BBT-RGB LREC-COLING 2024

Qiushi Sun qiushisun@u.nus.edu

April 29, 2024

Introduction - LREC-COLING 2024

Paper: Make Prompt-based Black-Box Tuning Colorful: Boosting Model Generalization from Three Orthogonal Perspectives (BBT-RGB)

Authors: Qiushi Sun, Chengcheng Han, Nuo Chen, Renyu Zhu, Jingyang Gong, Xiang Li, Ming Gao

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 2 / 17

Overview

- Backgrounds
- 2 BBT-RGB

3 Empirical Results and Analysis

BBT-RGB ::. Qiushi Sun .

- Background Knowledge

■ Language models are becoming larger

- Background Knowledge

- Language models are becoming larger
- It is prohibitively expensive to fine-tune the entire model for each task

BBT-RGB ::. Qiushi Sun .::

- Background Knowledge

- Language models are becoming larger
- It is prohibitively expensive to fine-tune the entire model for each task
- Prompt tuning is good, but we still need BP through the entire model

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 4 /

- Background Knowledge

- Language models are becoming larger
- It is prohibitively expensive to fine-tune the entire model for each task
- Prompt tuning is good, but we still need BP through the entire model
- Optimize prompts without BP?

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 4 / 1

- Background Knowledge

- Users usually do not have enough computing resources to run LLMs
- Providers often do not open-source model weights due to commercial reasons

Fig: Query the LMs deployed on the server.

Lisers

Is it possible to optimize the prompt without BP? → Black-Box Tuning!¹

BBT-RGB ::. Qiushi Sun .:: April 29, 2024

¹Black-box tuning for language-model-as-a-service. ICML 2022

- Previous Works: BBT & BBTv2²

Using an LLM as the backbone, completing downstream classification tasks under black-box settings by prompt-learning. The process will not use model gradient or parameters for backpropagation, only utilizing the model output.

Fig: The architecture of previous works: BBT and BBTv2

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 6 / 17

²BBTv2: Towards a Gradient-Free Future with Large Language Models. EMNLP 2022

- Areas for improvement

■ Lack of flexibility in using a single DFO algorithm.

- Areas for improvement

- Lack of flexibility in using a single DFO algorithm.
- Simple label words does not fully utilize the information returned by the black box.

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 7 / 17

- Areas for improvement

- Lack of flexibility in using a single DFO algorithm.
- Simple label words does not fully utilize the information returned by the black box.
- Unstable initialization in few-shot scenarios.

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 7 / 17

- Make Prompt-based BBT Colorful: Boosting Model Generalization from Three Orth. Perspectives

We optimize Black-Box tuning from three aspects.

Fig: The proposed method: BBT-RGB

Plug-and-play, Server/User-friendly and Effective.

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 8 / 17

- Two-Stage DFOs

The previously used evolutionary algorithm has a much higher convergence rate than the search-based algorithm, which might cause fast overfitting.

- Combining different DFOs for continuous prompt optimization.
- Leveraging the advantages of two different kinds of DFOs.
- For the mitigation of the overfitting problem.

Algorithm 1 Two-Stage DFOs **Input:** popsize: λ , intrinsic dimension:d**Input:** budget1:b1, budget2:b2, backbone: f_{model} Output: hidden variable: z 1: function TWO-STAGE DFO repeat for each hidden layer do Update z by Evolutionary DFO end for until b1 times f_{model} call for each hidden layer do 8. repeat Update z by Search-based DFO **until** b2//d times f_{model} call 10:

end for

12: end function

11:

- Two-Stage DFOs (Case Study)

- CMA-ES: Evolutionary strategy, uses population of solutions to explore parameter space.
- COBYLA: Local search, uses linear approximations for constrained optimization.

Fig: Comparison on SST-2

- M² Verbalizers

How to fully utilize limited signals?

- M² Verbalizers

How to fully utilize limited signals?

Multi-Mixed verbalizers \rightarrow Fully exploiting the information from the Black-box.

Diversified Verbalizers Construction

- 1. Manual verbalizer selection.
- Search-based verbalizer construction based on word importance estimation by TF-IDF.
- 3. Auto verbalizer generation based on neural nets (similar to LM-BFF).

Confidence of each category is represented by the avg prediction probability

BBT-RGB ::. Qiushi Sun .:: April 29, 2024 11 / 17

- In² Initialization

Instruction and In-context learning → Better init. for prompt-based tuning!

- Appropriate init. has proven to play an essential role in prompt-based tuning.
- Part1: Task-specific manual Instruction
- Part2: Iterate through the entire training set and take each sample as a demonstration.
- Assessed together on a small dev set.

Performance of BBT-RGB

- Comparing with Multiple Baselines

Method	SST-2	Yelp P.	AG's News	DBPedia	MRPC	SNLI	RTE	A
Method	acc	acc	acc	acc	F1	acc	acc	Avg.
			Gradient-Ba	sed Methods				
Model Fine-Tuning	85.39 ±2.84	91.82 ±0.79	86.36 ±1.85	97.98 ±0.14	77.35 ±5.70	54.64 ±5.29	58.60 ±6.21	78.88
Prompt Tuning	68.23 ±3.78	61.02 ±6.65	84.81 ±0.66	87.75 ±1.48	51.61 ±8.67	36.13 ± 1.51	54.69 ±3.79	63.46
P-Tuning v2	64.33 ±3.05	92.63 ±1.39	83.46 ±1.01	97.05 ±0.41	68.14 ±3.89	36.89 ± 0.79	50.78 ±2.28	70.47
Adapter	83.91 ±2.90	90.99 ±2.86	86.01 ±2.18	97.99 ±0.07	69.20 ±3.58	57.46 ±6.63	48.62 ±4.74	76.31
LoRA	88.49 ±2.90	90.21 ±4.00	87.09 ±0.85	97.86 ±0.17	72.14 ±2.23	61.03 ±8.55	49.22 ±5.12	78.01
BitFit	81.19 ± 6.08	88.63 ± 6.69	86.83 ±0.62	94.42 ±0.94	66.26 ±6.81	53.42 ± 10.63	52.59 ± 5.31	74.76
			Gradient-F	ree Methods				
Manual Prompt	79.82	89.65	76.96	41.33	67.40	31.11	51.62	62.56
In-Context Learning	79.79 ±3.06	85.38 ±3.92	62.21 ±13.46	34.83 ±7.59	45.81 ±6.67	47.11 ±0.63	60.36 ±1.56	59.36
BBT	89.56 ±0.25	91.50 ±0.16	81.51 ±0.79	79.99 ±2.95	61.56 ±4.34	46.58 ±1.33	52.59 ±2.21	71.90
BBTv2	90.33 ±1.73	92.86 ±0.62	85.28 ±0.49	93.64 ±0.68	77.01 ±4.73	57.27 ±2.27	56.68 ±3.32	79.01
BBT-RGB (ours)	92.89 ±0.26	94.20 ±0.48	85.60 ± 0.41	95.32 ±0.73	80.49 ±1.84	63.79 ±0.66	62.82 ±1.20	82.15

Table: BBT-RGB vs Gradient-based/Gradient-free Baselines

Analysis

- Across different PTMs

Comparison of BBT-RGB and baselines on the large versions of GPT-2, BART, and T5.

 Directly applicable across different model architectures.

LM	Method	SST-2	AG's News	DBPedia		
Decoder-Only Models						
GPT-2	BBT	75.53 ±1.98	77.63 ±1.89	77.46 ±0.69		
	BBTv2	83.72 ±3.05	79.96 ±0.75	91.36 ± 0.73		
	BBT-RGB	86.32 ± 0.97	82.01 ± 0.81	93.52 ±1.13		
Encoder-Decoder Models						
	BBT	89.15 ±2.01	83.98 ±1.87	92.76 ±0.83		
T5	BBTv2	91.40 ±1.17	85.11 ±1.11	93.36 ± 0.80		
	BBT-RGB	92.91 ±0.97	85.50 ±1.32	93.74 ±0.56		
BART	BBT	77.87 ±2.57	77.70 ±2.46	79.64 ±1.55		
	BBTv2	89.53 ± 2.02	81.30 ±2.58	87.10 ±2.01		
	BBT-RGB	92.63 ±1.43	82.76 ±1.74	88.26 ±1.06		

Table: Experiments on different backbones.

Analysis

- Across different PTMs

Comparison of BBT-RGB and baselines on the large versions of GPT-2, BART, and T5.

- Directly applicable across different model architectures.
- Notable performance improvement.

LM	Method	SST-2	AG's News	DBPedia		
Decoder-Only Models						
GPT-2	BBT	75.53 ±1.98	77.63 ±1.89	77.46 ±0.69		
	BBTv2	83.72 ±3.05	79.96 ±0.75	91.36 ± 0.73		
	BBT-RGB	86.32 ± 0.97	82.01 ± 0.81	93.52 ±1.13		
Encoder-Decoder Models						
	BBT	89.15 ±2.01	83.98 ±1.87	92.76 ±0.83		
T5	BBTv2	91.40 ±1.17	85.11 ±1.11	93.36 ±0.80		
	BBT-RGB	92.91 ±0.97	85.50 ±1.32	93.74 ±0.56		
BART	BBT	77.87 ±2.57	77.70 ±2.46	79.64 ±1.55		
	BBTv2	89.53 ± 2.02	81.30 ±2.58	87.10 ±2.01		
	BBT-RGB	92.63 ±1.43	82.76 ±1.74	88.26 ±1.06		

Table: Experiments on different backbones.

Analysis

- Cost-Effectiveness

- Better Performance
- Moderate Parameter Modifications
- More Stability

Fig: Cost-effective analysis

Acknowledgement

▼ BBT-RGB is also derived from a prize-winning solution of the *First International Algorithm Case Competition: PLM Tuning Track, Guangdong-Hong Kong-Macao Greater Bay Area.*

The End

Thank You!