Práctica 3

Eduardo Blanco Bielsa--UO285176

Análisis de las complejidades y empírico

Mediciones realizadas con procesador: Intel-Core i7-6700K

La mayoría de las mediciones fueron realizadas con $n=10^6$, obteniendo los tiempos en <u>nanosegundos</u>, salvo algunos casos particulares en los que se especifica.

Substracción 1	nVeces=10e6	Complejidad= O(n)
n	t(ns)	t teórico(ns)
1024	1512	
2048	5800	3024
4096	12141	11600
8192	25354	24282
16384	52907	50708

Concuerda con lo esperado y se comprueba su complejidad lineal.

Substracción 2	nVeces=10e6	Complejidad= O(n^2)
n	t(ns)	t teórico(ns)
64	3213	
128	12494	12852
256	46832	49976
512	178203	187328
1028	309574	718391,7204

Concuerda con lo esperado y se comprueba su complejidad cuadrática.

Substracción 3	nVeces=10e6	Complejidad= O(2^n)
n	t(ns)	t teórico(ns)
10	3112	
11	3643	6224
12	13095	7286
13	14617	26190
14	50772	29234
15	59048	101544
16	206490	118096
17	230203	412980

No cuadra mucho con su esperada complejidad temporal exponencial. Esto es posible que se deba a las optimizaciones que realiza el procesador o bien las que realiza Eclipse y Java.

División 1	nVeces=10e6	Complejidad= O(n)
n	t(ns)	t teórico(ns)
1024	909	
2048	1824	3636
4096	3658	3648
8192	7187	7316
16384	14562	14374

Concuerda con lo esperado y se comprueba su complejidad lineal.

División 2	nVeces=10e6	Complejidad= O(nlog(n))
n	t(ns)	t teórico(ns)
128	1301	
256	2128	2973,714286
512	5708	4788
1024	9419	12684,44444
2048	24788	20721,8
4096	42366	54082,90909

Concuerda con lo esperado y se comprueba su complejidad logarítmica.

División 3	nVeces=10e6	Complejidad= O(n)
n	t(ns)	t teórico(ns)
128	826	
256	1012	1652
512	3294	2024
1024	4094	6588
2048	13543	8188
4096	16233	27086

No coincide del todo la medida empírica con la medida real. Como se mencionaba en un caso anterior, es posible que esto suceda debido a las optimizaciones que realiza o bien el procesador o bien Eclipse y Java.

Métodos realizados:

Substracción 4	nVeces=10e6	Complejidad= O(3^(n/2))
n	t(ns)	t teórico(ns)
11	1854	
13	2023	5562
15	16978	6069
17	18522	50934
19	154677	55566

No coincide mucho, debido a las posibles optimizaciones mencionadas anteriormente.

División 4	nVeces=10e6	Complejidad= O(n^2)
n	t(ns)	t teórico(ns)
8	695	
16	1308	2780
32	11126	5232
64	22243	44504
128	173935	88972
256	350934	695740

No coincide mucho, debido a las posibles optimizaciones mencionadas anteriormente.

Fibonacci 1	nVeces=10e9	Complejidad= O(n)
n	t(ps)	t teórico(ps)
10	3402	
11	4301	3742,2
12	5246	4692
13	5369	5683,166667
14	6154	5782
15	6282	6593,571429

En este caso, n=10e9, por tanto, el tiempo obtenido es expresado en picosegundos.

Concuerda con lo esperado y se comprueba su complejidad lineal.

Fibonacci 2	nVeces=10e9	Complejidad= O(n)
n	t(ps)	t teórico(ps)
10	5090	
11	6865	5599
12	7112	7489,090909
13	7988	7704,666667
14	7680	8602,461538
15	8227	8228,571429

En este caso, n=10e9, por tanto, el tiempo obtenido es expresado en picosegundos.

Concuerda con lo esperado y se comprueba su complejidad lineal.

Fibonacci 3	nVeces=10e9	Complejidad= O(n)
n	t(ps)	t teórico(ps)
10	10048	
11	10468	11052,8
12	11001	11419,63636
13	11213	11917,75
14	12845	12075,53846
15	13516	13762,5

En este caso, n=10e9, por tanto, el tiempo obtenido es expresado en picosegundos.

Concuerda con lo esperado y se comprueba su complejidad lineal.

Fibonacci 4	nVeces=10e6	Complejidad= O(1.6^n)
n	t(ns)	t teórico(ns)
13	985	
14	1631	1576
15	2596	2609,6
16	3766	4153,6
17	6744	6025,6
18	10311	10790,4

Concuerda con lo esperado y se comprueba su complejidad exponencial.

VectorSum 1	nVeces=10e6	Complejidad= O(n)	
n	t(ns)	t teórico(ns)	
3072	1031		
6144	1951	2062	
12288	4420	3902	
24576	8078	8840	
49152	16397	16156	

Concuerda con lo esperado y se comprueba su complejidad lineal.

VectorSum 2	nVeces=10e6	Complejidad= O(n)	
n	t(ns)	t teórico(ns)	
768	3124		
1536	6467	6248	
3072	14192	12934	
6144	28809	28384	
12288	58721	57618	

Concuerda con lo esperado y se comprueba su complejidad lineal.

VectorSum 3	nVeces=10e6	Complejidad= O(n)	
n	t(ns)	t teórico(ns)	
384	1129		
768	2546	2258	
1536	4613	5092	
3072	10713	9226	
6144	19433	21426	

Concuerda con lo esperado y se comprueba su complejidad lineal.

Poliominó - Trominó O(n²)

Tamaño	Tiempo(µs)	nVeces	Medidas teóricas
16	8	1000	
32	17	1000	32
64	28	1000	68
128	74	1000	112
256	339	1000	296
512	835	1000	1356
1024	3424	1000	3340
2048	14578	1000	13696
4096	58156	1000	58312
8192	317570	1000	232624
16384	1127935	1000	1270280

Cumple con la complejidad temporal esperada, O(n²), es decir, cuadrática.

Esta complejidad se obtuvo mediante 4 llamadas recursivas (a=4), pasando en cada llamada el tablero dividido a la mitad, es decir b = 2 y sin ningún bucle for(k = 0). Por tanto, utilizando la tabla de complejidades de la división, obtenemos una complejidad $O(n^{logb(a)})$, es decir, $O(n^{log4}) = O(n^2)$.

