

UNIVERSIDADE FEDERAL DE LAVRAS Departamento de Computação Aplicada

Atividade de análise de desempenho - REO 6

Código e Nome:GCC177 – Programação Paralela e Concorrente

Nome do Aluno: Pedro Antônio de Souza

Ambiente de teste

Processador: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz

Número de núcleos de processamento: 4

Número de threads: 8

Resultados obtidos

Foram realizados testes com número de passos n variando ($n=10^2$, $n=10^4$, $n=10^6$, $n=10^8$, $n=10^9$). Para os diferentes valores de n foi executado para os números de threads T=1, T=2, T=4, T=8, executado 10 vezes por instância, calculada a média do tempo de execução e o desvio padrão, mostrado na Tabela 1.

Foi observado que para valores de n maior ou igual a 10, o cálculo de pi retornava um valor errado. Portanto, os testes não abrangeram números de passos maiores do que 10^9 .

Tabela 1: Média dos tempos de execução e desvio padrão entre parênteses. Todos os valores são em segundos e estão em notação científica.

	Número de threads			
Número de Trapézios	1	2	4	8
n=10 ²	4.639e-6	5.755e-5	2.506e-4	1.232e-3
	(7.420e-7)	(1.062e-5)	(3.708e-4)	(2.645e-3)
n=10 ⁴	7.199e-5	1.003e-4	9.466e-5	6.013e-4
	(2.991e-6)	(2.743e-5)	(1.248e-5)	(1.204e-3)
n=10 ⁶	6.215e-3	2.358e-3	2.117e-3	8.485e-3
	(3.384e-4)	(1.317e-4)	(1.221e-4)	(8.163e-3)
n=10 ⁸	6.216e-1	4.013e-1	1.653e-1	1.132e-1
	(9.561e-3)	(9.339e-2)	(3.464e-3)	(1.396e-2)
n=10 ⁹	6.014e+0	2.970e+0	1.476e+0	1.043e+0
	(1.187e-1)	(1.684e-2)	(8.074e-3)	(3.088e-1)

Ao aumentar o tamanho de n, pode-se perceber que a média do tempo de execução aumentou porque essa variável representa o número de vezes que o laço de repetição será executado para calcular o valor de pi. Porém, a variação do tempo de execução não é linear em relação ao número de threads. Observou-se que para n=10², o tempo de execução é diretamente proporcional ao número de threads. Já para n=10³, o tempo de execução é inversamente proporcional ao número de threads.

Em seguida foram calculados o speedup (gráfico da Figura 1), a eficiência (gráfico da Figura 2) e a fração sequencial definida experimentalmente (Métrica de Karp-Flat), mostrada na Tabela 2.

Figura 1: Gráfico de speedup x número de passos

Tabela 3. Valores obtidos da métrica de Karp-Flat

	Número de threads			
Número de Trapézios	2	4	8	
n=10 ²	23.81	71.69	303.37	
n=10 ⁴	1.779	1.42	9.40	
n=10 ⁶	-0.24	0.12	1.42	
n=10 ⁸	0.29	0.02	0.07	
n=10 ⁹	-0.01	-0.01	0.06	

Através do gráfico de Speedup, pode-se concluir que a partir de n=10⁸, ao aumentar o número de threads, obtém-se melhora na execução. No gráfico de Eficiência, observa-se que há piora quando o número de threads é igual a 8.

Conclusão

Através dos dados e gráficos apresentados, conclui-se que o melhor desempenho para o algoritmo paralelizado utilizando OpenMP para cálculo do valor de pi é obtido utilizando 2 threads e 10⁶ passos.