1 La méthode d'itération (10 points)

Étant donnée une fonction $f: \mathbb{R} \to \mathbb{R}$ continue, la méthode d'itération cherche un réel \bar{x} tel que $f(\bar{x}) = \bar{x}$. La méthode d'itération consiste à choisir une valeur initiale $x_0 = a$ puis à construire la suite définie par

$$x_0 = a, \quad x_{n+1} = f(x_n)$$
 (1)

Le réel \bar{x} recherché est un point fixe de la suite. Sous certaines hypothèses, la suite (1) converge vers lui.

La méthode d'itération peut être utilisée pour résoudre des équations numériques : étant donnée une fonction $g: \mathbb{R} \to \mathbb{R}$, chercher un réel \bar{x} tel que $g(\bar{x}) = 0$ revient, en posant f(x) = g(x) + x, à chercher \bar{x} tel que $f(\bar{x}) = \bar{x}$.

Question 1 [1 pt]. Donner une suite d'instructions qui calcule les n premiers termes de la suite (1). Les termes calculés peuvent être affectés à des variables indicées. La fonction f, le réel a et l'entier n sont supposés définis.

Question 2 [1 pt]. Donner une suite d'instructions qui calcule le n-ième terme de la suite sans utiliser de variables indicées. Indiquer quelle variable contient le résultat. La fonction f, le réel a et l'entier n sont supposés définis.

On souhaite maintenant écrire une fonction *point_fixe* qui retourne une approximation de \bar{x} . La précision de l'approximation doit pouvoir être fixée par l'utilisateur.

Question 3 [1 pt]. Quels paramètres donner à cette fonction?

Question 4 [1 pt]. Quel type de structure de contrôle (de boucle) utiliser? Pourquoi? Préciser la condition d'arrêt.

Question 5 [2 pts]. Écrire *point_fixe* en MAPLE (dans cette question, on suppose que le réel \bar{x} recherché existe et que la méthode converge vers lui). Ne pas utiliser de variables indicées.

On souhaite maintenant améliorer la fonction $point_fixe$ pour gérer le cas où la méthode ne convergerait vers aucun réel \bar{x} . L'idée consiste à fournir à la fonction un paramètre Nmax supplémentaire et à arrêter les calculs si le terme courant de la suite est suffisamment proche d'un point fixe ou si plus de Nmax itérations ont été effectuées.

Question 6 [2 pts]. Reporter la modification sur la fonction.

On suppose que la suite converge vers \bar{x} . On définit l'erreur à l'étape n par $e_n = x_n - \bar{x}$. On peut montrer sous certaines hypothèses que

- 1. dans le cas où $f'(\bar{x}) \neq 0$ il existe une constante $K \neq 0$ telle que $\lim_{n \to +\infty} \frac{e_{n+1}}{e_n} = K$, 2. dans le cas où $f'(\bar{x}) = 0$ il existe une constante $K \neq 0$ telle que $\lim_{n \to +\infty} \frac{e_{n+1}}{e_n^2} = K$.

Question 7 [2 pts]. Que peut—on dire de la vitesse de convergence de la méthode d'itération dans chacun de ces cas? Comparer le nombre de chiffres exacts de x_n et celui de x_{n+1} lorsque x_n est proche du point fixe.

Algorithme pour logarithme (10 points) 2

On s'intéresse à un algorithme de calcul du logarithme en base 10, noté $\log x$, d'un réel xdonné. L'algorithme proposé ci-dessous prend en entrée un réel 1 < x < 10 et un réel $\varepsilon > 0$. Il retourne un intervalle $[lga_n, lgb_n]$ tel que $lgb_n - lga_n < \varepsilon$ et $lga_n < \log x < lgb_n$.

En voici le principe: on construit deux suites d'intervalles $[lga_n, lgb_n]$ et $[a_n, b_n]$ en même temps. Initialement

$$a_0 = 1$$
, $b_0 = 10$, $lga_0 = \log a_0$, $lgb_0 = \log b_0$.

On remarque que $x \in [a_0, b_0]$ et $\log x \in [lga_0, lgb_0]$. On remarque aussi qu'on n'a pas besoin de disposer de la fonction log pour calculer les valeurs des variables lga_0 et lgb_0 . Supposons connues les valeurs des variables a_n, b_n, lga_n, lgb_n . Pour calculer leur valeur à l'ordre n+1, on commence par calculer $r = \sqrt{a_n b_n}$. Si r < x alors

$$\begin{array}{lll} a_{n+1} & = & r \\ b_{n+1} & = & b_n \\ lga_{n+1} & = & (lga_n + lgb_n)/2 \\ lgb_{n+1} & = & lgb_n. \end{array}$$

Si $r \ge x$ alors

$$\begin{array}{rcl} a_{n+1} & = & a_n \\ b_{n+1} & = & r \\ lga_{n+1} & = & lga_n \\ lgb_{n+1} & = & (lga_n + lgb_n)/2. \end{array}$$

On remarque que $\log r = (lga_n + lgb_n)/2$ se calcule sans utiliser la fonction \log .

Question 8 [1 pt]. Quelles sont les valeurs numériques données aux variables lga_0 et lgb_0 ?

Question 9 [1 pt]. Calculer les termes d'indice 1 des suites précédentes pour x = 4. En déduire un encadrement de log 4 de largeur 0.5.

Question 10 [3 pts]. Donner une suite d'instructions calculant dans des variables indicées les n premiers termes des suites définies ci-dessus. On suppose les variables x et n déjà initialisées. Il est interdit d'utiliser la fonction \log mais la fonction sqrt (racine carrée) est permise.

Question 11 [3 pts]. Écrire en MAPLE une fonction algologa, paramétrée par x et ε qui retourne l'encadrement désiré. Réaliser cette fonction sans utiliser de variables indicées. Il est interdit d'utiliser la fonction log mais log

Question 12 [1 pt]. Donner un invariant de la boucle principale de votre fonction décrivant les relations qui lient les variables a et lga d'une part et b et lgb d'autre part.

Question 13 [1 pt]. La méthode utilisée pour calculer $\log x$ est proche d'une méthode de résolution d'équations (numériques ou différentielles) vue en cours ou en TD. Quelle méthode?