Simulación del sistema solar

Por: Juan José Caballero y Laura Ortiz

- O1. Descripción del Problema
- 02. Modelo
- 03. Simulaciones
- O4. AnálisisMatemático
- 05. Conclusiones

DESCRIPCIÓN DEL PROBLEMA

Modelar y simular el sistema solar, para visualizar el movimiento de los planetas a medida que se mueven en órbita alrededor del sol.

MODELO

$$\ddot{\mathbf{r}} = \frac{-Gm_1}{r^2} \hat{\mathbf{r}}$$

$$\hat{\mathbf{d}} = \frac{\mathbf{d}}{|\mathbf{d}|},$$

SIMULACIÓN MERCURIO

SIMULACIÓN VENUS

SIMULACIÓN TIERRA

SIMULACIÓN MARTE

SIMULACIÓN JÚPITER

SIMULACIÓN SATURNO

SIMULACIÓN URANO

SIMULACIÓN NEPTUNO

CONCLUSIONES

- La dificultad de conseguir órbitas estables.
- Las ecuaciones diferenciales son útiles al momento de modelar.
- El modelo es una base para poder modelar con perturbaciones.

REFERENCIAS

http://www.astrosen.unam.mx/~aguilar/MySite/Teaching_files/BasicEqns-1.pdf

