

Analog and Digital combined: Mixed-Signal Design and Verification in MATLAB and Simulink

Alexander Schreiber – Senior Application Engineer MathWorks, Germany

Agenda

- Analog/Mixed-Signal Design Challenges
- Case Studies
 - Analog-Digital-Converter
 - Modelling on different levels of abstraction
 - Architectural Exploration
 - Digital Pre-Distortion
 - Device characterisation (transistor-level simulation, measurement)
 - Device modelling
 - Compensation algorithm development
 - Verification
- Summary

Classical Mixed-Signal Design

Model-Based Mixed-Signal Design

- Design & simulation speed
 - rapid construction
 - design abstractions
- Design links
 - multiple domains (analog, digital, network, ...)
 - multiple tools (ModelSim, Spectre...)
 - specification and verification
 - system-level and test equipment

Simulink for Mixed-Signal Design

- Laplace transforms
 Variable step ODE solvers
- Zero crossings and discontinuities
- Feedback control loops, VCOs, PLLs, phase detectors
- Circuit-level Modeling:
 - SimPowerSystems
 - SimElectronics
- Spice Co-Simulation

Case Study: ADC Design

Agenda

Case study	What we'll show
Analog-Digital Converter	Introduction to methods – sigma-delta ADC Design abstractions Analog/digital in same model

Ideal tool features

Wish list

Intuitive

Quick & easy to build

Analog & digital together

Fast

Data Weighted Averaging for Simulink Marko Neitola - University of Oulu

Case study: ADC design

Purpose:

Introduce methods using straight forward design

Design Challenge:

Sigma-delta ADC to process AM signals around 1,600 kHz

Demo: Simulink Introduction

Simple model to illustrate concepts:

- Controlling blocks
- Time handling
- Analog and digital in same model

Demo: ADC built from (almost) scratch

Second-order sigma-delta ADC

- Rapid model construction
- Feedback
- Filter design

Demo: Circuit elements

Switched capacitor ADC

- Circuit elements
- Mixed-behavioral and circuit design

More complex ADCs & DACs possible

Improved Modeling of Sigma-Delta Modulator Non-Idealities in SIMULINK, A. Fornasari, P. Malcovati and F. Maloberti, ISCAS 2005

Modeling of Switched-Capacitor Delta–Sigma Modulators in SIMULINK, Hashem Zare-Hoseini, Izzet Kale, and Omid Shoaei, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005

Case Study: Digital Pre-Distortion

Why DPD?

Power amplifier characteristic

- High PAPR for OFDM systems
- Standards and regulators require low leakage
- Real power amplifiers distort at higher powers
- Back-off mode very inefficient

Can we have efficiency and low distortion?

What is Digital Pre-Distortion?

Power amplifier characteristic

- Power amplifier distorts signal
- Digitally pre-distort signal
- Predisortion + power amplifier = ideal result

Modeling Challenges

PA and DPD modeling solutions require:

- Signal generation capabilities
- Test & measurement interfaces
- Link to transistor-level simulators (e.g. Mentor Graphics Questa ADMS)
- Powerful linear algebra tools
- Advanced signal processing capabilities
- Time domain simulation capabilities

Modeling Challenges

Waveform Generation

MATLAB and extensions provide rich set of ready-to-use algorithms

Pre-defined

Parametrizable

Interface to Transistor-Level Simulators

- Integration of Spice-level transistor netlist simulation in system-level testbench
- Stimuli generation and result analysis in MATLAB/Simulink

Example: Interface to Transistor-Level Simulators

Interface to Transistor-Level Simulators

Co-Simulation with Analog Simulators

via 3rd party solution:

- Cadence
 - OrCAD SLPS
 - Virtuoso AMS Designer Simulink
 Integrator

- Mentor Graphics
 - Questa ADMS

Interfacing to Test & Measurement Equipment

 Typical lab setup for device characterization

Interfacing to Test & Measurement Equipment

- Equipment setup, e.g. waveform download to signal generator
- Execution control
- Upload of measurent results

Behavioural Modeling of RF Amplifiers

Memory polynomial model¹ used

$$y_{MP}(n) = \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} a_{km} x(n-m) |x(n-m)|^{k}$$

- K = order of the model, M = memory depth
- Only diagonal terms considered
- 1) Morgan, Ma, Kim, Zierdt, and Pastalan, "A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers", IEEE Trans. on Signal Processing, Vol. 54, No. 10, Oct. 2006

Behavioural Modeling of RF Amplifiers

MATLAB code for solving for a:

"\" operator calculates LMS solution.

Behavioural Modeling of RF Amplifiers

 Verifying match between measured data and model response

DPD Algorithm Development & Verification

Power amplifier model is:

$$y_{MP}(n) = \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} a_{km} x(n-m) |x(n-m)|^{k}$$

We want the reverse, which is:

$$x(n) = \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} a_{km} y(n-m) |y(n-m)|^{k}$$

DPD + PA = Ideal

DPD Algorithm Development & Verification

Same MATLAB code as before:

Parameters fit by:

• Model results given by:

$$>> y = x terms * a;$$

DPD Algorithm Development & Verification

Time-based simulation model

HW-based Algorithm Verification

Summary

Model-Based Mixed-Signal Design

- Design & simulation speed
 - rapid construction
 - design abstractions
- Design links
 - multiple domains (analog, digital, ...)
 - multiple tools (ModelSim, Spectre...)
 - specification and verification
 - system-level and test equipment

Products mentioned

Product name	What it does
MATLAB	Algorithms, analysis, visualization
Simulink	System simulation and design
SimPowerSystems	Behavioral circuit models
Instrument Control Toolbox	Linking behavioral models to test & measurement
HDL Verifier	Co-simulation link to 3 rd party HDL simulators (e.g. Mentor Graphics ModelSim, Questa ADMS, Cadence Incisive)

Some customers...

Customer	Use case
Atmel	RF Front End for DVB Analog-digital co-design and verification
IDT-Newave	Audio chipset Rapid simulation of PLLs
Realtek	Voiceband codec Analog-digital design
RFMD	Video transceiver System-level/SPICE cosimulation
Fujitsu	40 Gbit/s Serdes Rapid system simulation

More Information

- Internet:
 - http://www.mathworks.de/
- Mixed-Signal Library: <u>http://www.mathworks.de/programs/mixed-signal/</u>
- Contact us:
 - contact@MathWorks.de
 - Your local Sales Representive

Questions?

Thank you!