

S7G2 MCU (High-performance MCU)

32-bit ARM® Cortex®-M4 microcontroller

Leading performance 240-MHz ARM Cortex-M4 microcontroller, up to 4-MB code flash memory, 640-KB SRAM, Graphics LCD Controller, 2D Drawing Engine, Capacitive Touch Sensing Unit, Ethernet MAC Controller with IEEE 1588 PTP, USB 2.0 High-Speed, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.

Features

■ ARM Cortex-M4 Core with Floating Point Unit (FPU)

- · ARMv7E-M architecture with DSP instruction set
- Maximum operating frequency: 240 MHz
- Support for 4-GB address space
- On-chip debugging system: JTAG, SWD, and ETM
- Boundary scan and ARM Memory Protection Unit (MPU)

■ Memory

- Up to 4-MB code flash memory (80 MHz zero wait states)
- 64-KB data flash memory (up to 100,000 erase/write cycles)
- Up to 640-KB SRAM
- Flash Cache (FCACHE)
- Memory Protection Units (MPU)
- Memory Mirror Function (MMF)
- 128-bit unique ID

■ Connectivity

- Ethernet MAC Controller (ETHERC) × 2
- Ethernet DMA Controller (EDMAC)
- Ethernet PTP Controller (EPTPC)
- USB 2.0 High-Speed Module (USBHS)
 - On-chip transceiver
- USB battery charge version 1.2 supported
- USB 2.0 Full-Speed Module (USBFS)
 - On-chip transceiver
- Serial Communications Interface (SCI) with FIFO × 10
- Serial Peripheral Interface (SPI) × 2
- I²C Bus Interface (IIC) × 3
- CAN module (CAN) × 2
- Serial Sound Interface (SSI) \times 2
- SD/MMC Host Interface (SDHI) × 2
- Quad Serial Peripheral Interface (QSPI)
- IrDA interface
- Sampling Rate Converter (SRC)
- External memory bus
 - 8-bit and 16-bit address width
 - SDRAM support

■ Analog

- 12-Bit A/D Converter (ADC12) with 3 sample-and-hold circuits each. x2
- 12-Bit D/A Converter (DAC12) × 2
- $\bullet \ \, \text{High-Speed Analog Comparator (ACMPHS)} \times 6 \\$
- Programmable Gain Amplifier (PGA) × 6
- Temperature sensor (TSN)

■ Timers

- General PWM Timer 32-Bit Enhanced High Resolution (GPT32EH) × 4
- General PWM Timer 32-Bit Enhanced (GPT32E) × 4
- General PWM Timer 32-Bit (GPT32) × 6
- $\bullet \ \ Asynchronous \ General\text{-}Purpose \ Timer \ (AGT) \times 2 \\$
- Watchdog Timer (WDT)

■ Safety

- SRAM parity error check
- · Flash area protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO readback level detection
- · Register write protection
- Main oscillator stop detection
- Illegal memory access

■ System and Power Management

- Low-power modes
- · Switching regulator
- Realtime Clock (RTC) with calendar and VBATT support
- Event Link Controller (ELC)
- DMA Controller (DMAC) × 8
- Data Transfer Controller (DTC)
- Key interrupt function (KINT)
- · Power-on reset
- Low Voltage Detection (LVD) with voltage settings

■ Security and Encryption

- AES128/192/256
- 3DES/ARC4
- SHA1/SHA224/SHA256
- GHASH
- RSA/DSA
- True Random Number Generator (TRNG)

■ Human Machine Interface (HMI)

- Graphics LCD Controller (GLCDC)
- JPEG Codec
- 2D Drawing Engine (DRW)
- Capacitive Touch Sensing Unit (CTSU)
- Parallel Data Capture Unit (PDC)

■ Multiple Clock Sources

- Main clock oscillator (MOSC) (8 to 24 MHz)
- Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent Watchdog Timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCO
- · Clock out support

■ General-Purpose I/O Ports

- Up to 172 input/output pins
 - Up to 9 CMOS input
 - Up to 163 CMOS input/output
 - Up to 22 5-V tolerant input/output
 - Up to 24 high current (20 mA)

■ Operating Voltage

• VCC: 2.7 to 3.6 V

■ Operating Temperature and Packages

- Ta = -40°C to +85°C
- 224-pin BGA (13 mm × 13 mm, 0.8 mm pitch)
- 176-pin BGA (13 mm × 13 mm, 0.8 mm pitch)
- 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
 - 176-pin LQFP (24 mm × 24 mm, 0.5 mm pitch)
 - 144-pin LQFP (24 min × 24 min, 0.5 min pitch)
 - 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)

1. Overview

The S7G2 MCU integrates multiple series of software- and pin-compatible ARM®-based 32-bit MCUs that share the same set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU provides a high-performance ARM Cortex®-M4 core running up to 240 MHz with the following features:

- Up to 4-MB code flash memory
- 640-KB SRAM
- Graphics LCD Controller (GLCDC)
- 2D Drawing Engine (DRW)
- Capacitive Touch Sensing Unit (CTSU)
- Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
- Quad Serial Peripheral Interface (QSPI)
- Security and safety features
- Analog peripherals.

1.1 Function Outline

Table 1.1 ARM core

Feature	Functional description
ARM Cortex-M4	Maximum operating frequency: up to 240 MHz ARM Cortex-M4 core: Revision: r0p1-01rel0 ARMv7E-M architecture profile Single precision floating point unit compliant with the ANSI/IEEE Std 754-2008 ARM Memory Protection Unit (MPU): ARMv7 Protected Memory System Architecture SysTick timer: Driven by LOCO clock

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 4 MB of code flash memory. See section 54, Flash Memory in User's Manual.
Data flash memory	64 KB of data flash memory. See section 54, Flash Memory in User's Manual.
Memory Mirror Function (MMF)	The MMF can be configured to mirror the wanted application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User's Manual.
SRAM	On-chip high-speed SRAM providing either parity-bit or double-bit error detection (DED). The first 32 KB of SRAM0 is subject to DED. Parity check is performed for other areas. See section 52, SRAM in User's Manual.
Standby SRAM	On-chip SRAM that can retain data in Deep Software Standby mode. See section 53, Standby SRAM in User's Manual.

Table 1.3 System (1/2)

Feature	Functional description
Operating modes	Two operating modes: - Single-chip mode - SCI or USB boot mode. See section 3, Operating Modes in User's Manual.

Table 1.3 System (2/2)

Feature	Functional description
Resets	14 resets: RES pin reset Power-on reset Voltage monitor reset 0 Voltage monitor reset 1 Voltage monitor reset 2 Independent Watchdog Timer reset Watchdog Timer reset Deep Software Standby reset SRAM parity error reset SRAM DED error reset Bus master MPU error reset Bus slave MPU error reset Stack pointer error reset Software reset. See section 6, Resets in User's Manual.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the detection level can be selected in the software program. See section 8, Low Voltage Detection (LVD) in User's Manual.
Clocks	Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) PLL frequency synthesizer Independent Watchdog Timer (WDT) on-chip oscillator Clock out supports. See section 9, Clock Generation Circuit in User's Manual.
Clock Frequency Accuracy Measurement Circuit (CAC)	The CAC checks the system clock frequency with a reference clock signal by counting the number of pulses of the system clock to be measured. The reference clock can be provided externally through a CACREF pin or internally from various on-chip oscillators. Event signals can be generated when the clock does not match or measurement ends. This feature is particularly useful in implementing a fail-safe mechanism for home and industrial automation applications. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User's Manual.
Low-power modes	Power consumption can be reduced in multiple ways, including by setting clock dividers, controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power control mode in normal operation, and transitioning to low-power modes. See section 11, Low-Power Modes in User's Manual.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See section 12, Battery Backup Function in User's Manual.
Register write protection	The register write protection function protects important registers from being overwritten because of software errors. See section 13, Register Write Protection in User's Manual.
Memory Protection Unit (MPU)	Two MPUs and a CPU stack pointer monitor functions are provided for memory protection. See section 16, Memory Protection Unit (MPU) in User's Manual.
Watchdog Timer (WDT)	The WDT is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and be used as the condition for detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in User's Manual.
Independent Watchdog Timer (IWDT)	The IWDT consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User's Manual.

Table 1.4 Interrupt control

Feature	Functional description
Interrupt Controller Unit (ICU)	The ICU controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt Controller Unit (ICU) in User's Manual.

Table 1.5 Event link

Feature	Functional description
Event Link Controller (ELC)	The ELC uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.6 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A DTC module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.7 External bus interface

Feature	Functional description
External buses	 CS area (EXBIU): Connected to the external devices (external memory interface) SDRAM area (EXBIU): Connected to the SDRAM (external memory interface) QSPI area (EXBIUT2): Connected to the QSPI (external device interface).

Table 1.8 Timers

Feature	Functional description
General PWM Timer (GPT)	The GPT is a 32-bit timer with 14 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User's Manual.
Port Output Enable for GPT (POEG)	Use the Port Output Enable (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state.
Asynchronous General-Purpose Timer (AGT)	The AGT is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and can be accessed with the AGT register. See section 25, Asynchronous General-Purpose Timer (AGT) in User's Manual.
Realtime Clock (RTC)	The RTC has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 26, Realtime Clock (RTC) in User's Manual.

Table 1.9 Communication interfaces (1/2)

Feature	Functional description
Serial Communications Interface (SCI)	The SCI is configurable to five asynchronous and synchronous serial interfaces: • Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) • 8-bit clock synchronous interface • Simple IIC (master-only) • Simple SPI • Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 34, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The three-channel IIC conforms with and provides a subset of the NXP I ² C bus (Inter-Integrated Circuit bus) interface functions. See section 36, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 38, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface (SSI)	The SSI peripheral provides functionality to interface with digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The SSI supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSI includes 8-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 41, Serial Sound Interface (SSI) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI) in User's Manual.
Controller Area Network (CAN) Module	The CAN module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically-noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 37, Controller Area Network (CAN) Module in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	Full-Speed USB controller that can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 32, USB 2.0 Full-Speed Module (USBFS) in User's Manual.
USB 2.0 High-Speed Module (USBHS)	High-Speed USB controller that can operate as a host controller or a device controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer, and low-speed transfer as defined in Universal Serial Bus Specification 2.0. As a device controller, the USBHS supports high-speed transfer and full-speed transfer as defined in Universal Serial Bus Specification 2.0. The USBHS has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User's Manual.

Table 1.9 Communication interfaces (2/2)

Feature	Functional description
Ethernet MAC with IEEE 1588 PTP (ETHERC)	Two-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3 Media Access Control (MAC) layer protocol. Each ETHERC channel provides one channel of the MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards. The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be transferred without using the CPU. To handle timing and synchronization between devices, an on-chip Precision Time Protocol (PTP) module for the Ethernet PTP Controller (EPTPC) applies the PTP defined in the IEEE 1588-2008 version 2.0 standard. The EPTPC is composed of: Synchronization Frame Processing units (SYNFP0 and SYNFP1) A Packet Relation Controller unit (PRC-TC) A Statistical Time Correction Algorithm unit (STCA). Use the EPTPC in combination with the on-chip Ethernet MAC Controller (ETHERC) and the DMA Controller for the PTP Ethernet Controller (PTPEDMAC). See section 29, Ethernet MAC Controller (ETHERC) in User's Manual.
SD/MMC Host Interface (SDHI)	The SDHI and MultiMediaCard (MMC) interface provide the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-, 4-, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes. See section 43, SD/MMC Host Interface (SDHI) in User's Manual.

Table 1.10 Analog

Feature	Functional description
12-Bit A/D Converter (ADC12)	Up to two successive approximation 12-Bit A/D Converters are provided. In unit 0, up to 13 analog input channels are selectable. In unit 1, up to 12 analog input channels, the temperature sensor output, and an internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-, 10-, and 8-bit conversion, making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 46, 12-Bit A/D Converter (ADC12) in User's Manual.
12-Bit D/A Converter (DAC12)	The DAC12 D/A converts data and includes an output amplifier. See section 47, 12-Bit D/A Converter (DAC12) in User's Manual.
Temperature sensor (TSN)	The on-chip temperature sensor can determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC12 for conversion and can also be used by the end application. See section 48, Temperature Sensor (TSN) in User's Manual.
High-Speed Analog Comparator (ACMPHS)	Analog comparators can be used to compare a test voltage with a reference voltage and to provide a digital output based on the conversion result. Both the test and reference voltages can be provided to the comparator from internal sources such as the DAC12 output and internal reference voltage, and an external source with or without an internal PGA. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 49, High-Speed Analog Comparator (ACMPHS) in User's Manual.

Table 1.11 Human machine interfaces (1/2)

Feature	Functional description
Key interrupt function (KINT)	A key interrupt can be generated by setting the Key Return Mode register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function (KINT) in User's Manual.

Table 1.11 Human machine interfaces (2/2)

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The CTSU measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by the software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical conductor so that fingers do not come into direct contact with the electrodes. See section 50, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.12 Graphics

Feature	Functional description				
Graphics LCD Controller (GLCDC)	 The GLCDC provides multiple functions and supports various data formats and panels. Key GLCDC features include: GPX bus master function for accessing graphics data Superimposition of three planes (single color background plane, graphic 1 plane, and graphic 2 plane) Support for many types of 32- or 16-bit per pixel graphics data and 8-, 4-, or 1-bit LUT data format Digital interface signal output supporting a video image size of WVGA or greater. See section 57, Graphics LCD Controller (GLCDC) in User's Manual. 				
2D Drawing Engine (DRW)	The 2D Drawing Engine (DRW) provides flexible functions that can support almost any object geometry rather than being bound to only a few specific geometries such as lines, triangles, or circles. The edges of every object can be independently blurred or antialiased. Rasterization is executed at one pixel per clock on the bounding box of the object from left to right and top to bottom. The DRW can also raster from bottom to top to optimize the performance in certain cases. In addition, optimization methods are available to avoid rasterization of many empty pixels of the bounding box. The distances to the edges of the object are calculated by a set of edge equations for every pixel of the bounding box. These edge equations can be combined to describe the entire object. If a pixel is inside the object, it is selected for rendering. If it is outside it is discarded. If it is on the edge, an alpha value can be chosen proportional to the distance of the pixel to the nearest edge for antialiasing. Every pixel that is selected for rendering can be textured. The resulting aRGB quadruple can be modified by a general raster operation approach independently for each of the four channels. The aRGB quadruples can then be blended with one of the multiple blend modes of the DRW. The DRW provides two inputs (texture read and framebuffer read), and one output (framebuffer write). The internal color format is always aRGB (8888). The color formats from the inputs are converted to the internal format on read and a conversion back is made on write. See section 55, 2D Drawing Engine (DRW) in User's Manual.				
JPEG Codec (JPEG)	The JPEG Codec (JPEG) incorporates a JPEG codec that conforms to the JPEG baseline compression and decompression standard. This provides high-speed compression of image data and high-speed decoding of JPEG data. See section 56, JPEG Codec in User's Manual.				
Parallel Data Capture Unit (PDC)	One PDC unit is provided for communicating with external I/O devices, including image sensors, and transferring parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in User's Manual.				

Table 1.13 Data processing (1/2)

Feature	Functional description			
Cyclic Redundancy Check (CRC) calculator	The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 40, Cyclic Redundancy Check (CRC) Calculator in User's Manual.			
Data Operation Circuit (DOC)	The DOC compares, adds, and subtracts 16-bit data. See section 51, Data Operation Circuit (DOC) in User's Manual.			

Table 1.13 Data processing (2/2)

Feature	Functional description		
Sampling Rate Converter (SRC)	The SRC converts the sampling rate of data produced by various audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are supported. The sampling rate of the input signal can be one of the following: • 8 kHz • 11.025 kHz • 12 kHz • 16 kHz • 22.05 kHz • 24 kHz • 32 kHz • 44.1 kHz • 48 kHz. The sampling rate of the output signal can be one of the following: • 8 kHz • 16 kHz • 10 kHz • 32 kHz • 44.1 kHz • 48 kHz. Independent FIFOs are provided for input and output. In a typical application, a DMA controller can be used to transfer PCM audio data from SRAM, for example, to the SRC. Sample-converted audio data from the SRC can then be transferred using the DMA Controller to the SSI, from where it can be transmitted to an external audio codec. See section 42, Sampling Rate Converter (SRC) in User's Manual.		

Table 1.14 Security

Feature	Functional description
Secure Crypto Engine 7 (SCE7)	Security algorithms: Symmetric algorithms: AES, 3DES, and ARC4 Asymmetric algorithms: RSA, DSA, and DLP. Other support features: TRNG (True Random Number Generator) Hash-value generation: SHA1, SHA224, SHA256, GHASH 128-bit unique ID.

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 Part numbering scheme

1.4 Function Comparison

Table 1.15 Functional comparison

		Part numbers									
Function		R7FS7G27H2A01CBD/ R7FS7G27G2A01CBD	R7FS7G27H2A01CBG/ R7FS7G27G2A01CBG	R7FS7G27H2A01CLK/ R7FS7G27G2A01CLK	R7FS7G27H3A01CFB/ R7FS7G27G3A01CFB	R7FS7G27G3A01CF					
Pin count		224	176	176	145	144	100				
Package		BGA	BGA	LGA	LQFP	LQFP					
Code flash memo	ory			4/3 MB	I.		3 MB				
Data flash memo	ry			64	I KB		•				
SRAM				64	0 KB						
	Parity			60	8 KB						
	DED		32 KB								
Standby SRAM		8 KB									
System	CPU clock			240) MHz						
	Backup registers			512	bytes						
nterrupt control	ICU			١	/es						
Event link	ELC			`	/es						
OMA	DTC			`	/es						
	DMAC				8						
BUS	External bus			16-bit bus			8-bit bus				
	SDRAM			Yes			No				
Timers	GPT32EH	4	4	4	4	4	4				
† 	GPT32E	4	4	4	4	4	3				
	GPT32	6	6	6	6	6	5				
	AGT	2	2	2	2	2	2				
	RTC	2									
	WDT/IWDT	Yes									
Communication	SCI										
	IIC	3									
	SPI				2		2				
	SSI			2			1				
	QSPI			1			Dual-SPI 1				
	SDHI		2								
	CAN		2								
	USBFS		Yes								
	USBHS										
	ETHERC	2	Yes RMII 2	RMII 2	RMII	No 2/MII 1	RMII 1				
Analog	ADC12	25	21	21	19	19	16				
	DAC12		<u> </u>		2	1	1				
	ACMPHS				6						
	TSN				/es						
-IMI	CTSU	18	12	12	i	18	12				
	KINT		I		8		1				
Graphics				RGB888			RGB565				
3.2500	DRW				/es		1				
	JPEG	Yes									
	PDC		Yes N								
Data processing	CRC				/es		1				
p. 0000011g	DOC				/es						
	SRC	Yes									
	1	L			CE7						

1.5 Pin Functions

Table 1.16 Pin functions (1/5)

Function	Signal	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect to the system power supply. Connect this pin to VSS through a 0.1-µF capacitor. Place the capacitor close to the pin.
	VCC_DCDC	Input	Switching regulator power supply pin.
	VLO	I/O	Switching regulator pin.
	VCL0 to VCL2	Input	Connect this pin to VSS through the smoothing capacitor used to stabilize
	VCL_F	Input	the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect to the system power supply (0 V).
	VBATT	Input	Backup power pin.
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through the
	EXTAL	Input	EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCOUT and XCIN.
	EBCLK	Output	Outputs the external bus clock for external devices.
	SDCLK	Output	Outputs the SDRAM-dedicated clock.
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition on release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin.
On-chip emulator	TMS	I/O	On-chip emulator or boundary scan pins.
	TDI	Input	
	TCK	Input	
	TDO	Output	
	TCLK	Output	This pin outputs the clock for synchronization with the trace data.
	TDATA0 to TDATA3	Output	These pins indicate that output from the TDATA0 to TDATA3 pins is valid.
	SWDIO	I/O	Serial wire debug data input/output pin.
	SWCLK	Input	Serial wire clock pin.
	SWO	Output	Serial wire trace output pin.
External bus interface	RD	Output	Strobe signal indicating that reading from the external bus interface space is in progress, active LOW.
	WR	Output	Strobe signal indicating that writing to the external bus interface space is in progress, in 1-write strobe mode, active LOW.
	WR0, WR1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in writing to the external bus interface space, in byte strobe mode, active LOW.
	BC0, BC1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in access to the external bus interface space, in 1-write strobe mode, active LOW.
	WAIT	Input	Input pin for wait request signals in access to the external space, active LOW.
	CS0 to CS7	Output	Select signals for CS areas, active LOW.
	A00 to A23	Output	Address bus.
	D00 to D15	I/O	Data bus.

Table 1.16 Pin functions (2/5)

Function	Signal	1/0	Description
SDRAM interface	CKE	Output	SDRAM clock enable signal.
	SDCS	Output	SDRAM chip select signal, active LOW.
	RAS	Output	SDRAM low address strobe signal, active LOW.
	CAS	Output	SDRAM column address strobe signal, active LOW.
	WE	Output	SDRAM write enable signal, active LOW.
	DQM0	Output	SDRAM I/O data mask enable signal for DQ07 to DQ00.
	DQM1	Output	SDRAM I/O data mask enable signal for DQ15 to DQ08.
	A00 to A15	Output	Address bus.
	DQ00 to DQ15	I/O	Data bus.
Interrupt	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ15	Input	Maskable interrupt request pins.
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins.
	GTIOC0A to GTIOC13A, GTIOC0B to GTIOC13B	I/O	Input capture, output compare, or PWM output pins.
	GTIU	Input	Hall sensor input pin U.
	GTIV	Input	Hall sensor input pin V.
	GTIW	Input	Hall sensor input pin W.
	GTOUUP	Output	Three-phase PWM output for BLDC motor control (positive U phase).
	GTOULO	Output	Three-phase PWM output for BLDC motor control (negative U phase).
	GTOVUP	Output	Three-phase PWM output for BLDC motor control (positive V phase).
	GTOVLO	Output	Three-phase PWM output for BLDC motor control (negative V phase).
	GTOWUP	Output	Three-phase PWM output for BLDC motor control (positive W phase).
	GTOWLO	Output	Three-phase PWM output for BLDC motor control (negative W phase).
AGT	AGTEE0, AGTEE1	Input	External event input enable signals.
	AGTIO0, AGTIO1	I/O	External event input and pulse output pins.
	AGTO0, AGTO1	Output	Pulse output pins.
	AGTOA0, AGTOA1	Output	Output compare match A output pins.
	AGTOB0, AGTOB1	Output	Output compare match B output pins.
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock.
	RTCIC0 to RTCIC2	Input	Time capture event input pins.
SCI	SCK0 to SCK9	I/O	Input/output pins for the clock (clock synchronous mode).
	RXD0 to RXD9	Input	Input pins for received data (asynchronous mode/clock synchronous mode
	TXD0 to TXD9	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode).
	CTS0_RTS0 to CTS9_RTS9	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active LOW.
	SCL0 to SCL9	I/O	Input/output pins for the IIC clock (simple IIC).
	SDA0 to SDA9	I/O	Input/output pins for the IIC data (simple IIC).
	SCK0 to SCK9	I/O	Input/output pins for the clock (simple SPI).
	MISO0 to MISO9	I/O	Input/output pins for slave transmission of data (simple SPI).
	MOSI0 to MOSI9	I/O	Input/output pins for master transmission of data (simple SPI).
	SS0 to SS9	Input	Chip-select input pins (simple SPI), active LOW.
IIC	SCL0 to SCL2	I/O	Input/output pins for the clock.
	SDA0 to SDA2	I/O	Input/output pins for data.

Table 1.16 Pin functions (3/5)

Function	Signal	I/O	Description
SSI	SSISCK0	I/O	SSI serial bit clock pin.
	SSISCK1		
	SSIWS0	I/O	Word select pins.
	SSIWS1	1	
	SSITXD0	Output	Serial data output pins.
	SSIRXD0	Input	Serial data input pins.
	SSIDATA1	I/O	Serial data input/output pins.
	AUDIO_CLK	Input	External clock pin for audio (input oversampling clock).
SPI	RSPCKA, RSPCKB	I/O	Clock input/output pin.
	MOSIA, MOSIB	I/O	Input or output pins for data output from the master.
	MISOA, MISOB	I/O	Input or output pins for data output from the slave.
	SSLA0, SSLB0	I/O	Input or output pin for slave selection.
	SSLA1 to SSLA3, SSLB1 to SSLB3	Output	Output pin for slave selection.
QSPI	QSPCLK	Output	QSPI clock output pin.
	QSSL	Output	QSPI slave output pin.
	QIO0 to QIO3	I/O	Data0 to Data3.
CAN	CRX0, CRX1	Input	Receive data.
	CTX0, CTX1	Output	Transmit data.
USBFS	VCC_USB	Input	Power supply pins.
	VSS_USB	Input	Ground pins.
	USB_DP	I/O	D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus.
	USB_DM	I/O	D– I/O pin of the USB on-chip transceiver. Connect this pin to the D– pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a function controller.
	USB_EXICEN	Output	Low-power control signal for external power supply (OTG) chip.
	USB_VBUSEN	Output	VBUS (5 V) supply enable signal for external power supply chip.
	USB_OVRCURA, USB_OVRCURB	Input	Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_ID	Input	Connect the MicroAB connector ID input signal to this pin during operation in OTG mode.
USBHS	VCC_USBHS	Input	Power supply pin.
	VSS1_USBHS	Input	Ground pin.
	VSS2_USBHS	Input	Ground pin.
	AVCC_USBHS	Input	Analog power supply pin for the USBHS.
	AVSS_USBHS	Input	Analog ground pin for the USBHS. Must be shorted to the PVSS_USBHS pin.
	PVSS_USBHS	Input	PLL circuit ground pin for the USBHS. Must be shorted to the AVSS_USBHS pin.
	USBHS_RREF	I/O	USBHS reference current source pin. Connect this pin to the AVSS_USBHS pin through a 2.2-kΩ resistor (±1%).
	USBHS_DP	I/O	USB bus D+ data pin.
	USBHS_DM	I/O	USB bus D- data pin.
	USBHS_EXICEN	Output	Connect this pin to the OTG power supply IC.
	USBHS_ID	Input	Connect this pin to the OTG power supply IC.
	USBHS_VBUSEN	Output	VBUS power enable signal for USB.
	USBHS_OVRCURA, USBHS_OVRCURB	Input	Overcurrent pin for USB.
	USBHS_VBUS	Input	USB cable connection monitor input pin.

Table 1.16 Pin functions (4/5)

Function	Signal	1/0	Description
ETHERC	REF50CK0, REF50CK1	Input	50-MHz reference clocks. These pins input reference signals for transmission/reception timing in RMII mode.
	RMII0_CRS_DV, RMII1_CRS_DV	Input	Indicate carrier detection signals and valid receive data on RMII_RXD1 and RMII_RXD0 in RMII mode.
	RMIIO_TXD0, RMIIO_TXD1, RMII1_TXD0, RMII1_TXD1	Output	2-bit transmit data in RMII mode.
	RMIIO_RXD0, RMIIO_RXD1, RMII1_RXD0, RMII1_RXD1	Input	2-bit receive data in RMII mode.
	RMII0_TXD_EN, RMII1_TXD_EN	Output	Output pins for data transmit enable signals in RMII mode.
	RMII0_RX_ER, RMII1_RX_ER	Input	Indicate an error occurred during reception of data in RMII mode.
	ET0_CRS, ET1_CRS	Input	Carrier detection/data reception enable signals.
	ET0_RX_DV, ET1_RX_DV	Input	Indicate valid receive data on ET_ERXD3 to ET_ERXD0.
	ET0_EXOUT, ET1_EXOUT	Input	General-purpose external output pins.
	ET0_LINKSTA, ET1_LINKSTA	Output	Input link status from the PHY-LSI.
	ET0_ETXD0 to ET0_ETXD3, ET1_ETXD0 to ET1_ETXD3	output	4 bits of MII transmit data.
	ET0_ERXD0 to ET0_ERXD3, ET1_ERXD0 to ET1_ERXD3	Input	4 bits of MII receive data.
	ET0_TX_EN, ET1_TX_EN	Output	Transmit enable signals. Function as signals indicating that transmit data is ready on ET_ETXD3 to ET_ETXD0.
	ET0_TX_ER, ET1_TX_ER	Output	Transmit error pins. Function as signals notifying the PHY_LSI of an error during transmission.
	ET0_RX_ER, ET1_RX_ER	Input	Receive error pins. Function as signals to recognize an error during reception.
	ET0_TX_CLK, ET1_TX_CLK	Input	Transmit clock pins. These pins input reference signals for output timing from ET_TX_EN, ET_ETXD3 to ET_ETXD0, and ET_TX_ER.
	ET0_RX_CLK, ET1_RX_CLK	Input	Receive clock pins. These pins input reference signals for input timing to ET_RX_DV, ET_ERXD3 to ET_ERXD0, and ET_RX_ER.
	ET0_COL, ET1_COL	Input	Input collision detection signals.
	ET0_WOL, ET1_WOL	Output	Receive Magic packets.
	ET0_MDC, ET1_MDC	Output	Output reference clock signals for information transfer through ET_MDIO.
	ET0_MDIO, ET1_MDIO	1/0	Input or output bidirectional signals for exchange of management data with PHY-LSI.
SDHI	SD0CLK, SD1CLK	Output	SD clock output pin.
	SD0CMD, SD1CMD	I/O	Command output pin and response input signal pin.
	SD0DAT0 to SD0DAT7, SD1DAT0 to SD1DAT7	I/O	SD and MMC data bus pins.
	SD0CD, SD1CD	Input	SD card detection pin.
	SD0WP, SD1WP	Input	SD write-protect signal.

Table 1.16 Pin functions (5/5)

Function	Signal	1/0	Description	
Analog power	AVCC0	Input	Analog voltage supply pin for the analog. Connect this pin to VCC.	
supply	AVSS0	Input	Analog ground pin. Connect this pin to VSS.	
	VREFH0	Input	Analog reference voltage supply pin for the ADC12. Connect this pin to VCC when not using the ADC12.	
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to VSS when not using the ADC12.	
	VREFH	Input	Reference voltage input pin for the ADC12 (unit 1) and D/A converter. This is used as the analog power supply for the respective modules. Connect this pin to VCC if the ADC12 (unit 1) or DAC12 is not in use.	
	VREFL	Input	Reference ground pin for the ADC12 and D/A converter. This is used as the analog ground for the respective modules. Set this pin to the same potentia as the VSS pin.	
ADC12	AN000 to AN006, AN016 to AN021	Input	Input pins for the analog signals to be processed by the ADC12.	
	AN100 to AN106, AN116 to AN120	Input		
	ADTRG0	Input	Input pins for the external trigger signals that start the A/D conversion, active	
	ADTRG1	Input	LOW.	
	PGAVSS000/PGAVS S100	Input	Differential input pins.	
DAC12	DA0, DA1	Output	Output pins for the analog signals to be processed by the D/A converter.	
ACMPHS	VCOUT	Output	Comparator output pin.	
	IVREF0 to IVREF3	Input	Reference voltage input pin for comparator.	
	IVCMP0 to IVCMP2	Input	Analog voltage input pins for comparator.	
CTSU	TS00 to TS17	Input	Capacitive touch detection pins (touch pins).	
	TSCAP	_	Secondary power supply pin for the touch driver.	
KINT	KR00 to KR07	Input	A key interrupt (KINT) can be generated by inputting a falling edge to the interrupt input pins.	
I/O ports	P000 to P007	Input	General-purpose input pin.	
	P008 to P011, P014, P015	I/O	General-purpose input/output pins.	
	P100 to P115	I/O	General-purpose input/output pins.	
	P200	Input	General-purpose iInput pin.	
	P201 to P207, P212, P213	I/O	General-purpose input/output pins.	
	P300 to P315	I/O	General-purpose input/output pins.	
	P400 to P415	I/O	General-purpose input/output pins.	
	P500 to P515	I/O	General-purpose input/output pins.	
	P600 to P615	I/O	General-purpose input/output pins.	
	P700 to P713	I/O	General-purpose input/output pins.	
	P800 to P813	I/O	General-purpose input/output pins.	
	P900 to P915	I/O	General-purpose input/output pins.	
	PA00 to PA15	I/O	General-purpose input/output pins.	
	PB00 to PB07	I/O	General-purpose input/output pins.	
GLCDC	LCD_DATA00 to LCD_DATA23	Output	Data output pin for panel.	
	LCD_TCON0 to LCD_TCON3	Output	Output pins for panel timing adjustment.	
	LCD_CLK	Output	Panel clock output pin.	
	LCD_EXTCLK	Input	Panel clock source input pin.	
PDC	PIXCLK	Input	Image transfer clock pin.	
	VSYNC	Input	Vertical synchronization signal pin.	
	HSYNC	Input	Horizontal synchronization signal pin.	
	PIXD0 to PIXD7	Input	8-bit image data pins.	
	PCKO	Output	Output pin for dot clock.	

1.6 Pin Assignments

Figure 1.3 to Figure 1.8 show the pin assignments.

					R	7FS	7G2	2xxx	(A 0 1	1CB	D					
	А	В	С	D	E	F	G	н	J	к	L	М	N	Р	R	
15	P407	P408	P410	P708	VSS	USBHS_ DM	PVSS_ USBHS	P212 /EXTAL	XCIN	VCL0	P707	P701	P403	P401	P511	15
14	USB_DP	USB_DM	P409	P411	P415	USBHS_ DP	AVSS_ USBHS	P213 /XTAL	хсоит	VBATT	P706	P700	P402	P514	P512	14
13	VCC_ USB	VSS_ USB	P207	P412	P709	VCC_ USBHS	USBHS_ RREF	AVCC_ USBHS	VSS	PB01	P705	P405	P400	P513	P805	13
12	P202	P203	P205	P413	P711	VSS1_ USBHS	VSS2_ USBHS	vcc	PB05	PB03	vcc	P806	P002	P807	P000	12
11	P902	P901	P315	P204	P414	P712	PB07	PB06	PB02	P702	vss	P004	P008	P001	P005	11
10	VCL1	vss	vss	vcc	P313	P710	P713	PB04	P704	P404	P003	P010	P011	P006	P009	10
9	VLO	VLO	P904	P903	P900	P314	P206	PB00	P406	P515	P007	P014	AVSS0	VREFL0	VREFH0	9
8	VCC_	P200	P201/MD	P910	P909	RES	P615	P913	P703	P809	vss	P015	VREFL	AVCC0	VREFH	8
7	P911	P912	P311	P308	P908	P907	PA08	PA13	PA00	P808	vcc	P508	P510	vcc	vss	7
6	P905	P312	P310	P307	P915	P906	PA11	PA02	PA01	P606	P812	P506	P507	P509	VCL2	6
5	vss	vcc	P309	P306	P914	P300/TCK /SWCLK	PA12	PA10	PA03	P607	P811	P505	P502	P503	P504	5
4	vss	vcc	P304	P305	P114	P608	P609	PA09	PA04	P107	P106	P804	P501	P803	P500	4
3	P303	P301	P112	P113	P115	P613	PA14	vcc	PA05	P603	P600	P105	P104	P810	P802	3
2	P302	P108/TMS /SWDIO	P110/TDI	vss	P611	P612	PA15	vss	PA06	P604	P601	vcc	P103	P800	P801	2
1	NC	P109/TDO	P111	vcc	P610	P614	P813	VCL_F	PA07	P605	P602	VSS	P102	P101	P100	1
	А	В	С	D	E	F	G	н	J	К	L	М	N	Р	R	•

Figure 1.3 Pin assignment for 224-pin BGA (top view)

					R	7FS	37G2	2xxx	ά Α 01	ICB	G					
	Α	В	С	D	E	F	G	н	J	к	L	М	N	Р	R	_
15	P407	P409	P411	P414	vss	USBHS_ DM	PVSS_ USBHS	P212 /EXTAL	XCIN	VCL0	P707	P703	P700	P405	P401	15
14	USB_DP	USB_DM	P410	P412	P415	USBHS_ DP	AVSS_ USBHS	P213 /XTAL	XCOUT	VBATT	P706	P701	P406	P402	P512	14
13	P204	VCC_ USB	VSS_ USB	P408	P413	VCC_ USBHS	USBHS_ RREF	AVCC_ USBHS	vss	PB01	P704	P404	P400	P511	P805	1:
12	P313	P202	P207	P206	P205	VSS1_ USBHS	VSS2_ USBHS	vcc	PB00	P705	P702	P403	P513	P806	P000	1:
11	P900	P315	P314	P203		ı						vcc	P001	P004	P002	1
10	VCL1	vss	P901	vss								VSS	P006	P008	P005	1
9	VLO	VLO	RES	vcc								P009	AVSS0	VREFL0	VREFH0	g
8	VCC_ DCDC	P201/MD	P200	P908								P010	AVCC0	VREFL	VREFH	8
7	P906	P905	P312	P907								vcc	vss	P015	P014	7
6	P310	P309	P307	P311								P007	P507	P505	VCL2	6
5	P308	P305	vss	vcc								P003	P503	P504	P506	5
4	P306	P304	P300/TCK /SWCLK	P111	vss	P613	PA09	PA00	P607	vcc	VSS	VSS	vcc	P501	P502	4
3	P303	P302	P108/TMS SWDIO	P110/TDI	VCC	P610	vcc	VSS	P604	P603	P105	P102	P800	P804	P500	3
2	P301	P112	P114	P608	P611	P614	PA10	PA01	P605	P601	P107	P104	P101	P802	P803	2
1	P109/TDO	P113	P115	P609	P612	P615	PA08	VCL_F	P606	P602	P600	P106	P103	P100	P801	1
	A	В	С	D	E	F	G	Н	J	K	L	M	N	P	R	J

Figure 1.4 Pin assignment for 176-pin BGA (top view)

Figure 1.5 Pin assignment for 176-pin LQFP (top view)

Figure 1.6 Pin assignment for 145-pin LGA (top view)

Figure 1.7 Pin assignment for 144-pin LQFP (top view)

Figure 1.8 Pin assignment for 100-pin LQFP (top view)

1.7 Pin Lists

Table 1.17 Pin list (1/12)

Pin ı	numbe	er				<i>خ</i>		Ext	ous	Time	ers			Con	nmunio	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	IIC	SPI, QSPI	ISS	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	стѕи	Interrupt	GLCDC, PDC
N13	N13	1	N13	1	1		P40 0	-	-	-	-	GTI OC 6A_ A	-	-	SC K4_ B	SC K7_ A	SC LO_ A	-	AU DIO _CL K	ET1 _TX _CL _K	1	-	-	AD TR G1 _B	-	į.	IRQ 0	-
P15	R15	2	L11	2	2	=	P40 1	=	=		GT ET RG A_ B	GTI OC 6B_ A	-	CT X0_ B	CT S4_ RT S4_ B/ SS 4_B	TX D7_ A/ MO SI7 _A/ SD A7_ A	SD A0_ A	=	=	ETO _M DC	ETO _M DC	-	=	-	=	1	IRQ 5- DS	-
N14	P14	3	M1 3	3	3	=	P40 2	-	=	AG TIO 0_B /AG TIO 1_B	-	=	RT CIC 0	CR X0_ B	=	RX D7_A/ MIS O7_A/ SC L7_A	-	=	=	ETO _M DIO	ETO _M DIO	-	-	=	=	j.	IRQ 4- DS	-
N15	M1 2	4	K11	4	4	-	P40 3	-	-	AG TIO 0_C /AG TIO 1_C	-	GTI OC 3A_ B	RT CIC 1	-	-	CT S7_ RT S7_ A/ SS 7_A	-	-	SSI SC K0_ A	ET1 _M DC	ET1 _M DC	-	-	-	-	i	-	PIX D7
K10	M1 3	5	L12	5	5	-	P40 4	-	-	=	-	GTI OC 3B_ B	RT CIC 2	=	-	-	-	-	SSI WS 0_A	ET1 _M DIO	ET1 _M DIO	=	-	=	-	ii.	-	PIX D6
M1 3	P15	6	L13	6	6	-/	P40 5	-	-	-	-	GTI OC 1A_ B	-	-	-	-	-	-	SSI TX D0_ A	ET1 _TX _E N	RMI I1_ TX D_ EN	-	-	-	-	ì	-	PIX D5
J9	N14	7	J10	7	7	-	P40 6	-	-	-	-	GTI OC 1B_ B	-	-	-	-	-	-	SSI RX D0_ A	ET1 _R X_ ER	RMI I1_ TX D1	-	-	-	-	i i	-	PIX D4
M1 4	N15	8	H10	8	-	-	P70 0	-	-	-	-	GTI OC 5A_ B	-	-	-	-	-	-	=	ET1 _ET XD 1	RMI I1_ TX D0	-	-	-	-	ù	-	PIX D3
M1 5	M1 4	9	K12	9	-		P70 1	-	-	-	-	GTI OC 5B_ B	-	-	-	-	-	-	-	ET1 _ET XD 0	RE F50 CK 1	-	-	-	-	i	-	PIX D2
K11	L12	10	K13	10	-	-	P70 2	-	-	-	-	GTI OC 6A_ B	-	-	-	-	-	-	-	ET1 _E RX D1	RMI I1_ RX D0	-	-	-	-	i	-	PIX D1
J8	M1 5	11	J11	11	-	=	P70 3	=	-	=	=	GTI OC 6B_ B	=	-	=	=	=	=	=	ET1 _E RX D0	RMI I1_ RX D1	i i	=	-	=	Ü	=	PIX D0
J10	L13	12	H11	12	-	-	P70 4	-	-	-	-	-	-	-	-	-	-	-	-	ET1 _R X_ CL K	RMI I1_ RX _E R	-	-	-	-	i	-	HS YN C
L13	K12	13	G11	13	-	=	P70 5	-	-	-	=	=	-	-	=	-	-	=	=	ET1 _C RS	RMI I1_ CR S_ DV	ı	=	-	-	i	-	PIX CL K
L14	L14	14	-	-	-	-	P70 6	-	=	ı	-	=	-	-	-	RX D3_B/ MIS O3_B/ SC L3_B	-	-	=	ī	ı	US BH S_OV RC UR B	-	-	=	i i	IRQ 7	-
L15	L15	15	-	-	-	-	P70 7	-	-	-	-	-	-	-	-	TX D3_ B/ MO SI3 _B/ SD A3_ B	-	-	-	-	-	US BH S_V RC UR A	-	-	-	1	IRQ 8	

Table 1.17 Pin list (2/12)

Pin	numbe	er				- č		Extb	us	Time	ers			Con	nmuni	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,		External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz))II	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)		SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
H9	J12	16	-	-	=	-	PB 00	-	-	-	-	-	=	-	=	SC K3_ B	-	-	-	-	-	US BH S_ VB US EN	-	-	-	-		-
J11	=	=	=	-	-	=	PB 02	=	=	-	=	=	=	-	CT S8_ RT S8_ B/ SS 8_B	=	=	=	-	ET1 _R X_ DV	=	-	-	-	=	=		-
K12	-	-	-	-	-	-	PB 03	-	-	-	-	-	-	-	SC K8_ B	-	-	-	-	ET1 _C OL	-	-	-	-	-	-		-
H10	-	-	=	-	-	-	PB 04	-	-	-	-	-	=	-	TX D8_ B/ MO SI8 _B/ SD A8_ B	-	-	-	-	ET1 _E RX D2	-	-	-	=	-	-	IRQ 12	-
K13	K13	17	-	-	-	-	PB 01	-	-	-	-	-	-	-	-	CT S3_ RT S3_ B/ SS 3_B	-	-	-	-	-	US BH S_ VB US	-	-	-	-		-
J12	=	=	-	=	-	-	PB 05	=	=	=	=	=	-	-	RX D8_ B/ MIS O6 _B/ SC L6_ B	=	=	-	=	ET1 _E RX D3	=	-	=	-	-	П	IRQ 13	=
H11	-	-	-	-	-	-	PB 06	-	-	-	-	-	-	-		-	-	-	-	ET1 _W OL	ET1 _W OL	-	-	-	-	-		-
G11	-	-	1	-	-	-	PB 07	-	-	-	-	-	1	-		-	-	-	-	ET1 _LI NK STA	ET1 _LI NK STA	-	-	-	-	1	1	-
K14	K14	18	J12	14	8	VB ATT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
K15	K15	19	J13	15	9	VC L0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
J15	J15	20	H13	16	10	XCI N	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-	-
J14	J14	21	H12	17	11	XC OU T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
J13	J13	22	F12	18	12	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H14	H14	23	G1 2	19	13	XTA L	P21 3	=	=	=	GT ET RG C_ A	=	-	-	=	TX D1_ A/ MO SI1 _A/ SD A1_ A	=	=	=	=	=	=	-	AD TR G1 _A	=		IRQ 2	=
H15	H15	24	G1 3	20	14	EX TAL	P21 2	-	-	AG TE E1	GT ET RG D_ A	-	=	-	-	RX D1_ A/ MIS O1 _A/ SC L1_ A	-	-	-	-	-	-	-	-	-	E .	IRQ 3	-
H12	H12	25	F13	21	15	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H13	H13	26	-	-	-	AV CC _U SB HS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
G1 3	G1 3	27	-	-	-	US BH S_ RR EF	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1.17 Pin list (3/12)

	e 1.		1.	in lis	د, ری	1		Extb	us	Time	ers			Con	nmunio	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC		8,8			SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS		Interrupt	GLCDC, PDC
G1 4	G1 4	28	-	-	-	AV SS _U SB HS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	į.	-
G1 5	G1 5	29	-	-	-	PV SS _U SB HS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	i)	-
G1 2	G1 2	30	-	-	-	VS S2_ US BH S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-
F15	F15	31	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	US BH S_ DM	-	-	-	-	=	-
F14	F14	32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	US BH S_ DP	-	-	-	-	i	-
F12	F12	33	-	-	-	VS S1_ US BH S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-
F13	F13	34	-	-	-	VC C_ US BH S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	i i	-
E15	E15	35	-	-	-	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
G1 0	=	-	G1 0	22	-	-	P71 3	-	=	-	-	GTI OC 2A_ B	-	-	-	-	-	-	-	ET1 _E XO UT	ET1 _E XO UT	-	-	-	-	TS1 7	-	=
F11	-	-	F11	23	-	-	P71 2	-	-	-	-	GTI OC 2B_ B	-	-	-	-	-	-	-	-	-	-	-	-	-	TS1 6	i	-
E12	-	-	E13	24	-	-	P71 1	-	-	-	-	-	-	-	-	CT S1_ RT S1_ B/ SS 1_B	-	-	-	ET0 _TX _CL K	-	-	-	-	-	TS1 5	i	-
F10	=	=	E12	25	=	=	P71 0	-	=	-	-	-	=	=	=	SC K1_ B	-	-	-	ET0 _TX _E R	-	-	=	=	=	TS1 4	±	-
E13	-	-	F10	26	-	-	P70 9	=	-	=	-	=	-	-	-	TX D1_ B/ MO SI1 _B/ SD A1_	=	-	-	ET0 _ET XD 2	-	-	-	-	-	TS1 3	IRQ 10	-
D15	-	-	D13	27	16	CA CR EF_ B	P70 8	-	-	-	-	-	-	-	-	B RX D1_ B/ MIS O1 _B/ SC L1_ B	-	SS LA3 _B	-	ET0 _ET XD 3	-	-	-	-	-	TS1 2	IRQ 11	-
E14	E14	36	E11	28	17	-	P41 5	-	-	-	-	-	-	-	-	-	-	SS LA2 _B	-	ET0 _TX _E N	RMI I0_ TX D_	-	-	-	-	TS1 1	i i	-
E11	D15	37	D12	29	18	-	P41 4	-	-	-	-	-	-	-	-	-	-	SS LA1 _B	-	ETO _R X_ ER	RMI I0_ TX D1	-	SD 0W P	-	-	TS1 0	i	-
D12	E13	38	E10	30	19	-	P41 3	-	-	-	GT OU UP _B	-	-	-	CT S0_ RT S0_ B/ SS 0_B	-	-	SS LA0 _B	-	ET0 _ET XD 1	RMI IO_ TX D0	-	SD 0CL K	-	-	TS0 9	1	-
D13	D14	39	C13	31	20	-	P41 2	-	1	-	GT OU LO _B	-	-	-	SC KO_ B	-	-	RS PC KA _B	-	ET0 _ET XD 0	RE F50 CK 0	-	SD 0C MD	-	=	TS0 8	i	ı

Table 1.17 Pin list (4/12)

Pin ı	e 1.			ı	St (4			Extb	us	Time	ers	ı	ı	Con	nmunio	cation	interfa	aces	ı	1	ı	ı	1	Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN			Oll	SPI, QSPI	SSI	MII (25 MHz)		USBHS	SDHI	ADC12	DAC12, ACMPHS		Interrupt	GLCDC, PDC
D14	C15	40	D11	32	21	-	P41 1	-	-	AG TO A1	GT OV UP _B	GTI OC 9A_ A	-	-	TX D0_ B/ MO SI0 _B/ SD A0_ B	CT S3_ RT S3_ A/ SS 3_A	-	MO SIA _B	-	ET0 _E RX D1	RMI IO_ RX D0	-	SD 0D AT0	-	-	TS0 7	IRQ 4	-
C15	C14	41	C12	33	22	-	P41 0	-	-	AG TO B1	GT OV LO _B	GTI OC 9B_ A	-	-	RX D0_ B/ MIS O0 _B/ SC L0_ B	SC K3_ A	-	MIS OA _B	-	ETO _E RX D0	RMI IO_ RX D1	-	SD 0D AT1	-	-	TS0 6	IRQ 5	-
C14	B15	42	B13	34	23	-	P40 9	-	-	-	GT OW UP _B	GTI OC 10A _A	-	US B_ EXI CE N_ A	-	TX D3_A/ MO SI3 _A/ SD A3_A	-	-	-	ETO _R X_ CL K	RMI IO_ RX _E R	US BH S_ EXI CE N	-	-	-	TS0 5	IRQ 6	-
B15	D13	43	D10	35	24	-	P40 8	-	-	-	GT OW LO _B	GTI OC 10B _A	-	US B_I D_ A	-	RX D3_ A/ MIS O3 _ A/ SC L3_ A	-	-	-	ETO _C RS	RMI I0_ CR S_ DV	US BH S_I D	-	-	-	TS0 4	IRQ 7	-
A15	A15	44	A13	36	25	-	P40 7	-	-	-	=	=	RT CO UT	US B_ VB US	CT S4_ RT S4_ A/ SS 4_A	-	SD A0_ B	SS LB3 _A	=	ET0 _E XO UT	ET0 _E XO UT	=	-	AD TR G0	-	TS0 3	-	-
B13	C13	45	B11	37	26	VS S_ US B	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-
B14	B14	46	A12	38	27		-	-	-	-	-	-	-	US B_ DM	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A14	A14	47	B12	39	28		-	-	-	-	-	-	-	US B_ DP	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A13	B13	48	A11	40	29	VC C_ US B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C13	C12	49	C11	41	30	-	P20 7	A17	-	-	-	-	-	-	-	-	-	SS LB2 _A	-	-	-	-	-	-	-	TS0 2	-	-
G9	D12	50	B10	42	31	-	P20 6	WAI T	-	-	GTI U_ A	-	-	US B_ VB US EN _A	RX D4_A/ MIS O4 _A/ SC L4_A	-	SD A1_ A	SS LB1 _A	SSI DA TA1 _A	ET0 _LI NK STA	ET0 _LI NK STA	-	SD 0D AT2	-	-	TS0 1	IRQ 0- DS	-
C12	E12	51	A10	43	32	CL KO UT _A	P20 5	A16	-	AG TO 1	GTI V_ A	GTI OC 4A_ B	-	US B_ OV RC UR A_ A- DS	TX D4_ A/ MO S14 _A/ SD A4_ A	CT S9_ RT S9_ A/ SS 9_A	SC L1_ A	SS LB0 _A	SSI WS 1_A	ET0 _W OL	ET0 _W OL	-	SD 0D AT3	-	-	TS CA P_ A	IRQ 1- DS	-
D11	A13	52	C10	44	-	CA CR EF_ A	P20 4	A18	=	AG TIO 1_A	GTI W_ A	GTI OC 4B_ B	=	US B_ OV RC UR B_ A- DS	SC K4_ A	SC K9_ A	SC LO_ B	RS PC KB _A	SSI SC K1_ A	ETO _R X_ DV	=	=	SD 0D AT4	-	=	TS0 0	-	=
B12	D11	53	A9	45	-	-	P20 3	A19	-	-	-	GTI OC 5A_ A	-	CT X0_ A	CT S2_ RT S2_ A/ SS 2_A	TX D9_ A/ MO SI9 _A/ SD A9_ A	-	MO SIB _A	-	ET0 _C OL	-	-	SD 0D AT5	-	-	TS CA P_ B	IRQ 2- DS	-

Table 1.17 Pin list (5/12)

Pin r	numbe	er				Ę,		Extb	ous	Tim	ers			Con	nmuni	cation	interfa	aces	1					Ana	log	НМІ		_
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,		External bus	SDRAM	AGT	GPT	GPT	RTC			SCI1,3,5,7,9 (30 MHz)	SII	SPI, QSPI	ISS		RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	
A12	B12	54	C9	46	-	-	P20 2	WR 1/ BC 1	-	-	-	GTI OC 5B_ A	-	CR X0_ A	SC K2_ A	RX D9_A/ MIS O9_A/ SD A9_A	-	MIS OB _A		ET0 _E RX D2	-	-	SD 0D AT6	-	-	-	IRQ 3- DS	LC D_ TC ON 3_E
E10	A12	55	B9	47	-	-	P31 3	A20	-	-	-	-	-	-	-	-	-	-	-	ET0 _E RX D3	-	-	SD 0D AT7	-	-	-	-	LC D_ TC ON 2_E
F9	C11	56	-	-	-	-	P31 4	A21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ TC ON
C11	B11	57	-	-	-	-	P31 5	A22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1_I LC D_ TC ON
E9	A11	58	-	-	-	-	P90 0	A23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	O_E D_ CL K_ B
B11	C10	59	-	-	-	-	P90 1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA: 5_E
A11	=	=	-	-	=	-	P90 2	=	=	-	-	=	=	-	-	-	=	-	=	-	-	-	=	-	=	-	=	LC D_ DA TA:
C10	D10	60	D9	48	-	VS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3_
D10	D9	61	D8	49	-	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D9	-	-	-	-	-	-	P90 3	-	-	-	-	GTI OC 7A_ B	-	-	-	-	-	-	-	-	-	-	SD 0C D	-	-	-	-	-
C9	=	=	=	=	=	-	P90 4	=	=	-	-	GTI OC 7B_ B	=	-	-	=	=	-	=	-	=	-	=	-	=	-	=	-
A10	A10	62	A8	50	33	VC L1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B10	B10	63	В8	51	34	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A9	A9	64	A7	52	35	VL O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9	В9	65	В7	53	36	VL O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A8	A8	66	A6	54	37	VC C_ DC DC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H8 F8	- C9	67	- C7	- 55	38	RE	P91 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C8	B8	68	B6	56	39	S MD	P20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
B8	C8	69	C8	57	40	-	1 P20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NMI	-
B7	=	-	-	-	-	-	0 P91 2	-	-	-	-	GTI OC 8A_	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-
A7	-	=	=	=	=	-	P91 1	-	=	-	-	B GTI OC 8B_ B	-	-	-	-	=	-	-	-	=	=	=	-	-	=	=	=
D8	=	-	-	-	-	-	P91 0	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	=	-	-	-	LC D_ DA TA2 2_E
E8	=	-	-	-	-	-	P90 9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 1_E

Table 1.17 Pin list (6/12)

Pin r	numbe	er	•	'IN II		I		Extb	ous	Tim	ers			Con	nmunio	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,			SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	2	SPI, QSPI	ISS	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	
E7	D8	70	-	-	-	-	P90 8	CS 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	LC D_ DA TA1 4_B
F7	D7	71	-	-	-	-	P90 7	CS 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	LC D_ DA TA1
F6	A7	72	-	-	-	-	P90 6	CS 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3_B LC D_ DA TA1
A6	В7	73	-	-	-	-	P90 5	CS 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2_B LC D_ DA TA1
B6	C7	74	C6	58	-	-	P31	CS	CA S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1_B -
C7	D6	75	B5	59		-	2 P31 1	CS 2	RA S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2
A4	-	-	-	-	-	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3_A
B4	-	-	-	-	-	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C6	A6	76	D7	60	=	-	P31 0	A15	A15	=	-	-	=	-	-	-	-	-	-	-	-	-	=	=	-	-	1	LC D_ DA TA2 2_A
C5	B6	77	A5	61		-	P30 9	A14	A14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2
D7	A5	78	C5	62	-	-	P30 8	A13	A13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1_A LC D_ DA TA2
D6	C6	79	A4	63	41	-	P30 7	A12	A12	-	-	-	-	-	CT S6_ RT S6_ A/ SS 6_A	-	-	-	-	-	-	-	-	-	-	-	1	0_A LC D_ DA TA1 9_A
D5	A4	80	B4	64	42	-	P30 6	A11	A11	-	-	-	-	-	SC K6_ A	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1
D4	B5	81	D6	65	43	-	P30 5	A10	A10	-	-	-	-	-	TX D6_A/ MO SI6_A/ SD A6_A	-	-	-	-	-	-	-	-	-	-	-	IRQ 8	8_A LC D_ DA TA1 7_A
C4	B4	82	C4	66	44	-	P30 4	A09	A09	-	-	GTI OC 7A_ A	-	-	RX D6_A/ MIS O6_A/ SC L6_A	-	-	-	-	-	-	-	-	-	-	-	IRQ 9	LC D_ DA TA1 6_A
A5	C5	83	A3	67	45	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5	D5	84	В3	68	46	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E6	-	-	-	-	-	=	P91 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	LC D_ DA TA2 0_B
E5	-	-	-	-		-	P91 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 9_B

Table 1.17 Pin list (7/12)

Tabl Pin r	numbe			in li	•	I		Extb	us	Time	ers			Con	nmuni	cation	interfa	aces						Ana	alog	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz))II	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	стѕи	Interrupt	
A3	A3	85	D5	69	47	-	P30 3	A08	A08	-	-	GTI OC 7B_ A	-	-	=	-	-	-	=	-	=	-	-	-	-	=	=	LC D_ DA TA1 5_A
A2	В3	86	A2	70	48	-	P30 2	A07	A07	-	GT OU UP _A	GTI OC 4A_ A	-	-	TX D2_A/ MO SI2_A/ SD A2_A	-	-	SS LB3 _B	-	-	-	-	-	-	-	-	IRQ 5	LC D_ DA TA1 4_A
B3	A2	87	C3	71	49	-	P30 1	A06	A06	-	GT OU LO _A	GTI OC 4B_ A	=	-	RX D2_ A/ MIS O2 _A/ SC L2_ A	-	-	SS LB2 _B	-	-	-	-	-	-	-	-	IRQ 6	LC D_ DA TA1 3_A
F5	C4	88	B2	72	50	TC K/S WC LK	P30 0	-	-	-	-	GTI OC 0A_ A	-	-	-	-	-	SS LB1 _B	-	-	-	-	-	-	-	-	-	-
B2	C3	89	A1	73	51	TM S/S WD IO	P10 8	=	1	ı	=	GTI OC 0B_ A	=	=	-	CT S9_ RT S9_ B/ SS 9_B	=	SS LB0 _B	-	=	-	=	-	-	-	-	-	-
B1	A1	90	D4	74	52	CL KO UT _B/ TD O/S WO	P10 9	=	-	-	GT OV UP _A	GTI OC 1A_ A	-	CT X1_ A	=	TX D9_B/ MIS O9 _B/ SD A9_B	=	MO SIB _B	=	=	=	-	-	-	=	=	=	-
C2	D3	91	B1	75	53	TDI	P11 0	-	-	-	GT OV LO _A	GTI OC 1B_ A	-	CR X1_ A	CT S2_ RT S2_ B/ SS 2_B	RX D9_B/MIS O9_B/SC L9_B	-	MIS OB _B	-	-	-	-	-	-	VC OU T	-	IRQ 3	-
C1	D4	92	C2	76	54	-	P11 1	A05	A05	-	-	GTI OC 3A_ A	-	-	SC K2_ B	SC K9_ B	-	RS PC KB _B	-	-	-	-	-	-	-	-	IRQ 4	LC D_ DA TA1 2_A
СЗ	B2	93	D3	77	55	-	P11 2	A04	A04	-	-	GTI OC 3B_ A	-	-	TX D2_B/ MO SI2_B/ SD A2_B	-	-	-	SSI SC KO_ B		-	-	-	-	-	-	-	LC D_ DA TA1 1_A
D3	B1	94	C1	78	56	-	P11 3	A03	A03	-	-	-	-	-	RX D2_ B/ MIS O2 _B/ SC L2_ B	-	-	-	SSI WS 0_B		-	-	-	-	-	-	-	LC D_ DA TA1 0_A
E4	C2	95	E4	79	57	-	P11 4	A02	A02	-	-	-	-	-	-	-	-	-	SSI RX D0_ B		-	-	-	-	-	-	-	LC D_ DA TA0
E3	C1	96	E3	80	58	-	P11 5	A01	A01	-	-	-	-	-	-	-	-	-	SSI TX D0_ B		-	-	-	-	-	-	-	9_A LC D_ DA TA0
D1	E3	97	D2	81	-	VC C		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8_A -
D2	E4	98	D1	82	-	VS S		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F4	D2	99	F4	83	59	-	P60 8	A00 /BC 0	A00 /DQ M1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA0 7_A

Table 1.17 Pin list (8/12)

Pin ı	numbe	er				۲,		Extk	ous	Tim	ers			Con	nmuni	cation	interfa	aces						Ana	log	НМІ		_
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz))II	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	
G4	D1	100	E2	84	60	-	P60 9	CS 1	CK E	-	-	=	-	=	-	-	-	-	=	-	-	-	-	=	-	-	1	D, D, TA 6_
E1	F3	101	F3	85	61	-	P61 0	CS 0	WE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	1	D D T
E2	E2	102	E1	86	-	-	P61		SD CS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-2	E1	103	F2	87	-	-	P61 2	D08	DQ 08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F3	F4	104	F1	88	-	-	P61 3	D09	DQ 09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F1	F2	105	G3	89	-	-	P61 4	D10	DQ 10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
G8	F1	106	-	-	-	-	P61 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	D D T/
G7	G1	107	-	-	-	-	PA0 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	L D T 9
G6	1	-	-	-	-	-	PA1 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L D T 8
G5	1	-	-	-	-	TC LK	PA1 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
H4	G4	108	-	-	-	-	PA0 9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L D D T 8
H7	1	-	-	-	-	TD ATA 0	PA1 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
G3	-	-	-	-	-	TD ATA 1	PA1 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H5	G2	109	-	=	-	=	PA1 0	-	=	=	=	=	=	=	=	=	-	-	=	-	=	-	=	=	-	ı	ı	L C T 7
G2	ī	-	-	-	-	TD ATA 2	PA1 5	-	-	-	-	GTI OC 9A_ B	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-
G1	Ū.	=	=	=	=	TD ATA 3	P81 3	=	=	=	=	GTI OC 9B_ B	=	Ξ	=	=	=	=	=	=	=	=	=	÷	-	ē	-	-
НЗ	G3	110	G1	90	62	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H2	НЗ	111	G2	91	63	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H1	H1	112	H1	92	64	VC L_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	1	-
J1	1	-	-	-	-		PA0 7	-	-	-	-	GTI OC 10A _B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
J2	ī	-	-	-	-		PA0 6	-	-	-	-	GTI OC 10B _B	-	-	-	-	-	-	-	-	-	-	-	-	-	·	i	-
J3	ū	=	=	-	-		PA0 5	=	=	-	=	GTI OC 11A _B	-	-	=	CT S7_ RT S7_ B/ SS 7_B	=	-	-	=	=	=	-	-	Ξ		-	-
J4	-	-	-	-	-		PA0 4	-	-	-	-	GTI OC 11B _B	-	-	-	SC K7_ B	-	-	-	-	-	-	-	-	-	-	-	-

Table 1.17 Pin list (9/12)

Pin r	numbe	er		1	1	ć.		Extb	us	Time	ers	1		Con	nmunio	cation	interfa	aces	1	1	1	1	1	Ana	log	НМІ		_
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz))IIC	SPI, QSPI	_	MII (25 MHz)		_	SDHI	ADC12		CTSU	Interrupt	GLCDC, PDC
J5	-	-	-	-	-		PA0 3	-	-	-	-	-	-	-	-	RX D7_B/ MIS O7_B/ SC L7_B	-	-	-	-	-	-	-	-	-	-	IRQ 9	-
H6	=	-	-	-	-		PA0 2	-	-	-	-	-	=	-	-	TX D7_ B/ MO SI7 _B/ SD A7_ B	-	-	-	-	-	-	-	=	-	-	IRQ 10	-
J6	H2	113	-	-	-		PA0 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	LC D_ DA TA0
J7	H4	114	-	-	-		PA0 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6_B LC D_ DA TA0
K5	J4	115	-	-	-		P60 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5_B LC D_ DA TA0 4_B
K6	J1	116		-	-		P60 6	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	LC D_ DA TA0 3_B
K1	J2	117	H2	93	-		P60 5	D11	DQ 11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-
K2 K3	J3 K3	118	G4 H3	94	-		P60 4 P60	D12	DQ 12 DQ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L1	K1	120	J1	96	65		960 2	EB CL K	13 SD CL K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA0
L2	K2	121	J2	97	66	-	P60 1	WR /W R0	DQ M0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4_A LC D_ DA TA0 3_A
L3	L1	122	H4	98	67	-	P60 0	RD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA0 2_A
M2	K4	123	K2	99	-	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M1 K4	L4 L2	124	K1 J3	100	68	VS S	- P10	- D07	- DQ	-	-	- GTI	-	-	- CT	-	-	-	-	-	-	-	-	-	-	-	- KR	- LC
K4	LZ	123	33	101	00		7	507	07			OC 8A_ A			S8_ RT S8_ A/ SS 8_A												07	D_ DA TA0 1_A
L4	M1	126	К3	102	69	-	P10 6	D06	DQ 06	-	-	GTI OC 8B_ A	-	=	SC K8_ A	-	-	SS LA3 _A	=	-	-	-	=	=	-	-	KR 06	LC D_ DA TA0 0_A
M3	L3	127	J4	103	70	-	P10 5	D05	DQ 05	-	GT ET RG A_ C	-	-	-	TX D8 _A/ MO SI8 _A/ SD A8_ A	-	-	SS LA2 _A	-	-	-	-	-	-	-	1	IRQ 0/K R05	LC D
N3	M2	128	L3	104	71	-	P10 4	D04	DQ 04	-	GT ET RG B_ B	-	-	-	RX D8_A/ MIS O8_A/ SC L8_A	-	,	SS LA1 _A	-	-	-	-	-	-	-	-	IRQ 1/K R04	LC D_ TC ON 2_A

Table 1.17 Pin list (10/12)

Pin r	numbe	er	ı	ı		ć.		Extb	us	Time	ers	ı		Con	nmunio	cation	interfa	aces		ı				Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz))II	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	SHBSU	IHQS	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
N2	N1	129	L1	105	72	-	P10 3	D03	DQ 03	-	GT OW UP _A	GTI OC 2A_ A	-	-	CT S0_ RT S0_ A/ SS 0_A	1	-	SS LA0 _A	-	-	1	1	-	-	1	-	KR 03	LC D_ TC ON 1_A
N1	М3	130	M1	106	73	-	P10 2	D02	DQ 02	AG TO 0	GT OW LO _A	GTI OC 2B_ A	-	-	SC K0_ A	-	-	RS PC KA _A	-	-	-	-	-	AD TR G0 _A	-	-	KR 02	LC D_ TC ON 0_A
P1	N2	131	M2	107	74	-	P10 1	D01	DQ 01	AG TE E0	GT ET RG B_ A	-	-	-	TX D0_ A/ MO SI_ A/ SD A0_ A	CT S1_ RT S1_ A/ SS 1_A	SD A1_ B	MO SIA _A	-	-	-	0	-	-	-	-	IRQ 1/K R01	LC D_ CL K_ A
R1	P1	132	N1	108	75	-	P10 0	D00	DQ 00	AG TIO 0_A	GT ET RG A_ A	-	-	-	RX D0_A/ MIS O0_A/ SL C0_A	SC K1_ A	SC L1_ B	MIS OA _A	-	-	=	,	-	-	=	-	IRQ 2/K R00	LC D_ EX TC LK_ A
P2	N3	133	L2	109	-	-	P80 0	D14	DQ 14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R2	R1	134	N2	110	-	-	P80 1	D15	DQ 15	-	-	-	-	-	-	-	-	-	-	-	-		SD 1D AT4	-	-	-	-	-
< 7	-	-	-	-	-	-	P80 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
< 8	-	-	-	-	-	-	P80 9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P3	-	-	-	-	-	-	P81 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R3	P2	135	-	-	-	-	P80 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD 1D AT5	-	-	-	-	LC D_ DA TA0 2_B
P4	R2	136	-	-	-	-	P80 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD 1D AT6	-	-	-	-	LC D_ DA TA0 1_B
M4	P3	137	-	-	-		P80 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD 1D AT7	-	-	-	-	LC D_ DA TA0 0_B
L5	-	-	-	-	-		P81 1	-	-	-	-	-	-	CT X0_ C	-	-	-	-	-	-	-		=	-	-	-	-	-
L6	-	-	-	-	-		P81 2	-	-	-	-	-	-	CR X0_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_7	N4	138	N3	111	-	VC C		-	-	-	-	-	-	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L8	M4	139	МЗ	112	-	VS S		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
R4	R3	140	K4	113	76	-	P50 0	-	-	AG TO A0	GTI U_ B	GTI OC 11A _A	-	US B_ VB US EN _B	-	-	1	QS PC LK	-	-	-	1	SD 1CL K	AN 016	IVR EF0	-	-	-
N4	P4	141	M4	114	77	-	P50 1	-	-	AG TO B0	GTI V_ B	GTI OC 11B _A	-	US B_ OV RC UR A_ B	-	TX D5_ A/ MO SI5 A/ SD A5_ A	-	QS SL	-	-	1	1	SD 1C MD	AN 116	IVR EF1	-	IRQ 11	-
N5	R4	142	L4	115	78	-	P50 2	-	-	-	GTI W_ B	GTI OC 12A	-	US B_OV RC UR B_B	-	RX D5_A/ MIS O5_A/ SC L5_A	-	QIO 0	-	-	1	0	SD 1D AT0	AN 017	IVC MP 0	-	IRQ 12	-

Table 1.17 Pin list (11/12)

Pin r	numbe	er				۲.		Extb	us	Time	ers			Con	nmunio	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC			SCI1,3,5,7,9 (30 MHz))IIC	SPI, QSPI	ISS	MII (25 MHz)	RMII (50 MHz)	USBHS	HOS		DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
P5	N5	143	K5	116	79	1	P50 3	-	1	1	GT ET RG C_ B	GTI OC 12B	1	US B_EXI CE N_B	CT S6_ RT S6_ B/ SS 6_B	SC K5_ A	1	QIO 1	1	-	1	i	SD 1D AT1	AN 117	-	-		-
R5	P5	144	L5	117	80	-	P50 4	-	-	-	GT ET RG D_ B	GTI OC 13A	-	US B_I D_ B	SC K6_ B	CT S5_ RT S5_ A/ SS 5_A		QIO 2	-	-	-	1	SD 1D AT2	AN 018	-	-		-
M5	P6	145	K6	118	-	-	P50 5	-	1	1	-	GTI OC 13B	-	-	RX D6_B/ MIS O6_B/ SC L6_B	-	1	QIO 3	1	-	-	1	SD 1D AT3	AN 118	-	-	IRQ 14	-
M6	R5	146	L6	119	-	-	P50 6	-	1	-	-	I	-	-	TX D6_B/ MO SI6_B/ SD A6_B	-	-	-	-	-	ı	1	SD 1C D	AN 019	-	-	IRQ 15	-
N6	N6	147	-	-	1	-	P50 7	-	1	-	-	-	-	-		CT S5_ RT S5_ B/ SS 5_B	-	-	-	-	-	1	SD 1W P	AN 119	-	-	-	=
M7	1	-	-	-	-	-	P50 8	-	-	-	-	-	-	-		SC K5_ B	-	-	-	-	-	-	-	AN 020	-	-	-	-
P6		-	-	-	-	-	P50 9	-		-	-	-	-	-		TX D5_ B/ MO SI5 _B/ SD A5_ B	-	-	-	-	-	-	-	AN 120	-	-	-	-
N7	1	=	T	=	-	=	P51 0	=	ı	ı	=	=	-	=	=	RX D5_B/ MIS O5_B/ SC L5_B	T	=	ī	=	=	ı	-	AN 021	=	=	=	-
R6	R6	148	N4	120	81	VC L2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P7 R7	M7 N7	149	N5 M5	121	82	VC C VS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M8	P7	151	M6	123	84	S -	P01 5	-	-	-	=	÷	=	-	-	-	-	-	-	-	-	-	=	AN 006	DA 1/IV	-	IRQ 13	-
M9	R7	152	N6	124	85	-	P01 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/AN 106 AN 005 /AN	DA 0/IV RE	-	-	-
N8	P8	153	M7	125	86	VR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	105	F3	-	-	-
R8	R8	154	N7	126	87	VR EF H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P8	N8	155	L7	127	88	AV CC 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N9	N9	156	L8	128	89	AV SS 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P9	P9	157	M8	129	90	VR EFL 0	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R9	R9	158	N8	130	91	VR EF H0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1.17 Pin list (12/12)

Pin ı	numbe	er				,		Extb	us	Time	ers			Con	nmuni	cation	interfa	aces						Ana	log	НМІ		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	2	SPI, QSPI	ISS	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
N10	-	-	-	-	-	1	P01 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 104	-	1	IRQ 15- DS	-
M1 0	M8	159	-	-	-	-	P01 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 103	-	-	IRQ 14- DS	-
R10	М9	160	M9	131	-	-	P00 9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 004	-	1	IRQ 13- DS	-
N11	P10	161	N9	132	92	-	P00 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 003	-	-	IRQ 12- DS	-
L9	M6	162	K7	133	93	-	P00 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PG AV SS 100	-	-	-	-
P10	N10	163	L9	134	94	-	P00 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 102	IVC MP 2	-	IRQ 11- DS	-
R11	R10	164	K8	135	95	-	P00 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 101	IVC MP 2	-	IRQ 10- DS	-
M11	P11	165	K9	136	96	-	P00 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 100	IVC MP 2	-	IRQ 9- DS	-
L10	M5	166	K10	137	97	-	P00 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	PG AV SS 000	-	i i	-	-
N12	R11	167	M1 0	138	98	-	P00 2	-	-	-	=	=	-	-	-	-	-	=	=	-	-	=	-	AN 002	IVC MP 2		IRQ 8- DS	-
P11	N11	168	N10	139	99	-	P00 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 001	IVC MP 2	-	IRQ 7- DS	-
R12	R12	169	L10	140	100	-	P00 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 000	IVC MP 2	-	IRQ 6- DS	-
L11	M1 0	170	N11	141	-	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
L12	M11	171	N12	142	-	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M1 2	P12	172	-	-	-	-	P80 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	•	LC D_ EX TC LK_ B
R13	R13	173	=	=	=	-	P80 5	=	=	=	-	-	-	-	=	=	=	-	-	-	=	-	=	-	-	ú	i i	LC D_ DA TA1 7_B
P12	-	-	-	-	-	-	P80 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P13	N12	174	-	-	-	-	P51 3	-	-	-	-	-	-	-	-	-	-	-	-	ET1 _ET XD 3	-	-	-	-	-	i	-	LC D_ DA TA1 6_B
K9	-	-	-	-	-	-	P51 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R14	R14	175	M11	143	-	-	P51 2	=	=	-	-	GTI OC 0A_ B	-	CT X1_ B	TX D4_B/ MO SI4 _B/ SD A4_B	-	SC L2	-	-	ET1 _ET XD 2	П	-	-	-	-	ı	IRQ 14	VS YN C
P14	÷	=	-	-	=	-	P51 4	=	=	=	GT ET RG B_ C	-	-	-	=	-	=	-	-	-	ā	-	=	-	-	i i		-
R15	P13	176	M1 2	144	-	-	P51 1	-	-	-	-	GTI OC 0B_ B	-	CR X1_ B	RX D4_ B/ MIS O4 _B/ SC L4_ B	-	SD A2	-	-	ET1 _TX _E R	-	-	-	-	-	-	IRQ 15	PC KO

Note: Some pin names have the added suffix of _A, _B, and _C. When assigning the IIC, SPI, and SSI functionality, select the functional pins with the same suffix. The other pins can be selected regardless of the suffix.

S7G2 2. Electrical Characteristics

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $\label{eq:vcc} VCC = AVCC0 = VCC_USB = VBATT = 2.7 \ to \ 3.6 \ V, \ 2.7 \le VREFH0/VREFH \le AVCC0, \ VCC_USBHS = AVCC_USBHS = 3.0 \ to \ 3.6 \ V, \ VSS = AVSS0 = VREFL0/VREFL = VSS_USB = VSS1_USBHS = VSS2_USBHS = PVSS_USBHS = AVSS_USBHS = 0 \ V, \ Ta = Topr$

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation, however make sure to adjust driving abilities of each pins to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings

Item	Symbol	Value	Unit
Power supply voltage	VCC, VCC_USB *2	-0.3 to +4.6	V
VBATT power supply voltage	VBATT	-0.3 to +4.6	V
Input voltage (except for 5V-tolerant ports*1)	V _{in}	-0.3 to VCC + 0.3	V
Input voltage (5V-tolerant ports*1)	V _{in}	-0.3 to +5.8	V
Reference power supply voltage	VREFH/VREFH0	-0.3 to VCC + 0.3	V
Analog power supply voltage	AVCC0 *2	-0.3 to +4.6	V
USBHS power supply voltage	VCC_USBHS	-0.3 to +4.6	V
USBHS analog power supply voltage	AVCC_USBHS	-0.3 to +4.6	V
Switching regulator power supply voltage	VCC_DCDC	-0.3 to +4.6	V
Analog input voltage	V _{AN}	-0.3 to AVCC0 + 0.3	V
Operating temperature*3 *4	T _{opr}	-40 to +105	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.

- Note 1. Ports P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, and PB01 are 5V-tolerant.
- Note 2. Connect AVCC0 and VCC_USB to VCC.
- Note 3. See section 2.2.1, Tj/Ta Definition.
- Note 4. Contact a Renesas Electronics sales office for information on derating operation when $T_a = +85$ °C to +105°C.

S7G2 2. Electrical Characteristics

Derating is the systematic reduction of load for improved reliability.

Table 2.2 **Recommended operating conditions**

Item	Symbol	Value	Min	Тур	Max	Unit
Power supply voltages	VCC	When USB/SDRAM is not used	2.7	-	3.6	V
		When USB/SDRAM is used	3.0	-	3.6	V
	VSS		-	0	-	V
USB power supply voltages	VCC_USB, VCC_USBHS		-	VCC	-	V
	VSS_USB, AVSS_USBHS, PVSS_USBHS, VSS1_USBHS, VSS2_USBHS		-	0	-	V
Switching regulator power supply voltage	VCC_DCDC	When switching regulator is used	-	VCC	-	V
		When switching regulator is not used	-	0	-	V
VBATT power supply voltage	VBATT		2.0		3.6	V
Analog power supply voltages	AVCC0		-	VCC	-	V
	AVSS0		-	0	-	V

2.2 **DC** Characteristics

2.2.1 Tj/Ta Definition

Item	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	-	125	°C	High-speed mode Low-speed mode Subosc-speed mode

Note: Make sure that Tj = T_a + θ ja × total power consumption (W), where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC} max \times VCC.$

$I/O V_{IH}, V_{IL}$ 2.2.2

I/O V_{IH}, V_{IL} (1/2) Table 2.4

Item			Symbol	Min	Тур	Max	Unit
Input voltage	Peripheral	EXTAL(external clock	V_{IH}	VCC × 0.8	-	VCC + 0.3	V
(except for Schmitt trigger input pins)	function pin	input), WAIT, SPI	V _{IL}	-0.3	-	VCC × 0.2	
ingger input pins)		D00 to D15,	V _{IH}	VCC × 0.7	-	VCC + 0.3	
		DQ00 to DQ15	V _{IL}	-0.3	-	VCC × 0.3	
		ETHERC	V _{IH}	2.3	-	VCC + 0.3	
			V _{IL}	-0.3	-	VCC × 0.2	
		IIC (SMBus)*1	V _{IH}	2.1	-	VCC + 0.3	
			V _{IL}	-0.3	-	0.8	
		IIC (SMBus)*2	V _{IH}	2.1	-	5.8	
			V _{IL}	-0.3	-	0.8	

Table 2.4 I/O V_{IH}, V_{IL} (2/2)

Item			Symbol	Min	Тур	Max	Unit
Schmitt trigger	Peripheral	IIC (except for	V _{IH}	VCC × 0.7	-	VCC + 0.3	V
input voltage	function pin	SMBus)*1	V _{IL}	-0.3	-	VCC × 0.3	
			ΔV_{T}	VCC × 0.05	-	-	
		IIC (except for	V _{IH}	VCC × 0.7	-	5.8	
		SMBus)*2	V _{IL}	-0.3	-	VCC × 0.3	
			ΔV_{T}	VCC × 0.05	-	-	
		5V-tolerant ports*3	V _{IH}	VCC × 0.8	-	5.8	
		V _{IL}	-0.3	-	VCC × 0.2		
		ΔV_T	VCC × 0.05	-	-		
		RTCIC0, RTCIC1,	V _{IH}	V _{BATT} × 0.8	-	V _{BATT} + 0.3	
		RTCIC2 (When V _{BATT} power	V _{IL}	-0.3	-	V _{BATT} × 0.2	
		supply is selected)	ΔV_{T}	V _{BATT} × 0.05	-	-	
		Other input pins*4	V _{IH}	VCC × 0.8	-	VCC + 0.3	
			V _{IL}	-0.3	-	VCC × 0.2	
			ΔV_{T}	VCC × 0.05	-	-	
	Ports	5V-tolerant ports*5	V _{IH}	VCC × 0.8	-	5.8	
		V _{IL}	-0.3	-	VCC × 0.2		
		Other input pins*6	V _{IH}	VCC × 0.8	-	VCC + 0.3	
			V _{IL}	-0.3	-	VCC × 0.2	

- Note 1. SCL0_B, SCL1_B, SDA1_B (total 3 pins).
- Note 2. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 7 pins).
- Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01 (total 23 pins).
- Note 4. All input pins except for the peripheral function pins already described in the table.
- Note 5. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01 (total 22pins).
- Note 6. All input pins except for the ports already described in the table.

2.2.3 I/O I_{OH}, I_{OL}

Table 2.5 I/O I_{OH}, I_{OL}

ltem			Symbol	Min	Тур	Max	Unit
Permissible output current average value per pin)	Ports P008 to P011, P201,P212	-	loн	-		-2.0	mA
average value per pin)			I _{OL}	-	-	2.0	mA
	Ports P014, P015, P213, P400,	-	I _{OH}	-	-	-4.0	mA
	P401, P511, P512		I _{OL}	-	-	4.0	mA
	Ports P402 to P404	Low drive*1	I _{OH}	-	-	-2.0	mA
			I _{OL}	-	-	2.0	mA
		Middle drive*2	I _{OH}	-	-	-4.0	mA
			l _{OL}	-	-	4.0	mA
	Ports P205, P206, P407 to P415,	Low drive*1	loh	-	-	-2.0	mA
	P602, P708 to P713, P813, PA12 to PA15, PB01 (total 24 pins)		I _{OL}	-	-	2.0	mA
		Middle drive*2	Гон	-	-	-4.0	mA
			l _{OL}	-	-	4.0	mA
		High drive*3	ГОН	-	-	-20	mA
			l _{OL}	-	-	20	mA
	Other output pins*4	Low drive*1	loн	-	-	-2.0	mA
			l _{OL}	-	-	2.0	mA
		Middle drive*2	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		High drive*3	I _{OH}	-	-	-16	mA
			I _{OL}	-	-	16	mA
Permissible output current	Ports P008 to P011, P201,P212	-	I _{OH}	-	-	-4.0	mA
max value per pin)			I _{OL}	-	-	4.0	mA
	Ports P014, P015, P213, P400,	-	I _{OH}	-	-	-8.0	mA
	P401, P511, P512		I _{OL}	-	-	8.0	mA
	Ports P402 to P404	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
	Ports P205, P206, P407 to P415,	Low drive*1	l _{OH}	-	-	-4.0	mA
	P602, P708 to P713, P813, PA12 to PA15, PB01		I _{OL}	-	-	4.0	mA
	(total 24 pins)	Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
		High drive*3	loh	-	-	-40	mA
			I _{OL}	-	-	40	mA
	Other output pins*4	Low drive*1	loh	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
		High drive*3	I _{OH}	-	-	-32	mA
			I _{OL}	-	-	32	mA
Permissible output current	Maximum of all output pins	l .	ΣI _{OH (max)}	-	-	-80	mA
max value total pins)			ΣI _{OL} (max)	-	-	80	mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

Note 1. This is the value when low driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

- Note 2. This is the value when middle driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.
- Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. When the following ports are configured for high driving ability, they shift to middle driving ability during Deep Software Standby mode: P203 to P207, P407 to P415, P602, P708 to P713, P813, PA12 to PA15, PB01.
- Note 4. Except for P000 to P007, P200, which are input ports.

2.2.4 I/O V_{OH}, V_{OI} , and Other Characteristics

Table 2.6 I/O V_{OH}, V_{OL}, and other characteristics

Item		Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC*1	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
		V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	IIC*2	V _{OL}	-	-	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		V _{OL}	-	0.4	-		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	ETHERC	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.4		I _{OL} = 1.0 mA
	Ports P205, P206, P407 to P415, P602, P708 to P713, P813, PA12 to	V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
	PA15, PB01 (total 24 pins)*3	V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Other output pins	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
Input leakage current	RES	I _{in}	-	-	5.0	μА	V _{in} = 0 V V _{in} = 5.5 V
	Ports P000 to P007, P200		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5V-tolerant ports	I _{TSI}	-	-	5.0	μΑ	V _{in} = 0 V V _{in} = 5.5 V
	Other ports (except for ports P000 to P007, P200)		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up MOS current	Ports P0 to PB (except for ports P000 to P007)	I _p	-300	-	-10	μА	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, and ports P003, P007, P014, P015,P400, P415, P401, P511, P512	C _{in}	-	-	16	pF	Vbias = 0V Vamp = 20mV f = 1 MHz
	Other input pins		-	-	8		T _a = 25°C

- Note 1. SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 8 pins).
- Note 2. SCL0_A, SDA0_A (total 2 pins).
- Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. Even when high driving ability is selected, I_{OH} and I_{OL} shift to middle driving ability during Deep Software Standby mode.

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1/2)

						LDO	mode		DCDC	mode				
Item					Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test conditions	
Supply		Maximum*2			I _{CC}	-	-	330	-	-	140	mA	ICLK = 240 MHz	
current*1		CoreMark®*4				-	45	-	-	24	-		PCLKA = 120 MHz*6 PCLKB = 60 MHz	
		Normal mode* ³	enab	eripheral clocks led, code executing flash		-	75	-	-	38	-		PCLKC = 60 MHz PCLKD = 120 MHz FCLK = 60 MHz BCLK = 120 MHz	
	mode			eripheral clocks bled, code executing flash		-	32	-	-	18	-		BOLK - 120 WITZ	
	ed r	Sleep mode*4				-	25	150	-	15	75			
	High-speed	Increase	Data	flash P/E		-	7	-	-	7	-			
	High	during BGO operation	Code	e flash P/E		-	10	-	-	10	-			
	Lo	w-speed mode'	* 4			-	4.4	-	-	3	-		ICLK = 1 MHz	
	Su	bosc-speed mo	de*4			-	3	-	-	2	-		ICLK = 32.768 kHz	
	Software Standby mode				-	2.4	110	-	1.2	55		-		
		Power supplied to Standby SRAM and USB				-	37	255	-	37	255	μΑ	VBAT ≠ VCC*7	
		resume detect	ting un	it		-	37	285	-	37	285		VBAT = VCC	
		Power not		er-on reset circuit low-		-	25	50	-	25	50		VBAT ≠ VCC*7	
		supplied to SRAM or	powe	er function disabled		-	25	80	-	25	80		VBAT = VCC	
	mode	USB resume detecting		er-on reset circuit low-		-	16	35	-	16	35		VBAT ≠ VCC*7	
	y m	unit	powe	er function enabled		-	16	65	-	16	65		VBAT = VCC	
Deen Software Standby	Stand	Increase when the		n the low-speed on-chip ator (LOCO) is in use		-	9	-	-	9	-		-	
	ftware	RTC and AGT are operating		n a crystal oscillator for lock loads is in use		-	1.0	-	-	1.0	-		-	
	Deep So	Deep S		n a crystal oscillator for dard clock loads is in		-	3.0	-	-	3.0	-		-	
	VC	C operating wh		When a crystal oscillator for low clock		-	0.9	-	-	0.9	-		V _{BATT} = 2.0 V, VCC = 0 V	
	fur an	ttery backup action, only the d sub-clock		loads is in use		-	1.6	-	-	1.6	-		V _{BATT} = 3.3 V, VCC = 0 V	
	os	cillator operate)		When a crystal oscillator for standard clock loads is in use		-	1.7	-	-	1.7	-		V _{BATT} = 2.0 V, VCC = 0 V	
				CIOCK IOAUS IS III USE		-	3.3	-	-	3.3	-		V _{BATT} = 3.3 V, VCC = 0 V	
Analog power		ıring 12-bit A/D			Alcc	-	8.0	1.1	-	0.8	1.1	mA	-	
supply	Du	ıring 12-bit A/D	conve	rsion with S/H amp		-	2.3	3.3	-	2.3	3.3	mA	-	
current	PC	GA (1ch)				-	1	3	-	1	3	mA	-	
	AC	CMPHS (1unit)					100	150		100	150	μΑ	AVCC ≥ 2.7 V	
	Те	mperature sens	or			-	0.1	0.2	-	0.1	0.2	mA	-	
		iring D/A conve er unit)	rsion	Without AMP output		-	0.1	0.2	-	0.1	0.2	mA	-	
				With AMP output		-	0.5	0.8	-	0.5	0.8	mA	-	
				version (all units)		-	0.9	1.6	-	0.9	1.6	mA	-	
				by modes (all units)		-	2	6	-	2	6	μΑ	-	
Reference power		ıring 12-bit A/D		,	AI _{REFH0}	-	70	120	-	70	120	μΑ	-	
supply				nversion (unit 0)		-	0.07	0.4	-	0.07	0.4	μΑ	-	
current (VREFH0)	AE	OC12 in standby	/ mode	s (unit 0)		-	0.07	0.2	-	0.07	0.2	μA	-	

Table 2.7 Operating and standby current (2/2)

				LDO	mode		DCDC	mode			
Item			Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test conditions
Reference	During 12-bit A/D conve	rsion (unit 1)	Al _{REFH}	-	70	120	-	70	120	μΑ	-
power supply	During D/A conversion	Without AMP output		-	0.24	0.4	-	0.24	0.4	mA	-
current (VREFH)	(per unit)	With AMP ouput		-	0.1	0.2	-	0.1	0.2	mA	-
(**************************************	Waiting for 12-bit A/D (u conversion	nit 1), D/A (all units)		-	0.07	0.4	-	0.07	0.4	μA	-
	ADC12 unit 1 in standby modes			-	0.07	0.2	-	0.07	0.2	μΑ	-
USB	Low speed	USB	ICCUSBLS	-	3.5	6.5	-	3.5	6.5	mA	VCC_USB
operating current		USBHS		-	10.5	13.5	-	10.5	13.5	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 0)
		USBHS		-	2.8	3.6	-	2.8	3.6	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 1)
	Full speed	USB	ICCUSBFS	-	4.0	10.0	-	4.0	10.0	mA	VCC_USB
		USBHS		-	14	22	-	14	22	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 0)
		USBHS		-	6.5	13.0	-	6.5	13.0	mA	VCC_USBHS = AVCC_USBHS (PHYSET.HSEB = 1)
	High speed	USBHS	Iccusens	-	50	65	-	50	65	mA	VCC_USBHS = AVCC_USBHS
	Standby mode (direct power down)	USBHS	ICCUSBSBY	-	0.5	3.0	-	0.5	3.0	μA	VCC_USBHS = AVCC_USBHS

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.
- Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
- Note 3. This does not include the BGO operation.
- Note 4. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
- Note 5. When V_{BATT} is used.
- Note 6. When using ETHERC, PCLKA frequency is: 12.5MHz ≤ PCLKA ≤ 120MHz
- Note 7. When VCC is < VDETBATT and > (VBATT + 0.6 V), the injected current connects from the VCC to the VBATT pin through an internal diode.

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.8 Rise and fall gradient characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
VCC rising gradient	SrVCC	0.0084	-	20	ms/V	-
VCC falling gradient*1	SfVCC	0.0084	-	-	ms/V	-

Note 1. This applies when VBATT is used.

Table 2.9 Rise and fall gradient and ripple frequency characteristics

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.2 $V_{r (VCC)} \le VCC \times 0.2$
		-	-	1	MHz	Figure 2.2 $V_{r (VCC)} \le VCC \times 0.08$
		-	-	10	MHz	Figure 2.2 $V_{r (VCC)} \le VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Figure 2.2 Ripple waveform

2.3 AC Characteristics

2.3.1 Frequency

Table 2.10 Operation frequency value in high-speed mode

Item	item			Min	Тур	Max	Unit
Operation frequency	System clock (ICLK*2)	System clock (ICLK*2)			-	240	MHz
	Peripheral module clock (PCLKA)*2 Peripheral module clock (PCLKB)*2 Peripheral module clock (PCLKC)*2 Peripheral module clock (PCLKD)*2 Flash interface clock (FCLK)*2 External bus clock (BCLK)*2 EBCLK pin output			-	-	120	1
				-	-	60	
				_*3	-	60	
				-	-	120	
				_*1	-	60	
				-		120	
			1	-	-	60	
	SDCLK pin output	VCC ≥ 3.0 V	1	-	-	120	

- Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
- Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.
- Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.

Table 2.11 Operation frequency value in low-speed mode

Item		Symbol	Min	Тур	Max	Unit
Operation frequency	System clock (ICLK)*2	f	-	-	1	MHz
	Peripheral module clock (PCLKA)*2		-	-	1	
	Peripheral module clock (PCLKB)*2		-	-	1	
	Peripheral module clock (PCLKC)*2,*3		_*3	-	1	
	Peripheral module clock (PCLKD)*2		-	-	1	
	Flash interface clock (FCLK)*1, *2		-	-	1	
	External bus clock (BCLK)		-	-	1	
	EBCLK pin output		-	-	1	

- Note 1. Programming or erasing the flash memory is disabled in low-speed mode.
- Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.
- Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.

Table 2.12 Operation frequency value in Subosc-speed mode

Item		Symbol	Min	Тур	Max	Unit
Operation frequency	System clock (ICLK)*2	f	29.4	-	36.1	kHz
	Peripheral module clock (PCLKA)*2		-	-	36.1	
	Peripheral module clock (PCLKB)*2		-	-	36.1	
	Peripheral module clock (PCLKC)*2,*3		-	-	36.1	
	Peripheral module clock (PCLKD)*2		-	-	36.1	
	Flash interface clock (FCLK)*1, *2		29.4	-	36.1	
	External bus clock (BCLK)*2		-	-	36.1	
	EBCLK pin output		-	-	36.1	

- Note 1. Programming or erasing the flash memory is disable in Subosc-speed mode.
- Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.
- Note 3. The ADC12 cannot be used.

2.3.2 Clock Timing

Table 2.13 Clock timing except for sub-clock oscillator (1/2)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
EBCLK pin output cycle time	t _{Bcyc}	16.6	-	-	ns	Figure 2.3
EBCLK pin output high pulse width	t _{CH}	3.3	-	-	ns	
EBCLK pin output low pulse width	t _{CL}	3.3	-	-	ns	
EBCLK pin output rise time	t _{Cr}	-	-	5.0	ns	
EBCLK pin output fall time	t _{Cf}	-	-	5.0	ns	
SDCLK pin output cycle time	t _{SDcyc}	8.33	-	-	ns	
SDCLK pin output high pulse width	t _{CH}	1.0	-	-	ns	
SDCLK pin output low pulse width	t _{CL}	1.0	-	-	ns	7
SDCLK pin output rise time	t _{Cr}	-	-	3.0	ns	
SDCLK pin output fall time	t _{Cf}	-	-	3.0	ns	
EXTAL external clock input cycle time	t _{EXcyc}	41.66	-	-	ns	Figure 2.4
EXTAL external clock input high pulse width	t _{EXH}	15.83	-	-	ns	
EXTAL external clock input low pulse width	t _{EXL}	15.83	-	-	ns	
EXTAL external clock rise time	t _{EXr}	-	-	5.0	ns	
EXTAL external clock fall time	t _{EXf}	-	-	5.0	ns	
Main clock oscillator frequency	f _{MAIN}	8	-	24	MHz	-
Main clock oscillation stabilization wait time (crystal) *1	t _{MAINOSCWT}	-	-	_*1	ms	Figure 2.5
LOCO clock oscillation frequency	f _{LOCO}	29.4912	32.768	36.0448	kHz	-
LOCO clock oscillation stabilization wait time	t _{LOCOWT}	-	-	60.4	μs	Figure 2.6
ILOCO clock oscillation frequency	f _{ILOCO}	13.5	15	16.5	kHz	-
MOCO clock oscillation frequency	F _{MOCO}	7.2	8	8.8	MHz	-
MOCO clock oscillation stabilization wait time	t _{MOCOWT}	-	-	15.0	μs	-

Table 2.13	Clock timing except for sub-clock oscillator (2	2/2)	

Item		Symbol	Min	Тур	Max	Unit	Test conditions		
HOCO clock oscillator	Without FLL	f _{HOCO16}	15.61	16	16.39	MHz	–20 ≤ Ta ≤ 105°C		
oscillation frequency		f _{HOCO18}	17.56	18	18.44				
		f _{HOCO20}	19.52	20	20.48				
		f _{HOCO16}	15.52	16	16.48		-40 ≤ Ta ≤ -20°C		
		f _{HOCO18}	17.46	18	18.54				
		f _{HOCO20}	19.40	20	20.60				
	With FLL	f _{HOCO16}	15.91	16	16.09		SOSC frequency is		
		f _{HOCO18}	17.90	18	18.10		32.768kHz ± 50ppm		
		f _{HOCO20}	19.89	20	20.11				
HOCO clock oscillation stab	lization wait time *2	t _{HOCOWT}	-	-	64.7	μs	-		
FLL stabilization wait time		t _{FLLWT}	-	-	3	ms	-		
PLL clock frequency		f _{PLL}	120	-	240	MHz	-		
PLL clock oscillation stabilization wait time		t _{PLLWT}	-	-	174.9	μs	Figure 2.7		

- Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value.
 - After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator.
- Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed operation.

Table 2.14 Clock timing for the sub-clock oscillator

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock frequency	f _{SUB}	-	32.768	-	kHz	-
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	-	-	_*1	S	-

Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time.

After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. Two times the value shown is recommended.

Figure 2.3 EBCLK and SDCLK output timing

Figure 2.4 EXTAL external clock input timing

Figure 2.5 Main clock oscillation start timing

Figure 2.6 LOCO clock oscillation start timing

Figure 2.7 PLL clock oscillation start timing

Note: Only operate the PLL is operated after main clock oscillation has stabilized.

2.3.3 Reset Timing

Table 2.15 Reset timing

Item			Symbol	Min	Тур	Max	Unit	Test conditions
RES pulse width	Power-on LDO mode		t _{RESWP}	1	-	-	ms	Figure 2.8
		DCDC mode		1.5	-	-	ms	1
	Deep Softwa	Deep Software Standby mode		0.6	-	-	ms	Figure 2.9
	Software Sta	Software Standby mode, Subosc-speed node		0.3	-	-	ms	
	All other		t _{RESW}	200	-	-	μs	
Wait time after RE	S cancellation		t _{RESWT}	-	-	33.4	μs	Figure 2.8
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset)			t _{RESW2}	-	-	390	μs	-

Figure 2.8 Power-on reset timing

Figure 2.9 Reset input timing

2.3.4 Wakeup Timing and Duration

Table 2.16 Timing of recovery from low-power modes and duration

Item			Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software	Crystal resonator	System clock source is main clock oscillator*2	t _{SBYMC}	-	-	2.8	ms	Figure 2.10 The division
Standby mode*1	to main clock oscillator	System clock source is PLL with main clock oscillator*3	t _{SBYPC}	-	-	3.2	ms	ratio of all oscillators is 1.
	External clock input	System clock source is main clock oscillator*4	t _{SBYEX}	-	-	280	μs	
	to main clock oscillator	System clock source is PLL with main clock oscillator*5	t _{SBYPE}	-	-	700	μs	
	System clock oscillator*8	t _{SBYSC}	-	-	1.3	ms		
	System clock	t _{SBYLO}	-	-	1.4	ms		
	System clock oscillator*6	t _{SBYHO}	-	-	300	μs		
	System clock oscillator*7	t _{SBYMO}	-	-	300	μs		
Recovery time from	n Deep Softwa	re Standby mode	t _{DSBY}	-	-	1.0	ms	Figure 2.11
Wait time after car	ncellation of De	ep Software Standby mode	t _{DSBYWT}	31	-	32	t _{cyc}	
Recovery time from Software	0 1	mode when system clock CO (20 MHz)	t _{SNZ}	-	-	68	μs	-
Standby mode to Snooze	High-speed mode when system clock source is MOCO (8 MHz)		t _{SNZ}	-	-	14* ⁹	μs	
Normal mode	System clock	source is main clock oscillator	t _{NML}	_*11	-	-	t _{cycmosc}	Figure 2.10
duration* ¹⁰	System clock oscillator	source is PLL with main clock						

- Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation:
 - Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3 SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).
- Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
 - $t_{SBYMC} \ (MOSCWTCR = Xh) = t_{SBYMC} \ (MOSCWTCR = 05h) + (t_{MAINOSCWT} \ (MOSCWTCR = Xh) t_{MAINOSCWT} \ (MOSCWTCR = 05h))$
- Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
 - $t_{SBYMC} \ (MOSCWTCR = Xh) = t_{SBYMC} \ (MOSCWTCR = 05h) + (t_{MAINOSCWT} \ (MOSCWTCR = Xh) t_{MAINOSCWT} \ (MOSCWTCR = 05h))$
- Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
 - t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + ($t_{MAINOSCWT}$ (MOSCWTCR = Xh) $t_{MAINOSCWT}$ (MOSCWTCR = 00h))
- Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following

equation:

 t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + ($t_{MAINOSCWT}$ (MOSCWTCR = Xh) - $t_{MAINOSCWT}$ (MOSCWTCR = 00h))

- Note 6. The HOCO frequency is 20 MHz.
- Note 7. The MOCO frequency is 8 MHz.
- Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
- Note 9. When the SNZCR.RXDREQEN bit is set to 0, 86 µs is added as the power supply recovery time.
- Note 10. This defines the duration of Normal mode after a transition from Snooze to Normal mode.

The following cases are valid uses of the main clock oscillator:

- The crystal resonator is connected to main clock oscillator
- The external clock is input to main clock oscillator.

The following cases are excluded:

- The main clock resonator is not connected to the system clock source
- Transition is made from Software Standby to Normal mode.
- Note 11. The same value as set in MOSCWTCR.MSTS[3:0]. Duration of Normal mode must be longer than the main clock oscillator wait time.

MOSCWTCR: Main Clock Oscillator Wait Control Register

 t_{cvcmosc} : Main clock oscillator frequency cycle.

Figure 2.10 Software Standby mode cancellation timing and duration

Figure 2.11 Deep Software Standby mode cancellation timing

2.3.5 NMI and IRQ Noise Filter

Table 2.17 NMI and IRQ noise filter

Item	Symbol	Min	Тур	Max	Unit	Test conditions	
NMI pulse width	t _{NMIW}	200	-	-	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns
		200	-	-		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns
		t _{NMICK} × 3.5*2	-	-			t _{NMICK} × 3 > 200 ns
IRQ pulse width	t _{IRQW}	200	-	-	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	-	-			t _{Pcyc} × 2 > 200 ns
		200	-	-		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns
		t _{IRQCK} × 3.5*3	-	-			t _{IRQCK} × 3 > 200 ns

Note: 200 ns minimum in Software Standby mode.

- Note 1. t_{Pcyc} indicates the PCLKB cycle.
- Note 2. $t_{\mbox{NMICK}}$ indicates the cycle of the NMI digital filter sampling clock.
- Note 3. $t_{\mbox{\footnotesize IRQCK}}$ indicates the cycle of the IRQi digital filter sampling clock.

Figure 2.12 NMI interrupt input timing

Figure 2.13 IRQ interrupt input timing

2.3.6 **Bus Timing**

Table 2.18 Bus timing Condition 1: When using the CS area controller (CSC).

BCLK = 8 to 60 MHz

VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V

Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF

EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register.

Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 2: When using the SDRAM area controller (SDRAMC).

BCLK = SDCLK = 8 to 120 MHz

VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,

VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V

Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF

High drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.

BCLK = SDCLK = 8 to 60 MHz

VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,

VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V

Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF

High drive output is selected in the port drive capability bit in the PmnPFS register.

Item	Symbol	Min	Max	Unit	Test conditions
Address delay	t _{AD}	-	12.5	ns	Figure 2.14 to
Byte control delay	t _{BCD}	-	12.5	ns	Figure 2.17
CS delay	t _{CSD}	-	12.5	ns	
RD delay	t _{RSD}	-	12.5	ns	
Read data setup time	t _{RDS}	12.5	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR/WRn delay	t _{WRD}	-	12.5	ns	
Write data delay	t _{WDD}	-	12.5	ns	
Write data hold time	t _{WDH}	0	-	ns	
WAIT setup time	t _{WTS}	12.5	-	ns	Figure 2.18
WAIT hold time	t _{WTH}	0	-	ns	
Address delay 2 (SDRAM)	t _{AD2}	0.8	6.8	ns	Figure 2.19 to
CS delay 2 (SDRAM)	t _{CSD2}	0.8	6.8	ns	Figure 2.25
DQM delay (SDRAM)	t _{DQMD}	0.8	6.8	ns	
CKE delay (SDRAM)	t _{CKED}	0.8	6.8	ns	
Read data setup time 2 (SDRAM)	t _{RDS2}	2.9	-	ns	
Read data hold time 2 (SDRAM)	t _{RDH2}	1.5	-	ns	
Write data delay 2 (SDRAM)	t _{WDD2}	-	6.8	ns	
Write data hold time 2 (SDRAM)	t _{WDH2}	0.8	-	ns	
WE delay (SDRAM)	t _{WED}	0.8	6.8	ns	
RAS delay (SDRAM)	t _{RASD}	0.8	6.8	ns	
CAS delay (SDRAM)	t _{CASD}	0.8	6.8	ns	

Figure 2.14 External bus timing for normal read cycle with bus clock synchronized

Figure 2.15 External bus timing for normal write cycle with bus clock synchronized

Figure 2.16 External bus timing for page read cycle with bus clock synchronized

Figure 2.17 External bus timing for page write cycle with bus clock synchronized

Figure 2.18 External bus timing for external wait control

Figure 2.19 SDRAM single read timing

Figure 2.20 SDRAM single write timing

Figure 2.21 SDRAM multiple read timing

Figure 2.22 SDRAM multiple write timing

Figure 2.23 SDRAM multiple read line stride timing

Figure 2.24 SDRAM mode register set timing

Figure 2.25 SDRAM self-refresh timing

2.3.7 I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1/2) GPT32 Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: GTIOC6A_A, GTIOC6B_A, GTIOC3A_B, GTIOC3B_B, GTIOC0A_B, GTIOC0B_B, GTIOC9A_B, GTIOC9B_B. High drive output is selected in the port drive capability bit in the PmnPFS register for all other pins.

AGT Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit	Test conditions
I/O ports	Input data pulse width	t _{PRW}	1.5	-	t _{Pcyc}	Figure 2.26
POEG	POEG input trigger pulse width	t _{POEW}	3	-	t _{Pcyc}	Figure 2.27

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2/2) GPT32 Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: GTIOC6A_A, GTIOC6B_A, GTIOC3A_B, GTIOC3A_B, GTIOC0A_B, GTIOC0B_B, GTIOC9A_B, GTIOC9B_B.

High drive output is selected in the port drive capability bit in the PmnPFS register for all other pins.

AGT Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item			Symbol	Min	Max	Unit	Test conditions
GPT32	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.28
		Dual edge		2.5	-		
	GTIOCxY_Z output skew	Middle drive buffer	t _{GTISK} *2	-	4	ns	Figure 2.29
	(x = 0 to 7, Y = A or B, Z = A or B)	High drive buffer		-	4		
	GTIOCxY_Z output skew	Middle drive buffer		-	4		
	(x = 8 to 13, Y = A or B, Z = A or B)	High drive buffer		-	4		
	GTIOCxY_Z output skew (x = 0 to 13, Y = A or B, Z = A or B)	Middle drive buffer		-	6]	
		High drive buffer		-	6		
	OPS output skew GTOUUP_x, GTOULO_x, GTOVUP GTOVLO_x, GTOWUP_x, GTOWLO (x = A or B)	GTOULO_x, GTOVUP_x,		-	5	ns	Figure 2.30
GPT(PWM Delay Generation Circuit)	GTIOCxY_Z output skew (x = 0 to 3, Y = A or B, Z = A)		t _{HRSK} *3	-	2.0	ns	Figure 2.31
AGT	AGTIO, AGTEE input cycle		t _{ACYC} *1	100	-	ns	Figure 2.32
	AGTIO, AGTEE input high width, lo	w width	t _{ACKWH} , t _{ACKWL}	40	-	ns	
	AGTIO, AGTO, AGTOA, AGTOB ou	utput cycle	t _{ACYC2}	62.5	-	ns	
ADC12	ADC12 trigger input pulse width		t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.33
KINT	Key interrupt input low width		t _{KR}	250	-	ns	Figure 2.34

- Note 1. t_{Pcyc} : PCLKB cycle, t_{PDcyc} : PCLKD cycle.
- Note 2. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.
- Note 3. The load is 30 pF.
- Note 4. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC} .

Figure 2.26 I/O ports input timing

Figure 2.27 POEG input trigger timing

Figure 2.28 GPT32 input capture timing

S7G2

Figure 2.29 GPT32 output delay skew

Figure 2.30 GPT32 output delay skew for OPS

Figure 2.31 GPT32 (PWM Delay Generation Circuit) output delay skew

Figure 2.32 AGT input/output timing

Figure 2.33 ADC12 trigger input timing

Figure 2.34 Key interrupt input timing

2.3.8 PWM Delay Generation Circuit Timing

Table 2.20 PWM Delay Generation Circuit timing

Item	Min	Тур	Max	Unit	Test conditions
Resolution	-	260	-	ps	PCLKD = 120 MHz
DNL*1	-	±2.0	-	LSB	-

Note 1. This value normalizes the differences between lines in 1-LSB resolution.

2.3.9 CAC Timing

Table 2.21 CAC timing

Item			Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ tcac*2	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	-	-	ns	-
		t _{PBcyc} > tcac*2		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	ı	1	ns	

Note 1. t_{PBcyc} : PCLKB cycle.

Note 2. t_{cac} : CAC count clock source cycle.

2.3.10 **SCI Timing**

Table 2.22 SCI timing (1)
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9 (except for SCK4_B, SCK7_A), SCK4_B, SCK7_A.

For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item	ltem			Min	Max	Unit*1	Test conditions
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.35
		Clock synchronous		6	-		
	Input clock pulse width	•	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time		t _{SCKr}	-	5	ns	
	Input clock fall time		t _{SCKf}	-	5	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	6	-	t _{Pcyc}	
		Clock synchronous		4	-		
	Output clock pulse width	•	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time		t _{SCKr}	-	5	ns	
	Output clock fall time		t _{SCKf}	-	5	ns	
	Transmit data delay	Clock synchronous	t _{TXD}	-	25	ns	Figure 2.36
	Receive data setup time	Clock synchronous	t _{RXS}	15	-	ns	
	Receive data hold time	Clock synchronous	t _{RXH}	5	-	ns	

Note 1. t_{Pcyc} : PCLKA cycle.

Figure 2.35 SCK clock input/output timing

Figure 2.36 SCI input/output timing in clock synchronous mode

Table 2.23 SCI timing (2)
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9 (except for SCK4_B, SCK7_A).

For the SCK4_B and SCK7_A pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

For the MISO1_A pins, low drive output is selected in the port drive capability bit in the PmnPFS register.

For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit	Test conditions
Simple SPI	SCK clock cycle output (master)	t _{SPcyc}	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	65536	t _{Pcyc}	Figure 2.37
	SCK clock cycle input (slave)	-	6 (PCLKA ≤ 60 MHz) 12 (PCLKA > 60 MHz)	65536		
	SCK clock high pulse width	t _{SPCKWH}	0.4	0.6	t _{SPcyc}]
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise and fall time	t _{SPCKr} , t _{SPCKf}	-	20	ns	
	Data input setup time	t _{SU}	33.3	-	ns	Figure 2.38 to
	Data input hold time	t _H	33.3	-	ns	Figure 2.41
	SS input setup time	t _{LEAD}	1	-	t _{SPcyc}]
	SS input hold time	t _{LAG}	1	-	t _{SPcyc}]
	Data output delay	t _{OD}	-	33.3	ns]
	Data output hold time	t _{OH}	-10	-	ns]
	Data rise and fall time	t _{Dr} , t _{Df}	-	16.6	ns]
	SS input rise and fall time	t _{SSLr} , t _{SSLf}	-	16.6	ns]
	Slave access time	t _{SA}	-	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	t _{Pcyc}	Figure 2.41
	Slave output release time	t _{REL}	-	5 (PCLKA ≤ 60 MHz) 10 (PCLKA > 60 MHz)	t _{Pcyc}	

MISO1_A is not supported in these specifications. Note:

Figure 2.37 SCI simple SPI mode clock timing

Figure 2.38 SCI simple SPI mode timing for master when CKPH = 1

Figure 2.39 SCI simple SPI mode timing for master when CKPH = 0

Figure 2.40 SCI simple SPI mode timing for slave when CKPH = 1

Figure 2.41 SCI simple SPI mode timing for slave when CKPH = 0

Table 2.24 SCI timing (3) (1/2)Conditions: For the SCL1_A pins, low drive output is selected in the port drive capability bit in the PmnPFS register.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

•	·			•		
Item		Symbol	Min	Max	Unit	Test conditions
Simple IIC (Standard mode)	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.42
	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns]
	Data input setup time	t _{SDAS}	250	-	ns]
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF]

Table 2.24 SCI timing (3) (2/2)
Conditions: For the SCL1_A pins, low drive output is selected in the port drive capability bit in the PmnPFS register. For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit	Test conditions
Simple IIC (Fast mode)	SCL, SDA input rise time	t _{Sr}	-	300	ns	ns Figure 2.42 ns ns
	SCL, SDA input fall time	t _{Sf}	-		ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0		ns	
	Data input setup time	t _{SDAS}	100	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns]
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF	

SCL1_A output is not supported in these specifications.

 $t_{\text{IICcyc}}\!\!:$ IIC internal reference clock (IIC ϕ) cycle, $t_{\text{Pcyc}}\!\!:$ PCLKA cycle.

Note 1. Cb indicates the total capacity of the bus line.

Figure 2.42 SCI simple IIC mode timing

2.3.11 SPI Timing

Table 2.25 SPI timing

Conditions:

(1) Middle drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.

Item			Symbol	Min	Max	Unit*1	Test conditions
SPI	RSPCK clock cycle	Master	t _{SPcyc}	2 (PCLKA ≤ 60 MHz) 4 (PCLKA > 60 MHz)	4096	t _{Pcyc}	Figure 2.43 C = 30 pF
		Slave		6	4096		
	RSPCK clock high pulse width	Master	t _{SPCKWH}	(t _{SPcyc} - t _{SPCKR} - t _{SPCKF}) / 2 - 3	-	ns	
		Slave		3 × t _{Pcyc}	-		
	RSPCK clock low pulse width	Master	t _{SPCKWL}	(t _{SPcyc} - t _{SPCKR} - t _{SPCKF}) / 2 - 3	-	ns	
		Slave		3 × t _{Pcyc}	-		
	RSPCK clock rise and	Master t _{SPCKr} ,	-	5	ns	1	
	fall time	Slave	t _{SPCKf}	-	1	μs	1
	Data input setup time	Master	t _{SU}	4	-	ns	Figure 2.44 to Figure 2.49 C = 30 pF
		Slave		5	-		
	Data input hold time	Master	t _{HF} ∗ ⁴	0	-	ns	-
		Master	t _H	t _{Pcyc}	-		
		Slave	t _H	20	-		-
	SSL setup time	Master	t _{LEAD}	N × t _{SPcyc} - 10*2	N × t _{SPcyc} + 100 *2	ns	-
		Slave		6 x t _{Pcyc}	-	ns	-
	SSL hold time	Master	t _{LAG}	N × t _{SPcyc} - 10 *3	N × t _{SPcyc} + 100 *3	ns	-
		Slave		6 x t _{Pcyc}	-	ns	-
	Data output delay	Master	t _{OD}	-	6.3	Figure 2.49	Figure 2.44 to
		Slave		-	20		Figure 2.49 C = 30 _P F
	Data output hold time	Master	t _{OH}	0	-	ns	. С ССР.
		Slave		0	-		
	Successive transmission delay	Master	t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
		Slave		6 × t _{Pcyc}			
	MOSI and MISO rise and fall time	Output	t _{Dr,} t _{Df}	-	5	ns	
		Input		-	1	μs	
	SSL rise and fall time	Output	t _{SSLr} ,	-	5	ns	
		Input	Input t _{SSLf}	-	1	μs	1
	Slave access time		t _{SA}	-	2 x t _{Pcyc} + 28	ns	Figure 2.48 and Figure 2.49
	Slave output release time		t _{REL}	-	2 x t _{Pcyc} + 28		C = 30 _P F

Note 1. t_{Pcyc}: PCLKA cycle.

Note 2. N is set to an integer from 1 to 8 by the SPCKD register.

Note 3. N is set to an integer from 1 to 8 by the SSLND register.

Note 4. PCLKA division ratio set to 1/2.

Figure 2.43 SPI clock timing

Figure 2.44 SPI timing for master when CPHA = 0

Figure 2.45 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

Figure 2.46 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

Figure 2.47 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

Figure 2.48 SPI timing for slave when CPHA = 0

Figure 2.49 SPI timing for slave when CPHA = 1

2.3.12 QSPI Timing

Table 2.26 QSPI timingConditions: High drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit*1	Test conditions
QSPI	QSPCK clock cycle	t _{QScyc}	2	48	t _{Pcyc}	Figure 2.50
	QSPCK clock high pulse width	t _{QSWH}	t _{QScyc} × 0.4	-	ns	7
	QSPCK clock low pulse width	t _{QSWL}	t _{QScyc} × 0.4	-	ns	7
	Data input setup time	t _{Su}	11	-	ns	Figure 2.51
	Data input hold time	t _{IH}	0	-	ns	7
	QSSL setup time	t _{LEAD}	(N+0.5) x t _{Qscyc} - 5 *2	(N+0.5) x t _{Qscyc} +100 *2	ns	
	QSSL hold time	t _{LAG}	(N+0.5) x t _{Qscyc} - 5 *3	(N+0.5) x t _{Qscyc} +100 *3	ns	
	Data output delay	t _{OD}	-	4	ns	
	Data output hold time	t _{OH}	-3.3	-	ns	7
	Successive transmission delay	t _{TD}	1	16	t _{QScyc}	

- Note 1. t_{Pcyc}: PCLKA cycle.
- Note 2. N is set to 0 or 1 in SFMSLD.
- Note 3. N is set to 0 or 1 in SFMSHD.

Figure 2.50 QSPI clock timing

Figure 2.51 Transmit and receive timing

IIC Timing 2.3.13

Table 2.27 IIC timing (1) (1/2) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.

The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.

Item		Symbol	Min* ¹ , * ²	Max	Unit	Test conditions	
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	-	ns	Figure 2.52	
(Standard mode, SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns		
ICFER.FMPE = 0	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns		
	SCL, SDA input rise time	t _{Sr}	-	1000	ns		
	SCL, SDA input fall time	t _{Sf}	-	300	ns		
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns		
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns		
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	-	ns		
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns		
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 300	-	ns		
	Repeated START condition input setup time	t _{STAS}	1000	-	ns		
	STOP condition input setup time	t _{STOS}	1000	-	ns		
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns		
	Data input hold time	t _{SDAH}	0	-	ns		
	SCL, SDA capacitive load	C _b	-	400	pF		

Table 2.27 IIC timing (1) (2/2) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.

The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.

Item		Symbol	Min*1, *2	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	-	ns	Figure 2.52
(Fast mode)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	20 × (external pullup voltage/5.5V)*2	300	ns	
	SCL, SDA input fall time	t _{Sf}	20 × (external pullup voltage/5.5V)*2	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	-	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1(5) × t _{IICcyc} + t _{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	300	-	ns	
	STOP condition input setup time	t _{STOS}	300	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns	1
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b	-	400	pF	

 $t_{\text{IICcyc}}\!\!:$ IIC internal reference clock (IIC $\!\phi\!\!)$ cycle, $t_{\text{Pcyc}}\!\!:$ PCLKB cycle. Note:

Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE

Note 2. Only supported for SCL0_A, SDA0_A, SCL2, and SDA2.

Table 2.28 IIC timing (2)
(1) Setting of the SCL0_A, SDA0_A pins is not required with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Item		Symbol	Min* ^{1,*2}	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 240	-	ns	Figure 2.52
(Fast-mode+) ICFER.FMPE = 1	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 120	-	ns	
IOI EIKII IVIII E	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 120	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	120	ns	
	SCL, SDA input fall time	t _{Sf}	-	120	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 120	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3(6) × t _{IICcyc} + 4 × t _{Pcyc} + 120	-	ns	
	Start condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 120	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1(5) × t _{IICcyc} + t _{Pcyc} + 120	-	ns	
	Restart condition input setup time	t _{STAS}	120	-	ns	
	Stop condition input setup time	t _{STOS}	120	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 30	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _b	-	550	pF	

 $t_{\text{IICcyc}}\!\!:$ IIC internal reference clock (IIC ϕ) cycle, $t_{\text{Pcyc}}\!\!:$ PCLKB cycle.

Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.

Note 2. Cb indicates the total capacity of the bus line.

Figure 2.52 I²C bus interface input/output timing

2.3.14 SSI Timing

Table 2.29 SSI timing
(1) Middle drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the SSI interface, the AC portion of the electrical characteristics is measured for each group.

Item		Symbol	Min	Max	Unit	Test conditions
SSI	AUDIO_CLK input frequency	t _{AUDIO}	-	50	MHz	-
	Output clock period	t _O	150	64000	ns	Figure 2.53
	Input clock period	t _l	150	64000	ns	
	Clock high pulse width	t _{HC}	60	-	ns	
	Clock low pulse width	t _{LC}	60	-	ns	
	Clock rise time	t _{RC}	-	25	ns	
	Data delay	t _{DTR}	-5	25	ns	Figure 2.54,
	Set-up time	t _{SR}	25	-	ns	Figure 2.55
	Hold time	t _{HTR}	25	-	ns	
	SSIDATA output delay from WS change time	T _{DTRW}	-	25	ns	Figure 2.56

Figure 2.53 SSI clock input/output timing

SSI data transmit and receive timing when SSICR.SCKP = 0 Figure 2.54

Figure 2.55 SSI data transmit and receive timing when SSICR.SCKP = 1

Figure 2.56 SSI data output delay after SSIWSn change

2.3.15 SD/MMC Host Interface Timing

Table 2.30 SD/MMC Host Interface signal timingConditions: High drive output is selected in the port drive capability bit in the PmnPFS register. Clock duty ratio is 50%.

Item	Symbol	Min	Max	Unit	Test conditions
SDCLK clock cycle	T _{SDCYC}	20	-	ns	Figure 2.57
SDCLK clock high pulse width	T _{SDWH}	6.5	-	ns	
SDCLK clock low pulse width	T _{SDWL}	6.5	-	ns	
SDCLK clock rise time	T _{SDLH}	-	3	ns	
SDCLK clock fall time	T _{SDHL}	-	3	ns	
SDCMD/SDDAT output data delay	T _{SDODLY}	-6	5	ns	
SDCMD/SDDAT input data setup	T _{SDIS}	4	-	ns	
SDCMD/SDDAT input data hold	T _{SDIH}	2	-	ns	

Figure 2.57 SD/MMC Host Interface signal timing

2.3.16 **ETHERC Timing**

 Table 2.31
 ETHERC timing

 Conditions: ETHERC (RMII): Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:

ET0_MDC, ET0_MDIO, ET1_MDC, and ET1_MDIO

For other pins, high drive output is selected in the port drive capability bit in the PmnPFS register.

ETHERC (MII): Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit	Test conditions
ETHERC	REF50CK cycle time	T _{ck}	20	-	ns	Figure 2.58 to
(RMII)	REF50CK frequency, typical 50 MHz	-	-	50 + 100 ppm	MHz	Figure 2.61
	REF50CK duty	-	35	65	%	1
	REF50CK rise/fall time	T _{ckr/ckf}	0.5	3.5	ns	1
	RMII_xxxx*1 output delay	T _{co}	2.5	12.0	ns	1
	RMII_xxxx*2 setup time	T _{su}	3	-	ns	1
	RMII_xxxx*2 hold time	T _{hd}	1	-	ns	1
	RMII_xxxxx*1, *2 rise/fall time	T _r /T _f	0.4	4	ns	1
	ET_WOL output delay	t _{WOLd}	1	23.5	ns	Figure 2.62
ETHERC	ET_TX_CLK cycle time	t _{Tcyc}	40	-	ns	-
(MII)	ET_TX_EN output delay	t _{TENd}	1	20	ns	Figure 2.63
	ET_ETXD0 to ET_ETXD3 output delay	t _{MTDd}	1	20	ns	1
	ET_CRS setup time	t _{CRSs}	10	-	ns	
	ET_CRS hold time	t _{CRSh}	10	-	ns	1
	ET_COL setup time	t _{COLs}	10	-	ns	Figure 2.64
	ET_COL hold time	t _{COLh}	10	-	ns	1
	ET_RX_CLK cycle time	t _{TRcyc}	40	-	ns	-
	ET_RX_DV setup time	t _{RDVs}	10	-	ns	Figure 2.65
	ET_RX_DV hold time	t _{RDVh}	10	-	ns	1
	ET_ERXD0 to ET_ERXD3 setup time	t _{MRDs}	10	-	ns	1
	ET_ERXD0 to ET_ERXD3 hold time	t _{MRDh}	10	-	ns	1
	ET_RX_ER setup time	t _{RERs}	10	-	ns	Figure 2.66
	ET_RX_ER hold time	t _{RESh}	10	-	ns	1
	ET_WOL output delay	t_{WOLd}	1	23.5	ns	Figure 2.67

Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0.

Note 2. RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER.

Figure 2.58 REF50CK and RMII signal timing

Figure 2.59 RMII transmission timing

Figure 2.60 RMII reception timing in normal operation

Figure 2.61 RMII reception timing when an error occurs

Figure 2.62 WOL output timing for RMII

Figure 2.63 MII transmission timing in normal operation

Figure 2.64 MII transmission timing when a conflict occurs

Figure 2.65 MII reception timing in normal operation

Figure 2.66 MII reception timing when an error occurs

Figure 2.67 WOL output timing for MII

PDC Timing 2.3.17

Table 2.32PDC timingConditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.Output load conditions: $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, C = 30 pF

Item		Symbol	Min	Max	Unit	Test conditions
PDC	PIXCLK input cycle time	t _{PIXcyc}	37	-	ns	Figure 2.68
	PIXCLK input high pulse width	t _{PIXH}	10	-	ns]
	PIXCLK input low pulse width	t _{PIXL}	10	-	ns]
	PIXCLK rise time	t _{PIXr}	-	5	ns]
	PIXCLK fall time	t _{PIXf}	-	5	ns]
	PCKO output cycle time	t _{PCKcyc}	2 × t _{PBcyc}	-	ns	Figure 2.69
	PCKO output high pulse width	t _{PCKH}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns]
	PCKO output low pulse width	t _{PCKL}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns]
	PCKO rise time	t _{PCKr}	-	5	ns]
	PCKO fall time	t _{PCKf}	-	5	ns]
	VSYNV/HSYNC input setup time	t _{SYNCS}	10	-	ns	Figure 2.70
	VSYNV/HSYNC input hold time	t _{SYNCH}	5	-	ns	
	PIXD input setup time	t _{PIXDS}	10	-	ns	1
	PIXD input hold time	t _{PIXDH}	5	-	ns	

Note 1. t_{PBcyc}: PCLKB cycle.

Figure 2.68 **PDC** input clock timing

Figure 2.69 PDC output clock timing

Figure 2.70 PDC AC timing

2.3.18 Graphics LCD Controller Timing

Table 2.33 Graphics LCD Controller timing

Conditions:

LCD_CLK: High drive output is selected in the port drive capability bit in the PmnPFS register.

LCD_DATA: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Тур	Max	Unit	Test conditions
LCD_EXTCLK input clock free	LCD_EXTCLK input clock frequency		-	-	60*1	MHz	Figure 2.71
LCD_EXTCLK input clock low pulse width		t _{WL}	0.45	-	0.55	t _{Ecyc}	
LCD_EXTCLK input clock high pulse width		t _{WH}	0.45	-	0.55		
LCD_CLK output clock frequency		t _{Lcyc}	-	-	60*1	MHz	Figure 2.72
LCD_CLK output clock low pu	LCD_CLK output clock low pulse width		0.4	-	0.6	t _{Lcyc}	Figure 2.72
LCD_CLK output clock high po	ulse width	t _{LOH}	0.4	-	0.6	t _{Lcyc}	Figure 2.72
LCD data output delay timing	_A or _B combinations*2	t _{DD}	-3.5	-	4	ns	Figure 2.73
	_A and _B combinations*3		-5.0	-	5.5		
LCD data output rise time (0.8	LCD data output rise time (0.8 to 2.0 V)		-	-	2		Figure 2.74
LCD data output fall time (2.0	to 0.8 V)	t _{Df}	-	-	2		

- Note 1. Parallel RGB888, 666,565: Maximum 54 MHz Serial RGB888: Maximum 60 MHz (4x speed)
- Note 2. Use pins that have a letter appended to their names, for instance, "_A" or "_B", to indicate
- Note 3. Pins of group"_A" and "_B" combinations are used.

Figure 2.71 LCD_EXTCLK clock input timing

Figure 2.72 LCD_CLK clock output timing

Figure 2.73 **Display output timing**

Figure 2.74 LCD output rise and fall times

2.4 **USB** Characteristics

2.4.1 **USBHS** Timing

USBHS low-speed characteristics for host only (USBHS_DP and USBHS_DM pin characteristics) **Table 2.34** (1/2) Conditions: USBHS_RREF = 2.2 $k\Omega$ ± 1%, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Symbol Min Typ Max Unit		Test conditions			
Input	Input high voltage	V _{IH}	2.0	-	-	V	-	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USBHS_DP - USBHS_DM	-
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-	-

Table 2.34 USBHS low-speed characteristics for host only (USBHS_DP and USBHS_DM pin characteristics) (2/2) Conditions: USBHS_RREF = 2.2 k Ω ± 1%, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Min	Тур	Max	Unit	Test conditions	
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA	-
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA	-
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	-	Figure 2.75, Figure 2.76
	Rise time	t _{LR}	75	-	300	ns	-	
	Fall time	t _{LF}	75	-	300	ns	-	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}	-
Pull-up, Pull-down characteristics	USBHS_DP and USBHS_DM pull-down resistors (host)	R _{pd}	14.25	-	24.80	kΩ	-	

USBHS_DP and USBHS_DM output timing in low-speed mode Figure 2.75

Figure 2.76 Test circuit in low-speed mode

Table 2.35 USBHS full-speed characteristics (USBHS_DP and USBHS_DM pin characteristics) (1/2) Conditions: USBHS_RREF = $2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Symbol Min Typ Max Unit		Test conditions			
Input	Input high voltage	V _{IH}	2.0	-	-	V	-	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	٧	-	-
	Differential input sensitivity	V _{DI}	0.2	-	-	٧	USBHS_DP- USBHS_DM	-
	Differential common-mode range	V _{CM}	0.8	-	2.5	٧	-	-

Table 2.35 USBHS full-speed characteristics (USBHS_DP and USBHS_DM pin characteristics) (2/2) Conditions: USBHS_RREF = $2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Min	Тур	Max	Unit	Test condition	s	
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA	-	
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA	-	
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	- Figure 2.77		
	Rise time	t _{LR}	4	-	20	ns	-	Figure 2.78	
	Fall time	t _{LF}	4	-	20	ns	-		
	Rise/fall time ratio	t _{LR} / t _{LF}	90	-	111.11	%	t _{FR} / t _{FF}	-	
	Output resistance	Z _{DRV}	40.5	-	49.5	Ω	Rs Not used (PHYSET.REPSEL[1:0] = 01 and PHYSET. HSEB = 0)		
DC	USBHS_DM pull-up resistor	R _{pu}	0.900	-	1.575	kΩ	During idle state	Э	
characteristics	(device)		1.425	-	3.090	kΩ	During transmission and reception		
	USBHS_DP/USBHS_DM pull-down resistor (host)	R _{pd}	14.25	-	24.80	kΩ	-		

Figure 2.77 USBHS_DP and USBHS_DM output timing in full-speed mode

Figure 2.78 Test circuit in full-speed mode

Table 2.36 USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics) (1/2) Conditions: USBHS_RREF = $2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz

Item		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Squelch detect sensitivity	V_{HSSQ}	100	-	150	mV	Figure 2.79
characteristics	Disconnect detect sensitivity	V _{HSDSC}	525	-	625	mV	Figure 2.80
	Common-mode voltage	V _{HSCM}	-50	-	500	mV	-
Output	Idle state	V _{HSOI}	-10.0	-	10	mV	-
characteristics	Output high voltage	V _{HSOH}	360	-	440	mV	
	Output low voltage	V _{HSOL}	-10.0	-	10	mV	
	Chirp J output voltage (difference)	V _{CHIRPJ}	700	-	1100	mV	
	Chirp K output voltage (difference)	V _{CHIRPK}	-900	-	-500	mV	

Table 2.36 USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics) (2/2) Conditions: USBHS_RREF = $2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz

Item		Symbol	Min	Тур	Max	Unit	Test conditions
AC characteristics	Rise time	t _{HSR}	500	-	-	ps	Figure 2.81
	Fall time	t _{HSF}	500	-	-	ps	
	Output resistance	Z _{HSDRV}	40.5	-	49.5	Ω	-

Figure 2.79 USBHS_DP and USBHS_DM squelch detect sensitivity in high-speed mode

Figure 2.80 USBHS_DP and USBHS_DM disconnect detect sensitivity in high-speed mode

Figure 2.81 USBHS_DP and USBHS_DM output timing in high-speed mode

Figure 2.82 Test circuit in high-speed mode

Table 2.37 USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics) Conditions: USBHS_RREF = $2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz

Item		Symbol	Min	Max	Unit	Test conditions
Battery Charging	D+ sink current	I _{DP_SINK}	25	175	μΑ	-
Specification	D- sink current	I _{DM_SINK}	25	175	μΑ	-
	DCD source current	I _{DP_SRC}	7	13	μΑ	-
	Data detection voltage	V _{DAT_REF}	0.25	0.4	V	-
	D+ source voltage	V _{DP_SRC}	0.5	0.7	V	Output current = 250 μA
	D– source voltage	V _{DM_SRC}	0.5	0.7	V	Output current = 250 μA

2.4.2 USBFS Timing

Table 2.38 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, $2.7 \le VREFH0/VREFH \le AVCC0$, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V, USBA_RREF = 2.2 k Ω ±1%, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	-	-	V	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.83
	Rise time	t _{LR}	75	-	300	ns]
	Fall time	t _{LF}	75	-	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}
Pull-up and pull- down characteristics	USB_DP and USB_DM pull- down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-

Figure 2.83 USB_DP and USB_DM output timing in low-speed mode

Figure 2.84 Test circuit in low-speed mode

Table 2.39 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) (1/2) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, $\overline{2}$.7 \leq VREFH0/VREFH \leq AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V, USBA_RREF = 2.2 k Ω ±1%, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item		Symbol	Min	Тур	Max	Unit	Test conditions
Input characteristics	Input high voltage	V _{IH}	2.0	-	-	V	-
	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	٧	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-

Table 2.39 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) (2/2) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, $\overline{2}$.7 \leq VREFH0/VREFH \leq AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V, USBA_RREF = 2.2 k Ω ±1%, USBMCLK = 20/24 MHz, UCLK = 48 MHz

Item	Item		Min	Тур	Max	Unit	Test conditions
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.85
	Rise time	t _{LR}	4	-	20	ns	
	Fall time	t _{LF}	4	-	20	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	90	-	111.11	%	t _{FR} / t _{FF}
	Output resistance	Z _{DRV}	28	-	44	Ω	USBFS: Rs = 27 Ω included
Pull-up and pull-	DM pull-up resistance in device controller mode	R _{pu}	0.900	-	1.575	kΩ	During idle state
down characteristics			1.425	-	3.090	kΩ	During transmission and reception
	USB_DP and USB_DM pull- down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-

Figure 2.85 USB_DP and USB_DM output timing in full-speed mode

Figure 2.86 Test circuit in full-speed mode

2.5 ADC12 Characteristics

[Normal-precision channel]

Table 2.40 A/D conversion characteristics for unit 0 (1/2) Conditions: PCLKC = 1 to 60 MHz

Item	Min	Тур	Max	Unit	Test conditions
Frequency	1	-	60	MHz	-
Analog input capacitance	-	-	30	pF	-
Quantization error	-	±0.5	-	LSB	-
Resolution	-	-	12	Bits	-

Table 2.40 A/D conversion characteristics for unit 0 (2/2) Conditions: PCLKC = 1 to 60 MHz

Item			Min	Тур	Max	Unit	Test conditions
Channel-dedicated sample-and-hold circuits in use (AN000 to AN002)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	1.06 (0.4 + 0.25)*2	-	-	μs	Sampling of channel- dedicated sample-and-hold circuits in 24 states Sampling in 15 states
	Offset error		-	±1.5	±3.5	LSB	AN000 to AN002 = 0.25 V
	Full-scale error		-	±1.5	±3.5	LSB	AN000 to AN002 = VREFH0- 0.25 V
	Absolute accuracy		-	±2.5	±5.5	LSB	-
	DNL differential nonli	nearity error	-	±1.0	±2.0	LSB	-
	INL integral nonlinea	rity error	-	±1.5	±3.0	LSB	-
	Holding characteristic circuits	cs of sample-and hold	-	-	20	μs	-
	Dynamic range		0.25	-	VREFH 0 -0.25	V	-
Channel-dedicated sample-and-hold circuits not in use	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.88 (0.667)*2	-	-	μs	Sampling in 40 states
(AN000 to AN002)	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error	Full-scale error		±1.0	±2.5	LSB	-
	Absolute accuracy		-	±2.0	±4.5	LSB	-
	DNL differential nonlinearity error		-	±0.5	±1.5	LSB	-
	INL integral nonlinearity error		-	±1.0	±2.5	LSB	-
High-precision channels (AN003 to AN006)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.48 (0.267)*2	-	-	μs	Sampling in 16 states
		Max. = 300Ω	0.40 (0.183)*2	-	-	μs	Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0
	Offset error		=	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
	Absolute accuracy		-	±2.0	±4.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±1.5	LSB	-
	INL integral nonlinea	rity error	-	±1.0	±2.5	LSB	-
Normal-precision channels (AN016 to AN021)	Conversion time*1 (Operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.88 (0.667)*2	-	-	μs	Sampling in 40 states
	Offset error		-	±1.0	±5.5	LSB	-
	Full-scale error		-	±1.0	±5.5	LSB	-
	Absolute accuracy		-	±2.0	±7.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±4.5	LSB	-
	INL integral nonlinea	rity error	-	±1.0	±5.5	LSB	-

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

Note 2. Values in parentheses indicate the sampling time.

Table 2.41 A/D conversion characteristics for unit 1 (1/2) Conditions: PCLKC = 1 to 60 MHz

Item	Min	Тур	Max	Unit	Test conditions
Frequency	1	-	60	MHz	-
Analog input capacitance	-	-	30	pF	-

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Table 2.41 A/D conversion characteristics for unit 1 (2/2) Conditions: PCLKC = 1 to 60 MHz

Item			Min	Тур	Max	Unit	Test conditions
Quantization error			-	±0.5	-	LSB	-
Resolution			-	-	12	Bits	-
Channel-dedicated sample-and-hold circuits in use (AN100 to AN102)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	1.06 (0.4 + 0.25)* ²	-	-	μs	Sampling of channel- dedicated sample-and-hold circuits in 24 states Sampling in 15 states
	Offset error		-	±1.5	±3.5	LSB	AN100 to AN102 = 0.25 V
	Full-scale error	Full-scale error		±1.5	±3.5	LSB	AN100 to AN102 = VREFH - 0.25 V
	Absolute accuracy		-	±2.5	±5.5	LSB	-
	DNL differential nonli	nearity error	-	±1.0	±2.0	LSB	-
	INL integral nonlinea	rity error	-	±1.5	±3.0	LSB	-
	Holding characteristic circuits	cs of sample-and hold	-	-	20	μs	-
	Dynamic range		0.25	-	VREFH - 0.25	V	-
Channel-dedicated sample-and-hold circuits not in use (AN100 to AN102)	Conversion time*1 (Operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.88 (0.667)*2	-	-	μs	Sampling in 40 states
	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
	Absolute accuracy	Absolute accuracy		±2.0	±4.5	LSB	-
	DNL differential nonlinearity error		-	±0.5	±1.5	LSB	-
	INL integral nonlinearity error		-	±1.0	±2.5	LSB	-
High-precision channels (AN103 to AN106)	Conversion time*1 (Operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.48 (0.267)* ²	-	-	μs	Sampling in 16 states
		Max. = 300Ω	0.40 (0.183)*2	-	-	μs	Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH ≤ AVCC0
	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
	Absolute accuracy		-	±2.0	±4.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±1.5	LSB	-
	INL integral nonlinea	rity error	-	±1.0	±2.5	LSB	-
Normal-precision channels (AN116 to AN120)	Conversion time*1 (Operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.88 (0.667)* ²	-	-	μs	Sampling in 40 states
	Offset error	ı	-	±1.0	±5.5	LSB	-
	Full-scale error		-	±1.0	±5.5	LSB	-
	Absolute accuracy		-	±2.0	±7.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±4.5	LSB	-
	INL integral nonlinea	rity error	-	±1.0	±5.5	LSB	-

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

Note 2. Values in parentheses indicate the sampling time.

Table 2.42 A/D internal reference voltage characteristics

Item	Min	Тур	Max	Unit	Test conditions
A/D internal reference voltage	1.20	1.25	1.30	V	-

Note 1. The conversion time is the sum of the sampling and the comparison times. The number of sampling states is indicated for the test conditions.

Figure 2.87 Illustration of ADC12 characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 0.03h to 0.00h, though an output code of 0.08h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.43 D/A conversion characteristics

Item	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier	1	•		1	*
Absolute accuracy	-	-	±24	LSB	Resistive load 2 MΩ
DNL		±1.0	±2.0	LSB	Resistive load 2 MΩ
Output impedance	-	7.5	-	kΩ	-
Conversion time	-	-	3.0	μs	Capacitive load 20 pF
With output amplifier	1	•		1	·
INL	-	±2.0	±4.0	LSB	-
DNL	-	±1.0	±2.0	LSB	-
Conversion time	-	-	4.0	μs	-
Resistive load	5	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH – 0.2	V	-

2.7 TSN Characteristics

Table 2.44 TSN characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.0	-	°C	-
Temperature slope	-	-	4.1	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.24	-	V	-
Temperature sensor start time	t _{START}	-	-	30	μs	-
Sampling time	-	4.15	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Table 2.45 Oscillation stop detection circuit characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.88

Figure 2.88 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2.46 Power-on reset circuit and voltage detection circuit characteristics

Item			Symbol	Min	Тур	Max	Unit	Test conditions
Voltage detection level	Power-on reset (POR)	Module-stop function disabled*1	V _{POR}	2.5	2.6	2.7	V	Figure 2.89
		Module-stop function enabled*2		2.0	2.35	2.7		
	Voltage detection	circuit (LVD0)	V _{det0_1}	2.84	2.94	3.04		Figure 2.90
					2.87	2.97		
			V _{det0_3}	2.70	2.80	2.90		
	Voltage detection	circuit (LVD1)	V _{det1_1}	2.89	2.99	3.09		Figure 2.91
		V _{det1_2}	2.82	2.92	3.02			
			V _{det1_3}	2.75	2.85	2.95		
	Voltage detection	Voltage detection circuit (LVD2)			2.99	3.09		Figure 2.92
		V _{det2_2}	2.82	2.92	3.02			
		V _{det2_3}	2.75	2.85	2.95			
Internal reset time	Power-on reset ti	me	t _{POR}	-	4.6	-	ms	Figure 2.89
	LVD0 reset time	LVD0 reset time			0.70	-		Figure 2.90
	LVD1 reset time		t _{LVD1}	-	0.57	-		Figure 2.91
	LVD2 reset time		t _{LVD2}	-	0.57	-		Figure 2.92
Minimum VCC dow	n time		t _{VOFF}	200	-	-	μs	Figure 2.89, Figure 2.90
Response delay	Response delay		t _{det}	-	-	200	μs	Figure 2.89 to Figure 2.92
LVD operation stab	ilization time (after	LVD is enabled)	T _{d(E-A)}	-	-	10	μs	Figure 2.91,
Hysteresis width (L	VD1 and LVD2)		V_{LVH}	-	80	-	mV	Figure 2.92

- Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det1} , and V_{det2} for POR and LVD.
- Note 2. The low-power function is disabled and DEEPCUT[1:0] = 00b or 01b.
- Note 3. The low-power function is enabled and DEEPCUT[1:0] = 11b.

Figure 2.89 Power-on reset timing

Figure 2.90 Voltage detection circuit timing (V_{det0})

Figure 2.91 Voltage detection circuit timing (V_{det1})

Figure 2.92 Voltage detection circuit timing (V_{det2})

2.10 VBATT Characteristics

Table 2.47Battery backup function characteristicsConditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0/VRFEH ≤ AVCC0, VBATT = 2.0 to 3.6 V

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	V	Figure 2.93
Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop	V _{BATTSW}	2.70	-	-	V	
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	-	-	μs	

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 2.93 Battery backup function characteristics

2.11 CTSU Characteristics

Table 2.48 CTSU characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	-
TS pin capacitive load	C _{base}	-	-	50	pF	-
Permissible output high current	Σ _{ΙΟΗ}	-	-	-40	mA	When the mutual capacitance method is applied

2.12 Comparator Characteristics

Table 2.49 ACMPHS characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Reference voltage range	VREF	0	-	AVCC0	V	-
Input voltage range	VI	0	-	AVCC0	V	-
Output delay*1	Td	-	50	100	ns	VI = VREF ± 100 mV

Note 1. This value is the internal propagation delay.

2.13 PGA Characteristics

Table 2.50 PGA characteristics in single mode (1/2)

Item	Symbol	Min	Тур	Max	Unit
PGAVSS input voltage range	PGAVSS	0	-	0	V
	AIN0 (G = 2.000)	0.050 × AVCC0	-	0.45 × AVCC0	V
	AIN1 (G = 2.500)	0.047 × AVCC0	-	0.360 × AVCC0	V
	AIN2 (G = 2.667)	0.046 × AVCC0	-	0.337 × AVCC0	V
	AIN3 (G = 2.857)	0.046 × AVCC0	-	0.32 × AVCC0	V
	AIN4 (G = 3.077)	0.045 × AVCC0	-	0.292 × AVCC0	V
	AIN5 (G = 3.333)	0.044 × AVCC0	-	0.265 × AVCC0	V
	AIN6 (G = 3.636)	0.042 × AVCC0	-	0.247 × AVCC0	V
	AIN7 (G = 4.000)	0.040 × AVCC0	-	0.212 × AVCC0	V
	AIN8 (G = 4.444)	0.036 × AVCC0	-	0.191 × AVCC0	V
	AIN9 (G = 5.000)	0.033 × AVCC0	-	0.17 × AVCC0	V
	AIN10 (G = 5.714)	0.031 × AVCC0	-	0.148 × AVCC0	V
	AIN11 (G = 6.667)	0.029 × AVCC0	-	0.127 × AVCC0	V
	AIN12 (G = 8.000)	0.027 × AVCC0	-	0.09 × AVCC0	V
	AIN13 (G = 10.000)	0.025 × AVCC0	-	0.08 × AVCC0	V
	AIN14 (G = 13.333)	0.023 × AVCC0	-	0.06 × AVCC0	V

Table 2.50 PGA characteristics in single mode (2/2)

Item	Symbol	Min	Тур	Max	Unit
Gain error	Gerr0 (G = 2.000)	-1.0	-	1.0	%
	Gerr1 (G = 2.500)	-1.0	-	1.0	%
	Gerr2 (G = 2.667)	-1.0	-	1.0	%
	Gerr3 (G = 2.857)	-1.0	-	1.0	%
	Gerr4 (G = 3.077)	-1.0	-	1.0	%
	Gerr5 (G = 3.333)	-1.5	-	1.5	%
	Gerr6 (G = 3.636)	-1.5	-	1.5	%
	Gerr7 (G = 4.000)	-1.5	-	1.5	%
	Gerr8 (G = 4.444)	-2.0	-	2.0	%
	Gerr9 (G = 5.000)	-2.0	-	2.0	%
	Gerr10 (G = 5.714)	-2.0	-	2.0	%
	Gerr11 (G = 6.667)	-2.0	-	2.0	%
	Gerr12 (G = 8.000)	-2.0	-	2.0	%
	Gerr13 (G = 10.000)	-2.0	-	2.0	%
	Gerr14 (G = 13.333)	-2.0	-	2.0	%
Offset error	Voff	-8	-	8	mV

Table 2.51 PGA characteristics in differential mode

Item		Symbol	Min	Тур	Max	Unit	
PGAVSS input voltage	e range	PGAVSS	-0.3	-	0.3	V	
Differential input volta	fferential input voltage range (G = 1.500)		-0.5	-	0.5	V	
Input voltage range (G = 2.333)			-0.4	-	0.4	V	
Input voltage range (G = 4.000)			-0.2	-	0.2	V	
Input voltage range (G = 5.667)		-0.15	-	0.15	V	
Gain error	G = 1.500	Gerr	-2.5	-	2.5	%	
	G = 2.333		-2	-	2		
	G = 4.000		-1	-	1		
	G = 5.667		-1	-	1		

2.14 Flash Memory Characteristics

2.14.1 Code Flash Memory Characteristics

Table 2.52 Code flash memory characteristics (1/2) Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

				FCLK = 4	MHz	20 N	IHz ≤ FCLK	≤ 60 MHz	Unit
Item		Symbol	Min	Тур	Max	Min	Тур	Max	
N _{PEC} ≤ 100 times 8-	256-byte	t _{P256}	-	0.9	13.2	-	0.4	6	ms
	8-KB	t _{P8K}	-	29	176	-	13	80	ms
	32-KB	t _{P32K}	-	116	704	-	52	320	ms
Programming time	256-byte	t _{P256}	-	1.1	15.8	-	0.5	7.2	ms
N _{PEC} > 100 times	8-KB	t _{P8K}	-	35	212	-	16	96	ms
	32-KB	t _{P32K}	-	140	848	-	64	384	ms
Erasure time N _{PEC} ≤ 100 times	8-KB	t _{E8K}	-	71	216	-	39	120	ms
	32-KB	t _{E32K}	-	254	864	-	141	480	ms

Table 2.52 Code flash memory characteristics (2/2) Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

				FCLK = 4 I	ИНz	20 Mi	lz ≤ FCLK	≤ 60 MHz	
Item		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Erasure time	8-KB	t _{E8K}	-	85	260	-	47	144	ms
N _{PEC} > 100 times	32-KB	t _{E32K}	-	304	1040	-	169	576	ms
Reprogramming/erasure	cycle*1	N _{PEC}	1000*2	-	-	1000*2	-	-	Times
Suspend delay during pr	Suspend delay during programming		-	-	264	-	-	120	μs
First suspend delay duri suspend priority mode	ng erasure in	t _{SESD1}	-	-	216	-	-	120	μs
Second suspend delay of suspend priority mode	luring erasure in	t _{SESD2}	-	-	1.7	-	-	1.7	ms
Suspend delay during er priority mode	asure in erasure	t _{SEED}	-	-	1.7	-	-	1.7	ms
Forced stop command		t _{FD}	-	-	32	-	-	20	μs
Data hold time*3		t _{DRP}	20	-	-	20	-	-	Years
FCU reset time		t _{FCUR}	35	-	-	35	-	-	μs

- Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For example, when 256-byte programming is performed 32 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)
- Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
- Note 3. This indicates the characteristics when reprogramming is performed within the specified range, including the minimum value.

Figure 2.94 Suspension and forced stop timing for flash memory programming and erasure

2.14.2 Data Flash Memory Characteristics

Table 2.53 Data flash memory characteristics (1/2) Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz			
Item		Symbol	ol Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4-byte	t _{DP4}	-	0.36	3.8	-	0.16	1.7	ms
Erasure time	64-byte	t _{DE64}	-	3.1	18	-	1.7	10	ms
Blank check time	4-byte	t _{DBC4}	-	-	84	-	-	30	μs
Reprogramming/erasure cycle*1		N _{DPEC}	125000* ²	-	-	125000* ²	-	-	-
Suspend delay during programming		t _{DSPD}	-	-	264	-	-	120	μs
First suspend delay during erasure in suspend priority mode		t _{DSESD1}	-	-	216	-	-	120	μs
Second suspend delay during erasure in suspend priority mode		t _{DSESD2}	-	-	300	-	-	300	μs
Suspend delay during erasing in erasure priority mode		t _{DSEED}	-	-	300	-	-	300	μs

Table 2.53 Data flash memory characteristics (2/2) Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

		FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz			
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Forced stop command	t _{FD}	-	-	32	-	-	20	μs
Data hold time*3	t _{DDRP}	20	-	-	20	-	-	Year

- Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)
- Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
- Note 3. This indicates the characteristics when reprogramming is performed within the specified range, including the minimum value.

2.15 **Boundary Scan**

Table 2.54 Boundary scan characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions	
TCK clock cycle time	t _{TCKcyc}	100	-	-	ns	Figure 2.95	
TCK clock high pulse width	t _{TCKH}	45	-	-	ns		
TCK clock low pulse width	t _{TCKL}	45	-	-	ns		
TCK clock rise time	t _{TCKr}	-	-	5	ns		
TCK clock fall time	t _{TCKf}	-	-	5	ns		
TMS setup time	t _{TMSS}	20	-	-	ns	Figure 2.96	
TMS hold time	t _{TMSH}	20	-	-	ns		
TDI setup time	t _{TDIS}	20	-	-	ns		
TDI hold time	t _{TDIH}	20	-	-	ns		
TDO data delay	t _{TDOD}	-	-	40	ns		
Boundary scan circuit startup time*1	T _{BSSTUP}	t _{RESWP}	-	-	-	Figure 2.97	

Note 1. Boundary scan does not function until the power-on reset becomes negative.

Figure 2.95 **Boundary scan TCK timing**

Figure 2.96 Boundary scan input/output timing

Figure 2.97 Boundary scan circuit startup timing

2.16 Joint European Test Action Group (JTAG)

Table 2.55 JTAG

Item	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	40	-	-	ns	Figure 2.95
TCK clock high pulse width	t _{TCKH}	15	-	-	ns	
TCK clock low pulse width	t _{TCKL}	15	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	8	-	-	ns	Figure 2.96
TMS hold time	t _{TMSH}	8	-	-	ns	
TDI setup time	t _{TDIS}	8	-	-	ns	
TDI hold time	t _{TDIH}	8	-	-	ns	
TDO data delay time	t _{TDOD}	-	-	28	ns	

Figure 2.98 JTAG TCK timing

Figure 2.99 JTAG input/output timing

2.17 Serial Wire Debug (SWD)

Table 2.56 SWD

Item	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	40	-	-	ns	Figure 2.100
SWCLK clock high pulse width	t _{swckh}	15	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	15	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	8	-	-	ns	Figure 2.101
SWDIO hold time	t _{SWDH}	8	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	28	ns	

Figure 2.100 SWD SWCLK timing

Figure 2.101 SWD input/output timing

2.18 Embedded Trace Macro Interface (ETM)

Table 2.57 ETM

Item	Symbol	Min	Тур	Max	Unit	Test conditions
TCLK clock cycle time	t _{TCLKcyc}	16.6	-	-	ns	Figure 2.102
TCLK clock high pulse width	t _{TCLKH}	5.8	-	-	ns	
TCLK clock low pulse width	t _{TCLKL}	5.8	-	-	ns	
TCLK clock rise time	t _{TCLKr}	-	-	2.5	ns	
TCLK clock fall time	t _{TCLKf}	-	-	2.5	ns	
TDATA0-3 output setup time	t _{TRDS}	1.6	-	-	ns	Figure 2.103
TDATA0-3 output hold time	t _{TRDH}	1.6	-	-	ns	

Figure 2.102 ETM TCLK timing

Figure 2.103 ETM output timing

Appendix 1. Package Dimensions

For information on the latest version of the package dimensions or mountings, go to "Packages" on the Renesas Electronics Corporation website.

Figure 1.1 224-pin BGA

Figure 1.2 176-pin BGA

Figure 1.3 176-pin LQFP

Figure 1.4 145-pin LGA

Figure 1.5 144-pin LQFP

Figure 1.6 100-pin LQFP

Revision History	S7G2 Datasheet
------------------	----------------

Rev.	Date	Chapter	Summary
0.80	Oct. 12, 2015	_	First Edition issued
0.85	Dec. 15, 2015	_	Second Edition issued
1.00	Feb. 23, 2016	section 1, Overview	Updated VREFH and VREFL descriptions in Table 1.16, Pin functions
		section 2, Electrical	Updated operating and standby current information in section 2.2.5, Operating and Standby Current
		Characteristi	Added section 2.16, Joint European Test Action Group (JTAG)
		CS	Added section 2.17, Serial Wire Debug (SWD)
			Added section 2.18, Embedded Trace Macro Interface (ETM)
			Updated Table 2.13, Clock timing except for sub-clock oscillator
			Updated SPI data in Table 2.25, SPI timing
			Updated Table 2.40, A/D conversion characteristics for unit 0
			Updated Table 2.41, A/D conversion characteristics for unit 1
			Updated SPI data in Figure 2.45, SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2
			Updated Table 2.5, I/O IOH, IOL
		All	Deleted # from pin names

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141