EE450 Discussion #6

- Shannon's Theorem
- Modulations
- Multiplexing

Shannon's Theorem

- $C = B \log_2(1 + SNR)$
- Theoretical Maximum Capacity that can be obtained on a line
- Sets an Upper Bound on the capacity given the conditions
 - Used for Calculating the
 - Signal to Noise Ratio Given the Bandwidth and capacity of the channel
 - Bandwidth Given the SNR and Channel Capacity
 - Capacity Given the SNR and the Bandwidth

Problem #1

- What SNR is needed to put a T-1 carrier on a 50 khz line?
 - What do we know?
 - T-1 Capacity = 1.544 Mbps
 - Bandwidth = 50 KHz
 - Move them around and Solve:
 - 1,544,000 = 50,000 log 2 (1+SNR)
 - $-2^30.88 1 = SNR$

Continued

- So SNR = 1976087931
 - SNR is typically measured in DB
 - Use SNR dB = 10 log 10 (SNR)
 - In this case
 - SNR dB = $10 \log_{10} (1976087931)$
 - SNR aprox. 92.9 dB
 - However you must NOT plug SNR into Shannon's theorem in dB format

Problem #2

- Calculate the maximum rate supported by a telephone line with BW of 4 KHz. When the signal is 10 volts, the noise is 5 milivolts.
- SNR=Signal power/Noise Power
- Power is proportional to square of the voltage
- $S/N = (10^2)/(0.005^2) = 4000000$
- B = 4000 Hz
- $C = B \log_2 (1 + S/N)$
 - Reminder: log ₂ x = ln x / ln 2
- $C = 4000 \log_2 (1+4000000) = 87726 \text{ bps}$

Review on Modems

- Modem Stands for
 - MOdulator / DEModulator
- Uses Sine wave As the carrier Signal

Digital to Analog Encoding

Modulation

- Need to Encode Digital Data in an Analog Signal
- In modem transmission we use different techniques for modulation
 - Amplitude Modulation
 - Frequency Modulation
 - Phase Shift

Amplitude Modulation

Varies the Amplitude of the Signal

Amplitude Modulation

Same Signal Greater Amplitude

Amplitude = 1

Amplitude = 2

Amplitude Modulation

- Amplitude 2 = 1
- Amplitude 1 = 0

- This signal Represents:
 - **0011010**

ASK

FSK

Phase-Shift Modulation

- Start with our normal sine wave
- The sine wave has a period of P
 - P may be denoted as T instead in the equations

Phase-Shift Modulation

- Shift the Phase of the Sine Wave
- Shifted diagram shows that the cycle starting at 1 vs. starting at 0

PSK

Bit	Phase
0	0
1	180
Bits	

4-PSK

4-PSK Constellation

Dibit	Phase
00	0
01	90
10	180
11	270

Dibit (2 bits)

Constellation diagram

Tribit	Phase
000 001 010 011 100 101	0 45 90 135 180 225
110	270 315

Tribits (3 bits)

PSK

Combining Both

- Modulation used in Modern Modems
 - Uses:
 - Amplitude Modulation
 - Phase Shift Keying
- QAM
 - Quadrature Amplitude Modulation
 - Big Name Simple Concept

4-QAM 1 amplitude, 4 phases 2 amplitudes, 4 phases

8-QAM Signal

16-QAM Constellation

Problem #3

- A modem uses an 8-PSK modulation scheme supporting data rate of 4800 bps. What is the signaling rate (aka baud rate)?
- 8 PSK (Phase Shift Keying)
 - 8 different encoding levels
 - Each encoding has log₂ 8 = 3 bits
 - 4800 / 3 = 1600 Baud Rate

Statistical TDM Parameters

- I = Number of Input Sources
- R = Data rate of each source (bps)
- a (Alpha) = mean fraction of time each source is transmitting
- M = Effective capacity of multiplexed line
- K = M / (I x R) = Ratio of multiplexed line capacity to total input rate
- λ (lambda) = a x I x R = Average Arrival rate
- $T_s = 1 / M = Service time in seconds$

p: Line Utilization

- ρ = Fraction of total link capacity being used
- Many different forms to express line utilization
 - $\rho = \lambda T_s$
 - $\rho = (a \times I \times R) / M$
 - $\rho = a / K$
 - $\rho = \lambda / M$

Sample Problem #5

- Ten 9600 bps lines are multiplexed using TDM. Ignoring overhead bits what is the total capacity required for Synchronous TDM?
 - Simple: 10 X 9600 = 96 kbps (96,000)

Sample Problem #6

- Ten 9600 bps lines are multiplexed using TDM. Assuming that we limit line utilization to 0.8 and each line is busy 50 % of the time. What is the capacity required for <u>Statistical</u> TDM?
 - What do we know?
 - Line utilization $\rho = .8$
 - Fraction of time transmitting a = .5
 - R Data Rate of each input source = 9600 bps
 - I number of Input Sources = 10

Continued

- The Equation:
- $\rho = a \times I \times R \times /M$
 - Where M is the capacity of the multiplexed line
- Rearrange for M
 - $\mathbf{M} = \mathbf{a} \times \mathbf{I} \times \mathbf{R} / \mathbf{\rho}$
- Plug in the given parameters
 - $M = 0.5 \times 10 \times 9600 / 0.8$
 - M = 60 kbps

Four 1 Kbps devices are to be multiplexed using synchronous TDM. The multiplexor will take one bit from each source during each cycle. Find

- a) The duration of the bit before multiplexing
- b) The duration of the bit after multiplexing
- c) The duration of the multiplexed frame
- d) The multiplexer bit rate
- e) The multiplexer frame rate.

Duration of bit before MUX = 1/1K = 1 msec

Multiplexer bit rate is 4x1K = 4Kbps and hence the bit duration at output of MUX is 1/4K = 0.25 msec

Duration of multiplexed frame is 4×0.25 msec = 1msec

Frame rate is 1/1msec = 1000 frames/sec
