実験項目	実験B6 トランジスタ増幅器の製作	
校名 科名 学年 番号	熊本高等専門学校 人間情報システム工学科 3 年 42 号	
氏名	山口惺司	
班名 回数	4 班 1 回目	
実験年月日 建物 部屋名	2023年 10月 5,12日 木曜 天候 晴 3号棟 1階 HI 演習室	
共同実験者名		

1. 実験目的

簡単なトランジスタ増幅器の設計・製作と、その回路の特性を測定することによって、増幅器の概念 を学び、併せてトランジスタについて理解を深める。

2. 実験原理

2.1 増幅回路の直流電圧・電流について

図1に、エミッタ設置増幅回路の回路図を記載する。

図1 エミッタ設置増幅回路

1. トランジスタについて、コレクタに流れる電流を I_c 、ベースに流れる電流を I_B , エミッタに流れる電流を I_B とすると、

$$I_E = I_B + I_C [A] (1)$$

という関係式が成立する。

2. ベースの直流電位 V_B(ベースバイアス電圧)は、I_Bをきわめて小さいとして無視すると、

$$V_B = \frac{R_B}{R_A + R_B} \cdot V_{CC} [V] (2)$$

また、

$$V_B = I_E \cdot R_E + V_{BE} [V]$$
 (3)

である。ベース電流はきわめて小さいので $I_c = I_E$ とすると

$$V_B = I_C \cdot R_E + V_{BE} [V]$$
 (4)

3. エミッタの直流電位 V_Eは V_Bよりも V_{EE}だけ低い値なので

$$V_E = V_B - V_{BE} [V]$$
 (5)

これは、(2)式からもわかる。

4. コレクタの電融電位 V_c は、電源電圧 V_{cc} から R_c による電圧降下を引いた値なので、

$$V_C = V_{CC} - I_C \cdot R_C [V]$$
 (6)

また、 $I_C = I_E$ より、

$$V_C = V_{CE} + I_C \cdot R_E [V]$$
 (7)

と表すことができる。

2.2 電圧増幅度〔交流利得〕について

1. 交流入力電圧 v_i とエミッタ交流電流 i_e の関係は、ベース-エミッタ間にバイアス電圧 V_B が順方向に加わっているため、見かけ上抵抗ゼロとなり、 v_i がそのままエミッタに現れるので、

$$i_e = \frac{v_i}{R_E}$$
 [A] (8)

2. コレクタ電圧の交流分を v。、コレクタ電流の交流分を i。とすると、

$$v_c = i_c \cdot R_C \text{ [V]} \tag{9}$$

 $zz ci_c \cong i_e to c$

$$v_c = i_e \cdot R_C = \frac{v_i}{R_E} \cdot R_C \quad [V] \quad (10)$$

3. 交流出力電圧 v_o は、直流カットコンデンサ(カップリングコンデンサ)C2 をとおして v_o と接続されている。よって、 v_o がそのまま v_o として出力されるので

$$v_o = v_c = \frac{v_i}{R_E} \cdot R_C \quad [V] \tag{11}$$

4. 電圧増幅度 Av は、

$$A_{v} = \frac{v_{i}}{v_{o}} = \frac{R_{C}}{R_{E}} \left[\stackrel{\triangle}{\text{H}} \right] \quad (12)$$

となり、REとRcの比で表されることがわかる。

一般的に、交流利得 G_vは、

$$G_v = 20 \log Av = 20 \log \frac{v_o}{v_i} = 20 \log \frac{R_C}{R_E}$$
 [dB] (13)

のように、単位をデシベルで表示する。

ただし、この回路に負荷を接続する場合、きわめてインピーダンスの大きい場合に限り(12), (13)式が成り立つことに注意。

3. 実験回路

図2はエミッタ設置の増幅器である。ブレッドボード上にこの回路を組む。表1は回路用の機材である.入力,出力はオシロスコープで測定する.

図2 エミッタ設置トランジスタ増幅器

Vcc	直流安定化電源 18-1.8	
トランジスタ	前回の実験で使用したもの	
抵抗・コンデンサ	設計値の近似値をしようする	
ブレッドボード	このボード上に回路を組む	
ジャンプワイヤ	結線用	
デジタルマルチメータ	各部の電圧測定用	
入力 vi	低周波発振器	
出力 vo	オシロスコープで測定	

表 1 使用器具

4. <u>実験内容</u>

4.1 回路設計の手順

- 1. 電源電圧 V_{CC} と V_{CE} の決定
 - Vcc は 14V とし、トランジスタのコレクタ-エミッタ間電圧 VCE を Vcc の 3/7 と する. (6V)
- 2. ベース電流 I_B とコレクタ電流 I_C (IE)の決定 IB は $30\,\mu$ A とし, I_B が $30\,\mu$ A のときの I_C を設定する. (B5 静特性の表参照)
- 3. VBE の決定 静特性において, I_B が $30 \mu A$ のときの V_{BE} を設定する. (B5 静特性の表参照)
- 4. 直流負荷抵抗 (R_C+R_E) の決定

$$V_{CC} = I_C \cdot R_C + V_{CE} + I_E \cdot R_E [V] \qquad (14) \quad \sharp \, \emptyset \,,$$

$$R_C + R_E = \frac{V_{CC} - \frac{3}{7} V_{CC}}{I_C} \left[\Omega \right]$$
 (15)

ここで、回路の安定性を保つための適切な電流帰還量を考えた場合、 R_c と R_E の比を 5:1 にするとよい結果が得られる.

$$R_C$$
: $R_E = 5$: 1

$$\therefore R_E = \frac{R_C + R_E}{6} [\Omega]$$
 (16)

(12), (13)式から, この回路の利得は 5 倍(14dB)となる.

5. R_A, R_Bの決定

(3) 式より、ベースバイアス電圧 V_B を求める.

ベースバイアス抵抗 R_B には、普通 I_B の 10 倍のバイアス電流を流すので、

$$R_B = \frac{V_B}{10I_B} \left[\Omega \right] \tag{17}$$

$$R_A = \frac{V_{CC} - V_B}{11I_B} \left[\Omega \right] \tag{18}$$

6. C₁, C₂ の決定

まず,カットオフ周波数 f_{CL} を 100Hz とする.

 C_1 は、トランジスタの I_B が極めて小さいので入力インピーダンスが無限大と すれば、 C_1 より見た入力インピーダンスは R_A と R_B の並列とみなせるので、

カットオフ周波数 (振幅特性が、 $1\sqrt{2}$ (-3dB)) を f_{CL} とすると

$$C_1 \ge \frac{1}{2\pi f_{CL} \frac{R_A \cdot R_B}{R_A + R_R}} \left[F \right] \quad (19)$$

となる.

 C_2 は,負荷端に接続するインピーダンスによって変化するので実験では C_1 と おなじ値にしておく.

ただし、負荷にインピーダンスを $Z_{\Gamma}[\Omega]$ を接続したら

$$C_1 \ge \frac{1}{2\pi f_{CL} \cdot |Z_L|} [F] \tag{20}$$

となる。

4.2 利得の変更

回路利得をもっと大きくしたい場合、図 2 のように R_E を R_{E1} , R_{E2} に分割し、 R_{E2} に並列にコンデンサを入れて交流分をバイパスすると

(12)式は,

$$A_{v} = \frac{v_{i}}{v_{o}} = \frac{R_{C}}{R_{E1}} \left[\left\langle \stackrel{.}{\text{H}} \right\rangle \right] \quad (21)$$

となり利得が大きくなる. これで R_E の分割比を変えることにより利得が自由に設 定できることがわかる. このコンデンサ C_F をバイパスコンデンサという.

$$C_E \ge \frac{1 + h_{ie}}{2\pi f_{CL} \left(\frac{R_A \cdot R_B}{R_A + R_B} + h_{ie}\right)} \quad [F] \tag{22}$$

このとき,

$$h_{fe} = \frac{\Delta I_C}{\Delta I_B} \tag{23}$$

$$h_{ie} = \frac{\Delta V_{BE}}{\Delta I_B} \tag{24}$$

とする。

図3 エミッタ設置のトランジスタ静特性

5. 実験結果

5.1 回路設計

4.1より、回路で扱う各素子の計算値と実測値を表2に示す。 また、今回の実験では利得が7倍になるようにした。

表2 各素子の計算値と実測値

素子名	計算値	実測値
R _A	36. 4k Ω	36. 0 k Ω
R_B	6. 7k Ω	6. 49k Ω
Rc	1167 Ω	1091 Ω
R _{E1}	168 Ω	160 Ω
R _{E2}	65 Ω	62. 6 Ω
C_1	0. 28 μ F	0. 34 μ F
C_2	0. 28 μ F	0. 34 μ F
C_3	47 μ F	107. 8 μ F

5.2 電圧・電流の測定

テスターを用い増幅器各部の直流電圧を測定し、表3に示す。

表3 各部の電圧と電流

	設定値	測定値	誤差[%]
$V_{C}[V]$	7. 46	7. 60	1.9
$V_B[V]$	2.00	1. 96	2. 0
V _E [V]	1. 30	1. 31	0.8
V _{CE} [V]	6. 00	6. 31	5. 2
V _{BE} [V]	0. 69	0. 67	2. 9
$I_{C}[mA]$	5. 60	5. 85	4. 5

5.3 増幅度の測定

図2の測定回路で増幅度を計測し、表4に示す。

表 4 増幅度(電圧利得)

周波数	Vi[V _{p-p}]	Vo[V _{p-p}](測定)	G _v [dB](測定)	G _v [dB](設定)	誤差[%]
1kHz	0.50	3. 30	16. 39	16. 90	3. 01
$f_{ ext{CL}}$	0. 50	2. 15	12.70	13.90	8. 63

5.4 入出力特性の測定(入出力直線性の測定)

図2の測定回路を用いて表5を完成し、グラフを図4に示す.

入力電圧の周波数を f = 1kHzとし出力が飽和するまで測定する.

入出力特性は方眼紙に記入し横軸を入力電圧,縦軸を出力電圧とする.

表 5 入出力特性

$V_{i}(V_{p-p})$	$V_{o}(V_{p-p})$	$G_{v}(dB)$
0. 1	0. 55	14.81
0.2	1. 36	16.65
0.3	1.88	15. 94
0.4	2. 56	16. 12
0.5	3. 2	16. 12
0.7	4. 48	16. 12
1	6. 56	16. 34
1.2	7. 44	15.85
1.4	9.04	16. 20
1. 5	9.6	16. 12
1.6	10. 4	16. 26
1. 7	10.8	16.06
1.8	11.4	16.03
1. 9	12	16.01
2	12	15. 56
2. 5	12.4	13.91
3	12.4	12. 33

図4 入出力特性のグラフ

5.5 周波数特性の測定

図2の測定回路を用いて、表6を完成し、グラフを図5に示す.

入力電圧をvi=0.5[Vp-p], 測定周波数 f は, 1, 2, 4, 7×10n (n=1,2,3,4) Hz とし, 100kHz まで測定する. また、10, 20Hz は測定しない.

周波数特性は片対数グラフを用いて横軸を周波数,縦軸を利得とする.

表 6 周波数特性

周波数[f]	Vo[V _p -	G _v [dB]
40	1. 08	6. 69
70	1. 58	9. 99
100	2. 16	12.71
200	2. 74	14.78
400	3. 04	15.68
700	3. 08	15.79
1000	3. 2	16. 12
2000	3. 2	16. 12
4000	3. 2	16. 12
7000	3. 2	16. 12
10000	3. 2	16. 12
20000	3. 2	16. 12
40000	3. 2	16. 12
70000	3. 2	16. 12
100000	3. 2	16. 12

図5 周波数特性のグラフ

6. 研究課題

利得を大きくするのに R_E を分割し、 R_{E2} に C_E を入れたが R_{E1} と R_{E2} の数値を入れ替えるとどうなるか考察 せよ。

実際に実験で使用した素子の値を基に計算すると、

$$A_v = \frac{R_C}{R_{E1}} = \frac{1091}{160.0} = 6.82$$
 [倍]

R_{E1}と R_{E2}を入れ替えて計算すると、

$$A_v = \frac{R_C}{R_{E1}} = \frac{1091}{62.6} = 17.43$$
 [倍]

となり、利得が大きくなることがわかる。

7. 感想

回路の設計や計算から、各素子の値を求め、正しい素子を使うことができて良かった。 トランジスタ増幅器の回路の仕組みを理解できてよかった。