#### Limitations

Despite the promising results, there are a few limitations to our study:

Scope of Application: While DR-Label is primarily tailored for a distinct geometric deep learning task—predicting target geometry from an initial state—it largely employs catalysis systems as its primary point of reference. This limits its direct applicability to other geometric learning pursuits such as protein docking (Méndez-Lucio et al. 2021), fluid simulation (Sanchez-Gonzalez et al. 2020), and various macroscopic engineering tasks utilizing geometric deep learning or generic graph neural networks (Satorras, Hoogeboom, and Welling 2021; Pfaff et al. 2020; Wang et al. 2022). Nonetheless, we are enthusiastic about broadening the horizons of our model to encompass a more diverse set of tasks in subsequent studies.

**Precision Issues:** Occasionally, the projection magnitude on edges is diminutive, which using half-precision can frequently lead to overflow problems. To address this, we are working on a version that employs mixed-precision training, aiming to optimize computational resources without compromising accuracy.

## **Graph structure variations**



Figure 5: Graph construction algorithms for various models. When atomic systems undergo positional shifts, the edge set varies significantly for (a) cut-off distance based graph and (b) N-nearest neighbors graph. (c) The fully connected graph demonstrates significant differences in node degrees across distinct atomic systems.

As discussed in the limitation of linearly aggregated node prediction, atomic system graph construction algorithms lack unification. Here, we offer representative examples of graph constructions for popular models in Figure 5. Algorithms shown include (a) the cut-off distance-based graph

construction used in (Gasteiger et al. 2020), (b) the N-nearest neighbor graph from (Gasteiger et al. 2022), and (c) the fully connected graph employed by (Shi et al. 2022).

The first row reveals that the same 8-atom atomic system can yield markedly different graph structures and statistics depending on the algorithm used. For Figure 5 (a) and (b), we observed that re-constructing the graph at different relaxation stages can result in significantly altered topologies compared to the original structure. Figure 5 (c) highlights that in fully connected graphs, changes in total atomic number directly affect node degrees. All these issues result in volatile graph structures and statistics when representing atomic system relaxation processes, augmenting the edge representation ambiguity and leading to node predictions that are highly sensitive to graph variations.

#### Pseudocode of Project and Fit

For clarity, we provide an in-depth pseudocode description of the Project and Fit algorithm. Algorithm 1 delineates the deconstruction phase, where node-wise displacement is transformed into a distinct set of edge-wise labels. Conversely, Algorithm 2 explicates the sphere fitting algorithm in the reconstruction phase, responsible for inferring node-wise displacement predictions from the edge-wise projection estimates.

#### Algorithm 1: Deconstruction: Label Projecting $(\phi)$

**Input:**  $\mathcal{P}^0 = \{p_1^0, p_2^0, ..., p_N^0\}$  and  $\Delta \mathcal{P}^\star = \{\Delta p_i^\star = p_i^\star - p_i^0 | i \in 1, 2, ..., N\}$  - the initial position and positional displacement for the atomic system,  $\mathcal{E}$  - directed edges between graph nodes.

 $\begin{array}{l} \textbf{for } i \text{ in } N \textbf{ do} \\ \textbf{for } j \text{ in } \mathcal{N}_i \textbf{ do} \\ d_{ij} = (p_i^0 - p_j^0)/|p_i^0 - p_j^0| \\ \mathbf{x}_{ij}^\star = (\Delta p_i^\star \cdot d_{ij}) d_{ij} \\ \textbf{end for} \\ \textbf{end for} \end{array}$ 

**Return**  $\{\mathbf{x}_{ij}^{\star} \in \mathbb{R}^3 | e_{ij} \in \mathcal{E}\}$  - The set of projected vectors from nodes to edges

#### Algorithm 2: Reconstruction: Sphere Fitting $(\phi^{-1})$

**Input:**  $\{\hat{\mathbf{x}}_{ij} \in \mathbb{R}^3 | e_{ij} \in \mathcal{E}\}$  - prediction of positional shift projection on edges,  $\mathcal{P}^0$  - initial position.

 $\begin{aligned} & \textbf{for } i \textbf{ in } N \textbf{ do} \\ & \textbf{ Create } b = \textbf{0} \in \mathbb{R}^3, A = \textbf{0} \in \mathbb{R}^{3 \times 3} \\ & \textbf{ for } j \textbf{ in } |\mathcal{N}_i| \textbf{ do} \\ & b = b + (\hat{\mathbf{x}}_{ij} \cdot \hat{\mathbf{x}}_{ij}) \hat{\mathbf{x}}_{ij} / |\mathcal{N}_i| \\ & A = A + \hat{\mathbf{x}}_{ij} \hat{\mathbf{x}}_{ij}^\top / |\mathcal{N}_i| \\ & \textbf{ end for} \\ & C_i = (2A)^{-1}b \\ & \hat{p}_i = p_i^0 + 2C_i \\ & \textbf{end for} \end{aligned}$ 

**Return**  $\hat{\mathcal{P}} = \{\hat{p}_i | i \in 1, 2, ..., N\}$  - The prediction of the positional displacement

# Configurations of Graphormer and DRFormer Models

In this section, we specify the necessary details of Graphromer and DRFormer models for our experiments on OC20 dataset, with hyperparameters reported in Table 5

#### The projection fit block

For the 3d-Graphormer integrated with DR-Label, we retain all the hyperparameters and configurations as set in the official 3d-Graphormer implementation(Shi et al. 2022). The only difference is we are adding the projection fit block after performing all graphormer layers. Each projection fit block contains three non-linear layer operations.

Let  $\mathbf{x}_{atom}$  denote the dimension of atomic embeddings, and  $\mathbf{x}_{gbf}$  represent the number of Gaussian basis kernels. The non-linear transformations for sender and receiver node embeddings, respectively, are defined as

$$\mathbf{f}_{sender}(\cdot) = \mathbf{f}_{linear2}(GELU(\mathbf{f}_{linear1}(\cdot))),$$
 (5)

$$\mathbf{f}_{receiver}(\cdot) = \mathbf{f}_{linear4}(GELU(\mathbf{f}_{linear3}(\cdot))),$$
 (6)

where  $\mathbf{f}_{linear1}, \mathbf{f}_{linear3}: \mathbb{R}^{\mathbf{X}_{atom}} \to \mathbb{R}^{\mathbf{X}_{atom}}$  and  $\mathbf{f}_{linear2}, \mathbf{f}_{linear4}: \mathbb{R}^{\mathbf{X}_{atom}} \to \mathbb{R}^{\mathbf{X}_{gbf}/2}$ . Here GELU being the Gaussian Error Linear Units.

The resulting node embeddings concatenate with the edge embeddings in the order of: [GBF edge embedding||sender node embedding||receiver node embedding]  $\in \mathbb{R}^{2\mathbf{X}_{gbf}}$ . This result undergoes a further transformation via:

$$\mathbf{f}_{proj-magnitude}(\cdot) = \mathbf{f}_{linear6}(GELU(\mathbf{f}_{linear5}(\cdot))), \quad (7)$$

where  $\mathbf{f}_{linear5}: \mathbb{R}^{2\mathbf{X}_{gbf}} \to \mathbb{R}^{\mathbf{X}_{gbf}}$  and  $\mathbf{f}_{linear6}: \mathbb{R}^{\mathbf{X}_{gbf}} \to \mathbb{R}$ . All linear layers above include bias terms.

Based on the hyperparameter setting in 3d-Graphormer+DR-Label where  $\mathbf{x}_{gbf}=128$  and  $\mathbf{x}_{atom}=768$ , the additional parameter used for the projection fit block is  $\sim 1.3M$ , with only a  $\sim 3\%$  increment of the original number of parameters for 3d-Graphormer on the OC20 task ( $\sim 45M$ ).

The "InterPos" in Table 5 denotes whether the model incorporates explicit intermediate positional updates with the projection fit block throughout the model. The "Pos update freq" indicates the interval at which positional updates are performed within the DRFormer layers. In our case of "DRFormer-S" and "DRFormer", positional updates are conducted every 6 DRFormer layers.

# **Auxiliary Node Displacement Supervisions Using Noisy Nodes**

Since minor perturbations to the initial atomic system configurations will yield similar equilibrium geometries, we borrow the concept of noisy nodes (Godwin et al. 2022) and implement two unique auxiliary supervision strategies in DRFormer: in-trace noise (TN) and equilibrium-state noise (EN), as depicted in Figure 6.

In-Trace Noise (TN): For atom  $v_i$  with positional displacement label  $\Delta p_i^\star$ , we initially execute a random interpolation between  $p_i^0$  and  $p_i^\star$ , denoted as  $\alpha \Delta p_i^\star = \alpha(p_i^\star - p_i^\star)$ 



Figure 6: The in-trace (TN) noise instances and equilibrium state (EN) noise instances. Red dashed arrows signify the displacement supervision labels for corresponding instances

 $p_i^0$ ),  $\alpha \in [0,1]$ . This is followed by the addition of a random 3D Gaussian noise,  $\sigma_{TN}$ , resulting in an instance of in-trace pseudo initial state (TN),  $\widetilde{\mathcal{P}}'_{TN}$ :

$$\widetilde{p}_{i-TN}^0 = p_i^0 + \alpha \Delta p_i^* + \sigma_i, \alpha \in [0, 1]. \tag{8}$$

For TN instances, the node-wise displacement supervision signal  $\Delta \widetilde{p}_{i-TN}^{\star}$  is defined by the displacement  $p_0^{\star} - \widetilde{p}_{i-TN}^0$ .

**Equilibrium-State Noise (EN):** We introduce a random 3D Gaussian noise,  $\sigma_{EN}$ , directly to the equilibrium-state position,  $p_i^{\star}$ , generating an instance of pseudo initial state from the equilibrium state (EN),  $\widetilde{\mathcal{P}}_{EN}^0$ . For EN instances, we use  $-\sigma_{EN}$  for node-wise displacement supervision.

Note that when implementing these noisy augmented supervisions, we treat the noise-augmented instances as separate instances alongside the original ones. For both "DR-Former w/o InterPos" and "DRFormer-S", only TN instances are included during training. While for "DRFormer", both TN instances and EN instances are included with the same standard deviation.

#### **Periodic Boundary Passing Atom Calibration**

Periodic boundary passing atoms (PBPA) common occur in systems with periodic boundary conditions (PBC), such as catalysis systems. We observed from experiments that during the relaxation process, numerous instances are observed where atoms traverse these periodic boundaries, which presents a challenge for displacement supervision. Figure 7 showcases nine repeating cells with a single atom  $v_i$  represented in the example. The initial and relaxed positions of the atom  $v_i$  are indicated by red and green circles, respectively, with the atom crossing the periodic boundary along the black arrow. Consequently, within the same cell, the relaxed atom reappears at the cell's opposite position. In this scenario, the original  $\Delta p_i^{\star} = p_i^{\star} - p_i^0$  provided by the OC20 dataset equals to the displacement illustrated by the red arrow, which fails to accurately capture the physical relaxation process shown in the black arrow.

Given our observation that the positional displacement for atoms is invariably less than the length of the periodic boundary cell, we surmised that the actual relaxed position

Table 5: Model Configurations for Graphromer-based methods on OC20

| Hyperparameter                           | 3d-Graphormer | 3d-Graphormer+DR-Label | DRFormer w/o InterPos | DRFormer-S   | DRFormer     |
|------------------------------------------|---------------|------------------------|-----------------------|--------------|--------------|
| Optimizer                                | adam          | adam                   | adam                  | adam         | adam         |
| Learning rate                            | 3e-4          | 3e-4                   | 3e-4                  | 3e-4         | 3e-4         |
| Warmup updates                           | 10000         | 10000                  | 10000                 | 10000        | 10000        |
| Batch size                               | 64            | 64                     | 64                    | 32           | 64           |
| Weight decay                             | 0.001         | 0.001                  | 0.001                 | 0.001        | 0.001        |
| Embedding dimension                      | 768           | 768                    | 960                   | 960          | 768          |
| FFN embedding dimension                  | 768           | 768                    | 960                   | 960          | 768          |
| Attention heads                          | 48            | 48                     | 48                    | 48           | 48           |
| Max update                               | 1000000       | 1000000                | 1000000               | 1000000      | 1000000      |
| Layers                                   | 12            | 12                     | 18                    | 12           | 12           |
| Blocks                                   | 4             | 4                      | 4                     | 4            | 4            |
| Node loss weight                         | 15            | 15                     | 25                    | 25           | 25           |
| GBF kernels                              | 128           | 128                    | 128                   | 128          | 128          |
| Use DR-Label                             | _             | $\checkmark$           |                       |              |              |
| Edge loss weight                         | _             | 50                     | 50                    | 50           | 50           |
| Noisy nodes TN                           | _             | _                      | $\checkmark$          | $\sqrt{}$    | $\sqrt{}$    |
| Noisy nodes EN                           | _             | _                      | <u>-</u>              | <u>-</u>     | V            |
| Standard deviation of Gaussian noise (Å) | _             | _                      | 0.5                   | 0.3          | 0.3          |
| InterPos                                 | _             | _                      | _                     | $\sqrt{}$    | $\sqrt{}$    |
| Pos update freq                          | _             | _                      | _                     | 6            | 6            |
| PBPA-calib                               | _             | _                      | $\checkmark$          | $\checkmark$ | $\checkmark$ |
| Running time (8 $\times$ A100 hour)      | 36            | 47                     | 120                   | 110          | 276          |
| Total num of epochs                      | 140           | 140                    | 140                   | 70           | 140          |

Table 6: Comparison of 3d-Graphormer model performance when adding the PBPA-Calib.

|                                           | MAE (eV) ↓         |                    |                    |                    |                    |
|-------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Model                                     | ID                 | OOD Ads.           | OOD Cat.           | OOD Both           | Average            |
| 3d-Graphormer<br>3d-Graphormer+PBPA-calib | $0.4329 \\ 0.4497$ | $0.5850 \\ 0.5620$ | $0.4441 \\ 0.4593$ | $0.5299 \\ 0.5088$ | $0.4980 \\ 0.4950$ |

of boundary-passing atoms corresponds to the closest position among all equivalent relaxed atom positions in neighboring cells. Thus, we adopted the Periodic Boundary Passing Atom Calibration (PBPA-calib) algorithm as shown in 3 as a dataset cleaning operation before training.

Algorithm 3: Algorithm for Periodic Boundary Passing Atom Calibration (PBPA-calib)

**Input:** Initial position  $p_i^0$ , potentially boundary-passing relaxed position  $p_i^{\star\prime}$ , and lattice vectors on the directions of the periodic repeating plane  $lattice_u, lattice_v \in \mathbb{R}^3$ . Initialize two empty lists: Position and Distance.

$$\begin{array}{l} \textbf{for } i \in \{-1,0,1\} \ \textbf{do} \\ \textbf{for } j \in \{-1,0,1\} \ \textbf{do} \\ \textbf{Add } p_i^{\star\prime} + i \cdot lattice_u + j \cdot lattice_v \ \textbf{to } Position. \\ \textbf{Add } ||p_i^{\star\prime} + i \cdot lattice_u + j \cdot lattice_v - p_i^0|| \ \textbf{to} \\ Distance. \end{array}$$

# end for

#### end for

Compute  $idx = \arg\min(Distance)$  – get the index of the element with the minimum value in Distance. Set  $p_i^* = Position[idx]$ .

**Return**  $p_i^{\star}$  - Calibrated relaxed position of the atom .

To evaluate the efficacy of PBPA-calib, we conducted an ablation study that simply substituted the original OC20 dataset with the PBPA-calib processed dataset and trained the 3d-Graphormer. The outcome of this study, presented in Table 6, indicates that PBPA-calib aids models in supervising the actual relaxation displacement. We applied the PBPA-calib procedure to all DRFormer models, including those experiments using the SAA dataset, as well as the experiments ablation studies.

It is worth acknowledging that the contemporaneous work by Yuan et al. (Yuan et al. 2023) also addresses periodic boundary passing atoms and proposes a similar data correction algorithm. Our method was independently developed in parallel, which specifically focuses on calibrating using the two lattice vectors that form a periodically repeating infinite plane, rather than considering all three lattice vectors of the cell.

## Model Configurations for DR-Label Integrated GemNet-OC and SCN

The integration of DR-Label with GemNet-OC and SCN generally follows the same algorithmic framework as its integration with Graphormer, with the majority of the model remaining unchanged. The testing set results for the direct



Figure 7: The periodic boundary passing node in a plane with 3x3 cells. The red arrow symbolizes the atomic positional displacement from the initial to relaxed state, as directly derived from the OC20 dataset. In contrast, the black arrow denotes the atom's actual trajectory during relaxation.

version of SCN and GemNet-OC were from Table 3 of paper(Zitnick et al. 2022).

## Integration of DR-Label with GemNet-OC

The integration of the DR-Label strategy with GemNet-OC is rather straightforward. The original model employs stacks of GemNet-OC interaction blocks, each producing an embedding for every node and edge. These embeddings are then aggregated across blocks via an MLP layer to generate the final embeddings for the nodes and edges. For an edge  $e_{ij}$ , let  $z_{ij}$  represent the edge embedding, while  $z_i$  and  $z_i$  denote the embeddings of the sender and receiver nodes, respectively. We generate edge-wise magnitude predictions  $\mathcal{M}$  by applying  $\hat{m}_{ij} = \mathbf{f}_{GemNet-OC}([z_{ij}||z_i||z_j])$ , and use the sphere fitting algorithm to produce  $\hat{P}$ .  $\mathbf{f}_{GemNet-OC}$  is implemented by a simple linear layer with bias. GemNet-OC provides a direct force supervision head branch, which we replace with our node-level displacement supervision. Additionally, we included the edge-level projection magnitude supervision using the L1-loss function.

#### **Integration of DR-Label with SCN**

The integration of DR-Label with SCN differs slightly from the previous operation. SCN centers on a novel node representation, and generates 128 evenly distributed directions on a unit sphere as  $d_{ij}$ . We use these outward directions to perform the label decomposition and reconstruction process.

Table 7: Configurations for the GemNet-OC+DR-Label model

| Hyperparameters                              | Value or method   |
|----------------------------------------------|-------------------|
| No. spherical basis                          | 7                 |
| No. radial basis                             | 128               |
| No. blocks                                   | 6                 |
| Atom embedding size                          | 256               |
| Edge embedding size                          | 1024              |
| Triplet edge embedding input size            | 64                |
| Triplet edge embedding output size           | 128               |
| Quadruplet edge embedding input size         | 64                |
| Quadruplet edge embedding output size        | 32                |
| Atom interaction embedding input size        | 64                |
| Atom interaction embedding output size       | 64                |
| Radial basis embedding size                  | 32                |
| Circular basis embedding size                | 16                |
| Spherical basis embedding size               | 64                |
| No. residual blocks before skip connection   | 2                 |
| No. residual blocks after skip connection    | 2                 |
| No. residual blocks after concatenation      | 4                 |
| No. residual blocks in atom embedding blocks | 3                 |
| No. atom embedding output layers             | 3                 |
| Cutoff                                       | 12.0              |
| Quadruplet cutoff                            | 12.0              |
| Atom edge interaction cutoff                 | 12.0              |
| Atom interaction cutoff                      | 12.0              |
| Max interaction neighbors                    | 30                |
| Max quadruplet interaction neighbors         | 8                 |
| Max atom edge interaction neighbors          | 20                |
| Max atom interaction neighbors               | 1000              |
| Activation                                   | Silu              |
| Direct forces                                | True              |
| Quadruplet interaction                       | True              |
| Atom edge interaction                        | True              |
| Edge atom interaction                        | True              |
| Atom interaction                             | True              |
| Batch size                                   | 8                 |
| Learning rate initial                        | 5.e-4             |
| Optimizer                                    | AdamW             |
| Scheduler                                    | ReduceLROnPlateau |
| Energy coefficient                           | 1                 |
| EMA decay                                    | 0.999             |
| Gradient clip norm threshold                 | 10                |
| Loss function - energy                       | mae               |
| DR-Label integration                         |                   |
| Node loss weight                             | 1                 |
| Edge loss weight                             | 10                |
| Loss function - edge                         | mae               |
| Loss function - node                         | 12mae             |
| Running time (8 $\times$ A100 hour)          | 25                |

The SCN model ultimately produces a  $\mathbb{R}^{(L+1)^2 \times \mathcal{C}}$  matrix for each node  $v_i$ , representing  $\mathcal{C}$  channels of functions based on spherical harmonics. This representation is first transformed by  $\mathbf{f}_{SH2D}: \mathbb{R}^{(L+1)^2 \times \mathcal{C}} \to \mathbb{R}^{128 \times \mathcal{C}}$  to convert the  $\mathcal{C}$  channels spherical harmonics based representation of a continuous function on a sphere into a discrete representation  $\mathbf{z}_{ij}$  over 128 evenly distributed directions. This is followed by  $\mathbf{f}_{D2M}: \mathbb{R}^{128 \times \mathcal{C}} \to \mathbb{R}^{128 \times 1}$ , transforming the  $\mathbf{z}_{ij} \in \mathbb{R}^{\mathcal{C}}$  on the direction of  $d_{ij}$  into the magnitude prediction  $\hat{m}_{ij}, j \in [1, 128]$ . Similar to GemNet-OC, the direct force supervision head is replaced with node-level displacement and edge-level projection supervision.

Table 8: Configurations for the SCN+DR-Label model

| Hyperparameters                           | Value or method          |  |  |
|-------------------------------------------|--------------------------|--|--|
| Num interactions                          | 16                       |  |  |
| Hidden channels                           | 1024                     |  |  |
| Sphere channels                           | 128                      |  |  |
| Sphere channels reduce                    | 128                      |  |  |
| Num sphere samples                        | 128                      |  |  |
| Num basis functions                       | 128                      |  |  |
| Distance function                         | gaussian                 |  |  |
| Max num neighbors                         | 40                       |  |  |
| Cutoff                                    | 8.0                      |  |  |
| Maximum degree of the spherical harmonics | 6                        |  |  |
| Use grid                                  | True                     |  |  |
| Num bands                                 | 2                        |  |  |
| Basis width scalar                        | 2.0                      |  |  |
| Batch size                                | 2                        |  |  |
| Learning rate initial                     | 0.0004                   |  |  |
| Optimizer                                 | AdamW (amsgrad: True)    |  |  |
| Learning rate gamma                       | 0.3                      |  |  |
| Learning rate milestones                  | [218750, 281250, 343750] |  |  |
| Warmup steps                              | 100                      |  |  |
| Warmup factor                             | 0.2                      |  |  |
| Max epochs                                | 21                       |  |  |
| Energy coefficient                        | 2                        |  |  |
| Gradient clip norm threshold              | 100                      |  |  |
| EMA decay                                 | 0.999                    |  |  |
| Loss function - energy                    | mae                      |  |  |
| DR-Label integration                      |                          |  |  |
| Node loss weight                          | 1                        |  |  |
| Edge loss weight                          | 10                       |  |  |
| Loss function - edge                      | mae                      |  |  |
| Loss function - node                      | 12mae                    |  |  |
| Running time (8 $\times$ A100 hour)       | 161                      |  |  |

# Detailed Configurations for Other Experiments

We provide additional details regarding other experiments conducted in Table 9 and 10, including experiments on the SAA datasets and ablation studies. For the SAA dataset experiments, we maintained the original structure of 3d-Graphormer and DRFormer-S, with adjustments made to the warmup updates and maximum update parameters to align with the reduced dataset size. In the ablation studies, we also modified the warmup updates and maximum update parameters to ensure a similar total number of epochs (around 140) compared to the experiments on the OC20-all dataset.

Table 9: Model Configurations for SAA experiments

| Hyperparameter                           | 3d-Graphormer | DRFormer-S   | DRFormer-S-FT |
|------------------------------------------|---------------|--------------|---------------|
| Optimizer                                | adam          | adam         | adam          |
| Learning rate                            | 3e-4          | 3e-4         | 3e-4          |
| Warmup updates                           | 200           | 200          | 200           |
| Batch size                               | 2             | 2            | 2             |
| Weight decay                             | 0.001         | 0.001        | 0.001         |
| Embedding dimension                      | 768           | 960          | 960           |
| FFN embedding dimension                  | 768           | 960          | 960           |
| Attention heads                          | 48            | 48           | 48            |
| Max update                               | 64000         | 64000        | 64000         |
| Layers                                   | 12            | 12           | 12            |
| Blocks                                   | 4             | 4            | 4             |
| Node loss weight                         | 15            | 25           | 25            |
| GBF kernels                              | 128           | 128          | 128           |
| Use DR-Label                             | _             |              |               |
| Edge loss weight                         | _             | 50           | 50            |
| Noisy nodes TN                           | _             | $\checkmark$ | $\sqrt{}$     |
| Noisy nodes EN                           | _             | _            | <u>-</u>      |
| Standard deviation of Gaussian noise (Å) | _             | 0.3          | 0.3           |
| InterPos                                 | _             | $\checkmark$ | $\sqrt{}$     |
| Pos update freq                          | _             | $\dot{6}$    | $\dot{6}$     |
| PBPA-calib                               | $\checkmark$  | $\checkmark$ | $\checkmark$  |
| Running time (1 $\times$ $V$ 100 hour)   | 2             | 4            | 4             |
| Total num of epochs                      | 70            | 70           | 70            |

Table 10: Model Configurations for Ablation Studies (OC20-10k)

| Module Name                              | Model1       | Model2       | Model3       | Model4       | Model5       |
|------------------------------------------|--------------|--------------|--------------|--------------|--------------|
| DR-Label                                 | ×            |              | ×            |              |              |
| Noisy Nodes                              | ×            | ×            | $\checkmark$ | $\sqrt{}$    | V            |
| Intermediate Pos                         | ×            | ×            | ×            | ×            | $\sqrt{}$    |
| Hyperparameter                           |              |              |              |              |              |
| Optimizer                                | adam         | adam         | adam         | adam         | adam         |
| Learning rate                            | 3e - 4       |
| Warmup updates                           | 800          | 800          | 800          | 800          | 800          |
| Batch size                               | 64           | 64           | 64           | 64           | 64           |
| Weight decay                             | 0.001        | 0.001        | 0.001        | 0.001        | 0.001        |
| Embedding dimension                      | 768          | 768          | 768          | 768          | 768          |
| FFN embedding dimension                  | 768          | 768          | 768          | 768          | 768          |
| Attention heads                          | 48           | 48           | 48           | 48           | 48           |
| Max update                               | 21800        | 21800        | 21800        | 21800        | 21800        |
| Layers                                   | 12           | 12           | 12           | 12           | 12           |
| Blocks                                   | 4            | 4            | 4            | 4            | 4            |
| Node loss weight                         | 15           | 15           | 15           | 15           | 15           |
| GBF kernels                              | 128          | 128          | 128          | 128          | 128          |
| Use DR-Label                             | _            |              | _            |              |              |
| Edge loss weight                         | _            | 50           | _            | 50           | 50           |
| Noisy nodes TN                           | _            | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Noisy nodes EN                           | _            | _            | _            | _            | _            |
| Standard deviation of Gaussian noise (Å) | _            | _            | 0.3          | 0.3          | 0.3          |
| InterPos                                 | _            | _            | _            | _            | $\checkmark$ |
| Pos update freq                          | _            | _            | _            | _            | $\dot{6}$    |
| PBPA-calib                               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Running time (8 $\times$ A100 hour)      | 1.5          | 1.5          | 1.8          | 1.9          | 5.1          |
| Total num of epochs                      | 140          | 140          | 140          | 140          | 140          |