計量経済 1: 宿題 4

村澤 康友

提出期限: 2025年6月3日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例の結果を正確に再現すること (乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペした場合は提出点を 0 点とし,再提出も認めない。すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 158, 実証分析問題 6-A) データセット「6_1_income.dta」を gretl に読み込み,「教育の 収益率」を以下の 2 つの方法で推定しなさい.
 - (a) 対数賃金(年収)を修学年数に単回帰.
 - (b) ミンサー方程式を重回帰(教科書 p. 135).
- 2. (教科書 p. 158, 実証分析問題 6-B) データセット「 6_2 -yeduc.dta」を gretl に読み込み,母親の大学進学が子どもの修学年数に与える効果を以下の 3 つの方法で推定しなさい.※係数の推定値は等しいが,標準誤差・t 値は異なるはず(重回帰が正しい).
 - (a) 子どもの修学年数を, 父親と母親の大学進学ダミーに重回帰(教科書 p. 142).
 - (b) 母親の大学進学ダミーを父親の大学進学ダミーに単回帰し、その OLS 残差に子どもの修学年数を単回帰(定数項あり).※ OLS の実行結果の画面でメニューから「保存」→「残差」とすれば OLS 残差を保存できる.
 - (c) 前問の2段階目で定数項なしの単回帰(これが本来の偏回帰).

※ただ実行して終わるのでなく、データ分析の際は、以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

解答例(この解答例は古いバージョンの gretl を使用し、Word でなく \LaTeX で作成しているので、コピペ すると分かります. ご注意下さい.)

係数

1. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4299 従属変数: lincome

		係数		標準	誤差	t-ratio	p 値	
	const	4.30955		0.1007	755	42.77	0.000	0
	yeduc	0.07077	21	0.0072	20383	9.824	0.000	0
Mean o	dependen	t var	5.29	90452	S.D.	dependent	var	0.895883
Sum squared resid			337	3.823	回帰の	D標準誤差		0.886091
\mathbb{R}^2			0.02	21968	Adjus	sted \mathbb{R}^2		0.021740
F(1,42)	97)		96.5	51557	P-val	ue(F)		1.53e-22
Log-lik	elihood	_	-557	9.116	Akaik	e criterio	n	11162.23
Schwar	z criterio	on	111	74.96	Hann	an-Quinn	ı	11166.73

(b) 重回帰(ミンサー方程式)

モデル 2: 最小二乗法 (OLS), 観測: 1-4299 従属変数: lincome

標準誤差

t-ratio

p 値

const	2.48550	0	0.110	0782	22.44	0.0	0000
yeduc	0.1175	47	0.00	706026	16.65	0.0	0000
exper	0.1961'	74	0.00'	749354	26.18	0.0	0000
exper2	-0.00638	8115	0.000	0316188	-20.18	0.0	0000
Mean depende	ent var	5.290	0452	S.D. de	pendent v	ar	0.895883
Sum squared i	resid	2736	.905	回帰の標	票準誤差		0.798267
\mathbb{R}^2		0.20	6603	Adjuste	ed R^2		0.206049
F(3,4295)		372.8	8097	P-value	(F)		3.4e-215
Log-likelihood		-5129	.400	Akaike	criterion		10266.80
Schwarz criter	ion	1029	2.26	Hannar	–Quinn		10275.79

2. (a) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

		係数	ζ	Std.	Error	$t ext{-ratio}$	p ·	値
con	st	13.594	6	0.023	35193	578.0	0.00	000
mo	cograd	0.497	015	0.076	52982	6.514	0.00	000
pac	cograd	1.108	86	0.047	75107	23.34	0.00	000
Mean dep	endent va	ar	13.96	131	S.D. de	ependent v	ar	1.369695
Sum squa	red resid		6109.	357	S.E. of	regression	l	1.243496
R^2			0.176	201	Adjuste	$ed R^2$		0.175784
F(2,3951))		422.53	373	P-value	e(F)		5.1e-167
Log-likelil	hood	_	6470.	663	Akaike	criterion		12947.33
Schwarz o	criterion		12966	5.17	Hannar	n–Quinn		12954.01

(b) 偏回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

	係数	Std. E	rror	t-ratio	p 値	
const	13.9613	0.0216	886	643.7	0.000	0
uhat1	0.497015	0.0836	795	5.940	0.000	0
Mean depender	it var 13.	.96131	S.D.	dependent	var	1.369695
Sum squared re	sid 73	50.465	S.E.	of regressi	on	1.363795
R^2	0.0	008848	Adju	sted \mathbb{R}^2		0.008597
F(1,3952)	35.	.27776	P-va	lue(F)		3.11e-09
Log-likelihood	-683	36.294	Akai	ke criterio	n	13676.59
Schwarz criterio	on 130	689.15	Hanı	nan–Quinn	-	13681.04

(c) 偏回帰

モデル 3: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

係数 Std. Error *t*-ratio p値 uhat1 0.497015 0.860819 0.5774 0.5637

Mean dependent var	13.96131	S.D. dependent var	1.369695
Sum squared resid	778056.4	S.E. of regression	14.02950
Uncentered \mathbb{R}^2	0.000084	Centered \mathbb{R}^2	-103.914783
F(1,3953)	0.333361	P-value (F)	0.563720
Log-likelihood	-16053.14	Akaike criterion	32108.28
Schwarz criterion	32114.56	Hannan-Quinn	32110.50