Índice Calidad del Aire y consumos energéticos

Alba | Katerina | Guilherme | Virginia

Índice Calidad del Aire y consumos energéticos

Objetivo del Proyecto

Predecir la calidad del aire en función de la energía renovable. Identificar los países que tienen mejor y peor calidad del aire Identificar tendencias del consumo energético

Contexto

- Las iniciativas globales implementadas para mitigar la calidad del aire han contribuido para aumentar consumos en energías renovables, bajando los índices de contaminación.
 - Los niveles de calidad del aire, aunque bajando en Estados Unidos y Europa, siguen por encima de los niveles aceptables.
 - Debido a la alta población en China e India y su grande dependencia de energías fósiles, sus índices de contaminación siguen aumentando.

 Aumento del consumo de la energía nuclear, pues tiene la ventaja de tener grande eficiencia energética y bajas emisiones

Alcance

Datos de los consumos energéticos (renovables, nuclear y fósiles) y los diferentes contaminantes desde 1965 hasta 2022 de **79 países**. El *dataset* se ha centrado mas en países de Europa, Asia y América.

Además, hemos incluido los datos demográficos y socioeconómicos (población y del PIB) durante el mismo periodo para entender la posible relación con el Índice de Calidad del Aire.

Metodología | Limpieza de datos

Herramientas: Kaggle (Fuente de Datasets) | Python (Limpieza y Modelo ML) | PBI (visualización)

- Definir el periodo de análisis entre los años 1965 y 2022.
- Eliminar las filas donde no constan datos de consumo de energía.
- Eliminar las filas donde no existen datos sobre contaminantes.
- Eliminar las filas donde no hay datos de población.
- Completar los casos en que no exista el PIB, en base al promedio del continente
- Resultado: 35% de los datos iniciales

Metodología | Análisis Exploratorio

Indicador que mide la calidad del aire basándose en los diferentes contaminantes atmosféricos: (unidad medida: toneladas)

- Óxidos de Nitrógeno (NOX)
- Dióxido de Azufre (SO₂)
- Compuestos Orgánicos Volátiles No Metánicos (NMVOC)
- Monóxido de Carbono (CO)
- Carbón Negro (BC)
- Amoniaco (NH₃)

Se expresa en una escala numérica oficial permitiendo alertar a la población sobre posibles impactos en la salud.

AIR QUALITY INDEX

51-100

101-150

151-200

201-300

301-500

Metodología | Análisis Exploratorio

Del dataset energía obtenemos información relativa a los consumos energéticos, así como la población y el PIB de país.

- Energías fósiles (carbón, petróleo, gas)
- Energías renovables (eólica, hídrica, solar)
- Energía Nuclear

Se expresan en terawatts-horas (Kilowatts-horas si per capita).

Matriz Correlación

Metodología | Análisis Exploratorio

- Alto nivel de correlación entre las variables población y el AQI.
- A mayor población, los consumos de energía crecen y el Índice de Calidad del Aire (AQI) presenta una tendencia al alza.

Metodología | Análisis Exploratorio

Índice Calidad del aire por País, 1965

Índice Calidad del aire por País, 1980 NORTH AMERICA Pacific Ocean Atlantic Ocean **AFRICA** SOUTH AMERICA Indian AUSTRALIA © 2025 TomTom, © 2025 Microsoft Corporation, © OpenStreetMap Terms

Índice Calidad del aire por País, 2000

- Al largo de los años los países mas poblados (China, India e EEUU) y igualmente con AQI alto, salen mas beneficiados en términos per capita.
- En cambio, países con menos población (Qatar, Luxemburgo, Nueva Zelandia) resultan mas penalizados

Microsoft Bing

Conclusiones | Análisis Exploratorio

AÑO 1965

Fuentes Energia por Continente

Distribucion del AQI y relacion con GDP y Populacion

AÑO 2022

Fuentes Energia por Continente

 Se verifica un incremento del consumo de las energías renovables.
Europa y America Sur.

Distribucion del AQI y relacion con GDP y Populacion

- Aumento del AQI en Asia, específicamente en China y India, debito a grande población (35% del total)
- En cambio, en Europa e EEUU mejoran la calidad del aire

Metodología | Modelo Machine Learning

OBJETIVO: Predecir el <u>INDICE DE CONTAMINACION</u> (AQI) en función del <u>CONSUMO ENERGETICO</u> (fósiles, nucleares y renovables) y del <u>PIB</u> de un país a nivel per capita.

MODELO: Random Forest

CARACTERISTICAS:

- Alta precisión;
- Capacidad para manejar tanto problemas de clasificación como de regresión;
- Resistencia al overfitting gracias al uso de múltiples árboles de decisión.

PREPARACÍON

Metodología | Modelo Machine Learning

- Selección de columnas para modelo
- Convertir continentes en dummies
- Análisis de multicolinealidad: (correlación de variables independientes)

Separación de datos en train y test

- 0.0

Metodología | Modelo Machine Learning

Generación del árbol de clasificación

Profundidad = 16 Accuracy = 79,78%

Generación del Random Forest

Profundidad = 16 Accuracy = 88,09%

• (Alternativa) Valoración de regresión lineal múltiple

Variables = 14 (todas) $R^2 = 0,4922$ Error medio = 71,8732

Metodología | Modelo Machine Learning

PIB	Consumo energético	Coal 0.2	Gas 0.4	Oil 0.4	TOTAL Fosil	Hydro 0.35	Solar 0.25	Wind 0.25	Nuclear 0.15	TOTAL Clean	% Fosil	% Clean	Indice
10,000	3,000	600	1,200	1,200	3,000	-	-	-	-	-	100%	0%	
10,000	3,000	300	600	600	1,500	525	375	375	225	1,500	50%	50%	Moderate
10,000	3,000	-	-	-	-	1,050	750	750	450	3,000	0%	100%	Moderate
10,000	50,000	10,000	20,000	20,000	50,000	-	-	-	-	-	100%	0%	Unhealthy
10,000	50,000	5,000	10,000	10,000	25,000	8,750	6,250	6,250	3,750	25,000	50%	50%	Moderate
10,000	50,000	-	-	-	-	17,500	12,500	12,500	7,500	50,000	0%	100%	Moderate
10,000	100,000	20,000	40,000	40,000	100,000	-	-	-	-	-	100%	0%	Very Unhealthy
10,000	100,000	10,000	20,000	20,000	50,000	17,500	12,500	12,500	7,500	50,000	50%	50%	Moderate
10,000	100,000	-	-	-	-	35,000	25,000	25,000	15,000	100,000	0%	100%	Moderate
10,000	200,000	40,000	80,000	80,000	200,000	-	-	-	-	-	100%	0%	
10,000	200,000	20,000	40,000	40,000	100,000	35,000	25,000	25,000	15,000	100,000	50%	50%	
10,000	200,000	-	-	-	-	70,000	50,000	50,000	30,000	200,000	0%	100%	Moderate
50,000	3,000	600	1,200	1,200	3,000	-	-	-	-	-	100%	0%	Moderate
50,000	3,000	300	600	600	1,500	525	375	375	225	1,500	50%	50%	Moderate
50,000	3,000	-	-	-	-	1,050	750	750	450	3,000	0%	100%	Moderate
50,000	50,000	10,000	20,000	20,000	50,000	-	-	-	-	-	100%	0%	Very Unhealthy
50,000	50,000	5,000	10,000	10,000	25,000	8,750	6,250	6,250	3,750	25,000	50%	50%	Moderate
50,000	50,000	-	-	-	-	17,500	12,500	12,500	7,500	50,000	0%	100%	Moderate
50,000	100,000	20,000	40,000	40,000	100,000	-	-	-	-	-	100%	0%	Very Unhealthy
50,000	100,000	10,000	20,000	20,000	50,000	17,500	12,500	12,500	7,500	50,000	50%	50%	Moderate
50,000	100,000	-	-	-	-	35,000	25,000	25,000	15,000	100,000	0%	100%	Moderate
50,000	200,000	40,000	80,000	80,000	200,000	-	-		-	-	100%	0%	Hazardous
50,000	200,000	20,000	40,000	40,000	100,000	35,000	25,000	25,000	15,000	100,000	50%	50%	
50,000	200,000		-		-	70,000	50,000	50,000	30,000	200,000	0%	100%	Moderate
100,000	3,000	600	1,200	1,200	3,000	-	-	-	-	-	100%	0%	Moderate
100,000	3,000	300	600	600	1,500	525	375	375	225	1,500	50%	50%	Moderate
100,000	3,000	-	-	-	-	1,050	750	750	450	3,000	0%	100%	Moderate
100,000	50,000	10,000	20,000	20,000	50,000	-	-	-	-	-	100%	0%	Very Unhealthy
100,000	50,000	5,000	10,000	10,000	25,000	8,750	6,250	6,250	3,750	25,000	50%	50%	Moderate
100,000	50,000	-	-		-	17,500	12,500	12,500	7,500	50,000	0%	100%	Moderate
100,000	100,000	20,000	40,000	40,000	100,000	-	-	-	-	-	100%	0%	Very Unhealthy
100,000	100,000	10,000	20,000	20,000	50,000	17,500	12,500	12,500	7,500	50,000	50%	50%	Moderate
100,000	100,000	-	-	-	-	35,000	25,000	25,000	15,000	100,000	0%	100%	Moderate
100,000	200,000	40,000	80,000	80,000	200,000	-				-	100%	0%	Very Unhealthy
100,000	200,000	20,000	40,000	40,000	100,000	35,000	25,000	25,000	15,000	100,000	50%	50%	Unhealthy
100,000	200,000	-			-	70,000	50,000	50,000	30,000	200,000	0%	100%	Moderate

- Índice de contaminación -> Consumo energético
 - Consumos bajos -> índice de contaminación bajo.
 - Consumos medios/altos -> índice de contaminación condicionado por el mix empleado
 - Índice de contaminación aceptable si energía renovable > 50%
 - Consumos extremos -> necesidad del uso de energía renovable
 - Índice de contaminación aceptable si energía renovable ~ 100%.
- PIB alto -> capacidad para mitigar los efectos de un consumo extremo

Conclusiones | Análisis Predictivo

- Fuerte correlación entre la población y el consumo energético, el análisis de datos a nivel per cápita ofrece resultados más fiables.
- El índice de calidad del aire de un país está fuertemente condicionado por su consumo energético global, no siendo determinante el mix de energías utilizado.
- El mix de energías utilizado tiene cierta influencia cuando se dan consumos energéticos altos.
- El PIB per cápita de un país influye en su capacidad para mitigar estos efectos.

En conclusión, si buscamos mejorar la calidad del aire y reducir la contaminación en las ciudades a nivel global, es fundamental implementar políticas ambientales efectivas y realizar **inversiones en tecnología sostenible conjuntas**.

Un esfuerzo conjunto será clave para avanzar hacia un entorno menos contaminado y más saludable.

Alba | Katerina | Guilherme | Virginia

