Lecture 7: Modes of Convergence

Tianpei Xie

Jul. 25th., 2015

Contents

1	Mo	Mode of Convergence					
	1.1	Convergence of Functions in Measure Space	2				
	1.2	Modes of Convergence via Tail Support and Width					
	1.3	Relationships between Different Modes of Convergence	Ę				
	1.4	Counter Examples	7				
	1.5	Uniqueness					
2	Modes of Convergence for Step Functions						
	2.1	Analysis	Ć				
	2.2	Comparison	11				
3	Modes of Convergence With Additional Conditions						
	3.1	Finite Measure Space	12				
	3.2	Fast L^1 Convergence					
	3.3	Domination and Uniform Integrability					
4	Cor	avergence in Distribution	15				

1 Mode of Convergence

1.1 Convergence of Functions in Measure Space

- Remark (Convergence of Functions vs. Convergence of Numbers and Vectors) Convegence of numbers $a_n \to a$ and convergence of vector $\mathbf{v}_n \to \mathbf{v}$ are both unambiguous:
 - 1. $a_n \to a$ means that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that for $n \geq N$, $|a_n a| \leq \epsilon$;
 - 2. $\mathbf{v}_n \to \mathbf{v}$ means that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that for $n \geq N$, $\|\mathbf{v}_n \mathbf{v}\| \leq \epsilon$; Note that the chioce of norm in Euclidean space will not affect the convergence results: convergence in ℓ_p will implies convergence in ℓ_q norm.

However, for functions $f_n: X \to \mathbb{C}$ and $f: X \to \mathbb{C}$, there can now be many different ways in which the sequence f_n may or may not converge to the limit f. Note that a_n can be thought as f_n with singular domain $X = \{1\}$ and v_n can be thought of f_n with finite set $X = \{1, \ldots, d\}$. On the other hand, once X becomes infinite, the functions f_n acquire an infinite number of degrees of freedom, and this allows them to approach f in any number of inequivalent ways.

- Remark (Two Basic Modes of Convergence) [Royden and Fitzpatrick, 1988, Tao, 2011]
 - 1. Definition (Pointwise Convergence)

We say that $\overline{f_n}$ converges to f **pointwise** if, for any $x \in X$ and $\epsilon > 0$, there exists N > 0 (that **depends** on ϵ and x) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$. Denoted as $f_n(x) \to f(x)$.

2. Definition (*Uniform Convergence*)

We say that f_n converges to f <u>uniformly</u> if, for any $\epsilon > 0$, there exists N > 0 (that **depends** on ϵ only) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$ for every $x \in X$. Denoted as $f_n \to f$, uniformly.

Unlike pointwise convergence, the time N at which $f_n(x)$ must be permanently ϵ -close to f(x) is not permitted to depend on x, but must instead be chosen uniformly in x.

• Remark ($Uniform \Rightarrow Pointwise, Not Vice Versa$)

Uniform convergence implies pointwise convergence, but not conversely.

Example The functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) := x/n$ converge **pointwise** to the zero function f(x) := 0, but **not uniformly**.

• Remark (Modes of Convergence of Measurable Functions)

When the domain X is equipped with the structure of a measure space (X, \mathcal{B}, μ) , and the functions f_n (and their limit f) are measurable with respect to this space. In this context, we have some additional modes of convergence:

1. Definition (Pointwise Almost Everywhere Convergence)

We say that f_n converges to f pointwise almost everywhere if, for μ -almost everywhere $x \in X$, $f_n(x)$ converges to f(x). It is denoted as $f_n \stackrel{a.e.}{\to} f$.

In other words, there exists a null set E, $(\mu(E) = 0)$ such that for $\underline{any} \ x \in X \setminus E$ and any $\epsilon > 0$, there exists N > 0 (that depends on ϵ and x) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$.

2. Definition (*Uniformly Almost Everywhere Convergence*) [Tao, 2011] We say f_n converges to f uniformly almost everywhere, essentially uniformly,

or <u>in L^{∞} norm</u> if, for every $\epsilon > 0$, there exists N such that for every $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$, for μ -almost every $x \in X$.

That is, $f_n \to f$ uniformly in $x \in X \setminus E$, for some E with $\mu(E) = 0$.

We can also formulate in terms of L^{∞} norm as

$$||f_n(x) - f(x)||_{L^{\infty}(X)} \stackrel{n \to \infty}{\longrightarrow} 0,$$

where $||f||_{L^{\infty}(X)} = \operatorname{ess\,sup}_{x} |f(x)| \equiv \inf_{\{E: \mu(E)=0\}} \sup_{x \in X \setminus E} |f(x)|$ is the **essential bound**. It

is denoted as $f_n \stackrel{L^{\infty}}{\to} f$.

3. Definition (Almost Uniform Convergence) [Tao, 2011]

We say that f_n converges to f <u>almost uniformly</u> if, for every $\epsilon > 0$, there exists an **exceptional set** $E \in \mathcal{B}$ of measure $\underline{\mu(E) \leq \epsilon}$ such that f_n converges **uniformly** to f on the complement of E.

That is, for arbitrary δ there exists some E with $\mu(E) \leq \delta$ such that $f_n \to f$ uniformly in $x \in X \setminus E$.

4. Definition (Convergence in L^1 Norm)

We say that $\overline{f_n}$ converges to f in L^1 norm if the quantity

$$||f_n - f||_{L^1(X)} = \int_X |f_n(x) - f(x)| d\mu \stackrel{n \to \infty}{\longrightarrow} 0.$$

It is also called the convergence *in mean*. Denoted as $f_n \stackrel{L^1}{\to} f$.

5. Definition (Convergence in Measure)

We say that f_n converges to f in measure if, for every $\epsilon > 0$, the measures

$$\mu\left(\left\{x \in X : |f_n(x) - f(x)| \ge \epsilon\right\}\right) \xrightarrow{n \to \infty} 0.$$

Denoted as $f_n \stackrel{\mu}{\to} f$.

- Remark The difference between the *uniformly almost everywhere convergence* vs. *the almost uniformly convergence* is that:
 - 1. the former corresponds to uniform convergence outside a null set, and
 - 2. the latter corresponds to uniform convergence outside an arbitrary small measure set (but still not a null set).
- Remark Observe that each of these five modes of convergence is unaffected if one modifies f_n or f on a set of measure zero. In contrast, the pointwise and uniform modes of convergence can be affected if one modifies f_n or f even on a single point.
- **Remark** In the context of *probability theory*, in which f_n and f are interpreted as $random\ variables$, [Billingsley, 2008, Folland, 2013]

convergence in L^1 norm \Leftrightarrow convergence in mean

 $pointwise\ convergence\ almost\ everywhere \qquad \Leftrightarrow \qquad almost\ sure\ convergence$

convergence in $measure \Leftrightarrow convergence in <math>probability$

- Proposition 1.1 (Linearity of Convergence). [Tao, 2011] Let (X, \mathcal{B}, μ) be a measure space, let $f_n, g_n : X \to \mathbb{C}$ be sequences of measurable functions, and let $f, g : X \to \mathbb{C}$ be measurable functions.
 - 1. Then f_n converges to f along one of the above seven modes of convergence **if and only** $if |f_n f|$ converges to 0 along **the same mode**.
 - 2. If f_n converges to f along one of the above seven modes of convergence, and g_n converges to g along the same mode, then $f_n + g_n$ converges to g along the same mode, and that g converges to g along the same mode for any g g g.
 - 3. (Squeeze test) If f_n converges to 0 along one of the above seven modes, and $|g_n| \le f_n$ pointwise for each n, then g_n converges to 0 along the same mode.

1.2 Modes of Convergence via Tail Support and Width

• Remark (Tail Support and Width)

Definition Let $E_{n,m} := \{x \in X : |f_n(x) - f(x)| \ge 1/m\}$. Define the <u>N-th tail support set</u>

$$T_{N,m} := \{x \in X : |f_n(x) - f(x)| \ge 1/m, \ \exists n \ge N\} = \bigcup_{n \ge N} E_{n,m}.$$

Also let $\mu(E_{n,m})$ be the <u>width</u> of n-th event $\mathbb{1}\{E_{n,m}\}$. Note that $T_{N,m} \supseteq T_{N+1,m}$ is **monotone nonincreasing** and $T_{N,m} \subseteq T_{N,m+1}$ is **monotone nondecreasing**.

1. The **pointwise convergence** of f_n to f indicates that for every x, every $m \ge 1$, there exists some $N \equiv N(m, x) \ge 1$ such that $T_{N,m}^c \ni x$ or $T_{N,m} \not\ni x$. Equivalently, **the tail** support shrinks to emptyset:

$$\bigcap_{N\in\mathbb{N}} T_{N,m} = \lim_{N\to\infty} T_{N,m} = \limsup_{n\to\infty} E_{n,m} = \emptyset, \quad \text{for all } m.$$

Conversely, to prove **not pointwise convergence**, we need to find a $x \in X$ and for an arbitrary fixed $m \ge 1$ such that

$$x \in \bigcap_{N \in \mathbb{N}} \bigcup_{n \ge N} \{x \in X : |f_n(x) - f(x)| \ge 1/m\} = \limsup_{n \to \infty} \{x \in X : |f_n(x) - f(x)| \ge 1/m\}.$$

2. The *pointwise almost everywhere convergence* indicates that there exists *a null* set F with $\mu(F) = 0$ such that for every $x \in X \setminus F$ and any $m \geq 1$, there exists some $N \equiv N(m,x) \geq 1$ such that $(T_{N,m} \setminus F) \not\ni x$. Equivalently, the tail support shrinks to a null set. Note that it makes no assumption on $(T_{N,m} \cap F)$.

$$\lim_{N \to \infty} T_{N,m} \setminus F = \limsup_{n \to \infty} E_{n,m} \setminus F = \emptyset, \text{ for all } m.$$

$$\Leftrightarrow \bigcap_{N \in \mathbb{N}} T_{N,m} = \lim_{N \to \infty} T_{N,m} = F$$

$$\Leftrightarrow \mu \left(\lim_{N \to \infty} T_{N,m} \right) = \mu \left(\bigcap_{N \in \mathbb{N}} T_{N,m} \right) = 0$$

Conversely, to prove **not pointwise almost convergence**, we need to find a $x \in X$ and for an arbitrary fixed $m \ge 1$ such that

$$x \in \bigcap_{N \in \mathbb{N}} \bigcup_{n \geq N} \left\{ x \in X : |f_n(x) - f(x)| \geq 1/m \right\} \setminus F = \limsup_{n \to \infty} \left\{ x \in X \setminus F : |f_n(x) - f(x)| \geq 1/m \right\}.$$

- 3. The *uniform convergence* indicates that for each $m \geq 1$, there exists some $N(m) \geq 1$ (not depending on x) such that $T_{N,m} = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X$.) So **the tail** support is an empty set
- 4. The *uniformly almost everywhere convergence* indicates that there exists some null set F with $\mu(F) = 0$ such that for each $m \ge 1$, there exists some $N(m) \ge 1$ (not depending on x) such that $(T_{N,m} \setminus F) = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X \setminus F$.) Equivalently, the tail support is a null set:

$$T_{N,m} = F$$

$$\Leftrightarrow \mu(T_{N,m}) = 0$$

5. The almost uniform convergence indicates that for every δ , there exists some measurable set F_{δ} with $\mu(F_{\delta}) < \delta$ such that for each $m \geq 1$ there exists some $N(m) \geq 1$ (not depending on x) such that $(T_{N,m} \setminus F_{\delta}) = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X \setminus F_{\delta}$.) Equivalently, the measure of tail support shrinks to zero:

$$\mu\left(T_{N,m}\right) \leq \delta \quad \Leftrightarrow \quad T_{N,m} = F_{\delta}$$

$$\lim_{N \to \infty} \mu\left(T_{N,m}\right) = 0$$

6. The *convergence in measure* indicates that for any $m \ge 1$ and any $\delta > 0$, there exists $N \equiv N(m, \delta) \ge 1$ such that for all $n \ge N$, the <u>width</u> of n-th event <u>shrinks to zero</u>:

$$\mu(E_{n,m}) \le \delta$$

$$\lim_{n \to \infty} \mu(E_{n,m}) := \lim_{n \to \infty} \mu\left(\left\{x \in X : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0$$

• **Definition** Define the *maximum variation* between (f_n) and f as $\sup_{x \in X} |f_n(x) - f(x)|$. Note that

$$\sup_{x \in X} |f_n(x) - f(x)| \ge \sup_{x \in X \setminus F, \mu(F) = 0} |f_n(x) - f(x)|.$$

• Remark From Borel-Cantelli Lemma, we see that in order to show the **pointwise almost** everywhere convergence, i.e. $\mu(\bigcap_N T_{N,\epsilon}) = \mu(\limsup_{n\to\infty} E_{n,\epsilon}) = 0$ it suffice to show that the measure of the tail support is finite, $\mu(T_{N,\epsilon}) = \sum_{n=N}^{\infty} \mu(E_{n,\epsilon}) < \infty$. Note that this condition implies that it not only converges in measure $\mu(E_{n,\epsilon}) \to 0$ but converge in an absolutely summable fashion.

1.3 Relationships between Different Modes of Convergence

• Proposition 1.2 [Tao, 2011] Let (X, \mathcal{F}, μ) be a measure space, and let $f_n : X \to \mathbb{C}$ and $f : X \to \mathbb{C}$ be measurable functions

- 1. If f_n converges to f uniformly, then f_n converges to f pointwisely.
- 2. If f_n converges to f uniformly, then f_n converges to f in L^{∞} norm. Conversely, if f_n converges to f in L^{∞} norm, then f_n converges to f uniformly outside of a null set (i.e. there exists a null set E such that the restriction $f_n|_{X/E}$ of f_n to the complement of E converges to the restriction $f|_{X/E}$ of f).
- 3. If f_n converges to f in L^{∞} norm, then f_n converges to f almost uniformly.
- 4. If f_n converges to f almost uniformly, then f_n converges to f pointwise almost everywhere.
- 5. If f_n converges to f pointwise, then f_n converges to f pointwise almost everywhere.
- 6. If f_n converges to f in L^1 norm, then f_n converges to f in measure.
- 7. If f_n converges to f almost uniformly, then f_n converges to f in measure.

Proof: 1. It is from the definition.

- 2. Note that for any $\epsilon > 0$, there exists $N(\epsilon) \ge 1$, such that for all $n \ge N(\epsilon)$, $|f_n(x) f(x)| \le \epsilon$ for all $x \in X$. Therefore, $\sup_{x \in X} |f_n(x) f(x)| \le \epsilon$. Then it holds that for any $x \in X \setminus E$, $\mu(E) = 0$, $\sup_{x \in X \setminus E} |f_n(x) f(x)| \le \epsilon$, so f_n converges to f in L^{∞} norm.
 - Since $f_n \stackrel{L^{\infty}}{\to} f$, then for any $\epsilon > 0$, there exists $N(\epsilon) \ge 1$, for all $n \ge N(\epsilon)$ such that the **infimum** of all essential upper bound M less than ϵ . In other words, let $d = \|f_n(x) f(x)\|_{L^{\infty}} < \epsilon$, so given $\epsilon > 0$, there exists an upper bound $d + \epsilon > M > 0$ such that for any $x \in X \setminus E$ with some E such that $\mu(E) = 0$, and $|f_n|_{X \setminus E}(x) f|_{X \setminus E}(x)| \le M < 2\epsilon$. Therefore f_n converges to f uniformly outside a null set E.
- 3. This follows from the argument above.
- 4. Let (E_n) be a sequence of measurable sets in \mathscr{B} such that for each $n \in \mathbb{N}$ we have $\mu(E_n) \leq 1/n$ and (f_n) converges uniformly to f on $X \setminus E_n$. Now pick an arbitrary $x \in X$. We have two cases.
 - In the first case $x \in \bigcap_{n \in \mathbb{N}} E_n$, in which case $\lim_{n \to \infty} f_n(x)$ is not necessarily f(x). But this is not harmful, since $\mu(\bigcap_{n \in \mathbb{N}} E_n) = 0$.
 - In the second case $x \notin \bigcap_{n \in \mathbb{N}} E_n$, which implies $\lim_{n \to \infty} f_n(x) = f(x)$ from the uniform convergence.
- 5. This follows from the definition.
- 6. Apply the Markov inequality, then the result follows.
- 7. Pick an arbitrary $\delta > 0$, so that there exists an exceptional set E such that $\mu(E) \leq \delta$ and $f_n \to f$ uniformly on $X \setminus E$. That is, we can find $N \in \mathbb{N}$ such that for $n \geq N(\epsilon)$, $|f_n(x) f(x)| \leq \epsilon$ for all $x \in X \setminus E$. For $n \geq N$, we have

$$\mu(\{x \in X : |f_n(x) - f(x)| > \epsilon\}) = \mu(\{x \in E : |f_n(x) - f(x)| > \epsilon\}) + \mu(\{x \in X \setminus E : |f_n(x) - f(x)| > \epsilon\}) \leq \mu(E) + \mu(\emptyset) = \delta + 0 = \delta$$

• Remark This diagram shows the relative strength of different modes of convergence. The

direction arrows $A \to B$ means "if A holds, then B holds".

Moreover, here are some counter statements:

- $-L^{\infty} \not\to L^{1}$: see the "Escape to Width Infinity" example below.
- uniform $\neq L^1$: see the "Escape to Width Infinity" example below.
- $-L^1 \not\rightarrow uniform$: see the "Typewriter Sequence" example below.
- **pointwise** $\rightarrow L^1$: see the "Escape to Horizontal Infinity" example below.
- **pointwise** \rightarrow **uniform**: see the " $f_n = x/n$ " example above.
- For finite measure space, $pointwise\ a.e.\ \rightarrow almost\ uniform$: see the Egorov's theorem.
- almost uniform $\not\rightarrow L^1$: see the "Escape to Vertical Infinity" example below.
- almost uniform $\neq L^{\infty}$: see the "Escape to Vertical Infinity" example below. The converse is true, however.
- For bounded $f_n \leq G$, a.e. $\forall n$, then **pointwise a.e.** $\rightarrow L^1$: see Dominated Convergence Theorem.
- $-L^1 \not\rightarrow pointwise \ a.e.$: see the "Typewriter Sequence" example below.
- in measure \neq pointwise a.e.: see the "Typewriter Sequence" example below.
- $-L^1 \rightarrow convergence \ in \ integral$: by triangle inequality. Note that the other modes of convergence does not directly lead to convergence in integral.

1.4 Counter Examples

• Example (*Escape to Horizontal Infinity*). Let X be the real line with Lebesgue measure, and let

$$f_n(x) \equiv 1 \{x \in [n, n+1]\}.$$

Note that the *height* and *width do not shrink to zero*, but *the tail set* shrinks to *the empty set*. We have the following statements on different modes of convergence:

- 1. f_n converges pointwise to f = 0, (thus pointwise a.e.)
- 2. f_n does not converges to f = 0 uniformly,

- 3. f_n does not converges to f = 0 in L^{∞} norm,
- 4. f_n does not converges to f = 0 almost uniformly
- 5. f_n does not converges to f = 0 in measure.
- 6. $\int_{\mathbb{R}} f_n dx = 1$ does not converge to $\int_{\mathbb{R}} f dx = 0$.
- 7. f_n does not converges to f = 0 in L^1 norm.

Somehow, all the mass in the f_n has escaped by moving off to infinity in a horizontal direction, leaving none behind for the pointwise limit f. In frequency domain, it corresponds to escaping to spatial infinity.

• Example (Escape to Width Infinity).

Let X be the real line with Lebesgue measure, and let

$$f_n \equiv \frac{1}{n} \mathbb{1} \left\{ x \in [0, n] \right\}.$$

See that the **height** goes to **zero**, but the <u>width</u> (and tail support) go to infinity, causing the $\underline{L^1}$ norm to stay **bounded** away from zero. We have the following statements on different modes of convergence:

- 1. f_n converges to f = 0 uniformly. (Thus, pointwise, pointwise a.e., uniformly a.e., almost uniformly, in L^{∞} norm and in measure)
- 2. $\int_{\mathbb{R}} f_n dx = 1$ does not converge to $\int_{\mathbb{R}} f dx = 0$. This is due to the increasingly wide nature of the <u>support</u> of the f_n . If all the f_n were supported in a single set of finite measure, this will not happen.
- 3. f_n does not converges to f = 0 in L^1 norm.

In frequency domain, it corresponds to escaping to zero frequency.

• Example (Escape to Vertical Infinity).

Let X be the unit interval [0,1] with Lebesgue measure (restricted from \mathbb{R}), and let

$$f_n = n1 \{ x \in [n^{-1}, 2n^{-1}] \}.$$

Note that the **height** goes to **infinity**, but the **width** (and **tail support**) go to **zero** (or **the empty set**), causing the $\underline{L^1}$ norm to stay **bounded away from zero**. We have the following statements on different modes of convergence:

- 1. f_n converges pointwise to f = 0, (thus pointwise a.e.)
- 2. f_n converges to f = 0 almost uniformly, (thus in measure)
- 3. f_n does not converges to f = 0 uniformly,
- 4. f_n does not converges to f = 0 in L^{∞} norm,
- 5. $\int_{\mathbb{R}} f_n dx = 1$ **does not** converge to $\int_{\mathbb{R}} f dx = 0$.
- 6. f_n does not converges to f = 0 in L^1 norm.

Note that we have finite measure on X = [0,1]. This time, the mass has escaped vertically, through the increasingly large values of f_n . In frequency domain, it corresponds to escaping to infinity frequency.

• Example (*Typewriter Sequence*). Let f_n be defined by the formula

$$f_n \equiv \mathbb{1}\left\{x \in \left[\frac{n-2^k}{2^k}, \frac{n+1-2^k}{2^k}\right]\right\}$$

whenever $k \geq 0$ and $2^k \leq n < 2^k + 1$. This is a sequence of indicator functions of <u>intervals</u> of <u>decreasing length</u>, marching across the unit interval [0,1] <u>over and over again</u>. See that the <u>width goes</u> to <u>zero</u>, but <u>the height and the tail support stay fixed</u> (and thus **bounded away from zero**). We have the following statements on different modes of convergence:

- 1. f_n converges to f = 0 in L^1 norm, (thus in measure)
- 2. f_n does not converges to f = 0 pointwise a.e., (thus not pointwise, not almost uniformly, not uniformly a.e., not uniformly, not in L^{∞} norm)

1.5 Uniqueness

- Proposition 1.3 Let f_n: X → C be a sequence of measurable functions, and let f, g: X → C be two additional measurable functions. Suppose that f_n converges to f along one of the seven modes of convergence defined above, and f_n converges to g along another of the seven modes of convergence (or perhaps the same mode of convergence as for f). Then f and g agree almost everywhere.
- Remark It suffice to show that when f_n converges to f pointwise almost everywhere, and f_n converges to g in measure. We need to show that f = g almost everywhere.
- Remark Even though the modes of convergence all differ from each other, they are all **compatible** in the sense that they **never disagree** about which function f a sequence of functions f_n converges to, outside of a set of measure zero.

2 Modes of Convergence for Step Functions

2.1 Analysis

- Remark Consider the *step function* f_n as a constant multiple $f_n = A_n \mathbb{1} \{E_n\}$ of a measurable set E_n , which has a limit f = 0.
- **Definition** The modes of convergence for step function f_n is determined by the following quantities:
 - 1. the *n*-th **width** of f_n is $\mu(E_n)$;
 - 2. the *n*-th **height** of f_n is A_n ;
 - 3. the N-th tail support $T_N \equiv \bigcup_{n>N} E_n$ of the sequence f_1, f_2, f_3, \ldots
- Remark Assume the height A_n exhibit one of two modes of behaviour:
 - 1. $A_n \to 0$, converge to zero;

- 2. (A_n) are **bounded away from zero** (i.e. there exists c > 0 such that $A_n \ge c$ for every n.)
- Proposition 2.1 The following regarding the seven modes of convergence of $f_n = A_n \mathbb{1} \{E_n\}$ to f = 0:
 - 1. f_n converges uniformly to zero if and only if $A_n \to 0$ as $n \to \infty$.
 - 2. f_n converges in L^{∞} norm to zero if and only if $A_n \to 0$ as $n \to \infty$.
 - 3. f_n converges almost uniformly to zero if and only if $A_n \to 0$ as $n \to \infty$, or $\mu(T_N) \to 0$ as $N \to \infty$.
 - 4. f_n converges **pointwise** to zero if and only if $A_n \to 0$ as $n \to \infty$, or $\bigcap_{N=1}^{\infty} T_N = \emptyset$.
 - 5. f_n converges **pointwise almost everywhere** to zero if and only if $A_n \to 0$ as $n \to \infty$, or $\bigcap_{N=1}^{\infty} T_N$ is a null set.
 - 6. f_n converges in measure to zero if and only if $A_n \to 0$ as $n \to \infty$, or or $\mu(E_n) \to 0$ as $n \to \infty$.
 - 7. f_n converges in L^1 norm if and only if $A_n\mu(E_n) \to 0$ as $n \to \infty$.
- **Remark** We summarize the above proposition:
 - When the height goes to zero, then one has convergence to zero in all modes except possibly for L¹ convergence, which requires that the product of the height and the width goes to zero.
 - If the *height* is **bounded** away from zero (positive) and the width is positive (finite support), then we never have uniform or L^1 convergence.
 - * If the width goes to zero, we have convergence in measure.
 - * If the measure of tail support goes to zero, we have almost uniform convergence.
 - * If the tail support shrinks to a null set, we have pointwise almost everywhere convergence.
 - * If the tail support shrinks to the empty set, we have pointwise convergence.
- Remark Four counterexamples above are all step functions:
 - 1. In the escape to horizontal infinity scenario, the height and width do not shrink to zero, but the tail set shrinks to the empty set (while remaining of infinite measure throughout)
 - 2. In the **escape to width infinity** scenario, the height goes to zero, but the width (and tail support) go to infinity, causing the L^1 norm to stay bounded away from zero.
 - 3. In the **escape to vertical infinity**, the height goes to infinity, but the width (and tail support) go to zero (or the empty set), causing the L^1 norm to stay bounded away from zero.

2.2 Comparison

 Table 1: Comparison of Modes of Convergence

	tail support	width	$maximum \ variation$	subgraph
definition	$T_{N,\epsilon} = \bigcup_{n \ge N} E_{n,\epsilon}$	$\mu(E_{n,\epsilon})$	$\sup_{x \in X} \{ f_n(x) - f(x) \}$	$\Gamma(f_n) = \{(x, t) : 0 \le t \le f_n(x)\}$
pointwise	$\bigcap_{N=1}^{\infty} T_{N,\epsilon} = \emptyset$		$or, \to 0$ on X	
$point ext{-}wise \ a.e.$	$\mu\left(\bigcap_{N=1}^{\infty} T_{N,\epsilon}\right) = 0$		$or, \to 0 \text{ on } X \setminus E$	
uniform	$T_{N,\epsilon} = \emptyset$		equivalently, $\rightarrow 0$ on X	
$uniform \ a.e.$	$\mu\left(T_{N,\epsilon}\right) = 0$		equivalently, $\rightarrow 0$ on $X \setminus E$	
L^{∞} norm	$\mu\left(T_{N,\epsilon}\right) = 0$		equivalently, $\rightarrow 0$ on $X \setminus E$	
$almost \ uniform$	$\lim_{N \to \infty} \mu\left(T_{N,\epsilon}\right) = 0$		or, $\rightarrow 0$ on $X \setminus E$	
in measure		$\lim_{n\to\infty}\mu\left(E_{n,\epsilon}\right)=0$	or, $\to 0$ on $X \setminus E$	
L^1 $norm$			$\rightarrow 0$ and support fixed or non-increasing	area of $\Gamma(f_n) = \mathcal{A}(\Gamma(f_n))$ $\lim_{n \to \infty} \mathcal{A}(\Gamma(f_n - f)) = 0$

3 Modes of Convergence With Additional Conditions

3.1 Finite Measure Space

- Remark If we assume that (X, \mathcal{B}, μ) has *finite measure*, i.e. $\mu(X) < \infty$, we can shut down two of the four examples (namely, *escape to horizontal infinity* or *escape to width infinity*) and creates a few more equivalences.
- Example A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a finite measure space since $\mathbb{P}(\Omega) = 1$.
- Theorem 3.1 (Egorov's theorem). [Royden and Fitzpatrick, 1988, Tao, 2011] Let (X, \mathcal{F}, μ) be a finite measure space, that is, $\mu(X) < \infty$ and let $f_n : X \to \mathbb{C}$ be a sequence of measurable functions that converge pointwise almost everywhere to another function $f : X \to \mathbb{C}$, and let $\epsilon > 0$. Then there exists a μ -measurable set A of measure at most ϵ , such that f_n converges uniformly to f outside of A. That is, given finite measure space, convergence pointwise almost everywhere implies converge almost uniformly.
- Remark The finite measure space condition allows us to use the downward convergence of measure without much concern.
- Proposition 3.2 Let X have finite measure, and let $f_n: X \to \mathbb{C}$ and $f: X \to \mathbb{C}$ be measurable functions. If f_n converges to f in L^{∞} norm, then f_n also converges to f in L^1 norm.
- Remark For finite measure space,

3.2 Fast L^1 Convergence

- Proposition 3.3 (Fast L^1 convergence). Suppose that $f_n, f: X \to \mathbb{C}$ are measurable functions such that $\sum_{n=1}^{\infty} \|f_n f\|_{L^1(\mu)} < \infty$; thus, not only do the quantities $\|f_n f\|_{L^1(\mu)}$ go to zero (which would mean L^1 convergence), but they converge in an absolutely summable fashion. Then
 - 1. f_n converges pointwise almost everywhere to f.
 - 2. f_n converges almost uniformly to f.
- Corollary 3.4 (Subsequence Convergence). [Tao, 2011] Suppose that $f_n: X \to \mathbb{C}$ are a sequence of measurable functions that converge in L^1 norm to a limit f. Then there exists a subsequence f_{n_i} that converges almost uniformly (and

hence, **pointwise almost everywhere**) to f (while remaining convergent in L^1 norm, of course).

- Corollary 3.5 (Subsequence Convergence in Measure). [Tao, 2011] Suppose that $f_n: X \to \mathbb{C}$ are a sequence of measurable functions that converge in measure to a limit f. Then there exists a subsequence f_{n_j} that converges almost uniformly (and hence, pointwise almost everywhere) to f.
- Remark It is instructive to see how this *subsequence* is extracted in the case of *the type-writer sequence*. In general, one can view the operation of passing to a subsequence as being able to *eliminate "typewriter"* situations in which *the tail support is much larger than the width*.
- Exercise 3.6 [Tao, 2011] Let (X, \mathcal{B}, μ) be a measure space, let $f_n : X \to \mathbb{C}$ be a sequence of measurable functions converging **pointwise almost everywhere** as $n \to \infty$ to a measurable limit $f : X \to \mathbb{C}$, and for each n, let $f_{n,m} : X \to \mathbb{C}$ be a sequence of measurable functions converging **pointwise almost everywhere** as $m \to \infty$ (keeping n fixed) to f_n .
 - 1. If $\mu(X)$ is **finite**, show that there exists a sequence m_1, m_2, \ldots such that f_{n,m_n} converges **pointwise almost everywhere** to f.
 - 2. Show the same claim is true if, instead of assuming that $\mu(X)$ is finite, we merely assume that X is σ -finite, i.e. it is the countable union of sets of finite measure.
- Exercise 3.7 [Tao, 2011] Let $f_n: X \to \mathbb{C}$ be a sequence of measurable functions, and let $f: X \to \mathbb{C}$ be another measurable function. Show that the following are equivalent:
 - 1. f_n converges in measure to f.
 - 2. Every subsequence f_{n_j} of the f_n has a further subsequence $f_{n_{j_i}}$ that converges almost uniformly to f.

3.3 Domination and Uniform Integrability

- Remark Now we turn to the reverse question, of whether almost uniform convergence, pointwise almost everywhere convergence, or convergence in measure can imply L^1 convergence. The escape to vertical and width infinity examples shows that without any further hypotheses, the answer to this question is no.
- Remark [Tao, 2011] There are *two major ways* to shut down loss of mass via *escape to infinity*.
 - 1. One is to enforce **monotonicity**, which **prevents each** f_n **from abandoning the location** where the mass of the preceding f_1, \ldots, f_{n-1} was concentrated and which thus shuts down the above three escape scenarios. More precisely, we have the monotone convergence theorem.
 - 2. The other major way is to **dominate** all of the functions involved by an **absolutely** convergent one. This result is known as the dominated convergence theorem.
- **Definition** We say that a sequence $f_n: X \to \mathbb{C}$ is **dominated** if there exists an **absolutely**

integrable function $g: X \to \mathbb{C}$ such that $|f_n(x)| \leq g(x)$ for all n and almost every x.

- ullet Definition (Uniform integrability).
 - A sequence $f_n: X \to \mathbb{C}$ of **absolutely integrable** functions is said to be **uniformly integrable** if the following three statements hold:
 - 1. (Uniform bound on L^1 norm) One has $\sup_n ||f_n||_{L^1(\mu)} = \sup_n \int_X |f_n| d\mu < +\infty$.
 - 2. (No escape to vertical infinity) One has

$$\lim_{M \to +\infty} \sup_{n} \int_{|f_n| > M} |f_n| \, d\mu \to 0.$$

3. (No escape to width infinity) One has

$$\lim_{\delta \to 0} \sup_{n} \int_{|f_n| < \delta} |f_n| \, d\mu \to 0.$$

- Proposition 3.8 (Property of Uniform Integrablility)
 - 1. If f is an absolutely integrable function, then the constant sequence $f_n = f$ is uniformly integrable. (Hint: use the monotone convergence theorem.)
 - 2. Every dominated sequence of measurable functions is uniformly integrable.
- Exercise 3.9 Give an example of a sequence that is uniformly integrable but not dominated.
- Remark In the case of a *finite measure space*, there is no escape to width infinity, and the criterion for uniform integrability simplifies to just that of excluding vertical infinity:
 - **Exercise 3.10** Suppose that X has finite measure, and let $f_n: X \to \mathbb{C}$ be a sequence of measurable functions. Show that f_n is uniformly integrable **if and only if** $\sup_n \int_{|f_n| \ge M} |f_n| d\mu \to 0$ as $M \to \infty$.
- Exercise 3.11 (Uniform L^p bound on finite measure implies uniform integrability).
 - Suppose that X have finite measure, let $1 , and suppose that <math>f_n : X \to \mathbb{C}$ is a sequence of measurable functions such that $\sup_n \int_X |f_n|^p d\mu < +\infty$. Show that the sequence f_n is uniformly integrable.
- Exercise 3.12 Give an example of a sequence f_n of uniformly integrable functions that converge pointwise almost everywhere to zero, but do not converge almost uniformly, in measure, or in L^1 norm.
- Theorem 3.13 (Uniformly integrable convergence in measure). Let $f_n: X \to \mathbb{C}$ be a uniformly integrable sequence of functions, and let $f: X \to \mathbb{C}$ be another function. Then f_n converges in L^1 norm to f if and only if f_n converges to f in measure.
- Proposition 3.14 Suppose that $f_n: X \to \mathbb{C}$ are a dominated sequence of measurable functions, and let $f: X \to \mathbb{C}$ be another measurable function. Show that f_n converges pointwise almost everywhere to f if and only if f_n converges in almost uniformly to f.

4 Convergence in Distribution

- **Definition** (*Cumulative Distribution Function*) [Billingsley, 2008] Let (X, \mathscr{F}, μ) be a measure space. Given any real-valued measurable function $f: X \to \mathbb{R}$, we define the *cumulative distribution function* $F: \mathbb{R} \to [0, \infty]$ of f to be the function $F(\lambda) := \mu_f((-\infty, \lambda]) = \mu(\{x \in X : f(x) \le \lambda\})$ where $\mu_f = \mu \circ f^{-1}$ is a *measure* on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ induced by function f.
- **Definition** (*Converge in Distribution*) [Van der Vaart, 2000] Let (X, \mathcal{F}, μ) be a measure space, $f_n : X \to \mathbb{R}$ be a sequence of real-valued *measurable functions*, and $f : X \to \mathbb{R}$ be another measurable function.

We say that f_n <u>converges in distribution</u> to f if the cumulative distribution function $F_n(\lambda)$ of f_n converges <u>pointwise</u> to the cumulative distribution function $F(\lambda)$ of f at all $\lambda \in \mathbb{R}$ for which F is continuous. Denoted as $f_n \stackrel{d}{\to} f$ or $f_n \leadsto f$.

Note that for the distribution $\mu_{f_n} \equiv \mu \circ f_n^{-1}$ is a measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Thus $f_n \stackrel{d}{\to} f$ if and only if

$$\mu_{f_n}(A) \to \mu_f(A), \quad \forall A \in \mathscr{B}(\mathbb{R}).$$

• Remark (Convergence of Measures Induced by Function)

Convergence in distribution is also called weak convergence in probability theory [Folland, 2013]. In general, it is actually not a mode of convergence of functions f_n itself but instead is the convergence of measures induced by function f_n on $\mathcal{B}(\mathbb{R})$.

In functional analysis, however, **weak convergence** is actually reserved for a different mode of convergence, while **the convergence** in **distribution** is **the weak* convergence**.

weak convergence
$$\int f_n d\mu \to \int f d\mu, \quad \forall \mu \in \mathcal{M}(X),$$
 convergence in distribution
$$\int f d\mu_n \to \int f d\mu, \quad \forall f \in \mathcal{C}_0(X)$$

Definition (Weak* Topology on Banach Space)

Let X be a normed vector space and X^* be its dual space. The <u>weak* topology</u> on X^* is the weakest topology on X^* so that f(x) is continuous for all $x \in X$.

The weak* topology on space of regular Borel measures $\mathcal{M}(X) \simeq (\mathcal{C}_0(X))^*$ on a **compact Hausdorff** space X, is often called **the vague topology**. Note that $\mu_n \stackrel{w^*}{\to} \mu$ if and only if $\int f d\mu_n \to \int f d\mu$ for all $f \in \mathcal{C}_0(X)$.

- Theorem 4.1 (The Portmanteau Theorem). [Van der Vaart, 2000] The following statements are equivalent.
 - 1. $X_n \rightsquigarrow X$.
 - 2. $\mathbb{E}[h(X_n)] \to \mathbb{E}[h(X)]$ for all **continuous functions** $h : \mathbb{R}^d \to \mathbb{R}$ that are non-zero only on a **closed** and **bounded** set.
 - 3. $\mathbb{E}[h(X_n)] \to \mathbb{E}[h(X)]$ for all bounded continuous functions $h : \mathbb{R}^d \to \mathbb{R}$.

15

- 4. $\mathbb{E}[h(X_n)] \to \mathbb{E}[h(X)]$ for all **bounded measurable functions** $h : \mathbb{R}^d \to \mathbb{R}$ for which $\mathbb{P}(X \in \{x : h \text{ is continuous at } x\}) = 1$.
- We can reformulate the definition of *convergence in distribution* as below:

Definition [Wellner et al., 2013]

Let (Ω, d) be a metric space, and (Ω, \mathcal{B}) be a measurable space, where \mathcal{B} is **the Borel** σ -field **on** Ω , the smallest σ -field containing all the open balls (as the basis of metric topology on Ω). Let $\{P_n\}$ and P be **Borel probability measures** on (Ω, \mathcal{B}) .

Then the sequence P_n <u>converges in distribution</u> to P, which we write as $P_n \rightsquigarrow P$, if and only if

$$\int_{\Omega} f dP_n \to \int_{\Omega} f dP, \quad \text{for all } f \in \mathcal{C}_b(\Omega).$$

Here $C_b(\Omega)$ denotes the set of all **bounded**, **continuous**, real functions on Ω .

We can see that the convergence in distribution is actually a weak* convergence. That is, it is the weak convergence of bounded linear functionals $I_{\mathcal{P}_n} \stackrel{w^*}{\to} I_{\mathcal{P}}$ on the space of all probability measures $\mathcal{P}(\mathcal{X}) \simeq (\mathcal{C}_b(\mathcal{X}))^*$ on $(\mathcal{X}, \mathcal{B})$ where

$$I_{\mathcal{P}}: f \mapsto \int_{\Omega} f d\mathcal{P}.$$

Note that the $I_{\mathcal{P}_n} \stackrel{w^*}{\to} I_{\mathcal{P}}$ is equivalent to $I_{\mathcal{P}_n}(f) \to I_{\mathcal{P}}(f)$ for all $f \in \mathcal{C}_b(\mathcal{X})$.

• Remark The density f_{ξ} of ξ is defined as for F_{ξ} uniformly continuous on \mathbb{R}

$$F_{\xi}(A) \equiv \mu \circ \xi^{-1}(A) \equiv \int_{\Omega} \mathbb{1} \left\{ \xi^{-1}(A) \right\} d\mu \equiv \int_{\mathbb{R}} f_{\xi} \mathbb{1} \left\{ A \right\} dx$$

for all $A \in \mathcal{B}(\mathbb{R})$ and the integral is the Lebesgue integral with respect to Lebesgue measure.

- **Remark** Note that $\xi_n \to \xi$ and $\eta_n \to \eta$ in distribution, but it is possible $\xi_n + \eta_n \not\to \xi + \eta$.
- Remark It is related to following convergence

$$\sup_{A \in \mathscr{B}(\mathbb{R})} |F_n(A) - F(A)| \to 0$$
or $F_n(A) \to F(A), \forall A \in \mathscr{B}(\mathbb{R})$

• Theorem 4.2 (Continuous Mapping Theorem) [Van der Vaart, 2000] Suppose that $f_n: X \to \mathbb{R}^k, n \ge 1$ is a sequence of measureable functions and its limit $f: X \to \mathbb{R}^k$ is a measureable function. Let $g: \mathbb{R}^k \to \mathbb{R}^m$ be continuous at every point of a set $C \subset \mathbb{R}^k$ such that $\mu(\{x: f(x) \in C\}) = \mu(X) = 1$. Then

- 1. If $f_n \stackrel{a.e.}{\to} f$, then $g(f_n) \stackrel{a.e.}{\to} g(f)$;
- 2. If $f_n \stackrel{\mu}{\to} f$, then $g(f_n) \stackrel{\mu}{\to} g(f)$;
- 3. If $f_n \leadsto f$, then $g(f_n) \leadsto g(f)$.

Proof: 1. Directly by the property of continuous map, since $g(\lim_{n\to\infty} y_{n,x}) = \lim_{n\to\infty} g(y_{n,x})$, where $y_{n,x} = f_n(x)$ for $x \in X/E$, $\mu(E) = 0$.

2. For any $\epsilon > 0$, there exists $\delta > 0$ such that the set

$$B_{\delta} \equiv \left\{ z \in \mathbb{R}^k \mid \exists y, \|z - y\| \le \delta, \|g(z) - g(y)\| > \epsilon \right\}.$$

Clearly, if $f(x) \notin B_{\delta}$ and $||g(f_n(x)) - g(f(x))|| > \epsilon$, then $||f_n(x) - f(x)|| > \delta$. So

$$\mu\left(\left\{x: \|g(f_n(x)) - g(f(x))\| > \epsilon\right\}\right) \le \mu\left(\left\{x: \|f_n(x) - f(x)\| > \delta\right\}\right) + \mu\left(\left\{x: f(x) \in B_\delta\right\}\right)$$

The first term on RHS converges to 0 as $n \to \infty$ for every fixed $\delta > 0$ due to the convergence in measure. Since $B_{\delta} \cap C \downarrow 0$, by continuity of g, the second term converges to 0 as $\delta \to 0$.

3. The event $\{x: g(f_n(x)) \in F\} \equiv \{x: f_n(x) \in g^{-1}(F)\}$ for any closed/open set F. Note that

$$g^{-1}(F) \subseteq \overline{g^{-1}(F)} \subset g^{-1}(F) \cup C^c$$

Thus there exists a sequence of $y_m \to y$ and $g(y_m) \in F$ for every closed F. If $y \in C$, then $g(y_m) \to g(y)$, which is in F, since F is closed. Otherwise, $y \in C^c$. By the portmanteau lemma, since f_n converges to f in distribution,

$$\limsup_{n \to \infty} \mu\left(\left\{x : g(f_n(x)) \in F\right\}\right) \le \limsup_{n \to \infty} \mu\left(\left\{x : f_n(x) \in \overline{g^{-1}(F)}\right\}\right)$$
$$\le \mu\left(\left\{x : f(x) \in \overline{g^{-1}(F)}\right\}\right)$$

Since $\mu(X) = \mu(C) = 1$, so $\mu(C^c) = 0$. Thus the RHS

$$\mu\left(\left\{x:f(x)\in\overline{g^{-1}(F)}\right\}\right) = \mu\left(\left\{x:f(x)\in g^{-1}(F)\right\}\right)$$
$$= \mu\left(\left\{x:g(f(x))\in F\right\}\right).$$

Again by applying the portmanteau lemma, $g(f_n)$ converges to g(f) in distribution.

References

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

Halsey Lawrence Royden and Patrick Fitzpatrick. *Real analysis*, volume 198. Prentice Hall, Macmillan New York, 1988.

Terence Tao. An introduction to measure theory, volume 126. American Mathematical Soc., 2011.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Jon Wellner et al. Weak convergence and empirical processes: with applications to statistics. Springer Science & Business Media, 2013.