

Computer Networks

Review of Chapter 1 to 4

Apr. 2020

Chapter1 Introduction(1)

- What is a computer network?
 - ◆A set of independent and interconnected computers
 - ◆Computer networks vs. communication networks
 - > user-oriented vs. communication-oriented
 - > Host/End system vs. Interconnection devices
 - > 5 layers vs. 3 layers
 - ◆Computer networks vs. distributed systems
 - > Whether transparent to users
 - > distributed system is a software system over a computer network
- Uses of computer networks
- Hardware composition
 - Host/end system, network node, links(wired or wireless)

Chapter1 Introduction(2)

- Categories of computer networks
 - ◆On transmission technology:
 - > Broadcast link vs. point-to-point link
 - > Shared channel vs. dedicated channel
 - > Supporting multicast/broadcast or not
 - > LAN vs. WAN
 - ◆On scale: PAN, LAN, MAN, WAN, Internet
 - ◆On position in Internet:
 - > access network vs. core networks
 - Edge, connecting end systems vs. connection of routers

Chapter1 Introduction(3)

- Network architecture
 - ◆Idea of Layer: well-defined function, offering certain service to upper layer, minimum information across interfaces
 - ◆Information flow: U-shape
 - **◆**Encapsulation
- Protocol: an agreement between peers on communication
 - ◆Packet format(PDU), meaning of fields, message flow
- Services: connection-oriented vs. connectionless

Chapter1 Introduction(4): Reference Models

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Hybrid Model

Chapter 2 Physical Layer (1)

- Position, function and service
 - ◆ Position: bottom layer, real communication
 - Function:
 - > sending signal to and receiving signal from transmission media
 - > Bit-signal transformation
 - > defining electrical, timing and other interfaces with transmission media
 - ◆Service: transmission of bit stream
 - ◆Performance parameters
 - Bandwidth/maximum data rate/channel capacity
 - Bit error rate
 - Delay(transmission delay, propagation delay)

Chapter 2 Physical Layer (2)

- Theorem of maximum data rate
 - ◆ Nyquist theorem and Shannon theorem
- Transmission media
 - ◆Wired: twisted pair, coaxial cable, fiber
 - ♦ Wireless: radio, satellite
- Data vs. Signal(digital vs. analog)
 - ◆Modulation (QPSK & QAM)
 - ◆Line encoding (Manchester)
 - **◆**PCM
- Accessing to Internet
 - ◆Dial-up, ADSL, FTTH, Cable TV

Chapter 2 Physical Layer (3)

- Multiplexing
 - ◆FDM, WDM, TDM(Synchronous TDM vs. Statistical TDM), CDMA
- Circuit Switching vs. Packet Switching
 - call setup, resource reservation, path of data, order of arrival, bandwidth available, timing, ...
- Connection devices
 - ◆Repeater, Hub (1 collision domain)
- Example protocol
 - ◆10BaseT

Chapter3 Data Link Layer(1)

- Position, function and service
 - ◆Position: on top of physical layer, under network layer
 - Function:
 - > Transmission of frames(reliably) between adjacent devices
 - > Hiding physical network details
 - ◆Service:
 - > Connection-oriented: HDLC
 - Connectionless: PPPoE
- Design issues
 - Framing
 - Byte stuffing
 - Bit stuffing
 - > Physical layer coding violations

Chapter3 Data Link Layer(2)

- Design issues
 - **◆**Error Control
 - Correcting Code: Hamming code
 - > Error Detecting Code: CRC
 - ◆Flow Control (+Error Control): reliable transmission
 - ◆ARQ: checksum, ACK(ACK frame or piggybacking), retransmission on timeout, sequence number
 - > Stop-and-wait: $W_T=W_R=1$, U=1/(1+2a)> Go-back-N: $1 < W_T < 2^m$, $W_R=1$ $U=\begin{cases} 1 & W \ge 2a+1 \\ \frac{W}{2a+1} & W < 2a+1 \end{cases}$
 - \triangleright Selective Repeat: $W_T = W_R = 2^{m-1}$
- Example protocol
 - ♦HDLC, PPP

Chapter4 MAC Sublayer(1)

- Position, function and service
 - ◆Position: on top of physical layer, under LLC sublayer
 - Function: accessing a shared medium(broadcast link)
 - ◆Service:
 - > Connectionless: Ethernet
 - > Connectionless with ACK: wifi
- Multiple Access method
 - ◆CSMA/CD
 - > carrier sense, collision detection, jam, binary exponential backoff
 - ◆CSMA/CA
 - carrier sense, RTS/CTS to avoid collision(MACA)

Chapter4 MAC Sublayer(2)

- Connection devices
 - ◆Bridge, LAN switch
 - > A collision domain for each port
 - > Forwarding frame on destination MAC address
 - > Reverse learning to build forwarding table
 - > VLAN: solve problem of broadcast storm
- Example networks
 - **◆**Ethernet
 - ➤ Classical Ethernet(10Mbps): CSMA/CD, maximum and minimum frame length, Manchester encoding
 - > Fast Ethernet(100Mbps)
 - Gigabit Ethernet(1000Mbps)
 - **♦**Wifi
 - > NAV(Virtual channel sensing) to solve hidden station problem
 - Different IFS to support priority