TU 12 : Modeling of mechanical systems - Part II Hamiltonian

Master 1 - ISC, Robotics and Connected Objects

Vincent Hugel

Generalized momentum

• The generalized momentum associated with the coordinate q_j is defined as :

$$p_j = \frac{\partial L}{\partial \dot{q}_j}$$

- ullet p_j is called the conjugate momentum or canonical momentum to q_j
- \bullet q_i , p_i are conjugate, or canonical, variables
- if q_i is a spatial coordinate, p_i is a linear momentum
- if q_j is an angle, p_j is an angular momentum
- Example, if $L = \frac{1}{2}m\dot{x}^2$, $p = m\dot{x}$

Invariant transformations and Noether's Theorem

Noether's theorem: For each symmetry of the Lagrangian, there is a conserved quantity

Transformations where the equations of motion are invariant are called invariant transformations.

Variables that are invariant to a transformation are called cyclic variables

A cyclic coordinate is one that does not explicitly appear in the Lagrangian $(\frac{\partial L}{\partial q_i} = 0)$.

The term cyclic is a natural name when the system has cylindrical or spherical symmetry.

In Hamiltonian mechanics a cyclic coordinate often is called an ignorable coordinate.

Invariant transformations and Noether's Theorem

Ignoring the external and Lagrange multiplier terms, we have :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{j}} \right) - \frac{\partial L}{\partial q_{j}} = \sum_{k=1}^{m} \lambda_{k} \frac{\partial g_{k}}{\partial q_{j}} (q, t) + Q_{j}^{EXC} = 0$$

$$\Rightarrow \dot{p}_{j} = \frac{\partial L}{\partial q_{j}}$$

If q_j is cyclic (does not appear in L), then $\frac{\partial L}{\partial q_j}=0$, $\dot{p}_j=0$. \Rightarrow if a generalized coordinate does not occur in the Hamiltonian, then the corresponding generalized momentum is conserved.

A cyclic coordinate has a **constant** corresponding momentum p_i for the Hamiltonian as well as for the Lagrangian.

Kinetic energy in generalized coordinates

In terms of fixed rectangular coordinates, the kinetic energy for Nbodies, each having three degrees of freedom, is expressed as :

$$T(q, \dot{q}, t) = \frac{1}{2} \sum_{\alpha=1}^{N} \sum_{i=1}^{n} m_{\alpha} \dot{x}_{\alpha, i}^{2}$$

As $x_{\alpha,i}$ depends on q_j and $t: x_{\alpha,i} = x_{\alpha,i}(q_j,t)$,

$$\dot{x}_{\alpha,i} = \sum_{j=1}^{s} \frac{\partial x_{\alpha,j}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial x_{\alpha,i}}{\partial t}
T(q, \dot{q}, t) = \sum_{\alpha} \sum_{i,j,k} \frac{1}{2} m_{\alpha} \frac{\partial x_{\alpha,i}}{\partial q_{j}} \frac{\partial x_{\alpha,i}}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k}
+ \sum_{\alpha} \sum_{i,j} m_{\alpha} \frac{\partial x_{\alpha,i}}{\partial q_{j}} \frac{\partial x_{\alpha,i}}{\partial t} \dot{q}_{j}
+ \sum_{\alpha} \sum_{i,j} \frac{1}{2} m_{\alpha} \left(\frac{\partial x_{\alpha,i}}{\partial t} \right)^{2}$$

Kinetic energy in generalized coordinates

We can write:

$$T(q, \dot{q}, t) = T_2(q, \dot{q}, t) + T_1(q, \dot{q}, t) + T_0(q, t)$$

For scleronomic systems with velocity-independent potential:

$$T = T_2 = \frac{1}{2} \sum_k \dot{q}_k p_k = \frac{1}{2} \dot{q}.p$$

Proof:

•
$$T_2 = \sum_{j,k} a_{jk} \dot{q}_j \dot{q}_k$$
, $\frac{\partial T_2}{\partial \dot{q}_m} = \sum_k a_{mk} \dot{q}_k + \sum_j a_{jm} \dot{q}_j$

$$\bullet \sum_{m} \dot{q}_{m} \frac{\partial T_{2}}{\partial \dot{q}_{m}} = \sum_{m,k} a_{mk} \dot{q}_{k} \dot{q}_{m} + \sum_{m,j} a_{jm} \dot{q}_{j} \dot{q}_{m} = 2 \sum_{k,j} a_{kj} \dot{q}_{k} \dot{q}_{j} = 2 T_{2}$$

•
$$\sum_{m} \dot{q}_{m} \frac{\partial T_{1}}{\partial \dot{q}_{m}} = T_{1}$$

$$\bullet \sum_{m} \dot{q}_{m} \frac{\partial T_{0}}{\partial \dot{q}_{m}} = 0$$

Kinetic energy in generalized coordinates

Proof (continued):

- when the transformed system is scleronomic, $\frac{\partial x_{\alpha,i}}{\partial t}=0$, then $T=T_2$: the kinetic energy is a quadratic function of the generalized velocities \dot{q}_j
- if the potential U is velocity-independent, $p_m = \frac{\partial L}{\partial \dot{q}_m} = \frac{\partial T}{\partial \dot{q}_m} = \frac{\partial T_2}{\partial \dot{q}_m}$
- $\sum_{m} \dot{q}_{m} \frac{\partial T_{2}}{\partial \dot{q}_{m}} = 2T_{2} = \sum_{m} \dot{q}_{m} p_{m} \Rightarrow T_{2} = \frac{1}{2} p. \dot{q}.$

Generalized energy and the Hamiltonian

Jacobi's Generalized Energy is defined as :

$$h(q, \dot{q}, t) = \sum_{j} \left(\dot{q}_{j} \frac{\partial L}{\partial \dot{q}_{j}} \right) - L(q, \dot{q}, t)$$
(1)

The Hamiltonian function is equal to the generalized energy expressed in terms of the conjugate variables (q_i, p_i) :

$$H(q, p, t) = h(q, \dot{q}, t) = \sum_{j} \dot{q}_{j} p_{j} - L(q, \dot{q}, t) = p.\dot{q} - L$$
 (2)

Generalized energy theorem:

• The total time derivative of the Lagrangian $L(q, \dot{q}, t)$ is :

$$\frac{dL}{dt} = \sum_{j} \frac{\partial L}{\partial q_{j}} \dot{q}_{j} + \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \ddot{q}_{j} + \frac{\partial L}{\partial t}$$

Generalized energy and the Hamiltonian

Generalized energy theorem (continued) :

The Lagrangian for a conservative force is given by :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) - \frac{\partial L}{\partial q_{j}} = \sum_{k=1}^{m} \lambda_{k} \frac{\partial g_{k}}{\partial q_{j}}(q, t) + Q_{j}^{EXC}$$

• using both equations and replacing $\frac{\partial L}{\partial q_i}$ in the 1st one leads to :

$$\frac{dH}{dt} = \sum_{j} \dot{q}_{j} \left[\sum_{k=1}^{m} \lambda_{k} \frac{\partial g_{k}}{\partial q_{j}}(q, t) + Q_{j}^{EXC} \right] - \frac{\partial L(q, \dot{q}, t)}{\partial t}$$

• if the external non-potential forces are zero :

$$\frac{dH}{dt} = -\frac{\partial L}{\partial t} \tag{3}$$

Hamiltonian invariance

$$\frac{dH}{dt} = -\frac{\partial L}{\partial t}$$

- if the Lagrangian is not an explicit function of time, and
- if the external non-potential forces are zero,
- then
- both the Hamiltonian H(q, p, t) and generalized energy $h(q, \dot{q}, t)$ are constants of motion

Generalized energy and total energy

$$L(q, \dot{q}, t) = T_2(q, \dot{q}, t) + T_1(q, \dot{q}, t) + T_0(q, t) - U(q, t)$$

If the potential energy does not depend explicitly on \dot{q}_j , then

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}} = \frac{\partial T}{\partial \dot{q}_{j}}$$

$$H(q, p, t) = p.\dot{q} - L = \sum_{j} \frac{\partial T}{\partial \dot{q}_{j}} \dot{q}_{j} - L$$

$$= \sum_{j} \frac{\partial T_{2}}{\partial \dot{q}_{j}} \dot{q}_{j} + \sum_{j} \frac{\partial T_{1}}{\partial \dot{q}_{j}} \dot{q}_{j} + \sum_{j} \frac{\partial T_{0}}{\partial \dot{q}_{j}} \dot{q}_{j} - L$$

$$= 2T_{2} + T_{1} - (T_{2} + T_{1} + T_{0} - U) = T_{2} - T_{0} + U$$

$$= (T + U) - (T_{1} + 2T_{0})$$

$$= E - (T_{1} + 2T_{0})$$

Generalized energy and total energy

$$H(q, p, t) = E - (T_1 + 2T_0)$$

E : total energy (T + U)

- in general, $H(q, p, t) \neq E$
- ullet if the transformation is scleronomic, $T_1=T_0=0$, and if the potential energy does not depend explicitly on \dot{q}_j , H(q, p, t) = E

Hamiltonian mechanics plays a fundamental role in modern physics (quantum or statistical physics).

Generalized energy and total energy

To go further:

- Hamilton-Jacobi equation : $\frac{\partial S}{\partial t} + H(q, p, t) = 0$, with action functional $S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$, obtained with principle of least action with variations at both ends of the path.
- Poisson bracket representation of Hamiltonian mechanics
- Hamilton equations of motion
- Liouville's theorem
- Hamilton-Jacobi theory

