Examenul de bacalaureat naţional 2014 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 10

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Intensitatea curentului electric printr-un conductor este numeric egală cu:
- a. sarcina electrică debitată de sursă în tot circuitul în timpul funcționării
- b. sarcina electrică ce traversează secțiunea transversală a conductorului în unitatea de timp
- c. lucrul mecanic efectuat de sursă pentru a deplasa unitatea de sarcină pozitivă pe tot circuitul
- d. lucrul mecanic efectuat de sursă pentru a deplasa unitatea de sarcină pozitivă pe circuitul exterior. (3p)
- 2. Rezistența electrică a unui conductor metalic filiform, de lungime ℓ , secțiune S și rezistivitate ρ este dată de relația:

a.
$$R = \frac{\rho \ell}{S}$$

b.
$$R = \frac{\rho S}{\ell}$$

c.
$$R = \frac{U}{I}$$

$$d. R = \frac{\ell}{\rho S}$$
 (3p)

3. Unitatea de măsură în S.I. pentru energia electrică este:

(3p)

4. Un consumator cu rezistența R este alimentat de la o baterie formată din n surse identice, grupate în serie, având fiecare tensiunea electromotoare E și rezistența interioară r. Intensitatea curentului electric prin consumator este dată de relaţia:

a.
$$I = \frac{E}{R + nr}$$

b.
$$I = \frac{E}{R + \frac{r}{n}}$$

c.
$$I = \frac{nE}{R + nr}$$
 d. $I = \frac{nE}{R + r}$

d.
$$I = \frac{nE}{R+r}$$

(3p)

5. Dependența intensității curentului electric printr-un rezistor de tensiunea electrică aplicată la bornele acestuia este reprezentată în graficul alăturat. Rezistența electrică a rezistorului are valoarea:

- **b.** 2Ω
- c. $1.5 \text{ k}\Omega$
- **d.** $2 k\Omega$

II. Rezolvati următoarea problemă:

Un circuit electric este format dintr-o sursă având tensiunea electromotoare $E = 12 \,\mathrm{V}$ şi rezistenţa interioară $r = 2 \,\Omega$, trei rezistoare și un întrerupător K. Schema electrică a circuitului este reprezentată în figura alăturată. Valorile rezistențelor electrice ale celor trei rezistoare sunt: $R_1 = 8 \Omega$, $R_2 = 6 \Omega$, respectiv $R_3 = 3 \Omega$.

Determinati: a. rezistența echivalentă a circuitului exterior sursei atunci când întrerupătorul K este deschis;

- **b.** intensitatea curentului electric care străbate rezistorul R_1 atunci când întrerupătorul K este deschis;
- c. tensiunea electrică la bornele sursei atunci când întrerupătorul K este închis;
- **d.** energia electrică consumată de rezistorul R_1 , în $\Delta t = 1$ min, atunci când întrerupătorul K este închis.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O sursă având tensiunea electromotoare E = 12V şi rezistența interioară $r = 4 \Omega$, debitează aceeaşi putere pe circuitul exterior atunci când acesta are rezistența $R_1 = 2 \Omega$ sau rezistența $R_2(R_2 \neq R_1)$. Determinați:

- a. valoarea puterii disipate pe circuitul exterior sursei, atunci când acesta are rezistenţa R;
- **b.** valoarea R_2 a rezistenței circuitului exterior;
- c. puterea maximă pe care sursa o poate debita unui circuit exterior a cărui rezistență electrică este aleasă corespunzător;
- **d.** randamentul circuitului electric atunci când acesta are rezistența exterioară $R = 4\Omega$.