We know that Singular Value Decomposition for any m by n matrix A is given by

$$A = U \sum V^{T}$$

$$= \begin{pmatrix} \text{orthogonal} \\ U \text{ is } m \times m \end{pmatrix} \begin{pmatrix} m \times n \text{ matrix } \sum \\ \sigma_{1} \cdots \sigma_{r} \text{ on diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ V \text{ is } n \times n \end{pmatrix}$$

Here eigenvectors of AA^T are in U, eigenvectors of A^TA are in V and the diagonal matrix Σ has square roots of the nonzero eigenvalues of both AA^T and A^TA .

Step-2

Consider the following matrices:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

Then we get

$$AB = C$$

$$= \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

So, we have

$$C^T = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Calculate CC^T .

$$CC^{T} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Step-3

To find the eigenvalues of CC^T , solve the following equation for λ .

$$\begin{bmatrix} 2 - \lambda & 0 \\ 0 & 0 - \lambda \end{bmatrix} = 0$$
$$(2 - \lambda)(-\lambda) = 0$$

Therefore, the eigenvalues for CC^{T} are:

$$\lambda_1 = 2$$

$$\lambda_2 = 0$$

The eigenvectors of CC^T are given by

$$x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Step-4

The unit eigenvectors of CC^T are given by,

$$u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We know that eigenvectors of CC^T are in U, so

$$U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Step-5

Calculate C^TC .

$$C^{T}C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

The eigenvalues of C^TC are given by

$$\det\begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = 0$$
$$(1 - \lambda)^2 - 1 = 0$$
$$\lambda^2 - 2\lambda = 0$$

Therefore, the eigenvalues for C^TC are:

 $\lambda_1 = 2$

 $\lambda_2 = 0$

The eigenvectors of C^TC are given by

 $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

The unit eigenvectors of C^TC are given by

 $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

 $v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

We know that eigenvectors of C^TC are in V, so

 $V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$

Step-7

The diagonal matrix has Σ eigenvalue from CC^T .

 $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$

Therefore, we get,

$$C = U \sum V^{T}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^{T}$$

Step-8

We know that if $A = U \sum V^T$, then its pseudoinverse is give by

$$A^+ = V \sum^+ U^T$$

Hence pseudoinverse of *C* is given by

$$\begin{split} C^+ &= V \sum^+ U^T \\ &= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \end{split}$$

Therefore,

$$C^{+} = \begin{pmatrix} AB \end{pmatrix}^{+}$$
$$= \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$

Step-9

Similarly we can find the pseudoinverse of *A* as

$$A^+ = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$

 $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$ Consider the matrix

So, we have

$$B^T = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Calculate BB^T .

$$BB^{T} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

Step-10

To find the eigenvalues of BB^{T} , solve the following equation for λ .

$$\begin{bmatrix} 0 - \lambda & 0 \\ 0 & 2 - \lambda \end{bmatrix} = 0$$
$$(2 - \lambda)(-\lambda) = 0$$

Therefore, the eigenvalues for BB^{T} are:

$$\lambda_1 = 0$$

$$\lambda_2 = 2$$

The eigenvectors of CC^T are given by

$$x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Step-11

The unit eigenvectors of BB^{T} are given by,

$$u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We know that eigenvectors of BB^{T} are in U, so

$$U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Calculate $B^T B$.

$$B^{T}B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

The eigenvalues of $B^T B$ are given by

$$\det\begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = 0$$
$$(1 - \lambda)^2 - 1 = 0$$
$$\lambda^2 - 2\lambda = 0$$

Therefore, the eigenvalues for B^TB are:

$$\lambda_1 = 2$$
 $\lambda_2 = 0$

The eigenvectors of $B^T B$ are given by

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

The unit eigenvectors of B^TB are given by

$$v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

We know that eigenvectors of C^TC are in V, so

$$V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

The diagonal matrix has Σ eigenvalue from BB^T .

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore, we get,

$$B = U \sum V^{T}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^{T}$$

Step-14

We know that if $A = U \sum V^T$, then its pseudoinverse is give by

$$A^+ = V \sum^+ U^T$$

Hence pseudoinverse of B is given by

$$\begin{split} B^+ &= V \sum^+ U^T \\ &= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \end{split}$$

Therefore,

$$B^+ = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$

Step-15

We have

$$A^{+} = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$
$$B^{+} = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$

Calculate B^+A^+ .

$$B^{+}A^{+} = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1/4 & 0 \\ 1/4 & 0 \end{bmatrix}$$

Since
$$(AB)^+ = \begin{bmatrix} 1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$
 and $B^+A^+ = \begin{bmatrix} 1/4 & 0 \\ 1/4 & 0 \end{bmatrix}$, so

$$(AB)^+ \neq B^+A^+$$