

PS04 – Overview

- Review PS03
 - Classical controller design
- PS04 Tasks
 - Unconstrained linear MPC → find and implement analytical solution
 - Calculate the matrices Γ, Ψ, Υ, and Θ
 - Calculate MPC control law K MPC
 - Implement controller in Simulink and evaluate its performance

Decentralized control

simplified model

good control performance

linear model

some oscillations

ROM

pronounced oscillations

Decoupling

Evaluation on ROM

even static decoupling significantly reduces oscillations

Anti-reset windup

- a) without ARW
- b) with ARW

> ARW deals with actuator saturations

Summary

- Classical control can be tuned and extended to work reasonably, even for challenging control problems.
- Controller design and tuning can become challenging and requires a lot of experience.

PS04

Goal

- Implement an unconstrained linear model predictive controller
- Build up controller in 3 steps
 - Calculate the matrices Γ, Ψ, Υ, and Θ
 - Calculate MPC control law K_{MPC}
 - Implement controller in Simulink and evaluate its performance

Exercise 1

Calculate the matrices Γ , Ψ , Υ , and Θ

$$\begin{split} & \boldsymbol{\Gamma} &= \begin{bmatrix} \boldsymbol{C} & \mathbf{0} \\ & \ddots \\ & \mathbf{0} & \boldsymbol{C} \end{bmatrix} \in \mathbb{R}^{m \cdot (N_2 - N_1 + 1) \times n \cdot (N_2 - N_1 + 1)} \\ & \boldsymbol{\Psi} &= \begin{bmatrix} \boldsymbol{A}^{N_1} \\ \vdots \\ \boldsymbol{A}^{N_2} \end{bmatrix} \in \mathbb{R}^{n \cdot (N_2 - N_1 + 1) \times n} \\ & \boldsymbol{\Gamma} &= \begin{bmatrix} \sum_{i=0}^{N_1 - 1} \boldsymbol{A}^i & \boldsymbol{B} \\ \vdots \\ \sum_{i=0}^{N_2 - 1} \boldsymbol{A}^i & \boldsymbol{B} \end{bmatrix} \in \mathbb{R}^{n \cdot (N_2 - N_1 + 1) \times l} \\ & \boldsymbol{\Theta} &= \begin{bmatrix} \boldsymbol{\Lambda}(N_1) & \boldsymbol{\Lambda}(N_1 - 1) & \dots & \boldsymbol{\Lambda}(N_1 - N_u + 1) \\ \boldsymbol{\Lambda}(N_1 + 1) & \boldsymbol{\Lambda}(N_1) & \dots & \boldsymbol{\Lambda}(N_1 - N_u + 2) \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\Lambda}(N_2) & \boldsymbol{\Lambda}(N_2 - 1) & \dots & \boldsymbol{\Lambda}(N_2 - N_u + 1) \end{bmatrix} \in \mathbb{R}^{n \cdot (N_2 - N_1 + 1) \times l \cdot N_u} \\ & \boldsymbol{\Lambda}(i) &= \begin{cases} \sum_{j=0}^{i-1} \boldsymbol{A}^j & \boldsymbol{B} & , i \geq 1 \\ j = 0 & , i < 1 \end{cases} \in \mathbb{R}^{n \times l} \end{split}$$

- Unconstrained linear MPC:
 MPC control law can be calculated explicitly (see lecture slides)
- Discretize system and calculate system response matrices Γ, Ψ, Υ, and Θ

$$\Delta u(\cdot|k)^* = (\Theta^T \Gamma^T Q \Gamma \Theta + R)^{-1} \Theta^T \Gamma^T Q e(\cdot|k) ,$$

$$e(\cdot|k) = r(\cdot|k) - \Gamma (\Psi x(k) + \Upsilon u(k-1)) .$$

Exercise 2

Calculate MPC control law (K_{MPC})

$$egin{array}{lll} oldsymbol{Q} &=& \left[egin{array}{ccc} oldsymbol{Q}_{N_1} & oldsymbol{0} \ & \ddots & \ oldsymbol{0} & oldsymbol{Q}_{N_2} \end{array}
ight] \in \mathbb{R}^{m \cdot (N_2 - N_1 + 1) imes m \cdot (N_2 - N_1 + 1)} \ oldsymbol{R} &=& \left[egin{array}{ccc} oldsymbol{R}_0 & oldsymbol{0} \ & \ddots & \ oldsymbol{0} & oldsymbol{R}_{N_u - 1} \end{array}
ight] \in \mathbb{R}^{l \cdot N_u imes l \cdot N_u} \end{array}$$

$$K_{\mathrm{MPC}} = [\boldsymbol{I} \ \boldsymbol{0} \ \dots \boldsymbol{0}] \ (\boldsymbol{\Theta}^T \boldsymbol{\Gamma}^T \boldsymbol{Q} \boldsymbol{\Gamma} \boldsymbol{\Theta} + \boldsymbol{R})^{-1} \boldsymbol{\Theta}^T \boldsymbol{\Gamma}^T \boldsymbol{Q}$$

$$\boldsymbol{u}(k)^* = \boldsymbol{u}(k-1) + \boldsymbol{K}_{\text{MPC}} \boldsymbol{e}(\cdot|k)$$

- Set weighting matrices Q_i and R_i
- \triangleright Calculate MPC control law K_{MPC}

Exercise 3 Implement controller in Simulink

- > Test the developed MPC controller using the
 - linearized model
 - ROM
- Analyze performance

PS04

Provided files

PS04

- setupPredictionMatrices.m Template for function to calculate system response matrices (finalize)
- ps04_run_ex3.m Script to run simulation (no adaptions needed)
- ps04_ex3_LinearModel model to test controller using linearized model (finalize controller implementation)
- ps04_ex3_ROM model to test controller using ROM (copy controller from ps04_ex3_LinearModel.slx)