Distributions

Statistical Reasoning and Quantitative Methods

François Briatte & Ivaylo Petev

Session 4

Launch your research project!

Fill in the details at http://goo.gl/brYmB

- Form a pair in your own group.
- Write up a clear title.

If you want to make any background reading on your topic, now is the right time to do so. Download and start editing the paper template at http://goo.gl/7u8oa if you need a writing guide.

Outline

Univariate statistics look at the distribution of one variable and are part of descriptive statistics.

Central tendency

Variability

Normal distribution

Mean

The arithmetic mean \bar{X} (or "x bar") of variable X with N observations is given by the following formula:

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_N}{N} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

- Mean values can be calculated in several ways, but arithmetic means (averages) are by far the most common.
- Mean values are not robust to extreme values: their values are very sensitive to outlier observations.
- If $X_1, X_2, ..., X_N$ are all weighted by a coefficient w_i , the arithmetic weighted mean is given by $\sum_{i=1}^N w_i \cdot X_i$, with $\sum_{i=1}^N w_i = 1$.

Example: GDP/capita

Using country-level real GDP/capita, measured by the United Nations Statistics Divisions – National Accounts in 2009:

$$\mathsf{Real}\ \mathsf{GDP}/\mathsf{capita} = \frac{\mathsf{Real}\ \mathsf{GDP}}{\mathsf{population}} = \frac{\mathsf{GDP}}{\mathsf{population}} \cdot \mathsf{price}\ \mathsf{index}$$

- The mean can summarise the distribution of real GDP/capita in the full sample (N = 192) and/or in each geographical region.
- Average real GDP/capita will be sensitive to exceptionally high or low values, as with Somalia, Liechtenstein or Switzerland.
- Population and price act like country-level weights: all values of GDP are weighted by price index population to make them comparable.

On relative pricing, see Feinstein and Thomas, Appendix B.

Median

The median value is the "middle" of the distribution:

- 50% of the values fall below the median.
- 50% of the values fall above the median.

Unlike the mean, it is robust to extreme values:

- Population: young Westerners, sample: class.
- Estimate values for mean and median income.
- Enter Facebook CEO. Recalculate estimates.
- Which value has just become very misleading?

In your work, adjust your reported measures of central tendency and select among graph types after looking at both values for the variable.

Problem: median vs. mean

True!

Shockingly true!

Yet:

"What's the median salary of these football coaches?"

Result:

Junk charts.

Solution: skewness

Skewness measures the symmetry of the distribution by looking at the relative positions of the median and the mean:

- If median > mean, the distribution comes with a "longer left tail" and shows "right-side skewness".
- If median < mean, the distribution comes with a "longer right tail" and shows "left-side skewness".

Mode

The mode is the 'peak' of the distribution at its most frequent value.

Histograms show the density of a distribution, to observe the mode and skewness.

Stata: su, tab, hist etc.

Formal exploration:

- su (summarize) provides a five-number summary for the distribution of continuous variables
- tabstat and su (summarize) with the d (detail) option provide percentiles and call the median p50 or 50%, for "50th percentile."
- □ su (summarize) with the d (detail) option also provides skewness, between −1 and +1, with 0 indicating symmetry.
- □ tab or fre provide frequency tables with (cumulative and valid) percentages for categorical variables, to which only the mode applies.

Visual exploration:

- □ hist (histogram) shows the density of the distribution.
- percent and add1 optionally add percentage scale and labels.
- □ gr dot is the most useful plot to visualize across categorical variables.

Stata implementation

- Explore the data with lookfor and d.
- Use su to summarise all variables at once.
- Use su with d on the dependent variable.
- Export a table with a tabstat sequence.

1	Variable		0bs	Med	ın Std	. Dev.	Min	Max
	gid_fgm gid_fptw		151 74	15.0821 48.		72527 40222	0 6	52.4 6
. su	gid_fptw,							
	Female	Profe	ssiona	L and Tec	:hnical W	orkers	(%)	
	Percenti	iles	Sma	llest				
1%		6	-	6				
5%		25		6 12				
				6	0bs		74	
5%		25		6 12		f Wgt.	74 74	
5% 10%		25 32		6 12 15		f Wgt.		
5% 10% 25%		25 32 45	La	6 12 15	Sum o		74	
5% 10% 25%		25 32 45	La	6 12 15 25	Sum o Mean		74 48.5	
5% 10% 25% 50%		25 32 45 51	La	6 12 15 25	Sum o Mean	Dev.	74 48.5	
5% 10% 25% 50%		25 32 45 51	La	6 12 15 25 rgest 66	Sum o Mean Std.	Dev.	74 48.5 12.40222	

Some descriptive measures will appear in the "summary statistics" table of your research, produced with a tabstat command sequence documented in the Stata Guide, Section 9.

Variability

■ **Range** is the 'spread' of the variable *X* between its maximum and minimum values:

$$X_{max} - X_{min}$$

■ Variance is the sum of deviations from the mean, $X_i - \bar{X}$, for each value taken by the variable X:

$$\sigma^2 = \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation is the compound square root of variance divided by sample size N:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

Quantiles

Consider income inequality in China and the United States:

"Over the last 30 years, top income shares have increased substantially in English speaking countries and in India and China but not in continental Europe countries or Japan."

- Tony Atkinson, Thomas Piketty and Emmanuel Saez, "Top Incomes in the Long Run of History," 2010.

"1 percent of the people take nearly a quarter of [U.S.] income."

- Joseph Stiglitz, "Of the 1%, by the 1%, for the 1%," 2011.
- The "top p%" principle uses percentiles to divide a distribution in 100 groups P1–P100 containing each 1% of its values.
- Common divisions are quartiles (Q1–Q4) containing each 25% of values, and deciles (D1–D10) containing each 10% of values.

Wealth concentration in the top 1% income share, 1920-2005

Source: Atkinson, Piketty and Saez (2010). Adapted from Fig. 7A and 7D.

Quartiles, medians and box plots

Histograms are useful to compare a distribution with the normal distribution. Box plots have other purposes:

- **Detect outliers**, i.e. extreme observations:
 - □ Extreme observations distort the mean.
 - e.g. Effect of Scandinavian countries on average female ministerial representation in democracies vs. dictatorships.
 - Extreme observations reduce normality.
 - e.g. Effect of Turkey and especially Bangladesh on average and distribution of female worker rates in democracies.
- Compare groups, i.e. over categories:
 - □ With binary variables, e.g. male/female, democratic/dictatorial.
 - □ With nominal variables, e.g. religion, ethnicity, geography.
 - □ With interval variables, e.g. income groups, education levels.

Quartiles, medians and box plots

Box plot construction rules vary, but always show the median and 50% of the distribution as a 'box' with 'whiskers' at Q1 and Q3:

Female Professional and Technical Workers (%)

Stata: gr box

Box plot for worldwide female worker rates: gr box workers, mark(1, mlabel(ccode))

- gr box produces vertical box plots, gr hbox produces horizontal ones. Select the best.
- mark(1, mlabel(ccode)) labels outliers
 with the variable ccode (country codes here).
- To compare one or more variables across groups, use either over or by.

More examples appear in the course do-files and in the Stata Guide, Section 9.

Distributions

- μ stands for the mean (central tendency).
- σ^2 stands for variance, σ for the standard deviation (variability).

Female ministers (%) Density $\mu = 15.08$ $\sigma^2 = 115.03$ N = 151 $\sigma = 10.72$

Normal distribution $\mathcal{N}(\mu, \sigma^2)$

- In the standard normal distribution $\mathcal{N}(0,1)$, $\mu=0$ and $\sigma^2=\sigma=1$ (identical variance and standard deviation).
- In any normal distribution $\mathcal{N}(\mu, \sigma^2)$, all measures of central tendency are equal (identical mean, median and mode).

Normality

Normality assesses whether the distribution of a variable X approximates the normal distribution \mathcal{N} , written as $X \sim \mathcal{N}(\mu, \sigma^2)$.

Its most important properties to assess are:

- **Symmetry** around the mean/median/mode, i.e. null skewness.
- Peakedness and 'normal' tail sizes, i.e. 'normal' kurtosis.
- Unimodality, i.e. a single mode.

Note that the normal distribution is a theoretical construct that is systematically violated by the distributions of the data.

Violation of normality is acceptable, but only to *some* extent, given that estimation assumes a normal distribution of the data.

Stata: hist, kdensity etc.

Visual assessment:

- Use hist (histogram) with the normal option to assess normality.
- Use kdensity to fit a kernel density curve to the distribution.
- Use gr hbox (horizontal box plot) to detect outliers.
- Use symplot, pnorm and qnorm for distributional diagnostic plots.

Formal assessment:

- Use su (summarize) with the d (detail) option to calculate whether $skewness \approx 0$ and $kurtosis \approx 3$.
- Use tabstat with the iqr (interquartile range) setting to calculate which observations are mild or extreme outliers.
- Use ladder to identify a possible transformation to a unit closer to normal distribution (usually to squared or log-units).

Stata implementation

Transform a variable only with a valuable method to reinterpret its new unit, as with exponentials: "log-GDP", "log-population" or with indices: "distance (inverse)," "quantity (squared)," etc.

Next time, The Prophecy.

