Facultad de Ciencia y Tecnología – UADER – Sede Oro Verde Licenciatura en Sistemas Informáticos - Matemática Discreta - Segundo Parcial - 29/06/2016

Ejercicio 1. (25 puntos)

Utilizar Inducción Matemática para probar que los números de Fibonaci verifican que:

$$F_0^2 + F_1^2 + F_2^2 + \dots + F_n^2 = F_n \cdot F_{n+1}$$
 para los enteros $n \ge 0$.

Recordar: La sucesión de Fibonaci se define como: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ para $n \ge 2$.

Respuesta:

Para
$$n = 1$$
: $F_0^2 + F_1^2 = 0 + 1 = 1$

Para
$$n = 1$$
: $F_0^2 + F_1^2 = 0 + 1 = 1$ $F_n \cdot F_{n+1} = F_1 \cdot F_{1+1} = 1.1 = 1$ se cumple.

Para n = k (HI):
$$F_0^2 + F_1^2 + F_2^2 + + F_k^2 = F_k \cdot F_{k+1}$$

Para n = k + 1:
$$F_0^2 + F_1^2 + F_2^2 + + F_k^2 + F_{k+1}^2 = F_{k+1} \cdot F_{k+1+1}$$
 ??

Demostración:

$$(F_0^2 + F_1^2 + F_2^2 + ... + F_k^2) + F_{k+1}^2 = F_k . F_{k+1} + F_{k+1}^2 = F_{k+1} . (F_k + F_{k+1}) = F_{k+1} . F_{k+2}$$

Ejercicio 2. (25 puntos)

- a) Encontrar todas las soluciones enteras de la ecuación diofántica 525 x 100 y = 50.
- b) Si a |2n +3 y a|5n +1 para cualquier número entero n, probar que a es 1 ó 13.

Respuesta:

a)
$$525 \times -100 = 50$$
 o bien $525 \times +100 = 50$

$$mcd(525, 100) = 25 = (1)525 + (-5)100$$

50 = (2)525 + (-10)100 (Aquí hemos encontrado UNA solución de la ecuación Diofántica que se quiere resolver)

Para hallar TODAS las soluciones, debemos tener coeficientes coprimos, dividimos todo por 25:

$$2 = (2) 21 + (-10) 4 + 21.4.k - 21.4.k$$

$$2 = 21 (2 - 4k) + 4 (-10 + 21k)$$

Ahora volvemos a multiplicar por 25:

$$50 = 525 (2 - 4k) + 100(-10 + 21k)$$
 con k entero.

entonces a divide a cualquier combinación lineal entera, es decir b) Si a |2n + 3 y a| 5n + 1

a | x(2n+3) + y(5n+1) | con x e y enteros. Como x e y son cualesquiera elegimos x = 5 e y = -2:

a
$$|5(2n+3) - 2(5n+1) = 10n + 15 - 10n - 2 = 13$$
, entonces a | 13.

Ejercicio 3. (25 puntos)

- a) Hallar d = mcd(222, 471) y escribirlo como combinación lineal entera.
- b) Se considera el conjunto $B = \{a, b, c, d, e, f\}$
- b.1) ¿Cuántas relaciones binarias se pueden definir sobre B?
- b.2) ¿Cuántas relaciones son simétricas y NO contienen al par (b, e)?
- b.3) Encontrar al menos dos relaciones reflexivas definidas sobre B.
- b.4) ¿Cuántas relaciones son reflexivas, antisimétricas y NO contienen al par (b, e)?

Respuesta:

a)
$$d = mcd(222, 471) = 3$$
, pues

$$471 = (2) 222 + 27$$

 $222 = (8) 27 + 6$

$$27 = (4) 6 + 3$$

$$d = mcd(222, 471) = 3 = (33) 471 + (-70) 222$$

- b.1) ¿Cuántas relaciones binarias se pueden definir sobre B? 2³⁶
- b.2) ¿Cuántas relaciones son simétricas y NO contienen al par (b, e)? 2^6 . $2^{14} = 2^{20}$
- b.3) Encontrar al menos dos relaciones reflexivas definidas sobre B.

$$R1 = \{(a, a) (b, b) (c, c) (d, d) (e, e) (f, f)\}$$

$$R2 = \{(a, a) (b, b) (c, c) (d, d) (e, e) (f, f) (a, e)\}$$

b.4) ¿Cuántas relaciones son reflexivas, antisimétricas y NO contienen al par (b, e)? 3¹⁴

Ejercicio 4. (25 puntos)

a) Demostrar que para todo número natural $n \ge 0$ se verifica que 4 divide a $5^n - 1$.

Para n = 1: 4 divide a $5^1 - 1 = 4$ se cumple.

Para n = k (HI): 4 divide a $5^k - 1$

Para n = k + 1: 4 divide a $5^{k+1} - 1$?

Demostración:

$$5^{k+1}-1=5^k$$
. $5-1=5^k$ $(1+4)-1=5^k+4$. $5^k-1=(5^k-1)+4$. $5^k=4m$ (es un múltiplo de cuatro), por lo tanto 4 divide a $5^{k+1}-1$.

b) Expresar el número 264 como suma de dos números enteros, $s, t \in Z$, de forma que s sea múltiplo de 20 y t sea múltiplo de 28.

264 = s + t = 20x + 28y (se procede igual que todas las ecuaciones diofánticas)