ROB311 Quiz 3

Hanhee Lee

March 30, 2025

Contents

1	Mu	ılti-Agent Problems	2
		Action Equilibria	
		1.1.1 Finding Action Equilibria	
	1.2	Strategy Equilibria	2
		1.2.1 Finding Strategy Equilibria	2
		1.2.2 Existence of Stategy Equilibria	2
		1.2.3 Convergence of Stategy Equilibria	
	1.3	Examples	
		1.3.1 Finding Action Equilibria	
		1.3.2 Optimal Action Profiles	2

One-Shot Multi-Agent Decision Problems

1 Multi-Agent Problems

Summary: In a Multi-Agent problem, we assume that:

- Set of states for environment is \mathcal{S}
- P agents within environment.
- For each state $s \in \mathcal{S}$:
 - possible actions for agent i is $A_i(s)$
 - set of action profiles is $\mathcal{A}(s) = \prod_{i=1}^{r} \mathcal{A}_i(s)$
- possible state-action pairs are $\mathcal{T} = \{(s, a) \text{ s.t. } s \in \mathcal{S}, a \in \mathcal{A}(s)\}$
- environment in some origin state, s_0
- ullet environment destroyed after N transitions
- agent j wants to find policy $\pi_j(a_j \mid s)$ so that $\mathbb{E}[r_j(p)]$ is maximized
- agents act independently given the environment's state: $\pi(a \mid s) = \prod_{j \in [P]} \pi_j(a_j \mid s)$

	$j \in [P]$	
Name	Function:	
State transition given state-action pair defined by $\operatorname{tr}:\mathcal{T}\to\mathcal{S}$	tr(s, a) = state transition from s under a	
Reward to each agent, i defined by $r_i: \mathcal{Q} \times \mathcal{S} \to \mathbb{R}_+$	$r_i(s, a, \operatorname{tr}(s, a)) = \operatorname{rwd}$ to agent i for $(s, a, \operatorname{tr}(s, a))$	
State evolution of environment after N transitions	$p = \langle (s_0, a^{(1)}, s_1), \dots, (s_{N-1}, a^{(N)}, s_N) \rangle$	
• Given sequence of actions: $p.a = \langle a^{(1)}, \dots, a^{(n)} \rangle$ • $s_N = \tau(s_{n-1}, a^{(n)})$		
reward to agent i	$r_i(p) = \sum_{n=1}^{N} r_i(s_{n-1}, a^{(n)}, s_n)$	
expected-reward (value) of playing a from s for agent j	$q_j(s, a) = r_j(s, a, \tau(s, a)) + \sum_{a' \in \mathcal{A}(\tau(s, a))} \pi(a' \mid \tau(s, a)) q_j(\tau(s, a), a')$	
• $\mathcal{A}(s) = \emptyset$ if $s \in \mathcal{G}$		

1.1 Action Equilibria

- 1.1.1 Finding Action Equilibria
- 1.2 Strategy Equilibria
- 1.2.1 Finding Strategy Equilibria
- 1.2.2 Existence of Stategy Equilibria
- 1.2.3 Convergence of Stategy Equilibria
- 1.3 Examples
- 1.3.1 Finding Action Equilibria
- 1.3.2 Optimal Action Profiles

ROB311 Hanhee Lee

Example:

1. Given/Problem: Find all equilibria of the following one-shot game or state that none exist.

	B1 (y)	B2 (1-y)
A1 (x)	(5, 3)	(1, 0)
A2 (1-x)	(0, 1)	(2, 4)

• (#,#) is the payoff to P1 and P2 respectively for a given action profile.

2. Solution:

- (a) Define Probabilities:
 - Let y be the probability that B1 plays action B1 so 1-y is the probability that B1 plays action B2.
 - Let x be the probability that A1 plays action A1 so 1-x is the probability that A1 plays action A2.
- (b) Expected Rewards:
 - P1:

$$E[x] = 5xy + 1x(1-y) + 0(1-x)y + 2(1-x)(1-y) = 5xy + x - xy + 2 - 2x - 2y + 2xy$$

$$= 5xy - xy + 2xy + x - 2x - 2y + 2$$

$$= 6xy - x - 2y + 2 \quad \text{simplify}$$

$$= \underbrace{(6y-1)}_{C} x + 2 - 2y \quad \text{linear in } x$$

• P2:

$$E[y] = 3xy + 0x(1-y) + 1(1-x)y + 4(1-x)(1-y) = 3xy + 0 + y - xy + 4 - 4x - 4y + 4xy$$

$$= 3xy - xy + 4xy + y - 4x - 4y + 4$$

$$= 6xy - 4x - 3y + 4 \quad \text{simplify}$$

$$= \underbrace{(6x - 3)}_{C} y + 4 - 4x \quad \text{linear in } y$$

- Note: E[x] is linear in x and E[y] is linear in y.
- (c) Constrained Argmax Expected Rewards w.r.t $x \in [0,1]$ (since P1): If it was cost, then minimize. Also don't care about constant term in y since we are derivating w.r.t x.
 - P1:

$$x = \begin{cases} 1 & \text{if } y > \frac{1}{6} \text{ i.e. } c > 0 \\ [0, 1] & \text{if } y = \frac{1}{6} \text{ i.e. } c = 0 \\ 0 & \text{if } y < \frac{1}{6} \text{ i.e. } c < 0 \end{cases}$$

• P2:

$$y = \begin{cases} 1 & \text{if } x > \frac{3}{6} \text{ i.e. } c > 0 \\ [0,1] & \text{if } x = \frac{3}{6} \text{ i.e. } c = 0 \\ 0 & \text{if } x < \frac{3}{6} \text{ i.e. } c < 0 \end{cases}$$

(d)