

Master in Applied Econometrics and Forecasting

Time Series Analysis and Forecasting

Class #6: Model Identification, Estimation, Testing and Selection

Jorge Caiado, PhD

CEMAPRE/REM/ISEG, University of Lisbon, <u>jcaiado@iseg.ulisboa.pt</u>

Model Identification

Plot the time series and examine whether the series contains a trend, seasonality, ouliers, nonconstant variances and other nonstationary phenomena. Choose proper variance-stabilizing (Box-Cox's power transformation) and differencing transformations.

Compute the sample ACF and the sample PACF of the original series and identify the degree of differencing d to achieve stationarity, $(1-B)^d X_t$. In practice, d is either 0, 1, or 2. Later, we will introduce a formal test to determine the order of integration (or degree of differentiation) of the time series (unit root test).

Compute the sample ACF and the sample PACF of the stationary series and identify the orders p and q for the autoregressive and moving average operators. Usually, the needed orders of integers p and q are less or equal to 3.

Example: Number of users connected to the Internet through a server every minute; ACF and PACF for the original series

Source: Durbin, J. and Koopman, S. J. (2001) and https://vincentarelbundock.github.io/Rdatasets/datasets.html

Example: First order differencing of the number of users connected to the Internet; ACF and PACF for the differenced series

Model Estimation

We discuss two widely used estimation procedures:

Maximum likelihood estimators (MLE) method. The parameter values of the ARMA model are obtained by minimizing the conditional log-likelihood function

$$\ln L_*(\emptyset, \theta, \sigma_a) = -\frac{n}{2} \ln 2 \pi \sigma_a^2 - \frac{S_*(\emptyset, \theta)}{2\sigma_a^2}$$

where $S_*(\emptyset, \theta) = \sum_{t=p+1}^n \sigma_a^2(\emptyset, \theta | X)$ is the conditional sum of squares function

Ordinary Least Squares (OLS) method

OLS is the most commonly used regression method in data analysis. However, for ARMA(p,q) models, the OLS estimator will be inconsistent unless we have q=0. For more details, see Wei (2006).

Different software give different estimates...

Example: Model fitted to the number of users connected to the Internet

		ARIMA Mode	el Results			
Dep. Variable:		D.value	No. Observations:		99	
Model:	ARI	ARIMA(3, 1, 0)		ihood	-251.832	
Method:		css-mle	S.D. of i	nnovations		3.056
Date:	Thu,	10 Dec 2020	AIC		5	13.665
Time:		14:47:15	BIC		526.641	
Sample:		1	HQIC		5	18.915
	========		=======		=======	======
	coef	std err	Z	P> z	[0.025	0.975]
const	0.9799	1.650	0.594	0.553	-2.254	4.214
ar.L1.D.value	1.1460	0.095	12.017	0.000	0.959	1.333
ar.L2.D.value	-0.6593	0.135	-4.880	0.000	-0.924	-0.394
ar.L3.D.value	0.3346	0.095	3.532	0.000	0.149	0.520
		Roo	ots			
	Real	Imagin	ary	Modulus	Freq	uency
AR.1	1.1960	-0.00	-0.0000j		-0.0000	
AR.2	0.3872	-1.53	26 j	1.5808	-0.2106	
AR.3	0.3872	+1.5326j		1.5808	0.2106	

Model Testing

Analysis of the quality of parameter estimates. To test the null hypothesis H_0 : $\beta_i = 0$, we use the test statistic:

$$|t| = \left| \frac{\widehat{\beta}_i}{\sigma_{\widehat{\beta}_i}} \right| > t_{(n-m)} \Rightarrow \text{Reject } H_0: \beta_i = 0$$

Check whether the residuals are approximately white noise. Compute the sample ACF and sample PACF of the residuals. Tests for residual autocorrelation: H_0 : $\rho_k = 0$. If $|\hat{\rho}_k| > \mp \frac{2}{\sqrt{N}} = 0$, Reject H_0 . Box and Pierce (1970) introduced a 'portmanteu' test to check the null hypothesis H_0 : $\rho_1 = \rho_2 = \cdots = \rho_k = 0$, with the test statistic $Q_k = T \sum_{i=1}^k \hat{\rho}_i^2$, which is asymptotically distributed as χ^2 with k-m degrees of freedom, with m the number of estimated parameters. Ljung e Box (1978) proposed a modified version of the statistic Q_k ,

$$Q_k^* = n(n+2) \sum_{i=1}^k \frac{\hat{\rho}_i^2}{n-i}.$$

This modified form of the 'portmanteu' test statistic is much closer to the $\chi^2(k-m)$ distribution for typical sample sizes n. Thus, if the calculated Q_k^* statistic exceeds the value $\chi^2(k-m)$ then the adequacy of the fitted ARMA model would be questioned.

Example: Residuals from the model fitted to the number of users connected to the Internet; Residual ACF and PACF

Model Selection

Selection criteria are based on summary statistics from residuals, computed from a fitted model (or on forecast errors calculated from out-of-sample forecasts).

Akaike Information Criteria (AIC): Assume that a statistical model of *m* parameters is fitted to a given time series. Akaike (1974) introduced an information criterion defined as

$$AIC = -2 \log L + 2m,$$

where L is the maximum likelihood and n is the effective number of observations (or number of computed residuals from the series). Some software packages compute the AIC value as

$$AIC = n \widehat{\log \sigma_{\hat{a}}^2} + 2m,$$

where $\hat{\sigma}_{\hat{a}}^2$ is the residual variance for the fitted model.

Schwartz Bayesian criterion (SBC): Schwartz (1978) introduced the following Bayesian criterion of model selection:

$$SBC = n \, \widehat{\log \sigma_{\hat{a}}^2} + m \log n,$$

where $\hat{\sigma}_{\hat{a}}^2$ is the residual variance for the fitted model, m is the number of parameters and n is the effective number of observations.

9

Example: Model 1 and Model 2 fitted to the number of users connected to the Internet. Select the "best" model using AIC, BIC and HQIC.

prc.3		ARIMA Mod	el Results				
Dep. Variable: Model: Method:	ARI	D.value MA(3, 1, 0) css-mle	No. Obser Log Likel S.D. of i	ihood			
Date: Time: Sample:	Thu,	10 Dec 2020 14:47:15 1	AIC BIC HQIC		513.665 526.641 518.915		
	coef	std err	z	P> z	[0.025	0.975]	
const ar.L1.D.value ar.L2.D.value ar.L3.D.value	0.9799 1.1460 -0.6593 0.3346	1.650 0.095 0.135 0.095	0.594 12.017 -4.880 3.532	0.553 0.000 0.000 0.000	-2.254 0.959 -0.924 0.149	4.214 1.333 -0.394 0.520	

Model 1

Dep. Variable:		D.value	No Obcon	wations		99		
Model:	ADT			No. Observations:				
				Log Likelihood		-255.325		
Method:				S.D. of innovations		3.166		
Date:	Thu,	10 Dec 2020	AIC	AIC		520.651		
Time:		14:57:33	BIC		533.626			
Sample:		1		HOIC		525.901		
	coef	std err	z	P> z	[0.025	0.975		
const	1.2077	0.937	1.288	0.198	-0.630	3.045		
ma.L1.D.value	1.2068	0.101	11.920	0.000	1.008	1.405		
ma.L2.D.value	0.6473	0.123	5.281	0.000	0.407	0.888		

Model 2

Problems:

- **1.** The sample ACF and PACF were calculated for a series of 30 annual working hours per employee in the US as shown below (Source: Gloria Gonzalez-Rivera, 2013):
- a) Test the significance of the sample ACF in the lags 1 and 3
- b) Identify potential models for the series

Sample: 1977 2006

Included observations: 30

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		_	0.364 0.062 -0.086 -0.162 -0.288 -0.352 -0.253 -0.064	-0.392 -0.058 0.039 -0.126 -0.295 0.052 0.185 0.001	17.987 22.537 22.676 22.951 23.957 27.270 32.432 35.229 35.416 36.035	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Problems:

- **2.** The sample ACF and PACF were calculated for a series of "Change in the 5-year Treasury note yield (%) the US" (660 data samples) as shown below (Source: Gloria Gonzalez-Rivera, 2013):
- a) Are there any significant ACF and PACF lags?
- b) Identify potential models for the series

Sample: 1953M04 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC PAC
		3 4 5	0.339 0.339 -0.073 -0.213 0.007 0.129 0.014 -0.063 -0.043 -0.017 -0.073 -0.060 -0.069 -0.035

Problems:

- **3.** Below are the ACF and PACF for the US inflation rate (log differences of CPI).
- a) Write down the MA model you feel is appropriate to describe the inflation rate series? Explain your choice
- b) Test the null hypothesis that ACF is zero at order 3. Write down the null and alternative hypotheses and explain how you reach a conclusion.
- c) Test the null joint hypothesis that the ACF is zero up to order 12. Write down the null and alternative hypotheses and explain in which numbers you base your conclusion.

Sample: 1953Q1 2004Q4 Included observations: 206

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.286	-0.286	17.055	0.000
1	i 🔳 .	2 -0.060	-0.154	17.818	0.000
ı [i 📑 :	3 -0.086	-0.168	19.387	0.000
1	<u> </u>	4 0.240	0.171	31.584	0.000
<u> </u>	III	5 -0.154	-0.057	36.659	0.000
ı İ I ı		6 0.043	0.024	37.059	0.000
1 1	III	7 -0.072	-0.050	38.175	0.000
ı İ		8 0.066	-0.023	39.128	0.000
		9 -0.166	-0.149	45.151	0.000
· 🗀		10 0.135	0.029	49.130	0.000
· II 1	III	11 -0.102	-0.074	51.395	0.000
I 🚺 I		12 -0.025	-0.106	51.534	0.000
I 🗓 I		13 -0.034	-0.032	51.789	0.000
ı þ í		14 0.047	-0.068	52.274	0.000
I 🄰 I		15 0.032	0.068	52.509	0.000
1 ()	()	16 -0.013	0.006	52.545	0.000