Parameter Estimation and Adaptive Control

Robert Stengel
Robotics and Intelligent Systems MAE 345,
Princeton University, 2015

- Parameter estimation
 - after the fact
 - real time
- Simultaneous Location and Mappoing (SLAM)
- Gain scheduling
- Adaptive critic (DHADP)
- Cerebellar model articulation controller (CMAC)
- Reinforcement ("Q") learning
- Failure-tolerant control

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Off-Line (i.e., "after the fact") Parameter Estimation

Parameter-Dependent Linear System

Linear systems contains parameters

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{p})\mathbf{x}_k + \mathbf{\Gamma}(\mathbf{p})\mathbf{u}_k$$
$$\mathbf{z}_k = \mathbf{H}\mathbf{x}_k + \mathbf{n}_k$$

What if the parameter vector, p, is unknown?

3

Least-Square-Error Estimates of System Parameters

Trends and higher-degree curve-fitting Multivariate estimation

Identification of dynamic system parameters

LTI System with Unknown Parameters

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{p})\mathbf{x}_k + \mathbf{\Gamma}(\mathbf{p})\mathbf{u}_k, \quad \mathbf{x}_0 \text{ given}$$
$$\mathbf{z}_k = \mathbf{H}\mathbf{x}_k + \mathbf{n}_k, \quad k = 0, K$$

Parameters to be identified from experimental data, p Known input, \mathbf{u}_k , noisy measurements, \mathbf{x}_k , made at discrete instants of time

5

Error Cost Function for Parameter Identification

Weighted-square error of difference between measurements and model's estimates

$$J = \sum_{k=0}^{K} \mathbf{\varepsilon}_{k}^{T} \mathbf{R} \mathbf{\varepsilon}_{k} = \sum_{k=0}^{K} \left[\mathbf{z}_{k} - \hat{\mathbf{x}}_{k} \right]^{T} \mathbf{R} \left[\mathbf{z}_{k} - \hat{\mathbf{x}}_{k} \right]$$

 \mathbf{z}_k : Measurement data set

 $\hat{\mathbf{x}}_k$: Estimate propagated by sampled-data model

R: Weighting matrix

Parameter Identification via Search

Error cost minimized by choice of p and x(0)

$$\min_{\boldsymbol{w}.\boldsymbol{r}.\boldsymbol{t}.\mathbf{p},\mathbf{x}_0} J = \min_{\boldsymbol{w}.\boldsymbol{r}.\boldsymbol{t}.\mathbf{p},\mathbf{x}_0} \sum_{k=0}^{K} \left[\mathbf{z}_k - \hat{\mathbf{x}}_k \right]^T \mathbf{R} \left[\mathbf{z}_k - \hat{\mathbf{x}}_k \right]$$

using search, e.g., Genetic Algorithm, Nelder-Mead (Downhill Simplex) algorithm [MATLAB's *fminsearch*], ...

7

Extended Kalman Filter for Nonlinear State Estimation

Link to #20

Extended Kalman-Bucy Filter

Continuous-Time Nonlinear System

$$\dot{\mathbf{x}}(t) = \mathbf{f} [\mathbf{x}(t), \mathbf{u}(t)]$$
$$\mathbf{z}(t) = \mathbf{h} [\mathbf{x}(t)] + \mathbf{n}(t)$$

- Propagate the state estimate using the continuoustime nonlinear model
- Update the state estimate using an optimal continuous-time linear correction in the nonlinear propagation
- Calculate optimal filter gain as in previous lecture and OCE

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{f} \left[\hat{\mathbf{x}}(t), \mathbf{u}(t) \right] + \mathbf{K} \left(t \right) \left\{ \mathbf{z}(t) - \mathbf{h} \left[\hat{\mathbf{x}}(t) \right] \right\}$$

g

Hybrid Extended Kalman Filter

Numerical integration for state and covariance propagation

State Estimate (-)

$$\left|\hat{\mathbf{x}}_{k}(-) = \hat{\mathbf{x}}_{k-1}(+) + \int_{t_{k-1}}^{t_{k}} \mathbf{f} \left[\hat{\mathbf{x}}(\tau), \mathbf{u}(\tau)\right] d\tau\right|$$

Covariance Estimate (-)

$$\mathbf{P}_{k}(-)[t_{k}] = \mathbf{P}_{k-1}(+) + \int_{t_{k-1}}^{t_{k}} \left[\mathbf{F}(\tau) \mathbf{P}(\tau) + \mathbf{P}(\tau) \mathbf{F}^{T}(\tau) + \mathbf{L}(\tau) \mathbf{Q}'_{C}(\tau) \mathbf{L}^{T}(\tau) \right] d\tau$$

Jacobian matrices must be calculated

Hybrid Extended Kalman Filter

Incorporate measurements at discrete instants of time

Filter Gain

$$\left| \mathbf{K}_{k} = \mathbf{P}_{k}(-)\mathbf{H}_{k}^{T}(t_{k}) \left[\mathbf{H}_{k}\mathbf{P}_{k}(-)\mathbf{H}_{k}^{T} + \mathbf{R}_{k-1} \right]^{-1} \right|$$

State Estimate (+)

$$\left[\hat{\mathbf{x}}_{k}(+) = \hat{\mathbf{x}}_{k}(-) + \mathbf{K}_{k}\left[\mathbf{z}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}(-)\right]\right]$$

Covariance Estimate (+)

$$\mathbf{P}_{k}(+) = \left[\mathbf{I}_{n} - \mathbf{K}_{k} \mathbf{H}_{k}\right] \mathbf{P}_{k}(-)$$

11

On-Line (i.e., "real-time") Parameter Estimation

Parameter Identification Using an Extended Kalman-Bucy Filter

Augment state to include the parameter

Extend the dynamic model to account for the parameter

$$\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\mathbf{p}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\mathbf{x}} [\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t), \mathbf{w}_{\mathbf{x}}(t)] \\ \mathbf{f}_{\mathbf{p}} [\mathbf{p}(t), \mathbf{w}_{\mathbf{p}}(t)] \end{bmatrix}; \quad \mathbf{z} = \mathbf{h} [\mathbf{x}(t)] + \mathbf{n}(t)$$

•-

Parameter Vector Must Have a Dynamic Model

Several alternatives

Unknown constant parameter: p(t) = constant

$$\dot{\mathbf{p}}(t) = \mathbf{f}_{\mathbf{p}}[\mathbf{p}(t), \mathbf{w}_{\mathbf{p}}(t)] \triangleq \mathbf{0}; \quad \mathbf{p}(0) = \mathbf{p}_{o}; \quad \mathbf{P}_{\mathbf{p}}(0) = \mathbf{P}_{\mathbf{p}_{o}}$$

Random parameter: p(t) = Integrated white noise

$$\dot{\mathbf{p}}(t) = \mathbf{f}_{\mathbf{p}} \Big[\mathbf{p}(t), \mathbf{w}_{\mathbf{p}}(t) \Big] \triangleq \mathbf{w}_{\mathbf{p}}(t); \quad \mathbf{p}(0) = \mathbf{p}_{o}; \quad \mathbf{P}_{\mathbf{p}}(0) = \mathbf{P}_{\mathbf{p}_{o}}$$

$$E \Big[\mathbf{w}_{\mathbf{p}}(t) \Big] = \mathbf{0}; \quad E \Big[\mathbf{w}_{\mathbf{p}}(t) \mathbf{w}_{\mathbf{p}}^{T}(\tau) \Big] = \mathbf{Q}_{\mathbf{p}} \delta(t - \tau)$$

Dynamic Models for the Parameter Vector

Random parameter: p(t) = Integral of integrated white noise

$$\dot{\mathbf{p}}_{M}(t) = \begin{bmatrix} \dot{\mathbf{p}}(t) \\ \dot{\mathbf{p}}_{D}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_{\mathbf{p}}(t) \end{bmatrix}$$

Parameter vector

Parameter rate of change

Random parameter: p(t) = Double integral of integrated white noise

$$\dot{\mathbf{p}}_{M}(t) = \begin{bmatrix} \dot{\mathbf{p}}(t) \\ \dot{\mathbf{p}}_{D}(t) \\ \dot{\mathbf{p}}_{A}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \\ \mathbf{p}_{A}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{w}_{p}(t) \end{bmatrix}$$

Parameter vector
Parameter rate of change
Parameter acceleration

Number of parameters and derivatives to be estimated is doubled or tripled

Integrated White Noise Models of a Parameter

- Third integral models slowly varying, smooth parameter
- Second integral is smoother but still has fast changes
- First integral of white noise has abrupt jumps, valleys, and peaks
- · White noise

15

Multiple-Model Testing for System Identification

Create a bank of Kalman Filters, one for each hypothetical model, n = 1, N

Choose model with minimum error residual

$$J_n = \sum_{k'=k-k_o}^k \mathbf{\varepsilon}_{n_k'}^T \mathbf{R} \mathbf{\varepsilon}_{n_{k'}} = \sum_{k'=k-k_o}^k \left[\mathbf{z}_{n_{k'}} - \hat{\mathbf{x}}_{n_{k'}} \right]^T \mathbf{R} \left[\mathbf{z}_{n_{k'}} - \hat{\mathbf{x}}_{n_{k'}} \right]$$

17

Simultaneous Location and Mapping (SLAM)

- Build or update a local map within an unknown environment
 - Stochastic map, defined by mean and covariance of many points
 - SLAM Algorithm = State estimation with <u>bank</u> of extended Kalman filters, a form of particle filter
 - Landmark and terrain tracking
 - Multi-sensor integration

SLAM with Ultrasound SONAR, LIDAR, or RADAR

UW-RSE Lab

19

Adaptive Control

Adaptive Control System Design

- Control logic changes to accommodate changes or unknown parameters of the plant
 - System identification to improve state estimate
 - Gain scheduling to account for environmental change
 - Adaptive Critic (Dual Heuristic Adaptive Dynamic Programming)
 - <u>Learning systems</u> that track performance metrics (e.g., CMAC)
 - Reinforcement learning
 - Control law is nonlinear

$$\mathbf{u}(t) = \mathbf{c}[\mathbf{z}(t), \mathbf{a}, \mathbf{y}^*(t)]$$

 $\mathbf{c}[\bullet]$: Control law $\mathbf{x}(t)$: State

 $\mathbf{z}[\mathbf{x}(t)]$: Measurement of state

a: Control law parameters

 $\mathbf{y}^*(t)$: Command input

21

Operating Points Within a Flight Envelope

Dynamic model is a function of altitude and airspeed Design LTI controllers throughout the flight envelope

Gain Scheduling

Proportional-integral controller with scheduled gains

$$\mathbf{u}(t) = C_F(\mathbf{a})\mathbf{y}^* + C_B(\mathbf{a})\Delta\mathbf{x} + C_I(\mathbf{a})\int \Delta\mathbf{y}(t)dt \approx \mathbf{c}[\mathbf{x}(t), \mathbf{a}, \mathbf{y}^*(t)]$$

Scheduling variables, a, are "slow", e.g., altitude, speed, properties of chemical process, ...

23

Adaptive Critic Neural Network Controller

On-line adaptive critic controller

- Replace gain matrices by neural networks (see Lecture 19)
- Nonlinear control law implemented as "action network"
- Performance and control usage evaluated via "critic network"
- Control network weights adapted to improve performance
- Cost model adapted to improve critique

Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

26

Cerebellar Model Articulation Controller (CMAC)

- Inspired by models of human cerebellum
- CMAC: Two-stage mapping of a vector input to a scalar output
- First mapping: Input space to association space
 - s is fixed
 - a is binary
- Second mapping:
 Association space to output space
 - g contains learned weights

 $s: x \to \mathbf{a}$ $Input \to Selector\ vector$

 $g: \mathbf{a} \to \mathbf{y}$ Selector vector $\to \mathbf{Output}$

27

$s: x \to \mathbf{a}$ $Input \to Selector\ vector$

Example of Single- Input CMAC Association Space

- x is in (x_{min}, x_{max})
- Selector vector is binary and has N elements
- Receptive regions of association space map x to a
 - Analogous to neurons that "fire" in response to stimulus
- N_A = Number of receptive regions = N+C-1 = dim(a)
- C = Generalization parameter = # of overlapping regions
- Input quantization = $(x_{max} x_{min}) / N$

CMAC Output and Training

- · In higher dimensions, association space is dim(x), a plane, cube, or hypercube
- Potentially large memory requirements
- **Granularity (quantization) of output**
- Variable generalization and granularity

2-dimensional association space

29

CMAC Output and Training

CMAC output (i.e., control command) from activated cells of c Associative Memory layers

$$y_{CMAC} = \mathbf{w}^{T} \mathbf{a} = \sum_{i=j}^{j+C-1} w_{i_{\text{nactivated}}}$$
 j= index of first activated region

- Least-squares training of CMAC weights, w
 - Analogous to synapses between neurons

$$w_{j_{new}} = w_{j_{old}} + \frac{\beta}{c} \left(y_{desired} - \sum_{i=1}^{c} w_{i_{old}} \right)$$

 β is the learning rate and w_i is an activated cell weight

Localized generalization and training

CMAC Control of a Fuel-Cell Pre-Processor

(Iwan and Stengel)

Fuel cell produces electricity for electric motor

Pre-processor produces hydrogen for the fuel cell <u>and</u> carbon monoxide, which "poisons" the fuel cell catalyst

31

CMAC/PID Control System for Preferential Oxidizer

Summary of CMAC Characteristics

- Inputs and Number of Divisions:
 - PrOx inlet reformate flow rate (95)
 - PrOx inlet cooling temperature (80)
 - PrOx inlet CO concentration (100)
- Output: PrOx air injection rate
- Associative Layers, C: 24
- Number of Associative Memory Cells/Weights and Layer Offsets: 1,276 and [1,5,7]
- Learning Rate, : ~0.01
- Sampling Interval: 100 ms

33

Flow Rate and Hydrogen Conversion of CMAC/PID Controller

- H₂ conversion command (across PrOx only): 1.5%
- Novel data, with (---) and without pre-training (—)
- Federal Urban Driving Cycle (= FUDS)

Comparison of PrOx Controllers on Federal Urban Driving Cycle

	mean H ₂ error					
	maximum H ₂ error					
	mean CO out					
				max. CO out		
	%	%	ppm	ppm	%	
 Fixed-Air 	0.68	0.87	6.3	28	57.2	
 Table Look-up 	0.13	1.43	6.5	26	57.8	
· PID	0.05	0.51	7.7	30	58.1	
· CMAC/PID	0.02	0.16	7.3	26	58.1	
					net H ₂ output	

35

Reinforcement ("Q") Learning

- Learn from success and failure
- · Repetitive trials
 - Reward correct behavior
 - Penalize incorrect behavior
- Learn to control from a human operator

http://en.wikipedia.org/wiki/Reinforcement_learning

Real-Time Implementation of Rule-Based Control System

Control system knowledge-base contents						
Task	Parameters	Rules	Major subtasks			
Executive control	18	23	Kalman filter and linear-quadratic regulator			
Failure detection	9	15	Normalized innovations monitor			
Failure diagnosis	135	147	Signal dependency search			
Failure model estimation	15	23	Multiple-model algorithm			
Reconfiguration	32	39	Weighted left pseudoinverse			

37

Rule-Based Control System

(Handelman and Stengel, 1989)

Application: Failure-tolerant flight control for *CH-47 Chinook* helicopter

Control is a side effect from expert system

Control is a side effect from expert system perspective

High-Level Control Logic

- Search until root node is solved
 - Initiates lower-level functions to declare leaf node is TRUE

39

High-Level Reconfiguration Logic

Example of a Failure-Diagnosis Rule

Rule-I41:

IF control failure candidates are determined

AND forward collective pitch control is a candidate

AND the largest element of the normalized innovations rms is pitch rate

AND the ratio of pitch rate (rad/s) to vertical velocity (m/s) normalized innovations rms is

within 10% of 6.01
THEN hypothesize forward collective pitch control stuck at

sign (pitch rate innovations average) × [(35.8 × pitch rate innovations rms) – 1.48]

 $(-2.85 \times \text{pitch rate innovations rms}) + 0.890 \text{ s}$ prior to failure detection

40

Failure Response

Real-Time Implementation of Rule-Based Control System

- Original code written in LISP
- Automatic procedural code generation (LISP to Pascal)
- Real-time execution on three i386 processors in Multibus™ architecture
- External PC used for code development, testing, and helicopter simulation

Next Time: Task Planning and MultiAgent Systems

43

Supplementary Material

Preferential Oxidizer (PrOx)

- Proton-Exchange Membrane Fuel Cell converts hydrogen and oxygen to water and electrical power
- Steam Reformer/Partial Oxidizer-Shift Reactor converts fuel (e.g., alcohol or gasoline) to H₂, CO₂, H₂O, and CO. Fuel flow rate is proportional to power demand
- CO "poisons" the fuel cell and must be removed from the reformate
- Catalyst promotes oxidation of CO to CO₂ over oxidation of H₂ in a Preferential Oxidizer (PrOx)
- PrOx reactions are nonlinear functions of catalyst, reformate composition, temperature, and air flow

45

Reinforcement ("Q") Learning Control of a Markov Process

- Q: Quality of a state-action function
- Heuristic value function
- · One-step philosophy for heuristic optimization

$$Q[\mathbf{x}(t_{k+1}), \mathbf{u}(t_{k+1})] = Q[\mathbf{x}(t_k), \mathbf{u}(t_k)] + \alpha(t_k) \left\{ \left[L_{\mathbf{u}(t_k)}[\mathbf{x}(t_k)] + \gamma(t_k) \max_{\mathbf{u}} Q[\mathbf{x}(t_{k+1}), \mathbf{u}] \right] - Q[\mathbf{x}(t_k), \mathbf{u}(t_k)] \right\}$$

$$\alpha(t_k): \text{ learning rate, } 0 < \alpha(t_k) < 1$$

Various algorithms for computing best control value

$$\mathbf{u}_{best}(t_k) = \arg\max_{\mathbf{u}} Q[\mathbf{x}(t_k), \mathbf{u}]$$

Q-Learning Snail

https://www.youtube.com/watch?v=UbwIPDaMIvY

Q-Learning, Ball on Plate

https://www.youtube.com/watch?v=04MLqINZwHY&feature=related

Q Learning Control of a Markov Process is Analogous to LQG Control in the LTI Case

$$Q[\mathbf{x}(t_{k+1}), \mathbf{u}(t_{k+1})] = Q[\mathbf{x}(t_k), \mathbf{u}(t_k)] + \alpha(t_k) \left\{ \left[L_{\mathbf{u}(t_k)}[\mathbf{x}(t_k)] + \gamma(t_k) \max_{\mathbf{u}} Q[\mathbf{x}(t_{k+1}), \mathbf{u}] \right] - Q[\mathbf{x}(t_k), \mathbf{u}(t_k)] \right\}$$

$$\alpha(t_k): \text{ learning rate, } 0 < \alpha(t_k) < 1$$

Controller

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{C}(\hat{\mathbf{x}}_k - \mathbf{x}_k *)$$

Estimator

$$\hat{\mathbf{x}}_{k} = \mathbf{\Phi}\hat{\mathbf{x}}_{k-1} - \mathbf{\Gamma}\mathbf{C}(\hat{\mathbf{x}}_{k-1} - \mathbf{x}_{k-1}^{*}) + \mathbf{K}\left\{\mathbf{z}_{k} - \mathbf{H}_{\mathbf{x}}\left[\mathbf{\Phi}\hat{\mathbf{x}}_{k-1} - \mathbf{\Gamma}\mathbf{C}(\hat{\mathbf{x}}_{k-1} - \mathbf{x}_{k-1}^{*})\right]\right\}$$

47

More on Rules

· Example of a pre-formed compound rule

Rule1 Rule1(A,B,C) A B C

Once rule is defined, it has a fixed, ordered frame or argument list

- Side effects: Actions triggered by inference
 - If A = TRUE, ... but what is A?
 - Execute a function to find out, and return to the rule
 - ... then B = C, ... but what is C?
 - Execute a function ...