

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Homework 3

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

In this question we work over \mathbb{R}^d , with d>1. λ_d is the Lebesgue measure on \mathbb{R}^d

Theorem 1. Let $\ell \subset \mathbb{R}^d$ be a line. Then $\lambda_d(\ell) = 0$.

Proof. Since ℓ is closed, ℓ is Borel and hence Lebesgue measurable.

Since λ_d is translation invariant, we may assume that $0 \in \ell$. Let $v \in \ell$ with $v \neq 0$. Consider half open line segment,

$$S = \{tv : t \in [0,1) \}.$$

S is Borel, hence measurable. Suppose $v=(v_1,v_2,\ldots,v_d),$ and define the box,

$$B_n = \prod_{k=1}^{d} [0, \frac{v_k}{2^n}).$$

If $t \in [0,1)$ then for any n > 0 there exists an integer k such that $\frac{k}{2^n} \le v \le \frac{k+1}{2^n}$.

Hence,

$$S \subset \bigcup_{k=0}^{2^n-1} (B_n + \frac{k}{2^n}v).$$

So by translation invariance.

$$\lambda_d(S) \leq 2^n \lambda_d(B_n).$$

But by definition, $\lambda_d(B_n) = \frac{1}{2^{nd}} \lambda_d(B_0)$. Hence,

$$\lambda_d(S) \le 2^{n(1-d)} \lambda_d(B_0).$$

Since d > 1, n is arbitrary and $\lambda_d(B_0)$ is finite, we conclude that $\lambda_d(S) = 0$.

Now since

$$\ell = \bigcup_{n \in \mathbb{Z}} (nv + S)$$

by translation invariance we conclude that $\lambda_d(\ell) = 0$.

Question 2

(a)

Lemma 1.

(b)

Now we define

$$\mathcal{G}:=\{\;B\in\mathcal{F}\;:\;\forall\varepsilon>0\;\exists B_\varepsilon\in\mathcal{A}\;\text{such that}\;\mu(B\bigtriangleup B_\varepsilon)<\varepsilon\;\}.$$

Lemma 2. If $A \in \mathcal{G}$, then $A^c \in \mathcal{G}$.

Proof. Let $A \in \mathcal{G}$, and let $\varepsilon > 0$. Then choose $B_{\varepsilon} \in \mathcal{A}$ such that $\mu(A \triangle B_{\varepsilon}) < \varepsilon$. Hence $\mu(A^c \triangle B_{\varepsilon}^c) < \varepsilon$, and since $B_{\varepsilon}^c \in \mathcal{A}$, we conclude $A \in \mathcal{G}$.

(c)

Lemma 3. Let $A_n \in \mathcal{G}, n \geq 1$, with $A_1 \subseteq A_2 \subseteq \cdots A_n \cdots$. If $A = \bigcup_{n \geq 1} A_n$, then for any $\varepsilon > 0$ there exists N > 0 such that $\mu(A \triangle A_N) < \varepsilon$.

Proof. We compute,

$$\mu(A) = \mu(\bigcup_{n=1}^{\infty} A_n)$$
$$= \lim_{n \to \infty} \mu(A_n).$$

And,

$$\mu(A \triangle A_n) = \mu(A \setminus A_n) = \mu(A) - \mu(A_n).$$

Hence,

$$\lim_{n \to \infty} \mu(A \triangle A_n) = 0.$$

(d)

Corollary 1. $A \in \mathcal{G}$

Proof. Let $\varepsilon > 0$. Choose N > 0 such that $\mu(A \triangle A_n) < \varepsilon/2$ and select $B \in \mathcal{A}$ such that $\mu(B \triangle A_n) < \varepsilon/2$. Hence,

$$\mu(A \triangle B) \le \mu(A \triangle A_n \cup B \triangle A_n) \le \mu(A \triangle A_n) + \mu(B \triangle A_n) < \varepsilon.$$

Hence
$$A \in \mathcal{G}$$
.

 \mathbf{e}

Theorem 2. G = F.

Proof. \mathcal{G} is a d-class containing \mathcal{A} , hence $d(\mathcal{A}) \subseteq \mathcal{G}$. But since \mathcal{A} is an algebra, it is a π -class. Hence $\mathcal{F} \subseteq \mathcal{G}$ since $\sigma(\mathcal{A}) = d(\mathcal{A})$ by the monotone class theorem.

Question 3

In this question we consider the measure space (X, \mathcal{A}, μ) and the completed measure $\overline{\mu}$ with associated algebra \mathcal{A}_{μ} .

Lemma 4. \mathcal{A}_{μ} is a σ -algebra on X.

Proof. Since $A \subseteq A_{\mu}$, we have $X \in A_{\mu}$.

Suppose $A \in \mathcal{A}_{\mu}$. Then by definition there are $E, F \in \mathcal{A}$ with $E \subseteq A \subseteq F$ and $\mu(F \setminus E) = 0$. Hence we have $F^c \subseteq A^c \subseteq E^c$, and $\mu(E^c \setminus A^c) = \mu(F \setminus E) = 0$. Since $F^c, E^c \in \mathcal{A}$, we conclude that $A^c \in A_{\mu}$.

Now let $\{A_n\}_{n=1}^{\infty}$ be a countable subcollection of \mathcal{A}_{μ} . Choose $E_n, F_n \in \mathcal{A}$ for each $n \geq 1$ such that $E_n \subseteq A_n \subseteq F_n$ and $\mu(F_n \setminus E_n) = 0$. Hence,

$$\bigcup_{n=1}^{\infty} E_n \subseteq \bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} F_n$$

where the left and right hand sides are in A, and

$$\mu(\bigcup_{n=1}^{\infty} F_n \setminus \bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \mu(F_n \setminus E_n) = 0.$$

Hence \mathcal{A}_{μ} is a σ -algebra.

Lemma 5.