Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Network Flow

- 1 Network Flow
- 2 Example
- 3 Network Cut
- 4 Edge Disjoint Paths
- 5 Bipartite Matching

Network Flow

- A directed graph G = (V, E)
- Source node $s \in V$: edges out
- Sink node $t \in V$: edges in
- Edge capacity c(u, v), for $(u, v) \in E$

- A directed graph G = (V, E)
- Source node $s \in V$: edges out
- Sink node $t \in V$: edges in
- Edge capacity c(u, v), for $(u, v) \in E$

- A directed graph G = (V, E)
- Source node $s \in V$: edges out
- Sink node $t \in V$: edges in
- Edge capacity c(u, v), for $(u, v) \in E$

- A directed graph G = (V, E)
- Source node $s \in V$: edges out
- Sink node $t \in V$: edges in
- Edge capacity c(u, v), for $(u, v) \in E$

- A directed graph G = (V, E)
- Source node $s \in V$: edges out
- Sink node $t \in V$: edges in
- Edge capacity c(u, v), for $(u, v) \in E$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \rightarrow \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus \{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus \{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $\bullet \ f(u,v) \in [0,c(u,v)] : (u,v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus \{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

Flow: given a network, a valid flow function f satisfies

- $f(u, v) \in [0, c(u, v)] : (u, v) \in E \to \mathbb{R}^*$
- $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$, for all $v\in V\setminus\{s,t\}$

$$\textstyle \sum_{(s,u)\in E} f(s,u) = \textstyle \sum_{(u,t)\in E} f(u,t)$$

Proof:

$$\bullet \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(u,v) \in E} f(u,v) - \sum_{(v,u) \in E} f(v,u) \right) = 0$$

$$\sum_{(s,u)\in E} f(s,u) = \sum_{(u,t)\in E} f(u,t)$$

Proof:

- $\bullet \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(u,v) \in E} f(u,v) \sum_{(v,u) \in E} f(v,u) \right) = 0$
- For every edge $(u, v) \in E$
 - if $u \neq s$ and $v \neq t$: f(u, v) f(u, v) = 0
 - if u = s: f(s, v)
 - if v = t: -f(u, t)

$$\sum_{(s,u)\in E} f(s,u) = \sum_{(u,t)\in E} f(u,t)$$

Proof:

- $\bullet \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(u,v) \in E} f(u,v) \sum_{(v,u) \in E} f(v,u) \right) = 0$
- For every edge $(u, v) \in E$
 - if $u \neq s$ and $v \neq t$: f(u, v) f(u, v) = 0
 - if u = s: f(s, v)
 - if v = t: -f(u, t)

•

$$0 = \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(u,v) \in E} f(u,v) - \sum_{(v,u) \in E} f(v,u) \right)$$
$$= \sum_{(s,u) \in E} f(s,u) - \sum_{(u,t) \in E} f(u,t)$$

Maximum Flow

Problem: given a flow network, find the flow of the maximum value.

Problem: given a flow network, find the flow of the maximum value.

Problem: given a flow network, find the flow of the maximum value.

Have a try

1 Initially, f(u, v) = 0 for all $(u, v) \in E$

Problem: given a flow network, find the flow of the maximum value.

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- ② Find a path from s to t, such that f(u, v) < cap(u, v) for all (u, v) in the path.

Problem: given a flow network, find the flow of the maximum value.

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- ② Find a path from s to t, such that f(u, v) < cap(u, v) for all (u, v) in the path.
- 3 augment the flow along the path.

Problem: given a flow network, find the flow of the maximum value.

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- ② Find a path from s to t, such that f(u, v) < cap(u, v) for all (u, v) in the path.
- 3 augment the flow along the path.
- Repeat step 2 and 3, until no such path can be found.

Problem: given a flow network, find the flow of the maximum value.

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- ② Find a path from s to t, such that f(u, v) < cap(u, v) for all (u, v) in the path.
- 3 augment the flow along the path. How?
- Repeat step 2 and 3, until no such path can be found.

- find the edge (u, v) of the minimum remaining capacity
- increase f(u, v) to cap(u, v)
- increase the flow on the other edge by cap(u, v) f(u, v)

- find the edge (u, v) of the minimum remaining capacity
- increase f(u, v) to cap(u, v)
- increase the flow on the other edge by cap(u, v) f(u, v)

- find the edge (u, v) of the minimum remaining capacity
- increase f(u, v) to cap(u, v)
- increase the flow on the other edge by cap(u, v) f(u, v)

- find the edge (u, v) of the minimum remaining capacity
- increase f(u, v) to cap(u, v)
- increase the flow on the other edge by cap(u, v) f(u, v)

Greedy

Greedy

Greedy

Undo the flow. Why and how?

- Original: cap(u, v), f(u, v) = 0
- Augmented: 0 < f(u, v) < cap(u, v)

- Original: cap(u, v), f(u, v) = 0
- Augmented: $0 \le f(u, v) \le cap(u, v)$
- Residual edges:
 - (u, v) : cap(u, v) f(u, v)

- Original: cap(u, v), f(u, v) = 0
- Augmented: 0 < f(u, v) < cap(u, v)
- Residual edges:
 - (u, v) : cap(u, v) f(u, v)
 - (v, u) : f(u, v)

- Original: cap(u, v), f(u, v) = 0
- Augmented: 0 < f(u, v) < cap(u, v)
- Residual edges:
 - (u, v) : cap(u, v) f(u, v)
 - (v, u) : f(u, v)


```
G^f = (V, E^f): residual graph with respect to flow f
```

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

```
G^f = (V, E^f): residual graph with respect to flow f
```

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

Ford-Fulkerson

1 Initially, f(u, v) = 0 for all $(u, v) \in E$

```
G^f = (V, E^f): residual graph with respect to flow f
```

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- 2 Update G^f with respect to f

```
G^f = (V, E^f): residual graph with respect to flow f
```

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- 2 Update G^f with respect to f
- 3 In G^f , find a path from s to t.

```
G^f = (V, E^f): residual graph with respect to flow f
```

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- 2 Update G^f with respect to f
- **3** In G^f , find a path from s to t.
- 4 Augment the flow along the path.

$$G^f = (V, E^f)$$
: residual graph with respect to flow f

- each edge $(u, v) \in E$, implies
 - edge $(u, v) \in E^f$ with capacity cap(u, v) f(u, v)
 - edge $(v, u) \in E^f$ with capacity f(u, v)

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$
- 2 Update G^f with respect to f
- 3 In G^f , find a path from s to t.
- 4 Augment the flow along the path.
- 5 Repeat step 2 and 4, until no such path can be found.

Network Cut

Cut: given a network with

- directed graph G = (V, E)
- source $s \in V$
- sink $t \in V$
- capacity cap(u, v) for all $(u, v) \in E$

A s-t cut is a partition (V_s, V_t) of V, such that

- \bullet $s \in V_s$
- \bullet $t \in V_t$

Capacity of the cut: for a cut (V_s, V_t) , its capacity is defined by

$$cap(A, B) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} cap(u, v)$$

Capacity of the cut: for a cut (V_s, V_t) , its capacity is defined by

$$cap(A, B) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} cap(u, v)$$

Capacity of the cut: for a cut (V_s, V_t) , its capacity is defined by

$$cap(A, B) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} cap(u, v)$$

Lemma: For any s - t cut (V_s, V_t) , and a flow f,

$$v(V_s) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} f(u,v) - \sum_{(u,v) \in E, u \in V_t, v \in V_s} f(u,v) = v(f)$$

Lemma: For any s - t cut (V_s, V_t) , and a flow f,

$$v(V_s) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} f(u,v) - \sum_{(u,v) \in E, u \in V_t, v \in V_s} f(u,v) = v(f)$$

Lemma: For any s - t cut (V_s, V_t) , and a flow f,

$$v(V_s) = \sum_{(u,v) \in E, u \in V_s, v \in V_t} f(u,v) - \sum_{(u,v) \in E, u \in V_t, v \in V_s} f(u,v) = v(f)$$

$$v(V_s) = \sum_{(u,v)\in E, u\in V_s, v\not\in V_s} f(u,v) - \sum_{(v,u)\in E, u\in V_s, v\not\in V_s} f(u,v)$$

$$v(V_{s} \cup \{w\}) = v(V_{s})$$

$$+ \sum_{(w,v) \in E, v \notin V_{s}} f(w,v) - \sum_{(u,w) \in E, u \notin V_{s}} f(u,w)$$

$$- \sum_{(u,w) \in E, u \in V_{s}} f(u,w) + \sum_{(w,v) \in E, v \in V_{s}} f(w,v)$$

$$= v(V_{s}) + \sum_{(w,v) \in E} f(w,v) - \sum_{(u,w) \in E} f(u,w)$$

$$= v(V_{s}).$$

Theorem: the flow is maximum if there is no augmenting path in the residual graph.

Theorem: the flow is maximum if there is no augmenting path in the residual graph.

Proof: Let f be the flow, with respect to which the residual graph G^f has no augmenting path. Assume there is f' with v(f') > v(f). Initialize $P = \emptyset$.

Theorem: the flow is maximum if there is no augmenting path in the residual graph.

Proof: Let f be the flow, with respect to which the residual graph G^f has no augmenting path. Assume there is f' with v(f') > v(f). Initialize $P = \emptyset$.

- for edge $(u, v) \in E$
 - if f'(u, v) > f(u, v), then put (u, v) to P
 - if f'(u, v) < f(u, v), then put (v, u) to P

Theorem: the flow is maximum if there is no augmenting path in the residual graph.

Proof: Let f be the flow, with respect to which the residual graph G^f has no augmenting path. Assume there is f' with v(f') > v(f). Initialize $P = \emptyset$.

- for edge $(u, v) \in E$
 - if f'(u, v) > f(u, v), then put (u, v) to P
 - if f'(u, v) < f(u, v), then put (v, u) to P
- s is connected to t through P. Otherwise, let

$$P_s = \{u | s \text{ is connected to } u, \text{ through } P\}.$$

Then
$$v(f') = v_{f'}(P_s) \le v_f(P_s) = v(f)$$
.

Theorem: the flow is maximum if there is no augmenting path in the residual graph.

Proof: Let f be the flow, with respect to which the residual graph G^f has no augmenting path. Assume there is f' with v(f') > v(f). Initialize $P = \emptyset$.

- for edge $(u, v) \in E$
 - if f'(u, v) > f(u, v), then put (u, v) to P
 - if f'(u, v) < f(u, v), then put (v, u) to P
- s is connected to t through P. Otherwise, let

$$P_s = \{u | s \text{ is connected to } u, \text{ through } P\}.$$

Then
$$v(f') = v_{f'}(P_s) \le v_f(P_s) = v(f)$$
.

Contradiction!

$$v(f')=v_{f'}(P_s)\leq v_f(P_s)=v(f).$$

- $(u, v) \in E, u \in P_s, v \notin P_s$, then $f'(u, v) \leq f(u, v)$. Otherwise, $(u, v) \in P$
- $(v, u) \in E, u \in P_s, v \notin P_s$, then $f'(v, u) \ge f(v, u)$. Otherwise, $(u, v) \in P$

For any edge in P, it has remaining capacity, with respect to flow f: for any edge $(u, v) \in P$, one of the following holds

- $f(u, v) < f'(u, v) \le c(u, v)$; or
- $f(v, u) > f'(v, u) \ge 0$.

Duality between Flow and Cut

Weak Duality: given a flow f, for any s - t cut (A, B), it holds that

$$v(f) \leq cap(A, B)$$

Problem: given a flow network, find the cut of the minimum capacity.

Claim: maximum flow < minimum cut

Corollary: for a flow f and a cut (A, B), if v(f) = cap(A, B), then

- f is a maximum flow
- \bullet (A, B) is a minimum cut

Max-Flow Min-Cut Theorem

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

Max-Flow Min-Cut Theorem

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

maximum flow ≤ minimum-cut. Trivial, since

$$v(f) \leq cap(A, B)$$

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

• maximum flow < minimum-cut. Trivial, since

$$v(f) \leq cap(A, B)$$

• minimum-cut \leq maximum flow. Consider a maximum flow f. Let $P_s = \{$ nodes connected from s in G^f $\}$. For $u \in P_s$ and $v \notin P_s$:

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

maximum flow ≤ minimum-cut. Trivial, since

$$v(f) \leq cap(A, B)$$

- minimum-cut \leq maximum flow. Consider a maximum flow f. Let $P_s = \{$ nodes connected from s in G^f $\}$. For $u \in P_s$ and $v \notin P_s$:
 - if $(u, v) \in E$, then f(u, v) = cap(u, v). Otherwise, (u, v) is in G^f , and thus $v \in P_s$. Contradiction!

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

maximum flow ≤ minimum-cut. Trivial, since

$$v(f) \leq cap(A, B)$$

- minimum-cut \leq maximum flow. Consider a maximum flow f. Let $P_s = \{$ nodes connected from s in G^f $\}$. For $u \in P_s$ and $v \notin P_s$:
 - if $(u, v) \in E$, then f(u, v) = cap(u, v). Otherwise, (u, v) is in G^f , and thus $v \in P_s$. Contradiction!
 - if $(v, u) \in E$, then f(v, u) = 0. Otherwise, (u, v) is in G^f , and thus $v \in P_s$. Contradiction!

Theorem: the value of the maximum flow is equal to the value of the minimum cut.

Proof:

maximum flow ≤ minimum-cut. Trivial, since

$$v(f) \leq cap(A, B)$$

- minimum-cut \leq maximum flow. Consider a maximum flow f. Let $P_s = \{$ nodes connected from s in G^f $\}$. For $u \in P_s$ and $v \notin P_s$:
 - if $(u, v) \in E$, then f(u, v) = cap(u, v). Otherwise, (u, v) is in G^f , and thus $v \in P_s$. Contradiction!
 - if $(v, u) \in E$, then f(v, u) = 0. Otherwise, (u, v) is in G^f , and thus $v \in P_s$. Contradiction!

Thus
$$v(f) = v_f(P_s) = cap(P_s, V \setminus P_s)$$
.

The Ford-Fulkerson Algorithm

To find the value of the minimum cut, run Ford-Fulkerson to find the value of the maximum flow.

Complexity: for a network of maximum capacity *C*

• input size: log C

• number of iterations: C in the worst case

The Edmonds-Karp Algorithm

Ford-Fulkerson

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$.
- **2** Update G^f with respect to f.
- **3** In G^f , find a path from s to t.
- 4 Augment the flow along the path.
- Repeat step 2 and 4, until no such path can be found.

Edmonds-Karp

- **1** Initially, f(u, v) = 0 for all $(u, v) \in E$.
- **2** Update G^f with respect to f.
- **3** In G^f , find the shortest (hop-distance) path from s to t.
- 4 Augment the flow along the path.
- Repeat step 2 and 4, until no such path can be found.

The Edmonds-Karp Algorithm

Define $\delta_f(u, v)$ as the hop-distance from u to v, in G^f .

Lemma: consider a flow f, let f' be the result after the flow augmentation. Then $\delta_{f'}(s, v) \geq \delta_f(s, v)$ for all $v \in V \setminus \{s, t\}$.

Proof: Assume that

$$\{v \in V \setminus \{s,t\} | \delta_{f'}(s,v) < \delta_f(s,v)\} \neq \emptyset.$$

Select v^* from the set with minimum $\delta_{f'}(s,v)$. Let u be the previous node in shortest (hop-distance) path from s to v^* , in $G^{f'}$. Then

$$\delta_f(s, u) \le \delta_{f'}(s, u) = \delta_{f'}(s, v^*) - 1 < \delta_f(s, v^*) - 1$$

$$(s)$$
 (u) (v^*)

(s) (v^*) (u)

The Edmonds-Karp Algorithm

" $f(v^*, u)$ is changed" implies v^* is on the shortest path from s to u in G^f , thus

$$\delta_f(s, v^*) = \delta_f(s, u) - 1 \le \delta_{f'}(s, u) - 1 = \delta_{f'}(s, v^*) - 2.$$

Contradiction to $\delta_{f'}(s, v^*) < \delta_f(s, v^*)$.

The Edmonds-Karp Algorithm: O(|V||E|)

Theorem: The number of flow augmentation performed by Edmonds-Karp is O(|V||E|).

Proof: In the augmenting path, (u, v) is **critical** if it has the minimum remaining capacity among the edges in the path.

For each edge $(u, v) \in E$

• first time being a critical edge, f(u, v) is increased to c(u, v).

$$\delta_f(s,v) = \delta_f(s,u) + 1$$

• to appear again in the residual graph, (v, u) should be involved in some augmenting path

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$$

thus

$$\delta_{f'}(s,u) \geq \delta_f(s,v) + 1 = \delta_f(s,u) + 2$$

• (u, v) becomes critical for at most |V|/2 + 1 times.

Edge-disjoint paths: two paths are edge-disjoint if they have no edges in common.

Problem: given a directed graph G = (V, E), source node $s \in V$ and target node $t \in V$, how many edge-disjoint s - t paths are there?

Problem: given a directed graph G = (V, E), source node $s \in V$ and target node $t \in V$, how many edge-disjoint s - t paths are there?

Network Connectivity: given a directed graph G = (V, E), source node s and target node t, find minimum number of edges whose removal disconnects t from s.

[Menger 1927] **Theorem**: # edge-disjoint s-t paths = network connectivity

$$w(u, v) = 1$$
 for all $(u, v) \in E$

Reduction: finding the maximum flow from s to t.

Bipartite Matching

Bipartite Graph

Undirected graph G = (V, E) is **bipartite**, if

- V is divided into L and R
- $u \in L$ and $v \in R$, for all $(u, v) \in E$

Matching: $M \subseteq E$, for each $v \in V$, it is incident in at most one edge of M.

Bipartite Graph

Undirected graph G = (V, E) is **bipartite**, if

- V is divided into L and R
- $u \in L$ and $v \in R$, for all $(u, v) \in E$

Matching: $M \subseteq E$, for each $v \in V$, it is incident in at most one edge of M.

Bipartite Graph

Undirected graph G = (V, E) is **bipartite**, if

- V is divided into L and R
- $u \in L$ and $v \in R$, for all $(u, v) \in E$

Matching: $M \subseteq E$, for each $v \in V$, it is incident in at most one edge of M.

THANK YOU

