Domain 3: Modelling

What is Machine Learning?

Learn from Examples

Labelled Dataset

(X&y)

Sampling

Actual Values

Overfitting

Support Vectors:

Data Points that are closest to the hyperplane

Dataset

70%

30%

Supervised ML:

- Regression

Supervised **Un-Supervised** Reinforcement Features (X)

Types of Machine Learning

Training

Flow of Machine learning Machine **Trained ML**

Learning

Model

Prediction &

Evaluation

Test

Logistic Regression Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Like

all regression analyses, logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the

relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent

variables.

Linear Regression

When predicting a Real value (y)

When predicting a Binary value (y)

Gradient Descent

Take the gradient of loss function wrt parameters

Evaluation Metrics for Classification

w(new) = w(initial) - (learning_rate)*grad_w

Precision

· Data in uncleaned & contains noise Increase the number of feature

Underfitting Model has high bias Increase model complexity Model is too simple Increase the duration of training

Hold-out

· Data in uncleaned & contains noise

Model is having high variance

Model is too complex

Leave-one-out Leave-p-out **Hyper-parameter Tuning Techniques**

Using K fold Cross Validation

· Regularisation technique

· Training with more data

• Ensemble Technique

 Manual Method GridSearchCV • Random Search CV **KNN Algorithm**

Cross Validation

Using K fold Cross Validation

Which one is best?

Margin:

(Hard margin & soft margin)

Unsupervised Learning Clustering

• Exclusive Clustering - K Means Overlapping Clustering - fuzzy/c-means clustering Hierarchial Clustering

Step 1: Select the Number of Clusters, k. ...

KMeans Clustering

Step 2: Select k Points at Random. ... Step 3: Make k Clusters. ... Step 4: Compute New Centroid of Each Cluster. ... Step 5: Assess the Quality of Each Cluster. ... Step 6: Repeat Steps 3-5.

Silhouette Score

Hierarchical Clustering Agglomerative Clustering (Bottom level)
Division Cluster (Split from Root - Top Level)

Inertia/SSE

2. Single Linkage Clustering - Min possible distance between two clusters 3. Mean Linkage Clustering - mean of pairwise distance for points of 2 clusters 4. Centroid Linkage Clustering - distance between 2 cluster centroids

1. Complete Linkage Clustering - Max distance two clusters

• Training a model to reuse it • Use the Pre-trained Model Extraction of features