1 Basic Logic Summary

1.1 Basic Operations

 \bullet Negation, the "not" operation, denoted \neg

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \\ \end{array}$$

• And, sometimes called "conjunction," denoted \wedge

p	q	$p \wedge q$
Т	Т	Т
Τ	F	F
\mathbf{F}	T	\mathbf{F}
F	F	F

 \bullet Or, sometimes called "disjunction," denoted \vee

p	$\mid q \mid$	$p \vee q$
Τ	T	Т
Τ	$\mid F \mid$	T
F	$\mid T \mid$	T
F	F	\mathbf{F}

• Implication, sometimes called "material implication" or "if . . . then," denoted ⇒

p	q	$p \Rightarrow q$
Т	T	Т
\mathbf{T}	F	F
\mathbf{F}	$\mid T \mid$	T
F	F	Т

• Equivalence, sometimes called "material equivalence" or "iff" denoted \iff

1

$$\begin{array}{c|c|c|c|c} p & q & p & \longleftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

2 Derivation & Inference Rules

2.1 Derivation Rules

• Equivalence Rules

Equivalence			Name
\overline{p}	\iff	$\neg \neg p$	Double Negation
$p \Rightarrow q$	\iff	$\neg p \lor q$	Implication
$\neg(p \land q)$	\iff	$\neg p \lor \neg q$	De Morgan's Laws
$\neg (p \lor q)$	\iff	$\neg p \land \neg q$	
$p \lor q$	\iff	$q \lor p$	Commutativity
$p \wedge q$	\iff	$q \wedge p$	
$p \wedge (q \wedge r)$	\iff	$(p \wedge q) \wedge r$	Associativity
$p \vee (q \vee r)$	\iff	$(p \lor q) \lor r$	

• Inference Rules

Note: Curly braces indicate " \wedge "

Inference			Name
$\left.\begin{array}{c}p\\q\end{array}\right\}$	\Rightarrow	$p \wedge q$	Conjunction
$\left.\begin{array}{c} \neg q \\ p \Rightarrow q \end{array}\right\}$	\Rightarrow	q	modus ponens
$ \begin{array}{c} p \Rightarrow q \\ \neg q \end{array} $	\Rightarrow	$\neg p$	modus tollens
$p \wedge q$	\Rightarrow	p	Simplification
\overline{p}	\Rightarrow	$p \lor q$	Addition

2.2 Quantifiers

- \bullet Universal "for all," denoted by \forall
- \bullet Existential "exists," denoted by \exists

Equivalence			Name
$\neg [(\forall x)P(x)]$	\iff	$(\exists x)(\neg P(x))$	Universal Negation
$\neg [(\exists x)P(x)]$	\iff	$(\forall x)(\neg P(x))$	Existential Negation