WYBÓR LOKALIZACJI PUNKTÓW ODBIORU PACZEK

ZAH 2021L

Autorzy:

Kierownik projektu: Jan Such Filip Mazur Waldemar Zieliński

Ostatnia aktualizacja: 18.05.2021

Repozytorium: GitHub

Spis treści

0.	Wp	rowadz	enie	3
	0.1.	Proble	em biznesowy	3
	0.2.	Przyję	te założenia	3
	0.3.	Meto	dy pozyskiwania danych	3
	0.4.	Litera	tura	3
1.	Мо	del pod	stawowy	4
	1.1.	Założe	enia modelu:	4
	1.2.	Mode	l rzeczowy:	4
	Zbi	ory:		4
	Par	ametry:		4
	Zm	ienne d	ecyzyjne:	4
	Fun	nkcja cel	u:	4
	Ogr	raniczen	ia:	5
2.	Tes	ty mode	elu podstawowego	5
	2.1.	Opis r	ealizacji testów	5
	2.2.	Testy		5
	Dar	ne nr 1.		5
	Dar	ne nr 2 .		7
	2.3.	Wnios	;ki	8
3.	Мо	del rozs	zerzony	9
	3.1.	Propo	nowane kierunki rozwoju modelu podstawowego	9
	3.1	.1. V	Vspólni klienci - uogólnienie	9
	3.1	.2. S	trefy mieszkalne	10
	3.1	.3. C	Postarczanie towaru z magazynów	10
	3.1	.4. P	ojemność punktów odbioru	10
	3.1	.5. G	Sodziny otwarcia	10
	3.2.	Wybra	any kierunek rozwoju modelu podstawowego	10
4.	Sfo	rmułow	anie modelu rozszerzonego	11
	4.1.	Opis		11
	4.2.	Aktua	lizacja modelu operacyjnego	12
	Zbi	ory:		12
	Par	ametry		12
	Zm	ienne d	ecyzyjne	13
	Fun	nkcja cel	u:	13

	(Ogra	aniczenia:	13
	4.3	3.	Model strategiczny - przydzielenie budżetu do miast	13
	Z	Zbio	ry:	13
	F	Para	metry:	14
	Z	Zmie	enne decyzyjne:	14
	F	Funk	cja celu:	14
	(Ogra	niczenia:	14
5.	١	Wyn	iki modelu rozszerzonego	15
	5.1		Model strategiczny	15
	5.2	2.	Model operacyjny	18
6.	Á	Anal	iza złożoności obliczeniowej	20
	6.1		Model strategiczny	20
	6.2	2.	Model operacyjny	21
7.	F	Pods	sumowanie	21
8.	ŀ	Histo	oria zmian	21

0. Wprowadzenie

0.1. Problem biznesowy

Pandemia to czas trwogi i zadumy, naciski władz oraz presja jedności obywatelskiej niejednokrotnie stawiają ludzi w sytuacjach niejednoznacznych. Odpowiedzialność za siebie i innych determinuje potrzebę izolacji i przestrzegania obostrzeń sanitarnych. Coraz częściej decydujemy się na pozostanie w domu wykonując niezbędne obowiązki zdalnie. Czynności dnia codziennego, takie jak zakupy z możliwością dostawy do punktu odbioru, przenosimy w świat cyfrowy. Które z możliwych punktów odbioru są najkorzystniejsze dla firm dostawczych? Chcąc rywalizować na rynku kurierskim, firma musi podjąć trudne decyzje – wybór stref klientów, które będzie obsługiwać, licząc się z utratą zleceń, tych którzy będą mieli daleko do punktu odbioru paczek. Często firma musi rezygnować z obsługi danego rejonu z powodu niewystarczających środków lub po prostu nieopłacalności. Niniejsza praca rozpatruje ten problem pod kątem optymalizacji zysków.

0.2. Przyjęte założenia

Problem będzie rozpatrywany pod kątem wyboru punktów odbioru umożliwiających pośredniczenie w odbiorze paczek. Punkty odbioru paczek są reprezentowane przez koszt umowy, zysk na jednego klienta, szacowaną liczbę klientów. Model podstawowy upraszcza zawieranie się obszarów stref zasięgu poprzez przedstawienie tego zagadnienia jako liczba wspólnych się klientów przez dwa wybrane punkty odbioru.

0.3. Metody pozyskiwania danych

Dla modelu podstawowego, który nie uwzględnia stref mieszkalnych zostały ręcznie wprowadzone spreparowane dane.

W kolejnych etapach projektu planowane jest użycie prostego generatora liczb pseudolosowych do otrzymania lokacji i parametrów potencjalnych punktów odbioru oraz stref mieszkalnych. Ich położenie zapisywane będzie początkowo w systemie kartezjańskim, natomiast docelowo planowane jest przedstawienie danych lokalizacyjnych przy pomocy współrzędnych geograficznych.

0.4. Literatura

- Wykład "Problemy dyskretne" Tomasz Śliwiński

1. Model podstawowy

1.1. Założenia modelu:

Posiadamy sieć sugerowanych punktów odbioru. Każdy punkt oferuje własny koszt miesięcznej umowy wykonywania usługi (może być zależny od lokalizacji, liczby mieszkańców w okolicy oraz popytu na usługę odbioru paczek w danym obszarze). Firma kurierska ustaliła stałe ceny dostaw paczek, niezależne od lokalizacji czy wielkości. Dzięki badaniom rynku i poprzednich okresów działalności uzyskaliśmy szacunkowe dane dotyczące liczby klientów obsługiwanych w danym punkcie odbioru oraz liczbę wspólnych klientów dla każdej pary punktów odbioru. Wybierając dwa punkty, które dzielą część swoich klientów z drugim punktem, dochód za takiego klienta przynosi nam tylko jeden punkt odbioru. Ograniczyliśmy problem w ten sposób, że klient może być wspólny co najwyżej dla dwóch punktów odbioru. Nasza firma chce mieć jak największy zysk z działalności, ma jednak ograniczony budżet i nie może zdecydować się na obsługę wszystkich klientów (podpisania umowy ze wszystkimi punktami odbioru, które przyniosą zysk).

1.2. Model rzeczowy:

Zbiory:

- $p \in P$ Punkty odbioru

Parametry:

- $koszt_p$ Koszt miesięcznej umowy z punktem odbioru, $p \in P$ - przychod Szacunkowy, miesięczny przychód w punkcie odbioru za

jednego klienta

- $liczbaKlientow_p$ Liczba klientów w punkcie odbioru, $p \in P$

- $wspolniKlienci_{ii}$ Liczba wspólnych klientów punktów odbioru $i, j \in P$

- budzet Budżet firmy

Zmienne decyzyjne:

- x_p Wybrane punkty odbioru $p \in P$

- $w_{ij} \in \{0,1\}$ Wybrane pary punktów odbioru $i, j \in P$

Funkcja celu:

$$\sum_{p} (przychod \cdot liczbaKlientow_{p} - koszt_{p}) \cdot x_{p} - \frac{1}{2} \cdot \sum_{i} \sum_{j} w_{ij} \cdot wspolniKlienci_{ij} \cdot przychod$$

Ograniczenia:

- 1. całkowity koszt umów z punktami odbioru nie może przekraczać określonego budżetu $budzet \geq \sum_{p \in P} koszt_p \cdot x_p$
- 2. Określenie, czy oba punkty odbioru *i* oraz *j* zostały wybrane (wtedy trzeba uwzględnić wspólnych klientów)

$$\bigwedge_{i,j \in P} x_i + x_j \le w_{ij} + 1$$

2. Testy modelu podstawowego

2.1. Opis realizacji testów

W testach porównujemy wyniki rozwiązań dla modelu uwzględniającego sąsiedztwa (model podstawowy) oraz modelu, który nie uwzględnia wspólnych klientów sąsiednich punktów odbioru (rozwiązanie problemu plecakowego). Spodziewamy się, że dla pewnych danych możemy otrzymać inny, optymalny wybór punktów odbioru. W uproszczonym modelu (nieuwzględniający sąsiedztwa punktów odbioru) prawie zawsze uzyskamy zawyżony zysk (jeśli nie będzie to przykład trywialny – np. bez wspólnych klientów). Jeśli przydział punktów odbioru modelu podstawowego i uproszczonego będą takie same, to nie wpłynie to negatywnie na przedsiębiorstwo dostarczające paczki. W takim przypadku możemy otrzymać tylko zawyżony zysk (dla modelu uproszczonego). Ciekawszy będzie test, w którym otrzymamy różny wybór punktów odbioru. W takim przypadku otrzymamy pozornie większy zysk w modelu uproszczonym. Jakby się potem okazało po uwzględnieniu wspólnych klientów zysk będzie mniejszy niż przy wyborze za pomocą modelu podstawowego. Interesującym może być też pytanie jak duży zysk moglibyśmy uzyskać w ten sposób.

2.2. <u>Testy</u>

Dane nr 1

Budżet: 1200 Przychód: 6

Punkt odbioru	Koszt	Liczba klientów
A	500	200
В	300	250
С	800	500
D	500	300
Е	50	150

	Liczb	a wspólnych k	dientów							
Punkt odbioru	Punkt odbioru A B C D									
A		120	0	0	0					
В	120		100	0	0					
С	0	100		50	0					
D	0	0	50		80					
E	0	0	0	80						

Wyniki testu:

Model podstawowy:

Wybrane punkty odbioru: b, c, e

Koszt: 1 150

Łączny zysk: 3 650

Model bez uwzględnienia sąsiedztwa:

Wybrane punkty odbioru: b, c, e

Koszt: 1 150 Zysk: 4 250

Rzeczywisty zysk: 3 650

Rys.1.1 Schemat poglądowy dla danych nr 1

Dane nr 2

Budżet: 600 Przychód: 5

Punkt odbioru	Koszt	Liczba klientów
A	150	250
В	100	225
С	150	200
D	100	350
Е	200	300
F	500	550

	Lica	zba wspólny	ch klientów			
Punkt odbioru	A	C	D	Е	F	
A		100	0	0	60	90
В	100		50	0	0	70
С	0	50		60	0	80
D	0	0	60		100	100
Е	60	0	0	100		130
F	90	70	80	100	130	

Wyniki testu:

Z uwzględnieniem sąsiedztwa:

Wybrane punkty odbioru: a, c, d, e

Koszt: 600 Zysk: 3 800

Model bez uwzględnienia sąsiedztwa:

Wybrane punkty odbioru: a, b, d, e

Koszt: 550 Zysk: 5 075

Rzeczywisty zysk: 3 775

Rys.1.2 Schemat poglądowy dla danych nr 2

2.3. Wnioski

W celu sprawdzenia korzyści wynikających z zastosowania modelu uwzględniającego części wspólne klientów dla poszczególnych punktów odbioru porównaliśmy wyniki modelu podstawowego z rozwiązaniem dla problemu plecakowego (nie uwzględniającego przy optymalizacji części wspólnych klientów). W przypadku danych nr 1 uzyskaliśmy takie same rezultaty, jednakże wyższość modelu podstawowego ujawniła się dla danych nr 2. Zyski modelu to 3 800, podczas gdy wynik dla problemu plecakowego daje 3 775, co daje około 1% zysku więcej. Rozwiązanie modelu podstawowego jest lepsze od rozwiązania uproszczonego, ale widać że dla podanych danych korzyść jest niewielka.

3. Model rozszerzony

3.1. Proponowane kierunki rozwoju modelu podstawowego

3.1.1. Wspólni klienci - uogólnienie

Opracowanie sposobu na uwzględnienie wspólnych klientów, gdy obszary więcej niż dwóch punktów odbioru nachodzą na siebie.

100 C B

Rys.2.1 Punkty odbioru mają wspólnych klientów parami. Nie istnieją klienci, których można obsłużyć w dowolnym z tych punktów odbioru

Rys.2.2 Istnieją klienci (100), których można obsłużyć w dowolnym z punktów odbioru: A, B lub C. Analogicznie można to rozwinąć do większej liczby punktów odbioru.

W modelu podstawowym punkty odbioru można interpretować jako zbiory klientów P_1 , P_2 , ... P_n , gdzie występują niepuste części wspólne maksymalnie dwóch z nich (określone przez parametr *wspolniKlienci*). Jeśli chcielibyśmy policzyć sumę klientów dostępnych w punktach odbioru, to metoda wyglądałaby następująco:

$$P_1 \cup P_2 \cup P_3 \dots \cup P_n - P_1 \cap P_2 - P_1 \cap P_3 \dots - P_1 \cap P_n \dots - P_2 \cap P_3 \dots - P_{n-1} \cap P_n$$

W modelu, powyższy wzór został nieco zmodyfikowany (dla wygody implementacji – odejmujemy dwukrotnie części wspólne i następnie dzielimy przez dwa, co jest niekorzystne wydajnościowo). Dodając możliwość wystąpienia potrójnej części wspólnej, znacząco zwiększymy nakład obliczeniowy – oprócz odjęcia części wspólnych dwóch punktów odbioru trzeba będzie dodać części wspólne trzech punktów odbioru (wystąpi potrójna suma). Można jednak zauważyć, że nie trzeba iterować po wszystkich parach (trójkach, ...) punktów odbioru w celu uwzględnienia ich części wspólnej. Wystarczy uwzględniać tylko te punkty, które dzielą ze sobą klientów.

Obecnie iterujemy po punktach odbioru, które nie posiadają części wspólnej. Co jest widoczne w podwójnej sumie po wszystkich parach p_1 i p_2 będącymi punktami odbioru. Rozwiązaniem może być wcześniejsze zdefiniowanie par (trójek, itd.) sąsiadujących ze sobą punktów odbioru. Można to wykonać poza środowiskiem CPLEX.

Alternatywnym sposobem uwzględnienia wspólnych klientów jest zmiana interpretacji danych. P_i można zinterpretować jako klientów, których obsłużyć może tylko i-ty punkt odbioru. Analogicznie kolejne zbiory klientów: P_{ij} – klienci, którzy mogą zostać obsłużeni tylko w punkcie odbioru i oraz j (w żadnym więcej); P_{ijk} – klienci, którzy mogą zostać obsłużeni tylko w punktach i, j oraz k. Posiadając tak przygotowane dane, funkcja celu byłaby znacznie uproszczona i łatwa w interpretacji.

3.1.2. Strefy mieszkalne

Kolejnym wariantem rozszerzenia modelu jest określenie liczby klientów każdego z punktów odbioru. W rzeczywistości punkt odbioru będący na północy miasta nie konkuruje z punktem ulokowanym w centrum. Obecny model ściśle wiąże klientów oraz punkty odbioru. Można te elementy oddzielić – punkty odbioru (lokalizacja, zasięg) oraz strefy mieszkalne (lokalizacja, liczba klientów).

3.1.3. <u>Dostarczanie towaru z magazynów</u>

Trzecim kierunkiem rozwoju projektu jest uwzględnienie w problemie magazynów. Firma, dla której tworzymy system jest ostatnim ogniwem w dostawie (dystrybucja na poziomie miasta). W mieście posiadamy kilka magazynów, z których dostarczamy paczki do punktów odbioru. Należy dobrać odpowiednie punkty odbioru, aby zadowolić klientów oraz nie ponosić zbyt dużych kosztów za dojazd z magazynu do punktu odbioru.

3.1.4. Pojemność punktów odbioru

Inna propozycja rozwoju to wprowadzenie pojemności punktów odbioru. W przypadku dużego wzrostu klientów, mniejsze punkty mogłyby mieć problem z obsługą wszystkich określonych zadeklarowanych klientów.

3.1.5. Godziny otwarcia

Wprowadzenie godzin otwarcia – ograniczenie dostępu do punktów odbioru. Dystrybucja paczek z centralnego magazynu do punktów odbioru musi być możliwa w ciągu jednego dnia.

3.2. Wybrany kierunek rozwoju modelu podstawowego

Zwiększamy skalę problemu biznesowego do skali państwa – przedsiębiorstwo startuje z określonym budżetem, który musi wpierw rozdzielić pomiędzy miasta. Następnie, tak jak w modelu podstawowym, wybierane będą punkty odbioru, mając na uwadze optymalizację zysków.

Miasta będą posiadały różne, historyczne liczby mieszkańców, a przewidywany zysk za obsługę mieszkańca danego miasta obliczać będziemy przy pomocy danych statystycznych na temat średnich zarobków w danym województwie.

Model rozszerzony będzie składał się z systemu wspierającego zarządzanie strategiczne oraz operacyjne przedsiębiorstwa.

Model strategiczny służy alokacji budżetu do miast, w których świadczymy usługi. Przyjmujemy, że przydział budżetu w każdym mieście i miesiącu może być inny. Jako horyzont czasowy przyjęliśmy 12 miesięcy. Ponieważ na poziomie państwa, dysponujemy jedynie zagregowanymi danymi zdecydowaliśmy się przyjąć, postanowiliśmy wprowadzić parametry, które pozwolą nam manipulować wyznaczanie alokacji w zależności od przyjętych przez zarząd firmy celi.

Rys.3 Mapa Polski przedstawiająca zarobki w województwach względem średniej krajowej [źródło: http://eregion.wzp.pl]

Symulacja przeprowadzana będzie w skali roku, przy czym co miesiąc następować będzie podliczanie przychodów oraz wydatków. Dodatkowo, model będzie brał pod uwagę dwa okresy świąteczne – ferie oraz wakacje – w których przychody w niektórych regionach będą znacznie wzrastać (biznesy sezonowe). Umowy z punktami odbiorów będą podpisywane na miesiąc, co pozwoli na zmianę strategii wyboru punktów odbioru w zależności od sezonu oraz dostępnego budżetu.

4. Sformułowanie modelu rozszerzonego

4.1. <u>Opis</u>

Dotychczas model podstawowy skupiał się jedynie na operacyjnej skali problemu – przydzielony dla danego miasta budżet był używany do podpisywania umów z potencjalnymi punktami odbioru.

Model rozszerzony nie tylko usprawnia funkcjonalność modelu operacyjnego poprzez modyfikację ograniczeń i założeń w celu umożliwienia symulacji bardziej skomplikowanych rozmieszczeń wspólnych klientów między punktami odbioru, lecz także wprowadza model o większej skali – model strategiczny.

Model ten zakłada budżet ogólnokrajowy, który przeznaczany jest na sfinansowanie sieci punktów odbioru na przestrzeni wszystkich miast w kraju. Zarząd może narzucić z góry pewne parametry, takie jak minimalny procent obsłużonych mieszkańców w danym mieście czy maksymalna procentowa odchyłka od średniej ilości obsłużonych mieszkańców.

Symulacja modelu operacyjnego odbywała się w skali miesięcznej – to znaczy umowy z punktami odbioru zawierane były na okres jednego miesiąca. Z każdym kolejnym miesiącem symulację należało

uruchomić ponownie. W modelu strategicznym symulacja będzie zachodziła w skali rocznej – budżet rozlokowywany będzie od razu na wszystkie miesiące. Ponieważ modele nie są w żaden sposób sprzężone, przed uruchomieniem modelu jako parametry podawane będą średnie koszty umów, szacunkowe maksymalne ilości klientów oraz prognozowane przychody za jednego klienta. Wspomniane dane wyciągane będą z danych statystycznych z poprzednich lat oraz ówczesnych uruchomień modeli, zarówno strategicznych, jaki i operacyjnych.

4.2. Aktualizacja modelu operacyjnego

Zbiory:

• $p \in P$ Punkty odbioru

ullet $s \in S$ Sąsiadujące punkty odbioru

Parametry

 $oldsymbol{c}_p$ Szacowana liczba klientów w punkcie odbioru p

ullet $c_{\scriptscriptstyle S}$ Szacowana liczba klientów należący do sąsiedztwa s

ullet Koszt otwarcia punktu odbioru p (opłata miesięczna)

w Przychód osiągany za jednego klienta

b Dostępny budżet

Zmienne decyzyjne

- x_p Zmienna określająca, czy punkt odbioru p jest otwarty (0 zamknięty, 1 otwarty)
- ullet y_s Zmienna określająca, czy którykolwiek z punktów odbioru, wchodzących w skład sąsiedztwa s został wybrany

Funkcja celu:

$$\max z = \sum_{p} (w \cdot c_p - k_p) \cdot x_p + \sum_{s} w \cdot c_s \cdot y_s$$

Ograniczenia:

1. Ograniczenie budżetu

$$\sum_{p} k_{p} x_{p} \le b$$

2. Sąsiedztwa

a)

$$\sum_{i,j} x_i + x_j \ge y_s \text{ , } \land s \in S, \qquad s = (p_i, p_j)$$

b)

$$\sum_{i,j,k} x_i + x_j + x_k \ge y_s \ , \land s \epsilon S, \qquad s = (p_i,p_j,p_k)$$

c)

$$\sum_{i,j,k,l} x_i + x_j + x_k + x_l \ge y_s , \land s \in S, \qquad s = (p_i, p_j, p_k, p_l)$$

4.3. <u>Model strategiczny - przydzielenie budżetu do miast</u>

Zbiory:

- $m \in M$ Miasta
- $t \in T$ Miesiące

Parametry:

- l_{mt} - Maksymalna liczba klientów w mieście m i miesiącu t

- k_{mt} - Średni koszt jaki należy ponieść, aby obsłużyć jednego klienta w mieście m i miesiącu t

- p - Przychód za jednego klienta

- b_{pocz} - Początkowy budżet

- c - Procent zysków wracający do budżetu

- w_{mt} - Maksymalna odchyłka procentowego szacunkowego obsłużenia

klientów w mieście m i miesiącu t od średniej

- o_{mt} - Minimalny procent szacunkowego obsłużenia klientów w mieście m i miesiącu t

Zmienne decyzyjne:

- x_{mt} - Szacunkowa liczba klientów, którą chcemy obsłużyć w mieście m i okresie t

s - Średni szacunkowy stosunek liczby obsługiwanych klientów

Funkcja celu:

Maksymalizacja:

$$\sum_{t} \sum_{m} x_{mt} \cdot (p - k_{mt})$$

Ograniczenia:

1. Budżet przeznaczony na każde miasto nie powinien przekraczać comiesięcznego budżetu

$$\bigwedge_{t} \sum_{m} x_{mt} \cdot k_{mt} \le b_{t}$$

2. Szacowany procent obsłużonych klientów musi przekroczyć przyjęte minimum

$$\bigwedge_{t} \bigwedge_{m} \frac{x_{mt}}{l_{mt}} \ge o_{mt}$$

3. Szacowana liczba obsłużonych klientów nie może przekroczyć maksymalnej liczby klientów

$$\bigwedge_{t} \bigwedge_{m} x_{mt} \le l_{mt}$$

4. Średnia szacunkowa liczba obsługiwanych klientów w

$$s = \sum_{t} \sum_{m} \frac{x_{mt}}{l_{mt} \cdot |T| \cdot |M|}$$

14

5. Dla każdego miasta w dowolnej chwili czasu odchyłka procentowego szacunkowego obsłużenia klientów nie może być większa od współczynnika w

5.1

$$\bigwedge_t \bigwedge_m \frac{x_{mt}}{l_{mt}} - s \ge -w_{mt}$$

5.2

$$\bigwedge_t \bigwedge_m \frac{x_{mt}}{l_{mt}} - s \le w_{mt}$$

6. Obliczanie comiesięcznego budżetu

$$b_0 = b_{pocz}$$

$$b_t = b_{t-1} + \sum_{m} x_{mt} (c \cdot p - k_{mt})$$

5. Wyniki modelu rozszerzonego

5.1. Model strategiczny

Ze względu na złożoność modelu w analizie ograniczamy się do czterech miast: Sopot, Zakopane, Koszalin i Szczecin. Parametry związane z maksymalną liczbą klientów zostały oszacowane na podstawie dostępnych danych statystycznych związanych z liczbą ludności i średnimi zarobkami dla danego miasta w zależności od miesiąca.

Budżet	340000
Przychód	7
Cześć zwracanego zysku	0,6

	Średni l	koszt jal	ki należy	y ponieś	ść, aby d	obsłużyć	ć jedneg	o klient	ta w mi	eście m	i miesią	cu t
m\t	1	2	3	4	5	6	7	8	9	10	11	12
Sopot	2,9	4	6,67	5,16	5,09	3,84	2,87	2,99	3,78	4,18	5,28	2,3
Zakopane	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5
Koszalin	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Szczecin	3,5	3,8	5	5	5,2	4,7	4	3,2	3,6	4	3,5	3

l	Minimalny procent szacunkowego obsłużenia klientów w mieście m i miesiącu t														
m\t	1	2	3	4	5	6	7	8	9	10	11	12			
Sopot	0,08	0,02	0,02	0	0,02	0,02	0,01	0,05	0,04	0,1	0,04	0,11			
Zakopane	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1			
Koszalin	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1			
Szczecin	0,09	0,12	0,05	0,19	0,21	0,11	0,3	0,1	0,09	0,2	0,08	0,3			

Mak	Maksymalna odchyłka procentowego szacunkowego obsłużenia klientów w mieście m i miesiącu t od średniej														
m\t	1	2	3	4	5	6	7	8	9	10	11	12			
Sopot	0,15	0,1	0,11	0,3	0,2	0,1	0,1	0,3	0,2	0,1	0,1	0,3			
Zakopane	0,1	0,05	0,1	0,1	0,1	0,1	0,1	0,5	0,2	0,1	0,05	0,05			
Koszalin	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,4	0,2	0,1	0,05	0,05			
Szczecin	0,2	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,05	0,05			

Maksyma	Maksymalna liczba klientów w mieście m i miesiącu t														
m\t 1 2 3 4 5 6 7 8 9 10 11												12			
Sopot	5770	4226	2585	3340	3385	4484	5998	6482	4555	4127	3264	7486			
Zakopane	9570	3297	7079	8896	11853	11844	8877	11827	5909	2979	12126	15146			
Koszalin	28646	9548	21428	33093	45392	47509	36265	47924	22900	10919	38159	47694			
Szczecin	123906	82583	82563	82542	123782	165002	206201	82460	41220	82419	123597	205943			

Wyniki

	Liczba obsłużonych klientów														
m\t	1	2	3	4	5	6	7	8	9	10	11	12			
Sopot	2219	1837	1098	784	1133	1949	2607	1520	1433	1794	1419	4001			
Zakopane	4158	1598	4491	5644	5150	7510	3857	11827	1918	1295	7087	8852			
Koszalin	18175	6058	13595	20996	28756	30143	23009	44784	16819	6926	22303	27876			
Szczecin	78107	52397	35872	35863	53781	62192	96902	52319	26153	52293	72240	120369			

	Część obsłużonych klientów											
m\t	1	2	3	4	5	6	7	8	9	10	11	12
Sopot	0,384	0,434	0,424	0,234	0,334	0,434	0,434	0,234	0,314	0,434	0,437	0,534
Zakopane	0,434	0,484	0,634	0,634	0,434	0,634	0,434	1	0,324	0,434	0,584	0,584
Koszalin	0,634	0,634	0,634	0,634	0,633	0,634	0,634	0,934	0,734	0,634	0,584	0,584
Szczecin	0,630	0,634	0,435	0,434	0,434	0,376	0,469	0,634	0,634	0,634	0,584	0,584

		Przydzielony budżet		
t\m	Sopot	Zakopane	Koszalin	Szczecin
1	6634,81	14553	45437,5	273374,5
2	7494,96	5593	15145	199108,6
3	7323,66	15718,5	33987,5	179360
4	4045,44	19754	52490	179315
5	5766,97	18025	71890	279661,2
6	7484,16	26285	75357,5	292302,4
7	7482,09	13499,5	57522,5	387608
8	4544,8	41394,5	111960	167420,8
9	5416,74	6713	42047,5	94150,8
10	7498,92	4532,5	17315	209172
11	7492,32	24804,5	55757,5	252840
12	9202,3	30982	69690	361107

5.2. <u>Model operacyjny</u>

Rys. 4 Wizualizacja punktów odbioru

Punkty odbioru	Koszt wynajęcia p. o.
1	100
2	1000
3	350
4	600
5	500
6	900
7	650
8	550
9	1200
10	450
11	300
12	1000
13	800
14	500
15	300
16	1900
17	300
18	400
19	900
20	850
21	200
22	1100
23	990
24	1400

Pary punktów odbioru																		
p1	1	1	2	5	6	8	10	12	12	12	16	16	16	19	20	20	21	23
p2	3	5	5	8	7	9	12	11	14	18	17	19	24	22	21	22	24	24

Trójki punktów odbioru								
p1	1	3	6	8	12	19	22	
p2	4	5	7	10	14	22	23	
р3	5	7	8	11	13	24	24	

	Czwórki punktów odbioru							
p1	13	12	18	21	1	2		
p2	14	16	19	22	2	5		
рЗ	16	15	21	23	4	6		
p4	17	18	23	24	5	8		

	Wybra	ne pu	ınkty	odbio	ru w d	danyc	h mie	siącac	h					
		Miesiąc												
Punkty odbioru	1	2	3	4	5	6	7	8	9	10	11	12		
1	1	1	1	1	1	1	0	1	1	1	0	0		
2	1	0	1	1	0	0	0	1	1	0	0	1		
3	1	0	1	1	0	0	1	0	1	0	1	1		
4	0	1	0	0	0	0	1	0	1	1	1	1		
5	0	1	0	0	1	1	1	0	0	1	1	1		
6	0	1	0	0	1	1	0	0	0	1	1	1		
7	0	0	0	0	0	0	0	1	0	0	0	0		
8	1	0	1	1	0	0	1	0	1	0	0	C		
9	1	1	0	0	0	0	1	0	1	1	1	1		
10	1	1	0	0	1	1	1	0	0	1	1	1		
11	1	0	1	1	1	1	1	1	0	0	0	1		
12	0	0	1	0	0	0	1	0	1	1	0	C		
13	0	0	0	0	0	0	0	0	0	0	0	C		
14	1	1	1	0	1	1	0	1	0	0	1	1		
15	1	0	0	1	1	1	1	1	0	0	0	1		
16	0	0	0	0	0	0	0	0	0	0	0	1		
17	0	0	1	1	1	1	1	0	1	1	1	C		
18	0	1	0	0	0	0	0	0	0	0	1	C		
19	0	1	0	0	0	0	0	0	0	0	0	C		
20	1	1	0	1	1	1	1	0	0	0	1	C		

21	0	0	1	1	1	1	0	1	1	1	0	1
22	0	0	1	0	1	1	0	0	0	1	0	0
23	1	1	0	0	0	0	1	0	0	1	0	1
24	0	0	1	0	0	0	0	1	0	0	1	0

Czasy - strategiczny:

Liczba miast	Czas
4	1,76s
5	1,81s
6	1,73s
7	2,21s
8	1,70s
9	1,75s
10	2,02s
24	2,52s

Miesiąc	Budżet	Przeznaczony budżet	L. ob. kl.	Zysk
1	6634,81	6590	3335	23345
2	7494,96	7390	2140	14980
3	7323,66	6800	1088	7616
4	4045,44	3950	1031	7217
5	5766,97	5500	1319	9233
6	7484,16	7450	2238	15666
7	7482,09	7390	3064	21448
8	4544,8	4450	2066	14462
9	5416,74	5300	1719	12033
10	7498,92	7340	2004	14028
11	7492,32	7450	1558	10906
12	9202,3	9190	4297	30079
Suma	80387,17	78800	25859	181013

6. Analiza złożoności obliczeniowej

6.1. Model strategiczny

6.2. <u>Model operacyjny</u>

7. Podsumowanie

8. Historia zmian

18.03.2021 -	temat projektu i organizacja pracy
11.04.2021 –	powstanie modelu podstawowego i implementacji
12.04.2021 –	modyfikacja modelu podstawowego
13.04.2021 –	udoskonalenie modelu, przeprowadzenie testów
	udokumentowanie postępów prac nad modelem podstawowym
15.04.2021 –	uzupełnienie dokumentacji
20.04.2021 -	wprowadzenie możliwych kierunków rozwoju modelu podstawowego
21.04.2021 -	poprawienie formatowania dokumentacji
	edycja możliwych kierunków rozwoju (modyfikacja opisu istniejących i dodanie nowych propozycji)
18.05.2021 -	sformułowanie modelu rozszerzonego
06.06.2021 -	uzupełnienie dokumentacji, dodanie opisu modelu rozszerzonego
11.06.2021 –	wyniki modelu rozszerzonego