0.1 ポーリング間隔調整の擬似アルゴリズム

擬似コードを以下に記す.

Algorithm 1 Compute next query timeout

Require: 正常時の学習データを用いた $\mathcal{N}(\hat{\mu}, \hat{\sigma^2})$

T: 直近のポーリング間隔

N: 参照するサンプリング集合の数

予測値の計算 x_p :

$$x_p = x_n + \frac{t_n - t_{n-1}}{N-1} \sum_{i=1}^{N-1} \frac{x_{i+1} - x_i}{t_{i+1} - t_i}$$

 y_p : x_n と x_p を結ぶ予測ベクトル

 y_r : x_n と x_{n+1} を結ぶ実測値ベクトル

$$S(y_p, y_r) = \frac{(y_p, y_r)}{\|y_p\| \cdot \|y_r\|}$$

if
$$S(y_p, y_r) \ge 0$$
 then

$$a_n = 1 - S(y_p, y_r)$$

else

$$a_n = 1$$

end if

 $a_n := \log a_n$

Add: a_n to Anomaly score list

Add: x_{n+1} to Sample list

 $N_a = \text{length(anomaly score list)}$

 $\{a_n\}_{N_a-N}^{N_q}$ で確率分布 $\mathcal{N}(\hat{\mu},\hat{\sigma^2})$ を推定.

 $\alpha_1 = \mathcal{N}(\hat{\mu}, \hat{\sigma^2})$ の 80% 点

$$\alpha_2 = \mathcal{N}(\hat{\mu}, \hat{\sigma^2})$$
 の 97% 点

if $a_n \leq \alpha_1$ then

$$T_{\text{new}} = T_{\text{max}}$$

else if $\alpha_1 \leq a_n \leq \alpha_2$ then

$$T_{\text{new}} := \frac{T_{\text{max}} - T_{\text{min}}}{\alpha_1 - \alpha_2} (a_n - \alpha_1) + T_{\text{max}}$$

else

$$T_{\text{new}} = T_{\text{min}}$$

end if

if $T_{\text{new}} \geq T_{\text{old}}$ then

$$N_{\text{new}} = N + 1$$

else

$$N_{\text{new}} = \text{ceil}(0.8 \cdot N)$$

end if

return $T_{\text{new}}, N_{\text{new}}$