Least Squares Problems

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

Polynomial curve fitting.

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

Normal Equations Method.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

- Normal Equations Method.
- QR Decomposition Method.

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

- Normal Equations Method.
- QR Decomposition Method.
- Singular Value Decomposition Method.

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{ ext{also called Col (A)}} \subset \mathbb{R}^n ext{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{\text{also called Col (A)}} \subset \mathbb{R}^n \text{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

The LSP is a two stage process involving

- 1. Find the best approximation to b from R(A) i.e., find $y_0 \in R(A)$ such that $||b y_0||_2 = \min_{y \in R(A)} ||b y||_2$.
- 2. Find $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y_0$.

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{\text{also called Col (A)}} \subset \mathbb{R}^n \text{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

The LSP is a two stage process involving

- 1. Find the best approximation to b from R(A) i.e., find $y_0 \in R(A)$ such that $||b y_0||_2 = \min_{y \in R(A)} ||b y||_2$.
- 2. Find $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y_0$.

Since

$$\mathbb{R}^n = R(A) \oplus R(A)^{\perp}$$
,

for $b \in R^n$, there exists unique $b_1 \in R(A)$, $b_2 \in R(A)^{\perp}$, such that $b = b_1 + b_2$.

Therefore for all
$$x \in \mathbb{R}^m$$
, $b - Ax = \underbrace{b_1 - Ax}_{\in R(A)} + \underbrace{b_2}_{\in R(A)^{\perp}}$ and

$$\begin{split} \|b - Ax\|_2^2 &= \langle b_1 - Ax + b_2, b_1 - Ax + b_2 \rangle \\ &= \|b_1 - Ax\|_2^2 + \|b_2\|_2^2 \qquad \text{(as } \langle b_1 - Ax, b_2 \rangle = 0 \text{ for all } x \in \mathbb{R}^m) \\ &\geq \|b_2\|_2^2 \\ &= \|\underbrace{b - Ax_0}_{:=r(=b_2)}\|_2^2 \end{split}$$

where $x_0 \in \mathbb{R}^m$ such that $Ax_0 = b_1$. Hence, $\min_{x \in \mathbb{R}^m} \|b - Ax\|_2^2 \ge \|b - Ax_0\|_2^2 \ge \min_{x \in \mathbb{R}^m} \|b - Ax\|_2^2 \Rightarrow \min_{x \in \mathbb{R}^m} \|b - Ax\|_2 = \|b - Ax_0\|_2.$

$$X \in \mathbb{R}^m$$

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists!

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m.

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m. If rank A < m, there are infinitely many solutions!

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m. If rank A < m, there are infinitely many solutions!

Exercise: Prove the above statements!

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

Exercise: Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, where $n \geq m$. Prove that the following statements are equivalent.

- 1. rank A = m.
- 2. $A^T A$ is nonsingular.
- 3. $A^T A$ is positive definite.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

Exercise: Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, where $n \geq m$. Prove that the following statements are equivalent.

- 1. rank A = m.
- 2. $A^T A$ is nonsingular.
- 3. $A^T A$ is positive definite.

Pseudocode for solving the Least Squares Problem via Normal Equations when rank A = m:

- 1. Form the Normal Equations. $(2nm^2 + O(nm))$ flops)
- 2. Solve them via the Cholesky Method. $(m^3/3 + O(m^2))$ flops)
- 3. Compute two norm squared of the residual vector. (2nm + 3n flops)

