Inferência Estatística com Abordagem Bayesiana

Rosangela Helena Loschi 1

¹Departamento de Estatística Universidade Federal de Minas Gerais

11 de janeiro de 2022

TESTES de HIPÓTESES

- ► Teste de Jeffreys
- ► Teste de Significância Bayesiano Completo (FBST)

Dentro do enfoque Bayesiano, o problema de decidir sobre qual hipótese H_0, H_1, \ldots, H_k aceitar é conceitualmente mais simples. Nos dois procedimentos de teste que veremos

Escolhe-se a hipótese que minimiza uma dada função de perda.

O primeiro procedimento que veremos está baseado no seguinte princípio para tomada de decisão

- \triangleright Calculamos as probabilidades a posteriori $P(H_i \mid x)$ de cada uma das hipóteses sob teste.
- Escolhe-se a hipótese mais provável a posteriori.
- Há um ponto de corte natural em nosso critério de decisão que é 1/2.
- Isto não ocorre nos procedimentos clássicos onde devemos especificar o nível de significância para construírmos o critério de decisão.
- Se Θ_k não é unitário, então $P(H_k \mid \mathsf{x}) = \int_{\Theta_k} \pi(\theta \mid \mathsf{x}) d\theta$.

Exemplo: Suponha que $X|\mu \stackrel{iid}{\sim} Normal(\mu,\sigma^2)$, σ^2 conhecido, e que a incerteza *a priori* sobre μ é bem descrita pela distribuição de Jeffreys. Teste as hipóteses $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$, μ_0 conhecido.

Solução: Neste caso, como a distribuição *a priori* é $\pi(\mu) \propto 1$, já sabemos que a distribuição *a posteriori* para μ é

$$\mu \mid \mathbf{x} \sim N(\bar{\mathbf{x}}, \sigma^2/n).$$

Sendo assim, as probabilidades a posteriori de H_0 e H_1 são, respectivamente,

$$P(H_0 \mid \mathbf{x}) = P(\mu \leq \mu_0 \mid \mathbf{x}) = P\left(Z \leq \frac{n^{1/2}(\mu_0 - \bar{\mathbf{x}})}{\sigma}\right) = \Phi\left(\frac{n^{1/2}(\mu_0 - \bar{\mathbf{x}})}{\sigma}\right)$$

$$P(H_1 \mid \mathbf{x}) = P(\mu > \mu_0 \mid \mathbf{x}) = 1 - P\left(Z \leq \frac{n^{1/2}(\mu_0 - \overline{\mathbf{x}})}{\sigma}\right) = 1 - \Phi\left(\frac{n^{1/2}(\mu_0 - \overline{\mathbf{x}})}{\sigma}\right)$$

Se $P(H_1 \mid x) > P(H_0 \mid x)$ decidimos por aceitar $H_{1_{20}}$, and H_{20} are the second secon

11 de janeiro de 2022

Que decisao tomar se $\sigma^2=400$ e se observamos uma amostra com tamanho n=4 em que $\bar{x}=106$. Admita que *a priori* $\mu_0=100$.

Neste caso, temos que

$$P(H_0 \mid \mathbf{x}) = \Phi\left(\frac{100 - 106}{20/2}\right) = \Phi(-0, 6) = 0,274 < 0,726 = P(H_1 \mid \mathbf{x})$$

Consequentemente, temos evidência a favor de H_1 e devemos aceitá-la.

OBS: 1)Note que a única amostra relevante para a nossa tomada de decisão foi a amostra observada. Amostras que poderiam ter sido observadas mas não o foram não são relevantes na decisão.

- 2)Neste caso, estamos usando uma distribuição *a priori* não-informativa. Será que a decisão concide com a decisão tomada usando métodos clássicos?
 - A tendência é pensar que, neste caso, as inferências Clássica e Bayesiana deveriam ser coincidentes pois a distribuição a priori é vaga.
 - lacktriangle Cálculo do valor-P: Neste caso, a estatística de teste é $ar{X}$

$$ar{X} \sim \textit{Normal}(\mu_0, \sigma^2/n)$$
 $P-\textit{value} = P(ar{X} > 106 \mid \mu = 100) = 1 - \Phi(0.6) = 0.2776$

- ▶ $P value > \alpha \Rightarrow N$ ão se rejeita H_0 . Isto ocorre para os níveis de significância convencionais ($\alpha = 0, 01, 0, 05, 0, 10$).
- Temos uma decisão diferente da que tomamos utilizando os métodos Bayesianos.

Formalmente, considere a situação habitual em teste de hipóteses em temos duas hipóteses sob teste:

$$H_0: \theta \in \Theta_0 \times H_1: \theta \in \Theta_1$$

onde $\{\Theta_0,\Theta_1\}$ é uma partição do espaço paramétrico Θ .

Neste caso, se $P(H_k)$ representa a probabilidade a priori para a hipótese H_k , k=0,1, a posteriori temos:

$$P(H_k \mid x) = P(x \mid H_k)P(H_k)/P(x). \tag{1}$$

- Se $P(H_0 \mid x) > P(H_1 \mid x)$ então aceitamos H_0 .
- Outro critério: Decidimos a favor de H₀ se a odds a posteriori dada por

$$O(H_0, H_1 \mid x) = \frac{P(H_0 \mid x)}{P(H_1 \mid x)}$$

for major que 1.

Se a *odds a posteriori* for 1, a hipótese H_0 é tão provável quanto H_1 .

Considerando as probabilidades dadas em (1) podemos escrever a odds a posteriori como

$$\frac{P(H_0 \mid x)}{P(H_1 \mid x)} = \frac{P(x \mid H_0)}{P(x \mid H_1)} \times \frac{P(H_0)}{P(H_1)}$$

$$O(H_0, H_1 \mid x) = BF(H_0, H_1) \times O(H_0, H_1).$$
(2)

onde

- $ightharpoonup O(H_0, H_1) = rac{P(H_0)}{P(H_1)}$ define a odds a priori.
- ▶ $BF(H_0, H_1) = \frac{P(x|H_0)}{P(x|H_1)}$ é o fator de Bayes que é visto como a odds trazida pelos dados a favor de H_0 contra H_1 .

Note que o fator de Bayes é a razão entre as odds a priori e a posteriori

$$BF(H_0, H_1) = \frac{O(H_0, H_1 \mid x)}{O(H_0, H_1)}$$

► Termo criado por Jeffreys (1961).

OBS: Se $\Theta_0 = \{\theta_0\}$ e $\Theta_1 = \{\theta_1\}$ são conjuntos unitário, isto é, estamos testando uma hipótese simples contra uma hipótese simples, o Fator de Bayes torna-se

$$BF(H_0, H_1) = \frac{P(x \mid \theta_0)}{P(x \mid \theta_1)}$$

que é a razão de verossimilhança usada nos testes clássicos.

Assim, o Fator de Bayes(que é um tipo de razão de verossimilhança) é, mais uma vez, responsável por introduzir a informação dos dados num contexto de teste de hipóteses.

Note da equação (3) que

$$\begin{array}{lcl} \frac{P(H_0\mid x)}{1-P(H_0\mid x)} & = & BF(H_0,H_1)\frac{P(H_0)}{P(H_1)} \\ P(H_0\mid x) & = & BF(H_0,H_1)P(H_0)/P(H_1)-P(H_0\mid x)BF(H_0,H_1)P(H_0)/P(H_1) \\ P(H_0\mid x) & = & \frac{BF(H_0,H_1)P(H_0)/P(H_1)}{1+BF(H_0,H_1)P(H_0)/P(H_1)} \end{array}$$

$$P(H_0 \mid x) = \left[1 + \left[BF(H_0, H_1) \frac{P(H_0)}{P(H_1)}\right]^{-1}\right]^{-1}$$
(3)

Teste de Hipóteses: Decisões com base no Fator de Bayes

- ▶ Em geral, se $BF(H_0, H_1) > 1$ então aceitamos H_0 .
 - ▶ Se $P(H_0) = P(H_1) \Rightarrow$ aceitar H_0 se $P(H_0 \mid x) > P(H_1 \mid x)$.
 - ► Se $P(H_0) \neq P(H_1) \Rightarrow$ aceitar H_0 se $O(H_0, H_1 \mid x) > O(H_0, H_1)$.
- A escala de Jeffreys fornece a força da evidência a favor de H₀ dada pelo fator de Bayes

$BF(H_0, H_1)$	força evidência	$BF(H_0,H_1)$	força evidência
< 1	contra	10 a 30	forte
1 a 3	fraca	30 a 100	muito forte
3 a 10	substancial	> 100	decisiva

Que riscos corremos de tomarmos decisões apenas com base no Fator de Bayes?

Efeito do Fator de Bayes nas decisões

Suponha que para um dado teste de hipóteses tenhamos $BF(H_0, H_1) = 1,875$. Isto significa que a evidência amostral favorece H_0 .

- ▶ A odds a posteriori é $P(H_0|x)/P(H_1|x) = 1,875$ revelando que a posteriori a evidência é a favor de H_0 e concluimos que a chande de H_0 é 1,875 vezes a chance de H_1 (maior do que era a priori).
- Se $P(H_0) = 1/2$, a priori, não há evidência a favor de qualquer hipótese. A posteriori, teremos

$$P(H_0 \mid x) = [1 + 1/(1,875)]^{-1} = 0,65217 > 0,5$$

o que é evidência a favor de H_0 .

Efeito do Fator de Bayes nas decisões

- ► Se $P(H_0) = 1/3$, a odds a priori é $P(H_0)/P(H_1) = 1/2$.
 - A evidência a priori é contra H_0 e revela que a chance a priori de H_1 é 2 vezes a chance a priori de H_0 .
 - ▶ A posteriori, teremos $P(H_0 \mid x) = [1 + 1/(0, 5 * 1, 875)]^{-1} = 0,4839 < 0,5$ o que é evidência a favor de H_1 .
 - Comparado com a informação a priori, há um ganho razoavelmente grande de informação a favor de H₀.
 - A odds a posteriori é $P(H_0|x)/P(H_1|x) = 0,9375$ revelando que a posteriori a evidência continual a favor de H_1 mas ao misturamos as informações a priori e amostral concluimos que a chande de H_1 é apenas 1,0667 vezes a chance de H_0 (menor do que era a priori).

Efeito do Fator de Bayes nas decisões

- ► Se $P(H_0) = 1/9 = 0,11$,
 - a odds a priori é $P(H_0)/P(H_1) = 1/8$. A evidência a priori é fortemente contra H_0 e revela que a chance a priori de H_1 é 8 vezes a chance a priori de H_0 .
 - A posteriori, teremos $P(H_0 \mid x) = 0,18987$. Ou seja, a evidência *a posteriori* sobre H_0 aumenta se comparado com a evidência *a priori* mas ainda temos que a evidência é a favor de H_1 .
 - ▶ note que, neste caso, considerando apenas a evidência amostral teríamos decidido a favor de H₀.
- ► Se $P(H_0) = 8/9 = 0,8889$,
 - ▶ a odds a priori é $P(H_0)/P(H_1) = 8$. A evidência a priori é fortemente a favor H_0 e revela que a chance a priori de H_0 é 8 vezes a chance a priori de H_1 .
 - A posteriori, teremos $P(H_0 \mid x) = 0,9375$. Ou seja, a odds a posteriori é igual a 15 revelando que a evidência a posteriori a favor de H_0 é ainda mais forte do que se tinha a priori
 - Note que, neste caso, as evidências amostral e a priori ambas são a favor de H₀.

- O Fator de Bayes não é uma razão de verossimilhança propriamente dita.
- No caso em que Θ_i não é um conjunto unitário, ela é um tipo de verossimilhança marginal.
- Suponha que Θ_i não seja um conjunto unitário. Neste caso, o cálculo do Fator de Bayes é feito da seguinte forma

$$P(\mathbf{x} \mid H_i) = \int_{\Theta_i} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta$$

Exemplo: Suponha que $X|\mu \stackrel{iid}{\sim} Normal(\mu, \sigma^2)$, σ^2 conhecido, e que a incerteza *a priori* sobre μ é bem descrita pela distribuição de Jeffreys. Determine o fator de Bayes se o interesse é testar as hipóteses $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$, μ_0 conhecido.

Solução:

$$\begin{split} P(\mathbf{x} \mid H_0) &= \int_{-\infty}^{\mu_0} (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right\} d\mu \\ &= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right\} \left(-\frac{2\pi\sigma^2}{n}\right)^{1/2} \\ &\int_{-\infty}^{\mu_0} \left(\frac{n}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{\sum_{i=1}^n (\mu - \bar{x})^2}{2\sigma^2}\right\} d\mu \\ &= (2\pi\sigma^2)^{-(n-1)/2} \sqrt{n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right\} \Phi\left(\frac{(\mu_0 - \bar{x})\sqrt{n}}{\sigma}\right) \end{split}$$

Analogamente, temos que

$$P(x \mid H_1) = \int_{\mu_0}^{\infty} (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right\} d\mu$$

$$= (2\pi\sigma^2)^{-(n-1)/2} \sqrt{n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{2\sigma^2}\right\} \left[1 - \Phi\left(\frac{(\mu_0 - \bar{x})\sqrt{n}}{\sigma}\right)\right]$$

4□ > 4団 > 4 豆 > 4 豆 > 豆 り Q (**)

Daí, o fator de Bayes é

$$BF(H_0, H_1) = \frac{\Phi\left(\frac{(\mu_0 - \bar{x})\sqrt{n}}{\sigma}\right)}{1 - \Phi\left(\frac{(\mu_0 - \bar{x})\sqrt{n}}{\sigma}\right)}$$

Note que, neste caso, o fator de Bayes é igual a *odds a* posteriori pois vimos que

$$P(H_0 \mid \mathbf{x}) = P(\mu \leq \mu_0 \mid \mathbf{x}) = \Phi\left(\frac{n^{1/2}(\mu_0 - \bar{\mathbf{x}})}{\sigma}\right)$$

$$P(H_1 \mid x) = P(\mu > \mu_0 \mid x) = 1 - \Phi\left(\frac{n^{1/2}(\mu_0 - \bar{x})}{\sigma}\right)$$

Ou seja, é como se tivessemos assumindo que a priori P(H₀) = P(H₁). Mas, a priori usamos uma distribuição imprópria. Então não tínhamos como calcular a odds a priori.

Exemplo (cont): No exemplo anterior, suponha que n=4, $\bar{x}=106$, $\sigma^2=400$ e $\mu_0=100$.

O Fator de Bayes é

$$BF(H_0, H_1) = \frac{\Phi\left(\frac{(n)^{1/2}(\mu_0 - \bar{x})}{\sigma}\right)}{1 - \Phi\left(\frac{(n)^{1/2}(\mu_0 - \bar{x})}{\sigma}\right)} = \frac{\Phi(-0.6)}{1 - \Phi(-0.6)} = 0,3774$$

- A hipótese nula é $(0,3774)^{-1} = 2.65$ vezes menos provável que a hipótese alternativa e devemos rejeitar H_0 .
- ► Como $BF(H_1, H_0) = [BF(H_0, H_1)]^{-1} = 2.65 \in (1, 3)$, temos Evidência Fraca a favor de H_1 .

Teste de Hipóteses: A função de perda

Proposição: O teste cuja regra de decisão é "aceita-se H_0 se $P(H_0 \mid x) > P(H_1 \mid x)$ ´´, é uma regra de Bayes quando a seguinte função perda é considerada

$$\begin{cases} L(\operatorname{Aceitar} H_0, \theta) = \omega_1 1\{\theta \in \Theta_1\}, \\ L(\operatorname{Rejeitar} H_0, \theta) = \omega_0 1\{\theta \in \Theta_0\}, \end{cases}$$

Prova: As perdas esperadas são

$$E(L(\text{Aceitar } H_0, \theta) \mid \mathbf{x}) = \int \omega_1 1\{\theta \in \Theta_1\} \pi(\theta \mid \mathbf{x}) d\theta$$

$$= \omega_1 \int_{\Theta_1} \pi(\theta \mid \mathbf{x}) d\theta = \omega_1 P(\theta \in \Theta_1 \mid \mathbf{x})$$

$$E(L(\text{Rejeitar } H_0, \theta) \mid \mathbf{x}) = \int \omega_0 1\{\theta \in \Theta_0\} \pi(\theta \mid \mathbf{x}) d\theta$$

$$= \omega_0 \int_{\Theta_0} \pi(\theta \mid \mathbf{x}) d\theta = \omega_0 P(\theta \in \Theta_0 \mid \mathbf{x})$$

Teste de Hipóteses: A função de perda

Aceita-se H_0 , se

$$E(L(\operatorname{Aceitar} H_{0}, \theta) \mid x) < E(L(\operatorname{rejeitar} H_{0}, \theta) \mid x)$$

$$\Rightarrow \omega_{1} P(\theta \in \Theta_{1} \mid x) < \omega_{0} P(\theta \in \Theta_{0} \mid x)$$

$$\Rightarrow \omega_{1} [1 - P(\theta \in \Theta_{0} \mid x)] < \omega_{0} P(\theta \in \Theta_{0} \mid x)$$

$$\Rightarrow \omega_{1} < [\omega_{0} + \omega_{1}] P(\theta \in \Theta_{0} \mid x)$$

$$\Rightarrow P(H_{0} \mid x) > \frac{\omega_{1}}{\omega_{1} + \omega_{0}}$$

$$(4)$$

Efeito da escolha da Função de perda: Se $\omega_1=k\omega_0$, k constante, aceitamos H_0 se

$$P(H_0 \mid x) > k(k+1)^{-1}.$$

- Se k=1 somos penalizados da mesma forma por aceitar H_0 quando H_0 é falsa e por rejeitar H_0 quando H_0 é verdadeira.
 - aceita-se H_0 se $P(H_0 \mid x) > 0,500$.

Teste de Hipóteses: A função de perda

- Se k=2 pagamos um preço duas vezes maior por aceitar H_0 quando H_0 é falsa do que por rejeitar H_0 quando H_0 é verdadeira.
 - aceita-se H_0 se $P(H_0 \mid x) > 0,667$.
- Se k=100 pagamos um preço cem vezes maior por aceitar H_0 quando H_0 é falsa do que por rejeitar H_0 quando H_0 é verdadeira.
 - aceita-se H_0 se $P(H_0 \mid x) > 0,990$.
- ► Se k = 1000, aceita-se H_0 se $P(H_0 \mid x) > 0,999$.

Quanto maior o valor de k, maior é o preço ω_1 que aceitamos pagar por **Aceitarmos** H_0 quando H_0 é falsa. Neste caso, exige-se uma maior é a evidência a favor de H_0 para podermos aceitá-la.

- $lackbox{O}$ teste que vimos é bastante simples e intuitivo se Θ_i , i=0,1, não é um conjunto unitário.
- No caso de testes para hipótese composta as decisões são tomadas considerando-se a evidência a posteriori sobre H₀ dada por P(H₀ | x) a qual é calculada diretamente sem necessitarmos estabelecer a probabilidade de H₀ a priori.
- lacktriangle Se $\Theta_0=\{ heta_0\}$ é unitário e heta é contínuo, então teremos que

$$P(H_0 \mid x) = P(\theta = \theta_0 \mid x) = 0.$$

- ► Isto gera um problema pois qualquer que seja a informação disponível, sempre rejeitaremos H₀.
- Uma solução apresentada para este problema foi dada por Jeffreys (1961).

Se desejamos testar as hipóteses

$$H_0: \theta = \theta_0 \times H_1: \theta \neq \theta_0$$

onde θ_0 é um valor conhecido

- A estratégia proposta por Jeffreys consiste em
 - * atribuir uma probabilidad a priori $P(H_0) = p \in (0,1)$ para que H_0 seja verdadeira.
 - * A distribuição a priori para θ torna-se então uma mistura discreta de medidas de probabilidade da seguinte forma

$$\pi^*(\theta) = p1\{\theta = \theta_0\} + (1 - p)\pi(\theta)1\{\theta \neq \theta_0\}$$
 (5)

 $*\pi(heta)$ é a distribuição *a priori* para heta restrita a Θ_1

Como vimos na expressão (3), a probabilidade a posteriori de H₀ é

$$P(H_0 \mid x) = \left[1 + \left[BF(H_0, H_1) \frac{p}{1 - p}\right]^{-1}\right]^{-1}$$
 (6)

Neste contexto, o fator de Bayes é dado por

$$P(x \mid H_0) = f(x \mid \theta_0)$$

$$P(x \mid H_1) = \int_{\Theta - \theta_0} f(x \mid \theta, H_1) \pi(\theta \mid H_1) d\theta$$

$$= \int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta = f_{H_1}(x) \text{ (caso continuo)}$$
(7)

onde $f_{H_1}(x)$ denota a distribuição preditiva a priori restrita a H_1 .

Assim, temos que

▶ o Fator de Bayes é

$$BF(H_0, H_1) = \frac{f(x \mid \theta_0)}{f_{H_1}(x)}$$

► A probabilidade *a posteriori* para *H*₀ é

$$P(H_0 \mid x) = \left[1 + \frac{1-p}{p}BF(H_0, H_1)^{-1}\right]^{-1}$$

A distribuição preditiva a priori relativa a distribuição a priori para θ dada em (5) é

$$f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \{ p 1 \{ \theta = \theta_0 \} + (1 - p) \pi(\theta) 1 \{ \theta \neq \theta_0 \} \} d\theta$$
$$= p f(\mathbf{x} \mid \theta_0) + (1 - p) f_{H_2}(\mathbf{x})$$

Exemplo: Considere o teste $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Suponha que $X | \theta \stackrel{iid}{\sim} Normal(\theta, \sigma^2)$, σ^2 conhecido e que $\theta \mid Normal(m, b^2)$ seja a distribuição a priori para μ restrita a Θ_1 . Teste as hipóteses.

Solução: Comecemos calculando o fator de Bayes.

ightharpoonup Sob H_0 temos

$$f(\mathbf{x} \mid H_0) = f(\mathbf{x} \mid \theta_0) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{\frac{-\sum_{i=1}^n (x_i - \theta_0)^2}{2\sigma^2}\right\}$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{\frac{-\sum_{i=1}^n (x_i - \bar{x} + \bar{x} - \theta_0)^2}{2\sigma^2}\right\}$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{\frac{-\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right\} \exp\left\{\frac{-n(\bar{x} - \theta_0)^2}{2\sigma^2}\right\}$$

► Sob H₁ temos

$$f(\mathbf{x} \mid H_{1}) = \int_{\Theta-\theta_{0}} \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \exp\left\{\frac{-\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{2\sigma^{2}}\right\} \\ \times \exp\left\{\frac{-n(\bar{x}-\theta)^{2}}{2\sigma^{2}}\right\} \left(\frac{1}{2\pi b^{2}}\right)^{1/2} \exp\left\{\frac{-(\theta-m)^{2}}{2b^{2}}\right\} d\theta \\ = \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \left(\frac{1}{2\pi b^{2}}\right)^{1/2} \exp\left\{\frac{-\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{2\sigma^{2}}\right\} \\ \times \int_{\Theta} \exp\left\{\frac{-n(\bar{x}-\theta_{0})^{2}}{2\sigma^{2}}\right\} \exp\left\{\frac{-(\theta-m)^{2}}{2b^{2}}\right\} d\theta \\ = \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \exp\left\{\frac{-\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{2\sigma^{2}}\right\} \left(\frac{\sigma^{2}/n}{b^{2}+\sigma^{2}/n}\right)^{1/2} \\ \times \exp\left\{\frac{-n(\bar{x}-m)^{2}}{2(\sigma^{2}+nb^{2})}\right\}$$

▶ O fator de Bayes assume a seguinte forma:

$$BF(H_0, H_1) = \left[\frac{nb^2 + \sigma^2}{\sigma^2}\right]^{1/2} \exp\left\{\frac{n}{2}\left[\frac{(\bar{x} - m)^2}{nb^2 + \sigma^2} - \frac{(\bar{x} - \theta_0)^2}{\sigma^2}\right]\right\}$$

- Para o caso particular em que:
 - + n = 4, $\bar{x} = 106$, $\sigma^2 = b^2 = 400$ y $\theta_0 = m = 100$
 - + *A priori*, as duas hipóteses são equiprováveis, isto é, p=0.5 (não-informativa para as hipóteses mas põe peso forte próximo de $\theta=100$)

O fator de Bayes torna-se

$$BF(H_0, H_1) = (n+1)^{1/2} \exp\left\{-\frac{n^2(\bar{x} - \theta_0)^2}{2(n+1)\sigma^2}\right\} = 2.5912$$

ightharpoonup Escala de Jeffreys: evidência fraca a favor de H_0 .

Neste caso

$$P(\theta = 100 \mid x) = [1 + 1/2.5912]^{-1}$$

= 0.719 > 0.5 = $P(\theta = 100)$

Teste de Hipóteses: Debilidades do Teste de Jeffreys

Este Teste para Hipóteses precisas pode levar ao paradoxo de Jeffreys-Lindley.

- ▶ Se $b^2 \to \infty$, significa que escolhemos uma distribuição *a priori* pouco informativa para θ .
- ▶ Neste caso, $\lim_{b^2 \to \infty} BF(H_0, H_1)$ é

$$\lim_{b^2 \to \infty} \left[\frac{nb^2 + \sigma^2}{\sigma^2} \right]^{1/2} \exp \left\{ \frac{n}{2} \left[(\bar{x} - m)^2 nb^2 + \sigma^2 - \frac{(\bar{x} - \theta_0)^2}{\sigma^2} \right] \right\} = \infty.$$

- ightharpoonup Consequentemente, $P(H_0\mid \mathsf{x}) o 1$ independentemente da informação da amostra.
- Ou seja, aceitamos H_0 sempre, independentemente, da evidência amostral.
- É um risco utilizar distribuição não-informativa para teste de hipóteses precisas com este procedimento.

Considere o teste $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ e assuma que a distribuição de X depende de θ e γ , ambos desconhecidos.

- Neste caso, γ é um parâmetro de perturbação.
- Para testarmos hipóteses sobre θ devemos "eliminar" γ do cálculo da probabilidade *a posteriori* de H_0 .
- Para isto, o Fator de Bayes deve ser calculado como segue

$$BF(H_0, H_1) = \frac{\int_{\Gamma} f(\mathbf{x} \mid \theta_0, \gamma) \pi(\gamma) d\gamma}{\int_{\Theta} \int_{\Gamma} f(\mathbf{x} \mid \theta, \gamma) \pi(\theta, \gamma) d\gamma d\theta}$$

O cálculo da probabilidade *a posteriori* de H_0 é feito como mostrado anteriormente na expressão (3).

Exemplo: Considere o teste $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Se $X|\theta,\sigma^2 \stackrel{iid}{\sim} \textit{Normal}(\theta,\sigma^2), \ \theta,\sigma^2$ desconhecidos e $\pi(\theta,\sigma^2) \propto 1/\sigma^2$, determine o fator de Bayes.

Solução: Para calcularmos o fator de BAyes necessitamos:

$$P(\mathbf{x} \mid H_0) = \int_0^\infty f(\mathbf{x} \mid \theta_0, \sigma) 1/\sigma^2 d\sigma^2$$

$$= \int_0^\infty \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_0)^2\right\} 1/\sigma^2 d\sigma^2$$

$$= \left(\frac{1}{2\pi}\right)^{n/2} \int_0^\infty \left(\frac{1}{\sigma^2}\right)^{(n+2)/2} \exp\left\{\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_0)^2\right\} d\sigma^2$$

$$= \left(\frac{1}{2\pi}\right)^{n/2} \Gamma(n/2) \left[\sum_{i=1}^n (x_i - \theta_0)^2/2\right]^{-(n)/2}$$
(8)

$$P(x \mid H_{1}) = \left(\frac{1}{2\pi}\right)^{n/2} \int_{0}^{\infty} \int_{-\infty}^{\infty} \left(\frac{1}{\sigma^{2}}\right)^{(n+2)/2} \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \theta)^{2}\right\} d\theta d\sigma^{2}$$

$$= \left(\frac{1}{2\pi}\right)^{n/2} \int_{0}^{\infty} \left(\frac{1}{\sigma^{2}}\right)^{(n+2)/2} \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i})^{2}\right\}$$

$$\int_{-\infty}^{\infty} \exp\left\{\frac{-n}{2\sigma^{2}} (\theta^{2} - 2\theta \bar{x})\right\} d\theta d\sigma^{2}$$

$$= \left(\frac{1}{2\pi}\right)^{(n-1)/2} (1/n)^{1/2} \int_{0}^{\infty} \left(\frac{1}{\sigma^{2}}\right)^{(n+1)/2} \exp\left\{\frac{-1}{2\sigma^{2}} \left[\sum_{i=1}^{n} (x_{i})^{2} - n\bar{x}^{2}\right]\right\}$$

$$\int_{-\infty}^{\infty} \left(\frac{1}{2\pi\sigma^{2}/n}\right)^{1/2} \exp\left\{\frac{-n}{2\sigma^{2}} (\theta - \bar{x})^{2}\right\} d\theta d\sigma^{2}$$

 $= \left(\frac{1}{2\pi}\right)^{(n-1)/2} (1/n)^{1/2} \Gamma\left((n-1)/2\right) \left[\left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right)/2\right]^{-(n-1)/2}$

11 de janeiro de 2022

Daí, o fator de Bayes é

$$BF(H_0, H_1) = \frac{P(x \mid H_0)}{P(x \mid H_1)}$$

$$= \frac{(n/2\pi)^{0.5} \Gamma(n/2) [\sum x_i^2 - n\bar{x}^2]^{(n-1)/2}}{\Gamma((n-1)/2) [\sum (x_i - \theta_0)]^{n/2}}$$

Aproximações Computacionais para o fator de Bayes

Para determinar o fator de Bayes necessitamos calcular a distribuição preditiva *a priori* que é

$$f(x) = \int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta$$
$$= E_{\theta}[f(x \mid \theta)]$$

Método 1 (Monte Carlo):

P1: Obtenha uma amostra $\theta_1, \ldots, \theta_T$ da distribuição *a priori* $\pi(\theta)$.

P2:
$$\hat{f}(x) = \frac{1}{T} \sum_{i=1}^{T} f(x \mid \theta_i)$$
.

- Este método é simples mas não fornece uma boa aproximação.
- Sua aplicação não é possivel se utilizarmos distribuições a priori impróprias.

Aproximações Computacionais para o fator de Bayes

A distribuição preditiva a priori pode ser escrita como

$$[f(\mathbf{x})]^{-1} = \int_{\Theta} [f(\mathbf{x})]^{-1} \pi(\theta) d\theta$$

$$= \int_{\Theta} [f(\mathbf{x} \mid \theta)]^{-1} f(\mathbf{x} \mid \theta) \pi(\theta) [f(\mathbf{x})]^{-1} d\theta$$

$$= \int_{\Theta} [f(\mathbf{x} \mid \theta)]^{-1} \pi(\theta \mid \mathbf{x}) d\theta = E_{\theta \mid \mathbf{x}} [f(\mathbf{x} \mid \theta)]^{-1}]$$

Método 2 (Newton-Raftery(1994):

P1: Obtenha una amostra $\theta_1, \ldots, \theta_T$ de $\pi(\theta \mid x)$.

$$P2: \hat{f}(x) = \left[\frac{1}{T} \sum_{i=1}^{T} \frac{1}{f(x|\theta_i)}\right]^{-1}.$$

Este método pode ser instável por causa dos valores pequenos de $f(x \mid \theta_i)$.

Aproximações Computacionais para o fator de Bayes

Seja $g(\theta)$ uma distribuição própria que seja uma boa aproximação de $\pi(\theta\mid \mathbf{x})$.

$$[f(x)]^{-1} = \int_{\Theta} [f(x)]^{-1} g(\theta) d\theta$$
$$= \int_{\Theta} \frac{g(\theta)}{f(x \mid \theta) \pi(\theta)} \pi(\theta \mid x) d\theta$$
$$= E_{\theta \mid \mathbf{X}} \left[\frac{g(\theta)}{f(x \mid \theta) \pi(\theta)} \right]$$

Método 3 (Gelfand - Dey(1994)):

P1: Obtenha uma amostra $\theta_1, \ldots, \theta_T$ de $\pi(\theta \mid x)$.

$$P2: \hat{f}(x) = \left[\frac{1}{T} \sum_{i=1}^{T} \frac{g(\theta_i)}{f(x|\theta_i)\pi(\theta_i)}\right]^{-1}.$$

Fornece aproximações mais estáveis.

- ► Foi proposto formalmente por Pereira e Stern (1999, Entropy).
- Apresenta uma maneira mais interessante para testarmos hipóteses precisas, sem artifícios.
- ► A evidência sobre H₀ é obtida diretamente da distribuição a posteriori do parâmetro de interesse.
- Tem uma conexão com os intervalos HPD.

Considere as seguintes hipóteses

$$H_0: \theta \in \Theta_0 \times H_1: \theta \in \Theta_1$$

onde $\{\Theta_0,\Theta_1\}$ é uma partição do espaço paramétrico Θ .

- ▶ O FBST é um critério para decidir sobre H_0 considerando somente $\pi(\theta \mid x)$.
- ightharpoonup Seja $heta^*$ o valor em Θ_0 tal que

$$\pi(\theta^* \mid x) = \max\{\pi(\theta \mid x) : \theta \in \Theta_0\}$$

► Seja $T(x) = \{\theta \in \Theta : \pi(\theta \mid x) > \pi(\theta^* \mid x)\}.$

A credibilidade de T(x) é definida como a probabilidade a posteriori de T(x), ou seja,

$$\kappa^* = \int_{T(x)} \pi(\theta \mid x) d\theta = P(\theta \in T(x) \mid x)$$

► A evidência a posteriori a favor de H₀ é

$$Ev(H_0, x) = 1 - \kappa^*$$
.

11 de janeiro de 2022

- (

Se κ^* é grande e, consequentemente, $Ev(H_0,x)$ é pequeno, temos que

- ightharpoonup os valores heta que pertencente à Θ_0 estão em uma região de baixa densidade *a posteriori*
- ightharpoonup Evidência contra H_0 .

A evidência a posteriori a valor de H_0 , $Ev(H_0,x)$, é um tipo de valor-P bayesiano.

Exemplo: Suponha que X $|\mu \stackrel{iid}{\sim} Normal(\mu, \sigma^2)$, σ^2 conhecido, e que, a priori $\pi(\mu) \propto 1$. Teste as hipóteses $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$, μ_0 conhecida.

- A distribuição *a posteriori* es $\mu \mid x \sim Normal(\bar{x}, \sigma^2/n)$.
- ightharpoonup Se $\mu_0>ar x$ então $heta^*=\mu_0$.

lacktriangle A densidade *a posteriori* avaliada em $heta^*=\mu_0$ é

$$\pi(\theta^* \mid \mathsf{x}) = \pi(\mu_0 \mid \mathsf{x}) = \left(\frac{n}{2\pi\sigma^2}\right)^{1/2} \exp\left\{\frac{n}{2\sigma^2}(\mu_0 - \bar{\mathsf{x}})^2\right\}.$$

- ► $T(x) = \{\theta \in \Theta : a < \theta < \mu_0\}, \text{ onde } |\bar{x} a| = |\bar{x} \mu_0|.$
- A credibilidade é

$$egin{array}{lcl} \kappa^* & = & P(\mathbf{a} < \mathbf{ heta} < \mathbf{\mu}_0 \mid \mathbf{x}) \ & = & \Phi\left(rac{\sqrt{n}(\mathbf{\mu}_0 - ar{\mathbf{x}})}{\sigma}
ight) - \Phi\left(rac{\sqrt{n}(\mathbf{a} - ar{\mathbf{x}})}{\sigma}
ight) \end{array}$$

► A evidência *a posterior*

$$Ev(H_0, \mathbf{x}) = 1 - \Phi\left(\frac{\sqrt{n}(\mu_0 - \bar{x})}{\sigma}\right) + \Phi\left(\frac{\sqrt{n}(\mathbf{a} - \bar{x})}{\sigma}\right).$$

()

Assuma que $H_0: \mu=100$ versus $H_1: \mu\neq 100$ e que para n=4 observamos $\bar{x}=106$. Admita que $\sigma^2=400$. Neste caso,

- A distribuição *a posteriori* é $\mu \mid \mathbf{x} \sim N(106, 400/4)$.
- a credibilidade é $κ^* = \Phi\left(\frac{112-106}{10}\right) \Phi\left(\frac{100-106}{10}\right) = \Phi(0,6) \Phi(-0,6) = 0,4514$
- ► Evidência sobre H_0 é $Ev(H_0, x) = 0.5486$.
- ► Evidência a favor de H₀.

Exemplo: Seja X uma única observação da fdp

$$f(x \mid \theta) = \frac{2x}{\theta^2} 1\{0 < x < \theta\}, \theta > 0.$$

Assuma a priori que $\theta \sim U(0,1)$. (a) Teste se $\theta \leq \theta_0$, $\theta_0 \in (x,1)$.

Solução: Precisamos calcular a distribuição *a posteriori* de θ .

$$\pi(\theta \mid \mathbf{x}) = \frac{\frac{2x}{\theta^2} 1\{0 < x < \theta\} 1\{0 < \theta < 1\}}{\int \frac{2x}{\theta^2} 1\{0 < x < \theta\} 1\{0 < \theta < 1\} d\theta}$$

O Domínio

(9)

A distribuição a posteriori de θ é

$$\pi(\theta \mid \mathbf{x}) = \frac{\frac{2x}{\theta^2} 1\{0 < x < \theta\} 1\{0 < \theta < 1\}}{\int \frac{2x}{\theta^2} 1\{0 < x < \theta\} 1\{0 < \theta < 1\} d\theta}$$

$$= \frac{\frac{1}{\theta^2} 1\{x < \theta < 1\}}{\int \frac{1}{\theta^2} 1\{x < \theta < 1\} d\theta} = \frac{\frac{1}{\theta^2} 1\{x < \theta < 1\}}{\int_x^1 \frac{1}{\theta^2} d\theta}$$

$$= \frac{x}{(1-x)\theta^2} 1\{x < \theta < 1\}$$
(10)

Estudando o comportamento de $\pi(\theta \mid \mathbf{x})$.

$$\frac{d}{d\theta}\pi(\theta \mid \mathbf{x}) = -2\theta^{-3}\frac{x}{1-x} < 0, \forall \theta \in (x,1)$$

- $\blacktriangleright \pi(\theta \mid \mathbf{x})$ é decrescente no intervalo (x, 1).
- ightharpoonup No teste a ser feito $\Theta_0=(x,\theta_0)$

Agora, no intervalo $\Theta_0 = (x, \theta_0)$ a distribuição *a posteriori* $\pi(\theta \mid \mathbf{x})$ é decrescente, o máximo de $\pi(\theta \mid \mathbf{x})$ será em $\theta = x$ e

$$\pi(\theta^* \mid x) = \pi(x \mid x) = [x(1-x)]^{-1}$$

Daí, temos que $T(x)=\phi \Rightarrow$ a credibilidade é $\kappa^*=0$ Consequentemente, A evidência de H_0 é

$$Ev(H_0,x) = 1 \implies Aceitamos H_0.$$

(b) Teste se $\theta \geq \theta_0$, $\theta_0 \in (x, 1)$.

Solução: Note que, neste caso, restrito a $\Theta_0 = (\theta_0, 1)$, a distribuição *a posteriori* é máximizada no ponto $\theta = \theta_0$.

Como $\pi(\theta \mid \mathbf{x})$ é decrescente, para todos os pontos $\theta \in \Theta_1 = (\mathbf{x}, \theta_0)$ teremos

$$\pi(\theta \mid \mathbf{x}) < \pi(\theta^* \mid \mathbf{x}) = \pi(\theta_0 \mid \mathbf{x}) = \frac{x}{(1-x)\theta_0^2}$$

$$T(X) = (x, \theta_0) = \Theta_1$$

Daí, a credibilidade é
$$\kappa^* = \int_x^{\theta_0} \frac{x}{(1-x)\theta^2} d\theta = \frac{\theta_0 - x}{(1-x)\theta_0}$$

A evidência de H_0 é $Ev(H_0,x)=1-rac{ heta_0-x}{(1-x) heta_0}$

- Se x = 1/3 e $\theta_0 = 2/3$ temos que $Ev(H_0, x) = 1/4 \Rightarrow$ Aceitamos H_0 .
- Se x = 0, 5 e $\theta_0 = 0, 99$ temos que $Ev(H_0, x) \approx 0, 01 \Rightarrow$ Rejeitamos H_0 .

FBST: função de perda

Proposição: o FBST é uma regra de Bayes se a seguinte função perda é considerada

$$\begin{cases} L(\operatorname{Aceitar} H_0, \theta) = b + c1\{\theta \in T(x)\}, \\ L(\operatorname{rejeitar} H_0, \theta) = a[1 - 1\{\theta \in T(x)\}], \end{cases}$$

onde a, b e c são números positivos.

Prova: As perdas esperadas são

$$E(L(\operatorname{Aceitar} H_0, \theta) \mid \mathbf{x}) = \int_{\Theta} b + c1\{\theta \in T(\mathbf{x})\}\pi(\theta \mid \mathbf{x})d\theta$$

$$= b \int_{\Theta} P(\theta \mid \mathbf{x})d\theta + c \int_{T(\mathbf{x})} P(\theta \mid \mathbf{x})d\theta$$

$$= b + cP(\theta \in T(\mathbf{x}) \mid \mathbf{x}) = b + c\kappa^*$$

$$E(L(\operatorname{Rejeitar} H_0, \theta) \mid \mathbf{x}) = \int_{\Theta} a[1 - 1\{\theta \in T(\mathbf{x})\}]\pi(\theta \mid \mathbf{x})d\theta$$

$$= a \int_{\Theta} P(\theta \mid \mathbf{x})d\theta - a \int_{T(\mathbf{x})} P(\theta \mid \mathbf{x})d\theta$$

$$= a - aP(\theta \in T(\mathbf{x}) \mid \mathbf{x}) = a - a\kappa^*$$

FBST: função de perda

Aceita-se a hipóteses nula se

$$E(L(ext{Aceitar } H_0, \theta) \mid x) < E(L(ext{rejeitar } H_0, \theta) \mid x)$$

$$b + c\kappa^* < a - a\kappa^*$$

$$\Rightarrow \kappa^* < \frac{a - b}{c + a}$$

Como $\kappa^* = 1 - Ev(H_0, x)$, aceita-se a hipóteses nula se

$$Ev(H_0,x)>\frac{b+c}{b+a}.$$

FBST:Como escolher a, b e c?

Para entender os efeitos de a, b e c na tomada de decisão, consideremos alguns casos extemos.

▶ Se $T^*(x) = \Theta$ temos forte evidência contra H_0 (H_0 é falsa) pois $Ev(H_0,x)=0$ e a perda é

$$\left\{ \begin{array}{l} L(\operatorname{Aceitar} H_0, \theta) = b + c \\ L(\operatorname{rejeitar} H_0, \theta) = 0. \end{array} \right.$$

► Se $T^*(x) = \phi(vazio)$ temos forte evidência a favor H_0 (H_0 é verdadeira) pois $Ev(H_0, x) = 1$ e a perda é

$$\begin{cases} L(\text{Aceitar } H_0, \theta) = b \\ L(\text{rejeitar } H_0, \theta) = a. \end{cases}$$

Consequentemente, uma boa escolha é considerar a e c grandes e $b \rightarrow 0$.

FBST e sua conexão com as regiões HPD

- As Regiões de mais alta densidade a posteriori (regiões HPD) são usualmente consideradas para se decidir sobre H_0 .
- Se $R(x) = \{\theta \in \Theta : \pi(\theta|x) \ge c_{\gamma}\}$ é uma região HPD para θ com probabilidade (1γ) , onde c_{γ} é a maior constante tal que $P(\theta \in R(x)|x) \ge 1 \gamma$.
 - ightharpoonup aceitamos H_0 se θ_0 pertence a R(x).
- Este critério de decisão não tem qualquer equivalência com o critério fornecido pelo teste de Jeffreys.
- No entanto, existe uma equivalência entre este critério de decisão e decisões tomadas utilizando o FBST.

FBST e sua conexão com as regiões HPD

A região HPD com probabilidade $1-\gamma$ e o FBST produzem a mesma decisão se

- ightharpoonup $Ev(H_0, x) > \gamma \Rightarrow aceitamos <math>H_0$.
 - ▶ Se $H_0: \theta = \theta_0$ e a região HPD é um interlavo (I, L), se $\theta_0 \in (I, L)$, aceitamos H_0 . Neste caso, temos que $\kappa^* < 1 \gamma$ $\Rightarrow Ev(H_0, \mathbf{x}) > \gamma$ que leva à aceitação de H_0 pelo FBST.
- $ightharpoonup Ev(H_0,\mathsf{x})<\gamma\Rightarrow \mathsf{Rejeitamos}\; H_0.$
 - ▶ Se $H_0: \theta = \theta_0$ e a região HPD é um interlavo (I, L), se $\theta_0 \notin (I, L)$, rejeitamos H_0 . Neste caso, temos que $\kappa^* > 1 \gamma$ $\Rightarrow Ev(H_0, \mathbf{x}) < \gamma$ que leva à rejeição de H_0 pelo FBST.

FBST: Aproximação computacional para a evidência

Suponha que o kernel da distribuição a posteriori

$$\pi(\theta \mid \mathsf{x}) \propto f(\mathsf{x} \mid \theta)\pi(\theta)$$

seja conhecido.

*P*1: Determine θ^* e $f(x \mid \theta^*)\pi(\theta^*)$.

*P*2 : Obtenha uma amostra $\theta_1, \ldots, \theta_T$ de $\pi(\theta \mid x)$.

P3: Calcule $f(x \mid \theta_i)\pi(\theta_i)$, i = 1, ..., n.

P3 : a evidência a posteriori é aproximada por:

$$\hat{E}(H_0, \mathbf{x}) = 1 - \frac{\sum_{i=1}^{T} 1\{f(\mathbf{x} \mid \theta_i)\pi(\theta_i) > f(\mathbf{x} \mid \theta^*)\pi(\theta^*)\}}{T}$$

O passo P1 é fácil se H_0 é uma hipótese precisa mais é necessário uma rotina para encontrar o máximo em Θ_0 , caso contrário.