Set Properties

Set Properties

Sets have properties similar but not the same as Arithmetic.

Let U be the Universal set of elements of interest.

Let
$$X, Y, Z \subseteq U$$

The basic operators on sets are:

- Complement: \overline{X}
- Intersection: $X \cap Y$
- Union $X \cup Y$

Set Props. Cont'd

Fundamental Properties of Set Theory Operators

Identity

$$X \cap U = X$$

$$X \cup \{\} = X$$

Anihilation

$$X \cap \{\} = \{\}$$

$$X \cup U = U$$

Complement

$$X \cap \overline{X} = \{\}$$

$$X \cup \overline{X} = U$$

Idempotent

$$X \cap X = X$$

$$X \cup X = X$$

Commutativity

$$X \cap Y = Y \cap X$$
 $X \cup Y = Y \cup X$

Set Props Cont'd

Associativity

$$(X \cap Y) \cap Z = X \cap (Y \cap Z) \quad (X \cup Y) \cup Z = X \cup (Y \cup Z)$$

Distributivity: \cap over \cup

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

Distributivity: \cup over \cap

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

Elementary Properties of Sets

- $\overline{\overline{X}} = X$
- $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$
- $X \subseteq X \cup Y$ and $Y \subseteq X \cup Y$
- $X \subseteq Y \equiv \overline{Y} \subseteq \overline{X}$

• Also $Y \subseteq X \equiv \overline{X} \subseteq \overline{Y}$

Elementary Properties (Cont'd)

•
$$X = Y \equiv \overline{X} = \overline{Y}$$

Proof:

$$X = Y$$

 $\equiv X \subseteq Y \text{ and } Y \subseteq X$
 $\equiv \overline{Y} \subseteq \overline{X} \text{ and } \overline{X} \subseteq \overline{Y}$
 $\equiv \overline{X} = \overline{Y}$

Set Theory Theorems

Set Theory Theorems

- $\begin{array}{cccc} \bullet & Y \subseteq X & \equiv & X \cup Y = X \\ \bullet & Y \subseteq X & \equiv & X \cap Y = Y \end{array}$

$$Y \subseteq X \equiv X \cup Y = X$$

Show
$$Y \subseteq X \equiv X \cup Y = X$$

- $Y \subset X \to X \cup Y = X$
- $2 X \cup Y = X \rightarrow Y \subseteq X$

Proof.

(1.)

Assume $Y \subseteq X$,

show $X \cup Y = X$ i.e. $X \cup Y \subseteq X$ and $X \subseteq X \cup Y$

Show $X \cup Y \subseteq X$

let $z \in X \cup Y$

 $\therefore z \in X \text{ or } z \in Y$

Cont'd

```
Proof.
```

Case $z \in X$

∴ *z* ∈ *X*

Case $z \in Y$

{assuming $Y \subseteq X$ }

 $\therefore z \in X$.

Show $X \subseteq X \cup Y$

True, from properties of \cup .

$$Y \subseteq X \equiv X \cup Y = X \text{ (Cont'd)}$$

Show(2.)
$$X \cup Y = X \rightarrow Y \subseteq X$$

```
Proof.

(2.)
Assume X \cup Y = X, show Y \subseteq X
let z \in Y,
\therefore z \in X \cup Y
{assuming X \cup Y = X}
\therefore z \in X
```

$$Y \subseteq X \equiv X \cap Y = Y$$

Show
$$Y \subseteq X \equiv X \cap Y = Y$$

- i.e. Show
 - $Y \subseteq X \to X \cap Y = Y$
 - $2 X \cap Y = Y \to Y \subseteq X$

Proof.

Exercise

$$X \subseteq Y \equiv X \cap \overline{Y} = \{\}$$

Theorem

$$X \subseteq Y \equiv X \cap \overline{Y} = \{\}$$

Diagram:

Show
$$X \subseteq Y \to X \cap \overline{Y} = \{\}$$

Assume $X \subseteq Y$

i.e. from above (swapping X and Y): $X \cap Y = X$:.

$$X \cap \overline{Y}$$

$$=(X\cap Y)\cap \overline{Y}$$

$$= X \cap (Y \cap \overline{Y})$$

$$= X \cap \{\}$$

$$= \{\}$$

Show $X \cap \overline{Y} = \{\} \rightarrow X \subseteq Y$

Show
$$X \cap \overline{Y} = \{\} \rightarrow X \subseteq Y$$

Assume $X \cap \overline{Y} = \{\}$
As $X \subseteq Y \equiv X \cap Y = X$, show $X = X \cap Y$

$$X = X \cap U$$

$$= X \cap (Y \cup \overline{Y})$$

$$= (X \cap Y) \cup (X \cap \overline{Y})$$

$$= (X \cap Y) \cup \{\}$$

$$= X \cap Y$$

De Morgan's Laws

De Morgan's Laws

$$(\overline{X \cup Y}) = \overline{X} \cap \overline{Y} - \text{De Morgan 2}$$

De Morgan 1 Veitch Diagram

$$X \cap Y = \begin{array}{c} Y \\ \hline X \cap Y \end{array} = \begin{array}{c} Y \\ \hline 0 & 0 \\ \hline X & \hline 0 & 1 \end{array} \therefore \overline{X \cap Y} = \begin{array}{c} Y \\ \hline 1 & 1 \\ \hline 1 & 0 \end{array}$$

$$\overline{X} = \begin{array}{c} Y \\ \hline X & \hline 0 & 0 \end{array} = \begin{array}{c} Y \\ \hline X & \hline 1 & 0 \\ \hline X & \hline 0 & 0 \end{array} = \begin{array}{c} X \cap \overline{Y} \\ \hline X \cup \overline{Y} = \begin{array}{c} Y \\ \hline X & \hline 1 & 1 \\ \hline X & \hline 1 & 0 \end{array} = \overline{X \cap Y}$$

Proof of De Morgan's Law 1

Proof of De Morgan 1
$$\overline{X \cap Y} = \overline{X} \cup \overline{Y}$$

Show 1. $\overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}$

Theorem

$$\overline{X} \cap \overline{X \cap Y} = \overline{X}$$

Proof.

$$X \cap Y \subseteq X$$

$$\{ A \subseteq B \equiv \overline{B} \subseteq \overline{A} \}$$

$$\equiv \overline{X} \subseteq \overline{X} \cap \overline{Y}$$

$$\{ A \subseteq B \equiv A \cap B = A \}$$

$$\equiv \overline{X} \cap \overline{X} \cap \overline{Y} = \overline{X}$$

Corollary

$$\overline{Y} \cap \overline{X \cap Y} = \overline{Y}$$

Show 1. $\overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}$ (Cont'd)

Theorem

$$\overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y}$$

Recall: $A \subseteq B \equiv A \cap B = A$

Proof.

$$\begin{array}{l} \overline{X} \cup \overline{Y} \subseteq \overline{X \cap Y} \\ \equiv \left(\overline{X} \cup \overline{Y} \right) \cap \overline{X \cap Y} = \overline{X} \cup \overline{Y} \\ \big\{ \cap \text{Distributes over } \cup \big\} \\ \equiv \left(\overline{X} \cap \overline{X \cap Y} \right) \cup \left(\overline{Y} \cap \overline{X \cap Y} \right) = \overline{X} \cup \overline{Y} \\ \big\{ \text{ by Thms. } \overline{X} \cap \overline{X \cap Y} = \overline{X} \text{ and } \overline{Y} \cap \overline{X \cap Y} = \overline{Y} \big\} \\ \equiv \overline{X} \cup \overline{Y} = \overline{X} \cup \overline{Y} \\ \equiv \textit{True} \end{array}$$

Show 2. $\overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}$

Theorem

$$\overline{\overline{X} \cup \overline{Y}} \cup X = X$$

Proof.

$$\overline{X} \subseteq \overline{X} \cup \overline{Y} \\ \equiv \overline{\overline{X} \cup \overline{Y}} \subseteq \overline{X}$$

$$\equiv \overline{\overline{X} \cup \overline{Y}} \subseteq X$$

$$\equiv \overline{\overline{X} \cup \overline{Y}} \cup X = X$$

Corollary

$$\overline{\overline{X} \cup \overline{Y}} \cup Y = Y$$

Show 2. $\overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}$ (Cont'd)

Theorem

$$\overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}$$

Proof.

$$\overline{X \cap Y} \subseteq \overline{X} \cup \overline{Y}$$

$$\{ A \subseteq B \equiv \overline{B} \subseteq \overline{A} \}$$

$$\equiv \overline{\overline{X} \cup \overline{Y}} \subseteq \overline{X \cap Y}$$

$$\equiv \overline{\overline{X} \cup \overline{Y}} \subseteq X \cap Y$$

$$\equiv \overline{\overline{X} \cup \overline{Y}} \cup (X \cap Y) = X \cap Y$$

$$\equiv (\overline{\overline{X} \cup \overline{Y}} \cup X) \cap (\overline{\overline{X} \cup \overline{Y}} \cup Y) = X \cap Y$$

$$\equiv X \cap Y = X \cap Y$$

$$\equiv True$$

Prove De Morgan 2 $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$

Theorem

$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$

Proof.

$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$

$$\left\{ \begin{array}{l} A = B \equiv \overline{A} = \overline{B} \\ \overline{X \cup Y} = \overline{\overline{X} \cap \overline{Y}} \\ \overline{X} \cap \overline{Y} \end{array} \right.$$

$$\equiv X \cup Y = \overline{X} \cap \overline{Y}$$

$$\left\{ \begin{array}{l} \text{De Morgan 1} \\ \overline{X} \cap \overline{Y} \end{array} \right.$$

$$\equiv X \cup Y = \overline{\overline{X}} \cup \overline{\overline{Y}}$$

$$\equiv X \cup Y = X \cup Y$$

$$\equiv True$$

Cardinality of Sets

Disjoint Sets

Sets X and Y are disjoint iff $X \cap Y = \{\}$. We define |X| as the size of set X, i.e. |X| is the number of elements in X. Sometimes #X is used instead of |X|. With $A = \{2, 3, 5, 7, 11, 13, 17, 19\}$, |A| = 8.

Lemma 1

$$B \subseteq A \rightarrow |A - B| = |A| - |B|$$

Lemma 2

$$A \cap B = \{\} \rightarrow |A \cup B| = |A| + |B|$$

Cardinalty Cont'd

Theorem
$$|A \cup B| = |A| + |B| - |A \cap B|$$

We can split $A \cup B$ into disjoint sets:

i.e.
$$A \cup B = (A - (A \cap B)) \cup (B - (A \cap B)) \cup (A \cap B)$$

Proof.

$$|A \cup B| = |(A - (A \cap B)) \cup (B - (A \cap B)) \cup (A \cap B)|$$

$$\{all \text{ these disjoint}\}$$

$$= |A - (A \cap B)| + |B - (A \cap B)| + |A \cap B|$$

$$\{A \cap B \subseteq A \text{ and } A \cap B \subseteq B\}$$

$$= |A| - |A \cap B| + |B| - |A \cap B| + |A \cap B|$$

$$= |A| + |B| - |A \cap B|$$

Cardinality of Sets

Cardinality $A \cup B \cup C$

$$|A \cup B \cup C| = |(A \cup B) \cup C|$$

$$= |A \cup B| + |C| - |(A \cup B) \cap C|$$

$$= \{Set \ Theory \ distributive \ law\}$$

$$|A \cup B| + |C| - |(A \cap C) \cup (B \cap C)|$$

$$= |A| + |B| - |A \cap B| + |C|$$

$$-(|A \cap C| + |B \cap C| - |(A \cap C) \cap (B \cap C)|$$

$$= |A| + |B| + |C|$$

$$-(|A \cap B| + |A \cap C| + |B \cap C|)$$

$$+|A \cap B \cap C|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Example

Students pass the year if they pass all 3 exams A, B, C. For a particular year it was found that

- 3% failed all 3 papers
- 9% failed papers B and C
- 10% failed papers A and C
- 12% failed papers A and B
- 32% failed paper A
- 30% failed paper B
- 46% failed paper C
- What percentage of students passed the year
- 2 What percentage failed exactly one paper.

Solution

Solution:

Power Set

The Power Set, P(S), of a set S, is the set of subsets of S, i.e. $x \in P(S) \equiv x \subseteq S$. If |S| = n then $|P(S)| = 2^n$.

Example

$$S = \{a, b, c\}$$

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$
 where \emptyset is the empty set, i.e. $\emptyset = \{\}$.

In forming the subsets of S e.g. $S = \{0, 1, 2, 3, \dots, n-1\}$, we have 2 choices for each element; to include it or exclude it. 2 choices for 0. 2 choices for 1. 2 choices for 2 etc.

2 choices for 0, 2 choices for 1, 2 choices for 2 etc.

Total #choices = $2 * 2 * \cdots * 2$ (n times) = 2^n .

There is a natural correspondence between the subsets of $0, 1, 2, 3, \ldots, n-1$ and binary numbers.

Subsets and Binary

subset	n-1	 k	 3	2	1	0
{}	0	 0	 0	0	0	0
{0}	0	 0	 0	0	0	1
{1}	0	 0	 0	0	1	0
{0,1}	0	 0	 0	0	1	1
:						
$\{\ldots,k,\ldots\}$		1				
i i						
$\boxed{\{0,1,2,\ldots k,\ldots n\}}$	1	 1	 1	1	1	1

- 0 in column, k, indicates that k is not in the subset
- 1 in column, k, indicates that k is in the subset.

Binary and Decimal

Binary	decimal
00	$0 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 0 * 2^1 + 0 * 2^0$
01	$1 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 0 * 2^1 + 1 * 2^0$
010	$2 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$
011	$3 = 0 * 2^{n-1} + \dots + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$
	:
11	$2^{n} - 1 = 1 * 2^{n-1} + \dots + 1 * 2^{2} + 1 * 2^{1} + 1 * 2^{0}$

$|P(S)| = 2^{|S|}$ Proof by Induction

$$|P(S)| = 2^{|S|}$$

Let |S| = n. Proof by induction on n.

Base Case:

$$n = 0$$

If
$$|S| = 0$$
 then $S = \emptyset$: $P(S) = \{\emptyset\}$. $|\{\emptyset\}| = 1$ tf $|P(S)| = 1 = 2^0 = 2^{|S|}$.

Induction Step:

Assume true for n, show true for n + 1.

i.e. Assume (if
$$|A| = n$$
 then $|P(A)| = 2^n$), show (if $|S| = n + 1$ then $|P(S)| = 2^{n+1}$).

Induction Step

Assume |S| = n + 1.

Consider an element, x, of S, i.e. $x \in S$.

Discard x, then we have $S - \{x\}$ and $\therefore |S - \{x\}| = n$.

By induction, $|P(S - \{x\})| = 2^n$.

The original subsets of S consist of

- those that do not have the element, x, i.e. the subsets of $S \{x\}$. and $|P(S \{x\})| = 2^n$.
- those that do have the element, x, which are the subsets of of $S \{x\}$ with the element, x, added in, giving 2^n subsets.

$$|P(S)| = 2^n + 2^n = 2^{n+1}$$
.

Cantor's Theorem, $|\mathbb{N}| \neq |P(\mathbb{N})|$

CardinalityofSets

Let
$$S = \{0, 1, 2\}$$
 and $P(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}, \therefore |S| = 3 \text{ and } |P(S)| = 8 \text{ and in this case } |S| \neq |P(S)|.$ For a finite set, S , $|S| \neq |P(S)|$.

Sets with same Cardinality

Two sets have the same cardinality iff there is a one to one (1-1) correspondence between both sets.

Let
$$A = \{a, b, c, d, e, \dots, x, y, z\}$$
 and $B = \{1, 2, 3, \dots 26\}$ then $|A| = |B|$ as we have the 1-1 correspondence

а	b	С	 У	Z
1	2	3	 25	26

$$|\mathbb{N}| = |Even|$$

$$|\mathbb{N}| = |Even|$$

Consider infinite sets:

Infinite sets S_1 and S_2 have the same cardinality if there is a one to one (1-1) correspondence between both sets.

Let *Even* be the set of even natural numbers then $|\mathbb{N}| = |\text{Even}|$ as:

Even	0	2	4	6	 2 * n	
N	0	1	2	3	 n	

There is a (1-1) correspondence between the two sets $\mathbb N$ and Even. The sets $\mathbb N$ and Even have the same cardinality i.e. $|\mathbb N|=|Even|$, even though $Even\subseteq \mathbb N$ and $Even\neq \mathbb N$.

$$|\mathbb{N}| = |\mathbb{Z}|$$

$$|\mathbb{N}| = |\mathbb{Z}|$$

Consider a 1-1 correspondence between $\mathbb N$ and $\mathbb Z$,

\mathbb{N}	 -(2*n+1)	 3	1	0	2	4	 2 * n	
\mathbb{Z}	 _ <i>n</i>	 -2	-1	0	1	2	 n	

The negative integers are in (1-1) correspondence with the odd natural numbers and the positive integers are in (1-1) correspondence with the even natural numbers.

Proof of Cantor's Theorem $|\mathbb{N}| \neq |P(\mathbb{N})|$

Cantor's Theorem

$$|\mathbb{N}| \neq |P(\mathbb{N})|$$

Proof is by contradiction.

Assume $|\mathbb{N}| = |P(\mathbb{N})|$, \therefore there is a (1-1) correspondence between \mathbb{N} and $P(\mathbb{N})$.

N	0	1	 n	
$P(\mathbb{N})$	sub(0)	sub(1)	 sub(n)	

where sub(n) is the subset corresponding to n.

Also, for each subset, S, of $\mathbb N$ there is a matching element in $\mathbb N$, i.e. for each element $S \in P(\mathbb N)$, there is an element, $k \in \mathbb N$, such that sub(k) = S.

Note: $S \in P(\mathbb{N})$ iff $S \subseteq \mathbb{N}$.

Cantor's Thm. (Cont'd)

For each subset, sub(n), of \mathbb{N} , either $n \in sub(n)$ or $n \notin sub(n)$. Define a subset D of \mathbb{N} , such that

$$D = \{k \in \mathbb{N} : k \notin sub(k)\}$$

i.e. for $k \in \mathbb{N}$,

$$k \in D \equiv k \notin sub(k)$$

Note similarity with Russell Set, R, where $R = \{x \mid x \notin x\}$ i.e. $x \in R \equiv x \notin x$.

Cantor's Thm. (Cont'd)

Since $D\subseteq \mathbb{N}$, i.e. $D\in P(\mathbb{N})$, there is an element, $d\in \mathbb{N}$, such that sub(d)=D, \therefore .

$$d \in sub(d) \equiv d \in D$$

but from the definition of *D*,

$$d \in D \equiv d \notin sub(d)$$

and so $d \in sub(d) \equiv d \notin sub(d)$, a contradiction. This contradiction arose due to assuming that $|\mathbb{N}| = |P(\mathbb{N})|$ \therefore $|\mathbb{N}| \neq |P(\mathbb{N})$.