2. theano logistic regression

April 4, 2016

0.1 2. Logistic Regression with Theano

The aim of this IPython notebook is to show some features of the Python **Theano** library in the field of machine learning. It has been developed by the LISA group at the *University of Montreal* (see: http://deeplearning.net/software/theano/). The notebook also relies on other standard Python libraries such as *numpy*, *pandas* and *matplotlib*.

To exemplify the use of **Theano**, this notebook solves the assignments of the *Machine Learning* MOOC provided by **Coursera** (see: https://www.coursera.org/learn/machine-learning) and performed in *Stanford University* by **Andrew Ng** (see: http://www.andrewng.org/).

The original MOOC assignments should to be programmed with the **Octave** language (see: https://www.gnu.org/software/octave/). The idea with this notebook is to provide Python developpers with interesting examples programmed using **Theano**.

This notebook has been developed using the *Anaconda* Python 3.4 distribution provided by **Continuum Analytics** (see: https://www.continuum.io/). It requires the **Jupyter Notebook** (see: http://jupyter.org/).

About the author: **Francis Wolinski** has an Engineering Degree From *Ecole des Ponts ParisTech* as well as a MSc. in Artificial Intelligence and a PhD. in Computer Science from *Université Pierre et Marie Curie* (UPMC).

0.1.1 2.1 Standard Logistic Regression

2.1.1 Visualizing the data

2.1.2 Cost function and gradient Unlike in the assignment which use the Octave fminunc function to learn the parameters, they are learned using the gradient descent method.

```
In [2]: import theano
        import numpy as np
        import theano.tensor as T
        # Feature Normalization
       mu = df.mean()
        sigma = df.std()
        df2 = (df - mu)/sigma
        # Training Data
       m = df.shape[0]
       Xnorm = np.matrix([np.ones(m), df2["Exam1"].values, df2["Exam2"].values]) # Add intercept term
        Y = df["Admitted"].values
        # Choose some alpha value
        alpha = 0.01
        # Init Theta and Run Gradient Descent
        t = np.zeros(3)
        theta = theano.shared(t,name='theta')
```

```
x = T.matrix('x')
        y = T.vector('y')
       h = 1.0 / (1.0 + T.exp(-T.dot(theta,x)))
        cost = -T.sum(y * T.log(h) + (1.0 - y) * T.log (1.0 - h))/m
        grad = T.grad(cost,theta)
        train = theano.function([x,y],cost,updates = [(theta,theta-alpha*grad)])
        costM = train(Xnorm,Y)
        print('Cost at initial theta (zeros): %f\n' % costM);
        print('Gradient at initial theta (zeros): \n');
        print(theta.get_value())
Cost at initial theta (zeros): 0.693147
Gradient at initial theta (zeros):
[ 0.001
              0.00279819 0.00249728]
2.1.3 Gradient Descent
In [3]: # Choose some alpha value
        alpha = 0.1
        num_iters = 5000
        for i in range(num_iters):
            costM = train(Xnorm,Y)
        print('Cost at theta found by gradient descent: %f\n' % costM);
        print('theta:');
        print(theta.get_value())
Cost at theta found by gradient descent: 0.224718
theta:
[ 1.00126771   2.49576049   2.28158342]
In [4]: # Predict values for a student with an Exam 1 score of 45 and an Exam 2 score of 85
        X0 = np.array([1, (45 - mu['Exam1'])/sigma['Exam1'], (85 - mu['Exam2'])/sigma['Exam2']])
        prediction = np.dot(theta.get_value(), X0)
        print('For a student with scores 45 and 85, we predict an admission probability of %f' % predic
        # number of positive predictions where Y==1
        accuracy = np.sum(1*(np.dot(theta.get_value(), Xnorm)>0)==Y)/Y.size
        print('\nTrain Accuracy: %f' % accuracy)
For a student with scores 45 and 85, we predict an admission probability of 0.658934
Train Accuracy: 0.890000
2.1.4 Plotting data with decision boundary
In [5]: x = T.vector('x')
       t = theta.get_value()
        a = np.linspace(30,100,2)
        # boundary equation : theta x \times Xnorm = 0
```


0.1.2 2.2 Regularized logistic regression

2.2.1 Visualizing the data

```
s=40, marker='o', color='y', label='y = 0', edgecolors='k');
plt.xlabel('Microchip Test 1', fontsize=9)
plt.ylabel('Microchip Test 2', fontsize=9)
plt.axis((-1, 1.5, -1, 1.5))
plt.legend(fontsize=9);
```


0.1.3 2.2.2 Feature mapping

```
In [7]: def map_feature(x1, x2):
    """

Maps the two input features
    to quadratic features used in the regularization exercise.

Returns a new feature array with 27 features:
    X1, X2, X1**2, X1*X2, X2**2, X1*X2**2, ... X1**6, X2**6

Inputs X1, X2 must be the same size
    """

degree = 6
    df = pnd.DataFrame(np.ones(x1.shape[0]))
    c = 1
    for i in range(1, degree + 1):
        for j in range(i + 1):
            df[c] = (x1 ** (i - j)) * (x2 ** j)
```

```
c += 1
return df.as_matrix().T
```

0.1.4 2.2.3 Cost function and gradient

```
In [8]: # Training Data
       m = df2.shape[0]
       X = map_feature(df2['Test1'].values, df2['Test2'].values)
        Y = df2["Accepted"].values
        # Choose some alpha and lambda values
        alpha = 0.1
        lambda_ = 1.0
        # compute theta * theta without first parameter which is not regularized
        I = np.eye(X.shape[0])
        I[0,0] = 0
        # Init Theta and Run Gradient Descent
        t = np.zeros(X.shape[0])
        theta = theano.shared(t,name='theta')
        x = T.matrix('x')
        y = T.vector('y')
       h = 1.0 / (1.0 + T.exp(-T.dot(theta,x)))
       reg = lambda_ * T.dot(T.dot(I,theta), T.dot(I,theta)) / 2 / m # regularization term
        cost = -T.sum(y * T.log(h) + (1.0 - y) * T.log (1.0 - h))/m + reg
        grad = T.grad(cost,theta)
        train = theano.function([x,y],cost,updates = [(theta,theta-alpha*grad)])
        costM = train(X,Y)
        print('Cost at initial theta (zeros): %f' % costM)
       num_iters = 5000
        for i in range(num_iters):
           costM = train(X,Y)
        # number of positive predictions where Y==1
        accuracy = np.sum(1*(np.dot(theta.get_value(), X)>0)==Y)/Y.size
        print('\nTrain Accuracy: %f' % accuracy)
Cost at initial theta (zeros): 0.693147
Train Accuracy: 0.830508
0.1.5 2.2.4 Plotting the decision boundary
In [9]: t = theta.get_value()
       u = np.linspace(-1, 1.5, 50)
        v = np.linspace(-1, 1.5, 50)
        z = np.zeros((len(u), len(v)))
        for i, u1 in enumerate(u):
            for j, v1 in enumerate(v):
```

```
z[i,j] = np.dot(t, map_feature(np.array([u1]), np.array([v1])))
        z = z.T
In [10]: plt.figure(figsize=(8,6))
         plt.title('$\lambda = %.1f$' % lambda_)
         plt.contour(u, v, z, levels=[0], color='b')
         plt.plot([],[], color='b', label='Decision boundary')
         plt.scatter(df2[df2['Accepted']==1]['Test1'], df2[df2['Accepted']==1]['Test2'], \
                      s=40, marker='+', color='k', label='y = 1');
         plt.scatter(df2[df2['Accepted']==0]['Test1'], df2[df2['Accepted']==0]['Test2'], \
                      s=40, marker='o', color='y', label='y = 0', edgecolors='k');
         plt.xlabel('Microchip Test 1', fontsize=9)
         plt.ylabel('Microchip Test 2', fontsize=9)
         plt.axis((-1, 1.5, -1, 1.5))
         plt.legend(fontsize=9);
                                               \lambda = 1.0
         1.5
                                                                         Decision boundary
                                                                     +++ y = 1
                                                                     000 y = 0
         1.0
         0.5
     Microchip Test 2
         0.0
        -0.5
        -1.0
-1.0
                          -0.5
                                          0.0
                                                         0.5
                                                                        1.0
                                                                                       1.5
```

In []:

Microchip Test 1