Partial Differential Equations (MA20103)

Assignment – 3

Second order PDE

Q1. Solve the following second order homogenous PDE with constant coefficients (symbols

have usual meanings, say, $r = \frac{\partial z}{\partial x}$; $s = \frac{\partial^2 z}{\partial x \partial y}$; $t = \frac{\partial z}{\partial y}$)

(i)
$$25r - 40s + 16t = 0$$

(ii)
$$r + (a+b)s + abt = xy$$

(iii)
$$r - t = x - y$$

(iv)
$$r + t + 2s = xy$$

(v)
$$2r - 3s - 2t = 0$$

(vi)
$$r - 4s + 4t = 0$$

(vii)
$$r + 3s + 2t = 2x + 3y$$

(viii)
$$r - s - 2t = (y - 1)e^x$$

(ix)
$$r - 5s + 4t = \sin(4x + y)$$

(x)
$$r + t = \cos mx \cos ny$$

Q2. Classify and reduce the following equations in to canonical form

(i)
$$\frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial y^2} = 0$$
 (also find general solution)

(ii)
$$\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$$
 (also find general solution)

(iii)
$$16 \frac{\partial^2 z}{\partial x^2} - y^{10} \frac{\partial^2 z}{\partial y^2} = 5 y^9 \frac{\partial z}{\partial y}$$

(iv)
$$y^2 \frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$$

(v)
$$(y-1)\frac{\partial^2 z}{\partial x^2} - (y^2 - 1)\frac{\partial^2 z}{\partial x \partial y} + y(y-1)\frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 2ye^{2x}(1-y)^3$$

Q3. Show that the solution of the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

satisfying the conditions

- (i) $u \rightarrow 0$ as $t \rightarrow \infty$, $\forall x$
- (ii) u = 0 for x = 0 and $x = a \forall t > 0$
- (ii) u = x when t = 0 and 0 < x < a is

$$u(x,t) = \frac{2a}{\pi} \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{n} \sin\left(x\right) \exp\left[-\left(\frac{n\pi}{a}\right)^{2} t\right]$$

Q4. Solve $\nabla^2 u = 0$

subject to $u(x,0) = 0, u(x,a) = 0, u(x,y) \rightarrow 0$ as $x \rightarrow \infty$ where $x \ge 0$ and $0 \le y \le a$

Q5. Solve the 2 dimensional Laplace equation in polar co-ordinates r and θ in the region $0 \le r \le a, 0 \le \theta \le 2\pi$ subject to

- (i) u remains finite as $r \rightarrow 0$
- (ii) $u = \sum_{n} c_n \cos(n\theta)$ on r = a

Q6. A tightly stretched string with fixed end point x=0 and x=l is initially in a position given by $u=u_0\sin^3\frac{\pi x}{l}$. If it is released from rest from this position, show that the displacement is given by

2

$$u(x,t) = \frac{u_0}{4} \left(3\cos\frac{\pi ct}{l} \sin\frac{\pi x}{l} - \cos\frac{3\pi ct}{l} \sin\frac{3\pi x}{l} \right)$$