Министерство образования и науки Р Φ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет»

Факультет (институт)		Информационных технологий и компьютерных систем			
Кафедра		Прикладная математика и фундаментальная информатика			
		Расцетио-град	рическая работа		
по дисциплине	Дисі	кретная математи	. <u>-</u>		
на тему	Прим	енение теории графов			
Пояснительная з	аписка) N _o 10 П2		
Шифр проекта		020-РГР-02.03.02-№ 10- П3			
		Студента		Куата Ибраимовича мя, отчество полностью	
		Kypc <u>1</u>	Группа Ф	ИТ-212	
		Направление (ст Фундаментальная	•	02.03.02 нформационные технологии	
			код, наименова	ние	
		Руководитель		еподаватель я степень, звание	
		Федотова И.В. фамилия, инициалы Выполнил дата, подпись студента			
		Работа защищена с количеством баллов			
		дата, по	дата, подпись руководителя		

Омск 2022

СОДЕРЖАНИЕ

1 Теоретический анализ	3
1.1 Основные понятия теории графов	3
2 Решение практической задачи	5
2.1 Постановка задачи	5
2.2 Выбор метода решения	6
- 2.3 Описания программной реализации алгоритма	7
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	9
ПРИЛОЖЕНИЕ А	.10

1 Теоретический анализ

Теоретический анализ задания состоит в ознакомлении с основными понятиями, вводимыми и используемыми при рассмотрении данного задания.

1.1 Основные понятия теории графов

Графом называется любая пара (V,E), где V- непустое множество элементов любой природы, $E=\{e_1,e_2,...\}-$ семейство пар $e_i=(u,v)$ элементов из V произвольной кратности и упорядоченности. Обозначают граф G или G(V,E).

Элемент множества Vназывается вершиной.

Элемент множества E называется pe6pom.

Число вершин графа называется его *порядком* и обозначается $\mid V \mid$.

Если вершины v_1 и v_2 соединены ребром $e=(v_1,v_2)$, то говорят, что вершины v_1 и v_2 смежные, а ребро $e=(v_1,v_2)$ инцидентно вершинам v_1 и v_2 .

Множество всех вершин графа G смежных с некоторой вершиной v, называется окружением вершины v и обозначается как U(v).

Два ребра называются смежными, если они имеют общую вершину.

Mатрица cмежности графа G с конечным числом вершин n – это квадратная матрица A размера $n \times n$, в которой значение элемента a_{ij} равно числу рёбер из i-й вершины графа в j-ю вершину.

Если E множество упорядоченных пар элементов из V, то граф G = (V,E) называется *ориентированным графом* (*орграфом*).

В этом случае элементы множества E называются ∂y гами.

При этом дуга $e=(v_1,v_2)$ называется исходящей из вершины v_1 и заходящей в вершину v_2 . На диаграмме графа дуга изображается линией со стрелкой из вершины v_1 в вершину v_2 .

Если в графе хотя бы одна пара вершин соединена более чем одной ребром, то такой граф называется *мультиграфом*, а ребра называются *кратными*.

Дуги, имеющие одинаковые концевые вершины и одинаково направленные называются *параллельными* или *кратными*, анаправленные противоположно – *противоположно-направленными*.

Кроме того, элементами множества E могут быть пары (v, v), $v \subset V$, то они называются nemnsmu, а графG называется $nesdorpa\phiom$. Обычно петля считается неориентированной.

Число ребер, инцидентных вершине v, называется cmeneнью вершиныv и обозначается deg(v) или d(v).

Для ориентированного графа число дуг, исходящих из вершины v, называется полустепенью исхода и обозначается через $dev^+(v)$, а число дуг, входящих в вершину U, – полустепенью захода и обозначается $dev^-(v)$.

Mаршрутом в графеG=(V,E) называется чередующаяся последовательность вершин и ребер $\{v_0,e_1,v_1,....e_k,v_k,....\}$,в которой любые два соседних элемента инцидентны.

Маршрут называется *цепью*, если все его ребра различные. Цепь, соединяющая вершины u и v,обозначается [u,v], и тогда вершина v называется достижимой из вершиныu.

Цепь называется простой, если все вершины различны.

Для ориентированных графов цепь называется путем.

Путь называется простым, если все вершины различны.

Граф G называется *связным*, если для любых двух его вершин u и v существует соединяющий их маршрут[u,v].

Вес ребра – числовое значение, поставленное в соответствие данному ребру взвешенного графа.

Взвешенным графом (или нагруженным) называется граф G(E,V) если на нём определена любая функция $F:V\to R$ (функция на множестве ребер со значениями во множестве вещественных чисел)[1].

2 Решение практической задачи

Далее будет рассмотрена практическая задача и описаны решения ручным и программным способом.

2.1 Постановка задачи

«Имеется сеть Постановка задачи следующая: трубопроводов, добычи нефти) соединяющих ПУНКТ A (пункт ПУНКТОМ (нефтеперерабатывающий завод). Трубопроводы могут соединяться и разветвляться в промежуточных пунктах. Количество нефти, которое может быть перекачено по каждому отрезку трубопровода в единицу времени определяется диаметром трубы. Сколько нефти можно прокачать через такую сеть в единицу времени?

Формат входных данных

Во входном файле записано сначала число N (1<=N<=100), определявшее количество узлов сети. Затем идет описание сети, где каждое соединение задается тремя числами - номерами узлов, которые она соединяет и диаметром сети. Все соединения строго ориентированы.

Формат выходных данных

На экран выведите числа — суммарная величина объема прокаченной нефти.»

2.2 Выбор метода решения

Для получения ответа нужно применить алгоритм Флойда-Уоршелла, так как именно он позволяет найти самую длинную цепь в графе.

2.3 Описания программной реализации алгоритма

Необходимо выполнить программную реализацию алгоритма (Приложение A) и проверить на том же примере.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) Конова Е.А., Поллак Г.А. Алгоритмы и программы. Язык С++: –издательство «Лань», 2017 384 с.
- 2) Мазалов В.В. Математическая теория игр и приложения: издательство «Лань», 2016 446 с.
- 3) Омельченко А.В. Теория графов: Москва: издательство МЦНМО 2018. 415 с.
- 4) Скотт Мейерс. Эффективный и современный C++: 42 рекомендации по использованию C++: Пер. с англ. Вильямс, 2016. 304 с.
- 5) Уилсон Р. Введение в теорию графов, 5-е изд: Пер. с англ. издательство «Диалектика», 2018 240 с.

приложение А

Исходный код

PipesNetwork.py