

IT Infrastructure Administration

Day 5: Monitoring and Troubleshooting

Ephrem Teshale(PhD)
Tadios Abebe

Monitoring and Troubleshooting

Day 5 Training Outline

```
Troubleshooting Methodology
Common Troubleshooting Procedure
Resolving common system problems
       Hardware-related
       Software-related
       User interface-related
Linux Troubleshooting
       top, htop, sysstat and sar, netstat, free, df, du,
       Isof, ping, traceroute, telnet, packet analysis,
       w & uptime, who & whoami, history, logging, journald, journalctl
Real-world system issues
       user issues
       disk issues
       system issue
       boot issue
       permission issue
       file issue
       connectivity issue
       package issues
       service issue
       remote access issue
Windows Troubleshooting
       System Information
       Event Viewer
       Performance Analysis Tools
Knowledge Check
Exercise
```

Troubleshooting Methodology

Troubleshooting involves monitoring that translates to observing log files and running performance utilities system to identify problems and their cause

Proactive Maintenance:

- Minimizing change of future problems
- Example: Perform a regular system backup
- Best for smaller or disconnected environments

Reactive Maintenance:

- Correcting problems when they arise
- Example: Incident response

Documentation:

- System information stored in log book for future references
- All maintenance action should be documented

Common Troubleshooting Procedure

Common Troubleshooting Procedure con't

Two troubleshooting golden rules:

Prioritize Problems:

- Prioritize problem according to severity
- Spend reasonable amount of time on each problem given its priority
- Ask for help if you can't solve the problem

Solve the root of the problem:

- Try to solve the root of the problem
- Avoid missing underlying cause
- Justify why a certain solution is successful

Resolving common system problems

Three main categories of problems:

- 1. Hardware-related
- 2. Software-related
- 3. User interface-related

Hardware Related Problems

Often involve improper hardware or software configuration. Some example includes

- Failed DIMMs or Improper memory configuration
- Failed CPU or improper socket placement
- Failed PCI components
- Failed boot drives
- Loose hardware connection
- Hardware driver issue

On Linux hardware related issues are often logged on dmesg, /var/log/boot.log, /var/log/messages

- dmesg: displays the hardware that is detected by the linux kernel
- Isusb: display a list of USB devices detected by the Linux kernel
- Ispci: displays a list of PCI devices detected by the Linux kernel

You can compare outputs of commands to output of Ismod to determine if driver module is missing from kernel

Software Related Problems

- Missing program libraries/files, process restrictions, or conflicting application dependencies
 - Prerequisite shared libraries or packages required for program execution
 - Idd: display shared libraries used by a program. .so files are shared objects similar to windows dll. i.e Idd /bin/bash
- To may running processes
 - Solve by killing parent process of zombie processes
- /var/log directory contains most system log files
- Grub problems is typically result of missing files in /boot directory
- Filesystem related issue should be checked with fsck utility, and running fsck is recommended on unmounted filesystem

Linux Troubleshooting

Linux Architecture Recap

Important Tools

- top
- sysstat
- sar
- iostat
- vmstat
- free
- df
- du
- ps
- netstat

- history
- Isof
- ping
- telnet
- ifconfig
- w & uptime
- who
- whoami

top

- Small tool, pre-installed in many unix systems.
- Display all running and active real time process in ordered list & updates it regularly.
- □ CPU usage, Memory usage, Swap memory, Cache size, Buffer size, Process pid, User, Commands and much more
- Show high memory and cpu utilization of a running process

	7 total, 0.0 us, (stoppe wa,		, 0.0 si, 0.0 st
iB Mem :	1983.3	total,	587.	9 free,	224.0	used,	117	1.5 buff/cache
iB Swap:	1024.0	total,	1024.	0 free,	0.0	used.	159	3.1 avail Mem
ID to si	gnal/kill	defau]	lt pid =	1]				
PID U	ISER PI	R NI	VIRT	RES	SHR S	%CPU	98MEM	TIME+ COMMAND
1 r	root 2	0	20752	11240	8308 5	0.0	0.6	0:03.34 systemd
2 r	oot 2	0	0	0	0 5	0.0	0.0	0:00.00 kthreadd
3 r	root (-20	0	0	0 I	0.0	0.0	0:00.00 rcu_gp
4 r	oot	-20	0	0	0 I	0.0	0.0	0:00.00 rcu_par_gp
6 r	root	-20	0	0	0 I	0.0	0.0	0:00.00 kworker/0:0H-events_highpri
8 r	oot (-20	0	0	0 I	0.0	0.0	0:00.00 mm_percpu_wq
9 r	oot 2	0	0	0	0.5	0.0	0.0	0:00.17 ksoftirqd/0
10 r	oot 2	0	0	0	0 I	0.0	0.0	0:00.35 rcu_sched
11 r	oot r	. 0	0	0	0 5	0.0	0.0	0:00.02 migration/0
12 r	oot -5	L 0	0	0	0.5	0.0	0.0	0:00.00 idle_inject/0
14 r	oot 2	0	0	0	0 5	0.0	0.0	0:00.00 cpuhp/0
15 r	root 2	0	0	0	0.5	0.0	0.0	0:00.00 kdevtmpfs
16 r	oot	-20	0	0	0 I	0.0	0.0	0:00.00 netns
17 r	oot 2	0	0	0	0 5	0.0	0.0	0:00.00 rcu_tasks_kthre
18 r	oot 2	0	0	0	0.5	0.0	0.0	0:00.00 kauditd
19 r	root 2	0	0	0	0 5	0.0	0.0	0:00.00 khungtaskd
20 r	root 2	0	0	0	0.5	0.0	0.0	0:00.00 com_reaper
21 r	root (-20	0	0	0 I	0.0	0.0	0:00.00 writeback
22 r	root 2	0	0	0	05	0.0	0.0	0:00.00 kcompactd0
22 .					2 5	0.0	0.0	استا وه ومو

htop

- The htop command is a handy interactive process viewer that's like an upgraded top version. You see a real-time table of running processes with their CPU and memory usage, similar to the top.
- Color coding so you can easily spot high-usage processes.
- Ability to scroll vertically and horizontally to see full commands, environment variables, etc.
- Easier process sorting and priority config.

```
4.5%]
                                                                                5.2%
                                                                                3.2%]
 0K/8.00G] Load average: 1.59 1.55 1.36
258778 nzt
                                            9.7 0.2 0:00.49 htop
 53016 nzt
                                            6.4 0.8 9:23.29 /opt/Termius/termius-app --
 52981 nzt
                              104M 66464 S 5.1 0.4 13:24.46 /opt/Termius/termius-app --t
 76610 nzt
                                            2.6 1.0 3:07.47 /opt/vivaldi/vivaldi-bin --t
 53012 nzt
                                            1.9 0.8 2:27.23 /opt/Termius/termius-app --t
 76018 nzt
                                            1.9 1.0 2:45.65 /opt/vivaldi/vivaldi-bin --t
 52968 nzt
                                            1.3 0.8 2:02.70 /opt/Termius/termius-app --t
 52978 nzt
                                            1.3 0.4 2:56.18 /opt/Termius/termius-app --t
256173 nzt
                                            1.3 0.9 0:08.36 /opt/vivaldi/vivaldi-bin --t
 1005 systemd-oo
                                            0.6 0.0 0:22.24 /usr/lib/systemd/systemd-oom
 1274 root
                                            0.6 0.2 0:03.08 /usr/bin/containerd
 1831 nzt
                                            0.6 0.0 0:06.87 dbus-broker --log 4 --contro
 2077 nzt
                                            0.6 1.1 23:32.19 /usr/bin/kwin wayland --wayl
 2787 nzt
                                           0.6 3.3 6:34.42 /opt/vivaldi/vivaldi-bin
 8341 nzt
                                            0.6 0.4 0:37.55 /usr/share/code/code --type=
 33874 nzt
                                            0.6 2.6 8:13.18 /opt/vivaldi/vivaldi-bin --t
 53018 nzt
                                            0.6 0.8 0:11.65 /opt/Termius/termius-app --t
233563 nzt
                                            0.6 1.0 0:00.82 /usr/bin/nextcloud --backgro
242506 nzt
                                            0.6 0.6 0:01.27 /usr/bin/konsole
256183 nzt
                                            0.6 0.9 0:02.26 /opt/vivaldi/vivaldi-bin --t
    1 root
                                            0.0 0.1 0:05.00 /usr/lib/systemd/systemd --s
  666 root
                                            0.0 0.1 0:01.72 /usr/lib/systemd/systemd-jou
  702 root
                                            0.0 0.0 0:00.22 /usr/lib/systemd/systemd-nsr
   703 root
                                            0.0 0.0 0:00.10 /usr/lib/systemd/systemd-use
  719 root
                                            0.0 0.1 0:00.61 /usr/lib/systemd/systemd-ude
  1006 systemd-re
                                               0.1 0:03.45 /usr/lib/systemd/systemd-res
  1007 root
                       20260 2824 2116 5
                                            0.0 0.0 0:00.06 /usr/sbin/auditd
                                            0.0 0.0 0:00.00 /usr/sbin/auditd
              F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill
```


sysstat and sar

- Powerful logging and monitoring tool for Linux/Unix systems.
- Contains utilities to monitor system performance and usage activity.
- ☐ Used to monitor system performance and troubleshooting problems.
- Sysstat is a go-to for power and can log and track pretty much everything going on within your linux box

Sar(System Activity Report)

- Sar is part of the sysstat package,
- Collect and display all system activities statistics
- Can monitor performance of various Linux subsystems (CPU, Memory, I/O) in real time.
- Also collect all performance data on an ongoing basis, store them, and do historical analysis to identify bottlenecks
- Collected information can be used with ksar to plot graphs.

The following is the list of utilities provided by the sysstat package

- mpstat: report individual or combined CPU related statistics
- iostat: reports CPU statistics and I/O statistics for devices, partitions, and the network filesystem.
- pidstat: Report statistics for Linux processes, including disk
 I/O, CPU, and memory usage
- tapestat: Reports statistics for tape drives connected to the system
- cifsiostat: Report statistics on shared file systems, printers, or serial ports over a network.
- sar: Collects, reports and saves system activity information (such as CPU, memory, disks and network interfaces usage statistics).

sar con't

CPU Usage of ALL CPUs [sar -u]

- This gives the cumulative real-time CPU usage of all CPUs.
- sar -u 13 Displays real time CPU usage every 1 second for three times
- -PALL indicates that it should display statistics for all individual cores.

%user% - % of CPU utilization that occurred while executing at user level

%nice% - at user level with nice priority.

%system - at system level

%iowait - % of time that CPU were idle during which s/m had an outstanding disk I/O request

%idle - idle and s/m did not have an outstanding disk i/o

%steal - % of time spent in involuntary wait by cpu/cpu's

Linux 6.15.5-	100.fc41	.x86_64 (ta	adios.loc	al) 07	/17/2025	_x86_64_	_ (8 CPU)
08:33:32 PM	CPU	%user	%nice	%system	%iowait	%steal	%idle
08:33:33 PM		3.02		1.76			95.23
08:33:34 PM	all	3.02		2.39			94.59
08:33:35 PM		3.15		1.64			95.21
Average:	a11	3.06	0.00	1.93	0.00	0.00	95.01

lnux 6.	15.5-	100.TC41	.x86_64 (ta	adlos.loca	al) 0/	/17/2025	_x86_64_	_ (8 CPU)
08:35:07	PM	CPU	%user	%nice	%system	%iowait	%steal	%idle
08:35:08	PM		3.15		2.02			94.83
08:35:08	PM		5.10		3.06			91.84
08:35:08	PM		5.10		1.02			93.88
08:35:08	PM		4.04		2.02			93.94
08:35:08	PM		2.00					98.00
08:35:08	PM		3.00		4.00			93.00
08:35:08	PM		2.02		3.03			94.95
08:35:08	PM		2.00		1.00			97.00
08:35:08	PM		2.02		2.02			95.96

sar con't

Memory Free and Used (sar -r)

- ☐ This reports the memory statistics.
- ☐ `13` reports for every 1 seconds a total of 3 times.
- ☐ Focus on 'kbmemfree' and 'kbmemused' for free and used memory

06:00:06 0	Libmonfron	khayai 1	kbmemused	Wmomus od	kbbuffers	khasahad	kbcommit	%commit	khastiva	khinact	khdiztu
06:00:06 PI	komemilee	KDAVAII	komemusea	memusea.	Koburreis	kbcached	KDCOMMIT	%commit	kbactive	kbinact	kbdirty
06:10:29 P	12789884	17998724	4649348	19.15	20212	6323960	34749904	106.38	8047564	1754332	1224
06:20:49 PI	12640780	17887712	4621688	19.04	20212	6501920	34308436	105.03	8008612	1785532	840
06:40:00 PI	12491016	17746228	4773268	19.66	20212	6503676	34455504	105.48	8074884	1793752	364
06:50:49 PI	12048720	17777248	4559372	18.78	20212	7144068	31102384	95.22	8177900	2024016	1580
07:00:02 PI	8375880	15059988	7087976	29.20	20212	8197220	45282208	138.63	11083968	2614116	1768
07:10:28 PM	8185016	14924232	7079296	29.16	20212	8398292	44825948	137.23	11120872	2665104	1176
08:00:59 PI	8090084	14854000	7161212	29.50	20212	8412040	44921536	137.52	11137908	2689756	124
08:10:49 PM	8028396	14883156	7131448	29.38	20212	8497072	44799304	137.15	11123448	2778912	1144
08:20:49 PM	8045588	14930036	7133592	29.39	20212	8477348	44992924	137.74	11120164	2808684	1060
08:30:49 PI	7056012	13988480	7863608	32.39	20212	8728628	47689200	146.00	11878992	2850920	18748
Average:	9775138	16004980	6206081	25.56	20212	7718422	40712735	124.64	9977431	2376512	2803

sar con't

Overall I/O Activities (sar -b)

- ☐ This report I/O statistics
- ☐ `13` reports for every 1 seconds a total of 3 times

tps - Transactions per second (this include both read and write)

rtps - Read transactions per second

wtps - Write transactions per second

bread/s - Bytes read per second

bwrtn/s - Bytes written per second

06:00:06 PM	tps	rtps	wtps	dtps	bread/s	bwrtn/s	bdscd/s
06:10:29 PM	67.70	3.17	58.78	5.75	267.58	1826.78	828.65
06:20:49 PM	12.74	0.12	11.10	1.52	6.26	321.64	350.13
06:40:00 PM	2.61	0.01	1.78	0.81	0.81	46.64	123.45
06:50:49 PM	34.21	7.60	25.04	1.57	908.77	761.20	752.59
07:00:02 PM	86.87	19.90	63.26	3.71	1439.35	1995.83	1009.40
07:10:28 PM	16.65	0.01	14.94	1.70	0.41	425.34	224.24
08:00:59 PM	2.79		2.53	0.26	0.02	81.82	20.34
08:10:49 PM	41.98	0.51	38.09	3.37	14.05	1019.17	399.63
08:20:49 PM	19.06	0.01	15.80	3.25	0.32	430.61	448.34
08:30:49 PM	25.76	0.57	22.17	3.02	21.24	600.50	364.77
Average:	21.44	2.06	17.59	1.78	174.59	522.38	314.95

Linux 6.15.5-1	.00.fc41.x8	6_64 (tadi	os.local)	07/1	7/2025	_x86_64_	(8 CPU)
08:40:33 PM	tps	rtps	wtps	dtps	bread/s	bwrtn/s	bdscd/s
08:40:34 PM							
08:40:35 PM							
08:40:36 PM							
Average:	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Sar Cheat Sheet

Command	Description	Command	Description
sar -o filename	Save SAR output to a file	sar	Display CPU usage by default (today's data)
sarhelp	Show all available SAR options	sar -A	Display all system activity (CPU, memory, disk, network, etc.)
	Expert CAD data in CCV/ICON format	sar -u	Show CPU utilization (default)
	Export SAR data in CSV/JSON format	sar -P ALL	Show CPU stats for all cores
sar 15	Display real-time stats (1-second intervals 5 times)	sar -q	Display system load and run queue stats
sar -p	Pretty-print device names (for -d)	sar -r	Show memory utilization (RAM & swap)
		sar -S	Display swap space usage
		sar -b	Show I/O and transfer rate stats
Command	Description	sar -d	Display disk activity (per device)
sar -s HH:MM:SS	Start reporting from a specific time	sar -n DEV	Show network interface stats
	End reporting at a specific time	sar -n TCP	Display TCP statistics
sar -e HH:MM:SS	End reporting at a specific time	sar -n EDEV	Show network error statistics
sar -f /var/log/sa/saXX	Read from a specific SAR log file (replace XX with day	sar -w	Display context switches per second
sar -i SEC	Set interval in seconds (e.g. sar -i 5)	sar -v	Show inode, file, and other kernel stats

Metric	Command	What to Check
CPU Usage	sar -u	High %idle is good %user + %system should not be consistently high
Memory Usage	sar -r	Check kbmemfree and %memused
Swap Usage	sar -S	High swap usage indicates memory pressure
Disk I/O	sar -d	High %util means disk is a bottleneck
Network Traffic		Check rxkB/s and txkB/s for bandwidth usage
Load Average	ldayg-1 > CPU cores indicates high load	

netstat

- Monitoring incoming and outgoing network packets statistics as well as interface statistics.
- Very useful tool for every system administrator to monitor network performance and troubleshoot network related problems

netstat -a - Show all listening and non-listening ports (TCP & UDP)

netstat -t - Display TCP connections only

netstat -u - Display UDP connections only

netstat -I - Show only listening ports

netstat -i - Display network interface statistics

netstat -rn - Display numeric routing table (no DNS resolution)

netstat -tulnp - Show all listening TCP/UDP ports with PIDs

netstat -ap - Show process name/PID using the port (requires sudo)

netstat -ano - Display all connections with PID & timers (Windows)

		-			
		etstat -ltunpa	5 7 5 7 16		
		connections (servers and e			22.0
		I-Q Local Address	Foreign Address	State	PID/Program name
tcp	0	0 127.0.0.1:8829	0.0.0.0:*	LISTEN	8199/Codestandar
tcp	0	0 127.0.0.1:8828	0.0.0.0:*	LISTEN	8209/Codestandar
tcp	0	0 127.0.0.1:8830	0.0.0.0:*	LISTEN	8221/Codestandar
tcp	0	0 127.0.0.1:42655	0.0.0.0:*	LISTEN	8209/Codestandar
tcp	0	0 127.0.0.1:43657	0.0.0.0:*	LISTEN	8199/Codestandar
tcp	0	0 127.0.0.53:53	0.0.0.0:*	LISTEN	1006/systemd-resolv
tcp	0	0 127.0.0.1:631	0.0.0.0:*	LISTEN	1256/cupsd
tcp	0	0 127.0.0.54:53	0.0.0.0:*	LISTEN	1006/systemd-resolv
tcp	0	0 0.0.0.0:5355	0.0.0.0:*	LISTEN	1006/systemd-resolv
tcp	0	0 127.0.0.1:39371	0.0.0.0:*	LISTEN	8221/Codestandar
tcp	0	0 0.0.0.0:7070	0.0.0.0:*	LISTEN	1319/anydesk
tcp	0	0 192.168.210.170:47654	18.172.213.40:443		52953/Termiussta
tcp	0	0 192.168.210.170:53082	142.251.209.42:443		2985/vivaldi-bin
tcp	0	0 192.168.210.170:54166	172.217.170.170:443	ESTABLISHED	2985/vivaldi-bin
tcp	0	0 192.168.210.170:36936	18.97.36.70:443		2985/vivaldi-bin
tcp	0	0 192.168.210.170:49450	142.250.180.182:443		2282/plasmashell
tcp	0	0 192.168.210.170:52728	31.209.137.10:61613		2985/vivaldi-bin
tcp		0 192.168.210.170:60432	196.189.119.118:443		2583/nextcloud
tcp	0	0 192.168.210.170:56674	108.177.127.188:443	ESTABLISHED	2985/vivaldi-bin
tcp	0	0 192.168.210.170:41070	13.57.89.172:443	ESTABLISHED	52953/Termiussta
tcp		0 192.168.210.170:50610	138.199.27.227:443	ESTABLISHED	1319/anydesk
tcp	32	0 192.168.210.170:35156	31.209.137.10:443	CLOSE_WAIT	2985/vivaldi-bin
tcp	0	0 192.168.210.170:35168	31.209.137.10:443	CLOSE_WAIT	2985/vivaldi-bin
tcp6	0	0 ::1:631		LISTEN	1256/cupsd
tcp6	0	0 :::1716		LISTEN	2498/kdeconnectd
tcp6		0 :::5355		LISTEN	1006/systemd-resolv
tcp6		0 :::7070		LISTEN	1319/anydesk
udp		0 127.0.0.54:53	0.0.0.0:*		1006/systemd-resolv
udp		0 127.0.0.53:53	0.0.0.0:*		1006/systemd-resolv
udp	0	0 192.168.210.170:68	192.168.210.167:67	ESTABLISHED	1172/NetworkManager
udp	0	0 127.0.0.1:323	0.0.0.0:*		1058/chronyd
udp	0	0 0.0.0.0:50001	0.0.0.0:*		1319/anydesk
udp	0	0 0.0.0.0:36065	0.0.0.0:*		2498/kdeconnectd
udp	0	0 192.168.210.170:37270	172.217.170.206:443	ESTABLISHED	2985/vivaldi-bin

free

- Built-in command that displays the total amount of free and used physical memory on your machine
- ☐ Also displays the buffers used by the kernel at that given moment

free - show memory and swap usage in byte

free -m - show memory and swap usage in MB

free -h - show memory and swap usage in human readable format

	total	used	free	shared	buff/cache	available	
Mem:	24275880	11642824	5142548	2025124	9919480	12633056	
Swap:	8388604	0	8388604				
root@tad	ios:~# free -m						
	total	used	free	shared	buff/cache	available	
Mem:	23706	11344	5047	1959	9668	12362	
Swap:	8191	0	8191				
root@tad	ios:~# free -h						
	total	used	free	shared	buff/cache	available	
Mem:	23Gi	11Gi	5.0Gi	1.9Gi	9.4Gi	12Gi	
Swap:	8.0Gi	ØB	8.0Gi				
root@tad	ios:~# free -g						
	total	used	free	shared	buff/cache	available	
Mem:	23	11	4	1	9	12	
Swap:	7	0	7				

- df is an abbreviation for disk free
- Pre-installed program in all unix systems used to display the amount of available disk space from filesystem which the user have access to
- df shows filesystem usage in bytes
- df -h shows filesystem usage in human readable format

```
root@tadios:~# df -h
Filesystem
                Size Used Avail Use% Mounted on
/dev/nvme0n1p3
               476G
                       75G
                           398G
                                  16% /
devtmpfs
                12G
                            12G
                                   0% /dev
tmpfs
                 12G
                     173M
                            12G
                                  2% /dev/shm
efivarfs
               438K
                     197K
                           237K
                                  46% /sys/firmware/efi/efivars
tmpfs
               4.7G 2.3M
                           4.7G
                                  1% /run
tmpfs
               1.0M
                        0 1.0M
                                  0% /run/credentials/systemd-journald.service
                                   0% /run/credentials/systemd-network-generator.service
tmpfs
               1.0M
                        0 1.0M
tmpfs
               1.0M
                        0 1.0M
                                   0% /run/credentials/systemd-udev-load-credentials.service
tmpfs
               1.0M
                        0 1.0M
                                   0% /run/credentials/systemd-sysctl.service
                                   0% /run/credentials/systemd-tmpfiles-setup-dev-early.service
tmpfs
               1.0M
                        0 1.0M
tmpfs
               1.0M
                        0 1.0M
                                   0% /run/credentials/systemd-tmpfiles-setup-dev.service
tmpfs
               1.0M
                        0 1.0M
                                   0% /run/credentials/systemd-vconsole-setup.service
/dev/nvme0n1p3
               476G
                       75G
                           398G
                                  16% /home
tmpfs
                 12G
                      102M
                            12G
                                   1% /tmp
/dev/nvme0n1p2 974M 376M
                           531M
                                  42% /boot
```


du

- ☐ Linux du (disk usage) is standard Unix/Linux command
- Used to check the information of disk usage of files and directories on a machine
- ☐ Has many parameter option that can be used to get the result in many formats
- ☐ Also displays the file and directory sizes in a recursive manner
- du recursively show the size of file and folder starting from current directory
- du -s summarize the current directory size
- **du -h** display folder sizes in human readable formats
- **du -d 1** display folder sizes under the current directory

root@t	adios:~# du -sh /var/log
1.8G	/var/log
root@t	adios:~# du -d 1 /var/log -h
3.3M	/var/log/anaconda
26M	/var/log/audit
0	/var/log/blivet-gui
0	/var/log/chrony
0	/var/log/cups
1.7G	/var/log/journal
0	/var/log/mariadb
0	/var/log/ppp
0	/var/log/private
0	/var/log/qemu-ga
0	/var/log/samba
0	/var/log/speech-dispatcher
36K	/var/log/sssd
3.0M	/var/log/tuned
12K	/var/log/passim
32K	/var/log/timeshift
17M	/var/log/sa
76K	/var/log/letsencrypt
0	/var/log/glusterfs
4.0K	/var/log/libvirt
0	/var/log/swtpm
64K	/var/log/ipp-usb
8.0K	/var/log/httpd
1.8G	/var/log

Isof

- Isof meaning 'list open files' is used to find out which files are opened by which process
- when a disk cannot be unmounted as it says the files are being used

Isof -u user: list user specific opened files

kill -9 `lsof -t -u user' : kill all activities of a particular user

Isof -p 1: search by pid

		f head -n 10 't stat() fuse.porta	al file syste	m /run/	user/1000/doc				
		mation may be incomp		III / I MII/	a3c1/1000/acc				
OMMAND	PID	TID TASKCMD	USER	FD	TYPE	DEVICE	SIZE/OFF	NODE	NAME
ystemd	1		root	cwd	DIR	0,44	212	256	
ystemd	1		root	rtd	DIR	0,44	212	256	
ystemd	1		root	txt	REG	0,44	115016	2643440	/usr/lib/systemd/systemd
ystemd	1		root	mem	REG	0,40		2643440	/usr/lib/systemd/systemd (path dev=0,44)
ystemd	1		root	mem	REG	0,40		683421	/usr/lib64/libzstd.so.1.5.7 (path dev=0,44)
ystemd	1		root	mem	REG	0,40		262437	/usr/lib64/libbpf.so.1.4.7 (path dev=0,44)
ystemd	1		root	mem	REG	0,40		2706389	/etc/selinux/targeted/contexts/files/file_contexts.bin (path dev=0,44)
ystemd	1		root	mem	REG	0,40		40031	/usr/lib64/libpcre2-8.so.0.13.0 (path dev=0,44)
ystemd	1		root	mem	REG	0,40		522044	/usr/lib64/libcrypto.so.3.2.4 (path dev=0,44)

ping

- Used to find out whether the peer host/gateway is reachable
- How much time it takes for that data to be exchanged
- Default ping waits for 1 second before sending the next packet. This can be changed using the -i flag

```
ping 8.8.8.8
ping -i 5 8.8.8.8
ping -c 3 8.8.8.8
```

```
root@tadios:~# ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=107 time=194 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=107 time=217 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=107 time=171 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=107 time=160 ms

^C

--- 8.8.8.8 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3003ms

rtt min/avg/max_mdev = 160.140/185.579/217.133/21.860 ms
```


traceroute

- The traceroute command is used to see how packets are getting routed. It works by sending packets with increasing TTL values, starting with 1. So the first router gets the packet, and it decrements the TTL value by one, thus dropping the packet.
- The router sends back an ICMP Time Exceeded message back to us. And then the next packet gets a TTL of 2, so it makes it past the first router, but when it gets to the second router the TTL is 0 and it returns another ICMP Time Exceeded message.
- Traceroute works this way because as it sends and drops packets it is build a list of routers that the packets traverse, until it finally gets to its destination and gets an ICMP Echo Reply message.

```
traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets

1 __gateway (192.168.210.167) 3.707 ms 4.152 ms 4.287 ms

2 * * *

3 10.224.231.1 (10.224.231.1) 37.653 ms 47.116 ms 37.623 ms

4 10.255.254.5 (10.255.254.5) 47.361 ms 48.713 ms 48.697 ms

5 10.184.10.19 (10.184.10.19) 71.315 ms 61.982 ms 47.552 ms

6 10.1.41.6 (10.1.41.6) 47.317 ms 42.606 ms 48.997 ms

7 10.1.41.5 (10.1.41.5) 42.267 ms 35.377 ms 35.308 ms

8 * 41.79.199.136 (41.79.199.136) 49.335 ms 51.793 ms

9 41.79.199.138 (41.79.199.138) 110.381 ms 111.098 ms 120.223 ms

10 192.178.105.75 (192.178.105.75) 140.806 ms 41.189.225.170 (41.189.225.170) 108.575 ms 192.178.105.157 (192.178.105.157) 141.932 ms

11 * 192.178.105.75 (192.178.105.75) 125.825 ms 173.194.123.48 (173.194.123.48) 102.405 ms

12 108.170.233.243 (108.170.233.243) 134.791 ms dns.google (8.8.8.8) 107.372 ms 106.575 ms

121etadios: * ■
```


Telnet and no

- Both telnet and nc can be used to troubleshoot network and service connectivity
- Telnet is a remote terminal connection tool
- Netcat is a general purpose tcp/upd tool

telnet localhost 80

nc -zv localhost 80

nc -ul localhost 514 (send udp packet)

```
nzt@tadios:~$ telnet localhost 7070
Trying ::1...
Connected to localhost.
Escape character is '^]'.
```

```
nzt@tadios:~$ nc -zv localhost 7070
Ncat: Version 7.92 ( https://nmap.org/ncat )
Ncat: Connected to ::1:7070.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.
nzt@tadios:~$
```


packet analysis

There are two extremely popular packet analyzers, Wireshark and topdump. These tools scan your network interfaces, capture the packet activity, parse the packages and output the information for us to see.

```
zt@tadios:~$ sudo tcpdump
[sudo] password for nzt:
dropped privs to tcpdump
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on wlp0s20f3, link-type EN10MB (Ethernet), snapshot length 262144 bytes
23:35:12.623398 IP tadios.local.39038 > lb-140-82-113-22-iad.github.com.https: Flags [S], seg 3696725201, win 64240,
options [mss 1460,sackOK,TS val 3187073483 ecr 0,nop,wscale 7], length 0
23:35:12.689990 IP tadios.local.36808 > one.one.one.one.domain: 17396+ [1au] PTR? 22.113.82.140.in-addr.arpa. (55)
23:35:12.997832 IP mba01s08-in-f10.1e100.net.https > tadios.local.36372: Flags [P.], seq 3613775291:3613775376, ack
791685522, win 1109, options [nop,nop,TS val 1032939939 ecr 3836582936], length 85
23:35:13.000175 IP tadios.local.36372 > mba01s08-in-f10.1e100.net.https: Flags [P.], seg 1:36, ack 85, win 481, opti
ons [nop,nop,TS val 3836587441 ecr 1032939939], length 35
23:35:13.000556 IP tadios.local.36372 > mba01s08-in-f10.1e100.net.https: Flags [P.], seq 36:71, ack 85, win 481, opt
ions [nop,nop,TS val 3836587442 ecr 1032939939], length 35
23:35:13.202671 IP mba01s08-in-f10.1e100.net.https > tadios.local.36372: Flags [.], ack 36, win 1109, options [nop,n
op,TS val 1032940211 ecr 3836587441], length 0
23:35:13.202672 IP mba01s08-in-f10.1e100.net.https > tadios.local.36372: Flags [.], ack 71, win 1109, options [nop,n
op,TS val 1032940211 ecr 3836587442], length 0
```


w & uptime

w - displays information about the users currently on the machine, and their processes

uptime - tell how long the system has been running

```
nzt@tadios:~$ w
22:39:04 up 4:44, 4 users, load average: 0.77, 0.98, 1.56
                            IDLE
                                   JCPU
USER
        TTY
                   LOGIN@
                                          PCPU WHAT
                                  0.13s 0.13s /usr/bin/startplasma-wayland
nzt
        tty2
                  17:55
                           4:44m
                                  3.35s 3.29s sudo su
        pts/1
                  20:23
                           7:22
root
                  20:23
                           6:29
                                  0.00s 0.30s /usr/lib/systemd/systemd --user
root
                                  0.00s 1.63s /usr/lib/systemd/systemd --user
nzt
                  17:55
                           6:29
nzt@tadios:~$
```

```
nzt@tadios:~$ uptime
22:39:33 up 4:44, 4 users, load average: 0.52, 0.90, 1.52
nzt@tadios:~$
```


who & whoami

who - prints information about all users who are currently logged in

Displays the username line and time of all currently logged-in sessions

whoami - prints the username associated with the current effective user ID

```
nzt@tadios:~$ who
nzt
         tty2
                      2025-07-17 17:55
nzt
         pts/0
                      2025-07-17 17:55 (:0)
nzt
         pts/1
                      2025-07-17 18:07 (:0)
nzt
         pts/4
                      2025-07-17 18:55 (:0)
nzt
         pts/5
                      2025-07-17 20:23 (:0)
nzt@tadios:~$
```

```
nzt@tadios:~$ whoami
nzt
nzt@tadios:~$
```


History

The history command can be used to list bash's log of the commands you have typed:

The history command performs one of several operations related to recently-executed commands recorded in a history

```
nzt@tadios:~$ history | tail -n 15
     nc zergaw.com 443
1003
      telnet -u
1004
     netstat -u
1005
     nc -u localhost 32829
1006
1007 ss -ltunp
      ss -lunp
 1008
1009
      ss -ltnp
      telnet localhost 7070
1010
1011 nc -zv localhost 7070
1012
      W
      uptime
1013
1014
      who
      whoami
1015
     history | tail
1016
1017 history | tail -n 15
nzt@tadios:~$
```


Logging

- All Linux systems create and store information log files for boot processes, applications, and other events. These files are a helpful resource for troubleshooting system issues.
- Most Linux log files are stored in plain text files (ASCII format) in the /var/log directory and subdirectories. Logs are generated by the Linux system daemon log, syslogd, or rsyslogd. Properly managing these logs ensures essential data is readily available for analysis and auditing.
- System log files in Linux contain information about the core operating system activities, including boot processes, kernel messages, and hardware events. Some example of log files inside the /var/log directory include
 - /var/log/syslog
 - /var/log/kern.log
 - /var/log/dmesg
 - /var/log/boot.log
 - /var/log/auth.log
 - /var/log/cron.log

```
zt@tadios:~$ ls /var/log
anaconda
                  btmp-20250702 dnf.librepo.log maillog
                                                                                        spooler-20250619
anydesk.trace
                  chrony
                                 dnf.log
                                                  maillog-20250611
                                                                     gemu-ga
                                                                                        spooler-20250626
audit
                  cron
                                 dnf.rpm.log
                                                  maillog-20250619
                                                                                        spooler-20250703
blivet-gui
                  cron-20250611 dpkg.log
                                                  maillog-20250626
boot.log
                  cron-20250619 firewalld
                                                  maillog-20250703
                                                                     samba
                                                                                        swtpm
boot.log-20250617 cron-20250626 fsck_hfs.log
                                                                                        timeshift
                                                  mariadb
                                                                     secure
boot.log-20250619 cron-20250703 glusterfs
                                                                                        tuned
                                                  messages
                                                                     secure-20250611
boot.log-20250625
                                 httpd
                                                  messages-20250611 secure-20250619
                                                                                        wtmp
boot.log-20250628 dnf5.log
                                 ipp-usb
                                                  messages-20250619
                                                                     secure-20250626
boot.log-20250702 dnf5.log.1
                                 journal
                                                  messages-20250626
                                                                     secure-20250703
boot.log-20250703 dnf5.log.2
                                 lastlog
                                                  messages-20250703
                                                                     speech-dispatcher
boot.log-20250709 dnf5.log.3
                                                                     spooler
                  dnf5.log.4
                                 libvirt
                                                                     spooler-20250611
 zt@tadios:~$
```

Essential commands the are needed to interact with log files include cat, less, more, tail, head, grep

Journald

- Systemd logs all Linux messages from the kernel and system processes. One of the most powerful systemd functionalities is the logging features. Systemd provides a centralized solution for logging all kernel and user processes through logs known as journals.
- The journalctl command queries and manipulates the journal data collected by the journald daemon.
- Without any parameters, the journalctl command outputs the entire journal contents starting from the oldest entry.
- ☐ To jump to the pager end and display the most recent entries, use the -e option.
- To control how many lines display in the output, use the -n option followed by the number of lines.
- To limit the logs to the current boot, use the -b tag without any parameters
- Jump to a specific boot by adding an offset parameter. For example, journalctl -b 1

```
Feb 13 08:59:46 fedora systemd[1376]: Queued start job for default target default.target.
eb 13 08:59:46 fedora systemd[1376]: Created slice app.slice - User Application Slice
eb 13 08:59:46 fedora systemd[1376]: Started drkonqi-sentry-postman.path - Submitting pending
eb 13 08:59:46 fedora systemd[1376]: Started drkonqi-coredump-cleanup.timer - Cleanup linger
         59:46 fedora systemd[1376]: drkonqi-sentry-postman.timer - Submitting pending crash
          59:46 fedora systemd[1376]: Started grub-boot-success.timer - Mark boot as successf
 eb 13 08:59:46 fedora systemd[1376]: Started systemd-tmpfiles-clean.timer - Daily Cleanup of
 eb 13 08:59:46 fedora systemd[1376]: Reached target paths.target - Paths.
eb 13 08:59:46 fedora systemd[1376]: Reached target timers.target - Timers
eb 13 08:59:46 fedora systemd[1376]: Starting dbus.socket - D-Bus User Message Bus Socket.
eb 13 08:59:46 fedora systemd[1376]: Listening on drkonqi-coredump-launcher.socket - Socket t
eb 13 08:59:46 fedora systemd[1376]: Listening on pipewire-pulse.socket - PipeWire PulseAudio
eb 13 08:59:46 fedora systemd[1376]: Listening on pipewire.socket - PipeWire Multimedia Syste
eb 13 08:59:46 fedora systemd[1376]: Listening on snapd.session-agent.socket - REST API socke
 eb 13 08:59:46 fedora systemd[1376]
                                     Starting systemd-tmpfiles-setup.service - Create User Fi
eb 13 08:59:46 fedora systemd[1376]
                                     Listening on dbus.socket - D-Bus User Message Bus Socket
eb 13 08:59:46 fedora systemd[1376]: Finished systemd-tmpfiles-setup.service - Create User Fi
eb 13 08:59:46 fedora systemd[1376]: Reached target sockets.target - Sockets
Feb 13 08:59:46 fedora systemd[1376]: Reached target basic.target - Basic System
Feb 13 08:59:46 fedora systemd[1376]: Started drkongi-coredump-cleanup.service - Cleanup linge
Feb 13 08:59:46 fedora systemd[1376]: Starting unity-gtk-module.service - Unity GTK Module Env
Feb 13 08:59:46 fedora systemd[1376]: Created slice session.slice - User Core Session Slice.
eb 13 08:59:46 fedora systemd[1376]
                                    : Starting dbus-broker.service - D-Bus User Message Bus.
eb 13 08:59:46 fedora dbus-broker-launch[1412]: Service file '/usr/sbare//dbus-1/services/or
eb 13 08:59:46 fedora dbus-broker-launch[1412]: Service file '/usr/share//dbus-1/services/or
         59:46 fedora dbus-broker-launch[1412]: Policy to allow eavesdropping in /usr/share
          59:46 fedora dbus-broker-launch[1412]: Policy to allow eavesdropping in /usr/share
          59:46 fedora dbus-broker-launch[1412]: Service file '/usr/share//dbus-1/services/org
eb 13 08:59:46 fedora systemd[1376]: Started dbus-broker.service - D-Bus User Message Bus.
eb 13 08:59:46 fedora dbus-broker-launch[1412]: Ready
eb 13 08:59:46 fedora systemd[1376]: Finished unity-atk-module.service - Unity GTK Module Env>
eb 13 08:59:46 fedora systemd[1376]: Reached target default.target - Main User Target
eb 13 08:59:46 fedora systemd[1376]: Startup finished in 133ms.
 eb 13 08:59:46 fedora sddm-helper[1416]: pam_kwallet5: final socket path: /run/user/1000/kwal
eb 13 08:59:46 fedora systemd[1376]: Started dbus-:1.2-com.redhat.imsettings@0.service.
eb 13 08:59:46 fedora imsettings-daemon[1461]: [
                                                        46.840815]: IMSettings-Daemon[1461]:
eb 13 08:59:46 fedora imsettings-daemon[1461]: [
                                                        46.841141]: IMSettings-Daemon[1461]
eb 13 08:59:46 fedora imsettings-daemon[1461]: [
                                                         46.841162]: IMSettings-Daemon[1461]
                                                         46.841171]: IMSettings-Daemon[1461]
Feb 13 08:59:46 fedora imsettings-daemon[1461]: [
```


Journalctl

An alternative way to see a specific boot is to use a boot ID. Fetch the boot IDs using --list-boots with:

journalctl --list-boots

journalctl -b cc07702b00884ec59312ece62604cac8

Filter the journal by specifying a time limit. The two options for limiting since or until a specified time are:

journalctl -S 2022-04-02 -U 2022-04-22

journalctl -S "50 minutes ago"

Filter the logs by the specific systemd unit using the -u tag and providing the unit name. For example, to filter only the Jenkins service unit records, run:

journalctl -u apache2

☐ To display only the kernel journal log messages, use the -k option:

journalctl -k

☐ Use the -f or --follow tag to print the most recent logs continuously:

journalctl -f

Real-World System Issues and Troubleshooting (Password Reset)

Using Recovery Mode

For ubuntu/debian systems

- Reboot and hold shift during startup to access grub menu, and enter edit mode by clicking on e
- find the line that starts with linux or linux16. This line specifies the boot
 parameters. At this line, locate 'ro quiet', replace 'ro' to 'rw' then add the word
 single or init=/bin/bash, depending on your distribution and setup. and click ctrl
 + x of F10
- Here, remount the root filesystem at writable and reset the root password

mount -o remount,rw /

passwd root

reboot the system

For centos/rhel/fedora

- Reboot and press e at the GRUB menu and find the line starting with linux and add rd.break at the end
- Next, mount the root filesystem and reset the root password

mount -o remount,rw /sysroot

chroot/sysroot

passwd root

Finally, exit and reboot

Using Live OS

- Boot into he live environment
- Mount the root partition of the system

mount /dev/sda1 /mnt

Switch as a root user for the mounted system

sudo chroot /mnt

Verify the existence of the user you are trying to change the password for

cat/mnt/etc/passwd

Change the password for the user

passwd username

- Enter the password twice
- Exit the mounted filesystem
- Unmount the file system
- Reboot

Prevention Tips:

- Create a passwordless sudo user to avoid being locked out of root access.
- Use SSH keys instead of passwords for authentication.

Real-World System Issues and Troubleshooting (Disk Full)

Your system displays a "No space left on device" error, preventing software updates, logging, and normal operations.

Step 1: Check Disk Usage

The solution is, first you need to check how much space is used on each partition on your system using the df command.

df -h

Step 2: Find and Delete Large Files

du -ah / sort -rh | head -10

Step 3: Remove Unnecessary Logs

sudo journalctl --vacuum-time=2d sudo apt autoclean

Step 4: Remove Old Kernels (Ubuntu/Debian)

sudo apt autoremove --purge

Prevention Tips:

- Set Up Log Rotation: Use logrotate to automatically manage log file sizes and retention periods.
- Monitor Disk Usage: Install tools like ncdu to track disk usage and identify space hogs.
- Regular Cleanups: Schedule periodic cleanups to remove temporary files, caches, and unused packages.
- ncdu is a good visual utility to monitor you disk space usage

Real-World System Issues and Troubleshooting (Unresponsive System)

You are managing a Linux server, and suddenly, it stops responding and you try connecting via SSH, but the connection times out or refuses to establish.

Step 1: Access the Server Locally or via TTY

If SSH isn't working, try accessing the server directly or through a TTY session:

Step 2: Check System Load

check the system's load and resource usage(uptime), which will show the system's load averages over 1, 5, and 15 minutes. A load value higher than the number of CPU cores indicates high demand.

Step 3: Identify and Kill Runaway Processes

To identify the most resource-intensive processes, run: ps aux --sort=-%cpu | head

Step 4: Check System Logs

sudo tail -f /var/log/syslog

Or

sudo dmesg | tail

Step 5: Reboot

Identify Hardware Issues (Advanced): In extreme cases, hardware problems like overheating or failing components might cause crashes.

Real-World System Issues and Troubleshooting (Boot failure)

Compartment Kampal mania CDIID amama initrameta manama	
Symptoms: Kernel panic, GRUB errors, initramfs prompt.	
	Use a live USB to chroot (chroot /mnt/sysimage).
	Reinstall GRUB: grub-install /dev/sda + update-grub.
	Update initramfs: update-initramfs
	Check logs: journalctl -b -1 (previous boot), journalctl -xb , /var/log/boot.log or /var/log/syslog.
	Repair filesystems: fsck /dev/sdX .
Prevention:	
	Keep system updated
	Avoid manual changes to bootloader configs
	Use LTS kernels in production
	Regular backups of /boot, /etc, and critical configs.
	Test kernel updates in staging.
	Use UUIDs in /etc/fstab instead of device names.

Real-World System Issues and Troubleshooting (Permission)

These errors indicate that you lack the necessary authorization to perform an action. For example, attempting to edit a system file without root privileges might result in a permission denied error.

- **Verify Ownership:** Use the Is -I command to view file ownership and permissions. Ensure you have the appropriate permissions (read, write, execute) for the intended action.
- ☐ **Utilize sudo:** If necessary, use the sudo command to temporarily gain root privileges. However, use sudo with caution, as it grants elevated access to the system.
- □ Change File Ownership (Advanced): In specific scenarios, you might need to adjust file ownership using commands like chown or chgrp. Consult the man pages for proper usage.

Prevention:

- ☐ Use ACLs for complex permissions
- Enforce user/group standards

Real-World System Issues and Troubleshooting (File Not Found)

These errors indicate that the file you're trying to access doesn't exist or is located in a different directory.

- Double-Check File Path: Ensure the file path you're using is accurate, including case sensitivity in Linux.
- Utilize Tab Completion: Leverage the Tab key for autocompletion to avoid typos in file paths.
- Search for the File: Use the find command to search for the file by name across directories.

Real-World System Issues and Troubleshooting (Connectivity)

Symptoms: Can't ping gateway, DNS failures. Check interfaces: ip addr (missing IP? Run dhclient eth0). Validate DNS: dig example.com (check /etc/resolv.conf). Inspect routes: **ip route** (default gateway missing?). Test firewall: sudo ufw status (temporarily disable: ufw disable). Review network configuration: verify you network configuration files /etc/network/intefaces, /etc/netplan/ Flush DNS cache: Clear the DNS cache with systemd-resolve --flush-caches, which can resolve some conflicts. Restart network services: systemctl restart network, systemctl restart networking, systemctl restart NetworkManager **Prevention:** Use static IP for servers Document network configs Script network config backups. Use configuration management (e.g., Ansible). Enable NetworkManager for dynamic control.

Real-World System Issues and Troubleshooting (Package Issues)

Symptoms: apt/yum errors during installs/updates.

- Refresh package list: ensure that you have latest package list(sudo apt update)
- ☐ Fix broken packages:

Debian: apt --fix-broken install.

RHEL: yum-complete-transaction.

Clean cache: apt clean or yum clean all.

☐ Use **dpkg --configure -a** (Debian) if interrupted.

Prevention:

- Test updates in a sandbox.
- Use version-locked repos (e.g., yum versionlock).
- Prefer LTS releases for stability.

Real-World System Issues and Troubleshooting (Service Issues)

Symptoms: Service crashes, fails to start.

- Check status: systemctl status <service>.
- View logs: journalctl -u <service> -e --since "5 min ago".
- ☐ Test configs: **sshd -t (for SSH), nginx -t**.
- ☐ Check ports: ss -tulpn | grep :<port>.

Prevention:

- Validate configs after changes
- ☐ Use systemd-analyze to review boot issues
- Use systemd restart limits (StartLimitInterval).
- ☐ Isolate services in containers (Docker/LXC).
- Monitor resource usage (CPU, RAM, file handles).

Real-World System Issues and Troubleshooting (Remote Access)

- □ Check firewall configs
- ☐ Check ssh service configs /etc/ssh/sshd_config
- ☐ Check fail2ban jail
- Use console access if locked out

Prevention:

- Setup Key based login
- Use AllowUsers and fail2ban protection

Windows Server Troubleshooting

System Information

- When you first start troubleshooting a server, you need to know what is in the server such as the type and number of processors and the amount of RAM. You will also need to know what programs and services are running.
- System Information shows details about your computer's hardware configuration, computer components, and software, including drivers.

Windows Server Troubleshooting

Event Viewer

- One of the most useful troubleshooting tools is the Event Viewer MMC snap-in, which essentially is a log viewer.
- Any time you have problems, you should look in the Event Viewer to see any errors or warning, which may reveal what a problem is.

Windows Server Troubleshooting

Performance

There are several tools available with Windows for you to analyze performance. They include:

- Task Manager
- Performance Monitor
- Resource Monitor

Which of the following is the first step in the standard troubleshooting methodology?

- A. Implement a solution
- B. Identify the problem
- C. Verify full system functionality
- D. Document the issue

What is the purpose of establishing a theory of probable cause during troubleshooting?

- A. To confirm the issue is fixed
- B. To document the solution
- C. To narrow down potential root causes
- D. To escalate the issue

Which of the following tools can you use on Linux to view real-time CPU usage per process?

- A. df
- B. ping
- C. htop
- D. du
- A Linux

system is experiencing slow performance. Which command would help assess memory usage?

- A. du
- B. df -h
- C. free -m
- D. Is

Which tool would help you analyze disk usage directory-wise on a Linux system?

- A. df
- B. du
- C. Isof
- D. top

Which command shows all open files by processes on a Linux system?

- A. top
- B. Isof
- C. uptime
- D. sar

A user is unable to SSH into a Linux server. Which tool would best help verify if the port is reachable?

- A. free
- B. telnet
- C. df
- D. du

A Windows server shows slow response times. Which built-in tool helps monitor real-time resource usage?

- A. Device Manager
- B. Event Viewer
- C. Performance Monitor
- D. Services Console

Which Linux command provides historical system performance statistics?

- A. uptime
- B. htop
- C. sar
- D. ping

In Linux, which command lets you check which users are currently logged in?

- A. who
- B. ps
- C. top
- D. uptime

What Linux tool would you use to check system logs managed by journald?

- A. logger
- B. journalctl
- C. sysstat
- D. sar

A file is missing permission for a user. What Linux command helps adjust this?

- A. chmod
- B. ping
- C. uptime
- D. du

Which tool in Windows is best for viewing system error logs?

- A. Task Manager
- B. Disk Management
- C. Event Viewer
- D. Device Manager

If a service fails to start in Linux, which command gives the most helpful output?

- A. du
- B. free
- C. systemctl status <service>
- D. df

Which command helps determine if a file system is nearly full in Linux?

- A. Is
- B. du
- C. df -h
- D. uptime

Scenario:

A production website hosted on an Apache web server has suddenly become inaccessible. You are provided with the server's credentials and IP address.

Task:

Investigate the root cause of the issue and restore website availability.

Scenario:

A developer has deployed a test website using the NGINX web server, but cannot access the page from a browser. You have been given the server's login credentials and IP address.

Task:

Diagnose the problem and resolve it. Afterward, provide the developer with the correct method to access the test site.

Scenario:

An IT administrator is unable to connect to the company's internal DNS server while trying to modify its configuration files. You are granted direct console access to the DNS server.

Task:

Identify and fix the connectivity issue preventing access to the DNS server.

Scenario:

You were in the process of setting a static IP address and DNS server on a Linux system. During the configuration, you lost connectivity to the server. Console access is now available.

Task:

Troubleshoot the networking configuration and restore proper connectivity to the server.

Scenario:

A client application is unable to connect to a remote MySQL database server. You are provided with the database server's IP and SSH credentials.

Task:

Investigate the database connection failure and take necessary actions to restore access.

Scenario:

A server is performing very poorly—it is consistently slow and experiences frequent disconnections, despite running no active services.

Task:

Assess the health of the server resolve any issues.

Scenario:

You are experiencing very slow file transfers from a server. Even small files take a long time to move across the network.

Task:

Identify and resolve the root cause of the network performance degradation.

Scenario:

Investigate what the server http://zergaw.com:9876 is relying at a network level using packet capture **Task**:

Use tcpdump to capture client request to http://zergaw.com:9876 and analyze it in wireshark

Thank You

- +251977035511
- info@citcot.com
- citcot.comnunaethiopia.com

