[CE520] WSN Programming 2nd assignment Packet propagation to all nodes

Katerina Karakoula (1604) Apostolos Tsaousis (1714)

Case study: Best-effort network-wide broadcast

- · Given a topology of nodes (chain, tree, or grid)
- Each source node transmits a new packet periodically
- · Each node that receives a packet, it propagates the packet to its neighbours
- Target is to distribute a packet through the whole network, to reach a steady silent state and to avoid collisions when transmitting packets

Topologies

Pseudocode

```
onPktReceived():
onBoot():
                                                    if ( pkt.getSourceID == nodeID ), return;
  initCache();
                                                    if ( pkt.version < cache.version ), return;</pre>
  startAMControl();
                                                    addCache( pkt );
onAMControlDone():
                                                    schedForward( PERIOD );
  nodeID = TOS_NODE_ID;
  bcastPeriodic( PERIOD );
                                                  onForwardFired():
onBcastFired():
                                                    if ( sendIsBusy ), schedForward( PERIOD );
 if ( sendIsBusy ), back-off;
                                                    else
  pkt = createPacket();
                                                       pkt = getPktFromCache();
  if ( bcast( pkt ) == SUCCESS )
                                                       if ( bcast( pkt ) == SUCCESS )
    sendIsBusy = TRUE;
                                                          sendIsBusy = TRUE;
  if ( maxBcastsReached )
    stopBcastPeriodic();
```

Structure (Wiring) of the Algorithm

Demo

(**) The sources are indicated with red border
(***) The dotted lines indicate which nodes are in range

Node 1 broadcasts a packet

Node 2 receives the packet

Node 2 forwards the packet

Nodes 1,4,5 receive the packet

nodes 4, 5 forward the packet after a small period

Node 4,5 forward the packet

Node 2 receives the packet

Nodes 3 receives the packet

Nodes 3 forwards the packet

Nodes 1,6,7 receive the packet

Nodes 6,7 forward the packet

Nodes 3 receives the packet

System reaches a silent state

(*) Green arrow indicates the latest saved packet
(*) Purple arrow indicates the next position for forwarding

Cache functionality

Packets (SrcID / SeqNo)

NodeID

	1	2	3	4
2	1/2	1/3	1/4	4/3
			† †	

Node 2 receives a packet with tag 1/4. Then checks it cache and since it doesn't find a packet from the same source with latter seqNo, it saves the packet, advances the green arrow and schedules it for forwarding

Cache functionality

Packets (SrcID / SeqNo)

		1	2	3	4
	2	1/2	1/3	1/4	4/3
•				†	†

NodeID

Node 2 forwards the scheduled packet and the purple arrow advances

Packets (SrcID / SeqNo)

	1	2	3	4
2	3/4	1/3	1/4	4/3
			†	†

NodeID

Initial scenario

Packets (SrcID / SeqNo)

	1	2	3	4
2	3/4	1/3	1/4	1/5
				A A

NodeID

Node 2 received packet 1/5, saves the packet and schedules it for forwarding

Node 2 before forwarding the packet with tag 1/5, receives another packet

Packets (SrcID / SeqNo)

1 2 3 4 2 4/2 4/3 1/4 1/5

NodeID

Node 2 before forwarding the packet with tag 1/5, receives yet another packet

Packets (SrcID / SeqNo)

	1	2	3	4
2	4/2	4/3	3/2	1/5
	•		1	1

NodeID

Node 2 before forwarding the packet with tag 1/5, receives yet another packet

Packets (SrcID / SeqNo)

2 4/2 4/3 3/2 3/3		1	2	3	4
	2	4/2	4/3	3/2	3/3

NodeID

Node 2 before forwarding the packet with tag 1/5, receives yet another packet. It saves the received the packet and overwrites the 1/5 packet. So then nodes 4,5 never receive that overwrited packet

One sender

Odd sender

All senders

Cache size

