

Statistik I

Prof. Dr. Simone Abendschön

12. Vorlesung am 1.2.24: Hinführung Inferenzstatistik, Teil 2

- Lehrveranstaltungsevaluation
- Wahrscheinlichkeiten für stetige Zufallsvariablen
- Statistische Verteilungen: Rolle der (Standard-)
 Normalverteilung

Nächste Woche

- Zentrales Grenzwerttheorem
- Übungsbeispiele

Evaluation

Siehe stud-ip/Benachrichtigung

Lernziele

- Sie wissen, warum wir uns mit Wahrscheinlichkeiten beschäftigen
- Sie wissen was eine statistische Verteilung bzw.
 Wahrscheinlichkeitsverteilung ist
- Sie erweitern Ihre Kenntnisse über die sog.
 "Normalverteilung" und wissen wozu sie in der
 Inferenzstatistik dient
- Sie können Flächenanteile und damit Wahrscheinlichkeiten innerhalb der Normalverteilung berechnen

- Wahrscheinlichkeit entspricht der relativen Häufigkeit eines Ereignisses
- Funktioniert v.a. gut für leicht abzählbare Ereignisse (diskrete "endliche" Zufallsvariablen)
- Was tun bei Variablen mit vielen Ausprägungen oder stetigen (kontinuierlichen) Variablen?

 Bei mehreren Ausprägungen: Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

Beispiel: Taschengeld Schüler*innen, N= 10 (1, 1, 2, 3, 3, 4, 4, 4, 5, 6) n= 1; P(X > 4) = ?

 Bei mehreren Ausprägungen: Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1; P(X > 4) = ?$$

Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1$$
; $P(X > 4) = 2/10$

Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n= 1; P(X > 4) = 2/10 P(X < 5) = ?$$

•Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1$$
; $P(X > 4) = 2/10 (20\%) P(X < 5) = 8/10 (80\%)$

Übung

Bestimmen Sie die Wahrscheinlichkeiten anhand der Grafik:

a.
$$P(X > 2) = ?$$

b.
$$P(X > 5) = ?$$

c.
$$P(X < 3) = ?$$

Übung

Bestimmen Sie die Wahrscheinlichkeiten anhand der Grafik:

a.
$$P(X > 2) = 7/10 = 0.7$$

b.
$$P(X > 5) = 1/10 = 0,1$$

c.
$$P(X < 3) = 3/10 = 0.3$$

Was tun bei Variablen mit sehr vielen Ausprägungen oder stetigen kontinuierlichen Variablen?

- Bei kontinuierlichen Zufallsvariablen wird mit Verteilungsfunktionen gearbeitet, da es unendlich viele mögliche Ereignisse gibt
- Wahrscheinlichkeit für ein ganz bestimmtes Ereignis geht gegen 0

 Verschiedene Verteilungsmodelle der Stochastik: Normalverteilung als zentrales Modell

- Wahrscheinlichkeiten für kontinuierliche Variablen können nicht direkt berechnet werden
- Stattdessen: Wie wahrscheinlich ist es, dass eine Zufallsvariable in ein bestimmtes Intervall fällt
- Normalverteilungskurve als Dichtefunktion
- Die Fläche unter einer Dichtefunktion ist 1 (bzw. 100%)

 Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten (annähernd) normalverteilt in der Bevölkerung auf (IQ, Körpergröße)

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)
- Inferenzstatistik: zentrales Modell für Wahrscheinlichkeitsverteilungen für kontinuierliche Zufallsvariablen, sog. "stetige Verteilungen"

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)
- Inferenzstatistik: zentrales Modell für Wahrscheinlichkeitsverteilungen für kontinuierliche Zufallsvariablen, sog. "stetige Verteilungen"
- (Stichprobenkennwerte sind (unter bestimmten Bedingungen) normalverteilt → nächste Woche)

- Beschreibt eine symmetrische Verteilungsform in Form einer Glocke
- Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf

Abbildung 10.4: Normalverteilungen mit verschiedenen Parametern \bar{x} und s^2

z-.B. Gehring/Weins 2010

(Standard-)Normalverteilung

- Symmetrisch
- Mittelwert=Median=Modus
- Größte Häufigkeiten in der Mitte, geringere Häufigkeiten rechts/links von der Mitte
- Standardnormalverteilung (z-Transformation von Rohwerten): $\mu = 0$ und $\sigma = 1$

Z-Transformation > Standardnormalverteilung

- Ermittlung der Wahrscheinlichkeit, dass eine kontinuierliche (Zufalls-) Variable in ein bestimmtes Intervall fällt über den Flächenanteil, der unterhalb der Dichtefunktion liegt
- Verteilungsfunktion: Integral über der Dichtefunktion gibt an, wie wahrscheinlich es ist, dass eine Zufallsvariable kleiner oder gleich einem gegebenen Wert ist.
- Rechnerische Bestimmung ist sehr aufwendig (→ z-Tabelle, Statistikprogramme werden genutzt)

- Wahrscheinlichkeitsdichte für Werte zwischen -∞ und +∞ Fläche unter der Kurve = 1, d.h. 100%
- Wahrscheinlichkeit für Wert aus einem bestimmten Bereich = Fläche über diesem Intervall → Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Häufigkeiten/Wahrscheinlichkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu-1\cdot\sigma;\mu+1\cdot\sigma]$	68.3%
$[\mu-1.96\cdot\sigma;\mu+1.96\cdot\sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu\!-\!2.58\cdot\sigma;\mu\!+\!2.58\cdot\sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Gegeben sei für eine Population von N = 50.000 Personen deren Körpergröße (in cm) mit N(175;5) – wie groß sind 95% aller Personen?

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Wahrscheinlichkeiten/Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu-1\cdot\sigma;\mu+1\cdot\sigma]$	68.3%
$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu\!-\!2.58\cdot\sigma;\mu\!+\!2.58\cdot\sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Gegeben sei für eine Population von N = 50.000 Personen deren Körpergröße (in cm) mit N(175;5) – wie groß sind "die mittleren" 95% aller Personen?

,	Intervall	Flächenanteil
	$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
<	$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
	$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
	$[\mu\!-\!2.58\cdot\sigma;\mu\!+\!2.58\cdot\sigma]$	99.0%
	$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Gegeben sei für eine Population von N = 50.000 Personen deren Körpergröße (in cm) mit N(175;5) – wie groß sind "die mittleren" 95% aller Personen?

[175–1,96·5; 175+ 1,96·5] = [165,2; 184,8] "95% aller Personen haben eine Körpergröße zwischen 165,2cm und 184,8cm"

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = \frac{X - \mu}{\sigma}$$

$$3.P(z > 2) =$$

Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100.

Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen/auszuwählen ("sampeln")?

$$P(X > 700) = ?$$

- 1.Welcher (Flächen-)Anteil ist größer als 700?
- 2.Exakte Position von X durch z-Wert bestimmen:

$$z = (700-500)/100 = 2.0$$

$$3.P(z > 2) =$$

$$z = \frac{X - \mu}{\sigma}$$

Flächenanteile/Standardnormalverteilung

- •Wahrscheinlichkeiten/ Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Beispiel 2: Wie hoch ist die Wahrscheinlichkeit, jdn zufällig mit einem Wert größer 700 zu Ziehen?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimme

$$z = (700-500)/100 = 2.0$$

3.
$$P(z > 2) = 2,28\%$$

Flächenanteile & Wahrscheinlichkeiten für z-Werte

- Berechnung der Flächenanteile der Dichte verschiedener Verteilungsmodelle und damit der Wahrscheinlichkeiten für kontinuierliche Variablen ist sehr aufwendig → für viele Verteilungen (auch Standardnormalverteilung) entsprechende Tabellen mit Werten (Z-Tabelle)
- Oder: Statistikprogramme berechnen die Flächenanteile
- Z-Tabelle als "Vorlage": Typischerweise sind die Flächen links vom Wert der Variablen tabelliert.

z-Tabelle

11 z-Tabelle

Die Tabelle enthält z-Werte, die auf zwei Stellen hinter dem Komma gerundet sind: z.B. –2.03, 1.07 oder 1.96.

Leseübung: Die Tabelle ist in zwei Teile aufgeteilt und somit ist auch jeder z-Wert in zwei Teile aufgeteilt: *Teil* 1 mit der ersten Nachkommastelle (Spalte 1) und *Teil* 2 mit der zweiten Nachkommastelle (alle folgenden Spalten). Jetzt suchen wir die Wahrscheinlichkeit (als Wert der Funktion $\phi_{0,1}(z)$), dass maximal ein z-Wert von -1.44 auftritt: In *Teil* 1 geht man zur Zeile -1.4 und in dieser Zeile dann in die Spalte mit der zweiten Nachkommastelle 0.04 (*Teil*2). Die gesuchte Wahrscheinlichkeit beträgt $\phi_{0,1}(z) = 0.0749$. Das heißt, die Wahrscheinlichkeit das ein z-Wert kleiner gleich -1.44 ist beträgt 7.49 % (bzw. grafisch: die Fläche bis zum z-Wert von -1.44 beträgt 7.49 % der gesamten Fläche.

z-Tabelle

z-Wert	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0,0.	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1.	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2.	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3.	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4.	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5.	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6.	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7.	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8.	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9.	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0.	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1.	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2.	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3.	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4.	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5.	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6.	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7.	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8.	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9.	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0.	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817

(Gehring/Weins Formelsammlung S.

13f) 39

SITAT

z-Wert	0	1	2	3	4	5	6	7	8	9
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0,7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0,9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0,9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0,9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0,9974	0,9975	0,9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Beispiel 2

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = \frac{X - \mu}{\sigma}$$

3.P(z > 2) = 1-0.9772 = 0.0228 = 2.28% oder:

-2,0.	0,0228	0,022
-1,9.	0,0287	0,028
-1,8.	0,0359	0,035

Wahrscheinlichkeit und Normalverteilung

Beispiel Wh.:

Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100. Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen/auszuwählen ("sampeln")

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Antel ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = (700-500)/100 = 2.0$$

3.
$$P(z > 2) = 2,28\%$$

Flächenanteile und Wahrscheinlichkeiten für z-Werte

- •z-Werte-Tabelle (z-Tabelle, unitnormal table) enthält Anteile für alle z-Werte; Typischerweise sind die Flächen **links** vom jeweiligen z-Wert tabelliert.
- Anhand der Flächenanteile können die z-Werte bestimmt werden
- Wahrscheinlichkeit äquivalent zu den Flächenanteilen

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

z-Werte für Flächenanteile/Wahrscheinlichkeiten bestimmen:

Praktische Vorgehensweise:

- Zunächst Normalverteilung mit der gesuchten Fläche skizzieren
- Dann entsprechende Werte aus z-Tabelle auswählen

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Vorgehen:

- Skizzieren NV und gesuchte Fläche
- Bestimme z = 1.00 in der z-Werte Tabelle: 0,8413
- P(z > 1.0) = 1-0.8413 = 0.1587 = 15.87%

	z-Wert	0
•	0.6	0.7257
•	0.7	0.7580
	8.0	0.7881
	0.9	0.8159
	1.0	0.8413
-	1.1	0.8643

Vorgehen:

- Skizzieren NV und gesuchte Fläche
- Bestimme z = 1.00 in der z-Werte Tabelle: 0,8413
- P(z > 1.0) = 1-0.8413 = 0.1587 = 15.87%

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

z-Werte für Flächenanteile/Wahrscheinlichkeiten bestimmen:

Praktische Vorgehensweise:

- Zunächst Normalverteilung mit der gesuchten Fläche skizzieren
- Dann entsprechende Werte aus z-Tabelle auswählen

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

Vorgehen:

- -Skizzieren NV und gesuchte Fläche
- Bestimme z = 1.5 in der z-Werte Tabelle:

$$P(z < 1.5) = 0.9332 = 93.32\%$$

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <-0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

Welche z-Werte separieren die mittleren 60% aller Werte von den restlichen 40% der Verteilung?

Flächenanteile & Wahrscheinlichkeiten für z-Werte

UNIVERSI

Anwendungsbeispiel:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

Anwendungsbeispiel A:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

- Anwendungsbeispiel A:
- Gegeben sei eine Verteilung von IQ-Werten mit μ = 100 und σ = 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?
- 1) Transformieren Rohwerte in z-Werte

$$z = \frac{X-\mu}{\sigma} = \frac{120-100}{15} = \frac{20}{15} = 1.33$$

IQ-Wert von 120 entspricht einem z-Wert von 1.33 IQ-Werte kleiner als 120 entsprechen z-Werten kleiner als 1.33

2) Korrespondierenden z-Wert in Tabelle auswählen:

$$P = 0.9082$$

$$P(X < 120) = P(z < 1.33) = 0.9082 = 90.82\%$$

Flächenanteile & Wahrscheinlichkeiten für z-Werte

z-Wert	-:-0	-:-1	-:-2	-:-3	4
0.6	0.7257	0.7291	0.7324	0.7357	0.7389
0.7	0.7580	0.7611	0.7642	0.7673	0.7703
0.8	0.7881	0.7910	0.7939	0.7967	0.7995
0.9	0.8159	0.8186	0.8212	0.8238	0.8264
1.0	0.8413	0.8438	0.8461	0.8485	0.8508
1.1	0.8643	0.8665	0.8686	0.8708	0.8729
1.2	0.8849	0.8869	0.8888	0.8907	0.8925
1.3	0.9032	0.9049	0.9066	0.9082	0.9099
1.4	0.9192	0.9207	0.9222	0.9236	0.9251

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel B: Hausaufgabe/Tutorium

- Wahrscheinlichkeiten bzw. Anteile zwischen zwei (normalverteilten) X-Werten bestimmen
- In der Gießener Innenstadt werden Geschwindigkeitsmessungen für Autofahrer durchgeführt. Bei der letzten Überprüfung sei für Autofahrer eine Durchschnitts-Geschwindigkeit von μ= 58km/h mit einer Standardabweichung von σ= 10 festgestellt worden. Die Messwerte seien (näherungsweise) normalverteilt.
- Wie hoch ist der Anteil der Autofahrer, die zwischen 55km/h und 65km/h in der Gießener Innenstadt fahren?

Zusammenfassung

- Normalverteilung als Hilfsmittel, um Häufigkeiten bzw. Wahrscheinlichkeiten für kontinuierliche Variablen zu ermitteln
- Wahrscheinlichkeiten können als (Flächen-)Anteile interpretiert werden
- Für normalverteilte Daten liegen tabellarische Darstellungen für interessierende Anteilwerte/Wahrscheinlichkeiten vor, die mit den jeweiligen z-Werten korrespondieren
 - Anhand der Formel zur z-Transformation können X-Werte in z-Werte und z-Werte in X-Werte transformiert werden
 - Für z-Werte können die zugehörigen Wahrscheinlichkeiten/Anteile aus der z-Tabelle entnommen werden

Lernziele

- (Übergeordnetes Lernziele der restlichen Einheiten: Sie wissen, warum wir uns mit Wahrscheinlichkeiten beschäftigen)
- Sie wissen was eine statistische Verteilung bzw.
 Wahrscheinlichkeitsverteilung ist
- Sie erweitern Ihre Kenntnisse über die sog.
 "Normalverteilung" und wissen wozu sie in der Statistik dient
- Sie können Flächenanteile und damit Wahrscheinlichkeiten innerhalb der Normalverteilung berechnen

- Formel Berechnung der Dichtefunktion der Normalverteilung
- Dichtefunktion / Flächenanteil

Verteilungsfunktion

- Integral über der Dichtefunktion gibt an, wie wahrscheinlich es ist, dass eine Zufallsvariable kleiner oder gleich einem gegebenen Wert ist.
- Rechnerische Bestimmung ist sehr aufwendig (→ z-Tabelle, Statistikprogramme werden genutzt)

Verteilungsfunktion

Abbildung 19.9: Verteilungsfunktion der Standardnormalverteilung

Eigenschaften der Normalverteilung

Berechnung Dichtefunktion

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \text{ mit: } -\infty < x < \infty$$

- Exp: Exponentialfunktion e^x mit e = 2,718282 ... (Eulersche Zahl)
- \blacksquare π : 3,142...
- μ : Mittelwert der Verteilung
- σ : Standardabweichung der Verteilung

• Setzt man für μ = 0 und σ = 1 vereinfacht sich die Dichte der Normalverteilung zu:

$$\varphi(x) = \frac{1}{1 \cdot \sqrt{2\pi}} \exp\left[-\frac{(x-0)^2}{2 \cdot 1^2}\right]$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

