Задание на четвертую неделю.

- 1. Решите последнюю задачу предыдущего задания про NP-сертификат простоты.
- 2. Найдите Θ -асимптотику суммы $\sum_{k=1}^n \sqrt{k}$, оценив её с помощью интеграла $\int_1^n \sqrt{x} dx$ сверху и снизу. Выведите аналогичную формулу для асимптотики $\sum_{k=1}^n k^\alpha$ для $\alpha>0$.
- 3 (0.5+0.5+1 балла). а) Верно ли что язык 5-ДНФ- Λ является полиномиально полным в со- \mathcal{NP} ?

Язык 5- Δ H Φ - Λ состоит из всех формул в дизъюнктивной нормальной форме, принимающих истинное значение при каких-то значениях переменных, в каждый конъюнкт которых входит не более пяти переменных.

б) Верно ли что язык 5-КНФ- Λ является полиномиально полным в \mathcal{NP} ?

Язык 5-КНФ- Λ состоит из всех формул в конъюнктивной нормальной форме, принимающих ложное значение при каких-то значениях переменных, в каждый дизъюнкт которых входит не более пяти переменных.

Можно использовать гипотезы $\mathcal{P}
eq \mathcal{N}\mathcal{P}$ и $\mathcal{N}\mathcal{P}
eq co$ - $\mathcal{N}\mathcal{P}$.

в) Расставьте и обоснуйте \mathcal{P} , $\mathcal{NP}-$ complete, со $-\mathcal{NP}-$ complete:

	Выполнимость	Тавтологичность
КНФ		
ДНФ		

Под выполнимостью понимается задача проверки наличия набора значений переменных, на котором формула равна 1. Под тавтологичностью понимается задача проверки свойства формулы принимать значение 1 на всех наборах.

4 (2 балла). Рассматривается язык L выполнимых формул от п

переменных вида $C_1 \wedge C_2 \wedge \ldots \wedge C_m$, где каждый C_k имеет один из трех видов: $(x_i \equiv x_j)$, $(\overline{x_i} \equiv x_j)$, $(x_i \equiv \overline{x_j})$, $(\overline{x_i} \equiv \overline{x_j})$.

- (i) Верно ли, что этот язык \mathcal{NP} -полон?
- (ii) Верно ли, что если каждый C_k будет иметь вид $(x_{i_1}^{\alpha_{i_1}} \equiv x_{i_2}^{\alpha_{i_2}} \equiv \ldots \equiv x_{i_1}^{\alpha_{i_1}})$, то язык будет \mathcal{NP} -полон? (Под $x_i^{\alpha_i}$ понимается либо x_i , либо $\overline{x_i}$)
- 5. Останется ли 3-SAT полной, если ограничиться формулами, в которых каждая переменная входит не более 3 раз, а каждый литерал— не более 2 раз?
- а) Под 3 SAT понимается HE-БОЛЕЕ-3 SAT.
- б) (Бонусная задача) Покажите, что если имеется в виду РОВНО-3-SAT, то не бывает невыполнимых формул указанного вида.
- 6. Постройте сводимость по Карпу языка (G,k) графов, в которых есть k-клика к языку графов, в которых есть клика хотя бы на половине вершин.
- 7 (Доп). Пусть язык $L \in \mathcal{NP}$. Покажите, что он полиномиально сводится (по Карпу) к языку STOP описаний пар (M, ω) машин Тьюринга и входов таких, что M останавливается на входе ω .