Computational Fluid Dynamics HW2

Almog Dobrescu

ID 214254252

 $March\ 7,\ 2025$

Contents

List of Figures

1	Problem Definition		
	1.1	Governing Equations	1
	1.2	Physical Domain	1
	1.3	Initial Conditions	1
	1.4	Boundary Conditions	1
2	The	e Numerical Shemes	2
	2.1	Boundary Conditions	2

Nomenclature

- γ ratio of specific heats
- κ coefficient of thermal conductivity
- μ coefficient of viscodity
- ρ fluid density
- E inviscid convective vector
- e total energy
- E_v viscous convective vector
- p pressure
- Q conservation state space
- R gas constant
- T temperature
- t time
- u fluid velocity
- x spatial coordinate

1 Problem Definition

1.1 Governing Equations

Consider the one-dimensional Navier-Stokes Equations:

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = \frac{\partial E_v}{\partial x} \tag{1}$$

Where:

$$Q = \begin{cases} \rho \\ \rho u \\ e \end{cases}, \quad E = \begin{cases} \rho u \\ p + \rho u^2 \\ (e + p) u \end{cases}, \quad E_v = \begin{cases} \frac{4}{3} \mu \frac{\partial u}{\partial x} \\ \frac{4}{3} \mu u \frac{\partial u}{\partial x} - \kappa \frac{\partial T}{\partial x} \end{cases}$$

$$p = (\gamma - 1) \left(e - \frac{1}{2} \rho u^2 \right), \qquad T = \frac{p}{\rho R},$$

$$\mu = 1.458 \cdot 10^{-6} \frac{T^{\frac{3}{2}}}{T + 110.4}, \quad \mu = 2.495 \cdot 10^{-3} \frac{T^{\frac{3}{2}}}{T + 194}$$
(2)

The constants are:

- $\gamma = 1.4$ for air under standard atmospheric conditions
- R = 287.0 for air

1.2 Physical Domain

The physical domain is a tube extended between x = 0.2 and x = 1.0. At both ends there are impermeable walls.

1.3 Initial Conditions

The initial conditions are shown in Fig.1:

Figure 1: Initial conditions

1.4 Boundary Conditions

On each side of the tube there is an adiabatic, soild wall boundary conditions.

2 The Numerical Shemes

2.1 Boundary Conditions

In order to set the boundary conditions on the edge faces we will define ghost cells that will be calculated like so:

$$u_{(i=0)} = -u_{(i=1)}$$

 $u_{(i=N+1)} = -u_{(i=N)}$ (3)

in order to mentain velocity zero on the boundary and like so:

$$T_{(i=0)} = T_{(i=1)}$$

 $T_{(i=N+1)} = T_{(i=N)}$
(4)

in order to mentain adiabatic boundary conditions.