ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή απάντηση η (γ)

Μονάδες 4

2.1.B.

Το σύστημα των δύο ηλεκτρικών φορτίων είναι μονωμένο, $\Sigma \vec{F}_{\varepsilon\xi} = 0$.

Αρχικά

τελική κατάσταση του συστήματος.

Εφαρμόζουμε ΑΔΟ από την αρχική στην
$$m_1,q_1$$
 \overrightarrow{u}_1 \overrightarrow{u}_2 m_2,q_2 τελική κατάσταση του συστήματος.

Τελικά

$$\vec{p}_{\alpha\rho\chi} = \vec{p}_{\tau\varepsilon\lambda} \Rightarrow 0 = m_1u_1 - m_2u_2 \ \Rightarrow \ m_1u_1 = m_2u_2 \ \Rightarrow \ m_1u_1 = 2m_1u_2 \ \Rightarrow \ u_1 = 2u_2$$

Επομένως,
$$\frac{K_1}{K_2} = \frac{\frac{1}{2}m_1u_1^2}{\frac{1}{2}m_2u_2^2} \Rightarrow \frac{K_1}{K_2} = \frac{m_1.4u_2^2}{2m_1.u_2^2} \Rightarrow \frac{K_1}{K_2} = 2$$

Μονάδες 8

2.2.

2.2.Α. Σωστή απάντηση η (β)

Μονάδες 4

2.2.B.

Κατά την οριζόντια βολή, στον κατακόρυφο άξονα Y το σώμα εκτελεί ελεύθερη πτώση. Αν t_π είναι το χρονικό διάστημα που απαιτείται για να φτάσει το σώμα στο έδαφος, τότε: $H = \frac{1}{2}g \cdot t_{\pi}^2$

Το χρονικό διάστημα t_π εξαρτάται μόνο από το ύψος H και το μέτρο g της επιτάχυνσης της βαρύτητας, επομένως είναι ίδιο ανεξάρτητα από την τιμή της οριζόντιας ταχύτητας με την οποία εκτοξεύεται το σώμα. Στον οριζόντιο άξονα Χ το σώμα εκτελεί ευθύγραμμη ομαλή κίνηση.

Όταν το σώμα εκτοξεύεται με οριζόντια ταχύτητα $ec{v}_0$, το βεληνεκές είναι ίσο με: $S_1=v_0\cdot t_\pi$ Όταν το σώμα εκτοξεύεται με οριζόντια ταχύτητα $2\vec{v}_0$, το βεληνεκές είναι ίσο με: $S_2=2v_0\cdot t_\pi$ Σύμφωνα με τα παραπάνω, $S_2 = 2S_1$.

Επομένως, το βεληνεκές διπλασιάζεται όταν εκτοξεύσουμε το σώμα με ταχύτητα $2\vec{v}_0$.

$$x = v_0 \cdot t$$
 (1)

Όταν το σώμα φτάσει στο έδαφος μετατοπίζεται οριζόντια κατά x=s σε χρόνο πτώσης $t=t_\pi$ Με αντικατάσταση στη σχέση (1) έχω

Με απαλοιφή του χρόνου πτώσης t_{π} από τις εξισώσεις (1) και (2) προκύπτει ότι:

$$H = \frac{g \cdot S^2}{2v_0^2} \Longrightarrow S = v_0 \sqrt{\frac{2H}{g}}$$

Από την παραπάνω σχέση παρατηρώ ότι το βεληνεκές S είναι ανάλογο του μέτρου της αρχικής ταχύτητας, επομένως, όταν διπλασιαστεί η αρχική ταχύτητα θα διπλασιαστεί και το βεληνεκές.

Μονάδες 9