Machine Learning

Computer Engineering

Fabio Vandin

October 2nd, 2023

A Formal Model (Statistical Learning)

We have a learner (us, or the machine) has access to:

- ① Domain set X: set of all possible objects to make predictions about
 - domain point $\underline{x \in \mathcal{X} = instance}$, usually represented by a vector of *features*
 - X is the instance space
- 2 Label set y: set of possible labels.
 - often two labels, e.g $\{-1, +1\}$ or $\{0, 1\}$
- 3 Training data $S = ((x_1, y_1), \dots, (x_m, y_m))$: finite sequence of labeled domain points, i.e. pairs in $\mathcal{X} \times \mathcal{Y}$
 - this is the learner's input
 - S: training example or training set

A Formal Model

- **4 Learner's output** h: prediction rule $h: \mathcal{X} \to \mathcal{Y}$
 - also called <u>predictor</u>, <u>hypothesis</u>, or <u>classifier</u>
 - A(S): prediction rule produced by learning algorithm A when training set S is given to it
 - sometimes f used instead of h
- Data-generation model: instances are generated by some probability distribution and labeled according to a function
 - D: probability distribution over X (NOT KNOWN TO THE LEARNER!)
 - labeling function $f: \mathcal{X} \to \mathcal{Y}$ (NOT KNOWN TO THE LEARNER!)
 - label y_i of instance x_i : $y_i = f(x_i)$, for all i = 1, ..., m
 - each point in training set S: first sample x_i according to D, then label it as $y_i = f(x_i)$
- **Measures of success**: <u>error of a classifier</u> = probability it does not predict the correct label on a random data point generate by distribution \mathcal{D}

Loss

Given domain subset $A \subset \mathcal{X}$, $\underline{\mathcal{D}(A)} = \text{probability of observing a point } x \in A$.

In many cases, we refer to A as event and express it using a function $\pi: \mathcal{X} \to \{0,1\}$, that is:

$$A = \{x \in \mathcal{X} : \pi(x) = 1\}$$

In this case we have $\mathbb{P}_{x \sim \mathcal{D}}[\pi(x)] = \mathcal{D}(A)$

Error of prediction rule $h: \mathcal{X} \to \mathcal{Y}$ is before label loss $L_{\mathcal{D},f}(h) \stackrel{def}{=} \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] \stackrel{def}{=} \mathcal{D}(\{x:h(x) \neq f(x)\})$ Distribution model bladed predicted by h

Notes:

- L_{D,f}(h) has many different names: generalization error, true error, risk, loss, ...
- often f is obvious, so omitted: $L_{\mathcal{D}}(h)$

Learning Process (Simplified)

HYPOTHESIS/MODEL SET

Types of Learning

 $\underline{y_i}$ are known: training set $(x_1, y_1), \ldots, (x_m, y_m)$

supervised learning

Training set contains only x_1, x_2, \ldots, x_m

There can be different types of output:

- ${\cal Y}$ is discrete
- γ is **continuous**

Notes: we will see a more general learning model soon, main ideas are the same!

Types of Learning

