Metrics for Avian Double Mutualistic Interactions with Cactaceae

A Preliminary Analysis towards Network Interactions in a Desert Ecosystem

Malory Owen¹ | Dr. Chris Lortie¹ | York University¹

Question

What species of cacti are most likely to facilitate double mutualistic interactions with birds?

Double Mutualism & Facilitation

- Positive interactions drive ecosystem infrastructure¹
- Birds are nectarivores and frugivores of cacti^{2, 3}
 - Double mutualism: two positive interactions between interspecifics⁴
- Harsh environments promote double mutualism⁵
- Cacti are desert foundational species⁶

Figure 1: Do birds pollinate and disperse seeds of foundational plants?

Figure 2: Nectarivores visit higher and showier floral displays.⁷

Hypotheses and Predictions

- Some cactus species are more attractive to pollinating and frugivorous birds than other
 - Different cactuses will have different sizes and health which may impact bird visitation

Methods

- Cylindropuntia acanthocarpa & Cylindropuntia enchinocarpa: walk 6 and 9 transects, respectively
- Opuntia basilaris: haphazard
- Major axis, minor axis, vertical axis
- Health index 1-5
 - Scarification, rot, branch death
- Geotag

Results

Figure 4: *C. acanthocarpa* (1.04 meters) > *C. echinocarpa* (0.55 meters) > *O. basilaris* (0.17 meters)

• Each cactus species had significantly different mean heights (*Kruskal-Wallis*, Chi-square = 3.71, p > 0.0001, df = 52).

Figure 5: *C. acanthocarpa* and *C. echinocarpa* had more individuals with health scores of 4 or 5, whereas *O. basilaris* had a even distribution of health scores.

C. acanthocarpa and C. echinocarpa are healthier than O. basilaris (Pearson's Chi-squared Test, X-squared = 27.325, df = 8, p > 0.001).

Figure 3: *C. acanthocarpa* was the most abundant and *O. basilaris* was the least abundant

Table 1: C. acanthocarpa had the largest size class bins.

	•		
Species	Small	Medium	Large
Cylindropuntia acanthocarpa	<85cm	86cm - 152cm	>153cm
Cylindropuntia echinocarpa	<45cm	46cm - 72cm	>73cm
Opuntia basilaris	<15cm	16cm - 22cm	>23cm

Conclusion

- Frequency, size, and health were all strongest in *C.* acanthocarpa
- Health will determine reproductive output, so healthiest species will have most success blooming/fruiting
- Larger, more distinct differences in height between individuals more likely to translate to bird behavior
- C. acanthocarpa will be study species in further experiments

Works Cited

- Callaway, Ragan M. 1997. "Positive interactions in plant communities and the individualistic-continuum concept." *Oecologia* 112: 143–49.
 Montiel, Salvador, and Carlos Montaña. 2000. "Vertebrate Frugivory and Seed Dispersal of a Chihuahuan Desert Cactus" 146 (2): 221–29.
 Gorostiague, P., and P. Ortega-Baes. 2016. "How specialised is bird pollination in the Cactaceae?" *Plant Biology* 18 (1): 63–72. doi:10.1111/plb.12297.
- Kelly, Dave, Jenny J Ladley, Alastair W Robertson, and Jenny J Ladley. 2004. "Is dispersal easier than pollination? Two tests in New Zealand Loranthaceae." New Zealand Journal of Botany 42: 89–103. doi:10.1080/0028825X.2004.9512892.

Filazzola, A., Lortie, C. J. 2014. "A systematic review and conceptual framework for the mechanistic pathways of nurse plants." Global Ecology

- Garcia, Maria B., Xavier Espadaler, and Jens M. Olesen. 2012. "Extreme Reproduction and Survival of a True Cliffhanger: The Endangered Plant Borderea chouardii." *PLOS One* 7 (9): 1–7. doi:10.1371/journal.pone.0044657.
- and Biogeography 23 (12): 1335-1345.

 Wolf, L. L., and Hainsworth, A.R. 1990. "Non-Random Foraging by Hummingbirds: Patterns of Movement Between Ipomopsis." Functional Ecology 4 (2): 149–57.

