Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ по ОСНОВАМ ЭЛЕКТРОНИКИ И СХЕМОТЕХНИКИ РАЗРАБОТКА И ИССЛЕДОВАНИЕ ОПЕРАЦИОННЫХ, УПРАВЛЯЮЩИХ, ЗАПОМИНАЮЩИХ И ИНТЕРФЕЙСНЫХ УЗЛОВ ЭВМ НА ОСНОВЕ ЦИФРОВЫХ ЛОГИЧЕСКИХ ИНТЕГРАЛЬНЫХ СХЕМ

Студент Станиславчук С. М.

Группа АС-21-1

Руководитель Болдырихин О.В.

Задание кафедры

- 1. Составить и связать таблицы истинности и конечный автомат для заданного устройства.
- 2. По таблицам истинности составить СДНФ (СКНФ), минимизировать и представить в виде схемы.
- 3. Составить принципиальную электрическую схему заданного устройства. Прогнать и отладить схему. Исследовать работу схемы.
- 4. Составить спецификацию схемы перечень и описание используемых элементов.
 - 5. Составить описание устройства и работы схемы.

Вариант 41

- S1. Серия микросхем: TTL 74
- S2. Разрабатываемое устройство: устройство инерционной фазовой автоподстройки частоты [1, с.481].

Цель работы

Собрать принципиальную схему и исследовать устройство инерционной фазовой автоподстройки частоты.

Ход работы

1 Составление таблицы истинности устройства и конечного автомата Таблица истинности устройства представлена в таблице 1.

Обозначения: у — значение импульса, считанного с магнитного диска в данном такте; $a_n,\,b_n,\,c_n$ — значения выходов счетчика в данном такте; $a_{n+1},\,b_{n+1},\,c_{n+1}$ - значения выходов счетчика в следующем такте.

 $a_{n+1}, b_{n+1}, c_{n+1}$ зависят от y, a, b, c.

Таблица 1 - Таблица истинности устройства

Аргументы				Значения		
у	a_n	b_n	c_n	a_{n+1}	b_{n+1}	c_{n+1}
0	0	0	0	0	1	0
0	0	0	1	0	1	1
0	0	1	0	0	1	1
0	0	1	1	1	0	0
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	0	0	0

Конечный автомат устройства представлен на рисунке 1.

Рисунок 1 – Конечный автомат для устройства

2 Составление МДНФ и представление ее в виде схемы

СДНФ и МДНФ для выходов счетчика представлены в таблице 2.

Таблица 2 - СДНФ и МДНФ для выходов счетчика

	СДНФ	МДНФ
	$ y!a_nb_nc_n + ya_n b_n c_n + ya_n b_nc_n + ya_nb_n c_n + y$	$!a_nb_nc_n+a_n!b_n+$
a_{n+1}	$y!a_nb_nc_n + ya_n!b_n!c_n + ya_n!b_nc_n + ya_nb_n!c_n$	$a_n!c_n$
h	$ y a_n!b_n!c_n + y a_n!b_nc_n + y a_nb_n!c_n + ya_nb_n c_n + $	$b_n!c_n+y!b_nc_n+$
b_{n+1}	$y!a_n!b_nc_n + y!a_nb_n!c_n + ya_n!b_nc_n + ya_nb_n!c_n$	$!y!a_n!b_n$
	$ y!a_n!b_nc_n + y!a_nb_n!c_n + ya_n!b_nc_n + ya_nb_nc_n + ya_nb_nc$	$!y!b_nc_n + !a_nb_n!c_n +$
c_{n+1}	$y!a_n!b_n!c_n + y!a_nb_n!c_n + ya_n!b_n!c_n + ya_nb_n!c_n$	$!ya_nc_n + y!c_n$

МДН Φ в виде схемы представлена на рисунке 2.

Рисунок 2 — МДН Φ в виде схемы

3 Составление принципиальной электрической схемы устройства Принципиальная электрическая схема устройства представлена на рисунке 3.

Рисунок 3 – Принципиальная электрическая схема устройства

4 Составление спецификации схемы

Спецификация схемы представлена в таблице 3

Таблица 3 - Спецификация схемы

Обозначение	Наименование	Количество
U2	«НЕ-И» с двумя входами 7400	1
U4, U6, U9	«НЕ-ИЛИ» с двумя входами 7402	6
U3	«HE» 7404	6
U2, U10	«И» с двумя входами 7408	2
U7	«НЕ-ИЛИ» с пятью входами 7425	1
U5	«НЕ-ИЛИ» с тремя входами 7427	1
U1, U8	D-триггер, с синхронизацией по фронту	3
	сигнала 7474	
C1	Конденсатор, 1нФ	1
R1	Резистор, 15 Ом	1

5 Составление описания устройства

Название схемы: устройство инерционной фазовой автоподстройки частоты.

Устройство предназначено для синхронизации между потоком импульсов, поступающих от усилителя после считывания информации с магнитного диска и последовательностью импульсов с генератора.

«Фазовая автоподстройка частоты» означает, что данное устройство корректирует длину такта входящего потока импульсов в случае ее отклонения во времени.

«Инерционная» означает, что данная подстройка должна быть плавной, что позволяет, во-первых, сохранять правильную синхронизацию при воздействии на вход устройства ложных одиночных импульсов и, во-вторых, противостоять фазовым искажениям, при которых соседние информационные

импульсы имеют отклонения разного знака относительно идеальных положений.

С выхода z устройства снимаются импульсы, имеющие определенное фазовое соотношение с импульсами на входе y. Период сигнала f выбирается в 16 раз меньшим, чем минимальный период повторения сигналов y.

Основной элемент устройства — счетчик разрядности, равной трем, выполненный по схеме с последовательным переносом и работающий по отрицательному фронту сигнала CL.

Зависимость режимов работы счетчика от сигналов на установочных входах счетчика S и h представлена в таблице 4.

Таблица 4 - Зависимость режимов работы счетчика от сигналов S и h

S	h	Режим			
0	0	Прибавление единицы к старому содержимому			
0	1	Средний разряд (b) принудительно устанавливается в 1. При работе возможны только 2 таких перехода: $000 \rightarrow 010$ и $001 \rightarrow 011$.			
1	0	Счетчик принудительно устанавливается в 001. При работе возможен только переход $111 \rightarrow 001$.			
1	1	(Сигналы S и h не формируются одновременно)			

В идеальных случаях сигнал y поступает в момент, когда на счетчике присутствует один из кодов: 010 или 011. Сигнал z вырабатывается в момент, когда на счетчике присутствует код 111.

Если сигналы y приходят с опозданием (когда на счетчике присутствует один из кодов: 111, 000, 001), то счетчик реагирует на это переходом сразу на 2 кода вперед.

Если сигналы y приходят с опережением (когда на счетчике присутствует один из кодов: 100, 101, 110), то счетчик реагирует на это отсутствием перехода на следующий код.

6 Составление описания работы схемы

Покажем 3 возможных случая состояния сигнала у:

1) Сигнал y пришел вовремя. В этом случае автоподстройка не производится. Данная ситуация изображена на рисунке 4.

Рисунок 4 — Случай, когда сигнал у пришел вовремя

2) Сигнал y пришел с опережением. В этом случае счетчик будет пропускать переход на следующий код за каждый такт сигнала y до состояния синхронизации. Данная ситуация изображена на рисунке 5.

Рисунок 5 – Случай, когда сигнал у пришел с опережением

3) Сигнал *у* пришел с опозданием. В данном случае счетчик будет переходить сразу на 2 кода вперед за каждый такт сигнала *у* до состояния синхронизации. Данная ситуация изображена на рисунке 6.

Рисунок 6 – Ситуация, когда сигнал у пришел с опозданием

Вывод

Собрал принципиальную схему и исследовал устройство инерционной фазовой автоподстройки частоты.