

FIT3165 Computer Networks

Part-1:100 Gigabit Ethernet Future Requirements & Implementation

Part-2: Final Exam Discussion

Ref slides: Finisar & Infinera

High speed Ethernet trend

Internet Backbone Growth

- Industry consensus indicates future growth rate of 75% each year in aggregate traffic demand
- Traffic increased in ranges of 10,000x from 2000 2010
- Traffic projected to increase an additional 1,000x from 2015 to 2025

Ref: K. G. Coffman and A. M. Odlyzko, 'Growth of the Internet', I. P. Kaminow and T. Li, eds. Academic Press, 2002, pp. 17-56.

LAN Future moving towards Tb/s access

- Backend Carriers deployed Nx10 Gb/s networks several years ago
- Now evaluating deployment of (Nx) 40/100 Gb/s router networks
- Current Backbone growth rates, if sustained, will require IP link capacity to scale to > 1 Tb/s by 2020

Ref: K. G. Coffman and A. M. Odlyzko, 'Growth of the Internet', I. P. Kaminow and T. Li, eds. Academic Press, 2002, pp. 17-56.

Next Gen Higher Speed Ethernet

Protocol Extensible for Speed

- Ethernet tradition has been 10x scaling
- But at current growth rates, 100 Gb/s will be insufficient by 2020 and beyond
- Desirable to standardize method of extending available speed without re-engineering the protocol stack

Incremental Growth

- Most organizations upgrade or install new technologies with a 4-5 year lifetime
- Pre-deployment based on the speed requirement for current and 5 years in advance planning

Next Gen Higher Speed Ethernet (2)

Hitless Growth

- Systematic "take down" of core network router & links for a substantial period of time without customer service degradations
- SLAs may be compromised or require complicated temporary workarounds if substantial down time is required for upgrade.
- Faultless upgrade of the link capacity should therefore be hitless, or at least only transitorily impacting network services.

Resiliency and Graceful Degradation

- Setup and transition should provide rapid recovery from failure of an individual channel or component
- Fault tolerance and performance needs to be taken care off.

Next Gen Higher Speed Ethernet (3)

IEEE 802.3ba standard

 for 40/100-Gbit Ethernet provided a framework for data rates of 40 Gigabits per second and beyond

Technology Reuse

- Highly desirable to leverage existing 10G PHYs, including 10GBASE-R, W, X,
 S, L, E, Z and LRM in order to foster ubiquity and avoid duplication of standards efforts
- Highly desirable to leverage existing 40G PHYs, including 40GBASE-R, W, X,
 S, L, E, Z and LRM in order to foster ubiquity and avoid duplication of standards efforts

Deterministic Performance

- Latency/Delay Variation should be low for support of real-time packet based services, e.g.
 - > Streaming video
 - > VOIP
 - > Gaming

Next Gen Higher Speed Ethernet (4)

WAN Manageability

- 40 or 100 GbE will be transported over wide area networks
- It should include features for low Operational Expenses and should be:
 - > Economical
 - > Reliable
 - > Operationally Manageable (e.g. simple fault isolation)

WAN Transportability

- Operation over WAN fiber optic networks
- Transport across regional, national and inter-continental networks
- The protocol should be resilient to intra-channel/intra-wavelength propagation delay differences (skew)

Access technologies achieving 100 Gb/s Transport backend

Which Ethernet Application?

- **Ethernet is used today for** many applications over different distances
 - Distances > 100m primarily use optical technologies

•	Performance for each
	application may be best
	advanced using a different
	approach

Software-Defined Virtual Networking

- Future virtualized and software defined network
 - changes how services are provisioned and allows for a more flexible response to fluctuations in demand making a more efficient use of the infrastructure.
 - Networks Functions Virtualization (NFV) and
 - Software Defined Networking (SDN) are the disruptive technologies that enable this model

Software-Defined Virtual Networking

Networks Functions Virtualization (NFV) and Software Defined Networking (SDN) are the disruptive technologies coupled together to maximize benefits for Future networks.

Network Function Virtualization techniques

 hypervisor implements the virtualization layer that abstracts the application from the infrastructure which is viewed as a pool of compute, network and storage resources

Software Defined Networking (SDN)

- SDN separates the control and data plane, centralizing the network intelligence in a controller that manages white box switches implementing the forwarding function.
- Network administrators are no longer required to program thousands of devices and can remotely deploy network-wide policies down to the user level within an open software framework that leaves manufacturers' dependency behind.

Live 100 GbE Demo - Chicago to New York

Summary

100 GbE Requirements

- Protocol extensible for speed
- Hitless, incremental growth
- WAN transportability
- Technology reuse
- Deterministic performance

Software-Defined Virtual Networking

- Networks Functions Virtualization (NFV) and
- Software Defined Networking (SDN)
- Technology proven over real networks

Final Exam Discussion

