

Homework for the Lecture

Functional Analysis

Stefan Waldmann Christopher Rudolph

Winter Term 2024/2025

Homework Sheet No 13

Last changes by christopher.rudolph@jmu on 2025-01-20 Git revision of funkana-ws2425: e2e27cf (HEAD -> master, origin/master)

> 20. 01. 2025 (24 Points. Discussion 27. 01. 2025)

Homework 13-1: Compact Operators

Let V, W be Banach spaces and $K: V \to W$ be a linear map. We call K compact if the image of the closed unit Ball lies within a compact subset of W, i.e. $K(B_1(0)^{cl})^{cl} \subset W$ is compact.

- i.) (1 Point) Show that every compact operator is continuous.
- ii.) (5 Points) Characterize a compact operator in terms of sequences.
- iii.) (2 Points) Show that every finite rank operator is compact.
- iv.) (5 Points) Show that the set $\mathfrak{K}(V,W)$ of compact operators is a closed subspace of L(V,W) endowed with the operator norm topology.
- v.) (1 Point) Prove the following: The identity id_V is compact iff V is finite dimensional.
- vi.) (1 Point) Conclude that id_V cannot be a limit of finite rank operators (with respect to the operator norm topology) if V has infinite dimension.
- vii.) (2 Points) Now, assume W = V. Show that for every $K \in \mathfrak{K}(V) := \mathfrak{K}(V, V)$ and $A \in L(V)$ one has $A \circ K \in \mathfrak{K}(V)$ and $K \circ A \in \mathfrak{K}(V)$.

Homework 13-2: Completeness Relation in Some Operator Topologies

(3 Points) Consider a Hilbert space $(\mathfrak{H}, \langle \cdot, \cdot \rangle)$ with a countable Hilbert basis $(e_n)_{n \in \mathbb{N}} \subset \mathfrak{H}$. Let $P_n \in \mathcal{B}(\mathfrak{H})$ denote the projection onto the subspace spanned by e_n , i.e. $P_n \phi := \langle e_n, \phi \rangle e_n$. Check if the sequence $(\sum_{n=1}^N P_n)_{N \in \mathbb{N}}$ converges to \mathbb{I} with respect to the

- \bullet weak topology
- strong topology
- operator norm topology.

Also study convergence of the sequence $(P_n)_{n\in\mathbb{N}}$.

Homework 13-3: The Operator Product

(4 Points) Let $(\mathfrak{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space. For two bounded linear operators $A, B \in \mathcal{B}(\mathfrak{H})$, we define their operator product by

$$m(A,B) := AB := A \circ B. \tag{13.1}$$

Study (separate) continuity of m with respect to the

- weak topology
- strong topology
- operator norm topology.