Quantifying relationships among populations: Many populations

Andrea Manica

Outline

- Generalising f_4 : # of waves
- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Some spatial statistics

qpWave: generalising f_{4}

2 0 1

0 1 2

L: pop_a, pop_b, pop_c R: pop_d, pop_e, pop_f

$$X(I_{i},r_{i}) = f_{4}(I_{0},I_{i}; r_{0}, r_{i})$$

rank of a X is # of linearly indep. rows (or cols)

n waves

$$rank + 1 \leq f_4(a,c)$$

$$f_4(a,b;d,e)$$
 $f_4(a,b;d,f)$

$$f_4(a,c;d,e)$$
 $f_4(a,c;d,f)$

qpAdm: estimating proportions from multiple sources

T: pop_t

S: pop_a, pop_b, pop_c R: pop_d, pop_e, pop_f

$$T = \sum_{i=1}^{n} w_i s_i$$

$$\sum_{i} w_{i} f_{4}(T, s_{i}, r_{1}, r_{2}) = f_{4}(T, T, r_{1}, r_{2})$$

$$= 0$$

Quantifying distances among populations

Quantifying distances among populations

$$f_2(A,B) = E[(p_A-p_B)^2]$$

$$f_2(A,B) = \pi_{AB} - \frac{1}{2} (\pi_{AA} - \pi_{BB})$$

$$f_2(A,B) = \frac{1}{2} F_{ST} E H_{exp}$$

$$f_2(A,B) = 2ET_{AB} - ET_{AA} - ET_{BB}$$

Quantifying distances among populations

Neighbour Joining trees

qpGraph

Fitted on f_2 or f_3

First fit unadmixed skeleton

Then test admixture scenarios

Check for mismatches in predicted vs observed f_3 and f_4

Not exhaustive, multiple graphs might fit data equally

qpGraph - changing philosophies

Even for simple scenarios, there are many graph that fit the data

Manual searches are not enough

Extensive searches are needed, and evidence from admixture graphs needs to be complemented with other approaches

EMMS C Sampling schemes C PCA: uniform PCA: barrier PCA:

Outline

- Generalising f_4
- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Some spatial statistics

Practical

Human dataset with modern and ancient