# 4

### Introdução à Regressão Logística

#### Parte 2 – Modelos Logitos

Unidade III

UnB – IE

Departamento de Estatística

Análise de Dados Categorizados

Maria Teresa Leão Costa





## Modelos Logitos para Variáveis Qualitativas

#### Exemplo 1 - Uso de Cartão de Crédito

Em uma pesquisa de mercado para uma certa firma, deseja-se analisar os dados sobre uso de cartão de crédito e renda anual.

Coletou-se dados sobre Renda em 1000 u.m. e uso de cartão de crédito (sim / não)

Categorias de renda: < 25 000 u.m.;</li>

≥ 25,000 u.m.;





# Variável Explicativa Qualitativa Binária

 O uso de variáveis indicadoras ("dummy") permite a inclusão de variáveis qualitativas, denominadas fatores, no modelo.

$$\pi(x_i) = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$

sendo que:  $X_i = 0$  se renda < 25

 $X_i = 1$ . se renda  $\geq 25$ 





Resposta média logito:

$$\pi^*(\mathbf{x}_i) = \ln \left( \frac{\pi(\mathbf{x}_i)}{1 - \pi(\mathbf{x}_i)} \right) = \beta_o + \beta_1 \mathbf{x}_i$$

• Note que se  $X_i = 0$  então:

$$\ln \left(\frac{\pi(0)}{1-\pi(0)}\right) = \beta_o + \beta_1 \times 0 = \beta_o \Rightarrow \frac{\pi(0)}{1-\pi(0)} = e^{\beta_o}$$

e se  $X_i = 1$  então:

$$\ln \left(\frac{\pi(1)}{1-\pi(1)}\right) = \beta_o + \beta_1 \times 1 = \beta_o + \beta_1 \Rightarrow \frac{\pi(1)}{1-\pi(1)} = e^{\beta_o + \beta_1}$$





| Model Fit Statistics                  |          |         |  |  |
|---------------------------------------|----------|---------|--|--|
| Intercept an Criterion Only Covariate |          |         |  |  |
| AIC                                   | 1060.501 | 886.311 |  |  |
| sc                                    | 1065.186 | 895.680 |  |  |
| -2 Log L                              | 1058.501 | 882.311 |  |  |

| Number of Observations Read | 4   |
|-----------------------------|-----|
| Number of Observations Used | 4   |
| Sum of Frequencies Read     | 800 |
| Sum of Frequencies Used     | 800 |

| Response Profile |                    |     |  |  |
|------------------|--------------------|-----|--|--|
| Ordered<br>Value | Total<br>Frequency |     |  |  |
| 1                | n                  | 300 |  |  |
| 2                | s                  | 500 |  |  |

Probability modeled is cartao='s'

| Class Level Information |                     |   |  |  |
|-------------------------|---------------------|---|--|--|
| Class                   | Design<br>Variables |   |  |  |
| renda                   | <25                 | 0 |  |  |
|                         | >=25                | 1 |  |  |

| Testing Global Null Hypothesis: BETA=0 |            |    |            |  |  |
|----------------------------------------|------------|----|------------|--|--|
| Test                                   | Chi-Square | DF | Pr > ChiSo |  |  |
| Likelihood Ratio                       | 176.1903   | 1  | <.0001     |  |  |
| Score                                  | 174.2222   | 1  | <.0001     |  |  |
|                                        |            |    |            |  |  |

| Analysis of Maximum Likelihood Estimates                  |      |   |         |        |          |        |
|-----------------------------------------------------------|------|---|---------|--------|----------|--------|
| Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSq |      |   |         |        |          |        |
| Intercept                                                 |      | 1 | -0.6931 | 0.1225 | 32.0302  | <.0001 |
| renda                                                     | >=25 | 1 | 2.0794  | 0.1658 | 157.2385 | <.0001 |

$$\hat{\beta}_1 = 2,0794 \implies \hat{\theta} = e^{2,0794} = 7,9997$$





Consequentemente:

$$\frac{\left(\frac{\pi(1)}{1-\pi(1)}\right)}{\left(\frac{\pi(0)}{1-\pi(0)}\right)} = \frac{e^{\beta_o + \beta_1}}{e^{\beta_o}} = e^{\beta_1} = \theta$$

que mede o quanto mais provável (ou improvável) é o "sucesso" entre os com nível x=1 do que entre os com nível x=0.

 Cabe ressaltar que este resultado só vale quando a variável for codificada como 0 ou 1.





# Efeito da codificação e o papel das variáveis dummy

| X | Sucesso<br>(Y=1)                                                       | Insucesso<br>(Y=0)                                   | odds                                                | Logito<br>ln(odds)    |
|---|------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------|
| a | $\pi(a) = \frac{e^{\beta_0 + \beta_1 a}}{1 + e^{\beta_0 + \beta_1 a}}$ | $1 - \pi(a) = \frac{1}{1 + e^{\beta_0 + \beta_1 a}}$ | $\frac{\pi(a)}{1-\pi(a)} = e^{\beta_0 + \beta_1 a}$ | $\beta_0 + \beta_1 a$ |
| b | $\pi(b) = \frac{e^{\beta_0 + \beta_1 b}}{1 + e^{\beta_0 + \beta_1 b}}$ | $1 - \pi(b) = \frac{1}{1 + e^{\beta_0 + \beta_1 b}}$ | $\frac{\pi(b)}{1-\pi(b)} = e^{\beta_0 + \beta_1 b}$ | $\beta_0 + \beta_1 b$ |

$$ln(\theta) = ln\left(\frac{\frac{\pi(a)}{1-\pi(a)}}{\frac{\pi(b)}{1-\pi(b)}}\right) = ln\left(\frac{\pi(a)}{1-\pi(a)}\right) - ln\left(\frac{\pi(b)}{1-\pi(b)}\right) =$$
$$= \beta_0 + \beta_1 a - (\beta_0 + \beta_1 b) = \beta_1 (a - b)$$

$$ln(\theta) = \beta_1(a-b) \implies \theta = e^{\beta_1(a-b)}$$





## Métodos de Construção de Variáveis dummy

- *Método parcial célula de referência* atribui *0* ao nível a ser considerado como referência e 1 ao outro nível.
- *Método marginal* desvio da média atribui –1 a um dos níveis e 1 ao outro nível.





### **EXEMPLO 2 - Coração x Idade**

Em uma pesquisa deseja-se estudar se idade é um fator de risco para doença coronariana.

Coletou-se dados para uma amostra de 100 pacientes sobre:

• Doença coronariana  $(0 - n\tilde{a}o/1 - sim).$ 

• Idade ( < 55 anos / >=55 anos ).

e os seguintes resultados foram obtidos:

| ldade     | Doença<br>Coronariana |     | Total |
|-----------|-----------------------|-----|-------|
|           | sim                   | não |       |
| < 55 anos | 22                    | 51  | 73    |
| >=55 anos | 21                    | 6   | 27    |
| Total     | 43                    | 57  | 100   |







136.663

|        | Odds Ratio Estimates |                   |       |        |  |
|--------|----------------------|-------------------|-------|--------|--|
| Effect | :                    | Point<br>Estimate |       |        |  |
| idade  | >=55 vs <55          | 8.114             | 2.880 | 22.861 |  |

<.0001

<.0001

Chi-Square

15.6898

Pr > ChiSq

0.0010

<.0001



### Variável Explicativa Qualitativa **Politômica**

- Em geral, se uma variável qualitativa tem *l* níveis possíveis, então 1-1 variáveis dummy ou de delineamento são necessárias.
- As l-1 variáveis dummy serão designadas como  $D_u$  e os coeficiente destas variáveis serão designados por  $\beta_{u}$ , u = 1, ... l - 1.

O modelo expresso em termos da função logito será:

$$logito(\pi) = ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \sum_{u=1}^{l-1} \beta_u D_u$$





### **EXEMPLO 3 - Coração x Raça** Variável qualitativa politômica

Em uma pesquisa deseja-se estudar se existe associação entre raça e doença coronariana.

Coletou-se dados para uma amostra de 100 pacientes

- Doença coronariana  $(0 - n\tilde{a}o/1 - sim).$
- Raça ( branca / negra /hispânica/ outra )

e os resultados seguintes resultados foram obtidos:

| Raça      | Doen<br>Corona | Total |     |
|-----------|----------------|-------|-----|
|           | sim            | nao   |     |
| Branca    | 5              | 20    | 25  |
| Negra     | 20             | 10    | 30  |
| Hispânica | 15             | 10    | 25  |
| Outra     | 10             | 10    | 20  |
| Total     | 50             | 50    | 100 |





# Métodos de Construção de Variáveis *dummy*

Método parcial – célula de referência –

Este método faz todas as variáveis dummy igual a zero para o nível considerado de referência e então aloca uma única variável *dummv* igual a 1 para cada um dos outros níveis de X.







| Response Profile |         |                    |  |
|------------------|---------|--------------------|--|
| Ordered<br>Value | coracao | Total<br>Frequency |  |
| 1                | s       | 50                 |  |
| 2                | n       | 50                 |  |

Probability modeled is coracao='s'.

| Class Level Information |          |                     |   |   |  |
|-------------------------|----------|---------------------|---|---|--|
| Class                   | Value    | Design<br>Variables |   |   |  |
| raca                    | branca   | -1 -1 -1            |   |   |  |
|                         | hispanic | 1                   | 0 | 0 |  |
|                         | negra    | 0                   | 1 | 0 |  |
|                         | outra    | 0                   | 0 | 1 |  |

Model Convergence Status onvergence criterion (GCONV=1E-8) satisfied.

| Model Fit Statistics |                   |                                |  |  |
|----------------------|-------------------|--------------------------------|--|--|
| Criterion            | Intercept<br>Only | Intercept<br>and<br>Covariates |  |  |
| AIC                  | 140.629           | 132.587                        |  |  |
| sc                   | 143.235           | 143.008                        |  |  |
| -2 Log L             | 138.629           | 124.587                        |  |  |

| n l | $(\underline{\pi(x)})$ | $= \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_3$ |
|-----|------------------------|-------------------------------------------------------|
| π   | $(1-\pi(x))$           | $-p_0 + p_1 D_1 + p_2 D_2 + p_3 D_3$                  |

| 3 | Testing Global Null Hypothesis: BETA=0 |            |    |            |  |  |  |
|---|----------------------------------------|------------|----|------------|--|--|--|
| J | Test                                   | Chi-Square | DF | Pr > ChiSo |  |  |  |
|   | Likelihood Ratio                       | 14.0420    | 3  | 0.0028     |  |  |  |
|   | Score                                  | 13.3333    | 3  | 0.0040     |  |  |  |
|   | Wald                                   | 11.7715    | 3  | 0.0082     |  |  |  |

| Type 3 Analysis of Effects |    |                    |            |
|----------------------------|----|--------------------|------------|
| Effect                     | DF | Wald<br>Chi-Square | Pr > ChiSq |
| raca                       | 3  | 11 7715            | 0.0082     |

| Analysis of Maximum Likelihood Estimates |          |    |          |                   |                    |            |
|------------------------------------------|----------|----|----------|-------------------|--------------------|------------|
| Parameter                                |          | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |
| ntercept                                 |          | 1  | -0.0719  | 0.2189            | 0.1079             | 0.7425     |
| aca                                      | hispanic | 1  | 0.4774   | 0.3623            | 1.7363             | 0.1876     |
| aca                                      | negra    | 1  | 0.7651   | 0.3506            | 4.7619             | 0.0291     |
| aca                                      | outra    | 1  | 0.0719   | 0.3846            | 0.0350             | 0.8517     |

| Odds Ratio Estimates   |       |                            |        |  |  |
|------------------------|-------|----------------------------|--------|--|--|
| Effect                 |       | 95% Wald<br>fidence Limits |        |  |  |
| aca hispanic vs branca | 6.000 | 1.693 21.261               |        |  |  |
| aca negra vs branca    | 8.000 | 2.316                      | 27.633 |  |  |
| aca outra vs branca    | 4.000 | 1.074                      | 14.895 |  |  |

П

