Programmierprojekt: TSP Algorithmen

Preiß Philipp, Perner Manuel, Dickbauer Yanick

PS Entscheidungsunterstützung in Produktion und Logistik, WS 2016/17

January 31, 2017

Aufgabenstellung

- Grafischer Vergleich verschiedener TSP Heuristiken:
 - MST Heuristik
 - Multi Fragment Heuristik
 - Nearest Neighbour Heuristik
 - Nearest/Cheapest Insertion Heuristik

- Optionale Anforderung:
 - Berechnung einer optimalen Tour durch Verwendung eines ILP Solvers

MST Heuristik

- MST Heuristik:
 - Länge durch MST Heuristik zwischen opimale Lösung und 2*optimale Lösung

- Ablauf MST Heuristiken:
 - 1 minimum spanning tree mit Algorithmus von Kruskal erstellen
 - 2 Kanten des minimum spanning tree verdoppeln
 - 4 Hierholzer Algorithmus
 - einzelne Subtouren erstellen
 - Eulertour bilden ⇒ Subtouren zusammenfügen
 - 4 Doppelte Punkte in Reihenfolge löschen

MST Heuristik

 Kruskalbaum und verdoppelte Kanten

- Hierholzer Algorithmus:
 - einzelne Subtouren erstellen
 - ② Eulertour bilden ⇒ Subtouren zusammenfügen
- Doppelte Punkte in Reihenfolge löschen
- Endtour: 3-1-6-4-5-2-7-3

Multi Fragment Heuristik

- Ablauf Multi Fragment Heuristik
 - kleinste Kanten zwischen zwei Punkten verbinden, ohne ein Verzweigung zu erzeugen bis alle Punkten genau zwei Kanten besitzt
 - führt zu einem Pfad, bis er am ende verbunden wird
 - am anfang können mehrere kleine Pfade entstehen, die irgendwann miteinander verbunden werden
 - Endtour: 2-4-5-7-6-3-1-2

Nearest Neighbour

- Nearest Neighbour wurde so implementiert, dass das Programm die Lösungen für alle Startpunkte miteinander vergleicht und die beste auswählt.
- Grundsätzliche Vorgangsweise:
- Startknoten zufällig wählen
- Knoten mit geringster Entfernung zu aktuellem Knoten wird in Tour aufgenommen.
- Wiederhole Schritt 2 bis nur noch die Verbindung zum Startknoten übrig bleibt.
- Verbinde den zuletzt hinzugefügten

starting

in node A

Nearest/Cheapest Insertion

- Vorgehen bei beiden Heuristiken gleich.
- Unterschied liegt alleine im Insertionkriterium.
 - Starte mit 2 Knoten.
 - Einfügen des nächsten Knoten nach Auswahlkriterium:
 - Nearest ⇒ Knoten mit kürzester Entfernung
 - Cheapest ⇒ Knoten mit geringsten Einfügekosten
 - Wiederhole Schritt 2 bis alle Knoten Teil der Tour sind.

Optimale Tour

- 4 Varianten implementiert:
 - Concorde TSP Solver ¹
 - Qurobi Kommerzieller ILP Solver 2
 - OIN OR Open Source ILP Solver 3
 - Ipsolve 4
- Ermöglicht den Qualitätsvergleich der Heuristiken mit der Optimallösung

¹http://www.math.uwaterloo.ca/tsp/concorde/

²http://www.gurobi.com/

³https://www.coin-or.org

⁴https://sourceforge.net/projects/lpsolve

Geschwindigkeitsvergleich Concorde vs. Gurobi

Geschwindigkeitsvergleich Gurobi vs. COIN

