Bölüm 5

Z Tanım Bölgesinde Kök Eğrisi

Z tanım bölgesinde bir transfer fonksiyonu T=0.2 olmak üzere

$$G(z) = \frac{1}{z^3 + 0.4z^2 - 0.37z - 0.04}$$
 (5.1)

olarak verilmiştir. P kontrolör ile kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{kG(z)}{1 + kG(z)}$$

$$T(z) = \frac{\frac{z^3 + 0.4z^2 - 0.37z - 0.04}{k}}{1 + \frac{k}{z^3 + 0.4z^2 - 0.37z - 0.04}}$$

$$T(z) = \frac{k}{z^3 + 0.4z^2 - 0.37z - 0.04 + k}$$

$$(5.2)$$

olarak hesaplanır. Karakteristik polinomunda k değiştikçe köklerin aldığı değer Çizelge 5.1 ile verilmiştir. Her kutbun kendi hareketinin görselleştirildiği çizime **Kök Eğrisi** denir. Sisteme ait kök eğrisi Şekil 5.3 ile verilmiştir.

Şekil 5.3 ile verilen ayrık noktalar birleştirildiğinde Şekil 5.4 oluşmaktadır.

S tanım bölgesinde kararlılık sınırı s=jw ile elde edilmektedir ve bu durumda $\zeta=0$ 'dır. Dolayısıyla,

$$y(t) = 1 - e^{-\zeta w_n t} \left[\cos(\sqrt{1 - \zeta^2} w_n t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\sqrt{1 - \zeta^2} w_n t) \right]$$

= 1 - \cos(w_n t) (5.3)

elde edilmektedir. Görüldüğü üzere sistem yanıtı salınımlıdır. Girişe uygulanan birim

Çizelge 5.1: k'nın değişimine göre polinomun köklerinin yada sistem kutuplarının değişimi

k	\mathbf{z}_1	${f z_2}$	$\mathbf{z_3}$
0.1	-0.8909	$0.2455+0.0843\mathrm{i}$	0.2455 - 0.0843i
0.2	-0.9594	$0.2797+0.2975\mathrm{i}$	0.2797 - 0.2975i
0.3	-1.0160	$0.3080+0.4013\mathrm{i}$	0.3080 - 0.4013i
0.4	-1.0649	$0.3325+0.4770\mathrm{i}$	0.3325 - 0.4770i
:	÷	<u>:</u>	<u>:</u>

Şekil 5.1: Sisteme ait kök eğrisi

basamak sinyaline karşın sistem salınım yapmakta ve giriş sinyali değerine yakınsamamaktadır. Z tanım bölgesine $z=e^{sT}$ ile geçiş yapılırsa

$$z = e^{iwT}$$

$$z = e^{i\theta}$$

$$z = 1/\underline{\theta}$$
(5.4)

Şekil 5.2: Sisteme ait kök eğrisi

elde edilir. Dikkat edilirse açı değişmekte fakat genlik sabittir ve bu ifade birim çemberi tanımlamaktadır. S tanım bölgesinde kutup z tanım bölgesinde

$$z = e^{(-\sigma \pm iw)T}$$

$$z = e^{-\sigma T} e^{\pm iwT}$$

$$z = e^{-\sigma T} / \pm wT$$
(5.5)

şeklinde yer alacaktır. Burada σ değeri yarıçapı belirlemektedir. S tanım bölgesinde baskın kutuplar z tanım bölgesinde birim çembere yakın kutuplar, baskın olmayan kutuplar ise birim çemberin merkezine yakın kutuplardır.

1. Transfer fonksiyonu

$$G(z) = \frac{1}{z^4 + 0.3z^3 + 4.22z^2 - 3.58z - 0.4}$$
 (5.6)

ile verilen sisteme ait kök eğrisini çiziniz.

```
T{=}0.2\\ Gz{=}control.tf(1,np.array([1,0.3,4.22,-3.58,-0.4]),T)}\\ control.rlocus(Gz)\\ plt.show()
```


Şekil 5.3: Denklem 5.6 ile verilen sistem için kök eğrisi

2.
$$p(z) = z^4 + 0.3z^3 + 4.22z^2 - 0.4 - 3.58kz + 2k$$
 (5.7)

ile verilen polinomu için k parametresinin değişimine göre köklerin yer değiştirmesini çiziniz.

$$z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4 - 3.58kz + 2k = 0$$

$$(z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4) + (-3.58z + 2)k = 0$$

$$1 + k \frac{-3.58z + 2}{z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4} = 0$$
(5.8)

ile

$$G(z) = \frac{-3.58z + 2}{z^4 + 0.3z^3 + 4.22z^2 - 0.4}$$
 (5.9)

sistemi elde edilir. Kök eğrisi ise Şekil5.4ile verilmiştir.

Şekil 5.4: Denklem 5.7 ile verilen sistem için kök eğrisi

3. Denklem 5.9 ile verilen sistemin gerçel eksende ayrılma noktası/noktalarını

hesaplayınız. Ayrılma noktalarının hesabı

$$z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4 - 3.58kz + 2k = 0$$

$$1 + k \frac{-3.58z + 2}{z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4} = 0$$

$$k = -\frac{z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4}{-3.58z + 2}$$

$$\frac{dk}{dz} = \frac{d}{dz} \left(-\frac{z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4}{-3.58z + 2} \right)$$

$$\frac{dk}{dz} = \frac{\frac{d}{dz}(z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4)(-3.58z + 2)}{(-3.58z + 2)^{2}}$$

$$-\frac{\frac{d}{dz}(-3.58z + 2)(z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4)}{(-3.58z + 2)^{2}}$$

$$\frac{dk}{dz} = \frac{(4z^{3} + 0.9z^{2} + 8.44z)(-3.58z + 2) - 3.58(z^{4} + 0.3z^{3} + 4.22z^{2} - 0.4)}{(-3.58z + 2)^{2}}$$

$$\frac{dk}{dz} = \frac{-17.9z^{4} + 3.704z^{3} - 43.52z^{2} + 16.88z + 1.432}{(-3.58z + 2)^{2}}$$

$$\frac{dk}{dz} = \frac{(z - 0.0912)(z - 0.9082)(z + 0.2272 + 1.2485i)(z + 0.2272 - 1.2485i)}{(-3.58z + 2)^{2}}$$

ile verilmiştir ve çözüm

$$z = 0.0912, 0.9082, -0.2272 - 1.2485i, -0.2272 + 1.2485i$$
 (5.10)

şeklindedir. Sanal kısmı olan çözümler gerçel eksende olmadığından z=0.0912 ve 0.9082 olmalıdır. Şekil 5.5 ile verilen kök eğrisinde ayrılma noktaları işaretlenmiştir. Görüldüğü üzere ayrılma noktaları kutupların reel eksende karşılaştığı ve karşılaştıktan sonra sanal bileşene sahip olarak hareket ettikleri, kutup çiftine dönüşüştükleri, noktalardır.

Şekil 5.5: Denklem 5.9 ile verilen sistem için kök eğrisi ve ayrılma noktaları