MATH-UA 349: Homework 4

James Pagan, February 2024

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	2
4	Problem 4	3
5	Problem 5	4
6	Problem 6	4
	6.1 Part (a)	4
	6.2 Part (b)	5
7	Problem 7	5
	7.1 Part (a)	5
	7.2 Part (b)	6

1 Problem 1

Proof. For the first polynomial, we have that

$$x^{9} - x = x(x^{8} + 1)$$

$$= x(x^{8} + 8x^{7} + 28x^{6} + 56x^{5} + 70x^{4} + 56x^{3} + 28x^{2} + 8x + 1)$$

$$= x(x + 1)^{8}.$$

The second polynomial is a similar story:

$$x^{9} - 1 = (x^{3} - 1)(x^{6} + x^{3} + 1)$$
$$= (x + 1)(x^{2} + x + 1)(x^{6} + x^{3} + 1).$$

One can verify that $x^6 + x^3 + 1$ is irreducible through the Sieve of Eratosthenes.

2 Problem 2

Proof. Let $p(x) = x^4 + 6x^3 + 9x + 3$. We claim that p generates a maximal ideal in $\mathbb{Q}[x]$.

Lemma 1. p is irreducible in $\mathbb{Q}[x]$.

Proof. By the Rational Root Theorem, the only possible rational roots of p(x) are -3, -1, 1, and 3. A quick check verifies that none of these are roots of p — hence it has no rational roots.

By the Factor Theorem, this ensures that no polynomial of the form (x-q) for $q \in \mathbb{Q}$ divides p. Since these are the prime elements of the Euclidean domain $\mathbb{Q}[x]$, we conclude that p is irreducible.

Hence p is a prime element of $\mathbb{Q}[x]$. Since $\mathbb{Q}[x]$ is a principal ideal domain, the ideal (p) must be maximal.

3 Problem 3

Proof. We claim that the argument of π in polar coordinates is a muliple of $\frac{\pi}{4}$.

Suppose that $\pi = a + bi = re^{i\theta}$ is a Gauss prime such that $\overline{\pi}$ and π are associates — that is, $\overline{\pi} = u\pi$ for some $u \in \{1, i, -1, -i\}$. This yields the equation

$$re^{-i\theta} = re^{i\left(\theta + \frac{n\pi}{2}\right)}$$

for some $n \in \mathbb{Z}$; equivalently, we find $-\theta = \theta + \frac{n\pi}{2}$; the solutions to this equation are of the form $\frac{4k\pi}{8}$ for $k \in \{0, \dots, 7\}$. Hence in rectangular form, the Gauss prime π has three forms:

- 1. π is purely real.
- 2. π is purely imaginary.
- 3. π is on a diagonal of the complex plane that is, π is of the form a + ai, a ai, -a ai, or -a + ai for some $a \in \mathbb{Z}$.

If π is purely real, it must be a prime congruent to 3 (mod 4). If π is purely imaginary, then its associate is of the previous form. If π lies on a diagonal, it is quite clear that π is 1+i or one of its associates; hence $\pi \cdot \overline{\pi} = 2$.

4 Problem 4

Case 1: If $p \equiv 3 \pmod{4}$, then p is a Gaussian prime; hence $\mathbb{Z}[i] / (p)$ is a field with p^2 elements: they have the form a+bi for $a,b \in \{0,\ldots,p-1\}$. We conclude that $\boxed{\mathbb{Z}[i] / (p) \cong \mathbb{F}_{p^2}}$.

Case 2: If $p \equiv 1 \pmod{4}$, then $x^2 + 1$ is not irreducible in \mathbb{Z}_p ; hence there exist $a, b \in \mathbb{Z}_p$ such that $(x^2 + 1) = (x + a)(x + b)$. As elaborated in Case 3, we have $a \neq b$. Hence we claim $\mathbb{Z}[i] / (p) \cong \mathbb{Z}_p[x] / (x + a) \times \mathbb{Z}_p[x] / (x + b)$. It is easy to see that

$$\mathbb{Z}[i] / (p) \cong (\mathbb{Z}[x] / (x^2 + 1)) / (p)$$

$$= (\mathbb{Z}[x] / (p)) / (x^2 + 1)$$

$$\cong \mathbb{Z}_p[x] / (x^2 + 1)$$

$$= \mathbb{Z}_p[x] / (x + a)(x + b).$$

Since $\mathbb{Z}_p[x]$ is a Euclidean domain, the ideals (x+a) and (x+b) are maximal. Hence $(x+a)+(x+b)=\mathbb{Z}_p[x]$; we conclude by the Chinese Remainder Theorem the desired

$$\mathbb{Z}[i]/(p) \cong \mathbb{Z}_p[x]/(x+a)(x+b) \cong \mathbb{Z}_p[x]/(x+a) \times \mathbb{Z}_p[x]/(x+b).$$

Case 3: We claim p=2 if and only if a=b. This is because if $(x+a)^2=(x+1)$, then $a^2=1$ and a+a=0; thus

$$0 = 0(a) = (a+a)a = a^2 + a^2 = 2.$$

The other direction is trivial since $(x+1)^2 = x^2 + 1$ in \mathbb{Z}_2 . Similar logic to the above yields that $\left| \mathbb{Z}[i] / (2) \right| \cong \mathbb{Z}_2[x] / (x+1)^2$.

5 Problem 5

Proof. Let $n = p_1^{e_1} \cdots p_n^{e_n} q_1^{f_1} \cdots q_m^{f_m}$, where the p_i are prime integers congruent to 1 (mod 4) and the q_i are prime integers congruent to 3 (mod 4). We claim that

$$n$$
 is a sum of squares if and only if f_1, \ldots, f_n are even.

First, we demonstrate that if f_1, \ldots, f_n are even, then n is a sum of two squares.

Lemma 2 (Brahmagupta-Diophantus Identity). Let $j, k \in \mathbb{Z}$ be sums of two squares. Then jk is a sum of two squares.

Proof. This follows from the identity

$$(a^{2} + b^{2})(c^{2} + d^{2}) = (ac + bd)^{2} + (ad - bc)^{2}$$

for integers a, b, c, and d.

Since f_i is even for all i, each $q_i^{f_i}$ is a square; thus the product $q_1^{f_1} \cdots q_m^{f_m}$ is a sum of squares by Lemma 2. By Fermat's Two-Square Theorem, all the primes p_i are a sum of squares. Thus their product $p_1^{e_1} \cdots p_n^{e_n}$ is a sum of squares. Multiplying the p_i and q_i together, we obtain that n is a sum of two squares.

Next, we demonstrate that if n is a sum of two squares, then f_i are even. Suppose for contradiction that $f_{k_1}, \dots f_{k_j}$ are odd; then

$$q_{k_1}\cdots q_{k_j}\mid n.$$

Expressing n as a product of Gaussian primes, it is easy to attain that n cannot be a square since q_{k_1}, \ldots, q_{k_j} are Gaussian primes, using Euclid's Lemma.

6 Problem 6

6.1 Part (a)

Proof. Let M be a simple R-module. Since (M, +) is a simple Abelian group, it must be isomorphic to a finite cyclic group of prime order — say C_p . Hence M is generated by one element x.

Lemma 3. M is isomorphic to a quotient of R.

Proof. Define a mapping $f: R \to M$ by the rule f(a) = ax. This is an R-module homomorphism, since $a, b \in R$ implies

$$f(a + b) = (a + b)x = ax + bx = f(a) + f(b)$$

 $f(ab) = abx = a(bx) = af(b).$

 ϕ is surjective, since $f(1+\cdots+1)=x+\cdots+x$, which generates the entirety of M. Thus if we let $\mathfrak{m}=\operatorname{Ker} f$, the First Isomorphism Theorem yields the desired $R/\mathfrak{m}\cong M$.

Because the ring R/\mathfrak{m} has prime order, it contains no proper nonzero ideals. Thus the quotient is a field, so \mathfrak{m} is maximal. This completes the proof.

6.2 Part (b)

Proof. Suppose $\phi: V \to V'$ is a homomorphism of simple R-modules. Then V and V' must be finite, and the submodules $\operatorname{Ker} \phi \subseteq V$ and $\operatorname{Im} \phi \subseteq V'$ must be either 0 or the module itself.

- 1. If Ker $\phi = V$: then ϕ is the zero homomorphism.
- 2. If Ker $\phi = 0$: then $V \cong \operatorname{Im} \phi$ by the First Isomorphism Theorem. Thus $\operatorname{Im} \phi$ is a nonzero submodule of V', so $\operatorname{Im} \phi = V'$. We conclude that $V \cong V'$.

This yields the desired result.

7 Problem 7

7.1 Part (a)

For convenience, we denote by x_i for each $i \in \{1, ..., n\}$ as the canonical basis $(\delta_{ik})_{k=1}^n$ for each $i \in \{1, ..., n\}$, where δ is the Kronecker delta. Then the list

$$\phi(x_1), \dots, \phi(x_n) \in \mathbb{R}^n$$

is linearly independent and has length n, so it must constitute a basis of \mathbb{R}^n . Thus for $r_1, \ldots, r_n \in \mathbb{R}$,

$$r_1\phi(x_1) + \dots + r_n\phi(x_n) = 0 \implies r_1 = \dots = r_n = 0.$$

Since the right-hand side equals $\phi(r_1x_1 + \cdots + r_nx_n)$, we conclude that ϕ has kernel 0—thus ϕ is an isomorphism.

7.2 Part (b)

No. Consider the ring $\mathbb{Z}[x]$ and the prime ideals $(2) \subset (2,x)$. These ideals are free $\mathbb{Z}[x]$ -modules; hence let $\phi: (2,x) \to (2,x)$ be the $\mathbb{Z}[x]$ -module homommorphism defined by $\phi(y) = 2y$. Two observations:

- 1. Injectivity: Holds. Clearly $\operatorname{Ker} \phi = 0$, since $\mathbb{Z}[x]$ is an integral domain.
- 2. Surjectivity: Fails. ϕ maps the entirety of (2, x) to (2).

Since ϕ is not an automorphism, it constitutes a counterexample to the stated claim.