ss3sim vignette

Sean C. Anderson and lots of others...

First, we'll locate three sets of folders that are located within the package data: (1) the folder with the plaintext case files, (2) the folder with the operating model (OM), and (3) the folder with the estimating model (EM).

```
library(ss3sim)
d <- system.file("extdata", package = "ss3sim")
case_folder <- pasteO(d, "/eg-cases")
om <- pasteO(d, "/models/cod-om")
em <- pasteO(d, "/models/cod-em")</pre>
```

First, we'll run some "deterministic" runs to check our model for bias when we don't have any process error. To do this, we'll start by setting up a matrix of recruitment deviations with 0 deviations. We need 100 rows (for 100 year simulations) and 20 columns (for 20 deterministic iterations).

```
recdevs_det <- matrix(0, nrow = 100, ncol = 20)</pre>
```

Then we'll set up case "estimation" files in which the recruitment deviations are set to the nominal level of 0.001. We'll name these files E100-cod.txt and E101-cod.txt. In the control files, the key element is setting par_name = SR_sigmaR and par_int = 0.001.

When we run the simulations, we'll pass our deterministic recruitment deviations to the function run_fish600. Running 20 replicates should be enough to identify whether our models are performing as we expect.

Now we can run the stochastic simulations.

```
run_fish600(iterations = 1:100, scenarios =
  c("D0-E0-F0-G0-R0-S0-M0-cod",
    "D1-E0-F0-G0-R0-S0-M0-cod",
    "D0-E1-F0-G0-R0-S0-M0-cod",
    "D1-E1-F0-G0-R0-S0-M0-cod"),
  case_folder = case_folder, om_model_dir = om, em_model_dir = em,
 bias_adjust = TRUE)
The function get_results_all reads in a set of scenarios and com-
bines the output into two .csv files: final_results_scalar.csv and
final_results_ts.csv.
get_results_all(user.scenarios =
  c("D0-E100-F0-G0-R0-S0-M0-cod",
    "D1-E100-F0-G0-R0-S0-M0-cod",
    "D0-E101-F0-G0-R0-S0-M0-cod",
    "D1-E101-F0-G0-R0-S0-M0-cod",
    "D0-E0-F0-G0-R0-S0-M0-cod",
    "D1-E0-F0-G0-R0-S0-M0-cod",
    "D0-E1-F0-G0-R0-S0-M0-cod",
    "D1-E1-F0-G0-R0-S0-M0-cod"))
Let's read in the .csv files and calculate some useful values in new columns.
scalar_dat <- read.csv("final_results_scalar.csv")</pre>
ts_dat <- read.csv("final_results_ts.csv")</pre>
scalar_dat <- transform(scalar_dat,</pre>
  SSB_MSY=(SSB_MSY_em-SSB_MSY_om)/SSB_MSY_om,
  log_max_grad = log(max_grad))
ts_dat <- transform(ts_dat, SpawnBio=(SpawnBio_em-SpawnBio_om)/SpawnBio_om)
ts dat <- merge(ts dat, scalar dat[,c("scenario", "replicate",
    "max_grad")])
scalar_dat_det <- subset(scalar_dat, E %in% c("E100", "E101"))</pre>
scalar_dat_sto <- subset(scalar_dat, E %in% c("E0", "E1"))</pre>
ts_dat_det <- subset(ts_dat, E %in% c("E100", "E101"))</pre>
ts_dat_sto <- subset(ts_dat, E %in% c("EO", "E1") & replicate %in% 1:50)
```

Now let's look at boxplots of the deterministic model runs.

add more here

```
plot_scalar_boxplot(scalar_dat_det, x = "SR_LN_RO_om", y = "SSB_MSY",
    vert = "D", relative_error = TRUE)
```


Figure 1: Boxplot of relative error for SSB MSY. We see relatively little bias.

add more here

Let's look at the relative error in estimates of spawning biomass. We'll colour the time series according to the

```
plot_ts_points(ts_dat_sto, y = "SpawnBio", vert = "D",
    color = "max_grad", relative_error = TRUE)
```


Figure 2: Time series of relative error in spawning stock biomass.