Set Convex hull: • conv $C = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^T 0 = 1 \right\}$		Comments • conv C will be the smallest convex set that contains C. • conv C will be a finite set as long as C is also finite	
• conv $C = \{\sum_{i=1}^{\kappa} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^{T} 0 = 1\}$ Affine hull: • aff $C = \{\sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^{T} 0 = 1\}$		 conv C will be a finite set as long as C is also finite. A will be the smallest affine set that contains C. Different from the convex set, θ_i is not restricted between 0 and 1 	
• aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} \mathbf{\theta} = 1 \right\}$ Conic hull: • $A = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, \theta_{i} > 0 \text{ for } i = 1, \dots, k \right\}$ Ray:		 A will be the smallest Different from the cor The ray is an infinite 	In infinite set. If aff C contains the origin, it is also a subspace. It convex conic that contains C . In over and affine sets, θ_i does not need to sum up 1. It is set that begins in \mathbf{x}_0 and extends infinitely in direction of \mathbf{v} . In other using but it has no end
• $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$ Hyperplane:		words, it has a beginning, but it has no end. • It is an infinite set $\mathbb{R}^{n-1} \subset \mathbb{R}^n$ that divides the space into two halfspaces.	
• $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} = b \}$ • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} (\mathbf{x} - \mathbf{x}_0) = 0 \}$ • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces:		 • a[⊥] = {v a^Tv = 0} is the set of vectors perpendicular to a. It passes through the origin. • a[⊥] is offset from the origin by x₀, which is any vector in H. • They are infinite sets of the parts divided by H. 	
• $\mathcal{H}_{-} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\}$ • $\mathcal{H}_{+} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b\}$ Euclidean ball: • $B(\mathbf{x}_{c}, r) = \{\mathbf{x} \mid \mathbf{x} - \mathbf{x}_{c} _{2} \leq r\}$		• $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$.	
• $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$ • $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$ Ellipsoid:		 x_c is the center of the ball. r is its radius. E is a finite set as long as P is a finite matrix. 	
• $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • $\mathcal{E} = \{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \mathbf{u} \le 1 \}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		 P is symmetric and positive definite, that is, P = P^T > 0. x_c is the center of the ellipsoid. The lengths of the semi-axes are given by √λ_i. A is invertible. When it is not, we say that ε is a degenerated ellipsoid (degenerated ellipsoids are also convex). 	
Norm cone: • $C = \{[x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$		 Although it is named "Norm cone", it is a set, not a scalar. The cone norm increases the dimension of x in 1. For p = 2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. 	
 Proper cone: K ⊂ ℝⁿ is a proper cone when it has the following properties K is a convex cone, i.e., αK ≡ K, α > 0. K is closed. K is solid. K is pointed, i.e., -K ∩ K = {0}. 		 The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S. x ≤ y ⇔ y - x ∈ K for x, y ∈ S (generalized inequality) x ≺ y ⇔ y - x ∈ int K for x, y ∈ S (strict generalized inequality). There are two cases where K and S are understood from context and the subscript K is dropped out: When S = ℝⁿ and K = ℝⁿ (the nonnegative orthant). In this case, x ≤ y means that 	
		$x_i \leq y_i$. Note that $Y_i = S_i$ and $Y_i = S_i$ and $Y_i = S_i$ and $Y_i = S_i$ are the space of the positive semidefinite matrices, and $Y_i = S_i$ is the space of the positive definite matrices. $Y_i = S_i$ is a proper cone in $Y_i = S_i$. In this case, the generalized inequality $Y_i = X_i$ means that $Y_i = X_i$ is a positive semidefinite matrix belonging to the positive semidefinite cone $Y_i = S_i$ in the subspace of symmetric matrices $Y_i = S_i$. It is usual to denote $Y_i = S_i$ and $Y_i = S_i$ in the subspace of symmetric matrices $Y_i = S_i$. It is usual to denote $Y_i = S_i$ and $Y_i = S_i$ is a positive definite and semidefinite matrix, respectively, where $Y_i = S_i$ is a zero matrix.	
		 Another common usage is when S = Rⁿ and K = {c∈ Rⁿ c₁ + c₂t + ··· + c₁tⁿ⁻¹ ≥ 0, for 0 ≤ t ≤ 1}. In this case, x ≤_K y means that x₁ + x₂t + ··· + x₁tⁿ⁻¹ ≤ y₁ + y₂t + ··· + y₁tⁿ⁻¹. The generalized inequality has the following properties: If x ≤_K y and u ≤_K v, then x + u ≤_K y + v (preserve under addition). If x ≤_K y and y ≤_K z, then x ≤_K z (transitivity). If x ≤_K y, then αx ≤_K y for α ≥ 0 (preserve under nonnegative scaling). x ≤_K x (reflexivity). If x ≤_K y and y ≤_K x, then x = y (antisymmetric). If x_i ≤_K y_i, for i = 1, 2,, and x_i → x and y_i → y as i → ∞, then x ≤_K y. 	
		The mathematical notation for that is <i>S</i> ⊆ x + <i>K</i> , where x + <i>K</i> denotes all points that are comparable to x and greater than or equal to x (for the maximum, we have <i>S</i> ⊆ x − <i>K</i>). • x ∈ <i>S</i> is the <i>minimal</i> element of <i>S</i> if y ≤ _K x only when y = x . The same is true for <i>maximal</i> . We can have many different minimal (maximal) elements. The mathematical notation for that is (x − <i>K</i>) ∩ <i>S</i> = { x }, where x − <i>K</i> denotes all points that are comparable to x and less than or equal to x (for the maximal, we have (x + <i>K</i>) ∩ <i>S</i> = { x }).	
Dual cone: $ \bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\} $		• When $K = \mathbb{R}_+$ and S the maximal is equal	$=\mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and to the maximum.
		 K has the following properties: K* is closed and convex. K₁ ⊆ K₂ implies K₁* ⊆ K₂*. If K has a nonempty interior, then K* is pointed. If the closure of K is pointed then K* has a nonempty interior. K** is the closure of the convex hull of K. Hence, if K is convex and closed, K** = K. 	
Polyhedra: • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$ • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \right\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{m} \end{bmatrix}^{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \dots & \mathbf{c}_{m} \end{bmatrix}^{T}$		 The polyhedron may Polyhedron is the rest	or may not be an infinite set. alt of the intersection of m halfspaces and p hyperplanes. es, lines, rays line segments, and halfspaces are all polyhedra.
• $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^{T}$ Simplex: • $\mathcal{S} = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \leq 0 \leq 1, 1^{T} 0 = 1\}$		 Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all polyhedra. The nonnegative orthant, Rⁿ₊ = {x ∈ Rⁿ x_i ≤ 0 for i = 1,n} = {x ∈ Rⁿ Ix ≥ 0}, is a special polyhedron. Simplexes are a subfamily of the polyhedra set. Also called k-dimensional Simplex in Rⁿ. 	
• $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta}\}$, where $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$ • $S = \{\mathbf{x} \mid \mathbf{A}_1\mathbf{x} \leq \mathbf{A}_1\mathbf{v}_0, 1^{T}\mathbf{A}_1\mathbf{x} \leq 1 + 1^{T}\mathbf{A}_1\mathbf{v}_0, \underbrace{\mathbf{A}_2\mathbf{x} = \mathbf{A}_2\mathbf{v}_0}_{\text{Linear equalities}} \}$ (Polyhedra form), where $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$ and $\mathbf{A}\mathbf{V} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$		 Also called k-dimensional Simplex in ℝⁿ. The set {v_m}^k_{m=0} is a affinely independent, which means {v₁ - v₀,, v_k - v₀} are linearly independent. V ∈ ℝ^{n×k} is a full-rank tall matrix, i.e., rank(V) = k. All its column vectors are independent. The matrix A is its left pseudoinverse. 	
α -sublevel set:			ion, then sublevel sets of f are convexes for any $\alpha \in \mathbb{R}$. The sublevel sets of f are convexes for any $\alpha \in \mathbb{R}$. The sublevel sets of f are convexes for any $\alpha \in \mathbb{R}$.
	unctions (or operators) and the Conver		onvexity Comments
Union: $C = A \cup B$ Intersection: $C = A \cap B$ Convex function: $f : \text{dom}(f) \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, where $0 \le \theta \le 1$.	Not in most of the cases. Yes, if A and B are convex set Yes.	ts.	• Graphically, the line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies always above the graph f .
• dom (f) shall be a convex set to f be considered a convex function.			 In terms of sets, a function is convex iff a line segment within dom (f), which is a convex set, gives an image set that is also convex. dom f is convex iff all points for any line segment within dom (f) belong to it. First-order condition: f is convex iff dom (f) is convex and f(y) ≥ f(x) + ∇f(x)^T(y - x), ∀ x, y ∈ dom (f), x ≠ y, being ∇f(x) the gradient vector. This inequation says that the first-order Taylor approximation is a underestimator for convex functions. The first-order condition requires that f is differentiable.
			 If ∇f(x) = 0, then f(y) ≥ f(x), ∀ y ∈ dom(f) and x is a global minimum. Second-order condition: f is convex iff dom(f) is convex and H ≥ 0, that is, the Hessian matrix H is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at x. It is important to note that, if H > 0, ∀ x ∈ dom(f), then f is strictly convex. But is f is strictly convex, not necessarily that H > 0, ∀ x ∈ dom(f). Therefore, strict convexity can only be partially characterized.
Affine function $f : \mathbb{R}^n \to \mathbb{R}^m$ $\bullet \ f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$	Yes, if the domain $S \subseteq \mathbb{R}^n$ is a $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is a		 The affine function, f(x) = Ax + b, is a broader category that encompasses the linear function, f(x) = Ax. The linear function has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case,
			 A special case of the linear function is when A = C · In this case, we have f(x) = C^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + · · · + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
Exponential function $f: \mathbb{R} \to \mathbb{R}$	Yes.		mally.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{p}^T\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and	It depends on the matrix P : • f is convex iff $P \ge 0$.		
$a, b \in \mathbb{R}$ $Power function f : \mathbb{R}_{++} \to \mathbb{R} \bullet \ f(x) = x^a$	 f is strictly convex iff P > 0. f is concave iff P ≤ 0. f is strictly concave iff P < 0. It depends on a f is convex iff a ≥ 1 or a ≤ 0. 		
Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$.	• f is concave iff $0 \le a \le 1$. Yes.		
• $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$	Yes.		
Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function:			 When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality.
$f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$	Yes.		
• $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}.$ Maximum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$	Yes, if f_1, \ldots, f_n are convex function.		
Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$ Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$	Not in most of the cases. Yes.	Yes. • This function is interpreted as the approximation of the max-	
Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$	Yes.		• This function is interpreted as the approximation of the maximum element function, since $\max\{x_1,\ldots,x_n\} \leq f(\mathbf{x}) \leq \max\{x_1,\ldots,x_n\} + \log n$
• $f(\mathbf{x}) = (\prod_{i=1}^{n} x_i)^{1/n}$ Log-determinant function $f: \mathcal{S}_{++}^n \to \mathbb{R}$ • $f(\mathbf{X}) = \log \mathbf{X} $	Yes		• $\mathbf{X} \in \mathcal{S}^n_{++}$, that is, \mathbf{X} is positive semidefinite $(\mathbf{X} > 0)$.
Compose function $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f = g \circ h$, i.e., $f(\mathbf{x}) = (g \circ h)(\mathbf{x}) = g(h(\mathbf{x}))$, where $\mathbf{x} \in S \subseteq \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}^k$, and $g: \mathbb{R}^k \to \mathbb{R}^n$.	Yes, if g and h are convex funset.	nctions and S is a convex	
Perspective function $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ • $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$.	Yes, if $S \subseteq \text{dom}(f)$ is a con $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$, is a		 The perspective function decreases the dimension of the function domain since dim(dom(f)) = n + 1. Its effect is similar to the camera zoom. The inverse image is also convex, that is, if C ⊆ ℝⁿ is convex, then f⁻¹(C) = {(x,t) ∈ ℝⁿ⁺¹ x/t ∈ C, t > 0} is also convex. A special case is when n = 1, which is called quadratic-over-linear function.
Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f = p \circ g$, i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$, where • $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) = [\mathbf{A}]$	Yes, if $S \subseteq \text{dom}(f)$ is a con $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$, is a		 The linear and affine functions are special cases of the linear-fractional function. dom (f) = {x ∈ Rⁿ c^Tx + d > 0} P(x) ∈ Rⁿ⁺¹ is a ray set that begins at the origin and its last
$\begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}, \text{ being } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{n}, \text{ and } d \in \mathbb{R}.$ $\triangleright p : \mathbb{R}^{m+1} \to \mathbb{R}^{m} \text{ is the perspective function.}$ $\bullet f(\mathbf{x}) = \mathcal{P}^{-1}(\mathbf{Q}\mathcal{P}(\mathbf{x}))$ $\triangleright \mathcal{P}(\mathbf{x}) = \{(t\mathbf{x}, t) \mid t \geq 0\} \subset \mathbb{R}^{n+1}$ $\triangleright \mathbf{Q} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^{T} & d \end{bmatrix} \in \mathbb{R}^{(m+1) \times (n+1)}$			 P(x) ⊂ Rⁿ⁺¹ is a ray set that begins at the origin and its last component takes only positive values. For each x ∈ dom (f), it is associated a ray set in Rⁿ⁺¹ in this form. This (projective) correspondence between all points in dom (f) and their respective sets P is a biunivocal mapping. The linear transformation Q acts on these rays, forming another set of rays. Finally we take the inverse projective transformation to recover f(x)
Epigraph: • epi $f = \{(\mathbf{x}, t) \mid \mathbf{x} \in \text{dom}(f), t \geq f(\mathbf{x})\}$ Hypograph: • hypo $f = \{(\mathbf{x}, t) \mid \mathbf{x} \in \text{dom}(f), t \geq f(\mathbf{x})\}$	 Visually, it is the graph about The function f is convex iff Visually, it is the graph below The function f is concave if 	f its epigraph is convex. ow the $\mathbf{x}, f(\mathbf{x})$ curve.	$f(\mathbf{x})$.

