Independent Coursework

Trends in Container-Virtulisierung

bearbeitet von: Tom Schubert

Studiengang: Angewandte Informatik (Master)

Fachbereich: Wirtschaftswisenschaften II

Matrikelnummer: 535279

zuständiger Prof.: Prof. Dr. Hermann Heßling

zuständige Mitarbeiter (DESY): Patrick Furhmann

Yves Kemp

Datum (Version): May 8, 2015 (Ver. 0.0)

Contents

1	Grundlagen 3			
	1.1	Container	3	
		1.1.1 Anwendungscontainer (kurz APPC)	3	
		1.1.2 Systemcontainer (kurz SC)	3	
	1.2	Images	3	
		1.2.1 App Container Image	3	
		1.2.2 App Container Pod	3	
		1.2.3 Signed Images	3	
	1.3	Standardisierung	3	
	1.4	Virtual Machines	3	
		1.4.1 Unterschiede bzw. Vergleichbarkeit	3	
	1.5	OS-Spezifikationen	3	
2	Containersoftware			
	2.1	LXC	4	
	2.2	LXD (SC)	4	
	2.3	Docker (APPC)	4	
	2.4	Rocket (APPC)	4	
	2.5	Jetpack (APPC)	4	
	2.6	Libappe (APPC)	4	
	2.7	Kurma (APPC)	4	
3	Orcl	hestration	5	
	3.1	Boot2Docker	5	
	3.2	VMWare	5	
	3.3	OpenStack	5	
4	Perf	formance	6	
5	Seci	urity	7	

1 Grundlagen

1.1 Container

- 1.1.1 Anwendungscontainer (kurz APPC)
- 1.1.2 Systemcontainer (kurz SC)
- 1.2 Images
- 1.2.1 App Container Image
- 1.2.2 App Container Pod
- 1.2.3 Signed Images

Image archives SHOULD be signed using PGP, the format MUST be ascii-armored detached signature mode.

Image signatures MUST be named with the suffix .aci.asc

1.3 Standardisierung

gibt es keine. Versuch https://github.com/appc/spec

1.4 Virtual Machines

Sind zu langsam (Performance-Probleme) Virtuelle Maschinen enthalten immer das komplette OS (Overhead)

1.4.1 Unterschiede bzw. Vergleichbarkeit

1.5 OS-Spezifikationen

Die meisten Container beruhen auf LXC (Linux). Es gibt auch schon Windows-Container (wie funktionieren diese?)

2 Containersoftware

https://github.com/appc/spec

2.1 LXC

Linux-Grundlage für Container-Technologie, alles andere beruht darauf.

- 2.2 LXD (SC)
- 2.3 Docker (APPC)

http://codefest.at/post/2014/11/25/Erste-Schritte-mit-Docker-Teil-1.aspx

- 2.4 Rocket (APPC)
- 2.5 Jetpack (APPC)
- 2.6 Libappc (APPC)
- 2.7 Kurma (APPC)

http://www.apcera.com/blog/apcera-open-sources-new-kurma-project/

3 Orchestration

- 3.1 Boot2Docker
- 3.2 VMWare
- 3.3 OpenStack

4 Performance

Security