Introduction to Business Cycle Data

Brian C. Jenkins

University of California, Irvine

November 9, 2022

Business Cycle Data

- The *business cycle* is the fluctuation of many macroeconomic quantities that last for about 1.5 to 8 years.
- Business cycle fluctuations are costly:
 - Misallocations of capital and labor.
 - Particularly painful for workers that become unemployed and for the families of workers who become unemployed.

Business Cycle Data

- We will examine two historically-competing schools of thought:
 - Real Business Cycle (RBC) theory: fluctuations in real quantities are primarily due to TFP shocks; i.e., shocks to the production function.
 - New-Keynesian (NK) theory: fluctuations are largely driven by aggregate demand and affect real quantities because of nominal rigidities (e.g., sticky prices).
- Both approaches have merits and shortcomings and elements of both are integrated into contemporary business cycle theory.

Figure 1: **GDP**, **consumption**, **investment**, **and hours** for the US from January 1948 to April 2022. Source: FRED.

Trend and Cycle Components

 Suppose that the value of a time series process X_t can be decomposed into two components: a trend component and a cyclical component.

$$X_t = X_t^{trend} + X_t^{cycle} \tag{1}$$

- The trend component is the long-run path about which the series fluctuates.
- The cyclical component is the difference between the value of a time series and the trend:

$$X_t^{cycle} = X_t - X_t^{trend}$$
 (2)

Trend and Cycle Components

 Often, it's useful to express the cyclical component of a time series as the percent deviation of the series from trend (divided by 100):

$$\hat{x}_t = \frac{X_t - X_t^{trend}}{X_t^{trend}} = \frac{X_t^{cycle}}{X_t^{trend}}$$
 (3)

Note:

$$\frac{X_t - X_t^{trend}}{X_t^{trend}} = \frac{X_t^{cycle}}{X_t^{trend}} \approx \log X_t - \log X_t^{trend}$$
(4)

Trend and Cycle Components

Example: Percent Deviation from Trend

Suppose:

$$X_t = 220 (5)$$

$$X_t = 220$$
 (5)
 $X_t^{trend} = 215$ (6)

Then:

$$\frac{X_t - X_t^{trend}}{X_t^{trend}} = \frac{220 - 215}{215} = 0.0233 \tag{7}$$

and:

$$\log X_t - \log X_t^{trend} = \log 220 - \log 215 = 0.0230 \quad (8)$$

Figure 2: **GDP**, **consumption**, **investment**, **and hours** per capita for the US from January 1948 to April 2022. Source: FRED.

Figure 3: **US GDP per capita:** actual, trend, and cycle from January 1948 to April 2022. Source: FRED.

Figure 4: Business cycle components of GDP, consumption, investment, and hours for the US from January 1948 to April 2022.

Source: FRED.

Table 1: **Standard deviations of real business cycle data** from January 1948 to April 2022. Units are percent deviations from trend. Source: FRED.

GDP	1.688
Consumption	1.337
Investment	7.400
Hours	2.063

Table 2: **Correlations of real business cycle data** from January 1948 to April 2022. Units are percent deviations from trend. Source: FRED.

	GDP	Consumption	Investment	Hours
GDP	1.000	0.814	0.836	0.884
Consumption	0.814	1.000	0.645	0.757
Investment	0.836	0.645	1.000	0.764
Hours	0.884	0.757	0.764	1.000