

FCC Part 15C **Measurement and Test Report**

For

LEEDARSON LIGHTING CO., LTD.

Xingda Road, Xingtai Industrial Zone, Changtai County, Zhangzhou, Fujian,

China

FCC ID: 2AB2QNS01RA13FR125

FCC Rule(s): FCC Part 15.247

Product Description: Smart Downlight

Tested Model: NS01RA13FR12591

Report No.: WTX19X03014590W-1

Sample Receipt Date: 2019-03-15

Tested Date: 2019-03-15 to 2019-03-18

Issued Date: 2019-03-20

Mike Shi / Engineer Tested By:

Mike Shi Fili-Chen Jumly80 Silin Chen / EMC Manager Reviewed By:

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.3 TEST METHODOLOGY	4
1.5 EUT SETUP AND TEST MODE	
1.6 Measurement Uncertainty	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	8
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT	8
4. ANTENNA REQUIREMENT	9
4.1 STANDARD APPLICABLE	
4.2 Evaluation Information	9
5. POWER SPECTRAL DENSITY	10
5.1 STANDARD APPLICABLE	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS/PLOTS	
6. 6DB BANDWIDTH	
6.1 Standard Applicable	
6.2 TEST PROCEDURE	
7. RF OUTPUT POWER	
7.1 Standard Applicable	
7.3 SUMMARY OF TEST RESULTS/PLOTS	
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	
8.1 STANDARD APPLICABLE	
8.2 Test Procedure	
8.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.4 SUMMARY OF TEST RESULTS/PLOTS	
9. OUT OF BAND EMISSIONS	25
9.1 Standard Applicable	
9.2 TEST PROCEDURE	
10. CONDUCTED EMISSIONS	
10.1 TEST PROCEDURE	
10.2 BASIC TEST SETUP BLOCK DIAGRAM	
10.4 SUMMARY OF TEST RESULTS/PLOTS	28

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: LEEDARSON LIGHTING CO., LTD.

Address of applicant: Xingda Road, Xingtai Industrial Zone, Changtai County,

Zhangzhou, Fujian, China

Manufacturer: LEEDARSON LIGHTING CO., LTD.

Address of manufacturer: Xingda Road, Xingtai Industrial Zone, Changtai County,

Zhangzhou, Fujian, China

Smart Downlight			
/			
NS01RA13FR12591			
NS01RA13FR125zx (x replaced by one digital numbers range			
Adding Model(s): 1 to 9 to denote different package style; z replaced by of			
digital numbers 8/9 to denote different CRI)			
AC120V/60Hz			

Note: The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model NS01RA13FR12591, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT			
Support Standards:	IEEE802.15.4		
Frequency Range:	2405-2480MHz		
RF Output Power:	12.85dBm (Conducted)		
Type of Modulation:	OQPSK		
Quantity of Channels:	16		
Channel Separation:	5MHz		
Type of Antenna:	PCB Antenna		
Antenna Gain:	1.3dBi		

Report No.: WTX19X03014590W-1 Page 3 of 30 RF Part 15.247

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>558074 D01 DTS Meas Guidance v04</u>: GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB 558074 D01 DTS Meas Guidance v04

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: WTX19X03014590W-1 Page 4 of 30 RF Part 15.247

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List					
Test Mode	Description	Remark			
TM1	Low	2405MHz			
TM2	Middle	2445MHz			
TM3 High 2480MHz					
Remark: The engineering mode power level is setup 13 by the software.					

Test Conditions		
Temperature:	22~25 °C	
Relative humidity	50~55 %.	
ATM Pressure:	1019 mbar	

EUT Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
USB Cable	1.2	Unshielded	Without Ferrite	

Special Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
/	/	/	/	

Auxiliary Equipment List and Details				
Description Manufacturer Model Serial Number				
/	/	/	/	

1.6 Measurement Uncertainty

Measurement uncertainty			
Parameter	Conditions	Uncertainty	
RF Output Power	Conducted	±0.42dB	
Occupied Bandwidth	Conducted	±1.5%	
Power Spectral Density	Conducted	±1.8dB	
Conducted Spurious Emission	Conducted	±2.17dB	
Conducted Emissions	Conducted	9-150kHz ±3.74dB	
		$0.15-30 \text{MHz} \pm 3.34 \text{dB}$	
Transmitter Spurious Emissions		$30-200 MHz \pm 4.52 dB$	
	Radiated	0.2-1GHz ±5.56dB	
		1-6GHz ±3.84dB	
		6-18GHz ±3.92dB	

Report No.: WTX19X03014590W-1 Page 5 of 30 RF Part 15.247

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2018-05-22	2019-05-21
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2018-05-22	2019-05-21
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2018-05-22	2019-05-21
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2018-05-22	2019-05-21
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2018-05-22	2019-05-21
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2020-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2020-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2020-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2020-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2018-05-22	2019-05-21
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2018-05-22	2019-05-21
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2018-05-22	2019-05-21
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2018-05-22	2019-05-21
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2018-05-22	2019-05-21
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2018-05-22	2019-05-21
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2018-03-19	2021-03-18
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2018-05-22	2019-05-21
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2018-05-22	2019-05-21
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2018-05-22	2019-05-21
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2018-03-19	2019-03-18
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2018-03-19	2019-03-18
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2018-03-19	2019-03-18
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2018-03-19	2019-03-18
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	Compliant
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.247(e)	Power Spectral Density	Compliant
§ 15.247(a)(2)	6 dB Bandwidth	Compliant
§ 15.247(b)(3)	RF Output Power	Compliant
§ 15.209(a)	Radiated Emission	Compliant
§ 15.247(d)	Band Edge (Out of Band Emissions)	Compliant

N/A: not applicable

Report No.: WTX19X03014590W-1 Page 7 of 30 RF Part 15.247

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

Report No.: WTX19X03014590W-1 Page 8 of 30 RF Part 15.247

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has a PCB antenna, fulfill the requirement of this section.

Report No.: WTX19X03014590W-1 Page 9 of 30 RF Part 15.247

5. Power Spectral Density

5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Procedure

According to the KDB 558074, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set VBW ≥ 3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 \text{ x span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Summary of Test Results/Plots

Test Mode	Test Channel	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	Low	-0.088	8
ZigBee	Middle	0.149	8
	High	-3.109	8

Please refer to the following test plots:

Report No.: WTX19X03014590W-1 Page 10 of 30 RF Part 15.247

6. 6dB Bandwidth

6.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 Summary of Test Results/Plots

Test Mode	Test Channel	6 dB Bandwidth MHz	Limit kHz
	Low	1.518	≥500
ZigBee	Middle	1.533	≥500
	High	1.444	≥500

Please refer to the following test plots:

Report No.: WTX19X03014590W-1 Page 12 of 30 RF Part 15.247

7. RF Output Power

7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

7.2 Test Procedure

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 RBW.
- c) Set span \geq 3 RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

7.3 Summary of Test Results/Plots

Test Mode	Test Channel	Reading	Output Power	Limit
Test Mode	Test Chamier	dBm	mW	mW
	Low	12.85	19.28	1000
ZigBee	Middle	12.27	16.87	1000
	High	8.98	7.91	1000

Report No.: WTX19X03014590W-1 Page 14 of 30 RF Part 15.247

8. Field Strength of Spurious Emissions

8.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Report No.: WTX19X03014590W-1 Page 16 of 30 RF Part 15.247

Frequency:9kHz-30MHz	Frequency:30MHz-1GHz	Frequency: Above 1GHz
RBW=10KHz,	RBW=120KHz,	RBW=1MHz,
VBW =30KHz	VBW=300KHz	VBW=3MHz(Peak), 10Hz(AV)
Sweep time= Auto	Sweep time= Auto	Sweep time= Auto
Trace = max hold	Trace = max hold	Trace = max hold
Detector function = peak	Detector function = peak, QP	Detector function = peak, AV

8.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$Corr.\ Ampl. = Indicated\ Reading + Ant.\ Factor + Cable\ Loss - Ampl.\ Gain$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

8.4 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Report No.: WTX19X03014590W-1 Page 17 of 30 RF Part 15.247

> Spurious Emissions Below 1GHz

Test Channel	Low	Polarity:	Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	88.6525	34.30	-14.45	19.85	43.50	-23.65	255	100	QP
2	145.3506	42.81	-17.51	25.30	43.50	-18.20	100	100	QP
3	154.8205	42.76	-16.87	25.89	43.50	-17.61	154	100	QP
4	200.6881	36.86	-13.18	23.68	43.50	-19.82	116	100	QP
5	245.9509	36.71	-10.08	26.63	46.00	-19.37	187	100	QP
6	298.2681	31.18	-8.16	23.02	46.00	-22.98	161	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	65.5727	48.83	-14.22	34.61	40.00	-5.39	269	100	QP
2	89.5900	47.65	-13.72	33.93	43.50	-9.57	266	100	QP
3	145.8611	50.48	-17.50	32.98	43.50	-10.52	55	100	QP
4	200.6881	39.27	-13.18	26.09	43.50	-17.41	296	100	QP
5	249.4250	38.75	-9.84	28.91	46.00	-17.09	225	100	QP
6	321.0608	33.95	-8.13	25.82	46.00	-20.18	244	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	89.5900	33.78	-13.72	20.06	43.50	-23.44	57	100	QP
2	144.8418	42.46	-17.51	24.95	43.50	-18.55	95	100	QP
3	156.4578	41.95	-16.77	25.18	43.50	-18.32	100	100	QP
4	245.9509	36.35	-10.08	26.27	46.00	-19.73	144	100	QP
5	297.2241	31.31	-8.16	23.15	46.00	-22.85	55	100	QP
6	701.7610	27.88	-1.77	26.11	46.00	-19.89	324	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	65.1145	48.27	-14.04	34.23	40.00	-5.77	238	100	QP
2	89.5900	47.29	-13.72	33.57	43.50	-9.93	92	100	QP
3	146.8877	49.25	-17.47	31.78	43.50	-11.72	139	100	QP
4	196.5098	40.51	-13.58	26.93	43.50	-16.57	114	100	QP
5	255.6231	39.11	-9.55	29.56	46.00	-16.44	332	100	QP
6	318.8170	34.16	-8.19	25.97	46.00	-20.03	223	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	88.9639	34.19	-14.21	19.98	43.50	-23.52	239	100	QP
2	145.8611	42.58	-17.50	25.08	43.50	-18.42	134	100	QP
3	154.8205	42.48	-16.87	25.61	43.50	-17.89	88	100	QP
4	228.4904	34.87	-11.29	23.58	46.00	-22.42	183	100	QP
5	245.9509	36.33	-10.08	26.25	46.00	-19.75	88	100	QP
6	432.5457	28.22	-6.06	22.16	46.00	-23.84	150	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	65.1145	49.24	-14.04	35.20	40.00	-4.80	75	100	QP
2	88.9639	47.16	-14.21	32.95	43.50	-10.55	147	100	QP
3	142.8244	47.36	-17.40	29.96	43.50	-13.54	54	100	QP
4	199.9856	39.47	-13.20	26.27	43.50	-17.23	137	100	QP
5	249.4250	38.58	-9.84	28.74	46.00	-17.26	73	100	QP
6	331.3547	32.31	-7.61	24.70	46.00	-21.30	303	100	QP

> Spurious Emissions Below 1GHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V				
	Low Channel-2405MHz									
4810	62.14	-3.53	58.61	74	-15.39	Н	PK			
4810	38.97	-3.53	35.44	54	-18.56	Н	AV			
7215	62.19	-0.50	61.69	74	-12.31	Н	PK			
7215	41.93	-0.50	41.43	54	-12.57	Н	AV			
4810	59.68	-3.53	56.15	74	-17.85	V	PK			
4810	39.15	-3.53	35.62	54	-18.38	V	AV			
7215	61.30	-0.50	60.80	74	-13.20	V	PK			
7215	40.30	-0.50	39.80	54	-14.20	V	AV			
			Middle Chan	nel-2445MHz						
4890	59.09	-3.43	55.66	74	-18.34	Н	PK			
4890	42.69	-3.43	39.26	54	-14.74	Н	AV			
7335	62.17	-0.44	61.73	74	-12.27	Н	PK			
7335	40.78	-0.44	40.34	54	-13.66	Н	AV			
4890	61.53	-3.43	58.10	74	-15.90	V	PK			
4890	39.35	-3.43	35.92	54	-18.08	V	AV			
7335	62.75	-0.44	62.31	74	-11.69	V	PK			
7335	41.25	-0.44	40.81	54	-13.19	V	AV			
			High Chann	el-2480MHz						
4960	59.55	-3.41	56.14	74	-17.86	Н	PK			
4960	38.69	-3.41	35.28	54	-18.72	Н	AV			
7440	60.79	-0.42	60.37	74	-13.63	Н	PK			
7440	39.53	-0.42	39.11	54	-14.89	Н	AV			
4960	58.42	-3.41	55.01	74	-18.99	V	PK			
4960	40.35	-3.41	36.94	54	-17.06	V	AV			
7440	59.24	-0.42	58.82	74	-15.18	V	PK			
7440	42.97	-0.42	42.55	54	-11.45	V	AV			

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: WTX19X03014590W-1 Page 24 of 30 RF Part 15.247

9. Out of Band Emissions

9.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

9.2 Test Procedure

According to the KDB 558074, the band-edge radiated test method as follows:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

According to the KDB 558074, the conducted spurious emissions test method as follows:

- 1. Set start frequency to DTS channel edge frequency.
- 2. Set stop frequency so as to encompass the spectrum to be examined.
- 3. Set RBW = 100 kHz.
- 4. Set VBW \geq 300 kHz.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1. Report the three highest emissions relative to the limit.

Report No.: WTX19X03014590W-1 Page 25 of 30 RF Part 15.247

9.3 Summary of Test Results/Plots

Test Channel Low	Polarity:	Vertical(worst case)
------------------	-----------	----------------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)		
1	2310.000	41.96	-7.78	34.18	54.00	-19.82	Average Detector	
	2310.000	54.98	-7.78	47.20	74.00	-26.80	Peak Detector	
2	2367.400	46.53	-7.44	39.09	54.00	-14.91	Average Detector	
	2310.900	60.52	-7.78	52.74	74.00	-21.26	Peak Detector	
3	2390.000	43.44	-7.32	36.12	54.00	-17.88	Average Detector	
	2390.000	54.95	-7.32	47.63	74.00	-26.37	Peak Detector	
4	2405.100	112.24	-7.22	105.02	/	/	Average Detector	
	2406.000	115.29	-7.22	108.07	/	/	Peak Detector	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.600	89.91	-6.79	83.12	/	/	Average Detector
	2479.475	107.37	-6.79	100.58	/	/	Peak Detector
2	2483.500	56.41	-6.77	49.64	54.00	-4.36	Average Detector
	2483.500	77.29	-6.77	70.52	74.00	-3.48	Peak Detector
3	2500.000	39.72	-6.67	33.05	54.00	-20.95	Average Detector
	2500.000	54.22	-6.67	47.55	74.00	-26.45	Peak Detector

10. Conducted Emissions

10.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.2 Basic Test Setup Block Diagram

10.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

10.4 Summary of Test Results/Plots

Report No.: WTX19X03014590W-1 Page 28 of 30 RF Part 15.247

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1*	0.1660	50.53	10.11	60.64	65.16	-4.52	QP
2	0.1660	38.30	10.11	48.41	55.16	-6.75	AVG
3	0.4980	35.28	10.29	45.57	56.03	-10.46	QP
4	0.6460	19.17	10.36	29.53	46.00	-16.47	AVG
5	4.5940	18.89	10.75	29.64	46.00	-16.36	AVG
6	4.6740	32.53	10.75	43.28	56.00	-12.72	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1*	0.1620	52.22	10.10	62.32	65.36	-3.04	QP
2	0.1660	40.12	10.11	50.23	55.16	-4.93	AVG
3	0.2420	25.74	10.15	35.89	52.03	-16.14	AVG
4	0.5060	36.79	10.29	47.08	56.00	-8.92	QP
5	4.6180	20.59	10.75	31.34	46.00	-14.66	AVG
6	4.7100	35.39	10.75	46.14	56.00	-9.86	QP

***** END OF REPORT *****