Aldehyde, Ketones and Carboxylic Acids:

Aldehyde and Ketones

Preparation of Aldehydes

a. Oxidation of primary alcohols

Preparation of Ketones:

- a) Oxidation of Secondary alcohols:
- d) With Organometallics

Reactions of Aldehydes and Ketones:

a) Aldol condensation

Aldehydes and ketones having alpha hydrogen atom:

b) Cannizzaro reaction:

Aldehydes and ketones having no alpha hydrogen atom:

When two carbonyl groups are present within a molecule, think of intramolecular reaction. OH will attack more positively charged carbon. In this case, it is right >c=0 group.

c) Formation of Keto Esters

Esters having a-hydrogen on treatment with a strong base e.g. C₂H₅ONa. Undergo self condensation to produce b-keto esters. This reaction is Claisen Condensation.

d) Reformatsky Reaction

This is the reaction of a-haloester, usually an a-bromoester with an aldehyde or ketone in the presence of Zinc metal to produce b-hydroxyester.

e) Pinacol-pinacolone Rearrangement

The acid catalysed rearrangement of 1,2 diols (Vicinal diols) to aldehydes or ketones with the elimination of water is known as pinacol pinacolone rearrangement.

a) Wittig-Ylide Reaction

Aldehydes and Ketones react with phosphorus Ylides to yield alkenes and triphenyl phosphine oxide. An Ylide is a neutral molecule having a negative carbon adjacent to a positive hetero atom. Phosphorus ylides are also called phosphoranes.

Preparation of Ylides

Reaction of Ylide with >C=O

Above things happens in BVO (Bayer Villiger oxidation). Reagents are either per acetic acid or perbenzoic acid or pertrifluoroacetic acid or permonosulphuric acid.

- e) Addition of cyanide
- f) Addition of bisulfite:

h) Addition of Alcohols; Acetal Formation

In H_3O^+ , RCHO is regenerated because acetals undergo acid catalyzed cleavage much more easily than do ethers. Since acetals are stable in neutral or basic media, they are used to protect the -CH = O group.

k) Tischenko reaction:

All aldehydes can be made to undergo the Cannizzaro reaction by treatment with *aluminium ethoxide*. Under these conditions the acids and alcohols are combined as the ester, and the reaction is then known as the Tischenko reaction; eg, acetaldehyde gives ethyl acetate, and propionaldehyde gives propyl propionate.

Oxidation of Aldehydes and Ketones

a)

Tollen's test chiefly used for the detection of aldehydes.

Tollen's reagent doesnot attack carbon-carbon double bonds.

- c) Strong Oxidants: Ketones resist mild oxidation, but with strong oxidants at high temperature they undergo cleavage of C-C bonds on either sides of the carbonyl group.
- d) Haloform Reaction

CH₃COR are readily oxidised by NaOI (NaOH + I₂) to iodoform, CHI₃, and RCO₂Na

Example:

Reduction:

a) Reduction to alcohols

Carboxylic Acids:

Carboxylic Acids	Common Names
НСООН	Formic acid
СН3СООН	Acetic acid
СН3-СН2-СООН	Propionic acid
СН ₃ (СН ₂)СООН	Butyric acid
CH2(CH2)2COOH	Valeric acid

C13(C114/3CCC11	, micrae meiu
CH ₃ (CH ₂) ₁₄ COOH	Palmitic acid
CH ₃ (CH ₂) ₁₆ COOH	Stearic Acid

Physical Properties of Carboxylic Acids

- The first three acids are colourless, pungent smelling liquids.
- First four members are miscible in water due the intermolecular hydrogen bonding whereas higher members are miscible in non polar solvents like ether.
- Benzene or ethanol but immiscible in water due to the increase in the size of lyophobic alkyl chain.
- The b.p. of carboxylic acids are higher than alcohols because carboxylic acids exist as dimers due to the presence of intermolecular H-bonding
- Increase in the number of Halogen atoms on a-position increases the acidity, eg. CCl₃COOH > CHCl₂COOH > ClCH₂COOH > CH₃COOH
- Increase in the distance of Halogen from COOH decreases the acidity e.g
 CH₃ CH₂ CH(Cl) COOH > CH₃ CH(Cl) CH₂ COOH > CH₂ CH₂ COOH
- Increase in the electro negativity of halogen increases the acidity.
 FCH₂COOH > BrCH₂COOH > ICH₂COOH

Methods of Preparations of Carboxylic Acids

a. Oxidation of Aldehydes & Ketones

Chemical Reactions of Carboxylic Acids

a. Salt formation:

b. Conversion into Acid Chlorides:

sterification:	
termeanym.	
ction:	
Chlorides:	
sion of Acid Chlorides into Acid Derivatives:	
es	
rsis:	
Character of Amides:	
$g + HgO \rightarrow (RCONH)_2Hg + H_2O$	
Character of Amides:	
re very feebly basic and form unstable salts with strong in	organic acids, e.g. RCONH-HCL The structure of th