1) For each of the following pairs of integers a and b, determine their greatest common divisor, their least common multiple, and write their greatest command divisor in the form ax + by for some integers x and y

(a)
$$a = 60, b = 17$$

Observe that,

$$60 = 3(17) + 9$$

$$17 = 1(9) + 8$$

$$9 = 1(8) + 1$$

$$8 = 8(1),$$

so gcd(60, 17) = 1, and

$$\gcd(60,17) = 1 = 9 - (1*8) = 9 - (17 - 9) = 17 + 2(9) = -17 + 2(60 - 3*17)$$
$$= 60(2) + 17(-7).$$

Finally, we have lcm(60, 17) gcd(60, 17) = lcm(60, 17) = 60(17) = 1020.

(b)
$$a = 11391, b = 5673$$

Notice that

$$11391 = 2(5673) + 45$$
$$5673 = 126(45) + 3$$
$$45 = 15(3),$$

so gcd(11391, 5673) = 3, and

$$\gcd(11391, 5673) = 5673 - 126(45) = 5673 - 126(11391 - 2 * 5673)$$
$$= 11391(-126) + 5673(253).$$

Finally, we have lcm(11391, 5673) gcd(11391, 5673) = 11391(5673) or lcm = 21540381.

2) Determine the value of $\varphi(n)$ for each integer $n \leq 15$, where $\varphi(n)$ denotes the Euler- φ function.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\varphi(n)$	1	1	2	2	2	2	6	4	6	4	10	4	12	6	8

3) Prove that if p is prime, then \sqrt{p} is not a rational number.

Proof

Suppose that \sqrt{p} is a rational number. Then $\exists a,b \in \mathbb{Z}$ with $b \neq 0$ such that $\sqrt{p} = a/b$ and $\gcd(a,b) = 1$. That is, a and b are relatively prime and have no common factors. Thus, $a^2 = pb^2$, implying $p|a^2$. It follows then that p|a or a = px for some integer x. Hence, $a^2 = p^2x^2 = pb^2$ or $b^2 = px^2$, implying similarly that p|b. This is a contradiction, however, since we assumed that $\gcd(a,b) = 1$. We thus conclude that \sqrt{p} is an irrational number.

- 4) Write down explicitly all the elements in the residue class of
- (a) $\mathbb{Z}/8\mathbb{Z}$

$$\to \mathbb{Z}/8\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}\}\$$

(b) $\mathbb{Z}/10\mathbb{Z}$

$$\rightarrow \mathbb{Z}/10\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}, \bar{9}\}$$

(c) $\mathbb{Z}/18\mathbb{Z}$

$$\to \mathbb{Z}/18\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}, \bar{9}, \bar{10}, \bar{11}, \bar{12}, \bar{13}, \bar{14}, \bar{15}, \bar{16}, \bar{17}\}$$

5) Prove that there are infinitely many primes.

Proof

Suppose that there are only a finite number of primes p_1, \ldots, p_k . Consider the following integer,

$$M = p_1 \dots p_i \dots p_k + 1.$$

By the Fundamental Theorem of Arithmetic, M is a composite number, which is written as a product of primes. That is, M is divisible by at least one prime number. Notice, though, that $gcd(M, p_i) = 1$ since $M = p_i(p_1 \dots p_k) + 1$ for each $i = 1, \dots, k$. Hence, we have a contradiction since M is relatively prime to each prime number, implying that the set of prime numbers is in fact not finite.

6) Prove that if \bar{a} , $\bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\bar{a} \cdot \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof

Since $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, there exist $\bar{c}, \bar{d} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $\bar{a} \cdot \bar{c} = \bar{b} \cdot \bar{d} = \bar{1}$. Consider then $barc \cdot \bar{d}$. We have that $(\bar{a} \cdot \bar{b}) \cdot (\bar{c} \cdot \bar{d}) = (\bar{a} \cdot \bar{c}) \cdot (\bar{b} \cdot \bar{d}) = \bar{1} \cdot \bar{1} = \bar{1}$, implying that $\bar{a} \cdot \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

7[1.3.12]) Let n, m, and k all be positive integers. Assume that

$$n|mk-1$$
.

Prove that gcd(n, m) = 1.

Proof

Notice that mk - 1 = nl for some integer l. Hence, 1 = n(-l) + mk. Since 1 is the least element in the positive integers and is an integer-linear combination of n, m, then gcd(n, m) = 1.

8[1.3.13]) Let a, b, and c be integers.

(a) Prove that if gcd(a, b) = 1 and a|bc, then a|c.

Proof

Notice that 1 = ax + by and that bc = an for some integers x, y, and n. Hence byc = (1 - ax)c = c - acx = an or c = a(cx + n), implying that a|c.

(b) Prove that if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

Proof

Observe that 1 = an + bm and 1 = ak + cl for some $n, m, k, l \in \mathbb{Z}$. Thus bc(ml) = (1 - an)(1 - ak) = 1 - a(n + k - ank) or 1 = ax + by where $x, y \in \mathbb{Z}$, proving that gcd(a, bc) = 1.

9[1.3.16]) Let a and b be positive integers. Let $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ and $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}$ where $\alpha_i, \beta_i \geq 0$ and, for $1 \leq i \leq k$, p_i are distinct primes. Show that $\gcd(a, b) = p_1^{\gamma_1} p_2^{\gamma_2} \dots p_k^{\gamma_k}$, where $\gamma_i = \min(\alpha_i, \beta_i)$. In particular, a and b are relatively prime if and only if they do not have any common prime divisors.

Proof

Let $c = p_1^{\gamma_1} p_2^{\gamma_2} \dots p_k^{\gamma_k}$. It is clear that c|a and c|b since $\gamma_i \leq \alpha_i$, β_i for each i. We now prove that if d|a and d|b then d|c. Since d|a and d|b, then it must be true that $d = p_1^{\delta_1} p_2^{\delta_2} \dots p_k^{\delta_k}$, where $0 \leq \delta_i \leq \alpha_i$, β_i for each i. Compare now δ_i and $\gamma_i = \min(\alpha_i, \beta_i)$. It is clear then that $\delta_i \leq \min(\alpha_i, \beta_i)$ for each i, so d|c since $\gamma_i - \delta_i \geq 0$. Hence, $c = \gcd(a, b)$.

If a and b are relatively prime, then gcd(a, b) = 1 and $\gamma_i = 0$ for each i, meaning that α_i or β_i is zero. Hence a and b share no common prime divisors. Now suppose that a and b share no common divisors, then for each i we have that at least one of α_i or β_i is zero, meaning that $\gamma_i = 0$ and gcd(a, b) = 1, implying that a and b are relatively prime.

3 of 4

10[1.3.18]) Let a and b be positive integers. What can you say about the product of gcd(a, b) and lcm(a, b)? By looking at some examples, make a conjecture. Can you prove your conjecture?

 \rightarrow It may be observed that gcd(a, b)lcm(a, b) = ab. Consider the following examples

(a, b)	$\gcd(a,b)$	lcm(a, b)	ab
(5,10)	5	10	50
(10,11)	1	110	110
(42,15)	3	210	630

We prove the conjecture below:

\underline{Proof}

Notice that by definition if $c = \gcd(a, b)$ then a = cn and b = cm where $\gcd(n, m) = 1$. Obviously, if $d = \operatorname{lcm}(a, b)$ then a|d and b|d. Hence, d = cnm and $cd = c^2nm = ab$. That is, $\gcd(a, b)\operatorname{lcm}(a, b) = ab$.