Digital Integrated Circuit Lecture 4 Introduction, MOS Transistor Theory

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 3

- Multiplixer
 - Using the tristates, we can implement multiplexers.
- CMOS fabrication
 - Inverter cross-section
 - N-well formation: Lithography, ion-implantation, thermal diffusion

1.5 CMOS Fabrication and Layout

1.5. CMOS fabrication (12)

- Gate oxide and polysilicon
 - -The thin oxide is grown in a furnace.
 - -Then, the polysilicon layer is grown.

Polysilicon
Thin gate oxide

1.5. CMOS fabrication (13)

Gate patterning

1.5. CMOS fabrication (14)

Protective layer

1.5. CMOS fabrication (15)

- N-diffusion
 - Patterned with the n-diffusion mask

1.5. CMOS fabrication (16)

- Ion implantation
 - Due to the historical reason, it is called *n-diffusion*.
 - The gate blocks the diffusion so the source & drain are separated by a channel under the gate.
 - This is called a *self-aligned* process.

1.5. CMOS fabrication (17)

- P-diffusion
 - Repeat the previous process for the p-diffusion mask.

1.5. CMOS fabrication (18)

Contacts

- -The field oxide is grown to insulate the wafer from metal.
- It is patterned with the contact mask.

1.5. CMOS fabrication (19)

 Metalization Metal Metal Thick field oxide p+ n+ n+ p+ p+ n+ n well p substrate

1.5. CMOS layout (1)

Layout

- Minimum dimensions of masks determine transistor size.
- Feature size refers to minimum transistor length.
- $-\lambda$ is half the feature size.
- Transistor dimensions specified as Width / Length in λ .

- In digital systems, transistors are typically chosen to have the

V_{DD}

minimum possible length.

Fig. 1.40

1.5. CMOS layout (2)

- Standard cell design methodology
 - Four horizontal strips: metal groun at the bottom, n-diffusion, p-diffusion, and metal power at the top
 - -The power and ground lines are often called *supply rails*.
 - Gate lines run vertically to form transistor gates.

Fig. 1.41(b)

1.5. CMOS layout (3)

• NAND3

Fig. 1.42

2.1 Introduction

2.1. Introduction (1)

- MOS capacitor
 - -Gate / oxide / body
- Operating modes
 - -(a) Accumulation
 - -(b) Depletion
 - -(c) Inversion

Fig. 2.2

2.1. Introduction (2)

An example

Gate voltage (V)

2.1. Introduction (3)

- MOSFET is a four-terminal device.
 - -Source and drain are symmetric.

- By convention, the source is biased with a lower voltage. Therefore, $V_{ds} \ge 0$.
- The body of an NMOSFET is grounded.
- Operation regions: Subthreshold, linear, and saturation

2.1. Introduction (4)

- When the gate-to-source voltage is lower than the threshold voltage (V_t) ,
 - No mobile carrier. Therefore,

$$I_d \approx 0$$

Fig. 2.3(a)

2.1. Introduction (5)

- Linear mode
 - When $V_{gs} > V_t$, we have an inversion channel.

– By applying a positive V_{ds} , we have $I_d > 0$.

Fig. 2.3(b) & (c)

2.1. Introduction (6)

- Saturation
 - When $V_{ds} > V_{gs} V_t$, the drain current is controlled only by the gate voltage and ceases to be influenced by the drain.

Fig. 2.3(d)

2.2 Long-channel IV

2.2. Long-channel IV (1)

- Current through the channel depends on
 - How much "electron" charge is in the channel?
 - How fast is the charge moving?
- Charge

$$Q_{channel} = C_g (V_{gc} - V_t)$$

-Note) $Q_{channel}$ for electrons. (It should be negative, but in the above equation, it is understood.)

Fig. 2.5

2.2. Long-channel IV (2)

Capacitance

$$C_g = C_{OX}WL$$

-The "oxide capacitance," C_{OX} , is given as

$$C_{OX} = \frac{\epsilon_{OX}}{t_{OX}}$$

Calculate C_{OX} , when the effective oxide thickness is 1 nm.

Fig. 2.6

2.2. Long-channel IV (3)

- IV characteristics
 - After some manipulation, we have

Subthreshold

Linear

Saturation

-Here,

$$I_d = 0$$

$$I_d = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$I_d = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

$$\beta = \mu_n C_{OX} \frac{W}{L}$$

Calculate I_d at $V_{as} = V_{ds} =$ $\beta = \mu_n C_{OX} \frac{W}{L}$ 1.0 V, when W/L = 2, $t_{ox} = 1$ 1 nm, $\mu_n = 80$ cm²/V sec, and V_t is 0.3 V.

Thank you!