Language Model Priming for Cross-Lingual Event Extraction

Steven Fincke, Shantanu Agarwal, Scott Miller, Elizabeth Boschee AAAI 2021

Contextualized Representations

Incorporating a word's context into its representation is crucial

- "They protested his <u>arrest</u>"
- "She is a cardiac <u>arrest</u> survivor"

Even that is not enough

- "Activists protested his arrest"
- Activists representation remains the same for different events.

Approaches

Prompting

- Reformulate the problem, e.g. QA
 - "Which is the <u>agent</u> in <u>arrested</u>?"
- Not suitable for cross-lingual setting

Priming

- Augment the input to the encoder
- Provide additional task-specific information

IE-Baseline

Two components

- Trigger extraction
- Argument extraction
- Architecture
 - Sequence-labeling (BIO)
 - Classification layer
 - CRF layer
 - Average for multiple wordpieces

IE-Baseline: Argument extraction

Figure 1: Baseline argument attachment architecture.

IE-PRIME: Argument extraction

Figure 2: Priming a sentence for the trigger *conviction*. The span *Ildar Dadin* is identified as a DEFENDANT argument.

Figure 3: Priming a sentence for the trigger *conviction* and the argument role DEFENDANT. The span *Ildar Dadin* is identified as an argument and is therefore assigned the role being queried (DEFENDANT).

IE-PRIME: Event Extraction

Figure 4: Priming a sentence to determine whether the span conviction is a trigger of type JUSTICE.CONVICT.

Experiment settings

Dataset

- ACE05
- English and Arabic

Encoders

- Monolingual
 - Large, cased BERT
- Cross-lingual
 - Large XLM-RoBERTa

Results

	Mo	Cross	
	en→en	ar→ar	en→ar
Du and Cardie (2020) Lin et al. (2020)	65.4 69.3	_	
IE-BASELINE IE-PRIME	63.2 72.4	53.3 67.7	44.7 50.3

Table 1: Gains in argument classification F1 score from priming for argument extraction (using gold triggers in our primary experimental setting). As for all reported results in this paper, IE-PRIME uses the trigger+role configuration for priming unless otherwise specified.

Results

	Priming method	Recall	Precision	F-Measure
Subburathinam et al. (2019)	_			61.8
Ahmad, Peng, and Chang (2021)	_			68.5
IE-BASELINE	_	67.1	79.6	72.8
IE-PRIME	trigger + role	66.5	82.9	73.8
IE-PRIME	trigger	67.5	83.7	74.7

Table 2: Secondary experimental setting: Argument classification F1 in the zero-shot cross-lingual condition (train on English, test on Arabic) with gold triggers and gold entity mentions, following splits from (Subburathinam et al. 2019).

	Monolingal				Cross-lingual	
	en→en		ar→ar		en→ar	
Wadden et al. (2019) Wadden et al. (2019)†	trigger 69.7 70.4	argument 48.8 52.2	trigger - 61.5	argument - 44.4	trigger - 41.6	argument - 22.0
Du and Cardie (2020) Lin et al. (2020)	72.4 74.7	53.1 56.8	- -	- -	- -	- -
IE-PRIME (arguments only) IE-PRIME (arguments + triggers)	71.2 68.1	55.3 52.9	61.2 60.2	48.9 48.7	42.4 51.0	30.2 32.4

Table 3: Trigger and argument classification F1 for end-to-end systems in our primary experimental setting. The first version of IE-PRIME includes the baseline trigger component and the primed argument extraction component. The second version includes both the primed trigger component and the primed argument extraction component. † indicates our local re-run of (Wadden et al. 2019).

Encoder Size Impact

	en→en		ar→ar		en→ar	
	base	large	base	large	base	large
IE-BASELINE	60.0	66.0	46.9	53.3	35.6	44.7
IE-PRIME	69.0	74.1	60.8	67.7	40.2	50.3

Table 4: Comparison of argument classification F1 (using gold triggers) based on size of pretrained language model.

Training Set Size Impact

Figure 7: Comparison of IE-BASELINE and IE-PRIME by approximate training set size. Training size here is calculated as the number of events in a document set and is shown as a percentage of full English training set size. The language of the data in which the models were trained are denoted in parenthesis. Experiments in this figure use gold triggers.