Topologie des evns

- I. Un peu de topologie dans $\mathscr{C}^0([0,1],\mathbb{R})$
- 1) a) Soit $f \in F$. Alors la boule ouverte de centre f, de rayon $\frac{1}{2} \int_0^1 f$ (qui est bien strictement positif) est incluse dans F. En effet, si $g \in B\left(f, \frac{1}{2} \int_0^1 f\right)$ alors $\|g f\|_{\infty} < \frac{1}{2} \int_0^1 f$ donc $f \frac{1}{2} \int_0^1 f \leqslant g \leqslant f + \frac{1}{2} \int_0^1 f$.

Donc par croissance de l'intégrale, $\int_0^1 g \geqslant \int_0^1 f - \frac{1}{2} \int_0^1 f = \frac{1}{2} \int_0^1 f > 0$ donc $g \in F$.

- **b)** La fonction $\varphi: E \to \mathbb{R}, f \mapsto \int_0^1 f$ vérifie: pour tout $f, g \in E$, $|\varphi(f) \varphi(g)| \leqslant \int_0^1 ||f g||_{\infty} = ||f g||_{\infty}$. Elle est donc 1-lipschitzienne, et ainsi elle est continue. Or $F = \varphi^{-1}(\mathbb{R}^*_+)$ et \mathbb{R}^*_+ est un ouvert, donc F aussi.
- 2) a) Soit $f \in A$. Alors |f(0) g(0)| = 1 donc $||f g||_{\infty} \ge 1$. Donc $\mathscr{B}\left(g, \frac{1}{2}\right) \cap A = \varnothing$: g n'est pas adhérent à A pour $||.||_{\infty}$.
 - b) Soit f_n telle que $f_n(x) = 1$ si $x > \frac{1}{n}$ et f(x) = nx si $x \in [0, \frac{1}{n}]$. Alors $f_n \in A$ et $||g f_n||_1 = \int_0^{1/n} (1 nx) dx = \frac{1}{2n}$. Donc g est limite d'une suite d'éléments de A: c'est un point adhérent à A pour $||.||_1$.
- II. Deux exercices : densité des matrices inversibles et distance à un fermé borné
- 1) $\mathscr{GL}_n(\mathbb{R})$ est un ouvert car image réciproque de l'ouvert \mathbb{R}^* par l'application continue det.

L'application $\lambda\mapsto\det\left(A-\lambda I_n\right)$ est polynomiale non nulle en λ donc possède un nombre fini de racines.

Fixons $A \in \mathcal{M}_n(\mathbb{R})$ et $r \in \mathbb{R}_+^*$. Si l'on considère la norme $\|.\|_{\infty}$ sur $\mathcal{M}_n(\mathbb{R})$, alors pour tout $\alpha \in]-r, r[$, $\|\alpha I_n\|_{\infty}=|\alpha|$ donc $\alpha I_n \in \mathcal{B}(0,r)$, et ensuite $A-\alpha I_n \in \mathcal{B}(A,r)$. Or avec le point précédent, il existe une infinité de $\alpha \in]-r, r[$ tels que $\det(A-\alpha I_n) \neq 0$, donc il existe une infinité de matrices de $\mathcal{B}(A,r)$ qui sont inversibles.

Par suite : $\forall A \in \mathcal{M}_n(\mathbb{R}), \forall r > 0, \mathcal{B}(A,r) \cap \mathcal{GL}_n(\mathbb{R}) \neq \emptyset$, d'où la densité de $\mathcal{GL}_n(\mathbb{R})$.

2) Soit l'application $\varphi: A \to \mathbb{R}, y \mapsto ||x - y||$. Soit $y, z \in A$. Alors

$$\begin{split} |\varphi(y)-\varphi(z)| &= \left| \ \|y-x\|-\|x-z\| \ \right| \\ &\leqslant \|(y-x)+(x-z)\| \qquad \text{par in\'egalit\'e triangulaire} \\ &\leqslant \|y-z\|. \end{split}$$

La fonction φ est ainsi 1-lipschitzienne, et donc continue.

Puisque A est fermée et bornée et que E est de dimension finie, φ est bornée et atteint ses bornes. En particulier elle a un minimum, ce qui répond aux deux questions.

III. Densité et continuité

- 1) Analyse: Soit g solution.
 - $\overline{\bullet g(0)} = g(0+0) = g(0) + g(0), \text{ donc } g(0) = 0.$
 - Soit $y \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, posons $(H_n) : g(ny) = ng(y)$. (H_0) a été démontrée.

Soit $n \in \mathbb{N}$ tel que (H_n) est vraie. Alors g((n+1)y) = g(ny) + g(y) = ng(y) + g(y) = (n+1)g(y), et ainsi par récurrence (H_n) est vraie pour tout $n \in \mathbb{N}$. En particulier, nous avons montré, en posant y = 1, que

$$\forall x \in \mathbb{N}, \ g(x) = xg(1).$$

 \bullet Soit $n\in\mathbb{N},$ 0=g(0)=g(n-n)=g(n)+g(-n) et donc g(-n)=-g(n)=-ng(1), ce qui prouve que

$$\forall x \in \mathbb{Z}, \ g(x) = xg(1).$$

• Soit $q \in \mathbb{Q}$. Il existe $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $q = \frac{a}{b}$. Alors bg(q) = g(bq) = g(a) = ag(1) donc $g(q) = \frac{a}{b}g(1)$ donc

$$\forall x \in \mathbb{Q}, \ g(x) = xg(1).$$

• Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe une suite de rationnels (q_n) qui converge vers x. D'une part $g(q_n) = q_n g(1) \xrightarrow[n \to +\infty]{} xg(1)$ et d'autre part, par continuité de g, $g(q_n) \xrightarrow[n \to +\infty]{} g(x)$. Ainsi

$$\forall x \in \mathbb{R}, \ g(x) = xg(1).$$

Par conséquent il existe $\lambda \in \mathbb{R}$ tel que $g = \lambda id_{\mathbb{R}}$.

Synthèse : Soit $\lambda \in \mathbb{R}$, il est immédiat que $\lambda id_{\mathbb{R}}$ est solution.

L'ensemble des solutions est donc $\{\lambda id_{\mathbb{R}}, \lambda \in \mathbb{R}\}.$

2) Analyse : Soit g solution.

S'il existe $x \in \mathbb{R}$ tel que g(x) = 0, alors pour tout $t \in \mathbb{R}$, g(t) = g(x+t-x) = g(x)g(t-x) = 0 donc g = 0 – et la fonction nulle est bien solution.

Sinon, g ne s'annule pas, et comme elle est continue, elle est de signe constant. Si g<0, pour tout $x,y\in\mathbb{R},$ g(x+y)<0 et g(x)g(y)>0, ce qui est absurde.

Donc g > 0.

Alors pour tout $x, y \in \mathbb{R}$, $\ln \circ g(x+y) = \ln(g(x)g(y)) = \ln \circ g(x) + \ln \circ g(y)$. Grâce à la première question, il existe donc $\lambda \in \mathbb{R}$ tel que $\ln \circ g = \lambda \mathrm{id}_{\mathbb{R}}$, donc $g = \exp \circ (\lambda \mathrm{id}_{\mathbb{R}})$.

Synthèse : Soit $\lambda \in \mathbb{R}$, il est immédiat que $\exp \circ (\lambda id_{\mathbb{R}})$ est solution, ainsi que la fonction nulle.

L'ensemble des solutions est donc $\{\exp \circ (\lambda id_{\mathbb{R}}), \lambda \in \mathbb{R}\} \cup \{0\}.$

IV. Norme subordonnée

- 1) u étant continue, il existe $k \in \mathbb{R}_+^*$ tel que pour tout x, $||u(x)|| \le k ||x||$. Donc $\left\{\frac{||u(x)||}{||x||}, x \in E \setminus \{0\}\right\}$ est majoré Comme il est non vide, M_1 existe. De plus, $\left\{\frac{||u(x)||}{||x||}, x \in E \setminus \{0\}\right\} = \{||u(x)||, x \in E \text{ t.q. } ||x|| = 1\}$, donc M_2 existe, et vaut d'ailleurs M_1 . Le dernier ensemble est inclus dans \mathbb{R}_+ , non vide car u est continue, et minoré par 0, donc M_3 existe.
- 2) Nous avons déjà remarqué que $M_1=M_2$. $M_1 \text{ majore } \left\{ \frac{\|u(x)\|}{\|x\|}, \ x \in E \backslash \{0\} \right\} \text{ donc pour tout } x, \ \|u(x)\| \leqslant M_1 \|x\|.$ Donc $M_1 \in \{k \geqslant 0 \text{ t.q. } \forall x \in E, \ \|u(x)\| \leqslant k\|x\|\}, \text{ donc } M_3 \leqslant M_1.$ Réciproquement, soit $k \in \{k \geqslant 0 \text{ t.q. } \forall x \in E, \ \|u(x)\| \leqslant k\|x\|\}.$ Donc si $x \neq 0, \ \frac{\|u(x)\|}{\|x\|} \leqslant k$. Ainsi k est un majorant de $\left\{ \frac{\|u(x)\|}{\|x\|}, \ x \in E \backslash \{0\} \right\}$, et donc $M_1 \leqslant M_3$. Finalement $M_1 = M_2 = M_2$.