Electronic Companion—"A Branch-Price-and-Cut Algorithm for the Vehicle Routing Problem with Release and Due Dates"

EC.1. Detailed results for the instances of class A by CG1 and CG2

Table EC. 1: Detailed results for the instances of class A with $\theta = 0.05$ by CG1 and CG2

Instances	f_{opt}^{L}		G1		$\frac{6}{G2}$
		#iter	$t_{lp}(s)$	#iter	$t_{lp}(s)$
$A - n32 - k5_1$	1127.17	24	1.1	24	3.1
$A - n33 - k5_1$	813.75	26	1.6	35	26.1
$A - n33 - k6_1$	896.21	18	0.9	26	8.5
$A - n34 - k5_1$	893.76	28	2.4	36	22.4
$A - n36 - k5_1$	1051.30	27	1.8	39	38.6
$A - n37 - k5_1$	813.38	28	2.5	45	48.9
$A - n37 - k6_1$	1226.00	31	2.7	60	53.4
$A - n38 - k5_1$	851.53	49	17.7	89	420.5
$A - n39 - k5_1$	1004.50	39	11.3	65	360.4
$A - n39 - k6_1$	1071.50	24	1.8	22	9.3
$A - n44 - k6_1$	1140.90	36	8.8	94	385.1
$A - n45 - k6_1$	1103.77	61	67.6	107	1074.4
$A - n45 - k7_1$	1617.88	25	2.1	40	27.6
$A - n46 - k7_1$	1201.06	26	1.4	31	6.2
$A - n48 - k7_1$	1384.30	26	3.0	40	31.2
$A - n53 - k7_1$	1302.22	48	36.2	82	638.8
$A - n54 - k7_1$	1511.56	44	14.1	74	451.2
$A - n55 - k9_1$	1317.96	36	2.6	46	75.1
$A - n60 - k9_1$	1698.61	45	5.7	52	87.5
$A - n61 - k9_1$	1151.30	61	63.5	121	1736.9
$A - n62 - k8_1$	1664.17	55	28.7	79	663.6
$A - n63 - k9_1$	2203.38	60	48.2	104	1398.7
$A - n63 - k10_1$	1714.65	43	7.2	46	61.6
$A - n64 - k9_1$	1818.20	48	11.8	47	339.9
$A - n65 - k9_1$	1335.38	52	58.5	90	966.0
$A - n69 - k9_1$	1369.55	71	41.2	163	3455.9
$A - n80 - k10_1$	2314.03	58	82.4	_	_

Table EC. 2: Detailed results for the instances of class A with $\theta=0.10$ by CG1 and CG2

Instances	f_{opt}^L	C	G1	С	G2
	•	#iter	$t_{lp}(s)$	#iter	$t_{lp}(s)$
$A - n32 - k5_2$	1111.00	19	0.9	19	2.8
$A - n33 - k5_2$	825.83	18	1.1	23	7.6
$A - n33 - k6_2$	950.55	19	0.9	21	7.0
$A - n34 - k5_2$	862.41	23	1.7	33	18.4
$A - n36 - k5_2$	1098.07	34	3.2	37	65.4
$A - n37 - k5_2$	831.25	28	2.5	41	59.3
$A - n37 - k6_2$	1215.46	37	3.8	61	75.4
$A - n38 - k5_2$	851.34	49	19.8	80	369.2
$A - n39 - k5_2$	1020.71	62	33.7	95	422.9
$A - n39 - k6_2$	1117.25	29	2.2	21	8.3
$A - n44 - k6_2$	1170.29	29	7.1	50	211.3
$A - n45 - k6_2$	1098.32	62	40.5	-	-
$A - n45 - k7_2$	1626.08	28	2.4	67	82.5
$A - n46 - k7_2$	1197.50	27	1.3	23	4.1
$A - n48 - k7_2$	1465.00	29	3.8	51	84.5
$A - n53 - k7_2$	1330.17	45	19.2	95	545.3
$A - n54 - k7_2$	1568.46	46	27.1	58	431.6
$A - n55 - k9_2$	1364.23	35	3.1	48	68.7
$A - n60 - k9_2$	1731.66	33	4.9	46	70.1
$A - n61 - k9_2$	1174.13	59	50.6	107	1580.8
$A - n62 - k8_2$	1757.05	57	36.8	87	557.3
$A - n63 - k9_2$	2285.87	46	32.9	102	796.9
$A - n63 - k10_2$	1735.13	38	6.3	40	59.1
$A - n64 - k9_2$	1904.07	46	13.9	65	673.3
$A - n65 - k9_2$	1402.72	78	92.1	220	2150.4
$A - n69 - k9_2$	1377.69	66	35.1	141	1874.2
$A - n80 - k10_2$	2401.32	57	66.3	106	2023.2

Table EC. 3: Detailed results for the instances of class A with $\theta=0.15$ by CG1 and CG2

Instances	f_{opt}^{L}	C	G1	С	$\frac{\tilde{G}}{G}$
	-7-	#iter	$t_{lp}(s)$	#iter	$t_{lp}(s)$
A - n32 - k53	1136.63	27	1.2	22	3.8
$A - n33 - k5_3$	807.42	21	1.4	36	24.6
A - n33 - k63	930.00	26	1.2	26	9.8
$A - n34 - k5_3$	936.21	26	2.5	44	42.3
A - n36 - k53	1094.75	31	2.3	35	30.3
$A - n37 - k5_3$	847.87	38	5.4	36	62.2
$A - n37 - k6_3$	1300.17	33	3.3	74	83.4
$A - n38 - k5_3$	848.11	62	29.7	90	569.4
$A - n39 - k5_3$	1072.52	41	18.3	56	516.3
$A - n39 - k6_3$	1158.00	25	2.3	20	8.6
A - n44 - k63	1180.94	30	6.4	43	138.4
$A - n45 - k6_3$	1134.75	58	61.4	110	3516.5
$A - n45 - k7_3$	1614.17	27	3.4	40	53.3
$A - n46 - k7_3$	1238.33	33	1.7	34	13.3
$A - n48 - k7_3$	1468.75	34	4.2	30	21.7
$A - n53 - k7_3$	1350.21	47	26.0	126	988.0
$A - n54 - k7_3$	1575.56	46	41.6	71	421.8
$A - n55 - k9_3$	1418.25	32	2.8	43	74.0
$A - n60 - k9_3$	1723.09	40	6.9	63	100.4
$A - n61 - k9_3$	1216.06	51	58.1	89	1797.4
$A - n62 - k8_3$	1730.78	54	38.7	73	813.2
$A - n63 - k9_3$	2434.97	35	38.4	82	1318.3
$A - n63 - k10_3$	1778.74	52	13.4	57	366.0
$A - n64 - k9_3$	1973.66	47	16.2	60	572.1
$A - n65 - k9_3$	1421.83	81	116.9	238	2699.5
$A - n69 - k9_3$	1380.82	77	57.3	_	_
$A - n80 - k10_3$	2488.87	47	151.9	98	3085.8

Table EC. 4: Detailed results for the instances of class A with $\theta=0.20$ by CG1 and CG2

Instances	f_{opt}^L	C	G1	С	G2
	Ĭ.	#iter	$t_{lp}(s)$	#iter	$t_{lp}(s)$
A - n32 - k54	1185.83	20	1.0	21	2.9
A - n33 - k54	876.08	21	1.5	30	21.4
$A - n33 - k6_4$	955.60	19	1.0	18	6.1
A - n34 - k54	903.19	22	2.8	28	15.7
$A - n36 - k5_4$	1055.58	29	3.1	52	86.1
A - n37 - k54	838.80	27	3.3	34	102.0
$A - n37 - k6_4$	1293.11	34	3.6	71	80.7
A - n38 - k54	962.49	53	26.0	112	589.6
$A - n39 - k5_4$	1156.15	30	15.2	67	591.8
A - n39 - k64	1156.50	32	2.0	30	23.2
$A - n44 - k6_4$	1182.77	33	6.5	48	156.1
$A - n45 - k6_4$	1160.67	66	80.8	109	1080.8
$A - n45 - k7_4$	1732.37	29	3.1	56	79.0
A - n46 - k74	1252.35	27	1.6	24	5.0
$A - n48 - k7_4$	1496.42	31	4.4	38	36.2
$A - n53 - k7_4$	1376.97	49	33.3	75	445.6
$A - n54 - k7_4$	1610.55	40	33.2	60	655.1
$A - n55 - k9_4$	1413.69	43	4.8	79	171.1
$A - n60 - k9_4$	1758.60	42	6.2	55	114.8
$A - n61 - k9_4$	1257.79	55	53.7	91	2290.6
$A - n62 - k8_4$	1842.07	48	66.2	65	1212.7
$A - n63 - k9_4$	2370.99	49	60.3	_	_
$A - n63 - k10_4$	1811.28	35	5.4	52	109.7
$A - n64 - k9_4$	2035.84	43	17.4	68	1642.9
$A - n65 - k9_4$	1472.94	79	206.0	207	1917.0
$A - n69 - k9_4$	1479.77	71	68.3	_	-
$A - n80 - k10_4$	2504.54	49	158.7	_	-

Table EC. 5: Detailed results for the instances of class A with $\theta=0.25$ by CG1 and CG2

Instances	f_{opt}^{L}	C	G1	С	$\frac{\tilde{G}}{G}$
	-7-	#iter	$t_{lp}(s)$	#iter	$t_{lp}(s)$
A - n32 - k55	1156.60	23	1.3	23	4.7
$A - n33 - k5_5$	921.65	22	1.3	35	30.4
A - n33 - k65	941.36	20	1.1	26	9.8
$A - n34 - k5_5$	925.62	26	2.9	37	24.3
A - n36 - k55	1138.25	25	2.8	33	57.5
$A - n37 - k5_5$	832.00	31	3.5	40	103.5
A - n37 - k65	1335.12	28	3.4	50	86.2
$A - n38 - k5_5$	922.33	61	40.8	75	542.7
A - n39 - k55	1107.12	36	18.1	60	622.3
$A - n39 - k6_5$	1192.50	28	2.7	27	17.4
A - n44 - k65	1195.63	33	8.4	75	395.4
$A - n45 - k6_5$	1149.25	62	63.2	-	_
A - n45 - k75	1755.04	25	3.5	44	99.3
$A - n46 - k7_5$	1307.67	28	1.6	31	8.2
A - n48 - k75	1509.21	31	4.7	38	72.7
$A - n53 - k7_5$	1402.72	46	41.3	84	968.0
A - n54 - k75	1670.89	43	45.3	69	899.2
$A - n55 - k9_5$	1432.66	44	4.0	49	57.8
$A - n60 - k9_5$	1838.45	38	8.0	55	199.9
$A - n61 - k9_5$	1274.86	51	63.0	110	2993.2
A - n62 - k85	1832.64	52	55.9	77	1505.0
$A - n63 - k9_5$	2533.70	50	60.9	88	1992.2
$A - n63 - k10_5$	1849.63	33	6.0	32	97.1
$A - n64 - k9_5$	2077.46	48	15.9	53	606.8
$A - n65 - k9_5$	1519.32	73	163.1	242	3332.7
$A - n69 - k9_5$	1503.68	52	50.4	110	2455.8
$A - n80 - k10_5$	2657.40	61	207.1	_	_

EC.2. Detailed results for the selected instances by BPC1 and BPC2

Tables EC.6-EC.10 report the detailed results for the selected instances that can not be solved to optimality in the root node. Column f_{opt}^I reports the objective function value of the optimal solution for each instance. The other columns have the same meaning as in Table 2.

Table EC. 6: Detailed results for the selected instances of class A with $\theta = 0.05$ by BPC1 and BPC2

Instances	f_{opt}^{I}	BPG	BPC1		BPC2			
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$	
$A - n36 - k5_1$	1081.0	2	19.4	3	24.1	50.00	24.23	
$A - n45 - k7_1$	1636.0	5	18.4	3	14.7	-40.00	-20.11	
$A - n46 - k7_1$	1214.5	9	14.4	7	12.3	-22.22	-14.58	
$A - n55 - k9_1$	1344.5	7	21.7	8	26.7	14.29	23.04	
$A - n61 - k9_1$	1178.5	15	1285.5	22	1096.3	46.67	-14.72	
$A - n63 - k9_1$	2234.5	17	310.8	24	393.4	41.18	26.58	
$A - n64 - k9_1$	1854.0	105	1178.0	163	1738.3	55.24	47.56	
$A - n65 - k9_1$	1360.0	3	171.0	3	157.6	0.00	-7.84	

Table EC. 7: Detailed results for the selected instances of class A with $\theta = 0.10$ by BPC1 and BPC2

Instances	f_{opt}^{I}	BPG	BPC1		BPC2		
	•	#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n33 - k6_2$	966.0	5	6.1	5	6.0	0.00	-1.64
$A - n34 - k5_2$	890.0	3	8.2	3	8.1	0.00	-1.22
$A - n36 - k5_2$	1125.5	3	17.0	3	15.7	0.00	-7.65
$A - n53 - k7_2$	1360.0	3	299.8	3	279.5	0.00	-6.77
$A - n54 - k7_2$	1596.0	7	339.0	7	324.3	0.00	-4.34
$A - n55 - k9_2$	1387.5	2	11.6	2	11.9	0.00	2.59
$A - n60 - k9_2$	1770.0	25	187.4	37	264.2	48.00	40.98
$A - n61 - k9_2$	1217.5	21	3124.5	31	2985.3	47.62	-4.46
$A - n63 - k9_2$	2317.5	5	241.4	5	204.2	0.00	-15.41
$A - n63 - k10_2$	1769.0	9	120.7	12	113.9	33.33	-5.63
$A - n64 - k9_2$	1937.0	41	613.4	69	881.3	68.29	43.67
$A - n69 - k9_2$	1420.5	17	762.7	11	516.4	-35.29	-32.29

Table EC. 8: Detailed results for the selected instances of class A with $\theta = 0.15$ by BPC1 and BPC2

Instances	f_{opt}^{I}	BPG	BPC1		BPC2		
	-	#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n45 - k7_3$	1633.0	4	25.0	3	24.0	-25.00	-4.00
$A - n53 - k7_3$	1381.5	9	503.5	9	448.8	0.00	-10.86
$A - n54 - k7_3$	1595.0	3	143.5	5	153.0	66.67	6.62
$A - n55 - k9_3$	1444.5	3	19.5	3	18.9	0.00	-3.08
$A - n60 - k9_3$	1762.0	7	99.1	7	96.2	0.00	-2.93
$A - n61 - k9_3$	1254.5	15	1473.6	19	1586.2	26.67	7.64
$A - n63 - k9_3$	2474.5	24	732.3	22	589.8	-8.33	-19.46
$A - n63 - k10_3$	1800.0	3	35.8	5	41.3	66.67	15.36
$A - n64 - k9_3$	2005.5	39	512.8	87	818.5	123.08	59.61
$A - n65 - k9_3$	1449.5	3	184.5	3	185.2	0.00	0.38
$A - n69 - k9_3$	1406.0	11	381.9	12	367.8	9.09	-3.69

Table EC. 9: Detailed results for the selected instances of class A with $\theta=0.20$ by BPC1 and BPC2

Instances	f_{opt}^{I}	BPG	BPC1			BPC2	
	· opt	#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
A - n33 - k64	965.0	3	5.1	3	5.0	0.00	-1.96
$A - n60 - k9_4$	1786.0	4	69.5	5	68.0	25.00	-2.16
A - n62 - k84	1870.5	13	1954.4	11	1834.0	-15.38	-6.16
$A - n64 - k9_4$	2072.5	147	1618.4	281	3243.0	91.16	100.38
A - n65 - k94	1502.5	6	351.4	6	428.0	0.00	21.80
$A - n69 - k9_4$	1506.0	5	331.7	5	342.0	0.00	3.11
$A - n80 - k10_4$	2539.5	7	1616.7	11	2173.0	57.14	34.41

Table EC. 10: Detailed results for the selected instances of class A with $\theta=0.25$ by BPC1 and BPC2

Instances	f_{opt}^{I}	BPG	BPC1		BPC2		
	•	#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n37 - k6_5$	1370.0	3	27.7	3	28.5	0.00	2.89
A - n39 - k55	1134.0	6	287.3	12	267.1	100.00	-7.03
$A - n45 - k7_5$	1779.5	3	49.2	5	65.1	66.67	32.32
A - n46 - k75	1326.0	4	11.0	5	11.5	25.00	4.55
A - n53 - k75	1438.5	3	925.4	3	821.7	0.00	-11.21
A - n54 - k75	1706.0	27	3580.5	29	2423.2	7.41	-32.32
A - n62 - k85	1857.0	13	945.2	17	976.7	30.77	3.33
$A - n63 - k9_5$	2558.5	5	230.1	3	176.2	-40.00	-23.42
$A - n63 - k10_5$	1877.5	9	172.8	7	129.5	-22.22	-25.06
$A - n64 - k9_5$	2104.0	17	472.6	35	665.1	105.88	40.73
$A - n69 - k9_5$	1529.5	21	663.2	19	451.7	-9.52	-31.89

EC.3. Detailed results for all VRPRD instances

Tables EC.11-EC.30 report the detailed results for all VRPRD instances. Column f_{opt}^{I} has the same meaning as in section EC.2. The other columns have the same meaning as in Table 3.

Table EC. 11: Det			e instan	ces of cl	ass A with	$\theta = 0.05$
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	#SR	#Nodes	$t_T(s)$
$A - n32 - k5_1$	1138.5	5.0	3	7	1	5.0
$A - n33 - k5_1$	827.5	5.1	18	7	1	5.1
$A - n33 - k6_1$	904.5	3.0	7	15	1	3.0
$A - n34 - k5_1$	915.0	9.6	22	9	1	9.6
$A - n36 - k5_1$	1081.0	15.0	8	37	2	19.4
$A - n37 - k5_1$	839.0	10.6	13	15	1	10.7
$A - n37 - k6_1$	1251.5	9.9	25	7	1	9.9
$A - n38 - k5_1$	894.0	45.3	34	13	1	45.3
$A - n39 - k5_1$	1018.5	26.8	18	13	1	26.8
$A - n39 - k6_1$	1071.5	2.0	0	1	1	2.0
$A - n44 - k6_1$	1147.0	12.7	6	7	1	12.7
$A - n45 - k6_1$	1122.0	180.1	28	25	1	180.1
$A - n45 - k7_1$	1636.0	10.9	25	19	5	18.4
$A - n46 - k7_1$	1214.5	5.9	21	13	9	14.4
$A - n48 - k7_1$	1406.0	15.6	20	25	1	15.6
$A - n53 - k7_1$	1325.5	304.7	33	37	1	304.7
$A - n54 - k7_1$	1532.0	77.5	18	27	1	77.5
$A - n55 - k9_1$	1344.5	10.4	35	19	7	21.7
$A - n60 - k9_1$	1731.0	77.3	44	27	1	77.3
$A - n61 - k9_1$	1178.5	285.4	36	37	15	1285.5
$A - n62 - k8_1$	1684.0	165.4	50	7	1	165.4
$A - n63 - k9_1$	2234.5	123.5	61	31	17	310.8
$A - n63 - k10_1$	1741.0	32.4	20	21	1	32.4
$A - n64 - k9_1$	1854.0	55.9	21	31	105	1178.0
$A - n65 - k9_1$	1360.0	134.8	47	37	3	171.0

Instances	f_{opt}^{I}	4 (-)				
	* Opt	$t_{root}(s)$	#CC	#SR	#Nodes	$t_T(s)$
$A - n32 - k5_2$	1111.0	1.0	0	1	1	1.0
$A - n33 - k5_2$	849.5	4.7	20	9	1	4.7
A - n33 - k62	966.0	3.3	8	19	5	6.1
$A - n34 - k5_2$	890.0	6.2	17	13	3	8.2
$A - n36 - k5_2$	1125.5	10.8	10	19	3	17.0
$A - n37 - k5_2$	860.5	14.5	8	25	1	14.5
$A - n37 - k6_2$	1244.0	18.3	22	19	1	18.3
A - n38 - k52	888.0	50.5	23	15	1	50.6
$A - n39 - k5_2$	1034.5	55.2	16	7	1	55.2
$A - n39 - k6_2$	1123.0	3.5	3	3	1	3.5
$A - n44 - k6_2$	1177.0	12.1	10	7	1	12.1
$A - n45 - k6_2$	1108.0	88.5	25	5	1	88.5
$A - n45 - k7_2$	1644.0	6.6	18	7	1	6.6
A - n46 - k72	1211.0	6.9	22	19	1	6.9
A - n48 - k72	1492.5	20.3	18	21	1	20.3
$A - n53 - k7_2$	1360.0	233.6	38	37	3	299.8
$A - n54 - k7_2$	1596.0	152.1	22	43	7	339.0
$A - n55 - k9_2$	1387.5	10.3	33	13	2	11.6
$A - n60 - k9_2$	1770.0	44.2	38	25	25	187.4
$A - n61 - k9_2$	1217.5	828.2	60	50	21	3124.5
$A - n62 - k8_2$	1765.5	176.8	28	7	1	176.8
A - n63 - k92	2317.5	143.7	48	49	5	241.4
$A - n63 - k10_2$	1769.0	48.1	28	37	9	120.7
$A - n64 - k9_2$	1937.0	85.3	14	31	41	613.4
$A - n65 - k9_2$	1429.5	186.9	49	19	1	186.9
$A - n69 - k9_2$	1420.5	222.4	45	43	17	762.7

Table EC. 13: Detailed results for the instances of class A with $\theta = 0.15$									
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$			
$A - n32 - k5_3$	1139.5	1.3	1	1	1	1.3			
$A - n33 - k5_3$	828.0	7.7	22	15	1	7.7			
A - n33 - k63	936.0	2.4	8	3	1	2.4			
$A - n34 - k5_3$	951.5	8.8	21	3	1	8.8			
$A - n36 - k5_3$	1115.5	7.9	5	21	1	7.9			
$A - n37 - k5_3$	879.5	23.8	10	23	1	23.8			
$A - n37 - k6_3$	1320.5	13.0	21	17	1	13.1			
$A - n38 - k5_3$	895.5	68.4	27	25	1	68.4			
$A - n39 - k5_3$	1090.0	58.7	12	15	1	58.7			
A - n39 - k63	1158.0	2.3	0	1	1	2.3			
$A - n44 - k6_3$	1195.5	28.0	15	25	1	28.0			
$A - n45 - k6_3$	1154.0	227.3	17	19	1	227.4			
$A - n45 - k7_3$	1633.0	17.1	32	25	4	25.0			
$A - n46 - k7_3$	1245.0	3.7	1	11	1	3.7			
$A - n48 - k7_3$	1483.5	8.2	10	1	1	8.2			
$A - n53 - k7_3$	1381.5	182.0	32	31	9	503.5			
A - n54 - k73	1595.0	103.2	26	25	3	143.5			
$A - n55 - k9_3$	1444.5	14.9	39	25	3	19.5			
$A - n60 - k9_3$	1762.0	62.1	48	31	7	99.1			
$A - n61 - k9_3$	1254.5	445.5	39	49	15	1473.6			
$A - n62 - k8_3$	1746.0	240.3	40	9	1	240.3			
$A - n63 - k9_3$	2474.5	146.8	39	37	24	732.3			
$A - n63 - k10_3$	1800.0	28.4	12	25	3	35.8			
$A - n64 - k9_3$	2005.5	60.0	19	19	39	512.8			
$A - n65 - k9_3$	1449.5	160.6	35	13	3	184.5			
$A - n69 - k9_3$	1406.0	159.8	26	25	11	381.9			

Table EC. 14: Detailed results for the instances of class A with $\theta = 0.20$										
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$				
$A - n32 - k5_4$	1188.0	1.6	2	3	1	1.6				
$A - n33 - k5_4$	887.5	4.2	9	3	1	4.2				
A - n33 - k64	965.0	3.8	7	19	3	5.1				
$A - n34 - k5_4$	927.0	14.1	20	15	1	14.2				
A - n36 - k54	1079.0	16.2	9	25	1	16.2				
$A - n37 - k5_4$	875.0	24.8	17	23	1	24.8				
$A - n37 - k6_4$	1319.5	20.7	15	35	1	20.7				
A - n38 - k54	995.0	65.1	21	19	1	65.1				
$A - n39 - k5_4$	1181.5	164.3	19	35	1	164.3				
A - n39 - k64	1156.5	2.2	0	1	1	2.2				
A - n44 - k64	1200.5	42.5	11	17	1	42.5				
A - n45 - k64	1184.5	289.3	20	17	1	289.3				
A - n45 - k74	1747.5	9.2	19	7	1	9.2				
A - n46 - k74	1255.0	2.6	1	7	1	2.6				
$A - n48 - k7_4$	1516.5	20.1	14	15	1	20.1				
A - n53 - k74	1405.0	444.5	28	43	1	444.5				
$A - n55 - k9_4$	1436.5	18.0	35	15	1	18.0				
$A - n60 - k9_4$	1786.0	49.4	48	13	4	69.5				
A - n62 - k84	1870.5	640.8	29	37	13	1954.4				
$A - n63 - k9_4$	2384.5	110.9	23	19	1	110.9				
$A - n63 - k10_4$	1833.5	33.9	34	19	1	34.0				
$A - n64 - k9_4$	2072.5	63.7	21	13	147	1618.4				
$A - n65 - k9_4$	1502.5	280.4	48	19	6	351.4				
$A - n69 - k9_4$	1506.0	232.7	31	31	5	331.7				
$A - n80 - k10_4$	2539.5	875.8	22	43	7	1616.7				

Table EC. 15: Det	tailed resu	ılts for the	e instan	ces of cl	ass A with	$\theta = 0.25$
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	#Nodes	$t_T(s)$
A - n32 - k55	1177.5	3.7	6	7	1	3.7
A - n33 - k55	945.0	5.2	11	11	1	5.2
A - n33 - k65	951.0	2.6	8	9	1	2.6
A - n34 - k55	956.0	18.2	25	19	1	18.2
A - n36 - k55	1156.5	6.6	4	13	1	6.6
A - n37 - k55	854.0	13.4	13	7	1	13.4
A - n37 - k65	1370.0	19.5	19	25	3	27.7
A - n38 - k55	969.0	94.0	20	25	1	94.0
A - n39 - k55	1134.0	94.1	11	25	12	287.3
A - n39 - k65	1192.5	2.9	0	1	1	2.9
A - n44 - k65	1209.0	28.3	14	15	1	28.3
A - n45 - k65	1185.0	300.2	30	17	1	300.2
A - n45 - k75	1779.5	37.8	24	37	3	49.2
A - n46 - k75	1326.0	7.4	8	25	4	11.0
A - n48 - k75	1530.0	13.2	13	5	1	13.2
A - n53 - k75	1438.5	571.4	30	50	3	925.4
A - n54 - k75	1706.0	400.6	20	37	27	3580.5
$A - n55 - k9_5$	1462.5	19.4	38	25	1	19.4
$A - n60 - k9_5$	1873.5	54.3	29	15	1	54.3
A - n62 - k85	1857.0	358.8	27	13	13	945.2
A - n63 - k95	2558.5	149.2	27	25	5	230.1
$A - n63 - k10_5$	1877.5	76.1	24	49	9	172.8
$A - n64 - k9_5$	2104.0	112.5	16	43	17	472.6
$A - n65 - k9_5$	1521.5	160.7	5	1	1	160.7

Table EC. 16: Det	ailed resu	ults for the	e instan	ces of cl	ass B with	$\theta = 0.05$
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$
$B - n31 - k5_1$	1218.5	4.0	11	7	5	6.8
$B - n34 - k5_1$	1252.0	23.9	20	3	1	23.9
$B - n35 - k5_1$	1831.0	3.3	14	7	1	3.3
$B - n38 - k6_1$	1298.0	4.1	12	9	1	4.1
$B - n39 - k5_1$	990.5	27.2	12	7	3	34.2
$B - n41 - k6_1$	1317.0	16.9	8	13	1	16.9
$B - n43 - k6_1$	1058.0	9.5	9	1	1	9.5
$B - n44 - k7_1$	1526.5	9.6	12	19	1	9.6
$B - n45 - k5_1$	927.0	697.8	29	13	3	902.0
$B - n45 - k6_1$	966.5	697.6	23	31	12	2625.3
$B - n50 - k7_1$	1098.5	9.8	22	11	1	9.8
$B - n50 - k8_1$	1951.0	64.3	36	25	4	88.0
$B - n52 - k7_1$	1367.5	56.4	6	1	1	56.4
$B - n56 - k7_1$	1286.5	37.1	14	13	20	169.6
$B - n57 - k9_1$	3038.0	11.0	21	11	1	11.0
$B - n57 - k7_1$	2046.0	3474.3	22	9	1	3474.3
$B - n63 - k10_1$	2725.0	62.2	42	13	1	62.2
$B - n66 - k9_1$	2177.5	333.2	25	13	30	2122.9
$B - n68 - k9_1$	2244.5	550.1	35	25	3	636.2

Table EC. 17: Detailed results for the instances of class B with $\theta = 0.10$									
Instances	f_{opt}^{I}	$t_{root}(s)$	$\#\mathrm{CC}$	$\#\mathrm{SR}$	# Nodes	$t_T(s)$			
$B - n31 - k5_2$	1243.0	2.3	4	3	1	2.3			
$B - n34 - k5_2$	1276.5	21.3	14	5	1	21.3			
$B - n35 - k5_2$	1803.0	2.4	9	7	1	2.4			
B - n38 - k62	1303.0	2.5	6	1	1	2.5			
$B - n39 - k5_2$	1027.0	33.9	12	7	10	105.8			
$B - n41 - k6_2$	1271.5	15.6	6	1	1	15.6			
$B - n43 - k6_2$	1088.5	27.9	19	19	3	51.2			
$B - n44 - k7_2$	1583.0	19.5	22	13	3	24.0			
$B - n45 - k5_2$	917.0	994.3	21	5	1	994.3			
$B - n45 - k6_2$	1024.0	910.1	21	31	7	1946.7			
B - n50 - k72	1121.5	7.0	8	3	1	7.0			
$B - n50 - k8_2$	1978.5	50.7	27	19	3	60.5			
$B - n51 - k7_2$	1612.0	989.0	49	15	1	989.0			
$B - n52 - k7_2$	1364.0	119.7	6	1	1	119.7			
$B - n56 - k7_2$	1327.0	41.2	12	19	5	56.7			
$B - n57 - k9_2$	3105.0	13.9	14	13	4	24.1			
$B - n63 - k10_2$	2799.5	102.7	46	15	1	102.7			
$B - n68 - k9_2$	2365.0	301.3	25	13	35	1968.4			

Table EC. 18: Detailed results for the instances of class B with θ =									
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$			
$B - n31 - k5_3$	1265.5	5.3	9	13	1	5.3			
$B - n34 - k5_3$	1302.5	24.2	7	3	1	24.2			
$B - n35 - k5_3$	1921.0	31.3	15	27	1	31.3			
$B - n38 - k6_3$	1387.5	3.7	13	3	1	3.7			
$B - n39 - k5_3$	1022.5	76.1	15	7	1	76.1			
$B - n41 - k6_3$	1294.0	17.7	9	7	1	17.7			
$B - n43 - k6_3$	1133.0	11.7	6	1	1	11.7			
$B - n44 - k7_3$	1546.5	6.4	5	1	1	6.4			
$B - n45 - k5_3$	939.0	1667.5	23	21	1	1667.5			
$B - n45 - k6_3$	1011.5	541.4	20	25	3	743.8			
$B - n50 - k7_3$	1153.5	23.5	10	11	2	27.1			
$B - n50 - k8_3$	2024.0	44.1	29	25	4	65.9			
$B - n52 - k7_3$	1452.0	139.9	16	1	1	139.9			
$B - n56 - k7_3$	1330.0	49.2	8	7	1	49.2			
$B - n57 - k9_3$	3216.0	19.0	15	25	32	113.2			
$B - n63 - k10_3$	2869.5	155.7	28	37	1	155.7			
$B - n66 - k9_3$	2300.5	978.2	32	19	7	1714.7			
$B - n68 - k9_3$	2406.5	496.0	27	19	33	3430.9			

Table EC. 19: Det	ailed resu	ults for the	e instan	ces of cl	ass B with	$\theta = 0.20$
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	#SR	#Nodes	$t_T(s)$
$B - n31 - k5_4$	1308.5	4.1	4	7	1	4.1
$B - n34 - k5_4$	1306.0	15.4	5	1	1	15.4
B - n35 - k54	1884.0	24.3	15	21	1	24.3
B - n38 - k64	1389.5	4.0	13	11	1	4.0
$B - n39 - k5_4$	1038.5	104.2	15	19	3	152.9
$B - n41 - k6_4$	1316.0	28.2	5	7	1	28.2
B - n43 - k64	1138.5	44.8	19	19	6	80.0
$B - n44 - k7_4$	1641.5	13.0	9	13	7	25.6
B - n45 - k54	987.5	1395.5	27	9	1	1395.5
B - n45 - k64	1060.5	115.5	3	1	1	115.5
$B - n50 - k7_4$	1191.0	8.6	10	3	1	8.6
B - n50 - k84	2040.5	47.6	47	17	1	47.6
$B - n51 - k7_4$	1753.0	717.1	37	7	1	717.1
$B - n52 - k7_4$	1499.5	114.3	9	1	1	114.3
B - n56 - k74	1387.5	55.0	12	19	13	149.6
$B - n57 - k7_4$	2237.0	2909.4	13	1	1	2909.4
B - n57 - k94	3193.0	15.7	14	17	1	15.7
B - n63 - k104	2895.0	126.6	32	25	1	126.7
$B - n66 - k9_4$	2336.0	730.2	31	19	19	3592.1
$B - n67 - k10_4$	1516.5	69.5	35	31	167	2795.2
$B - n68 - k9_4$	2423.0	823.2	26	25	6	1450.8

Table EC. 20: Det		ults for the	e instan	ces of cl	ass B with	$\theta = 0.25$
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$
$B - n31 - k5_5$	1337.0	6.2	1	13	11	36.2
$B - n34 - k5_5$	1380.5	25.2	8	3	1	25.2
B - n35 - k55	1926.0	3.5	11	5	1	3.5
B - n38 - k65	1446.0	9.9	16	31	4	14.0
$B-n39-k5_5$	1021.0	17.3	8	1	1	17.3
$B - n41 - k6_5$	1391.5	27.7	5	13	1	27.7
B - n43 - k65	1151.0	18.6	15	7	3	25.8
$B - n44 - k7_5$	1696.0	19.5	10	19	2	22.9
B - n45 - k55	1014.0	1117.4	16	13	1	1117.4
$B - n45 - k6_5$	1114.5	328.7	12	13	1	328.8
$B - n50 - k7_5$	1246.5	14.2	10	13	1	14.2
$B - n50 - k8_5$	2108.0	27.0	19	9	1	27.0
$B - n51 - k7_5$	1835.5	2306.7	17	31	1	2306.7
$B - n52 - k7_5$	1531.5	865.3	13	19	1	865.3
B - n56 - k75	1409.0	40.0	9	13	15	187.5
$B - n57 - k9_5$	3282.5	38.5	16	37	9	153.7
$B - n63 - k10_5$	2970.0	175.0	30	31	5	442.3
$B - n66 - k9_5$	2389.5	774.4	27	31	4	1053.6
B - n68 - k95	2492.0	314.7	21	19	3	380.6

Тą	ble EC. 21: Detailed	<u>l results</u>	for the in	stances	of class	E-M-F wi	$th \theta = 0.$	05
	Instances	f_{opt}^{I}	$t_{root}(s)$	$\#\mathrm{CC}$	$\#\mathrm{SR}$	# Nodes	$t_T(s)$	
	E - n51 - k51	568.0	1610.8	9	9	1	1610.8	
	$E - n76 - k8_1$	779.0	1630.2	14	31	2	1760.6	
	$E - n76 - k14_1$	1162.0	24.4	22	13	22	88.6	
	$M - n101 - k10_1$	942.0	534.3	1	1	1	534.3	

Τą	able EC. 22: Detailed	d results	for the in	stances	of class	E-M-F wi	$th \theta = 0.10$	0
	Instances	f_{opt}^{I}	$t_{root}(s)$	$\#\mathrm{CC}$	$\#\mathrm{SR}$	# Nodes	$t_T(s)$	
	$E - n51 - k5_2$	614.0	3133.9	6	19	1	3134.0	
	$E - n76 - k7_2$	723.0	922.3	3	19	8	1940.1	
	$E - n76 - k14_2$	1170.5	41.1	29	37	27	142.7	
	E - n101 - k142	1277.5	129.1	23	37	155	3028.1	
	$M - n101 - k10_2$	953.5	1590.3	0	1	1	1590.3	

Τą	able EC. 23: I	Detailed	results	for the ins	stances	of class	E-M-F wi	$th \theta = 0.15$
	Instances		f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$
	E-n51-k	5_{3}	632.0	2851.0	12	13	1	2851.0
	E - n76 - k	14_3	1182.5	35.2	25	25	3	42.9
	M-n101 -	$k10_3$	1017.0	1409.1	1	7	1	1409.1
	F - n45 - k	4_{3}	845.0	2585.3	0	7	1	2585.3

T_{i}	able EC. 24:	Detailed	results	for the in	nstances	of class	E-M-F wi	th $\theta = 0.20$
	Instances		f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$
-	E-n76-k	:144 1	196.50	31.1	22	15	1	31.1
	M - n101 -	$k10_4$ 1	031.50	1013.8	0	1	1	1013.8

Τą	ble EC. 25:	Detailed	results	for the	instances	of class	E-M-F	with $\theta = 0$.25
	Instances		f_{opt}^{I}	$t_{root}(s)$	#CC	#SR	#Node	s $t_T(s)$	
	E - n76 -	$k14_{5}$	1255.0	45.4	1 29	37	8	1 485.8	
	M - n101 - n10	$-k10_{5}$	1056.5	1351.3	0	1		1 1351.3	

Table EC. 26: Detailed results for the instances of class P with $\theta = 0.05$							
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$	
$P - n16 - k8_1$	589.0	0.6	3	1	1	0.6	
$P - n19 - k2_1$	321.5	18.4	2	7	1	18.4	
$P - n20 - k2_1$	278.5	15.9	2	1	1	15.9	
$P - n21 - k2_1$	290.0	11.2	0	1	1	11.2	
$P - n22 - k2_1$	301.5	16.7	0	1	1	16.7	
$P - n22 - k8_1$	763.0	0.7	7	9	3	0.8	
$P - n23 - k8_1$	680.0	0.5	0	1	1	0.5	
$P - n40 - k5_1$	550.5	8.5	0	1	1	8.5	
$P - n45 - k5_1$	585.0	134.5	5	13	1	134.5	
$P - n50 - k7_1$	638.5	11.6	14	7	1	11.6	
$P - n50 - k8_1$	777.5	114.1	36	37	69	3588.3	
$P - n50 - k10_1$	868.0	6.5	32	31	3	8.0	
$P - n51 - k10_1$	839.0	11.3	30	19	11	29.6	
$P - n55 - k7_1$	688.0	29.5	10	7	5	50.3	
$P - n55 - k8_1$	758.0	138.3	38	31	63	2744.4	
$P - n55 - k10_1$	792.0	3.9	18	3	1	3.9	
$P - n55 - k15_1$	1155.0	12.3	47	43	9	24.0	
$P - n60 - k10_1$	873.5	11.5	16	19	6	19.4	
$P - n60 - k15_1$	1129.5	3.7	52	27	5	5.4	
$P - n65 - k10_1$	970.0	19.1	16	19	43	135.2	
$P - n70 - k10_1$	944.5	123.8	41	31	75	1191.3	

Table EC. 27: Detailed results for the instances of class P with $\theta = 0.10$							
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	# Nodes	$t_T(s)$	
$P - n16 - k8_2$	595.0	0.4	2	1	1	0.4	
$P - n19 - k2_2$	325.0	54.1	2	9	1	54.1	
$P - n20 - k2_2$	300.0	58.5	3	5	1	58.5	
$P - n21 - k2_2$	292.5	9.3	0	1	1	9.3	
$P - n22 - k2_2$	286.0	25.3	0	1	1	25.3	
P - n22 - k82	758.0	0.5	10	9	3	0.6	
$P - n23 - k8_2$	706.0	0.5	0	1	1	0.5	
$P - n40 - k5_2$	598.0	21.7	4	13	1	21.7	
$P - n45 - k5_2$	572.0	127.9	10	13	1	127.9	
$P - n50 - k7_2$	656.5	12.9	24	7	8	24.8	
$P - n50 - k10_2$	852.0	6.5	31	27	1	6.5	
$P - n51 - k10_2$	850.0	11.7	24	31	7	24.6	
P - n55 - k72	699.0	58.1	14	31	5	102.9	
$P - n55 - k10_2$	807.0	4.5	28	9	1	4.5	
$P - n55 - k15_2$	1177.5	12.6	42	43	9	23.5	
$P - n60 - k10_2$	902.0	14.2	18	31	17	53.1	
$P - n60 - k15_2$	1136.0	5.0	42	43	12	11.2	
$P - n65 - k10_2$	977.5	14.1	21	13	8	28.1	
$P - n70 - k10_2$	964.0	164.1	48	37	25	734.2	

Table EC. 28: Detailed results for the instances of class P with $\theta = 0.15$								
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	#SR	# Nodes	$t_T(s)$		
$P - n16 - k8_3$	602.0	0.5	3	1	1	0.5		
$P - n19 - k2_3$	327.5	28.4	4	3	1	28.4		
$P - n20 - k2_3$	303.0	14.9	1	1	1	14.9		
$P - n21 - k2_3$	275.5	12.6	0	1	1	12.6		
P - n22 - k23	302.0	31.9	0	1	1	31.9		
$P - n22 - k8_3$	772.0	0.7	16	11	3	0.8		
$P - n23 - k8_3$	708.5	0.5	0	1	1	0.5		
$P - n40 - k5_3$	597.5	25.5	2	11	1	25.5		
$P - n45 - k5_3$	593.0	424.9	9	19	1	424.9		
$P - n50 - k7_3$	662.0	18.8	18	19	3	25.9		
$P - n50 - k10_3$	904.5	6.6	29	25	5	11.0		
P - n51 - k103	855.0	20.8	48	50	9	47.0		
$P - n55 - k7_3$	706.0	75.9	16	23	1	75.9		
$P - n55 - k10_3$	837.5	4.5	22	9	1	4.5		
P - n55 - k153	1198.0	15.2	50	49	3	19.0		
$P - n60 - k10_3$	868.0	12.3	23	7	1	12.3		
$P - n60 - k15_3$	1165.0	4.4	50	19	5	6.2		
$P - n65 - k10_3$	987.5	49.7	31	37	3	65.8		

Table EC. 29: Detailed results for the instances of class P with $\theta = 0.20$ Instances f_{opt}^{I} $t_{root}(s)$ $\#\mathrm{CC}$ $\#\mathrm{SR}$ # Nodes $t_T(s)$ P - n16 - k84607.00.44 1 1 0.4P - n19 - k24332.0 11.6 2 3 1 11.6 P - n20 - k24305.0 0 20.9 20.91 1 P - n21 - k24307.521.30 1 1 21.3P - n22 - k24329.0 23.0 0 1 1 23.0P - n22 - k84781.50.511 5 3 0.6 P - n23 - k84698.00 1 1 0.50.5P - n40 - k54613.527.9 3 9 1 27.9P - n45 - k54589.0 86.55 7 4 128.8 P - n50 - k74656.022.316 254 31.4 $P - n50 - k10_4$ 902.05.426 31 5 8.4 $P - n51 - k10_4$ 893.0 16.6 21 31 36 114.4 $P-n55-k7_4$ 19 69.0721.069.018 1 $P - n55 - k10_4$ 832.53.1 177 10 7.7P - n55 - k1541192.012.342 37 47 97.8 $P-n60-k10_4$ 876.53.2 0 1 1 3.2 P - n60 - k1541172.537 25 9 3.46.8 $P - n65 - k10_4$ 1043.0 39.8 14 37 33 252.9 $P - n70 - k10_4$ 1008.0 192.8 26 2610.331 109

Table EC. 30: Detailed results for the instances of class P with $\theta = 0.25$								
Instances	f_{opt}^{I}	$t_{root}(s)$	#CC	$\#\mathrm{SR}$	#Nodes	$t_T(s)$		
P - n16 - k85	616.5	0.5	4	1	1	0.5		
$P - n19 - k2_5$	357.5	19.4	1	1	1	19.4		
P - n20 - k25	314.0	62.0	1	7	1	62.0		
P - n21 - k25	319.5	14.4	0	1	1	14.4		
P - n22 - k25	312.5	17.7	0	1	1	17.7		
P - n22 - k85	790.0	0.5	12	4	1	0.5		
P - n23 - k85	719.0	0.5	0	1	1	0.5		
$P - n40 - k5_5$	614.5	36.2	5	19	1	36.2		
$P - n50 - k7_5$	678.5	38.5	20	19	1	38.5		
$P - n50 - k10_5$	922.5	6.3	25	25	35	44.3		
$P - n51 - k10_5$	922.0	9.5	19	19	59	142.6		
P - n55 - k75	759.0	55.1	10	13	24	329.2		
$P - n55 - k10_5$	848.5	5.4	17	7	1	5.4		
P - n55 - k155	1218.5	9.0	35	25	27	46.8		
$P - n60 - k10_5$	934.5	21.7	19	31	37	151.4		
$P - n60 - k15_5$	1159.0	2.7	34	11	1	2.7		
$P - n65 - k10_5$	1040.5	45.8	28	43	1	45.8		
$P - n70 - k10_5$	1030.5	214.5	29	37	93	2192.9		