Séries d'exercices 3ème technique PRODUET SCALAERE (PLAN)

MATHS AU LYCEE *** ALI ABIR Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

ABCD est un carré de côté a et m est un réel de l'intervalle] 0 ; 1 [.

Les points A', B', C' et D' sont tels que $\overrightarrow{DA'} = m$ \overrightarrow{DA} , $\overrightarrow{AB'} = m$ \overrightarrow{AB} , $\overrightarrow{BC'} = m$ \overrightarrow{BC} et $\overrightarrow{CD'} = m$ \overrightarrow{CD} . Démontrer que le quadrilatère A'B'C'D' est un carré.

EXERCICE N°2

Soit ABC un triangle isocèle en A. On note I le milieu de [BC] et H le projeté orthogonal de I sur la droite (AC).

2°) Calculer:
$$\overrightarrow{AH}$$
. \overrightarrow{HB} + \overrightarrow{HC}

En déduire que \overrightarrow{AH} . \overrightarrow{BH} = \overrightarrow{AH} . \overrightarrow{HC}

3°) A l'aide des résultats précédents, démontrer que
$$(\overrightarrow{AI} + \overrightarrow{AH})$$
. $\overrightarrow{BH} = 0$

En déduire que si on note J le milieu de [IH], alors (AJ) est orthogonale à (BH).

EXERCICE N°3

Soit un carré ABCD de côté a, on note I le milieu de [AB] et J le milieu de [BC].

En déduire la valeur de \overrightarrow{DI} . \overrightarrow{DJ} en fonction de a.

EXERCICE N°4

ABC est un triangle rectangle en A, le point H est le pied de la hauteur issue de A, le point I est le milieu de [AB], le point J est le milieu de [AC].

Prouver que les droites (HI) et (HJ) sont perpendiculaires .

EXERCICE N°5

Soit ABC un triangle isocèle de sommet A. On note A' le milieu de [BC], H le projeté de A' sur (AC) et et I le milieu de [A'H].

2°) Démontrer que
$$A'H.BC = 2AH.A'C$$

3°) Démontrer que
$$\overrightarrow{AI}.\overrightarrow{BH} = \overrightarrow{AA'}.\overrightarrow{CH} + \frac{1}{2}\overrightarrow{A'H}.\overrightarrow{BC}$$

EXERCICE N°6

ABCD est un carré de centre O, M est un point du segment [AB]. La perpendiculaire menée de A à la droite (DM) coupe [BC] en P.

1°) Montrer que AM = BP et que les droites (OM) et (OP) sont perpendiculaires.

2°)Montrer que, lorsque M décrit la droite (AB), le milieu I de [MP] reste sur la médiatrice de [OB].

EXERCICE N°7

Soit ABCD un carré de côté a. On note I le milieu de [BC]

et E le point d'intersection des droites (AI) et (BD).

b) Calculer en fonction de $a: \overrightarrow{BA}.\overrightarrow{BD}$ et $\overrightarrow{BI}.\overrightarrow{BD}$, et en déduire $\overrightarrow{AI}.\overrightarrow{DB}$

2°) En déduire une valeur à 0,1° près de l'angle BEI

EXERCICE N°8

Soit ABCD un carré de côté a. On note I, J et K les milieux des segments [AB], [AD] et [AI], puis H le projeté orthogonal de A sur la droite (DI).

On se propose de démontrer, de deux façons différentes, que (JH) et (HK) sont perpendiculaires.

1°) 1ère méthode.

- b) En déduire que $4 \text{ HK} \cdot \text{HJ} = \text{HA}^2 + \text{HI} \cdot \text{HD}$.
- c) Démontrer que $\overrightarrow{AI}.\overrightarrow{AD} = AH^2 + \overrightarrow{HI}.\overrightarrow{HD}$
- d) En déduire que (JH) et (HK) sont perpendiculaires.

- a) Déterminer une équation de la droite (DI) et de la droite (AH).
- b) En déduire les coordonnées du point H.
- c) Vérifier que (JH) et (HK) sont perpendiculaires

EXERCICE N°9

Dans un plan P on considère un rectangle ABCD tel que AB=2BC=2.

Soit J le point du segment [CD] tel que $CJ = \frac{1}{2}$. (BJ) coupe (AC) en I et coupe (AD) en K

Partie I.

1°)a)Faire une figure illustrant les données ci-dessus

b) Vérifier que $AC = \sqrt{5}$

 2°)Calculer: $\overrightarrow{CA}.\overrightarrow{CB}$ et $\overrightarrow{CA}.\overrightarrow{CJ}$

3°)En déduire que (BJ) \(\(\) (AC).

4°a)Calculer la distance BJ.

b)Démontrer que $BI + \frac{2}{\sqrt{5}}$.

c)Calculer alors le produit scalaire : \vec{BC} . \vec{BJ}

5°)Démontrer que : \overrightarrow{AK} . \overrightarrow{BC} =4.

Partie II.

On considère les ensembles suivants : $E = \{M, M \in PetMA^2 + MB^2 = 6\}$ et $F = \{M, M \in Pet3.MA^2 + MK^2 = 10\}$

 1°)a)Vérifier que C∈ E.

b)Déterminer alors l'ensemble E et le construire.

 $(2^{\circ})a)$ Vérifier que $A \in F$.

b)Déterminer alors l'ensemble F et le construire.

EXERCICE N°10

ABCD est un rectangle de largeur AD = a et de longueur AB = $a\sqrt{2}$.

E est le milieu de [AB].

Que peut-on dire des droites (AC) et (DE) ?

EXERCICE N°11

Les points I et J sont les milieux des côtés [BC] et [CD] d'un carré ABCD (où AB = a, a > 0). On note θ l'angle

 \hat{IAJ} . Donner une valeur exacte de $\cos\theta$ à 0,01 prés.

EXERCICE Nº12

On donne dans le plan (P) un triangle ABC tel que BC = 8, AB = 6 et $\stackrel{\circ}{ABC} = \frac{2\pi}{3}$ (rad).

Soit f l'application du plan (P) dans R définie par : $f(M) = BC \cdot AM$.

On désigne par ζ_a l'ensemble des points M du plan tel que f(M) = a. où a est un réel.

1°)Déterminer ζ_0 .

 2°)Calculer f(B) et f(C).

3°)Déterminer le réel a tel que ζ_a soit la médiatrice de [BC].

EXERCICE N°13

On considère, dans le plan (P), un triangle AOB rectangle en O. On note M un point quelconque de (P).

1°)Montrer que : $MA^2 + MB^2 - 2MO^2 = AB^2 + 4 \overrightarrow{MO}.\overrightarrow{OI}$ où I est le milieu de [AB]

2°)Déterminer l'ensemble Δ , des points M de (P) tels que l'on ait : $MA^2 + MB^2$ 2 $MO^2 = \frac{AB^2}{2}$.

EXERCICE N°14

On donne, dans un plan (P), un triangle ABC rectangle en A et isocèle et on a: AB = AC = 5.

1°) Déterminer le barycentre G du système (A,-1), (B,1), (C,1).

 2°) Montrer que : $MB^2 + MC^2 - MA^2 = MG^2$

3°)Déterminer l'ensemble Γ des points M du plan (P) tels que $MB^2+MC^2-MA^2=25$.

4°) Déterminer l'ensemble (Δ) des points N du plan (P) tels que $\stackrel{\rightarrow}{NA} + \stackrel{\rightarrow}{NC} - \stackrel{\rightarrow}{NA} = NO$ où O est le milieu de

[BC].

EXERCICE N°15

Soit un triangle ABC.

1°)Déterminer l'ensemble (E) des points M du plan tels que : $\overrightarrow{AB}.\overrightarrow{AM} = \overrightarrow{AC}.\overrightarrow{AM}$

2°) Déterminer l'ensemble (F) des points M du plan tels que : $\overrightarrow{AB}.\overrightarrow{AM} = -\overrightarrow{AC}.\overrightarrow{AM}$