

Lecture 05

Modelling & Transforms (Part 2)

Transformation (Part 2)

[Homogeneous Coordinates]

A summary of basic transformations:

Translation: Rotation: Scaling:

$$p' = p + t$$

$$p' = R_a(\theta)p$$

$$p' = S(\vec{s})p$$

where:

p and p' are column vectors for coordinate positions.

t is a vector containing translational terms.

 $R_a(\theta)$ is a rotation matrix at angle θ about the axis a.

 $S(\vec{s})$ is a scaling matrix where \vec{s} is a vector of scaling factors.

Transformation like translation, rotation, and scaling can be expressed in a general matrix form:

$$p' = Mp + t$$

where:

p and p' are column vectors for coordinate positions.

M is a matrix containing multiplicative factors for p.

t is a vector containing the translational terms.

Example 1 (Translation):

$$p' = p + t$$
$$p' = Ip + t$$

where:

M = I, the identity matrix

Example 2 (Rotation):

$$p' = R_a(\theta)p$$

$$p' = R_a(\theta)p + \vec{0}$$

where:

$$M = R_a(\theta)$$

 $t = \vec{0}$, the zero vector.

Example 3 (Scaling):

$$p' = S(\vec{s})p$$

$$p' = S(\vec{s})p + \vec{0}$$

where:

$$M = S(\vec{s})$$

 $t = \vec{0}$, the zero vector.

Concatenating transformations without translation (e.g. a series of rotation and scaling only) is simple and elegant as the concatenated transformation can be combined into a single matrix using matrix multiplication.

Example 1 – Rotation followed by Scaling:

$$p' = S(\vec{s}) [R_a(\theta)p + \vec{0}^T] + \vec{0}^T = S(\vec{s})R_a(\theta)p = Gp$$

Example 2 – Scaling followed by Rotation:

$$p' = R_a(\theta) [S(\vec{s})p + \vec{0}^T] + \vec{0}^T = R_a(\theta)S(\vec{s})p = Gp$$

Concatenating transformations with translation does not results in a single matrix that combines all transformations.

Example 1 – Translation (t_1), followed by Scaling, followed by Translation (t_2):

$$p' = I[S(\vec{s})[Ip + t_1] + \vec{0}^T] + t_2 = I[S(\vec{s})p + S(\vec{s})t_1] + t_2 = S(\vec{s})p + S(\vec{s})t_1 + t_2$$

Example 2 – Scaling $(S_1(\vec{s}))$, followed by Translation (t), followed by Scaling $(S_2(\vec{s}))$:

$$p' = S_2(\vec{s}) \left[I \left[S_1(\vec{s})p + \vec{0}^T \right] + t \right] + \vec{0}^T = S_2(\vec{s}) \left[S_1(\vec{s})p + t \right] + \vec{0}^T$$
$$= S_2(\vec{s}) S_1(\vec{s})p + S_2(\vec{s})t$$

More generally, when performing concatenation of transformations of the form p' = Mp + t results in rather messy equation:

$$p' = M_2(M_1p + t_1) + t_2$$

= $(M_2M_1)p + M_2t_1 + t_2$

Is there a way to combine the transformations into a single matrix, instead of maintaining the multiplicative and translational terms separately?

Yes, by using homogeneous coordinates!

Homogeneous Coordinates | Introduction

Homogeneous coordinates extends Cartesian coordinates by one dimension, which is usually called the w coordinate, and setting w=1:

(a) 2D point

Let $p = \begin{bmatrix} x_p \\ y_p \end{bmatrix}$, expressed in Cartesian Coordinate

The homogeneous coordinate of
$$p$$
, $p_h \coloneqq \begin{bmatrix} x_h \\ y_h \\ w \end{bmatrix}$

where

$$w$$
 is a non-zero scalar such that $\begin{bmatrix} x_h/w \\ y_h/w \\ w/w \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix}$

Homogeneous Coordinates | Introduction

Converting Cartesian Coordinate to Homogeneous Coordinate:

(b) 3D point

Let
$$p = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}$$
, expressed in Cartesian Coordinate

The homogeneous coordinate of
$$p$$
, $p_h \coloneqq \begin{bmatrix} x_h \\ y_h \\ z_h \\ w \end{bmatrix}$ where w is a non-zero scalar such that $\begin{bmatrix} \overline{w} \\ \overline{y_h} \\ \overline{w} \\ \overline{w} \\ y \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$

Homogeneous Coordinates | Introduction

Geometrical Interpretation of Homogeneous Coordinates in 2D space

- The Cartesian coordinates P is the projection of the homogeneous coordinates P_h into the 2D space in which w=1
- Thus, any scalar multiple of P_h represents the same point in the 2D space.

Steps to transform an n-dimensional Cartesian coordinate:

- 1. Convert it to (n + 1)-dimensional homogeneous coordinates.
- Use $(n + 1) \times (n + 1)$ transformation matrix corresponding to multiplicative term M and translational term T to transform the homogeneous coordinates.

Example: Matrix F combines multiplicative term M and translational term t as follows:

$$F = \begin{bmatrix} M & T \\ \overrightarrow{0}^T & 1 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} & t_x \\ M_{21} & M_{22} & M_{23} & t_y \\ M_{31} & M_{32} & M_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 1 (Transforming a 2D point):

$$p = \begin{bmatrix} x_p \\ y_p \end{bmatrix}$$
, Homogeneous coordinate of p , $p_h = \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} p \\ 1 \end{bmatrix}$
$$p_h' = \begin{bmatrix} x_h' \\ y_h' \\ w' \end{bmatrix}$$

$$= Fp_h = \begin{bmatrix} M & t \\ \overrightarrow{0}^T & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} Mp+t \\ 1 \end{bmatrix}$$

Example 2 (Transforming a 3D point):

$$p = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}$$
, Homogeneous coordinate of p , $p_h = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} p \\ 1 \end{bmatrix}$

$$p'_{h} = \begin{bmatrix} x'_{h} \\ y'_{h} \\ z_{h}' \end{bmatrix}$$

$$= Fp_{h} = \begin{bmatrix} M & t \\ \overrightarrow{0}^{T} & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} Mp + t \\ 1 \end{bmatrix}$$

Basic Transformations for Homogeneous Coordinates:

Translation:

Rotation:

Scaling:

$$T'(t) = \begin{bmatrix} I & t \\ \overrightarrow{0^T} & 1 \end{bmatrix} \quad R'_a(\theta) = \begin{bmatrix} R_a(\theta) & \overrightarrow{0} \\ \overrightarrow{0^T} & 1 \end{bmatrix} \quad S'(\vec{s}) = \begin{bmatrix} S(\vec{s}) & \overrightarrow{0} \\ \overrightarrow{0^T} & 1 \end{bmatrix}$$

where:

t is a vector containing translational terms.

 $R_a(\theta)$ is a rotation matrix at angle θ about the axis a.

 $S(\vec{s})$ is a scaling matrix where \vec{s} is a vector of scaling factors.

Homogeneous Coordinates | Concatenation of Transformations

Special Example 1 : Rotation About a Pivot Point $oldsymbol{p}_p$

$$p' = T'(p_p)R'_z(\theta)T'(-p_p)p$$

$$= \begin{bmatrix} I & p_p \\ \vec{0}^T & 1 \end{bmatrix} \begin{bmatrix} R_z(\theta) & \vec{0} \\ \vec{0}^T & 1 \end{bmatrix} \begin{bmatrix} I & -p_p \\ \vec{0}^T & 1 \end{bmatrix} p$$

Can concatenate all transformations into a single matrix $F = T'(p_p)R'_z(\theta)T'(-p_p)$

Homogeneous Coordinates | Concatenation of Transformations

Special Example 2 : Scaling About a Fixed Point

$$p' = T'(p_p)S'(\vec{s})T'(-p_p)p$$

$$= \begin{bmatrix} I & p_p \\ \vec{0}^T & 1 \end{bmatrix} \begin{bmatrix} S'(\vec{s}) & \vec{0} \\ \vec{0}^T & 1 \end{bmatrix} \begin{bmatrix} I & -p_p \\ \vec{0}^T & 1 \end{bmatrix} p$$

Can concatenate all transformations into a single matrix $F = T'(p_p)S'(\vec{s})T'(-p_p)$

Coordinate Space

Recall that in the Graphics Pipeline

Recall that in the Graphics Pipeline

Geometry Processing involves a series of coordinate space transformations

^{*} We will look at model space, world space, and View (camera) space in this lecture in the coming slides.

Model Space

 The coordinate space in which coordinates of the points of a model are specified.

World Space

The coordinate space in which models are placed.

View (Camera) Space

The coordinate space of which the origin is typically the viewpoint.

Three teapots set in World Space

Left: Two teapots and a camera in World Space.

Right: Everything is transformed into View space (World space is represented only to help visualize the transformation).

An n-dimensional coordinate space can be represented using n vectors and an origin. These n vectors must be linearly independent and, in most cases, orthogonal to each other.

Coordinate Space | Matrix Representation

A coordinate space with n vectors and an origin can be expressed in homogeneous coordinate and packed into a single matrix.

$$\begin{array}{c|cccc}
\underline{\mathbf{2D}} & & \underline{\mathbf{3D}} \\
\begin{bmatrix} X & Y & P \\ 0 & 0 & 1 \end{bmatrix} & & \begin{bmatrix} X & Y & Z & P \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
& & \mathbf{3} \times \mathbf{3} & & \mathbf{4} \times \mathbf{4}
\end{array}$$

^{*} We shall see why this is helpful in interpreting the result of transformations in the coming slides.

Modelling Transformation

Modelling Transformation

Geometry Processing involves a series of coordinate space transformations

Modelling Transformation | Motivation

Consider an example of concatenated transformations:

$$p' = R_z(45^\circ)T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)p$$

- When the transformations are multiplied <u>from the right</u> (i.e. translation then rotation), it transforms the objects directly in the world space. No other coordinate space is used.
- When the transformations are multiplied <u>from the left</u> (i.e. rotation then translation), it is treated as transforming the model space on which the object is created. This is more intuitive and must easier to understand.

Modelling Transformation | Motivation

$$p' = R_z(45^\circ)T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)p$$

Translation then rotation.

Rotation then translate on the x-axis.

Modelling Transformation | Motivation

$$p' = T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) R_z(45^\circ) T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) p$$

Translate on the y-axis, then rotate, then translate on the x-axis.

Translate on the x-axis, then rotate, then translate on the y-axis.

Modelling Transformation | Introduction

- Focus on how to place objects in the virtual world.
- Objects are specified in their individual coordinate space, called model space.

^{*} Notice that both objects' relative position to their own coordinate space doesn't change.

Modelling Transformation | Visualization

We can visualize the result of a concatenated transformation as the resulting coordinate space after the transformation.

GLM

[Transformation in Practice]

GLM

- An OpenGL Mathematics library designed to match the mathematical functionalities of GLSL and features of the now deprecated OpenGL functions (i.e. gl*() and glu*()).
- Links:
 - Downloads
 - API Documentations
 - Manual

GLM | Vectors

```
std::cout << v1 << std::endl;</pre>
glm::vec3 v2(1.0f, 2.0f, 3.0f);
std::cout << v2 << std::endl;</pre>
glm::vec4 v3(v2, 1.0f);
std::cout << v3 << std::endl;</pre>
```

GLM | Matrices

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, t = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} I & t \\ \overrightarrow{0^{T}} & 1 \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} I & -t \\ \overrightarrow{0^{T}} & 1 \end{bmatrix}$$

$$M_{3} = M_{1}M_{2}$$

```
#include <glm/glm.hpp>
glm::mat3 I(1.0f);
glm::vec3 t(1.0f, 2.0f, 3.0f);
glm::mat4 M1(I);
M1[3] = glm::vec4(t, 1.0f);
glm::mat4 M2(I);
M2[3] = glm::vec4(-t, 1.0f);
glm::mat4 M3 = M1 * M2;
```

GLM | Transformations

$$\theta = \frac{\pi}{2}, t = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} s = \begin{bmatrix} s_{\chi} \\ s_{y} \\ s_{z} \end{bmatrix}$$

$$T = \begin{bmatrix} I & t \\ \overrightarrow{0^T} & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} R_z(\theta) & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} S(s) & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix}$$

$$F = TRS$$

Method 1:

```
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include_<glm/gtx/transform.hpp>
constexpr float theta = glm::half pi<float>();
glm::vec3 t(1.0f, 2.0f, 3.0f);
glm::vec3 s(1.0f, 1.0f, 2.0f);
glm::vec3 z axis(0.0f, 0.0f, 1.0f);
glm::mat4 T = glm::translate(t);
glm::mat4 R = glm::rotate(theta, z axis);
glm::mat4 S = glm::scale(s);
glm::mat4 F = T * R * S;
```

GLM | Transformations

$$\theta = \frac{\pi}{2}, t = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} s = \begin{bmatrix} s_{\chi} \\ s_{y} \\ s_{z} \end{bmatrix}$$

$$T = \begin{bmatrix} I & t \\ \overrightarrow{0^T} & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} R_z(\theta) & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} S(s) & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix}$$

$$F = TRS$$

Method 2:

```
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include_<glm/gtc/matrix transform.hpp>

constexpr float theta = glm::half_pi<float>();
glm::vec3 t(1.0f, 2.0f, 3.0f);
glm::vec3 s(1.0f, 1.0f, 2.0f);
glm::vec3 z_axis(0.0f, 0.0f, 1.0f);

glm::mat4 F(1.0f);
F = glm::translate(F, t);
F = glm::rotate(F, theta, z_axis);
F = glm::scale(F, s);
```

Q & A

Acknowledgement

 This presentation has been designed using resources from PoweredTemplate.com