10.3
$$(x^{n+1})' = (n+1) x^n$$

Si $n+1\neq 0$, c'est-à-dire si $n\neq -1$, on peut diviser cette équation par n+1: $x^n=\frac{1}{n+1}\,(x^{n+1})'=\left(\frac{1}{n+1}\,x^{n+1}\right)'$ Ainsi $\frac{1}{n+1}\,x^{n+1}$ est une primitive de x^n .

En d'autres termes $\int x^n dx = \frac{1}{n+1} x^{n+1}$.

Corrigé 10.3 Analyse: primitives