一、是非判断	(对的在括号内打" $√$ ",	错的打"×")
、 		

- 1. 射极输出器的特点是放大倍数接近 1, 输入电阻小, 输出电阻大。 (X)
- 2. 对四输入端的译码器, 其输出端最多为8个。 (1)
- (\checkmark) 3. 三态门有三种输出状态,分别是高电平、低电平和高阻态。
- 4. 时序逻辑电路的特点是:输出不仅取决于当前输入的状态还与电路原来的状态有关。
- (X)5. 通常要求电压放大电路的输入电阻要小,输出电阻要大。
- 6. 只要放大电路的静态工作点设置合适、输出波形就不会失真。 (X)
- 7. 一正弦波加到非门的输入端,则非门的输出端是与输入波形反相的正弦波。(🗙)
- 8. JK 触发器和 D 触发器是双稳态触发器。 (🗸)

二、单项选择

- 某放大电路中晶体管三个电极的电位分别为: Vi=4V, V2=3.3V, V3 =10V,则该晶 体管为(
 - A. NPN型硅管, 2脚为E极 X NPN型锗管, 2脚为C极
 - ► PNP型硅管, 3脚为C极 ► PNP型锗管, 1脚为E极
- 2. 无论 J-K 触发器原来状态如何, 当输入端 J=1、K=0 时, 在时钟脉冲作用下, 其输出端 Q 的状态为(
 - C. 保持不变 A. 0 B. 1 D. 不能确定
- 3. 左下图所示放大电路中,若旁路电容 $C_{\mathbb{E}}$ 开路,则电路的电压放大倍数的绝对值 $|A_{u}|$ 及电路 的输入电阻r的变化分别为(
 - A. $|A_u|$ 变大, r_i 变小
- B. $|A_{ij}|$ 变小, r_{ij} 变大

 - C. $|A_u|$ 变大, r_i 变大 D. $|A_u|$ 变小, r_i 变小

 (\checkmark)

★ 4. 以下关于射极输出器特性的说法中正确的是()

A.射极输出器没有电压放大能力, 但具有电流放大能力

- X.射极输出器的 Ü。与 Ü,的相位相反
- ★.射极输出器的输入电阻不大,一般约为 1000Ω
- ▶射极输出器的带负载能力不强
- 5. 共射极单管放大电路及输入输出电压如下图所示,输出出现失真,这是由于放大器的静态工作点 Q 设置(____),可以采用(_______)方法解决此问题。

- A. 过高, 增大 RB
- B. 过低,减小 RB
- C. 过高, 增大 Rc
- D. 过低, 减小 Rc

 \bigcirc 6.已知下图所示 JK 触发器 C 端输入的时钟脉冲频率为 1000Hz,则 Q 端输出的脉冲频率为

()

- A. 100Hz
- B. 500Hz
- C. 1000Hz
- D. 2000Hz

7右图所示波形图的逻辑关系为()

- A. $F = A \cdot B$
- B. F = A + B
- C. $F = \overline{A \cdot B}$
- D. $F = \overline{A + B}$

三、填空题(将答案填入空格内)

- 1. 共发射极放大器输出波形的正半周缩顶了,则放大器产生的失真是**蒸止**失真,为消除这种失真,应将静态工作点 **上 纷**。
- 2. 右图所示的逻辑电路,输出与输入的逻辑函数表达式为 F = **AtBt C** 当输入 ABC = 011 时,输出 F = **O** 。

- 3.某晶体三极管三个电极的电位分别是: $V_i = 2V_1 V_2 = 1.7V_1$, $V_3 = -2.5V_1$, 可判断该三极管管脚"1" 为 **发** $V_1 = V_2 = V_1$, 管脚"2"为 $V_2 = V_1$, 管脚"3"为 **集 也** 极,且属于 **绪** 材料 **PNP** 型三极管。
- 4. 电路如图所示,已知 $U_{\text{CC}}=12\text{V}$, $R_{\text{C}}=3\text{k}\Omega$, $\beta=40$ 且忽略 U_{BE} ,若要使静态时 $U_{\text{CE}}=9\text{V}$,则 $R_{\text{B}}=$ ____480 k Ω _。

 $U_{cc} - R_c I_c = 12 - 40 \times 3 \times \times I_b = U_{cE} = 9$ $I_{8} = \frac{1}{4} \times 10^{-4} = U_{cc} / R_b = 12 / R_b$

5. 辑电路如图所示,设初始状态为"0",在 t_1 、 t_2 、 t_3 、 t_4 四个瞬间,输出 Q 是"0" 的瞬间分别 为 t_4 、 t_3 。

6. 下图所示电路的输出函数 *F*= ___**A 🕀 B**_。

7. 右图所示四位右移寄存器,其最右边一位输出接至右移串 行数据输入端 D_{SR} 。设初始状态为 $Q_DQ_CQ_BQ_A=1100$,则当 第 5 个 CP 脉冲作用后, $Q_DQ_CQ_BQ_A=$ **ONO**。

四、JK 触发器构成的逻辑电路和输入波形如图所示, Q_0 , Q_1 的初始状态均为"0"

试求:

(1) 写出触发器的驱动方程与状态方程;

(2) 并画出 Qo和 Q1的波形;

解: (1) 驱动方程: Jo=ADQ", Ko=1

J.= Q." k.=

状态方程: Q^m=(A@Q")Q"

Q" = Q" Q"

五、如图所示电路,试求 Q_1 、 Q_2 和 Y,并画出 Q_1 、 Q_2 和 Y 的波形。设两个触发器的初始状态 均为 0。

FF1

驱动方经; J.=1 K.=0

J== 0," K= Q,"

状态方程:QM=1

Q14 =

СР

Q" Q" + Q"Q"

= Q:

CP _____

1J

FF2

 \bar{Q}

解:

六、写出如下所示逻辑电路图中各触发器的驱动方程和状态方程,列出状态转换表(包括有

驱动方程: Jo=Q" Ko=1

J. = Q: K =1

状态方程:Qnm_ Qnm_ Qn Qn

Q"+ = Q" Q"

1. 12.4 ac ac					
工作状态	Q;	Q:	Œ",	Œ,,	
有效状态	0	0	0	a	
	0		۱ ۱	0	
	٨	0	0	0	
无效状态	,	1	•	ð	

下降沿(龙边沿)触发 能自启动

效状态与无效状态),画出波形图,指出是什么类型的计数器(触发类型,能否自启动, 几进制)。

状态转换表

七、放大电路如图所示:

- (1) 画出放大电路的微变等效电路;
- (2) 已知 β =100, r_{be} =1.5 k Ω , 求电压放大 倍数 Au、输入电阻 ri、输出电阻 ro

(2)
$$\dot{U}_i = r_{be} \dot{I}_B + C_{i+\beta} \cdot R_L' \dot{I}_b$$

 $\dot{U}_0 = (H\beta) R_L' \dot{I}_b$

R' = RE // RL = 500 Q

$$Au = \frac{\dot{U}_0}{\dot{U}_i} = \frac{(1+\beta)R_L^i}{r_{ke} + (1+\beta)R_L^i} = 0.9712$$

