Statistics 212: Lecture 5 (February 10, 2025)

Doob's Inequality / L^p Maximal Inequality and Reverse Martingales

Instructor: Mark Sellke

Scribe: Théo Voldoire & Sarah McDonald

Doob's Inequality / L^p Maximal Inequality

In the previous lecture, we discussed the L^p Maximal Inequality. In this lecture, we will use Doob's Inequality to prove the L^p Maximal Inequality.

Theorem 1.1 (Doob's Inequality). *If* (X_n) *is a submartingale and* $\lambda > 0$ *, then*

$$\lambda \mathbb{P}(\max_{j \leq n} X_j \geq \lambda) \leq \mathbb{E}\left[X_n \cdot 1_{\max_{j \leq n} X_j \geq \lambda}\right]$$

The proof of Doob's Inequality uses stopping times:

Proof. Let τ be first time t with $X_t \ge \lambda$, with $\tau = +\infty$ if that never happens. For each $0 \le k \le n$,

$$\mathbb{E}\left[X_{\tau}\cdot 1_{\tau=k}\right] \leq \mathbb{E}\left[X_{n}\cdot 1_{\tau=k}\right]$$

Now, summing over k,

$$\mathbb{E}\left[X_{\tau} \cdot 1_{\tau \leq n}\right] \leq \mathbb{E}\left[X_{n} \cdot 1_{\tau \leq n}\right]$$

Note also that

$$\tau \le n \Leftrightarrow \max_{j \le n} X_j \ge \lambda$$
$$X_{\tau} > \lambda \text{ as if } \tau \le +\infty$$

 $X_{\tau} \ge \lambda$ a.s. if $\tau \le +\infty$

Now, putting it all together, we have

$$\begin{split} \lambda \mathbb{P}(\max X_j \geq \lambda) &= \lambda \mathbb{P}(\tau \leq n) \\ &\leq \mathbb{E}\left[X_{\tau} \cdot 1_{\tau \leq n}\right] & \text{since } X_{\tau} \geq \lambda \\ &\leq \mathbb{E}\left[X_n \cdot 1_{\tau \leq n}\right] \\ &= \mathbb{E}\left[X_n \cdot 1_{\max_{j \leq n} X_j \geq \lambda}\right]. \end{split}$$

Now, we will prove the L^p Maximum Inequality from last lecture (Lecture 4 Lemma 1.4) using Doob's Maximal Inequality.

Proof. First, let $U = U_n = \max_{j \le n} |X_j|$, $V = V_n = |X_n|$. We will show $||U_n||_p \le \frac{p}{p-1} ||V_n||_p$.

Deducing L^p maximal inequality: first, $U_n \uparrow X^*$ as $n \to +\infty$ so $\|U_n\|_p \uparrow \|X^*\|_p$. Then, $\|V_n\|_p \uparrow \sup_{n \ge 1} \|X_n\|_p$ because $\mathbb{E}[|X_{n+1}|^p] \ge \mathbb{E}[|X_n|^p]$ as $u \mapsto |u|^p$ is convex.

Now, for fixed n,

$$\begin{split} \|U\|_p^p &= \mathbb{E}[U^p] \stackrel{*}{=} p \int_0^\infty \lambda^{p-1} \mathbb{P}(U \geq \lambda) d\lambda \\ &\leq p \int_0^\infty \lambda^{p-2} \mathbb{E}[V \cdot 1_{U \geq \lambda}] d\lambda \qquad \text{Doob's inequality, as } |X_n| \text{ is submartingale} \\ &\stackrel{\dagger}{=} \frac{p}{p-1} \int_{(V,U)} \left(\int_0^\infty \lambda^{p-2} V \cdot 1_{U \geq \lambda} d\lambda \right) d\mu \\ &= \frac{p}{p-1} \mathbb{E}\big[VU^{p-1}\big] \end{split}$$

where μ is the law of (V, U). Step * holds because for each *fixed* $u \ge 0$, we have $u^p = p \int_0^\infty \lambda^{p-1} 1_{u \ge \lambda} d\lambda = p \int_0^u \lambda^{p-1} d\lambda$. In other words, we are using Fubini to exchange the integration with respect to λ and the expectation with respect to U. Step † is proved similarly, in reverse. (Note that the power of λ changed from p-1 to p-2 from Doob's inequality, which leads to the factor $\frac{1}{p-1}$ rather than 1/p.)

Now introduce q s.t. $\frac{1}{p} + \frac{1}{q} = 1$, i.e. $q = \frac{p}{p-1}$, thus leading to

$$\frac{p}{p-1} \mathbb{E} \left[V U^{p-1} \right] \le \frac{p}{p-1} \|V\|_p \|U^{p-1}\|_q$$
 Holder's
$$= \frac{p}{p-1} \|V\|_p \|U\|_p^{p-1}.$$

Canceling $||U||_p^{p-1}$ on both sides of the inequality, we obtain

$$||U||_p \le \frac{p}{p-1} ||V||_p,$$

as desired. \Box

Theorem 1.2 (Lévy's Upward Theorem). Fix $X \in L^1$, consider the filtration (\mathscr{F}_n) , and let $X_n = \mathbb{E}[X|\mathscr{F}_n]$. Then

$$X_n \stackrel{a.s.,L^1}{\to} X_\infty = \mathbb{E}[X|\mathscr{F}_\infty],$$

where $\mathscr{F}_{\infty} = \sigma(\bigcup_n \mathscr{F}_n)$ is the smallest σ -algebra generated by (\mathscr{F}_n) .

Proof. X_{∞} is \mathscr{F}_{∞} -measurable as each X_n is \mathscr{F}_{∞} -measurable. We want to show that for all $S \in \mathscr{F}_{\infty}$, the following property holds:

$$\mathbb{E}[X \cdot 1_S] = \mathbb{E}[X_{\infty} \cdot 1_S]. \tag{1}$$

First, property (1) holds if $S \in \mathcal{F}_n$,

$$\mathbb{E}[X \cdot 1_S] = \mathbb{E}[X_m \cdot 1_S] \ \forall m \ge n$$

as
$$X_m = \mathbb{E}[X|\mathscr{F}_m]$$
, $S \in \mathscr{F}_n \subseteq \mathscr{F}_m$. So, we find $\mathbb{E}[X \cdot 1_S] \to \mathbb{E}[X_\infty \cdot 1_S]$ as $m \to \infty$, since $X_m \stackrel{L^1}{\to} X_\infty$.

We need to use the $\pi - \lambda$ -theorem. Let $\mathscr{G} = \{S \in \mathscr{F}_{\infty} : (1) \text{ holds for } S\}$. \mathscr{G} is a λ -system (closed under complement, countable disjoint union). Then, by what preceeds, $\bigcup_n \mathscr{F}_n \subseteq \mathscr{G}$, which is a π -system. So by $\pi - \lambda$ -Theorem, we find $\sigma(\bigcup_n \mathscr{F}_n) \subseteq \mathscr{G}$.

A consequence of this result is the Kolmogorov 0-1 law.

Theorem 1.3 (Kolmogorov's 0-1 Law). Let (X_n) be a sequence of iid random variables, $A \in \bigcap_n \sigma(X_n, X_{n+1}, ...)$. Then $\mathbb{P}(A) \in \{0, 1\}$.

Proof. Define $Y = 1_A$, $Y_n = \mathbb{P}(A | \sigma(X_1, ..., X_n))$. A is $\sigma(X_1, ..., X_n, ...)$ -measurable, so

$$Y_n \longrightarrow \mathbb{P}(A|\sigma(X_1,\ldots,X_n,\ldots)) = 1_A$$

Thus, $Y_n = \mathbb{P}(A)$ for all n, as $A \in \sigma(X_{n+1}, X_{n+2}, ...)$ is independent of $\sigma(X_1, ..., X_n)$. Hence, $\mathbb{P}(A) \xrightarrow{L^1} 1_A$.

In the context of Brownian motion, we get the Blumenthal 0-1 law, so this construction is useful to understand hitting times, e.g. to show that hitting times are stopping times.

2 Reverse martingales

Definition 2.1 (Reverse Martingale). A reverse filtration is a sequence $\mathscr{F}_{-1} \supseteq \mathscr{F}_{-2} \supseteq \ldots$ of decreasing filtrations. A reverse martingale is then a sequence of random variables X_{-1}, X_{-2}, \ldots such that

- (a) $X_{-i} \in L^1$
- (b) X_{-i} is \mathscr{F}_{-i} measurable
- (c) $\mathbb{E}[X_{-i}|\mathscr{F}_{-i-1}] = X_{-i-1}$

Observation 2.2. Any reverse martingale is uniformly integrable (UI), as

$$X_{-i} = \mathbb{E}[X_{-i-1}|\mathscr{F}_{-i}].$$

Namely, recall that $\{\mathbb{E}[X|\mathcal{G}]: \mathcal{G} \subseteq \mathcal{F}\}$ is UI if $X \in L^1$. In this case, the time-reversal means every random variable in the sequence is a conditional expectation of X_{-1} .

Theorem 2.3 (Lévy's Downward Theorem). Let $(X_{-i}, \mathscr{F}_{-i})$ be a reverse martingale. Then

$$X_{-n} \longrightarrow X_{-\infty} = \mathbb{E}[X_{-1}|\mathscr{F}_{-\infty}], \text{ a.s. and in } L^1$$

with $\mathscr{F}_{-\infty} = \bigcap_n \mathscr{F}_{-n}$.

Proof. Almost sure convergence has the same proof as forward direction, using up-crossing inequalities. We then obtain L^1 convergence using UI.

Now, let's show that $X_{-\infty} = \mathbb{E}[X_{-1}|\mathscr{F}_{-\infty}].$

Observe $X_{-\infty}$ is \mathscr{F}_{-n} -measurable $\forall n$ as X_{-n}, X_{-n-1}, \ldots are F_{-n} -measurable, thus $X_{-\infty}$ is $\mathscr{F}_{-\infty}$.

Next, we want that if $S \in \mathcal{F}_{-\infty}$, then $\mathbb{E}[X_{-\infty} \cdot 1_S] = \mathbb{E}[X_{-1} \cdot 1_S]$

We see that

$$\mathbb{E}[X_{-1}\cdot 1_S] = \mathbb{E}[X_n\cdot 1_S] \,\forall n,$$

as $S \in \mathcal{F}_{-n}$ and $X_{-n} = \mathbb{E}[X_{-1}|\mathcal{F}_{-n}]$.

Finally, we find $\mathbb{E}[X_{-n} \cdot 1_S] \to \mathbb{E}[X_{-1} \cdot 1_S]$ by L^1 convergence.

We can prove the SLLN using reverse martingales.

Theorem 2.4 (Strong Law of Large Numbers). Let X_1, X_2, \ldots iid sequence of L^1 random variables. Then

$$\bar{X}_n = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n} \xrightarrow{a.s., L^1} \mathbb{E}[X_1].$$

Proof Sketch. $\bar{X}_{-n} = \mathbb{E}[X_1 | S_n, S_{n+1}, ...]$, that is, (\bar{X}_n) is a reverse martingale, and so

$$\bar{X}_{-n} \stackrel{\mathrm{a.s.}, L^1}{\longrightarrow} \bar{X}_{\infty} = \mathbb{E}\left[X_1 \middle| \bigcap_{n \geq 1} \sigma(S_n, S_{n+1}, \dots)\right] \stackrel{?}{=} \mathbb{E}[X_1].$$

To show the last equality, use the Hewitt-Savage 0-1 Law (see Durrett) or Homework 2, Question 1. \Box