Machine Learning Techniques Homework #2

tags: mlt, ntu, course, homework

Cheng-Shih Wong, R04945028, mob5566@gmail.com (mailto:mob5566@gmail.com)

1.

For

$$F(A,B) = \frac{1}{N} \sum_{n=1}^{N} \ln\left(1 + \exp\left(-y_n \left(A \cdot \left(\mathbf{w}_{\mathsf{SVM}}^T \phi(\mathbf{x}_n) + b_{\mathsf{SVM}}\right) + B\right)\right)\right)$$

Let
$$z_n = \mathbf{w}_{SVM}^T \phi(\mathbf{x}_n) + b_{SVM}, s_n = Az_n + B$$
, and $p_n = \theta(-y_n s_n)$

where
$$\theta(s) = \frac{\exp(s)}{1 + \exp(s)}$$

$$\frac{\partial F(A, B)}{\partial A} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial A} \ln(1 + e^{-y_n s_n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial A} (1 + e^{-y_n s_n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial A} e^{-y_n s_n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{e^{-y_n s_n}}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial A} (-y_n (Az_n + B))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \theta (-y_n s_n) (-y_n z_n)$$

$$= -\frac{1}{N} \sum_{n=1}^{N} y_n z_n p_n$$

$$\frac{\partial F(A,B)}{\partial B} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial B} \ln\left(1 + e^{-y_n s_n}\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial B} \left(1 + e^{-y_n s_n}\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial B} e^{-y_n s_n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{e^{-y_n s_n}}{(1 + e^{-y_n s_n})} \frac{\partial}{\partial B} (-y_n (Az_n + B))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \theta (-y_n s_n) (-y_n)$$

$$= -\frac{1}{N} \sum_{n=1}^{N} y_n p_n$$

$$\nabla F(A, B) = \begin{bmatrix} \frac{\partial F(A, B)}{\partial A} \\ \frac{\partial F(A, B)}{\partial B} \end{bmatrix} = \begin{bmatrix} -\frac{1}{N} \sum_{n=1}^{N} y_n z_n p_n \\ -\frac{1}{N} \sum_{n=1}^{N} y_n p_n \end{bmatrix}$$

$$\frac{\partial^2 F(A,B)}{\partial A^2} = -\frac{1}{N} \sum_{n=1}^N y_n z_n \frac{\partial p_n}{\partial A}$$

$$\therefore \frac{\mathrm{d}\theta(s)}{\mathrm{d}s} = \theta(s) (1 - \theta(s))$$

$$= -\frac{1}{N} \sum_{n=1}^N y_n z_n p_n (1 - p_n) \frac{\partial}{\partial A} (-y_n (Az_n + B))$$

$$= -\frac{1}{N} \sum_{n=1}^N y_n z_n p_n (1 - p_n) (-y_n z_n)$$

$$= \frac{1}{N} \sum_{n=1}^N y_n^2 z_n^2 p_n (1 - p_n)$$
(2)

Similar to (2)

$$\frac{\partial^{2} F(A, B)}{\partial A \partial B} = \frac{\partial^{2} F(A, B)}{\partial B \partial A} = \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} z_{n} p_{n} (1 - p_{n})$$

$$\frac{\partial^{2} F(A, B)}{\partial B^{2}} = \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} p_{n} (1 - p_{n})$$

$$H(F) = \begin{bmatrix} \frac{\partial^{2} F(A, B)}{\partial A^{2}} & \frac{\partial^{2} F(A, B)}{\partial A \partial B} \\ \frac{\partial^{2} F(A, B)}{\partial B \partial A} & \frac{\partial^{2} F(A, B)}{\partial B^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} z_{n}^{2} p_{n} (1 - p_{n}) & \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} z_{n} p_{n} (1 - p_{n}) \\ \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} z_{n} p_{n} (1 - p_{n}) & \frac{1}{N} \sum_{n=1}^{N} y_{n}^{2} p_{n} (1 - p_{n}) \end{bmatrix}$$

 \therefore all \mathbf{x}_n are different

$$\therefore \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \begin{cases} 0, & \text{if } i = j \\ \|\mathbf{x}_i - \mathbf{x}_j\|^2 > 0, & \text{else} \end{cases}$$

$$\therefore \text{ Gaussian kernel } K(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} \exp(-\gamma * 0) = 1, & \text{if } i = j \\ \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}_j||^2), & \text{else} \end{cases}$$

$$\lim_{\gamma \to \infty} \exp(-\gamma \|\mathbf{x}_i, \mathbf{x}_j\|^2) = \begin{cases} \exp(-\gamma * 0) = 1, & \text{if } i = j \\ \exp(-\infty) = \frac{1}{\infty} = 0, & \text{else} \end{cases}$$

The kernel matrix
$$K = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 is an identity matrix

From course slide Support Vector Regression page 4

The analytic solution of kernel ridge regresssion

$$\beta = (\lambda \mathbf{I} + \mathsf{K})^{-1} \mathbf{y}$$

$$= ((\lambda + 1)\mathbf{I})^{-1} \mathbf{y}$$

$$= (\frac{1}{\lambda + 1} \mathbf{I}) \mathbf{y}$$

$$= \frac{\mathbf{y}}{\lambda + 1}$$

4.

$$\lim_{\gamma \to 0} \exp(-\gamma \|\mathbf{x}_i, \mathbf{x}_j\|^2) = \exp(0) = 1$$

$$\lim_{\gamma \to 0} \exp(-\gamma \|\mathbf{x}_i, \mathbf{x}_j\|^2) = \exp(0) = 1$$

$$\therefore \text{ The kernel matrix } \mathbf{K} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

As in Q.3

The analytic solution of kernel ridge regresssion

$$\beta = (\lambda \mathbf{I} + \mathsf{K})^{-1} \mathbf{y}$$

$$= \begin{pmatrix} \lambda + 1 & 1 & \cdots & 1 \\ 1 & \lambda + 1 & \ddots & 1 \\ 1 & 1 & \ddots & \vdots \\ 1 & 1 & \cdots & \lambda + 1 \end{pmatrix}^{-1} \mathbf{y}$$

$$(P_2) \min_{b, \mathbf{w}, \boldsymbol{\xi}^{\vee}, \boldsymbol{\xi}^{\wedge}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \left((\boldsymbol{\xi}_n^{\vee})^2 + (\boldsymbol{\xi}_n^{\wedge})^2 \right)$$

s.t. $-\epsilon - \boldsymbol{\xi}_n^{\vee} \leq y_n - \mathbf{w}^T \phi(\mathbf{x}_n) - b \leq \epsilon + \boldsymbol{\xi}_n^{\wedge}$

The constraint can be write as the absolute value form

$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} (\xi_n)^2$$
s.t.
$$|y_n - \mathbf{w}^T \phi(\mathbf{x}_n) - b| \le \epsilon + \xi_n$$

where the ξ_n is the **tube violation**

$$\xi_n = \max \left(0, |\mathbf{w}^T \phi(\mathbf{x}_n) + b - y_n| - \epsilon\right)$$

That is the equivalent unconstrained form of (P_2) is

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^{N} \left(\max\left(0, |\mathbf{w}^T\phi(\mathbf{x}_n) + b - y_n| - \epsilon \right) \right)^2$$
 (5)

6.

Substitute optimal \mathbf{w}_* into (5)

$$\min_{b,\beta} F(b,\beta) = \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m) + C \sum_{n=1}^{N} \left(\max \left(0, \left| \sum_{m=1}^{N} \beta_m K(\mathbf{x}_n, \mathbf{x}_m) + b - y_n \right| - \epsilon \right) \right)^2$$

Let
$$s_n = \sum_{m=1}^N \beta_m K(\mathbf{x}_n, \mathbf{x}_m) + b$$

$$\min_{b,\beta} F(b,\beta) = \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m) + C \sum_{n=1}^{N} (\max(0, |s_n - y_n| - \epsilon))^2$$

To obtain $\frac{\partial F(b,\beta)}{\partial \beta_m}$

The partial derivative of **regularizer term** of $F(b, \beta)$ is

$$\frac{\partial \left(\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)\right)}{\partial \beta_m} = \sum_{n=1}^{N} \beta_n K(\mathbf{x}_m, \mathbf{x}_n)$$

For the **regression error term** of $F(b, \beta)$

Let

$$D_n = \frac{\partial (\max(0, |s_n - y_n| - \epsilon))^2}{\partial \beta_m}$$

and

$$\frac{\partial s_n}{\beta_m} = K(\mathbf{x}_n, \mathbf{x}_m)$$

We should discuss three conditions $s_n - y_n < -\epsilon, -\epsilon \le s_n - y_n \le \epsilon, \epsilon < s_n - y_n$

If
$$-\epsilon \le s_n - y_n \le \epsilon$$

$$D_n = \frac{\partial (0)^2}{\partial \beta_m}$$
$$= 0$$

If $s_n - y_n < -\epsilon$

$$D_n = \frac{\partial (y_n - s_n - \epsilon)^2}{\partial \beta_m}$$

$$= 2(y_n - s_n - \epsilon) \frac{\partial (y_n - s_n - \epsilon)}{\partial \beta_m}$$

$$= 2(y_n - s_n - \epsilon) \frac{\partial - s_n}{\partial \beta_m}$$

$$= -2(y_n - s_n - \epsilon) K(\mathbf{x}_n, \mathbf{x}_m)$$

If $\epsilon < s_n - y_n$

$$D_n = \frac{\partial (s_n - y_n - \epsilon)^2}{\partial \beta_m}$$

$$= 2(s_n - y_n - \epsilon) \frac{\partial (s_n - y_n - \epsilon)}{\partial \beta_m}$$

$$= 2(s_n - y_n - \epsilon) \frac{\partial s_n}{\partial \beta_m}$$

$$= 2(s_n - y_n - \epsilon) K(\mathbf{x}_n, \mathbf{x}_m)$$

Finally

$$\frac{\partial F(b, \boldsymbol{\beta})}{\partial \beta_m} = \sum_{n=1}^{N} \beta_n K(\mathbf{x}_m, \mathbf{x}_n) + C \sum_{n=1}^{N} D_n$$
where $D_n = \begin{cases} -2(y_n - s_n - \epsilon)K(\mathbf{x}_n, \mathbf{x}_m) & \text{, if } s_n - y_n < -\epsilon \\ 0 & \text{, if } -\epsilon \leq s_n - y_n \leq \epsilon \\ 2(s_n - y_n - \epsilon)K(\mathbf{x}_n, \mathbf{x}_m) & \text{, if } \epsilon < s_n - y_n \end{cases}$

7.

Denote x_1, x_2 are the values we sample from random variable $X \overset{\mathrm{i.i.d}}{\sim} U(0, 1)$

Given any two points on 2D space, we can always obtain a **straight line** passing through both point to minimize the mean squared error by the linear regression hypothesis $h(x) = w_1x + w_0$.

$$w_1 x_1 + w_0 = x_1^2$$
 (7.1)
 $w_1 x_2 + w_0 = x_2^2$ (7.2)

$$(7.1) - (7.2) \Rightarrow w_1(x_1 - x_2) = (x_1^2 - x_2^2) = (x_1 - x_2)(x_1 + x_2)$$

$$\Rightarrow w_1 = x_1 + x_2$$
Substitute (7.3) into (7.1)
$$\Rightarrow (x_1 + x_2)x_1 + w_0 = x_1^2$$

$$\Rightarrow w_0 = -x_1x_2$$

$$(7.3)$$

 \therefore For any two independent x_1, x_2

We can construct a line $h(x) = (x_1 + x_2)x - x_1x_2$

$$\mathcal{E}[X] = \frac{\text{and}}{0+1}$$

$$\therefore \bar{g}(x) = (0.5 + 0.5)x - 0.5 * 0.5 = x - 0.25$$

8.

For any \tilde{y}_n in $\{\tilde{y}_n\}_{n=1}^{\tilde{N}}$

Let

$$h_0(\mathbf{x}) = 0$$
, for any \mathbf{x} and
$$h_n(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} = \tilde{\mathbf{x}}_n \\ 0, & \text{else} \end{cases}$$

We can obtain

$$r_{z} = \mathsf{RMSE}(h_{0})$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m=1}^{\tilde{N}} (\tilde{y}_{m} - h_{0}(\tilde{\mathbf{x}}_{m}))^{2}}$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m=1}^{\tilde{N}} \tilde{y}_{m}^{2}}$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m=1}^{\tilde{N}} (\tilde{y}_{m} - h_{n}(\tilde{\mathbf{x}}_{m}))^{2}}$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m\neq n}^{\tilde{N}} (\tilde{y}_{m} - h_{n}(\tilde{\mathbf{x}}_{m}))^{2}}$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m\neq n}^{\tilde{N}} \tilde{y}_{m}^{2} + (\tilde{y}_{n} - 1)^{2}}$$

$$= \sqrt{\frac{1}{\tilde{N}} \sum_{m=1}^{\tilde{N}} \tilde{y}_{m}^{2} - 2\tilde{y}_{n} + 1}$$
(8.1)

Then we can subtract r_z^2 by r_n^2 to obtain

$$r_z^2 - r_n^2 = \frac{1}{\tilde{N}} \left(\sum_{m=1}^{\tilde{N}} \tilde{y}_n^2 - \left(\sum_{m=1}^{\tilde{N}} \tilde{y}_n^2 - 2\tilde{y}_n + 1 \right) \right)$$
$$= \frac{1}{\tilde{N}} (2\tilde{y}_n - 1)$$

After that

$$\tilde{y}_n = \frac{\tilde{N}(r_z^2 - r_n^2) + 1}{2} \tag{8.2}$$

Therefore, if we have r_z and $\{r_n\}_{n=1}^{\tilde{N}}$, we can obtain all \tilde{y}_n by (8.2).

As a consequence, if $T = \tilde{N} + 1$, we can construct a

$$g(\mathbf{x}) = \begin{cases} \tilde{y}_n, & \text{if } \mathbf{x} = \tilde{\mathbf{x}}_n \\ \text{something}, & \text{else} \end{cases}$$

with RMSE(g) = 0

9.

Given any hypothesis g

$$\mathbf{g} = (g(\tilde{\mathbf{x}}_1), g(\tilde{\mathbf{x}}_2), \cdots, g(\tilde{\mathbf{x}}_{\tilde{N}}))$$

$$\tilde{\mathbf{y}} = (\tilde{y}_1, \tilde{y}_2, \cdots, \tilde{y}_{\tilde{N}})$$

Denote

$$\begin{split} r_g &= \mathsf{RMSE}(g) \\ &= \sqrt{\frac{1}{\tilde{N}}} \sum_{n=1}^{\tilde{N}} \left(\tilde{y}_n - g(\tilde{\mathbf{x}}_n) \right)^2 \\ &= \sqrt{\frac{1}{\tilde{N}}} \sum_{n=1}^{\tilde{N}} \left(\tilde{y}_n^2 - 2\tilde{y}_n g(\tilde{\mathbf{x}}_n) + g(\tilde{\mathbf{x}}_n)^2 \right) \\ &= \sqrt{\frac{1}{\tilde{N}}} \left(\sum_{n=1}^{\tilde{N}} \tilde{y}_n^2 - 2 \sum_{n=1}^{\tilde{N}} \tilde{y}_n g(\tilde{\mathbf{x}}_n) + \sum_{n=1}^{\tilde{N}} g(\tilde{\mathbf{x}}_n)^2 \right) \\ &= \sqrt{\frac{1}{\tilde{N}}} \left(\sum_{n=1}^{\tilde{N}} \tilde{y}_n^2 - 2 \mathbf{g}^T \tilde{\mathbf{y}} + \mathbf{g}^T \mathbf{g} \right) \\ &= \mathbf{b} \mathbf{y} \ (8.2), \ \sum_{n=1}^{\tilde{N}} \tilde{y}_n^2 = \tilde{N} r_z^2 \\ &= \sqrt{\frac{1}{\tilde{N}}} \left(\tilde{N} r_z^2 - 2 \mathbf{g}^T \tilde{\mathbf{y}} + \mathbf{g}^T \mathbf{g} \right) \end{split}$$

Then, we can obtain

$$\mathbf{g}^T \tilde{\mathbf{y}} = \frac{\tilde{N}(r_z^2 - r_g^2) + \mathbf{g}^T \mathbf{g}}{2}$$

Therefore, we only need RMSE(h_0) and RMSE(g) to calculate $\mathbf{g}^T \tilde{\mathbf{y}}$, i.e. we only need 2 queries.

10.

Denote that

$$G = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_K \end{bmatrix}^T$$

$$G = \begin{bmatrix} g_1(\tilde{\mathbf{x}}_1) & g_2(\tilde{\mathbf{x}}_1) & \cdots & g_K(\tilde{\mathbf{x}}_1) \\ g_1(\tilde{\mathbf{x}}_2) & g_2(\tilde{\mathbf{x}}_2) & \cdots & g_K(\tilde{\mathbf{x}}_2) \\ \vdots & \vdots & \vdots & \vdots \\ g_1(\tilde{\mathbf{x}}_{\tilde{N}}) & g_2(\tilde{\mathbf{x}}_{\tilde{N}}) & \cdots & g_K(\tilde{\mathbf{x}}_{\tilde{N}}) \end{bmatrix}_{\tilde{N} \times K}^T$$

The goal is to

$$\begin{aligned} \min_{\boldsymbol{\alpha}} \mathsf{RMSE} \left(\sum_{k=1}^K \alpha_k g_k \right) &= \min_{\boldsymbol{\alpha}} \sqrt{\frac{1}{\tilde{N}} \sum_{n=1}^{\tilde{N}} \left(\tilde{\mathbf{y}}_n - \sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) \right)^2} \\ &= \min_{\boldsymbol{\alpha}} \sum_{n=1}^{\tilde{N}} \left(\tilde{\mathbf{y}}_n - \sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) \right)^2 \\ &= \min_{\boldsymbol{\alpha}} \sum_{n=1}^{\tilde{N}} \left(\tilde{\mathbf{y}}_n^2 - 2\tilde{\mathbf{y}}_n \sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) + \left(\sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) \right)^2 \right) \\ &= \min_{\boldsymbol{\alpha}} \sum_{n=1}^{\tilde{N}} \tilde{\mathbf{y}}_n^2 - 2 \sum_{n=1}^{\tilde{N}} \tilde{\mathbf{y}}_n \sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) + \sum_{n=1}^{\tilde{N}} \left(\sum_{k=1}^K \alpha_k g_k(\tilde{\mathbf{x}}_n) \right)^2 \\ &= \min_{\boldsymbol{\alpha}} \tilde{N} r_z^2 - 2 \tilde{\mathbf{y}}^T G \boldsymbol{\alpha} + \boldsymbol{\alpha}^T G^T G \boldsymbol{\alpha} \end{aligned}$$

Let

$$E(\boldsymbol{\alpha}) = \tilde{N}r_z^2 - 2\tilde{\mathbf{y}}^T G \boldsymbol{\alpha} + \boldsymbol{\alpha}^T G^T G \boldsymbol{\alpha}$$
$$\nabla E(\boldsymbol{\alpha}) = 2 \left(G^T G \boldsymbol{\alpha} - \tilde{\mathbf{y}}^T G \right)$$

We want $\nabla E(\boldsymbol{\alpha}) = 0$

$$\alpha = \left(G^T G\right)^{-1} \tilde{\mathbf{y}}^T G$$

that minimize $E(\boldsymbol{\alpha})$

and

$$\tilde{\mathbf{y}}^T G = \begin{bmatrix} \mathbf{g}_1^T \tilde{\mathbf{y}} \\ \mathbf{g}_2^T \tilde{\mathbf{y}} \\ \vdots \\ \mathbf{g}_K^T \tilde{\mathbf{y}} \end{bmatrix}$$

For each $\left\{\mathbf{g}_k^T \tilde{\mathbf{y}}\right\}_{k=1}^K$, we need $\mathsf{RMSE}(h_0)$ and $\mathsf{RMSE}(\mathbf{g}_k)$ as **Q.9**.

Therefore, we need K+1 queries to solve α .

11.

 $E_{\rm in}$

$\gamma \setminus \lambda$	0.001	1	1000
32	0	0	0
2	0	0	0
0.125	0	0.03	0.2425

The minimum $E_{\rm in}(g)$ is 0, and occurred at $\gamma=32$, $\gamma=2$, and $\gamma=0.125 \wedge \lambda=0.001$.

 E_{out}

$\gamma \setminus \lambda$	0.001	1	1000
32	0.45	0.45	0.45
2	0.44	0.44	0.44
0.125	0.46	0.45	0.39

The minimum $E_{\mathrm{out}}(g)$ is 0.39, and occurred at $\gamma=0.125 \wedge \lambda=1000$.

13.

In Q.13 and Q.14, I use sklearn.svm.svR to train support vector regression model.

 $E_{\rm in}$

$\gamma \setminus C$	0.001	1	1000
32	0.4	0	0
2	0.4	0	0
0.125	0.4	0.035	0

The minimum $E_{\rm in}(g)$ is 0, and occurred at C=1000, and $C=1 \land (\gamma=32 \lor \gamma=2)$.

14.

 E_{out}

$\gamma \setminus C$	0.001	1	1000
32	0.48	0.48	0.48
2	0.48	0.48	0.48
0.125	0.48	0.42	0.47

The minimum $E_{\mathrm{out}}(g)$ is 0.42, and occurred at $\gamma=0.125 \wedge C=1$.

15.

I iterate 300 times for bagging.

 $E_{\rm in}$

λ	0.01	0.1	1	10	100
E_{in}	0.32	0.3175	0.3175	0.315	0.31

The minimum $E_{\rm in}(g)$ is 0.31, and occurred at $\lambda=100$.

 E_{out}

λ	0.01	0.1	1	10	100
$E_{ m out}$	0.36	0.36	0.36	0.36	0.4

The minimum $E_{\mathrm{out}}(g)$ is 0.36, and occurred at $\lambda=0.01\vee0.1\vee1\vee10.$