When is ANOVA applicable?

- When you wish to assess the independent/joint effects of one or more categorical factors on a single continuous dependent variable
- Strictly speaking, ANOVA is not applicable to count or categorical DVs (but that stops few researchers from using it anyway!)
- ANOVA is a special case of linear regression, ultimately a more flexible approach

ANOVA as variance partitioning

$$SS_{total} = SS_{treat} + SS_{error}$$

 $SS_{treat} = SS_A + SS_B + SS_{AB}$

Source	SS	df	MS	F
Α		$k_A - 1$		
В		$k_B^{\prime\prime} - 1$		
AB		$df_A \times df_B$		
Error		N _{subi} – N _{groups}		
Total		555) 5 × 1/2		

How the GLM represents relationships

Component of GLM	Notation
DV	Y
Grand Average	μ "mu"
Main Effects	A, B, C, \dots
Interactions	AB, AC, BC, ABC, \dots
Random Error	S(Group)

```
Score = Grand Avg. + Main Effects + Interactions + Error Y = \mu + A + B + C + \dots + AB + AC + BC + ABC + \dots + S(Group)
```

- Components of the model are estimated from the observed data
- Tests are performed (F) to see whether its variability is too large to be introduced by chance

Making comparisons across groups

Example (Spelling)

You wish to compare the benefits of three different spelling programs. Do these programs yield differences in spelling performance?

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Factors and Levels

Factor: a categorical variable that is used to divide subjects into groups, usually to draw some comparison. Factors are composed of different *levels*. Do not confuse factors with levels!

Means, Variability, and Deviation Scores

Means, Variability, and Deviation Scores

$$Y_{\cdot \cdot} = \frac{\sum_{ij} Y_{ij}}{N}$$

Means, Variability, and Deviation Scores

grand mean
$$Y_{..} = \frac{\sum_{ij} Y_{ij}}{N}$$
 $SD_Y = \sqrt{\frac{\sum_{ij} (Y_{ij} - Y_{..})^2}{N}}$ deviation score: $Y_{ij} - Y_{..}$

$$Y_{ij} = \mu$$

$$Y_{ij} = \mu + A_i$$

$$Y_{ij} = \mu + A_i + S(A)_{ij}$$

$$\mathbf{Y}_{ij} = \mu + \mathbf{A}_i + \mathbf{S}(\mathbf{A})_{ij}$$

Estimation Equations

$$\hat{\mu} = Y_{..}
\hat{A}_{i} = Y_{i.} - \hat{\mu}
\widehat{S(A)}_{ij} = Y_{ij} - \hat{\mu} - \hat{A}_{i}$$

Note that
$$\sum_{i} \hat{A}_{i} = 0$$
 and $\sum_{ij} \widehat{S(A)}_{ij} = 0$

13/24

Sources of Variance

$$Y_{ij} = \mu + A_i + S(A)_{ij}$$

$$Y_{ij} - \mu = A_i + S(A)_{ij}$$

$$individual = group + random$$

Sum of Squares (SS)

A measure of variability consisting of the sum of squared *deviation* scores, where a deviation score is a score minus a mean.

$$SS_A = \sum (Y_{i.} - \mu)^2$$

Decomposition Matrix

$$\hat{\mu} = 100$$

$$\hat{A}_1 = 120 - 100 = 20$$

$$\hat{A}_2 = 97 - 100 = -3$$

$$\hat{A}_3 = 83 - 100 = -17$$

	Y_{ij}	=	$\hat{\mu}$	+	\hat{A}_i	+	$\widehat{\mathcal{S}(A)}_{ij}$
•	124	=	100	+	20	+	4
	129	=	100	+	20	+	9
	115	=	100	+	20	+	-5
	112	=	100	+	20	+	-8
	101	=	100	+	-3	+	4
	88	=	100	+	-3	+	-9
	107	=	100	+	-3	+	10
	92	=	100	+	-3	+	-5
	76	=	100	+	-17	+	-7
	91	=	100	+	-17	+	8
	84	=	100	+	-17	+	1
	81	=	100	+	-17	+	-2
SS =	123318	=	120000	+	2792	+	526

Logic of ANOVA

- Compare two estimates of the variability, the between-group estimate (SS_{between}) and the within-group estimate (SS_{within})
- If $H_0: \mu_1 = \mu_2 = \mu_3$ is true, then these two measures estimate the same quantity.
- The extent to which the between-group variability exceeds the within-group variability gives evidence against $H_0: \mu_1 = \mu_2 = \mu_3$.

Calculating SS_{between} and SS_{within}

	Y_{ij}	=	$\hat{\mu}$	+	\hat{A}_i	+	$\widehat{S(A)}_{ii}$
	124	=	100	+	20	+	4
	129	=	100	+	20	+	9
	115	=	100	+	20	+	-5
	112	=	100	+	20	+	-8
	101	=	100	+	-3	+	4
	88	=	100	+	-3	+	-9
	107	=	100	+	-3	+	10
	92	=	100	+	-3	+	-5
	76	=	100	+	-17	+	-7
	91	=	100	+	-17	+	8
	84	=	100	+	-17	+	1
	81	=	100	+	-17	+	-2
SS =	123318	=	120000	+	2792	+	526

check your math

$$SS_Y = SS_\mu + SS_A + SS_{S(A)}$$

H₀ and Sums of Squares

$$Y_{ij} - \mu = A_i + S(A)_{ij}$$

Scenario A

$$SS_A = 2792 \ SS_{S(A)} = 526 \ SS_A + SS_{S(A)} = 3318$$

Scenario B

$$SS_A = 266 \ SS_{S(A)} = 3052 \ SS_A + SS_{S(A)} = 3318$$

Mean Square and Degrees of Freedom

Degrees of Freedom (df)

The number of observations that are "free to vary".

$$df_A = K - 1$$

$$df_{S(A)} = N - K$$

where N is the number of subjects and K is the number of groups.

Mean Square (MS)

A sum of squares divided by its degrees of freedom.

$$MS_A = \frac{SS_A}{df_A} = \frac{2792}{2} = 1396$$

$$MS_A = \frac{SS_A}{df_A} = \frac{2792}{2} = 1396$$

 $MS_{S(A)} = \frac{SS_{S(A)}}{df_{S(A)}} = \frac{526}{9} = 58.4$

The *F*-ratio

F density function

If $F_{obs} > F_{crit}$, then reject H_0

F ratio

A ratio of mean squares, with df_{numerator} and df_{denominator} degrees of freedom.

$$F_A = \frac{MS_A}{MS_{S(A)}} = \frac{1396}{58.4} = 23.886$$

df in	df in numerator							
denominator	1	2	3	4	5	6	7	8
1	161.40	199.50	215.70	224.60	230.20	234.00	236.80	238.90
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23

Density/Quantile functions for *F*-distribution

name		function
pf(x, df1,	df2, lower.tail = FALSE)	density (get p given F_{obs})
qf(p, df1,	df2, lower.tail = FALSE)	quantile (get F_{crit} given p)

Summary Table

Scenario A

Source	df	SS	MS	F	р	Error
μ	1	120000	120000.0	2053.232	<.001	$\overline{S(A)}$
A	2	2792	1396.0	23.886	<.001	S(A)
S(A)	9	526	58.4			
Total	12	123318				

Scenario B

Source	df	SS	MS	F	р	Error
$\overline{\mu}$	1	120000	120000.0	353.878	<.001	S(A)
Α	2	266	133.0	.392	.687	S(A)
S(A)	9	3052	339.1			` ,
Total	12	123318				
- Total		.20010				

Overview of One-Way ANOVA

- Write the GLM: $Y_{ij} = \mu + A_i + S(A)_{ij}$
- Write down the estimating equations:
 - $\hat{\mu} = Y_{..}$
 - $\hat{A}_i = Y_i \hat{\mu}$
 - $\triangleright \widehat{S(A)_{ij}} = Y_{ij} \hat{\mu} \hat{A}_i$
- Compute estimates for all terms in model.
- Create decomposition matrix.
- Ompute SS, MS, df.
 - $df_{\mu} = 1$
 - $\rightarrow df_A = K 1$
 - $\rightarrow df_{S(A)} = N K$
 - ► MS = SS/df
- Construct a summary ANOVA table.
- Ompare Fobs with Fcrit.

R

use the aov() function, e.g.:

```
spelling$A <- factor(spelling$A)
mod <- aov(Y ~ A, data = spelling)
summary(mod)</pre>
```

http://talklab.psy.gla.ac.uk/stats/onefactoranova.html#sec-3-2

ANOVA assumptions

- Normality
- Conditional independence
- Homoskedasticity
- Sphericity (RM-designs only, where k > 2)