Spherical Harmonic Lighting: The Gritty Details

Robin Green

R&D Programmer
Sony Computer Entertainment America

What This Talk Is About

- Advanced Lecture
 - Explicit equations will be shown

This talk is one long HOWTO

- What SH Lighting is and how it works
- Background to the difficult bits
- ▶ How to write an SH Preprocessor
- ▶ How to use SH Lighting in game
- Example Source Code
- Pretty Demonstrations

What is SH Lighting?

A efficient method for capturing and displaying Global Illumination solutions across the surface of an object

- Works on static models with dynamic lighting
- Extremely fast to render
- ▶ Independent of number or size of light sources
- High Dynamic Range lighting for free
- ▶ A drop-in replacement for diffuse lighting

Examples

Examples

Examples

The Three Minute Pitch

 Illuminating a scene with an area light sources should create soft shadows

Area Light Sources

Area Light Sources

Area Light Sources

Another Viewpoint

Q: What can a point on the surface see?

A:

The Rendering Equation

The rendering equation tells us that:

Light as a Spherical Signal

The Transfer Function

Encoding Spherical Functions

Two problems remain:

- 1. How to compactly represent functions over a sphere?
- 2. How to integrate over a sphere?

Real Spherical Harmonics

Reading SH Diagrams

Reading SH Diagrams

The SH Functions

SH Projection

First we define a strict order for SH functions

$$i = l(l+1) + m$$

 Project a spherical function into a vector of SH coefficients

$$c_i = \int_S f(s) y_i(s) ds$$

SH Reconstruction

To reconstruct the approximation to a function

$$\widetilde{f}(s) = \sum_{i=0}^{N^2} c_i y_i(s)$$

 We truncate the infinite series of SH functions to give a low frequency approximation

An Example

- Take a function comprised of two area light sources
 - ▶ SH project them into 4 bands = 16 coefficients

1.329,

-0.679, 0.930, 0.908,

-0.940, 0, 0.417, 0, 0.278,

-0.642, 0.001, 0.317, 0.837,

-0.425, 0, -0.238

Low Frequency Light Source

- We reconstruct the signal
 - Using only these coefficients to find a low frequency approximation to the original light source

Here Is The Trick

 If both the light source and transfer function are expressed as vectors of SH coefficients, then the lighting integral

$$I_P = \int_S L(s) T_P(s) ds$$

can be calculated by a dot product between the coefficients

$$I_P = \mathbf{L} \cdot \mathbf{T}_P$$

What This Means

- Lighting calculation is independent of the number or size of light sources
- 2. Soft shadows are cheaper than hard edge shadows
- 3. Transfer functions can be calculated as an offline **preprocess**

Extending the Lighting Model

Look again at what the surface point can see

Complex Lighting Functions

 We can replace the lighting function with an HDR light probe for no extra cost

Secondary Illumination

- The lit scene also illuminates the point
 - ▶ This is how we capture diffuse-diffuse color bleeding

Diffuse Global Illumination Good Points

- > SH coefficients are the perfect way to **pass** around energy in Global Illumination solutions
- After direct illumination is calculated, self transfer requires no additional raytracing

Bad Points

Assumes that all distant points have the **same** illumination function (e.g. no shadows over half the object)

Part 2: The Gritty Details

Background

Based on the Siggraph 2002 paper:

Precomputed Radiance Transfer for Real-Time Rendering in Dynamic Low-Frequency Lighting Environments, by Sloan, Kautz and Snyder.

- This SH Paper assumes a lot of background from a first time reader:
 - Orthogonal Polynomials
 - Monte Carlo Integration
 - ▶ The Rendering Equation
 - Use of symbolic math packages like Maple or Mathematica
- This is what we will cover in the rest of the talk

Real Spherical Harmonics

- The Real Spherical Harmonics
 - A system of signed, orthogonal functions over the sphere
 - Represented in spherical coordinates by the function

$$y_l^m(\theta, \varphi)$$

Where l is the band and m is the index within the band

Properties of SH Functions

- SH Functions are fast to calculate using...
 - 1. Spherical Coordinates using recurrence relations for P

$$y_{l}^{m}(\theta,\varphi) = \begin{cases} \sqrt{2}K_{l}^{m}\cos(m\varphi)P_{l}^{m}(\cos\theta), & m > 0\\ \sqrt{2}K_{l}^{m}\sin(-m\varphi)P_{l}^{-m}(\cos\theta), & m < 0\\ K_{l}^{0}P_{l}^{0}(\cos\theta), & m = 0 \end{cases}$$

2. Implicitly from Cartesian coordinates (x,y,z)

$$y_1^0 = \frac{1}{2} \sqrt{\frac{3}{\pi}} z \qquad y_2^0 = \frac{1}{4} \sqrt{\frac{5}{\pi}} (2z^2 - x^2 - y^2) \qquad y_2^2 = \frac{1}{2} \sqrt{\frac{15}{\pi}} (x^2 - y^2)$$
$$y_1^1 = \frac{1}{2} \sqrt{\frac{3}{\pi}} x \qquad y_2^1 = \frac{1}{2} \sqrt{\frac{15}{\pi}} zx \qquad \text{etc...}$$

Properties of SH Functions

- SH Functions are Basis Functions
 - Basis Functions are pieces of signal that can be used to produce approximations to a function

$$\int \frac{1}{\sqrt{1 + c_1}} \times \frac{1}{\sqrt{1 + c_2}} = c_1$$

$$\int \frac{1}{\sqrt{1 + c_2}} \times \frac{1}{\sqrt{1 + c_2}} = c_2$$

$$\int \frac{1}{\sqrt{1 + c_2}} \times \frac{1}{\sqrt{1 + c_2}} = c_3$$

Basis Functions

 We can then use these coefficients to reconstruct an approximation to the original signal

$$c_1 \times \boxed{ } = \boxed{ }$$
 $c_2 \times \boxed{ } = \boxed{ }$
 $c_3 \times \boxed{ } = \boxed{ }$

Basis Functions

 We can then use these coefficients to reconstruct an approximation to the original signal

$$\sum_{i=1}^{N} c_i B_i(x) =$$

 However, with SH lighting we mostly use operations that work directly on the coefficients themselves.

Orthogonal Basis Functions

- SH functions are Orthogonal Basis Functions
 - ▶ These are families of functions with special properties

$$\int B_i(x)B_j(x) dx = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- Intuitively, it's like functions don't overlap each other's footprint
 - A bit like the way a Fourier transform breaks a functions into component sine waves

Properties of SH Functions

- SH Functions are Rotationally Invariant
 - A rotated SH function is exactly the same as SH projecting the rotation of a function

$$Rot(SH(f)) = SH(Rot(f))$$

▶ This guarantees that under animation, lighting will not

Crawl, Pulse,
Flicker or Distort

▶ Not a property that the Discrete Cosine Transform can claim

Monte Carlo Integration

How do we integrate over a sphere?

We use Monte Carlo Integration, which is based on Probability theory

Probability refresher

- ▶ Take a random variable, say rolling a 6-sided die
- ▶ The probability of rolling a specific value is 1/6
- ▶ The Cumulative Density Function is the probability of rolling a value less than equal to x, e.g.

$$P(4) = P(1) + P(2) + P(3) + P(4)$$
$$= 4 \times \frac{1}{6} = \frac{2}{3}$$

Continuous Random Variables

- Most values in this world are not discrete
 - For example picking an angle between $(0..\pi)$
 - ▶ The probability of picking an exact value is zero
 - We can find the probability of finding a value within the range [a..b] by

$$P(a \le x \le b) = \int_{a}^{b} p(x) dx$$

The Probability Density Function p(x) is defined as the derivative (or rate of change) of the CDF

Probability Density Functions

- PDFs have some interesting properties
 - ▶ All values in a PDF are positive or zero

$$P(a \le x \le b) \ge 0$$

▶ All PDFs integrate to 1 over the entire range of inputs

$$\int_{-\infty}^{\infty} p(x) \, dx = 1$$

Random variables or functions are said to be distributed according to a given PDF

$$f(x) \sim p(x)$$

Expected Value of a Function

• Given a function $f(x) \sim p(x)$ the mean or expected value is calculated by

$$E(f) = \int_{-\infty}^{\infty} f(x)p(x) dx$$

Another way of calculating the expected value is to sum a lot of point samples of f(x) and divide by the number of samples

$$E(f) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

The Monte Carlo Estimator

- We can combine these two results
 - ▶ One of the sneakiest tricks in Engineering Mathematics

$$\int f(x) dx = \int \frac{f(x)}{p(x)} p(x) dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

- All we need to estimate the integral of an unknown function is to control how our **random samples are distributed**
 - weight the result by this probability

SH Projection

- In order to SH Project a lighting function
 - Evaluate the SH functions at random points on the sphere
 - ▶ Sum the product of the lighting function and the SH values

$$c_i \approx \frac{1}{N} \sum_{j=1}^{N} \frac{f(x_j) y_i(x_j)}{p(x_j)}$$

If we can guarantee the samples are uniformly distributed, we can move the weight outside of the sum

$$c_i \approx \frac{4\pi}{N} \sum_{j=1}^{N} f(x_j) y_i(x_j)$$

Generating Uniform Samples

- To generate unbiased points over a sphere
 - ▶ Map points from a unit square (x,y) into spherical coords

$$\theta = 2\arccos\left(\sqrt{1-x}\right)$$

$$\varphi = 2\pi y$$

Stratified Sampling

- Monte Carlo integration suffers from noise
 - Caused by high variance in our sampling scheme
 - The PDF is too different to the function we are integrating
 - To lower variance in our approximation we can use a jittered grid, sometimes called stratified sampling

The Rendering Equation

- What are we trying to encode in SH coefficients?
 - ▶ The simplified diffuse reflectance version of the Rendering Equation

Cosine Term

- Where does the cosine term come from?
 - Essential to physically correct rendering
 - Comes from energy transfer formulation

$$H_{\mathbf{N}}(\mathbf{s}) = \max(\mathbf{N} \cdot \mathbf{s}, 0)$$

Transfer Function

 Converting the rendering equation into two parts gives us the transfer function we are going to SH project

$$T_P = V_P(\mathbf{s}) \max(\mathbf{N} \cdot \mathbf{s}, 0)$$

- The transfer function encodes the reflectance, the surface normal and the shadowing in one function
 - No need to store a surface normal per vertex

SH Preprocessing

- Now we are ready to write an SH Preprocessor
 - A simple raytracer that calculates SH coefficients for each vertex in our model

```
for(int i=0; i<n_samples; ++i) {
  double H = DotProduct(sample[i].vec, normal);
  if(H > 0.0) {
    if(!self_shadow(pos,sample[i].vec)) {
       for(int j=0; j<n_coeff; ++j) {
         value = H * sample[i].coeff[j];
        result[j] += albedo * value;
       }
    }
  }
  const double factor = 4.0*PI / n_samples;
  for(i=0; i<n_coeff; ++i)
    coeff[i] = result[i] * factor;</pre>
```

Raytracing Issues

- Shadow testing will often fire rays from inside a model
 - Beware of single sided ray-triangle intersections
 - Prefer manifold models without holes

The Result

The Result

Self Transfer

We can do better

The full rendering equation describes how lit surfaces also illuminate each other, leading to color bleeding

Self Transfer Diagram

 Point A receives illumination from point B proportional to the cosine term

Self Transfer Equation

This can be expressed in graphically as

- Point A now receives light from above
 - even though that direction is technically not visible to it
 - Using SH lighting, light transfer is just a series of multiply adds

The Result

SH Lighting at Runtime

Using SH Coefficients at runtime

- There are many ways to use the SH coefficients to reconstruct an image depending on what you want to achieve
 - Monochrome lights or Colored lights
 - Recolorable surfaces, fixed color or self transfer

```
for(int j=0; j<n_coeff; ++j) {
  vertex[i].red     += light[j] * vertex[i].sh_red[j];
  vertex[i].green += light[j] * vertex[i].sh_green[j];
  vertex[i].blue += light[j] * vertex[i].sh_blue[j];
}</pre>
```

- ▶ The accuracy for the lighting function
 - More coefficients encode higher frequency signals

SH Lighting As A Tool

Light is an additive function

- ▶ We can use SH lighting for part of a lighting calculation
 - Use SH Lighting for the sky sphere and add a point light and hard shadows to model the sun
 - Use SH Lighting for the diffuse part of surface reflectance

SH Rotation

- An essential tool is to be able to rotate SH Functions
 - Because SH functions are orthogonal, there is a simple linear matrix that will rotate SH coefficients directly

$$\mathbf{v}' = \mathbf{v}\mathbf{R}_{SH}$$

 The laws of orthogonality tell us that the matrix is block diagonal sparse

SH Rotation Matrix

- This matrix is a pain to calculate in the general case
 - ▶ But if we only need N bands, we can optimize the problem
- If we break the rotation into ZYZ Euler angles

$$\mathbf{R}_{SH}(\alpha, \beta, \gamma) = \mathbf{Z}_{\gamma} \mathbf{Y}_{\beta} \mathbf{Z}_{\alpha}$$
$$= \mathbf{Z}_{\gamma} \mathbf{X}_{-90} \mathbf{Z}_{\beta} \mathbf{X}_{90} \mathbf{Z}_{\alpha}$$

- ▶ Two constant, sparse matrixes of ±90° about the X axis
- ▶ Rotation about Z is very simple to calculate symbolically

$$\mathbf{M}_{ij} = \int_{S} y_i(s\mathbf{R}) y_j(s) \, ds$$

SH Rotation about Z

	1	0	0	0	0	0	0	0	0
	0	$\cos(\alpha)$	0	$\sin(\alpha)$	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	$-\sin(\alpha)$	0	$\cos(\alpha)$	0	0	0	0	0
$\mathbf{Z}_{\alpha} =$	0	0	0	0	$\cos(2\alpha)$	0	0	0	$\sin(2a)$
	0	0	0	0	0	$\cos(\alpha)$	0	$\sin(\alpha)$	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	$-\sin(\alpha)$	0	$\cos(\alpha)$	0
	0	0	0	0	$-\sin(2\alpha)$	0	0	0	$\cos(2\alpha)$

SH Rotation about X

	⁻ 1	0	0	0	0	0	0	0	0]
$\mathbf{X}_{90} =$	0	0	-1		0		0	0	0
	0	1		0			0	0	0
	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	-1	0
	0	0	0	0			0	0	0
	0	0	0	0	0	0	$-\frac{1}{2}$	0	$-\frac{\sqrt{3}}{2}$
	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	$-\frac{\sqrt{3}}{2}$	0	$\frac{1}{2}$

SH Light Sources

Many ways of creating SH light sources

- Numerically from polar functions
- Raytrace polygonal models or scenes
- ▶ From HDR light probes or environment maps
- Directly from analytical solutions
 - e.g. solution for a disk light source, angle t

$$d_{t}(\theta,\varphi) = \begin{cases} 1 & (t-\theta) > 0 \\ 0 & otherwise \end{cases}$$

Analytical Disk Light Source

 Symbolically integrate this disk light function over a sphere in Maple or Mathematica to find the analytical expression

$$c_{i} = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} d_{t}(\theta, \varphi) y_{i}(\theta, \varphi) \sin \theta d\theta d\varphi$$

- Only 4 of the 25 coefficients in a 5 band disk light are non-zero
- Finally, use SH Rotation to position the light source

Proxy Shadows

- A method of faking inter-object shadows
 - If each object in a scene has it's own lighting function, we can use analytical "blockers" to subtract light from the direction of another object
 - Defining b_t(s) as 1-d_t(s) allows us to construct a transfer matrix that masks SH coefficients

$$\mathbf{T}_{ij} = \int_{S} b_{t}(s) y_{i}(s) y_{j}(s) ds$$

Suggested by Alex Evans, Lionhead

Open Problems in SH Lighting

- Faster SH Rotation methods
 - Borrowing from research in Computation Chemistry
- SH Lighting non-static objects
 - As objects move relative to each other, the visibility function V(s) changes radically. How to encode this?
- Exploiting the sparseness of SH vectors
 - ▶ SH vectors often contain very few non-zero coefficients
- Glossy Specular SH Lighting
 - ▶ An elegant way to encode and use arbitrary BRDFs
 - Still too slow for the general case

Conclusion

- SH Lighting is a new technique for lighting 3D models
- Brings area light sources and global illumination to real time games
- Works on any platform that can do Gouraud shading
- Can be used as a drop-in replacement for diffuse lighting on static scenes
 - ▶ 2 band shadowing uses only 4 coefficients

For More Information

- Document in Conference proceedings
 - Visit the SCEA R&D website for a debugged version of the document

http://www.research.scea.com/

Notes and queries to

robin_green@playstation.sony.com