Tema

Mundo dos retângulos

Objetivos

- Reutilização de código
- Melhoria e adaptação de código

Descrição da E-atividade

Escreva um programa para manipular um conjunto de retângulos num plano vertical, sem que haja interseções entre eles. O programa deve aceitar comandos para: criar retângulos com posição e dimensões indicadas; deslocar retângulos horizontalmente, para a esquerda e para a direita.

O plano que serve de cenário a este "mundo" baseia-se num sistema de coordenadas inteiras (x=abcissa, y=ordenada), em que x,y>=1, x<=80 e y<=25, e e nele funciona a gravidade, isto é, todos os retângulos criados devem "cair" até ao chão (linha y=1), ou até encontrarem o topo de outro retângulo existente.

Os comandos a serem identificados pelo programa são:

- <u>create x,y+l,h</u> cria um retângulo em que (x,y) são as coordenadas do canto inferior esquerdo e (l,h) o comprimento e altura, respetivamente.
- moveright x,y+p desloca o retângulo situado nas coordenadas (x,y) para a direita p posições
- moveleft x,y+p desloca o retângulo que contém o ponto (x,y) para a esquerda p posições

Qualquer destas operações, sempre que for possível (se não for, o programa deve emitir mensagem de erro adequada), implica ajustar todos os retângulos existentes tendo em conta o efeito da gravidade. O resultado dos comandos deverá poder ser visualizado graficamente no ecrã, usando o símbolo x para compor as linhas horizontais e verticais.

Exemplo E1: A seguinte sequência de comandos:

create 1,3+12,5 create 9,6+11,3 create 18,10+6,3 moveleft 12,7+3

deverá produzir o resultado:

(os números a vermelho não são para mostrar no ecrã, servem apenas para ilustrar a ordem da respetiva criação no exemplo dado). Na organização do seu programa, sugere-se que considere os seguintes módulos:

- análise do texto dos comandos;
- controlo das posições dos retângulos;
- visualização do resultado.

== METODOLOGIA DE TRABALHO ==

Defina uma estrutura de dados para representar os retângulos e planeie a organização do programa em módulos.

Use memória dinâmica e desenvolva uma função de testes, por exemplo com a sequência de comandos indicados em E1. Trate os erros do programa, por exemplo, valide e trate a introdução de dados no formato correto.

Defina a interface de cada módulo, desenvolva o código e teste o seu programa.

Nota: Não é necessário efetuar a animação dos retângulos a deslocarem-se, mostre apenas a posição final.

Trabalho a desenvolver

Considere o mundo dos retângulos desenvolvido.

Pretende-se que o interior dos retângulos seja preenchido com o símbolo "+" e que seja gerado, aleatoriamente, um número de identificação única do retângulo. A identificação do retângulo (de 0 a 9) deve ser apresentada numa qualquer posição do seu interior. O número máximo de retângulos possível dentro do mundo é 10.

Pretende-se ainda que seja possível apagar um retângulo. Deve usar o comando delete x,y que apaga o retângulo que contém o ponto (x, y).

O comando <u>delete 15,1</u> sobre o mundo representado à esquerda, deverá produzir o seguinte resultado no mundo representado à direita, após o efeito da gravidade:

Integre este comando delete no seu código.

Deteção de colisão lateral

Para além do comando *delete*, deverá também implementar um sistema de deteção de colisão lateral entre retângulos.

Uma colisão lateral ocorre quando, após a execução de um comando *moveleft* ou *moveright* e após a aplicação da gravidade), dois retângulos ficam lado a lado horizontalmente (ou seja, as faces verticais de dois retângulos ficam encostadas sem espaço entre elas em qualquer um dos pontos de limite lateral).

Sempre que um comando de movimentação (*moveleft, moveright*) for executado com sucesso (ocorreu um movimento de um retângulo e também após efeito da gravidade), o sistema deve emitir uma mensagem de alerta informando se ocorreu alguma colisão lateral, apresentando a identificação dos retângulos envolvidos na colisão. Por exemplo: "Colisão lateral detetada entre os retângulos 3 e 7."

O programa deve permitir a introdução direta dos comandos no formato indicado (uma única linha de comandos) e não solicitar ao utilizador cada um dos parâmetros isoladamente.

Desta forma, sugere-se que desenvolva as funções:

- alertaColisaoLateral(): emite uma mensagem de alerta se verificar colisão lateral.
- verificaColisaoLateral(): avalia se dois retângulos estão em contacto lateral em qualquer um dos seus pontos laterais limite. Se dois retângulos ficaram "colados lateralmente" – total ou parcialmente - após a criação ou movimentação.

Acrescente à funcionalidade de testes realizada na AF3, o comando delete. Por exemplo:

Conjuntos de comandos							Re	esı	ulta	ad	o f	ina	ıl a	pó	S C	onj	jun	ito	de	СС	m	an	do	s					
create 1,1+15,5	17																												
create 5,6+12,3	16																					X	X	X	X	X	×		
	15																					X	8	+	+	+	X		
create 22,10+6,9	14																					X	+	+	+	+	×		
create 21,12+6,7	13																				_	X	+	+	+	+	×		
	12																				_	X	+	+	+	+	X		
	11																				-1	X	+	+	+	+	×		
	10																				_	X	X	X	X	X	X		
	9				-	**	**					100	**	**		**			-			-	X	X	X	X	X	X	
	8					X	X	X	X	X	X	×	×	X	X	X	X					-	X	4	+	*	*	X	
	7					X	2	+	*	+	+	*	+	+	+	+	X		-			-	×	+	+	+	+	X	
	5	v	v	v	v	× ×	^ ×	^ V	Ŷ	^	^ v	~	^	^ V	X	X	^					-	-	_	+	+	Ť	X	
	4	X	^	_	^	^	^	^	^	^	^	^	^	^	^	x			+			-	×	1	1	*	1	X	
	3	X	+	+	+	+	+	+	+	+	+	+	+	+	+	X						-	X	+	+	+	+	X	
	2	X	+	+	+	+	+	+	+	+	+	+	+	+	+	X							x	+	+	+	+	X	
	1	х	х	×	х	Х	х	х	x	Х	X	X	х	х	х	х							x	Х	х	х	х	X	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
moveleft 23,11+2	17															Г								E		Г	Г		
moveright 10,8+2	16																			X	X	X	X	X	X				
illoveright 10,6+2	15																			X	8	+	+	+	X				
	14																			X	+	+	+	+	X				
	13																			X	+	+	+	. +	×				
	12																			X	+	+	+	+	X	_			
	11																			X	+	+	+	+	X	L			
	10																			X	X	X	X	X	X	L			
	9							200	1537	20	200	720	7 (2.5)	25	122	100	22	1000	10.00				X	X	X	Х	×		
	8							X	X	Х	×	X	X	X	X	X	X	X	X				×	4	+	+	* *	X	
	7							X	5	+	+	+	+	+	+	*	+	+	X				X	+	+	+	+	X	H
	5	v	v	v	v	v	v	X	× ×	×	× ×	×		×	×	X	Х	X	Х				~	+	+	+		X	
	4	X	^	^	^	^	^	^	^	^	^	^	^	^	^	X							A V	*	-	7		X	
	3	×	2	+	1	+	+	1	+	1	+	+	1	-	+	×							Y	-	+	+	+	×	
	2	X	+	+	+	+	+	+	4	+	+	+	+	+	+	X							X	+	1	+	+	X	
	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X								X	X	X	X	X		
		1	2	3	4	5	6	7	8	9	_	-	_		_		16	17	18	19	20	21			_	_	_	_	28
delete 23,2	9									Т		Т	Т	Т		T	Ī	П	Т	П	T	Т	Т	T	Т	T			
23.302 23,2	8							X	X	X	×	X	×	×	X	X	X	×	×	10	Coli	sã	0			Ť			
	7							X	5	+	+	+	+	+	+	+	+	+	x	X	X	X	())	()	6			
	6							X	X	X	X	X	X	X	X	×	X	×	X	X	8	+			+ >				
	5	Х	Х	X	Х	X	X	X	X	Х	X	X	X	X	X	×				X	+	+	1		- >	ý.			
	4	Х	3	+	+	+	+	+	+	+	+	+	+	+	+	х				X	+	- 4			. >	0			
	3	X	+	+	+	+	+	+	+	+	+	+	+	+	+	х				X		4	N N	4	. >	8			
	2	Х	+	+	+	+	+	+	+	+	+	+	+	+	+	×				X	+	-	# II	2. +		ė.			
	1	Х	Х	X	Х	X	Х	X	Х	Х	X	Х	X	Х	Х	X				X	×	X	()	()	()	6			
		1	2	3	4	5	6	7	8	9	10	11	1 12	13	14	15	16	17	18	19	20	2:	1 2	2 2	3 2	4 2	5		

Notas: As cores são apenas auxiliares de visualização deste exemplo, não têm de ser implementadas. Os pontos indicados pelos comandos estão evidenciados com uma tonalidade diferente. A indicação de colisão não é necessária mostrar. Não é necessário mostrar as linhas de grelha nem a numeração das linhas. Após cada comando executado deve ser mostrado o resultado, para simplificação, este exemplo apresenta o resultado final da execução de um conjunto de comandos.

Componentes da Entrega:

- Código dos programas: O código do programa desenvolvido em formato de ficheiro editável ".c" e ".h", por exemplo: modulo1.c modulo2.c ficheiro.h ficheiro.c main.c.
- Ficheiro Executável do Programa (em Windows): O ficheiro executável dos programas deve ser fornecido exclusivamente e especificamente para o sistema operativo Windows, de forma a garantir que o avaliador consiga executar o programa.
- Relatório: Deverá ser entregue um relatório contendo no máximo 10 páginas (excluindo a capa e outras páginas que não referentes ao conteúdo E1, E2, E3, E4 e E5), no formato docx ou pdf.

Relatório

O relatório deverá indicar claramente os seguintes elementos:

- E1: Explicação da organização modular do seu código;
- E2: Estruturas de dados usadas na implementação;
- E3: Descrição da funcionalidade global do programa;
- E4: Descrição de como modificou ou adaptou o código da Atividade Formativa 3 para acomodar as novas funcionalidades;
- E5: Objetivos e descrição dos testes de unidade e integração efetuados.

Normas:

- O código tem de compilar de modo a poder ser avaliado.
- O código deve criado no Visual Studio Code e compilar corretamente no GCC com a configuração básica. Utilize um comando semelhante a: gcc modulo1.c modulo2.c main.c -o executavel.
- O código submetido deverá respeitar as normas ANSI C.
- Deverão ser utilizadas exclusivamente bibliotecas standard.
- Deve entregar dois ficheiros:
 - Um ficheiro word ou pdf com o relatório e também contém o conteúdo de todos os ficheiros de código desenvolvidos;
 - o Um ficheiro zip com todos os ficheiros de código desenvolvidos e executável para sistema Windows.
- Não serão avaliados trabalhos em que o código contido no ficheiro do relatório não esteja em formato de texto, ou seja, o texto do relatório deve ser editável, não devendo estar convertido, por exemplo, em imagem.
- Os dois componentes (relatório + código e executável para sistema windows) não devem ser comprimidos em ficheiro zip, mas sim entregues isoladamente (ex: relatorio.pdf, codigo_e_exe.zip).

Instruções Adicionais:

- Certifique-se de que o ficheiro executável é compatível com o sistema operativo Windows.
- Verifique se todos os caminhos de inclusão de bibliotecas e ficheiros estão corretamente definidos para garantir uma compilação sem problemas.

Critérios de avaliação e cotação

- Modularidade e organização do código (Programa: 0,7 valores. Relatório: 0,2 valores)
- Clareza e legibilidade do código (Programa: 0,5 valores)
- Implementação de testes de unidade e de integração (0,3 valores)
- Funcionamento conforme requisitos (total de 1,6 valores):
 - Uso adequado de memória dinâmica (0,2 valores)
 - Implementação dos requisitos da AF3 (0,6 valores)
 - Visualização do mundo dos retângulos
 - Comando create
 - Comandos *moveleft* e *moveright*
 - Efeito da gravidade
 - Impossibilidade de interseção de retângulos
 - o Comando delete, geração de identificação e limite de retângulos (0,3 valores)
 - Deteção de colisão lateral (0,3 valores)
 - Mensagens e alertas ao utilizador (0,2 valores)
- Grau de reutilização e facilidade das adaptações/modificações (Programa: 0,5 valores. Relatório: 0,2 valores)
- Ausência de ficheiro executável ou ficheiro não executável em sistema Windows (-0,5 valores)
- Existindo necessidade de editar as configurações do projeto para que eventualmente compile e possa ser avaliado o programa, o trabalho está sujeito a penalização de 0,5 valores.

Votos de bom trabalho!