Einführung in die Plasmaphysik

Ionisationsgrad

Abbildung: http://www.geo.mtu.edu/weather/aurora/images/aurora/jan.curtis

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

Ionisationsgrad eines Plasmas

Def. Ionisationsgrad:

Quotient aus Ionendichte und gesamter Atomdichte (Ionen und Neutrale).

$$F_{ion} = \frac{n_i}{n_i + n_0} \sim \frac{n_e}{n_e + Zn_0}$$

 n_i : Ionendichte, $n_e \sim Z n_i$: Elektronendichte, Z: Ionen-Ladungszahl

Wie bestimmt sich der Ionisationsgrad?

- Im thermischen Gleichgewicht:
 - Aus der Besetzungswahrscheinlichkeit der verschiedenen Zustände (ionisiert oder nicht ionisiert)
 - → Thermodynamik, statistische Physik
- Abseits des thermischen Gleichgewichts:

Aus der Bilanz der Raten der (wichtigsten) Ionisations- und Rekombinations-Prozesse ("Ratengleichgewicht")

(Lokales) Thermisches Gleichgewicht

1. Starke Forderung:

Thermisches Gleichgewicht

(thermal equilibrium)

Def.: Die Raten aller Prozesse sind gleich der Raten ihrer Umkehrprozesse

Bedingungen:

- Geschlossenes thermodynamisches System
- Rascher Austausch zwischen allen Energiezuständen darin.

Statistische Physik:

Die Besetzung der Energiezustände wird <u>unabhängig vom Wechselwirkungsprozess</u> durch eine Temperatur *T* beschrieben ("thermische Verteilung")

2. Abgeschwächte Forderung:

Lokales Thermisches Gleichgewicht

(local thermal equilibrium)

Plasmen sind fast immer im thermodynamischen Sinne ein *offenes System* mit starken Wärme- und Teilchenflüssen sowie räumlicher Variation aller Größen.

Bei hohen Stoßraten kann aber in Näherung *lokal* eine Gleichgewichts-Temperatur definiert werden: $T = T(\vec{r})$

Ionisationsgrad im thermodynamischen Gleichgewicht

Einfachster Fall: 2 Zustände

- neutrales Atom im Grundzustand
- ionisierter Zustand (Ion und freies Elektron)

Besetzungsverhältnis:

$$\frac{N_e}{N_0} = \frac{g_i}{g_0} \exp\left(-E_{ion}/k_B T\right) \int_0^\infty \exp\left(-E/k_B T\right) \frac{\partial g}{\partial E} dE$$

Integral über die freien Elektronenzustände.

 $\partial g/\partial E = D(E)/N_e = (1/N_e)\partial N(E)/\partial E$: Zahl der Zustände pro Elektron.

 g_i und g_0 : Entartungszahlen Ion bzw. neutrales Atom.

Zustandsdichte im Vakuum

Bestimmung der Zustandsdichte:

Vakuum-Zustandsdichte ist im Impulsraum konstant

$$dg = \frac{2V}{N_e (2\pi)^3} dk_x dk_y dk_z = \frac{2V}{N_e (2\pi\hbar)^3} dp_x dp_y dp_z = \frac{2V}{N_e (2\pi\hbar)^3} 4\pi p^2 dp$$

Mit $\int_0^\infty x^2 \exp(-ax^2) dx = \sqrt{\pi}/4a^{3/2}$ ergibt sich das Integral über die freien Elektronenzustände:

$$\int \dots = 4\pi \int_0^\infty p^2 \exp(-p^2/2m_e k_B T) = (2\pi m_e k_B T)^{3/2}$$

Saha-Gleichung

Benutze $n_e = N_e/V$ und $n_0 = N_0/V$

→ "Saha-Gleichung" (Meghnad Saha, 1893-1956):

$$\frac{n_e^2}{n_0} = 2\frac{g_i}{g_0} \frac{(2\pi m_e k_B T)^{3/2}}{(2\pi \hbar)^3} \exp(-E_{ion}/k_B T)$$
 (1)

Neutraliätsbedingung $n_e = Z_i n_i$

→ "Massenwirkungsgesetz"

$$\frac{n_e n_i}{n_0} = \frac{1}{Z_i} f(T)$$

R.S.: f(T) hängt nur von der Temperatur ab.

Saha-Gleichung für Wasserstoff ($Z_i = 1$)

Zustände mit gleicher Hauptquantenzahl n und unterschiedlichen Nebenquantenzahlen p,d sind entartet

$$E_n = -\frac{1}{n^2} E_{ion}, \quad g_n = 2n^2,$$

Ionisierungsenergie: $E_{ion} = 13.6 \text{ eV}.$

Ionisierter Zustand: $g_i = 1$, Grundzustand: $g_1 = 2$.

Ionisationsgrad:

Quotient aus Ionendichte und gesamter Wasserstoffdichte $(n_i + n_0)$.

Saha-Gl.
$$\to n_e = (n_0 f(T))^{1/2}$$

$$F_{ion} = \frac{n_e}{n_e + n_0} = \left[\frac{f(T)}{f(T) + 2(n_0 f(T))^{1/2} + n_0} \right]^{1/2}$$

Beispiel für thermisches Laborplasma: "Q-Maschine"

Cäsium: Ionisationsenergie (1. Stufe)

 $E_{\rm ion} = 3.8939 \, {\rm eV}$

Cäsium-Atomstrahl trifft auf heiße Platte:

Kontaktionisation.

→ "ruhiges" (quiet) Plasma mit

 $T_e = T_i = T$ und geringem

Ionisationsgrad.

N. Rynn, N. D'Angelo, Rev. Sci. Instrum. **31** (1960) 1326

Ionisations- und Rekombinations-Prozesse

n _e hoch	Elektronen-Stoßionisation	Dreier-Stoß-Rekombination
	$e^- + H^0 \rightarrow 2e^- + H^+$	$2e^- + H^+ \rightarrow e^- + H^0$
	Rate: $S \propto n_e n_0$	$S \propto n_e^2 n_i$
n_e niedrig		strahlende Rekombination
		$e^-\!+\!H^+ ightarrow \gamma\!+\!H^0$
		$S \propto n_e n_i$
Strahlungsfeld	Photoionisation	"stimulierte" Rekombination
intensiv	$\gamma + H^0 \rightarrow e^- + H^+(+\gamma)$	$\gamma + e^- + H^+ ightarrow \gamma' + H^0$
	$S \propto n_0 n_{\gamma}$	$S \propto n_{\gamma} n_e n_i$

Stationärer Zustand ("Stoß-Strahlungsmodell"): Ratengleichgewicht $\sum S_{\text{ion}} = \sum S_{\text{rekomb}}$

Grenzfälle:

Hohe Dichte $n_e n_i / n_0 = f(T)$ (Form wie Saha Gleichung!)

Niedrige Dichte $n_i/n_0 = f(T)$ ("Korona-Gleichgewicht")

Wirkungsquerschnitt $\sigma_{ion}(v)$

für Elektronen-Stoßionisation

Wirkungsquerschnitt für die Ionisation durch Elektronenstösse als Funktion der Elektronen-Energie:

Atomdaten im Web: http://open.adas.ac.uk

http://physics.nist.gov/PhysRefData/Ionization

Wirkungsquerschnitt $\sigma_{ion}(v)$

für Elektronen-Stoßionisation

Ratenkoeffizient $\langle \sigma_{\text{ion}} v_e \rangle$:

Umgesetztes Volumen/Zeit pro Elektron und Atom

Gemittelt wird über die Geschwindigkeits-Verteilung der *Elektronen* (denn $v_e \gg v_n, v_i$)

$$\langle \sigma_{\text{ion}} v \rangle \equiv \frac{1}{n} \int_{-\infty}^{\infty} f(v) \sigma(v) v d^{3}v$$

Bei Maxwell-Verteilung ist Ratenkoeffizient eine Funktion der (Elektronen-) Temperatur:

$$\langle \sigma_{ion} v \rangle = f(T_e)$$

Beispiel: Ionisationsratenkoeffizient für Wasserstoff (Fitformel)

$$\langle \sigma_{\text{ion}} v_e \rangle = \frac{2 \times 10^{-13}}{6 + T_e(\text{eV})/13.6} \left(\frac{T_e(\text{eV})}{13.6} \right)^{1/2} \exp\left(-\frac{13.6}{T_e(\text{eV})} \right) \text{ m}^3 \text{s}^{-1}$$

Wirkungsquerschnitt $\sigma_{ion}(v)$

für Elektronen-Stoßionisation

Ratenkoeffizient $\langle \sigma_{ion} v_e \rangle$:

Umgesetztes Volumen/Zeit pro Elektron und Atom

Ionisations-Stoßfrequenz v_{en} *eines* Elektrons:

$$v_{\rm en} = n_n \langle \sigma_{\rm ion} v \rangle$$

 n_n : Neutralgasdichte

Wirkungsquerschnitt $\sigma_{ion}(v)$

für Elektronen-Stoßionisation

Ratenkoeffizient $\langle \sigma_{ion} v_e \rangle$:

Umgesetztes Volumen/Zeit pro Elektron und Atom

Ionisations-Stoßfrequenz v_{en} *eines* Elektrons:

$$v_{\rm en} = n_n \langle \sigma_{\rm ion} v \rangle$$

 n_n : Neutralgasdichte

Ionisationsrate S:

Ionisationen pro Volumen und Zeit

$$S = n_e n_n \langle \sigma_{\text{ion}} v_e \rangle$$

 n_e : Elektronendichte

Ionisation durch Ionen?

Ionisation durch Elektronenstoss

Ionisation durch Ionen des Muttergases

Ionen sind schwerer als Elektronen, benötigen höhere kinetische Energie für gleiche Wechselwirkungszeit

- \rightarrow Wenn $T_i \leq T_e$, dann überwiegt Ionisation durch Elektronen
- \rightarrow Bei sehr heißen Plasmen (z.B. Kernfusion, $T_i \sim 10 \text{ keV}$) ist Ionisation durch Ionen wichtig

Korona-Ionisationsgleichgewicht

Grenzfall niedriger Dichte, Stationärer Zustand:

$$S_{Z o (Z+1)} = S_{(Z+1) o Z}$$

 $n_e \ n_Z \ \langle \sigma_{ion} v_e \rangle = \alpha_Z(T_e) \ n_e \ n_{Z+1}$

Gesamtdichte: $\sum_{Z} n_{Z} = n$ \rightarrow Gleichungssystem für Besetzungsdichten n_{Z}

Beispiel: Ionisationstufen von Eisen

Quelle: K Behringer, A Kallenbach, Vorl. Nichtgleichgewichtsplasmen, U Augsburg,

www.physik.uni-augsburg.de/epp/lehre

Analog zu Ionisation: Anregungs-Ratengleichgewicht

$$\dot{N}_{1,m} = \sum_{k} \dot{N}_{m,k}$$
 $n_1 n_e X_{1,m}(T_e) = n_m \sum_{(k < m)} A_{m,k}$

$$n_1 n_e \Lambda_1, m(1e) - n_m \mathcal{L}(k < m) \Lambda_m, k$$

wobei:

 n_1 (n_m): Dichte der Atome im Grundzustand (Zustand m)

 $X_{1,m} = \langle v_e \sigma_{1,m} \rangle$: Ratenkoeffizient e^- -Stoss-Anregung,

 $A_{m,k}$: Übergangswahrscheinlichkeit von Zustand m in Zustand k.

Emittierte Photonen pro Sekunde in einer Spektrallinie $m \rightarrow j$:

$$\dot{N}_{m,j} = n_m A_{m,j} = n_1 n_e X_{1,m} \underbrace{\frac{A_{m,j}}{\sum_{(k < m)} A_{m,k}}}_{\equiv B_{m,j}}$$

 $B_{m,j}$: "Verzweigungsverhältnis" (branching ratio)

Anwendung: Spektroskopische Messung des Verunreinigungs-Zuflusses

Oft erodiert das Wandmaterial des Plasmagefäßes.

Neutrale Verunreinigungen werden im Plasma z.T angeregt und z.T. ionisiert. Annahme: Anregungsrate = Emissionsrate Messe emittierten Photonenfluss (Element k) in einer Linie $m \rightarrow j$:

$$L = \int \dot{N}_{m,j} \, \mathrm{d}x = \int n_k n_e X_k B_{m,j} \, \mathrm{d}x$$

 X_k : Anregungs-Ratenkoeffizient

 $B_{m,j}$: Verzweigungsverhältnis

Neutralenfluss von der Wand nimmt im Plasma ab:

Wand
$$\nabla \cdot \Gamma_k = \frac{\mathrm{d}}{\mathrm{d}x} \Gamma_k = \underbrace{-n_k n_e S_k}_{\text{Senke durch Ionisation}}$$

 S_k : Ionisations-Ratenkoeffizient

$$\Gamma_k(0) = \frac{\int n_k n_e S_k dx}{\int n_k n_e X_k B dx} L \approx \frac{S_k}{X_k B} L$$

S/XB-Verhältnis

Zusammenfassung

- Betrachte Ionisationsgrad Zustände: neutrales Atome (evtl. angeregt), Ionen
- Im thermischen Gleichgewicht hängt die Besetzung nicht von der speziellen Form der Wechselwirkung ab \rightarrow Saha-Gleichung $n_e^2/n_0 = f(T_e)$.
- Im Nichtgleichgewicht kann die Besetzung im stationären Fall aus der Bilanz der Übergangsraten berechnet werden.

Die Rate für Stoßionisation hat die Form: $S = n_e n_n \langle \sigma_{ion} v_e \rangle$

Grenzfälle:

- 1. Rekombination vorwiegend durch Dreier-Stoß (hohe Dichte): $n_e^2/n_0 = f(T_e)$
- 2. Rekombination vorwiegend durch Strahlung (niedrige Dichte, Korona-Gleichgewicht): $n_e/n_0 = f(T_e)$

Bei mehreren Ionisationsniveaus gilt Ratengleichheit zwischen benachbarten Niveaus $Z \leftrightarrow (Z+1)$ (detailliertes Gleichgewicht)