Course Algabra 1 : Chapter 3, **Binary relations on a set**1st year Licence LMD **Informatique**

Menouer Mohammed Amine

October 29, 2024

Chapter 3

Binary relations on a set

3.1 Definitions

Definition 1. We call a **relation** from E to F any process associating elements of E with elements of F. We denote it for example: $\mathcal{R}, \mathcal{S}, \mathcal{T}, \ldots$

Let \mathcal{R} be a relation from E to F. If $x \in E$ is in relation with $y \in F$, we will denote this by:

If a is not in relation with b, we denote it: $a\mathcal{R}b$.

The set of pairs $(x, y) \in E \times F$ verifying a relation \mathcal{R} is called the **graph** of \mathcal{R} . It is generally denoted \mathcal{G} . We therefore have:

$$(x,y) \in \mathcal{G} \iff x\mathcal{R}y$$

If E = F, a relation from E to F is called a **binary relation** on E.

Example 1.

- 1. Equality is a binary relation on any set E.
- 2. On the set of natural integers \mathbb{N} , division is a binary relation formulated by x divides y. (2,8) belongs to the graph of this relation, but (3,4) does not.
- 3. Inclusion is a binary relation on $\mathcal{P}(E)$.

3.2 Properties

Let \mathcal{R} be a binary relation on a set E and x, y, z elements of E.

1. **Reflexivity**: \mathcal{R} is reflexive if:

$$\forall x \in E, \ x \mathcal{R} x$$

2. Symmetry: \mathcal{R} is symmetrical if:

$$\forall x \in E, \ \forall y \in E, \ x \mathcal{R} y \Longrightarrow y \mathcal{R} x$$

3. Antisymmetry: \mathcal{R} is Antisymmetric si :

$$\forall x \in E, \ \forall y \in E, \ (x\mathcal{R}y \text{ and } y\mathcal{R}x) \Longrightarrow x = y$$

4. Transitivity: \mathcal{R} is transitive if:

$$\forall x \in E, \ \forall y \in E, \ \forall z \in E, \ (x\mathcal{R}y \text{ and } y\mathcal{R}z) \Longrightarrow x\mathcal{R}z$$

Example 2. Let the relation \mathcal{R} , called equality, on \mathbb{N} , be defined by:

$$\forall m, n \in \mathbb{N}, \ m\mathcal{R}n \iff m=n$$

- 1. The equality relation is reflexive on \mathbb{N} , because we have $\forall m \in \mathbb{N}$, m = m, that is to say $m \mathcal{R} m$.
- 2. The equality relation is symmetric on \mathbb{N} , because we have $\forall m, n \in \mathbb{N}$, $m = n \Longrightarrow n = m$, that is to say $m\mathcal{R}n \Longrightarrow n\mathcal{R}m$.
- 3. The equality relation is transitive on \mathbb{N} , because we have $\forall l, m, n \in \mathbb{N}$, $(l = m \text{ and } m = n) \Longrightarrow l = n$, that is to say $(l\mathcal{R}m \text{ and } m\mathcal{R}n) \Longrightarrow l\mathcal{R}n$.

Example 3. Let E be a set and let the relation \mathcal{T} , called inclusion, on $\mathcal{P}(E)$, be defined by :

$$\forall A, B \in \mathcal{P}(E), \ A\mathcal{T}B \iff A \subset B$$

1. The inclusion relation is reflexive on $\mathcal{P}(E)$, because we have

$$\forall A \in \mathcal{P}(E), \ A \subset A$$

that is to say ATA.

2. The inclusion relation is transitive on $\mathcal{P}(E)$, because we have

$$\forall A, B, C \in \mathcal{P}(E), (A \subset B \text{ and } B \subset C) \Longrightarrow A \subset C$$

that is to say $(ATB \ et \ BTC) \Longrightarrow ATC$.

3. The inclusion relation is not symmetrical on $\mathcal{P}(E)$, because it suffices to choose $A, B \in \mathcal{P}(E)$ such that $A \subset B$ strictly and we obtain $B \not\subset A$. Instead, the inclusion is antisymmetric, because if $A \subset B$ and $B \subset A$ then A = B.

3.3 Equivalence Relation

3.3.1 Definition

Definition 2. Let \mathcal{R} be a binary relation on a set E. \mathcal{R} is called an **equivalence relation** if it is:

- 1. Reflexive
- 2. Symmetrical
- 3. Transitive

Example 4. The relation called equality on \mathbb{N} is an equivalence relation, but the relation called inclusion on $\mathcal{P}(E)$ is not an equivalence relation because it is not symmetrical.

Example 5. We define the following relation \mathcal{P} on \mathbb{Z} :

$$\forall s, t \in \mathbb{Z}, \ s\mathcal{P}t \iff s-t \ is \ divisible \ by \ 2.$$

1. The relation \mathcal{P} is reflexive on \mathbb{Z} , because we have $\forall s \in \mathbb{Z}$, s - s = 0, and 0 is divisible by 2. That is to say $s\mathcal{P}s$.

2. The relation \mathcal{P} is symmetrical on \mathbb{Z} , because, for $s, t \in \mathbb{Z}$:

$$s\mathcal{P}t \Longrightarrow s - t \text{ divisible by 2}$$

$$\Longrightarrow \exists k \in \mathbb{Z}, s - t = 2k$$

$$\Longrightarrow t - s = -2k$$

$$\Longrightarrow t - s = 2k', k' \in \mathbb{Z}$$

$$\Longrightarrow t - s \text{ is divisible by 2}$$

$$\Longrightarrow t\mathcal{P}s$$

3. The relation \mathcal{P} is transitive on \mathbb{Z} . Indeed, let $s, t, u \in \mathbb{Z}$.

$$s\mathcal{P}t$$
 and $t\mathcal{P}u \Longrightarrow s-t$ is divisible by 2 and $t-u$ is divisible by 2
 $\Longrightarrow \exists k, k' \in \mathbb{Z}, \ s-t=2k \ and \ t-u=2k'$
 $\Longrightarrow s-u=2k'', \ with \ k''=k+k' \in \mathbb{Z}$
 $\Longrightarrow s-u \ is \ divisible \ by \ 2$
 $\Longrightarrow s\mathcal{P}u$.

3.3.2 Equivalence class

Definition 3. Let \mathcal{R} be an equivalence relation on a set E. We call the **equivalence class** of an element $x \in E$ the following set, denoted \bar{x} or \dot{x} or C_x or Cl(x):

$$\bar{x} = \{ y \in E, \ y \mathcal{R} x \}$$

Example 6. Let E be a set defined by:

 $E = \{ The students of the 1st year Licence Informatique 2024/2025 at the university of Tlemcen \}$

We note the students of E by letters: a, b, c, d, \ldots . We define on E the relation \mathcal{R} as follow:

$$a\mathcal{R}b \iff a \text{ belongs to the same b group}$$

- 1. Let's show that \mathcal{R} si an equivalence relation on E.
 - (a) Let $a \in E$, then a belongs to the same a group, that is to say aRa i.e. R is reflexive.
 - (b) Let $a, b \in E$ such that $a\mathcal{R}b$

$$a\mathcal{R}b \Longrightarrow a \ belongs \ to \ the \ same \ b \ group$$

$$\Longrightarrow b \ belongs \ to \ the \ same \ a \ group$$

$$\Longrightarrow b\mathcal{R}a.$$

$$\Longrightarrow \mathcal{R} \ is \ symmetrical.$$

(c) Let $a, b, c \in E$ such that aRb and bRc

$$a\mathcal{R}b$$
 et $b\mathcal{R}c \Longrightarrow a$ belongs to the same b group and b belongs to the same c group
$$\Longrightarrow a \text{ belongs to the same } c \text{ group}$$

$$\Longrightarrow a\mathcal{R}c$$

$$\Longrightarrow \mathcal{R} \text{ is transitive.}$$

then \mathcal{R} is an equivalence relation on E.

- 2. Let's look for the equivalence classes of all the elements of E according to the relation \mathcal{R} .
 - Let $a \in E$

$$\overline{a} = \{x \in E, xRa\} = \{x \in E, x \text{ belongs to the same a group }\}$$

Suppose that a belongs to the group G1, then $\overline{a} = \{All \text{ the students of the group G1}\}$, we then put this group aside.

• Let $b \in E$

$$\overline{b} = \{x \in E, xRb\} = \{x \in E, x \text{ belongs to the same b group }\}$$

Suppose that b belongs to the group G2, then $\bar{b} = \{All \text{ the students of the group G2}\}$, we remark that b cannot belong to the group G1 because we put it aside.

• We thus continue to go through all the students of the set E to include each of them, without forgetting anyone, in a single equivalence class, which is nothing other than the group to which he belongs. We then obtain 16 equivalence classes.

Properties 1.

Let R be an equivalence relation on a set E.

- 1. $\forall x \in E \ x \in \overline{x}$.
- 2. $\forall x, y \in E, \ x\mathcal{R}y \iff \bar{x} = \bar{y}.$
- 3. The set of all equivalence classes modulo \mathcal{R} on a set E, is called the **quotient set** of E by \mathcal{R} , and denoted E/\mathcal{R} . It forms a partition of E.

$$E/\mathcal{R} = \{\bar{x}, x \in E\}.$$

Proof.

- 1. \mathcal{R} being an equivalence relation, it is then reflexive, that is to say: for every $x \in E$, $x\mathcal{R}x$, then $x \in \overline{x}$.
- 2. Let $a \in \bar{x}$, then $a\mathcal{R}x$, but by hypothesis $x\mathcal{R}y$ therefore by transitivity $a\mathcal{R}y$, that is to say $a \in \bar{y}$, from which $\bar{x} \subset \bar{y}$. By an identical but symmetrical process we obtain that $\bar{y} \subset \bar{x}$. Therefore $\bar{x} = \bar{y}$. For the reciprocal implication, for $a \in \bar{x} = \bar{y}$, we have $a\mathcal{R}x$ and by symmetry we obtain $x\mathcal{R}a$, we also have $a\mathcal{R}y$, therefore by transitivity $x\mathcal{R}y$.
- 3. For all $x \in E$, we have $\bar{x} \neq \emptyset$, since $x \in \bar{x}$, given the reflexivity of \mathcal{R} . It is clear that $\cup \bar{x} = E$, for $x \in E$. Finally, if $\bar{x} \neq \bar{y} \Longrightarrow \bar{x} \cap \bar{y} = \emptyset$. Indeed, let us reason by contradiction. Suppose $\bar{x} \neq \bar{y}$ and $a \in \bar{x} \cap \bar{y}$ then $a\mathcal{R}x$ and $a\mathcal{R}y$, from which $x\mathcal{R}y$ i.e. $\bar{x} = \bar{y}$ which is contrary to our hypothesis.

Example 7.

Let the equivalence relation denoted \mathcal{R} be defined on \mathbb{Z} by:

$$\forall x, y \in \mathbb{Z}, y \mathcal{R} x \iff 3 \text{ divides } y - x$$

Determine the equivalence classes modulo \mathcal{R} and the quotient set \mathbb{Z}/\mathcal{R} . Let $x \in \mathbb{Z}$. The equivalence class of x modulo \mathcal{R} is therefore:

$$\bar{x} = \{y \in \mathbb{Z}, y\mathcal{R}x\} = \{y \in \mathbb{Z}, 3 \text{ divides } y - x\}$$

 $3 \text{ divides } y - x \iff y - x = 3k, k \in \mathbb{Z}$

$$\iff y = 3k + x, \ k \in \mathbb{Z}$$

$$\Longrightarrow \bar{\mathbf{x}} = \{ y \in \mathbb{Z}, y = 3k + \mathbf{x}, \ k \in \mathbb{Z} \}$$

Now the writing y = 3k + x is nothing other than the **Euclidean division in** \mathbb{Z} of an integer y by 3, whose remainder is x which must verify the condition $0 \le x < 3$, and since $x \in \mathbb{Z}$, the only values that x can take are therefore : 0, 1, 2. We deduce that the equivalence classes are therefore: $\bar{0}, \bar{1}, \bar{2}$.

The quotient set \mathbb{Z}/\mathcal{R} is therefore: $\mathbb{Z}/\mathcal{R} = \{\bar{0}, \bar{1}, \bar{2}\}$, this set forms a partition of \mathbb{Z} .

Figure 3.1: Partition of \mathbb{Z} formed by the quotient set $\mathbb{Z}/3\mathbb{Z}$

Remark 1 (Congruence). This equivalence relation is famous and has a name which is congruence modulo 3 and we note it:

$$y\mathcal{R}x \Longleftrightarrow y \equiv x[3]$$

and we say that y is **congruent** to x **modulo** 3. Its quotient set is noted:

$$\mathbb{Z}/3\mathbb{Z}$$

This notion of congruence generalizes to any integer $n \in \mathbb{N}^*$ by saying that y is congruent to x modulo n and we obtain the notations:

$$y \equiv x[n] \qquad , \qquad \mathbb{Z}/n\mathbb{Z}$$

3.4 Ordre relation

3.4.1 Definitions

Definition 4. Let \mathcal{T} be a binary relation on a set E. \mathcal{T} is said to be an **order relation** if it is:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

We say that (E, \mathcal{T}) is an ordered set.

Example 8.

- 1. The relation called **inequality**, denoted \leq on the set \mathbb{R} is an order relation. Indeed, we have :
 - (a) $\forall x \in \mathbb{R}, x \leq x, hence \leq is reflexive.$
 - (b) $\forall x, y \in \mathbb{R}, \ x \leq y \ et \ y \leq x \Longrightarrow x = y, \ hence \leq is \ antisymmetric.$
 - (c) $\forall x, y, z \in \mathbb{R}$, $x \leq y$ et $y \leq z \Longrightarrow x \leq z$, that is to say that \leq is transitive.
- 2. The so-called **inclusion** relation, denoted \subset , on the set $\mathcal{P}(E)$, is an order relation, because :
 - (a) $\forall A \in \mathcal{P}(E), A \subset A, hence \subset is reflexive.$
 - (b) $\forall A, B \in \mathcal{P}(E), A \subset B \text{ and } B \subset A \Longrightarrow A = B, \text{ hence } \subset \text{ is antisymmetric.}$
 - (c) $\forall A, B, C \in \mathcal{P}(E)$,, $A \subset B$ and $B \subset C \Longrightarrow A \subset C$, that is \subset is transitive.

3.4.2 Total order, partial order

Definition 5. Let (E, \mathcal{T}) be an ordered set.

1. Two elements x, y of E are said to be **comparable** for T if, and only if:

$$xTy$$
 ou yTx

2. We say that \mathcal{T} is a **total order** relation if, and only if, the elements of E are all comparable two by two, that is to say:

$$\forall x, y \in E, \quad x\mathcal{T}y \quad or \quad y\mathcal{T}x$$

otherwise, if

$$\exists x, y \in E$$
 $x\mathcal{T}y$ and $y\mathcal{T}x$

we then say that T is a **partial order** relation.

Example 9.

- 1. The order relation \leq on \mathbb{R} is a total order relation on the same set, since for all x, y elements of \mathbb{R} , we have $x \leq y$ or $y \leq x$.
- 2. Let the set $E\{-1,0,3\}$ be. The order relation \subset on $\mathcal{P}(E)$ is a partial order relation on $\mathcal{P}(E)$, because for the elements $\{-1\} \in \mathcal{P}(E)$ and $\{3\} \in \mathcal{P}$ we have

$$\{-1\} \not\subset \{3\}$$
 and $\{3\} \not\subset \{-1\}$

in other words, there are two elements of $\mathcal{P}(E)$ which are not comparable for \subset .

3.4.3 Remarkable sets

Definition 6. Let (E, \leq) be an ordered set and let $A \subset E$.

1. Let $x \in E$. We say that x is an **upper bound** (resp. **lower bound**) of A in E if and only if:

$$\forall a \in A, \ a \leq x$$
 (resp. $\forall a \in A, \ x \leq a$).

- 2. We say that A is **bounded above** (resp. **bounded below**) in E if and only if A admits at least one upper bound (resp. lower bound) in E.
- 3. Let $\alpha \in A$. We say that α is the **greatest** (resp. **smallest**) element of A if and only if:

$$\alpha \in A \text{ and } \forall a \in A, \ a \leq \alpha$$
 (resp. $\alpha \in A \text{ and } \forall a \in A, \ \alpha \leq a$).

Definition 7. Let (E, \leq) be an ordered set and let $A \subset E$.

- 1. If the set $\operatorname{Maj}_E(A)$ of upper bound of A in E admits a smallest element M, then M is called the **smallest upper bound** of A in E and is denoted $\sup_E(A)$.
- 2. If the set $Min_E(A)$ of lower bounds of A in E has a greatest element m, then m is called the greatest lower bound of A in E and is denoted $inf_E(A)$.