

## **Quasi Free Scattering Analysis with Experiment S444/467 (2020)**



## **12C(p,2p)11B** reaction:

- <sup>12</sup>C beam
   proton like target
- 2 protons
- <sup>11</sup>B fragment (spectator)

#### **SETUP:**

Beam energy: 400 AMeV

Beamtype: 12C

Target: CH<sub>2</sub>



Tobias Jenegger

proton



# **Fragment Particle Identification**







Radius reconstruction:

$$R = \frac{L_{eff}}{2\sin\left(\frac{\theta_{in} + \theta_{out}}{2}\right)}$$



Z (charge)





# 12C(p,2p)11B reaction



#### **Two Proton Identification:**

 $\rightarrow$  two hits with E<sub>hit</sub> > 30 MeV







# **Gamma Spectrum of 11B**





Tobias Jenegger

#### **Doppler Correction:**

$$E_{\gamma} = \gamma E_{lab} (1 - \beta \cos(\theta))$$

#### <sup>11</sup>B rest frame



---6741.9 0.030 eV



# Polar Angular Distribution of protons for 12C(p,2p)11B



Theta1 vs Theta2 in CALIFA





# **Arzimuthal Distribution of protons for 12C(p,2p)11B**







## **Gamma Spectrum with Angular Cuts**



### CALIFA Gamma Energy Spectrum

Event selection criteria for CALIFA:

- → 11B fragment identification
- $\rightarrow$  two hits (protons) with E<sub>hit</sub> > 30 MeV
- $\rightarrow \theta 1 + \theta 2 < 90^{\circ}$
- $\rightarrow \Delta \phi = 180^{\circ} + -40^{\circ}$



TODO: make bkg from 1 to 3 and add also plots with hit-multiplicities...

Tobias Jenegger



## **Reconstruction of Inner Momenta**







#### Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$



## Momentum components of p\_i





Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

momentum-components (with angular cuts applied)





## **Missing Energy Distribution**





Missing Energy calculated in the 12C rest frame vs (theta1+theta2) 12C(p,2p)11B



$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

$$E_{miss} = m_p - e_{miss}$$

(where e\_miss is the energy component of  $\mathbf{p}_{\text{missing}}$ )

Emiss can be interpreted as E\_sep + E\_mean\_exc:

$$\begin{split} E_{\text{miss}} &= E_{\text{final}} - E_{\text{initial}} \\ E_{\text{miss}} &= E_{\text{tgkin}} + m_{\text{tg}} + m_{\text{p}} - m_{\text{p1}} - E_{\text{p1kin}} - m_{\text{p2}} - E_{\text{p2kin}} \\ \text{(where } m_{\text{p}} &= m_{\text{tg}} = m_{\text{p1}} = m_{\text{p2}} \text{ as they are all protons)} \\ E_{\text{miss}} &= E_{\text{tgkin}} - E_{\text{p1kin}} - E_{\text{p2kin}} \text{ (in 12C cms)} \end{split}$$



## **Missing Energy Distribution**



Now with cut on angles: theta\_sum < 90° and phi\_diff = 180° +- 40°





## **Analysis Missing Energy Distribution**



Explicit calculation of the Missing Energy (in the 12C frame):

Emiss = 
$$E_{tgkin} - E_{p1kin} - E_{p2kin}$$







## **E**\_missing and p\_z\_missing for different opening angles



For simplicity let's say  $\theta_1 = \theta_2$ . That means for theta\_sum = 44 °  $\rightarrow \theta_1 = \theta_2 = 22$ °





## E\_missing and p\_z\_missing for $\theta_1 = \theta_2 = 41^{\circ}$







# Mass reconstuction of p\_i





$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

$$M_i = \sqrt{(p_1 + p_2 - p_{tg})^2}$$

Looks ok, mean of 918 MeV is lower than expected....





## Missing mass reconstruction







$$M_{miss} = \sqrt{(p_{12C} - p_i - p_{11B})^2}$$

should be  $\approx 0$ 

- → give better look at the 3momentum distribution
   (+- permutation at MW position??)
- → as the reconstruction of p\_i
   works well it can be deduced that
   11B reconstruction faulty....



## Inner angular distributions



### In 12C cms frame (using MW1 and MW2):

Cosine of the angle in the CMS between 11B and p i(projectile proton) in 3D with angular cut







Not satisfactory....

See:

https://www.nature.com/articles/s415

67-021-01193-4.pdf





### **Angular Distribution in x-y plane**







## **Excitation Energy of 11B**



$$E_{exc} = (P_{12C} + p_{tg} - p_1 - p_2).M - M_{11B}$$

$$-p_i$$



Is this formula valid?



## Correlation between knocked out proton and 11B



With given formula:

$$P_y = Q_k \times \sin\theta_k \sin(\varphi_k - \varphi_i),$$

# This plot was with Py\_fragment reconstruction from MW1 and MW2



# This is with Py\_fragment reconstruction from MW1 and MW3







## Correlation between knocked out proton and 11B



What we expect:







## **Explanation of** $P_y = Q_k \times sin\theta_k sin(\varphi_k - \varphi_i),$



23

 $Q_k imes sin heta_k sin (arphi_k - arphi_i)$  Is a Cartesian component of the internal momentum of the knocked out proton from 12C perpendicular to the reaction plane. The reaction plane is given by the 12C momentum vector and the scattered target proton.

Can be plotted also against Px\_fragment (see next slide). This is a blurred centered spot. This can be explained by:

- $_{\rightarrow}$  acceptance of CALIFA: no crystals in the phi +-90° region , therefore the y component is dominant
- → low precision for y position (can be partly solved using MW1.Y vs MW3.Y, but then straggling..)



For more details and derivation see:

https://www.sciencedirect.com/science/article/abs/pii/S0375947405008523

Tobias Jenegger









# 12C(p,ppn/pd)10B Reaction











Tobias Jenegger 25



## First Angular and Momentum Plots ...



Without cut:

Theta1 vs Theta2 for the 10B reaction





# Reconstruction of inner momentum p\_i











## **Neutron Mass Reconstruction**







