# Laboratório de Sistemas Digitais Aula Teórico-Prática 1

Ano Letivo 2016/17

Introdução às FPGAs, ferramentas de projeto e kit de desenvolvimento



#### Conteúdo

- Breve introdução às FPGAs
  - Arquitetura básica
  - Fluxo e ferramentas de projeto
  - Placas de desenvolvimento
    - O kit Terasic DE2-115 (usado nas aulas práticas)

### FPGA – Field Programmable Gate Array



## Circuitos Combinatórios com LUTs

 Exemplo de um somador de dois bits com indicação de resultado (S1 S0) igual a "Zero"





# Adaptação do Circuito para Implementação com LUTs



Por vezes é necessário "replicar" lógica (absorvida pela LUT). Porquê?

## Circuitos Combinatórios com LUTs

#### LUT1 (3 variáveis)

| Α | В | Cin | S |
|---|---|-----|---|
| 0 | 0 | 0   | 0 |
| 0 | 0 | 1   | 1 |
| 0 | 1 | 0   | 1 |
| 0 | 1 | 1   | 0 |
| 1 | 0 | 0   | 1 |
| 1 | 0 | 1   | 0 |
| 1 | 1 | 0   | 0 |
| 1 | 1 | 1   | 1 |

**B0** 

Cin<sub>0</sub>

#### LUT2 (3 variáveis)

| Α | В | Cin | Cout |
|---|---|-----|------|
| 0 | 0 | 0   | 0    |
| 0 | 0 | 1   | 0    |
| 0 | 1 | 0   | 0    |
| 0 | 1 | 1   | 1    |
| 1 | 0 | 0   | 0    |
| 1 | 0 | 1   | 1    |
| 1 | 1 | 0   | 1    |
| 1 | 1 | 1   | 1    |

S0

Cout

Full Adder

LUT1

LUT2

#### **LUT3 (2 entradas)**

| <b>S1</b> | S0 | Z |
|-----------|----|---|
| 0         | 0  | 1 |
| 0         | 1  | 0 |
| 1         | 0  | 0 |
| 1         | 1  | 0 |



Mapeamento em LUTs realizado pela ferramentas de implementação

Como implementar uma LUT de 2 ou 3 entradas a partir de uma de 4 entradas?





# Posicionamento e Interligação de LUTs (e Logic Blocks) nas FPGAs



# **FPGA** Design Flow



- Design entry baseado em:
  - Linguagens de descrição de hardware
  - Diagramas esquemáticos
  - Diagramas de estado







# Síntese Lógica (Synthesis)



- Resulta numa netlist (i.e. nos componentes de hardware e suas interconexões) que implementam o comportamento e a estrutura modeladas
- Resultado
  - Netlist
  - Estimativas de desempenho do circuito e recursos lógicos necessários

## Implementação (Fit / Place and Route)



- Mapeia a netlist em primitivas da FPGA
- Posiciona as primitivas em localizações específicas da FPGA
- Realiza (encaminha) as interconexões entre as primitivas
- Resultados
  - Ficheiro de configuração da FPGA
  - Relatório sobre os recursos utilizados da FPGA, tempos de atraso e outras métricas (consumo energético, ...)

# Programação do Dispositivo (FPGA)



- Transfere o ficheiro de configuração para a FPGA
  - Realizada através de software e de um cabo de programação adequado
  - FPGA
    normalmente
    baseada em SRAM
    (configuração
    volátil)
  - Existem também soluções não voláteis baseadas em memórias FLASH



## Placas de Desenvolvimento com FPGAs



#### O Kit Terasic DE2-115



# Diagrama de Blocos do Kit



# Alguns Dispositivos do Kit (botões, interruptores e LEDs)





### Comentários Finais

- No final da primeira semana de aulas de LSDig, deverá ser capaz de:
  - Saber o que é uma FPGA, conhecer em traços gerais a sua arquitetura interna típica e descrever os passos principais do fluxo de projeto
  - Compreender e utilizar as construções mais elementares da linguagem VHDL
  - Criar projetos simples baseados em VHDL e diagramas esquemáticos, sintetizá-los, implementá-los e testá-los em FPGA
- Mais informação sobre as aulas práticas, kit com FPGA e ferramentas de projeto no site da UC
  - elearning.ua.pt