```
In [1]: #importation of necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

In [2]: #Load Housing Data
raw_data = pd.read_csv('dataset/Housing_dataset_train.csv')
test_data = pd.read_csv('dataset/Housing_dataset_test.csv')
submission = pd.read_csv("dataset/Sample_submission.csv")

Basic Data Exploration
```

```
In [3]: raw_data.head()
```

Out[3]:

	ID	loc	title	bedroom	bathroom	parking_space	price
0	3583	Katsina	Semi-detached duplex	2.0	2.0	1.0	1149999.565
1	2748	Ondo	Apartment	NaN	2.0	4.0	1672416.689
2	9261	Ekiti	NaN	7.0	5.0	NaN	3364799.814
3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
4	10300	Kogi	Terrace duplex	NaN	5.0	6.0	2600700.898

In [4]: raw_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14000 entries, 0 to 13999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	ID	14000 non-null	int64
1	loc	12187 non-null	object
2	title	12278 non-null	object
3	bedroom	12201 non-null	float64
4	bathroom	12195 non-null	float64
5	<pre>parking_space</pre>	12189 non-null	float64
6	price	14000 non-null	float64
dtvn	es: float64(4)	int64(1) objec	+(2)

dtypes: float64(4), int64(1), object(2)

memory usage: 765.8+ KB

In [5]: test_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6000 entries, 0 to 5999 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	ID	6000 non-null	int64
1	loc	6000 non-null	object
2	title	6000 non-null	object
3	bedroom	6000 non-null	int64
4	bathroom	6000 non-null	int64
5	parking_space	6000 non-null	int64

dtypes: int64(4), object(2) memory usage: 281.4+ KB

In [6]: raw_data.describe()

Out[6]:

	ID	bedroom	bathroom	parking_space	price
count	14000.000000	12201.000000	12195.000000	12189.000000	1.400000e+04
mean	4862.700357	4.308171	3.134235	3.169825	2.138082e+06
std	3818.348214	2.441165	2.035950	1.599415	1.083057e+06
min	0.000000	1.000000	1.000000	1.000000	4.319673e+05
25%	1672.750000	2.000000	1.000000	2.000000	1.393990e+06
50%	3527.000000	4.000000	2.000000	3.000000	1.895223e+06
75%	8011.250000	6.000000	5.000000	4.000000	2.586699e+06
max	12999.000000	9.000000	7.000000	6.000000	1.656849e+07

Data Cleaning

```
In [7]: #drop columns not needed
    raw_data.dropna(subset=['loc', 'title'], inplace=True)
    raw_data.reset_index()
```

Out[7]:

	index	ID	loc	title	bedroom	bathroom	parking_space	price
0	0	3583	Katsina	Semi- detached duplex	2.0	2.0	1.0	1149999.565
1	1	2748	Ondo	Apartment	NaN	2.0	4.0	1672416.689
2	3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
3	4	10300	Kogi	Terrace duplex	NaN	5.0	6.0	2600700.898
4	5	1733	Borno	Mansion	NaN	1.0	3.0	1341750.867
10526	13994	10477	Taraba	Detached duplex	8.0	1.0	6.0	2837199.086
10527	13995	6175	Edo	Bungalow	NaN	7.0	NaN	2367927.861
10528	13996	9704	Kaduna	Apartment	NaN	7.0	5.0	2228516.471
10529	13997	11190	Plateau	Bungalow	8.0	6.0	5.0	2406812.693
10530	13998	9256	Delta	Flat	NaN	6.0	1.0	3348918.718

10531 rows × 8 columns

```
In [8]: #check for duplicated rows
raw_data.duplicated().sum()
```

Out[8]: 0

```
In [10]: #check for null values
    raw_data.isnull().sum()
```

Out[10]: ID

ID 0
loc 0
title 0
bedroom 1675
bathroom 1672
parking_space price 0
dtype: int64

In [11]: raw_data.groupby(['title', 'loc'])[['bedroom', 'bathroom', 'parking_space']].me title loc Apartment 5.0 4.0 Abia 3.0 4.0 3.0 3.0 Adamawa Akwa Ibom 4.0 3.0 4.0 Anambra 4.0 2.0 3.0 Bauchi 3.0 3.0 3.0 Townhouse Rivers 4.0 3.0 3.0 3.0 Sokoto 4.0 3.0 Taraba 6.0 3.0 3.0 Yobe 3.0 3.0 3.0 Zamfara 3.0 3.0 3.0 360 rows × 3 columns

In [12]: raw_data.groupby(['title', 'loc'])[['bedroom', 'bathroom', 'parking_space']].mo

bedroom bathroom parking_space

Out[12]:

				. 0= .
title	loc			
Apartment	Abia	4.0	2.0	4.0
	Adamawa	4.0	2.0	4.0
	Akwa Ibom	4.0	2.0	4.0
	Anambra	4.5	2.0	3.0
	Bauchi	3.0	2.0	3.0
Townhouse	Rivers	5.0	2.0	2.5
	Sokoto	4.0	3.0	3.0
	Taraba	6.0	3.0	4.0
	Yobe	3.0	2.0	2.0
	Zamfara	2.5	2.0	3.0

360 rows × 3 columns

```
In [13]: #Proceeded to fill na values with the median subset by location and type of hot
filled_median = raw_data
na_cols = ['bedroom', 'bathroom', 'parking_space']

for col in na_cols:
    median_data = filled_median.groupby(['title', 'loc'])[col].transform('median_data_median[col] = filled_median[col].fillna(median_data)
```

In [14]: filled_median

Out[14]:

	ID	loc	title	bedroom	bathroom	parking_space	price
0	3583	Katsina	Semi-detached duplex	2.0	2.0	1.0	1149999.565
1	2748	Ondo	Apartment	3.5	2.0	4.0	1672416.689
3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
4	10300	Kogi	Terrace duplex	5.0	5.0	6.0	2600700.898
5	1733	Borno	Mansion	4.0	1.0	3.0	1341750.867
						•••	
13994	10477	Taraba	Detached duplex	8.0	1.0	6.0	2837199.086
13995	6175	Edo	Bungalow	4.0	7.0	4.0	2367927.861
13996	9704	Kaduna	Apartment	4.0	7.0	5.0	2228516.471
13997	11190	Plateau	Bungalow	8.0	6.0	5.0	2406812.693
13998	9256	Delta	Flat	3.0	6.0	1.0	3348918.718

10531 rows × 7 columns

```
In [15]: filled_mean = raw_data
    na_cols = ['bedroom', 'bathroom', 'parking_space']

for col in na_cols:
    mean_data = filled_mean.groupby(['title', 'loc'])[col].transform('mean')
    filled_mean[col] = filled_mean[col].fillna(mean_data)
```

	ID	loc	title	bedroom	bathroom	parking_space	price
0	3583	Katsina	Semi-detached duplex	2.0	2.0	1.0	1149999.565
1	2748	Ondo	Apartment	3.5	2.0	4.0	1672416.689
3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756
4	10300	Kogi	Terrace duplex	5.0	5.0	6.0	2600700.898
5	1733	Borno	Mansion	4.0	1.0	3.0	1341750.867
13994	10477	Taraba	Detached duplex	8.0	1.0	6.0	2837199.086
13995	6175	Edo	Bungalow	4.0	7.0	4.0	2367927.861
13996	9704	Kaduna	Apartment	4.0	7.0	5.0	2228516.471
13997	11190	Plateau	Bungalow	8.0	6.0	5.0	2406812.693
13998	9256	Delta	Flat	3.0	6.0	1.0	3348918.718

10531 rows × 7 columns

```
In [17]: final_data = filled_median
```

Data Processing

```
In [18]: final_data['bedbath_ratio'] = final_data['bedroom'] /final_data['bathroom']
    test_data['bedbath_ratio'] = test_data['bedroom'] / test_data['bathroom']

In [19]: # creating a log transformation
    final_data['log_price'] = np.log(final_data['price'])
```

```
In [20]: | zones = {
              'Benue': 'North Central',
             'Kogi': 'North Central',
             'Kwara': 'North Central',
             'Nasarawa': 'North Central',
              'Niger': 'North Central',
              'Plateau': 'North Central',
             'Adamawa': 'North East',
              'Bauchi': 'North East',
             'Borno': 'North East',
              'Gombe': 'North East',
              'Taraba': 'North East',
             'Yobe': 'North East',
              'Jigawa': 'North West',
             'Kaduna': 'North West',
              'Kano': 'North West',
              'Katsina': 'North West',
             'Kebbi': 'North West',
              'Sokoto': 'North West',
             'Zamfara': 'North West',
              'Abia': 'South East',
              'Anambra': 'South East',
              'Ebonyi': 'South East',
              'Enugu': 'South East',
             'Imo': 'South East',
              'Akwa Ibom': 'South South',
              'Bayelsa': 'South South',
              'Cross River': 'South South',
              'Delta': 'South South',
              'Edo': 'South South',
              'Rivers': 'South South',
             'Ekiti': 'South West',
             'Lagos': 'South West',
              'Ogun': 'South West',
              'Ondo': 'South West',
              'Osun': 'South West',
              'Oyo': 'South West',
         }
         # Map the location to values based on zone
         final_data['zone'] = final_data['loc'].map(zones)
         test_data['zone'] = test_data['loc'].map(zones)
         # Print the updated dataframe
         final data.head()
```

Out[20]:

		ID	loc	title	bedroom	bathroom	parking_space	price	bedbath_ratio		
	0	3583	Katsina	Semi- detached duplex	2.0	2.0	1.0	1149999.565	1.00	1	
	1	2748	Ondo	Apartment	3.5	2.0	4.0	1672416.689	1.75	1	
	3	2224	Anambra	Detached duplex	5.0	2.0	4.0	2410306.756	2.50	1	
	4	10300	Kogi	Terrace duplex	5.0	5.0	6.0	2600700.898	1.00	1	
	5	1733	Borno	Mansion	4.0	1.0	3.0	1341750.867	4.00	1	
	4								>		
In [21]:	<pre>In [21]: columns = final_data.columns</pre>										

Explanatory Data Analysis

```
In [22]: final_data.hist()
Out[22]: array([[<Axes: title={'center': 'ID'}>,
                <Axes: title={'center': 'bedroom'}>,
                <Axes: title={'center': 'bathroom'}>],
               <Axes: title={'center': 'bedbath_ratio'}>],
               [<Axes: title={'center': 'log_price'}>, <Axes: >, <Axes: >]],
              dtype=object)
                      ID
                                         bedroom
                                                              bathroom
                                2000
          2000 -
                                                     2000
                                1000
          1000
             0
                                   0
                                                        0
               Oparking space
                                       2.5 pFi@e 7.5
                                                            be2dfbath540atio
                                                     4000 -
                               $000
          2000 -
                                                     2000
                                2500
          1000
             0 -
                                   0
                  2og_pr4ce
                                     0
                                              1
                                                           0
                                                  1e7
          2000 -
```

0

14

16

```
In [23]: # Get all possible categories for the categoricaL columns
    cat_col = ['loc', 'title']
    for name in cat_col:
        print(name,':')
        print(raw_data[name].value_counts(),'\n')
```

_	
loc : Cross River	317
Imo	311
Anambra	310
Benue	309
Kaduna	309
Yobe	307
Zamfara	307
Borno	306
Plateau	301
Kano	301
Oyo	301
Ondo	300
Ogun	298
Ebonyi	298
Niger	297
Gombe	296
Kebbi	295
Nasarawa	295
Katsina	292
Jigawa	289
Enugu	288
Bauchi	288
Sokoto	287
Ekiti	286
Osun	286
Adamawa	285
Kwara	285
Bayelsa	284
Taraba	281
Kogi	279
Rivers	278
Delta	277
Abia	276
Lagos	274
Akwa Ibom	273
Edo	265
Name: loc, d	type: int64
title :	
Flat	1
Apartment	1

182 1147 Apartment Townhouse 1139 Semi-detached duplex 1133 Mansion 1125 Detached duplex 1115 Penthouse 1103 Bungalow 1102 Terrace duplex 1095 Cottage 390 Name: title, dtype: int64

Out[25]: []


```
In [26]: #count of rows by type of house
    sns.countplot(data=final_data, y='title')
    plt.title("Frequency plot of house type")
    plt.ylabel("Type of house")
    plt.plot()
```

Out[26]: []

Out[27]: []


```
In [28]: #Relationship between location and price
sns.barplot(data=final_data, y='loc', x='price')
plt.title("Price of houses by location")
plt.ylabel("Location")
plt.xlabel("Price")
plt.plot()
```

Out[28]: []


```
In [29]: #Relationship between zone and price
sns.barplot(data=final_data, y='zone', x='price')
plt.title("Price of houses by location")
plt.ylabel("Location")
plt.xlabel("Price")
plt.plot()
```

Out[29]: []


```
In [30]: #relationship between no of bedroom and price
    sns.barplot(data=final_data, x='bedroom', y='price')
    plt.title("Price of houses by location")
    plt.xlabel("No of Bedrooms")
    plt.ylabel("Price")
    plt.plot()
```

Out[30]: []


```
In [31]: #plotting corr map
    corr = final_data.corr()
    plt.figure(figsize = (10,7))
    sns.heatmap(corr, annot=True)
```

Out[31]: <Axes: >

Data Processing

```
In [32]: # Define the ranking based on size (arranged from smallest to biggest)
         house_type_ranks = {
             'Cottage': 1,
             'Bungalow': 2,
             'Townhouse': 3,
             'Terrace duplex': 4,
             'Detached duplex': 5,
             'Semi-detached duplex': 6,
             'Flat': 7,
             'Penthouse': 8,
             'Apartment': 9,
             'Mansion': 10
         }
         # Map the house types to numerical values based on size ranking
         final_data['title'] = final_data['title'].map(house_type_ranks)
         test_data['title'] = test_data['title'].map(house_type_ranks)
         # Print the updated dataframe
         final_data.head()
```

Out[32]:

	ID	loc	title	bedroom	bathroom	parking_space	price	bedbath_ratio	log_pr
0	3583	Katsina	6	2.0	2.0	1.0	1149999.565	1.00	13.955;
1	2748	Ondo	9	3.5	2.0	4.0	1672416.689	1.75	14.329
3	2224	Anambra	5	5.0	2.0	4.0	2410306.756	2.50	14.695;
4	10300	Kogi	4	5.0	5.0	6.0	2600700.898	1.00	14.771;
5	1733	Borno	10	4.0	1.0	3.0	1341750.867	4.00	14.1094

```
In [33]: # Calculate the frequency of each category in the 'loc' and 'zone' columns
         loc_frequencies = final_data['loc'].value_counts(normalize=True)
         zone_frequencies = final_data['zone'].value_counts(normalize=True)
         testloc frequencies = test data['loc'].value counts(normalize=True)
         testzone_frequencies = test_data['zone'].value_counts(normalize=True)
         # Create a dictionary to map each category to its corresponding frequency
         loc frequency mapping = loc frequencies.to dict()
         zone frequency mapping = zone frequencies.to dict()
         testloc_frequency_mapping = testloc_frequencies.to_dict()
         testzone_frequency_mapping = testzone_frequencies.to_dict()
         # Map the 'loc' and 'zone' columns to their corresponding frequency values
         final_data['loc'] = final_data['loc'].map(loc_frequency_mapping)
         final_data['zone'] = final_data['zone'].map(zone_frequency_mapping)
         test_data['loc'] = test_data['loc'].map(testloc_frequency_mapping)
         test data['zone'] = test data['zone'].map(testzone frequency mapping)
         # Print the updated dataframe
         final data.head()
```

Out[33]:

	ID	loc	title	bedroom	bathroom	parking_space	price	bedbath_ratio	log_pı
0	3583	0.027728	6	2.0	2.0	1.0	1149999.565	1.00	13.955
1	2748	0.028487	9	3.5	2.0	4.0	1672416.689	1.75	14.329
3	2224	0.029437	5	5.0	2.0	4.0	2410306.756	2.50	14.695
4	10300	0.026493	4	5.0	5.0	6.0	2600700.898	1.00	14.771
5	1733	0.029057	10	4.0	1.0	3.0	1341750.867	4.00	14.109
4									

Modeling

```
In [34]: #importing necessary libraries
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, classification_report, confusion_metric catboost import CatBoostRegressor
    from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.model_selection import KFold
    from sklearn.metrics import mean_squared_error
    from lightgbm import LGBMRegressor

import warnings
    warnings.filterwarnings('ignore')
```

```
In [35]: # dropping columns not needed and setting the feature and label
    not_needed = ['ID', 'price', 'log_price']
    X = final_data.drop(columns = not_needed, axis = 1)
    y = final_data.price
In [36]: # split data for training and testing with ratio 7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, rain)
```

CatBoost Regressor

LGBMRegressor

```
In [38]: #creating the model function
         lgb_model = LGBMRegressor()
         #model fitting
         lgb_model.fit(X_train, y_train)
         #prediction
         lgb_pred= lgb_model.predict(X_test)
         #checking the mean squared error
         print(f'mse = {mean_squared_error(y_test, lgb_pred, squared=False)}')
         #printing the prediction
         lgb_pred
         [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of
         testing was 0.001232 seconds.
         You can set `force_col_wise=true` to remove the overhead.
         [LightGBM] [Info] Total Bins 143
         [LightGBM] [Info] Number of data points in the train set: 7898, number of use
         d features: 7
         [LightGBM] [Info] Start training from score 2133402.757573
         mse = 454538.5565924271
Out[38]: array([2087185.39389156, 3510499.93726923, 873502.0299293, ...,
                1664207.29717665, 1678145.0768476 , 3052818.75550529])
```

```
In [39]: params = {
             'n estimators': 600,
             'colsample bytree': 0.86,
          'learning rate': 0.035,
          'max_depth': 7,
          'subsample': 0.85}
         test pred=[]
         y_pred = []
         fold = KFold(n splits=8, shuffle=True)#15#5#10
         for train_index, test_index in fold.split(X,y):
             X train, X test = X.iloc[train index], X.iloc[test index]
             y_train, y_test = np.log1p(y.iloc[train_index]), y.iloc[test_index]
             model = LGBMRegressor(**params, objective = "rmse")
             model.fit(X_train,y_train,eval_set=[(X_train,y_train),(X_test, y_test)])#e
             preds= model.predict(X test)
             print("err: ",(mean_squared_error(y_test,np.expm1(preds), squared=False)))
             y pred.append(mean squared error(y test,np.expm1(preds),squared=False))
             t pred = model.predict(test data[X.columns])
             test pred.append(np.expm1(t pred))
         print(np.mean(y pred))
         LTTBUCODIT [Mainting] recalacy may be bad since you didn't expiretely see ha
         m leaves OR 2^max depth > num leaves. (num leaves=31).
         err: 432737.81635105197
         [LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set nu
         m leaves OR 2^max depth > num leaves. (num leaves=31).
         [LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set nu
         m leaves OR 2^max depth > num leaves. (num leaves=31).
         [LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set nu
         m leaves OR 2^max depth > num leaves. (num leaves=31).
         [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead o
         f testing was 0.001136 seconds.
         You can set `force col wise=true` to remove the overhead.
         [LightGBM] [Info] Total Bins 145
         [LightGBM] [Info] Number of data points in the train set: 9215, number of u
         sed features: 7
         [LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set nu
         m_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
         [LightGBM] [Info] Start training from score 14.468913
         [LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set nu
         m_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
```

```
In [40]: submission.head()
Out[40]:
                ID
           0
               845
              1924
           2 10718
           3 12076
           4 12254
In [41]: | submission['price'] = np.mean(test_pred, axis = 0)
In [42]: submission.head()
Out[42]:
                ID
                          price
               845 1.892112e+06
              1924 9.331285e+05
           2 10718 1.145625e+06
           3 12076 4.710800e+06
           4 12254 1.928980e+06
```

In [44]: submission.to_csv('Submission.csv', index=False)