B-field values cancelling 5S → 6P transitions of ⁸⁵Rb and ⁸⁷Rb

Rodolphe MOMIER (MSc. student)

Under the supervision of Pr. Claude LEROY ¹ and Artur ALEKSANYAN^{1,2} (Ph.D student)

¹ Laboratoire Interdisciplinaire Carnot de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France

² Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203 Armenia

Laboratoire Interdisciplinaire Carnot de Bourgogne

Hyperfine structure of 85Rb and 87Rb

$$6^{2}P_{3/2} \xrightarrow{F_{e} = 3} F_{e} = 2$$

$$F_{e} = 1$$

$$F_{e} = 0$$

$$I = \frac{3}{2} \quad 6^{2}P_{1/2} \xrightarrow{F_{e} = 1} \longrightarrow m_{F_{e}} \xrightarrow{-2} \xrightarrow{-1} \underbrace{0}_{\sqrt[4]{7'}} \xrightarrow{+1} \xrightarrow{+2} \zeta' = E_{0}(F_{e} = 2) - E_{0}(F_{e} = 1) \approx 265.196(371) \text{ MHz}}$$

$$5^{2}S_{1/2} \xrightarrow{F_{g} = 2} \longrightarrow m_{F_{g}} \xrightarrow{-2} \xrightarrow{-1} \underbrace{0}_{\sqrt[4]{7'}} \xrightarrow{+1} \xrightarrow{+2} \zeta = E_{0}(F_{g} = 2) - E_{0}(F_{g} = 1) \approx 6834.682610904290(90) \text{ MHz}}$$

$$5^{2}S_{1/2} \xrightarrow{F_{g} = 2} \longrightarrow m_{F_{g}} \xrightarrow{-2} \xrightarrow{-1} \underbrace{0}_{\sqrt[4]{7'}} \xrightarrow{+1} \xrightarrow{+2} \zeta = E_{0}(F_{g} = 2) - E_{0}(F_{g} = 1) \approx 6834.682610904290(90) \text{ MHz}}$$

Figure 1: Zeeman decomposition of the 5S and 6P states of ⁸⁷Rb

Figure 2: Zeeman decomposition of the 5S and 6P states of 85Rb

```
[1] E. O. Nyakang'o, D. Shylla, V. Natarajan, and K. Pandey,
"Hyperfine measurement of the 6P<sub>1/2</sub> state in <sup>87</sup>Rb using double resonance on blue and IR transition",

Journal of Physics B: Atomic, Molecular and Optical Physics 53, no. 9 (31 March 2020): 095001. <a href="https://doi.org/10.1088/1361-6455/ab7670">https://doi.org/10.1088/1361-6455/ab7670</a>.

[2a] D. A. Steck, "Rubidium 87 D Line Data", September 2001 (Latest revision November 2019) <a href="https://steck.us/alkalidata/rubidium87numbers.pdf">https://steck.us/alkalidata/rubidium87numbers.pdf</a>
[2b] D. A. Steck, "Rubidium 85 D Line Data", April 2008 (Latest revision November 2019) <a href="https://steck.us/alkalidata/rubidium85numbers.pdf">https://steck.us/alkalidata/rubidium85numbers.pdf</a>
[3] C. Glaser, F. Karlewski, J. Grimmel, M. Kaiser, A. Günther, H. Hattermann and J. Fortágh,
"Absolute frequency measurement of rubidium 55-6P transitions", Physical Review A (accepted April 15th 2020)
```

Computation of the Hamiltonian ${\cal H}$

As stated in [4], we have for the diagonal elements:

$$\langle F, m_F | \mathcal{H} | F, m_F \rangle = E_0(F) - \mu_B g_F m_F B \tag{1}$$

For the off-diagonal elements:

$$\langle F - 1, m_F | \mathcal{H} | F, m_F \rangle = \langle F, m_F | \mathcal{H} | F - 1, m_F \rangle$$

$$= \frac{-\mu_B}{2} B (g_J - g_I) \sqrt{\frac{[(J+I+1)^2 - F^2][F^2 - (J-I)^2]}{F}} \sqrt{\frac{F^2 - m_F^2}{F(2F+1)(2F-1)}}$$
(2)

(Nonzero for $\Delta L = 0$, $\Delta J = 0$, $\Delta F = \pm 1$, $\Delta m_F = 0$)

Structure of the Hamiltonian ${\cal H}$

Figure 3: Structure of the Hamiltonian ${\mathcal H}$

 $k \neq l$ since the value of J changes between 5 $^2S_{1/2}$ - 6 $^2P_{1/2}$ and 6 $^2P_{3/2}$ states. This structure is comparable to the one obtained in [5].

Hamiltonian of ⁸⁷Rb 5 $^2S_{1/2}$ and $\overline{6}$ $^2P_{1/2}$ states

By applying (1) and (2), we obtain in the basis $|F, m_F\rangle$:

where \mathcal{H}_a stands for the ground states and \mathcal{H}_e for the excited states.

Hamiltonian of ⁸⁷Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

We are interested in calculating the transitions, that is we only look at differences of energy levels. Thus, in order to simplify the expression, the energies $E_0(F)$ have been substracted from \mathcal{H}_q and \mathcal{H}_e .

Each block corresponds to a given value of m_F (here from -2 to +2). For a better readability of the matrices, we used the following approximations to write them:

```
- g_L = 0.99999369 \approx 1

- g_I = -0.0009951414(10) \approx 0

- g_S = 2.0023193043737(80) \approx 2
```

However, the numerical computations have been done using the exact values of the Landé factors. These values are given in [2a], [2b] and [6].

Transfer coefficients and transition intensities

After diagonalization, according to [1], we obtain the eigenvectors:

$$\begin{split} |\Psi(F_e, m_e)\rangle &= \sum_{F_{e'}} c_{F_e F_{e'}} |F_e', m_e\rangle \\ |\Psi(F_g, m_g)\rangle &= \sum_{F_{g'}} c_{F_g F_{g'}} |F_g', m_g\rangle \end{split}$$

from which we obtain the transition intensities A_{eg} (proportional to the transfer coefficients $a[\Psi(F_e, m_e); \Psi(F_g, m_g); q]$)

$$A_{eg} \propto a^{2} [\Psi(F_{e}, m_{e}); \Psi(F_{g}, m_{g}); q]$$

$$a[\Psi(F_{e}, m_{e}); \Psi(F_{g}, m_{g}); q] = \sum_{F'_{e}F'_{g}} c_{F_{e}F'_{e}} a(\Psi(F_{e}, m_{e}); \Psi(F_{g}, m_{g}); q) c_{F_{g}F'_{g}}$$

where $a(\Psi(F_e, m_e); \Psi(F_g, m_g); q)$ depends on a 3j and a 6j symbol:

$$a\big(\Psi(F_e,m_e);\Psi(F_g,m_g);q\big)=(-1)^{1+I+J_e+F_e+F_g-m_e}(2J_e+1)^{\frac{1}{2}}(2F_e+1)^{\frac{1}{2}}\big(2F_g+1\big)^{\frac{1}{2}}\Big(F_e-1-F_g\\-m_e-q-m_g\big)\Big\{\begin{matrix}F_e-1-F_g\\J_g-I-J_e\end{matrix}\Big\}.$$
 $q=\Delta m=m_e-m_g=0,\pm 1$ depends on the polarization (0 for π , ± 1 for σ^\pm).

Eigenvalues of ⁸⁷Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

Figure 4: Eigenvalues (energy levels shifting) of the 5 ${}^2S_{1/2}$ and 6 ${}^2P_{1/2}$ states of 87 Rb versus magnetic field (G).

Eigenvectors of ⁸⁷Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

Figure 5: Eigenvectors (mixing coefficients) of the 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states of 87 Rb versus magnetic field (G)

⁸⁷Rb π transitions from 5 $^2S_{1/2}$ to 6 $^2P_{1/2}$

Figure 6: π transition intensities of ⁸⁷Rb from 5 $^2S_{1/2}$ to 6 $^2P_{1/2}$ states versus magnetic field (G)

A closer look at the transfer coefficients

We plot the transfer coefficients so that there exists at least one value of B which cancels them, thus we obtain:

Figure 7: ⁸⁷Rb transfer coefficients which cross the x-axis, π -polarization

As observed before, some of the transfer coefficients a (and thus the transitions intensities a^2) cancel for a certain value of B, here for the transitions $|1,-1\rangle \rightarrow |1,-1\rangle$ (blue) and $|2,-1\rangle \rightarrow |2,-1\rangle$ (green), we obtain the same value of $B \approx 254.463$ G.

Hamiltonian of 85 Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

By applying (1) and (2) we obtain in the basis $|F, m_F\rangle$:

Hamiltonian of 85 Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

For the same reason as before, the energies $E_0(F)$ have been substracted from \mathcal{H}_g and \mathcal{H}_e . Each block corresponds to a given value of m_F (here from -3 to +3). For a better readability of the matrices, we used the following approximations to write them:

```
- g_L = 0.99999354 \approx 1

- g_I = -0.0002936400(6) \approx 0

- g_S = 2.0023193043622(15) \approx 2
```

However, the numerical computations have been done using the exact values of the Landé factors.

Eigenvalues of 85 Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

Figure 8: Eigenvalues (energy levels shifting) of the 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states of 85 Rb versus magnetic field (G).

Eigenvectors of ⁸⁵Rb 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states

Figure 9: Eigenvectors (mixing coefficients) of the 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states of 85 Rb versus magnetic field (G)

85 Rb π transitions from $\overline{5}^{2}S_{1/2}$ to $6^{2}P_{1/2}$

Figure 10: π transition intensities of ⁸⁵Rb from 5 ² $S_{1/2}$ to 6 ² $P_{1/2}$ states versus magnetic field (G)

A closer look at the transfer coefficients

We plot only the ones for which there exists at least one value of B which cancels them, thus we obtain:

Figure 11: 85Rb transfer coefficients which cross the x-axis, π -polarization

As observed, some of the transfer coefficients cancel for certain values of B. Here, for the transitions $|2,-1\rangle \rightarrow |2,-1\rangle$ (green, Fig. 11a) and $|3,-1\rangle \rightarrow |3,-1\rangle$ (purple), we obtain $B \approx 75.773$ G. For the transitions $|2,-2\rangle \rightarrow |2,-2\rangle$ (blue) and $|3,-2\rangle \rightarrow |3,-2\rangle$ (green, Fig. 11b), we obtain $B \approx 151.547$ G.

Conclusion and perspectives

- It has been shown that certain transitions between the 5 $^2S_{1/2}$ and 6 $^2P_{1/2}$ states of both 85 Rb and 87 Rb cancel for certain values of B.
- For these states, no other cancellations can be observed (no cancellations for σ^+ nor σ^- polarizations)
- All the numerical data are known very precisely (10 digits) except the energy differences between the both atoms' excited states, thus the precision of the B-value obtained is reduced.
- To obtain more precise results, it would be great to refine experimentally the values of ζ' and ξ' .
- These results should be checked to see if the experiments provide B-values in good agreement with the theory. Differences would reflect the influence of the cell.
- We will also study the behavior of the transition intensities close to the cancellations for small variations of B.
- An article is being prepared in which we continue this study by calculating the transitions from $5\ ^2S_{1/2}$ to $6\ ^2P_{3/2}$ states.

Merci!

Thank you!