Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №4 по дисциплине "Математическая статистика"

Эмпирические функции и ядерные оценки

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	3
2 Теория	3
3 Реализация	4
4 Результаты	5
4.1 Эмпирические функции распределения (ЭФР)	5
4.1 Ядерные функции плотности (ЯФП)	7
5 Выводы	14
6 Литература	15
7 Приложения	15
Список иллюстраций	
ЭФР. Стандартное нормальное распределение	5
ЭФР. Стандартное распределение Коши	
ЭФР. Распределение Лапласа	
ЭФР. Равномерное распределение	6
ЭФР. Распределение Пуассона	7
ЯФП. Стандартное нормальное распределение при n=20	
ЯФП. Стандартное нормальное распределение при n=60	
ЯФП. Стандартное нормальное распределение при n=100	
ЯФП. Стандартное распределение Коши при n=20	9
ЯФП. Стандартное распределение Коши при n=60	9
ЯФП. Стандартное распределение Коши при n=100	
ЯФП. Распределение Лапласа при n=20	10
ЯФП. Распределение Лапласа при n=60	11
ЯФП. Распределение Лапласа при n=100	11
ЯФП. Равномерное распределение при n=20	12
ЯФП. Равномерное распределение при n=60	12
ЯФП. Равномерное распределение при n=100	13
ЯФП. Распределение Пуассона при n=20	13
ЯФП. Распределение Пуассона при n=60	14
ЯФП. Распределение Пуассона при n=100	14

1 Постановка задачи

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

Распределения:

• Стандартное нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$
(1.1)

• Стандартное распределение Коши:

$$C(x,0,1) = \frac{1}{\pi(1+x^2)}$$
 (1.2)

• Распределение Лапласа:

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{1.3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!} e^{-10} \tag{1.4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, npu|x| \le \sqrt{3} \\ 0, npu|x| > \sqrt{3} \end{cases}$$
 (1.5)

2 Теория

Эмпирической функцией распределения (ЭФР) \dot{F}_n называется относительная частота события X < x, полученная по данной выборке суммированием частот n_i , для которых элементы z_i статистического ряда меньше x:

$$\dot{F}_n(x) = \dot{F}(X < x) = \frac{1}{n} \sum_{z < x} n_i$$

ЭФР является оценкой, то есть приближённым значением, генеральной функции распределения.

$$\dot{F}_n(x) \approx F_x(x)$$

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x):

$$\hat{f}(x) \approx f(x)$$

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\widehat{f}_n(x) = \frac{1}{n h_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right)$$

Здесь K(u) называется ядерной функцией плотности (ЯФП), непрерывна и является плотностью вероятности, $[h_n]$ – любая последовательность положительных чисел, обладающая свойствами:

$$1. \lim_{n\to\infty} h_n = 0$$

$$2. \lim_{n\to\infty}\frac{h_n}{n^{-1}}=\infty$$

Гауссово ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}}$$

Правило Сильвермана:

$$h_n = 1.06 \,\hat{\sigma} \, n^{\frac{-1}{5}}$$
,

где $\hat{\sigma}$ — выборочное стандартное отклонение.

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для генерации выборок с различными распределениями и математических расчётов, модуль *scipy* для функций и плотностей распределений, модуль *matplotlib* для построения и отображения графиков и гистограмм, и функция *gamma* из модуля *math* для вычисления вещественного факториала.

4 Результаты

4.1 Эмпирические функции распределения (ЭФР)

Рис. 1 ЭФР для Стандартного нормального распределения

Рис. 2 ЭФР для Стандартного распределения Коши

Рис. 4 ЭФР для Равномерного распределения

Рис. 5 ЭФР для распределения Пуассона

4.1 Ядерные функции плотности (ЯФП)

Рис. 6 ЯФП для Стандартного нормального распределения при n=20

Рис. 8 ЯФП для Стандартного нормального распределения при n=100

Рис. 9 ЯФП для Стандартного распределения Коши при n=20 KDE standard_cauchy n=20

Рис. 10 ЯФП для Стандартного распределения Коши при n=60

Рис. 11 ЯФП для Стандартного распределения Коши при n=100

Рис. 12 ЯФП для распределения Лапласа при n=20

Рис. 14 ЯФП для распределения Лапласа при n=100

Рис. 15 ЯФП для Равномерного распределения при n=20 KDE uniform n=20

Рис. 16 ЯФП для Равномерного распределения при n=60

Рис. 17 ЯФП для Равномерного распределения при n=100

Рис. 18 ЯФП для распределения Пуассона при n=20

Рис. 20 ЯФП для распределения Пуассона при n=100

5 Выводы

ЭФР лучше приближает эталонную функцию на больших выборках.

Для Стандартного нормального и Стандартного распределения Коши при всех исследуемых n были достигнуты наилучшие оценки при $h=h_n$. Для распределения Пуассона оценки получились лучше при $h=2h_n$.

6 Литература

Основы работы с питру (отдельная глава курса)

<u>Документация по *scipy*</u>

7 Приложения

Код лабораторной