcal{S}$  for any  $k \leq K_{\text{max}}$ . 183
- TO COMPLETE WITH BOUND
- See proof in Appendix D. 185

# **Numerical Examples**

#### 4.1 Gaussian Mixture Models 187

- Given n observations  $\{y_i\}_{i=1}^n$ , we want to fit a Gaussian Mixture Model (GMM) whose distribution 188
- is modeled as a Gaussian mixture of M components, each with a unit variance. Let  $z_i \in [M]$  be 189
- the latent labels of each component, the complete log-likelihood is defined as: 190

$$\log f(z_i, y_i; \boldsymbol{\theta}) = \sum_{m=1}^{M} \mathbb{1}_{\{m\}}(z_i) \left[ \log(\omega_m) - \mu_m^2 / 2 \right] + \sum_{m=1}^{M} \mathbb{1}_{\{m\}}(z_i) \mu_m y_i + \text{constant} . (24)$$

- where  $\boldsymbol{\theta}:=(\boldsymbol{\omega},\boldsymbol{\mu})$  with  $\boldsymbol{\omega}=\{\omega_m\}_{m=1}^{M-1}$  are the mixing weights with the convention  $\omega_M=(\omega_m)$ 191
- $1 \sum_{m=1}^{M-1} \omega_m$  and  $\boldsymbol{\mu} = \{\mu_m\}_{m=1}^M$  are the means. We use the penalization  $\mathbf{r}(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^M \mu_m^2 \log \mathrm{Dir}(\boldsymbol{\omega}; M, \epsilon)$  where  $\delta > 0$  and  $\mathrm{Dir}(\cdot; M, \epsilon)$  is the M dimensional symmetric Dirichlet distribu-192
- 193
- tion with concentration parameter  $\epsilon > 0$ . The constraint set on  $\theta$  is given by 194

$$\Theta = \{\omega_m, \ m = 1, ..., M - 1 : \omega_m \ge 0, \ \sum_{m=1}^{M-1} \omega_m \le 1\} \times \{\mu_m \in \mathbb{R}, \ m = 1, ..., M\}.$$
 (25)

Exact two time scale updates are given in Appendix ?? 195

- In the following experiments on synthetic data, we generate samples from a GMM model with 196
- M=2 components with two mixtures with means  $\mu_1=-\mu_2=0.5$ . We use  $n=10^4$
- synthetic samples and run the bEM method until convergence (to double precision) to obtain
- the ML estimate  $\mu^*$  averaged on 50 datasets. We compare the bEM, SAEM, iSAEM, vr-199
- SAEM and fisaEM methods in terms of their precision measured by  $|\mu \mu^*|^2$ . We set the 200
- stepsize of the SA-step of all method as  $\gamma_k = 1/k^{\alpha}$  with  $\alpha = 0.5$ , and the stepsizes of 201
- the Incremental-step for vrSAEM and the fiSAEM to a constant stepsize equal to  $1/n^{2/3}$ .

The number of MC samples is fixed to M=40 chains. Figure 1 shows the convergence of the precision  $|\mu-\mu^*|^2$  for the different methods against the epoch(s) elapsed (one epoch equals n iterations). We observe that the vrSAEM and fisaem methods outperform the other methods, supporting our analytical results.



Figure 1: TO COMPLETE

#### 4.2 Deformable

203

211

### 212 Template Model for Image Analysis

We now run our different methods using an example taken from [Allassonnière et al., 2010]. Let  $(y_i, i \in [\![1,n]\!])$  be observed images. Let  $u \in \mathcal{U} \subset \mathbb{R}^2$  denote the pixel index on the image and  $x_u \in \mathcal{D} \subset \mathbb{R}^2$  its location.

The model used in this experiment suggests that each image  $y_i$  is a deformation of a template, noted  $I: \mathcal{D} \to \mathbb{R}$ , common to all images of the dataset:

$$y_i(u) = I\left(x_u - \Phi_i\left(x_u, z_i\right)\right) + \varepsilon_i(u) \tag{26}$$

where  $\phi_i: \mathbb{R}^2 \to \mathbb{R}^2$  is a deformation function,  $z_i$  some latent variable parametrizing this deformation and  $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$  is an observation error.

The template model, given  $(p_k, k \in [\![1, k_p]\!])$  landmarks on the template, a fixed known kernel  $\mathbf{K}_p$  and a vector of parameters  $\beta \in \mathbb{R}^{k_p}$  is defined as follows:

$$I_{\xi} = \mathbf{K}_{\mathbf{p}}\beta, \text{ where } (\mathbf{K}_{\mathbf{p}}\beta)(x) = \sum_{k=1}^{k_p} \mathbf{K}_{\mathbf{p}}(x, p_k)\beta_k$$
 (27)

Besides, we parameterize the deformation model given some landmarks  $(g_k, k \in [1, k_g])$  and a fixed kernel  $K_g$  as:

$$\Phi_i(x, z_i) = (\mathbf{K}_{\mathbf{g}} z_i)(x) = \sum_{k=1}^{k_s} \mathbf{K}_{\mathbf{g}}(x, g_k) \left( z_i^{(1)}(k), z_i^{(2)}(k) \right)$$
(28)

where we put a Gaussian prior on the latent variables,  $z_i \sim \mathcal{N}(0,\Gamma)$  and  $z_i \in (\mathbb{R}^{k_g})^2$ . The vector of parameters we ought to estimate is thus  $\boldsymbol{\theta} = (\beta,\Gamma,\sigma)$ . The complete model belongs to the curved exponential family, see [Allassonnière et al., 2007], which vector of sufficient statistics  $S = (S_1(z), S_2(z), S_3(z))$  read:

$$S_{1}(z) = \sum_{i=1}^{n} S_{1}(y_{i}, z_{i}) = \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{t} y_{i}$$

$$S_{2}(z) = \sum_{i=1}^{n} S_{2}(y_{i}, z_{i}) = \sum_{i=1}^{n} (\mathbf{K}_{p}^{z_{i}})^{t} (\mathbf{K}_{p}^{z_{i}})$$

$$S_{3}(z) = \sum_{i=1}^{n} S_{3}(y_{i}, z_{i}) = \sum_{i=1}^{n} z_{i}^{t} z_{i}$$

$$(29)$$

where for any pixel  $u \in \mathbb{R}^2$  and  $j \in [1, k_q]$  we noted:

$$\mathbf{K}_{p}^{z_{i}}(x_{u}, j) = \mathbf{K}_{p}^{z_{i}}(x_{u} - \phi_{i}(x_{u}, z_{i}), p_{j})$$
(30)

Finally, the maximization step yields the following parameter updates:

$$\bar{\theta}(S) = \begin{pmatrix} \beta(S) = S_2^{-1}(z)S_1(z) \\ \Gamma(S) = \frac{1}{n}S_3(z) \\ \sigma(S) = \beta(S)^{\top}S_2(z)\beta(S) - 2\beta(SS_1(z) \end{pmatrix}$$
(31)

# 5 Conclusion

#### 31 References

- S. Allassonnière, Y. Amit, and A. Trouvé. Towards a coherent statistical framework for dense deformable template estimation. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69(1):3–29, 2007.
- S. Allassonnière, E. Kuhn, A. Trouvé, et al. Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. *Bernoulli*, 16(3):641–678, 2010.
- C. Baey, S. Trevezas, and P.-H. Cournède. A non linear mixed effects model of plant growth and estimation via stochastic variants of the em algorithm. *Communications in Statistics-Theory and Methods*, 45(6):1643–1669, 2016.
- O. Cappé. Online em algorithm for hidden markov models. *Journal of Computational and Graphical Statistics*, 20(3):728–749, 2011.
- O. Cappé and E. Moulines. On-line expectation—maximization algorithm for latent data models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 71(3):593–613, 2009.
- A. Chakraborty and K. Das. Inferences for joint modelling of repeated ordinal scores and time to event data. *Computational and mathematical methods in medicine*, 11(3):281–295, 2010.
- B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation version of the em algorithm. *Ann. Statist.*, 27(1):94–128, 03 1999. doi: 10.1214/aos/1018031103. URL https://doi.org/10.1214/aos/1018031103.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the royal statistical society. Series B (methodological)*, pages 1–38, 1977.
- J. P. Hughes. Mixed effects models with censored data with application to hiv rna levels. *Biometrics*, 55(2):625–629, 1999.
- B. Karimi. *Non-Convex Optimization for Latent Data Models: Algorithms, Analysis and Applica- tions.* PhD thesis, 2019.
- B. Karimi, H.-T. Wai, É. Moulines, and M. Lavielle. On the global convergence of (fast) incremental expectation maximization methods. In *Advances in Neural Information Processing Systems*, pages 2833–2843, 2019.
- E. Kuhn, C. Matias, and T. Rebafka. Properties of the stochastic approximation em algorithm with mini-batch sampling. *arXiv preprint arXiv:1907.09164*, 2019.
- P. Liang and D. Klein. Online em for unsupervised models. In *Proceedings of human language* technologies: The 2009 annual conference of the North American chapter of the association for computational linguistics, pages 611–619, 2009.
- C. E. McCulloch. Maximum likelihood algorithms for generalized linear mixed models. *Journal of the American statistical Association*, 92(437):162–170, 1997.
- G. McLachlan and T. Krishnan. *The EM algorithm and extensions*, volume 382. John Wiley & Sons,2007.
- R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In *Learning in graphical models*, pages 355–368. Springer, 1998.
- H. D. Nguyen, F. Forbes, and G. J. McLachlan. Mini-batch learning of exponential family finite mixture models. *Statistics and Computing*, pages 1–18, 2020.

- S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Fast incremental method for nonconvex optimization. arXiv preprint arXiv:1603.06159, 2016.
- H. Robbins and S. Monro. A stochastic approximation method. *The annals of mathematical statis- tics*, pages 400–407, 1951.
- G. C. Wei and M. A. Tanner. A monte carlo implementation of the em algorithm and the poor man's data augmentation algorithms. *Journal of the American statistical Association*, 85(411):699–704, 1990.
- R. Zhu, L. Wang, C. Zhai, and Q. Gu. High-dimensional variance-reduced stochastic gradient
   expectation-maximization algorithm. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pages 4180–4188. JMLR. org, 2017.

### 282 A Proof of Lemma 2

Lemma. Assume H3, H4. For all  $s \in S$ ,

$$v_{\min}^{-1} \langle \nabla V(\mathbf{s}) | \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \rangle \ge \left\| \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right\|^2 \ge v_{\max}^{-2} \|\nabla V(\mathbf{s})\|^2, \tag{32}$$

Proof Using H3 and the fact that we can exchange integration with differentiation and the Fisher's identity, we obtain

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left( \nabla_{\boldsymbol{\theta}} \operatorname{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \mathsf{L}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \left( \nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \operatorname{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \right)$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \mathbf{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} (\mathbf{s} - \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) ,$$
(33)

286 Consider the following vector map:

$$\mathbf{s} \to \nabla_{\boldsymbol{\theta}} L(\mathbf{s}, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})} = \nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \operatorname{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \operatorname{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \mathbf{s} . \tag{34}$$

Taking the gradient of the above map w.r.t. s and using assumption H3, we show that:

$$\mathbf{0} = -J_{\phi}^{\theta}(\overline{\theta}(\mathbf{s})) + \left(\underbrace{\nabla_{\theta}^{2}(\psi(\theta) + r(\theta) - \langle \phi(\theta) | \mathbf{s} \rangle)}_{=H^{\theta}(\mathbf{s};\theta)} \Big|_{\theta = \overline{\theta}(\mathbf{s})}\right) J_{\overline{\theta}}^{\underline{\mathbf{s}}}(\mathbf{s}) . \tag{35}$$

288 The above yields

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathbf{B}(\mathbf{s})(\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})))$$
(36)

where we recall  $B(\mathbf{s}) = J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \Big( H_{L}^{\theta}(\mathbf{s}; \overline{\boldsymbol{\theta}}(\mathbf{s})) \Big)^{-1} J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top}$ . The proof of (32) follows directly from the assumption H4.

# 291 B Proof of Lemma 3

Lemma. Assume  $H_1$ . The update (9) is equivalent to the following update on the resulting statistics

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)})$$
(37)

294 Also:

293

$$\mathbb{E}\left[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\right] = \mathbb{E}\left[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right] + \left(1 - \frac{1}{n}\right)\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] + \frac{1}{n}\mathbb{E}\left[\eta_{i_{k}}^{(k+1)}\right]$$
(38)

295 where  $\bar{\mathbf{s}}^{(k)}$  is defined by (3) and  $\tau_i^k = \max\{k' : i_{k'} = i, \ k' < k\}$ .

296 **Proof** From update (9), we have:

$$\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \tilde{S}^{(k)} - \hat{\mathbf{s}}^{(k)} + \frac{1}{n} \left( \tilde{S}_{i_k}^{(k+1)} - \tilde{S}_{i_k}^{(\tau_i^k)} \right) \\
= \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \frac{1}{n} \left( \tilde{S}_{i_k}^{(\tau_i^k)} - \tilde{S}_{i_k}^{(k+1)} \right)$$
(39)

297 Since  $ilde{S}_{i_k}^{(k+1)}=\overline{\mathbf{s}}_{i_k}(m{ heta}^{(k)})+\eta_{i_k}^{(k+1)}$  we have

$$\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \tilde{S}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)}) + \frac{1}{n} \eta_{i_k}^{(k+1)}$$
(40)

298 Taking the full expectation of both side of the equation leads to:

$$\mathbb{E}\left[\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\right] = \mathbb{E}\left[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right] - \frac{1}{n}\mathbb{E}\left[\mathbb{E}\left[\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}_{i_{k}}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_{k}\right]\right] + \frac{1}{n}\mathbb{E}\left[\eta_{i_{k}}^{(k+1)}\right] \tag{41}$$

299 The following equalities:

$$\mathbb{E}\left[\tilde{S}_{i}^{(\tau_{i}^{k})}|\mathcal{F}_{k}\right] = \frac{1}{n}\sum_{i=1}^{n}\tilde{S}_{i}^{(\tau_{i}^{k})} \quad \text{and} \quad \mathbb{E}\left[\bar{\mathbf{s}}_{i_{k}}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_{k}\right] = \bar{\mathbf{s}}^{(k)}$$
(42)

300 concludes the proof of the Lemma.

# 301 C Proof of Theorem 1

- Theorem. Let  $K_{\max}$  be a positive integer. Let  $\{\gamma_k, k \in \mathbb{N}\}$  be a sequence of positive step sizes and consider the iSAEM sequence  $\{\hat{\mathbf{s}}^{(k)}, k \in \mathbb{N}\}$  obtained with  $\rho_{k+1} = 1$  for any k > 0.
- 304 Assume that  $\hat{\mathbf{s}}^{(k)} \in \mathcal{S}$  for any  $k \leq K_{\text{max}}$ .
- 305 TO COMPLETE WITH BOUND
- Proof We begin our proof by giving this auxiliary Lemma setting an upper bound for the quantity  $\mathbb{E}\left[\|\tilde{S}^{(k+1)} \hat{s}^{(k)}\|^2\right]$
- Lemma 4. For any  $k \ge 0$  and consider the iSAEM update in (9), it holds that

$$\mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}\right] \leq 4\mathbb{E}\left[\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}\right] + \frac{2L_{\mathbf{s}}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}\left[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}\right] + 2\frac{C_{\eta}}{M_{k}} + 4\mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right]$$
(43)

309 **Proof** Applying the iSAEM update yields:

$$\mathbb{E}[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^{2}] = \mathbb{E}[\|\tilde{S}^{(k)} - \hat{s}^{(k)} - \frac{1}{n} (\tilde{S}_{i_{k}}^{(\tau_{i}^{k})} - \tilde{S}_{i_{k}}^{(k)})\|^{2}] \\
\leq 4\mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\right\|^{2}\right] + 4\mathbb{E}\left[\left\|\overline{\mathbf{s}}^{(k)} - \hat{s}^{(k)}\right\|^{2}\right] \\
+ \frac{2}{n^{2}} \mathbb{E}\left[\left\|\overline{\mathbf{s}}_{i_{k}}^{(k)} - \overline{\mathbf{s}}_{i_{k}}^{(t_{i_{k}}^{k})}\right\|^{2}\right] + 2\frac{C_{\eta}}{M_{k}} \tag{44}$$

The last expectation can be further bounded by

$$\frac{2}{n^2} \mathbb{E}[\|\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{2}{n^3} \sum_{i=1}^n \mathbb{E}[\|\overline{\mathbf{s}}_i^{(k)} - \overline{\mathbf{s}}_i^{(t_i^k)}\|^2] \stackrel{(a)}{\leq} \frac{2 \operatorname{L}_{\mathbf{s}}}{n^3} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2], \tag{45}$$

where (a) is due to Lemma 1 and which concludes the proof of the Lemma.

Under the smoothness of the Lyapunov function V (cf. Lemma 1), we can write:

$$V(\hat{\mathbf{s}}^{(k+1)}) \le V(\hat{\mathbf{s}}^{(k)}) + \gamma_{k+1} \langle \tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)} | \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} ||\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}||^2$$
 (46)

Taking the expectation on both sidesyields:

$$\mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k+1)})\right] \leq \mathbb{E}\left[V(\hat{\boldsymbol{s}}^{(k)})\right] + \gamma_{k+1}\mathbb{E}\left[\left\langle \tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \mid \nabla V(\hat{\boldsymbol{s}}^{(k)})\right\rangle\right] + \frac{\gamma_{k+1}^2 L_V}{2} \mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2\right]$$

$$\tag{47}$$

Using Lemma 3, we obtain:

$$\mathbb{E}\left[\left\langle \tilde{\mathbf{S}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] = \\
\mathbb{E}\left[\left\langle \bar{\mathbf{S}}^{(k)} - \hat{\mathbf{s}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] \\
\stackrel{(a)}{\leq} -v_{\min} \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \left(1 - \frac{1}{n}\right) \mathbb{E}\left[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] + \frac{1}{n} \mathbb{E}\left[\left\langle \eta_{i_{k}}^{(k)} \mid \nabla V(\hat{\mathbf{s}}^{(k)})\right\rangle\right] \\
\stackrel{(b)}{\leq} -v_{\min} \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
+ \frac{\beta(n-1)+1}{2n} \mathbb{E}\left[\left\|\nabla V(\hat{\mathbf{s}}^{(k)})\right\|^{2}\right] + \frac{1}{2n} \mathbb{E}\left[\left\|\eta_{i_{k}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1}{2n} \mathbb{E}\left[\left\|\eta_{i_{k}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1}{2n} \mathbb{E}\left[\left\|\eta_{i_{k}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
\stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1$$

where (a) is due to the growth condition (2) and (b) is due to Young's inequality (with  $\beta \to 1$ ). Note  $a_k = \gamma_{k+1} \left( v_{\min} - v_{\max}^2 \frac{\beta(n-1)+1}{2n} \right)$  and

317 
$$a_k = \gamma_{k+1} \left( v_{\min} - v_{\max}^2 \frac{\beta(n-1)+1}{2n} \right)$$
 and

$$a_{k}\mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] + \frac{\gamma_{k+1}^{2} L_{V}}{2} \mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}\right] + \frac{\gamma_{k+1}(1 - \frac{1}{n})}{2\beta} \mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] + \frac{\gamma_{k+1}}{2n} \mathbb{E}\left[\left\|\eta_{i_{k}}^{(k)}\right\|^{2}\right]$$

$$(49)$$

We now give an upper bound of  $\mathbb{E}\left[\|\tilde{S}^{(k+1)} - \hat{s}^{(k)}\|^2\right]$  using Lemma 4 and plug it into (49):

$$\left(a_{k} - 2\gamma_{k+1}^{2} L_{V}\right) \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\right\|^{2}\right] \leq \mathbb{E}\left[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})\right] \\
+ \gamma_{k+1} \left(\frac{1}{2\beta}(1 - \frac{1}{n}) + 2\gamma_{k+1} L_{V}\right) \mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}\right\|^{2}\right] \\
+ \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n}\right) \mathbb{E}\left[\left\|\eta_{i_{k}}^{(k)}\right\|^{2}\right] \\
+ \frac{\gamma_{k+1}^{2} L_{V} L_{\mathbf{s}}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}] \tag{50}$$

When, for any k > 0,  $\alpha_k > 0$ , we have by Lemma 2 that:

$$\sum_{k=0}^{K_{\text{max}}} \alpha_k \mathbb{E}\left[\left\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\right\|^2\right] \le v_{\text{max}}^2 \sum_{k=0}^{K_{\text{max}}} \alpha_k \mathbb{E}\left[\left\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\right\|^2\right]$$
(51)

which yields an upper bound of the gradient of the Lyapunov function V along the path of the iSAEM update and concludes the proof of the Theorem.

### 322 D Proof of Theorem 2

Theorem. Let  $K_{\max}$  be a positive integer. Let  $\{\gamma_k, k \in \mathbb{N}\}$  be a sequence of positive step sizes and consider the fiSAEM sequence  $\{\hat{\mathbf{s}}^{(k)}, k \in \mathbb{N}\}$  obtained with  $\rho_{k+1} = 1$  for any k > 0.

- 325 Assume that  $\hat{\mathbf{s}}^{(k)} \in \mathcal{S}$  for any  $k \leq K_{\text{max}}$ .
- 326 TO COMPLETE WITH BOUND
- Proof We begin our proof by giving this auxiliary Lemma setting an upper bound for the quantity  $\mathbb{E}[\|\hat{s}^{(k)} \tilde{S}^{(k+1)}\|^2]$
- **Lemma 5.** For any  $k \geq 0$  and consider the fiSAEM update in (11) with  $\rho_k = \rho$ , it holds that

$$\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)}\|^{2}] \leq 4\rho^{2}\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}\|^{2}] + \frac{4\rho^{2} L_{\mathbf{s}}^{2}}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}] + 2\rho^{2} \frac{C_{\eta}}{M_{k}} + 4(1-\rho)^{2}\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}]$$
(52)

330 **Proof** Applying the fiSAEM update yields:

$$\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k+1)}\|^{2}] = \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} + \rho(\tilde{S}^{(k)} - \mathbf{S}^{(k+1)})\|^{2}]$$

$$= \mathbb{E}[\|(1 - \rho)(\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}) + \rho(\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}) + \rho\left[(\overline{\mathbf{s}}^{(k)} - \overline{\mathbf{S}}^{(k)}) - (\tilde{S}^{(k)}_{i_{k}}) - \tilde{S}^{(\tau_{i_{k}}^{k})}_{i_{k}}\right]\|^{2}]$$
(53)

We observe that  $\overline{\mathcal{S}}^{(k)} = \frac{1}{n} \sum_{i=1}^n \overline{s}_i^{(t_i^k)}$  and  $\mathbb{E}[\tilde{S}_{i_k}^{(k)}) - \tilde{S}_{i_k}^{(\tau_i^k)}] = \overline{\mathbf{s}}^{(k)} - \overline{\mathcal{S}}^{(k)} + \mathbb{E}[\eta_{i_k}^{(\tau_i^k)}]$ . Thus

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k+1)}\|^2]$$

$$\leq 4(1-\rho)^{2}\mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}\right] + 4\rho^{2}\mathbb{E}\left[\|\hat{\boldsymbol{s}}^{(k)} - \bar{\boldsymbol{s}}^{(k)}\|^{2}\right] + 2\rho^{2}\mathbb{E}\left[\left\|\overline{\boldsymbol{s}}_{i_{k}}^{(k)} - \bar{\boldsymbol{s}}_{i_{k}}^{(k_{i_{k}})}\right\|^{2}\right] + 2\rho^{2}\frac{C_{\eta}}{M_{k}} \tag{54}$$

where we use the variance inequality. The last expectation can be further bounded by

$$\mathbb{E}[\|\overline{\mathbf{s}}_{i_{k}}^{(k)} - \overline{\mathbf{s}}_{i_{k}}^{(t_{i_{k}}^{k})}\|^{2}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\overline{\mathbf{s}}_{i}^{(k)} - \overline{\mathbf{s}}_{i}^{(t_{i}^{k})}\|^{2}] \stackrel{(a)}{\leq} \frac{\mathbf{L_{s}}}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}], \tag{55}$$

where (a) is due to Lemma 1 and which concludes the proof of the Lemma.

Using the smoothness of V and update (11), we obtain:

$$V(\hat{s}^{(k+1)}) \leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} L_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \langle \hat{s}^{(k)} - \tilde{S}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle$$

$$- \gamma_{k+1} \rho \langle \tilde{S}^{(k)} - \mathcal{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} L_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}$$

$$\leq V(\hat{s}^{(k)}) - \gamma_{k+1} \rho \langle \hat{s}^{(k)} - \mathcal{S}^{(k+1)} | \nabla V(\hat{s}^{(k)}) \rangle$$

$$- \gamma_{k+1} (1 - \rho) \langle \hat{s}^{(k)} - \tilde{S}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle + \frac{\gamma_{k+1}^{2} L_{V}}{2} \| \hat{s}^{(k)} - \tilde{S}^{(k+1)} \|^{2}$$

$$(56)$$

Taking the expectaitons on both sides and noting that  $\mathbb{E}[\mathbf{S}^{(k+1)}] = \mathbb{E}\left[\mathbb{E}[\mathbf{S}^{(k+1)}|\mathcal{F}_k]\right] = \overline{\mathbf{s}}^{(k)}$  (independence of both indices  $i_k$  and  $j_k$ ), we have:

$$\mathbb{E}[V(\hat{s}^{(k+1)}) - V(\hat{s}^{(k)})] \leq -\gamma_{k+1}\rho\mathbb{E}[\langle \hat{s}^{(k)} - \overline{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle]$$

$$-\gamma_{k+1}(1-\rho)\mathbb{E}[\langle \hat{s}^{(k)} - \tilde{S}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle] + \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k+1)}\|^{2}]$$

$$\stackrel{(a)}{\leq} -(\gamma_{k+1}v_{\max}^{2} \frac{(1-\rho)}{2} + \gamma_{k+1}\rho)\mathbb{E}\left[\|\hat{s}^{(k)} - \overline{s}^{(k)}\|^{2}\right] - \gamma_{k+1}\frac{1-\rho}{2}\mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k)}\|^{2}]$$

$$+ \frac{\gamma_{k+1}^{2} L_{V}}{2}\mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k+1)}\|^{2}]$$

$$(57)$$

where (a) used the growth condition (32) twice (on  $\langle \hat{s}^{(k)} - \overline{s}^{(k)} | \nabla V(\hat{s}^{(k)}) \rangle$  and  $\|\nabla V(\hat{s}^{(k)})\|^2$  and the triangle inequality.

Bounding  $\mathbb{E}[\|\hat{s}^{(k)} - \tilde{S}^{(k+1)}\|^2]$  Using Lemma 5, we obtain:

$$\mathbb{E}[V(\hat{\mathbf{s}}^{(k+1)}) - V(\hat{\mathbf{s}}^{(k)})] \leq -\gamma_{k+1} \left( v_{\max}^{2} \frac{(1-\rho)}{2} + \rho - 2\rho^{2} \gamma_{k+1} L_{V} \right) \mathbb{E}\left[ \left\| \hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)} \right\|^{2} \right] 
+ \frac{2\gamma_{k+1}^{2} L_{V} \rho^{2} L_{\mathbf{s}}^{2}}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}] 
+ \gamma_{k+1} (1-\rho) \left( 2\gamma_{k+1} L_{V} (1-\rho) - \frac{1}{2} \right) \mathbb{E}\left[ \left\| \hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)} \right\|^{2} \right] 
+ \gamma_{k+1}^{2} \rho^{2} L_{V} \frac{C_{\eta}}{M_{k}}$$
(58)

Next, we observe that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{1}{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2] \right)$$
(59)

where the equality holds as  $i_k$  and  $j_k$  are drawn independently. For any  $\beta > 0$ , it holds

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}] \\
= \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2} + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\rangle\Big] \\
= \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2} + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} - 2\gamma_{k+1}\langle\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\rangle\Big] \\
\leq \mathbb{E}\Big[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2} + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^{2} + \gamma_{k+1}\beta\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}\Big]$$
(60)

where the last inequality is due to the Young's inequality. Subsequently, we have

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(t_{i}^{k+1})}\|^{2}] \\
\leq \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\Big[ (1 + \gamma_{k+1}\beta) \|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}}{\beta} \|\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}\|^{2} \Big]$$
(61)

Observe that  $\hat{s}^{(k+1)} - \hat{s}^{(k)} = \gamma_{k+1}(\tilde{S}^{(k+1)} - \hat{s}^{(k)})$ . Applying Lemma 5 yields:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(t_{i}^{k+1})}\|^{2}] \leq \left(4\rho^{2} + \frac{\gamma_{k+1}}{\beta}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}\|^{2}] \\
+ \left(\frac{4\rho^{2} L_{\mathbf{s}}^{2}}{n} + \frac{(n-1)(1+\gamma_{k+1}\beta)}{n^{2}}\right) \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}] \\
+ 2\rho^{2} \frac{C_{\eta}}{M_{k}} + 4(1-\rho)^{2} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{\mathbf{S}}^{(k)}\|^{2}] \tag{62}$$

з45 Define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2]$$
 (63)

and note that

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + 4\rho^2 L_{\mathbf{s}}^2 + \gamma_{k+1}\beta\right) \Delta^{(k)} + \left(4\rho^2 + \frac{\gamma_{k+1}}{\beta}\right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}\|^2] + 2\rho^2 \frac{C_{\eta}}{M_k} + 4(1 - \rho)^2 \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2]$$
(64)

Bounding  $\mathbb{E}\left[\left\|\hat{s}^{(k)} - \tilde{S}^{(k)}\right\|^2\right]$  Remark that this term is the price we pay for the two time scale dynamics and corresponds to the gap between the two asynchronous updates (one is on  $\hat{s}^{(k)}$  and the other on  $\tilde{S}^{(k)}$ ).

350 FIND AN UPPER BOUND TO THAT GAP

351

#### **Practical Implementations of Two-Time-Scale EM Methods** $\mathbf{E}$

#### Gaussian mixture models 353

#### **E.1.1** Model assumptions 354

We first recognize that the constraint set for  $\theta$  is given by 355

$$\Theta = \Delta^M \times \mathbb{R}^M. \tag{65}$$

Using the partition of the sufficient statistics as  $S(y_i,z_i) = (S^{(1)}(y_i,z_i)^\top,S^{(2)}(y_i,z_i)^\top,S^{(3)}(y_i,z_i))^\top \in \mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$ , the partition  $\phi(\boldsymbol{\theta}) = (\phi^{(1)}(\boldsymbol{\theta})^\top,\phi^{(2)}(\boldsymbol{\theta})^\top,\phi^{(3)}(\boldsymbol{\theta}))^\top \in \mathbb{R}^{M-1}\times\mathbb{R}^{M-1}\times\mathbb{R}$  and the fact that  $\mathbb{1}_{\{M\}}(z_i) = 1 - \sum_{m=1}^{M-1} \mathbb{1}_{\{m\}}(z_i)$ , the complete data log-likelihood can be expressed as in 356 357 360

$$s_{i,m}^{(1)} = \mathbb{1}_{\{m\}}(z_i), \quad \phi_m^{(1)}(\boldsymbol{\theta}) = \left\{ \log(\omega_m) - \frac{\mu_m^2}{2} \right\} - \left\{ \log(1 - \sum_{j=1}^{M-1} \omega_j) - \frac{\mu_M^2}{2} \right\},$$

$$s_{i,m}^{(2)} = \mathbb{1}_{\{m\}}(z_i)y_i, \quad \phi_m^{(2)}(\boldsymbol{\theta}) = \mu_m, \quad s_i^{(3)} = y_i, \quad \phi^{(3)}(\boldsymbol{\theta}) = \mu_M,$$

$$(66)$$

and  $\psi(\boldsymbol{\theta}) = -\left\{\log(1-\sum_{m=1}^{M-1}\omega_m) - \frac{\mu_M^2}{2\sigma^2}\right\}$ . We also define for each  $m\in [\![1,M]\!],\, j\in [\![1,3]\!],$ 

 $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i,m}^{(j)}$ . Consider the following latent sample used to compute an approximation of the conditional expected value  $\mathbb{E}_{\theta}[\mathbbm{1}_{\{z_i=m\}}|y=y_i]$ :

$$z_{i,m} \sim \mathbb{P}\left(z_i = m | y_i; \boldsymbol{\theta}\right)$$
 (67)

where  $m \in [1, M]$ ,  $i \in [1, n]$  and  $\boldsymbol{\theta} = (\boldsymbol{w}, \boldsymbol{\mu}) \in \Theta$ . 364

In particular, given iteration k+1, the computation of the approximated quantity  $\tilde{S}_{ik}^{(k)}$  during 365 Incremental-step updates, see (8) can be written as 366

$$\tilde{S}_{i_{k}}^{(k)} = \left( \underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1}), \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})}_{:=\tilde{\mathbf{s}}_{i_{k}}^{(1)}}, \underbrace{\mathbb{1}_{\{1\}}(z_{i_{k},1})y_{i_{k}}, \dots, \mathbb{1}_{\{M-1\}}(z_{i_{k},M-1})y_{i_{k}}}_{:=\tilde{\mathbf{s}}_{i_{k}}^{(3)}(\boldsymbol{\theta}^{(k)})} \right)^{\top}.$$
(68)

Recall that we have used the following regularizer:

$$\mathbf{r}(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \epsilon \sum_{m=1}^{M} \log(\omega_m) - \epsilon \log\left(1 - \sum_{m=1}^{M-1} \omega_m\right), \tag{69}$$

It can be shown that the regularized M-step in (4) evaluates to

$$\overline{\theta}(s) = \begin{pmatrix} (1+\epsilon M)^{-1} \left(s_1^{(1)} + \epsilon, \dots, s_{M-1}^{(1)} + \epsilon\right)^{\top} \\ \left((s_1^{(1)} + \delta)^{-1} s_1^{(2)}, \dots, (s_{M-1}^{(1)} + \delta)^{-1} s_{M-1}^{(2)}\right)^{\top} \\ \left(1 - \sum_{m=1}^{M-1} s_m^{(1)} + \delta\right)^{-1} \left(s^{(3)} - \sum_{m=1}^{M-1} s_m^{(2)}\right) \end{pmatrix} = \begin{pmatrix} \overline{\boldsymbol{\omega}}(s) \\ \overline{\boldsymbol{\mu}}(s) \\ \overline{\boldsymbol{\mu}}_M(s) \end{pmatrix} . \tag{70}$$

where we have defined for all  $m \in [1, M]$  and  $j \in [1, 3]$ ,  $s_m^{(j)} = n^{-1} \sum_{i=1}^n s_{i,n}^{(j)}$ 

#### E.1.2 Algorithms updates 370

In the sequel, recall that, for all  $i \in [n]$  and iteration k, the computed statistic  $\tilde{S}_{i_k}^{(k)}$  is defined by (68). At iteration k, the several E-steps defined by (9) or (10) and (11) leads to the definition of the 371

372

quantity  $\hat{\mathbf{s}}^{(k+1)}$ . For the GMM example, after the initialization of the quantity  $\hat{\mathbf{s}}^{(0)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(0)}$ , 373

those E-steps break down as follows: 374

**Batch EM (EM):** for all  $i \in [1, n]$ , compute  $\overline{\mathbf{s}}_{i}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = n^{-1} \sum_{i=1}^{n} \overline{\mathbf{s}}_{i}^{(k)} . \tag{71}$$

where  $\overline{\mathbf{s}}_i^{(k)}$  are computed using the exact conditional expected balue  $\mathbb{E}_{\pmb{\theta}}[\mathbbm{1}_{\{z_i=m\}}|y=y_i]$ :

$$\widetilde{\omega}_m(y_i; \boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}} [\mathbb{1}_{\{z_i = m\}} | y = y_i] = \frac{\omega_m \exp(-\frac{1}{2}(y_i - \mu_i)^2)}{\sum_{j=1}^M \omega_j \exp(-\frac{1}{2}(y_i - \mu_j)^2)},$$
(72)

Incremental EM (iEM): draw an index  $i_k$  uniformly at random on [n], compute  $\overline{\mathbf{s}}_{i_k}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \frac{1}{n} (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\tau_i^k)}) = n^{-1} \sum_{i=1}^n \bar{\mathbf{s}}_i^{(\tau_i^k)}. \tag{73}$$

batch SAEM (SAEM): draw an index  $i_k$  uniformly at random on [n], compute  $\overline{\mathbf{s}}_{i_k}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} \tilde{S}^{(k)} . \tag{74}$$

where  $=\frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(k)}$  with  $\tilde{S}_i^{(k)}$  defined in (68).

381

Incremental SAEM (iSAEM): draw an index  $i_k$  uniformly at random on [n], compute  $\overline{\mathbf{s}}_{i_k}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)}(1 - \gamma_{k+1}) + \gamma_{k+1} \left( \tilde{S}^{(k)} + \frac{1}{n} \left( \tilde{S}^{(k)}_{i_k} - \tilde{S}^{(\tau_i^k)}_{i_k} \right) \right). \tag{75}$$

Variance Reduced Two-Time-Scale EM (vrSAEM): draw an index  $i_k$  uniformly at random on [n], compute  $\overline{s}_{i_k}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} (1 - \rho) + \rho (\tilde{S}^{(\ell(k))} + (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(\ell(k))}))) . \tag{76}$$

Fast Incremental Two-Time-Scale EM (fiSAEM): draw an index  $i_k$  uniformly at random on [n], compute  $\bar{\mathbf{s}}_{i_k}^{(k)}$  and set

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} (1 - \gamma_{k+1}) + \gamma_{k+1} (\tilde{S}^{(k)} (1 - \rho) + \rho (\overline{\mathbf{S}}^{(k)} + (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)})) . \tag{77}$$

Finally, the k-th update reads  $\hat{\theta}^{(k+1)} = \overline{\theta}(\hat{\mathbf{s}}^{(k+1)})$  where the function  $s \to \overline{\theta}(s)$  is defined by (70).