PREDICTING TISSUE-SPECIFIC GENE EXPRESSION FROM BLOOD USING AI

Presented by Kartika Waluyo, 1000555 Vrinda Rajendar Rajanahally, 1129446

22 October 2021

INTRODUCTION

Gene expression

- Measured through RNA sequencing
- Indicates the "activation level" of genes in a tissue
- Used to understand disease mechanisms and assess the effectiveness and safety of treatments

DATA

The Genotype-Tissue Expression (GTEx)

Publicly available dataset containing gene expression of 54 post-mortem tissues from almost 1,000 individuals

Website: https://www.gtexportal.org/home/

PROBLEM

- Gene expression varies across tissues
- Obtaining samples from heart, lung, brain and other organs is often not possible

GOAL

DATA PRE-PROCESSING

	NOC2L [‡]	KLHL17 [‡]	PLEKHN1 [‡]	HES4	ISG15 [‡]	AGRN [‡]	C1orf159
GTEX-111YS	4.623645	1.9305234	-0.757455296	-2.04196059	3.202670	0.34305222	2.644519
GTEX-11220	3.782539	1.2749997	-2.178112437	-0.37572051	3.300398	1.14820160	1.781592
GTEX-1128S	4.513360	3.5022390	0.886702570	-0.07257490	2.585954	2.74835104	3.438855
GTEX-117YW	5,452794	3.5097032	-0.361040851	1.20675685	4.961396	2.66612637	3.895245
GTEX-11DXX	3,375196	1.8264574	-2.001951642	-3.55957777	2.441123	0.46472915	1.706664
GTEX-11DXZ	4 473020	2.6155735	-0.020073254	0.27319390	3.814766	2.14063671	2.751952
GTEX-11EI6	4.503837	3.7731937	-0.089162153	0.96350723	3.581990	1.66687554	3.257955
GTEX-11EMC	4.689939	2.7730465	1.233797566	2.48327357	6.018670	2.15817703	3.950064
GTEX-11EQ9	3.966465	1.7293461	-1.366626237	-2.34489017	2.402989	1.00785226	2.256939
GTEX-11GSP	4.713622	3.0192610	-0.137642769	1.52595816	4.664902	1.89930115	3.458261

1	NOC2L [‡]	KLHL17	PLEKHN1 ⁰	HES4 [‡]	ISG15 [‡]	AGRN [‡]	C1orf159
GTEX-111YS	5.564605	3.605865	-0.26752148	3.184108	3.877916	6.992831	3.997613
GTEX-11220	5.874426	3.966150	0.51738596	3.422275	4.272583	7.030410	4.070818
GTEX-11285	5.970547	4.392573	1.41139215	3.491767	4.466593	6.707747	4.035884
GTEX-117YW	5.166227	4.029355	1.74797744	5.045113	5.187642	7.266217	4.812552
GTEX-11DXX	5.958369	4.006143	0.23257945	2.753910	3.901730	7.207189	4.116435
GTEX-11DXZ	5.771633	4.627956	2.85381134	3.622749	5.236977	8.041496	4.574765
GTEX-11EI6	5.211195	4.826346	1.46932243	4.520421	5.145422	7.703033	4.195147
GTEX-11EMC	5.748173	3.427566	1.95369092	4.087649	3.857217	6.868381	4.153474
GTEX-11EQ9	6.000552	3.625458	0.79048291	2.635259	3.707483	6.842565	3.919237
GTEX-11GSP	6.049516	4.244247	1.64588696	5.739212	5.385897	7.577261	4.412140

PRELIMINARY DATA ANALYSIS

SUMMARY OF PART 1

Exploration of **similarities** between each tissue and whole blood

- 1. Shared donors
- 2. Shared expressed **genes**
- 3. Gene expression **correlation**

TISSUE SELECTION

Rank tissues based on the previously observed measures

	Subtissue
\ -	Lung
	Adipose - Visceral (Omentum)
	Spleen
	Thyroid
	Adipose - Subcutaneous
	Esophagus - Muscularis
	Breast - Mammary Tissue
	Colon - Transverse
	Esophagus - Mucosa
	Nerve - Tibial
	Artery - Aorta
	Skin - Not Sun Exposed (Suprapubic)
	Colon - Sigmoid
	Adrenal Gland
	Heart - Atrial Appendage
	Esophagus - Gastroesophageal Junction

Donor Proportion	Donor Rank
0.619	8
0.585	10
0.268	26
0.691	5
0.71	4
0.56	12
0.503	13
0.448	17
0.6	9
0.668	6
0.477	15
0.64	7
0.415	18
0.283	24
0.457	16
0.409	19

Gene Rank
2
11
1
12
18
25
8
5
15
19
23
16
20
21
27
26

Mean Absolute Correlation	Correlation Rank
0.227	7
0.196	10
0.243	6
0.18	19
0.171	22
0.205	9
0.154	28
0.157	27
0.162	26
0.164	25
0.186	15
0.147	30
0.182	17
0.196	11
0.191	13
0.194	12

	Average Rank
	5.67
	10.33
	11
	12
	14.67
	15.33
	16.33
	16.33
	16.67
	16.67
	17.67
	17.67
	18.33
T	18.67
T	18.67
T	19

CROSS-VALIDATION

EXTREME GRADIENT BOOSTING (XGBOOST)

HYPERPARAMETER TUNING

On 50 random genes

On gamma, maximum depth, eta, and number of rounds

Loss Function

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Best hyperparameter combination:

Gamma = 1

Maximum depth = 8

Eta = 0.1

Number of rounds = 100

EVALUATION

Compute the correlation between each gene in the prediction and its true value

0.4 Correlation 0.8

0.5 -

Model	Median Correlation			
	Training	Test		
XGBoost	0.990975	0.4364047		
Neural Network				
Ensemble				

MULTILAYER PERCEPTRON

NEURAL NETWORK

NEURAL NETWORK ILLUSTRATION

20XX

HYPERPARAMETER TUNING

On number of layers, learning rate, and number of epochs

Loss Function

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Best hyperparameter combination: 1 hidden layer of 100 units Learning rate = e⁻⁵ Epochs = 200

EVALUATION

Compute the correlation between each gene in the prediction and its true value

Neural Network Prediction Correlation Density Plot

Model	Median Correlation		
	Training	Test	
XGBoost	0.990975	0.4364047	
Neural Network	0.6278658	0.4887672	
Ensemble			

ENSEMBLE MODEL

$$ENSpred = rac{1}{2}NNpred + rac{1}{2}XGBpred = rac{1}{2}egin{bmatrix} \hat{y}_{11} & \cdots & \hat{y}_{1p} \ dots & \ddots & \ \hat{y}_{n1} & \cdots & \hat{y}_{np} \end{bmatrix} + rac{1}{2}egin{bmatrix} \hat{z}_{11} & \cdots & \hat{z}_{1p} \ dots & \ddots & \ \hat{z}_{n1} & \cdots & \hat{z}_{np} \end{bmatrix}$$

EVALUATION

Compute the correlation for each gene in the prediction and the true value

Model	Median Correlation		
	Training	Test	
XGBoost	0.990975	0.4364047	
Neural Network	0.6278658	0.4887672	
Ensemble	0.9205496	0.4976427	

FUTURE DIRECTIONS

Training the models on all other tissues, on the entire dataset

Stacking ensemble for improved prediction

Biological validation

Implementation of the web application

WE WOULD LIKE TO EXTEND A HEARTFELT THANK YOU TO ALL OUR MENTORS INVOLVED IN THIS PROJECT!

Dr. Roberto Bonelli, CSL Research
Dr. Brendan Ansell, WEHI

Dr. Milica Ng, CSL Research
Dr. Monther Alhamdoosh, CSL Research
Dr. Melanie Bahlo, WEHI

Dr. Ziad Al Bkhetan, The University of Melbourne Dr. Michael Kirley, The University of Melbourne

THANK YOU