Danne sammenhenger og forståelse: Begrepsforståelse i naturfag for 8. trinn

Kandidatnummer: 3.141592653

Semesteroppgave til PPU3210

Praktisk pedagogisk utdanning : Del I

Utdanningsvitenskapelig fakultet Universitet i Oslo

November 2016

Antall ord: 3600 (ikke inkludert forside, litteraturliste og vedlegg)

Problemstilling

I naturfag er det veldig mange begreper elever skal mestre. For at de skal kunne danne et godt overordnet forståelse for faget, er det da viktig at de kan gå fra enkeltstående begreper til koblinger mellom begreper og være klar over de logiske sammenhengene. Det er derfor viktig fra læringspersktivet at undervisningen er forståelsesorientert, fremfor fakta-orientert. I Ludvigsenutvalget (2015) står det blant at

Skoler som legger bedre til rette for læringsprosesser som fører til forståelse, kan bidra til å styrke elevenes motivasjon og opplevelse av mestring og relevans i skolehverdagen.

Dermed trekker utvalget en kobling mellom forståelse og elevenes motivasjon og opplevelse av mestring og relevans i skolehverdagen. I den sosiokulturelle tradisjonen rettes fokus mot læring i felleskap før kunnskap blir internalisert på individnivå. Det kan dermed tenkes at utforskende samtaler kan bidra til å skape god begrepsforståelse i naturfag. For å undersøke dette vil jeg utføre en undervisningssekvens i en ungdomskole for en 8. klasse.

Derfor er min problemstilling følgende:

Kan bruk av utforskende samtaler skape god begrepsforståelse i en naturfagstime for 8. trinn?

Undervisningsopplegget jeg har forberedt har til hensikt å utfylle følgende kompetansemål i læreplanen

Forskerspiren:

• formulere testbare hypoteser, planlegge og gjennomføre undersøkelser av dem og diskutere observasjoner og resultater i en rapport

$Mangfold\ i\ naturen$:

- beskrive oppbygningen av dyre- og planteceller og forklare hovedtrekkene i fotosyntese og celleånding
- gjøre rede for celledeling og for genetisk variasjon og arv

Fra kompetansemålene i Mangfold i naturen blir verbene beskrive og gjøre rede for brukt for relativt vanskelige begreper. I Blooms taksonomi¹ utgjør disse kompetansemålene det nederste trinn. Celle og cellestruktur er relativt vanskelige begreper. Ved å koble til kompetansemålet fra forskerspiren kan det rettferdiggjøres at elevene skal kunne bruke begrepene i en videre forstand, danne sammenhenger og trekke egne slutninger. Det som gjenstår da er hvordan undervisningen kan legges opp slik at elevene kan danne gode forbindelser til begrepene og bruke de i undervisningen.

 $^{^1}$ Blooms taksonomi er et klassifiseringssystem for ulike læremål som lærere setter for sine elever.

Undervisningssituasjonen

Skolen hvor undervisningsopplegget ble utført befinner seg i et område hvor det er gode sosioøkonomiske forhold. Klassen som vi, praksisstudentene, observerte var en 8. klasse, som består av 13 gutter og 11 jenter. I klassen sitter elevene to-og-to sammen ved sine pulter i et rutenett. Annenhver uke byttes plasseringen til elevene. Elevene blir fordelt sammen med det skolen kaller læringspartnere. Hensikten med læringspartnere er at de kan snakke sammen når de jobber med oppgaver eller når de blir bedt om å diskutere noe. Det er generelt ingen sosiale problemer eller konflikter i klassen, og elevene pleier å samarbeide med hverandre uten store problemer. Tavlen brukes sjelden siden lystavlen er plassert i alle klasserom rett foran tavlen. OneNote brukes isteden for tavlen, og OneNote brukes også til planleggingen av undervisningen.

Jeg og en annen lærerstudent observerte elevene fra 8. klassen i både naturfagstimer og matematikktimer. Elevenes faglige forutsetninger er varierende, klassen har en jevn fordeling av fagelig sterke og faglig svake elever. I en naturfagstime observerte vi at elevene brukte mikroskop for å studere diverse celleprøver, blant annet fra deres egen munn og deres egne hårstrå. Timen startet med repetisjon av begreper om celler og mikroskop. Elevene ble fordelt i grupper på 3-4 stykker, og læreren gikk rundt og veiledet alle gruppene. Noen av gruppene fikk hjelp fra læreren med å innstille mikroskopene slik at de endte opp med riktig fokus. Deretter brukte læreren et mikroskop som var koblet til en datamaskin. Bildet fra mikroskopet ble projisjert på lystavlen i laboratoriet. Hensikten med denne øvelsen var å gi elevene en pekepinne på størrelsesordner for celler og demonstrere bruk av mikroskop. Etter timen bemerket læreren at elevene har forsatt ikke lært å skrive en rapport. Dette inspirerte meg til å bruke et tilsvarende opplegg til å strukturere mine egene undervisningstimer, og innføre en avsluttende rapport slik at elevene kan begynne å danne gode vaner for å skrive om sine obeservasjoner og resultater.

Undervisningsopplegget

Fokuset i undervisningen jeg vil utføre i 8. klassen vil være rundt begrepene celler og celledeling. I tillegg skal elevene instrueres i å skrive en rapport til et eksperiment de skal utføre relatert til disse begrepene. Hensikten med opplegget er å formidle til elever vanskelige begreper fra naturfag slik at de kan lettere se sammenhenger mellom temaer. Temaer som forøvrig blir memorisert og forstått på et lavt nivå, i henhold til nivåene som er definert utfra kompetansemålene.

Undervisningen er fordelt på 3 skoletimer over 2 uker. Opplegget (se vedlegg B) utførte jeg alene, med veileder og en medstudent som observatører. De bidro også i blant med å gi veiledning når elevene jobbet enten selvstendig eller sammen i grupper. I denne oppgaven velger jeg å utdype den første timen. Først vil jeg gjøre rede for undervisningsopplegget og deretter kommer jeg til å analysere opplegget i lys av teori i pedagogikk og naturfagdidatikk.

Timen starter med en oppsummering, gjennom helklassesamtale, av det elevene har hittil lært om mikroskop og cellestrukturen. Helklassesamtalen foregår som en dialog med tavle som hjelpemiddel. Elevene initieres til å reflektere over temaer og begreper de har lært og hatt lekser om. Siden elevene gjennom helklassesamtalen har blitt "varmet" opp kognitivt, er de mottagelige for å lære om et nytt tema. Innføringen av nytt tema er bevisst satt opp på en slik måte at

overgangen fra repetisjon til det nye temaet blir naturlig og flytende. I timene hvor de har hatt en innføring om celler, har de lært om basale strukturer. I denne timen går de litt dypere ved å få en innføring om encellede organismer. Hensikten med innføringen er tredelt : å gjøre elevene bevisst om at det finnes forskjellige type organismer, forberede de for den neste timen hvor flercellede organismer blir introdusert, og til slutt i den siste timen studere encellede organismer gjennom et mikroskop ¹.

I den siste delen av timen utføres en øvelse der elevene skal jobbe sammen med tokolonnenotatet i grupper (se vedlegg C), hvor de skal bli enige med hverandre om hva som er viktig å formidle videre om deres felles temaer. Deretter fordeles de i nye grupper slik at hver gruppe har minst en elev som har forbredt sitt sett med begreper. Under hele denne prosessen er jeg tilgjengelig til å gå rundt for å høre elevene diskutere begreper, først sammen i grupper, og deretter individuelt når de fremfører sine konklusjoner med medelever. Hvis det observeres at en elev har problemer med å gi tilstrekkelig respons på et gitt tema, initieres eleven i en dialog hvor vi forsøker å sammen konstruere en mer utdypet forståelse av begrepene.

Analyse

Hvordan ble undervisningen lagt opp for å skape god begrepsforståelse i naturfagstimene?

Både til den første og andre timen ble dialog initiert av læreren. Helklassesamtalene hadde preg av IRE/F metoden, m.a.o lærer tar initiativ(I), elev responderer(R) og responsen blir evaluert(E) og/eller kommentert(F - feedback). Til den første timen rekker elevene opp hånda for å respondere. Det viser seg at det er noen få elever som er villig til å svare.

Klette (2013, s. 176) referer til et studie når hun viser til viktigheten av at lærerne legger til rette for systematisk trening, øvelse og bruk av naturfaglige begreper for å utvikle elevenes naturfaglige forståelse, inkludert repitisjon av sentrale begreper.

Ved å være bevisst på at alle elevene skal ha kjennskap til begrepene som blir tatt opp og repetert, er det da nødvendig å få bekreftet at elevene innehar en overordnet forståelse. Det kan derfor være nødvendig å utpeke noen elever som ikke viser aktiv deltagelse i timen og frembringe deres respons. Hvis elevene ikke klarer å respondere på lærer initiativ, kan utspørringen av elevene vise hull i deres kunnskap. Ved å forutse elevsvar før elever i klassen blir initiert, kan misforståelser som ofte oppstår bli redegjortav læreren, og respons som ofte opptrer kan tas stilling til. Dette krever derimot en god del erfaring fra læreren sin side. I Ball, Thames og Phelps (2008, s. 401) klassifiseres dette som knowledge of content and students, (KCS). Over tid vil en lærer danne omfattende KCS og dette kan dermed bidra til å øke kvaliteten på helklassesamtalene.

Klette (2013, s. 136) beskriver en god undervisningsseksens der lærere klarer å balansere mellom

¹Det kan sies at den naturlige rekkefølgen ville ha vært å studere de encellede organismene i den andre timen. Siden organismene som skulle studeres måtte vokses frem i laboratoriet over en ukestid, var det ikke mulig å koordinere det bedre. Prøvene ble dessuten samlet i forbindelse med en klassetur til en skog gjennom valgfaget FUTT: Friluftsliv, Uteaktivitet, Trivsel og Turmat.

tilegnelses-, utprøvings-, og konsolideringssituasjoner. Ifølge Klette har norske klasserom ensidige tendenser i bruken av variert arbeidsmåter. Slik det kan ses fra figur 1, er det for eksempel lite konsolideringssituasjoner. Lærernes metalæringsaktiviteter regnes som særlig avgjørende for å sikre elevenes læring (Klette, 2013, s. 186). Derimot å bruke dette som et fast organiserende prinsipp, blir sjelden gjennomført (Ødegaard & Arnesen, 2010, s. 26). Gjennom timen har aktivering av forkunnskaper, gjennom repitisjon og gjenbruk av begreper og gjennomgang av lekser, bæret preg av bevisst fokus på bruk av konsolideringssituasjoner/metalæringsaktiviteter. Det var ingen appetittvekkere, og dette er noe som burde ha blitt inkludert

Fra figuren 1 kan vi også se at i en vanlig naturfagstime brukes mye tid på å utvikle nytt fagstoff.Det kan nok påstås at undervisningsopplegget hadde et preg av mange fagtermer, men fokuset i undervisningen var ikke på å innføre fagtermene, men isteden var fokuset å danne forståelse om begrepene og deres sammenhenger.

Figur 1: Oversikt over naturfaglærernes undervisningstilbud til elevene fra PISA+ studie. Kilde: Ødegaard og Arnesen (2010).

Siden resterende del av timen skal brukes til repetisjon, er det ikke nødvendig å prøve å finne svakheter i elevenes respons gjennom helklassesamtalen. For å finne slike svakheter ble gruppesamtalene en bedre plattform. I den forbindelse ble tokolonnenotatet tatt i bruk (se vedlegg: C).

Evnen til abstrahering henger ifølge Vygotsky (Bråten, Thurmann & Anne, 1998, s. 127) med begrepsundervisning, som en form for vitenskapeliggjøring av hverdagsbegreper. Hvis elever ikke har god begrepsforståelse kan de ende opp med å bruke naturvitenskapelige begreper i feil kontekst og danne feil forbindelser med begrepene. Dette avhenger av deres forkunnskaper. Ausubels kognitive bruer (Mathé, 2015, s. 71), hans teori om begrepslæring på høyere nivå og hvordan læreren best kan legge til rette for slik læring og bruk av begrepene, handler om å danne forbindelser mellom undervisningsmateriell og relevante ideer i elevenes kognitive struktur.

Refleksjon

Ifølge Ludvigsen-utvalget (2015) vil læringsprosesser som fører til forståelse bidra til å styrke elevenes motivasjon og opplevelse av mestring og relevans i skolehverdagen. Men, var dette tilfellet for 8. klassen og hvordan kunne undervisningsopplegget forbedres?

Manger (2013, s. 162) innleder motivasjon som en trengsel for å ha lyst på noe eller ønske om å utføre en aktivitet. Han avslutter derimot med følgende sitat

Motivasjon for å læra inneber noko meir enn lyst til å læra. Det handler om den mentale innsatsen til eleven. Å lese ein tekst ti gonger kan indikera at eleven held ut, men læringsmotivasjon viser seg mellom anna gjennom meir aktive studiestrategiar, slik som oppsummeringar, refleksjon over dei grunnleggjande ideane i faget og sammenfattingar av ideane med eigne ord.

Hos Vygotsky (Bråten et al., 1998, s. 130), motivasjon ligger i å skape meningsfulle læringsbetingelser både ved å tilrettelegge undervisningen som passer elevens aktuelle og potensielle nivå, dvs. rammene til den approksimale sonen, og ved å tydeliggjøre nytteverdien av det gitte lærestoffet.

En viktig del av den sosiale utprøvingen av ideer og begreper innebærer å sammenlikne egne forestillinger med andres forestillinger i tillegg til naturvitenskapens forklaringer (Ødegaard & Arnesen, 2010; Driver, Asoko, Leach, Scott & Mortimer, 1994). Bruken av tokolonnenotatet i første timen

Blooms taksonomi er et hierarki i seks nivåer: kunnskap, forståelse, anvendelse, analyse, syntese og evaluering. Dybdelæring forekommer blant de øverste niveåene i Blooms taksonomi. Hvis elever skal lære gjennom de øverste nivåene i hierarkiet, må de selvsagt mestre de lavere nivåene.

Bruken av revoicing, se Klette (2013, s. 175), til å gjenta og forsterke elevenes forslag og begrepsbruk ble ikke brukt tilstrekkelig gjennom den første timen. For å kunne bruke revoicing mest mulig effektivt, må læreren raskt og effektivt bestemme om elevens repons har validitet og om det er relevant. Gjennom personlig erfaring har revoicing vært vanskelig å utføre og krever veldig god grep på det Ball et al. (2008) kaller Content Specific Knowledge, CSK. Ifølge Klette, viser fravær av slike eksplisitte innramminger fra lærerens side at eleven blir sittende med et uklart kunnskapsinnhold og i verste fall feil begrepsforståelse, Klette (2013, s. 175-176).

Stillasbygging (Bråten et al., 1998; Mathé, 2015, s. 71)

Øvelsen med tokolonnnenotatet (se vedlegg C) hadde flere styrker, men den hadde flere organisatoriske svakheter. Det ble brukt for mye tid til å fordele elever i grupper, dette kunne gjerne ha blitt planlagt på forhånd. Dessuten var instruksjonene ikke helt klare, tydelighet i instruksjoner ville ha spart tid som kunne da brukes av elever i faglig aktivitet. Ifølge Klette (2013, s. 189), faktorer som har direkte effekt på elevenes læring, fremheves an en gjennomtenkt undervisningsopplegg som muliggjør at de bruker minimalt tid på ikke-faglige aktiviteter. For tokolonnenotatet og mikroskopøvelsen er det også viktig å være klar over hvor mange frihetsgrader elever skal få (Knain & Kolstø, 2011). Jo flere beslutninger eleven må ta selv, jo åpnere er oppgaven. Den først-nevnte øvelsen hadde hensikt å skape dypere forståelse av faglig begreper, mens den sist-nevnte øvelsen hadde til hensikt å gi erfaring og innsikt i utforskende

arbeidsmåter som prosess og motivere elevene. Begge øvelsene var delvis lærerstyrt, men hadde stor grad av åpenhet rundt resultatene/produktet og kunnskapsutbytte.

Når naturfag rettferdiggjøres som et fag i skolen bruker man ofte to typer argumenter, som blir omtalt som produkt-argumentet og prosess argumentet, Sjøberg (2004, s. 351). Produkt-argumentet går ut på at naturfaglige kunnskaper, begreper og teorier er viktige både for eleven i skolehverdagen og senere i arbeidslivet. Prosess-argumentet går ut på at det er naturvitenskapens prosesser, arbeidsmåter og metoder som rettferdiggjør fagets plass i skolen. Sjøberg skriver at selv om det er noe pedagogisk tidsmessig og tiltrekkende ved det synet at det er prosessene som er det vesentlige, må det understrekes at produktorientert syn trenger ikke å medføre en autoritær og doserende metodisk tilnærming når dette produktet skal formidles til elevene. Han skriver videre at det er viktig at vitenskapens egenart ikke automatisk dikterer en metodisk tilnærming, eller motsatt, at man lar et syn på læring definere hva som skal oppfattes som vitenskapens egenart. Undervisningsopplegget har hatt en preg av begge disse syn på vitenskapens vesen. Innføring av nye begreper har styrket elevenes syn på naturfag som et produkt, mens deres observasjoner i laboratoriet og skriving av rapport har forsterket deres syn på naturfag som en prosess.

En overordnet ramme for arbeid med Forskerspiren er at elevene skal praktisere en vitenskapelig metode. På 1960-tallet i USA og England kom læreplaner som blir omtalt for discover-learning, Knain og Kolstø (2011, s. 31). Her skulle elevene lære naturvitenskapelig kunnskap gjennom aktiviteter som skulle ligne naturvitenskapelig forskning. I følge Knain er det flere svakheter ved denne retningen. En av dem var tanken at barn lærer naturfaglig begrepskunnskap gjennom induksjon, det vil si ved å trekke sluttninger fra erfaringer. Knain skriver videre at

Som Hodson påpeker:

Du kan ikke oppdage noe som du mangler begreper om. Du vet ikke hvor du skal se, hvordan du skal se eller hvordan du skal gjenkjenne det når du har funnet det (Hodson 1996, s. 118).

Solvang (1992, s. 77) skriver at forståelse er aktivert kunnskap. Det vil si hver gang vi utsettes for en utfordring blir vårt eget kunnskapsreservoar tappet. Dermed aktiverer vi kunnskap. Elevenes kunnskaper utgjør en av forutsetningene for de nye kunnskapene vi tilfører dem. Disse kunnskapene, sammen med elevenes erfaringer, utgjør det eleven kan møte nye utfordringer med. Dette betegnes også som kognitiv struktur av Solvang 1992 og kan deles opp i delstrukturer. Piaget kaller slike delstrukturer for skjemaer Solvang (1992, s. 78). En elev har for eksempel ett skjema for celler og ett for organsystemmer. Det som er karakterisktisk for slike skjemaer er at de kan operere sammen. Hvis eleven behersker begrepene celler og organsystemmer, kan eleven danne koblingen mellom disse skjemaene og dermed danne andre assosiasjoner til dyr. På denne måten konstruerer eleven ny kunnskap ved hjelp av den kunnskap hun har. Hver elev vil ha sine skjemaer til å møte undervisning med.

Kolstø (2009, s. 72) Roen (2015, s. 67)

Konklusjon

A Klassebeskrivelse

Skolen er lokalisert i et godt sosioøkonomisk område, deriblant har foreldrene til elevene høy utdanningsbakgrunn. 8.klassen består av 13 gutter og 11 jenter. En skoletime varer i 50 minutter, efterfulgt av en 10 minutter lang pause. Elevene ved skolen har i gjennomsnitt 27.6 timer i uka. I klassen sitter elevene to-og-to sammen ved sine pulter i et rutenett. Hver andre uke byttes plasseringene til elevene. Elevene blir fordelt sammen med det skolen kaller læringspartnere. Læreren printer et nytt klassekart som han/hun har tilgjengelig på sin kateter/podium. Elever pleier å legge fra sine mobiler i en hylleplass eller deres bokskap. Når en time starter, står elevene opp i sine stoler og hilser på læreren før de får lov til sitte. Tavlen brukes sjelden, siden lystavlen er ofte plassert i alle klasserom foran tavlen. Onenote brukes flittig gjennom undervisning og til planleggingen av undervisningen. Elevene har også blitt velkjent med Onenote ved å se lærere bruke den, og selv bruke den i sine delingstimer. Lekser blir ført i It's Learning plattformen. I klassen vi observerte kommer det 3 elever fra velkomstklassen som deltar i undervisning torsdag og fredag hver uke. Disse elevene har ofte problemmer med å forstå norsk, men de er flinkere til å lese og skrive. I blant bruker deres kontaktlærer engelsk for å formidle informasjon. Men som regel blir helklasse undervisningen ført i norsk. Det er generelt ingen sosiale problemmer eller konflikter i klassen, og elevene pleier å samarbeide med hverandre uten store problemmer. Skolen har en del problemmer med elever som trenger en eller annen form for tilrettelegging. I trinnmøter til 8.trinn blir det i blant tatt opp spørsmål om hvem som skal ha tilpasning og hvordan det skal utføres. Fokuset til skolen er å tilby sine elever et godt psykososial læringsmiljø.

B Plan for undervisningsopplegg

Klasse: 8. trinn	Plan for undervisningen	Momenter til veiledning (egne/veileders notater)
Kontekst	Klassetrinn, fag 8. Klasse, naturfag. 3 x 50 minutt timer fordelt på 3 dager	Hvordan skal elevene deles til tokolonnenotat øvelsen og forsøket. Noen elever vil ikke være tilstede til første øvelsen; må prøve å fordele slik at alle temaene blir formidlet videre.
Mål for arbeidet	Kompetansemål i læreplanen Forskerspiren: • formulere testbare hypoteser, planlegge og gjennomføre undersøkelser av dem og diskutere observasjoner og resultater i en rapport	Vil alle elevene ha muligheten til å være med på å samle vannprøver og døde planterester ?
	Mangfold i naturen: • beskrive oppbygningen av dyre- og planteceller og forklare hovedtrekkene i fotosyntese og celleånding • gjøre rede for celledeling og for genetisk variasjon og arv	
	 Mål for dette undervisningsopplegget Gjøre rede for celledeling og DNA, beskrive oppbygningen av celler, gjøre rede for encellede -og flercellede organismer og deres oppbygging. Innhente prøver av planter fra en dam og oppbevare de i laboratoriet i en ukes tid for å vokse fram mikroorganismer. Bruke mikroskop til å studere mikroorganismer; hvordan de ser ut og beveger seg, og skrive en rapport om forsøket. 	
Lærestoff	Faglige temaer Celler, celledeling, encellede og flercellede organismer, organer og organsystemer.	
	Læremidler	

	Lærebok, lystavle (onenote), mikroskop, anatomisk modell av overkroppen.	
Arbeids- og organiseringsmåte	Tidsbruk, organisering av elevene og arbeidsmåter (hva elevene og læreren gjør) i de enkelte sekvensene	
_	 1. time, encellede organismer (enkelttime 50 min) 15 min: introduksjon til encellede organismer 25 min: tokolonnenotat - en notat hvor det er begreper i en kolonne og den andre kolonnen skal fylles ut av elever. Hensikten er å repetere temaene om celler som har hittil blitt 	
	gjennomgått. Elevene sitter først sammen i grupper hvor de forbereder sine utdelte temaer. Deretter blir de fordelt slik at alle grupper har minst en elev som har unik tema de kan formidle videre til sine medelever. 10 min: Felles gjennomgang av notatet.	
	 2. time, flercellede organismer (enkelttime 50 min) • 15 min : introduksjon til flercellede organismer, celletyper, organer og organsystemer. • 15 min : anatomisk modell av overkroppen skal brukes, sammen med bilde av fordøyelsessystemet. • 10 min : konsolidering av gjennomgangen. 	Flere eksempler om celletyper burde ha blitt tatt opp og koblet mot forskjellige organer. Ikke lurt å spørre elever om tkoblet mot forskjellige organer. Ikke lurt å spørre elever om tradge kanskje ikke har forutsetring for å kunne svare på. I hvilket fall er det da viktig å bruke ledende spørsmål for å trekke de ut av en vanskelig situasjon. Lurt å sjekke i blant om elevene har gjort sine lekser, kan da også ta opp uklarheter. Burde kanskje ha tatt opp flere kontrollspørsmål underveis.
	 3. time, forsøk med encellede organismer (enkelttime 50 min) 5 -10 min : introduksjon og mål til timen, fordeling av grupper, informasjon om utstyr. Utstyret vil være lett tilgjengelig (må 	
	 samles og legges på forhånd ved ulike stasjoner). Elevene i gruppene vil få utdett roller om hvem som skal hente utstyr. 20 - 25 min : elevene henter utstyr og utfører forsøket i grupper. 	

	 10 - 15 min : felles gjennomgang og informasjon om rapportskriving. Bruker usb mikroskop til å vise mikroorganismene på lystavle. Bruker tavle og dialog til å diskutere hva elevene har observert. 	
Tilbakemelding og vurdering	 Former for tilbakemelding til elevene Tilbakemelding på elevenes resonnement. Tilbakemelding på elevenes observasjoner. Tilbakemelding på elevenes respons til kontrollspørsmål og åpne spørsmål. 	
	 Vurdering Vurdering av elevenes bruk av mikroskop. Vurdering av elevenes utføring av lekser. Vurdering av elevenes forståelse og deres egen refleksjon. 	
	 Framgangsmåter for å få informasjon om elevenes læring Spørre elevene underveis kontrollspørsmål. Bruke åpne spørsmål. Snakke sammen med grupper eller enkeltelever, og få de til å reflektere over egne observasjoner. Undersøke om elevene har gjort sine lekser. 	

C Tokolonnenotat

Begrep	Forklaring			
Mikroskop			121	
Lupe				
Celle				-
- Cellemembran				
- Cellekjerne				
- DNA				14
- Celledeling		0		

Encellede organismer	
2	
	2 1
	×q.
*	
- Bakteriene	
1	a y
*	
T 466-1-1	
- Tøffeldyr	
	·
2.	4
- E.coli bakterie	
- L.COII DAKTETIE	
	·
- Sovesykedyret	
- Sovesykedyret	
- Planktonalger	
Turntoriuiger	
	*
	*
	e e

Bibliografi

Ball, D., Thames, M. & Phelps, G. (2008). Content Knowledge for Teaching. What Makes It Special? I *Journal of Teacher Education* (5. utg., s. 389-407).

Bråten, I., Thurmann, M. & Anne, C. (1998). Den nærmeste utviklingssonen som utgangspunkt for pedagogisk praksis. I I. Bråten (red.), *Vygotsky i pedagogikken* (s. 123–143). Cappelen Akademisk Forlag.

Driver, R., Asoko, H., Leach, J., Scott, P. & Mortimer, E. (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher.

Furberg, A. & Rasmussen, I. (2012). Faktaorientering og forståelsesorientering i elevers bruk av nettbaserte læringsomgivelser. I T. Hauge & A. Lund (red.), *Små skritt eller store sprang?*. *Om digitale tilstander i skolen* (s. 23–57). Cappelen Akademisk Forlag.

Hattie, J. (2012). Visble learning for teachers: Maximizing impact on learning. Routledge.

Kjærnsli, M., Lie, S., Olsen, R., Roe, A. & Turmo, A. (2004). Rett spor eller ville veier? Norske elevers prestasjoner i matematikk, naturfag og lesing i pisa 2003.

Klette, K. (2013). Hva vet vi om god undervisning?. Rapport fra klasseromforskningen. I R. Krumsvik & R. Säljö (red.), *Praktisk pedagogisk utdanning. En antologi.* (s. 173–200). Fagbokforlaget.

Knain, E. & Kolstø, S. (2011). Elever som forskere i naturfag. Universitetsforlaget.

Kolstø, S. (2009). Vektlegging av lesing i naturfaget. del 1: Vil den nye norske læreplanen i naturfag øke elevenes lesekompetanse? Nordic Studies in Science Education.

Ludvigsen-utvalget. (2015). Nou 2015: 8. Fremtidens skole. Fornyelse av fag og kompetanser. https://nettsteder.regjeringen.no/fremtidensskole/nou-2015-8/. (Aksessert på internett 13.11.2016)

Manger, T. (2013). Motivasjon for skulearbeid. I R. Krumsvik & R. Säljö (red.), *Praktisk pedagogisk utdanning. En antologi.* (s. 145–169). Fagbokforlaget.

Mathé, N. (2015). Begrepsforståelse i samfunnsfag: Hva vil vi med begrepene? I Bedre Skole (1. utg., s. 68–72).

Nilssen, V. & Ristesund, I. (2012). Å få tak i elevers begrepsforståelse - en viktig del av lærerarbeid, en utfordring for lærerstudenten. I *Tidsskriftet FoU i praksis* (2. utg., s. 73–90).

Roen, G. (2015). Begrepene i naturfag: Hvordan arbeider lærere med naturfaglige begreper gjennom dialog, lesing og skriving for å legge til rette for elevenes forståelse av naturfagtekster? (Masteroppgave)

Sjøberg, S. (2004). Naturfag som allmenndannelse. Gylendal Akademisk.

Solvang, R. (1992). Kunnskaps- og forståelsestyper i matematikklæringen. I Matematikk-didatikk (s. 75–105). NKI-Forlaget.

Säljö, R. (2013). Støtte til læring-tradisjoner og perspektiver. I R. Krumsvik & R. Säljö (red.), *Praktisk pedagogisk utdanning. En antologi.* (s. 53–79). Fagbokforlaget.

Ødegaard, M. & Arnesen, N. (2010). Hva skjer i naturfagklasserommet? – resultater fra en videobasert klasseromsstudie; pisa+. Nordic Studies in Science Education.