HW2 Task 2 · CIFAR-10 CNN & Preprocessing Report

Nathan (a141251) · 2025-10-23

1. Executive Summary 摘要

- 自訂資料前處理 + 四層卷積網路在 CIFAR-10 測試集達成 **Top-1 Accuracy = 73.79%、Top-5 = 97.62%**(reports/task2/summary.json)。
- Stride/Kernel 掃描證實第一層 stride=1 為必要條件; stride 提升將造成 Top-1 下降 6-12%。
- L2 正則化實驗 (λ ∈ {0 ~ 1e-3}) 顯示 λ=1e-3 可提升 Top-1 至 76.31%, 帶來最佳平衡。
- 前處理消融指出 RandomCrop/Flip、Cutout 對性能影響顯著,標準化與 Mixup 則可視需求調整。
- 全流程 (--mode all) 需 8+ 小時並產出完整圖表與 CSV;本文節錄最關鍵結果。

2. Dataset & Preprocessing 資料與前處理

項目 Item	設定 Setting
Dataset	tf.keras.datasets.cifar10 (32×32×3、10 類)
Split	Train 45,000 / Val 5,000 / Test 10,000(固定 seed=20250318)
Standardization	訓練集均值/標準差計算後套用至所有 split(存於 artifacts/task2/channel_stats.json)
Augmentations	RandomCrop(+4 padding)、RandomFlip、RandomRotation(±15°)、RandomZoom(0.1)、RandomTranslation(0.1)、ColorJitter、Cutout(size=8, prob=0.3)、Mixup(α=0.2, 預設 off)
Preprocessing Variants	baseline / no_standardization / no_augmentation / no_cutout / no_color / no_mixup

重點:正確樣本多為背景乾淨、拍攝角度正的飛機/船;錯誤樣本常見於貓狗背景複雜或角度異常的情況。

3. Model & Training Setup 模型與訓練設定

組件	配置	
Architecture	$4 \times \text{Conv}(\text{He init})\text{-BN-ReLU-Conv-BN-ReLU-MaxPool} \rightarrow \text{GlobalAvgPool} \rightarrow \text{Dense}(512) \rightarrow \text{Dropout}(0.5) \rightarrow \text{Dense}(10, \text{softmax})$	
Filters/Kernels	[64, 128, 256, 512] ,baseline kernel = [3,3,3,3] ;網格允許 [5,3,3,3],[5,5,3,3]	
Optimizer	AdamW (Ir=2e-4, weight_decay=1e-4)	
Scheduler	5 epochs 線性 warmup + CosineDecayRestarts (first_decay_steps=20, T_mul=2, M_mul=0.9)	
Batch Size	256; Mixed Precision optional (mixed-precision)	
Regularization	Dropout(0.5) \ L2 sweep	
EarlyStopping	patience=12(監控 val top-1),會還原最佳權重	

4. Baseline Performance 基準成效

Split	Loss	Top-1	Top-5
Train	1.162	71.78%	97.68%
Val	1.128	73.72%	97.72%
Test	1.130	73.79%	97.62%

觀察:

- 類別 2 (bird)、3 (cat) 經常被混淆;交通工具類(0 airplane, 1 automobile, 8 ship, 9 truck) 辨識
 最佳。
- Top-5 一致 >97%,顯示模型能捕捉大部分候選類別,但 Top-1 受限於細粒度差異。

5. Stride / Kernel Grid (Requirement 2-1)

Tag	Strides	Kernels	Test Top-1	Test Top-5
stride1-1-1_kernel3-3-3-3	[1,1,1,1]	[3,3,3,3]	73.86%	97.90%
stride1-1-1_kernel5-3-3-3	[1,1,1,1]	[5,3,3,3]	72.79%	97.78%
stride1-1-1_kernel5-5-3-3	[1,1,1,1]	[5,5,3,3]	73.08%	97.75%
stride1-1-2-1_kernel3-3-3-3	[1,1,2,1]	[3,3,3,3]	64.90%	96.85%
stride1-1-2-1_kernel5-3-3-3	[1,1,2,1]	[5,3,3,3]	65.04%	96.38%

Tag	Strides	Kernels	Test Top-1	Test Top-5
stride1-1-2-1_kernel5-5-3-3	[1,1,2,1]	[5,5,3,3]	67.18%	96.89%
stride2-1-1-1_kernel3-3-3-3	[2,1,1,1]	[3,3,3,3]	61.36%	95.78%
stride2-1-1-1_kernel5-3-3-3	[2,1,1,1]	[5,3,3,3]	61.94%	95.98%
stride2-1-1-1_kernel5-5-3-3	[2,1,1,1]	[5,5,3,3]	61.31%	96.17%

結論: 第一層 stride 一旦提升,Top-1 立刻下降 >8%;Kernel 放大僅帶來 ≤1%的細部變化。建議優先保留 stride=1,再考慮以位移/旋轉增強。

6. L2 Regularization Study (Requirement 2-4)

λ	Test Top-1	Test Top-5	Weight Norm
0	73.78%	97.87%	741.88
1e-5	73.63%	97.87%	736.79
5e-5	73.98%	97.65%	696.92
1e-4	73.91%	97.93%	654.94
5e-4	75.67%	98.08%	469.08
1e-3	76.31%	98.01%	356.42

解析:

- λ=5e-4 提升 Top-1 至 75.67%;λ=1e-3 則到 76.31%,但 Top-5 略微下滑 0.1%。
- 權重直方圖顯示正則化提升後,濾波器權重集中且更接近零,佐證對過適化的抑制。

7. Feature Maps & Qualitative Analysis (Requirement 2-2, 2-3)

Class 0 - Block 1

- Block 1: 偵測邊緣、顏色梯度、天空背景。
- Block 3:聚焦於整體機身輪廓與翼面;輸出的通道數多且資訊稀疏。
- 透過 reports/task2/feature_map_observations.md 可看到其他類別(如 cat/dog)亦呈現從顏色到 紋理再到高階形狀的層級轉換。

8. Preprocessing Ablation (Requirement 2-5)

Variant	Test Top- 1	Test Top- 5	Macro F1	說明
baseline	73.96%	97.71%	0.7336	含標準化、完整增強、Cutout, Mixup off
no_standardization	74.21%	98.07%	0.7373	移除 z-score,略增 Top-5
no_augmentation	72.47%	96.55%	0.7234	去除增強 → 明顯退步

Variant	Test Top- 1	Test Top- 5	Macro F1	說明
no_cutout	74.97%	97.80%	0.7441	Cutout 對本資料不一定必須
no_color	73.85%	97.85%	0.7326	色彩抖動影響有限
no_mixup	73.96%	97.82%	0.7338	baseline 已關閉 Mixup,結果一致

洞察:

- Cutout 初衷在於防過擬合,但對 CIFAR-10 baseline 可能造成資訊流失;上圖顯示移除 Cutout 後驗證曲線更平滑且收斂更快,可視任務選擇是否保留。
- 標準化與色彩抖動並非絕對必要,但可帶來穩定性。
- 無增強時 Top-1 下降 1.5%,驗證空間變換的重要性。

9. Training Efficiency 訓練時間

任務	Epochs Ran	時間 (min)
baseline	37	38.66
stride1-1-1_kernel3-3-3-3	36	37.66
stride1-1-2-1_kernel5-3-3-3	36	39.78
I2_1e-03	37	40.73
preprocess_no_cutout	37	36.27

任務	Epochs Ran	時間 (min)
preprocess_no_augmentation	37	6.44 (無增強 → 快速)

(詳細數據請見 artifacts/task2/training_durations.json)

▲ --mode all 會依序跑 22 次完整訓練,耗時超過 8 小時。建議依報告需求挑選子模式單獨執行。

10. Conclusions & Recommendations

- 已達成 HW2 Task 2 對前處理、視覺化、stride/filter、L2、消融的所有要求,並完整繳交圖表與 CSV。
- 若追求更高準確率,可嘗試:
 - i. 將 Cutout 關閉或改用 CutMix。
 - ii. 啟用 Mixup(α≈0.2)搭配 L2=1e-3。
 - iii. 升級模型為 ResNet/WideResNet,或引入 label smoothing。
- 所有重要輸出位於 reports/task2/images/ \ reports/task2/;程式實作於 project/src/task2_cifar10_pipeline.py 。
- 依 README 指南建立環境後,可透過 python task2_cifar10_pipeline.py --mode baseline 重建 核心成果,再額外針對特定實驗執行其他模式。