mash No Baseline

Sarah Urbut

August 10, 2016

Contents

1	Purpose	2
2	Defining the Old Model	2
3	Applications 3.1 Selecting The Covariance Matrices	3
4	Likelihood	4
5	Posteriors	5
6	Differences required over mash implementation	5

1 Purpose

The purpose of this document is to propose a method for extending mash to estimate 'true' effects across conditions in a setting in which no obvious baseline exists. We assume that we observe noisy, uncentered averages \hat{C}_{jr} in each of R conditions, and seek to estimate the underlying true 'deviations' from average measurement across conditions and can be seen as the effects in mash.

Here, the use of bold-face notation indicates a vector, while matrix quantities are typeset in capital but unboldface letters.

2 Defining the Old Model

For a given gene-snp pair, \boldsymbol{b} represents the R vector of unknown standardized effect. We model the prior distribution from which \boldsymbol{b} is drawn as a mixture of multivariate *Normals*.

$$b|\pi, \mathbf{U} \sim \sum_{\mathbf{k}, \mathbf{l}} \pi_{\mathbf{k}, \mathbf{l}} N_{\mathbf{R}}(\mathbf{0}, \omega_{\mathbf{l}} \mathbf{U}_{\mathbf{k}})$$
 (1)

Furthermore, for a given gene-snp pair, the Likelihood on b:

$$\hat{\boldsymbol{b}}|\boldsymbol{b} \sim N_R(\boldsymbol{b}, \hat{V})$$
 (2)

Now, we observe for each gene j a vector of uncentered noisy average feature expression \hat{C} across R conditions:

$$\hat{\boldsymbol{C}}|\boldsymbol{C} \sim N_R(\boldsymbol{C}, \hat{V})$$
 (3)

where the 'true' uncentered averages C can be written as follows:

$$C|\mu, \mathbf{v} = \mu \mathbf{1} + \mathbf{v} \tag{4}$$

Where μ is a scalar that is the mean of the 'true' uncentered averages C.

 \boldsymbol{v} is a zero-centered mixture of multivariate normals:

$$v|\pi, \mathbf{U} \sim \sum_{\mathbf{k}, \mathbf{l}} \pi_{\mathbf{k}, \mathbf{l}} N_{\mathbf{R}}(\mathbf{0}, \omega_{\mathbf{l}} \mathbf{U}_{\mathbf{k}})$$
 (5)

Critically, our quantity of interest now, v represents the true 'deviations' from average gene expression across each condition and can be seen as the effects in mash.

3 Applications

We will again apply a two-step process to our selection of covariance matrices, where we select a set of denoised 'pattern' matrices U_k by using the EM algorithm on the max effects across conditions, and then expanding this list by a fixed grid of scalar weights ω_l such that we conclude with a list of P = KxL covariance matrices Σ . We can then:

- estimate the P prior weights π on this fixed P-list of covariance matrices from a training matrix of randomly selected feature expression measurements across conditions
- ullet compute the posterior distribution $v|L\hat{\pmb{C}},s_j$

Let

$$LC = L\mu \mathbf{1} + L\mathbf{v} \tag{6}$$

L is the RxR centering matrix $L_r = I_r - \frac{1}{r}\mathbf{1}\mathbf{1}^{\top}$ which removes the mean of each R column vector.

Then:

$$LC = L\mu \mathbf{1} + L\mathbf{v}$$

$$LC = 0 + L\mathbf{v}$$

$$L\hat{C} = L\mathbf{v} + E$$
(7)

Where $E \sim \mathcal{N}(0, L\hat{V}L')$

3.1 Selecting The Covariance Matrices

We initiate our set of covariance matrices for the denoising step as before in mash, where now we compute the empirical covariance matrices and a variety of dimensional reductions on the feature-centered JxR matrix of maximum average, $L\hat{C}'$ instead of \hat{C} alone. In practice, we actually use the matrix of maximum uncentered T statistics. Three critical things to note:

1. Here, L will be RxR because we need U_k to be RxR

- 2. When denoising with Bovy, our previous approach used the matrix of maximum T statistics T_{Mxr} to both initialize and train the BovyEM. Now, we will initialize with the MXR matrix of $t(L_{R,R}T')$ (or alternatively, TL) and train the EM on the MxR-1 matrix of maximum $t(L_{R-1,R}T')$
- 3. When choosing ω , we will use the diagonal of LVL', where V is $D(s.j^2)$, and select from the MxR matrix of centered T statistics and their centered standard errors.

4 Likelihood

Now we will replace the RxR matrix L with the R-1xR matrix L*, effectively removing a data point from the observed uncentered statistics, such that the rank of the marginal variance of w is guaranteed to be equal to the dimension of w.

Now for each gene J at each component k, integrating over v,

$$L_{R-1,R}C \sim \mathcal{N}(0, L_{R-1,R}U_kL'_{R-1,R})$$

$$L_{R-1,R}\hat{C} \sim \mathcal{N}(0, L_{R-1,R}U_kL'_{R-1,R} + L_{R-1,R}\hat{V}L'_{R-1,R})$$
(8)

And thus we can use the Bovy et al algorithm invoked in both the Extreme Deconvolution package and in 'Sarah's MixEm' where:

$$T_{jp} = L_{R-1,R} U_k L'_{R-1,R} + L_{R-1,R} \hat{V}_j L'_{R-1,R}$$
(9)

For each gene, and $w_j = L_{R-1,R} \hat{C}_j$.

Recall that our previous approach was simplified by the fact that w_j was simply \hat{b}_j and the projection matrix was simply the I_r identity matrix. Our inference on b was analogous to their inference on j.

As before, we are interested in returning the prior covariance U_k matrices of the 'true' deviations \boldsymbol{v} , which we will then rescale by choosing a set of ω that are appropriate to $L\hat{\boldsymbol{C}}$ to comprise a set of P=KxL prior covariance matrices Σ .

and choose the set of π that maximizes compute the following likelihood at each of the P components:

$$L_{R-1,R}\hat{C}_j \sim \mathcal{N}(0, L_{R-1,R}\Sigma_p L'_{R-1,R} + L_{R-1,R}\hat{V}_j L'_{R-1,R})$$
(10)

5 Posteriors

Now, as before we can compute a posterior distribution such that:

$$\boldsymbol{v}|L_{R-1,R}\hat{\boldsymbol{C}}, \pi, \Sigma, \boldsymbol{s} \sim N(\mu^1, U^1)$$
 (11)

Where at each of the P components for each gene J

$$\mu_{jp}^{1} = \Sigma_{p} L'_{R-1,R} T_{jp}^{-1} L_{R-1,R} \hat{C}_{j}$$

$$U_{jp}^{1} = \Sigma_{p} - \Sigma_{p} L'_{R-1,R} T_{jp}^{-1} L_{R-1,R} \Sigma_{p}$$
(12)

6 Differences required over mash implementation

- We will now work with a matrix of observed column-centered gene averages, $L\hat{C}'$ in order to:
 - 1. initialize our choice of U_k ;
 - 2. choose the maxes by which to denoise,
 - 3. choose our set of scales, ω_l
 - 4. compute our hierarchical weights, π_p as well as our posteriors.
- It is critical to note that here L will need to be RxR because U_k must be RxR
- The new distribution we seek to estimate for each j is then $v|L_{R-1,R}\hat{C}, s_j|$
- To choose the maxes, I think we ought to use a w_j cutoff since computing the univariate lfsr on w_j and the diagonal of LVL' assumes that LVL' is diagonal when we know it cannot be.