

無機化学

目次			6.5 6.6	二酸化窒素	_
			7	リン	14
第Ⅰ部	非金属元素	3	7.1	リン	14
1	水素	3	7.2	十酸化四リン	14
1.1	性質	3	7.3	リン酸	14
1.1	同位体	3		⊭ ≠	4 5
1.3	製法	3	8	炭素 炭素	15
1.4	反応	3	8.1	一酸化炭素	
1.4	χ/ι	3	8.2	二酸化炭素	
2	貴ガス	3	8.3	一敗化灰茶	10
2.1	性質	3	9	ケイ素	17
2.2	生成	3	9.1	ケイ素	17
2.3	ヘリウム	3	9.2	二酸化ケイ素	17
2.4	ネオン	3			
2.5	アルゴン	3	単Ⅱ邨	3 典型金属	19
3	ハロゲン	4	No 11 Hb	· 八工业阀	10
3.1	単体・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4	10	アルカリ金属	19
3.1	単体		10.1	単体	19
3.3	ハロゲン化銀	5 c	10.2	水酸化ナトリウム(苛性ソーダ)	20
	次亜塩素酸塩・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
3.4	久田塩系酸塩・・・・・・・・・・・・・ 塩素酸カリウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6		0.44—±	
3.5	塩糸政力リケム	6	11	2族元素	22
4	酸素	7	11.1	単体	
4.1	酸素原子	7	11.2	酸化カルシウム(生石灰)	
4.2	酸素	7	11.3	水酸化カルシウム(消石灰)	
4.3	オゾン	7	11.4	(11, 11, 1)	
4.4	酸化物	8	11.5		
4.5	水	8		硫酸カルシウム	
_	74:44	•	11.7	伽酸ハリソム	23
5	硫黄	9	12	12 族元素	24
5.1	硫黄	9	12.1	単体	24
5.2	硫化水素		12.2	酸化亜鉛 (亜鉛華)・水酸化亜鉛	25
5.3	二酸化硫黄(亜硫酸ガス)		12.3	塩化水銀 (I)・塩化水銀 (II)	25
5.4	硫酸	11			
5.5	チオ硫酸ナトリウム(ハイポ)	11	13	アルミニウム	26
5.6	重金属の硫化物	12	13.1	アルミニウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	窒素	12	13.2	酸化アルミニウム・水酸化アルミニウム	
6.1	窒素	12	13.3	ミョウバン・焼きミョウバン	26
6.2	アンモニア	12	14	スズ・鉛	27
6.3	一酸化二窒素(笑気ガス)..........	13	14.1	単体	
6.4	一酸化窒素	13	14.2	塩化スズ(Ⅱ)	
			I		

14.3	酸化鉛 (IV)	28
14.4	鉛の難溶性化合物	28
第Ⅲ部	图 遷移金属	29
15	鉄・コバルト・ニッケル	29
15.1	鉄	29
15.2	硫酸鉄(II)7水和物	30
15.3	塩化鉄(Ⅲ)6 水和物	31
15.4	鉄イオンの反応	31
15.5	塩化コバルト(Ⅱ)	31
15.6	硫酸ニッケル(Ⅱ)	31
16	銅	32
16.1	銅	32
16.2	硫酸銅(II)5水和物	33
16.3	銅(II)イオンの反応	33
16.4	銅の合金	33
17	銀	34
17.1	銀	34
17.2	銀 (I) イオンの反応	34
17.3	難溶性化合物の溶解性	35
18	クロム・マンガン	36
18.1	単体	36
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	37
18.4	マンガンの安定な酸化数	37
第 IV 部	郛 APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	金属イオンの難容性化合物	39
D	錯イオンの命名法	40
E	金属イオンの系統分離	41

第一部

非金属元素

1 水素

1.1 性質

- ① 色② 臭の③
- 最も④
- 水に溶け⑤

1.2 同位体

 $^{1} \rm{H}$ 99%以上 $^{2} \rm{H}$ (©)0.015% $^{3} \rm{H}$ (⑦) 微量

1.3 製法

• ナフサの電気分解 工業的製法

・ 8 に⑨ を吹き付ける 工業的製法・ 10 (11) の電気分解

• 10 (11)

• 12 ½13

金属と希薄強酸

flet Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

• 水素化ナトリウムと水

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
- 加熱した酸化銅(Ⅱ)と水素

2 青ガス

14 , 15 , 16 , 17 , Xe, Rn

2.1 性質

- 18 色19 臭
- 第 18 族元素であり、電子配置がオクテットを満たすため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が20
- 電気陰性度が21

2.2 生成

⁴⁰K の電子捕獲

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式: $Ar N_2$, O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl ₂ Br ₂		I_2				
分子量	小 —			大				
分子間力	弱 —	弱 ————————————————————————————————————						
反応性	強二	強						
沸点・融点	低 —							
常温での状態	22	23	24	25)				
色	26 色	27 色	28 色	29 色				
特徴	30 臭	31 臭	揮発性	32 性				
H ₂ との反応	33 でも	34 でも35 で	36 して	高温で平衡状態				
112 6 77 12 110	爆発的に反応	爆発的に反応	37 により反応	38 して39 により一部反応				
水との反応	水を酸化して酸素と	41)	42	43				
水との次心	40 反応	41)	(4 <u>2</u>)	44)				
用途	保存が困難	45 による	$C=C \not \sim$	(47) 反応で				
11/67	Kr や Xe と反応	46 作用	C≡C の検出	48 色				

3.1.2 製法

• 54

•	フッ化水素ナトリウム KHF ₂ のフッ化水素 HF 溶液の
	電気分解 工業的製法

	$KHF_2 \longrightarrow KF +$	HF'	
•	49	の電気	分解 塩素 工業的製法
•	50	に51	を加えて加熱 塩素
•	<u>52</u> <u>2</u> (53 塩素	

塩素

• 臭化マグネシウムと塩素 臭素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$

<u>ك 55</u>

ヨウ化カリウムと塩素 ヨウ素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

•	フッ素と水素	
•	塩素と水素	
•	臭素と水素	
•	ヨウ素と水素	
•	フッ素と水	l
	塩素と水	
•	<u></u> □糸 ⊂ 小	
	臭素と水	

3 ハロゲン 3.2 ハロゲン化水素

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow \\ + 2\,\mathrm{H_2O}$

 Cl_2,HCl,H_2O

↓ 56 に通す (HCl の除去)

 Cl_2,H_2O

↓ (57) に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 ... 58

+ VII	59	60	
+ V	61)	62	
+ III	63	64	
+ I	65	66	

3.2 ハロゲン化水素

3.2.1 性質

化学式	-	HF		HCl		HBr	HI
色・臭い			臭				
沸点	20°C		−85°C			−67°C	−35°C
水との反応				69	0)		
水溶液	70			71		72	73
(強弱)		74	«	75	< 76	< 77	
用途	78	と反応	79		の検出	半導体加工	インジウムスズ
川瓜	⇒ポリ	エチレン瓶	各種工業		十等件加工	酸化物の加工	

3.2.2 製法

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応
- フッ化水素酸(水溶液)がガラスを侵食する反応
- 89 による90 の検出

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF		AgCl		AgBr		AgI	
固体の色	91	色	92	色	93	色	94	色
水との反応	95			96			•	
光との反応	97)			感	光性 (-	→98)	

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮
- ・ ハロゲン化水素イオンを含む水溶液と99

3.4 次亜塩素酸塩

3.4.1 性質

100 剤として反応(101・102 作用)

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
- 北輪化みょうわまた行主
- 水酸化カルシウムと塩素

3.5 塩素酸カリウム

化学式: 103

3.5.1 性質

(104) の生成((105) を触媒に加熱)

4 酸素

4.1 酸素原子

同106 体:酸素 (O_2) ,107 (O_3)

地球の地殻に108 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 121 色122 臭の123
- 沸点 −183°C

4.2.2 製法

124
 125 (126
 128 (129
 130 の熱分解

4.2.3 反応

(131) 剤としての反応

4.3 オゾン

化学式: 132

4.3.1 性質

- (133) 臭((134) 臭)を持つ(135) 色の(136)(常温)
- ・水に137
- <u>138</u> <u>139</u> 作用

4.3.2 製法

酸素中で(146) /強い(147) を当てる

4.3.3 反応

- 148 剤としての反応湿らせた149 を150 色に変
 - 色 [

4.4 酸化物 4 酸素

酸化物

		塩基性	上酸化物		Ĩ	両性酸化	匕物	酢	始性酸化	物	
元素	151			元素	152		元素	(153) 5	元素	
水との反応		154			(155)			156	(157))	
中和		158	と反応		(159)		と反応	(160) <i>と</i> [
両性酸化物 …	. 161		(10	32)	,163	(164)) ,165	(166)	,167)	(168))*1

両性酸化物 ... 161

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

$$\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$$

4.4.1 反応

• 酸化銅(II)と塩化水素

•	酸化アルミニウムと硫酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

4.5 水

4.5.1 性質

• 169 分子

周りの4つ	つの分子と170	結合
-------------------------	----------	----

• 異常に171 沸点

• 172 結晶構造(密度:固体173 液体)

• 特異な174

4.5.2 反応

• 酸化カルシウムと水

,	一酸化窒素と水	

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175	硫黄	176	硫黄	177	硫黄
化学式	(178	3)	(179	9	(18	0
色	181	色	182	色	(183	色
構造	184	結晶	(185)	結晶	(186)	固体
融点	113	в°С	119	9°С	不	定
構造	S S S				S	
CS ₂ との反応	187		188		189	

CS₂··· 無色・芳香性・揮発性 ⇒ 190

触媒

5.1.2 反応

• 高温で多くの金属 (Au, Pt を除く) と反応

例Fe

空気中で191 色の炎を上げて燃焼

5.2 硫化水素

化学式: 192

5.2.1 性質

• 193 色194 身

$$K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

 $K_2 = 1.3 \times 10^{-14} \text{ mol/L}$

198 剤としての反応

重金属イオン M²⁺ と 199

を生成

5.2.2 製法

硫化鉄(Ⅱ)と希塩酸

・ 硫化鉄(Ⅱ)と希硫酸

5.2.3 反応

• 硫化水素とヨウ素

酢酸鉛(Ⅱ)水溶液と硫化水素(200) の検出)

空欄編

5.3 二酸化硫黄 (亜硫酸ガス)

化字式:[201]	電子式:	

5.3.1 性質

- 202 色、203 臭の204
- 水に205
- 206 性

207

$$K_1 = 1.4 \times 10^{-2} \text{ mol/L}$$

• 208 剤 (209 作用)

 • 210
 剤(211)
 などの強い還元剤に対して)

5.3.2 製法

硫黄や硫化物の②12 工業的製法
 ②13 と希硫酸
 ②14 と②15

5.3.3 反応

• 二酸化硫黄の水への溶解

二酸化硫黄と硫化水素

- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216 色217 臭の218
- ・水に219
- 溶解熱が220
- ②21) を加えて希釈
- 222 性で密度が223 く、

224 が大きい 濃硫酸

- 225 性・226 作用 **濃硫酸**
- 227 希硫酸

228

 $K_1 > 10^8 \text{mol/L}$

②29 濃硫酸 (②30 、②31) の濃度が 小さい)

232 剤として働く 熱濃硫酸

②33 (②34 ,②35)、②36 と難容性の塩を生成 希硫酸

5.4.2 製法

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

• スクロースと濃硫酸

• 水酸化ナトリウムと希硫酸

• 銅と熱濃硫酸

• 銀と熱濃硫酸

• 塩化バリウム水溶液と希硫酸

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: 241)

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- ②44 剤として反応例水道水の脱塩素剤(カルキ抜き)②45)

$$\begin{array}{c} : \ddot{\mathbf{0}} : & \vdots \ddot{\mathbf{0}} : \\ \vdots \ddot{\mathbf{0}} : & \vdots \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)					中性	・塩基性	で沈澱(酸性	では溶解)	
Ag_2S HgS CuS PbS SnS CdS				dS	NiS	FeS	ZnS	MnS	
246 色	247 色 248	色 249	色 250	色 251	色	252 色	253	色 254 色	255 色

256 イオン化傾向

258

塩の溶解度積 (K_{sp}) **259**

6 窒素

6.1 窒素

化学式: N_2

6.1.1 性質

- 260 色261 臭の262
- 空気の 78% を占める
- 水に溶け263 (264) 分子)
- 常温で265 (食品などの266))
- 高エネルギー状態 (267 · 268) では反応

6.1.2 製法

269 工業的製法270 の271

6.1.3 反応

• 窒素と酸素

窒素とマグネシウム

6.2 アンモニア

化学式: 272

6.2.1 性質

- 273 色274 臭の275
- 276 結合
- 水に277

(278) 置換)

• 279 性

280

 $K_1 = 1.7 \times 10^{-5} \text{ mol/L}$

- 281 の検出
- 高温・高圧で二酸化炭素と反応して、282 を生成

6.2.2 製法

 ・ 283
 工業的製法

 284 温285 圧で、286 (287) 触媒

 ・ 288 と289 を混ぜて加熱

6.2.3 反応

• 硫酸とアンモニア

• 塩酸の検出

アンモニアと二酸化炭素

6.3 一酸化二窒素(笑気ガス)

化学式: 290

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 291 効果

6.3.2 製法

(292)

の熱分解

6.4 一酸化窒素

化学式: 293

6.4.1 性質

- 294 色295 臭の296
- 中性で水に溶けにくい
- 空気中では297 とすぐに反応
- 血管拡張作用·神経伝達物質

6.4.2 製法

298 と **299**

6.4.3 反応

酸素と反応

6.5 二酸化窒素

化学式: 300

6.5.1 性質

• 301 色302 臭の303

• 水と反応して304 性(305 の原因)

常温では306

(307) 色) と308)

• 140°C 以上で熱分解

140 0 以上(於方所

6.5.2 製法

309 と310

6.6 硝酸

化学式: 311

6.6.1 性質

- 312 色313 臭で314 性の315
- 水に316
- 317 性

318

 $K_1 = 6.3 \times 10^1 \text{mol/L}$

で検出

- ③19 に保存(③20)
- 321 剤としての反応 希硝酸

322 剤としての反応 濃硝酸

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- ・ 323 ,324 ,325 ,326 ,327 は328 が生じて不溶 濃硝酸⇒329
- 330 (331) :332 =3:1) は、Pt,Au も溶解
- $NO_3^ l\sharp 333$ $\Rightarrow 334$

6.6.2 製法

• 335

触媒で337		を33
	触媒で(337)	触媒で(337)

3. 340 と反応

 • 341
 に342
 を加えて加熱

6.6.3 反応

• アンモニアと硝酸

• 硝酸の光分解

• 亜鉛と希硝酸

• 銀と濃硝酸

7.2 十酸化四リン 7 リン

7 リン

7.1 リン

7.1.1 性質

三種類の同343 体がある

	17-10 NJ S		
名称	344 リン	345 リン	黒リン
化学式	346	(347)	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	
光八点	348 に保存	349	-
密度	$1.8\mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7\mathrm{g/cm^3}$
毒性	350	351	352
構造	P	$\cdots P P P P P \cdots$	略
CS ₂ への溶解	353	<u>354</u>)	355

7.1.2 製法

• リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法

空気を遮断して黄リンを 250°C で加熱 赤リン

空気を遮断して黄リンを 200°C、1.2×10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: 356

7.2.1 性質

• 白色で昇華性のある固体

• 357 (水との親和性が358)

乾燥剤

水を加えて加熱すると反応(359)

7.2.2 製法

360

7.2.3 反応

水を加えて加熱

- -			T4
7:3	1)	ン	酸

化学式:361

7.3.1 性質

• 362 性

363 mol/L $K_1 = 7.5 \times 10^{-3}$

7.3.2 反応

• リン酸と水酸化カルシウムの完全中和

• リン酸カルシウムとリン酸が反応して重過リン酸石灰が 生成

• リン酸カルシウムと硫酸が反応して過リン酸石灰が生成

8 炭素

8.1 炭素

8.1.1 性質

炭素の同364 体

- 365
- (366) ((367)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 368

用途医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

カーボンナノチューブ

用途水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	369	370
特徴	(371) 色(372) で屈折率が大きい固体	373 色で374 がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	375 方向の376 結晶	(377) 構造 (378))
硬さ	379	(380)
沸点	(381)	382
電気伝導性	(383)	(384)
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式:385

8.2.1 性質

- 394 色395 臭で396 な気体
- 赤血球のヘモグロビンの397 に対して 強い (398)
- 399 性で水に溶け400 。(401) 置換)
- 402 性、高温で403 性(404) との親和性が非常 に高い)

8.2.2 製法

• 405 に406 を吹き付ける 工業的製法

• 炭素の407

408	に409	 を加えて加熱
	408	(408) (C(409)

• 410	12 <u>411</u>	 を加えて加熱

8.2.3 反応

燃焼 $CO + O_2 \longrightarrow 2CO_2$

鉄の精錬

8.3 二酸化炭素

8.3.1 性質

- 412 色413 臭で414 性(固体は415)
- 大気の 0.04% を占める
- 水に416
- 417 性 (418)

 $K_1 = 4.3 \times 10^{-7} \text{ mol/L}$

8.3.2 製法

8.3.3 反応

- 二酸化炭素と水酸化ナトリウム
- (423) に通じると424 しさらに通じると (425)

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 426 色で427 がある428 結晶
- (429)
- (高純度のケイ素)*3

高温にしたり微小の他電子を添加すると電気伝導性が431 (金属は高温で電気伝導性が432)

9.1.2 製法

9.2 二酸化ケイ素

化学式: (437)

9.2.1 性質

- 438 色(439) の(440) 結晶
- (441)
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 442 酸化物
- 443 (444) ・吸着剤)の生成に用いられる
 多孔質、適度な数の445

9.2.2 反応

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

シリカゲル生成過程での構造変化

1.	二酸化ケイ素((シリカ)	SiO_2	

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

4. シリカゲル SiO₂·n H₂O (n ≪ 1)

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で456 金属
- 全体的に反応性が高く、457 中に保存
- 原子一個あたりの自由電子が458個(459 い460 結合)
- 還元剤として反応

化学式	(461) (462)		(463)	464	(465)
融点*4	181°C	98°C	64°C	39°C	28°C
密度	0.53	0.97	0.86	1.53	1.87
構造		466	格子(467)		
イオン化エネルギー	大 ==				— 小
反応力	小 —				二 大
炎色反応	468 色	469 色	470 色	471 色	472 色
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)

10.1.2 製法

✓ 水酸化物や塩化物の473	(474)	法) 工業的製法 ————————————————————————————————————
475 添加 (476)	
例ナトリウム		

10.1.3 反応

•	ナ	ŀ	IJ	ウ	Δ	٤	酸素
---	---	---	----	---	----------	---	----

ナトリウムと塩素

• ナトリウムと水

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 477

10.2.1 性質

- 478 色の固体
- 479 性
- 水に480 (水との親和性が481)
- 482 剤
- 強塩基性

酸の標準溶液(485))を用いた中和滴定で濃度決定

10.2.2 製法

 (486)
 の(487)
 (イオン交換膜法)
 工業的製法

10.2.3 反応

• 塩酸と水酸化ナトリウム

・ 塩素と水酸化ナトリウム

・ 二酸化硫黄と水酸化ナトリウム

• 酸化亜鉛と水酸化ナトリウム水溶液

• 二酸化炭素と水酸化ナトリウム

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	488	(489)
色	490 色	491 色
融点	850°C	492
液性	493 性	494) 性
用途	495 や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

- Na₂CO₃ 520
- NaHCO₃ $\left\{ \begin{array}{c} 521 \\ 522 \end{array} \right.$

$$K_1 = 1.8 \times 10^{-4}$$

$$K_1 = 5.6 \times 10^{-11}$$

$$K_2 = 2.3 \times 10^{-8}$$

11 2 族元素

523 ,524 ,525

11.1 単体

11.1.1 性質

化学式	526	526 527		529	530
融点	1282°C	649°C	839°C	$769^{\circ}\mathrm{C}$	729°C
密度 (g/cm³)	1.85	1.74	1.55	2.54	3.59
531 力	小 -				۲
水との反応	532	533	534	535	536
M(OH) ₂ の水溶性	537 性 (5	38 性)	539 性	(540)	性)
難溶性の塩	(541)		542		
炎色反応	543	544	545	546	547
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

1	1	1	1.2	製法

塩化物の548

工業的製法

11.1.3 反応

• マグネシウムの燃焼

- マグネシウムと二酸化炭素
- カルシウムと水

11.2 酸化カルシウム(生石灰)

化学式: 549

11.2.1 性質

• 550 色

• 551 との親和性が552

(553))

• 554 酸化物

• 水との反応熱が555

(556)

)

11.2.2 製法

557

Ø 558

11.2.3 反応

• コークスを混ぜて強熱すると、559

(560)

)が生成

561 と反応して562

が生成

11.3 水酸化カルシウム(消石灰)

化学式: 563

11.3.1 性質

- 564 色
- ・水に565 固体
- 566

567

 $K_1 = 5.0 \times 10^{-2}$

水溶液は568

11.3.2 製法

(569) と**570** 工業的製法

11.3.3 反応

• 塩素と反応して、571

が生成

• 580°C 以上で572

• 二酸化炭素との反応

• 塩化アンモニウムとの反応

11.4 炭酸カルシウム(石灰石)

化学式: 573

11.4.1 性質

574 色で、水に575

11.4.2 反応

• 800°C 以上で576

• 577 を多く含む水に578 (579) の形 成)

11.5 塩化マグネシウム・塩化カルシウム

化学式: (580) · (581)

11.5.1 性質

[582] 性があり、水に[583] (水との親和性が

(584))

585 剤 塩化カルシウム、586

11.5.2 製法

• 海水から得た587 を濃縮 塩化マグネシウム

工業的製法

• 588

(589)

塩化カルシウム

工業的製法

11.6 硫酸カルシウム

化学式:590

11.6.1 性質

591 を約 150°C で加熱すると、**592**

が生

成

593 を加えると、594 ・595 ・596 して

に戻る

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式:598

11.7.1 性質

• 599 色で、水に600

固体

• 反応性が601 く、X線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	602	602 603	
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	605 色の606 ↓	607 色の608 ↓	609 色の610 ↓
(沈澱条件)	(611)	(612)	(613)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	614 を作りやすい
村庄	615 元素	⇒ イタイイタイ病	(616)
用途	(鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は618 や619 に利用
- HgS は 450°C で消火させると**620** 色に変化

12.1.2 製法

12.1.3	反応	
• 高泊	温の水蒸気と反応 亜鉛	
• 塩m	酸と反応 亜鉛	
• 水	酸化ナトリウム水溶液と反応 亜鉛	

閃亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法

12.2 酸化亜鉛 (亜鉛華)・水酸化亜鉛

化学式: 621 · 622

12.2.1 性質

- 623 色で、水に624 固体
- 酸化亜鉛は625
- 626 酸化物/水酸化物

627 ·(強) 628 と反応 Zn²⁺ は、629 とも

630 とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 酸化亜鉛 工業的製法
- 亜鉛イオンを含む水溶液に、少量の631 を加える水酸化亜鉛

12.2.3 反応

- 酸化亜鉛と塩酸
- ・ 酸化亜鉛と水酸化ナトリウム水溶液
- 水酸化亜鉛と塩酸
- 水酸化亜鉛と水酸化ナトリウム水溶液
- 水酸化亜鉛の過剰なアンモニアとの反応

12.3 塩化水銀(Ⅱ)・塩化水銀(Ⅱ)

化学式: 632 ・633

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒 **塩化水銀 (I)**
- 白色で、水に少し溶ける固体で、猛毒 塩化水銀 (Ⅱ)

12.3.2 製法

酸化水銀	(II)	と水銀の混合物を加熱	塩化水銀	(Ī)

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が634 、635

金属

展性・延性が636 、電気・熱伝導率が637

- 電気・熱伝導性が高い金属 -

638 > 639 > 640 > 641

• 642 元素

(643)

には644

となり反応しない)

表面の緻密な645

が内部を保護

(例646 ,647 ,648 ,649 ,650)

電気分解(651) 極)で人工的に厚い酸化被膜をつける 製品加工を652 と呼ぶ

- イオン化傾向が653 、654 力が655

• 656

マグネシウムなどによるアルミニウム合金

13.1.2 製法

• (657)

から得た658

(別名:659)

) の溶融塩電解 工業的製法

- バイヤー法
 - 1. (660)

を濃い661

水溶

液に溶解 (金属化合物の除去)

2. 溶解しない不純物をろ過して、ろ液を水で希釈して の種結晶を入れる

3. 成長した663

を強熱

ホールエール法

1. 664 (Na₃AlF₆)を融解し、酸化アルミニウ ムを溶解

2. 665

電極で電気分解(666) 陽極

)

陰極

13.1.3 反応

1. アルミニウムの燃焼

2. アルミニウムと高温の水蒸気

3. 667

反応 (多量の668 ・669 が発生)

13.2 酸化アルミニウム・水酸化アルミニ ウム

化学式: 670 · 671

13.2.1 性質

- 672 色で、水に673
- 674 酸化物/水酸化物

675 ・(強) 676 と反応

Al³⁺ は677 と錯イオンを形成し、678 とは形 成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の679 加える「水酸化アルミニウム」

4	\sim	2	\sim	
п	3		٠.	 7 JT:

• 酸化アルミニウムと塩酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

• 水酸化アルミニウムと塩酸

• 水酸化アルミニウムと水酸化ナトリウム水溶液

13.3 ミョウバン・焼きミョウバン

化学式:680

• 681

13.3.1 性質

• 682 色で水に683

(684)

結晶

• 685

686

 $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

 Al³⁺ は価数が687 陽イオン

粘土 (688) の689 コロイド)で濁った水の浄水処理

(690) 水への溶解

13.3.2 製法

(691) と 692 の混合水溶液を濃縮 $(AlK(SO_4)_2 \cdot 12 H_2O)$

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	693	694)
特徴	灰白色で柔らかい金属	青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	695	元素
用途	696 (鉄にメッキ	・) 697 電池の698 極
川瓜	699	の遮蔽

Sn と Pb の合金 ... 700

1/	1 1	.2	製法
14		_	ジシバ

•	錫石 SnO_2 にコークスを混ぜて加熱 $\overline{\mathbf{ZZ}}$ $\overline{\mathbf{T業的製法}}$
	ナかか DIC たははしマよと っ カッカリバッ 加熱 (A) 丁光体制と
•	方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 鉛 (工業的製法

14

4.1.	3 反応			
•	鉛と希硝酸			
	An a mat make			
•	鉛と酢酸			
	~ ~ 1 [CIA			
•	スズと塩酸	1		
•	[鉛蓄電池における反応			
			正極	
			負極	

14.2 塩化スズ(Ⅱ)

14.2.1 性質

701	剤として働く

14.2.2 製法

スズと702

14.2.3 反応

塩化鉄 (Ⅲ) 水溶液と塩化スズ (Ⅱ) 水溶液

備考 塩化スズ (IV) 水溶液と硫化水素

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

703 剤として働く

14.3.2 製法

酢酸鉛 (II) 水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV)に濃塩酸を加えて加熱

14.4 鉛の難溶性化合物

14.4.1 性質

- 加熱すると溶けやすい
- 704 紙を用いた705

の検出(706 色)

第Ⅲ部

遷移金属

d 軌道・f 軌道 (内殻) の秋に電子が入っていき、最外殻電子の数は707

(708)

· (709)

:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が710 く、融点が711 金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは 712 色のものが多い
- 安定な(713)を形成しやすい(714)

単体や化合物は715
 になるものが多い*5

• 酸化数が $\left\{ \begin{array}{c} 小さい \\ 大きい \end{array} \right\}$ 酸化物は $\left\{ \begin{array}{c} \overline{716} \\ \overline{717} \end{array} \right\}$ 剤

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で718 性
- イオン化傾向が水素より719い

720 と反応 (721) には722 となり反応しない)

- 723 と反応して(724) な(725) が生成(酸化被膜)
- 湿った空気中では726 い727 を生成
- Ni と Cr の合金 ... 728

物質名	化学式 色		色		質
酸化鉄 (Ⅲ)	Fe_2O_3	729	色	730	性
四酸化三鉄	Fe ₃ O ₄	731	色	732	性
酸化鉄(II)	FeO	733	色	734	性

軟鋼	735	736	737	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	738	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

15.1.2 製法

鉄の製錬 工業的製法

15.1.3 反応

• 塩酸との反応

• 高温の水蒸気との反応

(762)微量に含まれる炭素・鉄・水による[761] などが溶けていたら反応速度上昇) 正極 (763) 負極 (764)

• 水酸化鉄(II)の生成

(765 色)

• 速やかに水酸化鉄(II)が酸素により酸化

• 766 の脱水

 $Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$ (酸化水酸化鉄(III)濃橙色) $2 \operatorname{Fe}(OH)_3 \longrightarrow \operatorname{Fe}_2O_3 \cdot n \operatorname{H}_2O + (3-n)\operatorname{H}_2O$ (767) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 768

15.2.1 性質

- 769 色の固体
- Fe²⁺ 半反応式
- 空気中で表面が770

(771)色)

15.2.2 製法

鉄に772 を加えて、蒸発濃縮

15.3 塩化鉄 (Ⅲ) 6 水和物

化学式: 773

15.3.1 性質

- 774 色で775 性のある固体
- 776

 $(\overline{777}) K_1 =$

$$K_1 = 6.0 \times 10^{-3} \text{ mol/L}$$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

		1

15.4 鉄イオンの反応

Na		NaC)H	$K_4[Fe(CN)_6]$		$K_3[Fe(CN)_6]$		H ₂ S(酸性)		KSCN	
Fe ²⁻	+	778		Fe ₂ [Fe($(CN)_6]\downarrow$	KFe[Fe($CN)_6]\downarrow$	779		780	
781	色	782	色	783	色	(784)	色 *6	785	色	786	色
Fe ³⁺		(787)		KFe[Fe($CN)_6]\downarrow$	Fe[Fe(C	$^{\mathrm{CN})_{6}]\mathrm{aq}$	788		[Fe(NC	$[S]^{2+}$
789	色	790	色	791	色 * ⁷	792	色	793	色	794	色

- Fe²⁺, Fe³⁺ は、795 とも796 とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは 797

15.5 塩化コバルト(Ⅱ)

化学式: 798

15.5.1 性質

- 799 色で800 性のある固体
- 6水和物は801色
- 塩化コバルト紙を用いた802 の検出
- Co³⁺ は**803** と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式:804

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は**805** と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

- 806 色の金属光沢
- 他の金属とさまざまな色の807
- 展性・延性が808 く、電気・熱伝導性が809 い
- イオン化傾向が水素より810 く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(811) に溶解)が生成
 812 色の酸化銅(I) 乾・813 色の錆(814))

16.1.2 製法

銅の製錬 粗銅・815 純銅 工業的製法

$$\begin{split} 2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 & \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2 \\ \operatorname{Cu}_2 S + 2 \operatorname{Cu}_2 O & \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_2 \end{split}$$

16.1.3 反応

- 銅と希硝酸
- 銅と濃硝酸
- 銅と熱濃硫酸
- 空気中で 1000°C 未満で加熱して、**826** 色の**827** 生成
- ・ さらに 1000°C 以上で加熱して、828 色の829
 生成
- 銅イオンから水酸化銅(Ⅱ)の生成
- 水酸化銅(Ⅱ)とアンモニアの反応
- 小酸化銅(Ⅱ)の加熱

16.2 硫酸銅(Ⅱ)5水和物 16 銅

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

• 830 色の固体(結晶中の831) の色)

• 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\mathrm{C}}$ 832 $\xrightarrow{113^{\circ}\mathrm{C}}$ 833 $\xrightarrow{150^{\circ}\mathrm{C}}$ 834 $\xrightarrow{650^{\circ}\mathrm{C}}$ 835 836 色 \leftarrow $+$ H₂O (検出)

- Cu²⁺ による**838** 作用 (農薬)
- 還元性を持つ有機化合物の検出*8 839 色の酸化銅(I) が生成

16.2.2 製法

銅に840 をかけてから841 。

16.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S (842)
Cu ²⁺	843	844	845	846
847 色	图48 色	849 色	850 色	851 色

• 炎色反応: 852 色

• 加熱すると853

• Cu²⁺ は**854** と錯イオンを形成し、**855** とは形成しない

16.4 銅の合金

856	(真鍮)	857	(洋白)	858	859	(ブロンズ)	860	
861		862		863		864	865	(主成分)
適度な強度と加工性		柔軟で銛	毒びにくい	柔軟で錆びにくい	硬く	て錆びにくい	軽く	て丈夫
楽器・水道用具		食器・	装飾品	五十円玉・五百円玉		像	航空	機・車両

^{*8} フェーリング液・ベネディクト液

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が866 、電気・熱伝導性が867
- イオン化傾向が水素より868

869 力のある酸(870 ・871)と反応

• 空気中で酸化しにくいが、872 とは容易に反応

17.1.2 製法

銅の電解精錬の873工業的製法

•	銀の化合物の熱分解・光分解
	酸化銀の熱分解
	ハロゲン化銀 AgX の感光

17.1.3 反応

•	銀と希硝酸	
•	銀と濃硝酸	
•	銀と熱濃硫酸	
•	銀と硫化水素	

17.2 銀(I)イオンの反応

874 水溶液に含まれる

少	量の塩基	過剰の NH ₃	HCl	H ₂ S(875) 性)	K_2CrO_4
Ag^{2+} 87	6 8	377)	878	879	880
881 色 (8	882 色	883 色	884 色	885 色	886 色

•	銀と少量の塩基
•	銀と過剰の NH ₃
•	銀と HCl
•	銀と H ₂ S
•	銀と K ₂ CrO ₄

17.3 難溶性化合物の溶解性 17 銀

17.3 難溶性化合物の溶解性

			HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S}\!\downarrow$	(887)	色	888	889	890	891)
$Ag_2O\downarrow$	892	色	893	894	895	896
AgCl↓	897	色	898	899	900	901
AgBr↓	902	色	903	904	905	906
AgI↓	907	色	908	909	910	911)
溶解している物質	912	色	913	914)	915	916

18 クロム・マンガン

化学式: 917 · 918

18.1 単体

18.1.1 性質

• 919 と反応 (920 は921 には922 となり反応しない)

空気中で錆び©23 (©24) ⇒©25 (Fe, Cr, Ni) クロム

空気中で錆び926 マンガン

927
 合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

18.2 クロム酸カリウム・ニクロム酸カリウム

化学式: 929 ・930

18.2.1 性質

• 二つは平衡状態にある

937) 剤として反応 <u>二クロム酸カリウム</u> (938 下)

18.2.2 製法

クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える
 さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)
 過酸化水素水を加えて加熱

18.2.3 反応

18.3 過マンガン酸カリウム 18 クロム・マンガン

18.3 過マンガン酸カリウム

化学式: 942

18	3.3.	1 '	性質

• 943 色の固体

•	944	剤として	反応	
	945	酸性		
	中•	塩基性		

18.3.2 製法

1.	酸化マンガン(IV)と水酸化ナトリウムを混ぜ	て空気中で加熱		
		$(MnO_2:946)$	色/K ₂ MnO ₄ : 947 色)	
2.	(a) 酸性にする			
		(MnO_4^2)	²⁻ :948 色/MnO ₄ -:949	色)
	(b) 電気分解する			
	(950) 極)			

18.4 マンガンの安定な酸化数

残留酸素の定量(ウィンクラー法)

1.	マンガン (III) イオンを含む水溶液に塩基を加え	える	
2.		恵やかに反	反応
3.	希硫酸を加える	(951)	対心
		(831)	剤)

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は① につめて、液体の乾燥剤は② に入れて使用。

性質	乾燥剤	化学式	対象	対象外(不適)
酸性	3	4	酸性・中性	塩基性の気体(⑤)
100 任	6	7	酸性・中性	+8 (9)
中性	10	11	ほとんど全て	(12)
中性	13	14	はこんと主く	特になし
塩基性	15	16	中性・塩基性	酸性の気体
塩基性	17	18	中性· 温基性	(19) ,20) ,21) ,22) ,23) ,24)

B 水の硬度

C 金属イオンの難容性化合物

	Cl-	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$_{ m H_2S}$	OH-	OH^-	NH_3
			酸性	中・塩基性	NH3	過剰	過剰
K ⁺	26	27)	28	29	30	(31)	32
	33 色	34 色	35 色	36 色	37 色	38 色	39 色
Ba ²⁺	(40)	41)	42	(43)	(44)	(45)	46)
	— 47 色	48 色	49 色	50 色	51 色	<u>5</u> 2 色	<u>—</u> 53 色
Sr^{2+}	54	55	56	57)	58	59	60
	61 色	62 色	63 色	64 色	65 色	66 色	67 色
Ca ²⁺	68	69	70	71	72	73	74
	75 色	76 色	77 色	78 色	79 色	80 色	81 色
Na ⁺	82	83	84	85	86	87)	88
	89 色	90 色	91 色	92 色	93 色	94 色	95 色
Mg^{2+}	96	97	98	99	100	101	102
	103 色	104 色	105 色	106 色	107 色	108 色	109 色
Al ³⁺	(110)	111)	112	113	(114)	(115)	116
	117 色	118 色	119 色	120 色	121 色	122 色	123 色
Mn ²⁺	124	125	126	127	128	129	130
	131 色	132 色	133 色	134 色	135 色	136 色	137 色
Zn ²⁺	138	(139)	(140)	141	142	143	144
	145 色	146 色	147 色	148 色	149 色	150 色	151 色
Cr^{3+}	152	153	154	155	(156)	(157)	158
	159 色	160 色	161 色	162 色	163 色	164 色	165 色
Fe ²⁺	166	167	168	169	170	(171)	172
2.1	173 色	174 色	175 色	176 色	177 色	178 色	〔179〕 色
Fe ³⁺	180	(181)	182	183	184	185	186
G 12±	187 色	188 色	189 色	190 色	(191) 色	192 色	193 色
Cd^{2+}	(194)	195	196	197	198	(199)	200
Co ²⁺	201 色	202 色	203 色	204 色	205 色	206 色	207 色
Co-	208 215 色	209 216 色	210 217 色	211 218 色	212 219 色	213 220 色	(214)(221) 色
Ni ²⁺	222	223	224	225	226	227)	228
111	229 色	230 色	231 色	232 色	233 色	(234) 色	235 色
Sn ²⁺	236	237)	238	239	240	(241)	242
	243 色	244 色	245 色	246 色	247 色	248 色	249 色
Pb ²⁺	250	<u>251</u>	252	253	254	255)	256
	257 色	258 色	259 色	260 色	261 色	262 色	263 色
Cu ²⁺	264	265	266	267	268	269	270
	271 色	272 色	273 色	274 色	275 色	276 色	277 色
Hg^{2+}	278	279	280	281)	282	283	284)
	285 色	286 色	287 色	288 色	289 色	290 色	291 色
Hg ₂ ²⁺	292	293	294)	295)	296	297)	298
	299 色	300 色	301 色	302 色	303 色	304 色	305 色
Ag^+	306	307	308	309	310	311)	312
	313 色	314 色	315 色	316 色	317 色	318 色	319 色

D 錯イオンの命名法

(主に遷移)金属イオンに対して、320

を持つ321 や322

が323 結合

「配位子の数(数詞)配位子 金属(価数)酸(陰イオンの場合)イオン」

金属イオン	Ag ⁺ Cu	Cu ²⁺	Zn^{2+}]	Fe ²⁺	Fe ³⁺ Co ³⁻	⁺ Ni ²⁺ (Cr^{3+} Al^{3+}
配位数	324		325		326			
	327 系	328 形	329	形		330	形	
数 1	2	2	4		5	6	7	8

数	1	2	3	4	5	6	7	8
数詞	331	332	333	334	335	336	337	338
		339	340					

配位子	NH_3	CN^-	$_{\mathrm{H_2O}}$	OH ⁻	Cl^-	$H_2N-CH_2CH_2-NH_2$
名称	341)	342	343	344	345	346

エチレンジアミン … 1 分子あたり 2 か所で347 結合する (2 座配位子) (348 錯体)

- [Zn(OH)₄]²⁻
- $[Zn(NH_3)_4]^{2+}$
- $[Ag(S_2O_3)_2]^{3-}$

352

 $\hline \textbf{351} \\ \bullet \ \left[\mathrm{Cu}(\mathrm{H_2NCH_2CH_2NH_2}) \right]^{2+}$

E 金属イオンの系統分離

