Low-power Sigma-Delta AD Converters

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters

Ref. Norsworthy, Delta-Sigma Converters, Wiley 1996 Ref. Op 't Eynde, Peluso, Geerts, Marquez, Geerts, Yao, Kluwer/Springer

Sigma-Delta ADC

Sigma-Delta ADC exchanges resolution with speed by means of :

Oversampling

Noise shaping

Quantization noise (4 bit)

Number bits

Quant. noise ↓

Step =
$$\frac{V_{ref}}{2^{B}}$$

B = 8 bits **SNR** = 50 dB

B =16 bits **SNR** = 98 dB

SNR ≈ 2 + 6B

Sigma-Delta modulator

Signal transfer function:
$$H_x(z) = \frac{H(z)}{1 + H(z)}$$

Noise transfer function:
$$H_e(z) = \frac{1}{1 + H(z)}$$

Noise filtering

$$v = H (x - k_2 y)$$

 $y = k_1 v + e$

Noise shaping

$$y = \frac{k_1 H}{1 + k_1 k_2 H} \times + \frac{1}{1 + k_1 k_2 H} = \approx \frac{1}{k_2} \times + \frac{1}{k_1 k_2 H} = \frac{1}{k_1 k_2 H}$$

Feedback loop with low-pass filter

Higher-order Sigma-delta converters

Mash Sigma-delta topologies (2-1-1)

SNR vs OSR for single-bit $\Sigma\Delta$

Multibit versus Single-bit

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters

Low Voltage SC: problem

Switch:

nMOS:
$$V_{in} < V_{DD} - V_{GSn} \approx V_{DD} - 0.8 V$$

pMOS:
$$V_{in} > V_{GSp} \approx 0.8 V$$

Limit:
$$V_{DD} - V_{GSn} = V_{GSp}$$

Low Voltage switch : g_{DS} versus input voltage

Low Voltage switch : ON- resistance

Low Voltage SC: solutions

- Low V_T techology
 - special technology: cost
 - switch-off leakage
- On-Chip voltage multipliers
 - poor power efficiency
 - applicability in submicron technologies ?
- ♦ Switched Opamp Ref.Crols, ESSCIRC 93, JSSC Aug.94

Smaller V_{DD} require smaller V_T

Smaller V_T is not possible because

- 1. Leakage: wi curve crosses axis!
 Minimum value: 0.3 V
- 2. Temperature variations: + 0.2 V
- 3. Mismatch: + 0.1 V

 $>>> V_T$ cannot be smaller than 0.3 ... 0.4 V

On-chip voltage multipliers

Voltage multipliers : power efficiency

$$P_{loss} \approx R_{eq} I_{out}^{2}$$
 $P_{VDD} \approx I_{out} V_{DD}$
 $\eta \approx 1 - \frac{R_{eq} I_{out}}{V_{DD}} \approx 50 \%$

$$R_{eq} \approx \frac{n}{fC} \frac{1}{tan (2f R_{on,sw}C)}$$

Drawbacks of voltage multipliers

- + High voltage technology:
 - In deep submicron : V_{DD} < 1.8 V in 0.18 μm CMOS
 - Oxide cannot take more !! 800 V/μm or 0.8 V/nm
- Requires high-speed clock drivers
- Injection in substrate: coupling to Analog
- Low power-efficiency

Voltage multiplier for rail-to-rail opamp

Duisters, .., JSSC July 98,pp.947-955

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
 - Principle : Switched-opamp filter
 - Improved switching
 - 0.9 V 40 μ W 12 bit CMOS SO $\Sigma\Delta$
- Other low-power Delta-sigma converters

Conventional SC Integrator

Switched Opamp

Critical input switch is replaced by a switched opamp

Switched-opamp schematic

Crols, .., JSSC Aug.94, 936-942

Switched-Opamp response

Switched-opamp low-pass biquad

One extra opamp per biquad

Measured transfer characteristic

THD versus input signal swing

Input noise 140 μ V_{RMS} : DR > 70 dB

Crols, .., JSSC Aug.94, 936-942

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
 - Principle : Switched opamp filter
 - Improved switching
 - 0.9 V 40 μ W 12 bit CMOS SO $\Sigma\Delta$
- Other low-power Delta-sigma converters

1 Volt OTA

1 V (min: V_T+2V_{DSsat})

Fully differential: 75 dB

30 MHz 1 pF 80μ A

< 100 ns

4 Switches 2n:

Only 2nd stage switched off!

Baschirotto, .. JSSC Dec.97,pp.1979-1986

SO SC integrator

SO SC integrator : Φ1 closed

SO SC integrator: Φ 2 closed

CMFB with level shifting

 $C_{M} = C_{P} = 0.1 \text{ pF}$ $C_{CM} = 0.1 \text{ pF}$ $C_{CMFB} = 2 \text{ pF}$ $C_{FF} = 0.1 \text{ pF}$ provides zero $V_{OUT,DC} = V_{DD}/2$

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
 - Principle : Switched opamp filter
 - Improved switching
 - 0.9 V 40 μ W 12 bit CMOS SO $\Sigma\Delta$
- Other low-power Delta-sigma converters

Differential SO integrator

 C_S Sampling C_{INT} Integrat. C_L Load C_{CM} Level shift $C_{CMS,eq}$ CMFB

 $V_{REF,hI} = V_{DD}$ $V_{REF,lo} = 0$

Peluso, ..., JSSC, Dec.98, 1887-1896 Peluso etal "Design of low-voltage low-power CMOS Delta-Sigma ADC's", Kluwer 1999

$\Box \Sigma \Delta$ topology with half-delay integrators

- 3rd order single-loop implementation
- coefficients $a_1 = 0.2$; $a_2 = 0.5$; $a_3 = 0.5$
- 1/2 phase delays in feedback path

Class AB differential Voltage amplifier

$$V_T = 0.6 V$$
 $V_{GS} - V_T = 0.2 V$
 $V_{GS} = 0.8 V$
 $V_{DSsat} = 0.2 V$

M2 is source follower

$$V_{GS1} = V_{in1} - V_{in2}$$
 $i_{out} \sim (V_{in1} - V_{in2})^2$
>>> Class AB

Peluso, ..., JSSC, Dec.98,pp.1887-1896

Differential class AB OTA

Class AB characteristic

CMFB and level-shift

Low voltage comparator (level shift omitted)

Two switches Input at V_{SS}

The input integrator

 $V_{REF,hi} = V_{DD}$ $V_{REF,lo} = 0$

Spectrum for maximum input signal (470 mV_{ptp})

BW 16 kHz
Clock freq. 1.5 MHz
Peak SNR 76 dB
Peak SNDR 62 dB

Peluso, ..., JSSC Dec.98,pp.1887-1896

SNDR versus input signal level

Peak SNR = 76 dB

DR = 77 dB

SNDR = 62 dB

SO 12 bit 0.9 V 40 μW CMOS $\Sigma \Delta$

 $0.5~\mu m$ CMOS

 $V_{Tn} = 0.62 V$

 $V_{Tp} = 0.55 V$

 $V_{DD} = 0.9 V$

40 μW

Peluso, JSSC Dec.98, pp.1887-1896

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters
 - Unity-gain-reset
 - Optimized input switching
 - Switched input resistor
 - Full feedforward

Reset-opamp integrator

Level shift needed to avoid forward biased junctions!

Keskin, .., JSSC July 02, 817-824

Pseudo-differential opamp

170 MHz 100 V/μs 3.5 pF 1 V 200 μA 0.35 μm CMOS $V_{Tn} \approx 0.52$ V $V_{Tp} \approx 0.45$ V

Ref.Keskin, JSSC July 2002, 817-824

1-Volt 2nd-order 13 -bit $\Sigma\Delta$ modulator

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters
 - Unity-gain-reset
 - Optimized input switching
 - Switched input resistor
 - Full feedforward

$\Sigma\Delta$ Modulator on 1 Volt in 90 nm CMOS

- Single-loop third-order single-bit topology
 - Simple and robust
 - Tolerance to building block non-idealities
- Coefficients selected not sensitive to capacitance mismatches

Yao, ..., JSSC Nov.04, 1809-1818

Yao. etal. "Low-Power Low-Voltage $\Sigma\Delta$ modulators in Nanometer CMOS", Springer '06

Gain enhancement

$$A = \frac{2}{(1-k)(V_{GS} - V_T)_1 \cdot \lambda_3} = \frac{A_0}{1-k}$$

Stability

The non-dominate pole must be > 3GBW for sufficient phase margin

$$P_{nd} = \frac{gm_2}{2\pi \cdot C_c} = \frac{2(1-k)I_1}{2\pi \cdot C_c \cdot (V_{GS} - V_T)_2}$$

$$GBW = \frac{B \cdot gm_1}{2\pi \cdot C_L} = \frac{2B \cdot I_1}{2\pi \cdot C_L \cdot (V_{GS} - V_T)_1}$$

$$P_{nd} > 3GBW \implies k < 1 - 3B\frac{C_c}{C_L}$$

Full OTA circuit

Full modulator circuits

Measurement Output spectrum

Output spectrum of a 5 kHz input signal

Measured SNR and SNDR vs input amplitude

Yao, ..., JSSC Nov.04, 1809-1818

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters
 - Unity-gain-reset
 - Optimized input switching
 - Switched input resistor
 - Full feedforward

Switched-resistor integrator

Input switch replaced by resistor R

Larger resistor for better linearity Smaller resistor for higher speed

Ahn, .. ISSCC 05, 166-167

Input sampling: maintain constant V_{INCM}

Mash 2-2 $\Sigma\Delta$ Audio ADC

Low-distortion:

- switched resistor
- loop filter processes only quantization error

OSR = 64 25 kHz 3 MHz clock SNDR = 78 dB

 $\begin{array}{l} \textbf{0.35} \; \mu \textbf{m} \; \textbf{CMOS} \\ \textbf{0.6} \; \textbf{V} \\ \textbf{1} \; \textbf{mW} \end{array}$

Ahn, .. ISSCC 05, 166-167 Silva, Electronic Letters, June 01, 737-738

4-th order $\Sigma\Delta$ converter with switched-resistors

Mash 2-2 Two-stage opamp with folded cascode OSR = 64 0.6 V 1 mW 24 kHz BW

Measured SNDR

Low-distortion : Vref = 0.6 V

SNR ≈ SNDR = 78 dB at 1 kHz

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters
 - Unity-gain-reset
 - Optimized input switching
 - Switched input resistor
 - Full feedforward

Full Feedforward Topology

Convent. Sigma-Delta topology

$$H_x(z) = \frac{a_1 I}{1 + a_1 I}$$

$$H_e(z) = \frac{1}{1 + a_1 I}$$

Full feedforward topology

$$H_{x}(z) = 1$$

$$H_x(z) = 1$$

$$H_e(z) = \frac{1}{1 + a_1 c_1 I}$$

Silva, Electronic Letters, June 01, 737-738

4th-Order single-bit 1 Ms/s $\Sigma\Delta$ modulator

Single feedback loop: processes quantization noise only

Full feedforward : unity-gain transfer

4th order - single bit

Optimization coefficients or equal swing

Yao, .., VLSI Circuits '05 Yao. etal. "Low-Power Low-Voltage $\Sigma\Delta$ modulators in Nanometer CMOS", Springer '06

Performance comparison

- 4th-order conventional topology
- ♦ Behavioral simulation with: a_1 =-0.1, a_2 =-0.1, A_0 =40 dB

- 4th-order full feedforward topology
- Behavioral simulation with:

$$a_1$$
=-0.1, a_2 =-0.1, A_0 =40 dB

Output swing of integrators

Output swings of each integrator in the conventional topology

Output swings of each integrator in the full-feedforward topology

Single-stage OTA for fast settling (0.13 μ m)

Yao, .., VLSI Circ.05

Yao. etal. "Low-Power Low-Voltage $\Sigma\Delta$ modulators in Nanometer CMOS", Springer '06

Circuit Realization

OSR = 64 Clock of 64 MHz 1 V 6.1 mA + 1.3 mA

Yao, .., VLSI Circuits, '05 Yao. etal. "Low-Power Low-Voltage $\Sigma\Delta$ modulators in Nanometer CMOS", Springer '06

Measured output spectrum

Measured SNR versus Input voltage

Comparison of Low-power $\Sigma\Delta$ converters

Ref.	Type	V _{DD}	DR dB	BW kHz	P μ W	FOM x 10 ⁻⁶
Ahn 05	SwR	0.6	78	24	1000	20
Sauerbrey 02	SO,LV	0.7	75	8	80	53
Peluso 98	SO	0.9	77	16	40	330
Dessouky 01	LV	1	88	25	950	275
Keskin 02	ResetOp.	1	74	20	5600	6
Yao 04	LV	1	88	20	140	1490
Rabii 96	SC, VM	1.8	92	25	5400	121
Yin 94	211	5	97	750	180k	346
Geerts 00	211	5	92	1100	200k	144
Vieugels 01	221	2.5	95	2000	150k	700
Gaggl 04	4	1.5	88	300	8k	400
Yao 05	4	1	88	500	7.4k	706
Doerrer 05	Track	1.5	74	2000	3k	280
Hezar 05	5	1.3	86	600	5.4k	737
FOM = 4kT DR BW / P						

Low-voltage low-VT comparison

Table of contents

- Delta-sigma modulation
- The switch problem
- The switched-opamp solution
- Other low-power Delta-sigma converters