PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 9

1. Al dividir el polinomio p(x) por $x^2 + 1$ se obtiene como cociente $x^2 - x - 6$ y resto un polinomio r(x) de grado 1. Determine el resto r(x) si p(-2) = 3 y p(3) = -1.

Solución. Por el algoritmo de la división obtenemos que

$$p(x) = (x^2 + 1)(x^2 - x - 6) + (Ax + B).$$

Como p(-2) = 3 entonces -2A + B = 3 y p(3) = -1 implica que 3A + B = -1.

Resolviendo el sistema se tiene que $A=-\frac{4}{5}$ y $B=\frac{7}{5}$. Por lo que $r(x)=-\frac{4}{5}x+\frac{7}{5}$.

Criterio de Corrección (CC) Pregunta 1.

CC 1. 2 puntos por aplicar el algoritmo de la división.

CC 2. 2 puntos por obtener el sistema -2A + B = 3 y 3A + B = -1.

CC 3. 2 puntos por resolver el sistema y obtener el resto r(x).

2. Determine, si es que existen, las ecuaciones de las rectas tangentes a la hipérbola

$$x^2 - \frac{y^2}{4} = 1$$

con pendiente igual a $\sqrt{5}$. Explique su desarrollo.

Solución. Se busca b, tal que $y = \sqrt{5}x + b$ intersecte a la hipérbola en un solo punto. Reemplazamos en la ecuación de la hipérbola y nos queda

$$4x^2 - (\sqrt{5}x + b)^2 - 4 = 0.$$

Desarrollando obtenemos que

$$-x^2 - 2\sqrt{5}bx - (b^2 + 4) = 0$$

Luego, para que la recta intersecte solo en un punto a la hipérbola, entonces el discriminante de esta ecuación cuadrática debe ser cero

$$20b^2 - 4(b^2 + 4) = 0$$

Luego $b^2 = 1$ y así b = 1 o b = -1. Por lo que las ecuaciones de la rectas tangente a $x^2 - \frac{y^2}{4} = 1$ con pendiente $\sqrt{5}$ son:

$$y = \sqrt{5}x + 1 \qquad y \qquad y = \sqrt{5}x - 1$$

Criterio de Corrección (CC) Pregunta 2.

CC 1. 2 puntos por considerar la recta $y = \sqrt{5}x + b$.

CC 2. 2 puntos por reemplazar en la ecuación de la hipérbola.

CC 3. 2 puntos por fijar la condición $\triangle = 0$, resolver la ecuación y obtener las rectas tangentes.

3. Dados $z_j = r_j \cdot cis(\alpha_j)$ con $1 \le j \le n$, números complejos escritos en su forma polar. Demuestre que para todo $n \in \mathbb{N}$ se cumple $z_1 \cdot \ldots \cdot z_n = r_1 \cdot \ldots \cdot r_n \cdot cis(\alpha_1 + \ldots + \alpha_n)$.

Solución. Lo demostraremos utilizando inducción:

Caso base n = 1: Si n = 1, simplemente tenemos un término, por lo que es claro que $z_1 = r_1 \cdot cis(\alpha_1)$. Como hipótesis inductiva asumiremos que se cumple para n = k, es decir, asumiremos que es cierto:

$$z_1 \cdot \ldots \cdot z_k = r_1 \cdot \ldots \cdot r_k \cdot cis(\alpha_1 + \ldots + \alpha_k)$$

Y lo demostraremos para n = k + 1. Así, la multiplicación nos queda:

$$z_1 \cdot \ldots \cdot z_k \cdot z_{k+1} = (z_1 \cdot \ldots \cdot z_k) \cdot z_{k+1}$$

Agrupando y utilizando la hipótesis se obtiene

$$z_1 \cdot \ldots \cdot z_k \cdot z_{k+1} = r_1 \cdot \ldots \cdot r_k \cdot r_{k+1} \cdot cis(\alpha_1 + \ldots + \alpha_k) \cdot cis(\alpha_{k+1})$$

Pero de clases sabemos que $cis(\alpha) \cdot cis(\beta) = cis(\alpha + \beta)$, por lo que:

$$cis(\alpha_1 + \ldots + \alpha_k) \cdot cis(\alpha_{k+1}) = cis(\alpha_1 + \ldots + \alpha_k + \alpha_{k+1})$$

De este modo, obtenemos finalmente que:

$$z_1 \cdot \ldots \cdot z_k \cdot z_{k+1} = r_1 \cdot \ldots \cdot r_k \cdot r_{k+1} \cdot cis(\alpha_1 + \ldots + \alpha_k + \alpha_{k+1})$$

Luego, por inducción se cumple para todo $n \in \mathbb{N}$.

Criterio de Corrección (CC) Pregunta 3.

- CC 1. 2 puntos por usar inducción sobre n y verificar el caso n = 1.
- CC 2. 2 puntos por usar la fórmula de Moivre en el paso inductivo.
- CC 3. 2 puntos por concluir el paso inductivo.