Content Covered: Sections 1.1-1.4 & 2.1-2.4

Note that detailed lists of objectives from each section covered can be found on Canvas.

Concept Check Questions:

1. Parametric Curves:

- (a) What is a parametric curve?
- (b) How do you sketch a parametric curve?
- (c) How do you find the slope of a line tangent to a parametric curve?
- (d) How do you find the area under a parametric curve?
- (e) How do you find the length of a parametric curve?

2. Polar Coordinates:

- (a) Sketch a diagram to explain the meaning of the polar coordinates (r,θ) of a point.
- (b) Write out the equations that express the Cartesian coordinates (x, y) of a point in terms of the polar coordinates.

3. Polar Curves:

- (a) How do you find the slope of a line tangent to a polar curve?
- (b) How do you find the area of a region bounded by a polar curve?
- (c) How do you find the arclength of a polar curve?

4. Intro to Vectors:

- (a) What is the difference between a vector and a scalar?
- (b) How do you add two vectors geometrically? How do you add them algebraically?
- (c) If \vec{a} is a vector and c is a scalar, how is $c\vec{a}$ related to \vec{a} geometrically? How do you find $c\vec{a}$ algebraically?

5. Dot Product:

- (a) How do you find the dot product $\vec{a} \cdot \vec{b}$ if you know their lengths and the angle between them?
- (b) How do you find the dot product $\vec{a} \cdot \vec{b}$ if you know their components?
- 6. Write expressions for the scalar and vector projections of \vec{b} onto \vec{a} . Illustrate with a diagram.

7. Cross Product:

- (a) How do you find the cross product $\vec{a} \times \vec{b}$ if you know their lengths and the angle between them?
- (b) How do you find the cross product $\vec{a} \times \vec{b}$ if you know their components?
- (c) How are cross products useful?
- 8. How do you find the area of a parallelogram determined by \vec{a} and \vec{b} ?

(T/F)+E:

Answer the following questions **TRUE** or **FALSE**. You must justify your answer with a complete sentence **explaining** why the answer is either **TRUE** or **FALSE**

Note: (T/F) + E: represents a choice of either (True or False) plus an Explanation for your choice.

- 1. If the parametric curve $x=f(t), \quad y=g(t)$ satisfies g'(1)=0, and $f'(1)\neq 0$, then it has a horizontal tangent when t=1.
- 2. If x = f(t) and y = g(t) are twice differentiable, then

$$\frac{d^2y}{dx^2} = \frac{y''(t)}{x''(t)}.$$

3. The length of the curve x = f(t), y = g(t), $a \le t \le b$ is

$$\int_{a}^{b} \sqrt{[f'(t)]^2 + [g'(t)]^2} \ dt.$$

- 4. If a point is represented by (x,y) in Cartesian coordinates (where $x \neq 0$) and (r,θ) in polar coordinates, then $\tan \theta = \frac{y}{x}$.
- 5. The polar curves $r=1-\sin 2\theta$ and $r=\sin 2\theta-1$ have the same graph.
- 6. The equations r=2, $x^2+y^2=4$, and $x=2\sin(3t)$, $y=2\cos(3t)$, $0\leq t\leq 2\pi$ all have the same graph.
- 7. The parametric equations $x=t^2, \quad y=t^4$ have the same graph as $x=t^3, \quad y=t^6$.
- 8. The set of all points $\{(x,y,z)|x^2+y^2=1\}$ is a circle.
- 9. If $\vec{\boldsymbol{u}} = \langle u_1, u_2 \rangle$ and $\vec{\boldsymbol{v}} = \langle v_1, v_2 \rangle$ then $\vec{\boldsymbol{u}} \cdot \vec{\boldsymbol{v}} = \langle u_1 v_1, u_2 v_2 \rangle$.
- 10. For any three-dimensional vectors \vec{u} and \vec{v} , $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||$.
- 11. For any three-dimensional vectors \vec{u} and \vec{v} , $(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$.
- 12. For any three-dimensional vectors \vec{u} and \vec{v} , $(\vec{u} + \vec{v}) \times \vec{v} = \vec{u} \times \vec{v}$.
- 13. If $\vec{u} \cdot \vec{v} = 0$, then $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$.
- 14. If $\vec{u} \times \vec{v} = \vec{0}$, then $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$.
- 15. If $\vec{u} \cdot \vec{v} = 0$ and $\vec{u} \times \vec{v} = \vec{0}$, then $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$.

Selected Review Problems:

Here are some additional review problems from the material covered by Test 1. **This does not represent a practice test!** There may be some types of problems on the test that are not listed below. The actual test will be shorter than this list!

Chapter 1 Material:

- 1. Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.
 - (a) $x = t^2 + 4t$, y = 2 t, $-4 \le t \le 1$
 - (b) $x = 1 + e^{2t}$, $y = e^t$
 - (c) $x = \cos t$, $y = \sec t$, $0 \le t \le \pi/2$
 - (d) $x = 2\cos t, \quad y = 1 + \sin t$
- 2. (a) Plot the point with polar coordinates $(4, \frac{2\pi}{3})$. Then find its Cartesian coordinates.
 - (b) The Cartesian coordinates of a point are (-3,3). Find two sets of polar coordinates for the point.
- 3. Find the slope of the tangent line to the given curve at the point corresponding to the specified value.
 - (a) $x = \ln t$, $y = 1 + t^2$, t = 1
 - (b) $x = t^3 + 6t + 1$, $y = 2t t^2$, t = -1
 - (c) $r = e^{-\theta}$, $\theta = \pi$
- 4. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (a) $x = t + \sin t$, $y = t \cos t$
 - (b) $x = 1 + t^2$, $y = t t^3$
- 5. Consider the curve with parametric equations

$$x = 2a\cos t - a\cos 2t$$
, $y = 2a\sin t - a\sin 2t$

- (a) At what points does the curve have vertical or horizontal tangents? Use this information to help sketch the curve.
- (b) Find the area enclosed by the curve.
- 6. Find the points of intersection of the curves r=2 and $r=4\cos\theta$.
- 7. Find the length of the curve.
 - (a) $x = 3t^2$, $y = 2t^3$, $0 \le t \le 2$
 - (b) $r = \frac{1}{\theta}$, $\pi \le \theta \le 2\pi$ (set-up only I would not ask you to evaluate this integral on an in-class test)

Chapter 2 Material:

- 8. If \vec{u} and \vec{v} are the vectors shown below, find (Figure not necessarily drawn to scale)
- 9. Calculate the stated quantity for the vectors

$$\vec{a} = \langle 1, 1, -2 \rangle, \qquad \vec{b} = \langle 3, -2, 1 \rangle$$

(a) $2\vec{a} + 3\vec{b}$

- (a) $ec{u}\cdotec{v}$
- (b) $||\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}}||$
- (c) Is $\vec{u} \times \vec{v}$ directed into the page, or out of it?

Figure 1: Figure for Problem likesubsection8.

- (b) $||ec{m{b}}||$
- (c) $ec{a}\cdotec{b}$
- (d) $\mathsf{comp}_{\vec{a}}\vec{b}$
- (e) $\operatorname{proj}_{\vec{a}} \vec{b}$
- (f) the angle between \vec{a} and b, in radians, rounded to two decimal places
- 10. Calculate the stated quantity for the vectors

$$\vec{a} = \langle 1, 1, -2 \rangle, \qquad \vec{b} = \langle 3, -2, 1 \rangle, \qquad \vec{c} = \langle 0, 1, -5 \rangle$$

- (a) $ec{a} imesec{b}$
- (b) $|| ec{m{b}} imes ec{m{c}} ||$
- (c) $ec{m{a}}\cdot(ec{m{b}} imesec{m{c}})$
- (d) $ec{c} imesec{c}$
- 11. Find the values of x such that the vectors (3,2,x) and (2x,4,x) are orthogonal.
- 12. A constant force $\vec{F} = 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 10\hat{\mathbf{k}}$ moves an object along the line segment from (1,0,2) to (5,3,8). Find the work done if the distance is measured in meters and the force in Newtons.
- 13. Identify and sketch the graph of each surface.
 - (a) x = 3
 - (b) x = z
 - (c) $y = z^2$

(An answer key for the (T/F)+E and Selected Review Problems can now be found on the Test 1 assignment page on Canvas!)