Abstraction of State Languages in Automata Algorithms

David Chocholatý

Supervisor: doc. Mgr. Lukáš Holík, Ph.D.

Motivation

- Finite automata
- Useful operations with automata, but expensive
 - Union ∪
 - Intersection ∩
 - Emptiness test
 - Complement M
 - . . .
- Regular model-checking, string solving, Presburger arithmetic, WS1S,...

- NFA M_1 (and $M_2, ...$)
- Computation of the result of automata operations

$$M = f(M_1)$$

$$L(M) = f(L(M_1))$$

$$M = f(M_1, M_2, ...)$$

$$L(M) = f(L(M_1), L(M_2), ...)$$

- Large amount of states and transitions
- Nonterminating states
 - ⇒ Expensive generation of the result

Solution

- Abstraction of state languages different approaches
- Length abstraction
 - Lasso automata
 - Linear length formulae for potential product states
 - SMT solver satisfiability test of linear length formulae
- Parikh's image Parikh's theorem
 - Higher state pruning capabilities
 - Parikh's image semi-linear formulae for potential product states
 - SMT solver satisfiability test of Parikh's image formulae
- Combined approaches
 - Minimization of necessary computations of Parikh's image formulae
 - Extensibility options for another abstractions
- Mintermization combination with optimization methods

Product Generation

Product Generation

- Satisfiability of linear length and/or Parikh's image formulae
- Return values: satisfiable, unsatisfiable
- SMT solver limitation: computational time requirements, memory usage
 - Number of clauses to be solved and their complexity
 - Length abstraction formulae small and cheap to compute
 - Parikh's image formulae extensive formulae and expensive to compute

Common Constraints	Full Constraints	Product States	Time(s)
1782	2652	434	2092

Future work and different approaches

- Try different benchmarks
- Try different abstraction techniques
 - CEGAR, predicate abstraction, IMPACT, IC3/PDR
 - Attempts at applications on finite automata
 - IC3
 - Interpolar approach McMillan
- Parallelization possibilities
- States abstraction

Thank You for Your Attention.

$$\varphi$$
: $\exists k(|w| = 2 \lor |w| = 4 + 2 \cdot k)$
 ψ : $\exists l(|w| = 2 + 1 \cdot l)$

 $\exists k \exists l (2 \lor 4 + 2 \cdot k = 2 + 1 \cdot l)$

Non-deterministic finite automaton

NFA with a unary alphabet

Lasso automaton

$$\varphi: \exists k(|w| = 2 + 4 \cdot k \vee |w| = 3 + 4 \cdot k)$$

Lasso automata and length formulae

SMT solver – satisfiability test of linear length abstraction formulae

$$\exists k \exists l (2 \lor 4 + 4 \cdot k = 2 + 1 \cdot l)$$

Satisfiability of linear length formulae

$$\phi: \exists k (|w| = 2 + 4 \cdot k \vee |w| = 3 + 4 \cdot k)$$

$$\psi: \exists l(|w| = 1 + 2 \cdot l \vee |w| = 5 + 5 \cdot l \vee |w| = 8)$$

$$\exists k \exists l(2 + 4 \cdot k \vee 3 + 4 \cdot k = 1 + 2 \cdot l \vee 5 + 5 \cdot l \vee 8)$$

Return values: satisfiable, unsatisfiable

Emptiness Test with Lasso Automata

State space size of basic product

Optimized Product with Lasso Automata

State space size of basic product

Emptiness Test with Lasso Automata

State space size of basic product

Optimized Product with Lasso Automata

State space size of basic product

State space size of basic product

State space size of basic product

Classic Product Construction Algorithm


```
Input: NFA A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1),
                 NFA A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)
   Output: NFA (A_1 \cap A_2) = (Q, \Sigma, \delta, I, F)
                 with L(A_1 \cap A_2) = L(A_1) \cap L(A_2)
 1 Q, \delta, F \leftarrow \emptyset
2 I \leftarrow I_1 \times I_2
 3 W ← I
 4 while W \neq \emptyset do
      pick [q_1, q_2] from W
      add [q_1, q_2] to Q
        if q_1 \in F_1 and q_2 \in F_2 then
        add [q_1, q_2] to F
        forall a \in \Sigma do
 9
             forall q_1' \in \delta_1(q_1, a), q_2' \in \delta_2(q_2, a) do
10
                  if [q'_1, q'_2] \notin Q then
11
               \lfloor add [q'_1, q'_2] to W
12
                 add [q'_1, q'_2] to \delta([q_1, q_2], a)
13
```

Optimized Product Construction Algorithm


```
Input: NFA A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1).
                 NFA A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)
    Output: NFA (A_1 \cap A_2) = (Q, \Sigma, \delta, I, F)
                 with L(A_1 \cap A_2) = L(A_1) \cap L(A_2)
 1 Q, \delta, F \leftarrow \emptyset
 2 I \leftarrow I_1 \times I_2
3 W \leftarrow I
 A sat ← False
 5 solved \leftarrow \emptyset
6 while W \neq \emptyset do
         picklast [q_1, q_2] from W
        add [q_1, q_2] to solved
        sat \leftarrow \mathbf{satisfiable}([q_1, q_2])
        if sat then
10
             add [q_1, q_2] to Q
11
             if q_1 \in F_1 and q_2 \in F_2 then
12
                  add [q_1, q_2] to F
13
             for all a \in \Sigma do
14
                  forall q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a) do
15
                       if [q'_1, q'_2] \notin solved and [q'_1, q'_2] \notin W then
16
                       add [q'_1, q'_2] to W
17
                      add [q'_1, q'_2] to \delta([q_1, q_2], a)
18
```

Optimized Product Construction Algorithm


```
Input : NFA A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1),
                 NFA A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)
    Output: NFA (A_1 \cap A_2) = (Q, \Sigma, \delta, I, F)
                 with L(A_1 \cap A_2) = L(A_1) \cap L(A_2)

    Q, δ, F ← ∅

 2 I \leftarrow I_1 \times I_2
 3 W ← I
 A \quad sat \leftarrow False
 5 solved \leftarrow \emptyset
 6 while W \neq \emptyset do
        picklast [q_1, q_2] from W
        add [q_1, q_2] to solved
        if not skippable([q_1, q_2]) then
             sat \leftarrow \mathbf{satisfiable}([q_1, q_2])
10
11
        else
             sat \leftarrow True
12
13
        if sat then
             add [q_1, q_2] to Q
14
             if q_1 \in F_1 and q_2 \in F_2 then
15
              add [q_1, q_2] to F
16
             for all a \in \Sigma do
17
                  forall g'_1 \in \delta_1(g_1, a), g'_2 \in \delta_2(g_2, a) do
18
                       if [q'_1, q'_2] \notin solved and [q'_1, q'_2] \notin W then
19
                       add [q'_1, q'_2] to W
20
                    add [q'_1, q'_2] to \delta([q_1, q_2], a)
21
```