

Ab initio molecular dynamics and machine learned potentials based molecular dynamics

Lei Lei: Lei.Lei2@nottingham.ac.uk

Sanliang Ling: Sanliang.Ling@nottingham.ac.uk

University of Nottingham

Outline

- Introduction to molecular dynamics
- Ab inito molecular dynamics (AIMD) using CP2K
- Hands on AIMD simulation and data analysis on Archer2
- Neural network potentials (NNP) as force evaluation method
- Hands on MD simulation using NNP

Goals of Molecular Dynamics simulations and data analysis

• MD simulations: obtain trajectory data by solving equations of motion

$$F_i = m_i \ddot{r_i}$$
 $\mathcal{H}(r,p) = \frac{|p|^2}{2m} + \mathcal{U}(r)$ Newton Hamiltonian

 MD data analysis: calculate ensemble average of properties from trajectory data

$$\langle A \rangle = \int P(p,t)A(p,r)dpdr = \int A(p(t),r(t))dt$$

A: target property, P: probability, p: momenta, r: position

Ensembles in MD

Ensemble: all microstates (r, p) accessible to simulation, each microstate occurring with a particular probability

Various possibilities for quantities that may be conserved or fixed in the simulation include:

N: particle number

V: volume

P: pressure

E: energy

T: temperature

μ: chemical potential (not implemented in CP2K)

NVE: microcanonical

NVT: canonical

NPT: isothermal-isobaric

Ensembles in MD: NVE

Isolated system with constant number of particles N, volume V and energy E

Total energy is conserved as the system is isolated

Solving equations of motion without temperature or pressure control

$$F_i = m_i \ddot{r}_i$$

- Drift in E due to rounding and truncation errors
- Dynamical variables well defined
- Required initial conditions: positions and velocities

Ensembles in MD: NVT

System with constant number of particles N, volume V and temperature T (controlled by a thermostat)

Total energy is no longer conserved

- Energy exchange between system and heat bath exists
- Constant of motion: energy of the system + heat bath

Ensembles in MD: NPT

System with constant number of particles N, pressure P (controlled by a barostat) and temperature T (controlled by a thermostat)

Box size/shape is allowed to change in response to internal stress and external pressure

Energy exchange with the environment: dW = PdV

Constant of motion =
energy of the system +
energy of the thermostat +
energy of the barostat

Ensembles in CP2K

```
&MOTION
6MD
ENSEMBLE NVE
STEPS 1000
TIMESTEP 0.5
TEMPERATURE 300.0
&END MD
&END MOTION
```

Choices:

- NVE: microcanonical
- NVT: canonical
- NPT F: isobaric-isothermic
- NPT_I: isobaric-isothermic in isotropic cell
- NPE_F: constant pressure
- NPE_I: constant pressure in isotropic cell
- LANGEVIN: canonical using Langevin dynamics
- ISOKIN: constant kinetic energy
- HYDROSTATICSHOCK, MSST, MSST_DAMPED, NVT_ADIABATIC ...

Thermostats: velocity rescaling

Obtain desired temperature T_0 by a factor:

$$\lambda = \sqrt{\frac{T_0}{T(t)}}$$

$$\Delta T = \frac{1}{2} \sum_{i=1}^{N} \frac{2}{3} \frac{m_i (\lambda v_i)^2}{N k_B} - \frac{1}{2} \sum_{i=1}^{N} \frac{2}{3} \frac{m_i v_i^2}{N k_B} = (\lambda^2 - 1) T(t)$$

Straight forward

Does not correspond to any ensemble

Thermostats in CP2K: LANGEVIN

Add a dissipative frictional force and a stochastic force:

$$m\ddot{r_i} = -rac{\partial U}{\partial r_i} - m\Gamma\dot{r_i} + W_i(t)$$
 Γ : friction coefficient W : random force

Relation between magnitude of force and friction:

$$\langle W_i(t), W_j(t') \rangle = \partial_{ij} \partial(t - t') 6m \Gamma k_B T$$

Magnitude of the perturbation depends on the instantaneous temperature

Surprisingly useful in practice!

Thermostats in CP2K: LANGEVIN

Produces canonical ensemble (NVT)

Local thermostat

Ergodic

Allows the use of large time steps

But:

- does not conserve momentum (due to drag force)
- only useful for sampling, cannot be used to calculate transport properties, e.g., diffusion coefficient

Thermostats in CP2K: Nosé-Hoover (chains)

Add two additional degrees of freedom:

s – position of imaginary heat reservoir

 p_s – conjugate momentum of imaginary heat reservoir

Additional parameter

$$Q$$
 – effective mass

$$p_{S} = \frac{\partial \mathcal{L}}{\partial \dot{s}} = Q \dot{s}$$

Momenta conjugate to
$$r_i$$
: $p_i = \frac{\partial \mathcal{L}}{\partial \dot{r}_i} = m_i s^2 \dot{r}_i$

$$\mathbf{p}_i = \frac{\partial \mathcal{L}}{\partial \dot{r}_i} = m_i s^2 \dot{r}_i$$

$$H_N = \sum_i \frac{p_i^2}{2m_i s^2} + \mathcal{U}(\mathbf{r}^N) + \frac{p_s^2}{2Q} + gk_B T \ln s$$

Thermostats in CP2K: Nosé-Hoover (chains)

```
&MOTION
&MD
&THERMOSTAT
TYPE NOSE
```

&NOSE

TIMECON 1000

&END NOSE

&END THERMOSTAT

&END MD

&END MOTION

- Produces canonical ensemble (NVT)
- Local thermostat
- Ergodic (Nosé-Hoover chain only)
- Second order temperature may oscillate around target

Thermostats in CP2K: CSVR

Kinetic energy:

$$dK = \sum_{i} \frac{f_i \cdot p_i}{m_i} dt + (\overline{K} - K) \frac{dt}{\tau} + 2 \sqrt{\frac{K\overline{K}}{N_f}} \frac{dW}{\sqrt{\tau}} \left(\tau = \frac{1}{2\gamma}\right)$$

Thermostat part:

$$dK = (\overline{K} - K) \frac{dt}{\tau} + 2 \sqrt{\frac{K\overline{K}}{N_f}} \frac{dW}{\sqrt{\tau}}$$

thermostat fluctuations

Berendsen Noise gives correct

Thermostats in CP2K: CSVR

&MOTION

6MD

&THERMOSTAT

TYPE CSVR

REGION GLOBAL

&CSVR

TIMECON 50

&END CSVR

&END THERMOSTAT

&END MD

&END MOTION

- Stochastic velocity rescaling for $\tau = 0$
- Correct fluctuations
- Reserves dynamic properties
- Recovers Langevin for single degree of freedom

Thermostats in CP2K: tips

- Use a small TIMECON for rapid equilibration
- Default TIMECON is usually OK for production MD
- Check PROJECT-1.ener file, ensure that the constant of motion is conserved
- Check large fluctuations in temperature
- Almost all of the same options apply for barostats
 - o MOTION%MD%BAROSTAT

Result files from a CP2K MD simulation

PROJECT-1.cell	Cell parameters
PROJECT-1.ener	Restart input script
PROJECT-1.restart →	Restart input script
PROJECT-1.stress	Stress tensor
PROJECT-frc-1.xyz →	Forces on each atom
PROJECT-pos-1.xyz	Atomic positions
PROJECT-vel-1.xyz	Velocities of each atom

Output settings in CP2K: PRINT

...
&CELL SILENT
&EACH
MD 10
&END EACH
&END CELL
...
&END PRINT

&PRINT

IR, NMR spectra calculation input settings: refer to spectroscopy tutorial

Write cell parameters when using NPT ensemble

Force evaluation in CP2K: DFT

Check manual for options and explanations: CP2K manual

Check energy conservation

Plot PROJECT.ener file

- use Jupyter Notebook
- use gnuplot

If the constant of motion is not well conserved, try to:

- make EPS_SCF tighter (to reduce drift)
- make TIMESTEP shorter (to reduce fluctuations)
- play with EXTRAPOLATION_ORDER (to reduce drift and or instabilities)

Restart MD simulation in CP2K

Backup original input script:

```
mv PROJECT.inp PROJECT.inp.bak
```

Make a new directory:

```
mkdir restart
```

Copy the input script and make changes on ensemble, steps etc and add:

```
&EXT_RESTART
RESTART_FILE_NAME PROJECT-1.restart
&END EXT RESTART
```

Re-submit job sbatch job.slurm

Alternatively, copy PROJECT-1.restart and modify as a new input script.

Data analysis of MD simulation

Trajectory visualisation: VMD, nglview

Transport property, eg. diffusion coefficient : MDtraj, ASE

Ensemble average of properties g(r) etc: MDtraj, TRAVIS

Vibration spectra: TRAVIS

My input settings

&MD ENSEMBLE NVT TIMESTEP 0.5 &THERMOSTAT TYPE CSVR &CSVR TIMECON 50 &END CSVR &END THERMOSTAT &END MD

```
METHOD
        OS
&SCF
T TO3
MINIMIZER DIIS
PRECONDITIONER
FULL SINGLE INVERSE
&END OT
&XC
               NO SHORTCUT
&XC FUNCTIONAL
&END PBE
&END XC FUNCTIONAL
```

```
    Orbital transformation (OT) method
```

- Full single inverse considering the system size
- VDW

```
&VDW POTENTIAL
POTENTIAL TYPE
PAIR POTENTIAL
&PAIR POTENTIAL
TYPE DFTD3
PARAMETER FILE NAME
dftd3.dat
REFERENCE FUNCTIONAL PBE
CALCULATE C9 TERM T
&END PAIR POTENTIAL
&END VDW POTENTIAL
&END XC
```


My data analysis

Python code FishMol + ASE

Properties:

- Diffusion coefficient using original trajectory
- H bond analysis using wrapped trajectory
 - H bond recognition
 - Radial distribution function, angular distribution function, combined distribution function
 - H bond lifetime analysis based on time auto correlation function

MSD: mean square displacement

D: water diffusion coefficient

Simulation: D of Cage 1 is **4.5** times larger

Experimental data: Cage 1 is 100 times more proton conductive

 E_a : apparent activation energy

Diffusion anisotropy

1D diffusion coefficients

Cage 2 has a much smaller "neck"

Voronoi diagrams of diffusion channels

Cage 1: 7/8 switches channels Cage 2: all stay inside channel

Polycrystalline samples: high density of grain boundaries

Hydrogen bonding from geometry criteria

Formation of H bond

D: donor atom

A: acceptor atom

Geometry criteria	Strong	Moderate	Weak
D···A separation: R(D···A) (Å)	2.2 - 2.5	2.5 - 3.2	> 3.2
D-H···A angle: ∠D-H···A (°)	170 - 180	> 130	> 90
Lengthening of D-H: ΔR(D-H) (Å)	0.08 - 0.25	0.02 - 0.08	< 0.02
Proton acceptor distance: R(H···A) (Å)	1.2 - 1.5	1.5 - 2.2	> 2.2
D-H vs H···A	D−H ≈ H···A	D−H < H···A	D-H << H···A

H bond analysis

Strength:

- about the same
- moderate strength (16.74 - 62.76 kJ mol⁻¹)

H bonds on water:

One less in Cage 1

H bond lifetime:

Cage 1 ≈ ½ Cage 2

H bond behaviours

Strong H bonds: distinct centres

RDF: radial distribution

function

ADF: angular

distribution function

CDF: combined

distribution function

Acceptor: TFA Os

Sub-centres due to equivalent H/O and rotational dynamics

Less distinct centres due to weaker H bonds and rotational dynamics

Acceptor:

TFA Fs

Donor: water OH

Donor: water OH

Water clustering

Donor: water OH **Accepter:** water O

Two distinct centres due to equivalent positions

Potential to be as proton conductive as Nafion

Preparation for practical session

Copy files from shared folder:

```
cp /work/ta154/shared/cp2k_md_training.tar.gz .
```

Unzip the files:

```
tar -xvf cp2k_md_training.tar.gz
```

Open a new tunneling session (check your port_num from the port.txt file):

```
grep name port.txt
ssh -L ****:localhost:**** username@login.archer2.ac.uk
```

Load python module for data analysis:

```
cd /work/ta154/ta154/username
module load PrgEnv-gnu
module load cray-python
python -m venv --system-site-packages /work/ta154/ta154/username/mdana
source /work/ta154/ta154/username/mdana/bin/activate
pip install nglview ase
cd cp2k_md_training && jupyter notebook --no-browser --port=****
```


Practical session I AIMD-equilibration

- Input file and script preparation
- Submit equilibration job

Files:

- omg.xyz
- osys.inp
- ojob.slurm
- Submit sbatch job.slurm

Practical session I AIMD-production job

- Check energy and temperature
- Prepare files, change settings
- Submit job
- Data analysis using provided trajectory data

Restart from equilibration

- Create new folder:
 - mkdir ensemble-temp
- Files:
 - cp sys-1.restart ensembletemp
 - modify the settings:
 ENSEMBLE, THERMOSTAT,
 TIMECON and add
 EXT_RESTART session
 - cp job.slurm ensembletemp
- Submit sbatch job.slurm

Force evaluation in CP2K: machine learning based methods

Supported machine learning based molecular dynamics:

- Nequip and Allegro
- Neural Network Potentials
- PAO-ML
- DeePMD-kit

Force evaluation in CP2K: NNP

NNP: Parinello-Behler Neural Network Potential (PBNNP)

Atomic positions

Features

Neural Network

Energy Prediction

Parinello-Behler descriptor

$$G_{RAD} = \sum_{i \neq j} F[r_{ij}]$$

$$G_{ANG} = \sum_{\substack{i,k \neq j \\ i < k}} F[r_{ij}, r_{jk}, r_{ik}]$$

Why NNP?

Committee Neural Network Potentials:

- Reduce data usage
- Improve accuracy

Training data from CP2K AIMD data

Use AML to convert AIMD data generated by CP2K to N2P2 format

Note: the original package takes constant cell parameters only, which means NPT data cannot be correctly converted

A copy of modified AML which read and write changing cell data is provided, refer to the Prepare_N2P2_training_data.ipynb
Notebook on usage

Force evaluation using NNP

NNP: nearual network potentials

Use NNP to calculate force

Include this if using NPT

NNP file paths here

Practical session II MLMD

- MLIP MD: equilibration
- MLIP MD production run
- Compare time taken / step
- Compare the g(r) obtained by AIMD and MLMD

- Use pretrained committee NNPs
- Files
 - input script
 - job submission script
 - NNP files
- Submit
- Use the Jupyter Notebook to plot your results.

Further readings

- CP2K
 - o CP2K manual
 - CP2K useful tools
- Thermostats:
 - Brief introduction to the thermostats
 - o MD Ensembles and Thermostats
- Spectroscopy
 - o Infrared spectra
 - Vibrational spectroscopy

- Machine learned interatomic potentials
 - Machine Learning Force Fields
 - Applications and Advances in Machine Learning Force Fields

Also, check out CP2K exercises (where some contents on MD and thermostats are taken from):

<u>exercises [CP2K Open Source Molecular Dynamics]</u>