Let I be Boul-fixed

Let Im,..., mrz be its minl. gen set

Then every monomial m EI can

be unthen iniquely as

m=m; m', max m; < min m'

largest variable smallest in mi

If let Vi=max Mi.

Existence: By example, say $I = \langle X_1^2, X_1 X_2, X_2^3, X_1 X_3^3 \rangle$ $m = \chi_1^3 \chi_2^3 \chi_3^3$

Write $m=m_1m'$ in any way. $m=(X_1X_3^3)(X_1^2X_2^3)$ Bad pair? Swap them: $m=(X_1X_2X_3^2)(X_1^2X_2^2X_3)$ in I (Boul-fixed)

 $= [(\chi_1 \chi_2) \chi_3^2] (\chi_1^2 \chi_2^2 \chi_3)$ $= (\chi_1 \chi_2) (\chi_1^2 \chi_2^2 \chi_3^3)$

Again:

 $M = (X_1^2) (X_1 X_2^3 X_3^3)$

This ends since at each stage either $V_i = \max_i m_i$ or its exponent deceases. Uniqueness: Not hard. [MJ]: 12

Prop If $I = \langle m_1, ..., m_r \rangle$ is Bowl-fixed, $H(I;x) = \sum_{i=1}^{r} \frac{m_i}{\prod_{j=v_i} (1-x_j)}$

Pf fory from lemma &

Other nie focts:

- We can compute explicitly the mint.

free resolution of Borel-fixed I.

("Eliahou-Kervaire" resolution.)

- We can compute the Best numbers.

The upper borsul complexes are "shifted":

20 If
$$(F \in \Gamma)$$
 then $F - f \cup g \in \Gamma$. Shifted Complex $g > f$

 $\widetilde{H}_{1}=0$ which have easily completed homology: $\widetilde{H}_{0}=IF^{2}$ (1,2) dim \widetilde{H}_{1} (Γ) = H of 1-dim facts $F \in \Gamma$ $\widetilde{H}_{1}=IF^{2}$ (34,35) dim \widetilde{H}_{1} (Γ) = H of 1-dim facts $F \in \Gamma$ Such that $F \cup K \notin \Gamma$

- Among all ideals with

a given Hilbert Enchan H, Macavlay built a
Borel-fixed I with the largest number of deg d.
generators and deg d inth syrygies (all d,i).