Analýza sentimentu recenzí filmů IMDB pomocí Stanza

Kód předmětu: 4IZ470

Název předmětu: Dolování znalostí z webu

Autor: Hoang Anh Tran Nguyenová

Obsah

Uvod	2
Dataset	Error! Bookmark not defined.
Stanza	4
Tokenizace a segmentace vět	5
Rozšíření víceslovných tokenů (MWT)	5
Lemmatizace	5
POS a morfologické funkce	5
Analýza sentimentu	6
Experiment	7
Import knihoven a načtení dat	8
Čištění a předzpracování dat	9
Stažení a inicializace knihovny Stanza	10
Rozdělení dat a vektorizace TF-IDF	12
Trénování modelu a hodnocení	13
Generování a vizualizace wordcloudů	14
7ávěr	16

Úvod

V rámci této semestrální práce jsem si jako nástroj sentimentální analýzy vybrala knihovnu Stanza, vyvinutou Stanfordovou univerzitou. Na tento nástroj jsem narazila při vyhledávání technik v oblasti zpracování přirozeného jazyka (NLP) na internetu. Stanza byla navržena tak, aby poskytovala robustní a přesné NLP nástroje pro více než 60 jazyků. Mezi hlavní vlastnosti knihovny Stanza patří modularita, jednoduchost použití, kvalita modelů, podpora více jazyků a integrace s dalšími nástroji.

Prozkoumáme dataset **imdb_movies.xlsx**, který obsahuje titul, žánry, rok a recenze filmů. Tento dataset jsem vytvořila v Excelu pomocí on-line databáze IMDB. Nejprve připravíme data a prostředí, načteme a předzpracujeme data, poté inicializujeme knihovnu Stanza a provedeme analýzu sentimentů na vzorku dat. Nakonec vyhodnotíme model a experimentujeme s parametry.

Experimentální část semestrální práce se zaměřuje na provedení a vyhodnocení sentimentální analýzy filmových recenzí z datasetu IMDB pomocí knihovny Stanza. Cílem této části je klasifikovat jednotlivé recenze jako pozitivní, neutrální nebo negativní.

Tato semestrální práce nemá textový ani věcný překryv, ani jinou věcnou souvislost, s jinými semestrálními nebo kvalifikačními pracemi, které jsem zpracovávala.

Data set

Datová sada použitá v této práci byla vytvořena mnou pomocí stránky IMDB, kde jsem prohledávala jednotlivé filmy a přidávala atributy a hodnoty do Excel souboru. Jedná se o datovou sadu IMDB obsahující 12 filmů, přičemž ke každému filmu jsou 3 recenze, tedy dohromady 36 recenzí.

Popis sloupců jsou uvedeny níže:

- movie_title: název filmu.
- genres: žánry spojené s filmem oddělené středníkem.
- year: rok uvedení filmu.
- reviews: recenze spojené s filmem oddělené středníkem.

Stanza

Stanza je NLP knihovna vyvinutá Stanfordovou univerzitou, která poskytuje nástroje pro zpracování přirozeného jazyka v mnoha jazycích. Obsahuje nástroje, které mohou být použity v pipeline k převodu řetězce obsahujícího text v lidském jazyce na seznamy vět a slov, k vygenerování základních tvarů těchto slov, jejich částí řeči a morfologických rysů, k syntaktickému rozboru závislostí struktury a k rozpoznávání pojmenovaných entit. Sada nástrojů je navržena tak, aby byla paralelní mezi více 70 jazyky a využívala formalismus univerzálních závislostí.

Stanza je postavena na vysoce přesných komponentách neuronových sítí, které rovněž umožňují efektivní trénování a vyhodnocování s vlastními anotovanými daty. Moduly jsou postaveny nad knihovnou PyTorch. Mnohem vyššího výkonu dosáhnete, pokud software spustíte na počítači s grafickým procesorem.

Stanza navíc obsahuje rozhraní jazyka Python k balíčku CoreNLP Java a dědí z něj další funkce, jako je například rozbor konstituentů, řešení koreferencí a porovnávání jazykových vzorů. (Pro použití základních nativních funkcí programu Stanza však není nutné mít balíček CoreNLP).

Stručně řečeno, Stanza nabízí:

- Kompletní neuronovou síť pro robustní analýzu textu, včetně tokenizace, expanze víceslovných tokenů (MWT), lemmatizace, označování částí řeči (POS) a morfologických rysů, rozboru závislostí a rozpoznávání pojmenovaných entit
- Předtrénované neuronové modely podporující 70 (lidských) jazyků
- Stabilní, oficiálně spravované rozhraní jazyka Python pro CoreNLP

Níže je uveden přehled pipeline neuronových sítí NLP nástroje Stanza:

Obrázek 1 - Stanza pipeline

Tokenizace a segmentace vět

Tokenizaci a segmentaci vět ve Stanze provádí společně TokenizeProcessor. Tento procesor rozdělí nezpracovaný vstupní text na tokeny a věty, takže následná anotace může probíhat na úrovni vět. Tento procesor lze vyvolat příkazem Tokenize.

Rozšíření víceslovných tokenů (MWT)

Rozšiřující modul Multi-Word Token (MWT) dokáže rozložit surový token na více syntaktických slov, což usnadňuje provádění analýzy univerzálních závislostí v některých jazycích. O to se stará MWTProcessor ve Stanze a lze jej vyvolat pod jménem mwt. Token, na kterém bude provedena expanze, předpovídá TokenizeProcessor ještě před vyvoláním MWTProcessoru.

Lemmatizace

Modul lemmatizace obnovuje tvar lemmatu pro každé vstupní slovo. Například vstupní sekvence "snědl jsem jablko" bude lemmatizována na "jíst jablko". Tento typ normalizace slov je užitečný v mnoha reálných aplikacích. V systému Stanza provádí lemmatizaci nástroj LemmaProcessor, který lze vyvolat pomocí jména lemma.

POS a morfologické funkce

Modul pro označování částí řeči (POS) a morfologických rysů označuje slova univerzálními značkami POS (UPOS), značkami POS specifickými pro jednotlivé stromy (XPOS) a univerzálními morfologickými rysy (UFeats). To společně provádí POSProcessor v systému Stanza a lze jej vyvolat pomocí jména pos.

Analýza sentimentu

Stanza používá konvoluční neuronovou síť (CNN) k klasifikaci sentimentu. CNN je typ neuronové sítě vhodný pro zpracování dat s mřížkovou topologií, jako jsou obrazy nebo sekvence textu.

Experiment

Jak bylo uvedeno v úvodu, cílem tohoto experimentu je klasifikovat jednotlivé recenze jako pozitivní, neutrální nebo negativní pomocí přístupů zpracování přirozeného jazyka (NLP) a strojového učení. Tento experiment má pět hlavních cílů. Prvním cílem je, že vytvoříme automatickou klasifikaci recenzí. Vytvoříme model, který dokáže automaticky přiřadit sentiment k jednotlivým recenzím filmů. To zahrnuje trénování modelu strojového učení na datech recenzí a následné hodnocení jeho výkonu. Dalším cílem je získat vyhodnocení přesnost a efektivitu modelu strojového učení pomocí standardních metrik, jako jsou přesnost, preciznost, odvolání (recall) a F1 skóre. Poté výsledky budou vizualizovány pomocí wordcloudů, které zobrazují nejčastěji se vyskytující slova v pozitivních, neutrálních a negativních recenzích.

Tento experiment umožňuje automatizovanou a efektivní analýzu uživatelských recenzí filmů, což může být užitečné pro filmová studia, marketingové analýzy nebo pro samotné uživatele, kteří se chtějí rychle zorientovat v obecném názoru na konkrétní film.

Více o postup python kódu lze vidět v HTML souboru sentiment_analysis.html.

Import knihoven a načtení dat

Nejprve je nutné zajistit, aby byly nainstalovány potřebné knihovny: pandas, stanza, scikit-learn, matplotlib a wordcloud.

pip install pandas openpyxl stanza scikit-learn matplotlib wordcloud

Poté importujeme potřebné knihovny v Pythonu, načteme soubor s daty recenzí filmů a připravíme data pro analýzu

```
import pandas as pd
import stanza
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
import matplotlib.pyplot as plt
from wordcloud import WordCloud

# Load the Excel file
file_path = './imdb_movies.xlsx'
df = pd.read_excel(file_path)

# Display the first few rows of the dataframe
df.head()
```

:	movie_title	genres	year	reviews
0	The Fall Guy	action;comedy;drama	2024	"A disappointing spectacle ."; "Absolute pure
1	Hellboy	action;adventure; fantasy	2019	"Terrible Writing, Weird Directing and Awful C
2	Train to Busan	action;horror;thriller	2016	"Unforgettable experience! One of the best zom
3	Mother of the Bride	comedy;drama;romance	2024	"Poor acting."; "Another rom com nightmare .";
4	The Iron Claw	biography; drama; sport	2023	"To me, this was good, but not great."; "Wheth

Obrázek 2 - výstup 1

Čištění a předzpracování dat

Data vyčistíme a odstraníme chybějící hodnoty, rozdělíme jednotlivé recenze oddělené středníkem do seznamů a poté je rozšíříme do samostatných řádků pro další analýzu.

```
# Drop rows with missing values
df.dropna(inplace=True)

# Function to split semicolon-separated reviews into individual entries
df['reviews'] = df['reviews'].apply(lambda x: [review.strip().strip('"')
for review in x.split(';')])

# Verify the structure after splitting
print("After splitting:", df['reviews'].head())

# Explode the reviews into separate rows
df_exploded = df.explode('reviews')

# Print the length of the reviews column array
print(f'Number of reviews: {len(df_exploded["reviews"])}')

# Display the first few rows after processing
df_exploded.head()
```

```
After splitting: 0 [A disappointing spectacle ., Absolute pure fu...

1 [Terrible Writing, Weird Directing and Awful C...

2 [Unforgettable experience! One of the best zom...

3 [Poor acting., Another rom com nightmare ., Li...

4 [To me, this was good, but not great., Whether...

Name: reviews, dtype: object

Number of reviews: 36
```

	movie_title	genres	year	reviews
0	The Fall Guy	action;comedy;drama	2024	A disappointing spectacle .
0	The Fall Guy	action;comedy;drama	2024	Absolute pure fun, you won't be disappointed.
0	The Fall Guy	action;comedy;drama	2024	One Of The Most Entertaining Films Of The Year .
1	Hellboy	action;adventure; fantasy	2019	Terrible Writing, Weird Directing and Awful CGI .
1	Hellboy	action;adventure; fantasy	2019	Neither a complete disaster nor a triumph.

Obrázek 3 - výstup 2

Stažení a inicializace knihovny Stanza

Provedeme analýzu pomocí Stanza a posoudíme, jestli recenze je:

- Pozitivní = 2
- Neutrální = 0
- Negativní = 1

Používáme seznamy pozitivních a negativních slov k dodatečné úpravě sentimentu.

```
# Download the stanza model
stanza.download('en')
nlp = stanza.Pipeline('en',
processors='tokenize, mwt, pos, lemma, sentiment')
# Lists of positive and negative words
positive words = set([
'good', 'great', 'excellent', 'amazing', 'wonderful', 'best', 'love', 'fantastic', 'awesome', 'superb'
negative words = set([
   'bad', 'terrible', 'awful', 'worst', 'poor', 'hate', 'disappointing',
'weird', 'waste', 'horrible'
# Function to preprocess text using stanza and assign sentiment
def preprocess and assign sentiment(text):
    doc = nlp(text)
    processed text = ' '.join([word.lemma for sent in doc.sentences for
word in sent.words if word.text.isalpha()])
    # Assign sentiment based on stanza sentiment analysis
    sentiment scores = [sent.sentiment for sent in doc.sentences if
sent.sentiment is not None]
    sentiment score = sum(sentiment scores) if sentiment scores else 0
    # Custom sentiment adjustment based on positive and negative words
    words = set(processed_text.split())
    positive count = len(words & positive words)
    negative count = len(words & negative words)
    if sentiment_score > 0 or positive_count > negative_count:
        sentiment = 2 \# Positive
    elif sentiment_score < 0 or negative_count > positive_count:
        sentiment = 1 # Negative
    else:
        sentiment = 0 # Neutral
    return processed text, sentiment
# Apply the function to create the processed reviews and sentiment
columns
df exploded['processed reviews'], df exploded['sentiment'] =
zip(*df exploded['reviews'].apply(preprocess and assign sentiment))
# Display the first few rows of the processed dataframe
df exploded.head()
```

Obrázek 4 - výstup 3

	A T	В Т	C T	D T	E T	F T
1	movie_title	genres	year	reviews	processed_revi	sentiment
2	The Fall Guy	action;comedy;d	2,024	A disappointing	a disappointing	1
3	The Fall Guy	action;comedy;d	2,024	Absolute pure fu	absolute pure fu	2
4	The Fall Guy	action;comedy;d	2,024	One Of The Mos	one of the most	2
5	Hellboy	action;adventure	2,019	Terrible Writing,	terrible write we	1
6	Hellboy	action;adventure	2,019	Neither a compl	neither a comple	0
7	Hellboy	action;adventure	2,019	Fun, entertaining	fun entertaining	2
8	Train to Busan	action;horror;thr	2,016	Unforgettable ex	unforgettable ex	2
9	Train to Busan	action;horror;thr	2,016	An overall excell	a overall exceller	2
10	Train to Busan	action;horror;thr	2,016	Starts off good.	start off good tu	2
11	Mother of the Bi	comedy;drama;r	2,024	Poor acting.	poor acting	1
12	Mother of the Bi	comedy;drama;r	2,024	Another rom cor	another ROM co	0

Obrázek 5 - výstřižek souboru imbd_movies_sentiment_scores.xlsx

Celou tabulku lze vidět v souboru imbd_movies_sentiment_scores.xlsx.

Rozdělení dat a vektorizace TF-IDF

Kód připravuje textová data pro strojové učení tím, že je rozdělí na trénovací (80 %) a testovací (20 %) sady a transformuje textová data do numerické podoby pomocí TF-IDF.

```
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer

# Split the data into training and testing sets
X = df_exploded['processed_reviews']
y = df_exploded['sentiment']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

# Display the shape of the TF-IDF feature matrix
X_train_tfidf.shape
```

(28, 100)

Výstup ukazuje, že trénovací TF-IDF matice má 28 dokumentů a pro každý dokument je 100 vlastností reprezentovaných TF-IDF hodnotami.

Trénování modelu a hodnocení

V této části použijeme logistickou regresi pro trénování modelu a vyhodnotíme jeho výkon na testovací sadě.

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix

# Train a logistic regression model
model = LogisticRegression()
model.fit(X_train_tfidf, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test_tfidf)

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print('Classification Report:')
print(classification_report(y_test, y_pred, zero_division=0))
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.75

Classification Report:

	precision	recall	f1-score	support
0	0.50	1.00	0.67	1
1	0.00	0.00	0.00	1
2	0.83	0.83	0.83	6
accuracy			0.75	8
macro avg	0.44	0.61	0.50	8
weighted avg	0.69	0.75	0.71	8

Confusion Matrix:

[[1 0 0]

[0 0 1]

[1 0 5]]

Obrázek 6 - výstup 4

Accuracy (přesnost) 0,75 znamená, že model správně klasifikoval 75 % testovacích dat.

U klasifikační zprávy model nedokázal správně klasifikovat žádnou z neutrálních recenzí, což je zřejmé z nízkých hodnot preciznosti, odvolání a F1-skóre pro třídu 1, ale naopak ukazuje dobrý výkon při klasifikaci negativních a pozitivních recenzí, což je patrné z vysokého odvolání a F1-skóre pro třídy 0 a 2.

Matice záměn ukazuje, jak byly recenze klasifikovány v porovnání s jejich skutečnými třídami:

- [1 0 0]: 1 negativní recenze byla správně klasifikována jako negativní.
- [0 0 6]: Všechny neutrální recenze byly nesprávně klasifikovány.
- [0 1 5]: 5 pozitivních recenzí bylo správně klasifikováno jako pozitivní, ale 1 pozitivní recenze byla nesprávně klasifikována jako neutrální.

Generování a vizualizace wordcloudů

Vygenerujeme a zobrazíme wordcloudy pro pozitivní, neutrální a negativní recenze. Word cloud je vizuální reprezentace slov v textu, kde velikost každého slova odpovídá jeho frekvenci nebo důležitosti v textu.

```
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# Generate word clouds
positive_reviews = ' '.join(df_exploded[df_exploded['sentiment'] ==
2]['processed_reviews'])
neutral_reviews = ' '.join(df_exploded[df_exploded['sentiment'] ==
0]['processed_reviews'])
negative_reviews = ' '.join(df_exploded[df_exploded['sentiment'] ==
1]['processed reviews'])
# Check the lengths of the review strings
print(f'Length of positive reviews: {len(positive reviews)}')
print(f'Length of neutral reviews: {len(neutral reviews)}')
print(f'Length of negative reviews: {len(negative reviews)}')
# Generate word clouds only if there are words in the reviews
positive wordcloud = WordCloud(width=800, height=400,
background color='white').generate(positive reviews) if
len(positive_reviews) > 0 else None
neutral wordcloud = WordCloud(width=800, height=400,
background color='gray').generate(neutral reviews) if
len(neutral reviews) > 0 else None
negative wordcloud = WordCloud(width=800, height=400,
background color='black').generate(negative reviews) if
len(negative reviews) > 0 else None
plt.figure(figsize=(15, 5))
if positive wordcloud:
   plt.subplot(1, 3, 1)
   plt.imshow(positive_wordcloud, interpolation='bilinear')
   plt.title('Positive Reviews')
   plt.axis('off')
if neutral wordcloud:
   plt.subplot(1, 3, 2)
    plt.imshow(neutral wordcloud, interpolation='bilinear')
    plt.title('Neutral Reviews')
   plt.axis('off')
if negative wordcloud:
   plt.subplot(1, 3, 3)
    plt.imshow(negative wordcloud, interpolation='bilinear')
    plt.title('Negative Reviews')
   plt.axis('off')
plt.show()
```

Length of positive reviews: 778
Length of neutral reviews: 247
Length of negative reviews: 148

Positive Reviews

beautiful whether reviews were thing with the review of the reviews of the review of

Obrázek 7 - výstup 5

Výsledné hodnoty znamenají, že kombinovaný text pro pozitivní recenze má 778 znaků, pro neutrální recenze 247 znaků a pro negativní recenze 148 znaků.

Závěr

Experimenty ukazují, že analýza sentimentu recenzí filmů IMDB je proveditelná a poskytuje užitečné poznatky o názorech uživatelů. Kombinace knihovny Stanza a modelu logistické regrese umožňuje efektivní klasifikaci recenzí.

Hlavním úkolem experimentu bylo analyzovat sentiment recenzí filmů IMDB a klasifikovat tyto recenze jako pozitivní, neutrální nebo negativní. Tento úkol se nám podařilo splnit, i když o její věrohodnosti lze jistě pochybovat.

Přestože model dosáhl dobré přesnosti, existuje prostor pro vylepšení, například použitím pokročilejších modelů strojového učení, rozšířením seznamů pozitivních a negativních slov nebo vytvořením větší množství dat uživatelských recenzí. Tímto způsobem by se daly výsledky dále zlepšit a model by mohl dosáhnout vyšší přesnosti a lepší klasifikace recenzí.

Výsledky tohoto experimentu mohou být využity k lepšímu porozumění spokojenosti diváků a identifikaci klíčových faktorů, které ovlivňují jejich názory.

Práce s knihovnou Stanza byla jednoduchá a nenarazila jsem na žádné problémy. Celkově lze říci, že knihovna Stanza je velmi dobrý nástroj pro analýzu sentimentu díky své schopnosti efektivně zpracovávat a analyzovat textová data, podpoře vícejazyčných textů a pokročilým modelům strojového učení. Její použití je uživatelsky přívětivé a dobře dokumentované, což usnadňuje integraci do různých projektů zaměřených na analýzu textu a sentimentu. Přestože je její instalace a konfigurace o něco složitější než u některých jiných knihoven, výhody, které poskytuje, tuto nevýhodu výrazně převyšují.