MATH 425b MIDTERM EXAM 1 February 19, 2016 Prof. Alexander

Problem

Points

23

24

28

25

100

Score

Last Name:	1
First Name:	2
USC ID:	3
Signature:	4
	Total

Notes:

- (1) Use the backs of the sheets if you need more room.
- (2) If you can't do part (a) of a problem, you can assume it and do part (b).

(1)(23 points) Suppose $\{\phi_n, n \geq 1\}$ is an orthonormal system on [a, b], and $f \sim \sum_{n=1}^{\infty} c_n \phi_n$, meaning the Fourier coefficients of f with respect to $\{\phi_n\}$ are the c_n . Let $\{a_n\}$ be any other sequence in $\mathbb C$ (that is, $a_n \neq c_n$ for at least one n.) Show that $\sum_{n=1}^{N} a_n \phi_n(x)$ does not converge in L^2 to f(x), as $N \to \infty$. HINT: Use something from the proof of Theorem 8.11.

- (2)(24 points) You may take the following as given: the function $f(x) = (1-x)^{-2/3}$ has Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ and the coefficients $a_n = \frac{f^{(n)}(0)}{n!}$ satisfy $a_n \to 0$. For every x inside the radius of convergence, the sum is f(x).
- (a) Show that the radius of convergence is at least 1, that is, the series converges for |x| < 1.
- (b) Without calculating the coefficients a_n , show that $\sum_n a_n$ diverges. HINT: Consider $x \nearrow 1$. There's very little to do if you apply the right theorem.

(3)(28 points) Let \mathcal{F} be an equicontinuous family of functions from $[0, \infty)$ to \mathbb{R} , [and suppose f(0) = 0 for all $f \in \mathcal{F}$. Added at exam.] Show that there is a uniform linear bound for the functions in \mathcal{F} , that is, there exist A, B > 0 such that

$$|f(x)| \le A + Bx$$
 for all $f \in \mathcal{F}$ and $x \in [0, \infty)$.

HINT: Let $\epsilon = 1$ and take δ from the definition of equicontinuity. Prove it first when x is one of the values $0, \delta, 2\delta, 3\delta, \dots$

(4)(25 points) Let

$$C_B[0,1) = \{\text{all continuous functions } f: [0,1) \to \mathbb{R} \text{ with } ||f||_{\infty} < \infty\}.$$

with distance given by the sup norm, $d(f,g) = \sup_{x \in (0,1]} |f(x) - g(x)|$, and let

$$\mathcal{A} = \{ f \in C_B[0,1) : \lim_{x \to 1} f(x) = 0 \}.$$

You may take as given that A is an algebra.

- (a) Show that \mathcal{A} separates points on [0,1) and vanishes at no point of [0,1).
- (b) Show that \mathcal{A} is not dense in $C_B[0,1)$. Explain why this does not violate the Stone-Weierstrass Theorem, 7.32.