

# Centro de Investigación en Matemáticas, A.C. Optimización

#### Tarea 4

José Miguel Saavedra Aguilar

#### Abstract

## 1 Introduction

On each iteration of a descent directions algorithm, one computes a descent direction  $d_k$  such that for some T > 0,

$$f(x_k) > f(x_k + td_k) \qquad \qquad t \in (0, T)$$

so we shall choose the step length  $\alpha_k$  for the iteration

$$x_{k+1} = x_k + \alpha_k d_k$$

Ideally, we would like  $\alpha_k$  to be the value of  $\alpha$  that minimizes the function  $\phi(\mathring{\mathbf{u}})$  defined for  $\alpha > 0$  by:

$$\phi(\alpha) := f(x_k + \alpha d_k)$$

However, this would be too expensive to compute, so we settle for values  $\alpha$  such that  $f(x_{k+1})$  is less enough than  $f(x_k)$ .

## 1.1 The Wolfe Conditions

Philip Wolfe presented line search conditions that  $\alpha_k$  should follow to guarantee *sufficient* decrease. The first one, known as the Armijo condition[3], states that for some  $c_1 \in (0,1)$ ,

$$f(x_k + \alpha_k d_k) \le f(x_k) + c_1 \alpha_k \nabla f^T(x_k) d_k \tag{1}$$

This condition states that  $\alpha$  is only acceptable if  $\phi(\alpha) < l(\alpha)$  for  $l(\mathring{\mathbf{u}})$  a linear function with slope  $c_1 \nabla f^T(x_k) d_k$ . Note if  $c_1 = 1$ ,  $l(\mathring{\mathbf{u}})$  is the linear approximation of f at  $x_k$ . To rule out unacceptably short values of  $\alpha_k$ , the *curvature condition* is introduced:

$$\nabla f^T(x_k + \alpha_k d_k) d_k \ge c_2 \nabla f^T(x_k) d_k \tag{2}$$

for some constant  $c_2 \in (c_1, 1)$ . Note for some functions, a step length may satisfy the Wolfe conditions (1) and (2) and not be particularly close to a minimizer of  $\phi$ . For this reason, Wolfe [4] also presented what we now know as the *strong Wolfe conditions*:

$$f(x_k + \alpha_k d_k) \le f(x_k) + c_1 \alpha_k \nabla f^T(x_k) d_k$$
$$|\nabla f^T(x_k + \alpha_k d_k) d_k| \le c_2 |\nabla f^T(x_k) d_k|$$
(3)

#### 1.2 Line search methods

Now, we shall present three *line search methods*, this is, methods that attempt to find  $\alpha_k$  such that they satisfy some of the Wolfe conditions.

#### 1.2.1 Backtracking

The so-called *backtracking* approach consists on starting on an initial guess  $\hat{\alpha}$  and setting  $\alpha_k^{j+1} = \rho \alpha_k^j$  for some  $\rho \in (0,1)$  until Armijo's condition (1) is satisfied. While this is a simple algorithm, it is effective, even though may suffer from numerical precision and slow convergence problems.

#### 1.2.2 Bisection

For the Bisection method, we shall search for the interval where we can guarantee both (1) and (2) are satisfied by starting from an initial guess  $\alpha_k * 0$  and decreasing the value  $\alpha_k^{j+1} < \alpha_k^j$  whenever (1) is not satisfied for  $\alpha_k^j$ , increasing  $\alpha_k^{j+1} > \alpha_k^j$  when (1) is satisfied but (2) isn't, while taking into consideration the previous iterations of  $\alpha_k^j$ .

#### 1.2.3 A line search algorithm for the Wolfe conditions

The third method is presented in [2] and guarantees to find a step length  $\alpha$  satisfying (3). This algorithm is based on previous knowledge that in an interval  $(\alpha_{lo}, \alpha_{hi})$ , if the conditions:

- 1.  $\alpha_{hi}$  violates Armijo's condition
- 2.  $\phi(\alpha_{hi}) \geq \phi(\alpha_{lo})$
- 3.  $\phi'(\alpha_{hi}) \geq 0$

There is an step length satisfying the strong Wolf conditions  $\alpha_k \in (\alpha_{lo}, \alpha_{hi})$ . We have a zoom function that shortens the interval  $(\alpha_{lo}, \alpha_{hi})$  while maintaining the three conditions over the interval.

Then, we start at  $\alpha^1$  and two values  $\alpha^0$  and  $b > \alpha^0$ . Now, if  $\alpha_k^j$  doesn't satisfy 1 or 2, we shall *zoom* in the interval  $(\alpha^{j-1}, \alpha^j)$ , otherwise if  $\phi'(\alpha^j) \geq 0$ , we *zoom* in the interval  $(\alpha^j, b)$ .

## 2 Algorithm

Remember the descent directions algorithm:

```
Algorithm 1: Descent directions algorithm.

Input: f, x_0
Output: x^*

1 k \leftarrow 0;

2 while \|\nabla f(x_k)\| > 0 do

3 | Compute a descent direction d_k;

4 | Compute \alpha_k;

5 | Update x_{k+1} \leftarrow x_k + \alpha_k d_k;

6 | k \leftarrow k + 1;

7 end
```

In order to compute  $\alpha_k$ , we have the three algorithms:

```
Algorithm 2: Backtracking line search.

Input: f, x_k, d_k, \alpha_0, \rho, c_1
Output: \alpha^*

1 j \leftarrow 0;

2 while \phi(\alpha_j) > \phi(0) + c_1 \alpha_j \phi'(0) do

3 | Update \alpha_{j+1} \leftarrow \rho \alpha_j;

4 | j \leftarrow j+1;

5 end
```

```
Algorithm 3: Bisection line search.
     Input: f, x_k, d_k, \alpha_0, c_1, c_2
     Output: \alpha^*
 1 \ \alpha_{lo} \leftarrow 0;
 2 \alpha_{hi} \leftarrow \infty;
 \mathbf{3} \ j \leftarrow 0;
 4 repeat
            if \phi(\alpha_j) > \phi(0) + c_1 \alpha_j \phi'(0) then
                  \alpha_{hi} \leftarrow \alpha_j;
 6
                \alpha_{j+1} \leftarrow \frac{\alpha_{lo} + \alpha_{hi}}{2};
 7
            else if \phi'(\alpha_j) > c_2 \phi'(0) then
 8
 9
                  \alpha_{lo} \leftarrow \alpha_j;
                  \alpha_{j+1} \leftarrow \begin{cases} 2\alpha_{lo}, & \alpha_{hi} = \infty \\ \frac{\alpha_{lo} + \alpha_{hi}}{2}, & \alpha_{hi} < \infty \end{cases};
10
11
             \alpha_j satisfies Wolfe's conditions;
12
            \mathbf{end}
13
14
           j \leftarrow j + 1;
15 until the Wolfe conditions are satisfied;
```

```
Algorithm 4: A Line Search Algorithm.
    Input: f, x_k, d_k, \alpha_1, \alpha_{\max}, c_1, c_2
    Output: \alpha^*
 1 \ \alpha_0 \leftarrow 0;
 j \leftarrow 1;
 з repeat
         if \phi(\alpha_j) > \phi(0) + c_1 \alpha_j \phi'(0) or \phi(\alpha_j) \ge \phi(\alpha_{j-1}) then
              \alpha_{j+1} \leftarrow \mathbf{zoom}(\alpha_{j-1}, \alpha_j);
 5
             \alpha_{j+1} satisfies Wolfe's conditions;
 6
         else if |\phi'(\alpha_i)| \leq -c_2\phi'(0) then
 7
 8
              \alpha_i satisfies Wolfe's conditions;
         else if \phi'(\alpha_i) \geq 0 then
 9
              \alpha_{j+1} \leftarrow \mathbf{zoom}(\alpha_j, \alpha_{\max});
10
              \alpha_{j+1} satisfies Wolfe's conditions;
11
12
13
          Choose \alpha_{j+1} \in (\alpha_j, \alpha_{\max});
14
         end
         j \leftarrow j + 1;
16 until the Strong Wolfe conditions are satisfied;
```

```
Algorithm 5: zoom.
    Input: f, x_k, d_k, \alpha_{lo}, \alpha_{hi}, c_1, c_2
    Output: \alpha^*
 i \neq 0;
 2 repeat
          Choose \alpha_j \in (\alpha_{lo}, \alpha_{hi}) a trial step length;
          if \phi(\alpha_j) > \phi(0) + c_1 \alpha_j \phi'(0) or \phi(\alpha_j) \ge \phi(\alpha_{j-1}) then
 5
           \alpha_{hi} \leftarrow \alpha_j;
          else if |\phi'(\alpha_i)| \leq -c_2\phi'(0) then
 6
           \alpha_i satisfies Wolfe's conditions;
 7
          else if \phi'(\alpha_i)(\alpha_{hi} - \alpha_{lo}) \geq 0 then
 8
          \alpha_{hi} \leftarrow \alpha_{lo};
 9
10
          end
11
          \alpha_{lo} \leftarrow \alpha_j;
         j \leftarrow j + 1;
13 until the Strong Wolfe conditions are satisfied;
```

## 3 Results

Algorithm 1 was implemented in Julia[1] with all three algorithms 2, 3 and 4 for the descent direction  $d_k = -\nabla f(x_k)$ . In order to test the algorithms, we use Rosenbrock's function with n = 2 and n = 100, Wood (or Colville's) function and the following function:

$$f(x) = \sum_{i=1}^{n} (x_i - y_i)^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

for given y and  $\lambda \in \{1, 10, 100\}$ .

### 3.1 Rosenbrock's function

For Rosenbrock's function:

$$\sum_{i=1}^{n-1} \left[ 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right]$$

we attempt to find  $x^* = \mathbb{K}$  starting from  $x_0 = [-1.2, 1, 1, \dots, 1, -1.2, 1]$  and from a random point. The results for n = 2 are presented on table 1 and for n = 100 on table 2.

| Algorithm | $x_0$       |       | Random point |       |
|-----------|-------------|-------|--------------|-------|
| 2         | 9.98963E-09 | 16677 | 9.94248E-09  | 20353 |
| 3         | 9.94534E-09 | 18426 | 9.96605E-09  | 18293 |
| 4         | 5.18805E-05 | 50000 | 2.83540E-05  | 50000 |

Table 1:  $\|\nabla f(x_k)\|$  and iterations for Rosenbrock's function with n=2.



Figure 1: Evolution of Rosenbrock's function (n = 2) value for  $x_k$ 



Figure 2: Evolution of the gradient of Rosenbrock's function (n=2) for  $x_k$ 

|   | Algorithm | $x_0$       |       | Random point |       |
|---|-----------|-------------|-------|--------------|-------|
|   | 2         | 5.78938E-09 | 24735 | 9.74918E-09  | 31900 |
| ĺ | 3         | 5.46950E-07 | 21449 | 9.97573E-09  | 29137 |
|   | 4         | 2.31670E-04 | 50000 | 9.54295E-04  | 50000 |

Table 2:  $\|\nabla f(x_k)\|$  and iterations for Rosenbrock's function with n = 100.



Figure 3: Evolution of Rosenbrock's function (n=100) value for  $x_k$ 



Figure 4: Evolution of the gradient of Rosenbrock's function (n = 100) for  $x_k$ 

## 3.2 Wood function

For Wood (or Colville) function:

$$f(x) = 100 (x_1^2 - x_2)^2 - (x_1 - 1)^2 + (x_3 - 1)^2 + 90 (x_3^2 - x_4)^2 + 10.1 ((x_2 - 1)^2 + (x_4 - 1)^2) - 19.8 (x_2 - 1) (x_4 - 1)$$

we attempt to find  $x^* = \mathbb{K}$  starting from  $x_0 = [-3, -1, -3, -1]$  and from a random point. We present the results on table 3.

| Algorithm | $x_0$       |       | Random point |       |
|-----------|-------------|-------|--------------|-------|
| 2         | 9.83209E-09 | 10893 | 9.90098E-09  | 9900  |
| 3         | 9.72676E-09 | 12461 | 9.66632E-09  | 8695  |
| 4         | 9.01513E-06 | 50000 | 4.76129E-04  | 50000 |

Table 3:  $\|\nabla f(x_k)\|$  and iterations for Wood function.



Figure 5: Evolution of the Wood function value for  $x_k$ 



Figure 6: Evolution of the gradient of the Wood function for  $x_k$ 

## 3.3 Noisy function

Let f be given by:

$$f(x) = \sum_{i=1}^{n} (x_i - y_i)^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

$$t_i = \frac{2}{n-1}(i-1) - 1$$
  
$$y_i = t_i^2 + \eta$$

for  $i=1,\ldots,n$  and  $\eta \sim N(0,\sigma)$  a normal random variable with standard deviation  $\sigma>0$  and n=128. We let  $\sigma=1$  and compute  $x^*$  starting from  $x_0=y$  using algorithm 4. We present the results on table 4.

|                  | $\ \nabla f(x)\ $ | Iterations |
|------------------|-------------------|------------|
| $\lambda = 1$    | 8.20692E-09       | 54         |
| $\lambda = 10$   | 7.43941E-09       | 273        |
| $\lambda = 1000$ | 4.09911E-05       | 50000      |

Table 4:  $\|\nabla f(x_k)\|$  and iterations for different values of  $\lambda$ .

As required, we also present a scatter plot of the points  $t_i$ ,  $y_i$  and  $x_i$  in figure 7.



Figure 7: Scatter plot of  $t_i$ ,  $y_i$  and  $x^*(\lambda)$ 

## 4 Results discussion and conclusions

We note both the backtracking and bisection algorithms perform as expected, with all instances but one achieving the expected tolerance  $10^{-9}$ . However, for algorithm 4 it's not as expected, with the norm of the gradient  $\|\nabla f(x_k)\|$  oscillating once it gets close to the optimal value. This may be explained by the fact the interval  $(\alpha_{lo}, \alpha_{hi})$  becomes too small and  $\phi(\alpha_{lo})$  and  $\phi(\alpha_{hi})$  are equal to machine precision, so it won't be able to find an optimal value  $\alpha_k$ .

However, all of the algorithms converge near the minimizer of each function, so we can say they are successful.

## References

- [1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh approach to numerical computing," *SIAM Review*, vol. 59, no. 1, pp. 65–98, 2017. [Online]. Available: https://epubs.siam.org/doi/10.1137/141000671
- [2] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., ser. Springer Series in Operations Research and Financial Engineering. New York, NY: Springer, Jul. 2006.
- [3] P. Wolfe, "Convergence conditions for ascent methods," SIAM Review, vol. 11, no. 2, pp. 226–235, Apr. 1969. [Online]. Available: https://doi.org/10.1137/1011036

[4] —, "Convergence conditions for ascent methods. II: Some corrections," SIAM Review, vol. 13, no. 2, pp. 185–188, Apr. 1971. [Online]. Available: https://doi.org/10.1137/1013035