Intermediate Value Theorem

Reading

• Sections 2.8

Practice problems

- Section 2.8: 1, 5, 7, 19
- In class: 2.8 14: $\tan x = x$ has infinitely many solutions
- To turn in (due Wednesday, together with 2.7): 2.8 2, 6

Notes

Intermediate Value Theorem

Intermediate Value Theorem

If f(x) is a continuous function on [a, b] and L is a number between f(a) and f(b), then there must be a $c \in [a, b]$ such that f(c) = L.

Simply put: A continuous function takes all values between f(a) and f(b).

Important special case: If f(a) and f(b) have opposite signs, then the function f must have a zero somewhere between a and b.

- Make sure to have a good graphical representation of this result.
- The importance of the theorem is that it allows us to guaranteed the existence of solutions to equations.
- Example: We will show that $\sqrt{2}$ exists:
 - The square root is a number c such that $c^2=2$.
 - Consider the function $f(x) = x^2$ on the interval [1, 2].
 - Then f(1) < 2 < f(2).
 - The IVT tells us there must be a $c \in [1,2]$ with f(c) = 2.
- Example 2: Show that there is a positive x with $x = \sin x$.
 - Idea: Bring everything to one side: $f(x) = x \sin x$.
 - Look for a zero.
- **Bisection method**: Allows us to zero in on a solution:
 - In the previous example, consider f(1.5). Since it is bigger than 2, the c is actually in [1, 1.5].
 - **–** Try f(1.25) next.
 - Keep bisecting the interval and trying the middle value.
 - Practice: Find the first 3 decimals points of $\sqrt{2}$.