LGN5830 - Biometria de Marcadores Genéticos Tópico 1: Noções Básicas de Cálculo

Antonio Augusto Franco Garcia

http://about.me/augusto.garci augusto.garcia@usp.br

> Departamento de Genética ESALQ/USP 2015

(0.000)

Definições

Funções

Definicāc

Sejam A e B dois conjuntos. Uma função f definida em A com valores em B é uma lei que associa a todo elemento de A um único elemento de B. Notacão: y=f(x)

Conteúdo

- Funções
 - Definições
 Funções Básicas
- Derivadas
 - Introdução
 Regras
- Pontos de Máximo
- IntegraisDefinições
 - Integral Definida
- Referências

pefnições Funcões

Exemplos (circulo?)

Exemplos

- Distância nos cromossomos é função da fração de recombinação
- Fenótipo é função do genótipo e do ambiente
- (Modelos, de forma geral)

O conjunto A é chamado domínio da função f, o conjunto B é o contra-domínio de f.

Exemplos

- Qual o domínio de $f(x) = \frac{1}{x-2}$?
- Qual o domínio de $m = -\frac{1}{7} \log(1 2r)$?

Funções Básicas

ullet Função afim: f(x) = ax + b

Funções coc**eccocococococo**

Funções Básicas

• Função Constante: f(x) = c

Funções Básicas

ullet Função Quadrática: $f(x) = ax^2 + bx + c$

Funções Básicas

Função Exponencial

1/4 1/2 1 2 4 8 16 32 64

0.1	1	10	100	1000	10000	100000	1000000	10000000

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)?

Crescimento exponencial

Invenção do Jogo de Xadrez (Wikipedia)

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima. e assim por diante"
- Quantos grãos são necessários?
 - a Ros
 - $1 + 2 + 4 + ... + 2^{63} = \sum_{i=0}^{63} 2^i = 18,446,744,073,709,551,615$
 - 461, 168, 602, 000 toneladas
 - Uma montanha de arroz maior que o Everest, mil vezes a produção mundial em 2010

Funcões Básicas

Função Exponencial: f(x) = a^x

Crescimento exponencial

Variabilidade Genética

- e Estima-se que os humanos tenham cerca de 23 mil genes
- Assumindo 2 alelos para cada um deles, quantos genótipos diferentes são possíveis?

Funções Básicas

Função Logarítmica

-2	-1	0	1	2	3	4	5	6
1/4	1/2	1	2	4	8	16	32	64

-1	0	1	2	3	4	5	6	7
0.1	1	10	100	1000	10000	100000	1000000	100000000

ullet Função Logarítmica: $f(x) = \log_a x$

Exemplo

- Calcule: 8×32 • $2^3 \times 2^5 = 2^{3+5} = 256$ (ou seja, $log_2 256 = 8$)
- Michael Stifel (1487-1567): Arithmetica Integra
- John Napier (1614): Mirifici logarithmorum canonis
 - Que base poderia ser usada para facilitar os cálculos?

Função Logarítmica

n	1	2	3	4	5	6	7	8	9
2^n	2	4	8	16	32	64	128	256	512

x	9	4	0	16	20	GA	100	256	510
x	2	*1	0	10	- 32	0.4	120	200	012
$log_2(x)$	1	2	3	4	5	6	7	8	9

Função Logarítmica

n	$(1-10^{-7})^n$
1	0.9999999
2	0.9999998
3	0.9999997
4	0.9999996
5	0.9999995
6	0.9999994
7	0.9999993
8	0.9999992
9	0.9999991

- Durante 20 anos, Napier elaborou uma tabela com 101 valores
- ullet Um século depois, esse número foi reconhecido como a base universal dos logaritmos, ou e

Logaritmos

000000000000

Propriedades dos logaritmos

- $\log_a(b/c) = \log_a b \log_a c$
- $\bullet \, \log_a b^\alpha = \alpha \log_a b$
- $\log_a b = \frac{\log_c b}{\log_c a}$

000000000000

Funções Básicas

• Função Logarítmica: $f(x) = \log_a x$

Introducão

Ideias

Definição

O coeficiente angular da reta tangente ao gráfico de y=f(x) num ponto P qualquer é a derivada de f calculada no ponto P. Notação: $f'(x)=\frac{dy}{dx}$

Ideias

Aplicação

 $\mathbf o$ Neste contexto: obtenção de pontos de máximo de funções $(\tan 0^o=0)$

Regras

Regras Básicas

•
$$f(x) = u(x) + v(x) \Rightarrow f'(x) = u'(x) + v'(x)$$

000000000

Exemplo

$$f'(x) = 16x^3 + 14x$$

Regras básicas

•
$$f(x) = c \Rightarrow f'(x) = 0$$
 ($c = \text{constante}$)

•
$$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$$

Exemplo

•
$$g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$$

Exemplo

$$f(x) = 5x^8$$

•
$$f'(x) = 40x^7$$

Regras básicas

.....

$$\bullet \ f(x) = u(x)v(x) \Rightarrow f'(x) = u'(x)v(x) + u(x)v'(x)$$

Exemplo

•
$$f(x) = (x^2 + x)(3x^4 + 5)$$

$$f'(x) = (2x+1)(3x^4+5) + (x^2+x)(12x^3)$$

$$\bullet \ (uvx)' = u'vx + uv'x + uvx'$$

Regras

Regras básicas

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x)-u(x)v'(x)}{|v(x)|^2}$$

Regra da cadeia:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Exemplo

•
$$y = (x^2 + 7)^3$$

• $y' = 3(x^2 + 7)^2(2x)$

$$y=\sqrt{(x^2+1)}$$

$$y' = \frac{x}{\sqrt{x^2+1}}$$

Máximos e mínimos

Exemplo

- O que tem em comum os pontos P_1 e P_2 (extremos relativos)?
- Resposta: f'(P₁) = 0 e f'(P₂) = 0

Cuidado Formalmente, há várias condições que devem ser verificadas Regra Máximo: f''(x) < 0

Beenly

Regras básicas

 $f(x) = \log_a x, f'(x) = \frac{1}{x \log_a a}$

Atenção Note a conveniência com uso da base e

Exemplo $y = \log_{10} x$

$$y = \log_{10} x$$

• $y' = \frac{1}{x} \frac{1}{\log_{10} 10} = \frac{1}{x} \frac{1}{2.302585}$

$$y = \log_c x$$

 $y' = \frac{1}{a}$

•
$$y = \frac{1}{x}$$

• $y = \log_c(x^2 + 7)$

$$y = \log_c(x + t)$$

 $y' = \frac{2x}{x^2+7}$

Pontos de Máxim

Ponto de máximo

Exercicio

Quais os pontos de máximo de $f(x) = x^3 + x^2 - 5x - 5$?

Sistema Algébrico Computacional:

http://maxima.sourceforge.net/

Ideias Gerais

Dada f'(x), qual é f(x)?
 Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?

 Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

Exemplo

f'(x) = x²

- $f(x) = \frac{x^3}{2}$
- $f(x) = \frac{x^3}{3} +$
- $f(x) = \frac{x^3}{3} + C$

Definições

Polinômios

Calcule

• $\int (2x^3 - x^2) dx$

 $\quad \text{Resp.:} \ \ 2\tfrac{x^4}{4} - \tfrac{x^3}{3} + C$

0000000000000

Notação e Propriedades

Definição

A antiderivada de f(x), denotada por F(x) + C, é definida como integral indefinida de f(x), representada por

$$\int f(x) dx = F(x) + C$$

Algumas pr

- $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$
- É fácil calcular integrais de polinômios

Integral Defin

Integral de Riemann

Qual a área sob a curva no intervalo entre a e b?

Integral de Riemann

Circunscritos

Integral Definida

Integral de Riemann

Metade

Integral de Riemann

Sobrescritos

Integral de Riemann

Soma de Riemann

Integral

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Integral Definida

Área

Resposta

$$\int_{-1}^{1} (-4x^2 + x + 15) dx = \left[-4\frac{x^3}{3} + \frac{x^2}{2} + 15x \right]_{-1}^{1} = \frac{82}{3}$$

Área

Integral Definida

Integral definida

Aplicações

- Se f(x) é uma função de densidade de probabilidades, $P(a \le x \le b) = \int_a^b f(x) dx$
- Conceito de Esperança Matemática para variáveis contínuas

Referências

Howard, A.
Cálculo: um novo horizonte
Editora Bookman, 2000 Volume 1

Referências

Leithold, L.
O cálculo com geometria analítica
Editora Harbra. 1994 Volume 1