

StarRC Q-2019.12

Beta Update Training

StarRC BU

Oct 14, 2019

CONFIDENTIAL INFORMATION

The following material is confidential information of Synopsys and is being disclosed to you pursuant to a non-disclosure agreement between you or your employer and Synopsys. The material being disclosed may only be used as permitted under such non-disclosure agreement.

IMPORTANT NOTICE

In the event information in this presentation reflects Synopsys' future plans, such plans are as of the date of this presentation and are subject to change. Synopsys is not obligated to develop the products with the features and functionality discussed in these materials. In any event, Synopsys' products may be offered and purchased only pursuant to an authorized quote and purchase order or a mutually agreed upon written contract.

Q-2019.12 Update Training

New Features

- **Gate-Level Flows**
- Tx-level Flows
- Other Features Common To Both Flows

Appendix

New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

Q-2019.12 Gate-Level performance Improvement

Targeted on designs with SMC extraction and GPD output

- 1.3x speedup for SMC vs 2019.03
 - -Blocks (<=7nm), LEF/DEF or NDM
 - Runtime Improvement
 - Pre-Extract
 - SMC setup stage optimization
 - PreXT DP scheduler optimization
 - Support NDM patterned metals for PG shape
 - Extraction
 - Layer-based rigorous etch
 - Resistance extraction performance <=5nm
 - Thickness variation modeling and caching optimization
 - Memory Improvement
 - Memory reduction on large design <=7nm</p>
 - SMC: 30%
 - SC: 13%

SMC runtime Improvement

SC(Single Corner) runtime Improvement

SMC	prext	extract	postxt	overall
Ratio	30%	65%	5%	100%
All	1.16	1.09	0.91	1.11
<=7	1.62	1.16	0.93	1.28
<=16	1.28	1.10	0.92	1.16
>16	0.99	1.05	0.90	1.03
Blocks	1.23	1.10	0.92	1.14
Hier	1.03	1.06	0.88	1.04
Flat	1.05	1.06	0.95	1.05
LEF-DEF	1.11	1.08	0.91	1.09
NDM	1.22	1.09	0.92	1.14
LEF-DEF <=7	1.47	1.18	0.94	1.24
NDM <=7	1.72	1.14	0.92	1.31

sc	prext	extract	postxt	overall
Ratio	32%	64%	4%	100%
All	1.00	1.08	0.88	1.05
<=7	1.06	1.14	0.91	1.11
<=16	1.03	1.10	0.89	1.07
>16	0.95	1.03	0.86	1.00
Blocks	1.01	1.08	0.88	1.05
Hier	0.96	1.04	0.87	1.01
Flat	1.10	1.06	0.93	1.07
LEF-DEF	1.01	1.08	0.88	1.05
NDM	1.00	1.08	0.88	1.04
LEF-DEF <=7	1.05	1.16	0.92	1.13
NDM <=7	1.06	1.13	0.90	1.10

No new or changed commands needed

New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

Virtual Metal Fill Support

For Gate level only. No virtual metal fill with real metal fill in one extraction is allowed

- Best-in-class correlation with real metal fill with small performance footprint
- No need to update ITF/NXTGRD
- Available in StarRC stand-alone and StarRC In-Design (in IC Compiler II).
- Fully parameterized virtual track fill generation, including non-default-rule (NDR) nets specialization

StarRC Command Options

VIRTUAL METAL FILL POLYGON HANDLING: [IGNORE] | FLOATING | GROUNDED

VIRTUAL METAL FILL PARAMETER FILE: <file path>

VIRTUAL METAL FILL NDR NETS: <net1> <net2>...

	Parameter Name
0	db_layer_name
1	net_fill_w_spacing
2	net_fill_l_spacing
3	ndr_net_fill_w_spacing
4	ndr_net_fill_l_spacing
5	fill_fill_w_spacing
6	fill_fill_l_spacing
7	fill_width
8	min_fill_length
9	max_fill_length
10	direction (V H)

VIRTUAL_METAL_FILL_PARAMETER_FILE

Parameter name	Type	Accepted values	Description
db_layer_name	string	Any valid db layer name	Name of the dbLayer on which user wants to generate virtual metal fill
direction	char	(V,H)	Routing direction of virtual metal fill shapes (vertical V, horizontal H)
fill_width	Float (nm)	[WMIN, inf)	Width (fixed) of virtual metal fill shapes in the direction perpendicular to the routing direction
min_fill_length	Float (nm)	[WMIN, inf)	Min length of virtual metal fill shapes in the direction parallel to the routing direction
max_fill_length	Float (nm)	[min_fill_length, inf)	Max allowed length of virtual metal fill shapes in the direction parallel to the routing direction
min_fill_route_w_spacing	Float (nm)	[SMIN, inf)	Min spacing between virtual metal fill and design shapes in the direction perpendicular to the routing direction
fill_route_l_spacing	Float (nm)	[SMIN, inf)	Spacing between virtual metal fill and design shapes in the direction parallel to the routing direction
min_fill_fill_w_spacing	Float (nm)	[SMIN, inf)	Min spacing between virtual metal fill and virtual metal fill shapes in the direction perpendicular to the routing direction
fill_fill_l_spacing	Float (nm)	[SMIN, inf)	Spacing between virtual metal fill and virtual metal fill shapes in the direction parallel to the routing direction
min_fill_blockage_w_spacing	Float (nm)	[SMIN, inf)	Min spacing between virtual metal fill and design blockage shapes in the direction perpendicular to the routing direction
fill_blockage_l_spacing	Float (nm)	[SMIN, inf)	Spacing between virtual metal fill and design blockage shapes in the direction parallel to the routing direction

VMF and Real MF Correlation Result

Good RC correlation b/t VMF and Real MF

• Test case: FinFET process node

```
----- RC Correlation Overview ------
Total cap (C) mean error (abs = 3.000fF): 0.656%
                std error (abs = 3.000fF): 1.148%
Coupling cap (CC) mean error (abs = 0.300fF, rel = 0.100): -
0.191%
                std error (abs = 0.300fF, rel = 0.100): 0.303%
Pin-Pin res (P2P) mean error (abs = 50.0000hm): -0.008%
                 std error (abs = 50.0000hm): 0.037%
  ------ TCAP Distribution ------
TCAP threshold: 3.000000 fF
Min Error: -2.388% Max Error: 14.407%
Mean Error: 0.656% Standard dev: 1.148%
Number of matched nets: 11716
```


New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

Instance Port location closer to the driver

- Existing approach of selecting multiple potential instance port location uses geometrical rules: the priority is given to the highest layer, then lowest coordinate, then left-most coordinate.
- The new approach will select the instance port location closer to the driver, hence the smallest point to point resistance from the driver to all potential location of the receiver instance ports

X are potential *I locations, based on interaction point of top level route and instance port of the skip_cell.

Based on the consistent instance port location, (x2,y2), (x4,y4) and (x6,y6) are selected.

In this case since the instance port is a feedthrough net/used as routing resource, the resistance of the instance port is extracted with INSTANCE_PORT:CONDUCTIVE, but does not get added to p2p path from driver (x0,y0) to the receiver *I.

Instance Port location closer to the driver

In this case, based on the existing approach, (x2,y2), (x4,y4) and (x6,y6) are selected for receiver instance port locations

The resistance of the instance port gets added to p2p path from driver (x0,y0) to the receiver *I (double counted).

In such scenarios, we need to place *I location before the port resistance / closest to the driver, to avoid double counting. So (x1,y1), (x3,y3) and (x5,y5) need to be selected.

StarRC is enhanced to take this into account with a new command

INSTANCE_PORT_LOCATION_CLOSER_TO_DRIVER: YES
(default: NO)

With this feature turned on, we can expect to see change in p2p resistance when comparing to previous version, as some of the *I locations might have changed.

This feature is currently supported only in gate level flows.

New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

Selected Net Short Visualization

Basic Flow

 To view shorts in a region for a select set of nets, "-write_short_regions" is developed

```
% StarXtract -write_short_regions -nets_file nets_file star_cmd
```

To create error file, use starrc_shell command as follows

Short Region Visualization

Error view from "-write_short_regions" for 1 net

Short Region Visualization

View error and highlight net at the same time

New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

Parasitic Explorer GUI

Introduction

Allows display of Parasitic Map and layout (LEF/DEF & NDM)

Supports layer based query for selected nets

Supports very fast loading of Errors

Parasitic Explorer Flow and Usage in starrc_shell

GUI Invoke

1. Run extraction with the following command

```
PARASITIC EXPLORER ENABLE ANALYSIS: YES
```

Invoke the StarRC shell

```
% starrc_shell
```

3. For SMC designs, set the parasitic corner

```
starrc shell> source <gpd dir>/starrc shell init.tcl
```

4. Use Parasitic Explorer commands to obtain parasitics for design objects.

```
starrc_shell> source <gpd_dir>/starrc_shell_load_layout.tcl
```

5. Use commands to obtain parasitics for design objects.

```
starrc shell> gui start
```

```
set gpd_read_remove_buslike_escape false
read_parasitics -keep_capacitive_coupling \
    -format GPD toprt.gpd
current_design toprt
```

<gpd dir>/starrc shell init.tcl

```
set_layout_database_options \
    -physical_enable_clock_data \
    -physical_lib_path { tech.lef cells.lef
    } \
    -physical_design_path { toprt.def }
```

```
<gpd_dir>/starrc_shell_load_layout.tcl
```

check layout database

Parasitic Explorer GUI – RC Map View

Parasitic Explorer GUI – RC Map View

Ground Cap & Coupling Cap Selection from "Object"

Parasitic Explorer GUI – RC Map Query

Resistor, Ground/Coupling Capacitor & Query

Parasitic Explorer GUI – RC Map Query

Resistor, Ground/Coupling Capacitor & Query

Layer Selection

New Features in Q-2019.12 for Gate-Level Flow

- Gate-Level Performance Improvement
- Virtual Metal Fill Support
- Instance Port Location Closer To The Driver
- Parasitic Explorer –Selected Nets Short Visualization
- Parasitic Explorer GUI
- LEF/DEF Based 3DIC WoW

StarRC 3DIC WOW LEF/DEF Flow

- In WoW technology, two dies stacked on top of each other are face to face
- Cross-die coupling capacitance on top layers needs to be considered
- Separate virtual interface block (VIB) is created by combining desired top layers from both die
- WoW interface blocks are only used for extraction and DRC/LVS purposes
 - SPEF extracted from virtual interface block is combined with die1 and die2 SPEFs

StarRC 3DIC WOW LEF/DEF Flow

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

All Angle Extraction On By Default (OBD) for Tx-level Flows

- In P-2019.03 release, a star command **ENHANCED_NONMANHATTAN_ACCURACY** (ENMA) was introduced to improve resistance accuracy for all-angle (including non-Manhattan) shapes. Since then, this feature has been improved both in resistance and capacitance accuracy
- In Q-2019.12 release, ENMA will be on by default. The following results will be expected
 - R-network and resistance accuracy are improved
 - Capacitance accuracy with ENMA on should be comparable to ENMA off

TCAP difference b/t ENMA ON and Off

Designs	Number of nets	Mean Error	StdEV Error
Design1	60	-1.1%	6.5%
Design2	32	-0.60%	0.06%
Design3	12	0.20%	5.3%
Design4	45	-0.93%	0.32%
Design5	15	-2.8%	3.4%

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

Standalone Reducer

- Features
 - Net based accuracy control for reduction
 - Proven aggressive reduction engine
 - -SPF format supported for 2019.12
- User Interface
 StarReduce < reduced command file>
- Wildcards supported for <net_names>
- Default REDUCTION level is HIGH

Reduced Command File

Currently available as standalone batch mode

Standalone Reducer

Reduced command file and usage example :

red_cmd:

INPUT_FILENAME: xyz.spf

OUTPUT_FILENAME : yyy.spf

REDUCTION_NETS: pll_* LEVEL NO MAX_DELAY_ERROR 1e-12

CASE_SENSITIVE : YES

Usage:

StarReduce red_cmd

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

Mutual Inductance Extraction

• The new inductance solver is enabled when an **INDUCTANCE_MODE** statement is read from the star_cmd file. Internally to StarRC the following commands are set

REDUCTION: NO

NETLIST_NODE_SECTION: YES

NETLIST_MERGE_SHORTED_PORTS: NO

NETLIST_TAIL_COMMENTS: YES

EXTRA_GEOMETRY_INFO: NODE

PRINT_SILICON_INFO: YES

- StarRC outputs an unreduced netlist containing the physical sizes of resistors (width, thickness, layer) and locations of nodes (x, y, layer).
- When the normal extraction is complete StarRC invokes the stand alone reducer (StarReduce). The main inductance calculation is performed inside the stand alone reducer.

Mutual Inductance Extraction – User Interface

The new inductance capability is enabled when an INDUCTANCE_MODE statement is read from star_cmd. The following new commands have been added to STAR:

INDUCTANCE_MODE: <INDUCTANCE | RELUCTANCE>

Enables new inductance functionality and selects inductance or reluctance for output.

Default: No inductance calculation

INDUCTANCE_SELECT_LAYER: <layer1_name> <layer2_name> ...

Selects layers for inductance extraction

Default: all layers

INDUCTANCE_SELECT_NET: <net1_name> <net2_name> ...

Selects layers for inductance extraction

Default: all nets

Mutual Inductance Extraction – User Interface

INDUCTANCE_SELECT_BB: (float_xl float_yl float_xh float_yh <layer_1> <layer_2>) | (FILE file_name)

Specifies a bounding box for inductance extraction. Units are microns.

The FILE option specifies the name of a file containing one or more selection boxes.

Syntax:

float_xl float_yl float_xh float_yh <layer_1> <layer_2>

Default: the whole design

INDUCTANCE FREQUENCY: float

Specifies the frequency at which inductance is calculated. Specifying a higher frequency produces a smaller skin depth so a finer discretization is needed (INDUCTANCE_NINC is automatically increased) and the run time becomes longer. Units are GHz

Default: 1

Mutual Inductance Extraction – User Interface

INDUCTANCE_NINC: int

Specifies the number of filaments to divide each metal segment into for skin depth and proximity effect calculation.

Increasing this parameter will increase accuracy but strongly increase runtime and strongly reduce capacity. Suggest leaving it at its default.

Default: Automatic

INDUCTANCE_MIN_LENGTH: float

Specifies the minimum length for a resistor (metal segment) to be included in inductance.

Default: 1um

INDUCTANCE_REL_THRESHOLD: float_percent

Reluctance terms less than this percentage of the corresponding matrix diagonal are dropped. Increasing this parameter reduces accuracy and simulation time.

Default: 1 percent.

Mutual Inductance Test Results

Standalone Fast Henry vs StarRC on Parallel Bus (Manual Testcase)

- Comparison of Impedance values between Fast Henry and StarRC
- Design Spec:
- 5 parallel lines
- 20um long, 0.36um wide, 0.85 thick (Minimum values)
- Spacing between each bus is 0.36um.
- Etching is off.
- Using TSMC 7nm nxtgrd file.
- Frequency: 2GHz

Test Results

Standalone Fast Henry vs StarRC on Parallel Bus (Manual Testcase)

- Comparison of Impedance values between Fast Henry and StarRC

	StarRC	FH	%Diff w.r.t. FH
R0=R1=R2=R3=R4	1.37	1.39	<mark>-1.438848921</mark>
L0 (Bus1)	15.785	16.046	-1.626573601
L2 (Bus2)	15.78	16.041	-1.627080606
L4 (Bus3)	15.777	16.038	-1.627384961
L6 (Bus4)	15.776	16.037	-1.627486438
L8 (Bus5)	15.776	16.037	-1.627486438
K_0 L0 L2	0.740921	0.74142	-0.067303283
K_1 L0 L4	0.590388	0.591194	-0.136334266
K_2 L0 L6	0.500611	0.501628	-0.202739879
K_3 L0 L8	0.438257	0.439461	-0.273971979
K_4 L2 L4	0.740861	0.741494	-0.085368189
K_5 L2 L6	0.590336	0.591327	-0.167589168
K_6 L2 L8	0.500589	0.501805	-0.242325206
K_7 L4 L6	0.740835	0.741558	-0.097497431
K_8 L4 L8	0.59032	0.591442	-0.189705838
K_9 L6 L8	0.740829	0.741613	-0.105715515

Mutual Inductance Extraction –Set-up (Example)

• Expected command file setup:

INDUCTANCE_MODE: INDUCTANCE

INDUCTANCE_SELECT_BB: -36.5 12 -6.4 43.3

INDUCTANCE_SELECT_LAYER: M13 M12 M11

INDUCTANCE_REL_THRESHOLD: 1

*INDUCTANCE_MIN_LENGTH: 0.7

INDUCTANCE_SELECT_NET: vo_m

INDUCTANCE_FREQUENCY: 1

Recommended Settings:

POWER_EXTRACT: YES

MERGE_VIAS_IN_ARRAY: YES

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

Transistor level performance improvement

- 1.5X faster runtime VS P-2019.03
 - -Single corner run
 - GPD enabled
 - -8 cores
 - Higher speedup when reduction: high/netlist_remove_dangling_branches: yes/mos_gate_non_negative_delta_resistance:yes is set
 - Similar accuracy to previous release
- Source of speedup
 - Netlist stage DP (good scalability when using 1-8 cores)
 - Other enhancements:
 - Algorithm optimizations for netlist_remove_dangling_branches/mos_gate_non_negative_delta_resistance/opens detection/xref:yes
 - Via merge stage DP

Tx-level Performance Improvement

 Improvements in pre-extract and postextract stages

– Pre-Extract Stage

- Distributed processing for ViaMerge stage
- Performance improvement in Xref and HN stages
- DP for TRBL:CONLY and pcell layers file

Post-Extract Stage

- Memory and performance optimizations in GPD flow
- Netlist DP feature in GPD flow
- Average percentage improvement : 38%

OVERALL RUNTIME B/W 1903 AND 1912

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

Tx GPD 2nd Tier Options Support

- List of Previously unsupported commands that will be supported in GPD for 2019.12
 - Full VI/OA flow support (OBSERVATION_POINTS support for probing available in 2019.12 production code)
 - Support FS flow
 - NETLIST_FORMAT: NETNAME
 - NETLIST_NODENAME_NETNAME support on dangling ports (new command NODENAME_NETNAME_ON_DANGLING_PORTS will be added)
 - -CAPACITOR_TAIL_COMMENTS
 - -EM_PARAM_MAPPING_FILE
 - -EXPLODE_TRIVIAL_INSTANCE_PORTS
 - -NETLIST_COUPLE_UNSELECTED_NETS:IDEAL
 - NETLIST_SELECT_NETS with netlist reduction
 - -EXTRACTION: R
 - -NETLIST_SWAP_TERMINAL
 - -NETLIST_MOVE_SPICE_TYPE_TO_LAST

Tx GPD on by Default since 2019.03

Tx GPD New Features

- Enhance GPD to have more information:
 - -Scale information
 - -Prefix for layout only devices and layout only nets
 - -Text file to know INSTANCE SECTION
- Benefits
 - -To improve performance and
 - -To improve EOU for BA flow
 - -Supported by FineSim 2019.06 or later versions.

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

In_* instance port explode option

- Sometimes there are untexted ports that are generated during LVS.
- These are also referred to as trivial instance ports
- Such ports are created during LVS due to non-critical material (such as fill) overlap between skip cell and the parent.
- These are not connected down to any devices in the hierarchy.
- These instance ports come out with a In_ prefix by default in StarRC output.
- These ports do not exist in the schematic/verilog, and can cause back annotation issues during STA.

In_* instance port explode option

- To avoid issues downstream, users would prefer a way to explode these ports.
- StarRC is enhanced with new command

```
EXPLODE_TRIVIAL_INSTANCE_PORTS:YES (default:no)
to support this feature
```

- This removes the In_ports from the netlist, by exploding them to the parent level.
- It will also remove the trivial ports in NETLIST_IDEAL_SPICE_FILE (exception is when SPICE_SUBCKT_FILE has port definitions for the SKIP_CELLS, in which case the ports are dictated by SPICE_SUBCKT_FILE.)

New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

Parasitic Explorer – Extended to Tx-level

Interactive Design Analysis and Exploration

- Dominant layer in a timing path
- Identify nets contributing higher RC on a path
- Net with dominating RC on a timing path
- Worst aggressor on a net in timing path
- Average aggressor on a net in timing path

Path Based Analysis Net Based Analysis

- Layer wise length distribution of a net
- Identify nets routed on top metal layers
- Total Cap, Ground Cap, Resistance report
- Report width/layer of all resistor segments of a net
- Point to point equivalent resistance between driver and receiver
- Identify shortest resistive path on a net
 List all non-physical resistors for EM

Corner Based Analysis GUI Support Under Planning

- Use Virtuoso Interface as UI for VI customers
- Use CustomCompiler as UI for CC customers

• Capacitance variation between specific corners

Resistance variation between specific corners

SYNOPSYS

Tcl Flow and Usage in starrc_shell

Usage

1. Run extraction with the following command

```
PARASITIC EXPLORER ENABLE ANALYSIS: YES
```

Invoke the StarRC shell

```
% starrc shell
```

3. For SMC designs, set the parasitic corner

```
starrc_shell> source <gpd_dir>/starrc_shell_init.tcl
```

4. Use Parasitic Explorer commands to obtain parasitics for design objects.

```
starrc_shell> get_coupling_capacitors ...
starrc_shell> get_ground_capacitors ...
starrc shell> get resistors ...
```

```
set gpd_read_remove_buslike_escape false
read_parasitics -keep_capacitive_coupling \
    -format GPD toprt.gpd
current_design toprt
```

<gpd_dir>/starrc_shell_init.tcl

Recap: Parasitic Explorer Command Examples

Synopsys Confidential Information

Multicorner GPD Usage Model

- A GPD may consist of simultaneous multicorner extraction data
- Parasitic explorer allows access to data from these multiple corners
- You can query RC elements for all corners or a subset of corners available in the GPD

SYNOPSYS

Design	Object	Type	Attribute Name	Value
top test macro	resistor	int	node1_index	13
top_test_macro	resistor	string	node1_name	min_lsb/n76:13
top_test_macro	resistor	collection	node2_ground_capacitor	ground_capacitor
top_test_macro	resistor	int	node2 index	6
top_test_macro	resistor	string	node2 name	min_lsb/n76:6
top_test_macro	resistor	string	object class	resistor
top_test_macro	resistor	float	resistance	0.0104149

Design	Object	Туре	Attribute Name	Value
top test macro	resistor	int	node1 index	13
top test macro		string	node1 name	min lsb/n76:13
top test macro			node2 ground capacitor	ground capacitor
top test macro	resistor	int	node2 index	6
top test macro	resistor	string	node2 name	min lsb/n76:6
top_test_macro	resistor	string	object_class	resistor
top test macro	resistor	float	resistance multicorner	0.0104149 0.0108459 0.0103234

© 2019 Syriopsys, Inc. 39

Recap: Parasitic Explorer Point to Point Resistance

Report the equivalent or effective resistance between two nodes of a net

```
starrc_shell> get_point_to_point_resistance -from min_msb/U21/A -to min_msb/U20/X
0.0176175
```

Syntax

```
get_point_to_point_resistance

[-quiet] Suppresses warning and error messages no objects exist

[-parasitic_corners corner_names] Specifies the corners in the GPD to query (for SMC GPD)

[-all_parasitic_corners] Queries all parasitic corners (for SMC GPD)

-from node1 -to node2 Specifies the start and end point. Can be a pin, port or internal node
```


User TCL: report_point_to_point_resistance

Reports P2P R for all pin/instance port combinations of the specified net

<u>Usage:</u>

starrc_shell> report_point_to_point_resistance \
 -of_objects < list or collection of nets>

Output:

- Pin1, pin2 and equivalent P2P R
- All combinations of *P/*I are computed

```
starrc_shell> report_point_to_point_resistance -of objects "SUMO BO"
Net: SUMO
|Report Type: P2P R
Pin1
           Pin2
====
          ====
SUMO
          0/33/M2/s 0.002518
SUMO
          0/33/M1/s 0.002802
|0/33/M2/s 0/33/M1/s 0.001385
Net: BO
Report Type: P2P R
          Pin2
Pin1
====
           ====
                     =====
          0/38/M5/g 0.051076
          0/38/M2/g 0.027876
          0/53/M3/g 0.059847
          0/53/M1/g 0.036113
          0/49/M3/g 0.046901
          0/49/M1/g 0.043435
          0/54/M5/g 0.043880
          0/54/M2/g 0.043079
|0/38/M5/g 0/38/M2/g 0.074400
0/38/M5/g 0/53/M3/g 0.108194
0/38/M5/g 0/53/M1/g 0.084461
0/38/M5/g 0/49/M3/g 0.095249
                          Output
```

Recap: Parasitic Explorer RC Object Attributes

starrc_shell> list_attributes -application -class resistor					

Attribute Name	Object	Туре	Properties		
area	resistor	float	Α		
is_short	resistor	boolean	Α		
is_via	resistor	boolean	Α		
is_via_array	resistor	boolean	Α		
is_via_ladder_em	resistor	boolean	Α		
is_via_ladder_high_perfo	rmance resi	stor boolean	Α		
layer_id	resistor	_	Α		
layer_name	resistor		Α		
length	resistor	float	Α		
net	resistor				
node1_ground_capacitor	resistor		Α		
node1_index	resistor		Α		
node1_name	resistor	•	Α		
node2_ground_capacitor	resistor	collection	Α		
node2_index	resistor	int	Α		
node2_name	resistor	0	Α		
object_class	resistor	string	Α		
resistance	resistor	float	Α		
resistance_max	resistor	float	Α		
resistance_min	resistor		Α		
resistance_multicorner	resistor	0	Α		
via_array_nx	resistor	int	Α		
via_array_ny	resistor	int	Α		
via_array_perimeter	resistor	float	Α		
width	resistor	float	Α		
x_coordinate_max	resistor	float	Α		
x_coordinate_min	resistor		Α		
y_coordinate_max	resistor		Α		
y_coordinate_min	resistor	float	Α		

Some attribute definitions depend on extraction settings

StarRC Setting	Associated Attributes
NETLIST_TAIL_COMMENTS: YES	is_viais_via_arraylengthwidth
EXTRA_GEOMETRY_INFO: RES	x_coordinate_maxx_coordinate_miny_coordinate_maxy_coordinate_min
Single corner extraction	resistance
SMC extraction	resistance_maxresistance_minresistance_multicorner

Tx-level: report_coupling_capacitors

A0:12

A0:13

metal2

metal2

B0:24

B0:13

Report coupling capacitors of a net

```
starro_shell> source public/proc_report_coupling_capacitors.tcl
starrc_shell> report_coupling_capacitors -of_objects SUMO
_____
Net: SUMO
Total capacitance: 0.013721
Report Type: Aggressors, summary
_____
Total CCAP
              %Cc/Ct
                            Aggressor Net
========
              =====
                            =========
0.000925
              6.741491
                            ΒO
0.000908
              6,617593
                            ΑO
0.000468
              3,410830
starrc_shell> get_pins -of [get_nets SUMO]
{"0/33/M2/s", "0/33/M1/s"}
starrc_shell> report_coupling_capacitors -of_objects SUMO -verbose
_____
Net: SUMO
Total capacitance: 0.013721
Report Type: Aggressors, detailed
Victim Node Victim Layer Aggressor Node Aggressor Layer Capacitance %Cc/Ct
0/33/M2/s SUBSTRATE
                                                           2.179141
                      A0:24
                                   metal1
                                                 0.000299
SUMO:5
          metal2
                      A0:24
                                                 0.000047
                                                           0.342541
                                   metal1
0/33/M2/s
          SUBSTRATE
                      A0:25
                                   metal1
                                                 0.000060
                                                           0.437286
SUMO:5
          metal2
                      A0:25
                                   metal1
                                                 0.000502
                                                           3.658625
0/33/M2/s
          SUBSTRATE
                      B0:25
                                                           2,696596
                                   metal1
                                                 0.000370
SUM0:4
          metal2
                      B0:25
                                   metal1
                                                 0.000001
                                                           0.007288
SUMO:5
                      B0:25
                                                 0.000504
                                                           3.673202
          metal2
                                   metal1
                                                           0.364405
SUMO:5
          metal2
                      B0:26
                                   metal1
                                                 0.000050
0/33/M1/s
          SUBSTRATE
                      CIN:20
                                   metal1
                                                 0.000354
                                                           2,579987
SUMO:9
          metal1
                      CIN:20
                                   metal1
                                                 0.000109
                                                           0.794403
SUMO:9
                      CIN:21
                                                           0.036440
          metal1
                                   metal1
                                                 0.000005
```

```
Instance Section
M0/38/M3 0/38/M3:d 0/38/M3:q GND GND n AD=19.5p AS=39p L=1u PD=16u PS=32u W=13u
M0/38/M2 0/38/M2:d 0/38/M2:g 0/38/M2:s GND n AD=19.5p AS=19.5p L=1u PD=16u PS=16u W=13u
M0/39/M1 GND 0/39/M1:g 0/39/M1:s GND n AD=39p AS=39p L=1u PD=32u PS=32u W=13u
M3/52/M1 GND 3/52/M1:g 3/52/M1:s GND n AD=39p AS=39p L=1u PD=32u PS=32u W=13u
M3/53/M1 3/53/M1:d 3/53/M1:g 3/53/M1:s GND n AD=13p AS=39p L=1u PD=15u PS=32u W=13u
                starrc_shell> get_cells 0/38/M3
                {"0/38/M3"}
                starrc_shell> get_pins -of [get_cells 0/38/M3]
                {"0/38/M3/d", "0/38/M3/g", "0/38/M3/s", "0/38/M3/b"}
        starrc_shell> get_nets -of [get_pins 0/38/M3/g]
        starrc_shell> report_coupling_capacitors -of_objects A0
        Net: A0
        Total capacitance: 0.092668
        Report Type: Aggressors, summary
        _____
        Total CCAP
                      %Cc/Ct
                                     Aggressor Net
        ========
                      =====
                                     =========
        0.014877
                      16.054086
        0.000908
                      0.979842
                                     SUMO
        starrc_shell> report_coupling_capacitors -of_objects AO -verbose
        _____
        Net: A0
        Total capacitance: 0.092668
        Report Type: Aggressors, detailed
        _____
        Victim Node Victim Layer Aggressor Node Aggressor Layer Capacitance %Cc/Ct
        A0:10
                  metal2
                              B0:10
                                            metal2
                                                          0.000060
                                                                     0.064747
        A0:10
                              B0:11
                                            metal2
                                                                     0.008633
                  metal2
                                                          0.000008
        A0:10
                  metal2
                              B0:22
                                            metal1
                                                          0.000018
                                                                     0.019424
        A0:11
                  metal2
                              B0:13
                                            metal2
                                                          0.000039
                                                                     0.042086
        A0:12
                                                                     0.159710
                  metal2
                              B0:11
                                            metal2
                                                          0.000148
        A0:12
                  metal2
                              B0:12
                                            metal2
                                                          0.000042
                                                                     0.045323
        A0:12
                  metal2
                              B0:13
                                            metal2
                                                          0.000011
                                                                     0.011870
        A0:12
                                                                     0.004316
                  metal2
                              B0:23
                                            metal1
                                                          0.000004
```

metal1

metal2

0.000004

0.000192

0.004316

0.207191

Tx-level: report_ground_capacitors

Report ground capacitors of a net

<u>Usage:</u>

```
starrc_shell> report_ground_capacitors \
    [-of_objects "list or collection of nets"]
    [-from "from pin/port/node"]
    [-to "to pin/port/node"]
```

For nets with escape character, use "get_nets -exact"

e.g. report_ground_capacitors -of_objects [get_nets -exact {net\\[0\\]}]

Output:

- Report with nodes, layer, capacitance, %Cg/Ct
- Report of all ground capacitors of a net along with % ratio of ground capacitance to total capacitance

```
starrc_shell> report_ground_capacitors -of_objects "SUMO BO"
Net: SUMO
Total capacitance: 0.013721
Report Type: Ground Capacitors
                     Capacitance %Cg/Ct
Node:
          Layer
====
          =====
0/33/M2/s SUBSTRATE 0.000749
                                  5.458786
0/33/M1/s SUBSTRATE 0.000387
                                  2.820494
SUMO:4
          metal2
                     0.000247
                                  1.800160
SUMO:5
          metal2
                     0.002221
                                  16,186867
                     0.002150
                                 15,669412
SUMO:6
          metal2
SUMO:7
          metal2
                     0.001408
                                  10,261643
                                  11.529772
SUMO:8
          metal1
                     0.001582
SUMO:9
          metal1
                     0.000479
                                  3,490999
SUM0:10
          metal1
                     0.000255
                                  1.858465
SUMO:11
          metal1
                     0.000293
                                  2.135413
SUM0:12
          metal1
                     0.001649
                                  12,018074
Net: BO
Total capacitance: 0.089779
Report Type: Ground Capacitors
Node:
                  Capacitance %Cg/Ct
          Lauer
====
          metal2 0.000000
                              0.000000
0/38/M2/g poly
                              0.000000
                  0.000000
0/38/M5/g poly
                  0.000000
                              0.000000
0/54/M5/g poly
                  0.000000
                              0.000000
0/49/M3/g poly
                              0.000000
                  0.000000
0/54/M2/g poly
                  0.000000
                              0.000000
0/53/M3/g poly
                  0.000000
                              0.000000
                 0.000000
                              0.000000
0/49/M1/g poly
                              0.000000
0/53/M1/g poly
                  0.000000
          metal2 0.000082
B0:10
                               0.091335
B0:11
          metal2 0.001010
                              1.124985
```

Ground Capacitors Report

Tx-level: report_resistors

Report resistors of a net

Usage:

```
starrc_shell> report_resistors \
```

[-of_objects "list or collection of nets"]

[-from "from pin/port/node"]

[-to "to pin/port/node"]

[-verbose]

For nets with escape character, use "get_nets -exact" e.g. report_resistors -of_objects [get_nets -exact {net\\[0\\]]}]

Output:

- Net or path based report with nodes, resistance, layer, length, width, bbox
- Default "-type" is "summary". Reports only nodes and resistance value
- Detailed report lists layer, length, width, bbox

Tx-level: report_total_net_capacitance

Calculate and report the total capacitance of a net

<u>Usage:</u>

starrc_shell> report_total_net_capacitance \
or collection of nets>

For nets with escape character, use "get_nets -exact" e.g. report_total_net_capacitance [get_nets -exact {net\\[0\\]}]

Output:

List of nets provided with their total capacitance

Tx-level: report_routed_nets

Reports all nets on specified layer (e.g. top AP layer)

<u>Usage:</u>

starrc_shell> report_routed_nets \
-layer "list of layers"

Output:

• List of nets, total capacitance and percentage layer contribution to total capacitance

starrc_shell> report_routed_nets -layer "metal2 metal3"					
Total number of nets routed on metal2: 16					
Net Name	Total Capacitance	metal2 Capacitance	%metal2/Ct		
A0	0.092668	0.012534	13.525705		
A1	0.092722	0.012547	13.531848		
A2	0.092721	0.012547	13.531994		
A3	0.092721	0.012544	13.529196		
BO	0.089779	0.012808	14.266142		
B1	0.089778	0.012809	14.267415		
B2	0.089778	0.012809	14.267415		
B3	0.089776	0.012809	14.267733		
CIN	0.064663	0.003958	6.120966		
SUMO	0.013721	0.007130	51.964143		
ISUM1	0.013721	0.007130	51.964143		
SUM2	0.013721	0.007130	51.964143		
SUM3	0.013721	0.007130	51.964143		
n6	0.066932	0.007150	5.913464		
n7	0.066931	0.003958	5.913553		
n8	0.066931	0.003958	5.913553		
	^+00033T	V+003330	2+212332		
Total num	Total number of nets routed on metal3: 0				
Net Name	Total Capacitance	metal3 Capacitance	%metal3/Ct		

Tx-level: report_length_layerwise

Reports the layerwise length distribution of a net

<u>Usage:</u>

starrc_shell> report_length_layerwise \
-of_objects "list or collection of nets"

Output:

- Layerwise length report of nets
- Requires NETLIST_TAIL_COMMENTS: YES during extraction

```
|starrc_shell> report_length_layerwise -of "SUMO BO"
|ERROR: Length attribute does not exists. Please check if extraction was run with NETLIST_TAIL_COMMENTS: YES
```


Tx-level: report_bounding_box

Reports the approximate bounding box of a net

<u>Usage:</u>

starrc_shell> report_bounding_box \
-of_objects "list or collection of nets"

Output:

- Net with Ilx, Ily, urx, ury coordinates
- Coordinates of ground capacitor nodes are used for computation

starrc_shell> report_bounding_box -of_objects "SUM0 B0"					
====== Net Name	11 _Y	======== lly	urx	======= uru	
======	=======	=======	========	========	
SUMO Bo	-467,000000 -497,000000	11.000000 2.500000	-458,000000 -272,00000	82,000000 92,000000	
ĮΦV .	-497,000000	Z.300000	-272,000000	82,000000	

Tx-level: report_rc_contribution

Reports the approximate bounding box of a net

<u>Usage:</u>

starrc_shell> report_rc_contribution \
-of_objects "list or collection of nets"

Output:

 Report of net name, total capacitance, total resistance and layer wise % contribution for capacitance and resistance

```
-----
Net Name: SUMO
|Total Resistance: 0.003476 KOhms
Total Capacitance: 0.013721 pF
         ResValue(KOhms) %ResContribution CapValue(pF) %CapContribution
Layer
SUBSTRATE 0.001100
                       31.645570
                                      0.002219
                                                 16,172291
                      12.917146
                                      0.004372
                                                 31.863567
        0.000449
metal1
metal2
        0.001927
                       55,437284
                                      0.007130
                                                 51.964143
|Net Name: BO
|Total Resistance: 0.581682 KOhms
Total Capacitance: 0.089779 pF
      ResValue(KOhms) %ResContribution CapValue(pF) %CapContribution
                    1.374634
                                   0.051307
                                               57,148108
|metal1 0.007996
metal2 0.005152
                    0.885707
                                   0.012808
                                               14.266142
polu 0.568534
                    97,739658
                                   0.025664
                                               28.585749
```


Tx-level: report_net_connectivity

Report *P, *I and cells connected to a net

Usage:

For nets with escape character, use "get_nets -exact" e.g. report_net_connectivity [get_nets -exact {net\\[0\\]}]

Output:

- Report with *P, *I and cells
- *P report contains pin name, direction and x/y coordinates
- *I report contains port name, direction, cell name, x/y coordinates
- Cell report contains name, bounding box x/y coordinates

```
|starrc_shell> report_net_connectivity SUMO
|Net: SUMO
Report Type: Net Connectivity
*P Name Direction x-coordinate
ISUMO-
                 -459500,000000 81000,000000
         Direction Cell
*I Name
0/33/M2 -462500.000000 36250.000000
0/33/M1/s inout
                0/33/M1 -462500,000000 11000,000000
Cell.
       x-coordinate min y-coordinate min x-coordinate max y-coordinate max
                       36250.000000
                                        -462500.000000
0/33/M2 -462500.000000
                                                        36250,000000
0/33/M1 -462500.000000
                       11000.000000
                                        -462500,000000
                                                        11000,000000
```

Detailed Connectivity Report

Tx-level: report_top100cg_corners

Reports top 100 nets with largest ratio of ground cap between parasitic corners

<u>Usage:</u>

starrc_shell> report_top100cg_corners \
-parasitic_corners < corner1 corner2>

Output:

- List of nets with ratio of Cg (corner1/corner2)
- The Cg for each net is summed up when computing Cg1/Cg2

```
_____
Report Type: Top 100 Cg Variation
Parasitic Corner 1: typ
Parasitic Corner 2: max
_____
Net
                          Ratio
                          ====
sec_msb/cnt_blk1/n181
                         1.054146
min_msb/cnt_blk1/n224
                          1.052174
min msb led[3]
                         1.051689
min_msb/conv_blk1/n122
                         1.050078
                          1.049475
min_msb_led[4]
min lsb led[0]
                         1.049014
sec_lsb/cnt_blk1/n145
                         1.048507
min msb led[5]
                          1.047774
sec_lsb/cnt_blk1/reg_in[1]
                          1.046881
```

Output

Tx-level: report_dominant_layer_in_path

Reports the R and C dominant layer for a specified path (PT) or list of nets (StarRC/PT)

Usage:

Output:

- The options -from/-to are only supported in PT (uses get_timing_paths)
- The -nets option is supported in StarRC and PT

```
starrc_shell> report_dominant_layer_in_path -of "SUMO BO"

List of nets in specified timing path:
net 1: SUMO
net 2: BO

Total number of nets in the timing path: 2

R dominant layer: poly
Total R on poly: 0.568534

C dominant layer: metal1

Total C on metal1: 0.055679
```

Output

Tx-level: report_point_to_point_resistance

Reports P2P R for all pin/instance port combinations of the specified net

<u>Usage:</u>

starrc_shell> report_point_to_point_resistance \
 -of_objects < list or collection of nets>

Output:

- Pin1, pin2 and equivalent P2P R
- All combinations of *P/*I are computed

```
starrc_shell> report_point_to_point_resistance -of objects "SUMO BO"
Net: SUMO
|Report Type: P2P R
Pin1
           Pin2
====
           ====
SUMO
          0/33/M2/s 0.002518
SUMO
          0/33/M1/s 0.002802
|0/33/M2/s 0/33/M1/s 0.001385
Net: BO
Report Type: P2P R
          Pin2
Pin1
====
           ====
                     =====
          0/38/M5/g 0.051076
          0/38/M2/g 0.027876
          0/53/M3/g 0.059847
          0/53/M1/g 0.036113
          0/49/M3/g 0.046901
          0/49/M1/g 0.043435
          0/54/M5/g 0.043880
          0/54/M2/g 0.043079
|0/38/M5/g 0/38/M2/g 0.074400
0/38/M5/g 0/53/M3/g 0.108194
0/38/M5/g 0/53/M1/g 0.084461
0/38/M5/g 0/49/M3/g 0.095249
                          Output
```


New Features in Q-2019.12 for Tx-Level Flow

- All Angle Extraction On By Default
- Standalone Reducer
- Mutual Inductance Extraction
- Transistor Level Performance Improvement
- Transistor Level GPD Support for Additional Options
- Exploding Trivial Instance Ports
- Parasitic Explorer Tx Shell
- QuickCap Partition Speed-up

QuickCap Partition Speedup

- Quickcap is a 3D field solver. Using Quickcap to extract a lot of nets may be slow. In order to
 improve the runtime and efficiency to extract designs with a lot of nets, a speed-up is required.
- The objective is to support "-partition" Quickcap run. Then quickcap run can use a lot of lsf machines efficiently, where accuracy impact is small.
- A new option is available to define window size, margin for each window, and fringe to specify the boundary to ensure the integration surfaces are included.
- Quickcap run can use –LSF for independent partition runs
- A –totalC option can be used to optimize in a partition run. For example, with a setting "-totalC 30,8,2,1", quickcap first runs with 30% goal and output totalC, then 8%, 2%, and final 1%. Each run is based on latest totalC results.

QuickCap Partition Speedup: User Interface

- Usage option for quickcap partition run:
 - "-partition <window> <margin> <fringe> <-totalC 20,5,2,1> -LSF <num>"
 - Default values:
 - <window> based on number of nodes and number of cores
 - window = sqrt((xSize+0.2um)*(ySize+0.2um)/numPartitions), cutoff 0.5um <= window <= 2um</p>
 - numPartittions = totalNumNet / 200(avgNumNetPerPartition)
 - <margin> based on number of nodes
 - If netNum <= 30k, 5um
 - If 30k < netNum < 210k, internal algorithm is used to calculate <margin> based on memory/net relation
 - If netNum > 210k, 2um
 - <fringe> 0.1um
 - -<-totalC> "20,5,2,1"
 - Before -LSF run, make sure to set LSF farm environment parameter, for example
 - setenv LSF STR 'qsub -P bnormal -I "qsc=m mem_free=4.0G"
 - Currently supports "-d" accuracy goal option only, otherwise fallback to non-partition runs.

QuickCap Partition Speedup: Special Situations

- Scenarios to turn off –partition with –lsf
 - Number of nodes < 4000
 - "-g pct", "-g capacitance", "-g pct@capacitance" "-g pct@capacitance" "-g pct1@value...pct2"
- Error and Warning
 - -*.cap file should come from latest version gds2cap. Previous release' *cap may not work for this function.
 - ERROR: quickcap cannot find "layoutMerics" in header of cap file while –partition is on.
 - If number of lsf is larger than number of partition
 - WARNING: When number of partitions is less than number of cores, reduce the number of cores to number of partitions and send out warning message
 - If number of nodes is less than 4k or "-g" is used
 - WARNING: Revert to flat run for number of nodes < 4000 or "-g" is used</p>

New Features in Q-2019.12 Common for both flows

- Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)
- Compare Parasitics Multi Process/DP
- Compare Parasitics XY pin matching
- Different DOB Per Corner in SMC Flow
- Negating Wild Cards In Power Nets

Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)

	Current behavior	2019.12
	 grdgenxo converts RPSQ/RHO_VS_WIDTH_AND_SPACI NG to RES EVWS in nxtgrd grdgenxo converts RPSQ_VS_WIDTH_AND_SPACING to RES EVWS and write RVWS in TLUPlus for IC Compiler II StarRC uses RES EVWS for RES calculation 	 grdgenxo writes RPSQ/RHO_VS_WIDTH_AND_SPACING as RVWS table directly in nxtgrd grdgenxo writes RPSQ/RHO_VS_WIDTH_AND_SPACING as RVWS table into TLUPlus directly StarRC uses RVWS table directly during extraction in all scenarios Use drawn width and spacing to look up RVWS table for RES calculation When index is out of range during table lookup, use the border value
Issue	 Wrong \$SI_width may be reported RES may be mismatch vs. hand calculation Confusion/accuracy for IC Compiler II 	

Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)

- New behavior is only enabled by 2019.12 both StarRC and grdgenxo
- No new or changed commands needed, but need to regenerate nxtgrd with 2019.12

	Old NXTGRD file	2019.12 NXTGRD file
Old StarRC	Old behavior	If not crash, result might not be accurate.
2019.12 StarRC	Old behavior	New behavior

- Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)
- Compare Parasitics Multi Process/DP
- Compare Parasitics XY pin matching
- Different DOB Per Corner in SMC Flow
- Negating Wild Cards In Power Nets

Compare Parasitics - Multi Process/DP

 Non-DP: Current compare parasitics processes estimation netlist and reference netlist in series.

Flowchart of compare parasitics: non-DP

DP: The two netlist files are distributed into two different processes to run in parallel

- SPF/GPD Improvement
 - After processing of netlists, nets are handled sequentially
- SPEF Improvement
 - Handle nets in parallel. A consumer/producer-like paradigm is implemented

SPEF

Flowchart of compare parasitics: DP

User Interface for enabling DP compare_parasitics

New command line option

-cores {number of cores} ← Specify number of core to run multi-process

Usage:

- \$ StarXtract -compare_parasitics est.spef ref.spef -res 50 -cores 4
- \$ StarXtract -compare_parasitics est.gpd ref.gpd -corner "cbest_-40" -cores 5

Results for 4 cores, ~1.9X runtime improvement

- Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)
- Compare Parasitics Multi Process/DP
- Compare Parasitics XY pin matching
- Different DOB Per Corner in SMC Flow
- Negating Wild Cards In Power Nets

Compare Parasitics - XY pin matching

- StarRC -compare_parasitics shows significant P2P resistance and delay variances on the same physical design with DSPF netlist from
 - GDS → ICV→ StarRC → DSPF
 - OASIS→ ICV→ StarRC → DSPF
- Root cause:
 - ICV fails to produce consistent XREF for symmetric devices/instances
 - Current compare parasitics further INCORRECTLY matches the pair of start/end pins

Two ICV LVS run produce inconsistent but valid XREF

P2P Distribution -----

Max Error: 816.251%

Standard dev: 28.783%

RES threshold: 50.000 Ohm

Number of matched nets: 19499

Min Error: -100.000%

Mean Error: 1.968%

Compare Parasitics - XY pin matching

- New Behavior will be able to match symmetric devices/instances based on (x, y) coordinates.
- Results in consistent parasitic analysis (resistance and delay)

New command line options

-match {name|xy}: Pin/Port match mechanism (default: name)
Specify match as xy to enable xy-based compare parasitics. Specify it as name to revert to original name-based compare parasitics.

Usage:

\$ StarXtract -compare_parasitics <your_rc_file> <reference_rc_file> -match xy

User Configurable Pin Selection for -match xy

Options used in command line:

Command Option	Description			
-from_pin < <i>x</i> , <i>y</i> >	To specify xy coordinate of starting pin with format (<x>,<y>) when running xy-based compare parasitics. The name of pin is not applicable to xy-based compare parasitics</y></x>			
-to_pin < <i>x</i> , <i>y</i> >	To specify xy coordinate of ending pin with format (<x>,<y>) when running xy-based compare parasitics.</y></x>			
-net_config <config file=""></config>	To specify xy coordinate of pin section for config_file. The name of pin is not applicable to xy-based compare parasitics			

Usage Examples

\$ StarXtract -compare_parasitics <your_rc_file> <reference_rc_file> -match xy -from_pin "431.6,558"

\$ StarXtract -compare_parasitics <your_rc_file> <reference_rc_file> -match xy -to_pin "285.6,590.5"

\$ StarXtract -compare_parasitics <your_rc_file> <reference_rc_file> -match xy -net_config <config_file>

*Configuration file for -net_config option:

FROM_PIN: 431.6,558 TO_PIN: 284.4,233.3

FROM TO PINS: 431.6,558 284.4,233.3

Output of P2P/delay from –match xy

 The xy coordinate of pin/port and their corresponding net/pin/port names are preserved in resistance and delay report for xy-based compare parasitics → P2P.rpt

P2P error distribution consistent with name based one

```
------P2P Distribution -------
RES threshold: 50.000 Ohm
Min Error: -0.014% Max Error: 0.170%
Mean Error: 0.000% Standard dev: 0.003%
Number of matched nets: 29827
```

xy-based compare parasitics

```
------P2P Distribution -------
RES threshold: 50.000 Ohm
Min Error: -100.000% Max Error: 816.251%
Mean Error: 1.968% Standard dev: 28.783%
Number of matched nets: 19499
```

name-based compare parasitics

Compare parasitics P2P testing result

- Design Specifications: Tx level
- All showed improved results from "-match xy"

	Process	Test Strategy	RES			
Design Size			Mean	S.D.	Min	Max
2132 nets	7nm	names	-0.19%	4.37%	-100.00%	44.72%
		ху	0.00%	0.00%	-0.02%	0.02%
447 mata	14nm	names	-1.85%	13.54%	-100.00%	3.69%
447 nets		ху	0.00%	0.01%	-0.01%	0.06%
4376 nets	14nm	names	2.79%	76.61%	-100.00%	1735.77%
		ху	0.00%	0.02%	-0.18%	1.32%

Compare parasitics P2P testing result

- Design Specifications: Gate level
- All showed improved results from "—match xy"

Dosign Sizo	Process	Test Strategy	RES			
Design Size			Mean	S.D.	Min	Max
1355399 nets	7nm	names	-2.34%	5.86%	-96.47%	100.92%
		ху	0.02%	0.09%	-0.95%	1.61%
7712F moto	5nm	names	-0.19%	0.89%	-26.13%	1.09%
77135 nets		ху	0.01%	0.03%	-0.29%	1.09%
104552 mate	7nm	names	-1.02%	1.53%	-31.02%	3.55%
104552 nets		ху	0.02%	0.21%	-10.37%	2.72%

- Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)
- Compare Parasitics Multi Process/DP
- Compare Parasitics XY pin matching
- Different DOB Per Corner in SMC Flow
- Negating Wild Cards In Power Nets

Different DOB Per SMC Corner

- Currently DENSITY_OUTSIDE_BLOCK (DOB) setting is a global parameter for all layers and all corners. But density outside block may change for different corner condition and would like StarRC to extend the support for corner based setting.
- Currently StarRC supports DENSITY_OUTSIDE_BLOCK setting for all layers and all corners.
- From 2019.12, StarRC supports corner based DENSITY_OUTSIDE_BLOCK. The new SMC corner file adds DENSITY_OUTSIDE_BLOCK option, such as

CORNER_NAME: name_of_corner

TCAD_GRD_FILE: nxtgrd_path_and_file_name

OPERATING_TEMPERATURE: temperature_in_Celsius

(optional) CORNER_TYPE: NOMINAL | OTHER

(optional) MAPPING_FILE: map_file_name

(optional) VIA_COVERAGE_OPTION_FILE: via_file

(optional) DENSITY_OUTSIDE_BLOCK: floating number

^{*} Floating number is between 0.0 and 1.0

Different DOB Per SMC Corner

Introducing DOB to SMC corner impacts number of process corners as the process corner will be combination of unique nxtgrd and unique DOB value. For example, single nxtgrd and two different DOBs setting will extend process corner from original one process corner to two process corners.

- Re-implementation RVWS(RPSQ_VS_WIDTH_AND_SPACING and RHO_VS_WIDTH_AND_SPACING)
- Compare Parasitics Multi Process/DP
- Compare Parasitics XY pin matching
- Different DOB Per Corner in SMC Flow
- Negating Wild Cards In Power Nets

Ability to Negate POWER_NETS Wildcards

- POWER_NETS
 - defines which nets are power nets.
 - only support select all wildcard(*) or partial wildcard(vss*).
- The negation wildcard(!) is not supported in current StarRC version.
- If a negation wildcard is used in POWER_NETS, the negation will not work, and a warning message SX-0722 (WARNING: Negation wildcard is not supported for power nets selection. Token 'xxx' will be ignored.)
- In 2019.12, StarRC will skip the POWER_NETS input start with negation(!).
- Other POWER_NETS will be processed as expected.

Ability to Negate POWER_NETS Wildcards

User Interface

POWER_NETS: <net names>

- Net names can be:
 - -Normal net name
 - –Partial wildcard (example: vss*)
 - –Select all wildcard (*)
 - –Negation wildcard(New supported, example: !vss, !vss*, !*)

Thank You

