More problems on L^p spaces.

Problem 1. This problem is review, but we will be using it below. Let (X,μ) be a measure space and $f\colon X\to\mathbb{R}$ a measurable function. Show there is a sequence of non-negative simple functions $\langle\phi_n\rangle_{n=1}^{\infty}$ that increase pointwise to f. That is $0\leq\phi_1\leq\phi_2\leq\phi_3\leq\cdots$ and $\lim_{n\to\infty}\phi_n(x)=f(x)$ for all x. Hint: For each pair of positive integers n,k let

$$E_{n,k} = \left\{ x \in X : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}.$$

and set

$$\phi_n = \sum_{k=0}^{n2^n} \frac{k}{2^n} \mathbb{1}_{E_{n,k}}.$$

Verify this does the trick.

Recall the function sgn: $\mathbb{R} \to \{-1, 0, 1\}$ is

$$sgn(x) = \begin{cases} +1, & x > 0 \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$

Problem 2. Let X, μ) be a measure space and $f: X \to \mathbb{R}$ a measurable function. Show there is a sequence of simple functions $\langle \psi_n \rangle_{n=1}^{\infty}$ such that

- $|\psi_n| \leq |\psi_{n+1}|$ for all n,
- $\psi_n(x)f(x) \ge 0$ for all $x \in X$,
- $|\psi_n| \leq |f|$, and
- $\lim_{n\to\infty} \psi_n(x) = f(x)$ for all x.

Hint: Using the function |f| in place of f in the previous problem find a sequence of simple $0 \le \phi_n \nearrow |f|$ and let $\psi_n = \operatorname{sgn}(f)\phi_n$.

Problem 3 (August 1984). Let (X, μ) be a measure space and let 1 and <math>1/p + 1/q = 1. Let $g \in L^1(X)$ such that there is a constant M with

$$\left| \int_0^1 gs \, d\mu \right| \le M \|s\|_{L^p}$$

for all simple functions s. Prove $g \in L^q(X)$ and $||g||_{L^q} \leq M$. Hint: Let $\psi_n \to g$ as in the last problem. Show

$$0 \le |\psi_n|^q \le |q|^q$$
$$|\psi_n|^q \le g \operatorname{sgn}(\psi_n)|\psi_n|.$$

The function $\operatorname{sgn}(\psi_n)|\psi_n|^{q-1}$ is a simple function and thus

$$\|\psi_{n}\|_{L^{q}}^{q} = \int_{X} |\psi_{n}|^{q} d\mu$$

$$\leq \int_{X} g \operatorname{sgn}(\psi_{n}) |\psi_{n}|^{q-1} d\mu$$

$$\leq M \|\operatorname{sgn}(\psi_{n}) |\psi_{n}|^{q-1} \|_{L^{p}}.$$

Show this implies

$$\|\psi_n\|_{L^q} \le M$$

and then use the monotone convergence theorem to show

$$||g||_{L^q} = \lim_{n \to \infty} ||\psi_n||_{L^q} \le M$$

to complete the proof.