

High Rate Tests of CVD Diamond Pad Detectors

RD42 Meeting

Michael Reichmann

10th May 2019

Table of Contents

- Motivation
- Website
- Setup
- Measurements
- 6 Analysis
- 6 Results
- Conclusion
- 8 Backup

Section 1

Motivation

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- $\bullet \to R\&D$ towards more radiation tolerant detector designs and/or materials

M. Reichmann (All Zürich) Pad Analysis 10th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1 \cdot 10^{16} \, \text{n/cm}^2$ the mean drift path in diamond larger than in silicon

M. Reichmann (all'zürich) Pad Analysis 10th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- → R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ightharpoonup Pad Detectors ightarrow whole diamond as single cell readout
 - ▶ Pixel Detectors → diamond sensor on pixel readout chip
 - ightharpoonup 3D Pixel Detectors ightarrow 3D diamond detector on pixel readout chip

M. Reichmann (all zürich) Pad Analysis 10th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n}/\text{cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ Pad Detectors → this talk
 - ▶ Pixel Detectors
 - ► 3D Pixel Detectors

M. Reichmann (Allerich) Pad Analysis 10th May 2019

Section 2

Website

Website

Website

- finished analysis of all the pad data taken at PSI (Oct 2015 Oct 2018)
- most of the following results on the website (https://diamond.ethz.ch/psi)

Section 3

Setup

Test Site

- ullet High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron) o beam line PiM1
- clean positive pion beam (>90 % π^+) with momentum of 260 MeV/c
- ullet tunable particle fluxes from $\mathcal{O}\left(1\,\mathrm{kHz/cm^2}\right)$ to $\mathcal{O}\left(10\,\mathrm{MHz/cm^2}\right)$ with collimators
- ullet significant multiple scattering o worsens resolution

Final

Final Setup

Figure: Modular Beam Telescope

- 4 tracking planes \rightarrow trigger (fast-OR) with adjustable area (max 8 mm \times 7.8 mm)
- diamond pad detectors in between tracking planes
- fast scintillator \rightarrow precise trigger timing of $\mathcal{O}(1 \text{ ns})$

M. Reichmann (FIHzürich) Pad Analysis 10th May 2019

Setup Development

Figure: Current Setup (Aug16 - Oct18)

- ullet scintillator o precise trigger timing of $\mathcal{O}\left(1\,\mathrm{ns}\right)$
- Trigger Unit (TU) → strongly simplifying setup
- ullet global trigger o (Plane 1 AND Plane 2) AND Scintillator

M. Reichmann (all-zürich) Pad Analysis 10th May 2019

Section 4

Measurements

Tested Detectors

Name	Nick	Producer	Туре	Τ [μm]	Irr _{max}	Comments
S129	S129	е6	scCVD	528	0	reference
IIa-3	IIa-3	lla	scCVD	?	$5\cdot 10^{13}$	
SiD1	SiD1	PSI	Si-Diode	300	0	calibration
SiD2	SiD2	IJS	Si-Diode	100	0	calibration
2A87-e	2А87-е	II-VI	pCVD	?	$5 \cdot 10^{13}$	
116-78	poly-A	II-VI	pCVD	?	0	
116-79	poly-B	II-VI	pCVD	?	0	fixed surface
116-81	poly-D	II-VI	pCVD	?	$1\cdot 10^{14}$	
116-94	94	II-VI	pCVD	?	0	also as pixel
116-95	95	II-VI	pCVD	?	$5\cdot 10^{14}$	also as pixel
116-96	96	II-VI	pCVD	?	0	
116-97	97	II-VI	pCVD	510	$3.5\cdot 10^{15}$	irradiation studies
II6-B2	B2	II-VI	pCVD	455	$8 \cdot 10^{15}$	irradiation studies
116-E5	E5	II-VI	pCVD	520	0	bcm prime test
II6-H0	H0	II-VI	pCVD	515	0	bcm prime test
II6-H8	H8	II-VI	pCVD	505	0	bcm prime test

Table: Pad Detector Information.

M. Reichmann (FIHzürich) Pad Analysis 10th May 2019 8 / 23

Diamond	May15	Aug15	Oct15	Aug16	Oct16
S129	√ (0)	√ (0)	√ (0)	√ (0)	√ (0)
IIa-3	X	X	$\checkmark (5 \cdot 10^{13})$	X	X
SiD1	X	Х	Х	√ (0)	√ (0)
SiD2	X	X	X	X	√ (0)
2А87-е	Х	Х	$\checkmark (5 \cdot 10^{13})$	Х	Х
116-78	√ (0)	X	X	X	X
116-79	√ (0)	√ (0)	X	X	X
116-81	$\checkmark (1 \cdot 10^{14})$	X	$\checkmark (1 \cdot 10^{14})$	X	X
116-94	√ (0)	X	X	√ (0)	X
116-95	√ (0)	X	X	$\checkmark (5 \cdot 10^{14})$	X
116-96	√ (0)	X	X	X	X
116-97	X	√ (0)	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1.5 \cdot 10^{15})$
II6-B2	X	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1 \cdot 10^{15})$	$\checkmark (2 \cdot 10^{15})$
II6-E5	X	X	X	X	X
II6-H0	X	X	X	X	X
II6-H8	X	Х	X	X	X

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis.

M. Reichmann (FIHzürich) Pad Analysis 10th May 2019 9 / 23

Diamond	May17	Jul17	Aug17	Aug18	Oct18
S129	√ (0)	√ (0)	√ (0)	√ (0)	X
IIa-3	X	X	X	X	X
SiD1	X	X	X	X	X
SiD2	√ (0)	√ (0)	√ (0)	√ (0)	X
2А87-е	X	Х	Х	Х	X
116-78	X	X	X	X	X
116-79	X	√ (0)	X	X	X
116-81	X	X	X	X	X
116-94	X	X	X	X	X
116-95	X	X	X	X	X
116-96	X	X	X	X	X
116-97	X	$\checkmark (1.5 \cdot 10^{15})$	\checkmark (3.5 · 10 ¹⁵)	X	X
II6-B2	X	$\checkmark (2 \cdot 10^{15})$	$\checkmark (4 \cdot 10^{15})$	$\checkmark (8 \cdot 10^{15})$	X
II6-E5	X	√ *(0)	X	X	X
II6-H0	√ *(0)	√ *(0)	X	X	X
II6-H8	X	X	X	√ (0)	√ *(0)

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis. * - BCMPrime devices.

M. Reichmann (FIH zürich) Pad Analysis 10th May 2019 10 / 23

Scan Types

Diamond	Rate Scan	Voltage Scan	Random Scan
S129	✓	✓	Х
IIa-3	✓	X	X
SiD1	✓	✓	X
SiD2	✓	✓	X
2A87-e	✓	X	X
116-78	✓	X	X
116-79	✓	X	X
116-81	✓	✓	X
116-94	✓	✓	✓
116-95	✓	✓	✓
116-96	✓	X	X
116-97	✓	X	✓
II6-B2	✓	✓	✓
II6-E5	✓	X	X
II6-H0	✓	X	X
II6-H8	✓	X	X

Table: Pad Detector Scan Types.

M. Reichmann (FIHzürich) Pad Analysis 10th May 2019 11 / 23

Section 5

Analysis

Alignment

- assume the same error for all planes: $\frac{2.5}{\sqrt{12}}$ · pixel dimension
- set errors of p1 to 0 (anchor → remains untouched)
- first coarse pre-alignment by connecting the outer planes with a straight line
 - move inner planes by mean of the residual distribution

Alignment

- assume the same error for all planes: $\frac{2.5}{\sqrt{12}}$ · pixel dimension
- set errors of p1 to 0 (anchor → remains untouched)
- first coarse pre-alignment by connecting the outer planes with a straight line
 - move inner planes by mean of the residual distribution
- then fine alignment by fitting a straight line through all planes
 - keep p1 fixed and iteratively translate and rotate the other planes according to residuals

M. Reichmann (FIHzürich) 10th May 2019 12 / 23

Theoretical Distribution

Chi-squared distribution:

$$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$$

- k = degrees of freedom
- special case of Gamma-Distribution
- \bullet theoretical distribution of the χ^2 from the track fits fully known

M. Reichmann (FIHzürich)

Distribution after Alignment

- fit function: $[0]*TMath::GammaDist(x, k/2, 0, \theta = 2)$
- k number degrees of freedom = NPlanes 2
- ullet does not fit very well o incorrect errors of the individual points (planes)

M. Reichmann (Til zürich)

Determination of the Errors

1. General Scaling:

- leave width of the distribution as free parameter in fit (indicator the errors)
- adjust all errors by same factor until width converges to theoretical value of 1

2. Individual Scaling:

- set one plane under test (not included in fit)
- iteratively adjust errors of the other planes

• define signal region: one bunch wide (20 ns) around the triggered signal

M. Reichmann (FIHzürich)

• define signal region: one bunch wide (20 ns) around the triggered signal

M. Reichmann (FIHzürich)

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value

M. Reichmann (FIHzürich)

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)

M. Reichmann (31Hzürich) Pad Analysis 10th May 2019

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)
- pedestal: same integration window in centre of pre-trigger bunch

M. Reichmann (31Hzürich) Pad Analysis 10th May 2019 16 / 23

- define signal region: one bunch wide (20 ns) around the triggered signal
- find the peak within the signal region by max value
- signal: integrate asymmetrically around the peak (optimisation by SNR)
- pedestal: same integration window in centre of pre-trigger bunch

M. Reichmann (FIHzürich) Pad Analysis 10th May 2019

- integration performed on time corrected waveform
- single bin integral: (w) times the mean of the two values: $w \cdot (v1 + v2)/2$
- \bullet sum up the single integrals + interpolated edges to get the exact integration width
- normalise by the width of the integral

M. Reichmann (FIHzürich)

Section 6

Results

Tracking Resolution

- ROC = Plane
- resolution = width of the residual distribution at the plane under test
- can achieve $\sim\!20\,\mu m$ resolution at very low χ^2
- resolution at the front slightly better than in the back
 - ▶ less multiple scattering

M. Reichmann (FIHzürich) Pad Analysis

- every point the mean of a whole rate scan
- very high points have no attenuator
- first two points have a change in amplifier

- every point the mean of a whole rate scan
- very high points have no attenuator
- first two points have a change in amplifier
- most points very stable over time but some fluctuate (maybe DRS4 issue)

- every point the mean of a whole rate scan
- very high points have no attenuator
- first two points have a change in amplifier
- most points very stable over time but some fluctuate (maybe DRS4 issue)
- standard deviation in general below 0.5 %

M. Reichmann (FIHzürich)

B2 Rate Scans

- after irradiation pulse height is very stable
- maximum irradiation: $8 \cdot 10^{15} \, \text{n/cm}^2$
- little drop for high rates at high irradiations
- due to decreasing signals one cut is working less efficient

Results

B2 Rate Scans

- after irradiation pulse height is very stable
- maximum irradiation: $8 \cdot 10^{15} \, \text{n/cm}^2$
- little drop for high rates at high irradiations
- due to decreasing signals one cut is working less efficient
- positive and negative bias agree very well

Pulse Height Evolution

Rate Measurements

$$0 \rightarrow 5 \cdot 10 \rightarrow 1 \cdot 10 \rightarrow 2 \cdot 10 \rightarrow 4 \cdot 10 \rightarrow 6 \cdot 10 \text{ n/cm}$$

- absolute pulse height decreases exponentially
- ullet SNR at highest irradiation only 2/1 o prevents next step with this amplifier o use new OSU amp?

M. Reichmann (FIHzürich) 10th May 2019

Fix Rate Dependence

- \bullet less than 20 % of the tested diamonds show rate dependence ${>}10\,\%$
- very large rate dependence at the first measurement (>90 %)
- \bullet after reprocessing and surface cleaning with RIE very stable behaviour $(\sim\!\!2\,\%)$
- feasible to "fix" bad diamonds

M. Reichmann (FIHzürich)

Section 7

Conclusion

Conclusion

- all the data we took with the digital ETH Telescope at PSI was analysed
 - ▶ needs to be fully checked
- most important results are available on the website
- improved and sped up alignment procedure
- ullet iteratively adjust errors of the individual planes to fix χ^2 -distribution
- improved integration procedure of the waveforms
- scCVD diamond is stable over the year
 - mean pulse height of the rate scans stays constant
 - ightharpoonup standard deviation of the rate scans in general $<0.5\,\%$
- ullet pCVD diamond does not show dependence on rate to $\mathcal{O}\left(2\,\%\right)$ up to $20\,\mathrm{MHz/cm^2}$
- possible to fix diamonds that show rate dependence due to surface issues

Section 8

Backup

Ringbuffer

(b) Length of memory cells.

- analogue signals of the diamonds constantly digitised and saved in ringbuffer
- overwrite old data once again at first cell
- \bullet once triggered data is saved starting from the current cell \to trigger cell
- measure the length the of memory cells of the DRS4 (before every beam test)
- record trigger cell for every event

Peak Position

- timing of the signals should be fixed and determined by the scintillator
- non-corrected peak time distribution resembles cell size distribution
- ullet correcting for the different cell sizes o strong improvement in timing

Fine Correction

- \bullet after drs4 time correction \to still timing depends periodically on the trigger cell (why?)
- fit with periodic function with known period

Timing Correction + Cut

- achieve \sim 500 ps timing resolution
- \bullet exclude signals outside $3\,\sigma)$ of this distribution
 - $\,\blacktriangleright\,$ wrong timing means something went wrong in the data-taking or the waveform is bad

- bunch spacing of PSI (19.7 ns) small than clock cycle of fast-OR (25 ns)
- ullet scintillator area ${\sim}10\,\text{times}$ larger than active trigger area
- within one clock cycle of 25 ns:
 - one particle only hits the scintillator
 - ► second particle hits the telescope and the diamond
- → no signal in signal region!

- bunch spacing of PSI (19.7 ns) small than clock cycle of fast-OR (25 ns)
- ullet scintillator area ${\sim}10\,\text{times}$ larger than active trigger area
- within one clock cycle of 25 ns:
 - one particle only hits the scintillator
 - ► second particle hits the telescope and the diamond
- ullet ightarrow no signal in signal region!

• flat lines only when the highest peak is in the bunch after the trigger

Bucket Cut

- fit signal distribution when signal in the bunch after the trigger is higher
- signal and background well separated
- shift threshold and minimise the error on the signal

Saturated

- \bullet DRS4 signal range: [-500, +500] mV
- ullet exclude saturated waveforms o full pulse height information lost
- main source should be protons
- 17/200000 events in example above

- use pulser as a reference signal
- tag pulser events by extra channel of the DRS4

- use pulser as a reference signal
- \bullet tag pulser events by extra channel of the DRS4
- exclude these event since they don't have a diamond signal
- use for pulser analysis to compare to diamond signal

Event Range

- ullet until October 2015 ightarrow beam shutter opened after run was started
 - ▶ unstable conditions
 - exclude first five minutes of the run
- past October 2015 exclude first minute as safety margin
 - ▶ sometimes small adjustments made (e.g. collimator changed too late)

Beam Interruption

 \bullet usually short beam interruption every 5 min at PSI + other interruption

Beam Interruption

- ullet usually short beam interruption every 5 min at PSI + other interruption
- particle rate slowly ramps up after interruption
- \bullet exclude events when rate drops less than 40 % + 5 s before
- ullet until rate is larger than 40 % + 20 s after this
- let pulse height adjust after beam interruption (safety margin)

Tracks

- only use events with exactly one track
- require one and only one cluster per plane

Pedestal Sigma

- exclude pedestals outside the 3 sigma region
- baseline shifts
- bad waveforms

exclude the bad tracks

Tracking Angle

• only accept tracks with small angles

Tracking Angle

- only accept tracks with small angles
- angle only very slightly changes with rate

Fiducial Cut

- select area of the diamond
- ullet find first and last bin when signal drops lower than 93% of the maximum value
- interpolate with the adjacent bins when threshold is exactly hit
- adjust manually if it fails or still pedestal left