Universidad Autónoma de Madrid

FINAL MASTER THESIS

TDA DRAFT 1

Author: Gonzalo Ortega Carpintero

Tutor: Manuel Mellado Cuerno

Abstract

Key words

Contents

1	Preliminaries (to do work)	2
2	Structure Theorem	3
3	Stability Theorem	4

1 Preliminaries (to do work)

The contents of this chapter are based on [1], [2] and [3].

Definition 1.1 (Graded ring).

Definition 1.2 (Graded ideal).

Definition 1.3 (Graded moudule).

Definition 1.4 (Persistance module, finite type).

Definition 1.5 (Module morphism, shift).

Definition 1.6 (Interval module).

Definition 1.7 (Direct sum of persistance modules).

Definition 1.8 (Barcode).

Definition 1.9 (δ -interleaving moudules).

Definition 1.10 (Interleaving distance).

Definition 1.11 (Multiset matching).

Definition 1.12 (δ -matching barcodes).

Definition 1.13 (Bottleneck distance).

Definition 1.14 (Induced matching).

2 Structure Theorem

Fact 2.1 (Structure theorem for finitely generated modules over a principal ideal domain). Let M be a finitely generated module over a principal ideal domain. There exist a finite sequence of proper ideals $(d_1) \supseteq (d_2) \supseteq \cdots \supseteq (d_n)$ such that

$$M \cong \bigoplus_{i=1}^{n} R/(d_i).$$

Proposition 2.2. An ideal $I \subseteq R$ is graded if and only if it is generated by homogeneous elements.

Theorem 2.3 (Structure). Let (V, π) be a persistence module. There exist a barcode $Bar(V, \pi)$, with $\mu : Bar(V, \pi) \longrightarrow \mathbb{N}$, the multiplicity of the barcode intervals, such as there is a unique direct sum decomposition

$$V \cong \bigoplus_{I \in \text{Bar}(V)} \mathbb{F}(I)^{\mu(I)}.$$

Proof. (INCOMPLETE) V is of finite type, so it is a finite $\mathbb{F}[x]$ -module. As \mathbb{F} is a field, $\mathbb{F}[x]$ is a principal ideal domain, therefore, V is a finitely generated module over a principal ideal domain. Using Fact 2.1 V can be decompose in the direct sum of its free and torsion subgroups, $F \oplus T$. Thus, we have

$$F =$$

$$T = .$$

3 Stability Theorem

Lemma 3.1. Let I, J be two δ -matched intervals. Then, their corresponding interval modules $(\mathbb{F}(I), \pi)$ and $(\mathbb{F}(J), \theta)$ are δ -interleaved.

Proof. Let I=(a,b], J=(c,d]. If ρ is the δ -matching between them, then $\rho(I)=J$ and, following Definition 1.12, $(a,b]\subseteq (c-\delta,d+\delta]$ and $(c,d]\subseteq (a-\delta,b+\delta]$, with $b-a>2\delta$ and $d-c>2\delta$. Then, the morphisms

$$\phi_{\delta} : \mathbb{F}(I) \to \mathbb{F}(J)_{\delta} \quad \text{and} \quad \psi_{\delta} : \mathbb{F}(J) \to \mathbb{F}(I)_{\delta}$$
$$\phi_{\delta}(\mathbb{F}(I)_{t}) \mapsto \mathbb{F}(J)_{(t+\delta)} \quad \psi_{\delta}(\mathbb{F}(J)_{t}) \mapsto \mathbb{F}(I)_{(t+\delta)}$$

are well defined as for any $t \in (a, b]$, $t+\delta \in (c, d]$ as $a+\delta > c$ and $b+\delta \le d$. In the same way, for any $t \in (c, d]$, $t+\delta \in (a, b]$. Thus, $\psi_{\delta} \circ \phi_{\delta}(\mathbb{F}(I)_{t}) = \psi_{\delta}(\mathbb{F}(J)_{(t+\delta)}) = \mathbb{F}(I)_{(t+2\delta)} = \pi_{t \le t+2\delta}(\mathbb{F}(I)_{t})$ and $\phi_{\delta} \circ \psi_{\delta}(\mathbb{F}(J)_{t}) = \phi_{\delta}(\mathbb{F}(I)_{(t+\delta)}) = \mathbb{F}(J)_{(t+2\delta)} = \theta_{t \le t+2\delta}(\mathbb{F}(J)_{t})$. Therefore, ϕ_{δ} and ψ_{δ} are a pair of δ -interleaving morphisms. \square

Proposition 3.2. Given two persistence modules V, W, if there is a δ -matching between their barcodes, then there is a δ -interleaving morphism between them.

Proof. Suppose there is a δ -matching between the barcodes of V and W, ρ : $Bar(V) \to Bar(W)$. By the Structure Theorem 2.3, V and W decompose in a finite direct sum of interval modules

$$V \cong \bigoplus_{I \in \text{Bar}(V)} \mathbb{F}(I), \quad W \cong \bigoplus_{J \in \text{Bar}(W)} \mathbb{F}(W).$$

We can express $V = V_Y \oplus V_N$, $W = W_Y \oplus W_N$ denoting

$$V_Y \cong \bigoplus_{I \in \operatorname{coim} \rho} \mathbb{F}(I), \qquad W_Y \cong \bigoplus_{J \in \operatorname{im} \rho} \mathbb{F}(J),$$

$$V_N \cong \bigoplus_{I \in \operatorname{Bar}(V) \setminus \operatorname{coim} \rho} \mathbb{F}(I), \qquad W_N \cong \bigoplus_{J \in \operatorname{Bar}(J) \setminus \operatorname{im} \rho} \mathbb{F}(J).$$

The V_Y, W_Y modules separate the "yes, matched" intervals, from the V_N, W_N "not matched" intervals. For every interval $I \in \text{Bar}(V_Y)$, I is δ -matched to an interval $J \in \text{Bar}(W_Y)$ by $\rho(I) = J$. Thus, by Lemma 3.1, for all pair I, J of matched intervals, there exist a par of δ -interleaved morphisms

$$\phi_{\delta} : \mathbb{F}(I) \to \mathbb{F}(J)_{\delta}$$
 and $\psi_{\delta} : \mathbb{F}(J) \to \mathbb{F}(I)_{\delta}$

which induce the pair of δ -interleaved morphisms

$$\phi_{\delta}: V_Y \to W_{Y\delta}$$
 and $\psi_{\delta}: W_Y \to V_{Y\delta}$.

Not matched intervals are of length smaller than 2δ , therefore both, V_N and V_Y are δ -interleaved with the empty set. We can now construct the δ -interleaving morphism $phi: V \to W$ such as $\phi|_{V_Y} = \phi_Y$ and $\phi|_{V_N} = 0$ and, in a similar way, we also construct $\psi: W \to V$.

Let # denote the cardinal operator.

Lemma 3.3. Let I = (b, d] be an interval. It exists an injective morphism $i : (V, \pi) \in (W, \theta)$, then $\# \operatorname{Bar}(V)_I^- \le \# \operatorname{Bar}(W)_I^-$.

Lemma 3.4. Let I = (b, d] be an interval. It exists a surjective morphism $s : (V, \pi) \in (W, \theta)$, then $\# \operatorname{Bar}(V)_I^+ \ge \# \operatorname{Bar}(W)_I^+$.

Lemma 3.5. If there exists an injection $i:(V,\pi)\in(W,\theta)$, then the induced matching $\mu_{inj}: \text{Bar}(V) \to \text{Bar}(W)$ satisfies:

- 1. $\operatorname{coim} \mu_{inj} = \operatorname{Bar}(V)$,
- 2. $\mu_{inj}(b, d] = (c, d], \ \forall c \le b, \ \forall (b, d] \in Bar(V).$

Lemma 3.6. If there exists a surjection $s:(V,\pi)\in(W,\theta)$, then the induced matching $\mu_{inj}: \text{Bar}(V) \to \text{Bar}(W)$ satisfies:

- 1. $\operatorname{im} \mu_{inj} = \operatorname{Bar}(W),$
- 2. $\mu_{inj}(b,d] = (b,e], \forall b \ge e, \forall (b,e] \in \text{Bar}(V).$

Lemma 3.7. Let $(V, \pi), (W, \theta)$ are δ -interleaved persistence modules, with δ -interleaving morphisms $\phi: V \to W_{\delta}$ and $\psi: W \to V_{\delta}$. Let $\phi: V \to \operatorname{im} \phi$ be a surjection and $\mu_{sur}: \operatorname{Bar}(V) \to \operatorname{Bar}(\operatorname{im} \phi)$ the induced matching. Then

- 1. $\operatorname{coim} \mu_{sur} \supseteq \operatorname{Bar}(V)_{\geq 2\delta}$,
- 2. $\operatorname{im} \mu_{sur} = \operatorname{Bar}(\operatorname{im} \phi)$ and
- 3. $\mu_{sur}(b, d] = (b, d'], (b, d'] \in \operatorname{coim} \mu_{sur}, d' \in [d 2\delta, d].$

Lemma 3.8. Let $(V, \pi), (W, \theta)$ are δ -interleaved persistence modules, with δ -interleaving morphisms $\phi : V \to W_{\delta}$ and $\psi : W \to V_{\delta}$. Let $\phi : V \to \operatorname{im} \phi$ be a injection and $\mu_{inj} : \operatorname{Bar}(\operatorname{im} \phi) \to \operatorname{Bar}(W_{\delta})$ the induced matching. Then

- 1. $coim \mu_{sur} = Bar(im \phi),$
- 2. im $\mu_{inj} \supseteq Bar(W_{\delta})_{\geq 2\delta}$ and
- 3. $\mu_{inj}(b, d'] = (b', d'], (b, d'] \in \operatorname{coim} \mu_{inj}, b' \in [b 2\delta, b].$

Proposition 3.9. Given two persistence modules V, W, if there is a δ -interleaving morphism between them, then there is a δ -matching between their barcodes.

Theorem 3.10 (Stability). There is an isometry between a persistence module with the interleaving distance and its barcode with the bottleneck distance. This means that, given two persistence modules $V,\ W$,

$$d_{int}(V, W) = d_{bot}(Bar(V), Bar(W)).$$

Proof. Suppose $d_{int}(V, W) = \delta$. Proposition 3.9 asures there exist a δ -matching between Bar(V) and Bar(W). As $d_{bot}(V, W)$ is the infimum δ for witch exists a δ -matching, $d_{bot}(V, W) \leq d_{int}(V, W)$. On the other hand, Proposition 3.2 leads, with the same reasoning, to $d_{int}(V, W) \leq d_{bot}(V, W)$. Thus, it has to be $d_{int}(V, W) = d_{bot}(Bar(V), Bar(W))$.

References

- [1] Nanda, V. Computational algebraic topology, lecture notes. *University of Oxford* (2020).
- [2] Polterovich, L., Rosen, D., Samvelyan, K., and Zhang, J. *Topological Persistence in Geometry and Analysis*. American Mathematical Society, 2020.
- [3] Wang, K. G. The basic theory of persistent homology. *University of Chicago* (2012).