BM 402 Bilgisayar Ağları (Computer Networks)

Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Değerlendirme

Arasınav : 35% Ödevler : 20% Katılım : 5% Final : 40%

Ders kitabı

James F. Kurose, Keith W. Ross, Computer Networking 5/E, Addison Wesley, 2010.

Diğer kaynaklar

- Andrew S. Tanenbaum, Computer Networks 4/E, Prentice Hall, 2003.
- Behrouz A. Forouzan, Data Communications and Networking 4/E, McGraw-Hill, 2007.
- Douglas E. Comer, Internetworking With TCP/IP: Principles, Protocols and Architecture 5/E, Prentice Hall, 2005.

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

3/7

internet nedir?

- İnternet insanlığın şimdiye kadar geliştirdiği en büyük sistemdir.
- Yüzmilyonlarca bilgisayar, iletişim bağlantıları, switch'ler, cep telefonu ve PDA'ler ile yüzmilyonlarca kişi İnternet'e bağlıdır.
- Bugün, algılayıcılar, web kameralar, oyun konsolları, iklimlendirme sistemleri, otomobiller ve hatta çamaşır makineleri bile İnternet'e bağlıdır.
- Bu kadar karmaşık ve büyük bir sistem olan İnternet, sorunsuz bir şekilde çalışabilmektedir.
- İnternet'e bağlı cihazlar, host veya uç sistem (end system) olarak adlandırılmaktadır.

 Temmuz 2008 itibariyle 600 milyon uç sistem İnternet'e bağlıdır (cep telefonu, laptop ve diğer cihazlar bu sayıya dahil değildir).

Ders konuları

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Temel tanımlar (1)

- Uç sistemler, iletim bağlantıları (communication links) ve paket anahtarlar (packet switches) aracılığıyla birbirlerine bağlanırlar.
- İletim bağlantıları, koaksiyel kablo, bakır tel, fiber optik kablo veya radyo spektrumu olabilir.
- Her iletim ortamı, farklı iletim hızına sahiptir (bps bits/second).
- Bir uç sistem başka bir uç sisteme veri göndereceği zaman segment oluşturur.
- Gönderici uç sistem tarafından segmente başlık bilgileri eklenerek paket (packet) oluşturulur.
- Alıcı uç sistem gelen paketleri birleştirerek orijinal veriyi elde eder.

7/72

Temel tanımlar (2)

- Paket anahtarlar, kendisine giriş bağlantılarından gelen bir paketi alır ve çıkış bağlantılarından birisine yönlendirir.
- Günümüzde paket anahtar olarak router (yönlendirici) ve linklayer switch (anahtar) kullanılır.
- Link-layer switch'ler access networks'lerde (erişim ağları), router'lar ise network core'da kullanılır.
- Bir paketin gönderici uç sistem ile alıcı uç sistem arasında kullandığı iletim bağlantılarına route veya path (yol) denir.

Temel tanımlar (3)

- İnternet trafiği, 2009 yılında PriMetrica tarafından 10 Tbps olarak tahmin edilmiştir. Trafik her iki yılda yaklaşık iki katına çıkmaktadır.
- Uç sistemler Internet Service Providers (İnternet Servis Sağlayıcılar - İSS) ile İnternet'e bağlanır.
- İSS'lar, kablo TV veya telefon şirketleri, üniversiteler, WiFi iletişim sağlayan havalanları, kafeler, oteller olabilir.
- İSS'lar, Internet Protocol (IP) 'ü çalıştırır.

9/7

Temel tanımlar (4)

- Uç sistemler, paket anahtarlar ve İnternet'in diğer bileşenleri veri göndermek veya almak için protokolleri kullanır.
- Transmission Control Protocol (TCP) ve IP, İnternet'te en önemli iki protokoldür.
- Internet protokol yığınına TCP/IP denir.

internet nedir?

Temel tanımlar (5)

- İnternet standartları Internet Engineering Task Force (IETF) tarafından geliştirilir.
- IETF standart dökümanları, Request For Comments (RFCs) olarak adlandırılır.
- RFC dökümanları, Hyper Text Transfer Protocol (HTTP), File Transfer Protocol (FTP), TCP, Simple Mail Transfer Protocol (SMTP) gibi protokollerin teknik özelliklerini tanımlarlar.
- Bugüne kadar toplam 5000 den fazla RFC dökümanı yayınlanmıştır.
- International Electrical Electronics Engineering (IEEE), Ethernet ve kablosuz WiFi standartlarını tanımlamıştır.

11/72

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Hizmet tanımları (1)

- İnternet, uygulamalara hizmet sağlayan bir altyapıdır.
- Başlıca uygulamalar; e-posta, web gezintisi, instant messaging (anlık mesajlaşma), Voice over IP (VoIP), İnternet radyo, video streaming, dağıtık oyunlar, peer-to-peer (P2P) dosya paylaşımı, İnternet TV, remote login (uzaktan erişim), ...
- Bu uygulamalar birden fazla uç sistemden oluştuğu için distributed applications (dağıtık uygulamalar) olarak adlandırılır.
- Uygulamalar uç sistemlerde çalışır, ağ temel elemanları (core devices) uygulamalar arasında veri aktarımı sağlarlar.

13/72

Hizmet tanımları (2)

- Bir İnternet uygulaması geliştirirken uç noktalarda çalışan parçaların yazılması gerekir.
- Yazılım parçaları, Java, C gibi bir programlama diliyle geliştirilir.
- Uç sistemlerde çalışan uygulamalar, İnternet altyapısı üzerinden veri gönderimi için Application Programming Interface (API) tarafından sağlanan hizmetleri kullanır.
- İnternet API veri gönderimi için gerekli kurallardan oluşur.
- Mektupla haberleşmede, zarfın üzerine adres yazılarak posta kutusuna konulmasına kadar olan işler kişi (İnternet uygulaması) tarafından yapılır, mektubun alınıp karşı tarafa iletilmesi posta şirketi (İnternet API) tarafından yapılır.

Hizmet tanımları (3)

- Posta şirketinin müşterilerine farklı hizmetler (hızlı ulaştırma, geri bildirim, standart hizmet, ...) sunduğu gibi, İnternet API'de farklı hizmetler sunar.
- Bir İnternet uygulaması geliştirirken, sunacağı hizmet standartları ve gereksinimlere göre İnternet hizmetlerinden birisi seçilir.
- İnternet üzerinde çok farklı hizmetler sunan çok sayıda farklı uygulama geliştirilebilir.

15/73

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Protokol nedir?

- Günlük hayatta sürekli protokoller uygulanır.
- İki kişi arasında saat sorma işlemi protokolle gerçekleşir.

Protokol nedir ? - Ağ protokolleri (1)

- İnsanlar farklı protokoller kullanırsa (farklı dil konuşma, soruyu anlayamama, ...), birbirleriyle iletişim yapamazlar.
- Ağlarda da, iletişim yapan iki birimin bir işi başarıyla yapabilmesi için aynı protokolü kullanması gereklidir.
- İnternet üzerindeki tüm işlemler protokoller tarafından gerçekleştirilir.
- Örneğin, hardware-implemented (donanımsal) protokoller network interface kartlarında kullanılır ve iki bilgisayar arasında bit akışını gerçekleştirir.
- Protokoller, tıkanıklık denetimi, paketlerin kaynak ile hedef arasında izleyeceği yolun belirlenmesi gibi tüm işleri yaparlar.

Protokol nedir ? - Ağ protokolleri (2)

- Web browser üzerinde bir Web sayfasının adresi girildiğinde, öncelikle bilgisayarımız Web sunucuya istek mesajı gönderir.
 Ardından bir süre cevap için bekler.
- Sunucu istek mesajını alır ve cevaplar. Gelen olumlu cevaptan sonra bilgisayarımız Web dökümanı isteğini gönderir.
- Web sunucu istenen Web sayfasını bilgisayarımıza gönderir.
- Bir protokol, iletişim yapan iki veya daha fazla sayıdaki uç sistem arasında mesaj formatını, mesaj gönderim sırasını, mesaj gönderme ve almadan sonra yapılacak işlemleri ve zamanlamayla ilgili işlemleri tanımlar.

19/72

Ders konuları

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Ağ uç birimleri

- Bilgisayar ağlarında, İnternet'e bağlı tüm cihazlar (bilgisayarlar, sunucular, mobil cihazlar, ...) uç sistem veya host olarak adlandırılır.
- Hostlar, client (istemci)
 ve server (sunucu) olarak iki
 gruba ayrılır.

Ders konuları

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Client ve Server programları

- Client program, bir uç sistemde çalışır ve başka bir uç sistemde çalışan server programdan bir hizmet isteğinde bulunur.
- Web, e-posta, file transfer, remote login ve diğer çok sayıda popüler ugyulama client-server modeline sahiptir.
- İnternetteki client-server uygulamalar dağıtık uygulamalardır.
- Client program ile server program İnternet altyapısı üzerinden iletişim yapar.
- Günümüzde tüm İnternet uygulamaları tamamıyle client-server mimaride değildir.
- Çoğu İnternet uygulaması peer-to-peer (P2P) şeklinde çalışır,
 hem client hem de server işlemlerini gerçekleştirir.

23/72

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

Ağ uç birimleri

Erişim ağları (2)

- Erişim teknolojileri, lokal telefon kablo altyapısını yaygın olarak kullanır.
- Lokal telefon kablo altyapısı, lokal telefon şirketi (telephone company - telco) tarafından sağlanır (Türk Telekom, Verizon, ...).
- Her konut, kendisine en yakın merkez ofise (central office-CO), bir büklümlü çift (twisted-pair) kablo ile bağlanır.
- Bir lokal telco yüzlerce CO'e sahiptir ve her müşteri kendisine en yakın CO'e bağlanır.

Erişim ağları - Dial-Up (1)

- 1990'lı yıllarda tüm konut kullanıcıları İnternet'e analog telefon hatları ile dial-up modem (modulator-demodulator) kullanarak bağlamaktaydı.
- Günümüzde gelişmekte olan ülkelerde ve kırsal bölgelerde hala İnternet'e dial-up erişim yapılmaktadır.
- Amerika'da 2008 yılında %10 kullanıcı hala dial-up erişim yapıyordu.
- Dial-up erişimde kullanıcı İSS'ya ait numarayı çevirir ve klasik telefon bağlantısı ile İnternet'e bağlanır.
- Bilgisayar bir dial-up modeme ve modem ise analog telefon hattına bağlıdır.

27/72

Erişim ağları - Dial-Up (2)

- Bağlantı büklümlü çift kabloyla yapılır.
- Modem bilgisayardan aldığı sayısal veriyi analog sinyale dönüştürür. Alıcı tarafta ise analog sinyal sayısal veriye çevrilir.
- Dial-Up İnternet erişiminde iki dezavantaj vardır: erişim hızı yavaştır (maksimum 56 kbps) ve İnternet erişimi sırasında telefon görüşmesi yapılamaz.

Erişim ağları - DSL (1)

- Günümüzde en yaygın kullanılan genişbant (broadband) erişimler, Digital Subscriber Line (DSL) ve cable'dır.
- Gelişmiş çoğu ülkede %50 den fazla konut kullanıcısı genişbant erişim yapmaktadır.
- Konut kullanıcılar ı genellikle genişbant erişimi, lokal telefon hizmeti sağlayan şirketten alır. Lokal telco aynı zamanda İSS'dır.
- Müşterinin DSL modemi, telefon bağlantısını kullanarak telco'nun Digital Subscriber Line Access Multiplexer (DSLAM)'ı ile veri iletişimi yapar.

29/72

Erişim ağları - DSL (2)

- DSL teknolojileri 3 kanal üzerinden iletişim yapar:
 - Downstream, 50 kHz 1 MHz
 - Upstream, 4 kHz 50 kHz
 - Telefon, 0 4 kHz

Erişim ağları - DSL (3)

- Telefon görüşmesi ile İnternet erişimi eşzamanlı yapılır.
- Veri iletişimi dial-up erişime göre çok hızlıdır(1-2Mbps downstream, 128kbps-1Mbps upstream).
- Downstream ve upstream hızı farklı olduğundan asimetrik (Asymmetric DSL - ADSL) olarak adlandırılır.
- Veri-high speed DSL (VDSL), symmetric DSL (SDSL) gibi farklı DSL teknolojileri kullanılmaktadır.

31/72

Erişim ağları - Cable (1)

- Kablo TV sistemi koaksiyel kablo üzerinden TV kanallarını broadcast yayınlar.
- DSL ve dial-up teknolojilerinin mevcut telefon altyapısını kullandığı gibi, cable İnternet erişimi ise mevcut kablo TV altyapısını kullanır.
- Kullanıcı, kablo TV hizmetini aldığı şirketten İnternet erişimi hizmeti alır.
- Kullanıcı bağlantısı koaksiyel kablo ile yapılır. Fiber node ile head end arasındaki bağlantı ise fiber optik kablo ile yapılır.
- Cable İnternet erişiminde hem koaksiyel kablo hem de fiber kullanıldığı için Hybrid Fiber Coax (HFC) olarak adlandırılır.

Erişim ağları - Cable (2)

- Cable İnternet erişimi cable modem ile yapılır.
- DSL modem gibi cable modem de bilgisayara external olarak Ethernet Portuna bağlanır.

Ağ uç birimleri

Erişim ağları - Cable (3)

- DSL modem gibi erişim asimetrik olarak yapılır.
- Cable İnternet erişimi shared broadcast (paylaşılmış tüme gönderim) ortam üzerinden yapılır.
- Her paket tüm bağlantılara ve tüm konutlara gönderilir.
- Eş zamanlı iletişim sayısı arttıkça iletim hızı düşer.

Erişim ağları - Fiber-To-The-Home (FTTH) (1)

- Fiber optik kablolar, büklümlü kablo ve koaksiyel kabloya göre çok yüksek iletim oranına (transmission rate) sahiptir.
- Bazı lokal telefon şirketleri, daha yüksek İnternet erişimi sağlamak için kendi merkez ofisleri (central office - CO) ile konutlar arasında fiber optik bağlantı sağlamaktadırlar.
- Amerika'da bazı telefon altyapı şirketleri bu hizmeti sağlamaktadır.
- Optik dağıtım ağı mimarisi iki şekilde gerçekleştirilir: Active
 Optical Network (AON) ve Passive Optical Network (PON).

35/72

____Ağ uç birimleri

Erişim ağları - Fiber-To-The-Home (FTTH) (2)

- AON mimarisi Ethernet ağ yapısına benzer.
- Yönlendirme için (Optical Distribution Network ODN) layer2
 switch veya layer3 router kullanılır.

Erişim ağları - Fiber-To-The-Home (FTTH) (3)

- PON mimarisinde her konut bir ONT (Optical Network Terminator) cihazına sahiptir.
- Optical splitter yaklaşık 100 tane konutu birleştirir ve telco'da bulunan OLT (Optical Line Terminator)' ye bağlantı sağlar.
- Konut kullanıcıları bir router ile ONT'ye bağlanarak İnternet erişimi yaparlar (Gbps).
- İletim hızına göre ücretlendirme yapılır.
- Kullanıcılar 10-20Mbps download, 2-10Mbps upload için seçmektedir.

37/73

Erişim ağları - Ethernet

- Bir şirket veya üniversitede Local Area Network (LAN) bir uç router'a bağlanmak için kullanılır.
- Çok sayıda LAN teknolojisi vardır (Token Ring, WiFi) ancak en yaygın kullanılan Ethernet ağlarıdır.
- Ethernet ağlara bağlantı büklümlü kabloyla yapılır ve 100Mbps, 1Gbps ve hatta 10Gbps hızlarında iletişim yapılabilir.

Erişim ağları - WiFi (1)

- Kablosuz İnternet erişimi giderek yaygınlaşmaya başlamıştır.
- Günümüzde iki tür kablosuz İnternet erişimi yapılmaktadır.
- Wireless LAN (WLAN) ile erişimde kullanıcılar paketleri bir erişim noktasına (Access Point – AP) iletirler. AP ise kablo ile bir LAN bağlantısına sahiptir.
- Wide-Area Wireless Access Network ile erişimde kullanıcılar kendilerinden kilometrelerce uzakta bulunan ve hücresel telefonla (Cellular Phone) aynı altyapıyı kullanan baz istasyonuna (Base Station - BS) gönderilir.
- WLAN erişim, IEEE 802.11 teknolojisini (Wireless Fidelity WiFi) kullanır (54Mbps).

39/72

Erişim ağları - WiFi (2)

- Konutlarda broadband erişim (cable, DSL) bir WLAN teknolojisiyle birlikte kullanılabilir.
- Baz istasyonu (wireless access point) ile kablosuz cihazların erişimi yapılabilir.
- Router doğrudan kabloyla bağlantı için kullanılabilir.

Erişim ağları - Wide Area Wireless Access

- Kablosuz teknolojiyle İnternet erişiminde, AP'ye uzaklığın 100 metrenin altında olması gerekir.
- Bu uzaklık açık alanlarda seyahat ederken (plaj, otobüs, otomobil, ...) yeterli olmamaktadır.
- Telefon şirketleri üçüncü jenerasyon (Third Generation 3G) kablosuz erişimi sağlamaktadır (1Mbps).

41/7

Erişim ağları - WiMAX

- WiMAX (IEEE 802.16), 5-10Mbps veya daha yüksek iletim hızlarını onlarca kilometrelik bir alanda sağlamaktadır.
- WiMAX günümüz hücresel telefon sistemlerinden bağımsız çalışmaktadır.
- WiMAX sabit kullanıcılar için geliştirilmiştir.
- Mobile-Fi (IEEE 802.20), mobil kullanıcılar için geniş alanda İnternet erişimi sağlar.

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

43/7

Fiziksel ortamlar

- Bir uç sistemden gönderilen bir bit çok sayıda düğüm noktasından ve bunlar arasındaki bağlantılardan geçer.
- Bir bit, kullanılan iletim ortamına göre elektromanyetik dalga, elektrik sinyali veya optik palsler halinde yayılır.
- İletim ortamları iki gruba ayrılır: guided media ve unguided media.
- Fiber optik kablo, büklümlü çift kablo, koaksiyel kablo guided media grubundadır.
- Atmosfer ve uzay boşluğu unguided media grubundadır.

Fiziksel ortamlar - Büklümlü çift kablolar

- Büklümlü çift bakır teller (Twisted Pair Copper Wire) kullanılır.
- İlk kullanımı telefon hatlarındadır.
- Gürültünün etkisini azaltmak için teller birbirine sarılarak oluşturulur.
- Dış kısmına metal kılıf kullanılmadan yapılanlar, Unshielded
 Twisted Pair (UTP) olarak adlandırılır ve en yaygın kullanılandır.
- Dış kısmına kılıf kullanılanlar, Shielded Twisted Pair (STP) olarak adlandırılır ve maliyeti daha yüksektir.
- UTP kablolar category numaralarına göre sınıflandırılırlar.
- Günümüzde CAT 6 yaygın kullanılmaktadır.

45/72

Fiziksel ortamlar - Koaksiyel kablolar

- Büklümlü kablolar gibi koaksiyel kablolar da iki bakır iletkene sahiptir.
- Özel yalıtkan malzemesi ve kılıfı sayesinde daha yüksek bit oranı sağlarlar.
- Koaksiyel kablolar TV sistemlerinde çok yaygındır.
- Koaksiyel kablolar paylaşılmış ortam (shared medium) olarakta kullanılabilir.
- Çok sayıda uç sistem doğrudan koaksiyel kabloya bağlanabilir (Bus topolojisi).

Fiziksel ortamlar - Fiber optik

- Fiber optik kablolar görünen ışık palsleriyle iletişim yaparlar.
- Bir fiber optik >100Gbps bit oranı sağlayabilir ve 100km'den fazla mesafeye zayıflamadan iletilebilir.
- Özelikle kıtalararası (long-haul) guided iletim ortamı olarak kullanılır.
- İnternet omurgasının (backbone) önemli kısmını fiber optik kablolar oluşturur.
- OC (Optical Carrier) standart 51.8Mbps ile 39.8Gbps arasında hıza sahiptir.
- Kısaca OC-n (n x 51.8Mbps) olarak ifade edilir (OC-1, OC-3, ..., OC-768).

47/72

Fiziksel ortamlar - Karasal radyo kanalları

- Karasal radyo kanalları (terrestrial radio channels) fiziksel bir tel kurulumuna ihtiyaç duymadıkları için giderek yaygınlaşmaktadır.
- Uzak mesafelere iletişim yapılabilir ve duvarlardan geçebilir.
- Ortam özellikleri (nem, sis, yağmur, ...) sinyaldeki bozulmayı ve zayıflamayı belirler.
- İki gruba ayrılır: local area radio channels (WLAN'larda kullanılır) ve wide area radio channels (hücresel erişim teknolojilerinde kullanılır).

Ağ uç birimleri

Fiziksel ortamlar - Uydu radyo kanalları (1)

- Bir iletim uydusu, iki veya daha fazla yer istasyonu (Earth-based station) arasında alıcı vericiyi birbirine bağlar.
- Genel olarak 3 tür uydu ile iletişim yapılmaktadır: geostationary earth orbit (GEO), medium earth orbit (MEO) ve low-earth orbit (LEO) satellites.
- GEO uydular yeryüzünün bir noktası üzerinde sabit olarak kalırlar. Yeryüzünden yaklaşık 36000km yüksektedir ve sinyal erişim süresi 280ms'dir.
- MEO ve LEO uydular yeryüzüne daha yakındır ancak sabit bir nokta üzerinde durmazlar.

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

51/7

Devre anahtarlama ve paket anahtarlama (1)

- Verinin bağlantılar ve anahtarlar aracılığıyla ağ içinde taşınması için iki tür yaklaşım bulunmaktadır: devre anahtarlama (circuit switching) ve paket anahtarlama (packet switching).
- Devre anahtarlamalı ağlarda, iletişim boyunca uç sistemler arasında bir yol kurulur.
- Paket anahtarlamalı ağlarda, her paket için gereksinim olduğunda kaynak ayrımı yapılır ve iletim hattına erişim için bekleme oluşabilir.
- Telefon ağı, devre anahtarlamalı ağ için örnektir.
- İnternet, paket anahtarlamalı ağ için örnektir.

Ağ temel elemanları

Devre anahtarlama (1)

- Şekilde devre anahtarlamalı ağ için örnek görülmektedir.
- Her bağlantı n tane devreye sahiptir ve eşzamanlı n tane bağlantıyı destekler (her bağlantı için 1/n kısmı ayrılır).
- Host'lar doğrudan bir anahtara bağlanır ve iletişim yapan iki host arasında adanmış (dedicated) bir bağlantı oluşturulur.

Devre anahtarlama (2)

- Bir bağlantı için devre, frequency-division multiplexing (FDM)
 veya time-division multiplexing (TDM) ile kurulur.
- **FDM ile** bir bağlantının frekans spektrumu parçalara **(bant)** ayrılır ve **her parça bir iletişime ayrılır**.
- **TDM ile** veriler çerçeveler (frames) halinde gönderilir ve **frame** içindeki her slot bir iletişime ayrılır.
- Devre anahtarlamalı ağların en büyük dezavantajı kaynakları verimsiz kullanmasıdır.
- Devre anahtarlamalı ağlar veri iletişimine başlamadan önce yol kurulumu yapar.

55/72

Devre anahtarlama (3)

- Devre anahtarlamalı ağlarda veri iletişimi paket anahtarlamalı ağlara göre çok hızlıdır.
- Şekilde FDM ve TDM görülmektedir.

Devre anahtarlama - Örnek

- Host A ile Host B arasında devre anahtarlamalı ağ üzerinden 640.000 bit gönderilecektir.
- Ağdaki tüm bağlantılar 24 slot ile TDM kullanmaktadır ve bit orani 1.536Mbps.
- Uçtan uca devre kurulumu 0.5s'de yapılmaktadır.
- Dosyanın gönderilmesi için gereken süre ne kadardır?

Her devrenin iletim oranı Dosyanın gönderim süresi = 1.536Mbps / 24 = **64kbps** = 640.000 / 64kbps = **10s**

Toplam süre

= Devre kurulum süresi + Gönderim süresi

= 0.5s + 10s = 10.5s

Paket anahtarlama (1)

- Dağıtık uygulamalar görevlerini karşılıklı mesaj ileterek yaparlar.
- Bir mesaj protokol tasarımcısının istediği herhangi bir veriyi bulundurabilir.
- Günümüz bilgisayar ağlarında, uzun mesajlar küçük parçalara (paket) ayrılır. Bu paketlerin her birisi, bağlantılar ve paket anahtarlar aracılığıyla kaynak ile hedef arasında iletilir.
- Günümüz paket anahtarların çoğu depola ve yönlendir (storeand-forward) seklinde iletim yaparlar. Store-and-forward yaklaşımında, bir paketin tamamı alınır sonra yönlendirilir.
- Store-and-forward gecikmesi = L / R olur. (L=paket boyutu, R=iletim hızı)

Paket anahtarlama (2)

- Paket anahtarlar her bağlantı (port) için çıkış kuyruğuna (output queue/buffer) sahiptir.
- Bir paket, yönlendirildiği port o anda kullanılıyorsa kuyruğa alınarak bekletilir. Bu durumda kuyruk gecikmesi (queuing delay) oluşur.
- Eğer kuyruk tamamen doluysa gelen paket atılır. Bu durumda paket kayıpları (packet loss) oluşur.

59/72

Paket anahtarlama (3)

- Aşağıdaki şekilde paket anahtarlama görülmektedir.
- Host A ve Host B paket göndermektedir.
- Host A ve Host B 10Mbps Ethernet üzerinden paket göndermektedir. Paket anahtar 1.5Mbps bağlantıya sahiptir ve 1.5Mbps'ten fazla paket gelince paket kayıpları oluşur.

Statistical multiplexing (1)

- Devre anahtarlamada kaynak paylaşımı yapılmaz ve iletişim süresince bir kaynak kullanılmasa bile tek bir iletişime ayrılmıştır.
- Paket anahtarlamada, kaynak paylaşımı yapılır ancak uçtan uca gecikme öngörülebilir ve sabit olmadığından gerçek zamanlı uygulamalar için uygun değildir.
- Devre anahtarlamada, veri gönderen kullanıcıya daha fazla kaynak ayırma, veri göndermeyen kullanıcıya kaynak ayırmama statistical multiplexing ile yapılır.

61/72

Statistical multiplexing - örnek

Kullanıcılar 1Mbps bir bağlantıyı paylaşmaktadır. Her kullanıcı 10kbps sabit veri oranına sahiptir. TDM ile devre anahtarlamalı bağlantıda bir saniyede 10 slot oluşturularak eşzamanlı 10 kullanıcının iletişim yapması sağlanabilir (1Mbps/100kbps).

Paket anahtarlamada, bir kullanıcının aktif olma olasılığı 100kpbs/1Mbps = 0.1 olur. 35 kullanıcı olursa aynı anda 11 ve daha fazla kullanıcının aktif olma olasılığı 0.0004 ten küçük olur. 10 ve daha az kullanıcının aynı anda aktif olma olasılığı 0.9996 olur.

$$f_b(x) = \frac{n! \ p^x \ (1-p)^{n-x}}{x! \ (n-x)!} \Rightarrow f_b(11) = \frac{35! \ (0.1)^{11} \ (1-0.1)^{35-11}}{11! \ (35-11)!}$$

n = toplam kullanıcı sayısı

 $p=\mathsf{her}\;\mathsf{kullanıcı}\;\mathsf{için}\;\mathsf{ayrılan}\;\mathsf{kaynak}\;\mathsf{oranı}$

x = aynı andaki kullanıcı sayısı

Statistical multiplexing - örnek

- 10 ve daha az kullanıcının eşzamanlı aktif olması durumunda gecikme yaşanmaz.
- 10'dan daha fazla kullanıcının eşzamanlı aktif olması durumunda çıkış kuyruğu büyümeye başlar.
- 10 kullanıcıya kadar paket anahtarlama ile devre anahtarlamada elde edilen performansa eşit performans elde edilir.
- Paket anahtarlamalı ağlarda daha fazla kullanıcı aynı anda çalışabilir.

63/7

Statistical multiplexing (2)

- Devre anahtarlamada 10 kullanıcıdan 9 tanesi aktif değilken 1 tanesi aktif olsun. Bu 1 kullanıcı bir anda 1Mbps veri göndersin.
- Kendisine ayrılan 100kbps iletişim hattı üzerinden veriyi 10 saniyede gönderir. Ancak diğer 9 slot boş olarak kalmıştır.
- Eğer veri gönderilmeyen 9 slotta kullanılsaydı 1 saniyede gönderilecekti.
- Statistical multiplexing veri gönderilmeyen slotları veri gönderen kullanıcılara ayırır ve boş slot kullanımını ortadan kaldırır.

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

65/7

Paketlerin yönlendirilmesi

- İnternette her paket gideceği hedefin adresini başlık bilgisi kısmında bulundurur.
- Bir router gelen her paketin adresini alır ve kendisinden sonra gideceği router'ı belirler.
- Her router gelen paketleri yönlendirmek için bir yönlendirme tablosuna (forwarding table) sahiptir ve hedef adres ile çıkış bağlantılarını eşleştirir.
- Yönlendirme tablosunu otomatik olarak güncellemek için İnternette çok sayıda yönlendirme protokolü vardır.
- Her router kendi yönlendirme tablosunda komşuluklarına ve hedef adreslere ilişkin bilgileri saklar.

- Internet nedir?
 - Temel Tanımlar
 - Hizmet Tanımları
 - Protokol nedir?
- Ağ uç birimleri
 - Client ve Server programları
 - Erişim ağları
 - Fiziksel ortamlar
- Ağ temel elemanları
 - Devre anahtarlama ve paket anahtarlama
 - Paketlerin yönlendirilmesi
 - İSS'lar ve İnternet omurgası

67/7

iss'lar ve internet omurgası (1)

- İnternete uç sistemler bir İSS aracılığıyla bağlanır.
- İnternette İSS'lar katmanlı (tier) ve hiyerarşik yapıdadır.

Ağ temel elemanları

iSS'lar ve internet omurgası (2)

- En üst noktada tier-1 İSS'lar vardır. En alt noktada ise tier-3
 İSS'lar vardır.
- Tier-1 İSS'ların hızları 622Mbps veya daha yüksektir. Tie-1 İSS'lardan 2.5Gbps-10Gbps hızında olanlar vardır.
- Tier-1 İSS'lar doğrudan diğer tier-1 İSS'lara bağlıdır.
- Tier-1 İSS'lara çok sayıda tier-2 İSS bağlıdır.
- Tier-1 İSS'lar kapladığı alan olarak uluslararası ölçektedir.
- Tier-1 İSS'ları İnternet'in omurgası (backbone) olarak adlandırılır (Verizon, AT&T, Sprint, MCI, ...).

69/72

Ağ temel elemanları

iSS'lar ve internet omurgası (3)

- Tier-2 İSS'ları ulusal veya bölgesel ölçektedirler ve birkaç tane tier-1 İSS'ya bağlıdırlar.
- Tier-2 İSS'ları tier-1 İSS için müşteri durumundadır ve tier-1 İSS'ları ise sağlayıcı durumundadır.
- Bir sağlayıcı İSS, kendi müşterileri olan İSS'lardan bağlantının iletim hızına göre ücret alır.
- İki tier-2 İSS kendi arasında bağlantı oluşturulabilir. Bu durumda kendi aralarında tier-1 İSS kullanmadan veri aktarımı yaparlar.
- Aynı katmandaki iki tier kendi arasında bağlantıya sahipse, bunlara peer denir. Bir İSS ağında, diğer İSS'lara bağlantı yapılan noktalara Points of Presence (POPs) denir.

Ağ temel elemanları

iSS'lar ve internet omurgası (4)

- Bir POP, İSS ağındaki bir veya daha fazla router'dir ve diğer İSS router'ları kendisine bağlıdır.
- Bir tier-1 İSS, coğrafik olarak farklı noktalarda çok sayıda POP'a sahiptir ve müşteri ağları bu POP'lara bağlanır.
- Bir müşteri ağının POP'a bağlanması için, bir yüksek hıza sahip bağlantı kiralaması ve kendi router'larından birisini sağlayıcı İSS'nın router'una bağlaması gereklidir.
- Kullanıcılar ve içerik sağlayıcılar alt katman İSS'ların müşterisidir.
 Alt katman tier'lar ise üst katman tier'ların müşterisidir.

71/72

Ödev

 İnternet'teki uygulamalar, özellikleri, ücretlendirmesi, İnternet üzerinde oluşturduğu trafik, kullanım yoğunluğu ve kullanım alanları hakkında detaylı bir ödev hazırlayınız.