

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2023

MATHEMATICS: PAPER II

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

NOTE:

- If a candidate answers a question more than once, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

SECTION A

QUESTION 1

(a)(1)	95-a=80	a=15
	a=15	
(a)(2)	b-40=30	b=70
	b=70	
(b)	$Q_1 - 1,5 \times IQR$	– 5
	$=40-1,5\times30$	not an outlier
	= -5	
	Since the minimum value is greater than -5, it is	
	not an outlier.	
(c)(1)	y = a + bx	19,259
	y = 19,259 + 0,552x	0,552
	y = 19,259 + 0,552(180)	Learner would obtain 100%.
	<i>y</i> = 118,603	10070.
	The learner would obtain 100%.	
(c)(2)	No,	No
	180 min is outside of the data set, therefore extrapolation. Implies that anyone who studies for over 180 min will obtain 100%.	Explanation

	T	
(a)(1)	$m_{BC} = \frac{7-4}{6-0}$ $\therefore m_{BC} = \frac{1}{2}$	7-4
	1	$m_{BC} = \frac{7-4}{6-0}$ $m_{BC} = \frac{1}{2}$
	$\therefore m_{BC} = \frac{1}{2}$	$m_{BC} = \frac{1}{2}$
		2
(a)(2)	$m_{\rm CD} = -2$	
	Eq. of CD:	$m_{\rm CD} = -2$
	y = -2x + c sub. (6;7) $c = 19$ $∴ y = -2x + 19$	sub (6;7) y = -2x + 19
	c = 19	
	$\therefore y = -2x + 19$	
	Alternate:	
	$m_{CD} = -2$	
	y-7 = -2(x-6) y = -2x + 19	
	y = -2x + 19	
(b)	Equation AD:	$y = \frac{1}{2}x + c$
	$y = \frac{1}{2}x + c \dots \text{ sub } (4;1)$ $c = -1$ $\therefore y = \frac{1}{2}x - 1$	2
	c = -1	_ 4
	$\therefore v = \frac{1}{x} - 1$	$c = -1$ $-2x + 19 = \frac{1}{2}x - 1$
	2	$-2x+19=\frac{1}{x}-1$
	Point of intersection of CD and AD:	2
	$-2x + 19 = \frac{1}{2}x - 1$	x = 8
	-5x = -40	D(8;3)
	x = 8	
	$\therefore y = -2(8) + 19$	
	y=3	
	∴ <i>D</i> (8;3)	

	Alternate: Equation AD: sub (4;1)	
	$y-1=\frac{1}{2}(x-4)$	
	$y = \frac{x}{2} - 1$	
	Point of intersection of CD and AD:	
	$-2x+19=\frac{x}{2}-1$	
	-5x = -40	
	<i>x</i> = 8	
	$\therefore y = -2(8) + 19$	
	y=3	
	∴ <i>D</i> (8;3)	
(c)(1)	$E\!\left(\frac{6+4}{2};\frac{7+1}{2}\right)$	E(5;4)
		Midpoint AE $\left(\frac{9}{2}, \frac{5}{2}\right)$
	∴ E(5;4)	(= =)
	Midpoint AE $\left(\frac{9}{2}, \frac{5}{2}\right)$	F(1;2)
	wiidpoint AL $\left(\frac{2}{2},\frac{2}{2}\right)$	
	$F\left(\frac{x+8}{2};\frac{y+3}{2}\right)$	
	∴ F(1;2)	
(c)(2)	From Q2b: $m_{AD} = \frac{1}{2}$	
	$\tan \theta_1 = \frac{1}{2}$	
	$\theta_1 = 26,6^{\circ}$	$\theta_1=26,6^\circ$
	0, 20,0	$m_{AC}=3$
	Gradient AC:	Δ _ 71 6°
	$m_{AC} = \frac{7-1}{6-4}$	$\theta_2 = 71,6^\circ$
	$\therefore m_{AC} = 3$	$E \hat{A} D = 45^{\circ}$
	$\tan \theta_2 = 3$	
	$\therefore \theta_2 = 71,6^{\circ}$	
	$\stackrel{\wedge}{EAD} = 71,6^{\circ} - 26,6^{\circ}$	
	∴ E Â D = 45°	

(d)(2)	Area EAD = $\frac{1}{2}$ EA × AD × sinEÂD Dist EA = $\sqrt{10}$ Dist AD = $2\sqrt{5}$ Area EAD = $\frac{1}{2}$ × $\sqrt{10}$ × $2\sqrt{5}$ × sin 45° ∴ Area EAD = 5 units ² ∴ Area EFA = 5 units ² diag of // ^m bisect area ∴ Area ADEF = 10 units ²	Dist EA = $\sqrt{10}$ Dist AD = $2\sqrt{5}$ Area EAD = $\frac{1}{2} \times \sqrt{10} \times 2\sqrt{5} \times \sin 45^{\circ}$ Area EAD = 5 units ² Area ADEF = 10 units ²
--------	--	--

(a)	$\bar{x} = \frac{(10 \times 1) + (30 \times 7) + (50 \times 10) + (70 \times 5) + (90 \times 4)}{100 \times 100}$	midpt x frequency
	27	divide by 27
	$\bar{x} = 53$	$\bar{x} = 53$
(b)	$\frac{5}{27}$ ×100	=18,5%
	27 = 18,5%	
(c)	-1	
	30 T f CUMULATIVE FREQUENCY CURVE	(0.0)
	28	(0;0)
	26	Plotting Endpoints
	24	Triotting Enapoints
	22	Cumulative Frequency
	20	
	18	
	14	
	12	
	10	
	8	
	6	
	4	
	2	
	20 Q140 Md 60 Q3 80 100	
	Alt:	
	30 T f CUMULATIVE FREQUENCY CURVE	
	28	
	26	
	24 22	
	20	
	18	
	16	
	14	
	12	
	10	
	8	
	4	
	2	
	20 Q140 MM 80 Q3 80 100	

IEB Copyright © 2023

(d)(1)(i)		see graph
(d)(1)(ii)		see graph
(d)(2)	Mean > Median Positively skewed	mean>median positively skewed
	OR	
	Mean = Median Symmetrical	

(a)	Ĉ₁ = 25° angles opp = sides/radii	$\hat{C}_1 = 25^{\circ}$ = 130°
	$\hat{COA} = 180^{\circ} - 50^{\circ}$ int. angles of triangle = 130°	
(b)	$\hat{C}_2 = 25^\circ$ alt. angles OA//CB $\hat{C}_1 + \hat{C}_2 = \hat{B}$ angles opp = sides/radii	$\hat{C}_2 = 25^{\circ}$ $\hat{C}_1 + \hat{C}_2 = \hat{B}$
	$\therefore \hat{B} = 50^{\circ}$	$\hat{O}_1 = 80^{\circ}$
	$O_1 = 180^{\circ} - 100^{\circ}$ int. angles of triangle $\hat{O}_1 = 80^{\circ}$	

(a)	Construct:	construction
	Join DC and BE	4
	$\frac{\text{Area } \triangle ADE}{\text{Area } \triangle BDE} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF}$	$\frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{BDE}} = \frac{\frac{1}{2} \times \text{AD} \times \text{EF}}{\frac{1}{2} \times \text{DB} \times \text{EF}}$
	$\frac{\text{Area } \triangle \text{ADE}}{\text{Area } \triangle \text{BDE}} = \frac{\text{AD}}{\text{BD}} \dots \text{ (1)}$	$\frac{\text{Area } \triangle ADE}{\text{Area } \triangle DEC} = \frac{\frac{1}{2} \times \text{AE} \times \text{DG}}{\frac{1}{2} \times \text{EC} \times \text{DG}}$
	$\frac{\text{Area } \triangle ADE}{\text{Area } \triangle DEC} = \frac{\frac{1}{2} \times \text{AE} \times \text{DG}}{\frac{1}{2} \times \text{EC} \times \text{DG}}$	Area ΔBDE = Area ΔDEC
		reason
	$\frac{\text{Area } \triangle \text{ADE}}{\text{Area } \triangle \text{DEC}} = \frac{\text{AE}}{\text{CE}} \dots (2)$	$\therefore \frac{AD}{BD} = \frac{AE}{CE}$
	But: Area \triangle BDE = Area \triangle DEC same base, between // lines	
	$\therefore \frac{AD}{BD} = \frac{AE}{CE}$ In $\triangle HIJ$:	
(b)		$(HI)^2 = (29)^2 - (21)^2$
	$(HI)^2 = (29)^2 - (21)^2$ pythag	HI = 20 units
	HI = 20 units $\frac{IL}{IJ} = \frac{IK}{IH} \text{ line // to one side of } \Delta$	$\frac{IL}{IJ} = \frac{IK}{IH}$
	$\frac{12}{21} = \frac{IK}{20}$	reason
	$\therefore IK = 11\frac{3}{7}$	$IK = 11\frac{3}{7}$
	or IK = 11,4 units	

SECTION B

QUESTION 7

In ∆ABC:

$$\hat{B} = 90^{\circ}$$
 ... tangent perp to radius AO = 7 ...radius

$$\therefore \cos 38^{\circ} = \frac{14}{AC}$$

$$AC = \frac{14}{\cos 38^{\circ}}$$

 $AC = 17,766...$

Construct: DB

$$\hat{ADB} = 90^{\circ}$$
 ... angle in semi-circle

$$\cos 38^{\circ} = \frac{AD}{14}$$

∴ AD = 11,032...

∴ CD
$$\approx$$
 6,7 units

Alt:

$$\hat{B} = 90^{\circ}$$
 ... tangent perp to radius

 $AO = 7 \dots radius$

In ∆ABC:

$$tan 38^{\circ} = \frac{CB}{14}$$

Construct: DB

$$\hat{ADB} = 90^{\circ}$$
 ... angle in semi-circle

In ∆DCB:

$$\hat{C} = 52^{\circ}$$

$$\therefore \cos 52^{\circ} = \frac{CD}{CB}$$

$$\therefore$$
 CD = 6,7 units

$$\hat{B} = 90^{\circ}$$
 and reason

$$\cos 38^\circ = \frac{14}{AC}$$

$$AC = 17,766...$$

$$ADB = 90^{\circ}$$

reason
 $\cos 38^{\circ} = \frac{AD}{14}$

(a)	$a > b > 0$ and $\sin \theta < 0$	∴ Quadrant 4
	∴ Quadrant 4	
		$\therefore y^2 = (a^2 + b^2)^2 - (a^2 - b^2)^2$ $\therefore y^2 = 4a^2b^2$
	$x = a^2 - b^2$	
	$r = a^2 + b^2$	$v^2 - 4a^2b^2$
		y = 40 b
	$\therefore y^2 = (a^2 + b^2)^2 - (a^2 - b^2)^2$ pythag	2ah
	$y^2 = a^4 + 2a^2b^2 + b^4 - a^4 + 2a^2b^2 - b^4$	$\therefore \tan \theta = -\frac{2ab}{a^2 - b^2}$
	$y^2 = 4a^2b^2$	a b
	y = 4a b	
	<u></u>	
	$y = \pm \sqrt{4a^2b^2}$	
	∴ <i>y</i> = –2 <i>ab</i> … quad 4	
	$\therefore \tan \theta = -\frac{2ab}{a^2 - b^2}$	
(1.)	$a^2 - b^2$	
(b)	$\tan\theta = -\frac{2ab}{a^2 - b^2}$	$\tan \theta = -\frac{2 \times (3) \times (2)}{(3)^2 - (2)^2}$
	a b	$(3)^2 - (2)^2$
	$\tan \theta = -\frac{2 \times (3) \times (2)}{(3)^2 - (2)^2}$	
	$(3)^2 - (2)^2$	Ref angle
		Ŭ i
	Ref angle: -67,4°	θ ∈ {292,6°;652,6°}
		,
	$\theta = -67,4^{\circ} + 360^{\circ}(k) \dots k \in \mathbb{Z}$	
	$\theta \in \{292,6^{\circ};652,6^{\circ}\}$	
	Alternate:	
	$(3)^2 - (2)^2$	
	$\cos\theta = \frac{(3)^2 - (2)^2}{(3)^2 + (2)^2}$	
	$\therefore \cos \theta = \frac{5}{13}$	
	13	
	Ref angle: 67,4°	
	$\theta = 292,6^{\circ} + 360^{\circ}(k) \dots k \in \mathbb{Z}$	
	$\theta \in \{292,6^{\circ};652,6^{\circ}\}$	
	,	

(a)	$\frac{\frac{1}{2}\cos(90^{\circ}+\theta)-\sin\theta.\sin(\theta-90^{\circ})}{\cos^{2}(180^{\circ}-\theta)-2\cos(-\theta)+\cos^{2}(\theta+90^{\circ})}$ $=\frac{-\frac{1}{2}\sin(\theta)-(\sin\theta).(-\cos(\theta))}{\cos^{2}(\theta)-2\cos(\theta)+\sin^{2}(\theta)}$	$-\frac{1}{2}\sin(\theta)$ $(-\cos(\theta))$ $\cos^{2}(\theta)$ $-2\cos(\theta)$ $\sin^{2}\theta + \cos^{2}\theta = 1$
	$= \frac{-\frac{1}{2}\sin\theta + \sin\theta \cdot \cos\theta}{1 - 2\cos\theta}$ $= \frac{-\frac{1}{2}\sin\theta(1 - 2\cos\theta)}{1 - 2\cos\theta}$ $= -\frac{1}{2}\sin\theta$ $= -\frac{1}{2}\sin\theta$	$-\frac{1}{2}\sin\theta(1-2\cos\theta)$ $=-\frac{1}{2}\sin\theta$
(b)(1)	$LHS = \sin\theta \times \frac{\sin\theta}{\cos\theta} \div \left[\frac{\sin 2\theta}{\cos 2\theta} \times \left(1 - \frac{\sin^2\theta}{\cos^2\theta} \right) \right]$	$\frac{\sin\theta}{\cos\theta}$
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{\sin 2\theta}{\cos 2\theta} \times \left(\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \right) \right]$	$\left(\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta}\right)$
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{\sin 2\theta}{\cos 2\theta} \times \left(\frac{\cos 2\theta}{\cos^2 \theta} \right) \right]$	cos2θ
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{2 \sin \theta . \cos \theta}{\cos^2 \theta} \right]$	2sinθ.cosθ
	$= \frac{\sin^2 \theta}{\cos \theta} \times \left[\frac{\cos^2 \theta}{2 \sin \theta \cdot \cos \theta} \right]$ $= \frac{\sin \theta}{2}$	$= \frac{\sin^2 \theta}{\cos \theta} \times \left[\frac{\cos^2 \theta}{2 \sin \theta . \cos \theta} \right]$
	2 =RHS	= RHS
(b)(2)	Working: Not valid for: $\sin 2\theta = 0$ $\therefore \theta = 90^{\circ}k \dots k \in \mathbb{Z}$ $\cos 2\theta = 0$ $\therefore \theta = 45^{\circ} + 90^{\circ}k \dots k \in \mathbb{Z}$	 ✓ tan 2θ = 0 ✓ General solution ✓ 1 – tan² θ = 0 ✓ General solution
	$\cos\theta = 0$ $\therefore \theta = \pm 90^{\circ} + 360^{\circ}k$ $\dots k \in \mathbb{Z}$	$\checkmark \theta = 45^{\circ}k \dots k \in \mathbb{Z}$
	$tan^2 \theta = 1$ $\therefore \theta = \pm 45^\circ + 180^\circ k \dots k \in \mathbb{Z}$	
	Therefore, not valid for $\theta = 45^{\circ}k$ $k \in \mathbb{Z}$	

Alt:
$tan 2\theta = 0$
∴ 2θ = 180° <i>k</i>
∴ $\theta = 90^{\circ}k$ and tan 2 θ is undefined for:
$\theta = 45^{\circ} + 90^{\circ}k$
Thus: $\theta = 45^{\circ}k$ $k \in \mathbb{Z}$

(a)	$\hat{A_1} = 90^{\circ}$ tangent perp to radius	Â₁ = 90°
	$\hat{D}_3 = 90^{\circ}$ tangent perp to radius	tangent perp to radius $\hat{D}_3 = 90^{\circ}$
	∴ AODE is a cyclic quad Opp. angles suppl.	Opp angles suppl.
(b)	$\hat{O}_2 = 2(68^\circ)$ angle at centre	Ô₂ = 136°
	$\hat{O}_2 = 136^{\circ}$	reason
	$\therefore \hat{E} = 44^{\circ}$ opp. angles of cyclic quad	∴ E = 44° reason

	T	
(a)	$x^2 - 12x + y^2 - 4y = -p$	$ \left(x-6 \right)^2 $ $ \left(y-2 \right)^2 $
	$(x-6)^2 + (y-2)^2 = -p+36+4$	
	$(x-6)^2 + (y-2)^2 = -p+40$	$\left(y-2\right)^2$
	C(6;2) ∴ radius = 2	radius = 2
	$-p+40=2^2$	$-p+40=2^2$
	p = 36	p = 36
(b)	Draw CB	$m_{\rm CB} = -\frac{1}{3}$
	0-2	3
	$m_{CB} = \frac{0-2}{12-6}$	
	$m_{CB} = -\frac{1}{3}$	∴ CBD = 18,4349
	$m_{CB} = \frac{1}{3}$	ΔECB≡ΔDCB RHS
	Draw CD: radius perp. to tangent OB at D	
		DB A = 36,8698
	$\tan C \hat{B} D = \frac{1}{3}$	
	∴ CBD = 18,4349	$m_{AB} = -\frac{3}{4}$
	.505 .505 5110	4
	ΔECB ≡ ΔDCB RHS	<i>c</i> = 9
	$\therefore \overrightarrow{DBA} = 2 \times 18,4349$	
	DBA = 36,8698	$\therefore y = -\frac{3}{4}x + 9$
	$m_{AB} = \tan(180^{\circ} - 36,8689)$	
	$m_{AB} \approx -0.75 = -\frac{3}{4}$	
	$m_{AB} \approx -0, 75 = -\frac{1}{4}$	
	3	
	$y = -\frac{3}{4}x + c$ sub. (12; 0)	
	c = 9	
	$\therefore y = -\frac{3}{4}x + 9$	
	$\therefore y = -\frac{3}{4}x + 9$	

(c) Second Circle: $x^2 + (y-9)^2 = r^2$... sub. (2;3) $r^2 = 40$ Alt: $r = \sqrt{(2-0)^2 + (3-9)^2} = \sqrt{40}$

Distance between centres

$$= \sqrt{(6-0)^2 + (2-9)^2}$$
$$= \sqrt{85}$$
$$\approx 9,2$$

Sum of radii $= \sqrt{40} + 2$ ≈ 8.3

They do not intersect since the distance between centres is greater than the sum of the radii.

$$r^2 = 40$$

 $\approx 9,2$

 $\approx 8,3$

They do not intersect.

The distance between centres is greater that the sum of the radii.

(a)	In ΔABC and ΔOFC:	$\hat{C}_1 = \hat{C}_2$
	$\hat{C}_1 = \hat{C}_2$ given $\hat{B} = 90^{\circ}$ angle in semi-circle $\therefore \hat{B} = \hat{F}_1$ $\hat{A}_2 = \hat{O}_2$ third angle $\therefore \Delta ABC/// \Delta OFC$ equiangular	$\hat{B} = 90^{\circ}$ angle in semi-circle $\triangle ABC /\!/\!/ \triangle OFC$ equiangular
(b)	$\frac{BC}{FC} = \frac{AC}{OC} \dots / / / \text{ triangles; sides in prop}$ $\text{Let: } OC = x$ $\therefore AC = 2x \dots \text{radii}$ $\therefore BC : FC = 2:1$	$\frac{BC}{FC} = \frac{AC}{OC}$ $\therefore BC : FC = 2:1$
(c)	LHS = $\left(\frac{AC}{2}\right)^2 - \left(\frac{AB}{2}\right)^2$ LHS = $\frac{(AC)^2 - (AB)^2}{4}$ = $\frac{(BC)^2}{4}$ pythag $\frac{(BC)^2}{4} = (CF)^2 \text{ from 12(b)}$ RTP: $(FC)^2 = DF \times FA$ In $\triangle CFA$ and $\triangle DFE$ $\hat{E} = \hat{A}$ angle in same segment $\hat{C}_1 = \hat{D}$ angle in same segment $\therefore \triangle CFA / / / \triangle DFE$ equiangular $\therefore \frac{CF}{DF} = \frac{FA}{FE}$ CF = FE line from centre perp to chord $\therefore \frac{CF}{DF} = \frac{FA}{CF}$ $\therefore (FC)^2 = DF \times FA$	$\frac{(BC)^{2}}{4}$ $\frac{(BC)^{2}}{4} = (CF)^{2}$ $\hat{E} = \hat{A} \text{ and } \hat{C}_{1} = \hat{D}$ reason $\therefore \Delta CFA /\!\!/\!/ \Delta DFE$ $\therefore \frac{CF}{DF} = \frac{FA}{FE}$ $CF = FE$ $\therefore (CF)^{2} = DF \times FA$

Alternate:

In
$$\triangle OFC$$
: $(OC)^2 = (CF)^2 + (OF)^2$... pythag $(CF)^2 = (OC)^2 - (OF)^2$

Since AC=2.OC

$$\left(CF\right)^2 = \left(\frac{AC}{2}\right)^2 - \left(\frac{AB}{2}\right)^2$$

RTP: $(CF)^2 = DF \times FA$

In \triangle CFA and \triangle DFE

 $\overset{\,\,{}_\circ}{E}=\overset{\,\,{}_\circ}{A}\,\,\,...$ angle in same segment

 $\hat{C}_1 = \hat{D}$... angle in same segment

∴ ∆CFA /// ∆DFE ... equiangular

$$\therefore \frac{\mathsf{CF}}{\mathsf{DF}} = \frac{\mathsf{FA}}{\mathsf{FE}}$$

CF = FE ... line from centre perp to chord

$$\therefore \frac{CF}{DF} = \frac{FA}{CF}$$

$$\therefore (CF)^2 = DF \times FA$$

Then:
$$\left(\frac{AC}{2}\right)^2 - \left(\frac{AB}{2}\right)^2 = DF \times FA$$

$$\hat{NTC} = 46^{\circ} \dots \text{ int } \angle \text{ of } \Delta$$

For CT:

$$\frac{10}{\sin 46^{\circ}} = \frac{CT}{\sin 69^{\circ}}$$

$$CT = 12,978295...$$

In ∆ATC:

$$tan 43,5^{\circ} = \frac{Height \ of \ tree}{12,978...}$$

 \therefore Height = 12,3 m

$$\frac{x}{12,978295} = \sin 65^{\circ}$$

- x = 11,7623...
- .. The tree will hit the house.

$$\hat{NTC} = 46^{\circ} \dots \text{ int } \angle \text{ of } \Delta$$

$$\frac{10}{\sin 46^{\circ}} = \frac{CT}{\sin 69^{\circ}}$$

CT = 12,978295...

$$\tan 43.5^{\circ} = \frac{\text{Height of tree}}{12,978...}$$

∴ Height = 12,3 m

$$\frac{x}{12,978295} = \sin 65^{\circ}$$

 $\therefore x = 11,7623...$ conclusion

Total: 150 marks