Formelsammlung und Wertetabellen

Statistische Verfahren in der Geographie

Till Straube <straube@geo.uni-frankfurt.de>
Institut für Humangeographie
Goethe-Universität Frankfurt

Hinweise

- Die im Folgenden dargestellten Informationen werden Ihnen so oder ähnlich auch in der Klausur zur Verfügung stehen.
- Bezeichnungen und Konventionen orientieren sich an Bortz und Schuster (2010), sind aber teilweise abweichend vereinfacht.
- Die Wertetabellen wurden mit den entsprechenden Funktionen in R (R Core Team 2017) automatisch generiert.

Stand: 22. Juni 2018 1/7

Formelsammlung

$$\bar{x} = \frac{\sum\limits_{i=1}^{n} x_{i}}{n}$$

$$t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n}}}$$

$$F = \frac{s_{1}^{2}}{s_{2}^{2}}$$

$$s^{2} = \frac{\sum\limits_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

$$s = \sqrt{s^{2}}$$

$$v = \frac{s}{|\bar{x}|} \cdot 100\%$$

$$z_{i} = \frac{x_{i} - \bar{x}}{s}$$

$$z_{i} = \frac{x_{i} - \bar{x}}{s}$$

$$x_{i} = z_{i} \cdot s + \bar{x}$$

$$P(x > x_{p}) = 1 - P(x \le x_{p})$$

$$T = \frac{s_{xy}}{s_{x}^{2}}$$

$$S = \frac{$$

Bestimmung der Freiheitsgrade für…	Formel
1-Stichproben- <i>t</i> -Test	df = n - 1
2-Stichproben-t-Test	$df = 2 \cdot n - 2$
F-Test	$df_1 = n_1 - 1; df_2 = n_2 - 1$
χ^2 -Unabhängigkeitstest	$df = (k-1) \cdot (\ell - 1)$
Eindimensionaler χ^2 -Test	df = k - 1

Stand: 22. Juni 2018 2/7

Standardnormalverteilung

$$P(z \le -z_p) = 1 - P(z \le z_p)$$

	z (zweite Nachkommastelle)												
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09			
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359			
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753			
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141			
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517			
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879			
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224			
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549			
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852			
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133			
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389			
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621			
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830			
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015			
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177			
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319			
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441			
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545			
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633			
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706			
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767			
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817			
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857			
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890			
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916			
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936			
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952			
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964			
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974			
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981			
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986			
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990			

Stand: 22. Juni 2018 3/7

$t ext{-}Verteilungen$

$$P(t \le -t_p) = 1 - P(t \le t_p)$$

								Flä	iche						
df	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,999	0,9995	0,9999
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,657	318,309	636,619	3183,099
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	22,327	31,599	70,700
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	10,215	12,924	22,204
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	7,173	8,610	13,034
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	5,893	6,869	9,678
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,208	5,959	8,025
7 8	0,130	0,263	0,402 0,399	0,549 0,546	0,711 0,706	0,896 0,889	1,119 1,108	1,415 1,397	1,895 1,860	2,365 2,306	2,998 2,896	3,499 3,355	4,785 4,501	5,408 5,041	7,063 6,442
9	0,130	0,262	0,398	0,543	0,708	0,883	1,100	1,383	1,833	2,300	2,821	3,250	4,297	4,781	6,010
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,144	4,587	5,694
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,025	4,437	5,453
12	0,123	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	3,930	4,318	5,263
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	3,852	4,221	5,111
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	3,787	4,140	4,985
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	3,733	4,073	4,880
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	3,686	4,015	4,791
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,646	3,965	4,714
18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,610	3,922	4,648
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,579	3,883	4,590
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,552	3,850	4,539
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,485	2,787	3,450	3,725	4,352
30 35	0,127 0,127	0,256 0,255	0,389 0,388	0,530 0,529	0,683 0,682	0,854 0,852	1,055 1,052	1,310 1,306	1,697 1,690	2,042 2,030	2,457 2,438	2,750 2,724	3,385 3,340	3,646 3,591	4,234 4,153
40	0,127	0,255	0,388	0,529	0,681	0,851	1,052	1,303	1,684	2,030	2,438	2,704	3,307	3,551	4,094
45	0,126	0,255	0,388	0,528	0,680	0,850	1,049	1,301	1,679	2,014	2,412	2,690	3,281	3,520	4,049
50	0,126	0,255	0,388	0,528	0,679	0,849	1,047	1,299	1,676	2,009	2,403	2,678	3,261	3,496	4,014
55	0,126	0,255	0,387	0,527	0,679	0,848	1,047	1,297	1,673	2,003	2,396	2,668	3,245	3,476	3,986
60	0,126	0,254	0,387	0,527	0,679	0,848	1,045	1,296	1,671	2,000	2,390	2,660	3,232	3,460	3,962
65	0,126	0,254	0,387	0,527	0,678	0,847	1,045	1,295	1,669	1,997	2,385	2,654	3,220	3,447	3,942
70	0,126	0,254	0,387	0,527	0,678	0,847	1,044	1,294	1,667	1,994	2,381	2,648	3,211	3,435	3,926
75	0,126	0,254	0,387	0,527	0,678	0,846	1,044	1,293	1,665	1,992	2,377	2,643	3,202	3,425	3,911
80	0,126	0,254	0,387	0,526	0,678	0,846	1,043	1,292	1,664	1,990	2,374	2,639	3,195	3,416	3,899
90	0,126	0,254	0,387	0,526	0,677	0,846	1,042	1,291	1,662	1,987	2,368	2,632	3,183	3,402	3,878
100	0,126	0,254	0,386	0,526	0,677	0,845	1,042	1,290	1,660	1,984	2,364	2,626	3,174	3,390	3,862
110	0,126	0,254	0,386	0,526	0,677	0,845	1,041	1,289	1,659	1,982	2,361	2,621	3,166	3,381	3,848
120	0,126	0,254	0,386	0,526	0,677	0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,160	3,373	3,837
130	0,126	0,254	0,386	0,526	0,676	0,844	1,041	1,288	1,657	1,978	2,355	2,614	3,154	3,367	3,828
140 150	0,126 0,126	0,254 0,254	0,386 0,386	0,526 0,526	0,676 0,676	0,844 0,844	1,040 1,040	1,288 1,287	1,656 1,655	1,977 1,976	2,353 2,351	2,611 2,609	3,149 3,145	3,361 3,357	3,820 3,813
200	0,126	0,254	0,386	0,525	0,676	0,843	1,039	1,286	1,653	1,972	2,345	2,601	3,143	3,340	3,789
300	0,126	0,254	0,386	0,525	0,675	0,843	1,038	1,284	1,650	1,968	2,339	2,592	3,118	3,323	3,765
400	0,126	0,254	0,386	0,525	0,675	0,843	1,038	1,284	1,649	1,966	2,339	2,588	3,111	3,315	3,754
500	0,126	0,253	0,386	0,525	0,675	0,842	1,038	1,283	1,648	1,965	2,334	2,586	3,107	3,310	3,747
z	0,126	0,253	0,385	0,524	0,674	0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,090	3,291	3,719

Stand: 22. Juni 2018 4/7

${\cal F} ext{-}{\sf Verteilungen}$

$$F_{\textit{df}_1;\textit{df}_2;\alpha} = \frac{1}{F_{\textit{df}_2;\textit{df}_1;(1-\alpha)}}$$

Alle Werte für Flächenanteil 0,95

	$d\!f_1$													
df_2	1	2	3	4	5	6	7	8	9	10	15	20	50	100
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54	241,88	245,95	248,01	251,77	253,04
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,43	19,45	19,48	19,49
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,70	8,66	8,58	8,55
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,86	5,80	5,70	5,66
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,62	4,56	4,44	4,41
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	3,94	3,87	3,75	3,71
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,51	3,44	3,32	3,27
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,22	3,15	3,02	2,97
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,01	2,94	2,80	2,76
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,85	2,77	2,64	2,59
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,72	2,65	2,51	2,46
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,62	2,54	2,40	2,35
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,53	2,46	2,31	2,26
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,46	2,39	2,24	2,19
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,40	2,33	2,18	2,12
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,35	2,28	2,12	2,07
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,31	2,23	2,08	2,02
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,27	2,19	2,04	1,98
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,23	2,16	2,00	1,94
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,20	2,12	1,97	1,91
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,09	2,01	1,84	1,78
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,01	1,93	1,76	1,70
35	4,12	3,27	2,87	2,64	2,49	2,37	2,29	2,22	2,16	2,11	1,96	1,88	1,70	1,63
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	1,92	1,84	1,66	1,59
45	4,06	3,20	2,81	2,58	2,42	2,31	2,22	2,15	2,10	2,05	1,89	1,81	1,63	1,55
50	4,03	3,18	2,79	2,56	2,40	2,29	2,20	2,13	2,07	2,03	1,87	1,78	1,60	1,52
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04	1,99	1,84	1,75	1,56	1,48
70 80	3,98 3,96	3,13 3,11	2,74 2,72	2,50 2,49	2,35 2,33	2,23 2,21	2,14 2,13	2,07 2,06	2,02	1,97 1,95	1,81 1,79	1,72 1,70	1,53 1,51	1,45 1,43
90	3,95	3,10	2,72	2,49	2,33	2,21	2,13	2,04	1,99	1,93	1,78	1,70	1,49	1,43
100	3,94	3,09	2,70	2,46	2,31	2,19	2,10	2,03	1,97	1,93	1,77	1,68	1,48	1,39
110	3,93	3,08	2,69	2,45	2,30	2,18	2,09	2,02	1,97	1,92	1,76	1,67	1,47	1,38
120	3,92	3,07	2,68	2,45	2,29	2,18	2,09	2,02	1,96	1,91	1,75	1,66	1,46	1,37
130	3,91	3,07	2,67	2,44	2,28	2,17	2,08	2,01	1,95	1,90	1,74	1,65	1,45	1,36
140	3,91	3,06	2,67	2,44	2,28	2,16	2,08	2,01	1,95	1,90	1,74	1,65	1,44	1,35
150	3,90	3,06	2,66	2,43	2,27	2,16	2,07	2,00	1,94	1,89	1,73	1,64	1,44	1,34
200	3,89	3,04	2,65	2,42	2,26	2,14	2,06	1,98	1,93	1,88	1,72	1,62	1,41	1,32
300	3,87	3,03	2,63	2,40	2,24	2,13	2,04	1,97	1,91	1,86	1,70	1,61	1,39	1,30
400	3,86	3,02	2,63	2,39	2,24	2,12	2,03	1,96	1,90	1,85	1,69	1,60	1,38	1,28
500	3,86	3,01	2,62	2,39	2,23	2,12	2,03	1,96	1,90	1,85	1,69	1,59	1,38	1,28
1000	3,85	3,00	2,61	2,38	2,22	2,11	2,02	1,95	1,89	1,84	1,68	1,58	1,36	1,26

Stand: 22. Juni 2018 5/7

χ^2 -Verteilungen

-						Fläche					
df	0,6	0,7	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,999	0,9995
1	0,708	1,074	1,642	2,072	2,706	3,841	5,024	6,635	7,879	10,828	12,116
2	1,833	2,408	3,219	3,794	4,605	5,991	7,378	9,210	10,597	13,816	15,202
3	2,946	3,665	4,642	5,317	6,251	7,815	9,348	11,345	12,838	16,266	17,730
4	4,045	4,878	5,989	6,745	7,779	9,488	11,143	13,277	14,860	18,467	19,997
5	5,132	6,064	7,289	8,115	9,236	11,070	12,833	15,086	16,750	20,515	22,105
6	6,211	7,231	8,558	9,446	10,645	12,592	14,449	16,812	18,548	22,458	24,103
7	7,283	8,383	9,803	10,748	12,017	14,067	16,013	18,475	20,278	24,322	26,018
8	8,351	9,524	11,030	12,027	13,362	15,507	17,535	20,090	21,955	26,124	27,868
9	9,414	10,656	12,242	13,288	14,684	16,919	19,023	21,666	23,589	27,877	29,666
10	10,473	11,781	13,442	14,534	15,987	18,307	20,483	23,209	25,188	29,588	31,420
11	11,530	12,899	14,631	15,767	17,275	19,675	21,920	24,725	26,757	31,264	33,137
12	12,584	14,011	15,812	16,989	18,549	21,026	23,337	26,217	28,300	32,909	34,821
13	13,636	15,119	16,985	18,202	19,812	22,362	24,736	27,688	29,819	34,528	36,478
14	14,685	16,222	18,151	19,406	21,064	23,685	26,119	29,141	31,319	36,123	38,109
15	15,733	17,322	19,311	20,603	22,307	24,996	27,488	30,578	32,801	37,697	39,719
16	16,780	18,418	20,465	21,793	23,542	26,296	28,845	32,000	34,267	39,252	41,308
17	17,824	19,511	21,615	22,977	24,769	27,587	30,191	33,409	35,718	40,790	42,879
18	18,868	20,601	22,760	24,155	25,989	28,869	31,526	34,805	37,156	42,312	44,434
19	19,910	21,689	23,900	25,329	27,204	30,144	32,852	36,191	38,582	43,820	45,973
20	20,951	22,775	25,038	26,498	28,412	31,410	34,170	37,566	39,997	45,315	47,498
25	26,143	28,172	30,675	32,282	34,382	37,652	40,646	44,314	46,928	52,620	54,947
30	31,316	33,530	36,250	37,990	40,256	43,773	46,979	50,892	53,672	59,703	62,162
35	36,475	38,859	41,778	43,640	46,059	49,802	53,203	57,342	60,275	66,619	69,199
40	41,622	44,165	47,269	49,244	51,805	55,758	59,342	63,691	66,766	73,402	76,095
45	46,761	49,452	52,729	54,810	57,505	61,656	65,410	69,957	73,166	80,077	82,876
50	51,892	54,723	58,164	60,346	63,167	67,505	71,420	76,154	79,490	86,661	89,561
60	62,135	65,227	68,972	71,341	74,397	79,082	83,298	88,379	91,952	99,607	102,695
70	72,358	75,689	79,715	82,255	85,527	90,531	95,023	100,425	104,215	112,317	115,578
80	82,566	86,120	90,405	93,106	96,578	101,879	106,629	112,329	116,321	124,839	128,261
90	92,761	96,524	101,054	103,904	107,565	113,145	118,136	124,116	128,299	137,208	140,782
100	102,946	106,906	111,667	114,659	118,498	124,342	129,561	135,807	140,169	149,449	153,167
110	113,121	117,269	122,250	125,376	129,385	135,480	140,917	147,414	151,948	161,581	165,435
120	123,289	127,616	132,806	136,062	140,233	146,567	152,211	158,950	163,648	173,617	177,603
130	133,450	137,949	143,340	146,719	151,045	157,610	163,453	170,423	175,278	185,571	189,682
140	143,604	148,269	153,854	157,352	161,827	168,613	174,648	181,840	186,847	197,451	201,683
150	153,753	158,577	164,349	167,962	172,581	179,581	185,800	193,208	198,360	209,265	213,613
200	204,434	209,985	216,609	220,744	226,021	233,994	241,058	249,445	255,264	267,541	272,423
300	305,574	312,346	320,397	325,409	331,789	341,395	349,874	359,906	366,844	381,425	387,203
400	406,535	414,335	423,590	429,340	436,649	447,632	457,305	468,724	476,606	493,132	499,666
500	507,382	516,087	526,401	532,803	540,930	553,127	563,852	576,493	585,207	603,446	610,648

Stand: 22. Juni 2018 6/7

Quellen

Bortz, Jürgen und Christof Schuster. 2010. *Statistik für Human- und Sozialwissenschaftler*. 7. Aufl. Berlin: Springer.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. https://www.R-project.org/.

Stand: 22. Juni 2018 7/7