Supplemental Materials for "Minimizing post-shock forecasting error through aggregation of outside information"

Jilei Lin, Ziyu Liu, and Daniel J. Eck

Department of Statistics, University of Illinois at Urbana-Champaign

August 28, 2020

In the supplementary materials, we provide details for some procedures that are not discussed in the manuscript. Section 1 provides statistical evidence for approximate independence between the shock-effects nested in 2008 September time series in the analysis of Conoco Phillips stock. Section 2 details the algorithms of \mathcal{B}_f and \mathcal{B}_u . Section 3 lists the tables for simulations under \mathcal{M}_1 , whose results are discussed in Section 4 in the manuscript. Section 4 lists an example for the non-uniqueness of \mathbf{W}^* when p < n, where \mathbf{W}^* is very likely to lie in the boundary of parameter space \mathcal{W} .

1 Supplementary materials for data analysis

The independence of the estimated September, 2008 shock-effects are further tested using likelihood ratio test (LRT) based on their estimated covariance matrix. The estimated covariance matrix is

$$\hat{\mathbf{\Sigma}} = \left(\begin{array}{ccc} 4.836 & 0.418 & -0.552 \\ 0.418 & 4.269 & 0.161 \\ -0.552 & 0.161 & 4.170 \end{array} \right).$$

with degrees of freedoms 14. Using the LRT for independence between blocks of random variables [?, Section 10.2], the LRT test statistic is 0.367 with p-value of 0.545. Therefore, we do not reject the null hypothesis that the three estimated shock-effects are independent under a significance level of 5%.

^{*}jileil2@ilinois.edu

[†]zivuliu3@illinois.edu

[‡]dje13@illinois.edu

2 Bootstrap algorithms of \mathcal{B}_f and \mathcal{B}_u

Algorithm 1 presents the algorithms for the fixed donor pool bootstrapping \mathcal{B}_f and Algorithm 2 outlines the steps for the unfixed donor pool bootstrapping \mathcal{B}_u .

Algorithm 1: Fixed donor pool bootstrapping \mathcal{B}_f for estimation of shock-effect estimators

```
Input: B – the number of parametric bootstraps \{(y_{i,t},\mathbf{x}_{i,t})\colon i=2,\ldots,n+1,t=0,\ldots,T_i\} – the data \{T_i^*\colon i=1,\ldots,n+1\} – the time point just before the shock \{\hat{\varepsilon}_{i,t}\colon t=1,\ldots,T_i\} – the collection of residuals for t=1,\ldots,T_i \{\hat{\eta}_i,\hat{\alpha}_i,\hat{\phi}_i,\hat{\theta}_i,\hat{\beta}_i\colon i=2,\ldots,n+1\} – the OLS estimates Result: The sample variance of bootstrapped adjustment estimator, inverse-variance weighted estimator, and weighted-adjustment estimator.

1 for b=1:B do
2 | for i=2,\ldots,n+1 do
3 | Sample with replacement from \{\hat{\varepsilon}_{i,t}\colon t=1,\ldots,T_i\} to obtain \{\hat{\varepsilon}_{i,t}^{(b)}\colon t=1,\ldots,T_i\}
```

4 Define $y_{i,0}^{(b)} = y_{i,0}$ 5 **for** $t = 1, ..., T_i$ **do** 6 Compute $y_{i,t}^{(b)} = \hat{\eta}_i + \hat{\alpha}_i 1(t = T_i^* + 1) + \hat{\phi}_i y_{i,t-1}^{(b)} + \theta_i' \mathbf{x}_{i,t} + \beta_i' \mathbf{x}_{i,t-1} + \hat{\varepsilon}_{i,t}^{(b)}$

7 | end 8 | Compute $\hat{\alpha}_i^{(b)}$ based on OLS estimation with $\{(y_{i,t}^{(b)}, \mathbf{x}_{i,t}) : t = 0, \dots, T_i\}$

Compute the *b*th shock-effect estimate $\hat{\alpha}_{\text{est}}^{(b)}$ for est $\in \{\text{adj, wadj, IVW}\}$

11 end

9

12 Compute the sample variance of $\{\hat{\alpha}_{\text{est}}^{(b)}: b = 1, \dots, B\}$ for est $\in \{\text{adj, wadj, IVW}\}$

Algorithm 2: Unfixed donor pool bootstrapping \mathcal{B}_u for estimation of shock-effect estimators

```
Input: B – the number of parametric bootstraps \{(y_{i,t}, \mathbf{x}_{i,t}) : i = 2, \dots, n+1, t=0, \dots, T_i\} – the data \{T_i^* : i = 1, \dots, n+1\} – the time point just before the shock \{\hat{\varepsilon}_{i,t} : t = 1, \dots, T_i\} – the collection of residuals for t = 1, \dots, T_i \{\hat{\eta}_i, \hat{\alpha}_i, \hat{\phi}_i, \hat{\theta}_i, \hat{\beta}_i : i = 2, \dots, n+1\} – the OLS estimates
```

Result: The sample variance of bootstrapped adjustment estimator, inverse-variance weighted estimator, and weighted-adjustment estimator.

```
1 for b = 1 : B do
          Sample n elements with replacement from I = \{2, \ldots, n+1\} to form I^{(b)}, where elements of I^{(b)}
 \mathbf{2}
           are not necessarily unique in terms of their indices
          for i \in I^{(b)} do
 3
               Sample with replacement from \{\hat{\varepsilon}_{i,t}: t=1,\ldots,T_i\} to obtain \{\hat{\varepsilon}_{i,t}^{(b)}: t=1,\ldots,T_i\}
 4
               Define y_{i,0}^{(b)} = y_{i,0}
 5
               for t = 1, \ldots, T_i do
 6
                    Compute y_{i,t}^{(b)} = \hat{\eta}_i + \hat{\alpha}_i 1(t = T_i^* + 1) + \hat{\phi}_i y_{i,t-1}^{(b)} + \theta_i' \mathbf{x}_{i,t} + \beta_i' \mathbf{x}_{i,t-1} + \hat{\varepsilon}_{i,t}^{(b)}
 7
 8
               Compute \hat{\alpha}_i^{(b)} based on OLS estimation with \{(y_{i,t}^{(b)}, \mathbf{x}_{i,t}) : t = 0, \dots, T_i\}
 9
10
          Compute the bth shock-effect estimate \hat{\alpha}_{\text{est}}^{(b)} for est \in \{\text{adj, wadj, IVW}\}\
11
```

12 end 13 Compute the sample variance of $\{\hat{\alpha}_{\text{est}}^{(b)} \colon b=1,\ldots,B\}$ for est $\in \{\text{adj,wadj,IVW}\}$

3 Simulations for \mathcal{M}_1

In this section, we present the simulation results for \mathcal{M}_1 . To make it comparable to \mathcal{M}_2 , we set $\mu_{\alpha} = 50$ with other parameter setup the same as that of \mathcal{M}_2 . The corresponding tables are attached as follows.

4

Table 1: 30 Monte Carlo simulations of \mathcal{M}_1 for \mathcal{B}_u with varying n and σ_{α}

			Guess		LOOCV with k random draws			Distance to y_{1,T_1^*+1}				
n	σ_{lpha}	$\delta_{\hat{lpha}_{ m adj}}$	$\delta_{\hat{lpha}_{\mathrm{wadj}}}$	$\delta_{\hat{lpha}_{ ext{IVW}}}$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{adj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{wadj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{ ext{IVW}}})$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	
	5	1 (0)	1 (0)	1 (0)	0.97 (0.01)	0.97 (0.01)	0.97 (0.01)	50.44 (3.04)	14.42 (2.64)	14.58 (2.69)	14.37 (2.64)	
	10	1 (0)	1(0)	1 (0)	0.93(0.02)	0.93(0.02)	0.93(0.02)	51.17 (3.43)	16.97(2.88)	16.82(2.91)	17.04(2.87)	
5	25	1 (0)	1 (0)	1 (0)	0.85(0.02)	0.83(0.03)	0.85(0.02)	53.63 (5.49)	27.12(4.56)	28.8(4.26)	27.31 (4.54)	
	50	0.97(0.03)	0.97(0.03)	0.9(0.06)	0.61(0.05)	0.63 (0.05)	0.63(0.05)	63.4 (8.74)	47.94 (8.09)	52.66 (7.56)	48.28 (8.06)	
	100	0.7 (0.09)	$0.63 \ (0.09)$	$0.63 \ (0.09)$	$0.55 \ (0.05)$	0.6 (0.04)	$0.55 \ (0.05)$	92.54 (15.54)	$91.55 \ (15.74)$	$102.28\ (14.95)$	92.35 (15.7)	
	5	1 (0)	1 (0)	1 (0)	0.94 (0.02)	0.93 (0.02)	$0.93 \ (0.02)$	51.41 (2.47)	$11.95 \ (1.75)$	12.26 (1.88)	12.02 (1.78)	
	10	1 (0)	1(0)	1 (0)	0.93(0.02)	0.9(0.02)	0.92(0.02)	50.22 (3.12)	14.17(2.41)	14.54 (2.46)	14.17(2.47)	
10	25	1 (0)	0.97(0.03)	0.97(0.03)	0.79(0.03)	0.79(0.03)	0.79(0.03)	47 (5.94)	28.21(4.39)	26.37(4.8)	28.37 (4.46)	
	50	0.87 (0.06)	0.9(0.06)	0.73(0.08)	0.65 (0.04)	0.64 (0.04)	0.63 (0.04)	52.83 (9.71)	54.55 (8.17)	51.15 (8.89)	54.71 (8.26)	
	100	0.77 (0.08)	$0.73 \ (0.08)$	0.57 (0.09)	$0.47 \ (0.04)$	$0.53 \ (0.05)$	$0.47 \ (0.04)$	85.79 (17.29)	$108.57 \ (15.99)$	106.48 (16.44)	108.85 (16.09)	
	5	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.95 (0.02)	0.95 (0.02)	47.84 (2.91)	13.2 (1.81)	12.78 (1.63)	13.04 (1.82)	
	10	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.93(0.02)	0.95(0.02)	48.16 (3.24)	14.63(2)	14.14 (1.91)	14.58 (1.98)	
15	25	1 (0)	1 (0)	0.97(0.03)	0.79(0.03)	0.79(0.03)	0.79(0.03)	49.39 (4.94)	21.64 (3.28)	23.4(3.27)	21.59(3.29)	
	50	0.9 (0.06)	0.9(0.06)	0.83 (0.07)	0.57 (0.05)	0.62 (0.04)	0.55 (0.04)	56.69 (7.53)	38.83 (5.67)	45.4 (5.59)	39.2 (5.56)	
	100	0.67 (0.09)	$0.63 \ (0.09)$	$0.47 \ (0.09)$	$0.47 \ (0.04)$	$0.44 \ (0.04)$	$0.46 \ (0.04)$	85 (12.02)	$77.64\ (10.39)$	$91.43\ (10.65)$	77.98 (10.23)	
	5	1 (0)	1 (0)	1 (0)	0.98 (0.01)	0.97(0.01)	0.98 (0.01)	47.68 (3.18)	$12.86\ (1.96)$	$12.6\ (2.09)$	12.75 (1.98)	
	10	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.95(0.02)	0.95(0.02)	46.14 (3.34)	$14.31\ (1.86)$	13.74(2.1)	14.33 (1.85)	
25	25	1 (0)	1 (0)	0.97(0.03)	0.79(0.03)	0.8(0.03)	0.79(0.03)	42.26 (4.45)	21.32(2.55)	22.65 (2.87)	21.46 (2.52)	
	50	0.93 (0.05)	0.9(0.06)	0.87 (0.06)	0.62 (0.04)	0.61 (0.04)	0.63 (0.04)	44.43 (6.07)	38.19(4.48)	43.57 (4.93)	38.6 (4.44)	
	100	0.9 (0.06)	0.8 (0.07)	$0.73 \ (0.08)$	$0.53 \ (0.04)$	$0.54 \ (0.04)$	$0.51 \ (0.04)$	71.69 (9.1)	$72.64 \ (9.64)$	87.82 (9.85)	73.73 (9.57)	

J

Table 2: 30 Monte Carlo simulations of \mathcal{M}_1 for \mathcal{B}_u with varying σ and σ_{α}

		Guess			LOOCV with k random draws			Distance to y_{1,T_1^*+1}				
σ	σ_{lpha}	$\delta_{\hat{lpha}_{ m adj}}$	$\delta_{\hat{lpha}_{\mathrm{wadj}}}$	$\delta_{\hat{lpha}_{ ext{IVW}}}$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{adj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{wadj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{ ext{IVW}}})$	Original	$\hat{lpha}_{ m adj}$	$\hat{\hat{lpha}}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	
-	5	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	49.68 (1.63)	7.62 (1.21)	7.77 (1.28)	7.62 (1.24)	
	10	1 (0)	1 (0)	1 (0)	0.99(0.01)	0.99(0.01)	0.99(0.01)	48.5 (2.53)	11.95 (1.85)	11.49(2)	12.03 (1.88)	
5	25	1 (0)	1 (0)	0.93(0.05)	0.85 (0.03)	0.85 (0.03)	0.85 (0.03)	44.99 (5.78)	27.75(4.03)	26.06(4.42)	27.85(4.07)	
	50	0.9(0.06)	0.93(0.05)	0.8(0.07)	0.65 (0.03)	0.66(0.03)	0.63 (0.04)	52.5 (9.41)	54.76 (7.92)	53.73(8.17)	54.92 (7.97)	
	100	$0.73 \ (0.08)$	$0.73 \ (0.08)$	0.57 (0.09)	0.48 (0.04)	$0.51 \ (0.04)$	$0.47 \ (0.04)$	86.04 (17.13)	$110.35 \ (15.5)$	109.21 (15.79)	110.42 (15.62)	
	5	1 (0)	1 (0)	1 (0)	0.94 (0.02)	0.93 (0.02)	0.93 (0.02)	51.41 (2.47)	11.95 (1.75)	12.26 (1.88)	12.02 (1.78)	
	10	1 (0)	1 (0)	1 (0)	0.93 (0.02)	0.9(0.02)	0.92(0.02)	50.22 (3.12)	14.17(2.41)	14.54(2.46)	14.17(2.47)	
10	25	1 (0)	0.97(0.03)	0.97(0.03)	0.79(0.03)	0.79(0.03)	0.79(0.03)	47 (5.94)	28.21 (4.39)	26.37(4.8)	28.37 (4.46)	
	50	0.87(0.06)	0.9(0.06)	0.73(0.08)	0.65 (0.04)	0.64(0.04)	0.63(0.04)	52.83 (9.71)	54.55 (8.17)	51.15 (8.89)	54.71 (8.26)	
	100	0.77 (0.08)	$0.73 \ (0.08)$	0.57 (0.09)	0.47 (0.04)	$0.53 \ (0.05)$	$0.47 \ (0.04)$	85.79 (17.29)	$108.57 \ (15.99)$	106.48 (16.44)	108.85 (16.09)	
	5	0.97 (0.03)	0.93 (0.05)	0.9 (0.06)	0.77 (0.03)	0.79 (0.03)	0.77 (0.03)	56.81 (5.73)	28.42 (3.9)	28.84 (4.24)	28.31 (4)	
	10	0.97(0.03)	0.93(0.05)	0.9(0.06)	0.77(0.03)	0.79(0.03)	0.77(0.03)	55.69 (5.99)	29.55(4.17)	29.47 (4.56)	29.6 (4.26)	
25	25	0.93(0.05)	0.9(0.06)	0.87(0.06)	0.71 (0.04)	0.69(0.04)	0.69(0.04)	54.03 (7.4)	35.79(6.05)	35.34 (6.29)	35.8 (6.21)	
	50	0.8(0.07)	0.73(0.08)	0.67(0.09)	0.59(0.05)	0.59(0.05)	0.59(0.05)	58.47 (10.63)	57.13 (9.47)	53.81 (10.1)	57.46 (9.61)	
	100	0.7 (0.09)	$0.73 \ (0.08)$	0.6 (0.09)	0.48 (0.05)	$0.53 \ (0.04)$	$0.47 \ (0.04)$	89.65 (17.56)	$108.87 \ (16.85)$	$100.54\ (18.43)$	109.32 (17.01)	
	5	0.77 (0.08)	0.73 (0.08)	0.7(0.09)	0.48 (0.04)	0.49 (0.04)	0.48 (0.04)	74.3 (9.4)	56.62 (7.74)	57.8 (8.28)	56.64 (7.83)	
	10	0.77(0.08)	0.73(0.08)	0.7(0.09)	0.47(0.05)	0.49(0.04)	0.47(0.04)	73.97 (9.36)	57.3 (7.84)	57.88 (8.45)	57.29 (7.97)	
50	25	0.73 (0.08)	0.63(0.09)	0.67(0.09)	0.49 (0.04)	0.5(0.04)	0.5(0.04)	74.15 (9.79)	61.5 (8.75)	60.05 (9.58)	61.64 (8.95)	
	50	0.67 (0.09)	0.6(0.09)	0.57(0.09)	0.5(0.04)	0.55(0.04)	0.49(0.04)	77.11 (12.25)	$72.31\ (12.11)$	$71.3\ (12.48)$	72.47 (12.4)	
	100	$0.67 \ (0.09)$	0.6 (0.09)	0.5 (0.09)	0.47 (0.05)	$0.51 \ (0.04)$	$0.47 \ (0.04)$	100.81 (18.65)	$114.75 \ (18.98)$	$107.41\ (20.26)$	115.39 (19.27)	
	5	0.57 (0.09)	0.5(0.09)	0.53(0.09)	0.51 (0.04)	0.49 (0.04)	0.53 (0.05)	120.39 (16.06)	113.53 (15.4)	116.64 (16.14)	113.57 (15.53)	
	10	0.57(0.09)	0.5(0.09)	0.53(0.09)	0.52(0.05)	0.49(0.04)	0.53(0.05)	119.9 (16.04)	113.73 (15.47)	115.28 (16.51)	113.78 (15.63)	
100	25	$0.6\ (0.09)$	$0.5\ (0.09)$	0.53(0.09)	0.51 (0.04)	0.55(0.04)	0.53(0.04)	120.59 (15.93)	115.82 (15.92)	115.95 (17.06)	115.74 (16.23)	
	50	0.6(0.09)	0.47(0.09)	0.53(0.09)	0.53(0.05)	0.58(0.05)	0.53(0.04)	122.37 (17.24)	$123.37 \ (17.55)$	120.3 (18.99)	123.69 (17.93)	
	100	0.63(0.09)	0.47(0.09)	0.5(0.09)	0.47 (0.05)	$0.53\ (0.05)$	0.48(0.04)	137.56 (21.94)	145.22 (24.23)	143.1 (24.73)	145.67 (24.77)	

6

Table 3: 30 Monte Carlo simulations of \mathcal{M}_1 for \mathcal{B}_f with varying n and σ_{α}

		Guess			LOOCV with k random draws			Distance to y_{1,T_1^*+1}				
n	σ_{lpha}	$\delta_{\hat{lpha}_{ m adj}}$	$\delta_{\hat{lpha}_{\mathrm{wadj}}}$	$\delta_{\hat{lpha}_{ ext{IVW}}}$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{adj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{wadj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{ ext{IVW}}})$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	
	5	1 (0)	1 (0)	1 (0)	0.93 (0.02)	0.93 (0.02)	0.93 (0.02)	49.36 (2.51)	12.52 (2.39)	12.82 (2.25)	12.27 (2.39)	
	10	1 (0)	1(0)	1 (0)	0.89 (0.02)	0.9(0.02)	0.89(0.02)	49.62(2.89)	15.15(2.61)	14.75 (2.55)	14.93 (2.59)	
5	25	1 (0)	1 (0)	1 (0)	0.81 (0.03)	0.79(0.03)	0.81(0.03)	50.39(5.33)	28.01(3.76)	28 (3.52)	27.66 (3.72)	
	50	0.97(0.03)	0.97(0.03)	0.97(0.03)	0.66 (0.03)	0.65 (0.04)	0.67(0.03)	61.3 (8.41)	51.79 (6.68)	51.84(6.45)	51.36 (6.62)	
	100	$0.93 \ (0.05)$	0.9(0.06)	0.9(0.06)	$0.53 \ (0.05)$	$0.45 \ (0.05)$	$0.55 \ (0.05)$	102.54 (13.46)	100.42 (13.26)	99.48 (13.38)	99.81 (13.15)	
	5	1 (0)	1 (0)	1 (0)	0.93 (0.02)	0.92 (0.02)	0.93 (0.02)	52.85 (2.66)	11.93 (1.97)	13.19 (2.07)	11.85 (2.01)	
	10	1 (0)	1 (0)	1 (0)	0.89 (0.02)	0.9(0.02)	0.9(0.02)	53.22 (3)	13.55(2.1)	14.51(2.19)	13.43 (2.15)	
10	25	1 (0)	1 (0)	1 (0)	0.75 (0.04)	0.79(0.04)	0.76(0.04)	54.31 (4.77)	23.71(2.71)	21.37(3.47)	23.58 (2.72)	
	50	1 (0)	0.97(0.03)	0.77(0.08)	0.59 (0.04)	0.64 (0.04)	0.59(0.04)	58.73 (7.88)	41.53 (5.24)	37.18(6.44)	41.37 (5.15)	
	100	1 (0)	0.97 (0.03)	$0.73 \ (0.08)$	0.48 (0.05)	$0.48 \; (0.05)$	$0.48 \; (0.04)$	82.13 (12.74)	77.4 (11.24)	$72.81\ (12.65)$	77.07 (11.02)	
	5	1 (0)	1 (0)	1 (0)	0.94 (0.02)	0.93 (0.02)	0.94(0.02)	46.76(2.5)	11.39(1.4)	13.23 (1.68)	11.38 (1.39)	
	10	1 (0)	1 (0)	1 (0)	0.92 (0.02)	0.91(0.02)	0.92(0.02)	46.37(2.59)	$11.65 \ (1.56)$	13.88 (1.96)	11.66 (1.55)	
15	25	1 (0)	1(0)	1 (0)	0.81 (0.03)	0.81 (0.03)	0.81(0.03)	45.21(3.62)	$17.31\ (2.23)$	21.19(2.76)	17.16 (2.33)	
	50	1 (0)	1(0)	0.87(0.06)	0.64 (0.05)	0.67(0.04)	0.65 (0.04)	44.29(6.1)	30.7(4.15)	36.42(4.91)	31.17 (4.18)	
	100	0.9(0.06)	0.87 (0.06)	0.7 (0.09)	0.55 (0.04)	$0.52 \ (0.05)$	$0.56 \ (0.04)$	57.73 (9.79)	$61.28 \ (8.18)$	$71.42 \ (9.17)$	62.33 (8.22)	
	5	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.95(0.02)	0.95(0.02)	47.87 (3.13)	12.4 (2.09)	13.37 (1.95)	12.4 (2.09)	
	10	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.93(0.02)	0.95(0.02)	46.81 (3.5)	$14.31 \ (2.26)$	15.8(2.17)	14.23 (2.26)	
25	25	1 (0)	1 (0)	0.93(0.05)	0.74 (0.03)	0.77(0.03)	0.74(0.03)	45.32(4.84)	23.24(3.26)	25.45(3.64)	23.12 (3.23)	
	50	1 (0)	0.97(0.03)	0.77(0.08)	0.61 (0.03)	0.59(0.03)	0.6(0.03)	52.43 (6.48)	43.31 (5.03)	46.98 (6.12)	43.24 (4.93)	
	100	1 (0)	0.97(0.03)	0.67(0.09)	0.53 (0.04)	$0.53 \ (0.03)$	$0.53 \ (0.04)$	85.99 (9.26)	83.52 (9.56)	90.95 (11.69)	83.53 (9.39)	

~1

Table 4: 30 Monte Carlo simulations of \mathcal{M}_1 for \mathcal{B}_f with varying σ and σ_{α}

		Guess			LOOCV with k random draws			Distance to y_{1,T_1^*+1}				
σ	σ_{lpha}	$\delta_{\hat{lpha}_{ m adj}}$	$\delta_{\hat{lpha}_{\mathrm{wadj}}}$	$\delta_{\hat{lpha}_{ ext{IVW}}}$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{adj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{wadj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{ ext{IVW}}})$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	
-	5	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	51.6 (1.52)	6.91 (1.05)	7.35 (1.09)	6.85 (1.07)	
	10	1 (0)	1 (0)	1 (0)	0.99(0.01)	0.99(0.01)	0.99(0.01)	51.96 (2.07)	10.22(1.19)	9.5(1.47)	10.18(1.2)	
5	25	1 (0)	1(0)	1 (0)	0.79(0.03)	0.82(0.03)	0.79(0.03)	53.05 (4.27)	20.92(2.62)	18.7(3.21)	20.87(2.57)	
	50	1 (0)	1 (0)	0.87(0.06)	0.59 (0.04)	0.66 (0.04)	0.58 (0.04)	57.88 (7.51)	38.89(5.61)	36.51 (6.32)	38.74(5.51)	
	100	1 (0)	1 (0)	$0.73 \ (0.08)$	0.45 (0.04)	$0.46 \ (0.05)$	$0.46 \ (0.04)$	80.3 (12.8)	76.09 (11.54)	72.77 (12.71)	75.51 (11.37)	
	5	1 (0)	1 (0)	1 (0)	0.93 (0.02)	0.92 (0.02)	0.93 (0.02)	52.85 (2.66)	11.93 (1.97)	13.19 (2.07)	11.85 (2.01)	
	10	1 (0)	1 (0)	1 (0)	0.89 (0.02)	0.9(0.02)	0.9(0.02)	53.22 (3)	13.55(2.1)	14.51 (2.19)	13.43(2.15)	
10	25	1 (0)	1 (0)	1 (0)	0.75 (0.04)	0.79(0.04)	0.76(0.04)	54.31 (4.77)	23.71(2.71)	21.37(3.47)	23.58(2.72)	
	50	1 (0)	0.97(0.03)	0.77(0.08)	0.59 (0.04)	0.64 (0.04)	0.59(0.04)	58.73 (7.88)	41.53 (5.24)	37.18(6.44)	41.37(5.15)	
	100	1 (0)	$0.97 \ (0.03)$	$0.73 \ (0.08)$	0.48 (0.05)	$0.48 \ (0.05)$	$0.48 \ (0.04)$	82.13 (12.74)	$77.4\ (11.24)$	$72.81\ (12.65)$	$77.07 \ (11.02)$	
	5	0.97 (0.03)	0.97(0.03)	0.93 (0.05)	0.77 (0.03)	0.75(0.03)	$0.76 \ (0.03)$	58.95 (5.73)	28.82 (4.87)	30.78 (5.44)	29.02 (4.91)	
	10	0.97(0.03)	0.97(0.03)	0.93(0.05)	0.78 (0.04)	0.76 (0.04)	0.77(0.04)	59.25 (5.89)	28.98(4.93)	31.55 (5.31)	29.1(4.99)	
25	25	0.97(0.03)	0.97(0.03)	0.9(0.06)	0.67 (0.04)	0.67 (0.04)	0.67 (0.04)	61.16 (6.63)	33.6 (5.22)	35.64 (5.47)	33.34 (5.33)	
	50	0.9(0.06)	0.83 (0.07)	0.77(0.08)	0.55 (0.04)	0.59(0.04)	$0.54 \ (0.05)$	66.95 (8.6)	49.6 (6.03)	$46.13\ (7.36)$	49.25 (6.08)	
	100	0.9 (0.06)	$0.87 \ (0.06)$	0.7 (0.09)	0.49 (0.05)	$0.46 \ (0.05)$	$0.47 \ (0.05)$	89.11 (12.91)	85.23 (10.31)	$75.55 \ (13.03)$	$84.46 \ (10.25)$	
	5	0.77 (0.08)	0.6 (0.09)	0.67 (0.09)	0.62 (0.04)	0.57 (0.05)	$0.63 \ (0.04)$	77.73 (9.69)	58.31 (9.66)	61.13 (11.05)	59.11 (9.66)	
	10	0.77(0.08)	0.67 (0.09)	0.73 (0.08)	0.64 (0.04)	0.58 (0.05)	0.62 (0.04)	78.36 (9.65)	57.79 (9.73)	$61.58 \ (10.86)$	58.54 (9.74)	
50	25	0.8(0.07)	0.67 (0.09)	0.73 (0.08)	0.63 (0.04)	0.57 (0.04)	$0.61 \ (0.05)$	81.3 (9.66)	59.28 (9.82)	64.17 (10.5)	59.24 (9.98)	
	50	0.87 (0.06)	0.7 (0.09)	0.67 (0.09)	$0.51 \ (0.05)$	$0.51 \ (0.05)$	$0.53 \ (0.05)$	86.76 (10.76)	$67.58\ (10.33)$	$70.73 \ (10.98)$	$67.06 \ (10.54)$	
	100	0.87 (0.06)	0.7 (0.09)	$0.63 \ (0.09)$	0.48 (0.05)	$0.53 \ (0.04)$	$0.47 \ (0.05)$	102.61 (14.87)	$98.97 \ (12.06)$	$91.38\ (14.79)$	$98.17 \ (12.16)$	
	5	0.63 (0.09)	0.53 (0.09)	0.5(0.09)	0.55 (0.04)	0.54 (0.03)	0.53 (0.04)	123.93 (17.91)	117.54 (19.27)	122.82 (22.17)	119.19 (19.23)	
	10	0.6(0.09)	0.5 (0.09)	0.5 (0.09)	0.54 (0.04)	0.54 (0.03)	0.53 (0.04)	124.06 (17.94)	117.01 (19.28)	$122.57 \ (22.05)$	$118.62\ (19.25)$	
100	25	$0.63 \ (0.09)$	0.47(0.09)	0.5 (0.09)	0.51 (0.04)	0.53 (0.04)	0.52 (0.04)	125.25 (18.06)	115.88 (19.47)	123.94 (21.52)	$116.93\ (19.56)$	
	50	0.67 (0.09)	0.43 (0.09)	0.53 (0.09)	0.51 (0.05)	0.51 (0.04)	0.52 (0.05)	130.4 (18.23)	$119.1\ (19.58)$	128.78 (20.9)	119.01 (19.88)	
	100	0.57 (0.09)	$0.53 \ (0.09)$	$0.43 \ (0.09)$	0.49 (0.04)	$0.49 \ (0.04)$	$0.45 \ (0.04)$	143.5 (20.29)	$135.98 \ (20.53)$	$141.58 \ (21.93)$	134.9 (20.94)	

4 Simulation for the Boundary Case (p < n)

In this section, we briefly present the result for the non-uniqueness and the boundary case when p < n with the example p = 2 under \mathcal{B}_u and \mathcal{M}_2 . Proposition 1 in the main text tells that there are infinitely many solutions of \mathbf{W}^* in this setup. To make it comparable to the main results of Section 4.3 in the main text, we set $\mu_{\alpha} = 50$. It is because in our simulation, as p decreases, $E(\alpha_1)$ will decreases as well. The result is attached as below. See discussion in Section 3.2 and Section 6 in the main text. The following table verifies the claim at the end of Section 3.2 that non-uniqueness is not a serious problem for inferential purposes and the point in the discussion that boundary problems for \mathcal{B}_u do not compromise inference.

ပ

Table 5: 30 Monte Carlo simulations of \mathcal{M}_2 for \mathcal{B}_u with varying n and σ_{α} (p=2, boundary case)

		Guess				with k rando		Distance to y_{1,T_1^*+1}				
n	σ_{α}	$\delta_{\hat{lpha}_{ m adj}}$	$\delta_{\hat{lpha}_{\mathrm{wadj}}}$	$\delta_{\hat{lpha}_{ ext{IVW}}}$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{adj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{\mathrm{wadj}}})$	$ar{\mathcal{C}}^{(k)}(\delta_{\hat{lpha}_{ ext{IVW}}})$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	
	1	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	51.71 (1.69)	8.84 (1.23)	9.55 (1.31)	8.81 (1.26)	
	5	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.98(0.01)	0.99(0.01)	52.63 (1.87)	10.14 (1.4)	$10.33\ (1.39)$	10.17 (1.42)	
5	10	1 (0)	1 (0)	1 (0)	0.97(0.01)	0.97(0.01)	0.96(0.02)	53.78 (2.42)	12.44(1.84)	13.16 (1.83)	12.44 (1.86)	
	25	0.9(0.06)	1 (0)	0.9(0.06)	0.75 (0.04)	0.79(0.04)	0.75(0.04)	57.62 (4.64)	22.34(3.43)	25.19(4.13)	22.33(3.44)	
	50	0.7 (0.09)	0.7 (0.09)	0.7(0.09)	0.59 (0.05)	0.57 (0.04)	$0.57 \ (0.05)$	68.41 (7.84)	$42.53 \ (5.97)$	49.34 (8.12)	42.44 (6.01)	
	1	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.98 (0.01)	0.99 (0.01)	52.19 (2.18)	11.1 (1.32)	12.18 (1.81)	11.19 (1.32)	
	5	1 (0)	1 (0)	1 (0)	0.97(0.02)	0.96(0.01)	0.97(0.02)	52.33 (2.5)	$12.51\ (1.58)$	14.19(1.94)	12.61 (1.58)	
10	10	0.97(0.03)	0.97(0.03)	0.93 (0.05)	0.93 (0.02)	0.92(0.02)	0.93(0.02)	52.5 (3.09)	14.69(2.12)	17.46 (2.25)	14.76(2.13)	
	25	0.9(0.06)	0.9(0.06)	0.9(0.06)	0.74 (0.03)	$0.76 \ (0.03)$	0.74 (0.03)	54.62 (4.81)	24.86(3.7)	28.35 (3.96)	24.94(3.73)	
	50	0.7 (0.09)	$0.73 \ (0.08)$	$0.73 \ (0.08)$	0.59 (0.04)	0.55 (0.04)	0.57 (0.04)	62.89 (7.56)	44.32 (6.5)	49.12 (7.13)	44.44 (6.54)	
	1	1 (0)	1 (0)	1 (0)	0.99 (0.01)	1 (0)	0.99 (0.01)	53.83 (1.89)	9.12 (0.92)	9.95 (1.33)	9.06 (0.93)	
	5	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.99(0.01)	0.99(0.01)	55.05 (2.25)	10.47(1.21)	11.57 (1.54)	10.39 (1.22)	
15	10	1 (0)	1 (0)	1 (0)	0.95 (0.02)	0.98(0.01)	0.95 (0.02)	56.57 (2.83)	13.25 (1.61)	14.78 (1.95)	13.19 (1.6)	
	25	$0.93 \ (0.05)$	0.93 (0.05)	0.93 (0.05)	0.87 (0.03)	0.89(0.03)	0.88 (0.03)	61.14 (4.94)	$24.01\ (2.97)$	28.39(3.26)	23.98 (2.91)	
	50	0.83 (0.07)	$0.83 \ (0.07)$	$0.83 \ (0.07)$	0.65 (0.04)	$0.67 \ (0.03)$	0.66 (0.04)	71.22 (8.07)	44.06 (5.29)	52.49 (5.93)	43.98 (5.2)	
	1	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.98 (0.01)	0.99 (0.01)	50.84 (2.39)	10.44 (1.51)	11.58 (1.47)	10.43 (1.51)	
	5	1 (0)	1 (0)	1 (0)	0.98 (0.01)	0.98(0.01)	0.98(0.01)	50.4 (2.22)	9.97(1.39)	11.77(1.34)	9.93 (1.39)	
25	10	1 (0)	1 (0)	1 (0)	0.96 (0.01)	0.97(0.01)	0.95(0.02)	49.84 (2.23)	10.99(1.21)	12.97(1.48)	10.98 (1.21)	
	25	1 (0)	1 (0)	1 (0)	0.81 (0.03)	0.81 (0.03)	0.81 (0.03)	48.16 (3.49)	16.36 (2.18)	20.67(2.98)	$16.52\ (2.15)$	
	50	0.93 (0.05)	$0.93 \ (0.05)$	$0.93 \ (0.05)$	0.69 (0.03)	0.69 (0.04)	0.69 (0.03)	48.56 (6.09)	33.14 (3.88)	41.94 (5.18)	33.39 (3.88)	