Office de la propriété intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An Agency of Industry Canada

CA 00/MSD

des brevets

Certification

La présente atteste que les documents ci-joints, dont la liste figure ci-dessous, sont des copies authentiques des documents déposés au Bureau des brevets.

REC'D 2 4 OCT 2000 WIPO anadian : Certification

This is to certify that the documents attached hereto and identified below are true copies of the documents on file in the Patent Office.

Specification and Drawings, as originally filed, with Application for Patent Serial No: 2,283,458, on September 28, 1999, by INFECTIO DIAGNOSTIC (I.D.I.) INC., assignee of Michel Bergeron, Maurice Boissinot, Ann Huletsky, Christian Ménard, Marc Ouellette, François J. Picard and Paul H. Roy, for "Highly Conserved Genes and Their Use to Generate Species-Specific, Genus-Specific, Family-Specific, Group-Specific and Universal Nucleic Acid Probes and Amplification Primers to Rapidly Detect and Identify Bacterial, Fungal and Parasitical Pathogens From Clinical Specimens for Diagnosis".

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

October 17, 2000

Date

(CIPO 68)

Canadä

5

10

ABSTRACT OF THE INVENTION

This invention relates to a repertory of nucleic sequences usable for the detection and/or identification of a bacterial, fungal or parasitical species, genus, family or group. This repertory is created by amplifying the nucleic acids of a plurality of given species with given primers. From this repertory are derived species-, genus-, family- or group-specific oligonucleotides used as probes or primers. Also, universal probes or primers are derived from the same repertory. All these probes or primers can be used in conjunction with probes or primers specific to the detection of any antibiotic resistance gene and/or toxin gene, in kits or methods designed for the detection of a set of bacteria, fungi or parasites, in association or not with antibiotic resistance or toxin production.

TITLE OF THE INVENTION

5

10

15

20

25

30

35

40

HIGHLY CONSERVED GENES AN THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL PATHOGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

BACKGROUND OF THE INVENTION

Classical methods for the identification of bacteria, fungi, and parasites

Bacteria and fungi are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20ETM system (bioMérieux). For susceptibility testing, clinical microbiology laboratories use methods including disk diffusion, agar dilution and broth microdilution. Although identifications based on biochemical tests and antibacterial susceptibility tests are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to identify the bacteria from clinical specimens as well as to determine their susceptibility to antimicrobial agents. There are some commercially available automated systems (i.e. the MicroScanTM system from Dade Diagnostics Corp. and the Vitek system from bioMérieux) which use sophisticated and expensive apparatus for faster microbial identification and susceptibility testing (Stager and Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These systems require shorter incubation periods, thereby allowing most bacterial identifications and susceptibility testing to be performed in less than 6 hours. Nevertheless, these faster systems always require the primary isolation of the bacteria or fungi as a pure culture, a process which takes at least 18 hours for a pure culture or 2 days for a mixed culture. Moreover, fungi other than yeasts are often difficult or very slow to cultivate from clinical specimens. Identification must rely on labor intensive technique such as direct microscopic examination of the specimens and by direct and/or indirect immunological assays. Cultivation of most parasites is impractical in the clinical laboratory. Hence, microscopic examination of the specimen, a few immunological tests and clinical symptoms are often the only methods used for an identification that frequently remains presumptive.

The fastest bacterial identification system, the autoSCAN-Walk-AwayTM system (Dade Diagnostics Corp.) identifies both gram-negative and gram-positive bacterial species from standardized inoculum in as little as 2 hours and gives susceptibility patterns to most antibiotics in 5.5 hours. However, this system has a particularly high percentage (i.e. 3.3 to 40.5%) of non-conclusive identifications with bacterial species other than *Enterobacteriaceae* (Croizé J., 1995, Lett. Infectiol. 10:109-113; York et al., 1992, J. Clin. Microbiol. 30:2903-2910). For *Enterobacteriaceae*, the percentage of non-conclusive identifications was 2.7 to 11.4%.

A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiology laboratories. Tables 1 and 2 give the incidence for the most commonly isolated bacterial and fungal pathogens from various types of clinical specimens. These pathogens are the main organisms associated with nosocomial and community-acquired human infections and are therefore considered the most clinically important.

Clinical specimens tested in clinical microbiology laboratories

Most clinical specimens received in clinical microbiology laboratories are urine and blood samples. At the microbiology laboratory of the Centre Hospitalier de l'Université Laval (CHUL), urine and blood account for approximately 55% and 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Infections of the urinary tract, the respiratory tract and the bloodstream are usually of bacterial etiology and require antimicrobial therapy. In fact, all clinical samples received in the clinical microbiology laboratory are tested routinely for the identification of bacteria and susceptibility testing.

Conventional pathogen identification from clinical specimens

Urine specimens

5

10

15

20

25

30

35

40

The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains the classical semi-quantitative plate culture method in which 1 µL of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is normally associated with a bacterial

count of 10⁷ CFU/L or more in urine. However, infections with less than 10⁷CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative (i.e. bacterial count of less than 10⁷ CFU/L; Table 3). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics. The biochemical and susceptibility testing normally require 18-24 hours of incubation.

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative specimens and a more efficient treatment and care management of patients. Several rapid identification methods (UriscreenTM, UTIscreenTM, Flash TrackTM DNA probes and others) have been compared to slower standard biochemical methods, which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and poor specificities as well as a high number of false negative and false positive results (Koening et al., 1992, J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992, J. Clin. Microbiol. 30:640-684).

Blood specimens

10

15

20

25

30

35

40

The blood specimens received in the microbiology laboratory are always submitted for culture. Blood culture systems may be manual, semi-automated or completely automated. The BACTEC system (from Becton Dickinson) and the BacTAlert system (from Organon Teknika Corporation) are the two most widely used automated blood culture systems. These systems incubate blood culture bottles under optimal conditions for bacterial growth. Bacterial growth is monitored continuously to detect early positives by using highly sensitive bacterial growth detectors. Once growth is detected, a Gram stain is performed directly from the blood culture and then used to inoculate nutrient agar plates. Subsequently, bacterial identification and susceptibility testing are carried out from isolated bacterial colonies with automated systems as described previously. The bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, the vast majority of blood cultures are reported negative. For example, the percentage of negative blood cultures at the microbiology laboratory of the CHUL for the period February 1994-January 1995 was 93.1% (Table 3).

Other clinical samples

Upon receipt by the clinical microbiology laboratory, all body fluids other than blood and urine that are from normally sterile sites (i.e. cerebrospinal, synovial,

pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture (Table 3). In these normally sterile site, a test for the universal detection of bacteria, fungi and parasites would be very useful.

Regarding clinical specimens which are not from sterile sites such as sputum or stool specimens, the laboratory diagnosis by culture is more problematic because of the contamination by the normal flora. The bacterial or fungal pathogens potentially associated with the infection are purified from the contaminants and then identified as described previously. Of course, the universal detection of bacteria would not be useful for the diagnosis of bacterial infections at these non sterile sites. On the other hand, DNA-based assays for species or genus or family or group detection and identification as well as for the detection of antibiotic resistance genes from these specimens would be very useful and would offer several advantages over classical identification and susceptibility testing methods.

DNA-based assays with any specimens

5

10

15

20

25

30

35

40

There is an obvious need for rapid and accurate diagnostic tests for the detection and identification of bacteria, fungi and parasites directly from clinical specimens. DNA-based technologies are rapid and accurate and offer a great potential to improve the diagnosis of infectious diseases (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The DNA probes and amplification primers which are objects of the present invention are applicable for the detection and identification of bacteria, fungi, and parasites directly from any clinical specimens such as blood cultures, blood, urine, sputum, cerebrospinal fluid, pus and other type of specimens (Table 3). The DNA-based tests proposed in this invention are superior in terms of both rapidity and accuracy to standard biochemical methods currently used for routine diagnosis from any clinical specimens in microbiology laboratories. Since these tests can be performed in one hour or less, they provide the clinicians with new diagnostic tools which should contribute to increase the efficiency of therapies with antimicrobial agents. Specimens from sources other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock, food products, water and others) may also be tested with these assays.

A high percentage of culture negative specimens

Among all the clinical specimens received for routine diagnosis, approximately 80% of urine specimens and even more (around 95%) for other types of clinical specimens are negative for the presence of bacterial pathogens (Table 3). It would

also be desirable, in addition to identify bacteria at the species or genus or family or group level in a given specimen, to screen out the high proportion of negative clinical specimens with a test detecting the presence of any bacterium (i.e. universal bacterial detection). Such a screening test may be based on DNA amplification by PCR of a highly conserved genetic target found in all bacteria. Specimens negative for bacteria would not be amplified by this assay. On the other hand, those that are positive for bacteria would give a positive amplification signal with this assay. Similarly, highly conserved genes of fungi and parasites could serve not only to identify particular species or genus or family or group but also to detect the presence of any fungi or parasite in the specimen.

Towards the development of rapid DNA-based diagnostic tests

10

15

20

25

30

35

40

A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for the identification of pathogens and antibiotic resistance genes from clinical samples (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). There is no need for culture of the pathogens, hence the organisms can be detected directly from clinical samples, thereby reducing the time associated with the isolation and identification of pathogens. Furthermore, DNA-based assays are more accurate for microbial identification than currently used phenotypic identification systems which are based on biochemical tests and/or microscopic examination. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of fastidious bacterial pathogens such as Mycobacterium tuberculosis, Chlamydia trachomatis, Neisseria gonorrhoeae as well as for the detection of a variety of viruses (Podzorski and Persing, Molecular detection and identification of microorganisms, In: P. Murray et al., 1995, Manual of Clinical Microbiology, ASM press, Washington D.C.). There are also other commercially available DNA-based assays which are used for culture confirmation assays.

Others have developed DNA-based tests for the detection and identification of bacterial pathogens which are objects of the present invention for example: Staphylococcus spp. (US patent application serial No. US 5 437 978), Neisseria spp. (US patent application serial No. US 5 162 199 and European patent application serial No. EP 0 337 896 131) and Listeria monocytogenes (US patent applications serial Nos US 5 389 513 and US 5 089 386). However, the diagnostic tests described in these patents are based either on rRNA genes or on genetic targets different from

those described in the present invention. To our knowledge there are only three patents published by others mentioning the use of any of the three targets described in the present invention for diagnostic purposes (PCT international publication number WO 92/03455, European patent publication number 0 133 671 B1, and European patent publication number 0 133 288 A2). WO 92/03455 is focused on the inhibition of Candida species for therapeutic purposes. It describes antisense oligonucleotide probes hybridizing to Candida messenger RNA. Two of the numerous mRNA proposed as target are coding for translation elongation factor 1 (tef1) and the beta subunit of ATPase. DNA amplification or hybrization are not under the scope of their invention and although diagnostic use is briefly mentioned in the body of the application, no specific claim are made regarding diagnostics. In the main body of the text, EP 0 133 671 B1 describes the use of bacterial tuf sequence for diagnostics based on hybridization with bacterial RNA. To hybridize RNA, an oligonucleotide probe must be antisense. DNA amplification techniques require the use of both sense and antisense primers. Hence, claim number one from EP 0 133 671 B1 precludes PCR or other DNA-based amplification techniques. Furthermore, EP 0 133 671 B1 makes no specific claim on the use of tuf sequences for diagnostics; only ribosomal RNA sequences are claimed. Patent EP 0 133 288 A2 describes and claims the use of bacterial tuf sequence for diagnostics based on hybridization of a tuf probe with bacterial DNA. DNA amplification is not in the scope of EP 0 133 288 A2. Nowhere, it is mentioned that multiple tuf probes could be used simultaneously. The sensitivity of the tuf hybrizations reported are, at 1x106 bacteria or 1-100 ng of DNA, much lower than those achievable by nucleic acid amplification technologies.

10

15

20

25

30

35

40

Although there are diagnostic kits or methods already used in clinical microbiology laboratories, there is still a need for an advantageous alternative to the conventional identification methods in order to improve the accuracy and the speed of the diagnosis of commonly encountered bacterial infections. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the microbial genotype (e.g. DNA level) is more stable than the phenotype (e.g. physiologic level).

Knowledge of the genomic sequences of bacterial, fungal and parasitical species continuously increases as testified by the number of sequences available from public databases such as GenBank. From the sequences readily available from those public databases, there is no indication therefrom as to their potential for diagnostic purposes. For determining good candidates for diagnostic purposes, one could select sequences for DNA-based assays for (i) the species-specific detection and identification of commonly encountered bacterial, fungal and parasitical pathogens, (ii) the genus-specific detection and identification of commonly encountered bacterial, fungal or parasitical pathogens, (iii) the universal detection of bacterial, fungal or parasitical pathogens and/or (iv) the specific detection and identification of

antibiotic resistance genes. All of the above types of DNA-based assays may be performed directly from any type of clinical specimens or from a microbial culture.

In our co-pending U.S. (N.S. 08/526,840) and PCT (PCT/CA/95/00528 and PCT/CA97/00829) patent applications, we described DNA sequences suitable for (i) the species-specific detection and identification of clinically important bacterial pathogens, (ii) the universal detection of bacteria, and (iii) the detection of antibiotic resistance genes.

The latter co-pending application described proprietary tuf DNA sequences as well as tuf sequences selected from public databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers derived from these sequences. All the nucleic acid sequences described in that patent application can enter in the composition of diagnostic kits or product and methods capable of a) detecting the presence of bacteria, fungi and parasites b) detecting specifically at the species, genus, family or group levels, the presence of bacteria, fungi and parasites and antibiotic resistance genes associated with these pathogens. However, these methods and kits need to be improved, since the ideal kit and method should be capable of diagnosing close to 100% of microbial pathogens and associated antibiotic resistance genes and toxins genes. For example, infections caused by Enterococcus faecium have become a clinical problem because of its resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their resistance profiles are desirable. Besides that, novel DNA sequences (probes and primers) capable of recognizing the same and other microbial pathogens or the same and additional antibiotic resistance genes are also desirable to aim at detecting more target genes and complement our earlier patent applications.

The present invention improves the co-pending application by disclosing new proprietary *tuf* sequences as well as describing new ways to abtain *tuf* sequences. In addition we disclose new proprietary *atpD* and *recA* sequences. In addition, new uses of *tuf*, *atpD* and *recA* DNA sequences selected from public databases are disclosed.

Highly conserved genes for identification and diagnostics

10

20

25

30

35

40

45

Highly conserved genes are useful for identification of microorganisms. For bacteria, the most studied genes for identification of microorganisms are the universally conserved ribosomal RNA genes (rRNA). Among those, the principal targets used for identification purposes are the small subunit (SSU) ribosomal 16S rRNA genes (in prokaryotes) and 18S rRNA genes (in eukaryotes) (Relman and Persing, Genotyping Methods for Microbial Identification, *In*: D.H. Persing, 1996, PCR Protocols for Emerging Infectious Diseases, ASM Press, Washington D.C.). The rRNA genes are also the most commonly used targets for universal identification of bacteria (Chen *et al.*, 1988, FEMS Microbiol. Lett. 57:19-24; McCabe *et al.*, 1999, Mol. Genet. Metabol. 66:205-211) and fungi (Van Burik *et al.*, 1998, J. Clin. Microbiol. 36:1169-1175).

However, it may be difficult to discriminate between closely related species when using primers derived from the 16S rRNA. In some instances, 16S rRNA

sequence identity may not be sufficient to guarantee species identity (Fox et al., 1992, Int. J. Syst. Bacteriol. 42:166-170) and it has been shown that inter-operon sequence variation as well as strain to strain variation could undermine the application of 16S rRNA for identification purposes (Claytonet al., 1995, Int. J. Syst. Bacteriol. 45:595-599).

STATEMENT OF THE INVENTION

5

10

15

20

30

35

40

It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and/or amplification primers for determining the presence and/or amount of nucleic acids:

- from any bacterial, fungal or parasitical species in any sample suspected of containing said nucleic acids, and optionally,
- from specific microbial species or genera selected from the group consisting of the species or genera listed in Table 4
- from an antibiotic resistance gene selected from the group consisting of the genes listed in Table 5, and optionally,
- from a toxin gene selected from the group consisting of the genes listed in Table 6,

wherein each of said nucleic acids or a variant or part thereof comprises a selected target region hybridizable with said probe or primers;

said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said any microbial species, specific microbial species or genus or family or group and antibiotic resistance gene and/or toxin gene.

In a specific embodiment, a similar method directed to each specific microbial species or genus or family or group detection and identification, antibiotic resistance genes detection, toxin genes detection, and universal bacterial detection, separately, is provided.

In a more specific embodiment, the method makes use of DNA fragments from conserved genes (proprietary sequences and sequences obtained from public databases), selected for their capacity to sensitively, specifically and ubiquitously detect the targeted bacterial, fungal or parasitical nucleic acids.

In a particularly preferred embodiment, oligonucleotides of at least 12 nucleotides in length have been derived from the longer DNA fragments, and are used in the present method as probes or amplification primers.

In another particularly preferred embodiment, oligonucleotides primers and probes of at least 12 nucleotides in length are designed for their specificity and

ubiquity based upon analysis of our databases of atpD, tuf and recA sequences. These databases are generated using both proprietary and public databases sequence information. Altogether, these databases form a sequence repertory useful for the design of primers and probes for the detection and identification of bacterial, fungal and parasitical microorganisms. The repertory can also be subdivided into subrepertories for analysis leading to the design of primers and probes.

5

10

15

20

25

30

35

The atpD, tuf and recA sequences databases as a product to assist the design of oligonucleotides primers and probes for the detection and identification of bacterial, fungal and parasitical microorganisms are also an object of this invention.

The proprietary oligonucleotides (probes and primers) are also another object of the invention.

Diagnostic kits comprising probes or amplification primers for the detection of a microbial species or genus or family or group selected from the following list consisting of Bordetella spp., Candida albicans, Candida dubliniensis, Candida spp., Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium spp., Corynebacterium Cryptosporidium parvum, Entamoeba spp., Enterobacteriaceae group, casseliflavus-flavescens-gallinarum, Enterococcus Enterococcus Enterococcus faecium, Enterococcus gallinarum, Enterococcus spp., Escherichia coli, Giardia spp., Haemophilus influenzae, Kinetoplastidae group, Leishmania spp., Mycobacteriaceae family, Neisseria gonorrhoeae, platelets contaminants group, Staphylococcus Staphylococcus epidermidis, aureus, group, Pseudomonads Staphylococcus hominis. haemolyticus, Staphylococcus Staphylococcus saprophyticus, Staphylococcus spp., Streptococcus agalactiae, Streptococcus spp., Trypanosoma brucei, Trypanosoma cruzi, Trypanosoma spp., are also objects of the present invention.

Diagnostic kits further comprising probes or amplification primers for the detection of an antibiotic resistance gene selected from the group listed in Table 5 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of a toxin gene selected from the group listed in Table 6 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of any bacterial, fungal or parasitical species, comprising or not comprising those for the detection of the specific microbial species or genus or family or group listed above, and further comprising or not comprising probes and primers for the antibiotic resistance genes listed above, and further comprising or not comprising probes and primers for the toxin genes listed above are also objects of this invention.

In a preferred embodiment, such a kit allows for the separate or the simultaneous detection and identification of the above-listed microbial species or

genus or family or group, antibiotic resistance genes, toxin genes and for the detection of any microorganism (bacteria, fungi or parasite).

In the above methods and kits, amplification reactions may include but are not restricted to: a) polymerase chain reaction (PCR), b) ligase chain reaction (LCR), c) nucleic acid sequence-based amplification (NASBA), d) self-sustained sequence replication (3SR), e) strand displacement amplification (SDA), f) branched DNA signal amplification (bDNA), g) transcription-mediated amplification (TMA), h) cycling probe technology (CPT), i) nested PCR, j) multiplex PCR, k) solid phase amplification (SPA), l) nuclease dependant signal amplification (NDSA).

5

10

15

20

25

30

35

40

In a preferred embodiment, a PCR protocol is used for nucleic acid amplification.

In a particularly preferred embodiment, a PCR protocol is provided, comprising, an initial denaturation step of 1-3 minutes at 95°C, followed by amplification cycle including a denaturation step of one seconds at 95°C and an annealing step of 30 seconds at 45-65°C, without any time allowed specifically for the elongation step. This PCR protocol has been standardized to be suitable for PCR reactions with most selected primer pairs, which greatly facilitates the testing because each clinical sample can be tested with universal, species-specific, genus-specific and antibiotic resistance gene PCR primers under uniform cycling conditions. Furthermore, various combinations of primer pairs may be used in multiplex PCR assays.

We aim at developing a rapid test or kit to discard rapidly all the samples which are negative for bacterial cells and to subsequently detect and identify the above bacterial and/or fungal and/or parasitical species and genera and to determine rapidly the bacterial resistance to antibiotics. Although the sequences from the selected antibiotic resistance genes are available from public databases and have been used to develop DNA-based tests for their detection, our approach is unique because it represents a major improvement over current gold standard diagnostic methods based on bacterial cultures. Using an amplification method for the simultaneous bacterial detection and identification and antibiotic resistance genes detection, there is no need for culturing the clinical sample prior to testing. Moreover, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one hour under uniform amplification conditions. This procedure will save lives by optimizing treatment, will diminish antibiotic resistance because less antibiotics will be prescribed, will reduce the use of broad spectrum antibiotics which are expensive, decrease overall health care costs by preventing or shortening hospitalizations, and decrease the time and costs associated with clinical laboratory testing.

In the methods and kits described herein below, the oligonucleotide probes and amplification primers have been derived from larger sequences (i.e. DNA fragments of at least 100 base pairs). All DNA fragments have been obtained either from

proprietary fragments or from public databases. DNA fragments selected from public databases are newly used in a method of detection according to the present invention, since they have been selected for their diagnostic potential.

In an other embodiment, the amino acid sequences translated from the repertory of atpD, tuf and recA sequences are also an object of the present invention.

5

10

15

20

25

30

35

40

It is clear to the individual skilled in the art that other oligonucleotide sequences appropriate for (i) the universal bacterial detection, (ii) the detection and identification of the above microbial species or genus or family or group, and (iii) the detection of antibiotic resistance genes, and (iv) the detection of toxin genes other than those listed in Annexes I to III and XXI may also be derived from the proprietary fragments or selected public databases sequences. For example, the oligonucleotide primers or probes may be shorter or longer than the ones we have chosen; they may also be selected anywhere else in the proprietary DNA fragments or in the sequences selected from public databases; they may be also variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified by a given oligonucleotide PCR primer pair, the converse is also true; a given target DNA may hybridize to a variant oligonucleotide probe or be amplified by a variant oligonucleotide PCR primer. Alternatively, the oligonucleotides may be designed from any DNA fragment sequences for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of universal, speciesspecific, genus-specific, resistance gene-specific, toxin gene-specific genomic or nongenomic DNA fragments which are used as a source of specific and ubiquitous oligonucleotide probes and/or amplification primers. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires much effort, it is quite possible for the individual skilled in the art to derive, from the selected DNA fragments, oligonucleotides other than the ones listed in Annexes I to III and XXI which are suitable for diagnostic purposes. When a proprietary fragment or a public databases sequence is selected for its specificity and ubiquity, it increases the probability that subsets thereof will also be specific and ubiquitous.

Since a high percentage of clinical specimens are negative for bacteria (Table 3), DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and public databases sequences. The amplification primers were selected from two genes highly conserved in bacteria, fungi and parasites, and are used to detect the presence of any bacterial or fungal or parasitical pathogen in clinical specimens in order to determine rapidly (less than one hour) whether it is positive or negative for bacteria, fungi or parasites. The selected genes, designated tuf, atpD and recA, encode respectively a protein (elongation factor Tu) involved in the translational process during protein synthesis, a protein (beta subunit) responsible for the catalytic activity of proton

pump ATPase and a protein responsible for the homologous recombination of genetic material. The *tuf*, *atpD* and *recA* sequence alignments used to derive the universal primers include both proprietary and public databases sequences. The universal primer strategy allows the rapid screening of the numerous negative clinical specimens (around 80% of the specimens received, see Table 3) submitted for bacteriological testing.

Table 4 provides a list of the bacterial, fungal and parasitical species for which atpD and/or tuf and/or recA sequences are revealed in the present invention. Tables 5 and 6 provide a list of antibiotics resistance genes and toxin genes selected for diagnostic purposes. Table 7 provides the origin of tuf, atpD and recA sequences listed in the sequence listing. Tables 8-10 provide lists or species used to test specificity and ubiquity of some assays described in examples.

10

DETAILED DESCRIPTION OF THE INVENTION

HIGHLY CONSERVED GENES AND THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL PATHOGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

5

10

15

20

30

35

40

The present inventors compared the published *Haemophilus influenzae* and *Mycoplasma genitalium* genomes and searched for the most conserved genes, which would then serve, as paradigm to develop primers and probes. This sequence comparison is highly informative as these two bacteria are distantly related and most genes present in the minimal genome of *M. genitalium* are likely to be present in every bacterium. Therefore genes conserved between these two bacteria are likely to be conserved in all other bacteria.

Following the genomic comparison, it was found that several protein coding genes were conserved in evolution. Highly conserved proteins included the translation elongation factor Tu (EF-Tu) and the β subunit of F0F1 type ATP-synthase, and to a lesser extend, the RecA recombinase.

Translation elongation factor Tu is a member of a family of GTP-binding proteins which intervene in the interactions of tRNA molecules with the ribosome machinery during essential steps of protein synthesis. The role of elongation factor Tu is to facilitate the binding of aminoacylated tRNA molecules to the A site of the ribosome. The eukaryotic and archaebacterial homolog of EF-Tu is called elongation factor 1 alpha (EF-1α). All protein synthesis factors originated from a common ancestor via gene duplications and fusions (Cousineau et al., 1997, J. Mol. Evol. 45:661-670). In addition, EF-Tu is known to be the target for antibiotics belonging to the elfamycin's group as well as to other structural classes (Anborgh and Parmeggiani, 1991, EMBO J. 10:779-784; Luiten et al., 1992, European patent application serial No. EP 0 466 251 A1). Interestingly, a form of the EF-Tu protein has been identified as a dominant component of the periplasm of Neisseria gonorrhoeae (Porcella et al., 1996, Microbiology 142:2481-2489), hence suggesting that at least in some bacterial species, EF-Tu might be an antigen with vaccine potential.

F₀F₁ type ATP-synthase belongs to a superfamily of proton-translocating ATPases divided in three major families: P, V and F (Nelson and Taiz, 1989, TIBS 14:113-116). P-ATPases (or E₁-E₂ type) operate via a phosphorylated intermediate and are not evolutionarily related to the other two families. V-ATPases (or V₀V₁ type) are present on the vacuolar and other endomembranes of eukaryotes, on the plasma membrane of archaebacteria and also on the plasma membrane of some eubacteria especially, species belonging to the order *Spirochaetales* as well as to the *Chlamydiaceae* and *Deinococcaceae* families. F-ATPases (or F₀F₁ type) are found on the plasma membrane of most eubacteria, on the inner membrane of mitochondria

and on the thylakoid membrane of chloroplasts. They function mainly in ATP synthesis. They are large multimeric enzymes sharing numerous structural and functional features with the V-ATPases. F and V-type ATPases have diverged from a common ancestor in an event preceding the appearance of eukaryotes. The β subunit of the F-ATPases is the catalytic subunit and it possess low but significant sequence homologies with the catalytic A subunit of V-ATPases.

The translation elongation factor Tu (EF-Tu or EF- 1α) and the catalytic subunit of F or V-types ATP-synthase are two highly conserved proteins sometimes used for phylogenetic analysis and their genes are also known to be highly conserved (Iwabe et al., 1989, Proc. Natl. Acad. Sci. USA 86:9355-9359, Gogarten et al., 1989, Proc. Natl. Acad. Sci. USA 86:6661-6665, Ludwig et al., 1993, Antonie van Leeuwenhoek 64:285-305). A recent BLAST (Altschul et al., 1997, J. Mol. Biol. 215:403-410) search performed by the present inventors on the GenBank, EMBL, DDBJ and specific genome project databases indicated that throughout bacteria, the EF-Tu and the β subunit of F0F1 type ATP-synthase genes may be more conserved than other genes that are well conserved between H. influenzae and M. genitalium.

The RecA recombinase is a multifunctional protein encoded by the recA gene. It plays a central role in homologous recombination, it is critical for the repair of DNA damage and it is involved in the regulation of the SOS system by promoting the proteolytic digestion the LexA repressor. It is highly conserved in bacteria and could serve as a useful genetic marker to reconstruct bacterial phylogeny (Miller and Kokjohn, 1990, Annu. Rev. Microbiol. 44:365-394). Althought recA possess some highly conserved sequence segments that we used to design universal primers aimed at sequencing the recA fragments, it is clearly not as well conserved as tuf and atpD. Hence, recA may not be optimal for universal detection of bacteria with high sensitivity but it was chosen as preliminary data indicated that tuf and atpD may sometimes be too closely related to find specific primer pairs that could discriminate between certain very closely related species and genera. While RecA, like tuf and atpD, possess highly conserved regions suitable for the design of universal sequencing primers, the less conserved region between primers should be divergent enough to allow species-specific and genus-specific primers in those cases.

Thus, as targets to design primers and probes for the genetic detection of microorganisms, the present inventors have concentrated on the genes encoding these three proteins: tuf, the gene for elongation factor Tu; and atpD, the gene for β subunit of F₀F₁ type ATP-synthase; and recA the gene encoding the RecA recombinase. In several bacterial genomes tuf is often found in two highly similar duplicated copies named tufA and tufB (Filer and Furano, 1981, J. Bacteriol. 148:1006-1011, Sela et al., 1989, J. Bacteriol. 171:581-584). In some particular cases, more divergent copies of the tuf genes can exist in some bacterial species such as some Actinomycetes (Luiten et al. European patent application publication No. EP 0 446 251 A1; Vijgenboomet al., 1994, Microbiology 140:983-998) and, as revealed as part of this invention, in several enterococcal species. The tuf, atpD and recA genes were chosen as there are well conserved in evolution and have highly conserved stretches as well as more variable segments. Moreover, these three genes have eukaryotic orthologs which are

described in the present invention as targets to identify fungi and parasites. The eukaryotic homolog of elongation factor Tu is called elongation factor 1-alpha (EF- 1α) (gene name: tef, tef1, ef1, ef-1 or EF-1). In fungi, the gene for EF- 1α occurs sometimes in two or more highly similar duplicated copies (often namedtef1, tef2, tef3...). In addition, eukaryotes have a copy of elongation factor Tu which is originating from their organelle genome ancestery(gene name: tuf1 or tufM). For the purpose of the current invention, the genes of these three (bacterial, eukaryotic and organellar) functionally and evolutionarily related elongation factors will hereafter be designated as **(tuf* sequences**). The eukaryotic (mitochondrial) F0F1 type ATP-synthase beta subunit gene is named atp2 in yeast. For the purpose of the current invention, the genes of catalytic subunit of either F or V-type ATP-synthase will hereafter be designated as **(atpD* sequences**). The eukaryotic homologs of RecA are distributed in two families, typified by the Rad51 and Dmc1 proteins. For the purpose of the current invention, the genes corresponding to the latter proteins will hereafter be designated as **(recA* sequences**).

Analysis of multiple sequence alignments of tuf and atpD sequences present in the public databases, permitted the design of oligonucleotide primers (and probes) capable of amplifying (or hybridizing to) segments of tuf and atpD genes from a wide variety of bacterial species (see Examples 1 to 4 and Table 7). Sequencing primer pairs for tuf sequences are listed in Annex I and hybridization probes are listed in Annex III. Sequencing primer pairs for atpD sequences are listed in Annex II. Analysis of the main subdivisions of tuf and atpD sequences (see Figures 1 and 2) permitted to design sequencing primers amplifying specifically each of these subdivisions. It should be noted that these sequencing primers could also be use as universal primers. However, since some of these sequencing primers include several variable sequence (degenerated) positions, their sensitivity could be lower than that of universal primers developed for diagnostic purposes. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

Similarly, analysis of multiple sequence alignments of recA sequences present in the public databases, permitted the design of oligonucleotide primers capable of amplifying segments of recA genes from a wide variety of bacterial species. Sequencing primer pairs for recA sequences are listed in Annex XXI. The main subdivisions of recA sequences comprise recA, rad51 and dmc1. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

The present inventor's strategy is to get as much sequence data information from the three conserved genes (tuf, atpD and recA). This ensemble of sequence data forming a repertory (with subrepertories corresponding to each target genes and their main sequence subdivisions) and then using the sequence information of the sequence repertory (or subrepertories) to design primer pairs that could permit either universal detection of bacteria or fungi or parasites, detection of a family or group of microorganism (e.g. Enterobacteriaceae), detection of a genus (e.g. Streptococcus) or finally a specific species (e.g. Staphylococcus aureus). It should be noted that for the purpose of the present invention a group of microorganisms is defined depending on the needs of the particular diagnostic test. It does not need to respect a particular taxonomical grouping or phylum. See example 12 where primers were designed to

amplify a group a bacteria consisting of the 17 bacterial species most frequently encountered as platelet contaminants. Also remark that in that example, the primers' specificity is not perfect since the objective of that particular test is to be able to sensitively and rapidly detect at least the 17 most frequently encountered species but, the primers could also detect other species as well. In these circonstances the primers shown in example 12 are considered universal for platelet-contaminating bacteria. To develop an assay specific for the latter, one or more primers or probes specific to each species could be design. Another example of primers and/or probes for group detection is given by the Pseudomonad group primers. These primers were designed based upon alignment of tuf sequences from real Pseudomonas species as well as from former Pseudomonas species such as Stenotrophomonas maltophilia. The resulting primers are able to amplify all Pseudomonas species tested as well as several species belonging to different genera, hence we as beeing specific for a group including Pseudomonas and other species, we defined that group as Pseudomonas as several members were former Pseudomonas.

For certain applications, it may be possible to develop a universal, group, family or genus-specific reaction and to proceed to species identification using sequence information within the amplicon to design species-specific internal probes or primers, or alternatively, to proceed directly by sequencing the amplicon. The various strategies will be discussed further below.

The ensembles formed by public and proprietary tuf, atpD and recA sequences are used in a novel fashion so they constitute three databases containing useful information for the identification of microorganisms.

Oligonucleotide primers and probes design and synthesis

10

15

20

25

30

35

40

The tuf, atpD and recA sequences DNA fragments sequenced by us or selected from public databases (GenBank and EMBL) were used to design oligonucleotides primers and probes for diagnostic purposes. We also relied on the corresponding peptide sequence of tuf, atpD and recA sequences to facilitate the identification of regions suitable for primers and probes design. As part of the design rules, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (i.e. the Genetics Computer Group (GCG) programs and the primer analysis software Oligo™ 5.0). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide and a high proportion of G or C residues at the 3' end (Persinget al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). Oligonucleotide probes and amplification primers were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division).

5

10

15

20

25

30

35

The oligonucleotide primers or probes may be derived from either strand of the duplex DNA. The primers or probes may consist of the bases A, G, C, or T or analogs and they may be degenerated at one or more chosen nucleotide position(s). The primers or probes may be of any suitable length and may be selected anywhere within the DNA sequences from proprietary fragments or from selected database sequences which are suitable for (i) the universal detection of bacteria or fungi or parasites, (ii) the species-specific detection and identification of Candida albicans, Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatis, Enterococcus faecalis, Enterococcus faecium, parvum, Cryptosporidium Enterococcus gallinarum, Escherichia coli, Haemophilus influenzae, Neisseria gonorrhoeae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, Streptococcus agalactiae, Trypanosoma brucei, Trypanosoma cruzi, (iii) the genus-specific species, Clostridium species, detection of Bordetella species, Candida Corynebacterium species, Entamoeba species, Enterococcus species, Giardia species, Leishmania species, Staphylococcus species, Streptococcus species, Trypanosoma species, (iv) the family-specific detection of Enterobacteriaceae family members, Mycobacteriaceae family members, (v) the detection of Enterococcus casseliflavus-flavescens-gallinarum group, Kinetoplastidae group, Pseudomonas extended group, Platelet contaminating bacteria group, or (vi) the detection of clinically important antibiotic resistance genes listed in Table 5, or (vii) the detection of clinically important toxin genes listed in Table 6.

Variants for a given target bacterial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Watson et al., 1987, Molecular Biology of the Gene, 4th ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same bacterial species may have a single or more nucleotide variation(s) at the oligonucleotide hybridization site. The person skilled in the art is well aware of the existence of variant bacterial or fungal DNA sequences for a specific gene and that the frequency of sequence variations depends on the selective pressure during evolution on a given gene product. The detection of a variant sequence for a region between two PCR primers may be demonstrated by sequencing the amplification product. In order to show the presence of sequence variants at the primer hybridization site, one has to amplify a larger DNA target with PCR primers outside that hybridization site. Sequencing of this larger fragment will allow the detection of sequence variation at this site. A similar strategy may be applied to show variants at the hybridization site of a probe. Insofar as the divergence of the target sequences or a part thereof does not affect the specificity and ubiquity of the amplification primers or probes, variant bacterial DNA is under the scope of this invention. Variants of the selected primers or probes may also be used to amplify or hybridize to a variant DNA.

Sequencing of tuf sequences from a variety of bacterial, fungal and parasitical species

5

10

15

20

25

30

35

40

The nucleotide sequence of a portion of tuf sequences was determined for a variety of bacterial, fungal and parasitical species. The amplification primers (SEQ ID NOs: 107 and 108 in previous patent application PCT/CA97/00829), which amplify a tuf gene portion of approximately 890 bp, were used along with newly designed sequencing primer pairs (See Annex I for the sequencing primers for tuf sequences). Most primer pairs can amplify different copies of tuf genes (tufA and tufB). This is not surprising since it is known that for several bacterial species these two genes are nearly identical. For example, the entire tufA and tufB genes from E. coli differ at only 13 nucleotide positions (Neidhardt et al., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., American Society for Microbiology Press, Washington, D.C.). Similarly, some fungi are known to have two nearly identical copies of tuf sequences (EF- 1α). These amplification primers are degenerated at several nucleotide positions and contain inosines in order to allow the amplification of a wide range of tuf sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The tuf sequencing primers even sometimes amplified highly divergent copies of tuf genes (tufC) as illustrated in the case of some enterococcal species (SEQ ID NOs: 73 to 76, 614 to 618, and 621). To prove this we first had to clone PCR products before being able to sequence them. Using the cloned sequence data we designed new pair of sequencing primers specific to the divergent (tufC) copy of enterococci (SEQ ID NOs: 658-659 and 661) and then sequenced directly the tufC amplicons. The amplification primers (SEQ ID NOs: 543, 556, 557, 660, 664, 694, 696 and 697) could be used to amplify the tuf sequences from any bacterial species. The amplification primers (SEQ ID NOs: 558, 559, 560, 653, 654, 655, 813 and 815) could be used to amplify the tuf (EF-1 α) genes from any fungal and parasitical species.

The tuf fragments to be sequenced were amplified using the following amplification protocol: One µl of cell suspension (or of purified genomic DNA 0.1-0.5 ng/µl) was transferred directly to 19 µl of a PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1 µM of each of the 2 primers, 200 µM of each of the four dNTPs, 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 min at 96°C followed by 30-45 cycles of 1 min at 95°C for the

denaturation step, 1 min at 30-50°C for the annealing step and 1 min at 72°C for the extension step. Subsequently, twenty microliters of the PCR-amplified mixture were resolved by electrophoresis in a 1.5% agarose gel. The gel was then visualized by staining with methylene blue (Flores et al., 1992, Biotechniques, 13:203-205). The size of the amplification products was estimated by comparison with a 100-bp molecular weight ladder. The band corresponding to the specific amplification product was excised from the agarose gel and purified using the QIAquick™ gel extraction kit (QIAGEN Inc., Chatsworth, CA). The gel-purified DNA fragment was then used directly in the sequencing protocol. Both strands of the tuf genes amplification product were sequenced by the dideoxynucleotide chain termination sequencing method by using an Applied Biosystems automated DNA sequencer (model 377) with their Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA). The sequencing reactions were performed by using the same amplification primers and 10 ng/100 bp of the gel-purified amplicon per reaction. For the sequencing of long amplicons such as those of eukaryotic tuf (EF-1a) sequences, we designed internal sequencing primers (SEQ ID NOs: 654, 655 and 813) to be able to obtain sequence data on both strands for most of the fragment length. In order to ensure that the determined sequence did not contain errors attributable to the sequencing of PCR artifacts, we have sequenced two preparations of the gel-purified tuf amplification product originating from two independent PCR amplifications. For most target microbial species, the sequences determined for both amplicon preparations were identical. In case of discrepancies, a third independant PCR amplification was sequenced. Furthermore, the sequences of both strands were 100% complementary thereby confirming the high accuracy of the determined sequence. The tuf sequences determined using the above strategy are described in the Sequence Listing. Table 7 gives the originating microbial species and the source for each tuf sequence in the Sequence Listing.

10

15

20

25

30

35

40

The alignment of the *tuf* sequences determined by us or selected from databases reveals clearly that the length of the sequenced portion of the *tuf* genes is variable. There may be insertions or deletions of several amino acids. In addition, in several fungi introns were observed. Intron sequences are part of *tuf* sequences and could be useful in the design of species-specific primers and probes. This explains why the size of the sequenced *tuf* amplification product was variable from one species to another. Consequently, the nucleotide positions indicated on top of each of Annexes IV to XX do not correspond for sequences having insertions or deletions.

It should also be noted that the various tuf sequences determined by us occasionally contain degenerescences. These degenerated nucleotides correspond to sequence variations between tufA and tufB genes (or copies of EF-1 α subdivision of tuf sequences for fungi and parasite) because the amplification primers amplify both

tuf genes. These nucleotide variations were not attributable to nucleotide misincorporations by the Taq DNA polymerase because the sequence of both strands was identical and also because the sequences determined with both preparations of the gel-purified tuf amplicons were identical.

The selection of amplification primers from tuf sequences

The tuf sequences determined by us or selected from public databases were used to select PCR primers for (i) the universal detection of bacteria, (ii) the genus-specific detection and identification of Enterococcus spp. and Staphylococcus spp. and (iii) the species-specific detection and identification of Candida albicans. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of various tuf sequences. For more details about the selection of PCR primers from tuf sequences please refer to Examples and Annexes.

Sequencing of atpD and recA sequences from a variety of bacterial, fungal and parasitical species

The method use to obtain atpD and recA sequences is similar to that described above for tuf sequences.

The selection of amplification primers from atpD or recA

The comparison of the nucleotide sequence for the atpD or recA genes from various bacterial fungal and parasitical species allowed the selection of PCR primers (refer to Examples 1, 2 and 6 and Annexes IV, X, XX, XXI).

DNA amplification

5

10

15

20

25

30

35

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived from proprietary DNA fragments or from database sequences. Prior to synthesis, the potential primer pairs were analyzed by using the OligoTM 5.0 software to verify that they were good candidates for PCR amplification.

During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the heat-denatured target DNA from the bacterial genome are used to amplify exponentially *in vitro* the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing *et al*, 1993, Diagnostic Molecular

5

10

15

20

25

30

35

40

Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Briefly, the PCR protocols were as follow: Treated clinical specimens or standardized bacterial or fungal or parasitical suspensions (see below) or purified genomic DNA from bacteria, fungi or parasites were amplified in a 20 µl PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 2.5 mM MgCl₂, 0.4 µM of each primer, 200 µM of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStarf™ antibody (Clontech Laboratories Inc., Palo Alto, CA). The TaqStarf^M antibody, which is a neutralizing monoclonal antibody to Taq DNA polymerase, was added to all PCR reactions to enhance the specificity and the sensitivity of the amplifications (Kellogg et al., 1994, Biotechniques 16:1134-1137). The treatment of the clinical specimens varies with the type of specimen tested, since the composition and the sensitivity level required are different for each specimen type. It consists in a rapid protocol to lyse the bacterial cells and eliminate the PCR inhibitory effects. For amplification from bacterial or fungal cultures or from purified genomic DNA, the samples were added directly to the PCR amplification mixture without any pre-treatment step. An internal control was derived from sequences not found in the target microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. Alternatively, an internal control derived from rRNA was also useful to monitor the efficiency of microbial lysis protocols.

PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 second at 50-65°C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc.). The number of cycles performed for the PCR assays varies according to the sensitivity level required. For example, the sensitivity level required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens because the concentration of microorganisms associated with a septicemia can be much lower than that associated with a urinary tract infection. Consequently, more sensitive PCR assays having more thermal cycles are required for direct detection from blood specimens. Similarly, PCR assays performed directly from bacterial or fungal or parasitical cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is normally much lower in clinical specimens than in microbial cultures.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), branched DNA (bDNA), cycling probe technology (CPT), solid phase

amplification (SPA) and nuclease dependant signal amplification (NDSA) (Leeet al., 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other procedure which may be used to increase rapidity and sensitivity of the nucleic acid-based tests. Any oligonucleotide suitable for the amplification of nucleic acids by approaches other than PCR or for DNA hybridization and derived from the species-specific, genus-specific and universal DNA fragments as well as from selected antibiotic resistance or toxin gene sequences included in this document are also under the scope of this invention.

Detection of amplification products

15

20

25

30

35

40

10

5

Classically, detection of amplification is performed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after or during amplification. One simple method for monitoring amplified DNA is to measure its rate of formation by measuring the increase in fluorescence of intercalating agents such as ethidium bromide or SYBR® Green I. If more specific detection is required, fluorescence based technologies can monitor the appearance of a specific product during the reaction. The use of dual-labeled fluorogenic probes such as in the TaqManTM system which utilizes the 5'-3' exonuclease activity of the Taq polymerase is a good example (Livak K.J.et al. 1995, PCR Methods Appl. 4:357-362). TaqMan™ can be performed during amplification and this "real-time" detection can be done in a single closed tube hence eliminating post-PCR sample handling and consequently preventing the risk of amplicon carryover (TaqMan[™] system from Perkin Elmer or Amplisensor[™] from Biotronics). Several other fluorescence-based detection methods can be performed in real-time. Fluorescence resonance energy transfer (FRET) is the principle behind the use of adjacent hybridization probes and molecular beacons. Adjacent hybridization probes are designed to be internal to the amplification primers. The 3' end of one probe is labelled with a donor fluorophore while the 5' end of an adjacent probe is labelled with an acceptor fluorophore. When the two probes are specifically hybridized in closed proximity (spaced by 1 to 5 nucleotides) the donor fluorophore which has been excited by an external light source emits light that is absorbed by a second, acceptor that emit more fluorescence and yield FRET signal. Molecular beacons possess a stem-and-loop structure where the loop is the probe and at the end of the stem a

fluorescent moiety is at one end while a quenching moiety is at the other end. The beacons undergo a fluorogenic conformational change when they hybridize to their targets hence separating the fluorochrome from its quencher. The FRET principle is also used in an air thermal cycle with a built-in fluorometer (Wittwer, C.T. et al. 1997. BioTechniques. 22:130-138). The amplification and detection are extremely rapid as reactions are performed in capillaries and it takes 18 min to complete 45 cycles. Those techniques are suitable, especially in the case where few pathogens are searched for. Boerhinger-Roche Inc., sells the LightCyclerTM, an apparatus capable of rapid cycle PCR combined with fluorescent SYBR® Green I or FRET detection. We recently demonstrated in our laboratory, real-time detection of 10 CFU in less than 40 minutes using adjacent hybridization probes on the LightCyclerTM.Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are very rapid, quantitative and can be automated.

Microbial pathogens detection and identification may also be performed by solid support or liquid hybridization using species-specific internal DNA probes hybridizing to an amplification product. Such probes may be generated from any sequences from our repertory and designed to specifically hybridize to DNA amplification products which are objects of the present invention. Alternatively, the internal probes for species or genus or family or group detection and identification may be derived from the amplicons produced by a universal, family, group or genus amplification assay. The oligonucleotide probes may be labeled with biotin or with digoxigenin or with any other reporter molecules (for more details see below the section on hybrid capture). Hybrization on solid support is amendable to miniaturization.

At present the oligonucleotide nucleic acid microarray technology is appealing. Currently, available low to medium density arrays (Heller et al., An integrated microelectronics hybridization system for genomic research and diagnostic applications. In: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems '98, Kluwer Academic Publisher, Dordrecht.) could specifically capture fluorescent-labelled amplicons. Detection methods for hybridization are not limited to fluorescence, potentiometry, colorimetry and plasmon resonance are some examples of alternative detection methods. In addition to detection by hybridization, nucleic acid microarrays could be use to perform rapid sequencing by hybrization. Mass spectrometry could also be applicable for rapid identification of the amplicon or even for sequencing of the amplification products (Chiu and Cantor, 1999, Clinical Chemistry 45:1578; Berkenkamp et al., 1998, Science 281:260).

We also keep in mind the major challenge of molecular diagnostics tools, i.e.: integration of the major steps including sample preparation, genetic amplification, detection, data analysis and presentation (Anderson et al., Advances in integrated genetic analysis. In: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems '98. Kluwer Academic Publisher, Dordrecht.).

To assure PCR efficiency, glycerol, dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of a target DNA having a high GC content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v/v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and MgCl₂ are 0.1-1.5 μ M and 1.0-10.0 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods, see Examples.

15 Hybrid capture and chemiluminescence detection of amplification products

Hybridization and detection of amplicons by chemiluminescence were adapted from Nikiforov *et al.* (1994, PCR Methods and Applications 3:285-291 and 1995, Anal. Biochem. 227:201-209) and from the DIGTM system protocol of Boehringer Mannheim. Briefly, 50 μl of a 25 picomoles solution of capture probe diluted in EDC {1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride} are immobilized in each well of 96 wells plates (MicroliteTM 2, Dynex) by incubation overnight at room temperature. The next day, the plates are incubated with a solution of 1% BSA diluted into TNTw (10 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.05% TweenTM 20) for 1 hour at 37°C. The plates are then washed on a Wellwash AscentTM (Labsystems) with TNTw followed by Washing Buffer (100 mM maleic acid; 150 mM NaCl; pH7.5; 0.3% TweenTM 20).

The amplicons were labelled with DIG-11-dUTP during PCR using the PCR DIG Labelling Mix from Boehringer Mannheim according to the manufacturer's instructions. Hybridization of the amplicons to the capture probes is performed in triplicate at stringent temperature (generally, probes are designed to allow hybrization at 55°C, the stringent temperature) for 30 minutes in 1.5 M NaCl; 10 mM EDTA. It is followed by two washes in 2 X SSC; 0.1% SDS, then by four washes in 0.1X SSC; 0.1% SDS at the stringent temperature (55°C). Detection with 1,2 dioxetane chemiluminescent alkaline phosphatase substrates like CSPD® (Tropix inc.) is performed according to the manufacturer's instructions but with shorter incubations times and a different antibody concentration. The plates are agitated at each steps, the blocking incubation is performed for only 5 minutes, the anti-DIG-AP1 is used at a 1:1000 dilution, the incubation with antibody last 15 minutes, the plates are washed twice for only 5 minutes. Finally, after a 2 minutes incubation into the detection

buffer, the plates are incubated 5 minutes with CSPD® at room temperature followed by a 10 minutes incubation at 37°C without agitation. Luminous signal detection is performed on a Dynex Microtiter Plate Luminometer using RLU (Relative Light Units).

Specificity and ubiquity tests for oligonucleotide primers and probes

The specificity of oligonucleotide primers and probes was tested by amplification of DNA or by hybridization with bacterial or fungal or parasitical species selected from a panel comprising closely related species and species sharing the same anatomo-pathological site (see Annexes and Examples). All of the bacterial, fungal and parasitical species tested were likely to be pathogens associated with infections or potential contaminants which can be isolated from clinical specimens. Each target DNA could be released from bacterial cells using standard chemical and/or physical treatments to lyse the cells (Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or alternatively, genomic DNA purified with the GNOMETM DNA kit (Bio101, Vista, CA) was used. Subsequently, the DNA was subjected to amplification with the primer pairs.

Oligonucleotides primers found to amplify specifically the target species, genus, family or group were subsequently tested for their ubiquity by amplification (i.e. ubiquitous primers amplified most or all isolates of the target species or genus or family or group). The specificity and ubiquity of the PCR assays using the selected amplification primer pairs were tested either directly from cultures of microbial species or from purified microbial genomic DNA.

Probes were tested in hybrid capture assays as described above. An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus or family or group from which it was selected. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most or all isolates of the target species or genus or family or group) by hybridization to microbial DNAs from different clinical isolates of the species or genus or family or group of interest including ATCC reference strains. Similarly, oligonucleotide primers and probes could be derived from antibiotic resistance or toxin genes which are objects of the present invention.

Reference strains

5

10

15

20

25

30

35

40

The reference strains used to built proprietary tuf, atpD and recA sequence data repertory, as well as to test the amplification and hybridization assays were obtained from (i) the American Type Culture Collection (ATCC), (ii) the Laboratoire de santé

publique du Québec (LSPQ), (iii) the Centers for Disease Control and Prevention (CDC), (iv) the National Culture Type Collection (NCTC) and (v) several other reference laboratories throughout the world. The identity of our reference strains was confirmed by phenotypic testing and reconfirmed by analysis of tuf, atpD and recA sequences (see example 13).

Antibiotic resistance genes

10

15

20

30

35

40

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide clinicians, in approximately one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and clinically important antibiotic resistance genes (i.e. DNAbased tests for the detection of antibiotic resistance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from public databases, our strategy is to use the sequence from a portion or from the entire resistance gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of rapid DNA-based tests. The list of each of the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the Table 5. Our approach is unique because the antibiotic resistance genes detection and the bacterial detection and identification can be performed simultaneously in multiplex assays under uniform PCR amplification conditions.

Toxin genes

Toxin identification is often very important to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians sometimes need timely information about the ability of certain bacterial pathogen to produce toxins. Since the sequence from the most important and common bacterial toxin genes are available from public databases, our strategy is to use the sequence from a portion or from the entire toxin

gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of rapid DNA-based tests. The list of each of the bacterial toxin genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the Table 6. Our approach is unique because the toxin genes detection and the bacterial detection and identification can be performed simultaneously in multiplex assays under uniform PCR amplification conditions.

Universal bacterial detection

10

15

5

In the routine microbiology laboratory, a high percentage of clinical specimens sent for bacterial identification are negative by culture. Testing clinical samples with universal amplification primers or universal probes to detect the presence of bacteria prior to specific identification and screen out the numerous negative specimens is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several amplification primers and probes were therefore synthesized from highly conserved portions of bacterial sequences from the *tuf* and *atpD* sequences. The universal primers selection was based on a multiple sequence alignment constructed with sequences from our repertory.

20

25

All computer analysis of amino acid and nucleotide sequences were performed by using the GCG programs. Subsequently, optimal PCR primers for the universal amplification of bacteria were selected with the help of the Oligo™ program. The selected primers are degenerated at several nucleotide positions and contain several inosines in order to allow the amplification of all clinically relevant bacterial species (Annex I). Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Degenerated oligonucleotides consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY).

30

The amplification conditions with the universal primers are very similar to those used for the species- and genus-specific amplification assays except that the annealing temperature is slightly lower. The original universal PCR assay described in our co-pending PCT (PCT/CA97/00829)(SEQ ID NO. 23-24 of the latter application) was specific and nearly ubiquitous for the detection of bacteria. The specificity for bacteria was verified by amplifying genomic DNA isolated from the 12 fungal species as well as genomic DNA from Leishmania donovani, Saccharomyces cerevisiae and human lymphocytes. None of the above eukaryotic DNA preparations could be amplified by the universal assay, thereby suggesting that

35

this test is specific for bacteria. The ubiquity of the universal assay was verified by amplifying genomic DNAs from 116 reference strains which represent 95 of the most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Table 4. We found that at least 104 of these species could be amplified. However, the assay could be improved since bacterial species which could not be amplified with the original tuf sequences-based assay included species belonging to the following genera: Corynebacterium (11 Stenotrophomonas (1 species). Sequencing of the tuf genes from these bacterial species and other has been performed in the scope of the present invention in order to improve the universal assay. This sequencing data has been used to select new universal primers which may be more ubiquitous. Also, we improved our primer and probes design strategy by taking into consideration the phylogeny observed in analysing our repertory of tuf, atpD and recA sequences. Data from each of the 3 main subrepertory (tuf, atpD and recA) was subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group, inc.). This analysis indicated the main branches or phyla reflecting the relationships between sequences. Instead of trying to design primers or probes able to hybridize to all phyla, we designed primers or probes able to hybridize to the main phyla while trying to use the largest phylum possible. This strategy should allow less degenerated primers hence improving sensitivity and by combining primers in a mutiplex assay, improve ubiquity. Universal primers SEQ ID NO. 643-645 based on tuf sequences have been designed to amplify most pathogenic bacteria except Actinomyceteae, Clostridiaceae and the Cytophaga, Flexibacter and Bacteroides phylum (pathogenic bacteria of this phylum include mostly Bacteroides, Porphyromonas and Prevotella species). Primers to fill these gaps have been designed for Actinomyceteae (SEQ ID NO. 646-648), Clostridiaceae (SEQ ID NO. 796-797, 808-811), and the Cytophaga, Flexibacter and Bacteroides phylum (SEQ ID NO. 649-651). These primers sets could be used alone or in conjuction to render the universal assay more ubiquitous. These primers are in the process of being tested.

10

15

20

25

30

35

40

Universal primers derived from atpD sequences include SEQ ID NO. 562-565. Combination of these primers does not amplified human DNA but should amplify almost all pathogenic bacterial species except proteobacteria belonging to the epsilon subdivision (Campylobacter and Helicobacter), the bacteria from the Cytophaga, Flexibacter and Bacteroides group and some actinomycetes and corynebacteria. By analysing atpD sequences from the latter species, primers and probes to specifically fill these gaps could be designed and used in conjuction with primers SEQ ID NO. 562-565. These primers are in the process of being tested.

In addition, universality of the assay could be expanded by mixing atpD sequences-derived primers with tuf sequences-derived primers. Ultimately, even recA sequences-derived primers could be added to fill some gaps in the universal assay.

It is important to note that the 95 bacterial species selected to test the ubiquity of the universal assay include all of the most clinically relevant bacterial species associated with a variety of human infections acquired in the community or in hospitals (nosocomial infections). The most clinically important bacterial and fungal pathogens are listed in Tables 1 and 2.

Amino acid sequences derived from atpD, tuf and recA sequences

5

10

15

25

The amino acid sequences translated from the repertory of atpD, tuf and recA sequences are also an object of the present invention. The amino acid sequence data will be particularly useful for homology modeling of three-dimensional (3D) structure of the elongation factor-Tu, Atpase subunit beta and RecA recombinase. For all three proteins, at least one structure model as been published using X-ray diffraction data from crystals. Based on those structural informations it is possible to use computer sofwares to build model 3D structures for any other proteins having peptide sequence homologies with the known structure (Greer, 1991, Methods in Enzymology, 202:239-252, Taylor, 1994, Sali, 1995, Curr. Opin. Biotechnol.6:437-451, Sanchez and Sali, 1997, Curr. Opin. Struct. Biol. 7:206-214, Fischer and Eisenberg, 1999, Curr. Opin. Struct. Biol. 9:208-211, Guex et al., 1999, Trends Biochem. Sci. 24: 364-367). Model structures of target proteins are used for the design or to predict the behavior of ligands and inhibitors such as antibiotics. Since EF-Tu is already known as an antibiotic target (see above) and since the beta subunit of ATPase and RecA recombinase are essential to the survival of the microbial cells in natural conditions of infection, all three proteins could be considered antibiotic targets. Sequence data, especially the new data generated by us could be very useful to assist the creation of new antibiotic molecules with desired spectrum of activity. In addition, model structures could be used to improved protein function for commercial purposes such as improving antibiotic production by microbial strains or increasing biomass.

BRIEF SUMMARY OF THE INVENTION

Three highly conserved genes, encoding translation elongation factor Tu, the catalytic subunit of proton-translocating ATPase and the RecA recombinase, are used to generate species-specific, genus-specific, group-specific and universal nucleic acid probes and amplification primers to rapidly detect and identify bacterial, fungal and parasitical pathogens from clinical specimens for diagnosis. The concomittant detection of associated antibiotic resistance and toxin genes are also under the scope of the present invention.

15

10

20

DESCRIPTION OF THE DRAWINGS

Figures 1 and 2 illustrate the principal subdivisions of the atpD and tuf sequences 25 repertories, respectively. For the design of primers and probes, depending on the needs, one may want to use the complete data set illustrated on the top of the pyramid or use only a subset illustrated by the different branching points. Smaller subdivisions, representing groups, families, genus and species, could even be made to extend the bottom of the pyramid. Because the atpD and tuf sequences are highly 30 conserved and evolved with each species, the design of primers and probes does not need to include all the sequences within the database or its subdivisions. As illustrated, in Annexes IV to XX, depending on the use, sequences from a limited number of species can be carefully selected to represent: i) only the main phylogenetic branches from which the intended probes and primers need to be differentiating, and ii) only the species for which they need to be matching. However, for ubiquity purposes, and especially for primers and probes identifying large groups of species (genus, family, group or universal, or sequencing primers), the more data is included into the sequence analysis, the better the probes and primers will be suitable for each particular intented use. Similarly, for specificity purposes, a larger data set 40 (or repertory) ensures optimal primers and probes design by reducing the chance of employing nonspecific oligonucleotides.

45

EXAMPLES AND ANNEXES

5

10

15

20

25

30

35

40

The following examples and annexes are intended to be illustrative of the various methods and compounds of the invention, rather than limiting the scope thereof.

The various annexes show the strategies used for the selection of amplification primers from tuf sequences or from the atpD sequences or from the recA sequences: (i) Annex I illustrates the amplification primers used fortuf sequences. (ii) Annex II illustrates the amplification primers used for atpD sequences. (iii) Annex III shows the probes for hybridization with tuf sequences. (iv) Annex IV illustrates the strategy used for the selection of the amplification primers specific for atpD sequences of the F-type. (v) Annex V illustrates the strategy used for the selection of the amplification primers specific for atpD sequences of the V-type. (vi) Annex VI illustrates the strategy used for the selection of the amplification primers specific for the tuf sequences of organelle lineage (M, the letter M is used to indicate that in most case, the organelle is the mitochondria). (vii) Annexes VII illustrates the strategy used for the selection of the amplification primers specific for the tuf sequences of eukaryotes (ef-1). (viii) Annex VIII illustrates the strategy for the selection of Streptococcus agalactiae-specific amplification primers from tuf sequences. (ix) Annex IX illustrates the strategy for the selection of Streptococcus agalactiae-specific hybridization probes from tuf sequences. (x) Annex X illustrates the strategy for the selection of Streptococcus agalactiae-specific amplification primers from atpD sequences. (xi) Annex XI illustrates the Strategy for the selection from tuf sequences of Candida albicans/dubliniensis-specific amplification primers, Candida albicansspecific hybridization probe and Candida dubliniensis-specific hybridization probe. (xii) Annex XII illustrates the strategy for the selection of Staphylococcus-specific amplification primers from tuf sequences. (xiii) Annex XIII illustrates the Strategy for the selection of the Staphylococcus genus-specific hybridization probe from tuf sequences. (xiv) Annex XIV illustrates the strategy for the selection Staphylococcus saprophyticus-specific and of Staphylococcus haemolyticus-specific hybridization probes from tuf sequences. (xv) Annex XV illustrates the strategy for the selection of Staphylococcus aureus-specific and of Staphylococcus epidermidisspecific hybridization probes from tuf sequences. (xvi) Annex XVI illustrates the strategy for the selection of the Staphylococcus hominis-specific hybridization probe from tuf sequences. (xvii) Annex XVII illustrates the strategy for the selection from tuf sequences of the amplification primers specific for the genus Enterococcus. (xviii) Annex XVIII illustrates the strategy for the selection of the Enterococcus faecalis-specific hybridization probe, of the Enterococcus faecium-specific hybridization probe and of the Enterococcus casseliflavus-flavescens-gallinarum

group-specific hybridization probe from *tuf* sequences. (xix) Annex XIX illustrates the strategy for the selection of primers from *tuf* sequences for the identification of platelets contaminants. (xx) Annex XX illustrates the strategy for the selection of the universal amplification primers from *atp*D sequences. (xxi) Annex XXI illustrates the amplification primers used for DNA amplification from *rec*A sequences.

As shown in these annexes, the selected amplification primers may contain inosines and/or degenerescences. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Alternatively, degenerated oligonucleotides which consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches were used. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).

15

10

5

EXAMPLES

20

25

30

EXAMPLE 1:

Sequencing of bacterial atpD (F-type) gene fragments. As shown in Annex IV, the comparison of publicly available atpD (F-type) sequences from a variety of bacterial species revealed conserved regions allowing the design of PCR primers able to amplify atpD sequences from a wide range of bacterial species. Using primers pairs SEQ ID NO. 566 and 567, 566 and 814, 568 and 567, 570 and 567, 572 and 567, 569 and 567, 571 and 567, and 700 and 567, it was possible to amplify and sequenceatpD sequences SEQ ID NO. 242-270, 272-398, 673-674, 737-767, and 866-867.

EXAMPLE 2:

Sequencing of eukaryotic atpD (F-type) gene fragments. The comparison of publicly available atpD (F-type) sequences from a variety of fungal and parasitical species revealed conserved regions allowing the design of PCR primers able to amplifyatpD sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NO. 568 and 573, 574 and 573, and 574 and 708, it was possible to amplify and sequence atpD sequences SEQ ID NO. 458-497, 530-538, 663, 667, 676, 678-680, 768-778, 856-862, and 889-896.

EXAMPLE 3:

Sequencing of eukaryotic *tuf* (ef-1) gene fragments. As shown in Annex VII, the comparison of publicly available *tuf* (ef-1) sequences from a variety of fungal and parasitical species revealed conserved regions allowing the design of PCR primers able to amplify *tuf* sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NO. 558 and 559, 813 and 559, 558 and 815, 560 and 559, 653 and 559, 558 and 655, and 654 and 559, it was possible to amplify and sequence *tuf* sequences SEQ ID NO. 399-457, 509-529, 622-624, 677, 779-790, 840-842, 865, and 897-903.

EXAMPLE 4:

10

15

20

25

30

. . . .

Sequencing of eukaryotic tuf (organelle origin, M) gene fragments. As shown in Annex VI, the comparison of publicly available tuf (organelle origin, M) sequences from a variety of fungal and parasitical organelles revealed conserved regions allowing the design of PCR primers able to amplify tuf sequences of several organelles belonging to a wide range fungal and parasitical species. Using primers pairs SEQ ID NO. 664 and 652, 664 and 561, 911 and 914, 912 and 914, 913 and 915, 916 and 561, and 664 and 917, it was possible to amplify and sequence tuf sequences SEQ ID NO. 498-508, 791-792, 843-855, and 904-910.

EXAMPLE 5:

Specific identification of Streptococcus agalactiae using tuf sequences. As shown in annex VIII, the comparison of tuf sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. The multiple sequence alignment include thetuf sequences of four bacterial strains from the target species as well as tuf sequences from other species and bacterial genera especially, representative of closely related species. A careful analysis of this alignment allowed the selection of oligonucleotide sequences which are conserved within the target species but which discriminate sequences from other species and genera, especially from the closely related species, thereby permitting the species-specific and ubiquitous detection and identification of the target bacterial species.

35

40

The chosen primer pair, oligos TSag340 (SEQ ID NO. 549) and TSag552 (SEQ ID NO. 550), gives an amplification product of 252 bp. Standard PCR was carried out using 0.4 µM of each primers, 2.5 mM MgCl₂, BSA 0.05 mM, 1X Taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 1 µl Taq DNA polymerase (Promega) 0.025 U/µl combined with TaqStart 5 ng/µl (Clontech Laboratories Inc., Palo Alto), 1 µl of genomic DNA sample in a final volume of 20 µl using a PTC-200 thermocycler (MJ Research Inc.). The optimal cycling conditions for maximum sensitivity and

specificity were 3 minutes at 95°C for initial denaturation, thenforty cycles of two steps consisting of 1 second at 95°C and 30 seconds at 62°C, followed by terminal extension at 72°C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the DNA with ethidium bromide.

5

Specificity of the assay was tested by adding into the PCR reactions, 0.1 ng of genomic DNA from each of the bacterial species listed in Table 8. Strong amplification was observed only for the 5 S. agalactiae strains listed. Of the other bacterial species, including 32 species representative of the vaginal flora and 27 other streptococcal species, only S. acidominimus yielded amplification. The signal for 0,1 ng of S. acidominimus genomic DNA was weak and the detection limit for this species was 10 pg (corresponding to more than 4000 genome copies) while the detection limit for S. agalactiae was 2.5 fg (corresponding to one genome copy) of genomic DNA.

15

20

25

- 10

To increase the specificity of the assay, internal probes were designed for FRET (Fluorescence Resonance Energy Transfer) detection using the LightCycler (Idaho Technology). As illustrated in annex IX, a multiple sequence alignment of streptococcal tuf sequence fragments corresponding the 252 bp region amplified by primers TSag340 (SEQ ID NO. 549) and TSag552 (SEQ ID NO. 550), was used for the design of internal probes TSagHF436 (SEQ ID NO. 582) and TSagHF465 (SEQ ID NO. 583). The region of the amplicon selected for internal probes contained sequences unique and specific to S. agalactiae. TSagHF465 (SEQ ID NO. 583), the more specific probe is labelled with fluorescein in 3' while TSagHF436 (SEQ ID NO. 582), the less discriminant probe is labelled with CY5 in 5' and blocked in 3' with a phosphate group. However, since the FRET signal is only emitted if both probes are adjacently hybridized on the same target amplicon, detection is highly specific.

Real-time detection of PCR products using the LightCyclerTM was carried out using $0.4~\mu M$ of each primers (SEQ ID NO. 549-550), $0.2~\mu M$ of each probes (SEQ ID NO. 582-583), 2.5 mM MgCl₂, BSA 450 µg/ml, 1X PC2 Buffer (AB Peptides, St-Louis, MO), dNTP 0.2 mM (Pharmacia), KlenTaq1TM DNA polymerase 0.5 U (AB Peptides) 0.025 U/µl combined with TaqStart (Clontech Laboratories Inc., Palo Alto), 0.7 µl of genomic DNA sample in a final volume of 7 µl using a LightCycler 35 thermocycler (Idaho Technology). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 94°C for initial denaturation, thenforty cycles of three steps consisting of 0 second (this setting meaning the LightCycler will reach the target temperature and stay at it for its minimal amount of time) at 94°C, 10 seconds at 64°C, 20 seconds at 72°C. Amplification was monitored during each 40

annealing steps using the fluorescence ratio. The streptococcal species having close sequence homologies with the tuf sequence of S. agalactiae (S. acidominimus, S. anginosus, S. bovis, S. dysgalactiae, S. equi, S. ferus, S. gordonii, S. intermedius, S. parasanguis, S. parauberis, S. salivarius, S. sanguis, S. suis, and of course S. agalactiae) were tested in the LightCycler with 0.07 ng of genomic DNA per reaction. This time, only S. agalactiae yielded an amplification signal, hence demonstrating that the assay is species-specific. With the LightCycler assay using the internal FRET probes, the detection limit for S. agalactiae was 12.5 fg (corresponding to five genome copies) of genomic DNA.

EXAMPLE 6:

5

10

15

20

Specific identification of Streptococcus agalactiae using atpD sequences. As shown in Annex XIV, the comparison of atpD sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The primer design strategy is similar the strategy described in the preceding example except that atpD sequences were used in the alignment (see Annex X).

Four primers were selected, ASag42 (SEQ ID NO. 627), ASag52 (SEQ ID NO. 628), ASag206 (SEQ ID NO. 625) and ASag371 (SEQ ID NO. 626). The following combinations of these four primers give four amplicons; SEQ ID NO. 627 + SEQ ID NO. 625 = 190 bp, SEQ ID NO. 628 + SEQ ID NO. 625 = 180 bp, SEQ ID NO. 627 + SEQ ID NO. 626 = 355 bp, and SEQ ID NO. 628 + SEQ ID NO. 626 = 345 bp.

Standard PCR was carried out on PTC-200 thermocyclers (MJ Research Inc) using 25 0.4 µM of each primers pairs, 2.5 mM MgCl₂, BSA 0.05 mM, 1X Taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 1 µl Taq DNA polymerase (Promega) 0.025 U/μl combined with TaqStart 5 ng/μl (Clontech Laboratories Inc., Palo Alto), 1 μl of genomic DNA sample in a final volume of 20 µl using a PTC-200 thermocycler (MJ Research Inc.). The optimal cycling conditions for maximum sensitivity and 30 specificity were adjusted for each primer pairs. Three minutes at 95°C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95°C and 30 seconds at the optimal temperature specified below, followed by terminal extension at 72°C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the DNA with ethidium bromide. Since atpD sequences are relatively 35 more specific than tuf sequences, only the more closely related species namely, the steptococcal species listed in table 9, were tested.

All four primer pairs only amplified the six S. agalactiae strains. With an annealing temperature of 63°C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 625 had a

sensitivity of 1-5 fg (equivalent to 1-2 genome copies). At 55°C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 625 had a sensitivity of 2.5 fg (equivalent to 1 genome copy). At 60°C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 626 had a sensitivity of 10 fg (equivalent to 4 genome copies). At 58°C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 626 had a sensitivity of 2.5-5 fg (equivalent to 1-2 genome copies). This proves that all four primer pairs can detect S. agalactiae with high specificity and sensitivity. Together with example 5, this example demonstrate that bothtuf and atpD sequences are suitable targets for the identification of microorganisms at the species level.

10

EXAMPLE 7:

Development of a PCR Assay for Detection and Identification of Staphylococci at Genus and Species Levels.

15

35

40

Material and Methods

Bacterial strains. The specificity of the PCR assay was verified by using a panel of ATCC (America Type Culture Collection) and DSMZ (Deutsche Sammlung von 20 Mikroorganismen und Zellkulturen GmbH; German Collection of Microorganisms and Cell Cultures) (reference strains consisting of 33 gram-negative and 47 grampositive bacterial species (Table 11). An additional 295 clinical isolates of 11 different species of staphylococci from the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université 25 Laval (CHUL) (Ste-Foy, Québec, Canada) were also tested to further validate the Staphylococcus-specific PCR assay. These strains were all identified by using (i) conventional methods or (ii) the automated MicroScan Autoscan-4 system equipped with the Positive BP Combo Panel Type 6 (Dade Diagnostics, Mississauga, Ontario, Canada). Bacterial strains were grown from frozen stocks kept at -80°C in brain heart 30 infusion (BHI) broth containing 10% glycerol and cultured on sheep blood agar or in BHI broth (Quelab Laboratories Inc, Montréal, Québec, Canada).

PCR primers and internal probes. Based on multiple sequence alignments, regions of the *tuf* gene unique to staphylococci were identified. Staphylococcus genus-specific PCR primers TStaG422 (SEQ ID NO. 553) and TStaG765 (SEQ ID NO. 575) were derived from these regions (Annex XII). These PCR primers are displaced by two nucleotide positions compared to original Staphylococcus genus-specific PCR primers described in previous patent application WO 98/20157 (SEQ ID NO. 17 and 20 in the said patent application). These modifications were done to ensure specificity and ubiquity of the primer pair, in the light of new tuf sequence data revealed in the present patent application for several additional streptococcal species and strains.

. . . .

10

15

20

25

30

35

40

Similarly, sequence alignments analysis were performed to design genus and species-specific internal probes. Two internal probes for Staphylococcus-genus (SEQ ID NO. 605-606), five for S. aureus (SEQ ID NO. 584-588), five for S. epidermidis (SEQ ID NO. 589-593), two for S. haemolyticus (SEQ ID NO. 594-595), three for S. hominis (SEQ ID NO. 596-598), four for S. saprophyticus (SEQ ID NO. 599-601 and 695) were designed. The range of mismatches between Staphylococcus-specific 371-bp amplicon and each of the 20-mer species-specific internal probes was from 1 to 5, in the middle of the probe when possible. No mismatches were present in the two Staphylococcus-genus probes for the 11 species analyzed; S. aureus, S. auricularis, S. capitis, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. simulans and S. warneri. In order to verify the intra-specific sequence conservation of the nucleotide sequence, sequences were obtained for the 371-bp amplicon from five unrelated ATCC and clinical strains for each of the species S. aureus, S. epidermidis, S. haemolyticus, S. hominisand S. saprophyticus. The OligoTM (version 5.0) primer analysis software (National Biosciences, Plymouth, Minn.) was used to confirm the absence of self complementary regions within and between the primers or probes. When required, the primers contained inosines or degenerated nucleotides at one or more variable positions. Oligonucleotide primers and probes were synthesized on a model 394 DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division, Mississauga, Ontario, Canada). Detection of the hybridization was performed with the DIG-labeled dUTP incorporated during the amplification with the Staphylococcus-specific PCR assay and hybridization signal was detected with a luminometer (Dynex Technologies) as described above in the section on luminescent detection of amplification products. Annexes XIV to XVII illustrate the internal probes which are more specific and/or have the best signal to background ratio.

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA or from a bacterial suspension whose turbidity was adjusted to that of a 0.5 McFarland standard, which corresponds to approximately 1.5 x 10⁸ bacteria per ml. One nanogram of genomic DNA or 1 μl of the standardized bacterial suspension was transferred directly to a 19 μl PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.2 μM (each) of the two *Staphylococcus* genus-specific primers (TStaG-422 and TStaG-765, SEQ ID NO. 553 and 575), 200 μM (each) of the four deoxynucleoside triphosphates (Pharmacia Biotech), 3.3 μg/μl bovine serum albumin (BSA) (Sigma-Aldrich Canada Ltd, Oakville, Ontario, Canada), and 0.5 U *Taq* polymerase (Promega) coupled with *Taq*StartTM Antibody (Clontech). The PCR amplification and the agarose gel analysis of the amplified products were performed as previously described.

For determination of the sensitivities of the PCR assays, two-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

5

10

15

20

Results

Amplifications with the Staphylococcus-specific PCR assay. The specificity of the assay was assessed by performing 30-cycle and 40-cycle PCR amplifications with the panel of gram-positive (47 species from 8 genera) and gram-negative (37 species from 22 genera) bacterial species listed in Table 11. The PCR assay was able to detect 27 of 27 staphylococcal species tested in both 30-cycle and 40-cycle regimens. For 30-cycle PCR, all bacterial species tested other than staphylococci were negative. For 40-cycle PCR, Enterococcus faecalis, Lactobacillus acidophilus, Lactococcus lactis, Macrococcus caseolyticus, Streptocuccus agalactiae and S. mutans were slightly positive for the Staphylococcus-specific PCR assay. The other species tested remained negative. Ubiquity tests performed on a collection of 295 clinical isolates provided by the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL) including Staphylococcus aureus (n=34), S. auricularis (n=2), S. capitis (n=19), S. cohnii (n=5), S. epidermidis (n=18), S. haemolyticus (n=21), S. hominis (n=73), S. lugdunensis (n=17), S. saprophyticus (n=6), S. simulans (n=3), S. warneri (n=32) and Staphylococcus spp. (n=65) showed a uniform amplification signal with the 30-cycle PCR assays and a perfect relation between the genotype and classical identification schemes.

25

30

The sensitivity of the Staphylococcus-specific assay with 30-cycle and 40-cycle PCR protocols was determined by using purified genomic DNA from the 11 staphylococcal species previously mentioned. For PCR with 30 cycles, a detection limit of 50 copies of genomic DNA was consistently obtained. In order to enhance the sensitivity of the assay, the number of cycles was increased. For 40 cycles PCR assays, the detection limit was lowered to a range of 5-10 genome copies, depending on the staphylococcal species tested.

35

40

Hybridization between Staphylococcus-specific 371-bp amplicon and species-specific internal probes. Inter-species polymorphism was sufficient to generate species-specific internal probes for each of the principal species involved in humans diseases, S. aureus, S. epidermidis, S. haemolyticus, S. hominisand S. saprophyticus. In order to verify the intra-specific sequence conservation of the nucleotide sequence, sequences comparisons were performed on the 371-bp amplicon from five unrelated ATCC and clinical strains for each of 5 staphylococcal species; S. aureus, S.

epidermidis, S. haemolyticus, S. hominis and S. saprophyticus. Results showed a high level of conservation of nucleotide sequence between different unrelated strains from the same species. This sequence information allowed the development of staphylococcal species identification assays using species-specific internal probes hybridizing to the 371-bp amplicon. In addition to the species-specific internal probes, the genus-specific internals probes were able to recognized most Staphylococcus species. These assays are specific and ubiquitous for those five staphylococcal species.

10 EXAMPLE 8:

15

20

25

30

40

Differentiating between the two closely related yeast species Candida albicans and Candida dubliniensis. It is often useful for the clinician to be able to differentiate between two very closely related species of microorganisms. Candida albicans is the most important cause of invasive human mycose. In the recent years, a very closely related species, Candida dubliniensis, was isolated in immunosuppressed patients. These two species are difficult to distinguish by classic biochemical methods. This example demonstrates the use of tuf sequences to differenciate Candida albicans and Candida dubliniensis. PCR primers TCal528 and TCal676 were selected for their ability to specifically amplify a tuf (elongation factor 1 alpha type) fragment from both species (see Annex XI for primer positions and previous patent application WO 98/20157 SEQ ID NO. 11-12). Within this tuf fragment, a region differentiating C. albicans and C. dubliniensis by two nucleotides was selected and used to design two internal probes (see Annex IV for probe design, SEQ ID NO. 577 and 578) specific for each species. Amplification of genomic DNA from C. albicans and C. dubliniensis was carried out using DIG-11-dUTP as described above in the section on luminescent detection of amplification products. Internal probes SEQ ID NO. 577 and 578 were immobilized on the bottom of individual microtiter plates and hybridization was carried out as described above in the above section on luminescent detection of amplification products. Luminometer data showed that the amplicon from C. albicans hybridized only to probe SEQ ID NO. 577 while the amplicon from C. dubliniensis hybridized only to probe SEQ ID NO. 578, thereby demonstrating that each probes were species-specific.

35 EXAMPLE 9:

Specific identification of Entamoeba histolytica. Upon analysis of tuf (elongation factor 1 alpha) sequence data, it was possible to find four regions where Entamoeba histolytica sequences remained conserved while other parasitical and eukaryotic species have diverged. Primers TEntG38 (SEQ ID NO. 703), TEntG442 (SEQ ID

NO. 704), TEntG534 (SEQ ID NO. 705), and TEntG768 (SEQ ID NO. 706) were designed so that Entg38 could be paired with the three other primers. On PTC-200 thermocyclers (MJ Research), the cycling conditions for initial sensitivity and specificity testing were 3 min. at 94°C for initial denaturation, thenforty cycles of two steps consisting of 1 second at 95°C and 30 seconds at 55°C, followed by terminal extension at 72°C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The three primer pairs could detect the equivalent of less than 200 E. histolyticagenome copies. Specificity was tested using 0.5 ng of purified genomic DNA from a panel of microorganisms including Babesia bovis, Babesia microtti, Candida albicans, Crithidia fasciculata, Leishmania major, Leishmania hertigi and Neospora caninum. Only E. histolytica DNA could be amplified. Thereby suggesting that the assay was species-specific.

15 EXAMPLE 10:

5

10

20

25

30

35

Sensitive identification of Chlamydia trachomatis. Upon analysis of tuf sequence data, it was possible to find two regions where Chlamydia trachomatis sequences remained conserved while other species have diverged. Primers Ctr82 (SEQ ID NO. 554) and Ctr249 (SEQ ID NO. 555) were designed. With the PTC-200 thermocyclers (MJ Research), the optimal cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94°C for initial denaturation, thenforty cycles of two steps consisting of 1 second at 95°C and 30 seconds at 60°C, followed by terminal extension at 72°C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The assay could detect the equivalent of 8 C. trachomatis genome copies. Specificity was tested on 0.1 ng of purified genomic DNA from a panel of microorganisms including 22 species commonly encountered in the vaginal flora (Bacillus subtilis, Bacteroides Candida albicans, Clostridium difficile, Corynebacterium cervicis, Corynebacterium urealyticum, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Fusobacterium nucleatum, Gardnerella vaginalis, Haemophilus influenzae, Klebsiella oxytoca, Lactobacillus acidophilus, Peptococcus niger, Peptostreptococcus prevotii. Porphyromonas asaccharolytica, Prevotella melaninogenica, Propionibacterium acnes, Staphylococcus aureus, Streptococcus acidominimus, and Streptococcus agalactiae). Only C. trachomatis DNA could be amplified. Thereby suggesting that the assay was species-specific.

EXAMPLE 11:

Genus-specific identification of Enterococci. Upon analysis of tuf sequence data and comparison with the repertory of tuf sequences, it was possible to find two regions where Enterococcus sequences remained conserved while other genera have diverged (Annex XVII). Primers Encg 313 (SEQ ID NO. 656) and Encg 596 (SEQ ID NO. 657) were tested for their specificity by using purified genomic DNA from a panel of bacteria listed in Table 10. Using the PTC-200 thermocyclers (MJ Research), the optimal cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94°C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95°C and 30 seconds at 62°C, followed by terminal extension at 72°C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The 17 enterococcal species listed in Table 10 were all amplified. The only other species amplified were Abiotrophia adiacens and Gemella haemolysans, two Gram positive species. The sequence variation within the 306 bp amplicon is sufficient so that nested PCR or internal probes could be used to speciate the amplicon and differenciate enterococci from Abiotrophia adiacens and Gemella haemolysans. Sensitivity tested on several strains of the clinically important species E. casseliflavus, E. faecium, E. faecalis, E. flavescens and E. gallinarum ranged from 1 to 8 genome copies. A mismatch for all enterococcal species (except E. faecalis and E. solitarius) was introduced inadvertantly in position 12 (C instead of G) of primer SEQ ID NO. 657. Apparently, this mismatch did not significantly impaired the primer pair's sensitivity and specificity. Because of the known tolerance of PCR primers to mismatches in their middle, non-mismatch primer pair SEQ ID NO. 656 + SEQ ID NO. 271 should give specificity and sensitivity results similar to SEQ ID NO. 656 + SEQ ID NO. 657.

EXAMPLE 12:

5

10

15

20

25

30

35

40

Identification of the major bacterial platelets contaminants using tuf sequences in a multiplex test. Blood platelets preparations need to be monitored for bacterial contaminations. The tuf sequences of 17 important bacterial contaminants of platelets were aligned. As shown in Annex XIX, analysis of these sequences allowed the design PCR primers. Since in the case of platelet contamination, detecting all species, not just the more frequently encountered ones is desirable, perfect specificity of primers was not an issue in the design. However, sensitivity is important. That is why, to avoid having to put too much degeneracy, only the most frequent contaminants were included in primer design, knowing that the selected primers would anyway be able to amplify more species than the 17 used in the design. Oligonucleotide sequences which are conserved in these 17 major bacterial contaminants of platelets were chosen (oligos Tplaq 769 and Tplaq 991, respectively SEQ ID NO. 636 and 637) thereby permitting the detection of these bacterial species.

However, sensitivity was a bit deficient with staphylococci. To ensure maximal sensitivity in the detection of all the more frequent bacterial contaminants, a multiplex assay also including oligonucleotide primers targetting the Staphylococcus genera (oligos Stag 422, SEQ ID NO. 553; and Stag 765, SEQ ID NO. 575) was developed.

The primer pairs, oligos Tplaq 769 (SEQ ID NO. 636) and Tplaq 991 (SEQ ID NO. 637) that give an amplification product of 245 pb and oligos TStaG 422 (SEQ ID NO. 553) and TStaG 765 (SEQ ID NO. 575) that give an amplification product of 368 pb, were used simultaneously in the multiplex PCR assay. Real-time detection of these PCR products was made on the LightCycler thermocycler (Idaho Technology) using SYBR® Green I (Molecular Probe Inc.). SYBR® Green I is a fluorescent dye that binds specifically to double-stranded DNA. It thus binds to DNA products as they are synthesized. The measure of SYBR® Green I fluorescence at the end of each elongation cycle indicates the amount of DNA duplex generated by specific DNA fragment amplification and primer-dimer formation.

Real-time detection of PCR products with the LightCycler was carried out using 1.0 mM of both Tplaq primers (SEQ ID NO. 636-637) and 0.4 mM of both TStaG primers (SEQ ID NO. 553 and 575), 2.5 mM MgCl₂, BSA 500 mg/ml , dNTP 0.2 mM (Pharmacia), 10X PCR reaction buffer (Boerhinger Mannheim) and Taq DNA polymerase (Boerhinger Mannheim) 0.025 U/ml combined with TaqStart 5 ng/ml (Clontech), and 0.7 ml of genomic DNA sample in a final volume of 7 ml. The optimal cycling conditions for maximum sensitivity were 1 minute at 94°C for initial denaturation, then forty-five cycles of three steps consisting of 0 second at 95°C, 5 seconds at 60°C and 9 seconds at 72°C. Amplification was monitored during each elongation cycle by measuring the level of SYBR®Green I. However, real analysis takes place after PCR. Melting curves are done for each sample and transformation of melting peak allows determination of Tm. Thus primer-dimer and specific PCR product are discriminated. With this assay, all prominent bacterial contaminants of platelets listed in Annex XIX were detected. Sensitivity tests were performed on the 9 most frequent bacterial contaminants of platelets. The detection limit was less than 20 genome copies for E. cloacae, B. cereus, S. choleraesuis and S. marcescens; less than 15 genome copies for P. aeruginosa; and 2 to 3 copies were detected for S. aureus, S. epidermidis, E. coli and K. pneumoniae. Further refinements of assay conditions should increase sensitivity levels.

EXAMPLE 13:

5

10

15

20

25

30

The resolving power of the tuf and atpD sequences databases is comparable to the gold standard biochemical methods for bacterial identification. The present gold standard for bacterial identification is mainly based on key morphological traits and batteries of biochemical tests. Here we demonstrate that the use of tuf and atpD sequences combined with simple phylogenetic analysis of databases formed by these sequences is comparable to the gold standard. In the process of acquiring data for the tuf sequences, we sequenced the tuf gene of a strain that was given to us labelled as Staphylococcus hominis ATCC 35982. That tuf sequence (SEQ ID NO: 192) was incorporated into the tuf sequences database and subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group, inc.). This analysis indicated that SEQ ID NO: 192 is not associated with other S. hominis strains but rather with the S. warneri strains. The ATCC 35982 strain was sent to the reference laboratory of Laboratoire de Santé publique du Québec (LSPQ). They used the classic gold standard identification scheme for staphylococci (Kloos and Schleifer, 1975., J. Clin. Microbiol.1:82-88). Their results shown that although the colonial morphology could correspond to S. hominis, the more precise biochemical assays did not. These assays included discriminant mannitol, mannose and ribose acidification tests as well as rapid and dense growth in deep thioglycolate agar. The LSPQ report identified strain ATCC 35982 as S. warneri which confirms our database analysis. The same thing happened for S. warneri (SEQ ID NO: 187) which had initially been identified as S. haemolyticus by a routine clinical laboratory using a low resolving power automated system (MicroScan, AutoScan-4TM). Again, the tuf and LSPQ analysis agreed on its identification as S. warneri. In numerous other instances, in the course of acquiring tuf and atpD sequence data from various species and genera, analysis of our tuf and/or atpD sequence databases permitted the exact identification of mislabelled or erroneously identified strains. These results clearly demonstrate the usefulness and the high resolving power of our sequence-based identification assays using the tuf and atpD sequences databases.

Example 14:

5

10

15

20

25

30

35

40

Detection of group B streptococci in clinical specimens.

Introduction

Streptococcus agalactiae, the group B streptococcus (GBS), is responsible for a severe illness affecting neonate infants. The bacterium is passed from the healthy carrier mother to the baby during delivery. To prevent this infection, it is recommended to treat expectant mothers susceptible of carrying GBS in their anovaginal flora. Carrier status is often a transient condition and rigorous monitoring

requires cultures and classic bacterial identification weeks before delivery. To improve the diagnostic and identification of GBS we developed a rapid, specific and sensitive PCR test fast enought to be performed right at delivery.

Materials and Methods

5

10

15

20

25

30

35

40

GBS Clinical Specimens. A total of 66 duplicate anovaginal swabs were collected from 41 consenting pregnant women admitted for delivery at the Centre Hospitalier Universitaire de Québec, Pavillon Saint-François d'Assise following the CDC recommendations. The samples were obtained either before or after rupture of membranes. The swab samples were tested at the Centre de Recherche en Infectiologie de l'Université Laval within 24 hours of collection. Upon receipt, one swab was cut and then the tip of the swab was added to GNS selective broth for identification of group B streptococci (GBS) by the standard culture methods recommended by the Center for Diseases Control. The other swab was processed following the instruction of the IDI DNA extraction kit (Infectio Diagnotics (IDI) Inc.) prior to PCR amplification.

Oligonucleotides. PCR primers, Tsag340 (SEQ ID NO. 549) and Tsag552 (SEQ ID NO. 550) complementary to the regions of the tuf gene unique for GBS were designed based upon multiple sequence alignment using our repertory of tuf sequences. Oligo primer analysis software (version 5.0) (National Biosciences) was used to analyse primers annealing temperature, secondary structure potential as well as mispriming and dimerization potential. The primers were synthesized using a model 391 DNA synthesizer (Perkin-Elmer).

A pair of fluorescently labeled adjacent hybridization probes Sag465-F (SEQ ID NO. 583) and Sag436-C (SEQ ID NO. 582) were synthesized and purified by Operon Technologies. They were designed to meet the recommendations of the manufacturer (Idaho Technology) and based upon multiple sequence alignment analysis using our repertory of tuf sequences to be specific and ubiquitous for GBS. These adjacent probes, which are separated by one nucleotide, allowing fluorescence resonance energy transfer (FRET) to generate an increased fluorescence signal when both hybridized simultaneously to their target sequences. The probes Sag465-F was labeled with FITC in 3 prime while Sag436-C was labeled with Cy5 in 5 prime. The Cy5-labeled probes contained a 3'-blocking phosphate group to prevent extension of the probes during the PCR reactions.

PCR Amplification. Conventional amplifications were performed either from 2 μl of a purified genomic DNA preparation or cell lysates of anovaginal specimens. The 20-μl PCR mixture contained 0.4 μM each GBS-specific primer (Sag465-F/Sag436), 200 μM each deoxyribonucleotide (Pharmacia Biotech), 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2.5 mM MgCl₂, 3.3 mgml bovine serum albumin (BSA) (Sigma), and 0.5 U of *Taq* polymerase (Promega) combined with the

TaqStart antibody (Clontech). The TaqStart antibody, which is a neutralizing monoclonal antibody of Taq DNA polymerase, was added to all PCR reactions to enhance the efficiency of the amplification. The PCR mixtures were subjected to thermal cycling (3 min at 95°C and then 40 cycles of 1 s at 95°C, and 30 s at 62°C with a 2-min final extension at 72°C) with a PTC-200 DNA Engine thermocycler (MJ research). The PCR-amplified reaction mixture was resolved by agarose gel electrophoresis.

10

15

20

25

30

35

40

The LightCyclerTM PCR amplifications were performed with 1 µl of the same preparation as described above. The 10-µl amplification mixture consisted of 0.4 µM each GBS-specific primer (Sag465-F/Sag436), 200 μM each dNTP, 0.2 μM each fluorescently labeled probe (Sag465-F and Sag436-C), 300µg/ml BSA (Sigma), and 1 μl of 10x PC2 buffer (containing 50 mM Tris-HCl (pH 9.1), 16 mM ammonium sulfate, 3.5 mM Mg²⁺, and 150 µg/ml BSA) and 0.5 U KlenTaq1TM (AB Peptides) coupled with TaqStartTM antibody (Clontech). KlenTaq1TM is a highly active and more heat-stable DNA polymerase without 5'-exonuclease activity. This prevents hydrolysis of hybridized probes by the 5' to 3' exonuclease activity. A volume of 7µl of the PCR mixture was transferred into a composite capillary tube (Idaho Technology). The tubes were then centrifuged to move the reaction mixture to the tips of the capillaries and then cleaned with optical-grade methanol. Subsequently the capillaries were loaded into the carousel of a LC32 LightCyclerTM (Idaho Technology), an instruments that combine rapid-cycle PCR with fluorescence analysis for continuous monitoring during amplification. The PCR reaction mixtures were subjected to a denaturation step at 94C for 3 min followed by 45 cycles of 0 s at 94°C, 20 s at 64°C and 10 s at 72°C with a temperature transition rate of 20°C/s. Fluorescence signals were obtained at each cycle by sequentially positioning each capillary on the carousel at the focus of optics affiliated to the built-in fluorimeter for 100 millisecond. Complete amplification and analysis required about 35 min.

Specificity And Sensitivity Tests. The specificity of the conventional and LightCyclerTM PCR assay was verified by using purified genomic DNA (0.1 ng/reaction) from a battery of ATCC reference strains representing 35 clinically relevent gram-positive species (Abiotrophia defectivaATCC 49176, Bifidobacterium breve ATCC 15700, Clostridium difficile ATCC 9689, Corynebacterium urealyticum ATCC 43042, Enterococcus casseliflavus ATCC 25788, Enterococcus durans ATCC 19432, Enterococcus faecalis ATCC 29212, Enterococcus faecium ATCC 19434, Enterococcus gallinarum ATCC 49573, Enterococcus raffinosus ATCC 49427, Lactobacillus reuteri ATCC 23273, Lactococcus lactis ATCC 19435, Listeria monocytogenes ATCC 15313, Peptoscoccus niger ATCC 27731, Peptostreptococcus anaerobius ATCC 27337, Peptostreptococcus prevotii ATCC 9321, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Staphylococcus haemolyticus ATCC 29970, Staphylococcus saprophyticus ATCC 15305,

Streptococcus agalactiae ATCC 27591, Streptococcus anginosus ATCC 33397, Streptococcus bovis ATCC 33317, Streptococcus constellatus ATCC 27823, Streptococcus dysgalactiae ATCC 43078, Streptococcus gordonii ATCC 10558, Streptococcus mitis ATCC 33399, Streptococcus mutans ATCC 25175, Streptococcus oralis ATCC 35037, Streptococcus parauberis ATCC 6631, Streptococcus pneumoniae ATCC 6303, Streptococcus pyogenes ATCC 19615, Streptococcus salivarius ATCC 7073, Streptococcus sanguis ATCC 10556, Streptococcus uberis ATCC 19436). These microbial species included 15 species of streptococci and many members of the normal vaginal and anal floras. In addition, 40 GBS isolates of human origins confirm by Latex agglutination test (Streptex, Murex) were also used to evaluate the ubiquity of the assay.

For determination of the sensitivities (i.e., the minimal number of genome copies that could be detected) for conventional and LightCyclerTM PCR assays, serial 10-fold or 2-fold dilutions of purified genomic DNA from 5 GBS ATCC strains were used.

10

15

20

25

30

35

Results

Evaluation of the GBS-specific conventional and LightCyclerTM PCR assay. The specificity of the two assays demonstrated that only DNAs from GBS strains could be amplified. Both PCR assays did not amplify DNAs from any other bacterial species tested including 14 streptococcal species other than GBS as well as phylogenetically related species belonging to the genus Enterococcus, Peptostreptococcus and Lactococcus. Important members of the vaginal or anal flora, including coagulase-negative staphylococci, Lactobacillus spp., and Bacteriodes spp. were also negative with the GBS-specific PCR assay. The LightCyclerTM PCR assays detected only GBS DNA by producing an increased fluorescence signal which was interpreted as a positive PCR result. Both PCR methods were able to amplify all of 40 GBS clinical isolates, showing a perfect correlation with the phenotypic identification methods.

The sensitivity of the assay was determined by using purified genomic DNA from the 5 ATCC strains of GBS. The detection limit for all of these 5 strains was one genome copy of GBS. The detection limit of the assay with the LightCyclerTM was 3.5 fg of genomic DNA (corresponding to 1-2 genome copies of GBS). These results confirmed the high sensitivity of our GBS-specific PCR assay.

Direct Detection of GBS from anovaginal specimens. Among 66 anovaginal specimens tested, 12 were positive for GBS by culture. 11 of them were also identified by both PCR assays. The sensitivity of both PCR methods with vaginal/anal specimens for identifying colonization status in pregnant women at delivery was 91.7% when compared to culture results. Specificity and positive predictive value were both 100% and negative predictive value was 97.8%. The time

for obtaining results was approximately 50 min for LightCyclerTM PCR, approximately 100 min for conventional PCR and 48 hours for culture.

Conclusion

We have developed two PCR assays (conventional and LightCyclerTM) for the detection of GBS which are specific (i.e., no amplification of DNA from a variety of bacterial species other than GBS) and sensitive (i.e., able to detect around 1 genome copy for several reference ATCC strains of GBS). Both PCR assays are able to detect GBS directly from anovaginal specimens in a very short turnaround time. Using the real-time PCR assay on LightCyclerTM, we can detect GBS carriage in pregnant women at delivery within 50 minutes.

This invention has been described herein above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These modifications are under the scope of this invention, as defined in the appended claims.

20

5

10

Table 1. Distribution (%) of n socomial pathogens f r vari us human infections in USA (1990-1992).

	Pathogen	UTI ²	SSI ³	BSI⁴	Pneumonia	CSF ⁵
	Escherichia coli	27	9	5	4	2
	Staphylococcus aureus	2	21	17	21	2
	Staphylococcus epidermidis	2	6	20	0	1
0	Enterococcus faecalis	16	12	9	2	0
	Enterococcus faecium	1	1	0	0	0
	Pseudomonas aeruginosa	12	9	3	18	0
	Klebsiella pneumoniae	7	3	4	9	0
	Proteus mirabilis	5	3	1	2	0
5	Streptococcus pneumoniae	0	0	3	1	18
	Group B Streptococci	1	1	2	1	6
	Other Streptococci	3	5	2	1	3
	Haemophilus influenzae	0	0	0	6	45
•	Neisseria meningitidis	0	0	0	0	14
)	Listeria monocytogenes	0	0	0	0	3
	Other Enterococci	1	1	0	0	0
	Other Staphylococci	2	8	13	2	0
	Candida albicans	9	3	5	5	0
	Other Candida	2	1	3	1	0
5	Enterobacter spp.	5	7	4	12	2
	Acinetobacter spp.	1	1	2	4	2
	Citrobacter spp.	2	1	1	1	0
	Serratia marcescens	1	1	1	3	1
	Other Klebsiella	1	1	1	2	1
)	Others .	0	6	4	5	0

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

Urinary tract infection.

³⁵ Surgical site infection.

Bloodstream infection.

⁵ Cerebrospinal fluid.

Table 2. Distribution (%) of blo dstr am infecti n pathogens in Quebec (1995), Canada (1992), UK (1969-1988) and USA (1990-1992).

5	Organism	Quebec	Canada ²	UK	3	USA ^⁴
				Community- acquired	Hospital- acquired	Hospital- acquired
•	E. coli	15.6	53.8	24.8	20.3	5.0
10	S. epidermidis and other CoNS	25.8	-	0.5	7.2	31.0
	S. aureus	9.6	-	9.7	19.4	16.0
	S. pneumoniae	6.3	-	22.5	2.2	-
	E. faecalis	3.0	-	1.0	4.2	-
15	E. faecium	2.6	-	0.2	0.5	-
	Enterococcus spp.	-	-	-	-	9.0
	H. influenzae	1.5	-	3.4	0.4	-
	P. aeruginosa	1.5	8.2	1.0	8.2	3.0
	K. pneumoniae	3.0	11.2	3.0	9.2	4.0
20	P. mirabilis	-	3.9	2.8	5.3	1.0
	S. pyogenes	-	-	1.9	0.9	-
	Enterobacter spp.	4.1	5.5	0.5	2.3	4.0
	Candida spp.	8.5	-	-	1.0	8.0
	Others	18.5	17.4	28.7	18.9	19.0

Data obtained for 270 isolates collected at the Centre Hospitalier de l'Université Laval (CHUL) during a 5 month period (May to October 1995).

² Data from 10 hospitals throughout Canada representing 941 gram-negative isolates. (Chamberland et al., 1992, Clin. Infect. Dis., 15:615-628).

³⁰ Data from a 20-year study (1969-1988) for nearly 4000 isolates. (Eykyn *et al.*, 1990, *J. Antimicrob. Chemother.*, Suppl. C, **25:41-**58).

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

⁵ Coagulase-negative staphylococci.

Table 3. Distributi n of positive and negative clinical specimens tested at the microbi logy laboratory f the CHUL (February 1994 – January 1995).

5	Clinical specimens and/or sites	No. of samples tested (%)	% of positive specimens	% of negative specimens
	Urine	17,981 (54.5)	19.4	80.6
	Blood culture/marrow	10,010 (30.4)	6.9	93.1
	Sputum	1,266 (3.8)	68.4	31.6
0	Superficial pus	1,136 (3.5)	72.3	27.7
	Cerebrospinal fluid	553 (1.7)	1.0	99.0
	Synovial fluid	523 (1.6)	2.7	97.3
	Respiratory tract	502 (1.5)	56.6	43.4
	Deep pus	473 (1.4)	56.8	43.2
5	Ears	289 (0.9)	47.1	52.9
	Pleural and pericardial fluid	132 (0.4)	1.0	99.0
	Peritoneal fluid	101(0.3)	28.6	71.4
	Total:	32,966 (100.0)	20.0	80.0

Table 4. N in limitating example of microbial species for which atpD and/ r tuf and/or recA sequenc s ar used in the present invention

Bacterial species

	Bacter	iai speci	0 \$
5			
	Achromobacter xylosoxidans subsp. denitrificans		Chlamydia trachomatis
	Acetobacterium woodi		Chlorobium vibrioforme
	Acetobacter aceti	65	Chloroflexus aurantiacus
	Acetobacter altoacetigenes		Chryseobacterium meningosepticum
10	Acetobacter polyoxogenes		Citrobacter amalonaticus
	Acholeplasma laidlawii		Citrobacter braakii
	Acidiphilum facilis		Citrobacter farmeri
	Acinetobacter baumannii	70	Citrobacter freundii
	Acinetobacter calcoaceticus		Citrobacter koseri
15	Acinetobacter Iwoffii		Citrobacter sedlakii
	Actinomyces meyeri		Citrobacter werkmanii
	Aerococcus viridans		Citrobacter youngae
	Aeromonas salmonicida	75	Clostridium acetobutylicum
	Agrobacterium tumefaciens	, •	Clostridium beijerincki
20	Alcaligenes faecalis		Clostridium bifermentans
20	Allochromatium vinosum		Clostridium botulinum
	Anabaena variabilis		Clostridium difficile
	,	80	Clostridium innocuum
	Anacystis nidulans	00	Clostridium histolyticum
25	Anaerorhabdus furcosus		Clostridium novyi
25	Aquifex aeolicus		Clostridium septicum
	Aquifex pyrophilus		Clostridium perfringens
	Azotobacter vinelandii	85	Clostridium ramosum
	Bacillus anthracis	92	Clostridium ramosum Clostridium sordellii
20	Bacillus caldotenax		Clostridium tertium
30	Bacillus cereus		Clostridium tetani
	Bacillus firmus		Comamonas acidovorans
	Bacillus halodurans	90	
	Bacillus megaterium	90	Corynebacterium bovis
2.5	Bacillus stearothermophilus		Corynebacterium cervicis
35	Bacillus subtilis		Corynebacterium diphtheriae
	Bacteroides distasonis		Corynebacterium flavescens
	Bacteroides fragilis	95	Corynebacterium glutamicum
	Bacteroides ovatus	93	Corynebacterium kutscheri
40	Bacteroides vulgatus		Corynebacterium minutissimum
40	Bartonella henselae		Corynebacterium mycetoides
	Bifidobacterium adolescentis		Corynebacterium pseudodiphtheriticum
	Bifidobacterium breve	100	Corynebacterium pseudogenitalium
	Bifidobacterium dentium	100	Corynebacterium pseudotuberculosis
	Bifidobacterium longum		Corynebacterium renale
45	Blastochloris viridis		Corynebacterium ulcerans
	Borrelia burgdorferi		Corynebacterium urealyticum
	Bordetella pertussis	105	Corynebacterium xerosis
	Bordetella bronchiseptica	105	Coxiella burnetii
	Branhamella catarrhalis		Cytophaga lytica
50	Brucella abortus		Deinococcus radiodurans
	Brevibacterium linens		Deinonema spp.
	Brevibacterium flavum	440	Edwardsiella hoshinae
	Buchnera aphidicola	110	Edwardsiella tarda
	Burkholderia cepacia		Ehrlichia canis
55	Burkholderia mallei		Ehrlichia risticii
	Burkholderia pseudomallei		Eikenella corrodens
	Campylobacter jejuni		Enterobacter aerogenes
	Cedecea davisae	115	Enterobacter agglomerans
	Cedecea lapagei		Enterobacter amnigenus
60	Cedecea neteri		Enterobacter asburiae
	Chlamydia pneumoniae		Enterobacter cancerogenus
	Chlamydia psittaci		Enterobacter cloacae

Table 4. Non limitating example of microbial sp cles for which atpD and/or tuf and/or recA s quenc s are used in the present inv nti n (c ntinued)

Bacterial species (continued)

	Enterobacter gergoviae		Herpetoshiphon aurantiacus
	Enterobacter hormaechei	65	Kingella kingae
	Enterobacter sakazakii		Klebsiella ornithinolytica
10	Enterococcus avium		Klebsiella oxytoca
	Enterococcus casseliflavus		Klebsiella planticola
	Enterococcus cecorum		Klebsiella pneumoniae subsp. ozaenae
	Enterococcus dispar	70	Klabajalla manumania anuba a
	Enterococcus durans	70	Klebsiella pneumoniae subsp. pneumoniae
15	Enterococcus durans Enterococcus faecalis		Klebsiella pneumoniae subsp. rhinoscleromatis
13			Kluyvera ascorbata
	Enterococcus faecium		Kluyvera cryocrescens
	Enterococcus flavescens		Kluyvera georgiana
	Enterococcus gallinarum	75	Lactobacillus acidophilus
	Enterococcus hirae		Lactobacillus garvieae
20	Enterococcus malodoratus		Lactobacillus paracasei
	Enterococcus mundtii		Lactobacillus casei subsp. casei
	Enterococcus pseudoavium		Lactococcus lactis subsp. lactis
	Enterococcus raffinosus	80	Leclercia adecarboxylata
	Enterococcus saccharolyticus		Legionella micdadei
25	Enterococcus solitarius		Legionella pneumophila subsp. pneumophila
	Enterococcus sulfureus		Legionella prieuriloprilla subsp. prieumopnila
	Erwinia carotovora		Leminorella grimontii
	Escherichia coli	05	Leminorella richardii
		85	Leptospira biflexa
20	Escherichia fergusonii		Leptospira interrogans
30	Escherichia hermannii		Listeria monocytogenes
	Escherichia vulneris		Magnetospirillum magnetotacticum
	Eubacterium lentum		Megamonas hypermegale
	Eubacterium nodatum	90	Methanobacterium thermoautotrophicum
	Ewingella americana		Methanococcus jannaschii
35	Francisella tularensis		Methanococcus vannielii
	Frankia alni		Methanosarcina barkeri
	Fervidobacterium islandicum		Methanosarcina jannaschii
	Fibrobacter succinogenes	95	Methylobacillus flagellatum
	Flavobacterium ferrigeneum		Methylomonas clara
40	Flexistipes sinusarabici		Micrococcus luteus
	Fusobacterium gonidiaformans		Micrococcus Iylae
	Fusobacterium necrophorum subsp. necrophorum		Mitsuokella multacida
	Fusobacterium nucleatum subsp. polymorphum	100	Mobiluncus curtisii subsp. holmesii
	Gardnerella vaginalis	100	Moellerella thermoacetica
45	Gemella haemolysans		
73	Gemella morbillorum		Moellerella wisconsensis
	Gloeobacter violaceus		Moraxella osloensis
		105	Morganella morganii subsp. morganii
	Gloeothece spp.	105	Mycobacterium avium
50	Gluconobacter oxydans		Mycobacterium bovis
50	Haemophilus actinomycetemcomitans		Mycobacterium leprae
	Haemophilus aphrophilus		Mycobacterium tuberculosis
	Haemophilus ducreyi		Mycoplasma capricolum
	Haemophilus haemolyticus	110	Mycoplasma gallisepticum
	Haemophilus influenzae		Mycoplasma genitalium
55	Haemophilus parahaemolyticus		Mycoplasma hominis
	Haemophilus parainfluenzae		Mycoplasma pirum
	Haemophilus paraphrophilus		Mycoplasma mycetoides
	Haemophilus segnis	115	Mycoplasma pneumoniae
	Hafnia alvei		Mycoplasma pulmonis
60	Haloarcula marismortui		Mycopiasma salivarium
	Halobacterium salinarum		Myxococcus xanthus
	Haloferax volcanii		Neisseria animalis
	Helicobacter pylori	120	Neisseria canis Neisseria canis
	. Tonobbasion pyron	120	IVEISSENA CANIS

Table 4. Non limitating example f microbial species f r which atpD and/or tuf and/or recA sequenc s ar used in the present invention (continued)

5

Bacterial species (continued)

	Neisseria cinerea		Salmonella choleraesuis subsp choleraesuis
	Neisseria cuniculi	65	Salmonella choleraesuis subsp. diarizonae
	Neisseria elongata subsp. elongata		Salmonella choleraesuis subsp. houtenae
10	Neisseria elongata subsp. Intermedia		Salmonella choleraesuis\laikarriaribica
	Neisseria flavescens		Salmonella choleraesuis subsp. salamae
	Neisseria gonorrhoeae		Serpulina hyodysenteriae
	Neisseria lactamica	70	Serratia ficaria
	Neisseria meningitidis		Serratia fonticola
15	Neisseria mucosa		Serratia grimesii
	Neisseria perflava		Serratia liquefaciens
	Neisseria pharyngis		Serratia marcescens
	Neisseria polysaccharea	75	Serratia odorifera
	Neisseria sicca		Serratia plymuthica
20	Neisseria subflava		Serratia rubidaea
	Neisseria weaveri		Shewanella putida
	Ochrobactrum anthropi		Shewanella putrefaciens
	Pantoea agglomerans	80	Shigella boydii
	Pantoea dispersa		Shigella dysenteriae
25	Paracoccus denitrificans		Shigella flexneri
	Pasteurella multocida		Shigella sonnei
	Pectinatus frisingensis		Spirochaeta aurantia
	Peptococcus niger	85	Staphylococcus aureus
	Peptostreptococcus anaerobius		Staphylococcus auricularis
30	Peptostreptococcus asaccharolyticus		Staphylococcus capitis subsp. capitis
	Peptostreptococcus prevotii		Staphylococcus caseolyticus
	Phormidium ectocarpi		Staphylococcus cohnii
	Pirellula marina	90	Staphylococcus epidermidis
	Planobispora rosea		Staphylococcus haemolyticus
35	Plectonema boryanum		Staphylococcus hominis
	Porphyromonas asaccharolytica		Staphylococcus lugdunensis
	Porphyromonas gingivalis		Staphylococcus saprophyticus
	Pragia fontium	95	Staphylococcus sciuri subsp. sciuri
	Prevotella melaninogenica		Staphylococcus simulans
40	Prevotella oralis		Staphylococcus warneri
	Prevotella ruminocola		Stigmatella aurantiaca
	Prochlorothrix hollandica		Stenotrophomonas maltophilia
	Propionibacterium acnes	100	Streptococcus acidominimus
	Propionigenium modestum		Streptococcus agalactiae
45	Proteus mirabilis		Streptococcus anginosus
	Proteus penneri		Streptococcus bovis
	Proteus vulgaris		Streptococcus cricetus
	Providencia alcalifaciens	105	Streptococcus cristatus
	Providencia rettgeri		Streptococcus downei
50	Providencia rustigianii		Streptococcus dysgalactiae
	Providencia stuartii		Streptococcus equi subsp. equi
	Pseudomonas aeruginosa		Streptococcus ferus
	Pseudomonas fluorescens	110	Streptococcus gordonii
	Pseudomonas stutzeri		Streptococcus macacae
55	Psychrobacter phenylpyruvicus		Streptococcus mutans
	Rahnella aquatilis		Streptococcus oralis
	Rickettsia prowazekii	_	Streptococcus parasanguinis
	Rhodobacter capsulatus	115	Streptococcus pneumoniae
	Rhodobacter sphaerolides		Streptococcus pyogenes
60	Rhodospirillum rubrum		Streptococcus ratti
	Ruminococcus albus		Streptococcus salivarius
	Salmonella bongori		Streptococcus salivarius subsp. thermophilus
	Salmonella choleraesuis subsp. arizonae	120	Streptococcus sanguinis
		53	

Tabl 4. N n limitating example of micr bial species f r which atpD and/ r tuf and/or recA sequences ar used in the pres nt inventi n (continued)

Bacterial species (continued)

5

Streptococcus sobrinus Trabulsiella guamensis Streptococcus suis 30 Treponema pallidum Streptococcus uberis Ureaplasma urealyticum Streptococcus vestibularis 10 Streptomyces anbofaciens Veillonella parvula Streptomyces aureofaciens Vibrio alginolyticus Streptomyces cinnamoneus Vibrio anguillarum Streptomyces coelicolor 35 Vibrio cholerae Streptomyces collinus Wolinella succinogenes 15 Streptomyces lividans Xanthomonas citri Streptomyces ramocissimus Xanthomonas oryzae Streptomyces rimosus Xenorhabdus bovieni Streptomyces venezuelae Xenorhabdus nematophilus 40 Synechococcus spp. Yersinia bercovieri 20 Synechocystis spp. Yersinia enterocolitica Tatumella ptyseos Yersinia frederikensii Taxeobacter occealus Yersinia intermedia Thermoplasma acidophilum Yersinia pestis Thermotoga maritima Yersinia pseudotuberculosis 25 Thermus aquaticus Yersinia rohdei Thermus thermophilus Yokenella regensburgei Thiobacillus cuprinus Zoogloea ramigera Thiobacillus ferrooxydans 50 Fungai species Absidia corymbifera 85 Coccidioides immitis Absidia glauca Coprinus cinereus 55 Alternaria alternata Cryptococcus albidus Arxula adeninivorans Cryptococcus neoformans Aspergillus oryzae Cunninghamella bertholletiae Aspergillus flavus 90 Curvularia lunata Aspergillus fumigatus Emericella nidulans 60 Aspergillus niger Exophiala jeanselmei Aureobasidium pullulans Eremothecium gossypii Bipolaris hawaiiensis Fonsecaea pedrosoi Blastoschizomyces capitatus 95 Fusarium oxysporum Candida albicans Geotrichum spp. 65 Candida catenulata Histoplasma capsulatum Candida dubliniensis Issatchenkia orientalis kudrjanzev Candida famata Kluyveromyces lactis Candida glabrata 100 Malassezia furfur Candida guilliermondii Malassezia pachydermatis 70 Candida haemulonii Malbranchea filamentosa Candida inconspicua Metschnikowia pulcherrima Candida kefyr Microsporum audouinii Candida krusei 105 Mucor circinelloides Candida lambica Neurospora crassa **75** . Candida Iusitaniae Paecilomyces lilacinus Candida norvegensis Paracoccidioides brasiliensis Candida parapsilosis Penicillium marneffei Candida rugosa 110 Phialaphora verrucosa Candida sphaerica Pichia anomala 80 Candida tropicalis Piedraia hortai Candida utilis Podospora anserina Candida viswanathii Puccinia graminis Candida zeylanoides 115 Pseudallescheria boydii

Rhizomucor racemosus

Cladophialophora carrionii

Table 4. N in limitating example if microbial species for which atpD and/or tuf and/ in recA is quences are used in the present invention (continued)

·
Fungal species (continued)

Rhizopus oryzae
Rhodotorula minuta
Saccharomyces cerevisiae
Saksenaea vasiformis
Schizosaccharomyces pombe
Scopulariopsis koningii
Sporobolomyces salmonicolor
Sporothrix schenckii
Stephanoascus ciferrii

Syncephalastrum racemosum
Trichoderma reesei Rhodotorula mucilaginosa
Trichophyton mentagrophytes
Trichophyton tonsurans
Trichosporon cutaneum
Ustilago maydis
Wangiella dermatitidis
Yarrowia lipolytica

25

5

10

15

Parasitical species

20

Babesia bigemina Babesia bovis Babesia microtti Blastocystis hominis 30 Crithidia fasciculata Cryptosporidium parvum Entamoeba histolytica Giardia lamblia 35 Kentrophoros spp. Leishmania aethiopica Leishmania amazonensis Leishmania braziliensis Leishmania donovani subsp. donovani Leishmania donovani subsp. infantum 40 Leishmania enriettii Leishmania gerbilli Leishmania guyanensis

Leishmania hertigi subsp. hertigi 45 Leishmania major Leishmania mexicana Leishmania tarentolae Leishmania tropica Neospora caninum 50 Onchocerca volvulus Plasmodium berghei Plasmodium falciparum Plasmodium knowlesi Porphyra purpurea 55 Toxoplasma gondii Treponema pallidum Trichomonas vaginalis Trypanosoma brucei subsp. brucei Trypanosoma congolense

Table 5. Antibi tic resistance g n s selected for diagnostic purp ses

Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO (genes)
аас(3)-Ib ²	Aminoglycosides	Enterobacteriaceae Pseudomonads	L06157	
aac(3)-IIb ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M97172	
aac(3)-IVa ²	Aminoglycosides	Enterobacteriaceae	X01385	
aac(3)-Vla ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M88012	
aac(2')-1a ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	X04555	
aac(6')-aph(2")	2 Aminoglycosides	Enterococcus spp., Staphylococcus spp.		83-86 3
aac(6')-la, ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M18967	
aac(6')-lc ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M94066	
aac(6')-IIa ²	Aminoglycosides	Pseudomonads		112 ⁴
aadB [ant(2")-la		Enterobacteriaceae		53-54 ³
aacC1 [aac(3)-	2	Pseudomonads		55-56 ³
aacC2 [aac(3)-		Pseudomonads		57-58 ³
aacC3 [aac(3)-	III ²] Aminogiycosides	Pseudomonads		59-60 3
aacA4 [aac(6')-	·lb ²] Aminoglycosides	Pseudomonads		65-66 ³
ant(3")-la ²	Aminoglycosides	Enterobacteriaceae, Enterococcus spp., Staphylococcus spp.	X02340 M10241	
ant(4')-lə ²	Aminoglycosides	Staphylococcus spp.	V01282	
aph(3')-la ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	J01839	
aph(3')-IIa ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	V00618	
aph(3')-IIIa ²	Aminoglycosides	Enterococcus spp., Staphylococcus spp.	V01547	
aph(3')-VIa ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	X07753	
rrs ²	Streptomycin	M. tuberculosis	L15307	
rpsL ²	Stronto	AA Automote 1	S62531	
rpst -	Streptomycin	M. tuberculosis, M. avium complex	X80120 U14749 X70995 L08011	
bla _{OXA} 5,6	ß-lactams	Enterobacteriaceae, Pseudomonads		110 4
blaROB ⁵	ß-lactams	Haemophilus spp. Pasteurella spp.		45-48 3
bla _{SHV} ^{5,6}	ß-lactams	Enterobacteriacea,		41-44 3
blaTEM ^{5,6}	ß-lactams	Pseudomonas aeruginosa Enterobacteriaceae, Neisseria spp., Haemophilus spp.		37-40 3
blaCARB 5	ß-lactams	Pseudomodas spp.,	105400	
OUID	· · · · · · · · · · · · · · · · · · ·	Enterobacteriaceae	J05162 S46063 M69058	

Table 5. Antibiotic resistance genes selected for diagnostic purposes (continued)

Ge	enes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (gen s)
bla	aCTX-M-1 ⁵	G-lactams	Enterobacteriaceae	X92506	
	aCTX-M-2 ⁵	ß-lactams	Enterobacteriaceae	X92507	
	aCMY-2	ß-lactams	Enterobacteriaceae	X91840	
	a _{PER-1} 5	ß-lactams	Enterobacteriaceae,	Z21957	
۵.,	SPER-I		Pseudomodanaceae		
ble	a _{PER-2} 7	ß-lactams	Enterobacteriaceae	X93314	
	a _{IMP} 5	ß-lactams	Enterobacteriaceae,	AJ223604	
	11011		Pseudomonas aeruginosa		4
ble	_{laZ} 12	ß-lactams	Enterococcus spp., Staphylococcus spp.		111 4
m	_{IӨСА} 12	ß-lactams	Staphylococcus spp.		97-98 ³
pe	enA ¹³	ß-lactams	Neisseria gonorrhoeae	X54021	
ρl	bp1a ¹³	ß-lactams	Streptococcus pneumoniae	M90527 X67872 AB006868 AB006874 X67873 AB006878	
				AB006875 AB006877 AB006879 AF046237 AF046235	
				AF026431 AF046232 AF046233 AF046236 X67871	
				Z49095 AF046234 AB006873 X67866 X67868	
				AB006870 AB006869 AB006872 X67870 AB006871 X67867	
				X67869 AB006876 AF046230 AF046238 Z49094	
) р	nbp2b ¹³	ß-lactams	Streptococcus pneumoniae		
i				U20084 U20082 U20067 U20079 Z22185	
)				U20072	

Tabl 5. Antibiotic resistance genes s lected for diagn stic purposes (continued)

Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO (genes)
pbp2b ¹³	ß-lactams	Streptococcus pneumoniae	U20083	
ρυμευ	is-lactarity	Streptococcus prieumornae		
			U20081	
			M25522	
			U20075	
			U20070	
			U20077	
			U20068	
			Z22184	
			U20069	
			U20078	
			M25521	
			M25525	
			M25519	
			Z21981	
			M25523	
			M25526	
			M25524	
			Z22230	
			U20073	
			U20080	
			U20074	
			U20076	
			M25520	
40			M25517	
pbp2x ¹³	ß-lactams	Streptococcus pneumoniae	X16367	
• •		The process process and the pr	X65135	
			AB011204	
			AB011209	
			AB011199	
			AB011200	
			AB011201	
			AB011202	
			AB011198	
			AB011208	
			AB011205	
			AB015852	
			AB011210	
			AB015849	
			AB015850	
			AB015851	
			AB015847	
			AB015846	
			AB011207	
			AB015848	
			Z49096	
int	R Jactomo	Entonobooto	273030	
III.	β -lactams,	Enterobacteriaceae,		99-102 ³
	trimethoprim			
sul	aminoglycosides,	Pseudomonads		103-106 ³
	antiseptic,			100-100
	chloramphenicol			
ermA 14	· ·	0, 1,		•
ermA ' '	Macrolides,	Staphylococcus spp.		113 ⁴
	lincosamides,	•		
	streptogramin B			
rmB 14	Macrolides,	Enterobacteriaceae,		4
	med undea,			114 4
	lincocomidos	Staphylococcus spp.		
	lincosamides,	Enterococcus spp.		
	streptogramin B	Streptococcus spp.		

Table 5. Antibiotic resistance genes selected for diagnostic purposes (continued)

Genes 	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (genes)
ermC ¹⁴	Macrolides, lincosamides, streptogramin B	Enterobacteriaceae, Staphylococcus spp.		115 ⁴
ereA 12	Macrolides	Enterobacteriaceae, Staphylococcus spp.	M11277	
ereB ¹²	Macrolides	Enterobacteriaceae Staphylococcus spp.	A15097	
msrA ¹²	Macrolides	Staphylococcus spp.		77-80 ³
mtr 8	Macrolides	Neisseria gonorrhoeae	S42418 S40252 S42417 S40251 Z25796 U14993 Q51007	
			Q51006 Q51073 AF037040 AF037041	
mefA, mefE ⁸	Macrolides	Streptococcus spp.	U70055 U83667	
mphA 8	Macrolides	Enterobacteriaceae, Staphylococcus spp.	D16251	
linA/linA'9	Lincosamides	Staphylococcus spp.	J03947 M14039	
linB ¹⁰	Lincosamides	Enterococcus faecium	AF110130	
ma 11	Macrolides	Mycobacterium avium complex	U74494	
_{vga} 15	Streptrogramin	Staphylococcus spp.		89-90 ³
vgb ¹⁵	Streptrogramin	Staphylococcus spp.	M36022	_
vat 15	Streptrogramin	Staphylococcus spp.		87 - 88 ³
vatB 15	Streptrogramin	Staphylococcus spp.	U19456 L38809	
satA 15	Streptrogramin	Enterococcus faecium		81-82 ³
ileS 12	Mupirocin	Staphylococcus aureus	X74219	
mupA 12	Mupirocin	Staphylococcus aureus	X75439	
gyrA 16	Quinolones	Gram positive and gram-negative bacteria	X95718 X06744 X57174 X16817 X71437	
			AF065152 AF060881 D32252	
parC/grlA ¹⁶	Quinolones	Gram-positive and gram-negative bacteria	AB005036 AF056287 X95717 AF129764 AB017811 AF065152	

Table 5. Antibi tic resistance genes selected for diagnostic purposes (continued)

Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID No (genes)
parE/grlB ¹⁶	Quinolones	Gram-positive bacteria	X95717 AF065153 AF058920	
norA 16	Quinolones	Staphylococcus spp.	D90119 M80252 M97169	
mexR (nalB) 16	Quinolones	Pseudomonas aeruginosa	U23763	
nfxB 16	Quinolones	Pseudomonas aeruginosa	X65646	
cat ¹²	Chloramphenicol	Gram-positive and gram-negative bacteria	M55620 X15100 A24651 M28717 A00568 A00569 X74948 Y00723 A24362 A00569 M93113 M62822	
			M58516	•
гроВ 17	Rifampin	Mycobacterium tuberculosis	AF055891 AF055892 S71246 L27989 AF055893	
inhA 17	Isoniazid	Mycobacterium tuberculosis	AF106077 U02492	
katG ¹⁷	Isoniazid	Mycobacterium tuberculosis	U40593 U06259 U06260 U06261 U06262 U40594 U40595	
ahpC 17	Isoniazid	Mycobacterium tuberculosis	U43812 U57761 U24085 U16243 U58030 U18264	
embB 17	Ethambutol	Mycobacterium tuberculosis	U68480	
pncA ¹⁷ vanA ¹² vanB ¹² vanC1 ¹² vanC2 ¹²	Pyrazinamide Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin	Mycobacterium tuberculosis Enterococcus spp. Enterococcus spp. Enterococcus gallinarum Enterococcus casseliflavus	U59967	67-70 ³ 116 ⁴ 117 ⁴
73.702	vancomycin	Emerococcus Casseillavus	U94521 U94522 U94523 U94524 U94525 L29638	

Tabl 5. Antibi tic resistanc genes selected for diagn stic purp ses (continued)

Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (genes)
vanC3 12	Vancomycin	Enterococcus flavescens	L29639 U72706 L29640	
vanD ¹⁸	Vancomycin	Enterococcus faecium	AF130997	
tetB 19	Tetracycline	Gram-negative bacteria	J01830	
tetM 19	Tetracycline	Gram-negative and gram-positive bacteria	X52632	
sulli ²⁰	Sulfonamides	Gram-negative bacteria	D37827 M36657 AF017389 AF017391	
dhfrla ²⁰	Trimethoprim	Gram-negative bacteria	AJ238350 X17477	
dhfrlb 20	Trimethoprim	Gram-negative bacteria	Z50805 Z50804	
dhfrV 20	Trimethoprim	Gram-negative bacteria	X12868	
dhfrVII ²⁰	Trimethoprim	Gram-negative bacteria	U31119	
dhfrVIII ²⁰	Trimethoprim	Gram-negative bacteria	U10186	
dhfrlX 20	Trimethoprim	Gram-negative bacteria	X57730	
dhfrXII 20	Trimethoprim	Gram-negative bacteria	Z21672	
dfrA ²⁰	Trimethoprim	Staphylococcus spp.	AF045472 U40259 AF051916	

- 30 1 Bacteria having high incidence for the specified antibiotic resistance gene. The presence of the antibiotic resistance genes in other bacteria is not excluded.
 - Shaw, K. J., P. N. Rather, R. S. Hare, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-163.
- 35 Antibiotic resistance genes from our co-pending US (N.S. 08/526840) and PCT (PCT/CA/95/00528) patent applications for which we have selected PCR primer pairs.
 - 4 These SEQ ID NO. refer to a previous patent (application WO 98/20157).

- Bush, K., G.A. Jacoby and A. Medeiros. 1995. A functional classification scheme for ß-lactamase and its correlation with molecular structure. Antimicrob. Agents. Chemother. 39:1211-1233.
- 6 Nucleotide mutations in blaSHV, blaTEM, and blaOXA, are associated with extended-spectrum ß-lactamase or inhibitor-resistant ß-lactamase.
 - 7 Bauerfeind, A., Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 ears after discovery? Yonsei Med. J. 39:520-525.
 - 8 Sutcliffe, J., T. Grebe, A. Tait-Kamradt, and L. Wondrack. 1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agent Chemother. 40:2562-2566.
 - 9 Leclerc, R., A., Brisson-Noël, J. Duval, and P. Courvalin. 1991. Phenotypic expression and genetic heterogeneity of lincosamide inactivation in Staphylococcus spp. Antimicrob. Agents. Chemother. 31:1887-1891.
- 10 Bozdogan, B., L. Berrezouga, M.-S. Kuo, D. A. Yurek, K. A. Farley, B. J. Stockman, and R. Leclercq. 1999. A new gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents. Chemother. 43:925-929.
 - 11 Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212
- 12 Tenover, F. C., T. Popovic, and O Olsvik. 1996. Genetic methods for detecting antibacterial resistance genes. pp. 1368-1378. In Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, R. H. Yolken (eds). Manual of clinical microbiology. 6th ed., ASM Press, Washington, D.C. USA
 - 13 Dowson, C. G., T. J. Tracey, and B. G. Spratt. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to ß-lactam antibiotics. Trends Mol c. Microbiol.2: 361-366.

- 14 Jensen, L. B., N. Frimodt-Moller, F. M. Aarestrup. 1999. Presence of erm gene classes in Gam-positiv bacteria of animal and human origin in Denmark. FEMS Microbiol. 170:151-158.
- ¹⁵ Thal, L. A., and M. J. Zervos. 1999. Occurrence and epidemiology of resistance to virginimycin and streptrogramins. J. Antimicrob. Chemother. 43:171-176
- Martinez J. L., A. Alonso, J. M. Gom z-Gomez, and F. Baquero. 1998. Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg? J. Antimicrob. Chemother. 42:683-688
 - ¹⁷ Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212.
 - ¹⁸ Casadewall, B. and P. Courvalin. 999 Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM 4339. J. Bacteriol. 181:3644-3648.

- ¹⁹ Roberts, M.C. 1999. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found. Symp. 207:206-222.
- ²⁰ Huovinen, P., L. Sundström, G. Swedberg, and O. Sköld. 1995. Trimethoprim and sulfonamide resistance. Antimicrob. Agent Chemother. 39:279-289.

Table 6. List f bacterial t xin sel cted for diagnostic purposes

	Organism	Toxin	Accession number
5	Actinobacillus actinomycetemcomitans	Cytolethal distending toxin (cdtA, cdtB, cdtC) Leukotoxin (ltxA)	AF006830 M27399
	Actinomyces pyogenes	Hemolysin (pyolysin)	U84782
	Aeromonas hydrophila	Aerolysin	M16495
			U81555
0	Bacillus anthracis	Anthrax toxin (cya)	M23179
•	Bacillus cereus	Enterotoxin (bceT)	D17312
	Bacteroides fragilis	Metalloprotease toxin-3 Metalloprotease toxin-2	AF056297 U90931 AF081785
5	Bordetella bronchiseptica	Adenylate cyclase hemolysin (cyaA)	Z37112, U22953
5	Dermonecrotic toxin (dnt)		U59687 AB020025
	Bordetella pertussis	Pertussis toxin (S1 subunit, tox)	AJ006151 AJ006153
0		Patent:	AJ006155
•		EP0322533-A 2 05jul89	AJ006157 AJ006159
		EP0322115-A 5 28jun89 EP0396964-A 1 14nov90	AJ007363
		JP1987228286-A 1 70d87	M14378, M16494
-		01 130122023071 1 5 5 15 15 15 15 15 15 15 15 15 15 15	AJ007364
5			M13223
			X16347
		Adenyl cyclase (cya)	18323
		Dermonecrotic toxin (dnf)	U10527
0	Campylobacter jejunī	Cytolethal distending toxin (cdtA, cdtB, cdtC)	U51121
	Citrobacter freundii	Shiga-like toxin (slt-IIcA)	X67514, S53206
	Clostridium botulinum	Botulism toxin (BoNT)	X52066, X52088 X73423
		The A,B,E and F serotypes are	M30196
_		neurotoxic for human	X70814
5		HEDIOLOXIC IOI TIBITIBIT	X70819
		The other serotypes have not be considered	X71343
		•	Z11934
		Partial sequences (<200 bp) have	X70817
10		not be considered	M81186
			X70818
			X70815 X62089
			X62683
			S76749
15			X81714
			X70816
			X70820
			X70281
50			L35496
, ,			M92906

Table 6. List of bact rial toxin sel cted f r diagnostic purp ses (c ntinued)

	Organism	Toxin	Accession number
5	Clostridium difficile	A toxin (enterotoxin) (tcdA)	AB012304 AF053400
			Y12616 X51797
			X17194
10			M30307
10		B (cytotoxin) (toxB)	Z23277
			X53138
	Clostridium perfringens	Alpha (phospholipase C) (cpa)	L43545 L43546
			L43546 L43547
15			L43548
			X13608
			X17300
			D10248
••		Beta (dermonecrotic protein) (cpb)	L13198
20			X83275
			L77965
		Enterotoxin (cpe)	
		Pseudogene (not expressed)	AF037328
25			AF037329
25			AF037330
		Epsilon toxin (etxD)	M80837
			M95206
		A	X60694
30		lota (la et lb)	X73562
30		Lambda (metalloprotease)	D45904
		Theta (perfringolysin O)	M36704
	Clostridium tetani	Tetanos toxin	X06214
	On any characteristic Fieldhauft	5 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	X04436
35	Corynebacterium diphtheriae	Diphtheriae toxin Patent: JP 1985227681-A/1	X00703
	Corynebacterium pseudotuberculosis	Phospholipase C Patent: WO 9011351-A 2	A21336
	Enterobacter cloacae	Shiga-like toxin II	Z50754, U33502
40	Escherichia coli (EHEC)	Hemolysin toxin (hlyA and ehxA)	AF043471
			X94129
			X79839
			X86087
45			AB011549
73		Shiga like (More extension) (etu)	AF074613
		Shiga-like (Vero cytotoxin) (stx)	X81418
		Contain the sequences for both the	M14107 M10133
		A and B subunits	M10133 M12863
50		Patent:JP 1995008280-A/1	X81417
			X81416
			X81415
			Z36900
c c			L11078
55			L04539
			L11079
			X65949
			M21534
60			M29153
60			Z37725
			Z36901
			X61283
			AB017524

Table 6. List of bacterial t xin s lected for diagnostic purposes (continu d)

Organism	Toxin	Accession number
Escherichia coli (ETEC)		M17874
Escribitatia con (E. E.C.)	WO 9313202-A 42 JP 1986005097-A	M17873 J01605
	Emerous medicals, (ess.), (ess.),	L11241 M58746 M29255 V00612 J01831
Escherichia coli(other)	(cdt) (3 genes)	U03293 U04208 U89305
	Cytotoxic necrotizing factor 1 (cnf1) Microcin 24 (mt/S)	U42629 U47048
	Autotransporter enterotoxin (Pet) (cytotoxin)	AF056581
Haemophilus ducreyi	Cytolethal distending toxin (cdtA, cdtB, cdtC)	U53215
Helicobacter pylori	Vacuolating toxin (vacA)	U07145 U80067 U80068 AF077938 AF077939
	,	AF077940 AF077941
Pasteurella multocida	Mitogenic toxin (dermonecrotic toxin)	X57775, Z28388 X51512 X52478
Pseudomonas aeruginosa	Cytotoxin (Enterotoxin A)	X14956
Shigella dysenteriae type 1	Shiga toxin (2 subunits) (stxA et stxB)	X07903, M32511 M19437 M24352, M21947
Staphylococcus aureus	Gamma-hemolysin (hlg2)	D42143 L01055
	Enterotoxin Enterotoxin C1 (entC1) Enterotoxin H (seh)	U93688 X05815 U11702
	Exfoliative toxin A (ETA) (Epidermolytic toxin A)	M17347 M17357 L25372, M20371
	Exfoliative toxin B (ETB) Leukocidin R (F and S component, lukF and lukS) (Hemolysin B and C)	M17348, M1377 X64389, S53213 X72700 L01055
	Toxic shock syndrome toxin 1 (TSST-1) (alpha toxin) (alpha hemolysin)	X01645 M90536 J02615
		U93688
Staphylococcus epidermidis	Delta toxin (hld)	AF068634 X79188
Staphylococcus intermedius	Leukocidin R (F and S component, lukF and lukS) (synergohymenotropic toxin)	
Streptococcus pneumoniae	Pneumolysin	X52474
Streptococcus pyogenes	Streptococcal pyrogenic exotoxin A (speA)	X61560 (et 19 autres) X03929 U40453, M1935
	Pyrogenic exotoxin B (speB)	U63134 M86905, M3511

Table 6. List of bacterial toxin select d f r diagnostic purposes (continued)

Organism	Toxin Accession number	
Vibrio cholerae	Cholerae toxin (ctxA et ctxB subunits) Patent: X76390	X00171
	JP 1995008279-A 1	X58786
	EP 0368819-A 12 (ctxB) WO 9313202-A 45 (ctxA)	X58785, S55782
	VVO 9313202-A 43 (CIXA)	D30052 D30053
		K02679
	Accessory cholera enterotoxin (ace)	Z22569
	Zonula occludens toxin, (zot)	M83563
Vibrio parahaemolyticus	Thermostable direct hemolysin (tdh)	S67841
Vibrio vulnificus	Cytolysin (vvhA)	M34670
Yersinia enterocolitica	Heat-stable enterotoxin (ysfC)	D63578
Yersinia pestis	Toxin	X92727

Table 7. Origin of the sequences in the sequenc listing.

	SEQ ID NO.	Bacterial, fungal or parasitical species	Source	Comment
_	1	Acinetobacter baumannii	This patent	tuf
	2	Actinomyces meyeri	This patent	tuf
	3	Aerococcus viridans	This patent	tuf
	4	Achromobacter xylosoxidans subsp. denitrificans	This patent	tuf
	5	Anaerorhabdus furcosus	This patent	tuf
	6	Bacillus anthracis	This patent	tuf
	7	Bacillus cereus	This patent	tuf
	8	Bacteroides distasonis	This patent	tuf
	9	Enterococcus casseliflavus	This patent	tuf
	10	Staphylococcus saprophyticus	This patent This patent	tuf tuf
	11	Bacteroides vulgatus	This patent	tuf
	12	Bartonella henselae	This patent	tuf
	13	Bifidobacterium adolescentis	This patent	tuf
	14	Bifidobacterium dentium	This patent	tuf
	15	Brucella abortus	This patent	tuf
	16	Burkholderia cepacia	This patent	tuf
	17	Cedecea davisae Cedecea neteri	This patent	tuf
	18	Cedecea lapagei	This patent	tuf
	19	Cedecea lapager Chlamydia pneumoniae	This patent	tuf
	20 21	Chlamydia psittaci	This patent	tuf
	22	Chlamydia trachomatis	This patent	tuf
	23	Chryseobacterium meningosepticum	This patent	tuf
	23 24	Citrobacter amalonaticus	This patent	tuf
	25	Citrobacter braakii	This patent	tuf
	26	Citrobacter koseri	This patent	tuf
	27	Citrobacter farmeri	This patent	tuf
	28	Citrobacter freundii	This patent	tuf
	29	Citrobacter sedlakii	This patent	tuf
	30	Citrobacter werkmanii	This patent	tuf
	31	Citrobacter youngae	This patent	
	32	Clostridium perfringens	This patent	
	33	Comamonas acidovorans	This patent	_
	34	Corynebacterium bovis	This patent This patent	_
	35	Corynebacterium cervicis	This patent	
	36	Corynebacterium flavescens	This patent	
	37	Corynebacterium kutscheri	This patent	_
	38	Corynebacterium minutissimum Corynebacterium mycetoides	This patent	_
	39	Corynebacterium pseudogenitalium	This patent	_
	40	Corynebacterium renale	This patent	_
	41 42	Corynebacterium vicerans	This patent	
	43	Corynebacterium urealyticum	This patent	
	44	Corynebacterium xerosis	This patent	: tuf
	45	Coxiella burnetii	This patent	
	46	Edwardsiella hoshinae	This patent	
	47	Edwardsiella tarda	This patent	
	48	Eikenella corrodens	This patent	
	49	Enterobacter aerogenes	This patent	
	50	Enterobacter agglomerans	This patent	_
	51	Enterobacter amnigenus	This patent	
	52	Enterobacter asburiae	This patent	
	53	Enterobacter cancerogenus	This patent	
	54	Enterobacter cloacae	This paten	
	55	Enterobacter gergoviae	This paten This paten	
	56	Enterobacter hormaechei	This paten	
	57 50	Enterobacter sakazakli	This paten	
	58 50	Enterococcus casseliflavus	This pater	_
	59	Enterococcus cecorum Enterococcus dispar	This paten	
	60 61	Enterococcus dispar Enterococcus durans	This paten	

Table 7. Origin of the sequences in the sequence listing. (c ntinued)

SEQ ID NO.	Bacterial, fungal or parasitical species	Source	Commer
62	Enterococcus faecalis	This patent	tuf
63	Ent rococcus faecalis	This patent	tuf
64	Enterococcus faecium	This patent	tuf
65	Enterococcus flavescens	This patent	tuf
66	Enterococcus gallinarum	This patent	tuf
67	Enterococcus hirae	This patent	tuf
68	Enterococcus mundtii	This patent	tuf
69	Enterococcus pseudoavium	This patent	tuf
70	Enterococcus raffinosus	This patent	tuf
71	Enterococcus saccharolyticus	This patent	tuf
72	Enterococcus solitarius	This patent	tuf
73	Enterococcus casseliflavus	This patent	tuf (C
74	Enterococcus faecium	This patent	tuf (C
75	Enterococcus flavescens	This patent	
76	Enterococcus gallinarum	This patent	tuf (C
77	Ehrlichia canis		tuf (C
78	Escherichia coli	This patent This patent	tuf
79	Escherichia fergusonii		tuf
80	Escherichia hermannii	This patent	tuf
81	Escherichia vulneris	This patent	tuf
82	Eubacterium lentum	This patent	tuf
83	Eubacterium nodatum	This patent	tuf
84	Ewingella americana	This patent	tuf
85	Francisella tularensis	This patent	tuf
86	Fusobacterium nucleatum subsp. polymorphum	This patent	tuf
87	Gemella haemolysans	This patent	tuf
88	Gemella morbillorum	This patent	tuf
89	Haemophilus actinomycetemcomitans	This patent	tuf
90	Haemophilus aphrophilus	This patent	tuf
91		This patent	tuf
92	Haemophilus ducreyi	This patent	tuf
93	Haemophilus haemolyticus	This patent	tuf
94	Haemophilus parahaemolyticus	This patent	tuf
95	Haemophilus parainfluenzae	This patent	tuf
96	Haemophilus paraphrophilus	This patent	tuf
90 97	Haemophilus segnis Hafnia alvei	This patent	tuf
97 98		This patent	tuf
99	Kingella kingae	This patent	tuf
100	Klebsiella omithinolytica	This patent	tuf
	Klebsiella oxytoca	This patent	tuf
101 102	Klebsiella planticola	This patent	tuf
102	Klebsiella pneumoniae subsp. ozaenae	This patent	tuf
103	Klebsiella pneumoniae subsp. pneumoniae	This patent	tuf
104	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	tuf
	Kluyvera ascorbata	This patent	tuf
106	Kluyvera cryocrescens	This patent	tuf
107	Kluyvera georgiana	This patent	tuf
108	Lactobacillus casei subsp. casei	This patent	tuf
109	Lactococcus lactis subsp. lactis	This patent	tuf
110	Leclercia adecarboxylata	This patent	tuf
111	Legionella micdadei	This patent	tuf
112	Legionella pneumophila subsp. pneumophila	This patent	tuf
113	Leminorella grimontii	This patent	tuf
114	Leminorella richardii	This patent	tuf
115	Leptospira interrogans	This patent	tuf
116	Megamonas hypermegale	This patent	tuf
117	Mitsuokella multacida	This patent	tuf
118	Mobiluncus curtisii subsp. holmesii	This patent	tuf
119	Moellerella wisconsensis	This patent	tuf
120	Branhamella catarrhalis	This patent	tuf
121	Morganella morganii subsp. morganii	This patent	tuf
122	Mycobacterium tuberculosis	This patent	tuf

Table 7. Origin f the sequences in the sequence listing. (continued)

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments
_	123	Neisseria cinerea	This patent	tuf
	124	Neisseria elongata subsp. elongata	This patent	tuf
	125	Neiss ria flavescens	This patent	tuf
	126	Neisseria gonorrhoeae	This patent	tuf
	127	Neisseria lactamica	This patent	
	128	Neisseria meningitidis	This patent	
	129	Neisseria mucosa	This patent	
	130	Neisseria sicca	This patent	
	131	Neisseria subflava	This patent	
	132	Neisseria weaveri	This patent	
	133	Ochrobactrum anthropi	This patent	
	134	Pantoea agglomerans	This patent	
	135	Pantoea dispersa	This patent	
	136	Pasteurella multocida	This patent	
	137	Peptostreptococcus anaerobius	This patent	
	138	Peptostreptococcus asaccharolyticus	This patent This patent	
	139	Peptostreptococcus prevotli	This patent	
	140	Porphyromonas asaccharolytica	This patent	
	141	Porphyromonas gingivalis	This patent	
	142	Pragia fontium Prevotella melaninogenica	This patent	
	143 144	Prevotella oralis	This patent	
	145	Propionibacterium acnes	This patent	
	146	Proteus mirabilis	This patent	
	147	Proteus penneri	This patent	
	148	Proteus vulgaris	This patent	
	149	Providencia alcalifaciens	This patent	tuf :
	150	Providencia rettgeri	This patent	tuf :
	151	Providencia rustigianii	This patent	t tuf
	152	Providencia stuartii	This patent	t tuf
	153	Pseudomonas aeruginosa	This patent	
	154	Pseudomonas fluorescens	This patent	
	155	Pseudomonas stutzeri	This patent	
	156	Psychrobacter phenylpyruvicus	This paten	
	157	Rahnella aquatilis	This paten	_
	158	Salmonella choleraesuis subsp.arizonae	This paten	
	159	Salmonella choleraesuis subsp. choleraesuis serotype choleraesuis	This paten	
	160	Salmonella choleraesuis subsp. diarizonae	This paten	
	161	Salmonella choleraesuis subsp. choleraesuis serotype heidelberg	This paten	
	162	Salmonella choleraesuis subsp. houtenae	This paten	_
	163	Salmonella choleraesuis subsp. indica	This paten	
	164	Salmonella choleraesuis subsp. salamae	This paten This paten	
	165	Salmonella choleraesuis subsp. choleraesuis serotype typhi	This paten	
	166 167	Serratia fonticola Serratia liquefaciens	This paten	
	167	Serratia marcescens	This paten	
	168 169	Serratia odorifera	This paten	
	170	Serratia plymuthica	This paten	
	171	Serratia rubidaea	This paten	
	172	Shigella boydii	This paten	
	173	Shigella dysenteriae	This paten	
	174	Shigella flexneri	This pater	
	175	Shigella sonnei	This pater	
	176	Staphylococcus aureus	This pater	t <i>tuf</i>
	177	Staphylococcus aureus	This pater	
	178	Staphylococcus aureus	This pater	
	179	Staphylococcus aureus	This pater	
	180	Staphylococcus aureus subsp. aureus	This pater	
	181	Staphylococcus auricularis	This pater	
	182	Staphylococcus capitis subsp. capitis	This pater	
	183	Staphylococcus caseolyticus	This pater	it <i>tuf</i>

Table 7. Origin of the sequences in the sequence listing. (continued)

S	EQ ID NO.	Bacterial,fungal or parasitical species	Source	Comment
	184	Staphylococcus cohnii	This pat nt	tuf
	185	Staphylococcus epidermidis	This patent	tuf
	186	Staphylococcus haemolyticus	This patent	tuf
	187	Staphylococcus warneri	This patent	tuf
	188	Staphylococcus haemolyticus	This patent	tuf
	189	Staphylococcus haemolyticus	This patent	tuf
	190	Staphylococcus haemolyticus	This patent	tuf
	191	Staphylococcus hominis subsp. hominis	This patent	tuf
	192	Staphylococcus warneri	This patent	tuf
	193	Staphylococcus hominis	This patent	tuf
	194	Staphylococcus hominis	This patent	tuf
	195	Staphylococcus hominis	This patent	
	196	Staphylococcus hominis	This patent	tuf
	197	Staphylococcus lugdunensis		tuf
	198	Staphylococcus saprophylicus	This patent	tuf
	199	Staphylococcus saprophyticus	This patent	tuf +
	200	Staphylococcus saprophyticus	This patent	tuf
	201		This patent	tuf
	202	Słaphylococcus sciuri subsp. sciuri Słaphylococcus warneri	This patent	tuf
	203	Staphylococcus warneri	This patent	tuf
	203	Bifidobacterium longum	This patent	tuf
			This patent	tuf
	205	Stenotrophomonas maltophilia	This patent	tuf
	206	Streptococcus acidominimus	This patent	tuf
	207	Streptococcus agalactiae	This patent	tuf
	208	Streptococcus agalactiae	This patent	tuf
	209	Streptococcus agalactiae	This patent	tuf
	210	Streptococcus agalactiae	This patent	tuf
	211	Streptococcus anginosus	This patent	tuf
	212	Streptococcus bovis	This patent	tuf
	213	Streptococcus anginosus	This patent	tuf
	214	Streptococcus cricetus	This patent	tuf
	215	Streptococcus cristatus	This patent	tuf
	216	Streptococcus downei	This patent	tuf
	217	Streptococcus dysgalactiae	This patent	tuf
	218	Streptococcus equi subsp. equi	This patent	tuf
	219	Streptococcus ferus	This patent	tuf
	220	Streptococcus gordonii	This patent	tuf
	221	Streptococcus anginosus	This patent	tuf
	222	Streptococcus macacae	This patent	tuf
	223	Streptococcus gordonii	This patent	tuf
	224	Streptococcus mutans	This patent	tuf
	225	Streptococcus parasanguinis	This patent	tuf
	226	Streptococcus ratti	This patent	tuf
	227	Streptococcus sanguinis	This patent	tuf
	228	Streptococcus sobrinus	This patent	tuf
	229	Streptococcus suis	This patent	tuf
	230	Streptococcus uberis	This patent	tuf
	231	Streptococcus vestibularis	This patent	tuf
	232	Tatumella ptyseos	This patent	tuf
	233	Trabulsiella guamensis	This patent	tuf
	234	Veillonella parvula	This patent	tuf
	235	Yersinia enterocolitica	This patent	tuf
	236	Yersinia frederiksenii	This patent	tuf
	237	Yersinia intermedia	This patent	
	238	Yersinia pestis	This patent	tuf
	239	Yersinia pseudotuberculosis		tuf tuf
	240	Yersinia rohdei	This patent	tuf ****
	241	Yokenella regensburgei	This patent	tuf
	242	Achromobacter xylosoxidans subsp. denitrificans	This patent	tuf
	243	Acinetobacter baumannii	This patent	atpD
	244	Acinetobacter Iwoffii	This patent	atpD
			This patent	atpD

Tabl 7. Origin f the sequenc s in the sequence listing. (c ntinued)

SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comment
245	Staphylococcus saprophyticus	This patent	atpD
246	Alcaligenes faecalis	This patent	atpD
247	Bacillus anthracis	This patent	atpD
248	Bacillus cereus	This patent	atpD
246 249	Bacteroides distasonis	This patent	atpD
249 250	Bacteroides austasoms Bacteroides ovatus	This patent	atpD
250 251	Leclercia adecarboxylata	This patent	atpD
	Stenotrophomonas maltophilia	This patent	atpD
252	Bartonella henselae	This patent	atpD
253	Bifidobacterium adolescentis	This patent	atpD
254	Brucella abortus	This patent	atpD
255	Cedecea davisae	This patent	atpD
256		This patent	atpD
257	Cedecea lapagel	This patent	atpD
258	Cedecea neteri	This patent	atpD
259	Chryseobacterium meningosepticum	This patent	atpD
260	Citrobacter amalonaticus	This patent	atpD
261	Citrobacter braakii		atpD
262	Citrobacter koseri	This patent	•
263	Citrobacter farmeri	This patent	
264	Citrobacter freundii	This patent	atpD
265	Citrobacter koseri	This patent	atpD
266	Citrobacter sedlakii	This patent	
267	Citrobacter werkmanii	This patent	· _
268	Citrobacter youngae	This patent	
269	Clostridium innocuum	This patent	
270	Clostridium perfringens	This patent	
272	Corynebacterium diphtheriae	This patent	
273	Corynebacterium pseudodiphtheriticum	This patent	
274	Corynebacterium ulcerans	This patent	
275	Corynebacterium urealyticum	This patent	
276	Coxiella burnetii	This patent	atpD
277	Edwardsiella hoshinae	This patent	
278	Edwardsiella tarda	This patent	atpD
279	Eikenella corrodens	This patent	: atpD
280	Enterobacter agglomerans	This patent	: atpD
281	Enterobacter amnigenus	This patent	: atpD
282	Enterobacter asburiae	This patent	: atpD
283	Enterobacter cancerogenus	This patent	: atpD
284	Enterobacter cloacae	This patent	: atpD
285	Enterobacter gergoviae	This patent	t atpD
286	Enterobacter hormaechei	This patent	atpD
287	Enterobacter sakasakii	This patent	t atpD
288	Enterococcus avium	This patent	t atpD
289	Enterococcus casseliflavus	This patent	t atpD
290	Enterococcus durans	This patent	t atpD
291	Enterococcus faecalis	This patent	t atpD
292	Enterococcus faecium	This patent	t atpD
293	Enterococcus gallinarum	This patent	
294	Enterococcus saccharolyticus	This patent	
295	Escherichia fergusonii	This patent	
296	Escherichia hermannii	This patent	
297	Escherichia vulneris	This paten	
298	Eubacterium lentum	This paten	
299	Ewingella americana	This paten	
300	Francisella tularensis	This paten	
300 301	Fusobacterium gonidiaformans	This paten	
301 302	Fusobacterium necrophorum subsp. necrophorum	This paten	
302 303	Fusobacterium nucleatum subsp. necrophorum	This paten	
	Gardnerella vaginalis	This paten	
304 305	Gardnerella vaginalis Gemella haemolysans	This paten	
305 306	Gemella morbillorum	This paten	•
306	Gernena morbinorum	i ilio pateri	· aipD

Tabl 7. Origin of the sequences in the sequence listing. (c ntinued)

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments
5	307	Haemophilus ducreyi	This patent	atpD
	308	Haemophilus haemolyticus	This patent	atpD
	309	Haemophilus parahaemolyticus	This patent	atpD
	310	Haemophilus parainfluenzae	This patent	atpD
	311	Hafnia alvei	This patent	atpD
10	312	Kingella kingae	This patent	atpD
	313	Klebsiella pneumoniae subsp. ozaenae	This patent	atpD
	314	Klebsiella omithinolytica	This patent	atpD
	315	Klebsiella oxytoca	This patent	atpD
	316	Klebsiella planticola	This patent	atpD
15	317	Klebsiella pneumoniae subsp. pneumoniae	This patent	atpD
	318	Kluyvera ascorbata	This patent	atpD
	319	Kluyvera cryocrescens	This patent	atpD
	320	Kluyvera georgiana	This patent	atpD
20	321	Lactobacillus acidophilus	This patent	atpD
20	322	Legionella pneumophila subsp. pneumophila	This patent	atpD
	323	Leminorella grimontil	This patent	atpD
	324	Listeria monocytogenes	This patent	atpD
	325	Micrococcus lylae	This patent	atpD
25	326	Moellerella wisconsensis	This patent	atpD
23	327	Branhamella catarrhalis	This patent	atpD
	328	Moraxella osloensis	This patent	atpD
	329	Morganella morganii subsp. morganii	This patent	atpD
	330	Pantoea agglomerans	This patent	atpD
30	331 332	Pantoea dispersa	This patent	atpD
0	333	Pasteurella multocida	This patent	atpD
	334	Pragia fontium	This patent	atpD
	335	Proteus mirabilis	This patent	atpD
	336 336	Proteus vulgaris Providencia alcalifaciens	This patent	atpD
35	337	Providencia rettgeri	This patent	atpD
,,,	338	Providencia rustigianii	This patent	atpD
	339	Providencia stuartii	This patent	atpD
	340	Psychrobacter phenylpyruvicus	This patent	atpD
	341	Rahnella aquatilis	This patent	atpD
40	342	Salmonella choleraesuis subsp. arizonae	This patent	atpD
	343	Salmonella choleraesuis subsp. choleraesuis serotype choleraesuis	This patent This patent	atpD
	344	Salmonella choleraesuis subsp. diarizonae	This patent	atpD etpD
	345	Salmonella choleraesuis subsp. houtenae	This patent	atpD atpD
	346	Salmonella choleraesuis subsp. indica	This patent	atpD atpD
-5	347	Salmonella choleraesuis subsp. choleraesuis serotype paratyphi A	This patent	atpD
	348	Salmonella choleraesuls subsp. choleraesuls serotype paratyphi B	This patent	atpD
	349	Salmonella choleraesuis subsp. salamae	This patent	atpD
	350	Salmonella choleraesuis subsp. choleraesuis serotype typhi	This patent	atpD
	351	Salmonella choleraesuis subsp. choleraesuis serotype typhimurium	This patent	atpD
0	352	Salmonella choleraesuis subsp. choleraesuis serotype virchow	This patent	atpD
	353	Serratia ficaria	This patent	atpD
	354	Serratia fonticola	This patent	atpD
	355	Serratia grimesii	This patent	atpD
_	356	Serratia liquefaciens	This patent	atpD
5	357	Serratia marcescens	This patent	atpD
	358 350	Serratia odorifera	This patent	atpD
	359 360	Serratia plymuthica	This patent	atpD
	360 361	Serratia rubidaea	This patent	aṫpD
0	361	Shewanella putida	This patent	atpD
U	362 363	Shigella boydii	This patent	atpD
	363 364	Shigella dysenteriae	This patent	atpD
	365	Shigella flexneri Shigella sonnei	This patent	atpD
	366	Snigella sonnel Staphylococcus aureus	This patent	atpD
5	367	Staphylococcus aureus Staphylococcus auricularis	This patent	atpD
-	007	Otaphylococcus auticularis	This patent	atpD

Table 7. Origin f the sequences in the sequence listing. (continued)

SEQ ID NO.	Bacterial, fungal or parasitical species	Source (Comment
368	Staphylococcus capitis subsp. capitis	This patent	atpD
369	Staphylococcus cohnii	This patent	atpD
370	Staphylococcus epidermidis	This patent	atpD
371	Staphylococcus haemolyticus	This patent	atpD
372	Staphylococcus hominis subsp. hominis	This patent	atpD
373	Staphylococcus hominis	This patent	atpD
374	Staphylococcus lugdunensis	This patent	atpD
375	Staphylococcus saprophyticus	This patent	atpD
376	Staphylococcus simulans	This patent	atpD
377	Staphylococcus warneri	This patent	atpD
378	Streptococcus acidominimus	This patent	atpD
379	Streptococcus agalactiae	This patent	atpD
380	Streptococcus agalactiae	This patent	atoD
381	Streptococcus agalactiae	This patent	atpD
	Streptococcus agalactiae	This patent	atpD
382	Streptococcus agalactiae	This patent	atpD
383	Streptococcus dysgalactiae	This patent	atpD
384		This patent	atpD
385	Streptococcus equi subsp. equi	This patent	atpD
386	Streptococcus anginosus	This patent	atpD
387	Streptococcus salivarius	This patent	atpD
388	Streptococcus suis	This patent	atpD
389	Streptococcus uberis	This patent	atpD
390	Tatumella ptyseos	This patent	atpD
391	Trabulsiella guamensis		atpD
392	Yersinia bercovieri	This patent	•
393	Yersinia enterocolitica	This patent	atpD
394	Yersinia frederiksenii	This patent	atpD
395	Yersinla intermedia	This patent	atpD
396	Yersinia pseudotuberculosis	This patent	atpD
397	Yersinia rohdei	This patent	atpD
398	Yokenella regensburgei	This patent	atpD
399	Yarrowia lipolytica	This patent	tuf (ef
400	Absidia corymbifera	This patent	tuf (ef
401	Alternaria alternata	This patent	tuf (ef
402	Aspergillus flavus	This patent	tuf (ef
403	Aspergillus fumigatus	This patent	tuf (ef
404	Aspergillus fumigatus	This patent	tuf (ef
405	Aspergillus niger	This patent	tuf (ef
406	Blastoschizomyces capitatus	This patent	tuf (ef
407	Candida albicans	This patent	tuf (ef
408	Candida albicans	This patent	tuf (ef
409	Candida albicans	This patent	tuf (ef
410	Candida albicans	This patent	tuf (et
411	Candida albicans	This patent	tuf (el
412	Candida dubliniensis	This patent	tuf (et
413	Candida catenulata	This patent	tuf (e
414	Candida dubliniensis	This patent	tuf (et
415	Candida dubliniensis	This patent	tuf (et
416	Candida famata	This patent	tuf (e
417	Candida glabrata	This patent	tuf (e
418	Candida guilliermondii	This patent	tuf (e
419	Candida haemulonii	This patent	tuf (e
420	Candida inconspicua	This patent	tuf (e
421	Candida Inconspicuu Candida kefyr	This patent	tuf (e
422	Candida krusei	This patent	tuf (e
423	Candida Nusei Candida lambica	This patent	tuf (e
423 424	Candida lambica Candida lusitaniae	This patent	tuf (e
424 425	Candida norvegensis	This patent	tuf (e
	Candida norvegensis Candida parapsilosis	This patent	tuf (e
426 427	Candida rugosa	This patent	
427 428	Candida rugosa Candida sphaerica	This patent	
479	Candina Sonaenca	mis patent	cui i

Table 7. Origin of the sequences in the sequence listing. (continued)

SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments
429	Candida tropicalis	This patent	<i>tuf</i> (ef-1)
430	Candida utilis	This patent	tuf (ef-1)
431	Candida viswanathii	This patent	<i>tuf</i> (ef-1)
432	Candida zeylanoides	This patent	tuf (ef-1)
433	Coccidioides immitis	This patent	tuf (ef-1)
434	Cryptococcus albidus	This patent	tuf (ef-1)
435	Exophiala jeanselmel	This patent	<i>tuf</i> (ef-1)
436	Fusarium oxysporum	This patent	tuf (ef-1)
437	Geotrichum spp.	This patent	<i>tuf</i> (ef-1)
438	Histoplasma capsulatum	This patent	<i>tuf</i> (ef-1)
439	Issatchenkia orientalis kudrjanzev	This patent	tuf (ef-1
440	Malassezia furfur	This patent	tuf (ef-1
441	Malassezia pachydermatis	This patent	<i>tuf</i> (ef-1
442	Malbranchea filamentosa	This patent	<i>tuf</i> (ef-1)
443	Metschnikowia pulcherrima	This patent	tuf (ef-1)
444	Paecilomyces lilacinus	This patent	<i>tuf</i> (ef-1)
445	Paracoccidioides brasiliensis	This patent	<i>tuf</i> (ef-1)
446	Penicillium marneffei	This patent	tuf (ef-1)
447	Pichia anomala	This patent	<i>tuf</i> (ef-1)
448	Pichia anomala	This patent	tuf (ef-1)
449	Pseudallescheria boydii	This patent	tuf (ef-1)
450	Rhizopus oryzae	This patent	tuf (ef-1
451	Rhodotorula minuta	This patent	tuf (ef-1
452 450	Sporobolomyces salmonicolor	This patent	tuf (ef-1)
453	Sporothrix schenckii	This patent	<i>tuf</i> (ef-1)
454	Stephanoascus ciferrii	This patent	tuf (ef-1
455	Trichophyton mentagrophytes	This patent	tuf (ef-1
456 457	Trichosporon cutaneum	This patent	tuf (ef-1
457 450	Wangiella dermatitidis	This patent	tuf (ef-1)
458 450	Aspergillus fumigatus	This patent	atpD
459 460	Blastoschizomyces capitatus Candida albicans	This patent	atpD
461	Candida dibliniensis	This patent	atpD
462	Candida Gubilnierisis Candida famata	This patent	atpD
463	Candida glabrata	This patent	atpD
464	Candida gialliermondii	This patent	atpD
465	Candida haemulonii	This patent	atpD
466	Candida inconspicua	This patent	atpD
467	Candida kefyr	This patent	atpD
468	Candida krusei	This patent	atpD
469	Candida lambica	This patent	atpD
470	Candida lusitaniae	This patent	atpD
471	Candida norvegensis	This patent This patent	atpD
472	Candida parapsilosis	This patent	atpD
473	Candida rugosa	This patent	atpD atpD
474	Candida sphaerica	This patent	atpD atpD
475	Candida tropicalis	This patent	atpD atpD
476	Candida utilis	This patent	atpD
477	Candida viswanathii	This patent	aφD atpD
478	Candida zevlanoides	This patent	atpD atpD
479	Coccidioides immitis	This patent	atpD
480	Cryptococcus albidus	This patent	atpD atpD
481	Fusarium oxysporum	This patent	atpD atpD
482	Geotrichum spp.	This patent	aφD atpD
483	Histoplasma capsulatum	This patent	atpD atpD
484	Malassezia furfur	This patent	atpD atpD
485	Malassezia pachydermatis	This patent	atpD
486	Metschnikowia pulcherrima	This patent	etpD
487	Penicillium marneffei	This patent	atpD atpD
488	Pichia anomala	This patent	atpD atpD
489	Pichia anomala	This pat nt	atpD

Table 7. Origin f th s quences in the sequence listing. (c ntinued)

S	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments
	490	Rhodotorula minuta	This patent	atpD
	491	Rhodotorula mucilaginosa	This patent	atpD
	492	Sporobolomyces salmonicolor	This patent	atpD
	493	Sporothrix schenckii	This patent	atpD
	494	Stephanoascus ciferrii .	This patent	atpD
	495	Trichophyton mentagrophytes	This patent	atpD
	496	Wangiella dermatitidis	This patent	atpD
	497	Yarrowia lipolytica	This patent	atpD
	498	Aspergillus fumigatus	This patent	tuf (M)
	499	Blastoschizomyces capitatus	This patent	tuf (M)
	500	Candida rugosa	This patent	tuf (M)
	501	Coccidioides immitis	This patent	tuf (M)
	502	Fusarium oxysporum	This patent	tuf (M)
	503	Histoplasma capsulatum	This patent This patent	tuf (M)
	504	Paracoccidioides brasiliensis	This patent	tuf (M) tuf (M)
	505	Penicillium marneffei	This patent	tuf (M)
	506	Pichia anomala	This patent	tuf (M)
	507	Trichophyton mentagrophytes	This patent	tuf (M)
	508	Yarrowia lipolytica	This patent	tuf (ef-1
	509	Babesia bigemina	This patent	tuf (ef-1
	510	Babesia bovis	This patent	tuf (ef-
	511	Crithidia fasciculata	This patent	tuf (ef-
	512	Entamoeba histolytica	This patent	tuf (ef-
	513	Giardia lamblia	This patent	tuf (ef-
	514	Leishmania tropica	This patent	tuf (ef-
	515 546	Leishmania aethiopica Leishmania tropica	This patent	tuf (ef-
	516 517	Leishmania donovani subsp. donovani	This patent	tuf (ef-
	517 518	Leishmania donovani subsp. uonovani Leishmania donovani subsp. infantum	This patent	
	518 519	Leishmania enriettii	This patent	
	520	Leishmania gerbilli	This patent	
	521	Leishmenia hertigi subsp. hertigi	This patent	
	522	Leishmania major	This patent	
	523	Leishmania amazonensis	This patent	•
	524	Leishmania mexicana	This patent	
	525	Leishmania tarentolae	This patent	
	526	Leishmania tropica	This patent	
	527	Neospora caninum	This patent	
	528	Trichomonas vaginalis	This patent	
	529	Trypanosoma brucei subsp. brucei	This patent	tuf (ef-
	530	Crithidia fasciculata	This patent	atpĎ
	531	Leishmania tropica	This patent	atpD
	532	Leishmania aethiopica	This patent	atpD
	533	Leishmania donovani subsp. donovani	This patent	atpD
	534	Leishmania donovani subsp. infantum	This patent	atpD
	535	Leishmania gerbilli	This patent	atpD
	536	Leishmania hertigi subsp. hertigi	This patent	
	537	Leishmania major	This patent	•
	538	Leishmania amazonensis	This patent	
	607	Enterococcus faecalis	WO 98/201	57 tuf
	608	Enterococcus faecium	WO 98/201	
	609	Enterococcus gallinarum	WO 98/201	
	610	Haemophilus influenzae	Database	tuf
	611	Staphylococcus epidermidis	WO 98/201	
	612	Salmonella choleraesuis subsp. choleraesuis serotype paratyphi A	This patent	
	613	Serratia ficaria	This patent	
	614	Enterococcus malodoratus	This patent	
	615	Enterococcus durans	This patent	
	616	Enterococcus pseudoavium	This patent	- 1
	617	Enterococcus dispar	This patent	, ,
	618	Enterococcus avium	This patent	t tuf (C)

Table 7. Origin of the sequences in the sequence listing. (continued)

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source C	omments'
5	619	Saccharomyces cerevisiae	Database	tuf (M)
	621	Enterococcus faecium	This patent	tuf (C)
	622	Saccharomyces cerevisiae	This patent	tuf (ef-1)
	623	Cryptococcus neoformans	This patent	tuf (ef-1)
	624	Candida albicans	This patent	tuf (ef-1)
10	662	Corynebacterium diphtheriae	WO 98/20157	
	663	Candida catenulata	This patent	atpD
	665	Saccharomyces cerevisiae	Database	tuf (ef-1)
	666	Saccharomyces cerevisiae	Database	atpD
1.5	667	Trypanosoma cruzi	This patent	atpD
15	668	Corynebacterium glutamicum	Database	tuf
	669	Escherichia coli	Database	atpD
	670	Helicobacter pylori	Database	atpD
	671	Clostridium acetobutylicum	Database	atpD
20	672	Cytophaga lytica	Database	atpD
20	673	Ehrlichia risticii	This patent	atpD
	674	Vibrio cholerae	This patent	atpD
	675 676	Vibrio cholerae	This patent	tuf
	676 677	Leishmania enriettii	This patent	atpD
25	677 678	Babesia microtti	This patent	tuf (ef-1)
25	67 9	Cryptococcus neoformans	This patent	atpD
	680	Cryptococcus neoformans Cunninghamella bertholletiae	This patent	atpD
	684	Candida tropicalis	This patent	atpD
	685	Enterococcus hirae	Database	atpD (V)
30	686	Chlamydia pneumoniae	Database	atpD (V)
50	687	Halobacterium salinarum	Database	atpD (V)
	688	Human	Database	atpD (V)
	689	Plasmodium falciparum	Database	atpD (V)
	690	Saccharomyces cerevisiae	Database Database	atpD (V)
35	691	Schizosaccharomyces pombe	_ :	atpD (V)
<i>33</i>	692	Trypanosoma congolense	Database Database	atpD (V)
	693	Thermus thermophilus	Database	atpD (V)
	698	Escherichia coli	Database	atpD (V) tuf
	709	Borrelia burgdorferi	genome project	
40	710	Treponema pallidum	genome project	atpD (V) atpD (V)
	711	Chlamydia trachomatis	genome project	atpD (V)
	712	Enterococcus faecalis	genome project	atpD (V)
	713	Methanosarcina barkeri	Database	atpD (V)
	714	Methanosarcina jannaschii	Database	atpD (V)
45	715	Porphyromonas gingivalis	genome project	atpD (V)
	716	Streptococcus pneumoniae	genome project	atpD (V)
	717	Burkholderia mallei	This patent	tuf
	718	Burkholderia pseudomallei	This patent	tuf
50	719	Clostridium beijerincki	This patent	tuf
50	720	Clostridium innocuum	This patent	tuf
	721	Clostridium novyi	This patent	tuf
	722	Clostridium septicum	This patent	tuf
	723	Clostridium tertium	This patent	tuf
55	724	Clostridium tetani	This patent	tuf
33	725	Enterococcus malodoratus	This patent	tuf
	726 727	Enterococcus sulfureus	This patent	tuf
	727 729	Lactococcus garvieae	This patent	tuf
	728 729	Mycoplasma pirum	This patent	tuf
60	72 9 730	Mycoplasma salivarium	This patent	tuf
JU	730 731	Neisseria polysaccharea	This patent	tuf
	732	Salmonella choleraesuis subsp. choleraesuis serotype enteritidis	This patent	tuf
	732 733	Salmonella choleraesuis subsp. choleraesuis serotype gallinarum	This patent	tuf
	734	Salmonella choleraesuis subsp. choleraesuis serotype paratyphi B Salmonella choleraesuis subsp. choleraesuis serotype virchow	This patent	tuf
55	735	Serratia grimesii	This patent	tuf
	736	Clostridium difficile	This patent	tuf
	737	Burkholderia pseudomallei	This patent	tuf
			This patent	atpD

Tabl 7. Origin f the sequenc s in th sequence listing. (continued)

SE	EQ ID NO.	Bacterial, fungal or parasitical species	Source	Comments
	700	Clostridium bifermentans	This pat nt	atpD
	738		This patent	atpD atpD
	739	Clostridium beijerinckii Clostridium difficile	This patent	atpD atpD
	740 744	Clostridium ramosum	This patent	atpD atpD
	741 742	Clostridium septicum	This patent	atpD
	742 743	Clostridium tertium	This patent	
	743 744	Comamonas acidovorans	This patent	•
	7 44 745	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent	
	745 746	Neisseria canis	This patent	
	740 747	Neisseria cinerea	This patent	
	747 748	Neisseria cuniculi	This patent	•
	74 8 74 9	Neisseria elongata subsp. elongata	This patent	•
	750	Neisseria flavescens	This patent	•
	750 751	Neisseria gonorrhoeae	This patent	•
	752	Neisseria gonorrhoeae	This patent	•
	752 753	Neisseria lactamica	This patent	
	754	Neisseria meningitidis	This patent	
	755	Neisseria mucosa	This patent	•
	756	Neisseria subflava	This patent	•
	757	Neisserla weaveri	This patent	
	758	Neisseria animalis	This patent	
	759	Proteus penneri	This patent	
	760	Salmonella choleraesuis subsp. choleraesuis serotype enteritidis	This patent	
	761	Yersinla pestis	This patent	
	762	Burkholderia mallei	This patent	
	763	Clostridium sordellii	This patent	atpD
	764	Clostridium novyi	This patent	
	765	Clostridium botulinum	This patent	atpD
	766	Clostridium histolyticum	This patent	atpD
	767	Peptostreptococcus prevotii	This patent	atpD
	768	Absidia corymbifera	This patent	atpD
	769	Altemaria altemata	This patent	atpD
	770	Aspergillus flavus	This patent	
	771	Mucor circinelloides	This patent	: atpD
	772	Piedraia hortai	This patent	
	773	Pseudallescheria boydii	This patent	
	774	Rhizopus oryzae	This patent	
	775	Scopulariopsis koningii	This patent	•
	776	· Trichophyton mentagrophytes	This patent	
	777	Trichophyton tonsurans	This patent	
	778	Trichosporon cutaneum	This patent	
	779	Cladophialophora carrionii	This patent	
	780	Cunninghamella bertholletiae	This patent	
	781	Curvularia lunata	This patent	
	782	Fonsecaea pedrosoi	This patent	
	783	Microsporum audouinii	This patent	
	784	Mucor circinelloides	This patent	
	785	Phialaphora verrucosa	This patent This patent	
	786 787	Saksenaea vasiformis Syncephalastrum racemosum	This paten	
	787	Trichophyton tonsurans	This paten	
	788 789	Trichophyton mentagrophytes	This paten	
	790	Bipolaris hawaiiensis	This paten	
	790 791	Aspergillus fumigatus	This paten	
	791 792	Trichophyton mentagrophytes	This paten	
	827	Clostridium novvi	This paten	
	828	Clostridium difficile	This paten	
	829	Clostridium septicum	This paten	
	830	Clostridium botulinum	This paten	
	831	Clostridium perfringens	This paten	
	832	Clostridium tetani	This paten	

Tabl 7. Origin of the sequence s in the sequence listing. (continued)

SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Commen
833	Streptococcus pyogenes	Database	atpD (
834	Babesia bovis	This patent	atpD (\
835	Cryptosporidium parvum	This patent	
836	Leishmania donovani subsp. infantum	This patent	atpD (' atpD ('
837	Leishmania major	This patent	atpD (
838	Leishmania tarentolae	This patent	
839	Trypanosoma brucei	This patent	atpD (
840	Trypanosoma cruzi	This patent	atpD (
841	Trypanosoma cruzi	This patent	tuf (ef-
842	Trypanosoma cruzi	This patent	tuf (ef-
843	Babesia bovis	This patent	tuf (ef-
844	Leishmania aethiopica	This patent	tuf (M)
845	Leishmania amazonensis		tuf (M)
846	Leishmania donovani subsp. donovani	This patent	tuf (M)
847	Leishmania donovani subsp. uonovani Leishmania donovani subsp. infantum	This patent	tuf (M)
848	Leishmania enriettii	This patent	tuf (M)
849	Leishmania gerbilli	This patent	tuf (M)
850	.	This patent	tuf (M)
851	Leishmania major	This patent	tuf (M)
852	Leishmania mexicana	This patent	tuf (M)
853	Leishmania tarentolae	This patent	tuf (M)
	Trypanosoma cruzi	This patent	tuf (M)
854 855	Trypanosoma cruzi	This patent	tuf (M)
855 856	Trypanosoma cruzi	This patent	tuf (M)
856 857	Babesia bigemina	This patent	atpD
857	Babesia bovis	This patent	atpD
858	Babesia microtti	This patent	atpD
859	Leishmania guyanensis	This patent	atpD
860	Leishmania mexicana	This patent	atpD
861	Leishmania tropica	This patent	atpD
862	Leishmania tropica	This patent	atpD
863	Bordetella pertussis	Database	tuf
864	Trypanosoma brucei	Database	tuf (ef-
865	Cryptosporidium parvum	This patent	<i>tuf</i> (ef-
866 867	Staphylococcus saprophyticus	This patent	atpD
867	Zoogloea ramigera	This patent	atpD
868	Staphylococcus saprophyticus	This patent	tuf
869	Enterococcus casseliflavus	This patent	tuf
870	Enterococcus casseliflavus	This patent	tuf
871	Enterococcus flavescens	This patent	tuf
872	Enterococcus gallinarum	This patent	tuf
873	Enterococcus gallinarum	This patent	tuf
874	Staphylococcus haemolyticus	This patent	tuf
875	Staphylococcus epidermidis	This patent	tuf
876	Staphylococcus epidermidis	This patent	tuf
877	Staphylococcus epidermidis	This patent	tuf
878	Staphylococcus epidermidis	This patent	tuf
879	Enterococcus gallinarum	This patent	tuf
880	Pseudomonas aeruginosa	This patent	tuf
881	Enterococcus casseliflavus	This patent	tuf
882	Enterococcus casseliflavus	This patent	tuf
883	Enterococcus faecalis	This patent	tuf
884	Enterococcus faecalis	This patent	tuf
885	Enterococcus faecium	This patent	tuf
886	Enterococcus faecium	This patent	tuf
887	Zoogloea ramigera	This patent	tuf
888	Enterococcus faecalis	This patent	tuf
889	Aspergillus fumigatus	This patent	atpD
890	Penicillium mameffel	This patent	atpD
891	Paecilomyces lilacinus	This patent	atpD
892	Penicillium mameffei	This patent	atpD
893	Sporothrix sch nckii	This patent	atpD

Table 7. Origin of the sequences in the sequence listing. (continued)

SEQ ID N	O. Bacterial, fungal or parasitical species	Source	Comments'
5		This against	
894	Malbranchea filamentosa	This patent	atpD
895	Paecilomyces lilacinus	This patent	atpD
896	Aspergillus niger	This patent	atpD
897	Aspergillus fumigatus	This patent	tuf (ef-1)
898	Penicillium marneffei	This patent	, ,
899	Piedraia hortai	This patent	. ,
900	Paecilomyces lilacinus	This patent	tuf (ef-1)
901	Paracoccidioides brasiliensis	This patent	, ,
902	Sporothrix schenckii	This patent	tuf (ef-1)
5 903	Penicillium marneffei	This patent	<i>tuf</i> (ef-1)
904	Curvularia lunata	This patent	
905	Aspergillus niger	This patent	
906	Bipolaris hawaiiensis	This patent	
907	Aspergillus flavus	This patent	
908	Alternaria alternata	This patent	tuf (M)
909	Penicillium marneffei	This patent	
910	Penicillium marneffei	This patent	tuf (M)
918	Escherichia coli	Database	recA
929	Bacteroides fragilis	This patent	atpD (V)
930	Bacteroides distasonis	This patent	atpD (V)
931	Porphyromonas asaccharolytica	This patent	atpD (V)
932	Listeria monocytogenes	This patent	tuf
939	Saccharomyces cerevisiae	Database	rad51
940	Saccharomyces cerevisiae	Database	dmc1
)			

^{*} atpD indicates atpD sequences of the F-type atpD (V) indicates atpD sequences of the V-Type tuf indicates tuf sequences

indicates dmc1 sequences or dmc1 homologs

40

³⁵ tuf (C) indicates tuf sequences divergent from main (usually A and B) copies of the elongation factor-Tu tuf (ef-1) indicates tuf sequences of the eukaryotic type (elongation factor 1α) tuf (M) indicates tuf sequences from organellar (mostly mitochondrial) origin recA indicates recA sequences, Rad51 indicates Rad51 sequences or rad51 homologs and dmc1

Table 8. Bacterial speci s us d t test the specificity of th Streptococcus agalactiae-specific amplificati n primers from tuf sequence.

Strain	Reference number	Strain F	Reference numi
Streptococcus acidominimus	ATCC 51726	Bacteroides caccae	ATCC 43185
Streptococcus agalactiae	ATCC 12403	Bacteroides vulgatus	ATCC 8482
Streptococcus agalactiae	ATCC 12973	Bacteroides fragilis	ATCC 25285
Streptococcus agalactiae	ATCC 13813	Candida albicans	ATCC 11006
Streptococcus agalactiae	ATCC 27591	Clostridium innoculum	ATCC 1450
Streptococcus agalactiae	CDCs 1073	Clostridium ramosum	ATCC 25582
Streptococcus anginosus	ATCC 27335	Lactobacillus casei subsp. case	
Streptococcus anginosus	ATCC 33397	Clostridium septicum	ATCC 12464
Streptococcus bovis	ATCC 33317	Corynebacterium cervicis	NCTC 1060
Streptococcus anginosus	ATCC 27823	Corynebacterium genitalium	ATCC 3303
Streptococcus cricetus	ATCC 19642	Corynebacterium urealyticum	ATCC 43042
Streptococcus cristatus	ATCC 51100	Enterococcus faecalis	ATCC 2921
Streptococcus downei	ATCC 33748	Enterococcus faecium	ATCC 1943
Streptococcus dysgalactiae	ATCC 43078	Eubacterium lentum	ATCC 4305
Streptococcus equi subsp equi	ATCC 9528	Eubacterium nodutum	ATCC 3309
Streptococcus ferus	ATCC 33477	Gardnerella vaginalis	ATCC 1401
Streptococcus gordonii	ATCC 10558	Lactobacillus acidophilus	ATCC 4356
Streptococcus macacae	ATCC 35911	Lactobacillus crispatus	ATCC 3382
Streptococcus mitis	ATCC 49456	Lactobacillus gasseri	ATCC 3332
Streptococcus mutans	ATCC 25175	Lactobacillus johnsonii	ATCC 3320
Streptococcus oralis	ATCC 35037	Lactococcus lactis subsp. lactis	
Streptococcus parasanguinis	ATCC 15912	Lactococcus lactis subsp. lactis	ATCC 1145
Streptococcus parauberis	DSM 6631	Listeria innocua	ATCC 3309
Streptococcus pneumoniae	ATCC 27336	Micrococcus luteus	ATCC 9341
Streptococcus pyogenes	ATCC 19615	Escherichia coli	ATCC 2592
Streptococcus ratti	ATCC 19645	Micrococcus Iylae	ATCC 2756
Streptococcus salivarius	ATCC 7073	Porphyromonas asaccharolytica	ATCC 2526
Streptococcus sanguinis	ATCC 10556	Prevotella corporis	ATCC 3354
Streptococcus sobrinus	ATCC 27352	Prevotella melanogenica	ATCC 25849
Streptococcus suis	ATCC 43765	Staphylococcus aureus subsp. aure	eusATCC 1330
Streptococcus uberis	ATCC 19436	Staphylococcus epidermidis	ATCC 1499
Streptococcus vestubularis	ATCC 49124	Staphylococcus saprophyticus	ATCC 1530

Table 9. Bacterial species used to test the specificity of the Streptococcus agalactiae-specific amplification prim rs from atpD s quenc .

Strain	Reference number	Strain	Refer nce numbe
Streptococcus acidominimus	ATCC 51726	Streptococcus gordonii	ATCC 10558
Streptococcus agalactiae	ATCC 12400	Streptococcus macacae	ATCC 35911
Streptococcus agalactiae	ATCC 12403	Streptococcus mitis	ATCC 49456
Streptococcus agalactiae	ATCC 12973	Streptococcus mutans	ATCC 25175
Streptococcus agalactiae	ATCC 13813	Streptococcus oralis	ATCC 35037
Streptococcus agalactiae	ATCC 27591	Streptococcus parasanguinis	ATCC 15912
Streptococcus agalactiae	CDCs-1073	Streptococcus parauberis	DSM 6631
Streptococcus anginosus	ATCC 27335	Streptococcus pneumoniae	ATCC 27336
Streptococcus anginosus	ATCC 27823	Streptococcus pyogenes	ATCC 19615
Streptococcus bovis	ATCC 33317	Streptococcus ratti	ATCC 19645
Streptococcus cricetus	ATCC 19642	Streptococcus salivarius	ATCC 7073
Streptococcus cristatus	ATCC 51100	Streptococcus sanguinis	ATCC 10556
Streptococcus downei	ATCC 33748	Streptococcus sobrinus	ATCC 27352
Streptococcus dysgalactiae	ATCC 43078	Streptococcus suis	ATCC 43765
Streptococcus equi subsp. equi	ATCC 9528	Streptococcus uberis	ATCC 19436
Streptococcus ferus	ATCC 33477	Streptococcus vestibularis	ATCC 49124

Table 10. Bacterial species used to test the specificity of the *Enterococcus* genus-specific amplification primers from *tuf* sequence.

Strain	Refer nce number	PCR result
		•••
Abiotrophia adjacens	ATCC 49175	positive
Abiotrophia defectiva	ATCC 49176	negative
Acinetobacter baumannii	ATCC 19606	negative
Bordetella pertussis	ATCC 9797	negative
Branhamella catarrhalis	ATCC 43628	negative
Bulkholderia cepacia	LSPQ 2217	negative
Citrobacter freundii	ATCC 8090	negative
Corynebacterium aquaticus	ATCC 14665	negative
Enterobacter cloacae	ATCC 13047	negative
Enterococcus avium	ATCC 14025	positive
Enterococcus casseliflavus	ATCC 25788	positive
Enterococcus casseliflavus	R689	positive
Enterococcus casseliflavus	R754	positive
Enterococcus casseliflavus	R763	positive
Enterococcus cecorum	ATCC 43198	positive
Enterococcus columbae	ATCC 51263	positive
Enterococcus dispar	ATCC 51266	positive
Enterococcus durans	ATCC 19432	positive
Enterococcus faecalis	ATCC 51299	positive
Enterococcus faecalis	R422	positive
Enterococcus faecalis	R485	positive
Enterococcus faecalis	R498	positive
Enterococcus faecalis	R503	positive
Enterococcus faecalis	R575	positive
Enterococcus faecalis	R577	positive
Enterococcus faecalis	R610	positive
Enterococcus faecalis	R617	positive
Enterococcus faecalis	ATCC 29212	positive
Enterococcus faecium	ATCC 19434	positive
Enterococcus faecium	ATCC 19434	positive
Enterococcus faecium	ATCC 700221	positive
Enterococcus faecium	R421	positive
Enterococcus faecium	R446	positive
Enterococcus faecium	R448	positive
Enterococcus faecium	R449	positive
Enterococcus faecium	R450	positive
Enterococcus faecium	R481	positive
Enterococcus faecium	R482	positive
Enterococcus faecium	R494	positive
Enterococcus faecium	R648	positive
Enterococcus flavescens	ATCC 49996	positive
Enterococcus flavescens	R758	positive
Enterococcus flavescens	R760	positive
Enterococcus gallinarum	ATCC 49573	
Enterococcus gallinarum	LSPQ 3364	positive
Enterococcus gallinarum		positive
Enterococcus gallinarum	R420 R431	positive
—	R431 R432	positive
Enterococcus gallinarum Enterococcus gallinarum	· · · · · -	positive
	R631	positive
Enterococcus gallinarum	R684	positive
Enterococcus gallinarum	R691	positive
Enterococcus gallinarum	R757	positive
Enterococcus gallinarum	R764	positive

Table 10. Bacterial species used to test the specificity of the *Enterococcus* g nusspecific amplification primers from *tuf* sequence (c ntinued).

Strain	Reference number	PCR result
	ATCC 8043	positive
Enterococcus hirae	ATCC 43197	positive
Enterococcus malodoratus	ATCC 43197	positive
Enterococcus mundtii	ATCC 49372	positive
Enterococcus pseudoavium	ATCC 49372 ATCC 49427	positive
Enterococcus raffinosus	ATCC 43427 ATCC 43076	positive
Enterococcus saccharolyticus	ATCC 43076 ATCC 49428	positive
Enterococcus solitarius		
Escherichia coli	ATCC 25922 ATCC 10379	negative
Gemella haemolysans		positive
Haemophilus influenzae	ATCC 9007	negative
Hafnia alvei	ATCC 13337	negative
Kingella kingae	ATCC 23330	negative
Klebsiella oxytoca	ATCC 13182	negative
Lactobacillus acidophilus	ATCC 4356	negative
Listeria grayi	ATCC 19120	negative
Listeria innocua	ATCC 33090	negative
Listeria ivanovii	ATCC 19119	negative
Listeria monocytogenes	ATCC 15313	negative
Listeria monocytogenes	ATCC 35152	negative
Listeria monocytogenes	BD1427	negative
Listeria monocytogenes	L 279	negative
Listeria monocytogenes	L 374	negative
Listeria monocytogenes	L9	negative
Listeria monocytogenes	LSPQ 5093202	negative
Listeria monocytogenes	SS2	negative
Listeria seeligeri	ATCC 35967	negative
Micrococcus luteus	ATCC 9341	negative
Morganella morganii subsp. morganii	ATCC 25830	negative
Neisseria meningitidis	ATCC 13077	negative
Pasteurella aerogenes	ATCC 27883	negative
Proteus vulgaris	ATCC 13315	negative
Providencia alcalifaciens	ATCC 9886	negative
Providencia rettgeri	ATCC 9250	negative
Pseudomonas aeruginosa	ATCC 27853	negative
Salmonella typhimurium	ATCC 14028	negative
Serratia marcescens	ATCC 13880	negative
Shigella flexneri	ATCC 12022	negative
Shigella sonnei	ATCC 29930	negative
Staphylococcus aureus subsp. aureus	ATCC 43300	negative
Staphylococcus capitis subsp.capitis	ATCC 27840	negative
Staphylococcus epidermidis	ATCC 14990	negative
Staphylococcus haemolyticus	ATCC 29970	negative
Staphylococcus hominis subsp. hominis	ATCC 27844	negative
Staphylococcus lugdunensis	ATCC 43809	negative
Staphylococcus saprophyticus	ATCC 15305	negative
Staphylococcus simulans	ATCC 27848	negative
Staphylococcus warneri	ATCC 27836	negative
Streptococcus anginosus	ATCC 27335	negative
Streptococcus anginosus	ATCC 27823	negative
Streptococcus anginosus	ATCC 33397	negative
Streptococcus bovis	ATCC 33317	negative
Streptococcus cristatus	ATCC 51100	negative
Streptococcus mitis	ATCC49456	negative
Streptococcus mutans	ATCC 25175	negative
Juoptoooda matana	11100 20110	

Table 10. Bacterial species used to test the specificity of the Ent rococcus genusspecific amplification primers from tuf sequence (continued).

	Strain	Refer nc number	PCR result
5			
	Streptococcus parasanguinis	ATCC 15912	negative
	Streptococcus pneumoniae	ATCC 27736	negative
	Streptococcus pneumoniae	ATCC 6303	negative
	Streptococcus pyogenes	ATCC 19615	negative
)	Streptococcus salivarius	ATCC 7073	negative
	Streptococcus sanguinis	ATCC 10556	negative
	Streptococcus suis	ATCC 43765	negative
	Yersinia enterocolitica	ATCC 9610	negative

Table 11. Micr bial species f r which atpD and/or tuf and/or recA and/ r Rad51 and/or dmc1 s qu nc s are available in public databases

_	Species	Strain	Accession number	Coding gene
]	Bacteria			
	Agrobacterium tumefaciens		X99673	tuf
	Agrobacterium tumefaciens		X99674	tuf
	Anacystis nidulans	PCC 6301	X17442	tuf
	Aquifex aeolicus	VF5	AE000669	tuf
	Aquifex pyrophilus		Y15787	tuf
	Bacillus halodurans	C-125	AB017508	tuf
	Bacillus stearothermophilus	CCM 2184	AJ000260	tuf
	Bacillus subtilis	DSM 10	Z99104	tuf
	Bacillus subtilis	168	D64127	tuf
	Bacteroides fragilis	DSM 1151	-1	tuf
	Bordetella bronchiseptica	RB50	Genome project ²	tuf
	Bordetella pertussis	Tohama 1	Genome project ²	tuf
	Borrelia burdorgferi	B31	U78193	tuf
	Brevibacterium linens	DSM 20425	X76863	tuf
	Buchnera aphidicola	Ap	Y12307	tuf
	Campylobacter jejuni	NCTC 11168	Y17167	tuf
	Chlamydia pneumoniae	CWL029	AE001592	tuf
	Chlamydia trachomatis	F/IC-Cal-13	L22216	tuf
	Chlamydia trachomatis	D/WW-3/CX	AE001305	tuf
	Chlamydia trachomatis		M74221	tuf
	Chlorobium vibrioforme	DSM 263	X77033	tuf
	Chloroflexus aurantiacus	DSM 636	X76865	tuf
	Clostridium acetobutylicum	ATCC 824	Genome project ²	tuf
	Clostridium difficile	630	Genome project ²	tuf
	Corynebacterium glutamicum	ASO 19	X77034	tuf
	Cytophaga lytica	DSM 2039	X77035	tuf
	Deinonema spp.		_1	tuf
	Eikenella corrodens	ATCC 23834	Z12610	tuf
	Escherichia coli		J01690	tuf
	Escherichia coli	K-12 MG1655	U00096	tuf
	Escherichia coli		J01717	tuf
	Escherichia coli	K-12 MG1655	U00006	tuf
	Escherichia coli		X57091	tuf
	Fervidobacterium islandicum	DSM 5733	Y15788	tuf
	Fibrobacter succinogenes	S85	X76866	tuf
	Flavobacterium ferrigeneum	DSM 13524	X76867	tuf
	Flexistipes sinusarabici		X59461	tuf
	Gloeobacter violaceus	PCC 7421	U09433	tuf
	Gloeothece spp.	PCC 6501	U09434	tuf
	Haemophilus	HK1651	Genome project ²	' tuf
	actinomycetemcomitans			-
	Haemophilus influenzae	RD	L42023	tuf
	Haloarcula marismortui		X16677	tuf
	Helicobacter pylori	26695	AE000511	tuf
	Helicobacter pylori	J99	AE001541	tuf
	Herpetosiphon aurantiacus	Hpga1	X76868	tuf
	Lactobacillus paracasei		E13922	tuf
	Methanobacterium thermoautrophicum	delta H	AE000877	tuf
	Methanococcus jannaschii	ATCC 43067	U67486	tuf
	Methanococcus vannielii		X05698	tuf

Table 11. Microbial species for which atpD and/or tuf and/or recA and/or Rad51 and/or dmc1 s quences ar available in public databases (continued)

Species	Strain	Accession number	Coding gene*
Missassassassassassassassassassassassassa	IFO 2222	1447700	
Micrococcus luteus	IFO 3333	M17788	tuf
Mycobacterium avium	104	Genome project ²	tuf
Mycobacterium bovis	AF2122/97	Genome project ²	tuf
Mycobacterium leprae	Thai 53	D13869	tuf
Mycobacterium leprae		Z14314	tuf
Mycobacterium leprae		L13276	tuf
Mycobacterium tuberculosis	H37Rv	Z84395	tuf
Mycobacterium tuberculosis	Erdmann	S40925	tuf
Mycobacterium tuberculosis		AD000005	tuf
Mycoplasma capricolum	PG-31	X16462	tuf
Mycoplasma genitalium	G37	U39732	tuf
Mycoplasma hominis		X57136	tuf
Mycoplasma hominis	PG21	M57675	tuf
Mycoplasma pneumoniae	M129	AE000019	tuf
Neisseria gonorrhoeae	MS11	L36380	tuf
Neisseria meningitidis	Z2491	Genome project ²	tuf
Peptococcus niger	DSM 20745	X76869	tuf
Phophyromonas gingivalis	W83	Genome project ²	
Phormidium ectocarpi	PCC 7375	U09443	tuf '
Planobispora rosea	ATCC 53773	U67308	tuf
Plectonema boryanum	PCC 73110		tuf
Prochlorothrix hollandica	PCC 73110	U09444	tuf
	DAG 4	U09445	tuf
Pseudomonas aeruginosa	PAO-1	Genome project ²	tuf
Rickettsia prowazekii	Madrid E	AJ235272	tuf
Salmonella typhimurium	LT2 trpE91	X55116	tuf
Salmonella typhimurium	LT2 trpE91	X55117	tuf
Serratia marcescens		AF058451	tuf
Serpulina hyodysenteriae	B204	U51635	tuf
Shewanella putida		Genome project ²	tuf
Shewanella putrefaciens	DSM 50426	_1	tuf
Shewanella putrefaciens	MR-1	Genome project ²	tuf
Spirochaeta aurantia	DSM 1902	X76874	tuf
Stigmatella aurantiaca	DW4	X82820	tuf
Stigmatella aurantiaca	Sg a1	X76870	tuf
Streptococcus mutans	UAB159	Genome project2	tuf
Streptococcus mutans	GS-5 Kuramitsu	U75481	tuf
Streptococcus oralis	NTCC 11427	P331701	tuf
Streptococcus pyogenes	M1-GAS	Genome project ²	tuf
Streptomyces aureofaciens	ATCC 10762	AF007125	tuf
Streptomyces cinnamoneus	Tue89	X98831	tuf
Streptomyces coelicolor	M145	X77039	tuf
Streptomyces collinus	BSM 40733	S79408	tuf
Streptomyces ramocissimus	20 10.00	X67057	tuf
Streptomyces ramocissimus		X67058	
Synechocystis spp.	PCC 6803	D90913	tuf
Taxeobacter occealus	Myx 2105		tuf
Thermoplasma acidophilum	DSM 1728	X77036	tuf
Thermotoga maritima	DOIN 1/20	X53866	tuf
	FD 00070	M27479	tuf
Thermus thermosphiles	EP 00276	X66322	tuf
Thermus thermophilus	HB8	X06657	tuf
Thermus thermophilus	HB8_	X05977	tuf
Thiobacillus cuprinus	Hoe5	X76871	tuf
Thiobacillus cuprinus	DSM 5495	U78300	tuf

Table 11. Microbial species for which atpD and/or tuf and/or recA and/or Rad51 and/or dmc1 sequences are available in public databases (c ntinued)

	Species	Strain	Accession number	Coding gene*
5			AE001202	tuf
	Treponema pallidum	ATCC 33697	Z34275	tur tuf
	Ureaplasma urealyticum	N16961	TIGR2	tuf
	Vibrio cholerae	DSM 1740	X76872	tuf
	Wolinella succinogenes	CO-92	Genome project ²	tuf
10	Yersinia pestis	CO-92	Cenome project	147
	Fungi			
	Saccharomyces cerevisiae		K00428	tuf (M)
.5	Absidia glauca	CBS 101.48	X54730	tuf (ef-1)
	Arxula adeninivorans	Ls3	Z47379	.tuf (ef-1)
	Aspergillus oryzae	KBN616	AB007770	tuf (ef-1)
	Aureobasidium pullulans	R106	U19723	<i>tuf</i> (ef-1)
	Candida albicans	SC5314	M29935	<i>tuf</i> (ef-1)
0	Candida albicans	SC5314	M29934	tuf (ef-1)
~	Cryptococcus neoformans	B3501	U81803	tuf (ef-1)
	Cryptococcus neoformans	M1-106	U81804	tuf (ef-1)
	Eremothecium gossypii	ATCC 10895	X73978	tuf (ef-1)
	Fusarium oxysporum	NRRL 26037	AF008498	tuf (ef-1)
_	Histoplasma capsulatum	186AS	U14100	tuf (ef-1)
5		100/10	X74799	tuf (ef-1)
	Podospora anserina	race 32	X73529	tuf (ef-1)
	Puccinia graminis	ATCC 1216B	J02605	tuf (ef-1)
	Rhizomucor racemosus		X17476	tuf (ef-1)
	Rhizomucor racemosus	ATCC 1216B		
0	Rhizomucor racemosus	ATCC 1216B	X17475	tuf (ef-1)
	Rhodotorula mucilaginosa		AF016239	tuf (ef-1)
	Saccharomyces cerevisiae		X01638	tuf (ef-1)
	Saccharomyces cerevisiae		X00779	tuf (ef-1)
	Schizosaccharomyces pombe		U42189	tuf (ef-1)
5	Trichoderma reesei	QM9414	Z23012	<i>tuf</i> (ef-1)
	Yarrowia lipolytica		AF054510	tuf (ef-1)
	Parasites			
40	Blastocystis hominis	HE87-1	D64080	<i>tuf</i> (ef-1)
	Giardia lamblia		D14342	tuf (ef-1)
	Kentrophoros spp.		AF056101	tuf (ef-1)
	Leishmania amazonensis	IFLA/BR/67/PH		tuf (ef-1)
	Leishmania braziliensis		U72244	tuf (ef-1)
45	Onchocerca volvulus		M64333	tuf (ef-1)
7.7	Porphyra purpurea	Avonport	U08844	tuf (ef-1)
	Plasmodium berghei	ANKA	AJ224150	tuf (ef-1)
		K1	X60488	tuf (ef-1)
	Plasmodium falciparum	line H	AJ224153	tuf (ef-1)
	Plasmodium knowlesi		Y11431	tuf (ef-1)
50	Toxoplasma gondii	RH	L76077	
	Trypanosoma cruzi	Υ		tuf (ef-1)
	Trypanosoma brucei	LVH/75/ USAMRU-K/18	U10562	<i>tuf</i> (ef-1)

Table 11. Microbial species f r which atpD and/or tuf and/or recA and/or Rad51 and/or dmc1 sequences are available in public databases (continued)

Species	Strain	Accession number	Coding gene*
,			
Bacteria			
Acetobacterium woodi	DSM 1030	U10505	atpD
Bacillus caldotenax		D38058	atpD
Bacillus firmus	OF4	M60117	atpD
Bacillus megaterium	QM B1551	M20255	atpD
Bacillus stearothermophilus	IFO1035	D38060	atpD
Bacillus subtilis	168	Z28592	atpD
Bacteroides fragilis	DSM 2151	M22247	aṫpD
Bordetella bronchiseptica	RB50	Genome project ²	atpD
Bordetella pertussis	Tohama 1	Genome project ²	atpD
Borrelia burgdorferi	·	Genome project ²	atpD (V)
Burkholderia cepacia	DSM50181	X76877	atpD
Brevibacterium flavum	MJ-233	E09634	atpD
Campylobacter jejuni	NCTC 11168	Genome project ²	atpD
Chlamydia pneumoniae		Genome project ²	atpD (V)
Chlamydia trachomatis	MoPn	Genome project ²	atpD (V)
Chlorobium vibrioforme	DSM 263	X76873	atpD (v)
Citrobacter freundii	JEO503	AF037156	atpD atpD
Clostridium acetobutylicum	ATCC 824	Genome project ²	
Clostridium acetobutylicum	DSM 792	AF101055	atpD
Clostridium difficile	630	Genome project2	atpD
Corynebacterium glutamicum	ASO 19	X76875	atpD
Corynebacterium glutamicum	DSM 792	AF101055	atpD
Cytophaga lytica	DSM 792 DSM 2039	M22535	atpD
Enterobacter aerogenes	DSM 2039 DSM 30053	M22555	atpD
Enterococcus faecalis	DOIN 20022	_	atpD
Enterococcus faecalis	VE03 ·	M90060	atpD
	V583	Genome project ²	atpD (V)
Enterococcus hirae	ATCC 9790	D17462	atpD (V)
Escherichia coli		V00267	atpD
Escherichia coli	K40 140 4055	J01594	atpD
Escherichia coli	K12 MG1655	L10328	atpD
Escherichia coli		V00311	atpD
Escherichia coli	0014 40504	M25464	atpD
Flavobacterium ferrugineum	DSM 13524	-3	atpD
Haemophilus		Genome project2	atpD
actinomycetemcomitans	 .		
Haemophilus influenzae	Rd	U32730	atpD
Halobacterium salinarum		S56356	atpD (V)
Haloferax volcanii	WR 340	X79516	atpD
Helicobacter pylori	NCTC 11638	AF004014	aṫpD
Lactobacillus casei	DSM 20021	X64542	atpD
Methanococcus jannaschii	DSM 2661	U674 7 7	atpD (V)
Methanosarcina barkeri	DSM 800	J04836	atpD (V)
Moorella thermoacetica	ATCC 39073	U64318	atpD
Mycobacterium avium	104	Genome project ²	atpD
Mycobacterium bovis	AF2122/97	Genome project ²	atpD
Mycobacterium leprae		U15186	atpD
Mycobacterium tuberculosis	H37Rv	Z73419	atpD
Mycoplasma gallisepticum		X64256	atpD

Table 11. Microbial species f r which atpD and/or tuf and/or recA and/or Rad51 and/or dmc1 sequences are available in public databases (continued)

Species	Strain	Accession number	Coding gene
Adversaria anno monitali um	C27	U39725	-4-0
Mycoplasma genitalium	G37		atpD
Mycoplasma pneumoniae	M129	U43738	atpD
Neisseria gonorrhoeae	FA 1090	Genome project ²	atpD
Neisseria meningitidis	Z2491	Genome project ²	atp D
Peptococcus niger	DSM 20475	X76878	atpD
Pectinatus frisingensis	DSM 20465	X64543	atpD
Pirellula marina	IFAM 1313	X57204	atpD
Porphyromonas gingivalis	W83	Genome project ²	atpD (V
Propionigenium modestum	DSM 2376	X58461	atp D
Pseudomonas aeruginosa	PAO1	Genome project ²	atpD
Rhodobacter capsulatus	B100	X99599	atpD
Rhodospirillum rubrum		X02499	atpD
Rickettsia prowazekii	F-12	AF036246	atpD
Ruminococcus albus	7ATCC	AB006151	aṫpD
Salmonella choleraesuis	S83769	AF037146	atpD
subsp. <i>arizonae</i>			•
Salmonella choleraesuis	u24	AF037147	atpD
subsp. <i>arizonae</i>	-		
Salmonella bongori	JEO4162	AF037155	atpD
Salmonella bongori	BR1859	AF037154	atpD
Salmonella choleraesuis	DS210/89	AF037149	atpD
subsp. diarizonae	202.0700	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aipb
Salmonella choleraesuis	JEO307	AF037148	atpD
subsp. <i>diarizonae</i>	02000.		aipD
Salmonella choleraesuis	S109671	AF037150	atpD
subsp. diarizonae	3103071	AI 05/ 150	aipu
Salmonella choleraesuis subs	p. K228	AF037140	atpD
choleraesuis serotype dublin	p. 1220	AI 031 140	aipD
Salmonella choleraesuis subs	p. K771	AF037139	atnD
choleraesuis serotype dublin	р. Ки	AF037 139	atpD
Salmonella choleraesuis	S84366	AF037151	-t-D
	304300	AF037 13 I	atpD
subsp. houtenae	694009	AE0274E2	-40
Salmonella choleraesuis	S84098	AF037152	atpD
subsp. houtenae	PP0047	AE007450	
Salmonella choleraesuis	BR2047	AF037153	atpD
subsp. indica	D: 00 00	4.505.4.40	4.2
Salmonella choleraesuis subs		AF037142	atpD
choleraesuis serotype infantis			
Salmonella choleraesuis	NSC72	AF037144	atpD
subsp. <i>salamae</i>			
Salmonella choleraesuis	S114655	AF037145	atpD
subsp. <i>salamae</i>			
Salmonella choleraesuis subsp		AF037143	atpD
choleraesuis serotype tenness			•
Salmonella choleraesuis subsp	p. LT2	AF037141	atpD
choleraesuis serotype typhimu	ırium		
Shewanella putida		Genome project ²	atpD
Shewanella putrefaciens	MR-1	Genome project ²	atpD
Stigmatella aurantiaca	Sga1	X76879	atpD
Streptococcus bovis	JB-1	AB009314	atpD

Table 11. Micr bial speci s f r which atpD and/ r tuf and/or recA and/or Rad51 and/or dmc1 sequences are available in public databases (continued)

	Species	Strain	Accession number	Coding gene*
5				
	Streptococcus mutans	GS-5	U31170	atpD
	Streptococcus mutans	UAB159	Genome project ²	atpD
	Streptococcus pneumoniae	type 4	TIGR ²	atpD
	Streptococcus pneumoniae	Type 4	Genome project ²	atpD (V)
10	Streptococcus pyogenes	M1-GAS	Genome project ²	atpD
	Streptococcus pyogenes	10001	Genome project ²	atpD (V)
	Streptococcus sanguis	10904	AF001955	atpD
	Streptomyces lividans	1326	Z22606	atpD
	Thermus thermophilus	HB8	D63799	atpD (V)
15	Thiobacillus ferrooxidans	ATCC 33020	M81087	atpD
	Treponema pallidum	Nichols	AE001228	atpD (V)
	Vibrio alginolyticus	N146064	X16050	atpD
	Vibrio cholerae	N16961	Genome project ² X76880	atpD
•	Wolinella succinogenes	DSM 1470 NCTC 10460	AF037157	atpD
20	Yersinia enterocolitica	CO-92	Genome project ²	atpD
	Yersinia pestis	CO-92	Genome project	atpD
	Fungi			
25	Candida tropicalis		M64984	atpD (V)
20	Kluyveromyces lactis	2359/152	U37764	atpD
	Neurospora crassa		X53720	atpD
	Saccharomyces cerevisiae		M12082	atpD
	Saccharomyces cerevisiae	X2180-1A	J05409	atpD (V)
30	Schizosaccharomyces pombe	972 h-	S47814	atpD (V)
	Schizosaccharomyces pombe	972 h-	M57956	atpD
	Parasites			
	Giardia lamblia	WB	U18938	atpD
35	Plasmodium falciparum	3D7	L08200	atpD (V)
	Trypanosoma congolense	IL3000	Z25814	atpD (V)
	Human and plants			
40	Arabidopsis thaliana	Columbia	X89227	<i>tuf</i> (ef-1)
	Glycine max	Ceresia	X89058	<i>tuf</i> (ef-1)
	Glycine max	Ceresia	Y15107	tuf (ef-1)
	Glycine max	Ceresia	Y15108	tuf (ef-1)
	Glycine max	Maple Arrow	X66062	tuf (ef-1)
45	Pyramimonas disomata		AB008010	tuf` '
	Homo sapiens		L09234	atpD (V)
	Homo sapiens		M27132	atpD
	Homo sapiens		X03558	<i>tuf</i> (ef-1)

Table 11. Microbial species f r which atpD and/or tuf and/or recA and/ r Rad51 and/or dmc1 sequences are available in public databases (continued)

Species	Strain	Accession number	Coding gene
Bacteria			
Acetobacter aceti		D13184	recA
Acetobacter aceti		S60630	recA
Acetobacter altoacetigenes	MH-24	E05290	recA
Acetobacter polyoxogenes	NBI 1028	D13183	recA
Acidiphilium facilis	ATCC 35904	D16538	recA
Acinetobacter calcoaceticus	BD413/ADP1	L26100	recA
Acholeplasma laidlawii	8195	M81465	recA
Aeromonas salmonicida	A449	U83688	recA
Agrobacterium tumefaciens	C58	L07902	recA
Allochromatium vinosum		AJ000677	recA
Anabaena variabilis	ATCC 29413	M29680	recA
Aquifex pyrophilus	Kol5a	L23135	recA
Azotobacter vinelandii		S96898	recA
Bacillus subtilis	PB1831	U87792	recA
Bacteroides fragilis		M63029	recA
Bifidobacterium breve	NCFB 2258	AF094756	recA
Blastochloris viridis	DSM 133	AF022175	recA
Bordetella pertussis	165	X53457	recA
Borrelia burgdorferi	Sh-2-82	U23457	recA
Brevibacterium flavum	MJ-233	E10390	recA
Brucella abortus	2308	L00679	recA
Burkholderia cepacia	ATCC 17616	U70431	recA
Campylobacter jejuni	81-176	U03121	recA
Chlamydia trachomatis	L2	U16739	recA
Chloroflexus aurantiacus	J-10-fi	AF037259	recA
	13	U61497	recA
Clostridium perfringens	AS019	U14965	recA
Corynebacterium glutamicum	AS019	X77384	recA
Corynebacterium glutamicum		U30387	recA
Corynebacterium pseudotuberculos Deinococcus radiodurans	KD8301	AB005471	recA
	339	L03291	recA
Enterobacter agglomerans	OGIX	M81466	recA
Enterococcus faecalis	OGIA	X55554	recA
Erwinia carotovora		J01672	
Escherichia coli			recA
Escherichia coli	V 40	X55552	recA
Escherichia coli	K-12	AE000354	recA
Frankia alni	Arl3	AJ006707	recA
Gluconobacter oxydans	D4	U21001	recA
Haemophilus influenzae	Rd	U32687	recA
Haemophilus influenzae	Rd Rd	U32741	recA
Haemophilus influenzae	Rd	L07529	recA
Helicobacter pylori	69A	Z35478	recA
Lactococcus lactis	ML3	M88106	recA
Legionella pneumophila		X55453	recA
Leptospira biflexa	serovar patoc	U32625	recA
Leptospira interrogans	serovar pomona		recA
Magnetospirillum magnetotacticum		X17371	recA
Methylobacillus flagellatum	MFK1	M35325	recA

Table 11. Micr bial species for which atpD and/or tuf and/or recA and/ r Rad51 and/or dmc1 sequ nc s are available in public databases (continued)

	Species	Strain	Accession number	Coding gene*
5	1 de Abrida no anno alono	ATOO 24220	V50544	
	Methylomonas clara	ATCC 31226	X59514	recA
	Mycobacterium leprae	1107D.	X73822	recA
	Mycobacterium tuberculosis	H37Rv	X58485	recA
	Mycoplasma genitalium	G37	U39717	recA
10	Mycoplasma mycoides	GM9	L22073	recA
	Mycoplasma pulmonis	KD735	L22074	recA
	Myxococcus xanthus		L40368	recA
	Neisseria animalis	NCTC 10212	U57910	recA
	Neisseria cinerea	LCDC 81-176	AJ223869	recA
15	Neisseria cinerea	LNP 1646	U57906	recA
	Neisseria cinerea	NCTC 10294	AJ223871	recA
	Neisseria cinerea	Vedros M601	AJ223870	recA
	Neisseria elongata	CCUG 2131	AJ223882	recA
	Neisseria elongata	CCUG 4165A	AJ223880	recA
20	Neisseria elongata	CCUG 4557	AJ223879	recA
	subsp. intermedia			
	Neisseria elongata	NCTC 10660	AJ223881	recA
	Neisseria elongata	NCTC 11050	AJ223878	recA
	Neisseria elongata	NHITCC 2376	AJ223877	recA
25	Neisseria flava	Bangor 9	AJ223873	recA
	Neisseria flavescens	LNP 444	U57907	recA
	Neisseria gonorrhoeae	CH95	U57902	recA
	Neisseria gonorrhoeae	FA19	X64842	recA
	Neisseria gonorrhoeae	MS11	X17374	recA
30	Neisseria lactamica	CCUC 7757	AJ223866	recA
	Neisseria lactamica	CCUG 7852	Y11819	recA
	Neisseria lactamica	LCDC 77-143	Y11818	recA
	Neisseria lactamica	LCDC 80-111	AJ223864	recA
	Neisseria lactamica	LCDC 845	AJ223865	recA
35	Neisseria lactamica	NCTC 10617	U57905	recA
	Neisseria lactamica	NCTC 10618	AJ223863	recA
	Neisseria meningitidis	44/46	X64849	recA
	Neisseria meningitidis	Bangor 13	AJ223868	recA
	Neisseria meningitidis	HF116	X64848	recA
40	Neisseria meningitidis	HF130	X64844	recA recA
	Neisseria meningitidis	HF46	X64847	recA recA
	Neisseria meningitidis	M470	X64850	recA
	Neisseria meningitidis	N94II	X64846	· ·
	Neisseria meningitidis	NCTC 8249	AJ223867	recA
45	Neisseria meningitidis	P63	X64845	recA
73	Neisseria meningitidis	S3446		recA
	Neisseria meningitidis	S3446	U57903	recA
	Neisseria mucosa	LNP 405	X64843	recA
	Neisseria mucosa Neisseria mucosa		U57908	recA
50	Neisseria mucosa Neisseria perflava	Vedros M1801 CCUG 17915	AJ223875	recA
50	Neisseria perflava Neisseria perflava	LCDC 85402	AJ223876	recA
	Neisseria pernava Neisseria pharyngis	NCTC 4590	AJ223862	recA
	Neisseria priaryrigis Neisseria polysaccharea	CCUG 18031	U57909	recA
	Neisseria polysaccharea	CCUG 18031 CCUG 24845	Y11815	recA
55	Neisseria polysaccharea Neisseria polysaccharea	CCUG 24846 CCUG 24846	Y11816	recA
55	Horosona porysaucharea	CCUG 24046	Y11814	recA

Table 11. Microbial species f r which atpD and/ r tuf and/or recA and/ r Rad51 and/or dmc1 sequences are available in public databases (continued)

Species	Strain	Accession number	Coding gene
		2/44047	
Neisseria polysaccharea	INS MA 3008	Y11817	recA
Neisseria polysaccharea	NCTC 11858	U57904	recA
Neisseria sicca	NRL 30016	AJ223872	recA
Neisseria subflava	NRL 30017	AJ223874	recA
Paracoccus denitrificans	DSM 413	U59631	recA
Pasteurella multocida		X99324	recA
Porphyromonas gingivalis	W83	U70054	recA
Prevotella ruminicola	JCM 8958	U61227	recA
Proteus mirabilis	pG1300	X14870	recA
Proteus vulgaris	F	X55555	recA
Pseudomonas aeruginosa		X05691	recA
Pseudomonas aeruginosa	PAM 7	X52261	recA
Pseudomonas aeruginosa	PAO12	D13090	recA
	1 7012	D90120	recA
Pseudomonas cepacia	OE 28.3	M96558	recA
Pseudomonas fluorescens	OE 20.3	L12684	recA
Pseudomonas putida	PpS145	U70864	recA
Pseudomonas putida	•		recA
Rickettsia prowazekii	Madrid E	AJ235273	
Rickettsia prowazekii	Madrid E	U01959	recA
Rhizobium leguminosarum biovar viciae	VF39	X599 5 6	recA
Rhizobium phaseoli	CNPAF512	X62479	recA
Rhodobacter capsulatus	J50	X82183	recA
Rhodobacter sphaeroides	2.4.1	X72705	recA
Serratia marcescens		M22935	recA
Sinorhizobium meliloti	2011	X59957	recA
Shigella flexneri		X55553	recA
Shigella sonnei	KNIH104S	AF101227	recA
Staphylococcus aureus	141111040	L25893	recA
	Challis V288	L20574	recA
Streptococcus gordonii	UA96	M81468	recA
Streptococcus mutans	UABU	Z17307	recA
Streptococcus pneumoniae	R800	Z34303	recA
Streptococcus pneumoniae	NZ131	U21934	recA
Streptococcus pyogenes	NZ ISI		
Streptococcus salivarius subsp. thermophilus		M94062	recA
Streptomyces ambofaciens	DSM 40697	Z30324	recA
Streptomyces coelicolor	A3(2)	AL020958	recA
Streptomyces lividans	TK24	X76076	recA
Streptomyces rimosus	R6	X94233	recA
Streptomyces venezuelae	ATCC10712	U04837	recA
Synechococcus spp.	PR6	M29495	recA
Thermotoga maritima	1110	L23425	recA
Thermus aquaticus		L20095	recA
Thermus thermophilus	HB8	D17392	recA
Thiobacillus ferrooxidans	1100	M26933	recA
Vibrio anguillarum		M80525	recA
	017	X71969	
Vibrio cholerae	017 2740-80		recA
Vibrio cholerae		U10162	recA
Vibrio cholerae	569B	L42384	recA

Table 11. Microbial species f r which atpD and/or tuf and/or recA and/ r Rad51 and/or dmc1 s quences are available in public databases (continued)

	Species	Strain	Accession number	Coding gene
5				
	Vibrio cholerae	M549	AF117881	recA
	Vibrio cholerae	M553	AF117882	recA
	Vibrio cholerae	M645	AF117883	recA
	Vibrio cholerae	M793	AF117878	recA
)	Vibrio cholerae	M794	AF117880	recA
	Vibrio cholerae	M967	AF117879	recA
	Xanthomonas citri	XW47	AF006590	recA
	Xanthomonas oryzae		AF013600	recA
	Xenorhabdus bovieni	T228/1	U87924	recA
;	Xenorhabdus nematophilus	AN6	AF127333	recA
	Yersinia pestis	231	X75336	recA
	Fungi, parasites, human and pla	ints		
)	Arabidopsis thaliana		U43652	Rad51
	Coprinus cinereus	Okayama-7	U21905	Rad51
	Emericella nidulans		Z80341	Rad51
	Gallus gallus		L09655	Rad51
	Homo sapiens		D13804	Rad51
	Leishmania major	Friedlin	AF062379	Rad51
	Neurospora crassa	74-OR23-1A	D29638	Rad51
	Saccharomyces cerevisiae		D10023	Rad51
	Schizosaccharomyces pombe		Z22691	Rad51
	Tetrahymena thermophila	PB9R	AF064516	Rad51
)	Trypanosoma brucei	stock 427	Y13144	Rad51
	Ustilago maydis		U62484	Rad51
	Xenopus laevis		D38488	Rad51
	Xenopus laevis		D38489	Rad51
	Candida albicans		U39808	dmc1
	Homo sapiens	-	D63882	dmc1
	Leishmania major	Friedlin	AF062380	dmc1
	Mus musculus		D58419	dmc1
	Schizosaccharomyces pombe	972h-	AL021817	dmc1

^{*} atpD indicates atpD sequences of the F-type atpD (V) indicates atpD sequences of the V-Type tuf indicates tuf sequences

⁴⁵ tuf (C) indicates tuf sequences divergent from main (usually A and B) copies of the elongation factor-Tu

tuf (ef-1) indicates tuf sequences of the eukaryotic type (elongation factor 1a)
tuf (M) indicates tuf sequences from organellar (mostly mitochondrial) origin

recA indicates recA sequences, Rad51 indicates Rad51 sequences or rad51 homologs and dmc1 indicates dmc1 sequences or dmc1 homologs

¹ Nucleotides sequences published in Arch. Microbiol. 1990 **153**:241-247

² These sequences are from TIGR database (http://www.tigr.org/tdb/tdb.html)

³ Nucleotides sequences published in FEMS Microbiology Letters 1988 50:101-106

Annex I: Specific and ubiquitous primers for DNA amplification (tuf sequences)

				Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID	Nucleotide position
10	Bacterial	species:	Chlamydia pneumoni	ae	
	630	5'-CGG AGC	TAT CCT AGT CGT TTC A	20	2-23
	629 ^a	5'-AAG TTC	CAT CTC AAC AAG GTC AAT	r A 20	146-170
15	Bacterial	species:	Chlamydia trachoma	tis	
	554	5'-GTT CCT	TAC ATC GTT GTT TTT CTC	22	82-105
	555 ^a	5'-TCT CGA	ACT TTC TCT ATG TAT GCA	A 22	249-272
20	Parasitica	al species:	Cryptosporidium pa	rvum	
	798	5'-TGG TTG	TCC CAG CCG ATC GTT T	865	158-179
	804 ^a	5'-CCT GGG	ACG GCC TCT GGC AT	865	664-683
25	799	5'-ACC TGT	GAA TAC AAG CAA TCT	865	280-300
	805 ^a	5'-CTC TTG	TCC ATC TTA GCA GT	865	895-914
	800	5'-GAT GAA	ATC TTC AAC GAA GTT GA	r 865	307-330
	806 ^a		ACC AGA CTT GAT AAG	865	946-966
30			acc han han mac an	865	353-372
	801 803 ^a	•	CCG AGA AGA TCC CA GTG GTA ACA CCA GC	865	616-635
	603				
25	802	_	TTT CTG GTT TCG TT	865 865	377-396 981-1000
35	807 ^a	5'-AAA GTG	GCT TCA AAG GTT GC	003	981-1000
	Bacterial	species:	Neisseria gonorrho	eae	
	551	5'-GAA GAA	AAA ATC TTC GAA CTG GC	T A 126	256-280
40	552 ^a	5'-TAC ACG	GCC GGT GAC TAC G	126	378-396
	Bacterial	species:	Streptococcus agal	actiae	
	549	5'-GAA CGT	GAT ACT GAC AAA CCT TT	A 207-210 ^b	308-331 ^C
45	550 ^a	5'-GAA GAA	GAA CAC CAA CGT TG	207-210 ^b	520-539 ^C

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

Annex I: Specific and ubiquitous primers for DNA amplification (tuf sequences) (continued)

_			-	Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
10	Parasitical	species:	Trypanosoma brucei		
	820	5'-GAA GGA	GGT GTC TGC TTA CAC	864	513-533
	821 ^a	5'-GGC GCA	AAC GTC ACC ACA TCA	864	789-809
15	820	5'-GAA GGA	GGT GTC TGC TTA CAC	864	513-533
	822 ^a	5'-CGG CGG	ATG TCC TTA ACA GAA	864	909-929
	Parasitical	species:	Trypanosoma cruzi		
20	794	51-GAC GAC	AAG TCG GTG AAC TT	840-842b	281-300 ^C
20	795 ^a		ACG CGA TGT GGC AG	840-842b	
	;- <u>.</u>				
	Bacterial ge	nus:	Bordetella spp.		
25	825		ARC GSA ACC ATC GTT CAG		1-26
	826	5'-TCG ATC	GTG CCG ACC ATG TAG AAC	GC 863	1342-1367
	Fungal genus	:	Candida spp.		
30	576	5'-AAC TTC	RTC AAG AAG GTY GGT TAC	AA 407-426,	332-357 ^d
				428-432 ^b	_
	632 ^a	5'-CCC TTT	GGT GGR TCS TKC TTG GA	407-426,	791-813 ^d
				428-432b	
35	631	5'-CAG ACC	AAC YGA IAA RCC ATT RAG	· · · ·	523-548d
	44.43			428-432b	
	632 ^a	5 - CCC TTT	GGT GGR TCS TKC TTG GA	407-426, 428-432 ^b	791-813 ^d
				420 432	
40	633	5'-CAG ACC	AAC YGA IAA RCC ITT RAG	•	523-548d
	632 ^a	51_CCC	GGT GGR TCS TKC TTG GA	428-432b 407-426,	sor orad
	032	5 -000 111	AP DIT JAI COT ADD 100	407-426, 428-432b	791-813 ^d

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\,\,\}mathrm{b}}$ These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the $\it T.~cruzi$ tuf sequence fragment (SEQ ID NO. 842).

 $^{^{}m d}$ The nucleotide positions refer to the C. albicans tuf(ef-1) sequence fragment (SEQ ID NO. 408).

Annex I: Specific and ubiquitous primers for DNA amplification (tuf sequences) (continued)

				Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
10	Bacterial c	enus:	Clostridium spp.		
	796	5'-GGT CCA	ATG CCW CAA ACW AGA	32,719-	32-52 ^b
1.5	79 7 °	5'-CAT TAA	GAA TGG YTT ATC TGT SKC	· · · · · · · · · · · · · · · · · · ·	320-346 ^b
15	808	5'-GCI TTA	IWR GCA TTA GAA RAY CCA	724,736 ^a 32,719-	224-247b
	809 ^c	5'-TCT TCC	TGT WGC AAC TGT TCC TCT	724,736 ^a 32,719-	337-360 ^b
20	810	5'-AGA GMW	ACA GAT AAR SCA TTC TTA	724,736 ^a 32,719-	320-343 ^b
	811 ^C		AGA ATT GTG GTC TRT ATC	724,736 ^a	686-710 ^b
25				724,736 ^a	
	Bacterial g	enus:	Corynebacterium spp	•	
	545 546 ^C		CTB GTY GCI CTI AAC AAG CCG GTR ATG GTG AAG AT	TG 34-44,662 ⁸ 34-44,662 ⁸	_
30	Parasitical	genus:	Entamoeba spp.		
	703 704 ^C		AAT TCG AAA CAT CT CCA ATT AAT GTT GG	512 512	38-57 442-461
35	703		AAT TCG AAA CAT CT	512	38-57
	705 ^C		TTC CAA TAC CTG AA	512	534-553
40	703 706 ^C		AAT TCG AAA CAT CT CTT CAC ATC CAA CA	512 512	38-57 768-787
	793 704 ^C		TTG CTG CTG GTA CT	512 512	149-168 442-461
				312	772 - 70I

^a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the C. perfringens tuf sequence fragment (SEQ ID NO. 32).

 $^{^{\}rm C}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the C. diphtheriae tuf sequence fragment (SEQ ID NO. 662).

Annex I: Specific and ubiquitous prim rs for DNA amplification (tuf sequences) (continued)

					Originating D	NA fragment
5	SEQ ID NO.	Nucleotide	sequence		SEQ ID	Nucleotide position
10	Parasitica	l genus:	Trypanosoma	spp.		
	823	5'-GAG CGG	TAT GAY GAG ATT	r gt	529,840-	493-512 ^b
					842,864 ^a	1.
	824 ^C	5'-GGC TTC	TGC GGC ACC ATC	G CG	529,840-	1171-1190 ^b
15					842,864 ^a	
	Bacterial	family:	Mycobacteria	aceae		
	539	5'-CCI TAC	ATC CTB GTY GC	CTI AAC AAG	122	85-111
20	540 ^C	5'-GGD GCI	TCY TCR TCG WA	TCC TG	122	181-203
	Bacterial	group:	Enterobacte	riaceae gro	up	
	933	5'-CAT CAT	CGT ITT CMT GA	A CAA RTG	78,103,146,	390-413 ^d
25					168,238,698 ^a	
	934 ^C	5'-TCA CGY	TTR RTA CCA CG	C AGI AGA	78,103,146,	831-854 ^d
					168,238,698 ^a	
30	Parasitica	l group:	Kinetoplast	idae group		
50	923	5'-GAC GCI	GCC ATC CTG ATC	3 ATC	511,514-526,	166-188 ^e
					529,840-842,	
	924 ^C	EL-NGC TCN	GTC GTC ACG TTC	a aca	864 ^a 511,514-526,	648-668 ^e
35	924	5 PACE TEA	GIC GIC ACG III	3 605	529,840-842,	
					864 ^a	
		51 ANG 6NG	ATG GTT GTG TG	O 150	511,514-526,	274-293 ^e
	925	5 - AAG CAG	AIG GII GIG IG	c IG	529,840-842,	
40					864 ^a	
	926 ^C	5'-CAG CTG	CTC GTG GTG CA	T CTC GAT	511,514-526,	
					529,840-842, 864 ^a	
					004-	

⁴⁵ a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the T. brucei tuf sequence fragment (SEQ ID NO. 864).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

⁵⁰ d The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 698).

 $^{^{\}mathrm{e}}$ The nucleotide positions refer to the L. tropica tuf sequence fragment (SEQ ID NO. 526).

Annex I: Specific and ubiquitous primers for DNA amplification (tuf s quences) (continued)

				Originating DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
10	Parasitical	group:	Kinetoplastidae group	(continued)
	927	5'-ACG CGG	AGA AGG TGC GCT T	511,514-526, 389-407 ^b 529,840-842, 864 ^a
15	928 ^C	5'-GGT CGT	TCT TCG AGT CAC CGC A	511,514-526, 778-799b 529,840-842, 864 ^a
	Bacterial g	roup:	Pseudomonads group	
20				_
	541		ATG TTC CGC AAG CTG CT	153-155 ^a 476-498 ^d
	542 ^C	5'-CGG AAR	TAG AAC TGS GGA CGG TAG	153-155 ^a 679-702 ^d
	541	5'-GTK GAA	ATG TTC CGC AAG CTG CT	153-155 ^a 476-498 ^d
25	544 ^C	5'-AYG TTG	TCG CCM GGC ATT MCC AT	153-155 ^a 749-771 ^d
		Universal	. primers	
30	636	5'-ACT GGY	GTT GAI ATG TTC CGY AA	7,54,78, 470-492 ^e 100,103,159, 209,224,227 ^b
25	637 ^a	5'-ACG TCA	GTI GTA CGG AAR TAG AA	7,54,78, 692-714 ^e 100,103,159, 209,224,227 ^b
35	638	5'-CCA ATG	CCA CAA ACI CGT GAR CAC A	T 7,54,78, 35-60 ^f 100,103,159, 209,224,227 ^b
40	639 ^a	5'-TTT ACG	GAA CAT TTC WAC ACC WGT I	

^a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the *L. tropica tuf* sequence fragment (SEQ 45 ID NO. 526).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the P. aeruginosa tuf sequence fragment (SEQ ID NO. 153).

⁵⁰ e The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 78).

 $^{^{\}rm f}$ The nucleotide positions refer to the B. cereus tuf sequenc fragment (SEQ ID NO. 7).

Annex I: Specific and ubiquitous primers for DNA amplification (tuf sequences) (continu d)

			Originating DNA fragment		
5	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position		
10	643	5'-ACT GGI GTI GAR ATG TTC CGY AA	1,3,4,7,12, 470-492b 13,16,49,54, 72,78,85,88,		
15			91,94,98,103, 108,112,115, 116,120,121, 126,128,134, 136,146,154,		
20	644 ^C	5'-ACG TCI GTI GTI CKG AAR TAG AA	159,179,186, 205,209,212, 224,238 ^a 1,3,4,7,12, 692-714 ^b		
25			13,16,49,54, 72,78,85,88, 91,94,98,103, 108,112,115, 116,120,121, 126,128,134,		
30			136,146,154, 159,179,186, 205,209,212, 224,238 ^a		

³⁵ a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 78).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Ann x I: Specific and ubiquitous primers for DNA amplification (tuf sequences) (continued)

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
643	5'-ACT GGI GTI GAR ATG TTC CGY A	13,16,49,54,
		72,78,85,88, 91,94,98,103,
		108,112,115,
		116,120,121,
		126,128,134,
		136,146,154, 159,179,186,
		205,209,212,
		224,238ª
645 ^C	5'-ACG TCI GTI GTI CKG AAR TAR A	
0.15	3 101 011 011 0110 1111 1111 1111	13,16,49,54,
		72,78,85,88,
		91,94,98,103,
		108,112,115,
		116,120,121,
		126,128,134,
		136,146,154, 159,179,186,
		205,209,212,
		224,238 ^a
646	5'-ATC GAC AAG CCI TTC YTI ATG SO	C 2,13,82 317-339 ^d
		122,145 ^a
647 ^C	5'-ACG TCC GTS GTR CGG AAG TAG A	_
		122,145 ^a
646	5'-ATC GAC AAG CCI TTC YTI ATG SO	C 2,13,82 317-339 ^d
		122,145 ^a
648 ^C	5'-ACG TCS GTS GTR CGG AAG TAG AA	
		122,145 ^a

⁴⁵

^a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 78).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the A. meyeri tuf sequence fragment (SEQ ID NO. 2)

Annex I: Specific and ubiquitous primers for DNA amplification (tuf sequences) (continued)

			Originating D	NA fragment
SEQ ID NO.	Nucleotide sequence		SEQ ID NO.	Nucleotide position
	Universal primers	(continued)		<u>.</u>
649	5'-GTC CTA TGC CTC AR	A CWC GIG AGC AC	8,86,141,143 ^a	33-58b
650 ^C	5'-TTA CGG AAC ATY TO	A ACA CCI GT	8,86,141,143 ^a	473-495 ^b
636	5'-ACT GGY GTT GAI AT	G TTC CGY AA	8,86,141,143 ^a	473-495b
651 ^C	5'-TGA CGA CCA CCI TC	Y TCY TTY TTC A	8,86,141,143 ²	639-663b
	Sequencing primers	ı		
556	5'-CGG CGC NAT CYT SG	T TGT TGC	668 ^d	306-326
557 ^C	5'-CCM AGG CAT RAC CA		668 ^d	1047-1068
694	5'-CGG CGC IAT CYT SG	T TGT TGC	668 d	306-326
557c	5'-CCM AGG CAT RAC CA		668 ^d	1047-1068
664	5'-AAY ATG ATI ACI GG	I GCI GCI CAR ATG	GA 619 ^d	604-632
652 ^C	5'-CCW AYA GTI YKI CC			1482-1508
664	5'-AAY ATG ATI ACI GG	T GCT GCT CAR ATO	: GA 619 ^d	604-632
561 ^C	5'-ACI GTI CGG CCR CC		619 ^d	1483-1505
543	5'-ATC TTA GTA GTT TC	T GCT GCT GA	607	8-30
660 ^C	5'-GTA GAA TTG AGG AC	G GTA GTT AG	607	678-700
658	5'-GAT YTA GTC GAT GA	T GAA GAA TT	621	116-138
659 ^C	5'-GCT TTT TGI GTT TC	W GGT TTR AT	621	443-465
658	5'-GAT YTA GTC GAT GA	T GAA GAA TT	621	116-138
661 ^C	5'-GTA GAA YTG TGG WO	G ATA RTT RT	621	678-700
558	5'-TCI TTY AAR TAY GO	I TGG GT	665 ^d	157-176
559 ^C	5'-CCG ACR GCR AYI GT	Y TGI CKC AT	665 ^d	1279-1301
813	5'-AAT CYG TYG AAA TG	C AYC ACG A	665 ^d	687-708
559 ^C	5'-CCG ACR GCR AYI GT	Y TGI CKC AT	665 ^d	1279-1301

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the B. distasonis tuf sequence fragment (SEQ ID NO. 8).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from data banks.

Annex I: Sp cific and ubiquitous primers for DNA amplification (tuf sequences) (continued)

		Originating	DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
	Sequencing primers (continued)		
558	5'-TCI TTY AAR TAY GCI TGG GT	665 ^a	157-176
815 ^b	5'-TGG TGC ATY TCK ACR GAC TT	665 ^a	686-705
560	5'-GAY TTC ATY AAR AAY ATG ATY AC	665 ^a	289-311
559b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a	1279-1301
653	5'-GAY TTC ATI AAR AAY ATG AT	665 ^a	289-308
559 ^b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a	1279-130
558	5'-TCI TTY AAR TAY GCI TGG GT	665 ^a	157-176
655 ^b	5'-CCR ATA CCI CMR ATY TTG TA	665 ^a	754-773
654	5'-TAC AAR ATY KGI GGT ATY GG	665 ^a	754-773
559b	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a	1279-130
696	5'-ATI GGI CAY RTI GAY CAY GGI AAR A	AC 698 ^a	52-77
697 ^b	5'-CCI ACI GTI CKI CCR CCY TCR CG	698 ^a	1132-115
911	5'-GAC GGM KKC ATG CCG CAR AC	853	22-41
₉₁₄ b	5'-GAA RAG CTG CGG RCG RTA GTG	853	700-720
912	5'-GAC GGC GKC ATG CCG CAR AC	846	20-39
914 ^b	5'-GAA RAG CTG CGG RCG RTA GTG	846	692-712
913	5'-GAC GGY SYC ATG CCK CAG AC	843	251-270
915 ^b	5'-AAA CGC CTG AGG RCG GTA GTT	843	905-925
916	5'-GCC GAG CTG GCC GGC TTC AG	846	422-441
561 ^b	5'-ACI GTI CGG CCR CCC TCA CGG AT	619 ^a	1483-150
664	5'-AAY ATG ATI ACI GGI GCI GCI CAR A	ATG GA 619ª	604-632
917 ^b	5'-TCG TGC TAC CCG TYG CCG CCA T	846	593-614

a Sequences from data banks.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex II: Sp cific and ubiquitous primers for DNA amplification (atpD sequences)

				Originating DNA fragment	_
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position	-
10	Bacterial s	pecies:	Streptococcus agalactia	ie	_
	627	5'-ATT GTC	TAT AAA AAT GGC GAT AAG TC	379-383 ^a 42-67 ^b	
	625 ^C	5'-CGT TGA	AGA CAC GAC CCA AAG TAT CC	379-383 ^a 206-231 ^b	
15	628	5'-AAA ATG	GCG ATA AGT CAC AAA AAG TA	379-383 ^a 52-77 ^b	
15	625 ^C		AGA CAC GAC CCA AAG TAT CC	379-383 ^a 206-231 ^b	
	627	5'-ATT GTC	TAT AAA AAT GGC GAT AAG TC	379-383 ^a 42-67 ^b	
	626 ^C		CTT TTA AGT AAG GTG CTA AT	379-383 ^a 371-396 ^b	
20	628	5'-AAA ATG	GCG ATA AGT CAC AAA AAG TA	379-383 ^a 52-77 ^b	
	626 ^C		CTT TTA AGT AAG GTG CTA AT	379-383 ^a 371-396 ^b	
	Bacterial g	enus:	Candida spp.		
25		51 330 300	GTC AGR RCI ATT GCY ATG GA	460-472, 101-126 ^d	
	634	5AAC ACI	GIC AGR RCI AII GCI AIG GA	474-478 ^a	
	635 ^C	5'-AAA CCR	GTI ARR GCR ACT CTI GCT CT	460-472, 617-642 ^d	
30				474-478 ^a	
					_

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the S. agalactiae atpD sequence fragment (SEQ ID NO. 380).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the C. albicans atpD sequence fragment (SEQ ID NO. 460).

Ann x II: Specific and ubiquitous primers for DNA amplification (atpD sequences) (continued)

										Originating I	ONA fragment
SEQ ID	NO.	Nuc]	leotide	sequ	ence					SEQ ID No.	Nucleotide position
	·	Uni	versa	pr	imer	B					7.
562	5'-CAR	ATG	RAY GA	R CCI	CCI	GGI	GYI	MGI	ATG	243,244,262, 264,280,284,	
										291,297,309,	
										311,315,317, 324,329,332,	
										334-336,339,	
										342,343,351,	•
										356,357,364-	
										366,370,375,	
										379,393 ^a	b
563 ^C	5'-GGY	TGR	TAI CC	I ACI	GCI	GAI	GGC	AT		243,244,262, 264,280,284,	
										291,297,309,	
										311,315,317,	
										324,329,332,	
										334-336,339,	
										342,343,351,	
										356,357,364- 366,370,375,	
										379,393 ^a	
	5 L	GGT	CAD AM		CAR.	ООТ	CCT	COT		242 244 262	522-550 ^b
564	5 - TAY	GGI	CAR AT	J AAI	GAR	CCI	CCI	GGI	AA	243,244,262, 264,280,284,	
										291,297,309,	
										311,315,317	
										324,329,332,	
										334-336,339,	
										342,343,351, 356,357,364	
										366,370,375	
										379,393 ^a	
565 ^C	5'-GGY	TGR	TAI CC	I ACI	GCI	GAI	GGD	AТ		243,244,262	
										264,280,284	
										291,297,309	
										311,315,317, 324,329,332,	
										334-336,339	
										342,343,351	
										356,357,364	
										366,370,375	
										379,393 ^a	•

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex II: Specific and ubiquitous primers for DNA amplification (atpD s quences) (continued)

					Originating D	NA fragment
5	SEQ ID NO.	Nucleotide sequen	ce		SEQ ID	Nucleotide position
		Universal prime	ers (cont	inued)	· · · · · · · · · · · · · · · · · · ·	
10	640	5'-TCC ATG GTI TW	Y GGI CAR A	ATG AA	248,284,315, 317,343,357,	513-535 ^b
					366,370,379,39	3 ^a
15	641 ^C	5'-TGA TAA CCW AC	I GCI GAI G	GC ATA CG	248,284,315, 317,343,357,	684-709 ^b
					366,370,379,39	3 ^a
	642	5'-GGC GTI GGI GA	R CGI ACI C	CGT GA	248,284,315, 317,343,357,	438-460 ^b
20					366,370,379,39	₃ a
	641 ^C	5'-TGA TAA CCW AC	I GCI GAI G	GC ATA CG	248,284,315, 317,343,357,	684-709 ^b
					366,370,379,39	3 ^a
25		Sequencing prin	ners			
	566	5'-TTY GGI GGI GC	I GGI GTI G	GI AAR AC	₆₆₉ d	445-470
	567 ^C	5'-TCR TCI GCI GG	I ACR TAI A	YI GCY TG	669 ^d	883-908
30	566	5'-TTY GGI GGI GC			669 d	445-470
	814	5'-GCI GGC ACG TA	C ACI GCC T	CG.	666 d	901-920
	568 567 ^C	5'-RTI ATI GGI GC 5'-TCR TCI GCI GG			669 ^d	25-47 883-908
35	307	3 1011 101 001			007	003 300
	570	5'-RTI RYI GGI CC	I GTI RTI G	BAY GT	672 ^d	31-53
	567 ^C	5'-TCR TCI GCI GG	I ACR TAI A	YI GCY TG	669 d	883-908
	572	5'-RTI RTI GGI SC			669 ^d	25-44
40	567 ^C	5'-TCR TCI GCI GG	I ACR TAI A	YI GCY TG	669a	883-908
	569 567 ^C	5'-RTI RTI GGI SC			₆₇₁ d ₆₆₉ d	31-53
	30/-	J - ICK ICI GCI GG.	I ACK IAI A	TI OCI IG		883-908
45	571 567 ^C	5'-RTI RTI GGI CC			670 ^d 669 ^d	31-53 883-908
	30,	2 2011 202 002 00.	Int A	501 16	307	303-300

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from data banks.

Annex II: Specific and ubiquitous primers for DNA amplification (atpD sequences) (continued)

		Originating DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
	Sequencing primers (continued)	
700	5'-TIR TIG AYG TCG ART TCC CTC ARG	669 ^a 38-61
567 ^b	5'-TCR TCI GCI GGI ACR TAI AYI GCY TG	669 ^a 883-908
568	5'-RTI ATI GGI GCI GTI RTI GAY GT	669 ^a 25-47
573 ^b	5'-CCI CCI ACC ATR TAR AAI GC	666 ^a 1465-1484
574	5'-ATI GCI ATG GAY GGI ACI GAR GG	666 ^a 283-305
₅₇₃ b	5'-CCI CCI ACC ATR TAR AAI GC	666 ^a 1465-1484
574	5'-ATI GCI ATG GAY GGI ACI GAR GG	666 ^a 283-305
708 ^b	5'-TCR TCC ATI CCI ARI ATI GCI ATI AT	666 ^a 1258-1283
681	5'-GGI SSI TTY GGI ISI GGI AAR AC	685 694-716
682 ^b	5'-GTI ACI GGY TCY TCR AAR TTI CCI CC	686 1177-1202
681	5'-GGI SSI TTY GGI ISI GGI AAR AC	685 694-716
683 ^b	5'-GTI ACI GGI TCI SWI AWR TCI CCI CC	685 1180-1205
681	5'-GGI SSI TTY GGI ISI GGI AAR AC	685 694-716
699	5'-GTI ACI GGY TCY TYR ARR TTI CCI CC	686 1177-1202
681	5'-GGI SSI TTY GGI ISI GGI AAR AC	685 694-716
812 ^b	5'-GTI ACI GGI TCY TYR ARR TTI CCI CC	685 1180-1205

a Sequences from data banks.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex III: Specific and ubiquitous probes for hybridization (tuf sequences)

				Originating I	NA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
10	Bacterial s	species:	Candida albican	s	
	577	5'-CAT GAT	TGA ACC ATC CAC CA	407-411 ^a	406-425 ^b
1.5	Bacterial s	species:	Candida dublini	ensis	
15	578	5'-CAT GAT	TGA AGC TTC CAC CA	412,414-415 ^a	418-437 ^C
	Bacterial s	species:	Enterococcus fa	ecalis	
20	580	5'-GCT AAA	CCA GCT ACA ATC ACT	r CCA C 62-63,607 ^a	584-608d
	603	5'-GGT ATT	AAA GAC GAA ACA TC	62-63,607 ^a	440-459d
25	Bacterial s	species:	Enterococcus fa	ecium	
25	602	5'-AAG TTG	AAG TTG TTG GTA TT	64,608 ^a	426-445 ^e
	Bacterial s	species:	Enterococcus ga	llinarum	
30	604	5'-GGT GAT	GAA GTA GAA ATC GT	66,609 ^a	419-438 [£]
	Bacterial s	species:	Escherichia col	i	
35	579	5'-GAA GGC	CGT GCT GGT GAG AA	78	503-522
22					

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the C. albicans tuf(ef-1) sequence fragment (SEQ ID NO. 408).

^C The nucleotide positions refer to the *C. dubliniensis* tuf(ef-1) sequence fragment (SEQ ID NO. 414).

d The nucleotide positions refer to the E. faecalis tuf sequence fragment (SEQ ID NO. 607).

⁴⁵ $^{\rm e}$ The nucleotide positions refer to the *E. faecium* tuf sequence fragment (SEQ ID NO. 608).

f The nucleotide positions refer to the E. gallinarum tuf sequence fragment (SEQ ID NO. 609).

Annex III: Specific and ubiquitous probes for hybridization (tuf sequences) (continued)

	*			Originating	DNA fragment
5				Originating	DNA Iragment
	SEQ ID NO.	Nucleotide	sequence	SEQ ID	Nucleotide
				NO.	position
					-
10	Bacterial	species:	Haemophilus inf	7,100,500	
			comopiiiius ini	Idenzae	
	581	5'-ACA TCG	GTG CAT TAT TAC GTG	3 G 610 ^a	551-572b
					331-372
1.5	Bacterial	species:	Staphylococcus	aureus	
15					
	584		CAC ATC TAA AAC AA	176-180 ^C	369-388 ^d
	585		TAC TGA ATT CAA AG	176-180 ^C	525-544d
	586		TAT ACG TAT TAT CA	176-180 ^C	545-564 ^d
	587		ATC AAA AGA CGA AG	176-180 ^C	555-574d
20	588	5'-TCT TCT	CAA ACT ATC GTC CA	176-180°	593-612 ^d
	Bacterial	anaging.	Chamberlane -		
	Backerial	species:	Staphylococcus (epidermidis	
	589	5'-GCA CGA	AAC TTC TAA AAC AA	185,611 ^C	445 45.8
25	590		TAT TAT CTA AAG AT	•	445-464 ^e
	591		TTC TAT TAC ACC AC	185,611 ^c	627-646 ^e
	592		TGA AGT ATA CGT AT	185,611 ^C	586-605 ^e
	593		AAC TAT CGC CCA CA	185,611 ^C	616-635 ^e
	393	5'-IIC ACI	AAC TAT CGC CCA CA	185,611 ^C	671-690 ^e
30	Bacterial	species:	Staphylococcus l	haemolyticus	
		-			
	594	5'-ATT GGT	ATC CAT GAC ACT TC	186,188-190°	437-456 [£]
	595	5'-TTA AAG	CAG ACG TAT ACG TT	186,188-190	
35	D				
33	Bacterial	species:	Staphylococcus h	nominis	
	596	5! - ርአአ አጥጥ :	ATT GGT ATC AAA GA		
	597		ATC AAA GAA ACT TC	191,193-196	
	598		ACC TCA CAC AAA AT	191,193-1969	
40	330	5 -AAI TAC	ACC ICA CAC AAA AT	191,193-196 ⁰	595-6149

a Sequences from data banks.

b The nucleotide positions refer to the H. influenzae tuf sequence fragment (SEQ ID NO. 610).

⁴⁵ C These sequences were aligned to derive the corresponding probe.

 $^{^{}m d}$ The nucleotide positions refer to the ${\it S.}$ aureus tuf sequence fragment (SEQ ID NO. 179).

 $^{^{}m e}$ The nucleotide positions refer to the S. epidermidis tuf sequence fragment (SEQ ID NO. 611).

f The nucleotide positions refer to the S. haemolyticus tuf sequence fragment (SEQ ID NO. 186).

 $^{^{}m 9}$ The nucleotide positions refer to the S. hominis tuf sequence fragment (SEQ ID NO. 191).

Annex III: Specific and ubiquitous probes for hybridization (tuf sequences) (continued)

													Originatin	DNA	fragment
SEQ I	D 1	10.	Nu	cleo	tide	seq	uenc	e					SEQ ID		ucleotide
													NO.		position
Bact	er	ial sp	ecie	:s:		St	aphy	yloc	occ	us s	sapı	ophy	rticus		
599)	5 ' - CGG	TGA	AGA	AAT	CGA	AAT	CA					198-200	١.	406-425 ^b
600)	5'-ATG	CAA	GAA	GAA	TCA	AGC	AA					198-200 ⁵	ι .	431-450 ^b
601		5'-GTT	TCA	CGT	GAT	GAT	GTA	CA					198-200	ι	536-555 ^b
695	•	5'-GTT	TCA	CGT	GAT	GAC	GTA	CA					198-200	ì	563-582 ^b
Bact	er	ial sp	ecie	es:		St.	rep	tocc	ccu	s ag	gala	ctia	ie		
582	C	5'-TTT	CAA	CTT	CGT	CGT	TGA	CAC	GAA	CAG	T		207-210	ì	404-431 ^d
583	C	5'-CAA	CTG	CTT	TTT	GGA	TAT	CTT	CTT	TAA	TAC	CAA	CG 207-210	ı	433-467 ^d
Bact	er	ial gr	oup:	1						rou		lifla	vus-flav	esce.	ns-
620)	5'-ATT	GGT	GCA	TTG	CTA	CGT						58,65,66	a	527-544 ^e
Bact	er	ial ge	nus:	;		St	aphy	yloc	occ	us :	spp.	•			•
605	5	5'-GAA	ATG	TTC	CGT	AAA	TTA	TT					176-203	ā	403-422 ^f
606	5	5'-ATT	AGA	CTA	CGC	TGA	AGC	TG					176-203	a	420-439f

a These sequences were aligned to derive the corresponding primer.

³⁵ b The nucleotide positions refer to the S. saprophyticus tuf sequence fragment (SEQ ID NO. 198).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

e The nucleotide positions refer to the E. flavescens tuf sequence fragment (SEQ ID NO. 65).

 $^{^{}m f}$ The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

Annex IV: Strategy for the selection of amplification/sequencing primers from atpD sequences.

\$

SEQ ID NO: 910 PACT - PACT - PACC -		ACT - ACT - ACT - ACT - ACT 670	568 570 572 569 571	566 A 567	,
GGACC	ATGTACCTGC GGATGACT ATGTGCCGGC CGACGACC ACGTGCCGGC CGACGACC ACGTGCCGGC CGACGACC ACGTACCGGC TGATGACT ACGTACCGGC TGATGACT	ACGINCIGO GGATGATI ACGINCAGO CGATGACT ATGINCONO TGATGAC ATGINCAGO AGANGACT ATGINGONO AGANGACT		TICCIGC IGAYG	tches
GGCCGTGT GGCCGTGT GGCCGTAT GGCAGTAT	AGCCGTATCT GGCCATCT AGCCGTCT GGCTGTTT	GCCCGTTT GCCCGTAT ACCCATCT AGCCGTGT	·	CA RGCIRTIT AYGTICCIGC IGAYGA	atpD gene fragment (SEQ ID NO: 669). sequence or match that sequence. Mismatches
CGTGGGCAAG ACCGTCCA CGTGGGCAAG ACCGTCCA CGTGGGCAAG ACCGTCCA CGTGGGCAAG ACCGTCCA TGTAGGTAAA ACCGTCCA	GGTCGGCAAG ACGCTCCA GGTCGGCAAG ACGCTGCA GGTGGGCAAG ACGCTGCA AGTGGGTAAA ACTGTGCA AGTGGGTAAA ACTGTGCA AGTGGGTAAA ACTGTGCA	A ACCGTCCAACCGTCCAACCGTCCAAACCGTCCAAACCGTCCAAACCGTCCAAACCGTCCAAACCGTCCAACCGCTCCAACCGTCCAACCGTCCAACCGTCCAACCGTCCAACCGTCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCC			nt (SEQ ID n that sequ
TGG CGTGGGCAA JGG CGTGGGCAA JGG CGTGGGCAA JGG TGTAGGTAA	GCGGGCGCCGG GGTGGCAAG ACCCTCCA AGCCGTATGGGGCGCCGG GGTGGGCAAG ACGGTGCA GGCGATCT GCGGGGCGCCGG GGTGGGCAAG ACGGTGCA AGCCATCT GCGGGGCCCG AGTGGGTAAA ACTGTGCA GGCGTGTTT GAGGTGCCGG AGTAGGTAAA ACTGTGCA GGCTGTTTT GAGGTGCCGG AGTAGGTTAAA ACTGTGCA GCCTGTTTTT	GIGGIGCCGG AGITICIANA ACAGTICA GGCGGTTT GIGGIGCCGG IGITICANA ACAGTICA GCCTGIAI GIGGIGCTGG IGITICANA ACGGTICA ACCGAICT GIGGGGGCTGG CGIAGCCAAA ACGGTICA ACCGGICT		TTYG GIGGIGCIGG IGTIGGIAAR AC	ene fragmer ce or match
3 Trice ecedrecree Trice ecedecece Trice ecedecece Trice ecedecece	TOTTICE GCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TTCG GTGGTGCC TTCG GTGGTGCT TTTG GTGGGGGCT		rtyg giggigci	<i>coli atpD</i> g cted sequen
AGTGCAT CGGCGCCGTT ATCGACGTGGTGTTCG GCGGTGCTGG CGTGGGCAAG ACCGTCCA AGTGCAT CGGCGCCGTG GTGGALTTTCTGTTCG GCGGCGCGG CGTGGGCAAG ACCGTCCA AAATCAT CGGCGCCGTG ATCGACGTGGTGTTCG GCGCGCCGCG CGTGGGCAAG ACCGTCCA AAATCAT CGGCGCCGTA GTTGACGTCGTGTTCG GTGGTGCGG CGTGGGCGCAAA ACCGTACA AAAATCAT CGGTGCGGTT GTTGACGTGGTGTTCG GTGCTCCGC TGTAGGTAAAA ACCGTACA	AGGILAT TGGCCCGGG GITGACGTCGTCTTCG AGGILGT CGGTCCCGTG ATTCACGTGGTGTTCG GGGTCAC TGGCCCCTC GICCACGTCGTGTTCG AGGINAT TGGCCCTGTG GICCANGTGTTGTTTCG AAATTAT TGGCCCAGIT AIAGAIGTGGTATTTG	AGGITAT TGGACCAGIA GTCGAIGITATITTICG AGGIAAI AGGACCIGII GIGGAIATIAIGITICG AAGIGAI TGGCCCGGIA GIIGAAGGICATATITG AGGITLI AGGCCCGGIG GIAGAIGIGGTGIITG BATAN LOCCOCGIG GIAGAIGIGGTGIITG	RIIGAYGI RIIGA RIIGAIAI RIIGAIGI	•	to the $\it Escherichia$ $\it coli$ $\it atpD$ $\it gene$ $\it fragment$ (SEQ ID NO: 669). entical to the selected sequence or match that $\it sequence$. Mis
AGTGCAT CGCCCCGTT AT AGTGCAT CGCCCCCGT GT AAATCAT CGCCCCCGT AT AAATCAT CGCCCCCTR GT	AGGITAT TGGCCGGTG GT AGGITGT CGGTCCGTG AT GGGTCAC TGGCCCGTC GT AGGTAAT TGGCCCAGTT AT	AGGITAI TGGACCAGIA GT AGGIGAI AGGACCIGII GI AAGIGAI TGGCCGGIA GI AGGITLI AGGCCGGIG GI	CCIGTI SCIGTI SCIGTI		rs to the E , identical †
23 AGTGCAT CGGC AGTGCAT CGGC AAATCAT CGGC AGGTAAT CGGG	AGGITAT IGGC AGGITCT CGGI GGGTCAC ICGG AGGIAAT IGGC AAATTAT IGGC	AGGITAI IGGA AGGIAAI AGGA AAGIGAI IGGC AGGITEI AGGC	RIIRY IGGI RIIRT IGGI RIIRT IGGI RTIRT IGGI	۵	ering refer pitals are lower case
cepacia Pertussis aeruginosa coli gonorrhoeae	thermoacetica aurantiaca tuberculosis fragilis lytica	A. woodii C. acetobutylicum M. pneumoniae H. pylori Selected semmence ^a	Selected sequence ^a Selected sequence ^a Selected sequence ^a Selected sequence ^a	Selected sequence ^a Selected sequence ^{a, b}	The sequence numbering refers t Nucleotides in capitals are ida are indicated by lower cases.
B. cepacia B. pertussis P. aeruginosa E. coli N. gonorrhoea	M. thermoac S. aurantia M. tubercul B. fragilis C. lytica	A. woodii C. acetobutyl M. pneumoniae H. pylori Selected semm	Selecter Selecter Selecter Selecter	Selecter	The seq Nucleot are ind
10	15	20	25	30	

* "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "W" stands for A or T; "S" stands for C or G. "I" stands for Inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.
b This sequence is the reverse-complement of the selected universal primer SEQ ID NO: 567.

SEQ ID NO: 682^b GTIACIG GYTCYTCRAA RTTICCICC

SEQ ID NO: 681 GGISSITTY GGIISIGGIA ARAC

Selected universal primers sequences:

20

SEQ ID NO: 683^b GTIACIG GITCISWIAW RTCICCICC

amplification/sequencing primers from atpD (V-type)Strategy for the selection of universal sequences. Annex V:

S

SEQ ID NO:	685	687	693	688	692	689	989		
1208	CC AGGICCGIII GGIGCAGGGA AGACAGITCIGGIGGAG AIAICtctGA ACCAGIGACI CA	CC GGGGCCGIIC GGGICCGGGA AGACGGICCCGGCGGG ACIICtccGA GCCGGICACC CA	CC TGGGCCCTTC GGCAGCGGCA AGACCGTCCGGGCGCG ACaTgtccGA GCCCGTGACC CA	CC TGGGGCCTTC GGATGTGGCA AGACTGTCCCGGTGGAG ACTTCtcAGA tCCCGTGACG AC	CC TGGCGCGTTT GGATGCGGAA AGACGGTCCTGGAGGTG ACTTTtctGA CCCAGTGACG TC	CC TGGTGCATTT GGTTGTGGAA AAACTTGCCAGGTGGTG ATTTCtctGA CCCTGTAACT AC	CC AGGACCITIT GGIGCAGGGA AAACAGIGCAGGAGGAA ACITIGAAGA ACCAGICACI CA	GGIGGIA AYTTYGARGA RCCIGTIAC	GGIGGIG AYWTIWSIGA ICCIGTIAC
	y ATaTC	3 ACITC	g ACaTg	3 ACTIC	9 ACTIT	g ATTTC	A ACTIT	A AYTTY	S AYWII
711 1177	. TCTGGTGGA	ccc eeceee	cce eccec	. CCCGGTGGA	. CCTGGAGGT	CCAGGTGGT	GCA GCAGGA	GGIGGI	GGIGGI
719	AGACAGT.	AGACGGT.	AGACCGT.	AGACTGT.	AGACGGT.	AAACTTG.	AAACAGT.	ARAC	
	GGTGCAGGGA	GGTCCGGGA	GGCAGCGGCA	GGATGTGGCA	GGATGCGGAA	GGTTGTGGAA	GGTGCAGGGA	GGISSITTY GGIISIGGIA ARAC	
691	CC AGGICCGITT	CC GGGGCCGTIC	CC TGGGCCCTTC	CC TGGGGCCTTC	CC TGGCGCGTTT	CC TGGTGCALT	CC AGGACCTTT	GGISSITLL	
	E. hirae	H. salinarum	T. thermophilus	Human	T. congolense	P. falciparum	C. pneumoniae	Selected sequences ^a	
		10					15		

The sequence numbering refers to the Enterococcus hirae atpD gene fragment (SEQ ID NO: 685). Nucleotides in capitals are identical to the selected sequence SEQ ID NO: 681 or 682 or match that sequences. Mismatches are indicated by lower cases. Mismatches for SEQ ID NO: 683 are indicated by underlined nucleotides. 25

a "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. This sequence is the reverse-complement of the above atpD sequence. 3

(M) sednences amplification/sequencing primers from tuf Annex VI: Strategy for the s lection of univ rsal (organelle origin)

SEQ ID NO:		665	i	1		1	1	1	ı	ı	619								9). Nucleotides es are
1286	AAGAA CAIGAICACC GGIaCCtCCC AGgatGACTGCGCogICoGA GAcatGcGAC AGACcGITGc CGI	AAGAA CATGATTACT GGTaCTCCTC AAGCtGACTGCGCTGTCAGA GACatGaGAC AAACTGTCGC TGT	AAGAA TATGATCACA GGTACTTCTC AGGCtGACTGTGCTGTGCGt GAtatGaGAC AAACAGTTGc GGT	AAAAA CAIGAITACA GGGaCAtCIC AGGOtGACIGIGCIgIIcGt GAtatGaGAC AGACaGIIGe IGI	AAGAA CATGATCACC GGCGCTGCCC AGATGGACGGTGCTATTAGA GAAGGAGGCA AAACTGTTGG AGC	AAAAA CATGATCACC GGCGCCGCCC AGATGGACGGTGCTATTAGA GAAGGAGGCA AAACTGTTGG AGC	AAAAA CAIGAICACC GGIGCIGCIC AGAIGGACGGCGCAAICCGt GAAGGCGGCC GIACCGIIGG CGC	AAGAA CATGATCACC GGTGCCGCCC AGATGGACGGCGCCATCCGt GAGGCTGGTC GTACCGTGGG CGC	AAAAA TATGATTACA GGAGCAGCAC AAATGGATGGTGCTATAAGA GAAGGAGGAA AAACTATAGG AGC	AAGAA TATGATTACT GGAGCGCAC AAATGGATGGTGCTATTAGA GAAGGAGGTC GTACTATAGG AGC	AAGAA TATGATTACC GGTGCTGCTC AAATGGATGGCAATATCAGA GAGGGTGGAA GAACTGTTGG TAC	AAAAA TATGATTACT GGAGCTGCGC AAATGGATGGTGCctTAAGG GAAGGAGGTA GAACAGTTGG AGC	TATIAGR GARGGIGGIM RIACTRIWGG	ATCCGT GAGGGYGGCC GITCIGT	SEO ID NO: 652 ^e	CCWAYAG TIYKICCICC YTCYCTIATA	SEQ ID NO: 561e	ACIGTI CGGCCRCCCT CACGGAT	The sequence numbering refers to the <i>Saccharomyces cerevisiae tuf</i> (M) gene fragment (SEQ ID NO: 619). Nucleotides in capitals are identical to the selected sequence SEQ ID NO: 652 or match that sequence. Mismatches are indicated by lower cases. Mismatches for SEO ID NO: 561 are indicated by lower cases. Mismatches for SEO ID NO: 561 are indicated by underlined nucleotides.
1254	CGC cgTCcGA	CGCTgTCAGA	TGCTgTGcGt	TGCTgTTcGt	TGCTATTAGA	TGCTATTAGA	CGCaATCcGt	CGC CATC CGt	TGCTATAAGA	TGCTATTAGA	CAATATCAGA	TGCcttaagg	TATIAGE	ATCCGT	S	CCWAYAG	0,	ACIGTI	se tuf (M) gen): 652 or mato indicated by
410	CtCCC AGgetGACTG	TtCTC AAgetGACTG	TtCTC AGGCtGACTG	AtCIC AGGCtGACTG	TGCCC AGATGGACGG	CCCCC AGATGGACGG	TGCTC AGATGGACGG	CCCC ACATGCACGG	AGCAC AAATGGATGG	CCCAC AAATGGATGG	TGCTC AAATGGATGG	TGCGC AAATGGATGG	IGCIC ARATGGA): 664	IGCIC ARATGGA			romyces cerevísia equence SEQ ID NG O ID NO: 561 are
	CATGATCACC GGTaC	CATGATTACT GGTaC	TATGATCACA GGTaC	CATGATTACA GGGaC	CATGATCACC GGCGC	CATGATCACC GGCGC	CATGATCACC GGTGC	CATGATCACC GGTGC	TATGATTACA GGAGC	TATGATTACT GGAGC	TATGATTACC GGTGC	TATGATTACT GGAGC	AA YATGATIACI GGIGCIGCIC ARATGGA		SEQ ID NO: 664	AA YATGATIACI GGIGCIGCIC ARATGGA			rs to the <i>Saccha</i> o the selected se
375	AAGAA	AAGAA	AAGAA	AAAAA	AAGAA	AAAAA	AAAA	AAGAA	AAAAA	AAGAA	AAGAA	AAAAA	AA A			AA			ng refer tical to
	C. neoformans ^a	S. cerevisiae ^a	O. volvulus ^a	Human ^a	G. max B1 ^D	G. max B2 ^D	E. colic	S. aureofaciens ^C	E. tenellab	$T. gondii^b$	S. cerevisiae ^b	A. thaliana ^b	Selected sequences ^d		Selected universal	primer sequences:			The sequence numbering refers in capitals are identical to indicated by lower cases. Mis-
2				,	10	•				15				20				25	

stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. d "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" b This sequence refers to $tuf\ (M)$ or organelle gene. $^{
m c}$ This sequence refers to tuf gene from bacteria. a This sequence refers to ef-1 gene.

30

This sequence is the reverse-complement of the above tuf sequence. 35

Annex VII:Strategy for the selection of ukaryotic s quencing (ef-1) sequences. primers from tuf

SEQ ID NO: 665	1 1 1 1	1 1 1 1	1 1 1	
314 AGAGA TITCATCAAG AACATGATTA CTGG CGTGA CITCATAAG AACATGATCA CGGG AGAGA TITCATCAAG AATATGATCA CTGG CGAGA CITCATCAAG AACATGATCA CTGG	TATECTIGGG TCTTAGAGA TITCATTAAG AACATGATTA CTGG TACCCTIGGG TCCTCGCGA CITCATCAAG AACATGATCA CGGG TATECGTGGG TCCTCGTGA CITCATCAAG AACATGATCA CTGG TATECCTGGG TCTTAGAGA CTTLATCAAA AACATGATTA CAGG	TAGGGGGGG TGCTCGCGA CTTCATCAAG AACATGATCA CCGG TATGCTTGGG TATTCGTGA TTTCATTAAG AATATGATCA CAGG TATGCATGGG TTTTAAAGA TTTLATTAAA AATATGATTA CTGG TAGGCATGGG TGTTAAGGA TTTCATTAAA AATATGATTA CCGG	TTTCATCARG AACATGATTA CCGG CTTCATCAAG AACATGATCA CGGG TTTCATCAAG AACATGATCA CCGG YTTCATYAAR AAYATGATYA C	SEQ ID NO: 560 GA YTTCATYAAR AAYATGATYA C SEQ ID NO: 653 GA YTTCATIAAR AAYATGAT
179 286 TTTAGAGA 1 TGCTCGTGA C TCTTAGAGA 1	TCTTAGAGA T TCCTCGCGA C TCCTCGTGA C	TTCGCGA TTAAAGA TTAAGGA	TTTTCGTGA	GA GA
TACGCTTGGG TITT TACGCGTGGG TG TACGCTTGGG TC	TATECTIGGE TO TACCCTIGGE TO TACCCTIGGE TO TATECTIGGE TO TATECTIGGE TO TATECTIGGE TO	TACGCGTGGG TG TATGCTTGGG TA TATGCATGGG TT TACGCATGGG TG	TACGCCTGGG TACGCTTGGG TACGCTTGGG	SEQ ID NO: 558 TCITTYAAR TAYGCITGGG T
TTCTTTCAAG CTCCTTCAAG TTCTTTCAAA	ATCATTCAAA CTCCTTCAAG ATCCTTCAAA CTCCTTCAAG	GTCCTTCAAG CTCATTTAAA TAGTTTCAAA AAGTTTTAAG	TTCTTCAAG TTCTTTCAAG TTCTTTCAAG TCTTTYAAR	SEQ ID TCITTYAAR
154 GG GG GG	98 84 88	09 09 09 09		ation :
cerevisiae hominis albicans	E. histolytica G. lamblia H. capsulatum Human	braziliensis volvulus berghei knowlesi	S. pombe T. cruzi Y. lipolytica Selected sequences ^a Selected sequences ^a	Selected amplification primers sequences:
ري بي بي بي بي بي	10 E. G. H.	15 0. P.	20 Y. Se	se 25 pr

The sequence numbering refers to the Saccharomyces cerevisiae tuf (ef-1) gene fragment (SEQ ID NO: 665). Nucleotides in capitals are identical to the selected sequence SEQ ID NO: 558 or 560 or match that sequence. Mismatches are indicated by lower cases. Mismatches for SEQ ID NO: 653 are indicated by underlined nucleotides.

30

35

a "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G: "S" stands for C or T; "M" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

Ann x VII:Strat gy for the sel ction of eukaryotic sequencing primers from tuf (ef-1) sequences (continued)

SEQ ID NO: 665	11111111	
GTTTACAA GATCGGTGGT ATTGGTACGACATG AGACAAACTG TCGCTGTCGG TGT GTGTACAA GATCGGTGGT ATTGGTACGATATG AGACAAACTG TCGCTGTCGG TGT GTTTACAA GATCGGTGGT ATTGGTACGATATG AGACAAACCG TTGCTGTCGG TGT GTTTACAA GATCGGTGGT ATCGGCACGATATG AGACAAACCG TTGCTGTTGG TGT GTTTACAA GATTTCAGGT ATTGGAACGATATG AAACAAAACCG TTGCTGTTGG TGT GTTTACAA GATTTCAGGT ATTGGAACGATATG AAACAAAACCG TTGCTGTTGG AGT GTCTACAA GATCTGGGGG GTCGGGACGATATG AAACAAAACCG TTGCTGTTGG AGT	GTCTACAA AATCCTGGT ATTGGCACGACATG AGACAAACG TCGCTGTCGG TGT GTCTACAA AATTGGTGGT ATTGGTACGATATG AGACAGACG TTGCGTGGG TGT GTCTACAA AATTGGTGGT ATTGGTACGATATG GGCAGAACG TTGCTGTCGG CAT GTTAACAA AATTGGTGGT ATTGGTACGATATG AGACAAACAG TTGCTGTCGG CAT GTATACAA AATTGGTGGT ATTGGTACGATATG AGACAAACAA TTGCTGTCGG TAT GTTAACAA AATCGGTGGT ATTGGTACGATATG AGACAAACAG TTGCTGTCGG TAT GTTAACAA AATCGGTGGT ATTGGTACGACATG CGTCAAACCG TCGCTGTCGG TGT GTTAACAA GATCGGCGGT ATTGGTACGACATG CGCCAAACCG TCGCTGTCGG TGT GTGTACAA GATCGGCGGT ATCGGCACGACATG CGCCAAACCG TCGCTGTCGG TGT TACAA GATCGGTGGT ATTGGTACGACATG CGACAGACCG TTGCTGTCGG TGT TACAA RATXKGTGGT ATTGG ATTGGTACGACATG TAGCTGTCGG TGT TACAA RATXKGTGGT ATTGG ATTGG ATTG MGTCARACTR TYGCYGTCGG	SEQ ID NO: 559b CCG ACRGCRAYIG TYTGICKCAT
GTTACAA GATCGGTGGT ATTGGTAC. GTGTACAA GATCGCTGGT ATTGGTAC. GTTTACAA GATCGCTGGT ATTGGTAC. GTCTACAA GATCGGTGGT ATTGGCTAC. GTCTACAA GATCTCGGGG ATTGGCAC. GTCTACAA GATCTCGGGG GTCGGGAC.	GICTACAA AATCICIGGT ATTGGCAC. GICTACAA AATTGGTGGT ATTGGTAC. GITTACAA AATTGGAGGT ATTGGAAC. GITTACAA AATTGGAGGT ATTGGAAC. GIATACAA AATTGGTGGT ATTGGTAC. GITTACAA AATCGGTGGT ATTGGTAC. GITTACAA AATCGGTGGT ATTGGTAC. GTGTACAA GATCGGTGGT ATCGGCAC. GTCTACAA GATCGGTGGT ATCGGCAC. TACAA RATYKGIGGT ATYGG	SEQ ID NO: 654 TACAA RATYKGIGGT ATYGG SEQ ID NO: 655 ^b CCRAT ACCICMRATY TIGTA
S. cerevisiae B. hominis C. albicans C. neoformans E. histolytica G. lamblia H. cabsulatum	Human L. braziliensis O. volvulus P. berghei P. knowlesi S. pombe T. cruzi Y. lipolytica Selected sequences ^a	Selected amplification primers sequences:
5	15	25

The sequence numbering refers to the Saccharomyces cerevisiae tuf (ef-1) gene fragment (SEQ ID NO: 665). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases. "~" indicate incomplete sequence data. Dots indicate gaps. 30

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or G. stands for C or G. "T, "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

 $^{\mathsf{b}}$ This sequence is the reverse-complement of the above tuf (ef-1) sequence.