Lab 2 Report

Huy Quang Lai 132000359

Texas A&M University

15 September 2022

An Aggie does not lie, cheat or steal. Nor does an Aggie tolerate those who do.

Problem 1

Figure 1: F = abc + ab + a + b + c

Figure 2: G = a'b'c + ab'c + abc

Chips used: 74LS04 hex inverter gate, 74LS08 quad 2-input AND gate, and 74LS32 quad 2-input OR gate.

To physically wire circuit F, a minimum of one 74LS08 chip and one 74LS32 chip are needed. After connecting both chips to power and ground through pin 14 and 7, wiring can begin. Using a wire, we can route input a into pin 13 on both chips. Next we wire input b into pin 12 on both chips. Then we wire the output, pin 11, to pin 10. This process is done for both chips. Next we wire input c into pin 9 on both chips. Branching from pin 11 of the 74LS08 chip, we add another wire from this pin to pin 1 of the 74LS32 chip. Next we wire pin 8 of the 74LS08 chip into pin 2 of the 74LS32 chip. Next, we connect pin 3 and pin 8 of the 74LS32 chip to pin 4 and pin 5 respectively. As a final result, pin 6 on the 74LS32 chip will be the output F.

To physically wire circuit G, a minimum of one 74LS04 chip, two 74LS08 chips, and one 74LS32 chip are needed. After connected all four chips to power and ground through 14 and 7, wiring can begin.

Parameters:

$$V_{cc} = 5V, T_A = 25^{\circ}C, C_L = 15pF, R_L = 2k\Omega$$

Maximum delay, for F would be $2t_{OR} + 2t_{AND}$. This is equivalent to 2(11) + 2(13) = 48ns. Likewise for G, its time delay would be $t_{NOT} + 2t_{AND} + 2t_{OR}$. This is equivalent to 10 + 2(13) + 2(11) = 58ns.

The maximum delay under the indicated parameters would be 48 nanoseconds for Circuit F and 58 nanoseconds for Circuit G.

Problem 2

The Encoder's job is to convert a button pressed within a car into a binary number. The Encoder will have $\lceil \log_2 N \rceil$ outputs where N is the number of inputs. For 7 cars, a minimum of three outputs will be needed and will result in a 7×3 Encoder.

The Decoder will convert the binary number encoded by the Encoder and convert it to the seven outputs needed for the seven-segment display. With the 7×3 Encoder, the decoder will be 3×7 .

The following Truth table displays the expected behavior for the 3×7 Decoder

A	B	C	O_a	O_b	O_c	O_d	O_e	O_f	O_g
0	0	0	1	1	1	1	1	1	0
0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	0	0	1
1	0	0	0	1	1	0	0	1	1
1	0	1	1	0	1	1	0	1	1
1	1	0	1	0	1	1	1	1	1
1	1	1	1	1	1	0	0	0	0

This truth table will lead to the following simplified equations

$$O_a = A'C' + B + AC$$

$$O_b = A' + B'C' + BC$$

$$O_c = B' + C + A$$

$$O_d = A'C' + A'B + BC' + AB'C$$

$$O_e = A'C' + BC'$$

$$O_f = B'C' + AB' + AC'$$

$$O_q = A'B + AB' + AC'$$

Lastly, additional circuits will be needed that will allow the seven-segment to display a number when exactly one button is being pressed. This logic is shown in Figure 6 and Figure 7.

Click here to view a video of the circuit running.

The circuits developes are included on the following pages.

Figure 3: Main Circuit

Figure 4: 7×3 Encoder

Figure 5: 4×7 Decoder

Figure 6: Filter Circuit

Figure 7: Filter Output