theorem there exists an outer automorphism of S_6 .

lemma let \mathbf{F} be a field, $\mathbf{P} = \mathbf{F} \cup \{\infty\}$ the projective line over \mathbf{F} . then $\text{M\"ob}(\mathbf{F})$ acts sharply three transitively on \mathbf{P} .

proof of theorem let $\mathbf{P} = \mathbf{F}_5 \cup \{\infty\} = \{0, 1, 2, 3, 4, \infty\}$ be our six element set. we have an inclusion $\mathsf{M\"ob}(\mathbf{F}_5) \leq S_\mathbf{P}$ of index $\frac{6!}{(5^2-1)(5^2-5)/(5-1)} = 6$. therefore the coset space $C = S_\mathbf{P}/\mathsf{M\"ob}(\mathbf{F}_5)$ is another six element set on which $S_\mathbf{P}$ naturally acts. we have thus defined a homomorphism $\rho: S_\mathbf{P} \to S_C$. we'll show it is bijective by showing $\ker \rho$ is trivial. indeed, $\ker \rho$ is a normal subgroup of $S_\mathbf{P}$, so if it were not trivial it would be either the whole $S_\mathbf{P}$ or the alternating group of index two. however, when G acts on G/H, the kernel of the action is a subgroup of H and so has index at least [G:H]. now we claim $\mathrm{id}_{+}(12),(13),(23),(132)$ is a set of representatives for the coset space C. indeed, if $g,h\in S_\mathbf{P}$ fix each of $0,4,\infty$ then so does $g^{-1}h$, and so $g\mathrm{M\"ob}(\mathbf{F}_5)=h\mathrm{M\"ob}(\mathbf{F}_5)$ implies g=h. now, consider the action of the three cycle g=(123) on C via these representatives. we have

which as a permutation of C decomposes as two three cycles. thus

$$S_{\mathbf{P}} \xrightarrow{\rho} S_{C} \stackrel{C \cong P}{\longrightarrow} S_{\mathbf{P}}$$

gives an automorphism of $S_{\mathbf{P}}$ where (123) gets sent to $(0,4,\infty)(123)$ - but any inner automorphism of S_n preserves the cycle decomposition structure of permutations, and so such an automorphism must be outer.