SYMULOWANIE WZROSTU ROŚLIN

Kacper Szulc

WPŁYW RÓŻNYCH CZYNNIKÓW NA KOŃCOWY WYGLĄD ROŚLINY

Korzystając z programu, możemy dowiedzieć się między innymi, jak może wyglądać roślina:

przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,

- przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,
- · w różnym momencie rozwoju,

- przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,
- · w różnym momencie rozwoju,
- · w zależności od tego czy ma być bardziej wąska czy szeroka,

- przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,
- w różnym momencie rozwoju,
- w zależności od tego czy ma być bardziej wąska czy szeroka,
- w zależności od tego z której strony świeci słońce,

- przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,
- w różnym momencie rozwoju,
- w zależności od tego czy ma być bardziej wąska czy szeroka,
- w zależności od tego z której strony świeci słońce,
- jeśli występują inne rośliny w jej pobliżu,

- przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji,
- w różnym momencie rozwoju,
- w zależności od tego czy ma być bardziej wąska czy szeroka,
- w zależności od tego z której strony świeci słońce,
- jeśli występują inne rośliny w jej pobliżu,
- w zależności od jej długości.

PROGRAM

Cały program został zaprojektowany do symulacji wzrostu roślin na podstawie zewnętrznego pliku konfiguracyjnego. Zawiera on parametry takie jak:

reguly produkcji (ruleX, ruleF),

- reguły produkcji (ruleX, ruleF),
- element początkowy (start),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- liczba iteracji (iterations),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- liczba iteracji (iterations),
- kat obrotu (angle),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- · liczba iteracji (iterations),
- kat obrotu (angle),
- możliwość generowania za każdym razem inengo, podobnego fraktala (random_generate),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- · liczba iteracji (iterations),
- kat obrotu (angle),
- możliwość generowania za każdym razem inengo, podobnego fraktala (random_generate),
- kierunek światła słonecznego (sunlight_direction),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- liczba iteracji (iterations),
- kat obrotu (angle),
- możliwość generowania za każdym razem inengo, podobnego fraktala (random_generate),
- kierunek światła słonecznego (sunlight_direction),
- obecność innych roślin (other_plants),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- liczba iteracji (iterations),
- kat obrotu (angle),
- możliwość generowania za każdym razem inengo, podobnego fraktala (random_generate),
- kierunek światła słonecznego (sunlight_direction),
- obecność innych roślin (other_plants),
- kolor rysunku (color),

- reguly produkcji (ruleX, ruleF),
- element początkowy (start),
- liczba iteracji (iterations),
- kat obrotu (angle),
- możliwość generowania za każdym razem inengo, podobnego fraktala (random_generate),
- kierunek światła słonecznego (sunlight_direction),
- obecność innych roślin (other_plants),
- kolor rysunku (color),
- długość kroku (step).

PRZYKŁADY UŻYCIA

Jak może wyglądać roślina przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji.

Jak może wyglądać roślina przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji.

Jak może wyglądać roślina przy istniejących już lub dodanych/wymyślonych przez użytkownika zasadach symulacji.

Jak może wyglądać roślina w różnym momencie rozwoju – w zależności od liczby iteracji.

PORÓWNANIE

Jak może wyglądać roślina w zależności od tego czy ma być bardziej wąska czy szeroka.

Jak może wyglądać roślina w zależności od tego czy ma być bardziej wąska czy szeroka.

Jak może wyglądać roślina w zależności od tego, z której strony świeci słońce.

Jak może wyglądać roślina w zależności od tego, z której strony świeci słońce.

sunlight_direction(l/r/c)=l

sunlight_direction(1/r/c)=r

Jak może wyglądać roślina jeśli występują inne rośliny w jej pobliżu.

PORÓWNANIE other_plants(y/n)=y other_plants(y/n)=n

Jak może wyglądać roślina w zależności od jej długości.

PORÓWNANIE

Jak może wyglądać roślina w zależności od tego czy losowość jest włączona.

RÓŻNE PRZYKŁADY