Kernel PCA Two moons dataset Nobe 1) We're assume mean-centered data EX=0 2) $\sum_{n} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{T}$ (binsed) Consider a 20 dataset x= (x, x2) We can lift the data to 6d: \$(x) = [1, x1, x2, x12, x2, x1x2) ER6 Instead of applying PCA to X We apply PCA to p(x)

Ry = 1 = p(xi) p(xi) TEBIN

Motivation: In the high dom space we can find linear subspace (principal direction) that capture the variability of our data. If u is a rect in the span of EX7 We can write U as a linear ambinetter of the vectors x; in X Kernel Trick Let v be an ignrector of Rp We can write $v \in span \phi(x) \Rightarrow v = \sum_{j=1}^{n} \alpha_{j} \phi(x_{j})$ $\frac{1}{n} \sum_{i} \phi(x_{i}) \phi(x_{i})^{T} \sum_{j=1}^{n} \alpha_{j} \phi(x_{j}) = \lambda \sum_{i=1}^{n} \alpha_{i} \phi(x_{i})$ R_{+}

Multiply
$$\beta(k_k)^{T}$$
 on the laft and rearrange sum:

$$\frac{1}{n} \sum_{j=1}^{n} \alpha_{i,j} \int_{k_{k_{i}}}^{k_{k_{i}}} f(k_{i})^{T} \beta(k_{i}) = \lambda \sum_{j=1}^{n} \alpha_{i,j} \int_{k_{k_{i}}}^{k_{k_{i}}} f(k_{i})^{T} \beta(k_{i})$$

$$K_{ij}^{n} = \beta(k_{i})^{T} \beta(k_{j}) \quad (kernel)$$

$$\frac{1}{n} \sum_{j=1}^{n} \alpha_{i,j} \sum_{i=1}^{n} k_{i,j} k_{k_{i}} = \lambda \sum_{i=1}^{n} \alpha_{i,k_{k_{i}}}^{n} k_{k_{i}}$$

$$\Rightarrow \frac{1}{n} K K \alpha = \frac{1}{n} K^{2} \alpha = \lambda K \alpha$$

$$K(K\alpha - \lambda n \alpha) = 0$$

$$\Rightarrow \alpha \quad \text{i.e. an } EV \text{ of } K$$

$$Projecting \quad \text{on } bo \quad EV \quad \text{of } Q_{\alpha} \quad (PCA)$$

$$\beta(K)^{T} v = \sum_{j=1}^{n} \alpha_{i,j} \beta(K)^{T} \beta(K) = \sum_{j=1}^{n} K(X, X_{j}) \alpha_{i,j}^{n}$$

$$= K \alpha$$

 $K = k(x, x_j)$. $x_j \in X$

Kernel PCA elevates from p to l>>p and then reduce dim to d Instead we calculate bernel metric (nx1) and its eign decomposition gives the 'non linear' principal components Kernel matrix = Gran matrix The Gram matrix of X is given by G=XTX, Gi= <xi, xj> = xi*x; Properties 1) G is PSD: uTGu > O for any u (All eigenvalues of a being non-negative) a) & is symmetric: Gi; = Gi

Kernel examples K(xi,xj)= \$(xi) \$(xj) \$(xi)=[1, 52 x1, 52 x2, x1 x2, x2, x2) ER6 $\phi(x_0)^T \phi(x_j) = 1 + 2 \times (1) \times (1) + 2 \times (2) \times (2) + 2 \times (2) \times (2) + 2 \times (2) \times (2) \times (2) + 2 \times (2) \times (2)$ + 2x; (1)x; (1)x; (2) x; (2) + x; (1)2 x; (1)2 + x; (2) x-,(2) = (1+x; x;)2 K[iii] = [1 + xi xi)2 This hernel is for & that is a phynomial of dyrae 2. Polynomials of higher degree: d>2

Kij = K[i,j] = (1 + xi xi)

Signoid kernel K(xi,xi) = tanh (dxi xi + B)

3) Gaussian / RBF Kernel k(xi, x;)= exp? - 11 x; -x; 112/2~2)

Theorem
A function $K(x_i, x_j)$ is a valid bened of
1) k is symmetric: $k(x_i, x_j) = k(x_j, x_i) \in things$
Z Z giyj k(xi, xj) > 0 Yy \ IR" harder to chuch
Mercer's Theorem
A function $k(x_i, x_j)$ is PSD iff it can
be expressed as an inner product:
$k(x_i,x_j) = \langle \phi(x_i), \phi(x_j) \rangle = \phi(x_i)^{\top} \phi(x_j)$
Let's lack at the Gaussi hernel
exp \{ -\frac{ \times_{i} - \times_{i} ^{2}}{2\sigma^{2}} \] = exp \{ -\frac{ \times_{i} ^{2}}{2\sigma^{2}} \} = exp \{ -\frac{ \times_{i} ^{2}}{2\sigma^{2}} \} \cdot exp \{ -\frac{2\xi_{i}}{2\sigma^{2}} \}
= exp $\{\frac{1}{2\sigma^2}\}$ exp $\{-\frac{\ x_i\ ^2}{2\sigma^2}\}$ $\sum_{k=0}^{\infty} \frac{1}{k!} (x_i^{\dagger} x_i^{\dagger})^k / \sigma^2$
ex = Z xh (Taylor)
Mag Abet the bib of the

Note that the high dim feature space here is infinite -dimensional

Infinite sum of PSP is still PSD

Proof of Mercer's Theorem (high level)
1) We assume K is symmetric, therefore we
can apply spectral theorem
K=V_\VT
a) If K is PSD than hi ≥0 (eigenvalus)
2) We can detine a mapping
\$\delta(x_1)=[\lambda \times \vary \vary \lambda \times \vary \lambda \times \vary \vary \lambda \times \vary \lambda \times \vary \lambda \times \vary \lambda \times \vary \
Then by construction we get.
K(0,5)= < \$ (xi), \$ (xj)>

Gaussian Kernel and bandwidth selection K(xc,xj)= exp[-1x;-xj112/202] or is a bandwidth 1) If 0 >> /(xc - x; 1) $\forall x_i, x_j$ $\frac{1}{|X_{i}-X_{i}|} \longrightarrow 0$ K(xc, xj)=1 2) If $\sigma << ||x_i - x_j||$ $1/\chi_i \chi_j = \infty$ k(x:, x;)=0 3) By correct choice of o, the Gaussian hund preserves bocality: We'll have high his for xi, x; that are similar and kij = 0 for xi, xi that are listent 4) Typical choice = median [11 x; -x; 1)

5)	small bandwidth			reduces bi		bin	1, - average onl		only
			that						
	but	it	حراء	וחכר	eages	the	Variano	e ih	moisy data

Nystrom / Out-of-snaple extension

The Kernel has size nxn

O(n2) to calculate minute

O(n3) to calculater eigenvectors

O(n3) to calculater eigenvectors

Can reduce computational complexity by approximation

Assumption of Nystrim approach: hernel is lov-rank (rank d << n)

Sample in random points from the data Cabulation will rely on computing Kouly between the in points and the in points

Summary
1) PCA can't "identify" non linear structure
2) Kernel PCA - map date to high dim space
Apply PCA there
We avoid havy to calculate Ry (1x1)
By calculating & Eigenvectors of Kij = d (Ki) T & (Kj)
3) d(x5) v = [K2];
don't have to colculate
4) All properties of PCA (max variance,
m'nimum reconitu ction error, uncorrelated features)
hold in the high-dim space.
5) Kernel PCA just relies on eigenvalue docump
6) Flexible: can use different Kernels
Limitations.
1) Reconstruction? reed pre-image solution
2) Interpretability