

CHAPTER VII

$$Q = m C_p (T_2 - T_1)$$

Energy Effects in Liquids

Q = m C_p (T₂ - T₁)

Use n if C_p in molar heat cap.

Latent: Q = n Ath or m Ath

Oz 02

03

Trouton's rule:

$$\frac{\Delta H_{V}}{T_{h}} = 88 \frac{kJ}{kmol K}$$

 $\frac{\Delta H_{V}}{T_{c}} = 88 \frac{kJ}{kmol \ K}$ where T_{b} is the normal boiling point

Clausius-Clapeyron Equation:

 $\ln P = -\frac{\Delta H_{V}}{PT} + C_{o} \quad \text{where P is in kPa and T is in K}$

 $\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H_v}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ (i) Calculate AHv if

The pairs (P_1, T_1) if (P_2, T_2) known

(ii) Calculate P_2 or T_2 if

General vapour pressure correlation: $\ln P = \frac{C_1}{T} + C_2$

where C₁ and C₂ are constants

Relationship between bubble-point pressure and partial pressure: $P = \sum_{i=1}^{c} \overline{p_i} = \sum_{i=1}^{c} P_{v_i} x_i$

Henry's Law: $\overline{p}_i = y_i P = H_i x_i$

(7, ×1, ×21) When the remaining two arce known 1= compress 1 2 = compress 2)

Remember: $\Sigma Y_i = \Sigma X_i = 1$ ** X Psyskm = Ptot = Plate of liq (X1, X1) = Pap of vapu (Y1, X2) = bubble-point pressure Pap = dew point pressure

Chapter 7 - Solution

Final Exam W2012

The normal boiling point of n-pentane is 36.1°C. At a temperature of 75°C, the vapour pressure of n-pentane is 310.5 kPa. The latent heat of vaporization of benzene at its normal boiling point of 80.1°C is 30.7 MJ/kmol. You have been given a liquid mixture containing 10 mol% benzene (M=78 g/mol) and 90 mol% n-pentane (M=72.15 g/mol). Use the information provided to answer the following questions:

- a) Determine the vapour pressure (in kPa) of pure n-pentane at 65°C.
- b) Estimate the vapour pressure (in kPa) of pure benzene at 65°C.
- c) Calculate the bubble point pressure (in kPa) of the liquid mixture at 65°C.
- d) Determine the composition of the vapour phase in equilibrium whent the liquid mixture is at 65°C and at its bubble point pressure at this temperature.
- e) You now have 10 kg of pure liquid benzene at a temperature of 4° C at a pressure of 1 atm. Determine the total heat energy required (kJ) to boil the substance entirely to a vapour at 100° C. Note: C_{pL} for benzene is 134.8 kJ/kmol.K and C_{pv} for benzene is 82.4 kJ/kmolK

a) Given,
$$(T_1 = 36.1^{\circ}C = 309.25 \text{ K}, P_1 = 101.325 \text{ kPa})$$

and $(T_2 = 75^{\circ}C = 348.15 \text{ K}, P_2 = 310.5 \text{ kPa})$

Find: $P = ?$ when $T = 65^{\circ}C$ using $\ln(P_2/P_1) = \frac{\Delta hr}{R}(V_{T_1} - V_{Z_2})$

First, develop the $P - T$ relationship by determining Δhr
 $\ln\left(\frac{10+325}{3+0-5}\right) = \frac{\Delta hr}{R}\left(\frac{1}{349.25} - \frac{1}{348.15}\right)$

$$\Rightarrow \frac{\Delta hr}{R} = 1.1198567/6.0003613 = 3099.5 \text{ K}$$

Then, applying the same equation between $(T_1 = 309.25, P_1 = 101.325)$

and $(T_2 = 65^{\circ}C = 338.15 \text{ K}, P_2)$ we get.

 $\ln\left(\frac{P_2}{101.325}\right) = 30995 \left(\frac{1}{309.25} - \frac{1}{338.15}\right) = 0.8566$

$$\Rightarrow P_2 = 238.63 \text{ kPa}$$

b) Given Δhr , benzene = $36.7 \times 10^3 \text{ kJ/km/l}$

and at $P_1 = 101.325 \text{ kPa}$, $T_1 = T_2 = 353.25 \text{ K}$

Apply the same relationship for benzene for the condition $T_2 = 65^{\circ}C = 338.15 \text{ K}$

$$\ln \frac{f_{\perp}}{f_{\parallel}} = \frac{\Delta H v}{R} \left(\frac{1}{f_{\parallel}} - \frac{1}{f_{\perp}} \right)$$

$$\Rightarrow \ln \frac{f_{\perp}}{f_{\parallel}} = \frac{30.7 \times 18^{3} \, \text{KJ}}{\text{mHP}} \left[\frac{\text{kmpf} \cdot \text{K}}{353.15 \, \text{K}} + \frac{1}{358.15 \, \text{K}} \right]$$

$$= \frac{3692.5668 \left(-0.000125536 \right)}{338.15 \, \text{K}}$$

$$\Rightarrow \frac{f_{\perp}}{101.325 \, \text{kfa}} = \exp \left(-0.46355 \right) = 0.629047$$

$$\Rightarrow P = 63.74 \, \text{kfa} \left(\text{vap pv. of benzene at 65°C} \right)$$

Given liquid mixture : 10 mol/. henzene()+ 90 mol/. n-pentare(2)

Given temp : T=65°C =

Detercmine: Pbp for liq mixture at 65°C

We do the following experiment: Take ceretain amount of this mixture inside a variable-volume container and set the pressure such that just only the 1st drop of busble is observed at 65°C. At equilibrium. The liquid composition at equilibrium is same as the liquid composition of the given liquid composition of the given

We know Ptotal = Pup of lig mix $(x_1 = 1, x_2 = 9) = Pap$ of vapon $(9_1, y_1)$ at equilibria $P_{total} = \sum x_i P_{v_i} = x_i P_{v_i} + x_2 P_{v_2} = 0.1 \times 63.74 + 0.9 \times 238.428 = 220.94 km$ 50, Pup = 220.94 km

Vapore composition: Rarult's last: 9° Ptot = χ° Put $y^{\circ} = \frac{\chi^{\circ}}{P_{tot}}$ With ref. to part (c), $y^{\circ} = \frac{\chi^{\circ}}{P_{tot}}$ $y^{\circ} = \frac{\chi^{\circ}}{P_{tot}}$

e) Heat requirement: lig benzene (1°() a) satlig (20) sup 80.1°C

Q= Q1+Q2+Q3 = n [CPLAT_1 + AH+ CPV ATZ]

= 5961 KJ (n=m/M=10/78=.1282 km/).

Final Exam Winter 2015

A liquid mixture is formed by mixing 20 kg of n-hexane (C6H14) and 80 kg of n-octane (C6H18). The molar masses of n-hexane and n-octane are 86 kg/kmol and 114 kg/kmol respectively. The data available for the two liquids are shown in the table below:

Temperature (°C)	Vapor Pressure (mmHg)	
	n-hexane	n-octane
50 (1)	405.6	50.3 (1)
100 (2)	1844.4 (2)	351.1 (2

- a) Calculate the mole fraction of n-hexane and n-octane in the liquid.
- b) Estimate the latent heat of vaporization of pure n-octane (kJ/kg).
- c) Estimate the boiling point of pure n-octane at 200 mm Hg (in °C).
- d) The liquid mixture (20 kg n-hexane and 80 kg n-octane) is maintained at 80°C. Calculate the following:
- (i) Equilibrium (total) pressure (in mmHg)
- (ii) Estimate the composition of the vapor in equilibrium with liquid

a)
$$n = m/M$$

 $1 = \text{hexane}, 2 = \text{octane}$
 $n_1 = 20/86 = 6.2326 \text{ km}$
 $n_2 = 80/114 = 0.7018 \text{ km}$
 $x_1 = n_1/n_{tot} = 0.25$
 $x_2 = n_2/n_{tot} = 0.75$

b) Given
$$(P_1 = 50.3 \text{ mm Hg at } T_1 = 50.2 = 323.15 \text{ K})$$
 and $(P_2 = 357.1 \text{ mm Hg at } T_2 = 160.6 = 373.15 \text{ K})$.

Find AHV
$$\ln (P_2/P_1) = \frac{\Delta H \nu}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \Rightarrow \frac{\Delta H \nu}{R} = \frac{\ln (P_2/P_1)}{\frac{1}{T_1} - \frac{1}{T_2}}$$

$$= \frac{\ln (351.1/50.5)}{\frac{1}{323.15}}$$

$$30$$
, $\Delta HV = (R)(4686K) = \frac{4686K|8.314 KJ| | 1 | km/l}{|cynrl·lK| | 114 | Kg}$
= $341.74 | KJ/Kg$

c) Find
$$T_b = T_2$$
 at $P_2 = 200 \text{ mm Hg}$.

Known: $T_{a_1} = 50^{\circ}\text{C} = 323.15 \text{ K}$ at $P_1 = 50.3 \text{ mm Hg}$

and $AHV/R = 4686 \text{ K}$.

Therefore, $In \frac{200}{50.3} = 4686 \text{ K} \frac{1}{323.15 \text{ K}} - \frac{1}{T_2 \text{ (K)}}$.

 $\Rightarrow 2.9456 \times 10^4 = \frac{1}{323.15} - \frac{1}{T_2}$
 $\Rightarrow T_2 = 357.146 \text{ K} = 84^{\circ}\text{C}$

d) Given: vapore
$$\nu$$
 liquid coexist, find P, χ_1, χ_2

$$T = 80'C, \chi_1, \chi_2 = 353.15 \text{ K}$$

$$\chi_1 = 0.25$$

$$\chi_2 = 0.75$$
Find: P, χ_1, χ_2

Required: Pri and Prz at 353.15 K

Hexane vap. pr: first delermine
$$\frac{\Delta Hv}{R}$$

In $(\frac{18444}{405.6}) = \frac{\Delta Hv}{R} (\frac{1}{323.15} - \frac{1}{373.15})$
 $\Rightarrow \frac{\Delta Hv}{R} = 3652.6 \text{ K}$
Then, In $(\frac{Rv_{\perp}}{405.6}) = 3652.6 \text{ K} (\frac{1}{323.15\text{ K}} - \frac{1}{353.15\text{ K}}) = 0.9602$

=> Pr1 = 1059.5 mm Hg = vap pr. of hexaneat 80C

$$\frac{0 \text{ ctane vap pr.:}}{\ln \left(\frac{R_{2}}{50.3}\right) = 4686 \, \text{K} \left(\frac{1}{323.15 \, \text{k}} - \frac{1}{353.15 \, \text{k}}\right) = 1.2318}$$

$$\Rightarrow R_{2} = 172.41 \, \text{mm Hg} = \text{vap. pr. of octane at 80 c}$$

(ii) Composition: Raoult's law:
$$\gamma_i P_{tot} = \chi_i P_{vi} \Rightarrow \gamma_i = \frac{\chi_i P_{vi}}{P_{tot}}$$

 $\gamma_i = \frac{1}{2} \times 1059.5/394.18 = 0.612.$
 $\gamma_i = \frac{1}{2} \times 1059.5/394.18 = 0.612.$

Final Exam W2016

A liquid binary mixture of acetone (25 mol%) and chloroform is at 60 kPa in a closed variable-volume container. Assume that both components follow Raoult's law. At 35°C, the vapor pressure of acetone is 46.3 kPa and the vapor pressure of chloroform is 36.4 kPa.

- a) The pressure in the container is now slowly reduced to the bubble point pressure of the liquid mixture at 35°C. Determine this pressure and the composition of the vapor in equilibrium.
- b) Determine the dew point pressure of a vapor mixture of acetone (25 mol%) and chloroform at 35°C and the composition of the liquid in equilibrium with the vapor at this conditions.
- c) The pressure of the container is now set to 38.6 kPa at 35°C. Determine the vapor and liquid compositions.
- d) The normal boiling point of acetone is 56°C. Estimate the latent heat of vaporization for acetone.

Then, $\gamma_A = \gamma_A P_{tot}/P_{VA} = .25 \times 38.4 R/46.3 = 0.2076, \gamma_c = 1-74 = .7924$

d) We already know that 8 vap py of accessore at 35°C is 46.3 km Given that at P = 101.31 s. kfn, $T = T_b = 56°C = 329.15 \text{ k.}$ $en \frac{P_2}{P_1} = \frac{\Delta Hr}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \Rightarrow \frac{\Delta Hr}{R} = \frac{en(P_1/P_1)}{\sqrt{T_1} - \sqrt{T_2}}$ $\Rightarrow \ln \frac{101.325}{46.3} = /\frac{2}{R} \left[\frac{329.15 \text{ k}}{329.15 \text{ k}} - \frac{1}{308.15} \right] = \frac{\Delta Hr}{R}$ $\Rightarrow \Delta Hr = 3783.5 \text{ k} \Rightarrow \Delta Hr = 31.458 \text{ mr}$