Résolution probabiliste du problème de Dirichlet

Encadré par Mr Julien Reygnier

ParisTech

Objectifs & Eléments de théorie

Problème de Dirichlet : $\begin{cases} \frac{1}{2}\Delta u(x) = -g(x) & x \in D \\ u(x) = f(x) & x \in \partial D \end{cases}$

Représentation probabiliste :

Formule d'Itō =>
$$\forall x \in \bar{D}, \quad u(x) = \mathbb{E}[f(X_{\tau}^x) + \int_{t=0}^{t=\tau} g(X_t^x) dt]$$

où le processus $(X_t^x)_{t>0}$ est un Mouvement Brownien standard issu de x et $\tau = \inf\{t \geq 0 : X_t^x \notin D\}$ (le temps de sortie du domaine D)

Méthode de Monte-Carlo : On approche l'espérance mathématique par la moyenne empirique en simulant N trajectoires indépendantes du MB.

$$u^{N}(x) := \frac{1}{N} \sum_{i=1}^{N} \left[f(X_{\tau^{i}}^{x,i}) + \int_{t=0}^{t=\tau^{i}} g(X_{t}^{x,i}) dt \right]$$

- Convergence presque sûre garantie par la Loi des Grands Nombres
- Vitesse de convergence de l'ordre de \sqrt{N} par le Théorème de la Limite Centrale

Discrétisation du MB : On approche le MB par un processus $(\tilde{X}_t^x)_{t\geq 0}$ discontinu

- à un pas h>0 fixé - pour pouvoir simuler les trajectoires $(G_i)_i \ iid, \ \mathbb{E}[G_1] = 0 \ \mathrm{et} \ var[G_1] = 1$

$$\forall n \geqslant 0, \quad \forall t \in [nh, (n+1)h[, \quad \tilde{X}_t^x = x + \sqrt{h} \sum_{i=1}^n G_i]$$

Intérêts & Perspectives

- Vitesse de convergence indépendante de la dimension de X
- Méthode préférable à la méthode des elements finis pour des grandes dimensions (>3)
- Contrôle de l'erreur effectué avec des intervalles de confiance fournis par le TCL
- Deux exemples d'application :
 - Modèle de tubes dans un conducteur carré

Conducteur cylindrique

Applications

Modèle de tubes dans un conducteur carré

On considère une dalle de béton, de section carrée, plongée dans un milieu extérieur à la température qui contient 4 canaux à l'intérieur desquels circule un fluide à la température Ti.

- Le but est de calculer la température u(x) en tout point de la dalle
- => Problème de Dirichlet avec $D=[-1,1] imes[-1,1]\ ackslash (\Gamma_e\cup\Gamma_i)$, $\Gamma_e=\partial([-1,1] imes[-1,1])$ g(x)=0 et $f(x)=T_i$ $sur \Gamma_i$ $\Gamma_i=D_1\cup D_2\cup D_3\cup D_4$ $f(x) = T_e \quad sur \Gamma_e$
- On applique la méthode de Monte-Carlo au MB discrétisé :

Simulation de plusieurs trajectoires du MB avec $T_e=0$ et $T_i=0.5$

On effectue un maillage et on calcule la température en tout point

=> Profil de températures:

0.0

Cette approche, via le TCL, nous permet d'obtenir des intervalles de confiance pour u(x): $u(x) \in [u^N(x)]_{-\sqrt{N}}^+ \times q_{1-\frac{\alpha}{2}}$ Pour u(0), on obtient approximativement : [0.32, 0.37]

Conducteur cylindrique

- On considère un conducteur cylindrique, plongé dans un champ de température non homogène, et qui contient des sources de chaleur interne.
- On procède de la même manière:
- => Problème de Dirichlet avec comme domaine, le disque de centre 0 et de rayon 1, $f(x_1, x_2) = x_1 \qquad sur \ \partial D$ $g(x_1, x_2) = \alpha(x_1^2 + x_2^2)$ sur D
- **Profil de températures**: avec T=0.5

- On souhaite réduire la variance pour une meilleure estimation
- => Méthode de la variable de contrôle : on introduit une statistique $\hat{v}(x)$ dont on connaît l'espérance v(x)On cherche donc $\hat{w}(x)$ qui est aussi un estimateur de u(x)mais de variance plus petite que $\hat{u}(x)$

$$\hat{w}(x) = \hat{u}(x) + \lambda(\hat{v}(x) - v(x))$$

ullet v(x) est solution radiale du problème de Dirichlet avec $\ f(x_1,x_2)=T$ $g(x_1, x_2) = \alpha(x_1^2 + x_2^2)$ sur D

$$v(x) = -\alpha(x_1^2 + x_2^2)/8 + \alpha/8 + T$$

 $var(\hat{w}(x)) = var(\hat{u}(x)) + \lambda^2 var(\hat{v}(x)) + 2\lambda cov(\hat{u}(x), \hat{v}(x))$ On développe la variance :

On utilise une approche de type Monte Carlo pour approximer numériquement la valeur de λ_{opt} et on observe numériquement la réduction de variance

$\hat{w}(x)$	$\hat{u}(x)$	$var(\hat{w}(x))$	$var(\hat{u}(x))$	(x_1, x_2)	$lpha_g$
0,6071414	0,6066459	0,3875493	0,3882902	(0,5;0)	-1
0,6371733	0,6370668	0,3659968	0,3663428	(0;0)	-1
0,6536492	0,6533603	0,3288763	0,3295418	(0;0)	2
0,6243716	0,6239533	0,3608627	<mark>0,3614945</mark>	(0;0)	0
0,3503067	0,3503122	<mark>0,4549188</mark>	0,4548091	(0,3;0,2)	0,6