Proposition 1. Puzzle 1: Find an infinite collection of open intervals in \mathbb{R} whose intersection is not an open interval.

Proof.
$$X = \bigcap \{ (\frac{-1}{n}, \frac{1}{n}) : n \in \mathbb{Z}^+ \}$$

Proposition 2. Any finite union of closed sets is closed, and any arbitrary intersection of closed sets is closed.

Proof. Proposition 1 - Any finite union of closed sets is closed.

Let C, D be closed sets.

Let A, B be compliments of C, D so A, B are open.

Then, $A \cap B$ is also open.

Thus, $X\setminus (A\cap B)$ is closed.

 $X \setminus (A \cap B) = X \setminus A \cup X \setminus B = C \cup D$

Inductive Proof:

Base Case: $C \cup D$ is closed.

Inductive Hypothesis:

Assume $C_1 \cup C_2 \cup ... \cup C_n$ is closed for closed sets C_i .

Then $C_1 \cup C_2 \cup ... \cup C_n = K, K \cup C_{n+1}$ is closed.

Proposition 1 - Any arbitrary intersection of closed sets is closed.

Let \mathcal{C} be a collection of closed sets.

Let $\mathcal{U} = \{X \setminus C : C \in \mathcal{C}\}$, so \mathcal{U} is a collection of open sets.

Then, $\bigcup \mathcal{U}$ is also open.

Thus, $X \setminus \bigcup \mathcal{U}$ is closed.

 $X \setminus \bigcup \mathcal{U} = \bigcap \mathcal{C}$

Therefore, $\bigcap \mathcal{C}$ is closed.

Lemma 3. A set U is open if and only if for every point $x \in U$, there exists an open set U_x where $x \in U_x \subseteq U$

Proof. Suppose U is open

Then for all $x \in U$ there exists an open subset of U, U_x such that $x \in U_x$

Proof. Suppose there is an open set $\{U_x : x \in U_x\} \subseteq U$.

We want to show that U is open.

If $U_x \subseteq U$, then for all $x \in U_x$, $x \in U$

 $U_x \subseteq U$ is open if $U_x \subseteq \tau$

If $U_x \subseteq \tau$, then $\bigcup U_x \in \tau$

 $\bigcup U_x = U \in \tau$, so U is open.

Proposition 4. A set K in a topological space X is closed if and only if K contains all its limit points.

Proof. Suppose K contains all its limit points.

This is what you had already given

If K = X, then K is closed because \emptyset is open.

Otherwise let $x \in X \setminus K$, so x is not a limit point of K. Then, $\exists x \in U_x \in \tau \text{ such that } U_x \cap K = \emptyset.$ So, $x \in U_x \subseteq X \setminus K$. Thus, $\bigcup \{U_x : x \in X \setminus K\} \supseteq X \setminus K$ and $\bigcup \{U_x : x \in X \setminus K\} \subseteq X \setminus K$ since $U_x \subseteq X \setminus K$. Therefore, $\bigcup \{U_x : x \in X \setminus K\} = X \setminus K$, so $X \setminus K$ is open and K is closed. *Proof.* Suppose K is closed. Still unsure how to apply the lemma to the double implication...also unsure if I have the lemma correctly in order to even use it in the first place... **Proposition 5.** Verify the discrete and indiscrete topologies are topologies *Proof.* Prove the discrete topology is an actual topology. The discrete topology on a set X is $\tau = \mathcal{P}(X)$ \emptyset , X $\in \mathcal{P}(X)$, So \emptyset , X $\in \tau$ Let $U \in \tau$, or $U \subseteq \mathcal{P}(X)$, then the $\bigcup U \in \mathcal{P}(X)$ or $\bigcup U \in \tau$ Let U, $V \in \tau$, then the intersection of U, V is also in τ . *Proof.* Prove the indiscrete topology is an actual topology. The indiscrete topology on a set X is given as $\tau = \{\emptyset, X\}$. Clearly, \emptyset , $X \in \tau$. Let \mathcal{U} be a collection of all open sets in X, then the $|\mathcal{U}|$ is also $\in \tau$. Let U, V be open sets in X, then U, $V \in \tau$. Thus the intersection f open sets U, V is also $\in \tau$ **Proposition 6.** Find a basis for the indiscrete topology on \mathbb{R} . *Proof.* Find a basis for the indiscrete topology on \mathbb{R} . The indiscrete topology on \mathbb{R} is given as $\tau = \{\emptyset, \mathbb{R}\}$ A basis on \mathbb{R} is a collection $\mathcal{B} \subseteq \mathcal{P}(\mathbb{R})$ s.t. for each $x \in \mathbb{R} \exists B \in \mathcal{B} : x \in \mathcal{B}$. Let $\mathcal{B} = \mathbb{R}$. Since $\mathcal{B} \subseteq \mathcal{P}(\mathbb{R})$, for each $x \in \mathbb{R}$, there is a subset $B \in \mathcal{B} : x \in \mathcal{B}$. Thus, $x \in \mathcal{B}$ and B is a basis on \mathbb{R} . Furthermore, if two sets B_1 , $B_2 \in \mathcal{B}$, then their intersection is also in \mathcal{B} . Let $x \in B_1$, B_2 . Then $x \in B_1$, $B_2 \in \mathcal{B}$, then their intersection is also in \mathcal{B} . $B_1 \cap B_2 = B_3$, so $B_3 \in \mathcal{B}$, and $x \in B_3 \subseteq B_1 \cap B_2$. Thus B_3 is also a basis on \mathbb{R} .