DoS Attacks

Ramin Sadre

DoS Attacks

- Goal: Overload or crash a server to make the service unavailable to legitimate users
- Two types of attacks:
 - 1. Semantic ("smart") attacks
 - 2. Brute-force attacks

Semantic attacks

- Goal: Make the server busy/non-functional by sending specific requests
- Examples:
 - Send SQL queries to a SQL database that need a lot of CPU/disk/memory
 - Send requests that trigger programming errors in the server and crash it
 - Slowloris: Send "half" HTTP request to a web server. The server will keep the connection open and wait for the remainder of the request → running out of TCP connections
- Semantic attacks are "cheap" for the attacker but require specific knowledge of the target

Brute-force attacks

- Goal: Overwhelm the server by sending many requests
- Examples: Send many requests to ...
 - fill the network link of the server
 - exhaust number of TCP connections in server (SYN flooding)
 - exhaust number of application sessions in server
- Brute-force attacks do not need special knowledge, but the attacker needs enough resources (network bandwidth, CPU,...)
- Furthermore, it is easy to defend against such an attacker: block their IP address
- How to "improve" such attacks?

Distributed DoS (DDoS)

- Coordinated attack from multiple hosts
- More attack resources + makes blocking harder

DDoS against IRC Server

375 Million SYN packets in 800 seconds

Reflected DoS Attack (DRDoS)

- Usually as DDoS attack: multiple attackers, multiple DNS servers
- DRDoS attacks are useful to hide your IP address from the target, but there is also another advantage...

Amplification

- Amplification = The response is larger than the request
- "Solves" the bandwidth problem for the attacker
- Example DNS:
 - Original DNS version: 60 bytes query → 512 bytes answer (8.5x) maximum
 - EDNS (RFC 2671) allows larger answers
 - Combining different response types: answers larger than 4000 bytes possible (>60x)
- In 2006, Vaughn&Garon studied DDoS attacks with up to 140,000 DNS servers, resulting in 10Gbps
- In 2016, attack of 65Gbps observed

Amplification (2)

- DNS servers are very popular for such attacks because
 - They are open to anybody
 - They use UDP (perfect for spoofing)
 - They are made to handle high loads
- Open + Large number of servers + High amplification factor = perfect for DRDoS
- Other services possible, of course
 - NTP
 - CharGen
 - memcached
 - •

DoS Mitigation

Best practices

- Do not let open services that can be misused for DRDoS attacks
 - Switch off unused services
 - Filter accesses to such services

... more or less impossible for DNS

Implement ingress filtering against reflective attacks

Network Ingress Filtering

- IETF Best Current Practice document #38 (BCP38)
- Unfortunately, many networks still do not implement BCP38

Protection against SYN Flooding

- Normal TCP handshake between hosts A and B
 - 1. A sends SYN packet to B
 - 2. B sends SYN+ACK packet to A
 - 3. A sends ACK packet to B
- In SYN flooding, host A sends many SYN packets to B
 - Each SYN packet consumes memory in B because the operating system allocates data structures for the (assumed) TCP connection
- How to avoid that?

TCPv4 Header

Transmission Control Protocol (TCP) Header 20-60 bytes

source port number			destination port number
2 bytes			2 bytes
sequence number 4 bytes			
acknowledgement number 4 bytes			
data offset	reserved	control flags	window size
4 bits	3 bits	9 bits	2 bytes
checksum			urgent pointer
2 bytes			2 bytes
optional data 0-40 bytes			

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

SYN Cookies

- 1. A sends SYN packet to B (e.g. the webserver)
- 2. B sends SYN+ACK packet to A
 - The packet contains a special value N ("SYN cookie") as initial
 32-bit sequence number
 - 6 bits = lower 6 bits of a clock with 64s resolution
 - 2 bits = maximum segment size sent by the client
 - 24 bits = result of cryptographic hash function applied to the timestamp, IP addresses and port numbers of A and B
 - B does <u>not</u> allocate memory for the connection!
- 3. A sends ACK with ack number N+1 to B
 - B checks N. If the cookie is okay and not too old, it is very likely that A sent SYN before
 - B now allocates memory for the connection

SYN Cookies (2)

- Advantages:
 - Only has to be implemented in the server
 - No modifications in the client required
 - By putting the cookie in the sequence number field of TCP, everything is TCP conform
- Disadvantages:
 - Server will forget all TCP options sent by the client in the TCP SYN packet (except MSS)
 - Only four different values for MSS

More details:

https://blog.cloudflare.com/syn-packet-handling-in-the-wild/

DoS protection services

 Companies like Akamai, Cloudflare,... offer (paid) protection against DoS attacks for web sites

- How it works:
 - 1. The protection service has a very powerful infrastructure (datacenters, cloud) with DoS filters
 - 2. Traffic to the website is redirected to the infrastructure. Different ways possible:
 - Change DNS record of the web site
 - BGP diversion
 - 3. The infrastructure "cleans" the traffic and then forwards it to the original website