Refining the Regression Model: Exploring the Automobile Dataset, Variable Selection, Transformation, Validation, and Car Price Prediction

Quang Duy Tran¹, Maiqi Zhang¹, Baixue Zhang²

¹Department of Computer Science, Data Science, San José State University ²Department of Mathematics and Statistics, Statistics, San José State University

Overview

- Research Objectives/Questions
- Data Exploration
- Variable Selection
- Baseline Model
- Outliers Leverage points Influential points
- Transformation Model
- Data Validation
- Inference

Research Objectives/Questions

1. Which predictors contribute significantly to the price of a brand-new car?

2. How well can we predict the price of a brand-new car on the smaller subset of predictors?

Data Exploration

- 205 observations
- 26 variables:
 - o 10 categorical
 - 16 continuous
- Response = Price
- No duplicated observations
- 46 NaN observations (22%)

```
----- Dataset Info -----
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
    Column
                       Non-Null Count Dtype
    symboling
                       205 non-null
                                       int64
                       164 non-null
    normalized losses
                                      float64
    make
                       205 non-null
                                      object
    fuel type
                       205 non-null
                                      object
    aspiration
                                      object
                       205 non-null
    num doors
                                       object
                       203 non-null
    body style
                       205 non-null
                                       object
    drive wheels
                       205 non-null
                                      object
    engine location
                       205 non-null
                                      object
    wheel base
                       205 non-null
                                      float64
                                      float64
    length
                       205 non-null
    width
                       205 non-null
                                      float64
    height
                       205 non-null
                                      float64
    curb weight
                       205 non-null
                                      int64
    engine type
                                       object
                       205 non-null
    num cylinders
                       205 non-null
                                       object
    engine size
                                       int64
                       205 non-null
    fuel system
                       205 non-null
                                      object
    bore
                       201 non-null
                                      float64
    stroke
                       201 non-null
                                      float64
    compression ratio
                       205 non-null
                                      float64
    horsepower
                       203 non-null
                                      float64
    peak rpm
                                      float64
                       203 non-null
    city mpg
                       205 non-null
                                       int64
    highway mpg
                                       int64
                       205 non-null
    price
                       201 non-null
                                       float64
```


Distribution of response Price

- Most cars are priced between \$5,000 and \$15,000.
- The distribution is right-skewed, with a long tail toward higher prices

Distribution of the response Price

Correlation between Price and Horsepower

Toyota & Honda have low horsepower and are generally cheap

Mercedes-benz has moderate horsepower but expensive

Data Exploration

Data Exploration

hatchback

Sedan

Hatchback

Wagon

Research Objectives/Questions

1. Which predictors contribute significantly to the price of a brand-new car?

2. How well can we predict the price of a brand-new car on the smaller subset of predictors?

Variable selection

Outline

- Visual inspection
 - missing y
 - one level categorical variables
 - variables have a lot of missing values
- Address multicollinearity.
- R variables selection.
 - o Forward, backward, stepwise.
 - Exhaustive selection(Impractical)
- Final variables

Visual Inspection — three problems spotted

- Missing y(price) \rightarrow remove \rightarrow 201 observations left.
- Engine location
 - \circ 190 + front
 - o 3 rear, but expensive

- Normalized losses
 - 41 missing values, ~20% of the observations

Address multicollinearity problems

VIF:

curb_weight: 16.047395

City_mpg: 26.424588

HWY_mpg: 24.428984

Drop curb_weight

One variable for car size

One variable for engine attributes

	length	width	wheel_ base	curb_w eight	highwa y_mpg	horse power	engine size	number of cylinder
length	1	0.84	0.87	0.87				
width	0.84	1	0.816	0.87				
wheel_ base	0.87	0.816	1	0.81				
curb_ weight	0.87	0.87	0.81	1	-0.813	<0.8	0.89	<0.8
Highway_ mpg				-0.813	1	-0.83	<0.8	<0.8
horse power				<0.8	-0.83	1	0.81	<0.8
engine size				0.89	<0.8	0.81	1	0.848
number of cylinder				<0.8	<0.8	<0.8	0.848	1

Variable selection by R

Issue: engine_location and Normalized_losses can not be fit together!

Solution: Consider two cases.

- Case1: Include engine_location and exclude normalized_losses. Later, include normalized_losses if engine_location is excluded. However, since engine_location was never dropped, normalized_losses could not be included.
- Case2: Include normalized_losses and exclude engine_location. Later, include engine_location if normalized_losses is excluded. Eventually, R excluded normalized_losses, allowing us to include engine_location.

Case 1: With engine_location.

Forward Variable selection

							7 011101011					
alpha	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.05/0.1	0.1	0.1
add	engine_ size	make	curb_wei ght	engine_l ocation	width	peak_rp m	aspiratio n	num_of_c ylinders	engine_t ype	stroke	hwy_mpg	body_styl e
Р	2.2 *10^-16	2.2*10^- 6	1.66* 10 ^-6	0.00013	0.00535	0.00846	0.024	0.0014	0.01	0.025	0.053	0.097
	Backward Variable selection											
alph a	0.1/0.05	0.1/0.0 5	0.1/0.05	0.1/0.05	0.1/0. 05	0.1/0.05	0.05	0.05	0.05	0.05	0.05	0.05
drop	number_ordors	city_m	horse_power	drive_wh	stoke	symboli ng	engine_ty pe	hwy_mp g	compression _c	fuel_sys	fuel_type	no
р	0.97	0.84	0.777	0.56	0.17	0.13	0.094	0.056	0.066	0.103	0.75	<0.05
		-									-	

:picked and tossed :0.05 and 0.1. TBD :0.1 and TBD 0.05

Stepwise: aligns with forward and backward variable selection

Alpha (Drop or add)	0.05, add	0.1, drop	0.05, add	0.1, drop	0.05, add	0.1, drop	0.05, add
variables	engine_size	0	make	0	curb_weight	0	engine_location
р	2.2 *10^-16		2.2*10^-6		1.65* 10^-6		0.00013
0.1, drop	0.05, add	0.1, drop	0.05	0.1, drop	0.05, add	0.1, drop	0.05, add
0	width	0	peak_rmp	0	aspiration	0	# of cylinders
	0.00535		0.00846		0.00242	0	0.0014
0.1, drop	0.05, add	0.1, drop	0.05, add	0.1, drop	0.1, add	0.1, drop	0.1, add
0	engine_type	0	stoke	0	hwy_mpg	0	body_style
	0.00993		0.0025		0.0534		0.096

R variable selection + multicollinearity elimination

Conclusion of Case 1: with engine_locaiton

Second time Stepwise variable selection.

alpha	0.05/0.1 drop	0.05/0.1 add	0.05/0.1 drop	0.05/0.1 add	0.05 drop	end
Add or drop	Height	0	stroke	0	engine_type	
Р	0.79		0.56		0.058	

```
Analysis of Variance Table

Model 1: price ~ engine_size + make + width + engine_location + peak_rpm + aspiration + engine_type + body_style + bore

Model 2: price ~ engine_size + make + width + engine_location + peak_rpm + aspiration + body_style + bore

Res.Df RSS Df Sum of Sq F Pr(>F)

1 161 591024164

2 164 619087193 -3 -28063028 2.5482 0.05777 .

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

	Cas	sez	Z: Wit	hout en	gine_loc	ation.	and	and :0.05 and 0.1, :0.1 and :0.05										
alpha	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05		0.0 5	0.1	0.1	0.1	
add	curb_we ht(with F 748)		<mark>make</mark>	height	aspir ation	body _styl e	wheel_ base	num_of_ cylinders	drive_ eels	wh	engine _type	comp ssion atio	ore l	en gth	number _of_doo rs	fuel_ syste m		
Р	2.2* 10 ^-16		2.2*1 0^-6	3.2*10 ^-10	0.00 015	1.7 *10-5	0.0001 69	5.6 * 10^-5	0.0014	1	0.0049 5	0.013		0.0 47	0.052	0.05 8	0.037	7
alp ha	0.1/0.05	0.1	1/0.05	0.1/0. 05	0.1/0. 05	0.1/0.05	0.1/0. 05	0.1/0 .05	/0.1/0. 05	0.1	/0.05	0.1/0.0 5	0.1/0	.05	0.1/0.0 5	0.1 /0. 05	0.1/0. 05	0.1/0 .05
dro p	<mark>symboli</mark> ng	enç siz	gine_ e	stoke	peak_ rpm	normaliza d_losses		city_ mpg	aspira tion	driv hee	ve_w els	hwy_ mpg	comp ion_r		fuel_s ystem	bor e	body_ style	fuel_ type
р	0.98	0.5	59	0.508	0.47	0.426	0.97	0.95	0.83	0.8	31	0.24	o.16		0.15	0.1 9	0.145	0.10 04

:picked and tossed :0.05 and 0.1. TBD :0.1 and TBD 0.05

Stepwise: aligns with forward and backward variable selection

alpha	0.05/0.1 add	0.05/0.1 drop	0.05/0.1 add	0.05/0.1 drop	0.05/0.1 add	0.05/0.1 drop	0.05/0.1 add	0.05/0.1 drop	0.05/0.1 add	0.05/0.1 drop	end
add	curb_weight (with F 748)	0	make	0	<mark>height</mark>	0	aspiration	aspiration	aspiration	aspiration	
Р	2.2* 10 ^-16		2.2*10^-6		3.2 *10^-10		0.00015	0.96	0.00015	0.96	

R variable selection + multicollinearity elimination

Compare model with alpha 0.05 and alpha 0.1

Conclusion of Case 2: without engine_locaiton

alpha	0.05/0.1 drop	0.05/0.1 add	0.05 drop	0.05 add	0.05 drop	end
add	aspiration	0	drive_wheels	0	height	
Р	0.79		0.073		0.19	

Compare model with alpha 0.05 and alpha 0.1

```
Analysis of Variance Table

Model 1. price ~ make + body_style + engine_location + wheel_base + engine_type + num_of_cylinders + compression_ratio + horsepower

Model 2: price ~ make + body_style + drive_wheels + engine_location + wheel_base + height + engine_type + num_of_cylinders + compression_ratio + horsepower

Res.Df RSS Df Sum of Sq F Pr(>F)

1 162 633465830
2 159 606324718 3 27141112 2.3725 0.0724 .
```

Exhaustive search

When I start with an exhaustive search with R, it shows that R encountered a fatal error, R session restart.

Theoretically there are $\binom{22}{1} + \binom{22}{2} + \binom{22}{3} + \binom{22}{4} + \binom{22}{5} + \binom{22}{6} \dots + \binom{22}{22}$ subsets.

Skip exhaustive search.

Variable selection final result

Start with including engine_location and exclude normalized_losses:

```
Model 1: price ~ engine_size + make + width + engine_location + peak_rpm + aspiration + body_style + bore (4+4)
```

Start with including normalized_losses and exclude engine_location:

```
Model2 :price ~ make + body_style + engine_location + wheel_base + engine_type + num_of_cylinders + compression_ratio + horsepower (3 +5)
```

means continuous means categorical

Research Objectives/Questions

1. Which predictors contribute significantly to the price of a brand-new car?

Model 1: price ~ engine_size + make + width + engine_location + peak_rpm + aspiration + body_style + bore

Model 2: price ~ make + body_style + engine_location + wheel_base + engine_type + num_of_cylinders + compression_ratio + horsepower

2. How well can we predict the price of a brand-new car on the smaller subset of predictors?

Model Adequacy and Reliability Check

- 1. QQ-Plot and Residual Plot
- 2. Outliers Detection
- 3. Leverage Point Detection
- 4. Influential Point Detection

Outliers Detection

Residuals vs Fitted for Model 1

20000

Fitted values

0

30000

40000

Residuals vs Fitted for Model 2

10000

-4000

	AdjR2 in	AdjR2 out	MS_Res in	MS_Res out
Model 1 #60	0.9418388	0.9422036	3174806	3263245
Model 1 #68	0.9418388	0.9426322	3174806	3106651
Model 2 #72	0.9385753	0.9377706	3183245	3124377
Model 2 #199	0.9385753	0.9387636	3183245	3179110

Leverage Points Detection

	AdjR2 in	AdjR2 out	Change Percentage	Estimator Name that Changed the most	Change Percentage
Model 1 #19	0.9418388	0.9429675	0.12	makechevrol et	245.46
Model 1 #66	0.9418388	0.9453205	0.369	makemercur y	-174.98
Model 2 #2	0.9385753	0.9393009	7.73	makeaudi	-10237.97
Model 2 #3	0.9385753	0.9390276	4.82	makeaudi	17289.00

Influential Points Detection

No influential points detected.

Model Transformation

- Square Root Transformation
- 2. Log Transformation
 - Optimal lambda for Model 1: 0.3
 - Optimal lambda for Model 2: 0.2

	Transformation	R^2	Adjusted R^2	Standard Error
Model 1	None	0.9414	0.9235	1443.658
Model 1	Square Root	0.9519	0.9431	1690.497
Model 2	None	0.9337	0.9122	1546,282
Model 2	Square Root	0.9532	0.9428	1677.584

Data Validation

- Model 2 has more MSP values close to 0 compared to model 1 MSP
- All distribution of the mean square error for prediction is normal with model 1 is slightly skewed

Car Price Prediction Case in 1985

price ~ make + body_style + engine_location +
wheel_base + engine_type + num_of_cylinders +
compression ratio + horsepower

Customer Requirement:

- 1. Honda sedan with front engine
- Wheelbase of 100 inches
- 3. **OHC** (Overhead Cam) engine type
- 4-cylinder engine with compression ratio of 9.5, and 150 horsepower

Conclusion

Which predictors contribute significantly to the price of a brand-new car?

Best model: price ~ make + body_style + engine_location + wheel_base + engine_type + num_of_cylinders + compression_ratio + horsepower

2. How well can we predict the price of a brand-new car on the smaller subset of predictors?

Our model demonstrates robustness despite the presence of outliers and leverage points, as their removal does not significantly alter predicted car prices.

The 'make' variable is most impacted by these points, highlighting the strong influence of car brand on the price.

Applying a square root transformation effectively mitigates the impact of outliers, further enhancing the model's performance, reliability and accurately predict new car prices.

Appendix

stroke num_of_cylinders symboling normalized_losses wheel_base width height curb_weight engine_size length bore symbolina 1.000000000 0.51838797 -0.52046477 -0.33621705 -0.2198496 -0.47399437 -0.2523723 -0.1102384 -0.25701277 -0.020538841 0.02354329 normalized losses 0.518387968 1.00000000 -0.06400101 0.02911438 0.1048565 -0.41708077 0.1228602 0.2038412 -0.03616694 0.065626988 0.26588542 wheel_base -0.520464770 -0.06400101 1.00000000 0.87196801 0.8159350 0.55876376 0.8105069 0.6504878 0.58048403 0.164011960 0.31381957 length -0.336217051 0.87196801 1.000000000 0.8391841 0.50515596 0.8703550 0.7266664 0.64905924 0.116049120 0.39015769 0.02911438 -0.219849642 0.10485650 0.81593501 0.83918412 1.0000000 0.29840309 0.8706493 0.7800176 0.57504802 0.192891028 0.50786485 width 0.55876376 0.2984031 1.00000000 -0.05496260 height -0.473994373-0.41708077 0.50515596 0.3693631 0.1165051 0.26150092 -0.095364375 0.8706493 0.59630323 curb_weight -0.252372341 0.12286025 0.81050693 0.87035496 0.36936307 1.0000000 0.8888474 0.64664028 0.171691317 -0.110238431 0.65048780 0.72666638 0.7800176 0.11650514 0.8888474 1.0000000 0.59733622 0.296693139 0.77088755 engine_size 0.20384120 -0.257012766 -0.03616694 0.58048403 0.64905924 0.5750480 0.26150092 0.6466403 0.5973362 1.00000000 -0.105464066 0.13659466 bore -0.020538841 0.06562699 0.16401196 0.11604912 0.1928910 -0.09536437 0.1716913 0.2966931 -0.10546407 1.000000000 0.13093041 stroke 1.00000000 0.06300331 C 16

num_of_cylinders	0.023543289	0.26588542	0.31381957	0.39015769	0.5078648	-0.05496260	0.5963032	0.7708876	0.13659466	0.130930406	
compression_ratio	-0.139021791	-0.12997093	0.29396760	0.18896778	0.2615303	0.23743151	0.2265128	0.1435677	0.01921597	0.240894808	
horsepower	-0.003668657	0.29090559	0.51450686	0.66672597	0.6787789	0.03226392	0.7885094	0.8098548	0.55710740	0.149314989	
peak_rpm	0.199797806	0.24067647	-0.29249053	-0.23910434	-0.2359063	-0.25123623	-0.2620855	-0.2872601	-0.31584138	-0.008568987	
city_mpg	0.088912095	-0.23693364	-0.57663540	-0.71687663	-0.6621225	-0.19455902	-0.7595379	-0.6958896	-0.58561823	-0.021380833	
highway_mpg	0.149309477	-0.18969131	-0.60826982	-0.71783122	-0.6893674	-0.22164557	-0.7871670	-0.7113644	-0.58672907	-0.013974079	

-0.75953792 -0.78716702

-0.69588958 -0.71136436

-0.48333020 -0.51826633

-0.05493781 -0.03437238

-0.315841384 -0.58561823 -0.58672907

-0.008568987 -0.02138083 -0.01397408

0.27951325

1.000000000

0.97199680

0.074931817 -0.83717978 -0.82797250

0.032263922 -0.251236231 -0.19455902 -0.22164557

-0.262085506

-0.287260069

-0.418726319

1.000000000

Pearson correlation coefficient table

0.23743151

0.22651275

0.14356771

0.01921597

0.24089481

0.06300331

1.00000000

-0.16289361

-0.41872632

0.788509418

0.809854784

0.557107399

0.149314989

-0.162893609

1.0000000000

0.074931817

0.27951325 -0.837179780 -0.054937813

0.22244152 -0.827972503 -0.034372382

0.617738464 -0.119718918

bore stroke

height

curb_weight engine_size

horsepower

peak_rpm

city_mpg highway_mpg

num_of_cylinders

compression_ratio

horsepower	-0.003668657	0.29090559	0.51450686	0.66672597	0.6787789	0.03226392	0.7885094	0.8098548	0.55710740	0.149314989	0.61773846
peak_rpm	0.199797806	0.24067647	-0.29249053	-0.23910434	-0.2359063	-0.25123623	-0.2620855	-0.2872601	-0.31584138	-0.008568987	-0.11971892
city_mpg	0.088912095	-0.23693364	-0.57663540	-0.71687663	-0.6621225	-0.19455902	-0.7595379	-0.6958896	-0.58561823	-0.021380833	-0.48333020
highway_mpg	0.149309477	-0.18969131	-0.60826982	-0.71783122	-0.6893674	-0.22164557	-0.7871670	-0.7113644	-0.58672907	-0.013974079	-0.51826633
0.000 Miles and and and an and an	compression_ratio	horsepower	peak_rpm	m city_mpg	ا highway_m	pg					
symboling	-0.13902179	-0.003668657	0.199797806	5 0.08891209	0.149309	48					
normalized_losses	-0.12997093	0.290905591	0.240676469	9 -0.23693364	+ -0.189691	31					

horsepower	-0.003668657	0.29090559	0.51450686	0.66672597	0.6787789	0.03226392	0.7885094	0.8098548	0.55710740	0.149314989	0.61773846
peak_rpm	0.199797806	0.24067647	-0.29249053	-0.23910434	-0.2359063	-0.25123623	-0.2620855	-0.2872601	-0.31584138	-0.008568987	-0.11971892
city_mpg	0.088912095	-0.23693364	-0.57663540	-0.71687663	-0.6621225	-0.19455902	-0.7595379	-0.6958896	-0.58561823	-0.021380833	-0.48333020
highway_mpg	0.149309477	-0.18969131	-0.60826982	-0.71783122	-0.6893674	-0.22164557	-0.7871670	-0.7113644	-0.58672907	-0.013974079	-0.51826633
CERC BECOME	compression_ratio	horsepower	peak_rpm	city_mpg	highway_mp	og					
symboling	-0.13902179	-0.003668657	0.199797806	0.08891209	0.1493094	18					
normalized_losses	-0.12997093	0.290905591	0.240676469	-0.23693364	-0.1896913	31					
wheel_base	0.29396760	0.514506864	-0.292490530	-0.57663540	-0.6082698	32					
length	0.18896778	0.666725972	-0.239104336	-0.71687663	-0.7178312	22					
width	0.26153025	0.678778916	-0.235906329	-0.66212250	-0.6893674	13					

0.22244152

0.97199680

1.00000000