PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS

La finalidad de una prueba de k muestras es evaluar la aseveración que establece que todas las k muestras independientes provienen de poblaciones que presentan la misma proporción de algún elemento. De acuerdo con esto, las hipótesis nula y alternativa son

 H_0 :Todas las proporciones de la población son iguales.

 H_1 : No todas las proporciones de la población son iguales.

La estimación combinada de la proporción muestral "p" se calcula de la siguiente manera:

$$p = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n_1 + n_2 + n_3 + \dots + n_n}$$

En una muestra se puede dar un conjunto de sucesos, los cuales ocurren con frecuencias observadas "o" (las que se observa directamente) y frecuencias esperadas o teóricas "e" (las que se calculan de acuerdo a las leyes de probabilidad).

La frecuencia esperada "e" se calcula así: $e = p \cdot o_{total}$ p = proporción muestral $o_{total} = \text{frecuencia total observada}$

El estadístico de prueba es

$$\chi^{2}_{prueba} = \frac{(o_{1} - e_{1})^{2}}{e_{1}} + \frac{(o_{2} - e_{2})^{2}}{e_{2}} + \frac{(o_{3} - e_{3})^{2}}{e_{3}} + \cdots + \frac{(o_{n} - e_{n})^{2}}{e_{n}}$$
$$\chi^{2}_{prueba} = \sum \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

Donde:

 χ es la letra griega ji χ^2 se lee ji cuadrado

Por lo tanto el valor estadístico de prueba para este caso es la prueba *ji cuadrado* o conocida también como *chi cuadrado*

Como sucede con las distribuciones t y F, la distribución ji cuadrado tiene una forma que depende del número de grados de libertad asociados a un determinado problema.

Para obtener un valor crítico (valor que deja un determinado porcentaje de área en la cola) a partir de una tabla de ji cuadrado, se debe seleccionar un nivel de significación y determinar los grados de libertad para el problema que se esté resolviendo.

Los grados de libertad son una función del número de casillas en una tabla de $2 \cdot k$. Es decir, los grados de libertad reflejan el tamaño de la tabla. Los grados de libertad de la columna son el número de filas (categorías) menos 1, o bien, r-1 .Los grados de libertad de cada fila es igual al número de columnas (muestras) menos 1, o bien, k-1. El efecto neto es que el número de grados de libertad para la tabla es el producto de (número de filas -1) por (número de columnas -1), o bien, (r-1)(k-1).Por lo tanto con 2 filas y 4 columnas, los grados de libertad son (2-1)(4-1)=3

La prueba ji cuadrado requiere la comparación del χ^2_{prueba} con el χ^2_{tabla} . Si el valor estadístico de prueba es menor que el valor tabular, la hipótesis nula es aceptada, caso contrario, H_0 es rechazada.

Nota: Un valor estadístico de χ^2_{prueba} menor que el valor crítico χ^2_{tabla} o igual a él se considera como prueba de la variación casual en donde H_0 es aceptada.

Ejemplos ilustrativos:

1) El siguiente valor $3 \cdot 4$ representa el tamaño de una tabla $r \cdot k$. Determine el número de grados de libertad y obtenga el valores crítico en el niveles 0,05 se significación.

Solución:

Los grados de libertad se calculan aplicando la fórmula:

 $Grados\ de\ libertad = (r-1)(k-1)$

Grados de libertad = (3-1)(4-1) = 12

Con lectura en la tabla con 12 grados de libertad y 0,05 de área se obtiene $\chi^2_{tabla}=21,026$

Los cálculos en Excel se muestran en la siguiente figura:

	Α	В	С	D				
1	r	4						
2	k	5						
3								
4	(r-1)(k-1)	12	=(B1-1)*(B2-1)					
5								
6	α	0,05						
7	χ^2_{tabla}	21,026	=PRUEBA.	CHI.INV(B6	;B4)			
8								
9	α	0,01						
10	χ^2_{tabla}	26,2170	=PRUEBA.CHI.INV(B9;B4)					

2) La siguiente tabla muestra las frecuencias observadas y las frecuencias esperadas al lanzar un dado 60 veces. Contrastar la hipótesis de que el dado es bueno, con un nivel de significación de 0,01.

Cara del dado	1	2	3	4	5	6
Frecuencia observada	6	8	9	15	14	8
Frecuencia esperada	10	10	10	10	10	10

Solución:

r = 2

k = 6

 $\alpha = 0.01$

Las hipótesis son:

 H_0 : Todas las proporciones de la población son iguales.

 H_1 : No todas las proporciones de la población son iguales.

Los grados de libertad se calculan aplicando la fórmula:

Grados de libertad = (2-1)(6-1)

Grados de libertad = 5

Con lectura en la tabla con 5 grados de libertad y 0,01 de área se obtiene $\chi^2_{tabla}=15,086$

Calculando χ^2_{prueba} se obtiene:

$$\chi^2_{prueba} = \sum \frac{(o_i - e_i)^2}{e_i}$$

$$\chi^2_{prueba} = \frac{(6-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(9-10)^2}{10} + \frac{(15-10)^2}{10} + \frac{(14-10)^2}{10} + \frac{(8-10)^2}{10}$$

$$\chi^2_{prueba} = 1.6 + 0.4 + 0.1 + 2.5 + 1.6 + 0.4$$

$$\chi^2_{prueba} = 6.6$$

Los cálculos en Excel se muestran en la siguiente figura:

	A	В	С	D	Е	F	G		
1	Cara del dado	1	2	3	4	5	6		
2	Frecuencia observada	6	8	9	15	14	8		
3	Frecuencia esperada	10	10	10	10	10	10		
4									
5	α	0,01							
6	r	2	=CONTA						
7	k	6	=CONT						
8	(r-1)(k-1)	5	=(B6-1)*	=(B6-1)*(B7-1)					
9	χ^2_{tabla}	15,086	=PRUEB	A.CHI.IN	V(B5;B8	3)			
10									
11	Probabilidad de χ^2_{prusba}	0,2521	=PRUEBA.CHI(B2:G2;B3:G3)						
12	$\chi^2_{prusba} = \sum \frac{(o_i - e_i)^2}{2}$	6,6	=PRUEB	A.CHI.IN	V(B11;E	88)			
13	$\chi_{prusba} = Z e_i$								

El gráfico elaborado en Winstats y Paint se muestra a continuación:

Decisión: H_0 es aceptada, ya que χ^2_{prueba} (6,6) es menor que χ^2_{tabla} (15,086), por lo tanto, se concluye que todas las proporciones de la población son iguales, es decir, el dado es bueno.

TAREA DE INTERAPRENDIZAJE

- 1) ¿Cuál es la finalidad de una prueba de k muestras?
- 2) ¿Qué es valor crítico?
- 3) Elabore un organizador gráfico sobre Prueba de significación de proporciones de k muestras

Resuelva los ejercicios y problemas de forma manual, empleando Excel (para los cálculos) y el Winstats (para las gráficas)

4) Cada uno de los siguientes valores representa el tamaño de una tabla $r \cdot k$. Determine el número de grados de libertad y obtenga los valores críticos en los niveles 0,05 y 0,01

$4.1)\ 3\cdot 4$	
	6; 12,59; 16,81
$4.2) \ 4 \cdot 3$	6; 12,59; 16,81
$4.3)\ 5\cdot 5$	16; 26,3; 32,0
4.4) 2 · 5	10, 20,3, 32,0
4.5) 3 · 6	4; 9,49; 13,28
	10; 18,31; 23,2
4.6) 4 · 6	15; 25,0; 30,6

5) La siguiente tabla muestra las frecuencias observadas y las frecuencias esperadas al lanzar un dado 60 veces. Contrastar la hipótesis de que el dado es bueno, con un nivel de significación de 0,05.

Cara del dado	1	2	3	4	5	6
Frecuencia observada	13	8	7	12	12	8
Frecuencia esperada	10	10	10	10	10	10

 H_0 es aceptada, ya que χ^2_{prueba} (3,4) es menor que χ^2_{tabla} (11,07), por lo tanto, se concluye que todas las proporciones de la población son iguales, es decir, el dado es bueno.

6) La siguiente tabla muestra las frecuencias observadas de 250 rosas de 10 colores diferentes que fueron compradas por una florería. Contrastar la hipótesis de que las proporciones de rosas compradas son iguales para todos los colores con un nivel de significación de 0,01

Colores	1	2	3	4	5	6	7	8	9	10
Frecuencia observada	17	31	29	18	14	20	35	30	20	36
Frecuencia esperada	25	25	25	25	25	25	25	25	25	25

 H_0 se rechaza, ya que χ^2_{prueba} (23,28) es mayor que χ^2_{tabla} (21,67), por lo tanto, se concluye que todas las proporciones de la población son iguales, es decir, el dado es bueno.

7) Un fabricante de helados para las mezclas de pastel desea determinar cuál de los sabores es el más popular entre sus clientes. Una muestra de 200 clientes reveló a lo siguiente:

Helados	El chocolate ligero	El chocolate oscuro	Blanco	Rosa
Frecuencia observada	62	55	45	38
Frecuencia esperada	50	50	50	50

¿Es razonable concluir que hay una diferencia en la proporción de clientes que gustan cada sabor? Use el 0.05 nivel de significación.

 H_0 es aceptada, ya que χ^2_{prueba} (6,76) es menor que χ^2_{tabla} (7,81), por lo tanto, se concluye que no existe una diferencia en la proporción de clientes que gustan cada sabor.

8) En un estudio para determinar la preferencia por determinados sabores de helados en diferentes regiones del país, se recopilaron los siguientes datos.

Sabor del helado	Frecuencias observadas por región					
	Costa	Sierra	Oriente			
Vainilla	86	44	70			
Chocolate	45	30	50			
Fresa	34	6	10			
Otros	85	20	20			
Total	250	100	150			

8.1) Calcule proporción muestral "p" de cada sabor del helado

Respuesta:
$$p_{v=}0.4$$
; $p_{ch=}0.25$; $p_{f=}0.10$; $p_{o=}0.25$

8.2) Calcule las frecuencias esperadas de cada sabor del helado en cada región Respuesta:

Sabor del helado	Frecuencias esperadas por región					
	Costa	Sierra	Oriente			
Vainilla	100	40	60			
Chocolate	62,5	25	37,5			
Fresa	25	10	15			
Otros	62,5	25	37,5			

8.3) Determine si la preferencia por cierto sabor es independiente de la región (es la misma en cada región), utilizando el nivel de significación 0,05

 H_0 se rechaza, ya que χ^2_{prueba} (37,87) es mayor que χ^2_{tabla} (12,592), por lo tanto, se concluye que la preferencia por cierto sabor depende de la región.

- 9) Plantee y resuelva un problema similar al anterior
- 10) Un centro comercial compró y plantó 720 bulbos de tulipán de cuatro colores. Por desgracia, no todos florecieron. El centro comercial quiere determinar si los "fracasos" eran independientes del color (es decir, si todas las proporciones de la población son iguales) antes de comprar más bulbos de tulipán. Los resultados se muestran en la siguiente tabla:

Resultados	Frecuencia observada							
	Blanco	Rojo	Amarillo	Morado				
Florecieron	176	136	222	114				
No florecieron	24	24	18	6				
Total	200	160	240	120				

Respuesta: $p_f = 0.9$

10.2) Calcule las frecuencias esperadas de los bulbos que florecieron y de los que no florecieron

Resultados	Frecuencia esperada								
	Blanco	Rojo	Amarillo	Morado					
Florecieron	180	144	216	108					
No florecieron	20	16	24	12					

10.3) Determine si todas las proporciones de la población son iguales a un nivel de significación de 0,01

 H_0 es aceptada, ya que χ^2_{prueba} (10,33) es menor que χ^2_{tabla} (11,345), por lo tanto, se concluye los "fracasos" eran independientes del color.

11) Plantee y resuelva un problema similar al anterior

BONDAD DE AJUSTE DE LA PRUEBA JI CUADRADO

La prueba χ^2 de bondad de ajuste es una variante de la prueba χ^2 . El cálculo del valor estadístico de prueba y su evaluación son muy semejantes en ambos casos, aunque existen unas cuantas excepciones. Entre las principales excepciones se encuentran la forma como se plantea H_0 y H_1 , cómo se calculan las frecuencias esperadas y cómo se determinan los grados de libertad. Se emplea para determinar la calidad del ajuste mediante distribuciones teóricas (como la distribución normal o la binomial) de distribuciones empíricas (o sea las obtenidas de los datos de la muestra)

En realidad, una prueba de bondad de ajuste es una prueba de una muestra, pero en la que la población se ha dividido en k proporciones. Así pues, difiere de una prueba de proporciones de una muestra, estudiada anteriormente, la cual incluye sólo dos categorías (éxito y fracaso) en la población.

Los grados de libertad para una prueba de bondad de ajuste son (k-1) – c, en donde

k = número de categorías o clases

c = número de valores estadísticos o parámetros utilizados de la muestra que se utilizan para determinar frecuencias esperadas (número de decimales de la frecuencia esperada)

Ejemplo ilustrativo

La siguiente tabla muestra las frecuencias observadas al lanzar un dado 100 veces. Contrastar la hipótesis de que el dado es bueno empleando la Bondad de Ajuste de la Prueba Ji Cuadrado, con un nivel de significación de 0,01.

Cara del dado	1	2	3	4	5	6
Frecuencia observada	18	13	17	22	12	18

Solución:

Las hipótesis son:

 H_0 :Todas las proporciones de la población son iguales.

 H_1 : No todas las proporciones de la población son iguales.

El nivel de significación es:

 $\alpha = 0.01$

Se calcula la frecuencia esperada e

$$e = p \cdot o_{total}$$

 $p = proporci\'on muestral = probabilidad = \frac{1}{6}$

 $o_{total} = frecuencia\ total\ observada = 100$

Cada número del dado (categoría) tiene la misma probabilidad o frecuencia esperada

$$e = p \cdot o_{total} = \frac{1}{6} \cdot 100 = 16,67$$

Número del dado	1	2	3	4	5	6
Frecuencia observada	18	13	17	22	12	18
Frecuencia esperada	16,67	16,67	16,67	16,67	16,67	16,67

Observando la tabla se tiene que:

$$k = 6$$

$$c = 2$$

Calculando los grados de libertad se tiene:

Grados de libertad = (k-1) - c

Grados de libertad = (6-1)-2

Grados de libertad = 3

Con lectura en la tabla con 3 grados de libertad y 0,01 de área se obtiene $\chi^2_{tabla}=11,345$

Calculando χ^2_{prueba} se obtiene:

$$\chi^2_{prueba} = \sum \frac{(o_i - e_i)^2}{e_i}$$

$$\chi^2_{prueba} = \frac{(18-16,67)^2}{16,67} + \frac{(13-16,67)^2}{16,67} + \frac{(17-16,67)^2}{16,67} + \frac{(22-16,67)^2}{16,67} + \frac{(12-16,67)^2}{16,67} + \frac{(18-16,67)^2}{16,67}$$

$$\chi^2_{prueba} = 2,14$$

Los cálculos en Excel se muestran en la siguiente figura:

	A	В	С	D	Е	F	G		
1	Cara del dado	1	2	3	4	5	6		
2	Frecuencia observada	18	13	17	22	12	18		
3	Frecuencia esperada	16,67	16,67	16,67	16,67	16,67	16,67		
4									
5	α	0,01							
6	k	6							
7	с	2							
8	(k-1)-c	3	=(B6-1)-						
9	χ^2_{tabla}	11,345	=PRUEB						
10									
11	Probabilidad de χ^2_{prusba}	0,54	=PRUEBA.CHI(B2:G2;B3:G3)						
12	$\chi^2_{prusba} = \sum_{i} \frac{(o_i - e_i)^2}{c}$	2,14	=PRUEB						
13	λ _{prusba} — <u> </u>								

El gráfico elaborado en Winstats y Paint se muestra en la siguiente figura:

Decisión: H₀ es aceptada, ya que χ^2_{prueba} (2,14) es menor que χ^2_{tabla} (11,345), por lo tanto, se concluye que todas las proporciones de la población son iguales, es decir, el dado es bueno.

TAREA DE INTERAPRENDIZAJE

- 1) Elabore un organizador gráfico sobre Bondad de Ajuste de la Prueba Ji Cuadrado
- 2) Se pone a prueba un dado para verificar si está cargado o no, es decir, se quiere probar que H₀: El dado no está cargado (es decir, las diferencias se deben únicamente a la variación casual en el muestreo); H₁: El dado está cargado (es decir, que las categorías no son igualmente probables). Cabe esperar que la frecuencia de ocurrencias de cada uno de los seis posibles resultados (categorías) sean igualmente probables. Se lanza el dado 180 veces, con los siguientes resultados

Cara del dado	1	2	3	4	5	6
Frecuencia observada	20	35	25	35	32	33

2.1) Calcular las frecuencias esperadas

- 2.2) Calcular los grados de libertad
- 5 2.3) Calcular el valor estadístico de χ^2_{tabla} con un nivel de significación de 0,05 empleando la tabla y con Excel.

11,07

2.4) Calcular el valor estadístico de χ^2_{prueba} con la fórmula y con Excel

6,27

- 2.5) Elabore un gráfico empleando Winstats
- 2.6) Realizar la comprobación de hipótesis

Se acepta H_0 , ya que χ^2_{prueba} (6,27) es menor que χ^2_{tabla} (11,07)

3) Plantee y resuelva un problema similar al anterior de forma manual, empleando Excel (para los cálculos) y Winstats (para la gráfica)

REFERENCIAS BIBLIOGRÀFICAS

SUÁREZ, Mario, (2012), <u>Interaprendizaje de Probabilidades y Estadística Inferencial con Excel, Winstats y Graph</u>, Primera Edición. Imprenta M & V, Ibarra, Ecuador.