Experiência laboratorial 4

Pêndulo simples e movimento harmónico

Objectivos:

Estudar o movimento de um pêndulo simples;

Determinar a dependência entre o período T de oscilação e o seu comprimento L;

Medir o período das oscilações com diferentes massas;

Verificar factores que influencia no período do pêndulo,

Determinar a aceleração de gravidade local.

Resumo teórico

Qualquer movimento que se repete em intervalos de tempo iguais constitui um movimento periódico. O movimento periódico de uma partícula pode sempre ser expresso em função de senos e cossenos, motivo pelo qual ele é também denominado movimento harmônico. Se a partícula em movimento periódico se move para diante e para trás na mesma trajectória, seu movimento é chamado oscilatório ou vibratório. A forma mais simples de oscilação, é o movimento harmônico simples (MHS), é o movimento que ocorre quando numa trajectória rectilínea, uma partícula oscila periodicamente em torno de uma *posição de equilíbrio* sob a acção de uma *força restauradora*, sempre orientada para a posição de equilíbrio e de intensidade proporcional à distância da partícula à posição de equilíbrio.

Exemplos comuns deste tipo de movimento são o de um corpo preso a uma mola ou o de um pêndulo simples

Fig. Oscilador de mola

 $T=2\pi\sqrt{m/K}$

Portanto, em um sistema massa-mola, o período depende da massa presa à mola e da constante elástica da mola k.

O pêndulo simples é um corpo ideal que consiste de uma massa (m) puntiforme suspensa por um fio leve e inextensível de comprimento L. Quando afastado de sua posição de equilíbrio $(\Theta=0o,$ na Figura 2) e largado, o pêndulo oscilará em um plano vertical sob a acção da gravidade. O movimento é periódico e oscilatório. O tempo necessário para uma oscilação completa é chamado período (T).

Existem vários pêndulos estudados por físicos, já que estes o descrevem como um objecto de fácil previsão de movimentos e que possibilitou inúmeros avanços tecnológicos, alguns deles são os pêndulos físicos, de torção, matemático e outros. Mas o modelo mais simples, e que tem maior utilização é o *Pêndulo Simples*.

Fig2: Pendulo simples

 $T=2\pi\sqrt{L/g}$

Equipamento ou Material Necessário

- 1. Tripé universal
- 2. Massas
- 3. Cronómetro
- 4. Pêndulo

Procedimentos experimentais

- 1. Regular o comprimento L₁ do pêndulo para 50 cm (Lembre-se de que o comprimento do pêndulo deve ser medido desde o início do fio até o centro do corpo m). Posicionar o pêndulo à 10 cm da posição de equilíbrio e solte-o. Medir o tempo, *t*, que o pêndulo leva para fazer 10 oscilações completas e anotar na Tabela 1. Repetir o procedimento cinco vezes.
- 2. Repetir a experiência para $L_2 = 80$ cm e depois para $L_3 = 100$ cm : Fazer cinco vezes cada medida e anotar na Tabela 1.

Comprimento do pêndulo L(m)	Números de medidas	Numero de oscilações completas	Tempo t(s)	$t_{ m medio}$	Período T(s)	T _{medio} (s)	ΔT_{medio}	T ² medio (s ²)	f(Hz)
	1								
	2								
0,	3	10							
50	4								

	5					
	1					
	2					
0,80	3					
	4	10				
	5					
	1					
	2					
	3	10				
1,00	4					
	5					

- 3. Calcular t_{médio} para cada comprimento do pêndulo;
- 4. Completar a Tabela 1 calculando os valores de T = t/10, do desvio médio do período ΔT , e de $T_{\rm medio}$;
- 5. Utilizando a equação $T=2\pi\sqrt{L/g}$, calcule a aceleração da gravidade local média, $g_{\rm media}$, em (m/s²) para cada comprimento do pêndulo. Determinar o desvio Δg_{media} do experimental;
- 6. Expressar o resultado final como $g = (g \pm \Delta g)$ m/s². O comprimento do pêndulo influencia no valor da aceleração da gravidade?
- 7. Construir o gráfico (T× L) e explicar;
- 8. Deslocar o pêndulo para 5, 10, 15, 20 e 25 do ponto de equilíbrio e para cada caso registar o tempo gasto em 5 oscilações completas com o comprimento de 1,0 metro e preencher a tabela2.

Deslocamento A(cm)	Números de medida	N ^O oscilações completas	t(s)	t _{medio}	Período T(s)	T _{medio} (s)	ΔT_{medio}	f(Hz
5	1							
	2	5						
	3							
10	1							
	2	5						
	3							
15	1							
	2	5						
	3							
20	1							
	2	5						
	3							
25	1							
	2							
	3			1				

9. Construir o gráfico de (T×A), considerar os valores médios de cada período. A amplitude do pêndulo influencia no valor do período do pêndulo?

10. Mantendo o comprimento de L=1,0 metros, trocar a massa por uma maior, determinar o tempo que o pêndulo leva a completar 5 oscilações e preencha a tabela3

n	Massa pêndulo	Tempo de 5 oscilações	período(s)	f(Hz)
1				
2				
3				

- 11. Qual a ralação entre o período do pêndulo e a massa;
- 12. Calcular os erros e tirar conclusões