

A Digital Twin Paradigm: Vehicle-to-Cloud Based Advanced Driver Assistance Systems

Ziran Wang, Research Scientist
InfoTech Labs, Toyota Motor North America R&D
Mountain View, CA

COTA Presentation @ Washington D.C. Jan 12th, 2020

Outline

- Digital Twin Framework for Connected Vehicles
- Vehicle-to-Cloud Based ADAS
- Case Study on Cooperative Ramp Merging
- Conclusion

DIGITAL TWIN FRAMEWORK FOR CONNECTED VEHICLES

What is Digital Twin?

Definition

- A digital twin is a digital replica in cyber world of an entity in physical world

Trend

- Originated from aerospace field, applied to robotics, manufacturing, informatics during the past decade
- Ranked as one of the top 10
 strategic technology trends for 2019 by Gartner

• Similar Topics

- IoT, CPS, parallel systems

Features & Enablers

- Connected
 - Communication
- Homogenized
 - Sensing, Fusion,& Actuation
- Abstract
 - Modeling & Simulation
- Traceable
 - Data Storage
- Smart
 - ML/AI, Prediction,& Optimization

VEHICLE-TO-CLOUD ADAS

Paradigm of Digital Twin: V2C Based ADAS

- Advanced Driver Assistance Systems
 - Provide advisory speed information to the drivers of equipped vehicles
 - Utilize vehicle-to-cloud (V2C) communication
- System Specifications
 - No level of vehicle automation is needed
 - No vehicle on-board computer is needed
 - All computations are conducted in the cloud server by digital twin of vehicles

CASE STUDY COOPERATIVE RAMP MERGING

Motivation of Cooperative Ramp Merging

Some existing merging at on-ramps

- Limited vision
- Limited acceleration distance
- Cause congestion, and even collision

Cooperative Merging at On-Ramps

- Cooperative merging at on-ramps
 - Take advantage of V2C communication
 - Adopt "virtual vehicle" concept
 - Complete longitudinal formation before merging

Field Implementation in Riverside, CA

CONCLUSIONS AND FUTURE WORK

Conclusions and Future Work

- Digital twin benefits ADAS since it decreases vehicles' on-board computation demand
- Digital twin empowers real-time modeling for various purposes
- Further study the effect of communication delay on digital twin
- Apply this digital twin paradigm to other traffic scenarios besides cooperative ramp merging

¹Toyota Motor North America InfoTech Labs, Mountain View, CA

²University of California, Riverside

Contact: http://ziranw.github.io

Ziran Wang Research Scientist

Kyungtae Han Principal Researcher

Prashant Tiwari
Director

THANK YOU!

Xishun Liao Ph.D. Student

Xuanpeng Zhao M.S. Student

Matthew Barth Professor

Guoyuan Wu Adjunct Professor