乙酰化酶分析筛选

2024-04-17

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1.2 结果 2 前言 3 材料和方法 3.1 材料 3.2 方法 4 分析结果 5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及共相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联 与 K	1	摘要		1
2 前言 3 材料和方法 3.1 材料 3.2 方法 4 分析结果 5 结论 5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways 1.5 Reference 1.5 Reference		1.1	需求	1
3 材料和方法 3.1 材料 3.2 方法 4 分析结果 5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 统选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference List of Figures		1.2	结果	1
3.1 材料 3.2 方法 4 分析结果 5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 11 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 12 List of Figures	2	前言	i de la companya de La companya de la companya de l	1
3.1 材料 3.2 方法 4 分析结果 5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 11 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 12 List of Figures	9	1444	- 3n ->->-}-	1
3.2 方法 :: 4 分析结果 :: 5 结论 :: 6 附: 分析流程				
4 分析结果 5 结论 6 附: 分析流程 6.1 MI targets. 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference List of Figures				
5 结论 6 附: 分析流程 6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways 1.5 Reference List of Figures		ა.∠	月伝	2
6 附: 分析流程 6.1 MI targets	4	分析	结果	2
6.1 MI targets 6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 1.5 Reference	5	结论		2
6.2 MI mice DEGs 6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 17	6	附:	分析流程	2
6.2.1 数据来源 6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference List of Figures		6.1	MI targets	2
6.2.2 差异分析 6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 17 List of Figures		6.2	MI mice DEGs	4
6.2.3 基因映射 6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 17 List of Figures			6.2.1 数据来源	4
6.2.4 FKBP5 的表达 6.3 MI intersection (MI_key_DEGs) 6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 6.5 其它候选 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 6.5.2 关联分析 6.5.3 存在 PPI 关联且关联分析显著的组合 6.5.4 富集分析 6.5.5 CoA-XX-pathways Reference 17 Reference			6.2.2 差异分析	4
6.3 MI intersection (MI_key_DEGs)			6.2.3 基因映射	6
6.4 乙酰化酶 6.4.1 使用的乙酰化酶及其相关信息 8 6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 9 6.5 其它候选 10 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 10 6.5.2 关联分析 15 6.5.3 存在 PPI 关联且关联分析显著的组合 16 6.5.4 富集分析 16 6.5.5 CoA-XX-pathways 15 Reference			6.2.4 FKBP5 的表达	7
6.4.1 使用的乙酰化酶及其相关信息 8.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs) 9.5.5 其它候选 10.6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 10.6.5.2 关联分析 12.6.5.3 存在 PPI 关联且关联分析显著的组合 12.6.5.4 富集分析 14.6.5.5 CoA-XX-pathways 15.7 Reference 17.7 Reference 17.7 List of Figures		6.3	MI intersection (MI_key_DEGs)	8
6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs)		6.4	乙酰化酶	8
6.5 其它候选 16 6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 16 6.5.2 关联分析 15 6.5.3 存在 PPI 关联且关联分析显著的组合 16 6.5.4 富集分析 16 6.5.5 CoA-XX-pathways 15 Reference List of Figures			6.4.1 使用的乙酰化酶及其相关信息	8
6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs 10 6.5.2 关联分析 11 6.5.3 存在 PPI 关联且关联分析显著的组合 14 6.5.4 富集分析 14 6.5.5 CoA-XX-pathways 15 Reference 17			6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs)	9
6.5.2 关联分析		6.5	其它候选 1	0
6.5.3 存在 PPI 关联且关联分析显著的组合 14 6.5.4 富集分析 14 6.5.5 CoA-XX-pathways 15 Reference 17 List of Figures			6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs	0
6.5.4 富集分析			6.5.2 关联分析	2
6.5.5 CoA-XX-pathways			6.5.3 存在 PPI 关联且关联分析显著的组合 1	4
Reference List of Figures			6.5.4 富集分析	4
List of Figures			6.5.5 CoA-XX-pathways	5
	Re	fere	nce 1	7
	\mathbf{Li}	\mathbf{st}	of Figures	
I INGRAL TARGET NUMBER OF GATACOTE		1	Overall targets number of datasets	2
				5
				8
4 Intersection of All CoA with MI DEGs				
5 Filtered and formated PPI network				

6	MI correlation heatmap	13
7	GO enrichment	15
8	CoA XX GOpathways	16
List	of Tables	
1	GeneCards used data	3
2	MI data MI 7d vs MI sham DEGs	6
3	Mapped genes	7
4	Fkbp5 expression	8
5	All protein of CoA	9
6	PPI annotation	11
7	MI significant correlation	13
8	PPI interact and significant correlated in MI	14
9	All candidates and enriched GO BP pathways	16

1 摘要

1.1 需求

利用生物信息学分析结合已有文献资料,筛选并验证与 XX 相关的乙酰化酶 AA

具体要求为:利用开源数据库,筛选心肌梗死机体的心脏细胞中关键差异表达基因 XX 以及与乙酰化相关酶基因的关联性。

- 1. 因客户之前所做基因为 FKBP5, 故 XX 初步定为 FKBP5。假设 FKBP5 在心肌梗死机体心肌细胞中高表达,抑制 FKBP5 后可缓解心肌梗死。
- 2. 乙酰化酶 AA 备选: 去乙酰化酶 sirtuin 1 (SIRT1) 可以直接与 FKBP5 相互作用。
- 3. 若方案中的 AA 选择为 HDAC6 (客户之前发表过 LncRNA NORAD-HDAC6-H3K9 -VEGF), 那么方案中的 XX 选择不一定非要是 FKBP5, 若有创新点的更好的基因也可。

1.2 结果

- 结合数据库 MI 靶点和 MI 小鼠数据集获取一批 MI 基因 Fig. 3
- 从 epiFactor 数据库获取乙酰酶 (CoA) (Tab. 5), 筛选了 MI 中为差异表达的 CoA (Fig. 4)。
- 根据 Fig. 3 和 Fig. 4 建立 PPI 网络 (有实验基础的蛋白物理直接互作), 见 Fig. 5
- 筛选 CoA 与 DEGs 显著关联的组合, Fig. 6, Tab. 7
- 筛选上述关系: 存在 PPI 关联且关联分析显著的组合 Tab. 8
- 将上述 DEGs GO 富集分析, Fig. 7, BP 结果指向了 MI。
- 建立 CoA-XX-pathways 网络关系图, Fig. 8, 数据见 Tab. 9。
- 最后, 推荐 CoA-XX 组合为:
 - CoA:BRCA1, DEG:FLNA
 - CoA:HDAC9, DEG:PIK3CG
 - 以上 DEG 相关 GO 通路: cardiac muscle contraction; coagulation; muscle system process; regulation of body fluid levels; striated muscle contraction; wound healing
- 其它候选见 Tab. 9

注:

- FKBP5 (Fkbp5) 在 MI 中属于显著高表达, 见 Tab. 4。
- FKBP5 在 Fig. 3 被筛离。
- 尝试单独建立 PPI, 未发现 SIRT1 与 FKBP5 的直接结合作用。

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• GSE236374: Nine 8-week-old male C57BL/6JR mice were included in the experiment. The experiment was divided into 3 groups. Each group contained 3 mice, 2 groups of which required surgery to make models, called...

3.2 方法

Mainly used method:

- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package ClusterProfiler used for gene enrichment analysis².
- Database EpiFactors used for screening epigenetic regulators³.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets⁴⁻⁶.
- The Human Gene Database GeneCards used for disease related genes prediction⁵.
- R package ClusterProfiler used for GSEA enrichment².
- R package Limma and edgeR used for differential expression analysis 7,8.
- R package STEINGdb used for PPI network construction^{9,10}.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 MI targets

使用以下合集:

Figure 1 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 1: Overall targets number of datasets

The GeneCards data was obtained by querying:

myocardial infarction

Restrict (with quotes):

TRUE

Filtering by Score: :

Score > 5

Table 1 (下方表格) 为表格 GeneCards used data 概览。

(对应文件为 Figure+Table/GeneCards-used-data.xlsx)

注:表格共有 567 行 7 列,以下预览的表格可能省略部分数据;含有 567 个唯一'Symbol'。

Table 1: GeneCards used data

Symbol	Description	Category	${\bf UniProt_ID}$	GIFtS	GC_id	Score
ACE	Angiotensi	Protein Co	P12821	60	GC17P063477	75.08
MIAT	Myocardial	RNA Gene (32	GC22P026646	71.09
F7	Coagulatio	Protein Co	P08709	56	GC13P113105	54.33
ITGB3	Integrin S	Protein Co	P05106	61	GC17P112532	48.15
LTA	Lymphotoxi	Protein Co	P01374	52	GC06P134818	44.63
OLR1	Oxidized L	Protein Co	P78380	51	GC12M029495	44.32
PLAT	Plasminoge	Protein Co	P00750	58	GC08M042174	39.78
MCI2	Myocardial	Genetic Locus		4	GC13U900611	39.39
F13A1	Coagulatio	Protein Co	P00488	56	GC06M006144	39.35
CDKN2B-AS1	CDKN2B Ant	RNA Gene (31	GC09P021994	39.31
LGALS2	Galectin 2	Protein Co	P05162	47	GC22M037570	38.25
MEF2A	Myocyte En	Protein Co	Q02078	54	GC15P099565	38.14
MIR499A	MicroRNA 499a	RNA Gene (29	GC20P034990	37.65
ESR1	Estrogen R	Protein Co	P03372	62	GC06P151656	37.58
MIR208B	MicroRNA 208b	RNA Gene (27	GC14M023417	35.34

6.2 MI mice DEGs

6.2.1 数据来源

Data Source ID: GSE236374 data_processing: Raw reads were trimmed adaptor sequences and removed low-quality reads using TrimGalore with default settings data_processing.1: Trimmed reads were aligned to the mm10 reference genome by STAR with default settings data_processing.2: Read count extraction were performed using FeatureCounts data_processing.3: Assembly: mm10 (Others): ...

(上述信息框内容已保存至 Figure+Table/GSE236374-content)

6.2.2 差异分析

• MI-7d (7 day) vs Control

Figure 2 (下方图) 为图 MI MI 7d vs MI sham DEGs 概览。

(对应文件为 Figure+Table/MI-MI-7d-vs-MI-sham-DEGs.pdf)

Figure 2: MI MI 7d vs MI sham DEGs

```
adj.P.Val cut-off:
0.05

Log2(FC) cut-off:
1
```

(上述信息框内容已保存至 Figure+Table/MI-MI-7d-vs-MI-sham-DEGs-content)

Table 2 (下方表格) 为表格 MI data MI 7d vs MI sham DEGs 概览。

(对应文件为 Figure+Table/MI-data-MI-7d-vs-MI-sham-DEGs.csv)

注: 表格共有 5724 行 8 列,以下预览的表格可能省略部分数据;含有 5724 个唯一'Genesymbol'。

- 1. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 2. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 3. t: moderated t-statistic (omitted for 'topTableF')
- 4. P.Value: raw p-value
- 5. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 2: MI data MI 7d vs MI sham DEGs

rownames	Genesy	$\log FC$	AveExpr	t	P.Value	adj.P.Val	В
7514	Ctss	4.8320	7.4632	50.601	5.8181	8.3472	19.814
14679	Adamts2	3.9541	7.5930	37.675	9.6997	3.8153	17.557
23411	Col14a1	4.5612	7.5634	37.311	1.0637	3.8153	17.437
11851	Lox	5.9882	7.0429	37.907	9.1490	3.8153	17.419
21619	Fstl1	3.9252	9.4422	33.841	2.6934	6.6702	16.550
1261	Ctsh	2.6147	6.6709	31.959	4.6403	6.6702	16.144
13487	Pla2g7	4.0298	4.6625	32.933	3.4885	6.6702	16.129
22176	Laptm5	3.3558	6.9162	31.874	4.7596	6.6702	16.105
1490	Sparc	3.2522	11.160	32.579	3.8660	6.6702	16.079
6315	Hexb	3.1220	6.3869	31.264	5.7173	6.6702	15.929
5004	Ctsz	3.0952	6.9421	30.777	6.6372	6.6702	15.790
21174	Fbln5	3.7685	7.2452	30.367	7.5384	6.6702	15.656
1805	Litaf	2.3676	5.9412	30.219	7.8956	6.6702	15.624
12260	Nckap1l	3.3359	5.8304	29.954	8.5853	6.6702	15.519
3893	Gusb	2.3568	6.0931	29.740	9.1894	6.6702	15.480

6.2.3 基因映射

将小鼠基因映射到人类

Table 3 (下方表格) 为表格 Mapped genes 概览。

(对应文件为 Figure+Table/Mapped-genes.csv)

注: 表格共有 5274 行 2 列,以下预览的表格可能省略部分数据;含有 5123 个唯一'mgi_symbol;含有 5146 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)

Table 3: Mapped genes

mgi_symbol	hgnc_symbol
Tmsb4x	TMSB4Y
Hopx	HOPX
Cyth4	CYTH4
Col6a2	COL6A2
Pacsin2	PACSIN2
Fbln1	FBLN1
Sh3bp2	SH3BP2
Abcg1	ABCG1
Mipep	MIPEP
Itgb2	ITGB2
Pmepa1	PMEPA1
Maged2	MAGED2
Postn	POSTN
Slc39a6	SLC39A6
Sirpa	SIRPG

6.2.4 FKBP5 的表达

FKBP5 (Fkbp5) 在 MI 中属于显著高表达。

Table 4 (下方表格) 为表格 Fkbp5 expression 概览。

(对应文件为 Figure+Table/Fkbp5-expression.csv)

注: 表格共有1行10列,以下预览的表格可能省略部分数据;含有1个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 4: Fkbp5 expression

hgnc_s	mgi_sy	rownames	Genesy	$\log FC$	AveExpr	t	P.Value	adj.P.Val	В
FKBP5	Fkbp5	9124	Fkbp5	1.5635	5.3072	5.7027	0.0002	0.0005	0.0172

6.3 MI intersection (MI_key_DEGs)

Figure 3 (下方图) 为图 Intersection of MI DEGs with MI targets 概览。

(对应文件为 Figure+Table/Intersection-of-MI-DEGs-with-MI-targets.pdf)

Figure 3: Intersection of MI DEGs with MI targets

Intersection:

ABCG1, ITGB2, POSTN, EGLN3, PPARGC1A, LTBP2, CYBB, C3AR1, THBS1, SER-PINE1, CLU, SFRP2, TGFB3, IGFBP4, TNC, LCP1, GAS6, CTSZ, HPGDS, BGN, VLDLR, GUCY1A1, CYP4F3, LIPA, NCAM1, GLA, HLA-DMB, FERMT3, LGALS3, TLR2, MMP2, GPNMB, CYBA, ALCAM, KDR, TNNI3, ARNTL, IGFBP7, ANPEP, PPM1L, TNFRSF1B, SERPINF1, ...

(上述信息框内容已保存至 Figure+Table/Intersection-of-MI-DEGs-with-MI-targets-content)

6.4 乙酰化酶

6.4.1 使用的乙酰化酶及其相关信息

Table 5 (下方表格) 为表格 All protein of CoA 概览。

(对应文件为 Figure+Table/All-protein-of-CoA.xlsx)

注: 表格共有 145 行 25 列,以下预览的表格可能省略部分数据;含有 142 个唯一'HGNC_symbol'。

Table 5: All protein of CoA

HGNC_s	Modifi	Id	Status	HGNC_ID	HGNC_name	GeneID	UniPro8	UniPro9	Domain
ARID4A	Histon	36	#	9885	AT ric	5926	P29374	ARI4A	ARID P
ARID4B	Histon	37	#	15550	AT ric	51742	Q4LE39	ARI4B	ARID P
ATF2	Histon	49	#	784	activa	1386	P15336	ATF2_H	bZIP_1
ATXN7	Histon	55	#	10560	ataxin 7	6314	O15265	ATX7_H	Pfam-B
BANP	Histon	62	#	13450	BTG3 a	54971	Q8N9N5	BANP_H	BEN PF
BAZ2A	Histon	67	#	962	bromod	11176	Q9UIF9	BAZ2A	Bromod
BCORL1	Histon	70	#	25657	BCL6 c	63035	Q5H9F3	BCORL	$Ank_2\$
BRCA1	Histon	73	#	1100	breast	672	P38398	BRCA1	BRCT P
BRCA2	Histon	74	#	1101	breast	675	P51587	${\rm BRCA2}\$	BRCA-2
${\rm BRMS1L}$	Histon	86	#	20512	breast	84312	Q5PSV4	BRM1L	Sds3 P
BRPF3	Histon	88	#	14256	bromod	27154	Q9ULD4	BRPF3	Bromod
CDY1	Histon	115	#	1809	chromo	9085	Q9Y6F8	CDY1_H	Chromo
CDY1B	Histon	116	#	23920	chromo	253175	Q9Y6F8	CDY1_H	Chromo
CDY2A	Histon	117	#	1810	chromo	9426	Q9Y6F7	CDY2_H	Chromo
CDY2B	Histon	118	#	23921	chromo	203611	Q9Y6F7	CDY2_H	Chromo

6.4.2 筛选差异表达的乙酰化酶 (CoA_DEGs)

使用 MI 数据 (6.2) 的 DEGs, 筛选差异表达的乙酰化酶。

以 mgi_symbol 取交集。

Figure 4 (下方图) 为图 Intersection of All CoA with MI DEGs 概览。

(对应文件为 Figure+Table/Intersection-of-All-CoA-with-MI-DEGs.pdf)

Figure 4: Intersection of All CoA with MI DEGs

Intersection:

Brca1, Eid1, Eid2b, Hdac11, Hdac9, Hif1an, Jdp2, Morf4l2, Ncoa1, Nsl1, Sirt7, Smarca1, Taf7, Zbtb16

(上述信息框内容已保存至 Figure+Table/Intersection-of-All-CoA-with-MI-DEGs-content)

6.5 其它候选

6.5.1 以 PPI 网络筛选与 CoA_DEGs 相关的 MI_key_DEGs

根据 Fig. 3 和 Fig. 4 建立 PPI 网络 (有实验基础的蛋白物理直接互作)。

STRINGdb network type: :
physical

Filter experiments score: :
At least score 100

Filter textmining score: :
At least score 0

Table 6 (下方表格) 为表格 PPI annotation 概览。

(对应文件为 Figure+Table/PPI-annotation.csv)

注:表格共有 1364 行 10 列,以下预览的表格可能省略部分数据;含有 381 个唯一'from'。

1. experiments: 相关实验。

Table 6: PPI annotation

from	to	homology	experi4	experi5	database	databa	textmi8	textmi9	
TNFRSF1A	RIPK3	0	292	0	0	0	473	0	
DCN	PLAT	0	205	0	0	0	0	0	
DCN	TGFB1	0	457	0	500	0	979	60	
MMP2	TGFB1	0	548	0	0	0	118	0	
PLAT	SERPINE1	0	955	0	700	0	982	0	
MYH9	ACTA2	0	205	97	900	0	0	91	
MMP2	COL1A1	0	292	0	0	0	0	0	
TGFB1	VDR	0	292	0	0	0	0	0	
COL1A1	VDR	0	292	0	0	0	0	0	
MMP2	LOX	0	238	0	0	0	0	0	
COL1A1	LOX	0	230	0	0	0	0	0	
COL1A1	SPARC	0	457	0	0	0	89	90	
VDR	IL12B	0	292	0	0	0	0	0	
ACTA2	CTSD	0	229	0	0	0	0	0	
VDR	EGR1	0	292	0	0	0	0	0	
		•••							

获取 CoA -> DEGs 的网络:

Figure 5 (下方图) 为图 Filtered and formated PPI network 概览。

(对应文件为 Figure+Table/Filtered-and-formated-PPI-network.pdf)

Figure 5: Filtered and formated PPI network

6.5.2 关联分析

根据 Fig. 5, 以小鼠数据集 (6.2) 进行关联分析。

Figure 6 (下方图) 为图 MI correlation heatmap 概览。

(对应文件为 Figure+Table/MI-correlation-heatmap.pdf)

Figure 6: MI correlation heatmap

Table 7 (下方表格) 为表格 MI significant correlation 概览。

(对应文件为 Figure+Table/MI-significant-correlation.csv)

注: 表格共有 738 行 7 列,以下预览的表格可能省略部分数据;含有 13 个唯一'CoA_DEGs_ppi'。

1. cor: 皮尔逊关联系数, 正关联或负关联。

2. pvalue: 显著性 P。

3. -log2(P.value): P 的对数转化。

4. significant: 显著性。

5. sign: 人为赋予的符号,参考 significant。

Table 7: MI significant correlation

CoA_DEGs_ppi	MI_key_DEG	cor	pvalue	-log2(P.va	significant	sign
Morf4l2	Ppargc1a	-0.95	1e-04	13.2877123	< 0.001	**
Hdac9	Ppargc1a	0.98	0	16.6096404	< 0.001	**
Sirt7	Ppargc1a	-0.92	5e-04	10.9657842	< 0.001	**
Nsl1	Ppargc1a	-0.94	2e-04	12.2877123	< 0.001	**
Taf7	Ppargc1a	0.9	0.001	9.96578428	< 0.001	**
Ncoa1	Ppargc1a	0.91	7e-04	10.4803574	< 0.001	**
Jdp2	Ppargc1a	-0.74	0.0217	5.52616114	< 0.05	*
Hif1an	Ppargc1a	0.99	0	16.6096404	< 0.001	**
Brca1	Ppargc1a	-0.93	3e-04	11.7027498	< 0.001	**
Smarca1	Ppargc1a	-0.95	1e-04	13.2877123	< 0.001	**
Hdac11	Ppargc1a	0.96	0	16.6096404	< 0.001	**
Eid1	Ppargc1a	-0.87	0.0024	8.70274987	< 0.05	*
Zbtb16	Ppargc1a	0.67	0.0483	4.37183300	< 0.05	*
Morf4l2	Il18r1	0.88	0.0018	9.11778737	< 0.05	*
Hdac9	Il18r1	-0.78	0.013	6.26534456	< 0.05	*

CoA_DEGs_ppi	MI_key_DEG	cor	pvalue	-log2(P.va	significant	sign

6.5.3 存在 PPI 关联且关联分析显著的组合

结合 6.5.1 和 6.5.2 筛选 CoA 与 XX

Table 8 (下方表格) 为表格 PPI interact and significant correlated in MI 概览。

(对应文件为 Figure+Table/PPI-interact-and-significant-correlated-in-MI.csv)

注: 表格共有 64 行 9 列,以下预览的表格可能省略部分数据;含有 13 个唯一'CoA_DEGs_ppi'。

- 1. cor: 皮尔逊关联系数, 正关联或负关联。
- 2. pvalue: 显著性 P。
- 3. -log2(P.value): P 的对数转化。
- 4. significant: 显著性。
- 5. sign: 人为赋予的符号,参考 significant。

Table 8: PPI interact and significant correlated in MI

CoA_DE	MI_key	cor	pvalue	-log2(signif	sign	CoA_hg	DEG_hg
Brca1	Casp1	0.91	8e-04	10.287	< 0.001	**	BRCA1	CASP1
Brca1	Ccna2	0.9	0.0011	9.8282	< 0.05	*	BRCA1	CCNA2
Brca1	$\operatorname{Ccnd} 1$	-0.87	0.0024	8.7027	< 0.05	*	BRCA1	CCND1
Brca1	Cdk1	0.95	1e-04	13.287	< 0.001	**	BRCA1	CDK1
Brca1	E2f1	0.95	1e-04	13.287	< 0.001	**	BRCA1	E2F1
Brca1	Esr1	0.7	0.0356	4.8119	< 0.05	*	BRCA1	ESR1
Brca1	Ezh2	0.88	0.002	8.9657	< 0.05	*	BRCA1	EZH2
Brca1	Fancd2	0.94	2e-04	12.287	< 0.001	**	BRCA1	FANCD2
Brca1	Flna	0.92	4e-04	11.287	< 0.001	**	BRCA1	FLNA
Brca1	Jup	-0.94	2e-04	12.287	< 0.001	**	BRCA1	JUP
Brca1	Kif2c	0.89	0.0011	9.8282	< 0.05	*	BRCA1	KIF2C
Brca1	Lgals3	0.89	0.0013	9.5872	< 0.05	*	BRCA1	LGALS3
Brca1	Lmna	0.89	0.0015	9.3808	< 0.05	*	BRCA1	LMNA
Brca1	Mapt	-0.91	8e-04	10.287	< 0.001	**	BRCA1	MAPT
Brca1	Mefv	0.97	0	16.609	< 0.001	**	BRCA1	MEFV

6.5.4 富集分析

将 Tab. 8 中的 DEGs 进行富集分析

Figure 7 (下方图) 为图 GO enrichment 概览。

(对应文件为 Figure+Table/GO-enrichment.pdf)

Figure 7: GO enrichment

6.5.5 CoA-XX-pathways

Figure 8 (下方图) 为图 CoA XX GOpathways 概览。

(对应文件为 Figure+Table/CoA-XX-GOpathways.pdf)

Figure 8: CoA XX GOpathways

Table 9 (下方表格) 为表格 All candidates and enriched GO BP pathways 概览。

(对应文件为 Figure+Table/All-candidates-and-enriched-GO-BP-pathways.csv)

注:表格共有 64 行 4 列,以下预览的表格可能省略部分数据;含有 13 个唯一'CoA_hgnc_symbol;含有 51 个唯一'DEG_hgnc_symbol'。

Table 9: All candidates and enriched GO BP pathways

CoA_hgnc_symbol	$\rm DEG_hgnc_symbol$	Hit_pathway_number	Enriched_pathways
BRCA1	FLNA	6	cardiac muscle co
BRCA1	SRC	6	coagulation; regu
HDAC9	PIK3CG	6	cardiac muscle co
NCOA1	SRC	6	coagulation; regu
ZBTB16	CASP3	5	response to corti
BRCA1	CCND1	4	regulation of bod
BRCA1	TTN	4	cardiac muscle co

CoA_hgnc_symbol	DEG_hgnc_symbol	Hit_pathway_number	Enriched_pathways
JDP2	FOS	4	response to corti
MORF4L2	ACTG1	4	coagulation; regu
MORF4L2	TNNT2	4	cardiac muscle co
NCOA1	CCND1	4	regulation of bod
NCOA1	FOS	4	response to corti
NCOA1	PPARA	4	muscle system pro
BRCA1	JUP	3	cardiac muscle co
BRCA1	PLAUR	3	coagulation; regu

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Marakulina, D. *et al.* EpiFactors 2022: Expansion and enhancement of a curated database of human epigenetic factors and complexes. *Nucleic acids research* **51**, D564–D570 (2023).
- 4. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 5. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 6. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 7. Ritchie, M. E. *et al.* Limma powers differential expression analyses for rna-sequencing and microarray studies. *Nucleic Acids Research* **43**, e47 (2015).
- 8. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.
- 9. Szklarczyk, D. *et al.* The string database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research* **49**, D605–D612 (2021).
- 10. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).