PUC MINAS

ENGENHARIA DE SOFTWARE

MÉTODOS DE PESQUISA

- Comparação entre chaves.
- Chaves sem ordenação:
 - pesquisa sequencial.
- Chaves organizadas:
 - pesquisa binária;
 - árvores de pesquisa.

- Também conhecidas como:
 - Tabelas de Dispersão;
 - Tabelas de Espalhamento.

- Considera-se uma tabela (vetor);
 - e uma função de transformação sobre a chave de pesquisa.
- Endereçamento direto;
 - por meio da transformação aritmética da chave de pesquisa.

- Cada elemento pode ser acessado com Θ(1);
 - no caso médio.
- Número de comparações realizadas nas operações de pesquisa, inserção e remoção depende:
 - tamanho da tabela;
 - quantidade de elementos já inseridos.
- Fator de carga da tabela.

INSERÇÃO

- Computa-se o valor da função de transformação;
 - e localiza-se a posição
 correspondente na tabela (vetor).

- s: chave de pesquisa
- $h(s) = (n^{\circ} \text{ de letras de } s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} \text{ de letras de } s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} \text{ de letras de } s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

4

PUC Minas - Engenharia de Software - Algoritmos e Estruturas de Dados II - Prof.ª Eveline Alonso Veloso

h(John) = 4 - 1 = 3

- s: chave de pesquisa
- $h(s) = (n^{\circ} \text{ de letras de } s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

h(John) = 4 - 1 = 3 > 3 livre

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

 $h(John) = 4 - 1 = 3 \xrightarrow{2}_{3}$ John

- s: chave de pesquisa
- $h(s) = (n^{\circ} \text{ de letras de } s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed

$$h(Ed) = 2 - 1 = 1$$

- Peter
- Tom
- Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

PUC Minas - Engenharia de Software - Algoritmos e Estruturas de Dados II - Prof.ª Eveline Alonso Veloso

h(Ed) = 2 - 1 = 1

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - h(Peter) = 5 1 = 4
 - Tom
 - Mary

01 Ed23 John

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

livre

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - h(Tom) = 3 1 = 2
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

01 Ed2 Tom3 John4 Peter

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

0

Ed

2 **Tom**

John

4 Peter

PUC Minas - Engenharia de Software - Algoritmos e Estruturas de Dados II - Prof.ª Eveline Alonso Veloso

h(Mary) = 4 - 1 = 3

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

- s: chave de pesquisa
- $h(s) = (n^{\circ} de letras de s) 1$
- Inserção das palavras:
 - John
 - Ed
 - Peter
 - Tom
 - Mary

COLISÕES

- Ocorrem quando duas chaves são endereçadas;
 - para a mesma posição da tabela hash.
- Tarefa adicional ao utilizar-se tabelas hash:
 - tratar possíveis colisões.

IMPLEMENTANDO TABELAS HASH

- Encontrar uma boa função de transformação;
- Tratar possíveis colisões.

FUNÇÕES DE TRANSFORMAÇÃO

- Mapeiam chaves de pesquisa;
 - em inteiros [0, M 1];
 - onde M é o tamanho da tabela hash.

BOAS FUNÇÕES DE TRANSFORMAÇÃO

- Características:
 - ter boa previsão de espaço de ocupação;
 - apresentar pequena possibilidade de colisões;
 - ser simples de ser computada;
 - gerar saídas possíveis com probabilidades iguais;
 - as chaves de pesquisa devem ser uniformemente distribuídas entre as M entradas possíveis.

- Considere uma tabela hash com 366 entradas;
 - uma para cada dia do ano.
- Inserção do registro correspondente a cada pessoa;
 - conforme sua data de nascimento.

Aniversário	Pessoa
05/01	John
13/03	Ed
26/05	Tom
13/09	Peter
30/12	Mary

Como será nossa função de transformação?

- Como será nossa função de transformação?
 - $05/01 \Rightarrow Posição 4 (0 + 5 1)$
 - $13/03 \Rightarrow Posição 72 (31 + 29 + 13 1)$
 - $26/05 \Rightarrow Posição 146 (31 + 29 + 31 + 30 + 26 1)$

Aniversário	Pessoa
05/01	John
13/03	Ed
26/05	Tom
13/09	Peter
30/12	Mary

PARADOXO DO ANIVERSÁRIO

- Qual é o custo computacional para se encontrar o registro correspondente a uma pessoa?
- Há algum problema com nossa estratégia?
 - Se sim, qual é a chance desse problema acontecer?

PARADOXO DO ANIVERSÁRIO

- Quando temos mais de 23 pessoas juntas;
 - há uma probabilidade maior do que 50% de encontrarmos aniversários coincidentes.
- Quando temos 30 pessoas juntas;
 - cerca de 70% de chance de coincidência.
- Uma tabela hash com 366 "espaços" e apenas 30 registros;
 - pode apresentar colisões!

FUNÇÃO IDENTIDADE

- h(x) = x
 - Fácil de ser computada?
 - Gera saídas com probabilidades iguais?
 - Mas e o espaço de ocupação?
 - podemos ter muito espaço ocioso!
 - Exemplo: números de matrícula na PUC Minas, em uma mesma turma de 54 alunos:

- h(x) = x % M
 - M determina o tamanho da tabela hash;
 - M também influencia na possibilidade de colisões.
 - Exemplo: h(x) = x % 11

•
$$x = 10 \Rightarrow h(10) = 10$$

•
$$x = 20 \Rightarrow h(20) = 9$$

$$x = 9 \Rightarrow h(9) = 9$$

$$x = 15 \Rightarrow h(15) = 4$$

•
$$x = 100 \Rightarrow h(100) = 1$$

- h(x) = x % M
 - Recomenda-se escolher para M;
 - um número primo.
 - Exemplo:
 - h(x) = x % 37

- Se as chaves não são numéricas;
 - aplica-se uma transformação na chave;
 - antes de submetê-la à função de transformação da tabela hash.
- Chaves não-numéricas;
 - devem ser transformadas em números.

- Sendo x uma string:
 - h(x) = t % M;
 - sendo $t = \sum_{i=0}^{\infty} (x[i] \times p[i]);$
 - onde p é um vetor de pesos aleatórios;
 - ou simplesmente a posição i do caractere na string.

- Exemplo: h(x) = t % 5
 - Inserção das palavras:
 - John

caractere	J	0	h	n
x[i]	36	15	8	14
p[i]	3	9	1	5
$x[i] \times p[i]$	108	135	8	70

h(x) = 321 % 5 = 1

- Exemplo: h(x) = t % 5
 - Inserção das palavras:
 - John
 - Mary

caractere	M	a	r	у
x[i]	39	1	18	25
p[i]	3	9	1	5
$x[i] \times p[i]$	117	9	18	125

01 John234 Mary

$$h(x) = 269 \% 5 = 4$$

COLISÕES

- Acontecem quando deseja-se inserir um registro em uma posição da tabela hash;
 - iá ocupada por outro registro.
- A função de transformação endereça um subconjunto de elementos.

TRATAMENTO DE COLISÕES

- Métodos que devem ser
 empregados para endereçar
 registros com resultados iguais
 para a função de transformação;
 - ou seja, colisões.

TRATAMENTO DE COLISÕES

- Métodos de transformação indireta:
 - endereçamento em separado;
 - resolução por encadeamento:
 - elementos que apresentam o mesmo valor para a função de transformação são encadeados.
 - Hash indireta com lista encadeada simples.

TRATAMENTO DE COLISÕES

- Métodos de transformação direta:
 - endereçamento em aberto;
 - resolução por cálculo:
 - quando há uma colisão;
 - calcula-se uma nova posição na tabela hash a partir da chave de pesquisa do item considerado.
 - Hash direta com área de reserva (overflow);
 - Hash direta com rehash.

- A invés de uma entrada da tabela hash apresentar um único registro;
 - conterá uma lista de registros.
- Todas as chaves endereçadas na mesma posição da tabela hash;
 - são ligadas em uma lista encadeada simples.
- Permite armazenar um número imprevisível de registros.

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(5) = 5 % 7 = 5
 - **1**4
 - **2**4
 - **1**9

0 1 2

3

4

5

6

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - h(5) = 5 % 7 = 5
 - 4
 - 4
 - 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(5) = 5 % 7 = 5
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **1**4
 - **2**4
 - **19**

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(7) = 7 % 7 = 0
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(7) = 7 % 7 = 0
 - **-** 14
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(7) = 7 % 7 = 0
 - **•** 14
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(14) = 14 % 7 = 0
 - **14**
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(14) = 14 % 7 = 0
 - **14**
 - **2**4
 - **19**

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(14) = 14 % 7 = 0
 - **-** 14
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **14**
 - **24**
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(24) = 24 % 7 = 3
 - **•** 14
 - **24**
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(24) = 24 % 7 = 3
 - **•** 14
 - **24**
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(24) = 24 % 7 = 3
 - **•** 14
 - **24**
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **•** 14
 - **24**
 - **19**

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(19) = 19 % 7 = 5
 - **•** 14
 - **24**
 - **19**

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(19) = 19 % 7 = 5
 - **14**
 - **24**
 - **19**

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - h(19) = 19 % 7 = 5
 - **14**
 - **24**
 - **19**

- Considerando-se probabilidades iguais de endereçamento;
 - cada lista encadeada teria tamanho esperado de:
 - n/M, onde M é o tamanho da tabela hash.
 - h(x) = x % 7:
 - para n = 80 registros, teremos:
 - 7 listas x aproximadamente 11 registros.
- Pesquisa e remoção:
 - n/M comparações.
 - Quando M se aproxima de n:
 - custo fixo.

COLISÕES COM ENDEREÇAMENTO EM ABERTO

- Método usado quando tem-se uma boa estimativa inicial da quantidade de registros a serem armazenados.
- Utiliza espaços vazios da própria tabela hash para tratamento de colisões.

- Exemplo:
 - suponha uma tabela
 hash de tamanho 7;
 - com área de reserva de tamanho 3.

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **•** 19

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - = 5
 - **-** 7
 - **1**4
 - **2**4
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - 7 h(4) = 5 % 7 = 5
 - 4
 - 4
 - **•** 19

- h(x) = x % 7;
- Inserção das chaves:
 - **5**
 - 7 h(4) = 5 % 7 = 5
 - **-**] ∠
 - **2**4
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - 7 h(4) = 5 % 7 = 5
 - **-**] ∠
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - 7 h(7) = 7 % 7 = 0
 - **1**4
 - **2**4
 - **1** 9

- h(x) = x % 7;
- Inserção das chaves:
 - **5**
 - 7 h(7) = 7 % 7 = 0
 - **1**4
 - **2**4
 - **1** 9

- h(x) = x % 7;
- Inserção das chaves:
 - **-** 5
 - 7 h(7) = 7 % 7 = 0
 - **-** 14
 - **2**4
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **2**4
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - 7 h(14) = 14 % 7 = 0
 - **•** 14
 - **2**4
 - **•** 19

- h(x) = x % 7;
- Inserção das chaves:
 - **-** 5
 - 7 h(14) = 14 % 7 = 0
 - **1**4
 - **2**4
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7 h(14) = 14 % 7 = 0
 - **14**
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7 h(14) = 14 % 7 = 0
 - **•** 14
 - **2**4
 - **1**9

- 4
- 5 **5**
- → 7 |
- 14
- 8
- 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7 h(24) = 24 % 7 = 3
 - **•** 14
 - **24**
 - **-** 19

- h(x) = x % 7;
- Inserção das chaves:
 - **5**
 - **7** h(24) = 24 % 7 = 3
 - 14
 - **24**
 - **1** 9

- h(x) = x % 7;
- Inserção das chaves:
 - **-** 5
 - **7** h(24) = 24 % 7 = 3
 - 14
 - **24**
 - **1** 9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **-** 19

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **7** h(19) = 19 % 7 = 5
 - **•** 14
 - **24**
 - **19**

- h(x) = x % 7;
- Inserção das chaves:
 - **=** 5
 - 7 h(19) = 19 % 7 = 5
 - 14
 - **24**
 - **-** 19

ocupado

- h(x) = x % 7;
- Inserção das chaves:
 - **5**
 - 7 h(19) = 19 % 7 = 5
 - 14
 - **24**
 - **-** 19

8

9

ocupado

- h(x) = x % 7;
- Inserção das chaves:
 - **5**
 - 7 h(19) = 19 % 7 = 5
 - **-** 14
 - **24**
 - **-** 19

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - h(19) = 19 % 7 = 5

 - 24

9

- Exemplo:
 - h(x) = x % 7;
 - Quantas comparações são realizadas nas pesquisas pelas chaves abaixo?
 - **5**
 - **1**4
 - **1**9

COLISÕES COM ENDEREÇAMENTO EM ABERTO

- A tabela hash direta sofre de um mal conhecido como clustering;
 - o tempo médio de pesquisa aumenta;
 - quando a tabela hash começa a ficar cheia.
- O custo de uma pesquisa com sucesso;
 - depende do fator de carga da tabela hash.

- Rehash:
 - calcula-se uma nova posição na tabela hash para a chave;
 - em caso de colisão.
- Mais popular:
 - hashing linear:
 - $h_i(x) = (h(x) + i) \% M$, para $1 \le i \le (M 1)$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - h(5) = 5 % 7 = 5
 - **1**4
 - **2**4
 - **1** 9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - h(5) = 5 % 7 = 5
 - **-** 14
 - **2**4
 - **1** 9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - h(5) = 5 % 7 = 5
 - **1**4
 - **2**4
 - **1** 9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - 7
 - **1**4
 - **2**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - h(7) = 7 % 7 = 0
 - **1**4
 - **2**4
 - **1** 9

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - 7
- h(7) = 7 % 7 = 0
- **1**4
- **2**4
- **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - 7
- h(7) = 7 % 7 = 0
- **1**4
- **2**4
- **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - 7
 - 14
 - **2**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - h(14) = 14 % 7 = 0
 - 14
 - **2**4
 - **1** 9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - 5
 - 7
- h(14) = 14 % 7 = 0
- **14**
- **2**4
- **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - h(14) = 14 % 7 = 0
 - 14 $h_1(14) = (h(14) + 1) \% 7$
 - $h_1(14) = (0 + 1) \% 7$
 - $h_1(14) = 1 \% 7 = 1 -$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - h(14) = 14 % 7 = 0
 - 14 $h_1(14) = (h(14) + 1) \% 7$
 - $h_1(14) = (0 + 1) \% 7$
 - $h_1(14) = 1 \% 7 = 1 -$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - h(24) = 24 % 7 = 3
 - **-** 14
 - **24**
 - **1**9

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:

- 14
- **24**
- **1**9

- Exemplo:
 - função hash: h(x) = x % 7;
 - rehash: $h_i(x) = (h(x) + i) \% 7$

h(24) = 24 % 7 = 3

- Inserção das chaves:
 - 5
 - 7
 - **14**
 - **2**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **5**
 - 7
 - 14
 - **24**
 - **-** 19

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - h(19) = 19 % 7 = 5
 - **-** 14
 - **24**
 - **1**9

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - **-** 5
 - h(19) = 19 % 7 = 5
 - 14
 - **24**
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - 5 • 7 h(19) = 19 % 7 = 5• 14 $h_1(19) = (h(19) + 1) \% 7$ • 24 $h_1(19) = (5 + 1) \% 7$ • 19 $h_1(19) = 6 \% 7 = 6$

- Exemplo:
 - função hash: h(x) = x % 7;
 - rehash: $h_i(x) = (h(x) + i) \% 7$
 - Inserção das chaves:
 - **5**
 - h(19) = 19 % 7 = 5
 - $h_1(19) = (h(19) + 1) \% 7$
 - $h_1(19) = (5 + 1) \% 7$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção das chaves:
 - 5
 - h(19) = 19 % 7 = 5
 - $h_1(19) = (h(19) + 1) \% 7$
 - $h_1(19) = (5 + 1) \% 7$

- Exemplo:
 - função hash: h(x) = x % 7;
 - rehash: $h_i(x) = (h(x) + i) \% 7$
 - O que ocorrerá ao tentarmos inserir a chave 21?

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$
 $h_1(21) = (h(21) + 1) \% 7$
 $h_1(21) = (0 + 1) \% 7$
 $h_1(21) = 1 \% 7 = 1$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$
 $h_1(21) = (h(21) + 1) \% 7$
 $h_1(21) = (0 + 1) \% 7$
 $h_1(21) = 1 \% 7 = 1$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$
 $h_2(21) = (h(21) + 2) \% 7$
 $h_2(21) = (0 + 2) \% 7$
 $h_2(21) = 2 \% 7 = 2$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos
 inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$
 $h_2(21) = (h(21) + 2) \% 7$
 $h_2(21) = (0 + 2) \% 7$
 $h_2(21) = 2 \% 7 = 2$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- O que ocorrerá ao tentarmos
 inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$
 $h_2(21) = (h(21) + 2) \% 7$
 $h_2(21) = (0 + 2) \% 7$
 $h_2(21) = 2 \% 7 = 2$

- Exemplo:
 - função hash: h(x) = x % 7;
 - rehash: $h_i(x) = (h(x) + i) \% 7$
 - O que ocorrerá ao tentarmos inserir a chave 21?

Possível degeneração da tabela hash!

- Hashing quadrático:
 - também popular;
 - $h_i(x) = (h(x) + i^2) \% M;$
 - para $1 \le i \le (M-1)$

Buckets:

- áreas de registros;
 - ao invés de apenas um registro em cada posição da tabela hash.

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - **-** 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - 7 h(5) = 5 % 7 = 5

 - 24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - - 7 h(5) = 5 % 7 = 5

 - 24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - - 7 h(5) = 5 % 7 = 5
 - 24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **1**4
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - - h(7) = 7 % 7 = 0

 - 24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - 7

$$h(7) = 7 \% 7 = 0$$

- **1**4
- **2**4
- **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - 7

$$h(7) = 7 \% 7 = 0$$

- **1**4
- **2**4
- **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **2**4
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
- h(14) = 14 % 7 = 0
- **-** 14
- **2**4
- **1**9

0	7		
1			
2			
2 3			
4			
5	5		
6			

- h(x) = x % 7;
- Inserção das chaves:
- 7 h(14) = 14 % 7 = 0

 - 24

- h(x) = x % 7;
- Inserção das chaves:

7 h(14) = 14 % 7 = 0

- 24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **1**9

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7

h(24) = 24 % 7 = 3

24

19

0	7	14	
1			
2			
2 3			
4			
5	5		
6			

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 $\frac{7}{h(24)} = 24 \% 7 = 3$

24

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **-** 5
 - h(24) = 24 % 7 = 3

14

24

1 9

0	7	14	
1			
2			
3	24		
4			
5	5		
4			

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **19**

0	7	14	
1			
2			
3	24		
4			
5	5		
6			

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:
 - **5**
 - 7
 - **14**
 - **24**
 - **•** 19

0	7	14	
1			
2			
3	24		
4			
5	5		
6			

PUC Minas - Engenharia de Software - Algoritmos e Estruturas de Dados II - Prof.ª Eveline Alonso Veloso

h(19) = 19 % 7 = 5

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - 7 h(19) = 19 % 7 = 5
 - 24

0	7	14	
1			
2			
3	24		
4			
5	5		
,			

- Exemplo:
 - h(x) = x % 7;
 - Inserção das chaves:

 - 7 h(19) = 19 % 7 = 5
 - 24

0	7	14	
1			
2			
3	24		
4			
5	5	19	
,			

Exemplo:

- h(x) = x % 7;
- O que ocorrerá ao tentarmos inserir a chave 21?

Exemplo:

- h(x) = x % 7;
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$

Exemplo:

- h(x) = x % 7;
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$

Exemplo:

- h(x) = x % 7;
- O que ocorrerá ao tentarmos inserir a chave 21?

$$h(21) = 21 \% 7 = 0$$

REMOÇÃO

- Listas encadeadas:
 - já vimos!
- Endereçamento em aberto:
 - apagar instantaneamente o registro pode causar problemas!
 - Solução:
 - marca-se o registro como removido;
 - repara-se posteriormente a tabela hash.

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **1**4
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - **1**9

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:

 - h(14) = 14 % 7 = 0

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:

 - 14
 19 h(14) = 14 % 7 = 0

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - 14 19 h(14) = 14 % 7 = 0 $h_1(14) = (h(14) + 1) \% 7$ $h_1(14) = (0 + 1) \% 7$ $h_1(14) = 1 \% 7 = 1$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - 19 h(14) = 14 % 7 = 0 $h_1(14) = (h(14) + 1) \% 7$ $h_1(14) = (0 + 1) \% 7$ $h_1(14) = 1 \% 7 = 1$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - 19 h(14) = 14 % 7 = 0 $h_1(14) = (h(14) + 1) \% 7$ $h_1(14) = (0 + 1) \% 7$ $h_1(14) = 1 \% 7 = 1$

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - **19**

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:

 - 19 h(19) = 19 % 7 = 5

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - h(19) = 19 % 7 = 5

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - h(19) = 19 % 7 = 5 h₁(19) = (h(19) + 1) % 7 h₁(19) = (5 + 1) % 7 h₁(19) = 6 % 7 = 6

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:
 - **14**
 - **19**

$$h(19) = 19 \% 7 = 5$$
 $h_1(19) = (h(19) + 1) \% 7$
 $h_1(19) = (5 + 1) \% 7$
 $h_1(19) = 6 \% 7 = 6 \longrightarrow 6$

19

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Remoção das chaves:

$$h(19) = 19 \% 7 = 5$$

 $h_1(19) = (h(19) + 1) \% 7$
 $h_1(19) = (5 + 1) \% 7$

$$h_1(19) = 6 \% 7 = 6 \longrightarrow 6$$

19*

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção da chave 22:

Exemplo:

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção da chave 22:

$$h(22) = 22 \% 7 = 1$$

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção da chave 22:

$$h(22) = 22 \% 7 = 1$$

- função hash: h(x) = x % 7;
- rehash: $h_i(x) = (h(x) + i) \% 7$
- Inserção da chave 22:

$$h(22) = 22 \% 7 = 1$$

Reparação, reorganização, restauração ou compactação da tabela hash.

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:

•
$$h(x) = x \% 7;$$

- rehash:
 - $h_i(x) = (h(x) + i) \% 7$

→ 0	7	0	
1	14*	1	
2	21	2	
3	24	3	
4		4	
5	5	5	
6	19*	6	

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(7) = 7 % 7 = 0

→ 0	7	0	
	•		
1	14*	1	
2	21	2	
3	24	3	
4		4	
5	5	5	
6	19*	6	

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(7) = 7 % 7 = 0

→ 0	7	0	7
1	14*	1	
2	21	2	
3	24	3	
4		4	
5	5	5	
6	19*	6	

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(21) = 21 % 7 = 0

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(21) = 21 % 7 = 0

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(21) = 21 % 7 = 0 $h_1(21) = (h(21) + 1) \% 7$ $h_1(21) = (0 + 1) \% 7$ $h_1(21) = 1 \% 7 = 1$

 0
 7
 0
 7

 1
 14*
 1

 2
 21
 2

 3
 24
 3

 4
 4

 5
 5

 6
 19*

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(21) = 21 % 7 = 0 $h_1(21) = (h(21) + 1) \% 7$ $h_1(21) = (0 + 1) \% 7$ $h_1(21) = 1 \% 7 = 1$

0	7	0	7	
1	14*	1	21	
2	21	2		
3	24	3		
4		4		
5	5	5		
6	19*	6		

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(24) = 24 % 7 = 3

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(24) = 24 % 7 = 3

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(5) = 5 % 7 = 5

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$ h(5) = 5 % 7 = 5

- Exemplo:
 - função hash:
 - h(x) = x % 7;
 - rehash:
 - $h_i(x) = (h(x) + i) \% 7$

- Exemplo:
 - função hash:

•
$$h(x) = x \% 7;$$

- rehash:
 - $h_i(x) = (h(x) + i) \% 7$

