Rigorous Heat - X

- Heat Streams
- Rigorous Method EDR
- Rating v/s Design v/s Simulation

Problem Statement:

- Benzene stream is to be heated from 75°F to 145°F @50psia
- O-toluidine is to be used as heating material. It is available at 230°F and should not drop below 150°F @45 psia
- Max. Pressure dorp is 10 psia per side (Tube/Shell)
- Identify the best Heat Exchanger if this must be a small heater, i.e. use multiple passes (6) to avoid long sizing

Design Methodology:

- (A) Verify Energy Balances → Heating and Cooling Duties
 - Get Mass require of heating fluid
 - Get Heat duty of heat exchanger
- (B) Get Heat-X → Shortcut
- (C) Convert to Rigorous, verify results
- (D) Specify Shell & Tube Exchanger
- (E) Change conditions
 - HEAT-X → RATING!
 - If Benzene Inlet → 90,000 lb/h to 100,000 lb/h to 120,000 lb/h to 180,000 lb/h

Model Simulation:

HEAT X MODEL

Exchanger details			
•	Calculated heat duty	2.77878e+06	Btu/hr
Þ	Required exchanger area	763.891	sqft
Þ	Actual exchanger area	763.891	sqft
Þ	Percent over (under) design	0	
Þ	Average U (Dirty)	54.8	Btu/hr-sqft-R
Þ	Average U (Clean)		
Þ	UA	41861.2	Btu/hr-R
>	LMTD (Corrected)	66.3809	F