Linear Algebra Assignment 1

Hanseul Kim

Oct 2024

Exercise 1:

show that following are group homomorphisms.

Key Point:

Given two groups (G,\cdot) and (H,*). A function $\phi: G \to H$ is called **group homomorphism** if , for all $g_1, g_2 \in G$,

$$\phi(g_1 \cdot g_2) = \phi(g_1) * \phi(g_2)$$

1)
$$f: \mathbb{Z} \to \mathbb{Z}, f(n) = 2n$$

 \mathbb{Z} are groups under addition operation.

$$\forall g_1, g_2 \in \mathbb{Z}, f(g_1), f(g_2) \in \mathbb{Z}$$

$$f(g_1 + g_2) = 2(g_1 + g_2) = 2g_1 + 2g_2 = f(g_1) + f(g_2)$$

 $\therefore f$ is a group homomorphism

2)
$$det: GL_n(\mathbb{C}) \to (\mathbb{C} - \{0\}, \cdot)$$

 $GL_n(\mathbb{C})$ forms group under matrix multiplication

$$\forall g_1, g_2 \in GL_n(\mathbb{C}), f(g_1), f(g_2) \in \mathbb{R} - \{0\}$$

$$det(g_1g_2) = det(g_1)det(g_2)$$

 \therefore det is a group homomorphism

3)
$$f: (\mathbb{R}, +) \to (\mathbb{R} - \{0\}, \cdot), f(r) = e^r$$

$$\forall g_1, g_2 \in \mathbb{R}, f(g_1), f(g_2) \in \mathbb{R} - \{0\}$$

$$f(g_1 + g_2) = e^{g_1 + g_2} = e^{g_1} \cdot e^{g_2} = f(g_1) \cdot f(g_2)$$

 $\therefore f$ is a group homomorphism

Exercise 2:

Show that kernel and image of a homomorphism are subgroups By definition of homomorphisms.

let $f: G \to H$ be a homomorphism where G, H are groups.

image of
$$f, \forall g_1, g_2 \in G$$
,
 $f(g_1g_2) = f(g_1)f(g_2)$
 $f(g_1) = f(g_1e_G) = f(g_1)f(e_G)$

 $f(e_G) = e_H$ so identity element exists in the image

$$\forall h_1, h_2 \in img(f(G)), h_1 = f(g_1), h_2 = f(g_2) \text{ for some } g_1, g_2 \in G$$

$$h_1h_2 = f(g_1)f(g_2) = f(g_1g_2) = f(g_3) \in img(f(G))$$

image of f is closed

$$e_H = f(e_G) = f(gg^{-1}) = f(g)f(g^{-1})$$

so, $f(g)^{-1} = f(g^{-1})$, so inverse element does exists

 \therefore image of homomorphism are subgroups

Kernel of $f, g \in G$ such that $f(g) = e_H$

 $e_G, f(e_G) = e_H$ so there exists identity element in kernel.

$$f(g_1g_2) = f(g_1)f(g_2) = e_H e_H = e_H$$
, kernel is closed.

 $f(g^{-1}) = f(g)^{-1} = e_H^{-1} = e_H$, so the inverse element exists in kernel.

: kernel forms a subgroup

Exercise 3:

Show that \mathbb{R}/\mathbb{Z} is isomorphic to S^1 .

Proof:

 \mathbb{R}/\mathbb{Z} forms a group under addition

 S^1 forms a group under addition

Define a function from $\phi: \mathbb{R}/\mathbb{Z} \to S^1$

$$\phi(\theta) = e^{2\pi\theta i} = \cos(2\pi\theta) + i\sin(2\pi\theta)$$

 ϕ is well defined.

suppose,
$$\theta' - \theta = n \in \mathbb{Z}$$

$$\phi(\theta') = e^{2\pi i(\theta+n)} = e^{2\pi i\theta} \cdot e^{2\pi in} = e^{2\pi i\theta}$$

$$\therefore \phi(\theta) = \phi(\theta'), \phi \text{ is well defined.}$$

$$\phi(\theta_1 + \theta_2) = e^{2\pi i(\theta_1 + \theta_2)} = e^{2\pi \theta_1} \cdot e^{2\pi \theta_2} = \phi(\theta_1) + \phi(\theta_2)$$

 $\therefore \phi$ is a group homomorphism.