| DBIS | Lehrveranstaltung | Databases and Information Systems 2020 |        |             |  |  |
|------|-------------------|----------------------------------------|--------|-------------|--|--|
|      | Aufgabenzettel    | 1                                      |        |             |  |  |
|      | STiNE-Gruppe 14   | Simon Weidmann, Aram Yesildeniz        |        |             |  |  |
|      | Ausgabe           | 28. April 2020                         | Abgabe | 8. Mai 2020 |  |  |

#### 1 Beispiel fÃijr ER-Diagramm



#### 2 Beispiel fÃijr relationales Datenbankschema

 $Person(\underline{PID}, Name, Vorname, \underline{(HaustierName, HaustierRasse)} \rightarrow \underline{(Haustier.Name, Haustier.Rasse)})$   $Haustier(\underline{Name, Rasse}, Herrchen \rightarrow Person.PID)$ 

#### 3 Beispiel fÄijr Ausdruck der Relationenalgebra

$$\rho_{Rasse \leftarrow Sorte}(\pi_{Rasse, Geschlecht}((Wolf \underset{Wolf \, .WID = Haustier \, .HID}{\bowtie}(\sigma_{Name = \text{``Hasso''}} Haustiere)) \bowtie Person)) \\ = \{\text{``Steppenwolf''}, \text{``m''}\}$$

| DBIS | Lehrveranstaltung | Databases and Information Systems 2020 |        |             |  |
|------|-------------------|----------------------------------------|--------|-------------|--|
|      | Aufgabenzettel    | 1                                      |        |             |  |
|      | STiNE-Gruppe 14   | Simon Weidmann, Aram Yesildeniz        |        |             |  |
|      | Ausgabe           | 28. April 2020                         | Abgabe | 8. Mai 2020 |  |

## 4 Beispiel fÃijr SQL-Anfrage

```
SELECT
h.Name,
h.Rasse
FROM
Haustier h,
Person p
WHERE
h.Herrchen = p.PID AND
p.Vorname LIKE "P%"
```

## 5 Beispiel fÃijr Operatorbaum



# 6 Beispiel fÃijrr Tabelle mit Sperranforderungen

| Zeitschritt | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | X              | у              | z  | Bemerkung |
|-------------|----------------|----------------|----------------|----------------|----------------|----|-----------|
| 0           |                |                |                | NL             | NL             | NL |           |
| 1           | lock(x,X)      |                |                | X <sub>1</sub> | NL             | NL |           |
| 2           | write(x)       | lock(y,R)      |                | X <sub>1</sub> | R <sub>2</sub> | NL |           |
| 3           |                |                |                |                |                |    |           |
| 4           |                |                |                |                |                |    |           |
| 5           |                |                |                |                |                |    |           |

| DBIS | Lehrveranstaltung | Databases and Information Systems 2020 |        |             |  |
|------|-------------------|----------------------------------------|--------|-------------|--|
|      | Aufgabenzettel    | 1                                      |        |             |  |
|      | STiNE-Gruppe 14   | Simon Weidmann, Aram Yesildeniz        |        |             |  |
|      | Ausgabe           | 28. April 2020                         | Abgabe | 8. Mai 2020 |  |

#### 7 Beispiel fÃijr B- und B\*-BÃďumen

LÃűschen Sie aus dem unten abgebildeten **B\*-Baum** der Klasse  $\tau(1,2,h)$  die DatensÃd'tze mit den SchlÃijsselwerten **40**, **43**, **38**, **32** und **90** (in dieser Reihenfolge). Geben Sie jeweils kurz an, welche konkrete Maçnahme Sie durchgefÃijhrt haben (Mischen, Ausgleichen, einfaches LÃűschen) und zeichnen Sie den Baum nach jedem Mischen und Ausgleichen neu. FÃijr Ausgleichs- und Mischoperationen sollen nur direkt benachbarte Geschwisterknoten (bevorzugt der rechte) herangezogen werden.



40 und 43, Einfaches LÃűschen 38, Ausgleichen



#### 32, Mischen



90, Einfaches LÃűschen