Question **1**Not yet
answered

Marked out of 5.0

Flag question

Un ingeniero civil está interesado en estudiar la absorción media de humedad en cinco mezclas de concreto, denotadas de 1 a 5, que contienen diferentes porcentajes de impermeabilizante. Para realizar este estudio se ejecuta el siguiente experimento: i) se toman aleatoriamente n=6 placas, de cada tipo de mezcla; ii) las 30 placas seleccionadas se colocan aleatoriamente en un recinto y se exponen durante 48 horas a la humedad, procurando condiciones de humedad homogéneas para las placas; iii) Al finalizar las 48 horas, se mide la cantidad de humedad absorbida por cada placa. Los resultados obtenidos se ilustran en la siguiente figura.

De acuerdo a la descripción del experimento se tiene que

- La variable respuesta es Cantidad humedad absorbida por la placa
 El factor de tratamientos es Mezcla de concreto
 El factor de bloques es No hay bloqueo
- Su estructura de tratamientos es
 - OCompletamente aleatorizada
 - ODe bloques completos aleatorizados
 - De un factor de efectos fijos
 - ODe un factor de efectos aleatorios
- Su estructura de diseño es
 - OCompletamente aleatorizada

Question 3

Incomplete answer

Marked out of 3.0

Flag question

Especifique la ecuación del modelo Anova arrastrando a los cajones vacíos los términos correctos, teniendo en cuenta que los cajones vacíos solo pueden ser llenados por cajas de opciones que tengan el mismo color de la caja a llenar, y además, que la estructura de la ecuación es $Y_{ij} = \mu + (\text{efectos de tratamientos}) + (\text{efectos de bloques}) + E_{ij}$. Considere también que

- α_i denota efecto fijo del i-ésimo tratamiento
- A_i denota efecto aleatorio del i-ésimo tratamiento con una varianza σ_{α}^2
- β_i denota efecto fijo del j-esimo bloque (si hay tal tipo de efecto)
- Y_{ij} la respuesta
- E_{ij} el término de error con una varianza σ^2

Entonces,

$$Y_{ij} = \mu + \boxed{} + \boxed{}$$
 + sin efectos de bloques $+E_{ij}$, donde

- los efectos de tratamientos son tales que $\sum_{i=1}^{a} \alpha_i = 0$, con a = 0 tratamientos
- los efectos de bloques son tales que sin restricciones sobre bloques pues no hay bloqueo , con b = bloques
- los errores son tales que E_{ij} iid $N(0,\sigma^2)$ y además son independientes de No hay condiciones adicionales para los errores

A continuación, se da información parcial de la tabla ANOVA de este experimento. Complete la información; use todos los decimales y dé respuesta en sumas de cuadrados, cuadrados medios y estadístico F con cuatro cifras después del punto decimal, usando punto "." como separador de decimales. Recuerde que se tomaron 6 placas con cada mezcla de cemento.

Fuente	grados	de libertad	Suma Cuadrados	Cuadrados medi	osF	valor	Valor P
Factor	4		85356.4667	21339.1167		4.3015	0.0088
Error	25		124020.3333	4960.8133			
Total	29		209376.8000				

Para el experimento considerado, en el test ANOVA,

- La distribución del estadístico F_0 es
 - $\bigcirc f_{5,25}$
 - $\bigcirc f_{4,29}$
 - $\circ f_{4,25}$
 - $\bigcirc f_{5,29}$
 - $\bigcirc f_{4,30}$
- · La conclusión del test ANOVA es
 - OLas placas no tienen efectos significativos sobre el promedio de humedad absorbida
 - OEI promedio del porcentaje de impermeabilizante en las placas difiere según tipo de mezcla
 - Para las mezclas analizadas, el promedio de humedad absorbida en las placas difiere según mezcla
 - OEI tiempo de absorción de humedad por placa no depende del tipo de mezcla

Question 4

answered Marked out of

Not vet

3.0 **▼** Flag

question

Complete las hipótesis nula y alternativa del test fundamental sobre el factor de tratamientos, arrastrando a los cajones vacíos la opción correcta. Tenga en cuenta que

- α_i denota efecto fijo del i-ésimo tratamiento
- $\sigma_{\alpha}^2 = \text{Var}(A_i)$ componente de varianza debida al factor de tratamientos, con A_i denotando efecto aleatorio del i-
- ésimo tratamiento (si el modelo fuera para estudiar componentes de varianza) • σ^2 es la varianza de los errores E_{ij}

α_i≠0 ∀ i

 $\alpha_i=0, \forall i$

$$\alpha_i \neq 0$$
 para algún i $\sigma^2_{\alpha} > 0$

Para probar que en promedio las mezclas 3 y 5 absorben más que las mezclas 1 y 2, la hipótesis alternativa es

$$\bigcirc(\mu_3 + \mu_5) - (\mu_1 + \mu_2) \le 0$$

$$0.5(\mu_3 + \mu_5) - 0.5(\mu_1 + \mu_2) > 0$$

$$\bigcirc \mu_3 > \mu_1, \mu_5 > \mu_2$$

$$\bigcirc 0.5(\mu_3 + \mu_5) - 0.5(\mu_1 + \mu_2) \neq 0$$

$$\bigcirc |(\mu_3 + \mu_5) - (\mu_1 + \mu_2)| > 0$$

$$\bigcirc 0.5(\mu_3 + \mu_5) - 0.5(\mu_1 + \mu_2) \ge 0$$

Realice el test de hipótesis con una significancia de 0.05. Para ello, calcule el estadístico de prueba y realice el respectivo test de hipótesis para responder a la pregunta planteada, usando la siguiente información

MEDIAS OBSERVADAS

Nivel de	Número de	
mezcla	observaciones	Media
1	6	553.33
2	6	569.33
3	6	610.50
4	6	465.17
5	6	610.67

Valores Críticos bajo distribución t:

- $t_{0.025,4} = 2.776$
- $t_{0.025,25} = 2.059$
- $t_{0.025,29} = 2.045$
- $t_{0.050,4} = 2.132$
- $t_{0.050,25} = 1.708$
- $t_{0.050,29} = 1.699$

Diligencie la siguiente tabla usando sólo tres dígitos después del punto decimal. Escriba usando punto"." para la posición decimal.

Valor Estadístico de prueba Valor crítico a usar Conclusión

Valores Críticos bajo distribución t:

- $t_{0.025,4} = 2.776$
- $t_{0.025,25} = 2.059$
- $t_{0.025,29} = 2.045$
- $t_{0.050,4} = 2.132$
- $t_{0.050,25} = 1.708$
- $t_{0.050,29} = 1.699$

Diligencie la siguiente tabla usando sólo tres dígitos después del punto decimal. Escriba usando punto"." para la posición decimal.

Por tanto, con un 5% de significancia se concluye que en promedio las mezclas 3 y 5

que las mezclas 1 y 2.

Please answer all parts of the question.