Proyecto Final Lógica para ciencias de la computación

Salome Viana y Juanita Gómez

24 de abril de 2019

1. Planteamiento del Problema

Teorema de los 4 colores

Dado cualquier mapa geográfico con regiones continuas, este puede ser coloreado con cuatro colores diferentes, de forma que no queden regiones adyacentes con el mismo color.

- Dos regiones son adyacentes si comparten un segmento de frontera en común, no una esquina donde se encuentran 3 o más regiones.
- Todas las regiones del mapa son conexas y contiguas, es decir no pueden estar divididas en 2 o más regiones.

Problema

Formulación del problema

Dado un mapa determinado, se quiere encontrar una coloración del mismo, de tal manera que no haya regiones continuas con el mismo color, usando únicamente 4 colores.

Ejemplo:

► En la figura, se puede observar cómo el mapa de Estados Unidos está coloreado con 4 colores distintos de tal manera que se cumplen las condiciones del problema.

2. Representación en Logica proposicional

Considere el siguiente mapa con 9 regiones.

А	В	С
D	E	F
G	н	ı

► En este mapa vamos a identificar las zonas con los números A, B, C, D, E, F, G, H y I como se muestra en la figura.

Vamos a utilizar los colores morado, naranja, azul y verde

Letras Proposicionales

Para este problema, las letras proposicionales van a representar las posibles coloraciones de cada una de las regiones del mapa. Por ejemplo, las 36 letras proposicionales correspondientes a este mapa serían de la siguiente manera:

- ▶ 1: A esta coloreada de morado. ▶ 7: B esta coloreada de azul.
- ▶ 2: A esta coloreada de naranja. ▶ 8: B esta coloreada de verde.
- ▶ 3: A esta coloreada de azul. ▶ 9: C esta coloreada de morado.
- ▶ 4: A esta coloreada de verde. ▶ 10: C esta coloreada de naranja.
- ▶ 5: B esta coloreada de morado. ▶ 11: C esta coloreada de azul.
- ▶ 6: B esta coloreada de naranja. ▶ 12: C esta coloreada de verde.

- ▶ 13: D esta coloreada de morado. ▶ 19: E esta coloreada de azul.
- ▶ 14: D esta coloreada de naranja. ▶ 20: E esta coloreada de verde.
- ▶ 15: D esta coloreada de azul. ▶ 21: F esta coloreada de morado.
- ▶ 16: D esta coloreada de verde. ▶ 22: F esta coloreada de naranja.
- ▶ 17: E esta coloreada de morado. ▶ 23: F esta coloreada de azul.
- ▶ 18: E esta coloreada de naranja. ▶ 24: F esta coloreada de verde.

- ▶ 25: G esta coloreada de morado. ▶ 31: H esta coloreada de azul.
- ▶ 26: G esta coloreada de naranja. ▶ 32: H esta coloreada de verde.
- ▶ 27: G esta coloreada de azul. ▶ 33: I esta coloreada de morado.
- ▶ 28: G esta coloreada de verde. ▶ 34: I esta coloreada de naranja.
- ▶ 29: H esta coloreada de morado. ▶ 35: I esta coloreada de azul.
- ▶ 30: H esta coloreada de naranja. ▶ 36: I esta coloreada de verde.

Reglas

De acuerdo con el planteamiento del problema podemos enunciar las siguientes reglas.

Regla 1

Todas las regiones deben estar coloreadas de un único color.

Ejemplo:

$$(1 \wedge -2 \wedge -3 \wedge -4) \vee (2 \wedge -1 \wedge -3 \wedge -4) \vee (3 \wedge -1 \wedge -2 \wedge -4) \vee (4 \wedge -1 \wedge -2 \wedge -3)$$

Reglas

Regla 2

Dos regiones adyacentes no pueden estar coloreadas del mismo color.

Ejemplo:

- ▶ $1 \to (-5 \land -13)$
- $ightharpoonup 2
 ightharpoonup (-6 \land -14)$
- $ightharpoonup 3
 ightharpoonup (-7 \land -15)$
- **▶** 4 → (-8 ∧ -16)

Representación Gráfica de Soluciones

Considere por ejemplo la siguiente interpretación:

```
\begin{split} f &= \left[ \text{'-1', '2', '-3', '-4', '5', '-6', '-7', '-8', '-9', '-10', '-11', '12', '-13', '-14', '15', '-16', '-17', '-18', '-19', '20', '-21', '22', '-23', '-24', '25', '-26', '-27', '-28', '-29', '30', '-31', '-32', '-34', '35', '-36' \right] \end{split}
```

Note que en esta interpretación, los primeros 8 literales significan que la casilla A esta coloreada de naranja (y no de morado, ni azul, ni verde) y que la casilla B esta coloreada de morado (y no de naranja, azul ni verde).

Así, los 36 literales dan la siguiente coloración, la cual se obtuvo con el código de Python adjunto:

