Ch-1(x)

Par Zener

Experimento #8 Diodos: Zener e Schottky

Objetivo: Introdução ao comportamento dos diodos Schottky e Zener. Obtenção das curvas características de corrente (**I**) x tensão (**V**), e a extração dos parâmetros principais dos modelos.

Material:

- Osciloscópio Digital: ______
- Gerador de Funções: ____
- Diodos Zener e Schottky; Resistor de 1 k Ω .

- 1) Diodo Schottky (______)
- **1.1**) Monte o circuito da Figura-1, para obtenção da curva $\mathbf{I} \times \mathbf{V}$ do diodo <u>Schottky</u>, utilizando o Modo \mathbf{X} - \mathbf{Y} do Osciloscópio Digital. Use a função senoidal, f = 30 Hz, e com amplitude de tensão adequada. Obtenha a curva $\mathbf{I} \times \mathbf{V}$ que passa pelo 1º quadrante ($\mathbf{V} > 0$, $\mathbf{I} > 0$) e pelo 3º quadrante ($\mathbf{V} < 0$, $\mathbf{I} < 0$).
- 1.2) Estime os valores dos parâmetros (V_D , R_D) do modelo elétrico do diodo <u>Schottky</u> a partir da curva $I \times V$.
- **1.3**) Faça a medida da corrente de saturação reversa (**I**s), polarizando reversamente o diodo <u>Schottky</u> com uma tensão de alguns volts, e usando um multímetro em série, no modo amperímetro.
- 2) Diodo Zener (
- **2.1**) Monte o circuito da Figura-2, para obtenção da curva $\mathbf{I} \times \mathbf{V}$ do diodo Zener, utilizando o Modo X-Y do Osciloscópio Digital. Use a função senoidal, f = 30 Hz, e com amplitude de tensão adequada. Obtenha a curva $\mathbf{I} \times \mathbf{V}$ que passa pelo 1° quadrante ($\mathbf{V} > 0$, $\mathbf{I} > 0$) e pelo 3° quadrante ($\mathbf{V} < 0$, $\mathbf{I} < 0$).
- 2.2) Estime os valores dos parâmetros (V_B, V_D, R_D) do modelo elétrico do diodo Zener a partir da curva $I \times V$.
- **2.3**) Faça a medida da corrente de saturação reversa (I_S), polarizando reversamente o diodo <u>Zener</u> com metade da tensão de ruptura ou *breakdown* ($V_B/2$), e usando um multímetro em série, no modo amperímetro.
- 3) Circuito Clipper: Zener-1 (_______); Zener-2 (_______) Monte o circuito da Figura-3, para obtenção da curva I x V do Circuito Clipper, construído com o Par Zener,

utilizando o Modo X-Y do Osciloscópio Digital. Use a função senoidal, f = 30 Hz, e com amplitude de tensão adequada. Obtenha a curva $\mathbf{I} \times \mathbf{V}$ (1º e 3º quadrantes).

Recomendações: Registre cada curva **I** x **V** com uma <u>foto</u> da tela do osciloscópio e inclua no seu relatório. É necessário <u>isolar</u> o pino terra do Gerador de Sinais, usando um adaptador de tomada adequado. Identifique o numeral dos diodos usados em cada item, nos espaços entre parênteses.

- 4) Observe: Como em cada circuito as curvas I x V são afetadas pelo aumento da frequência até 1,0 MHz.
- 5) Simulações:
- a) Plote em uma simulação no LTspice a mesma curva $\mathbf{I} \times \mathbf{V}$ obtida experimentalmente para o diodo Schottky no Item-1.1. Use um modelo SPICE adequado, para f = 30 Hz (Baixa Frequência).
- b) Plote em uma simulação no LTspice a mesma curva $\mathbf{I} \times \mathbf{V}$ obtida experimentalmente para o diodo Zener no Item-2.1. Use um modelo SPICE adequado, para f = 30 Hz (Baixa Frequência).

P.FDE - 2/2024 Prof. Marcus V. Batistuta