Data and Visualization Types

Nikodem Lewandowski

Visualization types

- What visualization type should I choose?
 - ▶ It all depends on the data you have!
- There are two main types of data:
 - ▶ Categorical
 - ► Numeric

Visualization types

• Many others to choose from, and an infinite number of combinations!

Categorical Variables

- A categorical variable (also called qualitative variable) refers to a characteristic that can't be quantifiable.
- Categorical variables can be either:
 - Nominal, one that describes a name, label, or category without a natural order
 - ► Ordinal, its values are defined by an order relation between different categories

What's the difference?

- You can't compare and order nominal variables
- You can compare and order ordinal variables

Nominal Variables

- A nominal variable is one that describes a name, label, or category without a natural order.
- Examples of nominal variables include:
 - ▶ Gender
 - ► Type of dwelling

What cookie do you like the most?

Cookies	Cookie.Lovers
Oreo Chocolate Cookie Oatmeal Cookie	1000 1234 2713

Distribution of Heights by Gender

Distribution of Heights by Gender with Jitter


```
# packages and heights dataset is already loaded
heightsMODED <- heights
heightsMODED$height_cm <- heightsMODED$height * 2.54
custom_colors = c('#6C5F5B', '#F6F1EE') # hex colors (google for reference)
ggplot(heightsMODED, aes(x = sex, y = height cm, fill = sex)) +
  geom_boxplot(custom_colors) +
  geom_jitter( # added on jitter plot
   aes(color = sex), width = 0.2, alpha = 0.3
    ) +
 labs(
   title = "".
   x = "Gender, Nominal Categorical Variable",
   y = "Height (cm), Continuous Numerical Variable"
  ) +
  theme minimal()+
   theme(legend.position = "none", # remove legend
        axis.text.x = element_text(size = 14), # change size of x axis text
        axis.text.y = element_text(size = 14),
        axis.title.x = element_text(size = 16), # change size of x axis title
        axis.title.y = element_text(size = 14)
```

Ordinal Variables

- There is some natural ordering, but the exact magnitude of the differences is (usually) not known.
- Examples of ordinal variables include:
 - ► Education level
 - ▶ Income level

Exam Results:

Category	Number.of.students
Excellent	5
Very good	12
Good	10
Bad	2

GDP Estimation, 2023


```
data <- data.frame(
  Country = c("USA", "China", "Germany"),
 GDP 2023 = c(26.94, 17.70, 4.42)
ggplot(data, aes(x = reorder(Country, -GDP_2023), y = GDP_2023)) +
  geom_bar(stat = "identity", fill = "steelblue", width= 0.6) +
 labs(
   title = "".
   x = "Country, Ordinal Categorical Variable",
   y = "GDP (trilions USD), Continuous Numerical Variable"
  theme tufte() +
  scale_y_continuous(limits= c(0, 30)) + # redefining y axis
  theme(axis.text.x = element_text(size = 14),
        axis.text.y = element_text(size = 14),
        axis.title.x = element text(size = 16),
        axis.title.v = element text(size = 14)
```


Numeric Variables

- A numeric variable (also called quantitative variable) is a quantifiable characteristic whose values are numbers.
- Numeric variables may be either continuous or discrete.
- A category might be represented by a single number or by a distribution of numbers.

Continuous Variables

- A variable is said to be continuous if it can assume an infinite number of real values within a given interval.
- Examples of continuous variables include:
 - ► Height
 - ▶ Temperature

Example Table:

Time.hours	Temperature
0	23.3
1	25.7
2	27.1

Iris Sepal Length vs. Sepal Width

Iris sepal


```
custom colors <- c("#E41A1C", "#377EB8", "#f0e442")
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
 geom_point(size = 3) +
 labs(
   x = "Sepal Length (cm), Continuous Numerical Variable",
   y = "Sepal Width (cm), Continuous Numerical Variable",
   color = 'Iris Species' # Custom legend title
  ) +
  theme minimal() +
   scale color manual(values = custom colors) +
  theme (
   legend.position = c(0.7, 0.8), # Custom legend position
   axis.text.x = element text(size = 12),
   axis.text.y = element_text(size = 14),
   axis.title.x = element text(size = 16).
   axis.title.y = element text(size = 14),
   legend.text = element_text(size = 14),
   legend.title = element text(size = 14)
```


Discrete Variables

- A discrete variable can assume only a finite number of real values within a given interval.
- Examples of discrete variables include:
 - ▶ Number of customers
 - ▶ Number of products sold

Example Table:

Items	Sells
Bananas	10
Apples	15
Oranges	20

Monthly Sales of Fruits, 2022


```
sales data <- data.frame(
   Month = c("January", "February", "March", "April", "May", "June",
    "July", "August", "September", "October", "November", "December"),
    Apples = c(5000, 6000, 7500, 7250, 9000, 10250, 11000, 11750, 10500, 9750, 8000, 6250).
    Oranges = c(3000, 3500, 4000, 4500, 5500, 6000, 6500, 7000, 6250, 5750, 5000, 4000),
   Bananas = c(2000, 2500, 3000, 3500, 4000, 4500, 5000, 5250, 4750, 4250, 3500, 2750),
    Apricots = c(1000, 1500, 2000, 2250, 2500, 2750, 3000, 3250, 3000, 2500, 2000, 1500))
melted_data <- sales_data %>%
 gather(Fruits, Sales, -Month) # gather to convert to long format
melted_data$Month <- factor(melted_data$Month, levels = c("January", "February", "March",
"April", "May", "June", "July", "August", "September", "October", "November", "December"))
melted data$Fruits <- as.factor(melted data$Fruits) # converting strings to factors
ggplot(melted data, aes(x = Month, v = Sales, color = Fruits)) +
 geom line(aes(group = Fruits), linewidth= 1.2) + # group to specify the variable to group by
  labs(x = "Month, Ordinal Categorical Variable",
      v = "Sales, Discrete Numerical Variable".
      color = "")+ # remove legend title
    theme tufte() +
    theme(legend.position = c(0.16, 0.8), # custom legend position
        axis.text.x = element text(size = 12).
        axis.text.y = element_text(size = 14).
        axis.title.x = element_text(size = 16),
        axis.title.v = element text(size = 14).
       legend.text = element_text(size = 14)
```

Additional Resources

Cool youtube videos to checkout:

- Science of Data Visualization | Bar, scatter plot, line...
- How To Choose The Right Graph

