PDF Uncertainties for LQ1 (EXO-12-041)

Edmund Berry

Tuesday, June 3, 2014

Introduction

- Slides show how to find PDF uncertainty on LQ signal
- Method follows from LQ3 analysis:
 - EXO-12-030
- LQ3 analysis method taken from prescription on arXiv:
 - arXiv:hep-ph/0605240
 - arXiv:1101.0538

Variables stored in ntuples

- Three vectors:
 - PDFCTEQWeights (53 elements per event, CTEQ)
 - PDFMSTWWeights (41 elements per event, MSTW)
 - PDFNNPDFWeights (101 elements per event, NNPDF)
- First element of vector: mean weight (mean)
- Other elements of vector: varied weight (varied)
 - Each represents a weight from varying a parameter
- For each vector element, $i \neq 0$ of each PDF:
 - PDF weight = varied / mean

Variables to be defined

- for LQ of mass m, define four N(event) quantities:
 - U_m^0 : N(unweighted MC events) in sample initially
 - U_m^f : N(unweighted MC events) passing final selection
 - W_m^0 : N(PDF weighted MC events) in sample initially
 - W_m^f : N(PDF weighted MC events) passing final selection
- Now define acceptance for LQ of mass *m*:
 - $\blacksquare AU_m = \frac{U_m^f}{U_m^0}$
 - $\blacksquare AW_m = \frac{W_m^f}{W_m^0}$
- We are interested in the % change in acceptance:

- Pink: CTEQ, Red: MSTW, Blue: NNPDF
- x-axis: PDF parameter number
- \mathbf{v} -axis: ΔA (defined last slide)

Plots

PDF uncertainty: eejj signal

- x-axis: LQ mass
- y-axis mean: mean from plots similar to slide 5
- y-axis width: RMS from plots similar to slide 5

Method for determining final uncertainty

- Quote one uncertainty for all LQ mass selections
- If there are no MC events passing a given selection, we can't evaluate PDF uncertainty at that selection level
- If there are MC events passing the selection at the LQ limit (1050 GeV for eejj, 850 GeV for evjj):
 - Use the uncertainty evaluated at the LQ limit
- Otherwise:
 - Use the maximum evaluated uncertainty

PDF uncertainty: eejj background

$t\bar{t}$ MC (not used)

- x-axis: LQ mass
- y-axis mean: mean from plots similar to slide 5
- y-axis width: RMS from plots similar to slide 5

PDF uncertainty: evjj signal

- x-axis: LQ mass
- y-axis mean: mean from plots similar to slide 5
- y-axis width: RMS from plots similar to slide 5

Results

PDF uncertainty: evij background

- x-axis: LQ mass
- y-axis mean: mean from plots similar to slide 5
- y-axis width: RMS from plots similar to slide 5

Conclusion

- Signal PDF uncertainties:
 - eejj: 2%
 - evii: 3%
- Background PDF uncertainties:
 - eeji Z + jets: 3%
 - evii W + iets: 4%
 - \blacksquare evij $t\bar{t}$: 25%
- Why is the evij $t\bar{t}$ uncertainty so high? Possible answer:
 - Final acceptance is very low (but not zero) for $t\bar{t}$ MC
 - Only 8 events pass M(LQ) = 850 selection (evij limit)
 - Extremely hard cuts imply larger PDF uncertainties

