1 Probabilidade

A probabilidade é o estudo das experiências aleatórias.

Conceitos fundamentais

Experimento aleatório Experimento cujo resultado não pode ser previsto com exatidão. Espaço amostral (Ω) O conjunto de <u>todos</u> os resultados possíveis em uma experiência. Evento Um subconjunto de Ω .

1.1 Função Probabilidade

Uma função probabilidade é uma função do tipo $P: \mathcal{P}(\Omega) \to [0,1]$.

Propriedades de uma função probabilidade:

•
$$P(\Omega) = 1$$
, $P(\emptyset) = 0$

•
$$0 \le P(A) \le 1$$

•
$$\forall A_1, A_2, \dots, A_n$$
 disjuntos: $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$

•
$$P(A^c) = 1 - P(A)$$

•
$$A \subseteq B \implies P(A) \le P(B)$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

1.1.1 Probabilidade Clássica

A função de probabilidade clássica para espaços equiprováveis é

$$P(A) = \frac{\mid A \mid}{\mid \Omega \mid}$$

1.1.2 Probabilidade Condicional

A probabilidade de um evento B acontecer dado um evento A é

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

O conjunto de eventos $\{A_1,\dots,A_n\}$ forma uma partição de Ω se e somente se

•
$$\forall i \neq j : A_i \cap A_j = \emptyset$$
 (Os eventos são disjuntos entre si)

$$\bullet \bigcup_{i=1}^{n} A_i = \Omega$$

Teorema da probabilidade total: Dada uma partição $\{A_1, \ldots, A_n\}$

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

Teorema de Bayes: Dada uma partição $\{A_1, \ldots, A_n\}$

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

1

1.1.3 Independência

Dois eventos A e B são independentes se e somente se

$$P(A \cap B) = P(A) \cdot P(B)$$

Corolário: Se A e B são independentes, então P(A|B) = P(A).

Isto significa que a ocorrência de um evento não afeta a probabilidade do outro numa mesma amostra. Portanto, eventos disjuntos não são independentes, pois não podem ocorrer simultaneamente.

Propriedade: Se A e B são independentes, então os seguintes conjuntos são independentes entre si:

- $A \in B^c$
- $A^c \in B$
- $A^c \in B^c$

1.2 Variáveis Aleatórias

Uma variável aleatória é uma função que associa alguma propriedade de um resultado de um experimento aleatório à um número real.

$$X:\Omega\to\mathbb{R}$$

A imagem de uma variável aleatória X é denotada por R_X .

Se R_X é um conjunto enumerável, dizemos que esta variável é discreta.

Se R_X é um conjunto não enumerável, dizemos que esta variável é contínua.

A função de probabilidade de uma variável aleatória assumir um valor $c \in \mathbb{R}$ é

$$P(X=c)$$

Propriedades:

- $\forall x_i : 0 \le P(X = x_i) \le 1$
- $\bullet \sum_{i} P(X = x_i) = 1$

1.2.1 Distruibuição

A distribuição de uma variável aleatória é definida por

$$\left\{ \left(x_i, P(X = x_i) \right) \mid i \in \mathbb{N}^* \right\}$$

A distribuição portanto define um gráfico em \mathbb{R}^2 das probabilidades associadas aos valores que X assume.

A função de distribuição de uma variável aleatória X é

$$F(a) = P(X \le a)$$

1.2.2 Esperança

Seja X uma variável aleatória com $R_X = \{x_1, \dots, x_n\}.$

A esperança matemática de X é a média dos valores de R_X ponderada pelas suas probabilidades.

$$E(X) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

Propriedades:

- Se X = c, então $E(X) = c \cdot P(X = c) = c$
- Se Y = f(X), então $E(Y) = \sum_{i=1}^{n} f(x_i) \cdot P(X = x_i)$
- E(X + Y) = E(X) + E(Y)

1.2.3 Variância

A variância de uma variável aleatória X é

$$var(X) = E[(X - E(X))^{2}]$$

= $E(X^{2}) - E(X)^{2}$

definição clássica de variância

fórmula reduzida

Propriedades:

- Se X = c, então var(X) = 0
- Se $Y = a \cdot X + b$, então $var(Y) = a^2 \cdot var(X)$

1.2.4 Desvio Padrão

O desvio padrão de uma variável aleatória X é

$$dp(X) = \sqrt{var(X)}$$

1.3 Modelos Discretos

1.3.1 Modelo Uniforme

Seja X uma variável aleatória com $R_X = \{x_1, \dots, x_n\}$. Dizemos que X segue o modelo uniforme discreto se

$$\forall i \in \{1, \dots, n\} : P(X = x_i) = \frac{1}{n}$$

Denota-se $X \sim U\{x_1, \ldots, x_n\}$.

Propriedades:

$$\bullet \sum_{i=1}^{n} \frac{1}{n} = \sum_{i=1}^{n} P(X = x_i) = 1$$

•
$$\operatorname{var}(X) = \frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2$$

1.3.2 Modelo de Bernoulli

Seja X uma variável aleatória com $R_X = \{x_1, x_2\}$, sendo x_1 o sucesso do experimento, e x_2 o fracasso. Dizemos que X segue o modelo discreto de Bernoulli com parâmetro p se

$$0$$

$$P(X = x_1) = p$$

$$P(X = x_2) = 1 - p$$

Denota-se $X \sim \text{Ber}(p)$.

Propriedades:

- \bullet E(X) = p
- $\operatorname{var}(X) = p$

1.3.3 Modelo Binomial

Seja X uma variável aleatória que conta os sucessos em n experimentos de Bernoulli(p). A probabilidade de k sucessos é

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{(n-k)}$$

Denota-se $X \sim \text{Bin}(n, p)$.

Propriedades:

- E(X) = np
- $\operatorname{var}(X) = np \cdot (1-p)$

1.3.4 Modelo Geométrico

Seja X uma variável aleatória que conta as amostras até o primeiro sucesso em experimentos de Bernoulli(p). A probabilidade de k amostras até o sucesso é

$$P(X = k) = p \cdot (1 - p)^{(k-1)}$$

Denota-se $X \sim \text{Geo}(p)$.

Propriedades:

- $\bullet \ E(X) = \frac{1}{p}$
- $\operatorname{var}(X) = \frac{1-p}{p^2}$

1.3.5 Modelo Binomial Negativo

Seja X uma variável aleatória que conta os sucessos em experimentos de Bernoulli(p). A probabilidade de k amostras até se obter r sucessos é

$$P(X = k) = {k-1 \choose r-1} \cdot p^r \cdot (1-p)^{(k-r)}$$

Denota-se $X \sim BN(r, p)$.

Propriedades:

•
$$E(X) = \frac{r}{p}$$

•
$$\operatorname{var}(X) = \frac{r \cdot (1-p)}{p^2}$$

1.3.6 Modelo Hipergeométrico

Considere N objetos, dos quais K são do tipo Γ e os demais de outro tipo.

Seja X uma variável aleatória que conta o número de objetos do tipo Γ em uma amostra de n objetos. A probabilidade de haver k objetos deste tipo na amostra é

$$P(X = k) = \frac{\binom{K}{k} \cdot \binom{N - K}{n - k}}{\binom{N}{n}}$$

Denota-se $X \sim \mathrm{HG}(K, N, n)$.

Propriedades:

•
$$E(X) = \frac{nK}{N}$$

•
$$\operatorname{var}(X) = \frac{nK}{N} \cdot \left(1 - \frac{nK}{N}\right) \cdot \frac{N - n}{N - 1}$$

1.4 Famílias de Eventos

Uma família de eventos é um conjunto de eventos.

A maior família de eventos é o conjunto potência de Ω , denotado $\mathcal{P}(\Omega)$.

Propriedades das famílias de eventos:

•
$$\Omega \in \mathcal{F}$$

•
$$A \in \mathcal{F} \implies A^c \in \mathcal{F}$$

•
$$A, B \in \mathcal{F} \implies (A \cup B) \in \mathcal{F}$$

1.5 Espaço de Probabilidade

Um espaço de probabilidade é uma tripla da forma (Ω, \mathcal{F}, P) .

O espaço é associado à uma experiência aleatória.

1.5.1 Espaços Equiprováveis

Um espaço de probabilidade (Ω, \mathcal{F}, P) é equiprovável quando

$$\forall a, b \in \Omega : P(a) = P(b) = \frac{1}{|\Omega|}$$

1.6 Densidade

A probabilidade de uma variável contínua estar em um invervalo [a, b] é

$$P(a \le X \le b) = \int_{b}^{a} f(x)dx, \qquad f: \mathbb{R} \to \mathbb{R}^{+}$$

onde f é a função de densidade de probabilidade associada a X.

Uma função de densidade de probabilidade satisfaz as propriedades:

- $\forall x \in \mathbb{R} : f(x) \ge 0$.
- $\bullet \int_{-\infty}^{\infty} f(x)dx = 1.$

Teorema: Para qualquer distribuição, a probabilidade de uma variável aleatória estar em um intervalo é

$$P(m \le x \le n) = f(n) - f(m)$$

1.6.1 Distribuição Uniforme

A função densidade para uma ditribuição uniforme é

$$f(x) = \begin{cases} \frac{1}{\omega} & 0 \le x \le \omega \\ 0 & \text{caso contrário} \end{cases}$$

Já para uma distribuição uniforme reduzida a um intervalo $[a,b]\subset\mathbb{R}$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{caso contrário} \end{cases}$$

1.7 Densidade Normal Geral

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(x-u)^2}{2\sigma^2}\right)$$