Carbohydrates

1. Introduction

- Carbohydrates are polyhydroxy aldehydes or ketones or substances that yield such compounds on hydrolysis.
- They contain C, H, O atoms, generally with the empirical formula $C_n(H_2O)_n$.
- They are called **saccharides** (Greek: sakkharon = sugar).
- Roles in biology:
 - o **Energy source** (e.g., glucose).
 - o **Energy storage** (e.g., starch in plants, glycogen in animals).
 - Structural components (e.g., cellulose in plant cell walls, chitin in exoskeleton of insects).
 - o Cell recognition and signaling (glycoproteins, glycolipids).

2. Nomenclature of Carbohydrates

1. Based on functional group

- o Aldoses \rightarrow contain an aldehyde group (-CHO).
- \sim **Ketoses** → contain a keto group (C=O).

Monosaccharide units

2. Based on number of carbon atoms

- \circ 3 C \rightarrow **Triose** (e.g., Glyceraldehyde, Dihydroxyacetone).
- \circ 4 C \rightarrow **Tetrose** (e.g., Erythrose, Erythrulose).
- \circ 5 C \rightarrow **Pentose** (e.g., Ribose, Ribulose).
- o 6 C \rightarrow **Hexose** (e.g., Glucose, Fructose, Galactose).
- \circ 7 C \rightarrow **Heptose** (e.g., Sedoheptulose).

3. Stereochemistry

- o Carbohydrates show **isomerism** (optical isomers, epimers, anomers).
- O **D and L series** are based on configuration of the asymmetric carbon farthest from the carbonyl group, relative to glyceraldehyde.

 \circ α and β anomers occur due to different orientations of the OH group at the anomeric carbon (C1 in aldoses, C2 in ketoses).

3. Classification of Carbohydrates

(A) Monosaccharides

- **Definition**: Simple sugars that cannot be hydrolyzed further into smaller carbohydrate units.
- Properties:
 - Colorless, crystalline solids.
 - o Soluble in water, sweet in taste.
 - o Reducing sugars (due to free carbonyl group).
- Examples:
 - o **Glucose** (aldohexose, blood sugar).
 - o **Fructose** (ketohexose, fruit sugar).
 - o **Ribose** (aldopentose, RNA component).
- Structure Example Glucose:
 - Exists in straight chain (open) and cyclic forms (α-D-glucopyranose, β -D-glucopyranose).
 - o Six-membered pyranose ring predominates.

(B) Disaccharides

- **Definition**: Sugars formed by condensation of two monosaccharides via **glycosidic** linkage.
- Properties:
 - o May be reducing or non-reducing depending on free anomeric carbon.
- Examples:
 - 1. **Maltose** = Glucose + Glucose (α -1,4 linkage) \rightarrow reducing sugar.
 - 2. **Lactose** = Glucose + Galactose (β -1,4 linkage) \rightarrow reducing sugar.
 - 3. **Sucrose** = Glucose + Fructose (α -1,2 linkage) \rightarrow non-reducing sugar.
- Structure Example Sucrose:
 - Both anomeric carbons are involved in glycosidic bond, hence no free carbonyl
 → non-reducing.

Disaccharides

(C) Oligosaccharides

- **Definition**: Carbohydrates containing **3–10 monosaccharide residues** linked by glycosidic bonds.
- Properties:
 - Often occur as components of glycoproteins, glycolipids.
 - o Important in **cell recognition and immune response**.
- Examples:
 - **Raffinose** (Galactose + Glucose + Fructose).
 - o **Stachyose**, **Verbascose** in legumes.

(D) Polysaccharides

- **Definition**: Long chains of monosaccharide units (≥ 10 , often hundreds to thousands).
- Types:
 - 1. **Homopolysaccharides** only one type of monosaccharide.
 - **Starch** (plant storage, glucose units).
 - Two components: **Amylose** (linear α -1,4) and **Amylopectin** (branched α -1,4 and α -1,6).
 - **Glycogen** (animal storage, highly branched α -1,4 and α -1,6).
 - Cellulose (plant cell wall, linear β -1,4 glucose chains).
 - **Chitin** (exoskeleton of arthropods, β-1,4 N-acetylglucosamine).
 - 2. **Heteropolysaccharides** more than one type of monosaccharide.
 - Hyaluronic acid, Heparin.
- Properties:
 - o Generally tasteless, insoluble in water.
 - o Provide storage or structural support.

4. Representative Structures (to show students)

- 1. Monosaccharide Glucose (α and β forms).
- 2. Disaccharide Maltose with α -1.4 bond.
- 3. Polysaccharide Amylose (linear helix), Amylopectin (branched), Cellulose (straight chain).

5. Summary Table

Class	Definition	Units	Bond type	Example	Function
Monosaccharides	Simple sugars,	1	_	Glucose,	Energy source,
	basic units			Fructose,	nucleic acids
				Ribose	
Disaccharides	Two	2	Glycosidic	Maltose,	Transport/storage
	monosaccharides		bond	Sucrose,	
	linked			Lactose	
Oligosaccharides	Short chains of	3–10	Glycosidic	Raffinose,	Cell recognition
	sugars			Stachyose	
Polysaccharides	Large polymers	100-	Glycosidic	Starch,	Storage, structure
		1000s	$(\alpha \text{ or } \beta)$	Glycogen,	
				Cellulose	