Automated Image Processing

October 9, 2023

Data Situation

Color	Represents	Full Name
Red Puncta	Telomere	
Green Puncta	PML	ALT telomere-associated promyelocytic leukemia
Yellow Puncta	APB(telomere +PML)	ALT-associated promyelocytic leukemia nuclear bodies

Reference Papers for background on the biology behind the experiment

- Nuclear body phase separation drives telomere clustering in ALT cancer cells An Image Analysis Pipeline for Quantifying the Features of Fluorescently-Labeled Biomolecular Condensates in Cells

Goal: Detect the following fusion using tracking puncta analysis

Color	Represents
Red+Red	Telomere+Telomere
Yellow+Yellow	APB+APB
Red+Yellow	Telomere+APB

Trackmate-7

Reference Papers for background on the Tracking analysis

- 1. Robust single-particle tracking in live-cell time-lapse sequences
- Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh
- Time-lapse confocal imaging datasets to assess structural and dynamic properties of subcellular nanostructures
- Recent advances in optical microscopic methods for single-particle tracking in biological samples
- 5. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines

Trackmate 7 basic function

Detector				
DoG detector	Approximation of the LoG operator by differences of Gaussian (DoG)	Spots found too close are suppressed. This detector can do sub-pixel localization of spots using a quadratic fitting scheme.		
Hessian detector	Compute the determinant of the hessian matrix	It can be configured with a different spots size in XY and Z. It can also return a normalized quality value, scaled from 0 to 1 for the spots of each time-point.		
Label image detector	This detector creates spots by importing regions from a label image.	A label image is an image where the pixel values are integers. Each object in a label image is represented by a single common pixel value (the label) that is unique to the object.		
LoG detector	Laplacian of Gaussian	The maxima in the filtered image are searched for, and maxima too close from each other are suppressed. A quadratic fitting scheme allows to do sub-pixel localization.		
Manual annotation	Manual segmentation			
Mask detector	creates spots from a black and white mask	all the pixels in the designated channel that have a value strictly larger than 0 are considered as part of the foreground, and used to build connected regions.		

LAP tracker

- Estimated object diameter : 39 pixel
- Quality threshold: 0.08
- 67 puncta 6 not a puncta = 61

- Estimated object diameter : 36 pixel
- Quality threshold: 0.08
- 86 puncta 14 not a puncta = 72

LAP tracker

- Initial thresholding not applied
- Segment gap closing 20 pixel
- Max frame gap 2 frame
- Each example for R,G, B channel
- Basic function- Merging detection exist but fails to detect our puncta fusion

Impletmenting merging function Using the result obtained from the LAP tracker in TrackMate

1. def readLAPfile: Obtain x, y coordinate from LAP tracker

```
<ppe>

<ppe>

<ppe>

<ppe>

<ppe>

<pp
```

2. def drawPuncta: For each frame, define area of a circle for each x, y coordinate from LAP tracker based on the object diameter(ex 39 pixel)

3. def detectOverlap: Detect all the circle that overlaps

Label 1, Label 2

- 3. def trackPath: Function keep track of the puncta that have been detected in detectOverlap to see whether they stop being tracked, whether their tracking path continues. (Currently working on this process)
- 4. def countMerge: Count the number of events where one track disappears, and the other puncta track continues, or where their puncta coordinates coincide over a period of time.

Using mergeDetect function, we can detect

Fusion of Red + Red puncta→ But what about yellow puncta?

Solution 1 : Change RGB image to HSV(Hue, Saturation, Value-library for this function exist) lower_yellow = np.array([30, 100, 100]) upper_yellow = np.array([60, 255, 255]) yellow_mask = cv2.inRange(hsv_image, lower_yellow, upper_yellow) - make a yellow mask yellow_result = cv2.bitwise_and(image, image, mask=yellow_mask) - extract yellow part from image Use the result in trackmate LAP tracker -> apply the result to Merge detect function

Solution 2: Draw RGB map based on their intensity. Find corresponding RGB of each pixel in the image and check whether the combination of RGB is in the yellow boundary. Have to check whether we can extract intensity

Red Channel Time 28

Green Channel Time 28

Original Image Time 28

Preprocessing Images

Rigid transformation to a "canonical" form -> Choose the first image but should choose the one for which the average of the punca coordinates is almost as the center of the center of the image

Trackmate using transformed video

Divided it into 38 frames and into R, G, B channel

Red Channel Green Channel

Preprocessing images

Original Image

Red channel Image

Blob masking(0,1)

Gamma2

Masked

Preprocessing images to filter noise

Red channel Image

Gamma2

Blob Mask

40 pixel

38 pixel

Size different cause fail in detection

Gamma2

31 pixel

- Even with lower estimated object diameter, not that many noise
- Solved the edge problem of the original image

Gamma2

Masked

Trackmate merge function

- → Fail to detect puncta merge that were not originally in same trackpath, trackpath overlaps over certain frames.
- → Trackmate fails to detect merging process

Puncta Merge Detection

- Used a mask that can detect blob merging shape
- 2. Detect only mask in the image

Before Mask Detection

After Mask Detection

Frame_0 issue

Frame_0 issue

Result obtained from the LAP tracker in TrackMate

	В	C	D	E	F	G H			
LABEL	▼ ID ▼	TRACK_ID 🗷	QUALITY 🔻	POSITION_	POSITION_	POSITION_ POSITION	ON_ FRAME	↓ ↑	
9 ID63634	63634	7	3.707723618	893	323	0	0	0	
0 ID63572	63572	7	6.187105179	893	268	0	0	0	N Codit accord
1 ID61622	61622	7	14.86606598	928	298	0	1	1	→ Split event
2 ID61680	61680	7	7.88174057	914	355	0	1	1	
3 ID61694	61694	7	9.20205307	936	366	0	1	1	
4 ID64650	64650	7	2.094964981	938	306	0	2	2	
5 ID64684	64684	7	8.42609024	915	337	0	2	2	
6 ID64691	64691	7	11.57460022	940	346	0	2	2	3 14
7 ID59662	59662	7	10.12209702	920	327	0	3	3	→ Merge event
8 ID59698	59698	7	2.739322662	954	361	0	3	3	
9 ID60625	60625	7	14.71574783	925	312	0	4	4	
0 ID60636	60636	7	13.37451935	962	325	0	4	4	
1 ID58670	58670	7	12.88766479	940	310	0	5	5	
2 ID62608	62608	7	11.31658936	963	300	0	6	6	

Trackmate merge detection + Merge function result Prior function needs modification due to one-to-one matching of each puncta in a frame.

→ Using Simple LAP tracker, we can obtain individual track without merging or splitting event

Things to consider

Simple LAP tracker: Track splitting and merging that allowed, resulting in having non-branching tracks

1. Misdetection: Threshold using medium radius - filter

D196260

2. Circularity : $\frac{4\pi A}{P^2}$

A: Area, P: Boundary - check merge

0.60164

0.93894

3. Track that ends – check merge

Two cases of merge

Impletmenting merging function Using the result obtained from the LAP tracker in TrackMate

1. def readLAPfile: Obtain x, y coordinate from LAP tracker

2. def distancePuncta: For each frame, define the distance from puncta – distance map for 38 frames

3. Find pairs of puncta with distance value lower than diameter1+diameter2 for more than three frames

Puncta Merge Detection

Assumption: In order for merging event to occur, existing neighboring puncta's track must end

Algorithm: If puncta track ends, search for its neighboring puncta and check their area, circularity

-> Appearance of new puncta

Evaluation

Manually mark merging event for each frame

Find the matching puncta and its x,y coordinates in specific frame

Detect merge event Frame # label id_1, label id_2 x,y coordinate

Puncta Merge Detection

Assumption: In order for merging event to occur, existing neighboring puncta's track must end

Algorithm: If puncta track ends, search for its neighboring puncta and check their area, circularity

-> Appearance of new puncta

Puncta Merge Detection Function

Advanced Kalman Tracker

Kalman Tracker – Merging Event

- Blue:0 merging event
- Green:1 merging event
- Red: 2 merging event

Kalman Tracker – Splitting Event

- Using Merging Event and Splitting Event, we can filter puncta that stays merged over 3 frames
- Applying various filter penalties can allow better detection

Annotated Image 6-1 2-1 5-2 9-1 10-1 11-1 14-1 15-2 19-1 16-2 17-3

Data Situation

Kalman Tracker	Positive(11)	Negative(0)		
True(23)	3	20		
False(0)	8	0		

Туре	Num
Annotated	23
Kalman Tracker	11(3)
Distance based Tracking	7

Finding x, y coordinates of annotated merging event

Annotated merging event: X, Y, Frame num, mean intensity

Lanei	ομοι το	HIACK ID	Quanty	٨	T	۷	1	гіаше	Ndulus	visionity	iviai iuai sp	wearr mite	weulan iii	wiiii iiitei
Label	Spot ID	Track ID	Quality	X	Υ	Z	T	Frame	R	Visibility	Spot color	Mean ch1	Median ch	Min ch1
			(quality)	(pixel)	(pixel)	(pixel)	(frame)		(pixel)			(counts)	(counts)	(counts)
ID89374 √	893 ▼		0.1572335	0	0	0	0	0	15	1		42.353805	37	C
ID86455	86455		1.6881397	331.14259	436.87679	0	5	5	15	1		147.38584	137	75

Evaluation Function- Distance based Tracking

Checking the misdetection- Distance based Tracking

Preprocessing: Apply circularity

and mark it as separate puncta

Apply circularity and count merge

Parameters

Max distance

Frame to Frame Linking	Explanation
Initial Search Radius	The initial search radius represents the initial search range used to locate objects or particles when tracking begins.
Search Radius	The search radius denotes the search range used to locate the object in the next frame, starting from its previous position.
Max Frame Gap	Max frame gap is a parameter defining the discontinuity of a track, indicating how many frames an object can be absent before the track is considered broken.
Track Segment Merging	Explanation
May distance	the maximum spatial separation between the end of one track segment and

Track Segment Splitting	Explanation
Max distance	the maximum spatial separation between the end of one track segment and the beginning of another for them to be considered for merging.

the beginning of another for them to be considered for merging.

Choosing the radius

Circularity filter: 0.90

Average & Mode

Average: 17.249

Mode: 15.937

Choosing the quality threshold for puncta

Parameter Result

Quality Threshold	Initial Search Radius	Search Radius	Max Frame Gap	Max distance(Merge)	Max distance(Split)	Merge Event(dur)	Correspondence
0.08(example)	30	60	1	50	50	42	/23
0.53(44)	17.249(Mean)	51.747(x3)	1	51.747	51.747	24	/23
0.7(44)	15.937(Mode)	47.811(x3)	1	47.811	47.811	16	/23

