1. Линейные системы

1.1. Постановка задачи

$$t \in [0,T] \longmapsto x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Линейное неоднородное уравнение:

$$\dot{x}(t)=A(t)x(t)+f(t),\ t\in(0,T) \qquad (1)$$

$$A(t) = ((a_{ij}(t))), i, j = \overline{1, n}$$

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

$$\begin{cases} \dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n + f_1 \\ \vdots \\ \dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n + f_n \end{cases}$$

Линейное однородное уравнение:

$$(1_0)$$
 $\dot{x} = A(t)x$

Задача Коши для (1):

$$(2) \qquad x(0) = x^{(0)} \in \mathbb{R}^n$$

1.2. Матмодели

1.2.1. Температура в доме

 $x_{1,2}(t)$ — температура на 1, 2 этаже

 x_q — температура земли

 x_e — температура на улице

$$\dot{x}_1 = k_1 \big(x_g - x_1 \big) + k_2 (x_2 - x_1) + k_3 (x_e - x_1) + p(t)$$

Коэффициент передачи через пол, через потолок, через стены + печка.

$$\dot{x}_2 = k_2(x_1 - x_2) + k_4(x_e - x_2)$$

Числа $k_{1,2,3,4}$ известны.

$$A = \begin{pmatrix} -(k_1 + k_2 + k_3) & k_2 \\ k_2 & -(k_2 + k_4) \end{pmatrix} \qquad f = \begin{pmatrix} p + k_1 x_g + k_3 x_e \\ k_4 x_e \end{pmatrix}$$

1.2.2. Динамика цен и запасов

s(t) — объём продаж за единицу времени.

p(t) — текущая цена.

I(t) — уровень запасов на каком-то складе.

Q(t) — скорость поступления товара.

 p_* — равновесная цена.

 I_{st} — желаемый запас.

$$\begin{cases} \dot{s} = \beta(p-p_*), \ \beta < 0 \\ \dot{p} = \alpha(I-I_*), \ \alpha < 0 \end{cases} \quad x(t) = \begin{pmatrix} s(t) \\ p(t) \\ I(t) \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & \beta & 0 \\ 0 & 0 & \alpha \\ -1 & 0 & 0 \end{pmatrix} \qquad f = \begin{pmatrix} -\beta p_* \\ -\alpha I_* \\ Q \end{pmatrix}$$

1.3. Корректность задачи Коши

(1)
$$\dot{x}(t) = A(t)x(t) + f(t), \ t \in (0,T)$$

(2)
$$x(0) = x^{(0)}$$

$$(*) \qquad \begin{cases} t > 0 \\ x^{(0)} \in \mathbb{R}^n \\ f \in C[0, T] \\ A \in C[0, T] \ \left(a_{ij} \in C[0, T]\right) \end{cases}$$

Th.1

Пусть выполнены условия (*). Тогда \exists ! решение (1) - (2).

1.4. Априорные оценки решения задачи Коши

$$x, y \in \mathbb{R}^n$$
 $|x| = \sqrt{\sum_{1}^{n} x_j^2}$
$$(x, y) = \sum_{1}^{n} x_j y_j$$

$$(\dot{x}, x) = (Ax, x) + (f, x)$$

С другой стороны:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} |x|^2 = (\dot{x}, x)$$

Неравенство Коши-Буняковского:

$$\begin{aligned} |(x,y)| &\leq |x| \cdot |y| \\ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \ |x|^2 &\leq |Ax| \cdot |x| + |f| \cdot |x| \\ |\underbrace{Ax}_y| &= \sqrt{\sum y_i^2} \end{aligned}$$

$$\begin{split} y_i &= \sum_{j=1}^n a_{ij} x_j \leq \sqrt{\sum_{j=1}^n a_{ij}^2} \cdot |x| \\ M_1 &= \max_{t \in [0,T]} \sum_{j=1}^n a_{ij}^2 \\ y_i^2 \leq M_1 \ |x|^2 \\ y &= |Ax| = \sqrt{\sum y_i^2} \leq \sqrt{M_1 n |x|^2} \\ M_2 &= \max_{t \in [0,T]} f(t) \\ \frac{1}{2} \frac{d}{dt} \ |x|^2 \leq \sqrt{M_1 n} \ |x|^2 + M_2 \ |x| \\ \frac{d}{dt} \ |x| \leq \sqrt{M_1 n} \ |x| + M_2 \\ \frac{d}{dt} \ |x| - \sqrt{M_1 n} \ |x| \leq M_2 \\ \left(\frac{d}{dt} \ |x| - \sqrt{M_1 n} \ |x|\right) e^{-\sqrt{M_1 n}t} \leq M_2 e^{-\sqrt{M_1 n}t} \\ \frac{d}{dt} \left(e^{-\sqrt{M_1 n}t} \ |x(t)|\right) \leq M_2 e^{-\sqrt{M_1 n}t} \end{split}$$

Интегрируем:

$$\begin{split} \int_0^t \frac{d}{dt} \Big(e^{-\sqrt{M_1 n} t} \ |x(t)| \Big) & \leq \int_0^t M_2 e^{-\sqrt{M_1 n} t} \\ e^{-\sqrt{M_1 n} t} \Big(|x(t)| - |x^{(0)}| \Big) & \leq \frac{M_2}{\sqrt{M_1 n}} \Big(1 - e^{-\sqrt{M_1 n} t} \Big) \end{split}$$

$$|\mathbf{x}(t)| \le e^{\sqrt{M_1 n}t} |x^{(0)}| + \frac{M_2}{\sqrt{M_1 n}} (e^{\sqrt{M_1 n}t} - 1)$$

1.5. Однородная система линейных ОДУ

(3)
$$\dot{x} = A(t)x, \ t \in (0,T)$$

Замечание

Пусть

$$\begin{cases} \dot{x} = Ax, \ t \in (0, T) \\ x(0) = 0 \end{cases}$$

Тогда, существует единственное решение $x(t)\equiv 0$

Лемма 1

Множество решений (3) есть линейное пространство

Определение

Пусть вектор-функции $x^{(1)},...,x^{(m)}\in C[0,T]$

$$x^{(1)} = \begin{pmatrix} x_1^{(1)} \\ \vdots \\ x_2^{(1)} \end{pmatrix}, \dots$$

Система векторов называется линейно независимой, если:

$$\sum_{i=1}^m c_j x^{(j)}(t) = 0, \ t \in [0,T] \Rightarrow c_1 = \ldots = c_m = 0$$

Определение

Система из n линейно независимых решений однородной задачи (3) называется фундаментальной системой решений.

Определение

Пусть $x^{(1)},...,x^{(n)}$ — решение (3)

 $W(t) = \det \left(x^{(1)}(t),...,x^{(n)}(t)
ight) -$ определитель Вронского.

Определение

 $\Phi(t)=\left(arphi^{(1)},...,arphi^{(n)}
ight)$ — фундаментальная матрица системы (3), где $arphi^{(1)},...,arphi^{(n)}$ — ф.с.р.

Лемма 2

$$\det \Phi(t) \neq 0, \ t \in [0, T]$$