算法实现题 7-7 3SAT 问题

★ 问题描述:

SAT 的一个实例是 k 个布尔变量 x_1 , …, x_k 的 m 个布尔表达式 A_1 , …, A_m 。若存在各布尔变量 x_i (1 \leq i \leq k)的 0,1 赋值,使每个布尔表达式 A_i (1 \leq i \leq m)都取值 1,则称布尔表达式 A_i A_i … A_m 是可满足的。

★ 合取范式的可满足性问题 CNF-SAT

如果一个布尔表达式是一些因子和之积,则称之为合取范式,简称 CNF(Conjunctive Normal Form)。这里的因子是变量x或x。例如 $(x_1+x_2)(x_2+x_3)(x_1+x_2+x_3)$ 就是一个合取范式,而 $x_1x_2+x_3$ 就不是合取范式。

★ k-SAT

如果一个布尔合取范式的每个乘积项最多是k个因子的析取式,就称之为k元合取范式,简记为k-CNF。一个k-SAT 问题是判定一个k-CNF 是否可满足。特别地,当k=3 时,3-SAT 问题在 NP 完全问题树中具有重要地位。

★ MAX-SAT

给定 k 个布尔变量 x_1 , …, x_k 的 m 个布尔表达式 A_1 , …, A_m , 求各布尔变量 x_i (1 \leq i \leq k)的 0,1 赋值,使尽可能多的布尔表达式 A_i 取值 1。

★ Weighted-MAX-SAT

给定 \mathbf{k} 个布尔变量 x_1 , … , x_k 的 \mathbf{m} 个布尔表达式 A_1 , … , A_m , 每个布尔表达式 A_i 都有一个权值 \mathbf{w}_i ,求各布尔变量 x_i (1 \leq i \leq k)的 0,1 赋值,使取值 1 的布尔表达式权值之和达到最大。

★ 编程任务:

对于给定的带权 3-CNF,设计一个蒙特卡罗算法,使其权值之和尽可能大。

★ 数据输入:

由文件 input.txt 给出输入数据。第一行有 2 个正整数 k 和 m, 分别表示变量数和布尔表达式数。接下来的 m 行中,每行有 5 个整数 w,i,j,k,0,表示相应表达式的权值为 w, 表达式含的变量下标分别为 i,j,k, 行末以 0 结尾。下标为负数时,表示相应的变量为取反变量。

★ 结果输出:

将计算出的最大权值输出到文件 output.txt。

输入文件示例

输出文件示例

input.txt

5 3

9 3 1 4 0

9 1 -5 3 0

8 2 -5 1 0

output.txt 26