Método de la Falsa Posición o Regula - Falsi (Latín)

Se basa en una visualización gráfica. Si f (b) está mucho más cercana a cero que f(a), es lógico que la raíz se encuentre más cerca de "b" que dé "a".

Este método de alternativo aprovecha esta visualización gráfica y consiste en unir f (b) y f(a) con una línea recta.

La intersección de esta línea con el eje de las x representa una mejor aproximación de la raíz.

Usando triángulos semejantes la intersección de la línea recta con el eje x se estima mediante:

$$\frac{f(b)}{x-b} = \frac{f(a)}{x-a}$$

Despejando x;

$$x = a - f(a) (b-a)$$

 $f(b) - f(a)$

Tiene un punto fijo que es" b" por lo tanto también lo es f(b)

$$\varepsilon = \text{Error} = |x_{i+1} - x_i| = 0.001$$

Ejemplo.-

Calcule la raíz para $f(x)=3x^3-2x-3$

Χ	f(x)			
-2	-23			
-1	-4			
0	-3			
a→ 1	-2→ f(a)			
b → 2	17→ f(b)			

$$x = a - \frac{f(a)(b-a)}{f(b) - f(a)}$$

$$f(a) = 3a^3 - 2a - 3$$

i	b	f(b)	а	x	f(a)	$ \varepsilon = x_{i+1} - x_i $
0	2	17	1	-	-2	-
1	2	17	1	1.105263158	-2	-
2	2	17	1.105263158	1.162412993	-1.159935851	0.057149835
3	2	17	1.162412993	. 1.191557573	-0.612854845	0.02914457996
4	2	17	1.191557573 ₺	1.205933036	-0.307761039	0.014375463
5	2	17	1.205933036 🗸	1.21290545	-0.150593126	0.006972414
6	2	17	1.21290545 💆	1.216244225	-0.072751076	0.003338775
7	2	17	1.216244225 ₺	1.217859143	-0.035100587	0.001614918

$$\varepsilon = |x_{i7} - x_{i6}| = |1.217859143 - 1.216244225|$$

€ = 0.001614918