#### PHYS4038/MLiS and ASI/MPAGS

# Scientific Programming in



mpags-python.github.io

Steven Bamford



## PHYS4038/MLiS

# Course Introduction



### Course information and materials

- Moodle page
   https://moodle.nottingham.ac.uk/course/view.php?id=95853
- → <a href="https://mpags-python.github.io">https://mpags-python.github.io</a>

- Slides and notebooks used in lectures
- Exercises and solutions

• 'Engage' lecture recordings available from Moodle page

#### Course aims

- To give you…
  - experience of using a modern scripting language
  - introduction to all essential Python syntax
  - practical advice about scientific programming
  - knowledge of the main scientific modules for Python
  - the ability to do basic data analysis tasks in Python (e.g. data manipulation, plotting, ...)
  - knowledge of some specific tools for scientific computing (e.g. signal processing, optimisation, ...)
  - an overview of Python's full capabilities
- Not to...
  - teach programming in general (but I will try to help!)
  - cover every aspect of Python

#### Course structure

- Ten sessions, every Monday this term, in George Green A13
  - 13:00 14:00 lecture / workshop
    - mix of PowerPoint and Jupyter notebooks
    - have Python running and try things out as I talk
  - 14:00 15:00 examples class
    - work on exercises and examples
    - ask any questions
    - make progress on coursework
    - help with debugging, etc.

## Questions

- Talk to me:
  - During teaching sessions (preferred)
    - Specific questions, clarifications just ask
    - Bigger issues wait until end of lecture / start of examples class
  - Via email: <a href="mailto:steven.bamford@nottingham.ac.uk">steven.bamford@nottingham.ac.uk</a>
  - Arrange a meeting
    - email me
    - office: CAPT A112b

## Your backgrounds

- Your general programming experience?
  - languages
  - level
  - projects
- Your prior Python experience?
- Any particular things you want to be covered?

#### Provisional outline

- Session I: Introduction to Python
  - Why Python is (mostly) awesome
  - Writing and running Python
  - Language basics
- Session 2: Introduction to Python, continued
  - More language basics
  - Good programming practice
- Session 3: Staying organised
  - Managing your environment with conda and pip
  - Version control with GitHub
- Session 4: Numerical Python
  - Numpy
  - Using arrays wisely
- Session 5: Plotting with Python
  - Matplotlib (and others)
- Session 6: Scientific Python overview
  - Scipy and other tools

### Provisional outline

- Session 7: Scientific Python examples
  - Filtering, interpolation, optimisation
- Session 8: Data handling
  - Efficiently storing and processing large amounts of data
    - PyTables, Pandas, Dask
    - Multiprocessing
- Session 9: Robust, fast & friendly code
  - Testing and timing
  - Wrapping external libraries and creating the fastest code
    - cython, numba, etc.
  - Web applications
- **Session 10**: Python for specialists
  - Python for astronomers
    - Astropy
  - Python for theorists
    - Symbolic algebra
  - Bayesian inference and Deep Learning in Python
    - MCMC with emcee
    - ANNs with keras

### Assessment

For those taking this module for University of Nottingham credits, towards a taught Masters or Undergraduate degree:

This is a 10 credit module.

- Code development 60%
- Presentation on development 20%
- Final report on development 20%

All assessed work is performed individually.

You will be given a mark and feedback on each element.

## Code development

- A Python program relevant to your interests
  - put course material into practice
  - opportunity to become familiar with Python
  - get feedback on your coding
- Your code should...
  - be written as an executable module (.py file) or Jupyter notebook (.ipynb)
  - do something meaningful: analyse real data or perform a simulation
  - define at least two user functions (but typically more)
  - make use of appropriate specialist modules
  - produce at least one informative plot
  - comprise >~ 50 lines of actual code
    - excluding comments, imports and other 'boilerplate'
  - contain no more than 1000 lines in total
    - if you have written more, please isolate an individual element

## Code development

- Three stages together 60% of module mark
  - 1. hand-in by 1st November 5%
    - README describing what you intend your code to do
    - Rough outline of the code (classes, functions, snippets, comments, pseudocode)
  - 2. hand-in by **I5th November I5**%
    - Rough version of your code, may be incomplete, have bugs, although try to make it reasonable and easy to understand!
  - 3. hand-in by **13th December** 40%
    - Complete working version of your code

Deadlines are 3pm on Fridays.

## Presentation and report

- Develop your ability to communicate verbally and through writing:
  - scientific objectives
  - coding choices
  - tests and performance
  - results and implications
  - potential improvements
- Presentation 20%
  - 5 10 minutes
  - In examples class on 25th November
- Report 20%
  - 2-3 sides of A4 (~1500 words plus figures)
  - hand-in by I3th December

### Feedback

- I aim to provide:
- feedback on each intermediate activity within ~ I week
- final feedback within ~ 2 weeks

- Code feedback will be given through GitHub
  - Introduced in Session 3

Marks and feedback on presentation and report via Moodle

## That's it for today!

#### Next up (with MPAGS students):

- **Session I**: Introduction to Python
  - Why Python is (mostly) awesome
  - Writing and running Python
  - Language basics
- **Session 2**: Introduction to Python, continued
  - More language basics
  - Good programming practice