Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Canceled)

Claim 2. (Canceled)

Claim 3. (Original) A pharmaceutical composition for use in the treatment of chronic heart failure, congestive heart failure, arrhythmia or tachyarrhythmia, unstable angina, acute myocardial infarction or complications from cardiac surgery or for improving heart energy efficiency or cardiac output, comprising a S1P receptor agonist together with one or more pharmaceutically acceptable diluents or carriers therefor.

Claim 4. (Original) A method for treating chronic heart failure, congestive heart failure, arrhythmia or tachyarrhythmia, unstable angina, acute myocardial infarction or complications from cardiac surgery or for improving heart energy efficiency or cardiac output in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of a S1P receptor agonist.

Claim 5. (Original) A pharmaceutical combination comprising a) a first agent which is a S1P receptor agonist, and b) a co-agent selected from an angiotension converting enzyme inhibitor, an angiotension II receptor antagonist, a synthetic form of B-type natriuretic peptide (BNP) or other human B-type natriuretic peptide, a &-blocker, a &-adrenergic receptor agonist, an α -2 receptor agonist, a calcium antagonist and a diuretic.

Claim 6. (Original) A method according to claim 4 comprising co-administration concomitantly or in sequence, of a therapeutically effective amount of a S1P receptor agonist and a co-agent selected from an angiotension converting enzyme inhibitor, an angiotension II receptor antagonist, a synthetic form of B-type natriuretic peptide (BNP) or other human B-type natriuretic peptide, a Ω -blocker, a Ω -adrenergic receptor agonist, an Ω -2 receptor agonist, a calcium antagonist and a diuretic.

Claim 7. (Currently amended) Use, a pharmaceutical composition, a pharmaceutical combination or a method according to claims 1 to 6. The composition of claim 3, wherein the S1P receptor agonist is selected from a compound of formula I

$$R_4R_5N \longrightarrow CH_2OR_2$$
 R_1

wherein R₁ is a straight- or branched (C₁₂₋₂₂)carbon chain

- which may have in the chain a bond or a hetero atom selected from a double bond, a triple bond, O, S, NR₆, wherein R₆ is H, alkyl, aralkyl, acyl or alkoxycarbonyl, and carbonyl, and/or
- which may have as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxyimino, hydroxy or carboxy; or

R₁ is

- a phenylalkyl wherein alkyl is a straight- or branched (C₆₋₂₀)carbon chain or
- a phenylalkyl wherein alkyl is a straight- or branched (C₁₋₃₀)carbon chain wherein said phenylalkyl is substituted by
- a straight- or branched (C₆₋₂₀)carbon chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkoxy chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkenyloxy,
- phenylalkoxy, halophenylalkoxy, phenylalkoxyalkyl, phenoxyalkoxy or phenoxyalkyl,
- cycloalkylalkyl substituted by C₆₋₂₀alkyl,
- heteroarylalkyl substituted by C₆₋₂₀alkyl,
- heterocyclic C₆₋₂₀alkyl or
- heterocyclic alkyl substituted by C₆₋₂₀alkyl,

and wherein

the alkyl moiety may have

- in the carbon chain, a bond or a heteroatom selected from a double bond, a triple bond, O, S, sulfinyl, sulfonyl, or NR_6 , wherein R_6 is a defined above, and
- as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxy or carboxy, and

each of R_2 , R_3 , R_4 and R_5 , independently, is H, $C_{1\!-\!4}$ alkyl or acyl; a compound of formula II

$$R'_{4}R'_{5}N \xrightarrow{CH_{2}OR'_{3}} C-(CH_{2})_{2} \xrightarrow{CH_{2}OR'_{2}} II$$

wherein m is 1 to 9 and each of R'2, R'3, R'4 and R'5, independently, is H, alkyl or acyl, a compound of formula III

$$W - C - Z_{2} \longrightarrow X$$

$$(CH_{2})_{m} \cdot OR_{3}$$

$$Y$$

$$X$$

$$W = X_{1}$$

$$X$$

$$W = X_{2}$$

$$X$$

$$W = X_{3}$$

wherein W is H; C_{1-6} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl; unsubstituted or by OH substituted phenyl; $R"_4O(CH_2)n$; or C_{1-6} alkyl substituted by 1 to 3 substituents selected from the group consisting of halogen, C_{3-6} cycloalkyl, phenyl and phenyl substituted by OH;

X is H or unsubstituted or substituted straight chain alkyl having a number p of carbon atoms or unsubstituted or substituted straight chain alkoxy having a number (p-1) of carbon atoms, e.g. substituted by 1 to 3 substituents selected from the group consisting of $C_{1.6}$ alkyl, OH, $C_{1.6}$ alkoxy, acyloxy, amino, $C_{1.6}$ alkylamino, acylamino, oxo, halo $C_{1.6}$ alkyl, halogen, unsubstituted phenyl and phenyl substituted by 1 to 3 substituents selected from the group consisting of $C_{1.6}$ alkyl, OH, $C_{1.6}$ alkoxy, acyl, acyloxy, amino, $C_{1.6}$ alkylamino, acylamino, halo $C_{1.6}$ alkyl and halogen; Y is H, $C_{1.6}$ alkyl, OH, $C_{1.6}$ alkoxy, acyl, acyloxy, amino, $C_{1.6}$ alkylamino, acylamino, halo $C_{1.6}$ alkyl or halogen, Z_2 is a single bond or a straight chain alkylene having a number or carbon atoms of q, each of p and q, independently, is an integer of 1 to 20, with the proviso of $6 \le p+q \le 23$, m' is 1, 2 or 3, n is 2 or 3,

each of R"₁, R"₂, R"₃ and R"₄, independently, is H, C₁₋₄alkyl or acyl; a compound of formula IVa or IVb

$$(R_{2a})_2N\text{-C-CH}_2\text{-X}_a \qquad P \stackrel{}{=} O \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ (CH_2)_7CH_3 \qquad \text{IVa}$$

$$(R_{2a})_2N\text{-C-CH}_2\text{-X}_a \qquad P \stackrel{}{=} O \\ CH_2 \\$$

wherein X_a is O, S, NR_{1s} or a group -(CH₂)_{na}-, which group is unsubstituted or substituted by 1 to 4 halogen; n_a is 1 or 2, R_{1s} is H or $(C_{1.4})$ alkyl, which alkyl is unsubstituted or substituted by halogen; R_{1a} is H, OH, $(C_{1.4})$ alkyl or $O(C_{1.4})$ alkyl wherein alkyl is unsubstituted or substituted by 1 to 3 halogen; R_{1b} is H, OH or $(C_{1.4})$ alkyl, wherein alkyl is unsubstituted or substituted by halogen; each R_{2a} is independently selected from H or $(C_{1.4})$ alkyl, which alkyl is unsubstituted or substituted by halogen; R_{3a} is H, OH, halogen or $O(C_{1.4})$ alkyl wherein alkyl is unsubstituted or substituted by halogen; and R_{3b} is H, OH, halogen, $(C_{1.4})$ alkyl wherein alkyl is unsubstituted or substituted by hydroxy, or $O(C_{1.4})$ alkyl wherein alkyl is unsubstituted by halogen; Y_a is -CH₂-, -C(O)-, -CH(OH)-, -C(=NOH)-, O or S, and R_{4a} is $(C_{4.14})$ alkyl or $(C_{4.14})$ alkenyl; and

a compound of formula V

$$R_{4c}R_{3c}N \xrightarrow{R_{1c}} (CH_2)m_c-X_cR_{2c} \quad V$$

wherein

m_c is 1, 2 or 3;

X_c is O or a direct bond;

R_{1c} is H; C1-6alkyl optionally substituted by OH, acyl, halogen, C3-10cycloalkyl, phenyl or hydroxy-phenylene; C2-6alkenyl; C2-6alkynyl; or phenyl optionally substituted by OH;

R_{2c} is

wherein R_{5c} is H or C_{1-4} alkyl optionally substituted by 1, 2 or 3 halogen atoms, and R_{6c} is H or C_{1-4} alkyl optionally substituted by halogen;

each of R_{3c} and R_{4c} , independently, is H, C_{1-4} alkyl optionally substituted by halogen, or acyl, and

R_c is C₁₃₋₂₀alkyl which may optionally have in the chain an oxygen atom and which may optionally be substituted by nitro, halogen, amino, hydroxy or carboxy; or a residue of formula (a)

wherein R_{7c} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and R_{8c} is substituted C_{1-20} alkanoyl, phenyl C_{1-14} alkyl wherein the C_{1-14} alkyl is optionally substituted by halogen or OH, cycloalkyl C_{1-14} alkoxy or phenyl C_{1-14} alkoxy wherein the cycloalkyl or phenyl ring is optionally substituted by halogen, C_{1-4} alkyl and/or C_{1-4} alkoxy, phenyl C_{1-14} alkoxy- C_{1-14} alkyl, phenoxy C_{1-14} alkoxy or phenoxy C_{1-14} alkyl,

 R_c being also a reside of formula (a) wherein R_{8c} is C_{1-14} alkoxy when R_{1c} is C_{1-4} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl,

or a compound of formula VI

$$R_{4x}R_{3x}N \xrightarrow{\begin{array}{c} R_{1x} \\ CH_2-OR_{2x} \end{array}} (CH_2)n_x \xrightarrow{\begin{array}{c} R_{5x} \\ CH_2-OR_{2x} \end{array}} VI$$

wherein

 n_x is 2, 3 or 4

R_{1x} is H; C₁₋₆alkyl optionally substituted by OH, acyl, halogen, cycloalkyl, phenyl or hydroxyphenylene; C₂₋₆alkenyl; C₂₋₆alkynyl; or phenyl optionally substituted by OH;

R_{2x} is H, C₁₋₄alkyl or acyl

each of R_{3x} and R_{4x}, independently, is H, C₁₋₄alkyl optionally substituted by halogen or acyl,

 R_{5x} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and

R_{6x} is C₁₋₂₀alkanoyl substituted by cycloalkyl; cyloalkylC₁₋₁₄alkoxy wherein the cycloalkyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy; phenylC₁₋₁₄alkoxy wherein the phenyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy,

 R_{6x} being also C_{4-14} alkoxy when R_{1x} is C_{2-4} alkyl substituted by OH, pehtyloxy or hexyloxy when R_{1x} is C_{1-4} akyl,

provided that R_{6x} is other than phenyl-butylenoxy when either R_{5x} is H or R_{1x} is methyl, or a pharmaceutically acceptable salt thereof.

Claim 8. (New) The method of claim 4, wherein the S1P receptor agonist is selected from a compound of formula I

$$R_4R_5N$$
 CH_2OR_2 R_1 CH_2OR_2

wherein R₁ is a straight- or branched (C₁₂₋₂₂)carbon chain

- which may have in the chain a bond or a hetero atom selected from a double bond, a triple bond, O, S, NR₆, wherein R₆ is H, alkyl, aralkyl, acyl or alkoxycarbonyl, and carbonyl, and/or
- which may have as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxyimino, hydroxy or carboxy; or

R₁ is

- a phenylalkyl wherein alkyl is a straight- or branched (C₆₋₂₀)carbon chain or
- a phenylalkyl wherein alkyl is a straight- or branched (C₁₋₃₀)carbon chain wherein said phenylalkyl is substituted by
- a straight- or branched (C₆₋₂₀)carbon chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkoxy chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkenyloxy,
- phenylalkoxy, halophenylalkoxy, phenylalkoxyalkyl, phenoxyalkoxy or phenoxyalkyl,
- cycloalkylalkyl substituted by C₆₋₂₀alkyl,
- heteroarylalkyl substituted by C₆₋₂₀alkyl,
- heterocyclic C₆₋₂₀alkyl or
- heterocyclic alkyl substituted by C₆₋₂₀alkyl,

and wherein

the alkyl moiety may have

- in the carbon chain, a bond or a heteroatom selected from a double bond, a triple bond, O, S, sulfinyl, sulfonyl, or NR₆, wherein R₆ is a defined above, and
- as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxy or carboxy, and

each of R_2 , R_3 , R_4 and R_5 , independently, is H, C_{1-4} alkyl or acyl; a compound of formula II

$$R'_4R'_5N$$
 $C-(CH_2)_2$ C $CH_2OR'_3$ C $CH_2OR'_2$

wherein m is 1 to 9 and each of R'2, R'3, R'4 and R'5, independently, is H, alkyl or acyl, a compound of formula III

wherein W is H; C_{1-6} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl; unsubstituted or by OH substituted phenyl; $R''_4O(CH_2)n$; or C_{1-6} alkyl substituted by 1 to 3 substituents selected from the group consisting of halogen, C_{3-8} cycloalkyl, phenyl and phenyl substituted by OH;

X is H or unsubstituted or substituted straight chain alkyl having a number p of carbon atoms or unsubstituted or substituted straight chain alkoxy having a number (p-1) of carbon atoms, e.g. substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyloxy, amino, C_{1-6} alkylamino, acylamino, oxo, halo C_{1-6} alkyl, halogen, unsubstituted phenyl and phenyl substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl and halogen; Y is H, C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl or halogen, Z_2 is a single bond or a straight chain alkylene having a number or carbon atoms of q, each of p and q, independently, is an integer of 1 to 20, with the proviso of $6 \le p+q \le 23$, m' is 1, 2 or 3, n is 2 or 3,

each of R"₁, R"₂, R"₃ and R"₄, independently, is H, C₁₋₄alkyl or acyl; a compound of formula IVa or IVb

wherein X_a is O, S, NR_{1s} or a group -(CH₂)_{na}-, which group is unsubstituted or substituted by 1 to 4 halogen; n_a is 1 or 2, R_{1s} is H or (C_{1-4}) alkyl, which alkyl is unsubstituted or substituted by halogen; R_{1a} is H, OH, (C_{1-4}) alkyl or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted or substituted by 1 to 3 halogen; R_{1b} is H, OH or (C_{1-4}) alkyl, wherein alkyl is unsubstituted or substituted by halogen; each R_{2a} is independently selected from H or (C_{1-4}) alkyl, which alkyl is unsubstituted or substituted by halogen; R_{3a} is H, OH, halogen or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted or substituted by halogen; and R_{3b} is H, OH, halogen, (C_{1-4}) alkyl wherein alkyl is unsubstituted or substituted by hydroxy, or $O(C_{1-4})$ alkyl wherein alkyl is unsubstituted by halogen; Y_a is -CH₂-, -C(O)-, -CH(OH)-, -C(=NOH)-, O or S, and Y_a is Y_a is -CH₂-, -C(O)-, -CH(OH)-, -C(=NOH)-, O or S, and Y_a is Y_a is -CH₂-, -C(O)-, -CH(OH)-, -C(=NOH)-, O or S, and Y_a is -CH₂-14)alkyl or Y_a is -CH₂-14.

$$R_{4c}R_{3c}N \xrightarrow{R_{1c}} (CH_2)m_c - X_cR_{2c} \quad V$$

wherein

m_c is 1, 2 or 3;

X_c is O or a direct bond;

R_{1c} is H; C1-6alkyl optionally substituted by OH, acyl, halogen, C3-10cycloalkyl, phenyl or hydroxy-phenylene; C2-6alkenyl; C2-6alkynyl; or phenyl optionally substituted by OH;

 R_{2c} is

$$-P < OR_{5c} OR_{6c}$$

wherein R_{5c} is H or C_{1-4} alkyl optionally substituted by 1, 2 or 3 halogen atoms, and R_{6c} is H or C_{1-4} alkyl optionally substituted by halogen;

each of R_{3c} and R_{4c} , independently, is H, C_{1-4} alkyl optionally substituted by halogen, or acyl, and

R_c is C₁₃₋₂₀alkyl which may optionally have in the chain an oxygen atom and which may optionally be substituted by nitro, halogen, amino, hydroxy or carboxy; or a residue of formula (a)

$$-(CH_2)_{2.4}$$
 (a)

wherein R_{7c} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and R_{8c} is substituted C_{1-20} alkanoyl, phenyl C_{1-4} alkyl wherein the C_{1-14} alkyl is optionally substituted by halogen or OH, cycloalkyl C_{1-14} alkoxy or phenyl C_{1-14} alkoxy wherein the cycloalkyl or phenyl ring is optionally substituted by halogen, C_{1-4} alkyl and/or C_{1-4} alkoxy, phenyl C_{1-14} alkoxy- C_{1-14} alkyl, phenoxy C_{1-14} alkoxy or phenoxy C_{1-14} alkyl,

 R_c being also a reside of formula (a) wherein R_{8c} is C_{1-14} alkoxy when R_{1c} is C_{1-4} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl,

or a compound of formula VI

$$R_{4x}R_{3x}N \xrightarrow{R_{1x}} (CH_2)n_x \xrightarrow{R_{5x}} R_{6x}$$
 VI

wherein

 n_x is 2, 3 or 4

R_{1x} is H; C₁₋₆alkyl optionally substituted by OH, acyl, halogen, cycloalkyl, phenyl or hydroxy-phenylene; C₂₋₆alkenyl; C₂₋₆alkynyl; or phenyl optionally substituted by OH;

R_{2x} is H, C₁₋₄alkyl or acyl

each of R_{3x} and R_{4x}, independently, is H, C₁₋₄alkyl optionally substituted by halogen or acyl,

 R_{5x} is H, C_{14} alkyl or C_{14} alkoxy, and

is C₁₋₂₀alkanoyl substituted by cycloalkyl; cyloalkylC₁₋₁₄alkoxy wherein the cycloalkyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy; phenylC₁₋₁₄alkoxy wherein the phenyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy,

 R_{6x} being also C_{4-14} alkoxy when R_{1x} is C_{2-4} alkyl substituted by OH, pehtyloxy or hexyloxy when R_{1x} is C_{1-4} akyl,

provided that R_{6x} is other than phenyl-butylenoxy when either R_{5x} is H or R_{1x} is methyl, or a pharmaceutically acceptable salt thereof.

Claim 9. (New) The pharmaceutical combination of claim 5, wherein the S1P receptor agonist is selected from a compound of formula I

$$R_4R_5N$$
 CH_2OR_2 R_4

wherein R₁ is a straight- or branched (C₁₂₋₂₂)carbon chain

- which may have in the chain a bond or a hetero atom selected from a double bond, a triple bond, O, S, NR₆, wherein R₆ is H, alkyl, aralkyl, acyl or alkoxycarbonyl, and carbonyl, and/or
- which may have as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxyimino, hydroxy or carboxy; or

R₁ is

- a phenylalkyl wherein alkyl is a straight- or branched (C₆₋₂₀)carbon chain or
- a phenylalkyl wherein alkyl is a straight- or branched (C₁₋₃₀)carbon chain wherein said phenylalkyl is substituted by
- a straight- or branched (C₆₋₂₀)carbon chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkoxy chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkenyloxy,
- phenylalkoxy, halophenylalkoxy, phenylalkoxyalkyl, phenoxyalkoxy or phenoxyalkyl,
- cycloalkylalkyl substituted by C₆₋₂₀alkyl,
- heteroarylalkyl substituted by C₆₋₂₀alkyl,
- heterocyclic C₆₋₂₀alkyl or
- heterocyclic alkyl substituted by C₆₋₂₀alkyl,

and wherein

the alkyl moiety may have

- in the carbon chain, a bond or a heteroatom selected from a double bond, a triple bond, O,
 S, sulfinyl, sulfonyl, or NR₆, wherein R₆ is a defined above, and
- as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxy or carboxy, and

each of R_2 , R_3 , R_4 and R_5 , independently, is H, $C_{1\!-\!4}$ alkyl or acyl; a compound of formula II

$$R'_4R'_5N$$
 $C-(CH_2)_2$ C $CH_2OR'_2$ C $CH_2OR'_2$

wherein m is 1 to 9 and each of R'2, R'3, R'4 and R'5, independently, is H, alkyl or acyl, a compound of formula III

$$W = \begin{pmatrix} NR_{1}^{"}R_{2}^{"} \\ -C - Z_{2} \\ (CH_{2})_{m}OR_{3}^{"} \end{pmatrix} X$$

wherein W is H; C_{1-6} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl; unsubstituted or by OH substituted phenyl; $R''_4O(CH_2)n$; or C_{1-6} alkyl substituted by 1 to 3 substituents selected from the group consisting of halogen, C_{3-8} cycloalkyl, phenyl and phenyl substituted by OH;

X is H or unsubstituted or substituted straight chain alkyl having a number p of carbon atoms or unsubstituted or substituted straight chain alkoxy having a number (p-1) of carbon atoms, e.g. substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyloxy, amino, C_{1-6} alkylamino, acylamino, oxo, halo C_{1-6} alkyl, halogen, unsubstituted phenyl and phenyl substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl and halogen; Y is H, C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl or halogen, C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl or halogen, C_{1-6} alkylomino, acylamino, halo C_{1-6} alkylomino, halo C_{1-6} alkylomino,

each of R"₁, R"₂, R"₃ and R"₄, independently, is H, C₁₋₄alkyl or acyl; a compound of formula IVa or IVb

wherein X_a is O, S, NR_{1s} or a group -(CH₂)_{na}-, which group is unsubstituted or substituted by 1 to 4 halogen; n_a is 1 or 2, R_{1s} is H or (C₁₋₄)alkyl, which alkyl is unsubstituted or substituted by halogen; R_{1a} is H, OH, (C₁₋₄)alkyl or O(C₁₋₄)alkyl wherein alkyl is unsubstituted or substituted by 1 to 3 halogen; R_{1b} is H, OH or (C₁₋₄) alkyl, wherein alkyl is unsubstituted or substituted by halogen; each R_{2a} is independently selected from H or (C₁₋₄)alkyl, which alkyl is unsubstituted or substituted by halogen; R_{3a} is H, OH, halogen or O(C₁₋₄)alkyl wherein alkyl is unsubstituted or substituted by halogen; and R_{3b} is H, OH, halogen, (C₁₋₄)alkyl wherein alkyl is unsubstituted or substituted by hydroxy, or O(C₁₋₄)alkyl wherein alkyl is unsubstituted by halogen; Y_a is -CH₂-, -C(O)-, -CH(OH)-, -C(=NOH)-, O or S, and R_{4a} is (C₄₋₁₄)alkyl or (C₄₋₁₄)alkenyl; and

a compound of formula V

$$R_{4c}R_{3c}N \xrightarrow{R_{1c}} (CH_2)m_c-X_cR_{2c} \quad V$$

wherein

m_c is 1, 2 or 3;

X_c is O or a direct bond;

R_{1c} is H; C1-6alkyl optionally substituted by OH, acyl, halogen, C3-10cycloalkyl, phenyl or hydroxy-phenylene; C2-6alkenyl; C2-6alkynyl; or phenyl optionally substituted by OH;

R_{2c} is

wherein R_{5c} is H or C_{1-4} alkyl optionally substituted by 1, 2 or 3 halogen atoms, and R_{6c} is H or C_{1-4} alkyl optionally substituted by halogen;

each of R_{3c} and R_{4c} , independently, is H, C_{1-4} alkyl optionally substituted by halogen, or acyl, and

R_c is C₁₃₋₂₀alkyl which may optionally have in the chain an oxygen atom and which may optionally be substituted by nitro, halogen, amino, hydroxy or carboxy; or a residue of formula (a)

wherein R_{7c} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and R_{8c} is substituted C_{1-20} alkanoyl, phenyl C_{1-14} alkyl wherein the C_{1-14} alkyl is optionally substituted by halogen or OH, cycloalkyl C_{1-14} alkoxy or phenyl C_{1-14} alkoxy wherein the cycloalkyl or phenyl ring is optionally substituted by halogen, C_{1-4} alkyl and/or C_{1-4} alkoxy, phenyl C_{1-14} alkoxy- C_{1-14} alkyl, phenoxy C_{1-14} alkoxy or phenoxy C_{1-14} alkyl,

 R_c being also a reside of formula (a) wherein R_{8c} is C_{1-14} alkoxy when R_{1c} is C_{1-4} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl,

or a compound of formula VI

$$R_{4x}R_{3x}N \xrightarrow{R_{1x}} (CH_2)n_x \xrightarrow{R_{5x}} VI$$

wherein

n_x is 2, 3 or 4

R_{1x} is H; C₁₋₆alkyl optionally substituted by OH, acyl, halogen, cycloalkyl, phenyl or hydroxy-phenylene; C₂₋₆alkenyl; C₂₋₆alkynyl; or phenyl optionally substituted by OH;

R_{2x} is H, C₁₋₄alkyl or acyl

each of R_{3x} and R_{4x}, independently, is H, C₁₋₄alkyl optionally substituted by halogen or acyl,

 R_{5x} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and

R_{6x} is C₁₋₂₀alkanoyl substituted by cycloalkyl; cyloalkylC₁₋₁₄alkoxy wherein the cycloalkyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy; phenylC₁₋₁₄alkoxy wherein the phenyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy,

 R_{6x} being also C_{4-14} alkoxy when R_{1x} is C_{2-4} alkyl substituted by OH, pehtyloxy or hexyloxy when R_{1x} is C_{1-4} akyl,

provided that R_{6x} is other than phenyl-butylenoxy when either R_{5x} is H or R_{1x} is methyl, or a pharmaceutically acceptable salt thereof.

Claim 10. (New) The method of claim 6, wherein the S1P receptor agonist is selected from a compound of formula I

$$R_4R_5N$$
 CH_2OR_2 R_1

wherein R₁ is a straight- or branched (C₁₂₋₂₂)carbon chain

- which may have in the chain a bond or a hetero atom selected from a double bond, a triple bond, O, S, NR₆, wherein R₆ is H, alkyl, aralkyl, acyl or alkoxycarbonyl, and carbonyl, and/or
- which may have as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxyimino, hydroxy or carboxy; or

R₁ is

- a phenylalkyl wherein alkyl is a straight- or branched (C₆₋₂₀)carbon chain or
- a phenylalkyl wherein alkyl is a straight- or branched (C₁₋₃₀)carbon chain wherein said phenylalkyl is substituted by
- a straight- or branched (C₆₋₂₀)carbon chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkoxy chain optionally substituted by halogen,
- a straight- or branched (C₆₋₂₀)alkenyloxy,
- phenylalkoxy, halophenylalkoxy, phenylalkoxyalkyl, phenoxyalkoxy or phenoxyalkyl,
- cycloalkylalkyl substituted by C₆₋₂₀alkyl,
- heteroarylalkyl substituted by C₆₋₂₀alkyl,
- heterocyclic C₆₋₂₀alkyl or
- heterocyclic alkyl substituted by C₆₋₂₀alkyl,

and wherein

the alkyl moiety may have

- in the carbon chain, a bond or a heteroatom selected from a double bond, a triple bond, O, S, sulfinyl, sulfonyl, or NR₆, wherein R₆ is a defined above, and
- as a substituent alkoxy, alkenyloxy, alkynyloxy, aralkyloxy, acyl, alkylamino, alkylthio, acylamino, alkoxycarbonyl, alkoxycarbonylamino, acyloxy, alkylcarbamoyl, nitro, halogen, amino, hydroxy or carboxy, and

each of R_2 , R_3 , R_4 and R_5 , independently, is H, C_{1-4} alkyl or acyl; a compound of formula II

$$R'_{4}R'_{5}N \xrightarrow{CH_{2}OR'_{3}} C-(CH_{2})_{2}$$

$$CH_{2}OR'_{2}$$

$$II$$

wherein m is 1 to 9 and each of R'2, R'3, R'4 and R'5, independently, is H, alkyl or acyl, a compound of formula III

wherein W is H; C_{1-6} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl; unsubstituted or by OH substituted phenyl; $R"_4O(CH_2)n$; or C_{1-6} alkyl substituted by 1 to 3 substituents selected from the group consisting of halogen, C_{3-8} cycloalkyl, phenyl and phenyl substituted by OH;

X is H or unsubstituted or substituted straight chain alkyl having a number p of carbon atoms or unsubstituted or substituted straight chain alkoxy having a number (p-1) of carbon atoms, e.g. substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyloxy, amino, C_{1-6} alkylamino, acylamino, oxo, halo C_{1-6} alkyl, halogen, unsubstituted phenyl and phenyl substituted by 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl and halogen; Y is H, C_{1-6} alkyl, OH, C_{1-6} alkoxy, acyl, acyloxy, amino, C_{1-6} alkylamino, acylamino, halo C_{1-6} alkyl or halogen, C_{2} is a single bond or a straight chain alkylene having a number or carbon atoms of q, each of p and q, independently, is an integer of 1 to 20, with the proviso of $6 \le p+q \le 23$, m' is 1, 2 or 3, n is 2 or 3,

each of R"₁, R"₂, R"₃ and R"₄, independently, is H, C₁₋₄alkyl or acyl; a compound of formula IVa or IVb

wherein X_a is O, S, NR_{1s} or a group -(CH_2)_{na}-, which group is unsubstituted or substituted by 1 to 4 halogen; n_a is 1 or 2, R_{1s} is H or (C_{1-4})alkyl, which alkyl is unsubstituted or substituted by halogen; R_{1a} is H, OH, (C_{1-4})alkyl or O(C_{1-4})alkyl wherein alkyl is unsubstituted or substituted by 1 to 3 halogen; R_{1b} is H, OH or (C_{1-4}) alkyl, wherein alkyl is unsubstituted or substituted by halogen; each R_{2a} is independently selected from H or (C_{1-4})alkyl, which alkyl is unsubstituted or substituted by halogen; R_{3a} is H, OH, halogen or O(C_{1-4})alkyl wherein alkyl is unsubstituted or substituted by halogen; and R_{3b} is H, OH, halogen, (C_{1-4})alkyl wherein alkyl is unsubstituted or substituted by hydroxy, or O(C_{1-4})alkyl wherein alkyl is unsubstituted by halogen; Y_a is - Y_a in - Y_a is - Y_a in - $Y_$

$$R_{4c}R_{3c}N \xrightarrow{R_{1c}} (CH_2)m_c-X_cR_{2c} V$$

wherein

m_c is 1, 2 or 3;

X_c is O or a direct bond;

R_{1c} is H; C1-6alkyl optionally substituted by OH, acyl, halogen, C3-10cycloalkyl, phenyl or hydroxy-phenylene; C2-6alkenyl; C2-6alkynyl; or phenyl optionally substituted by OH;

 R_{2c} is

wherein R_{5c} is H or C_{1-4} alkyl optionally substituted by 1, 2 or 3 halogen atoms, and R_{6c} is H or C_{1-4} alkyl optionally substituted by halogen;

each of R_{3c} and R_{4c} , independently, is H, C_{1-4} alkyl optionally substituted by halogen, or acyl, and

R_c is C₁₃₋₂₀alkyl which may optionally have in the chain an oxygen atom and which may optionally be substituted by nitro, halogen, amino, hydroxy or carboxy; or a residue of formula (a)

$$-(CH_2)_{2-4}$$
 (a)

wherein R_{7c} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and R_{8c} is substituted C_{1-20} alkanoyl, phenyl C_{1-14} alkyl wherein the C_{1-14} alkyl is optionally substituted by halogen or OH, cycloalkyl C_{1-14} alkoxy or phenyl C_{1-14} alkoxy wherein the cycloalkyl or phenyl ring is optionally substituted by halogen, C_{1-4} alkyl and/or C_{1-4} alkoxy, phenyl C_{1-14} alkoxy- C_{1-14} alkyl, phenoxy C_{1-14} alkoxy or phenoxy C_{1-14} alkyl,

 R_c being also a reside of formula (a) wherein R_{8c} is C_{1-14} alkoxy when R_{1c} is C_{1-4} alkyl, C_{2-6} alkenyl or C_{2-6} alkynyl,

or a compound of formula VI

$$R_{4x}R_{3x}N \xrightarrow{R_{1x}} (CH_2)n_x \xrightarrow{R_{5x}} R_{6x}$$
 VI

wherein

 n_x is 2, 3 or 4

R_{1x} is H; C₁₋₆alkyl optionally substituted by OH, acyl, halogen, cycloalkyl, phenyl or hydroxy-phenylene; C₂₋₆alkenyl; C₂₋₆alkynyl; or phenyl optionally substituted by OH;

 R_{2x} is H, C_{1-4} alkyl or acyl

each of R_{3x} and R_{4x}, independently, is H, C₁₋₄alkyl optionally substituted by halogen or acyl,

 R_{5x} is H, C_{1-4} alkyl or C_{1-4} alkoxy, and

R_{6x} is C₁₋₂₀alkanoyl substituted by cycloalkyl; cyloalkylC₁₋₁₄alkoxy wherein the cycloalkyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy; phenylC₁₋₁₄alkoxy wherein the phenyl ring is optionally substituted by halogen, C₁₋₄alkyl and/or C₁₋₄alkoxy,

 R_{6x} being also C_{4-14} alkoxy when R_{1x} is C_{2-4} alkyl substituted by OH, pehtyloxy or hexyloxy when R_{1x} is C_{1-4} akyl,

provided that R_{6x} is other than phenyl-butylenoxy when either R_{5x} is H or R_{1x} is methyl, or a pharmaceutically acceptable salt thereof.