

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

FIG. 1

HPP-CFC (Colony #)

FIG. 2

I-PPP-CFC (Colony #)

FIG. 3

MC/9 CPM ($\times 10^{-3}$) OR I-PD-CFC (col. #)

FIG. 4

MC/9 CPM ($\times 10^{-3}$)

FIG. 5

FIG. 6

FIG. 7

MC/9 CPM

FIG. 8

FIG. 9

FIG.10

FIG.11

1 10 20
 P E I C R N P V T D N V K D I T K L V A N I P N D
 ----- Sequencing after -----
 ----- T-5a -----
 30 40 50
 Y M I T L N Y V A G M D V L P S R C W L R D M V T
 <Glu Aminopeptidase Treatment ----->
 ----- T-5a -----
 ----- CB-6a -----; CB-8; CB-10 -----
 60 70
 H L S V S L T T L L D K F S N I S E G L S N Y S I
 ----- Sequencing after Trp Cleavage -----
 80 90 100
 I D K L G K I V D D L V A C M E E N A P K N V K E
 ----->
 ----- T-3 -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-1 -----
 110 120
 S L K K P E T R N F T P E E F S I F N R S I D A
 --- T-1 -----; T-4 (N109 nonglyco) -----
 ----- T-7 (N120 glyco); T-8 (N109 nonglyco) -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-5 or S-6 (N109 nonglyco) -----
 130 140 150
 F K D F M V A S D T S D C V L S S E L G P E K D S
 ----- T-5b -----
 ----- CB-6B -----
 ----- S-5 or S-6 -----
 160
 R V S V E K P F M I P P V A (A)
 ----- T-2 ----- << (Carboxypeptidase)
 ----- CB-6B -----
 ----- S-2 -----

FIG.12A

OLIGO	SEQUENCE	LOCATION
219-21	ACATTCTTGGGATTCTCCCTCCAT G T G T G G	393-368
219-22	AAAAAAACTCCTCIGGIGTAAATT G T T G G G	447-425
219-25	GTTTCNGGTTTTT C C C C	420-407
219-26	ATGGAAAGAACGGCCCCCAAAACGT G G T G T	368-393
222-11	CCNAATTGATTATATGATAAC C C C C C T	167-186
222-12	GGNGGNAACATAAANGGCTT G G G T	566-585
223-6	ACCATAAAATCTTAAAIICGATC G G C G G	492-470
224-24	GTATTTCAAATAGATCCATTGA	450-471
224-25	CCAAACTATGTCCGC	190-202
224-27	GTAGTCAGGCTGACTGATAAG	273-251

FIG.12A CONT.

- | | | |
|--------|--------------------------------------|-----------|
| 224-20 | TAAACCAACAAATGAACTAGGCCAA | 235-215 |
| 225-31 | TTCCAGAGTCAGTC | 547-562 |
| 227-29 | GGGAAGCTTGCCTTCCCTATGAAGAGAA | 16-35 * |
| 227-30 | CGGGCGGGTTACGGTGTAAACATGAAGGGCTTGTCA | 506-561 * |
| 228-30 | GATAAATGCAAGCTGATAATCC | 45-65 |
| 230-25 | GGGGTCGACCCGGGAACTTAAAGTCCATGCAACAC | 705-685 * |
| 237-19 | CACCCGGGTTATGCAACAGGGGTAAACATTAATGG | 569-592 * |
| 237-20 | CACCCGGGTTAGGCTGCAACAGGGGTAAACATMM | 572-595 * |

FIG.12B

OLIGO	SEQUENCE	LOCATION
231-27	CTTAATGTTGAAGAAAACC	703-686
233-13	GATGGTAGTACAATTGTCAGAC	410-431
233-14	GTCTGACAATTGTACTACCATC	431-410
235-29	CAATTTAGTGACGTCTTTACA	302-323
235-30	TTAGATGAGTTTCTTCACGCAC	556-533
235-31	AAATCATTCAAGAGGCCAGAACCC	566-589
236-31	AACATCCATCCCGGGGAC	366-383
238-31	CTGGCAAATATTTAAGTCTCAAGAAGACC	
241-6	GCGCCGCGGCTCCTATAGGTGCTAATTGG	
254-9	CCTCACCACTGTTGTGCTGGATCGCA	153-179
262-13	GGTGTCTAGACTTGTGCTTCTTATAAGGA	209-190

FIG.12C

<u>OLIGO</u>	<u>SEQUENCE</u>
201-7	CCCCCCCCGG T A
220-3	TTTTTTTTTTTTTTTTGG
220-7	TTTTTTTTTTTTTTTTTAG
220-11	TTTTTTTTTTTTTTTCG
221-11	TTCGGCCGGATCAGGCCCGCCCCCCC
221-12	TTCGGCCGGATAGGCCTTTTTTTTTTT
228-28	GGCCGGATAGGCCTCACNNNNNNNT
228-29	GGCCGGATAGGCCTCAC

FIG.13A

FIG. 13B

FIG. 14A

FIG. 14B

AAAGTATCTTCTATTGGCGAAGGACATGTTTCC=ATAAGTGGT	45
AAACAAACTGTCTGCACATAATAATTATCTTGCTGCCGTAAAGAT	90
TAGGTAAAATTCTGCCTTCGATCTAAAAACACACCCCTCTGTCAA	135
TCCGAGGGAGCAGTGTGCTAGTCTAGAGGTCTAAATGAAGGCTCCT	180
TTCACGGTTGTATTTCTGCTCCCCAAATTGTCCACATTTAAAAGG	225
AGAGTGCTTCTTTCAAGCCTTAGGCTCTGAATTTCATGCAATTCT	270
CCATTTCCGAGGTCCCccC=AAAGTGATAATTCTGTTACACGTTG	315
CTACAAGTTCATCCCTAATTGCCGTCAAGAAACTGACTGTAGAAG	360
GCTTACACAGACGTTGTAACCGACAGTAAAGCCATTGAAAGAGT	405
AATTCAAACAGGATGGAAGCCAGGAGTATTTGTGGCTGTTGCTC	450
TTTTCTTTCAGTTGGTGAGAGCAGCTTGAATGCTAACATT	495
AAGCCATCAGCTTAAAACAAAACAAAACAAAACAAAAAAACCC	540
CGCTCTGGCATATTGCACTAACACACATACGGTATAAGGTGTTAC	585
TGGTTTGCATAGTTCTGGATTTTTTTTTAAAAACTGATGGAC	630
-20	
Thr-T-Phe-Ile-Ile-Thr-C	
ACCAAGAAATGTTCTGTTCTTGTAGACTGGATTATCACTT	675
-10	
ysIleTyrLeuGlnLeuLeuLeuPheAsnProLeuValLysThrG	
GCATTTATCTCAACTGCTCCTATTTAACCTCTCGTCAAAACTC	720
1	10
InGluIleCysArgAsnProValThrAspAsnValLysAspIleT	
AGGAGATCTGCAGGAATCCTGTGACTGATAATGTAAAAGACATTA	765

FIG.14B CONT.'

CAAAACTGGTAAGTAAAGAATGATTGGCATCTATAAGTCTTCC	810
CTGTGCTTGCTGACCACATAGGTTAGGGCACTCCCGACAGGAGT	855
TCCCAGCTTTCTAAGATAAGGAATCACTGTACGAGTCTGAAGTGC	900
TTCTTCTGGGCAAATGGGAGATGCTTAGGTATGGAGGGTTATC	945
TGTATAACTGCCCTTGACACCAACAAAGTGACTGACTGGCTT	990
TTGCCTGTTACCTACTG	1007

Intervening sequence of unknown length

TCTCCAGTCCTGGCATGGTATATACTTAGGCACCCAAGATTGGA	45
TTTACAACCTAACGCATTATATATTGGACAAACnACGGGGTATGAGA	90
TATTAATGATATGTCAGGTTGGATGGATGAGTTTCTCAAGAAAT	135
	19
Val	
TCTCTTGTATTTACTCACGTTTCAATTCTGGTCTCTGTAGGTG	180

30
AlaAsnLeuProAsnAspTy-MetIleThrLeuAsnTyrValAla
GCGAATCTTCCAAATGACTATATGATAACCTCAACTATGTCGCC

225
39
GlyMetAspValLeu
GGGATGGATGTTGGTATGTAGTCCACACACTCTGAGTTGCCT

TTTAGTAGCTAATGGGTGACCTGTGCTTATTACACATTGAAGACAT	270
TATTTGCTTTGTCGTTTAGATGTTGACCTATAATTTCCT	315
TCAAGCTGCTGCTAAGATTATCAGTGAGCATTCACTATGTGTT	360
TAAGCCTACTCATTAAAAGGAAATGGCTCATCTTAGACGTAGCAA	405
	450

FIG. 14B CONT.¹

CCGATGTTAATTTCCCCAGGCATCTCTCAGAGGGACTTGAATG 495
TTAAAATCATGTTAAATTCCTCCTGGCTATGTTATTCATG 540
GCTATGTTATT CCTATT CGTATT CATTAAAGGGACGGAAATATT 585
TATTGTATTCCTGAACCTTTCAAGGCATGCATCCGGGTCTTGAA 630
TAAAAA 635

Intervening sequence of unknown length

CACTAAGACTCCTCTAGTAATGTTGTAATCCTGTCTGTATCGA 45
ATGTCTTGAAAACGCAGTGACTAAGCCATAAATAATCTTCCACA 90
GAACGTCCAGTGGTTCATGAACTTGTATGTGGGGTGGGGCAAG 135
AATTGTCTCACTATTGGTCAAGGAAGAGAAGGTAAAGGTATGCAAG 180
GGTGGTTAACCTCTTCCGTGGAAGGACAAAATCATCTATCATT 225
TCCTCTGATCTCTATGCATTGTTGTTGAACTGAATCTGACT 270
TGAGCAAGAGTTGGCGTCCTGTGTTCTGAGGAAACTCTTGTCT 315
GCAGTCAGTGACTAAAAGTGCTGAGAGATCTGAAGAGCACTCTGA 360
ATCTGCCATATTTATAGATGCTTGTCTCTCTTGAATTTC 405

40. 50
ProSerHisCysTrpLeuArgAspMetValThrHisLeu
TTCCAGCCTAGTCATTGTTGGTTACGAGATATGGTAACACACTTA 450

60
SerValSerLeuThrLeuLeuAspLysPheSerAsnIleSer
TCAGTCAGCTTGACTACTCTCTGGACAAAGTTCAAATATTTCT 495

70 80
GluGlyLeuSerAsnTyrSerIleIleAspLysLeuGlyLysIle

FIG. 14B CONT.'

GAAGGCTTGAGTAATTATTCCATCATAGACAAACTTGGGAAAAA 540

90	96
ValAspAspLeuValAlaCysMetGluGluAsnAlaProLys	
GTGGATGACCTCGTGGCATGTATGGAAGAAAATGCACCTAACGGTA	585
ACTTGGTATTCACTAGAATTATTTCTTATACT	619

Intervening sequence of unknown length

GAGCTCATGATGAGCAATTACAACCACTTGTAAATTCCAGCTCCA	45
GAGGACATTATCCCCTCTTGGATGCCATAGGAATCTGCTCTCAA	90
ATATGTAGATAACCACCTCTGCCACCTCAGCACATAACACATA	135
ATTAaaaaaaTAGAAACATTAAAGGAGTTCCAATCAATCCTTATT	180
TTTCTGTATTCACTATGCCAGATGTAAATTCTAGGAATATGTT	225
TTAAAGGCTAATTCTATTTGTAAATAAGCAGCTTTAAAATTCTT	270
AATTGTTTTTCGGGTCACTTATTGCTCTATTGCCACGACATTG	315
TCCTGTCCCATTGTCTGTTATTCCCTCTGTTTTATTGTTCC	360
CTAGTTACTTGTATGAGATTGACCTGTTACCCGTTGTTATT	405
TCTGTAGCCATTGAGTTGTGTCTATTAGAACAGCTGTTAAATT	450
ACTTGAATCAATTGAGGACATAGTCATAATCTATTATGCTGATCC	495
AGTCAAGTCTATGAGTTATTTGAAAACAGAAATCTTGTAAATT	540

97	
AsnValLys	
TTTGTGCTTGTGTTGTTATTATTTGTCTAGAAATGTAAAAA	585

100	110
GluSerLeuLysLysProGluThrArgAsnPheThrProGluGlu	

FIG.14B CONT.'

GAATCACTGAAGAAGCCAGAAACTAGAAACTTTACTCCTGAAGAA 630

120
PhePheSerIlePheAsnArgSerIleAspAlaPheLysAspPhe
TTCTTAGTATTTCATAGATCCATTGATGCCTTCAAGGACTTC 675

130 140
MetValAlaSerAspThrSerAspCysValLeuSerSerThrLeu
ATGGTGGCATCTGACACTAGTGATTGTGCTCTCTAACATTA 720

148
GlyProGluLysA
GGTCCTGAGAAAGGTAAGGCTTTAACGCATTCTGTTAAATGT 765

ACATAGAAAGCCTGAACCTCTGTAAGCCTCTACTGCTGAATCAAC 810

TAAATGTGTTGCTGTAGAAAGAACGTGTGGGTTTCTGATAAAA 855

ACAAAAAGCAAATATCAATGACTACCAATGATTATTCTAGCTT 900

GAGAGATATGCCCTAACGACAGCGATTCTCGATATTCTAAATTAA 945

AGAATTGTGTGATGGTGGCTCACATATTTCTAACTGTGATATT 990

GCCAGGAGAGTAGAATAATGTTATTCTTCAATCCCCAGAATTCTA 1035

AGATTTCACGTCTCATGTCCTTCCATAAGGTTCAAACCTGAGA 1080

CTTGAGTTCTGAGCCTCAGCAGGTCAATTCTGAATCCCCACTCTCC 1125

CCGAGCTGGGTCCCTATGGGGAACTAACATTCAATTGCTTCTTT 1170

AAAACATGACGAGTTACCAACAGCTCCTCGCTATTATAAACATGT 1215

TCCTAACGCATGTCTGTGCATGCATAAGCCTCACTCTACAAGAC 1260

AGTTATGGTGTATCGCTTGACAAAACGTGAGCAGCCAAGCTGAGTA 1305

TGAAATAATAATCTAGACTTGGGAGGCAGACCCAGCACCTACTGT 1350

GATATTGCACCTCGCCTTGGGGACTCTATGATTCAAAAGTTCA 1395

FIG. 14B CONT.

150
spSerArgV
CCATGTAAACACTGACACATTATTGCTTCTATTTAGATTCCAGAG 1440

160
alSerValThrLysProPheMetLeuProProValAlaAlaSerS
TCAGTGTACAAAACCATTATGTTACCCCTGtGCAGCCAGTT 1485

170 176
erLeuA-gAsnAspSerSerSerSerAsn
CCCTTAGGAATGACAGCAGTAGCAGTAATAGTAAGTACACATATC 1530

TGATTTACTGCATGCATGGCTCCAAGTATCCTCTATAGGAGTGT 1575

GCATGGACTTAAAGTTATAAATCACTACTAATAATGCTGTTCTG 1620

TCACTGTTATTCTTGATGGCTTCTGACAATTAAATATCTGG 1665

TTTGTAGAACATCGGATCTCCTTAGAGGTTAACAGATGACCATGACAAA 1710

ATTAGGCCAATCAACTTTCTGCGAAGGTTATTTAAATAAGGCAC 1755

GAAATTAAATTGAAGGAAAAAAATACAAGCAAGGCCTTATTTG 1800

AATCATGGTAGGCTTAAATAGACTTTGTGGAGAACATGTCCTGAT 1845

CAAAGTGGAGTTTCAAGATTCAAGTGCATGTGCTAACTCTCCAC 1890

AATGTCAAGGCTATTTCAAGTTGTCTCCATATTTACTACTG 1935

CATGTTGGAAATTGCTGATGCTGTTAGATTACCTAACAAATGTA 1980

TGTTGAAGAAGAACGACTTCTTCCCTAAAATTCTGTCCTCTT 2025

TGcCCAAGAACCCAcGTTCTGGAGACTATCTTATTTCATGTC 2070

TGTGCAATGATCATTATAAGATTATTGAATATACTGGAAACT 2115

CTGGTTCTGTTTACAGATTCAAAAGCTTATTCAAGTCTTTA 2160

AAGAAAGTTCTCTGAAGTCCATGCTTAGAATGTTCTATCAA 2205

FIG.14B CONT.'

AACTTGACCTGGACCTTAAATAAAGCTATATTAGTCCTTTATC	2250
CCTGAAAAATATATTCACAGTAGACATTGATATACTACTAA	2295
GGGAAGGATGCTGCCAGAATGCTCGGGCTGGCAGTCTACAAAGTC	2340
CACTGCTCTCAGGATGGACTTCTGAAAGCGGAAATTGTGAACTGC	2385
ATGCATATAACATATCAGATCCTCGAGC	2413

FIG. 14C

U.S. Application No. 10/620,642

Inventors: Zsebo *et al.*

Title: *Methods of Stimulating Growth of Stromal Cells in a Human*

Docket No. 01017/33718B

Sheet 26 of 119 (Figure 14C)

CTGGATCGGAGGGCTGCCCTTCCTTATGAAGAACACAAACTGGATTATCACCTTGAT
-25 H K K T O T W I I T C I
TTATCTTCAACTGGCTCTTATTTCCTCTCGTCAMAAACTCAGGAGATCTGCAGGAATCC 60
Y L Q L L F N P L V K T Q E I C R N P
V T D N V K D I T K L V A N L P N D Y H
TGTGACTGATAATGTAAGACATTACAAAAGTGGTGGCGAATCTTCAAATGACTATAT 120
I T L N Y V A G M D V L P S H C W L R D
GATTAACCCCTCAACTATGTCGCCGGATGGATGTTGCCTAGTCATTGTTGGTTACGGAGA 180
H V T H L S V S L T T L D K F S N I S
TATGGTAACACACTTATCAGTCAGCTTGACTACTCTCTGGACAMGTTTCATAATTTTC 240
50
H V T H L S V S L T T L D K F S N I S
TATGGTAACACACTTATCAGTCAGCTTGACTACTCTCTGGACAMGTTTCATAATTTTC 300
E G L S N Y S I I D K L G K I V D D L V
TGAAGGGCTTGAGTAATTATTCCATCATAGNCACAAACTGGAAATACTGGATGACCTCGT 360
70
A C M E E N A P K N V K E S L K P E T
GGCATGTATGGAAAGAAATGGCACCTAAGAATGTAAAGAAATCACTGAAGAACAGAAC 420
90
A C M E E N A P K N V K E S L K P E T
GGCATGTATGGAAAGAAATGGCACCTAAGAATGTAAAGAAATCACTGAAGAACAGAAC 480
110
R N F T P E E F F S I F N R S I D A F K
TAGAAACTTACTCCTGAAGAATTCTTCAATTAGATCCATTGATGCCTTCAA 120

FIG. 14C CONT.

130 D F H V A S D T S D C V L S S T L G P E
 GGACTTCATGGGGCATCTGACACTAGTGTGTTCAACATTAGGTCTCTGA
 140
 150 R D S R V S V T K P F M L P P V A A S S
 GAAAGATTCCAGAGTCAGTGTCAACATTAGGTCTACCCCCCTGTTACGCCAGTC
 160
 170 L R N D S S S N R K A A K S P E D P G
 CCTTAGGAATGACAGCAGTAGGCAGTAATGGAAAAGCGCAAAGTCCCTGMAAGACCCAGG
 180
 190 L Q W T A H A L P A L I S L V I G F A F
 CCTACATGGACAGCAATGGCACTGGCACTGCCGGCTCTCATTCGCTTGTAATTGGCTTGGCTT
 200
 210 G A L Y W K K Q S S L T R A V E N I Q
 TGGAGCCTTATACTGGAAAAGAGAACAGTCAGTCAGTCAAGGGCAGTTGAAATATACA
 220
 230 I N E E D N E I S M L Q Q K E R E F Q E
 GATTAATGAAAGGATAATGAGATAAGTATGTGCAACAGAAAAGAGAGAGCTTCAGA
 240
 248 V
 GGTGTAATT

849

FIG. 15A

FIG.15B

-21
h=Gln

CACAAGTGAGTAGGGCGCGCCCAGGAGCTCCAGGCTCTCCAGGA	45
AAAATCGCGCCCGGTGCCCGGGGAGGCCGGCGCTCCCTGGGACT	90
TGCAGCTGGGGCGTGCAGGGCTGTGCCTGCCGGGTG	126

Intervening sequence of unknown length

AGATACTACAAAGATAAAATCAGTTGCACAAGTTCTGAAACTCTA	45
CAGTGTAATAAGGAAAAATAAGTCATGCATAAAAGCAACTATAAT	90
ACATAATAGAAAATGTTATTTCAAGCCGATGTGTAGGTTATGTG	135
TGTTCGAGAGAGAGAGAGAGAGAAGACAGATTACTTCTGCTAGGGT	180
TCAAGAATGCCCTCCTGGCTAAGGAAATATTTCTTAAGTG	225
GCTAAAAAGCTGTGTTCAAAATATTCTTTGATGTCTCACAAAT	270
TCAGTGGATTCTCTTAGGTCTAAAAATATACATCTCTCACTT	315
TAACTTGGTGTGCTATTGTAGATTATTGGATTAAAGCACTGCTCA	360
GGGATTATGCTGCTTCTGCCAAGCAGTCTACATTTAAAGTAGAA	405
ATAAGATGTTCTTGGTGCCATAAGGTATACATTATGCATT	450
CTCTAGTTTAAAGATAACCTAACGGCTAAGTCTTTAACATGC	495
TGCTACAAGTTATTCTAACATTGCCATTGGAAATTGGCTGAAGA	540
AAGTTTTAACAAAAGTTAACAAATATTGTCATTGAGAGAATAATT	585
CAAAATGGATTTAACTAAAAGCTTTAAAAACTTGGTGAGCAT	630
AGCTTGAATGCGTAATATTTAACATTGCATTAAAGCCAATAACATAT	675

FIG.15B CONT.'

ATTAGACTGGTCTTTTGTCATCAAGGCATTAGATGTTAAAGT	720
TTGAATGATTACAGATCTTAAC TGATGATCACCAAGCAATTTTC	765
-20	
Th=T=pIleLeuTh=CysIleTyr=LeuGlnLe	
TGTTTCATTTAGACTGGATTCTCACTTGCATTATCTTCAGCT	810
1	
uLeuLeuPheAsnProLeuValLysThrGluGlyIleCysArgAs	
GCTCCTATTTAACCTCTCGTCAAAACTGAAGGGATCTGCAGGAA	855
10 18	
nArgValThrAsnAsnValLysAspValThrLysLeu	
TCGTGTGACTAATAATGTAAGACGTCACTAAATTGGTAAGTAA	900
GGAATGCTTACCGTGCTGTGTAAAAAGAGCTGTGGCTCTTTT	945
CCTGTGCTTGTGATAAAAGATTAGATTTCTTGCCTCCAAAGT	990
AATGTTTCCTAAAGTGGGAAAGTAATCACTGGGTACAATAAA	1035
GGGTTTATAGAAAGCAGGTAGTGAGATATTTAGGGTCATGGATAA	1080
TTTGTGGTAAAAGCTGGCTAGTTGCACACCACTGCTGTGACTGCT	1125
TCTTGTGGTCTTCTCCCCATCCTCATAGGCAGTGAAGGACCT	1170
TGGAGAGTTCGCTGTGTGCTGATGGGCTTGCCTCCAGCTTGTCCC	1215
CATAATCTCTCCAGTGGGTTCCCAGCATGTTCTATTCCCCCTCA	1260
CATGTCTCCTACTCTTCTTAAAAAGCCTAACGAAAGGAAATCT	1305
GAAATGGCTATTCTCCCAATTCAATCAGCAGGAAGACCCTGTCAC	1350
ATGTCAGTGGGTGTTGCTCCTCAGGGAACATAGAGAGGTGATT	1395
CATTGCCACATGTTGAAGGGACTCATCTCCCTGGTTGTCACAT	1440
TGAACCTCTCCCTCAGCGAAAGCATTGCATTGCTTCCC	1479

FIG.15B CONT.'

Intervening sequence of unknown length

GAATTCCAAGATCACAGGTGGAAGCTGAAATTCAAGATCATGTTTC	45
CAAAACTCAGTAGGTTATAACCTAGCCAGGCATAACTGAATTTGGA	90
GTCTAAAAGATCTGTATTATCACTTTTTATTTGAAGGGATGCCT	135
TTTGATTACAGAGGGAAATCAAGGATTAAAAATCAATATACATGT	180
AAATATTGAAATTCAATTGGTAACCTTAAAAAGCACACAGTTTG	225
TGTGCTTTCTCAAAGCACTACAAATATGATTAATTGATGTATA	270
19 ValAlaA	
AGAATTTCCTATGGAATTTTTTTTGTCTCTGTAGGTGGCAA	315
30 snLeuProLysAspTyrMetIleThrLeuLysTyrValProGlyM	
ATCTTCCAAAAGACTACATGATAACCTCAAATATGTCCCCGGGA	360
39 etAspValLeu	
TGGATGTTTGGTATGTAAGACTACATTCTGAGTTCTATTAGT	405
AGCTCATAGAAGAAATGGGATCATTCAATTGAGATAGTACACTA	450
GCTGCTATTAGGAGCTTGCTTATTGTCAGGATTTGAAGAATTAA	495
TCTTGGAAATTGACTTGCAGGCTTTTTCTCCCCCTCTT	535

Intervening sequence of unknown length

CCTGTTACAAGAGTCCCTCCTCTATTACAATAAGTCCCTCCT	45
CCTGTCACACTAGTCCCTCTCTCCTGTTACAATAACCCCTGTC	90

FIG.15B CONT.'

CTCCTATTACAAACATTTAAGTAATGTAATATTAATTTAAAAAT	135
CTGGCCAGGCACGGTGGTCATGCTTGTAACTCCAGCACATTGGG	180
AAGCTGAGACGGGTGGATCATTGAGGTCAAGGAAGTTGAGACAG	225
CCTGGCCAACATGGTGAAACTTCCTCTACTAAAAATAAAAAG	270
TAGCCAGGCATGGTGGCAGGCACTTGTAATCTGAGCTACTCGAGA	315
GGCTGAGGCAGGAGAACACTTGAGTAACAAAACGATAGCTTTG	360
AAGAGTACTCCGAGTTTATGGCACTTACTTATTAAAATAGCTGT	405
 40	
ProSerHisCysTriPileS	
TTTGTCTCTTTTCATATCTTGCAGCCAAGTCATTGTGGATAAA	450
 50	
erGluMetValValGlnLeuSerAspSerLeuThrAspLeuLeuA	60
GCGAGATGGTAGTACAATTGTCAGACAGCTGACTGATCTTCTGG	495
 70	
spLysPheSerAsnIleSerGluGlyLeuSerAsnTyrSerIleI	
ACAAGTTTCAAATATTCTGAAGGCTTGAGTAATTATTCCATCA	540
 80	
leAspLysLeuValAsnIleValAspAspLeuValGluCysValL	90
TAGACAAACTTGTGAATAAGTGGATGACCTTGTGGAGTGCCTGA	585
 96	
ysGluAsnSerSerLys	
AAGAAAACATCTAAGGTAACTTTGTGTTCAATTGGGATTATTT	630
TCATTACGCTTCTCTAAAAACCCATGCTTCTGGTGCTGTTGGGG	675
AAAATGAGGCACCTTATTTATGATAATTGATTGTATAAAACTTC	720
AAATTTAAAAATCTTGTTCAGATGAGCAAAGAAAACAAGTATTG	765
CAGTTATACTGCAATACTGAAGTGCACATTC	796

FIG.15B CONT.'

Intervening sequence of unknown length

TTGTGTTCACTGCCCGAGATTCAACTTGTGATCCCAGTGGATCA	45
CTACCCCTGCATTACCAATCTGAATTACATACTGTTAAAACAGCCAT	90
CTAAAAGTGCTAGTTGTAAGAGTCTAAATACTTGAATCTTGAGA	135
GACATATTTATAGTCCATTATCTTCACCTCAGTTAAGTCTGAAGA	180
97	
AspLeuLysL	
CTATTTGAAAAATGTAATCCTATTTTTCTTCTAGGATCTAAAAA	225
110	
ysSerPheLysSerProGluProArgLeuPheThrProGluGluP	
AATCATTCAAGAGCCCCAGAACCCAGGCTCTTACTCCTGAAGAAT	270
120	
hePheArgIlePheAsnArgSerIleAspAlaPheLysAspPheV	130
TCTTTAGAATTTTAATAGATCCATTGATGCCTTCAAGGACTTG	315
140	
alValAlaSerGluThrSerAspCysValValSerSerThrLeuS	
TAGTGGCATCTGAAACTAGTGATTGTGTGGTTCTCAACATTAA	360
148	
erProGluLysA	
GTCCTGAGAAAGGTAAGACATGTAAGCATTCCAGTTCAAATGTA	405
AACAAACAAACTAAATCTTCCCTATGTAGTAAGAATCTACCTCTG	450
TGTTAAGCTGTAGCAAGATACTGCATGTACGTCTAATAAAAAAG	495
CAGATATCAATAGCACAGAAGAAA	519

Intervening sequence of unknown length

FIG.15B CONT.'

CTCTATAACTCATACAAATCACCATATAACACTGACACATTATTG 45
150 160
spSerArgValSerValThrLysProPheMetL
CTTTCTATTTAGATTCCAGAGTCAGTGTACAAAACCATTATGT 90
170
euProProValAlaAlaSerSerLeuArgAsnAspSerSerSerS
TACCCCCCTGTTGCAGCCAGCTCCCTTAGGAATGACAGCAGTAGCA 135
176
erAsnA
GTAATAGTAAGTACATATATCTGATTTAATGCATGCATGGCTCCA 180
ATTAGCACCTATAGGAGTATTGCATGGGCTTCAAGGAAACTTCT 225
ACATTTATTATTATTGATACTGTTCTGTTACTGTTATTCCCTTTA 270
TGGTCTTCTTGAGACTTAAGTTGTAGAATTAAATTCCCTAGAG 315
CTGGAGATAATGTTAGAGAATTAGGCCAATAAAATT 352

FIG. 5C

M K K T Q T W I L T C I Y L Q	61
AAGCTTGCCTTCCTATGAGAAGACACAAACTGGATTCACTTGATTTCTTCAG	-25
L L F N P L V K T E G I C R N R V T N	10
CTGCTCCATTAAATCCTCTCGTCMMAACTGAAGGGATCTGCAGGAATCGTGTGACTAAT	121
N V K D V T K L V A N L P K D Y M I T L	20
ATGTAAGAACGTCACATTTGGTGGCAAATCTTCCAAAGACTACATGATGATGCCCTC	30
K Y V P G M D V L P S H C W I S E M V V	40
ATATGTCCCCCGGATGGATGGATGTTGCCAAGTCATTGTTGGATAAGCGAGATGGTAGTA	50
Q L S D S L T D L D K F S N I S E G L	60
CAATTGTCAGACAGCTTGAATCTGATCTGGACAAAGTTTCAAATATTCTGAAAGGCTTG	70
S N Y S I I D K L V N I V D D L V E C V	80
AGTAATTCCCATCATGACAAGACAAACTGTGAATAATAGTGGATGACCTTGCTGAGTCGCTG	90
K E N S S K D L K K S F K S P E P R I F	100
AAAAGAAAAACTCATCTAAGGATCTAAAAAAATCATTCAAGGAGCCAGAAACCCAGGCTCTT	110
121	

FIG. 15C CONT.'

T P E E F F R I F N R S I D A F K D F V
 ACTCCTGAAGAATTCTTGTAGAAATTTTAATAGATCCATTGATGCCTCAAGGACTTTGTA 120
 130
 V A S E T S D C V V S S T L S P E K D S
 GTGGCATCTGAAACTAGTGATTGTGGTTCTCTAACATTAAAGTCCTGAGAAAATTCC 140
 150
 R V S V T K P F M L P P V A A S S L R N
 AGAGTCAGTGTACACAAACATTATGTACCCCCCTGTTGCAGCCAGCTCCCTAGGMMAT 160
 170
 D S S S N S K Y I Y L I
 GACAGGCACTAGCACTAATAGTAAGTACATAATCTGATTAAATGCATGGCTCCAACT 180
 183
 TAGCACCTATAGGAGTATTGCATGGCTTCAAGGAAACTCTACATTATTTATTGAA
 TACTGTTCTGTTACTGTTATTCCCTTATGGTCTCTGAGACTTAAGTTGTAGMATTVA 661
 721
 AATTCCCTAGAGCTGGAGATAATGTTAGAGAAATTAGG 781
 820

FIG. 15D

GAGCTCCGAGCCCTCTGGGGCGqMGGTATTTCTGTCTGTnCCCGGGTCAAGGTGA 60
 GCCCCAGGGATCCGGGGACTCTGGGAACTCCTCGGAGGAGTAACTGCAGGTAC 120
 AGCTTCGCCCTCTGGGTCCCCGGCTTCGGGTCTCCGCCAGTGCAGGTCCGGGTAC 180
 CCCAGGGAGCCAAAGGTTGGCCTAAATCTGCCMAACTCTGGGCATTTACCGTGCTC 240
 TGCCGCCCTCCCGATACTTCTCCCTCCGCCCTTGCCCTGCTTCTCCCTACCCGGGCTC 300
 CGGAGGGAGGGAGCCGTGTCGGAGCAAGGGGGAAACTGTATAAAGCCGGGGGG 360
 CTCAGGAGCCGGCTTCCGGCTCGCCGAGCTAGMGGCTGAGGGAGCAGGG 420
 GAGCTGGAGAGGGCTGGCTCGGGCTACCCAAATGCGTGGAACTATCTGCCCGCTGT 480
 TCGTGCAAAATGAGGCTCCAGMAGCAGCTAACGAACTGTTTGTC 540
 -25 -21
 Met Lys Thr Glu
 TGTATGGGTTTCTTCTTATGMAGCACAAAGTAGTACGGGGGGGGGG 600
 GCCTCCAGGCTTCTCCAGGAAATGCCCCTGGTGCCTGGCTGCTGGGGGGGGGG 660
 GACTTGAGCTGGGGGTGCAAGGGCTGTGGCTGAGAACAGGGATGCCGGGG 720
 GGCGGGCTGGCTGTGATCCCGAGCCAGGGAGGAGGAGGGAGCTGGCA 780
 GTnCTGAGAGGGAGCCAGTGTCAAAGTTGGAGCAGTTAGTMACTTTCAGGCTGTCAG 840
 TCGGAAACCGTAATTCCCGCTCTGGGAAAGATTGGCTTTTnGnCCACGGAATGTAAGTT 900
 ATCAC 905

FIG. 15D CONT.

Intervening sequence of unknown length

AGATACTACAAAAGATMMATCAGTTGCACAGTCTTGAAACTCTACAGTGTMMTGGCA	60
AAAATTAAGTCATGCCATAAAAAGCAACCTATAATACTATAATGAAATGTTATTTCTMAGCCGA	120
TGTGTAGGTTATGTGTGTTCGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	180
TCAAGMATGGCCTTCRGGTGGCTMAGGEMATATTTCAGTGGCTTAAAGTGGCTAGCTAGGGT	240
TTCAAAAATTTGATGTTCTTCACTCACAATTCAGTGAATTCTCTTAGGTCTAAMMTAT	300
ACATCTCTCACTTAACTGGCTATTTGTTAGATTATGGATTATGGATTATGGATTATGGATT	360
GGGATTATGCTTGCCTCTGCCAAGCAGTCTACATTAAAGTAAAGTAAAGCAGTGGCTCTCA	420
'GGGTGCCATTAAGCTATACATTTCATTTATGCATTCTCATGTTTACAGMATAACCCTAAGGCT	480
AGGTCCTTGAUUGCTGCTACAGTGTATTCCTAAATGCCATTGGAAATTGGCTGAGAGA	540
AGCTTTTAAAGTTAACATTCATTCATTCATTCATTCATTCATTCATTCATTCATTCATTC	600
CTAAAAGC'rrrTAAAGCTTTGGTGGCTAGCTGATGGCTMATTTCATTCATTCATTCATTC	660
AGGCCATTAACATATATTAGACTGGCTTTTGTGCATCAAGGCATTAGATGTTAAAGT	720
TTGAATGATTACAGATCTTAACCTGATCACCAAGCAATTTCATGTTTCATTTCAGAC	-10
rTrpIleLeuThrCysIleTyrLeuGlnLeuLeuPheLeuProLeuValLeuThrG1	Th
TTGGATTCCTCACTTGCATTATCCTCAGCTGGCTCCTATTAACTCGTCATAACTGA	840

FIG. 15D CONT.

1	UGly11eCysArg9AlaArg10ValThrAsnLeu	10
ACGGATCTGCAGGAATCGTGTGACTAATMAGTMAAGGCTGACTAMTGGTAAAGTGGTAAAGTGA	900	
AAAAGATTAGATTTCCTGCCCAAGTAAATGTTCCCTAAAGTGGGAAAGTAAAGTCA	960	
CTGGGTTACAATAAGGGTTATAAGAACGGTAGTGAGATATTAGGGTCATGGATA	1020	
TTCATGGTAAACTGGCTAGTTGCACACCAACTGCTGTGACTGCTTCTGGCTCATGGATA	1080	
TCCCCATCCTTCATAAGGCAGTGAGGACCTGGAGAGTTCCCAGGCATGTTCTATTCCTTC	1140	
CCCCAGCTTGTCCCATTAATCTCCACTGGCTGGCTGCTGTGTGGCTTG	1200	
CATGTCCTCCCTACTCTTMMGGCTAACGCGAACATGTCAGTGGCTGTTGCCTTCAGGMA	1260	
CCAAATTCAATTCAGGAGACCCCTGTCACATGTCAGTGGCTGTTGCCTTCAGGMA	1320	
CATAGAGAGTCATGCCCACATGTCAGGGAACATCTCCCTGGCTTGTCAACAT	1380	
TGAAACATCTTCATTCAGGGAAAGCATTGGCTTC	1440	
	1479	
Intervening sequence of unknown length		
GAATTCCAGATCACAGGTGGAAAGGTGAATTCAGATCATGTTCCAAAGTCAGTAGGT	60	
TATAACCTAGCCAGGCATAACTGAAATTGGAGCTAAAGATCTGTATTATCACTTTTTA	120	
TTTGAAAGGATGCCCTTGTATTACAGGGAAATCAAGGATTAAAGTAAATACATAGT	180	

FIG. 15D CONT.

FIG. 15D CONT.

40 ProSerLisCysTrpIleSerGluMetValValGlnLeuSerLeuSerPheLysSerL
 ATATCTTGCAGCCAAAGTCATTGGATTAACCGAGATGGCTAGTACMAATTGTCAAGACAGCT 400
 60 euthrAspLeuLeuAspPheSerArgnIleSerGluGlyLeuSerSerSerLysSerL
 TGACTGAACTCTCTGGACAAAGTTTCMMAATTCTGAGGCTGTGACTMAATTTCATCTCA 540
 80 LeuAspPheLeuValAspPheLeuValGluCysValLysGluLeuSerSerL
 TAGACCAAACCTTGAAATATACTGCAATGATGCGATGACCTTGCGAGTCGGAGAACCTCTA 600
 96 ys AGCTAACTTTGGCTCATTTGGAAATTCTCATTCGCTTCTTAAACCCATGCTTC
 TTGGTGGCTGGGGGAAATGGCACCTTATTATGATATTTGATTGTATAACCTTC 660
 112 ATTAAAATTTTGTCAAGATGAGCAAGGAAACAGGAACTGAGTATTTGCAAGTATACGCCAT
 ACTGAGCTGCTACATTC 700
 128 796
 Intervening sequence of unknown length
 TTGTGTTCACTGCCCAAGATTCAACTTGTGATCCCACTGGCATCACTACCCCTGCAATTCC 60
 AATCTGAAATTACATACGTAAACAGCCATCTAAAGTGCATAGTTGAGTCTAAATTA 120
 CTTGAATCTTGGAGAGACATATTATAGTCCATTATCTCACCTCAGTTAGTCTGAGAGA 180
 97 AspLeuLysLysSerPheLysSerP
 CTATTGAAAAATGTAATCCTTCTTAGGATCTAAACATTCAAGAGCC 240

FIG. 15D CONT.

FIG. 15D CONT.

TAAATTTCCCTAGAGCTGGAGATATTGTTAGAGMATTAGGCCAATTAATTTCTGCTGA 360
 GGTATTTTAAATAGCATAAAATTAGAATAATGATTATGCTTTATGCTGTTGCAA 420
 TCATTAACATATAT 434

Intervening sequence of unknown length

ACAGMMCACTTAAACACCACAGCATANGAGnMMACCTCTAGnTCGnATGCTGTA 60
 178
 rgl.yAl.al.yAl.enPrPrProProGlyYAspSerSerL
 TTCATCAGTrGrGrTrCTTTAAATTAATGGGAGGGCCAMMMATCCCCCTGGAGACTCCAGCC 120
 190
 euUisTrpAl.al.al.euUprAl.al.euPheSerIeuUleIleGlyPheAlaPheG
 TACACTGGCt'Al'ATGGCAt'GCGCAGTGGCAGTGTGTTCTCTTAATGGCTTrGCTTTG 180
 200
 213
 IyAl.al.euUprUrpIyS
 GAGCCTTAATGAGGCTAAAGTGGTACCCATTCCTTttTTTAAATATGCTATGTTAC
 ATAAATATCATCTTTCTCAGMMTGATCCTTAAGGMMACAGTGAATCTAACCT 240
 TAGCTTATACTAAACAAATTTAAATTTATAAGTTTCCTGTTCTCATATATGCTGGGA 300
 GACAATCCCTCTAGCTGATAATTCAAGCTTAAAGAAATTAGGAAGCT 360
 404

Intervening sequence of unknown length

FIG. 15D CONT.

FIG. 15D CONT.

420

CTTTAAGTTCTGGGTACATGTCACATTGTCAGGTTACGTTATGTTACATGTGC
CATGTT 426

FIG.16A

-25

Human MKKTQTWLTI CIVLQLLFN PLVKTEGICR NRVTNNVKDV TKLVANLPKD
Monkey MKKTQTWLTI CIVLQLLFN PLVKTEGICR NRVTNNVKDV TKLVANLPKD 25
Dog MKKTQTWLTI CIVLQLLFN PLVKTEGICR NRVTNNVKDV TKLVANLPKD
Cat MKKTQTWLTI CIVLQLLFN PLVKTEGICR NRVTNNVKDV TKLVANLPKD
Cow MKKTQTWLTI CIVLQLLFN PLVKTKGLCR NRVTDDVKDV TKLVANLPKD
Rat MKKTQTWLTI CIVLQLLFN PLVITQGICS NRVTDDVKDV TKLVANLPKD
Mouse MKKTQTWLTI CIVLQLLFN PLVTKQEICR NPVTDNVKDI TKLVANLPKD
Chicken TWLTI CFCLQLLLIN PLVTKREICG NPVTDNVKDI TKLVANLPND
Scfpep MKKTQTWLTI CIVLQLLFN PLVTKREICG NPVTDDVNDI ARLVGNLPND

26

Human YMITLKRYVPG MDVLPShCWI SEMVQLSDS LTDLLDKFSN ISEG...LSN
Monkey YMITLKRYVPG MDVLPShCWI SEMVQLSDS LTDLLDKFSN ISEG...LSN
Dog YKIALKRYVPG MDVLPShCWI SVMVEQLSVS LTDLLDKFSN ISEG...LSN
Cat YKIALKRYVPG MDVLPShCWI SVMVEQLSVS LTDLLDKFSN ISEG...LSN
Cow YMILKRYVPG MDVLPShCWI SEMVQLSVS LTDLLDKFSN ISEG...LSN
Rat YMILKRYVAG MDVLPShCWL RDMVTLIISVLS LTDLLDKFSN ISEG...LSN
Mouse YMILKRYVAG MDVLPShCWL RDMVIQLSLS LTDLLDKFSN ISEG...LSN
Chicken YLITLKRYVPK MDSLSPNICWL HLMVPEFGRS LIMLQDKFSD ISDM9DVLSN
Scfpep YMILKRYVPG MDVLPShCWI SEMVQLSVS LTDLLDKFSN ISEG...LSN

73

Human YSIIDKLVNI VDDLVECKE N93RD.LKK9 FKSPEPLIFT PEEFFRIFR
Monkey YSIIDKLVNI VDDLVECKE -N93RD.LKK9 FKSPEPLIFT PEEFFRIFR 121
Dog YSIIDKLVKI VDDLVECTEG YSFEN.VRKA PKSPEPLIFT PEEFFRIFR
Cat YSIIDKLVKI VDDLVECVEG HSSEN.VKRS SK9PEPLIFT PEEFFRIFR
Cow YCIIDKLVKI VDDLVECMEK HSSEN.VKKS SKSPEPQFT PEKEFGIFHK
Rat YSIIDRLGKI VDDLVACMEE NAPRN.VKES LKKPETRIFT PEEFFSIEH
Mouse YSIIDKLGKI VDDLVACMEE NAPRN.IRES PKRPETRIFT PEEFFGIFHK
Chicken YSIINNLTRI INDLHACLAF DRNKDFIKEN GILYEEEDRFI PENFFRLFI
Scfpep YSIIDKLVKI vddLveC.ee nsoekn.vKks .kspEpRlFT PEeffFleH

FIG.16B

U.S. Application No. 10/620,642

Inventors: Zsebo *et al.*

Title: *Methods of Stimulating Growth of Stromal Cells in a Human*

Docket No. 01017/33718B

Sheet 47 of 119 (Figure 16B)

122

Human	SIDAFKDF.V	VASETSDCVV	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR	169
Monkey	SIDAFKDF.A	VASETSDCVV	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR	
Dog	SIDAFKDFLET	VASKSSECVV	SSTL.	SPDRD	SRVSVTKPFM	LPPVMASSLR	
Cat	SIDAFKDFEM	VASKTSECVV	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR	
Cow	SIDAFKDFEI	VASKMSECVI	SSTS.	SPEKD	SRVSVTKPFM	LPPVMASSLR	
Rat	SIDAFKDF.M	VASDTSDCVL	S9TL.	GPERD	SRVSVTKPFM	LPPVMASSLR	
Mouse	SIDAFKDF.H	VASDTSDCVL	SSTL.	GPEKD	SRVSVTKPFM	LPPVMASSLR	
Chicken	TIEVYREFAD	SLDK.R	NDCIH	PSTVETPEND	SRVAVTKTIS	FPPVMASSLR	
Scfpep	sidafkdf.m	vaeuktodCvv	sST1.aPeKD	SRVaVTKPfm	SRV@VTKPfm	1PPVMASSLR	

170

Human	NDSSSSNRKA	KNPPGD	SSLIWAM	ALPAFLF9LII	GFAFGALYWK	213
Monkey	NDSSSSNRKA	KNPTCD	SSLIWAM	ALPAFFSLLI	GFAFGALYWK	
Dog	NDSSSSNRKA	SNSIGD	SNLQWAM	ALPAFFSLLI	GFAFGALYWK	
Cat	NDSSSSNRKA	TWPIED	SSIQWAM	ALPACFSLLI	GFAFGALYWK	
Cow	NDSSSSNRKA	SNSIED	SSQLQWAM	ALPAFFSLLI	GFAFGAFYWK	
Rat	NDSSSSNRKA	AKSPED	PGLQWTAM	ALPALISLVI	GFAFGALYWK	
Mouse	NDSSSSNRKA	AKAPED	SGLQWTAM	ALPALISLVI	GFAFGALYWK	
Chicken	ND9IGSNTS	NSNKEALGFI	SSSSLGQISI	ALT9LL9LLI	GFLGAIYWK	
Scfpep	NDSeSSNRka	.n..ed....	ss1qwaam	Alpalf9lvi	GfaFGALYWK	

214

Human	KRQPSLTRAV	ENIQIN...	E	EDNEISMQLQE	KEREFQEV		248
Monkey	KRQPSLTRAV	ENIQIN...	E	DDNEISMQLQE	KEREFQEV		
Dog	KKQPNLRTV	ENIQIN...	E	EDNEISMQLQE	KEREFQEV		
Cat	KKQPNLRTV	ENIQIN...	E	EDNEISMQLQE	KEREFQEV		
Cow	KKQPNLRTV	ENRQIN...	E	EDNEISMQLQE	KEREFQEV		
Rat	KKQSSLTRAV	ENIQIN...	E	EDNEISMQLQQ	KEREFQEV		
Mouse	KKQSSLTRAV	ENIQIN...	E	EDNEISMQLQQ	KEREFQEV		
Chicken	KTIPKSRPES	NETIQCHGCCQ	EENEISMQLQQ	KEREFQEV			
Scfpep	Kkqpsltrav	eniqin...	e	edNEISMQLQE	KEREFQEV		

FIG. 16C

FIG. 16D**EcoRI**

ta a t t taa tt c g t a
GAATTCTCCGTATCTCAACCGTTCCATCGACGCTTCAAAGACTTCGTT
 E F F R I F N R S I D A F K D F V

g a t tagt t t g t a at a ag t g
GTTGCTTCCGAAACCTCCGACTGCGTTGTTCTCCACCCTGTCTCCGGAA
 V A S E T S D C V V S S T L S P E

BstEII

t a a cagt c a a t t a c t . a
AAAGACTCCCGTGTTGGTTACCAAACCGTTCATGCTGCCGCCGGTTGCT
 K D S R V S V T K P F M L P P V A

c ag tag t ag ag tag ag t tag t g a t
GCTTCCTCCCTGCGTAACGACTCCTCCTCCAACTCCAAATACATCTAC
 A S S L R N D S S S S N S K Y I Y

BamHI

↑
CTGATCTAATAGGATCC
 L I . .

U.S. Application No. 10/620,642
Inventors: Zsebo *et al.*
Title: *Methods of Stimulating Growth of Stromal Cells in a Human*
Docket No. 01017/33718B
Sheet 50 of 119 (Figure 16E)

FIG. 16E

BstEII GGTTACCAAAACCGTTCATGCTGCCGCCGGTTGCTGCTTAATAGGATCC BamHI
 V T K P F M L P P V A A . .

FIG.20A

FIG. 20B

U.S. Application No. 10/620,642

Inventors: Zsebo *et al.*

Title: *Methods of Stimulating Growth of Stromal Cells in a Human*

Docket No. 01017/33718B

Sheet 56 of 119 (Figure 21)

FIG. 21

U.S. Application No. 10/620,642

Inventors: Zsebo *et al.*

Title: *Methods of Stimulating Growth of Stromal Cells in a Human*

Docket No. 01017/33718B

Sheet 57 of 119 (Figure 22)

FIG. 22

FIG. 22A**STEM CELL FACTOR RIA**

FIG. 23

FIG. 24A

FIG. 24B

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29A

FIG. 29B

FIG. 30A

FIG. 30B

FIG. 31B

FIG. 31A

FIG. 31C

FIG. 32A

FIG. 32B

FIG. 33

NaCl (mM) -----

FIG. 34A

FIG. 34B

FIG. 35

ETHANOL (%)

FIG. 36
MC/9 CPM ($\times 10^{-3}$)

FIG. 37

MC/9 CPM ($\times 10^{-3}$)

FIG. 38

FIG. 39

FIG. 40A

FIG. 40B

FIG. 41

FIG. 42A

ccgcctcgccccgacatggactatgggtggactatctggcccccgttgcgtcaatatggctggatggccttcctt 61
 TCGGGCTACCCAAATGGGTGGACTATCTGGCCCCCCTGTTGCgtcaatatGGCTGGAGGCTGGC 61

GAACAGCTAACGGAGTCGCCAACCACTGTTGCTGGATCGCAGCGCTGCCTTCCCT 103
 GAACAGCTAACGGAGTCGCCAACCACTGTTGCTGGATCGCAGCGCTGCCTTCCCT 103

-25	Met Lys Thr Gln Thr Trp Ile Leu Thr Cys Ile Tyr Leu Gln	-20
	ATG AAG AGC ACA CAA ACT TGG ATT CTC ACT TGC ATT TAT CTT CAG	228
-10	Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg	1
	CAG CTC CTA TTT ATA CCT CTC GTC AAA ACT GAA GGG ATC TGC AGG	273
10	Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala	20
	ATG CGT ACT ATA ATA GTA AAA GAC GTC ACT AAA TTG GTC GCA	318
30	Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly	50
	AAT CTT CCA AAA GAC TAC ATA ATG ATA ACC CTC AAA TAT GTC CCC GGG	363
40	Met Asp Val Leu Pro Ser Ile Cys Trp Ile Ser Glu Met Val Val	50
	ATG GAT GTT CCA AGT CAT TGT TGG ATA AGC GAG ATG GTA GTC	408
60	Gln Leu Ser Asp Ser Leu Thr Asp Leu Leu ASP Lys Phe Ser Alan	451
	CAA TGT TCA GAC AGC TTG ACT GAT CTT CTG GAC AAG TTT TCA ATT	451

FIG. 42B

U.S. Application No. 10/620,642

Inventors: Zsebo et al.

Title: *Methods of Stimulating Growth of Stromal Cells in a Human*

Docket No. 01017/33718B

Sheet 86 of 119 (Figure 42B)

Ile	Ser	Glu	Gly	Leu	Ser	Asn	Tyr	Ser	Ile	Ile	Asp	Lys	Leu	Val	
ATT	TCT	GAA	GGC	TTG	AGT	ATG	TAT	TCC	ATC	ATA	GAC	AAA	CTT	GRG	498
80															
Lys	Ile	Val	Asp	Asp	Leu	Val	Glu	Cys	Val	Lys	Glu	Asn	Ser	Ser	
ATG	ATA	GTC	GAT	GAC	CTT	GTG	GAG	TGC	ATC	AAA	GAA	AGC	TCA	TCT	543
90															
Lys	Asp	Leu	Lys	Lys	Ser	Phe	Lys	Ser	Pro	Glu	Pro	Arg	Leu	Phe	
AAG	GAT	CTA	AAA	AAA	TCA	TTC	AAG	AGC	CCA	GAA	CCC	AGG	CTC	TTT	500
100															
Thr	Pro	Glu	Glu	Phe	Phe	Arg	Ile	Phe	Asn	Arg	Ser	Ile	Asp	Ala	
ACT	CCT	GAA	GAA	TTC	TTC	TTT	AGA	ATT	TTT	ATG	TCC	ATT	GAT	GCC	633
110															
Phe	Lys	Asp	Phe	Val	Val	Ala	Ser	Glu	Thr	Ser	Asp	Cys	Val	Val	
TTC	AAG	GAC	TTT	GTA	GTG	GCA	TCT	GAA	ACT	AGT	GAT	TGT	GTG	GTT	670
120															
Ser	Ser	Thr	Leu	Ser	Pro	Glu	Lys	Asp	Ser	Arg	Val	Ser	Val	Thr	
TCT	TCA	ACA	TTA	AGT	CCT	GAG	AAA	GAT	TCC	AGA	GTC	AGT	GTC	ACA	723
130															
140															

FIG. 42 C

FIG. 42D

TGGTACAGTCATGTTGCTCATMATTGAAAGCAGCTTAAACMAATTCAATTCTGTC 1104
TGGAATGCCACATCTTAACTGTTCTGCTAACCCATGACTTTATAAGGATGATTTC 1164
GAAATGGAAACAGAAATGTTTACTGTGAAACTGGCACTGAAATTCACTATAAGAA 1224
GAACTTGCATGGAGGAACTCTTTAAGGACTTGGGGACTTGGGTCTCATTAGAAC 1284
TTGCAGCTGATGTTGAAAGAGAAGGCACGTGTCTCAGACTGCATGTACCATTTGCATGGC 1344
TCCAGAAATGTCATGCTGMAAAAACCTAGCTTATTCTCAGATAACMAACTGGAG 1404

FIG. 43

FIG. 44 A

AGCAGGGACAGTGGAGAGGGCTGGGCTC 30
 GGGCTAACCCAAATGCCGTGGACTATCTGCCCGCCCTGTTCTGCATAATGCTGGAGCTCCAG 90
 AACAGCTAACCCGAGTCGCCAACCCAACTGTTGCTGGATCGCAAGGCCTGGCTTCCTT 150
 -25 Met Lys Lys Thr Glu Thr Trp Ile Leu Thr Cys Ile Tyr Leu Glu 1
 ATG MGC MGC ACA CAA ACT TGG ATT CTC ACT TGC ATT TAT CTT CAG 195
 -10 Leu Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg 20
 CTG CTC CTC CTA TTT ATT CCT CRC GTC AAA ACT GAA GGG ATC TGC AGG 240
 10 Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala 20
 ATG CGT ACT ATT ATT GTT AAA GAC GTC ACT AAA TTG GTG GCA 285
 30 Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly 330
 ATT CTT CCA AAA GAC TAC ATT ATA ACC CTC AAA TAT GTC CCC GGG
 40 Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met Val Val 50
 ATG GAT GCT TTG CCA AGT CAT TGT TGG ATA AGC GAG ATG GTA GAA 375

FIG. 44B

Gln	Leu	Ser	Asp	Ser	Leu	Thr	Asp	Leu	Leu	Asp	Lys	Phe	Ser	Asn	
CAA	TTC	TCA	GAC	AGC	TRG	ACT	GAT	CTT	CTG	GAC	AAG	TTC	TCA	ATT	420
Ile	Ser	Glu	Gly	Leu	Ser	Asn	Tyr	Ser	Ile	Ile	Asp	Lys	Leu	Val	80
ATT	TCT	GAA	GGC	TRG	AGT	AAT	TAT	TCC	ATC	ATA	GAC	AAA	CTT	GTG	465
Asn	Ile	Val	Asp	Asp	Leu	Val	Glu	Cys	Val	Lys	Glu	Asn	Ser	Ser	90
ATT	ATA	GTG	GAT	GAC	CTT	GTG	GAG	TGC	GAA	GAA	GAA	AAC	TCA	TCT	510
Lys	Asp	Leu	Lys	Lys	Ser	Phe	Lys	Ser	Pro	Glu	Pro	Arg	Leu	Phe	100
AAG	GAT	CTA	AAA	AAA	TCA	TTC	AAG	AGC	CCA	GAA	CCC	AGG	CTC	TTR	555
Thr	Pro	Glu	Glu	Phe	Phe	Arg	Ile	Phe	Asn	Arg	Ser	Ile	Asp	Ala	110
ACT	CCT	GAA	GAA	TTC	TTT	AGA	ATT	TTT	AAT	AGA	TCC	ATT	GAT	GCC	600
Phe	Lys	Asp	Phe	Val	Val	Ala	Ser	Glu	Thr	Ser	Asp	Cys	Val	Val	120
TTC	AAG	GAC	TTT	GTA	GTG	GCA	TCT	GAA	ACT	AGT	GAT	TGT	GTG	GTT	645
Ser	Ser	Thr	Leu	Ser	Pro	Glu	Lys	Gly	Lys	Ala	Lys	Asn	Pro	Pro	130
TCT	TCA	ACA	TTA	AGT	CCT	GAG	AAA	GGG	GGG	AAG	GCC	AAA	AAT	CCC	690

FIG. 44C

Gly Asp Ser Ser Leu Ile Trp Ala Ala Met Ala Pro Ala Leu	160	
GGA GAC TCC AGC CTA CAC TGG GCA GCC ATG GCA TTG CCA GCA TGC		170
Phe Ser Leu Ile Ile Gly Phe Ala Phe Gly Ala Leu Tyr Trp Lys	180	
TTC TCT ATA ATT GGC TTT GCT TTR GGA GCC TTA TAC TGC TGG MAG		190
Lys Arg Gln Pro Ser Leu Thr Arg Ala Val Glu Arg Ile Gln Ile	200	
AGG AGA CAG CCA AGT CTT ACA AGG GCA GTT GAA ATT ATA CAA ATT		210
Asn Glu Glu Asp Asn Glu Ile Ser Met Leu Gln Glu Lys Glu Arg	220	
ATG GAA GAG GAT ATT GAG ATA AGT ATG TTG CAA GAG AAA GAG AGA		230
Glu Phe Gln Glu Val End		240
GAG TTT CAA GAA GTG TAA		250
CATGGCTGGTAACAGTCATGTTGCTTCATAAATGAGCAGCTTACATTCTCGTA		260
TTCTGTCTGGAGTGACAGACACATCTTTATCTGTTCTGCTTACCCATGACTTATGG		270
ATGATTCAAAAATTGGAAACAGAACATGTTTACTGTGAAACTGGCACTGAA		280
		290
		300
		310
		320
		330
		340
		350
		360
		370
		380
		390
		400
		410
		420
		430
		440
		450
		460
		470
		480
		490
		500
		510
		520
		530
		540
		550
		560
		570
		580
		590
		600
		610
		620
		630
		640
		650
		660
		670
		680
		690
		700
		710
		720
		730
		740
		750
		760
		770
		780
		790
		800
		810
		820
		830
		840
		850
		860
		870
		880
		890
		900
		910
		920
		930
		940
		950
		960
		970
		980
		990
		1000

FIG. 45

FIG. 46

850 RADS; 5% of femur transplanted

FIG. 47

FIG. 48

SCF RADIOPROTECTION (1163 RAD)

Normal Female BDF1 mice, n=30

FIG. 49

SCF RADIOPROTECTION (1159 RAD)
Normal Female BDF1 mice

FIG. 50

FIG. 51

FIG. 52

FIG. 53

FIG. 54

Dose/Response of rrSCF-PEG on Platelet Counts

FIG. 55

FIG. 56**5-FU Effect on ACH+ Cells in Marrow****A**

○ CTL-γACH-BM
● SFU-γACH-BM

5-FU Effect on ACH+ Cells in Spleen**B**

○ CTL-γACH-SPL
● SFU-γACH-SPL

FIG. 57

Mean Platelet Volume after 5-FU Treatment

FIG. 58

FIG. 60

FIG. 61

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 62

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 63

FIG. 64

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC**BFU-E**

FIG. 65

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC

FIG. 66

FIG. 67

FIG. 68

FIG. 69A

FIG. 69B

FIG. 70

