ALGEBRA Chapter 01

4th

POLINOMIOS

HELICO MOTIVATING

SABIAS QUE

Los polinomios son utilizados en diversas ramas profesionales; en el campo de la ingeniería (planeamiento de materiales), en el campo financiero (presupuesto de gastos), en el campo científico (Análisis de Laboratorio). Por ejemplo en el campo financiero: Si necesitas ganar US\$4.000, puedes ganar US\$350 por semana con tus gastos totales de US\$75 por semana, entonces la ecuación es 350x-75x=4.000, donde x es la cantidad de semanas necesarias para trabajar. La solución de la ecuación es 14 1/2, lo que significa que tendrías que trabajar 14 1/2 semanas con el fin de ahorrar US\$4.000.

HELICO THEORY CHAPTHE R 01

POLINOMIO

DEFINICIÓN

Es toda expresión algebraica racional entera, que a su vez esta definida sobre un campo numérico y en cualquier conjunto numérico para sus variables. Además los exponentes de las variables definidas por el polinomio son valores enteros positivos. Ejemplo:

$$P(x,y) = 8x^2y + 16x^5y^2 - 10x^4y^7 + 1$$

Polinomio de una variable

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 Nota: $(a_0 \ne 0)$

Donde:

 $x \rightarrow Variable$ $n \rightarrow grado del polinomio$ $a_0, a_1, a_2, ..., a_n \rightarrow coeficientes$ $a_0 \rightarrow Coeficiente principal$ $a_n \rightarrow T\'ermino Independiente$

HELICO | THEORY

VALOR NUMÉRICO

Es el resultado que se obtiene al reemplazar las variables definidas por el polinomio por constantes.

Ejemplos:

* Sea: $P(x) = 3x^2 + 1$

Halle el valor numérico de P en x = 4

Resolución

Reemplazamos x por 4

$$P(4) = 3(4)^2 + 1 = 49$$

* Sea: H(2x-5) = 7x+25

Halle el valor numérico de H(3)

Resolución

$$2x-5 = 3 \rightarrow x = 4$$

$$H{2(4)-5} = 7(4)+25 = 53$$

Suma de Coeficientes

$$\sum coef(P) = P(1)$$

Eiemplo:

Halle la suma de coeficientes del polinomio: $P(x) = 5(x+2)^3 + 1$

Resolución

$$P(1) = 5(1+2)^3 + 1 = 136$$

<u>Término Independiente</u>

$$T.I(P) = P(0)$$

Ejemplo:

Halle el término independiente del polinomio: $P(x) = 3(x-1)^{30}+5x+1$ Resolución

$$P(0) = 3(0-1)^{30} + 5(0) + 1 = 4$$

HELICO | THEORY

GRADO DE UN POLINOMIO

Grado Absoluto (G.A.)

Es el valor que se obtiene al encontrar la mayor suma de exponentes de las variables definidas por el polinomio.

Grado Relativo (G.R.)

Es el mayor valor del exponente de la variable en referencia.

Ejemplo:

* Sea: $P(x,y) = 8x^2y + 16x^5y^2 - 10x^4y^7 + 1$ Halle el Grado Absoluto, el Grado Relativo de x, además el Grado Relativo de y Resolución

$$G.R.(x) = 5$$

$$G.R.(y) = 7$$

POLINOMIOS ESPECIALES

Polinomio Ordenado

Un polinomio será ordenado con respecto a una de sus variables si aumenta será creciente y si disminuye será decreciente.

Ejemplo:

Sea el polinomio:

$$P(x,y) = 3x^9y + 17x^5y^2 - 10x^3y^7$$

- > El polinomio es decreciente con respecto a x
- > El polinomio es creciente con respecto a y

Polinomio Completo

Un polinomio será completo con respecto a una de sus variables, si esta desde su mayor grado hasta su mínimo grado (cero)

HELICO | THEORY

Ejemplo:

- * Sea:P(x,y) = $8x^3y + 16xy^3 10x^2y^2 + 1$
- > El polinomio es completo con respecto a x
- > El polinomio es completo con respecto a y

Polinomio Homogéneo

Un polinomio será homogéneo si el grado absoluto en cada uno de sus términos es igual

Ejemplo:

$$P(x,y) = 8x^3y + 16xy^3 - 10x^2y^2$$

Polinomio Idénticos

Serán polinomios idénticos si:

- > Si se obtiene el mismo valor numérico para cualquier valor asignado a sus variables.
- > Si sus términos semejantes comparados tienen el mismo coeficiente.

Ejemplo:

$$3x^4y + 10xy^5 + 8x^2y^3 \equiv ax^4y + bxy^5 + cx^2y^3$$

$$a = 3; b = 10; c = 8$$

Polinomio Idénticamente Nulo

Un polinomio será idénticamente nulo si es equivalente a cero, estando reducidas se cumple que cada coeficiente es igual a cero.

Ejemplo:

• Sea:P(x,y) \equiv (m-3)x³y+ (n-1)xy³- (p+2)x²y² idénticamente nulo (P(x,y) \equiv 0)

$$m = 3; n = 1; p = -2$$

OBSERVACION:

También existen los polinomios completos y ordenados

CHAPTHE R 01

1. Sabiendo que:

$$P(2x - 3) = 7x + 5 \land Q(x) = 4x + 2$$

Efectúe: $M = \frac{Q(P(5) - 16)}{2}$

RESOLUCIÓN

Calculamos P(5)

Luego:

$$P(5) = 7(4) + 5 = 33$$

Reemplazamos en M

$$M = \frac{Q(33-16)}{2} = \frac{Q(17)}{2}$$

Calculamos Q(17)

$$Q(17) = 4(17) + 2$$
 $Q(17) = 70$

Reemplazamos en M

$$M = \frac{Q(17)}{2} = \frac{70}{2}$$

$$M=35$$

2. La edad de Carlos esta dada por el valor de Q(5), de acuerdo a los datos:

$$P(x) = 2x - 3 \land P(Q(x)) = 4x + 5$$
 ¿Qué edad tiene Carlos?

RESOLUCIÓN

Calculamos P(Q(x))

$$P(Q(x)) = 2Q(x) - 3$$

Por dato:

$$P(Q(x)) = 4x + 5$$

Despejamos Q(x)

$$Q(x) = 2x + 4$$

Se sabe que la edad de Carlos esta dad por Q(5)

Calculamos Q(5)

$$Q(5) = 2(5) + 4 = 14$$

Carlos tiene 14 años

3. Determine la suma de coeficientes y el termino independiente de:

$$F(x) = (x-3)^2 + (x+2)^2(x+1)^4$$

RESOLUCIÓN

Sabemos que:
$$\sum coef(P) = P(1)$$

$$F(1) = (1-3)^2 + (1+2)^2(1+1)^4$$

$$F(1) = (-2)^2 + (3)^2(2)^4$$

$$F(1) = 4 + (9)(16)$$

$$\sum coef(F) = 148$$

Sabemos que: | T.I(P) = P(0)

$$T.I(P) = P(0)$$

$$F(0) = (0-3)^2 + (0+2)^2(0+1)^4$$

$$F(0) = (-3)^2 + (2)^2(1)^4$$

$$F(0) = 9 + (4)(1)$$

$$T.I(F) = 13$$

4. Determine el coeficiente del monomio

$$P(x,y) = a^2bx^{3a-1}y^{a+2b}$$

Si: G.R.(x) = 5 y es de grado 17

RESOLUCIÓN

Por dato:

$$G.R.(x) = 5$$

$$3a - 1 = 5$$

Por dato:

$$G.A. = 17$$

$$(3a-1) + (a+2b) = 17$$

Como a = 2

$$(5) + (2 + 2b) = 17$$

$$b = 5$$

Nos piden el coeficiente

$$a^2b$$

$$Coeficiente = 20$$

5. Si para el polinomio

$$F(x,y) = 3x^{a+2}y^{b+3} - 5x^{a+1}y^{b-2} + 3x^{a+3}y^{b+1}$$

Si:
$$G.R.(x) = 8 y G.R.(y) = 10$$

Determine su grado absoluto

RESOLUCIÓN

Por dato:

$$G.R.(x) = 8$$

$$a + 3 = 8$$

Por dato:

$$G.R.(y) = 10$$

$$b + 3 = 8$$

$$b = 5$$

Nos piden el grado absoluto

G.A. =
$$(a + 2) + (b + 3)$$

Como;
$$a = 5$$
; $b = 5$

$$G.A = 15$$

6. Si el polinomio es completo y ordenado

$$F(x,y) = 3x^5 - 2x^{a+3} + x^{a+b-3} + 3x^{c-b} + 4x + 7$$

Calcule: a + b + c

RESOLUCIÓN

Como el polinomio es completo y ordenado

$$F(x,y) = 3x^{5} - 2x^{a+3} + x^{a+b-3} + 3x^{c-b} + 4x + 7$$

$$5^{\circ} \quad 4^{\circ} \quad 3^{\circ} \quad 2^{\circ} \quad 1^{\circ} \quad 0^{\circ}$$

$$a + 3 = 4$$

$$a = 1$$

$$a+b-3=3$$

$$b=5$$

$$c - b = 2$$

$$c = 7$$

Nos piden: a + b + c

$$a + b + c = 13$$

7. Si el polinomio es homogéneo

$$R(x,y) = 2x^{a+3}y^5 - 5x^{b+1}y^6 + 3x^8y^4$$

Calcule: 3a + 2b

RESOLUCIÓN

Como el polinomio es homogéneo

$$R(x,y) = 2x^{a+3}y^5 - 5x^{b+1}y^6 + 3x^8y^4$$

$$12^{\circ} 12^{\circ} 12^{\circ}$$

$$(b+1)+6=12$$

$$b = 5$$

$$(a+3)+5=12$$

$$a = 4$$

Nos piden: 3a + 2b

$$3(4) + 2(5)$$

$$3a + 2b = 22$$

8. De la identidad:

$$a(2x + 5) + b(x - 1) \equiv 19x + 30$$

Calcule: 3a + 2b

RESOLUCIÓN

Como los polinomios son idénticos

> Si se obtiene el mismo valor numérico para cualquier valor asignado a sus variables.

Para:
$$x = 1$$

$$a(2(1) + 5) + b((1) - 1) = 19(1) + 30$$

$$7a = 49$$

$$a = 7$$

$$7(2x+5) + b(x-1) \equiv 19x + 30$$

Para: x = 0

$$7(2(0) + 5) + b((0) - 1) = 19(0) + 30$$

$$35 - b = 30$$

Nos piden: 3a + 2b

$$3(7) + 2(5)$$

$$3a + 2b = 31$$