Protección

Verificación de Permisos y Niveles de Privilegio

Organización del Computador II

Departamento de Computación - FCEyN UBA

12 de Noviembre de 2019

Motivación

- Necesitamos restringir de alguna manera las acciones que pueden efectuar las tareas (y procesos) de un sistema
- De otra manera no podemos garantizar que este funcionará correctamente
- Para ello tenemos los mecanismos protección, los cuales varían en efectividad según el sistema y el contexto de uso ¿Hay algún sistema 100 por ciento efectivo?
- Nosotros nos enfocaremos en restringir las lecturas, ejecuciones y escrituras no deseadas
- También buscaremos restringir el acceso a instrucciones importantes del sistema

Estructuras

Al acceder a memoria en un sistema con paginación y segmentación...

¿Cómo se resuelven las direcciones?

Lógica
$$\xrightarrow[\text{Segmentación}]{}$$
 Lineal $\xrightarrow[\text{Paginación}]{}$ Física

■ ¿Qué estructuras son necesarias para la segmentación?

■ ¿Y para la paginación?

Segmentación: Selector

Veamos ahora los mecanismos de protección asociados a segmentos:

■ ¿Cómo accedemos a un segmento?

A través de una dirección lógica

- ¿Qué forma tiene esta dirección?
 - ightarrow (selector-segmento : offset)
- ¿Cómo sabemos a qué segmento estamos referenciando?

Segmentación: Descriptor GDT

L — 64-bit code segment (IA-32e mode only)

AVL — Available for use by system software

BASE — Segment base address

D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

— Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

S

Segmentación: Verificación de la dirección

En base a lo anterior...

¿Cómo sabemos si el segmento seleccionado está presente?

Vemos si el bit P de su respectivo descriptor está en 1

- ¿Y para saber si la operación no supera el límite del segmento?
 - Si el bit de granularidad (G) es 0: offset + bytes a referenciar $1 \le$ límite
 - Si no, tenemos varias alternativas:
 - offset + bytes a referenciar $-1 \le ((limite + 1) * 4kb) 1$
 - lacksquare offset + bytes a referenciar $1 \leq ((\mathsf{límite} + 1) << 12)$ 1
 - offset + bytes a referenciar $1 \le (limite << 12) + 0xFFF$
- ¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → General Protection Fault (#GP)

Segmentación: Niveles de privilegio

Definimos:

DPL (Descriptor Privilege Level):

Es el nivel de privilegio del segmento a ser accedido (está en su descriptor)

CPL (Current Privilege Level):

Es el DPL del segmento de código que estamos ejecutando

RPL (Requested Privilege Level):

Es el nivel de privilegio marcado por los dos bits menos significativos del selector de segmento ¿Se puede cambiar?

EPL (Effective Privilege Level):

Es el máximo numérico entre el CPL y el RPL

$$\rightarrow$$
 EPL = Max(CPL,RPL)

Segmentación: Verificación de niveles de privilegio

Con las definiciones anteriores:

¿Cómo sabemos si tenemos el nivel adecuado para acceder al segmento?

Depende del tipo de segmento:

- lacksquare Si el segmento es de datos ightarrow EPL \leq DPL
- Si es un segmento de **código** tenemos dos casos:
 - Non-conforming \rightarrow EPL = DPL
 - lacksquare Conforming ightarrow CPL \geq DPL (Ojo que no se usa el EPL)

Nota: Las comparaciones =, \geq , \leq son por valor numérico

■ ¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → General Protection Fault (#GP)

Segmentación: Tipos de Entradas

Type Field					Descriptor	Description						
Decimal	11	10 E	9 W	8 A	Туре							
0	0	0	0	0	Data	Read-Only						
1	0	0	0	1	Data	Read-Only, accessed						
2	0	0	1	0	Data	Read/Write						
3	0	0	1	1	Data	Read/Write, accessed						
4	0	1	0	0	Data	Read-Only, expand-down						
5	0	1	0	1	Data	Read-Only, expand-down, accessed						
6	0	1	1	0	Data	Read/Write, expand-down						
7	0	1	1	1	Data	Read/Write, expand-down, accessed						
		С	R	Α								
8	1	0	0	0	Code	Execute-Only						
9	1	0	0	1	Code	Execute-Only, accessed						
10	1	0	1	0	Code	Execute/Read						
11	1	0	1	1	Code	Execute/Read, accessed						
12	1	1	0	0	Code	Execute-Only, conforming						
13	1	1	0	1	Code	Execute-Only, conforming, accessed						
14	1	1	1	0	Code	Execute/Read, conforming						
15	1	1	1	1	Code	Execute/Read, conforming, accessed						

Segmentación: Verificación de tipos

Ahora, según la operación a efectuar...

- ¿Qué tipo de segmentos nos permiten leer, escribir o ejecutar?
 - Los que tienen el bit de sistema (S) en 1
- ¿Cuáles nos permiten realizar lecturas?
 - Los de datos y los de código con lectura habilitada
- ¿Y escrituras?
 - Los de datos con escritura habilitada
- ¿Y en el caso de las ejecuciones?
 - Los de código
- ¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → General Protection Fault (#GP)

Paginación: PDE y PTE

- Habiendo superado la etapa anterior pasamos a los mecanismos de protección correspondientes a paginación
- En este caso atendemos al contenido de las entradas del directorio (PDE) y la tabla de páginas (PTE) correspondientes a la página a acceder:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11 10 9 8	7	6	5	4	3	2	1	0	
Address of 4KB page frame	Ignored G	P A T	D	Α	P C D	PW T	U S	R/W	1	PTE: 4KB page
Address of page table	Ignored	ō	g n	А	P C D	PW T	U S	R/W	1	PDE: page table

Paginación: Verificación de niveles de privilegio y atributos

■ ¿Cómo sabemos si la página a acceder está presente?

Vemos el bit de presente (P) de su PTE

■ ¿Y para saber si la tabla de la PTE lo está?

Vemos el bit P de la PDE que la referencia ¿Puede suceder que el directorio no esté presente al tener paginación habilitada?

■ ¿Qué simboliza el bit R/W de las entradas?

El bit Read/Write indica:

- 0: Sólo hay permisos lectura (Read Only)
- 1: Hay permisos de lectura y escritura (Read Write)
- ¿Y el bit U/S?

El bit User/Supervisor indica:

- 0: Sólo hay permisos de acceso para nivel supervisor (Supervisor)
- 1: Hay permisos de acceso para los niveles supervisor y usuario (User)

Nota: El nivel usuario se corresponde sólo con el nivel 3 de segmentación

Paginación: Verificación combinando PTE y PDE

Ahora, suponiendo que las entradas y la página están presentes...

- ¿Qué páginas permiten escrituras?
 - Aquellas cuyas PDE y PTE tengan R/W en 1
- ¿Y lecturas?

Todas las combinaciones lo permiten

- ¿Qué páginas pueden ser accedidas por nivel usuario?
 - Aquellas cuyas PDE y PTE tengan U/S en 1
- ¿Y supervisor?

Todas las combinaciones lo permiten ¿Podría el nivel supervisor escribir en una página de sólo lectura?

■ ¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → Page Fault (#PF)

Interrupciones: Descriptor de IDT

Veremos ahora cuándo se puede llamar a una rutina de atención a interrupción (RAI) dada en base a cómo está descrita su interrupción:

Interrupciones: Verificación de privilegios

¿Cómo sabemos si la entrada de una interrupción está presente?

Vemos el bit P de su descriptor en la IDT

■ ¿Y para saber en qué segmento se ejecuta su RAI?

Usamos el selector de segmento de su descriptor en la IDT

■ ¿Cómo sabemos si tenemos el nivel de privilegio necesario para llamar a una interrupción (instrucción INT)?

Verificamos que CPL \leq DPL siendo estos los bits de su descriptor en la IDT

■ ¿Qué sucede con las interrupciones de hardware?

Los bits de DPL se ignoran

¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → General Protection Fault (#GP)

Intercambio de tareas: Descriptor de TSS

- Con las tareas nos enfocaremos en si podemos efectuar una conmutación a una tarea dada
- Para ello veremos los descriptores de su segmento de estado (descriptor de TSS):

Intercambio de tareas: Verificación de privilegios

- ¿Cómo sabemos si la información de una tarea está presente?
 - Vemos que si el bit P del descriptor de su TSS está en 1
- ¿Y qué nivel de privilegio es necesario para saltar a ella?
 - Para realizar el salto se necesita que CPL \leq DPL donde estos son los bits del descriptor de su TSS ¿Eso significa que no se puede conmutar a una tarea de nivel 0 al ejecutarse una de nivel 3?
- ¿Se puede saltar a una tarea si B es 1?
 - No, es necesario que el bit de Busy esté en 0
- ¿Qué sucede si alguna de las verificaciones anteriores no se cumple? → General Protection Fault (#GP)

¿Preguntas?