Création d'une Learning Heuristic pour CVRP

Clément Legrand

July 4, 2018

Equipe ORKAD 1

¹Stage réalisé dans l'équipe ORKAD du centre CRISTAL à Lille, sous la direction de Laetitia Jourdan (laetitia jourdan@univ-lille1.fr), Marie-Éléonore Kessaci (me.kessaci@univ-lille1.fr) et Diego Cattaruzza (diego.cattaruzza@ec-lille.fr)

Capacitated Vehicle Routing Problem

Instance

- n points (de coordonnées (x_i,y_i)), dont 1 dépôt et n 1 clients (de demande d_i)
- k véhicules disponibles, de capacité C

Objectif

Déterminer Sol (ensemble des tournées) tel que:

Sol =
$$\underset{i=0}{\operatorname{argmin}} \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{v=1}^{k} \operatorname{distance}(i,j) x_{i,j}^{v} = \operatorname{argmin}_{Sol} \operatorname{cost}(Sol)$$

où $x_{i,j}^{v} = 1$ si j est desservi après i par le véhicule v (et 0 sinon).

Contraintes

- Chaque client doit être desservie par un unique véhicule;
- Chaque tournée doit partir et s'arrêter au dépôt;
- La somme des demandes sur une tournée ne peut excéder la capacité du véhicule.

Illustration

Instance A-n37-k06 (donc 36 clients, et 6 véhicules disponibles de capacité 100):

Représentation instance

Meilleure solution connue, cost = 950

Objectif

Intégrer de la connaissance pour trouver une meilleure solution

Méthode

Réussir à prédire des arêtes qui appartiendront à la solution optimale, et les exploiter pour construire une nouvelle solution.

- Comparer à des solutions optimales pour des petites instances;
- Établir des règles qui caractérisent ces arêtes;
- Exploiter ces arêtes dans un algorithme d'optimisation.

Problèmes

- Comment construire une solution initiale de bonne qualité ?
- Quel algorithme d'optimisation utiliser ?
- Comment extraire la connaissance ?
- Comment intégrer la connaissance dans un algorithme d'optimisation ?

Algorithme Clarke & Wright (CW)

 $CW^2 \rightarrow Algorithme$ glouton (chaque client est initialement desservi par un véhicule (contrainte de véhicules non respectée), puis la fusion des tournées est basée sur un calcul de saving).

Définition saving

Calcul du saving de i et j avec:

$$s(i,j) = c_{i0} + c_{0j} - \lambda c_{ij} + \mu |c_{i0} - c_{0j}| + \nu \frac{d_i + d_j}{\overline{d}}$$

(λ, μ, ν) sont des paramètres à déterminer

Fonctionnement

Tant que $\max_{(i,j)} s(i,j) > 0$:

- $(i,j) \leftarrow argmax_{(i,j)}s(i,j)$;
- Les tournées qui contiennent i et j sont fusionnées (si possible);
- $s(i,j) \leftarrow 0$.

²IK. Altinel and T. Öncan, A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem (2005)

Exécution pour $(\lambda, \mu, \nu) = (1, 1, 1)$ sur A-n37-k06

Initialisation

1^{ere} fusion

 \forall Solution (31 fusions, cost = 1297)

2eme fusion

Observation

Pour améliorer la solution obtenue, on pourrait réorganiser chaque tournée, pour diminuer leur coût.

Choix de (λ, μ, ν) ?

Dans la littérature plusieurs résultats sont disponibles :

- On peut se restreindre à l'intervalle [0,2] pour choisir $\lambda (\neq 0)$, μ et ν .
- Il est inutile de regarder ce qui se passe au centième.

Bilan

Ainsi on se contentera pour la suite de prendre des valeurs de λ,μ et ν arrondies au dixième, et comprises entre [0,2] (et $\lambda \neq 0$). Donc 8820 triplets possibles.

Choix de (λ, μ, ν) ?

Bilan

Difficile de prévoir l'influence des paramètres (λ,μ,ν) (pas d'évolution linéaire...).

C'est aussi le cas pour toute instance : l'influence de (λ,μ,ν) dépend de l'instance.

Heuristique Arnold & Sörensen

Heuristique A & S³

```
Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol \leftarrow Sol
   while Pas d'amélioration depuis 3 min do
         Calcul de la pire arête
4
         NewSol \leftarrow EiectionChain_{BI-O}
 5
         NewSol \leftarrow LinKernighan_{BI-O}
6
         NewSol \leftarrow CrossExchange_{BI-O}
7
         NewSol \leftarrow LinKernighan_{BI-O}
8
        if cost(NewSol) < cost(Sol) then
q
              Sol \leftarrow NewSol
10
```

11 return Sol

 $^{^3}$ Florian Arnold and Kenneth Sörensen, A simple, deterministic and efficient knowledge-driven heuristic for the vehicle routing problem (2017) $\stackrel{?}{=}$ $\stackrel{?}{=}$ $\stackrel{?}{=}$

Pire arête

Pire arête

La pire arête du graphe est l'arête (i,j) qui maximise la fonction:

$$b(i,j) = \frac{\left[\gamma_w w(i,j) + \gamma_c c(i,j)\right] \left[\frac{d(i,j)}{\max_{k,l} d(k,l)}\right]^{\frac{\gamma_d}{2}}}{1 + p(i,j)}$$

Opérateurs de voisinage

Ejection-chain

Déplacer I clients sur des tournées. On fixe I=3 d'après la littérature.

Cross-exchange

Échanger deux séquences de clients entre deux tournées.

Figure 2: Illustration of the ejection chain with two relocations.

Figure 1: Illustration of the CROSS-exchange with sequences of two customers.

Opérateurs de voisinage

Lin-Kernighan

- Créé pour TSP;
- Optimisation intra-tournée (chaque tournée est améliorée indépendamment des autres).

Algorithme d'optimisation (H_c)

```
1 Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol ← Sol
   while La dernière amélioration date de moins de n/3 min do
        Calcul de la pire arête
 4
        NewSol \leftarrow EjectionChain_{FI-RD}
 5
        NewSol \leftarrow LinKernighan_{BI-O}
 6
        NewSol \leftarrow CrossExchange_{FI-RD}
 7
        NewSol \leftarrow LinKernighan_{BI-O}
 8
        if cost(NewSol) < cost(Sol) then
 9
             Sol \leftarrow NewSol
10
        if Pas d'amélioration depuis n/2 itérations then
11
             NewSol \leftarrow Sol
                                                                                 Restart
12
13 return Sol
```

Validation du Restart

	Α	\-n37-k()6	Д	-n65-k0)9	P-n101-k04			
Restart	Best	Mean ₁₀	Time	Best	$Mean_{10}$	Time	Best	$Mean_{10}$	Time	
Sans	950	957	195	1197	1215	395	722	736	783	
Avec	950	969	200	1200	1230	350	698	706	1500	

Bilan

Diversification plus intéressante pour des grandes instances

Comment extraire de la connaissance ?

$$CW(1.9, 0.1, 1.5) + LK$$

 $cost = 1041, 19$ arêtes opt

$$CW(0.1, 0.1, 0.1) + LK$$

 $cost = 1170, 19$ arêtes opt

CW(0.0, 1.0, 1.5) + LKcost = 1600, 11 arêtes opt

Observations

Les bonnes solutions semblent contenir davantage d'arêtes optimales. Le problème est donc de trouver les bons (λ, μ, ν) ...

Protocole

Questions

- Combien de solutions dans l'échantillon ?
- Combien de solutions pour apprendre ?
- Comment choisir les arêtes à conserver ?

Protocole

Combien de solutions dans l'échantillon ?

- Considérer tous les (λ, μ, ν) (8820 triplets);
- Tirer $N(\lambda, \mu, \nu)$ aléatoirement. $N \in [50, 100, 500]$;

Quelles solutions pour apprendre ?

- Tout l'échantillon (Tout);
- x% des meilleures solutions : quantité privilégiée (Quan_x);
- Solutions avec coût inférieur à $c_{min} + (c_{max} c_{min}) \frac{x}{100}$: qualité privilégiée (Qual_x);

On choisit x = 10

Comment choisir les arêtes à conserver ?

On initialise une matrice à 0. Pour chaque arête (i,j), on incrémente la valeur [i][j] de la matrice.

Comment choisir les arêtes à conserver ?

Deux possibilités pour choisir les arêtes à conserver :

Critères de choix

- Conserver $(i,j) \Leftrightarrow MAT[i][j] > seuil$ (Seuil). $seuil \in [S_{lb}/2, 3S_{lb}/4]$, S_{lb} (Size learning base) est la taille de la base d'apprentissage;
- Conserver les rg premières arêtes dans la matrice (Rang). $rg \in [10, 20, n/2]$.

Résultats A-n37-k06, critère Seuil

		Qua	n ₁₀			Qua	l ₁₀		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	34	21	0.5	11	33	21	0.50	25	23	15	0.35
	4	23	14	0.33	17	17	12	0.28	38	10	7	0.16
100	5	30	21	0.5	15	31	23	0.55	50	24	17	0.40
	8	16	15	0.36	23	17	14	0.33	75	6	6	0.14
500	25	32	24	0.57	58	31	22	0.52	250	22	15	0.36
	38	15	14	0.33	88	20	16	0.38	375	7	7	0.18
Complet	400	33	24	0.57	732	30	23	0.55	4000	25	16	0.38
	600	15	14	0.33	1097	18	16	0.38	6000	9	6	0.14

- Taille de l'échantillon ne semble pas avoir d'influence sur les résultats (prop reste semblable quel que soit la taille de l'échantillon).
- Avec base Tout: valeurs de prop plus basses → pas la peine d'utiliser tout l'échantillon.

Remarque : Base Quan₁₀ trop petite avec échantillon 50 ou 100.

Résultats A-n37-k06, critère Rang

	Ç)uan	10)ual	10	Ι.	Tout	:]
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop
50	10	6	0.14	10	6	0.14	10	7	0.16
	20	13	0.31	20	13	0.32	20	13	0.31
	18	12	0.28	18	13	0.3	18	12	0.28
100	10	9	0.21	10	9	0.21	10	10	0.24
	20	16	0.38	20	16	0.38	20	15	0.36
	18	13	0.3	18	13	0.3	18	12	0.29
500	10	9	0.21	10	10	0.24	10	9	0.21
	20	16	0.38	20	16	0.38	20	15	0.36
	18	13	0.3	18	13	0.3	18	12	0.28
Complet	10	8	0.19	10	9	0.21	10	7	0.17
	20	14	0.33	20	14	0.33	20	14	0.33
	18	12	0.29	18	12	0.29	18	12	0.29

Les 3 bases fournissent des valeurs prop similaires.

Résultats A-n65-k09, critère Seuil

		Qua	n ₁₀			Qua	l ₁₀		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	73	43	0.59	10	64	44	0.60	25	40	31	0.43
	4	61	40	0.55	15	39	29	0.40	38	14	9	0.13
100	5	70	44	0.6	22	58	42	0.58	50	43	33	0.45
	8	63	41	0.56	33	36	28	0.39	75	15	10	0.14
500	25	71	43	0.59	111	56	41	0.56	250	45	35	0.48
	38	60	40	0.55	167	35	28	0.39	375	14	9	0.13
Complet	400	62	41	0.56	1005	56	40	0.55	4000	45	35	0.48
	600	15	14	0.33	1508	35	28	0.39	6000	13	9	0.12

Si trop d'arêtes renvoyées → Solutions infaisables ? (futurs tests)

Résultats A-n65-k09, critère Rang

	Ç)uan	10)ual₁	.0	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	6	0.08	10	7	0.1	10	7	0.1	
	20	14	0.2	20	15	0.21	20	14	0.19	
	33	23	0.32	33	26	0.36	33	24	0.33	
100	10	6	0.08	10	7	0.1	10	7	0.1	
	20	16	0.22	20	16	0.22	20	14	0.19	
	33	26	0.36	33	26	0.36	33	25	0.34	
500	10	7	0.1	10	7	0.1	10	6	0.08	
	20	17	0.23	20	15	0.21	20	13	0.18	
	33	27	0.37	33	26	0.36	33	25	0.34	
Complet	10	7	0.1	10	7	0.1	10	6	0.08	
	20	17	0.23	20	17	0.23	20	13	0.18	
	33	27	0.37	33	27	0.37	33	25	0.34	

De nouveau les 3 bases renvoient des résultats similaires.

Résultats P-n101-k04, critère Seuil

		Qua	n ₁₀			Qua	I ₁₀		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	93	65	0.62	5	83	66	0.64	25	71	61	0.59
	4	54	44	0.42	8	42	37	0.36	38	24	21	0.20
100	5	80	66	0.64	9	79	66	0.63	50	72	62	0.60
	8	45	41	0.40	14	42	39	0.38	75	24	22	0.21
500	25	83	69	0.67	44	81	68	0.66	250	72	63	0.60
	38	43	39	0.38	67	39	36	0.35	375	22	20	0.19
Complet	400	87	73	0.7	411	85	71	0.68	4000	70	60	0.58
	600	42	39	0.38	616	41	38	0.37	6000	23	21	0.2

Plus la taille de l'instance augmente, et plus la proportion d'arêtes optimales renvoyées présentes dans la solution optimale est grande.

Résultats P-n101-k04, critère Rang

	Q	uan	10	G	(ual₁	.0	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	17	0.16	20	18	0.17	
	50	43	0.41	50	44	0.43	50	44	0.43	
100	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	
500	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	
Complet	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	

Il faut choisir un rang dépendant de la taille de l'instance (rangs fixés à 10 ou 20 ne revoient plus de bons résultats).

Où intégrer la connaissance

Intégration de connaissance lors de la construction de la solution initiale :

Initialisation habituelle de CW

Initialisation de CW après apprentissage (*Init*)

On appliquera ensuite CW à $Init \to (\lambda, \mu, \nu)$? On choisit $(\lambda^*, \mu^*, \nu^*)$ qui a donné le meilleur CW dans l'échantillon (pour l'apprentissage).

Learning Heuristic

LearnHeuristic (LH)

```
1 (\lambda^*, \mu^*, \nu^*), Init \leftarrow Apprentissage
 2 newBase ← []
 3 for i \leftarrow 1 to 10 do
         if i = 1 then
                Sol \leftarrow H_c(Init, I, D, \lambda^*, \mu^*, \nu^*)
 5
                newBase \leftarrow newBase \cup Sol
 6
         else
 7
                Déterminer Init avec les connaissances de newBase
 8
                Sol \leftarrow H_c(Init, I, D, \lambda^*, \mu^*, \nu^*)
 q
                newBase \leftarrow newBase \cup Sol
10
```

11 return La meilleure solution

Résultats

Choix pour apprentissage

• Taille échantillon : 100

Base : Qual₁₀

• Critère : Rang = n/2

		A-n37-	-k06	/	4-n65-l	k09	P-n101-k04			
Connaissances	Best	Mean₅	Time	Best	Mean ₅	Time	Best	Mean ₅	Time	
		974				776			1739	
Avec	950	966	1073 (3)	1186	1193	911 (8)	694	704	1533 (78)	

Bilan

L'intégration de connaissance semble apporter de meilleurs résultats

Limites

- Choix de meilleurs valeurs pour l'apprentissage (Taille échantillon, base, critère);
- Pas beaucoup de solutions pour nouvel apprentissage (avec newBase);
- Toujours même triplet $(\lambda^*, \mu^*, \nu^*)$ utilisé.

Prochain algorithme

```
1 (\lambda^*, \mu^*, \nu^*), Init \leftarrow Apprentissage()
 2 newBase ← []
 3 for i \leftarrow 1 to 10 do
         if i = 1 then
                for i \leftarrow 1 to 10 do
 5
                 Sol \leftarrow H_c(Init, I, D, \lambda^*, \mu^*, \nu^*)
 6
                    newBase \leftarrow newBase \cup Sol
 7
         else
 8
                Déterminer Init avec les connaissances de newBase
 q
                (\lambda^*, \mu^*, \nu^*), Init \leftarrow Apprentissage(Init)
10
                for j \leftarrow 1 to 10 do
11
                     Sol \leftarrow H_c(Init, I, D, \lambda^*, \mu^*, \nu^*)
12
                     newBase \leftarrow newBase \cup Sol
13
```

14 return La meilleure solution