

#### Question: Can we determine which label belongs to which container?

In our experiment, we are going to try to identify the substances present in a series of containers.

### **Aims & Objectives:**

Our aim is to find out which substance is which in a series of containers that have had their labels fall off. We have a list of potential compounds that have been in stock in the past.

#### We will:

- 1) Record an IR spectrum for all the unknown substances (each student should record two, making sure to allocate substances so that each one has its spectrum recorded by at least one person in the group).
- 2) Predict the IR absorptions we expect to see for the candidate substances.
- 3) By comparing predictions with the spectra observed, try our best to narrow down the possibilities. It is possible we will have to refer to NMR spectra (recorded by our technicians in advance) to finalise the selection.

#### **Learning Outcomes:**

From this experiment you will learn how to:

- 1) Use an infrared spectrometer to record an IR spectrum for solids or liquids.
- 2) Interpret IR spectra to identify functional groups present in a compound.
- 3) Use IR spectroscopy alongside other spectroscopic tools to identify compounds.

### **Equipment:**

- IR spectrometer connected to laptop and printer (provided)
- Pens, pencil
- Rule
- Print-out of this workbook (or copy the table into your school exercise book)

#### **Method:**

- 1) Watch your demonstrator illustrate how to use the spectrometer.
- 2) One-by-one, you will go up to collect the spectra for the two compounds you have been allocated. Make sure to get a print-out of the spectrum and clearly label which unknown substance it corresponds to.
- 3) When you are not using the instrument, use the table of typical stretching frequencies to make predictions about what you might expect to see in the various spectra.
- 4) If you are familiar with NMR spectroscopy, you can also start making predictions about the forms of the NMR spectra of the various compounds. If you are not familiar, start working through the introduction to NMR spectroscopy question on Isaac, which will hopefully familiarise you with the technique.



## **Experimental Data:**

Make sure to collaborate with the rest of your team to identify the key absorptions seen in all the compounds, and fill out the table below accordingly.

| Compound | Key absorptions |
|----------|-----------------|
| A        |                 |
| В        |                 |
| С        |                 |
| D        |                 |
| Е        |                 |
| F        |                 |
| G        |                 |
| н        |                 |
| 1        |                 |



# Compounds

| Benzoic acid   | Ethyl Benzoate                       | Acetyl salicylic acid            |
|----------------|--------------------------------------|----------------------------------|
| OH             |                                      | OH<br>OH<br>OH                   |
| Benzaldehyde   | Acetonitrile H <sub>3</sub> C——C===N | Propionamide  O  NH <sub>2</sub> |
| Propan-2-ol OH | Propanone                            | Ethanol                          |



#### **Discussion:**

When trying to confidently allocate compounds using IR spectroscopy, we will need reliable differences of what we expect to see in the spectra. It can be helpful to sketch a decision tree diagram that will narrow down the options based on the presence/absence of certain key peaks. Try to draw such a decision tree below.



### Conclusion (we will discuss this in more detail later today):

If you are confident in any of the allocations, please complete the table below. If you are unsure about some allocations, make sure to indicate the possibilities for each unknown compound, and we will finalise the allocation by using the NMR data in the theoretical session later in the day.

| Compound | Allocation |
|----------|------------|
| А        |            |
| В        |            |
| С        |            |
| D        |            |
| E        |            |
| F        |            |
| G        |            |
| Н        |            |
| I        |            |



# Characteristic infrared absorptions in organic molecules

| Bond         | Location                | Wavenumber / cm <sup>-1</sup> |
|--------------|-------------------------|-------------------------------|
| C-H          | Alkane                  | 2962-2853                     |
|              | Alkene                  | 3095-3010                     |
|              | Alkyne                  | 3300                          |
|              | Arene                   | 3030                          |
|              | Aldehyde                | 2900-2820 and 2775-2700       |
| N-H          | Amine                   | 3500-3300                     |
|              | Amide                   | 3500-3140                     |
| О-Н          | Alcohols and phenols    | 3750-3200                     |
|              | Carboxylic acids        | 3300-2500                     |
| C=C          | Alkene                  | 1669-1645                     |
|              | Arene                   | 1600, 1580, 1500, 1450        |
| C=O          | Aldehydes               | 1740-1720                     |
|              | Ketones, alkyl          | 1720-1700                     |
|              | Ketones, aryl           | 1700-1680                     |
|              | Carboxylic acids, alkyl | 1725-1700                     |
|              | Carboxylic acids, aryl  | 1700-1680                     |
|              | Carboxylic anhydrides   | 1850-1800 and 1790-1740       |
|              | Acyl chlorides          | 1795                          |
|              | Acyl bromides           | 1810                          |
|              | Esters                  | 1750-1735                     |
|              | Amides                  | 1700-1630                     |
| c <b>≡</b> c | Alkynes                 | 2260-2100                     |
| C≣N          | Nitriles                | 2260-2215                     |



# $^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{chemical}\ \mathrm{shifts}\ \mathrm{relative}\ \mathrm{to}\ \mathrm{tetramethylsilane}\ (\mathrm{TMS})$



### <sup>1</sup>H NMR chemical shifts relative to tetramethylsilane (TMS)

