ECE 65: Components & Circuits Lab

Lecture 8

Diode waveform shaping circuits Peak detector circuits

Reference notes: sections 2.9

Sedra & Smith (7th Ed): sections 4.4-4.6

Saharnaz Baghdadchi

Course map

2. Diodes

When the Diode is initially OFF:

$$V_{D} = V_{C} - V_{C} = V_{C}$$

$$V_{D} = 0, \quad V_{D} < V_{D_{0}}$$

$$V_{C} < V_{D_{0}}$$

When the Diode is ON:

$$\begin{array}{c|c} V_{D0} & i_{D} \\ \downarrow & \downarrow \\ v_{i} & v_{c} & C & v_{o} \\ \hline - & - & - \\ \hline \end{array}$$

$$\Lambda^{0} = -\Lambda^{D} + \Lambda^{r} = -\Lambda^{D^{0}} + \Lambda^{r}$$

$$I^{D} \geqslant 0$$

$$\Lambda^{D} = \Lambda^{D^{0}}$$

$$\int_{D} e^{i} = \int_{C} e^{i} = \int_{C} \frac{\int_{C} V_{c}}{\int_{C} t} = \int_{C} \frac{\int_{C} (V_{c} - V_{D_{o}})}{\int_{C} t}$$

 $= C \frac{\int V_i}{\int t}$

of
$$V_{D0}$$

of V_{i}

of

$$V_{0} = V_{i} - V_{c} = V_{i} - (V_{p} - V_{p_{0}})$$

After v_i reached its peak value, the diode does not turn ON anymore.

Response of the Ideal Peak Detector $(v_i \text{ amplitude changes})$

 v_o is the "peak" value of input waveform ($V_p - V_{D0}$):

Note v_o did not "drop" after the peak was decreased in the 3rd cycle.

Practical Peak Detector Circuit

Practical Peak Detector Circuit

Diode OFF: $i_D = 0$ and $v_D < V_{D0}$

Capacitor discharges into the resistor with a time constant of $\tau = RC$

$$v_o = v_c(t) = v_{c_0} e^{-(t-t_0)/\tau}$$

$$v_D = v_i - v_c < V_{D0}$$

$$\to v_i < v_c(t) + V_{D0}$$

Practical Peak Detector Circuit

Diode ON: $v_D = V_{D0}$ and $i_D \ge 0$

$$v_o = v_C = v_i - V_{D0}$$

$$i_C = C \frac{dv_C}{dt} = C \frac{d(v_i - V_{D0})}{dt} = C \frac{dv_i}{dt}$$

Response of the Practical Peak Detector

Shape of output signal depends on the ratio of τ/T

"ideal" peak detector: $\tau/T \rightarrow \infty$

"Good" peak detector: $\tau/T >> 1$

As τ/T decreases, the circuit departs from a peak detector.

For $\tau/T << 1$, capacitor discharges very fast and circuit resembles a rectifier circuit

Lecture 8 reading quiz.

In the following diode circuit, which one of the options could be the input and output voltages for this circuit? $V_{D0} = 0.7 \ V$.

1.0ms

1.5ms

2.0ms

2.5ms

0.0ms

0.5ms

Discussion question 1.

In the circuit below, $v_i(t)=10\sin(\omega t)$ where ω =1000 rad/s, $v_c(0)=0$. $V_{D0}=0.7~V$. What is the value of $v_o(t)$ at t = 1ms and t=2 ms? Draw one cycle of the input and output waveforms.

Hints:

Discussion question 1.

In the circuit below, $v_i(t)=10\sin(\omega t)$ where ω =1000 rad/s, $v_c(0)=0$.

 $V_{D0}=0.7\ V$. What is the value of $v_o(t)$ at t = 1ms and t=2 ms? Draw one

cycle of the input and output waveforms.

- Find the period of the input sinusoidal waveform.
 T = 2pi/w
- Find the minimum amplitude of vi to turn the diode ON. You should write a KVL in the circuit to get the answer. Note that Vc(0)=0
- The diode will conduct until vi reaches its peak amplitude. Then, it will disconnect.
- Find the time point at which vi reaches it's peak amplitude and compare it with the given time points, t = 1ms and 2ms. The relationship between vout and vi will be different at different time points.

Discussion question 2.

Design a clipper circuit that limits voltages above 6 V. You can use any combination of regular PN junction diodes, Zener diodes or DC sources.

Extra problem for practice

Find v_R and i in the below circuit for $-5 \text{ V} \leq v_i \leq 5 \text{ V}$.

(Assume Si diodes with $V_{D0} = 0.7 V$)

