Homework #10

20221059 정상목

1. 문제

1. We have Exercise 2.11.1 in our textbook. Do the same job, but with three unknown variables, phi, n, and p.

2. Mesh

이번 과제에서 사용할 mesh는 Homework #7에서 사용한 mesh와 동일한 mesh를 사용했다. 사용한 mesh는 다음과 같다.

이번 과제에서 사용한 mesh는 Double gate mosfet의 구조를 가지고 있다. 이 구조는 3가지 Region으로 각각 ox, si, ox 순서로 구성되어 있다. 각 Region은 왼쪽부터 Region 1, Region 2, Region 3로 설정했다. 각 Region별 vertex수는 다음 표와 같다.

Region 1	Region 2	Region 3	entire
9	21	9	39

Table 1. Number of vertex

3. Vertex / Indexing

앞선 과제인 HW#9와 다르게 각 Region별로 vertex와 element를 구성한 뒤 불러왔다. 추가적으로 index를 확인하기 위해 [x y z]인 vertex 파일 뒤에 [Region original-index re-index]를 붙여 [x y z Region original-index re-index] 의 정보를 가지는 행렬을 작성했다. 이 행렬을 이용해 vertex와 index파일을 얻을 수 있었다.

	1	2	3		1	2	3
1	0	1	0	1	1	1	
2	0.5000	1	0	2	1	2	
3	1	1	0	3	1	3	
4	1	1	0	4	2	1	
5	1.5000	1	0	5	2	2	
6	2	1	0	6	2	3	
7	2.5000	1	0	7	2	4	
8	3	1	0	8	2	5	
9	3.5000	1	0	9	2	6	
10	4	1	0	10	2	7	1
11	4	1	0	11	3	1	1
12	4.5000	1	0	12	3	2	1.
13	5	1	0	13	3	3	1.
14	0	1.5000	0	14	1	4	1-
15	0.5000	1.5000	0	15	1	5	1
16	1	1.5000	0	16	1	6	1
17	1	1.5000	0	17	2	8	1
18	1.5000	1.5000	0	18	2	9	1
19	2	1.5000	0	19	2	10	19
20	2.5000	1.5000	0	20	2	11	2
21	3	1.5000	0	21	2	12	2

Fig 1. Vertex(left), index(right)

Fig 1.의 index를 살펴보자. index 파일의 각 열은 [Region original-index re-index]를 의미하고 있다. 예를 들어 10행의 [2 7 10]의 의미를 살펴보면 Region2에 7번째 vertex는 전체에서 10번째 vertex와 같다는 뜻이다.

4. Element

기존에 사용한 Vertex가 아니므로 index가 달라졌음을 확인할 수 있다. 그러므로 element 또한다시 작성되어야 할 것이다. Region와 vertex값을 이용하여 바뀐 index에 맞게 element가 수정될수 있도록 하였다. 예시로 Region 1의 element를 보면 다음과 같다.

변경 전				변경 후			
	1	2	3		1	2	3
1	1	13	12	1	1	15	14
2	1	2	13	2	1	2	15
3	2	14	13	3	2	16	15
4	2	3	14	4	2	3	16
5	12	24	23	5	14	28	27
6	12	13	24	6	14	15	28
7	13	25	24	7	15	29	28
8	13	14	25	8	15	16	29

Fig 2. Re-Element

앞서 얻은 index파일을 이용해 자동적으로 변환되게 작성하였다.

5. 초기 해

Newton-method를 사용하기 위해 초기해를 구했다. potential은 HW#9에서 구한 potential을 사용했다. electron density와 hole density는 아래와 같은 식과 기존에 구한 potential을 이용해계산했다.

$$abla ullet (-\nabla \epsilon \phi) = q(-n+p+N_{dop}^+)$$
 $n = n_i e^{rac{\phi}{V_i}}$
 $p = n_i e^{-rac{\phi}{V_i}}$

6. Jacobian matrix / residue vector 구하기

각 mesh 마다 matrix를 만들고 이 matrix를 합치는 방법을 사용했다.

Fig 9. Mesh.

다음과 같은 mesh가 있을 때 각 vertex의 potential은 다음과 같다.

6.1. Potential

Oxide 부분에서는 다음과 같은 방법으로 구할 수 있다.

- vertex 1

$$\frac{\phi_B - \phi_A}{L_1} \frac{A_1}{2} + \frac{\phi_C - \phi_A}{L_3} \frac{A_3}{2} = -\left(\frac{A_1}{2L_1} + \frac{A_3}{2L_3}\right) \phi_1 + \frac{A_1}{2L_1} \phi_2 + \frac{A_3}{2L_3} \phi_3$$

- vertex 2

$$\frac{\phi_C - \phi_B}{L_2} \frac{A_2}{2} + \frac{\phi_A - \phi_B}{L_1} \frac{A_1}{2} = + \frac{A_1}{2L_1} \phi_1 - \left(\frac{A_1}{2L_1} + \frac{A_2}{2L_2}\right) \phi_2 + \frac{A_2}{2L_2} \phi_3$$

- vertex 3

$$\frac{\phi_A - \phi_C}{L_3} \frac{A_3}{2} + \frac{\phi_B - \phi C}{L_2} \frac{A_2}{2} = \frac{A_3}{2L_3} \phi_1 + \frac{A_2}{2L_2} \phi_2 - \left(\frac{A_2}{2L_2} + \frac{A_3}{2L_3}\right) \phi_3$$

따라서 다음과 같은 행렬을 얻을 수 있다.

$$Jaco = \epsilon_x \begin{pmatrix} -\left(\frac{A_1}{2L_1} + \frac{A_3}{2L_3}\right) & \frac{A_1}{2L_1} & \frac{A_3}{2L_3} \\ & \frac{A_1}{2L_1} & -\left(\frac{A_1}{2L_1} + \frac{A_2}{2L_2}\right) & \frac{A_2}{2L_2} \\ & \frac{A_3}{2L_3} & \frac{A_2}{2L_2} & -\left(\frac{A_2}{2L_2} + \frac{A_3}{2L_3}\right) \end{pmatrix}$$

$$res = \begin{pmatrix} -\left(\frac{A_1}{2L_1} + \frac{A_3}{2L_3}\right) \phi_1 + \frac{A_1}{2L_1} \phi_2 + \frac{A_3}{2L_3} \phi_3 \\ \\ + \frac{A_1}{2L_1} \phi_1 - \left(\frac{A_1}{2L_1} + \frac{A_2}{2L_2}\right) \phi_2 + \frac{A_2}{2L_2} \phi_3 \\ \\ \frac{A_3}{2L_3} \phi_1 + \frac{A_2}{2L_2} \phi_2 - \left(\frac{A_2}{2L_2} + \frac{A_3}{2L_3}\right) \phi_3 \end{pmatrix}$$

Si region에 들어서면 $\rho=q(-n+p+N_{dop}^+)$ 인 것과 위 방법을 그대로 사용하면 구할 수 있다.

6.2. Electron / Hole density

$$n=n_i e^{rac{\phi}{V_t}}$$
, $p=n_i e^{-rac{\phi}{V_t}}$ 식을 이용하면 손쉽게 구할 수 있다.

$$\begin{split} residue_{electron} &= Electron - n_i e^{\frac{\phi}{V_t}}, \ Jaco_{e,\phi} = -\frac{n_i}{V_t} e^{\frac{\phi}{V_t}} \\ residue_{hole} &= Hole - n_i e^{-\frac{\phi}{V_t}}, \ Jaco_{e,\phi} = -\frac{n_i}{V_t} e^{-\frac{\phi}{V_t}} \end{split}$$

7. Result

위와 같은 방법으로 Jaco matrix와 res vector를 작성 후 계산을 진행했다. 하지만 electron, hole 부분에서 값이 수렴하지 않는 현상이 발생했다. 이 부분이 해결되지 않아 다시 수정할 계획이다.