

上海瓴控科技 电机 RS485 通讯协议

V2.36

目录

上海钒拴科技	
电机 RS485 通讯协议	
免责声明	
单电机命令	
1. 读取电机状态 1 和错误标志命令	5
2. 清除电机错误标志命令	6
3. 读取电机状态 2 命令	7
4. 读取电机状态 3 命令	7
5. 电机关闭命令	8
6. 电机运行命令	8
7. 电机停止命令	9
8. 抱闸器状态控制和读取命令	9
9. 开环控制命令(该命令仅在 MS 电机上实现)	9
10. 转矩闭环控制命令(该命令仅在 MF、MH、MG 电机上实现)	10
11. 速度闭环控制命令	10
12. 多圈位置闭环控制命令 1	11
13. 多圈位置闭环控制命令 2	11
14. 单圈位置闭环控制命令 1	12
15. 单圈位置闭环控制命令 2	13
16. 增量位置闭环控制命令 1	13
17. 增量位置闭环控制命令 2	14
18. 读取控制参数命令	15
19. 写入控制参数命令	
20. 读取编码器命令	
21. 设置当前位置作为电机零点命令(写入 ROM)	
22. 读取多圈角度命令	
23. 清除电机圈数信息命令	
24. 读取单圈角度命令	
25. 设置当前位置为任意角度(写入 RAM)	
附录一: 电机控制参数表	

免责声明

感谢您购买上海瓴控科技有限公司电机驱动一体控制系统。在使用之前,请仔细阅读本声明,一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守产品手册、控制协议和相关的法律法规、政策、准则安装和使用该产品。在使用产品过程中,用户承诺对自己的行为及因此而产生的所有后果负责。因用户不当使用、安装、改装造成的任何损失,瓴控科技将不承担法律责任。

瓴控科技是上海瓴控科技有限公司及其关联公司的商标。本文出现的产品名称、品牌等,均为其所属公司的商标或注册商标。

本产品及手册为上海瓴控科技有限公司版权所有。未经许可,不得以任何形式复制翻印。关于免责声明的最终解释权,归本公司所有。

RS485 总线参数

```
总线接口: RS485
波特率(常规模式,单电机命令):
   9600bps
   19200bps
   38400bps
   57600bps
   115200bps (默认)
   230400bps
   460800bps
   1Mbps
   2Mbps
   4Mbps
波特率(广播模式,多电机命令):
   1Mbps
   2Mbps
   4Mbps
数据位: 8
奇偶校验:无
停止位:1
```

单电机命令

同一总线上共可以挂载多达 32 个(视总线负载情况而定)驱动,为了防止总线冲突,每个驱动需要设置不同的 ID, ID 编号为 1~32。

主控向总线发送单电机命令帧,对应 ID 的电机在收到命令后执行,并在一段时间后(0.25ms 内)向主控发送相同 ID 的回复帧。命令帧报文和回复帧报文格式如下:帧命令 + 帧数据(可选),具体描述如下表所示

	数据描述	数据长度 (byte)	说明
	帧头	1	帧头识别,Ox3E
	命令	1	CMD
	ID	1	1~32,对应电机的 ID
帧命令	数据长度	1	描述帧命令附带的数据长度,视不同命令而定
	帧命令校验字节	1	CMD_SUM, 帧命令所有字节校验 和, 保留低 8 位, 高位抛弃
	数据	0~100	帧命令附带的数据
帧数据	帧数据校验字节	0 或 1	DATA_SUM,帧数据所有字节校验
			和,保留低8位,高位抛弃

1. 读取电机状态 1 和错误标志命令

该命令读取当前电机的温度、电压和错误状态标志

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E

CMD[1]	命令	0x9A
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

电机电机在收到命令后回复主机,该帧数据包含了以下参数:

- 1. 电机温度 temperature(int8_t 类型,单位 1℃/LSB)。
- 2. 母线电压 voltage(int16_t 类型,单位 0.01V/LSB)。
- 3. 母线电流 current(int16_t 类型,单位 0.01A/LSB)。
- 4. 电机状态 motorState (为 uint8 t 类型,各个位代表不同的电机状态)
- 5. 错误标志 errorState (为 uint8_t 类型,各个位代表不同的电机错误状态)

CMD[0]	帧头	0x3E	
CMD[1]	命令	0x9A	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x07	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(8byte,含校验)		
DATA[0]	电机温度	DATA[0] = *(uint8_t *)(&temperature)	
DATA[1]	母线电压低字节	DATA[1] = *(uint8_t *)(&voltage)	
DATA[2]	母线电压高字节	DATA[2] = *((uint8_t *)(&voltage)+1)	
DATA[3]	母线电流低字节	DATA[3] = *(uint8_t *)(¤t)	
DATA[4]	母线电流高字节	DATA[4] = *((uint8_t *)(¤t)+1)	
DATA[5]	电机状态字节	DATA[5] = motorState	
DATA[6]	错误状态字节	DATA[6] = errorState	
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和	

备注:

- 1. motorState = 0x00 电机处于开启状态; motorState = 0x10 电机处于关闭状态。
- 2. errorState 各个位具体状态表如下

errorState 位	状态说明	0	1
0	低电压状态	正常	低压保护
1	高电压状态	正常	高压保护
2	驱动温度状态	正常	驱动过温
3	电机温度状态	正常	电机过温
4	电机电流状态	正常	电机过流
5	电机短路状态	正常	电机短路
6	堵转状态	正常	电机堵转
7	输入信号状态	正常	输入信号丢失超时

2. 清除电机错误标志命令

该命令清除当前电机的错误状态, 电机收到后返回

帧命令(5byte,含校验)				
CMD[0]	帧头	0x3E		
CMD[1]	命令	0x9B		

CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

电机在收到命令后回复主机。回复数据和读取电机状态 1 和错误标志命令相同(仅命令字节 CMD[1] 不同,这里为 0x9B)

备注:

1. 电机状态没有恢复正常时,错误标志无法清除。

3. 读取电机状态 2 命令

该命令读取当前电机的温度、电机转矩电流(MF、MG)/电机输出功率(MS)、转速、编码器位置。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x9C
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

电机在收到命令后回复主机,该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. MF、MG 电机的转矩电流值 iq 或 MS 电机的输出功率值 power,int16_t 类型。MG 电机 iq 分辨率为(66/4096 A) / LSB;MF 电机 iq 分辨率为(33/4096 A) / LSB。MS 电机 power 范围-1000~1000。
- 3. 电机转速 speed(int16_t 类型, 1dps/LSB)。
- 4. 编码器值 encoder(uint16_t 类型,14bit 编码器的数值范围 0~16383,15bit 编码器的数值范围 0~32767,16bit 编码器的数值范围 0~65535)。

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0x9C	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x07	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据。	(8byte,含校验)	
DATA[0]	电机温度	DATA[0] = *(uint8_t *)(&temperature)	
DATA[1]	转矩电流低字节	DATA[1] = *(uint8_t *)(&iq)	
	输出功率低字节(MS系列)	DATA[1] = *(uint8_t *)(&power)	
DATA[2]	转矩电流高字节	DATA[2] = *((uint8_t *)(&iq)+1)	
	输出功率高字节(MS系列)	DATA[2] = *((uint8_t *)(&power)+1)	
DATA[3]	电机速度低字节	DATA[3] = *(uint8_t *)(&speed)	
DATA[4]	电机速度高字节	DATA[4] = *((uint8_t *)(&speed)+1)	
DATA[5]	编码器位置低字节	DATA[5] = *(uint8_t *)(&encoder)	
DATA[6]	编码器位置高字节	DATA[6] = *((uint8_t *)(&encoder)+1)	
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和	

4. 读取电机状态 3 命令

由于 MS 电机没有相电流采样,该命令在 MS 电机上无作用。

该命令读取当前电机的温度和3相电流数据

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x9D
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复(13byte)

电机在收到命令后回复主机,该帧数据包含了以下数据:

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)
- 2. 相电流数据 iA、iB、iC,数据类型为 int16_t 类型,MG 电机相电流分辨率为(66/4096 A) / LSB;MF 电机相电流分辨率为(33/4096 A) / LSB。

	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0x9D	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x07	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(8byte,含校验)		
DATA[5]	电机温度	DATA[5] = *(uint8_t *)(&temperature)	
DATA[6]	A 相电流低字节	DATA[6] = *(uint8_t *)(&iA)	
DATA[7]	A 相电流高字节	DATA[7] = *((uint8_t *)(& iA)+1)	
DATA[8]	B相电流低字节	DATA[8] = *(uint8_t *)(&iB)	
DATA[9]	B 相电流高字节	DATA[9] = *((uint8_t *)(& iB)+1)	
DATA[10]	C 相电流低字节	DATA[10] = *(uint8_t *)(&iC)	
DATA[11]	C 相电流高字节	DATA[11] = *((uint8_t *)(& iC)+1)	
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和	

5. 电机关闭命令

将电机从开启状态(上电后默认状态)切换到关闭状态,LED 由常亮转为慢闪。此时电机仍然可以回复命令,但不会执行动作

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x80
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

和主机发送相同

6. 电机运行命令

将电机从关闭状态切换到开启状态,LED由慢闪转为常亮。此时再发送控制指令即可控制电机动作。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E

CMD[1]	命令	0x88
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

和主机发送相同

7. 电机停止命令

停止电机,但不清除电机运行状态。再次发送控制指令即可控制电机动作。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x81
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

和主机发送相同。

8. 抱闸器状态控制和读取命令

控制抱闸器的开合,或者读取当前抱闸器的状态。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x8C
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x01
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
DATA[0]	抱闸器状态控制和读取字	0x00: 抱闸器断电,刹车启动
	节	0x01: 抱闸器通电,刹车释放
		0x10: 读取抱闸器状态
DATA_SUM	数据校验字节	DATA[0]字节校验和

驱动回复

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x8C
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x01
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
DATA[0]	抱闸器状态字节	0x00: 抱闸器处于断电状态,刹车启动
		0x01: 抱闸器处于通电状态,刹车释放
DATA_SUM	数据校验字节	DATA[0]字节校验和

9. 开环控制命令(该命令仅在 MS 电机上实现)

主机发送该命令以控制输出到电机的开环电压,控制值 powerControl 为 int16_t 类型,数值范围-850~850, (电机电流和扭矩因电机而异)。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0xA0
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x02
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
	帧数据	(3byte,含校验)
DATA[0]	开环控制值低字节	DATA[0] = *(uint8_t *)(&powerControl)
DATA[1]	开环控制值高字节	DATA[1] = *((uint8_t *)(&powerControl)+1)
DATA_SUM	数据校验字节	DATA[0]~CMD[1]字节校验和

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA0)。

10. 转矩闭环控制命令(该命令仅在 MF、MH、MG 电机上实现)

主机发送该命令以控制电机的转矩电流输出,控制值 iqControl 为 int16_t 类型,数值范围-2048~ 2048,对应 MF 电机实际转矩电流范围-16.5A~16.5A,对应 MG 电机实际转矩电流范围-33A~33A,母线电流和电机的实际扭矩因不同电机而异。

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA1	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x02	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(3byte,含校验)		
DATA[0]	转矩电流控制值低字节	DATA[0] = *(uint8_t *)(& iqControl)	
DATA[1]	转矩电流控制值高字节	DATA[1] = *((uint8_t *)(& iqControl)+1)	
DATA_SUM	数据校验字节	DATA[0]~DATA[1]字节校验和	

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA1)。

11. 速度闭环控制命令

主机发送该命令以控制电机的速度, 控制值 speedControl 为 int32_t 类型,对应实际转速为 0.01dps/LSB。

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA2	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x04	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(5byte,含校验)		
DATA[0]	电机速度低字节	DATA[0] = *(uint8_t *)(&speedControl)	
DATA[1]	电机速度	DATA[1] = *((uint8_t *)(&speedControl)+1)	

DATA[2]	电机速度	DATA[2] = *((uint8_t *)(&speedControl)+2)
DATA[3]	电机速度高字节	DATA[3] = *((uint8_t *)(&speedControl)+3)
DATA_SUM	数据校验字节	DATA[0]~DATA[3]字节校验和

备注:

- 1. 该命令下电机的 speedControl 由上位机中的 Max Speed 值限制。
- 2. 该控制模式下, 电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA2)。

测试中从0转到270为逆时针方向,从270度转到0为顺时针方向。

12. 多圈位置闭环控制命令1

主机发送该命令以控制电机的位置(多圈角度), 控制值 angleControl 为 int64_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,<mark>电机转动方向由目标位置和当前位置的差值决定</mark>。

	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA3	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x08	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据	(9byte,含校验)	
DATA[0]	位置控制低字节1	DATA[0] = *(uint8_t *)(&angleControl)	
DATA[1]	位置控制字节 2	DATA[1] = *((uint8_t *)(&angleControl)+1)	
DATA[2]	位置控制字节3	DATA[2] = *((uint8_t *)(&angleControl)+2)	
DATA[3]	位置控制字节 4	DATA[3] = *((uint8_t *)(&angleControl)+3)	
DATA[4]	位置控制字节 5	DATA[4] = *((uint8_t *)(&angleControl)+4)	
DATA[5]	位置控制字节 6	DATA[5] = *((uint8_t *)(&angleControl)+5)	
DATA[6]	位置控制字节7	DATA[6] = *((uint8_t *)(&angleControl)+6)	
DATA[7]	位置控制高字节8	DATA[7] = *((uint8_t *)(&angleControl)+7)	
DATA_SUM	数据校验字节	DATA[0]~DATA[7]字节校验和	

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 3. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 4. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA3)。

13. 多圈位置闭环控制命令2比上一个模式多了一个速度限制

主机发送该命令以控制电机的位置(多圈角度)

1. 控制值 angleControl 为 int64 t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,电机

转动方向由目标位置和当前位置的差值决定。

2. 控制值 maxSpeed 限制了电机转动的最大速度,为 uint32 t 类型,对应实际转速 0.01dps/LSB,即 36000 代表 360dps。

	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA4	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x0C	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(〔13byte,含校验〕	
DATA[0]	位置控制低字节 1	DATA[0] = *(uint8_t *)(&angleControl)	
DATA[1]	位置控制字节 2	DATA[1] = *((uint8_t *)(&angleControl)+1)	
DATA[2]	位置控制字节3	DATA[2] = *((uint8_t *)(&angleControl)+2)	
DATA[3]	位置控制字节 4	DATA[3] = *((uint8_t *)(&angleControl)+3)	
DATA[4]	位置控制字节 5	DATA[4] = *((uint8_t *)(&angleControl)+4)	
DATA[5]	位置控制字节6	DATA[5] = *((uint8_t *)(&angleControl)+5)	
DATA[6]	位置控制字节7	DATA[6] = *((uint8_t *)(&angleControl)+6)	
DATA[7]	位置控制高字节8	DATA[7] = *((uint8_t *)(&angleControl)+7)	
DATA[8]	速度限制低字节 1	DATA[8] = *(uint8_t *)(&maxSpeed)	
DATA[9]	速度限制字节 2	DATA[9] = *((uint8_t *)(&maxSpeed)+1)	
DATA[10]	速度限制字节3	DATA[10] = *((uint8_t *)(&maxSpeed)+2)	
DATA[11]	速度限制高字节 4	DATA[11] = *((uint8_t *)(&maxSpeed)+3)	
DATA_SUM	数据校验字节	DATA[0]~DATA[11]字节校验和	

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下, MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和读取电机状态 2 命令相同(仅命令字节 CMD[1]不同, 这里为 0xA4)

14. 单圈位置闭环控制命令1

位置闭环控制命令 1 注意该电机的减速比1: 10,即如何按表格中的命令发送 主机发送该命令以控制电机的位置(单圈角度)。

- 1. 控制值 spinDirection 设置电机转动的方向,为 uint8_t 类型,0x00 代表顺时针,0x01 代表逆时针
- 2. 控制值 angleControl 为 uint16_t 类型,数值范围 0~35999,对应实际位置为 0.01degree/LSB,即实 际角度范围 0°~359.99°。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0xA5
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x04
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
帧数据(5byte,含校验)		
DATA[0]	转动方向字节	DATA[0] = spinDirection

DATA[1]	位置控制字节1	DATA[1] = *(uint8_t *)(&angleControl)
DATA[2]	位置控制字节 2	DATA[2] = *((uint8_t *)(&angleControl)+1)
DATA[3]	NULL	0x00
DATA_SUM	数据校验字节	DATA[0]~DATA[3]字节校验和

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA5)

15. 单圈位置闭环控制命令 2

主机发送该命令以控制电机的位置(单圈角度)。

- 1. 控制值 spinDirection 设置电机转动的方向,为 uint8 t 类型,0x00 代表顺时针,0x01 代表逆时针
- 2. 角度控制值 angleControl 为 uint16_t 类型,数值范围 0~35999,对应实际位置为 0.01degree/LSB,即实际角度范围 0~359.99°。
- 3. 速度控制值 maxSpeed 限制了电机转动的最大速度,为 uint32_t 类型,对应实际转速 0.01dps/LSB,即 36000 代表 360dps。

μγ 300	·····································		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA6	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x08	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
帧数据(9byte,含校验)		(9byte,含校验)	
DATA[0]	转动方向字节	DATA[0] = spinDirection	
DATA[1]	位置控制字节1	DATA[1] = *(uint8_t *)(&angleControl)	
DATA[2]	位置控制字节 2	DATA[2] = *((uint8_t *)(&angleControl)+1)	
DATA[3]	NULL	DATA[3] = 0x00	
DATA[4]	速度限制低字节1	DATA[4] = *(uint8_t *)(&maxSpeed)	
DATA[5]	速度限制字节 2	DATA[5] = *((uint8_t *)(&maxSpeed)+1)	
DATA[6]	速度限制字节3	DATA[6] = *((uint8_t *)(&maxSpeed)+2)	
DATA[7]	速度限制高字节 4	DATA[7] = *((uint8_t *)(&maxSpeed)+3)	
DATA_SUM	数据校验字节	DATA[0]~DATA[7]字节校验和	

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA6)

16. 增量位置闭环控制命令1

主机发送该命令以控制电机的增量位置。

控制值 angleIncrement 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,电机转动方向由该参数的符号决定。

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA7	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度 0x04		
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(5byte,含校验)		
DATA[0]	增量位置控制低字节1	DATA[0] = *(uint8_t *)(&angleIncrement)	
DATA[1]	DATA[1] 增量位置控制字节 2 DATA[1] = *((uint8_t *)(&angleIncrement)+1)		
DATA[2]	DATA[2] 增量位置控制字节 3 DATA[2] = *((uint8_t *)(&angleIncrement)+2)		
DATA[3]] 增量位置控制高字节 4 DATA[3] = *((uint8_t *)(&angleIncrement)+3)		
DATA_SUM	数据校验字节	DATA[0]~DATA[3]字节校验和	

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA7)

17. 增量位置闭环控制命令 2

主机发送该命令以控制电机的增量位置。

- **1**. 控制值 angleIncrement 为 int32_t 类型,对应实际位置为 **0**.01degree/LSB,即 **36000** 代表 **360°**,电 机转动方向由该参数的符号决定。
- 2. 控制值 maxSpeed 限制了电机转动的最大速度,为 uint32_t 类型,对应实际转速 0.01dps/LSB,即 36000 代表 360dps。

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xA8	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x08	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(9byte,含校验)		
DATA[0]	增量位置控制低字节1	DATA[0] = *(uint8_t *)(&angleIncrement)	
DATA[1]	增量位置控制字节 2	DATA[1] = *((uint8_t *)(&angleIncrement)+1)	
DATA[2]	增量位置控制字节3	DATA[2] = *((uint8_t *)(&angleIncrement)+2)	
DATA[3]	增量位置控制高字节 4	DATA[3] = *((uint8_t *)(&angleIncrement)+3)	
DATA[4]	速度限制字节 2	DATA[4] = *((uint8_t *)(&maxSpeed)+1)	
DATA[5]	速度限制字节3	DATA[5] = *((uint8_t *)(&maxSpeed)+2)	
DATA[6]	速度限制高字节 4	DATA[6] = *((uint8_t *)(&maxSpeed)+3)	
DATA[7]	速度限制字节 2	DATA[7] = *((uint8_t *)(&maxSpeed)+1)	

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,MF、MH、MG 电机的最大转矩电流由上位机中的 Max Torque Current 值限制; MS 电机的最大功率由上位机中的 Max Power 值限制。

驱动回复

电机在收到命令后回复主机。电机回复数据和**读取电机状态 2 命令**相同(仅命令字节 CMD[1]不同,这里为 0xA8)

18. 读取控制参数命令

主机发送该命令读取当前电机的控制参数,读取的参数由序号 controlParamID 确定,见<u>电机控制参数</u>

	ě.	
Ξ	ŧ	ŝ
7	N	•
_	_	>

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0xC0
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x07
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
帧数据(3byte,含校验)		
DATA[0]	参数序号	DATA[0] = controlParamID
DATA[1]	参数字节1	DATA[1] = 0x00
DATA[2]	参数字节 2	DATA[2] = 0x00
DATA[3]	参数字节3	DATA[3] = 0x00
DATA[4]	参数字节 4	DATA[4] = 0x00
DATA[5]	参数字节 5	DATA[5] = 0x00
DATA[6]	参数字节 6	DATA[6] = 0x00
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和

驱动回复

驱动回复的数据中包含了读取的参数值,具体参数见电机控制参数表

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xC0	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x07	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(8byte,含校验)		
DATA[0]	参数序号	DATA[0] = controlParamID	
DATA[1]	参数字节1	DATA[1] = controlParamByte1	
DATA[2]	参数字节 2	DATA[2] = controlParamByte2	
DATA[3]	参数字节 3	DATA[3] = controlParamByte3	
DATA[4]	参数字节 4	DATA[4] = controlParamByte4	
DATA[5]	参数字节 5	DATA[5] = controlParamByte5	
DATA[6]	参数字节 6	DATA[6] = controlParamByte6	
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和	

19. 写入控制参数命令

主机发送该命令写入控制参数到 RAM 中,即时生效,断电后失效。写入的参数和序号 controlParamID 见电机控制参数表

1位/011-11/19/5 双衣		
帧命令(5byte,含校验)		
帧数据(8byte,含校验)		

驱动回复

驱动回复的数据中包含了写入后的参数值,具体的参数见电机控制参数表

	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0xC1	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x07	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据(8byte,含校验)		
DATA[0]	参数序号	DATA[0] = controlParamID	
DATA[1]	参数字节1	DATA[1] = controlParamByte1	
DATA[2]	参数字节 2	DATA[2] = controlParamByte2	
DATA[3]	参数字节 3	DATA[3] = controlParamByte3	
DATA[4]	参数字节 4	DATA[4] = controlParamByte4	
DATA[5]	参数字节 5	DATA[5] = controlParamByte5	
DATA[6]	参数字节 6	DATA[6] = controlParamByte6	
DATA_SUM	数据校验字节	DATA[0]~DATA[6]字节校验和	

20. 读取编码器命令

主机发送该命令以读取当前编码器的当前位置

帧命令(5byte,含校验)		
CMD[0]	D[0] 帧头 0x3E	
CMD[1]	命令	0x90
CMD[2]	CMD[2] ID 0x01~0x20	
CMD[3]	CMD[3] 数据长度 0x00	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

电机在收到命令后回复主机,回复数据中包含了以下参数。

- 1. 编码器位置 encoder(uint16_t 类型,数值范围与编码器分辨率相关),为编码器原始位置减去编码器零偏后的值。
- 2. 编码器原始位置 encoderRaw(uint16_t 类型,数值范围与编码器分辨率相关)。
- 3. 编码器零偏 encoderOffset ($uint16_t$ 类型,数值范围与编码器分辨率相关),该点为电机上电后的初始零位。

帧命令(5byte,含校验)				
CMD[0]	帧头	0x3E		
CMD[1]	命令	0x90		
CMD[2]	ID	0x01~0x20		
CMD[3]	数据长度	0x06		
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和		
	帧数据	(7byte,含校验)		
DATA[0]	编码器数据低字节	DATA[0] =*(uint8_t *)(&encoder)		
DATA[1]	编码器数据高字节	DATA[1] =*((uint8_t *)(&encoder)+1)		
DATA[2]	编码器原始位置低字节 DATA[2] =*(uint8_t *)(&encoderRaw)			
DATA[3]	DATA[3] 编码器原始位置高字节 DATA[3] =*((uint8_t *)(&encoderRaw)+1)			
DATA[4]	DATA[4] 编码器零偏低字节 DATA[4] = *(uint8_t *)(&encoderOffset)			
DATA[5]	DATA[5] 编码器零偏高字节 DATA[5] = *((uint8_t *)(&encoderOffset)+1)			
DATA_SUM	数据校验字节	DATA[0]~DATA[5]字节校验和		

备注:

1. 14bit 分辨率编码器的数值范围 0~16383; 15bit 分辨率编码器的数值范围 0~32767; 18bit 分辨率编码器的数值范围 0~65535 (保留高位 16bit,省略低位 2bit)。

21. 设置当前位置作为电机零点命令(写入 ROM)

设置电机当前位置的编码器原始值作为电机上电后的初始零点注意:

1. 该命令会将零点写入驱动的 FLASH,多次写入将会影响芯片寿命,不建议频繁使用

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x19
CMD[2]	ID	0x01~0x20
CMD[3]	CMD[3] 数据长度 0x00	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

电机在收到命令后回复主机,回复数据中包含了以下参数。

1. 当前位置的编码器原始值 encoderZero

帧命令(5byte,含校验)			
CMD[0]	帧头	0x3E	
CMD[1]	命令	0x19	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x02	
CMD_SUM	CMD_SUM 帧命令校验和字节 CMD[0]~CMD[3]字节校验和		
帧数据(3byte,含校验)			

DATA[0]	零点编码器原始值低字节	DATA[0] =*(uint8_t *)(&encoderZero)
DATA[1]	零点编码器原始值高字节	DATA[1] =*((uint8_t *)(&encoderZero)+1)
DATA_SUM	数据校验字节	DATA[0]~DATA[1]字节校验和

22. 读取多圈角度命令

主机发送该命令以读取当前电机的多圈绝对角度值

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x92
CMD[2]	ID	0x01~0x20
CMD[3]	CMD[3] 数据长度 0x00	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

电机在收到命令后回复主机,该帧数据中包含了以下参数:

1. 电机角度 motorAngle,为 int64_t 类型数据,正值表示顺时针累计角度,负值表示逆时针累计角度,单位 $0.01^{\circ}/LSB$ 。

	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0x92	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x08	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据	(9byte,含校验)	
DATA[0]	角度低字节1	DATA[0] = *(uint8_t *)(&motorAngle)	
DATA[1]	角度字节 2	DATA[1] = *((uint8_t *)(& motorAngle)+1)	
DATA[2]	角度字节 3	DATA[2] = *((uint8_t *)(& motorAngle)+2)	
DATA[3]	角度字节 4	DATA[3] = *((uint8_t *)(& motorAngle)+3)	
DATA[4]	角度字节 5	DATA[4] = *((uint8_t *)(& motorAngle)+4)	
DATA[5]	角度字节 6	DATA[5] = *((uint8_t *)(& motorAngle)+5)	
DATA[6]	角度字节7	DATA[6] = *((uint8_t *)(& motorAngle)+6)	
DATA[7]	角度高字节8	DATA[7] = *((uint8_t *)(& motorAngle)+6)	
DATA_SUM	数据校验字节	DATA[0]~DATA[7]字节校验和	

23. 清除电机圈数信息命令

主机发送该命令以清除当前电机的圈数信息

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x93
CMD[2]	ID	0x01~0x20
CMD[3]	CMD[3] 数据长度 0x00	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复(8byte)

和主机发送相同

24. 读取单圈角度命令

主机发送该命令以读取当前电机的多圈绝对角度值

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x94
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x00
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和

驱动回复

电机在收到命令后回复主机,该帧数据中包含了以下参数:

1. 电机单圈角度 circleAngle,为 uint32_t 类型数据,以编码器零点为起始点,顺时针增加,再次到达零点时数值回 0,单位 0.01° /LSB,数值范围 $0^{\sim}36000^{\circ}1_{\circ}$

`	之 (
	帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E	
CMD[1]	命令	0x94	
CMD[2]	ID	0x01~0x20	
CMD[3]	数据长度	0x04	
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和	
	帧数据	(5byte,含校验)	
DATA[0]	单圈角度低字节1	DATA[0] = *(uint8_t *)(&circleAngle)	
DATA[1]	单圈角度字节 2	DATA[1] = *((uint8_t *)(& circleAngle)+1)	
DATA[2]	单圈角度字节3	DATA[2] = *((uint8_t *)(& circleAngle)+2)	
DATA[3]	单圈角度高字节 4	DATA[3] = *((uint8_t *)(& circleAngle)+3)	
DATA_SUM	数据校验字节	DATA[0]~DATA[3]字节校验和	

25. 设置当前位置为任意角度(写入 RAM)

主机发送该命令以设置电机的当前位置作为任意角度(多圈),多圈角度值 motorAngle 为 int32_t 类型数据,数据单位 0.01°/LSB。

帧命令(5byte,含校验)		
CMD[0]	帧头	0x3E
CMD[1]	命令	0x95
CMD[2]	ID	0x01~0x20
CMD[3]	数据长度	0x04
CMD_SUM	帧命令校验和字节	CMD[0]~CMD[3]字节校验和
	帧数据	(5byte,含校验)
DATA[0]	多圈角度低字节1	DATA[0] = *(uint8_t *)(&motorAngle)
DATA[1]	多圈角度字节 2	DATA[1] = *((uint8_t *)(& motorAngle)+1)
DATA[2]	DATA[2] 多圈角度字节 3 DATA[2] = *((uint8_t *)(& motorAngle)+2)	
DATA[3]	多圈角度高字节 4	DATA[3] = *((uint8_t *)(& motorAngle)+3)
DATA_SUM	数据校验字节	DATA[0]~DATA[3]字节校验和

驱动回复(8byte)

和主机发送相同

附录一: 电机控制参数表

电机控制参数表		
参数序号 ParamID	控制参数说明	
	角度环 pid,包含三个参数	
	anglePidKp(角度环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& anglePidKp)	
	controlParamByte2 = *((uint8_t *)(& anglePidKp)+1)	
10 (0.01)	anglePidKi(角度环 ki,uint16_t 类型)	
10 (0x0A)	controlParamByte3 = *(uint8_t *)(& anglePidKi)	
	controlParamByte4 = *((uint8_t *)(& anglePidKi)+1)	
	anglePidKd(角度环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& anglePidKd)	
	controlParamByte6 = *((uint8_t *)(& anglePidKd)+1)	
	速度环 pid,包含三个参数	
	speedPidKp(速度环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& speedPidKp)	
	controlParamByte2 = *((uint8_t *)(& speedPidKp)+1)	
11 (000)	speedPidKi(速度环 ki,uint16_t 类型)	
11 (0x0B)	controlParamByte3 = *(uint8_t *)(& speedPidKi)	
	controlParamByte4 = *((uint8_t *)(& speedPidKi)+1)	
	speedPidKd(速度环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& speedPidKd)	
	controlParamByte6 = *((uint8_t *)(& speedPidKd)+1)	
	电流环 pid,包含三个参数	
	currentPidKp(电流环 kp,uint16_t 类型)	
	controlParamByte1 = *(uint8_t *)(& currentPidKp)	
	controlParamByte2 = *((uint8_t *)(& currentPidKp)+1)	
12 (0x0C)	currentPidKi(电流环 ki,uint16_t 类型)	
12 (0x0C)	controlParamByte3 = *(uint8_t *)(& currentPidKi)	
	controlParamByte4 = *((uint8_t *)(& currentPidKi)+1)	
	currentPidKd(电流环 kd,uint16_t 类型)	
	controlParamByte5 = *(uint8_t *)(& currentPidKd)	
	controlParamByte6 = *((uint8_t *)(& currentPidKd)+1)	
	inputTorqueLimit(最大力矩电流,int16_t 类型)	
30(0x1E)	controlParamByte3 = *(uint8_t *)(& inputTorqueLimit)	
	controlParamByte4 = *((uint8_t *)(& inputTorqueLimit)+1)	
	inputSpeedLimit(最大速度,int32_t 类型)	
	controlParamByte3 = *(uint8_t *)(& inputSpeedLimit)	
32 (0x20)	controlParamByte4 = *((uint8_t *)(& inputSpeedLimit)+1)	
	controlParamByte5 = *((uint8_t *)(& inputSpeedLimit)+2)	
	controlParamByte6 = *((uint8_t *)(& inputSpeedLimit)+3)	
	inputAngleLimit(角度限制,int32_t 类型)	
34 (0x22)	controlParamByte3 = *(uint8_t *)(& inputAngleLimit)	
	controlParamByte4 = *((uint8_t *)(& inputAngleLimit)+1)	

	controlParamByte5 = *((uint8_t *)(& inputAngleLimit)+2)
	controlParamByte6 = *((uint8_t *)(& inputAngleLimit)+3)
	inputCurrentRamp(电流斜率,int32_t 类型)
	controlParamByte3 = *(uint8_t *)(& inputCurrentRamp)
36 (0x24)	controlParamByte4 = *((uint8_t *)(& inputCurrentRamp)+1)
	controlParamByte5 = *((uint8_t *)(& inputCurrentRamp)+2)
	controlParamByte6 = *((uint8_t *)(& inputCurrentRamp)+3)
	inputSpeedRamp(速度斜率,int32_t 类型)
	controlParamByte3 = *(uint8_t *)(& inputSpeedRamp)
38 (0x26)	controlParamByte4 = *((uint8_t *)(& inputSpeedRamp)+1)
	controlParamByte5 = *((uint8_t *)(& inputSpeedRamp)+2)
	controlParamByte6 = *((uint8_t *)(& inputSpeedRamp)+3)