Révision 2810 - Quiz 2

Théorie des graphes (p. 1)

Terminologie	Définition
Paire { }	Regroupement { u , v } = { v , u } de deux éléments d'un ensemble dont l'ordre n'a pas d'importance. Important : $u \neq v$
Couple ()	Collection ordonnée (u, v) \neq (v, u) de deux éléments d'un ensemble. Le couple (u, u) est un élément du produit cartésien $V \times V$
Graphe : G = (V,E)	Regroupement de sommets (<i>vertices</i>) et d'arcs (<i>edges</i>). Plusieurs types de graphes : simple, multigraphe, pseudographe, graphe orienté et multigraphe orienté.
Arcs	Peut être bidirectionnel (non orienté) ou directionnel (orienté). Il peut y avoir ou non plusieurs arcs entre 2 mêmes sommets. Il peut y avoir ou non un arc entre un sommet et lui-même (boucle).
Degré d'un sommet	Dans un graphe NON-ORIENTÉ, le degré d'un sommet est le nombre d'arcs connectés à ce sommet. Une boucle compte pour deux points. Le degré du sommet v est noté $deg(v)$
Sommet isolé	Sommet de degré 0. N'est connecté à aucun autre sommet.
Sommet pendant	Sommet de degré 1. N'est connecté qu'à un seul autre sommet
Sommets adjacents	Deux sommets $\{u, v\}$ sont dit adjacents dans G si il y existe un arc les reliant. Ces sommets sont alors appelé les points terminaux de l'arc $\{u, v\}$. Dans un graphe orienté, l'arc (u,v) aurait une extrémité initiale u , ainsi qu'une extrémité finale (ou terminale) v .
Degré intérieur/extérieu r	Dans un graphe orienté, le degré intérieur d'un sommet v , noté d <i>eg-(v)</i> , est le nombre d'arcs qui ont v comme extrémité finale.
	Le degré extérieur d'un sommet <i>v</i> , noté <i>deg+(v)</i> , est le nombre d'arcs qui ont <i>v</i> comme extrémité initiale.
Sous-graphe	Graphe H contenu dans un graphe G. H ⊆ G.
Graphe régulier	Un graphe simple est dit régulier si tous ses sommets sont de degré identique. Un graphe régulier de degré <i>n</i> est un graphe dont tous les sommets sont de degré <i>n</i> .

Théorème sur les graphes

	Définition
Des poignées de mains	Soit un graphe non orienté avec e arcs, alors : $2e = \Sigma deg(v)$
Sommets de degré impairs	Un graphe non orienté a un nombre pair de sommets de degrés impairs. Soit e le nombre d'arcs et V1 et V2 les ensembles de sommets de degré respectifs pair et impairs, alors : $2e = \sum deg(v) \{de\ V1\} + \sum deg(v) \{de\ V2\}$

Types de graphes

	Description	Particularités	Exemple
Graphe simple	Arcs formés de <i>paires</i> d'éléments <i>distincts</i>	□ Arcs orientés□ Arcs parallèles□ Boucles permises	
Multigraphe	Arcs formés de <i>paires</i> d'éléments <i>distincts</i>	□ Arcs orientés√ Arcs parallèles□ Boucles permises	e1 e5 e5 t e6 z
Pseudographe	Arcs formés de <i>paires</i> d'éléments	□ Arcs orientés✓ Arcs parallèles✓ Boucles permises	e1 e2 e3 e5 t e6 z e7
Graphe orienté	Arcs formés de <i>couples</i> d'éléments	✓ Arcs orientés□ Arcs parallèles✓ Boucles permises	-
Multigraphe orienté	Arcs formés de <i>couples</i> d'éléments	✓ Arcs orientés✓ Arcs parallèles✓ Boucles permises	el el es

Gra	Graphe Biparti - Technique pour prouver qu'un graphe est biparti		
1	On étiquette un sommet quelconque du graphe avec un 0		
2	On étiquette tous les sommets adjacents à ce dernier par des 1		
3	On étiquette tous les sommets adjacents à ce dernier par des 0		
n	On recommence jusqu'à ce qu'on ait parcouru tous les points, ou jusqu'à ce qu'on ait trouvé un point ayant une paire d'étiquettes { 0, 1 }. Si chacun des points n'a qu'une seule étiquette, le graphe est biparti. Sinon, il ne l'est pas.		

Exemples de graphes

	Définition	Exemple	
Graphe complet (K)	Il y a exactement un arc entre chaque paire de sommets distincts.	K_1 K_2 K_3 K_4 K_5 K_6	
Cycle (C)	Chaque sommet à un arc vers le prochain sommet. Le dernier sommet a un arc vers le premier.	C_3 C_4 C_5 C_6	
Roue (W)	Un cycle ayant un point au centre. Ce point central est relié a tous les points du cycle.	$\bigwedge_{C_3} \bigwedge_{C_4} \bigwedge_{C_5} \bigwedge_{C_6}$	
Cube de dim. n (Q)	Graphe qui a des sommets représentant les 2^n chaînes binaires de longueur n. Deux sommets sont adjacents SSI les chaines binaires qu'ils représentent diffèrent d'exactement un bit.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Graphe biparti complet	Graphe dont l'ensemble des sommets est partitionné en deux sous-ensembles. Il y a un arc entre deux sommets SSI les deux sommets sont dans des partitions différentes.	$K_{1,4}$ $K_{2,3}$ $K_{3,3}$ $K_{3,5}$	

Représentation et isomorphisme de graphes (p. 44)

	Description	Exemple
Énumération	Énumération de tous les arcs du graphe. Le graphe ne doit pas comporter d'arcs multiples	$G = (V, E) \text{ avec } V = \{a, b, c, d, e\} \text{ et } E = \{\{a, b\}, \{a, d\}, \{b, d\}, \{b, e\}, \{d, c\}, \{e, c\}\}$
Liste d'adjacence	Dans un tableau, spécifier pour chaque sommet la liste de tous ses sommets adjacents. Le graphe ne doit pas comporter d'arcs multiples	Sommet Sommets adjacents $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Matrice d'adjacence	Pour représenter un graphe de <i>n</i> sommets, on crée une matrice booléenne de <i>n</i> x <i>n</i> , qu'on remplit avec des 1 lorsque les sommets sont adjacents et des 0 sinon. Note: cette matrice est symétrique et la diagonale est toujours 0 car un graphe simple n'a pas de boucles.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Matrice d'adjacence pour les pseudographes	Les boucles sont représentées par des 1. Lorsque deux arcs mènent de v1 à v3, on écrira 2 aux positions (1,3) et (3,1) de la matrice d'adjacence.	$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ \end{pmatrix}$
Matrice d'incidence	On met du côté ligne de la matrice les sommets et du côté colonne les arcs. Si l'arc est incident au sommet, on met un 1, sinon un 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Matrice d'incidence pour les pseudographes	Les boucles sont représentées par une colonne n'ayant qu'un seul 1. Les arcs parallèles sont représentés par des colonnes identiques.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Isomorphisme de graphes	Deux graphes ayant l'air différents peuvent en fait être isomorphes. On le voit en faisant leur matrices d'incidence respectifs.	u_1 u_3 u_4 v_4

Parcours de graphes (p. 62)

Terminologie	Définition
Chaîne	Séquence d'arcs où les sommets adjacents s'enchaînent.
Cycle	Dans un graphe orienté, c'est une chaine qui commence et termine sur le même sommet. Elle est dite simple si elle ne passe pas par le même arc plus d'une fois.
Chemin	Dans un multigraphe orienté, une chaine représentant la chaine d'un point u à un point v .
Circuit	Dans un graphe orienté, chemin qui commence et se termine sur le même point. Il est dit simple s'il ne passe pas par le même arc plus d'une fois.
Graphe connexe	Un graphe est connexe s'il existe une chaine entre chaque paire de sommets distincts du graphe.
Composantes connexes	Un graphe non connexe est un amalgame de sous-graphes disjoints connexes. Ceux-ci sont appelés les composantes connexes du graphe.
Point de coupure (sommet)	Un sommet est un point de coupure (ou point d'articulation) si le retrait de ce sommet crée plus de composantes connexes que le graphe initial.
Séparateur (arc)	Un arc est un séparateur (ou un pont) si le retrait de celui-ci crée plus de composantes connexes que dans le graphe initial.
Graphe orienté fortement connexe	Si, pour tout couple de sommet (a , b) du graphe, il existe un chemin de a à b et de b à a .
Graphe orienté faiblement connexe	S'il existe une chaine entre n'importe quelle paire de sommets dans le graphe non orienté sous-jacent.

Dénombrement des chemins

Si $\bf A$ est la matrice d'adjacence du graphe, on peut trouver combien de chemins de longueur $\bf p$ sont possibles du point vi à vj en calculant $\bf A^p$.

Euler

Terminologie	Définition
Chaine eulérienne	Chaine simple contenant tous les arcs de G
Cycle eulérien	Cycle simple contenant tous les arcs de G
Condition pour avoir un graphe eulérien	Un graphe est eulérien SSI chacun de ses sommets est de degré pair

Hamilton

Terminologie	Définition	
Chaine hamiltonnienne	Chaine qui parcourt tous les sommets d'un graphe en ne passant qu'une seule fois sur chaque sommet	
Cycle hamiltonien	Chaine hamiltonienne qui revient sur le point de départ à la fin du parcours.	
Condition pour avoir un graphe hamiltonien	S'il est possible de trouver un cycle passant une et une seule fois par tous les sommets	
Conditions d'existence des cycles hamiltoniens	 Ne peut pas contenir de sommet de degré 1 Si un sommet est de degré 2, alors les deux arcs incidents à ce sommet doivent faire partie d'un cycle hamiltonien. Si G est un graphe simple connexe avec n sommets où n >= 3, alors G a un cycle hamiltonien si le degré de chaque sommet est au moins égal à n/2 	

Code Gray

Terme	Définition	Exemple
Code Gray	Chaine binaires placées pour que les chaines adjacentes ne soient différentes que d'un bit.	100 000 101 001 111 011
Lien avec le cube de dimension n (Q)	La recherche d'une chaine binaire n'ayant qu'un caractère différent à chaque itération revient à trouver un cycle hamiltonien dans un cube de dimension n (Qn).	110 111 111 111 111 111 111 111 111 111

Graphe valué

Terminologie	Définition
Graphe valué	Graphe dont les arcs sont affectés de valeurs w . Si une paires de sommet n'est pas reliée par un arc, on pose $w(u, v) = \infty$
Longueur du chemin L(c)	Somme des valeurs attribuées aux arcs parcourus

Algorithmes

	Utilité	Condition	Complexité
Dijsktra	Trouver le plus court chemin d'un sommet A à un sommet B	Le graphe doit être valué, non orienté, simple et connexe.	O(n²)
Floyd	Trouver la longueur du chemin minimale entre toutes les pairs de sommets. Store les informations dans un array. Ne permet pas de construire un chemin minimal en soit.	Le graphe doit être simple, connexe et valué.	O(n³)

Introduction aux arbres (p. 126)

Terminologie	Définition	Exemple
Arbre	Graphe connexe non orienté sans cycles. Il n'a pas non plus d'arcs multiples ni de boucles. C'est un graphe simple.	$\mathbb{K} \mathbb{K} \mathbb{K} \mathbb{K}$
Forêt	Graphe non orienté sans cycle. Contrairement à un arbre, une forêt n'est pas obligée d'être connexe.	M M
Racine	Un sommet particulier. Choix arbitraire. Devient le parent de tous les autres sommets de l'arbre.	After Afterconce Afterconce are comme racine
Terminologie	Définition	
Arborescence	Un arbre dans lequel on déclare un sommet-racine devient u arborescence.	un graphe orienté appelé
Arborescence ordonnée	Arborescence dans laquelle les fils de chaque sommet interconvention, l'ordre va de gauche à droite.	ne sont ordonnés. Par
Père/Fils/Frère	Hiérarchie de l'arbre. Le père est le parent direct du somme Les frères les sommets ayant le même père.	t. Le fils son enfant direct.
Ancêtres	Les ancêtres d'un sommet différent de la racine sont les son de la racine à ce sommet, excluant ce sommet et incluant la	
Descendants	Les descendants d'un sommet S sont les sommets qui ont S	S comme ancêtre.
Feuille	Un sommet d'un arbre est une feuille s'il n'a pas de fils	
Sommets internes	Sommets d'un graphe qui ont des fils	
Niveau	Le niveau d'un sommet v est égal à la longueur du chemin ι ce sommet. La racine est par définition de niveau 0.	ınique entre la racine et
Hauteur	La hauteur ou profondeur d'une arborescence est le maximu sommets	um des niveaux des
Arbre équilibré	Une arborescence <i>m</i> -aire de hauteur <i>h</i> est équilibrée si tou niveau <i>h</i> ou <i>h</i> - 1. Il n'y a pas plus d'un étage de différence é l'arbre.	
Maximum de feuilles	Il y a au plus m^h feuilles dans un arbre m -aire de hauteur h	

Propriétés des arbres

Propriété	Explication
Nombre d'arcs	Un arbre à <i>n</i> sommets comporte <i>n</i> -1 arcs
Nombre de sommets	Un arbre m -aire complet ayant i sommets internes contient $n = mi + 1$ sommets
Relation sommets (n), sommets internes (i) et feuilles (I) dans un arbre <i>m</i> -aire complet	 i) n sommets comporte i = (n - 1) / m sommets internes et I = (n (m - 1) + 1) / m feuilles ii) i sommets internes comporte n = mi + 1 sommets et I = i (m - 1) + 1 feuilles iii) I feuilles comporte n = (mI - 1) / (m - 1) sommets et i = (I - 1) / (m - 1) sommets internes

Système d'adressage universel

Chaque sommet prend le nom de son parent + "." et son index d'enfant

L'ordre lexicographique permet de trier les sommets de l'arborescence:

$$\begin{array}{l} 0 < 1 < 1.1 < 1.1.1 < 1.1.2 < 2 < 3 < 3.1 < \\ 3.1.1 < 3.2 < 3.3 < 3.3.1 < 3.3.2 \end{array}$$

Parcours d'un graphe

Pour un graphe donné :

Type de parcours	Explication
Préfixe	Descend l'arbre vers la gauche en partant de la racine en prenant les parents avant les enfants. Remonte en passant par la droite. Donne : a b e j k n o p f c d g l m h i
Infixe	Commence par le minimum de l'arbre. Remonte en priorisant la gauche. L'ordre est gauche -> parent -> droite. Donne : j e n k o p b f a c l g m d h i
Postfixe	Comme par le minimum de l'arbre. Remonte en priorisant TOUJOURS les enfants avant les parents. Donne : j n o p k e f b c l m g h i d a

Expressions arithmétiques et arborescence

Les sommets internes correspondent aux opérations (+, -, *, /) et les feuilles sont les variables ou les constantes. Pour l'arbre qui suit :

Arborescence de l'expression : ((x + y) \uparrow 2) + ((x - 4) / 3)

Type de parcours	Explication
Infixe	Parcours infixe : $x + y \uparrow 2 + x - 4 / 3$ mais avec les parenthèse entourant chaque sous-arbre,la forme infixe est : $((x + y) \uparrow 2) + ((x - 4) / 3)$
Préfixe	Parcours préfixe : $+\uparrow + x$ y 2 / - x 4 3 On évalue une expression préfixe à partir de la droite, en voici un exemple sur un autre arbre : $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Postfixe	Parcours postfixe: $x y + 2 \uparrow x 4 - 3 / +$ On évalue une expression postfixe de gauche à droite, en voici un exemple: $\begin{array}{ccccccccccccccccccccccccccccccccccc$

Arbres et algorithmes

Terminologie	Définition
Arbre de recouvrement	Un arbre de recouvrement (ou couvrant) est un sous-graphe de G qui est un arbre contenant chaque sommet de G. Un graphe simple est connexe SSI il admet un arbre couvrant.
Construction d'un arbre de recouvrement	On identifie les cycles simples et on enlève des arcs pour "casser" les cycles simples.

Fouille à travers un graphe

	Définition
	Fouille récursive d'un graphe. À partir d'un sommet v1, elle s'enfonce vers les plus profonds éléments du graphes avant de revenir sur les voisins de v1.
Fouille en largeur (BFS)	Algorithme itératif de fouille. Tant que la liste des sommets non visités n'est pas vide, si l'arc n'est pas déjà dans T, on le place dans T et on enlève le sommet des sommets non visités.
Retour en arrière	Parcours d'un arbre en profondeur jusqu'à ce qu'on trouve une solution. Revoir. Un peu confus.

Pour trouver un arbre de recouvrement minimal

#	Algorithme de Prim - complexité O(n²)
1	On commence par prendre un sommet S1 au hasard dans le graphe
2	On trouve le plus petit arc menant à un sommet adjacent S2 à partir de S1 et on le met dans T.
3	On trouve ensuite l'arc adjacent le plus petit adjacent à S1 ou S2. Il ne faut pas que cet arc amène à un sommet déjà visité.
4	On continue ainsi jusqu'à ce qu'on ait mis tous les sommets de G dans T. T est maintenant un arbre de recouvrement minimal de G.

#	Algorithme de Kruskal - complexité O(nm)
1	On commence par trier tous les arcs en ordre croissant
2	On ajoute ensuite un par un les arcs (en commençant par les plus petits) à T, TANT QUE l'arc ajouté ne crée pas de cycle dans T.
3	On arrête lorsque nous avons un arbre contenant les arcs amenant à tous les sommets de G dans T.

Dénombrement

Modèle de l'urne - 2 critères à considérer	
La remise	Après avoir choisi un objet, on le remet (sélection avec remise) ou on ne le remet pas dedans (sélection sans remise)
L'ordre	Si l'ordre de sélection est important ou non

Permutation

Notation	P(n, r) où n est le nombre d'objets dans l'urne et r est le nombre d'objets pigés
Description	Séquence ordonnée sans remise
Calcul	<u>n!</u> (n - r)!

Combinaison

Notation	C(n, r) où n est le nombre d'objets dans l'urne et r est le nombre d'objets pigés
Coefficient binomial	C(n,r) = (n)
Description	Séquence non ordonnée sans remise
Calcul	<u>n!</u> r!(n-r)!

Identité de Pascal

Sauce, sauce, sauce

Théorème du binôme

D'autre sauce

Dénombrement avancé (p. 235)

Terminologie	Définition
Relation de récurrence	Formule qui exprime a_n en fonction d'un ou de plusieurs termes qui le précède dans la suite.
Suite	Solution d'une relation de récurrence si ses terme satisfont la relation de récurrence
Conditions initiales	Éléments qui précèdent le premier élément à partir duquel la relation de récurrence s'applique

#	Relation de récurrence - résolution
1	On effectue les premières étapes à la main pour saisir le problème
2	On définit de manière inductive l'ensemble qui nous intéresse (?)
3	On dénombre de manière inductive le nombre d'éléments appartenant à cet ensemble (?)

Principe d'inclusion-exclusion (p. 257)

Règles	Définition
Règle de la somme	Si A et B sont des ensembles <i>disjoints</i> , alors A ∪ B = A + B Si A représente toutes les lettres de l'alphabet et C tous les chiffres, alors A ∪ C = A + C = 26 + 10 = 36
Règle du produit	Si A et B sont deux ensembles, alors la cardinalité du produit cartésien est donnée par: A x B = A B Si A = { lettreAlphabet } et C = { chiffres } alors : A x C = A C = 26 x 10 = 260
Inclusion pour 2 ensembles	A U B = A + B - A ∩ B

Nombres premiers

#	Le crible d'Eratosthène - Technique pour trouver les nombres premiers
1	On écrit tous les nombres du range D dans lequel on veut chercher
2	Pour chaque nombre N de 2 à racine de D, on souligne tous les multiples de N (mais pas N). Si on tombe sur un N déjà souligné, on peut passer au prochain N.
3	Les nombres non soulignés restants sont tous des nombres premiers

Nombre de dérangements $\mathbf{D_n}$ où n est le nombre d'objets

Donné par :

$$D_n = n! (1 - (1/1!) + (1/2!) - (1/3!) + ... + (-1)^n (1/n!))$$