

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

AUG 7 - 1944

April 1944

INFORMATION SHEET ON DRYING-RATE NOMOGRAPHS

AIC-31-V

V. ONION SLICES, DEPARTMENT OF AGRICULTURE

Western Regional Research Laboratory, Albany, California
Bureau of Agricultural and Industrial Chemistry
Agricultural Research Administration
U. S. Department of Agriculture

A method of estimating drying times from drying-rate nomographs has been published in the form of an information sheet (AIC-31-I), and drying-rate nomographs are available for riced white potatoes (AIC-31-I), blanched sweet corn (AIC-31-II), white potato strips under through-flow conditions (AIC-31-III), and shredded cabbage (AIC-31-IV).

The drying-rate characteristics of 1/8" onion slices are presented nomographically in this information sheet. The onions, Southport White Globe variety, were peeled and trimmed by hand and cut into 1/8" slices in a mechanical vegetable slicer. The onion slices were loaded on the drying trays and dried in the raw state.

The first set of nomographs (Figures 1 to 4) deals with the drying rates of onion slices on metal grid trays, and the second set (Figures 5 to 8) with onion slices on wooden slat trays. Specifically, the following nomographs are included in this information sheet:

Metal Grid Trays Wooden Slat Trays

Subject

Figure 1	Figure 5	Drying from $T_0 = 7.6$ to $T = 0.20$
Figure 2	Figure 6	Effect of L_0 and V on Figures 1 and 5
Figure 3	Figure 7	Drying from $T = 0.20$ to T_f
Figure 4	Figure 8	θ corrections for $T_0 > 7.6$

The effects of tray loading density and air velocity upon the drying times from $T_0 = 7.6$ to $T = 0.20$ are related by the equations:

$$\text{for metal grid trays, } \theta_r (\text{at } L_0, V) = \theta_r \cdot f(L_0) \cdot f(V) \quad (1)$$

$$\text{for wooden slat trays, } \theta_r (\text{at } L_0, V) = \theta_r \cdot f(V, L_0) \quad (2)$$

In these equations, θ_r is the drying time from T_0 to T under reference conditions (of $L_0 = 1.0$ lb./sq. ft. and $V = 780$ ft./min.) as obtained from Figure 1 or 5. For equation (1), values of $f(L_0)$ and $f(V)$ are selected from Figure 2, and for equation (2), values of $f(V, L_0)$ are selected from Figure 6. In both equations, these functions must correspond to the values of L_0 and V under consideration, and must be selected at the value of T to which θ and θ_r apply. (The nomenclature used is that listed in Information Sheet AIC-31-I.)

Below $T = 0.20$, drying times are independent of air velocity (from $V = 400$ to 1200 ft./min.) for both types of tray. The drying times below $T = 0.20$ are also independent of tray type and loading density (between $L_0 = 0.5$ and 2.0 lb./sq. ft.) except for the range of $T = 0.07$ to T_f on wooden slat trays. In the latter case, the drying time for the interval of $T = 0.07$ to 0.04 may be 60% greater when $L_0 = 1.8$ than when $L_0 = 0.5$ or 1.0.

-2-

General Notes on Onions

During the experimental work, the onions were held in storage at 33° F. for two months. The following analyses, expressed on the wet or "as received" basis, show changes which occurred in the sugar content of the onions:

<u>Material</u>	<u>Water Content</u>	<u>Total Sugar Content</u>	<u>Reducing Sugar Content</u>
As received	88.2%	9.1%	2.6%
After 2 months of storage	87.4%	9.4%	4.5%

In drying Southport White Globe onions from T_0 to $T = 0.04$, $3/16"$ slices require about 80% more time on metal grid trays, or about 65% more time on wooden slat trays, than is required by $1/8"$ slices. On this basis, the drying of $3/16"$ slices in preference to $1/8"$ slices cannot be recommended because of the lower production rate which would follow directly and because of the extreme susceptibility of onions to time-temperature injury. If $3/16"$ slices are dried, however, the relative advantage in drying time of metal grid trays over wooden slat trays will be less than in the case of $1/8"$ slices.

FIGURE 1

THE DRYING OF $1/8"$ SLICES OF
SOUTHPORT WHITE GLOBE ONIONS
FROM $T_o = 7.6$ to $T = 0.20$

$L_o = 1.0$ lb./sq.ft. on Metal Grid Trays
 $V = 780$ ft.³/min., Cross Air Flow

11-10-43 M.E.L.
2-4-44 A.H.B.

11-24-43 M.E.L. 2-4-44 A.H.B.

Drying of 1/8" Slices of Southport White Globe Onions

VALUES OF $f(L_o)$ AND $f(V)$

Metal Grid Trays Cross Air Flow

FIGURE 3

KEY

1. Connect t_d to t_w to Reference Line.
2. Connect Reference Line to T .
3. Read drying time from θ axis.

THE DRYING OF 1/8" SLICES OF
SOUTHPORT WHITE GLOBE ONIONS

FROM $T = 0.2$ to T_f

$L_o = 0.5$ to 2.0 lb./sq.ft. on Metal Grid Trays

$V = 400$ to 1200 ft./min., Cross Air Flow

1-30-43 M.E.L.

1-30-44 A.H.B.

Drying of 1/8" Slices of Southport White Globe Onions

CORRECTION OF θ_r FOR $T_o > 7.6$

$L_o = 10 \text{ lb./sq.ft. on Metal Grid Trays}$

$V = 780 \text{ ft./min., Cross Air Flow}$

THE DRYING OF $1/3"$ SLICES OF
SOUTHPORT WHITE GLOBE ONIONS
VALUES OF $f(V, L_0)$
Wooden Slat Trays — Cross Air Flow

KEY

1. Connect T to V, L_0 to ref. line.
2. Connect ref. line through pivot point
to $f(V, L_0)$ scale.
3. Read value of $f(V, L_0)$.

Drying of 1/8" Slices of Southport White Globe Onions

CORRECTION OF θ_r FOR $T_o > 7.6$

$L_e = 1.0 \text{ lb./sq.ft. on Wooden Slat Trays}$

$V = 780 \text{ ft./min., Cross Air Flow}$

FIGURE 8

2-21-44 M.E.L.