NIST NCSTAR 1

Federal Building and Fire Safety Investigation of the World Trade Center Disaster

Final Report on the Collapse of the World Trade Center Towers

National Institute of Standards and Technology

Technology Administration U.S. Department of Commerce

NIST NCSTAR 1

Federal Building and Fire Safety Investigation of the World Trade Center Disaster

Final Report on the Collapse of the World Trade Center Towers

September 2005

U.S. Department of Commerce Carlos M. Gutierrez, Secretary

Technology Administration
Michelle O'Neill, Acting Under Secretary for Technology

National Institute of Standards and Technology William Jeffrey, Director

Disclaimer No. 1

Certain commercial entities, equipment, products, or materials are identified in this document in order to describe a procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or equipment are necessarily the best available for the purpose. Nor does such identification imply a finding of fault or negligence by the National Institute of Standards and Technology.

Disclaimer No. 2

The policy of NIST is to use the International System of Units (metric units) in all publications. In this document, however, units are presented in metric units or the inch-pound system, whichever is prevalent in the discipline.

Disclaimer No. 3

Pursuant to section 7 of the National Construction Safety Team Act, the NIST Director has determined that certain evidence received by NIST in the course of this Investigation is "voluntarily provided safety-related information" that is "not directly related to the building failure being investigated" and that "disclosure of that information would inhibit the voluntary provision of that type of information" (15 USC 7306c).

In addition, a substantial portion of the evidence collected by NIST in the course of the investigation has been provided to NIST under nondisclosure agreements.

Disclaimer No. 4

NIST takes no position as to whether the design or construction of a WTC building was compliant with any code since, due to the destruction of the WTC buildings, NIST could not verify the actual (or as-built) construction, the properties and condition of the materials used, or changes to the original construction made over the life of the buildings. In addition, NIST could not verify the interpretations of codes used by applicable authorities in determining compliance when implementing building codes. Where an Investigation report states whether a system was designed or installed as required by a code *provision*, NIST has documentary or anecdotal evidence indicating whether the requirement was met, or NIST has independently conducted tests or analyses indicating whether the requirement was met.

Use in Legal Proceedings

No part of any report resulting from a NIST investigation into a structural failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a; as amended by P.L. 107-231).

National Institute of Standards and Technology National Construction Safety Team Act Report 1 Natl. Inst. Stand. Technol. Natl. Constr. Sfty. Tm. Act Rpt. 1, 298 pages (September 2005) CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2005

For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001

NATIONAL CONSTRUCTION SAFETY TEAM FOR THE FEDERAL BUILDING AND FIRE SAFETY INVESTIGATION OF THE WORLD TRADE CENTER DISASTER

S. Shyam Sunder, Sc.D. (NIST)

Lead Investigator

Richard G. Gann, Ph.D. (NIST) Final Report Editor; Project Leader, Project 5:

Reconstruction of Thermal and Tenability Environment

William L. Grosshandler, Ph.D. (NIST) Associate Lead Investigator; Project Leader, Project 4:

Investigation of Active Fire Protection Systems

H.S. Lew, Ph.D., P.E. (NIST) Co-Project Leader, Project 1: Analysis of Building and Fire

Codes and Practices

Richard W. Bukowski, P.E. (NIST)

Co-Project Leader, Project 1: Analysis of Building and Fire

Codes and Practices

Fahim Sadek, Ph.D. (NIST) Project Leader, Project 2: Baseline Structural Performance

and Aircraft Impact Damage Analysis

Frank W. Gayle, Ph.D. (NIST) Project Leader, Project 3: Mechanical and Metallurgical

Analysis of Structural Steel

John L. Gross, Ph.D., P.E. (NIST)

Co-Project Leader, Project 6: Structural Fire Response and

Collapse Analysis

Therese P. McAllister, Ph.D., P.E. (NIST) Co-Project Leader, Project 6: Structural Fire Response and

Collapse Analysis

Jason D. Averill (NIST) Project Leader, Project 7: Occupant Behavior, Egress, and

Emergency Communications

J. Randall Lawson (NIST) Project Leader, Project 8: Fire Service Technologies and

Guidelines

Harold E. Nelson, P.E. Fire Protection Engineering Expert

Stephen A. Cauffman (NIST) Program Manager

Case 1:07-cv-03314-GBD

This page intentionally left blank.

CONTRIBUTORS TO THE INVESTIGATION

NIST TECHNICAL STAFF

Jeffrey Fong Max Peltz Mohsen Altafi Robert Anleitner Glenn Forney Lisa Petersen Elisa Baker William Fritz Rochelle Plummer Kuldeep Prasad Stephen Banovic **Anthony Hamins** Natalia Ramirez Howard Baum Edward Hnetkovsky Ronald Rehm Carlos Beauchamp Erik Johnsson Dave Kelley Paul Reneke Dale Bentz Charles Bouldin Mark Kile Michael Riley Paul Brand Erica Kuligowski Lonn Rodine Lori Brassell Jack Lee Schuyler Ruitberg William Luecke Jose Sanchez Kathy Butler Nicholas Carino Alexander Maranghides Raymond Santoyo Steven Sekellick Sandy Clagett David McColskey Michael Selepak Ishmael Conteh Chris McCowan Matthew Covin Jay McElroy **Thomas Siewert** Frank Davis Kevin McGrattan **Emil Simiu** David Dayan Roy McLane Monica Starnes **David Stroup** Laurean DeLauter George Mulholland Jonathan Demarest Lakeshia Murray Laura Sugden Stuart Dols Kathy Notarianni Robert Vettori John Widmann Michelle Donnelly Joshua Novosel Brendan Williams Long Phan Dat Duthinh Maureen Williams David Evans William Pitts Jiann Yang Richard Fields Thomas Ohlemiller James Filliben Victor Ontiveros Robert Zarr Tim Foecke Richard Peacock

NIST EXPERTS AND CONSULTANTS

Vincent Dunn

Steven Hill

John Hodgens

Kevin Malley

Valentine Junker

Case 1:07-cv-03314-GBD

DEPARTMENT OF COMMERCE AND NIST INSTITUTIONAL SUPPORT

Karen Perry James Hill Michele Abadia-Dalmau **Sharon Rinehart** Verna Hines Kellie Beall Michael Rubin Kathleen Kilmer Arden Bement, Jr.

Rosamond Rutledge-Burns Kevin Kimball Audra Bingaman

John Sanderson Thomas Klausing Sharon Bisco Donna Kline Hratch Semerijan Phyllis Boyd Sharon Shaffer Fred Kopatich Marie Bravo Elizabeth Simon Kenneth Lechter Craig Burkhardt Jack Snell

Melissa Lieberman Paul Cataldo Michael Szwed Darren Lowe

Virginia Covahey Kelly Talbott Mark Madsen **Deborah Cramer** Ronald Meininger Anita Tolliver Gail Crum Joyce Waters Romena Moy Jane Dana Teresa Vicente Michael Newman Sherri Diaz Dawn Williams Gail Porter

Thomas O'Brian Susan Ford

Nualla O'Connor-Kelly James Fowler

Norman Osinski Matthew Heyman

NIST CONTRACTORS

Sandra Febach

Applied Research Associates, Inc.

Claudia Navarro Steven Kirkpatrick* Marsh Hardy Brian D. Peterson Samuel Holmes Robert T. Bocchieri Justin Y-T. Wu Robert A. MacNeill Robert W. Cilke

Baseline, Inc.

Martin Klain

Computer Aided Engineering Associates, Inc.

Daniel Fridline Peter Barrett* James J. Kosloski Michael Bak

DataSource, Inc.

John Wivaag

GeoStats, Inc.

Marcello Oliveira

Contributors to the Investigation

Gilsanz Murray Steficek LLP

Ramon Gilsanz

Hughes Associates, Inc.

Ed Budnick*

Matt Hulcher

John Schoenrock

Mike Ferreira*

Alwin Kelly

Steven Strege

Mark Hopkins

Chris Mealy

Karen Dawn Tooren

Independent Contractors

Ajmal Abbasi

David Sharp

Kaspar Willam

Eduardo Kausel

Daniele Veneziano

David Parks

Josef Van Dyck

Isolatek International, Inc.

Paulette Kaminski

John Jay College

Norman Groner

Leslie E. Robertson Associates, R.L.L.P.

William J. Faschan*

William C. Howell

Richard B. Garlock*

Raymond C. Lai

National Fire Protection Association

Rita Fahey*

Norma Candeloro

Joseph Molis

National Research Council, Canada

Guylene Proulx*

Amber Walker

NuStats, Inc.

Johanna Zmud*

Christopher Frye

Della Santos

Carlos Arce

Nancy McGuckin

Robert Santos

Heather Contrino

Sandra Rodriguez

Contributors to the Investigation

Rolf Jensen & Associates, Inc.

Ray Grill* Tom Brown Bob Keough
Ed Armm Duane Johnson Joseph Razz

Rosenwasser/Grossman Consulting Engineers, P.C.

Jacob Grossman* Craig Leech Arthur Seigel

Science Applications International Corporation

John Eichner*Pamela CurryMark MadaraCheri Sawyer*John DiMarzioWalter SoverowLori AckmanHeather DuvallPaul UpdikeMarina BogatineMark HuffmanYvonne Zagadou

Sydel Cavanaugh Charlotte Johnson Kathleen Clark Michael Kalmar

Simpson Gumpertz & Heger Inc.

Mehdi Zarghamee*Ron HamburgerWassim I. NaguibGlenn BellFrank KanRasko P. OjdrovicSaid BolourchiYasuo KitaneAndrew T. Sarawit

Daniel W. Eggers Atis Liepins Pedro Sifre

Ömer O. Erbay Michael Mudlock

S. K. Ghosh Associates, Inc.

S. K. Ghosh* Dave Fanella
Analdo Derecho Xumei Liang

Skidmore, Owings & Merrill, LLP

Bill Baker Bob Sinn John Zils

Teng & Associates, Inc.

Shankar Nair

Underwriters Laboratories, Inc.

Fred Hervey* Mark Izydorek William Joy
Joseph Treadway* Aldo Jimenez John Mammoser

Contributors to the Investigation

University at Buffalo, The State University of New York

Andrew Whitaker* Andrei Reinhorn Joshua Repp

University of Chicago Survey

University of Colorado

University of Michigan

Lab

Dennis Mileti

Jamie Abelson

Virginia Bartot Martha van Haitsma

Wiss, Janney, Elstner Associates, Inc.

Ray Tide* Jim Hauck

Conrad Paulson

COOPERATING ORGANIZATIONS

The Boeing Company

Blanford Land Development

Desmond Barry Morgan Heyer

American Airlines

Marlene Nelson

Corporation Lisa Lickman Ron Lickman John Sandy

Carr Futures, Inc.

City of New York Fire

Federal Bureau of

David Mangold

Department

Investigation

Alexandra Fisher Allen S. Hay

Kenneth Marr

Hugo Neu Schnitzer East

Laclede Steel

Marsh & McLennan

Robert Kelman

David McGee

Companies **Thomas Gress**

Steve Shinn

Michael Lyons

Frank Manzo

Metal Management Northeast, Inc.

Michael Henderson

Alan Ratner

John Silva

National Commission on Terrorist Attacks Upon the United States

Madeline Blot

George L. Delgrosso

James Miller

Sam M. W. Casperson

Daniel Marcus

Catherine S. Taylor

New York City Law Department

Lawrence S. Kahn

Rachel Relkin

Katherine Winningham

Jay L. Cohen

Joanna Weiss

Jessie Levine

Nancy Seliga

Gary Shaffer

George C. D. Duke

New York City Police Department

Michael F. Healey

The Port Authority of New York and New Jersey

James Begley

Jeffrey Gertier

Saroj Bhol Gerry Gaeta Frank Lombardi

Alan Reiss

Siemens

Silverstein Properties

Simpson, Thacher & Bartlett

LLP

Steven Shamash

John Farrington

Robert Salamone

Jamie Gamble

Structural Engineers Association of New York Wachtell, Lipton, Rosen &

United Air Lines

Ed DiPaolo

Marc Wolinsky

<u>Katz</u>

John Midgett Norvis Huezo

Andrew Cheung

Williams & Connolly LLP

Philip Sechler

^{*}Principal Investigator/Key Contact

DEDICATION

On the morning of September 11, 2001, Americans and people around the world were shocked by the destruction of the World Trade Center (WTC) in New York City and the devastation of the Pentagon near Washington, D.C., after large aircraft were flown into the buildings, and the crash of an aircraft in a Pennsylvania field that averted further tragedy. Four years later, the world has been changed irrevocably by those terrorist attacks. For some, the absence of people close to them is a constant reminder of the unpredictability of life and death. For millions of others, the continuing threats of further terrorist attacks affect how we go about our daily lives and the attention we must give to homeland security and emergency preparedness.

Within the construction, building, and public safety communities, there arose a question pressing to be answered: How can we reduce our vulnerability to such attacks, and how can we increase our preparedness and safety while still ensuring the functionality of the places in which we work and live?

This Investigation has, to the best extent possible, reconstructed the response of the WTC towers and the people on site to the consequence of the aircraft impacts. It provides improved understanding to the professional communities and building occupants whose action is needed and to those most deeply affected by the events of that morning. In this spirit, this report is dedicated to those lost in the disaster, to those who have borne the burden to date, and to those who will carry it forward to improve the safety of buildings.

Dedication

This page intentionally left blank.

ABSTRACT

This is the final report on the National Institute of Standards and Technology (NIST) investigation of the collapse of the World Trade Center (WTC) towers, conducted under the National Construction Safety Team Act. This report describes how the aircraft impacts and subsequent fires led to the collapse of the towers after terrorists flew jet fuel laden commercial airliners into the buildings; whether the fatalities were low or high, including an evaluation of the building evacuation and emergency response procedures; what procedures and practices were used in the design, construction, operation, and maintenance of the towers; and areas in current building and fire codes, standards, and practices that warrant revision. Extensive details are found in the 42 companion reports. The final report on the collapse of WTC 7 will appear in a separate report.

Also in this report is a description of how NIST reached its conclusions. NIST complemented in-house expertise with private sector technical experts; accumulated copious documents, photographs, and videos of the disaster; established baseline performance of the WTC towers; performed computer simulations of the behavior of each tower on September 11, 2001; combined the knowledge gained into a probable collapse sequence for each tower; conducted nearly 1,200 first-person interviews of building occupants and emergency responders; and analyzed the evacuation and emergency response operations in the two high-rise buildings.

The report concludes with a list of 30 recommendations for action in the areas of increased structural integrity, enhanced fire endurance of structures, new methods for fire resistant design of structures, enhanced active fire protection, improved building evacuation, improved emergency response, improved procedures and practices, and education and training.

Keywords: Aircraft impact, building evacuation, emergency response, fire safety, human behavior, structural collapse, tall buildings, wind engineering, World Trade Center.

This page intentionally left blank.

TABLE OF CONTENTS

National Construction Safety Team for the Federal Bui World Trade Center Disaster	lding and Fire Safety Investigation of the
Contributors to the Investigation	
Dedication	x
Abstract	xii
List of Figures	xx
List of Tables	xxv
List of Acronyms and Abbreviations	xxvi
Preface	xxi>
Executive Summary	XXXV
Part I: September 11, 2001	1
Chapter 1 New York City's World Trade Center	
1.1 The Origination	
1.2 The World Trade Center Complex	2
1.2.1 The Site	2
1.2.2 The Towers	5
Chapter 2 The Account of World Trade Center 1	19
2.1 8:46:30 a.m. EDT	
2.2 The Aircraft	
	20
2.4 The Jet Fuel	
	24
	27
	27
	32
	32
2.10 The Outcome	

Chapte The A		nt of World Trade Center 237
3.1	8:46:	30 a.m. EDT
3.2	9:02::	59 a.m. EDT
3.3	The I	mmediate Damage38
3.4	The J	et Fuel42
3.5	9:03 a	a.m. to 9:36 a.m. EDT42
3.6	9:36 a	a.m. to 9:58 a.m. EDT
3.7	The C	Outcome45
	oll	47
Part II	: Reco	onstructing the Disaster49
Chapte The D		and Construction of the Towers51
5.1	Build	ing and Fire Codes51
5.2	The C	Codes and the Towers
	5.2.1	The New York City Building Code
	5.2.2	Pertinent Construction Provisions
	5.2.3	Tenant Alteration Process
5.3	Build	ing Design55
	5.3.1	Loads
	5.3.2	Aircraft Impact
	5.3.3	Construction Classification and Fire Resistance Rating
	5.3.4	Compartmentation
	5.3.5	Egress Provisions
	5.3.6	Active Fire Protection61
5.4	Buildi	ng Innovations64
	5.4.1	The Need for Innovations
	5.4.2	Framed Tube System
	5.4.3	Deep Spandrel Plates
	5.4.4	Uniform External Column Geometry65
	5.4.5	Wind Tunnel Test Data to Establish Wind Loads
	5.4.6	Viscoelastic Dampers65

	5.4.7	Long-Span Composite Floor Assemblies
	5.4.8	Vertical Shaft Wall Panels66
5.5	Struct	tural Steels67
	5.5.1	Types and Sources67
	5.5.2	Properties67
5.6	Fire P	Protection of Structural Steel
	5.6.1	Thermal Insulation69
	5.6.2	Use of Insulation in the WTC Towers
5.7	Conci	rete
5.8	The T	Penant Spaces
	5.8.1	General
	5.8.2	Walls76
	5.8.3	Flooring
	5.8.4	Ceilings
	5.8.5	Furnishings76
	nstruct	tion of the Collapses81
6.1	Appro	each
		opment of the Disaster Timeline82
		ing from the Visual Images
6.4		ing from the Recovered Steel
	6.4.1	Collection of Recovered Steel
		Mechanical and Physical Properties
		Damage Analysis89
6.5	Inform	nation Gained from Other WTC Fires91
6.6	The B	uilding Structural Models92
	6.6.1	Computer Simulation Software
	6.6.2	The Reference Models92
	6.6.3	Building Structural Models for Aircraft Impact Analysis
	6.6.4	Building Structural Models for Structural Response to Impact Damage and Fire and Collapse Initiation Analysis
6.7	The A	ircraft Structural Model105
6.8	Aircra	ft Impact Modeling107
	6.8.1	Component Level Analyses
	6.8.2	Subassembly Impact Analyses

	6.8.3	Aircraft Impact Conditions	108
	6.8.4	Global Impact Analysis	109
6.9	Aircra	ft Impact Damage Estimates	112
	6.9.1	Structural and Contents Damage	112
	6.9.2	Validity of Impact Simulations	116
	6.9.3	Damage to Thermal Insulation	119
	6.9.4	Damage to Ceiling System	120
	6.9.5	Damage to Interior Walls and Furnishings	120
6.10	Therm	al Environment Modeling	121
	6.10.1	Need for Simulation	121
	6.10.2	Modeling Approach	121
	6.10.3	The Four Cases	126
	6.10.4	Characterization of the Fires	127
	6.10.5	Global Heat Release Rates	130
6.11	Data T	ransfer	131
6.12	Therm	al Mapping	131
	6.12.1	Approach	131
	6.12.2	The Fire-Structure Interface	131
	6.12.3	Thermal Insulation Properties	132
	6.12.4	FSI Uncertainty Assessment	133
	6.12.5	The Four Cases	138
	6.12.6	Characterization of the Thermal Profiles	141
6.13	Measu	rement of the Fire Resistance of the Floor System	141
6.14	Collap	se Analysis of the Towers	143
	6.14.1	Approach to Determining the Probable Collapse Sequences	143
	6.14.2	Results of Global Analysis of WTC 1	144
	6.14.3	Results of Global Analysis of WTC 2	145
	6.14.4	Events Following Collapse Initiation	146
	6.14.5	Structural Response of the WTC Towers to Fire without Impact or Thermal Insulation Damage	146
	6.14.6	Probable WTC 1 Collapse Sequence	150
	6.14.7	Probable WTC 2 Collapse Sequence	151
	6.14.8	Accuracy of the Probable Collapse Sequences	152
	6.14.9	Factors that Affected Building Performance on September 11, 2001	154

Chapte Recor		tion of Human Activity	155
7.1		ling Occupants	
	7.1.1	Background	
	7.1.2	The Building Egress System	
	7.1.3	The Evacuation—Data Sources	157
	7.1.4	Occupant Demographics	158
	7.1.5	Evacuation of WTC 1	158
	7.1.6	Evacuation of WTC 2	160
7.2	Emer	gency Responders	163
	7.2.1	Data Gathered	163
	7.2.2	Operation Changes following the WTC 1 Bombing on February 26, 1993	164
	7.2.3	Responder Organization	166
	7.2.4	Responder Access	169
	7.2.5	Communications	170
	7.2.6	The Overall Response	172
7.3	Factor	rs That Contributed to Enhanced Life Safety	172
	7.3.1	Aggregate Factors	172
	7.3.2	Individual Factors	172
Chapte	r 8	Outcome of the Investigation	
		uction	
		nary	
8.3		ngs on the Mechanisms of Building Collapse	
	8.3.1	Summary of Probable Collapse Sequences	
	8.3.2	Structural Steels	
	8.3.3	Aircraft Impact Damage Analysis	
	8.3.4	Reconstruction of the Fires	
	8.3.5	Structural Response and Collapse Analysis	
8.4	Findin	ngs on Factors Affecting Life Safety	
	8.4.1	Active Fire Protection	186
	8.4.2	Evacuation	188
	8.4.3	Emergency Response	191

8.5	Findings on Operational Codes, Standards, and Practices	194
	8.5.1 General	194
	8.5.2 Structural Safety	195
	8.5.3 Fire Safety	196
8.6	Future Factors That Could Have Improved Life Safety	199
	8.6.1 Building Performance Factors	200
	8.6.2 Human Performance Factors	200
.		
Chapte Recon	·9 nmendations	204
9.1	Building Regulations	
9.2	NIST's Recommendations for Improving the Safety of Buildings, Occupants, and	
· · <u>-</u>	Emergency Responders	202
	9.2.1 Group 1. Increased Structural Integrity	205
	9.2.2 Group 2. Enhanced Fire Endurance of Structures	208
	9.2.3 Group 3. New Methods for Fire Resistant Design of Structures	211
	9.2.4 Group 4. Improved Active Fire Protection	213
	9.2.5 Group 5. Improved Building Evacuation	214
	9.2.6 Group 6. Improved Emergency Response	218
	9.2.7 Group 7. Improved Procedures and Practices	
	9.2.8 Group 8. Education and Training	
9.3	Next Steps	223

Appendix A **National Construction Safety Team Act**

Appendix B World Trade Center Investigation Publications

Appendix C Subject Index of Supporting Investigation Reports

LIST OF FIGURES

Figure P-1.	ure P-1. The eight projects in the federal building and fire safety investigation of the WTC disaster.	
Figure 1-1.	The World Trade Center in Lower Manhattan	3
Figure 1–2.	Lower Manhattan and the World Trade Center towers	4
Figure 1–3.	Tower floor plans with column numbers.	7
Figure 1–4.	Perimeter column/spandrel assembly and floor structure.	8
Figure 1-5.	Plan of the 96 th floor of WTC 1 showing the core and tenant spaces	9
Figure 1-6.	Schematic of composite floor truss system.	
Figure 1–7.	Schematic of a hat truss.	11
Figure 1–8.	Photograph of insulated WTC trusses	
Figure 1–9.	Schematic of the three-tier elevator system.	
Figure 1-10.	Orientation of the three stairwells.	
	Views of typical WTC office floors	
	A WTC trading floor	
Figure 2-1.	Simulated impact of American Airlines Flight 11 with WTC 1	19
Figure 2–2.	Aircraft entry hole on the north side of WTC 1, photographed 30 s after impact	21
Figure 2-3.	South face damage of WTC 1 with key aircraft component locations marked	
Figure 2-4.	Simulation of cumulative aircraft impact damage to floors 93 through 98 in WTC 1	
Figure 2–5.	Representation of exterior views of the fires on the four faces of WTC 1 from 8:47 a.m. to about 9:02 a.m.	
Figure 2–6.	Firefighters on the scene at about 9:07 a.m.	27
Figure 2–7.	Representation of exterior views of the fires on the four faces of WTC 1 from about 9:38 a.m. to 9:58 a.m.	28
Figure 2–8.	Steel surface temperatures on the bottom chords of fire-exposed trusses, uninsulated and insulated with ¾ in. of BLAZE-SHIELD DC/F	
Figure 2–9.	Temperature dependence of yield strength of structural steel as a fraction of the value at room temperature.	
Figure 2–10.	Simulated temperatures of two adjacent trusses (left) and two adjacent perimeter columns (right) exposed to the fires in WTC 1	
Figure 2–11.	Temperature contours (°C) on the top and bottom faces of the concrete slab (96 th floor, WTC 1) at 100 min after impact. A portion of the concrete slab on the north face (top) was damaged by the impact of the aircraft.	31

Figure 2–12.	South face of WTC 1 at 10:23 a.m., showing inward buckling (in inches) of perimeter columns	
Figure 3–1.	Imminent impact of United Airlines Flight 175 with WTC 2	
Figure 3–2.	South face damage of WTC 2 with key aircraft component locations marked39	
Figure 3–3.	Simulation of aircraft impact damage to the 78 th through 83 rd floors in WTC 240	
Figure 3–4.	Representation of exterior views of the fires on the four faces of WTC 2 at about 9:20 a.m	
Figure 3–5.	Photograph of WTC 2 tilting to the southeast at the onset of collapse	
Figure 4–1.	The WTC site on September 17, 200147	
Figure 5–1.	Fire Command Desk in WTC 1, as seen from a mezzanine elevator, looking west61	
Figure 5–2.	Schematic of sprinkler and standpipe systems63	
Figure 5–3.	Diagram of floor truss showing viscoelastic damper	
Figure 5–4.	Ratio of measured yield strength (F _y) to specified minimum yield strength for steels used in WTC perimeter columns	
Figure 5–5.	Irregularity of coating thickness and gaps in coverage on SFRM-coated bridging trusses	
Figure 5–6.	Thermal insulation for perimeter columns	
Figure 5–7.	Temperature-dependent concrete properties	
Figure 5–8.	A WTC workstation76	
Figure 6–1.	9:26:20 a.m. showing the east face of WTC 2	
Figure 6–2.	Close-up of section of Figure 6–1	
Figure 6–3.	Examples of a WTC 1 core column (left) and truss material (right)	
Figure 6–4.	WTC 1 exterior panel hit by the fuselage of the aircraft	
Figure 6–5.	WTC 1 exterior panel hit by the nose of the aircraft	
Figure 6–6.	Structural model of the 96 th floor of WTC 195	
Figure 6–7.	Model of the 96 th floor of WTC 1, including interior contents and partitions95	
Figure 6–8.	Multi-floor global model of WTC 1, viewed from the north96	
Figure 6–9.	Multi-floor global model of WTC 2, viewed from the south96	
Figure 6–10.	Finite element model of an exterior truss seat	
Figure 6–11.	Vertical displacement at 700 °C	
Figure 6–12.	ANSYS model of 96 th floor of WTC 199	
Figure 6–13.	Finite element model of the Boeing 767-200ER	

Figure 6–14.	Pratt & Whitney PW4000 turbofan engine model	106
Figure 6–15.	Boeing 767-200ER showing the jet fuel distribution at time of impact	106
Figure 6–16.	Calculated impact on an exterior wall by a fuel-laden wing section.	107
Figure 6–17.	Response of a tower subassembly model to engine impact	108
Figure 6–18.	Side view of simulated aircraft impact into WTC 1, Case B.	110
Figure 6–19.	Column damage levels.	112
Figure 6–20.	Case B damage to the slab of floor 96 of WTC 1.	112
Figure 6–21.	Case B simulation of response of contents of 96 th floor of WTC 1	113
Figure 6–22.	Combined structural damage to the floors and columns of WTC 1, Case A	114
Figure 6–23.	Combined structural damage to the floors and columns of WTC 1, Case B	114
Figure 6–24.	Combined structural damage to the floors and columns of WTC 2, Case C	115
Figure 6–25.	Combined structural damage to the floors and columns of WTC 2, Case D	115
Figure 6-26.	Observed and Case A calculated damage to the north face of WTC 1	117
Figure 6–27.	Schematic of observed damage (top) and Case A calculated damage (lower) to the north face of WTC 1.	118
Figure 6–28.	Schematic of observed damage (above) and Case C calculated damage (right) to the south face of WTC 2.	118
Figure 6–29.	Ceiling tile system mounted on the shaking table	120
Figure 6–30.	Eight floor model of WTC 1 prior to aircraft impact.	122
Figure 6–31.	Fire test of a single workstation.	123
Figure 6–32.	Interior view of a three-workstation fire test	124
Figure 6–33.	Rubblized workstations.	124
Figure 6–34.	Three-workstation fire test, 2 min after the start.	125
Figure 6–35.	Measured and predicted heat release rate from the burning of three office workstations	125
Figure 6–36.	Upper layer temperatures on the 94 th floor of WTC 1, 15 min after impact	127
Figure 6–37.	Direction of simulated fire movement on floors 94 and 97 of WTC 1	128
Figure 6–38.	Predicted heat release rates for fires in WTC 1 and WTC 2	130
Figure 6–39.	Simple bar dimensions (in.).	134
Figure 6–40.	Tubular column dimensions (in.).	134
Figure 6–41.	Truss Dimensions (in.)	135
Figure 6–42.	SFRM-coated steel components prior to a test.	135
Figure 6-43.	Finite element representation of the insulated steel truss (blue), the SFRM (violet), and the ceiling (red).	136
Figure 6–44.	Comparison of numerical simulations with measurements for the steel surface temperature at four locations on the top chord of a bare truss.	

Figure 6–45.	Comparison of numerical simulations with measurements for the temperature of the steel surface at four locations on the top chord of an insulated truss	. 137
Figure 6-46.	Temperatures (°C) on the columns and trusses of the 96 th floor of WTC 1 at 6,000 s after aircraft impact, Case B.	. 139
Figure 6–47.	Temperatures (°C) on the columns and trusses of the 81 st floor of WTC 2 at 3,000 s after aircraft impact, Case D.	. 139
Figure 6–48.	Frames from animation of the thermal response of columns on the 96 th floor of WTC 1, Case A	140
Figure 7–1.	Simulated impact damage to 95 th floor of WTC 1, including stairwells, 0.7 s after impact	156
Figure 7–2.	Simulated impact damage to WTC 2 on floor 78, 0.62 s after impact	156
Figure 7–3.	Observations of building damage after initial awareness but before beginning evacuation in WTC 1.	161
Figure 7–4.	Observations of building damage from tenant spaces in WTC 2	162
Figure 7–5.	Location of the radio repeater	165
Figure 7–6.	Timing of FDNY unit arrivals.	166
Figure 7–7.	Fire Command Board located in the lobby of WTC 1.	168

LIST OF TABLES

Table P-1.	Federal building and fire safety investigation of the WTC disasterxxx
Table P-2.	Public meetings and briefings of the WTC Investigationxxxiii
Table E-1.	Topics of NIST recommendations for improved public safety in tall and high-risk buildingsxliv
Table 1-1.	Use of floors in the WTC towers5
Table 2-1.	Locations of occupants of WTC 1
Table 3–1.	Tenants on impact floors in WTC 2
Table 3–2.	Location of occupants of WTC 242
Table 4–1.	Likely locations of WTC decedents at time of impact
Table 5-1.	Specified steel grades for various applications
Table 5–2.	Types and locations of SFRM on fire floors
Table 5–3.	Floors of focus
Table 6–1.	Times for major events on September 11, 2001
Table 6–2.	Indications of major structural changes up to collapse initiation
Table 6–3.	Measured and calculated natural vibration periods (s) for WTC 193
Table 6–4.	Summary of aircraft impact conditions
Table 6–5.	Input parameters for global impact analyses
Table 6–6.	Values of WTC fire simulation variables
Table 6–7.	Summary of insulation on steel components
Table 6–8.	Regions in WTC 1 in which temperatures of structural steel exceeded 600 °C 141
Table 6–9.	Regions in WTC 2 in which temperatures of structural steel exceeded 600 °C 141
Table 6–10.	Comparison of global structural model predictions and observations for WTC 1, Case B
Table 6-11.	Comparison of global structural model predictions and observations for WTC 2, Case D

This page intentionally left blank.

LIST OF ACRONYMS AND ABBREVIATIONS

Acronyms

AA American Airlines

ARA Application Research Associates

ASTM ASTM International

BOCA Building Officials and Code Administrators

BPS Building Performance Study

FCD Fire Command Desk

FDNY The Fire Department of the City of New York

FDS Fire Dynamics Simulator

FEMA Federal Emergency Management Agency

FSI Fire Structure Interface

IBC International Building Code

LERA Leslie E. Robertson Associates

NFPA National Fire Protection Association

NIST National Institute of Standards and Technology

NYC New York City

NYPD New York City Police Department

NYS New York State

PANYNJ The Port Authority of New York and New Jersey

PAPD Port Authority Police Department

SFRM sprayed fire-resistive material

SGH Simpson Gumpertz & Heger, Inc.

SOM Skidmore, Owings and Merrill

UA United Airlines

USC United States Code

WSHJ Worthington, Skilling, Helle and Jackson

WTC World Trade Center

WTC 1 World Trade Center 1 (North Tower)

WTC 2 World Trade Center 2 (South Tower)

WTC 7 World Trade Center 7

Case 1:07-cv-03314-GBD

Abbreviations and Conversion Factors

°C degrees Celsius $T (^{\circ}C) = 5/9 [T (^{\circ}F) - 32]$

٥F

degrees Fahrenheit

ft

feet

gal

gallon

 $1 \text{ gal} = 3.78 \times 10^{-3} \text{ m}^3$

GJ GW gigajoule gigawatt

in.

inch

kg

kilogram

kip

1,000 lb

ksi

1,000 lb/in.²

lb

pound

1 lb = 0.453 kg

m

meter

1 m = 3.28 ft

μm

micrometer

min

minute

MJ

megajoule

MW

megawatt

psi

pounds per square inch

s

second

T

temperature

PREFACE

Genesis of This Investigation

Immediately following the terrorist attack on the World Trade Center (WTC) on September 11, 2001, the Federal Emergency Management Agency (FEMA) and the American Society of Civil Engineers began planning a building performance study of the disaster. The week of October 7, as soon as the rescue and search efforts ceased, the Building Performance Study Team went to the site and began its assessment. This was to be a brief effort, as the study team consisted of experts who largely volunteered their time away from their other professional commitments. The Building Performance Study Team issued its report in May 2002, fulfilling its goal "to determine probable failure mechanisms and to identify areas of future investigation that could lead to practical measures for improving the damage resistance of buildings against such unforeseen events."

On August 21, 2002, with funding from the U.S. Congress through FEMA, the National Institute of Standards and Technology (NIST) announced its building and fire safety investigation of the WTC disaster. On October 1, 2002, the National Construction Safety Team Act (Public Law 107-231), was signed into law. (A copy of the Public Law is included in Appendix A). The NIST WTC Investigation was conducted under the authority of the National Construction Safety Team Act.

The goals of the investigation of the WTC disaster were:

- To investigate the building construction, the materials used, and the technical conditions that contributed to the outcome of the WTC disaster.
- To serve as the basis for:
 - Improvements in the way buildings are designed, constructed, maintained, and used;
 - Improved tools and guidance for industry and safety officials;
 - Recommended revisions to current codes, standards, and practices; and
 - Improved public safety.

The specific objectives were:

- 1. Determine why and how WTC 1 and WTC 2 collapsed following the initial impacts of the aircraft and why and how WTC 7 collapsed;
- 2. Determine why the injuries and fatalities were so high or low depending on location, including all technical aspects of fire protection, occupant behavior, evacuation, and emergency response;
- 3. Determine what procedures and practices were used in the design, construction, operation, and maintenance of WTC 1, 2, and 7; and
- 4. Identify, as specifically as possible, areas in current building and fire codes, standards, and practices that warrant revision.

NIST is a nonregulatory agency of the U.S. Department of Commerce's Technology Administration. The purpose of NIST investigations is to improve the safety and structural integrity of buildings in the United States, and the focus is on fact finding. NIST investigative teams are authorized to assess building performance and emergency response and evacuation procedures in the wake of any building failure that has resulted in substantial loss of life or that posed significant potential of substantial loss of life. NIST does not have the statutory authority to make findings of fault nor negligence by individuals or organizations. Further, no part of any report resulting from a NIST investigation into a building failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a, as amended by Public Law 107-231).

Organization of the Investigation

The National Construction Safety Team for this Investigation, appointed by the then NIST Director, Dr. Arden L. Bement, Jr., was led by Dr. S. Shyam Sunder. Dr. William L. Grosshandler served as Associate Lead Investigator, Mr. Stephen A. Cauffman served as Program Manager for Administration, and Mr. Harold E. Nelson served on the team as a private sector expert. The Investigation included eight interdependent projects whose leaders comprised the remainder of the team. A detailed description of each of these eight projects is available at http://wtc.nist.gov. The purpose of each project is summarized in Table P-1, and the key interdependencies among the projects are illustrated in Fig. P-1.

Table P-1. Federal building and fire safety investigation of the WTC disaster.

Technical Area and Project Leader Project Purpose		
Analysis of Building and Fire Codes and Practices; Project Leaders: Dr. H. S. Lew and Mr. Richard W. Bukowski	Document and analyze the code provisions, procedures, and practices used in the design, construction, operation, and maintenance of the structural, passive fire protection, and emergency access and evacuation systems of WTC 1, 2, and 7.	
Baseline Structural Performance and Aircraft Impact Damage Analysis; Project Leader: Dr. Fahim H. Sadek	Analyze the baseline performance of WTC 1 and WTC 2 under design, service, and abnormal loads, and aircraft impact damage on the structural, fire protection, and egress systems.	
Mechanical and Metallurgical Analysis of Structural Steel; Project Leader: Dr. Frank W. Gayle	Determine and analyze the mechanical and metallurgical properties and quality of steel, weldments, and connections from steel recovered from WTC 1, 2, and 7.	
Investigation of Active Fire Protection Systems; Project Leader: Dr. David D. Evans; Dr. William Grosshandler	Investigate the performance of the active fire protection systems in WTC 1, 2, and 7 and their role in fire control, emergency response, and fate of occupants and responders.	
Reconstruction of Thermal and Tenability Environment; Project Leader: Dr. Richard G. Gann	Reconstruct the time-evolving temperature, thermal environment, and smoke movement in WTC 1, 2, and 7 for use in evaluating the structural performance of the buildings and behavior and fate of occupants and responders.	
Structural Fire Response and Collapse Analysis; Project Leaders: Dr. John L. Gross and Dr. Therese P. McAllister	Analyze the response of the WTC towers to fires with and without aircraft damage, the response of WTC 7 in fires, the performance of composite steel-trussed floor systems, and determine the most probable structural collapse sequence for WTC 1, 2, and 7.	
Occupant Behavior, Egress, and Emergency Communications; Project Leader: Mr. Jason D. Averill	Analyze the behavior and fate of occupants and responders, both those who survived and those who did not, and the performance of the evacuation system.	
Emergency Response Technologies and Guidelines; Project Leader: Mr. J. Randall Lawson	Document the activities of the emergency responders from the time of the terrorist attacks on WTC 1 and WTC 2 until the collapse of WTC 7, including practices followed and technologies used.	

Figure P-1. The eight projects in the federal building and fire safety investigation of the WTC disaster.

National Construction Safety Team Advisory Committee

The NIST Director also established an advisory committee as mandated under the National Construction Safety Team Act. The initial members of the committee were appointed following a public solicitation. These were:

- Paul Fitzgerald, Executive Vice President (retired) FM Global, National Construction Safety
 Team Advisory Committee Chair
- John Barsom, President, Barsom Consulting, Ltd.
- John Bryan, Professor Emeritus, University of Maryland
- David Collins, President, The Preview Group, Inc.
- Glenn Corbett, Professor, John Jay College of Criminal Justice
- Philip DiNenno, President, Hughes Associates, Inc.