FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Visualização de Dados não Estruturados Parte 1

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- Parte 1
 - Dados textuais
 - Coleções de Documentos
- Parte 2
 - Coleções de Imagens

Dados Multivariados

 Dados multivariados são aqueles que possuem mais de uma variável para cada instância dos dados

Country	GDP/capita	Public Debt	Deficit	Inflation	Unemployment
Austria	39.8	72.3	-4.6	1.7	3.9
Belgium	36.3	96.8	-4.1	2.3	6.7
Bulgaria	12.9	16.2	-3.2	3.0	11.9
Cyprus	29.0	60.8	-5.3	2.6	7.8
Czech Republic	25.0	38.5	-4.7	1.2	6.6
Denmark	36.4	43.6	-2.7	2.2	7.1
Estonia	18.5	6.6	0.1	2.7	12.8
Finland	34.9	48.4	-2.5	1.7	7.8
France	33.9	81.7	-7.0	1.7	9.9
Germany	36.1	83.2	-3.3	1.2	5.8
Greece	28.5	142.8	-10.5	4.7	16.7
Hungary	18.8	80.2	-4.2	4.7	9.9

Dados não Estruturados

- Alguns conjuntos de dados não possuem uma estrutura definida, por exemplo
 - Coleções de Documentos e de Imagens
- Por isso, é necessário fazer um processamento das instâncias para extrair dados para serem visualizados ou estruturar o conjunto de dados. Por exemplo,
 - Modelo de espaço vetorial para documentos
 - Espaço de características para imagens

Processo de Visualização

Pipeline de visualização utilizado pela maioria dos sistemas

Visualização de Coleções de Documentos

- Existem muitas fontes de informação que disponibilizam dados no formato textual
 - Ex.: email, blogs, livros, artigos
- Uma coleção de documentos é definida como um corpus (ou corpora no plural)

Visualização de Coleções de

Documentos

- Em uma coleção de documentos, podemos procurar por palavras, frases ou tópicos
- Se a coleção estiver parcialmente estruturado, podemos procurar por relacionamento entre documentos, palavras e tópicos
- Se ela estiver totalmente estruturada, podemos encontrar grupos, padrões e outliers

Visualização de Coleções de

Documentos

- Podemos definir três níveis de representação de uma coleção de documentos
 - Léxico
 - Transformação em entidades atômicas chamadas de tokens
 - Sintático
 - Lida com a rotulação (anotação) dos tokens, por exemplo, substantivo, adjetivo
 - Semântico
 - Envolve a extração de significado e relacionamento
 - Define uma interpretação analítica do texto dentro de um contexto

Visualização de Documentos

- Várias técnicas de visualização foram propostas para auxiliar na visualização individual de documentos
 - Algumas delas
 - Tag Clouds ou Word Clouds
 - WordTree
 - TextArc
 - Literature Fingerprinting
 - Visualização baseada em Grafos

 O tamanho da fonte é proporcional à frequência da palavra no documento

Lista de termos e frequências

Ngram	Frequency	
reasoning	2135	
information	1805	=
retrieval	1544	
intelligence	1415	
artificial	1293	
systems	1162	
computer	1129	
science	1090	
knowledge	1040	
system	1037	
university	1034	
proc	1003	
logic	966	
machine	937	
0000	004	

- O tamanho da fonte é proporcional à frequência da palavra no documento
 - No exemplo, a intensidade de negrito também é proporcional à frequência da palavra

author biotechnology build concerned contained crops danger detected diet dr earthsave eating engineered extra firm foods found gegenetically incident labeled life monitoring monsanto ph press prevent products proven releases researcher risks rissler safety save sequence shown soybeans stephens study surprised test think trials unfortunately validity vegetarian wall wild world

Planos de governo dos candidatos à Presidência

As 10 palavras mais citadas

No conjunto dos 13 planos

Fonte: TSE e WordCloud.com

 Tag Cloud dos planos de governo dos candidatos à Presidência

```
ment some production metal and some production metal some producti
```


- Wordle é uma variação da Tag Cloud, utilizando um layout diferenciado para melhorar a ocupação do espaço
 - Assim, mais palavras podem ser inseridas na visualização

Concentri Cloud

 WordTree é uma representação visual de termos e frequências, bem como seu contexto

 O tamanho do termo é a sua frequência na frase

 A raiz da árvore é uma palavra ou frase é escolhida pelo usuário e os ramos representam os diferentes contextos em que são usadas

Parte do discurso de Martin Luther King

TextArc

 A técnica TextArc desenha as frases de um texto nas bordas de uma elipse e as palavras mais frequentes em seu interior

TextArc

 Pode exibir a relação entre as palavras e as frases pela seleção do usuário ou pela simulação da leitura do documento

Literature Fingerprinting

- É um método de visualização de características textuais
 - Várias características são extraídas do texto e apresentadas como impressão digital do documento

Literature Fingerprinting

- Medidas foram calculadas para analisar o estilo literário de dois autores diferentes
 - Tamanho de sentenças de diferentes obras de Mark Twain e de Jack London

Document Cards

 A Document Cards apresenta uma visualização compacta de uma coleção

Apresentando elementos chaves e mais importantes,

tais como, texto e figuras

Visualização Baseada em Grafos

Visualização da rede de co-citação entre artigos

Visualização de Coleções de Documentos

Visualização de Coleções de

Documentos

- Quando visualizações são aplicadas para criar representações visuais de coleções de documentos, geralmente, o foco é apresentar a relação de similaridade desses documentos
 - A similaridade entre cada par de documentos é calculada para gerar o layout da visualização
 - Para tanto, é necessário extrair dados dos documentos e estruturar a coleção para calcular as similaridades

Modelo de Espaço Vetorial

 Geralmente, as coleções de documentos são estruturadas em um matriz de termos por documentos, também conhecida como Modelo de Espaço Vetorial

Documentos

Modelo de Espaço Vetorial

	Complexity	Algorithm	Entropy	Traffic	Network
Doc1	2	3	1	0	0
Doc2	0	0	0	2	1
Doc3	3	0	0	3	4
Doc4	2	4	2	0	0
Doc5	3	4	0	0	0

Matriz de Termos x Documentos

Pré-processamento de Documentos

- A construção desse modelo pode seguir as seguintes etapas
 - Identificação de termos
 - Eliminação de stopwords
 - Stemming
 - Contagem de Frequência
 - Ponderação dos termos

Identificação dos Termos

A frase do ex-presidente Fernando Henrique Cardoso, que escorregou no português formal ao criticar indiretamente o presidente Luiz Inácio Lula da Silva, foi considerada "politicamente incorreta" pela professora de português Thaís Nicoleti. No 3º Congresso do PSDB, anteontem em Brasília, o expresidente disse que quer "brasileiros melhor educados, e não brasileiros liderados por gente que despreza a educação, a começar pela própria".

Eliminação de Stopwords

A frase do ex-presidente Fernando Henrique Cardoso, que escorregou no português formal ao criticar indiretamente o presidente Luiz Inácio Lula da Silva, foi considerada "politicamente incorreta" pela professora de português Thaís Nicoleti. No 3º Congresso do PSDB, anteontem em Brasília, o expresidente disse que quer "brasileiros melhor educados, e não brasileiros liderados por gente que despreza a educação, a começar pela própria".

Stemming

A frase do ex-presidente Fernando Henrique Cardoso, que escorreg no português formal ao critic indireta o presidente Luiz Inácio Lula da Silva, foi consider "politic incorret" pela professor de português Thaís Nicoleti. No 3º Congresso do PSDB, anteontem em Brasília, o expresidente disse que quer "brasileir melhor educ, e não brasileir liderad por gente que desprez a educ, a começ pela própria".

Termos resultants — n-grams

- Os termos resultantes são agrupados em n-grams, que são a combinação dos termos, conforme aparecem no texto
 - □ Ex. 1-grams:
 - frase, ex-presidente, Fernando, Henrique, Cardoso, escorreg, português, formal, critic, indireta, presidente, Luiz, Inácio, Lula, Silva, foi, consider, politic, incorreta, professor, Thaís, Nicoleti, congresso, PSDB, anteontem, Brasília, disse, quer, brasileir, melhor, educ, não, liderad, gente, desprez, educ, começ, própria

Termos resultants — n-grams

- Os termos resultantes são agrupados em ngrams, que são a combinação dos termos, conforme aparecem no texto
 - □ Ex. 2-grams:
 - frase<>ex-presidente, ex-presidente<>Fernando,
 Fernando<>Henrique, Henrique<>Cardoso,
 Cardoso<>escorreg, escorreg<>português,
 português<>formal, formal<>critic, critic<>indireta,
 indireta<>presidente, presidente<>Luiz, Luiz<>Inácio......

Contagem de Frequência

- A contagem de frequência consiste em verificar a ocorrência dos termos (n-grams) na lista de termos resultantes
 - Exemplo

1-gram

2-gram

3-gram

Ngram	Frequency	
statistical	179	•
queries	179	
david	177	
framework	177	
present	176	
wess	176	
publishers	174	
task	172	
phd	171	
time	168	1
show	168	1
examples	168	1
multiple	167	
concept	167	_
understanding	166	_

Ngram	Frequency	
international<>works	184	•
the<>acm	182	
for<>information	182	
on<>inductive	173	
conf<>on	173	
intelligence<>pages	170	
system<>for	163	
national<>conference	163	
pages<>springer	161	
international<>joint	159	
san<>mateo	159	
volume<>of	159	
phd<>thesis	158	
joint<>conference	155	-
naturalestanguago	155	_

l	Ngram	Frequency	
	european<>workshop<>on	146	•
	and<>development<>in	141	
	on<>inductive<>logic	140	Г
	acm<>sigir<>conference	140	
	this<>paper<>we	139	
	on<>research<>and	136	
	of<>lecture<>notes	136	
	science<>university<>of	129	
	international<>acm<>sigir	127	
	development<>in<>information	126	
	conference<>on<>case-based	125	
	annual<>international<>acm	123	
	the<>use<>of	122	
	computer<>science<>university	120	_
	cancomatancosca	100	•

Contagem de Frequência

 Nesta etapa é comum a eliminação de termos que não estejam dentro de uma frequência desejada

1-gram

2-gram

3-gram

Ngram	Frequency	
statistical	179	•
queries	179	
david	177	
framework	177	
present	176	
wess	176	
publishers	174	
task	172	
phd	171	
time	168	
show	168	
examples	168	
multiple	167	
concept	167	1-
understanding	166	

Ngram	Frequency	
international<>works	184	•
the<>acm	182	=
for<>information	182	Г
on<>inductive	173	
conf<>on	173	
intelligence<>pages	170	
system<>for	163	
national<>conference	163	
pages<>springer	161	
international<>joint	159	
san<>mateo	159	
volume<>of	159	
phd<>thesis	158	
joint<>conference	155	-
naturaleslanguago	155	Ľ

Ngram	Frequency	
european<>workshop<>on	146	•
and<>development<>in	141	
on<>inductive<>logic	140	Г
acm<>sigir<>conference	140	
this<>paper<>we	139	
on<>research<>and	136	
of<>lecture<>notes	136	
science<>university<>of	129	
international<>acm<>sigir	127	
development<>in<>information	126	
conference<>on<>case-based	125	
annual<>international<>acm	123	
the<>use<>of	122	
computer<>science<>university	120	_
cancomatonosca	120	_

Representação Vetorial

 Por fim, temos a matriz termos por documentos ou Modelo de Espaço Vetorial

	term ₁	term ₂	term ₃	term ₄	•••	term _m
Doc ₁	10	1	3	0		1
Doc ₂	3	11	100	3	•••	33
Doc ₃	2	0	0	44	•••	77
					•••	
Doc_n	2	12	2	92		0

Ponderação de Termos

- Como podemos medir a importância de um termo no documento?
 - Como podemos atribuir pesos para os termos?

	term ₁	term ₂	term ₃	term ₄	•••	term _m
Doc ₁	10	1	3	0		1
Doc_2	3	11	100	3		33
Doc_3	2	0	0	44	•••	77
					•••	•••
Doc _n	2	12	2	92		0

Ponderação de Termos

- Como podemos medir a importância de um termo no documento?
 - Como podemos atribuir pesos para os termos?
- Uma das maneira mais utilizadas é conhecida como TF-IDF (term frequency inverse document frequency)
 - □ TF * IDF

Ponderação de Termos

TF-IDF

- A TF é a frequência do termo i em um documento j
- □ A IDF de um termo *i* é dado por $\log \left(\frac{N}{df_i}\right)$
- Em que
 - N é a quantidade de documentos da coleção
 - dfi é a quantidade de documentos em que o termo i aparece
- O novo valor do termo i para o documento j é calculado como

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

Ponderação dos Termos

- Calculo da IDF (N = 10)
 - Termo 'example'
 - IDF = log(N/df) = log(10/10) = log(1) = 0
 - Termo 'visualization'
 - IDF = log(N/df) = log(10/6) = log(1,66) = 0,22

Doc/Term	example	visualization	computer	book	artificial
Doc1	10	5	6	8	11
Doc2	15	8	7	4	12
Doc3	2	7	0	6	10
Doc4	9	0	8	1	13
Doc5	8	5	3	7	0
Doc6	13	3	12	10	14
Doc7	17	0	0	5	18
Doc8	5	0	9	6	9
Doc9	4	0	8	11	7
Doc10	1	1	0	0	6

Ponderação dos Termos

Calculo da IDF (N = 10)

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- Termo 'example'
 - IDF = log(N/df) = log(10/10) = log(1) = 0
- Termo 'visualization'
 - IDF = log(N/df) = log(10/6) = log(1,66) = 0,22

Doc/Term	example	visualization	computer	book	artificial
Doc1	10 * 0	5 * 0,22	6	8	11
Doc2	15 * 0	8 * 0,22	7	4	12
Doc3	2 * 0	7 * 0,22	0	6	10
Doc4	9 * 0	0 * 0,22	8	1	13
Doc5	8 * 0	5 * 0,22	3	7	0
Doc6	13 * 0	3 * 0,22	12	10	14
Doc7	17 * 0	0 * 0,22	0	5	18
Doc8	5 * 0	0 * 0,22	9	6	9
Doc9	4 * 0	0 * 0,22	8	11	7
Doc10	1 * 0	1 * 0,22	0	0	6

Ponderação dos Termos

Calculo da IDF (N = 10)

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- Termo 'example'
 - IDF = log(N/df) = log(10/10) = log(1) = 0
- Termo 'visualization'
 - IDF = log(N/df) = log(10/6) = log(1,66) = 0,22

Doc/Term	example	visualization	computer	book	artificial
Doc1	0	1,10	6	8	11
Doc2	0	1,76	7	4	12
Doc3	0	1,54	0	6	10
Doc4	0	0	8	1	13
Doc5	0	1,10	3	7	0
Doc6	0	0,66	12	10	14
Doc7	0	0	0	5	18
Doc8	0	0	9	6	9
Doc9	0	0	8	11	7
Doc10	0	0,22	0	0	6

Visualização de Coleções de Documentos

- Uma vez que o modelo de espaço vetorial é construído podemos calcular a similaridade entre os documentos
 - Por exemplo, distância Euclidiana entre os vetores
- Além da visualização, técnicas de mineração de dados podem ser utilizadas para classificar ou agrupar a coleção de documentos

Visualização de Coleções de Documentos

- Algumas das técnicas mais utilizadas para visualizar coleções de documentos são
 - Desenho de grafos baseados em força
 - Self-organizing maps
 - Projeções Multidimensionais

Themescape

 A Themescape utiliza uma paisagem 3D abstrata com alturas e cores para representar a densidade de documentos similares

Abaixo é apresentada uma visualização de artigos de

notícias

Projeções Multidimensionais

- As Projeções Multidimensionais reduzem a dimensionalidade do conjunto de dados para um espaço de menor dimensão
- No caso de coleções de documentos, a redução é aplicada no modelo de espaço vetorial
 - Reduzindo o espaço para duas ou três dimensões

Projeção Multidimensional

$$X \in \mathbb{R}^m$$
 f $Y \in \mathbb{R}^{k=\{1,2,3\}}$

$$\delta: x_i, x_i \to \mathbb{R}, x_i, x_i \in X$$

d:
$$y_i, y_i \rightarrow \mathbb{R}, y_i, y_i \in Y$$

$$f \colon X \to Y, |\delta(x_i, x_j) - d(f(x_i), f(x_j))| \approx 0, \ \forall \ x_i, x_j \in X$$

Projeção Multidimensional

Pipeline

Projeção Multidimensional

574 artigos da área de Inteligência Artificial

- Case based reasoning
- Inductive logic programming
- Information retrieval

A PEx é uma ferramenta desenvolvida para explorar conjuntos de dados por meio de projeções multidimensionais

- Nem sempre os conjuntos de dados são rotulados
 - Como no exemplo ao lado
- Por isso, algumas ferramentas de interação auxiliam a exploração do conjunto

- Consulta por palavras chave
 - No caso, a chave de busca foi a palavra "retrieval"

- Consulta por palavras chave
 - No caso, a chave de busca foi a palavra "retrieval"
- Outra escala de cor pode facilitar a identificação da frequência da palavra

- Consulta por palavras chave
 - No caso, a chave de busca foi a palavra "retrieval"
- Outra escala de cor pode facilitar a identificação da frequência da palavra

- Consulta por palavras chave
 - No caso, a chave de busca foi a palavra "retrieval"
- O conteúdo do documento selecionado pode ser visualizado

 Uma técnica importante na exploração de coleção de documentos é a detecção de tópicos

 Uma técnica importante na exploração de coleção de documentos é a detecção de tópicos

Seleção dos três grupos bem definidos

- Seleção dos três grupos bem definidos
 - Alteração das configurações do método de detecção

 Seleção dos dois grupos bem definidos em uma coleção de notícias

Referências

- Ward, M., Grinstein, G. G., Keim, D.
 - Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2a Edição, 2010.
 - Capítulo 10 (Text and Document Visualization)
- G. Salton, A. Wong, and C. S. Yang.
 - "A Vector Space Model for Automatic Indexing." Commun. ACM 18:11 (1975), 613–620
- M. Wattenberg and F. B. Viégas
 - "The Word Tree, an Interactive Visual Concordance." IEEE Transactions on Visualization and Computer Graphics 14:6 (2008), 1221–1228.
- Jonathan Feinberg.
 - "Wordle Home Page." http://www.wordle.net/, accessed August 31, 2009.
- WordTree
 - IBM. "Many Eyes Home Page." http://manyeyes.alphaworks.ibm.com/, accessed August 31, 2009.

Referências

- W. B. Paley.
 - "TextArc: ShowingWord Frequency and Distribution in Text." Poster presented at IEEE Symposium on Information Visualization, Boston, MA, October 27– November 1, 2002.
 - http://www.textarc.org/
- D. A. Keim and D. Oelke.
 - "Literature Fingerprinting: A New Method for Visual Literary Analysis." In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST 2007), pp. 115–122. Los Alamitos, CA: IEEE Computer Society Press, 2007.
- T. Kohonen.
 - Self-Organizing Maps, Springer Series in Information Sciences, 30, Third edition.
 Berlin: Springer, 2001.
- Steffen Lohmann ; Florian Heimerl ; Fabian Bopp ; Michael Burch ;
 Thomas Ertl
 - Concentri Cloud: Word Cloud Visualization for Multiple Text Documents. In 19th International Conference on Information Visualisation, 2015
 - https://ieeexplore.ieee.org/abstract/document/7272588

Referências

Projection Explorer (PEx)

- □ F. V. Paulovich, M. C. F. Oliveira, and R. Minghim
 - "The projection explorer: A flexible tool for projection-based multidimensional visualization", in XX Brazilian Symposium on Computer Graphics and Image Processing. Washington, DC, USA: IEEE Computer Society, 2007, pp. 27–36.
 - □ http://vis.icmc.usp.br/vicg/tool/1/projection-explorer-pex

Projection Explorer for Images (PEx-Image)

- D. M. Eler, M. Nakazaki, F. Paulovich, D. Santos, G. Andery, M. Oliveira, J. E. S. Batista, and R. Minghim
 - "Visual analysis of image collections", The Visual Computer,
 vol. 25, no. 10, pp. 923–937, 2009.
 - https://github.com/daniloeler/PEx-Image

