Année : 2024/2025	DS 1——S1	2bac pc
ouikrim	fkih ben salh	ecole les nations

PROBLÈME

I - soient les fonctions f et g definies sur $\mathbb R$ par :

$$f(x) = 1 - \frac{9}{8}x^3$$
 et $g(x) = x^5 + x$.

- 1. montrer que g est impaire.
- 2. a soit n entier naturel impaire. et $a \in \mathbb{R}$ resoudre dans \mathbb{R} l'equation $x^n = a$.
 - b montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on detreminera.
 - c dresser le tableau de variation de f^{-1} .
 - d determiner $f^{-1}(x)$ pour $x \in J$
 - e representer une allure de la courbe de f^{-1} dans le meme repere orthonormé. (on vous donne la courbe de f)
- 3. a montrer que l'equation f(x) = g(x) admet une solution unique α dans $\mathbb R$ et verifier que $\frac{1}{2} < \alpha < 1$
 - b deduire que $\forall x < \alpha \quad f(x) > g(x)$ et interpreter graphiquement ce resultat
 - c deduire que $\forall x < \alpha \quad g(-x) + f(x) > 0$
- 4. soit la fonction h definie sur \mathbb{R} par :

$$\begin{cases} h(x) = \sqrt{1 - x^5} & \text{si} \quad x < \alpha \\ h(x) = \sqrt{x + \frac{9}{8}x^3} & \text{si} \quad x > \alpha \end{cases}$$

- a montrer que h est continue sur $]-\infty, \alpha[$ et $]\alpha, +\infty[$
- b montrer que h est continue en α
- c deduire que $h(\mathbb{R})$ est un intervalle.
- d comparer les nombres $h\left(\frac{1}{\sqrt[5]{2}}\right)$ et $h\left(\sqrt[3]{2}\right)$ (justifier)
- e calculer $\lim_{x \to +\infty} xh\left(\frac{1}{x}\right) h(x)$

ci-joint la courbe de f:

Desktop/dr.png