

Aplicando a LoRaONE DevBoard nos seus Projetos de IoT

A **Quadrar Tecnologia** é uma *Design House* focada em projetos de *loT*, trabalhando a mais de 10 anos com grandes empresas, para resolver desafios complexos e desenvolvendo produtos inovadores.

Nossos Clientes

 $T \cdot \cdot Systems \cdot$

Apresentação

Airton Toyofuku

CTO e Engenheiro na Quadrar Tecnologia

Engenheiro eletricista com vivência de mais de 10 anos na área de desenvolvimento de sistemas embarcados, arquiteturas em nuvem e gestão de projetos.

Possui formação em Engenharia Elétrica, com Ênfase em Eletrônica, Especialista em Controle e Automação, ambas pela FEI. Especialista em Projetos de Sistemas Digitais e Eletrônica Embarcada pela SAE, e MBA em Gestão de Projetos pela FGV.

Por influência de grandes nomes do empreendedorismo, estuda técnicas de gestão, liderança, estratégia, economia, investimentos e inovação.

Nas horas vagas, é arqueiro, baixista, pescador e entusiasta do mercado financeiro.

Agenda

- 1. Apresentação
- 2. O que é *LoRaWAN*?
- 3. Características do Módulo *LoRaONE*
- 4. Características da DevBoard
- 5. Integração com Projetos IoT
- 6. Repositório de Conhecimento
- 7. Valores e Forma Aquisição
- 8. Referências
- 9. Agradecimentos

Página principal
Conteúdo destacado
Eventos atuais
Esplanada
Página aleatória
Portais
Informar um erro
Loja da Wikipédia

Colaboração

Dogo vindos

LoRa

Origem: Wikipédia, a enciclopédia livre.

LoRa (**Lo**ng **Ra**nge) é uma tecnologia de rede de área ampla de baixa potência (LPWAN). Baseia-se em técnicas de modulação de espectro de propagação derivadas da tecnologia chirp spread spectrum (CSS). Foi desenvolvido por Cycleo de Grenoble, França e adquirido pela Semtech, o membro fundador da Aliança LoRa.^[1]

Como o LoRa define a camada física inferior, as camadas superiores da rede estavam ausentes. O LoRaWAN é um dos vários protocolos desenvolvidos para definir as camadas superiores da rede. O LoRaWAN é um protocolo de camada de controle de acesso médio (MAC) baseado na nuvem, mas atua principalmente como um protocolo de camada de rede para gerenciar a comunicação entre gateways LPWAN e dispositivos de nó final como um protocolo de roteamento, mantido pela LoRa Alliance. [2]

Fonte: https://pt.wikipedia.org/wiki/LoRa

WHAT IS LoRa®?

LoRa* is the physical layer or the wireless modulation utilized to create the long range communication link. Many legacy wireless systems use frequency shifting keying (FSK) modulation as the physical layer because it is a very efficient modulation for achieving low power. LoRa* is based on chirp spread spectrum modulation, which maintains the same low power characteristics as FSK modulation but significantly increases the communication range. Chirp spread spectrum has been used in military and space communication for decades due to the long communication distances that can be achieved and robustness to interference, but LoRa* is the first low cost implementation for commercial usage.

Long Range (LoRa®)

The advantage of LoRa* is in the technology's long range capability. A single gateway or base station can cover entire cities or hundreds of square kilometers. Range highly depends on the environment or obstructions in a given

location, but LoRa® and LoRaWAN™ have a link budget greater than any other standardized communication technology. The link budget, typically given in decibels (dB), is the primary factor in determining the range in a given environment. Below are the coverage maps from the Proximus network deployed in Belgium. With a minimal amount of infrastructure, entire countries can easily be covered.

WHAT IS LoRaWAN™?

LoRaWAN™ defines the communication protocol and system architecture for the network while the LoRa* physical layer enables the long-range communication link. The protocol and network architecture have the most influence in determining the battery lifetime of a node, the network capacity, the quality of service, the security, and the variety of applications served by the network.

	Ą	plication		
	Lo	Ra® MAC		
	M	AC options		
Class A (Baseline)		lass B aseline)	Class C (Continuous)	
LoRa® Modulation				
Regional ISM band				
EU 868	EU 433	US 915	AS 430	-

LogRa Alliance 2015 7 LogRa Alliance 2015

Fonte: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf

Fonte: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf

Downlink Network Communication Latency

2015

10

Specification	Min.	Тур.	Max	Units	
Core MCU	STM32G070CB/KB				
Core Radio		Semtech SX1262			
Supply Voltage		3.3	3.6	V	
Consumption in reception (LNA on)		5.3		mΑ	
Consumption in reception (LNA off)		4.6		mΑ	
Consumption in transmission at 22dBm		118		mΑ	
Consumption in transmission at 20dBm		90		mΑ	
Consumption in transmission at 17dBm		75		mΑ	
Consumption in transmission at 14dBm		63		mΑ	
Consumption in deep sleep mode		5		uA	
Power-down reset threshold	1.96	2.00	2.04	V	
GPIO pin current (each)		15		mΑ	
GPIO pin current (total)		80		mΑ	
Interface		UART			
Baud rate		9600		bps	
LoRaWAN band AU915/LA915	915 to 928 MHz				
LoRaWAN network link budget - Reception		163		dBm	
LoRaWAN network link budget - Transmission		159		dBm	
Reception sensitivity		-137		dBm	
	three	50 Ohm	s option	s, see	
RF connection	page 6				
Operating temperature	-40		85	°C	
Operating humidity	10		90	%	

Pin	Name	Description
1	GND	Connected to Ground
2	mRx	Connected to Host RX
3	mTx	Connected to Host TX
4	VCC	Connected to 3v3
5	CTS	Serial flow control/GPIO
6	RTS	Serial flow control/GPIO
7		Reserved
8	RST	Reset
9		Reserved
10		Reserved
11	GND	Connected to Ground
12	Antenna	Antenna signal output
13	GND	Connected to Ground
14	VBAT	Battery Measurement
15	GPI07	Generic GPIO
16	GPI06	Generic GPIO
17	GPI05	Generic GPIO
18	GPI04	Generic GPIO
19	GPI03	Generic GPIO
20	GPI02	Generic GPIO
21	GPI01	Generic GPIO
22	GND	Connected to Ground

50 Ohms output trail pins for Chip antenna or PCB antenna

Antenna direct welding point, for wired antenna

SMA Pigtail Welding Pad

Características da *DevBoard*

Características da DevBoard

Além das características do Módulo LoRaONE...

- Alimentação via Mini USB com entrada de 5,0 Volts;
- Conversor USB-Serial FTDI, para acesso ao console de comandos AT;
- Circuito carregador de bateria, baseado no MCP73833, com LEDs de indicação de carga;
- Chave Eletrônica para comutação automática entre bateria e fonte principal;
- ✓ LDO de 3,3 Volts / 2,0 Amperes;
- Acesso aos GPIOs via Header Pin:
- Acesso a USART de comandos AT via Header Pin;
- Acesso a 3,3 Volts, 5,0 Volts e GND via Header Pin;
- Antena Helicoidal de 4dBl, customizável;
- ✓ Dimensões de 63,5 x 40 mm;

Características da DevBoard

Pronta para sua aplicação que requer...

- ✓ Leitura de sensores diversos;
- ✓ Entradas e saídas digitais;
- Autonomia via bateria de lítio;
- ✓ Alimentação via fonte "simples" de 5,0 Volts;
- Possibilidade da customização do software do MCU;

GPS TX	5,0 Volts	LoRa TX
GPS RX	GND	LoRa RX
5,0 Volts	Data OneWire (Resistor	5,0 Volts
GND	de 10k – 3V3)	GND

Integração com Projetos IoT B1 [Blue PushButton] RCC_OSC32_OUT RCC_OSC_IN RCC_OSC_OUT LoRa_RX LoRa_TX STM32L152RETx LQFP64 USART_TX

- ✓ № quadrar-loraone-devboard-demo
 - > 🐉 Binaries
 - > 🛍 Includes
 - ✓ № Core
 - > 🗁 Inc
 - 🗸 🗁 quadrar
 - > In ds18b20_config.h
 - > c ds18b20.c
 - > h ds18b20.h
 - > @ dwt_stm32_delay.c
 - > h dwt_stm32_delay.h
 - > c onewire.c
 - > h onewire.h
 - > @ quadrar_gps.c
 - > h quadrar_gps.h
 - > 🖟 quadrar_loraone.c
 - > h quadrar_loraone.h
 - > 🔑 Src
 - > 🗁 Startup
 - > 🕮 Drivers
 - > 🗁 Debug
 - quadrar-loraone-devboard-demo.ioc
 - guadrar-loraone-devboard-demo.launch
 - quadrar-loraone-devboard-demo.pdf
 - 🗎 quadrar-loraone-devboard-demo.txt
 - README.md
 - STM32L152RETX_FLASH.ld
 - RAM.Id

- ✓ № quadrar-loraone-devboard-demo
 - > 🐉 Binaries
 - > 🛍 Includes
 - ✓ № Core
 - ✓ (⇒ quadrar
 - > h ds18b20_config.h
 - > 🖟 ds18b20.c
 - > In ds18b20.h
 - dwt_stm32_delay.c
 - > li dwt_stm32_delay.h
 - > 🖟 onewire.c
 - > h onewire.h
 - quadrar_gps.c
 - > 庙 quadrar_gps.h
 - > 宧 quadrar_loraone.c
 - > h quadrar_loraone.h
 - > 🔑 Src
 - > 🐸 Drivers
 - > 🗁 Debug
 - quadrar-loraone-devboard-demo.ioc
 - quadrar-loraone-devboard-demo.launch
 - quadrar-loraone-devboard-demo.pdf
 - 🗎 quadrar-loraone-devboard-demo.txt
 - README.md
 - 🗟 STM32L152RETX_FLASH.ld
 - RAM.Id

- ✓ № quadrar-loraone-devboard-demo
 - > 🚜 Binaries
 - > 🞒 Includes
 - ✓ № Core
 - ✓ 🗁 quadrar
 - > la ds18b20_config.h
 - > 🖸 ds18b20.c
 - > ln ds18b20.h
 - dwt_stm32_delay.c
 - > 🚹 dwt_stm32_delay.h
 - onewire.c
 - > h onewire.h
 - > @ quadrar_gps.c
 - > 庙 quadrar_gps.h
 - Quadrar_loraone.c
 - > h quadrar_loraone.h
 - > 🔑 Src
 - > 🐸 Drivers
 - > 🗁 Debug
 - quadrar-loraone-devboard-demo.ioc
 - guadrar-loraone-devboard-demo.launch
 - quadrar-loraone-devboard-demo.pdf
 - 🗎 quadrar-loraone-devboard-demo.txt
 - README.md
 - STM32L152RETX_FLASH.ld
 - 🗟 STM32L152RETX_RAM.ld

Diretório quadrar:

- ✓ Dsb1820_config -> Configuração do GPIO para leitura do OneWire;
- ✓ Dsb1820.c/h -> Biblioteca do sensor de temperatura;
- Dwt_stm32_delay.c/h -> Controles de tempo para leitura do protocolo OneWire;
- ✓ Onewire.c/h -> Driver utilizado pelo sensor;
- ✓ quadrar_gps.c/h -> Biblioteca do GPS;
- ✓ quadrar_loraone.c/h -> Biblioteca de controle do módulo LoRaOne;

```
// Everynet Information -> Must be exclusive for each device
typedef struct
{
    char*    DEUI;
    char*    APPEUI;
    char*    DADDR;
    char*    NWKSKEY;
    char*    APPSKEY;
} quadrar_loraone_data_t;
```

```
/* Publics function prototypes
*/
int32_t quadrar_loraone_init(void);
int32_t quadrar_loraone_reset(void);
int32_t quadrar_loraone_sleep(void);
int32_t quadrar_loraone_join(quadrar_loraone_join_t mode);
int32_t quadrar_loraone_getDEUI (char* DEUI);
int32_t quadrar_loraone_setAPPEUI(char* APPEUI, char* resp);
int32_t quadrar_loraone_setDADDR(char* DADDR, char* resp);
int32_t quadrar_loraone_setNWKSKEY(char* NWKSKEY, char* resp);
int32_t quadrar_loraone_setAPPSKEY(char* APPSKEY, char* resp);
int32_t quadrar_loraone_send_data(int port, char* data);
```

```
int main(void)
 int32 t res = 0;
 for(;;)
    res = quadrar loraone init();
    if(!res)
    break;
 for(;;)
    quadrar_loraone_send_data(1, "BlaBlaBla!");
    HAL Delay(5000);
```

Vamos a prática...

Repositório de Conhecimento

Repositório de Conhecimento

Todas as informações no GitHub!

No nosso GitHub público disponibilizamos:

- ✓ Arquivos Gerbers e BOM da placa DevBoard;
- ✓ Datasheet, manuais e referencias para o módulo LoRaONE;
- Application Notes;
- ✓ Códigos de exemplo e *drivers* para utilizar o módulo;

Link: https://github.com/QuadrarTecnologia/LoRaOne

Valores e Formas de Aquisição

Valores e Formas de Aquisição

Os valores praticados para o Módulo *LoRaONE* são públicos:

Para volumes praticados na Industria, a tabela de valores é pública, já contabilizada com os impostos de PIS/COFINS, ICMS e IPI:

Quantidade	Preço com Impostos (US\$)
Até 10.000	16,90
10.001 a 50.000	16,12
50.001 a 100.000	15,35
mais de 100.000	14,57

Para amostras, ou aquisição em baixos volumes, disponibilizamos um link no Mercado Livre para compra direta:

https://produto.mercadolivre.com.br/MLB-1432558473-modulo-lorawan-_JM?quantity=1.

Valores e Formas de Aquisição

A expectativa de valor para a placa é de **R\$ 215,00**, com previsão de disponibilidade em **meados de dezembro de 2020.**

O valor se deve ao **baixo volume** praticado para lotes iniciais de aquisição e ele pode ser negociado, dependendo da sua aplicação e volume, da mesma forma que é pratico pelo Módulo LoRaONE.

Também pode ser utilizada em projetos especiais, com customização de software, adequando-se a aplicação necessária.

Para amostras, ou aquisição em baixos volumes, disponibilizaremos um link no Mercado Livre para compra direta em Dezembro de 2020.

Referências

Referêcias

LoRa segundo a Wekipedia: https://pt.wikipedia.org/wiki/LoRa

LoRaWAN pela LoRa Alliance: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf

Quadrar Tecnologia: https://quadrar.com.br

Quadrar Tecnologia no Linkedin: https://www.linkedin.com/company/quadrartecnologia/

Quadrar Tecnologia no Youtube: https://www.youtube.com/channel/UC3zIF7_kq0bqnCLDcLuwKrg

Repositório da Quadrar Tecnologia no GitHub: https://github.com/QuadrarTecnologia/LoRaOne

LoRaONE no Mercado Livre: https://produto.mercadolivre.com.br/MLB-1432558473-modulo-lorawan- JM?quantity=1.

Application Server da Tago.io: https://tago.io/

Network Server da Everynet: https://ns.atc.everynet.io/login

Agradecimentos

Obrigado

Airton Toyofuku

CTO e Engenheiro

+55 11 3662.3678

+55 11 9.6588.5980

ayt@quadrar.com.br
airton@toyofuku.com.br

https://br.linkedin.com/in/airtontoyofuku

Quadrar Tecnologia - Mais do que uma empresa de loT Somos parceiros do seu negócio