0.1 Introduksjon

Algebra er kort og godt matematikk der bokstaver representerer tall. Dette gjør at vi lettere kan jobbe med generelle tilfeller. For eksempel er $3 \cdot 2 = 2 \cdot 3$ og $6 \cdot 7 = 7 \cdot 6$, men disse er bare to av de uendelig mange eksemplene på at multiplikasjon er kommutativ! En av hensiktene med algebra er at vi ønsker å gi ett eksempel som forklarer alle tilfeller, og siden sifrene våre (0-9) er uløselig knyttet til bestemte tall, bruker vi bokstaver for å nå dette målet.

Verdien til tallene som er representert ved bokstaver vil ofte variere ut ifra en sammenheng, og da kaller vi disse bokstavtallene for *variabler*. Hvis bokstavtallene derimot har en bestemt verdi, kaller vi dem for *konstanter*.

I $Del\ I$ av boka har vi sett på regning med konkrete tal, likevel er de fleste reglene vi har utledet generelle; de gjelder for alle tall. På side 1-4 har vi gjengitt mange av disse reglene på en mer generell form. En fin introduksjon til algebra er å sammenligne reglene du finner her med slik du finner dem¹ i $Del\ I$.

0.1 Addisjon er kommutativ (??)

$$a+b=b+a$$

Eksempel

$$7 + 5 = 5 + 7$$

0.2 Multiplikasjon er kommutativ (??)

$$a \cdot b = b \cdot a$$

Eksempel 1

$$9 \cdot 8 = 8 \cdot 9$$

Eksempel 2

$$8 \cdot a = a \cdot 8$$

¹Reglene sine nummer i *Del I* står i parentes.

Ganging med bokstavuttrykk

Når man ganger sammen bokstaver, er det vanlig å utelate gangetegnet. Og om man ganger sammen en bokstav og et konkret tal, skriver man det konkrete tallet først. Dette betyr for eksempel at

$$a \cdot b = ab$$

og at

$$a \cdot 8 = 8a$$

I tillegg skriver vi også

$$1 \cdot a = a$$

Det er også vanlig å utelate gangetegn der parentesuttrykk er en faktor:

$$3 \cdot (a+b) = 3(a+b)$$

0.3 Brøk som omskriving av delestykke (??)

$$a:b=\frac{a}{b}$$

Eksempel

$$a:2=\frac{a}{2}$$

0.4 Brøk ganget med brøk (??)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Eksempel 1

$$\frac{2}{11} \cdot \frac{13}{21} = \frac{2 \cdot 13}{11 \cdot 21} = \frac{26}{231}$$

Eksempel 2

$$\frac{3}{b} \cdot \frac{a}{7} = \frac{3a}{7b}$$

0.5 Deling med brøk (??)

$$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

Eksempel 1

$$\frac{1}{2} : \frac{5}{7} = \frac{1}{2} \cdot \frac{7}{5}$$

Eksempel 2

$$\frac{a}{13} : \frac{b}{3} = \frac{a}{13} \cdot \frac{3}{b}$$
$$= \frac{3a}{13b}$$

0.6 Ganging med parentes (distributiv lov) (??)

$$(a+b)c = ac + bc$$

Eksempel 1

$$(2+a)b = 2b + ab$$

Eksempel 2

$$a(5b-3) = 5ab - 3a$$

0.7 Ganging med negative tall I (??)

$$a \cdot (-b) = -(a \cdot b)$$

Eksempel 1

$$3 \cdot (-4) = -(3 \cdot 4)$$
$$= -12$$

3

Eksempel 2

$$(-a) \cdot 7 = -(a \cdot 7)$$
$$= -7a$$

0.8 Ganging med negative tall II (??)

$$(-a) \cdot (-b) = a \cdot b$$

Eksempel 1

$$(-2) \cdot (-8) = 2 \cdot 8$$
$$= 16$$

Eksempel 2

$$(-a) \cdot (-15) = 15a$$

Utvidelser av reglene

Noe av styrken til algebra er at vi kan lage oss kompakte regler som det er lett å utvide også til andre tilfeller. La oss som et eksempel finne et annet uttrykk for

$$(a+b+c)d$$

Regel 0.6 forteller oss ikke direkte hvordan vi kan regne mellom parentesuttrykket og d, men det er ingenting som hindrer oss i å omdøpe a + b til k:

$$a + b = k$$

Da er

$$(a+b+c)d = (k+c)d$$

Av Regel 0.6 har vi nå at

$$(k+c)d = kd + cd$$

Om vi setter inn igjen uttrykket for k, får vi

$$kd + cd = (a+b)d + cd$$

4

Ved å utnytte Regel 0.6 enda en gang kan vi skrive

$$(a+b)d + cd = ad + bc + cd$$

Altså er

$$(a+b+c)d = ad + bc + cd$$

Obs! Dette eksempelet er ikke ment for å vise hvordan man skal gå fram når man har uttrykk som ikke direkte er omfattet av Regel 0.1-0.8, men for å vise hvorfor det alltid er nok å skrive regler med færrest mulige ledd, faktorar og lignende. Oftest vil man bruke utvidelser av reglene uten engang å tenke over det, og i alle fall langt ifra så pertentlig som det vi gjorde her.