Ch9. Large-Sample Tests of Hypotheses

In this chapter, the concept of a statistical test of hypothesis is formally introduced. The sampling distributions of statistics presented in Chapters 7 and 8 are used to construct large sample tests concerning the values of population parameters of interest to the experimenter.

윤 연 옥

Introduction

- ♦ Suppose that a pharmaceutical company is concerned that the mean potency μ of an antibiotic meet the minimum government potency standards. They need to decide between two possibilities:
 - The mean potency μ does not exceed the mean allowable potency.
 - The mean potency μ exceeds the mean allowable potency.
- ◆ Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:
 - The person is guilty.
 - The person is innocent.
 - (1) To begin with, the person is assumed innocent.
 - (2) The prosecutor presents evidence, trying to convince the jury to reject the original assumption of innocence, and conclude that the person is guilty.
- ✓ This is an example of a **test of hypothesis**.

5 Parts of a Statistical test of hypothesis

1. The null hypothesis, H_0 :

- Assumed to be true until we can prove otherwise.

2. The alternative hypothesis, H_a :

- generally the hypothesis that the researcher wishes to support

Court trial:	Pharmaceuticals:
H ₀ : innocent	H ₀ : μ does not exceeds allowed amount
H _a : guilty	H _a : μ exceeds allowed amount

3. The test statistic and its *p*-value:

- Test statistic: A single statistic calculated from the sample data
- p-value: a probability calculated using test statistic.
- ✓ Help to deciding whether to reject or accept H_0

5 Parts of a Statistical test of hypothesis

4. The rejection region:

- Rejection region: consisting of values that support the alternative hypothesis and lead to rejecting H_0
- Acceptance region: consisting of values that support the null hypothesis

5. Conclusion:

• Either "Reject H_0 " or "Do not reject H_0 ", along with a statement about the reliability of your conclusion.

\bullet How do you decide when to reject H_0 ?

• Depends on the significance level, α , the maximum tolerable risk you want to have of making a mistake, if you decide to reject H_0 .

```
\alpha = P(fakely rejecting H_0) = P(rejecting H_0) when it is true)
```

• Usually, the significance level is $\alpha = .01$ or $\alpha = .05$.

- You wish to show that the average hourly wage of carpenters in the state of California is different from \$19, the national average.
- A random sample of 100 California carpenters provide a sample mean $\bar{x} = \$20$ with standard deviation s = \$2 for average hourly wage

Sol)

(1) Hypothesis

$$H_0$$
: $\mu = 19$ versus H_a : $\mu \neq 19$

(2) Test statistic

two tailed test of hypothesis

- Since the sample size is large, the sampling distribution of \bar{x} is approximately normal with mean $\mu=19$ and standard error $\frac{\sigma}{\sqrt{n}}$, estimated as $\frac{s}{\sqrt{n}}=\frac{2}{\sqrt{100}}=.2$
- \Rightarrow the test statistic: $z \approx \frac{20-19}{.2} = 5$
- $p value = P(z > 5) + P(z < -5) \approx 0$ for two tailed test
- ✓ The large value of the test statistic and the small p-value mean that you have observed a very unlikely event, if indeed H_0 is true($\mu=19$).

(3) Rejection region

- California's average hourly wage was different from \$19 if the sample mean is either much less than \$19 or much greater than \$19.
- The two-tailed rejection region consists of very small and very large values of \bar{x}

(4) Conclusion

• There is no strong evidence to support H_0 under significance level $\alpha = 0.01$ or 0.05

Large Sample Test of a population Mean, µ

- Take a random sample of size $n \ge 30$ from a population with mean μ and standard deviation s.
- We assume that either
 - 1. σ is known or
 - 2. $s \approx \sigma$ since *n* is large
- The hypothesis to be tested is
 - two tailed test H_0 : $\mu = \mu_0$ versus H_a : $\mu \neq \mu_0$
 - one tailed test $H_0: \mu = \mu_0$ versus $H_a: \mu > \mu_0$ or $\mu < \mu_0$

Test Statistic

• Assume to begin with that H_0 is true. The sample mean \bar{x} is our best estimate of μ , and we use it in a standardized form as the **test statistic:**

 $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$

since \bar{x} has an approximate normal distribution with mean μ_0 and standard error σ/\sqrt{n} .

- If H_0 is true, the value of \bar{x} should be close to μ_0 , and z will be close to 0.
- If H_0 is false, \bar{x} will be much larger or smaller than μ_0 , and z will be much larger or smaller than 0, indicating that we should reject H_0 .

The average weekly earnings for female social workers is \$670. Do men in the same positions have average weekly earnings that are higher than those for women? A random sample of n=40 male social workers showed $\bar{x} = \$725$ and s = \$102. Test the appropriate hypothesis using $\alpha = .01$.

Sol)

(1) Null and alternative hypothesis:

$$H_0$$
: $\mu = 670$ vs H_a : $\mu > 670$

(2) Test Statistic

$$z \approx \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{725 - 670}{102 / \sqrt{40}} = 3.41$$

(3) Rejection Region

For $\alpha = .01$, $z_{.01} = 2.33$ The null hypothesis will be rejected if the observed value of the test statistic, z, is greater than 2.33.

(4) Conclusion

Since test statistic $z=3.41>z_{.01}=2.33$, you can reject H_0 and conclude that the average weekly earnings for male social workers are higher than the average for female social workers $\frac{1}{2}$

- The daily yield for a local chemical plant has averaged 880 tons for the last several years. The quality control manager would like to know whether this average has changed in recent months.
- She randomly selects 50 days from the computer database and computes the average and standard deviation of the n=50 yields as $\bar{x}=871$ tons and s=21 tons, respectively. Test the appropriate hypothesis using $\alpha=.05$. Sol)
- (1) Null and alternative hypothesis:

$$H_0$$
: $\mu = 880$ vs H_a : $\mu \neq 880$

(2) Test Statistic:
$$z \approx \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{871 - 880}{21 / \sqrt{50}} = -3.03$$

(3) Rejection Region

For two tailed test, use both right and left tails for rejection region.

$$\alpha = .05 \implies z_{.025} = 1.96$$

• Reject if z > 1.96 or z < -1.96

(4) Conclusion

Since test statistic z=- 3.03, falls in the rejection region, the manager can reject the null hypothesis that $\mu = 880$ tons and conclude that it has changed.

Large Sample Test of a population Mean, µ

- 1. Null hypothesis: H_0 : $\mu = \mu_0$
- Alternative hypothesis:

One-Tailed Test Two-Tailed Test

$$H_{\rm a}: \mu > \mu_0 \qquad \qquad H_{\rm a}: \mu \neq \mu_0$$

(or, $H_{\rm a}: \mu < \mu_0$)

- 3. Test statistic: $z = \frac{\overline{x} \mu_0}{c \sqrt{n}}$ estimated as $z = \frac{\overline{x} \mu_0}{c \sqrt{n}}$
- 4. Rejection region: Reject H_0 when

One-Tailed Test

Two-Tailed Test

$$z>z_{\alpha}$$
 $z>z_{\alpha/2}$ or $z<-z_{\alpha/2}$ (or $z<-z_{\alpha/2}$ when the alternative hypothesis is $H_{\rm a}:\mu<\mu_0$)

p-value

- Once you've calculated the observed value of the test statistic, calculate its *p*-value:
- *p*-value(observed significance level of a statistical test)
 - the smallest value of α for which H_0 can be rejected.
 - If H₀ is rejected, this is the actual probability that we have made an incorrect decision.
 - √ p-Value = Tail area (one or two tails) "beyond" the observed value of the test statistic
- If this probability is very small, less than some preassigned significance level, α , H_0 can be rejected.
 - If p-value < α , H₀ is rejected.
 - If p-value > α , H₀ is not rejected.

Previous example: The daily yield for a local chemical plant

Find p-value

Sol)

Hypothesis: H_0 : $\mu = 880$ vs H_a : $\mu \neq 880$

Test statistic: z=-3.03

 \Rightarrow the smallest rejection region is |z| > 3.03 since two tailed test

$$p - value = P(|z| > 3.03) = P(z > 3.03) + P(z < -3.03)$$

= $(1 - .9988) + .0012 = .0024$

If p-value=.0024 < α , reject H_0

For this test, we can reject H_0 at either $\alpha = .01$ or $\alpha = .05$

Statistical Significance

- If the p-value is less than .01, H_0 is rejected. The results are highly significant.
- If the p-value is between .01 and .05, H_0 is rejected. The results are statistically significant.
- If the p-value is between .05 and .10, H_0 is usually not rejected. The results are only tending toward statistical significance.
- If the p-value is greater than .10, H_0 is not rejected. The results are not statistically significant.
- ✓ The p-value approach is often preferred because
 - You can evaluate the test results at any significance level you choose
 - Computer printouts usually calculate *p*-values

- Standards set by government agencies indicate that Americans should not exceed an average daily sodium intake of 3300 milligrams (mg).
- To find out whether Americans are exceeding this limit, a sample of 100 Americans is selected, and the mean and standard deviation of daily sodium intake are found to be 3400 mg and 1100 mg, respectively.
- Use $\alpha = .05$ to conduct a test of hypothesis.

Sol)

Hypothesis:
$$H_0: \mu = 3300 \text{ vs } H_a: \mu > 3300$$

Test statistic:
$$z \approx \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{3400 - 3300}{1100 / \sqrt{100}} = .91$$

(1) critical value approach

rejection region : z > 1.645 for $\alpha = .05$ Since z = .91 is not greater than the critical value 1.645, H_0 is not rejected

(2) p - value approach

$$p - value = P(z > .91) = 1 - .8186 = .1814$$

Since $p-value=.1814>\alpha=.05$, H_0 is not rejected and the results are not statistically significant

Conclusion: There is not enough evidence to indicate that the average daily sodium intake exceeds 3300 mg.

Two types of Errors

There are two types of errors which can occur in a statistical test.

	Actual Fact		
	Actua	iiact	
Decision	Innocent	Guilty	
Guilty	Error 1	Correct	
Not Guilty	Correct	Error 2	

(b) Statistical Test of Hypothesis			
	Null Hypothesis		
Decision	True	False	
Reject H_0 Accept H_0	Type I Error Correct	Correct Type II Error	

Define:

 $\alpha = P(\text{Type I error}) = P(\text{reject H}_0 \text{ when H}_0 \text{ is true})$

 $\beta = P(\text{Type II error}) = P(\text{accept } H_0 \text{ when } H_0 \text{ is false})$

 $\Rightarrow 1-\beta = P(\text{reject } H_0 \text{ when } H_a \text{ is true}) : \text{power of test}$

Two types of Errors

We want to keep the probabilities of error as small as possible.

- The value of α is the significance level, and is controlled by the experimenter.
- The value of β is difficult to calculate.
 - when H_0 is false and H_a is true, it may not be able to specify an exact value for μ , but only a range of values.
- \checkmark Without a measure of reliability, it is not wise to conclude that H_0 is true.
- ✓ Rather than risk an incorrect decision, it is better to conclude that you do not have enough evidence to reject H_0 . Instead of accepting H_0 , you should "not reject" or "fail to reject" H_0 .

We write: There is insufficient evidence to reject H_0 .

Previous example: The daily yield for a local chemical plant

Calculate β and the power of the test (1- β) when μ is actually equal to 870 tons

Sol)
Hypothesis:
$$H_0$$
: $\mu = 880$ vs H_a : $\mu \neq 880$
For $\alpha = .05$, acceptance region: $-1.96 < \frac{\bar{x} - 880}{s/\sqrt{n}} < 1.96$
 $\Rightarrow 874.18 < \bar{x} < 885.82$

β, the probability of accepting H_0 when μ = 870

$$eta = P(axept \ H_0 \ \text{when} \ \mu = 870)$$

$$= P(874.18 < \bar{x} < 885.82 \ \text{when} \ \mu = 870)$$

$$= P(\frac{874.18 - 870}{21/\sqrt{50}} < \frac{\bar{x} - 870}{s/\sqrt{n}} < \frac{885.82 - 870}{21/\sqrt{50}})$$

$$= P(1.41 < z < 5.33) = 1 - .9207 = .0793$$

$$1 - \beta = 1 - .0793 = .9207$$

• The probability of correctly rejecting H_0 , given that μ is really equal to 870, is .9207, or approximately 92 chances in 100.

The Power of the test

- Values of (1β) can be calculated for various values of μ_a different from $\mu_0 = 880$ to measure the power of the test.
- For example, if $\mu_a = 885$

$$eta = P(a \cot H_0 \text{ when } \mu = 885)$$

$$= P(874.18 < \bar{x} < 885.82 \text{ when } \mu = 885)$$

$$= P(\frac{874.18 - 885}{21/\sqrt{50}} < \frac{\bar{x} - 870}{s/\sqrt{n}} < \frac{885.82 - 885}{21/\sqrt{50}})$$

$$= P(-3.64 < z < .28) = .6103 - 0 = .6103$$

$$1 - \beta = 1 - .6103 = .3897$$

μ_{a}	$(1-\beta)$	$\mu_{\rm a}$	$(1-\beta)$
865	.9990	883	.1726
870	.9207	885	.3897
872	.7673	888	.7673
875	.3897	890	.9207
877	.1726	895	.9990
880	.0500		

Testing the Difference between Two Means

- A random sample of size n_1 drawn from population 1 with mean μ_1 and variance σ_1^2 .
- A random sample of size n_2 drawn from population 2 with mean μ_2 and variance σ_2^2 .
- The hypothesis of interest involves the difference, $\mu_1-\mu_2$, in the form:

 $\mathbf{H_0}$: $\mu_1 - \mu_2 = \mathbf{D_0}$ versus $\mathbf{H_a}$: one of three alternatives where $\mathbf{D_0}$ is some hypothesized difference, usually 0.

The Sampling Distribution of $\bar{x}_1 - \bar{x}_2$

- 1. The mean of $\bar{x}_1 \bar{x}_2$ is $\mu_1 \mu_2$, the difference in the population means
- 2. The standard error of $\bar{x}_1 \bar{x}_2$ is $SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- 3. If the sample sizes are large, the sampling distribution of $\bar{x}_1 \bar{x}_2$ is approximately normal, and SE can be estimated

as SE =
$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

✓ Assumption: The samples are randomly and independently selected from the two populations and $n_1 \ge 30$ and $n_2 \ge 30$.

Testing the Difference between Two Means

- H_0 : $\mu_1 \mu_2 = D_0$ versus H_a : one of three alternatives
- Test statistic: $z \approx \frac{(\bar{x}_1 \bar{x}_2) D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

with rejection regions and/or p –values based on the standard normal z distribution

• Rejection region : Reject H₀ when

One-Tailed Test

Two-Tailed Test

 $z>z_{\alpha}$ or $z<-z_{\alpha/2}$ or $z<-z_{\alpha/2}$ [or $z<-z_{\alpha}$ when the alternative hypothesis is $H_{a}:(\mu_{1}-\mu_{2})< D_{0}$] or when p-value $<\alpha$

- To determine whether car ownership affects a student's academic achievement, two random samples of 100 male students were each drawn from the student body.
- The grade point average for the $n_1=100$ nonowners of cars had an average and variance equal to $\bar{x}_1=2.70$ and $s_1^2=.36$ and $\bar{x}_2=2.54$ and $s_1^2=.40$ for the $n_2=100$ car owners.
- Do the data present sufficient evidence to indicate a difference in the mean achievements between car owners and nonowners of cars? Test using $\alpha = .05$.

Sol) (1)
$$H_0$$
: $\mu_1 - \mu_2 = D_0 = 0$ versus H_a : $\mu_1 - \mu_2 \neq 0$

(2) T.S.
$$z \approx \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(2.70 - 2.54) - 0}{\sqrt{\frac{.36}{100} + \frac{.40}{100}}} = 1.84$$

(3) rejection region: for $\alpha = .05$ since |z|=1.84 < 1.96, do not reject $\mathbf{H_0}$

or p-value=
$$P(z > 1.84) + P(z < -1.84)$$

= $(1-.9671) + .0329 = .0658$
> $\alpha = .05$

 \Rightarrow do not reject H_0

Confidence Interval for $\mu_1 - \mu_2$

Example

- Construct a 95% confidence interval for the difference in average academic achievements between car owners and nonowners.
- Sol) Confidence interval for the difference in two population means

$$(\bar{x}_1 - \bar{x}_2) \pm 1.96 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$\Rightarrow (2.7 - 2.54) \pm 1.96 \sqrt{\frac{.36}{100} + \frac{.40}{100}}$$

$$\Rightarrow$$
 .16 \pm .17

$$\Rightarrow$$
 -.01 < $\mu_1 - \mu_2$ < .33

Since the hypothesized difference, $\mu_1 - \mu_2 = 0$, is contained in the confidence interval, you should not reject \mathbf{H}_0

Testing a Binomial Proportion p

A random sample of size n from a binomial population to test

- H_0 : $p = p_0$ versus H_a : one of three alternatives
- Test statistic: $z \approx \frac{\hat{p} p_0}{SE} = \frac{\hat{p} p_0}{\sqrt{\frac{p_0 q_0}{n}}}$,

where $\hat{p} = \frac{x}{n}$, x: number of success in n binomial trials with rejection regions and/or p-values based on the standard normal z distribution.

✓ Assumption: n is large enough so that the sampling distribution of \hat{p} can be approximated by a normal distribution ($np_0 > 5$ and $nq_0 > 5$).

• Regardless of age, about 20% of American adults participate in fitness activities at least twice a week. A random sample of 100 adults over 40 years old found 15 who exercised at least twice a week. Is this evidence of a decline in participation after age 40? Use $\alpha = .05$.

Sol)

- (1) Hypothesis: $H_0: p = .2 \text{ vs } H_a: p < .2$
- (2) Test statistic:

$$z \approx \frac{\hat{p} - p_0}{SE} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} = \frac{.15 - .2}{\sqrt{\frac{.2(.8)}{100}}} = -1.25$$

(3) Since z = -1.25 > -1.645Do not reject H_0

✓ There is not enough evidence to indicate that p is less than .2 for people over 40

Testing the Difference between Two proportions

- A random sample of size n_1 drawn from binomial population 1 with parameter p_1 .
- A random sample of size n_2 drawn from binomial population 2 with parameter p_2 .
- The hypothesis of interest involves the difference, $p_1 p_2$, in the form:

 H_0 : $p_1 - p_2 = D_0$ versus H_a : one of three alternatives

where D_0 is some hypothesized difference, usually 0.

The Sampling Distribution of $\hat{p}_1 - \hat{p}_2$

- 1. The mean of $\hat{p}_1 \hat{p}_2$ is $p_1 p_2$, the difference in the population means
- 2. The standard error of $\hat{p}_1 \hat{p}_2$ is $SE = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$
- 3. If the sample sizes are large, the sampling distribution of $\hat{p}_1 \hat{p}_2$ is approximately normal.
- 4. The standard error is estimated differently, depending on the hypothesized difference, \mathbf{D}_0

Testing the Difference between Two Proportions

- (1) H_0 : $p_1 p_2 = 0$ versus
- (2) H_a: one of three alternatives

(3) Test statistics
$$z \approx \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\left(\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}\right)}} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

with $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$ to estimate the common value of $p_1 = p_2 = p$ and rejection regions or p-values based on the standard normal z distribution.

(4) Rejection region: Reject \mathbf{H}_0 when

One-Tailed Test

 $z > z_{\alpha}$ [or $z < -z_{\alpha}$ when the alternative hypothesis is $H_a: (p_1 - p_2) < 0$]

or when *p*-value $< \alpha$

Two-Tailed Test

$$z > z_{\alpha/2}$$
 or $z < -z_{\alpha/2}$

The records of a hospital show that 52 men in a sample of 1000 men versus 23 women in a sample of 1000 women were admitted because of heart disease.

Do these data present sufficient evidence to indicate a higher rate of heart disease among men admitted to the hospital? Use $\alpha = .05$.

Sol)

Assume that the number of patients admitted for heart disease ~ approximate binomial probability dist for both men and women with

~ approximate binomial prob. dist for both men and women with parameters p_1 and p_2 , respectively

(1)
$$H_0$$
: $p_1 - p_2 = 0$ versus

(2)
$$H_a$$
: $p_1 - p_2 > 0$

(3) Since
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{52 + 23}{1000 + 1000} = .0375$$

T. S.
$$Z \approx \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{.052 - .023}{\sqrt{(.0375)(.9625)\left(\frac{1}{1000} + \frac{1}{1000}\right)}} = 3.41$$

(4) Since TS = 3.41 > 1.645 Reject
$$H_0$$
 for $\alpha = .05$
Or p-value = $P(z > 3.41) = .0003 < \alpha = .05$
 \Rightarrow Reject H_0 for for $\alpha = .05$

• The data present sufficient evidence to indicate that the percentage of men entering the hospital because of heart disease is higher than that of women for $\alpha = .05$.

Key Concepts

I. Parts of a Statistical Test

- 1. Null hypothesis: a contradiction of the alternative hypothesis
- 2. Alternative hypothesis: the hypothesis the researcher wants to support.
- 3. Test statistic and its *p*-value: sample evidence calculated from sample data.
- 4. Rejection region critical values and significance levels: values that separate rejection and nonrejection of the null hypothesis
- 5. Conclusion: Reject or do not reject the null hypothesis, stating the practical significance of your conclusion.

Key Concepts

II. Errors and Statistical Significance

- 1. The significance level α is the probability if rejecting H_0 when it is in fact true.
- 2. The *p*-value is the probability of observing a test statistic as extreme as or more than the one observed; also, the smallest value of α for which H_0 can be rejected.
- 3. When the *p*-value is less than the significance level α , the null hypothesis is rejected. This happens when the test statistic exceeds the critical value.
- 4. In a Type II error, β is the probability of accepting H_0 when it is in fact false. The power of the test is (1β) , the probability of rejecting H_0 when it is false.

Key Concepts

III. Large-Sample Test Statistics Using the z Distribution

To test one of the four population parameters when the sample sizes are large, use the following test statistics:

Parameter	Test Statistic
μ	$z = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$
p	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
$\mu_1 - \mu_2$	$z = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
$p_1 - p_2$	$z = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$