Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

Organización Computacional

Ing. Otto René Escobar Leiva

Auxiliar Javier Gutiérrez

PRÁCTICA #2

Empacadora Coca-Cola

Nombre	Carné	Participación
Bismarck Estuardo Romero Lemus	201708880	34%
Josué Nabí Hurtarte Pinto	202202481	33%
Naomi Rashel Yos Cujcuj	202001814	33%

Introducción

El diseño del sistema de clasificación y transporte considera una variedad de elementos, desde sensores hasta componentes mecánicos y electrónicos. Se emplea un enfoque optimizado para asegurar la validación de contraseñas, control de inventario y clasificación de productos. Se destaca el uso de Arduino como componente central para coordinar la funcionalidad del sistema, junto con contadores de productos y un semáforo para regular el flujo. Los motores stepper son utilizados en la banda transportadora, permitiendo un control preciso mediante el Arduino programado. Este diseño se adapta a las necesidades específicas planteadas por Coca-Cola, enfocándose en mejorar el proceso de empaquetado con una mayor automatización y seguridad, conforme a las directrices del CEO. El sistema incorpora elementos como sensores de color para la clasificación de botellas, semáforos para la gestión del flujo, y un mecanismo de seguridad con alarma y botón de emergencia. La presentación de una maqueta detallada es fundamental para visualizar el flujo del producto y demostrar la eficacia del diseño propuesto, el cual integra una variedad de componentes electrónicos como puente H, servomotores, motores stepper, flip flops, displays de 7 segmentos y un buzzer, asegurando un funcionamiento óptimo y seguro del sistema de cinta transportadora y empaquetado.

Objetivos

Objetivo General:

• Diseñar e implementar un sistema automatizado de cinta transportadora para clasificar, desviar y empaquetar productos de Coca-Cola de manera eficiente y segura, minimizando la intervención humana y garantizando la calidad del producto final. Además, demostrar la viabilidad y eficacia del sistema mediante una maqueta creativa y ordenada.

Objetivos Específicos:

- Aplicar los conocimientos teóricos aprendidos en clase magistral y laboratorio para la construcción de circuitos combinacionales y secuenciales
- Poner en práctica los conocimientos de Lógica Combinacional y Mapas de Karnaugh, así como aprender el funcionamiento de diferentes elementos electromecánicos y resolver problemas mediante Electrónica Digital.
- Aprender el funcionamiento de diferentes elementos electromecánicos.

Contenido.

Funciones booleanas, Mapas de Karnaugh y sus Funciones

semáforo:

Q4	Q3	Q2	Q1	Q0	Q4+	Q3+	Q2+	Q1+	Q0+	J4	K4	J3	КЗ	J2	K2	J1	K1	JO	K0	LED
0	0	0	0	0	1	1	1	1	0	1	Χ	1	Χ	1	Χ	1	Х	0	Χ	0
1	1	1	1	0	1	1	1	0	1	Χ	0	Х	0	Х	0	Χ	1	1	Х	0
1	1	1	0	1	1	1	1	0	0	Χ	0	Х	0	Х	0	0	Х	Х	1	0
1	1	1	0	0	1	1	0	1	1	Χ	0	Х	0	Χ	1	1	Χ	1	Χ	0
1	1	0	1	1	1	1	0	1	0	Χ	0	Х	0	0	Χ	Χ	0	Χ	1	0
1	1	0	1	0	1	1	0	0	1	Χ	0	Х	0	0	Χ	Χ	1	1	Χ	0
1	1	0	0	1	1	1	0	0	0	Χ	0	Χ	0	0	Χ	0	Χ	Χ	1	0
1	1	0	0	0	1	0	1	1	1	Χ	0	Χ	1	1	Χ	1	Χ	1	Χ	0
1	0	1	1	1	1	0	1	1	0	Χ	0	0	Χ	Χ	0	Χ	0	Х	1	0
1	0	1	1	0	1	0	1	0	1	Χ	0	0	Χ	Χ	0	Χ	1	1	Χ	0
1	0	1	0	1	1	0	1	0	0	Χ	0	0	Χ	Χ	0	0	Χ	Х	1	0
1	0	1	0	0	1	0	0	1	1	Χ	0	0	Χ	Χ	1	1	Χ	1	Χ	0
1	0	0	1	1	1	0	0	1	0	Χ	0	0	Χ	0	Χ	Χ	0	Χ	1	0
1	0	0	1	0	1	0	0	0	1	Χ	0	0	Χ	0	Χ	Χ	1	1	Χ	0
1	0	0	0	1	1	0	0	0	0	Χ	0	0	Χ	0	Χ	0	Χ	Χ	1	0
1	0	0	0	0	0	1	1	1	1	Χ	1	1	Χ	1	Χ	1	Χ	1	Χ	0
0	1	1	1	1	0	1	1	1	0	0	Χ	Χ	0	Χ	0	Χ	0	Х	1	0
0	1	1	1	0	0	1	1	0	1	0	Х	Х	0	Х	0	Χ	1	1	Χ	0
0	1	1	0	1	0	1	1	0	0	0	Χ	Χ	0	Χ	0	0	Χ	Χ	1	0
0	1	1	0	0	0	1	0	1	1	0	Χ	Х	0	Х	1	1	Χ	1	Χ	0
0	1	0	1	1	0	1	0	1	0	0	Χ	Х	0	0	Χ	Χ	0	Х	1	0
0	1	0	1	0	0	1	0	0	1	0	Χ	Х	0	0	Χ	Х	1	1	Χ	1
0	1	0	0	1	0	1	0	0	0	0	Х	Χ	0	0	Х	0	Х	Х	1	1
0	1	0	0	0	0	0	1	1	1	0	Х	Χ	1	1	Х	1	Х	1	Х	1
0	0	1	1	1	0	0	1	1	0	0	Х	0	Χ	Х	0	Χ	0	Х	1	1
0	0	1	1	0	0	0	1	0	1	0	Х	0	Χ	Χ	0	Χ	1	1	Х	1
0	0	1	0	1	0	0	1	0	0	0	Х	0	Χ	Χ	0	0	Х	Х	1	1
0	0	1	0	0	0	0	0	1	1	0	Х	0	Х	Х	1	1	Х	1	Х	1
0	0	0	1	1	0	0	0	1	0	0	Х	0	Χ	0	Χ	Х	0	Х	1	1
0	0	0	1	0	0	0	0	0	1	0	Х	0	Χ	0	Х	Χ	1	1	Х	1
0	0	0	0	1	0	0	0	0	0	0	Χ	0	Χ	0	Χ	0	Х	Χ	1	1

Mapas de Karnaugh

J4 y K4

J3 y K3

J2 y K2

JO

Q2Q3Q4 Q0Q1	000	001	011	010	110	111	101	100		
00	0	X	1	Х	1	Х	1	Х		
01	1	Х	1	Х	1	Х	1	Х		
11	1	Х	1	Х		Х	1	Х		
10	1	Х	1	Х	1	Х	1	Х		
Resultado										
F = Q0 + Q1 + Q2 + Q3										

K0

Diagramas del diseño del circuito

Equipo utilizado

El equipo utilizado en la siguiente practica fue el siguiente:

Protoboard motor steper Cable para protoboard ARDUINO Sensor de color DISPLAYS Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
Cable para protoboard ARDUINO Sensor de color DISPLAYS Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
ARDUINO Sensor de color DISPLAYS Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
Sensor de color DISPLAYS Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
DISPLAYS Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
Flip-Flop JK Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
Flip-Flop D Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
Resistencias de diferente kilo ohmios batería de 9v multímetro Placa fenólica Cloruro Férrico
batería de 9v multímetro Placa fenólica Cloruro Férrico
multímetro Placa fenólica Cloruro Férrico
Placa fenólica Cloruro Férrico
Cloruro Férrico
Leds de diferentes colores
Brocas para PCB
Barreno
Papel termotransferible
Marcador permanente negro
Cautín
Transistor npn 2n2222
Comparador
Botones
Transistores
Sumador binario
Encoder
Decoder

Presupuesto

Gastos

	Nombre	Cantidad	Precio	Precio total
1	Arduino Mega	1	210	210
2	Ledd de colores	10	1	10
3	Flip-Flop D	6	16	96
4	Flip-Flop JK	8	8	64
5	Flip-Flop tipo D	13	8	104
6	Decoder 74LS48	4	15	60
7	Motores stemper	3	6	18
8	Protoboards	2	36	72
9	Sensor ultrasónico	2	10	20
10	Sensor de Color	1	100	100
11	Teclado Alfanumérico	1	20	20
12	Comparador	4	15	60
13	Cargador de 5v	1	0	0
14	Resistencias de 1k ohm	15	0.75	11.25
15	Placa de cobre	3	12	36
16	Brocas 1/32	2	3	6
17	Brocas 1/16	2	3	6
	TOTAL			893.25

Aporte de cada integrante

INTEGRANTES	APORTE (Q)
Bismarck Estuardo Romero Lemus	297.75
Naomi Rashel Yos Cujcuj	297.75
Josué Nabí Hurtarte Pinto	297.75
TOTAL	893.25

Conclusiones

- Este proyecto nos ha enseñado que no solo se trata de aplicar teorías, sino también de resolver problemas prácticos. La combinación de creatividad, conocimientos técnicos y habilidades de resolución de problemas es crucial para el éxito en la ingeniería y el diseño de sistemas automatizados como este.
- Se logró una mejor comprensión de los componentes necesarios para que todo el sistema de clasificación de productos funcione de manera coordinada, lo que también resultó en un mayor dominio en el manejo de la lógica combinacional.
- La construcción y presentación de la maqueta del sistema de cinta transportadora automatizado no solo sirvió como una representación visual del proceso de clasificación y empaquetado de productos, sino que también demostró la aplicación práctica de los conceptos teóricos aprendidos en clase. Esta representación tangible permitió una comprensión más profunda del funcionamiento del sistema.