

TEMA: RADICAIS. GEOMETRIA NO PLANO E NO ESPAÇO.

TIPO: FICHA DE REVISÕES N°2

LR MAT EXPLICAÇÕES

A ficha de revisões é constituída por exercícios dos temas indicados a seguir.

Deves <u>resolver apenas</u> os exercícios correspondentes aos conteúdos que serão alvo de avaliação neste próximo teste.

Sugiro que na coluna correspondente a cada exercício coloques um certo (se acertares o exercício) ou uma cruz (se precisaste de ajuda para resolver o exercício), de forma a no final reveres os exercícios que erraste.

Radicais	1.	2.	3.	4.	5.	6.1	6.2	6.3	7.
ludicais									

Geometria	8.	9.1	9.2	9.3	9.4	9.5	10.1	10.2	11.	12.	13.1	13.2	13.3	14
no plano														

Vetores	15.	16.	17.1	17.2	17.3	17.4	18.	19.1	19.2	19.3	19.4	20.	21.	22.1	22.2	22.3
no plano																

Companie 23.1	23.1		23.2				23.3					23.4			23.5	24	25.1	25.2
no espaço	Geometria	(a)	(b)	(c)	(a)	(b)	(c)	(d)	(e)	(a)	(b)	(c)	(d)	(e)	10.0		20.1	20.2
no espuço																		

Geometria no espaço	25.3	25.4				25.5	25.6	25.6 26.1		26.2		26.3	26.4	26.5
	20.0	(a)	(b)	(c)	(d)	23.0	20.0		(a)	(b)	(c)	20.0	2011	2010

- 1. Considera a equação $2x^6 = 32$. Qual dos seguintes é o conjunto-solução da equação?
 - (A) $\{\sqrt[6]{16}\}$
- (B) $\{\sqrt[3]{2}\}$
- (C) $\left\{-\sqrt[3]{4}, \sqrt[3]{4}\right\}$
- (D) $\{-\sqrt[6]{4}, \sqrt[6]{4}\}$

- 2. Sejam a um número real e b um número natural.
 - (I) $\sqrt{a^2} = a$
 - $(II) a^n + a^n = a^{2n}$

Qual das seguintes afirmações é necessariamente verdadeira?

- (A) I e II são falsas.
- (B) I é verdadeira e II é falsa.
- (C) I é falsa e II é verdadeira.
- (D) I e II são verdadeiras.
- 3. Sejam a é um número real superior a um. Então $\frac{\sqrt{a}-a}{1-\sqrt{a}}$ é igual a:
 - **(A)** $1 a\sqrt{a}$
- (B) $\frac{\sqrt{a}}{a}$
- (C) $a \sqrt{a}$
- (D) \sqrt{a}

- **4.** Simplifica a expressão $\frac{5\sqrt{6}-2\sqrt{54}}{\sqrt{3}-\sqrt{2}}$.
- 5. Resolve a seguinte equação, apresentando a resposta com denominador racional.

$$3x - 4 = 2\sqrt{3}x - 5$$

6. Considera os números reais $a, b \in c$, representados por:

$$a = \frac{\sqrt[3]{5} \times \sqrt[3]{2}}{\sqrt{10}}; \quad b = \sqrt{8} - \sqrt{2}; \quad c = \frac{10}{\sqrt[3]{6}}$$

- ${\bf 6.1}~{
 m Representa}$ o número real $a~{
 m na}$ forma de um único radical.
- **6.2** Mostra que $\frac{b}{\sqrt{3}+b} = \sqrt{6} 2$.
- **6.3** Racionaliza o denominador c, simplificando o máximo possível.
- 7. Na figura está representado um retângulo não quadrado [ABCD] e um triângulo equilátero [ABE] em que vértice E pertence ao lado [CD] do retângulo. Sabe-se que o perímetro do triângulo [ABE] é $\sqrt{108}~cm$. Determina a área do triângulo [ABE]. Apresenta o resultado na forma $a\sqrt{3}$, com $a \in \mathbb{Z}$.

- **8.** Considera, num referencial o.n. x0y, os pontos A(1,2) e B(5,1). As coordenadas do ponto do eixo das ordenadas que dista igualmente de A e de B são:
 - (A) $\left(0, -\frac{21}{2}\right)$
- **(B)** (0, -10)
- (C) $\left(0, \frac{21}{2}\right)$
- **(D)** (0,10)

- 9. Fixado um referencial o.n. do plano, os vértices do triângulo [ABD] são os pontos de coordenadas A(0,1), B(-1,4) e D(-4,3). Considera ainda os pontos M e N que são, respetivamente, os pontos médios dos segmentos de reta [AB] e [BD].
 - 9.1 Determina a equação reduzida da reta AD e verifica se o ponto B pertence à reta.
 - 9.2 Mostra que o triângulo [ABD] é retângulo.
 - 9.3 Classifica quando ao comprimento dos lados o triângulo [ABD].
 - **9.4** Determina a equação reduzida da reta que passa nos pontos *M* e *N* e indica as coordenadas dos pontos de interseção da reta com os eixos coordenados.
 - 9.5 Determina as coordenadas do ponto G, sabendo que D corresponde ao ponto médio de [AG].
- 10. Considera, num referencial o.n. do plano xOy, os pontos P(-2,1), Q(2,-3) e $R\left(k,\frac{5}{2}\right)$.
 - 10.1 Escreve a equação reduzida da reta PQ.
 - **10.2**Determina k de modo que o ponto R pertença à reta PQ.
- 11. Na Figura encontram-se representados, num referencial ortonormado x0y:
 - a reta t, bissetriz dos quadrantes pares;
 - as retas $s \in r$, paralelas aos eixos $Ox \in Oy$, respetivamente;
 - os pontos A(5,0) e B(0,6).

Qual das seguintes condições define o conjunto de pontos do plano representado na figura?

(B)
$$(y \ge 0 \land y \le -x \land x \le 5) \lor (y \le -x \land x \le 0 \land y \ge 6)$$

(C)
$$(y \le 0 \land y \ge -x \land x \le 5) \lor (y \ge -x \land x \le 0 \land y \le 6)$$

(D)
$$(y \ge 0 \land y \le -x \land x \ge 5) \lor (y \ge -x \land x \ge 0 \land y \le 6)$$

- 12. Para um certo valor de k real, o ponto de coordenadas (-2, k-4) pertence à reta que contém as bissetrizes dos quadrantes pares. Qual é esse valor de k?
 - **(A)** 2

(B) -2

(C) 6

- **(D)** -6
- 13. Num plano munido de um referencial ortonormado xOy considera a circunferência definida pela equação:

$$x^2 + y^2 - 6x + 2y - 6 = 0$$

- 13.1 Escreve a equação reduzida da circunferência dada. Apresenta todos os cálculos realizados.
- 13.2 Averigua de o centro da circunferência dada pertence à mediatriz do segmento de reta cujos extremos são os pontos A(-2,1) e B(0,1).
- 13.3 Determina as coordenadas dos pontos de interseção da circunferência dada com o eixo das abcissas.

14. A condição $(x+1)^2 + y^2 \le 9$ $\land -1 \le y \le 2$ está representada no referencial:

(A)

(B)

(C)

(D)

15. Considera os vetores $\vec{u}, \vec{v}, \vec{a} \in \vec{b}$ representados na figura.

Qual das seguintes afirmações é verdadeira?

(A)
$$\vec{a} = \vec{u} + \vec{v} \in \vec{b} = -\vec{u} + \vec{v}$$

(B)
$$\vec{a} = \vec{u} - \vec{v} \in \vec{b} = \vec{u} + \vec{v}$$

(C)
$$\vec{a} = -\vec{u} + \vec{v} \in \vec{b} = \vec{u} + \vec{v}$$

(D)
$$\vec{a} = \vec{u} + \vec{v} \in \vec{b} = -\vec{v}$$

16. Considera, fixado um plano munido de um referencial cartesiano, o vetor $\vec{u}(\sqrt{3},5)$.

As coordenadas de um vetor colinear com \vec{u} e de norma $\sqrt{56}$ podem ser:

(A)
$$\left(\frac{\sqrt{6}}{2}, \frac{5\sqrt{2}}{2}\right)$$

(B)
$$(\sqrt{6}, 5\sqrt{2})$$

(C)
$$(5\sqrt{2}, \sqrt{6})$$

(D)
$$\left(\frac{\sqrt{6}}{2}, -\frac{5\sqrt{2}}{2}\right)$$

- 17. Relativamente a um referencial o.n. $(0, \vec{i}, \vec{j})$, considera:
 - os pontos P(-1,4) e $Q(-3,\lambda)$, com $\lambda \in \mathbb{R}$.
 - os vetores $\vec{u}(-4, -3)$ e $\vec{v} = -2\vec{\iota} + 4\vec{\jmath}$.
 - 17.1) Determina o número real λ de modo que os vetores \overrightarrow{PQ} e \overrightarrow{u} sejam colineares.
 - 17.2) Determina as coordenadas do ponto R tal que $\overrightarrow{PR}=2\vec{v}-\vec{u}$.
 - **17.3)** Determina $||2\vec{u} + \vec{v}||$.
 - 17.4) Determina as coordenadas do vetor \vec{w} sabendo que \vec{w} é colinear com \vec{v} , tem sentido contrário ao de \vec{v} e tem norma $4\sqrt{5}$.

18. Na figura está representado o paralelogramo dividido em oito paralelogramos iguais.

Considera as proposições:

p: O segmento orientado [A,C] representa o vetor \overrightarrow{GI} .

$$q: B - \frac{1}{2}\overrightarrow{MO} = A$$

$$r: \overrightarrow{AB} + \overrightarrow{EI} - \overrightarrow{BM} = \overrightarrow{EF}$$

Qual das afirmações seguintes é verdadeira?

- (A) Apenas a proposição r é falsa.
- (B) Apenas são verdadeiras as proposições p e r.
- (C) Apenas não é falsa a proposição q.
- (D) As três proposições são falsas.

19. Considera a figura formada apenas por triângulos equiláteros.

Utiliza as letras da figura, calcula cada uma das seguintes operações.

19.1)
$$B + \frac{1}{3} \overrightarrow{AJ}$$

19.2)
$$\overrightarrow{AB} + \overrightarrow{FI} - \overrightarrow{GC}$$

19.3)
$$-2(\overrightarrow{AC} + \overrightarrow{FE})$$

19.4)
$$-\frac{2}{3}\overrightarrow{DJ} + \frac{1}{2}\overrightarrow{IB} - \overrightarrow{JC}$$

20. Em relação a um referencial o.n. $(0, \vec{\iota}, \vec{j})$, considera os vetores $\vec{u} = 2\vec{\iota} - 3\vec{j}$ e $\vec{v}(1, -3)$. Seja $\vec{w} = \vec{u} - 2\vec{v}$.

Qual das opções seguintes apresenta as coordenadas do vetor \vec{w} ?

(D)
$$(0, -3)$$

21. Considera os pontos A(3,1) e B(4,-2), assim como o vetor $\vec{u}(3,4k+3)$.

Indica o valor de k para o qual o vetor \vec{u} é colinear com o vetor \overrightarrow{AB} .

(A)
$$k = -\frac{3}{2}$$

(B)
$$k = -3$$

(C)
$$k = \frac{3}{2}$$

(D)
$$k = 3$$

- **22.** Considera, num referencial ortonormado x0y, os vetores $\vec{u}(-2,-3)$ e $\vec{v}(1,2)$ e os pontos A(3,-1) e $B\left(\frac{7}{2},0\right)$.
 - **22.1)** Averigua se os vetores \overrightarrow{AB} e \overrightarrow{v} são colineares. Justifica a tua resposta.
 - **22.2)** Determina as coordenadas do vetor \vec{w} , colinear com o vetor \vec{v} , com sentido oposto ao de \vec{v} e de norma $3\sqrt{5}$.
 - **22.3)** Indica as coordenadas do vetor $-\frac{1}{3}\overrightarrow{AB} \overrightarrow{AO}$.

23. Na figura ao lado estão representados, em referencial o.n. *0xyz*, um prisma e uma pirâmide quadrangulares regulares, com a mesma altura.

A base do prisma, que coincide com a base da pirâmide, está contida no plano x0y.

- O vértice P pertence ao eixo Ox.
- O vértice R pertence ao eixo Oy.
- O vértice S pertence ao eixo Oz.

O vértice U tem coordenadas (2,2,4).

- 23.1) Indica as coordenadas de todos os pontos assinalados no sólido.
- 23.2) Indica a projeção ortogonal do ponto:
 - (a) T no plano xOy;
 - (b) U no plano xOz;
 - (c) P no plano y0z.
- 23.3) Indica as coordenadas do ponto simétrico de U em relação:
 - (a) ao plano xOy;
 - (b) à origem;
 - (c) ao plano x = 6.
 - (d) ao plano y = -2.
 - (e) ao plano z = 10.
- 23.4) Define por uma condição:
 - (a) o plano que contém a face [TSPO].
 - **(b)** a face [*OPRQ*].
 - (c) a reta que contém a aresta [QR].
 - (d) a aresta [TU].
 - (e) o plano mediador de [TV].
- 23.5) Classifica quanto ao comprimento dos lados o triângulo cujos vértices são os pontos T, V e o centro da face [*OPRQ*]. Determina o valor exato da medida do perímetro desse triângulo.
- **24.** Num referencial o.n. Oxyz consider os pontos A(0,0,4) e B(-2,2,-2).

Qual das seguintes equações define a superfície esférica de diâmetro [AB]?

(A)
$$(x-1)^2 + (y+1)^2 + (z+1)^2 = 11$$

(B)
$$(x+1)^2 + (y-1)^2 + (z-1)^2 = 11$$

(C)
$$(x-1)^2 + (y+1)^2 + (z+3)^2 = 3$$

(D)
$$(x+1)^2 + (y-1)^2 + (z-3)^2 = 3$$
.

25. Na figura está representado, em referencial ortonormado *0xyz*, um cubo de aresta 4.

Sabe-se que:

- a face [ABGF] está contida no plano y0z;
- a face [ADEF] está contida no plano x0z;
- o ponto F tem de coordenadas (0,0,2).
- 25.1) Indica as coordenadas de cada vértice do cubo.

- **25.2)** Em qual das opções seguintes se encontram as coordenadas de um ponto que não pertence a qualquer aresta do cubo, mas pertence à face [*ADEF*]?
 - **(A)** (2,0,0)
- **(B)** (2,0,4)
- **(C)** (2,0,6)
- **(D)** (2, -2, 6)
- **25.3)** Determina os valores reais de k, para os quais o ponto (0, k, 2), pertence à aresta [GF]. Apresenta a resposta sob a forma de um intervalo de números reais.
- **25.4)** Define por uma condição cartesiana:
 - (a) o plano HEF;
 - **(b)** a reta *BC*;
 - (c) o plano perpendicular ao eixo 0y que contém o ponto (8, -1, 4);
 - (d) a equação do plano mediador do segmento de reta [FC].
- **25.5)** Determina as coordenadas do ponto médio do segmento de reta [0E].
- **25.6)** Escreve a equação reduzida da esfera inscrita no cubo.
- **26.** Na figura, em referencial o.n. *0xyz*, estão representados um prisma quadrangular regular e uma pirâmide. Sabe-se que:
 - a base [OPQR] do prisma está contida no plano xOy;
 - o vértice W da pirâmide pertence à aresta [QT] do prisma;
 - o vértice P pertence a Ox e o vértice V pertence a Oz;
 - o vértice *T* tem de coordenadas (9,9,16).
 - 26.1) Indica as coordenadas dos vértices do prisma.
 - 26.2) Define por uma condição cartesiana:
 - (a) o plano QTU;
 - (b) a reta SP;
 - (c) a aresta [TU].
 - **26.3)** Escreve a equação da esfera de centro em T e que contém o ponto V.
 - **26.4)** Determina as coordenadas do ponto de interseção do plano mediador de [QR] com a reta SV.
 - 26.5) Determina as coordenadas do ponto W, vértice da pirâmide, sabendo que o volume da pirâmide é 162.

