Definitheit von Matrizen

 $A \in \mathbb{R}^{n \times m}, \ A = A^T$ heißt

- positiv definit, falls $v^T A v > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- negativ definit, falls $v^T A v < 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- positiv semidefinit, falls $v^T A v \ge 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- negativ semidefinit, falls $v^T A v \leq 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$
- indefinit, falls $\exists v : v^T A v > 0 \land \exists w : w^T A w < 0$

Für Matrizen: Eigenwerte betrachten

Matrixnormen

V ist ein K-Vektorraum

Norm ist eine Abbildung $||\cdot||:V\to\mathbb{R}$ mit

1.
$$||v|| \ge 0 \land ||v|| = 0 \Leftrightarrow v = 0$$

2.
$$||\lambda v|| = \lambda ||v||$$

3.
$$||v + w|| \le ||v|| + ||w||$$

Frobeniusnorm:

 $A \in \mathbb{R}^{m \times n}$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2}$$

Induzierte Matrixnorm:

$$A \in \mathbb{R}^{n \times n} \rightarrow ||A|| := \sup_{||v||=1} ||Av||_V$$