

On Emergent Communication in Competitive Multi-agent Teams

Paul Pu Liang

with: Jeffrey Chen, Ruslan Salakhutdinov, Louis-Philippe Morency, Satwik Kottur

pliang@cs.cmu.edu

@pliang279

Grounded Language

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 2: Two Supporting Facts

John is in the playground.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom? A: office

What is the bedroom north of? A: bathroom

[Weston et al., ICLR 2016]

[Das et al., CVPR 2018]

Emergent Communication

[Lazaridou et al., ICLR 2017, Lazaridou et al., ICLR 2018]

[Bordes et al., ICLR 2017]

Task and Talk

(color, shape) (shape, color) (style, color) (color, style) (shape, style) (style, shape)

(b) Tasks

Q Bot A Bot

Task and Talk

(color, shape) (shape, color) (style, color) (color, style) (shape, style) (style, shape)

(b) Tasks

Task and Talk

(color, shape) (shape, color) (style, color) (color, style) (shape, style) (style, shape)

(b) Tasks

Task and Talk

(color, shape) (shape, color) (style, color) (color, style) (shape, style) (style, shape)

(b) Tasks

Competitive Emergent Communication

Cooperation

Competition

Task, Talk, and Compete

(b) Tasks

Sources of Competition

Sources of Competition

Sources of Competition

Neural Architecture

Neural Architecture

Q-bot
$$S_t^Q = [G, q_1, a_1, \dots, q_{t-1}, a_{t-1}] \to q_t \in V_Q$$

A-bot
$$S_t^A = [I,q_1,a_1,\ldots,q_{t-1},a_{t-1},q_t] o a_t \in V_A$$

Neural Architecture

Trained to maximize expected reward using reinforce algorithm +R for correct, -10R for incorrect

Reward Sharing

	Team 2 🗸	Team 2 🗡
Team 1 ✓	(+R, +R)	(+R, -100R)
Team 1 X	(-100R, +R)	(-10R, -10R)

Dialog Overhearing

Task Sharing

Experimental Setip

Baseline: [Kottur et al., EMNLP 2017] Rewards: (+R, -100R) reward structure Params: double number of parameters Double: 2 teams trained independently

Cooperative baselines

Prediction (purple, filled)
Result

Experimental Setip

Baseline: [Kottur et al., EMNLP 2017] Rewards: (+R, -100R) reward structure Params: double number of parameters Double: 2 teams trained independently

RS: reward sharing

DO: dialog overhearing

TS: task sharing

Cooperative baselines

Competitive methods

Prediction (purple, filled)
Result

Results

DO + TS: 75.8% Competitive methods

Double: 57.8%

Params: 53.3%

Rewards: 49.7%

Baseline: 45.6%

methods

Cooperative baselines

Competition improves generalization (test accuracy)
Faster rates of convergence

Results: task sharing and dialog overhearing

Competitive methods

Cooperative baselines

Sharing messages via overhearing dialog improves performance Composing sources of competition improves performance

Results: adding reward sharing

Composing sources of competition improves performance

Measuring information in language

Higher IC scores when trained with competition Correlated with task performance

[Jaques et al., ICML 2019]

Conclusion

Paper: https://arxiv.org/abs/2003.01848
Code: https://github.com/pliang279/Competitive-Emergent-Communication

pliang@cs.cmu.edu
@pliang279