Energy conversion I

Lecture 12:

Topic 3: Fundamentals of AC machines steady state operation (S. Chapman, ch. 4)

- Introduction
- Voltage and torque of a loop in a uniform magnetic Field
- Rotating magnetic field
- Magnetomotive force and flux distribution in AC machines
- Induced voltage in AC machines
- Induced torque in AC machines

Induced voltage due to rotating flux(flux approach)

For Concentrated phase windings:

$$\varphi_{a} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} B_{M} \cos(t - \theta_{a}) lr d\theta_{a} = 2r l B_{M} \cos(t - \theta_{a}) lr d\theta_{a} = 2r$$

Sharif University of Technology phase c

$$ext{d} = \begin{cases} \frac{\pi}{2} & \text{for winding a} \\ \frac{\pi}{2} + \frac{2\pi}{3} & \text{for winding b} \\ \frac{\pi}{2} - \frac{2\pi}{3} & \text{for winding c} \\ \frac{\pi}{2} - \frac{\pi}{3} & \text{Sharif L} \end{cases}$$

Induced voltage due to rotating flux in three-phase coils

Three phase coils: three equivalent coils of N_c turns with 120° displacement

$$e_{ind,loop} = 2r\omega \ I \ B_{M}cos(\omega t - \theta_{a}) = \phi_{M}\omega \ cos(\omega t - \theta_{a})$$
 $e_{a} = N_{C} \ \phi_{M}\omega \ sin \ \omega t$

$$e_b = N_C \phi_M \omega \sin (\omega t - 120^\circ)$$

$$e_c = N_C \phi_M \omega \sin (\omega t + 120^\circ)$$

A sinusoidally distributed rotating magnetic field can generate three phase voltage in three phase winding.

Reminder: Three phase current in three phase winding generates sinusoidally distributed rotating magnetic field.

What about the induced voltage in distributed windings? What happens if a three phase winding is connected to a three phase voltage? What happens if three phase winding rotates with ω_m ?

Phase voltage of a three-phase machine

$$e_a = N_{ce} \phi_M \omega \sin \omega t = E_{max} \sin \omega t = \sqrt{2} E \sin \omega t$$

$$e_b = N_{ce} \phi_M \omega \sin(\omega t-120^\circ) = E_{max} \sin(\omega t-120^\circ) = \sqrt{2} E \sin(\omega t-120^\circ)$$

$$e_c = N_{ce} \phi_{M} \omega \sin (\omega t + 120^\circ) = E_{max} \sin (\omega t + 120^\circ) = \sqrt{2} E \sin (\omega t + 120^\circ)$$

N_e: Effective turns of phase winding

$$E_{\text{max}} = N_{\text{ce}} \phi_{\text{M}} \omega$$
,

$$E = \frac{N_c \rho_M \omega}{\sqrt{2}} = \frac{N_c \rho_M 2\pi}{\sqrt{2}} f = 4.44 N_c \rho_M f$$
 (similar to a transformer)

What happens if the magnitude of the rotating flux changes?

Induced Torque in an AC Machines

Sinusoidally-distributed radial rotating flux density ($B_s(\alpha)=B_s\sin\alpha$) Loop current

Induced force applied to different parts of the loop

$$F = i(I \times B)$$

i perpendicular to B for I1 and I2

T = 2rl i B = 2rl i $B_s \sin \alpha$ ($B_s \text{ peak of sinusoidally}$ -distributed stator flux density)

Using first harmonic approximate for rotor MMF, H and B

$$|\mathbf{B}_{S}(\alpha)| = B_{S} \sin \alpha$$

 B_r : a sinusoidally distributed magnetic flux density, with a peak at $3\pi/2+\alpha$

$$T = 2rI i B_s sin\alpha = K B_r B_s sin\alpha$$

Constant torque in AC Machines

 $T = K B_r B_s \sin \alpha$

B_s: peak of stator sinusoidally-distributed flux density

B_r: peak of rotor sinusoidally-distributed flux density

 α : angle between these two peaks.

To have a constant torque:

Amplitude of B_s should be constant Amplitude of B_r should be constant α should be constant

If $\mathbf{B_s}$ is a **rotating magnetic flux** then $\mathbf{B_r}$ should be a **rotating magnetic flux** rotating with the **same speed** to be **stationary** with $\mathbf{B_s}$

Constant torque in three phase AC Machines

In AC machines with three phase stator current in three phase stator winding B_s is a sinusoidally-distributed rotating flux-density.

B_r produced by a **Permanent magnet** or **DC current** (Electromagnet) is **stationary** relative to **rotor**.

To have a constant torque, rotor should rotate with the speed of rotating stator flux.

(Synchronous Machines)

Rotating B_s Induces three phase voltage in three phase winding of rotor if it is not rotating with the rotation speed of B_s .

Three phase current will be produced if rotor windings are short circuited.

Three phase induced current generates rotating magnetic field of rotor (B_r).

Explain why B_r is stationary relative to B_s!

(Induction / asynchronous Machine)

Effect of pole-pairs in magnetic field rotation speed

In 2 poles machines magnetic field rotates once every period of current:

 $\omega_e = \omega_m$ (ω_e frequency of current, ω_m frequency of rotation of magnetic field)

In 4 poles machines magnetic field rotates once every two period of current:

 $\omega_e = 2\omega_m$ (Attention: $F_a = F_{aa} \cos(2\theta_a), \dots, F = 3/2 \times N_{se}/2 \times I_m \cos(\omega t - 2\theta_a)$)

2 poles

4 poles

In general:
$$\omega_e = \frac{p}{2}\omega_m$$
 $\theta_e = \frac{p}{2}\theta_m$ $\eta_m = \frac{120 \times f_e}{P}$

Winding connection

P: Number of poles