Statistics Methods in Finance Homework 7

0786009 廖家鴻 DUE 2020/12/17 00:00

Outline (HW7 questions)

- 1.(30%) Logistic regression for Y=0 (no damage) and Y>0 (some damage)
- 2.(40%) Multinomial logistic regression for the damage score
- 3.(30%) Ordinary logistic regression for the damage score

1. Logistic regression for Y=0 and Y>0

Before answering to the 3 questions, I split the dataset into training-data and test-data. (training: test = 80: 20)

```
df2 = df.copy()
X2 = df2.drop(['Damage'], axis=1)
y2 = df2['Damage']
X2_train, X2_test, y2_train, y2_test = sklearn.model_selection.train_test_split(X2, y2, test_size = 0.20)
```

```
'''Method2: Use statsmodels'''
import statsmodels.api as sm
LR1_sm = sm.Logit(y1_train, X1_train).fit()
LR1_sm.summary()
yhat = LR1_sm.predict(X1_test)
pred_LR1_sm = list(map(round, yhat))
print(pred_LR1_sm)
```

Logit Regression Results								
Dep. Variable:		Dan	nage No.	Observations:		128		
Model:		Lo	git Df	Residuals:		124		
Method:			MLE Df	Model:		3		
Date:	Tu	ue, 15 Dec 2	2020 Pse	udo R-squ.:		0.1057		
Time:		20:29	:22 Log	-Likelihood:		-60.137		
converged:		1	rue LL-	Null:		-67.241		
Covariance Type:		nonrob	oust LLR	p-value:		0.002634		
==========	coef	std err	z	P> z	[0.025	0.975]		
Date -0	.1153	0.594	-0.194	0.846	-1.279	1.049		
Temp -0	.0209	0.053	-0.395	0.693	-0.125	0.083		
Conct 0	.0021	0.003	0.658	0.511	-0.004	0.009		
Count 0	.3630	0.109	3.335	0.001	0.150	0.576		
===========				==== ===== ==		========		

From the left result table, we can find that only the coefficient of "Count" is significant.

The prediction results of test data are shown below:

2. Multinomial logistic regression for the damage score

MNLogit Regression Results								
Dep. Variabl Model: Method:		MNLo	ogit Df R MLE Df M	Observations: Residuals: Model:		128 108 16		
Date:	lu	e, 15 Dec		ıdo R-squ.:		0.05582		
Time:		22:5	U	Likelihood:		-194.04		
converged:	-			lull:		-205.51		
Covariance 1	7.	nonrol		p-value:		0.1153		
Damage=1	coef	std err	z	P> z	[0.025	0.975]		
const	-1.8410	1.195	-1.540	0.124	-4.184	0.502		
Date	-0.1975	0.805	-0.245	0.806	-1.775	1.380		
Temp	-0.0440	0.074	-0.593	0.553	-0.190	0.101		
Conct	0.0027	0.005	0.582	0.560	-0.006	0.012		
Count	0.3651	0.122	3.001	0.003	0.127	0.604		
Damage=2	coef	std err	z	P> z	[0.025	0.975]		
const	-0.6004	1.160	-0.517	0.605	-2.875	1.674		
Date	-0.0003	0.797	-0.000	1.000	-1.563	1.562		
Temp	0.0494	0.077	0.641	0.522	-0.102	0.200		
Conct	0.0019	0.005	0.394	0.693	-0.007	0.011		
Count	0.4053	0.123	3.282	0.001	0.163	0.647		
Damage=3	coef	std err	Z	P> z	[0.025	0.975]		
const	-0.2498	1.055	-0.237	0.813	-2.317	1.818		
Date	-0.3604	0.748	-0.482	0.630	-1.826	1.105		
Temp	-0.0209	0.069	-0.303	0.762	-0.156	0.114		
Conct	-0.0004	0.004	-0.088	0.930	-0.009	0.008		
Count	0.2361	0.124	1.911	0.056	-0.006	0.478		
Damage=4	coef	std err	Z	P> z	[0.025	0.975]		
const	-0.2319	1.107	-0.210	0.834	-2.402	1.938		
Date	-0.4078	0.776	-0.525	0.599	-1.929	1.113		
Temp	0.0193	0.074	0.260	0.795	-0.126	0.164		
Conct	0.0011	0.005	0.242	0.809	-0.008	0.010		
Count	0.3906	0.122	3.206	0.001	0.152	0.629		
========	========	=======	========		=======	=========		

```
'''Method2: Use statsmodels'''
LR2_sm=sm.MNLogit(y2_train,sm.add_constant(X2_train))
result=LR2_sm.fit()
stats1=result.summary()
```

From the left result table, we can find that only the coefficients of "Count" are relatively significant.

The prediction results of test data are shown below:

3. Ordinary logistic regression for the damage score

```
'''method 1-A'''
from statsmodels.miscmodels.ordinal_model import OrderedModel
LR3_sm = OrderedModel.from_formula("Damage ~ 0 + Date + Temp + Conct + Count",
LR3_sm_ord = LR3_sm.fit(method='bfgs')
LR3_sm_ord.summary()
pred_LR3_sm_ord = LR3_sm_ord.model.predict(LR3_sm_ord.params, exog=X2_test[['Date', 'Temp', 'Conct', 'Count']])
# print(pred_LR2_sm_ord)
pred_LR3_sm_ord = pred_LR3_sm_ord.argmax(1)
print(pred_LR3_sm_ord)
```

OrderedModel Results							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model:	Maxi Tu	_	del AIC: bod BIC: 020	ikelihood:		-====== -202.60 421.2 444.0	
	coef	std err	z	P> z	[0.025	0.975]	
Date Temp Conct Count 0.0/1.0 1.0/2.0 2.0/3.0 3.0/4.0	-0.2424 0.0124 -0.0004 0.1090 -1.5467 -0.1083 -0.3074 0.0616	0.426 0.040 0.003 0.049 0.653 0.195 0.193 0.175	-0.570 0.310 -0.150 2.234 -2.369 -0.557 -1.589 0.352	0.569 0.757 0.881 0.025 0.018 0.578 0.112 0.725	-1.077 -0.066 -0.005 0.013 -2.827 -0.490 -0.687 -0.282	0.592 0.091 0.005 0.205 -0.267 0.273 0.072 0.405	

Again, from the left result table, we can find that only the coefficient of "Count" is relatively significant.

The prediction results of test data are shown below:

The accuracy here is a little bit better than the multinomial logistic regression