MATA37 Week 12

Kevin Santos

July 29, 2022

1 Sequences

We generally think of sequences as an ordered list of numbers, e.g. $\{1,2,3,4...\}$ or $\{1, 1, 2, 3, 5, 8, 13, ...\}$ or $\{3, 1, 4, 1, 5, 6, ...\}$. The precise definition of a sequence is as follows:

Definition 1. A **sequence** of real numbers is a function whose <u>domain</u> is the natural numbers, $\mathbb{N} = \{1, 2, 3, ...\}.$

Can be denoted by

- $a_n = f(n)$
- $\bullet \left\{a_n\right\}_{n=1}^{\infty}$
- $\{a_n\}$

 a_n is the **general term** of the sequence—it's a <u>function</u> that takes a natural number n as an input and outputs a real number.

The definition of convergence of a sequence is pretty much the same as the definition of convergence of a function at infinity, as seen in MATA31.

Definition 2. Let $l \in \mathbb{R}$. The sequence $\{a_n\}$ converges to l iff

$$\forall \epsilon > 0, \exists N > 0 \text{ s.t. } \forall n \in \mathbb{N}, \text{ if } n > N, \text{ then } |a_n - l| < \epsilon$$

Denoted by

- $a_n \to l \text{ as } n \to \infty$
- $a_n \to l$
- $\lim_{n\to\infty} a_n = l$

If $\{a_n\}$ does not converge, we say it **diverges**. i.e. there does not exist any such l.

Proving $\{a_n\}$ converges to l:

- Take arbitrary $\epsilon > 0$
- Want to find some $N \in \mathbb{R}$ where, if $n \in \mathbb{N}$ and n > N, then $|a_n l| < \epsilon$. Usually N is in terms of ϵ .

- To find this N, write $|a_n l|$ and try simplifying or finding upper bounds for this function. You usually get something like $|a_n - l| \leq \frac{1}{n^p}$ for some $p \in \mathbb{R}$.
- If you get to something like $\frac{1}{n^p}$, you can use the hypothesis n > N to say $\frac{1}{n^p} < \frac{1}{N^p}$, then substitute in a choice of N to conclude $|a_n - l| \le \frac{1}{n^p} < \epsilon$.
- To complete the proof, begin by taking arbitrary $\epsilon > 0$. Define N as you determined the previous step. Then suppose n is some natural number > N.
- Simplify the expression $|a_n l|$ and show that under the above assumptions, $|a_n l| < \epsilon$.

Example 1. Prove that $\left\{\frac{\sin(n)}{\sqrt[3]{n}}\right\}_{n=1}^{\infty}$ converges to 0. Sol. Want to prove the following:

For all $\epsilon > 0$, there exists N > 0 s.t. for all $n \in \mathbb{N}$, if n > N, then $\left| \frac{\sin(n)}{\sqrt[3]{n}} \right| < \epsilon$

Let $\epsilon > 0$ be arbitrary.

Choose N => 0.

Assume $n \in \mathbb{N}$, n > N.

$$\left|\frac{\sin(n)}{\sqrt[3]{n}}\right| = \frac{|\sin(n)|}{|\sqrt[3]{n}|} \quad \text{abs. value properties}$$

$$\leq \frac{1}{|\sqrt[3]{n}|} \quad \text{since } |\sin(n)| \leq 1 \text{ for all } n$$

$$= \frac{1}{\sqrt[3]{n}} \quad \text{since } \sqrt[3]{n} \text{ is positive for } n > 1$$

$$< \frac{1}{\sqrt[3]{N}}$$

Since we assumed n > N, it follows $\sqrt[3]{n} > \sqrt[3]{N}$ and hence $1/\sqrt[3]{n} < 1/\sqrt[3]{N}$. Now, if we choose $N = \frac{1}{\epsilon^3}$, then $\frac{1}{\sqrt[3]{N}} = \epsilon$. Then we can complete the proof with the choice of N:

Let $\epsilon > 0$ be arbitrary.

Choose $N = \frac{1}{\epsilon^3} > 0$. Assume $n \in \mathbb{N}, n > N$.

$$\left| \frac{\sin(n)}{\sqrt[3]{n}} \right| = \frac{|\sin(n)|}{|\sqrt[3]{n}|} \quad \text{abs. value properties}$$

$$\leq \frac{1}{|\sqrt[3]{n}|} \quad \text{since } |\sin(n)| \leq 1 \text{ for all } n$$

$$= \frac{1}{\sqrt[3]{n}} \quad \text{since } \sqrt[3]{n} \text{ is positive for } n > 1$$

$$< \frac{1}{\sqrt[3]{N}} \quad \text{by } n > N, \text{ it follows } \sqrt[3]{n} > \sqrt[3]{N} \text{ and hence } 1/\sqrt[3]{n} < 1/\sqrt[3]{N}.$$

$$= \frac{1}{\sqrt[3]{1/\epsilon^3}} \quad \text{by choice of } N$$

$$= \frac{1}{1/\epsilon}$$

 $=\epsilon$

Hence, if
$$n > N$$
, then $\left| \frac{\sin(n)}{\sqrt[3]{n}} \right| < \epsilon$, as wanted. \square

Properties of convergent sequences

Let $\{a_n\}$ and $\{b_n\}$ be sequences. Let $a, b, k \in \mathbb{R}$.

Theorem 1. Suppose $a_n \to a$ and $b_n \to b$. Then

(a)
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b$$
 (1)

$$\lim_{n \to \infty} k(a_n) = ka
\tag{2}$$

$$(c) \quad \lim_{n \to \infty} (a_n)(b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right) = ab \tag{3}$$

(c)
$$\lim_{n \to \infty} (a_n)(b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right) = ab$$
(d)
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$$
(4)

(Provided that
$$b \neq 0$$
 and $b_n \neq 0 \ \forall n \in \mathbb{N}$) (5)

Theorem 2. Uniqueness of limits

IF $\{a_n\}$ converges

THEN its limit is unique.

Definition 3. A sequence is **bounded** if

$$\exists c \in \mathbb{R}^+ \ s.t. \ |a_n| \le c \quad \forall n \in \mathbb{N}$$
 (6)

Note that $|a_n| \leq c$ equivalently means $-c \leq a_n \leq c$.

Theorem 3. Convergent sequences are bounded

IF $\{a_n\}$ converges

THEN $\{a_n\}$ is bounded.

$\mathbf{2}$ Bounded Monotone Convergence Theorem

Definition 4. A sequence $\{a_n\}$ is **monotone** if it is either decreasing or increasing $\forall n \in \mathbb{N}$.

- $\{a_n\}$ is decreasing when $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$
- $\{a_n\}$ is increasing when $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$

Theorem 4. Bounded Monotone Convergence Theorem

IF $\{a_n\}$ is bounded and monotone

THEN $\{a_n\}$ converges.

In particular, there are two cases:

- (1) If $\{a_n\}$ is increasing and bounded above, then $\{a_n\}$ converges.
- (2) If $\{a_n\}$ is decreasing and bounded below, then $\{a_n\}$ converges.

Definition 5. A Cauchy sequence is a sequence $\{a_n\}$ where

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. if } n, m > N, \text{ then } |a_n - a_m| < \epsilon$$

Theorem 5. Cauchy sequences and convergence

Every Cauchy sequence converges, and every convergent sequence is a Cauchy sequence. i.e., A sequence is Cauchy \iff it is convergent.

Example 1. Determine whether the following sequences converge or diverge and provide a complete $\epsilon - N$ proof.

- $(1) \quad \left\{ \frac{n \arctan(n) 1}{n^2 + 6\sqrt{n}} \right\}$
- $(2) \quad \left\{\frac{2n-1}{n+3}\right\}$
- (3) $\{n^{-3/2}\}$
- $(4) \quad \{2 2(-1)^n\}$
- $(5) \{n^{3/2}\}$
- (6) $\left\{\frac{n+1}{3n-2}\right\}$
- (1) Hint: use the fact $\arctan(x) < \pi/2$ for all x.
- (5) Hint: Prove that the sequence diverges to infinity. By definition, this means:

$$\forall M > 0, \exists N > 0 \text{ s.t. if } n \in N, n > N, \text{ then } a_n > M.$$

(6) You will need to use a "helper assumption"; see the notes in the module on Quercus.

Example 2. Prove by $\epsilon - N$ definition that if $\{a_n\}$ converges to 0 and $\{b_n\}$ is bounded, then $\{a_nb_n\}$ converges.

Example 3. Prove that if $\{a_n\}$ converges, $\{a_n\}$ is a Cauchy sequence.

Example 4. Suppose $\{a_n\}$ converges to a and $\{b_n\}$ diverges. Prove that $\{a_n + b_n\}$ diverges. (Hint: use proof by contradiction.)

Example 5. True or false?

- a) Every convergent sequence is bounded.
- b) Every bounded sequence is convergent.
- c) Every Cauchy sequence is bounded.
- d) If $\{a_n\}$ converges and $\{b_n\}$ converges, then $\{a_nb_n\}$ converges.
- e) If $\{a_n\}$ diverges and $\{b_n\}$ diverges, then $\{a_n + b_n\}$ diverges.

f) If $\{a_n\}$ diverges and $\{b_n\}$ diverges, then $\{a_nb_n\}$ diverges.

Example 6. Consider the following sequence, defined recursively:

$$a_1 = 1$$
$$a_{n+1} = 3 - \frac{1}{a_n}$$

Prove that the function is bounded above and increasing, then conclude that it converges using BMCT. Then find the limit of $\{a_n\}$.

3 Answers to selected examples

Example 1. Prove $\{2(-1)^n\}$ diverges.

Sol. Let $a_n = 2 - 2(-1)^n$. Note that the sequence oscillates back and forth between the values 0 and 4; $a_n = 4$ when n is odd and $a_n = 0$ when n is even. That means the sequence diverges; it never approaches a single value.

Proof. Suppose for contradiction that a_n converges to some limit $l \in \mathbb{R}$. Then,

$$\forall \epsilon > 0, \exists N > 0 \text{ s.t. } \forall n \in \mathbb{N}, \text{ if } n > N, \text{ then } |a_n - l| < \epsilon$$

Therefore, the definition should work for $\epsilon = 1$. i.e.,

$$\exists N_0 > 0 \text{ s.t. } \forall n \in \mathbb{N}, \text{ if } n > N_0, \text{ then } |2 - 2(-1)^n - l| < 1$$

take $n > N_0, n \in \mathbb{N}$ where n is even. It follows from the definition that

$$|2 - 2(-1)^n - l| < 1$$

$$\iff |0 - l| < 1$$

$$\iff -1 < -l < 1$$

Now take $n < N_0, n \in \mathbb{N}$ where n is odd. The definition still holds:

$$|2 - 2(-1)^n - l| < 1$$

$$\iff |4 - l| < 1$$

$$\iff -1 < 4 - l < 1$$

$$\iff 3 < l < 5$$

Hence, we have that l satisfies -1 < l < 1 AND 3 < l < 5, which is not possible. Contradiction. Hence a_n cannot converge, i.e. a_n diverges.

Example 2. Suppose $\{a_n\}$ converges to a and $\{b_n\}$ diverges. Prove that $\{a_n + b_n\}$ diverges. (Hint: use proof by contradiction.)

Sol. For contradiction, suppose $a_n \to a$, b_n diverges, and $a_n + b_n$ converges.

Since a_n converges to a, by sequence properties, it follows that $(-1)a_n = -a_n$ is also convergent. Since the sum of convergent sequence is convergent, and by assumption $a_n + b_n$ converges, it follows that $(a_n + b_n) + (-a_n) = b_n$ is a convergent sequence, but this contradicts the assumption that b_n diverges. Contradiction, therefore $a_n + b_n$ must be a divergent sequence.

Example 3. True or false?

a) Every convergent sequence is bounded. TRUE.

- b) Every bounded sequence is convergent.FALSE. Try to come up with a bounded sequence that diverges.
- c) Every Cauchy sequence is bounded. TRUE. Cauchy implies convergent and convergent implies bounded.
- d) If $\{a_n\}$ converges and $\{b_n\}$ converges, then $\{a_nb_n\}$ converges. TRUE. This is a property of sequences.
- e) If $\{a_n\}$ diverges and $\{b_n\}$ diverges, then $\{a_n + b_n\}$ diverges. FALSE. Try to come up with a counterexample, i.e. two sequences a_n and b_n that each diverge but $a_n + b_n$ converges.
- f) If $\{a_n\}$ diverges and $\{b_n\}$ diverges, then $\{a_nb_n\}$ diverges. FALSE. Try to come up with a counterexample, i.e. two sequences a_n and b_n the diverge but a_nb_n converges.