CMSC472: Introduction to Deep Learning

James Zhang*

January 30, 2024

These are my notes for UMD's CMSC472: Introduction to Deep Learning, which is an elective ("live- T_EX "-ed). This course is taught by Assistant Professor Abhinav Shrivastava.

Contents

1	Introduction to Statistical Learning I	2
	1.1 Simple Models: Classification and Regression	2

^{*}Email: jzhang72@terpmail.umd.edu

§1 Introduction to Statistical Learning I

The main idea of statistical learning is to just make sense of data.

Definition 1.1. Supervised learning: given inputs (data-label pairs), learn a model to predict output. In mathematical terms, we want to learn a prediction function f.

Definition 1.2. Training (or learning): given a training set of labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$, instantiate a predictor f. $y = f(x) \in \mathcal{H}$, this is known as the **hypothesis space**.

Definition 1.3. Testing (or inference): apply f to a new test example and return the output f(x). Note that we measure correctness using loss functions.

Note 1.4. Training and testing data should be i.i.d. (independent and identically distributed) samples from the same distribution D.

§1.1 Simple Models: Classification and Regression

Definition 1.5. A nearest neighbor classifer returns f(x) = the label of the training example nearest to x. All we need is a distance function. Note that this model requires no training.

Similarly, a **K-Nearest Neighbor** finds k nearest points and f(x) = vote for class labels with labels of the k nearest points. Note that kNN is more robust to outliers.

- kNN pros: Simple to implement, decision boundaries not necessary linear, works for any number of classes, nonparametric method
- kNN cons: need good distance function, slow at test time

Definition 1.6. A linear classifier is a linear function that separates the classes such that $f(x) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$.

Note 1.7. Perceptrons cannot do nonlinearly separated data.

- Linear pros: low-dimensional parametric representation, easy to learn, very fast at test time
- Linear cons: works for two classes(?), how to train the linear function, data is not linearly separable