December 2, 2019

1

1.a

 $\ker \varphi_a = \{x \in R \mid ax = 0\}$. R is an integral domain, so since $a \neq 0$, ax = 0 means that x = 0, so $\ker \varphi_a = \{0\}$, thus φ_a is injective, and since R is finite, this means that φ_a is also surjective, so φ_a is bijective.

Let $x, y \in R$. $\varphi_a(x + y) = a(x + y) = ax + ay = \varphi_a(x) + \varphi_a(y)$, so φ_a is a homomorphism. It is bijective, thus an isomorphism, and Im $\varphi_a = R$, thus it is an automorphism, as desired.

1.b

Let $a \in R$, $a \neq 0$. Since φ_a is a bijection, it has an inverse, φ_a^{-1} . Consider φ_a^{-1} . $1 = \varphi_a(\varphi_a^{-1}(1)) = a\varphi_a^{-1}(1)$, so $\varphi_1^{-1}(1) = a^{-1}$. Thus any $0 \neq a \in R$ has an inverse, so R is a field.

$\mathbf{2}$

- (a) \Longrightarrow (b): y = ux, so $x \mid y$. u is a unit, so since y = ux, $x = u^{-1}y$, hence $y \mid x$.
- (b) \Longrightarrow (c): We know that $a \mid b \iff b \in \langle a \rangle$, so $y \in \langle x \rangle$ and $x \in \langle y \rangle$. $y \in \langle x \rangle$, so $\langle y \rangle \subseteq \langle x \rangle$, and $x \in \langle y \rangle$, so $\langle x \rangle \subseteq \langle y \rangle$. Thus $\langle x \rangle = \langle y \rangle$.
- (c) \Longrightarrow (a): $y \in \langle y \rangle$, and $\langle y \rangle = \langle x \rangle$, so $y \in \langle x \rangle$. Thus y = ux for some $u \in R$. Similarly, $x \in \langle y \rangle$, so x = vy for some $v \in R$. Then y = u(vy) = (uv)y, so uv = 1, thus u is a unit.

$\mathbf{3}$

3.a

J is an ideal of R_P , so for any $\frac{i}{j} \in J$, $\frac{a}{b} \in R_P$, $\frac{ai}{bj} \in J$. Let $i \in I$, $r \in R$. $1 \notin P$ since P is prime, so $\frac{r}{1} \in R_P$. We know that there is a $p \in P$ such that $\frac{i}{p} \in J$, so $\frac{r}{1} \cdot \frac{i}{p} = \frac{ri}{p} \in J$, then $ri \in I$, so since i and r were arbitrary, I is an ideal of R.

3.b

Let J be an ideal of R_P . Let I be the set of numerators of elements of J. We just showed that I is an ideal of R. Let $I = \langle a \rangle$. Then any element of J has the form $\frac{ra}{b}$, $b \notin P$ for some $r \in R$. $\frac{ra}{b} = \frac{r}{b} \cdot \frac{a}{1}$, so $J = \langle \frac{a}{1} \rangle$, thus R_P is a PID.

4

4.a

Let $a_1 \in R$ be a nonzero non-unit, and assume for a contradiction that a_1 cannot be written as a product of irreducibles. a_1 is not irreducible, otherwise $a_1 = a_1$ would be a_1 written as a product of irreducibles. So $a_1 = bc$, for non-units $b, c \in R$. b or c must not be able to be written as a product of irreducibles (otherwise we could use their decomposition into irreducibles to write a_1 as a product of irreducibles) so WLOG b cannot be written as a product of irreducibles. Let $a_2 = b$. $a_1 \in \langle a_2 \rangle$, so $\langle a_1 \rangle \subseteq \langle a_2 \rangle$. $\langle a_1 \rangle \neq \langle a_2 \rangle$, otherwise $a_2 = ra_1$, then $a_1 = (ra_1)c = (rc)a_1$, so rc = 1, but c was not a unit. We can continue this process to construct an infinite chain $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots$, a contradiction, so a_1 can be written as a product of irreducibles, as desired.

4.b

Let $r = p_1 \cdots p_k$. If $d \mid r$, d irreducible, then there is some $q \in R$ such that r = qd, so $qd = p_1 \cdots p_k$. $p_1 \cdots p_k$ is unique up to order and units, so we can assume ud = pk, $vq = p_1 \cdots p_{k-1}$ for some units $u, v \in R$. So any divisor d of r must be one of p_1, \ldots, p_k multiplied by a unit, thus r has, up to units, k divisors.

So any element $r \in R$ has a finite number of divisors up to units. That is to say, any element dividing r lies in one of finitely many principal ideals $\langle p_1 \rangle, \ldots, \langle p_k \rangle$.

Now suppose for a contradiction that there exists a sequence $a_1, a_2, \ldots \in R$ such that $\langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$. Consider the element $s = a_1 \cdot a_2 \cdot \ldots s$ has only finitely many divisors, so somewhere in the sequence $\langle a_i \rangle$ must become equal to $\langle a_{i+1} \rangle$, a contradiction, so no such sequence exists, and R thus has the \heartsuit property.

December 2, 2019

5

R is a PID, so $\langle a,b\rangle=\langle d\rangle$ for some $d\in R$. $a,b\in\langle a,b\rangle$, so $a,b\in\langle d\rangle$, and thus $d\mid a$ and $d\mid b$. We claim that d is a gcd of a and b.

Let $q \in R$ such that $q \mid a$ and $q \mid b$. Then a = nq and b = mq for some $n, m \in R$. $\langle d \rangle = \langle a, b \rangle$, so $d \in \langle a, b \rangle$, thus d = xa + yb for some $x, y \in R$. Then d = x(nq) + y(mq) = (xn + ym)q, so $q \mid d$. Thus d is a gcd of a and b. Now let c be any arbitrary gcd of a and b. We know, since $d \mid a$ and $d \mid b$, that $d \mid c$, so $c \in \langle d \rangle = \langle a, b \rangle$, as desired.

6

6.a

Let $I = \langle a_1, \ldots, a_k \rangle \subseteq R$ be a finitely generated ideal. We prove I is principal by induction on k:

This is true by definition when k=1, and when k=2, let $r\in\langle a,b\rangle$, d a gcd of a and b. r=xa+yb for some $x,y\in R$, and $d\mid a$ and $d\mid b$, so a=nd, b=md for some $n,m\in R$. Thus r=x(nd)+y(md)=(xn+ym)d, so $r\in\langle d\rangle$. Thus $\langle a,b\rangle\subseteq\langle d\rangle$. Now let $r\in\langle d\rangle$. Then r=zd for some $z\in R$. $z\in R$. $z\in R$. So $z\in R$.

Assume $\langle a_1,\ldots,a_k$ is principal for any $k\leq n$, and consider $\langle a_1,\ldots,a_{n+1}\rangle$. Let $r=c_1a_1+\cdots+c_{n+1}a_{n+1}\in\langle a_1,\ldots,a_{n+1}\rangle$. By our hypothesis, $\langle a_1,\ldots,a_n\rangle$ is principal, say generated by d. Then $r-c_{n+1}a_{n+1}\in\langle d\rangle$, so $r\in\langle d,a_{n+1}\rangle$. Again by our hypothesis, $\langle d,a_{n+1}\rangle$ is principal, as desired. So by induction, every finitely generated ideal of R is principal.

6.b

Assume for a contradiction that $I \subseteq R$ is a non finitely generated ideal, say $I = \langle a_1, a_2, \ldots \rangle$. Every finitely generated ideal of R is principal, so $\langle a_1 \rangle \subsetneq \langle a_1, a_2 \rangle \subsetneq \cdots$ is a sequence of principal ideals, a contradiction since R is a UFD, and therefore has the \heartsuit property. So no such I exists, and thus every ideal is finitely generated, and thus principal. So R is a PID, as desired.