MATH 5473 Homework 2 LUO Yuanhui

1. Phase transition in PCA "spike" model: Consider a finite sample of n i.i.d vectors x_1, x_2, \ldots, x_n drawn from the p-dimensional Gaussian distribution $\mathcal{N}(0, \sigma^2 I_{p \times p} + \lambda_0 u u^T)$, where λ_0/σ^2 is the signal-to-noise ratio (SNR) and $u \in \mathbb{R}^p$. In class we showed that the largest eigenvalue λ of the sample covariance matrix S_n

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

pops outside the support of the Marcenko-Pastur distribution if

$$\frac{\lambda_0}{\sigma^2} > \sqrt{\gamma},$$

or equivalently, if

$$SNR > \sqrt{\frac{p}{n}}$$
.

(Notice that $\sqrt{\gamma} < (1+\sqrt{\gamma})^2$, that is, λ_0 can be "buried" well inside the support Marcenko-Pastur distribution and still the largest eigenvalue pops outside its support). All the following questions refer to the limit $n \to \infty$ and to almost surely values:

- (a) Find λ given SNR $> \sqrt{\gamma}$.
- (b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues of the sample covariance matrix.
- (c) Find the squared correlation between the eigenvector v of the sample covariance matrix (corresponding to the largest eigenvalue λ) and the "true" signal component u, as a function of the SNR, p and n. That is, find $|\langle u, v \rangle|^2$.
- (d) Confirm your result using MATLAB, Python, or R simulations (e.g. set u=e; and choose $\sigma=1$ and λ_0 in different levels. Compute the largest eigenvalue and its associated eigenvector, with a comparison to the true ones.)

Solution: (a) Let the corresponding eigenvector be ν , then $S_n \nu = \lambda \nu$

Let $\Sigma \in G^2$ [prop + λ_0 uut, $y_{\overline{\nu}} \triangleq \Sigma^{-\frac{1}{2}} X_{\overline{\nu}}$, then $Y = \Sigma^{-\frac{1}{2}} X_{\overline{\nu}} N(0, \mathbb{L}_p)$ $T_n = \frac{1}{2} YY^T$ is a Wishart Matrix, then the limit distribution of

Tn's eigenvalues follows a MP distribution.

Notice that $T_n = \frac{1}{h} \Upsilon \Upsilon^T = \frac{1}{h} (\Sigma^{\frac{1}{2}} X) (\Sigma^{-\frac{1}{2}} X)^T = \Sigma^{-\frac{1}{2}} S_n \Sigma^{\frac{1}{2}}$, then $S_n = \Sigma^{\frac{1}{2}} T_n \Sigma^{\frac{1}{2}}$

$$S_n v = \sum_{i=1}^{\frac{1}{2}} T_n (\sum_{i=1}^{\frac{1}{2}}) v = \lambda v \Leftrightarrow T_n \sum_{i=1}^{\frac{1}{2}} v) = \lambda (\sum_{i=1}^{\frac{1}{2}} v)$$

Then λ , $\Sigma^{\frac{1}{2}} \nu$ is the eigenvalue and corresponding eigenvector

of
$$Tn\Sigma$$

of
$$\ln 2$$

Let $V^* = C(\Sigma^{-\frac{1}{2}} V)$ s.t. $V^{\times^T} V^* = 1$, we have $c^2 = (R(u^T 6)^2 + 1) 6^2$.
then V^* is a normalized eigen vector of $Tn\Sigma$

 $T_n \leq v^* = T_n (6^2 I_p + \lambda_0 u u^T) v^* = \lambda v^* \Leftrightarrow \lambda_0 T_n u u^T v^* = (\lambda I_p - T_n 6^2 I_p) v^*$

Suppose ut v* to. The w NwT, wwT=Ip. N= diag & line lip 3, then

$$1 = \lambda_0 \sum_{i=1}^{p} U_0^2 \frac{\lambda_i}{\lambda - 6^2 \lambda_i} = \lambda_0 \int_0^b \frac{t}{\lambda - 6^2 t} d\mu_{\mu p}, \text{ by Stielties transform,}$$

$$1 = \frac{\lambda_0}{4\pi} \left[2\lambda - (\alpha + b) - 2 \sqrt{(\lambda - a)(b + \lambda)} \right] \text{ for } \lambda > (1 + \sqrt{\lambda}\tau)^2 \triangleq b \text{ and SNR} > \sqrt{\tau}$$

Then given SNR > $\sqrt{1}$, $\lambda = \lambda_0 + \frac{1}{\lambda_0} + 1 + \gamma = (1 + \lambda_0)(1 + \frac{1}{\lambda_0})$

Therefore,
$$\lambda_{max}(S_n) = \int (1+\sqrt{r})^2 = b$$
, $\delta_x^2 \leq \sqrt{r}$

$$(1+\delta_x^2)(1+\zeta_z^2), \delta_x^2 > \sqrt{r}$$

Lb) For $S_n = \frac{1}{n} \times \chi^T$, $b = (1+\sqrt{3}r)^2$, we can estimate SNR

by | SNR & Jr of Amox (Sn) = b SNR > Jr if Amox (Sn) = (H 6x2) (H 7/6x2). Here SNR

= $6x^2$ by assuming $6e^{-1}$ WLO h.

By (*) we have $u^{T}v^{R}=u^{T}(\lambda I_{p}-T_{n}6^{2}I_{p})^{\frac{1}{2}}\lambda_{o}T_{n}uu^{T}v^{*}$, then $(u^{T}v^{*})^{T}(u^{T}v^{R})=\lambda_{o}^{2}(u^{T}v^{*})^{T}u^{T}T_{n}(\lambda I_{p}-T_{n}6^{2}I_{p})^{2}T_{n}u^{T}v^{*})$.

Then $|u^{\dagger}v^{\star}|^2 \sim \lambda_o^{\prime} \int_{0}^{b} \frac{t^2}{(\lambda - 6t^2)^2} d\mu_{Mp}(t) = \frac{\lambda_o^2}{4r} \left(-4r + (a+b) + \frac{\lambda_o^2}{4r} + \frac{\lambda_o^$

$$2\sqrt{(\lambda-\alpha)(\lambda+b)} + \frac{\lambda(2\lambda-(a+b))}{\sqrt{(\lambda-\alpha)(\lambda-b)}} = \frac{1-\frac{r}{R}}{1+6+\frac{2r}{R}}$$

Then $(u^T v)^2 = (\pm u^T \Sigma^{\frac{1}{2}} v^{\frac{1}{2}})^2 = \pm c^2 ((\sqrt{u^2 + v^2})^2 = \frac{1}{2} (\sqrt{u^2 + v^2}$

$$\frac{\left(|\mathsf{tR}(\mathsf{u}^{\mathsf{T}}\mathsf{v}^{\mathsf{t}})|^{2}}{\mathsf{R}(\mathsf{u}^{\mathsf{T}}\mathsf{v}^{\mathsf{t}})^{2}+1} = \frac{|\mathsf{tR}-\overset{\sim}{\mathsf{R}}-\overset{\sim}{\mathsf{R}}|^{2}}{|\mathsf{tR}+\mathsf{r}+\overset{\sim}{\mathsf{R}}|} = \frac{|-\overset{\sim}{\mathsf{R}}|^{2}}{|\mathsf{tR}+\mathsf{r}+\overset{\sim}{\mathsf{R}}|}$$

(d) The code can be seen in the Ex1. ipynb.