Progress Report

Syed Ahmad Raza

2017.11.29

Contents

1	Finite Volume Method for 2D flows		2
	1.1	Comparison of velocity profiles of analytical versus numerical solution using different velocity schemes	2
	1.2	Vertical grid points, $ny = 10$	_
		Reynolds number, $Re = 10 \dots \dots \dots \dots \dots$	3
	1.3	Vertical grid points, $ny = 30$	
		Reynolds number, $Re = 10 \dots \dots \dots \dots \dots$	4
	1.4	Vertical grid points, $ny = 10$	
		Reynolds number, $Re = 100 \dots \dots \dots \dots \dots$	5
	1.5	Substitutions for velocities in the convective terms	6

1 Finite Volume Method for 2D flows

1.1 Comparison of velocity profiles of analytical versus numerical solution using different velocity schemes

The code was tested at a range of Reynolds numbers and similar results were obtained.

Velocity profiles are presented here at a fixed set conditions for the three different velocity schemes. The analysis was repeated with an increasing number of grids and at different Reynolds numbers.

1.2 Vertical grid points, ny = 10Reynolds number, Re = 10

Comparision of velocity profiles of analytical solution versus various numerical schemes for ny = 100.010 Analytical Upwind QUICK Central0.008 0.0060.004 0.0020.0000.06 0.10 0.02 0.04 0.08 0.12 0.14 u-velocity (m/s)

Figure 1: Velocity profiles of numerical solutions using different velocity schemes is compared with that of analytical solution, for 10 vertical grid points at Re = 10.

1.3 Vertical grid points, ny = 30Reynolds number, Re = 10

Comparision of velocity profiles of analytical solution versus various numerical schemes for ny = 300.010 Analytical Upwind QUICK Central0.008 0.0060.004 0.0020.000 0.08 0.10 0.12 0.02 0.04 0.06 0.14 0.00 u-velocity (m/s)

Figure 2: Velocity profiles of numerical solutions using different velocity schemes is compared with that of analytical solution, for 30 vertical grid points at Re = 10.

1.4 Vertical grid points, ny = 10Reynolds number, Re = 100

Figure 3: Velocity profiles of numerical solutions using different velocity schemes is compared with that of analytical solution, for 10 vertical grid points at Re = 100.

1.5 Substitutions for velocities in the convective terms

A simple mean is used for the velocities u_n , u_s , v_e and v_w ,

$$u_{n} = u_{i,j} + \frac{u_{i,j+1} - u_{i,j}}{(y_{j+2} - y_{j})/2}$$

$$v_{e} = v_{i,j} + \frac{v_{i+1,j} - v_{i,j}}{(x_{i+2} - x_{i})/2}$$

$$u_{s} = u_{i,j} - \frac{u_{i,j} - u_{i,j-1}}{(y_{j+1} - y_{j-1})/2}$$

$$v_{w} = v_{i,j} - \frac{v_{i,j} - v_{i-1,j}}{(x_{i+1} - x_{i-1})/2}$$

For rest of the velocities in the convective terms, namely u_e , u_w , v_n and v_s , the following three schemes were used:

- 1. Upwind scheme
- 2. Central difference scheme
- 3. Quadratic Upwind Interpolation for Convective Kinematics (QUICK)

Upwind scheme

For positive velocities,

$$u_e = u_{i,j}$$
 $v_n = v_{i,j}$
 $u_w = u_{i-1,j}$ $v_s = v_{i,j-1}$

For negative velocities,

$$u_e = u_{i+1,j}$$
 $v_n = v_{i,j+1}$
 $u_w = u_{i,j}$ $v_s = v_{i,j}$

Central scheme

$$u_e = \frac{u_{i,j} + u_{i+1,j}}{2} \qquad v_n = \frac{v_{i,j} + v_{i,j+1}}{2}$$
$$u_w = \frac{u_{i-1,j} + u_{i+1,j}}{2} \qquad v_s = \frac{v_{i,j-1} + v_{i,j}}{2}$$

QUICK scheme

For positive velocities,

$$u_e = \frac{6}{8}u_{i,j} + \frac{3}{8}u_{i+1,j} - \frac{1}{8}u_{i-1,j} \qquad v_n = \frac{6}{8}v_{i,j} + \frac{3}{8}v_{i,j+1} - \frac{1}{8}v_{i,j-1} u_w = \frac{6}{8}u_{i-1,j} + \frac{3}{8}u_{i,j} - \frac{1}{8}u_{i-2,j} \qquad v_s = \frac{6}{8}v_{i,j-1} + \frac{3}{8}v_{i,j} - \frac{1}{8}v_{i,j-2}$$

For negative velocities,

$$u_e = \frac{6}{8}u_{i+1,j} + \frac{3}{8}u_{i,j} - \frac{1}{8}u_{i+2,j} \qquad v_n = \frac{6}{8}v_{i,j+1} + \frac{3}{8}v_{i,j} - \frac{1}{8}v_{i,j+2}$$

$$u_w = \frac{6}{8}u_{i,j} + \frac{3}{8}u_{i-1,j} - \frac{1}{8}u_{i+1,j} \qquad v_s = \frac{6}{8}v_{i,j} + \frac{3}{8}v_{i,j-1} - \frac{1}{8}v_{i,j+1}$$

1.6 Work in progress

- Complete coding of Navier-Stokes equation for 3D flow
- Learn and use Paraview to represent the 3D plots