11. A partir de los siguientes datos a 298 K, justifica si las siguientes frases son verdaderas o falsas:

- a. La formación de NO a partir de nitrógeno y oxígeno en condiciones estándar es un proceso endotérmico.
 - b. La oxidación con oxígeno en condiciones estándar de NO a NO $_2$ es exotérmica.
 - c. La oxidación con oxígeno en condiciones estándar de NO a NO_2 es espontánea.

VER VIDEO https://youtu.be/-UfrL3hAmeU

- a. Verdadero. Según la tabla la entalpía de formación del NO es positiva por tanto la reacción es endotérmica.
 - b. Verdadero, la variación de entalpía es negativa.

ΔH(reacción) =?	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	
$\Delta H_{\rm f}^0(NO) = 90.25 \frac{\text{Kcal}}{\text{mol}}$	$\frac{1}{2} N_2 + \frac{1}{2} O_2 \rightarrow NO$	-1
$\Delta H_f^0(NO_2) = 33,18 \frac{Kcal}{mol}$	$\frac{1}{2}$ N ₂ + O ₂ \rightarrow NO ₂	1

$$\Delta H(\text{reacción}) = -90,25 + 33,18 = -57,07 \text{ Kcal.}$$

c. Verdadero, pues la variación de la energía libre de Gibbs es negativa.

ΔG(reacción) =?	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	
$\Delta G_{\rm f}^{0}(NO) = 86,57 \frac{\text{Kcal}}{\text{mol}}$	$\frac{1}{2} N_2 + \frac{1}{2} O_2 \rightarrow NO$	-1
$\Delta G_f^0(NO_2) = 51,30 \frac{Kcal}{mol}$	$\frac{1}{2}$ N ₂ + O ₂ \rightarrow NO ₂	1

$$\Delta G(\text{reacción}) = -86,57 + 51,30 = -35,27 \text{ Kcal.}$$

12. Dada la reacción A + B \rightarrow C, ΔH = - 123 KJ., ΔS = - 34 J.

¿Es espontánea a cualquier temperatura? En caso de no serlo, ¿a qué temperatura cambia de espontánea a no espontánea?

VER VIDEO https://youtu.be/Sa6cu8XVUww

a. La espontaneidad de las reacciones exotérmicas con disminución de entropía depende de la temperatura.

b.
$$\Delta G = \Delta H - T\Delta S \rightarrow 0 = -123000 + T \cdot (-34) \rightarrow T = 3617,6 \text{ K}$$

17. Dada la siguiente ecuación química de descomposición de un óxido de plata:

$$2 \text{ Ag}_2 \text{O} \rightarrow 4 \text{ Ag}_{(s)} + \text{O}_{2(q)} \Delta \text{H} = 71.2 \text{ kJ}$$

- a. ¿Cuál es el volumen de oxígeno liberado cuando se descomponen 10 g de una muestra de $Ag_2O_{(s)}$ de 90% de pureza, a 800 mmHg. y 25 $^{\circ}$ C?
 - b. ¿Se puede afirmar que esta reacción es espontánea a alta temperatura?
 - c. Determina la entalpia de formación Ag₂O (s)

VER VÍDEO https://youtu.be/BAQZI6AVG_c

a. $10 \text{ g. } Ag_{\underline{z}}O(\text{imp.}) \cdot \frac{90 \text{ g. } Ag_{\underline{z}}O}{100 \text{ g. } Ag_{\underline{z}}O(\text{imp.})} \cdot \frac{1 \text{ mol } Ag_{\underline{z}}O}{231,8 \text{ g. } Ag_{\underline{z}}O} \cdot \frac{1 \text{ mol de } O_2}{2 \text{ moles } Ag_{\underline{z}}O} = 0'0194 \text{mol de } O_2$ $V = \frac{n \cdot R \cdot T}{P} = 0,45 \text{ L.}$ $(\Delta H > 0)$

 $\Delta S > 0$, pues aumenta el numero de moles, aumentando el desorden.

CARLOS ALCOVER GARAU. LICENCIADO EN CIENCIAS OUÍMICAS (U.L.B.) Y DIPLOMADO EN TECNOLOGÍA DE ALIMENTOS (LA.T.A.).

ACADEMIA ALCOVER. PALMA DE MALLORCA

 $\Delta G = \stackrel{+}{\widetilde{\Delta H}} - T \stackrel{+}{\widetilde{\Delta S}}$ será negativo, espontánea, por encima de una determinada temperatura.

 $2~Ag_2O \rightarrow 4~Ag_{\,(s)} + O_{2\,(g)}~\Delta H = 71,\!2~kJ$. Si la invertimos tenemos.

 $4 \text{ Ag}_{(s)} + O_{2(g)} \rightarrow 2 \text{ Ag}_{2}O; \Delta H = -71.2 \text{ kJ Si dividimos entre dos.}$

 $2 \text{ Ag }_{(s)} + \frac{1}{2} \text{ O}_{2 (g)} \rightarrow \text{Ag}_{2}\text{O } \Delta \text{H} = -35,6 \text{ kJ}$

El cloruro de nitrosilo, NOCI, es un gas que se utiliza en la industria farmacéutica por su elevado poder oxidante. En determinadas circunstancias, se descompone dando monóxido de nitrógeno, NO, y también gas cloro. Teniendo en cuenta los datos que se indican más abajo:

- a) Escribe la ecuación guímica ajustada del proceso de descomposición del cloruro de nitrosilo.
- b) Determina si el cloruro de nitrosilo se descompone de forma espontánea a 25 °C.
- c) Establece las condiciones de temperatura en las que es posible almacenar NOCI sin temor a que se descomponga.

Sustancia	∆ H ⁰ (kJ/mol)	S ⁰ (J/(K·mol))
NOCI	51,7	261,7
NO	90,2	210,8
Cl ₂	0	223,7

a) Ecuación química ajustada:

2 NOCI
$$(g) \rightarrow 2$$
 NO $(g) + Cl_2(g)$

b) La espontaneidad de un proceso viene dada por la expresión: $\Delta G_{\text{reac.}}^0 = \Delta H_{\text{reac.}}^0 - T \cdot \Delta S_{\text{reac.}}^0$. El proceso será espontáneo si $\Delta G_{\text{reac.}}^0 < 0$.

Calculamos la variación de entalpía: $\Delta H_{\text{reacción}} = \sum H_{\text{f, productos}}^0 - \sum H_{\text{f, reactivos}}^0$

Resolvemos para este caso, sustituimos valores y calculamos:

$$\Delta H_{\text{reacción}} = \left\{ 2 \cdot \Delta H_{\text{f}}^{\text{o}} [\text{NO}(g)] + \Delta H_{\text{f}}^{\text{o}} [\text{Cl}_{2}(g)] \right\} - 2 \cdot \Delta H_{\text{f}}^{\text{o}} [\text{NOCl}(g)]$$

$$\Delta H_{\text{reacción}} = 2 \text{ prof} \cdot 90,2 \frac{\text{kJ}}{\text{prof}} + 1 \text{ prof} \cdot 0 \frac{\text{kJ}}{\text{prof}} - 2 \text{ prof} \cdot 51,7 \frac{\text{kJ}}{\text{prof}} = 77,0 \text{ kJ} = 77,0 \text{ kJ} \cdot \frac{1000 \text{ J}}{1 \text{ kJ}} = 77000 \text{ J}$$

Calculamos la variación de entropía: $\Delta S_{\text{reacción}} = \sum S_{\text{productos}}^0 - \sum S_{\text{reactivos}}^0$

Resolvemos para este caso, sustituimos valores y calculamos:

$$\Delta S_{\text{reacción}} = \left\{ 2 \cdot \Delta S^0 \big[\text{NO (g)} \big] + \Delta S^0 \big[\text{Cl}_2 \text{ (g)} \big] \right\} - 2 \cdot \Delta S^0 \big[\text{NOCl (g)} \big]$$

$$\Delta S_{\text{reacción}} = 2 \text{ mol} \cdot 210,8 \frac{\text{J}}{\text{K} \cdot \text{mol}} + 1 \text{ mol} \cdot 223,7 \frac{\text{J}}{\text{K} \cdot \text{mol}} - 2 \text{ mol} \cdot 261,7 \frac{\text{J}}{\text{K} \cdot \text{mol}} = 121,9 \frac{\text{J}}{\text{K}}$$

Calculamos la variación de la energía libre de Gibbs a 25 °C, 25 °C = (25 \pm 273) K = 298 K.

$$\Delta G_{\text{reac.}}^0 = 77\,000\,\text{J} - 298\,\text{K} \cdot 121,9\,\frac{\text{J}}{\text{K}} = 40\,660\,\text{J}$$

El proceso no es espontáneo a 25 °C porque $\Delta G_{\text{reac.}}^0 > 0$.

c) El proceso es endotérmico, pero su variación de entropía es positiva. En consecuencia, si la temperatura es suficientemente alta, el proceso podría llegar a ser espontáneo.

Para determinar las condiciones de almacenamiento, calculamos la temperatura a partir de la cual el proceso de descomposición del NOCI es espontáneo: $\Delta G_{\text{reac.}}^0 = \Delta H_{\text{reac.}}^0 - T \cdot \Delta S_{\text{reac.}}^0$.

Despejamos *T*, sustituimos valores y resolvemos suponiendo que la variación de entalpía y de entropía de la reacción no cambia con la temperatura:

$$T = \frac{\Delta H_{\text{reac.}}^0}{\Delta S_{\text{reac.}}^0} = \frac{77\,000 \text{ J}}{121,9 \text{ J/K}} = 632 \text{ K} = 359 \,^{\circ}\text{C}$$

El NOCI se puede almacenar sin temor a que se descomponga espontáneamente a cualquier temperatura inferior a 359 °C.

- El nitrato de amonio, NH₄NO₃, se utiliza como fertilizante por su alto contenido en nitrógeno. En determinadas circunstancias se puede descomponer, dando nitrógeno, agua y oxígeno. Teniendo en cuenta los datos que figuran en la tabla:
 - a) Escribe la ecuación química ajustada del proceso de descomposición del nitrato de amonio.
 - b) Determina si esta descomposición se produce de forma espontánea a 25 °C.
 - c) Establece las condiciones de temperatura en las que se podría almacenar nitrato de amonio sin temor a que se descomponga.

Sustancia	∆H _f (kJ/mol)	S ⁰ (J/(K·mol))
NH ₄ NO ₃ (s)	-365,6	151,1
N ₂ (g)	0	191,6
O ₂ (g)	0	205,1
H ₂ O (/)	-285,8	69,9

a) Ecuación química ajustada:

$$2 \text{ NH}_4 \text{NO}_3 (s) \rightarrow 2 \text{ N}_2 (g) + 4 \text{ H}_2 \text{O} (I) + \text{O}_2 (g)$$

b) La espontaneidad de un proceso viene dada por la expresión: $\Delta G_{\text{reacción}}^0 = \Delta H_{\text{reacción}}^0 - T \cdot \Delta S_{\text{reacción}}^0$. El proceso será espontáneo si $\Delta G_{\text{reacción}}^0 < 0$.

Calculamos la variación de entalpía, $\Delta H_{\text{reacción}} = \sum H_{\text{f productos}}^0 - \sum H_{\text{f reactivos}}^0$. Resolvemos para este caso, sustituimos valores y calculamos:

$$\begin{split} \Delta H_{\text{reacción}} &= \left\{2 \cdot \Delta H_{\text{f}}^{0} \left[N_{2}\left(g\right)\right] + 4 \cdot \Delta H_{\text{f}}^{0} \left[H_{2}O\left(I\right)\right] + \Delta H_{\text{f}}^{0} \left[O_{2}\left(g\right)\right]\right\} - 2 \cdot \Delta H_{\text{f}}^{0} \left[NH_{4}NO_{3}\left(s\right)\right] \\ \Delta H_{\text{reacción}} &= 2 \text{ prof} \cdot 0 \frac{\text{kJ}}{\text{prof}} + 4 \text{ prof} \cdot \left(-285,8 \frac{\text{kJ}}{\text{prof}}\right) + 1 \text{ prof} \cdot 0 \frac{\text{kJ}}{\text{prof}} - 2 \text{ prof} \cdot \left(-365,6 \frac{\text{kJ}}{\text{prof}}\right) = -412\,000\,\text{J} \end{split}$$

Calculamos la variación de entropía, $\Delta S_{\text{reacción}} = \sum S_{\text{productos}}^0 - \sum S_{\text{reactivos}}^0$. Resolvemos para este caso, sustituimos valores y calculamos:

$$\begin{split} \Delta S_{\text{reacción}} &= \left\{2 \cdot \Delta S^0 \big[\text{N}_2 \, (\text{g}) \big] + 4 \cdot \Delta S^0 \big[\text{H}_2 \text{O} \, (\text{I}) \big] + \Delta S^0 \big[\text{O}_2 \, (\text{g}) \big] \right\} - 2 \cdot \Delta S^0 \big[\text{NH}_4 \text{NO}_3 \, (\text{s}) \big] \\ \Delta S_{\text{reacción}} &= 2 \, \text{prof} \cdot 191,6 \, \frac{\text{J}}{\text{K} \cdot \text{prof}} + 4 \, \text{prof} \cdot 69,9 \, \frac{\text{J}}{\text{K} \cdot \text{prof}} + 1 \, \text{prof} \cdot 205,1 \, \frac{\text{J}}{\text{K} \cdot \text{prof}} - \left(2 \, \text{prof} \cdot 151,1 \, \frac{\text{J}}{\text{K} \cdot \text{prof}}\right) \\ \Delta S_{\text{reacción}} &= 565,7 \, \frac{\text{J}}{\text{K}} \end{split}$$

Calculamos $\Delta G_{\text{reacción}}^0$ a 25 °C = (25 + 273) K = 298 K. Utilizamos las unidades adecuadas para que el resultado sea coherente:

$$\Delta G_{\text{reacción}}^0 = -412\,000\,\text{J} - 298\,\text{K} \cdot 565,7\,\frac{\text{J}}{\text{K}} = -581\,000\,\text{J}$$

El proceso es espontáneo a 25 °C porque $\Delta G_{\text{reacción}}^0 < 0$.

c) Como el proceso es exotérmico y tiene una variación de entalpía positiva, va a ser espontáneo a cualquier temperatura. En consecuencia, el nitrato de amonio se va a descomponer de forma espontánea cualquiera que sea la temperatura a la que se almacene. Considere la reacción química siguiente: 2Cl(g) —> Cl₂(g). Conteste de forma razonada:

- a) ¿Qué signo tiene la variación de entalpía de dicha reacción?
- b) ¿Qué signo tiene la variación de entropía de esta reacción? '
- c) ¿La reacción será espontánea a temperaturas altas o bajas?
- d) ¿Cuánto vale ΔH de la reacción, si la energía de enlace CI-Cl es 243 kJ.mol⁻¹?

PAU-08

RESUELTO:

- a) ΔH_r < 0. La reacción supone la formación de un enlace estable Cl-Cl sin romper ningún otro enlace, luego se trata de un proceso exotérmico.
- b) $\Delta S_r < 0$. Se pasa de dos moles en estado gaseoso a uno, con lo cual disminuye el desorden del sistema y por lo tanto también disminuye la entropía.
- c) $\Delta G_r = \Delta H_r T\Delta S_r$. Para que la reacción sea espontánea, $\Delta G_r < 0$. Con los signos de ΔH y ΔS_r esto será posible a temperaturas bajas.
- d) Por lo que se ha dicho en el apartado a), y teniendo en cuenta la definición de ennergía de enlace, $\Delta H_r = -243 \text{ kJ} \cdot \text{mol}^{-1}$.
 - . En el proceso de descomposición térmica del carbonato cálcico: $CaCO_3$ (s) \rightarrow CaO (s) + CO_2 (g), se obtiene que $\Delta H^\circ = 179$ kJ/mol y $\Delta S^\circ = 160$ J/mol K. Halla a partir de qué temperatura se producirá espontáneamente la descomposición térmica del carbonato cálcico.

Tenemos que: $CaCO_3$ (s) \rightarrow CaO (s) + O₂ (g)

Se sabe que: $\Delta G = \Delta H - T \Delta S$

Si $\Delta G = 0$ el proceso está en una situación de equilibrio, que se consigue para una temperatura de:

$$T = \frac{\Delta H}{\Delta S}$$

Utilizando los datos del enunciado:

$$T = \frac{\Delta H}{\Delta S} = \frac{179 \text{ kJ/mol}}{0,160 \text{ kJ/mol K}} = 1119 \text{ K}$$

Es decir, a una temperatura de 1 119 K (846 °C) la descomposición del carbonato cálcico está en equilibrio; para temperaturas mayores, el término entrópico, $T\Delta S$, será mayor (en valor absoluto) que el término entálpico, ΔH , y por tanto ΔG < 0.

Según eso, para temperaturas superiores a los 846 °C, el proceso se puede considerar espontáneo.

28. Para una hipotética reacción A + B \rightarrow C en la que ΔH° = = -81 kJ/mol; ΔS° = -180 J/mol K. ¿En qué intervalo de temperatura será espontánea?

Sabemos que A + B \rightarrow C, $\Delta H^0 = -81 \text{ kJ/mol y } \Delta S^o = 180 \text{ J/mol/K}$

La reacción estará en equilibrio cuando $\Delta G^{o} = 0$, y por tanto:

$$T = \frac{\Delta H^0}{\Delta S^0}$$
; $T = \frac{-81 \text{ kJ}}{0.180 \text{ kJ/K}}$; $T = 450 \text{ K}$

Como ΔH^0 < 0 y ΔS^0 < 0, el término entálpico favorece la espontaneidad y el término entrópico no; para que ΔG^0 < 0, el producto T · ΔS debe ser menor en valor absoluto que ΔH , y eso se consigue para temperaturas inferiores a 450 K. Es decir, para cualquier temperatura inferior a 450 K el proceso será espontáneo.

29. Para la vaporización del agua: H_2O (l) \to H_2O (g) se sabe que: $\Delta H=44,3$ kJ/mol y $\Delta S=119$ J/mol K. Determina la espontaneidad, o no, de dicho proceso a las temperaturas de 50, 100 y 200 °C.

La ecuación de la vaporización del agua es: H_2O (l) \rightarrow H_2O (g)

A partir de la ecuación de Gibbs: $\Delta G^0 = \Delta H^0 - T \cdot \Delta S^0$ y utilizando los datos del enunciado:

- a) Para 50 °C \rightarrow \rightarrow $\Delta G^0 = (44,3)$ kJ/mol 323 K \cdot (0,119)kJ/mol K \rightarrow \rightarrow $\Delta G^0 = 5,9$ kJ (no espontáneo)
- b) Para 100 °C \rightarrow $\rightarrow \Delta G^0 = (44,3) \text{kJ/mol} - 373 \text{ K} \cdot (0,119) \text{kJ/mol K} \rightarrow$ $\rightarrow \Delta G^0 = 0 \text{ kJ} \rightarrow (\text{en equilibrio})$
- c) Para 200 °C \rightarrow \rightarrow $\Delta G^0=(44,3)$ kJ/mol 473 K \cdot (0,119)kJ/mol K \rightarrow \rightarrow $\Delta G^0=-$ 12 kJ \rightarrow (espontáneo)

31. Dada la reacción:

$$SiO_2$$
 (s) $+$ 3 C (s) \rightarrow SiC (s) $+$ 2 CO (g)

- a) Halla la entalpía de la reacción.
- b) Suponiendo que ΔH y ΔS no varíen con la temperatura, ¿a partir de qué temperatura el proceso es espontáneo?

Datos: $\Delta S_R = 353 \text{ J/K mol.}$

$$\Delta H_f^o$$
 (kJ/mol): SiC (s) = -65.3 ; SiO₂ (s) = -911 ; CO = $=-111$.

a)
$$SiO_2(s) + 3 C(s) \rightarrow SiC(s) + 2 CO(g)$$

A partir de la ecuación:

$$\Delta {\it H_R^0} = \sum \Delta {\it H_f^0}$$
 (productos) $-\sum \Delta {\it H_f^0}$ (reactivos)

y con los datos del enunciado:

$$\Delta H_R^0 = [(-65,3) + 2 \cdot (-111)] - [(-911)] \rightarrow \Delta H_R^0 = 623,7 \text{ kJ}$$

b)
$$\Delta G^{0} = \Delta H^{0} - T \Delta S^{o}$$
. Si $\Delta G^{0} = 0 \rightarrow T = \frac{\Delta H^{0}}{\Delta S^{0}}$;
 $T = \frac{623.7 \text{ kJ}}{0.353 \text{ kJ/K}}$; $T = 1767 \text{ K}$

Al ser $\Delta H_R^0 > 0$ y $\Delta S_R^0 < 0$, para que la reacción sea espontánea ($\Delta G_R^0 < 0$), el término entálpico debe ser menor que el término entrópico y eso se consigue aumentando la temperatura. Luego, para temperaturas superiores a 1767 K, la reacción será espontánea.