ЛАБОРАТОРНАЯ РАБОТА 1. ТЕОРИЯ ПОГРЕШНОСТЕЙ

Теоретический материал к данной теме содержится в [1, глава 2]. Варианты к задачам 1.1-1.3 даны в **ПРИЛОЖЕНИИ 1.A.**

В отчет следует включить постановки задач, результаты расчетов и их анализ.

Задача 1.1. Найти значения машинного нуля, машинной бесконечности и машинного эпсилон. (см. *Приложение 1.В*)

Задача 1.2. Исследовать поведение погрешности приближения функции F(x) частичными суммами на отрезке [a,b].

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Используя разложения стандартных функций в ряд Тейлора в окрестности нуля, получить разложение функции F(x) по степеням x.
- 2. Составить процедуру, вычисляющую частичную сумму N членов ряда S(x,N).
- 3. Построить графики исходной функции и первых пяти частичных сумм: S(x,1),...S(x.5).
- 4. Составить функции, вычисляющие абсолютную погрешность $\Delta(x,N) = |S(x,N) F(x)|$ и относительную погрешность $\delta(x,N) = \Delta(x,N) / |S(x,N)|$. Построить графики погрешностей первых пяти частичных сумм.
- 5. Определить количество членов ряда N, при котором величина относительной погрешности в средней точке отрезка станет меньше машинного эпсилон. Величину относительной погрешности вычислять как отношение прибавляемого члена к накопленной частичной сумме S(x,N), взятое по модулю.
- 6. При найденном значении N построить графики абсолютной погрешности $\Delta(x, N)$ и относительной погрешности $\delta(x, N)$.
- 7. Составить программу округления вычислений результата до t разрядов мантиссы и произвести расчеты п. 4 с учетом округления.
- 8. Сравнить полученные результаты и составить отчет по задаче.

Задача 1.3. Дана функция f(a,b,c). Значения переменных указаны в варианте со всеми верными цифрами. Оценить погрешность результата двумя способами: а) используя оценки погрешности для арифметических операций, б) используя общую формулу погрешностей. Результат представить в двух формах записи: с явным указанием погрешностей и с учетом количества верных цифр. (см. *Приложение 2.B*)

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 1

ВНИМАНИЕ! Номер варианта *N* для лабораторных работ вычисляется по следующей формуле:

- 1) N = I для группы A-5-19;
- 2) N = 10 + I для группы A-13a-19
- 3) N = 20 + I для группы A-136-19
- 4) N = 30 + I для группы A-14-19
- 5) N = 60 I для группы A-16-19

(здесь I — индивидуальный номер студента по журналу).

ПРИЛОЖЕНИЕ 1.А

Таблица к задаче 1.1

	ı	Таблица к зада						
№	F(x)	[<i>a</i> , <i>b</i>]	№	F(x)	[<i>a</i> , <i>b</i>]	№	F(x)	[<i>a</i> , <i>b</i>]
1.1.1	xe ^x	[-5,-3]	1.1.21	$x\cos(x)$	[1,4]	1.1.41	$x^2(1-\cos(x))$	[2,7]
1.1.2	$\sin(x)$	[0,1.6]	1.1.22	$x^2(e^x-x-1)$	[-4,0]	1.1.42	$x\sin(x)$	[-8, -5]
1.1.3	e^x-2	[-3,-1]	1.1.23	$x\cos(x^2)$	[1,4.5]	1.1.43	x^2e^{-x}	[-7,-4]
1.1.4	$\ln(1+x^2)$	[0.2, 0.8]	1.1.24	$\ln(1+x)-x$	[0,0.5]	1.1.44	$\ln(1+x)/x$	[0.3, 0.9]
1.1.5	arctg(x)/x	[0.1, 0.9]	1.1.25	arctg(x)	[0,0.8]	1.1.45	arctg(x) - x	[0.2, 0.7]
1.1. 6	$\sin(x^2)$	[-3,0]	1.1.26	$\ln(1+x^2)-x^2$	[0.5, 0.9]	1.1.46	$(1-\cos(x))/x$	[-9,-6]
1.1.7	$x(e^x-1)$	[-4,0]	1.1.27	$\sin(x)/x$	[1,8]	1.1.47	e^x-1	[-7, -1]
1.1.8	$\cos(x)$	[1,3]	1.1.28	$(e^x-x-1)/x$	[6,9]	1.1.48	$1-\cos(x)$	[-6, -2]
1.1.9	$x\ln(1+x)$	[0.2, 0.8]	1.1.29	$1 - \ln(1+x)$	[0,0.5]	1.1.49	$\ln(1+x^2)/x$	[0.3, 0.9]
1.1.10	$2x \cdot arctg(x)$	[0.1, 0.9]	1.1.30	x - arctg(x)	[0,0.8]	1.1.50	$arctg(x^2)$	[-0.9,0]
1.1.11	$x(1-\cos(x))$	[2,6]	1.1.31	$2-e^{-x}$	[2,5]	1.1.51	$\sin(x) - \cos(x)$	[-1,4]
1.1.12	$(e^x-1)/x$	[-7,-3]	1.1.32	$1 - \ln(1+x) / x$	[0.2, 0.7]	1.1.52	$e^{-x} + \cos(x)$	[1,7]
1.1.13	$3x\sin(x)$	[1,7]	1.1.33	$e^x + \cos(x)$	[-2,2]	1.1.53	$\sin(x^2) - x^2$	[-5, -1]
1.1.14	arctg(2x)	[-0.2, 0.4]	1.1.34	arctg(x) - 1/x	[0.1,1]	1.1.54	$\sin(x) - e^{-x}$	[-1,3]
1.1.15	$\ln(1+x^2)$	[-0.8,0]	1.1.35	$x^2 - x\sin(x)$	[1,6]	1.1.55	$\ln(1+x) + x^2 / 2$	[-0.9,0]
1.1.16	$x^2\cos(x)$	[-5,-2]	1.1.36	$e^{-x} + \sin(x)$	[-1,5]	1.1.56	$1/x + \cos(x)$	[1,8]
1.1.17	$e^x - x - 1$	[-9,-5]	1.1.37	$e^x - e^{-x}$	[-2,1]	1.1.57	arctg(x)/x-1	[0.2, 0.8]
1.1.18	$\ln(1+x)-x$	[0.4, 0.8]	1.1.38	$\sin(x) + \cos(x)$	[-6, 2]	1.1.58	$e^x + e^{-x}$	[-3, 4]
	$+x^{2}/2$							
1.1.19	$x - \sin(x)$	[1.5,4]	1.1.39	$\ln(1+x) + 1/x$	[0.3, 0.9]	1.1.59	$1/x + \sin(x)$	[1,8]
1.1.20	$2-\cos(x)$	[-5,0]	1.1.40	$2\sin(x^2)$	[-6,-4]	1.1.60	$x + \cos(x)$	[0,4]

Таблица к задаче 1.2

								таолица к	задаче 1.2
№	f(a,b,c)	a	b	C	№	f(a,b,c)	a	b	C
1.2.1	а	0.0125	0.283	0.0187	1.2.31	$a+b^2$	4.41	18.5	1.4
	$\overline{a^2 + bc}$					$\overline{a^2-bc}$			
1.2.2	a-b	14.29	13.81	10.98	1.2.32	$\frac{a-c^2}{c}$	16.5	4.2	1.23
	$\overline{a^2 + bc}$					$\frac{a^2+b}{a^2+b}$			
1.2.3	a^2	12.28	13.21	12.19	1.2.33	a+b	52.31	48.95	47.81
	$\frac{ab-bc}{ab-bc}$					$\overline{b-c}$			
1.2.4	a+b	0.328	0.781	0.0129	1.2.34	ac + bc	4.81	4.52	9.28
	$\overline{a^2 + bc}$					$\overline{a^2-b^2}$			
1.2.5	a+c	14.85	15.49	10.1	1.2.35	ac-bc	16.21	16.18	21.23
	$\overline{a^2-b^2}$					$\overline{a^2+b^2}$			
1.2.6	ab	12.31	0.035	10.82	1.2.36	a^2+b^2	121	0.324	1.25
	$\overline{a^2 + bc}$		2			$\frac{abc}{abc}$			
1.2.7	a-b	12.45	11.98		1.2.37	a^2+b^2	25.18	24.98	23.18
	$\overline{a^2+b^2}$					$\frac{a-c}{a-c}$			
1.2.8	a^2b	3.456	0.642	7.12	1.2.38	c	3.1415	3.1411	10.91
	$\frac{a \ b}{c}$					$\overline{a^2-b^2}$			
1.2.9	a^3b	1.245	0.121	2.34	1.2.39	ab^2	3.14	1.57	0.0921
	$\frac{ab}{c}$					$\frac{ao}{c}$			
1.2.10	$ab+b^2$	13.12	0.145	15.18	1.2.40	ac	14.85	15.49	0.16
	$\frac{ab+b}{a^2+c^2}$					$\frac{a^2-b^2}{a^2-b^2}$			
1.2.11	ab^3	0.643	2.17	5.843	1.2.41	ac+b	5.325	5.152	5.481
						$\frac{ac+b}{ac-b}$			
1.2.12	$\frac{c}{ab}$	0.3575	2.63	0.854	1.2.42	a+c	71.4	4.82	49.5
	$\frac{av}{c^2}$					$\frac{a+c}{a^2+b^2}$			
1.2.13	$ab+b^2$	14.91	0.485	14.18	1.2.43	a^2+b	4.356	4.32	0.246
	$\frac{ab+b}{a^2-c^2}$					$\frac{a+b}{c}$			
1.2.14	$\frac{a-c}{ac}$	16.5	4.12	0.198	1.2.44	a^3-b	3.42	5.124	0.221
	$\frac{ac}{a-b^2}$								
1.2.15	$\frac{a-b}{c^2}$	5.21	14.9	0.295	1.2.45	ab	0.5761	3.622	0.0685
	$\frac{c}{a^2+b}$					$\frac{ab}{c^3}$			
	$\frac{a+b}{2a}$	1.25	2.83	0.0187	1.2.46	b^2	4.41	8.5	1.4
1.2.16	$\frac{2a}{a^2 + 2bc}$								
1.2.17	a + 2bc $a - 3b$	4.29	13.8	10.98	1.2.47	a-6c	16.5	4.2	1.23
	$\frac{a-3b}{a^2+3c}$					$\frac{2a-c^2}{a^2+b}$			
1.2.18	$\frac{a + 3c}{a^2}$	12	13.21	3.2	1.2.48	$a^2 + b$ a + b	52.31	48.95	47.81
	ab-4bc]		b-c			

1.2.19	4a+b	0.328	1.781	0.0129	1.2.49	ac + bc	4.81	4.52	9.28
	$\overline{a^2 + 2bc}$					$\overline{a^2-b^2}$			
1.2.20	2a+c	11.5	15.45	5.1	1.2.50	ac-bc	16.21	16.18	21.23
	$\overline{a^2-5b^2}$					$\overline{a^2+b^2}$			
1.2.21	10 <i>ab</i>	12.315	0.035	10.82	1.2.51	$a^2 + b^2$	121	0.324	1.25
	$\overline{a^2+c}$		_			abc			
1.2.22	$\frac{a}{b^2} + c$	12.45	11.98	8.6	1.2.52	a^2+b^2	25.18	24.98	23.18
	-	2.5	0.542	- 10	10.70	a-c			10.01
1.2.23	$\frac{b}{c} + a^2$	3.456	0.642	7.12	1.2.53	$\frac{c}{c}$	3.1415	3.1411	10.91
						a^2-b^2			
1.2.24	$a^3 - \frac{b}{c}$	1.245	12.1	2.34	1.2.54	$\frac{a^2 - b^2}{a + b^2}$	3.14	1.57	0.0921
1.2.25		13.123	1.45	3.18	1.2.55	С	14.85	15.49	0.16
1.2.25	$2b^2 - \frac{a}{c^2}$	13.123	1.40	3.10	1.2.00	$\frac{ac}{a^2 - b^2}$	14.00	10.17	0.10
1.2.26	$5a+2b^3$	0.643	1.17	0.5843	1.2.56	ac+b	5.325	5.152	5.481
	$\frac{c}{c}$					$\overline{ac-b}$			
1.2.27	b	0.675	12.63	1.54	1.2.57		71.4	4.82	49.5
	$\frac{b}{c^2 - 4a}$ $c + \frac{5ab}{c^2}$					$\frac{a+c}{a^2+b^2}$			
1.2.28	$\frac{c-4a}{5ab}$	14.91	0.485	4.18	1.2.58	a^2+b	4.356	4.32	0.246
	$c+\frac{3ab}{2}$								
1 2 20		165	4.12	0.100	1.2.50	c	2.42	5 124	0.221
1.2.29	$\frac{a+4c}{}$	16.5	4.12	0.198	1.2.59	a^3-b	3.42	5.124	0.221
	$\overline{3ab^2}$					\overline{c}			
1.2.30	c^2-8a	5.21	14.9	6.8	1.2.60	$\frac{ab}{c^3}$	0.5761	3.622	0.0685
	$\overline{a^2+b}$					$\overline{c^3}$			
		•	•	•	-		•	•	

ПРИЛОЖЕНИЕ 1. В

Задача 1.1. Постановка задачи: для пакета найти значения машинного нуля, машинной бесконечности, машинного эпсилон.

Теоретический материал. В ЭВМ для вещественных чисел используется двоичная система счисления и принята форма представления чисел с плавающей точкой $x = \mu \cdot 2^p$, $\mu = \pm (\gamma_1 \cdot 2^{-1} + \gamma_2 \cdot 2^{-2} + ... + \gamma_t \cdot 2^{-t})$. Здесь μ - мантисса ; $\gamma_1, \gamma_2, ... \gamma_t$ - двоичные цифры, причем всегда γ_1 =1, p-целое число называемое двоичным порядком. Количество t цифр, которое отводится для записи мантиссы, называется разрядностью мантиссы. Диапазон представления чисел в ЭВМ ограничен конечной разрядностью мантиссы и значением числа p. Все представимые числа на ЭВМ удовлетворяют неравенствам: $0 < X_0 \le |x| < X_\infty$, где $X_0 = 2^{-(p_{\text{max}}+1)}$, $X_\infty = 2^{p_{\text{max}}}$. Все числа, по модулю большие X_0 , не представимы на ЭВМ и рассматриваются как машинная бесконечность. Все числа, по модулю меньшие X_0 , для ЭВМ не отличаются от нуля и рассматриваются как машинный нуль. Машинным эпсилон \mathcal{E}_M называется относительная точность ЭВМ, то есть граница относительной погрешности представления чисел в ЭВМ. Покажем, что $\mathcal{E}_M \approx 2^{-t}$. Пусть $x^* = \mu \cdot 2^p$, тогда граница абсолютной погрешности представления этого

числа равна $\overline{\Delta}(x^*) \approx 2^{-t-1} \cdot 2^p$. Поскольку $\frac{1}{2} \leq \mu < 1$, то величина относительной погрешности представления оценивается так:

$$\overline{\delta}(x^*) \approx \frac{\overline{\Delta}(x^*)}{|x^*|} \approx \frac{2^{-t-1} \cdot 2^p}{\mu \cdot 2^p} = \frac{2^{-t-1}}{\mu} \le \frac{2^{-t-1}}{2^{-1}} = 2^{-t}.$$

Машинное эпсилон определяется разрядностью мантиссы и способом округления чисел, реализованным на конкретной ЭВМ.

Примем следующие способы определения приближенных значений параметров, требуемых в задаче:

- 1. Положим $X_{\infty}=2^n$, где n первое натуральное число, при котором происходит переполнение.
- 2. Положим $X_0 = 2^{-m}$, где m первое натуральное число , при котором 2^{-m} совпадает с нулем.
- 3. Положим $\mathcal{E}_M = 2^{-k}$, где k наибольшее натуральное число, при котором сумма вычисленного значения $1+2^{-k}$ еще больше 1. Фактически \mathcal{E}_M есть граница относительной погрешности представления числа $x^* \approx 1$.

Результаты вычислительного эксперимента:

Машинная бесконечность $X_{\infty} \approx$

Машинный нуль $X_0 \approx$

Машинное эпсилон $𝓔_{max}$ ≈

ПРИЛОЖЕНИЕ 2. В

Задача 1.3. Для нахождения погрешности функции следует использовать следующие утверждения.

Утверждение 1. Абсолютная погрешность алгебраической суммы не превосходит суммы абсолютных погрешностей слагаемых.

Утверждение 2. Если $\delta(a^*) << 1$ и $\delta(b^*) << 1$, то для оценки границ относительных погрешностей произведения и частного можно использовать приближенные равенства: $\delta(a^*b^*) \approx \delta(a^*) + \delta(b^*)$,

$$\delta(a^*/b^*) \approx \delta(a^*) + \delta(b^*)$$

Утверждение 3. Пусть $f(x) = f(x_1, x_2, ... x_m)$ - дифференцируемая функция m переменных, вычисление которой производится при приближенно заданных значениях аргументов $x_1^*, x_2^*, ... x_m^*$. Тогда если $x^* \approx x$, то можно

использовать равенства:
$$\Delta f(x^*) \approx \sum_{j=1}^m \left| \frac{\partial f(x^*)}{\partial x_j} \right| \Delta(x_j^*), \ \delta f(x^*) \approx \frac{\Delta f(x^*)}{\left| f(x^*) \right|}.$$

ЛИТЕРАТУРА

- **1.** Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.
- 2. Казенкин К.О. Указания к решению задач по вычислительной математике. Теория погрешностей. Нелинейные уравнения. Системы линейных алгебраических уравнений. М, Изд. Дом МЭИ, 2009. 3.Амосова О.А., Вестфальский А.Е., Крупин Г.В. Упражнения по основам численных методов.М, Изд-во МЭИ, 2016.