ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 6: The Normal Distribution

William Marsh

Quiz (1,2,3)

Outline

Aim: Introduce 'normal' distribution

- The Normal distribution
- Variance and standard deviation
- Z score
- Normality testing and QQ plots

Introducing the Normal Distribution

'Normal' is NOT normal

Normal; Bell Curve

- Origin: measurement error
- Names
 - Normal
 - Gaussian
 - 'Bell' curve
- Symmetric around mean

- Two parameters
 - Mean: where the centre is
 - Standard deviation: how wide distribution is

Parameters

- Two parameters
 - Mean: where the centre is
 - Standard deviation: how wide distribution is
- Mean: μ
- Standard deviation: σ

Mean

- Mean: μ
 - Same meaning as before
 - Mean, medium, mode are all equal

Standard Derivation

- Standard deviation: σ
 - How far the distribution stretches on either side of the mean

Where are most cases?

Recall: area corresponds to probability

Every lecture will have a 'learning reflection' slide

Should a 'Data Analysis' be Readable?

The notebook format allows us to create a program that is a document

Data Analysis: Telling a Story

What to Cover

- Looking at the data
 - Variable types
 - Ranges and distributions
- Relationship
 - Scatter and correlations
 - Group means
 - Conditional probabilities
- Modelling
- Statistical tests
- Conclusions

Document Structure

- Title
- Table of contents
- Section headers and subheading
- Short code cells
- Narrative: using markdown

Variance and Standard Deviation

How Wide is My Distribution?

- Idea: average distance from the mean
 - average of (x mean)
- Problem
 - Some data points x > mean
 - Some data points x < mean
 - Average of difference is zero
- Resolution
 - Variance = Average $((x mean)^2)$
 - Standard deviation = square root (Variance)

Mean and Variance

i	х	mean - x	(mean - x) ^2	
1	1	3.7	13.69	
2	9	-4.3	18.49	
3	2	2.7	7.29	
4	6	-1.3	1.69	
5	6	-1.3	1.69	
6	1	3.7	13.69	
7	6	-1.3	1.69	
8	4	0.7	0.49	
9	9	-4.3	18.49	
10	3	1.7	2.89	
Sum	47.0	0.0	80.1	
Average	4.7	0.0	8.0	Variance
			2.8	Standard deviation

- Mean(xs) = sum(xs) / N
- Variance = Mean $((x mean)^2)$
- Standard derivation = Variance^{1/2}

$$\mu = \frac{1}{N} \sum_{i=1}^{i=N} x_i$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{i=N} (x - \mu)^2}$$

Mean and Variance

- Mean (μ) and variance $(\nu = \sigma^2)$ are parameters of the normal distribution
- Any distribution has a mean and variance

Standard Deviations from the Normal

Recall: area corresponds to probability

The Financial Crisis

On 13 August 2007, The Financial Times reported Viniar's explanation of why two large hedge funds managed by Goldman Sachs had both lost over a quarter of their value in a week, requiring the injection of \$3 billion to support them. Viniar ascribed the events to a series of exceptional events: "We were seeing things that were 25 standard deviation moves, several days in a row". This has since been used to illustrate the problems of inappropriate mathematical models in finance, especially those based on the assumption of Normality.

From https://en.wikipedia.org/wiki/David_Viniar

- David Viniar was the CFO at Goldman Sachs
- Distribution of loss assumed to be 'normal'
 - Very large losses very improbable
 - 'Fat tails' created by correlated events

Normal Formula

Normal Formula II

- General μ and σ
- Family of curves

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Z score $z = \frac{x \mu}{\sigma}$
 - Converts x to a standardised value = 'standard derivations from the mean'

Where Does Normal Come From?

Imagine an infinite target

Aiming at centre

Probability is area x density

Assumptions

- Error in x independent of error in y
- Density depends only on distance from aim
- See youtube

https://www.youtube.com/watch?v =cTyPuZ9-JZ0

Mean and Variance of Binomial

Binomial(p, n)

- Number of trials = n
- Probability = p
- Mean = n.p
 - Mean is 'expected value'

• Variance = n.p.(1-p)

Quiz

Is a Distribution Normal?

QQ plot

Compare quantiles of set of values against

QQ plot

Positive skew

QQ plot

Fat tails – less spread

Summary

- Normal (or Gaussian) distribution
 - Symmetric
 - Two parameters mean and variance (std dev)
 - Arises from 'errors' or 'combined variation'

- Other distributions also have a Variance
 - How spread out is the distribution?
 - Variance = (Standard deviation)²
- QQPlot uses quantiles to see whether a data fits a distribution (such as normal)

Recommended video: https://www.youtube.com/watch?v=RKdB1d5-OE0