# Forward Error Correction and Pictures From Mars

#### Introduction

- Forward Error Correction (FEC) codes
- Hadamard linear block code
  - No complex math explanations
- Simple example
  - One-way broadcast of secret message to agent
- Mariner 9 Spacecraft example
  - Achieved Martian obit Nov 1971 First Earth-made object to orbit another planet
  - Transmitted pictures of the Martian surface until Oct 1972
  - Picture data required Forward Error Correction

# Forward Error Correction (FEC)

#### Reduces errors in poor communication channel

- FEC used:
  - When no reverse channel available to request retransmission
  - One way broadcasts
- FEC is achieved by redundant encoding of data
  - Errors can be detected and corrected anywhere in the encoded data
  - Maximum errors corrected is determined by design of FEC
- FEC cost is increased time or bandwidth to send data

### FEC Types

- Linear Block Codes
  - Encode Data Words
- Convolutional Codes
  - Encodes continuous steam of data
- This presentation limited to Hadamard linear block code FEC
  - Also called Walsh code, Walsh-Hadamard code
  - Code Words are the rows of a Hadamard matrix

#### Hadamard Matrix

- Studied for 1½ centuries
- New uses still being discovered
- Walsh code for CDMA







### Simple Example, Transmit

- Broadcast station transmit Data Words in the range of 000 to 111
- Covert receive station needs 4 Data Words to identify mission
  - This example, covert agent mission is number 3333
- Broadcast station needs to encode and transmit 4 times the Data Word 011

| Encode Table |          |      |  |  |  |  |  |
|--------------|----------|------|--|--|--|--|--|
| Data         | Hadamard | Data |  |  |  |  |  |
| Value        | matrix   | Word |  |  |  |  |  |
| 0            | 1111111  | 000  |  |  |  |  |  |
| 1            | 10101010 | 001  |  |  |  |  |  |
| 2            | 11001100 | 010  |  |  |  |  |  |
| 3            | 10011001 | 011  |  |  |  |  |  |
| 4            | 11110000 | 100  |  |  |  |  |  |
| 5            | 10100101 | 101  |  |  |  |  |  |
| 6            | 11000011 | 110  |  |  |  |  |  |
| 7            | 10010110 | 111  |  |  |  |  |  |

#### Simple Example, Receive

Column Headings Definitions for Decode Table

Send Data Value = 3 and Data Word = 011

Transmitted Data Code Word = 10011001

RCWx = Received Code Word with x errors

RCW0 = 10011001 (0 error.)

RCW1 = 10001001 (1 error. red indicates received bit error)

RCW2 = 10000001 (2 errors. red indicates received bit error)

RCW3 = 10000101 (3 errors. red indicates received bit error)

#### Simple Example, Receive

- Received Code Word score
  - 1 point for same bit value in the same position as a row in the matrix
- Correct a maximum of 1 error
- Detect a maximum of 2 errors
- Incorrect decode for 2 or more errors

| Decode Table |          |       |       |       |       |  |  |
|--------------|----------|-------|-------|-------|-------|--|--|
| Data         | Hadamard | RCW0  | RCW1  | RCW2  | RCW3  |  |  |
| Value Matrix |          | score | score | score | score |  |  |
| 0            | 1111111  | 4     | 3     | 2     | 3     |  |  |
| 1            | 10101010 | 4     | 5     | 4     | 3     |  |  |
| 2            | 11001100 | 4     | 5     | 4     | 5     |  |  |
| 3            | 10011001 | 8     | 7     | 6     | 5     |  |  |
| 4            | 11110000 | 4     | 3     | 4     | 3     |  |  |
| 5            | 10100101 | 4     | 5     | 6     | 7     |  |  |
| 6            | 11000011 | 4     | 5     | 6     | 5     |  |  |
| 7            | 10010110 | 4     | 3     | 4     | 5     |  |  |

# Mariner 9 Background

- Pictures of Mars surface
  - Black and white
  - Each photo about 4 to 5 km square
  - 4.5 million bits/picture
    - Split into 6 bits Data Words
    - 64 different Data Word

### Mariner 9 FEC Option

- Maximum length for FEC Code Word was about 30 bits
- 5 repeat code was a possibility
  - 6 bit Data Word encoded with 5 repeat code = 30 bits
    - Example 101010 becomes 11111000001111110000011111100000
  - Advantage = easy implementation
  - Disadvantage = Correct 2 bit error

# Mariner 9 Selected Hadamard Code

- Correct 7 bit errors per Code Word
- No Spacecraft memory or processor required to generate Code Word
  - Using logic circuits, Code Word generated as Data Word was available
- Rapid decoding using a black box called "The Green Machine"
- Used two 32 X 32 Hadamard matrices for 6 bit Data Words
  - Augmented Hadamard code (64 X 32)
    - Data Word with MSB = 1, Code Word from top half 64 X 32
    - Data Word with MSB = 0, Code Word from bottom half 64 X 32

# Mariner 9 Data & Code Words

- All Data Words in the Mariner 9
   Dictionary
- Data Words not in order

| Data   | Code Word                               |
|--------|-----------------------------------------|
| Word   |                                         |
| 111111 | 111111111111111111111111111111111111111 |
| 100000 | 1010101010101010101010101010            |
| 110000 | 1100110011001100110011001100            |
| 101111 | 1001100110011001100110011001            |
| 111000 | 11110000111100001111000011110000        |
| 100111 | 10100101101001011010010110100101        |
| 110111 | 110000111100001111000011                |
| 101000 | 10010110100101101001011010010110        |
| 111100 | 111111110000000011111111100000000       |
| 100011 | 10101010010101011010101001010101        |
| 110011 | 11001100001100111100110000110011        |
| 101100 | 10011001011001101001100101100110        |
| 111011 | 1111000000011111111100000001111         |
| 100100 | 1010010101011010101010101011010         |
| 110100 | 11000011001111001100001100111100        |
| 101011 | 10010110011010011001011001101001        |
| 111110 | 111111111111111000000000000000000000000 |
| 100001 | 10101010101010101010101010101           |
| 110001 | 1100110011001100001100110011            |
| 101110 | 1001100110011001011001100110            |
| 111001 | 11110000111100000000111100001111        |
| 100110 | 101001011010010101101001011010          |
| 110110 | 11000011110000110011110000111100        |
| 101001 | 10010110100101100110100101101001        |
| 111101 | 11111111000000000000000011111111        |
| 100010 | 101010100101010101010110101010          |
| 110010 | 11001100001100110011001111001100        |
| 101101 | 1001100101100110011010011001            |
| 111010 | 1111000000001111100001111111110000      |
| 100101 | 1010010101011010010110101010101         |
| 110101 | 11000011001111000011110011000011        |
| 101010 | 10010110011010010110100110010110        |

| Data   | Code Word                               |
|--------|-----------------------------------------|
| Word   |                                         |
| 010101 | 01101001100101101001011001101001        |
| 001010 | 00111100110000111100001100111100        |
| 011010 | 01011010101001011010010101011010        |
| 000101 | 0000111111111000011111000000001111      |
| 010010 | 0110011010011001100101100110            |
| 001101 | 00110011110011001100110000110011        |
| 011101 | 010101011010101010101001010101          |
| 000010 | 00000001111111111111111100000000        |
| 010110 | 01101001011010011001011010010110        |
| 001001 | 00111100001111001100001111000011        |
| 011001 | 01011010010110101010010110100101        |
| 000110 | 000011110000111111111000011110000       |
| 010001 | 0110011001100110100110011001            |
| 001110 | 001100110011001110011001100             |
| 011110 | 010101010101011010101010101010          |
| 000001 | 0000000000000011111111111111111         |
| 010100 | 01101001100101100110100110010110        |
| 001011 | 00111100110000110011110011000011        |
| 011011 | 0101101010100101010110101010101         |
| 000100 | 000011111111000000001111111110000       |
| 010011 | 01100110100110010110011010011001        |
| 001100 | 00110011110011000011001111001100        |
| 011110 | 0101010110101010101010110101010         |
| 000011 | 000000011111111000000011111111          |
| 010111 | 01101001011010010110100101101001        |
| 001000 | 00111100001111000011110000111100        |
| 011000 | 01011010010110100101101001011010        |
| 000111 | 000011110000111100001111                |
| 010000 | 0110011001100110011001100110            |
| 001111 | 0011001100110011001100110011            |
| 011111 | 010101010101010101010101010101          |
| 000000 | 000000000000000000000000000000000000000 |

#### Mariner 9

#### Numeric example

- Blue for Data Words with 1=MSB
- Green for Data Words with 0=MSB
- Red for received bit errors
- First Received Code Word 10101010101010101010101010101

Send Data Words alternates between 100011 and 000011

Transmitted Code Words alternates between:

First Received Code Word is 1E0 and last is 0E8

1Ex = x errors for Received Code Word that has 1 as MSB 0Ex = x errors for Received Code Word that has 0 as MSB

Received Code Words. Red bit values are bit errors.

Note: The position of any bit error does not affect the score

#### Mariner 9 - Partial Decode Table

| Data   | Code Word                        | 1  | 0  | 1  | 0         | 1         | 0          | 1         | 0         | 1         | 0         |
|--------|----------------------------------|----|----|----|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Word   |                                  | E0 | EO | E1 | <b>E2</b> | <b>E3</b> | <b>E</b> 4 | <b>E5</b> | <b>E6</b> | <b>E7</b> | <b>E8</b> |
|        |                                  |    |    |    |           |           |            |           |           |           |           |
| 101000 | 10010110100101101001011010010110 | 16 | 16 | 17 | 16        | 17        | 16         | 15        | 16        | 15        | 16        |
| 111100 | 1111111100000001111111110000000  | 16 | 0  | 17 | 2         | 17        | 4          | 17        | 6         | 17        | 8         |
| 100011 | 101010101010101101010101010101   | 32 | 16 | 31 | 16        | 29        | 16         | 27        | 16        | 25        | 16        |
| 110011 | 11001100001100111100110000110011 | 16 | 16 | 15 | 14        | 17        | 16         | 15        | 14        | 17        | 16        |
| 101100 | 100110010110011010011001100110   | 16 | 16 | 17 | 16        | 17        | 16         | 17        | 16        | 17        | 16        |
|        |                                  |    |    |    |           |           |            | ,         |           |           |           |
| 001100 | 00110011110011000011001111001100 | 16 | 16 | 17 | 18        | 15        | 16         | 17        | 18        | 15        | 16        |
| 011110 | 01010101010101010101010101010    | 0  | 16 | 1  | 16        | 3         | 16         | 5         | 16        | 7         | 16        |
| 000011 | 0000000111111111000000011111111  | 16 | 32 | 15 | 30        | 15        | 28         | 15        | 26        | 15        | 24        |
| 010111 | 01101001011010010110100101101001 | 16 | 16 | 15 | 16        | 15        | 16         | 17        | 16        | 17        | 16        |
| 001000 | 00111100001111000011110000111100 | 16 | 16 | 17 | 18        | 15        | 16         | 15        | 14        | 17        | 16        |

# Hadamard Code Bit Error Rate (BER)

- No special test equipment required for BER measurements
- BER = (Total number of corrections for all transmitted Code Words)
  (Total number of transmitted bits)
- BER for Mariner 9 example Average BER = (0+0+1+2+3+4+5+6+7+8)/(10\*32) = 36/320 = .11 = 11%
- Total number of corrections in a code word must be less than the total number of maximum detectable errors for a code word.
  - For Mariner 9, maximum detectable errors = 8

#### Summary

- Hadamard code improves data transmission over a bad communication link
- HF digital mode Olivia:
  - Uses Hadamard FEC
  - Two way chat communications (like RTTY)
  - Decodes well
    - -14 db SNR
    - Works through atmospheric noise, fade, interference

# Questions?