Se consideran en $M_2(\mathbb{R})$ los subespacios vectoriales

$$U = \left\{ \left(egin{array}{cc} a_{11} & 0 \ 0 & a_{22} \end{array}
ight) \colon \, a_{11}, a_{22} \in \mathbb{R}
ight\} \quad ext{y} \quad W = \left\{ \left(egin{array}{cc} 0 & a_{12} \ a_{21} & 0 \end{array}
ight) \colon \, a_{12}, a_{21} \in \mathbb{R}
ight\}.$$

- 1. Calcular un endomorfismo $f{:}\,M_2(\mathbb{R}) o M_2(\mathbb{R})$ que verifique f(U)=W y $f\circ f=f$.
- 2. Calcular una base de la imagen por la aplicación traspuesta f^t del anulador de U.

Sea $f_{\mu} \colon \mathbb{R}^3 o \mathbb{R}^3$ la aplicación lineal cuya matriz en las bases usuales es

$$\left(\begin{array}{ccc} 3 & \mu+8 & -2\mu-4 \\ -1 & -\mu & 4 \\ 1 & 0 & 0 \end{array} \right),$$

donde μ es un número real.

- 1. Para cada valor de μ , hallar la imagen $\operatorname{Im}(f_{\mu})$ y el núcleo $\ker(f_{\mu})$ de f_{μ} . Determinar los valores de μ para los que f_{μ} es un isomorfismo. 2. Para cada valor de μ , obtener una base de $\operatorname{Im}(f_{\mu}) \cap \ker(f_{\mu})$ y de $\operatorname{Im}(f_{\mu}) + \ker(f_{\mu})$. Determinar los valores de μ para los que $\mathbb{R}^3=\operatorname{Im}(f_\mu)\oplus\ker(f_\mu).$ 3. Determinar una base de $\operatorname{Im}(f_\mu^t)$ y de $\ker(f_\mu^t)$, donde f_μ^t es la aplicación traspuesta de f_μ .

Para la siguiente afirmación proporciona una demostración si es verdadera o un contraejemplo si es falsa: Sea V(K) un espacio vectorial y v_1 , v_2 y v_3 vectores de V(K). Las siguientes afirmaciones son equivalentes:

- $\{v_1,\,v_2,\,v_3\}$ son linealmente independientes.
- $\{v_1+v_2,\,v_2,\,v_2+v_3\}$ son linealmente independientes.
- ullet $\{v_1+v_2,\,v_1+v_3,\,v_2+v_3\}$ son linealmente independientes.

Para la siguiente afirmación proporciona una demostración si es verdadera o un contraejemplo si es falsa:

Sean $f,g:V\longrightarrow V'$ aplicaciones lineales. Entonces, el rango de la aplicación suma, r(f+g), cumple que $r(f+g)\le r(f)+r(g)$.

Sean $M_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas de orden 2 y $C=\begin{pmatrix}0&-2\\3&1\end{pmatrix}\in M_2(\mathbb{R})$. Definimos

$$U=\{A\in M_2(\mathbb{R}) \colon AC=CA\}.$$

- 1. Probar que U es un subespacio vectorial de $M_2(\mathbb{R})$.
- 2. Encontrar base, ecuaciones cartesianas y dimensión de $\emph{U}.$
- 3. Hallar un subespacio complementario de \emph{U} .
- 4. Dado el siguiente subespacio vectorial de $M_2(\mathbb{R})$:

$$W=\{A\in M_2(\mathbb{R})\colon \mathrm{tr}(A)=0\},$$

es decir, el subespacio vectorial de $M_2(\mathbb{R})$ de las matrices con traza nula, calcular W+U y $W\cap U$. 5. Hallar una forma lineal no nula $\phi\in M_2(\mathbb{R})^*\setminus\{0\}$ tal que $U\subset\ker(\phi)$ y obtener un base B de $M_2(\mathbb{R})$ tal que ϕ sea la primera forma

Sean $S_2(\mathbb{R})$ el espacio vectorial de las matrices simétricas de orden 2×2 con coeficientes reales y $\mathbb{R}_2[x]$ el espacio vectorial de los polinomios reales de orden menor o igual que 2. Sea $\mu \in \mathbb{R}$ y sea $f: S_2(\mathbb{R}) \to \mathbb{R}_2[x]$ la aplicación lineal dada por

$$fegin{pmatrix} 2 & 0 \ 0 & -1 \end{pmatrix} = 2 + 4x, \quad fegin{pmatrix} 0 & -1 \ -1 & 0 \end{pmatrix} = -1 + 2\mu x^2, \quad fegin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} = -1 + 2(\mu + 1)x + 2\mu x^2.$$

- 1. Para todo valor de μ , calcular bases de $\ker(f)$ e $\mathrm{Im}(f)$.
- 2. Para el mayor valor de μ que sea posible, encontrar bases B de $S_2(\mathbb{R})$ y B' de $\mathbb{R}_2[x]$ tales que

$$M(f,\, B' \leftarrow B) = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

3. Dados los subespacios
$$U=L\left(\left\{\begin{pmatrix}1&1\\1&\frac12\end{pmatrix},\begin{pmatrix}2&-2\\-2&-1\end{pmatrix}\right\}\right)$$
 y $W=L(\left\{2+2x,-x+x^2\right\})$, calcular $\operatorname{an}(U)$ y $f^t(\operatorname{an}(W))$ para todo valor de μ .