ADAPTIVE REFINEMENT RESULTS

Everywhere, we have $1 \underline{\delta}$ layer, $\theta = 0.7$, mean-zero residual estimation unless specified otherwise.

SMOOTH SOLUTION

 $u(t,x,y) = (1+t^2)x(1-x)y(1-y)$. We see nice rate 0.5 of the error, rate 1.0 of the L2-error at t=0

TIME-SINGULAR SOLUTION

 $u(t,x,y)=(1+t^{0.1})x(1-x)y(1-y)$. Quadrature order 5 in time. We see *very* strong refinement towards the origin (with wavelets around $t=10^{-10}$). Suspect it is due to quadrature error.

MILDLY SINGULAR SOLUTION

 $u_0(x,y) := x(1-x)y(1-y)$ with g=1 forcing data. Nice rate 0.5 with rate 1.0 for L2-error at t=0.

Date: January 17, 2020.

FIGURE 1. Smooth solution rate

Figure 2. Time singular solution: left rate; right time-slice errors.

FIGURE 3. Mild singular solution rate.

FIGURE 4. Strongly singular solution rates: left 1 layer, right 2 layers.

STRONGLY SINGULAR SOLUTION

 $u_0(x,y) := 1$ with g = 0 forcing data. Clean rate 0.25 (where we had hoped 0.5).