Appl. No. 10/565,331

Amdt. dated October 27, 2008

Reply to Office Action dated April 29, 2008

Amendment to the Specification

Please replace paragraph [0117] of the specification with the following replacement paragraph:

[0001] Exemplary modified sugars according to this aspect of the invention include:[:]

$$S-(PEG)_m-(toxin)_{w_s}S-L^1-(amplifier)_m-(L^2-toxin)_{n_s}$$
 and $S-(L^1)_m-(toxin)_{n_s}$

Please replace paragraph [0180] of the specification with the following replacement paragraph;

[0002] Peptides modified by the methods of the invention can be synthetic or wild-type peptides or they can be mutated peptides, produced by methods known in the art, such as site-directed mutagenesis. Glycosylation of peptides is typically either N-linked or O-linked. An exemplary N-linkage is the attachment of the modified sugar to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of a carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one sugar (e.g., N-acetylgalactosamine N-acetylgalactosamine, Radactylgalactosamine, Radactylgalactosamine, Radactylgalactosamine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Please replace paragraph [0300] of the specification with the following replacement paragraph:

[0003] For enzymatic saccharide syntheses that involve glycosyltransferase reactions, glycosyltransferase can be cloned, or isolated from any source. Many cloned glycosyltransferases are known, as are their polymotelotide sequences. See, e.g., "The WWW Guide To Cloned Glycosyltransferases,;" (http://www.vei.co.uk/TGN/gt_guide.htm). Glycosyltransferase amino acid sequences and nucleotide sequences encoding glycosyltransferases from which the amino acid sequences can be deduced are also found in various publicly available databases, including GenBank, Swiss-Prot, EMBL, and others.

Appl. No. 10/565,331 Amdt. dated October 27, 2008 Reply to Office Action dated April 29, 2008

Please replace paragraph [0321] of the specification with the following replacement paragraph;

[0004] Also suitable for use in the present invention are glycosyltransferases that are involved in producing structures containing lacto-N-neotetraose, D-galactosyl-β-1,4-N-ac etyl-D-glucosaminyl-β-1,3-D-galactosyl-β-1,4-D-glucose, and the P^k blood group trisaccharide sequence. D-galactosyl-α-1,4-Dgalactosyl-β-1,4-D-glucose, which have been identified in the LOS of the mucosal pathogens Neisseria gonnorhoeae and N. meningitidis (Scholten et al., J. Med. Microbiol, 41: 236-243 (1994)). The genes from N. meningitidis and N. gonorrhoege that encode the glycosyltransferases involved in the biosynthesis of these structures have been identified from N. meningitidis immunotypes L3 and L1 (Jennings et al., Mol. Microbiol. 18: 729-740 (1995)) and the N. gonorrhoeae mutant F62 (Gotshlich, J. Exp. Med. 180: 2181-2190 (1994)). In N. meningitidis, a locus consisting of three genes, lgtA, lgtB and lg E, encodes the glycosyltransferase enzymes required for addition of the last three of the sugars in the lacto-N-neotetraose chain (Wakarchuk et al., J. Biol. Chem. 271: 19166-73 (1996)). Recently the enzymatic activity of the lgtB and lgtA gene product was demonstrated, providing the first direct evidence for their proposed glycosyltransferase function (Wakarchuk et al., J. Biol. Chem. 271(45): 28271-276 (1996)). In N. gonorrhoeae, there are two additional genes, lgtD which adds β-D-GalNAc to the 3 position of the terminal galactose of the lacto-N-neotetraose structure and lgtC which adds a terminal α-D-Gal to the lactose element of a truncated LOS, thus creating the Pk blood group antigen structure (Gotshlich (1994), supra.). In N. meningitidis, a separate immunotype L1 also expresses the Pk blood group antigen and has been shown to carry an lgtC gene (Jennings et al., (1995), supra.). Neisseria glycosyltransferases and associated genes are also described in USPN 5,545,553 (Gotschlich). Genes for α1,2-fucosyltransferase and α1,3-fucosyltransferase from Helicobacter pylori has also been characterized (Martin et al., J. Biol. Chem. 272: 21349-21356 (1997)). Also of use in the present invention are the glycosyltransferases of Campylobacter jejuni (see, for example, http://afmb.cnrsmrs.fr/- pedro/CAZY/gtf-42.html).