Федеральное государственное автономное учреждение высшего профессионального образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова

ПРАКТИЧЕСКАЯ РАБОТА

Обзор статьи
«Mathematical Description of the Microstructural Modific»

Каграманян Давид Геворгович студент информатики и вычислительной техники (группа БИВ184.1)

Москва 2020

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Содержание

1	Введение	3	3
2	Теория	3	}
3	Цели статьи	4	Ł
4	Характеристики	4	Ł
5	Эксперименты	7	7
6	Сравнение результатов экспериментов и математических моделей	ç)
7	Выводы	11	L

1 Введение

Микроструктура металлов может состоять из аустенита, феррита, баинита и мартензита. В процессе термической и физческой обработки изменяются механические качества сплава. Они зависят от:

- состава сплава
- параметров обработки
- микроструктуры до обработки

Перлит - эвтектоидная смесь двух фаз: феррита и цементита

Феррит - фазовая составляющая сплавов железа

Цементит - карбид железа F_3C

Аустенит - высокотемпературная гранецентрированная модификация железа и его сплавов

2 Теория

Сфероидизацией перлита называют процесс превращения перлитной составляющей в сфероидальные выделения цементита. Пластинчатый перлит превращается в зернистый, в результате чего значительно уменьшаются твёрдость и прочность, но повышается пластичность металла.

Рис. 1: пластинчатый и зернистый перлит

Однородный аустенит всегда превращается в пластинчатый перлит. Нагрев до высокой температуры, когда создаются условия для образования более однородной структуры, способствует появлению пластинчатых структур. Неоднородный аустенит при всех степенях переохлаждения даёт зернистый перлит

Рис. 2: Перлит пластинчатый; х30000. Эвтектоид, состоящий из тонких пластинок цементита, наклоненных под углом к поверхности шлифа и расположенных на ферритной основе.

3 Цели статьи

Рис. 3: схема на макетной плате

4 Характеристики

- f constant total carbide volume
- \bullet f_u unspheroidized volume fraction
- degree of spheroidization E experimental

$$\frac{f}{f_u} = \frac{1}{1 - E} \tag{1}$$

• degree of spheroidization E (Kostler)

$$E = m \times \lg t + b \tag{2}$$

• degree of spheroidization E (Atasoy)

$$E = 1 - A \times exp(-B \times r \times x^2 \times t) \tag{3}$$

• spheroidization rate k (Atasoy)

$$B \times r \times x^2 \times t \tag{4}$$

• the mean particle size d (Dirnfeld)

$$d = a \times t^n \tag{5}$$

- m, b, a, A, and B are constants to be determined from the available data
- the axis ratio of particle size r
- the mean thickness of non-spheroidized particles x
- annealing duration t
- annealing temperature T
- The spheroidization rate ν_E $\nu_E = \frac{dE}{dt}$
- hardness HV
- time–temperature parameter P $P = (C + \ln t) \times T$
- mean-intercept ferrite grain size L
- diameter of intra-grain carbides d_{iq}
- ullet diameter of grain-boundary carbides d_{gb}
- volume fraction of second phase f
- mean surface-to-surface particle spacing D_S $D_S = (\frac{2}{3f})^{\frac{1}{2}} \times d \times (1-f))$
- ultimate tensile strength R_m
- reduction of area Z

- contribution from solid-solution strengthening $(\sigma_0)_{SS}$
- lower yield strength R_{eL}

$$R_{eL} = 310D_S^{\frac{-1}{2}} \times 460L^{\frac{-1}{2}}$$

$$R_{eL} = 310D_S^{\frac{-1}{2}} \times 460L^{\frac{-1}{2}}$$

$$R_{eL} = (\sigma_0)_{SS} + 145D_S^{\frac{-1}{2}} \times 460L^{\frac{-1}{2}}$$

5 Эксперименты

За основу взята сталь AISI 1045 0.45C, 0.16Si, 0.69Mn, 0.05Cr, 0.023P, 0.019S.

Взяли 9 образцои и провели отжиг каждой заготовки в течение 0, 0.5, 1, 2, 4, 8, 12, 16 и 24 часов соответственно при температура 680 C.

Рис. 4: сфериодизация в течение 0 и 0,5 часов

Рис. 5: сфериодизация в течение 12 и 16 часов

После 8 часов отжига все еще остаются пластинчатые структуры, а после 12 - уже нет

Рис. 6: распределение количества частиц по соотношению сторон для структуры отжига 0 и 0,5 часов

Рис. 7: распределение количества частиц по соотношению сторон для структуры отжига 12 и 16 часов

Spheroidization time [h]	L [μm]	d_{ig} [μ m]	d_{gb} [μ m]	D_s [μ m]	E [%]	R_{eL} [MPa]	R_m [MPa]	HV1 [-]	Z [%]
0	6.5	0.16	0.31	0.45	7	404	622	192	59
0.5	7	0.26	0.41	0.74	43	366	555	164	61
1	7.7	0.31	0.47	0.88	47	356	549	161	62
2	9.2	0.68	0.84	1.91	59	351	546	156	63
4	9.4	0.65	0.88	1.84	60	349	540	154	64
8	9.5	0.65	1.06	1.83	71	348	537	154	64
12	9.7	0.7	1.15	1.96	73	348	530	152	64
16	9.8	0.71	1.17	1.99	76	345	529	152	64
24	10.3	0.74	1.14	2.1	78	342	518	147	64

Рис. 8: измеренные механические характеристики металла

6 Сравнение результатов экспериментов и математических моделей

Рис. 9: сравнение модели Kostler (2) и экспериментальных данных (1) для уровня сфериодизации от времени.

Puc. 10: сравнение модели Dirnfeld (5) и экспериментальных данных для среднего размера частиц цементита от времени

Рис. 11: сравнение модели Atasoy (4) и экспериментальных данных отношения объема карбида к объему несфереодизированного карбида от времени.

Рис. 12: сравнение модели Atasoy (3) и экспериментальных данных (1) для уровня сфериодизации от времени

7 Выводы

Механические характеристики сплава во многом зависят от процентного содержания примесей. В данной работе рассмотрен характеристики сплава, которые зависят от содержания углерода и вида карбида железа. Проведенные исследования полезны тем, что до этого не было статей, в которых подробно анализирутся и сравниваются полученные данные и математические модели для исследуемых величин.

- проведение отжига в течение 24 часов не является гарантом того, что весь цементит перейдет из пластинчатой формы в сферическую
- не все модели (например модель Atasoy) хорошо описывают характеристики сплавов
- результаты работы Dirnfeld дают хорошую точность для описания кинетический свойств сплава
- параметр Hollomon-Jaffe P дает наилучшие результаты для прогнозирования механичсеких характеристик сплава
- очень сильное воздействие оказывается на частицы цементита, находящиеся в зерне, либо около его границы