Bounds for Preperiodic Points for Rational Maps with Good Reduction

Sebastian Troncoso

Birmingham-Southern College

September 25, 2017.

For simplicity, during this talk we will work with $\mathbb Q$ and its ring of integers $\mathbb Z$.

For simplicity, during this talk we will work with $\mathbb Q$ and its ring of integers $\mathbb Z.$

However, the theory is more general than that and \mathbb{Q} and \mathbb{Z} may be replace by a number field and \mathcal{O}_K its ring of algebraic integers.

For simplicity, during this talk we will work with $\mathbb Q$ and its ring of integers $\mathbb Z.$

However, the theory is more general than that and $\mathbb Q$ and $\mathbb Z$ may be replace by a number field and $\mathcal O_K$ its ring of algebraic integers.

Let $\mathbb{P}^1(\mathbb{Q}) = \{[x:y] \mid [x:y] \sim [\lambda x:\lambda y] \quad \lambda \in \mathbb{Q}^*\} = \mathbb{Q} \cup \{\infty\}$ be the projective line.

2 / 21

For simplicity, during this talk we will work with $\mathbb Q$ and its ring of integers $\mathbb Z.$

However, the theory is more general than that and $\mathbb Q$ and $\mathbb Z$ may be replace by a number field and $\mathcal O_K$ its ring of algebraic integers.

Let $\mathbb{P}^1(\mathbb{Q}) = \{[x:y] \mid [x:y] \sim [\lambda x:\lambda y] \quad \lambda \in \mathbb{Q}^*\} = \mathbb{Q} \cup \{\infty\}$ be the projective line. When we write \mathbb{P}^1 is assume to be $\mathbb{P}^1(\mathbb{C})$.

 $\phi:\mathbb{P}^1\to\mathbb{P}^1$ be an endomorphism defined over $\mathbb{Q}.$

 $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism defined over \mathbb{Q} .

 $\phi([x:y]) = [F(x,y):G(x,y)]$ where F and G are polynomials of the same degree with coefficients in \mathbb{Q} and with no common zeros.

 $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism defined over \mathbb{Q} .

 $\phi([x:y])=[F(x,y):G(x,y)]$ where F and G are polynomials of the same degree with coefficients in $\mathbb Q$ and with no common zeros.

 $\phi(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with coefficients in \mathbb{Q} .

 $\phi:\mathbb{P}^1\to\mathbb{P}^1$ be an endomorphism defined over $\mathbb{Q}.$

 $\phi([x:y])=[F(x,y):G(x,y)]$ where F and G are polynomials of the same degree with coefficients in $\mathbb Q$ and with no common zeros.

 $\phi(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with coefficients in \mathbb{Q} .

 ϕ^n is the *n*th iterate of ϕ .

 $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism defined over \mathbb{Q} .

 $\phi([x:y]) = [F(x,y):G(x,y)]$ where F and G are polynomials of the same degree with coefficients in $\mathbb Q$ and with no common zeros.

 $\phi(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with coefficients in \mathbb{Q} .

 ϕ^n is the *n*th iterate of ϕ .

The **orbit** of a point $P \in \mathbb{P}^1$ is the set

$$O_{\phi}(P) = \{P, \phi(P), \phi^{2}(P), \phi^{3}(P), \ldots\}.$$

 $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism defined over \mathbb{Q} .

 $\phi([x:y]) = [F(x,y):G(x,y)]$ where F and G are polynomials of the same degree with coefficients in $\mathbb Q$ and with no common zeros.

 $\phi(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with coefficients in \mathbb{Q} .

 ϕ^n is the *n*th iterate of ϕ .

The **orbit** of a point $P \in \mathbb{P}^1$ is the set

$$O_{\phi}(P) = \{P, \phi(P), \phi^{2}(P), \phi^{3}(P), \ldots\}.$$

The **orbit length** of P is the cardinality of the orbit of P (as a set).

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic *i.e.* P has finite orbit.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic *i.e.* P has finite orbit.

The set of rational preperiodic points for ϕ is denoted by $\mathsf{PrePer}(\phi, \mathbb{Q})$.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic *i.e.* P has finite orbit.

The set of rational preperiodic points for ϕ is denoted by $\mathsf{PrePer}(\phi, \mathbb{Q})$.

Tail point: A point that is preperiodic but not periodic.

Periodic point: $\phi^n(P) = P$ for some $n \ge 1$. Minimal n is called the **period** of P.

The set of rational periodic points for ϕ is denoted by $Per(\phi, \mathbb{Q})$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic *i.e.* P has finite orbit.

The set of rational preperiodic points for ϕ is denoted by $\mathsf{PrePer}(\phi, \mathbb{Q})$.

Tail point: A point that is preperiodic but not periodic.

The set of \mathbb{Q} -rational tail points for ϕ is denoted by Tail (ϕ, \mathbb{Q}) .

Examples:

 $\mathbb{P}^1(\mathbb{Q})=\mathbb{Q}\cup\{\infty\}$ and endomorphism of \mathbb{P}^1 as rational functions. Consider $\phi_c(z)=z^2+c$.

Examples:

 $\mathbb{P}^1(\mathbb{Q})=\mathbb{Q}\cup\{\infty\}$ and endomorphism of \mathbb{P}^1 as rational functions. Consider $\phi_c(z)=z^2+c$.

rational tail points (red) and rational periodic points (green) of $\phi_c(z)=z^2+c$.

• Are the sets $\mathsf{Tail}(\phi,\mathbb{Q})$, $\mathsf{Per}(\phi,\mathbb{Q})$ and $\mathsf{PrePer}(\phi,\mathbb{Q})$ finite?

• Are the sets $\mathsf{Tail}(\phi,\mathbb{Q})$, $\mathsf{Per}(\phi,\mathbb{Q})$ and $\mathsf{PrePer}(\phi,\mathbb{Q})$ finite?

Yes.

• Are the sets ${\sf Tail}(\phi,\mathbb{Q})$, ${\sf Per}(\phi,\mathbb{Q})$ and ${\sf PrePer}(\phi,\mathbb{Q})$ finite?

Yes.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism of degree ≥ 2 defined over \mathbb{Q} . Then ϕ has only finitely many preperiodic points in $\mathbb{P}^1(\mathbb{Q})$.

• Are the sets $\mathsf{Tail}(\phi,\mathbb{Q})$, $\mathsf{Per}(\phi,\mathbb{Q})$ and $\mathsf{PrePer}(\phi,\mathbb{Q})$ finite?

Yes.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be an endomorphism of degree ≥ 2 defined over \mathbb{Q} . Then ϕ has only finitely many preperiodic points in $\mathbb{P}^1(\mathbb{Q})$.

We can deduce from the original proof of Northcott's theorem a bound for $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ depending on

- ullet the degree of ϕ
- ullet height of the coefficients of ϕ

Give explicit bounds for $|\operatorname{Tail}(\phi,\mathbb{Q})|$, $|\operatorname{Per}(\phi,\mathbb{Q})|$ and $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ in terms of:

Give explicit bounds for $|\operatorname{Tail}(\phi,\mathbb{Q})|$, $|\operatorname{Per}(\phi,\mathbb{Q})|$ and $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ in terms of:

• The degree d of ϕ .

Give explicit bounds for $|\operatorname{Tail}(\phi,\mathbb{Q})|$, $|\operatorname{Per}(\phi,\mathbb{Q})|$ and $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ in terms of:

• The degree d of ϕ .

Conjecture (Uniform Boundedness Conjecture - Morton–Silverman 1994)

There exists a bound B=B(d) such that if $\phi:\mathbb{P}^1\to\mathbb{P}^1$ is an endomorphism of degree $d\geq 2$ defined over \mathbb{Q} , then

$$|\mathsf{PrePer}(\phi,\mathbb{Q})| \leq B.$$

The simplest case we could consider for the UBC is

The simplest case we could consider for the UBC is ϕ a quadratic polynomial in one variable with coefficients in \mathbb{Q} .

The simplest case we could consider for the UBC is ϕ a quadratic polynomial in one variable with coefficients in \mathbb{Q} .

Conjecture (Poonen's Conjecture)

Let ϕ be a quadratic polynomial defined over $\mathbb Q$ then

$$|\operatorname{PrePer}(\phi,\mathbb{Q})| \leq 9.$$

The simplest case we could consider for the UBC is ϕ a quadratic polynomial in one variable with coefficients in \mathbb{Q} .

Conjecture (Poonen's Conjecture)

Let ϕ be a quadratic polynomial defined over $\mathbb Q$ then

$$|\operatorname{PrePer}(\phi,\mathbb{Q})| \leq 9.$$

If $\phi=x^2+d$ then B. Hutz and P. Ingram have shown that Poonen's conjecture holds when the numerator and denominator of d don't exceed 10^8 .

In order to get explicit bounds for the cardinality of the set $\mathsf{PrePer}(\phi,\mathbb{Q})$ we need an extra parameter.

Instead of the height of ϕ we can use a weaker and more natural parameter to get bound on $|\operatorname{PrePer}(\phi,\mathbb{Q})|$.

In order to get explicit bounds for the cardinality of the set $\mathsf{PrePer}(\phi,\mathbb{Q})$ we need an extra parameter.

Instead of the height of ϕ we can use a weaker and more natural parameter to get bound on $|\operatorname{PrePer}(\phi,\mathbb{Q})|$.

In order to get explicit bounds for the cardinality of the set $\mathsf{PrePer}(\phi,\mathbb{Q})$ we need an extra parameter.

Instead of the height of ϕ we can use a weaker and more natural parameter to get bound on $|\operatorname{PrePer}(\phi,\mathbb{Q})|$.

This parameter is the number of primes of bad reduction of ϕ .

In order to get explicit bounds for the cardinality of the set $\mathsf{PrePer}(\phi,\mathbb{Q})$ we need an extra parameter.

Instead of the height of ϕ we can use a weaker and more natural parameter to get bound on $|\operatorname{PrePer}(\phi,\mathbb{Q})|$.

This parameter is the number of primes of bad reduction of ϕ .

Give explicit bounds for $|\operatorname{Tail}(\phi,\mathbb{Q})|$, $|\operatorname{Per}(\phi,\mathbb{Q})|$ and $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ in terms of:

- The degree d of ϕ .
- The number of primes of bad reduction of ϕ .

• Let $\mathfrak p$ be a prime in $\mathbb Z$ and $\phi(x)=\frac{F(x)}{G(x)}$ be a rational function $\mathbb P^1$ defined over $\mathbb Q$.

• Let $\mathfrak p$ be a prime in $\mathbb Z$ and $\phi(x)=\frac{F(x)}{G(x)}$ be a rational function $\mathbb P^1$ defined over $\mathbb Q$. After multiplying for the common denominator of the coefficients of F and G. We may assume that F and G are polynomials with coefficients in $\mathbb Z$.

• Let $\mathfrak p$ be a prime in $\mathbb Z$ and $\phi(x)=\frac{F(x)}{G(x)}$ be a rational function $\mathbb P^1$ defined over $\mathbb Q$. After multiplying for the common denominator of the coefficients of F and G. We may assume that F and G are polynomials with coefficients in $\mathbb Z$. Consider the reduction of ϕ modulo $\mathfrak p$ given by

$$\tilde{\phi}(x) = \frac{\tilde{F}(x)}{\tilde{G}(x)}$$

In other words, $\tilde{\phi}$ is obtained by reducing the coefficients of F,G modulo $\mathfrak{p}.$

• Let $\mathfrak p$ be a prime in $\mathbb Z$ and $\phi(x)=\frac{F(x)}{G(x)}$ be a rational function $\mathbb P^1$ defined over $\mathbb Q$. After multiplying for the common denominator of the coefficients of F and G. We may assume that F and G are polynomials with coefficients in $\mathbb Z$. Consider the reduction of ϕ modulo $\mathfrak p$ given by

$$\tilde{\phi}(x) = \frac{\tilde{F}(x)}{\tilde{G}(x)}$$

In other words, $\tilde{\phi}$ is obtained by reducing the coefficients of F,G modulo $\mathfrak{p}.$

Then ϕ has **good reduction** at $\mathfrak p$ if the degree of ϕ is equal to the degree of $\tilde{\phi}$.

ullet ϕ has **bad reduction** at $\mathfrak p$ if it does not have good reduction at $\mathfrak p$.

- ϕ has **bad reduction** at \mathfrak{p} if it does not have good reduction at \mathfrak{p} .
- We say that ϕ has **good reduction outside** S if ϕ has good reduction for every $\mathfrak{p} \notin S$.

- ϕ has **bad reduction** at \mathfrak{p} if it does not have good reduction at \mathfrak{p} .
- We say that ϕ has **good reduction outside** S if ϕ has good reduction for every $\mathfrak{p} \notin S$.

If we allow the number of primes of bad reduction as a parameter, much more is known for the cardinality of the set of rational preperiodic points.

Bound on maximal period

Theorem (W. Narkiewicz 1988)

Let $\phi \in \mathbb{Q}[z]$ be a polynomial of degree ≥ 2 defined over \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S.

If P is a rational periodic point of period n, then

$$n \leq (6 \cdot 7^{D+2|S|})^{\alpha},$$

where $\alpha = O(|S| \log |S|)$.

Bound on maximal orbit length of a preperiodic point

Theorem (J.K. Canci 2006)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree at least two defined \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S.

If $P \in \mathsf{PrePer}(\phi, \mathbb{Q})$ is of orbit length n, then

$$n \leq \left\lceil e^{10^{12}}(|S|+1)^8(\log(5(|S|+1)))^8 \right\rceil^{|S|}.$$

Bound on maximal orbit length of a preperiodic point

Theorem (J.K. Canci, L. Paladino 2015)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree ≥ 2 defined over \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S of \mathbb{Z} . If $P \in \operatorname{PrePer}(\phi, \mathbb{Q})$ is of orbit length n, then

$$n \leq \max \left\{ \left(2^{16|S|-8} + 3 \right) \left[12|S| \log(5|S|) \right]^D, \left[12(|S|+2) \log(5|S|+5) \right]^{4D} \right\}.$$

Bound on maximal orbit length of a preperiodic point

Theorem (J.K. Canci, L. Paladino 2015)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree ≥ 2 defined over \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S of \mathbb{Z} . If $P \in \mathsf{PrePer}(\phi, \mathbb{Q})$ is of orbit length n, then

$$n \leq \max \left\{ \left(2^{16|S|-8} + 3\right) \left[12|S|\log(5|S|)\right]^D, \left[12(|S|+2)\log(5|S|+5)\right]^{4D} \right\}.$$

From here we can deduce a bound for $|\operatorname{PrePer}(\phi,\mathbb{Q})|$ that is roughly of the order $d^{2^{16|S|}(|S|\log(|S|))^D}$.

Theorem (S. Troncoso 2016)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree ≥ 2 defined over \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S of \mathbb{Z} . Then

- (a) $|\operatorname{Per}(\phi, \mathbb{Q})| \le 2^{16|S|d^3} + 3.$
- (b) $|\operatorname{Tail}(\phi, \mathbb{Q})| \le 4(2^{16|S|d^3}).$
- (c) $|\operatorname{PrePer}(\phi, \mathbb{Q})| \leq 5(2^{16|S|d^3}) + 3.$

Notice that the bounds obtained in the theorem are a significant improvement from the previous bound given by Canci and Paladino which was of the order $d^{2^{16s}(s\log(s))^D}$ for the set $|\operatorname{PrePer}(\phi,\mathbb{Q})|$.

The previous theorem use some important results like:

• Riemann-Hurwitz formula

- Riemann-Hurwitz formula
- Baker's Theorem on existence of periodic points

- Riemann-Hurwitz formula
- Baker's Theorem on existence of periodic points
- Kisaka's analysis on Baker's Theorem

- Riemann-Hurwitz formula
- Baker's Theorem on existence of periodic points
- Kisaka's analysis on Baker's Theorem
- Logarithmic *p*-adic chordal distance.

- Riemann-Hurwitz formula
- Baker's Theorem on existence of periodic points
- Kisaka's analysis on Baker's Theorem
- Logarithmic p-adic chordal distance.
- Study the distance between periodic and tail points.

- Riemann-Hurwitz formula
- Baker's Theorem on existence of periodic points
- Kisaka's analysis on Baker's Theorem
- Logarithmic p-adic chordal distance.
- Study the distance between periodic and tail points.
- Number of solution of the *S*-unit equation.

Bounds independent of the degree

Theorem (S. Troncoso 2016)

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree ≥ 2 defined over \mathbb{Q} . Suppose ϕ has good reduction outside a finite set of primes S of \mathbb{Z} .

(a) If there are at least three rational tail points of ϕ then

$$|\operatorname{Per}(\phi, \mathbb{Q})| \le 2^{16|S|} + 3.$$

(b) If there are at least four rational periodic points of ϕ then

$$| \operatorname{Tail}(\phi, \mathbb{Q}) | \leq 4(2^{16|S|}).$$

S-unit equations

Let S be a finite set of primes of \mathbb{Z} and \mathbb{Z}_S^* be the group of S-units i.e. \mathbb{Z}_S^* is the set of fraction of the form $\frac{a}{b}$ where a and b are not divisable by primes in S.

S-unit equations

Let S be a finite set of primes of \mathbb{Z} and \mathbb{Z}_S^* be the group of S-units i.e. \mathbb{Z}_S^* is the set of fraction of the form $\frac{a}{b}$ where a and b are not divisable by primes in S.

A linear relation of the form

$$au + bv = 1$$

where $(u, v) \in (\mathbb{Z}_S^*)^2$ and $a, b \in \mathbb{Q}^*$ is called a S-unit equation.

S-unit equations

Let S be a finite set of primes of \mathbb{Z} and \mathbb{Z}_S^* be the group of S-units i.e. \mathbb{Z}_S^* is the set of fraction of the form $\frac{a}{b}$ where a and b are not divisable by primes in S.

A linear relation of the form

$$au + bv = 1$$

where $(u, v) \in (\mathbb{Z}_S^*)^2$ and $a, b \in \mathbb{Q}^*$ is called a S-unit equation.

• Beukers and Schlickewei give an explicit bound for the S-unit equation. The number of solutions $(u, v) \in (\mathbb{Z}_S^*)^2$ to

$$au + bv = 1$$

is bounded by

$$2^{8(2|S|+2)}$$

Almost ready project

Joint work with J.K. Canci and S. Vishkautsan

Almost ready project

Joint work with J.K. Canci and S. Vishkautsan

Theorem (S. Troncoso 2016)

Let S be a finite set of primes of \mathbb{Z} . Let ϕ be an endomorphism of \mathbb{P}^1 , defined over \mathbb{Q} , and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S. Then

$$|\operatorname{PrePer}(\phi, \mathbb{Q})| \le \kappa_1 d^2 + \lambda_1$$

If we assume that ϕ has a rational periodic point of minimal period at least two then

$$|\operatorname{PrePer}(\phi, \mathbb{Q})| \leq \kappa_2 d + \lambda_2.$$

Almost ready project

Joint work with J.K. Canci and S. Vishkautsan

Theorem (S. Troncoso 2016)

Let S be a finite set of primes of \mathbb{Z} . Let ϕ be an endomorphism of \mathbb{P}^1 , defined over \mathbb{Q} , and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S. Then

$$|\operatorname{PrePer}(\phi, \mathbb{Q})| \le \kappa_1 d^2 + \lambda_1$$

If we assume that ϕ has a rational periodic point of minimal period at least two then

$$|\operatorname{PrePer}(\phi, \mathbb{Q})| \leq \kappa_2 d + \lambda_2.$$

We emphasize that the constants $\kappa_1, \kappa_2, \lambda_1$ and λ_2 in the theorem depend only on the cardinality of S. An explicit definition of the constants $\kappa_1, \kappa_2, \lambda_1$ and λ_2 can be given.

Current project

Arithmetic dynamics in \mathbb{P}^n

THANK YOU