

Proposta de teste de avaliação											
Matemática A											
11.º ANO DE ESCOLARIDADE											
Duração: 90 minutos Data:											

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

Considere, num referencial o.n. xOy, os pontos P(1, -2) e Q(2, 4), pertencentes à reta r. 1.

Qual é, em graus com arredondamento às décimas, o valor da inclinação da reta r?

99,5° (A)

 $99,6^{\circ}$ **(B)**

(C) $80,5^{\circ}$

- **(D)** 80.6°
- 2. Considere, num plano munido de um referencial ortonormado do espaço, as retas r e s definidas por:

$$r: (x, y, z) = (1, -1, 0) + k(2, 2, -1), k \in \mathbb{R}$$

 $s: y = -1 \land z = 0$

- **2.1.** Quais são as coordenadas do ponto de interseção das retas $r \in s$?
 - (A) (1, -1, 0)
- **(B)** (2, 2, 1)
- (C) (0, 0, 0)
- **(D)** (0, -1, 0)
- 2.2. Em qual das seguintes opções se apresenta uma equação do plano definido pelas retas $r \in S$?
 - y = -1(A)
- **(B)** x + y + 2z + 1 = 0
- **(C)** z = 0
- **(D)** y + 2z + 1 = 0
- 3. Considere a reta r representada no referencial o.n. xOy da figura.

Sabe-se que:

- a reta r interseta o eixo Ox no ponto A de abcissa 1 e o eixo Oy no ponto C de ordenada $\sqrt{3}$;
- o ponto B pertence ao eixo Ox e tem abcissa maior do que 1;
- α é a amplitude do ângulo BAC.

Qual é o valor exato de $\sin \alpha$?

- **(A)** $-\frac{1}{2}$ **(B)** $\frac{1}{2}$ **(C)** $-\frac{\sqrt{3}}{2}$ **(D)**

4. Na figura, está representado, num referencial o.n. Oxyz, o prisma quadrangular regular

[OABCDEFG].

Sabe-se que:

- os pontos C e G têm coordenadas (8, -1, 4) e (2, 11, 19), respetivamente;
- o plano *ABC* é definido pela equação x 8y 4z = 0.
- 4.1. Determine as coordenadas do ponto F.
- Determine uma equação vetorial da reta BG e, de seguida, determine as coordenadas do ponto B.
- Determine o volume do prisma. 4.3.
- Considere a sucessão (u_n) definida por $\begin{cases} u_1 = 0 \\ u_{n+1} = u_n 1, \ \forall n \in \mathbb{N} \end{cases}$. 5.

Qual é o limite de u_n ?

(A) $+\infty$ **(B)** −∞

(C)

- **(D)**
- 6. Seja f uma função racional cujo gráfico, num referencial o.n. xOy, tem como assíntotas as retas de equações x = 1 e y = -1.

Qual das seguintes expressões pode ser a expressão algébrica da função f?

- (A) $f(x) = \frac{1}{x-1}$ (B) $f(x) = -\frac{1}{x-1}$
- (C) $f(x) = \frac{3-x}{x-1}$ (D) $f(x) = \frac{x-1}{1+x}$
- 7. Para um certo número real k, seja f a função definida por

$$f(x) = \begin{cases} k + \frac{1}{2} & \text{se } x \ge 1\\ \frac{\sqrt{3 + x^2} - 2x}{x - 1} & \text{se } x < 1 \end{cases}$$

- Determine o valor de k, sabendo que existe $\lim_{x\to 1} f(x)$.
- Calcule $\lim_{x\to -\infty} f(x)$. 7.2.

- **8.** Considere a sucessão (u_n) de termo geral $u_n = \frac{(-1)^{n+1} \times n}{n+1}$.
 - **8.1.** Averigúe se $\frac{12}{13}$ é termo da sucessão.
 - **8.2.** Justifique que a sucessão (u_n) é não monótona.
 - **8.3.** Mostre que (u_n) é limitada.
 - **8.4.** De entre os termos de ordrm ímpar indique o de maior ordem que não pertence a $V_{0,01}(1)$.

Formulário

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $S_n = \frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $S_n = b_1 \times \frac{1 - r^n}{1 - r}$

COTAÇÕES

Item															
Cotação (em pontos)															
1.	2.1.	2.2.	3.	4.1.	4.2.	4.3.	5.	6.	7.1.	7.2.	8.1.	8.2.	8.3.	8.4.	
10	10	10	10	12	18	12	10	10	18	18	14	12	18	18	200

Proposta de resolução

1. O declive da reta
$$r \notin m_r = \frac{4 - (-2)}{2 - 1} = 6$$
.

Seja θ a inclinação da reta r.

$$\tan \theta = 6 \text{ e } 0^{\circ} \le \theta \le 180^{\circ}$$

$$\tan^{-1}(6) \approx 80,5^{\circ}$$

Logo,
$$\theta \approx 80,5^{\circ}$$

Resposta: (C)

2.

2.1. Observando as condições que definem as retas r e s verifica-se que têm em comum o ponto de coordenadas (1, -1, 0).

Resposta: (A)

2.2. Seja α o plano definido pelas retas r e s e $\vec{n}(a, b, c)$, com $a, b, c \in \mathbb{R}$, um vetor normal ao plano α .

 $\vec{r}(2, 2, -1)$ e $\vec{s}(1, 0, 0)$ são vetores diretores das retas r e s, respetivamente. Como cada um destes vetores é perpendicular a \vec{n} , tem-se:

$$\begin{cases} \vec{n} \cdot \vec{r} = 0 \\ \vec{n} \cdot \vec{s} = 0 \end{cases} \Leftrightarrow \begin{cases} (a, b, c) \cdot (2, 2, -1) = 0 \\ (a, b, c) \cdot (1, 0, 0) = 0 \end{cases} \Leftrightarrow \begin{cases} 2a + 2b - c = 0 \\ a = 0 \end{cases} \Leftrightarrow \begin{cases} c = 2b \\ a = 0 \end{cases}$$

Por exemplo, para b = 1, o vetor $\vec{n}_1 = (0, 1, 2)$ é um vetor normal ao plano α .

Qualquer ponto das duas retas é também ponto de α , tal como, por exemplo, o ponto de coordenadas (1, -1, 0).

Assim, uma equação do plano α é:

$$0(x-1)+1(y+1)+2z=0 \Leftrightarrow y+2z+1=0$$

Resposta: (D)

3. O declive da reta $r \notin m_r = \frac{0 - \sqrt{3}}{1 - 0} = -\sqrt{3}$.

O ângulo α é obtuso e é a inclinação da reta r, pelo que $\tan \alpha = -\sqrt{3}$.

Tem-se:

$$\bullet 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha};$$

$$1 + \left(-\sqrt{3}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{1}{4} \stackrel{\alpha \in 2.^{\circ}Q}{\Leftrightarrow} \cos \alpha = -\frac{1}{2}$$

•
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
;

$$-\sqrt{3} = \frac{\sin \alpha}{-\frac{1}{2}} \Leftrightarrow \sin \alpha = \frac{\sqrt{3}}{2}$$

Resposta: (D)

Máximo Máximo

4 C(8,-1,4), G(2,11,19)ABC: x-8y-4z=0

4.1.
$$F = G + \overrightarrow{GF} = G + \overrightarrow{CO}$$
 $| \overrightarrow{CO} = \overrightarrow{GF} |$
 $\overrightarrow{CO} = O - C = (0, 0, 0) - (8, -1, 4) = (-8, 1, -4)$
 $F = G + \overrightarrow{CO} = (2, 11, 19) + (-8, 1, -4) = (-6, 12, 15)$
 $F(-6, 12, 15)$

4.2. A reta BG passa no ponto G(2, 11, 19) é perpendicular ao plano ABC. Logo, o vetor de coordenadas

$$(1, -8, -4)$$
 é um vetor diretor dessa reta.

$$BG: (x, y, z) = (2, 11, 19) + k(1, -8, -4), k \in \mathbb{R}$$

B é o ponto de interseção da reta BG com o plano ABC.

Ponto genérico da reta
$$BG$$
: $(x, y, z) = (2 + k, 11 - 8k, 19 - 4k), k \in \mathbb{R}$

O ponto da reta BG que pertence ao plano ABC: x-8y-4z=0 é tal que:

$$(2+k)-8(11-8k)-4(19-4k)=0 \Leftrightarrow$$

$$\Leftrightarrow 2+k-88+64k-76+16k=0 \Leftrightarrow$$

$$\Leftrightarrow 81k-162=0 \Leftrightarrow 81k=162 \Leftrightarrow k=2$$

Substituindo k por 2 em (2+k, 11-8k, 19-4k), obtemos as coordenadas de B:

$$B(2+2,11-8\times2,19-4\times2)$$
, ou seja, $B(4,-5,11)$

4.3.
$$\overrightarrow{OC} = C - O = (8, -1, 4)$$

$$\|\overrightarrow{OC}\| = \sqrt{8^2 + (-1)^2 + 4^2} = \sqrt{64 + 1 + 16} = \sqrt{81} = 9$$

$$\overrightarrow{BG} = G - B = (2, 11, 19) - (4, -5, 11) = (-2, 16, 8)$$

$$\|\overrightarrow{BG}\| = \sqrt{(-2)^2 + 16^2 + 8^2} = \sqrt{4 + 256 + 64} = \sqrt{324} = 18$$

$$V_{\text{prisma}} = \|\overrightarrow{CO}\| \times \|\overrightarrow{CB}\| \times \|\overrightarrow{BG}\| =$$

$$= 9 \times 9 \times 18 = 1458 \text{ u.v.}$$

5. A sucessão (u_n) é uma progressão aritmética de razão -1.

A expressão do termo geral de (u_n) é $u_n = 0 + (n-1) \times (-1) \Leftrightarrow u_n = -n+1$

$$\lim u_n = \lim (-n+1) = -\infty$$

Resposta: (B)

6. Excluem-se as opções (A) e (B), pois as assíntotas ao gráfico de f são as retas de equações x=1 e y=0.

$$f(x) = \frac{3-x}{x-1} = \frac{-(x-1)+2}{x-1} = -1 + \frac{2}{x-1}$$

Na opção (C), as assíntotas ao gráfico de f são as retas de equações x = 1 e y = -1.

$$f(x) = \frac{x+1}{x-1} = \frac{(x-1)+2}{x-1} = 1 + \frac{2}{x-1}$$

Exclui-se também a opção (D), pois as assíntotas ao gráfico de f são as retas de equações x = -1 e y = 1

Resposta: (C)

7.

7.1. Como $\lim_{x \to 1^{+}} f(x)$ existe, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\sqrt{3 + x^{2}} - 2x}{x - 1} = \lim_{x \to 1^{-}} \frac{\left(\sqrt{3 + x^{2}} - 2x\right)\left(\sqrt{3 + x^{2}} + 2x\right)}{(x - 1)\left(\sqrt{3 + x^{2}} + 2x\right)} = \lim_{x \to 1^{-}} \frac{3 + x^{2} - 4x^{2}}{(x - 1)\left(\sqrt{3 + x^{2}} + 2x\right)} = \lim_{x \to 1^{-}} \frac{3 - 3x^{2}}{(x - 1)\left(\sqrt{3 + x^{2}} + 2x\right)} = \lim_{x \to 1^{-}} \frac{3 - 3x^{2}}{(x - 1)\left(\sqrt{3 + x^{2}} + 2x\right)} = \lim_{x \to 1^{-}} \frac{-3(x - 1)(x + 1)}{(x - 1)\left(\sqrt{3 + x^{2}} + 2x\right)} = \lim_{x \to 1^{-}} \frac{-3(x + 1)}{\sqrt{3 + x^{2}} + 2x} = \frac{-3 \times 2}{\sqrt{4 + 2}} = -\frac{6}{4} = -\frac{3}{2}$$

•
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(k + \frac{1}{2} \right) = k + \frac{1}{2} = f(1)$$

Logo, $k + \frac{1}{2} = -\frac{3}{2} \Leftrightarrow k = -\frac{4}{2} \Leftrightarrow k = -2$

7.2.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\sqrt{3 + x^2} - 2x}{x - 1} = \lim_{x \to -\infty} \frac{\sqrt{x^2 \left(\frac{3}{x^2} + 1\right)} - 2x}{x \left(1 - \frac{1}{x}\right)} = \frac{1}{x}$$

Quando
$$x \to -\infty$$
, $\sqrt{x^2} = |x| = -x$

$$= \lim_{x \to -\infty} \frac{-x\sqrt{\frac{3}{x^2} + 1} - 2x}{x\left(1 - \frac{1}{x}\right)} = \lim_{x \to -\infty} \frac{-\sqrt{\frac{3}{x^2} + 1} - 2}{1 - \frac{1}{x}} = \frac{-\sqrt{0 + 1} - 2}{1 - 0} = -1 - 2 = -3$$

8.1.
$$u_n = \begin{cases} -\frac{n}{n+1} & \text{se } n \text{ \'e par} \\ \frac{n}{n+1} & \text{se } n \text{ \'e impar} \end{cases}$$

• Para *n* par

$$u_n = \frac{12}{13} \Leftrightarrow -\frac{n}{n+1} = \frac{12}{13} \Leftrightarrow -13n = 12n + 12 \Leftrightarrow n = -\frac{12}{25}$$

 $-\frac{12}{25}$ ∉ \mathbb{N} . Logo, $-\frac{12}{25}$ não é termo de ordem par da sucessão.

• Para *n* impar

$$u_n = \frac{12}{13} \Leftrightarrow \frac{n}{n+1} = \frac{12}{13} \Leftrightarrow 13n = 12n + 12 \Leftrightarrow n = 12$$

12 não é impar. Logo, $\frac{12}{13}$ não é termo de ordem impar da sucessão.

Conclui-se então que $\frac{12}{13}$ não é termo da sucessão.

8.2.
$$u_1 = \frac{1}{2}$$
; $u_2 = -\frac{2}{3}$; $u_3 = \frac{3}{4}$

Como $u_2 < u_1$ e $u_3 > u_2$, a sucessão $\left(u_n\right)$ é não monótona.

8.3.
$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$
$$-\frac{n}{n+1} = -\left(1 - \frac{1}{n+1}\right) = -1 + \frac{1}{n+1}$$

Como os termos da sucessão definida por $\frac{1}{n+1}$ são positivos e esta é decresente, para todo o

 $n \in \mathbb{N}$, tem-se:

$$\bullet \qquad 0 < \frac{1}{n+1} \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le -\frac{1}{n+1} < 0 \Leftrightarrow \frac{1}{2} \le 1 - \frac{1}{n+1} < 1$$

•
$$0 < \frac{1}{n+1} \le \frac{1}{2} \Leftrightarrow -1 < -1 + \frac{1}{n+1} \le -\frac{1}{2}$$

Logo, $\forall n \in \mathbb{N}, -1 < u_n < 1$, pelo que (u_n) é limitada.

8.4. Se *n* é impar, $u_n = \frac{n}{n+1}$.

$$\left| \frac{n}{n+1} - 1 \right| < 0,01 \Leftrightarrow \left| \frac{n-n-1}{n+1} \right| < 0,01 \Leftrightarrow \left| \frac{-1}{n+1} \right| < 0,01 \Leftrightarrow \left| \frac{1}{n+1} \right| < 0,01 \Leftrightarrow \frac{1}{n+1} < 0,01 \Leftrightarrow \frac{1}{n+1} < \frac{1}{100} \Leftrightarrow n+1 > 100 \Leftrightarrow n > 99$$

 $u_{99}\,$ é o termo de maior ordem e ímpar que não pertence a $V_{0,01}\left(1
ight)$.