DS 3 : Loi de frottement solide & Thermodynamique des systèmes ouverts Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-10	Influence de l'état de la route sur la distance d'arrêt	10	
1	Bilan des forces appliquées au véhicule dans R_{gal} : poids \vec{p} =	1	
	$ \vec{m}\vec{g} = -mg\vec{e}_z$, réaction normale du support $\vec{N} = N\vec{e}_z$, freinage		
	$f = -f\vec{e}_x \text{ (avec } f > 0).$		
2	On projette le PFD sur \vec{e}_z , on a $0 = -mg + N$ donc $N = mg$	1	
3	Lois de Coulomb $\vec{n}.\vec{N} \geq 0$, si il n'y a pas glissement $\vec{v}_g = \vec{0} + \vec{0}$	1	
	$ \vec{T} < \lambda \vec{N} $, si il y a glissement $\vec{v}_g \cdot \vec{T} < 0 + \vec{T} = \lambda \vec{N} $		
4	glissement donc $ \vec{T} = \lambda \vec{N} = \lambda mg$ donc $\vec{T} = -\lambda mg\vec{e}_x$	1	
5	PFD projeté sur \vec{e}_x donne $-ma_0 = -f$ donc $f = ma_0 = 12$ kN.	1	
	La force de frottement solide est $T = \lambda mg = 7$ kN. Donc $T < f$,		
	f inclut aussi les forttements fluides des roulements et de l'air		
6	La variation d'énergie cinétique est $\Delta E_c = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 =$	1	
	$-\frac{1}{2}mv_i^2 = -312,5 \text{ kJ}$		
7	En l'absence de glissement $T < \lambda N$ donc $T < \lambda mg$. Or $T < f$,	1	
	une condition suffisante est donc $f < \lambda mg$ donc $ma_0 < \lambda mg$ donc		
	$a_0 < \lambda g$		
8	Applications numériques, la condition de non-glissement est plus	1	
	contraignante sur béton mouillé que sur béton sec. Ce qui est		
	cohérent avec les limitations de vitesse du code de la route.		
9	On projette le PFD selon \vec{N} , on obtient $0 = N - mg\cos(\alpha)$ donc	1	
	$N = mg\cos(\alpha)$		
10	On projette le PFD selon \vec{T} , on obtient $ma_0 = f - mg\sin(\alpha)$	1	
	donc $f = m(a_0 - g\sin(\alpha))$. Non-glissement si $T < \lambda N$ donc si		
	$T < \lambda mg\cos(\alpha)$, une condition suffisante est $T < f < \lambda mg\cos(\alpha)$		
	donc $a_0 < g(\lambda \cos(\alpha) - \sin(\alpha))$ donc $a_0 < \lambda g \cos(\alpha)(1 - \frac{\tan(\alpha)}{\lambda})$		

11-20	Relèvement d'un virage	10	
11	$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_{\theta}$ et $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e}_{\theta}$ ici $r = R$ et $\dot{r} = 0$	1	
	donc $\vec{v} = R\dot{\theta}\vec{e}_{\theta}$ et $\vec{a} = -R\dot{\theta}^2\vec{e}_r + R\ddot{\theta}\vec{e}_{\theta}$		
12	v constante implique que la vitesse angulaire $\dot{\theta} = \frac{v}{R}$ est constante.	1	
	Donc $\ddot{\theta} = 0$ donc $\vec{a} = -R\dot{\theta}^2 \vec{e_r} = -\frac{v^2}{R} \vec{e_r}$		
13	PFD projeté $0 = N - mg$ donc $N = mg$	1	
14	PFD projeté sur \vec{e}_r , $-m\frac{v^2}{R} = T$, il existe donc une force radiale.	1	
15	non-glissement $T < \lambda N$ donc $m \frac{v^2}{R} < g$ donc $v < \sqrt{\lambda Rg}$ donc $v_{max} = \sqrt{\lambda Rg} = 19 \text{ m.s}^{-1}$	1	
16	si le virage est mouillé ou verglacé λ diminue, quand $\lambda \to 0$,	1	
	$v_{max} \to 0$, sans frottement on ne peux pas prendre de virage.		
17	On projette le PFD sur \vec{e}_z , $0 = \cos(\beta)N - mg$ donc $N = \frac{mg}{\cos(\beta)}$	1	
18	On projette le PFD sur $\vec{e_r}$, $-m\frac{v^2}{R} = -N\sin(\beta)$ donc $-m\frac{v^2}{R} =$	1	
	$-mg\tan(\beta)$ donc $v = \sqrt{Rg\tan(\beta)} = 14 \text{ m.s}^{-1}$		
19	$\tan(\beta) = \frac{v_{max}^2}{Rg} = \frac{\lambda Rg}{Rg} = \lambda \text{ donc } \beta = 35^{\circ}$	1	
20	si $v < v_{ref}$ le véhicule descend la pente, si $v > v_{ref}$ le véhicule	1	
	remonte la pente.		
21-25	Un traineau sur la glace	5	
21	PFD appliqué à un élément infinitésimal de corde donne \vec{T} cte	1	
	sur toute la corde, théorème du moment cinétique sur un élément		
	infinitésimal de corde donne \vec{T} colinéaire à la corde		
22	PFD appliqué au traineau à chien $M\vec{a} = \vec{F} + \vec{N} + \vec{T} + \vec{p}$, projection	1	
	selon N donne $N = Mg\cos(\alpha)$ donc en glissement $T = \mu_d N =$		
	$\mu_d \cos(\alpha) Mg$, en projetant le PFD sur $-\vec{T}$ on obtient $ma = F - \vec{T}$		
	$T - Mg\sin(\alpha) = F - (\mu_d\cos(\alpha) + \sin(\alpha))Mg\operatorname{donc}\mu_d' = \cos(\alpha)\mu_d + \sin(\alpha)\operatorname{gia}(\alpha)\operatorname{gia}(\alpha)\operatorname{gia}(\alpha)$		
23	$\begin{array}{l} \sin(\alpha) \text{ si } \alpha \ll \frac{\pi}{2} \text{ alors } \mu_d' = \mu_d + \alpha \\ \text{à } \alpha = 0 \text{ et dans le cas de non-glissement } T < \mu_s N \text{ donc } T < \mu_s M g \end{array}$	1	
23	a $\alpha = 0$ et dans le cas de non-glissement $I < \mu_s M$ donc $I < \mu_s M g$ en projetant le PFD sur \vec{T} on a $T = F = F_0$ à l'arrêt, donc	1	
	For $\mu_s Mg$ donc $F_{0_{min}} = \mu_s Mg = 4,0.10^2 \text{ N}$		
24	en régime stationnaire $v = v_0$ donc le PFD projeté selon \vec{T} donne	1	
	$0 = F_0 - \beta v_0 - \mu_d Mg$ donc $F_0 = \beta v_0 + \mu_d Mg$ et en régime	_	
	transitoire $\frac{M}{\beta} \frac{dv}{dt} + v = v_0$ donc $\tau = \frac{M}{v_0}$ donc $t_1 = 3\tau = 3\frac{M}{\beta}$ donc		
	$\beta = 3\frac{M}{t_1} = 3.10^2 \text{ kg.s}^{-1} \text{ et } F_0 = 1, 2.10^3 \text{ N}$		
25	PFD appliqué au traineau, la projection radiale donne $-M\frac{v_0^2}{R}$	1	
20	$-T\sin(\theta)$, la projection ortho-radiale donne $0 = T\cos(\theta) - R_T$, la	•	
	projection verticale donne $0 = Mg - N$, en glissement $R_T = \mu_d N$,		
	donc $\tan(\theta) = \frac{v_0^2}{\mu_d R g}$ et $T = \frac{\mu_d M g}{\cos(\theta)}$		
I	$\mu_d Rg = \cos(\theta)$	I I	

26-41	Refroidissement du supraconducteur	16
26-27	Premier et deuxième principes dans un écoulement	2
26	h_e : enthalpie massique en entrée, h_s : enthalpie massique en sortie, s_e : entropie massique en entrée, s_s : entropie massique en sortie, w_u : travail utile massique, q : transfert thermique massique, T_{ext} : température extérieure	1
27	celle de régime stationnaire	1
28-41	Étude du cycle	14
28	on place 1 sur $p_1 = 1$ bar et isotherme à $T_1 = 290$ K, de 1 à 2 compression isotherme donc on place 2 sur $p_2 = 200$ bar et isotherme $T_2 = T_1 = 290$ K, pour 5 on a liquide à la sortie du séparateur donc $p_5 = p_1 = 1$ bar et liquide saturant donc sur la courbe d'ébullition, pour 6 séparateur isobare donc $p_6 = p_5 = p_1 = 1$ bar et vapeur saturante donc 6 sur la courbe de rosée.	1
29	$\begin{array}{l} h_1 = 505 \; \mathrm{kJ.kg^{-1}}, \; s_1 = 3,85 \; \mathrm{kJ.K^{-1}.kg^{-1}} \\ h_2 = 470 \; \mathrm{kJ.kg^{-1}}, \; s_2 = 2,15 \; \mathrm{kJ.K^{-1}.kg^{-1}} \\ h_5 = 80 \; \mathrm{kJ.kg^{-1}}, \; s_5 = 0,05 \; \mathrm{kJ.K^{-1}.kg^{-1}} \\ h_6 = 280 \; \mathrm{kJ.kg^{-1}}, \; s_6 = 2,45 \; \mathrm{kJ.K^{-1}.kg^{-1}} \end{array}$	1 1 1 1
30	Pour un gaz parfait, on sait que l'enthlpie ne dépend que de la température, donc si la température est constante alors l'enthalpie est constante, donc isothermes = isenthalpes	1
31	Pour des pressions faibles et loin de la courbe de rosée	1
32	second principe $\Delta s = \frac{q}{T_{ext}} + s_c$, isotherme donc $T_ext = T_1$ et reversible donc $s_c = 0$, donc $\Delta s = \frac{q_{1\to 2}}{T_1}$ donc $q_{1\to 2} = T_1(s_2 - s_1) = -493 \text{ kJ.kg}^{-1}$	1
33	premier principe $\Delta h = w_{1\to 2} + q_{1\to 2}$ donc $w_{1\to 2} = h_2 - h_1 - q_{1\to 2} = 458 \text{ kJ.kg}^{-1}$	1
34	détente sans travail utile, et adiabatique, donc $\Delta h = w_u + q = 0$ donc détente isenthalpique	1
35	le titre massique de liquide est $y = \frac{h_6 - h_4}{h_6 - h_5}$ donc $h_4 = yh_5 + (1-y)h_6$	1
36	La transformation de 3 vers 4 est isenthal pique donc $h_3 = h_4 = yh_5 + (1-y)h_6$ et $h_3 = h_2 - (1-y)(h_1 - h_6)$ donc $y = \frac{h_2 - h_1}{h_5 - h_1} = 0,08$	1
37	$m_l iq = y m_4 = y m_e = y \frac{W_u}{w_u}$ donc $W_u = \frac{m_l iq w_u}{y} = 5,7 \text{ MJ}$	1
38	le point 4 est à $p_4 = p_5 = p_1 = 1$ bar car séparateur isobare et sur l'isotitre $x = 1 - y = 0,92$. On en déduit par lecture $h_4 = 265$ kJ.kg ⁻¹ et $s_4 = 2,25$ kJ.kg ⁻¹	1
39	réaction de 3 à 4 isenthalpique donc on le place à $h_3 = h_4 = 265$ kJ.kg ⁻¹ et échangeur isobare donc $p_3 = p_2 = 200$ bar. On lit $s_3 = 1, 2$ kJ.K ⁻¹ .kg ⁻¹	1
40	$s_4 - s_3 = 1,05 \text{ kJ.K}^{-1}.\text{kg}^{-1}$ et la détente est adiabatique donc $s_c = s_4 - s_3 = 1,05 \text{ kJ.K}^{-1}.\text{kg}^{-1}$, cette irréversibilité est due à l'écoulement irréversible d'un milieu de haute pression vers un milieu basse pression.	1

42-56	€.(kWh) ⁻¹ donc ça donne 2€ pour 10L d'azote liquide Etude d'une installation nucléaire REP	25
42-44	Cycle de Carnot	3
42	$\Delta W = W + Q_F + Q_C = 0 \text{ et } \Delta S = \frac{Q_F}{T_F} + \frac{Q_C}{T_C} = 0, \text{ le rendement}$ $\eta = \frac{-W}{Q_C} = \dots = 1 - \frac{T_F}{T_C}$	1
43	$ \begin{array}{c} $	1
44	$r=\frac{P_e}{P_t}=0,323$ qui est inférieur au rendement de Carnot comme attendu	1
45-53	Cycle de Rankine	9
45	courbes de saturation + isothermes, A liquide à p_2 et T_D , A' liquide saturant à p_2 , B vapeur saturante à p_2 , C mélange liq+vap de $v_C > v_B$ à p_1 , D liquide saturant à p_1	1
46	état $A': p=55$ bar, $\theta=270^{\circ}\text{C}, h=1190, 10 \text{ kJ.kg}^{-1}, s=2,9853 \text{ J.K}^{-1}.\text{kg}^{-1}$ état $B: p=55$ bar, $\theta=270^{\circ}\text{C}, h=2788, 46 \text{ kJ.kg}^{-1}, s=5,9226 \text{ J.K}^{-1}.\text{kg}^{-1}$ état $C: p=4,3.10^{-2}$ bar, $\theta=30^{\circ}\text{C}, h=125, 22 \text{ kJ.kg}^{-1}, s=0,4348 \text{ J.K}^{-1}.\text{kg}^{-1}$	1
47	Pour A' , B , et D on a toutes les coordonnées. Pour C , isobare de D et isentrope de B	1
48	$\Delta h = q + w_u$	1
49	adiabatique donc $q=0$ donc $\Delta h=w_{BC}$ donc $w_{BC}=h_C-h_B=-990~{\rm kJ.kg^{-1}}$	1
50	sans travail utile donc $q_{AA'}=h_{A'}-h_A=c(T_{A'}-T_A)=1000$ kJ.kg ⁻¹	1
51	sans travail utile donc $q_{A'B} = h_B - h_A = 1600 \text{ kJ.kg}^{-1}$	1
52	$r = \frac{-w_{BC}}{q_{AA'} + q_{A'B}} = 0,40$, le rendement de Carnot $\eta = 1 - \frac{T_D}{T_B} = 0,44$, donc le rendement de Rankine est inférieur, et on verra que le rendement réel est encore inférieur à celui de Rankine.	1
53	L'eau est dans un mélange liquide+vapeur. Par lecture graphique on a $x_C = 0,69$. L'eau étant partiellement liquide cela peut endommager les ailettes de la turbine notamment par corrosion.	1
54-56	Cycle de Rankine avec détente étagée	3
54	pour C' on arrête la détente adiabatique réversible à $p_3 = 10$ bar, pour B' point de la courbe de rosée à p_3 , pour C'' suivre isentrope jusqu'à p_1	1
55	Graphiquement $x_{C'} = 0,85$ et $x_{C''} = 0,77$ tous deux supérieurs à x_C . L'intérêt est donc de limiter la fraction d'eau liquide lors de la détente dans la turbine.	1
56	le nouveau rendement $r' = \frac{w_{BC'} + w_{B'C'}}{q_{AB} + q_{C'B'}} = 0,38$, le rendement est moindre mais la turbine est préservée.	1