APPEARANCE MATCHING

Appearance matching

Representation and recognition of 3D object using visual appearance

- 1. Shape vs Appearance
- 2. Learning Appearance
- 3. Principle Component Analysis
- 4. Parametric Appearance Representation
- 5. Appearance Matching

VOXEL REPRESENTATION

ANALYTICAL REPRESENTATION

$$|\mathbf{x}|^r + |\mathbf{y}|^s + |\mathbf{z}|^t = 1$$

Constructive Solid Geometry (CSG)

Issues with 3D Shape Matching

- Requires measuring of 3D shapes
 - 1. Creating large database
 - 2. Recognition

• Computationally expansive

Visual Appearance

Appearance learning by humans

Appearance learning by machines

Template matching (naïve method)

Template matching (naive method)

- Sum of Absolute difference (SAD)
- Sum of Square difference (SSD)
- Normalized Correlation (NCC)

- Thousands of templates for possibly millions of objects in dataset
- Too costly and time consuming

Object image set

Highly Redundant

Reduce dimensionality

Image representation in Vector

Image in N-D space

- Each dimension represents image intensity at corresponding pixel
- $i_1, i_2, ..., i_N$ are arranged in Orthonormal basis

$$\mathbf{i_l} = \{1 \ 0 \ 0 \ \dots \ 0\}^{\mathrm{T}}$$

Template Matching (N-D space)

Dimensionality Reduction

• Distribution of points in 3D space, actually lie on a 2D plane.

 {e₁, e₂} can be utilized (2D) to represent every point rather using 3D representation.

Appearance Distribution

- Distribution is highly structured because of high correlation between every image.
- Can be represented using lower number of dimensions

Dimensionality Reduction

• $\{e_1, e_2, \dots, e_K\}$ is Orthonormal basis where K < N

Mean Image

• For M images {f'₁, f'₂, ..., f'_M} of an object, the mean image is:

$$\mathbf{c} = \frac{1}{M} \sum_{m=1}^{M} f'_{m}$$

• Subtracting mean from every image for shifting the origin to the centroid of the distribution

$$f_m = f'_m - \mathbf{c}$$

Principal Components

- 1st Principal Component (e₁): Direction of maximum variance in the image set (equivalent to Least Squares Fitting of a Line)
- Image representation: Project the image f onto the principal component e₁.
- $p = e_1 * f(Dot Product)$
- Image is represented by a single number p

Principal Components

• 2^{nd} Principal Component (e₂): Direction of 2^{nd} maximum variance in the image set such that e₁ and e₂ are perpendicular to each other.

• Image representation: Project the image f onto the principal components $\{e_1, e_2\}$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = [\mathbf{e}_1 \quad \mathbf{e}_2]^T \mathbf{f}$$

Principal Components

• 2^{nd} Principal Component (e_2) : Direction of K^{th} maximum variance in the image set such that e_1 , e_2 , ..., e_K are perpendicular to each other.

• Image representation: Project the image f onto the principal components $\{e_1\,,e_2\,,...\,,e_K\}$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_K \end{bmatrix} = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_K]^T \mathbf{f}$$

Forward Projection

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_K \end{bmatrix} = [\mathbf{e_1} \quad \mathbf{e_2} \quad \dots \quad \mathbf{e}_K]^T \mathbf{f}$$

Back Projection

$$\boldsymbol{f} \approx p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_K \mathbf{e}_K$$

$$f \approx \sum_{k=1}^{K} p_k \mathbf{e}_k$$

• $\{e_1, e_2, ..., e_K\}$ are referred as Linear Subspace

