Esame scritto ALAN 11-02-2021, prima parte. Prof. Rossi

1) Data la matrice
$$A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 3 & 1 \end{pmatrix}\in\mathrm{M}_3(\mathbb{R}),$$

- a) provare che A è invertibile e determinare l'inversa (verificare il risultato!),
- b) determinare, se esiste, una matrice $B \neq I_3$ e non nulla tale che AB = BA,
- c) dire se il sistema $AX = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ ha soluzioni, ed eventualmente determinarle.

2) Sia
$$\lambda \in \mathbb{R}$$
 e si consideri la matrice $A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & \lambda \\ 0 & 0 & \lambda - 1 & 0 \end{pmatrix}$;

- a) calcolare $\operatorname{rk}(A)$ al variare di $\lambda \in \mathbb{R}$,
- b) discutere l'esistenza delle soluzioni del sistema $AX = \begin{pmatrix} 2 \\ \lambda \\ 1 \end{pmatrix}$ al variare di $\lambda \in \mathbb{R}$.
- c) discutere le soluzioni del sistema lineare omogeneo AX = 0 al variare di $\lambda \in \mathbb{R}$ e determinarle.
- 3) Sia A una matrice reale diagonale 3×3 .
- a) Dimostrare che A^n e' diagonale per ogni intero positivo $\mathfrak n$ (attenzione non basta un esempio).
 - b) Dire se A è invertibile per ogni $A \neq 0$.
- c) Dire se il sistema lineare AX = B ammette soluzioni per ogni matrice B dei termini noti.
- 4) Si considerino in \mathbb{R}^3 i seguenti vettori:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad v_3 = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$$

- a) dire se $\{v_1, v_2, v_3\}$ sono una base di \mathbb{R}^3
- b) determinare un vettore ν di \mathbb{R}^3 di lunghezza 1 che sia ortogonale a ν_1 e a ν_2

1

c) determinare un vettore w di \mathbb{R}^3 di lunghezza 2 che sia parallelo a v_1 .