Repaso tema 7

1.- Sea
$$A = \begin{pmatrix} 4 & 3 & 3 \\ 0 & 2 & 0 \\ 3 & 2 & 3 \end{pmatrix} \in M_3(Z_5)$$
 Entonces:

- a) A tiene dos valores propios y es diagonalizable.
- b) A tiene tres valores propios y es diagonalizable.
- c) A tiene tres valores propios y no es diagonalizable.
- d) A tiene dos valores propios y no es diagonalizable.
- 2.- ¿Cuál de las siguientes matrices, con coeficientes en \mathbb{Z}_2 , es diagonalizable?

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

c)
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\mathsf{d}) \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right)$$

- 3.- Sea $A \in M_4(Z_5)$ una matriz con dos valores propios, 1 y 3 y tal que los subespacios propios son $V_1 = L\{(1,2,1,1)\}$ y $V_3 = \{x+y+z+2t=0\}$. Entonces el polinomio característico de A vale
- a) Los datos que tenemos no nos permiten determinar cuál es el polinomio característico de A, pues nos falta la multiplicidad algebraica de los valores propios.

b)
$$\lambda^2 + \lambda + 3$$

c)
$$\lambda^4 + \lambda^2 + \lambda + 2$$

b)
$$\lambda^2 + \lambda + 3$$
 c) $\lambda^4 + \lambda^2 + \lambda + 2$ d) $\lambda^4 + 4\lambda^3 + 2\lambda^2 + 3$

4.- Sea
$$A = \begin{pmatrix} 3 & 2 \\ 3 & 3 \end{pmatrix} \in M_2(Z_5)$$
. Entonces A^{105} vale

a)
$$A$$
 b) Id_2 c) $\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$

5.- Sea
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & a \end{pmatrix} \in M_3(Q)$$
. Entonces:

- a) A es diagonalizable si $a \neq \pm 1$.
- b) A es diagonalizable si $a \neq 1$.
- c) A es diagonalizable si $a \neq -1$.
- d) A es diagonalizable para todo valor de a.

6.- Sea
$$A_1 = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$$
 y $A_2 = \begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix}$ pertenecientes a $M_2(R)$. Entonces:

- a) A_1 es diagonalizable aunque A_2 no lo es.
- b) A_1 es diagonalizable y A_2 también lo es.
- c) Ninguna de las dos matrices es diagonalizable.
- d) A_1 no es diagonalizable per A_2 sí lo es.

7.- Sea la matriz
$$A=\left(\begin{array}{ccc} 4 & 0 & 6 \\ 0 & 2 & 5 \\ 1 & 0 & 3 \end{array}\right)\in M_3(Z_7).$$
 Se verifica que

- a) no es diagonalizable
- b) existe una matriz regular P tal que $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} = P^{-1}AP$
- c) no tiene valores propios
- d) tiene vlores propios 3,1,5.
- 8.- De una matriz A de orden 4 sobre Z_5 sabemos que tiene solo dos subespacios propios dados por

$$V_1 = \left\{ egin{array}{ll} x+y+z=0 \ t=0 \end{array}
ight. \quad \mathbf{y} \quad V_2 = \left\{ egin{array}{ll} x=z \ x=t \ y=0 \end{array}
ight.$$

Entonces:

- a) No podemos decidir si $\it A$ es o no diagonalizable pues no conocemos sus valores propios.
 - b) A es diagonalizable y su matriz de paso es $\begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$
 - c) A no es diagonalizable.
 - d) A es diagonalizable y su matriz de paso es $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

9.- Sea la matriz
$$A=\left(\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 0 & 1 \\ 1 & 3 & 3 \end{array}\right) \in M_3(Z_5)$$
 sobre la cual se sabe que $\lambda=3$ es un

valor propio. Sea α la multiplicidad algebraica y d la multiplicidad geométrica de $\lambda=3$. Entonces

a)
$$d = 2 y \alpha = 2$$

b)
$$d = 1$$
 y $\alpha = 1$

c)
$$d = 1$$
 y $\alpha = 2$

d)
$$d = 2 y \alpha = 1$$