

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Federated Reinforcement Learning on the Edge

Hannes Wiedenhofer

Supervisor: Dr. Roberto Confalonieri

Co-Supervisor: Prof. Antonio Liotta

Outline

- Introduction
- Problem Statement
- Background Information
- Problem Solution
- Evaluation
- Conclusion and Further Studies

Motivation

- Energy demand prediction for ev charging stations
- Local computational resources limited

Introduction

- Emergence of IoT and privacy consciousness
- Restrictions: computational, memory, network
- Objective: create solid machine learning model for multiple agents
- How? Conceptual federated reinforcement learning framework
- Approach:
 - analyze existing federated learning frameworks
 - implement our own conceptual federated learning framework with different architectures

Problem Statement

- Develop a conceptual federated learning framework that works on the edge
- Edge devices: memory restrictions, computational restrictions
- Q-tables must be kept as small as possible
- Model quality should still be decent

Background Information: Reinforcement Learning

- Agent learns by trial and error
- Components:
 - Agent: acts within environment, learns based on its actions (Taxi)
 - Environment: everything the agent interacts with, assigns rewards (Grid world)
 - **Action:** the agent's means of interacting with the environment (moving left, right, up, down, picking up passenger, dropping off passenger)
 - **State:** the situation the agent finds itself in (current location of taxi within grid world)
 - Reward: the feedback given from the environment to the agent (negative reward for crashing into wall, positive for successful ride)
 - Policy: mapping from a state to the probabilities of selecting each possible action given that state (orange path)

OpenAI taxi-V3 environment(Image by Guillaume Androz from towardsdatascience).

Background Information: Q-Learning

- Off-policy model-free reinforcement learning algorithm for discrete action and state spaces
- For any finite Markov Decision Process it finds a policy that is optimal
- Bellman equation:

Background Information: Bellman Equation Example

- First learning episode -> old value = 0
- Episode not successful -> negative reward

Q new =
$$159,3$$

Background Information: Q-Tables

- Agent chooses actions based on its q-table
- Initialized with all values 0
- Values are updated using the Bellman equation

4.02706992 12.96022777

3.32877873

Background Information: Federated Learning

- A decentralized form of Machine Learning
- Aims at training machine learning models on multiple local datasets without explicitly exchanging the data
- Multiple local models are trained, parameters are exchanged to create a single global model
- Respecting (not guaranteeing) data privacy, data access rights, data security
- Two main types:

Federated Learning Frameworks: PySyft

- Open-source
- Part of the OpenMined¹ ecosystem
- Supports both vertically and horizontally partitioned data
- Security Mechanisms: MPC, HE, DP
- Supports both the PyTorch and Tensorflow libraries
- Only works in simulation mode
- Early phase of development
- No documentation
- Largest community of contributors (over 250 developers)

- Open-source
- Part of Google's Tensorflow¹ ecosystem
- Builds on Tensorflow's standard structures
- Possible aggregation functions: sum, mean, differentially private
- Only works in simulation mode
- Current version incomplete
- No decent documentation
- Dataset must be in a certain form

Why did we develop our own conceptual federated learning framework instead of using an existing framework?

- Attempt to use both PySyft and TFF
- PySyft:
 - Works with encrypted tensors via (new) Duet interface
 - Communication workflow unclear
 - Could not access the tensor's values
 - Unclear where computation happens
- TFF:
 - Followed example notebook (no documentation)
 - Model quality lower than expected
 - Due to the lack of documentation mistakes could not be found

Problem Solution: Dataset and Assumptions

- Federated reinforcement learning system
- Dataset: CitiBike¹ NYC bike sharing data
- Goal: rebalance station bike stock to stay between fixed limits
- Simulation for 24 hours
- Assumptions:
 - At each hour, each agent can move 0, 1, 3, 5, or 10 bikes from one station to another
 - The system aims at maintaining a bike stock between 0 and 50 at all times for each station
 - The initial bike stock for each station is set to 20. All stock calculations start from a stock of 20 at 0 am.

Problem Solution: Reward System and Metric

- Goal: keep stock between 0 and 50 at all times
- At each hour the agent(s) perform an action
- Based on the action, the environment assigns a reward:
 - -30 if bike stock falls outside the range [0, 50] at each hour
 - -0.5 times the number of bikes removed at each hour (avoid doing unnecessary movements because of movement costs)
 - +20 if bike stock in [0, 50] at 23 hours; else -20
- Metric: percentage of time where stock numbers within limits

$$success_rate = \frac{(\#total_h - \#h_overstock - \#h_understock) * 100}{\#total_h}$$

where

- #total_h represents the total number of hours
- #h_overstock is the number of hours the stock is above the upper limit
- #h_understock is the number of hours the stock is below the lower limit

Problem Solution: Parameters 1/2

Remove only

- if set, the system can only remove bikes from stations, they are not assigned to other stations.
 They disappear.
- Not useful in a real scenario, but helpful for determining whether the trained model works correctly

Predictions

- If set, enables the system to take into consideration predictions for the bike stocks.
- Random Forests models were built for each station to create predictions.
- The models' ability to predict the bike stock varied from station to station

Problem Solution: Parameters 2/2

Stock mode

- Can be set to "linear", "random", or "actual"
- Determines the original stock for the stations
- "Linear" -> every station's stock increases by the same amount of bikes at every hour.
- "Random" -> similar to linear, but the number of bikes added is not constant, but random
- "Actual" -> uses the data from the dataset to create the hourly stock numbers. Most realistic.

Problem Solution: Components

- Three different approaches, all have these components in common:
 - Agent: manages its q-table, chooses actions based on the q-table, learns policy as a consequence of the chosen actions
 - Environment: assigns the rewards to the agent(s), updates the stations' bike stocks, updates
 the simulation hour
 - Helper: reads dataset containing trip data and transforms it into the station history
 - Trainer: calls all the different elements of the system and manages the communication between them, performs the training, stores the results

Problem Solution: Centralized Approach 1/2

- Simplest approach
- Only one central agent overseeing all the stations and their bike stock
- Agent has all information about the whole system at all times

Problem Solution: Centralized Approach 2/2

- Q-Table contains bike stock for all stations
- Large action space
- Works well for a limited amount of bike stations and limited amount of total bikes in the system
- Does not scale well

Stock		-	(515	5, 377, :	1) 🖃	(377,	515	, 1) 🔻	(515,	377	7, 3) 🔻	(377	7, 515	5, 3) 🔻	(515	, 377,	, 5) 🔻	(377,	515,	, 5) -	(515	5, 37	7, 10) 🖃 (377,	515,	10)	7 (0	, 0, 0)	-
{"377": -:	3, "515":	: 29}	-1,2	14813E	+16	-1,99	9687	E+15	-1,54	150	3E+14	-9,5	52330	5E+15	-1,0	3302	E+16	-7,80	0899	E+15	-1	,5004	49E+	-16	-1,1	1053	3E+16	5 -:	1,091	4E+16
{"377": -:	12, "515	": 37}	-1	,7556E	+11	-6,19	9157	E+15	-4,19	4	5E+15	-1,4	4072	3E+16	-7,1	2972	E+15	-1,7	7354	E+16	-4	,964	59E+	-15	-4,	,711	7E+15	5 -9	9,316	5E+14
{"377": -!	5 , "515":	: 38}	-2,6	66119E	+16	-1,9	5572	E+15	-1	,73	6E+15	-1	,256	5E+16	-2,	6139	E+16	-1,50	0049	E+16	-1	,8453	31E+	-16	-1,4	3898	3E+16	5 -:	1,515	5E+16
{"377": -:	14, "515	": 45}	-2,5	59448E	+16	-2,59	9448	E+16	-3,13	398	5E+15	-2,0	0743	7E+16	-5,7	0816	E+15	-4,4	5627	E+15	-4	,964	59E+	-15	-1,	,7556	5E+11	1 -9	9,523	4E+15
{"377": -:	11, "515	": 44}	-1	,9765E	+15	-2,0	0069	E+16	-2,5	730	8E+16	-7,8	80899	9E+15	-1,4	8534	E+16	-1,43	3898	E+16	-1	,833	65E+	-15	-1,8	908	LE+15	5 -8	8,896	6E+15
'3- ":	1 51	": ";}	5	79″ ₹E	5	2.	14	E 6	1,	4'	'E- 6	-0	'1'	'E- 5	1,0	4.5	5+ 5	7,3	80	5+ 5	4	78	5F	`5	_ 「)	1 1	1' 1"	-/	19	F '5

Problem Solution: Distributed Approach

- Each station has its own agent
- No central entity that oversees all the bike stocks
- Server only assigns rewards
- Agents do not communicate
- Q-Table for station 377:

Stock		(1, 515)	(3, 515)	(5, 515)	(10, 515)	(0, 0)
	20	-1,3015E+16	-3,4494E+15	-8,2757E+15	-1,3751E+16	0
	27	-4,3241E+15	-1,019E+14	-2,6165E+15	-3,8628E+16	0
	29	-6,1239E+16	-1,1588E+16	-742525	-6,9971E+15	0
	28	-3,8628E+16	-1,2972E+16	-1,463E+12	-6,9971E+15	0
	33	-5,2331E+16	-1,7042E+15	-4,5523E+16	-4,7809E+15	0
	23	-5,2331E+16	-8,778E+11	-1,2252E+10	-2,926E+11	0
	22	-3,8628E+16	-7351492515	-1,9314E+16	-5,2331E+15	0
	41	-7,4271E+15	-2,4823E+15	-1,9314E+16	-5,2331E+15	0
	61	-1,0527E+16	-1,1294E+16	-1,0527E+16	-9,7281E+13	-2,6713E+15
	72	-7,5848E+15	-7,809E+15	-8,0309E+15	-8,68. E+14	-1,6302E+15
	75	-7,809E+15	-8,8966E+15	-1,3083E+16	-1,39 11 E+16	-6,1916E+15
	74	-1,2031E+16	-7,1297E+15	-8,8966E+15	-7,809E+15	-1,1294E+16
	8'	7 38 18 + 5	- 2 4 F. 1F	5 5 15 11	-/ 7' 17 + 5	. 110 F 1

Problem Solution: Towards a Federated Approach

- Centralized approach does not scale well
- Distributed approach does not perform well
- Compromise

Stock	(1, 515)	(3, 515)	(5, 515)	(10, 515)	(0, 0)
{"377": 70, "515": -23}	-3,6744E+15	-4,4563E+15	-2,8685E+16	-2,3177E+15	-2,8785E+15
{"377": 76, "515": -25}	-2,8437E+15	-1,545E+14	-2,6905E+16	-1,7 ² oE+16	-4,9646E+15
{"377": 77, "515": -25}	-1,7556E+11	-1,3749E+15	-4,4563E+15	-4,19 <mark>-</mark> 2E+15	-2,3356E+16
{"377": 68, "515": -19}	-3E+16	-1,4546E+16	-3E+16	-1,8683E+16	-1,0722E+16
{"377": 69, "515": -12}	-8,4681E+15	-2,9606E+16	-7,1297E+15	-6,8987E+16	-2,9969E+16
{"377": 77, "515": -11}	-2,9551E+15	-2,9439E+16	-2,9971E+16	-2,9585E+15	-2,9055E+15
{"377": 67, "515": -1 ³	-2.7823E+16	-2 5816E+16	-2 7909E+16	-2 6508E+16	-2 9472E+16
	V V V V V	/ r r	7 7 7	/ 7 5	V

Evaluation: Methodology 1/3

- Number of episodes vs success rate
- Session 0 = 100 episodes Session 1 = 200 episodes ... Session 9 = 1000 episodes
- Session 2 yields a better result than Session 9

Evaluation: Methodology 2/3

Evaluation: Methodology 3/3

- Analyzing the learning within a session
- Larger number of episodes should lead to improvement

Evaluation: Comparison of Results

Federated w Federated with

Approaches

Distributed

Federated w

forecasting 1h station history station history forecasting

with forecasting 1h

Centralized

Centralized

forecasting 1 h

Distributed

Conclusion and Further Studies

- We analyzed the existing federated learning frameworks
- Because of the lack of documentation and early phase of development we decided to implement our own
- We proposed a system for solving a bike rebalancing problem
- Can be adapted to function with other datasets
- Can serve as a base for building a fully federated learning system
- Analyze trade-off between communication volume and model quality

Thank you for your attention