2.6 결정계

- ■결정 (crystal): 3차원 공간에서 원자가 주기적으로 같은 모양으로 배열을 하고 있는 고체
- 비결정(amorphous): 원자의 규칙 배열이 없다. (예: 유리)
- 단위세포, 단위격자(unit cell) : 결정을 만들 수 있는 점들의 가장 간단한 배열.
- 격자상수(lattice parameter, lattice constant) : 축의 길이 a, b, c 축사이의 각 α, β, γ

System	Axia I lengths and angles	Bravai s lattice	La ttice symbol
Cubi c 입방	Th ree equal axes at right angles $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple 단순 Body- centered세심 Fa ce-centered 면심	P I F
Te tragonal 정방	Th ree axes at right angles, two equal $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body- centered	P I
Orthorho mbic	Th ree unequal axes at right angles $\alpha \neq \beta \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body- centered Base -centered 저심 Fa ce-centered	P I C F
Rhombohe dral* 능면체	Th ree equal axes, equally inclined $a = b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$	Simple	R
마름모 He xagonal 육방	Two equal coplanar axe s at 120°, third axis at right angles $a = b \neq c$, $\alpha = \beta = 90^\circ$ $\gamma = 120^\circ$)	Simple	Р
Monoclinic 단사	Th ree unequal axes, one pair not at right angles $a \neq b \neq c, \alpha = \gamma = 90^{\circ} \neq \beta$	Simple Base -centered	P C
Triclinic 삼사	Th ree unequal axes, unequally inclined and none at right angles $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$)	Simple	Р

7 Crystal systems

14 Bravais Lattices

tetragonal a=b≠c α=β=γ=90°

orthorhombic a≠b≠c α=β=γ=90°

rhombohedral a=b=c α=β=γ≠90⁰

triclinic a≠b≠c α≠β≠γ≠90°

대칭쇼소(symmetry elements)

System	Mi nimum symmetry elements	
Cubi c	Four 3-fold rotation axe s	
Te tragonal	One 4-fold rotation (or rotation - inversion) axis	
Orthorho mbic	Three perpendicular 2-fold rotation (or rotation - in version) axes	
Rhombohe dral	One 3-fold rotation (or rotation - inversion) axi s	
He xagonal	One 6-fold rotation (or rotation - inversion) axi s	
M onoclinic	One 2-fold rotation (or rotation - inversion) axi s	
Tr iclinic	None	

Simple or Primitive -P - 000

- multiplicity = I [8 x (1/8) = I]

(Atoms/Unit Cell or Lattice point per cell)

Base Centering

- C Lattice Points at 000 and $0\frac{1}{2}\frac{1}{2}$
 - Lattice Points at 000 and $\frac{1}{2}0\frac{1}{2}$
 - -Lattice Points at 000 and $\frac{1}{2}\frac{1}{2}$ 0
- multiplicity = 2 $[8 \times (1/8) + 2 \times (1/2) = 2]$

Body Centering

- I 000 and $\frac{1}{2}\frac{1}{2}$
- multiplicity = 2 $[8 \times (1/8) + 1 = 2]$

Face Centering -F - 000, $\frac{1}{2}\frac{1}{2}0$, $\frac{1}{2}0\frac{1}{2}$ and $0\frac{1}{2}\frac{1}{2}$

• multiplicity = 4 $[8 \times (1/8) + 6 \times (1/2) = 4]$

Rhombohedral Centering

- R 000, 2/3 I/3 I/3, andI/32/32/3
- multiplicity = 3 $[8 \times (1/8) + 1 + 1 = 3]$
- -Trigonal

Characteristics of Cubic Lattices

Simple Body-Centered Face-Centered

Unit Cell Volume y

Lattice Points Per Cell Multiplicity

Nearest Neighbor Distance d (2r)

Number of Nearest Neighbors CN

Determine the density of lead given that it has a face centered cubic structure and an atomic radius of 175 pm.

D = m/V

D = g/cm³

m
$$\Rightarrow$$
 4 atoms (face centered)

MW = 207.20g Pb/Imol Pb

Avogadro's number = ImolPb/(6.02 x10²³Pb atoms)

V = a³ (cubic)

r = $\sqrt{2}a/4$ (face centered)

Determine the density of lead given that it has a face centered cubic structure and an atomic radius of 175 pm.

$$D = m/V$$

 $m = 4 Pb atoms \times 207.20 g Pb/1 mol Pb \times 1 mol Pb / (6.02 x <math>10^{23} Pb atoms)$

$$m = 1.38 \times 10^{-21} g Pb$$

$$r = \sqrt{2} a/4$$

$$a = 4 \times 175 \text{ pm} \times 10^{-10} \text{ cm/pm} / \sqrt{2} = 4.95 \text{ x} \cdot 10^{-8} \text{ cm}$$

D =
$$(1.38 \times 10^{-21} \text{ g})/(4.95 \times 10^{-8} \text{ cm})^3 = 11.4 \text{ g/cm}^3$$

This is in excellent agreement with the listed density of lead, 11.35 g/cm³.

부록 A3-2 단위포 부피

입방
$$V=a^3$$

저바
$$V=a^2c$$

사박
$$V = abc$$

능면체
$$V = a^3\sqrt{1 - 3\cos^2\alpha + 2\cos^2\alpha}$$

육방
$$V = \frac{\sqrt{3}a^2c}{2} = 0.866a^2c$$

단사
$$V = abc\sin\beta$$

삼사
$$V = abc\sqrt{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha \cos\beta \cos\gamma}$$

부록 A3-1 면간거리

្នា
$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

정박
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

$$here \frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

늘면체
$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + kl + hl)(\cos^2\alpha - \cos\alpha)}{a^2(1 - 3\cos^2\alpha + 2\cos^3\alpha)}$$

육방
$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

단사
$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

삼사
$$\frac{1}{d^2} = \frac{1}{V^2} (S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{13}hl)$$

$$V = \text{volume of unit cell (see below)}, \qquad S_{11} = b^2 c^2 \sin^2 \alpha \qquad S_{22} = a^2 c^2 \sin^2 \beta \qquad S_{33} = a^2 b^2 \sin^2 \gamma$$

$$S_{12} = abc^2 (\cos \alpha \cos \beta - \cos \gamma) \qquad S_{23} = a^2 bc (\cos \beta \cos \gamma - \cos \alpha)$$

$$S_{13} = ab^2 c (\cos \gamma \cos \alpha - \cos \beta)$$

$$S_{23} = a^2 bc (\cos \beta \cos \gamma - \cos \alpha)$$

7 결정계:

결정의 대칭성에 따라 정의. 단위 세포의 모서리와 각 사이에 관련성에 따라 결정.

Cubic

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal

$$a = b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic

$$a \neq b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral
$$a = b = c$$
, $\alpha = \beta = \gamma \neq 90^{\circ}$

Hexagonal

$$a = b \neq c$$
, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

Monoclinic

$$a \neq b \neq c$$
, $\alpha = \gamma = 90^{\circ} \neq \beta$

Triclinic

$$a \neq b \neq c$$
, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

14 Bravais Lattice (동일환경 격자점 조건)

P(Simple, Primitive) I(Body-Centered) F(Face-Centered)

P(Simple, Primitive) I(Body-Centered)

P(Simple, Primitive) I(Body-Centered) F(Face-Centered) C(Base-Centered)

R(Rhombohedral Centered)

₹(Simple, Primitive)

P(Simple, Primitive) C(Base-Centered)

*P(Simple, Primitive)

32 Point Group (한점에 대한 대칭조작)

대칭요소 Reflection Rotation Inversion

Schoenflies Symbol 쉔플리스 C_{3v} $(E,C_33\sigma_v)$ & Hermann -Mauguin Symbol

3m

Space Group 32 Point Group 14

Bravais

Lattice

230 **S**pace Group

230 Unique Combi -nation

Space Group Screw **Axis**

73

Glide Plane

Fig. 1. Crystallographic structure of Sr₃AlO₄F oxyfluoride host lattice [8].

As reported previously, Fig. 1 shows the anion-ordered Sr_3AlO_4F oxyfluoride structure, which is a tetragonal phase with space group I4/mcm; it is arranged by stacking alternating $Sr(2)_2F^{3+}$ and $Sr(1)AlO_4^{3-}$ layers along the c axis [8]. There are 10-fold-coordinated Sr(1), 8-foldcoordinated Sr(2), and 4-fold-coordinated Al^{3+} cation sites in the host structure.

Cubic

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal
$$a = b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic
$$a \neq b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral
$$a = b = c$$
, $\alpha = \beta - \gamma \neq 90^{\circ}$

Hexagonal
$$a = b \neq c$$
, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

Monoclinic
$$a \neq b \neq c$$
, $\alpha = \gamma = 90^{\circ} \neq \beta$

Triclinic

$$a \neq b \neq c$$
, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

7 결정계:

결정의 대칭성에 따라 정의. 단위 세포의 모서리와 각 사이에 관련성에 따라 결정.

Cubic

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal

$$a = b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic

$$a \neq b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral
$$a = b = c$$
, $\alpha = \beta = \gamma \neq 90^{\circ}$

Hexagonal

$$a = b \neq c$$
, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

Monoclinic

$$a \neq b \neq c$$
, $\alpha = \gamma = 90^{\circ} \neq \beta$

Triclinic

$$a \neq b \neq c$$
, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

14 Bravais Lattice (동일환경 격자점 조건)

P(Simple, Primitive) I(Body-Centered) F(Face-Centered)

P(Simple, Primitive) I(Body-Centered)

P(Simple, Primitive) I(Body-Centered) F(Face-Centered) C(Base-Centered)

R(Rhombohedral Centered)

₹(Simple, Primitive)

P(Simple, Primitive) C(Base-Centered)

*P(Simple, Primitive)

32 Point Group (한점에 대한 대칭조작)

대칭요소 Reflection Rotation Inversion

Schoenflies Symbol 쉔플리스 C_{3v} $(E,C_33\sigma_v)$ & Hermann -Mauguin Symbol

3m

Space Group 32 Point Group 14

Bravais

Lattice

230 **S**pace Group

230 Unique Combi -nation

Space Group Screw **Axis**

73

Glide Plane