

B3
Cont. prepared by known methods, with future covering the substrate with this compound by spin
coating, roller coating or dip coating. --

On page 11, please replace the third paragraph staring on line 6 with the following:

-- To obtain the recording layer medium we prepared the methylene chloride solution, containing as film-forming resin - 1% polymethylmethacrylate (PMMA), as fluorescent dye - 0.013% Oxazine 625 Perchlorate with λ_{max} . abc. = 645 nm and λ_{max} . fluor. = 680 nm (Exciton, Inc.) and as a compound generating free radicals - 0.03% benzyl peroxide. The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

On page 11, please replace the fourth paragraph staring on line 15 with the following:

-- To obtain the recording layer medium we prepared the methylene chloride solution, containing as film-forming resin - 1 % polymethylmethacrylate (PMMA), as fluorescent dye - 0.01% HIDC Iodide with λ_{max} . abc. = 641 nm and λ_{max} . fluor. = 680 nm (Exciton, Inc.) and as a compound generating free radicals - 0.03% benzyl peroxide. The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

B5 On page 11, please replace the seventh paragraph staring on line 24 with the following: *NE*

-- To obtain the recording layer medium we prepared the methylene chloride solution, containing 1% polymethylmethacrylate (PMMA), as fluorescent dye - 0.009% HITC Iodide with λ_{max} . abc. = 751 nm and λ_{max} . fluor. = 790 nm (Exciton, Inc.) and as a compound generating free radicals - 0.002% benzyl peroxide. The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

On page 12, please replace the second paragraph staring on line 3 with the following:

-- To obtain the recording layer medium the polyvinylacetate (1%), Oxazine 725

B -- Perchlorate (0.013%), plasticizer - dioctyl phthalate (0.2%) and benzyl peroxide (0.03%) were dissolved in a mixture of ethanol, ethyl cellosolve, iso-propanol, and iso-butanol (4:2:1:1). The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

On page 12, please replace the fourth paragraph staring on line 11 with the following:

B B -- To obtain the recording layer medium the polyvinylacetate (1%), HIDC Iodide (Exciton, Inc.) (0.01%), dioctyl phthalate (0.2%) and benzyl peroxide (0.003%) were dissolved in a mixture of ethanol, ethyl cellosolve, iso-propanol, and iso-butanol (4:2:1:1). The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

On page 12, please replace the sixth paragraph staring on line 19 with the following:

B 9 -- To obtain the recording layer medium the polyvinylacetate (1 %), HITC Iodide (Exciton, Inc.) (0.009%), dioctyl phthalate (0.2%) and benzyl peroxide (0.002%) were dissolved in a mixture of ethanol, ethyl cellosolve, iso-propanol, and iso-butanol (4:2:1:1). The compound solvent was filtered, deposited on a glass disc and dried to form a recording layer with 500 nm thickness. --

On page 12, please replace the eighth paragraph staring on line 27 with the following:

B 10 -- The same as in examples 1-6, only benzyl peroxide was not dissolved in the compound for the recording layer, but was introduce in it as microcapsules with average diameter 0.1 micron. --

IN THE CLAIMS

B10
3. (Twice amended) DIP medium for the recording layer according to claim 1, wherein said compound generating free radicals is chosen from azo-bisisobutyronitrile, p-bromobenzene diazohydroxide, triphenylmethylazibenzene, diazobenzoyl, nitrosoacetanilide, and peroxides.

SAC
4. (Twice amended) DIP medium for the recording layer according to claim 1, wherein said film-making polymer is chosen from the group of resins consisting of cellulose esters, cellulose ethers, and acrylic resins.

SAC
7. (Amended) Method of obtaining a single-layer optical WORM disc, comprising the steps of dissolving the fluorescent dye, compound and film-forming polymer according to claim 1 in an organic solvent chosen from the group consisting of alcohols, ketones, amides, sulfoxides, ethers, esters, halogenated aliphatic hydrocarbons and aromatic solvents to form a composition, or introducing the fluorescent dye, compound and film-forming polymer according to claim 1 into the solvent as microcapsules less than 0.2 micron in size to form a composition; and covering said composition by spin coating, roller coating or dip coating on a substrate selected from the group consisting of glass, polymethylmethacrylate, polycarbonate, and polyethylene terephthalate disc.

B11

Please add the following new claims:

SAC
13. (New) DIP medium for the recording layer according to claim 3, wherein the peroxides are selected from the group consisting of benzyl peroxide and tert-dibutyl peroxide.

B12
14. (New) DIP medium for the recording layer according to claim 4, wherein the cellulose esters are selected from the group consisting of nitrocellulose, cellulose acetate, and cellulose acetate butyrate.