Ćwiczenie laboratoryjne z "Teorii automatów".

Badanie automatu parametrycznego

<u>Cel ćwiczenia</u>: praktyczne zapoznanie się z działaniem i własnościami automatu parametrycznego.

Program ćwiczenia:

- 1. Zmontowanie automatu parametrycznego.
- 2. Badanie zachowania się automatu parametrycznego przy ustalonej wartości p₁ parametru p.
- 5. Określenie grafu G_1 automatu < A_1 > odwzorowanego działaniem automatu < A > przy wartości p_1 parametru p.
- 4. Badanie zachowania się automatu parametrycznego przy wartości p_2 parametru p.
- 5. Określenie grafu G $_2$ automatu < A $_2$ odwzorowanego działaniem automatu < A > przy wartości p $_2$ parametru p.
- 6. Wykonanie operacji nakładania grafów G_1 , G_2 i określenie grafu zastępczego G' automatu parametrycznego A o dwóch wartościach p_1 i p_2 parametru p.
- 7. Opracowanie sprawozdania i ćwiczenia.

1. Problematyka ćwiczenia

Automat parametryczny \langle A \rangle jest automatem skończonym o wielu wariantach działania [2,3], Każdy wariant działania automatu parametrycznego \langle A \rangle odpowiada jednemu z zadań, do wykonywania, których zbudowany został dany automat parametryczny \langle A \rangle . W trakcie wykonywania danego zadania K $_{i}$ automat parametryczny \langle A \rangle dla obserwatora z zewnątrz zachowuje się tak jak pewien automat skończony \langle A $_{i}$ \rangle typu Moore'a, tj. swcim działaniem odwzorowuje działanie automatu \langle A $_{i}$ \rangle z pewnego zbioru A * . Liczba automatów \langle A $_{i}$ \rangle \in A * jest jednoznaczne określona liczbą zadań K $_{i}$ \in K $_{i}$, dla

wykonania których automat parametryczny \langle A \rangle został zbudowany. Nastrojenie automatu parametrycznego \langle A \rangle na wykonywania określonego zadania K $_i$ E $_i$ K odbywa sią pod wpływem określonego bodźca zewnętrznego, tj. sygnału wzbudzającego p $_i$ E $_i$ P podawanego na wejście parametryczne automatu \langle A \rangle . Sygnał wzbudzający p $_i$ E $_i$ P traktuje się jako wartość p $_i$ parametru p określającego działanie automatu \langle A \rangle .

Prezentowane w niniejszym ćwiczeniu badanie automatu parametrycznego polega na określeniu automatów < $A_i>$ \in A^* odwzorowywanych działaniem zadanego automatu parametrycznego \langle A \rangle , oraz na określeniu grafu zastępczego G' tego automatu. Automat $\left< \, {\rm A}_{\rm i} \, \right> \,$ uważa się za określony wtedy, gdy znany jest jego graf. Znając więc wartość p $_{i}$ parametru p $_{i}$ zbiór Z możliwych sygnałów wejściowych automatu parametrycznego \langle λ \rangle należy przeprowadzić analizę automatu < A > oddzielnie dla każdej wartości p $_{\rm i}$ & P. Wynikiem takiej analizy są wyrażenia symboliczne ${\tt G}_{\tt i}$ reprezentujące grafy $\mathbf{G}_{\underline{\mathbf{i}}}$ automatów $\left<\mathbf{A}_{\underline{\mathbf{i}}}\right>$ 6 $\mathbf{A}^{\mathbf{x}}$ odwzorowywanych działaniem zbadanego automatu parametrycznego < A > . Na wyrażeniach typu ${\tt G}_{\dot{1}}^{\dagger}$ wykcnuje się odpowiednią operację nakładania wyrażeń na siebie, wynikiem której jest wyrażenie G', reprezentujące graf zastępczy G' badanego automatu parametrycznego \langle A \rangle . Interpretacja formalna wymienionych operacji - znajomość której jest niezbędna dla prawidłowego przeprowadzenia analizy automatu parametrycznego < A > - podane zostanie niżej.

Wiadomości podstawowe

2.1. Charakterystyka formalna automatu parametrycznego

% ujęciu abstrakcyjnym automat parametryczny < A > można warazić następującą "ósemką":

$$\langle z, s, E, Y, F, \overline{\Phi}, \xi, \Psi \rangle$$
 (1)

gdzie: I - zbiór sygnałów wejściowych /zewnętrznych/ automatu < A >

S - zbiór sygnałów wejściowych wewnętrznych,

B - zbiór stanów wewnętrznych

Y - zbiór sygnałów wyjściowych automatu < A >

P - zbiór sygnalów wzbudzających interpretowanych jako wartości p $_{\underline{i}}$ parametru p działania automatu < A >

 Φ - funkcja przejść automatu \langle A $^{ullet}
angle$, przy czym automat \langle A $^{ullet}
angle$ jest wewnętrzną częścią składową automatu < A >

 ξ - funkcja wejść automatu $\langle A^* \rangle$,

 Ψ - funkcja wyjść automatu < A> .

Funkcja Φ , ξ , Υ mają następującą postać:

$$b(t+1) = \overline{\Phi}[b(t), s(t)]$$
 (2)

$$s(t) = \mathcal{E}[z(t), b(t), P]$$

$$y(t) = \mathcal{Y}[b(t), P]$$
(4)

$$y(t) = \Psi[b(t), P] \tag{4}$$

gdzie b \in B, s \in S, z \in Z, y \in Y, p \in P.

Dokładniejsza interpretacja elementów użytych w zapisie wymienionych wyżej wyrażeń podana została w pracach [2] i [3].

Symtezę automatu parametrycznego < A > można scharakteryzwać następująco. Załóżmy, że mamy zbudować automat parametryczny < A> , który będzie wykonywał zadania ze zbioru

$$K = \left\{ K_1, K_2, \dots, K_m \right\} \tag{5}$$

Każde zadanie K_i \in K możemy wyrazić za pomocą grafu G_i traktowanego jako graf przejść takiego automatu A_i typu Moore'a, który byłby zdolny do wykonania zadania K_i [2]. Otrzymamy w ten sposób zbiór grafów oraz odpowiadający mu zbiór automatów skończonych typu Moore'a. Zbiory te wyrazimy następująco:

$$G = \left\{ G_1, G_2, \dots, G_m \right\} \tag{6}$$

$$A^{**} = \{ \langle A_1 \rangle, \langle A_2 \rangle, \ldots, \langle A_m \rangle \}$$
 (7)

Aby określić działanie automatu parametrycznego \langle A \rangle , który swoim działaniem odwzorowywałby działania automatów ze zbioru A $^{\rm H}$, należy określić graf tego automatu. W tym celu należy nałożyć na siebie wszystkie grafy G $_{\rm i}$ \in G, tak aby uzyskać pewien graf zbiorczy G'charakteryzujący się tym, że w jego strukturze można wyodrębnić strukturę dowolnego z grafów G $_{\rm i}$ \in G. Operację nakładania na siehie grafów G $_{\rm i}$ \in G wykonuje się na wyrażeniach symbolicznych opisujących te grafy.

Struktura grafu G' charakteryzuje się tym, że można w niej wyodrębnić strukturę dowolnego grafu G_i \in G, przy czym dowolna krawędź w strukturze grafu G' może być krawędzią wspólną dla kilku, a nawet dla wszystkich grafów G_i \in G. Aby zidentyfikować strukturę dowolnego grafu G_i \in G w strukturze grafu G0, każdy graf ma przyporządkowaną sobie wartość p_i \in P0 parametru P0.

2.2. Operacje na grafach automatów

Operację wykonywaną na grafach $G_i \in G$ automatów $\langle A_i \rangle \in A^*$ w celu uzyskania grafu G' automatu parametrycznego \langle A \rangle omówimy na następującym przykładzie. Załóżmy, że automat parametryczny \langle A \rangle przeznaczony jest do wykonywania zadań przynależnych do zbioru $K = \left\{K_i, K_2\right\}$. Przy wykonywaniu zadania K_1 automat \langle A \rangle spełnnia funkcję automatu \langle A $_1 \rangle$, przy wykonywaniu zadania K_2 automat \langle A \rangle spełnia funkcję automatu \langle A $_2 \rangle$. Działanie automatu \langle A $_1 \rangle$ zadane jest grafem G_1 /rys. 1/, działanie automatu \langle A $_2 \rangle$ zadane jest grafem G_2 /rys. 2/.

Rys. 1. Przykładowy graf automatu Moore'a

Rys. 2. Przykładowy graf automatu Moore'a

W sformułowanym powyżej przykładzie stawiamy sobie następujące zadanie do rozwiązania: - mając zadane grafy ${\tt G_1}$ i ${\tt G_2}$ należy określić graf zastępczy ${\tt G'}$ automatu parametrycznego ${\tt C}$ A ${\tt >}$.

Operacja nakładania na siebie grafów ${\tt G_1}$ i ${\tt G_2}$ sprowadza się do operacji na wyrażeniach symbolicznych opisujących te grafy $[2,\,3]$. Wyrażenia symboliczne opisujące graf ${\tt G_1}$ ma następującą postać:

$$G_{1}^{+} = {}^{0}(q_{2} - {}^{1}(z_{2}q_{3} - {}^{2}(z_{2}q_{1} - {}^{3}(z_{2}q_{2}, z_{1}q_{1})^{3}, z_{1}q_{3})^{2}, z_{1}q_{1})^{1})^{0}$$
 (6)

Natomiast wyrażenia symboliczne opisujące graf \mathbf{G}_2 ma następującą postać:

$$G_{2}^{+} = {}^{0}(q_{4} + q_{5})^{2}(q_{4} + q_{5})^{2}(q_{4} + q_{5})^{2}(q_{4} + q_{5})^{2}(q_{4} + q_{5})^{2}(q_{5} + q_{$$

Chcąc wykonać operację nażożenia wyrażeń G_1^+ i G_2^+ na siebie, musimy je przekształcić, tak aby wyrazy stojące na odpowiadających sobie pozycjach reprezentowane były jednym i tym samym symbolem. W tym też celu pomijamy w wyrażeniach G_1^+ i G_2^+ elementy Z_j natomiast elementy Q_r zastępujemy symbolami przynależnymi do zbioru Z_j^- natomiast elementy Z_j^- zastąpienie danego elementu Z_j^- odpowiednim elementem Z_j^- bzależy od tego w jakiej kolejności element Z_j^- został wykorzystany w zapisie danego wyrażenia Z_j^+ Na przykład dla wyrażenia Z_j^+ otrzymamy:

$$q_2 \leftrightarrow b_1, q_3 \leftrightarrow b_2, q_1 \leftrightarrow b_3 \quad \text{oraz}$$

$$q_1 = q_{b_1} \quad q_3 \leftrightarrow b_2, q_1 \leftrightarrow b_3 \quad \text{oraz}$$

$$q_2 \leftrightarrow b_1, q_3 \leftrightarrow b_2, q_1 \leftrightarrow b_3 \quad \text{oraz}$$

$$q_2 \leftrightarrow b_1, q_3 \leftrightarrow b_2, q_1 \leftrightarrow b_3 \quad \text{oraz}$$

$$q_2 \leftrightarrow b_1, q_3 \leftrightarrow b_2, q_1 \leftrightarrow b_3 \quad \text{oraz}$$

$$q_1 \leftrightarrow q_2 \leftrightarrow q_3 \leftrightarrow q_4 \leftrightarrow q_5 \rightarrow q_1 \leftrightarrow q_2 \rightarrow q_2 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow q$$

Dla wyrażenia G_2^+ mamy następujące przyporządkowanie: $q_4 \longleftrightarrow b_1$, $q_5 \longleftrightarrow b_2$, $q_6 \longleftrightarrow b_3$, $q_7 \longleftrightarrow b_4$. Postępując tak samo jak przy budowie wyrażenia G_1^+ otrzymamy:

$$G_{2}^{*} = {}^{0}b_{1} \quad {}^{1}b_{2} \quad {}^{2}b_{3} \quad {}^{3}b_{2}, b_{4} \quad {}^{4}(b_{1}, b_{4})^{4})^{3}, b_{4}^{2}, b_{3}^{1})^{0}$$

$$(11)$$

W następnej kolejności ciągi $G_1^{\mathcal{H}}$ i $G_2^{\mathcal{H}}$ nakładamy na siebie, operację tę oznaczymy symbolicznie jako $G_1^{\mathcal{H}} \oplus G_2^{\mathcal{H}}$.

Przy wykonywaniu operacji $G_2^{\cancel{*}} \oplus G_1^{\cancel{*}}$ postępujemy następująco:

- 1°. Porównujemy człony stojące na odpowiadających sobie pozycjach obydwu ciągach przy uwzględnieniu nawiasów $^k(:::)^k$.
- 2°. Jeżeli porównywane elementy opisane są jednym i tym samym symbolem, to w wyrażeniu wynikowym G^* wystąpi tylko jedene symbol. Jeżeli wewnątrz porównywanego członu $^k(\ldots)^k$ wyrażenia $G_1^{\overline{m}}$ występuje taki element, którego nie ma w wyrażeniu $G_2^{\overline{m}}$, to w członie $^k(\ldots)^k$ wyrażenia wynikowego G^* wystąpi porównywany element wyrażenia $G_1^{\overline{m}}$ i odpowiadający mu element wyrażenia $G_2^{\overline{m}}$.

Wykonując operację $G_2^{\mathbf{r}} \oplus G_1^{\mathbf{r}}$ otrzymujemy następujące wyrażenie wynikowe:

$$G^{**} = {}^{\circ}(b_{1} \quad 1(b_{2} \quad 2(b_{3} \quad \overline{3}(b_{1}, b_{2}, b_{3}, b_{4} \quad 4(b_{1}, b_{4})^{4})^{3}, \ b_{2}, b_{4})^{2}, \ b_{3})^{1})^{0}$$

Wyrażenie to reprezentuje strukturę grafu zastępczego G', który otrzymalibyśmy nakładając wzajemnie na siebie grafy ${\tt G_1}$ i ${\tt G_2}$ przedstawione na rys. 1 i 2.

Elementy b \in B występujące w wyrażeniu G'* odpowiadają wirzchołkom grafu G'. Natomiast krawędzie grafu G', które nie mają swoich reprezentantów w wyrażeniu G'*, należy opisać elementami s \in S = $\{s_1, s_r \dots s_w\}$. Kodowanie krawędzi grafu G' przeprowadza się według określonej reguły, którą scharakteryzujemy niżej. Łatwo zauważyć, że z każdego wierzchołka b \in B grafu G' wychodzi pewna liczba krawędzi. Krawędzie wychodzące z danego wierzchołka b \in opisuje się kolejnymi elementami s \in zbioru S - niezależnie od opisu tym samym elementami krawędzi wychodzących z innych wierzchołków - przy czym z danego wierzchołka nie mogą wychodzić krawędzie opisane jednym i tym samym elementem s \in

Przekształcając w ten sposób wyrażenie G^{**} otrzymamy wyrażenie G^{*+} $G^{*+} = {}^{\circ}b_1 \quad {}^{1}(s_1b_2 \quad {}^{2}(s_1b_3 \quad {}^{3}(s_1b_1,s_2b_2,s_3b_3,s_4b_4 \quad {}^{4}(s_1b_1,s_2b_4)^{\frac{1}{2}}, \\ , s_2b_2,s_3b_4)^2, s_2b_3)^{\frac{1}{2}})^0$

Narysowany na podstawie wyrażenia G'^+ graf zastępczy G' przedstawiony zostaż na rys. 3.

Rys. 3. Graf zastępczy automatu parametrycznego

2.3. Struktura automatu parametrycznego

Zgodnie z punktem 2.1. dziażanie automatu parametrycznego sprowadza się do realizacji trzech funkcji, tj. funkcji przejść, funkcji wejść i funkcji wyjść.

Każda z tych funkcji wykonywana jest przez inną część składową automatu parametrycznego \langle A \rangle . Funkcja s(t) = ξ [z(t), b(t), p] realizowana jest przez blok wejścia automatu parametrycznego, funkcja b(t+1) = Φ [b(t), s(t)] realizowana jest przez automat bez wyjścia \langle A \rangle , będący częścią składową automatu \langle A \rangle , funkcja y(t) = Ψ [b(t), p] realizowana jest przez blok wyjścia automatu parametrycznego.

Na podstawie wymienionych funkcji można określić schemat blokowy automatu parametrycznego < A > . Schemat ten został przedstawiony na rys. 4. Na podstawie tego schematu możemy krótko scharakteryzować działanie automatu parametrycznego < A > .

Rys. 4. Schemat blokowy automatu parametrycznego

Automat parametryczny można rozpatrywać jako organ sterujący pewnego systemu < Q > . W każdej dyskretnej chwili czasu t na wejście automatu przychodzi sygnał z $_{\rm j}$ & Z wyrażający sobą informację o stanie systemu < Q > . Rodzaj zadania wykonywanego przez automat < A > w danym okresie czasu T określony jest aktualną wartością p $_{\rm i}$ & P parametru p charakteryzującą to zadanie K $_{\rm i}$ & K, które w danym okresie czasu T jest lub będzie przez automat wykonywane. Informacja o aktualnej wartości parametru p podawana jest w postaci odpowiedniego sygnału na blok sterowania automatu < A > .

Informacja o aktualnym p $_i$ ϵ P jest pamiętana w bloku sterowania dotąd, dopóki nie nastąpi zmiana wartości parametru p. W trakcie swego funkcjonowania automat < A> w każdej chwili czasu znajduje się w odpowiednim stanie, stan ten jest określony stanem automatu bez wyjścia < A * > .

W celu zapewnienia właściwego działania automatu parametrycznego < A> w danej dyskretnej chwili t na blok wejścia podawane są trzy sygnały: sygnał $z_j \in Z$, sygnał $p_i \in P$, sygnał $b_k \in B$. Na podstawie tych trzech wielkości blok wejścia automatu parametrycznego wypracowuje sygnał wejściowy s $_{\mathtt{r}} \, \boldsymbol{\epsilon} \,$ S automatu bez wyjścia < A*> . Sygnał s $_{\rm r}$ \in S podany na automat < Å> powoduje przejście tego automatu w nowy stan - w odniesieniu do grafu zastępczego \mathbb{G}^{2} przejście to jest równoznaczne z przejściem z jednego wierzcho≥ka tego grafu do innego wierzchołka tego samego grafu. Informacja o nowym stanie wewnętrznym automatu bez wyjścia < A $^{ullet}>$ podawana jest, w wyniku działania bloku sterowania na blok wyjścia automatu parametrycznego < A \gt . Na podstawie informacji o aktualnym stanie automatu < A $^{\bullet}>$ i na podstawie informacji o aktualnej wartości $\mathbf{p_i} \in \mathbf{P} \ \mathbf{parametru} \ \mathbf{p} \ \mathbf{blok} \ \mathbf{wyjscia} \ \mathbf{wypracowuje} \ \mathbf{decyzje} \ \mathbf{y_i} \in \ \mathbf{Y} \ .$ Decyzja ta reprezentowana jest odpowiednim sygnałem na wyjściu automatu < A > .

Syntezę strukturalną automatu parametrycznego < A > można przeprowadzić według tych samych reguł, z których korzysta się przy syntezie atrukturalnej automatu Moore'a. W tym celu wprowadza się pewne uproszczenie w strukturze blokowej automatu parametrycznego < A > . Mianowicie pomija się blok sterowania, bloki wejścia i wyjścia rozpatruje się jako zwykłe układy przełączające z dodatkowym wejściem p, natomiast automat bez wyjścia < A*> traktuje się jako

taki automat Moore'a, którego każdy stan wewnętrzny ma przyporządkowany sobie inny sygnał wyjściowy. Zgodnie z ostatnią uwagą, w celu uproszczenia symboliki, takim samym symbolem b $_{\rm r}$ oznacza się zarówno stan wewnętrzny automatu bez wyjścia < A $^{\bullet}>$, jak również odpowiadający mu sygnał wyjściowy. Uwzględniając powyższe uwagi schemat blokowy automatu parametrycznego możemy przedstawić tak jak to pokazano na rys. 5.

Rys. 5. Schemat blokowy automatu parametrycznego użytego w ćwiczeniu

Na rysunku tym automat < A $^{\bullet}>$, zgodnie z zasadami syntezy, podzielony został na dwie części, tj. < A $^{\bullet}>$ $_{PA}$ - część sekwencyjną /pamięciową/ automatu < A $^{\bullet}>$ oraz < A $^{\bullet}>$ $_{KO}$ - część kombinacyjna /ukżady przełączające/ automatu < A $^{\bullet}>$. Przedstawiony na rys. 5. automat parametryczny jest automatem synchronicznym, sygnaży synchronizujące dotyczące chwil dyskretnych t i t+1 oznaczono odpowiednio symbolemi V₁ i V₂, symbolem UP oznaczono ukżad przełącz-jący pełniący funkcje bramek synchronizowanych sygnażami V₁ i V₂.

3. Założenia do ćwiczenia.

Badany automat parametryczny posiada dwie wartości parametru p, oznaczone dalej symbolami p $_1$ i p $_2$. W pierwszej kolejności bada się zachowanie automatu < A> przy wartości p1 parametru p. W tym celu na wejście "p" automatu < A > /rys.5/ przykłada się sygnał p_1 a następnie testuje się automat < A > sekwencją sygnałów wejściowych $z_j \in Z$. Wynikiem testowania jest wyrażenie G_1^{++} . Uzyskane wyrażenie G_1^{++} przekształca się na wyrażenie G_1^+ na podstawie którego ryst się graf G_1 automatu $< A_1 > 6$ A^* . W analogiczny sposób bada się zachowanie automatu < A>przy wartości p2 parametru p. Pośrednim wynikiem przeprowadzonego ćwiczenia są grafy ${\tt G_1}$ i ${\tt G_2}$ automatów < A_1 > i < A_2 > odwzorowywanych działaniem automatu parametrycznego < A> przy wartościach p₁ i p₂ parametru p. Grafy $\mathbf{G_1}$ i $\mathbf{G_2}$ mają przyporządkowane sobie wyrażenia $\mathbf{G_1^+}$ i $\mathbf{G_2^+}$, na których wykonuje się operację ${\tt G}_1^+$ \bigoplus ${\tt G}_2^+$ nakładania wyrażeń zgodnie z zasadar podanymi w punkcie 2.2. Wynikiem operacji $G_1^+ \oplus G_2^+$ jest wyrażenie G_1^+ na podstawie którego rysuje się graf zastępczy G' badanego automatu parametrycznego < A > , graf ten stanowi wynik końcowy przeprowadzonego ćwiczenia laboratoryjnego.

4. Praktyczna realizacja ćwiczenia

Schemat montażowy badanego automatu parametrycznego przedstawiono na rys. 6. Zadanie studentów polega na zmontowaniu układu według rysunku oraz zbadaniu jego zachowania zgodnie z założeniami przedstawionymi w punkcie poprzednim.

Ze względu na złożoną strukturę układu w celu uniknięcia problemo uruchomieniowych zaleca się stopniowy montaż automatu. W tym celu przedstawiono wyniki końcowe syntezy poszczególnych bloków funkcjonak

- funkcje wejść

$$S_1 = p_1 z_1 Q_1 + p_2 \left(z_1 \overline{Q}_1 Q_2 + z_2 Q_1 \overline{Q}_2 \right)$$

$$S_2 = p_1 z_1 \overline{q}_1 + p_2 (z_1 q_1 + z_2 \overline{q}_2)$$

- funkcje wzbudzeń przerzutników

$$J_1 = Q_2 \overline{S}_2 + \overline{Q}_2 S_2$$

$$K_1 = \overline{S}_1 \overline{Q}_2 + \overline{S}_1 \overline{S}_2$$

$$J_2 = S_2Q_1 + \overline{S}_2\overline{Q}_1$$

$$K_2 = \overline{S_1}\overline{S_2}$$

- funkcje wyjść

$$y_1 = p_1 \overline{Q}_1 \overline{Q}_2$$

$$y_2 = p_1 Q_1 \overline{Q}_2$$

$$y_3 = p_1 \overline{Q}_1 Q_2 + p_2 \overline{Q}_1 Q_2$$

$$y_4 = p_2 Q_1$$

$$\lambda^2 = b^2 \underline{a}^1 \underline{a}^2$$

Etapem końcowym ćwiczenia jest wykonanie dokumentacji z jego przebiegu. Program ćwiczenia może być wówczas rozszerzony i urozma-icony przez zastosowanie komputera, np. do sporządzania schematu logicznego automatu przy wykorzystaniu istniejącego i dostępnego oprogramowania.

Rys. 6. Schemat montażowy badanego automatu parametrycznego

W sprawozdaniu należy:

- Umieścieć temat i cel ćwiczenia.
- Narysować schemat logiczny badanego automatu parametrycznego < A > .
- Zostawić w tabelce wyniki testowania automatu parametrycznego przy wartości p_1 parametru p.
- Napisać wyrażenia $G_1^{++},\ d_1^{++},\ G_1^+$ oraz narysować graf G_1 odwzorowywanego automatu < $A_1>\in A_1^+$.
- Zestawić w tabelce wyniki testowania automatu parametrycznego przy wartości p $_2$ parametru p.
- Napisać wyrażenia G_2^{++} , d_2^{++} , G_2^+ oraz narysować graf G_2 automatu
- < $\rm A_2>$ odwzorowywanego działaniem automatu parametrycznego przy wartości p $_2$ parametru p.
- Napisać wyrażenie G'' uzyskane w wyniku wykonania operacji ${\tt G}_1^+ \, \oplus \, {\tt G}_2^+$.
- Narysować na podstawie uzyskanego wyrażenia G' graf zastępczy G' badanego automatu parametrycznego < A > .
- Podać krótkie wnioski i ćwiczenia.

LITERATURA

- [1]. Bromirski J., Teoria automatów, WNT, Warszawa 1971.
- [2]. Kazimierczak J., System cybernetyczny, Wyd. Wiedza Powszechna /seria Omega/, Warszawa 1978.
- [3]. Kazimierczak J., Elementy syntezy formalnej systemów operacyjnych, Bibl. WASC, Wyd. Politechniki Wrocławskiej, Wrocław 1979.
- [4]. Kazimierczak J., Automaty rozgrywające parametryczne, Prace Naukowe Instytutu Cybernetyki Technicznej PWr, Monografie 1, Wyd. PWr, Wrocław 1974.
- [5]. Kazimierczak J., Kluska J., Kaczmarek A., "Podstawy teorii automatów Laboratorium" Wyd. Politechniki Rzeszowskiej, Rzeszów 1984.

Dodatek do instrukcji 206

1. Sposób kodowania stanów wewnętrznych **b** automatu zastępczego:

	Q1	Q 2
<u> </u>	0	С
b2	0	1
b3	1	0
b4	1	1

2. Sposób kodowania sygnałów wejścicwych **s** automatu zastępczego:

	SI	S2
s1	0	0
s 2	0	1
s 3	1	0
s 4	1	1

3. Tablica prawdy dla funkcji wejść:

p1	<u>p</u> 2	z1	22	07			T
1	0	1	1	Q1	Q2	31	S2
1	1 0	1	1 0	0	0	-	1
		1	0	0	1	0	1
1	! 0	1 1	0	1	0	1	· 0
1	0	1	0	1	1	1	0
1	0	0	1	0	0	0	1 0
1	0	0	1	0	1	0	0
11	0	0	1	1	0	0	0
1	0	0	1	1	1	0	0
0	11	1	0	0	٥	0	0
<u> </u>	1	1	0	0	1	1	0
<u> </u>	<u>-</u>	1!	0	1	0	0	-
0	1	1 !	0	1_	1	<u> </u>	
0	1 1	0	1	0	o.	0	
0	1	0		0	1	0	
0 i		0	1	1	0	1	
0	1	o i	<u>1</u>	1	1	0	