

Principe de superposition - Corrigé Exercice 1

Le principe de superposition est une méthode qui permet, dans un circuit linéaire soumis à l'action de plusieurs sources indépendantes, de déterminer le courant résultant en un point quelconque du circuit ou encore la tension aux bornes de n'importe quel élément. En effet, il suffit d'additionner les courants (respectivement les tensions) dus à chaque source prise individuellement et agissant seule. Dans notre cas, le circuit proposé peut être décomposé comme suit :

On résout les trois circuits A, B et C séparément :

A) Calcul du courant I'_2 dû à la source de courant I

On a tout d'abord mis les résistances R_3 et R_4 en parallèle, puis la résistance équivalente en série avec R_2 pour obtenir la résistance R_A suivante :

$$R_A = R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}$$

A partir de là, il est facile de déterminer la valeur du courant I'_2 , puisqu'il s'agit simplement d'un diviseur de courant. On a alors:

$$I'_2 = -I \cdot \frac{R_1}{R_1 + R_A}$$
 A. N. : $I'_2 = -1.92 \text{ mA}$

B) Calcul du courant I''_2 dû à la source de tension U_1

Dans une première étape, les deux résistances R_1 et R_2 sont mises en série puis en parallèle avec R_4 , ce qui nous donne la résistance équivalente R_B qui vaut :

$$R_B = \frac{R_4 \cdot (R_1 + R_2)}{R_4 + (R_1 + R_2)}$$

De là, on peut déterminer le courant I_t débité par la source de tension U_1 :

$$I_t = \frac{U_1}{R_3 + R_R}$$

Une fois ce courant I_t déterminé, il est facile de trouver I''_2 mais l'on doit retourner au schéma initial car ce courant I''_2 a été englobé dans la simplification de R_1 , R_2 et R_4 . On retrouve un schéma représentant un diviseur de courant où la branche centrale est parcourue par le courant I_t calculé précédemment.

$$I''_2 = I_t \cdot \frac{R_4}{R_4 + (R_1 + R_2)}$$
 A. N.: $I_t = 6.7 \text{ mA}$ et $I''_2 = 0.87 \text{ mA}$

C) Calcul du courant I'''_2 dû à la source de tension U_2

Ce cas de figure est semblable au cas B), la seule différence est la valeur de la source de tension U_2 qui est plus faible d'un facteur 2/3 que la source de tension U_1 , les résistances R_3 et R_4 étant de même valeur. On peut donc directement écrire que :

$$\frac{U_2}{U_1} = \frac{2}{3} \qquad \text{et} \qquad R_4 = R_3$$

Il vient donc:

$$I'''_2 = \frac{2}{3} \cdot I''_2$$
 A. N. : $I'''_2 = 0.58 \text{ mA}$

Finalement, le courant total recherché est la somme <u>algébrique</u> des trois courants obtenus :

$$I_2 = I'_2 + I''_2 + I'''_2$$
 A. N.: $I_2 = -0.47 \text{ mA}$