组会

曾双

2020.12.26

COLING 2020

• Improving Relation Extraction with Relational Paraphrase Sentences

Logic-guided Semantic Representation Learning for Zero-Shot Relation

COLING 2020

Improving Relation Extraction with Relational Paraphrase Sentences

Junjie Yu¹, Tong Zhu¹, Wenliang Chen¹, Wei Zhang², Min Zhang¹
Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, China¹
Alibaba Group, China²
{jjyu,tzhu7}@stu.suda.edu.cn, {wlchen,minzhang}@suda.edu.cn,
lantu.zw@alibaba-inc.com

Motivation

- RE数据集规模小,不足以覆盖现实场景中各种各样的关系表达
- (1) "Steve Jobs co-founded Apple Computer."
- (2) "Steve Jobs was the co-founder of Apple Computer."
- (3) "Steve Jobs started Apple Computer with Wozniak."
- 解决办法
 - 人工标注更多数据——标签可靠但成本(时间、人力、金钱)高
 - 远程监督——规模可以很大,但有严重的标签错误问题

Motivation

- 提出通过relational paraphrase的方式来提供多样化关系表达
 - 多样性: 多个Back-Translation系统生成句子的多个复述
 - 源句子和复述句的实体对齐:上下文相似度的词对齐方式
- 提出模型对多样化关系表达进行建模

Google Translation

Baidu Translation

Xiaoniu Translation

Figure 1: Framework of building the relational paraphrase data. EN=English, CN=Chinese.

```
Triple: <All Basotho Convention, org:founded_by, Tom Thabane >

#1 [tom thabane], who set up the [all basotho convention] four months ago ...

#2 [tom taba], who four months ago, formed a [wholly basotho], ...

#3 four months ago, [tom thabane] set up the [all basoto conference], ...

#4 [tom thabane], who founded the [all basoto congress] four months ago, ...
```

Figure 2: An example from our ReP data. #1 is a human-annotated sentence, and #2-4 are paraphrase sentences. Blue words with underlines mean different clues for relation "org:founded_by" between two entities.

Figure 3: An example of aligning entities and relations.

Para.	Acc.	78.0%		
	Diff.	Yes	No	
Entity	Prop.	47.4%	52.6%	
	Acc.	89.2%	100.0%	
Both	Acc.	74.0%		

Table 2: Manual evaluation of the ReP-AUTO. **Para.**: correct paraphrase. **Acc.**: accuracy. **Entity**: performance of entity alignment. **Prop.**: proportion. **Diff.**: whether entities have been changed.

$$s^{t_i} = \underset{s_j \in s}{\operatorname{argmax}} \{ \cos(\mathbf{h}_i^t, \mathbf{h}_j^s) \}.$$

41+1种关系

Data Split		7	Dev	Test		
Data Split	# Sen	# Sen1	# Fact	# Sen1/Fact	# Sen	# Sen
Gold-Annotated (TACRED)	68,124	13,012	8,190	1.6	22,631	15,509
Auto-Generated	204,372	39,036	8,190	4.8	-	-

Table 1: Statistics of the RE data used in the experiments. # Sen: number of all sentences. # Sen1: number of sentences excluding sentences labeled with no_relation. # Fact: number of relation facts (excluding no_relation). # Sen1/Fact: average number of supporting sentences for each relation fact.

Figure 4: Training Framework

Figure 5: Sentence Encoder

Figure 6: Multi-Instance Learning

Bag-Max. In this method, we generate the bag-level representations by performing maximum pooling on outputs of sentences in bag B:

$$\mathbf{s}_B = \underset{x \in B}{maxpool}(\mathbf{s}_x). \tag{5}$$

Bag-One. Different from outputting a maximum value on each dimension in Bag-Max method, Bag-One outputs the best representation from one of three sentences in B by calculating the probability on its gold relation type after a softmax layer.

$$\mathbf{s}_B = \mathbf{s}_{x'},\tag{6}$$

$$x' = \operatorname*{argmax}_{x \in B} p(r_x | x, \theta),$$

where p() outputs the probability of relation type r_x for the input sentence x under current model parameters θ .

Bag-Avg. Similar to Bag-Max, Bag-Avg method adds an averaged pooling layer after encoding sentences in B:

$$\mathbf{s}_B = \frac{1}{|B|} \sum_{x \in B} \mathbf{s}_x. \tag{7}$$

Bag-Att. Inspired by the attention mechanism used in Lin et al. (2016), we add an attention layer to output bag-level representations for sentences in B. First we generate attention weights α for sentences in B by calculating how well it matches with their gold relation type. Then, we output a weighted sum of representations:

$$\mathbf{s}_B = \sum_{x \in B} \alpha_x \mathbf{s}_x,\tag{8}$$

$$\alpha_x = \frac{exp(e_x)}{\sum_{x' \in B} exp(e_{x'})},$$

$$e_x = \mathbf{s}_x \mathbf{Ar},$$

where e_x measures how well \mathbf{s}_x matches with the query vector $\mathbf{r} \in \mathbb{R}^{2d}$ which is the representation of the gold relation of x, and $\mathbf{A} \in \mathbb{R}^{2d \times 2d}$ represents a diagonal matrix.

Systems	F1
Baseline (ReP-GOLD)	68.67
ReP-AUTO	66.75
ReP - $GOLD \cup ReP$ - $AUTO$	68.53
ReP-GOLD + Google	69.37
ReP-GOLD + Baidu	69.12
ReP-GOLD + Xiaoniu	69.24
ReP-GOLD + Bag-Max	69.45
ReP-GOLD + Bag-One	69.46
ReP-GOLD + Bag-Avg	69.60
ReP-GOLD + Bag-Att	69.38

Table 4: Comparison with Baseline on test set.

Systems	F1
CNN-PE [†] (Zeng et al., 2014)	61.1
PCNN [†] (Zeng et al., 2015)	62.0
SDP-LSTM [‡] (Xu et al., 2015)	58.7
Tree-LSTM [‡] (Tai et al., 2015)	62.7
PA-LSTM (Zhang et al., 2017)	65.1
SA-LSTM+D (Yu et al., 2019)	67.6
C-GCN + PA-LSTM (Zhang et al., 2018)	68.2
MTB on $BERT_{large}$ (Soares et al., 2019)	71.5
Baseline on $BERT_{base}$	68.7
ReP-GOLD + Bag-Avg on $BERT_{base}$	69.6
Baseline on $BERT_{large}$	70.2
ReP-GOLD + Bag-Avg on $BERT_{large}$	70.8

Table 5: Comparion with previous results. † marks results reported in Yu et al. (2019); ‡ marks results reported in Zhang et al. (2017).

COLING 2020

Logic-guided Semantic Representation Learning for Zero-Shot Relation Classification

```
Juan Li<sup>1,2</sup>*, Ruoxu Wang<sup>1,2</sup>*, Ningyu Zhang<sup>1,2</sup>*, Wen Zhang<sup>1,2</sup>,

Fan Yang<sup>1,2</sup>, Huajun Chen<sup>1,2</sup>†

<sup>1</sup> Zhejiang University

<sup>2</sup> AZFT Joint Lab for Knowledge Engine
{lijuan18, ruoxuwang, zhangningyu, wenzhang2015, 21821249, huajunsir}@zju.edu.cn
```

Zero-shot RC

- 从句子中预测实体间没有见过的关系类别(零样本)
 - 更符合现实场景(存在大量细粒度的关系类别)
- 前人方法
 - 阅读理解(Levy et al., 2017): 构造针对关系类别的问题达到zero-shot的效果
 - 文本蕴含(Obamuyide and Vlachos, 2018): 句子为前提,关系三元组的描述为假设
 - 依赖人力构造问题和关系的描述

Zero-shot RC

Relation	Question Template
	Where did x graduate from?
$educated_at(x,y)$	In which university did x study?
	What is x 's alma mater?
	What did x do for a living?
occupation(x,y)	What is x 's job?
,	What is the profession of x ?
	Who is x's spouse?
spouse(x,y)	Who did x marry?
,	Who is x married to?

Figure 1: Common knowledge-base relations defined by natural-language question templates.

Relation	Subject (X)	Object (Y)	Text (Premise)	Description (Hypothesis)
religious_order	Lorenzo Ricci	Society of Jesus	X (August 1, 1703 – November 24, 1775) was an Italian Jesuit, elected the 18th Superior General of the Y.	X was a member of the group Y
director	Kispus	Erik Balling	X is a 1956 Danish romantic comedy written and directed by Y .	The director of X is Y
designer	Red Baron II	Dynamix	X is a computer game for the PC, developed by Y and published by Sierra Entertainment.	Y is the designer of X

Zero-shot Learning

- CV
 - 学习输入样本的特征空间到标签语义空间的映射 (DeViSE, ConSE)

动机

- 前人使用word embedding作为标签的语义空间
- 但忽略了关系之间的语义联系
 - 隐式: Knowledge Graph Embedding (KGE),相似关系在空间中更接近
 - 显式: Rule Learning (RL),人类使用符号推理,基于已知关系识别未知关系
 - If located in country (x, y) and next to body of water (x,z)

Then basin country of (y,z)

动机

- 前人使用word embedding作为标签的语义空间
- 但忽略了关系之间的语义联系
 - 隐式: Knowledge Graph Embedding (KGE),相似关系在空间中更接近
 - 如TranE,只依赖于KG的结构信息得到关系表示,不使用word信息
 - 显式: Rule Learning (RL),人类使用符号推理,基于已知关系识别未知关系
 - 从大规模KG中抽取规则

方法

Figure 2: The architecture of Logic-guided Semantic Representation Learning model.

Feature Representation

$$f = PCNN(x_1, ..., x_n)$$

$$g = W * f + b$$

$$R_t^S, p_t, E(R_t^S) = C(f), t = 1, ..., T$$

$$g = \sum_{t=1}^{T} p_t * E(R_t^S)$$

KG Embedding

$$E_{kw} = W_2 * ([E_{kg}; E_{wd}] + b_2)$$

~ -

Rule-guided Embedding

• 使用经典的规则挖掘方法AMIE,从KG中生成规则以及他们对应的PCA置信度

$$E_{rl}(R_i^U) = \frac{\sum_{j=1}^K conf_j * E_{kg}(Rule_{ij}^U)}{\sum_{j=1}^K conf_j}$$

with two rules about unseen relation $r, R1: r_A \wedge r_B \Rightarrow r$ and $R2: r_C \wedge r \Rightarrow r_D$, following TransE's assumption, we calculate embedding of r via $E_{rl}(r) = \frac{conf_1*[E_{kg}(r_A)+E_{kg}(r_B)]+conf_2*[E_{kg}(r_D)-E_{kg}(r_C)]}{conf_1+conf_2}$.

Inference

$$\overline{y_i} = sim(f_{x_i}, E(R_{x_i}^U))$$

Results

	ConSE(Hit@n)			DeViSE(Hit@n)		
	1	1 2 5		1	2	5
$+E_{wd}$	0.21	0.30	0.43	0.11	0.19	0.39
$+E_{kg}$	0.39	0.53	0.69	0.22	0.38	0.57
+ E_{rl}	0.40	0.54	0.72	0.23	0.39	0.58
$+E_{kw}$	0.39	0.55	0.72	0.23	0.40	0.59
+ $E_{m{rw}}$	0.40	0.55	0.70	0.23	0.34	0.57
+ $E_{\boldsymbol{kr}}$	0.43	0.57	0.74	0.25	0.39	0.59

Results

Unseen Relations	1	score	Top 3 Related Seen Relations			
Cliscell Relations	$+E_{kg}$	$+E_{wd}$	$+E_{kg}$	$+E_{wd}$		
			performer	influenced_by		
lyrics_by	0.52	0.06	composer	spouse		
			cast_member	cast_member		
			author	named_after		
after_a_work_by	0.51	0.01	screenwriter	author		
			creator	characters		
			headquarters_location	subclass_of		
location_of_formation	0.46	0.02	location	opposite_of		
			capital	part_of		
			award_received	award_received		
nominated_for	0.97	0.56	winner	part_of		
			participant_of	member_of		
		0.83	follows	child		
mother	0.40		spouse	spouse		
			twinned_administrative_body	father		
		0.49	publisher	manufacturer		
developer	0.38		manufacturer	publisher		
			owned_by	owned_by		
		0.00	position_held			
office_contested	0.26		successful_candidate			
			applies_to_jurisdiction			
occupant		0.00	owned_by			
	0.31		location			
			headquarters_location			
			member_of_sports_team			
drafted_by	0.81	0.00	educated_at			
			member_of			

Results

Unseen			F1-s	core			Related rules w.r.t. unseen relations
Relations	$+E_{wd}$	$+E_{kg}$	$+E_{rl}$	$+E_{kw}$	$+E_{rw}$	$+E_{kr}$	Related fules w.i.t. unseen relations
mother	0.83	0.40	0.77	0.53	0.80	0.78	$mother(x,z) \Leftarrow spouse(x,y) \land father(y,z)$ $mother(x,y) \Leftarrow child(y,x)$
lyrics_by	0.06	0.52	0.51	0.49	0.48	0.52	$lyrics_by(x,y) \Leftarrow composer(x,y)$
nominated_for	0.56	0.97	0.96	0.97	0.96	0.96	$nominated_for(x,z) \leftarrow award_received(x,y) \land winner(y,z)$
producer	0.41	0.52	0.55	0.54	0.52	0.53	$producer(x,y) \Leftarrow director(x,y)$ $producer(x,y) \Leftarrow screenwriter(x,y)$ $producer(x,y) \Leftarrow cast_member(x,y)$
field_of_work	0.04	0.14	0.29	0.11	0.29	0.37	$field_of_work(x,y) \Leftarrow occupation(x,y)$
connecting_line	0.00	0.10	0.43	0.28	0.42	0.47	$connecting_line(x,z) \leftarrow adjacent_station(y,x) \land part of(y,z)$
residence	0.01	0.32	0.30	0.30	0.38	0.39	$residence(x,y) \Leftarrow place_of_birth(x,y)$ $residence(x,y) \Leftarrow place_of_death(x,y)$

Table 4: Results of all different embeddings on F1 score when regrading ConSE as project funtion, and related rules w.r.t unseen relations.

Thanks!