Esercizi

5 - Basi e dimensione

Legenda:

😀 : Un gioco da ragazzə, dopo aver riletto gli appunti del corso

😕 : Ci devo pensare un po', ma posso arrivarci

🤯 : Non ci dormirò stanotte

 $\stackrel{\textstyle \smile}{\smile}$ Esercizio 1. Consideriamo i seguenti sottospazi vettoriali di \mathbb{R}^4 :

$$U = \langle (1, 2, -1, 2), (1, -2, 1, 0), (3, -4, 2, 1) \rangle,$$

$$W = \{ (x, y, z, t) \in \mathbb{R}^4 : 4x + 5y - 3z - 4t = 0 \}.$$

- (a) Determinare una base di U e una base di W e dedurne la dimensione di U e W.
- (b) Determinare una base di U+W e dedurne la dimensione di U+W.
- (c) È vero che $\mathbb{R}^4 = U \oplus W$? In caso di risposta negativa, determinare una base di $U \cap W$ e la dimensione corrispondente.

$$igoplus \mathbf{Esercizio} \ \mathbf{2.} \ \mathrm{Sia} \ A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Si consideri il sottospazio $U = \langle A, A^2, A^3, A^4 \rangle \subseteq \mathcal{M}_2(\mathbb{R})$.

- (a) Determinare la dimensione e una base \mathcal{B}_U di U.
- (b) Completare \mathcal{B}_U a una base di $\mathcal{M}_2(\mathbb{R})$.
- (c) Determinare un sottospazio $W \subseteq \mathcal{M}_2(\mathbb{R})$ tale che $U \oplus W = \mathcal{M}_2(\mathbb{R})$.
- **Esercizio 3.** Si considerino i seguenti vettori di \mathbb{R}^3 :

$$v_1 = (1, 2, 3),$$
 $v_2 = (0, 1, k - 12),$ $v_3 = (3, 4, k).$

- (a) Si stabilisca per quali valori del parametro k i vettori v_1, v_2, v_3 costituiscono una base di \mathbb{R}^3 .
- (b) Determinare per quale valore di k il vettore (10, 16, 4) ha coordinate (1, 2, 3) rispetto alla base $\{v_1, v_2, v_2\}$.

- (a) Mostrare che $\{1, x, x^2, x^3\}$ è una base di $\mathbb{R}_{\leq 3}[X]$. Dedurne la dimensione di $\mathbb{R}_{\leq 3}[X]$.
- (b) Più in generale, determinare per ogni $n \geq 0$ una base di $\mathbb{R}_{\leq n}[X]$ e dedurne la dimensione di $\mathbb{R}_{\leq n}[X]$.
- (c) Dimostrare che $\mathbb{R}[X]$ non possiede una base finita (cioè con un numero finito di elementi). In particolare questo mostra che lo spazio vettoriale $\mathbb{R}[X]$ non ha dimensione finita.
- **Sercizio 5.** Consideriamo le seguenti matrici di $\mathcal{M}_2(\mathbb{C})$:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Tali matrici sono dette *matrici di Pauli* e sono spesso utilizzate in meccanica quantistica.

- (a) Mostrare che $\{I_2, \sigma_1, \sigma_2, \sigma_3\}$ è una base di $\mathcal{M}_2(\mathbb{C})$, dove I_2 è la matrice identità.
- (b) Calcolare le coordinate in tale base delle matrici

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- Esercizio 6. Siano U e W due sottospazi di uno spazio vettoriale V e siano \mathcal{B}_U e \mathcal{B}_W due basi rispettivamente di U e W.
 - (a) Utilizzando la formula di Grassmann si dimostri che $U \cap W = \{\underline{0}\}$ se e solo se $\mathcal{B}_U \cup \mathcal{B}_W$ è una base di U + W.
 - (b) Si deduca da (a) che $V = U \oplus W$ se e solo se $\mathcal{B}_U \cup \mathcal{B}_W$ è una base di V.