CS6307

ADVANCED ALGORITHMS

Prerequisites for the course: Data Structures & Algorithms

OBJECTIVES:

- To familiarize with the main thrust areas in algorithms that will be sufficient for formulating and seeking known solutions to an algorithmic problem
- To understand how to formulate an approximation algorithm for an NP-complete problem
- To introduce the key concepts, problems, techniques and data structures within Computational Geometry
- To understand and analyze multithreading and parallel algorithms
- To learn linear programming models

		L	T	Р	EL	CREDITS
CS6307	ADVANCED ALGORITHMS	3	0	4	3	6
MODULE I			L	T	Р	EL
			3	0	8	3

PRAM Models-List Ranking - Prefix sum - Sorting - Sum - Bitonic sort.

SUGGESTED ACTIVITIES:

- EL Study of one or two problems having parallel solutions
- Practicals Implementation of list ranking, prefix sum and bitonic sort using C with MPI
- Analysis of suitable PRAM models

SUGGESTED EVALUATION METHODS:

- Assignment Based on EL
- Demonstration of programs

MODULE II	L	T	Р	EL
	4	0	4	3

Sorting on: Butterfly - 2D Mesh. Matrix multiplication on: 2D Mesh - Hypercube.

SUGGESTED ACTIVITIES:

- EL Study atleast two problems on any of the DCM
- Practicals Implementation of sorting and matrix multiplication on 2D mesh using C with MPI

SUGGESTED EVALUATION METHODS:

- Assignment Based on EL
- Demonstration of programs

MODULE III	L	T	Р	EL
	3	0	4	3

Prefix sum on: 2D Mesh - Butterfly. Sum on: 2D Mesh - Butterfly.

SUGGESTED ACTIVITIES:

- EL Based on suggested reading by the course instructor
- Practical Implementation of prefix sum and sum on 2D mesh using C with MPI

SUGGESTED EVALUATION METHODS:

Assignment: Based on EL

Quizzes: Based on first three modules

• Demonstration of programs

MODULE IV	L	Т	Р	EL
	6	0	4	3

Geometric Algorithms: Segment trees - kd-trees - 1D and 2D Range Search.

SUGGESTED ACTIVITIES:

- EL: Problems on segment trees and range search
- Practical Implementation of segment trees

SUGGESTED EVALUATION METHODS:

- Based on EL
- Demonstration of programs

MODULE V	L	T	Р	EL
	4	0	4	3

Line Segment Intersection - Closest Pair of Points - Range Trees - Voronoi diagram.

SUGGESTED ACTIVITIES:

- EL Study of Voronoi diagram
- Practical Implementation of line segment intersection and Voronoi diagram

SUGGESTED EVALUATION METHODS:

Demonstration of programs

MODULE VI	L	T	Р	EL
	5	0	4	3

Randomized Algorithms: Introduction - Randomized Selection - Randomized sorting.

SUGGESTED ACTIVITIES:

- Flipped Classroom Types of Randomized Algorithms and analysis
- Practical Implementation of randomized selection and quick sort

SUGGESTED EVALUATION METHODS:

- Quizzes: Based on Modules IV, V and VI
- Demonstration of programs

MODULE VII	L	Т	Р	EL
	5	0	0	3

Approximation Algorithms: Vertex cover - Metric TSP- Set Covering Problem

SUGGESTED ACTIVITIES:

Assignment

SUGGESTED EVALUATION METHODS:

Assignment problems

MODULE VIII	L	T	Р	EL
	3	0	0	3
ND Complete: Clique Problem Subset Sum Problem				

NP Complete: Clique Problem - Subset Sum Problem

SUGGESTED ACTIVITIES:

• EL – Studying proof for atleast one NP complete problem

SUGGESTED EVALUATION METHODS:

Based on EL

MODULE IX	L	Т	Р	EL
	3	0	4	3

Multithreaded Algorithms: Matrix Multiplication - Merge sort.

SUGGESTED ACTIVITIES:

- Quiz
- Practical Implementation of multithreaded algorithms

SUGGESTED EVALUATION METHODS:

- Quizzes: Based on Modules VII, VIII and IX
- Demonstration of programs

MODULE X	L	Т	Р	EL
	3	0	4	3

Solving system of linear equations - Simplex algorithm - Duality.

SUGGESTED ACTIVITIES:

- Assignments
- Practical Implementation of simplex algorithm

SUGGESTED EVALUATION METHODS:

- Assignments
- Demonstration of programs

OUTCOMES:

Upon completion of the course, the students will be able to:

- · Comprehend and propose algorithms for any given problem
- Construct and implement algorithms for simple geometrical problems
- Perform the design of parallel and multithreading algorithms
- Find approximate solution to a hard problem
- Formulate a linear programming model for a given problem

TEXTBOOKS:

- 1. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, University Press, 2007.
- 2. Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein, "Introduction to Algorithms", Third Edition, Prentice Hall, 2010.
- 3. Mark de Berg, Otfred Vheong, Marc van Kreveld and Mark Overmars, "Computational Geometry Algorithms and Applications", Third Edition, Springer, 2008.

REFERENCES:

- Gilles Brassard, Paul Bratley," Algorithmics: Theory and Practice", Prentice Hall, 1998
- 2. J.A.Storer, "An Introduction to Data Structures and Algorithms", Birkhauser Boston, 2002.
- 3. Michael Quinn, "Parallel Programming in C with MPI and OpenMP", Indian Edition, Tata McGraw Hill, 2017.

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester		
Theory	40	20	40		

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓
CO2	✓	✓	✓	✓	✓				✓			✓
CO3	✓	✓	✓	✓								✓
CO4	✓	✓	✓	✓								✓
CO5	✓	✓	✓	✓	✓				✓	✓	✓	✓

CS6308 JAVA PROGRAMMING

Pre-requisites: None

OBJECTIVES:

- To learn about the fundamentals of Java language constructs
- To familiarize the student with Object Oriented Programming in Java
- To expose the student to creating UI
- To understand the concepts of parallel programming
- To develop web applications with Java

CS6308	JAVA PROGRAMMING	L	T	Р	Е	L (CREDITS		
		3	0	4	3	3	6		
MODULE I	FUNDAMENTALS OF JAVA LANGUAGE			L	Т	Р	EL		
				3	0	4	3		

Introduction to Java, Java basics – Variables, Operators, Expressions, Control flow Statements, Methods, Arrays

SUGGESTED ACTIVITIES:

- Practical-Implementation of simple Java programs Using Java Basic Constructs and Arrays using any standard IDE like NETBEANS / ECLIPSE
- EL Understanding JVM