

Table Extraction

for Data Scientists

Visual NLP Team, John Snow Labs

Agenda

Main topic	Introduced Concepts
Introduction	Visual-NLP brief intro. What is Table Processing. Examples.
General Pipeline Architecture	Different architectures; table & cell detection, OCR. Examples.
Alternative Approach	Visual Question Answering. Problem definition. Extracting information from Tables. Examples.
Summary and next steps	JSL's roadmap on Table Extraction.
Questions & Answers	Questions to discuss the content.

Visual NLP

Visual Document Understanding

OCR

Image Preprocessing

Data Ingestion

Introduction

AOI Name	cell:0.9331012 Description cell:0.9607721	Fixation Count
Bike Bk	Bicyclist approaching from the behind	cell:0.8554\$
Ped	Conflicting pedestrian at	cell:0.90177 12
cell:0.92164:	Oncoming vehicle turning left at	cell:0.8667:
Signal mair	Overhead traffic signal	I _{sli-0.8741}
Signal side RV Mirror	Rear-view mirror	9 II: 0. 8749: 4 II: 0. 8698:
Outside	Right-side mirror Any other area	282

- Table Extraction -> recover the structure, hierarchies and relations of elements in a table.
- Involves multiple steps, OCR, table detection, cell detection.

Pipeline Architecture

5

Metrics

1.1. Table Detection Benchmark (Icdar 2019)

Evaluation on icdar19 cTDaR Track A dataset:

Model	0.6 (IOU F1)	0.7 (IOU F1)	0.8 (IOU F1)	0.9 (IOU F1)	Weighted Average
icdar_13_td	0.839	0.820	0.815	0.769	0.807
icdar_19_track_a_modern_td	0.918	0.898	0.893	0.837	0.882
table_bank_both_td	0.839	0.820	0.815	0.769	0.807
icdar_19_track_a_modern_td_v2	0.918	0.898	0.893	0.837	0.882
general_model_td_v2	0.918	0.900	0.893	0.839	0.883
table_detection_v3	0.951	0.946	0.936	0.887	0.93
CascadeTabNet (general model)	0.943	0.934	0.925	0.901	0.923
DETR_td	0.580	0.560	0.510	0.306	0.474

^{*} All models have been fine tunned in CTDAR Track A except DETR_td and DETR_td (FT in PubTables-1M)

2. Table Detection Benchmark (Icdar 13)

Evaluation on icdar13 dataset:

Model	0.6 (IOU F1)	0.7 (IOU F1)	0.8 (IOU F1)
DeepDeSRT	0.9615	0.974	0.9677
TableNet	0.9628	0.9697	0.9662
general_model_td_v2	1.0	1.0	1.0

^{*} All models have been fine tunned in CTDAR Track A except DETR_td and DETR_td_v2 (FT in PubTables-1M)

2. Table Structure Recognition (TSR)

2.1. TSR in ICDAR 19 TRACK B

Model	0.6 (IOU F1)	0.7 (IOU F1)	0.8 (IOU F1)	0.9 (IOU F1)	Weighted Average
CascadeTabNet	0.438	0.354	0.19	0.036	0.232
NLPR-PAL	0.365	0.305	0.195	0.035	0.206
Multi-Type-TD-TSR	0.589	0.404	0.137	0.015	0.253
SparkOCR	0.306	0.289	0.253	0.097	0.225

^{*} DETR not included because is trained in PubTables-1M. TSR accuracy in Track B low

2.2. TSR in PubTables-1M

Test performance of TSR models on PubTables-1M (Paper).

Model	AP	AP50	AP75	AR
Faster R-CNN	0.722	0.815	0.785	0.762
DETR	0.912	0.971	0.948	0.942

^{*} Performance on different subsets (AP, AP50, AP75 and AR) of PubTables-1M dataset

3. Table Cell Detection

TSR in ICDAR 19 TRACK B with TedEval results

Model	Recall	Precision	Hmean
CascadeTabNet			
region_cell_detection	0.925	0.846	0.884

Alternative DocVQA

- Many times extracting the entire table is not crucial.
- DocVQA can be used to process tables and extract specific information.

DocVQA

Examined 4 levels of service options ranging from \$1.1MM to \$6.1MM.

What is the issue at the top of the pyramid? Retailer calls/ other issues

Which is the least critical issue for live rep support? Retailer calls/other issues

Which is the most critical issue for live rep support? Product quality/liability issues

Not only extract and interpret the textual (handwritten, typewritten or printed) content of the document images, but also other visual cues including layout (page structure, forms, tables), non-textual elements (marks, tick boxes, separators, diagrams) and style (font, colours, highlighting).

Example #1

What is the Acceptable Haemoglobin level(g/100ml)?

14.0-14.9

What is the deficiency level for Haemoglobin in blood?

<12.0

What is the acceptable level of Serum Carotene in blood?

40-99

Example #2

CH COOKED SAUS

7/21/82

SCHOOL LUNCH COOKED SAUSAGE PIZZA

CODE 617C

Shell 3.2" x 5" (thin formulal)
Sauce 101
Meat 225
Cheese 564

COMPONENT

WEIGHT

1,40 oz. 0,98 oz. 0.60 oz. 1.52 oz.

NET WEIGHT

4.50 oz:

What is the number circled?

0.98 oz.

What is the net weight?

Retailer calls/other issues

What is the title of the table?

SCHOOL LAUNCH COOKED SAUSAGE PIZZA

Common Architectures

- 1. **Roughly 2 types of architectures:** OCR + decoder and encoder/decoder.
- 2. **OCR + decoder:** They use 3 types of features: layout, text, and image.
- 3. **Encoder-decoder:** they use a visual transformer + language model decoding.

- OCR-free VDU model
- Swin Transformer is used for the encoder.
- BART is used as the language decoder.

Best Practices

- Identify the documents/sections you care about.
- Apply a limited set of well defined questions covering the information you need.
- Rephrase the questions.
- Use confidence scores.

Examples

<u>TableExtractionBasics</u>

<u>TableProcessingVQA</u>

Summary and next steps

We've covered...

- Table Extraction Basics & Best Practices.
- Examples of different Table Extraction Pipelines.
- Practical problems & solutions.
- DocVQA as an alternative.
- Examples.

Summary and next steps

Next steps...

- We are adding new improved models all the time.
- New output formats for Tables.
- Trainable models.
- Want to try yourself? Ask for a trial!, enes@johnsnowlabs.com

Questions & Answers

