Freeform Search

Database:	US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins
Term: Display: Generate:	10 Documents in Display Format: - Starting with Number 1 O Hit List © Hit Count O Side by Side O Image
	Search . Clear Interrupt
	Search History

DATE: Wednesday, May 25, 2005 Printable Copy Create Case

<u>Set Name</u>	Query	Hit Count	Set Name
side by side			result set
DB = USP	$PT,PGPB,JPAB,EPAB,DWPI;\ PLUR=YE$	S; OP=ADJ	
<u>L51</u>	L50 same L30	31	<u>L51</u>
<u>L50</u>	L49 same L45	465	<u>L50</u>
<u>L49</u>	L34 with peg	2203	<u>L49</u>
<u>L48</u>	L46 same L29	13	<u>L48</u>
<u>L47</u>	L46 with L32	3	<u>L47</u>
<u>L46</u>	L45 with L30	604	<u>L46</u>
<u>L45</u>	emulsif\$	224271	<u>L45</u>
<u>L44</u>	L30 with L31	10	<u>L44</u>
<u>L43</u>	L36 and L33	2	<u>L43</u>
<u>L42</u>	L36 same L32	0	<u>L42</u>
<u>L41</u>	L36 same L33	0	<u>L41</u>
<u>L40</u>	L36 with L33	0	<u>L40</u>
<u>L39</u>	L36 same L31	0	<u>L39</u>
<u>L38</u>	L36 with L31	0	<u>L38</u>
<u>L37</u>	L36 with L3L8	0	<u>L37</u>
<u>L36</u>	L29 with L30	47	<u>L36</u>

Freeform Search Page 2 of 2

<u>L35</u>	L29 with L30 with L31 with L33	0	<u>L35</u>
<u>L34</u>	dextran	64221	<u>L34</u>
<u>L33</u>	evaporat?	76702	<u>L33</u>
<u>L32</u>	peg	99209	<u>L32</u>
<u>L31</u>	emulsif?	9283	<u>L31</u>
<u>L30</u>	microparticle	28081	<u>L30</u>
<u>L29</u>	dispersed phase	13444	<u>L29</u>
<u>L28</u>	L26 with L10	29	<u>L28</u>
<u>L27</u>	L26 with L23	2	<u>L27</u>
<u>L26</u>	L25 or L24	2790149	<u>L26</u>
<u>L25</u>	calcium	494167	<u>L25</u>
<u>L24</u>	ca	2457996	<u>L24</u>
<u>L23</u>	endosomal membrane	437	<u>L23</u>
<u>L22</u>	L10 with L2	76	<u>L22</u>
<u>L21</u>	L19 same L3	16	<u>L21</u>
<u>L20</u>	L19 same L8	7	<u>L20</u>
<u>L19</u>	L10 with L2	76	<u>L19</u>
<u>L18</u>	L16 same L10	14	<u>L18</u>
<u>L17</u>	L16 with L10	5	<u>L17</u>
<u>L16</u>	polyplex	159	<u>L16</u>
<u>L15</u>	L12 and L10	8	<u>L15</u>
<u>L14</u>	L12 same L10	5	<u>L14</u>
<u>L13</u>	L12 with L10	4	<u>L13</u>
<u>L12</u>	SPLP	59	<u>L12</u>
<u>L11</u>	L10 with L8 with L2	4	<u>L11</u>
<u>L10</u>	endosom\$	5532	<u>L10</u>
<u>L9</u>	L8 with L3 with L2	14	<u>L9</u>
<u>L8</u>	complexed or conjugated	165759	<u>L8</u>
<u>L7</u>	lipid or lipsome	115613	<u>L7</u>
<u>L6</u>	L5 same L4	20	<u>L6</u>
<u>L5</u>	polylysine	11893	<u>L5</u>
<u>L4</u>	L3 with L2 with L1	63	<u>L4</u>
<u>L3</u>	hydrophilic polymer or peg	119142	<u>L3</u>
<u>L2</u>	cationic lipid	8938	<u>L2</u>
<u>L1</u>	conjugated lipid or liposome	61789	<u>L1</u>
	·		

END OF SEARCH HISTORY

Record Display Form Page 1 of 1

First Hit Previous Doc Next Doc Go to Doc#

Generate Collection Print

L51: Entry 3 of 31 File: PGPB Feb 17, 2005

DOCUMENT-IDENTIFIER: US 20050037075 A1

TITLE: Targeted delivery of controlled release polymer systems

Detail Description Paragraph:

[0097] A water-in-oil-in-water (W/O/W) solvent evaporation procedure will be used to generate drug-encapsulated nanoparticles. Polymer (example: PLA, PLA-PEG, PLA-COOH, PLA-PEG-COOH, PLA-MAL, PLA-PEG-MAL, poly(sebacic anhydride), etc.) is dissolved in dichloromethane (at 2-10%); an aqueous solution of certain drug will then be added to polymer solution at 4-20% v/v. In model studies, rhodamine or rhodamine-conjugated dextran (at 10 .mu.g/.mu.L) was used as a model small and large molecule drugs, respectively. (For lypophilic drugs, the drug and polymer are mixed together in the dichloromethane, and the procedure then becomes an oil-inwater solvent evaporation process.) The aqueous drug and organic polymer phases are then emulsified using probe sonicator (10 W for 10-90 s). This emulsion is then added to poly(vinyl alcohol) solution (0.1-5% final concentration) or sodium cholate solution (0.1-5% final concentration). A second emulsion can be prepared by sonication (18 W for 10-90 s) to make nanoparticles or by mechanical stirring at 3000-10000 rpm to make microparticles. The organic solvent is evaporated from the W/O/W emulsion using rotary evaporator. The nano- or microparticles formed are then washed three times by suspending the particles in deionized and distilled water followed by centrifugation.

Previous Doc Next Doc Go to Doc#

First Hit Fwd Refs

<u>Previous Doc</u> <u>Next Doc</u> <u>Go to Doc#</u>

Generate Collection Print

L51: Entry 29 of 31

File: USPT

May 28, 2002

DOCUMENT-IDENTIFIER: US 6395302 B1

** See image for Certificate of Correction **

TITLE: Method for the preparation of microspheres which contain colloidal systems

Brief Summary Text (61):

The release of the releasable entity depends on a number of variables, which can be used to tailor the delivery as desired. One of these variables is the size of the microspheres. The size can be adjusted by carefully modifying the process circumstances and formulation parameters in the emulsifying step. For instance, the water content, the presence of hydrophobic groups on any one of the polymers or mixtures of polymers used, the viscosity of the continuous and discontinuous phase, and the electrical charge on the at least two polymers used are examples of tools to adjust the size of the microspheres or microparticles to be produced. In addition, emulsifiers can be added. Suitable emulsifiers are copolymers, preferably block-copolymers, of units of the two incompatible polymers, e.g. a block-copolymer of PEG and dextran, used to create the two-phase system.

Previous Doc Next Doc Go to Doc#

Record Display Form Page 1 of 1

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L48: Entry 5 of 13 File: USPT Nov 18, 1997

DOCUMENT-IDENTIFIER: US 5688697 A

TITLE: Stabilized microspheres and methods of preparation

Brief Summary Text (6):

As used herein, the term "water" in reference to emulsions means a polar hydrophilic liquid and is not limited to water per se. Similarly, the term "oil" in reference to emulsions means any nonpolar hydrophobic liquid. The terms "microspherical emulsion", "microemulsion" and related terms refer to stable emulsions in which the droplets of the <u>dispersed phase</u> are very small.

"<u>Microparticle</u>", "microsphere", "particle", "microspherical particle" and related terms refer to the droplets of the <u>dispersed phase</u> of the microemulsion, which may or may not be <u>emulsified</u> in an aqueous phase. "Functionalized" particles, microparticles, droplets or microspheres have at least one amphiphilic component in the surface layer which includes a reactive group suitable for covalently coupling the microparticle to a ligand.

Previous Doc Next Doc Go to Doc#