## Solution to Homework Assignment 10

**Solution to Problem 1:** Following Nyquist Channel Theorem, the Nyquist bit rate for error-free communication is  $bitrate = 2B \log_2 M$ . From the problem, B = 1400Hz and  $bitrate \ge 9600$ . That is,

$$2 \times 1400 \times \log_2 M \ge 9600$$

Hence, we have  $\log_2 M \ge 24/7 \approx 3.43$  bits/symbol. Let's use 4 bits to represent 1 symbol, then the symbol rate is 9600/4 = 2400 symbol/second, with a constellation size of  $2^M = 2^4 = 16$ .

## **Solution to Problem 2:**

(a) There are 4 points with energy  $4A^2$  and 4 points with energy  $4A^2 + 4A^2 = 8A^2$ . Thus

$$E_{\mathcal{A}} = \frac{1}{8} \left( 4 \times 4A^2 + 4 \times 8A^2 \right) = 6A^2.$$

The minimum distance is  $d_{\min} = 2A$ .

(b) There are multiple possibilities, one of which is shown in the following figure:



## The minimum distance of this new constellation is also 2A. There are 2 points with energy $A^2$ , 2 points with energy $3A^2$ , and 4 points with energy $(2A)^2 + (\sqrt{3}A)^2 = 7A^2$ . The average transmit energy of the new constellation $\mathcal{A}'$ is thus

 $E_{\mathcal{A}'} = \frac{1}{8} \left( 2 \times A^2 + 2 \times 3A^2 + 4 \times 7A^2 \right) = \frac{9}{2} A^2 < E_{\mathcal{A}}.$ 

The new design has smaller energy with the same minimum distance, thus better.

## **Solution to Problem 3:**

(a) The minimum decision rule is

$$\hat{a} = \arg\min_{a \in \{-1,1\}} |y - a|.$$

This is to check if y is closer to -1 or 1. Thus, the decision rule is:

$$\hat{a} = 1 \text{ if } y \ge 0 \text{ and } \hat{a} = -1 \text{ if } y < 0.$$

(b) When a = 1, error happens when  $\hat{a} = -1$ , which happens when y < 0. Thus

$$P_e|(a=1) = P[y < 0|a=1] = P[1+n < 0] = P[n < -1] = Q(1/\sigma).$$

1