20-R-IM-DK-5 July 6, 2020 9:21 AM	; 		
Beginner	Principle of	f Impose and Momentum Video	
Inspiration			
	A	happy dog's wagging tail can be modelled as a slender rod	
=//		with constant density and a pin joint. If the tail has a mass of	
7.	1.6	n = 1 kg and length 1= 30 cm, determine the angular mountum	
0	U cable	f the tail at the instant the dog is waggling at he Hradis.	
2007	77, 7	The dog is exerting a force in its wascles to create the mount to	
4 //	/ 1514	was its tail. If it can be modelled that the force is applied 13 cm army from its center of	ę,
7	15cm	towards point 0, determine the force crested to reach a answer	
		velocity of w= 4 radis in 2 seconds if the tail started at rest.	
	Ħ	10 = I. W = [tzml2+m(10)] W = [sml2]w	
		= \frac{1}{3}(1)(0.3) (4) = 0.12	
	I,	$\omega_1 + 2 \int_{\omega_1}^{\varepsilon_2} M_0 dt = T_0 \omega_2$ $\omega_1 = 0$ Shorts at usef	
		$0 + \int_{0}^{2} M_{o} dt = 0.12$ $M_{o}(2) = 0.12$ $M_{o} = 0.06$	
		M = (F 0.06 = 0.02F F= 3N	