Aprendizaje de Máquina Temario

Fernando Esponda

fernando.esponda@itam.mx Departamento de Computación ITAM

1. Objetivo

Que el alumno conozca a fondo algunas de las principales técnicas de aprendizaje de máquina: sus algoritmos, teoría y aplicación, y que se familiarice, a través de la práctica, con el procedimiento de elaboración de un modelo.

2. Temas

- Conceptos del aprendizaje de máquina
- Aprendizaje Supervisado
 - Método de Bayes básico
 - Regresores lineales y no lineales
 - Redes neuronales
 - Máquinas de soporte vectorial
 - Árboles de decisión
 - k-vecinos cercanos
- Medidas de error
- Evaluación de modelos y teoría del aprendizaje
- Reducción de Dimensionalidad
- Aprendizaje No-supervisado
 - Algoritmo a-priori
 - Expectation Maximization y k-medias
 - Agrupamiento jerárquico
 - Agrupamiento por densidad
- Ensambles de Modelos
 - Árboles aleatorios
 - "Bagging"
 - "Boosting"
- Opcionales: Sistemas de recomendación, Deep Learning, detección de anomalías, aprendizaje reforzado y técnicas de muestreo

3. Dinámica

- Tres horas semanales
- Aproximadamente 1.5 horas de cátedra, media hora para discutir artículos y 1 hora para realizar ejercicios. Cada clase se asigna, posiblemente, un conjunto de lecturas, vídeos y un ejercicio. Las lecturas y los videos se comentan en conjunto y les ejercicios se revisan durante clase. Los ejercicios se consideran entregados a tiempo hasta la clase siguiente de su asignación. A partir de entonces se pierde un punto por semana.

4. Calificaciones

Calificación final = $0.20E_1 + 0.20E_2 + 0.3Eje + 0.3Proy$

Donde E_1 y E_2 son exámens, Eje son los ejercicios de clase y Proy son los proyectos y presentaciones

5. Software

- Lenguajes de programación: Python, C o Java
- Paquetes: Excel, Matlab (Octave), R, Pandas, Scikit-learn, Pylab

6. Bibliografía

Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics, 2nd edition, 2009.

Bishop, C. M., Pattern Recognition and Machine Learning, New York, N. Y.: Springer Science+Business Media, c2006.

Flach, P. Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge, 2012 Marsland, S., Machine Learning: An Algorithmic Perspective, Boca Raton, Fla.: CRC Press, c2009.