Лабораторна робота №2

Грищенко Юрій 4-ий по списку **(ІПС-32)**, тому будуємо тригер відповідно до таблиці:

$\mathbf{x_1}^{\mathrm{S}}$	\mathbf{x}_2^{S}	Q^{S+1}				
0	0	1				
0	1	Q ^s				
1	0	$\overline{\mathbf{Q}}^{\mathrm{S}}$				
1	1	0				

За основу братимемо таку схему, побудовану на елементах І-НІ:

Рис. 1.12

Порядок переходів тригера M на вентилях І-НІ визначається системою підграфів на рис. 1.9, δ .

Будуємо повну таблицю переходів:

C^{S}	X_1^S	X_2^S	Q^{S}	Q^{S+1}	f_1	f_2
0	0	0	0	0	1	*
0	0	0	1	1	*	1
0	0	1	0	0	1	*
0	0	1	1	1	*	1
0	1	0	0	0	1	*
0	1	0	1	1	*	1
0	1	1	0	0	1	*
0	1	1	1	1	*	1
1	0	0	0	1	0	1
1	0	0	1	1	*	1
1	0	1	0	0	1	*
1	0	1	1	1	*	1
1	1	0	0	1	0	1
1	1	0	1	0	1	0
1	1	1	0	0	1	*
1	1	1	1	0	1	0

За допомогою діаграм Вейча знаходимо мінімальну диз'юнктивну нормальну форму (МДН Φ) функцій f_1 і f_2 :

$$f_{1} = Q \lor \overline{C} \lor x_{2} = \overline{Q \lor \overline{C} \lor x_{2}} = \overline{Q} \land C \land \overline{x_{2}}$$

$$f_{2}$$

$$x_{1}$$

$$x_{2} * * * * *$$

$$1 0 1 1 Q$$

$$1 0 1 1 *$$

$$C$$

$$f_2 = \overline{C} \vee \overline{Q} \vee \overline{x_1} = \overline{\overline{C} \vee \overline{Q} \vee \overline{x_1}} = \overline{C \wedge Q \wedge x_1}$$

Матимемо таку схему:

При x_1x_2 =0 маємо Q=1, \overline{Q} =0

При x_1x_2 =01 стан зберігається.

При $x_1x_2=10$ стан змінюється на протилежний, перехід $1 \to 0$.

При $x_1x_2=11$ маємо Q=0.

При x_1x_2 =10 стан змінюється на протилежний, перехід $0 \to 1$.