SMC pollux / SMC pollux NT

Venus-2 commands consist of ASCII- signs which are interpreted in the controller and immediately executed.

A software development surrounding to produce the control programs is not needed.

The commands can be produced by any Host and whatever programming language you are using, on condition that there is an access to the RS- 232 interface. In the simplest way the commands are directly transmitted to the controller via an ASCII terminal.

Command syntax

The commands are assembled following this scheme: [parameter] _ [axis index] _ [command] _ blank, (space) or (SP) blank

Command ending character while transmitting

The Venus- 2 command must be terminated with a blank (SP). [Parameter] SP [Axes index] SP [Venus- 2 command] SP

Command ending character while receiving

[1st parameter] SP [2nd parameter] SP [n- parameter] CR LF Data which are delivered by the controller are always terminated with ASCII (CR) and (LF).

RS-232 Interface Configuration

Data bits	8
Stop bits	1
Parity	no
Handshake	no
Baudrate	19200

Error numbers:

1 4	Internal error
1001	Wrong parameter type
1002	parameter stack underrun
1003	parameter out of range
1004	Movement range should be exceeded caused by limit switch
1008	See 1002
1010	RS-232 input buffer lacking space (<30 para left)
1015	Parameter out of the movement area (softlimit)
1100	Both Limit Switches are active
2000	Unknown command

First steps:

1 nst

Normaly the controller is configured for the delived stage. If delivery contains more then one controller, the controllers are labeled with an axisnumber (the address of the controller)

The actual settings are documented in a *.txt file, which is downloadable with our demo-application SMC-Pollux xxx.exe, also documented as pdf-file.

For the first step, hyperterminal, any other terminal-program, or the program smc-pollux xxx.exe could be a good choice.

Due to the fact that the controller is ready configured, the main commands for customers use are the basic move commands, homing and position and status query:

If a communication is established just type following commands: (axis 1 must be connected)

1 np ; controller returns the actual position, after reset always 0.00000

1 ncal axis searches the limit reverse the release point is the physical zero-position

of the system

2.0 1 nr ; axis moves 2 unit relative (usually 2 mm or 2 degree)

1 np ; returns the actual position, now 2.00000 4.0 1 nm ; axis moves to absolute 4.0 units

; if stage is just moving return value =1

; if stage not moving, means at target, return value = 0

Multiple Axis Application:

Please verify that all daisy-chained controller do have different axis-addresses. If no address labled you should assume that the address is '1'.

Assigning new controller address:

Assigning a new controller address is very easy, connect **only one** controller to the RS-232, connect with program *SMC-pollux xxx.exe* and change the address with dialog *Controller*|*Assign Address*. After this save the new settings with Button 'nsave'.

SMC pollux / SMC pollux NT

Command-Overview:

Command	Description	Parameters	RW	Range	Example
nrmove (nr)	move relative, without guery status	relpos axisid	w	-1000.0+1000.0	1.0 1 nr
nmove (nm)	move absolute without query status	abspos axisid	w	-1000.0+1000.0	5.1 1 nm
npos (np)	returns actual position	axisid	r		1 np
npush	loads targets on stack (for synchronized start)	position axisid	w	-1000.0+1000.0	10.0 1 npush
прор	removes values from stack	axisid	w		1 npop
setnpos	redefines the actual position	abspos axisid	w	-1000.0+1000.0	0.0 1 setnpos
nstatus (nst)	returns actual status	axisid	r		1 getaxis
getnerror (gne)	returns actual error number	axisid	r		1 gne
getmerror (gme)	returns machine error number	axisid	r		1 gme
nabort	stops a move	axisid	w		1 nabort
<ctrlc></ctrlc>	stops move of all connected axes		w		<ctrl-c> hex 3</ctrl-c>
speed	starts a constant velocity move	+/-speed axisid	w		2.5 1 speed
stopspeed	stops constant velocity move	axisid	w		1 stopspeed
setnpowerup	defines startup behaviour	value axisid	w		0 1 setnpowerup
getnpowerup	returns startup behaviour	axisid			1 getnpowerup
ncal	homing (search limit reverse)	axisid	w		1 ncal
nrm	rangemeasure (search limit forward)	axisid	w		1 nrm
nversion	returns the firmware-version	axisid	r		1 nversion
nidentify	returns the controller identification	axisid	r		1 nidentify
getnserialno	returns the serial-number	axisid	r		1 getnserialno
getserialno					1 getserialno
getnoptions	returns the options-code	axisid	r		1 getnoptions
getaxis	returns the wether axis is active or not	axisid	r		1 getaxis
setaxis	defines if axis active or not	status axisid	w	02	0 1 setaxis
getswst	returns the status of limit-inputs	axisid	r		1 getswst
getsw	returns the setting of limit-inputs	axisid	r		1 getsw
setsw	defines the limit-switch-status	status 0 axisid	W	02	1 0 1 setsw
		status 1 axisid			1 1 1 setsw
getmotiondir	returns the setting of the direction of motion	axisid	r		1 getmotiondir
setmotiondir	defines the direction of motion	value axisid	w	01	0 1 setmotiondir
getncalswdist	returns the calswitch-distance	axisid	r		1 getncalswdist
setncalswdist	defines the calswitch-distance	distance axisid	w	01.0	0.5 1 setncalswdist
getpitch	returns the pitch of the stage	axisid	r		1 getpitch
setpitch	defines the pitch of the stage	pitch axisid	w	0.150	1.0 1 setpitch
getnvel (gnv)	returns the velocity for move	vel axisid	r		1 gnv

mı(os

Shortform

SMC pollux / SMC pollux NT

setnvel (snv)	defines the velocity for move	axisid	w	0.00012000.0	12.0 1 snv
getnaccel (gna)	returns the acceleration for move	axisid	r		1 gna
setnaccel (sna)	etnaccel (sna) defines the acceleration for move		w	12000	120.0 1 sna
getnstopdecel	returns the acceleration for a commanded stop or limit-switch activation	axisid	r		1 getnstopdecel
setnstopdecel	defines the acceleration for a commanded stop or limit-switch activation	acc axisid	W	12000	400.0 1 setnstopdecel
getncalvel	returns the speed for cal-move	axisid	r		1 getncalvel
setncalvel	defines the speed for cal-move	value 1 axisid value 2 axisid	w		5.0 1 1 setncalvel 0.1 2 1 setncalvel
getnrmvel	returns the speed for rm-move	axisid	r		
setnrmvel	defines the speed for rm-move	value 1 axisid value 2 axisid	W		50 1 1 setnrmvel 0.1 2 1 setnrmvel
getumotmin	returns the motor-umotmin	axisid	r		1 getumotmin
setumotmin	defines the motor-umotmin (*)	value axisid	w	see table	500 1 setumotmin
getumotgrad	returns the motor-umotgrad	axisid	r		1 getumotgrad
setumotgrad	defines the motor-umotgrad (*)	value axisid	W	see table	20 1 setumotgrad
getnlimit	returns the travel-limits	axisid	r		1 getnlimit
setnlimit	defines the travel-limits	low high axisid	W	-1000.01000.0	0.0 100.0 1 setnlimit
nsave	save all parameters in flash-memory	axisid	w		1 nsave
nrestore	restores the last saved parameters	axisid	W		1 nrestore
ngsp	returns the stack-counter	axisid	r		1 ngsp
nclear	clear controllers internal stack	axisid	W		1 nclear
setaxisno	define address of the controller	axisid	w	116	2 setaxisno
getaxisno	returns address of the controller	axisid	r	116	2 getaxisno
nreset	resets the controller	axisid	w		1 nreset
setuv	stores uservalue (32-bit int) to memory	value Id axisid	Lvar		12222 1 2 setuv
	load uservalue (32-bit int) from memory	id axisid	W		
getuv	ioau uservaiue (SZ-Dit IIIt) IIOIII Memory	iu axisiu	I		1 2 getuv
	I .				

SMC pollux / SMC pollux NT

Pollux NT (closed-loop) specific commands:

getcloop	returns if closed loop active or not	axisId	r		1 getcloop
setcloop	defines if closed loop active or not	status axisId	W	01	1 1 setcloop
getclwindow	returns the defined closed-loop in-target window	axisId	r		1 getclwindow
setclwindow	defines the closed-loop in-target window	size axisId	W	0.0-1.0	0.001 1 setclwindow
getclwintime	returns the defined closed-loop in- window time [ms]	axisId	r		1 getclwintime
setclwintime	defines the defined closed-loop in- window time [ms]	time axisId	W	0-8191	10 1 setclwintime
getnrefvel	returns the speed for refmove (index search)	axisId	r		1 getnrefvel
setnrefvel	defines the speed for refmove (index search)	value 1 axisid	W		1.0 1 1 setnrefvel
		value 2 axisid			2.0 2.1 setnrefvel
nrefmove	starts a refmove (index-search)	abstarget axisId	W		5.0 1 nrefmove
getrefst	returns the status of refmove (index-search)	axisId	r		1 getrefst
getref	returns the transition of the index mark	axisId	r		1 getref
setref	defines the transition of the index mark	transition axisId	W		0 1 setref
getemergency	returns the configuration of emergency shortcuts	axisId	r		1 getemergency
setemergency	defines the configuration of emergency shortcuts	config axisId	W	0-3	3 1 setemergency
getscaleinterface	returns the type of encoder	axisId	r		1 getscaleinterface
setscaleinterface	defines the type of encoder	type axisId	W	0-2	1 1 setscaleinterface

Shortform SMC pollux / SMC pollux NT

Some motorsettings for motors used by MICOS:

The values could vary, dependent on the desired load and application!

Motor	Nominal Current	Coil resistance	commonly used with stages	umotmin	umotgrad
Pollux Motor I and II	[Amp] 1.2	[Ohms]	VT80.DT80	20002300	110
Pollux Motor III	1.2		VT80,DT80	20002300	110
4H4018	1.7	1.7	VT80, DT80 , HT90	3200	90
ST-4018 L1206 halfcoil	1.2	3.3	LS110, PLS85, DT65N, ES65, MA35	3500	140
PK-245-01B fullcoil	0.85	6.6	20110,12000, 210014, 2000, 111100	40005000	400
PK-245-01B halfcoil	1.2	3.3		30003500	150
PK-244-01B halfcoil	1.2	3.3	ES-100	3500	140
PK-244M-01B fullcoill	0.85	6.6	DT-50R DT-80R	4000-5000	140
ZSS-43-200-1.2-E parallel	1.2	2.6	LS110, PLS85, PRS110, HPS170, MS8,DT65N, WT90	4300	150
ZSS-42-200-1.2-E parallel	1.2	1.6	NPE200, MA35	3500	140
ZSS-52-500-2.5E parallel	2.5	0.6	LS180. UPM160		-
AM1524-A0.25	0.25	12.5	MP20S MP20L, MT55, MT60, MT40, ASS5/ADS5	2500 –3500	140
ZSS-25-200-1.2 parallel	1.2	0.95	WT85, WT100, MT40,MTS-70	2000	24
ZSS-32-200-1.2 parallel	1.2	1.3	MT60	3300	60
PK266-E2.0 parallel	2	0.9	DT120, UPL-160, WT120	30003200	160250
CTP11-13	1.3	3.3		3500	140
ST-2818S1006	0.95	3.4		4000	100
LIN-208-17-1	0.8	5.4		3800-5400	20
LIN-211-18-02	1.3	1.3	VT-40 MP-20	2400	60
MICOS 2Ph-018	0.24	20.4	VT-21, MP-21, ES-50	6500	45

Nominal Current: motors rated continues current, not the real current with the documented settings

Coil resistance: motor single phase resistance (varies depending on wiring type, fullcoil, halfcoil, serial or parallel)

Please note: Without damper motors get stuck in the resonance area of the motor, which is mainly in the range of 4 rev/sec (200 fullstep motor). A damper (oriental) eliminates perfectly!

Read the actual parameters: axisId getumotmin and axisId getumotgrad

Write new parameters: value axisId setumotmin and value axisId setumotgrad

If parameters ok, save flash-memory axisId nsave

SMC pollux / SMC pollux NT

Power-Connector:

manufacturer	Binder Connector
type	Kabeldose gerade Serie 719 3pol
Art.Nr (manufacturer)	09 9748 70 03

Binder 3 pin	Function
1	+24 V
2	-
3	GND

Motor Interface: DSub9 standard

DSub9emale	Function
1	Phase A+
2	Phase A-
3	Phase B+
4	Phase B-
5	Gnd limit-common
6	cal-switch (limit reverse)
7	rm-switch (limit forward)
8	+ 5V for active sensors
9	nc.

Interface-Cable RS-232:

DSub9f	function	color	RJ45 male 10 pin
2	RxD	yellow	5
3	TxD	green	6
5	GND	brown	8

Caution: PC-side:

connect pin 1+4+6 connect pin 7+8

RJ45 10 pin front view to contacts

Pollux-Motor Limit Switch Connection

Open-leads to connect directly to the switches (active and passive)

lead-color	Function
white	+ 5V for active sensors
yellow	cal-switch (limit reverse)
green	rm-switch (limit forward)
brown	Gnd limit-common

Pollux:

SMC pollux / SMC pollux NT

Pollux NT (closed-loop):

RJ-45 10 pin	Function 1Vpp Encoder
1	5V
2	
3	Sin + (A+)
4	Sin – (A-)
5	Cos + (B+)
6	Cos – (B-)
7	Ref + (Index+
8	Ref- (Index-)
9	Gnd
10	