

One Bit Is All It Takes

A Devastating Attack Against BLISS Non-Constant Time Sign Flips

Mehdi Tibouchi, Alexandre Wallet

Summary

- Lattice signatures schemes have outputs distributed along sk
- BLISS.Sign hides this with rejection sampling
- Efficient rejection uses bimodal Gaussians via a bitflip
- Careless implementation leaks the bitflip

Results

+ Code to compute the estimator (https://github.com/awallet/OneBitBliss)

= Recover sk.[†]

 \dagger : with 1 bit of leakage by signature, for around 100.000 signatures

Summary

- Lattice signatures schemes have outputs distributed along sk
- BLISS.Sign hides this with rejection sampling
- Efficient rejection uses bimodal Gaussians via a bitflip
- Careless implementation leaks the bitflip

Results:

+ Code to compute the estimator (https://github.com/awallet/OneBitBliss)

= Recover sk.†

 \dagger : with 1 bit of leakage by signature, for around 100.000 signatures

What's BLISS?

Bimodal (gaussians) LattIce-based Signature Scheme [DDLL13]

Perks:

Efficient, compact

Secure[†]

Security:

Key-recovery $\sim NTRU$

Forgery $\sim R\text{-SIS}$

Notations:

$$\begin{split} R = \mathbb{Z}[x]/(x^n+1), \ n = 512 \\ \mathbf{c}^{\star} \colon \text{adjoint element} \\ \langle \mathbf{a}, \mathbf{b} \mathbf{c} \rangle = \langle \mathbf{a} \mathbf{c}^{\star}, \mathbf{b} \rangle \end{split}$$

 $D_{\sigma, \mathbf{c}}$: discrete Gaussian over R center \mathbf{c} , std.dev. σ

†: in a black-box model

$$\mathsf{BLISS}.\mathsf{Sign}(\mu,\mathsf{pk}=(\mathbf{v}_1,q{-}2),\mathsf{sk}=(\mathbf{s}_1,\mathbf{s}_2))$$

- 1: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\sigma}$;
- 2: $\mathbf{u} \leftarrow \zeta \cdot \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$;
- 3: $\mathbf{c} \leftarrow \mathcal{H}(\mathbf{u}, \mu)$;
- 4: Choose a random bit b;
- 5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$;
- 6: **continue** with probability \mathcal{P}_{rej} else **restart**:
- 7: $\mathbf{z}_2^{\dagger} \leftarrow \mathsf{Compress}(\mathbf{z}_2)$;
- 8: **return** $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c});$

$$\|\mathbf{s}_1\|^2 = \lfloor \delta_1 n \rceil + 4\lfloor \delta_2 n \rceil$$

 $\delta_1, \delta_2 \in (0, 1)$ known

$$\mathbf{c} \in \{0,1\}^n$$
, $\|\mathbf{c}\|_1 = \kappa$
ROM: $\mathbf{c} \sim \text{uniform}$

Example (BLISS-I):
$$n = 512, \delta_1 = 0.3, \delta_2 = 0, \kappa = 23, \sigma = 215$$

$$\mathsf{BLISS}.\mathsf{Sign}(\mu,\mathsf{pk}=(\mathbf{v}_1,q{-}2),\mathsf{sk}=(\mathbf{s}_1,\mathbf{s}_2))$$

- 1: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\sigma}$;
- 2: $\mathbf{u} \leftarrow \zeta \cdot \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$;
- 3: $\mathbf{c} \leftarrow \mathcal{H}(\mathbf{u}, \mu)$;
- 4: Choose a random bit b;
- 5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$;
- 6: **continue** with probability \mathcal{P}_{rej} else **restart**:
- 7: $\mathbf{z}_2^{\dagger} \leftarrow \mathsf{Compress}(\mathbf{z}_2)$;
- 8: **return** $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c});$

$$\|\mathbf{s}_1\|^2 = \lfloor \delta_1 n \rceil + 4\lfloor \delta_2 n \rceil$$

 $\delta_1, \delta_2 \in (0, 1)$ known

$$\mathbf{c} \in \{0,1\}^n$$
, $\|\mathbf{c}\|_1 = \kappa$
ROM: $\mathbf{c} \sim \text{uniform}$

Example (BLISS-I):
$$n = 512, \delta_1 = 0.3, \delta_2 = 0, \kappa = 23, \sigma = 215$$

$$\mathsf{BLISS}.\mathsf{Sign}(\mu,\mathsf{pk}=(\mathbf{v}_1,q{-}2),\mathsf{sk}=(\mathbf{s}_1,\mathbf{s}_2))$$

- 1: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\sigma}$;
- 2: $\mathbf{u} \leftarrow \zeta \cdot \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$;
- 3: $\mathbf{c} \leftarrow \mathcal{H}(\mathbf{u}, \mu)$;
- 4: Choose a random bit b;
- 5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$;
- 6: **continue** with probability \mathcal{P}_{rej} else **restart**:
- 7: $\mathbf{z}_2^{\dagger} \leftarrow \mathsf{Compress}(\mathbf{z}_2)$;
- 8: **return** $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$;

$$\|\mathbf{s}_1\|^2 = \lfloor \delta_1 n \rceil + 4\lfloor \delta_2 n \rceil$$

 $\delta_1, \delta_2 \in (0, 1)$ known

 $\mathbf{c} \in \{0,1\}^n$, $\|\mathbf{c}\|_1 = \kappa$ ROM: $\mathbf{c} \sim \text{uniform}$

Example (BLISS-I):
$$n = 512, \delta_1 = 0.3, \delta_2 = 0, \kappa = 23, \sigma = 215$$

$$\mathsf{BLISS}.\mathsf{Sign}(\mu,\mathsf{pk}=(\mathbf{v}_1,q{-}2),\mathsf{sk}=(\mathbf{s}_1,\mathbf{s}_2))$$

- 1: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\sigma}$;
- 2: $\mathbf{u} \leftarrow \zeta \cdot \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$;
- 3: $\mathbf{c} \leftarrow \mathcal{H}(\mathbf{u}, \mu)$;
- 4: Choose a random bit b;
- 5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$;
- 6: **continue** with probability \mathcal{P}_{rej} else **restart**;
- 7: $\mathbf{z}_2^{\dagger} \leftarrow \mathsf{Compress}(\mathbf{z}_2)$;
- 8: **return** $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$;

$$\|\mathbf{s}_1\|^2 = \lfloor \delta_1 n \rceil + 4\lfloor \delta_2 n \rceil$$

 $\delta_1, \delta_2 \in (0, 1)$ known

$$\mathbf{c} \in \{0,1\}^n$$
, $\|\mathbf{c}\|_1 = \kappa$
ROM: $\mathbf{c} \sim \text{uniform}$

Example (BLISS-I):
$$n = 512, \delta_1 = 0.3, \delta_2 = 0, \kappa = 23, \sigma = 215$$

BLISS vs. side-channel

Side-channel vulnerabilities

vs. Gaussian sampling [BHLY16], [PBY17]

vs. rejection sampling [EFGT17], [BDE+18], [BBE+19]

In this work: target the "bimodal" part (bitflip at step 4)

$$\mathsf{BLISS}.\mathsf{Sign}(\mu,\mathsf{pk} = (\mathbf{v}_1,q{-}2),\mathsf{sk} = (\mathbf{s}_1,\mathbf{s}_2))$$

- 1: $\mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\sigma}$;
- 2: $\mathbf{u} \leftarrow \zeta \cdot \mathbf{v}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$;
- 3: $\mathbf{c} \leftarrow \mathcal{H}(\mathbf{u}, \mu)$;
- 4: Choose a random bit *b*;
- 5: $\mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c};$

. . .

Roadmap of the attack

Conditional branching using b carelessly[†]

_

Get b (in timing-leakage model): "LEAK.Sign"

1

Explicitely compute a maximum likelihood estimator

$$\hat{\mathbf{s}}$$
 for $\mathbf{s}=(\mathbf{s}_1,\mathbf{s}_2)$

 \downarrow

With enough traces, $\hat{\mathbf{s}} = \mathbf{s}$.

†: original implem. [DDLL13], strongSwan VPN suite,...

Likelihoods

 $\mathbf{s} \in \mathbb{R}^n$ a parameter and $\mathbf{X} \sim \mu_\mathbf{s}$ a random variable

(log)-likelihood function: For samples
$$\mathbf{x}_1, \dots, \mathbf{x}_m \hookleftarrow \mu_{\mathbf{s}}$$
:
$$\ell_{\mathbf{x}}(\mathbf{s}) := \log \mu_{\mathbf{s}}(\mathbf{x}) = \log \mathbb{P}[\mathbf{X} = \mathbf{x}] \qquad \qquad \ell_{\mathbf{x}_1, \dots, \mathbf{x}_m}(\mathbf{s}) = \sum_{i \in [m]} \log \mu_{\mathbf{s}}(\mathbf{x}_i)$$

Maximum likelihood estimator (MLE) $\hat{\mathbf{s}}_m \text{ associated with } \mathbf{X} :$ $\hat{\mathbf{s}}_m(\mathbf{x}_1,\dots,\mathbf{x}_m) = \operatorname{argmax}_\mathbf{s} \ell_{\mathbf{x}_1,\dots,\mathbf{x}_m}(\mathbf{s})$ $(\forall \ \mathbf{x}_1,\dots,\mathbf{x}_m \hookleftarrow \mu_\mathbf{s})$

Theorem (under some technical conditions) $(\hat{\mathbf{s}}_m)_m$ converges almost surely to s.

Likelihoods

 $\mathbf{s} \in \mathbb{R}^n$ a parameter and $\mathbf{X} \sim \mu_\mathbf{s}$ a random variable

(log)-likelihood function: For samples
$$\mathbf{x}_1, \dots, \mathbf{x}_m \hookleftarrow \mu_{\mathbf{s}}$$
:
$$\ell_{\mathbf{x}}(\mathbf{s}) := \log \mu_{\mathbf{s}}(\mathbf{x}) = \log \mathbb{P}[\mathbf{X} = \mathbf{x}] \qquad \qquad \ell_{\mathbf{x}_1, \dots, \mathbf{x}_m}(\mathbf{s}) = \sum_{i \in [m]} \log \mu_{\mathbf{s}}(\mathbf{x}_i)$$

Maximum likelihood estimator (MLE)

 $\hat{\mathbf{s}}_m$ associated with \mathbf{X} :

$$\hat{\mathbf{s}}_m(\mathbf{x}_1,\dots,\mathbf{x}_m) = \mathsf{argmax_s}\,\ell_{\mathbf{x}_1,\dots,\mathbf{x}_m}(\mathbf{s})$$

$$(\forall \ \mathbf{x}_1,\dots,\mathbf{x}_m \hookleftarrow \mu_\mathbf{s})$$

Theorem (under some technical conditions)

 $(\hat{\mathbf{s}}_m)_m$ converges almost surely to \mathbf{s} .

MLE for BLISS

Before rejection:
$$\mathbf{z} \leftarrow D_{\sigma,(-1)^b\mathbf{sc}}$$

Keep it with proba \mathcal{P}_{rej}

$$\Rightarrow$$

LEAK.Sign outputs
$$(b, \mathbf{z}, \mathbf{c}) \longleftrightarrow \mu_{\mathbf{s}}$$

$$\mu_{\mathbf{s}}(b, \mathbf{z}, \mathbf{c}) = D_{\sigma, (-1)^b \mathbf{s} \mathbf{c}}(\mathbf{z}) \cdot \mathcal{P}_{rej}$$

Likelihood function:
$$\ell_{(b,\mathbf{z},\mathbf{c})}(\mathbf{s}) = -\varphi(\langle (-1)^b \mathbf{z} \mathbf{c}^\star, \mathbf{s} \rangle)$$
, where $\varphi(t) = -\log\left(1 + \exp(-\frac{2t}{\sigma^2})\right)$ (analytic, strictly concave)

There is a unique MLE $\hat{\mathbf{s}}_m$ on the sphere of radius $\|\mathbf{s}\|$.

How good is the estimator $\hat{\mathbf{s}}_m$?

The Fisher information

For $\mathbf{X} \sim \mu_{\mathbf{s}}$ and the likelihood function $\ell_{\mathbf{x}}(\mathbf{s})$:

Fisher Information Matrix

$$I(\mathbf{s}) = -\mathbb{E}_{\mathbf{X}} \left[\frac{\partial^2}{\partial \mathbf{s}_i \partial \mathbf{s}_j} \ell_{\mathbf{X}}(\mathbf{s}) \right]_{i,j}$$

Theorem: Convergence in law

$$\sqrt{m}(\hat{\mathbf{s}}_m - \mathbf{s}) \longrightarrow \mathcal{N}(\mathbf{0}, I(\mathbf{s})^{-1})$$

Expression of the Fisher information

Let
$$\mathbf{w} := (-1)^b \mathbf{z} \mathbf{c}^*$$
 and $\overline{\mathbf{w}} := \mathbb{E}_{b, \mathbf{z}, \mathbf{c}}[\mathbf{w}]$.

We show (with heuristics†):

$$I(\mathbf{s}) \approx \mathbb{E}_{\mathbf{w}} \left[\cosh(\frac{\langle \mathbf{w}, \mathbf{s} \rangle}{\sigma^2})^{-2} \right] \cdot \frac{\kappa}{\sigma^2} \left(\mathbf{I}_n + \frac{\overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^\top}{\kappa \sigma^2} \right).$$

Behaviour of $I(s)^{-1}$?

†: analyzed more rigorously in the article

Analysis of the Fisher information

$$I(\mathbf{s}) \approx \mathbb{E}_{\mathbf{w}} \left[\cosh(\frac{\langle \mathbf{w}, \mathbf{s} \rangle}{\sigma^2})^{-2} \right] \cdot \frac{\kappa}{\sigma^2} \left(\mathbf{I}_n + \frac{\overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^\top}{\kappa \sigma^2} \right).$$

Heuristic†:
$$\mathbf{w} \sim \mathcal{N}(\kappa \cdot \mathbf{s}, \sigma \sqrt{\kappa})$$

$$\begin{array}{ll} \text{s sparse, "centered"} \\ \text{expect } |\langle \mathbf{w}, \mathbf{s} \rangle| = \kappa \|\mathbf{s}\|^2 + \alpha \cdot \sigma \sqrt{\kappa} \\ \text{(for small } \alpha) \\ \Rightarrow \cosh(\langle \mathbf{w}, \mathbf{s} \rangle / \sigma^2) \approx 1 \\ \end{array} \quad \begin{array}{ll} \overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^\top \text{ rank 1, eigenvalue } \kappa^2 \|\mathbf{s}\|^2 \\ \text{for BLISS-*, } \kappa^2 \|\mathbf{s}\|^2 \ll \kappa \sigma^2 \\ \Rightarrow I(\mathbf{s}) \text{ invertible} \end{array}$$

The Fisher Information is essentially scalar:

$$I(\mathbf{s})^{-1} pprox \frac{\sigma^2}{\kappa} \mathbf{I}_n$$

†: analyzed more rigorously in the article.

Analysis of the Fisher information

$$I(\mathbf{s}) \approx \mathbb{E}_{\mathbf{w}} \left[\cosh(\frac{\langle \mathbf{w}, \mathbf{s} \rangle}{\sigma^2})^{-2} \right] \cdot \frac{\kappa}{\sigma^2} \left(\mathbf{I}_n + \frac{\overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^\top}{\kappa \sigma^2} \right).$$

Heuristic†:
$$\mathbf{w} \sim \mathcal{N}(\kappa \cdot \mathbf{s}, \sigma \sqrt{\kappa})$$

$$\begin{array}{ll} \text{s sparse, "centered"} \\ \text{expect } |\langle \mathbf{w}, \mathbf{s} \rangle| = \kappa \|\mathbf{s}\|^2 + \alpha \cdot \sigma \sqrt{\kappa} \\ \text{(for small } \alpha) \\ \\ \Rightarrow \cosh(\langle \mathbf{w}, \mathbf{s} \rangle / \sigma^2) \approx 1 \\ \end{array} \qquad \begin{array}{ll} \overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^\top \text{ rank 1, eigenvalue } \kappa^2 \|\mathbf{s}\|^2 \\ \text{for BLISS-*, } \kappa^2 \|\mathbf{s}\|^2 \ll \kappa \sigma^2 \\ \\ \Rightarrow I(\mathbf{s}) \text{ invertible} \end{array}$$

The Fisher Information is essentially scalar:

$$I(\mathbf{s})^{-1} \approx \frac{\sigma^2}{\kappa} \mathbf{I}_n.$$

†: analyzed more rigorously in the article.

How many traces are needed?

The MLE satisfies
$$\sqrt{m}(\hat{\mathbf{s}}_m - \mathbf{s}) \sim \mathcal{N}(\mathbf{0}, \frac{\sigma^2}{\kappa})$$
 $\mathbf{s} \in \mathbb{Z}^n$: we want $\|\hat{\mathbf{s}}_m - \mathbf{s}\|_{\infty} \leq \frac{1}{2}$ \Rightarrow Use the Gaussian tail bound.

Conclusion: When $m \geq 16\log(2n)\frac{\sigma^2}{\kappa}$, except with proba. $\leq \frac{1}{2n}$, we have $\lceil \hat{\mathbf{s}}_m \rfloor = \mathbf{s}$.

Algorithmic aspect of the attack

LEAK.Sign gives
$$(b_i, \mathbf{z}_i, \mathbf{c}_i)_{i \in [m]}$$
. Let $\mathbf{w}_i := (-1)^{b_i} \mathbf{z}_i \mathbf{c}_i^{\star}$

$$\begin{array}{c} \textbf{Goal: maximize} \\ \ell(\mathbf{s}) = -\sum_{i \in [m]} \log \left(1 + \exp(-\frac{2 \langle \mathbf{w}_i, \mathbf{s} \rangle}{\sigma^2})\right) \end{array}$$

Technique:Gradient descent

Algorithmic aspect of the attack

LEAK.Sign gives
$$(b_i, \mathbf{z}_i, \mathbf{c}_i)_{i \in [m]}$$
. Let $\mathbf{w}_i := (-1)^{b_i} \mathbf{z}_i \mathbf{c}_i^{\star}$

$$\begin{array}{c} \textbf{Goal: maximize} \\ \ell(\mathbf{s}) = -\sum_{i \in [m]} \log \left(1 + \exp(-\frac{2\langle \mathbf{w}_i, \mathbf{s} \rangle}{\sigma^2})\right) \end{array}$$

Technique:Gradient descent

Algorithmic aspect of the attack

LEAK.Sign gives
$$(b_i, \mathbf{z}_i, \mathbf{c}_i)_{i \in [m]}$$
. Let $\mathbf{w}_i := (-1)^{b_i} \mathbf{z}_i \mathbf{c}_i^{\star}$

$$\begin{array}{c} \textbf{Goal: maximize} \\ \ell(\mathbf{s}) = -\sum_{i \in [m]} \log \left(1 + \exp(-\frac{2 \langle \mathbf{w}_i, \mathbf{s} \rangle}{\sigma^2})\right) \end{array}$$

Technique:Gradient descent

Practical results

Table: Results of our experiments.

BLISS-	I	Ш	Ш	IV
Theoretical m for success: $16\log(2n)\sigma^2/\kappa$	223,000	55,000	231,000	209,000
Experimental m for full recovery (LQ)	120,000	60,000	160,000	170,000
Experimental m for full recovery (median)	130,000	70,000	180,000	200,000
Experimental m for full recovery (UQ)	150,000	80,000	200,000	230,000
Experimental m for n^\prime/n recovery (LQ)	70,000	40,000	90,000	110,000
Experimental m for n^\prime/n recovery (median)	70,000	40,000	100,000	110,000
Experimental m for n^\prime/n recovery (UQ)	80,000	40,000	110,000	120,000

Code: https://github.com/awallet/OneBitBliss

Conclusion

MAKE THINGS CONSTANT-TIME.

(thanks!)