Clustering 1

Important concepts

- The objective in this chapter are to understand text similarity and clustering.
- Some of the important concepts are
 - Information Retrieval (IR)
 - Document similarity measures
 - Machine learning algorithm

Similarity Measures

Text Similarity

- Is to analyze and measure how two entities of text are close or far from each other
- The text similarity can be classified broadly into the following two areas:
 - Lexical Similarity
 - Semantic Similarity

Lexical Similarity

- This method involved observing the contents of the text document with regard to syntax, structure and contents and measuring their similarity based on these parameters
- This is classified into two broad areas
 - Term Similarity
 - Document Similarity

Term Similarity

- Is the measure of similarity between individual words.
- The application of term similarity is with autocorrect.
- Some of the term similarity techniques are
 - Jaccard similarity
 - Cosine distance and similarity
 - Levenshtein Distance
 - Hamming Distance
 - Manhattan Distance
 - Euclidean Distance

Jaccard Similarity

of two documents:
$$js(u, v) = \frac{Size \ of \ intersection}{Size \ of \ union}$$

Sentence 1: Ram is John's friend and they are close

Sentence 2: Ram and John are close friends forever

Cosine Distance and Similarity

- Cosine similarity gives us the measure of the angle between the terms (in form of vector). Cosine distance is a metric derived from cosine similarity.
 - Cos 0 -> vectors are close to each other
 - Cos 90 -> indicated the terms are unrelated
 - Cos 180 -> indicates the terms are completely opposite

$$||u.v|| = ||u|| * ||v|| \cos \theta$$

Levenshtein Edit Distance

- Is defined as minimum number of edits needed in the form of addition, substitution or deletions one convert from one word to another.
- Length of the strings need not be equal

$$ld_{u,v}(i,j) = \begin{cases} max(i,j) & \text{if } min(i,j) = 0 \\ ld_{u,v}(i-1,j) + 1 \\ ld_{u,v}(i,j-1) + 1 \\ ld_{u,v}(i-1,j-1) + C_{u_i \neq v_j} \end{cases} \text{ otherwise}$$

$$C_{u_i \neq v_j} = \begin{cases} 1 & \text{if } u_i \neq v_j \\ 0 & \text{if } u_i = v_j \end{cases}$$

Hamming Distance

- It is the distance measured between two strings under the assumptions that they are of equal length.
- Here we check the number positions that they have different characters or symbols

$$hd(u,v) = \sum_{i}^{n} (u_i \neq v_i)$$

$$norm_hd(u,v) = \frac{\sum_{i}^{n} (u_i \neq v_i)}{n}$$

Manhattan Distance

 Similar to hamming distance, instead of counting the number of matches, we subtract the mismatch at that position.

$$md(u, v) = ||u - v||_1 = \sum_{i=1}^{n} |u_i - v_i|$$
 $norm_md(u, v) = \frac{||u - v||_1}{n} = \frac{\sum_{i=1}^{n} |u_i - v_i|}{n}$

Euclidean Distance

 Square of the distance between two vectors. Similar to Manhattan distance.

$$ed(u, v) = ||u - v||_2 = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$