1. (15 points) Evaluate each of the following limits.

(a)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{4x+5}-3}$$

(b)
$$\lim_{x \to 4^+} \frac{|4-x|}{x^2 - 7x + 12}$$

(c)
$$\lim_{x \to 0} \left(\frac{\sin x}{x} + \frac{\sin\left(x + \frac{\pi}{2}\right)}{x + \frac{\pi}{2}} \right)$$

- (d) $\lim_{x \to \infty} 2\arctan(3x)$
- (e) $\lim_{x \to \infty} \frac{e^x + \cos x}{e^x}$
- **2.** (4 points) Find both horizontal asymptotes of the function $f(x) = \frac{4x-3}{\sqrt{25x^2+4x}}$.
- **3.** (5 points) Use the limit definition of the derivative to find f'(x), given that $f(x) = \frac{2}{3-5x}$
- **4.** (4 points) The function $f(x) = \frac{|x-1|(x+1)|}{x^2-1}$ has two discontinuities. Find them and identify their type (infinite, jump, or removable.)
- **5.** (15 points) Find $\frac{dy}{dx}$ of each of the following. Do not simplify.
 - (a) $y = x^5 + 5^x + 5^5$
 - (b) $y = \frac{\sec x}{x^2 + 1}$
 - (c) $y = \ln\left(\sin(x^2)\right)$
 - (d) $y = \arctan(\sqrt{x})$
 - (e) $y = (x+4)^{x+\cos x}$
- **6.** (4 points) You are given the curve $y = \frac{x+1}{1-2x}$.
 - (a) Find the equation of the tangent line to this curve at x = 1.
 - (b) How many points are there on the curve that have a horizontal tangent line?
- 7. (4 points) Find both points on the curve $x^2 + 2xy + 4y^2 = 12$ that have tangent lines with slope equal to $-\frac{1}{2}$.
- 8. (12 points) You are given the following function f and its first two derivatives f' and f''.

$$f(x) = \frac{(x+1)^2}{(x-1)^2} \qquad f'(x) = \frac{-4(x+1)}{(x-1)^3} \qquad f''(x) = \frac{8(x+2)}{(x-1)^4}$$

- (a) Find each of the following for f.
 - 1. Domain
 - 2. Intercepts, if any
 - 3. Asymptotes, if any
 - 4. Intervals of increase and decrease
 - 5. Local extrema, if any
 - 6. Intervals of upward and downward concavity
 - 7. Points of inflection, if any
- (b) Sketch the curve f, identifying any points or asymptotes listed in your answers above.
- 9. (5 points) A cylinder made of soft clay has a height of 9 cm and a radius of 2 cm. It is sitting on a potter's wheel. As the potter presses down on the clay, the cylinder's height decreases by 1 cm/s, but the total volume of clay is unchanging. What is the rate of change of the radius of the cylinder when it is 4 cm tall? (Note: The volume of a cylinder is given by $V = \pi r^2 h$.)
- 10. (5 points) You are told that a right triangle whose legs (shorter sides) are a and b must have a hypotenuse equal to 1. Find a and b so that the quantity a^2b is maximized.
- 11. (5 points) Use the limit of a Riemann sum to evaluate the following definite integral.

$$\int_0^2 \left(3x^2 + x\right) dx$$

Summation formulas are provided as follows:

$$\sum_{i=1}^{n} 1 = n, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+2)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

- **12.** (4 points) It is given that $\int_{1}^{5} (1+f(x)) dx = 11$ and $\int_{7}^{5} 2f(x) dx = 8$. Find $\int_{1}^{7} f(x) dx$
- 13. (12 points) Evaluate the following integrals

(a)
$$\int \frac{x^2 + 6x^{-2}}{x^2} dx$$

(b)
$$\int \frac{\cos^2 x + \sin^2 x}{\cos^2 x} dx$$

(c)
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$

$$(d) \int_1^{e^2} \frac{3}{x} dx$$

- **14.** (3 points) Let $f'(x) = 30x^9 8x^3 + 7$. Given that f(1) = 2, find f(x).
- **15.** (3 points) Let $f(x) = \int_{1}^{x} \sqrt{t^2 + 5} dt$.
 - (a) Find f(1).
 - (b) Find f'(2).

Answers

1. (a)
$$\frac{3}{2}$$
; (b) 1; (c) $1 + \frac{2}{\pi}$; (d) π ; (e) 1

2.
$$y = \frac{4}{5}, y = -\frac{4}{5}$$

3.
$$f'(x) = \frac{10}{(3-5x)^2}$$

4. Removable discontinuity at x = -1; jump discontinuity at x = 1.

5. (a)
$$5x^4 + 5^x \ln 5$$
; (b) $\frac{(x^2+1)\sec x \tan x - 2x\sec x}{(x^2+1)^2}$; (c) $\frac{2x\cos(x^2)}{\sin(x^2)}$; (d) $\frac{1}{1+\sqrt{x^2}} \cdot \frac{1}{2\sqrt{x}}$; (e) $(x+4)^{x+\cos x} \left[(1-\sin x)\ln(x+4) + (x+\cos x)\frac{1}{x+4} \right]$

6. (a)
$$y = 3x - 5$$
; (b) None

7.
$$(2,1)$$
 and $(-2,-1)$

8. (a) 1. $\mathbb{R}\setminus\{1\}$; 2. (-1,0) and (0,1); 3. x=1 and y=1; 4. Increasing on (-1,1) and decreasing on $(-\infty,-1)\cup(1,\infty)$; local minimum at (-1,0); Concave up on $(-2,1)\cup(1,\infty)$ and concave down on $(-\infty,-2)$; Point of inflection at $(-2,\frac{1}{9})$; (b) Sketch as follows:

9.
$$\frac{3}{8}$$
 cm/s

10.
$$a = \sqrt{\frac{2}{3}}, b = \sqrt{\frac{1}{3}}$$

- 13. (a) $x 2x^{-3} + C$; (b) $\tan x + C$; (c) $\frac{\pi}{6}$; (d) 6
- $14. \ 3x^{10} 2x^4 + 7x 6$
- 15. (a) 0; (b) 3