Úloha 1 (Netradiční indukce). Máme predikát P(n) a chceme dokázat jeho platnost pro $n \ge 0$. Jsou následující postupy korektní? Pokud ano, zdůvodněte. Pokud ne, najděte protipříklad.

- 1. Dokážeme, že P(n) platí pro nekonečně mnoho různých n, a také dokážeme, že pro libovolné n platí $P(n) \implies P(n-1)$.
- 2. Dokážeme, že P(n) platí pro nekonečně mnoho různých n, a také dokážeme, že pro libovolné n platí $P(n) \implies P(n+1)$.
- 3. Dokážeme P(0), a dále dokážeme, že pro libovolné n platí $P(\left|\frac{n}{2}\right|) \implies P(n)$.

[2 body]

Úloha 2 (Nekomutativita skládání). Najděte relace R, S (na libovolné množině) takové, že $R \circ S \neq S \circ R$. [2 body]

Úloha 3 (Ekvivalence na rovině). Mějme relaci \sim na \mathbb{R}^2 definovanou následovně

$$(x_1, y_1) \sim (x_2, y_2) \iff \operatorname{sgn}(x_1) = \operatorname{sgn}(x_2) \& \operatorname{sgn}(y_1) = \operatorname{sgn}(y_2),$$

kde funkci sgn : $\mathbb{R} \to \{-1, 0, 1\}$ definujeme takto:

$$sgn(x) = \begin{cases} -1 & x < 0, \\ 0 & x = 0, \\ 1 & x > 0. \end{cases}$$

Dokažte, že \sim je relace ekvivalence, spočítejte a nakreslete její třídy (\mathbb{R}^2 odpovídá rovině).

[3 body]

Úloha 4 (Mocnina relace). Buď R relace na nějaké množině A. Definujeme mocninu relace R^n takto: $R^1 = R$, $R^{n+1} = R^n \circ R$. Dokažte, že pokud je A konečná množina, pak existuje 0 < i < j takové, že $R^i = R^j$.

[3 body]