# Package 'MCPModBC'

May 16, 2023

| <b>Title</b> Improved Inference in Multiple Comparison Procedure – Modelling                                                                                                                                                                                            |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Version 1.1                                                                                                                                                                                                                                                             |              |
| <b>Date</b> 2023-05-15                                                                                                                                                                                                                                                  |              |
| <b>Description</b> Implementation of Multiple Comparison Procedures with Modeling (MCP-Mod) procedure with bias-corrected estimators and second-order covariance matrices as described in Diniz, Gallardo and Magalhaes (2023) <doi:10.1002 pst.2303="">.</doi:10.1002> |              |
| License GPL (>= 2)                                                                                                                                                                                                                                                      |              |
| Encoding UTF-8                                                                                                                                                                                                                                                          |              |
| <b>Depends</b> R ( $>= 4.0.0$ ), stats                                                                                                                                                                                                                                  |              |
| Imports doRNG, survival, doParallel, nleqslv, foreach, DoseFinding, dplyr, rlang                                                                                                                                                                                        |              |
| RoxygenNote 7.2.1                                                                                                                                                                                                                                                       |              |
| NeedsCompilation no                                                                                                                                                                                                                                                     |              |
| Author Marcio Diniz [aut], Diego Gallardo [aut, cre], Tiago Magalhaes [aut]                                                                                                                                                                                             |              |
| Maintainer Diego Gallardo <diego.gallardo@uda.cl></diego.gallardo@uda.cl>                                                                                                                                                                                               |              |
| Repository CRAN                                                                                                                                                                                                                                                         |              |
| <b>Date/Publication</b> 2023-05-15 23:40:13 UTC                                                                                                                                                                                                                         |              |
| R topics documented:                                                                                                                                                                                                                                                    |              |
| data_generator                                                                                                                                                                                                                                                          | 2 4 7        |
| model_response                                                                                                                                                                                                                                                          | 7<br>9<br>11 |
| , ,                                                                                                                                                                                                                                                                     | 13           |
| Index                                                                                                                                                                                                                                                                   | 17           |

2 data\_generator

data\_generator

Data Generator

#### **Description**

It generates data for a dose-finding trial.

# Usage

```
data_generator(doses, sample.size, distr, parm,
censoring.rate = NULL)
```

#### **Arguments**

doses a numeric vector indicating the doses that will be considered in the clinical trial.

sample.size a numeric value indicating the sample size per dose in the clinical trial.

distr a character value indicating the distribution of the response variable. Currently,

the only option available is 'weibull'.

parm a named list of true values for the simulation. See mode in Details.

censoring.rate a numeric value between 0 and 1 indicating the censoring rate when generated

data. It is required when distr = "weibull".

#### **Details**

If distr = "weibull", the list parm should contain two components - lambda and sigma - that are the scale and shape parameters in the following parametrization of the Weibull distribution:

$$f(t; \lambda, \sigma) = \frac{1}{\sigma \lambda^{1/\sigma}} t^{1/\sigma - 1} \exp\left\{-\left(t/\lambda\right)^{1/\sigma}\right\}, \ t > 0,$$

with hazard rate given by

$$h(t) = \frac{1}{\lambda^{1/\sigma}\sigma} t^{1/\sigma - 1}$$

and regression structure

$$\log(\lambda_i) = d_i \beta_i.$$

where  $\log(\lambda_i)$  represents the model effect for dose i, doses[i].

#### Value

a data frame of dimension [length(doses) $\times$ sample.size]  $\times$  3 when distr = "weibull" containing time-to-event, censoring indicator and dose.

#### References

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

data\_generator 3

```
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)</pre>
# median survival time for placebo dose
mst.control <- 4
# shape parameter
sigma.true <- 0.5
# maximum hazard ratio between active dose and placebo dose
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))</pre>
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))</pre>
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))</pre>
Delta <- (minEff.Delta - placEff)</pre>
## MCP Parameters
emax <- guesst(d = doses[4], p = 0.5, model="emax")</pre>
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])</pre>
logit \leftarrow guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic",
Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50,
Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,</pre>
                          exponential = exp, logistic = logit,
                          betaMod = betam, doses = doses,
                          placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## True Model
model.true <- "emax"</pre>
response <- model_response(doses = doses,</pre>
                            distr = "weibull",
                             model.true = model.true,
                             models.candidate = models.candidate)
lambda.true <- response$lambda</pre>
parm <- list(lambda = lambda.true, sigma = sigma.true)</pre>
```

4 mcpmod\_simulation

mcpmod\_simulation

Simulation to obtain operating characteristics for MCP-Mod design

#### **Description**

It simulates dose-finding trials using MCP-Mod design with Maximum Likelihood Estimator and Fisher Information (MLE), Maximum Likelihood Estimator and second-order Fisher Information (MLE2), Cox and Snell's Bias-Corrected Estimator and Fisher Information (BCE), Cox and Snell's Bias-Corrected Estimator and second-order Fisher Information (BCE2), and Firth Bias-Corrected estimators (Firth) as discussed in Diniz, Magalhães and Gallardo.

#### Usage

```
mcpmod_simulation(doses, parm, sample.size, model.true,
  models.candidate, selModel = "AIC", significance.level = 0.025,
  Delta, distr = "weibull", censoring.rate = NULL,
  sigma.estimator = NULL, n.cores, seed,n.sim)
```

## **Arguments**

TD.

doses a numeric vector indicating the doses that will be considered in the clinical trial. a named list of true values for the simulation. See more details in data\_generator. parm a numeric vector indicating the sample sizes per dose in the clinical trial to be sample.size evaluated in the simulation study. model.true a character value indicating the true functional form of dose-response curve. See more details in model\_response. models.candidate an object of class 'Mods'. See more details in Mods. selModel a character value indicating the model selection criterion for dose estimation. See more details in MCPMod. significance.level a numeric value indicating the significance level when evaluating proof-of-concept based on an one-sided Wald test. Delta a numerical value indicating the target effect size used for the target dose. See

mcpmod\_simulation 5

distr a character value indicating the distribution of the response variable. Currently,

the only option available is 'weibull'.

censoring.rate a numeric value between 0 and 1 indicating the censoring rate when generated

data. It is required when distr = "weibull".

sigma.estimator

a character value indicating whether the estimator for sigma should be a maximum likelihood or jackknife estimator. It is required when distr = "weibull".

Options are "mle" and "jackknife".

n.cores a numeric value indicating the number of cores to be used in the 'simulation

performed in parallel. Use parallel::detectCores() to check the number of cores

available.

seed an integer value, containing the random number generator (RNG) state for ran-

dom number generation.

n.sim a numerical value indicating the number of simulated trials.

#### Value

An object of class mcpmod\_simulation with the following components:

mle: a matrix of dimension n.sim  $\times$  4 with results when using the MCP-Mod approach with MLE; mle2: a matrix of dimension n.sim  $\times$  4 with results when using the MCP-Mod approach with MLE2;

bce: a matrix of dimension n.sim  $\times$  4 with results when using the MCP-Mod approach with BCE;

bce2: a matrix of dimension n.sim  $\times$  4 with results when using the MCP-Mod approach with BCE2;

firth: a matrix of dimension n.sim  $\times$  4 with results when using the MCP-Mod approach with Firth's estimator;

All matrices contain the following columns: (1) the first column indicates whether proof-of-concept (1 = "yes", 0 = "no"), in other words, the p-value of Wald test was statistically significant; (2) the second column indicates whether the true model was selected to estimate the dose-response curve (1 = "yes", 0 = "no") when proof-of-concept is demonstrated; (3) the third column contains the estimated target dose; (4) the fourth column contains the sample size considered in the trial.

conditions: a list containing the conditions of the simulation.

#### Author(s)

Diniz, M.A., Gallardo D.I., Magalhaes, T.M.

#### References

Bretz F, Pinheiro JC, Branson M. Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics. 2005 Sep;61(3):738-48.

Bornkamp B, Pinheiro J, Bretz F. MCPMod: An R package for the design and analysis of dose-finding studies. Journal of Statistical Software. 2009 Feb 20;29:1-23.

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

Pinheiro J, Bornkamp B, Glimm E, Bretz F. Model-based dose finding under model uncertainty using general parametric models. Statistics in medicine. 2014 May 10;33(10):1646-61.

```
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)</pre>
sample.size <- 25</pre>
# shape parameter
sigma.true <- 0.5
# median survival time for placebo dose
mst.control <- 4
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))</pre>
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))</pre>
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))</pre>
Delta <- (minEff.Delta - placEff)</pre>
## MCP Parameters
significance.level <- 0.05
selModel <- "AIC"
emax \leftarrow guesst(d = doses[4], p = 0.5, model="emax")
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])</pre>
logit \leftarrow guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic",
Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50,
Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,</pre>
                          exponential = exp, logistic = logit,
                          betaMod = betam, doses = doses,
                          placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## Simulation Parameters
n.sim <- 10
seed <- 1234
n.cores <- 1
```

model\_response 7

```
## True Model
model.true <- "emax"</pre>
response <- model_response(doses = doses,</pre>
                            distr = "weibull",
                            model.true = model.true,
                            models.candidate = models.candidate)
lambda.true <- response$lambda</pre>
parm <- list(lambda = lambda.true, sigma = sigma.true)</pre>
## Scenario: Censoring 10%
censoring.rate <- 0.1
test <- mcpmod_simulation(doses = doses,</pre>
           parm = parm, sample.size = sample.size,
           model.true = model.true,
           models.candidate = models.candidate,
           selModel = selModel,
           significance.level = significance.level,
           Delta = Delta, distr = "weibull",
           censoring.rate = censoring.rate,
           sigma.estimator = "jackknife",
           n.cores = n.cores, seed = seed, n.sim = n.sim)
test
summary(test)
```

model\_response

Model Responser

# Description

It calculates the model response and parameters of interest for a given distribution.

#### Usage

```
model_response(doses, distr, model.true, models.candidate)
```

# **Arguments**

doses a numeric vector indicating the doses that will be considered in the clinical trial.

distr a character value indicating the distribution of the response variable. Currently, the only option available is 'weibull'.

model.true a character value indicating the functional form of the true dose-response curve. Options are "constant", "linear", "linlog", "quadratic", "exponential", "emax", "sigmaEmax", "betaMod", "logistic", "linInt".

models.candidate

an object of class Mods. See more details in Mods.

8 model\_response

#### Value

a data frame with dimension length(doses)  $\times$  3 with the following columns: (1) model response (2) model parameter and (3) doses

#### Author(s)

Diniz, M.A., Gallardo D.I., Magalhaes, T.M.

#### References

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

```
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <-c(0, 5, 25, 50, 100)
nd <- length(doses)</pre>
# median survival time for placebo dose
mst.control <- 4
# shape parameter
sigma.true <- 0.5
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))</pre>
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))</pre>
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))
Delta <- (minEff.Delta - placEff)</pre>
## MCP Parameters
emax <- guesst(d = doses[4], p = 0.5, model="emax")</pre>
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])</pre>
logit \leftarrow guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic", Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50, Maxd= doses[nd])</pre>
models.candidate <- Mods(emax = emax, linear = NULL,</pre>
                          exponential = exp, logistic = logit,
```

summary.mcpmod\_simulation

Summary of simulation results

# **Description**

It summarizes results of simulations of dose-finding trials following the MCP-Mod approach with bias-corrected and second-order covariance matrices.

# Usage

```
## S3 method for class 'mcpmod_simulation'
summary(object, ...)
```

#### Arguments

object an object of the "mcpmod\_simulation" class.
... additional arguments affecting the summary produced.

#### Value

A data frame with a summary with the information provided by mcpmod\_simulation.

#### References

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

```
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)</pre>
sample.size <- 25</pre>
# shape parameter
sigma.true <- 0.5
# median survival time for placebo dose
mst.control <- 4
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))</pre>
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))</pre>
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))</pre>
Delta <- (minEff.Delta - placEff)</pre>
## MCP Parameters
significance.level <- 0.05
selModel <- "AIC"
emax \leftarrow guesst(d = doses[4], p = 0.5, model="emax")
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])</pre>
logit \leftarrow guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic",
Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50,
Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,</pre>
                          exponential = exp, logistic = logit,
                          betaMod = betam, doses = doses,
                          placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## Simulation Parameters
n.sim <- 10
seed <- 1234
n.cores <- 1
```

summary.weibreg 11

```
## True Model
model.true <- "emax"</pre>
response <- model_response(doses = doses,</pre>
                            distr = "weibull",
                            model.true = model.true,
                            models.candidate = models.candidate)
lambda.true <- response$lambda</pre>
parm <- list(lambda = lambda.true, sigma = sigma.true)</pre>
## Scenario: Censoring 10%
censoring.rate <- 0.1
test <- mcpmod_simulation(doses = doses,</pre>
           parm = parm,
           sample.size = sample.size,
           model.true = model.true,
           models.candidate = models.candidate,
           selModel = selModel,
           significance.level = significance.level,
           Delta = Delta,
           distr = "weibull",
           censoring.rate = censoring.rate,
           sigma.estimator = "jackknife",
           n.cores = n.cores, seed = seed, n.sim = n.sim)
summary(test)
```

summary.weibreg

Print a summary for a object of the weibreg class.

# **Description**

Summarizes the results for a object of the weibreg class.

# Usage

```
## S3 method for class 'weibreg'
summary(object, ...)

## S3 method for class 'weibreg'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

#### **Arguments**

object an object of the weibreg class.
... additional arguments affecting the summary produced.
x an object of class summary .weibreg, usually, a result of a call to summary .weibreg.
digits the number of significant digits to use when printing.

12 summary.weibreg

#### Value

A complete summary for the coefficients extracted from a weibreg object.

#### **Functions**

```
• print(weibreg):
```

#### References

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

```
require(survival)
set.seed(2100)
##Generating covariates
x<-runif(n, max=10)</pre>
lambda < -exp(1.2-0.5*x)
sigma<-1.5
##Drawing T from Weibull model and fixing censoring at 1.5
T<-rweibull(n, shape=1/sigma, scale=lambda)
L < -rep(1.5, n)
##Defining the observed times and indicators of failure
t<-pmin(T,L)
delta<-ifelse(T<=L, 1, 0)</pre>
data=data.frame(t=t, delta=delta, x=x)
##Fitting for Weibull regression model
##Traditional MLE with corrected variance
ex1=weibfit(Surv(t,delta)~x, data=data, L=L, estimator="MLE",
corrected.var=TRUE)
summary(ex1)
##BCE without corrected variance
ex2=weibfit(Surv(t,delta)~x, data=data, L=L, estimator="Firth",
corrected.var=FALSE)
summary(ex2)
##BCE with corrected variance
ex3=weibfit(Surv(t,delta)~x, data=data, L=L, estimator="BCE",
corrected.var=TRUE)
summary(ex3)
##Firth's correction without corrected variance
ex4=weibfit(Surv(t,delta)~x, data=data, L=L, estimator="BCE",
corrected.var=FALSE)
```

summary(ex4)

weibfit Computes different estimators for the censored Weibull regression model

#### **Description**

Computes the maximum likelihood estimators (MLE) for the censored Weibull regression model. The bias-corrected estimators based on the Cox and Snell's and Firth's methods also are available. In addition, for the covariance matrix the corrected estimators discussed in Magalhaes et al. 2021 also are available.

# Usage

```
weibfit(formula, data, L = Inf, estimator = "MLE",
corrected.var = FALSE)
```

# **Arguments**

formula A formula that contains on the left hand side an object of the type Surv and on

the right hand side the covariates definition

data A data.frame in which the formula argument can be evaluated

L the prefixed censoring times.  $L = \infty$  by default.

estimator the class of estimator used: MLE (maximum likelihood estimator, by default),

BCE (bias-corrected estimator based on the Cox and Snell's method) and Firth

(bias-corrected estimator based on the Firth's method).

corrected.var should the covariance-corrected estimator be used? (FALSE by default). See

details.

#### **Details**

The Weibull distribution considered here has probability density function

$$f(t; \lambda, \sigma) = \frac{1}{\sigma \lambda^{1/\sigma}} t^{1/\sigma - 1} \exp\left\{-\left(\frac{t}{\lambda}\right)^{1/\sigma}\right\}, \quad t, \sigma, \lambda > 0.$$

The regression structure is incorporated as

$$\log(\lambda_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}, \quad i = 1, \dots, n.$$

For the computation of the bias-corrected estimators,  $\sigma$  is assumed as fixed in the jackknife estimator based on the traditional MLE.

The Fisher information matrix for  $\beta$  is given by  $K = \sigma^{-2} X^{\top} W X$ , where  $X = (x_1, \dots, x_n)^{\top}$ ,  $W = \text{diag}(w_1, \dots, w_n)$ , and

$$w_i = E\left[\exp\left(\frac{y_i - \log \lambda_i}{\sigma}\right)\right] = q \times \left\{1 - \exp\left[-L_i^{1/\sigma} \exp(-\mu_i/\sigma)\right]\right\} + (1 - q) \times (r/n),$$

with  $q = P\left(W_{(r)} \leq \log L_i\right)$  and  $W_{(r)}$  denoting the rth order statistic from  $W_1, \ldots, W_n$ , with q = 1 and q = 0 for types I and II censoring, respectively. (See Magalhaes et al. 2019 for details).

The bias-corrected maximum likelihood estimator based on the Cox and Snell's method (say  $\widetilde{\beta}$ ) is based on a corrective approach given by  $\widetilde{\beta} = \widehat{\beta} - B(\widehat{\beta})$ , where

$$B(\boldsymbol{\beta}) = -\frac{1}{2\sigma^3} \boldsymbol{P} \boldsymbol{Z}_d \left( \boldsymbol{W} + 2\sigma \boldsymbol{W}' \right) \boldsymbol{1},$$

with  $P = K^{-1}X^{\top}$ ,  $Z = XK^{-1}X^{\top}$ ,  $Z_d$  is a diagonal matrix with diagonal given by the diagonal of Z,  $W' = \text{diag}(w'_1, \dots, w'_n)$ ,  $w'_i = -\sigma^{-1}L_i^{1/\sigma}\exp\{-L_i^{1/\sigma}\exp(-\mu_i/\sigma) - \mu_i/\sigma\}$  and  $\mathbf{1}$  is a n-dimensional vector of ones.

The bias-corrected maximum likelihood estimator based on the Firth's method (say  $\check{\beta}$ ) is based on a preventive approach, which is the solution for the equation  $U_{\beta}^{\star} = 0$ , where

$$U_{\beta}^{\star} = U_{\beta} - K_{\beta\beta}B(\beta).$$

The covariance correction is based on the general result of Magalhaes et al. 2021 given by

$$\mathbf{Cov_2^\tau}(\boldsymbol{\beta^\star}) = \boldsymbol{K}^{-1} + \boldsymbol{K}^{-1} \left\{ \boldsymbol{\Delta} + \boldsymbol{\Delta}^\top \right\} \boldsymbol{K}^{-1} + \mathcal{O}(n^{-3})$$

where  $\Delta = -0.5\Delta^{(1)} + 0.25\Delta^{(2)} + 0.5\tau_2\Delta^{(3)}$ , with

$$\Delta^{(1)} = \frac{1}{\sigma^4} \boldsymbol{X}^{\top} \boldsymbol{W}^{\star} \boldsymbol{Z}_d \boldsymbol{X},$$

$$\Delta^{(2)} = -\frac{1}{\sigma^6} \boldsymbol{X}^\top \left[ \boldsymbol{W} \boldsymbol{Z}^{(2)} \boldsymbol{W} - 2\sigma \boldsymbol{W} \boldsymbol{Z}^{(2)} \boldsymbol{W}' - 6\sigma^2 \boldsymbol{W}' \boldsymbol{Z}^{(2)} \boldsymbol{W}' \right] \boldsymbol{X},$$

and

$$\Delta^{(3)} = \frac{1}{\sigma^5} \boldsymbol{X}^\top \boldsymbol{W}' \boldsymbol{W}^{\star \star} \boldsymbol{X},$$

where  $\boldsymbol{W}^{\star} = \operatorname{diag}(w_1^{\star}, \dots, w_n^{\star}), w_i^{\star} = w_i(w_i - 2) - 2\sigma w_i' + \sigma \tau_1(w_i' + 2\sigma w_i''), \boldsymbol{Z}^{(2)} = \boldsymbol{Z} \odot \boldsymbol{Z}$ , with  $\odot$  representing a direct product of matrices (Hadamard product),  $\boldsymbol{W}^{\star\star}$  is a diagonal matrix, with  $\boldsymbol{Z}(\boldsymbol{W} + 2\sigma \boldsymbol{W}') \boldsymbol{Z}_d \boldsymbol{1}$  as its diagonal,  $\boldsymbol{W}'' = \operatorname{diag}(w_1'', \dots, w_n''), w_i'' = -\sigma^{-1} w_i' \left[ L_i^{1/\sigma} \exp(-\mu_i/\sigma) - 1 \right],$   $\boldsymbol{\tau} = (\tau_1, \tau_2) = (1, 1)$  indicating the second-order covariance matrix of the MLE  $\boldsymbol{\beta}^{\star} = \widehat{\boldsymbol{\beta}}$  denoted by  $\operatorname{Cov}_{\mathbf{2}}(\widehat{\boldsymbol{\beta}})$  and  $\boldsymbol{\tau} = (0, -1)$  indicating the second-order covariance matrix of the BCE  $\boldsymbol{\beta}^{\star} = \widehat{\boldsymbol{\beta}}$  denoted by  $\operatorname{Cov}_{\mathbf{2}}(\widehat{\boldsymbol{\beta}})$ .

#### Value

coefficients a vector with the estimated coefficients for  $\beta$ .

var a matrix with the estimated covariance matrix for the estimates of the regression coefficients  $\beta$ 

scale the estimated scale parameter  $\sigma$ 

loglik the value for the logarithm of the likelihood function evaluated in the estimates

of  $\boldsymbol{\beta}$  and  $\sigma$ 

linear.predictors

a vector with the estimated linear predictor  $\boldsymbol{x}_i^{\top} \boldsymbol{\beta}$ 

y a vector with the observed times (possibly censored)

estimator the estimator used for  $\beta$ : MLE, BCE or Firth.

corrected.var logical. TRUE if a correction for the covariance was used, FALSE otherwise.

#### Author(s)

Gallardo D.I., Diniz, M.A., Magalhaes, T.M.

#### References

Cox, D.R., Snell E.J. A general definition of residuals Journal of the Royal Statistical Society. Series B (Methodological). 1968;30:248-275.

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

Firth, D. Bias reduction of maximum likelihood estimates Biometrika. 1993;80:27-38.

Magalhaes Tiago M., Botter Denise A., Sandoval Monica C. A general expression for second-order covariance matrices - an application to dispersion models Brazilian Journal of Probability and Statistics. 2021;35:37-49.

```
require(survival)
set.seed(2100)
##Generating covariates
n=20;
x<-runif(n, max=10)</pre>
lambda<-exp(1.2-0.5\timesx); sigma<-1.5
##Drawing T from Weibull model and fixing censoring at 1.5
T<-rweibull(n, shape=1/sigma, scale=lambda); L<-rep(1.5, n)
##Defining the observed times and indicators of failure
y<-pmin(T,L);
delta<-ifelse(T<=L, 1, 0)</pre>
data=data.frame(y=y, delta=delta, x=x)
##Fitting for Weibull regression model
##Traditional MLE with corrected variance
ex1=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="MLE",
corrected.var=TRUE)
summary(ex1)
```

```
##BCE without corrected variance
ex2=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE",
corrected.var=FALSE)
summary(ex2)

##BCE with corrected variance
ex3=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE",
corrected.var=TRUE)
summary(ex3)

##Firth's correction without corrected variance
ex4=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE",
corrected.var=FALSE)
summary(ex4)
```

# **Index**