ICT 700 Introduction To Business Information Systems LECTURE 10

Use Of Database systems and Data Management To Develop and Acquire Information systems

Unit Coordinator: Sajad Ghatrehsamani

Reading Chapter:

Chapter 5 – Stair & Reynolds

Learning Objectives

- 1. Distinguishing data from information and knowledge
- 2. Defining the term database management system
- 3. Understanding Database Structure and Its Design
- 4. Understanding Entity Relationship Diagram
- 5. Identifying Database Normalization Form
- 6. Identifying Relational Database
- 7. Knowing SQL Commands
- 8. Introducing Popular Relational Database Management Systems

Why Learn about Database Systems and Data Management

Databases capture data about changes

- ➤ for analysis and decision making
- > To recognize new challenges and opportunities
- > To track progress toward meeting key goals
- ➤ To identify when a change in tactics or strategy is needed
- Need to understand database systems and data management

Data, Information, and Knowledge

1. Data refers to raw facts.

2. Information

- Collection of organized and processed data.
- Has additional value beyond the value of the individual facts.

3. Knowledge

- Provides awareness and understanding of a set of information.
- Shows how information can support a specific task or be used to reach a decision.

Data Types

Data	Represented By
Alphanumeric data	Numbers, letters, and other characters
Audio data	Sounds, noises, or tones
Image data	Graphic images and pictures
Video data	Moving images or pictures

TABLE 5.1 Types of data

The Data Hierarchy

Database File Structure

1.Entity

Person, place, or thing (object) for which data is collected, stored, and maintained

2. File

Collection of entities

3. Attribute

Characteristic of an entity

4. Domain

Range of allowable values for a data attribute

Database Structure

1. Data item

Specific value of a data attribute

2. Record

Collection of attributes about a specific entity

3. Primary key

Attribute or set of attributes that uniquely identifies the record

4. Foreign key

Attribute in one table that refers to the primary key in another table

Database Management System

- Database management system (DBMS)
- Group of programs provided by the DBMS supplier
- Programs used to access and manage a database
- Provides an interface between the database and its users and other application programs

Database Activities

Students

student_id (key)

last_name

first_name

middle_name

Salutation

date_of_birth

address_line1

Courses

course_no (key)

section_no (key)

title

professor

days

times

prereq

Grades

course_no (key)

section_no (key)

student_id(key)

semester

year

grade

Creating and modifying the database

Data definition language (DDL)

- Collection of instructions and commands
- Defines and describes data and relationships in a specific database

Data dictionary

- Detailed description of data stored in the database
- Adherence to data dictionary standards
- Makes it easy to share data among organizations

Data manipulation language (DML)

- A specific language provided with a DBMS
- Allows users to access and modify the data, make queries, and generate reports

Database Activities

- Storing and retrieving data
 - DBMS function Interface between application program and database
 - To obtain database data
 Request it through the DBMS
 - Concurrency control

Addresses situation where two or more users or applications access the same record at the same time

Database Design

- Necessary to keep data well organized
- Database design
 - Store all relevant data
 - Provide quick access and easy modification
 - Reflect organization's business processes
- Considerations
 - Content and access
 - Logical structure and physical organization
 - Response time, archiving, security
- Data modelling

Tool used to design a database

Occurs at organizational level

Called enterprise data modelling

Occurs at specific business application level

Database Design

Data modelling

Tool used to design a

database Occurs at

organizational level

Called enterprise data

modelling Occurs at specific

business application level

Enterprise data model

Identifies data entities and data attributes of greatest interest to

the organization

Identifies their associated standard data definitions, data length

and format, domain of valid

values, and any business rules for their use

Database Design Continued...

Enterprise data model

- Identifies data entities and data attributes of greatest interest to the organization
- Identifies their associated standard data definitions, data length and format, domain of valid values, and any business rules for their use

Database Design Continued

Normalization

- Data model used to analyze and communicate data needs
- Works at the individual project or application level
- Uses graphical symbols
 - Identify data entities and their associated data attributes
 - Identify the relationships among the entities of interest
- Many notation styles exist for drawing an ER diagram
- 1NF, 2NF, 3NF, 4NF

Data Normalization Example

FULL NAMES	PHYSICAL ADDRESS	MOVIES RENTED	SALUTATION
Janet Jones	First Street Plot No 4	Pirates of the Caribbean, Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal, Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

2NF (Second Normal Form) Rules

•Rule 1- Be in 1NF

MEMBERSHIP ID

•Rule 2- Single Column Primary Key that does not functionally

dependent on any subset of candidate key relation

NF (First Normal Form) Rules

•Each table cell should contain a single value.

Each record needs to be unique.

	V		
FULL NAMES	PHYSICAL ADDRESS	MOVIES RENTED	SALUTATION
Janet Jones	First Street Plot No 4	Pirates of the Caribbean	Ms.
Janet Jones	First Street Plot No 4	Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal	Mr.
Robert Phil	3 rd Street 34	Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

Robert Phil	3 rd Street 34	
Robert Phil	5 th Avenue	
Robert Filli	3 Avenue	

3NF (Third Normal Form) Rules

•Rule 1- Be in 2NF

•Rule 2- Has no transitive functional dependencies

FULL NAMES

Janet Jones

To move our 2NF table into 3NF, we again need to again divide our table.

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION ID
1	JanetJones	First Street Plot No 4	2
2	Robert Phil	3 rd Street 34	1
3	Robert Phil	5 th Avenue	1

PHYSICAL ADDRESS

First Street Plot No 4

MEMBERSHIP ID	Movies rented
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

SALUTATION ID	SALUTATION
1	Mr.
2	Ms.
3	Mrs.
4	Dr.

SALUTATION

MEMBERSHIP ID

MOVIES RENTED

Pirates of the Caribbean Clash of the Titans

Forgetting Sarah Marshal

Daddy's Little Girls

Clash of the Titans

Ms.

Mr.

Relational Databases (1 of 2)

Data Table 1: Project Table

Project	Description	Dept. number
155	Payroll	257
498	Widgets	632
226	Sales manual	598

Data Table 2: Department Table

Dept. number	Dept. name	Manager SSN
257	Accounting	005-10-6321
632	Manufacturing	549-77-1001
598	Marketing	098-40-1370

Data Table 3: Manager Table

SSN	Last name	First name	Hire date	Dept. number
005-10-6321	Johns	Francine	10-07-2013	257
549-77-1001	Buckley	Bill	02-17-1995	632
098-40-1370	Fiske	Steven	01-05-2001	598

FIGURE 5.9 Relational database model

In the relational model, data is placed in two-dimensional tables, or relations. As long as they share at least one common attribute, these relations can be linked to provide output useful information. In this example, all three tables

include the dept. number attribute.

Relational Database

- Fundamental characteristics
- Data is organized into relations
- Rows represent entities and columns represent attributes
- Rows uniquely identified by a primary key
- Column table data
- Integer number, decimal number, date, text, etc.
- Constrained to be certain type, length, or to have a value between two limits
- Primary and foreign keys enable table relationships
- User queries perform operations on the database

Manipulating Data in a Relational Database

1. Selecting

Eliminating rows according to certain criteria

2. Projecting

Eliminating columns in a table

3. Joining

 Combining two or more tables through common data attributes to create a new table

4. Data normalization

Eliminates data redundancy

Manipulating Data in a Relational Database

FIGURE 5.10 ER diagram
This diagram shows the relationship
among the manager, department,
and project tables.

Manipulating Data in a Relational Database

FIGURE 5.11 Linking data tables to answer an inquiry

To find the name and hire date of the manager working on the sales manual project, the president needs three tables: project, department, and manager. The project description (sales manual) leads to the department number (598) in the project table, which leads to the manager's social security number (098-40-1370) in the department table, which leads to the manager last name (fiske) and hire date (01-05-2001) in the manager table

SQL Databases

SQL

- Special-purpose programming language
- Used for accessing and manipulating relational database data
- SQL databases conform to ACID properties
 - Atomicity, consistency, isolation, durability
 - Guarantees the database transactions are processed reliably
 - Ensures the integrity of data in the database

SQL COMMAND

SQL Command	Description
SELECT ClientName, Debt FROM Client WHERE Debt > 1000	This query displays clients (ClientName) and the amount they owe the company (Debt) from a database table called Client; the query would only display clients who owe the company more than \$1,000 (WHERE Debt > 1000).

TABLE 5.6 Examples of SQL commands

SQL Command	Description
SELECT ClientName, ClientNum, OrderNum FROM Client, Order WHERE Client. ClientNum=Order.ClientNum	This command is an example of a join command that combines data from two tables: the Client table and the Order table (FROM Client, Order). The command creates a new table with the client name, client number, and order number (SELECT ClientName, ClientNum, OrderNum). Both tables include the client number, which allows them to be joined. This ability is indicated in the WHERE clause, which states that the client number in the Client table is the same as (equal to) the client number in the Order table (WHERE Client.ClientNum=Order.ClientNum).

SQL Command	Description
GRANT INSERT ON Client to Guthrie	This command is an example of a security command. It allows Bob Guthrie to insert new values or rows into the Client table.

TABLE 5.9 Examples of SQL commands

SQL Command	Description
SELECT ClientName, Debt FROM Client WHERE Debt > 1000	This query displays clients (ClientName) and the amount they owe the company (Debt) from a database table called Client; the query would only display clients who owe the company more than \$1,000 (WHERE Debt > 1000).

TABLE 5.10 Examples of SQL commands

SQL Command	Description
SELECT ClientName, Debt FROM Client WHERE Debt > 1000	This query displays clients (ClientName) and the amount they owe the company (Debt) from a database table called Client; the query would only display clients who owe the company more than \$1,000 (WHERE Debt > 1000).

TABLE 5.12 Examples of SQL commands

Popular Relational Database Management Systems

Open-Source Relational DBMS	Relational DBMS for Individuals and Workgroups	Relational DBMS for Workgroups and Enterprise
MySQL Summary	Microsoft Access	Oracle
PostgreSQL	IBM Lotus Approach	IBM DB2
MariaDB	Google Base	Sybase Adaptive Server
SQL Lite	OpenOffice Base	Teradata
CouchDB	Airtable	Microsoft SQL Server
MongoDB	Knack	Progress OpenEdge

Summary

- Well-designed and well-managed databases help with decision making
 - High-quality data benefits
 - Improve decision making, increase customer satisfaction, increase sales, improve innovation, raise productivity, and ensure compliance
- Strong data management program needed to ensure high-quality data
 - Data governance is the core component of data management

Any Questions?

