# Mathematik I WS 15/16

Thomas  $Dinges^1$  Jonas Wolf <sup>2</sup>

28. Oktober 2015

Inoffizielles Skript für die Vorlesung Mathematik I im WS 15/16, bei Britta Dorn. Alle Angaben ohne Gewähr. Fehler können gerne via E-Mail gemeldet werden.

<sup>&</sup>lt;sup>1</sup>thomas.dinges@student.uni-tuebingen.de

<sup>&</sup>lt;sup>2</sup>mail@jonaswolf.de

# Inhaltsverzeichnis

| 1 | Logi | k                                      | 3 |
|---|------|----------------------------------------|---|
|   | 1.1  | Negation                               | 3 |
|   | 1.2  |                                        | 4 |
|   | 1.3  | Disjunktion                            | 4 |
|   | 1.4  | XOR                                    | 5 |
|   | 1.5  | Implikation                            | 5 |
|   | 1.6  | Äquivalenz                             | 6 |
|   | 1.7  |                                        | 6 |
|   | 1.8  | Definition                             | 7 |
|   | 1.9  | Satz                                   | 8 |
|   | 1.10 | Bemerkung                              | 9 |
|   | 1.11 | Bemerkung (Logisches Umformen)         | 9 |
|   | 1.12 | Definition                             | 0 |
|   |      | Beispiel                               | 0 |
|   | 1.14 | Definition                             | 1 |
|   | 1.15 | Beispiel / Bemerkung                   | 1 |
|   | 1.16 | Negation von All- und Existenzaussagen | 2 |
| 2 | Men  | gen 13                                 | 3 |
|   |      |                                        | 3 |

# 1 Logik

#### Aussagenlogik

Eine **logische Aussage** ist ein Satz, der entweder wahr oder falsch (also nie beides zugleich) ist. Wahre Aussagen haben den Wahrheitswert 1 (auch wahr, w, true, t), falsche den Wert 0 (auch falsch, f, false).

Notation: Aussagenvariablen  $A, B, C, ...A_1, A_2$ .

Beispiele:

- 2 ist eine gerade Zahl (1)
- Heute ist Montag (1)
- 2 ist eine Primzahl (1)
- 12 ist eine Primzahl (0)
- Es gibt unendlich viele Primzahlen (1)
- Es gibt unendlich viele Primzahlzwillinge (Aussage, aber unbekannt, ob 1 oder 0)
- 7 (keine Aussage)
- Ist 173 eine Primzahl? (keine Aussage)

Aus einfachen Aussagen kann man durch logische Verknüpfungen (**Junktoren**, z.B. und, oder, ...) kompliziertere bilden. Diese werden Ausdrücke genannt (auch Aussagen sind Ausdrücke). Durch sogenannte **Wahrheitstafeln** gibt man an, wie der Wahrheitswert der zusammengesetzten Aussage durch die Werte der Teilaussagen bedingt ist. Im folgenden seien A, B Aussagen.

Die wichtigsten Junktoren:

## 1.1 Negation

Verneinung von A:  $\neg A$  (auch  $\bar{A}$ ), *nicht* A, ist die Aussage, die genau dann wahr ist, wenn A falsch ist.

Wahrheitstafel:

| Α | $\neg A$ |
|---|----------|
| 1 | 0        |
| 0 | 1        |

Beispiele:

• A: 6 ist durch 3 teilbar. (1)

•  $\neg A$ : 6 ist nicht durch 3 teilbar. (0)

• B: 4,5 ist eine gerade Zahl (0)

•  $\neg B$ : 4,5 ist keine gerade Zahl. (1)

## 1.2 Konjunktion

Verknüpfung von A und B durch  $und: A \wedge B$  ist genau dann wahr, wenn A und B gleichzeitig wahr sind.

Wahrheitstafel:

| Α | В | $A \wedge B$ |
|---|---|--------------|
| 1 | 1 | 1            |
| 1 | 0 | 0            |
| 0 | 1 | 0            |
| 0 | 0 | 0            |

Beispiele:

•  $\underbrace{6 \text{ ist eine gerade Zahl}}_{A(1)}$  und  $\underbrace{\text{durch 3 teilbar}}_{B(1)}$ . (1)

•  $\underbrace{9 \text{ ist eine gerade Zahl}}_{A(0)}$  und  $\underbrace{\text{durch 3 teilbar}}_{B(1)}$ . (0)

## 1.3 Disjunktion

 $oder: A \vee B$ 

Wahrheitstafel:

| A | В | $A \vee B$ |
|---|---|------------|
| 1 | 1 | 1          |
| 1 | 0 | 1          |
| 0 | 1 | 1          |
| 0 | 0 | 0          |

⚠ Einschließendes oder, kein entweder...oder.

Beispiele:

• 6 ist gerade oder durch 3 teilbar. (1)

- 9 ist gerade oder durch 3 teilbar. (1)
- 7 ist gerade oder durch 3 teilbar. (0)

#### 1.4 XOR

entweder oder: A xor B,  $A \oplus B$  (ausschließendes oder, exclusive or).

Wahrheitstafel:

| Α | В | $A \oplus B$ |
|---|---|--------------|
| 1 | 1 | 0            |
| 1 | 0 | 1            |
| 0 | 1 | 1            |
| 0 | 0 | 0            |

### 1.5 Implikation

wenn, dann,  $A \Rightarrow B$ :

- wenn A gilt, dann auch B
- A impliziert B
- aus A folgt B
- A ist <u>hinreichend</u> für B,
- B ist notwendig für A

Wahrheitstafel:

| A | В | $A \Rightarrow B$ |
|---|---|-------------------|
| 1 | 1 | 1                 |
| 1 | 0 | 0                 |
| 0 | 1 | 1                 |
| 0 | 0 | 1                 |

(Die Implikation  $A\Rightarrow B$  sagt nur, dass B wahr sein muss, <u>falls</u> A wahr ist. Sie sagt nicht, dass B tatsächlich war ist.)

Beispiele:

• Wenn 1 = 0, bin ich der Papst. (1)

# 1.6 Äquivalenz

 $genau\ dann\ wenn,\ A\Leftrightarrow B$  (dann und nur dann wenn, g.d.w, äquivalent, if and only if, iff)

Wahrheitstafel:

| A | В | $A \Leftrightarrow B$ |
|---|---|-----------------------|
| 1 | 1 | 1                     |
| 1 | 0 | 0                     |
| 0 | 1 | 0                     |
| 0 | 0 | 1                     |

Beispiele:

- Heute ist Montag genau dann wenn morgen Dienstag ist. (1)
- Eine natürliche Zahl ist durch 6 teilbar g. d. w. sie durch 3 teilbar ist. (0)  $A \Rightarrow B \ (1)$   $B \Rightarrow A \ (0)$

## Festlegung

 $\neg$  bindet stärker als alle anderen Junktoren:  $(\neg A \land B)$  heißt  $(\neg A) \land B$ 

## 1.7 Beispiel

a)

Wann ist der Ausdruck  $(A \vee B) \wedge \neg (A \wedge B)$  wahr?

 $\rightarrow$  Wahrheitstafel

| A | В | $(A \lor B)$ | $(A \wedge B)$ | $\neg (A \land B)$ | $(A \vee B) \wedge \neg (A \wedge B)$ |
|---|---|--------------|----------------|--------------------|---------------------------------------|
| 1 | 1 | 1            | 1              | 0                  | 0                                     |
| 1 | 0 | 1            | 0              | 1                  | 1                                     |
| 0 | 1 | 1            | 0              | 1                  | 1                                     |
| 0 | 0 | 0            | 0              | 1                  | 0                                     |

<u>∧</u> Klammerung relevant

Welche Wahrheitswerte ergeben sich für

•  $A \lor (B \land \neg A) \land B)$ ?

•  $A \vee B \wedge \neg A \wedge B$ ?

 $(A \vee B) \wedge \neg (A \wedge B)$  und  $(A \oplus B)$  haben dieselben Wahrheitstafeln. Ausdrücke sehen unterschiedlich aus (Syntax), aber haben dieselbe Bedeutung (Semantik). Dies führt zu 1.8 Definition.

b)

Wann ist  $(A \wedge B) \Rightarrow \neg (C \vee A)$  falsch?

 $\rightarrow$  Wahrheitstafel: <br/> alle möglichen Belegungen von A,B,Cmit <br/> 0/1

| A | В | С | $(A \wedge B)$ | $\neg(C \lor A)$ | $(A \land B) \Rightarrow \neg(C \lor A)$ |
|---|---|---|----------------|------------------|------------------------------------------|
| 1 | 1 | 1 | 1              | 0                | 0                                        |
| 1 | 1 | 0 | 1              | 0                | 0                                        |
| 1 | 0 | 1 | 0              | 0                | 1                                        |
| 1 | 0 | 0 | 0              | 0                | 1                                        |
| 0 | 1 | 1 | 0              | 0                | 1                                        |
| 0 | 1 | 0 | 0              | 1                | 1                                        |
| 0 | 0 | 1 | 0              | 0                | 1                                        |
| 0 | 0 | 0 | 0              | 1                | 1                                        |

oder überlegen:

$$(A \wedge B) \Rightarrow \neg (C \vee A)$$
 ist nur 0, wenn

$$(A \wedge B) = 1$$
, also  $A = 1$  und  $B = 1$ 

und

$$\neg (C \lor A) = 0$$
 ist.

(Wissen: A = 1), also  $\underline{C} = 0$  oder  $\underline{C} = 1$  möglich.

#### 1.8 Definition

Haben zwei Ausdrücke  $\alpha$  und  $\beta$  bei jeder Kombination von Wahrheitswerten ihrer Aussagevariablen den gleichen Wahrheitswert, so heißen sie <u>logisch äquivalent</u>; man schreibt  $\alpha \equiv \beta$ . (' $\equiv$ ' ist kein Junktor, entspricht '=')

Es gilt: Falls  $\alpha \equiv \beta$  gilt, hat der Ausdruck  $\alpha \Leftrightarrow \beta$  immer den Wahrheitswert 1.

#### 1.9 Satz

Seien A, B, C Aussagen. Es gelten folgende logische Äquivalenzen:

- a) Doppelte Negation:  $A \equiv \neg(\neg A)$
- b) Kommutativität von  $\land$ ,  $\lor$ ,  $\oplus$ ,  $\Leftrightarrow$ :
  - $(A \wedge B) \equiv (B \wedge A)$
  - $(A \lor B) \equiv (B \lor A)$
  - $(A \oplus B) \equiv (B \oplus A)$
  - $(A \Leftrightarrow B) \equiv (B \Leftrightarrow A)$

 $\underline{\wedge}$  gilt nicht für ' $\Rightarrow$ ' !!  $(A \Rightarrow B \not\equiv B \Rightarrow A)$ 

- c) Assoziativität von  $\land$ ,  $\lor$ ,  $\oplus$ ,  $\Leftrightarrow$ :
  - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
  - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
  - $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$
  - $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$
- d) Distributivität:
  - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
  - $\bullet \ \ A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- e) Regeln von DeMorgan:
  - $\bullet \ \neg (A \land B) \equiv \neg A \lor \neg B$
  - $\bullet \ \neg (A \lor B) \equiv \neg A \land \neg B$
- $\mathbf{f)} \ A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\mathbf{g)} \ A \Rightarrow B \equiv \neg A \vee B$
- **h)**  $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

(Alle Äquivalenzen gelten auch, wenn die Aussagevariablen durch Ausdrücke ersetzt werden.)

Beweis: Jeweils mittels Wahrheitstafel (Übung!), zum Beispiel:

|    | A | $\neg A$ | $\neg(\neg A)$ |
|----|---|----------|----------------|
| a) | 1 | 0        | 1              |
|    | 0 | 1        | 0              |

|    | Α | В | $(A \wedge B)$ | $\neg (A \land B)$ | $\neg A$ | $\neg B$ | $(\neg A \lor \neg B)$ |
|----|---|---|----------------|--------------------|----------|----------|------------------------|
|    | 1 | 1 | 1              | 0                  | 0        | 0        | 0                      |
| e) | 1 | 0 | 0              | 1                  | 0        | 1        | 1                      |
|    | 0 | 1 | 0              | 1                  | 1        | 0        | 1                      |
|    | 0 | 0 | 0              | 1                  | 1        | 1        | 1                      |

#### 1.10 Bemerkung

$$(1.9 \text{ f}): (A \Rightarrow B) \equiv \underbrace{(\neg B \Rightarrow \neg A)}_{\text{wird} \ \underline{\text{Kontraposition}}} \text{ genannt, wichtig für Beweis. Wird im Sprachgebrauch oft falsch verwendet.}$$

**Beispiel:** Pit ist ein Dackel.  $\Rightarrow$  Pit ist ein Hund.

äquivalent zu:  $(\neg B) \Rightarrow (\neg A)$ 

Pit ist kein Hund.  $\Rightarrow$  Pit ist kein Dackel.

aber nicht zu:  $B \Rightarrow A$ 

Pit ist ein Hund.  $\Rightarrow$  Pit ist ein Dackel.

und nicht zu:  $\neg A \Rightarrow \neg B$ 

Pit ist kein Dackel.  $\Rightarrow$  Pit ist kein Hund.

**Beispiel:** Sohn des Logikers / bellende Hunde  $(\rightarrow$  Folien)

## 1.11 Bemerkung (Logisches Umformen)

Sei  $\alpha$  ein Ausdruck. Ersetzen von Teilausdrücken von  $\alpha$  durch logisch äquivalente Ausdrücke liefert einen zu  $\alpha$  äquivalenten Ausdruck. So erhält man eventuell kürzere/einfachere Ausdrücke, zum Beispiel:

$$\neg(A\Rightarrow B)\underset{\text{1.9 g}}{\equiv}\neg(\neg A\vee B)\underset{\text{1.9 e})}{\equiv}\neg(\neg A)\wedge(\neg B)\underset{\text{1.9 a})}{\equiv}A\wedge\neg B$$

#### 1.12 Definition

Ein Ausdruck heißt <u>Tautologie</u>, wenn er für jede Belegung seiner Aussagevariablen, immer den Wert 1 <u>annimmt</u>. Hat er immer Wert 0, heißt er <u>Kontradiktion</u>. Gibt es mindestens eine Belegung der Aussagevariablen, so dass der Ausdruck Wert 1 hat, heißt er erfüllbar.

#### 1.13 Beispiel

- a)  $A \vee \neg A$  Tautologie  $A \wedge \neg A$  Kontradiktion
- b)  $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$  Tautologie (vergleiche Beispiel in 1.11).  $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$  Tautologie (vergleiche Beispiel in 1.9g).
- c)  $A \wedge \neg B$  ist erfüllbar (durch A = 1, B = 0).

#### Prädikatenlogik

Eine <u>Aussageform</u> ist ein sprachliches Gebilde, dass formal wie eine Aussage aussieht, <u>aber eine oder mehrere Variablen enthält.</u>

Beispiel: 
$$P(x)$$
 :  $\underbrace{x}_{Variable} \underbrace{< 10}_{\text{Prädikat (Eigenschaft)}}$ 

Q(x): x studiert Informatik R(y): y ist Primzahl und  $y^2 + 2$  ist Primzahl.

Eine AussageformP(x) wird zur Aussage, wenn man die Variable durch ein konkretes Objekt ersetzt. Diest ist nur dann sinnvoll, wenn klar ist, welche Werte für x erlaubt sind, daher wird oft die zugelassene Wertemenge mit angegeben. (hier Vorgriff auf Kapitel Mengen)

Im Beispiel:

- P(3) ist wahr, P(42) falsch.
- R(2) ist falsch, R(3) ist wahr.

Oft ist die Frage interessant, ob es wenigstens ein x gibt, für das P(x) wahr ist, oder ob P(x) sogar für alle zugelassenen x wahr ist.

#### 1.14 Definition

Sei P(x) eine Aussageform.

a) Die Aussage Für alle x (aus einer bestimmten Menge M) gilt P(x). ist wahr genau dann wenn P(x) für alle in Frage kommenden x wahr ist.

Schreibweise: 
$$\forall x \in M$$
 :  $P(x)$  für alle, für jedes aus der Menge M gilt Eigenschaft

$$\operatorname{auch} \underbrace{\forall}_{x \in M} P(x).$$

Das Symbol ∀ heißt All- Quantor, die Aussage All- Aussage.

b) Die Aussage Es gibt (mindestens) ein x aus M, das die Eigenschaft P(x) besitzt. ist wahr, g.d.w P(x) für mindestens eines der in Frage kommenden x wahr ist.

Schreibweise: 
$$\exists x \in M \quad \vdots \quad P(x)$$
.

∃ heißt Existenzquantor, die Aussage Existenzmenge.

## 1.15 Beispiel / Bemerkung

Übungsgruppe G: 
$$\underbrace{a}_{Anna}\underbrace{b}_{Bob}\underbrace{c}_{Clara}$$

$$B(x): x$$
 ist blond.  $W(x): x$  ist weiblich.

$$B(a) = 1, W(b) = 0$$

1. Alle Studenten der Gruppe sind blond. (1)

$$\forall x \in G$$
: x ist blond

$$\forall x \in G: B(x) (1)$$

Das bedeutet: a blond  $\wedge$  b blond  $\wedge$  c blond

$$\underbrace{B(a)}_1 \wedge \underbrace{B(b)}_1 \wedge \underbrace{B(c)}_1$$

 $\forall$ ist also eine Verallgemeinerung der Konjunktion.

2. Alle Studenten der Gruppe sind weiblich. (0)

$$\underbrace{W(a)}_{1} \wedge \underbrace{W(b)}_{0} \wedge \underbrace{W(c)}_{1}(0)$$

3. Es gibt einen Studenten der Gruppe, der weiblich ist. (1)

$$\exists x \in G: W(x) (1)$$

bedeutet: 
$$\underbrace{W(a)}_{1} \lor \underbrace{W(b)}_{0} \lor \underbrace{W(c)}_{1} = 1$$

 $\exists$  ist verallgemeinerte Disjunktion.

4. Aussage A: Alle Studenten der Gruppe sind weiblich. (0)

Verneinung von A?  $\neg A$ 

∧ Nicht korrekt wäre: Alle Studenten der Gruppe sind männlich. (Wahrheitswert ist auch 0)

Korrekt: Nicht alle Studenten der Gruppe sind weiblich (1) Es gibt (mindestens) einen Studenten der Gruppe, der nicht weiblich ist. (1)

allgemeiner:

#### 1.16 Negation von All- und Existenzaussagen

a) 
$$\neg(\forall x \in M : P(x)) \equiv \exists x \in M : \neg P(x)$$

b) 
$$\neg(\exists x \in M : P(x)) \equiv \forall x \in M : \neg P(x)$$

(Verallgemeinerung der Regeln von DeMorgan) (vergleiche Beispiel 1.15, 4):

$$\neg(\forall x \in G : W(x))$$

$$\equiv \neg(W(a) \land W(b) \land W(c)$$

$$\underbrace{\equiv}_{DeMorgan} (\neg W(a)) \vee (\neg W(b)) \vee (\neg (W(c)))$$

$$\equiv \exists x \in G : \neg W(x)$$

## Bemerkung

Aussageformen können auch mehrere Variablen enthalten, Aussagen mit mehreren Quantoren sind möglich.

Zum Beispiel:

$$\exists x \in X \quad \exists y \in Y : P(x, y)$$
$$\exists x \in X \quad \forall y \in Y : P(x, y)$$

$$\forall x \in X \quad \exists y \in Y : P(x,y)$$
  
 $\forall x \in X \quad \forall y \in Y : P(x,y)$ 

Negation dann durch mehrfaches Anwenden von 1.16, zum Beispiel:

$$\neg(\forall x \in X \quad \forall y \in Y \quad \exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X : \neg(\forall y \in Y \quad \exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X \quad \exists y \in Y : \neg(\exists z \in Z : P(x, y, z)) 
\equiv \exists x \in X \quad \exists y \in Y \quad \forall z \in Z : \neg P(x, y, z))$$

#### Also:

ändere  $\exists$  in  $\forall$ ,  $\forall$  in  $\exists$ , verneine Prädikat.

## 2 Mengen

## 2.1 Definition (Georg Cantor, 1845-1918)

Eine <u>Menge</u> ist eine Zusammenfassung von bestimmten wohlunterscheidbaren Objekten (<u>Elementen</u>) unserer Anschauung oder unseres Denkens zu einem Ganzen.

Im Folgenden seien A, B Mengen.

- a)  $x \in A : x$  ist Element der Menge A  $x \notin A : x$  ist nicht Element der Menge A oder auch:  $A \ni x : x$  ist Element der Menge A  $A \not\ni x : x$  ist nicht Element der Menge A
- b) Eine Menge kann beschrieben werden durch:

 $\mathbb{N}_0 = \{1, 2, 3, 4, ...\}$  Menge der natürlichen Zahlen mit der Null  $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$  Menge der ganzen Zahlen

- Charakterisierung ihrer Elemente:
  - $A = \{x \mid x \text{ besitzt die Eigenschaft } E\}, \text{ z.B.:}$

$$A = \{ n \mid n \in \mathbb{N} \text{ und n ist gerade} \}$$

sprich: "mit der Eigenschaft"

 $= \{2, 4, 6, 8, ...\}$ 

 $= \{x \mid \exists k \in \mathbb{N} \text{ mit } x = 2 \cdot k\} = \{2k \mid k \in \mathbb{N}\}\$ 

Bsp:  $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$  Menge der rationalen Zahlen

- c) Mit Ø bezeichnen wir die Menge ohne Elemente (leere Menge)
- d) Mit |A| bezeichnen wir die Anzahl der Elemente der Menge A (Kardinalität oder Mächtigkeit von A), zum Beispiel:

$$|\{1, a, \overline{*}\}| = 3, \quad |\emptyset| = 0, \quad |\mathbb{N}| = \infty, \quad |\{\mathbb{N}\}| = 1$$

e)  $A \cap B := \{x \mid x \in A \land x \in B\}$  heißt <u>Durchschnitt</u> oder <u>Schnittmenge</u> von A und B.

Grafische Veranschaulichung: Venn-Diagramm ( $\wedge$  gilt nicht als Beweis)



f)  $A \cup B := \{x \mid x \in A \lor x \in B\}$  heißt Vereinigung von A und B.



**Beispiele:**  $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{4\}$ 

$$A \cap B = \{2, 3\},\$$
  
$$A \cap C = \emptyset,$$

$$B \cap C = \{4\} = C,$$

$$A \cup B = \{1, 2, 3, 4\}$$

g) A und B heißen disjunkt, falls gilt  $A \cap B = \emptyset$ 



h) A heißt Teilmenge von  $B, A \subseteq B$ , falls gilt:

$$x \in A \Rightarrow x \in B$$

Oder in Worten: Jedes Element von A ist auch Element von B.

Dasselbe bedeutet die Notation

$$B \supseteq A$$

(B ist Obermenge von A)

Beispiel:  $\{1,2\} \subseteq \{1,2,3\} \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{R}$  (reelle Zahlen)

Es gilt:  $\emptyset \subseteq A$  für jede Menge A.

**Achtung:** Unterschied  $\subseteq$ ,  $\in$  !

Zum Beispiel:

 $A=\{1,\mathbb{N}\}$  (hier ist die Menge  $\mathbb{N}$ ein Element von A, keine Teilmenge!)

$$1 \in A$$
,  $\mathbb{N} \in A$ ,  $\mathbb{N} \nsubseteq A$ ,  $2 \notin A$ ,  $\{1\} \subseteq A$ 

i) Zwei Mengen A, B heißen gleich  $(A = B, \text{ falls gilt: } A \subseteq B \text{ und } B \subseteq A \text{ (also } x \in A \Rightarrow / \Leftarrow / \Leftrightarrow x \in B.$ 

Darin liegt ein Beweisprinzip: Man zeigt A=B, indem man zeigt:

- $x \in A \Rightarrow x \in B$
- $x \in B \Rightarrow x \in A \text{ (mehr später)}$

Beispiel:  $A=2,3,4, \qquad B=\{x\in \mathbb{N}|x>1 \text{ und } x<5\}$  A=B

**j**)  $A \subsetneq B(A \subsetneq B)$  bedeutet  $A \subseteq B$ , aber  $A \neq B$ .

(d.h. 
$$\exists x \in B \text{ mit } x \notin A, \text{ aber } x \in B$$
)

(A ist <u>echte</u> Teilmenge von B.)