- Folha
4-Ex1 Seja G um grupo tal que, para quaisque
r $a,b\in G,\,(ab)^{10}=a^{10}b^{10}.$ Sejam $H=\{a^{10}\,|\,a\in G\}$ e
 $K=\{a\in G\,|\,a^{10}=e\}.$
 - (a) Mostre que $f: G \to G$ dado por $f(a) = a^{10}$ é um endomorfismo.
 - (b) Usando o Teorema do Homomorfismo, mostre que |H| = |G:K|.
 - (a) Sejam $a, b \in G$. Como $(ab)^{10} = a^{10}b^{10}$, tem-se $f(ab) = (ab)^{10} = a^{10}b^{10} = f(a)f(b)$ e f é um homomorfismo de grupos. Como o grupo de chegada coincide com o grupo de partida, podemos concluir que f é um endomorfismo.
 - (b) Aplicando o Teorema do Homomorfismo a f, obtemos $G/\mathrm{Ker}(f)\cong \mathrm{Im} f$. Como $\mathrm{Ker}(f)=K$ e $\mathrm{Im} f=H$, obtemos $G/K\cong H$. Logo |G/K|=|H|. Como a ordem do grupo quociente é igual ao índice |G:K|, podemos concluir que |G:K|=|H|.
- Folha4-Ex2 Considere o grupo ortogonal $O(2) = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : A \cdot A^T = A^T \cdot A = I_2\}$ bem como o seu subgrupo $SO(2) = \{A \in O(2) : \det(A) = 1\}$. Recorrendo ao Teorema do Homomorfismo mostre que |O(2) : SO(2)| = 2.

Indicação: aplique o Teorema do Homomorfismo ao homomorfismo det: $(O(2),\cdot) \to (\mathbb{R} \setminus \{0\},\cdot)$.

- Folha
4-Ex 4 Seja $G=\langle a\rangle$ um grupo cíclico em que $a\neq e$. Diga, justificando, se é verdadeiro ou falsa cada uma das afirmações seguintes:
 - (a) Se |G| = 18, então $a^{30} = a^{12}$.
 - (b) Se $a^{30} = a^{12}$, então |G| = 18.
 - (c) Se $a^{25} = a^{38}$, então |G| = 13.
 - (d) Se G é infinito então G admite exactamente dois geradores distintos: $a \in a^{-1}$.
 - (e) Se os geradores distintos de G são exactamente a e a^{-1} , então G é infinito.
 - (a) Verdadeira. Tem-se $a^{18} = e$ e então $a^{30} = a^{18}a^{12} = ea^{12} = a^{12}$.
 - (b) Falsa, contra-exemplo: se $G = \langle a \rangle$ com $a^2 = e$, tem-se $a^{18} = a^{30}$ mas |G| = 2. Equivalentemente, em escrita aditiva, no grupo $G = \mathbb{Z}_2$, $a = [1]_2$ verifica 30a = 12a mas |G| = 2.
 - (c) Verdadeira. Tem-se $a^{13}=a^{38}a^{-25}=e$. Logo |a| divide 13. Como $a\neq e, \ |a|\neq 1$. Logo |G|=|a|=13.
 - (d) Verdadeira. Como a é gerador de G, a^{-1} é gerador de G também. Como G é infinito, $a \neq a^{-1}$ pois senão $a^2 = e$ e $|G| = |a| \leq 2$. Não existem outros geradores: Um isomorfismo $f: \mathbb{Z} \to G$ é dado por $f(m) = a^m$. Seja $n \in \mathbb{Z}$ tal que a^n é um gerador de G. Então $f(nk) = a^{nk} = a = f(1)$ para um certo $k \in \mathbb{Z}$. Logo nk = 1, pelo que $n = \pm 1$.
 - (e) Falsa. Em \mathbb{Z}_3 , $[1]_3$ e $-[1]_3 = [2]_3$ são os únicos geradores.
- Folha4-Ex7 Seja $G = \langle a \rangle$ um grupo cíclico de ordem 15.
 - (a) Mostre que G admite exatamente 8 geradores distintos.
 - (b) Indique todos os subgrupos de G.
 - (a) Tem-se $G = \{e, a, ..., a^{14}\}$ e $G = \langle a^k \rangle$ se e só se $\mathrm{mdc}(15, k) = 1$. Assim, os geradores de G são: $a, a^2, a^4, a^7, a^8, a^{11}, a^{13}, a^{14}$.
- Folha4-Ex7 Seja $G = \langle a \rangle$ um grupo cíclico de ordem 30 e $H = \langle a^{25} \rangle$.
 - (a) Determine H.
 - (b) Indique, caso existam, os elementos de H que têm ordem 3.
 - (c) Diga, justificando, se G admite subgrupos de ordem 5 e, em caso afirmativo, indique-os.
 - (a) $H = \{a^{25}, a^{50} = a^{20}, a^{75} = a^{15}, a^{100} = a^{10}, a^{125} = a^5, a^{150} = a^0 = e\}.$
 - (b) a^{20} , a^{10} .
 - (c) Como 5 divide 30, G admite um único subgrupo de ordem 5, nomeadamente $\langle a^6 \rangle$.

e $\sigma_3 = (1,3,6)(2,7,4)(5,8)$.

- (a) Decomponha σ_1 e σ_2 em cíclos dois a dois disjuntos.
- (b) Determine as permutações σ_1^{-1} , $\sigma_1\sigma_2$, $\sigma_1\sigma_3$, σ_2^2 , σ_2^3 e $\sigma_2^2\sigma_3$ e factorize-os em cíclos dois a dois disjuntos. Indique a ordem e a paridade de cada permutação.
- (a) $\sigma_1 = (1,2)(3,4,6,7,5,8), \sigma_2 = (1,3,5,4)(2,6,8,7).$
- (b) Temos:

$$\sigma_1^{-1} = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 8 & 3 & 7 & 4 & 6 & 5 \end{array}\right) = (1,2)(3,8,5,7,6,4)$$

Como os cíclos $\tau=(1,2)$ e $\gamma=(3,8,5,7,6,4)$ são disjuntos, temos $|\sigma^{-1}|=\mathrm{mmc}(|\tau|,|\gamma|)=\mathrm{mmc}(2,6)=6$. Como sgn é um homomorfismo e o sinal de um cíclo de ordem k é k-1 temos $\mathrm{sgn}(\sigma_1^{-1})=\mathrm{sgn}(\tau)\mathrm{sgn}(\gamma)=(-1)^1(-1)^5=1$, isto é σ_1^{-1} é par. Nota: como o homomorfismo sgn tem valor no grupo multiplicativo $\{+1,-1\}$ poderíamos também dizer que $\mathrm{sgn}(\sigma_1^{-1})=(\mathrm{sgn}(\sigma_1))^{-1}=\mathrm{sgn}(\sigma_1)$ e utilizar a decomposição em cíclos obtida na alínea anterior para concluir.

$$\sigma_{1}\sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 7 & 8 & 2 & 6 & 3 & 1 & 5 \end{pmatrix} = (1,4,2,7)(3,8,5,6), \ |\sigma_{1}\sigma_{2}| = 4, \text{ par}$$

$$\sigma_{1}\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 7 & 1 & 3 & 2 & 6 & 8 \end{pmatrix} = (1,4)(2,5,3,7,6), |\sigma_{1}\sigma_{3}| = 10, \text{ impar}$$

$$\sigma_{2}^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 4 & 3 & 1 & 7 & 6 & 2 \end{pmatrix} = (1,5)(2,8)(3,4)(6,7), |\sigma_{2}^{2}| = 2, \text{ par}$$

$$\sigma_{2}^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 7 & 1 & 5 & 3 & 2 & 8 & 6 \end{pmatrix} = (1,4,5,3)(2,7,8,6), \ |\sigma_{2}^{3}| = 4, \text{ par}$$

$$\sigma_{2}^{2}\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 8 & 2 & 5 & 3 & 1 \end{pmatrix} = (1,4,8)(2,6,5)(3,7), |\sigma_{2}^{2}\sigma_{3}| = 6, \text{ impar}$$

Folha4-Ex9 Considere em S_9 a permutação $\sigma = (9, 5, 7)(3, 4, 1, 5, 7, 6)(1, 2, 8, 4)(3, 4, 8)$.

- (a) Determine a ordem e a paridade de σ .
- (b) Determine σ^{339} .
- (a) Da apresentação de σ deduzimos que σ é par. Por outro lado temos

$$\sigma = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 8 & 7 & 1 & 9 & 3 & 6 & 4 & 5 \end{array}\right) = (1, 2, 8, 4)(3, 7, 6)(5, 9).$$

Desta decomposição em cíclos dois a dois disjuntos, podemos concluir que $|\sigma|=12$.

(b) Tem-se
$$\sigma^{339} = \sigma^{12 \cdot 28 + 3} = \sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 1 & 3 & 8 & 9 & 6 & 7 & 2 & 5 \end{pmatrix}$$
.

Folha4-Ex10 Considere o grupo simétrico S_8 .

- (a) Exiba um elemento de S_8 de ordem 15.
- (b) Mostre que não existe um elemento de S_8 de ordem 14.
- (a) (1,2,3)(4,5,6,7,8)
- (b) Suponhamos, por absurdo, que existe um elemento $\sigma \in S_8$ de ordem 14. Então σ não é um cíclo (pois a ordem de um cíclo é inferior ou igual a 8). Logo σ pode ser factorizado em pelo menos dois cíclos dois a dois disjuntos de $S_8 \setminus \{id\}$ e $|\sigma| = 14$ é o mmc das ordens destes cíclos. Segue-se que a decomposição de σ em cíclos dois a dois disjuntos de $S_8 \setminus \{id\}$ contém pelo menos um cíclo de ordem 2 e um cíclo de ordem 7. Logo $\{1, \ldots, 8\}$ tem pelo menos 2+7=9 elementos. Contradição! Logo não existe um elemento de S_8 de ordem 14.

Folha5-Ex2 Determine todos os endomorfismos do anel \mathbb{Z} .

Seja $f: \mathbb{Z} \to \mathbb{Z}$ um endomorfismo de aneis. Então f é um endomorfismo de grupos e f(1) = 1. Segue-se que $f = id_{\mathbb{Z}}$. Logo $id_{\mathbb{Z}}$ é o único endomofismo do anel \mathbb{Z} .

Folha5-Ex3 Mostre que os aneis \mathbb{Z}_6 e $\mathbb{Z}_2 \times \mathbb{Z}_3$ são isomorfos.

Como 2 e 3 são primos entre si, um isomorfismo de grupos $f: \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ é dado por $f(k+6\mathbb{Z}) = (k+2\mathbb{Z},k+3\mathbb{Z})$. Como $f(1+6\mathbb{Z}) = (1+2\mathbb{Z},1+3\mathbb{Z})$ e para quaisquer $k,l \in \mathbb{Z}$, $f((k+6\mathbb{Z})(l+6\mathbb{Z})) = f(kl+6\mathbb{Z}) = (kl+2\mathbb{Z},kl+3\mathbb{Z}) = (k+2\mathbb{Z},k+3\mathbb{Z})(l+2\mathbb{Z},l+3\mathbb{Z}) = f(k+6\mathbb{Z})f(l+6\mathbb{Z})$, f é de facto um isomorfismo de aneis.

- Folha5-Ex4 Mostre que o centro de um anel $A, Z(A) = \{x \in A \mid \forall y \in A \ xy = yx\}$, é um subanel de A. Tem-se 1y = y = y1 para todo o $y \in A$, pelo que $1 \in Z(A)$. Sejam $a, b \in Z(A)$ e $y \in A$. Então (a-b)y = ay - by = ya - yb = y(a-b) e aby = ayb = yab. Logo $a-b, ab \in Z(A)$. Segue-se que Z(A) é um subanel de A.
- Folha5-Ex6 Sejam A um anel e $n \in \mathbb{Z}$. Verifique que $nA = \{nx \mid x \in A\}$ é um ideal de A. Tem-se $0 = n0 \in nA$. Como o grupo aditivo de A é abeliano, tem-se para $x, y \in A$, $nx - ny = n(x - y) \in nA$. Logo $nA \leq A$. Sejam $a, x \in A$. Então, pelas leis de distributividade, $a(nx) = n(ax) \in nA$ e $(nx)a = n(xa) \in nA$. Segue-se que nA é um ideal de A.
- Folha5-Ex7 Seja A um anel comutativo e seja $a \in A$. Verifique que $I = \{x \in A \mid ax = 0\}$ é um ideal de A. Tem-se $0 \in I$ pois $a \cdot 0 = 0$. Sejam $x, y \in I$. Tem-se ax = 0 e ay = 0 pelo que a(x y) = ax ay = 0 0 = 0. Logo $x y \in I$. Seja $x \in I$ e seja $b \in A$. Como A é comutativo, basta ver que $bx \in I$ e temos a(bx) = bax. Como $x \in I$, temos ax = 0 e portanto a(bx) = bax = 0 e $bx \in I$. Podemos concluir que I é um ideal.
- Folha5-Ex8 Sejam m e n dois números inteiros primos entre si. Mostre que o único ideal de \mathbb{Z} que contém m e n é \mathbb{Z} .

Seja I um ideal de \mathbb{Z} que contém m e n. Como $\mathrm{mdc}(m,n)=1$, existem, pelo lema de Bézout, $u,v\in\mathbb{Z}$ tais que um+vn=1. Segue-se que $1\in I$ e então que $I=\mathbb{Z}$.

Folha5-Ex9 Sejam A um anel e I um ideal de A. Mostre que o anel quociente A/I é comutativo se e só se $ab - ba \in I$ para todos os $a, b \in A$.

Suponhamos primeiramente que A/I é comutativo. Sejam $a,b \in A$. Então ab+I=(a+I)(b+I)=(b+I)(a+I)=ba+I. Logo $ab-ba \in I$. Suponhamos inversamente que $ab-ba \in I$ para todos os $a,b \in A$. Então para todos os $a,b \in A$, (a+I)(b+I)=ab+I=ba+I=(b+I)(a+I). Logo A/I é comutativo.

Folha6-Ex1 Sejam A um anel e d um divisor de zero. Prove que d não é invertível.

Suponhamos, por absurdo que d é invertível. Como d é um divisor de zero, $d \neq 0$ e existe $a \neq 0$ tal que da = 0 ou ad = 0. Então $a = d^{-1}da = d^{-1}0 = 0$ ou $a = add^{-1} = 0d^{-1} = 0$. Contradição! Logo d não é invertível.

- Folha6-Ex2 Um elemento a de um anel A diz-se nilpotente se $a^n=0$ para algum número natural positivo n.
 - (a) Seja A é um domínio de integridade. Mostre que 0 é o único elemento nilpotente de A.
 - (b) Seja A um anel comutativo e sejam $x, y \in A$ tais que $x^2 = 0$ e $y^3 = 0$. Mostre que x + y é um elemento nilpotente de A.
 - (a) Suponhamos, por absurdo, que $a \neq 0$ é nilpotente em A. Seja n o menor natural positivo tal que $a^n = 0$. Como $a \neq 0$, temos n > 1. Como $aa^{n-1} = a^n = 0$, $a^{n-1} = 0$ pois A é um domínio de integridade. Isto contradiz a minimalidade de n. Logo 0 é o único elemento nilpotente de A.
 - (b) Como A é comutativo tem-se $(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 = x^2(x^2 + 4xy + 6y^2) + (4x+y)y^3$. Como $x^2 = 0$ e $y^3 = 0$ obtemos $(x+y)^4 = 0(x^2 + 4xy + 6y^2) + (4x+y)0 = 0$.

Folha6-Ex3 Seja A um anel comutativo não nulo tal que A = (a) para todo o $a \in A \setminus \{0\}$. Mostre que A é um corpo.

Seja $a \in A \setminus \{0\}$. Como A = (a), existe $b \in A$ tal que 1 = ba. Logo a é invertível. Logo A é um corpo.

Folha6-Ex4 Seja A um anel comutativo.

- (a) Mostre que qualquer ideal maximal de A é primo.
- (b) Mostre que um ideal I de A é maximal se e só se A/I é um corpo.
- (c) Mostre que o ideal $2\mathbb{Z} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal maximal.
- (d) Mostre que o ideal $\{0\} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal primo que não é maximal.
- (a) Seja I um ideal maximal de A. Então $I \neq A$. Sejam $a,b \in A$ tais que $ab \in I$. Suponhamos que $a \notin I$, queremos ver que $b \in I$. Consideremos o ideal J = I + (a). Como $a \notin I$, tem-se $J \neq I$. Como I é maximal e $I \subset J$, $I \neq J$, podemos concluir que J = A. Logo existe $x \in I$, $r \in A$ tais que 1 = x + ra. Multiplicando por b (e usando a comutatividade de A), obtemos b = bx + rab. Como I é um ideal e $x, ab \in I$ obtemos $bx, rab \in I$ e consequentemente $b \in I$. Podemos concluir que I é primo.
- (b) Suponhamos primeiramente que I é maximal. Como A é comutativo, A/I é comutativo. Como $I \neq A, A/I$ é não nulo. Seja a+I com $a \in A \setminus I$ um elemento não nulo de A/I. Então (a)+I é um ideal de A que contém I como subconjunto próprio. Como I é maximal, (a)+I=A. Logo existem $b \in A$ e $x \in I$ tais que 1=ab+x. Tem-se (a+I)(b+I)=ab+I=ab+x+I=1+I, pelo que a+I é uma unidade de A/I.

Suponhamos agora que A/I é um corpo. Então $I \neq A$ pois A/I é não nulo. Seja J um ideal de A tal que $I \subseteq J \neq A$. Seja $a \in J$. Suponhamos, por absurdo, que $a \notin I$. Então a+I é uma unidade de A/I e existe $b \in A$ tal que ab+I=(a+I)(b+I)=1+I. Logo $ab-1 \in I \subseteq J$. Como $ab \in J$, obtém-se $1 \in J$ e então J=A. Contradição! Portanto $a \in I$ e I é maximal.

Nota: podemos deduzir a alínea (a) da aínea (b) pois se I é maximal então, pela alínea (b), A/I é um corpo. Logo A/I é um domínio de integridade e I é um ideal primo.

- (c) $2\mathbb{Z} \times \mathbb{Z}$ é um ideal maximal de $\mathbb{Z} \times \mathbb{Z}$. Com efeito, seja J um ideal de $\mathbb{Z} \times \mathbb{Z}$ tal que $2\mathbb{Z} \times \mathbb{Z} \subseteq J \subseteq \mathbb{Z} \times \mathbb{Z}$. Suponhamos que $J \neq 2\mathbb{Z} \times \mathbb{Z}$. Logo existe $(a,b) \in J$ tal que $(a,b) \notin 2\mathbb{Z} \times \mathbb{Z}$. Então $a \notin 2\mathbb{Z}$ e existe $k \in \mathbb{Z}$ tal que a = 2k + 1. Então $(a,b) (2k,b-1) = (1,1) \in J$, pelo que $J = \mathbb{Z} \times \mathbb{Z}$. Contradição! Logo $(a,b) \in 2\mathbb{Z} \times \mathbb{Z}$ e $2\mathbb{Z} \times \mathbb{Z}$ é maximal.
- (d) $\{0\} \times \mathbb{Z}$ é um ideal primo de $\mathbb{Z} \times \mathbb{Z}$ que não é maximal. Com efeito, sejam $(a,b), (x,y) \in \mathbb{Z} \times \mathbb{Z}$ tais que $(a,b)(x,y) = (ax,by) \in \{0\} \times \mathbb{Z}$. Então a=0 ou x=0 e portanto $(a,b) \in \{0\} \times \mathbb{Z}$ ou $(x,y) \in \{0\} \times \mathbb{Z}$. Logo $\{0\} \times \mathbb{Z}$ é primo. Como $\{0\} \times \mathbb{Z} \nsubseteq 2\mathbb{Z} \times \mathbb{Z}, \{0\} \times \mathbb{Z}$ não é maximal.

Folha6-Ex5 Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:

- (a) O anel $\mathbb{Z}_2 \times \mathbb{Z}$ é um domínio de integridade.
- (b) O anel $\mathbb{Z}_2 \times \mathbb{Z}_3$ é um corpo.
- (c) O anel \mathbb{Z}_7 contém elementos nilpotentes não nulos.
- (d) $\operatorname{car}(\mathbb{Z}_2 \times \mathbb{Z}_3) = 6$.
- (e) $\operatorname{car}(\mathbb{Z}_6 \times \mathbb{Z}_4) = 24$.
- (a) Falso pois $([1]_2, 0)([0]_2, 1) = ([0]_2, 0)$.
- (b) Falso pois o anel $\mathbb{Z}_2 \times \mathbb{Z}_3$ não é um domínio de integridade (tem-se, por exemplo, $([1]_2, [0]_3)([0]_2, [1]_3) = ([0]_2, [0]_3)$).
- (c) Falso pois \mathbb{Z}_7 é um domínio de integridade.
- (d) Verdadeiro pois temos um isomorfismo de anéis $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$ e, pelo Ex 7, $\operatorname{car}(\mathbb{Z}_2 \times \mathbb{Z}_3) = \operatorname{car}(\mathbb{Z}_6) = 6$.
- (e) Falso. Como $12 \cdot ([1]_6, [1]_4) = ([12]_6, [12]_4) = ([0]_6, [0]_4), \operatorname{car}(\mathbb{Z}_6 \times \mathbb{Z}_4) \le 12.$