Total No	o. of Questions : 4]	SEAT No. :						
PA-16		[Total No. of Pages : 2						
	[5931]-1001 F.E.							
ENGINEERING MATHEMATICS-I								
	(2019 Pattern) (Semester							
Time: 1	Hour]	[Max. Marks: 30						
Instructi	ons to the candidates:	-						
1) 2)	Attempt Q1 or Q2 and Q3 or Q4. Figures to the right indicate full marks.							
3)	Assume suitable data wherever necessary.							
<i>4</i>)	Use of electronic pocket calculator is allowed.	9						
() ()	If $f(x) = \sin^{-1}x$ then show that $\frac{b-a}{\sqrt{1-a^2}} < S$	$\sin^{-1} b - \sin^{-1} a < \frac{b-a}{\sqrt{2}}$ where						
Q 1) a)	$1 - a^2$	$\sqrt{1-b^2}$ where						
	0 <a<b<1.< td=""><td>[5]</td></a<b<1.<>	[5]						
b)	Using Taylor's theorem, expand $1+2x+3$	$3x^2 + 4x^3$ in powers of $x+1$ [5]						
c)	Evaluate $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x}$	[5]						
	$x \rightarrow \frac{1}{2}$							
	OPO							
Q2) a)	Expand $\sqrt{1+\sin x}$ upto x^4 in ascending	powers of x [5]						
2 =) (1)	Expand VI I sin x cite x incuseending	powers of w						
b)	Expand logcosx in ascending powers of	$\left(x-\frac{\pi}{3}\right)$ upto the term in $\left(x-\frac{\pi}{3}\right)^2$						
	by using Taylor's theorem.	[5]						
c)	Find the values of a and b if $\lim_{x\to 0} \frac{\sin x + a}{x}$	$\frac{ax + bx^3}{3} = 0$ [5]						
	$x\rightarrow 0$ χ							
	$(\pi x)^2$	20, 20,						
Q3) a)	Find Fourier series for $f(x) = \left(\frac{\pi - x}{2}\right)^2$	$0 < x < 2\pi \text{ and } f(x) = f(x+2\pi)[5]$						
		(1) 8) S						
b)	Find half-range sine series for	[5]						
	f(x)=2x-1, 0 < x < 1	6.						
	Ω	· · ·						
		J						
	S. ·	P.T.O.						

X	0	1	2	3	4	500
у	9	18	24	28	26	20

Q4) a)

Find the fourier series to represent
$$f(x) = \begin{cases} -3, & -1 < x < 0 \\ 3, & 0 < x, < 1 \end{cases}, f(x) = f(x+2)$$

- Find half-range consine series for $f(x) = x^2, 0 < x < \pi$ [5] b)
- Find half-range sine series for f(x) = 1, $0 < x < \pi$. Hence using parsevals identify, deduce that [5]

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

9.18.23 applied and the state of the state o