## MATH 710 HW # 4

## MARIO L. GUTIERREZ ABED PROF. A. BASMAJIAN

**Problem 1** (Problem 9-9). Suppose M is a smooth manifold and  $S \subseteq M$  is an embedded hypersurface (not necessarily compact). Suppose further that there is a smooth vector field V defined on a neighborhood of S and nowhere tangent to S. Show that S has a neighborhood in M diffeomorphic to  $(-1,1) \times S$ , under a diffeomorphism that restricts to the obvious identification  $\{0\} \times S \cong S$ .

Preliminaries of proof. This result relies heavily on the Flowout Theorem, which we state next for study purposes. The grader may skip to the actual proof of the problem below.

**Theorem** (Flowout Theorem). Suppose M is a smooth manifold,  $S \subseteq M$  is an embedded k-dimensional submanifold, and  $V \in \mathfrak{X}(M)$  is a smooth vector field that is nowhere tangent to S. Let  $\theta \colon \mathfrak{D} \to M$  be the flow of V, let  $\mathcal{O} = (\mathbb{R} \times S) \cap \mathfrak{D}$ , and let  $\varphi = \theta|_{\mathcal{O}}$ .

- i)  $\varphi \colon \mathcal{O} \to M$  is an immersion.
- ii)  $\partial/\partial t \in \mathfrak{X}(\mathcal{O})$  is  $\varphi$ -related to V.
- iii) There exists a smooth positive function  $\delta \colon S \to \mathbb{R}$  such that the restriction of  $\varphi$  to  $\mathcal{O}_{\delta}$  is injective, where  $\mathcal{O}_{\delta} \subseteq \mathcal{O}$  is the flow domain

$$\mathcal{O}_{\delta} = \{(t, p) \in \mathcal{O} : |t| < \delta(p)\}.$$

Thus,  $\varphi(\mathcal{O}_{\delta})$  is an immersed submanifold of M containing S, and V is tangent to this submanifold.

iv) If S has codimension 1, then  $\varphi|_{\mathcal{O}_{\delta}}$  is a diffeomorphism onto an open submanifold of M.

<u>Remark</u>: The submanifold  $\varphi(\mathcal{O}_{\delta}) \subseteq M$  is called a **flowout from** S **along** V (see Figure 1).



FIGURE 1. A flowout.

Proof of Problem 9-9. From the Flowout Theorem (part iv)), we have that  $\varphi|_{\mathcal{O}_{\delta}}$  is a diffeomorphism onto an open submanifold of M (since S is assumed to have codimension 1). So it remains to show that the neighborhood  $\mathcal{O}_{\delta} = \{(t,p) \in \mathcal{O} : |t| < \delta(p)\}$  of S is diffeomorphic to  $(-1,1) \times S$ . To this end, let  $\psi : (-1,1) \times S \to \mathcal{O}_{\delta}$  be given by  $(t,p) \mapsto (t/\delta(p),p)$  (note that  $\delta(p)$  is a smooth positive function by definition; in particular, it is nonzero and  $t/\delta(p)$  is well defined). Then  $\psi$  is clearly smooth, and so is its inverse  $\psi^{-1}(t,p) = (t\delta(p),p)$ .