Universidade Federal de Minas Gerais Departamento de Ciência da Computação TCC/TSI/TECC: Sistemas de Recomendação

AVALIAÇÃO #1

- 1. (3.0) Em um recomendador colaborativo baseado em avaliações explícitas, qual o propósito de normalizar uma avaliação r_{ui} pela média das avaliações históricas do usuário u? E pelo desvio padrão dessas avaliações? Justique.
- 2. (3.0) Um usuário assiste a 10 seg de um vídeo de 10 min e navega para outra página. Como essa observação pode ser explorada como feedback para a modelagem das preferências desse usuário? Justifique.
- 3. (3.0) Considere um usuário u e dois itens i e j distintos $\tilde{\mathbf{nao}}$ consumidos por u. Qual desses itens mais provavelmente representa um exemplo negativo das preferências de u? Justifique.

Para as questões a seguir, considere as matrizes (a) e (b) e fórmulas de referência (c) abaixo.

	i_0	$ i_1 $	$ i_2 $	$ i_3 $	i_4	i_5
u_0		4		3		4
u_1			4		5	3
u_2	1	5			3	
u_3	5	4	5			
u_4	2			5		2
u_5	2		5			4
u_6			5		1	1
u_7			5	2	3	
u_8	4			2	3	
u_9		4	5	1		

(a) avaliações de treino

	$ i_0 $	i_1	i_2	i_3	i_4	i_5
u_0	4		3		5	
u_1	5	1		1		
u_2			4	1		4
u_3				2	2	3
u_4		5	1		2	
u_5		1		4	1	
u_6	5	1		3		
u_7	2	2				2
u_8		5	3			2
u_9	2				4	4

(b) avaliações de teste

Predição baseada em item para o usuário u e o item i:

$$\hat{r}_{ui} = \frac{\sum_{j \in \mathcal{N}_{ui}} s(\vec{\imath}, \vec{\jmath}) \, r_{uj}}{\sum_{j \in \mathcal{N}_{ui}} |s(\vec{\imath}, \vec{\jmath})|} \bullet \mathcal{N}_{ui}: \text{ itens mais próximos a } i \text{ avaliados por } u \\ \bullet s(\vec{\imath}, \vec{\jmath}): \text{ similaridade entre os itens } i \text{ e } j \\ \bullet r_{uj}: \text{ avaliação do usuário } u \text{ sobre o item } j$$

Similaridade (cosseno) entre os vetores \vec{i} e \vec{j} :

$$s(\vec{\imath},\vec{\jmath}) = \frac{\sum_{p=1}^{d} i_p \, j_p}{\sqrt{\sum_{p=1}^{d} i_p^2} \sqrt{\sum_{p=1}^{d} j_p^2}}$$
• i_p : p -ésima dimensão do vetor $\vec{\imath}$
• j_p : p -ésima dimensão do vetor $\vec{\jmath}$
• d : número de dimensões dos vetores

Root mean squared error (RMSE) para o usuário u:

$$\mathrm{RMSE}_u = \sqrt{\frac{1}{n} \sum_{p=1}^n (r_{up} - \hat{r}_{up})^2} \quad \bullet \quad r_{up} \text{: avaliação do usuário } u \text{ sobre o } p\text{-ésimo item} \\ \bullet \quad \hat{r}_{up} \text{: predição para o usuário } u \text{ e o } p\text{-ésimo item} \\ \bullet \quad n \text{: número de items no ranking}$$

Discounted cumulative gain (DCG) para o usuário u:

$$DCG_u = \sum_{p=1}^n \frac{2^{r_{up}} - 1}{\log_2(p+1)}$$
 • r_{up} : avaliação do usuário u sobre o p -ésimo item • n : número de items no ranking

- (c) fórmulas de referência
- 4. (6.0) Para um dado usuário-alvo u_x , onde x é o último dígito de seu número de matrícula (e.g., se seu número de matrícula é 202108101 \overline{t} , seu usuário-alvo é u_7), recomende itens previamente não-avaliados por u_x usando o algoritmo de filtragem colaborativa baseado em item, a similaridade do cosseno, e uma vizinhança de tamanho k=2. Para cada item recomendado, indique claramente (1) a predição computada e (2) os cálculos intermediários que levaram a essa predição. A matriz de avaliações mostrada acima não deve ser normalizada.
- 5. (5.0) Calcule os valores de RMSE e DCG para as recomendações produzidas na questão anterior para o usuário u_x . Os cálculos intermediários também deverão ser apresentados.