EEEN3006J

Wireless Systems

Dr. Declan Delaney

(declan.delaney@ucd.ie)

Purpose of this lecture

- As we have seen, wireless signals are often very weak. For this reason, we must use amplifiers to boost the signal.
- In this lecture, we will discuss some aspects of these, in particular of FET and bipolar transistors.

Purpose of this lecture

- Wireless signals are often very weak; powers of pW and smaller are common. We must amplify these signals to make them useful.
- We often require these amplifiers have
 - high gain
 - low noise
 - and high bandwidth

Difficult combination, especially at high frequencies

- All of this is required at high frequencies.
 - As we will see, we can sometimes design our systems so key steps occur at lower frequencies.

- Most radio frequency systems now use transistors.
 - Gallium arsenide Field Effect Transistors (FETs).
 - Silicon or silicon germanium bipolar transistors (BJTs).
 - Heterojunction bipolar transistors (HBTs).
 - High electron mobility transistors (HEMTs).
- These transistors are cheap, reliable and can be used in discrete or integrated circuits.

- Transistor amplifiers
 - Can be used for frequencies up to 100GHz.
 - Are available in low-noise designs.
 - Can be used up to medium power.

 For high power applications, tube amplifiers are still used, but transistors still being developed.

FET and Bipolar transistors

Frequency	GaAs FET		GaAs HEMT		Si Bipolar		GaAs HBT	
GHz	Gain	F_{min}	Gain	F _{min}	Gain	F _{min}	Gain	F _{min}
4	20	0.5			15	2.5		
8	16	0.7			9	4.5		
12	12	1.0	22	0.5	6	8	20	4
18	8	1.2	16	0.9			16	
36			12	1.7			10	
60			8	2.6			7	

The noise figure, F_{min} , describes the cost in dB to the SNR of a signal passing through the amplifier. An ideal amplifier would have a noise figure of 0.

FETs

- Good gain and noise figures make them the device of choice in many applications
 - Especially for frequencies over ~5 GHz.
- GaAs devices used because of high electron mobility compared with Si.
- No shot noise.
- Max frequency limited by gate length.
 - -0.3 microns ~ 100 GHz.

Small signal model (common source)

Gain vs Frequency

For the parameters in this example, we see that the small signal gain falls to 0 dB (i.e. 1) at \sim 50 GHz. Above this frequency, it is of no use as an amplifier.

- We must apply a suitable DC bias to the transistor so it is at an appropriate operating point.
- This depends on the class (A, AB, B) and type (FET, bipolar, HBT, HEMT) of the transistor.

• Class A amplifier

• Class B amplifier

• Class AB amplifier

• Class A amplifier – always biased on.

- Class B amplifier complementary pair of transistors.
 - Trades linearity for better efficiency and lower heating.

 Class AB amplifier – variation of a class B where both devices conduct at the same time around the waveforms crossover point eliminating the crossover distortion problem.

Bipolar transistors

- Usually npn type.
- Often preferred under 4 GHz for higher gain and lower cost.
 - Higher transconductance in small signal model leads to higher gain, but larger capacitances degrade performance at higher frequencies more quickly.
 - Upper frequency limit depends primarily on base length ~ 100 nm.
- Suffer from shot noise noise figures are higher (i.e. worse) than those of FETs.

2-Port Power Gains

- There are different definitions of gain power gain, available gain and transducer gain – but they are all the same if the source and load are matched to the input and output impedance of the amplifier.
- The gain can be given in terms of the S parameters and load impedance:

$$G = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2)}{(1 - |\Gamma_{in}|^2)|1 - S_{22}\Gamma_L|^2}$$

The power gain $G_p = \frac{P_L}{P_{in}}$

From the source to load

- The transducer power gain $G_T = \frac{P_L}{P_{AVS}} = G_p M_s$ $G_p > G_T$ The available power gain $G_A = \frac{P_{AVN}}{P_{AVS}} = \frac{G_T}{M_L}$ $G_A > G_T$
- When the Input and output are matched: $G_p = G_T = G_A$

Consider a microwave amplifier with the source and load reflection coefficients Γ_s and Γ_L measured in a Z_o system:

$$\Gamma_s = \frac{Z_s - Z_o}{Z_s + Z_o} \qquad \Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o}$$

For the transistor, the input and output traveling waves measured in a Z_0 system (this is very practical):

$$b_1 = S_{11}a_1 + S_{12}a_2$$

$$b_1 = S_{11}a_1 + S_{12}a_2$$
$$b_2 = S_{21}a_1 + S_{22}a_2$$

Stability

- These amplifiers have feedback elements.
 This means that it is possible for them to oscillate.
- We can define regions of stability in terms of the reflection coefficients, $\Gamma \downarrow in$ and $\Gamma \downarrow out$.
- The strongest constraint, called unconditional stability, requires $|\Gamma \downarrow in| < 1$ and $|\Gamma \downarrow out| < 1$.
- There are also conditional stability conditions where stability also depends on the source and load impedances.

Amplifier design using S parameters

- We can use the S-parameters to design for
 - Maximum gain
 - Maximum stable gain and
 - Noise figure
- However, the full analysis based on Sparameters is outside the scope of this course, and this discussion is included here only for your information.
- N.B. The design of power amplifiers is different again, as the small signal model no longer applies.

