Introduction à la Géométrie de l'Interaction

Le projet original de Girard pour la logique linéaire multiplicative (MLL)

Cercle Transcendantaliste

Boris Eng

"Towards a Geometry of Interaction" (Girard, 1989)

↓ Une "sémantique géométrique du calcul"

"Towards a Geometry of Interaction" (Girard, 1989)

4 Une "sémantique géométrique du calcul"

Réseaux

"Towards a Geometry of Interaction" (Girard, 1989)

4 Une "sémantique géométrique du calcul"

"Towards a Geometry of Interaction" (Girard, 1989)

4 Une "sémantique géométrique du calcul"

"Towards a Geometry of Interaction" (Girard, 1989)

4 Une "sémantique géométrique du calcul"

Formatage géométrique / Critères de correction (≈ spécification)

Retrouver l'arborescence

Le courant du réseau : cas conclusion, axiome, coupure

Le courant du réseau : cas tenseur

Le courant du réseau : cas tenseur (exemple)

Long voyage

Courts voyages

Le courant du réseau : cas par (exemple)

Le courant du réseau : cas par

Exemple de preuve correcte

Exemple de preuve correcte

Décomposition calcul/logique

• En haut : véhicule / partie calcul;

- En haut : véhicule / partie calcul;
- En bas: test (gabarit) / partie logique;

- En haut : véhicule / partie calcul;
- En bas: test (gabarit) / partie logique;
- Une communication entre les deux

- En haut : véhicule / partie calcul;
- En bas: test (gabarit) / partie logique;
- Une communication entre les deux

- En haut : véhicule / partie calcul;
- En bas: test (gabarit) / partie logique;
- Une communication entre les deux

[1	2	3	4
4	3	2	1
1 3	2	3	4
3	2	1	4

Décomposition calcul/logique

- En haut : véhicule / partie calcul;
- En bas: test (gabarit) / partie logique;
- Une communication entre les deux

On a : représentation alogique + leur correction. Et l'execution?

Injections partielles

Injections partielles, hors coupure $X = \{3, 6\}$, en coupure $Y = \{1, 2, 4, 5\}$

Injections partielles, hors coupure $X = \{3, 6\}$, en coupure $Y = \{1, 2, 4, 5\}$

Equation de rétroaction :

Injections partielles, hors coupure $X = \{3, 6\}$, en coupure $Y = \{1, 2, 4, 5\}$

Equation de rétroaction :

Injections partielles, hors coupure $X = \{3, 6\}$, en coupure $Y = \{1, 2, 4, 5\}$

Equation de rétroaction :

Formule d'exécution : $V[X, X] + \sum_{k=0}^{\infty} V[X, Y] \circ C[Y, Y] (V[Y, Y] \circ C[Y, Y])^k \circ V[Y, X]$

• Représentation alogique :

- Permutations

- Permutations
- Graphes d'interaction (Thomas Seiller)

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)
- Etoiles et constellations (syntaxe transcendantale)

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)
- Etoiles et constellations (syntaxe transcendantale)
- Notion d'interaction/execution.

Résumé du voyage calcul → logique

• Représentation alogique :

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)
- Etoiles et constellations (syntaxe transcendantale)
- Notion d'interaction/execution.
- Notion de preuve (critère de correction) :
 - $V \perp T$ quand 1 seul "grand" cycle alternant (graphes).

Résumé du voyage calcul → logique

• Représentation alogique :

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)
- Etoiles et constellations (syntaxe transcendantale)
- Notion d'interaction/execution.
- Notion de preuve (critère de correction) :
 - $V \perp T$ quand 1 seul "grand" cycle alternant (graphes).
 - $V \perp T$ quand VT cyclique (permutations).

Résumé du voyage calcul → logique

• Représentation alogique :

- Permutations
- Graphes d'interaction (Thomas Seiller)
- Isométries partielles (présentation originale)
- Etoiles et constellations (syntaxe transcendantale)
- Notion d'interaction/execution.
- Notion de preuve (critère de correction) :
 - $V \perp T$ quand 1 seul "grand" cycle alternant (graphes).
 - $V \perp T$ quand VT cyclique (permutations).
- Notion de formule. Reste à faire...

Ingrédients:

Ingrédients:

• Choix d'une relation d'orthogonalité ⊥;

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $\mathbf{A} = \{\Phi_1, ..., \Phi_n\}$;

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

Constructions:

• Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \};$

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

- Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \} ;$
- A comportement/formule quand $\exists B.A = B^{\perp}$

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

- Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \};$
- A comportement/formule quand $\exists B.A = B^{\perp}$
 - ↓ signifie A peut-être caractérisé par des tests, A est testable

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

- Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \} ;$
- A comportement/formule quand $\exists B.A = B^{\perp}$
 - ↓ signifie A peut-être caractérisé par des tests, A est testable
 - $\, \, \downarrow \, \,$ équivalent à demander $A = A^{\perp \perp};$

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $\mathbf{A} = \{\Phi_1, ..., \Phi_n\}$;

- Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \} ;$
- A comportement/formule quand $\exists B.A = B^{\perp}$
 - ↓ signifie A peut-être caractérisé par des tests, A est testable
 - \vdash équivalent à demander $\mathbf{A} = \mathbf{A}^{\perp \perp}$;
- Tenseur $\mathbf{A} \otimes \mathbf{B} := \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in A, \Phi_B \in B \}^{\perp \perp} ;$

Ingrédients:

- Choix d'une relation d'orthogonalité ⊥;
- Pré-formule/type : ensemble d'objets calculatoires $A = \{\Phi_1, ..., \Phi_n\}$;

- Orthogonal $A^{\perp} := \{ \Phi \mid \forall \Psi \in A, \Phi \perp \Psi \} ;$
- A comportement/formule quand $\exists B.A = B^{\perp}$
 - ↓ signifie A peut-être caractérisé par des tests, A est testable
 - \downarrow équivalent à demander $\mathbf{A} = \mathbf{A}^{\perp \perp}$;
- Tenseur $\mathbf{A} \otimes \mathbf{B} := \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in A, \Phi_B \in B \}^{\perp \perp} ;$
- Autres connecteurs A → B;

Danos-Regnier : élimination des coupures par exploration de réseau

Danos-Regnier : élimination des coupures par exploration de réseau

 $\,\,\,\downarrow\,\,$ évaluation de λ -terme par parcours de leur graphe

Danos-Regnier : élimination des coupures par exploration de réseau $\, \, \, \downarrow \, \,$ évaluation de λ -terme par parcours de leur graphe

Danos-Regnier : élimination des coupures par exploration de réseau $\, \, \, \downarrow \, \,$ évaluation de λ -terme par parcours de leur graphe

Un successeur : la syntaxe transcendantale.

• Comportement A caractérisé par tests B, i.e. $\exists B.A = B^{\perp}$;

Danos-Regnier : élimination des coupures par exploration de réseau $\, \, \, \downarrow \, \,$ évaluation de λ -terme par parcours de leur graphe

- Comportement A caractérisé par tests B, i.e. $\exists B.A = B^{\perp}$;
- B peut être infini... Impossibilité de dire si $\Phi \in A$;

- Comportement A caractérisé par tests B, i.e. $\exists B.A = B^{\perp}$;
- B peut être infini... Impossibilité de dire si $\Phi \in A$;
- Recherche de la vérification effective, développement d'une philosophie;

Danos-Regnier : élimination des coupures par exploration de réseau $\, \, \, \downarrow \, \,$ évaluation de $\, \lambda \,$ -terme par parcours de leur graphe

- Comportement A caractérisé par tests B, i.e. $\exists B.A = B^{\perp}$;
- B peut être infini... Impossibilité de dire si $\Phi \in A$;
- Recherche de la vérification effective, développement d'une philosophie;
- Inspiration : critères de correction des réseaux.