

电力系统继电保护原理

主讲教师: 张沛超

Email: pczhang@sjtu.edu.cn

2.2.3 功率方向继电器的 90°接线方式

问题 (2) U_m

$$U_m I_m \cos(\varphi_m - \varphi_{sen}) > 0$$

- 以A相继电器为例:在保护正方向出口处发生三相短路、A-B或C-A两相接地短路、A相接地短路时,由于A相电压很小,继电器可能拒动;而反方向出口故障时,继电器可能误动。

方向继电器的"潜动"

继电器的"潜动":在只加入电流或只加入电压的情况下,继电器就能动作的现象。

在反方向出口处三相短路时,潜动现象会导致方向继由器运动。

向继电器误动

思路

- 解决问题的思路是引入非故障相(健全相)电压。
 这是继电保护解决电压"死区"问题的常用方法
- 方向继电器如何接入非故障相电压,就构成了其接线方式。目前广泛采用90度接线方式。

90度接线方式

 90° 接线方式是指在三相对称且功率因数 $\cos \varphi = 1$ 的情况下, \dot{I} 超前 \dot{U} 00° 的接线方式。

继	电器	\dot{I}_{J}	\dot{U}_{J}	$ullet^{U_{\mathbf{A}}}$	
	Α	$\dot{I}_{ m A}$	$\dot{U}_{ m BC}$	$\dot{I}_{ m A}$	
	В	$\dot{I}_{ ext{B}}$	$\dot{U}_{ ext{CA}}$	i	
	С	$\dot{I}_{ m C}$	$\dot{U}_{ ext{AB}}$	$I_{\rm B}$	$\dot{m{U}}_{ ext{BC}}$
				$U_{ m C}$ $U_{ m B}$	

这个定义仅仅是为了称呼方便,没有什么物理意义。

90度接线方式时的原理

- ◎ 以A相继电器为例:
 - 此时 $\dot{U}_m = \dot{U}_{BC}$, $I_m = I_{k1A}$
 - 为提高灵敏度,将 U_m 逆时针旋转 α 度,再与 I_m 比相
- ◎ 以A相接地故障为例:
 - 虽然 U_A 很低,但 \dot{U}_{BC} 为健全相的相间电压;同时A相短路电流很大
 - 因此继电器不仅没有死区,而且动作灵敏度很高。

90度接线方式时的原理

90度接线方式时的动作方程

比相判据:

两种接线方式的比较

$$U_m I_m \cos(\varphi_m - \varphi_{sen}) > 0$$

两种接线方式的比较

"0度"接线

$$U_m I_m \cos(\varphi_m - \varphi_{sen}) > 0$$

● 思考:

- 以上两式在形式上是一样的,但式中 $U_{\rm m}$, $I_{\rm m}$, $\varphi_{\rm m}$ 有何区别?
- 两种接线方式中, $U_{\rm m}/I_{\rm m}$ 都具有实际阻抗含义吗?

90度接线方式时的动作区

功率判据

$$U_m I_m \cos(\varphi_m + \alpha) > 0$$

相角判据

$$-90^{0} - \alpha < \arg \frac{\dot{U}_{m}}{\dot{I}_{m}} < +90^{0} - \alpha$$

功率方向继电器 动作方程

90°接线功率方向继电器 (电压)动作区域

思考?

- 设功率方向继电器内角α 整定为30°;线路阻抗角 为85°。
- 设保护正向发生了三相短路,请在右图绘制测量电压*Ū*_m

90°接线功率方向继电器 (电压)动作区域

方向继电器的接线

各种短路时90°接线动作行为分析

- 以上是按单相接地情况进行分析的。还需分析其他故障类型:
 - 正方向三相短路
 - A、B、C三相继电器动作行为一致
 - 正方向BC两相近端短路
 - 正方向BC两相远端短路
 - A、B、C三相继电器动作行为存在差异

正方向三相短路动作行为分析

正方向BC两相短路动作行为分析

1. 正方向出口BC两相短路

$$\dot{I}_B = -\dot{I}_C = \frac{E_B - E_C}{2Z_S}$$

保护安装处测量电压 近似满足 故障点边界条件

$$\begin{split} \dot{U}_A &\approx \dot{E}_A \\ \dot{U}_B &= \dot{U}_C = \dot{E}_B - \dot{I}_B Z_S \\ &= -\frac{1}{2} \dot{E}_A \end{split}$$

正方向出口BC两相短路向量图

A相继电器动作行为分析

当忽略负荷电流时, $\dot{I}_{\scriptscriptstyle A} \approx 0$,继电器不动作

B相继电器动作行为分析

C相继电器动作行为分析

正方向BC两相短路动作行为分析

2. 正方向远处BC两相短路

$$\dot{I}_{A} \approx 0$$

$$\dot{I}_{B} = -\dot{I}_{C} = \frac{E_{B} - E_{C}}{2(Z_{k} + Z_{S})}$$

保护安装处测量电压 不满足

故障点边界条件

$$\begin{split} \dot{U}_A &= \dot{E}_A \\ \dot{U}_B &= \dot{E}_B - \dot{I}_B Z_S \approx \dot{E}_B \\ \dot{U}_C &= \dot{E}_C - \dot{I}_C Z_S \approx \dot{E}_C \end{split}$$

正方向远处BC两相短路向量图

同理, A相继电器不动作

B相继电器动作行为分析

可行区间

C相继电器动作行为分析

功率方向继电器内角的整定

小结: 方向继电器能够正确动作的内角α的范围

故障类型 继电器	三相	A-B相	B-C相	C-A相
A相 $(\dot{I}_{A}, \dot{U}_{BC})$	0°<α<90°	30 °< α < 90°		0 °< α < 60°
B相 $(\dot{I}_{\scriptscriptstyle B},\dot{U}_{\scriptscriptstyle CA})$	0 °<α<90°	0 °< α < 60°	30 °< α < 90°	
C相 $(\dot{I}_{C},\dot{U}_{AB})$	0°<α<90°		0 °< α < 60°	30 °< α < 90°

因不能提前预知故障类型,为使方向继电器在正方向任何相间短路情况下都能正确动作,α应满足:

$$30^{\circ} < \alpha < 60^{\circ}$$

设线路阻抗角为80度,内角α整定为45度。则当线路 发生三相短路时,请写出A相功率方向继电器的输出 表达式。

动作范围为180°时,90°接线 功率方向继电器动作区域

动作范围为150°时,90°接线 功率方向继电器动作区域

如何实现动作范围小于180°的功率方向继电器呢?

90度接线方式的评价

优点:

- 各种两相短路都没有死区,因为继电器加入的是非故障相的相间电压,其数值很高
- 适当选择继电器的内角a后,对线路上发生的各种故障都能保证动作的方向性

缺点: 正方向出口三相短路时有死区

● 可以采用记忆电压以消除死区