PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07H 19/04, C07D 473/04 C07D 405/04, A61K 31/70

(11) International Publication Number:

WO 93/25565

(43) International Publication Date:

23 December 1993 (23.12.93)

(21) International Application Number:

PCT/BE93/00036

A1

(22) International Filing Date:

18 June 1993 (18.06.93)

(30) Priority data:

92201803.1

18 June 1992 (18.06.92)

(34) Countries for which the regional

or international application was filed:

AT et al.

EP

(71) Applicant (for all designated States except US): STICHTING REGA VZW [BE/BE]; Minderbroederstraat 10, B-3000 Leuven (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DE CLERCQ, Erik, Désiré, Alice [BE/BE]; Parklaan 9, B-3360 Lovenjoel (BE). HERDEWIJN, Piet, André, Maurits [BE/BE]; Olivierstraat 21, B-3111 Rotselaar (Wezemaal) (BE). VAN AERSCHOT, Arthur, Albert, Edgard [BE/BE]; Heist-Goorstraat 29, B-2220 Heist o/d Berg (BE). (74) Agent: OCTROOIBUREAU ARNOLD & SIEDSMA BVBA; Hamoirlaan 21A, B-1180 Brussels (BE).

(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. In English translation (filed in Dutch).

(54) Title: 1,5-ANHYDROHEXITOL NUCLEOSIDE ANALOGUES AND PHARMACEUTICAL USE THEREOF

(57) Abstract

It has been found that 1,5-anhydrohexitol nucleoside analogues, wherein a 4-substituted-2,3,4-trideoxy-1,5-anhydrohexitol is coupled via its 2-position to the heterocyclic ring of a pyrimidine or purine base, exhibit remarkable anti-viral properties against herpes viruses, pox viruses and related viruses. The new nucleoside analogues are represented by general formula (I) wherein B is a heterocyclic ring derived from a pyrimidine or purine base, X represents H, N₃, F, Cl, Br, I, amino, -NHR², -N(R²)₂, -OR², -SR² or CN, R¹ and R² are the same or different and hydrogen, alkyl, acyl or phosphate groups are represented, or wherein X is hydrogen and a double bond is situated between the 3- and 4- position of the 1,5-anhydrohexitol ring. Pharmaceutically acceptable salts and esters thereof are included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	. GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
B.J	Benin	IE	Ircland	PT.	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
CS	Czechuslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	I.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MC	Madagascar	US	United States of America
ES	Spain	MI.	Mali	. VN	Viet Nam
PI	Finland	MN	Mongolia		

1,5-ANHYDROHEXITOL NUCLEOSIDE ANALOGUES AND PHARMACEUTICAL USE THEREOF

Technical field

This invention relates to nucleoside analogues with an aglycone six-membered ring which exhibits remarkable antiviral activities. This invention further relates to the 5 chemical synthesis and the pharmaceutical and/or medical use of such nucleoside analogues.

Background

Pentofuranosyl nucleosides are nucleosides in which a pentofuranose ring, that is, a heterocyclic five-membered 10 ring, which is derived from pentose sugars, is bonded to the heterocyclic ring of a pyrimidine or purine base. Substituents can be present on each of both rings. Ring atoms as well as pendant hydroxy and amino groups can be replaced by other atoms or groups whereby a large number of possible variations is created.

Different pentofuranosyl nucleosides are known for their anti-viral activities. Nucleosides for example with a 2-deoxy-2-fluor-D-arabinofuranose moiety have a potential anti-viral activity against herpes viruses and are among the 20 most active anti-herpes agents. Compare De Clercq et al., Biochem. Pharmacol. 33, 2159 (1984). A number of these nucleosides has already been tested in vivo. Their antiviral activity is dependent on the presence of a virus-specific thymidine kinase, whereby they are converted into the 25 corresponding 5'-monophosphate derivatives. The monophosphates are further phosphorylized by cellular enzymes to triphosphates which then inhibit the viral DNA polymerase.

In the same manner base modifications of the natural 30 2'-deoxy nucleosides can provide these nucleotides with an anti-viral activity against herpes viruses. This activity of for instance 5-iodo-2'-deoxyuridine and E-5-(2-bromovinyl)-2'-deoxyuridine is likewise dependent on a virus-specific

thymidine kinase. Compare De Cl rcq et al., in Developments in Anti-viral Chemotherapy, pages 21-42 (1980), Ed. Collier and Oxford, Acad. Press.

Description of the invention

The present invention relates to 1,5-anhydrohexitol nucleoside analogues, wherein a 4-substituted-2,3,4-tri-deoxy-1,5-anhydrohexitol is coupled via its 2-position to the heterocyclic ring of a pyrimidine or purine base. They are represented by the formula I:

10

$$R^{1} \circ \frac{6}{\sqrt{2}} \circ \frac{1}{\sqrt{2}}$$

$$(1)$$

15

25

30

wherein B is a heterocyclic ring which is derived from a pyrimidine or purine base, and

wherein X represents a hydrogen atom, azido, F, Cl, Br, I, 20 amino, $-NHR^2$, $-N(R^2)_2$, $-OR^2$, $-SR^2$ or CN,

wherein R^1 and R^2 are the same or different and represent hydrogen, alkyl, acyl or phosphate groups; wherein

alkyl is a straight or branched chain, saturated or unsaturated, substituted or non-substituted hydrocarbon radical with 1-20 carbon atoms; and acyl is an alkanoyl or aroyl group, wherein alkanoyl is an alkylcarbonyl radical and wherein alkyl is as described above and aroyl is a

benzoyl, substituted benzoyl or naphtoyl; or wherein X is hydrogen and a double bond is situated between the 3- and 4- position of the 1,5-anhydrohexitol ring.

Pharmaceutically acceptable salts and esters of the 35 compound of formula I are included in the invention.

The nucleoside analogues of formula I are new compounds. They display a certain similarity with 2'-deoxy-pentofuranosyl nucleosides of formula II wherein B, R¹ and X

have the same designation as in formula I, exc pt for the enlargement of the ring with a methylene group between the ring oxide and the carbon which is coupled to the base.

$$\begin{array}{c}
A \\
A \\
A
\end{array}$$
(II)

According to the invention it has been found that the nucleoside analogues of formula I and their salts and esters exhibit remarkable anti-viral properties against herpes viruses, pox viruses and related viruses. Different analogues are selectively inhibiting for Herpes simplex virus type 1, Herpes simplex virus type 2, Varicella zoster 15 virus and Cytomegalo virus. A new class of anti-herpes agents has therefore been found.

A number of nucleoside analogues has already been described by ourselves and others, which analogues contain a pyranose group (as well as pentoses and hexoses), but not a 20 single one has been described as possessing anti-viral activities. Compare Herdewijn et al., Nucleosides, Nucleotides 10, 119-127 (1991) (pentoses, 2-deoxy-2fluoropentopyranoses, inactive); Herdewijn et al., Bull. Soc. Chim. Belg. 99 895-901 (1990) (hexoses, inactive); 25 Kaluza et al., Acta Chem. Scand. 44 294-296 (1990) and Hansen et al., Liebigs Ann. Chem. 1079-1082 (1990) (3azidopyranoid analogues of AZT, inactive); Nord et al., J. Med. Chem. 30, 1044-1054 (1987) (2-deoxy-hexopyranoses, from inactive to very low activity). Until now it has not been 30 found of a single hexose nucleoside that it is a substrate for cellular or viral kinases and thereby has an anti-viral effect. Insertion of an additional oxygen or nitrogen in the pentofuranose group, whereby analogues were created with a dioxane or morpholine moiety, equally did not provide the 35 obtained compounds with any desired anti-viral properties. Compare Van Aerschot et al., Bull. Soc. Chim. Belg. 99 769-777 (1990).

The fact that anti-viral activities are found among the nucleoside analogues of formula I must be deemed surprising despite their configurational analogy with nucleosides of formula II. The effect of enlarging the pentofuranosyl ring to a 1,5-anhydrohexitol ring could not be anticipated beforehand. This is illustrated by the absence of anti-viral properties in the above mentioned derivatives.

The invention also relates to pharmaceutical compositions from the nucleoside analogues of formula I and,

10 where possible, to the use of these nucleoside analogues in
therapy, for instance in the treatment or prophylaxis of
virus infections, in particular herpes virus infections, for
example herpes simplex virus types 1 and 2, Cytomegalo virus
and Varialla Zoster virus.

15 More detailed description of the invention Compounds

The invention will now be described in more detail. The compounds according to the invention are nucleoside analogues wherein a 4-substituted-2,3,4-trideoxy-1,5-

- anhydrohexitol is coupled via its 2-position to the heterocyclic ring of a pyrimidine or purine base. They can be represented by the above stated formula I, wherein B, R¹ and X have the above stated designations. Pharmaceutically acceptable salts and esters are likewise included.
- The hexitol has the (D)-configuration and the base and the X substituent have the (S)-configuration.

Group B is derived from a pyrimidine or purine base. When derived from a pyrimidine base it can be represented by formula III:

30

35

wherein X represents OH, NH2 or NHQ,

Q is OH or C_{1.5} alkyl,

Y is H, F, Cl, Br, C₁₋₅ alkyl, haloethyl or CH=CH-R wherein R represents halogen or C₁₋₅ alkyl and haloethyl with 1-4 F, Cl or Br atoms.

When B is a heterocyclic ring which is derived from a purine base it can be an adenine, guanine, hypoxanthine or xanthine ring, optionally substituted by halogen, C₁₋₅ alkyl or -CH=CH-R, wherein R represents hydrogen, halogen or C₁₋₅ alkyl.

In addition, aza, deaza, deoxy or deamino analogues of each of the said heterocyclic rings, optionally with one or more of above mentioned substituents, can be present in the compounds of formula I.

Substituents R^1 and X have the designation as stated above.

Chemical synthesis

The nucleoside analogues of the present invention can be prepared in different ways. In a preferred method the corresponding (R^1, R^2) substituted 1,5-anhydrohexitol ring protected in appropriate manner is first produced with a hydroxyl residue in its 2-position in the (R) configuration (formula IV).

$$R^{1} \circ \gamma^{\circ} \rightarrow H$$
 (IV)

30

Activation with a leaving group provides nucleophile replacement with a purine or pyrimidine base, followed by deprotection of the desired nucleoside analogues (formula XIII). Substituents in 4-position (position X in formula I) can be introduced in accordance with classical and known reaction schedules which are used for introduction of substituents X in formula II (2'-deoxypentofuranosyl nucleoside analogues).

In similar manner the preparation of the 1,5-anhydr hexitol ring can be performed in different ways. A preferred method is elucidated in the following schedule.

The synthesis begins with glucose (V) which is con5 verted into tetra-0-acetyl-glucopyranosyl bromide (VI) in
accordance with Kartha et al., J. Carbohydrate Chem. 9, 777781 (1990).

Reduction is achieved with tri-n-butyltinhydride [which can be generated in situ from bistributyltinoxide and a 10 polymethylhydrosiloxane, in accordance with Kocienski et al., Carbohydrate Res. 110, 330-332 (1982)], or with other reducing means which provide compound VII. Removal of the acetyl groups with sodium methoxide is followed by introduction of a benzylidene protective group, analogously 15 of protection of methylglucoside [Methods in Carbohydrate Chemistry, vol. 2, p. 208] whereby compound VIII is obtained. Selective reaction of the hydroxyl in position 2 is feasible after previous activation with dibutyltinoxide. Position 2 can either be selectively protected, for instance 20 as an ester (for example $R = CH_3C_6H_4CO$) or can be functionalized with a leaving group (for example R = $CH_3C_8H_4SO_2$, formula IX). The hydroxyl group in position 3 is subsequently removed [(for instance by Barton deoxygenation, see Barton et al., Tetrahedron Lett. 30, 2619-2622 (1989)] 25 Whereby the compound of formula X is obtained.

Coupling of the purine or pyrimidine base can be performed substantially in three ways:

- a) by nucleophile replacement of the leaving group in position 2 with the respective purine or pyrimidine base.
 30 Compare for example Medich et al., Tetrahedron Lett. 28, 4131-4134 (1987).
- b) by hydrolysis of the temporary protective group R, whereby the compound of formula X is obtained, wherein R = H, followed by alkylizing of the purine or pyrimidine base
 35 under modified Mitsunobu conditions. Compare Jenny et al., Tetrahedron Lett. 32, 7029-7032 (1991).
 - c) by constructing the heterocyclic base by standard procedures after introduction of an amine function in the

(S) configuration (formula XI). For a survey of the construction of the base for a carbocyclic amine compare Marquez and Lim, Medicinal Res. Rev. 6, 1-40 (1986).

The resulting product of formula I can be purified by 5 standard procedures. In the alternative case a hydroxyl group in the 3-position can be removed during reduction after introduction of the base in the 2-position.

Pharmaceutically acceptable salts and esters of the nucleoside analogues of formula I can further be prepared in 10 conventional manner.

As stated abov, the nucleoside analogues of the present invention generally have anti-viral activities against herpes viruses, pox viruses and related viruses, such as herpes simplex virus 1, herpes simplex type 2, varicella zoster virus, cytomegalo virus and vaccinia virus. In this manner they can advantageously be used for treating the diseases caused by such viruses in human and veterinary medicine.

Pharmaceutical compositions

- Pharmaceutical compositions containing the nucleoside analogues of the invention as an active ingredient can take the form of tablets, capsules, powders, suspensions, solutions, emulsions as well as salves and creams, and can be used for parenteral (intravenous, intradermal,
- intramuscular, intrathecal etc.) injections, oral, rectal, intravaginal and intranasal administering or for local application (for instance on skin injuries, mucosa and eyes). Such compositions can be prepared by combining the active ingredient(s) with pharmaceutically acceptable
- 20 excipients normally used for this purpose. Such excipients can comprise aqueous and non-aqueous solvents, stabilizers, suspension agents, dispersing agents, moisturizers and the like, and will be known to the skilled person in the pharmaceutical field. The composition may further contain
- 25 likewise suitable additives such as for instance polyethylene glucoles and, if necessary, colorants, fragrances and the like.

The pharmaceutical compositions will preferably contain at least 0.1 volume % by weight of the active ingredient.

- 30 The actual concentration will depend on the disease and the chosen administering route. In general this concentration will lie between 0.1 and 100% for the above applications and indications. The dose of the active ingredient to be administered can further vary between 0.1 mg and 100 mg per
- 35 kg body weight, preferably between 0.1 mg and 50 mg per kg body weight, and most preferably between 0.5 mg and 20 mg per kg body weight.

The desired dose is pr ferably presented in the form of two, three, four, five, six or more sub-doses which are administered at appropriate intervals per day. These sub-doses can be administered in the form of dosage units containing for instance from 1 to 1500 mg, preferably from 5 to 1000 mg and most preferably from 10 to 700 mg active constituent per dosage unit, and if the condition of the patient permits the dose can, by way of alternative, be administered as a continuous infusion.

10 Examples

The compounds according to the invention as well as their chemical synthesis and the preparation of the starting materials are further illustrated in the following examples, which are not however intended to limit the invention.

EXAMPLES

- 5 2.3.4.6-Tetra-O-acetyl-α-D-qlucopyranosylbromide (1)

 This compound was prepared in accordance with Kartha et al., and Jennings, H., J. Carbohydr. Chem. 9, 777-781 (1990).
- 10 2.3.4,6-Tetra-O-acetyl-1.5-anhydro-D-glucitol (2) To a solution of 44.8 g of compound 1 (109 mmol) in dry diethylether was added 55 ml bistributyltinoxide (109 mmol) and an equal quantity of polymethylhydrosiloxane (55 ml). The mixture was stirred at room temperature under nitrogen. 15 TLC evaluation after 3 hours (CH2Cl2 - MeOH 98:2) showed that all the 2,3,4,6-Tetra-0-acetyl- α -D-0-.glucopyranosylbromide was converted into a more polar product. A solution of 15.80 g KF (2.5 eg, 272 mmol) in water was then added and the mixture stirred vigorously for 20 15 minutes. The Bu₃SnF precipitate was filtered and washed with diethylether. After separation of the water the ether layer was dried above anhydrous Na2SO4 and evaporated dry. The compound of the title (2) (30.06 g, 90.5 mmol; 83% yield) was obtained after chromatographic purification [1] 25 CH₂Cl₂ hexane 50:50; 2) CH₂Cl₂].

1.5 Anhydro-4.6-O-benzylidene-D-glucitol (3)

Removal of the protective groups of 2 was achieved by treating 30.06 g (90.5 mmol) of compound 2 with 400 ml 0.1 N 30 NaOMe for 2 hours at room temperature. The mixture was neutralized with acetic acid and evaporated dry. After CO evaporation with toluene, 12.4 g (91 mmol) freshly dried ZnCl₂ and 46.5 ml (455 mmol) benzaldehyde were added and the suspension stirred vigorously for 1 to 2 days at room 35 temperature.

The mixture was poured into cold water and extracted thr e times with ethyl acetate. The combined organic layer was dried on anhydrous Na₂SO₄. After filtration and removal

of the solvent the excess benzaldehyde was partially removed under vacuum at 70°C (oil pump). The solid residue was further purified by washing on a glass funnel with n-hexane followed by chromatographic purification [1) hexane - HC₂Cl₂ 5 1:1; 2) CH₂Cl₂; 3) CH₂Cl₂ - MeOH 98:2] whereby 17.1 g (68 mmol) 75% yield) of compound 3 was obtained.

glucose
$$AcO$$
 OAC OA

 $6 R = CH_3 C_6 H_4 SO_2$

 $7 R = CH_3 C_6 H_4 CO$

8 R = H

 $4 R = CH_3 C_6 H_4 SO_2$

5 R = $CH_3 C_6H_4 CO$

==

 $X = CH_3$

X = 1

B =
$$\begin{pmatrix} X & 15, 17 & X = CH_3, & Y = OH \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

1.5-Anhydro-4.6-O-benzylidene-2-O-p-toluenesulphonyl-Dglucitol (4)

The glucitol derivative 3 (8.5 g, 33.67 mmol) and dibutyltinoxide (8.38 g, 367 mmol) were suspended in 250 ml 5 benzene. The mixture was heated under reflux for 16 hours with azeotropic removal of water. After removal of the volatile substances the residue was dissolved in 150 ml anhydrous dioxane and 7.06 g (37.04 mmol) p-toluene-sulphonylchloride was added. The mixture was heated to 50°C for 6 hours, which resulted in a quantitative conversion to a less polar product. The mixture was concentrated, adsorbed on celite and purified by column chromatography (CH₂Cl₂ - hexane, 1:1; CH₂Cl₂;) to a yield of 11.22 g (27.6 mmol, 82%) of compound 4 as a white powder.

15

EIMS m/e: 406 (M^{*})

400 MHz ¹H NMR (DMSO-d₆) δ 2.42 (s, 3H, CH₃), 3.35-3.42 (m, H-4, H-5), 3.49 (t, J=11Hz, 1H, H-1 α), 3.61 (m, 1H, H-6), 3.67 (m, 1H, H-3), 3.87 (dd, J=5.5Hz and 11Hz, 1H, H-1 β),

20 4.14-4.25 (m, 2H, H-2, H-6'), 5.05 (s, 1H, PhCH), 5.12 (d, J=5.5Hz, 1H, OH), 7.35-7.50 (m, 7H, arom-H), 7.85 (m, 2H, arom-H)ppm.

90MHz 13 C NMR (DMSO-d₆) & 21.0 (CH₃), 66.9, 67.6 (C-1, C-6), 70.7, 70.8 (C-3, C-5), 79.2, 80.4 (C-2, C-4), 100.7 (PhCH) + 25 arom.

1,5-Anhydro-4,6-0-benzylidene-2-0-p-toluoyl-D-glucitol (5)

A suspension of the sugar derivative 3 (8.5 g, 33.67 mmol) and dibutyltinoxide (8.38 g, 33.67 mmol) in 250 ml

30 benzene was boiled under reflux for 16 hours with azeotropic removal of water. The solution was concentrated and 150 ml dry dioxane was added. p-Tolucyl chloride (4.44 ml, 33.67 mmol) was added in droplets and the mixture was stirred for 5 hours at room temperature. The mixture was concentrated,

35 adsorbed on celite and purified by column chromatography to a yield of 9.73 g (26.30 mmol, 78%) of compound 5 as a white powd r.

1.5-Anhydro-4.6-O-benzylidene-3-deoxy-2-O-p-toluenesulphonyl-D-ribohexitol (6)

- A) 11.22 g (27.6 mmol) of the tosylated sugar 4 and 23.60 g (193 mmol) of 4-dimethylaminopyridine (DMAP) were 5 dissolved in 400 ml dry CH₂Cl₂. The reaction mixture was cooled to -40°C and during vigorous stirring 2.53 ml thiophosgene (33.12 mmol) was added. The mixture was brought to room temperature. After stirring for 1 hour 6.30 g (38.64 mmol) 2,4-dichlorophenol was added and stirring continued 10 for 2 hours. The mixture was poured into 300 ml 1 M KH₂PO₄ and extracted twice with CH₂Cl₂. The organic layers were dried (Na₂SO₄), the volatile substances removed under vacuum and the residue purified by flash chromatography (hexane/CH₂Cl₂ 8:2 to CH₂Cl₂)
- B) the obtained thiocarbonyl compound was dissolved in 300 ml anhydrous toluene. After fast boiling the solution for 10 minutes with N₂, 7.84 ml (29.15 mmol) tri-n-butyltinhydride and 325 mg (2 mmol) 2,2'-azobis(2-methyl-propionitrile) were added and the reaction mixture heated 20 overnight at 80°C.

The mixture was evaporated and purified on silica gel with a yield of 6.90 g (17.67 mmol, 64%) of compound 6. CMIS (NH₃) m/e: 391 (MH⁺)

25 1.5-Anhydro-4.6-0-benzylidene-3-deoxy-2-0-p-toluonyl-D-ribohexitol (7)

The reaction was performed as described for the synthesis of compound 6. Treating of 9.73 g (26.30 mmol) of the toluoylated hexitol 5 provided 6.79 g (19.73, 75%) of compound 7 after chromatographic purification.

1.5-Anhydro-4.6-O-benzylidene-3-deoxy-D-glucitol (8)

Removal of the toluoyl group of compound 7 was achieved by treating 6.79 g (19.73 mmol) thereof with 300 ml 0.1 M 35 NaOMe for 4 hours at room temperature. After neutralizing and evaporation of the volatile substances the residue was purifi d by column chromatography (CH₂Cl₂ - MeOH, 99:1) with a yield of 3.72 g (15.81 mmol, 80%) of the above compound.

1.5-Anhydro-4.6-C-benzylidene-2-(adenin-9-yl)-2.3-dideoxy-D-arabinohexitol (9)

A mixture of 1.35 g (10 mmol) adenine, 400 mg sodium hydride (60% dispersion, 10 mmol) and 529 mg (2 mmol) 18-5 crown-6 in 60 ml dry DMF was stirred for 1 hour at 80°C. After adding a solution of 1.95 g (5 mmol) of compound 6 in 30 ml anhydrous DMF the stirring was continued for 16 hours at 100°C. The reaction mixture was cooled and evaporated dry. the residue was dissolved in ethylacetate (100 ml) and 10 the organic phase was washed with saturated NaHCO₃ solution (50 ml) and H₂O (2 x 25 ml), dried and evaporated dry. The solid residue was purified by column chromatography (CH₂Cl₂ - MeOH, 97:3) with a yield of 989 mg (2.8 mmol, 56% yield) of compound 9. A quantity of 190 mg (0.49 mmol, 9%) 15 of the tosylate 6, which had not reacted, was recovered.

UV (MeOH) : λ_{max} 262 nm (ϵ = 11300) MS (m/e) : 353 (M⁴) ¹H NMR (CDCl₃ + DMSO-d₆) δ 2.0-2.6 (m, H-3¹, H-3ⁿ), 3.5-4.55 20 (m, 5H), 4.94 (m, 1H), 5.57 (s, PhCH), 7.10 (br, NH₂), 7.35 (m, 5H, Ph), 8.19 (s), 8.27 (s) (H-2, H-8)ppm. ¹³C NMR (CDCl₃ + DMSO-d₆; internal ref. TMS)) δ 32.6 (C-3¹), 50.4 (C-2¹), 68.3, 69.1 (C-1¹, C-6¹), 73.6, 74.0 (C-4¹, C-5¹), 101.2 (PhCH); 119.0 (C-5), 126.1,127.8, 128.6, 137.6 25 (Ph), 139.0 (C-8), 149.5 (C-4), 152.5 (C-2), 156.1 (C-6)ppm.

1.5-Anhydro-2-(adenin-9-yl) 2.3-dideoxy-D-arabinohexitol (10)

The benzylidene moiety of compound 9 was hydrolyzed by 30 heating 989 mg (2.8 mmol) thereof in 100 ml 80% acetic acid at 80°C for 3 hours. After evaporation and co-evaporation with toluene the residue was dissolved in water and washed with diethylether. The water layer was evaporated and the residue crystallized from MeOH-Et₂O with a yield of 602 mg 35 (2.27 mmol, 81% yield) of compound 10. smp: 237-239°C

PCT/BE93/00036

UV (MeOH) : λ_{max} 261 nm (ϵ = 13500) CIMS (NH₃) m/e : 266 (MH⁺), 136 (BH₂⁺) H NMR (DMSO-d₆) δ 1.7~2.4 (m, H-3', H-3'), 3.2-4.3 (m, 6H), 4.53-5.02 (m, H-5', 4'-OH, 6'-OH), 7.25 (br s, NH₂) 8.16 (s), 8.31 (s) (H-2, H-8)ppm. 13C NMR (DMSO-d₆) δ 36.0 (C-3'), 50.2 (C-2'), 60.6, 60.9 (C-4', C-6'), 68.1 (C-1'), 83.1 (C-5'), 118.2 (C-5), 139.7 (C-8), 149.4 (C-4), 152.5 (C-2), 156.1 (C-6)ppm. Anal.

10

1.5-Anhydro-4.6-O-benzylidene-2-(2-amino-6-chloropurin-9-yl)-2.3-dideoxy-D-arabinohexitol (11)

The 1,5-anhydrohexitol 6 (1.56 g, 4 mmol) and 848 mg (5 mmol) 2-amino-6-chloropurine were dissolved in 30 ml

15 anhydrous DMF to which 830 mg (6 mmol) anhydrous potassium carbonate and 530 mg (2 mmol) 18-crown-6 were added. The mixture was stirred for 5 hours at 120°C after which the volatile substances were removed under vacuum and the residue adsorbed on silica gel. Purifying produced 295 mg

20 (0.76 mmol, 90%) of the compound 11.

¹H NMR (CDCl₃) δ 1.86-2.32 (m, H-3') 2.45-2.75 (m, H-3"), 3.5-3.9 (m, 3H), 4.07 (dd, J=2.6Hz and 13Hz, 1H), 4.34 (m, 2H), 4.77 (m, 1H), 5.30 (s, NH₂), 5.48 (s, Ph<u>CH</u>), 7.2-7.5 (m, Ph), 8.27 (s, H-8)ppm.

¹³C NMR (CDCl₃) δ 32.8 (C-3'), 50.8 (C-2'), 68.8, 69.2 (C-6', C-1'), 73.7, 74.6 (C-4', C-5'), 101.9 (Ph<u>CH</u>), 125.9, 128.1, 128.9, 137.0, (Ph), 126.1 (C-5), 141.1 (C-8), 151.5 (C-6), 153.5 (C-4), 159.0 (C-2)ppm.

30

1.5-Anhydro-2-(2-amino-6-chloropurin-9-v1)-2.3-dideoxy-D-arabinohexitol (12)

The obtained compound 11 (295 mg, 0.76 mmol) was heated in 50 ml 80% acetic acid at 80°C to complete hydrolysis of the benzylidene molety. Evaporation and co-evaporation with tolu ne left behind an oil which was purified on silica gel (CH₂Cl₂ - MeOH, 9:1). The product which precipitated after

concentration of the eluate provided 145 mg (0.48 mm 1, 63%) of compound 12.

UV (MeOH): λ_{max} 224 (27000), 249 (6100), 310 (8000) nm. 5 ¹H NMR (DMSO-d₆) δ 1.7-2.5 (H-3', H-3"), 3.94 (J=11Hz,), 4.18 (J=12Hz), 4.67 (t, J=5.5Hz, 6'-OH), 4.95 (d, J=5.2Hz, 4'-OH), 6.95 (s, NH₂), 8.30 (s, H-8)ppm. ¹³C NMR (DMSO-d₆) δ 35.7 (C-3'), 50.3 (C-2'), 60.5, 60.7 (C-4', C-6'), 67.8 (C-1'), 83.0 (C-5'), 123.0 (C-5), 141.9 (C-10 8), 149.5 (C-6), 154.0 (C-4), 159.8 (C-2)ppm.

1.5-Anhydro-2-(guanin-9-yl)-2.3-dideoxy-D-arabinohexitol (13)

A mixture of 145 mg (0.48 mmol) of compound 12 and 0.5

15 ml of a suspension of adenosine deaminase in 100 ml 0.05 M

phosphate buffer, pH 7.5, was incubated for 4 hours at 30°C.

The reaction mixture was concentrated to about 15 ml and the precipitate filtered off. Recrystallization from water provided 50 mg analytically pure compound 13. The filtrates

with water followed by MeOH-water (3:1). Evaporation gave an extra 70 mg of compound 13 as a white product to a total of 0.43 mmol (89%).

gma

25 UV (MeOH)

CIMS (iC_4H_{10}) m/e : (282 (MH⁺)

¹H NMR (DMSO-d₆) δ 4.52 (br, δ -OH), 4.9 (br, δ -OH), 6.56 (br, NH₂), 7.87 (s, H-8)ppm.

¹³C NMR (DMSO- d_6) δ 36.3 (C-3'), 50.2 (C-2'), 61.0, 61.2 (C-

30 4', C-6'), 68.4 (C-1'), 83.2 (C-5'), 116.3 (C-5), 136.9 (C-8), 151.5 (C-4), 154.1 (C-2) 157.9 (C-6)ppm.

Anal. (C₁₁H₁₅N₅O₄)

Calculated: C, 46.97; H, 5.38; N, 24.90

35 Found: C, 46.73; H, 5.40; N, 24.58

1.5-Anhydro-2,3-dideoxy-2-(5-iodouracil-1-y])-D-arabinohexitol (18)

A mixture of 2.60 g (10 mmol) of the sodium salt of 5iodouracil [prepared in accordance with Colla L. et al.,
Eur. J. Med. Chem., 17, 569 (1982)], 1.95 g (5 mmol) crude
tosylate 6 and 528 mg (2 mmol) 18-crown-6 in 80 mg dry DMF
5 was stirred at 100°C for 16 hours. The reaction mixture was
cooled and evaporated dry. The residue was dissolved in 100
ml EtOAc and the organic layer was washed successively with
saturated NaHCO₃ solution (50 ml) and water (3 x 50 ml),
dried and evaporated dry. Column chromatography (CH₂Cl₂ 10 MeOH, 98:2) produced 958 mg (2.1 mmol, 42%) yield of
compound 16 in the form of an oil and 371 mg (0.95 mmol) of
the tosylate, which had not reacted, was recovered.

The obtained oil was heated in 100 ml 80% acetic acid at 80°C to complete hydrolysis of the benzylidene moiety.

15 The mixture was evaporated and co-evaporated with toluene and purified by column chromatography (CH2Cl2 - MeOH, 90:10) with a yield of 408 mg (1.11 mmol, 53%) of the compound 18 which crystallized out of MeOH.

smp 219-220°C

20 UV (MeOH) : λ_{max} 282 nm CIMS (NH₃) m/e : 369 (MH⁴)

¹H NMR (DMSO-d₆) δ 1.53-2.42 (m, H-3, H-3'), 2.8-4.2 (m, 6H), 4.53 (m, 1H), 8.47 (s, H-6)ppm.

¹³C NMR (DMSO-d₆) δ 35.3 (C-3'), 51.4 (C-2'), 60.7, 61.1 (C-25 4', C-6'), 67.2, (C-1'), 68.3 (C-5), 82.7 (C-5'), 147.9 (C-6), 150.9 (C-2), 160.9 (C-4)ppm.

Anal. (C₁₀H₁₃N₂O₅I × 0.75 H₂O) :

Calculated: C, 31.47; H, 3.83; N, 7.34 30 Found: C, 31.83; H, 4.14; N, 7.03

1.5-Anhydro-2.3-dideoxy-2-(thymin-1-yl)-D-arabinohexitol (17)

The above compound was synthesized in the same manner 35 from compound 6 but in very moderate

21/A (corresponds with page 22 of Dutch record copy)

NOT TAKEN INTO CONSIDERATION FOR THE PURPOSES OF INTERNATIONAL PROCESSING

1.5-Anhydro-2-(cytosin-1-yl)-2.3-dideoxy-D-arabinohexitol
35 (20)

A suspension of 2.15 g (10 mmol) of N^3 -benzoylcytosine [prepared in accordance with Brown et al., J. Chem. Soc. 2384 (1956)], 1.18 g (5 mmol) of the alcohol 8 and 3.28 g

(12.5 mmol) of triphenylphosphine in 100 ml anhydrous dioxane was treated with 1.97 ml (12.5 mmol) diethylazodicarboxylate in 20 ml anhydrous THF for 15 hours at room temperature. After removal of the volatile 5 substances the residue was resuspended in 100 ml EtoAc and washed twice with 50 ml water.

The organic layer was dried on anhydrous Na₂SO₄,
evaporated and adsorbed on silica gel. Purifying by column
chromatography produced 800 mg (1.85 mmol, 37%) of the crude
10 1,5-anhydro-4,6-0-benzylidene-2,3-dideoxy-2-(N⁴benzoylcytosin-1-yl)-D-arabinohexitol.

The benzoyl group was removed by treatment with 70 ml NH₃/MeOH for 5 hours at room temperature. Evaporation left an oil which was purified on silica gel (CH₂Cl₂ - MeOH, 15 98:2) to a yield of 400 mg of the debenzoylated derivative

The obtained oil was treated with 50 ml 80% acetic acid at 80°C for 5 hours. After evaporation and co-evaporation with toluene the residue was dissolved in water and washed

20 with diethylether. The water layer was evaporated and the precipitate crystallized out of MeOH-Et20 with a yield of 234 mg of the compound 20 (0.97 mmol, 80%).

UV (MeOH) : λ_{max} 276 nm (8200) CIMS (iC₂H₁₀) m/e : 242 (MH⁺)

25 ¹H NMR (DMSO-d₆) δ 1.47-1.87 (m, H-3), 1.91-2.28 (m, H-3'), 2.95-3.30 (m, 1H, H-2), 3.35-4.10 (m, 5H), 4.52 (m, 2H, 6'-OH + H-5'), 4.85 (d, J=4.8Hz, 4'-OH), 5.66 (d, J=7.5Hz, H-5), 6.99 (s, NH₂), 7.97 (d, J=7.5Hz, H-6)ppm.

¹³C NMR (DMSO-d₆) δ 35.7 (C-3'), 51.5 (C-2'), 61.0, 61.2 (C-30 4', C-6'), 67.9 (C-1'), 82.9 (C-5'), 93.7 (C-5), 144.3 (C-6), 156.3 (C-2), 165.7 (C-4)ppm.

Anal. $(C_{10}H_{15}N_3O_4)$

as an oil.

Calculated: C, 49.79; H, 6.27; N, 17.42

35 Found: C, 49.85; H, 6.27; N, 17.20

Anti-viral tests

The anti-viral activity of the compounds according to the invention in respect of the herpes virus and related viruses is illustrated by the following tests. In these 5 tests the effect was determined of the 1,5-anhydrohexitol nucleoside analogues according to the invention on the growth and yield of the virus in cell cultures.

The compounds used are described in the examples together with a number of well known anti-herpes agents from 10 the prior art, that is, BVDU or E-5-(2-bromoviny1)-2'-deoxyuridine, Ribavirin or 1-ribofuranosy1-3-carbamoy1-1,2,4-triazol, (S)DHPA or (S)-9-(2,3-dihydroxypropy1)-adenine and C-c³ Ado or carbocyl 3-deaza adenosine.

The compounds were tested against herpes simplex virus 15 type 1 (HSV-1), herpes simplex virus 2 (HSV-2) and vaccinia virus (VV). These viruses were cultured in human embryonal skin muscle (E6SM) fibroblast cell cultures.

The tests were based on the inhibition of virus-induced cytopathogenisis in cell cultures. A standard procedure is 20 described by De Clercq et al., J. Infect. Dis. 141, 463 (1980) which is incorporated herein by way of reference.

Test 1

In this test the inhibiting activity of the test

25 compounds against viruses was measured in E₅SM cell cultures. The cells were cultured to confluence in microtitre

(R) plates and then inoculated with 100 CCID₅₀ virus,
wherein a CCID₅₀ of the virus corresponds with the virus
dose required to infect 50% of the cell cultures. After a

30 virus adsorption period of an hour remaining virus was
removed and the cell cultures incubated in the presence of
different concentrations of the test compounds (varying from
0.001 µg/ml to 400 µg/ml). For each virus cell system the
ED₅₀ was determined, that is, the concentration of the

35 compound required to suppress the cytopathic effect of the
virus by 50%. This cytopathic effect was noted as soon as it
reached completion in the non-treated, virus-inf cted cell
cultures. In addition the minimum cytotoxic concentration of

each compound was measured. The results are shown in table I.

Test 2

Further, the inhibiting effect of the test compounds on 5 virus multiplication in E₆SM cell cultures was measured making use of herpes simplex viruses missing a specific thymidine kinase. Three different strains were used: TK Cheng, TK Field and a clinically isolated strain VMW/837. The results are shown in table II.

Table I

Cytotoxicity and anti-viral activity of nucleoside analogues in human embryonal skin muscle (E₆SM) fibroblast cultures.

15	Compound	Minimum cytotoxic concentration	Minimum	inhibiting ED ₅₀ (μg/1	concentration ^t
		(µg/ml)	HSV-1	HSV-	·2 VV
20			(KOS)	(G)	
20	10	>400	7	7	20
	13	>400	0.2	0.	
	18	>400	0.07	0.	07 150
	17	>400	40	150	>200
25	20	>400	0.7	0.	0.7
	IDU	>400	0.2	0.	2 0.2
	BVDU	>400	0.004	10	0.2
	(S)-DHPA	>400	70	300	20
30	Ribavirin	>400	70	70	70
	C-c3Ado	>400	400	40	0.7

^{*}Required to cause a microscopically detectable change in the normal cell morphology

³⁵ bRequired to reduce the virus-induced cytopathogenisis by 50%

 $\begin{tabular}{ll} Table II \\ Cytotoxicity and anti-viral activity of nucleoside analogues \\ in human embryonal skin muscle (E_6SM) fibroblast cultures. \\ \end{tabular}$

	Compound	Minimum cytotoxic concentration	Minimum inhibiting concentration ED ₅₀ (μg/ml)			
10		(μg/ml)	HSV-1 TK Cheng C 158/77		VV VMW/837 #3	
	10	>400	150	70	20	
	13	>400	20	20	2	
15	18	>400	>200	>200	1	
	17	>400	>200	>200	>200	
	.20	>400	2	2 .	2	
	IDU	>400	10	10	7	
20	BVDU	>400	. 10	10	4	
	(S) -DHPA	>400	400	>400	>400	
	Ribavirin	>400	> 400	>400	>400	
	C-c ³ Ado	>400	70	>400	>400	

^{25 *}Required to cause a microscopically detectable change in normal cell morphology

bRequired to reduce virus-induced cytopathogenisis by 50%

27

CLAIMS

1. 1,5-anhydrohexitol nucleoside analogues represented by the general formula I:

$$R^{1} \circ \sqrt{\stackrel{\circ}{\sim}} X$$

wherein:

5

10

15

20

25

B is a heterocyclic ring which is derived from the group which consists of pyrimidine and purine bases, and

X represents hydrogen, azido, F, Cl, Br, I, amino, $-NHR^2$, $-N(R^2)_2$, $-OR^2$, $-SR^2$ or CN;

wherein R^1 and R^2 are the same or different and hydrogen, alkyl, acyl or phosphate moieties are represented; wherein:

- alkyl is a saturated or unsaturated, substituted or non-substituted hydrocarbon radical with 1-20 carbon atoms and straight or branched chain, and

- acyl is an alkanoyl or aroyl moiety, wherein alkanoyl is an alkylcarbonyl radical, wherein alkyl is as described above and aroyl represents benzoyl, substituted benzoyl or naphtoyl;

or

X represents hydrogen and a double bond is situated between the 3- and 4- position of the 1,5-anhydrohexitol ring, in addition to pharmaceutical salts and esters thereof.

2. 1,5-anhydrohexitol nucleoside analogues as claimed in claim 1, characterized in that the hexitol has the D-configuration and the base moiety and the X substituent both have th (S)-configuration.

- 3. 1,5-anhydrohexitol nucleoside analogues as claimed in claim 1, characterized in that X represents hydroxyl in the (S)-configuration.
- 4. 1,5-anhydrohexitol nucleoside analogues as claimed in claim 1, characterized in that the heterocyclic ring derived from the group consisting of pyrimidine and purine bases is represented by the formula III:

wherein:

15

20

25

10 X represents OH, NH₂, NHQ, wherein:

Q represents OH or C_{1.5} alkyl; Y represents H, F, Cl, Br, C_{1.5} alkyl, haloethyl or CH=CH-R, wherein R represents hydrogen, halogen or C_{1.5} alkyl and wherein haloethyl contains 1-4 F, Cl or Br atoms.

- 5. 1,5-anhydrohexitol nucleoside analogues as claimed in claim 1, characterized in that the heterocyclic ring derived from the group consisting of pyrimidine and purine bases is chosen from the group which consists of substituted and non-substituted adenine, guanine, hypoxanthine and xanthine.
- 6. 1,5-anhydrohexitol nucleoside analogues as claimed in claim 1, characterized in that aza-, deaza-, deoxy- or deamino- analogues of each of the heterocyclic rings, which if desired carry one or more substituents as defined in any of the foregoing claims, are present in the compounds of formula I.
- 7. Method for preparing 1,5-anhydrohexitol analogues
 30 represented by the general formula I

wherein:

5

10

15

B is a heterocyclic ring which is derived from the group which consists of pyrimidine and purine bases, and

X represents hydrogen, azido, F, C1, Br, I, amino, $-NHR^2$, $-N(R^2)_2$, $-OR^2$, $-SR^2$ or CN;

wherein R^1 and R^2 are the same or different and hydrogen, alkyl, acyl or phosphate moieties are represented; wherein:

- alkyl is a saturated or unsaturated, substituted or non-substituted hydrocarbon radical with 1-20 carbon atoms and straight or branched chain, and

- acyl is an alkanoyl or aroyl moiety, wherein alkanoyl is an alkylcarbonyl radical, wherein alkyl is as described above and aroyl represents benzoyl, substituted benzoyl or naphtoyl;

or

- X represents hydrogen and a double bond is situated

 between the 3- and 4- position of the 1,5-anhydrohexitol ring, in addition to pharmaceutical salts and
 esters thereof, which method comprises the steps of:
- a) first manufacturing suitably protected 1,5anhydrohexitol derivatives represented by the general
 25 formulas X, XI and XIII

X

5

wherein R^1 and R^2 r present protective groups (for example R_1 , $R_2 = C_6H_5-CH=$) and R represents a leaving function (for example $R=SO_2CH_3$, $SO_2C_6H_4CH_3$, $SO_2C_6H_4Br$) or R=H;

- b) making use of the derivatives X for alkylizing a heterocyclic ring which is derived from the group of pyrimidine and purine bases;
- c) making use of the derivatives XI for constructing a heterocyclic ring from the amine; and
- d) using the derivative XIII, wherein P represents
 -OR, wherein R represents a leaving function as stated above or P and N are components of an epoxidization for introducing the heterocyclic ring in the 2-position followed by removal of the hydroxyl group in the 3-position;
- e) if necessary converting the obtained compound to pharmaceutically acceptable salts or esters thereof.
 - 8. Pharmaceutical composition with anti-viral activity against herpes viruses, pox viruses and related viruses, which composition comprises as an active ingredient a 1,5-anhydrohexital nucleoside analogue of formula I,
- 20 wherein:
 - B is a heterocyclic ring which is derived from the group which consists of pyrimidine and purine bases, and
 - X represents hydrogen, azido, F, Cl, Br, I, amino, $-NHR^2$, $-N(R^2)_2$, $-OR^2$, $-SR^2$ or CN;
 - wherein R^1 and R^2 are the same or different and hydrogen, alkyl, acyl or phosphate moieties are represented; wherein:
 - alkyl is a saturated or unsaturated, substituted or non-substituted hydrocarbon radical with 1-20 carbon atoms and straight or branched chain, and
 - acyl is an alkanoyl or aroyl moiety, wherein alkanoyl is an alkylcarbonyl radical, wherein alkyl is as described above and aroyl represents benzoyl, substituted benzoyl or naphtoyl;

35

30

25

20

25

- X represents hydrogen and a double bond is situated between the 3- and 4- position of the 1,5-anhydrohexitol ring.
- 9. Pharmaceutical composition as claimed in claim 8,

 5 characterised by anti-viral activity against herpes-like
 viruses, which are chosen from the group which consists of
 herpes simplex virus type I (HSV-1), herpes simplex virus
 type 2 (HSV-2), Varicella zoster virus (VZV) and cytomegalo
 virus (CMV) as well as against pox viruses, for instance
 vaccinia virus (VV).
 - 10. Pharmaceutical composition as claimed in claim 8, characterised in that the composition contains the active ingredient in a concentration between about 0.1 and 100% by weight.
- 11. Pharmaceutical composition as claimed in claim 9, characterized in that the composition takes the form chosen from the group consisting of powders, suspensions, solutions, sprays, emulsions, salves and creams.
 - 12. Use of the 1,5-anhydrohexitol nucleoside analogues of formula I as defined in claim 1 as an agent with biological activity.
 - 13. Use of 1,5-anhydrohexitol nucleoside analogues of formula I as defined in claim 1 as an agent with anti-viral activity against herpes viruses, pox viruses and related viruses.
 - 14. Use of 1,5-anhydrohexitol nucleoside analogues of formula I as defined in claim 1 for the preparation of a pharmaceutical composition with anti-viral activity against herpes viruses, pox viruses and related viruses.
- 15. Method for treating virus diseases caused by herpes viruses, pox viruses and related viruses, which consists of a 1,5-anhydrohexitol nucleoside analogue of formula I being administered to a patient suffering from such a disease, wherein
- B is a heterocyclic ring which is derived from the group which consists of pyrimidine and purine bases, and
 - X represents hydrogen, azido, F, C1, Br, I, amino, $-NHR^2$, $-N(R^2)_2$, $-OR^2$, $-SR^2$ or CN;

wherein R^1 and R^2 are the same or different and hydrogen, alkyl, acyl or phosphate moieties are represented; wherein:

5

- alkyl is a saturated or unsaturated, substituted or non-substituted hydrocarbon radical with 1-20 carbon atoms and straight or branched chain, and

10

- acyl is an alkanoyl or aroyl moiety, wherein alkanoyl is an alkylcarbonyl radical, wherein alkyl is as described above and aroyl represents benzoyl, substituted benzoyl or naphtoyl;

or

X represents hydrogen and a double bond is situated

between the 3- and 4- position of the 1,5-anhydrohexitol ring, or a pharmaceutically acceptable salt or
ester thereof.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/BE 93/00036

I. CLASSIFICATION OF SUBJE	CT MATTER (if several classification s	ymbols apply, indicate all) ⁶	
According to International Patent Int.Cl. 5 C07H19/0	Classification (IPC) or to both National C 4; C07D473/04;	CO7D405/04; A61	LK31/70
II. FIELDS SEARCHED			
	Minimum Docum	entation Searches	
Classification System		Classification Symbols	
Int.Cl. 5	CO7H ; CO7D ;	A61K	
	Documentation Searched other to the Extent that such Documents	r than Minimum Documentation are Included in the Fields Searched ⁸	
III. DOCUMENTS CONSIDER	ED TO BE RELEVANT 9		The state of the s
Category ° Citation of D	ocument, 11 with indication, where appropr	riate, of the relevant passages 12	Relevant to Claim No.13
8 April	217 580 (THE WELLCOME 1987 whole document	FOUNDATION)	1-15
WISSENS 23 Janu	409 227 (AKADEMIE DER CHAFTEN DER DDR) Jary 1991 Je 2, line 1 - page 9,	line 38	1-15
	001 036 (MEDIVIR AB) pary 1990 stract	-/	1-15
"E" earlier document but put filling date "L" document which may the which is cited to establicitation or other special "O" document referring to a other means	reneral state of the art which is not icular relevance bilished on or after the international row doubts on priority claim(s) or sh the publication date of another reason (as specified) an oral disclosure, use, exhibition or to the international filling date but	"T" later document published after the internor priority date and not in conflict with cited to understand the principle or theo invention "X" document of particular reisvance; the cit cannot be considered asvel or cannot be involve an inventive step "Y" document of particular relevance; the cit cannot be considered to involve an inventive step "amout be considered to involve an invention document is combined with one or more ments, such combination being obvious in the art. "A" document member of the same patent fa	ry underlying the simed invention considered to aimed invention tive step when the other such docu- to a person skilled
IV. CERTIFICATION			and Bears
Date of the Actual Completion of SEPTE	of the International Search MBER 1993	Date of Mailing of this International Se	агса жерот
International Searching Authori	PEAN PATENT OFFICE	Signature of Authorized Officer SCOTT J.R.	

II. D CUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
ategory °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
	JOURNAL OF MEDICINAL CHEMISTRY vol. 30, no. 6, June 1987, WASHINGTON US pages 1044 - 1054 L.D.NORD ET AL. 'Synthesis, Structure, and Biological Activity of Certain 2-Deoxy-B-D-ribo-hexopyranosyl Nucleosides and Nucleotides.' cited in the application see the whole document	1-15
	JUSTUS LIEBIGS ANNALEN DER CHEMIE vol. 1990, no. 11, November 1990, WEINHEIM DE pages 1079 - 1082 P.HANSEN ET AL. 'Synthesis of 3'-Azido-2', 3'-Dideoxy-B-D-arabino-hexopyranosyl Nucleosides.' cited in the application see the whole document	1-15
İ		·
}		
J		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

BE 9300036 SA 75964

This amnex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09/09/93

Patent document cited in search report	Publication date	member(s)		Publication date	
EP-A-0217580	08-04-87			12-04-90	
FL-V-0511200	00 07 07	AU-A-	6270286	19-03-87	
		CA-A-	1302263	02-06-92	
	•	GB-A-	2181128	15-04-87	
		AT-B-	390000	26-02-90	
		AT-B-	392794	10-06-91	
		AU-B-	572019	28-04-88	
		CA-A-	1238277	21-06-88	
		DE-A-	3608606	18-09-86	
		DE-A-	3645058	02-02-89	
	•	DE-A-	3645059	05-01-89	
		DE-A-	3687069	10-12-92	
		EP-A,B	0196185	01-10-86	
		EP-A,B	0291633	23-11-88	
•		EP-A-	0306597	15-03-89	
•	•	JP-A-	63290895	28-11-88	
		JP-A-	62103100	13-05-87	
		US-A-	4847244	11-07-89	
	•	US-A-	4818750	04-04-89	
		US-A-	4857511	15-08-89	
		US-A-	5145840	08-09-92	
		US-A-	5086044	04-02-92	
EP-A-0409227	23-01-91	JP-A-	3148292	25-06-91	
	08-02-90		3978689	19-02-90	
WD-A-9001036	00-07-30	EP-A-	0352248	24-01-90	