Estadística Inferencial

Clifford Torres

Facultad de Ciencias - UNI (Clase 1)

August 19, 2019

Introducción

- ▶ El propósito de la estadística es usar la información contenida en una muestra para hacer inferencias acerca de la población de la cual se toma la muestra.
- Debido a que las poblaciones están caracterizadas por medidas descriptivas numémricas llamadas parámetros (parámetros objetivos), el objetivo de muchas investigaciones estadísticas es calcular el valor de uno o más parámetros relevantes.
- ► Las distribuciones muestrales que se conocerán poco a poco, desempean un importante papel en el desarrollo de los procedimientos de estimación.

Estimación

Definición

Un estimador es una regla, a menudo expresada como una fórmula, que indica cómo calcular el valor de una estimación con base en las mediciones contenidas en una muestra.

Ejemplo

La media muestral

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

es un posible estimador puntual de la media poblacional μ .

Observación

Muchos estimadores diferentes (reglas de estimación) pueden obtenerse para el mismo parámetro poblacional.

Motivación

- La estimación puntual es similar, en muchos aspectos, a disparar a un blanco con un revólver.
- ► El estimador, que genera estimaciones, es análogo al revólver; una estimación particular es comparable a un tiro; y el parámetro de interés corresponde al centro del blanco o diana.
- Extraer una sola muestra de una población y usarla para calcular una estimación del valor del parámetro equivale a disparar un solo tiro al centro del blanco.
- Suponga que un hombre dispara un solo tiro y acierta en el centro del blanco. ¿Concluimos que es un excelente tirador? ¿Se atrevería a sostener el blanco cuando se haga un segundo tiro?

FIGURA 1
Distribución de estimaciones

FIGURA 2 Distribución muestral para un estimador sesgado positivamente

Definición

Si $\hat{\theta}$ es un estimador puntual de un parámetro θ , entonces $\hat{\theta}$ es un estimador insesgado si $E(\hat{\theta}) = \theta$. Si $E(\hat{\theta}) \neq \theta$, se dice que $\hat{\theta}$ está sesgado.

Definición

El sesgo de un estimador puntual $\hat{\theta}$ está dado por $B(\hat{\theta}) = E(\hat{\theta}) - \theta$.

¿Qué tipo de distribución preferiríamos para nuestro estimador?

FIGURA 3
Distribuciones
muestrales para dos
estimadores insesgados: (a) estimador con
variación grande; (b)
estimador con variación pequeña

- Por consiguiente, además de preferir un estimador insesgado, necesitamos que la varianza de la distribución del estimador $V(\hat{\theta})$ sea lo más pequeña posible.
- Dados dos estimadores insesgados de un parámetro θ seleccionaríamos el estimador con la menor varianza mientras, todo lo demás permanece igual.
- Más que usar el sesgo y la varianza de un estimador puntual $\hat{\theta}$ para caracterizar su bondad, emplearemos...

Definición

El error cuadrático medio de un estimador puntual $\hat{\theta}$ es

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

Ejemplo

El error cuadrático medio de un estimador u, MSE (u), es una función de su varianza y su sesgo.

$$MSE(\hat{\theta}) = V(\hat{\theta}) - [B(\hat{\theta})]^2.$$

Observación

A menudo buscamos estimadores insesgados con varianzas relativamente pequeñas.

- Nos concentramos en algunos estimadores que ameritan consideración con base en la intuición. Por ejemplo,
 - Parece natural usar la media muestral \bar{Y} para estimar la media poblacional μ ;
 - usar la proporción muestral $\hat{p} = \frac{Y}{n}$ para estimar un parámetro binomial p;
 - Si una inferencia está basada en muestras aleatorias independientes de n_1 y n_2 observaciones seleccionadas de dos poblaciones diferentes, ¿cómo estimaríamos la diferencia entre medias $(\mu_1 \mu_2)$ o la diferencia en dos parámetros binomiales, $(p_1 p_2)$?

▶ Como los cuatro estimadores \bar{Y} , \hat{p} , $(\bar{Y}_1 - \bar{Y}_2)$ y $(\hat{p}_1 - \hat{p}_2)$ son funciones de las variables aleatorias observadas en muestras, podemos hallar sus valores y varianzas esperados.

Tabla 1 Valores esperados y errores estándar de algunos estimadores puntuales comunes

Parámetro objetivo θ	Tamaño(s) muestral(es)	Estimador puntual $\hat{\theta}$	$E(\hat{\theta})$	Error estándar σ _ê
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$
p	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{\frac{pq}{n}}$
$\mu_1 - \mu_2$	n_1 y n_2	$\overline{Y}_1 - \overline{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}^{*\dagger}$
$p_1 - p_2$	n_1 y n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$

 $[\]sigma_1^2$ y σ_2^2 son las varianzas de las poblaciones 1 y 2, respectivamente.

[†] Se supone que las dos muestras son independientes.

Ejercicio

Justifique la insegadez de la varianza poblacional y muestral.

Pueden hacerse dos comentarios finales respecto a los estimadores puntuales de la Tabla 1.

- 1. Los valores esperados y los errores estándar para \bar{Y} y $\bar{Y}_1 \bar{Y}_2$ dados en la tabla son válidos cualquiera que sea la distribución de la(s) población(es) de donde se tome(n) la(s) muestra(s).
- 2. Los cuatro estimadores poseen distribuciones de probabilidad que son aproximadamente normales para muestras grandes (El teorema del límite central justifica este enunciado para \bar{Y} y \hat{p} , y teoremas similares para funciones de medias muestrales justifican la afirmación para $\bar{Y}_1 \bar{Y}_2$ y $(\hat{p}_1 \hat{p}_2)$. ¿Qué tan grande es 'grande'?

- Sabemos que \bar{Y} , \hat{p} , $(\bar{Y}_1 \bar{Y}_2)$ y $(\hat{p}_1 \hat{p}_2)$ son insesgados con distribuciones muestrales casi normales (al menos con forma de campana) para muestras de tamaño moderado; ahora utilizaremos esta información para responder algunas preguntas prácticas.
- ➤ Si usamos un estimador una sola vez y obtenemos una sola estimación, ¿qué tan buena será ésta? ¿Cuánto podemos confiar en la validez de nuestra inferencia?