Compact subsets of C(X) whoo X is a compact metric space. Recall that (C(X), 11-110) is a complete metric space. (M,d) is a compact metric space (=) (M,d) complete and totally bold. C(X) is not a compact metric space. What about compact subsets of C(X)? Too A a closed set in C(X), A is compact (=) A is totally bold. Familiar model: (R,1.1) Let A CIR closed. A is compact (=) A is bold. Kecall: Totally bold => bold. (in general) Target: Totally boll. (=) bold. + ?

(suffices to figure out for any set A, blc. A is totally bold (E) A is totally bold.) In C(X), we are able to come up with a condition which fills up the (?) above. Recall: A cls. function on a compact metric space is unif. cts. That is, 4 270, 3 8, 70 s.l. d(x,y) < 8 => |f(x)-f(y)| < E. Going to "strengthen" this winf. cts. property of each ck. furtion to a family of cts. fund. For ACC(x), A is said to be equicontinuous if Defn. for each 270, 38,70 s.t. + f & A, d(x,y) (8=) |f(x)-f(y)| (E.

In gennal;	If A is equicontinuous, then A may not be totally bold.							
•	Example: For OCK(00 and OCY),							
<u>C 1</u>	A= & f: [0,1] -> 1R ch. s.t. f(x)-f(y) < K x-y & }							
	Show that A is equicts. but not totally bdd.							
۵.	If $A \subset C(x)$ is uniformly bdd, then is A totally bdd. ?							
Λ	NA 17 (C) 1 C 1							
<u>Н</u> ,	NO! Let (fn) be unif. bold. To check whether (fn) is totally bold, need to							
	check if I a Cauchy subseque of (fn). That is, if							
	I (for s.t. (for histormy crys. (why?).							
Τ ι.	(1 - (1) 1-1 · · · · · · · · · · · · · · · · · ·							
Example;	(A seq. (In) which is mif. bdd. but does not have any unif. cyst. subseq.)							
	$\int_{0}^{\infty} dx = \int_{0}^{\infty} (x) = \frac{x^{2}}{n^{2}} = \frac{1}{n^{2}} \left(\frac{1}{2}, \frac{3}{2}, \dots \right)$							
	Define $f_n: [0,1] \rightarrow \mathbb{R}$ as $f_n(x) = \frac{\pi^2}{\pi^2 + (1-nx)^2}$, $n=1,2,3,$							
	Note that Ifn(x) \le 1 \tau xc [oil] H was 1.							
	Movemen $f_n(x) \to 0$ ptrise. Since $f_n(\frac{1}{n}) = 1$ f_n , there is no subseque of (f_n) that coxes unif.							
	THE W.							
	Remark: One cannot generalize the Bolzano-Weierstrass thm. on IR to arbitrary							
	metric spaces (even if its complete).							
Ushot;	Uniformly bodd. set A \$\rightarrow\$ totally bodd.							
'	Equicantinuous set A \$\frac{1}{2}\totally bld.							
	v .							
Lemma 11.16	Let A be a totally bad. set in C(x). Self-rend.							
(Carothers).	Then A is wif. bdd. and requirements.							
	, ·							

Q. Is the converse frue? YES! (Arzela-Ascoli Thm) Avzela- Ascoli Thm: X: compact metric space and A C C(X). Then A is compact iff A is closed unfobdd, and equicontinuous. :=> Previous lemma. ldea: (=: Enough to show that every seq. (In) has a uniformly cret. subsequence. Idea is to construct a uniformly Cauly subsequence. Sine (In) is equicts, for 270, 7 870 s.t. 4 n7,1, $d(x,y) < \delta = |f_n(x) - f_n(y)| < \epsilon .$ Sina X is compact, X is totally bdd, here I {2, ..., 2 k} CX s.t. $\times = \bigcup^{k} \beta(x_i, \delta)$ Sinu (In) unif. bdd (fn(xi)) is bdd. in IR, of 1515k. $f_{i,j}(x_1), f_{i,2}(x_1), \dots cys$ Consider $(f_{1,k})$ as the seq, and one has $(f_{1,k}(x_2))$ also bdd. f_{2,1} (x₂), f_{2,2} (x₂), - - - · · cyc. $f_{3,1}(x_3), f_{3,3}(x_3), ---- cys.$ Pick - The diagonal seq: (f_{1,1}, f_{2,2}, f_{3,3}, ... Then, for each Itiek, (f. (xi)) crys. Since there are finitely many is, 1515k, for which (fn,n) (ys.

	S., 3	t NEW	5. t.	₩,n711	and	isiek,		
			16 /) - f _{mm} (xi)	15	~(2)		
			1+ pm (x1	1-+m,m(x1)				
	Give x	16 X, J	1 E i E k,	s.t. xe 1	$3(x_i,\delta)$. o	ind 4 m,	n 7, N,	
	f (x)	(x)	< f	$u(x) - \int_{u'} (x^i)$) + \ f _{u.u}	(xi) - fmm(x	$\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)$	$\frac{1}{1}$ $\left(\times\right) = \int_{u_1, u_2} \left(\times\right)$
	N,h	y		< ξ via ()				
								VIII ()
•	Henre H	he Subsequ	(fn,n)	of (fu)	s unif.	Carry.		<u> </u>
					·			