

$0.5~\Omega$, CMOS, 1.8 V to 5.5 V, 2:1 Mux/SPDT Switch

Data Sheet ADG819

FEATURES

Low on resistance: $0.8~\Omega$ maximum at 125° C $0.25~\Omega$ maximum on resistance flatness 1.8~V to 5.5~V single supply 200~mA current carrying capability Automotive temperature range: -40° C to $+125^{\circ}$ C Rail-to-rail operation 6-lead SOT-23, 8-lead MSOP, and 6-ball WLCSP packages Fast switching times Typical power consumption ($<0.01~\mu$ W) TTL-/CMOS-compatible inputs Pin compatible with the ADG719

APPLICATIONS

Power routing
Battery-powered systems
Communication systems
Data acquisition systems
Cellular phones
Modems
PCMCIA cards
Hard drives
Relay replacement

GENERAL DESCRIPTION

The ADG819 is a monolithic, CMOS, single-pole, double-throw (SPDT) switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

Low power consumption and an operating supply range of 1.8 V to 5.5 V make the ADG819 ideal for battery-powered, portable instruments.

Each switch of the ADG819 conducts equally well in both directions when on. The ADG819 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels.

The ADG819 is available in a 6-lead SOT-23 package, an 8-lead MSOP package, and in a 6-ball WLCSP package. This chip occupies only a $1.14~\rm mm \times 2.18~\rm mm$ area, making it the ideal candidate for space-constrained applications.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Very low on resistance, 0.5Ω typical.
- 2. 1.8 V to 5.5 V single-supply operation.
- 3. High current carrying capability.
- 4. Tiny 6-lead SOT-23, 8-lead MSOP, and 6-ball, 1.14 mm \times 2.18 mm WLCSP packages.

ADG819* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

 Evaluation Board for 6 lead SOT23 Devices in the Switches/Multiplexers Portfolio

DOCUMENTATION

• AN-617: MicroCSP Wafer Level Chip Scale Package

Data Sheet

- ADG819: 0.5 Ω , CMOS, 1.8 V to 5.5 V, 2:1 Mux/SPDT Switch Datasheet

User Guides

 UG-948: Evaluation Board for 6-Lead SOT-23 Devices in the Switches and Multiplexers Portfolio

TOOLS AND SIMULATIONS •

· ADG819 SPICE Macro Model

REFERENCE DESIGNS 🖵

• CN0363

REFERENCE MATERIALS 🖵

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Temperature monitor measures three thermal zones

DESIGN RESOURCES \Box

- · ADG819 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all ADG819 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

reatures	1
Applications	1
Functional Block Diagram	1
General Description	
Product Highlights	1
Revision History	2
Specifications	
Absolute Maximum Ratings	

1	ESD Caution	5
1	Pin Configurations and Function Descriptions	6
1	Typical Performance Characteristics	7
1	Test Circuits	9
1	Terminology	11
2	Outline Dimensions	12
3	Ordering Guide	13

REVISION HISTORY

5/12—Rev. 0 to Rev. A

Updated Format	.Universal
Deleted ADG820	
Changes to General Description	1
Changes to Table 1	3
Changes to Table 2	4
Change to WLCSP θ_{IA} Thermal Impedance Parameter	,
Table 3	5
Added Table 5 and Table 6; Renumbered Sequentially	6
Deleted Test Circuit 6; Renumbered Sequentially	
Changes to Figure 11 to Figure 14	8
Changes to Terminology Section	11
Updated Outline Dimensions	
Changes to Ordering Guide	

5/02—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 5 V ± 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance, R _{ON} ¹	0.5			Ωtyp	$V_s = 0 \text{ V to } V_{DD}$, $I_s = 100 \text{ mA}$; see Figure 16
	0.6	0.7	0.8	Ω max	
On Resistance Match Between Channels, ΔR_{ON}^{-1}	0.06			Ωtyp	$V_S = 0 \text{ V to } V_{DD}$, $I_S = 100 \text{ mA}$
	0.08	0.1	0.12	Ω max	
On Resistance Flatness, R _{FLAT(ON)} ¹	0.1			Ω typ	$V_{S} = 0 \text{ V to } V_{DD}, I_{S} = 100 \text{ mA}$
	0.17	0.2	0.25	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_s = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 17}$
	±0.25	±3	±10	nA max	
Channel On Leakage, I _D , I _S (On)	±0.01			nA typ	$V_s = V_D = 1 \text{ V, or } V_s = V_D = 4.5 \text{ V; see Figure 18}$
5 5 5	±0.25	±3	±25	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INI}$ or V_{INH}
INC. IIVI			±0.1	μA max	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²				1 /1	
t _{on}	35			ns typ	$R_1 = 50 \Omega$, $C_1 = 35 pF$, $V_s = 3 V$; see Figure 19
ON	45	50	55	ns max	
t _{OFF}	10			ns typ	$R_1 = 50 \Omega$, $C_1 = 35 pF$, $V_s = 3 V$; see Figure 19
-OFF	16	18	21	ns max	
Break-Before-Make Time Delay, t _{BBM}	5			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 20
			1	ns min	
Charge Injection	20			pC typ	$V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \text{ see Figure 21}$
Off Isolation	-71			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 22
Channel-to-Channel Crosstalk	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 24
Bandwidth, –3 dB	17			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 23
C _s (Off)	80			pF typ	f = 1 MHz
C_{D} , C_{S} (On)	300			pF typ	f = 1 MHz
POWER REQUIREMENTS				1	$V_{DD} = 5.5 \text{ V}$, digital inputs = 0 V or 5.5 V
I _{DD}	0.001			μA typ	
		1.0	2.0	μA max	

 $^{^1}$ On resistance parameters tested with l_s = 10 mA. 2 Guaranteed by design; not subject to production test.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance, R _{ON} ¹	0.7			Ωtyp	$V_s = 0 \text{ V to } V_{DD}$, $I_s = 100 \text{ mA}$; see Figure 16
	1.4	1.5	1.6	Ωmax	
On Resistance Match Between Channels, ΔR_{ON}^{-1}	0.06			Ωtyp	$V_S = 0 \text{ V to } V_{DD'} I_S = 100 \text{ mA}$
		0.13	0.13	Ω max	
On Resistance Flatness, R _{FLAT(ON)} ¹	0.25			Ωtyp	$V_{S} = 0 \text{ V to } V_{DD'} I_{S} = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_S = 0 \text{ V to } V_{DD'} I_S = 100 \text{ mA}$ $V_{DD} = 3.6 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_S = 3.3 \text{ V/1 V}, V_D = 1 \text{ V/3.3 V}; \text{ see Figure 17}$
	±0.25	±3	±10	nA max	
Channel On Leakage, I _D , I _S (On)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or } V_S = V_D = 3.3 \text{ V; see Figure 18}$
	±0.25	±3	±25	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
t _{on}	40			ns typ	$R_1 = 50 \Omega$, $C_1 = 35 pF$, $V_S = 1.5 V$; see Figure 19
	60	65	70	ns max	
t _{OFF}	10			ns typ	$R_1 = 50 \Omega$, $C_1 = 35 pF$, $V_S = 1.5 V$; see Figure 19
511	16	18	21	ns max	
Break-Before-Make Time Delay, t _{BBM}	40			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 1.5 V$; see Figure 20
DOM			1	ns min	
Charge Injection	10			pC typ	$V_s = 1.5 \text{ V}, R_s = 0 \Omega, C_1 = 1 \text{ nF}; \text{ see Figure 21}$
Off Isolation	-71			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 100 kHz$; see Figure 22
Channel-to-Channel Crosstalk	-72			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 100 kHz$; see Figure 24
Bandwidth, –3 dB	17			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 23
C _s (Off)	80			pF typ	f = 1 MHz
C_{D} , C_{S} (On)	300			pF typ	f = 1 MHz
POWER REQUIREMENTS				''	$V_{DD} = 3.6 \text{ V}$, digital Inputs = 0 V or 3.6 V
I _{DD}	0.001			μA typ	
	1		2.0	1 71	

 $^{^{1}}$ On resistance parameters tested with $\rm I_{S}$ = 10 mA. 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted

Table 3

Table 3.	
Parameter	Rating
V _{DD} to GND	−0.3 V to +7 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA},$ whichever occurs first
Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA},$ whichever occurs first
Peak Current, Sx or D	400 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or D	200 mA
Operating Temperature Range	
Industrial	-40°C to +85°C
Automotive	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
MSOP	
$\theta_{\scriptscriptstyle JA}$ Thermal Impedance	206°C/W
$\theta_{ extsf{JC}}$ Thermal Impedance	44°C/W
SOT-23 (4-Layer Board)	
θ_{JA} Thermal Impedance	119°C/W
WLCSP (4-Layer Board)	
θ_{JA} Thermal Impedance	80°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	235℃

¹ Overvoltages at IN, Sx, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

Table 4. Truth Table for the ADG819

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 Pin Configuration

Figure 3. 6-Ball WLCSP Pin Configuration

Table 5. 6-Lead SOT-23 and 6-Ball WLCSP Pin Function Descriptions

Pin No.			
SOT-23	WLCSP	Mnemonic	Description
1	6	IN	Logic Control Input.
2	5	V_{DD}	Most Positive Power Supply Potential.
3	4	GND	Ground (0 V) Reference.
4	3	S1	Source Terminal. Can be an input or output.
5	2	D	Drain Terminal. Can be an input or output.
6	1	S2	Source Terminal. Can be an input or output.

Figure 4. 8-Lead MSOP Pin Configuration

Table 6. 8-Lead MSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. Can be an input or output.
2	S1	Source Terminal. Can be an input or output.
3	GND	Ground (0 V) Reference.
4	V_{DD}	Most Positive Power Supply Potential.
5	NC	No Connect. Do not connect to this pin.
6	IN	Logic Control Input.
7	NC	No Connect. Do not connect to this pin.
8	S2	Source Terminal. Can be an input or output.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_D , V_S

Figure 6. On Resistance vs. V_D , V_S

Figure 7. Leakage Currents vs. Temperature

Figure 8. On Resistance vs. V_D , V_S for Different Temperatures

Figure 9. On Resistance vs. V_D , V_S for Different Temperatures

Figure 10. t_{ON}/t_{OFF} Times vs. Temperature

Figure 11. Charge Injection vs. V_s (Source Voltage)

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. On Response vs. Frequency

Figure 15. Logic Threshold Voltage vs. Supply Voltage

TEST CIRCUITS

Figure 18. On Leakage

Figure 19. Switching Times

Figure 20. Break-Before-Make Time Delay, t_{BBM}

Figure 21. Charge Injection

Figure 22. Off Isolation

Figure 23. Bandwidth

Figure 24. Channel-to-Channel Crosstalk

TERMINOLOGY

R_{on}

Ohmic resistance between D and Sx.

ΔR_{ON}

On resistance match between any two channels, that is, $R_{\rm ON}$ maximum – $R_{\rm ON}$ minimum.

$R_{FLAT(ON)}$

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_s (Off)

Source leakage current with the switch off.

$I_D, I_S(On)$

Channel leakage current with the switch on.

$V_{D}(V_{S})$

Analog voltage on Terminal D and Terminal S.

V_{INL}

Maximum input voltage for Logic 0.

V_{INH}

Minimum input voltage for Logic 1.

$I_{INL}(I_{INH})$

Input current of the digital input.

C_s (Off)

Off switch source capacitance.

C_D , C_S (On)

On switch capacitance.

t_{on}

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

t_{BBM}

Off time or on time measured between the 90% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

Frequency at which the output is attenuated by -3 dB.

On Response

Frequency response of the on switch.

OUTLINE DIMENSIONS

Figure 25. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

Figure 26. 8-Lead mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

Figure 27. 6-Ball Wafer Level Chip Scale Package [WLCSP] (CB-6-1) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Notes	Temperature Range	Package Description	Package Option	Branding ²
ADG819BCBZ-REEL	3	-40°C to +85°C	6-Ball Wafer Level Chip Package [WLCSP]	CB-6-1	SBC
ADG819BCBZ-REEL7	3	-40°C to +85°C	6-Ball Wafer Level Chip Package [WLCSP]	CB-6-1	SBC
ADG819BRM		-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SNB
ADG819BRM-REEL		-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SNB
ADG819BRMZ		-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBC
ADG819BRMZ-REEL7	3	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBC
ADG819BRT-500RL7	3	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SNB
ADG819BRT-REEL7	3	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SNB
ADG819BRTZ-500RL7	3	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SBC
ADG819BRTZ-REEL	3	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SBC
ADG819BRTZ-REEL7	3	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SBC

¹ Z = RoHS Compliant Part.

² Branding on these packages is limited to three characters due to space constraints.

³ Contact factory for availability.

NOTES

NOTES

NOTES