ECE253 Midterm Cheatsheet

Boolean Algebra

De Morgan's Theorem tells us

$$\overline{x \cdot y} = \overline{x} + \overline{y}, \qquad \overline{x + y} = \overline{x} \cdot \overline{y}$$
 (1)

Inverting the inputs to an **or** gate is the same as inverting the outputs to an **and** gate, and the other way around. We also have:

- $(x+y)(y+z)(\overline{x}+z) = (x+y)(\overline{x}+z)$
- $\bullet \quad x + yz = (x+y)(x+z)$
- x + xy = x (Absorption)
- $xy + x\overline{y} = x$ (Combining)
- $(x+y)(x+\overline{y}) = x$
- $\bullet \ \ x + \overline{x}y = x + y$
- $\bullet \ \ x(\overline{x} + y) = xy$
- $xy + yz + z\overline{x} = xy + z\overline{x}$ (Consensus)

Gates

AND	OR	$\left \frac{1}{2} \right $	NOT	-
NOR	 NAND	-	XOR	

SOPs and POSs

We can create boolean algebra expressions for truth tables.

Minterm: Corresponds to each row of truth table, i.e. $m_3 = \overline{x_2}x_1x_0$ such that when 3 = 0b011 is substituted in, $m_3 = 1$ and $m_3 = 0$ otherwise.

Maxterm: They give $M_i = 0$ if and only if the input is i. For example, $M_3 = x_2 + \overline{x_1} + \overline{x_0}$.

SOP and **POS**: Truth tables can be represented as a sum of minterms, or product of maxterms.

- Use minterms when you have to use NAND gates and maxterms when you have to use NOR gates.
- When converting expressions to its dual, it's often helpful to negate expressions twice, or draw out the logic circuit.

Cost

The cost of a logic circuit is given by

$$cost = gates + inputs$$
 (2)

If an inversion (NOT) is performed on the primary inputs, then it is not included. If it is needed inside the circuit, then the NOT gate is included in the cost.

Karnaugh Map

Method of finding a minimum cost expression: We can map out truth table on a grid for easier pattern recognition. Example of a four variable map is shown below:

and the representation is $\overline{x_2} \cdot \overline{x_4} + x_2 \cdot x_1 + \overline{x_4} \cdot x_2$ when using *minterms*. To use *maxterms*, we take the intersection of sets that don't include blocks of 0s. For example, $(\overline{x_2} \cdot \overline{x_1})(\overline{x_2} + x_1 + x_4)$. Some *rules*:

- Side lengths should be powers of 2 and be as large as possible.
- Use **graycoding**: adjacent rows/columns should share one bit.

Some definitions:

- Literal: variables in a product term: $x_1\overline{x_2}x_3$ has three literals.
- Implicant: a product term that indicates the input valuation(s) for which a given function is equal to 1.
- **Prime Implicant:** an implicant that cannot be combined into another implicant with fewer literals. *They are as big as possible.*
- Cover: A collection of implicants that account for all valuations for which function equals 1.
- Essential Prime Implicant: A prime implicant that includes a minterm not included in any other prime implicant. They contain at least one minterm not covered by another prime implicant.

In the above example, $\overline{x_2} \cdot \overline{x_4} + x_2 x_1 + \overline{x_4} x_2$ are prime implicants.

Minimization Procedure

- 1. Generate all prime implicants for given function f
- 2. Find the set of essential prime implicants
- 3. Determine the nonessential prime implicants that should be added.

Common Logic Gates

To save space, boolean expressions will be written instead of drawing diagrams. You should be familiar with how to construct diagrams from expressions.

- Mux $2\rightarrow 1$: mux2to1 $(s, x_0, x_1) = \overline{s}x_0 + sx_1$
- Mux $4\rightarrow$ 1: mux4to1(s,x) = mux2to1(s1, mux2to1(s0, x0, x1), mux2to1(s0, x2, x3))
- Not: not(x) = nand(x,x) = nor(x,x)
- XOR acts as modular arithmetic.
- Multiplexers are functionally complete. AND = mux(x, y, 1), OR = mux(x, 0, y).

RS Latch

Sequential circuits depend on sequence of inputs. A $\bf SR$ Latch are cross-coupled NOR gates.

\mathbf{S}	R	Q	\overline{Q}
0	0	0/1	1/0
0	1	0	1
1	0	1	0
1	1	0	0

When S = R = 0, it stores the last Q value. In practice, we should not have S = R = 1.

Gated D Latch and Clock Signal

	CIK	ן ט	Q(t+1)	
	0	X	Q(t)	
	1	0 0	D	
			1	
Vh	ere the	Clk	= 1 cases refe	,
	cotoin	2000	t cat and la	

to retain, reset, set, and last one is not used.

D Flip Flops

Consists of two gated D latches, connected in series and both connected to the same clock. However, clock input for the first D latch is inverted.

• When the clock rises up, Q stores value of D.

Registers: Multiple flip flops connected together.

Verilog

Logic Operators

bitwise AND	&	bitwise OR	
bitwise NAND	~&	bitwise NOR	~!
bitwise XOR	^	bitwise XNOR	~~
logical negation	!	bitwise negation	~
concatenation	{}	replication	{{}}

- reduction operators are put at the start and output a scalar.
- bitwise operators
- blocking assignment =: executed in the order they are specified.
- Nonblock assignments <= executed in parallel.

Minimal Example

```
module mux(MuxSelect, Input, Out);
    input [4:0] Input; input [2:0] MuxSelect;
    output Out;
    reg Out; // declare output for always block
    always @(*) // declare always block
     begin
     case (MuxSelect[2:0]) // start case statement
     3'b000: Out = Input[0]; // case 0
     3'b001: Out = Input[1]; // case 1
     3'b010: Out = Input[2]; // case 2
     3'b011: Out = Input[3]; // case 3
     3'b100: Out = Input[4]; // case 4
     default: Out = 1'bx: // default case
     endcase
    end
endmodule
```

Half Adder

```
module HA(x, y, s, c);
  input x, y; output s, c;
  assign s = x^y;
  assign c = x&y;
endmodule
```

Full Adder

```
module FA(a, b, c_in, s_out, c_out);
  input a, b, c_in; output s_out, c_out;
  wire w1, w2, w3;
  HA u0(.x(a), .y(b), .s(w1), .c(w2));
  HA u1(.x(c_in), .y(w1), .s(s_out), .c(w3));
  assign c_out = w2|w3;
endmodule
```

D Latch

```
module D-latch(D, clk, Q);
  input D, clk;
  output reg Q;
  always@(D, clk)
  begin
      if (clk == 1'b1) Q = D;
  end
endmodule
```

Flip Flop

```
module D-ff(D, clk, Q);
  input D, clk;
  output reg Q;
  always@(posedge clk) Q <= D; // use <= operator
endmodule</pre>
```

Flip Flop (stores on both edges)

```
module DDR (input c, input D, output Q);
  reg p, n;
  always @ (posedge c) p <= D;
  always @ (negedge c) n <= D;
  assign Q <= c ? p : n;
endmodule</pre>
```

Registers

```
module reg8(D, clk, Q);
  input clock;
  input [7:0] D;
  output reg[7:0] Q;
  always@(posedge clock)
     Q <= D;
  endmodule</pre>
```

ModelSim Do Files

```
# set working dir, where compiled verilog goes
vlib work
# compile all verilog modules in mux.v to working
# dir could also have multiple verilog files
vlog mux.v
#load simulation using mux as the
# top level simulation module
vsim mux
#log all signals and add some signals to
# waveform window
log {/*}
# add wave {/*} would add all items in
```

```
# top level simulation module
add wave {/*}
# first test case
#set input values using the force command
# signal names need to be in {} brackets
force {SW[0]} 0
force {SW[1]} 0
force {SW[9]} 0
run 10ns
```

ModelSim and Other Lab Things

- FGPA: Field Programmable Gate Array
- To repeat signals, use this syntax:

```
force {MuxSelect[2]} 0 Ons, 1 {4ns} -r 8ns which starts at 0 at Ons, 1 at 4ns, and repeats every 8 ns.
```

• On the DE1-SoC board, hex thing is red if 0 and white if 1.

Frequency Dividers

- To half the frequency, connect \overline{Q} to D on the same gated D latch.
- To quarter the frequency, connect \overline{Q} to the clock of the next gated D latch (which is set up the same as the half frequency case).
- To reduce frequency by 2k, connect k D latches connected in series (D to Q) and to the same clock. First D is connected to last \bar{Q} . The last Q will have a reduced frequency of 2k.

Add Extra Things Below