

Part-II: 21 Aug 2024

Dr Kalyani Addya

EPIDEMIOLOGY KEY TERMS

- Epidemic or Outbreak: disease occurrence among a population that is in excess of what is expected in a given time and place.
- Cluster: group of cases in a specific time and place that might be more than expected.
- Endemic: disease or condition present among a population at all times.
- Pandemic: a disease or condition that spreads across regions.

EPIDEMIOLOGY KEY TERMS

Contamination

➤ The presence of an infectious agent on a body surface, on or in clothes, beddings, toys, surgical instruments or dressings, or other articles or substances including water and food

Infestation

➤ It is the lodgment, development and reproduction of arthropods on the surface of the body or in the clothing, e.g. lice, itch mite, invasion of gut by parasites e.g. round worms.

Contagious Disease

➤ A contagious disease is the one that is transmitted through contact e,g. scabies, trachoma, sexually transmitted disease and leprosy.

<u>INFECTION</u>

- Definition of Infection.
 - ➤ Infection is the entry and development or multiplication of an infectious agent in the body of man or animals.
 - > An infection does not always cause illness.
 - Gradients of infection:
 - ✓ Colonization (S. Aureus in skin and normal nasopharynx)
 - ✓ Subclinical or inapparent infection (Polio)
 - ✓ Latent infection (Herpes Simplex)
 - ✓ Manifest or clinical infection

TYPES OF CASES

Case

➤ Defined as "a person in the population or study group identified as having the particular disease, health disorder, or condition under investigation"

Confirmed Case

- ➤ Meets the clinical description and criteria for laboratory confirmation
- > Classified as definitive for surveillance purposes and is laboratory confirmed by one or more tests
- > May fulfill the described clinical case definition or not.
- ➤ If testing is unavailable or limited, confirmed case counts will not reflect the true burden of disease

TYPES OF CASES

Probable Case.

- ➤ Refers to an individual displaying clinical signs and symptoms consistent with a specific disease or condition and meets certain criteria outlined.
- ➤ Might not have undergone confirmatory laboratory testing or may have inconclusive test results
- Possible Case.
 - ➤ Refers to an individual exhibiting signs and symptoms that could potentially indicate a particular disease or condition, but who does not meet all the specific criteria required for a definitive diagnosis according to a given case definition.
 - ➤ Often categorized when there is uncertainty about the presence of certain diagnostic factors, or when additional information or testing is needed to confirm or rule out the disease.

TYPES OF CASES

- Laboratory Case.
 - > Refers to an individual classified as having a particular disease or condition based primarily on the results of laboratory testing.
 - > Timing of the test in relation to symptom onset is important.
 - > Plays a crucial role in disease surveillance, outbreak investigations, and research.
 - > Examples:- HIV, Tuberculosis, Influenza, COVID-19, etc

TOOLS TO MEASURE DISEASE FREQUENCY

- > Count
- > Proportion
- > Ratio
- > Rate
- > Incidence
- > Prevalence

Note:- All functions of numerators (cases) and denominator (population at risk or those at risk but disease free)

COUNT

- > Simplest and most frequently performed quantitative measure
- Refers to the number of cases of disease or other health related phenomenon
- > Occurrence of a single or a few cases regardless of the size of the population at risk
- > Enough to initiate a public health response

PROPORTION

> A proportion is a fraction in which the numerator is a part of the

denominator

> Usually expressed as a percentage

Number of Students with Jaundice

Total Number of Students

RATIO

- > A Ratio is a fraction in which there may be no specified relation between the numerator and denominator
- > Examples
 - ✓ Ratio between number of males who had jaundice and number of females who had jaundice
 - ✓ Doctor Population Ratio
 - √ Sex Ratio

RATE

- Rate is number of cases occurring during a specific period;
- Dependent on the size of the population during that period
- > Calculated to determine the frequency of disease which includes:-
 - ✓ The number of cases of the illness
 - ✓ The size of the population at risk
 - ✓ The period during which the rate is calculated

Rate % = Number of Cases x 100
Population at Risk

MORTALITY MEASURES

- > Crude Death Rates
- > Specific Death Rates
- **≻** Case Fatality Ratio
- > Proportional Mortality Ratio
- > Survival Rate

CRUDE DEATH RATE

- > Number of deaths in one year per 1000 estimated mid year population in a given place
- > Summarizes
 - ✓ Age composition of the population
 - ✓ Age specific death rates
 - ✓ Lacks Comparability
 - ✓ Able to portray mortality in a single figure
 - √ Useful in demography

SPECIFIC DEATH RATES

- **➤** Cause or Disease Specific
 - **✓ Tuberculosis**
 - ✓ Cancer
 - ✓ Accidents
- > Group Specific
 - ✓ Age
 - √ Gender

CASE FATALITY RATIO (CFR)

- ➤ <u>Total number of Deaths due to a particular disease</u> x 100

 Total number of Cases of the disease
- > Represents the killing power of the disease
- > Typically used in acute infectious diseases
- > Is closely related to virulence
- May change because of changes in the:-
 - ✓ Agent
 - √ Host
 - **✓** Environment

PROPORTIONAL MORTALITY RATIO

For a Specific Disease

Number of deaths due to a specific disease x 100

Total number of deaths from all causes

- ✓ Infectious diseases / Vaccine preventable diseases
- ✓ Non Communicable diseases
- For a Specific Group

Number of deaths below five years of age x 100

Total number of deaths

- ✓ Population groups
- ✓ Different periods of time

SURVIVAL RATE

- ➤ Is the proportion of survivors among a group of patients followed up over a period of time
- Used as a yardstick for assessment of therapy
- Used specifically in malignancies

Total number of patients alive after 5 years x 100 Total number of patients of the disease

MEASURES OF MORBIDITY

- Describes the magnitude and characteristics of the disease load
- > Clinically more relevant than mortality data
- > Essential for research on disease etiology
- Useful for prioritizing and monitoring health care activities
- > Incidence
 - ✓ Attack Rate
 - ✓ Secondary Attack Rate
- > Prevalence
 - ✓ Point
 - ✓ Period

INCIDENCE

- > Number of new cases of a disease
 - ✓ In a given population
 - ✓ Over a specified period of time
- Describes the rate of development of disease
- Components
 - ✓ Numerator: Number of new cases
 - ✓ Denominator: Population at risk
 - ✓ Time: Period during which the cases accrue
 - ✓ Multiplier

SPECIAL INCIDENCE RATES

> Attack Rate

- ✓ An incidence rate
- ✓ Result of a specific exposure
- ✓ Population observed for a short period of time
- ✓ Expressed as a percentage
- > Secondary Attack Rate
 - ✓ Percentage of exposed persons who develop the disease within the incubation period following exposure to a primary case

Number of exposed persons developing
disease within the incubation period x 100
Total number of exposed susceptible
contacts

SPECIAL INCIDENCE RATES

> Secondary Attack Rate

- ✓ Applied to infectious diseases where the primary case is infective for a short period of time
- ✓ Susceptibles need to be clearly identified
- ✓ Difficult to calculate in diseases with a large proportion of sub clinical cases
- ✓ Useful in evaluating effectiveness of control measures
- √ Isolation
- √ Vaccination

PREVALENCE

- Prevalence of a disease or condition in a population is defined as:
 - ✓ The total number of cases (existing cases) of the disease in the
 population at a given time

or

- ✓ The total number of cases in the population, divided by the number of individuals in the population
- It is a proportion usually expressed as a percentage

PREVALENCE AND INCIDENCE

> Prevalence is a function of incidence and duration of an illness

- > P= ID
- > I=P/D
- > D=P/I

> P- Prevalence, I – Incidence, D - Duration

INCIDENCE VS PREVALENCE

> Incidence

- ✓ Research into aetiology of disease
- ✓ Initiating control measures
- ✓ Checking efficacy of preventive or therapeutic measures

Prevalence

- ✓ Useful for administrative and planning purposes
- **✓** Estimate the magnitude of disease in the community

REPRODUCTIVE RATE OF INFECTION

- Potential for an infectious disease to spread.
- > Factors include
 - ✓ Probability of transmission between an infected and a susceptible individual
 - ✓ Frequency of population contact
 - ✓ Duration of infection
 - ✓ Virulence of the organism
 - ✓ Immunity of the population

DYNAMICS OF DISEASE TRANSMISSION: CHAIN OF INFECTION

ELEMENTS OF AN EPIDEMIOLOGICAL TRIAD

- > Host. Lodgment to an infectious agent under natural conditions
- > Types of Hosts
 - √ Obligate host,
 - ✓ Definitive (primary) host
 - ✓ Intermediate host
 - ✓ Transport host
- > Reservoir.
 - ✓ Person, animal, arthropod, plant, soil, substance, or combination of these
 - ✓ Infectious agent lives and multiplies
 - ✓ Depends primarily for survival, and reproduces itself in such a manner that it can be transmitted to a susceptible host
 - ✓ Natural habitat of the infectious agent.
- Agent / Vector.
 - ✓ Any living carrier that transports an infectious agent from an infected individual or its wastes to a susceptible individual or its food or immediate surroundings
 - ✓ Both biological and mechanical transmissions are encountered

TYPES OF RESERVOIRS

HUMAN RESERVOIR

CARRIERS

- ➤ Either due to inadequate treatment or immune response, the disease agent is not completely eliminated, leading to a carrier state.
- ➤ It is an infected person or animal that harbors a specific infectious agent in the absence of visible clinical disease and serves as a potential source of infection to others.
- > Three essential elements of a carrier state:
 - ✓ Presence of disease agent.
 - ✓ Absence of recognizable symptoms and signs of disease.
 - ✓ Shedding of the virus / bacterial in the discharge / excretions.

ANIMAL RESERVOIRS

- Zoonosis. Is an infection transmitted from animals to man, e.g. rabies, plague, bovine tuberculosis, etc
- Reservoir in Non-living Things.
 - ✓ Soil and inanimate matter can also act as reservoir of infection.
 - ✓ E.g. Tetanus, Anthrax, etc.

MODES OF TRANSMISSION

SUSCEPTIBLE HOST

- > An infectious agent seeks a susceptible host.
- > Four stages are required for successful parasitism:
 - **✓** Portal of entry
 - ✓ Site of election inside the body
 - √ Portal of exit
 - ✓ Survival in external environment

VIRULENCE AND CASE FATALITY RATE

> <u>Virulence</u>.

- ✓ Degree of pathogenicity; the disease evoking power of a microorganism in a given host.
- ✓ Numerically expressed as the ratio of number of cases of overt infection to total number infected, as determined by immunoassay.
- > Case Fatality Rate for Infectious Diseases.
 - ✓ It is the proportion of infected individuals who die of the infection.
 - ✓ It is a function of severity of the infection and is heavily influenced by un-diagnosed mild cases.

SERIAL INTERVAL AND INFECTIOUS PERIOD

> Serial interval:

- ✓ The interval between onset of the primary and the secondary cases.
- ✓ The interval between receipt of infection and maximal infectivity
 of the host (also called generation time).
- Infectious (communicable) Period:
 - ✓ Length of time a person can transmit disease.

INCUBATION AND LATENT PERIODS

> Incubation Period:

✓ Time from exposure to development of disease (first sign or symptom of the disease).

> Latent period:

- ✓ The period between exposure and onset of infectiousness (may be shorter or longer than the incubation period).
- √ E.g. Herpes Zoster

TRANSMISSION PROBABILITY RATIO (TPR)

- > TPR is a measure of risk transmission from infected to susceptible individuals during a contact.
- Types of Transmission Probabilities.
 - √ p00: tp from unvaccinated infective to unvaccinated susceptible
 - ✓ p01: tp from vaccinated infective to unvaccinated susceptible
 - √ p10: tp from unvaccinated infective to vaccinated susceptible
 - √ p11: tp from vaccinated infective to vaccinated susceptible

ARE EXPOSURE AND DISEASE LINKED?

EPIDEMIOLOGY STUDY TYPES

DESCRIPTIVE STUDIES: STEPS

- > Step #1: Defining the Population.
- Step #2: Defining Disease under Study.
- > Step #3: Describing the Disease Time, Place, Person.
- > Step #4: Measurement of Disease Mortality/ Morbidity.
- > Step #5: Compare Between different Population, Subgroups.
- Step #6: Formulate Hypothesis.

CROSS-SECTIONAL STUDIES: PREVALENCE

- Simplest form of observational study.
- Based on single examination of cross-section of population at one point of time.
- > Results can be projected to the entire population.
- Useful for chronic illnesses, e.g. hypertension.
- > Save on time and resources,
- > Provides minimum information about natural history of disease and incidence of illness.

CASE CONTROL STUDIES

- > The study proceeds backwards from effect to cause
- > Both exposure and outcome have occurred before start of the

study

RISK FACTORS & RISK GROUPS

> Risk Factors

- ✓ An attribute or exposure significantly associated with development of disease
- ✓ A determinant that can be modified by intervention, reducing the possibility of occurrence of disease / outcome.

✓ Risk Groups

- ✓ Directly proportionate to needs.
- ✓ Used to prevent disease by removal or minimizing the risk.

- ➤ It is a measure of strength of association between the risk factor and outcome.
- > The derivation of the odds ratio is based on three assumptions:-
 - ✓ The disease being investigated is relatively rare
 - ✓ The cases must be representative of those with the disease
 - ✓ The controls must be representative of those without the disease

► A 2×2 table is constructed, displaying exposed cases (A), exposed controls (B), unexposed cases (C) and unexposed controls (D).

	CASE	CONTROLS
EXPOSED	A	В
UNEXPOSED	С	D

► To measure association is the <u>odds ratio</u> (OR), which is the ratio of the odds of exposure in the cases (A/C) to the odds of exposure in the controls (B/D), i.e.

$$OR = (AD/BC).$$

Category	Case with lung cancer	Control without lung cancer
Smokers (less than 5)	33 (a)	55 (b)
Non-Smokers (less than 5)	2 (c)	27 (d)

1. Exposure rates among cases

$$=a/(ac) = 33/35 = 94.2\%$$

2. Exposure rate among the controls

$$=b/(bd) = 55/82 = 67\%$$

Odds ratio = $a \times d / b \times c$

$$33X27/55X2 = 8.1$$

► People who smoke less than 5 cigarettes per day showed a risk of having lung cancer 8.1 times higher as compared to non-smokers.

- OR is > 1- "those with the disease are more likely to have been exposed,"
- OR close to 1 then the exposure and disease are not likely associated.
- ▶ OR <1-exposure is a protective factor in the causation of the disease.</p>

<u>REFERENCES</u>

- A Short Introduction to Epidemiology (Neal Pearce): http://csm.lshtm.ac.uk/files/2010/09/A-Short-Introductionto-Epidemiology-Second-Edition.pdf
- Principles of Epidemiology in Public Health Practice, Third Edition (CDC Course)
- Online: http://www.cdc.gov/ophss/csels/dsepd/ss1978/
- > PDF:

http://www.cdc.gov/ophss/csels/dsepd/SS1978/SS1978.pdf

DISCUSSION

