Lecture 9 – Recursion, Complexity

- Recursion
- Complexity

Recursion

A recursive definition (or inductive definition) is used to define an object in terms of itself.

A recursive definition of a function defines values of the functions for some inputs in terms of the values of the same function for other inputs.

```
def factorial(n):
    """
    compute the factorial
    n is a positive integer
    return n!
    """
    if n== 0:
        return 1
    return factorial(n-1)*n
```

- Direct recursion : P invoke P
- Indirect recursion P invoke Q, Q invoke P

Main idea:

- base case: simplest possible solution
- inductive step: break the problem into a simpler version of the same problem plus some other steps

```
def recursiveSum(1):
                                                  def fibonacci(n):
    Compute the sum of numbers
                                                      compute the fibonacci number
    1 - list of number
                                                      n - a positive integer
    return int, the sum of numbers
                                                      return the fibonacci number for a given n
    #base case
                                                      #base case
                                                      if n==0 or n==1:
    if l==[]:
        return 0
                                                          return 1
    #inductive step
                                                      #inductive step
    return 1[0]+recursiveSum(1[1:])
                                                      return fibonacci (n-1) + fibonacci (n-2)
```

Obs recursiveSum(l[1:]):

l[1:] - is creating a copy of the list exercise: modify the recursiveSum to avoid l[1:]

How recursion works:

- on each method invocation a new symbol table is created. The symbol table contains all the parameters and the local variables defined in the function
- the symbol tables are stored in a stack, when a function is returning the current symbol tale is removed from the stack

```
def isPalindrome(str):
    """
    verify if a string is a palindrome
    str - string
    return True if the string is a palindrome False otherwise
    """
    dict = locals()
    print id(dict)
    print dict

if len(str) == 0 or len(str) == 1:
    return True

return str[0] == str[-1] and isPalindrome(str[1:-1])
```

Recursion

Advantages:

- clarity
- simplified code

Disadvantages:

- memory consumption for large recursion depth
 - For each recursion a new symbol table is created

Computational complexity

Concerned with studying the algorithms efficiency.

We compare algorithms with respect to:

- the *amount of necessary space* to hold temporary data,
- the computing speed, i.e. the *running-time* necessary to solve the problem.

program running-time is the time necessary for a program to run.

Depends on:

- the input data
- the changes from a run to another
- the used hardware.

Running time example

```
def fibonacci2(n):
def fibonacci(n):
     compute the fibonacci number
                                                     compute the fibonacci number
     n - a positive integer
                                                     n - a positive integer
    return the fibonacci number for a given n
                                                     return the fibonacci number for a given n
    11 11 11
                                                     11 11 11
    #base case
                                                     sum1 = 1
    if n==0 or n==1:
                                                     sum2 = 1
        return 1
                                                     rez = 0
    #inductive step
                                                     for i in range (2, n+1):
    return fibonacci (n-1) + fibonacci (n-2)
                                                         rez = sum1 + sum2
                                                         sum1 = sum2
                                                         sum2 = rez
                                                     return rez
def measureFibo(nr):
    sw = StopWatch()
    print "fibonacci2(", nr, ") =", fibonacci2(nr)
    print "fibonacci2 take " +str(sw.stop())+" seconds"
    sw = StopWatch()
    print "fibonacci(", nr, ") =", fibonacci(nr)
    print "fibonacci take " +str(sw.stop())+" seconds"
measureFibo(32)
fibonacci2(32) = 3524578
fibonacci2 take 0.0 seconds
fibonacci(32) = 3524578
fibonacci take 1.7610001564 seconds
```

Efficiency of a function

• the amount of resources they use, usually measured in either the *space* or *time* used.

Measuring efficiency:

- a mathematical analysis, called *asymptotic analysis* can capture aspects of efficiency for all possible inputs but not exact execution times.
- an *empirical analysis* determine exact running times for a sample of specific inputs, cannot predict the performance of the algorithm on all inputs.

Running time of an algorithm is studied in direct relation to the size of input data.

- Estimate the running time of an algorithm for a specific, stated size input data.
- We are focusing on asymptotic analysis

Complexity

- **best case** for the data set leading to the minimum running time
 - best-case complexity (BC): $BC(A) = \min_{I \in D} E(I)$
- worst case, for the data set leading to the maximum running time.
 - worst-case complexity (WC): $WC(A) = \max_{I \in D} E(I)$
- average running time of an algorithm.
 - average complexity (AC): $AC(A) = \sum_{I \in D} P(I)E(I)$
- A algorithm; D domain of algorithm this algorithm for inputs of size n; E(I) number of operations performed; P(I) the probability of having I as input data of the algorithm

Capture the essence: how the running time of an algorithm increases with the size of the input *at the limit*

(if
$$n \to \infty$$
, then $3 \cdot n^2 \approx n^2$).

Compare algorithms by using the *magnitude order* of their running-time complexity

Running time complexity

- running time is not a fixed number, but rather a function of the input data size n, denoted T(n).
- measure basic "steps" that the algorithm makes (for example, the number of statements executed).
- will not exactly predict the true running
- it will get us within a small constant factor of the true running time most of the time.

Example: $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$

Because $0 < \log_2 n < n$, $\forall n > 1$ and $\sqrt{n} < n$, $\forall n > 1$, we can conclude that n^3 term dominates for large n

So, as a conclusion, we can say that the running time T(n) grows "roughly on the order of n^3 ", and this is written $T(n) \in O(n^3)$.

Informally, the statement $T(n) \in O(n^3)$ means, "when you ignore constant multiplicative factors, and consider the leading (i.e. fastest growing) term, you get n^3 ".

We will denote by f a function $f: N \to \Re$ and by T the function that gives the execution time of an algorithm, $T: N \to N$.

Definition 1. ("Big-oh", *O*-notation). We say that $T(n) \in O(f(n))$ if exist **c** and **n**₀ positive constants (independent of n) such that $0 \le T(n) \le c \cdot f(n)$, $\forall n \ge n_0$.

In other words, o notation gives the asymptotic upper bound

Alternative definition 1. We say that $T(n) \in O(f(n))$ if $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ is 0 or is a constant, but **not** ∞ *Remarks*.

- 1. If $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$, then $\lim_{n \to \infty} \frac{T(n)}{n^3} = 13$. So, we can say that $T(n) \in O(n^3)$.
- 2. The *O* notation is good for putting an upper bound on a function. We notice that if $T(n) \in O(n^3)$, it is also $O(n^4)$, $O(n^5)$, etc since the limit will just go to zero. That is why we will need a notation for the lower bound of the complexity. This notation is Ω .

Definition 2. ("Big-omega", Ω -notation). We say that $T(n) \in \Omega(f(n))$ if exist **c** and $\mathbf{n_0}$ positive constants (independent of n) such that $0 \le c \cdot f(n) \le T(n)$, $\forall n \ge n_0$.

In other words, Ω notation gives the asymptotic lower bound

Alternative definition 2. We say that $T(n) \in \Omega(f(n))$ if $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ is a constant or ∞ , but **not** 0.

Remark: If $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$, then $\lim_{n \to \infty} \frac{T(n)}{n^3} = 13$. So, we can say that $T(n) \in \Omega(n^3)$, also.

Definition 3. ("Big-theta", θ -notation). We say that $T(n) \in \theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$, i.e., exist **c1**, **c2** and **n**₀ positive constants (independent of n) such that $c1 \cdot f(n) \leq T(n) \leq c2 \cdot f(n)$, $\forall n \geq n_0$.

In other words, θ notation gives the asymptotic tight bound.

Alternative definition 3. We say that $T(n) \in \theta(f(n))$ if $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ is a constant (but **not** 0 or ∞).

Remarks.

- 1. The running time of an algorithm is $\theta(f(n))$ if and only if its worst case running time is O(f(n)) and its best case running time is $\Omega(f(n))$.
- 2. Notation O(f(n)) is often misused instead of $\theta(f(n))$.
- 3. If $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$, then $\lim_{n \to \infty} \frac{T(n)}{n^3} = 13$. So, $T(n) \in \theta(n^3)$. This can also be deduced from $T(n) \in O(n^3)$ and $T(n) \in \Omega(n^3)$.

Summations

for i in range(0, n):

#some instructions

Assuming that the loop body (the *) takes f(i) time to run, the total running time is given by the summation

$$T(n) = \sum_{i=1}^{n} f(i)$$

We can observe that nested loops naturally lead to nested sums.

Solving summations breaks down into two basic steps

- simplify the summation as much as possible -by removing constant terms and separating individual terms into separate summations.
- each of the remaining simplified sums can be solved.

Summation Examples

Analyze the time complexity of the following functions

<pre>def f1(n): s = 0 for i in range(1,n+1): s=s+i return s</pre>	$T(n) = \sum_{(i=1)}^{n} 1 = n \rightarrow T(n) \in \Theta(n)$ Overall complexity $\Theta(n)$ Best/Average/Worst case is the same
<pre>def f2(n): i = 0 while i<=n: #atomic operation i = i + 1</pre>	$T(n) = \sum_{(i=1)}^{n} 1 = n \rightarrow T(n) \in \Theta(n)$ Overall complexity $\Theta(n)$ Best/Average/Worst case is the same
<pre>def f3(1): """ 1 - list of numbers return True if the list contains an even nr """ poz = 0 while poz<len(1) !="0:" 1[poz]%2="" and="" poz="poz+1" poz<len(1)<="" pre="" return=""></len(1)></pre>	Best case: The first element is an even number: $T(n)=1\in\Theta(1)$ Worst case: No even number in the list: $T(n)=n\in\Theta(n)$ Average Case: While can be executed 1,2,n times (same probability). Number of steps = the average number of while iterations $T(n)=(1+2++n)/n=(n+1)/2 \rightarrow T(n)\in\Theta(n)$ Overall complexity $O(n)$

Summation Examples

```
T(n) = \sum_{i=1}^{(2n-2)} \sum_{i=i+2}^{2n} 1 = \sum_{i=1}^{(2n-2)} (2n-i-1)
 def f4(n):
    for i in range (1,2*n-2):
          for j in range (i+2,2*n):
                #some computation
                                                T(n) = \sum_{(i=1)}^{(2n-2)} 2n - \sum_{(i=1)}^{(2n-2)} i - \sum_{(i=1)}^{(2n-2)} 1
                pass
                                                T(n) = 2n \sum_{i=1}^{(2n-2)} 1 - (2n-2)(2n-1)/2 - (2n-2)
                                                T(n) = 2n^2 - 3n + 1 \in \Theta(n^2) Overall complexity \Theta(n^2)
def f5():
                                               Best case: While executed once
     for i in range (1, 2*n-2):
                                                T(n) = \sum_{(i-1)}^{(2n-2)} 1 = 2n - 2 \in \Theta(n)
          j = i+1
          cond = True
                                               Worst case: While executed 2n - (i+1) times
          while j<2*n and cond:
               #elementary operation
                                                T(n) = \sum_{(i-1)}^{(2n-2)} (2n-i-1) = \dots = 2n^2 - 3n + 1 \in \Theta(n^2)
               if someCond:
                     cond = False
                                              Average case:
                                              For a fixed I the While can be executed 1,2..2n-i-1 times
                                              average steps: C_i = (1+2+...+2n-i-1)/2n-i-1=...=(2n-i)/2
                                                T(n) = \sum_{i=1}^{(2n-2)} C_i = \sum_{i=1}^{(2n-2)} (2n-i)/2 = ... \in \Theta(n^2)
                                              Overall complexity O(n^2)
```

Some important sums to know are:

$$\sum_{i=1}^{n} 1 = n$$
 The constant series.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 The arithmetic series.

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{2}$$
 The quadratic series.

$$\sum_{i=1}^{n} \frac{1}{i} = \ln(n) + O(1)$$
 The harmonic series.

$$\sum_{i=1}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, \quad c \neq 1$$
 The geometric series.

As can be seen above, geometric progressions exhibit exponential growth.

Common complexities

 $T(n) \in O(1)$ - constant time. It is a great complexity. This means that the algorithm takes only constant time.

 $T(n) \in O(\log_2 \log_2 n)$

 $T(n) \in O(\log_2 n)$

 $T(n) \in O((\log_2 n)^k)$

- it is a very fast time (as fast as a constant time)

- it is a very good time. This is called *logarithmic* time. It is the running time of binary search and the height of a balanced binary tree. This is about the best that can be achieved for data structures based on binary trees.

We note that $\log_2 1000 \approx 10$, $\log_2 1.000.000 \approx 20$.

- (where *k* is a constant). This is called *polylogarithmic* time. It is not bad, when simple logarithmic time is not achievable.

Common complexities

$T(n) \in O(n)$	- This is called <i>linear</i> time. It is about the best that one can hope for
	an algorithm that has to look at all the data.

T(n) ∈ $O(n \cdot \log_2 n)$ - This one is famous, because this is the time needed to sort a list of numbers (Merge-Sort, Qiuck-Sort). It arises in a number of other problems as well.

 $T(n) \in O(n^2)$ - **Quadratic** time. Okay if *n* is in the thousands, but rough when *n* gets into the millions.

 $T(n) \in O(n^k)$ - (where k is a constant). This is called *polynomial* time. Practical if k is not too large.

 $T(n) \in O(2^n), O(n^3), O(n!)$ - Exponential time. Algorithms having this time complexity are only practical for small values of $n : n \le 10, n \le 20$.

Recurrences

A **recurrence** is a mathematical formula that is defined recursively.

For example, let us consider the previous problem of determining the number N(h) of nodes of a 3-ary tree of height h. By a simple analysis, we can observe that N(h) can be described using the following recurrence:

$$\begin{cases} N(0) = 1 \\ N(h) = 3 \cdot N(h-1) + 1, & h \ge 1 \end{cases}$$

The explanation is given below:

- The number of nodes of a complete 3-ary tree of height 0 is 1.
- A complete 3-ary tree of height h (h>0) consists of a root node and 3 copies of a 3-ary tree of height h-1.

If we solve the above recurrence, we obtain that:

$$N(h) = 3^{h} \cdot N(0) + (1 + 3^{1} + 3^{2} + ... + 3^{h-1}) = \sum_{i=0}^{h} 3^{i},$$

the same result obtained by computing N(h) using summations, not recurrences.

Recurrence example

```
def recursiveSum(1):
                                                Recurrence: T(n) = \begin{cases} 1 \text{ for } n=0 \\ T(n-1)+1 \text{ otherwise} \end{cases}
     11 11 11
     Compute the sum of numbers
     1 - list of number
     return int, the sum of numbers
                                                     T(n) = T(n-1) + 1
                                                  T(n-1) = T(n-2) + 1
     #base case
                                                  T(n-2) = T(n-3) + 1 = T(n) = n+1 \in \Theta(n)
    if l==[]:
          return 0
     #inductive step
                                                     T(1) = T(0) + 1
     return l[0]+recursiveSum(l[1:])
def hanoi(n, x, y, z):
                                                Recurrence: T(n) = \begin{cases} 1 & \text{for } n=1 \\ 2T(n-1) + 1 & \text{otherwise} \end{cases}
        n -number of disk on the x
stick
        x - source stick
                                                  T(n)=2T(n-1)+1 T(n)=2T(n-1)+1

T(n-1)=2T(n-2)+1= 2T(n-1)=2^2T(n-2)+2

T(n-2)=2T(n-3)+1 => 2^2T(n-2)=2^3T(n-3)+2^2
                                                                                       T(n) = 2T(n-1) + 1
        v - destination stick
        z - intermediate stick
     11 11 11
     if n==1:
                                                     print "disk 1 from", x, "to", y
       return
    hanoi(n-1, x, z, y)
     print "disk ",n,"from",x,"to",y
    hanoi(n-1, z, y, x)
                                                  T(n)=2^{(n-1)}+1+2+2^2+2^3+...+2^{(n-2)}
                                                  T(n)=2^n-1\in\Theta(2^n)
```

Space complexity

The *space* **complexity** of an algorithm estimates the quantity of memory space required by the algorithm to store the input data, the final results and the intermediate results. As the *time* complexity, the *space* complexity is also estimated using O,Θ,Ω notations.

All the remarks from related to the asymptotic notations used in running time complexity analysis are valid for the space complexity, also.

Space complexity example

```
def iterativeSum(1):
                                                       We need space to store the numbers
    Compute the sum of numbers
    1 - list of number
                                                         T(n)=n\in\Theta(n)
    return int, the sum of numbers
    rez = 0
    for nr in 1:
         rez = rez+nr
    return rez
def recursiveSum(1):
                                                       Recurrence: T(n) = \begin{cases} 0 \text{ for } n=1\\ T(n-1)+n-1 \text{ otherwise} \end{cases}
    Compute the sum of numbers
    1 - list of number
    return int, the sum of numbers
    #base case
    if l==[]:
         return 0
    #inductive step
    return l[0]+recursiveSum(l[1:])
```

Time/space complexity for a function - overview

1 If there is Best/Worst case:

- describe **Best case**
- compute complexity for Best Case
- describe Worst Case
- compute complexity for Worst case
- compute average complexity
- compute **overall** complexity

2 If Best = Worst = Average

• compute complexity

Compute complexity:

- if we have a **recurrence**:
 - o compute using equalities
- else
 - compute using summations