Rev.14: 2012.07.19 Fg

Principal Schematic for HTPA16x16:

Rev.14: 2012.07.19 Fg

Principal Schematic for HTPA32x31 and HTPA64x62*:

^{*}Above shown is valid for 32x31. For HTPA64x62 the pixel numbers need to be changed. Following pixel refer to OUT_A1: 0-31, 64-95, 128-159, ... Following pixel refer to OUT_A2: 32-63, 96-127, 160-191, ...

Rev.14: 2012.07.19 Fg

Pin Assignment in TO8 for 8x8:

Connect all reference voltages via 100 nF capacitors to VSS.

Pin Assignment in TO39 for 8x8:

Bottom

Connect all reference voltages via 100 nF capacitors to VSS.

Pin Assignment	8x8			
Pin	Name	Description	Type	
1	VSS	Negative power supply voltage	Power	
2	CONT	Control Pin for SPI	Digital Input	
3	OUT_A	Analog Output	Analog Output	
4	VCM_C	Common mode voltage	Reference Voltage*	
5	VCM_OUT	Common mode voltage	Reference Voltage*	
6 VREF_N		Negative reference voltage for ADC	Reference Voltage*	
7	VREF_P	Positive reference voltage for ADC	Reference Voltage* Reference Voltage* Reference Voltage*	
8	VREF_1225V	1.225V reference voltage		
9	AGND	Analog ground for ADC		
10	VDDA	Positive power supply voltage	Power	
11	VDD	Positive power supply voltage	Power	
12	POR_N	Power on reset, negatived	Digital Input	
13	CLK_1MHZ	Master clock	Digital Input	
14	VSAM	Valid sample	Digital Output	
15	SCLK_IO	Clock input/output for SPI	Digital Input/Output	
16	DATA_IO	Data input/output for SPI	Digital Input/Output	

^{*)} Connect via 100 nF to VSS

HEIMANN Sensor GmbH Grenzstr. 22 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 **Internet**

Rev.14: 2012.07.19 Fg

Pin Assignment in TO8 for 16x16:

Connect all reference voltages via 100 nF capacitors to VSS.

Pin Assignn	nent 16x16			
Pin	Name	Description	Type	
1	VREF_N	negative reference voltage for ADC	Reference Voltage*	
2	VREF_P	positive reference voltage for ADC	Reference Voltage*	
3	AGND	analog ground for ADC	Reference Voltage*	
4	OUT_A	Analog Output	Analog Output	
5	VCM_OUT	common mode voltage	Reference Voltage*	
6	VCM_C	common mode voltage	Reference Voltage*	
7	VREF_1225V	1.225V reference voltage	Reference Voltage*	
8	VDD/VDDA	positive power supply voltage	Power	
9	VSAM	valid sample	Digital Output	
10	SCLK_IO	clock input/output for SPI	Digital Input/Output	
11	CLK_1MHZ	master clock	Digital Input	
12	POR_N	power on reset, negatived	Digital Input	
13	SBY	Standby	Digital Input	
14	VSS	negative power supply voltage	Power	
15	DATA_IO	data input/output for SPI	Digital Input/Output	
16	CONT	Control Pin for SPI	Digital Input	

^{*)} Connect via 100 nF to VSS

Grenzstr. 22 D-01109 Dresden / Germany

Rev.14: 2012.07.19 Fg

Pin Assignment in TO8 for 32x31 and 64x62:

Bottom

Connect all reference voltages via 100 nF capacitors to VSS.

Pin	Assignment 32x3	31/64x62	
Pin	Name	Description	Type
1	CLK_1MHZ	master clock	Digital Input
2	SCLK_IO	clock input/output for SPI	Digital Input/Output **
3	SBY	Standby	Digital Input***
4	VSAM	valid sample	Digital Output
5	DATA_IO	data input/output for SPI	Digital Input/Output **
6	OUT_A2	Analog Output	Analog Output
7	VCM_C	common mode voltage	Reference Voltage*
8	VREF_1225V	1.225V reference voltage	Reference Voltage*
9	OUT_A1	Analog Output	Analog Output
10	VSS	negative power supply voltage	Power
11	VDD	positive power supply voltage	Power
12	CONT	Control Pin for SPI	Digital Input

^{*)} Connect via 100 nF to VSS

^{**)} The HTPA32x31 has no ADC, but the valid sample cycle number is delivered.

^{***)} Connect to VSS or NC for internal reference voltages. Connect to VDD if VREF_1225V and VCM_C are applied from external. See "Application Note HTPA" for details.

Rev.14: 2012.07.19 Fg

Possible Lens / Array type combinations:

	Possible Combinations									
Lens	HTPA8x8 TO39	HTPA8x8 TO8	HTPA16x16	HTPA32x31	HTPA64x62	Remarks				
L3	X	X	X	-	=	f/<1.0 Ge ARC				
L3.6	X	X	X	-	-	f/<1.0 Si uncoated				
L4.7	-	-	-	Χ	X	f/0.9 Dual Ge ARC				
L5.5	X	-	-	-	-	f/1.0 Si uncoated				
L7/1.2	X	-	-	-	-	f/1.2 Si ARC				
L7.5	-	X	-	X	X					
L10/0.8	-	X	X	X	X	f/0.8 Dual Ge ARC				
L10/1.0	-	X	Χ	Χ	X	f/1.0 Dual Ge ARC				
L20/0.95	-	X	X	X	X	f/0.95 Dual Ge ARC				

Grey marked columns:

8x8(TO8): Non-Standard product. Only for special purposes.^16x16: actual under redesign.

Outer Dimensions:

HTPA8x8L7 / HTPA16x16L7 in TO8 (single Germanium Lens, focal length 7 mm):

HTPA8x8L4 / HTPA16x16L4 in TO8 (single Germanium Lens, focal length 4 mm): Bottom

HEIMANN Sensor GmbH Grenzstr. 22

D-01109 Dresden / Germany

Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39

Internet

HEIMANN Sensor

Rev.14: 2012.07.19 Fg

Outer Dimensions (continued):

HTPA8x8L7 in TO39 (single Germanium Lens, focal length 7 mm):

HTPA8x8L3 in TO39 (single Germanium Lens, focal length 3 mm), preliminary:

Rev.14: 2012.07.19 Fg

Outer Dimensions (continued):

HTPA8x8L3 / HTPA16x16L3 in TO8 (single Germanium Lens, focal length 3 mm):

HTPA8x8L3 / HTPA16x16L3 in TO8 (single Germanium Lens, focal length 3 mm):

HTPA32x31L7.5 / HTPA16x16L3 in TO8 (dual Germanium Lens, focal length 7.5 mm):

HEIMANN Sensor GmbH Grenzstr. 22

D-01109 Dresden / Germany

Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 **Internet**

Rev.14: 2012.07.19 Fg

Outer Dimensions (continued):

HTPA32x31L10/0.8 or HTPA64x62L10/0.8 (dual Germanium Aspherical/Spherical lens combination, focal length 10mm):

Bottom view:

HEIMANN Sensor

Rev.14: 2012.07.19 Fg

HTPA32x31L10/1.0 (dual Germanium Spherical/Spherical lens combination, focal length 10mm):

Bottom view:

HEIMANN Sensor GmbH Grenzstr. 22

D-01109 Dresden / Germany

Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 **Internet**

HEIMANN Sensor

Rev.14: 2012.07.19 Fg

Internal Register Map 8x8 and 16x16:

Num	Name	Function	Default	Notes
0	R	Reset	0	In case of 1, the mux pixel counter is reset. ASIC stays in reset.
1	OPCTLL	TLL Operating point control low		00: Analog operating point is at start of AD-range, only positive signals are convertible
				01: Analog operating point is in the middle of AD-range, positive and negative signals are convertible
				11: Analog operating point is at end of AD-range, only negative signals are convertible
2	OPCTLH	Operating point control high	0	10=01
3	MA0	Multiplexer address 0	0	-not used- write '0' to this location
4	MA1	Multiplexer address 1	0	-not used- write '0' to this location
5	MA2	Multiplexer address 2	0	-not used- write '0' to this location
6	MA3	Multiplexer address 3	0	-not used- write '0' to this location
7	MA4	Multiplexer address 4	0	-not used- write '0' to this location
8	MA5	Multiplexer address 5	0	-not used- write '0' to this location
9	MA6	Multiplexer address 6	0	-not used- write '0' to this location
10	AIM	Automatic increment mode	1	1 : auto increment mode
				0: manual mode (not used)
11	AMPL	Amplification high bit	0	0: low amplification
				1: high amplification
12		spare	0	-not used- write '0' to this location
13		spare	0	-not used- write '0' to this location
14		spare	0	-not used- write '0' to this location
15	BDUR	Break Duration	0	0: 64clks of MCLK
				1: 32clks of MCLK

Rev.14: 2012.07.19 Fg

Internal Register Map 32x31/64x62:

Num	Name	Function	Default	Notes
0	R	Reset	0	In case of 1, the mux pixel counter is reset. ASIC stays in reset.
1		spare	1	-not used- write '1' to this location
2		spare	0	-not used- write '0' to this location
3	MA0	Multiplexer address 0	0	-not used- write '0' to this location
4	MA1	Multiplexer address 1	0	-not used- write '0' to this location
5	MA2	Multiplexer address 2	0	-not used- write '0' to this location
6	MA3	Multiplexer address 3	0	-not used- write '0' to this location
7	MA4	Multiplexer address 4	0	-not used- write '0' to this location
8	MA5	Multiplexer address 5	0	-not used- write '0' to this location
9	MA6	Multiplexer address 6	0	-not used- write '0' to this location
10	AIM	Automatic increment mode	1	1 : auto increment mode
				0: manual mode (not used)
11	AMPL	Amplification high bit	0	0: low amplification
				1: high amplification
12		spare	0	-not used- write '0' to this location
13		spare	0	-not used- write '0' to this location
14		spare	0	-not used- write '0' to this location
15	BDUR	Break Duration	0	0: 64clks of MCLK
				1: 32clks of MCLK

Rev.14: 2012.07.19 Fg

Characteristics:

Common Specifications:

Number of Thermocouples

Technology

• Element Resistance

• Sensitivity

• Thermal Pixeltime constant

• MUX preamplifier noise

Digital Interface Analog Output

• 2 point selectable Gains

80

n-poly/p-poly Si

approx. 80 kOhms

approx. 60 V/W without optics and filter

<4 ms

approx. 30 nV/ $\sqrt{\text{Hz}}$

SPI

Yes

2640x / 7920 x

Array-depending Specifications:

8x8 elements:

Pitch 300 µm Absorber size 220 µm

• Max. Framerate 66,8 Hz (without Averaging)

• 4 internal Amps + MUX

• 64 sensitive elements

 Internal ADC 12 bit

FOV(L=3mm)=44 deg

FOV(L=4mm)=33 deg

FOV(L=7mm)=20 deg

16x16 elements:

Pitch 220 µm

Absorber size 150 µm

Max. Framerate 17,7 Hz

(without Averaging)

8 internal Amps + MUX

256 sensitive elements

Internal ADC 12 bit

FOV(L=3mm)=61 deg

FOV(L=4mm)=48 deg

FOV(L=7mm)=28 deg

32x31 elements:

• Pitch 220 µm Absorber size $150 \, \mu m$ • Max. Framerate 9,1 Hz *

(without Averaging)

• 16 internal Amps + MUX

• 992 sensitive elements

• Internal ADC none 64x62 elements:

Pitch $110 \, \mu m$

57 µm Absorber size

Max. Framerate 4 Hz

(without Averaging)

16 internal Amps + MUX

3968 sensitive elements

Internal ADC none

 $FOV(L=7.5mm) = 50 \times 49 deg$

 $FOV(L=10mm) = 39 \times 38deg$

 $FOV(L=10mm) = 39 \times 38deg$

L equals the focal length of the lens.

*) Framerates up to approx. 20 Hz are possible, but not approved yet.

HEIMANN Sensor GmbH

Grenzstr. 22 D-01109 Dresden / Germany **Contact / Customer Support** Phone 49 (0) 6123 60 50 30

Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com mail: info@heimannsensor.com

- 13 -

Rev.14: 2012.07.19 Fg

Electric Specifications:

Absolute Maximum Ratings:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{CC}		-0.5		6	V
Voltage at All inputs and outputs	V_{IO}		-0.5		V _{CC} +0.5	V
Storage Temperature	T_{STG}		-30		125	Deg. C

Operating Conditions:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V _{CC}		4.5		5.5	V
Operation Temperature	T_A		0		85	Deg. C
ESD-Protection		Human body model	1.5			1-V
		100pF + 1k5Ohm	1.5	1.5		kV

Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						
Frequency of MCLK	MCLK			1M	TBD	Hz
Input voltage high	V_{IH}		Vdd-1.2			V
Input voltage low	V_{IL}				1.2	V
Operating Frequency	f_{OP}	CLK_1MHz	500k	1M	TBD	Hz
PTAT						
Temperature range			0		85	Deg. C
PTAT value@ -20°C				TBD		V
PTAT value@100°C				TBD		V
Signal Processing						
First amplifier stage gain	G0		TBD	880	TBD	V/V
Second amplifier stage gain	G1	AMPL=0	TBD	3	TBD	V/V
Second amplifier stage gain	G1	AMPL=1	TBD	9	TBD	V/V
Analog path Output ripple	V _{PPSENS}		-	-	TBD	mV
Temp. coefficient Thermopile path output voltage	TCO _{OUTA}		TBD	-	TBD	mV/K
VoltageReference						
VREF_1225	V_{REF}	$V_{CC}=5V$, $T_{amb}=25$ °C	1.2	1.225	1.25	V
Temp. coeff. of V _{REF}	TC_{REF}		TBD		TBD	ppm/K

Grenzstr. 22

D-01109 Dresden / Germany

Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39

Internet

HEIMANN Sensor

Rev.14: 2012.07.19 Fg

Electrical Characteristics (continued)

Dicetifeat Characteri	sties (conti	inaca)				
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Analog Output						
Output voltage swing	V _{OUTA}	load 10kOhm	0.5		V _{CC} -0.8	V
Power supply rejection ratio	P _{SRR}	AMPL=1	TBD			dB
Output current limit	I_{OUTA}	OUT_A	0.15			mA
General Parameters						
Overall current consumption	I_{DD}	CLK_1MHz=1MHz		7	TBD	mA
Start up time	T_{POR}	CLK_1MHz=1MHz Power On to first sample			TBD	mS

Timings HTPA8x8 and HTPA16x16:

Sample Timing HTPA8x8 / HTPA16x16

For the HTPA 8x8 and the HTPA 16x16 every analogous voltage has 2 stable domains, as shown above.

Timings HTPA32x31:

Sample Timing HTPA32x31

For the HTPA32x31 every analogous voltage is stable in the whole time domain.

HEIMANN Sensor GmbH Grenzstr. 22

Grenzstr. 22 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 Internet

Rev.14: 2012.07.19 Fg

Serial Transmission:

HTPA8x8 / HTPA16x16 Serial Transmission of analogue data

Off0...OffY Electric offset of amplifier 0 to amplifier Y Pix0...PixX Amplified pixel voltage of Pixel0 to PixelX

PTA0...PTAY PTAT-Signal ((Y+1)-times)

Constants for array types:

 Type 8x8:
 Type 16x16:

 Y=3
 Y=7

 X=63
 X=255

HTPA32x31 Serial Transmission of analogue data

Rev.14: 2012.07.19 Fg

The numeration of the pixels is in all cases line by line.

SPI Communication:

Data sampled at rising edge of SCLK, MSB first.

In case of ASIC as master device the frequency of the SCLK_IO is equal to the frequency of MCLK/2.

HTPA8x8 & HTPA16x16:

The four MSB's signify the row address of the current pixel, the other bits describe the ADCresult.

HTPA 32x31:

The valid sample cycle numbers are expensed in the least 10 bits. The value runs from 0 to 527.

HTPA 64x62:

The valid sample cycle numbers are expensed in the least 11 bits. The value runs from 0 to 2047.

JEIMANN Sensor HEIMANN SENSOR GMBH

Rev.14: 2012.07.19 Fg

The output drivers for SCLK_IO and DATA_IO are enabled by CONT.

If CONT is low the data can be written serially from external controller through DATA_IO. In that case the external controller has to wait a minimum delay time, until SCLK_IO and DATA_IO output drivers are disabled. After programming, the positive slope of CONT stores the contents, when the number of SCLK-pulses is equal 16. While the output driver of the ASIC is disabled a weak pull up ensures that the SCLK_IO pin is at high level. To execute a reset command, the μ C has to write a logical "1" to the R-Bit in to configuration and afterwards a "0" into the R-bit, which requires two write cycles in this special case.

Serial Read from ASIC

Serial Write to ASIC

