Learning and Decision Trees

COMP3411/9814: Artificial Intelligence

Supervised Learning

Given:

• a set of training examples, each with a set of features and target value (or class):

$$< x_1, x_2, ..., x_n, y >$$

a new example, where only the values for the input features are given

predict the target value of the new example.

Learning decision trees

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Restaurant Training Data

- Examples described by attribute values (Boolean, discrete, continuous)
 - E.g., situations where I will/won't wait for a table:

class value

	Alt	Bar	F/S	Hun	Pat	Price	Rain	Res	Туре	Est	Wait?
X ₁	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X ₂	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X 3	F	Т	F	F	Some	\$	F	F	Burger	0 –10	Т Т
X ₄	Т .	F	Т	Т	Full	\$	F	F	Thai	10–30	Т Т
X 5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X ₆	F	Т Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т Т
X ₇	F	Т Т	F	F	None	\$	Т	F	Burger	0 –10	F
X 8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0 –10	Т Т
X 9	F	Т Т	Т	F	Full	\$	Т	F	Burger	>60	F
X ₁₀	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X ₁₁	F	F	F	F	None	\$	F	F	Thai	0 –10	F
X ₁₂	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision Trees

One possible representation for hypotheses

Decision Trees

Output can be multi-valued, not just binary

Expressiveness

- Decision trees can express any function of the input attributes.
 - E.g., for Boolean functions, truth table row → path to leaf:

- There is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*) but it probably won't generalise to new examples
- Prefer to find more compact decision trees

ID3 (Quinlan)

- The algorithm operates over a set of training instances, E.
- If all instances in *E* are in class *C*, create a node *C* and stop, otherwise select a feature *F* and create a decision node.
- Partition the training instances in E into subsets according to the values, V_i of F.
- Apply the algorithm recursively to each of the subsets E_i

Generalisation

- Training data must not be inconsistent
 - see later how to handle inconsistent data
- Can split attributes in any order and still produce a tree that correctly classifies all examples in training set
- However, want a tree that is likely to generalise to correctly classify (unseen) examples in test set.
- Prefer simpler hypothesis, i.e. a smaller tree.
- How can we choose attributes to produce a small tree?

Choosing an attribute

	Alt	Bar	F/S	Hun	Pat	Price	Rain	Res	Type	Est	Wait?
X ₁	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X2	Т	F	F	т	Full	\$	F	F	Thai	30-60	F
X ₃	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X4	Т	F	т	т	Full	\$	F	F	Thai	10-30	т
X ₅	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X ₆	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X ₇	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X ₈	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
Χ _θ	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X ₁₀	Т	Т	т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X ₁₁	F	F	F	F	None	\$	F	F	Thai	0–10	F
X ₁₂	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

- Patrons is a more "informative" attribute than Type, because it splits the examples more nearly into sets that are "all positive" or "all negative".
- "Informativeness" can be quantified using the mathematical concept of "entropy".
- Tree can be built by minimising entropy at each step

Entropy

• Entropy is a measure of the randomness or uniformity.

Entropy

• If the prior probabilities of the n class values are p_1, \dots, p_n then the entropy is

$$H(\langle p_{1,\ldots},p_{n,\rangle}) = \sum_{n=1}^{\infty} -p_{i}\log_{2} p_{i}$$

- This is the minimum number of bits needed to encode an example.
- Frequently occurring classes require fewer bits.

Entropy

- Suppose we have *p* positive and *n* negative examples in a node.
- $H\left(\left\langle \frac{p}{p+n}, \frac{n}{p+n} \right\rangle\right)$ bits needed to encode a new example.
 - e.g. for 12 restaurant examples, p = n = 6 so we need 1 bit.
- An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification.
- Let E_i have p_i positive and n_i negative examples

$$H\left(\left\langle \frac{p_i}{p_i+n_i}, \frac{n_i}{p_i+n_i} \right\rangle\right)$$
 bits needed to encode an example

expected number of bits per example over all branches is

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H\left(\left\langle \frac{p_{i}}{p_{i} + n'} \frac{n_{i}}{p_{i} + n_{i}}\right\rangle\right)$$

For Patrons, this is 0.459 bits, for Type this is (still) 1 bit → split on Patrons

Probability of going down branch *i*

Choosing and Attribute

For Patrons, Entropy =
$$\frac{1}{6}(0) + \frac{1}{3}(0) + \frac{1}{2}[-\frac{1}{3}\log(\frac{1}{3}) - \frac{2}{3}\log(\frac{2}{3})]$$
 $Prior(none) = \frac{2}{12} = \frac{1}{6}$
= $0 + 0 + \frac{1}{2}[\frac{1}{3}(1.585) + \frac{2}{3}(0.585)] = 0.459$ $Pwait}(false) = 1$
For Type, Entropy = $\frac{1}{6}(1) + \frac{1}{6}(1) + \frac{1}{3}(1) + \frac{1}{3}(1) = 1$

Choosing and Attribute

For Patrons, Entropy =
$$\frac{1}{6}(0) + \frac{1}{3}(0) + \frac{1}{2}[-\frac{1}{3}\log(\frac{1}{3}) - \frac{2}{3}\log(\frac{2}{3})]$$
 $Prior(some) = \frac{4}{12} = \frac{1}{3}$
= $0 + 0 + \frac{1}{2}[\frac{1}{3}(1.585) + \frac{2}{3}(0.585)] = 0.459$ $Pwait(true) = 1$
For Type, Entropy = $\frac{1}{6}(1) + \frac{1}{6}(1) + \frac{1}{3}(1) + \frac{1}{3}(1) = 1$

Choosing and Attribute

Choosing Next Attribute

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H\left(\left\langle \frac{p_{i}}{p_{i} + n'}, \frac{n_{i}}{p_{i} + n_{i}} \right\rangle\right)$$

After splitting on Patrons, split on Hungry

Induced Tree

Decision Trees

- Decision tree learning is a method for approximating discrete value target functions, in which the learned function is represented by a decision tree.
- Decision trees can also be represented by if-then-else rule
- Decision tree learning is one of the most widely used approach for inductive inference

Overfitting

- What if training data are noisy?
 - Misclassified examples
 - Incorrect measurements
- Making decision tree classify every example (including noise) could make it less accurate
 - Tries to classify bad examples
 - ➤ Misclassifies correct examples in test set
- This is called *overfitting*
- Can improve accuracy by pruning branches created by try to classify noise.

Tree Pruning

- The top node of this tree has
 - 30 +ve examples
 - 3 –ve examples

- It is split 3 ways.
- If we decide to prune it, the top node becomes a leaf node and the decision value is the majority class, i.e. +ve.
- Only prune if the expected error is less than the expected error with the children

Laplace Error and Pruning

When a node becomes a leaf, all items will be assigned to the majority class at that node. We can estimate the error rate on the (unseen) test items using the Laplace error:

$$E = 1 - \frac{n+1}{N+k}$$

N =total number of training examples

n = number of training examples in the majority class

k = number of classes

If the average Laplace error of the children exceeds that of the parent node, we prune off the children.

How do we get the Laplace Error?

- Suppose a node as 99 +ve and 1 -ve: $\frac{n}{N} = \frac{99}{100}$ is the probability of the majority class.
- If we decide to prune, the expected error will be $1 \frac{99}{100} = 0.01$
- Good estimate if N is large, but if N is small, better to rely on prior probability of class, i.e. $\frac{1}{k}$
- So the Laplace error adds a bias for small N. When N is large, correction is irrelevant

$$E = 1 - \frac{n}{N} + \frac{1}{k}$$

N = total number of training examples

n = number of training examples in the majority class

k = number of classes

Minimal Error Pruning

Should the children of this node be pruned or not? Left child has class frequencies [7, 3]

$$E = 1 - \frac{n+1}{N+k} = 1 - \frac{7+1}{10+2} = 0.333$$

Right child has E = 0.429

Parent node has E = 0.412

Average for left and right child is:

$$E = \frac{10}{15} \times 0.333 + \frac{5}{15} \times 0.429 = 0.365$$

Since 0.365 < 0.412, children should NOT be pruned

Minimal Error Pruning

Should the children of this node be pruned or not? Left child has class frequencies [3, 2]

$$E = 1 - \frac{n+1}{N+k} = 1 - \frac{3+1}{5+2} = 0.429$$

Right child has E = 0.333

Parent node has E = 0.375

Average for left and right child is:

$$E = \frac{5}{6} \times 0.429 + \frac{1}{6} \times 0.333 = 0.413$$

Since 0.413 > 0.375, children should be pruned

Minimal Error Pruning

Should the children of this node be pruned or not?

Left child has class frequencies [15, 1]

$$E = 1 - \frac{n+1}{N+k} = 1 - \frac{15+1}{16+2} = 0.111$$

Parent node has
$$E = \frac{4}{35} = 0.114$$

Average for left and right child is:

$$E = \frac{16}{33} \times 0.111 + \frac{16}{33} \times 0.111 + \frac{1}{33} \times 0.333 = 0.118$$

Since 0.118 > 0.114, children should be pruned

Numerical Attributes

- ID3 algorithm is designed for attributes that have discrete values.
- How can we handle attributes with continuous numerical values?
- ➤ Must discretise values.

Problems Suitable for Decision Trees

- Instances are represented by attribute-value pairs
- Instances are described by a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot).
 - Easiest domains for decision tree learning is when each attribute takes on a small number of disjoint possible values (e.g., Hot, Mild, Cold).
 - Extensions allow handling real-valued attributes as well (e.g., representing temperature numerically).
- The target function has discrete output values
- The training data
 - The training data may contain errors
 - The training data may contain missing attribute values

Training and Testing

- For classification problems, a classifier's performance is measured in terms of the *error rate*.
- The classifier predicts the class of each instance: if it is correct, that is counted as a *success*; if not, it is an *error*.
- The error rate is just the proportion of errors made over a whole set of instances, and it measures the overall performance of the classifier.

Training and Testing

- Self-consistency test: when training and test dataset are the same
- Hold out strategy: reserve some examples for testing and use the rest for training (set part of that aside for validation, if required)
- K-fold Cross validation:
 - If don't have many examples
 - Partition dataset randomly into k equal-sized sets.
 - ullet Train and test classifier k times using one set for testing and other k
 - 1 sets for training

4-Fold Cross-validation

ACC = (ACC1 + ACC2 + ACC3 + ACC4)/4

4-Fold Cross-validation

K-Fold Cross Validation

- Train multiple times, leaving out a disjoint subset of data each time for test.
- Average the test set accuracies.

```
Partition data into K disjoint subsets for k \in 1..K: testData \leftarrow k_{th}subset h \leftarrow classifier trained on all data except for <math>testData accuracy(k) = accuracy of <math>h on testData
```

end

FinalAccuracy = mean of the K recorded test set accuracies

Summary

- Supervised Learning
 - Training set and test set
 - Try to predict target value based on input attributes
- Ockham's Razor
 - Tradeoff between simplicity and accuracy
- Decision Trees
 - Improve generalisation by building a smaller tree (using entropy)
 - Prune nodes based on Laplace error
 - Other ways to prune Decision Trees

References

- Poole & Mackworth, Artificial Intelligence: Foundations of Computational Agents, Chapter 7.
- Russell & Norvig, Artificial Intelligence: a Modern Approach, Chapter 18.1, 18.2, 18.3