TD4 Niveau DD - Manini								
	<u>TP4 Niveau DR - Menini</u>	Pt		А	В	: D	Note	
I.	Réglage du transmetteur de niveau							
	Proposer un câblage électrique permettant le fonctionnement de la boucle de régulation et la communication avec un	1	С				0,35	
	modem Hart. On rappelle qu'une résistance de 250 Ω est branchée en parallèle sur l'entrée mesure du régulateur.		Ľ	Ш			0,55	
	Valider le fonctionnement de la communication avec le transmetteur. On fournira une copie d'écran des réglages du	1	Α				1	
	transmetteur.				-	-		
	Procéder au réglage du transmetteur pour qu'il affiche la mesure du niveau dans le réservoir supérieur. On détaillera la	2	Α				2	
	procédure utilisée.			Н				
	Tracer la caractéristique de votre transmetteur de niveau (mesure en % en fonction du niveau réel en %, au moins 5	1	Α				1	
	mesures).			H				
II.	Régulation de niveau			Н				
	Régler les vannes manuelles afin d'avoir un niveau de 50% pour une commande de 50%. Ne plus toucher ces vannes	1	Α				1	
	par la suite.	1	^		-		1	
	Relever la réponse indicielle du procédé pour une commande variant de 50% à 60%.	1	Α		-		1	
	Déduire de la courbe précédente le sens d'action du procédé. On fera un raisonnement complet.	1	Α		-		1	
	Déterminer le modèle de Broïda de votre procédé. On fera apparaitre toutes les constructions nécessaires et on	3	Α				3	
	utilisera la méthode simple.							
	Á l'aide du simulateur EasyReg, déterminer le gain A du correcteur PI (on prendra Ti = τ) afin d'obtenir un temps de réponse le plus court possible, sans dépassement.	1					0	
	Relever le temps de réponse à ±5%, ainsi que l'erreur statique de la réponse théorique.	1		H	+	-	0	
'				+	-	-		
	Programmer votre régulateur conformément au correcteur déterminé. On donnera les paramètres modifiés ainsi que leur valeur respective.	1					0	
	Relever la réponse à un échelon de consigne de 50% à 60%.	1		H			0	
	Relever le temps de réponse à ±5%, ainsi que l'erreur statique de la réponse réelle.	1		+	+		0	
	Comparer les temps de réponse théorique et réel et expliquer leur différence si il y a lieu.	1		╁┼	+	+	0	
111.	Alarme			H				
	Donner les équations logiques de LR et LV en fonction de ≤80%, ≥80% et BP.	1		${}^{+}$			0	
	Proposer un schéma de câblage électrique des voyants LR et LV et de BP. On s'aidera de la documentation sur le			${}^{\dag}$			+ $+$	
	régulateur.	1					0	
	Programmer le régulateur pour avoir un fonctionnement d'alarme correspondant au tableau ci-dessus. On donnera le			${}^{\dag}$				
	nom et la valeur des paramètres modifiés.	1					0	
	nem et la talea. als parametres mountes		Note	: 1),35	/20		

I. Réglage du transmetteur de niveau

1)

2)

		HART information : FCX-A/
	HART informations Manufacturer Id. x 15 Fuji Device type code x 2 FCX-A/C II Device id. x 83277 5	Polling address
<u>*</u>	Revisions Universal command rev. Transmitter specific rev. x 5	
	Read Wile	

3) Process-PV (%) 100.00-Process Value 9.22 kPa 80.00-8.604 mΑ Analog Value 60.00-40.00-28.78 % Recent Range 20.00-0.00--Process-PV (%) 100.00-Process Value 7.91 kPa 80.00-4.048 Analog Value mΑ 60.00-0.30 40.00-% Recent Range 20.00-0.00-

Le Hart était déjà paramétré pour afficher le niveau du réservoir supérieur .

4)

Valeur Réservoir	Valeur Capteur				
0	0				
20	19,25				
40	39,4				
50	48,54				
70	67,85				

II. Régulation de niveau

1) Nom Adresse Valeur Description PV Variable de process 46,55 tOP Puissance de sortie cible sou 3 50.00 2) COM4.ID001-2208e.Operator.MAIN.PV -COM4.ID001-2208e.Operator.MAIN.tOP 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 18:10:00 Heure 18:06:00 18:07:00 18:12:00 18:13:00 18:14:00 18:08:00 18:09:00 18:11:00 18:15:00

3)Quand la commande augmente la mesure augmente le sens d'action du procédé est donc direct et le sens d'action du régulateur est inverse.

Gain statique =13/10=1,3 Retard=1,3s T=2,5 min