- Compared to C-S and L-B algorithms
 - NLN algorithm performs fewer comparisons and divisions.
 - NLN can only be applied to 2D clipping.
- The NLN algorithm
 - Clip a line with endpoints P₁ and P₂
 - First determine the position of P₁ for the nine possible regions.
 - Only three regions need be considered
 - The other regions using a symmetry transformation (Force Appro.Transformation)
 - Next determine the position of P₂ relative to P₁.

Here all 3 regions are representative of other six region on respective positions.

e.g.region above clip window can be transformed to the region left of the clip window using a reflection about the line y=-x or using 90 degree counterclockwise rotation.

By Jignesh Patel

P1 is on top left region then 2 variations

P1 to the left of the window

If P2 at LT save the line from Left boundary to Top boundary.

If P2 is not in any of the 4 regions entire line is clipped

- To determine the region in which P2 is located compare the slope of the line to the slope of the boundaries of clip regions.
- P1 is to Left of clip window and P2 in LT if

stope
$$\overline{P_1P_{TR}} < stope$$
 $\overline{P_1P_2} < stope$ $\overline{P_1P_{TL}}$

$$\frac{y_T - y_1}{x_R - x_1} < \frac{y_2 - y_1}{x_2 - x_1} < \frac{y_T - y_1}{x_L - x_1}$$

From parametric equations

$$x = x1 + u (x2-x1)$$

 $y = y1 + u (y2-y1)$

At x intersection position on left window boundary

$$X=XL$$
 $u=(XL-X1)/(X2-X1)$
 $Y=Y1+(Y2-Y1)(XL-X1)/(X2-X1)$

At intersection position on top boundary

Y=YT
$$u= (YT-Y1)/(Y2-Y1)$$

X=X1 + (X2-X1)/(Y2-Y1) (YL-Y1)