北京工业大学 2015—2016 学年第 一 学期《高等数学(管)-1》考试卷

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》, 承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不 作弊、不替考。若有违反,愿接受相应的处分。

承诺人:		学	学号:		班号:	
·····注:	本试卷共	<u>三</u> 大题, <u>18</u>	8_小题,共 <u>6</u>	页,满分 100 分		, , , ,
	考试时必须使用卷后附的草稿纸。(可以撕下) 卷 面 成 绩 汇 总 表(阅卷教师填写)					
	题号	_	=	三	总成绩	
	得分					
2.若 3.lim	$F'(x) = \int_{3}^{1} \left(\frac{x}{3}\right)^{\frac{1}{x-3}} =$	$f(x), \mathbb{R} \leq \int_{-\infty}^{\infty} e^{x^{2}/3}$	$\frac{f(-\sqrt{x})}{\sqrt{x}}dx = \frac{1}{\sqrt{3}}$	$ S_{S_{S_{S_{S_{S_{S_{S_{S_{S_{S_{S_{S_{S$)	. C
	` '			= Q. (1+ 1 xex	·)`、雨ネ=个享	(安松限)
		x	(上.下后			
7.设y =	x ^{sin x} ,则y	$y = \chi^{\sin x} (\cos x)$	$= 0, a = \sqrt{2}$ $\times \cdot x + \frac{\text{Sin} x}{x})$	$,b=\sqrt{2}$		
8.设y ² +	$e^{xy}=2,$	$\emptyset dy = - y$	dx			

资料由公众号(工大喵)收集整理并免费分享

9
$$\int_{\sin^4 x + 1}^{\sin^4 x + 1} dx = \frac{1}{2} \arctan(\sin^2 x) + C$$
.

10. $\int_{\sqrt{x}}^{1} (1 + \frac{1}{x})^{x} dx = 2\sqrt{x} - 2\arctan(x + C)$.

11. $\int_{\sqrt{x}}^{1} (1 + \frac{1}{x})^{x} dx = 2\sqrt{x} - 2\arctan(x + C)$.

11. $\int_{-x}^{\sqrt{x^2 - x^2}} dx = \frac{1}{x} \cdot dx = -\frac{1}{x} \int_{0}^{x} \frac{1}{x^2} - 1 dx + C$.

11. $\int_{-x^2 - x^2}^{\sqrt{x^2 - x^2}} dx = \int_{-x^2}^{x} \int_{0}^{x} \frac{1}{x^2} - 1 dx + C$.

11. $\int_{-x^2 - x^2}^{\sqrt{x^2 - x^2}} dx = -\frac{1}{x} \int_{0}^{x} \frac{1}{x^2} - 1 dx + C$.

12. $\int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx = \frac{1}{x^2 - x^2} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

13. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

14. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

15. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

16. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

17. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

18. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

19. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

19. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

19. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

10. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

11. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

12. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

13. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

14. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

15. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

16. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

17. $\partial_{x} \int_{0}^{x} \frac{1}{x^2 - x^2} dx + C$.

18. $\partial_{x} \int_{0$

资料由公众号【丁大喵】收集整理并免费分享

$$13. x 极限 \lim_{x\to 0} \frac{1-\cos x \cdot \sqrt{\cos 2x}}{x^2}$$
 不宜直接用洛必达度只.)
$$= \lim_{x\to 0} \frac{\sqrt{\cos 2x} - \cos x \sqrt{\cos 2x}}{\sqrt{2}} + 1 - \sqrt{\cos 2x}$$
 (在分分の成 $\sqrt{\cos 2x}$)
$$= \underbrace{\frac{\cos 2x}{\cos 2x} (1-\cos x)}_{\chi^2} + \underbrace{\frac{1-\sqrt{\cos 2x}}{\cos 2x}}_{\chi^2}$$

$$= \underbrace{\frac{1}{2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2}$$

$$= \underbrace{\frac{1}{2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2}$$

$$= \underbrace{\frac{1}{2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2} + \underbrace{\frac{1-\cos 2x}{\cos 2x}}_{\chi^2} = \underbrace{\frac{3}{2}}_{\chi^2}$$

资料由公众号【工大喵】收集整理并免费分享

三、综合题(每小题5分,共10分)

$$\lim_{h \to \infty} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0)$$

$$iif): f(x_0+k) = f(x_0) + f'(x_0)h + \pm f''(x_0)h^2 + o(h^2)$$

$$f(x_0-k) = f(x_0) + f'(x_0)(-k) + \pm f''(x_0) \cdot h^2 + o(h^2)$$
(1)

$$f(x_0+f_0)+f(x_0-f_0)=2f(x_0)+f''(x_0)f_0^2+o(f_0^2).$$

$$=\frac{f(x_0+f_0)+f(x_0-f_0)-2f(x_0)}{f_0^2}=f''(x_0)+o(f_0^2).$$

西世间村取机路,今日的即可

凡是最后一步说(1)+(2)即可,沒有 积极限二种打口2分.