Formelsamling i VEKTORANALYS

Ursprunglig version av Olle Brander (13 mars, 1997) Uppdaterad av Christian Forssén*

Version 2.1 (15 augusti, 2018)

A. Vektorer och tensorer

Transformation mellan två ON-baser:

(1)
$$\hat{x}'_i = \sum_{j=1}^3 L_{ij} \hat{x}_j, \qquad i = 1, 2, 3$$

där $\mathcal{L} = (L_{ij})$ är en ortogonalmatris, $\mathcal{L}^{-1} = \mathcal{L}^t$, med $\det(\mathcal{L}) = \pm 1$.

Exempel på transformationer

Vridning i planet med vinkeln α i positiv led (\mathcal{R} är en ortogonalmatris):

(2)
$$\begin{pmatrix} \hat{x}' \\ \hat{y}' \end{pmatrix} = \mathcal{R}(\alpha) \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix}$$

Med beteckningen

(3)
$$\mathcal{R}_z(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

för en vridning med vinkeln α kring z-axeln kan en allmän, tredimensionell vridning skrivas

(4)
$$\mathcal{L}(\alpha, \beta, \gamma) = \mathcal{R}_z(\gamma) \mathcal{R}_y(\beta) \mathcal{R}_z(\alpha).$$

Hopmultiplicerat ger detta

(5)
$$= \begin{pmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\cos \gamma \sin \beta \\ -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \gamma \sin \beta \\ \sin \beta \cos \alpha & \sin \beta \sin \alpha & \cos \beta \end{pmatrix}$$

Vinklarna α, β, γ kallas Eulers vinklar. Utöver vridningar kan vi ha speglingar med $\det(\mathcal{L}) = -1$.

^{*}Institutionen för fundamental fysik, Chalmers. Med speciellt tack till Johan Andersson och Love Westlund Gotby (F14) som har konverterat formelsamlingen till LATEX.

Transformation av vektorer och tensorer

Mot (1) svarande transformation av (geometrisk) vektor:

(6)
$$v_i' = \sum_{j=1}^{3} L_{ij}v_j, \qquad i = 1, 2, 3$$

I matrisform:

(7)
$$\mathbf{v}' = \mathcal{L}\mathbf{v} \Rightarrow \begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Pseudovektor:

(8)
$$v'_i = \det(\mathcal{L}) \sum_{j=1}^3 L_{ij} v_j, \qquad i = 1, 2, 3$$

Andra ordningens tensor:

(9)
$$T'_{ij} = \sum_{n,m=1}^{3} L_{in}L_{jm}T_{nm}, \quad i, j = 1, 2, 3$$

I matrisform:

$$(10) \quad \mathcal{T}' = \mathcal{L}\mathcal{T}\mathcal{L}^t$$

Andra ordningens pseudotensor:

(11)
$$T'_{ij} = \det(\mathcal{L}) \sum_{n,m=1}^{3} L_{in} L_{jm} T_{nm}, \quad i, j = 1, 2, 3$$

Permutationssymbolen (Levi-Civitas symbol)

(12)
$$\epsilon_{ijk} = \begin{cases} +1 & \text{för } (ijk) = (123), (231), (312) \\ -1 & \text{för } (ijk) = (132), (213), (321) \\ 0 & \text{annars} \end{cases}$$

är en helt antisymmetrisk tredje ordningens pseudotensor. För denna gäller den s.k. $\epsilon - \delta$ identiteten

(13)
$$\sum_{k=1}^{3} \epsilon_{ijk} \epsilon_{nmk} = \delta_{in} \delta_{jm} - \delta_{im} \delta_{jn}.$$

B. Räkneregler för ∇ -operatorn

(1)
$$\nabla(\alpha f + \beta g) = \alpha \nabla f + \beta \nabla g$$

(2)
$$\nabla \cdot (\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \nabla \cdot \mathbf{A} + \beta \nabla \cdot \mathbf{B}$$

(3)
$$\nabla \times (\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \nabla \times \mathbf{A} + \beta \nabla \times \mathbf{B}$$

(4)
$$\nabla(fg) = (\nabla f)g + f(\nabla g)$$

(5)
$$\nabla \cdot (f\mathbf{A}) = (\nabla f) \cdot \mathbf{A} + f(\nabla \cdot \mathbf{A})$$

(6)
$$\nabla \times (f\mathbf{A}) = (\nabla f) \times \mathbf{A} + f(\nabla \times \mathbf{A})$$

(7)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(8)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\nabla \cdot \mathbf{A})\mathbf{B} - (\mathbf{A} \cdot \nabla)\mathbf{B} + (\nabla \cdot \mathbf{B})\mathbf{A}$$

(9)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} + \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A})$$

(10)
$$\nabla \cdot (\nabla f) = \nabla^2 f \equiv \Delta f$$

(11)
$$\nabla \times (\nabla f) = 0$$

(12)
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

(13)
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

(14)
$$\nabla \cdot \mathbf{r} = 3$$

(15)
$$\nabla \times \mathbf{r} = 0$$

(16)
$$\nabla r = \hat{r}$$

(17)
$$\nabla = \hat{r}(\hat{r} \cdot \nabla) - \hat{r} \times (\hat{r} \times \nabla)$$

(18)
$$\nabla u(f) = (\nabla f) \frac{du}{df}$$

(19)
$$\nabla \cdot \mathbf{F}(f) = (\nabla f) \cdot \frac{\partial \mathbf{F}}{\partial f}$$

(20)
$$\nabla \times \mathbf{F}(f) = (\nabla f) \times \frac{\partial \mathbf{F}}{\partial f}$$

C. Kroklinjiga koordinater

Kartesiska koordinaternas basvektorer transformerade till cylinderkoordinaternas basvektorer:

(1)
$$\begin{pmatrix} \hat{\rho} \\ \hat{\alpha} \\ \hat{z} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

Kartesiska koordinater till sfäriska koordinater:

(2)
$$\begin{pmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\varphi} \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\ \cos \theta \cos \varphi & \cos \theta \sin \varphi & -\sin \theta \\ -\sin \varphi & \cos \varphi & 0 \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

Cylinderkoordinater till sfäriska koordinater:

(3)
$$\begin{pmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\varphi} \end{pmatrix} = \begin{pmatrix} \sin \theta & 0 & \cos \theta \\ \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \hat{\rho} \\ \hat{\alpha} \\ \hat{z} \end{pmatrix}$$

 ∇ -operatorn i allmänna, ortogonala, kroklinjiga koordinater:

(4)
$$\nabla \phi(u_1, u_2, u_3) = \frac{1}{h_1} \frac{\partial \phi}{\partial u_1} \hat{u}_1 + \frac{1}{h_2} \frac{\partial \phi}{\partial u_2} \hat{u}_2 + \frac{1}{h_3} \frac{\partial \phi}{\partial u_3} \hat{u}_3$$

(5)
$$\nabla \cdot \mathbf{A}(u_1, u_2, u_3) = \frac{1}{h_1 h_2 h_3} \sum_{i=1}^{3} \frac{\partial}{\partial u_i} \left(\frac{h_1 h_2 h_3}{h_i} A_{u_i} \right)$$

(6)
$$\nabla \times \mathbf{A}(u_1, u_2, u_3) = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{u}_1 & h_2 \hat{u}_2 & h_3 \hat{u}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_{u_1} & h_2 A_{u_2} & h_3 A_{u_3} \end{vmatrix}$$

(7)
$$\nabla^2 \phi(u_1, u_2, u_3) = \frac{1}{h_1 h_2 h_3} \sum_{i=1}^3 \frac{\partial}{\partial u_i} \left(\frac{h_1 h_2 h_3}{h_i^2} \frac{\partial \phi}{\partial u_i} \right)$$

Cylinderkoordinater:

(8)
$$\nabla \phi(\rho, \alpha, z) = \frac{\partial \phi}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial \phi}{\partial \alpha} \hat{\alpha} + \frac{\partial \phi}{\partial z} \hat{z}$$

(9)
$$\nabla \cdot \mathbf{A}(\rho, \alpha, z) = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\alpha}}{\partial \alpha} + \frac{\partial A_{z}}{\partial z}$$

(10)
$$\nabla \times \mathbf{A}(\rho, \alpha, z) = \frac{1}{\rho} \begin{vmatrix} \hat{\rho} & \rho & \hat{\alpha} & \hat{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \alpha} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\alpha} & A_{z} \end{vmatrix}$$

(11)
$$\nabla^2 \phi(\rho, \alpha, z) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \phi}{\partial \alpha^2} + \frac{\partial^2 \phi}{\partial z^2}$$

(12)
$$\nabla^2 \mathbf{A}(\rho, \alpha, z) = \left[\nabla^2 A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\alpha}{\partial \alpha} \right] \hat{\rho} + \left[\nabla^2 A_\alpha - \frac{A_\alpha}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_\rho}{\partial \alpha} \right] \hat{\alpha} + \nabla^2 A_z \hat{z}$$

Sfäriska koordinater:

(13)
$$\nabla \phi(r,\theta,\varphi) = \frac{\partial \phi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial \phi}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial \phi}{\partial \varphi}\hat{\varphi}$$

(14)
$$\nabla \cdot \mathbf{A}(r,\theta,\varphi) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

(15)
$$\nabla \times \mathbf{A}(r, \theta, \varphi) = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r \hat{\theta} & r \sin \theta \hat{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ A_r & r A_{\theta} & r \sin \theta A_{\varphi} \end{vmatrix}$$

$$(16) \qquad \nabla^2 \phi(r,\theta,\varphi) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \varphi^2}$$

(17)
$$\nabla^{2}\mathbf{A}(r,\theta,\varphi) = \left[\nabla^{2}A_{r} - \frac{2}{r^{2}}A_{r} - \frac{2}{r^{2}}\frac{\partial A_{\theta}}{\partial \theta} - \frac{2\cot\theta}{r^{2}}A_{\theta} - \frac{2}{r^{2}\sin\theta}\frac{\partial A_{\varphi}}{\partial \varphi}\right]\hat{r} + \left[\nabla^{2}A_{\theta} + \frac{2}{r^{2}}\frac{\partial A_{r}}{\partial \theta} - \frac{1}{r^{2}\sin^{2}\theta}A_{\theta} - \frac{2\cos\theta}{r^{2}\sin^{2}\theta}\frac{\partial A_{\varphi}}{\partial \varphi}\right]\hat{\theta} + \left[\nabla^{2}A_{\varphi} + \frac{2}{r^{2}\sin\theta}\frac{\partial A_{r}}{\partial \varphi} - \frac{1}{r^{2}\sin^{2}\theta}A_{\varphi} + \frac{2\cos\theta}{r^{2}\sin^{2}\theta}\frac{\partial A_{\theta}}{\partial \varphi}\right]\hat{\varphi}$$

D. Integralsatser

Greens sats i planet:

(1)
$$\oint_C (u \ dx + v \ dy) = \iint_S \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy$$

Stokes sats:

(2)
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

Gauss sats:

(3)
$$\oint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{F} dV$$

Gaussanaloga satser:

(4)
$$\oint_{S} d\mathbf{S} \times \mathbf{F} = \int_{V} dV \ \nabla \times \mathbf{F}$$

(5)
$$\oint_{S} d\mathbf{S} \ \varphi = \int_{V} dV \ \nabla \varphi$$

Stokesanaloga satser:

(6)
$$\oint_C d\mathbf{r} \times \mathbf{F} = \int_S (d\mathbf{S} \times \nabla) \times \mathbf{F}$$

(7)
$$\oint_C d\mathbf{r} \ \varphi = \int_S (d\mathbf{S} \times \nabla) \varphi$$

Greens första formel:

(8)
$$\oint_{S} \varphi \frac{\partial \psi}{\partial \nu} dS = \int_{V} \nabla \varphi \cdot \nabla \psi \ dV + \int_{V} \varphi \nabla^{2} \psi \ dV$$

Greens andra formel:

(9)
$$\oint_{S} \left(\varphi \frac{\partial \psi}{\partial \nu} - \psi \frac{\partial \varphi}{\partial \nu} \right) dS = \int_{V} (\varphi \nabla^{2} \psi - \psi \nabla^{2} \varphi) \ dV$$

Greens tredje formel ($\mathbf{r}_P \in V$):

(10)
$$\varphi(\mathbf{r}_{P}) = -\frac{1}{4\pi} \int_{V} \frac{\nabla^{2} \varphi}{|\mathbf{r} - \mathbf{r}_{P}|} dV + \frac{1}{4\pi} \oint_{S} \frac{\hat{\nu} \cdot \nabla \varphi}{|\mathbf{r} - \mathbf{r}_{P}|} dS - \frac{1}{4\pi} \oint_{S} \varphi \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_{P}|} \cdot \hat{\nu} dS$$

E. Några fysikaliska samband

Newtons gravitationslag:

$$(1) F = -G\frac{mM}{R^2}$$

Coulombs lag:

$$(2) F = \frac{qQ}{4\pi\epsilon_0 R^2}$$

Gauss lag i elläran:

(3)
$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q$$

Biot-Savarts lag för magnetfältet från en rak ledare:

6

(4)
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{2\pi} \frac{i}{\rho} \hat{\alpha}$$

Amperes lag:

(5)
$$\oint_C \mathbf{H} \cdot d\mathbf{r} = i$$

Kontinuitetsekvationen:

(6)
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Eulers rörelseekvation:

(7)
$$\rho \frac{d\mathbf{v}}{dt} = \rho \mathbf{f} - \nabla p$$

Navier-Stokes ekvation för kompressibel strömmning:

(8)
$$\rho \frac{d\mathbf{v}}{dt} = \rho \mathbf{f} + \eta \nabla^2 \mathbf{v} + \frac{\eta}{3} \nabla (\nabla \cdot \mathbf{v}) - \nabla p$$

Navier-Stokes ekvation för inkompressibel strömmning:

(9)
$$\rho \frac{d\mathbf{v}}{dt} = \rho \mathbf{f} + \eta \nabla^2 \mathbf{v} - \nabla p$$

Ohms lag:

(10)
$$\mathbf{J} = \sigma \mathbf{E} = -\sigma \nabla \phi$$

Fouriers lag:

(11)
$$\mathbf{J} = -\lambda \nabla T$$

Newtons värmeöverföringslag:

$$(12) \quad -\lambda \hat{\nu} \cdot (\nabla T)_S = \alpha (T_S - T_0)$$

Värmelednings- eller diffusionsekvationen (med värmekälltäthet u):

$$(13) \quad \frac{\partial T}{\partial t} - k\nabla^2 T = u$$

Laplaces ekvation:

$$(14) \quad \nabla^2 \phi = 0$$

Poissons ekvation:

(15)
$$\nabla^2 \phi = -\rho$$

Poissons vektorekvation:

$$(16) \quad \nabla^2 \mathbf{A} = -\mathbf{J}$$

Ömsesidiga energin i ett system av punktladdningar:

(17)
$$W = \frac{1}{8\pi\epsilon_0} \sum_{i,j=1,i\neq j}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Totala energin i det elektrostatiska fältet från en rymdladdning ρ :

(18)
$$W = \frac{1}{2} \int \rho(\mathbf{r}) \phi(\mathbf{r}) dV = \frac{\epsilon_0}{2} \int |\mathbf{E}(\mathbf{r})|^2 dV$$

Totala energin i det elektrostatiska fältet från en ytladdning σ på ytan S:

(19)
$$W = \frac{1}{2} \int_{S} \sigma(\mathbf{r}) \phi(\mathbf{r}) dS$$

Potentialekvationer för tidsberoende elektromagnetiska fält:

(20)
$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

Maxwells ekvationer i vakuum:

(21)
$$\nabla \cdot \mathbf{D} = \rho$$

(22)
$$\nabla \cdot \mathbf{B} = 0$$

(23)
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

(24)
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Konstituerande samband i vakuum:

(25)
$$\mathbf{D} = \epsilon_0 \mathbf{E}$$

(26)
$$\mathbf{B} = \mu_0 \mathbf{H}$$

Vågekvationen i vakuum:

(27)
$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}, \qquad c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$

Planvågslösning:

(28)
$$\mathbf{E} = \mathbf{E}_0 f(\hat{k} \cdot \mathbf{r} - ct)$$

Elasticitetsteori

Töjningstensorn:

$$(29) \stackrel{\leftrightarrow}{\epsilon} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) & \frac{1}{2} (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) \\ \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) & \frac{\partial v}{\partial y} & \frac{1}{2} (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) \\ \frac{1}{2} (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) & \frac{1}{2} (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) & \frac{\partial w}{\partial z} \end{pmatrix}$$

(30)
$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$$

Spänningstensorn $\overset{\leftrightarrow}{\sigma} = (\sigma_{ij})$ ger kraften på ett ytelement d**S** som är en skalärprodukt:

(31)
$$d\mathbf{T} = \overset{\leftrightarrow}{\sigma} \cdot d\mathbf{S}$$

Hookes lag för en stav:

$$(32) \quad \sigma_{33} = E\epsilon_{33}$$

Hookes lag på tensorform för ett isotropt, elastiskt material:

(33)
$$\sigma_{ij} = \frac{E}{1+\nu} [\epsilon_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} Sp(\epsilon_{ij})]$$

Inverst samband:

(34)
$$\epsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\delta_{ij}Sp(\sigma_{ij}).$$

Förskjutningsfältet \mathbf{u} , delat i en källfri och en virvelfri del, $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, uppfyller vågekvationerna

(35)
$$\nabla^2 \mathbf{u}_i = \frac{1}{v_i^2} \frac{\partial^2 \mathbf{u}_i}{\partial t^2}, \quad i = 1, 2,$$

med vågutbredningshastigheterna

(36)
$$v_1 = \sqrt{\frac{E}{2\rho(1+\nu)}}$$
 respektive $v_2 = \sqrt{\frac{E(1-\nu)}{\rho(1+\nu)(1-2\nu)}}$.

Planvågslösningen

(37)
$$\mathbf{u}_i = \mathbf{A}_i \ f(\hat{k} \cdot \mathbf{r} - v_i t), \qquad i = 1, 2$$

är för i=1 en transversell skjuvvåg och för i=2 en longitudinell tryckvåg.

F. Potential och fält från källor och virvlar

Rymdkälla med rymdkälltätheten $\rho(\mathbf{r}), \, \rho(\mathbf{r}) = \nabla \cdot \mathbf{F} = -\nabla^2 \phi$:

(1)
$$\phi(\mathbf{r}_P) = \frac{1}{4\pi} \int \frac{\rho(\mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|} dV; \quad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int \rho(\mathbf{r}) \frac{\mathbf{r}_P - \mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|^3} dV$$

Punktkälla med styrkan q i punkten Q:

(2)
$$\phi(\mathbf{r}_P) = \frac{q}{4\pi} \frac{1}{|\mathbf{r}_P - \mathbf{r}_Q|}; \qquad F(\mathbf{r}_P) = \frac{q}{4\pi} \frac{\mathbf{r}_P - \mathbf{r}_Q}{|\mathbf{r}_P - \mathbf{r}_Q|^3}$$

Punktdipol med dipolmoment \mathbf{m} i punkten \mathbf{r}_Q :

(3)
$$\phi(\mathbf{r}_{P}) = -\frac{1}{4\pi} (\mathbf{m} \cdot \nabla_{P}) \frac{1}{|\mathbf{r}_{P} - \mathbf{r}_{Q}|} = \frac{\mathbf{m} \cdot (\mathbf{r}_{P} - \mathbf{r}_{Q})}{4\pi |\mathbf{r}_{P} - \mathbf{r}_{Q}|^{3}};$$
$$\mathbf{F}(\mathbf{r}_{P}) = -\frac{1}{4\pi} (\mathbf{m} \cdot \nabla_{P}) \frac{\mathbf{r}_{P} - \mathbf{r}_{Q}}{|\mathbf{r}_{P} - \mathbf{r}_{Q}|^{3}}$$

Linjekälla med linjekälltätheten $\tau(\mathbf{r})$ på kurvan C:

(4)
$$\phi(\mathbf{r}_P) = \frac{1}{4\pi} \int_C \frac{\tau(\mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|} |d\mathbf{r}|; \quad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int_C \tau(\mathbf{r}) \frac{\mathbf{r}_P - \mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|^3} |d\mathbf{r}|$$

Tvådimensionell punktkälla med källstyrkan q i punkten Q:

(5)
$$\phi(\boldsymbol{\rho}_P) = -\frac{q}{2\pi} \ln \frac{|\boldsymbol{\rho}_P - \boldsymbol{\rho}_Q|}{\rho_0}; \quad \mathbf{F}(\boldsymbol{\rho}_P) = \frac{q}{2\pi} \frac{\boldsymbol{\rho}_P - \boldsymbol{\rho}_Q}{|\boldsymbol{\rho}_P - \boldsymbol{\rho}_Q|^2}$$

Ytkälla med ytkälltätheten $\sigma(\mathbf{r})$ på ytan $S, \sigma = \hat{\nu} \cdot (\mathbf{F}_+ - \mathbf{F}_-)$:

(6)
$$\phi(\mathbf{r}_P) = \frac{1}{4\pi} \int_S \frac{\sigma(\mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|} dS; \quad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int_S \sigma(\mathbf{r}) \frac{\mathbf{r}_P - \mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|^3} dS$$

Ytdipol med ytdipoltätheten $\mu(\mathbf{r})$ på ytan S, $\mu = \phi_+ - \phi_-$:

(7)
$$\phi(\mathbf{r}_{P}) = \frac{1}{4\pi} \int_{S} \mu(\mathbf{r})(\hat{\nu} \cdot \nabla) \frac{1}{|\mathbf{r}_{P} - \mathbf{r}|} dS = -\frac{1}{4\pi} \int_{S} \mu(\mathbf{r}) \frac{\hat{\nu} \cdot (\mathbf{r} - \mathbf{r}_{P})}{|\mathbf{r}_{P} - \mathbf{r}|^{3}} dS;$$
$$\mathbf{F}(\mathbf{r}_{P}) = \frac{1}{4\pi} \int_{S} \mu(\mathbf{r})(\hat{\nu} \cdot \nabla) \frac{\mathbf{r}_{P} - \mathbf{r}}{|\mathbf{r}_{P} - \mathbf{r}|^{3}} dS$$

Potentialen från en ytdipol $\mu(\mathbf{r})$ på ytan S, uttryckt med hjälp av rymdvinkelbegreppet, $\Omega = \text{rymdvinkeln}$:

(8)
$$\phi(\mathbf{r}_P) = -\frac{1}{4\pi} \int_{S} \mu(\mathbf{r}) d\Omega$$

Rymdvirvel med rymdvirveltätheten $\mathbf{J}(\mathbf{r}), \mathbf{J} = \nabla \times F$:

(9)
$$\mathbf{A}(\mathbf{r}_P) = \frac{1}{4\pi} \int \frac{\mathbf{J}(\mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|} dV; \quad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}) \times (\mathbf{r}_P - \mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|^3} dV$$

Ytvirvel med ytvirveltätheten $\mathbf{K}(\mathbf{r})$ på ytan S, $\mathbf{K} = \hat{\nu} \times (\mathbf{F}_{+} - \mathbf{F}_{-})$:

(10)
$$\mathbf{A}(\mathbf{r}_P) = \frac{1}{4\pi} \int_S \frac{\mathbf{K}(\mathbf{r})dS}{|\mathbf{r}_P - \mathbf{r}|}; \qquad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int_S \frac{\mathbf{K}(\mathbf{r}) \times (\mathbf{r}_P - \mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|^3} dS$$

Virveltråd med virvelstyrkan $i(\mathbf{r})$ längs en kurva C (Biot-Savarts lag):

(11)
$$\mathbf{A}(\mathbf{r}_P) = \frac{1}{4\pi} \int_C \frac{i(\mathbf{r})d\mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|}; \qquad \mathbf{F}(\mathbf{r}_P) = \frac{1}{4\pi} \int_C \frac{i(\mathbf{r})d\mathbf{r} \times (\mathbf{r}_P - \mathbf{r})}{|\mathbf{r}_P - \mathbf{r}|^3}$$

G. Ekvivalenssatser

- 1. En ytdipol med ytdipoltätheten $\mu(\mathbf{r})$ på en yta S är ekvivalent med en ytvirvel på S med ytvirveltätheten $\mathbf{K} = (\nabla \mu) \times \hat{\nu}$, där $\hat{\nu}$ är normal till S, jämte en virveltråd längs randkurvan C till S med virvelstyrkan $i = \mu$.
- 2. En rymddipol med rymddipoltätheten $\mathbf{P}(\mathbf{r})$ har den skalära potentialen:

$$\phi(\mathbf{r}_P) = \frac{1}{4\pi} \int_{V} \mathbf{P}(\mathbf{r}) \cdot \nabla \frac{1}{|\mathbf{r}_P - \mathbf{r}|} dV = \frac{1}{4\pi} \int_{V} \mathbf{P}(\mathbf{r}) \cdot \frac{\mathbf{r}_P - \mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|^3} dV$$

Den är ekvivalent med en rymdkälla med rymdkälltätheten $\rho = -\nabla \cdot \mathbf{P}$ i V, jämte en ytkälla med ytkälltätheten $\sigma = \hat{\nu} \cdot \mathbf{P}$ på områdets begränsningsyta S.

3. En rymddipol med rymddipoltätheten $\mathbf{M}(\mathbf{r})$ har vektorpotentialen:

$$\mathbf{A}(\mathbf{r}_P) = \frac{1}{4\pi} \int_{V} \mathbf{M}(\mathbf{r}) \times \nabla \frac{1}{|\mathbf{r}_P - \mathbf{r}|} dV = \frac{1}{4\pi} \int_{V} \mathbf{M}(\mathbf{r}) \times \frac{\mathbf{r}_P - \mathbf{r}}{|\mathbf{r}_P - \mathbf{r}|^3} dV$$

Den är ekvivalent med en rymdvirvel med rymdvirveltätheten $\mathbf{J} = \nabla \times \mathbf{M}$ i V och en ytvirvel med ytvirveltätheten $\mathbf{K} = \mathbf{M} \times \hat{\nu}$ på områdets begränsningsyta S.

H. Randvärdesproblem

Dirichlets inre problem:

(1)
$$\nabla^2 \phi = -\rho \text{ i } V$$
, $\phi(\mathbf{r}_S) = f(\mathbf{r}_S) \text{ på } S$

Neumanns inre problem:

$$\nabla^{2} \phi = -\rho \text{ i } V, \qquad (\hat{\nu} \cdot \nabla \phi)(\mathbf{r}_{S}) = f(\mathbf{r}_{S}) \text{ på } S$$
(2)
$$\oint_{S} f \ dS = -\int_{V} \rho \ dV$$

Churchills inre problem:

(3)
$$\nabla^2 \phi = -\rho i V$$
, $(\hat{\nu} \cdot \nabla \phi + \alpha \phi)(\mathbf{r}_S) = f(\mathbf{r}_S) \text{ på } S$, där $\alpha > 0$

Dirichlets yttre problem:

(4)
$$\nabla^2 \phi = -\rho$$
 utanför $V, \ \phi \to 0 \ i \infty \text{ och } \phi(\mathbf{r}_S) = f(\mathbf{r}_S) \text{ på } S$

Neumanns yttre problem:

(5)
$$\nabla^2 \phi = -\rho \text{ utanf\"{o}r } V, \ \phi \to 0 \text{ i } \infty \text{ och } (\hat{\nu} \cdot \nabla \phi)(\mathbf{r}_S) = f(\mathbf{r}_S) \text{ på } S$$

Churchills yttre problem:

(6)
$$\nabla^2 \phi = -\rho \text{ utanf\"{o}r } V, \ \phi \to 0 \text{ i } \infty \text{ och } (\hat{\nu} \cdot \nabla \phi + \alpha \phi)(\mathbf{r}_S) = f(\mathbf{r}_S) \text{ på } S, \text{ d\"{a}r } \alpha < 0$$

I. Speglingsmetoden

Spegling i sfär (a: sfärens radie, punktladdning q på avstånd b < a från origo); Dirichlets homogena randvillkor på sfärens yta uppnås med spegelladdning q' på avstånd c > a från origo i samma riktning som punktladdningen (symmetriaxeln), där:

(1)
$$c = \frac{a^2}{b} \text{ och } q' = -\frac{a}{b}q$$

Potentialen ges av (vinklar från symmetriaxeln):

(2)
$$\phi(r,\theta,\varphi) = \frac{q}{4\pi(r^2 + b^2 - 2rb\cos\theta)^{1/2}} - \frac{aq}{4\pi b(r^2 + \frac{a^4}{b^2} - 2\frac{a^2}{b}r\cos\theta)^{1/2}}$$

Spegling i cirkel (a: cirkelns radie, punktladdning q på avstånd b < a från origo); Dirichlets homogena randvillkor på cirkelns rand uppnås med spegelladdning q' på avstånd c > a från origo i samma riktning som punktladdningen (symmetriaxeln), där:

$$(3) \quad c = \frac{a^2}{b}, \quad q' = -q$$

Potentialen ges av (vinklar från symmetriaxeln):

(4)
$$\phi(\rho, \alpha) = -\frac{q}{2\pi} \ln \frac{a^2(\rho^2 + b^2 - 2\rho b \cos \alpha)}{b^2(\rho^2 + c^2 - 2\rho c \cos \alpha)} + C, \text{ med } C = \frac{q}{2\pi} \ln \frac{b}{a}$$

Kelvins inversions sats:

Om Poissons ekvation $\nabla^2 \phi(\mathbf{r}) = -\rho(\mathbf{r})$ med källtätheten ρ i området r < a(r > a), har lösningen $\phi(\mathbf{r})$, så är

(5)
$$\phi'(\mathbf{r}) = -\frac{a}{r}\phi(\frac{a^2}{r^2}\mathbf{r})$$

en lösning till Poissons ekvation med källtätheten

$$(6) \quad \rho'(\mathbf{r}) = -\frac{a^5}{r^5} \rho(\frac{a^2}{r^2} \mathbf{r})$$

i området r > a(r < a).