CURSUL 9: DETERMINANȚI

G. MINCU

În acest curs, notația R va desemna, în lipsa mențiunii exprese contrare, un inel comutativ și unitar.

1. Definiția determinanților

Definiția 1. Fie $n \in \mathbb{N}^*$ și $A = (a_{ij})_{i,j} \in \mathcal{M}_n(R)$. Prin **determinantul** matricei A înțelegem elementul

(1)
$$\sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

al lui R.

Notații frecvent folosite pentru determinantul matricei A: |A| sau det A.

Observația 1. Pentru n = 1, $|A| = a_{11}$.

Pentru n = 2, $|A| = a_{11}a_{22} - a_{12}a_{21}$.

Pentru n=3.

$$|A| = a_{11}a_{12}a_{13} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32}.$$

Definiția 2. Prin linia (coloana) i a determinantului |A|, vom înțelege linia (coloana) i a matricei A.

Observația 2. Fie $A = (a_{ij})_{i,j} \in \mathcal{M}_n(R)$ și $\varphi : R \to S$ un morfism de inele. Aplicând φ fiecărui element al lui A obținem matricea $B = (\varphi(a_{ij}))_{1 \le i,j \le n}$. Atunci $\varphi(|A|) = |B|$.

Demonstraţie:
$$\varphi(|A|) = \varphi(\sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \varphi(a_{1\sigma(1)}) \varphi(a_{2\sigma(2)}) \cdots \varphi(a_{n\sigma(n)}) = |B|.$$

2. Proprietăți ale determinanților

Teorema 1. a) Dacă $A \in \mathcal{M}_n(R)$, atunci $\det^T A = \det A$

- b) Dacă un determinant are o linie nulă, atunci el este nul.
- c) Dacă înmulțim o linie a unui determinant cu un element $\lambda \in R$, determinantul se înmulțește cu λ .
- d) Dacă o linie a unui determinant |A| are forma $(b_1 + c_1, ..., b_n + c_n)$, atunci |A| = |B| + |C|, unde |B| resp. |C| sunt determinanții obținuți din |A| înlocuind linia respectivă cu $(b_1, ..., b_n)$ resp. $(c_1, ..., c_n)$.

G. MINCU

2

- e) Dacă un determinant are două linii proporționale, atunci el este nul.
- f) Dacă într-un determinant permutăm două linii, atunci determinantul își schimbă semnul.
- g) Un determinant nu se schimbă dacă la o linie adunăm o altă linie înmulțită cu un element $\lambda \in R$.
- h) Proprietățile (b) (g) au loc și pentru coloane.

Demonstrație: Fie $A = (a_{ij})_{1 \le i,j \le n} \in M_n(R)$.

- a) Inelul R fiind comutativ, $|^T A| = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n} = \sum_{\sigma \in S_n} \varepsilon(\sigma^{-1}) a_{1\sigma^{-1}(1)} a_{2\sigma^{-1}(2)2} \cdots a_{n\sigma^{-1}(n)} = \sum_{\tau \in S_n} sgn(\tau) a_{1\tau(1)} a_{2\tau(2)} \cdots a_{n\tau(n)} = |A|.$
- b) și c) rezută din faptul că fiecare termen din (1) conține exact un factor din linia i și anume pe $a_{i\sigma(i)}$.
- d) este o consecință imediată a distributivității înmulțirii din R în raport cu adunarea.
- e) Conform lui (c), e suficient să tratăm cazul a două linii egale, și fie acestea, pentru simplitate, primele două. Cum $S_n = A_n \cup A_n(12)$ este o partiție a lui S_n , avem: $|A| = \sum_{\sigma \in A_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \sum_{\sigma \in A_n} a_{1\sigma(2)} a_{2\sigma(1)} a_{3\sigma(3)} \cdots a_{n\sigma(n)} = 0$.
- f) Pentru simplitate, considerăm cazul când se permută primele două linii ale matricei A și fie D matricea astfel obținută. Remarcăm că funcția $S_n \to S_n, \ \sigma \mapsto \sigma(12)$ este bijectivă. Deci putem înlocui în formula $(1), \ \sigma$ cu $\sigma(12)$ și obținem $|A| = -\sum_{\sigma \in S_n} sgn(\sigma) a_{1\sigma(2)} a_{2\sigma(1)} \cdots a_{n\sigma(n)} = -|D|$.
- g) Fie B matricea obținută din A prin adunarea la linia i a elementelor liniei j înmulțite cu un element $\lambda \in R$. Aplicând proprietatea (d) pentru linia i a matricei B obținem $|B| = |A| + \Delta$, unde Δ este un determinant cu două linii proporționale, deci, conform e), $\Delta = 0$.
 - h) rezultă din (a). \square

Observația 3. Dacă un determinant are două linii (sau două coloane) egale, atunci el este nul.

Corolarul 1. Dacă una din liniile (resp. coloanele) unui determinant este combinație liniară de celelalte linii (resp. coloane), atunci determinantul este nul. În particular, dacă R este corp şi $|A| \neq 0$, atunci liniile lui A (resp. coloanele lui A) constituie o bază a R-spațiului vectorial R^n .

3. Dezvoltarea determinanților

Fie
$$n \in \mathbb{N}^*$$
 și $A = (a_{ij})_{i,j} \in \mathcal{M}_n(R)$.

Definiția 3. Fie $k \in \{1, 2, ..., n\}$. Prin **minor de ordin k** al matricei A înțelegem determinantul oricărei matrici de tipul

$$\begin{pmatrix} a_{i_1j_1} & a_{i_1j_2} & \dots & a_{i_1j_k} \\ a_{i_2j_1} & a_{i_2j_2} & \dots & a_{i_2j_k} \\ \dots & \dots & \dots & \dots \\ a_{i_kj_1} & a_{i_kj_2} & \dots & a_{i_kj_k} \end{pmatrix},$$

unde
$$1 \le i_1 < i_2 < \ldots < i_k \le n$$
 și $1 \le j_1 < j_2 < \ldots < j_k \le n$

Observația 4. Un minor de ordin k al matricii A este prin urmare determinantul unei "submatrici" a lui A dată de intersecția a k linii şi k coloane ale lui A.

Definiția 4. Dat fiind minorul M aflat la intersecția a k linii şi k coloane ale matricii A, prin **minorul complementar lui** M în A înțelegem minorul aflat la intersecțiile celorlalte n-k linii şi n-k coloane ale lui A.

Vom nota cu \overline{M} minorul complementar lui M.

Definiția 5. Prin complementul algebric al minorului M de ordin k al lui A aflat la intersecțiile liniilor i_1, i_2, \ldots, i_k cu coloanele j_1, j_2, \ldots, j_k înțelegem elementul $(-1)^s \overline{M}$ al lui R, unde $s = i_1 + i_2 + \ldots + i_k + j_1 + j_2 + \ldots + j_k$.

Vom nota cu M' complementul algebric al minorului M.

Observația 5. Cu notațiile din definiția 5, complementul algebric al lui \overline{M} este $(-1)^s M$.

Definiția 6. În situația k = 1, complementul algebric al lui $|a_{ij}|$ se mai numește **complementul algebric al elementului** a_{ij} și se notează A_{ij} .

Observația 6. Complementul algebric al lui $|a_{ij}|$ este $(-1)^{i+j}A_{ij}$, unde A_{ij} este determinantul matricei obținute din A prin eliminarea liniei i și a coloanei j.

4 G. MINCU

Lema 1. Fie M un minor de ordin m al matricei $A \in \mathcal{M}_n(R)$ şi M' complementul său algebric. Fie $M = M_1 + \cdots + M_{m!}$ şi $M' = N_1 + \cdots + N_{(n-m)!}$ scrierile desfășurate ale celor doi minori. Atunci, fiecare produs M_iN_i este un termen din desfășurarea lui |A|.

Demonstraţie: Pentru început, presupunem că M este m-minorul "stânga-sus", adică cel definit de primele m linii şi m coloane ale lui A. Atunci M' este chiar minorul complementar al lui M, deoarece $1+\cdots+m+1\cdots+m=2m$ este număr par. Fie $(-1)^{\alpha}a_{1t_1}a_{2t_2}\cdots a_{mt_m}$ resp. $(-1)^{\beta}a_{m+1t_{m+1}}a_{m+2t_{m+2}}\cdots a_{mt_n}$ un termen din dezvoltarea lui M resp. M' unde α resp. β este numărul de inversiuni ale permutării $\begin{pmatrix} 1 & \cdots & m \\ t_1 & \cdots & t_m \end{pmatrix}$ resp. $\begin{pmatrix} m+1 & \cdots & n \\ t_{m+1} & \cdots & t_n \end{pmatrix}$. E suficient să observăm că permutarea $\begin{pmatrix} 1 & \cdots & m & m+1 & \cdots & n \\ t_1 & \cdots & t_m & t_{m+1} & \cdots & t_n \end{pmatrix}$ are $\alpha+\beta$ inversiuni, deoarece $t_1,\ldots,t_m\in\{1,\ldots,m\}$ şi $t_{m+1},\ldots,t_n\in\{m+1,\ldots,n\}$.

Presupunem acum că M este m-minorul definit de liniile $1 \leq k_1 < k_2 < \cdots < k_m \leq n$ și coloanele $1 \leq l_1 < l_2 < \cdots < l_m \leq n$. Prin k_1-1 permutări de linii vecine, aducem elementele liniei k_1 pe prima linie, apoi aducem, prin k_2-2 permutări de linii vecine, elementele liniei k_2 pe a doua linie, ş.a.m.d. Continuăm pe coloane. Procedând astfel aducem minorul M în poziția stânga-sus S prin $k_1+\cdots+k_m-(1+\cdots+m)$ permutări de linii vecine și $l_1+\cdots+l_m-(1+\cdots+m)$ permutări de coloane vecine. Făcând astfel, ordinea liniilor și coloanelor din M și M' se păstrează iar |A| se înmulţeşte cu $(-1)^w$ cu $w=k_1+\cdots+k_m+l_1+\cdots+l_m$. Ne-am redus astfel la cazul analizat anterior deoarece $M'=(-1)^w\overline{M}$, unde \overline{M} este minorul complementar al lui M. \square

Teorema 2. (Regula lui Laplace)

Fie $A = (a_{ij})_{i,j} \in \mathcal{M}_n(R)$ și $1 \leq k_1 < k_2 < \cdots < k_m \leq n$. Fie Γ mulțimea minorilor de ordin m ai lui A cu elemente de pe liniile k_1, k_2, \ldots, k_m . Atunci

$$|A| = \sum_{M \in \Gamma} MM'.$$

Un rezultat similar are loc pentru coloanele lui A.

Demonstrație: Fie M, N doi m-minori distincți cu elemente din liniile $k_1, ..., k_m$. Atunci dezvoltările lui MM' și NN' nu au termeni comuni, deoarece M, N au cel puțin o coloană diferită. Deci, conform lemei 1, în suma din membrul drept al relației din enunț se găsesc $C_n^m m!(n-m)! = n!$ termeni din dezvoltarea lui |A|, adică toți. \square

Observația 7. În cazul m = 1 obținem exprimarea

$$|A| = a_{k1}A_{k1} + a_{k2}A_{k2} + \dots + a_{kn}A_{kn},$$

numită dezvoltarea determinantului după linia k. Analog,

$$|A| = a_{1k}A_{1k} + a_{2k}A_{2k} + \dots + a_{nk}A_{nk}$$

se numește dezvoltarea determinantului după coloana k.

Teorema 3. Fie $A=(a_{ij})_{i,j}\in\mathcal{M}_n(R)$ și fie $1\leq k,l\leq n$ fixate. Atunci

$$a_{k1}A_{l1} + a_{k2}A_{l2} + \dots + a_{kn}A_{ln} = \delta_{kl}|A|$$
 şi
 $a_{1k}A_{1l} + a_{2k}A_{2l} + \dots + a_{nk}A_{nl} = \delta_{kl}|A|,$

unde δ_{kl} este simbolul lui Kronecker.

Definiția 7. Matricea adjunctă a lui A este transpusa matricei obținute din A prin înlocuirea fiecărui element a_{ij} cu complementul său algebric A_{ij} .

Notăm adjuncta matricei $a \in \mathcal{M}_n(R)$ cu A^* .

Corolarul 2.

$$AA^* = A^*A = |A|I_n.$$

Teorema 4. (Regula lui Cramer) Fie $A = (a_{ij})_{i,j} \in \mathcal{M}_n(R)$ şi $b_1, ..., b_n \in R$. Dacă |A| este un element inversabil în R, atunci sistemul de ecuații liniare

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, ..., n$$

este compatibil determinat cu soluția unică $(\Delta_1|A|^{-1},...,\Delta_n|A|^{-1})$, unde Δ_j este determinantul obținut din |A| prin înlocuirea coloanei j cu

vectorul termenilor liberi
$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
.

Demonstrație: Fie A_{ij} complementul algebric al lui a_{ij} în matricea A. Înmulțind cu A^* egalitatea Ax = b se obține $|A|x = A^*b$. Pentru k = 1, ..., n, deducem că $|A|x_k = A_{1k}b_1 + A_{2k}b_2 + \cdots + A_{nk}b_k$ care este dezvoltarea după coloana k a determinantului matricei obținute din A prin înlocuirea coloanei k cu vectorul b; deci $x_k = \Delta_k |A|^{-1}$. \square

Vom folosi următoarea **notație:** Fie A o matrice de tip $(n, p), m \leq n, p$ și $I \subseteq \{1, ..., n\}, J \subseteq \{1, ..., p\}$ mulțimi cu m elemente. Notăm cu A_I^J

6 G. MINCU

m-minorul lui A cu format cu liniile cu indici din I şi coloanele cu indici din J.

Teorema 5. (Formula Binet-Cauchy)

Fie A și B matrice de tip (n,p) și respectiv (p,q), și fie $m \leq n, p, q$. Fie $I \subseteq \{1,...,n\}$ și $K \subseteq \{1,...,q\}$ două submulțimi cu m elemente. Atunci

$$(AB)_I^K = \sum_I A_I^J B_J^K$$

suma făcându-se după toate submulțimile $J\subseteq\{1,...,p\}$ cu m elemente.

Demonstrație: Fie C = AB, $I = \{i_1, i_2, ..., i_m\}$ și $K = \{k_1, k_2, ..., k_m\}$ cu $i_1 < i_2 < \cdots < i_m$ și $k_1 < k_2 < \cdots < k_m$. Punem $A = (a_{ij}), B = (b_{jk})$ și $C = (c_{ik})$. Fie $s_1, ..., s_m$ o permutare a numerelor $k_1, ..., k_m$, adică $\{s_1, ..., s_m\} = \{k_1, ..., k_m\}$. Atunci signatura permutării $\begin{pmatrix} k_1 & k_2 & ... & k_m \\ s_1 & s_2 & ... & s_m \end{pmatrix}$ este $(-1)^{Inv(s_1, ..., s_m)}$ unde $Inv(s_1, ..., s_m)$ este numărul perechilor $(u, v), 1 \le u < v \le m$, cu $s_u > s_v$. Avem

$$C_I^K = C_{i_1,\dots,i_m}^{k_1,\dots,k_m} = \sum_{\{s_1,\dots,s_m\} = \{k_1,\dots,k_m\}} (-1)^{Inv(s_1,\dots,s_m)} c_{i_1s_1} \cdots c_{i_ms_m} =$$

$$= \sum_{\{s_1,\dots,s_m\}=\{k_1,\dots,k_m\}} (-1)^{Inv(s_1,\dots,s_m)} (\sum_{t_1=1}^p a_{i_1t_1}b_{t_1s_1}) \cdots (\sum_{t_m=1}^p a_{i_mt_m}b_{t_ms_m}) =$$

$$= \sum_{t_1=1}^{p} \cdots \sum_{t_m=1}^{p} a_{i_1t_1} \cdots a_{i_mt_m} \sum_{\{s_1,\dots,s_m\}=\{k_1,\dots,k_m\}} (-1)^{Inv(s_1,\dots,s_m)} b_{t_1s_1} \cdots b_{t_ms_m} =$$

$$= \sum_{t_1=1}^{p} \cdots \sum_{t_m=1}^{p} a_{i_1t_1} \cdots a_{i_mt_m} B_{t_1,\dots,t_m}^{k_1,\dots,k_m}$$

unde $B_{t_1,...,t_m}^{k_1,...,k_m}$ desemnează m-minorul lui B cu liniile $t_1,...,t_m$ și coloanele $k_1,...,k_m$ în această ordine. Acest minor este nul dacă numerele $t_1,...,t_m$ nu sunt distincte. Deci putem scrie

$$C_{I}^{K} = \sum_{1 \leq j_{1} < \dots < j_{m} \leq p} \sum_{\{t_{1}, \dots, t_{m}\} = \{j_{1}, \dots, j_{m}\}} a_{i_{1}t_{1}} \cdots a_{i_{m}t_{m}} (-1)^{Inv(t_{1}, \dots, t_{m})} B_{j_{1}, \dots, j_{m}}^{k_{1}, \dots, k_{m}} =$$

$$= \sum_{1 \leq j_{1} < \dots < j_{m} \leq p} B_{j_{1}, \dots, j_{m}}^{k_{1}, \dots, k_{m}} \sum_{\{t_{1}, \dots, t_{m}\} = \{j_{1}, \dots, j_{m}\}} (-1)^{Inv(t_{1}, \dots, t_{m})} a_{i_{1}t_{1}} \cdots a_{i_{m}t_{m}} =$$

=
$$\sum_{1 \le j_1 < \dots < j_m \le p} B^{k_1, \dots, k_m}_{j_1, \dots, j_m} A^{j_1, \dots, j_m}_{i_1, \dots, i_m} = \sum_J A^J_I B^K_J$$
.

Corolarul 3. Dacă $A, B \in \mathcal{M}_n(R)$, atunci $\det(AB) = \det A \det B$.

Demonstrație: Aplicăm formula Binet-Cauchy cum=p=q=n. \Box

Teorema 6. Matricea $A \in \mathcal{M}_n(R)$ este inversabilă dacă și numai dacă det A este element inversabil al lui R. Dacă A este inversabilă, inversa sa este $(\det A)^{-1}A^*$.

Demonstrație: Dacă A este inversabilă, fie $B \in \mathcal{M}_n(R)$ astfel încât $AB = I_n$. Atunci $1 = |I_n| = |AB| = |A||B|$, deci $|A| \in U(R)$. Reciproc, să presupunem că $|A| \in U(R)$. Atunci $A(|A|^{-1}A^*) = (|A|^{-1}A^*)A = I_n$, cf. teoremei 3. \square

References

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.