# **Colab & PyTorch Introduction**

# **Benefits of using Colab**

# 1. Zero configuration & pre-installed environment

Include some commonly used packages in Python:

```
In [13]: import numpy as np
   import pandas
   import sklearn
   import matplotlib.pyplot as plt
```

Also, the common deep learning framework:

```
In [2]: import keras
import torch
```

#### 2. Free access to GPU

```
In [3]:
     gpu_info = !nvidia-smi
     gpu_info = '\n'.join(gpu_info)
     print(gpu_info)
     Wed Feb 23 16:45:27 2022
      NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2
     | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
     | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | MIG M. |
     |=======+===+
      0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off |
     | N/A 37C P0 26W / 250W | 0MiB / 16280MiB | 0% Default |
     +-----
     Processes:
     | GPU GI CI PID Type Process name
                                               GPU Memory
     No running processes found
```

```
print(torch.cuda.is_available())
True
```

In [4]:

import torch

The "cuda" stands for the **Compute Unified Device Architecture**, which is a parallel computing platform and programming model developed by Nvidia that makes using a GPU for general purpose computing.

In Pytorch, if the

torch.cuda.is\_available()

is **True**, then the Pytorch successfully connected to GPU, and we can use GPU to compute and train our models.

# 3. Easy sharing

# Colab Tips:

# 1. Install packages or run commands

Easy to use NLP transformers models: Transformers: https://huggingface.co/transformers/

In [ ]: ! pip install transformers

```
Downloading transformers-4.10.0-py3-none-any.whl (2.8 MB)
                                  2.8 MB 4.3 MB/s
Collecting sacremoses
 Downloading sacremoses-0.0.45-py3-none-any.whl (895 kB)
              895 kB 71.4 MB/s
Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transf
ormers) (4.62.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from transfo
rmers) (21.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from trans
formers) (1.19.5)
Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transfor
mers) (3.0.12)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (fro
m transformers) (4.6.4)
Collecting pyyaml>=5.1
 Downloading PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl (636 kB)
                                     636 kB 81.4 MB/s
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from
transformers) (2019.12.20)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transfor
mers) (2.23.0)
Collecting tokenizers<0.11,>=0.10.1
 Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12
_x86_64.manylinux2010_x86_64.whl (3.3 MB)
                                   3.3 MB 78.1 MB/s
Collecting huggingface-hub>=0.0.12
 Downloading huggingface_hub-0.0.16-py3-none-any.whl (50 kB)
                      | 50 kB 8.5 MB/s
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from
huggingface-hub>=0.0.12->transformers) (3.7.4.3)
Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from
packaging->transformers) (2.4.7)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importl
ib-metadata->transformers) (3.5.0)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (fro
m requests->transformers) (2021.5.30)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requ
ests->transformers) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python
3.7/dist-packages (from requests->transformers) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from
requests->transformers) (3.0.4)
Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses
->transformers) (1.0.1)
Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses-
>transformers) (7.1.2)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->t
ransformers) (1.15.0)
Installing collected packages: tokenizers, sacremoses, pyyaml, huggingface-hub, transformers
 Attempting uninstall: pyyaml
    Found existing installation: PyYAML 3.13
   Uninstalling PyYAML-3.13:
      Successfully uninstalled PyYAML-3.13
Successfully installed huggingface-hub-0.0.16 pyyaml-5.4.1 sacremoses-0.0.45 tokenizers-0.10.3 t
ransformers-4.10.0
Run commands:
```

Collecting transformers

Create a test folder

```
In [ ]: #! mkdir test_folder
```

#### 2. Load drive

Show alll files in your colab:

```
import os
from google.colab import drive

drive.mount('/content/drive') # mount the drive
cwd = os.path.join('drive', 'MyDrive')

# show all files
#print(os.listdir(cwd))
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force\_remount=True).

List all files in this folder:

```
In [7]: cwd = os.path.join('drive','MyDrive', 'BIA667_Lab')
    print(os.listdir(cwd))
```

['ColabIntroduction.ipynb', 'hw', 'PytorchBasics.ipynb', 'PytorchDataset.ipynb']

# **Pytorch & Tensor Basics**

### **Import Packages**

Import the torcch and torch.nn (torch neural networks module)

```
In [8]: # import
import torch
import torch.nn as nn
```

#### Setup device

Set up our training device:

If the gpu is available, we will use gpu. Otherwise, use cpu instead.

```
In [9]: device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
    print(device)

cuda
```

#### **Tensor Operations**

The basic building block in Pytorch is the tensor. Tensors are very similar to the narray in the numpy and it has many pre-defined operations:

```
In [14]: # define a new tensor is similar to define a numpy array
a_numpy = np.array([7, 7, 7])
a_tensor = torch.Tensor([7, 7, 7])
```

```
print('Tensor and Numpy:')
print(a_numpy)
print(a_tensor)
print()
# tensor support basic operations
tensor1 = torch.Tensor([1, 2, 3])
tensor2 = torch.Tensor([2, 3, 4])
print('Basic Operations')
print('Add')
print(tensor1 + tensor2)
print('Multiply')
print(tensor1 * tensor2)
print()
# tensor object also has its own method
print('Tensor Oject method')
print(tensor1.add(tensor2))
print()
# function operates on tensor
print('Function operates on tensor')
max value, max index = torch.max(tensor1, dim=0)
print(f'Max value: {max_value}, Max Index: {max_index}')
Tensor and Numpy:
[7 7 7]
tensor([7., 7., 7.])
Basic Operations
Add
tensor([3., 5., 7.])
Multiply
tensor([ 2., 6., 12.])
Tensor Oject method
tensor([3., 5., 7.])
Function operates on tensor
Max value: 3.0, Max Index: 2
```

Please note these opeartions will return a new tensor as result and the variables participating operations will not be modified. Alternatively, we can make these operations happens in-place. Instead of returing a extra tensor as result, in-place operations will directly change the content of given tensor.

```
In [15]: # not in-plcae
  tensor1 = torch.Tensor([1, 2, 3])
  tensor2 = torch.Tensor([2, 3, 4])
  tensor1 = tensor1.add(tensor2)
  print(tensor1) # the content in tensor1 is not modified

# in-place
  tensor1.add_(tensor2)
  print(tensor1) # the content in tensor1 is modified

tensor([3., 5., 7.])
  tensor([5., 8., 11.])
```

In general, an in-place is the normal operation with extra '\_' at the end. For example,

```
tensor.add() # not in-place
tensor.add_() # in-place
tensor.abs() # not in-place
tensor.abs_() # in-place
```

The in-place operation will be useful when you have limitation on memory. For example, if you have a huge tensor representation for a high resolution image, it may be costly to keep an another copy. For the full list of operations, please see here.

## Change the shape of the tensor

To change the shape of a tensor, we can use the

```
Tensor.view()
```

which is similar to numpy.reshape(). Also, we can use -1 as place holder to let the pytorch find the correct shape for us.

```
In [16]: # initialize a tensor with random numbers
         a_tensor = torch.randn((100, 33, 22, 11), dtype=torch.float)
         print(a_tensor.size()) # use Tensor.size() to find the shape
         print()
         # reshape to (33, 22, 11, 100)
         reshaped1 = a_tensor.view(33, 22, 11, 100)
         print('After reshape')
         print(reshaped1.size())
         print()
         # use -1 as place holder
         reshaped2 = a_tensor.view(33, -1, 10, 220) # let pytorch calculate the last dimension for us
         print('After reshape')
         print(reshaped2.size())
         print()
         torch.Size([100, 33, 22, 11])
         After reshape
         torch.Size([33, 22, 11, 100])
         After reshape
         torch.Size([33, 11, 10, 220])
```

### Move Tensor to GPU/CPU

You may have heard deep learning models are training fatser on GPUs. To do this, we will need to move our data, which is represents as tensors, to GPU.

```
In [17]: # get the device on your machine
    cpu = torch.device('cpu')
    gpu = torch.device('cuda')
```

```
# often we use the following one liner to help us choose device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# move tensor to gpu
a_tensor = torch.Tensor([1, 2, 3])
a_tensor = a_tensor.to(gpu) # you might get an error if you did not activate the gpu in your col
print('GPU tensor:')
print(a_tensor)
print()
# move back to cpu
a_tensor = a_tensor.to(cpu)
print('CPU tensor:')
print(a_tensor)
print()
GPU tensor:
tensor([1., 2., 3.], device='cuda:0')
CPU tensor:
tensor([1., 2., 3.])
The
   tensor(...., device='cuda:0')
```

menas we have successfully moved tensor to GPU:0.

### **Datasets**

In PyTorch, we define a dataset class to generate mini-batches for model training

## **Dependicies**

import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader, random\_split, Dataset

```
In [18]:
    import torch
    import torch.nn as nn
    import numpy as np
    from torch.utils.data import DataLoader, random_split, Dataset
```

#### Generate fake data

```
In [19]: # fake data
features = torch.randn(size=(1000, 2)) * 20 + 30
w = torch.Tensor([1.5, 2])
targets = torch.matmul(features, w) + 1 + torch.randn(size=(1000,))
```

#### **Check data**

```
In [20]: print(features[:5])
```

will return the size(shape) of the Tensor.

In our case, the shape is (1000, 2) for features, which means we have 1000 data points and 2 features.

#### **Define Dataset Class**

The dataset class should inherit from the pytorch's Dataset class, and we need to define:

- 1. \_\_init\_\_ : Initialize your parent class and preprocess
- 2. \_\_getitem\_\_ : Define how to retrieve your data by index, usually we return both data and corresponding label
- 3. \_\_len\_\_ : Define how to get the total length of your data(how many observations/data points/rows) in your dataset

```
In [24]:
    class MyDataset(Dataset):
        def __init__(self, features, labels):
            super(MyDataset, self).__init__()
            self.features = torch.Tensor(features)
            self.labels = torch.Tensor(labels)

    def __getitem__(self, index):
        return self.features[index], self.labels[index]

    def __len__(self):
        return self.labels.size()[0]
```

Create a dataset object:

```
In [26]: dataset_example = MyDataset(features=features, labels=targets)

a_feature, a_target = dataset_example[0]
print(f'A feature:\n{a_feature}')
print(f'A target:\n{a_target}')
```

```
A feature:
tensor([36.6525, 13.8604])
A target:
82.32672119140625
```

#### **Split Dataset**

To split our dataset to train, validation, test datasets, we can use the random\_split function.

```
In [27]: | split_size = (np.array([0.6, 0.2, 0.2]) * len(dataset_example)).astype(np.int)
         train_data, valid_data, test_data = random_split(dataset_example, lengths=split_size)
         print(f'Train dataset length: {len(train_data)}')
         print(f'Validation dataset length: {len(valid_data)}')
         print(f'Test dataset length: {len(test_data)}')
         Train dataset length: 600
         Validation dataset length: 200
         Test dataset length: 200
         /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: `np.int` is
         a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing th
         is will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g.
         np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check
         the release note link for additional information.
         Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.
         O-notes.html#deprecations
           """Entry point for launching an IPython kernel.
```

#### **Data Loader**

Convert to dataloader so we can use our data in train function:

```
In [28]: train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
    valid_loader = DataLoader(valid_data, batch_size=32, shuffle=True)
    test_loader = DataLoader(test_data, batch_size=32, shuffle=True)

# one batch example
    one_batch_features, one_batch_labels = next(train_loader.__iter__())
    print(one_batch_features.size()) # (batch x num_features)
    print(one_batch_labels.size()) # (batch x num_labels)

torch.Size([32, 2])
    torch.Size([32])
```

## Put Everything Together: Simple Linear Regression

#### **Define Model**

```
y = ax + b
```

```
In [29]: # pytorch simple linear regression model
class SimpleLinearRegression(nn.Module):
    # initilize and set up the layers
    def __init__(self):
        # initialize parent class
        super(SimpleLinearRegression, self).__init__()
        # define linear layer
```

```
self.linear = nn.Linear(in_features=2, out_features=1, bias=True)

# how to pass your data through NN
def forward(self, x):
    output = self.linear(x)
    return output

# model object
model = SimpleLinearRegression()
```

For the details of Pytorch Linear layers: Linear Layers

Take a look at the initialized parameters

```
In [30]: print([i for i in model.parameters()])

[Parameter containing:
    tensor([[-0.1966,  0.6684]], requires_grad=True), Parameter containing:
    tensor([0.0591], requires_grad=True)]
```

#### Define a loss function and optimizer

```
In [31]: loss_func = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

## **Training**

```
In [32]: # move model to (device: GPU)
         model = model.to(device)
In [33]: # traning Loop
         print('Training Starts:')
         # training epochs
         num_epochs = 1000
         # record validation loss history
         val_loss_hist = []
         for epoch in range(num_epochs):
             model.train() # start to train the model, activate training behavior
             train_loss = 0
             val_loss = 0
             for x, y in train_loader:
               # move batch to device
               x = x.to(device)
               y = y.to(device)
               # forward
               y_hat = model(x).squeeze() # y_hat has shape (32,1), but y has shape (32,). Use squeeze to
               # calculate loss
               loss = loss_func(y_hat, y)
               train_loss += (loss.detach().item())
```

```
# backpropation: calculate the gradients
  loss.backward()
  # update weight based on gradients
 optimizer.step()
  # delete gradients after parameter update
  optimizer.zero_grad()
# valid
model.eval() # put the model in evaluation model
with torch.no_grad(): # tell pytorch not to update parameters
    for x, y in valid_loader:
     # move batch to device
     x = x.to(device)
      y = y.to(device)
      # forward
      y_hat = model(x).squeeze()
      # calculate loss
      loss = loss_func(y_hat, y)
      val_loss += (loss.detach().item())
# print
print(f"Epoch:{epoch + 1} / {num_epochs}, train loss:{train_loss/len(train_loader):.3f}, val:
val_loss_hist.append(val_loss/len(valid_loader))
```

```
Training Starts:
Epoch:1 / 1000, train loss:10293.358, valid loss:9821.064
Epoch:2 / 1000, train loss:9969.612, valid loss:9911.798
Epoch:3 / 1000, train loss:9791.334, valid loss:9840.330
Epoch: 4 / 1000, train loss: 9522.004, valid loss: 9604.985
Epoch:5 / 1000, train loss:9245.204, valid loss:8942.694
Epoch:6 / 1000, train loss:8992.308, valid loss:8605.342
Epoch:7 / 1000, train loss:8797.828, valid loss:8516.048
Epoch:8 / 1000, train loss:8587.433, valid loss:8073.622
Epoch:9 / 1000, train loss:8348.084, valid loss:8020.488
Epoch:10 / 1000, train loss:8131.169, valid loss:7519.508
Epoch:11 / 1000, train loss:7935.241, valid loss:7555.013
Epoch:12 / 1000, train loss:7740.336, valid loss:7717.530
Epoch:13 / 1000, train loss:7502.515, valid loss:6917.183
Epoch:14 / 1000, train loss:7298.234, valid loss:7048.142
Epoch:15 / 1000, train loss:7096.614, valid loss:6879.930
Epoch:16 / 1000, train loss:6889.314, valid loss:6549.749
Epoch:17 / 1000, train loss:6729.177, valid loss:6629.095
Epoch:18 / 1000, train loss:6536.209, valid loss:6467.546
Epoch:19 / 1000, train loss:6349.944, valid loss:6263.491
Epoch:20 / 1000, train loss:6183.684, valid loss:6104.233
Epoch:21 / 1000, train loss:6023.001, valid loss:6428.740
Epoch:22 / 1000, train loss:5839.276, valid loss:5437.506
Epoch:23 / 1000, train loss:5656.769, valid loss:5524.119
Epoch:24 / 1000, train loss:5508.502, valid loss:5399.432
Epoch:25 / 1000, train loss:5363.393, valid loss:5359.089
Epoch:26 / 1000, train loss:5178.326, valid loss:4791.985
Epoch:27 / 1000, train loss:5027.923, valid loss:5124.201
Epoch:28 / 1000, train loss:4885.981, valid loss:4674.917
Epoch:29 / 1000, train loss:4732.030, valid loss:4789.361
Epoch:30 / 1000, train loss:4603.532, valid loss:4464.841
Epoch:31 / 1000, train loss:4485.269, valid loss:4334.869
Epoch: 32 / 1000, train loss: 4327.399, valid loss: 4174.158
Epoch:33 / 1000, train loss:4175.082, valid loss:4181.865
Epoch:34 / 1000, train loss:4063.484, valid loss:3976.902
Epoch:35 / 1000, train loss:3926.481, valid loss:3993.550
Epoch:36 / 1000, train loss:3813.459, valid loss:3697.308
Epoch:37 / 1000, train loss:3690.968, valid loss:3428.519
Epoch:38 / 1000, train loss:3580.820, valid loss:3578.672
Epoch:39 / 1000, train loss:3476.633, valid loss:3324.972
Epoch:40 / 1000, train loss:3370.167, valid loss:3098.745
Epoch:41 / 1000, train loss:3252.499, valid loss:2964.979
Epoch:42 / 1000, train loss:3123.649, valid loss:3032.172
Epoch:43 / 1000, train loss:3025.476, valid loss:2860.366
Epoch:44 / 1000, train loss:2932.585, valid loss:2987.524
Epoch:45 / 1000, train loss:2823.286, valid loss:2665.502
Epoch:46 / 1000, train loss:2732.156, valid loss:2635.947
Epoch:47 / 1000, train loss:2641.368, valid loss:2560.350
Epoch:48 / 1000, train loss:2552.462, valid loss:2326.824
Epoch:49 / 1000, train loss:2464.901, valid loss:2334.891
Epoch:50 / 1000, train loss:2368.981, valid loss:2344.266
Epoch:51 / 1000, train loss:2293.799, valid loss:2188.349
Epoch:52 / 1000, train loss:2216.044, valid loss:2105.435
Epoch:53 / 1000, train loss:2131.120, valid loss:2177.461
Epoch:54 / 1000, train loss:2056.687, valid loss:1936.776
Epoch:55 / 1000, train loss:1981.737, valid loss:1875.374
Epoch:56 / 1000, train loss:1907.917, valid loss:1819.689
Epoch:57 / 1000, train loss:1840.970, valid loss:1779.622
Epoch:58 / 1000, train loss:1776.591, valid loss:1684.867
Epoch:59 / 1000, train loss:1703.768, valid loss:1637.564
Epoch:60 / 1000, train loss:1644.184, valid loss:1538.045
Epoch:61 / 1000, train loss:1575.209, valid loss:1543.758
```

```
Epoch:62 / 1000, train loss:1521.071, valid loss:1471.767
Epoch:63 / 1000, train loss:1457.394, valid loss:1361.728
Epoch:64 / 1000, train loss:1402.453, valid loss:1294.330
Epoch:65 / 1000, train loss:1349.182, valid loss:1307.155
Epoch:66 / 1000, train loss:1298.498, valid loss:1259.898
Epoch:67 / 1000, train loss:1244.384, valid loss:1171.637
Epoch:68 / 1000, train loss:1196.603, valid loss:1194.547
Epoch:69 / 1000, train loss:1143.968, valid loss:1127.927
Epoch:70 / 1000, train loss:1099.122, valid loss:1032.900
Epoch:71 / 1000, train loss:1052.975, valid loss:1007.348
Epoch:72 / 1000, train loss:1009.927, valid loss:930.656
Epoch:73 / 1000, train loss:965.433, valid loss:956.900
Epoch:74 / 1000, train loss:924.382, valid loss:897.472
Epoch:75 / 1000, train loss:885.406, valid loss:865.783
Epoch:76 / 1000, train loss:847.364, valid loss:797.853
Epoch:77 / 1000, train loss:813.641, valid loss:756.585
Epoch: 78 / 1000, train loss: 775.632, valid loss: 730.784
Epoch:79 / 1000, train loss:741.548, valid loss:692.445
Epoch:80 / 1000, train loss:709.051, valid loss:660.235
Epoch:81 / 1000, train loss:679.180, valid loss:641.214
Epoch:82 / 1000, train loss:646.186, valid loss:608.672
Epoch:83 / 1000, train loss:617.937, valid loss:566.324
Epoch:84 / 1000, train loss:588.015, valid loss:544.902
Epoch:85 / 1000, train loss:558.162, valid loss:520.525
Epoch:86 / 1000, train loss:534.926, valid loss:513.615
Epoch:87 / 1000, train loss:509.702, valid loss:478.999
Epoch:88 / 1000, train loss:485.759, valid loss:448.630
Epoch:89 / 1000, train loss:462.805, valid loss:422.229
Epoch:90 / 1000, train loss:442.533, valid loss:411.611
Epoch:91 / 1000, train loss:420.572, valid loss:386.536
Epoch:92 / 1000, train loss:399.983, valid loss:371.541
Epoch:93 / 1000, train loss:380.455, valid loss:368.574
Epoch:94 / 1000, train loss:361.281, valid loss:353.791
Epoch:95 / 1000, train loss:342.389, valid loss:336.035
Epoch:96 / 1000, train loss:327.131, valid loss:306.849
Epoch:97 / 1000, train loss:308.755, valid loss:296.210
Epoch:98 / 1000, train loss:293.448, valid loss:284.927
Epoch:99 / 1000, train loss:280.163, valid loss:258.851
Epoch:100 / 1000, train loss:265.225, valid loss:260.647
Epoch:101 / 1000, train loss:251.487, valid loss:255.165
Epoch:102 / 1000, train loss:238.950, valid loss:218.110
Epoch:103 / 1000, train loss:225.816, valid loss:208.243
Epoch:104 / 1000, train loss:213.699, valid loss:199.168
Epoch:105 / 1000, train loss:202.091, valid loss:195.653
Epoch:106 / 1000, train loss:191.601, valid loss:174.183
Epoch:107 / 1000, train loss:180.839, valid loss:175.446
Epoch:108 / 1000, train loss:171.435, valid loss:156.222
Epoch:109 / 1000, train loss:162.650, valid loss:151.464
Epoch:110 / 1000, train loss:153.473, valid loss:140.808
Epoch:111 / 1000, train loss:145.837, valid loss:131.264
Epoch:112 / 1000, train loss:137.744, valid loss:134.873
Epoch:113 / 1000, train loss:130.397, valid loss:124.798
Epoch:114 / 1000, train loss:122.831, valid loss:119.766
Epoch:115 / 1000, train loss:116.329, valid loss:100.566
Epoch:116 / 1000, train loss:109.591, valid loss:105.617
Epoch:117 / 1000, train loss:104.375, valid loss:100.562
Epoch:118 / 1000, train loss:97.691, valid loss:89.017
Epoch:119 / 1000, train loss:92.960, valid loss:88.107
Epoch:120 / 1000, train loss:87.400, valid loss:80.779
Epoch:121 / 1000, train loss:82.876, valid loss:77.886
Epoch:122 / 1000, train loss:78.118, valid loss:73.080
Epoch:123 / 1000, train loss:73.879, valid loss:69.550
```

```
Epoch:124 / 1000, train loss:70.003, valid loss:66.827
Epoch:125 / 1000, train loss:66.666, valid loss:66.633
Epoch:126 / 1000, train loss:62.857, valid loss:61.755
Epoch:127 / 1000, train loss:58.973, valid loss:56.150
Epoch:128 / 1000, train loss:55.701, valid loss:53.597
Epoch:129 / 1000, train loss:52.959, valid loss:46.945
Epoch:130 / 1000, train loss:50.026, valid loss:48.374
Epoch:131 / 1000, train loss:47.227, valid loss:45.534
Epoch:132 / 1000, train loss:45.402, valid loss:40.706
Epoch:133 / 1000, train loss:42.669, valid loss:38.709
Epoch: 134 / 1000, train loss: 40.456, valid loss: 40.757
Epoch:135 / 1000, train loss:38.346, valid loss:35.768
Epoch:136 / 1000, train loss:36.431, valid loss:34.271
Epoch:137 / 1000, train loss:34.697, valid loss:34.283
Epoch:138 / 1000, train loss:32.975, valid loss:30.604
Epoch:139 / 1000, train loss:31.570, valid loss:32.905
Epoch:140 / 1000, train loss:30.025, valid loss:27.756
Epoch:141 / 1000, train loss:28.668, valid loss:27.745
Epoch:142 / 1000, train loss:27.216, valid loss:24.856
Epoch:143 / 1000, train loss:26.061, valid loss:24.800
Epoch:144 / 1000, train loss:24.902, valid loss:23.186
Epoch:145 / 1000, train loss:23.770, valid loss:24.272
Epoch:146 / 1000, train loss:22.907, valid loss:21.588
Epoch:147 / 1000, train loss:21.780, valid loss:21.158
Epoch:148 / 1000, train loss:20.966, valid loss:20.134
Epoch:149 / 1000, train loss:20.057, valid loss:19.405
Epoch:150 / 1000, train loss:19.326, valid loss:19.806
Epoch:151 / 1000, train loss:18.571, valid loss:19.563
Epoch:152 / 1000, train loss:17.864, valid loss:18.121
Epoch:153 / 1000, train loss:17.263, valid loss:17.316
Epoch:154 / 1000, train loss:16.607, valid loss:16.607
Epoch:155 / 1000, train loss:16.026, valid loss:16.338
Epoch:156 / 1000, train loss:15.538, valid loss:17.184
Epoch:157 / 1000, train loss:14.964, valid loss:14.327
Epoch:158 / 1000, train loss:14.542, valid loss:15.301
Epoch:159 / 1000, train loss:14.127, valid loss:13.069
Epoch:160 / 1000, train loss:13.678, valid loss:12.555
Epoch:161 / 1000, train loss:13.244, valid loss:14.326
Epoch:162 / 1000, train loss:12.819, valid loss:12.456
Epoch:163 / 1000, train loss:12.482, valid loss:11.840
Epoch:164 / 1000, train loss:12.200, valid loss:12.867
Epoch:165 / 1000, train loss:11.748, valid loss:11.824
Epoch:166 / 1000, train loss:11.425, valid loss:11.949
Epoch:167 / 1000, train loss:11.169, valid loss:11.976
Epoch:168 / 1000, train loss:10.860, valid loss:11.635
Epoch:169 / 1000, train loss:10.612, valid loss:11.850
Epoch:170 / 1000, train loss:10.355, valid loss:11.847
Epoch:171 / 1000, train loss:10.155, valid loss:10.243
Epoch:172 / 1000, train loss:9.803, valid loss:9.599
Epoch:173 / 1000, train loss:9.533, valid loss:9.178
Epoch:174 / 1000, train loss:9.341, valid loss:9.432
Epoch: 175 / 1000, train loss: 9.133, valid loss: 9.069
Epoch:176 / 1000, train loss:8.988, valid loss:9.099
Epoch:177 / 1000, train loss:8.707, valid loss:8.597
Epoch:178 / 1000, train loss:8.487, valid loss:8.829
Epoch:179 / 1000, train loss:8.303, valid loss:8.691
Epoch:180 / 1000, train loss:8.090, valid loss:9.074
Epoch:181 / 1000, train loss:7.883, valid loss:8.196
Epoch:182 / 1000, train loss:7.723, valid loss:9.011
Epoch:183 / 1000, train loss:7.582, valid loss:7.588
Epoch:184 / 1000, train loss:7.382, valid loss:8.084
Epoch:185 / 1000, train loss:7.254, valid loss:8.813
```

```
Epoch:186 / 1000, train loss:7.105, valid loss:7.315
Epoch:187 / 1000, train loss:6.930, valid loss:7.609
Epoch:188 / 1000, train loss:6.738, valid loss:7.671
Epoch:189 / 1000, train loss:6.637, valid loss:6.674
Epoch:190 / 1000, train loss:6.455, valid loss:7.085
Epoch:191 / 1000, train loss:6.301, valid loss:6.203
Epoch:192 / 1000, train loss:6.191, valid loss:6.197
Epoch:193 / 1000, train loss:6.038, valid loss:6.024
Epoch:194 / 1000, train loss:5.938, valid loss:6.395
Epoch:195 / 1000, train loss:5.777, valid loss:5.668
Epoch: 196 / 1000, train loss: 5.645, valid loss: 5.515
Epoch:197 / 1000, train loss:5.564, valid loss:6.125
Epoch:198 / 1000, train loss:5.372, valid loss:5.660
Epoch:199 / 1000, train loss:5.299, valid loss:5.370
Epoch: 200 / 1000, train loss: 5.163, valid loss: 5.411
Epoch: 201 / 1000, train loss: 5.076, valid loss: 4.863
Epoch: 202 / 1000, train loss: 4.944, valid loss: 4.955
Epoch: 203 / 1000, train loss: 4.820, valid loss: 5.416
Epoch: 204 / 1000, train loss: 4.699, valid loss: 5.048
Epoch: 205 / 1000, train loss: 4.598, valid loss: 4.906
Epoch: 206 / 1000, train loss: 4.468, valid loss: 4.553
Epoch: 207 / 1000, train loss: 4.397, valid loss: 4.461
Epoch: 208 / 1000, train loss: 4.286, valid loss: 4.926
Epoch:209 / 1000, train loss:4.157, valid loss:4.046
Epoch:210 / 1000, train loss:4.071, valid loss:4.276
Epoch:211 / 1000, train loss:3.990, valid loss:4.083
Epoch:212 / 1000, train loss:3.898, valid loss:4.102
Epoch:213 / 1000, train loss:3.805, valid loss:3.838
Epoch:214 / 1000, train loss:3.722, valid loss:3.611
Epoch: 215 / 1000, train loss: 3.637, valid loss: 3.745
Epoch:216 / 1000, train loss:3.537, valid loss:3.704
Epoch:217 / 1000, train loss:3.460, valid loss:3.653
Epoch:218 / 1000, train loss:3.380, valid loss:3.525
Epoch:219 / 1000, train loss:3.327, valid loss:3.931
Epoch: 220 / 1000, train loss: 3.226, valid loss: 3.383
Epoch:221 / 1000, train loss:3.152, valid loss:3.193
Epoch: 222 / 1000, train loss: 3.092, valid loss: 3.176
Epoch:223 / 1000, train loss:3.002, valid loss:2.921
Epoch: 224 / 1000, train loss: 2.957, valid loss: 3.305
Epoch:225 / 1000, train loss:2.896, valid loss:2.905
Epoch: 226 / 1000, train loss: 2.806, valid loss: 3.018
Epoch:227 / 1000, train loss:2.745, valid loss:2.872
Epoch: 228 / 1000, train loss: 2.686, valid loss: 2.801
Epoch:229 / 1000, train loss:2.609, valid loss:2.775
Epoch: 230 / 1000, train loss: 2.556, valid loss: 2.486
Epoch: 231 / 1000, train loss: 2.516, valid loss: 2.631
Epoch: 232 / 1000, train loss: 2.459, valid loss: 2.658
Epoch: 233 / 1000, train loss: 2.410, valid loss: 2.389
Epoch: 234 / 1000, train loss: 2.363, valid loss: 2.417
Epoch: 235 / 1000, train loss: 2.301, valid loss: 2.486
Epoch: 236 / 1000, train loss: 2.259, valid loss: 2.263
Epoch: 237 / 1000, train loss: 2.200, valid loss: 2.324
Epoch: 238 / 1000, train loss: 2.173, valid loss: 2.161
Epoch: 239 / 1000, train loss: 2.119, valid loss: 2.107
Epoch: 240 / 1000, train loss: 2.069, valid loss: 1.982
Epoch: 241 / 1000, train loss: 2.029, valid loss: 2.057
Epoch: 242 / 1000, train loss: 1.992, valid loss: 1.878
Epoch: 243 / 1000, train loss: 1.954, valid loss: 2.098
Epoch: 244 / 1000, train loss: 1.918, valid loss: 1.843
Epoch: 245 / 1000, train loss: 1.876, valid loss: 2.198
Epoch: 246 / 1000, train loss: 1.847, valid loss: 1.811
Epoch: 247 / 1000, train loss: 1.813, valid loss: 1.892
```

```
Epoch:248 / 1000, train loss:1.788, valid loss:2.053
Epoch: 249 / 1000, train loss: 1.754, valid loss: 1.681
Epoch:250 / 1000, train loss:1.723, valid loss:1.832
Epoch: 251 / 1000, train loss: 1.688, valid loss: 1.680
Epoch: 252 / 1000, train loss: 1.651, valid loss: 1.625
Epoch: 253 / 1000, train loss: 1.631, valid loss: 1.619
Epoch: 254 / 1000, train loss: 1.601, valid loss: 1.822
Epoch: 255 / 1000, train loss: 1.574, valid loss: 1.757
Epoch: 256 / 1000, train loss: 1.551, valid loss: 1.863
Epoch: 257 / 1000, train loss: 1.533, valid loss: 1.460
Epoch: 258 / 1000, train loss: 1.513, valid loss: 1.601
Epoch: 259 / 1000, train loss: 1.482, valid loss: 1.460
Epoch:260 / 1000, train loss:1.473, valid loss:1.432
Epoch: 261 / 1000, train loss: 1.449, valid loss: 1.628
Epoch: 262 / 1000, train loss: 1.428, valid loss: 1.515
Epoch: 263 / 1000, train loss: 1.412, valid loss: 1.425
Epoch: 264 / 1000, train loss: 1.394, valid loss: 1.383
Epoch: 265 / 1000, train loss: 1.380, valid loss: 1.355
Epoch: 266 / 1000, train loss: 1.352, valid loss: 1.338
Epoch: 267 / 1000, train loss: 1.342, valid loss: 1.306
Epoch: 268 / 1000, train loss: 1.334, valid loss: 1.426
Epoch: 269 / 1000, train loss: 1.319, valid loss: 1.263
Epoch: 270 / 1000, train loss: 1.306, valid loss: 1.304
Epoch:271 / 1000, train loss:1.283, valid loss:1.242
Epoch: 272 / 1000, train loss: 1.276, valid loss: 1.201
Epoch: 273 / 1000, train loss: 1.269, valid loss: 1.277
Epoch: 274 / 1000, train loss: 1.250, valid loss: 1.413
Epoch: 275 / 1000, train loss: 1.242, valid loss: 1.261
Epoch: 276 / 1000, train loss: 1.237, valid loss: 1.147
Epoch: 277 / 1000, train loss: 1.224, valid loss: 1.181
Epoch: 278 / 1000, train loss: 1.216, valid loss: 1.140
Epoch: 279 / 1000, train loss: 1.202, valid loss: 1.333
Epoch: 280 / 1000, train loss: 1.197, valid loss: 1.177
Epoch: 281 / 1000, train loss: 1.189, valid loss: 1.174
Epoch: 282 / 1000, train loss: 1.181, valid loss: 1.272
Epoch: 283 / 1000, train loss: 1.181, valid loss: 1.154
Epoch: 284 / 1000, train loss: 1.168, valid loss: 1.149
Epoch: 285 / 1000, train loss: 1.166, valid loss: 1.167
Epoch: 286 / 1000, train loss: 1.151, valid loss: 1.169
Epoch: 287 / 1000, train loss: 1.156, valid loss: 1.060
Epoch: 288 / 1000, train loss: 1.144, valid loss: 1.176
Epoch: 289 / 1000, train loss: 1.147, valid loss: 1.135
Epoch: 290 / 1000, train loss: 1.133, valid loss: 1.072
Epoch:291 / 1000, train loss:1.138, valid loss:1.082
Epoch: 292 / 1000, train loss: 1.133, valid loss: 1.184
Epoch: 293 / 1000, train loss: 1.124, valid loss: 1.092
Epoch:294 / 1000, train loss:1.126, valid loss:1.091
Epoch: 295 / 1000, train loss: 1.115, valid loss: 1.024
Epoch: 296 / 1000, train loss: 1.113, valid loss: 1.052
Epoch: 297 / 1000, train loss: 1.120, valid loss: 1.103
Epoch:298 / 1000, train loss:1.107, valid loss:1.082
Epoch: 299 / 1000, train loss: 1.106, valid loss: 1.079
Epoch:300 / 1000, train loss:1.102, valid loss:1.055
Epoch:301 / 1000, train loss:1.098, valid loss:1.074
Epoch:302 / 1000, train loss:1.093, valid loss:1.087
Epoch:303 / 1000, train loss:1.106, valid loss:1.038
Epoch:304 / 1000, train loss:1.095, valid loss:1.133
Epoch:305 / 1000, train loss:1.090, valid loss:1.140
Epoch:306 / 1000, train loss:1.091, valid loss:1.025
Epoch:307 / 1000, train loss:1.089, valid loss:1.091
Epoch:308 / 1000, train loss:1.082, valid loss:1.033
Epoch:309 / 1000, train loss:1.086, valid loss:1.014
```

```
Epoch:310 / 1000, train loss:1.085, valid loss:1.030
Epoch:311 / 1000, train loss:1.090, valid loss:1.078
Epoch:312 / 1000, train loss:1.084, valid loss:1.157
Epoch:313 / 1000, train loss:1.078, valid loss:1.119
Epoch:314 / 1000, train loss:1.079, valid loss:1.145
Epoch:315 / 1000, train loss:1.082, valid loss:1.134
Epoch:316 / 1000, train loss:1.078, valid loss:1.018
Epoch:317 / 1000, train loss:1.078, valid loss:1.053
Epoch:318 / 1000, train loss:1.078, valid loss:1.020
Epoch:319 / 1000, train loss:1.073, valid loss:1.042
Epoch: 320 / 1000, train loss: 1.078, valid loss: 1.097
Epoch:321 / 1000, train loss:1.071, valid loss:0.977
Epoch: 322 / 1000, train loss: 1.075, valid loss: 1.027
Epoch: 323 / 1000, train loss: 1.071, valid loss: 1.069
Epoch: 324 / 1000, train loss: 1.073, valid loss: 0.978
Epoch: 325 / 1000, train loss: 1.070, valid loss: 1.005
Epoch: 326 / 1000, train loss: 1.074, valid loss: 1.137
Epoch: 327 / 1000, train loss: 1.074, valid loss: 0.986
Epoch:328 / 1000, train loss:1.074, valid loss:0.994
Epoch:329 / 1000, train loss:1.077, valid loss:0.962
Epoch:330 / 1000, train loss:1.070, valid loss:0.989
Epoch:331 / 1000, train loss:1.071, valid loss:1.021
Epoch: 332 / 1000, train loss: 1.073, valid loss: 1.029
Epoch:333 / 1000, train loss:1.069, valid loss:0.991
Epoch:334 / 1000, train loss:1.071, valid loss:0.992
Epoch: 335 / 1000, train loss: 1.071, valid loss: 1.019
Epoch:336 / 1000, train loss:1.071, valid loss:0.978
Epoch: 337 / 1000, train loss: 1.072, valid loss: 1.028
Epoch:338 / 1000, train loss:1.069, valid loss:1.085
Epoch: 339 / 1000, train loss: 1.067, valid loss: 1.085
Epoch:340 / 1000, train loss:1.068, valid loss:0.990
Epoch:341 / 1000, train loss:1.072, valid loss:0.969
Epoch: 342 / 1000, train loss: 1.063, valid loss: 1.065
Epoch:343 / 1000, train loss:1.066, valid loss:0.951
Epoch: 344 / 1000, train loss: 1.068, valid loss: 1.031
Epoch: 345 / 1000, train loss: 1.066, valid loss: 0.988
Epoch:346 / 1000, train loss:1.068, valid loss:0.968
Epoch:347 / 1000, train loss:1.070, valid loss:1.072
Epoch: 348 / 1000, train loss: 1.067, valid loss: 1.129
Epoch:349 / 1000, train loss:1.067, valid loss:1.037
Epoch:350 / 1000, train loss:1.071, valid loss:1.094
Epoch:351 / 1000, train loss:1.076, valid loss:1.014
Epoch:352 / 1000, train loss:1.074, valid loss:0.988
Epoch:353 / 1000, train loss:1.061, valid loss:0.960
Epoch: 354 / 1000, train loss: 1.070, valid loss: 0.970
Epoch: 355 / 1000, train loss: 1.063, valid loss: 1.080
Epoch:356 / 1000, train loss:1.067, valid loss:0.967
Epoch:357 / 1000, train loss:1.064, valid loss:0.999
Epoch:358 / 1000, train loss:1.067, valid loss:1.072
Epoch:359 / 1000, train loss:1.067, valid loss:1.154
Epoch:360 / 1000, train loss:1.063, valid loss:1.019
Epoch:361 / 1000, train loss:1.064, valid loss:1.049
Epoch:362 / 1000, train loss:1.066, valid loss:0.999
Epoch:363 / 1000, train loss:1.062, valid loss:1.093
Epoch: 364 / 1000, train loss: 1.064, valid loss: 1.028
Epoch:365 / 1000, train loss:1.073, valid loss:1.091
Epoch: 366 / 1000, train loss: 1.061, valid loss: 1.047
Epoch:367 / 1000, train loss:1.066, valid loss:1.024
Epoch:368 / 1000, train loss:1.063, valid loss:1.095
Epoch:369 / 1000, train loss:1.066, valid loss:1.001
Epoch: 370 / 1000, train loss: 1.065, valid loss: 0.978
Epoch: 371 / 1000, train loss: 1.060, valid loss: 0.986
```

```
Epoch: 372 / 1000, train loss: 1.060, valid loss: 0.974
Epoch: 373 / 1000, train loss: 1.066, valid loss: 1.006
Epoch: 374 / 1000, train loss: 1.063, valid loss: 1.004
Epoch: 375 / 1000, train loss: 1.066, valid loss: 1.079
Epoch: 376 / 1000, train loss: 1.060, valid loss: 0.949
Epoch: 377 / 1000, train loss: 1.066, valid loss: 0.984
Epoch: 378 / 1000, train loss: 1.072, valid loss: 1.101
Epoch: 379 / 1000, train loss: 1.065, valid loss: 0.978
Epoch:380 / 1000, train loss:1.064, valid loss:1.064
Epoch:381 / 1000, train loss:1.065, valid loss:0.942
Epoch: 382 / 1000, train loss: 1.060, valid loss: 1.037
Epoch:383 / 1000, train loss:1.062, valid loss:1.164
Epoch:384 / 1000, train loss:1.067, valid loss:1.106
Epoch:385 / 1000, train loss:1.061, valid loss:0.998
Epoch:386 / 1000, train loss:1.071, valid loss:1.024
Epoch:387 / 1000, train loss:1.061, valid loss:1.010
Epoch:388 / 1000, train loss:1.060, valid loss:0.986
Epoch:389 / 1000, train loss:1.065, valid loss:1.045
Epoch: 390 / 1000, train loss: 1.069, valid loss: 1.016
Epoch:391 / 1000, train loss:1.057, valid loss:1.077
Epoch: 392 / 1000, train loss: 1.065, valid loss: 1.023
Epoch:393 / 1000, train loss:1.059, valid loss:0.958
Epoch: 394 / 1000, train loss: 1.055, valid loss: 0.967
Epoch: 395 / 1000, train loss: 1.062, valid loss: 0.967
Epoch:396 / 1000, train loss:1.064, valid loss:1.013
Epoch: 397 / 1000, train loss: 1.064, valid loss: 0.982
Epoch:398 / 1000, train loss:1.066, valid loss:1.002
Epoch: 399 / 1000, train loss: 1.060, valid loss: 1.065
Epoch:400 / 1000, train loss:1.056, valid loss:0.955
Epoch: 401 / 1000, train loss: 1.059, valid loss: 1.015
Epoch: 402 / 1000, train loss: 1.063, valid loss: 1.114
Epoch:403 / 1000, train loss:1.057, valid loss:1.048
Epoch:404 / 1000, train loss:1.058, valid loss:0.954
Epoch: 405 / 1000, train loss: 1.059, valid loss: 1.056
Epoch: 406 / 1000, train loss: 1.059, valid loss: 0.970
Epoch: 407 / 1000, train loss: 1.060, valid loss: 0.961
Epoch:408 / 1000, train loss:1.064, valid loss:1.013
Epoch:409 / 1000, train loss:1.062, valid loss:1.094
Epoch:410 / 1000, train loss:1.059, valid loss:1.055
Epoch:411 / 1000, train loss:1.060, valid loss:0.988
Epoch:412 / 1000, train loss:1.060, valid loss:1.035
Epoch:413 / 1000, train loss:1.057, valid loss:1.117
Epoch:414 / 1000, train loss:1.053, valid loss:0.939
Epoch:415 / 1000, train loss:1.061, valid loss:1.040
Epoch:416 / 1000, train loss:1.057, valid loss:1.051
Epoch:417 / 1000, train loss:1.057, valid loss:1.097
Epoch:418 / 1000, train loss:1.058, valid loss:1.117
Epoch:419 / 1000, train loss:1.058, valid loss:1.177
Epoch: 420 / 1000, train loss: 1.051, valid loss: 0.998
Epoch: 421 / 1000, train loss: 1.056, valid loss: 1.056
Epoch: 422 / 1000, train loss: 1.057, valid loss: 0.981
Epoch: 423 / 1000, train loss: 1.058, valid loss: 1.065
Epoch: 424 / 1000, train loss: 1.057, valid loss: 1.077
Epoch: 425 / 1000, train loss: 1.055, valid loss: 1.009
Epoch: 426 / 1000, train loss: 1.050, valid loss: 1.000
Epoch: 427 / 1000, train loss: 1.056, valid loss: 0.928
Epoch: 428 / 1000, train loss: 1.052, valid loss: 0.985
Epoch: 429 / 1000, train loss: 1.056, valid loss: 1.039
Epoch:430 / 1000, train loss:1.060, valid loss:1.071
Epoch:431 / 1000, train loss:1.052, valid loss:1.041
Epoch: 432 / 1000, train loss: 1.060, valid loss: 0.980
Epoch:433 / 1000, train loss:1.048, valid loss:0.970
```

```
Epoch:434 / 1000, train loss:1.055, valid loss:1.036
Epoch: 435 / 1000, train loss: 1.052, valid loss: 0.966
Epoch:436 / 1000, train loss:1.047, valid loss:1.037
Epoch:437 / 1000, train loss:1.052, valid loss:0.967
Epoch: 438 / 1000, train loss: 1.053, valid loss: 1.025
Epoch: 439 / 1000, train loss: 1.055, valid loss: 1.119
Epoch:440 / 1000, train loss:1.056, valid loss:1.247
Epoch:441 / 1000, train loss:1.052, valid loss:0.980
Epoch:442 / 1000, train loss:1.053, valid loss:0.987
Epoch:443 / 1000, train loss:1.046, valid loss:1.020
Epoch:444 / 1000, train loss:1.051, valid loss:1.007
Epoch:445 / 1000, train loss:1.052, valid loss:1.088
Epoch:446 / 1000, train loss:1.055, valid loss:1.018
Epoch:447 / 1000, train loss:1.050, valid loss:1.192
Epoch:448 / 1000, train loss:1.049, valid loss:1.116
Epoch:449 / 1000, train loss:1.047, valid loss:1.041
Epoch: 450 / 1000, train loss: 1.051, valid loss: 0.995
Epoch:451 / 1000, train loss:1.043, valid loss:0.965
Epoch:452 / 1000, train loss:1.050, valid loss:1.120
Epoch:453 / 1000, train loss:1.053, valid loss:1.062
Epoch:454 / 1000, train loss:1.047, valid loss:0.953
Epoch: 455 / 1000, train loss: 1.045, valid loss: 1.024
Epoch: 456 / 1000, train loss: 1.050, valid loss: 1.071
Epoch:457 / 1000, train loss:1.046, valid loss:1.045
Epoch:458 / 1000, train loss:1.045, valid loss:1.030
Epoch: 459 / 1000, train loss: 1.054, valid loss: 1.007
Epoch:460 / 1000, train loss:1.045, valid loss:0.963
Epoch:461 / 1000, train loss:1.049, valid loss:0.962
Epoch:462 / 1000, train loss:1.044, valid loss:1.098
Epoch:463 / 1000, train loss:1.049, valid loss:0.975
Epoch:464 / 1000, train loss:1.049, valid loss:1.027
Epoch:465 / 1000, train loss:1.043, valid loss:1.085
Epoch: 466 / 1000, train loss: 1.046, valid loss: 0.937
Epoch:467 / 1000, train loss:1.043, valid loss:1.158
Epoch:468 / 1000, train loss:1.046, valid loss:0.951
Epoch: 469 / 1000, train loss: 1.049, valid loss: 0.947
Epoch: 470 / 1000, train loss: 1.046, valid loss: 1.206
Epoch:471 / 1000, train loss:1.045, valid loss:1.030
Epoch: 472 / 1000, train loss: 1.047, valid loss: 1.003
Epoch:473 / 1000, train loss:1.049, valid loss:0.944
Epoch:474 / 1000, train loss:1.046, valid loss:0.942
Epoch: 475 / 1000, train loss: 1.046, valid loss: 1.135
Epoch: 476 / 1000, train loss: 1.043, valid loss: 1.003
Epoch:477 / 1000, train loss:1.047, valid loss:1.035
Epoch: 478 / 1000, train loss: 1.043, valid loss: 1.050
Epoch: 479 / 1000, train loss: 1.046, valid loss: 0.989
Epoch:480 / 1000, train loss:1.048, valid loss:1.049
Epoch:481 / 1000, train loss:1.046, valid loss:0.951
Epoch: 482 / 1000, train loss: 1.048, valid loss: 1.091
Epoch:483 / 1000, train loss:1.039, valid loss:1.122
Epoch:484 / 1000, train loss:1.041, valid loss:1.070
Epoch: 485 / 1000, train loss: 1.043, valid loss: 1.005
Epoch: 486 / 1000, train loss: 1.047, valid loss: 1.023
Epoch:487 / 1000, train loss:1.041, valid loss:1.025
Epoch: 488 / 1000, train loss: 1.057, valid loss: 0.948
Epoch:489 / 1000, train loss:1.045, valid loss:1.014
Epoch:490 / 1000, train loss:1.043, valid loss:0.986
Epoch:491 / 1000, train loss:1.041, valid loss:1.108
Epoch: 492 / 1000, train loss: 1.047, valid loss: 1.014
Epoch:493 / 1000, train loss:1.037, valid loss:0.963
Epoch:494 / 1000, train loss:1.039, valid loss:1.128
Epoch: 495 / 1000, train loss: 1.044, valid loss: 1.001
```

```
Epoch:496 / 1000, train loss:1.038, valid loss:1.002
Epoch:497 / 1000, train loss:1.041, valid loss:1.073
Epoch:498 / 1000, train loss:1.042, valid loss:0.990
Epoch: 499 / 1000, train loss: 1.038, valid loss: 1.141
Epoch: 500 / 1000, train loss: 1.043, valid loss: 0.955
Epoch:501 / 1000, train loss:1.046, valid loss:1.057
Epoch:502 / 1000, train loss:1.035, valid loss:0.974
Epoch: 503 / 1000, train loss: 1.038, valid loss: 1.016
Epoch:504 / 1000, train loss:1.038, valid loss:1.057
Epoch:505 / 1000, train loss:1.034, valid loss:0.967
Epoch: 506 / 1000, train loss: 1.038, valid loss: 0.957
Epoch:507 / 1000, train loss:1.041, valid loss:0.947
Epoch:508 / 1000, train loss:1.036, valid loss:0.985
Epoch:509 / 1000, train loss:1.045, valid loss:1.011
Epoch:510 / 1000, train loss:1.035, valid loss:0.999
Epoch:511 / 1000, train loss:1.038, valid loss:1.018
Epoch:512 / 1000, train loss:1.036, valid loss:1.043
Epoch:513 / 1000, train loss:1.038, valid loss:1.036
Epoch:514 / 1000, train loss:1.033, valid loss:0.995
Epoch:515 / 1000, train loss:1.044, valid loss:0.953
Epoch:516 / 1000, train loss:1.038, valid loss:0.921
Epoch:517 / 1000, train loss:1.031, valid loss:0.934
Epoch:518 / 1000, train loss:1.038, valid loss:0.963
Epoch:519 / 1000, train loss:1.033, valid loss:1.044
Epoch:520 / 1000, train loss:1.026, valid loss:1.057
Epoch:521 / 1000, train loss:1.033, valid loss:1.068
Epoch:522 / 1000, train loss:1.038, valid loss:1.058
Epoch:523 / 1000, train loss:1.029, valid loss:1.008
Epoch:524 / 1000, train loss:1.030, valid loss:1.020
Epoch:525 / 1000, train loss:1.029, valid loss:1.061
Epoch:526 / 1000, train loss:1.032, valid loss:1.083
Epoch:527 / 1000, train loss:1.039, valid loss:1.156
Epoch:528 / 1000, train loss:1.033, valid loss:1.096
Epoch:529 / 1000, train loss:1.036, valid loss:1.164
Epoch:530 / 1000, train loss:1.042, valid loss:0.938
Epoch:531 / 1000, train loss:1.030, valid loss:1.194
Epoch:532 / 1000, train loss:1.032, valid loss:1.010
Epoch:533 / 1000, train loss:1.029, valid loss:0.989
Epoch:534 / 1000, train loss:1.031, valid loss:1.119
Epoch:535 / 1000, train loss:1.031, valid loss:1.138
Epoch:536 / 1000, train loss:1.026, valid loss:1.084
Epoch:537 / 1000, train loss:1.027, valid loss:0.954
Epoch:538 / 1000, train loss:1.029, valid loss:0.994
Epoch:539 / 1000, train loss:1.028, valid loss:1.059
Epoch:540 / 1000, train loss:1.028, valid loss:1.028
Epoch:541 / 1000, train loss:1.028, valid loss:1.042
Epoch:542 / 1000, train loss:1.031, valid loss:0.976
Epoch:543 / 1000, train loss:1.035, valid loss:1.053
Epoch:544 / 1000, train loss:1.035, valid loss:0.960
Epoch:545 / 1000, train loss:1.022, valid loss:1.028
Epoch:546 / 1000, train loss:1.029, valid loss:0.987
Epoch: 547 / 1000, train loss: 1.029, valid loss: 0.995
Epoch:548 / 1000, train loss:1.027, valid loss:0.993
Epoch:549 / 1000, train loss:1.023, valid loss:0.981
Epoch:550 / 1000, train loss:1.028, valid loss:0.980
Epoch:551 / 1000, train loss:1.026, valid loss:1.033
Epoch:552 / 1000, train loss:1.028, valid loss:0.964
Epoch:553 / 1000, train loss:1.023, valid loss:1.041
Epoch:554 / 1000, train loss:1.024, valid loss:0.992
Epoch:555 / 1000, train loss:1.028, valid loss:1.038
Epoch:556 / 1000, train loss:1.029, valid loss:0.957
Epoch:557 / 1000, train loss:1.027, valid loss:1.044
```

```
Epoch:558 / 1000, train loss:1.023, valid loss:1.047
Epoch:559 / 1000, train loss:1.030, valid loss:1.013
Epoch:560 / 1000, train loss:1.025, valid loss:0.991
Epoch:561 / 1000, train loss:1.024, valid loss:1.077
Epoch: 562 / 1000, train loss: 1.020, valid loss: 1.023
Epoch:563 / 1000, train loss:1.023, valid loss:1.030
Epoch:564 / 1000, train loss:1.026, valid loss:0.959
Epoch:565 / 1000, train loss:1.024, valid loss:1.092
Epoch:566 / 1000, train loss:1.019, valid loss:0.940
Epoch:567 / 1000, train loss:1.018, valid loss:1.018
Epoch: 568 / 1000, train loss: 1.023, valid loss: 0.915
Epoch:569 / 1000, train loss:1.025, valid loss:1.003
Epoch:570 / 1000, train loss:1.026, valid loss:1.006
Epoch:571 / 1000, train loss:1.023, valid loss:1.118
Epoch:572 / 1000, train loss:1.023, valid loss:1.092
Epoch: 573 / 1000, train loss: 1.021, valid loss: 1.054
Epoch: 574 / 1000, train loss: 1.019, valid loss: 0.973
Epoch: 575 / 1000, train loss: 1.014, valid loss: 0.969
Epoch: 576 / 1000, train loss: 1.025, valid loss: 1.184
Epoch: 577 / 1000, train loss: 1.020, valid loss: 1.046
Epoch: 578 / 1000, train loss: 1.014, valid loss: 0.991
Epoch: 579 / 1000, train loss: 1.024, valid loss: 1.114
Epoch:580 / 1000, train loss:1.025, valid loss:0.947
Epoch:581 / 1000, train loss:1.014, valid loss:0.991
Epoch:582 / 1000, train loss:1.022, valid loss:0.973
Epoch:583 / 1000, train loss:1.020, valid loss:1.098
Epoch:584 / 1000, train loss:1.021, valid loss:0.995
Epoch:585 / 1000, train loss:1.015, valid loss:1.047
Epoch:586 / 1000, train loss:1.020, valid loss:1.008
Epoch:587 / 1000, train loss:1.016, valid loss:0.950
Epoch:588 / 1000, train loss:1.016, valid loss:1.035
Epoch:589 / 1000, train loss:1.021, valid loss:1.112
Epoch:590 / 1000, train loss:1.013, valid loss:1.049
Epoch:591 / 1000, train loss:1.012, valid loss:1.016
Epoch:592 / 1000, train loss:1.016, valid loss:1.015
Epoch:593 / 1000, train loss:1.017, valid loss:0.977
Epoch:594 / 1000, train loss:1.017, valid loss:1.118
Epoch:595 / 1000, train loss:1.021, valid loss:1.034
Epoch:596 / 1000, train loss:1.017, valid loss:0.965
Epoch:597 / 1000, train loss:1.020, valid loss:0.951
Epoch:598 / 1000, train loss:1.012, valid loss:1.004
Epoch: 599 / 1000, train loss: 1.021, valid loss: 1.003
Epoch:600 / 1000, train loss:1.013, valid loss:1.009
Epoch:601 / 1000, train loss:1.014, valid loss:1.015
Epoch: 602 / 1000, train loss: 1.018, valid loss: 1.018
Epoch:603 / 1000, train loss:1.010, valid loss:0.989
Epoch:604 / 1000, train loss:1.014, valid loss:1.071
Epoch:605 / 1000, train loss:1.018, valid loss:0.994
Epoch:606 / 1000, train loss:1.027, valid loss:1.002
Epoch:607 / 1000, train loss:1.019, valid loss:1.171
Epoch:608 / 1000, train loss:1.012, valid loss:1.076
Epoch: 609 / 1000, train loss: 1.010, valid loss: 1.052
Epoch:610 / 1000, train loss:1.019, valid loss:1.044
Epoch:611 / 1000, train loss:1.013, valid loss:0.990
Epoch:612 / 1000, train loss:1.017, valid loss:1.054
Epoch:613 / 1000, train loss:1.009, valid loss:0.966
Epoch:614 / 1000, train loss:1.008, valid loss:0.971
Epoch:615 / 1000, train loss:1.015, valid loss:1.066
Epoch:616 / 1000, train loss:1.013, valid loss:0.950
Epoch:617 / 1000, train loss:1.013, valid loss:1.036
Epoch:618 / 1000, train loss:1.006, valid loss:1.005
Epoch:619 / 1000, train loss:1.015, valid loss:1.031
```

```
Epoch: 620 / 1000, train loss: 1.014, valid loss: 0.953
Epoch:621 / 1000, train loss:1.015, valid loss:0.976
Epoch:622 / 1000, train loss:1.011, valid loss:0.984
Epoch:623 / 1000, train loss:1.012, valid loss:0.958
Epoch:624 / 1000, train loss:1.014, valid loss:1.050
Epoch:625 / 1000, train loss:1.008, valid loss:0.969
Epoch:626 / 1000, train loss:1.012, valid loss:1.122
Epoch:627 / 1000, train loss:1.013, valid loss:1.042
Epoch:628 / 1000, train loss:1.009, valid loss:1.032
Epoch:629 / 1000, train loss:1.013, valid loss:0.948
Epoch:630 / 1000, train loss:1.007, valid loss:0.992
Epoch:631 / 1000, train loss:1.010, valid loss:0.982
Epoch:632 / 1000, train loss:1.013, valid loss:0.944
Epoch:633 / 1000, train loss:1.005, valid loss:1.050
Epoch:634 / 1000, train loss:1.016, valid loss:0.967
Epoch: 635 / 1000, train loss: 1.012, valid loss: 0.997
Epoch: 636 / 1000, train loss: 1.012, valid loss: 0.950
Epoch:637 / 1000, train loss:1.011, valid loss:1.035
Epoch:638 / 1000, train loss:1.019, valid loss:0.994
Epoch: 639 / 1000, train loss: 1.020, valid loss: 1.000
Epoch:640 / 1000, train loss:1.019, valid loss:1.009
Epoch:641 / 1000, train loss:1.019, valid loss:1.146
Epoch:642 / 1000, train loss:1.011, valid loss:0.999
Epoch:643 / 1000, train loss:1.014, valid loss:1.005
Epoch:644 / 1000, train loss:1.010, valid loss:1.049
Epoch:645 / 1000, train loss:1.016, valid loss:1.009
Epoch:646 / 1000, train loss:1.013, valid loss:1.121
Epoch:647 / 1000, train loss:1.003, valid loss:0.980
Epoch:648 / 1000, train loss:1.012, valid loss:1.014
Epoch:649 / 1000, train loss:1.011, valid loss:1.086
Epoch:650 / 1000, train loss:1.012, valid loss:1.002
Epoch:651 / 1000, train loss:1.015, valid loss:1.017
Epoch:652 / 1000, train loss:1.012, valid loss:0.973
Epoch:653 / 1000, train loss:1.003, valid loss:1.044
Epoch:654 / 1000, train loss:1.011, valid loss:1.035
Epoch:655 / 1000, train loss:1.011, valid loss:0.948
Epoch:656 / 1000, train loss:1.009, valid loss:0.967
Epoch:657 / 1000, train loss:1.010, valid loss:0.973
Epoch:658 / 1000, train loss:1.015, valid loss:0.976
Epoch:659 / 1000, train loss:1.013, valid loss:1.047
Epoch:660 / 1000, train loss:1.009, valid loss:0.966
Epoch:661 / 1000, train loss:1.002, valid loss:0.989
Epoch:662 / 1000, train loss:1.011, valid loss:0.987
Epoch:663 / 1000, train loss:1.010, valid loss:1.119
Epoch:664 / 1000, train loss:1.010, valid loss:0.980
Epoch:665 / 1000, train loss:1.020, valid loss:1.002
Epoch:666 / 1000, train loss:1.012, valid loss:1.058
Epoch:667 / 1000, train loss:1.009, valid loss:1.056
Epoch:668 / 1000, train loss:1.012, valid loss:1.053
Epoch:669 / 1000, train loss:1.013, valid loss:0.987
Epoch:670 / 1000, train loss:1.025, valid loss:1.134
Epoch:671 / 1000, train loss:1.012, valid loss:1.002
Epoch: 672 / 1000, train loss: 1.008, valid loss: 1.038
Epoch: 673 / 1000, train loss: 1.009, valid loss: 1.047
Epoch:674 / 1000, train loss:1.020, valid loss:1.021
Epoch:675 / 1000, train loss:1.021, valid loss:1.068
Epoch:676 / 1000, train loss:1.005, valid loss:1.133
Epoch: 677 / 1000, train loss: 1.008, valid loss: 0.986
Epoch:678 / 1000, train loss:1.007, valid loss:0.965
Epoch: 679 / 1000, train loss: 1.008, valid loss: 1.025
Epoch:680 / 1000, train loss:1.012, valid loss:1.051
Epoch:681 / 1000, train loss:1.016, valid loss:1.026
```

```
Epoch:682 / 1000, train loss:1.019, valid loss:1.009
Epoch:683 / 1000, train loss:1.019, valid loss:0.980
Epoch:684 / 1000, train loss:1.025, valid loss:1.061
Epoch:685 / 1000, train loss:1.022, valid loss:1.005
Epoch:686 / 1000, train loss:1.015, valid loss:0.941
Epoch:687 / 1000, train loss:1.014, valid loss:1.118
Epoch:688 / 1000, train loss:1.016, valid loss:0.981
Epoch: 689 / 1000, train loss: 1.024, valid loss: 1.045
Epoch:690 / 1000, train loss:1.014, valid loss:1.054
Epoch:691 / 1000, train loss:1.007, valid loss:1.106
Epoch:692 / 1000, train loss:1.004, valid loss:1.025
Epoch: 693 / 1000, train loss: 1.006, valid loss: 1.032
Epoch:694 / 1000, train loss:1.010, valid loss:0.986
Epoch: 695 / 1000, train loss: 1.002, valid loss: 1.048
Epoch:696 / 1000, train loss:1.007, valid loss:0.963
Epoch:697 / 1000, train loss:1.009, valid loss:1.028
Epoch:698 / 1000, train loss:1.012, valid loss:1.096
Epoch:699 / 1000, train loss:1.015, valid loss:1.013
Epoch: 700 / 1000, train loss: 1.017, valid loss: 1.008
Epoch: 701 / 1000, train loss: 1.014, valid loss: 1.038
Epoch: 702 / 1000, train loss: 1.009, valid loss: 1.038
Epoch: 703 / 1000, train loss: 1.005, valid loss: 1.045
Epoch: 704 / 1000, train loss: 1.015, valid loss: 0.972
Epoch: 705 / 1000, train loss: 1.004, valid loss: 0.936
Epoch: 706 / 1000, train loss: 1.007, valid loss: 1.002
Epoch: 707 / 1000, train loss: 1.007, valid loss: 0.982
Epoch: 708 / 1000, train loss: 1.013, valid loss: 1.229
Epoch: 709 / 1000, train loss: 1.003, valid loss: 0.947
Epoch:710 / 1000, train loss:1.014, valid loss:1.003
Epoch:711 / 1000, train loss:1.006, valid loss:1.002
Epoch:712 / 1000, train loss:1.006, valid loss:1.013
Epoch:713 / 1000, train loss:1.007, valid loss:0.985
Epoch:714 / 1000, train loss:1.006, valid loss:1.062
Epoch:715 / 1000, train loss:1.002, valid loss:1.005
Epoch:716 / 1000, train loss:1.009, valid loss:0.997
Epoch:717 / 1000, train loss:1.013, valid loss:0.968
Epoch:718 / 1000, train loss:1.020, valid loss:0.986
Epoch:719 / 1000, train loss:1.013, valid loss:0.973
Epoch:720 / 1000, train loss:1.012, valid loss:1.064
Epoch:721 / 1000, train loss:1.004, valid loss:1.106
Epoch:722 / 1000, train loss:1.011, valid loss:0.951
Epoch:723 / 1000, train loss:1.015, valid loss:1.081
Epoch:724 / 1000, train loss:1.005, valid loss:0.975
Epoch:725 / 1000, train loss:1.007, valid loss:1.035
Epoch: 726 / 1000, train loss: 1.012, valid loss: 1.010
Epoch:727 / 1000, train loss:1.005, valid loss:1.043
Epoch:728 / 1000, train loss:1.003, valid loss:1.087
Epoch:729 / 1000, train loss:1.006, valid loss:1.071
Epoch:730 / 1000, train loss:1.013, valid loss:0.977
Epoch:731 / 1000, train loss:1.005, valid loss:0.946
Epoch:732 / 1000, train loss:1.010, valid loss:0.962
Epoch: 733 / 1000, train loss: 1.028, valid loss: 0.997
Epoch: 734 / 1000, train loss: 1.016, valid loss: 1.143
Epoch:735 / 1000, train loss:1.005, valid loss:1.093
Epoch: 736 / 1000, train loss: 1.007, valid loss: 1.107
Epoch:737 / 1000, train loss:1.010, valid loss:1.062
Epoch:738 / 1000, train loss:1.016, valid loss:0.970
Epoch: 739 / 1000, train loss: 1.007, valid loss: 0.956
Epoch:740 / 1000, train loss:1.006, valid loss:1.119
Epoch:741 / 1000, train loss:1.010, valid loss:1.014
Epoch:742 / 1000, train loss:1.014, valid loss:0.933
Epoch:743 / 1000, train loss:1.015, valid loss:1.065
```

```
Epoch:744 / 1000, train loss:1.006, valid loss:1.109
Epoch:745 / 1000, train loss:1.002, valid loss:1.044
Epoch:746 / 1000, train loss:1.008, valid loss:1.067
Epoch:747 / 1000, train loss:1.007, valid loss:1.088
Epoch: 748 / 1000, train loss: 1.009, valid loss: 1.015
Epoch:749 / 1000, train loss:1.005, valid loss:1.016
Epoch:750 / 1000, train loss:1.005, valid loss:0.955
Epoch: 751 / 1000, train loss: 1.004, valid loss: 1.007
Epoch: 752 / 1000, train loss: 1.015, valid loss: 1.087
Epoch: 753 / 1000, train loss: 1.005, valid loss: 0.952
Epoch: 754 / 1000, train loss: 1.006, valid loss: 0.989
Epoch: 755 / 1000, train loss: 1.007, valid loss: 1.005
Epoch: 756 / 1000, train loss: 1.006, valid loss: 1.016
Epoch: 757 / 1000, train loss: 1.011, valid loss: 1.028
Epoch: 758 / 1000, train loss: 1.011, valid loss: 1.058
Epoch: 759 / 1000, train loss: 1.016, valid loss: 1.058
Epoch: 760 / 1000, train loss: 1.010, valid loss: 1.012
Epoch:761 / 1000, train loss:1.025, valid loss:0.964
Epoch:762 / 1000, train loss:1.010, valid loss:1.080
Epoch: 763 / 1000, train loss: 1.006, valid loss: 1.031
Epoch: 764 / 1000, train loss: 1.005, valid loss: 0.974
Epoch: 765 / 1000, train loss: 1.004, valid loss: 0.978
Epoch: 766 / 1000, train loss: 1.007, valid loss: 1.245
Epoch:767 / 1000, train loss:1.002, valid loss:1.094
Epoch:768 / 1000, train loss:1.016, valid loss:1.184
Epoch: 769 / 1000, train loss: 1.016, valid loss: 1.089
Epoch:770 / 1000, train loss:1.006, valid loss:1.079
Epoch:771 / 1000, train loss:1.002, valid loss:1.043
Epoch:772 / 1000, train loss:1.016, valid loss:1.131
Epoch:773 / 1000, train loss:1.006, valid loss:0.960
Epoch:774 / 1000, train loss:1.008, valid loss:0.990
Epoch:775 / 1000, train loss:1.009, valid loss:0.977
Epoch: 776 / 1000, train loss: 1.011, valid loss: 0.951
Epoch: 777 / 1000, train loss: 1.010, valid loss: 0.956
Epoch:778 / 1000, train loss:1.007, valid loss:1.005
Epoch: 779 / 1000, train loss: 1.006, valid loss: 1.007
Epoch: 780 / 1000, train loss: 1.006, valid loss: 1.007
Epoch:781 / 1000, train loss:1.012, valid loss:0.964
Epoch: 782 / 1000, train loss: 1.012, valid loss: 1.064
Epoch: 783 / 1000, train loss: 1.003, valid loss: 1.087
Epoch: 784 / 1000, train loss: 1.008, valid loss: 1.117
Epoch: 785 / 1000, train loss: 1.007, valid loss: 0.955
Epoch: 786 / 1000, train loss: 1.006, valid loss: 0.925
Epoch:787 / 1000, train loss:1.010, valid loss:0.940
Epoch: 788 / 1000, train loss: 1.009, valid loss: 1.076
Epoch: 789 / 1000, train loss: 1.002, valid loss: 1.162
Epoch:790 / 1000, train loss:1.008, valid loss:1.031
Epoch: 791 / 1000, train loss: 1.013, valid loss: 1.051
Epoch: 792 / 1000, train loss: 1.008, valid loss: 0.967
Epoch: 793 / 1000, train loss: 1.012, valid loss: 0.999
Epoch: 794 / 1000, train loss: 1.011, valid loss: 1.024
Epoch: 795 / 1000, train loss: 1.002, valid loss: 0.969
Epoch: 796 / 1000, train loss: 1.008, valid loss: 0.967
Epoch: 797 / 1000, train loss: 1.008, valid loss: 0.998
Epoch: 798 / 1000, train loss: 1.010, valid loss: 1.095
Epoch: 799 / 1000, train loss: 1.013, valid loss: 1.005
Epoch: 800 / 1000, train loss: 1.006, valid loss: 1.044
Epoch: 801 / 1000, train loss: 1.006, valid loss: 1.017
Epoch:802 / 1000, train loss:1.003, valid loss:0.995
Epoch:803 / 1000, train loss:1.003, valid loss:1.088
Epoch: 804 / 1000, train loss: 1.012, valid loss: 0.956
Epoch: 805 / 1000, train loss: 1.019, valid loss: 0.934
```

```
Epoch: 806 / 1000, train loss: 1.013, valid loss: 0.986
Epoch: 807 / 1000, train loss: 1.010, valid loss: 0.942
Epoch:808 / 1000, train loss:1.004, valid loss:1.122
Epoch: 809 / 1000, train loss: 1.013, valid loss: 0.936
Epoch:810 / 1000, train loss:1.008, valid loss:0.967
Epoch:811 / 1000, train loss:1.010, valid loss:1.075
Epoch:812 / 1000, train loss:1.009, valid loss:1.109
Epoch:813 / 1000, train loss:1.016, valid loss:0.976
Epoch:814 / 1000, train loss:1.009, valid loss:1.139
Epoch:815 / 1000, train loss:1.002, valid loss:1.070
Epoch:816 / 1000, train loss:1.005, valid loss:0.956
Epoch:817 / 1000, train loss:1.024, valid loss:1.096
Epoch:818 / 1000, train loss:1.024, valid loss:1.037
Epoch:819 / 1000, train loss:1.008, valid loss:1.015
Epoch:820 / 1000, train loss:1.011, valid loss:0.984
Epoch:821 / 1000, train loss:1.005, valid loss:1.113
Epoch:822 / 1000, train loss:1.021, valid loss:0.971
Epoch:823 / 1000, train loss:1.011, valid loss:1.077
Epoch:824 / 1000, train loss:1.004, valid loss:0.949
Epoch:825 / 1000, train loss:1.006, valid loss:0.954
Epoch:826 / 1000, train loss:1.011, valid loss:1.209
Epoch:827 / 1000, train loss:1.006, valid loss:1.046
Epoch:828 / 1000, train loss:1.007, valid loss:1.027
Epoch:829 / 1000, train loss:1.011, valid loss:1.060
Epoch:830 / 1000, train loss:1.015, valid loss:1.027
Epoch:831 / 1000, train loss:1.013, valid loss:0.948
Epoch:832 / 1000, train loss:1.011, valid loss:1.036
Epoch: 833 / 1000, train loss: 1.018, valid loss: 1.017
Epoch:834 / 1000, train loss:1.014, valid loss:1.131
Epoch: 835 / 1000, train loss: 1.012, valid loss: 1.100
Epoch:836 / 1000, train loss:1.024, valid loss:0.988
Epoch:837 / 1000, train loss:1.016, valid loss:1.000
Epoch:838 / 1000, train loss:1.016, valid loss:0.992
Epoch:839 / 1000, train loss:1.003, valid loss:1.059
Epoch:840 / 1000, train loss:1.012, valid loss:1.013
Epoch:841 / 1000, train loss:1.011, valid loss:1.018
Epoch:842 / 1000, train loss:1.003, valid loss:1.015
Epoch:843 / 1000, train loss:1.011, valid loss:0.973
Epoch:844 / 1000, train loss:1.012, valid loss:0.998
Epoch:845 / 1000, train loss:1.005, valid loss:1.017
Epoch:846 / 1000, train loss:1.007, valid loss:1.066
Epoch:847 / 1000, train loss:1.022, valid loss:1.000
Epoch:848 / 1000, train loss:1.006, valid loss:1.033
Epoch:849 / 1000, train loss:1.016, valid loss:0.980
Epoch:850 / 1000, train loss:1.014, valid loss:1.041
Epoch:851 / 1000, train loss:1.014, valid loss:1.050
Epoch:852 / 1000, train loss:1.007, valid loss:1.110
Epoch:853 / 1000, train loss:1.009, valid loss:1.107
Epoch:854 / 1000, train loss:1.022, valid loss:0.981
Epoch:855 / 1000, train loss:1.005, valid loss:0.995
Epoch:856 / 1000, train loss:1.008, valid loss:0.940
Epoch:857 / 1000, train loss:1.009, valid loss:1.068
Epoch:858 / 1000, train loss:1.007, valid loss:1.071
Epoch:859 / 1000, train loss:1.007, valid loss:0.962
Epoch:860 / 1000, train loss:1.013, valid loss:1.012
Epoch:861 / 1000, train loss:1.013, valid loss:1.021
Epoch:862 / 1000, train loss:1.013, valid loss:1.040
Epoch:863 / 1000, train loss:1.002, valid loss:1.006
Epoch:864 / 1000, train loss:1.018, valid loss:1.006
Epoch:865 / 1000, train loss:1.025, valid loss:1.079
Epoch:866 / 1000, train loss:1.003, valid loss:0.974
Epoch:867 / 1000, train loss:1.014, valid loss:0.968
```

```
Epoch:868 / 1000, train loss:1.021, valid loss:0.967
Epoch:869 / 1000, train loss:1.009, valid loss:0.998
Epoch:870 / 1000, train loss:1.009, valid loss:1.027
Epoch:871 / 1000, train loss:1.010, valid loss:1.027
Epoch:872 / 1000, train loss:1.002, valid loss:0.958
Epoch: 873 / 1000, train loss: 1.000, valid loss: 1.002
Epoch:874 / 1000, train loss:1.004, valid loss:0.995
Epoch: 875 / 1000, train loss: 1.004, valid loss: 0.999
Epoch: 876 / 1000, train loss: 1.008, valid loss: 1.022
Epoch: 877 / 1000, train loss: 1.007, valid loss: 1.119
Epoch: 878 / 1000, train loss: 1.008, valid loss: 1.047
Epoch: 879 / 1000, train loss: 1.007, valid loss: 1.085
Epoch:880 / 1000, train loss:1.006, valid loss:0.984
Epoch:881 / 1000, train loss:1.008, valid loss:0.993
Epoch:882 / 1000, train loss:1.001, valid loss:1.056
Epoch:883 / 1000, train loss:1.019, valid loss:0.960
Epoch:884 / 1000, train loss:1.019, valid loss:1.040
Epoch:885 / 1000, train loss:1.014, valid loss:1.068
Epoch:886 / 1000, train loss:1.017, valid loss:1.060
Epoch:887 / 1000, train loss:1.006, valid loss:1.033
Epoch:888 / 1000, train loss:1.006, valid loss:0.939
Epoch:889 / 1000, train loss:1.016, valid loss:0.991
Epoch: 890 / 1000, train loss: 1.005, valid loss: 1.046
Epoch:891 / 1000, train loss:1.011, valid loss:1.000
Epoch:892 / 1000, train loss:1.010, valid loss:0.988
Epoch: 893 / 1000, train loss: 1.002, valid loss: 1.067
Epoch:894 / 1000, train loss:1.006, valid loss:1.002
Epoch: 895 / 1000, train loss: 1.006, valid loss: 1.067
Epoch: 896 / 1000, train loss: 1.005, valid loss: 0.943
Epoch:897 / 1000, train loss:1.016, valid loss:1.128
Epoch:898 / 1000, train loss:1.018, valid loss:0.968
Epoch: 899 / 1000, train loss: 1.005, valid loss: 0.953
Epoch:900 / 1000, train loss:1.006, valid loss:0.970
Epoch:901 / 1000, train loss:1.006, valid loss:1.023
Epoch:902 / 1000, train loss:1.012, valid loss:1.044
Epoch:903 / 1000, train loss:1.011, valid loss:1.060
Epoch:904 / 1000, train loss:1.009, valid loss:1.002
Epoch:905 / 1000, train loss:1.004, valid loss:1.155
Epoch:906 / 1000, train loss:1.014, valid loss:1.018
Epoch:907 / 1000, train loss:1.016, valid loss:0.951
Epoch:908 / 1000, train loss:1.018, valid loss:1.171
Epoch:909 / 1000, train loss:1.014, valid loss:1.132
Epoch:910 / 1000, train loss:1.011, valid loss:0.964
Epoch:911 / 1000, train loss:1.008, valid loss:1.072
Epoch:912 / 1000, train loss:1.009, valid loss:1.079
Epoch:913 / 1000, train loss:1.013, valid loss:1.058
Epoch:914 / 1000, train loss:1.003, valid loss:0.973
Epoch:915 / 1000, train loss:1.010, valid loss:0.995
Epoch:916 / 1000, train loss:1.002, valid loss:0.992
Epoch:917 / 1000, train loss:1.013, valid loss:1.046
Epoch:918 / 1000, train loss:1.006, valid loss:1.053
Epoch:919 / 1000, train loss:1.011, valid loss:0.994
Epoch:920 / 1000, train loss:1.006, valid loss:0.989
Epoch:921 / 1000, train loss:1.007, valid loss:1.067
Epoch:922 / 1000, train loss:1.015, valid loss:1.015
Epoch:923 / 1000, train loss:1.005, valid loss:0.957
Epoch:924 / 1000, train loss:1.002, valid loss:0.990
Epoch:925 / 1000, train loss:1.006, valid loss:1.031
Epoch:926 / 1000, train loss:1.012, valid loss:1.144
Epoch:927 / 1000, train loss:1.010, valid loss:0.998
Epoch:928 / 1000, train loss:1.011, valid loss:1.049
Epoch:929 / 1000, train loss:1.010, valid loss:1.037
```

```
Epoch:930 / 1000, train loss:1.010, valid loss:1.055
Epoch:931 / 1000, train loss:1.011, valid loss:1.046
Epoch:932 / 1000, train loss:1.009, valid loss:0.983
Epoch:933 / 1000, train loss:1.013, valid loss:0.986
Epoch:934 / 1000, train loss:1.018, valid loss:1.010
Epoch:935 / 1000, train loss:1.011, valid loss:1.119
Epoch:936 / 1000, train loss:1.012, valid loss:1.007
Epoch:937 / 1000, train loss:1.006, valid loss:0.974
Epoch:938 / 1000, train loss:1.005, valid loss:0.959
Epoch:939 / 1000, train loss:1.002, valid loss:1.038
Epoch:940 / 1000, train loss:1.007, valid loss:0.973
Epoch:941 / 1000, train loss:1.004, valid loss:0.931
Epoch:942 / 1000, train loss:1.014, valid loss:1.033
Epoch:943 / 1000, train loss:1.014, valid loss:1.002
Epoch:944 / 1000, train loss:1.011, valid loss:0.956
Epoch:945 / 1000, train loss:1.005, valid loss:1.135
Epoch:946 / 1000, train loss:1.005, valid loss:0.982
Epoch:947 / 1000, train loss:1.007, valid loss:1.020
Epoch:948 / 1000, train loss:1.010, valid loss:1.015
Epoch:949 / 1000, train loss:1.005, valid loss:1.034
Epoch:950 / 1000, train loss:1.009, valid loss:1.024
Epoch:951 / 1000, train loss:1.004, valid loss:0.938
Epoch:952 / 1000, train loss:1.011, valid loss:0.974
Epoch:953 / 1000, train loss:1.013, valid loss:0.997
Epoch:954 / 1000, train loss:1.013, valid loss:1.031
Epoch:955 / 1000, train loss:1.011, valid loss:1.000
Epoch:956 / 1000, train loss:1.014, valid loss:0.960
Epoch:957 / 1000, train loss:1.005, valid loss:1.082
Epoch:958 / 1000, train loss:1.015, valid loss:0.975
Epoch:959 / 1000, train loss:1.014, valid loss:1.029
Epoch:960 / 1000, train loss:1.012, valid loss:0.959
Epoch:961 / 1000, train loss:1.020, valid loss:1.108
Epoch:962 / 1000, train loss:1.012, valid loss:0.958
Epoch:963 / 1000, train loss:1.014, valid loss:1.132
Epoch:964 / 1000, train loss:1.009, valid loss:1.054
Epoch:965 / 1000, train loss:1.006, valid loss:0.974
Epoch:966 / 1000, train loss:1.009, valid loss:1.026
Epoch:967 / 1000, train loss:1.005, valid loss:0.944
Epoch:968 / 1000, train loss:1.011, valid loss:1.096
Epoch:969 / 1000, train loss:1.016, valid loss:1.015
Epoch: 970 / 1000, train loss: 1.021, valid loss: 1.043
Epoch:971 / 1000, train loss:1.007, valid loss:0.992
Epoch:972 / 1000, train loss:1.005, valid loss:1.105
Epoch:973 / 1000, train loss:1.007, valid loss:1.014
Epoch: 974 / 1000, train loss: 1.015, valid loss: 1.098
Epoch:975 / 1000, train loss:1.023, valid loss:1.009
Epoch: 976 / 1000, train loss: 1.019, valid loss: 1.003
Epoch:977 / 1000, train loss:1.007, valid loss:0.998
Epoch: 978 / 1000, train loss: 1.009, valid loss: 0.968
Epoch:979 / 1000, train loss:1.011, valid loss:1.063
Epoch:980 / 1000, train loss:1.007, valid loss:1.141
Epoch:981 / 1000, train loss:1.003, valid loss:1.080
Epoch:982 / 1000, train loss:1.018, valid loss:1.113
Epoch:983 / 1000, train loss:1.003, valid loss:0.988
Epoch:984 / 1000, train loss:1.012, valid loss:0.983
Epoch:985 / 1000, train loss:1.014, valid loss:1.016
Epoch:986 / 1000, train loss:1.010, valid loss:0.975
Epoch:987 / 1000, train loss:1.012, valid loss:1.058
Epoch:988 / 1000, train loss:1.005, valid loss:0.983
Epoch:989 / 1000, train loss:1.004, valid loss:0.991
Epoch:990 / 1000, train loss:1.012, valid loss:1.122
Epoch:991 / 1000, train loss:1.017, valid loss:0.996
```

```
Epoch:992 / 1000, train loss:1.005, valid loss:1.090
Epoch:993 / 1000, train loss:1.011, valid loss:1.070
Epoch:994 / 1000, train loss:1.010, valid loss:1.056
Epoch:995 / 1000, train loss:1.005, valid loss:1.008
Epoch:996 / 1000, train loss:1.017, valid loss:1.022
Epoch:997 / 1000, train loss:1.008, valid loss:0.963
Epoch:998 / 1000, train loss:1.018, valid loss:0.978
Epoch:999 / 1000, train loss:1.005, valid loss:1.005
Epoch:1000 / 1000, train loss:1.004, valid loss:1.010
```

```
In [34]: plt.plot(val_loss_hist)
```

Out[34]: [<matplotlib.lines.Line2D at 0x7fbcfc6d8410>]



Check the model parameters

Notice that the parameters are very close to the formula used in generating fake data.

```
In [35]: print([i for i in model.parameters()])

[Parameter containing:
    tensor([[1.5001, 2.0019]], device='cuda:0', requires_grad=True), Parameter containing:
    tensor([0.9342], device='cuda:0', requires_grad=True)]
```

#### Test result

```
In [36]: ys = []
  yhats = []
  model.eval()

for x, y in test_loader:

  # move batch to device
  x = x.to(device)

  # forward
  y_hat = model(x).squeeze().detach().cpu().numpy() # remove data from gpu to cpu, convert to num
  yhats.append(y_hat) # y_hat has shape (batch,)
  ys.append(y.cpu().numpy())
```

```
In [37]: # Concatenate the list of arrays to a single array
  yhats = np.concatenate(yhats)
  ys = np.concatenate(ys)
```

```
In [38]: plt.figure(figsize=(15,5))
  plt.plot(range(len(yhats)), yhats, 'r-', label='Predict')
  plt.plot(range(len(ys)), ys, 'b-', label='True')
  plt.legend()
  plt.show()
```

