МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра Математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Фундаментальная информатика и информационные технологии»

Магистерская программа: «Когнитивные системы»

ОТЧЕТ

по практической работе №1:

Реализация метода обратного распространения ошибки для двухслойной полностью связанной нейронной сети

Выполнила:

студентка группы 381806-4м Киселева Ольга Вячеславовна

Содержание

Цели и задачи	3
Вывод математических формул	
Описание метода обратного распространения ошибки	
Программная реализации	
Гестирование на наборе данных MNIST	

Цели и задачи

Цель: изучить метод обратного распространения ошибки для обучения глубоких нейронных сетей на примере двухслойной полностью связанной сети (один скрытый слой).

Задачи:

- 1. Изучение общей схемы метода обратного распространения ошибки.
- 2. Вывод математических формул для вычисления градиентов функции ошибки по параметрам нейронной сети и формул коррекции весов.
- 3. Проектирование и разработка программной реализации.
- 4. Тестирование разработанной программной реализации.
- 5. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Вывод математических формул

Выведем математические формулы для вычисления градиентов функции ошибки по параметрам нейронной сети и формулы коррекции весов.

В качестве функции ошибки используется кросс-энтропия.

$$E(w) = -\sum_{j=1}^{M} y_j \ln u_j$$

Найдем производную целевой функции по параметрам последнего слоя:

$$\frac{\partial E}{\partial w_{js}^{(2)}} = \frac{\partial \left(-\sum_{j=1}^{M} y_{j} \ln u_{j}\right)}{\partial w_{js}^{(2)}}$$

$$u_{j} = \varphi^{(2)}(g_{j}) = \varphi^{(2)}\left(\sum_{s=0}^{K} w_{js}^{(2)} v_{s}\right)$$

$$g_{j} = \sum_{s=0}^{K} w_{js}^{(2)} v_{s}$$

$$v_{s} = \varphi^{(1)}(f_{s}) = \varphi^{(1)}\left(\sum_{i=0}^{N} w_{si}^{(1)} x_{i}\right)$$

$$f_{s} = \sum_{i=0}^{N} w_{si}^{(1)} x_{i}$$

$$u_{j} = \varphi^{(2)}(g_{j}) = \varphi^{(2)}\left(\sum_{s=0}^{K} w_{js}^{(2)} v_{s}\right) = \varphi^{(2)}\left(\sum_{s=0}^{K} w_{js}^{(2)} \varphi^{(1)}(f_{s})\right) = >$$

$$u_{j} = \varphi^{(2)}\left(\sum_{s=0}^{K} w_{js}^{(2)} \varphi^{(1)}\left(\sum_{i=0}^{N} w_{si}^{(1)} x_{i}\right)\right)$$

Тогда подставим в производную:

$$= -\frac{y_j}{u_j} \frac{d\varphi^{(2)}(g_j)}{dg_j} \frac{dg_j}{\partial w_{js}^{(2)}} = -\frac{y_j}{u_j} \frac{d\varphi^{(2)}(g_j)}{dg_j} v_s = \delta_j^{(2)} v_s$$
$$\delta_j^{(2)} = -\frac{y_j}{u_j} \frac{d\varphi^{(2)}(g_j)}{dg_j} = \frac{\partial E(w)}{\partial g_j}$$

То есть:

$$\frac{\partial E}{\partial w_{is}^{(2)}} = \delta_j^{(2)} v_s$$

Найдем производную целевой функции по параметрам скрытого слоя:

$$\begin{split} \frac{\partial E}{\partial w_{si}^{(1)}} &= \frac{\partial \left(-\sum_{j=1}^{M} y_{j} \ln \varphi^{(2)} \left(\sum_{s=0}^{K} w_{js}^{(2)} \varphi^{(1)} \left(\sum_{i=0}^{N} w_{si}^{(1)} x_{i} \right) \right) \right)}{\partial w_{si}^{(1)}} = \\ &= -\sum_{j=1}^{M} \frac{y_{j}}{u_{j}} \frac{d\varphi^{(2)} (g_{j})}{dg_{j}} \frac{dg_{j}(v_{s})}{dv_{s}} \frac{d\varphi^{(1)} (f_{s})}{df_{s}} \frac{df_{s}}{w_{si}^{(1)}} = \\ &= -\sum_{j=1}^{M} \frac{y_{j}}{u_{j}} \frac{d\varphi^{(2)} (g_{j})}{dg_{j}} w_{js}^{(2)} \frac{d\varphi^{(1)} (f_{s})}{df_{s}} x_{i} = \delta_{s}^{(1)} x_{i} \\ \delta_{s}^{(1)} &= -\sum_{j=1}^{M} \frac{y_{j}}{u_{j}} \frac{d\varphi^{(2)} (g_{j})}{dg_{j}} w_{js}^{(2)} \frac{d\varphi^{(1)} (f_{s})}{df_{s}} = \frac{\partial E(w)}{\partial f_{s}} \end{split}$$

То есть

$$\frac{\partial E}{\partial w_{si}^{(1)}} = \delta_s^{(1)} x_i$$

Описание метода обратного распространения ошибки

Метод обратного распространения ошибки является градиентным методом минимизации функции ошибки для полностью связанной нейронной сети, веса которой изменяются по формуле:

$$w(k+1) = w(k) + \eta p(w)$$

где η — скорость обучения, p(w) — направление сдвига в пространстве параметров сети. Опишем общую схему метода:

- 1. Прямой проход. Во время прямого прохода вычисляется
 - выход сети для некоторого входа путем послойного вычисления значений в нейронах
 - производные от функций активации нейронов для вычисленных значений
- 2. Вычисление функции ошибки и ее производных по весам выходного слоя
- 3. Обратный проход. В время обратного прохода
 - вычисляются градиенты функции ошибки на слоях
 - корректируются веса

Шаги повторяются до тех пор, пока не будет выполняться критерий останова — достижение необходимой точности / достижение необходимого числа итераций.

Распишем формулы для нашей задачи. Если принять за $\varphi^{(1)}(u)$ сигмоидальную функцию: $\varphi^{(1)}(u) = \frac{1}{1+e^{-u}}$, а за $\varphi^{(2)}(u_j)$ — функцию softmax $\varphi^{(2)}(u_j) = \frac{e^{u_i}}{\sum_{k=1}^M e^{u_k}}$, то получим следующие значения для производных по параметрам:

$$\frac{\partial E}{\partial w_{js}^{(2)}} = -\frac{y_j}{u_j} \frac{e^{g_j} (\sum_{k=1}^M e^{g_k} - e^{g_j})}{(\sum_{k=1}^M e^{g_k})^2} v_s = \delta_j^{(2)} v_s$$

$$\frac{\partial E}{\partial w_{si}^{(1)}} = -\sum_{i=1}^M \frac{y_j}{u_i} \frac{e^{g_j - f_s} (\sum_{k=1}^M e^{g_k} - e^{g_j})}{(\sum_{k=1}^M e^{g_k})^2 (1 + e^{-f_s})^2} w_{js}^{(2)} x_i = \delta_s^{(1)} x_i$$

Программная реализации

В ходе лабораторной работы была реализованна программа, решающая задачу классификации, на языке программирования Python 3.6 и содержащая следующие файлы:

- Вспомогательный скрипт *get_training_data.py* скачивает тренировочные и тестовые данные из базы MNIST в формате gsip
- Основной скрипт neural_network.py

Входные параметры:

- Папка с тренировочными данными в формате .gz
- Критерий остановки по количеству эпох(значение по умолчанию 100)
- Критерий остановки по минимуму кросс-энтропии(значение по умолчанию -0.05)
- Скорость обучения (значение по умолчанию -0.01)
- Количество нейронов на скрытом слое(значение по умолчанию 300)

Тестирование на наборе данных MNIST

Созданная программная реализация тестировалась на обучающем наборе данных MNIST, представляющего из себя 70 000 одноканальных изображений, размера 28х28 пикселей, с рукописными цифрами.

Обучение сети происходило на тренировочной выборке размера 60000 изображений, тестирование - на тестовой выборке набора данных MNIST размера 10000 изображений.

Измерение точности классификации (как отношение количества правильно классифицированных к числу всех предсказаний) и сбор результатов экспериментов при разном наборе параметров метода описан в таблице ниже:

Таблица 1

Число эпох	Тестовая точность, %	Тренировочная точность, %
50	0.8593	0.86131
100	0.9193	0.92335
200	0.9442	0.95106