12.1	The Existence of Zeros
	Questions about the Existence of Zeros:
	i) Existence: are there any zeros?
	ii) Number: are there infinitely many? how many, or about how many?
	iii) Approximate Location; Find small intervals confaining only one zero
	iv) Calculation: Determine the zero "exactly", or to a given accuracy
	- We say $f(x)$ changes sign on the closed finite interval $[a, b]$ if it is defined on this interval and
	has opposite signs at a and b: $f(a) \cdot f(b) < 0$
	11 0
	Bolzano's Theorem;
	- Let $f(x)$ be continuous on $[a,b]$, then $f(x)$ changes sign on $[a,b] \Rightarrow f(x)$ has a zero on $[a,b]$
	The starting interval $[a_0, b_0]$ is just $[a, b]$ itself. To get the next interval in the sequence, divide $[a_0, b_0]$ in two by its midpoint x_0 ; then choose as $[a_1, b_1]$ the half-interval on which $f(x)$ goes from $-$ to $+$:
	if $f(x_0) > 0$, let $[a_1, b_1] = [a, x_0]$; $\frac{a}{a_1}$ $\frac{x_0}{b_1}$
	if $f(x_0) < 0$, let $[a_1, b_1] = [x_0, b]$.
	In either case, we have $f(a_1) < 0$. $f(b_1) > 0$. This gives a new interval $[a_1.b_1]$ of half the length, on which $f(x)$ still changes sign from $-$ to $+$.
	(If at the midpoint we find that $f(x_0) = 0$, the above doesn't apply, but in that case we can stop and pack up: we've found a zero.)
	We continue this process with $[a_1, b_1]$, bisecting it and choosing as $[a_2, b_2]$ the half on which $f(x)$ goes from $-$ to $+$. If at any stage the midpoint is a zero of $f(x)$, we are done; if not, we get an infinite sequence of nested intervals
	$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$
	such that $(2) f(a_n) < 0, f(b_n) > 0, \text{and} b_n - a_n \to 0.$
	By the Nested Interval Theorem 6.1, there is a unique c inside all these intervals, and
	$\lim a_n = c \;, \qquad \lim b_n = c.$
	To finish, we show that $f(c) = 0$. Since $f(x)$ is continuous on $[a, b]$, the Sequential Continuity Theorem 11.5 implies that
	$\lim f(a_n) = f(c)$, $\lim f(b_n) = f(c)$.
	According to (2), we have $f(a_n) < 0$ and $f(b_n) > 0$ for all n ; it follows by the Limit Location Theorem for sequences 5.3A that
	$\lim f(a_n) \leq 0$, $\lim f(b_n) \geq 0$, i.e.,
	$f(c) \leq 0 \; , \qquad \qquad f(c) \geq 0 \; ,$ which implies that $f(c) = 0$, proving (1).
	Intermediate Value Theorem:
	- Assume $f(x)$ is continuous on [a, b] $f(a) \le f(b)$. Then for $k \in \mathbb{R}$,
	$f(a) \le k \le f(b) \implies k = f(c)$ for some $C \in [a, b]$
	Since Bolzano's Theorem is essentially the special case of the Intermediate Value Theorem when $K=0$, the two
	theorems are equivalent

12.2	Applications of Bolzano's Theorem
	- A polynomial of odd degree has at least one zero
	Intersection Principle 12.2 $g(x)$
	(a) The roots of $f(x) = g(x)$ are the x-coordinates of the points where the graphs of $f(x)$ and $g(x)$ intersect.
	(b) If $f(x)$ and $g(x)$ are continuous on $[a, b]$, and on this interval their graphs
	change their "above-below" position, i.e., the graph that is below at a becomes the one above at b: $f(a) < g(a) \text{ and } f(b) > g(b), \text{ or } f(a) > g(a) \text{ and } f(b) < g(b),$
	then the two graphs intersect over some point $c \in [a, b]$.
12.3	Graphical Continuity
	Continuity Theorem for Monotone Functions
	- If the function f(x) is strictly monotone and has the Intermediate Value Property on [a, b], then it is
	continuous on [a,b]
12.4	Inverse Functions
	Inverse Function Theorem:
	- If $y = f(x)$ is continuous and strictly increasing on [a,b], it has an inverse function $x = g(x)$ on
	[f(a), f(b)] which is continuous and strictly increasing
	The theorem is also true for strictly decreasing functions; in that case [fla), f(b)] which is
	continuous and strictly increasing

