import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

#Load dataset
df=pd.read\_csv('/content/penguins\_size.csv')
df.head()

|   | species | island    | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass |
|---|---------|-----------|------------------|-----------------|-------------------|-----------|
| 0 | Adelie  | Torgersen | 39.1             | 18.7            | 181.0             | 375       |
| 1 | Adelie  | Torgersen | 39.5             | 17.4            | 186.0             | 380       |
| 2 | Adelie  | Torgersen | 40.3             | 18.0            | 195.0             | 325       |
| 3 | Adelie  | Torgersen | NaN              | NaN             | NaN               | N         |
|   |         |           |                  |                 |                   |           |

#UNIVARIATE ANALYSIS

sns.distplot(df.culmen\_length\_mm)

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see <a href="https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751">https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751</a>

sns.distplot(df.culmen\_length\_mm)
<Axes: xlabel='culmen\_length\_mm', ylabel='Density'>



 ${\tt sns.displot(df.culmen\_length\_mm)}$ 

<seaborn.axisgrid.FacetGrid at 0x7fe602ada380>



sns.scatterplot(x=df.flipper\_length\_mm,y=df.culmen\_length\_mm)





sns.lineplot(x=df.culmen\_length\_mm,y=df.culmen\_depth\_mm)

<Axes: xlabel='culmen\_length\_mm', ylabel='culmen\_depth\_mm'>



#MULTIVARIATE ANALYSIS

sns.pairplot(df)



#DESCRIPTIVE STATISTICS

df.describe()

|                | culmon longth mm | culmon donth mm | flinnen length mm | hady mass a | F   |
|----------------|------------------|-----------------|-------------------|-------------|-----|
|                | cuimen_tengtn_mm | cuimen_deptn_mm | flipper_length_mm | body_mass_g | . 1 |
| count          | 342.000000       | 342.000000      | 342.000000        | 342.000000  |     |
| mean           | 43.921930        | 17.151170       | 200.915205        | 4201.754386 |     |
| std            | 5.459584         | 1.974793        | 14.061714         | 801.954536  |     |
| min            | 32.100000        | 13.100000       | 172.000000        | 2700.000000 |     |
| 25%            | 39.225000        | 15.600000       | 190.000000        | 3550.000000 |     |
| 50%            | 44.450000        | 17.300000       | 197.000000        | 4050.000000 |     |
| 75%            | 48.500000        | 18.700000       | 213.000000        | 4750.000000 |     |
| max            | 59.600000        | 21.500000       | 231.000000        | 6300.000000 |     |
| ٠ <sub>1</sub> | _ 1              | 7 a) =          |                   | 1           |     |

#Check for missing values and deal with them

```
df.isnull().any()
```

```
species island False culmen_length_mm True culmen_depth_mm True flipper_length_mm True body_mass_g True sex True dtype: bool
```

 ${\tt df['culmen\_length\_mm'].fillna(df['culmen\_length\_mm'].median(),inplace=True)}$ 

```
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
```

```
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace =True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace =True)
```

 $\label{eq:df['sex'].fillna(df['sex'].mode().iloc[0],inplace =True)} $$ df['sex'].fillna(df['sex'].mode().iloc[0],inplace =True) $$ $$$ 

## df.isnull().any()

| False |
|-------|
| False |
|       |
|       |

df

|     | species | island    | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex    | $\blacksquare$ |
|-----|---------|-----------|------------------|-----------------|-------------------|-------------|--------|----------------|
| 0   | Adelie  | Torgersen | 39.10            | 18.7            | 181.0             | 3750.0      | MALE   | ıl.            |
| 1   | Adelie  | Torgersen | 39.50            | 17.4            | 186.0             | 3800.0      | FEMALE |                |
| 2   | Adelie  | Torgersen | 40.30            | 18.0            | 195.0             | 3250.0      | FEMALE |                |
| 3   | Adelie  | Torgersen | 44.45            | 17.3            | 197.0             | 4050.0      | MALE   |                |
| 4   | Adelie  | Torgersen | 36.70            | 19.3            | 193.0             | 3450.0      | FEMALE |                |
|     |         |           |                  |                 |                   |             |        |                |
| 339 | Gentoo  | Biscoe    | 44.45            | 17.3            | 197.0             | 4050.0      | MALE   |                |
| 340 | Gentoo  | Biscoe    | 46.80            | 14.3            | 215.0             | 4850.0      | FEMALE |                |
| 341 | Gentoo  | Biscoe    | 50.40            | 15.7            | 222.0             | 5750.0      | MALE   |                |
| 342 | Gentoo  | Biscoe    | 45.20            | 14.8            | 212.0             | 5200.0      | FEMALE |                |
| 343 | Gentoo  | Biscoe    | 49.90            | 16.1            | 213.0             | 5400.0      | MALE   |                |
|     |         |           |                  |                 |                   |             |        |                |

344 rows × 7 columns

#Find the outliers and replace the outliers

sns.boxplot(df.flipper\_length\_mm)



sns.boxplot(df.culmen\_length\_mm)



sns.boxplot(df.culmen\_depth\_mm)



sns.boxplot(df.body\_mass\_g)



## **NO OUTLIERS**

 $\hbox{\#Check for categorical columns and perform encoding}\\$ 

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['sex']=le.fit_transform(df['sex'])
df['species']=le.fit_transform(df['species'])
df['island']=le.fit_transform(df['island'])
df.head()
```

|   | species | island | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex |    |
|---|---------|--------|------------------|-----------------|-------------------|-------------|-----|----|
| 0 | 0       | 2      | 39.10            | 18.7            | 181.0             | 3750.0      | 2   | th |
| 1 | 0       | 2      | 39.50            | 17.4            | 186.0             | 3800.0      | 1   |    |
| 2 | 0       | 2      | 40.30            | 18.0            | 195.0             | 3250.0      | 1   |    |
| 3 | 0       | 2      | 44.45            | 17.3            | 197.0             | 4050.0      | 2   |    |
| 4 | 0       | 2      | 36.70            | 19.3            | 193.0             | 3450.0      | 1   |    |

#Check the correlation of independent variables with the target(species)

df.corr().species.sort\_values(ascending=False)

| species           | 1.000000  |
|-------------------|-----------|
| flipper_length_mm | 0.850819  |
| body_mass_g       | 0.747547  |
| culmen_length_mm  | 0.728706  |
| sex               | -0.003823 |
| island            | -0.635659 |

culmen\_depth\_mm -0.741282
Name: species, dtype: float64

#Split the data into dependent and independent variables

X=df.drop(columns=['species'],axis=1)
X.head()

|   | island | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex |     |
|---|--------|------------------|-----------------|-------------------|-------------|-----|-----|
| 0 | 2      | 39.10            | 18.7            | 181.0             | 3750.0      | 2   | ıl. |
| 1 | 2      | 39.50            | 17.4            | 186.0             | 3800.0      | 1   |     |
| 2 | 2      | 40.30            | 18.0            | 195.0             | 3250.0      | 1   |     |
| 3 | 2      | 44.45            | 17.3            | 197.0             | 4050.0      | 2   |     |
| 4 | 2      | 36.70            | 19.3            | 193.0             | 3450.0      | 1   |     |

Y=df['species']

Y.head()

0 0

1 0

2 0

3 0 4 0

Name: species, dtype: int64

#Scaling the data

from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()

X\_scaled=pd.DataFrame(scale.fit\_transform(X),columns=X.columns)

X\_scaled.head()

|   | island | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex |     |
|---|--------|------------------|-----------------|-------------------|-------------|-----|-----|
| 0 | 1.0    | 0.254545         | 0.666667        | 0.152542          | 0.291667    | 1.0 | ıl. |
| 1 | 1.0    | 0.269091         | 0.511905        | 0.237288          | 0.305556    | 0.5 |     |
| 2 | 1.0    | 0.298182         | 0.583333        | 0.389831          | 0.152778    | 0.5 |     |
| 3 | 1.0    | 0.449091         | 0.500000        | 0.423729          | 0.375000    | 1.0 |     |
| 4 | 1.0    | 0.167273         | 0.738095        | 0.355932          | 0.208333    | 0.5 |     |

#Split data into training and testing

 $from \ sklearn.model\_selection \ import \ train\_test\_split \\ X\_train, X\_test, Y\_train, Y\_test=train\_test\_split (X\_scaled, Y, test\_size=0.2, random\_state=0) \\$ 

#Check training and testing data shape

X\_train.shape

(275, 6)

X\_test.shape

(69, 6)

Y\_train.shape

(275,)

Y\_test.shape

(69,)

✓ 0s completed at 10:35 PM