TEMA 6: AMPLIFICADOR OPERACIONAL

1 Características de los amplificadores

1.1 Generalidades

- La amplificación es un proceso que consiste en obtener a la salida del sistema amplificador una réplica de la señal de entrada pero de mayor magnitud.
- Representación en circuitos:

• Amplificadores no lineales: distorsión de la señal de salida.

1.2 Ganancia

Definición y carcacterística de transferencia

- Ganancia de voltaje: $A_v = \frac{v_o}{v_i}$
- Ganancia de corriente: $A_i = \frac{i_o}{i_i}$

Fenómeno de saturación

- La alimentación (fuentes V_1 y $-V_2$) es necesaria para que el amplificador funcione y limita su comportamiento.
- Condiciones ideales: $-V_2 \le v_o(t) \le V_1$
- Alimentación simétrica: $V_1 = +V_{CC}$ y $V_2 = V_{CC} \Longrightarrow -V_{CC} \le v_o(t) \le +V_{CC}$
- Fenómeno de saturación. La característica de transferencia permanece lineal solo un intervalo limitado de voltajes de entrada y salida.

- Condiciones reales: $-V_2 < L_- \le v_o(t) \le L_+ < V_1$
- L_+ y L_- son los valores de saturación positivos y negativos respectivamente.
- Para evitar la saturación: $\frac{L_{-}}{A_{v}} \leq v_{i}(t) \leq \frac{L_{+}}{A_{v}}$

Respuesta en frecuencia

ullet Estudiamos la salida de amplificadores cuando la señal es una señal sinusoidal de frecuencia ω .

- La **respuesta en frecuencia**. Permite estudiar cómo es la salida del amplificador para señales sinusoidales de entrada de distintas frecuencias.
- La caracterizamos a través de la función de transferencia del propio amplificador $(T(\omega))$.

$$|T(\omega)| = \frac{V_o}{V_i}$$
 $\arg(T(\omega)) = \arg(V_o) - \arg(V_i) = \phi$

• El **ancho de banda** del amplificador es la banda de frecuencias sobre la que la ganancia del amplificador es casi constante, a menos de cierto número de decibelios (por lo general 3dB).

1.3 Realimentación

• Amplificador en lazo abierto: no existe conexión entre salida y entrada.

• Amplificador con realimentación: se establece una conexión entre salida y entrada.

• La señal de entrada al amplificador (x_i) es la señal de la fuente (x_f) más (realimentación positiva) o menos (realimentación negativa) la procedente del lazo de realimentación (x_r) .

2

- Realimentación positiva: $x_i = x_f + \beta x_o$. Normalmente β es grande $\implies x_i$ aumenta.
- Realimentación negativa: $x_i = x_f \beta x_o$. Operando, $x_i = \frac{1}{1 + \beta A} x_f$. Normalmente β es grande $\implies x_i \approx 0 \implies x_f \approx \beta x_o$.
 - Ganancia del amplificador realimentado A_r :

$$A_r = \frac{x_o}{x_f} = \frac{x_i o}{x_i + x_r} = \frac{Ax_i}{x_i + \beta x_o} = \frac{Ax_i}{x_i + A\beta x_i} = \frac{A}{1 + \beta A}$$

- Ganancia de lazo βA : normalmente βA es muy grande, de manera que $A_r \approx \frac{1}{\beta}$
- Consecuencias:
 - * Se consigue hacer la ganancia constante e independiente de la señal de entrada.
 - * Se consigue reducir el efecto del ruido.
 - * Se consigue extender el ancho de banda.

2 El amplificador operacional

• Símbolo:

• Característica de transferencia: una zona lineal y dos zonas de saturación.

2.1 Modelo Lineal Ideal

- Los límites de saturación son los voltajes de alimentación.
- A_v es muy grande $\implies A_v \to \infty$.
- R_i es muy grande $\implies R_i \to \infty$.
- R_o es muy pequeña $\implies R_o \to 0$ y $V_o = A_v(V^+ V^-)$.
- Ancho de banda muy grande $\implies B \to \infty$.

2.2 Realimentación en el AO

- AO en lazo abierto: no existe conexión entre salida y entrada \implies como A_v es muy grande, el amplificador se satura \implies circuito comparador.
- AO con realimentación: se establece una conexión entre salida y entrada
 - Para conseguir realimentación positiva a la salida se conecta, usando una red de realimentación, a la entrada no inversora.
 - Para conseguir realimentación negativa la salida se conecta, usando una red de realimentación, a la entrada inversora. $V^+ = V^-$.

3 Aplicaciones lineales del AO

- Comportamiento del AO ideal.
- AO opera en condiciones de lazo abierto, en concreto con retroalimentación negativa.
- Las características del circuito dependen de los valores externos.
- Las características del circuito son independientes de la ganancia interna del AO y de R_i y R_o .
- Los circuitos que vamos a estudiar son:
 - Configuración inversora y configuración no inversora.
 - Sumador inversor y sumador no inversor.
 - Derivador.
 - Integrador.

3.1 Configuración inversora

Análisis del circuito

- Condiciones ideales: $I^- = I^+ = 0$ A.
- Leyes de Kirchoff: $\frac{V_i V^-}{R_1} = \frac{V^- V_o}{R_2}$
- Realimentación negativa: $V^- = V^+ = 0V$.

Característica de transferencia

$$\frac{V_o}{V_i} = -\frac{R_2}{R_1}$$

3.2 Configuración no inversora

Análisis del circuito

- Condiciones ideales: $I^- = I^+ = 0$ A.
- Leyes de Kirchoff: $\frac{0-V^-}{R_1} = \frac{V^- V_o}{R_2}$
- Realimentación negativa: $V^- = V_i = V^+ V$.

Característica de transferencia

$$\frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$$

$\begin{array}{c|c} & & & & & & & & & & \\ \hline V_o & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$

3.3 Sumador

Análisis del circuito inversor

- Condiciones ideales: $I^- = I^+ = 0$ A.
- Realimentación negativa: $V^- = V_i = V^+ V$.

Característica de transferencia del inversor

$$V_o = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

Si
$$R_1 = R_2 = R_F \implies V_o = -(V_1 + V_2)$$

Circuito inversor V_1 V_2 V_2 V_2 V_3 V_4 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_8 V_8 V_8 V_8 V_8

3.4 Derivador

Análisis del circuito

- Condiciones ideales: $i^- = i^+ = 0$ A
- Realimentación negativa $v^- = v^+ \implies$ como $v^+ = 0 \text{V} \implies v^- = 0 \text{V}$
- Ecuación para el condensador $i_c(t) = C \frac{dv_i(t)}{dt}$
- En el dominio del **tiempo**: la señal de salida es la derivada de la señal de entrada:

$$v_o(t) = -RC\frac{dv_i(t)}{dt}$$

• En el dominio de la **frecuencia**:

$$V_o = -RCj\omega V_i \implies T(\omega) = -RCj\omega$$

3.5 Integrador

Análisis del circuito

- Condiciones ideales: $i^- = i^+ = 0$ A
- Realimentación negativa $v^- = v^+ \implies$ como $v^+ = 0 \text{V} \implies v^- = 0 \text{V}$
- Ecuación para el condensador $i_c(t) = C \frac{dv_o(t)}{dt}$
- En el dominio del **tiempo**: la señal de salida es la derivada de la señal de entrada:

$$v_i(t) = -RC\frac{dv_o(t)}{dt}$$

$$v_o(t) = -\frac{1}{RC} \int v_i(t) dt$$

• En el dominio de la **frecuencia**:

$$V_o = -\frac{1}{RCj\omega}V_i \implies T(\omega) = -\frac{1}{RCj\omega}$$

