Apostol p.246 no.5

 \mathbf{a}

Claim. \emptyset is open.

Proof. The empty set is open is a vacuously true statement; that is, the statement

$$\forall x \in \emptyset, \exists \epsilon > 0 \mid B_{\epsilon} \subseteq \emptyset$$

is vacuously true.

b

Claim. \mathbb{R}^n is open.

Proof. For any $x \in \mathbb{R}^n$, take $\epsilon = 1$. Then, $B_{\epsilon}(x) \subseteq \mathbb{R}^n$, as the ball is defined to consist of elements of \mathbb{R}^n that satisfy a certain condition.

 \mathbf{c}

Claim. The union of any collection of open sets is open.

Proof. If an element x is in the union $\bigcup_{i=1} A_i$, then $\exists i$ such that $x \in A_j$. Then, since A_j is assumed to be open, $\exists \epsilon \mid B_{\epsilon}(x) \subseteq A_j$. Then, by the definition of union, $y \in B_{\epsilon}(x) \Longrightarrow y \in \bigcup A_i \Longrightarrow B_{\epsilon}(x) \subseteq \bigcup A_i$.

 \mathbf{d}

Claim. The intersection of a finite collection of open sets is open.

Proof. If an element x is in the intersection $\bigcap_{i=1}^n A_i$, then $x \in A_1 \land x \in A_2 \land \cdots \land x \in A_n$. Now, since each A_j is assumed to be open, we have that $\exists \epsilon_j$ such that $B_{\epsilon_j}(x) \in A_j$. Further, for two open balls $B_{\epsilon_1}(x)$, $B_{\epsilon_2}(x)$,

$$\epsilon_2 < \epsilon_1 \implies B_{\epsilon_2}(x) \subset B_{\epsilon_1}(x)$$

as if $y \in B_{\epsilon_2}(x)$, we have that $||x - y|| < \epsilon_2 < \epsilon_1 \implies y \in B_{\epsilon_1}(x)$.

Then, take $\epsilon = \min(\epsilon_j)$. We have that $B_{\epsilon}(x) \subseteq B_{\epsilon_j}(x) \implies B_{\epsilon}(x) \subseteq A_j$ for any j in the range 1 to n. Thus,

$$B_{\epsilon}(x) \subseteq \bigcap_{i=1}^{n} A_i$$

 \mathbf{e}

Consider

$$S = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

Suppose that $x < 0 \in S$. Then, the archimedian property furnishes some n such that $-x > \frac{1}{n}$. Then, $x \notin (-\frac{1}{n}, \frac{1}{n}) \implies x \notin S$.

Similarly, for $x > 0 \in S$, we have some $n \mid x > \frac{1}{n}$, and so $x \notin S$.

Thus, $S = \{0\} = [0, 0]$, which is closed as seen by the fact that [a, b] in general is closed, as stated in class.

Apostol p.252 no.6

Along y = mx, we have that f(x, y) becomes

$$f(x) = \frac{x^2(1-m^2)}{x^2(1+m^2)}$$

Then.

$$\lim_{x \to 0} f(x) = \frac{1 - m^2}{1 + m^2} \lim_{x \to 0} \frac{x^2}{x^2} = \frac{1 - m^2}{1 + m^2}$$

There is then no so such definition of f(0,0) such that f(x,y) is continuous at the origin; in order for it to be continuous at the origin, the limits along y = mx must all coincide, but they clearly don't (take for example m = 0, 1, which see the limit being 1,0 respectively).

Apostol p.256 no.20

 \mathbf{a}

Claim. If f'(x;y) = 0 for any $x \in B_{\epsilon}(a)$ and any vector y, then f is constant on B(a).

Proof. The mean value theorem yields that for any $y \in B(a)$ and for one $0 < \theta < 1$, $f'(a + \theta(y - a); y - a) = f(y) - f(a) = 0 \implies f(y) = f(a)$. However, since this holds for any y, f is constant on B(a).

b

It need not be constant: consider

$$F(x_1, x_2) = x_1^2$$

dc3451 David Chen

Homework 8

MATH 1208 April 20, 2020

Then, we have that

$$D_2F = 0$$

everywhere, but obviously $F(x_1, x_2)$ is nonconstant.

We can conclude at the very least that F is periodic, as the mean value theorem yields that for $x, x + ty \in B(n)$ and some $0 < \theta < 1$, $f'(x + ty\theta; ty) = 0 = f(x + ty) - f(x) \implies f(x + ty) = f(x)$, where t is a scalar; we know that f(x; ty) = tf(x; y) = 0. Then, f is constant in the direction of y, or that f takes the same value on the line x + ty.

Apostol p.256 no.22

 \mathbf{a}

Claim. There is no $f: \mathbb{R}^n \to \mathbb{R}$ such that f(a; y) > 0 for fixed a and any nonzero y.

Proof. Suppose that f'(a;y) > 0. Now consider f'(a;-y). Putting $t_2 = -t_1$ we have that

$$f'(a; -y) = \lim_{t_1 \to 0} \frac{F(x - t_1 y) - F(x)}{t_1} = \lim_{t_2 \to 0} \frac{F(x + t_2 y) - F(x)}{-t_2} = -f'(a; y)$$

Thus we have that f'(a; -y) < 0, but by assumption, we have that f'(a; -y) > 0. $\Rightarrow \Leftarrow$. \Box

b

Consider

$$F(x_1, x_2) = x_1$$

Then,

$$D_1F=1$$

and therefore $D_1F = F'(x, e_1) = 1 > 0$ for any $x \in \mathbb{R}^2$.

Apostol p.281 no.2

$$D_1 f(0,0) = \lim_{t \to 0} \frac{f((0,0) + (t,0)) - f(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{0}{y} = 0$$

$$D_2 f(0,0) = \lim_{t \to 0} \frac{f((0,0) + (0,t)) - f(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{-t}{t} = -1$$

$$D_2 f(t_1,0) = \lim_{t_2 \to 0} \frac{f(t_1,t_2) - f(t_1,0)}{t_2}$$

$$= \lim_{t_2 \to 0} \frac{t_2 \frac{t_1^2 - t_2^2}{t_1^2 + t_2^2}}{t_2}$$

$$= 1$$

$$D_{12} f(0,0) = \lim_{t_1 \to 0} \frac{D_2 f(t_1,0) - D_2 f(0,0)}{t_1}$$

$$= \lim_{t_1 \to 0} \frac{1 + 1}{t_1} \text{ which does not exist.}$$

$$D_1 f(0,t_2) = \lim_{t_1 \to 0} \frac{f(t_1,t_2) - f(0,t_2)}{t_1}$$

$$= \lim_{t_1 \to 0} \frac{t_2 \frac{t_1^2 - t_2^2}{t_1^2 + t_2^2} - t_2 \frac{-t_2^2}{t_2^2}}{t_1}$$

$$= \lim_{t_1 \to 0} t_2 \frac{t_1^2 - t_2^2}{t_1^2} + 1$$

$$= \lim_{t_1 \to 0} t_2 \frac{2t_1^2}{t_1}$$

$$= 0$$

$$D_{21} f(0,0) = \lim_{t_2 \to 0} \frac{D_1 f(0,t_2) - D_1 f(0,0)}{t_2}$$

$$= \lim_{t_2 \to 0} \frac{0}{t_2}$$

$$= \lim_{t_2 \to 0} \frac{0}{t_2}$$

Apostol p.281 no.3

a

$$f'(0; (x,y)) = \lim_{t \to 0} \frac{F(tx, ty) - F(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{F(tx, ty)}{t}$$

$$= \lim_{t \to 0} \frac{xy^3}{x^3 + t^3y^6}$$

$$= \frac{y^3}{x^2}$$

However, if x = 0, then we have that

$$f'(0; (0, y)) = \lim_{t \to 0} \frac{F(0, ty)}{t}$$
$$= \lim_{t \to 0} \frac{0}{t} = 0$$

b

Consider the limit along $x = -y^2$. Then,

$$\lim_{y \to 0} \frac{-y^5}{-y^6 + y^6} = \lim_{y \to 0} \frac{-y^5}{0}$$

This limit doesn't exist, and this f(x,y) is not continuous at the origin.

Problem 1

Claim. The product $S = (a_1, b_1) \times \cdots \times (a_n, b_n)$ is an open set in \mathbb{R}^n .

Proof. For any element $x = (x_1, x_2, \dots, x_n) \in S$, take

$$\epsilon = \min(x_1 - a_1, b_1 - x_1, x_2 - a_2, b_2 - x_2, \dots, x_n - a_n, b_n - x_n)$$

That is, $\epsilon = \min(x_i - a_i, b_i - x_i)$ for $1 \le i \le n$.

Now, for any $y = (y_1, \ldots, y_n) \in B_{\epsilon}(x)$, we have that

$$||y-x|| < \epsilon \implies \sum_{i=1}^{n} (y_i - x_i)^2 < \epsilon^2 \implies (y_i - x_i)^2 < \epsilon^2 \implies |y_i - x_i| < \epsilon$$

Then, if $y_i - x_i > 0$, then

$$y_i < x_i + \epsilon < x_i + (b_i - x_i) = b_i$$

and if $y_i - x_i < 0$, then

$$y_i > x_i - \epsilon \ge x_i - (x_i - a_i) = a_i$$

Thus, we have that for every $1 \le i \le n$, $y_i \in (a_i, b_i) \implies y \in S \implies B_{\epsilon}(x) \in S$.

Problem 2

 \mathbf{a}

Claim. Homogeneous functions of degree 1 have that F(0) = 0.

Proof. Since it is continuous, we have that

$$\lim_{x \to 0} F(x) = F(0)$$

Now, suppose that $F(0) = c \neq 0$. Then, since $\lim_{x\to 0} F(x) = c$, we have that $|F(x) - c| < \frac{|c|}{2}$ on some $B_{\delta}(0)$. Now, consider the quantity $\frac{c}{2F(e_1)}$. We have by the archimedian property some $n \geq 1 \mid n\delta > |\frac{c}{2F(e_1)}| \implies \delta > |\frac{c}{2nF(e_1)}| \implies \frac{c}{2nF(e_1)}e_1 \in B_{\delta}(0)$, as $||\frac{c}{2nF(e_1)}e_1|| = |\frac{c}{2nF(e_1)}|| < \delta$. However, $F(\frac{c}{2nF(e_1)}e_1) = \frac{c}{2nF(e_1)}F(e_1) = \frac{c}{2n}$. Then,

$$|F(\frac{c}{2nF(e_1)}e_1) - c| = |\frac{c}{2n} - c| = |c(1 - \frac{1}{2n})|$$

Further, since $n \ge 1$, $1 - \frac{1}{2n} > 0 \implies |c(1 - \frac{1}{2n})| = |c|(1 - \frac{1}{2n})$. By assumption, we have that $|F(\frac{c}{2nF(e_1)}e_1) - c| = |c|(1 - \frac{1}{2n}) < |\frac{c}{2}| \implies 1 - \frac{1}{2n} < \frac{1}{2} \implies 1 < \frac{1}{2}(1 + \frac{1}{n}) \le \frac{1}{2}(1 + 1) = 1$. Thus, we have that 1 < 1. \implies , so F(0) = 0.

The above ought to work, but there is a much simpler argument that I realized only after doing it: by continuity, we have that

$$F(0) = \lim_{x \to 0} F(x)$$

$$F(0) = \lim_{x \to 0} F(2x)$$

$$= 2 \lim_{x \to 0} F(x)$$

Thus, $F(0) = 2F(0) \implies F(0) = 0$.

dc3451 David Chen

Homework 8

MATH 1208 April 20, 2020

b

$$F'(0;y) = \lim_{t \to 0} \frac{F(0+ty) - F(0)}{t}$$
$$= \lim_{t \to 0} \frac{F(ty)}{t}$$
$$= \lim_{t \to 0} \frac{tF(y)}{t}$$
$$= F(y)$$

Problem 3

Claim. If $F: \mathbb{R}^n \to \mathbb{R}$ satisfies $|F(x)| \le c||x||^2$ for some $c \in \mathbb{R}$ and all $x \in \mathbb{R}^n$, then for any $y \in \mathbb{R}^n$,

$$F'(0;y) = 0$$

Proof. Note that by taking x=0, we have that $|F(0)| \le c||0||^2 = 0 \implies |F(0)| = 0 \implies F(0) = 0$.

$$F'(0;y) = \lim_{t \to 0} \frac{F(0+yt) - F(0)}{t} = \lim_{t \to 0} \frac{F(yt)}{t}$$

Further, for any $\epsilon > 0$ take $\delta = \frac{\epsilon}{|c|||y||^2}$. Then, for $0 < |t| < \delta$

$$\left| \frac{F(ty)}{t} \right| \le \frac{|c|||yt||^2}{|t|} = \frac{|c||t|^2||y||^2}{|t|} = |c||t|||y||^2 < \epsilon$$

Thus, we have that F'(0; y) = 0.