A Geocoding Framework Powered by Delivery Data (Industrial Paper)

Vishal Srivastava* Bengaluru, Karnataka vsri293@gmail.com Priyam Tejaswin Flipkart Internet Pvt. Ltd Bengaluru, Karnataka tejaswin.p@flipkart.com Lucky Dhakad Flipkart Internet Pvt. Ltd Bengaluru, Karnataka lucky.d@flipkart.com

Mohit Kumar † Bengaluru, Karnataka mohitkum@gmail.com

Amar Dani Flipkart Internet Pvt. Ltd Bengaluru, Karnataka kumar.amar@flipkart.com

ABSTRACT

Over the last decade, India has witnessed an explosion in the ecommerce industry. There is increasing adoption of e-commerce in smaller towns and cities over and above the densely populated urban centers. In this paper, we discuss the practical challenges involved with developing high-precision geocoding engines for these geographical regions in India. These challenges motivate the next iteration of our geocoding framework. In particular, we focus on addressing three core areas of improvement: 1) leveraging customer delivery data for geocoding, 2) understanding and solving for the diversity and variations in addresses for these new regions, and 3) overcoming the limited coverage of our reference corpus. To this end, we present GeoCloud. Key contributions of GeoCloud are 1) a training algorithm for learning reference-representations from delivery coordinates and 2) a retrieval algorithm for geocoding new addresses. We perform extensive testing of GeoCloud across India to capture the regional, socio-economical and linguistic diversity of our country. Our evaluation data is sampled from 72 cities and 21 states from the delivery addresses of a large e-commerce platform in India. The results show a significant improvement in precision and recall over the state-of-the-art geocoding system for India, and demonstrate the effectiveness of our intuitive, robust and generic approach. While we have shown the effectiveness of the framework for Indian addresses, we believe the framework can be applied to other countries as well, particularly where addresses are unstructured. To the best of our knowledge, this is the first instance of geocoding by learning reference-representations from large-scale delivery data.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Woodstock '18, June 03–05, 2018, Woodstock, NY © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS

• Information systems → Information retrieval; E-commerce infrastructure; Data mining.

KEYWORDS

Geographic Information System, Geocoding, Spatial Data Mining and Knowledge Discovery, Address Processing, Data Preprocessing

ACM Reference Format:

Vishal Srivastava, Priyam Tejaswin, Lucky Dhakad, Mohit Kumar, and Amar Dani. 2018. A Geocoding Framework Powered by Delivery Data (Industrial Paper). In *Woodstock '18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY*. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

We are witnessing rapid e-commerce growth in small towns and cities in India [5, 6, 8, 23]. The focus of this paper is to build a robust geocoding framework for these geographical regions. These cities are classified as Tier-Y and Tier-Z by the Government of India[3]. Below, we list some of the distinct characterizations of the challenges in geocoding addresses from these areas. These capture our experiences from deploying multiple iterations of geocoding engines over the past few years [1, 4].

Unstructured Nature of Addresses¹ In [1], the authors state that a key challenge in processing Indian addresses is the lack of a structured form. In comparison, addresses in developed countries like USA and Japan are more structured. This *structure* refers to a hierarchical format for writing an address: house number, building name, street name, city, state, zipcode. For example, in the address

N Paradise Residency, MPB-70,N Paradise Residency,Room-N

apartment number information is at the end of address. In addition to being unstructured, we have also observed that addresses don't follow a consistent pattern. For instance, in the address

N-N-N/N, Rajiv Gandhi Nagar 9th line 2nd cross road

 $^{^*}$ Author works at Linked In. This work was done while the author was at Flipkart.

[†] Author works at Udaan. This work was done while the author was at Flipkart.

¹Unless otherwise mentioned, the customer addresses mentioned in this paper are quoted verbatim, barring some changes to preserve anonymity.

the road information is at the end of the address. While in the address,

N/N **2nd street** govindaswamy layout PKD Nagar, Varatharaja mill

road information is in the beginning. In Section 4.3 we explain how our address chunking algorithm is able to extract valid chunks from such addresses. While this might be the norm, there do exist new cities like Chandigarh [15], Noida and Gurugram which follow a **sector** layout where the entire city has been partitioned into well-defined granular blocks, thereby enabling the customers to write more structured addresses.

Address Text Statistics [1] discussed the length of addresses in the city of Bengaluru in Southern India where the address length could range from a single token to 164 tokens in a random sample. In our study, we observe that the average number of tokens ranges from 7 to 9, with a standard deviation of 3 to 4 tokens. Long addresses, often contain additional landmarks, explicit delivery instructions, available hours, contact details, and even names of the recipients. In this customer address for instance,

Door No. N-N-N N, Ground Floor, East Point Colony, Chinna Waltair. Please Deliver to Next Door Neighbour: Mrs. A. BODY (Mobile No. 11111-11111) Opposite SBI Kirlampudi Layout.

the customer explicitly instructs to deliver the shipment to the neighbor and even provides the mobile number! Short addresses (3 tokens or less) are often incomplete, revealing, at most, a general locality or sub-locality. While an experienced delivery executive can make quick sense of such addresses, incomplete addresses and addresses with extraneous information, complicate the geocoding process. We explain how GeoCloud tackles some of these challenges in its preprocessing and chunking stages.

Local References and Aliases An interesting characteristic of Indian addresses are aliases of a region or locality. For example, *HSR* is a popular residential hub in Bengaluru whose common aliases include HSR layout and HSR area. Often, we see aliases which might not be a specific point in our reference corpus, but just a commonly used name for an area. For instance, Wipro Signal colloquially refers to the intersection near Wipro Park, a small playground in the Koramangala area of Bengaluru. Another interesting variation is observed in the geo-entity identifiers which are used across the country. In New Delhi (northern India), a locality or a sub-locality is often identified as Nagar or Vihar whereas in Bengaluru (southern India), similar entities are identified by Halli. Roads in New Delhi are often identified as Margs or Paths; some examples include Palam Marg and Rajpath. In Bengaluru, roads are identified by Road (for instance, Sarjapur Road). In Section 4.4, we cover how GeoCloud's Polygon Creation procedure handles these aliases while also allowing us to discover new entities which might not be present in a static reference corpus.

Linguistic Diversity As of today, popular e-commerce portals allow customers to enter their address details using Roman alphabets. For a multi-lingual country like India, this can be the root cause of many spell-errors. The 2001 census[18] recorded 30 languages, each of which is spoken by more than a million native speakers. A majority of these languages are phonetic languages,

Table 1: Relative frequency of misspellings of Kadubeesanahalli

Term	Relative frequency
Kadubisanahalli	0.113
Kadubeesanhalli	0.079
Kadubesanahalli	0.077
Kaadubeesanahalli	0.022
Kadubisnahalli	0.018

implying that there is a close correspondence between the spoken sound and its transcription [24]. For instance, we observed a variety of misspellings for common English tokens such as *school* (**skool**, **eskul**) and *apartment* (**apertmant**, **apaartment**). The lack of standardized conventions to transcribe tokens from an Indian language to Roman alphabet is also problematic. Consider *Kadubeesanahalli* (pronounced [**kadubisənəhəlr**] with an extended [1] consonant), a densely populated commercial and residential area in Bengaluru. We have captured its common misspellings in Table 1. The examples above elicit a common misspelling pattern in Indian addresses: phonetic errors. However, in the absence of robust phonetic algorithms for Indian languages, in GeoCloud we tackle spelling errors using de-concatenation and edit-distance based techniques.

Our key contribution is the GeoCloud Learning Framework (discussed in Section 4) which allows us to build a reference corpus from historical delivery data. To the best of our knowledge, this approach of learning a reference corpus from delivery coordinates for geocoding is the first of its kind. We demonstrate the advantages and effectiveness of this approach and explain how it tackles the unique challenges discussed above. We also show its improvement over SAGEL [4] by testing it across different geographical zones in India. The rest of the paper is structured as follows: in Section 2 we review some of the recent and relevant advancements in the field of geocoding; in Section 3 we describe the available reference data sources; in Section 4 we describe the GeoCloud Learning Framework; in Section 5 we describe our experiments, evaluation criterion, results and compare our performance against SAGEL [4]; in Section 6 we present a brief qualitative analysis of the results and our approach. We conclude with Section 7 by summarizing our results and briefly discussing the future work.

2 RELATED WORK

In [12, 14], the authors describe the geocoding process in great detail, reviewing different geocoding approaches. Work in [13] proposes strategies to improve geocoding matches based on neighborhood matching algorithms. Evaluation strategies for geocoding systems have been described in [26, 27]. A geocoding system can be evaluated based on spatial accuracy of test data set or based on the accuracy of different components of the geocoding system. We evaluate GeoCloud on spatial accuracy of test addresses.

Many commercial geocoding systems are also available [17, 21, 25]. Some opensource geocoding systems include [10, 20]. As mentioned in [4], opensource geocoding engines such as [11, 16, 19] could not be directly used because OpenStreetMaps data in India is sparse. This results in extremely low coverage. The coverage in

rural areas and Tier-Y, Tier-Z cities would be even lower for these geocoders.

In [1], the authors present a technique to classify a given address to an abstract geographical region defined manually. This is different from our problem statement.

In [2] the authors present a new approach to geocoding that leverages traditional web search technologies. Our approach to parsing input address as described in Section 4.3 is similar to the query segmentation process described in their geocoding method. However, their method presents a technique that divides the map into overlapping rectangular tiles and associates each tile with the geoentities that intersects with the tile's spatial coverage. We observed that casting delivery data into this framework would be very challenging since the geocoding accuracy would be very sensitive to the tile size which would vary across different geographical regions.

In [22], the authors present the EASER geocoding system which leverages multiple reference data sources. They present a machine learning approach to rank the candidates produced from multiple references. However, their approach is not applicable in the Indian context as multiple components in EASER rely on accurate address tagging. As mentioned in [4], this problem cannot be solved without a labeled dataset, which we do not have access to. Additionally, EASER's strength lies in its ability to merge multiple sources. This cannot be replicated as we do not have multiple reference data sources for Indian addresses.

In [4], the authors present SAGEL, a geocoding engine for Indian addresses. They rely on hierarchical map data as their reference data source. SAGEL's approach to geocoding is similar to a document retrieval problem. The input query (address) is parsed into chunks. Candidate geographical regions, similar to the chunks, are retrieved from the hierarchical map data using string-matching. A dynamic-programming algorithm is used to arrive at the most appropriate region. The authors evaluate SAGEL on a large set of Indian addresses, and the performance is better than a popular commercial geocoding API [21]. In this paper, we use SAGEL as our baseline as it is the state-of-the-art framework for geocoding Indian addresses.

3 REFERENCE DATA SOURCES

In this section we describe the two reference data sources used in GeoCloud.

3.1 Map Data

We use map data provided by a third party. The structure of the map data follows a generic hierarchical structure of toponyms with textual information such as names, aliases, and spatial information such as points, lines or polygons. Aliases are limited and are often reformulations or mutated spellings of the original source data. We refer to geoentities with the same nomenclature that is described in [4], namely *admin-levels*. The *admin-levels* present in our reference data are state, district, city, sub district, locality, sub locality, sub sub locality, road, junction and pincode.

3.2 Delivery Data

A single instance of delivery data contains the following fields:

Customer Address: This text is entered by the customer. It contains granular information like building number, building name, sub-locality, locality. There are no restrictions on this input. The types of errors which occur in the address have been discussed in Section 1.

City: City name.

State: State name is an enumerated field.

Pincode: Pincode is also an enumerated field and is mandatory. This is analogous to zipcode in US.

Delivery Coordinates: Latitude-longitude for the customer address when the order was delivered.

GPS Accuracy: Accuracy of the GPS while capturing the latlon. The captured lat-lon has an accuracy of observation in meters associated with it. This distance indicates the 1-sigma (standard deviation) radius of the approximately Gaussian lat-lon observation, with the captured lat-lon as the mean of the distribution [4].

4 GEOCLOUD LEARNING FRAMEWORK

We will now give a brief overview and intuition behind the Geo-Cloud learning algorithm.

4.1 Approach (Overview)

The GeoCloud pipeline consists of the same core components described in [14]: input data, output data, processing algorithm and a reference data corpus. The GeoCloud learning algorithm allows us to build a task-specific reference data corpus from historical delivery data. This starts by identifying meaningful "chunks" (localities, regions) in an address, and then creating geospatial representations for these chunks from the lat-lons in the delivery data. These representations can then be used for geocoding new addresses. Below we summarize the three key components of the algorithm. These steps are discussed at length in subsequent sub-sections.

- (1) **Polygon Creation**: Given an address, its coordinate and the extracted chunks (components such as building names, localities, etc.) we need to find its appropriate geospatial representation. From the corpus, we can arrive at a collection of lat-lons associated with each address component. From this collection, we arrive at a polygon for each address component. This also allows us to capture the fuzzy boundaries of user-defined regions as opposed to hard-coded regions. In Figure 1, we can see the polygons created for the address component *Gowtham Nagar* and its different spell variants. These polygons were generated by the algorithm from the delivery data corpus.
- (2) **Polygon Merging:** Knowing that people refer to the same entities in different ways, we then identify and merge similar polygons which refer to the same entity, based on geographical overlap and string similarity. Repeating this procedure for all components in a pincode generates a reference data source for geocoding which implicitly captures the variations with which address components are used. It can be seen in Figure 1, that a *merged* polygon (a union of all the similar polygons) will be the most appropriate representation of the address component *Gowtham Nagar*.

Figure 1: Intermediate polygon representations for similar chunks.

(3) Geocoding: With this reference data source, we geocode a new address. For geocoding, we retrieve the polygons associated with different address components and then rank the polygons based on their density and overlap.

In the next sections, we will describe the training components of GeoCloud in greater detail.

4.2 Data Preprocessing

As discussed in the Section 3.2, we have customer addresses with their respective delivery locations, along with the accuracy level at which the location was captured. The unrestricted "Address" text often contain typographical errors, concatenated tokens, and other erroneous character inputs. The preprocessing step aims to remove the noise, and return a clean address for the next step in the pipeline. We have observed that addresses have special characters which are not useful and will affect the next steps of our solution. An example of such an address is

A/B/C..2nd cross road ..zp colony..podalkur road,nellore

We do not remove all the special characters since we have observed some of them help in the chunking process described in Section 4.3. For example,"," helps us identify the end of one entity or chunk of address, and any information after comma has less probability of being part of an entity identified before comma.

Special characters including $\{/, \#, :\}$ help in identifying building number patterns in the chunking step. Hence, as part of preprocessing, we remove all alphanumeric characters except $\{,/, \#, :\}$. Also, to make string comparisons easier and further unify the entities and addresses, we have converted all the addresses to lowercase.

As discussed in Section 1, the linguistic and literacy diversity, combined with the unique nature of Indian addresses, introduces an array of spelling errors. In GeoCloud, we tackle two types of errors: typographical errors and token concatenation.

For spell correction, we correct tokens using a reference corpus. Candidates from the corpus are selected based on the edit-distance from the input token. We select the candidate with the least edit-distance upto an empirically defined threshold; ties between candidates are broken by selecting the more frequent candidate. Given a lack of well defined pincode region boundaries, we observed that

customers sometime refer to an area or locality which might fall into a neighbouring pincode. To combat this, we define a reference corpus at a pincode level by taking all unique address tokens occurring in that pincode and neighbouring pincodes within its cityregion. For correction, we rely on the address pincode and limit the search to its reference corpus as opposed to searching against the entire map data.

Customer addresses often contain concatenated tokens as evident in Table 8. We observe concatenation of correct tokens as well as incorrect tokens in customer addresses. In GeoCloud, we limit the de-concatenation to a maximum of two for every token. Similar to [1], we iterate over every position in a token and consider the two sub-tokens. However, [1] does not mention if it works under the assumption of the segmented tokens being correct. In GeoCloud, we assume that the sub-tokens can also be incorrect and correct them using the spell-correction procedure described before. We define the probability of a token as the empirical probability of it appearing in the reference corpus. The input token is de-concatenated to sub-tokens if the probability of the token is less than the independent joint probability of the sub-tokens. For this we used the SymSpellCompound package [9].

4.3 Address Chunking

After the preprocessing step, we have a clean set of addresses with their delivery locations. One naive way to use this data for geocoding is to match addresses and return the delivery lat-lon. But this strategy will not generalize well to new addresses. In this section, we will describe the step of identifying meaningful entities out of preprocessed addresses. Extracting entities out of addresses is not straightforward as the data is unstructured and has the complexities discussed in Section 1. To identify entities in an address, one can pose it as a Named Entity Recognition problem (NER), which requires labeled training data for the learning model. SAGEL [4] tried a similar approach but failed due to lack of a labeled training data set.

In the absence of any labelled address data, we have employed a probabilistic approach to extract entities out of addresses. In this approach, we leverage the entities present in map data discussed in Section 3.1. The map data contains different types of structured entities. Each entity has a "name" field and an "alias" field, which we use for chunking. Each entity belongs to a different admin-level. For chunking, we consider the following admin-levels: building, sub sub locality, sub locality, locality and road.

For each token, we compute the probability of it being a terminating token and the probability of it appearing in a subsequence of given length. For each admin-level, we maintain two counts, posCount and lenCount, as described in Algorithm 1. The lenCount for a $token_i$ stores a count for every unique subsequence length k in which $token_i$ appears. The posCount stores two counters for each $token_i$, i.e, end and notend. For $token_i$, the end counter tracks the number of entities which have $token_i$ as the terminating token. The notend counter tracks the number of entities with $token_i$ as a non-terminating token.

After populating the position and length counters, we iterate through each address in the delivery data and chunk the address using Algorithm 2. We begin by splitting the address by the space

character to get a list of tokens. Every token is initialized with a baseScore consisting of s, hop and tag fields for that token. The s value holds the best score for the current tag. The hop variable holds the index value of the first token in the chunk. For each token, we retrieve the best possible chunk amongst all subsequences within the last MaxLen tokens, and update the baseScore of the token. Once the scores for all tokens have been collected, we begin extracting chunks by iterating over the address tokens in reverse order. At the end of this procedure, for all tokens identified as "unknown", we consider their bi-grams and tri-grams as candidate chunks.

To retrieve the chunk score for a subsequence, we use Algorithm 3. This retrieves the highest scored admin-level for a *segment* (i.e. subsequence of tokens) using Algorithm 4. For each *token* in the *segment*, we calculate the *lenScore* and *posScore*. The *lenScore* increases as the frequency of the *inputLength* of the segment increases. Similarly, the *posScore* will be higher if the probability of that token being a terminating token is higher. The score for every token is accumulated as defined in Algorithm 4. The final accumulated score is returned as the score of the segment.

Algorithm 1 CreateMapAtAdminLevel

```
Require: entityNames
Ensure: lenCount, posCount
 1: lenCount \leftarrow \{\}
 2: posCount \leftarrow \{\}
 3: for names \in entityNames do
        tokens \leftarrow names.split()
 5:
        length \leftarrow len(tokens)
        for t \in tokens do
 6:
            lenCount[t][length] \leftarrow lenCount[t][length] + 1
 7:
             if IsAtEnd(token) then
 8:
                 posCount[t][end] \leftarrow posCount[t][end] + 1
             else
 10:
                 posCount[t][notend] \leftarrow posCount[t][notend] + 1
11:
```

4.4 Polygon Creation

Once the address chunks are identified, we create polygon regions based on the delivery coordinates occurring in a particular pincode using Algorithm 5. First, we retrieve a list of lat-lons for the given chunk. Consider three sample addresses, where the pincode and delivered lat-lon are in parenthesis. The chunks are comma-separated for simplicity.

```
Address 1 (560102, lat-lon1): "X apartment, ABC block" Address 2 (560102, lat-lon2): "Y colony, ABC block" Address 3 (560064, lat-lon3): "Z apartment, ABC block"
```

For these addresses, we can extract the following address chunks with their respective list of coordinates for the two pincodes:

```
pincode 560102:
"X apartment" - [lat-lon1]
"ABC block" - [lat-lon1, lat-lon2]
"Y colony" - [lat-lon2]
```

Algorithm 2 IdentifyChunks

```
Require: tokenList
Ensure: chunkList
  1: baseScore \leftarrow (s = 0, hop = -1, tag = UN)
 2: tagScore \leftarrow [baseScore]
 3: noTagScore \leftarrow [baseScore]
 4: N \leftarrow len(tokenList)
 5: for i \leftarrow 1 to N do
        tagScore.append(baseScore)
        noTagScore.append(baseScore)
        prevBestScore_i \leftarrow max(noTagScore[i].s, tagScore[i].s)
        noTagScore[i+1].s \leftarrow prevBestScore_i
 9:
        for i \leftarrow i - MaxLen to i + 1 do
10:
            prevBestScore_{j} \leftarrow \max(noTagScore[j].s, tagScore[j].s)
11:
            score, tag \leftarrow prevBestScore_i + getBestTag(token[j :
12:
    i])
13:
            if score > tagScore[i+1].s then
                 tagScore[i+1].s \leftarrow score
14:
                 tagScore[i+1].hop \leftarrow j-1
15:
                 tagScore[i+1].tag \leftarrow tag
16:
17: index \leftarrow len(tokenList) - 1
                                         ▶ Reverse iteration to isolate
    chunks
18: tempChunkList \leftarrow []
    while index >= 0 do
        if tagScore[index + 1].s > noTagScore[index + 1].s then
            if tagScore[index + 1].tag \neq bldg_no then
21:
                 chunck \leftarrow tokens[tagScore[index + 1].hop :
22:
    index]
                 tag \leftarrow tagScore[index + 1].tag
23
                 tempChunkList.append((chunck, tag))
24:
25
            index \leftarrow tagScore[index + 1].hop
26:
        else
            tempChunkList.append((token[index], UN))
27:
            index \leftarrow index - 1
28:
29: chunkList \leftarrow []
    unTokenList \leftarrow []
    \textbf{for}\;(chunk,tag) \in tempChunkList\;\textbf{do}
        if tag \leftarrow UN then
            unTokenList.append(chunk)
33:
        else
34:
            chunkList.append(MakeNGrams(unTokenList))
35:
            chunkList.append(chunk)
36:
```

Algorithm 3 GetBestTag

```
Require: segment
Ensure: score, tag
 1: if LikeBuildingNo(segment) is true then
 2:
        return MAX POSSIBLE SCORE, bldg no
 3: else
        score, tag \leftarrow 0, UN
 4:
        for a \in ADMIN LEVELS do
 5:
           adminScore \leftarrow tagScoringFunction(segment, a)
 6:
           if adminScore >= score then
 7:
               score \leftarrow adminScore
 8:
               tag \leftarrow a
```

Algorithm 4 TagScoringFunction

```
Require: segment, adminLevel
Ensure: finalScore
  1: inputLen \leftarrow len(segment)
  2: score ← 0
  3: for token \in segment do
          if IsAtEnd(token) then
  4:
               lenScore \leftarrow 1 + \frac{lenCount[token][inputLen] \times lenWeight}{\sum_{N}}
  5:
                                             \sum_{i}^{N} lenCount[token_i].values()
               posScore \leftarrow 1 + \frac{posCount[token]['end'] \times posWeight}{\sum_{i=1}^{N}}
  6:
                                             \sum_{i}^{N} posCount[token_i]['end']
          else
  7:
                                       \frac{posCount[token]['notend']}{\sum_{i}^{N}posCount[token_{i}]['notend']}
  8:
  9:
               score \leftarrow score + posScore \times lenScore
 10:
 11: if score > Threshold[adminLevel] then
          finalScore \leftarrow score
 12:
 13: else
          finalScore \leftarrow 0
 14:
```


Figure 2: Single-cluster chunk. Image on left marks the delivery data; generated polygon on right.

```
pincode 560064:
"ABC block" - [lat-lon3]
```

Note that "lat-lon3" was not added to the list of coordinates for chunk "ABC block" in pincode "560102" because the GeoCloud learning process is isolated for every pincode.

The next step is to create the polygon representation for the identified chunks. If there were only one cluster per chunk, as illustrated in Figure 2, we could simply remove the outliers, create a convex hull and return a polygon representation for a chunk. But, our data exhibits multiple clusters for different chunks.

To identify multiple clusters without knowing the number of underlying clusters, we make use of the DBSCAN algorithm[7]. An example of identifying multiple clusters is illustrated in Figure 3. The hyperparameters were empirically estimated.

4.5 Polygon Merging

Once we have the polygons for each chunk, we merge polygons for the chunks which point to the same region. A common merging scenario is that of aliases. A good example is Address 5 in Table 10. Here, we have two correctly formed entities in *Krishna Girls Hostel* and *Krishna Ladies Hostel* with a significant area overlap, while referring to the same region. The other case is when spell-correction

Figure 3: Polygons for a multi-cluster chunk. Image on left marks the delivery data; generated polygons on right.

Algorithm 5 CreatePolygonComponent

Require: Chunk, listLatLongs

Ensure: polygonComponent

1: listClusters ← DBSCAN(listLatLongs)

2: polygonComponent ← (chunk = Chunk, polygons = [], counts = []) ▷ initialize polygonComponent data structure

3: N ← len(listClusters)

4: for i ← 1 to N do

5: convexHull ← createConvexHull(listClusters[i])

6: polygonComponent.polygons.append(convexHull)

7: polygonComponent.counts.append(len(listClusters[i]))

fails. In the case of Figure 1, we observe multiple misspelled variations of the region *Gowtham Nagar*. For these cases, we arrive at more appropriate representation by merging similar polygons. Polygon merging is based on two rules:

- Text similarity: Levenshtein distance between the chunks is greater than a threshold.
- (2) **Geographical Intersection**: ratio of intersection area between the polygons representing the chunks to either of the polygons' area.

4.6 Retrieval Algorithm

To geocode a new address, we first extract the pincode and apply our preprocessing procedure on the address text. On the clean address, we apply our address chunking algorithm to get the address chunks. We then retrieve the polygons associated with all the chunk×pincode combinations, which then get ranked. These polygons are first initialized with a base score. This score is updated based on the degree of intersection with other polygons, as described in Algorithm 6.

5 EXPERIMENTS AND EVALUATION

We segment pincodes by their zone (North, South, East, West) and city tier (Tier-Y, Tier-Z), and then rank them in decreasing order by the number of addresses which have had at least 1 successful delivery over a fixed period of time. We select all the addresses from the top-k pincodes within each segment. k was determined empirically for each segment to have at least 150,000 addresses. We remove all the deliveries with low GPS accuracy levels from customer delivery data. Our threshold was 100m. The delivery data for the selected pincodes is then sorted by the time of the delivery attempt. We temporally split the data into train and test set to maintain a 7:1 split ratio. From this partitioned testing data, we

Algorithm 6 GeocodeNewAddress

Require: Address, Pincode **Ensure:** PolygonWithMaxScore 1: $addressChunks \leftarrow getChunksForAddress(Address)$ 2: polygons ← getPolygonForChunk(addressChunks) 3: $N \leftarrow len(polygons)$ 4: **for** $i \leftarrow 1$ to N **do** $polygon \leftarrow polygons[i]$ $polygon.score \leftarrow polygon.density/max(polygons.density)$ 7: **for** $i \leftarrow 1$ to N **do** $polygon1 \leftarrow polygons[i]$ 9: $polygon1.visited \leftarrow True$ for $j \leftarrow 1$ to N do 10: $polygon2 \leftarrow polygons[j]$ 11: **if** polygon2.visited == False **then** 12: polygon1.score polygon1.score 13: Intersection(polygon1.area, polygon2.area)/polygon1.area polygon2.score \leftarrow polygon2.score + Intersection(polygon1.area, polygon2.area)/polygon2.area

Table 2: GeoCloud ClassY Data Statistics

Zone	Train Addresses	Test Addresses
North	286175	26668
South	204387	17477
East	152405	14093
West	197637	18587
Total	840604	76825

Table 3: GeoCloud ClassZ Data Statistics

Zone	Train Addresses	Test Addresses
North	313554	22152
South	333895	24985
East	305774	27704
West	280536	21064
Total	1233759	95905

remove addresses which are part of the training set. This ensures 'unique and unseen' addresses for testing.

5.1 Data

Our evaluation data is sampled from 72 cities and 21 states. The training and testing sample sizes are listed in Table 2 and 3 for classes Y and Z respectively. We report all statistics at a zone \times tier level. In total, we train GeoCloud on around 840K class Y addresses and around 1.2M class Z addresses. The baseline system, SAGEL, does not require any training as it uses to a static reference data source. Both systems are then evaluated on 76825 class Y addresses and 95905 class Z addresses.

Table 4: Geocoding precision/recall results for ClassY

Precision	SAGEL	GeoCloud
<= 100m	15.49%	30.29%
<= 200m	23.74%	48.56%
<= 500m	39.76%	69.40%
<= 1km	53.42%	80.17%
Recall	85.32%	94.95%

Table 5: Geocoding precision/recall results for ClassZ

Precision	SAGEL	GeoCloud
<= 100m	9.39%	27.40%
<= 200m	15.79%	42.67%
<= 500m	27.47%	59.61%
<= 1km	36.18%	69.24%
Recall	54.01%	90.56%

Table 6: Performance for ClassY across Zones: Metrics reported are Precision<=1km, Recall

Zone	SAGEL	GeoCloud
North	56.71%, 89.74%	79.00%, 95.29%
South	52.26%, 79.85%	79.46%, 93.61%
East	48.91%, 75.16%	83.68%, 96.69%
West	53.23%, 91.82%	79.86%, 94.42%

Table 7: Performance for ClassZ across Zones: Metrics reported are Precision<=1km, Recall

Zone	SAGEL	GeoCloud
North	46.03%, 72.30%	66.42%, 90.61%
South	34.96%, 51.05%	67.71%, 91.52%
East	28.92%, 39.43%	68.57%, 87.52%
West	36.81%, 57.46%	73.88%, 93.35%

5.2 Metrics

Against every test address, we measure precision and recall as follows:

Precision \leftarrow **m**: measures the fraction of addresses which we could locate within a m meter radius of the true address coordinate. The precision is evaluated at varying distances of 100m, 200m, 500m and 1km from the true coordinate.

Recall: measures the fraction of addresses for which we could return *any* coordinate.

5.3 Results

We present the quantitative results after evaluating SAGEL and GeoCloud on different city tiers and geographic zones.

Tier-wise performance Tables 4,5 list the Precision/Recall metrics for Tier-Y and Tier-Z respectively. We observe that the improvement in Precision<=100m is 14.8% for Tier-Y and 18% for

Table 8: Compound Words

Zone	Concatenated Token	Separate Tokens
	vineetkhand	vineet khand
North	saheedpath	shaheed path
North	mallgomti	mall gomti
	extantionlucknow	extension lucknow
	trafalgarcanal	trafalgar canal
	kishorganj	kishor ganj
	viharsector	vihar sector
East	policestation	police station
	rakrishnanagar	ramkrishna nagar
	jahangirnagar	jahangir nagar
West	flatnear	flat near
	panchavatipadampura	panchavati padampura
	vengamambastrret	vengamamba street
South	dhanalaxmipuram	dhanalaxmi puram
	enclavegomathi	enclave gomathi
	fatimanager	fatima nagar

Tier-Z. This improvement is critical for applications like Route Optimization in e-commerce context. We also observe that the Recall is relatively improved by 11% for Tier-Y and 67% for Tier-Z. The degree of relative improvement in Recall is different across the Tiers. This is intuitive as we expect lesser coverage in reference map data for Tier-Z compared to Tier-Y.

Zone × **Tier performance** Tables 6,7 show the Precision/Recall metrics for different zones for Tier-Y and Tier-Z respectively. We observe that SAGEL's performance is lower in East Zone for both Tier-Y (48.91% Precision) and Tier-Z (28.92% Precision) compared to other zones (North, South and West) where the average Precision is 54.33% for Tier-Y and 39.33% for Tier-Z. Across zones, we also observe that GeoCloud's performance is consistent than SAGELS's.

6 DISCUSSION

We now present some qualitative analysis of the results and our approach.

Smart Preprocessing

For this analysis, we sampled addresses where GeoCloud outperformed SAGEL. We observed that in some cases, smart preprocessing like spell-check and de-concatenation helped us identify valid chunks. For example, the incorrect spelling *apprtment* is corrected to *apartment* which allows GeoCloud to extract the chunk *keshav apartment* in Table 9 Address 8.

We observed that de-concatenation *with* spell-check was also helpful. This can transform misspelled concatenated tokens into useful tokens which could be chunked by our algorithm. For example, in one of the addresses we found the *extantionlucknow* concatenated token, which was successfully split into *extension* and *lucknow*. Examples of concatenated tokens and the algorithm's output can be found in Table 8.

Address Chunking

In Table 9, we have quoted some raw addresses from test corpus from different zones, and listed the chunks identified by the algorithm. In most cases, the algorithm was able to identify entities which varied across the zones and regions within the zones. For example, in Table 9 Address 7, *kwality sweets* was successfully identified as one chunk because *sweets* was a common terminating token for shops and stores in that region. Similarly, *nagar* and *colony* are local aliases used to identify a region similar to token *layout*.

Polygon Merging

In Table 10, we have included examples of some merged polygons and their candidate polygons, as identified during training. We observe that *krishna ladies hostel* and *krishna girls hostel* are merged to form a single polygon and are valid candidates for the same. Similarly, we see that *radha krishna temple* and *radha krishna mandir* are also merged. In both examples, the candidates were valid aliases which pointed to the same region.

Identified New/Relevant Regions

In our analysis we found several regions that were successfully identified by GeoCloud, but were missing from the static map data. One example was *Aurangabad Highway* where we delivered a number of times, but the region was missing from the map data. On further examination, we found that this highway was under construction when our map data was compiled. Another interesting example was *Bhagwati Apartment*, an apartment complex which was listed in a popular property listings website, but was missing from our map data. Table 11 provides a list of such instances across different zones.

Recall Analysis

As shown in the results, GeoCloud did not have 100% recall. We inspected some sample addresses where GeoCloud failed to return any coordinate. In our analysis, we found some cases where addresses were incomplete or were not informative. For example, the following address

N-N Nandankanan

provides very little for the algorithm to work with. In other cases, the spell-correction or splitting would fail for key components. For example, in the following address

D:no:N-N-N Saradacolony25th lane,Guntur

Saradacolony25th contains three tokens Sarada, colony and 25th. De-concatenation failed because we were limited to two tokens in our preprocessing algorithm. We have also observed that many customers use non-standardized abbreviations in their addresses. We have seen customers use appt, apt, etc to represent apartment in their addresses. Such patterns are not captured in map data which we are using for chunking. As a result, our chunking fails.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented a new geocoding framework that tackles the unique challenges faced in tier-Y and tier-Z towns in India. The key contribution of the paper is our algorithm to leverage customer delivery data, and generate a robust reference corpus, which enables accurate geocoding. We demonstrated that our geocoding performance significantly outperforms the current state-of-the-art system, SAGEL, across different zones in India. This system is currently deployed at a major e-commerce platform in India.

Table 9: Customer addresses and extracted chunks

#	Address	List of chunks
1	N-N-N/N, Rajiv Gandhi Nagar 9th line 2nd cross road	rajiv gandhi nagar, 9th line, 2nd cross road
2	Block 1 3rd floor balaji society maruti chowk lambe hanuman	block 1, balaji society, maruti chowk, lambe hanuman road,
	road, Maruti chowk balaji society	maruti chowk, balaji society
3	N/N Risha Purwa, Gomti Nagar vibhuti khanad	risha purwa, gomti nagar, vibhuti khand
4	N/N 2nd street govindaswamy layout PKD Nagar, Varatharaja	2nd street, govindaswamy layout, pkd nagar, varadharaja mill
	mill	
5	Bhadakal gate, VIP road jubilee park near famous photo studio	bhadkal gate, vip road, jubilee park, famous photo studio
6	Doodh dairy, Maqsood colony Near Arish Masjid Kat kat gate	doodh dairy, maqsood colony, arish masjid, kat kat gate road
	road	
7	kwality sweets lake road near narshingh mandir, narshingh	kwality sweets, lake road, narshingh mandir, narshingh mandir
	mandir	
8	Flat no N keshav apprtment, Yogeshwar colony	keshav apartment, yogeshwar colony
9	N/N Thangam rice mundy, Ganapathy Ramakrishnamill	thangam rice mundy, ganapathy ramakrishna mill

Table 10: Examples of merged polygons

#	Final Polygon	Candidate Polygons
1	kaulagarh road	kaulagarh main road, kaul ghar
		road, north kaulagarh road,
		kaulagarh road
2	radha krishna temple	radha krishna mandir, radhakr-
		ishna temple, radha krishna
		temple
3	swami sahu anand nagar	saha anand nagar, swami saha
		anand nagar, swami saha-
		jananda nagar, swami sahu
		anand nagar
4	vivekanand society	vivekanand soc, vivekanand so-
		ciety
5	krishna girls hostel	krishna ladies hostel, krishna
		girls hostel

Table 11: "New" regions (identified by GeoCloud, but missing from the existing map corpus)

Zone	Regions	
North	Muni Lane, Kher Enclave, Vasu Estate	
East	Bhagwati Apartment, Para Dinesh Apartment,	
	Mishra Mansion, Patanjali Mega Store	
West	Adeshwar Heights, Gangeshwar Mahadev	
	Temple, New Textile Market, Hari Om Petrol	
	Pump, Seva Kunj, Ashok Sweets, Aurangabad	
	Highway, Swami Nagar	

While we have shown the effectiveness of the framework for Indian addresses, we believe the framework can be applied to other countries as well, particularly where addresses are unstructured like India.

Though these results improve the state-of-the-art, we list two directions that will enable us to improve further. Firstly, GeoCloud currently doesn't use any static map/reference data for geocoding.

We would like to extend the framework to leverage a static reference data corpus *in addition to* the delivery data. Secondly, we haven't tackled the clearly observed pattern of phonetic errors in addresses. We would like to develop and explore "Indic" phonetic hashing algorithms with the framework for solving these errors.

REFERENCES

- T. Ravindra Babu, Abhranil Chatterjee, Shivram Khandeparker, A. Vamsi Subhash, and Sawan Gupta. 2015. Geographical Address Classification without Using Geolocation Coordinates. In Proceedings of the 9th Workshop on Geographic Information Retrieval (Paris, France) (GIR '15). Association for Computing Machinery, New York, NY, USA, Article 8, 10 pages. https://doi.org/10.1145/2837689.2837696
- [2] Pavel Berkhin, Michael R. Evans, Florin Teodorescu, Wei Wu, and Dragomir Yankov. 2015. A New Approach to Geocoding: BingGC. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL '15). Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/ 2820783.2820827
- [3] Kalaari Capital. 2017. Kalaari-KStart Internet Growth in India. http://kstart.in/ wp-content/uploads/2017/08/India_Internet_Report_2017.pdf
- [4] Abhranil Chatterjee, Janit Anjaria, Sourav Roy, Arnab Ganguli, and Krishanu Seal. 2016. SAGEL: Smart Address Geocoding Engine for Supply-Chain Logistics. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Burlingame, California) (SIGSPACIAL '16). Association for Computing Machinery, New York, NY, USA, Article 42, 10 pages. https://doi.org/10.1145/2996913.2996917
- [5] DescriptionPricewaterhouseCoopers. 2014. PWC e-Commerce Growth Report for 2014. https://www.pwc.in/assets/pdfs/publications/2015/ecommerce-in-indiaaccelerating-growth.pdf
- [6] Ernst and Young. 2017. EY Growth Report, 2017. https://www.ey.com/ Publication/vwLUAssets/ey-indias-growth-paradigm/\$FILE/ey-indias-growth-paradigm.pdf
- [7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-based Algorithm for Discovering Clusters a Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (Portland, Oregon) (KDD'96). AAAI Press, 226–231. http://dl.acm.org/citation.cfm? id=3001460.3001507
- [8] Indian Brand Equity Foundation. 2018. IBEF e-Commerce Review 2018. https://www.ibef.org/download/Ecommerce-February-20181.pdf
- [9] Wolf Garbe. 2019. Sym Spell Compound. https://github.com/wolfgarbe/SymSpell
- [10] GeoNames. 2017. GeoNames Geographical Database. http://www.geonames.org/ [11] Gisgraphy. 2020. Gisgraphy World Geocoding. http://www.gisgraphy.com
- [12] Daniel W Goldberg. 2008. A geocoding best practices guide. (2008).
- [13] Daniel W Goldberg. 2011. Improving Geocoding Match Rates with Spatially-Varying Block Metrics. Transactions in GIS 15, 6 (2011), 829–850.
- [14] Daniel W Goldberg, John P Wilson, and Craig A Knoblock. 2007. From text to geographic coordinates: the current state of geocoding. URISA-WASHINGTON DC-19, 1 (2007), 33.

- [15] Chandigarh Government. 2018. Interactive Map of Chandigarh. http://chandigarh.gov.in/knowchd_map.htm
- [16] Komoot. 2020. Photon. https://github.com/komoot/photon
- [17] MapQuest. 2020. MapQuest Developer Network. https://developer.mapquest. com/
- [18] Office of the Registrar General and India Census Commissioner. 2001. Census Data 2001, India at a glance. https://www.censusindia.gov.in/Census_Data_2001/India_at_glance/glance.aspx
- [19] OpenStreetMap. 2020. Nominatim Opensource Search. https://github.com twain47/Nominatim
- [20] OpenStreetMap. 2020. OpenStreetMap Nominatim. http://nominatim. openstreetmap.org/
- [21] Google Maps Platform. 2020. Google Maps Geocoding API. https://developers.google.com/
- [22] Sina Rashidian, Xinyu Dong, Amogh Avadhani, Prachi Poddar, and Fusheng Wang. 2017. Effective Scalable and Integrative Geocoding for Massive Address

- Datasets. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Redondo Beach, CA, USA) (SIGSPATIAL '17). Association for Computing Machinery, New York, NY, USA, Article 26, 10 pages. https://doi.org/10.1145/3139958.3139986
- [23] RedSeer. 2018. RedSeer 2018 e-Tailing Perspective. http://redseer.com/reports/e-tailing-in-india-redseer-perspective/
- [24] Anil Kumar Singh. 2006. A Computational Phonetic Model for Indian Language Scripts. In Proceedings of Constraints on Spelling Changes: Fifth International Workshop on Writing Systems.
- [25] Here Technologies. 2020. HERE Geocoder API. https://developer.here.com/
- [26] Duck-Hye Yang, Lucy Mackey Bilaver, Oscar Hayes, and Robert Goerge. 2004. Improving geocoding practices: evaluation of geocoding tools. Journal of medical systems 28, 4 (2004), 361–370.
- [27] Paul A Zandbergen. 2009. Geocoding quality and implications for spatial analysis. Geography Compass 3, 2 (2009), 647–680.