Рекомендательные системы на основе вложенных тегов

Исполнил:

Чеботаев А. П.

Научный руководитель:

Бухановский А. В., д.т.н

Задачи рекомендательных систем

пользователи

объекты

функция «полезности»

Современные РС

• Упорядочивание

Направления развития

- Обоснование
- Фильтрация

Существующие методы

Контентные методы

- **¥** Узкие рекомендации
- **★** Однородность объектов

Совместная фильтрация

- ***** Ресурсоемкость
- **Ж** Похожие пользователи не являются обоснованием

Скрытые факторы

- ***** Ресурсоемкость
- ★ Факторы являются скрытыми

Рекомендательные системы

Вложенные теги

Пример

Поиск объектов

- 1. Поиск компонент
- 2. Поиск их родителей
- 3. Сравнение, фильтрация

Поиск — $O(n^2)$ Сравнение — O(n)n — среднее количество компонент

Экспериментальный стенд

10 000 фильмов

350 000 тегов (актеры, режиссеры, метки пользователей)

Обоснование рекомендаций

Фильтрация рекомендаций

Неточные оценки

1 000 000 рейтингов

6 000 пользователей

3 900 фильмов

100 000 ключевых слов

- 1. Обучение на 800 000 рейтингов
- 2. Проверка на 200 000 рейтингов
- 3. Измерение среднеквадратичной ошибки

Результаты

- 1. Выявлены проблемы существующих рекомендательных систем
- Предложен метод, решающий проблемы обоснования и фильтрации рекомендаций
- 3. Построен экспериментальный стенд рекомендательной системы по предложенному методу
- 4. Произведено сравнение результатов предложенного метода с существующими

Выводы

• Отсутствие явных факторов не позволяет фильтровать рекомендуемые объекты

 Возможно построение обосновывающих рекомендательных систем с функциональностью фильтрации рекомендаций при меньших затратах ресурсов

• Допустимо использование предложенного метода в промышленных системах

Сравнение объектов

- Объект a связан с $S_a = \{o_{a_1}, o_{a_2}, \dots, o_{a_n}\}$ Вес связи $o_1 \to o_2$ обозначим $w(O_1, O_2)$
- $pw(a,o)=rac{W(a,o_i)}{\sum_i^{o_i\in S_a}(W(a,o_i))}$ взвешенный вес
- $u(a,b) = \sum_{i}^{o_i \in S_b \cup S_a} \min(pw(o_i,a), pw(o_i,a),)$

Развитие метода

• Функции сравнения

• Алгоритмы поиска

- Качество описания объектов
 - Анализ рецензий фильмов
 - Фильтрация пользовательских данных