7.2 Proofs about Graphs and Trees

Although this section is named "Proofs", we are actually going to focus on Trees for this section.

7.2.1 Introduction to Trees

Question 1

a. How many vertices does each graph have?

 G_1 6

 G_2 6

 G_3 6

 G_4 6

b. How many edges does each graph have?

 G_1 5

 G_2 5

 G_3 6

 G_4 4

c. Which graph is NOT a connected graph? G_4

d. Which of the graphs has at least one cycle? G_3

e. Which of the graphs is a tree? G_1 and G_2 .

A simple connected graph with no cycles is a **tree**.

 $^{^1\}mathrm{From}$ Jim Van Horn's POGIL Activity 16

²From Jim Van Horn's POGIL Activity 16

a. What is the degree of each of the vertices in G_1 ?

$$deg(a)$$
 1

$$deg(b)$$
 2

$$deg(c)$$
 4

$$deg(d)$$
 1

$$deg(e)$$
 1

$$deg(f)$$
 1

b. List the leaves for G_1 . a, d, e, f

Vertices of degree 1 in a tree are called **leaves** of the tree.

 ${ {\bf Question} \ 3 }$

_____ / 4

Given these 6 vertices, draw a tree other than G_1 or G_2 .

 $_{\bullet}^{\mathrm{f}}$

c • d

å b

 $^{^3{\}rm From~Jim~Van~Horn's~POGIL~Activity~16}$

Multiple solutions

- a. How many edges are in your new tree? 5
- b. How many leaves on your new tree? 3
- c. If you removed one edge, would the graph still be connected? no

7.2.2 Subgraphs and Trees

Question 4

____ / 4

 G_1

 G_2

a. Draw a graph G_1 above using vertices and edges from $G_{...}$ Vertices: 1, 2, 5, Edges: $\{1, 2\}$ and $\{2, 5\}$.

Is this a subgraph? Yes

Are all the vertices of G_1 also nodes of G? Yes Are all the edges of G_1 also edges of G? Yes

b. Draw a graph G_2 above using vertices and edges from $G_{...}$ Vertices: 1, 3, 4, Edges: $\{1, 3\}$ and $\{3, 4\}$

Is this a subgraph? No

Are all the vertices of G_2 also nodes of G? Yes Are all the edges of G_2 also edges of G? No

⁴From Jim Van Horn's POGIL Activity 16

7.2.3 Spanning Trees

Question 5 _____ / 2

Follow the algorithm to create a Spanning Tree from this map. "x" out edges that you choose to delete as you go. Draw your spanning tree below.

Multiple solutions

7.2.4 Minimal Spanning Trees

Question 6 _____ / 2

Use Prim's algorithm to find a minimal spanning tree for the graph.

Multiple solutions depending on which node you start at, but for example...

1.

2.

3.

1

 \mathbf{a}

a = 2 b

3/ d/ a 2 b 3 d 6

5.

6.

7

