

N84 15597

ACOUSTICAL MODES OF ARBITRARY VOLUMES USING NASTRAN TRANSIENT HEAT TRANSFER RF9

ORIGINAL PAGE IS

V. Elchuri, G. C. C. Smith, A. Michael Gallo Bell Aerospace Textron, Buffalo, New York

SUMMARY

An equivalence between temperature and pressure, heat conduction and 'stiffness', and heat capacity and 'mass' is defined, enabling acoustical modal analysis of arbitrary three-dimensional volumes. The transient heat transfer analysis rigid format in NASTRAN, RF9, has been ALTERed providing the acoustical analysis capability. Examples and ALTERs are included.

INTRODUCTION

A twenty-node isoparametric acoustic finite element model was developed in Reference 1 for analyzing the acoustic mode of irregular shaped cavities. In the present paper,

- 1. the existence of an identical element in NASTRAN (IHEX2) and,
- 2. the recognition of the similarity between the acoustical matrices of Reference 1 and the thermal matrices of NASTRAN have enabled the posing and solution of the acoustics eigenvalue problem for arbitrary three-dimensional cavities bounded by 'hard' acoustic surfaces. A simple modification of the transient heat transfer rigid format RF9 provides the acoustics analysis formulation in NASTRAN.

SIMILARITY OF ACOUSTICAL AND THERMAL MATRICES

Summarizing the finite element formulation of Reference 1, the pressure p in a volume V bounded by a surface S satisfies the three-dimensional wave equation and boundary conditions:

$$\nabla^2 p + (\omega^2/a_0^2) p = 0 \text{ in } V, \text{ and}$$
 (1)

$$\nabla p \cdot \hat{n} = 0 \text{ on } S, \tag{2}$$

where ω is the frequency of vibration of the acoustical mode, a_0 is the speed of sound, and \hat{n} is the outward normal to S. Representing the volume V by an assemblage of three-dimensional finite elements, the corresponding eigenvalue problem becomes

$$[K - \omega^2 M] \{p\} = 0$$
 , (3)

where for the ith element

$$\begin{bmatrix} k \end{bmatrix}_{i} = \int_{\mathbf{v}_{i}} \begin{bmatrix} \mathbf{B} \end{bmatrix}_{i}^{\mathbf{T}} \begin{bmatrix} \mathbf{B} \end{bmatrix}_{i} dV , \qquad (4)$$

$$[m]_{i} = \int_{V_{i}} \frac{1}{a_{0}^{2}} \lfloor N \rfloor_{i}^{T} \lfloor N \rfloor_{i} dV$$
, and (5)

ORIGINAL PAGE IS OF POOR QUALITY

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}_{\mathbf{i}} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} \\ \frac{\partial}{\partial \mathbf{y}} \\ \frac{\partial}{\partial \mathbf{z}} \end{bmatrix} \begin{bmatrix} \mathbf{N} \end{bmatrix}_{\mathbf{i}}$$
(6)

The shape function $\lfloor N \rfloor_1$ approximates the pressure within the ith element in terms of the nodal pressures $\{p\}$, as

$$p = \lfloor N \rfloor_{i} \left\{ p \right\}_{i} . \tag{7}$$

A comparison with the NASTRAN heat transfer analysis capability (Ref. 2) indicates that,

- 1. equation (4) is identical to the heat conduction matrix, if the thermal conductivity is unity, and
- 2. equation (5) is identical to the heat capacity matrix, if the thermal capacity per unit volume is $1/a_0^2$.

The temperature degrees of freedom in the thermal analysis are taken to correspond to the pressure degrees of freedom in the acoustics analysis.

The above correspondence together with the real eigenvalue analysis module (READ) permit the determination of the acoustical modes and frequencies. An ALTER backage to be used in HEAT APPROACH RF9 is included in the Appendix.

EXAMPLES

The two examples of Reference 1, shown in Figures 1 and 2, were analyzed using the modified RF9. The results, generally in agreement, are presented in Tables 1 and 2, and Figure 3. It is noted that the missing geometric dimensions in Figure 2 were scaled from the figure of Reference 1.

CONCLUDING REMARKS

With a simple modification, and a 'redefinition' of thermal conductivity and capacity, the transient heat transfer rigid format in NASTRAN has been used to determine the acoustical modes and frequencies of arbitrary volumes. The volume can be modelled by any of the solid elements permitted by RF9. Although only acoustically hard surfaces have been considered in this paper, simple extensions to other boundary conditions are considered to be possible.

ORIGINAL PAGE IS OF POOR QUALITY

REFERENCES

- Petyt, M., Lea, J., and Koopmann, G. H., "A Finite Element Method for Determining the Acoustic Modes of Irregular Shaped Cavities," Journal of Sound and Vibration (1976), 45 (4), pp 495-502.
- 2. NASTRAN Theoretical Manual, NASA SP-221(05), December 1978.

APPENDIX

	HEAT RF 9 (NASTRAN RELEASE APRIL 1982)
\$	
ALTER	26,26 \$ SET NOMGG=1 BECAUSE O" ERROR IN IHEX2 LOGIC.
EMG	HEST, CSTM, MPT, DIT, GEOM2, /HKELM, HKDICT, DUM1, DUM2, HBELM, HBDICT/
	3,N,NOKGGX/ 1/ S,N,NOEGG \$
ALTER	67,67 \$ COMPUTE AND PRINT MODES
DPD	DYNAMICS, GPL, HSIL, HUSET/GPLD, HSILD, HUSETD, TFFOOL, HDLT, ,,
	HNLFT, HTRL, EED, HEQDYN/HLUSET/S, N, HLUSETD/123/S, N, NODLT/
	123/123/S;N;NONLFT/S;N;NOTRL/S;N;NOEED//S;N;NOUE \$
PARAM	//*MFY*/NEIGU/1/-1 \$
READ	HKAA, HBAA, ,, EED, HUSET, CASECC/LAMA, PHIA, , OEIGS/
	MODES/S,N,NEIGV \$
OFP	OEIGS+LAMA++++ // \$
SDR1	HUSET++PHIA++:1:00+GM++++/PHIG++/1/*REIG* \$
SDR2	CASECC, CSTM, MPT, DIT, HEQDYN, HSIL, ,, BGPDF, LAMA, , PHIG,
	HEST,,/,,OPFIG,,,PPHIG/*RETG* \$
OFF	OPH16,,,,, // \$
PLOT	PLTPAR, GPSETS, ELSETS, CASECC, BGPDT, HEGEXIN, HSIP, , PPHIG, HGPECT,
	/PLOTX3/HNSIL/HLUSEP/JUMPPLOT/PLTFLG/PFILE \$
PRTMSG	PLOTX3// \$
ENDALTER	3

TABLE 1. ACOUSTIC FREQUENCIES OF A RIGHT-ANGLED PARALLELOPIPED (cyc/T)

(a) Symmetric Modes

Mode	Exact Frequency*	<u>Ref. 1</u>	This Paper
1, 0, 0	699	702	680
2, 0, 0	1 398	1542	1495
0, 0, 1	1500	1506	1460
1, 0, 1	1655	1664	1613
2, 0, 1	2057	2155	2090
3, 0, 0	2097	2525	2448
3, 0, 1	2579		2925

TABLE 1. ACOUSTIC FREQUENCIES OF A RIGHT-ANGLED PARALLELOPIPED (cyc/T) (Contd.)

(b) Antisymmetric Modes

<u>Mode</u>	Exact Frequency*	<u>Ref. 1</u>	This Paper
0, 1, 0	1250	1255	1255
1, 1, 0	1432	144C	1430
2, 1, 0	1876	1988	1952
0, 1, 1	1953	1963	1928
1, 1, 1	2074	2089	2048
2, 1, 1	2401	2499	2440
3, 1, 0	2442	2875	2808
3, 1, 1	2866	3346	3233

*
$$f_{\ell, m, n} = \frac{a_0}{2} \left[\left(\frac{\ell}{\ell} \right)^2 + \left(\frac{m}{\ell_y} \right)^2 + \left(\frac{n}{\ell_z} \right)^2 \right]^{\frac{1}{2}}$$
, (Ref. 1)

 ℓ_x , ℓ_y , ℓ_z sides of the parallelopiped

TABLE 2. ACOUSTIC FREQUENCIES OF MODEL VAN (cyc/T)

(a) Symmetric Modes

Mode	Experimental	Calculated	This Paper
1	506	593	562
2	1174	1150	1104
3	1549	1556	1524
4	1613	1605	1580
5	1817	1829	1751
5	1992	2026	1993

(b) Antisymmetric Modes

Ref. 1					
Experimental	Calculated	This Paper			
1220	1168	1118			
135?	1317	1245			
1675	1634	1568			
1996	1956	1940			
2021	1997	1968			
2176	2187	2109			
	Experimental 1220 1352 1675 1996 2021	Experimental Calculated 1220 1168 1359 1317 1675 1634 1996 1956 2021 1997			

ORIGINAL PAGE 13

86

A

FIGURE 1. DETAILS OF RIGHT-ANGLED PARALLELOPIPED

:

The state of the s