Gasser Ahmed gasser18@vt.edu ECE 5484, Project 1

Section 1 – Objectives:

Design a combinational logic circuit that displays the hexadecimal value of a gray code input according to the specifications below:

Hexadecimal	Balanced Gray Code	Binary Code
Value	$(X_3X_2X_1X_0)$	$(Y_3Y_2Y_1Y_0)$
0	0 0 0 0	0 0 0 0
1	1 0 0 0	0 0 0 1
2	1 1 0 0	0 0 1 0
3	1 1 0 1	0 0 1 1
4	1 1 1 1	0 1 0 0
5	1 1 1 0	0 1 0 1
6	1 0 1 0	0 1 1 0
7	0 0 1 0	0 1 1 1
8	0 1 1 0	1 0 0 0
9	0 1 0 0	1 0 0 1
A	0 1 0 1	1 0 1 0
В	0 1 1 1	1 0 1 1
C	0 0 1 1	1 1 0 0
D	1 0 1 1	1 1 0 1
\mathbf{E}	1 0 0 1	1 1 1 0
F	0 0 0 1	1111

By following the steps below:

- 1. Create truth table by reordering the table given above.
- 2. Create SOP Boolean logic expressions for all four outputs Y_0 , Y_1 , Y_2 , and Y_3 from the truth table.
- 3. Simplify those expressions using K-Maps.
- 4. Design the circuit layout for the simplified expressions using Digital.
- 5. Debug and test the full system by observing specified versus actual hexadecimal outputs for different input combinations.

Section 2 – Truth Table:

Hexadecimal	Balanced Gray Code	Binary Code
Value	$(X_3 \ X_2 \ X_1 \ X_0)$	$(Y_3 \ Y_2 \ Y_1 \ Y_0)$
0	0 0 0 0	0 0 0 0
F	0 0 0 1	1 1 1 1
7	0 0 1 0	0 1 1 1
С	0 0 1 1	1 1 0 0
9	0 1 0 0	1 0 0 1
А	0 1 0 1	1 0 1 0
8	0 1 1 0	1 0 0 0
В	0 1 1 1	1 0 1 1
1	1 0 0 0	0 0 0 1
E	1 0 0 1	1 1 1 0
6	1 0 1 0	0 1 1 0
D	1 0 1 1	1 1 0 1
2	1 1 0 0	0 0 1 0
3	1 1 0 1	0 0 1 1
5	1 1 1 0	0 1 0 1
4	1 1 1 1	0 1 0 0

Section 3 – Logic Expressions:

$Y_0 = X_0 X_1 X_2 X_3 + X_0 X_1 X_2 X_2 X_3 + X_0 X_$

K-Map:

$X_3X_2\backslash X_1X_0$	X' ₁ X' ₀	$X_{1}X_{0}$	X_1X_0	X_1X_0
X' ₃ X' ₂	0	1	0	1
X' ₃ X ₂	1	0	1	0
X_3X_2	0	1	0	1
X ₃ X ['] ₂	1	0	1	0

No Reduction

 $Y_1 = X_0 X_1^{'} X_2^{'} X_3^{'} + X_0^{'} X_1 X_2^{'} X_3^{'} + X_0 X_1^{'} X_2 X_3^{'} + X_0 X_1 X_2 X_3^{'} + X_0 X_1^{'} X_2^{'} X_3 + X_0^{'} X_1 X_2^{'} X_3 + X_0^{'} X_1^{'} X_$

K-Map:

$X_3X_2\backslash X_1X_0$	X'1X'0	X' ₁ X ₀	X ₁ X ₀	X_1X_0'
$X'_3X'_2$	0	1	0	1
X_3X_2	0	1	1	0
X_3X_2	1	1	0	0
X ₃ X ['] ₂	0	1	0	1

After reduction $Y_1 = X_1 X_0 + X_2 X_1 X_0 + X_3 X_2 X_0 + X_3 X_2 X_1$

 $Y_2 = X_0 X_1^{'} X_2^{'} X_3^{'} + X_0^{'} X_1^{'} X_2^{'} X_3^{'} + X_0 X_1 X_2^{'} X_3^{'} + X_0 X_1^{'} X_2^{'} X_3^{'} + X_0^{'} X_1 X_2^{'} X_3^{'}$

K-Map:

$X_3X_2\backslash X_1X_0$	X' ₁ X' ₀	X' ₁ X ₀	X ₁ X ₀	X_1X_0'
X'3X'2	0	1	1	1
$X_3'X_2$	0	0	0	0
X_3X_2	0	0	1	1
X ₃ X ['] ₂	0	1	1	1

After reduction $Y_2 = X_2X_0 + X_2X_1 + X_3X_1$

 $Y_3 = X_0 X_1^{'} X_2^{'} X_3^{'} + X_0 X_1 X_2^{'} X_3^{'} + X_0^{'} X_1^{'} X_2^{'} X_3^{'} + X_0 X_1^{'} X_2 X_3^{'} + X_0^{'} X_1 X_2 X_3^{'} + X_0 X_1 X_2 X_2 X_3^{'} + X_0 X_$

K-Map:

$X_3X_2\backslash X_1X_0$	X'1X'0	X' ₁ X ₀	X_1X_0	X ₁ X′ ₀
X' ₃ X' ₂	0	1	1	0
X_3X_2	1	1	1	1
X_3X_2	0	0	0	0
X ₃ X ['] ₂	0	1	1	0

After reduction $Y_3 = X_2'X_0 + X_3'X_2$

Section 4 – Circuit Design:

Section 5 – Conclusions:

After designing/simulating the circuit in Digital and testing all different 16 input combinations, I was able to get the correct hexadecimal output for each corresponding input combination. However, in the beginning, I was testing all input combinations, but I was getting wrong outcomes for inputs 1100 and 1110. So, I kept undoing any changes made for the starter circuit for each output Y₁, Y₂, and Y₃ until I noticed that those 2 input combinations started to give wrong hexadecimal outcomes when I added the circuit for Y₃, so I concluded that there should had been something wrong with logic expression for that output Y₃. So, when I redid the K-Map for Y₃, I noticed it the current K-Map was wrong compared to the new one which accordingly led to a wrong simplified expression that caused the wrong outcome. Then, after updating the simplified logic expression to match the new K-Map, I tested again all input combinations and I was able to get the correct hexadecimal output for each corresponding input combinations including 1100 and 1110.

So, I learned that testing and debugging all different input combinations is important to make sure the expected outcome is always correct. Also, I learned that I should always doublecheck that I have the correct K-Maps and logical expressions before I start simulating the circuit design in Digital to avoid any conflicts or confusions during testing.

Lastly, the approximate number of hours I devoted to the project was about 8-12 hours. In general, the project was an interesting, learning, and enjoyable experience. Also, the professor's explanations for the project was very helpful and explained a lot of unclear items/objectives.