Handover Document: Attention Models for Adversarial Robustness

Code Changes

• adversary.py

 Allow new model types (parallel_transformers, multi_gaze) to be loaded and evaluated

datasets.py

 Added batching for ImageNet10 (batching was already implemented for ImageNet and ImagNet100)

glimpse.py

- Created new retinal warping functions (warp_func_multi_gaze,
 warp_image_multi_gaze) that accommodate a unique gaze for each provided image rather than just one, which was required for the multi-gaze model
- These functions utilize a bilinear_sampler so that they can be differentiated with respect to the image gazes
 - Sampler used in place of **tf.gather_nd**, which is not differentiable with respect to its second parameter

• model backbone.py

- Added parallel transformers model
 - Multi-branch architecture with option to share **resnet** weights
 - Image is first inputted into a **ResNet_CIFAR** model, which outputs the theta parameters defining the affine transformations to be applied¹
 - Each branch consists of one spatial transformer network (STN) and a resnet that the transformed image is then fed into
- Added **multi gaze** model
 - Multi-branch architecture with option to share **resnet** weights
 - Image first inputted into a **resnet**, which outputs a set of fixation points
 - Retinal sampling transforms then applied to image, one centered at each fixation point
 - Warped versions of image each fed into a **resnet**
- Added additional functionality and parameters to **soft attention model**
 - Allow model to use either a full **resnet**, a smaller **ResNet_CIFAR**, or a simple CNN

• trainer.py

- Enabled new model types to be trained
- Utilize batching (current batch size 32) for ImageNet10
- Added command-line arguments such as number of epochs

• transformer.py

¹ We tried a smaller network with two convolutional layers as well as a full ResNet, but the smaller network produced the same transformations on each image while we did not have success in training the full ResNet

• Have STN output not just transformed image, but also the coordinates of the bounding box associated with the transformation, as well as the center of the box

view images.ipynb

 Created Jupyter notebook for saving and viewing model-related images and adversarial perturbations, in addition to investigating the new model types

Experiment Results and Observations

- Results PPT:
 - https://drive.google.com/file/d/14l4TRHk-VcQNXa9ht5Ek_UipsSOpcph8/view?usp=sharing
 - Note that results for the existing Standard ResNet and Retinal Sampling models do not exactly match those in the original paper for ImageNet10
 - Could be due to the introduction of batching
- Parallel Transformers
 - Command-line arguments: --model=parallel_transformers --dataset=imagenet10
 --sampling=0 --coarse_fixations=0 --augment=1 --auxiliary=0
 --restricted_attention=1 --shared=0 --epochs=400 --num_transformers=5
 - Notable soft attention model parameters: use resnet=True, use full resnet=False
 - While the learned bounding boxes are distinct from each other and from image to image, they tend to cling to the sides of the image

- \blacksquare Appears to be due to many of the theta parameters converging to \pm 1.0
- Same issue occurs (and to a greater degree) with multi-gaze model
- Regularization 12=0.001 led to lower standard performance
- Multi-Gaze
 - Command-line arguments: --model=multi_gaze --dataset=imagenet10
 --sampling=0 --coarse_fixations=0 --augment=1 --auxiliary=0 --shared=0
 --epochs=400 --num_transformers=5
 - Notable soft_attention_model parameters: use_resnet=True,
 use_full_resnet=True, initialize_fixations=True, regularization=0.01
 - L2 regularization notes
 - Without regularization, all gazes rapidly converge to +/- 160.0 (i.e. corners of the image)

- Occurs even when --num_transformers=1 (only one gaze is learned)
- With regularization 12=0.01, the gazes tend to converge to the range [-10, 10] instead (i.e. all near the center of the image)
 - This convergence may not happen consistently
 - Leads to improved standard and adversarial performance
- Regularization 12=0.001 leads to worse standard performance than 12=0.01
- Model gradients are not vanishing or exploding
 - Gradient clipping does not resolve gaze convergence issue
- Standard and adversarial performance declined when --shared=1 (i.e. when resnet weights were shared between branches)
- Bilinear Sampling
 - Bilinear sampling technique increased adversarial robustness of Retinal Sampling model