Семинар 11.

1. Найдите наиболее эффективную оценку коэффициента β_1 для модели

$$y_i = \beta_1 + \varepsilon_i$$

$$E(\varepsilon_i) = 0, E(\varepsilon_i \varepsilon_i) = 0, Var(\varepsilon_i) = \sigma_{\varepsilon}^2/x_i, x_i > 0$$

в классе линейных несмещённых оценок.

2. Для регрессии

$$y = X\beta + \varepsilon$$

 \mathbf{c}

$$E(\varepsilon) = 0, Var(\varepsilon) = \Sigma \neq \sigma^2 I,$$

оцененной с помощью обобщённого метода наименьших квадратов, найдите ковариационную матрицу $Cov(\widehat{\beta}_{GLS}, \varepsilon)$.

3. Рассмотрим линейную регрессию

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

по 50 наблюдениям. При оценивании с помощью МНК были получены результаты: $\widehat{\beta}_1=1.21, \widehat{\beta}_2=1.11, \widehat{\beta}_3=3.15, R^2=0.72.$

Оценена также вспомогательная регрессия:

$$e_i^2 = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i.$$

Результаты оценивания следующие: $\hat{\delta}_1=1.50, \hat{\delta}_2=2.18, \hat{\delta}_3=0.23, \hat{\delta}_4=1.87, \hat{\delta}_5=0.56, \hat{\delta}_6=0.09, R_{aux}^2=0.36.$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

4. Для линейной регрессии

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

1

Выборка	$\widehat{\beta}_1$	\widehat{eta}_2	$\widehat{\beta}_3$	RSS
i = 1,, 50	0.93	2.02	3.38	145.85
i = 1,, 21	1.12	2.01	3.32	19.88
i = 22,, 29	0.29	2.07	2.24	1.94
i = 30,, 50	0.87	1.84	3.66	117.46

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

2