Session Length vs. Data Transfer -- Anomaly Detection with Python

This notebook demonstrates use of the Python Outlier Detection (PyOD) module to detect anomalies in users session lengths (in seconds) and data transferred (in MB).

See pypi.org for more information on PyOD

https://pypi.org/project/pyod/ (https://pypi.org/project/pyod/)

In [1]:

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.font_manager
%matplotlib inline

# Anomaly detection models
from pyod.models.cblof import CBLOF
from pyod.models.hbos import HBOS
from pyod.models.iforest import IForest
from pyod.models.knn import KNN
```

In [2]:

```
# read the cyber data
df = pd.read_excel("cyberdata.xlsx")
```

In [3]:

```
# Create a scatter plot of Session_Length_Secs vs. Data_Transferred
df.plot.scatter( 'Session_Length_Secs', 'Data_Transferred_MB', figs
```

Out [3]:

<matplotlib.axes._subplots.AxesSubplot at 0x1212b7cf8>

In [4]:

```
# Scale down the data to aid in visualization creation.
scaler = MinMaxScaler( feature_range=(0, 1) )
df[ ['Session_Length_Secs', 'Data_Transferred_MB'] ] = \
    scaler.fit_transform(df[ ['Session_Length_Secs', 'Data_Transfer
```

In [5]:

```
# Save the values for later usage in calls to classifier fit().
X1 = df['Session_Length_Secs'].values.reshape(-1,1)
X2 = df['Data_Transferred_MB'].values.reshape(-1,1)
X = np.concatenate( (X1, X2), axis=1 )
```

```
In [6]:
rand value = 3 # for randomization
random state = np.random.RandomState( rand value )
# Set the desired outlier detection fraction (i.e., % observations
outlier fraction = 0.03
# The dictionary of outlier detection models
classifiers = {
        'K Nearest Neighbors (KNN)': KNN(contamination=outlier frac
        'Isolation Forest': IForest(contamination=outlier fraction,
        'Cluster-based Local Outlier Factor (CBLOF)':CBLOF(contamin
        'Histogram-base Outlier Detection (HBOS)': HBOS(contaminati
}
In [7]:
# Run the anomaly detection models and compare results.
# 1. Fit the data to each model to see how each model predicts the
# 2. Plot the results for each model
xx, yy = np.meshgrid(np.linspace(0,1,100), np.linspace(0,1,100)
comp_results = pd.DataFrame(columns=['model', 'outliers', 'inliers'
print("\n NOTE: This cell may take a while to finish (depending on
for i, (clf name, clf) in enumerate(classifiers.items()):
    # fit the data and tag outliers
    clf.fit(X)
    # predict raw anomaly score
    scores pred = clf.decision function(X) * -1
    y_pred = clf.predict(X)
    n_inliers = len(y_pred) - np.count_nonzero(y_pred)
    n_outliers = np.count_nonzero(y_pred == 1)
    plt.figure(figsize=(10, 5))
    xtitle = 'Session_Length_Secs'
    ytitle = 'Data_Transferred_MB'
    dfx = df
    dfx['outlier'] = y_pred.tolist()
```

```
# InX1: inlier feature #1, InX2: inlier feature 2
InX1 = np.array(dfx[ xtitle ][dfx['outlier'] == 0]).reshape(-1
InX2 = np.array(dfx[ ytitle ][dfx['outlier'] == 0]).reshape(-1
# OutX1: outlier feature #1, OutX2: outlier feature 2
OutX1 = dfx[ xtitle ][dfx['outlier'] == 1].values.reshape(-1,1)
OutX2 = dfx[ ytitle ][dfx['outlier'] == 1].values.reshape(-1,1)
print('\n\n{} --> # Outliers detected: {}, # Inliers: {} '.for
comp_results = comp_results.append( {'model': clf_name,
                                      'outliers': n_outliers,
                                     'inliers': n inliers,
                                     'ratio: out/in': (n_outlie
threshold = stats.scoreatpercentile(scores_pred, 100 * outlier_
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) * -1
Z = Z.reshape(xx.shape)
# color the map and contour lines
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold,
a = plt.contour(xx, yy, Z, levels=[threshold], linewidths=2, col
plt.contourf(xx, yy, Z, levels=[threshold, Z.max()],colors='yel
b = plt.scatter(InX1, InX2, c='white',s=20, edgecolor='k')
c = plt.scatter(OutX1, OutX2, c='black',s=20, edgecolor='k')
plt.axis('tight')
plt.legend(
    [a.collections[0], b, c],
    ['Learned Decision Function', 'Inliers', 'Outliers'],
    prop=matplotlib.font manager.FontProperties(size = 12), loc
plt.xlim((0, 1))
plt.ylim((0, 1))
plt.xlabel( xtitle )
plt.ylabel( ytitle )
plt.title(clf_name)
plt.show()
```

NOTE: This cell may take a while to finish (depending on your hardware).

```
K Nearest Neighbors (KNN) --> # Outliers detected: 192
, # Inliers: 8331
```


Isolation Forest --> # Outliers detected: 256, # Inli
ers: 8267

Cluster-based Local Outlier Factor (CBLOF) --> # Outliers detected: 256, # Inliers: 8267

Histogram-base Outlier Detection (HBOS) --> # Outliers detected: 256, # Inliers: 8267

In [8]:

```
print("\n Summary of model comparision results:")
comp_results
```

Summary of model comparision results:

Out[8]:

	model	outliers	inliers	ratio: out/in
0	K Nearest Neighbors (KNN)	192	8331	0.023046
1	Isolation Forest	256	8267	0.030966
2	Cluster-based Local Outlier Factor (CBLOF)	256	8267	0.030966
3	Histogram-base Outlier Detection (HBOS)	256	8267	0.030966

In []:

Session Length vs. Data Transfer -- Anomaly Detection with Python

This notebook demonstrates use of the Python Outlier Detection (PyOD) module to detect anomalies in users session lengths (in seconds) and data transferred (in MB).

See pypi.org for more information on PyOD

https://pypi.org/project/pyod/ (https://pypi.org/project/pyod/)

In [1]	
In [2]	

In [3]:

Out[3]:

<matplotlib.axes._subplots.AxesSubplot at 0x1212b7cf8>

In [4]:
In [5]:

In [6]:

In [7]:

NOTE: This cell may take a while to finish (depending on your hardware).

K Nearest Neighbors (KNN) --> # Outliers detected: 192
, # Inliers: 8331

Isolation Forest --> # Outliers detected: 256, # Inli
ers: 8267

Cluster-based Local Outlier Factor (CBLOF) --> # Outliers detected: 256, # Inliers: 8267

Histogram-base Outlier Detection (HBOS) --> # Outliers
detected: 256, # Inliers: 8267

In [8]:

Summary of model comparision results:

Out[8]:

	model	outliers	inliers	ratio: out/in
0	K Nearest Neighbors (KNN)	192	8331	0.023046
1	Isolation Forest	256	8267	0.030966
2	Cluster-based Local Outlier Factor (CBLOF)	256	8267	0.030966
3	Histogram-base Outlier Detection (HBOS)	256	8267	0.030966

In []: