## Exercise 10 – Neural Networks

## **Introduction to Machine Learning**

## Exercise 1: Logistic regression or deep learning?

## Learning goals

- 1) Understand how stacking single neurons can solve a non-linear classification problem
- 2) Translate between functional & graph description of NNs

Suppose you have a set of five training points from two classes. Consider a logistic regression model  $f(\mathbf{x}) = \sigma\left(\alpha^{\top}\mathbf{x}\right) = \sigma(\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2)$ , with  $\sigma(\cdot)$  the logistic/sigmoid function,  $\sigma(c) = \frac{1}{1 + \exp(-c)}$ .

Which values for  $\alpha = (\alpha_0, \alpha_1, \alpha_2)^{\top}$  would result in correct classification for the problem in Figure 1 (assuming a threshold of 0.5 for the positive class)?

Don't use any statistical estimation to answer this question – think in geometrical terms: you need a linear hyperplane that represents a suitable decision boundary.

Apply the same principle to find the parameters  $\beta = (\beta_0, \beta_1, \beta_2)^{\top}$  for the modified problem in Figure 2.



Figure 1: Classification problem I



Figure 2: Classification problem II

Now consider the problem in Figure 3, which is not linearly separable anymore, so logistic regression will not help us any longer. Suppose we had alternative coordinates  $(z_1, z_2)^{\top}$  for our data points:

| i | $z_1^{(i)}$ | $z_2^{(i)}$ | $y^{(i)}$ |
|---|-------------|-------------|-----------|
| 1 | 0           | 0           | 1         |
| 2 | 0           | 1           | 0         |
| 3 | 0           | 1           | 0         |
| 4 | 1           | 0           | 0         |
| 5 | 1           | 0           | 0         |
|   |             |             |           |



Figure 3: Classification problem III

Explain how we can use  $z_1$  and  $z_2$  to classify the dataset in Figure 3. The question is now, of course, how we can get these  $z_1$  and  $z_2$  that provide a solution to our previously unsolved problem – naturally, from the data.

The question is now, of course, how we can get these z1 and z2 that provide a solution to our previously unsolved problem – naturally, from the data.

Perform logistic regression to predict  $z_1$  and  $z_2$  (separately), treating them as target labels to the original observations with coordinates  $(x_1, x_2)^{\top}$ . Find the respective parameter vectors  $\gamma, \phi \in \mathbb{R}^3$ .

Lastly, put together your previous results to formulate a model that predicts the original target y from the original features  $(x_1, x_2)^{\top}$ .

| Sketch the neural network you just created (perhaps without realizing it). |
|----------------------------------------------------------------------------|
|                                                                            |

Explain briefly how the chain rule is applied to the computational graph such a neural network represents. Can you think of a use we can put the resulting gradients to?