Lecture: Week 2 - 2



James Won-Ki Hong, <u>Jian Li</u>, Seyeon Jeong

Dept. of Computer Science & Engineering POSTECH

http://dpnm.postech.ac.kr/~jwkhong jwkhong@postech.ac.kr

POSTECH DPNM Lab. SDN / NFV 1/9

# SDN vs. OpenFlow



#### ONF Definition

- SDN performs Software Defined Forwarding
  - Controls data forwarding through open API
- SDN provides Management Abstraction
  - Can make more advanced applications

### Currently Implemented with OpenFlow

### OpenFlow is Misunderstood to be Equivalent to SDN

- No requirements for the use of OpenFlow within an SDN
- OpenFlow is one of SDN protocols but most popular

| Version      | Date    | Characteristics                                                 | Organization        |
|--------------|---------|-----------------------------------------------------------------|---------------------|
| OpenFlow 1.0 | 2009.12 | MAC, IPv4, single flow table                                    | OpenFlow Consortium |
| OpenFlow 1.1 | 2011.2  | MPLS/tunnel, multiple flow tables, group table                  | OpenFlow Consortium |
| OpenFlow 1.2 | 2011.12 | IPv6, Config., extensible match support                         | ONF                 |
| OpenFlow 1.3 | 2012.9  | QoS (meter table)                                               | ONF                 |
| OpenFlow 1.4 | 2013.10 | Optical port monitoring and config. (frequency, power)          | ONF                 |
| OpenFlow 1.5 | 2014.12 | Egress table, pkt. type aware pipeline, flow entry stat trigger | ONF                 |



Logical View of SDN architecture

## **OpenFlow**



### Definition



A communication protocol that gives access to the forwarding plane of the network switch or router

#### Features

- OpenFlow is similar to an x86 instruction set for the network
- Separation of control plane and data plane
  - The data path of an OpenFlow switch consists of a Flow Table, and an action associated with each flow entry
  - The control path consists of a controller which programs flow entry in the flow table
- OpenFlow has an internal flow-table, and a standardized interface to add and remove flow entries

#### Components

- OpenFlow controller
  - Process packet match, instruction & action set, pipeline processing
- OpenFlow switch
  - Secure channel, flow table

## **OpenFlow History**



### **❖ USA NSF FIND (Future INternet Design) Program**

- 2006, Stanford and Berkley University
- SANE(clean-slate Security Architecture for Enterprise Network) project
- Ethane project

### OpenFlow

- 2007, Stanford University
- 2008, OpenFlow Consortium
- 2008, Nicira Networks released NOX platform.
- 2009, OpenFlow Spec 1.0
- 2009 MIT Tech. Review → SDN as one of 10 emerging technologies
- 2011 March, ONF (<u>Open Networking Foundation</u>) was born
- 2012 ONF released OpenFlow 1.3
- 2013 ONF released OpenFlow 1.4
- 2014 ONF released OpenFlow 1.5
- At the end of 2017, ONF merges with ON.LAB

## **How Does OpenFlow Work?**



#### OpenFlow Switch and Tables



### **Current Status of SDN Products and Solutions**



#### Controller Vendors

|            | Solutions            | OpenFlow version |                                                        |
|------------|----------------------|------------------|--------------------------------------------------------|
| Controller | NOX                  | OpenFlow 1.3     | C++ API                                                |
|            | POX                  | OpenFlow 1.1     | Python version of NOX, Python API                      |
|            | Floodlight           | OpenFlow 1.3     | BigSwitch joined OpenDaylight but left it on June 2013 |
|            | Ryu                  | OpenFlow 1.4     | Python API                                             |
|            | OpenDayLight (ODL)   | OpenFlow 1.3     | 2014.2                                                 |
|            | ONOS                 | OpenFlow 1.4     | 2014.12                                                |
| Switch     | Open vSwitch         | OpenFlow 1.3     | Developed and maintained by NICIRA                     |
|            | Ericsson soft switch | OpenFlow 1.3     | Compatible with Mininet Controller: NOX 1.3            |

#### Switch Vendors

- NEC: released OpenFlow 1.3 switch and controller... 2013.9
- HP: released OpenFlow 1.3 data center switch ... 2013
- Centec Network, China: released Open SDN switch with OpenFlow1.3 support (implemented on Open vSwitch) ... 2013.4
- Brocade, OpenFlow 1.3 switch ... 2014.6~

## **OpenFlow Protocol Format**



### Protocol Layer

- OpenFlow control message relies on TCP protocol
- Controllers listen on TCP port 6633/6653 to setup conn. with switch
  - 6633/6653 became the official <u>IANA</u> port since 2013-07-18
- OpenFlow message structure
  - Version
    - Indicates the version of OpenFlow which this message belongs
  - Type
    - Indicates what type of message is present and how to interpret the payload (version dependent)
  - Message length
    - Indicates where this message will be end, starting from the first byte of header
  - Transaction ID (xid)
    - An unique value used to match requests to response

#### **OpenFlow Message Structure**

| Bit Offset | 0 ~ 7          | 8 ~ 15 | 16 ~ 23 | 24 ~ 31  |  |
|------------|----------------|--------|---------|----------|--|
| 0 ~ 31     | Version        | Туре   | Message | e Length |  |
| 32 ~ 63    | Transaction ID |        |         |          |  |
| 64 ~ ?     | Payload        |        |         |          |  |

# **OpenFlow Protocol Messages**



C: OpenFlow Controller AM: Asynchronous message CSM: Control/Switch Message

S: OpenFlow Switch SM: Symmetric Message

| Category                    | Message                | Туре              | Description                                                                                                                      |  |
|-----------------------------|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Meta Info.<br>Configuration | Hello (SM)             | C → S             | following a TCP handshake, the controller sends its version number to the switch.                                                |  |
|                             | Hello (SM)             | $S \rightarrow C$ | the switch replies with its supported version number.                                                                            |  |
|                             | Features Request (CSM) | C → S             | the controller asks capability of a switch, including port speed, supported tables and actions.                                  |  |
|                             | Set Config (CSM)       | C → S             | configures various settings to switch including flow expirations, MTU and etc.                                                   |  |
|                             | Features Reply (CSM)   | s → c             | the switch replies with a list of ports, port speeds, and supported tables and actions.                                          |  |
|                             | Port Status            | S → C             | enables the switch to inform that controller of changes to port speeds or connectivity.                                          |  |
| Flow<br>Processing          | Packet-In (AM)         | s → c             | a packet was received and it didn't match any entry in the switch's flow table, causing the packet to be sent to the controller. |  |
|                             | Packet-Out (CSM)       | $C \rightarrow S$ | instructs a switch to send a packet out to one or more switch ports.                                                             |  |
|                             | Flow-Mod (CSM)         | C → S             | instructs a switch to add a particular flow to its flow table.                                                                   |  |
|                             | Flow-Removed (CSM)     | s → c             | a flow timed out after a period of inactivity.                                                                                   |  |

## **OpenFlow Communication**



Connection Setup

