Cvičení 1

Logika

Příklad 1 Napište negace následujících tvrzení.

- 1. $(A \wedge B) \implies (B \vee C)$
- 2. $(A \Longrightarrow (B \lor C)) \land (B \Longrightarrow C)$
- 3. $(A \land B) \iff (A \lor C)$

Příklad 2 Každé z následujících tvrzení vyjádřete ekvivalentní výrokovou formulí, s využitím kvantifikátorů, logických spojek a symbolu a|b, který znamená, že a je dělitel b.

- 1. Pokud množina M obsahuje všechny dělitele čísla 15, pak M obsahuje i všechny dělitele čísla 27.
- 2. Pro každé číslo z množiny Y platí, že pokud je sudé, potom jeho trojnásobek je také sudý.
- 3. Pokud každé sudé přirozené číslo patří do množiny M, pak žádné sudé přirozené číslo nepatří do množiny N.
- 4. Žádné číslo z množiny X není násobkem všech čísel z množiny M.

Příklad 3 Napište negace následujících tvrzení.

- 1. Číslo n má aspoň jednoho dělitele, který není dělitelem žádného čísla menšího než n.
- 2. Pokud je v každém kroužku aspoň jeden student, který chodí na přednášku z analýzy, pak v žádném kroužku není víc než pět studentů navštěvujících přednášku z algebry.
- 3. Každá množina pěti čísel obsahuje aspoň tři lichá čísla nebo aspoň tři sudá čísla.
- 4. Každý student, který získal alespoň dvacet bodů v zápočtovém testu, má nárok na udělení zápočtu.

Příklad 4 Zapište všechny logické spojky pouze pomocí implikace a negace

Důkazy

Příklad 1 K následujícím implikacím zformulujte obměnu.

- 1. Pokud existuje liché prvočíslo, pak pro žádné $x \in \mathbb{N}$ neexistuje $y \in \mathbb{N}$ takové, že y > x.
- 2. Pokud x je dělitelné 6 a y je dělitelné 7, pak $x \cdot y$ je sudé.
- 3. $(\forall x \in \mathbb{N}y \in \mathbb{N} : y = x + 1) \implies (y \in \mathbb{N}, \forall x \in \mathbb{N} : y = x + 1).$
- 4. Pokud jsou všechny ovce bílé, jsou všechny kočky černé.

Příklad 2 Dokažte obměnou:

- 1. Jestliže n^2+2 není dělitelné třemi, pak n je dělitelné třemi
- 2. Pokud je xy liché, pak x i y jsou liché
- 3. Pokud a a b jsou reálné a ab je iracionální, pak alespoň jedno z a, b je iracionální

Příklad 3 Dokažte sporem:

- 1. Neexistuje největší přirozené číslo
- 2. Číslo $\sqrt{2}$ je iracionální (Nápověda: Dokažte, že pokud $p^2=2q^2$, pak p i q jsou sudá.)
- 3. Existuje nekonečně mnoho prvočísel. (Nápověda: Pokud $a_1,\dots,a_k>1$, pak $a1\cdot\dots\cdot a_k+1$ není dělitelné žádným z a_i .