# **Chapter 9 Database Design**



### Learning Objectives (1 of 2)

- In this chapter, you will learn:
  - That successful database design must reflect the information system of which the database is a part
  - That successful information systems are developed within a framework known as the Systems Development Life Cycle (SDLC)



### **Learning Objectives** (2 of 2)

- In this chapter, you will learn:
  - That within the information system, the most successful databases are subject to frequent evaluation and revision within a framework known as the Database Life Cycle (DBLC)
  - How to conduct evaluation and revision within the SDLC and DBLC frameworks
  - About database design strategies: top-down vs. bottom-up design and centralized versus decentralized design



### The Information System

- Provides for data collection, storage, and retrieval
- Composed of:
  - People, hardware, software
  - Database(s), application programs, procedures
- Systems analysis: Process that establishes need for and extent of information system
- Systems development: Process of creating information system



### **The Information System - 2**

- Applications
  - Transform data into information that forms basis for decision making
  - Usually produce the following:
    - Formal report
    - Tabulations
    - Graphic displays
  - Composed of the following two parts:
    - Data
    - Code: program instructions



FIGURE 9.1

#### Generating information for decision making





#### **NEU CPS Related Courses**

- ALY 6060 Decision Support and Business Intelligence
  - Introduces current and emerging business analytical concepts and information technologies to support decision making and business intelligence.
  - Commercial decision support systems in various application areas are introduced and discussed using case studies (CRM, SFDC)
  - Introduces business intelligence technology and applications
  - Offers students an opportunity to gain hands-on experience using business intelligence tools, including Tableau or QlikView.



### Performance Factors of an Information System

- Define "Performance"
- Depends on three factors:
  - Database design and implementation
  - Application design and implementation
  - Administrative procedures
- Database development: Process of database design and its implementation
- Implementation phase includes:
  - Create database storage structure
  - Loading data into the data
  - Providing for data management



### Systems Development Life Cycle (SDLC)

- Traces history (life cycle) of an information system
- Database design and application development are mapped out and evaluated
- Divided into five phases:
  - Planning
  - Analysis
  - Detailed Systems Design
  - Implementation
  - Maintenance
- Iterative rather than sequential process



#### Figure 9.2 - The Systems Development Life Cycle (SDLC)





### **Planning**

- General overview of company and objectives
- Assessment to answer important questions:
  - Should the existing system be continued?
  - Should the existing system be modified
  - Should the existing system be replaced?
- Study and evaluate alternative solutions
  - Technical aspects of hardware and software requirements (CPU, RAM, storage space, redundancy, availability, geo-location, RTO and RPO)
  - System Cost
  - Operational Cost



### **Analysis**

- Problems defined during planning phase are examined in great detail during analysis
- Thorough audit of user requirements
- Existing hardware and software systems are studied
- Goal: Better understanding of:
  - System's functional areas and strengths
  - Actual problems user's "pain points"
  - Potential problems
  - Opportunities e.g. outsource?



### **Detailed System Design**

- Designer completes design of system's processes
- Includes all necessary technical specifications
- Steps laid out for conversion from old to new system
  - Typically called a "Statement of Work" (SOW) if being completed by a 3<sup>rd</sup> party or consultant
- Training principles and methodologies are also planned
- Costs, timeline, milestones, deliverables, etc all must be approved by management and stakeholders



### **Implementation**

- Hardware is installed (on-prem) or provisioned (in cloud)
- DBMS software is installed typically in partnership with DMBS vendor's Professional Services team
- Cycle of coding, testing, and debugging continues until system is ready for delivery
- Database is created and system is customized
  - Created of tables and view
  - User permissions and "Role Based Access Control" (RBAC)



#### **Maintenance**

- Three types of maintenance activity:
  - Corrective Maintenance
    - In response to system errors or issues
    - Typically "service packs" or vulnerability patches performed during "maintenance windows" after going through testing and "Change Control" procesess
  - Adaptive Maintenance
    - In response to changes in business needs
    - E.g. Increased storage, RAM, or CPU
  - Perfective Maintenance
    - Upgrades, add-ons, or enhancements



### The Database Life Cycle (DBLC)

- Six Phases:
  - Database initial study
  - Database design
  - Implementation and Loading
  - Testing and Evaluation
  - Operation
  - Maintenance and Evolution





### **Purpose of Database Initial Study**

- Analyze company situation
- Define problems and constraints
  - Formal and informal information sources
  - Finding precise answers is important
  - Accurate problem definition does not always yield a solution
- Define objectives
- Define scope extent of design according to operational req's
- Define boundaries limits that are external to the system (e.g. cost)
- Define Availability How many 9's? (99.9%, 99.99%, 99.999%)



# Figure 9.4 - A Summary of Activities in the Database Initial Study





### **Database Design**

- Supports company's operations and objectives
- Most critical phase
  - Ensures final product meets user and system requirements
- Points for examining completion procedures
  - Data component is an element of whole system
  - System analysts/programmers design procedures to convert data into information
  - Database design is an iterative process



# Figure 9.5 - Two Views of Data: Business Manager and Database Designer





### Figure 9.6 - Database Design Process





### Implementation and Loading

- Install the DBMS
  - Virtualization: Creates logical representations of computing resources independent of underlying physical computing resources
- Create the databases
  - Requires the creation of special storage-related constructs to house the end-user tables
- Load or convert the data
  - Requires aggregating data from multiple sources



### **Testing and Evaluation**

- Occurs in parallel with applications programming
- Physical security
- Password security
- Access rights
- Audit trails
- Data encryption
- Optimization



### **Levels of Database Backups**

- Full backup/dump: All database objects are backed up in their entirety
- Differential backup: Only modified/updated objects since last full backup are backed up
- Transaction log backup: Only the transaction log operations that are not reflected in a previous backup are backed up
- Backups are provided with high security
- Recovery Point Objective (RPO) How far back do we need to go?
- Recovery Time Objective (RTO) How quickly do you need it?



#### **Maintenance and Evolution**

- Preventive maintenance (backup)
- Corrective maintenance (recovery)
- Adaptive maintenance
- Assignment of access permissions and their maintenance for new and old users
- Generation of database access statistics
- Periodic security audits
- Periodic system-usage summaries



# Figure 9.8 - Parallel Activities in the DBLC and the SDLC





### **Conceptual Design**

- Designs a database independent of database software and physical details
- Conceptual data model Describes main data entities, attributes, relationships, and constrains
- Designed as software and hardware independent
- Minimum data rule: All that is needed is there, and all that is there is needed



### **Table 9.2 - Conceptual Design Steps**

| STEP | ACTIVITY                                       |
|------|------------------------------------------------|
| 1    | Data analysis and requirements                 |
| 2    | Entity relationship modeling and normalization |
| 3    | Data model verification                        |
| 4    | Distributed database design                    |



### **Data Analysis and Requirements**

- Designers efforts are focused on
  - Information needs, users, sources and constitution
- Answers obtained from a variety of sources
  - Developing and gathering end-user data views
  - Directly observing current system: existing and desired output
  - Interfacing with the systems design group



### **Description of Operations**

Provides precise, up-to-date, and reviewed description of activities defining an organization's operating environment



# Table 9.3 - Developing the Conceptual Model Using ER Diagrams

| STEP | ACTIVITY                                                                                |
|------|-----------------------------------------------------------------------------------------|
| 1    | Identify, analyze, and refine the business rules.                                       |
| 2    | Identify the main entities, using the results of Step 1.                                |
| 3    | Define the relationships among the entities, using the results of Steps 1 and 2.        |
| 4    | Define the attributes, primary keys, and foreign keys for each of the entities.         |
| 5    | Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.) |
| 6    | Complete the initial ER diagram.                                                        |
| 7    | Validate the ER model against the end users' information and processing requirements.   |
| 8    | Modify the ER model, using the results of Step 7.                                       |



# Figure 9.10 – ER Modeling is an Iterative Process Based on Many Activities





## Figure 9.11 - Conceptual Design Tools and Information Sources





#### **Data Model Verification**

- Verified against proposed system processes
- Module: Information system component that handles specific business function
- Revision of original design
  - Careful reevaluation of entities
  - Detailed examination of attributes describing entities
- Resulting model verified against each of the module's processes



#### **Table 9.5 - The ER Model Verification Process**

| STEP | ACTIVITY                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 1    | Identify the ER model's central entity.                                                                                        |
| 2    | Identify each module and its components.                                                                                       |
| 3    | Identify each module's transaction requirements: Internal: updates/inserts/deletes/queries/reports External: module interfaces |
| 4    | Verify all processes against system requirements.                                                                              |
| 5    | Make all necessary changes suggested in Step 4.                                                                                |
| 6    | Repeat Steps 2–5 for all modules.                                                                                              |



# Figure 9.12 - Iterative ER Model Verification Process





## **Cohesivity and Module Coupling**

- Cohesivity: Strength of the relationships among the module's entities
  - Must display HIGH cohesivity entities are strongly related, module complete and self-sufficient
- Module coupling: Extent to which modules are independent to one another
  - Low coupling decreases unnecessary intermodule dependencies



#### **Distributed Database Design**

- Portions of database may reside in different physical locations
- Database fragment: Subset of a database stored at a given location
- Ensures database integrity, security, and performance



#### **DBMS Software Selection**

- Cost
- DBMS features and tools
- Underlying model
- Portability
- DBMS hardware requirements
- Existing staff skillset
- Availability of resources
- Ease of analytics



## **Logical and Physical Design**

- Logical design: Designs an enterprise-wide database that is based on a specific data model but independent of physical-level details
- Validates logical model:
  - Using normalization
  - Integrity constraints
  - Against user requirements
- Physical design: Process of data storage organization and data access characteristics of the database



# **Table 9.6 - Logical Design Steps**

| STEP | ACTIVITY                                              |
|------|-------------------------------------------------------|
| 1    | Map the conceptual model to logical model components. |
| 2    | Validate the logical model using normalization.       |
| 3    | Validate the logical model integrity constraints.     |
| 4    | Validate the logical model against user requirements. |



# Table 9.7 - Mapping the Conceptual Model to the Relational Model

| STEP | ACTIVITY                             |
|------|--------------------------------------|
| 1    | Map strong entities                  |
| 2    | Map supertype/subtype relationships. |
| 3    | Map weak entities.                   |
| 4    | Map binary relationships.            |
| 5    | Map higher-degree relationships.     |



#### **Table 9.8 - Physical Design Steps**

| STEP | ACTIVITY                                |
|------|-----------------------------------------|
| 1    | Define data storage organization.       |
| 2    | Define integrity and security measures. |
| 3    | Determine performance measurements.     |



#### **Clustered Tables and Database Role**

Clustered Tables: Technique that stores related rows from two related tables in adjacent data blocks on disk

Database Role: Set of database privileges that could be assigned as a unit to a user or group

- SysAdmin Role
- Developer Role
- End-User role
- Auditor Role



# Figure 9.14 - Top-down versus Bottom-up Design Sequencing





### Figure 9.15 - Centralized Design





### Figure 9.16 - Decentralized Design





### Figure 9.17 - Summary of Aggregation Problems



