§1. Проекция вектора на ось и её свойства

Определение 1.1. *Проекцией* точки P на ось \vec{l} называется основание Q перпендикуляра, опущенного из точки P на прямую \vec{l} (рис. 1.1).

Рис. 1.1. Проекция точки на ось Рис. 1.2. Понятие компоненты вектора вдоль оси

Определение 1.2. *Компонентой* любого вектора \overrightarrow{AB} вдоль оси \overrightarrow{l} называется вектор $\overrightarrow{A_1B_1}$, где A_1 , B_1 – проекции точек A и B на ось \overrightarrow{l} (рис. 1.2).

Пусть
$$\vec{e}$$
 – орт оси (рис. 1.2), тогда

$$\overrightarrow{A_1B_1} = \pm |\overrightarrow{A_1B_1}| \overrightarrow{e}. \tag{1.1}$$

Определение 1.3. Проекцией вектора \overrightarrow{AB} на ось \overrightarrow{l} называется длина его компоненты $\overrightarrow{A_1B_1}$, взятая со знаком «+», если компонента сонаправлена с \overrightarrow{e} , и со знаком «-», если компонента и ось \overrightarrow{l} противонаправлены.

Обозначение: $\operatorname{пp}_{\vec{i}} \overrightarrow{AB}$ или $\operatorname{пp}_{\vec{i}} \vec{a}$.

Из определения 1.3 и соотношения (1.1) следует равенство

$$\overrightarrow{A_1B_1} = \pi p_{\overline{1}} \overrightarrow{AB} \cdot \overrightarrow{e} . \tag{1.2}$$

Определение 1.4. *Углом* между двумя ненулевыми векторами \vec{a} и \vec{b} , приведёнными к общему началу, называется наименьший угол, на который надо повернуть один из этих векторов так, чтобы его направление совпало с направлением второго вектора, обозначение: (\vec{a}, \vec{b}) .

(Угол между векторами не является направленным углом (он не зависит от направления поворота) и принимает любое значение между 0 и π : $0 \le (\widehat{a}, \widehat{b}) \le \pi$.)

Свойства проекций векторов

- **1.** $\operatorname{пр}_{\vec{l}}\vec{a}$ есть координата на оси \vec{l} компоненты вектора \vec{a} на этой оси;
- **2.** проекции вектора \vec{a} на оси прямоугольной декартовой системы координат являются координатами \vec{a} в прямоугольном базисе $(\vec{i}, \vec{j}, \vec{k})$, определяющем эту систему;
 - 3. $\operatorname{np}_{\vec{l}}(\vec{a} + \vec{b}) = \operatorname{np}_{\vec{l}}\vec{a} + \operatorname{np}_{\vec{l}}\vec{b}$;
 - **4.** $\operatorname{np}_{\vec{l}}(\lambda \vec{a}) = \lambda \cdot \operatorname{np}_{\vec{l}} \vec{a}$;
 - **5.** $\operatorname{np}_{\vec{b}}\vec{a} = |\vec{a}|\cos(\widehat{\vec{a},\vec{b}}), \ \vec{a} \neq \vec{0}.$

- ▶1. Данное утверждение следует из равенства 1.2 и понятия координаты вектора на оси, введённого в §6 главы 1 (ср. (1.2) с формулой (6.1) из упомянутой главы).
- **2.** Начало вектора \vec{a} поместим в начале декартовой прямоугольной системы координат. Обозначим через A конец вектора \vec{a} , через B основание перпендикуляра, опущенного из точки A на плоскость Oxy, а через C, D, E –

Рис. 1.3. Разложение вектора *OA* по компонентам вдоль осей координат

проекции точки B на оси Ox, Oy, Oz (рис. 1.3),

$$\vec{a} = \overrightarrow{OB} + \overrightarrow{BA} = \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{BA},$$
 (1.3)
как легко вилеть $\overrightarrow{OC} = \overrightarrow{OD} = \overrightarrow{BA} = \overrightarrow{OB}$

где, как легко видеть, \overrightarrow{OC} , \overrightarrow{OD} , $\overrightarrow{BA} = \overrightarrow{OE}$ являются компонентами вектора \overrightarrow{a} вдоль осей координат. Согласно (1.2) имеем:

$$\overrightarrow{OC} = (\operatorname{np}_{\vec{i}} \vec{a}) \vec{i} , \overrightarrow{OD} = (\operatorname{np}_{\vec{i}} \vec{a}) \vec{j} , \overrightarrow{BA} = (\operatorname{np}_{\vec{k}} \vec{a}) \vec{k} .$$

Подставляя эти равенства в равенство (1.3), приходим к соотношению:

$$\vec{a} = (\pi p_{\vec{i}} \vec{a}) \vec{i} + (\pi p_{\vec{i}} \vec{a}) \vec{j} + (\pi p_{\vec{k}} \vec{a}) \vec{k}$$
 (1.4)

Равенство (1.4) есть разложение вектора \vec{a} в прямоугольном базисе, поэтому пр $_{\vec{i}}\vec{a}=x$,

 ${
m пp}_{\vec{j}}\vec{a}=y\,,\ {
m пp}_{\vec{k}}\vec{a}=z\,$ – координаты \vec{a} в этом базисе, что и требовалось доказать.

3, 4. Рассмотрим прямоугольную декартову систему координат, один из базисных векторов которой совпадают с ортом оси \vec{l} . Тогда пр $_{\vec{l}}(\vec{a}+\vec{b})$ или пр $_{\vec{l}}(\lambda\vec{a})$ является, согласно свойству 2, одной из декартовых координат вектора $\vec{a}+\vec{b}$ или $\lambda\vec{a}$. Свойства 3 и 4 теперь следуют из правил 1 и 2 действий с векторами, заданными разложениями в некотором базисе (см. §6 главы 1).

Рис. 1.4. Иллюстрация к доказательству св. 5 проекции вектора \vec{a} на направление вектора \vec{b} . Случай $0 \le \varphi = (\widehat{\vec{a}}, \widehat{\vec{b}}) \le \frac{\pi}{2}$

Рис. 1.5. Иллюстрация к доказательству св. 5 проекции вектора \vec{a} на направление вектора \vec{b} . Случай $\frac{\pi}{2} \le \varphi = (\widehat{\vec{a}}, \widehat{\vec{b}}) \le \pi$

5. Угол ϕ между векторами \vec{a} и \vec{b} удовлетворяет условию: $0 \le \phi = (\vec{a}, \vec{b}) \le \pi$. Рассмотрим два случая: угол ϕ – острый или тупой (рис. 1.4,

1.5). В первом из них
$$\cos\varphi = \frac{|\overrightarrow{AB_1}|}{|\overrightarrow{AB}|} = \frac{\operatorname{пр}_{\vec{b}}\vec{a}}{|\vec{a}|}$$
, т.е. $\operatorname{пр}_{\vec{b}}\vec{a} = |\vec{a}|\cos(\vec{a},\vec{b})$. Во

$$btopom cos\alpha = \frac{|\overrightarrow{AB_1}|}{|\overrightarrow{AB}|} =$$

$$= -\frac{ \operatorname{mp}_{\vec{b}} \vec{a}}{|\vec{a}|}, \text{ t. e. } \operatorname{mp}_{\vec{b}} \vec{a} = -|\vec{a}| \cos\alpha = -|\vec{a}| \cos(\pi - \varphi) = |\vec{a}| \cos\varphi = |\vec{a}| \cos(\widehat{\vec{a}}, \widehat{\vec{b}}). \blacktriangleleft$$

Пример 1.1. Дан вектор $\vec{a} = \overrightarrow{AB}$, где A(1, -1, 0), B(-1, 2, 3). Найти его проекции на оси прямоугольной декартовой системы координат.

▶По свойству 2 проекции \vec{a} на оси координат — это его координаты в базисе $(\vec{i}, \vec{j}, \vec{k})$. В силу формулы (6.6) главы 1 имеем $\vec{a} = \overrightarrow{AB} = -2\vec{i} + 3\vec{j} + 3\vec{k}$, отсюда пр $_{Ox}\vec{a} = -2$, пр $_{Ov}\vec{a} = 3$, пр $_{Oz}\vec{a} = 3$. ◀