Assignment 9

Abhay Shankar K: CS21BTECH11001

Outline

- Question
- 2 Solution: (i)
- 3 Solution: (ii)
- Result
- Graph

Question

Express the density $f_y(y)$ of the random variable y = g(x) in terms of $f_x(x)$ if :

- (i) g(x) = |x|
- (ii) $g(x) = e^{-x}U(x)$ where U(x) is the Uniform Distribution, say over the interval [-1,1].

Solution: (i)

Clearly, $f_{y}(0) = f_{x}(0)$. For nonzero x:

We know

$$F_{y}(y_{1}) = P(g(x) \leq g(x_{1}))$$

$$= P(|x| \leq |x_{1}|)$$

$$= P(-|x_{1}| \leq x \leq |x_{1}|)$$

$$= (F_{x}(x_{1}) - F_{x}(-x_{1})) \times sgn(x_{1})$$

$$\therefore F_{y}(y) = (F_{x}(x) - F_{x}(-x)) \operatorname{sgn}(x)$$
 (1)

Assuming $f_x(x)$ is a normal distribution, clearly the normalization factor is 0.5. Differentiating and normalizing (1),

$$f_{y}(y) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{\frac{x^{2}}{2\sigma^{2}}}$$
 (2)

Solution: (ii)

We know

$$F_{y}(y_{1}) = P(g(x) \leq g(x_{1}))$$

$$= P(e^{-x} \leq e^{-x_{1}})$$

$$= P(x \geq x_{1})$$

$$= 1 - P(x \leq x_{1}) + P_{x}(x_{1})$$

$$= 1 - F_{x}(x_{1})$$

$$\therefore F_{y}(y) = 1 - F_{x}\left(\frac{-\ln y}{U(x)}\right) \tag{3}$$

Assuming $f_x(x)$ is a normal distribution and $\sigma = 0.3$, the normalization constant is 0.1618. Differentiating and normalizing (3),

$$f_{y}(y) = \left(1 + \frac{4}{\sigma\sqrt{2\pi}}e^{x - \frac{x^{2}}{2\sigma^{2}}}\right) \times 0.1618 \tag{4}$$

Result

(i)
$$y = |x| \implies f_y(y) = f_y(y) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{\frac{x^2}{2\sigma^2}} \to (2)$$

(ii)
$$y = e^{-x} U(x) \implies f_y(y) = \left(1 + \frac{4}{\sigma\sqrt{2\pi}} e^{x - \frac{x^2}{2\sigma^2}}\right) \times 0.1618 \rightarrow (4)$$

Graph

Assuming : $\sigma = 0.3$

