

1학년 ()반 ()번 이름(

II. 방정식과 부등식 - 01. 복소수와 그 연산 : 교과서 44~50p	QR 코드	도장 확인
복소수의 사칙연산은 어떻게 할까?		
[10공수1-02-01] 복소수의 뜻과 성질을 설명하고, 사칙연산을 수행할 수 있다.		

복소수의 덧셈과 뺄셈

허수단위 i 를 <mark>문자처럼 생각</mark>하여 다항식의 덧셈과 뺄셈에서와 같은 방법으로 계산한다.

즉, 실수부분은 실수부분끼리, 허수부분은 허수부분끼리 계산한다.

a, b, c, d가 실수일 때

- (a+bi)-(c+di) =

(01)(5+2i)+(3+i)=

▶ 문제 4

다음을 계산하시오.

(1)(1+i)+(3+2i)

(2) (-2+i)+(5-3i)

(3) (9-7i)-(4+i)

(4) 6i - (2-i)

복소수의 곱셈

허수단위 i 를 <mark>문자처럼 생각</mark>하여 다항식의 곱셈에서와 같은 방법으로 전개한 다음 (

)을 이용하여 계산한다.

)

a, b, c, d가 실수일 때

 $(a+bi)(c+di) = \underline{\hspace{1cm}}$

=

a, b, c, d가 실수일 때 (a + bi)(c + di) =

(01)(1+i)(2+i) =

▶ 문제 5

다음을 계산하시오.

(1) i(1-4i)

(2) (-1+2i)(4+3i)

(3) (2+i)(2-i)

 $(4)(3-i)^2$

○ 예제 1 - 복소수의 곱셈 이용하기

등식 (a+i)(2-i) = -5 + bi를 만족시키는 실수 a, b의 값을 구하시오.

▶ 문제 6

등식 (5+ai)(3+i)=11+bi를 만족시키는 실수 a, b의 값을 구하시오.

복소수의 나눗셈

분모의 ()를 분모. 분자에 각각 곱하여 분모를 실수로 고친 다음 계산한다.

a, b, c, d가 실수이고 $c + di \neq 0$ 일 때

$$\frac{a+bi}{c+di} = ($$

$$) = ($$

)

a, b, c, d가 실수이고 $c + di \neq 0$ 일 때 $\frac{a + bi}{c + di} =$

○ 예제 2 - 복소수의 나눗셈

 $\frac{2+i}{2-i}$ 를 계산하여 a+bi (a, b는 실수)의 꼴로 나타내시오.

▶ 문제 7

다음을 계산하여 a+bi (a, b는 실수)의 꼴로 나타내시오.

 $(1)\frac{1}{i}$

(2) $\frac{1}{4+i}$

(3) $\frac{1+\sqrt{2}i}{1-\sqrt{2}i}$

(4) $\frac{2-i}{3+i}$

음수의 제곱근

두 복소수 $\sqrt{2}i$, $-\sqrt{2}i$ 에 대하여 $(\sqrt{2}i)^2=($), $(-\sqrt{2}i)^2=($)이므로 $\sqrt{2}i$, $-\sqrt{2}i$ 는 (

)의 (

)이다.

일반적으로 양수 a에 대하여

 $\sqrt{a}i$, $-\sqrt{a}i \succeq (\sqrt{a}i)^2 = ($), $(-\sqrt{a}i)^2 = ($)이므로 $\sqrt{a}i$, $-\sqrt{a}i \succeq ($)의(

)이다.

a > 0 일 때 ① $\sqrt{-a} =$

② -a 의 제곱근은 (

)이다.

(예) $\sqrt{-3} = , -9$ 의 제곱근은

▶ 문제 8

다음 수의 제 $\frac{1}{100}$ 허수단위 i를 사용하여 나타내시오.

$$(1) - 8$$

$$(2) - 100$$

(3)
$$-\frac{3}{4}$$

▶ 문제 9

다음을 계산하여 a+bi (a, b는 실수)의 꼴로 나타내시오.

(1)
$$\sqrt{-1} + \sqrt{-16}$$

(2)
$$\sqrt{3}\sqrt{-27}$$

(3)
$$\frac{\sqrt{12}}{\sqrt{-3}}$$