

Multicast Basic Concepts (1/4)

Unicast

point to point communication

Broadcast

- packets are sent to all
- Routers limit broadcasts to the local network or subnet, preventing broadcasts form reaching the Internet at large

Multicast

 send packets to many different hosts, but not to everyone.

Multicast Basic Concepts (2/4)

- 一對多(one-to-many)的通訊方式
- 通訊程式送出的訊息可以送往指定的一群接收者
- IP的群播協定 (IP multicast protocol) 支援網際 網路上的群播,屬於 Multicast Transmission Source: 172.16.4.1 Destination: 224.10.10.5
- 需要作業系統的支援

Multicast Basic Concepts (3/4)

Thinking

- A real-time video stream goes to 6 million Internet user
- There is no reason to send a video stream to hosts that are not interested in it

Multicast: think as a group

- Like a public meeting
- People can come and go as they please
- Send messages to the group and all the people in the group will get the messages
- People not in the group will not be affected

Multicast Basic Concepts (4/4)

- Most of the work is done by routers and should be transparent to application programmers.
- An application simply sends datagram packets multicast IP address. The router makes sure that the packets are delivered to all hosts in the multicast group.
- The problem
 - multicast routers are not yet ubiquitous

Network Programming

Multicast Address and Groups (1/3)

- A multicast address is the address of a group of hosts called multicast group
 - IPv4 CIDR group: 224.0.0.0/4 (224.0.0.0 to 239.255.255.255)
 - All addresses have the leading four binary digits 1110
 - IPv6 CIDR group: ffoo::/8
- Any data sent to the multicast address is relayed to all the members of the group
- Like any IP address, a multicast address can have a hostname
 - ntp.mcast.net = 224.0.1.1 (network time protocol)

Multicast Address and Groups (2/3)

- Multicast groups can be either permanent or transient
 - Permanent groups have assigned address that remain constant
 - Example: 224.0.0.1 or 224.0.0.2
 - The complete list is available from iana.org
 - Most multicast groups are transient and exist only as long as they have members.
 - Create a new multicast group address from 225.0.0.0 to 238.255.255.

Network Programming

Multicast Address and Groups (3/3)

- Special purposes multicast group
 - all-systems.mcast.net (224.0.0.1) is a multicast group that includes all systems that support multicasting on local subnet
 - This group is commonly used for local testing
 - Also for local testing experiment.mcast.net (224.0.1.20)
 - (224.0.0.0~ 224.0.0.255) are reserved for routing protocols (gateway discovery ...)
 - Multicast routers never forward datagrams with destinations in 224.0.0.0~ 224.0.0.255
 - IANA is responsible for handing out permanent multicast addresses

- When a host wants to send data to a multicast group, it puts that data in multicast datagrams (UDP datagrams with an IP address in class D)
- Most multicast data is either audio or video or both. (Small data lost is fine.)
- Multicast data is sent via UDP

Network Programming

Time-To-Live (TTL) (1/2)

- Routers and hosts must decrement the TIME TO LIVE field by one and remove the datagram from the internet when TTL reaches zero.
 - The TTL acts a "hop limit"
- Two uses
 - It guarantees that datagrams cannot travel around an internet forever.
 - Source might want to intentionally limit the journey of the packet.

Time-To-Live (TTL) (2/2)

Time-To-Live (TTL) of IP: maximum number of routers that the datagram is allowed

Destinations	TTL value
The local host	0
The local subnet	1
The local campus—that is, the same side of the nearest Internet router—but on possibly different LANs	16
High-bandwidth sites in the same country, generally those fairly close to the backbone	32
All sites in the same country	48
All sites on the same continent	64
High-bandwidth sites worldwide Campus World	128
All sites worldwide	255
5 4 3 2 1 packet dies	
2 3	
1 2	

Router and Routing (1/2)

- With multicasting
 - A multicast socket sends one stream of data over the Internet to the clients' router.
 - The router duplicates the stream and sends it to each of the clients
- Without multicasting
 - The server sends separate but identical stream of data to the router
 - The router sends each of the stream to a client.

Router and Routing (2/2)

- Note that real-world routes can be much more complex, involving multiple hierarchies of redundant routers
- Goal of multicast sockets
 - No matter how complex the network, the same data should never be sent more than once over any given network
 - Programmers don't need to worry about routing issues.
- To send and receive multicast data beyond the local subnet, you need a multicast router
 - ping all-routers.mcast.net

Network Programming

Multicast Socket (1/2)

public class MulticastSocket extends DatagramSocket

- MulticastSocket inherits from DatagramSocket
- Constructor
 - MulticastSocket()
 - Create a multicast socket. (i.e. use anomous port)
 - MulticastSocket(int port)
 - Create a multicast socket and bind it to a specific port

- Communication with a multicast group
 - Join a multicast group
 - Send data to the members of the group
 - Receive data from the group
 - Leave the multicast group

Network Programming

Send Multicast Data

- Create a MulticastSocket and directly send data
 - Do not need to join a multicast group
 - void send(DatagramPacket p, byte ttl)
 - default time to live: 1

Joins a multicast group (1/2)

- Its behavior may be affected by setInterface().
- A single MulticastSocket can join multiple multicast groups
- Example

Network Programming

Joins a multicast group (2/2)

- setInterface(), setNetworkInterface()
 - specify a network interface for multicast

```
void setInterface(InetAddress inf)
```

Set the multicast network interface used by methods whose behavior would be affected by the value of the network interface

```
void setNetworkInterface(NetworkInterface netIf)
```

Specify the network interface for outgoing multicast datagrams sent on this socket

```
InetAddress getInterface()
```

Retrieve the address of the network interface used for multicast packets

```
NetworkInterface getNetworkInterface()
```

Get the multicast network interface set

 Receive UDP data just as with a DatagramSocket and DatagramPacket

Network Programming

Leave Multicast Group

IP群播的原理

- IP群播位址的範圍在224.0.0.0到 239.255.255.255
- 群播的範圍
 - time-to-live scoping
 - administrative scoping
- 群播的路由(multicast routing)
 - IGMP (Internet Group Management Protocol)

Network Programming

IP群播路由的組成

- 一種是由所謂的邊緣主機(edge hosts)向鄰接的 路由器請求加入或離開群播群組
 - 使用標準化的IGMP(Internet Group Management Protocol)
- 另外一種是處理路由器之間的群播封包
 - 由網路管理者選用非標準化的協定

群播的埠號(port number)

- 由於TCP不適合用在群播中,所以群播一般都 使用UDP協定
- 一般不同的群播應用會指定不同的群播位址, 所以不需要再使用port number來做所收到的封 包的轉送依據,因為從群播位址就知道該送給 那個群播應用
- 群播應用還是可以用port number來區隔不同性質的資料傳送

Network Programming