Cours, Travaux Dirigés, Travaux Pratiques et Devoirs Surveillés de Sciences Physiques Physique Appliquée

Quelques exemples d'activités

par Sébastien CELLES

Copyright © 2005-2006 Sébastien CELLES, Tous droits réservés.

Ce document est libre ; vous pouvez le redistribuer et/ou le modifier selon les termes de la licence publique générale de GNU publiée par la Free Software Foundation (version 2 ou tout autre version ultérieure choisie par vous)

Ce document est diffusé en espérant qu'il sera utile, mais SANS AUCUNE GARANTIE, ni explicite ni implicite, y compris les garanties de commercialisation ou d'adaptation dans un but spécifique. Reportez-vous à la licence publique générale de GNU pour plus de détails.

Vous devez avoir reçu une copie de la licence publique générale de GNU en même temps que ce document. Si ce n'est pas le cas, écrivez à la Free Software Fundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, États-Unis.

Copyright © 2005-2006 Sébastien CELLES. All rights reserved.

This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Ce document est réalisé avec LATEX2e¹.

Obtenir une copie de ce document

Vous pouvez obtenir une copie de ce document au format .pdf Acrobat Reader sur :

- http://s.cls.free.fr/wikini/wakka.php?wiki=Enseignement
- http://svn.berlios.de/wsvn/openphysic/doc_classe_latex_phys_ch_pha/trunk/main_dvips_ suite_2.pdf pour le document réduit en 2 pages en 1
- http://svn.berlios.de/wsvn/openphysic/doc classe latex phys ch pha/trunk/main.pdf pour le document non réduit

Obtenir les fichiers LATEX2e par Subversion pour les modifier

Il est possible d'obtenir les fichiers LATEX2e à l'aide du gestionnaire de version Subversion².

Accès web

http://svn.berlios.de/viewcvs/openphysic/doc_classe_latex_phys_ch_pha/trunk

Accès anonyme

svn checkout svn://svn.berlios.de/openphysic/doc_classe_latex_phys_ch_pha/trunk

Accès développeur

svn checkout svn+ssh://scls19fr@svn.berlios.de/svnroot/repos/openphysic/ .../doc_classe_latex_phys_ch_pha/trunk

Compiler le document

Pour compiler ce document, il est nécessaire d'installer une distribution de l⁴TEX2e comme teTex³ ou Miktex⁴.

Pour éditer les fichiers .tex, on peut utiliser un éditeur spécialisé pour LATEX comme TeXnic Center⁵ ou Kile⁶. On peut aussi utiliser un éditeur de texte généraliste comme GNU Emacs⁷.

Dans un environnement GNU/Linux ou Cygwin⁸ comportant GNU Make⁹ il suffit de taper :

- make view-ps pour obtenir un fichier PostScript .ps
- make view-ps-2 pour obtenir un fichier PostScript .ps avec une réduction 2 pages en 1
- make view-pdf pour obtenir un fichier Acrobat Reader .pdf
- make view-pdf-2 pour obtenir un fichier Acrobat Reader .pdf avec une réduction 2 pages en 1

¹http://www.latex-project.org

²http://subversion.tigris.org

³ http://www.tug.org/teTeX

⁴http://www.miktex.org 5http://www.toolscenter.org

⁶ http://kile.sourceforge.net 7http://www.gnu.org/software/emacs/emacs.html

⁸http://www.cygwin.com

⁹http://www.gnu.org/software/make

Table des matières

Ι	Courant et tension électrique	1
1	Circuit électrique Courant et tension électrique	
2	TP : Propriétés des intensités et des tensions	-
3	$\ensuremath{\mathbf{TP}}$: Détermination de la caractéristique $U=f(I)$ aux bornes d'un résistor	
4	TP : Association de conducteurs ohmiques	
5	TP : Puissance et énergie consommée par un dipôle électrique	-
II	Optique géométrique]
1	TP: Réflexion - Réfraction	
2	Les lentilles minces	
3	TP : Relations de conjugaison des lentilles minces	-
4	TP : La loupe	
5	TP : Focométrie des lentilles minces	
J	11 . I deducente des tensmes minees	
II		I
II]
II 1	I Mécanique TP : Étude du poids d'un corps Étude de la tension d'un ressort	:
11 1 2	I Mécanique TP : Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède	:
11 1 2	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe	:
11 1 2 3	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe	:
111 1 2 3 111 1	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe	::
111 1 2 3 111 1	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe V Thermique Intéractions fondamentales Les particules élémentaires	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111 1 2 3 111 1	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe V Thermique Intéractions fondamentales Les particules élémentaires	
111 1 2 3 111 1 111	TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède TP: Étude de l'équilibre d'un solide soumis à l'action de 3 forces TP: Moment d'une force par rapport à un axe V Thermique Intéractions fondamentales Les particules élémentaires Vitesses et mouvements TP: Mouvement d'un solide	

1

1 2 TP : Bobines de Helmholtz 1
1 3 TP : Force de Laplace 1
1 4 TP : Force de Lorentz 1
1 IX Optique géométrique 1
1 1 Les bases de l'optique géométrique 1
1 2 Miroir plan 1
1 3 Les lentilles minces 1
1 TP : Relations de conjugaison des lentilles minces 1

VIII Électromagnétisme

III Forces

 TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède
 TP: Étude de l'équilibre d'un solide

 TP: Vérification expérimentale de la deuxième loi de Newton avec un mobile autoporteur
 TP: Vérification expérimentale de la deuxième loi de Newton dans le cas d'une trajectoire parabolique

1 TP: Théorème de l'énergie cinétique

¹ Transferts thermiques

2 TP : Mesure de la capacité thermique massique d'un métal 3 TP : Détermination de L_f la chaleur latente de fusion de la glace

1 TP: Mesures de champs magnétiques avec un teslamètre

Capacité thermique d'un calorimètre et ses acces-

1

1

1

IV Lois de Newton

V Énergie cinétique

VI Énergie mécanique

1 TP : Énergie mécanique d'un mobile sur un aérobanc

VII Calorimétrie

soires

5 TP : Focométrie des lentilles minces	1
X Devoir Surveillé	1
1 Devoir Surveillé \mathbf{n}° 1	1
2 Devoir Surveillé n° 2	1
I Grandeurs physiques et quantité de matière	1
1 TP : Préparations de solutions aqueuses	1
2 TP: Détermination du	
volume molaire gazeux	1
3 TP: Suivi d'une transformation chimique par mesure de pression	1
II Solutions électrolytiques	1
1 TP: Concentrations molaires effectives d'ions en solution	1
III Conductimétrie	1
1 TP : Détermination par conductimétrie de la concentration en soluté d'une solution ionique	1
2 TP : Étude de la conductivité molaire d'une solution ionique	1
I Courant et tension électrique	1
1 Circuit électrique Courant et tension électrique	1
2 TP : Propriétés des intensités et des tensions	1
3 TP : Détermination de la caractéristique $U=f(I)$ aux bornes d'un résistor	1
4 TP: Association de conducteurs ohmiques	1
II Générateurs et récepteurs	1
1 Générateurs et récepteurs	1
2 TP : Caractéristique d'une pile	1
3 TP : Étude d'un électrolyseur	1
III Électrostatique	1
1 Champ électrique et force électrostatique	1
IV Oxydo-réduction	1
1 TP : Étude de piles	1

V	La lumière	1
L	La lumière	1
V	I Radioactivité	1
L	TP: Utilisation d'un compteur C.R.A.B.]
[Régimes variables	1
1	TP: Utilisation d'un Générateur Basse Fréquence (G.B.F.) et d'un oscilloscope	1
2	Visualisation à l'aide d'un oscilloscope d'une tension délivrée par un Générateur Basse Fréquence	1
3	Grandeurs périodiques	1
1	Régimes transitoires]
Ι	Régimes sinusoïdaux	1
l	Régimes sinusoïdaux	1
2	Dipôles linéaires élémentaires en régime sinusoïdal	1
3	Association série de dipôles en régime sinusoïdal Résonance	1
1	Puissances en régime sinusoïdal	1
5	TP : Mesures de puissance et de facteur de puissance en monophasé	1
[Optique géométrique	1
L	TP: Lunette - Collimateur	1
2	Étude d'un prisme	1
3	TP: Mesure d'un angle d'un prisme	1
1	TP : Mesure de l'indice d'un prisme	1
5	TP : Goniomètre	
	Dispersion d'un prisme Détermination d'une longueur d'onde inconnue	1
Ι	Documents divers	1
Ι	I Devoir Surveillé	1
4	Devoir Surveillé \mathbf{n}°	1

Seconde
option Physique et Chimie
de Laboratoire
Partie Physique

Courant et tension électrique

Circuit électrique Courant et tension électrique

I. Circuit électrique

Α.	Comment réaliser un circuit électrique?
1.	Matériels
	Pour réaliser un circuit électrique il faut au moins :
	L
	2
	3
4	L
	Rôle des éléments du circuit
	Le générateur est
	Le récepteur
	Les fils de liaison permettent
• • •	
ъ	
в.	Vocabulaire

1

– Un nœud		
– Un circuit est constitué de pl	usieurs	

II. Le courant électrique

A. Nature du courant électrique

Dans un conducteur électrique, le courant électrique est constitué ar un déplacement
La mise en mouvement est réalisée par le
Dans les électrolytes, les porteurs de charges sont
Le sens conventionnel du courant est le sens de celui des électrons, donc de

la borne à la borne - à l'extérieur du générateur.

 $Fig.\ 1-Double\ migration\ des\ ions$ Indiquez sur le schéma ci-dessus le sens de déplacement des électrons, du courant et des ions.

 $Fig.\ 2-Le\ courant\ électrique\ dans\ une\ section\ de\ circuit$ Ajoutez sur ce schéma les électrons responsables du courant ainsi que leur sens de déplacement.

L'intensité du courant électrique est la quantité d'électricité (charge électrique) qui traverse une section du circuit pendant une unité de temps.	
- Q:	
- t:	
- I:	La tension U_{AB} est la différence de potentiel entre les points A et B .
La charge d'un électron est de	
B. Mesure	
L'intensité d'un courant se mesure à l'aide	On représente la tension U_{AB} par une flèche de \dots vers \dots
	ATTENTION! Le sens de la flèche représentant la tension U_{AB} est au sens de la flèche représentant le vecteur \overrightarrow{AB}
- ou	
Pour mesurer l'intensité du courant traversant le circuit il faut brancher cet appareil	
Afin de ne pas perturber le montage, la résistance interne de cet appareil	On remarque que comme $U_{BA}=V_B-V_A$ et que $U_{AB}=V_A-V_B$ on a :
On utilise les bornes et	
Le courant électrique doit rentrer par la borne	
Il doit sortir par la borne	
On doit toujours placer le sélecteur de l'appareil sur le calibre	B. Mesure
Ensuite, on le calibre sans que l'intensité du courant mesurée ne dépasse la valeur de ce calibre.	La tension électrique se mesure à l'aide
	- ou
	Pour mesurer une tension électrique entre 2 points d'un circuit il faut brancher cet appareil
Lorsqu'on dessine le montage on ne doit pas oublier de préciser les bornes des appareils de mesure.	Afin de ne pas perturber le montage, la résistance interne de cet appareil
	On utilise les bornes et
III. La tension électrique	Afin de mesurer une tension positive on branche :
III. La tension electrique	– la borne sur le potentiel le plus élevé.
A. Introduction	- la borne sur le potentiel le plus faible.
La tension électrique est également appelée différence de	On doit toujours placer le sélecteur de l'appareil sur le calibre
Un potentiel électrique s'exprime	Ensuite, on le calibre sans que la tension mesurée ne dépasse la valeur de ce calibr

IV. Montages en série et en dérivation

A. Montage en série

1. Mesure des courants dans le circuit

Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tension
vide $E=10\ V,2$ résistances R_1 et R_2 associées en série et trois ampèremètres.
Un ampèremètre doit mesurer le courant I_G qui sort du générateur.

D., -111-+ii	-t- 1/1t 1
quene relation exis	ste-t'il entre I_G , I_1 , et I_2 ?
	re ci-dessous un montage comportant un générateur de tension continu de t
$E=10\ V, 2\ { m résis}$	stances R_1 et R_2 associées en série et trois voltmètres.
$E=10\ V, 2$ résis n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur.
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur.
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
$E=10\ V, 2$ résis n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres. nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres, nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 . nesurer la tension U_2 aux bornes de la résistance R_2 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres, nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 . nesurer la tension U_2 aux bornes de la résistance R_2 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres, nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 . nesurer la tension U_2 aux bornes de la résistance R_2 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres, nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 . nesurer la tension U_2 aux bornes de la résistance R_2 .
e E = 10 V, 2 résis n voltmètre doit m n voltmètre doit m n voltmètre doit m	stances R_1 et R_2 associées en série et trois voltmètres, nesurer la tension U_G aux bornes du générateur. nesurer la tension U_1 aux bornes de la résistance R_1 . nesurer la tension U_2 aux bornes de la résistance R_2 .

B. Montage en dérivation

1. N

1. Mesure des courants dans le circuit
Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tensi à vide $E=10\ V, 2$ résistances R_1 et R_2 associées en parallèle et trois ampèremètres.
Un ampèremètre doit mesurer le courant I_G qui sort du générateur.
Un autre ampèremètre doit mesurer le courant I_3 qui sort de la résistance R_1 .
Un autre ampèremètre doit mesurer le courant I_2 qui sort de la résistance R_2 .
Quelle relation exists this extra L. L. et L.?
Quelle relation existe-t'il entre I_G , I_1 , et I_2 ?
2. Mesure des tensions aux bornes des dipôles du circuit
Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tensi à vide $E=10\ V$, 2 résistances R_1 et R_2 associées en dérivation et trois voltmètres.
Un voltmètre doit mesurer la tension U_G aux bornes du générateur.
_
Un voltmètre doit mesurer la tension U_1 aux bornes de la résistance R_1 .
Un voltmètre doit mesurer la tension U_2 aux bornes de la résistance R_2 .
Qualla valation exists t'il entre II II et II ?
Quelle relation existe-t'il entre U_G , U_1 , et U_2 ?

V. Lois relatives aux réseaux électriques A. Loi des noeuds La somme des intensité des courants qui arrivent à un nœud est égale à la somme des intensités des courants qui en sortent. B. Additivité des tensions C. Loi des mailles - On flèche les courants dans le circuit ainsi que les tensions - On tourne le long de la maille en appliquant la règle suivante : - Si la flèche de la tension est dans le même sens que le sens de parcours de la maille on met un - Si la flèche de la tension est dans le sens opposé au sens de parcours de la maille on met un signe

- Une fois que l'on a fait le tour de la maille on est revenu au point de départ donc la différence de

potentiel est nulle.

nple 2:
de Pouillet

TP : Propriétés des intensités et des tensions

NOM:	Prénom:	Classe :

Objectifs

- Réaliser un schéma de montage où figurent les appareils de mesure (ampèremètre, voltmètre) et leurs bornes
- Étude des propriétés de l'intensité d'un courant dans un circuit électrique
- Étude des propriétés de la tension dans un circuit électrique

Matériel

- générateur 6-12 V réglable
- 3 multimètres
- 2 lampes de tension nominale 6 V
- $R = 10 \Omega$; $R_1 = 180 \Omega$; $R_2 = 270 \Omega$
- 1 bouton poussoir

I. Étude de l'intensité

A. Circuit série

- 1. Faire un schéma de montage pour chaque cas permettant la :
 - (a) Mesure de I_1
 - (b) Mesure de I_2
 - (c) Mesure de I_3
- 2. Faire le montage permettant la mesure de I_1 . Faire vérifier le montage. Mesurer I_1 .
- 3. Faire le montage permettant la mesure de I_2 . Faire vérifier le montage. Mesurer I_2 .
- 4. Faire le montage permettant la mesure de I_3 . Faire vérifier le montage. Mesurer I_3 .
- 5. Conclure.

B. Circuit dérivation

1

- 1. Faire un schéma de montage permettant de mesurer I, I_1 et I_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer I, I_1 et I_2 .
- 4. Conclure.

II. Étude de la tension

- 1. Faire un schéma de montage permettant de mesurer U, U_1 et U_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer U, U_1 et U_2 .
- 4. Conclure.

B. Circuit dérivation

- 1. Faire un schéma de montage permettant de mesurer U, U_1 et U_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer U, U_1 et U_2 .
- 4. Conclure.

Fiche de procédure pour la réalisation de montages électriques

À appliquer tout le temps!

- Lire le schéma électrique, prendre connaissance du nombre de dipôles qui le constitue.
- Utiliser les fils rouges du côté de la borne + du générateur et les fils noirs du côté de la borne -.
- Réaliser le montage en partant de la borne + du générateur en se souciant d'abord de la boucle principale. On doit brancher à ce moment les ampèremètres car ils sont en série avec les autres dipôles. On *ne doit pas encore* brancher les voltmètres car ils sont en dérivation.
- Si le montage comporte plusieurs dérivations (boucles), réaliser le montage des dérivations autres que la boucle principale.
- Brancher *maintenant* les voltmètres (car ils sont en dérivation)
- Souvent, dans le montage, par souci de précaution, on insère un bouton poussoir (ou un interrupteur noté K).
- Les multimètres (en fonction ampèremètre ou en fonction voltmètre) doivent être correctement branchés (bornes) et correctement réglés (fonction, calibre) : voir « Utilisation du multimètre ».

Le multimètre est un appareil coûteux et fragile. Une mauvaise manipulation peut le détériorer. En l'absence de consignes du professeur, on doit toujours utiliser le calibre le plus élevé.

Il faudra éventuellement affiner la mesure en basculant vers un calibre inférieur au plus gros initialement choisi afin d'obtenir une mesure plus précise.

Erreurs de branchements : ne jamais placer un ampèremètre en dérivation seul (car l'ampèremètre de résistance interne quasi nulle est équivalent à un fil et court-circuite une partie du montage

- Appeler discrètement le professeur pour vérification du montage.
- Après vérification par le professeur qui allumera l'alimentation on pourra fermer l'interrupteur (ou appuyer sur le bouton poussoir).
- Faire la ou les mesures.
- Ouvrir l'interrupteur K (ou relâcher le bouton poussoir).
- Éteindre le générateur.
- Éteindre les multimètres.

Ne jamais brancher le générateur seul dans une boucle (c'est à dire sans résistance électrique pour le protéger) car il est alors en court-circuit et risque d'être détruit.

Ne jamais toucher au montage lorsqu'il est sous tension!

1

Utilisation du multimètre

- L'appareil peut être utilisé en voltmètre : branchement à la borne V/Ω . Mesure de la tension électrique en volts V ou sous-multiples.
- L'appareil peut être utilisé en *ohmmètre* : branchement à la borne V/Ω . Mesure de la *résistance électrique* en ohms Ω ou sous-multiples.
- L'appareil peut être utilisé en ampèremètre : branchement à la borne A. Mesure de l'intensité électrique en ampères A.
- L'appareil peut être utilisé en milliampèremètre : branchement à la borne mA.
 Mesure de l'intensité électrique en milliampères mA ou en microampères µA.
- La borne COM est la référence. Elle est toujours branchée directement ou indirectement à la borne du générateur.
- L'une des trois autres bornes du multimêtre est toujours branchée à la borne + du générateur.
- On place la molette en face du cadran qui correspond :
- à la bonne fonction (ampèremère, voltmètre, ...)
- au bon calibre
- Par précaution, on commence toujours une mesure en se positionnant sur le calibre le plus grand (possibilité de mesurer les grandes valeurs sans saturer l'appareil ou risquer de le détériorer). Si la lecture est trop peu précise ou indique une valeur presque nulle, on change de calibre et on choisit celui qui est immédiatement plus petit. Et ainsi de suite jusqu'à ce que la valeur lue soit d'une précision suffisante.
- On se place sur une position correspondant au sigle DC ou = si la mesure concerne un courant continu.
- On se place sur une position correspondant au sigle \boldsymbol{AC} ou \sim si la mesure concerne un courant alternatif.

$$\label{eq:total_transformation} \begin{split} \text{TP}: \text{D\'etermination de la} \\ \text{caract\'eristique } U = f(I) \text{ aux bornes} \\ \text{d'un r\'esistor} \end{split}$$

- Observer le schéma de montage et nommer le matériel nécessaire ainsi que les éventuels réglages.
- Compléter le schéma de montage en précisant la flèche de tension (U) aux bornes de R et celle de courant (I).
- 3. Compléter le schéma de montage en précisant les bornes des appareils de mesure.
- 4. Réaliser ce montage en suivant les consignes données oralement et notamment en vérifiant bien que les instruments de mesures soient correctement réglés.

 ${f Rappel}$: Il faut toujours attendre que le professeur vienne vérifier le montage avant de le mettre sous tension !

5. Faire varier la tension du générateur réglable U. Mesurer la tension U et l'intensité du courant électrique I. On commencera les 20 mesures à U=0 V et on les terminera à U=10 V.

U(V)					
<i>I</i> ()					
U(V)					
<i>I</i> ()					

1

6. Choisir une échelle convenable et tracer les points de mesure ainsi que la caractéristique du résistor U = f(I) (U en fonction de I : U en ordonnée et I en abscisse).

					Ī
					I
					Ī
					F
					I
					I
					Ī
					I
					Ī
					F
					Ī
					ŧ
					Ė
					Ė
					F
					ŧ
					ŧ
					ŀ
					F
					Ħ
					Ė
					H
					H
					İ
					ŧ
					İ
					ŧ
					ŧ
					ŧ
					F
					Ė
					F
					F
					Ħ

- 7. Déterminer la pente (ou coefficient directeur) α de la droite. Préciser son unité.
- 8. Comparer α avec la valeur de la résistance R lue grâce au code des couleurs ou grâce à l'indication numérique inscrite dessus.
- 9. Énoncer en conclusion la loi qui relie les trois grandeurs physiques : intensité (I), tension (U) et résistance (R) en français sur les pointillés et sous une forme mathématique dans l'encadré.

Loi d'Ohm

1101	a Omm			

Cette loi est à connaître par coeur.

TP : Association de conducteurs ohmiques

N	OM :			Prénd	om : .			Cl	asse :			
Obj	jectifs											
-	Vérifier les rel	ations d'	associati	on de co	nducteu	rs ohmiq	ues en s	érie et er	ı parallè	le.		
I. A	ssociatio	on séi	rie									
On a On r aux	n réalise l'a dimente cet nesure la te bornes du g Faire le sch conventions	te asso ension d énérate éma du	ciation U_1 aux eur et l	par u borne le cour age en	n généi s de <i>R</i> ant <i>I</i> d faisant	rateur $_1,\ U_2$ a $_1$ ans le $_2$ appar	de tens ux bor circuit aître le	sion rég rnes de ;. es tensi	glable R_2 air ons et	U. nsi que les cou	la ten	avec les
2.	Réaliser le grandeurs i		_		er au p	profess	eur ava	ınt mis	e sous	tension	ı. Mesı	ırer les
	U(V)											
	I(A)											
	$U_1(V)$											
	$U_2(V)$											
	$U_1 + U_2$											
3.	Calculer U_1	$+U_2$	Comp	l arer à	U. Cor	l iclure.						
	Tracer U_1 , Donner la v			$-U_2$ en	foncti	on de .	Ι.					
	$- R_1 =$		ue:									
	$- R_2 =$ - R =											
6.	Calculer R_1	$1+R_2$	Concl	ure.								

1

II. Association parallèle

	conventior	ıs habi	tuelles,	ainsi o	qu'en p	récisan	t les b	ornes o	les app	oareils (de mes	ur
	Réaliser le					profess	eur ava	ant mis	se sous	tensio	n. Mesı	ıre
; [grandeurs	indiqu	ées plu	s haut								
	U(V)											
	I(A)											
	$I_1(A)$											
	$I_2(A)$											
	$I_1 + I_2$											
3.	Calculer <i>I</i>	$I_1 + I_2$	compa	rer à I.	Concl	ure.						
4. ′	Tracer U	en fonc					I_1, U	en fonc	tion de	e I_2 et	U en fo	one
	$\mathrm{de}\ I_1 + I_2.$ Donner la		de:									
	$-R_1 =$											
	$-R_2 =$ -R =											
6.	Calculer 7	$\frac{1}{R_1} + \frac{1}{R_2}$. Conc	lure.								
				, .		11	. 1 1		1 ,		, .	
es	umé : a	SSOCI	ation	serie	ou p	oaran	eie a	e con	aucte	eurs o	onmic	ąu

TP : Puissance et énergie consommée par un dipôle électrique

Objectifs

- calculer la puissance électrique d'un dipôle fonctionnant en courant continu à partir de la mesure de la tension à ses bornes et de l'intensité qui le traverse
- calculer l'énergie électrique consommée par un dipôle électrique

I. Schéma du circuit électrique

- 1. Mettre les bornes des appareils de mesure sur le schéma ci-contre.
- 2. Réaliser le schéma électrique ci-contre avec trois lampes différentes.

II. Protocole expérimental

- 1. Pour chaque lampe, noter ses caractéristiques dans un tableau
- 2. Relever la valeur expérimentale de la tension U à ses bornes et l'intensité I qui la traverse.
- 3. Compléter le tableau suivant.

Lampe	Tension nominale (V)	$\begin{array}{c} \text{Puissance} \\ \text{nominale} \\ (W) \end{array}$	Tension à ses bornes (V)	$\begin{array}{c} {\rm Intensit\acute{e}} \\ (A) \end{array}$	Produit $U \cdot I \ (W)$
1					
2					
3					

4.	Comparer la va	aleur du	produit l	$J \cdot I$ à	la	${\rm valeur}$	de la	${\it puissance}$	nominale	de la lampe.	

III. Conclusion

Ecrire la loi qui	régit la puissance d'	'un appareil fonctionnan	t en courant	continu, er
français et de façon	mathématique avec l	les unités correspondant	es.	

Ì			

Remarque: cette relation ne s'applique pas rigoureusement si le courant est alternatif et si les appareils branchés comportent des moteurs.

1

Exercices d'application sur la notion de puissance électrique

Exercice 1: Dans le cas où le dipôle branché est une résistance, on peut exprimer la tension à ses bornes en fonction de sa résistance R et de l'intensité I qui la traverse. Donner alors l'expression de la puissance d'une résistance en fonction de sa résistance R et de l'intensité I qui la traverse.

Exercice 2: Un constructeur donne, pour une résistance, les indications suivantes : $(560 \ \Omega; 0, 5 \ W)$. Expliciter ces indications, puis calculer quelle est la valeur maximale de l'intensité qui peut traverser cette résistance sans l'endommager? Que se passe t-il si le courant est supérieur à cette valeur maximale?

Energie consommée par un dipôle électrique

Pour mesurer l'énergie électrique consommée par les dipôles électriques, on utilise un compteur EDF, qui se présente sous la forme d'un boîtier rectangulaire, avec un disque horizontal qui tourne.

A chaque fois que le disque fait un tour, une quantité d'énergie bien définie a été consommée.

Pour le compteur utilisé,

A des fins de commodité, EDF exprime l'énergie sous forme de Watts-heure (ou de kiloWatts-heure), ce qui correspond à l'énergie consommée par un appareil électrique de 1 W fonctionnant pendant une heure.

Plusieurs dipôles fonctionnant en $220\ V$ sont branchés à la suite de ce compteur. Un chronomètre est utilisé afin de mesurer le temps écoulé au cours duquel les appareils fonctionnent.

	ore de tours eff tergie consomn							
Noter la puiss	ance de chaqu	e dipôle bra	anché : .	 	 	 	 	
La loi qui régi	t la consomma	ation d'éner					 	

Exercices

Exercice 1 : Pierre et Marie ont oublié d'éteindre leur radiateur électrique de 1500~W lorsqu'ils sont partis en vacances d'hiver pendant une semaine. A leur retour, hormis un appartement bien chauffé, ils reçoivent la facture d'électricité. Quel montant leur a coûté leur oubli ? (donnée : $1~kW.h = 0.06 \in$).

Exercice 2: Pour protéger une ligne électrique alimentant un four $(230\ V\ ;\ 3,5\ kW)$, peut-on utiliser un fusible de calibre $20\ A$? Pourquoi?

Exercice 3: Une prise électrique est protégée par un fusible de 10 A. Peut-on brancher ensemble une lampe halogène de 300 W, un barbecue électrique de 1800 W et une chaîne hi-fi de 200 W?

Optique géométrique

TP: Réflexion - Réfraction

Objectifs

- Vérifier les lois de Snell-Descartes.

Matériel

- disque optique gradué (plexiglas)
- miroir
- lanterne et fente

I. Réflexion

- Poser le miroir sur un disque gradué de telle sorte que son plan soit perpendiculaire à celui du disque.
- 2. Éclairer le miroir par un pinceau lumineux.
- 3. Faire varier l'angle d'incidence i (par rapport à la normale au miroir). Mesurer l'angle de réflexion r. Reporter les résultats expérimentaux dans le tableau suivant.

Angle d'incidence i (°)	0	10	20	30	40	50	60	70	80	85
Angle de réflexion r (°)										

4. Conclusion

II. Réfraction

A. Réfraction air-plexiglas

- 1. Remplacer le miroir par un demi-cylindre en plexiglas.
- $2.\,$ Envoyer le pinceau lumineux en direction de la face plane du demi cylindre.

1

3. Faire varier l'angle d'incidence i (par rapport à la normale au plan du demi-cylindre). Mesurer l'angle de réflexion r. Reporter les résultats expérimentaux dans le tableau suivant.

Angle d'incidence i_1 (°)	0	10	20	30	40	50	60	70	80	85
Angle de réfraction i_2 (°)										
$\frac{sin(i_1)}{sin(i_2)}$										

- 4. Conclusion.
- 5. Calculer l'indice de réfraction n_2 du plexiglas.
- 6. Mesurer puis calculer l'angle d'incidence limite i_{1lim} (s'il existe).
- 7. Mesurer puis calculer l'angle de réfraction limite i_{2lim} (s'il existe).

B. Réfraction plexiglas-air

AIR - milieu transparent n° 2

- 1. Placer le demi-cylindre en plexiglas dans l'autre sens.
- 2. Envoyer le pinceau lumineux en direction de la face arrondie du demi cylindre.
- Faire varier l'angle d'incidence i (par rapport à la normale interne au plan du demi-cylindre).
 Mesurer l'angle de réflexion r. Reporter les résultats expérimentaux dans le tableau suivant.

Angle d'incidence i_1 (°)	0	10	20	30	40	50	60	70	80	85
Angle de réfraction i_2 (°)										
$\frac{sin(i_1)}{sin(i_2)}$										

- 4. Conclusion.
- 5. Calculer l'indice de réfraction n_2 du plexiglas.
- 6. Mesurer puis calculer l'angle d'incidence limite i_{1lim} (s'il existe).
- 7. Mesurer puis calculer l'angle de réfraction limite i_{2lim} (s'il existe).

Les lentilles minces

- I. Qu'est-ce qu'une lentille?
- A. Définition
- B. Les différents types de lentilles
- C. Caractéristiques de lentilles monces
- II. Les lentilles convergentes
- III. Les lentilles divergentes

1

Relations de grandissement

A. Définition

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

B. Relations

$$\overline{AB} = \overline{OI}$$

$$\overline{A'B'} = \overline{OJ}$$

12 Relation de grandissement avec origine au centre O

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = + \frac{\overline{OA'}}{\overline{OA}}$$

2 Relation de grandssement avec origine au foyer objet F

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{OF}}{\overline{FA}}$$

32 Rélation de grandssement avec origine au foyer image F'

Relations de conjugaison

A. Formule de Newton (origine aux foyers)

On utilise les deux relations de grandissement avec origine aux foyers (objet et image)

$$-\frac{\overline{OF}}{\overline{FA}} = -\frac{\overline{F'A'}}{\overline{OF'}}$$

En multipliant par $-1: \frac{\overline{OF}}{\overline{FA}} = \frac{\overline{F'A'}}{\overline{OF'}}$

$$\overline{FA} \cdot \overline{F'A'} = \overline{OF} \cdot \overline{OF'}$$

Cette formule, nommée aussi formule de Newton se note également :

$$x \cdot x' = ff'$$

Or comme pour une lentille mince on a $\overline{OF} = -\overline{OF'}$ soit f = -f' on peut alors écrire :

$$x \cdot x' = -f'^2$$

B. Formule de Descartes (origine au centre)

On utilise la relation de grandissement avec origine au centre et celle avec origine au foyer image.

$$+\frac{\overline{OA'}}{\overline{OA}} = -\frac{\overline{F'A'}}{\overline{OF'}}$$

Soit en mettant en ligne : $\overline{OA'} \cdot \overline{OF'} = -\overline{F'A'} \cdot \overline{OA}$

Or $\overline{F'A'} = \overline{F'O} + \overline{OA'} = \overline{OA'} - \overline{OF'}$

Il vient alors $\overline{OA'} \cdot \overline{OF'} = -(\overline{OA'} - \overline{OF'}) \cdot \overline{OA}$.

En développant, on obtient : $\overline{OA'} \cdot \overline{OF'} = -\overline{OA'} \cdot \overline{OA} + \overline{OF'} \cdot \overline{OA}$

Soit aussi : $\overline{OF'} \cdot \overline{OA} - \overline{OA'} \cdot \overline{OF'} = \overline{OA'} \cdot \overline{OA}$

On divise alors par $\overline{OA} \cdot \overline{OA'} \cdot \overline{OF'}$ et on obtient :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

Cette formule, nommée également Relation de Descartes, se note aussi :

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

Résumé

 $\begin{array}{ll} \overline{OF} = f \\ \overline{OF'} = f' \\ \overline{OA} = p \\ \overline{OA'} = p' \\ \overline{FA} = x \\ \overline{F'A'} = x' \end{array} \begin{array}{ll} \text{distance focale objet} \\ \text{distance objet-lentille} \\ \text{distance image-lentille} \\ \text{distance foyer objet - objet} \\ \text{distance foyer image - image} \end{array}$

Relation de Descartes

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

Formule de Newton

$$x \cdot x' = -f'^2$$

Grandissement

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{p'}{p} = -\frac{f}{x} = -\frac{x'}{f'}$$

Constructions géométriques pour les lentilles minces convergentes

Constructions géométriques pour les lentilles minces divergentes

TP : Relations de conjugaison des lentilles minces

Objectifs

Matériel

- Établir les relations de conjugaison des lentilles minces.
- Établir les relations de grandissement des lentilles minces.
- Banc optique
- Objet lumineux (lanterne avec lettre F)
- Écran millimétré.
- Lentille mince convergente de vergence V

I. Montage optique

Utilisons un banc d'optique, un objet AB bien éclairé, une lentille convergente de vergence V connue et un écran muni d'une feuille de papier millimétré.

- 1. Représenter sur le schéma ci-dessus l'axe optique
- 2. Tracer trois rayons optiques particuliers permettant de déterminer la position de l'image A'B'.
- 3. Que faut-il faire pour obtenir une image nette?

II. Questions préliminaires

- 1. Quel est le signe de V?
- 2. Quel est le signe de $f' = \overline{OF'}$?
- 3. Quel est le signe de $f = \overline{OF}$?
- 4. Quel est le signe de $p = \overline{OA}$?
- 5. Quel est le signe de $p' = \overline{OA'}$?

- 6. Indiquer en m puis en cm la distance focale image f' de la lentille.
- Indiquer en m puis en cm la distance focale objet f de la lentille

III. Mesures

- 1. Mesurer la hauteur \overline{AB} de l'objet.
- 2. Pour plusieurs positions différentes de l'objet par rapport à la lentille, mesurer :
 - (a) la distance $\overline{OA'}$ séparant l'image de la lentille.
 - (b) la hauteur $\overline{A'B'}$ de l'image.

1

3. Reporter les mesures dans le tableau suivant.

responder to	o miobaros a	ans le table						
Position	\overline{OA}	$\overline{OA'}$	$\frac{1}{\overline{OA}}$	$\frac{1}{\overline{OA'}}$	$\frac{1}{\overline{OF'}}$	$\frac{\overline{OA'}}{\overline{OA}}$	$\overline{A'B'}$	$\frac{\overline{A'B'}}{\overline{AB}}$
	(m)	(m)	(m^{-1})	(m^{-1})	(m^{-1})		(m)	
1	-0.15							
2	-0.20							
3	-0.25							
4	-0.30							
5	-0.40							
6	-0.50							

^{4.} Dans tout les cas, on a placé l'objet tel que $\overline{OA} < f$. Expliquer pourquoi. Vérifier expérimentalement ce qui se passe lorsque l'on ne respecte pas cette condition.

IV. Interprétation

- Faire la construction graphique pour différentes positions. Indiquer dans chaque cas les caractéristiques de l'image.
- 2. Calculer $\frac{1}{\overline{OA'}}$, $\frac{1}{\overline{OA}}$ et $\frac{1}{\overline{OF'}}$ et noter les valeurs dans le tableau.
- 3. Réaliser une représentation graphique de $y = \frac{1}{OA'}$ en fonction de $x = \frac{1}{OA}$.
- 4. Pour chaque position, calculer le rapport $\frac{\overline{OA'}}{\overline{OA}}$ et le comparer au rapport $\frac{\overline{A'B'}}{\overline{AB}}$.
- 5. Quelle relation la représentation graphique permet-elle d'établir? Prolonger la courbe jusqu'à l'axe des ordonnées. Que représente ce point? Comparer son ordonnée à la vergence V de la lentille.
- 6. Établir une relation entre $\frac{1}{\overline{OA'}}$, $\frac{1}{\overline{OA}}$ et $\frac{1}{\overline{OF'}}$.
- À l'aide de ces résultats, décrire une méthode de mesure de la distance focale image d'une lentille de vergence V inconnue.
- 8. D'après votre tableau de mesure, quelle grandeur est égale au grandissement $\gamma = \frac{\overline{A'B'}}{\overline{AB}}$

TP : La loupe

- 1. Prenez la lentille de vergence $V=+8~\delta$ et placez l'objet tel que $\overline{OA}=-8~cm$.
- 2. Schématisez sur la feuille de papier millimétré à l'échelle 1/1, la loupe et les rayons lumineux issus de l'objet. On placera la lentille à 2 cm du bord droit du papier millimétré.
 - (a) Où l'objet est-il placé par rapport aux foyers (F ou F') de la lentille et à son centre optique O?
 - (b) Pouvez-vous recueillir l'image de l'objet sur un écran?
 - (c) Regardez alors à travers la lentille, qu'observez-vous?
 - (d) Déterminez graphiquement la position de l'image ainsi que sa grandeur A'B' pour un objet AB de 1 cm de hauteur.
 - (e) Retrouvez ces valeurs par le calcul.

3.	3. $Conclusion:$ Lorsque l'objet est situé entre le foyer objet F et le centre optique O d'une lentille, l'image	être recueillie sur un écran. On dit ${\bf q}$	ue
	l'on a une image De plus, cette dernière est	que l'objet.	
	Ainsi, une loupe est simplement une	sition particulière par rapport à l'objet.	

TP: Focométrie des lentilles minces

NOM:	Prénom:	Classe :

Objectifs

Matériel

- Déterminer la distance focale d'une lentille mince
- Banc optique avec objet (lanterne) et écran millimétré.
- Lentilles minces

I. Focométrie des lentilles minces convergentes

A. Autocollimation

- Placer sur un banc d'optique un objet lumineux et la lentille à étudier.
- Placer dans un plan parallèle à celui de la lentille un miroir plan (la distance entre le miroir et la lentille n'a pas d'influence).
- Déplacer l'ensemble { miroir + lentille } de telle sorte qu'à la distance d entre la lentille et l'objet on ai une image nette de l'objet sur lui-même (image nette mais inversée).

On a alors:

B. Utilisation de la relation de Descartes

D'après la relation de Descartes, on a :

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

- Faire pour plusieurs positions de l'objet, l'image nette sur l'écran.
- Mesurer pour ces différentes positions p et p'.
- Tracer $\frac{1}{p'}$ en fonction de $\frac{1}{p}$. Déduire de ce tracé la distance focale image f'.

C. Méthode de Bessel

Cette méthode ne s'applique qu'aux lentilles convergentes.

- Placer sur un banc d'optique un objet lumi- neux et un écran situé à la distance D de la source.
- Vérifier qu'il existe deux positions de la lentille qui permettent d'obtenir une image nette de l'objet sur l'écran. Ces deux positions sont séparées par la distance d.

1

- Notations:
- -D: distance objet-image
- d : distance entre les deux positions de lentille donnant une image nette sur l'écran
- Démontrez en utilisant les formules de conju-

gaison que la distance focale de la lentille est égale à :

$$f' = \frac{D^2 - d^2}{4D}$$

Attention, il faut impérativement D > 4f'.

D. Méthode de Silbermann

Cette méthode dérivée de la méthode de Bessel ne s'applique qu'aux lentilles convergentes.

- Placer sur un banc d'optique un objet lumineux et un écran situé à la distance D de la
- Vérifier qu'il existe deux positions de la lentille qui permettent d'obtenir une image nette de l'objet sur l'écran. Ces deux positions sont séparées par la distance d.
- Vérifier que lorsque l'on rapproche l'objet de l'écran (on diminue la valeur de D), l'écart d entre les deux positions de lentille donnant une image nette sur l'écran diminue.
- Diminuer encore la valeur de D, jusqu'à ce que ces deux positions soient confondues (d = 0). On peut remarquer qu'à ce moment le grandissement γ est égal à -1.

- Mesurer alors sur le banc d'optique la distance D objet-image et déduire la distance focale image de la lentille à l'aide de la relation :

$$f' = \frac{D}{4}$$

E. Méthode de Badal

- Choisir deux lentilles convergentes L_1 et L_2 de vergences connues.
- Réaliser l'image à l'infini de l'objet A placé sur le banc, par la première lentille.
- Placer la deuxième lentille au-delà de la première, à une distance supérieure à sa propre 2 distance focale.
- Observer l'image de l'objet par l'ensemble se 1 former dans le plan focal image de la deuxième lentille : A' en F'2.
- Placer la lentille de vergence V_x inconnue au foyer objet de la deuxième lentille, et chercher l'image réelle A^n de l'objet dans le système poptique ainsi constitué.
- Mesurer le déplacement x = A'A" de l'image 2 On montre que :

f'

Remarque: x est positif pour une lentille divergente et négatif pour une lentille convergente.

On démontre cette relation en appliquant la relation de Newton $\overline{FA.FA'} = \overline{OF.OF'} = -\overline{OF}^2$.

II. Focométrie des lentilles minces divergentes

A. Formation d'un doublet accolé

1. Accoler à la lentille divergente de vergence V_1 inconnue une lentille mince convergente de vergence V_2 connue.

Remarque: on a choisit la lentille convergente à accoler de telle sorte que le système accolé de lentilles soit convergent.

La vergence de l'ensemble est :

$$V_{1+2} = V_1 + V_2$$

 Utiliser une des méthodes vues précédemment pour déduire la vergence V₁₊₂ de l'ensemble et, connaissant la vergence V₂ de la lentille² convergente, déduire la vergence V_1 de la lentille divergente.

B. Méthode de Badal

La méthode de Badal est applicable aux lentilles divergentes dans ce cas x est positif.

Mécanique

TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède

Objectifs

- faire le lien entre l'intensité du poids et la masse d'un corps
- relier la tension qu'exerce un ressort avec son allongement
- retrouver les caractéristiques de la poussée d'Archimède

Matériel

- dynamomètre
- masselottes
- éprouvette graduée remplie d'eau (puis d'huile)

I. Étude du poids d'un corps

A. Montage

Le poids, comme toutes les forces se mesure avec un dynamomètre. Il en existe en spirale et des

Chaque masse au repos exerce une force sur le corps qui la retient (elle est en équilibre). Ce corps peut être un support, une ficelle... La force qu'exerce la masse est son poids.

B. Mesures

Mesurer les poids de quelques masselottes et compléter le tableau suivant :

m (kg)	_		-			
P(N)						

C. Exploitation, conclusion

- 1. Construire une courbe où figureront en abscisse la masse m (en kq) et en ordonnée le poids P (en N).
- 2. Exploiter les paramètres de la courbe (Est-ce une droite? Passe-t-elle par l'origine? Quel est son coefficient directeur? Quelle est l'unité de ce coefficient directeur?).
- 3. Conclure sur la relation liant l'intensité P du poids et la masse m.

II. Étude de la tension d'un ressort

A. Montage

On dispose d'un ressort à spires non jointives, d'une potence comportant une règle graduée verticale et d'une boites de masses marquées à crochets.

l₀ : longueur à vide du ressort.

Δl = l - l₀ : allongement du ressort.

Fig. 1 - Ressort à vide et en charge

B. Étude

Le système mécanique étudié est la masse m.

- 1. Faire le bilan des forces (extérieures) agissant sur la masse m.
- 2. Représenter les forces sur un schéma.
- 3. Énoncer la loi d'équilibre de la masse m. En déduire une relation liant l'intensité P du poids et la tension T du ressort.

C. Mesures

- Mesurer la longueur l₀ du ressort à vide.
- 2. Poser différentes masses m à l'extrémité du ressort, mesurer la longueur du ressort en charge, déduire l'allongement $\Delta l = l - l_0$ de celui-ci.
- 3. Noter les résultats expérimentaux dans le tableau suivant :

m~(kg)					
P (N)					
T(N)					
$\Delta l \ (m)$					

- 4. Tracer la courbe $T = f(\Delta l)$.
- 5. Exploiter les paramètres de la courbe (Est-ce une droite? Passe-t-elle par l'origine? Quel est son coefficient directeur? Quelle est l'unité de ce coefficient directeur?).
- 6. En déduire la relation (vectorielle) liant la tension \overrightarrow{T} du ressort avec l'allongement de celui-ci.

III. Étude de la poussée d'Archimède

A. Montage

Fig. 2 – Vérification expérimentale de la poussée d'Archimède

- Suspendre la masse marquée m =
 au même ressort que celui étudié précédemment.
- Noter le volume d'eau dans l'éprouvette à votre disposition.
- Introduire la masse marquée dans l'éprouvette.
- Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 5. Noter le nouveau volume dans l'éprouvette.

B. Mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans l'éprouvette.
- 3. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 4. Noter le nouveau volume dans l'éprouvette.

C. Exploitation des mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans le référentiel terrestre?
- 3. En déduire l'intensité Π_A de la poussée d'Archimède Π_A , c'est à dire l'action de l'eau sur la masse.
- 4. Comparer cette valeur au poids du volume d'eau déplacé.

D. Généralisation et énoncé du théorème d'Archimède

- 1. Si le temps le permet, recommencer toute la démarche en remplissant l'éprouvette graduée avec de l'huile à la place de l'eau.
- Retrouver l'énoncé du théorème d'Archimède sachant qu'il donne les caractéristiques de la force qu'exerce un fluide sur un objet immergé (utiliser la masse volumique du fluide pour donner l'expression de cette force)

III. Étude de la poussée d'Archimède

A. Montage

Fig. 2 – Vérification expérimentale de la poussée d'Archimède

- Suspendre la masse marquée m =
 au même ressort que celui étudié précédemment.
- Noter le volume d'eau dans l'éprouvette à votre disposition.
- Introduire la masse marquée dans l'éprouvette.
- 4. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 5. Noter le nouveau volume dans l'éprouvette.

B. Mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans l'éprouvette.
- 3. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 4. Noter le nouveau volume dans l'éprouvette.

C. Exploitation des mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans le référentiel terrestre?
- 3. En déduire l'intensité Π_A de la poussée d'Archimède Π_A , c'est à dire l'action de l'eau sur la masse.
- 4. Comparer cette valeur au poids du volume d'eau déplacé.

D. Généralisation et énoncé du théorème d'Archimède

- Si le temps le permet, recommencer toute la démarche en remplissant l'éprouvette graduée avec de l'huile à la place de l'eau.
- Retrouver l'énoncé du théorème d'Archimède sachant qu'il donne les caractéristiques de la force qu'exerce un fluide sur un objet immergé (utiliser la masse volumique du fluide pour donner l'expression de cette force)

TP : Étude de l'équilibre d'un solide soumis à l'action de 3 forces

I. Montage

Soit le dispositif suivant :

Fig. 1 – Dispositif expérimental

Fig. 2 – Rapporteur

II. Mesures et interprétations

A. Masses m_A , m_B , m_C

Soit les masses m_A , m_B , m_C exerçant des forces de traction sur les fils A, B, C et par suite sur le morceau de balsa ou polystyrène.

 $m_A = \dots kg.$ $m_B = \dots kg.$ $m_C = \dots kg.$

B. Forces P_A , P_B , P_C qu'exercent les fils A, B et C sur le morceau de balsa

 $P_A = \dots = N.$ $P_B = \dots = N.$ $P_C = \dots = N.$

C. Angles entre les directions des fils $A,\ B$ et C

 $(A,B) = \dots \circ$ $(B,C) = \dots \circ$ $(C,A) = \dots \circ$

D. Interprétations

- 1. Reporter les directions des fils à l'aide d'un rapporteur. Choisir une échelle et tracer les forces $\overrightarrow{P_A}, \overrightarrow{P_B}, \overrightarrow{P_C}$. En utilisant la relation de Chasles, construire géométriquement $\overrightarrow{P_A} + \overrightarrow{P_B} + \overrightarrow{P_C}$. Que constatez-vous?
- 2. Écrire vectoriellement la condition d'équilibre d'un solide soumis à l'action de 3 forces .

Divers rapporteurs pour la Physique

TP : Moment d'une force par rapport à un axe

Objectifs

- Trouver la condition de mise en rotation d'un objet.
- Trouver l'expression du moment d'une force par rapport à un axe.

I. Mise en rotation d'un solide

- 1. Fixer l'axe de rotation Δ au milieu de la barre, puis, essayer de faire tourner cette dernière :
 - en appuvant dessus.
 - en la poussant ou en la tirant dans le sens de la longueur.
 - en la poussant ou en la tirant perpendiculairement à elle même.
- 2. Faites un schéma du montage en faisant figurer la barre; son axe de rotation et la force appliquée.
- 3. En comparant la direction de la force appliquée avec la direction de l'axe de rotation, conclure sur la condition de mise en rotation d'un solide autour d'un axe fixe.

II. Moment d'une force - Règle du bras de levier

1. Reproduire le schéma suivant en indiquant F et F'.

- 2. Calculer la force F exercée par la masse m sur la demie barre gauche
- 3. Mesurer la distance d
- 4. Calculer alors le produit $F \cdot d$. Quelle est son unité?
- 5. En laissant la masse m à l'extrémité gauche ; suspendez sur les différentes positions à une distance d de l'axe de rotation une masse m de telle sorte que la barre soit en équilibre.
- 6. Dresser alors un tableau de résultats expérimentaux :

	•	
masse m'		
Force F' exercée par la masse m'		
d'		
$F' \cdot d'$		

- 7. Que pouvez vous dire du produit $F' \cdot d'$?
 - On appelle moment de la force F par rapport à l'axe Δ , le produit $M_{\Delta}(F)=$ exprimé en N m
- 8. En choisissant le sens des aiguilles d'une montre comme sens de rotation positif, si la force F tend à faire tourner le solide dans ce sens, alors son moment sera positif, si c'est le sens inverse son moment sera négatif.

1

En raisonnant sur la barre, et sur les moments des forces qui s'appliquent dessus, donner la condition d'équilibre d'un solide soumis à un couple de moments.

Thermique

Première Scientifique Partie Physique Intéractions fondamentales

Les particules élémentaires

.

L'électroscope

D'après http://www.sciences.univ-nantes.fr/physique/perso/maussion/elecstat

Fonctionnement de l'électroscope

L'écartement des feuilles augmente avec la quantité de charges. Lorsqu'il est déja chargé, cet écartement varie selon le signe des nouvelles charges.

Pour faire les expériences suivantes vous devez en entreprendre la construction. Ce n'est pas le plus rapide à réaliser, mais il vous étonnera par son extrême sensibilité.

Par comparaison vous pourrez très facilement sélectionner les pailles qui s'électrisent le mieux.

Approcher un objet chargé du plateau de l'électroscope a pour effet d'y attirer des charges de signe opposé au détriment des feuilles. On peut dire que cela revient à repousser vers les feuilles des charges de même signe que celles de l'objet.

Les feuilles prenant toutes deux la même charge, il y a répulsion et elles s'écartent.

Le premier électroscope à feuilles d'or est dû à Charles de Cisternay du Fay. Il lui a permis de :

- distinguer les électricités résineuses et vitrées (1728).
- montrer que les substances que Gilbert pensait ne pas s'électriser le pouvaient si on les tenait par l'intermédiaire d'un isolant. C'était la conduction du corps de l'opérateur qui les déchargeaient.
- établir la conduction des charges par une corde de chanvre humide de 400 m (1733).
- établir la conductivité des flammes.

Charge par contact

Méthode directe

Tapotez plusieurs fois le plateau de l'électroscope avec une paille électrisée.

En éloignant la paille les feuilles restent écartées.

La difficulté vient aussi du fait que dès que l'électroscope commence à se charger, le nouveau point de la paille en contact doit être encore plus chargé pour que le transfert soit efficace.

L'opération est un peu laborieuse car seules les charges du point de contact peuvent passer dans l'électroscope et se répartir sur le plateau, la tige et les feuilles.

Il est plus facile d'y arriver indirectement de manière indirecte.

Méthode indirecte

Approchez une paille électrisée en interposant un carré d'aluminium.

Faites contact avec le plateau.

La paille négative attire des charges positives sur la face du métal en regard et comme celui-ci est neutre la face tournée vers le plateau devient négative. Lors du contact une partie de ces charges se répartit sur l'électroscope et y reste si on enlève simultanément la paille et le métal.

Lors du contact de deux conducteurs la somme (algébrique) des charges qu'ils portent est conservée. Elle se répartit entre les deux corps grossièrement en proportion de leur surface et un peu en fontion de leur forme. Si les deux conducteurs ont la même dimension et la même forme ils portent après le contact la même charge.

Donc si on met en contact une sphère chargée avec une sphère identique mais neutre elles emportent chacune la moitié de la charge initiale. C'est en utilisant ce procédé que Charles Coulomb a pu montrer que la force entre deux charges est proportionnelle à la valeur de chacune des charges donc à leur produit.

Avant de découvrir les conducteurs Stephen Gray s'apercoit (1727) que les corps ne s'électrisent pas seulement par frottement mais qu'il peuvent aussi acquérir la propriété d'attirer des petits objets si on les met en contact avec un corps déjà électrisé.

Décharge de l'électroscope

Électroscope chargé

Touchez du doigt le plateau : les feuilles retombent.

À l'instant du contact, l'électroscope (plateau + tige + feuilles) et le corps de l'opérateur ne forment plus qu'un seul conducteur à la surface duquel les charges initialement sur l'électroscope se répartissent. La surface de l'électroscope étant très petite par rapport à celle du corps, il ne reste quasiment plus de charges sur l'électroscope. Cela est d'autant plus vrai que, à moins que l'opérateur ne soit isolé du sol, le conducteur en contact avec l'électroscope est en fait la terre, dont la surface est immense!

Processus de la charge par influence

Approchez une paille électrisée d'un côté du plateau de l'électroscope.

Touchez du doigt l'autre côté : les feuilles retombent.

Retirez le doigt : rien ne change

Retirez la paille : l'électroscope reste chargé.

La première étape (fig. 3) correspond à l'expérience intitulée "électroscope" : les feuilles sont négatives comme la paille.

En touchant le plateau du doigt (fig. 7), l'électroscope se décharge (voir l'expérience sur la charge et décharge par contact). Ici, il y a une différence essentielle : l'influence de la paille. Le plateau reste positif et seules les charges négatives des feuilles, qui sont loin de cette influence, s'écoulent dans le sol, à travers le corps de l'opérateur. L'électroscope est devenu positif.

En retirant le doigt (fig. 8), on l'isole et il conservera sa nouvelle charge.

En retirant la paille (fig. 9), on supprime son influence et les charges positives se répartissent librement entre le plateau et les feuilles.

L'électrisation par influence a été découverte en 1754 par John Canton.

Le pouvoir des pointes

Placez une paille chargée à proximité des pointes.

Éloignez-la : l'électroscope reste chargé.

La répartition des charges à la surface d'un conducteur dépend des influences et de sa forme.

Plus le rayon de courbure est faible, plus il y a concentration (fig. 10).

Lorsque la paille passe tout près, l'accumulation des charges positives apparues par influence à l'extrémité de la pointe est si grande qu'elles vont être expulsées et neutraliser localement les charges négatives de la paille (fig. 11).

La pointe a perdue autant de charges positives que la paille de charges négatives.

Finalement c'est comme si l'électroscope avait pris des charges négatives à la paille.

Vitesses et mouvements

TP : Mouvement d'un solide Vecteur vitesse

Objectifs

- Se familiariser avec les différents dispositifs expérimentaux
- Être capable de déterminer la vitesse instantanée d'un mobile
- Connaître la relation entre vitesse linéaire et vitesse angulaire
- Être capable d'identifier le type du mouvement d'un solide
- Savoir tracer un vecteur vitesse

Matériel

- ordinateur et logiciel « CD MOVIE »
- table à coussin d'air et mobiles autoporteurs

I. Étude avec le logiciel « CD MOVIE » de différents mouvements pour un solide

A. Manipulation

Pour chacun des mouvements suivants (Image \rightarrow Série d'images \rightarrow Par nom de fichier), relever les positions successives de deux points du mobile au cours du temps. En déduire les caractéristiques du mouvement ainsi que sa nature.

- 1er mouvement : fichier TRAPMP.MOV - 2e mouvement : fichier TOURDI.MOV - 3e mouvement : fichier ESGLTR.MOV

II. Étude du centre d'inertie

A. Manipulations

Lancer le mobile et déclencher les impulsions (intervalle entre deux impulsions : 20 ms).

B. Exploitation

- Que peut-on dire des trajectoires des points A et B?
- Que peut-on dire du point B?

1

III. Vecteur vitesse

A. Manipulations

Incliner la table à coussin d'air d'un angle α par rapport à l'horizontale à l'aide du valet élévateur. Lancer le mobile de façon à obtenir un mouvement parabolique et déclencher les impulsions (intervalle entre deux impulsions : 40~ms).

B. Exploitation

Sélectionner un point M proche du sommet de la trajectoire et déterminer la vitesse instantanée du mobile en ce point. Tracer le vecteur vitesse du mobile au point M (suggestion d'échelle 1 $cm \iff 0, 2$ $m.s^{-1}$). Recommencer l'opération pour un autre point : N.

IV. Étude d'un mouvement circulaire uniforme

A. Manipulation

Fixer le mobile autoporteur à l'aide de l'axe au plot central. Repérer la position centrale O. Déclencher les impulsions. Lancer le mobile : celui-ci effectue un mouvement circulaire.

B. Exploitation

1. Vitesse linéaire

Numéroter les points de l'enregistrement (A_0, A_1, \ldots) . Déterminer la vitesse instantanée du mobile lors de son passage aux points A_1 et A_{11} . En déduire la vitesse moyenne du mobile entre les points A_1 et A_{11} . Tracer le vecteur vitesse du mobile aux points A_1 et A_{11} .

2. Vitesse angulaire

- Mesurer à l'aide d'un rapporteur la valeur θ de l'angle $(\overrightarrow{OA_1}, \overrightarrow{OA_{11}})$.
- En déduire la valeur de la vitesse angulaire ω du mobile.
- Mesurer le rayon R de la trajectoire.
- Calculer la quantité $R \cdot \omega$.
- Comparer $R\cdot\omega$ à la vitesse moyenne du mobile et à la vitesse instantanée au point A_{11} . Conclure.

V. Applications

- Exploiter chacune des trajectoires suivantes.
- Déterminer l'un des vecteurs vitesse du mobile.
- Dire quelle est la nature du mouvement enregistré.

 M_0 M_1 M_2 M_3 Fig. 1 – Mouvement 1 ; $\tau = 40~ms$ M_1 • • M_0 M_2 M_3 Fig. 2 – Mouvement 2 ; $\tau = 40~ms$ M₀ Fig. 3 – Mouvement 3 ; au=60~ms $A_0 \bullet$

Fig. 4 – Mouvement 4; $\tau = 40~ms$

Fig. 5 – Mouvement 5; $\tau = 40~ms$

Fig. 6 – Mouvement 6; $\tau = 40~ms$

Fig. 7 – Mouvement 7; $\tau = 40~ms$

TP : Mesures de vitesses angulaires

Objectifs

 mettre en évidence une technique de mesure de vitesse angulaire utilisant l'électromagnétisme.

Matériel

- oscilloscope et fiche BNC
- fils
- grande bobine
- moteur à courant continu avec un aimant fixé sur le rotor
- générateur de tension continu ajustable

Fig. 1 – Dispositif expérimental

I. Mesure à l'aide d'un aimant tournant

A. Principe

Un aimant entraîné par un moteur à courant continu tourne à vitesse constante devant une bobine. Il se crée dans la bobine un courant induit. On observe à l'aide d'un oscilloscope les variations de la tension aux bornes de la bobine.

B. Protocole

- Fixer sur l'axe du moteur un aimant à 2 pôles.
- Faire fonctionner le moteur afin que l'aimant tourne devant l'une des faces de la bobine conductrice reliée à une voie de l'oscilloscope.
- Régler l'oscilloscope pour observer convenablement l'oscillogramme de la tension aux bornes de la bobine.

II. Question

- 1. Quelles sont les caractéristiques de la tension aux bornes de la bobine?
- 2. Modifier la tension d'alimentation du moteur à courant continu. Comment évoluent les caractéristiques de la tension aux bornes de bobine?
- 3. L'aimant comporte p = 1 paire de pôles (2 pôles). Quelle est la relation entre la période de la tension mesurée sur l'oscilloscope et la vitesse de rotation du moteur exprimée en tr.s⁻¹?
- 4. Mesurer la vitesse de rotation du moteur pour différentes tensions d'alimentation.
- Rechercher le principe de fonctionnement d'une génératrice de bicyclette, improprement appelée dynamo.

TP: Nature d'un mouvement

La trajectoire donnée ci-contre a été enregistrée à l'aide d'un palet autoporteur lancé sur une table inclinée d'un angle $\beta=45^\circ$ par rapport à l'horizontale. L'étincelle électrique permettant le marquage de la position du centre d'inertie du mobile a lieu toutes les $\tau=200~ms$.

- 1. Tracer la courbe passant par l'ensemble des points. Quelle est sa nature? Numéroter les points de M_0 à M_{13} .
- 2. En considérant que $\widehat{M_i M_{i+1}} = M_i M_{i+1}$, déterminer la vitesse instantanée V_1 en $cm.s^{-1}$. Tracer le vecteur vitesse V_1 . On adoptera l'échelle 1 $cm \iff 3 \ cm.s^{-1}$. Donner les 4 caractéristiques de ce vecteur.
- 3. De la même manière, tracer $\overrightarrow{V_3}$, $\overrightarrow{V_5}$, $\overrightarrow{V_7}$, $\overrightarrow{V_9}$, $\overrightarrow{V_{11}}$.
- En projetant les différents vecteurs sur l'axe des abscisses et ordonnées, donner la valeur de leurs composantes V_x, V_n respectives.

$$\overrightarrow{V_1} = \left(\begin{array}{c} V_{1x} \\ V_{1y} \end{array} \right)$$
 ; $\overrightarrow{V_3} = \left(\begin{array}{c} V_{3x} \\ V_{3y} \end{array} \right)$; $\overrightarrow{V_5} = \left(\begin{array}{c} V_{5x} \\ V_{5y} \end{array} \right)$;

- 5. Comparer les valeurs de V_{1x} , V_{3x} , V_{5x} , V_{7x} , V_{9x} , V_{11x} puis celles de V_{1y} , V_{3y} , V_{5y} , V_{7y} , V_{9y} , V_{11y} . Donner la nature du mouvement du palet. Qu'en est-il réellement si l'on décompose le mouvement en sa projection sur les axes x et y?
- 6. Rappeler le principe de l'inertie vu en seconde.
- 7. Que peut-on dire des forces qui s'exercent sur le palet?
- 8. La masse du mobile utilisé est de 150~g. Établir l'inventaire des forces en considérant que les frottements du palet sur la table sont nuls. Donner les caractéristiques de ces forces.
- 9. Sur un schéma, les représenter en ayant pris soin de choisir une échelle appropriée.
- 10. Se compensent-elles? À quelle condition sur l'angle β se compenseraient-elles? Dans ces conditions, quelle aurait été la trajectoire du mobile lancé avec la même vitesse initiale V_0 .

1

Fig. 1 – Simulation du lancer d'une balle de golf avec le logiciel Microméga 1^{ère} S

Forces

TP: Étude du poids d'un corps Étude de la tension d'un ressort Étude de la poussée d'Archimède

Objectifs

- faire le lien entre l'intensité du poids et la masse d'un corps
- relier la tension qu'exerce un ressort avec son allongement
- retrouver les caractéristiques de la poussée d'Archimède

Matériel

- dynamomètre
- masselottes
- éprouvette graduée remplie d'eau (puis d'huile)

I. Étude du poids d'un corps

A. Montage

Le poids, comme toutes les forces se mesure avec un dynamomètre. Il en existe en spirale et des

Chaque masse au repos exerce une force sur le corps qui la retient (elle est en équilibre). Ce corps peut être un support, une ficelle... La force qu'exerce la masse est son poids.

B. Mesures

Mesurer les poids de quelques masselottes et compléter le tableau suivant :

m (kg)	_				
P(N)					

C. Exploitation, conclusion

- 1. Construire une courbe où figureront en abscisse la masse m (en kq) et en ordonnée le poids P (en N).
- 2. Exploiter les paramètres de la courbe (Est-ce une droite? Passe-t-elle par l'origine? Quel est son coefficient directeur? Quelle est l'unité de ce coefficient directeur?).
- 3. Conclure sur la relation liant l'intensité P du poids et la masse m.

II. Étude de la tension d'un ressort

A. Montage

On dispose d'un ressort à spires non jointives, d'une potence comportant une règle graduée verticale et d'une boites de masses marquées à crochets.

Fig. 1 - Ressort à vide et en charge

B. Étude

Le système mécanique étudié est la masse m.

- 1. Faire le bilan des forces (extérieures) agissant sur la masse m.
- 2. Représenter les forces sur un schéma.
- 3. Énoncer la loi d'équilibre de la masse m. En déduire une relation liant l'intensité P du poids et la tension T du ressort.

C. Mesures

- 1. Mesurer la longueur l_0 du ressort à vide.
- 2. Poser différentes masses m à l'extrémité du ressort, mesurer la longueur du ressort en charge, déduire l'allongement $\Delta l = l - l_0$ de celui-ci.
- 3. Noter les résultats expérimentaux dans le tableau suivant :

m (kg)					
P(N)					
T(N)					
$\Delta l \ (m)$					

- 4. Tracer la courbe $T = f(\Delta l)$.
- 5. Exploiter les paramètres de la courbe (Est-ce une droite? Passe-t-elle par l'origine? Quel est son coefficient directeur ? Quelle est l'unité de ce coefficient directeur ?).
- 6. En déduire la relation (vectorielle) liant la tension \overrightarrow{T} du ressort avec l'allongement de celui-ci.

III. Étude de la poussée d'Archimède

A. Montage

Fig. 2 – Vérification expérimentale de la poussée d'Archimède

- Noter le volume d'eau dans l'éprouvette à votre disposition.
- 3. Introduire la masse marquée dans l'éprouvette.
- Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 5. Noter le nouveau volume dans l'éprouvette.

B. Mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans l'éprouvette.
- 3. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 4. Noter le nouveau volume dans l'éprouvette.

C. Exploitation des mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans le référentiel terrestre?
- 3. En déduire l'intensité Π_A de la poussée d'Archimède $\overrightarrow{\Pi_A}$, c'est à dire l'action de l'eau sur la masse.
- 4. Comparer cette valeur au poids du volume d'eau déplacé.

D. Généralisation et énoncé du théorème d'Archimède

- Si le temps le permet, recommencer toute la démarche en remplissant l'éprouvette graduée avec de l'huile à la place de l'eau.
- Retrouver l'énoncé du théorème d'Archimède sachant qu'il donne les caractéristiques de la force qu'exerce un fluide sur un objet immergé (utiliser la masse volumique du fluide pour donner l'expression de cette force)

III. Étude de la poussée d'Archimède

A. Montage

Fig. 2 – Vérification expérimentale de la poussée d'Archimède

- 1. Suspendre la masse marquée $m=\dots$ au meme ressort que celui étudié précédemment.
- Noter le volume d'eau dans l'éprouvette à votre disposition.
- 3. Introduire la masse marquée dans l'éprouvette.
- 4. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 5. Noter le nouveau volume dans l'éprouvette.

B. Mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans l'éprouvette.
- 3. Réaliser les mesures nécessaires pour déterminer la valeur de la force de tension du ressort.
- 4. Noter le nouveau volume dans l'éprouvette.

C. Exploitation des mesures

- Faire le bilan des interactions subies par la masse marquée. Nommer et représenter les forces correspondantes dans chaque cas.
- 2. Quelle est la condition de repos de la masse marquée dans le référentiel terrestre?
- 3. En déduire l'intensité Π_A de la poussée d'Archimède Π_A , c'est à dire l'action de l'eau sur la masse.
- 4. Comparer cette valeur au poids du volume d'eau déplacé.

D. Généralisation et énoncé du théorème d'Archimède

- Si le temps le permet, recommencer toute la démarche en remplissant l'éprouvette graduée avec de l'huile à la place de l'eau.
- 2. Retrouver l'énoncé du théorème d'Archimède sachant qu'il donne les caractéristiques de la force qu'exerce un fluide sur un objet immergé (utiliser la masse volumique du fluide pour donner l'expression de cette force)

TP : Étude de l'équilibre d'un solide

Objectifs

- Étudier l'équilibre d'un solide soumis à deux ou trois forces
- Énoncer les conditions d'équilibre nécessaires

Matériel

- plaque en carton ou en polystyrène percée
- dynamomètres
- une feuille de papier format A3
- rapporteur et règle graduée

Données

$$-g = 10 N.kg^{-1}$$

I. Étude de l'équilibre d'un solide soumis à deux forces

A. Protocole expérimental

Un solide (plaque en carton, plaque de polystyrène) $très\ léger$ est soumis à deux forces (tensions de fils) dont les intensités sont mesurées à l'aide de dynamomètres.

Réaliser un équilibre comme ci-contre.

Fig. 1 – Solide soumis à deux forces

B. Résultats et exploitations des mesures

- 1. À l'équilibre, que pouvez-vous dire :
 - (a) de la direction des deux forces appliquées?
 - (b) de leurs lignes d'action?
 - (c) de leurs sens?
 - (d) de leurs intensités?
- 2. Que se passe-t'il pour le solide (S) si on augmente un peu l'intensité d'une des deux forces?
- 3. Énoncer finalement la (ou les conditions) nécessaires d'équilibre d'un solide soumis à deux forces?

1

II. Étude de l'équilibre d'un solide soumis à trois forces

A. Protocole expérimental

Fig. 2 – Solide soumis à trois forces

- 1. Réaliser un équilibre comme ci-contre.
- L'équilibre est-il toujours identique si l'on modifie l'une des forces appliquées, ou est-il lui aussi modifié (directions des forces, intensités)?
- 3. L'équilibre étant établi, déplacer légèrement le solide et le lâcher. Conclure.
- 4. Observer latéralement le système à l'équilibre. Que peut-on dire des directions des trois fils ? Conclure.
- 5. Relever la valeur de la masse m_2 .

 $m_2 = \ldots g$. Relever la valeur des intensités des forces F_1 et F_3 .

tes des forces
$$F_1$$
 et F_3 .
$$F_1 = \dots N$$

$$F_2 = \dots N.$$
Calculer $F_2 = P_2 = m_2 \cdot g = \dots N$

6. Relever la direction des 3 fils (2 points par fil) sur la feuille A3. Oter la feuille du tableau.

B. Résultats et exploitations des mesures

- 1. Prolonger les droites données par la direction des fils 1, 2 et 3. Que remarquez-vous?
- 2. On note I le point d'intersection de ces droites. Reporter un point noté I' en dehors du tracé précédent (par exemple en bas et à gauche). À partir de ce point I', tracer les direction précédentes (en utilisant une règle et une équerre pour réaliser la translation) et représenter (en précisant l'échelle choisie) les vecteurs $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$.
- 3. Construire la somme $\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_3}$. Est-elle égale et directement opposée (même droite d'action) à $\overrightarrow{F_2}$? Que vaut donc $\overrightarrow{S} = \overrightarrow{R} + \overrightarrow{F_2} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3}$?
- 4. Reporter un autre point I" en bas et à droite du tracé issu de l'expérience. Montrer que $\overrightarrow{S} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3}$ équivaut à $\overrightarrow{0}$, mais cette fois-ci par la méthode du polygône?
- 5. Conclusion: Énoncer les deux conditions nécessaire à l'équilibre d'un solide soumis à trois forces.

Divers rapporteurs pour la Physique

Lois de Newton

TP : Vérification expérimentale de la deuxième loi de Newton avec un mobile autoporteur

Objectifs

Matériel

- Vérifier la deuxième loi de Newton

- logiciel Microméga 1ère S

I. Protocole 1

A. Réalisation

- 1. On étudie le mouvement d'un palet autoporteur sur un plan incliné, lancé initialement avec une vitesse non nulle. Dans tout le TP, les frottements seront négligés. Citer le référentiel d'étude. Faire le bilan des forces appliquées au palet une fois qu'il a été lancé. Compléter le schéma ci-dessous avec les vecteurs forces appropriés.
- 2. Lancer le logiciel Microméga 1ère S. Puis simulateurs. Puis mobile autoporteur, mouvement sans frottement sur un plan incliné.
- 3. Onglet affichage : cocher « vue de face », « marquer la trajectoire », « afficher le repère », « afficher la grille ».
- 4. Onglet vecteurs : cocher « afficher le vecteur vitesse ».
- Onglet chronophotographie : cocher « conserver les vecteurs représentés », « marquer uniquement les positions du centre d'inertie ». Puis activer la chronophotographie.
- 6. Imprimer autant de fois que d'élèves dans le groupe (« animation vue de face »). Numéroter les points apparus de 0 à 9.

Fig. 1 – Un mobile autoporteur sur un plan incliné

B. Exploitation

- 1. Construire $\overrightarrow{\Delta V_1} = \overrightarrow{V(t_2)} \overrightarrow{V(t_0)}$ puis $\overrightarrow{\Delta V_6} = \overrightarrow{V(t_7)} \overrightarrow{V(t_5)}$ à l'extérieur de la figure.
- 2. Reporter $\overrightarrow{\Delta V_1}$ au point 1 puis $\overrightarrow{\Delta V_6}$ au point 6.

1

II. Protocole 2

A. Réalisation

- 1. Cliquer sur effacer en haut à gauche.
- 2. Onglet affichage. Cocher « vue de face », « marquer la trajectoire », « afficher le repère », « afficher la grille ».
- 3. Onglet vecteurs. Cocher « affichage variation du vecteur vitesse », « vecteurs forces ». Mais *décocher* « affichage de la construction ».
- 4. Onglet chronophotographie : cocher « conserver les vecteurs représentés », « marquer uniquement les positions du centre d'inertie ». Puis activer la chronophotographie.
- 5. Imprimer autant de fois que d'élèves dans le groupe (« animation vue de face »). Numéroter les points apparus de 0 à 9.

B. Exploitation

- 1. Mettre en relation les différents résultats obtenus depuis le début du TP.
- 2. Conclure.

III. Protocole 3

A. Réalisation

- 1. Cliquer sur effacer en haut à gauche.
- 2. Onglet paramètres : $\beta=20^\circ,~V_0=0~m.s^{-1},~X_0=5~m,~Y_0=10~m.$ Le palet est lâché sans vitesse initiale.
- 3. Onglet affichage : Cocher "vue de face", "marquer la trajectoire", "afficher le repère", "afficher la grille".
- 4. Onglet vecteurs. Cocher "affichage vecteur vitesse", Choisir comme échelle de représentation : mini + 6 clics.
- 5. Onglet chromatographie. Cocher "conserver les vecteurs", "marquer les positions du centre d'inertie". Activer chronophotographie.
- 6. Imprimer autant de fois que d'élèves dans le groupe.

B. Exploitation

- 1. Rappeler le bilan des forces appliquées au palet.
- 2. Construire de façon externe à la figure $\overrightarrow{\Delta V_5} = \overrightarrow{V(t_6)} \overrightarrow{V(t_4)}$.
- 3. Conclure.

IV. Conclusion générale

Établir une conclusion générale en relation avec le cours sur les lois de Newton.

TP: Vérification expérimentale de la deuxième loi de Newton dans le cas d'une trajectoire parabolique

Objectifs

- Vérifier que le vecteur $\overrightarrow{\Delta V}$ est colinéaire et de même sens que la force appliquée à un solide.

Matériel

- caméra vidéo
- téléviseur
- magnétoscope
- papier calque

I. Protocole

- À l'aide d'une caméra vidéo, enregistrer le mouvement d'une balle de golf lancée dans un plan frontal, c'est à dire dans un plan perpendiculaire à l'axe de visée de la caméra.
- À l'aide d'un magnétoscope, faire défiler l'enregistrement image par image et pointer le centre de la balle sur le transparent collé sur l'écran du téléviseur.

Fig. 1 – Repérage sur l'écran et tracé sur papier calque des positions enregistrées de la balle de golf

1

II. Exploitation de l'enregistrement

À partir du transparent, déterminer :

- la vitesse instantanée en chacune des positions enregistrées
- le vecteur $\overrightarrow{\Delta V} = \overrightarrow{V_i} \overrightarrow{V_i}$, correspondant à deux positions consécutives i et j de la balle.
- 1. Énoncer la deuxième loi de Newton.
- 2. Effectuer l'inventaire des forces agissant sur la balle de golf.
- Indiquer la conséquence de la deuxième loi de Newton et comparer avec les faits expérimentaux observés.

Fig. 2 - Enregistrement du mouvement d'une balle de golf

Énergie cinétique

TP: Théorème de l'énergie cinétique

Objectifs

- utiliser un tableur-grapheur
- retrouver la relation entre le travail de la résultante des forces appliquées à un mobile et l'énergie cinétique

Matériel

- table horizontale
- mobile autoporteur
- fil
- poulie
- masse

Fig. 1 – Dispositif expérimental

0

Abscisse x

Vitesse V

 E_c en J

Un mobile auto-porteur, de masse M, attaché à un fil auquel est suspendue une masse m, se déplace sans frottement sur une table plane et horizontale. On considère que la poulie qui modifie la direction du fil n'est le siège d'aucun frottement.

Un enregistrement du mouvement du centre d'inertie G du mobile est réalisé.

$$M = 756 \ g \ ; \ m = 40 \ g \ ; \ \tau = 40 \ ms$$

.....

Fig. 2 – Enregistrement du mouvement du centre d'inertie G du mobile

- 1. Faire le bilan détaillé des forces appliquées au mobile au cours de son mouvement. On admettra que la tension du fil est constante et vaut : $T = \frac{M.m}{M+m}g$. Quelle est la résultante des forces?
- 2. Quelle est la nature du mouvement du mobile? Justifier en utilisant les cours précédents.
- Construire un repère adapté à l'étude du mouvement et mesurer très précisément les abscisses x des positions du centre d'inertie du mobile.
- $4.\ \,$ Compléter le tableau suivant dans le tableur Regressi :
- Fichier; Nouveau; Clavier; $t\ldots; x\ldots$ entrer les valeurs de t et de x.
- Créer grandeur (Y+) ; Nom : V ; Unité ... ; Dérivée : $\frac{\mathrm{d}x}{\mathrm{d}t}$; OK.
- Créer grandeur; Grandeur calculée; Nom : E_c ; Unité : J; Expression : ...
- 5. Tracer le graphe $E_c = f(x)$.
 - (a) À partir de la modélisation, déterminer le coefficient directeur.
 - (b) En utilisant le théorème de l'énergie cinétique entre les dates t_0 et t_i , montrer que l'on peut prévoir la valeur du coefficient précédent. Que représente-t-il?
 - (c) Vérifier la cohérence de votre résultat en calculant l'écart relatif entre la valeur théorique et la valeur expérimentale.

1

Énergie mécanique

- 1

TP : Énergie mécanique d'un mobile sur un aérobanc

Objectifs

Matériel

- utiliser un tableur
- vérifier la conservation de l'énergie mécanique
- mobile sur aérobanc
- logiciel tableur

I. Étude cinématique

On lâche un mobile du haut d'un banc à coussin d'air. Le banc est incliné d'un angle $\alpha=5^{\circ}$ par rapport à l'horizontale. le mobile de masse m=51,8 g est équipé d'une échelle de n barreaux opaques espacés d'une distance égale à la largeur d'un barreau.

Au cours du mouvement, il passe dans la fourche d'un capteur à infrarouge relié à un ordinateur interfacé.

Fig. 1 - Mobile sur un aérobanc

L'enregistrement des dates t_i de passage de chaque barreau se déclenche lors du passage du premier barreau au niveau du capteur. Le logiciel calcule, pour chaque date t_i , la distance x_i parcourue par le mobile et la vitesse v_i du mobile et propose les résultats sous la forme d'un tableau (x, t, v).

- 1. Sur un schéma représenter :
 - les forces extérieures appliquées au mobile,
 - un axe (Ox) parallèle au plan incliné et orienté vers le bas,
 - un axe (Oz) vertical et orienté vers le haut.
 - L'origine O est la position initiale du centre d'inertie du mobile.
- 2. Pour le mobile de coordonnée x à la date t, exprimer l'altitude z en fonction de x et des paramètres du montage. Justifier le signe.

II. Étude énergétique

- 1. Pour le mobile de coordonnée x à la date t, exprimer en fonction de t, x ou v et des paramètres du montage :
 - (a) l'énergie cinétique E_c
 - (b) l'énergie potentielle E_n
 - (c) l'énergie mécanique E_m
- 2. Traitement des données à l'aide du tableur Régressi.
 - (a) Ajouter dans le tableau de données (x, t, v) le calcul des grandeurs E_c , E_p et E_m Le sinus d'un angle s'écrit $sin(\ldots)$ en n'oubliant pas de sélectionner degré.
 - (b) Faire tracer, sur un même graphique les variations des fonctions $E_c(t)$, $E_P(t)$ et $E_m(t)$. Modéliser $E_m(t)$; identifier chaque courbe; mettre un titre dans la zone blanche; imprimer les graphes, tableau et modélisation.
 - Interpréter l'allure des trois courbes.
 - Y a-t-il conservation de l'énergie mécanique? Justifier.

Calorimétrie

TP: Transferts thermiques

Capacité thermique d'un calorimètre et ses accessoires

Objectifs

- Savoir de quoi dépend la quantité de chaleur Q recue par un corps
- Calculer la quantité de chaleur absorbée ou cédée par un corps.
- Déterminer la capacité thermique d'un calorimètre.
- Vérifier le principe de conservation de l'énergie.

- calorimètre - agitateur
 - thermomètre

Matériel

Lorsqu'un corps qui ne subit ni transformation physique (changement d'état), ni transformation chimique, reçoit de la chaleur, sa température augmente.

I. De quoi dépend la quantité de chaleur Q reçue par un corps?

A. Expériences

Chauffer régulièrement, sans en provoquer l'ébullition, une masse m d'eau. La quantité de chaleur Qreçue par l'eau est effectivement proportionnelle à la durée de chauffage si celui-ci est maintenu constant.

On désigne par :

- t : durée de chauffage en seconde
- $-\theta$: température en °C de l'eau

Par des relevés judicieux, montrer que :

- la quantité de chaleur fournie à l'eau pour élever sa température de θ_1 à θ_2 est proportionnele à la variation de température $\Delta \theta = \theta_2 - \theta_1$
- pour une même élévation de température, la quantité de chaleur fournie à l'eau est proportionnelle
- la quantité de chaleur fournie à un corps pour modifie sa température dépend de la nature de ce corps.

B. Exploitations

On peut formuler ces résultats à l'aide de la relation suivante :

$$Q = mc(\theta_2 - \theta_1)$$

- Q : quantité de chaleur (en J) qu'il faut fournir à une masse m d'un corps pour élever sa température de θ_1 à θ_2 .
- -m: masse du corps (en kq)
- c : capacité calorifique massique du corps (spécifique au corps)
- $-\theta_2-\theta_1$: variation de température (en °C ou en K)

Remarque: on admettra que la capacité thermique massique de l'eau vaut $c_{eau} = 4180 \ USI$

II. Détermination de la capacité thermique d'un calorimètre

Un calorimètre est une enceinte adiabatique. Dans la pratique, les transferts thermiques entre l'intérieur du calorimètre et l'extérieur sont très lents et peuvent être négligés. Un calorimètre permet de mesurer, par des repérages de températures, les quantités de chaleur échangées entre les corps enfermés dans l'enceinte.

1

A. Principe de la manipulation

- Enfermer une masse m_1 d'eau froide dans le calorimètre. Attendre la fin des transferts de chaleur entre le calorimètre et l'eau introduite: noter alors θ_1 .
- Verser dans le calorimètre une masse m_2 d'eau chaude à la température θ_2 .
- Agiter légèrement le mélange. Lorsque la température de celui-ci se stabilise, les transferts thermiques à l'intérieur du calorimètre sont achevés.
- Relever la température finale θ_{equi} à l'équilibre thermique.

B. Exploitation

Le calorimètre participe aussi au bilan thermique. C'est pourquoi le constructeur en donne la capacité thermique que l'on note C_{calo} (attention c'est un « C » MAJUSCULE car c'est une capacité thermique (tout court... pas une capacité thermique massique que l'on note avec un « c » minuscule)).

On désigne les éléments constituant notre système ainsi :

- corps 1 : calorimètre et l'eau froide
- corps 2 : eau chaude
- 1. Quelle est l'unité de C_{calo} ?
- 2. Le corps 2 cède une certaine quantité de chaleur $Q_2: Q_2 = m_2 c(\theta_{equi} \theta_2)$. Quel est le signe de
- 3. Le corps 1 reçoit la quantité de chaleur $Q_1: Q_1 = m_1 c(\theta_{equi} \theta_1) + C_{calo}(\theta_{equi} \theta_1)$. Quel est le
- 4. Écrire alors l'équation calorimétrique en supposant l'enceinte du calorimètre adiabatique.
- En déduire C_{calo}.

C. Manipulation

-	TO 1			1 1 1				
Ι.	Relever	le numero	du	calorimètre c	nue	vous	utilisez.	

2.	Peser le calorimètre	vide et sec,	muni	de ses	accessoires	(couvercle,	agitateur)
	On note $m =$	cette ma	SSP				

3. Introduire environ 200 mL d'eau à température ambiante et repeser le calorimètre $+$ ea
--

JII Hote III	— c	ence mass	· ·	
En déduire l	a masse d'ea	au froide	$m_1 =$	 Ī

Agiter et noter la température d'équilibre de l'ensemble $\theta_1 = \dots$

- 4. Préparer en même temps un bécher contenant environ 200 mL d'eau chaude. Quand on est prêt à la verser dans le calorimètre, relever sa température toutes les 10 s pendant 1 min, sans agitation. On garde la température finale juste avant de verser l'eau soit $\theta_2 = \dots$
- 5. Verser alors immédiatemment l'eau chaude du bécher à la température θ_2 dans le calorimètre. Refermer immédiatement celui-ci. Agiter régulièrement et relever périodiquement (toutes les $30 \ s$) la température. Noter la température maximale atteinte par ce mélange soit $\theta_{equi} = \dots$

6. Peser un	e dernière fois	le calorimètre.		
On note	m" =	cette masse.		
En dédui	re la masse d'e	eau chaude versée	$m_2 =$	

7. Résultats:

Numéro du	calorimètre	
-----------	-------------	--

	Essai 1	Essai 2	Essai 3	Essai 4
$m_{calo} (g)$				
$m'_{calo+eaufr.}(g)$				
$m"_{calo+eaufr.}(g)$				
$m_1(g)$				
$m_2(g)$				
θ_1 (°C)				
θ_2 (°C)				
θ_{equi} (°C)				
C_{calo} $(J.K^{-1})$				

TP: Mesure de la capacité thermique massique d'un métal

Objectifs

- savoir utiliser la méthode des mélanges
- mesurer une capacité thermique massique

Matériel

- calorimètre et ses accessoires
- deux thermomètres gradués au degré près
- bécher gradué
- système de chauffage
- solide muni d'une ficelle
- support

I. Principe

La méthode utilisée ici pour mesurer la capacité thermique massique d'un métal est appelée méthode des mélanges. On plonge un bloc de métal dans de l'eau chaude suffisamment longtemps pour qu'il soit à la température θ_2 . On plonge alors ce bloc de métal dans de l'eau froide à la température θ_1 . La température se stabilise

Lorsque l'on connait les températures θ_1 , θ_2 , $\theta_{
m \acute{e}qui}$, la masse d'eau froide m_1 et m_2 celle du bloc métallique ainsi que la capacité thermique $C_{
m calo}$ du calorimètre (voir TP précédent) et la capacité thermique massique de l'eau $c_{
m eau} = 4180~J.kg^{-1}.K^{-1}$ on peut trouver $c_{
m m\acute{e}tal}$ la capacité thermique massique du métal.

A. État initial

Fig. 1 - bloc de métal qui a séjourné quelques minutes dans l'eau bouillante

Fig. 2 - eau froide

$$\begin{cases} m_2 = \dots \\ \theta_2 = \dots \\ c_{\text{métal}} = ? \end{cases}$$

$$\left\{ \begin{array}{l} m_1 = \dots \dots \text{ (de l'ordre de 250 } g \text{ à 300 } g) \\ \theta_1 = \dots \dots \text{ (équilibre thermique)} \\ c_{\text{eau}} = 4185 \ J.kg^{-1}.K^{-1} \end{array} \right.$$

Calorimètre muni du vase + agitateur : $C_{
m calo} = 85~J.K^{-1}$

Calorimètre muni du vase + agitateur + rondelle alu (amortisseur) : $C_{\rm calo} = 120~J.K^{-1}$

B. État final

L'état final est obtenu en sortant rapidement le bloc de métal de l'eau bouillante et en le plongeant dans le calorimètre; agiter alors et attendre, en relevant fréquemment la température, le nouvel équilibre thermique θ_f .

II. Calcul littéral

A. Quantités de chaleur échangées

- $-~Q_1$: quantité de chaleur gagnée par l'eau froide; $Q_1=\Delta U_{1\mbox{micro}}=m_1c_{\mbox{eau}}(\theta_{\mbox{\'equi}}-\theta_1)>0$
- Q_2 : quantité de chaleur cédée par le métal; $Q_2 = \Delta U_{2\mathrm{micro}} = m_2 c_{\mathrm{métal}} (\theta_{\mathrm{equi}} \theta_2) < 0$ Q_3 : quantité de chaleur gagnée par le calorimètre; $Q_3 = \Delta U_{3\mathrm{micro}} = C_{\mathrm{calo}} (\theta_{\mathrm{equi}} \theta_1) > 0$

B. Bilan des échanges de chaleur

L'enceinte étant adiabatique¹, écrire le bilan global des échanges de chaleur, à l'intérieur du calorimètre, une fois le « mélange » fait; jusqu'à l'obtention de l'équilibre thermique.

$$\Delta U_{\text{micro}} = Q_{t} = 0 \ J = \Delta U_{1\text{micro}} + \Delta U_{2\text{micro}} + \Delta U_{3\text{micro}} = Q_{1} + Q_{2} + Q_{3}$$

C. Expression de c_{métal}

En déduire la valeur de $c_{\mathrm{métal}}$.

$$\begin{array}{l} Q_1+Q_2+Q_3=m_1c_{\mathrm{eau}}(\theta_{\mathrm{\acute{e}qui}}^{\mathrm{deval}}-\theta_1)+m_2c_{\mathrm{m\acute{e}tal}}(\theta_{\mathrm{\acute{e}qui}}^{\mathrm{deval}}-\theta_2)+C_{\mathrm{calo}}(\theta_{\mathrm{\acute{e}qui}}^{\mathrm{deval}}-\theta_1)=0 \\ \mathrm{soit}\ (m_1c_{\mathrm{eau}}+C_{\mathrm{calo}})(\theta_{\mathrm{\acute{e}qui}}^{\mathrm{deval}}-\theta_1)+m_2c_{\mathrm{m\acute{e}tal}}(\theta_{\mathrm{\acute{e}qui}}^{\mathrm{deval}}-\theta_2)=0 \end{array}$$

$$c_{\text{métal}} = \frac{(m_1 c_{\text{eau}} + C_{\text{calo}})(\theta_{\text{équi}} - \theta_1)}{m_2(\theta_{\text{équi}} - \theta_2)}$$

III. Manipulation

- 1. Suspendre le bloc de laiton, ou fer, ou aluminium dans une casserole d'eau bouillante.
- 2. Mesurer $m_{\rm calo\ +\ accessoires} = \ldots g$ puis m'_{calo} + accessoires + eau froide = g
- 3. En déduire $m_{1\text{eau}} = \dots g$.
- 4. Noter la température d'équilibre θ_1 du calorimètre + eau froide.
- 5. Retirer le métal de l'eau bouillante ($\theta_2 \approx 100$ °C) et l'introduire quasi-instantanément dans le
- 6. Agiter et suivre l'évolution de la température ; lorsqu'elle se stabilise les transferts de chaleur sont terminés. Noter alors la température finale $\theta_{\mathrm{\acute{e}qui}}$ (ou θ_f). La température est stabilisée quand elle a atteind son maximum et n'évolue quasiment plus pendant 1 à 2 min.
- 7. Peser enfin, après l'avoir essuyé, le cylindre de métal.

IV. Résultats

Calorimètre n°

	$m_1 (kg)$	θ_1 (°C)	$\theta_2 \ (^{\circ}C)$	$\theta_{ ext{\'equi}}$ (°C)	m_1 (kg)	$c_{ ext{m\'etal}} \ (J.kg^{-1}.K^{-1})$
laiton						
fer						
aluminium						

Valeurs théoriques :

$$c_{\text{fer}} = 460 \text{ J.kg}^{-1}.K^{-1}$$
 $c_{\text{alu}} = 860 \text{à} 910 \text{ J.kg}^{-1}.I$

$J.kg^{-1}.K^{-1}$	c _{laiton utilisé} =	$400 \ J.kg^{-1}.K$
--------------------	-------------------------------	---------------------

 $^{^{1}}$ isolé thermiquement donc $Q_{\text{\'e}chang\'ee}$ avec l'extérieur =0 J

TP : Détermination de L_f la chaleur latente de fusion de la glace

NOM:	Prénom :	Classe :		
BINÔME:	NOM :	Prénom:		

Objectifs

- Déterminer L_f la chaleur latente de fusion de la glace

Matériel

- glaçons
- calorimètre et ses accessoires
- thermomètre
- bécher gradué

I. Manipulation

- 1. Sortir les glaçons du réfrigérateur. Ils fondent partiellement.
- 2. Introduire un masse m_1 d'eau dans le calorimètre à l'aide du bécher gradué (environ 300 q).
- 3. Noter, à l'équilibre thermique, la température initiale θ_1 . Reporter les mesures dans le tableau final.
- 4. Introduire une masse m_2 (environ 50 à 70 g de glaçons secs à $\theta_2=0$ °C (glace fondante). Reporter les mesures dans le tableau final.
- 5. À l'équilibre thermique, noter la température finale θ_3 .

II. Principe : calculs théoriques

- 1. L'eau et le calorimètre cèdent une quantité de chaleur Q_1 telle que $Q_1 = m_1 c(\theta_3 \theta_1) + C_{\text{calo}}(\theta_3 \theta_1)$
- 2. La glace fond et l'eau obtenue passe de $\theta_2=0$ °C à θ_3 (température d'équilibre final). La quantité de chaleur Q_2 reçue pour réaliser cette transformation peut se décomposer en deux parties!
 - (a) $Q'_2 = m_2 \cdot L_f$: chaleur reçue par la glace pour sa fusion.
 - (b) $Q"_2=m_2\cdot c\cdot (\theta_3-\theta_2)=m_2\cdot c\cdot \theta_3$ (car $\theta_2=0$ °C) : chaleur reçue par l'eau de fusion de la glace pour s'échauffer jusqu'à θ_3 .
- 3. Dans l'enceinte adiabatique, on a l'équation calorimétrique $Q_1+Q_2=0$ c'est à dire $Q_1+Q_2'+Q_2''=0$.

Donc
$$m_1\cdot c\cdot (\theta_3-\theta_1)+C_{\mbox{calo}}\cdot (\theta_3-\theta_1)+m_2\cdot L_f+m_2\cdot c\cdot \theta_3=0$$
 Soit

$$t_f = \dots$$

1

III. Résultats des mesures

N° calorimètre :
$$C_{\rm calo} \approx 130~J.K^{-1}$$

$$c_{\rm eau} = 4185~J.kg^{-1}.K^{-1}$$

$m_{ m calo} \; (\; \dots \;)$		
$m'_{ m calo\ +\ eau}\ (\ \dots \)$		
$m_1 \; (\; \dots \; \;)$		
$\theta_1 \; (\; \ldots \;)$		
$\theta_3 \; (\; \dots \;)$		
m"calo + eau totale ()		
$m_2 \; (\; \dots \;)$		
$L_f \; (\; \dots \;)$		

Calculer $\Delta L_f = |L_{f \mbox{th\'eorique}} - L_{f \mbox{exp\'erimental}}|$: erreur absolue sur l'exp\'erience.

Calculer $\frac{\Delta L_f}{L_f {\rm th\acute{e}orique}} \cdot 100,$ qui donne le pourcentage d'erreur relative.

On obtient ainsi une bonne estimation de la précision sur la détermination expérimentale de L_f .

$$\begin{cases} \Delta L_f = \dots \\ \frac{\Delta L_f}{L_f \text{th\'eorique}} \cdot 100 = \dots \end{cases}$$

La balance METTLER P1200

Port'ee: 1200 g Sensibilit'e: 0,01 g

Fig. 1 - Schéma de la balance

- 1. Vérifier l'horizontalité de la balance (vis de calage + bulle B
- Allumer. La balance doit être à 000,00 g. L'élève précedent doit l'y avoir mise (sinon l'y mettre).
 Le bouton de tarage doit être lui aussi à zéro (en butée)
- 3. Si pesée directe d'un récipient R
 - (a) Poser délicatement R sur le plateau
 - (b) Si échelle lumineuse dépassée (le signe + apparaît), abaisser délicatement les centaines de g nécessaires.
 - (c) Régler les centièmes de g
 - (d) Relever $m = \Box\Box\Box, \Box\Box g$
- 4. Si pesée d'une poudre ou d'un liquide :
 - (a) Tarer le récipient R :
 - le poser (vide) sur le plateau
 - tarer à zéro (bouton TARA 0 100 + molette de tarage fin)
 NE PLUS TOUCHER AU TARRAGE PENDANT LA PESÉE

NETEOS TOUCHER AU TARRAGE TENDANT DA TESEE

- (b) Avec spatule verser les cristaux jusqu'à masse de poudre désirée (ou verser le liquide)
- (c) Régler les centièmes de g.
- (d) Relever $m = \Box\Box\Box, \Box\Box g$
- 5. Éte
indre la balance. Enlever le récipient du plateua. Rallumer et mettre tout à zéro (bout
on de tarage; centaines de g; centième de g)

1

Électromagnétisme

TP : Mesures de champs magnétiques avec un teslamètre

Objectifs

- comprendre le fonctionnement d'un teslamètre
- mesurer le champ magnétique $\stackrel{\frown}{B}$ créé par un solénoïde parcouru par un courant.

Matériel

- teslamètre (et un tournevis pour faire le zéro)
- solénoïde
- alimentation stabilisée variable avec limiteur de courant maximum

I. Présentation du protocole expérimental

A. Dispositif expérimental

On désire mesurer le champ magnétique à l'intérieur d'un solénoïde (bobine longue). On utilse un teslamètre muni d'une sonde à effet $Hall^1$. Cette sonde délivre une tension, proportionnelle à la norme du champ magnétique, qui est ensuite amplifiée par un système électronique. La lecture s'effectue soit directement en Tesla (calibre $20\ mT$), soit en mesurant la tension de Hall (notée U_H) avec un voltmètre en position DC et en utilisant la correspondance suivante : $2\ mV \iff 10^{-4}\ T$ (calibre $0,5\ T$ max).

B. Utilisation du teslamètre

- Laisser chauffer l'appareil pendant 10 minutes environ.
- Régler le zéro (si les mesures durent longtemps il faut le réajuster avec un tournevis en B_x).
- Manipuler la sonde avec précaution.

C. Montage de mesure

Fig. 1 – Dispositif expérimental

E: alimentation stabilisée variable avec le bouton limitation du courant maximum $(2,5\ A)$. En jouant sur la tension E, on fixe l'intensité du courant I.

1

II. Mesure du champ magnétique créé par le solénoïde

A. Influence de la position de la sonde à l'intérieur du solénoïde

 $N = 200 \ spires \ et \ I = 2 \ A.$

- Faire varier d : distance de la sonde au centre du solénoïde.
- Relever U_H et en déduire B.
- Présenter les résultats expérimentaux sous forme de tableau en faisant varier d de 2 cm à chaque mesure
- Tracer B = f(d).
- Commenter l'allure obtenue.
- Conclure sur l'influence de d sur la valeur de B.

B. Influence de l'intensité du courant et du nombre de spires

- Faire varier I de 0 à 2.5 A. (On utilisera le bouton de réglage fin de la tension d'alimentation).
- Relever U_H et en déduire B_0 (mesuré au centre du solénoïde pour d=0 cm.
- Présenter 2 tableaux de mesures (1 pour $N=200\ spires$ et l'autre pour $N=400\ spires$). On fera varier I de 0,5 A à chaque mesure.
- Tracer $B_0 = f(I)$ pour les 2 cas sur le même système d'axes.
- Commenter l'allure obtenue. On pourra comparer la valeur expérimentale de la pente notée k pour les deux cas

C. Influence de la longueur du solénoïde

- -I=2 A. Faire varier la longueur l du solénoïde.
- Relever U_H et en déduire B_0 au centre. Attention, il faut à chaque fois éteindre l'alimentation avant chaque mesure et réajuster I à 2 A si nécessaire.
- Présenter les résultats expériementaux sous forme de tableau.
- Tracer $B_0 = f(l)$.
- Commenter l'allure obtenue.
- Conclure sur l'influence de l sur la valeur de B_0 . On pourra calculer le rapport $\frac{l}{D}$ en mesurant précisement la longueur totale l du solénoïde et son diamètre D.

III. Exploitation des résultats

Proposer une méthode, à partir des mesures faites précédemment, pour vérifier expérimentalement la valeur théorique de $\mu_0 = 4\pi 10^{-7}$ U.S.I..

Annexe : Principe d'une sonde à effet Hall

¹Voir le principe d'une sonde à effet Hall en annexe

TP: Bobines de Helmholtz

Objectifs

- Étudier les caractéristiques du champ créé par des bobines de Helmholtz
- Vérifier la proportionnalité entre l'intensité du courant et la valeur du champ magnétique créé par ce courant en un point

Matériel

- bobines de Helmholtz
- teslamètre
- alimentation continue réglable
- interrupteur
- multimètre en fonction ampèremètre DC
- boussole

I. Champ magnétique d'une bobine plate

- On utilise un dispositif comportant deux bobines plates identiques, parallèles et pouvant être alimentées en courant.
- Réaliser un circuit série avec une alimentation continue réglable, un interrupteur, un ampèremenètre.
- Régler l'intensité du courant sur 2 A (dans ces conditions, nous vérifierons que le champ magnétique terrestre est négligeable devant celui créé par la bobine).
- À l'aide de la boussole, explorer le champ créé par cette bobine.
- Tracer l'allure des lignes de champ de la bobine plate.

II. Les bobines de Helmholtz

Le dispositif des bobines de Helmholtz comporte deux bobines identiques, parcourues par un courant de même intensité. La distance qui les sépare est égale à leur rayon.

Ce dispositif permet d'obtenir un champ uniforme entre les bobines. On choisira pour l'intensité du courant, une valeur comprise entre $1\ A$ et $2\ A$.

Fig. 1 - Bobines de Helmholtz

- Les courants dans les deux bobine doivent-il être de même sens ou de sens contraire pour réaliser un champ uniforme?
- $2. \ \, {\rm Comment \; peut-on \; v\'erifier \; rapidement, \, \grave{a} \; l'aide \; de \; la \; boussole, \, que \; le \; champ \; obtenu \; est \; effectivement \; uniforme \; ? }$
- 3. Quelle est la direction de ce champ?

1

III. Relation entre l'intensité du courant et la valeur du champ

Le teslamètre permet de mesurer l'intensité B du champ magnétique B créé par les bobines. **Remarque**: avant utilisation régler le zéro du teslamètre. Le capteur doit être placé perpendiculairement au champ mesuré.

Fig. 2 – Teslamètre avec sonde à effet Hall

- 1. Proposer un protocole permettant de vérifier la proportionnalité entre l'intensité B de \overrightarrow{B} et l'intensité I du courant dans les bobines.
- 2. Déterminer la relation entre B et I pour les bobines utilisées.
- Déterminer la valeur de l'intensité I pour laquelle l'intensité B de B est égale à la composante horizontale du champ magnétique terrestre¹.
- 4. Peut-on dire que, pendant cette activité expérimentale, le champ magnétique terrestre a toujours été négligeable devant celui des bobines utilisées?

 $^{^{1}}$ En France, la composante horizontale du champ magnétique terrestre vaut environ 2.10^{-5} T

TP : Force de Laplace

Objectifs

- Mettre en évidence la force de Laplace.
- Dégager les relations entre direction et sens du courant, du champ magnétique et de la force de Laplace.

Matériel

- pile plate 4,5 V
- ruban de papier aluminium de $2-3 \ mm$ de large et de $30 \ cm$ de long.
- 4 pinces crocodiles et 2 supports
- bouton poussoir
- aimant droit

I. Dispositif expérimental

On utilise un ruban de papier d'aluminium ménager de $2\ mm$ à $3\ mm$ de large et de $30\ cm$ de long (sa résistance est de l'ordre de quelques dixièmes d'ohm. Il pourra supporter, pendant quelques instants, un courant d'intensité élevée. Le circuit est constitué d'une pile de $1,5\ V$ ou $4,5\ V$, du ruban d'aluminium et d'un bouton poussoir qui permet de ne pas laisser le circuit fermé trop longtemps. On fixe une partie du ruban horizontalement entre deux supports distants d'une douzaine de centimètre, de manière à ce qu'il soit légèrement rendu.

Fig. 1 - Dispositif expérimental

1

II. Action d'un aimant sur un courant électrique

Placer un aimant droit près du ruban comme sur la figure 2.a. Observer ce qui se passe lorsque le circuit est ouvert, puis lorsqu'il est fermé.

Ne pas laisser le circuit fermé durant plus de quelques secondes nécessaires aux observations.

- 1. L'aluminium est-il un matériau ferromagnétique?
- 2. À quelle condition l'aimant exerce-t-il une action sur le ruban?

III. Sens et direction de la force électromagnétique

- 1. Inverser le sens du courant dans le ruban, sans changer la position de l'aimant. Le sens du courant a-t-il une influence sur le sens de la force ? sur sa direction ?
- Sans changer le sens du courant, intervertir les pôles de l'aimant en le laissant horizontal et perpendiculaire au ruban.
 - (a) Le ruban semble-t-il attié ou repoussé par l'un des pôles de l'aimant?
 - (b) Quels sont, dans chaque cas, la direction et le sens du champ magnétique « vu » par la partie du ruban proche de l'aimant?
 - $\begin{tabular}{ll} (c) Le sens du champ magnétique a-t-il une influence sur le sens de la force ? sur sa direction ? \\ \end{tabular}$
- 3. Le circuit étant fermé, placé successivment l'aimant dans dans trois situations suivantes :

Fig. 2 – En a et b, le ruban est placé face à un pôle de l'aimant. En c, le ruban est placé au milieu de l'aimant

- (a) Représenter, dans chaque cas, le ruban en indiquant le sens du courant. Représenter le vecteur champ magnétique « vu » par la partie du ruban proche de l'aimant. Tracer en focntion des observations le vecteur force électromagnétique F.
- (b) Quelle loi générale relie la direction et le sens :
 - $\operatorname{de} \overrightarrow{B}$?
 - du courant dans le ruban d'aluminium?
 - de la force électromagnétique, appelée force de Laplace, subie par le ruban?

TP: Force de Lorentz

Objectifs

- Découvrir expérimentalement la force de Lorentz.
- Remarquer la parenté de cette force avec la force de Laplace.
- Découvrir quelques unes de ses nombreuses applications par une recherche documentaire.

Matériel

- oscilloscope
- aimant droit

I. Réglage de l'oscilloscope

Régler un oscilloscope en mode XY.

On observe sur l'écran un point lumineux dû au faisceau d'électrons frappant le matériau luminescent tapissant l'arrière de l'écran.

En utilisant les bouton X-position et Y-position, centrer ce point lumineux.

Fig. 1 - Principe d'un oscilloscope

1

II. Influence d'un aimant

Approcher le milieu d'un petit aimant droit, ou les branches d'un aimant en U, de ce spot.

 Qu'observe-t-on? À partir de ces observations, représenter pour la situation de la figure suivante la force subie par les électrons du faisceau lorsqu'ils passent au point P où l'on a représenté le vecteur champ magnétique.

Fig. 2 - Influence d'un aimant

2. Quels rapprochements peut-on faire avec la force de Laplace?

III. Recherche documentaire

Rechercher des applications de la force de Lorentz.

Annexe : spectres magnétiques

- d'un aimant droit
- et d'un aimant en U

3)

Optique géométrique

Les bases de l'optique géométrique

I. La propagation de la lumière

A. Notion de rayon lumineux

On considère qu'un faisceau lumineux est constitué d'un ensemble de rayons lumineux indépendants les uns des autres.

Dans un milieu transparent homogène (indice de réfraction identique en tout point du milieu considéré), la lumière se propage en ligne droite.

Fig. 1 – Faisceau parallèle

Fig. 2 – Faisceau divergent

Fig. 3 – Faisceau convergent

 ${\it Remarque}:$ On a représenté ici que les 2 rayons lumineux limitant le faisceau ; c'est ce qui est généralement fait.

B. Réfraction

La réfraction se produit lorsque la lumière aborde la surface de séparation (appelée $\dots\dots\dots)$ de 2 milieux transparents homogènes.

milieu transparent d'indice de réfraction n_1

milieu transparent d'indice de réfraction n_2

Fig. 4 – Surface de séparation polie entre deux milieux d'indice différent

1. 1^{re} loi de Snell-Descartes sur la réfraction

Le rayon réfracté est contenu dans le plan d'incidence (plan contenant le rayon incident et la normale à la surface de séparation en I).

2. 2^{e} loi de Snell-Descartes sur la réfraction

L'angle d'incidence i_1 et l'angle de réfraction i_2 vérifient la relation :

$$n_1 \sin i_1 = n_2 \sin i_2$$

Remarque 1 : il y a une réflexion partielle à la surface de séparation.

 $\textit{Remarque 2:} \sin n_2 > n_1 \text{ (exemple } n_{verre} = 1,5 \text{ et } n_{air} = 1 \text{ alors } \sin i_2 < \sin i_1 \text{ soit } i_2 < i_1.$

1

II. Les objets visibles par l'oeil

A. Les objets lumineux

Fig. 5 - Objet lumineux ponctuel

Les objets lumineux de la lumière.

On ne voit l'objet que si de la lumière émise par l'objet pénètre par la pupille de l'oeil.

Si l'objet lumineux ponctuel est très éloigné (on dit à l'infini), le faisceau pénétrant dans la pupille est parallèle.

Un objet lumineux étendu est considéré comme la juxtaposition d'objets lumineux ponctuels.

B. Les objets éclairés

Fig. 6 - Surface opaque non polie

Fig. 7 - Surface translucide

Les objets éclairés la lumière qu'ils reçoivent.

Chaque point de la surface se comporte comme un objet lumineux ponctuel.

La surface se comporte comme un objet lumineux étendu.

III. La vision de l'oeil

A. Exemple

Fig. 8 - Objet ponctuel situé dans l'air puis dans l'eau

La pupille de l'oeil est considérée comme réduite au point M.

B. Interprétation

Le cerveau est conditionné par la propagation rectiligne de la lumière et localise un objet dans la direction du rayon qui pénètre par la pupille.

On ne peut voir le point objet A que si la lumière ne change pas de direction ; sinon, on voit A', appelé le point image de A (ceci constitue une illusion d'optique).

IV. Le miroir plan

A. Structure d'un miroir

Un miroir est une surface opaque polie; contrairement à une surface opaque non polie, elle réfléchit la lumière au lieu de la diffuser.

B. Lois de Snell-Descartes

Fig. 9 - Réflexion d'un rayon lumineux sur un miroir plan

1. 1^{re} loi de Snell-Descartes sur la réflexion

Le rayon réfléchi est dans le plan d'incidence.

2. 2e loi de Snell-Descartes sur la réflexion

L'angle de réflexion est égal à l'angle d'incidence.

C. Formation de l'image

A' est l'image de l'objet A au travers le miroir plan.

Tracez 3 rayons lumineux issus de A et se réfléchissant sur le miroir.

A' est le symétrique de A par rapport au plan du miroir.

L'oeil ne verra A' que s'il est contenu dans le faisceau réfléchi.

Fig. 10 – Formation de l'image A' de l'objet A au travers un miroir plan

X

Miroir plan

I. Expérience des deux bougies

Conclusion: A' est le symétrique de A par rapport au plan du miroir. AB est l'objet (réel).

A'B' est un image virtuelle : on ne peut pas l'observer directement sur un écran.

II. Tracés

A. Comment tracer le rayon issu d'un point et se réfléchissant sur un miroir plan?

1. Méthode 1 : report d'angle

Le rayon incident, le rayon réfléchi et la normale au miroir plan sont dan le même plan appelé plan d'incidence.

L'angle de réflexion est égal à l'angle d'incidence (i = r)

2. Méthode 2 : en utilisant le point image

On trace par symétrie par rapport au plan du miroir l'image A' de A.

Le rayon réfléchi est issu de A'

 $\pmb{Remarque}$: aucun rayon réel ne se coupe en A' ; A' est donc une image virtuelle.

1

В.	Faisceau	réfléchi	par	$\mathbf{u}\mathbf{n}$	miroir
----	----------	----------	-----	------------------------	--------

C. Champ d'un miroir plan

Soit un observateur O regardant un miroir plan M de dimension finie. On cherche l'ensemble des points A visible par l'obsevateur au travers le miroir.

III. Applications

A. Périscope

Un périscope permet à un sous-marin d'observer à la surface de l'eau tout en étant immergé.

B. Appareil photo « réflex »

C. Miroir orthogonaux

 $\pmb{Remarque}: \text{ après 2 réflexions le rayon réfléchi repart avec la même direction mais dans le sens opposé.}$

IV. Relation de conjugaison et grandissement

A. Conventions de signe

B. Relation de conjugaison

Une *relation de conjugaison* est une relation qui donne la position de l'image en fonction de la position de l'objet et des caractéristiques du système optique.

Une relation de conjugaison est toujours écrite de manière algébrique, c'est à dire avec des longueurs qui peuvent être positives ou négatives.

Exemple:

$$OA = 10 \ cm \text{ mais } \overline{OA} = -10 \ cm$$

ici

$$-\overline{OA} < 0$$
 et $\overline{OA'} > 0$

$$-\overline{AB} > 0$$
 et $\overline{A'B'} > 0$

AO = OA' devient, avec la convention de signe $\overline{AO} = \overline{OA'}$ soit $-\overline{OA} = \overline{OA'}$

On obtient alors la relation de conjugaison pour un miroir plan

$$\overline{OA'} + \overline{OA} = 0$$

C. Grandissement

Le grandissement γ permet de déterminer la taille et le sens de l'image.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

Le grandissement γ peut être positif ou négatif,

Pour un miroir plan, le grandissement γ vaut :

$$\gamma = 1$$

$$\operatorname{car} \overline{AB} = \overline{A'B'} = \overline{OO_2}$$

Les lentilles minces

- I. Qu'est-ce qu'une lentille?
- A. Définition
- B. Les différents types de lentilles
- C. Caractéristiques de lentilles monces
- II. Les lentilles convergentes
- III. Les lentilles divergentes

1

Relations de grandissement

A. Définition

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

B. Relations

$$\overline{AB} = \overline{OI}$$

$$\overline{A'B'} = \overline{OJ}$$

12 Relation de grandissement avec origine au centre ()

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = + \frac{\overline{OA'}}{\overline{OA}}$$

2 Rôlatio 2 de grand sem ent avec origine au foyer objet F

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{OF}}{\overline{FA}}$$

 3_2 Rêlatio2 de grand 3_2 Rêlatio 3_2 de grand 3_2 d

Relations de conjugaison

A. Formule de Newton (origine aux foyers)

On utilise les deux relations de grandissement avec origine aux foyers (objet et image)

$$-\frac{\overline{OF}}{\overline{FA}} = -\frac{\overline{F'A'}}{\overline{OF'}}$$

En multipliant par $-1: \frac{\overline{OF}}{\overline{FA}} = \frac{\overline{F'A'}}{\overline{OF'}}$

$$\overline{FA} \cdot \overline{F'A'} = \overline{OF} \cdot \overline{OF'}$$

Cette formule, nommée aussi formule de Newton se note également :

$$x \cdot x' = ff'$$

Or comme pour une lentille mince on a $\overline{OF} = -\overline{OF'}$ soit f = -f' on peut alors écrire :

$$x \cdot x' = -f'^2$$

B. Formule de Descartes (origine au centre)

On utilise la relation de grandissement avec origine au centre et celle avec origine au foyer image.

$$+\frac{\overline{OA'}}{\overline{OA}} = -\frac{\overline{F'A'}}{\overline{OF'}}$$

Soit en mettant en ligne : $\overline{OA'} \cdot \overline{OF'} = -\overline{F'A'} \cdot \overline{OA}$

Or $\overline{F'A'} = \overline{F'O} + \overline{OA'} = \overline{OA'} - \overline{OF'}$

Il vient alors $\overline{OA'} \cdot \overline{OF'} = -(\overline{OA'} - \overline{OF'}) \cdot \overline{OA}$.

En développant, on obtient : $\overrightarrow{OA'} \cdot \overrightarrow{OF'} = -\overrightarrow{OA'} \cdot \overrightarrow{OA} + \overrightarrow{OF'} \cdot \overrightarrow{OA}$ Soit aussi : $\overrightarrow{OF'} \cdot \overrightarrow{OA} - \overrightarrow{OA'} \cdot \overrightarrow{OF'} = \overrightarrow{OA'} \cdot \overrightarrow{OA}$

On divise alors par $\overline{OA} \cdot \overline{OA'} \cdot \overline{OF'}$ et on obtient :

$$\boxed{\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}}$$

Cette formule, nommée également Relation de Descartes, se note aussi :

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

Résumé

distance focale objet distance focale image $\overline{OA} = p$ distance objet-lentille $\overline{OA'} = p'$ distance image-lentille $\overline{FA} = x$ distance foyer objet - objet distance foyer image - image

Relation de Descartes

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

Formule de Newton

$$x \cdot x' = -f'^2$$

Grandissement

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{p'}{p} = -\frac{f}{x} = -\frac{x'}{f'}$$

Constructions géométriques pour les lentilles minces convergentes

Constructions géométriques pour les lentilles minces divergentes

TP : Relations de conjugaison des lentilles minces

NOM:	Classe:

Objectifs

Matériel

- Établir les relations de conjugaison des lentilles minces.
- Établir les relations de grandissement des lentilles minces
- Banc optique
- Objet lumineux (lanterne avec lettre F)
- Écran millimétré.
- Lentille mince convergente de vergence

I. Montage optique

Utilisons un banc d'optique, un objet AB bien éclairé, une lentille convergente de vergence V connue et un écran muni d'une feuille de papier millimétré.

- 1. Représenter sur le schéma ci-dessus l'axe optique.
- 2. Tracer trois rayons optiques particuliers permettant de déterminer la position de l'image A'B'.
- 3. Que faut-il faire pour obtenir une image nette?

II. Questions préliminaires

- 1. Quel est le signe de V?
- 2. Quel est le signe de $f' = \overline{OF'}$?
- 3. Quel est le signe de $f = \overline{OF}$?
- 4. Quel est le signe de $p = \overline{OA}$?
- 5. Quel est le signe de $p' = \overline{OA'}$?

- 6. Indiquer en m puis en cm la distance focale image f' de la lentille.
- Indiquer en m puis en cm la distance focale objet f de la lentille

III. Mesures

- 1. Mesurer la hauteur \overline{AB} de l'objet.
- 2. Pour plusieurs positions différentes de l'objet par rapport à la lentille, mesurer :
 - (a) la distance $\overline{OA'}$ séparant l'image de la lentille.
 - (b) la hauteur $\overline{A'B'}$ de l'image.

1

3. Reporter les mesures dans le tableau suivant.

Reporter les	s mesures d	ans le table	au survani.					
Position	\overline{OA}	$\overline{OA'}$	$\frac{1}{\overline{OA}}$	$\frac{1}{\overline{OA'}}$	$\frac{1}{\overline{OF'}}$	$\frac{\overline{OA'}}{\overline{OA}}$	Ā'B'	$\frac{\overline{A'B'}}{\overline{AB}}$
	(m)	(m)	(m^{-1})	(m^{-1})	(m^{-1})		(m)	
1	-0.15							
2	-0.20							
3	-0.25							
4	-0.30							
5	-0.40							
6	-0.50							

4. Dans tout les cas, on a placé l'objet tel que $\overline{OA} < f$. Expliquer pourquoi. Vérifier expérimentalement ce qui se passe lorsque l'on ne respecte pas cette condition.

IV. Interprétation

- Faire la construction graphique pour différentes positions.
 Indiquer dans chaque cas les caractéristiques de l'image.
- 2. Calculer $\frac{1}{\overline{OA'}}$, $\frac{1}{\overline{OA}}$ et $\frac{1}{\overline{OF'}}$ et noter les valeurs dans le tableau.
- 3. Réaliser une représentation graphique de $y = \frac{1}{OA'}$ en fonction de $x = \frac{1}{OA}$.
- 4. Pour chaque position, calculer le rapport $\frac{\overline{OA'}}{\overline{OA}}$ et le comparer au rapport $\frac{\overline{A'B'}}{\overline{AB}}$.
- 5. Quelle relation la représentation graphique permet-elle d'établir? Prolonger la courbe jusqu'à l'axe des ordonnées. Que représente ce point? Comparer son ordonnée à la vergence V de la lentille.
- 6. Établir une relation entre $\frac{1}{\overline{OA'}}$, $\frac{1}{\overline{OA}}$ et $\frac{1}{\overline{OF'}}$
- À l'aide de ces résultats, décrire une méthode de mesure de la distance focale image d'une lentille de vergence V inconnue.
- 8. D'après votre tableau de mesure, quelle grandeur est égale au grandissement $\gamma = \frac{\overline{A'B'}}{\overline{AB}}$

TP: Focométrie des lentilles minces

Objectifs

Matériel

- Déterminer la distance focale d'une lentille mince
- Banc optique avec objet (lanterne) et écran millimétré.
- Lentilles minces

I. Focométrie des lentilles minces convergentes

A. Autocollimation

- Placer sur un banc d'optique un objet lumineux et la lentille à étudier.
- Placer dans un plan parallèle à celui de la lentille un miroir plan (la distance entre le miroir et la lentille n'a pas d'influence).
- Déplacer l'ensemble { miroir + lentille } de telle sorte qu'à la distance d entre la lentille et l'objet on ai une image nette de l'objet sur lui-même (image nette mais inversée).

On a alors:

B. Utilisation de la relation de Descartes

D'après la relation de Descartes, on a :

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$

- Faire pour plusieurs positions de l'objet, l'image nette sur l'écran.
- Mesurer pour ces différentes positions p et p'.
- Tracer $\frac{1}{p'}$ en fonction de $\frac{1}{p}$. Déduire de ce tracé la distance focale image f'.

C. Méthode de Bessel

Cette méthode ne s'applique qu'aux lentilles convergentes.

- Placer sur un banc d'optique un objet lumineux et un écran situé à la distance D de la source.
- Vérifier qu'il existe deux positions de la lentille qui permettent d'obtenir une image nette de l'objet sur l'écran. Ces deux positions sont séparées par la distance d.

1

- Notations:
- D : distance objet-image
- d : distance entre les deux positions de lentille donnant une image nette sur l'écran
- Démontrez en utilisant les formules de conju-

gaison que la distance focale de la lentille est égale à :

$$f' = \frac{D^2 - d^2}{4D}$$

Attention, il faut impérativement D > 4f'.

D. Méthode de Silbermann

Cette méthode dérivée de la méthode de Bessel ne s'applique qu'aux lentilles convergentes.

- Placer sur un banc d'optique un objet lumineux et un écran situé à la distance D de la source.
- Vérifier qu'il existe deux positions de la lentille qui permettent d'obtenir une image nette de l'objet sur l'écran. Ces deux positions sont séparées par la distance d.
- Vérifier que lorsque l'on rapproche l'objet de l'écran (on diminue la valeur de D), l'écart d entre les deux positions de lentille donnant une image nette sur l'écran diminue.
- Diminuer encore la valeur de D, jusqu'à ce que ces deux positions soient confondues (d = 0). On peut remarquer qu'à ce moment le grandissement γ est égal à -1.

- Mesurer alors sur le banc d'optique la distance D objet-image et déduire la distance focale image de la lentille à l'aide de la relation :

$$f' = \frac{D}{4}$$

E. Méthode de Badal

- Choisir deux lentilles convergentes L_1 et L_2 de vergences connues.
- Réaliser l'image à l'infini de l'objet A placé sur le banc, par la première lentille.
- Placer la deuxième lentille au-delà de la première, à une distance supérieure à sa propre 2 distance focale.
- Observer l'image de l'objet par l'ensemble se 1 former dans le plan focal image de la deuxième lentille : A' en F'2.
- Placer la lentille de vergence V_x inconnue au foyer objet de la deuxième lentille, et chercher l'image réelle A" de l'objet dans le système optique ainsi constitué.
- Mesurer le déplacement x = A'A" de l'image-2

On montre que :

Remarque: x est positif pour une lentille divergente et négatif pour une lentille convergente.

On démontre cette relation en appliquant la relation de Newton $\overline{FA.FA'} = \overline{OF.OF'} = -\overline{OF}^2$.

II. Focométrie des lentilles minces divergentes

A. Formation d'un doublet accolé

1. Accoler à la lentille divergente de vergence V_1 inconnue une lentille mince convergente de vergence V_2 connue.

Remarque: on a choisit la lentille convergente à accoler de telle sorte que le système accolé de lentilles soit convergent.

La vergence de l'ensemble est :

$$V_{1+2} = V_1 + V_2$$

2. Utiliser une des méthodes vues précédemment pour déduire la vergence V_{1+2} de l'ensemble et, connaissant la vergence V_2 de la lentille 2

convergente, déduire la vergence V_1 de la lentille divergente.

B. Méthode de Badal

La méthode de Badal est applicable aux lentilles divergentes dans ce cas x est positif.

Devoir Surveillé

Devoir Surveillé n° 1

Charges et matière : particules élémentaires Interactions fondamentales

Grandeurs physiques et quantité de matière

Exercice 1 : Fil de cuivre électrisé

Le cuivre est l'un des meilleurs conducteurs.

Il est utilisé pour réaliser les liaisons dans les circuits électriques.

On admet qu'un électron par atome est libre de se déplacer dans le métal.

On dispose d'un fil de cuivre, de section $S = 1, 5 \text{ } mm^2$ et de longueur l = 20 cm.

- 1. Calculer la masse d'un atome de cuivre.
- 2. Calculer la masse de l'échantillon de matière considéré.
- 3. Quel est, dans l'échantillon de matière considéré, le nombre d'atomes de cuivre présents?
- 4. On électrise ce fil en lui transférant la charge $q = 15 \ nC$.
 - (a) Comment peut-on réaliser ce transfert?
 - (b) Indiquer la nature des particules transférées et calculer leur nombre.
 - (c) Comparer le nombre de particules transférées au nombre d'électrons libres dans le fil et conclure.
- 5. Ce fil est mis en contact avec un autre fil de cuivre, de mêmes dimensions mais neutre, puis séparé.

Décrire l'état final de chaque fil.

Données :

- masse volumique du cuivre : $\rho = 8,96 \ g.cm^{-3}$,
- nombre de nucléons : A = 64,
- masse d'un nucléon : $m_{\mbox{nucléon}}=1,67.10^{-27}~kg,$ charge élémentaire : $e=1,60.10^{-19}~C$

Exercice 2: Novau d'hélium

Un novau d'hélium 4 est formé de deux protons et de deux neutrons. Le rayon moyen d'un nucléon est $r_n = 1, 2$ fm et on suppose que les quatre nucléons du noyau sont au contact comme le montre la figure suivante.

- 1. Calculer la valeur de la force d'interaction gravitationnelle entre deux neutrons ou entre deux protons. S'agit-il d'une force attractive ou répulsive?
- 2. Calculer la valeur de la force d'interaction électrique entre deux protons. S'agit-il d'une force attractive ou répulsive?
- 3. À partir de ces deux calculs, conclure sur l'existence d'un troisième type d'interaction. Donner son nom.

Donn'ees:

- masse d'un nucléon (proton ou neutron) : $m_n = m_p = 1,67.10^{-27} \ kg$

1

- charge élémentaire : $e = 1,60.10^{-19}$ C
- constante universelle de gravitation : $G = 6,67.10^{-11} N.kg^{-2}.m^2$
- constante de l'interaction coulombienne : $k = 9.10^9 \ N.C^{-2}.m^2$

Exercice 3 : Solubilité du dioxygène dans l'eau

Le dioxygène est faiblement soluble dans l'eau. Cette propriété est fondamentale pour la vie aquatique. À la température $\theta = 10 \, ^{\circ}C$, sous une pression en dioxygène $P = 1013 \, hPa$, la masse maximale m_{max} de dioxygène pouvant être dissous dans 1,00 m^3 est de 55,0 q.

- 1. Calculer la quantité maximale n_{max} de dioxygène dissous dans un volume V= $1.00 m^3$ d'eau. La solubilité est la concentration maximale en dioxygène dissous dans l'eau. En déduire, en $mol.L^{-1}$, la solubilité s du dioxygène à cette température.
- 2. Calculer le volume maximal V_{max} de dioxygène dissous dans 1,00 m^3 d'eau.
- 3. À la température $\theta' = 30$ °C, sous une pression en dioxygène de 1013 hPa, le volume maximal dissous dans un volume $V=1,00~m^3$ d'eau vaut $V'_{max}=30,0~L$. Calculer la solubilité s' du dioxygène à cette température. Comment varie la solubilité du dioxygène avec la température?

Données :

- masse molaire atomique de l'oxygène : $M_O = 16 \ g.mol^{-1}$
- constante des gaz parfaits $R = 8,314 \ J.mol^{-1}.K^{-1}$

Exercice 4: Préparation d'une solution aqueuse de glucose

- 1. On souhaite préparer 100 mL d'une solution aqueuse de glucose de formule $C_6H_{12}O_6$ de concentration $1,11.10^{-1} \ mol.L^{-1}$.
 - (a) Calculer la masse molaire du glucose.
 - (b) Calculer la masse de glucose à peser.
- 2. On réalise une solution fille en prélevant 5 mL de la solution mère de glucose à $1.11.10^{-1} \ mol.L^{-1}$ et en ajoutant $15 \ mL$ d'eau.
 - (a) Calculer la concentration molaire (en $mol.L^{-1}$) de la solution fille.
 - (b) Calculer la concentration massique (ou titre massique en $a.L^{-1}$) de la solution fille.

Données:

- masse molaire atomique du carbone : $M_C = 12 \ g.mol^{-1}$
- masse molaire atomique de l'oxygène : $M_O=16\ g.mol^{-1}$
- masse molaire atomique de l'hydrogène : $M_H = 1 \ g.mol^{-1}$

Exercice 5: Combustion du magnésium

On réalise la combustion d'un ruban de magnésium (Mq) de masse m=1,215 q dans un flacon fermé contenant 1,0 L de dioxygène pur (O_2) . Il y a formation d'oxyde de magnésium (MqO).

- 1. Calculer les quantités de matière initiale de réactif.
- 2. Donner l'équation bilan de la réaction.
- 3. Faire un tableau d'avancement.
- 4. Déduire l'avancement maximal x_{max} .
- 5. Quel est le réactif limitant dans cette transformation?

Données :

- masse molaire atomique du magnésium : $M_{Mq} = 24, 3 \ g.mol^{-1}$
- volume molaire gazeux dans les conditions de cette expérience : $V_m = 24 \ L.mol^{-1}$

Correction DS n°1

Exercice 1 : Fil de cuivre électrisé

1. Masse d'un atome de cuivre $m=A\cdot m_{\mbox{nucl\'eon}}=64\cdot 1,67.10^{-27}=1,07.10^{-25}\ kg$ 2. Masse de l'échantillon : $m'=\rho V=\rho Sl=8,96\cdot 1,5.10^{-2}\cdot 20=2,7\ g$

3. Nombre d'atomes de cuivre : $N = \frac{m'}{m} = \frac{2.7 \cdot 10^{-3}}{1.07 \cdot 10^{-25}} = 2, 5.10^{22}$

4. (a) Chargé par contact avec un corps chargé positivement

(b) Perte de x électrons $x = \frac{15.10^{-9}}{1,6.10^{-19}} = 9,4.10^{10}$

(c) En moyenne, dans un métal bon conducteur, un électron par atome est libre de se déplacer d'un bout à l'autre de l'échantillon de matière. 2, 5.10²² électrons libres pour 9, 4.10¹⁰ électrons transférés moins de 1 électron libre sur 270 milliards transféré.

5. au moment du contact la charge q est uniformément répartie. Après séparation, chaque fil portera la charge $\frac{q}{2} = 7,5 \ nC$

Exercice 2 : Noyau d'hélium

Distance entre deux neutrons ou 2 protons : $r = 2r_n = 2, 4 \text{ fm}$

1. attractive

$$F_g = G \frac{m_n^2}{r^2} \approx G \frac{m_p^2}{r^2} = 6,67.10^{-11}.(\frac{1,67.10^{-27}}{2,4.10^{-15}})^2 = 3,2.10^{-35} N$$

2. répulsive

$$F_e = k \frac{e^2}{r^2} = 9.10^9 \cdot (\frac{1,60.10^{-19}}{2,4.10^{-15}})^2 = 40 \ N$$

3. force gravit, très inférieure à force électrique donc répulsion si pas de 3ème interaction interaction forte

Exercice 3 : Solubilité du dioxygène dans l'eau

Exercice 4 : Préparation d'une solution aqueuse de glucose

1. (a)
$$M_{C_6H_{12}O_6} = 6.M_C + 12.M_H + 6.M_O = 6 \times 12 + 12 \times 1 + 6 \times 16 = 180 \text{ g.mol}^{-1}$$

(b)
$$n_{C_6H_{12}O_6} = cV = \frac{m_{C_6H_{12}O_6}}{M_{C_6H_{12}O_6}} \Longrightarrow m_{C_6H_{12}O_6} = cVM = 2 g$$

$$n_2 = n \frac{V_{M2}}{V_{M1}} = 1, 11.10^{-2} \frac{5}{100} = 555.10^{-6} \ mol \ \text{de glucose dans} \ 5 \ mL$$

$$c = \frac{n_2}{V_F} = \frac{555.10^{-6}}{20.10^{-3}} = 2, 77.10^{-2} \ mol. L^{-1}$$

(b)
$$t = Mc = 180 \times 2,77.10^{-2} = 5 \ q.L^{-1}$$

Exercice 5 : Combustion du magnésium

1.
$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

2.
$$n_{Mg_{ini}} = \frac{m_{Mg}}{M_{Ma}} = 0,050 \ mol; n_{O_{2ini}} = \frac{V_{O_2}}{V_{min}} = 0,042 \ mol$$

	Équation de l	a réaction	: 2Mg(s) -	+ O ₂ (g) −	\rightarrow MgO(s)
	État du système	avancement	n(Mg)(mol)	$n(O_2)(mol)$	n(MgO)(mol)
3.	État initial	0	0,050	0,042	0
Э.	Au cours de la	271	0.050-2x	0.042-x	2x
	transformation	ı	0,030-21	0,042-2	2.1
	État final	$x_{max} = 0,025$	0	0,017	0,050

4. x_{max} trouvé en résolvant

 $0,050 - 2x \ge 0 \Rightarrow x \le 0,025$

$$0,042 - x \ge 0 \Rightarrow x \le 0,042$$

 $x_{max} = 0,025$

5. Le réactif limitant est le magnésium.

Devoir Surveillé n $^{\circ}$ 2

NOM:	Prénom:	Classe:

Exercice 1 : Pourcentage massique et densité

On dispose d'une bouteille de solution commerciale S_0 d'acide phosphorique H_3PO_4 . On peut lire sur l'étiquette les indications suivantes : pourcentage massique en acide phosphorique $P_m=85$ %, densité d=1,7, masse molaire moléculaire $M_{H_3PO_4}=98~g.mol^{-1}$.

- 1. Calculer la concentration massique de la solution S_0 .
- 2. En déduire sa concentration molaire.
- 3. On veut préparer 500 mL d'une solution d'acide phosphorique S₁ de concentration 1, 10 mol.L⁻¹. Quelle masse d'acide phosphorique doit-on utiliser?
- 4. Quel volume V_0 de solution commerciale S_0 doit-on prélever puis compléter à 500 mL pour obtenir la solution voulue S_1 ?
- 5. Avec quel instrument peut-on prélever le volume V_0 de solution mère?

Exercice 2 : Éolienne

Une éolienne des Pyrénées-Orientales possède entre autres parties, une hélice de diamètre $\Phi=70~m$. Celle-ci tourne au maximum à $20~tr.min^{-1}$.

- 1. Calculer dans ces conditions la fréquence de rotation de l'hélice. Calculer sa période T de rotation.
- 2. Quelle est la vitesse angulaire?
- 3. Calculer la vitesse en $km.h^{-1}$ atteinte au bout des pales.
- 4. Commenter la phrase d'un journaliste : « la lenteur apparente de rotation des pales est trompeuse!».

Exercice 3: Trajectoire d'un mobile autoporteur

Sur une table horizontale, un mobile à coussin d'air S est relié à un point fixe O par un fil inextensible. On lance le mobile et on enregistre à intervalles de temps réguliers $\tau=20~ms$ les positions successives M_i du point M situé au centre de la semelle du mobile. La première partie du mouvement s'effectue fil tendu, puis celui-ci casse. Quelques instants après, la turbine qui éjecte l'air sÇarrête. L'enregistrement est représenté sur le document à l'échelle 1/2.

Calculer les normes des vecteurs vitesse instantanée aux points M_8 et M_{19} . Construire les vecteurs vitesse instantanée aux points M_8 et M_{19} . On prendra comme échelle de vitesse : $1\ cm \Longleftrightarrow 0, 2\ m.s^{-1}$.

1

Première Scientifique Partie Chimie Grandeurs physiques et quantité de matière

TP : Préparations de solutions aqueuses

Matériel

- Blouse
- Fiole jaugée 100 mL
- Bouchon pour fiole jaugée 100 mL
- Spatule métallique
- Entonnoir à liquide
- Entonnoir à solide
- Coupelle de pesée
- Balance de précision au 1/100ième de gramme près
- Pissette eau distillée
- Pipette jaugée 10 mL, 20 mL, pipette graduée
- Pipeteur
- 2 burettes de 25 mL et pince et support
- 1 bécher
- 4 tubes à essais et portes tubes

Produits

- Glucose en poudre
- Bandelettes et boite « test glucose »

Pour estimer le taux de glucose (sucre) dans les urines, on utilise des bandelettes. Leur coloration dépend de la concentration de sucre présent.

Le glucose a pour formule $C_6H_{12}O_6$ et son taux doit être régulièrement surveillé notamment chez les diabétiques et les femmes enceintes.

Objectifs

 Préparer des solutions de glucose de concentrations molaires différentes et vérifier que la teinte des bandelettes dépend bien de ces concentrations

I. Échelle de teintes des bandelettes

- Sur le flacon contenant les bandelettes, relever l'échelle de teintes correspondantes à leurs différentes colorations
- Relever pour chaque coloration la concentration molaire en glucose correspondante.

II. Préparation de la solution mère S_M

- Préparer avec soin et méthode 100 mL de solution de glucose de concentration molaire 1, 11.10⁻¹ mol.L⁻¹
 à partir de glucose en poudre.
- $-\,$ Calculer la masse de solide à peser.
- Faire des schémas explicatifs décrivant le protocole expérimental.

III. Dilution de la solution mère

- Pour réaliser ces dilutions, on utilisera 2 burettes de 25 mL graduées :
- une burette contiendra la solution mère.
- l'autre burette contiendra l'eau distillée.
- Les bandelettes doivent être immergées dans les solutions $10 \ s$ puis la lecture de la teinte prise doit se faire $20 \ s$ après.
- Rappeler la relation utile lors d'une dilution.
- Compléter le tableur suivant :

1

Volume V_M de la solution mère (mL)	10	5	2,5	1,25
Volume d'eau ajoutée (mL)	10			
Volume V_F de la solution fille (mL)	20	20	20	20
Concentration molaire calculée c_F de la solution fille $(mol.L^{-1})$				
Concentration massique calculée $(g.L^{-1})$				
Teinte de la bandelette				

IV. Conclusions

V. Recherches

- Rechercher la signification des mots glycémie et hypoglycémie
- Que faut-il faire en cas d'hypoglycémie?
- Quand parle-t-on de diabète?
- Le taux de glycémie à jeun, pour un adulte, doit être inférieur à $1,20\ g.L^{-1}$. Calculer la concentration molaire limite.

TP : Détermination du volume molaire gazeux

Matériel

- lunettes
- blouse
- gants
- solution d'acide chlorhydrique à 1 mol.L-1
- solution de soude à 1 mol.L 1
- Ruban de magnésium
- fil de cuivre
- erlenmeyer et bouchon ou flacon et bouchon
- tube à dégagement
- éprouvette de $50 \ mL$
- support, pince, noix
- bécher
- pipette et propipette
- cristallisoir ou bassine
- tube à essais
- allumettes
- balance de précision 1/10 000ième de gramme
- thermomètre et baromètre pour la salle de classe.

Objectifs

– Déterminer à température et pression données, le volume molaire V_m d'un gaz produit par une réaction chimique.

I. Principe de l'étude

Au cours de la réaction d'une solution d'acide chlorhydrique avec certains métaux, il se produit un dégagement gazeux. La connaissance de la quantité de matière n ou du volume de gaz produit V permet de déterminer le volume molaire gazeux V_m dans les conditions de température et de pression de l'expérience.

II. Protocole expérimental

A. Étude de la réaction

- 1. Dans un tube à essai, verser $2\ mL$ de solution d'acide chlorhydrique $H_{aq}^++Cl^-$. Introduire un petit morceau de ruban de magnésium et boucher le tube. Observer. Si un dégagement gazeux se produit, approcher une allumette enflammée. Conclure.
- 2. Tester les ions qui se sont formés en solution. Verser goutte après goutte de la soude NaOH. Observer, décrire et conclure quant à la nature des ions formés ? Proposer l'équation de la réaction entre l'acide et le magnésium (les ions Cl^- sont restés spectateurs).
- Recommencer l'expérience en remplaçant le morceau de magnésium par un morceau de tournure de cuivre. Conclure.

B. Réalisation de l'expérience

1

- 1. Peser la masse d'un morceau de magnésium de longueur l=4~cm environ, préalablement décapé $m=\ldots\ldots q.$
- Réaliser le montage expérimental correspondant au schéma ci-dessus. On remplacera le cas échéant le flacon par un erlenmeyer. Prendre soin de ne pas enfermer d'air dans l'éprouvette.
- 3. Introduire dans l'erlenmeyer 20 mL d'acide chlorhydrique.
- 4. Laisser tomber dedans, le ruban de magnésium et fermer immédiatement le bouchon pour ne pas perdre de gaz.
- 5. Laisser la réaction chimique se produire jusqu'à sa fin.
- 6. Laisser le système refroidir. Le gaz est alors à la température de la pièce $\theta = \dots ^{\circ}C$. La pression au sommet de l'éprouvette peut être légèrement différente de la pression atmosphérique. Si possible, déplacer l'éprouvette jusqu'à ce que le niveau d'eau dans celle-ci coïncide avec celui de l'eau du cristallisoir. La pression du gaz est alors égale à patmosphérique du jour : $p_{atm} = \dots Pa$.
- 7. Lire le volume occupé par le gaz produit, au sommet de l'éprouvette : $V = \dots$

III. Exploitation des résultats

- 1. Réécrire l'équation de la réaction.
- 2. Déterminer les quantités de matière des réactifs réagissants. $(M_{Mq} = 24, 3g.mol^{-1}; M_H = 1, 0g.mol^{-1})$.
- 3. Faire le tableau d'avancement de la réaction. Déterminer l'avancement maximal x_{max} , en déduire le réactif limitant.
- 4. Établir le bilan de matière.
- 5. À partir du bilan de matière et de l'équation d'état des gaz parfaits, calculer V_{H_2} produit à $P_{\rm atmosph\'erique}$. Comparer à V_{H_2} mesuré.
- 6. En déduire le volume molaire gazeux dans les conditions de l'expérience.

TP : Suivi d'une transformation chimique par mesure de pression

Objectifs

 Déterminer pour différentes conditions initiales, le réactif limitant d'une transformation chimique produisant un gaz

Matériel

- Solution d'acide chlorhydrique à $0,25 \ mol.L^{-1}$
- carbonate de calcium en poudre
- spatule
- papier filtre
- balance
- flacon de 500 mL environ
- mano-baromètre
- éprouvette graduée

I. Principe de l'étude

Une solution d'acide chlorhydrique réagit avec du carbonate de calcium $CaCO_3$ aussi appelé calcaire. L'un des produits formés est gazeux. La mesure de la pression de ce gaz permet de déterminer la quantité de matière correspondante, la température et le volume étant connus.

II. Protocole expérimental

A. Équation de la réaction

Proposer une expérience permettant de vérifier que le gaz formé lors de l'action de l'actide chlorhydrique sur le calcaire est du dioxyde de carbone.

Sachant qu'il se forme également de l'eau, des ions calcium et que les ions chlorure ne participent pas à la réaction, écrire l'équation chimique de cette réaction.

B. Étude quantitative

- 1. Manipulation
- Verser dans un flacon un volume $V=40\ mL$ de solution d'acide chlorhydrique de concentration molaire $C=0,25\ mol.L^{-1}.$
- Relier le mano-baromètre au bouchon et sélectionner la fonction manomètre.
- Fermer le flacon, appuyer sur le bouchon et régler le manomètre au zéro.
- Peser une masse $m=0,20\ g$ de calcaire en le déposant sur le papier filtre. Replier le papier sur la poudre et l'introduire dans le flacon. Fermer rapidement le flacon.
- Agiter le flacon ; lorsque le dégagement gazeux cesse et que la pression est stable, noter la pression P du mélange.
- En fin de réaction, observer s'il reste ou non du solide.
- Noter la température ambiante θ .
- Recommencer l'expérience pour d'autres masses de calcaire.
- 2. Proposer une méthode pour mesurer le volume occupé par le mélange gazeux.
- 3. Comment calculer la quantité de matière de dioxyde de carbone formé?
- ${\it 4.} \ \ {\it Reproduire le tableau suivant sur le compte-rendu d'expérience et le compléter.}$

.

m en g	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80
P_{CO_2} en hPa								
n_{CO_2} en mol								
Présence de solide								

III. Résultats

- 1. Tracer le graphe représentant la quantité de matière de CO_2 formé en fonction de la masse m de calcaire.
- 2. Interpréter les deux parties du graphe obtenu.
- 3. Pour m=0,20 g, établir le tableau d'avancement de la réaction.

Équation	
État initial	
Au cours de la	
transformation	
État final	

- 4. Indiquer le réactif limitant.
- 5. Comparer la quantité de matière théorique et expérimentale de CO_2 formé.
- 6. Refaire le même travail pour $m=0,70\ g.$

Solutions électrolytiques

TP : Concentrations molaires effectives d'ions en solution

Objectifs

- Préparer une solution électrolytique en mettant en solution un solide ionique.
- Écrire une équation de mise en solution.
- Distinguer la concentration molaire de soluté apporté et les concentrations effectives des ions en solution.
- Identifier des ions en solution à l'aide de tests par précipitation.
- Écrire une équation de précipitation.

Matériel

- spatule
- burette graduée
- fiole jaugée de $100 \ mL + bouchon$
- -4 béchers de 50 mL ou pots
- coupelle plastique, entonnoir à solide
- 4 tubes à essai
- 2 pipettes en plastique
- 1 entonnoir avec son support
- 2 filtres en papier
- pissette d'eau distillée

Bureau

- 2 balances à 0,01 g
- 1 L de solution d'ions Ba^{2+} avec
- $[Ba^{2+}] = 0, 1 \ mol.L^{-1}$ 1 L de solution d'ions OH^- avec
- $OH^{-} = 0.1 \text{ mol.} L^{-1}$ ave
- sulfate de fer III Fe₂(SO₄)₃ solide
- 2 pipettes de 20 mL avec propipettes

I. Préparation de la solution de sulfate de fer (III)

- 1. Préparer 100 mL d'une solution de sulfate de fer (III) de concentration $c=3,5.10^{-3}\ mol.L^{-1}$ à partir du solide $Fe_2(SO_4)_3$.
- Indiquer sur le compte rendu à l'aide de schéma le protocole expérimental pour réaliser cette dissolution.
- Écrire l'équation bilan de la dissolution du cristal ionique. En déduire les concentrations effectives des ions présents en solution.

II. Vérification expérimentale des quantités d'ions fer (III) et d'ions sulfate

- 1. Prélever deux fois $20\ mL$ de la solution de sulfate de fer que l'on placera dans 2 béchers distincts (1 et 2).
- 2. Calculer le nombre de mol d'ions Fe^{3+} et d'ions sulfate SO_4^{2-} présents dans ces 20~mL.
- 3. On donne les réactions de précipitations suivantes :
 - les ions Fe^{3+} réagissent avec les ions hydroxydes HO^- en donnant un précipité marron
 - les ions SO_4^{2-} réagissent avec les ions baryum Ba^{2+} en donnant un précipité blanc.

Ecrire les équations bilan des deux réactions de précipitations.

- 4. Calculer les quantités de matière à utiliser en ions HO^- et en ions Ba^{2+} pour faire complètement réagir par précipitations les ions contenus dans les $20\ mL$ de la solution de sulfate de fer III.
- 5. Calculer les volumes d'hydroxyde de sodium $(Na^+ + HO^-)$ et de chlorure de baryum $(Ba^{2+} + 2Cl^-)$ pour faire complètement réagir les ions Fe^{3+} et SO_4^{2-} .
- 6. Placer la solution de soude $(Na^+ + HO^-)$ dans une burette puis réaliser la précipitation des ions Fe^{3+} dans le bécher noté 1 en vous plaçant dans les conditions expérimentales de la question 5.
- 7. Rincer correctement la burette puis y placer la solution de chlorure de baryum $(Ba^{2+} + 2Cl^{-})$. Réaliser la précipitation des ions sulfates SO_4^{2-} dans le bécher noté 2 en vous plaçant dans les conditions expérimentales de la question 5.
- 8. Réaliser des tests complémentaires sur les produits de vos réactions de précipitations permettant de confirmer l'absence d'ions Fe^{3+} et SO_4^{2-} .
- 9. Conclure sur la validité de vos calculs théoriques.

Conductimétrie

TP : Détermination par conductimétrie de la concentration en soluté d'une solution ionique

Objectifs

Matériel

- réaliser une courbe d'étalonnage G = f(C) et en déduire une concentration inconnue.
- Aborder une limite de la méthode d'étalonnage.
- bécher $600 \ mL$
- fiole jaugée 500~mL
- burette graduée 25 mL
- pipette jaugée 5 mL
- agitateur magnétique.
- solution de chlorure de sodium S₀ de concentration C₀ = 0, 10 mol, L⁻¹
- flacon de sérum physiologique
- eau déminéralisée
- générateur basse fréquence.
- 2 multimètres
- cellule de conductimétrie.

I. Réalisation d'une échelle de conductance

A. Protocole opératoire

- 1. Rincer la burette, la remplir à l'aide de la solution S_0 ajuster le zéro.
- 2. Avec la fiole jaugée, introduire $V=500\ mL$ d'eau déminéralisée dans le bécher.
- Placer la cellule conductimétrique dans le bécher et réaliser le montage électrique correspondant au schéma ci-contre. Les 2 multimètres sont en mode alternatif (AC ou ~).
- 4. Sur le GBF, régler la fréquence $500\ Hz$ et fixer la tension à $1,00\ V.$
- 5. Au contenu du bécher, ajouter les volumes V_0 suivants de solution de chlorure de sodium mesurés précisément grâce à la burette. Après chaque addition, vérifier que la tension est toujours de $1,00\ V$ et relever la valeur de l'intensité.

Fig. 1 – Dispositif expérimental

B. Résultats

1. Calculer la conductance G et compléter le tableau suivant.

-	_	r				
$V_0 (mL)$	0	5	10	15	20	25
$C\ (mol.L^{-1})$						
G~(mS)						

2. Tracer la courbe d'étalonnage G = f(C).

1

II. Détermination de la concentration en NaCl d'une solution de sérum physiologique

L'objectif est de déterminer la concentration du chlorure de sodium dans le sérum physiologique injectable.

- 1. Diluer au $1/100^{\rm e}$ le sérum physiologique. En préparer 500~mL.
- Décrire à l'aide de schémas le protocole utilisé pour réaliser cette dilution au 1/100° et obtenir la solution S'.
- 3. Déterminer la conductance G' de cette solution S'.
- 4. En déduire la concentration C' du chlorure de sodium dans le sérum physiologique dilué.

III. Questions complémentaires

- Expliquer comment calculer la concentration C des différentes solutions de chlorure de sodium.
 Donner l'expression de C en fonction de C₀, V₀, V.
- 2. Comment calcule-t-on la conductance G?
- 3. Pour quelle raison pratique a-t-on intérêt à prendre U = 1,00 V dans les différentes manipulations?
- 4. En extrapolant la courbe d'étalonnage, prévoir la conductance d'une portion de solution concentrée à $T=58,4~g.L^{-1}$. Mesurer la conductance réelle d'une portion d'une telle solution. Que peut-on conclure quant à la méthode d'étalonnage utilisée. On donne $M_{Na}=23~g.mol^{-1}$ et $M_{Cl}=35,5~g.mol^{-1}$.
- 5. Rappeler la valeur de la concentration C' du chlorure de sodium dans le sérum physiologique dilué.
- 6. Comment peut-on alors déterminer la concentration C'₀ du chlorure de sodium dans la solution commerciale de sérum physiologique? Calculer cette concentration C'₀ puis le titre massique (concentration massique) correspondant T₀. Le comparer avec les indications figurant sur l'étiquette du flacon (0,9 % en masse).

Fig. 2 - Solution de chlorure de sodium

TP : Étude de la conductivité molaire d'une solution ionique

Objectifs

- Comparer les conductances de solutions diluées de divers électrolytes.
- Dégager la notion de conductivité molaire ionique.
- générateur basse fréquence
- voltmètre
- ampèremètre
- cellule de conductimétrie $L=1\ cm$ et $S=3\ cm^2$
- agitateur en verre
- papier essuie-tout

Matériel

- simulateur conductimétrie du CD-ROM MICRO-MEGA HATIER Première S Chimie
- bécher 100 mL, 250 mL
- entonnoirs
- pipette jaugée 20 mL
- pipette graduée
- pipeteur

Produits

- solutions à 5 mmol.L⁻¹:

 NaCl, NaBr, NaOH, NaNO₃,

 KCl, KBr, KOH, KNO₃,

 HCl, HNO₃

 présentées dans des flacons bouchés
- pissette d'eau déminéralisée
- réserve d'eau déminéralisée

I. Étude de la conductance de diverses solutions diluées

A. Protocole opératoire

On souhaite déterminer la conductance de solutions à $5,0\ mmol.L^{-1}$ obtenues en dissolvant les espèces chimiques suivantes :

- NaCl; NaBr; NaOH; NaNO₃.
- KCl; KBr; KOH; KNO₃.
- HCl; HNO₃.
- Faire le schéma du montage à utiliser en précisant les branchements du voltmètre et de l'ampèremètre (à faire la veille à la maison).
- 2. Après accord du professeur, réaliser le montage en utilisant comme source de tension un générateur basse fréquence GBF réglé en mode sinusoïdal sur une fréquence de l'ordre de 500 Hz. Mettre sous tension la cellule conductimétrique; choisir si possible, une tension efficace appliquée U=1,00~V et mesurer l'intensité efficace I du courant qui traverse la cellule.
- Entre deux mesures, rincer soigneusement la cellule à l'eau déminéralisée.
- 4. Compléter les tableaux ci-dessous, en plaçant, à l'intersection d'une ligne et d'une colonne, la conductance G de la solution contenant les deux ions. Laisser libre la dernière ligne pour le moment.

Fig. 1 - Dispositif expérimental

1

Anion	Cl^-	Br^-	HO^-	NO_3^-
K^+				
Na^+				

Tableau 1

Anion	Na^+	K ⁺	H^+
NO_3^-			
Cl^-			

Tableau 2

B. Résultats

- 1. Donner les noms des dix solutés et écrire leurs équations de dissolution.
- 2. Comparer, pour un anion donné les conductances des solutions contenant les cations sodium et les solutions contenant les cations potassium. Lesquelles sont les plus conductrices? Cet ordre dépend-il de l'anion considéré?
- 3. Comparer de la même façon, pour un cation donné, les conductances des solutions des différents anions. Lesquelles sont les plus conductrices? Cet ordre dépend-il du cation considéré?
- 4. Calculer en utilisant les valeurs du tableau $1: G(K^++X^-)-G(Na^++X^-)$, c'est à dire la différence des conductances des solutions contenant les ions potassium et sodium situées dans les différentes colonnes du tableau 1. Porter ces valeurs dans la dernière ligne du tableau. Qu'observe-t-on?
- 5. En est-il de même pour le changement d'anions de la solution? Le vérifier grâce au tableau 2.
- 6. Il a été établi dans le cours que pour des solutions diluées et un électrolyte ou soluté unique :

$$G_{\text{solut\'e}} = \frac{S}{I}(\lambda_{cation} \ [cation] + \lambda_{anion}[anion])$$

- (a) Exprimer de façon littérale la différence : $G(K^+ + Cl^-) G(Na^+ + Cl^-)$. Calculer sa valeur. Que peut-on en déduire ?
- (b) Obtient-on le même résultat en calculant la différence $G(K^+ + Br^-) G(Na^+ + Br^-)$?
- (c) Exprimer de façon littérale puis calculer $G(K^+ + Cl^-) G(H^+ Cl^-)$ ou $G(K^+ + NO_3^-) G(H^+ + NO_3^-)$. Que peut-on en déduire?

En déduire un classement des 3 cations en fonction de leur conductivité molaire ionique λ .

- (a) Exprimer de façon littérale puis calculer $G(Na^+ + NO_3^-) G(Na^+ + Br^-)$. Que peut-on en déduire ?
- (b) Exprimer de façon littérale puis calculer $G(Na^+ + NO_3^-) G(Na^+ + HO^-)$. Que peut-on en déduire ?
- (c) Exprimer de façon littérale puis calculer $G(Na^+ + NO_3^-) G(Na^+ + Cl^-)$. Que peut-on en déduire ?

En déduire un classement des 4 anions Cl^- , Br^- , HO^- , NO_3^- et des cations Na^+ , H^+

- 7. On donne la conductivité molaire ionique de l'ion potassium $\lambda_{K^+}=7,35.10^{-3}~S.m^2.mol^{-1}$. À partir de cette valeur, calculer les conductivité molaires ioniques des anions Cl^-, Br^-, HO^-, NO_3^- et des cations Na^+, H^+ .
- 8. Placer ces valeurs sur un axe des conductivités molaires ionique λ .

Fig. 2 – Axe représentant les conductivités molaires ionique λ de différents ions

9. Y a-t-il adéquation avec le tableau donné par le manuel de Chimie? Conclure.

Terminale Sciences et Technologie de Laboratoire Biochimie - Génie Biologique Courant et tension électrique

Circuit électrique Courant et tension électrique

I. Circuit électrique

1. Matériels	
Pour réaliser un circuit électrique il faut au moins :	
1	
2	
3	
4	
2. Rôle des éléments du circuit	
2. Rôle des éléments du circuit Le générateur est	
Le générateur est	
Le générateur est	
Le générateur est	
Le générateur est	
Le générateur est Le récepteur l'énergie électrique en :	
Le récepteur	
Le générateur est Le récepteur l'énergie électrique en : - - - Les fils de liaison permettent	

-	Un nœud	
-	Un circuit est constitué de plusieurs	

II. Le courant électrique

A. Nature du courant électrique

Dans un conducteur électrique, le courant électrique est constitué ar un déplacement
La mise en mouvement est réalisée par le
Dans les électrolytes, les porteurs de charges sont
Le sens conventionnel du courant est le sens de celui des électrons, donc de

la borne à la borne - à l'extérieur du générateur.

Fig.~1-Double~migration~des~ions Indiquez sur le schéma ci-dessus le sens de déplacement des électrons, du courant et des ions.

 $Fig.\ 2-Le\ courant\ électrique\ dans\ une\ section\ de\ circuit$ Ajoutez sur ce schéma les électrons responsables du courant ainsi que leur sens de déplacement.

L'intensité du courant électrique est la quantité d'électricité (charge électrique) qui traverse une section du circuit pendant une unité de temps.	
- Q:	
- t:	
- I:	La tension U_{AB} est la différence de potentiel entre les points A et B .
La charge d'un électron est de	
B. Mesure	
L'intensité d'un courant se mesure à l'aide	On représente la tension U_{AB} par une flèche de \dots vers \dots .
=	ATTENTION! Le sens de la flèche représentant la tension U_{AB} est
– ou	
Pour mesurer l'intensité du courant traversant le circuit il faut brancher cet appareil	
Afin de ne pas perturber le montage, la résistance interne de cet appareil	On remarque que comme $U_{BA}=V_B-V_A$ et que $U_{AB}=V_A-V_B$ on a :
On utilise les bornes et	
Le courant électrique doit rentrer par la borne	
Il doit sortir par la borne	
On doit toujours placer le sélecteur de l'appareil sur le calibre	B. Mesure
Ensuite, on le calibre sans que l'intensité du courant mesurée ne dépasse la valeur de ce calibre.	La tension électrique se mesure à l'aide
	– ou
	Pour mesurer une tension électrique entre 2 points d'un circuit il faut brancher cet appareil
	Afin de un un contembre le monteme le mériteur de les empoyeil
Lorsqu'on dessine le montage on ne doit pas oublier de préciser les bornes des appareils de mesure.	Afin de ne pas perturber le montage, la résistance interne de cet appareil
	On utilise les bornes et
III. La tension électrique	Afin de mesurer une tension positive on branche :
	– la borne sur le potentiel le plus élevé.
A. Introduction	– la borne sur le potentiel le plus faible.
La tension électrique est également appelée différence de	On doit toujours placer le sélecteur de l'appareil sur le calibre
Un potentiel électrique s'exprime	Ensuite, on le calibre sans que la tension mesurée ne dépasse la valeur de ce calib

IV. Montages en série et en dérivation

A. Montage en série

1. Mesure des courants dans le circuit

Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tensio à vide $E=10\ V$, 2 résistances R_1 et R_2 associées en série et trois ampèremètres.
Un ampèremètre doit mesurer le courant I_G qui sort du générateur.
Un autre ampèremètre doit mesurer le courant I_1 qui sort de la résistance R_1 .
Un autre ampèremètre doit mesurer le courant I_2 qui sort de la résistance R_2 .

Quelle relation existe-t'il entre I_G , I_1 , et I_2 ?	
	 • •

2. Mesure des tensions aux bornes des dipôles du circuit

Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tension à vide $E=10\ V,\,2$ résistances R_1 et R_2 associées en série et trois voltmètres.

Un voltmètre doit mesurer la tension U_G aux bornes du générateur.

Un voltmètre doit mesurer la tension U_1 aux bornes de la résistance R_1 .

Un voltmètre doit mesurer la tension U_2 aux bornes de la résistance R_2 .

Quelle relation existe-t'il entre U_G , U_1 , et U_2 ?	

B. Montage en dérivation

1.]

1. Mesure des courants dans le circuit
Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tensio
à vide $E=10\ V,$ 2 résistances R_1 et R_2 associées en parallèle et trois ampèremètres.
Un ampèremètre doit mesurer le courant I_G qui sort du générateur.
Un autre ampèremètre doit mesurer le courant I_1 qui sort de la résistance R_1 .
Un autre ampèremètre doit mesurer le courant I_2 qui sort de la résistance R_2 .
Quelle relation existe-t'il entre I_G , I_1 , et I_2 ?
2. Mesure des tensions aux bornes des dipôles du circuit
Dessinez dans le cadre ci-dessous un montage comportant un générateur de tension continu de tensio à vide $E=10~V,~2$ résistances R_1 et R_2 associées en dérivation et trois voltmètres.
Un voltmètre doit mesurer la tension U_G aux bornes du générateur.
Un voltmètre doit mesurer la tension U_1 aux bornes de la résistance R_1 .
Un voltmètre doit mesurer la tension U_2 aux bornes de la résistance R_2 .
(
Quelle relation existe-t'il entre U_G , U_1 , et U_2 ?

V. Lois relatives aux réseaux électriques A. Loi des noeuds La somme des intensité des courants qui arrivent à un nœud est égale à la somme des intensités des courants qui en sortent. B. Additivité des tensions C. Loi des mailles - On flèche les courants dans le circuit ainsi que les tensions $-\,$ On tourne le long de la maille en appliquant la règle suivante : - Si la flèche de la tension est dans le même sens que le sens de parcours de la maille on met un - Si la flèche de la tension est dans le sens opposé au sens de parcours de la maille on met un signe

- Une fois que l'on a fait le tour de la maille on est revenu au point de départ donc la différence de

potentiel est nulle.

Exemple 1 :		
Exemple 2 :		
Exemple 2.		
Loi de Pouillet		
Loi de Poulliet		

TP : Propriétés des intensités et des tensions

NOM:	Prénom:	Classe :

Objectifs

- Réaliser un schéma de montage où figurent les appareils de mesure (ampèremètre, voltmètre) et leurs bornes
- Étude des propriétés de l'intensité d'un courant dans un circuit électrique
- Étude des propriétés de la tension dans un circuit électrique

Matériel

- générateur 6-12 V réglable
- 3 multimètres
- 2 lampes de tension nominale 6 V
- $R = 10 \Omega$; $R_1 = 180 \Omega$; $R_2 = 270 \Omega$
- 1 bouton poussoir

I. Étude de l'intensité

A. Circuit série

- 1. Faire un schéma de montage pour chaque cas permettant la :
 - (a) Mesure de I_1
 - (b) Mesure de I_2
 - (c) Mesure de I_3
- 2. Faire le montage permettant la mesure de I_1 . Faire vérifier le montage. Mesurer I_1 .
- 3. Faire le montage permettant la mesure de I_2 . Faire vérifier le montage. Mesurer I_2 .
- 4. Faire le montage permettant la mesure de I_3 . Faire vérifier le montage. Mesurer I_3 .
- 5. Conclure.

B. Circuit dérivation

1

- 1. Faire un schéma de montage permettant de mesurer I, I_1 et I_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer I, I_1 et I_2 .
- 4. Conclure.

II. Étude de la tension

- 1. Faire un schéma de montage permettant de mesurer U, U_1 et U_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer U, U_1 et U_2 .
- 4. Conclure.

B. Circuit dérivation

- 1. Faire un schéma de montage permettant de mesurer U, U_1 et U_2 .
- 2. Réaliser le montage. Faire vérifier le montage.
- 3. Mesurer U, U_1 et U_2 .
- 4. Conclure.

Fiche de procédure pour la réalisation de montages électriques

À appliquer tout le temps!

- Lire le schéma électrique, prendre connaissance du nombre de dipôles qui le constitue.
- Utiliser les fils rouges du côté de la borne + du générateur et les fils noirs du côté de la borne -.
- Réaliser le montage en partant de la borne + du générateur en se souciant d'abord de la boucle principale. On doit brancher à ce moment les ampèremètres car ils sont en série avec les autres dipôles. On *ne doit pas encore* brancher les voltmètres car ils sont en dérivation.
- Si le montage comporte plusieurs dérivations (boucles), réaliser le montage des dérivations autres que la boucle principale.
- Brancher *maintenant* les voltmètres (car ils sont en dérivation)
- Souvent, dans le montage, par souci de précaution, on insère un bouton poussoir (ou un interrupteur noté K).
- Les multimètres (en fonction ampèremètre ou en fonction voltmètre) doivent être correctement branchés (bornes) et correctement réglés (fonction, calibre): voir « Utilisation du multimètre ».

Le multimètre est un appareil coûteux et fragile. Une mauvaise manipulation peut le détériorer. En l'absence de consignes du professeur, on doit toujours utiliser le calibre le plus élevé.

Il faudra éventuellement affiner la mesure en basculant vers un calibre inférieur au plus gros initialement choisi afin d'obtenir une mesure plus précise.

Erreurs de branchements : ne jamais placer un ampèremètre en dérivation seul (car l'ampèremètre de résistance interne quasi nulle est équivalent à un fil et court-circuite une partie du montage

- Appeler discrètement le professeur pour vérification du montage.
- Après vérification par le professeur qui allumera l'alimentation on pourra fermer l'interrupteur (ou appuyer sur le bouton poussoir).
- Faire la ou les mesures.
- Ouvrir l'interrupteur K (ou relâcher le bouton poussoir).
- Éteindre le générateur.
- Éteindre les multimètres.

Ne jamais brancher le générateur seul dans une boucle (c'est à dire sans résistance électrique pour le protéger) car il est alors en court-circuit et risque d'être détruit.

Ne jamais toucher au montage lorsqu'il est sous tension!

1

Utilisation du multimètre

- L'appareil peut être utilisé en voltmètre : branchement à la borne V/Ω . Mesure de la tension électrique en volts V ou sous-multiples.
- L'appareil peut être utilisé en *ohmmètre* : branchement à la borne V/Ω . Mesure de la *résistance électrique* en ohms Ω ou sous-multiples.
- L'appareil peut être utilisé en ampèremètre : branchement à la borne A. Mesure de l'intensité électrique en ampères A.
- L'appareil peut être utilisé en milliampèremètre : branchement à la borne mA.
 Mesure de l'intensité électrique en milliampères mA ou en microampères µA.
- La borne COM est la référence. Elle est toujours branchée directement ou indirectement à la borne du générateur.
- L'une des trois autres bornes du multimêtre est toujours branchée à la borne + du générateur.
- On place la molette en face du cadran qui correspond :
- à la bonne fonction (ampèremère, voltmètre, ...)
- au bon calibre
- Par précaution, on commence toujours une mesure en se positionnant sur le calibre le plus grand (possibilité de mesurer les grandes valeurs sans saturer l'appareil ou risquer de le détériorer). Si la lecture est trop peu précise ou indique une valeur presque nulle, on change de calibre et on choisit celui qui est immédiatement plus petit. Et ainsi de suite jusqu'à ce que la valeur lue soit d'une précision suffisante.
- On se place sur une position correspondant au sigle DC ou = si la mesure concerne un courant continu.
- On se place sur une position correspondant au sigle AC ou \sim si la mesure concerne un courant alternatif.

$\begin{tabular}{ll} TP: Détermination de la\\ caractéristique $U=f(I)$ aux bornes\\ d'un résistor \end{tabular}$

- Observer le schéma de montage et nommer le matériel nécessaire ainsi que les éventuels réglages.
- Compléter le schéma de montage en précisant la flèche de tension (U) aux bornes de R et celle de courant (I).
- 3. Compléter le schéma de montage en précisant les bornes des appareils de mesure.
- 4. Réaliser ce montage en suivant les consignes données oralement et notamment en vérifiant bien que les instruments de mesures soient correctement réglés.

Rappel: Il faut toujours attendre que le professeur vienne vérifier le montage avant de le mettre sous tension!

5. Faire varier la tension du générateur réglable U. Mesurer la tension U et l'intensité du courant électrique I. On commencera les 20 mesures à U=0 V et on les terminera à U=10 V.

d U = 10 V.								
U(V)								
<i>I</i> ()								
U(V)								
<i>I</i> ()								

1

6.	Choisir une échelle convenable et tracer les points de mesure ainsi que la caracté	ris-
	tique du résistor $U=f(I)$ (U en fonction de I : U en ordonnée et I en abscisse)	

		 	 					
		 	 					
		 	 		 			
			 	\cdots			H H H H	
		 	 	H H H H H		H H H H T T	H H H H T T	
		 	 		 			
	111111						H H H H	
		 	 					
		 	 				 	
\perp			 			+		-
		 	 					
	-					+		

- 7. Déterminer la pente (ou coefficient directeur) α de la droite. Préciser son unité.
- 8. Comparer α avec la valeur de la résistance R lue grâce au code des couleurs ou grâce à l'indication numérique inscrite dessus.
- 9. Énoncer en conclusion la loi qui relie les trois grandeurs physiques : intensité (I), tension (U) et résistance (R) en français sur les pointillés et sous une forme mathématique dans l'encadré.

Loi d'Ohm

 Loi u Ollilli		

Cette loi est à connaître par coeur.

TP : Association de conducteurs ohmiques

bjectifs											
- Vérifier les rela	ations d'a	associati	on de co	onducteu	rs ohmic	ues en :	série et e	n paralle	èle.		
Associatio	n sér	ie									
On réalise l'a: n alimente cett n mesure la te ux bornes du g 1. Faire le sché conventions	te assoc nsion <i>U</i> énérate éma du	ciation U_1 aux eur et l	par u borne le cour age en	n géné es de R ant I d faisan	rateur $C_1,\ U_2$ a dans le t appar	de ten ux bo circui aître l	sion ré rnes de t. es tens	eglable e R_2 ai ions et	U. nsi que les cou	e la ter irants a	avec les
2. Réaliser le 1 grandeurs in					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
grandeurs i					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
grandeurs in U (V) I (A)					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
grandeurs in $U(V)$ $I(A)$ $U_1(V)$					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
grandeurs in U (V) I (A)					profess	eur av	ant mi	se sous	tensio	n. Mes	urer les
grandeurs in $U(V)$ $I(A)$ $U_1(V)$					profess	eur av	ant mis	se sous	tensio	n. Mes	urer le
grandeurs in $U(V)$ $I(A)$ $U_1(V)$ $U_2(V)$ $U_1 + U_2$ 3. Calculer U_1	ndiqué $+U_2$.	cs plus	s haut.	<i>U</i> . Con	nclure.		ant mi	se sous	tensio	n. Mes	urer le
grandeurs in $U(V)$ $I(A)$ $U_1(V)$ $U_2(V)$ $U_1 + U_2$ 3. Calculer U_1 4. Tracer U_1 , U_2	ndiqué $+U_2$. $U_2,\ U$ e	Compare U_1	s haut.	<i>U</i> . Con	nclure.		ant mi	se sous	tensio	n. Mes	urer les
grandeurs in $U(V)$ $I(A)$ $U_1(V)$ $U_2(V)$ $U_1 + U_2$ 3. Calculer U_1	ndiqué $+U_2$. U_2,U ϵ	Compare U_1	s haut.	<i>U</i> . Con	nclure.		ant mi	se sous	tensio	n. Mes	urer les
grandeurs in $U(V)$ $I(A)$ $U_1(V)$ $U_2(V)$ $U_1 + U_2$ 3. Calculer U_1	ndiqué $+U_2$.	cs plus	s haut.	<i>U</i> . Con	nclure.		ant mi	se sous	tensio	n. Mes	ure.

1

II. Association parallèle

COI	nvention	s habi									irants a de mes	
2 D				. ,							3.6	
	aliser le andeurs					profes	seur av	ant mis	se sous	tensio	n. Mes	ure
Ť	U(V)											П
	I(A)											
-	$I_1(A)$											
	$I_2(A)$											
	$I_1 + I_2$											
3. Ca	$\frac{1}{1}$	$1 + I_2$,	compa	arer à I	. Conc	lure.		I		1		
4. Tr	acer U ϵ	en fonc					I_1, U	en fond	ction d	e I_2 et	U en f	one
	$I_1 + I_2$. onner la		de ·									
- ,	$R_1 =$		u									
	$R_2 = \dots$ $R = \dots$											
	$R = \dots$ lculer $\frac{1}{R}$		Conc	aluro								
0. Ca	icuiei R	$\frac{1}{1}$ $\stackrel{\top}{}$ R_2	. Оон	Juic.								
Résur	$\mathbf{n}\mathbf{\acute{e}}:\mathbf{a}$	ssoci	ation	série	ou j	parall	èle d	e con	duct	eurs	ohmi	qυ
												-

Générateurs et récepteurs

Générateurs et récepteurs

. C	onventions
De	essinez un générateur (dipôle D_1) alimentant une résistance R (dipôle D_2).
	échez le courant sortant du générateur ainsi que la tension à ses bornes. ne remarquez-vous sur l'orientation des flèches de tension et de courant?
	our le générateur la flèche tension est que la flèche que la flèche ; c'est la <i>convention générateur</i> .
	our la résistance la flèche courant et la flèche tension sont
[. I	Les récepteurs
Le	s récepteurs les plus usuels sont :
-	
_	
_	
	onnez le symbole de ces 3 récepteurs.
B	Lésistor
	i d'Ohm
	après la loi d'Ohm on a :
	ans quelle convention obtient-t'on cette relation?

Rappelez le symbole d'un résistor et fléchez la tension et le courant dans cette convention.

Tracez la caractéristique $U=f(I)$ (U en fonction de I c'est à dire U en ordonnées et I en abscisses)
Que devient la loi d'Ohm si on change de convention?
R est la résistance du conducteur ohmique.
On définit aussi la conductance $G:\ldots$
La conductance s'exprime en siemens (S) ou en mho (\mho) .
2. Étude d'un rhéostat
Donnez le schéma d'un rhéostat.
La borne C est appelée le curseur du rhéostat.
On veut obtenir à l'aide d'un rhéostat une résistance variable. Quelles bornes doit-on
brancher?
Comment varie la résistance entre ces deux bornes lorsque l'on éloigne le curseur?
Remarque : si on augmente la section du fil la résistance diminue (R est proportionnelle à $\frac{1}{S}$)
À partir de ces remarques donnez une relation entre
– la résistivité ρ du fil (en $\Omega.m$)
- la longueur l du fil (en m) - la section S du fil (en m^2)

3. Association de conducteur ohmiques	
. En série	
$R_{ iny time} = R_1 + R_2 + \ldots + R_n$	On réalisera cette expérience en séance de travaux pratiques.
Démontrez ceci au dos.	
. En dérivation	III. Les générateurs
	Il existe deux types de générateurs :
$\frac{1}{R_{\text{\tiny parallitie}}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$	
Démontrez ceci au dos.	A. Générateurs idéaux de tension
C. Autres récepteurs linéaires	Un générateur idéal de tension fournit à ses bornes une tension constante quelque soit le courant qu'il doit fournir.
On étudie en convention récepteur un électrolyseur (ou un moteur).	Dessinez son symbole et tracez sa caractéristique.
La relation entre U et I est donnée par la loi d'Ohm qui dans ce cas s'énonce :	Un tel générateur à une résistance interne nulle (ce qui justifie d'ailleurs son symbole avec un fil connecté au reste du circuit).
U = E' + r'I	a. co an an connecte da resce da siroatoj.
- U est la tension aux bornes du récepteur (en V) - I est le courant traversant le récepteur (en A)	B. Générateurs idéaux de courant
-E' est la force contre électromotrice (fcem) (en V)	Un générateur idéal de courant délivre un courant constant quelque soit la tension qu'il
$-r'$ est la résistance interne (en Ω)	doit fournir.

Tracez sa caractéristique I - U (U en fonction de I)

Dessinez son symbole et tracez sa caractéristique.

avec un fil déconnecté du reste du circuit).

C. Générateurs réels

Un générateur réel comporte des fils dont la résistance entraîne des chutes de tension non négligeable.

La tension aux bornes d'un générateur est donc de la forme :

$$U = E - rI$$

- -U est la tension aux bornes du générateur (en V)
- I est le courant délivré par le générateur (en A)
- -E est la force électromotrice ou tension à vide du générateur (en V)
- -r est la résistance interne (en Ω)

Dessinez son (ses) symbole(s) et tracez sa caractéristique.

IV.	Puissance	\mathbf{et}	énergie
-----	-----------	---------------	---------

A. Puissance et convention

À chaque instant la puissance instantanée p(t) fournit par un générateur (étudié en convention générateur) délivrant un courant i(t) sous une tension u(t) vaut :

$$p(t) = u(t) \cdot i(t)$$

- -p: puissance instantanée en watt (W)
- $-\mathbf{u}$: tension (V)
- -i: courant (A)

Remarque: notez qu'une grandeur dépendant du temps est en minuscule.

En courant continu $u(t) = U = \text{constante et } i(t) = I = \text{constante donc } P = U \cdot I$ Remarque : en majuscule car c'est indépendant du temps

Avec la convention générateur,

– si ui > 0, le dipôle est

	- si $ui < 0$, le dipôle est
	Avec la convention générateur, $- \text{ si } ui > 0, \text{ le dipôle est } \dots$
	– si $ui < 0$, le dipôle est
3	. Puissance et énergie
	Un générateur délivre un courant I sous une tension U ,
	fournit donc une puissance
	Lorsqu'il fonctionne pendant un temps Δt ,
l	fournit une énergie
J	. Puissance dissipée dans un conducteur ohmique
	Dans un résistor, la puissance dissipée vaut :
	ou
	Catta dissipation de puissanse porte le nom d'
	Cette dissipation de puissance porte le nom d'
D	. Rendement d'un générateur
	Pour un générateur (une pile par exemple) on a $U = E - rI$.
	En multipliant par I on a :
	Soit
	Le générateur fournit au circuit la puissance: c'est la puissance utile. Le générateur fournit à l'environnement sous forme de pertes thermiques la puissance
	Ces puissances résultent de la puissance chimique stockée par la pile
	On appelle rendement et on note η le rapport de la puissance utile sur la puissance absorbée par un convertisseur
	puissance utile
	$\eta = \frac{\text{puissance atore}}{\text{puissance absorbée}}$

Pour un générateur

la puissance utile c'est:	
la puissance absorbée vaut :	
donc le rendement vaut :	
E. Rendement d'un récepteur linéaire	
Pour un récepteur linéaire (moteur ou électrolyseur) on a $U=E^\prime+r^\prime I$.	
En multipliant par I on a :	
Soit	
Il fournit à l'environnement sous forme de pertes thermiques la puissance $\ldots\ldots$	
Il transforme la puissance absorbée en puissance	
1. Électrolyseur	
Dans le cas d'un électrolyseur, la puissance électrique reçue est transformée en pu sance chimique qui permet l'obtention aux électrodes de dioxygène (O_2) et de dihydrogè (H_2)	
Dessinez l'arbre de puissance de l'électrolyseur.	

2. Moteur

Dans le cas d'un moteur la puissance E'I est la somme de la puissance mécanique utile et de la puissance perdue par d'autres phénomènes que l'effet Joule (frottements mécaniques par exemple)

Dessinez l'arbre de puissance du moteur.

TP : Caractéristique d'une pile

NOM: Prénom: Classe:	NOM:		Prénom :		Classe:	
----------------------	------	--	----------	--	---------	--

Objectifs

- Tracer la caractéristique U = f(I) d'une pile.
- Déterminer sa force électromotrice E et sa résistance interne r

Matériel

- pile 1,5 V
- 2 multimètres
- 1 interrupteur K
- 1 rhéostat $R_h \leq 100~\Omega$
- 1 résistance de protection $R=10~\Omega$

II. Manipulations

- Préciser les bornes des appareils de mesure puis réaliser le montage et demander au professeur de le vérifier avant mise sous tension.
- 2. Ouvrir l'interrupteur K. Mesurer U.
- 3. Placer le rhéostat sur sa plus grande valeur $R_{h \max}$ (plus grande longueur de conducteur). Fermer l'interrupteur K.

Mesurer U et I.

Renouveler ces 2 mesures pour des valeurs plus élevées de I en diminuant R_h (en diminuant la longueur de conducteur dans le rhéostat).

I(mA)	0	10	20	30	40	50	60	70	80
U(V)									

III. Résultats

- 1. Tracer la caractéristique U = f(I) de la pile.
- On obtient une droite décroissante ne passant pas par l'origine (fonction affine)
 On vérifie la loi d'Ohm pour un générateur U = E rI

<i>E</i> est
r est
Lorsque $I=0$ $A,U=$; c'est la , not
en abrégé \ldots Elle vaut $E=\ldots V$
Déterminer le coefficient directeur de la droite :

En déduire la résistance interne de la pile : r= Ω

TP : Étude d'un électrolyseur

Caractéristique d'un récepteur électrique

NOM:	Prénom:	Classe:

Objectifs

I. Montage

- Tracer la caractéristique U = f(I) d'un récepteur électrique (un électrolyseur par exemple).
- Déterminer sa force contre électromotrice E' et sa résistance interne r

Matériel

- 1 générateur de tension continue variable 0-30 V limiteur de courant 0,5 A
- 1 électrolyseur
- 1 solution d'acide sulfurique $2H^+ + SO_4^{\ 2-}$ à 0, 1 $mol.L^{-1}$
- 2 multimètres
- 1 interrupteur
- 2 tubes à essai
- des gants de protection

II. Manipulations

- 1. Réaliser le circuit électrique.
- Mettre les gants et remplir avec précaution la cuve de l'électrolyseur avec la solution électrolytique légèrement au dessus de niveau des électrodes.
- 3. Remplir 2 tubes à essai et les retourner au dessus des 2 électrodes.
- 4. Appliquer une tension U proche de 0 V et relever la valeur I de l'intensité du courant électrique traversant l'électrolyseur
- 5. Renouveler la mesure pour U variant de 0 V jusqu'à $U=9\ V$ par pas de 1 V et compléter le tableau ci-dessous.

III. Mesures

U(V)					
$I(\dots)$					

IV. Représentation graphique et conclusions

- 1. Tracer la caractéristique U = f(I).
- 2. Modéliser la partie linéaire de la caractéristique de l'électrolyseur.
- 3. Déduire la résistance interne r' de l'électrolyseur ainsi que sa force contre électromotrice E'
- 4. Donner le schéma équivalent de l'électrolyseur.
- 5. L'électrode reliée à la borne + est appelée l'anode. L'électrode reliée à la borne est appelée la cathode. Au dessus d'une des électrodes le gaz occupe 2 fois plus de volume qu'au dessus de l'autre. Indiquer sur quelle électrode le dégagement gazeux est le plus important. De quel gaz s'agit-il? Comment le mettre en évidence?
- 6. Indiquer quel gaz est recueilli au dessus de l'autre électrode. Comment le mettre en évidence ?

Électrostatique

Champ électrique et force électrostatique

On impose aux bornes du montage la tension continue positive U_{AB} 2 plaques planes parallèles conductrices isolant électrique

*
I. Champ électrique $ec{E}$
Expérience : On place des grains de riz sur la surface d'un récipient rempli l'huile. Ce récipient est placé entre les plaques conductrices alimentées sous haute tension.
Il existe entre les plaques du condensateur un champ électrique représenté par le vecteur
$\overset{ ightarrow}{E}$ est une grandeur vectorielle.
– norme $\ \overrightarrow{E}\ =$
- direction
- sens
L'unité du champ électrique est le Soit \vec{n}_{PN} un vecteur unitaire $(\ \vec{n}_{PN}\ =1)$ perpendiculaire aux plaques et orienté de P vers N .
II. Champ disruptif. Tension de claquage
$\textbf{\textit{Expérience}}: \text{montrer le claquage dans l'air avec la machine de Wimshurst}.$
Lorsque l'on augmente la tension électrique U , le champ électrique E augmente. À partir d'une certaine

valeur du champ électrique, le diélectrique n'est plus isolant; il y a apparition d'un *arc électrique*. Ce champ électrique maximal pour un diélectrique donné est appelé champ disruptif.

Diélectrique	air sec	papier imprégné
Champ disruptif E_d ($kV.cm^{-1}$)		

1

III. Force électrostatique

Expérience : carillon électrostatique
 Deux charges électriques de signe contraire s'attirent. Deux charges électriques de même signe se repoussent.
Le pendule subit une force \overrightarrow{F} :
$ \begin{array}{c} \textit{V\'erification}: \\ -\text{ si } q>0, \stackrel{\rightarrow}{F} \text{ et } \stackrel{\rightarrow}{E} \text{ sont dans} \end{array} $
- si $q < 0$, \overrightarrow{F} et \overrightarrow{E} sont dans
$\overrightarrow{Application}: ext{dans un électrolyte} \ \overrightarrow{F} = q\overrightarrow{E}$
$-\overrightarrow{F}$ vers l'électrode positive pour les
$\stackrel{ ightarrow}{F}$ vers l'électrode négative pour les
IV. Énergie électrique
A. Énergie potentielle électrique d'une charge q dans un champ électrique Une charge q placée dans un champ électrique en un point où le potentiel est V , possède de l'énergie
One charge q placee dans un champ electrique en un point ou le potentiel est V , possede de l'energie appelée énergie potentielle électrique :
– énergie potentielle électrique W_e en Joule (J) – charge q en coulomb (C) – potentiel électrique V en volt (V)
Pour un électron, $q = \dots$

B. V	ariation de l'énergie potentielle d'un électron à la traversée du dipôle AB
Co	nsidérons un électron qui traverse un dipôle récepteur AB.
L'é	electron se déplace de B vers A .
	B , son énergie potentielle est : $qV_B = -eV_B$.
	A , son énergie potentielle est : $qV_A = -eV_A$. energie potentielle a diminué de
C. É	nergie échangée entre un courant d'intensité I et un dipôle AB pendant
la	durée Δt
On	rappelle la définition du courant électrique :
L ' ϵ	energie électrique cédée par l'électron au dipôle est
On	en déduit donc :
- 1	W_e énergie électrique en joule (J)
	P puissance électrique en watt (W)
	U tension en volt $(V)I intensité en ampère (A)$
	Δt durée en seconde $\stackrel{\frown}{(s)}$

V. Applications

A. Accélérer des particules

B. Dévier des particules

C. Exemple: l'oscilloscope

♦ Intérêt du champ électrique. Le champ électrique est important en physique. Il permet d'accélérer, de ralentir, de dévier des porteurs de charges (électrons, protons,

Entre ces plaques des champs électrostatiques variables avec le temps imposent au faisceau d'électrons des déviations horizontales et verticales (fig. 7.18).

d'accélération

concentration

gure 7.18. Déviation horizonlle et verticale dans un oscillo-

Oxydo-réduction

TP : Étude de piles

Objectifs

- déterminer expérimentalement la polarité d'une pile
- mesurer la force électromotrice d'une pile
- étudier l'influence de la concentration de l'un des cations métalliques sur la force électromotrice.

Matériel

- solution à $c = 0, 1 \ mol. L^{-1}$ de
- sulfate de cuivre
- nitrate de fer
- nitrate de plomb
- solution de sulfate de cuivre $c=1\ mol.L^{-1}$
- solution de sulfate de zinc de concentrations : 1 $mol.L^{-1}$; 0, 1 $mol.L^{-1}$; 0, 01 $mol.L^{-1}$
- électrodes métalliques de cuivre, zinc, fer, plomb
- ponts salins
- multimètre

I. Manipulations

A. Réalisation des piles

- 1. Réaliser les trois demi-piles :
 - $-Fe^{2+}/Fe$
 - $-Pb^{2+}/Pb$
 - $-Zn^{2+}/Zn$
 - $(c = 0, 1 \ mol.L^{-1}).$
- 2. Associer chacunes d'elles à la demi-pile Cu^{2+}/Cu .
- 3. Déterminer la polarité de chacune des piles réalisées.
- 4. Mesurer la force électromotrice de chacune des piles.
- 5. Préciser pour chaque pile les demi-équations électroniques et l'équation de fonctionnement.
- 6. Remarque : bien décaper les lames métalliques avant chaque utilisation.

Pile	Électrode +	Électro de —	fem (V)	Demis- équations	Équation

1

B. Influence de la concentration $[Zn^{2+}]$ sur la force électromotrice d'une pile Daniell

La pile Daniell est constituée des deux demi-piles Zn^{2+}/Zn et Cu^{2+}/Cu .

Fig. 1 - Pile Daniell

Réaliser trois piles avec une solution de sulfate de cuivre $c=1\ mol.L^{-1}$ et une solution de sulfate de zinc :

- $-c_1 = 1 \ mol.L^{-1}$
- $-c_2 = 0, 1 \ mol.L^{-1}$
- $-c_3 = 0,01 \ mol.L^{-1}$

$[Cu^{2+}] \ (mol.L^{-1})$	1,0	1,0	1,0
$[Zn^{2+}] \ (mol.L^{-1})$	1,0	0,1	0,01
f.e.m. (V)			

II. Conclusions

- 1. Quel type de réaction se produit sur l'électrode positive?
- 2. Quel type de réaction se produit sur l'électrode négative?
- 3. Quel est l'influence de la concentration en cation métallique sur la f.e.m. ?

La lumière

La lumière

Introduction : Qu'est-ce que la lumière?

Il existe deux modèles pour décrire la lumière.

A. Modèle ondulatoire

La lumière est assimilée à une onde électromagnétique.

B. Modèle corpusculaire

La lumière est assimilée à des grains d'énergie qui se propagent.

I. La lumière est une onde

La lumière est une onde électromagnétique à laquelle notre oeil est sensible.

L'émission de lumière est due à la vibration des électrons périphériques des atomes qui constituent la source.

Fig. 1 – Propagation d'une onde électromagnétique

À toute onde électromagnétique correspond :

- dans le temps : une période T (période temporelle)
- dans l'espace : une longueur d'onde λ (période spatiale)

 λ est la distance par courue par l'onde pendant la période temporelle T

Sur le schéma suivant on représente l'évolution de champ électrique E en un point donné au fil du temps (t).

On note sur ce graphique la période temporelle T (en s)

et un de ses multiples 2T.

Sur le schéma suivant on représente l'évolution de champ électrique E à un instant donné selon la position d'observation (x).

On note sur ce graphique la période spatiale λ (en m)

On remarque que les points O et O' sont dans le même état vibratoire : on dit qu'ils sont en phase. Les points A et B sont également en phase.

- Une lumière monochromatique correspond à une vibration à une fréquence unique.
- En général, la lumière est la superposition de différentes longueur d'onde.
- La lumière blanche peut être décomposée par un prisme pour former un spectre.
- Le spectre visible est le domaine de radiation pouvant être captées par notre oeil. La longueur d'onde dans le vide λ_0 doit être comprise entre 400 nm (violet) et 800 nm (rouge) pour être visible par l'oeil humain.

Au dessus de 800 nm c'est le domaine de l'infra-rouge.

En dessous de 400 nm c'est le domaine de l'ultra-violet.

Fig. 3 - Spectre électromagnétique

La vitesse de propagation dépend du milieu traversée.

Celui-ci est caractérisé par son indice de réfraction noté n.

$$n = \frac{1}{2}$$

 c_0 : vitesse de propagation (célérité) de la lumière dans le vide ($c_0 \approx 3.10^8 \ m/s$).

c: vitesse de propagation de la lumière dans le milieu de propagation (en m/s).

Remarque: n est toujours supérieur à 1 car la vitesse de propagation dans un milieu quelconque est toujours inférieure à la vitesse de propagation dans le vide.

La longueur d'onde de la lumière λ (dans un milieu donné) est définie par :

$$\lambda = cT = \frac{c}{\nu}$$

c: vitesse de propagation de la lumière dans le milieu de propagation (en m/s).

T: période temporelle T (en s)

 ν : fréquence de l'onde (en Hz)

$$\nu = \frac{1}{T}$$

II. Caractère corpusculaire de la lumière

A. Expérience

On éclaire une plaque de zinc avec une lumière violette.

Des électrons sont arrachés à la plaque grâce à l'énergie cédée par la lumière.

Ces électrons échappent à l'emprise des atomes de zinc.

La même expérience avec une lumière rouge ne produit aucun effet (même si on prolonge l'éclairage ou si l'on éclaire plus intensément)

B. Interprétations

La lumière ne lâche pas son énergie de manière continue mais par paquets.

Ces paquets d'énergie sont plus au moins importants selon les couleurs.

L'atome ne laisse partir un électron que si le paquet reçu possède une certaine valeur minimale.

La lumière rouge ne possède pas cette valeur minimale d'énergie (alors que la lumière violette la possède)

On peut dire que la lumière se comporte comme un flux de particules infiniment petites, sans masse ni charge appelées **photons**.

À une lumière monochromatique de fréquence ν et de longueur d'onde $\lambda = \frac{c}{\nu}$

On associe des photons d'énergie E telle que :

$$E = h\nu$$

h: constante de Planck $h=6,626.10^{-34}J.s$

E: énergie en Joule (J) ou parfois en électron-volt $1\ eV=1,6.10^{-19}\ J$

Radioactivité

TP: Utilisation d'un compteur C.R.A.B.

Objectifs

- Montrer que la désintégration radioactive a un caractère aléatoire
- Comparer l'absorption des électrons et des rayons γ par différents matériaux et pour différentes épaisseurs

Matériel

- compteur C.R.A.B
- source radioactive
- écrans en plomb, en aluminium

I. Présentation du dispositif expérimental

C.R.A.B. signifie compteur de radioactivité β et γ .

L'appareil comporte

- une source radioactive en césium 137 qui émet des électrons et des rayons γ . Sa période est de 30 ans et son activité initiale de $3.10^5~Bq$.
- un compteur Geiger-Müller qui détecte les rayons γ tout comme les rayons X.
- un circuit électronique d'amplification et de comptage des désintégrations.
- une série d'écrans en plomb et en aluminium de différentes épaisseurs.

Fig. 1 - Compteur C.R.A.B.

On peut, à l'aide de cet appareil, déterminer le nombre de désintégrations pendant une durée donnée (1, 2, 6, 10, 20, 50, 100, 200, 600, 1000, 2000 secondes)

1

II. Caractère aléatoire d'une désintégration radioactive

A. Questions préliminaires

1. Comportement individuel d'un noyau

- 1. Quel est le symbole du noyau de césium?
- 2. Les noyaux de césium sont radioactifs, ils donnent par désintégration des noyaux de baryum. Dans 7 % des cas le noyau de baryum formé est dans l'état fondamental. Dans 93 % des cas, il passe par un état excité avant de se trouver dans son état fondamental.
 - (a) Écrire les équations des réactions nucléaires correspondant à ces deux cas-
 - (b) De quels types de désintégrations radioactives s'agit-il?
- 3. La demie vie du césium 137 est de 30 ans. Peut-on prévoir la durée de vie d'un noyau donné?
- 4. Quelle est la signification de la demie-vie en terme de probabilité?
- 5. Peut-on prévoir le comportement d'un noyau radioactif?

2. Comportement d'une population de noyaux

Comment va évoluer l'activité de la source radioactive jusqu'à la fin du TP.

B. Manipulation

On ne s'interesse ici qu'à la radioactivité γ . Pour ne pas avoir à tenir compte de la radioactivité β^- du césium, on interpose entre la source et le compteur un écran en aluminium, de 2 mm d'épaisseur, qui absorbe la totalité des électrons émis par le césium 137 mais n'absorbe pratiquement aucun photon γ .

On place la source radioactive à 4,5 cm du détecteur.

On lance 100 comptages d'une durée de 2 secondes. On note n le nombre de désintégrations mesurées en 2 secondes et f le nombre de fois où chaque valeur de n a été comptée. En utilisant un tableur (OpenOffice.org Calc ou Microsoft Excel par exemple), représenter l'histogramme de f en fonction de n.

C. Questions

- 1. Quelle caractéristique de la radioactivité ces résultats mettent-ils en évidence?
- 2. Pourquoi l'activité moyenne est-elle inférieure à celle attendue?
- 3. Déterminer la valeur moyenne \overline{n} de n puis la variance V et l'écart type σ qui vont nous permettre d'apprécier le degré de dispersion des mesures.
- 4. En terme de probabilité et d'après les résultats obtenus à la question précédente, que peut-on prévoir pour la valeur de \overline{n} . Ces résultats sont-ils en accord avec l'histogramme?

D. Conclusion

Quelle est la différence fondamentale dans la prévision des désintégrations d'un noyau et d'une population de noyaux?

III. Absorption des électrons β^- et des rayons γ par des écrans en aluminium et en plomb

Nous disposons de plusieurs écrans en aluminium et en plomb.

A. Utilisation des écrans en aluminium

- 1. Interposer, entre la source et le détecteur, des écrans en aluminium. Pour chaque épaisseur d'écran compter sur une durée de 10 secondes les particules β^- et les photons γ émis.
- 2. Tracer le nombre de désintégrations en fonction de l'épaisseur de l'écran en aluminium.
- 3. Conclure.
- 4. Déterminer l'épaisseur de demi-absorption des électrons par l'aluminium.

épaisseur d'écran d'aluminium (mm)					
nombre de désintégrations comptées					

B. Utilisation des écrans en plomb

Les écrans en plomb arrêtent les rayons γ qui traversent l'aluminium sans être absorbés.

- 1. Placer un écran d'aluminium qui absorbera tous les électrons.
- 2. Placer ensuite 1,2,3 puis 4 écrans de plomb de 5 mm d'épaisseur chacun afin d'étudier l'absorption des photons γ par le plomb.
- 3. Tracer le nombre de désintégrations γ en fonction de l'épaisseur de l'écran en plomb.
- 4. Déterminer l'épaisseur de demi-absorption des rayons γ par le plomb.

épaisseur de l'écran de plomb (mm)			
nombre de désintégrations γ comptées			

Compléments statistiques

– Valeur moyenne arithmétique de $n: \overline{n} = \frac{\sum_i n_i \cdot f_i}{\sum_i f_i}$ – Variance : $V = \frac{\sum_i f_i \cdot (n_i - \overline{n})^2}{\sum_i f_i}$ – Écart-type : $\sigma = \sqrt{V}$

Classification périodique des éléments

Première Sciences et Technologies Industrielles Génie Électrotechnique Régimes variables

TP: Utilisation d'un Générateur Basse Fréquence (G.B.F.) et d'un oscilloscope

Objectifs

- Savoir utiliser un G.B.F.
- Savoir utiliser un oscilloscope

Matériel

- 1 Générateur Basse Fréquence (G.B.F.)
- 1 oscilloscope
- des fiches BNC-banane et des fils ou des cordons BNC-BNC

I. Conseils d'utilisation des appareils

- Consulter la documentation des appareils.
- Consulter la fiche de chaque appareil.

II. Travail expérimental

A. Mesure de la période et de la fréquence d'une tension variable

- Sélectionner la forme du signal.
- Régler la fréquence du signal.
- Régler l'amplitude (crête à crête) du signal à 10 V.
- Remplir le tableau ci-dessous.

Forme du signal	Fréquence f (Hz)	Nombre N de divisions pour une période	$egin{aligned} Calibre & C \ de & la & base \ de & temps \ (s.DIV^{-1}) \end{aligned}$	$T = C \cdot N$ (s)	$f=rac{1}{T}$ (Hz)
Triangle	500				
Triangle	1 000				
Carré	2 000				
Carré	8 000				
Sinusoïdal	10 000				
Sinusoïdal	40 000				

B. Réglage d'une tension de fréquence et d'amplitude données

- Faire les réglages nécessaires pour observer les signaux suivants :
- Tension sinusoïdale de période $10\ ms$ et d'amplitude $5\ V$
- Tension en crénaux de fréquence $50 \ kHz$ et d'amplitude $500 \ mV$
- Tension triangulaire de fréquence $200 \ kHz$ et d'amplitude $2 \ V$
- Faire vérifier les 3 réglages et dessiner l'oscillogramme de la tension sinusoïdale en notant bien la sensibilité verticale, le calibre de la base de temps et la position du zéro.

C. Réglage d'une tension décalée verticalement par rapport à l'axe horizontal

Pour décaler une tension verticalement, c'est à dire pour obtenir une tension non symétrique, on doit agir sur le bouton $D\acute{E}CALAGE$ (ou DC OFFSET) du G.B.F.

1

Il faut toujours régler d'abord l'amplitude crête à crête du signal. Ensuite on peut décaler le signal par rapport à l'axe horizontal avec le bouton DC OFFSET du G.B.F. (il faut tirer ce bouton pour activer le décalage et le tourner pour régler ce décalage).

Régler le G.B.F. pour obtenir les tensions cicontre. On prendra $f=2\ kHz.$

Faire vérifier les 3 réglages et dessiner l'oscillo- -3 gramme de la tension rectangulaire. On notera bien -6 sur l'oscillogramme la sensibilité verticale, le calibre de la base de temps et la position du zéro.

D. Réglage du rapport cyclique α

Soit un signal rectangulaire. Il est possible avec un G.B.F d'obtenir un signal dont la durée de l'état bas est différente de la durée de l'état haut.

On appelle rapport cyclique α du signal le rapport entre la durée du signal à l'état haut et la période du signal.

 $t_h = \alpha T$: durée du signal à l'état haut

 $t_b = (1 - \alpha)T$: durée du signal à l'état bas

 $T=t_h+t_b$: période du signal

 $\alpha = \frac{t_h}{T}$: rapport cyclique ($\alpha <= 1)$

Le réglage d'un signal à rapport cyclique variable se fait en agissant sur le bouton $SYM\acute{E}TRIE$ DUTY du G.B.F.

Régler le G.B.F. pour obtenir la tension suivante :

 $T=0,8~ms\,;\,U_{\mbox{\footnotesize max}}=1~V\,;\,U_{\mbox{\footnotesize min}}=-1~V\,;\,\alpha=0,25$

Dessiner maintenant l'oscillogramme de cette tension pour $\alpha = 0,75$ en précisant bien la sensibilité verticale, le calibre de la base de temps et la position du zéro.

E. Utilisation des 2 voies de l'oscilloscope

On veut visualiser simultanément à l'oscilloscope les tensions e(t) et $u_R(t)$.

Attention : lorsqu'on veut visualiser 2 signaux en même temps à l'oscilloscope, il faut que ces 2 signaux soient référencés par rapport à la même masse. On ne relie donc qu'une seule masse (fil noir) à l'oscilloscope et cette masse doit être la même que celle du G.B.F.

- Régler le G.B.F. à vide (c'est à dire en branchant uniquement le G.B.F. à l'oscilloscope et donc sans qu'il soit connecté au circuit afin d'obtenir une tension e(t) sinusoïdale de période 1 ms et d'amplitude 8 V.
- Éteindre le G.B.F. puis réaliser le schéma ci-dessus avec $R=100\Omega.$
- Visualiser les 2 signaux e(t) et $u_R(t)$ sur les 2 voies de l'oscilloscope et les relever.
- Proposer une méthode pour visualiser la tension $u_D(t)$ aux bornes de la diode en utilisant la loi des mailles et les commandes ADD et -CH2 ou $-Y_B$ de l'oscilloscope.
- Montrer que l'alternance positive de e est modifiée (sa valeur maximale diminue) alors que l'alternance négative ne l'est pas, pourquoi?
- Expliquer l'allure obtenue pour u_R .
- Comment visualiser l'allure de l'intensité i du courant traversant le circuit?

Visualisation à l'aide d'un oscilloscope d'une tension délivrée par un Générateur Basse Fréquence

Un oscilloscope permet de visualiser des tensions alternatives. C'est un voltmètre qui permet d'afficher la tension sur un écran.

I. Tension continue ou tension alternative?

A. Tension continue

C'est une tension dont la valeur est constant dans le temps.

On délivre généralement cette tension à l'aide d'un générateur de tension continue.

Exemple: U = 3 V

Sa valeur « maximale » est constante et vaut 3 V.

Un voltmètre « classique » est suffisant pour pouvoir mesurer une tension continue.

			-						
	timeDiv :		Channel A :				nel B :	XY	
Ę	īms/div	/	1 V	/div		1 V	/div	01	FF
				-	-				
				=					
				_	_				
				_	-				
				=	-				
				-					
				-	-				
				_	-				
 				 		 	 	 	
				1	-				
					-				
				=					
				-	-				
				_	-				
				-					
				_					
				Offset A		OffsetE	3	OffsetC	
				3		0		0	

1

B. Tension alternative

C'est une tension qui varie dans le temps. On délivre généralement une tension alternative à l'aide d'un Générateur Basse Fréquence (G.B.F.). Pour pouvoir caractériser une tension alternative il est nécessaire de donner ses caractéristiques.

1. Le type de signal

- sinusoïdal

timeDiv : 5ms/div			nel A : /div	Chanr 1 V	nel B : /div	XY OFF		
			\mathcal{I}			\mathcal{I}		
				Offset A	OffsetE 0	3	Offset C	

- triangulaire

- rectangulaire ou en créneaux

aı	1x									
		timeDiv :		Channel A :				nel B :	Х	Y
		5ms/div		1 V/div			1 V	/div	OFF	
				1					I	
Ī										
Ī										
Ī					OffsetA		OffsetE	3 (OffsetC	:
Į					0		0		0	

2. La période T du signal

La période T est la plus petite durée au bout de laquelle la tension reprend la même valeur en variant dans le même sens.

T s'exprime en seconde s.

3. La fréquence

Le nombre de périodes par seconde est appelé fréquence f.

$$f = \frac{1}{T}$$

-f: fréquence (en Hertz Hz)

-T: période (en seconde s)

4. Tension crête à crête

C'est la différence de tension entre les valeurs maximales et minimales de la tension ; on la note U_{CC} . L'amplitude de la tension est $U_M = \frac{U_{CC}}{2}$ car elle varie entre $-U_M$ et $+U_M$.

II. Utiliser un oscilloscope

III. Principe de fonctionnement de l'oscilloscope

Exercices sur l'oscilloscope

Redressement monoalternance

timeDiv: Channel A: Channel B: XY
5ms/div 1 V/div 1 V/div OFF

mul: OffsetA OffsetB OffsetC
ON 0 0.5 0

Redressement bialternance

timeDiv : 5ms/div		Channel A : 1 V/div		Channel B :					
	Jilia, div		1 1 1		1 (, uiv	0.	. E	
				-					
				-	-			1111	1111
				1111	-				
					-				·
mul:		(OffsetA		OffsetE	3	OffsetC		
ON				0		0		0	

Grandeurs périodiques

I. Valeur instantanée

Observons à l'aide d'un oscilloscope la tension délivrée par un Générateur Basse Fréquence (GBF) réglé sur le mode triangle. On note u(t) cette tension, avec u en minuscule car la grandeur que nous observons évolue au fil du temps.

II. Grandeur périodique

En observant l'oscilogramme de u, nous remarquons l'existence d'une suite de «motifs» identiques. Le plus petit motif a une durée T. Nous avons alors l'égalité suivante (avec k entier relatif) :

$$u(t) = u(t+T) = u(t+2T) = \dots = u(t+kT)$$

III. Fréquence d'une grandeur périodique

La fréquence d'une grandeur périodique est le nombre de motifs que la grandeur décrit en une seconde ; elle est définie par :

$$f = \frac{1}{T}$$

- f : fréquence en hertz (Hz)
- T : période en secondes (s)

On définit également la pulsation d'une grandeur péridoque ω par :

$$\omega = 2\pi f = \frac{2\pi}{T}$$

- $-\omega$: pulsation en radian par seconde $(rad \cdot s^{-1})$
- -f: fréquence en hertz (Hz)
- T : période en secondes (s)

IV. Valeur moyenne d'une grandeur périodique

A. Quantité d'électricité transportée par un courant continu

1

La quantité d'électricité transportée par un courant continu d'intensité I_0 entre deux instants t_1 et t_2 est $Q_{12} = I_0(t_2 - t_1)$. Q_{12} est l'aire $\mathcal A$ du rectangle ABCD.

$$I_0 = \frac{Q_{12}}{t_2 - t_1} = \frac{\mathcal{A}}{t_2 - t_1}$$

B. Quantité d'électricité transportée par un courant en créneaux

Soit le signal i(t) de période $T = t_2 - t_1$.

La quantité d'électricité transportée par ce courant entre t_1 et t_2 est :

$$Q_{12} = I_1(t'_1 - t_1) + I_2(t_2 - t'_1)$$

 $Q_{12} = \mathcal{A}_1 + \mathcal{A}_2$

Nous en déduisons \overline{i} la valeur moyenne de i(t) :

$$\overline{i} = \frac{Q_{12}}{T} = \frac{A_1 + A_2}{T}$$

Attention : Si la courbe représentative de i(t) se situe en dessous de l'axe des abscisses on doit affecter à l'aire calculée un signe moins («aire algébrique négative») et on somme les aires en prenant bien soin de prendre en compte leur signe.

On peut aussi (c'est équivalent), choisir de ne considérer que des aires positives («aire géométrique»); dans ce cas il faut ajouter ou soustraire les aires selon que la courbe se situe au dessus ou au dessous de l'axe des abscisses.

C. Calcul d'une valeur moyenne

$$U_{moy} = \overline{u} = \frac{1}{T} \int_0^T u(t) dt$$

 $\int_0^T u(t)dt$ désigne l'aire (algébrique) entre la courbe représentative de u(t) et l'axe des abscisses entre t=0 et t=T

D. Mesure d'une valeur moyenne

Pour mesurer une tension movenne on peut utiliser ;

- un voltmètre numérique en position DC
- un voltmètre magnétoélectrique
- un oscilloscope

En position DC on observe le signal complet c'est à dire la composante continue et la composante alternative

En position AC on n'observe que la composante alternative. Lors du passage de DC vers AC sur l'oscillocope, l'oscillogramme subit une translation verticale de U_{moy} .

E. Exercices d'applications

Calculez la valeur moyenne des signaux suivants :

V. Valeur efficace d'une grandeur périodique

A. Définition d'une valeur efficace

Soit 2 montages:

- dans le premier montage, on alimente une lampe avec un générateur de tension continu sous une
- dans le second montage, on alimente la même lampe avec un générateur basse fréquence sous une tension variable $u_2(t)$.

On suppose que la lampe est modélisable par une résistance R. On souhaite que dans les 2 cas la lampe brille de la même manière c'est à dire qu'elle dissipe en moyenne la même puissance moyenne $P=P_1=P_2$.

- Dans le premier cas la puissance moyenne disspée est $P_1 = \frac{U_1^2}{R}$
- Dans le deuxième cas.
- la puissance instantanée dissipée par la lampe vaut $p_2(t)=\frac{u_2^2}{R}$ la puissance moyenne dissipée par la lampe vaut $P_2=\overline{p_2(t)}=\frac{u_2^2}{R^2}$

En égalant P_1 et P_2 on peut ainsi définir la valeur efficace U ou U_{eff} de $\mathbf{u}(\mathbf{t})$ $U^2 = U_{eff}^2 = \overline{u^2}$ soit :

$$U = U_{eff} = \sqrt{\overline{u^2}}$$

B. Calcul d'une valeur efficace

$$U_{eff} = U = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt}$$

Pour calculer la valeur efficace U de la tension u(t), il faut :

- Représenter la tension u(t) élevée au carré $(u^2(t))$.
- Calculer la valeur moyenne U^2 de $u^2(t)$.
- Prendre la racine carré du résultat précédent

C. Mesure d'une valeur efficace

Pour mesurer une tension efficace, on peut utiliser :

- un voltmètre numérique Root Mean Square (RMS) en position AC+DC, un tel appareil prélève la tension sur une période puis l'élève au carré (Square), puis calcule la valeur moyenne (Mean) et prend la racine carré de cette valeur moyenne (Root)
- un voltmètre ferromagnétique (uniquement pour des mesures en basse fréquence)

VI. Valeur efficace, valeur movenne, composante alternative

A. Décomposition d'un signal quelconque en composante alternative et valeur moyenne

Un signal quelconque u(t) est toujours décomposable ainsi :

$$u(t) = \overline{u} + u_a(t)$$

- -u(t): signal quelconque
- $-\overline{u}$: valeur movenne de u(t)
- $-u_a(t)$; composante alternative (de valeur movenne nulle) de u(t)

B. Relation entre valeur efficace et valeur moyenne

Entre valeurs efficaces et valeurs moyennes, nous avous la relation : $U = \sqrt{\overline{u}^2 + U_a^2}$

- U : valeur efficace de u(t) (mesurée avec un voltmètre alternatif RMS en position AC+DC)
- $-\overline{u}$: valeur moyenne de u(t) (mesurée avec un voltmètre continu en position DC ou =)
- $-U_a$: valeur efficace de la composante alternative

C. Exercice d'application

Soit un signal u(t) rectangulaire de période T compris entre 5 V et 1 V. Ce signal a un rapport cyclique α de 1/2 c'est à dire qu'il est égal à 5 V de t=0 à $t=\alpha T$ et égal 1 V de $t=\alpha T$ à t=T.

- 1. Représentez ce signal u(t).
- 2. Représentez la composante alternative $u_a(t)$ de ce signal.
- 3. Calculez la valeur moyenne \overline{u} de u(t).
- 4. Calculez directement la valeur efficace U de u(t) (à l'aide de la représentation de u(t) élevé au
- 5. Calculez la valeur efficace U_a de la composante alternative $u_a(t)$ (à l'aide de la représentation de $u_a(t)$ élevé au carré).
- 6. Vérifiez numériquement la relation : $U = \sqrt{\overline{u^2 + U_a^2}}$.

Mêmes questions avec :

- un signal compris entre 1 V et -1 V de rapport cyclique $\alpha=0.5$
- un signal compris entre 1 V et -3 V de rapport cyclique $\alpha = 0.5$
- un signal compris entre 5 V et 0 V de rapport cyclique $\alpha = 0.7$

VII. Décomposition/recomposition d'un signal périodique à l'aide de signaux sinusoïdaux

A. Décomposition en signaux sinusoïdaux

Tout signal alternatif de fréquence f est décomposable en une somme de signaux sinusoïdaux de fréquences multiples de f.

Une telle décomposition fait appel à la notion mathématique de série de Fourier.

$$u(t) = \overline{u} + \sum_{n=1}^{\infty} u_n cos(n\omega t + \varphi_n)$$

B. Exemple d'un signal rectangulaire

Ce signal est décomposable ainsi :

$$u(t) = \frac{4E}{\pi}sin\omega t + \frac{4E}{3\pi}sin3\omega t + \frac{4E}{5\pi}sin5\omega t + \frac{4E}{7\pi}sin7\omega t + \frac{4E}{9\pi}sin9\omega t + \ldots = \frac{4E}{\pi}\sum_{n=n,n=1}^{\infty} \frac{1}{n}sinn\omega t + \frac{4E}{n}sin9\omega t + \ldots = \frac{4E}{n$$

Une recomposition avec un nombre limité d'harmoniques ne permet pas de reconstituer correctement un signal rectangulaire (notamment à cause des fronts raides). On arrive à un résultat proche du signal d'origine en augmentant le nombre d'harmoniques.

On remarque que seul les harmoniques impaires interviennent et leurs amplitudes diminuent comme $\frac{1}{2}$.

Fig. 5 – Représentation temporelle du fondamental $u_1(t)$ et des harmoniques 3 $u_3(t)$ et 5 $u_5(t)$

C. Exemple d'un signal triangulaire

Ce signal est décomposable ainsi :

$$u(t) = \frac{8E}{\pi^2}cos\omega t + \frac{8E}{3^2\pi^2}cos3\omega t + \frac{8E}{5^2\pi^2}cos5\omega t + \frac{8E}{7^2\pi^2}cos7\omega t + \frac{8E}{9^2\pi^2}cos9\omega t + \dots$$

$$u(t) = \frac{8E}{\pi^2} \sum_{n=-\infty}^{\infty} \frac{1}{n^2} cosn\omega t$$

Fig. 10 – Représentation temporelle de $u_1(t) + u_3(t)$

On remarque que seules les harmoniques impaires interviennent et leurs amplitudes diminuent comme $\frac{1}{n^2}$ c'est à dire plus rapidement que précédemment, ce qui est compréhensible car un signal triangulaire est plus «proche» d'une sinusoïde qu'un signal rectangulaire.

Régimes transitoires

I. Étude d'un circuit RC

A. Montage

Soit le montage suivant :

B. Mise en équation

D'après la loi des mailles on a : $e(t) - u_R(t) - u_C(t) = 0$.

En convention récepteur sur le résistor, on a d'après la loi d'Ohm $u_R = Ri(t)$.

En convension récepteur, le condensateur parcouru par un courant i(t) a à ses bornes la tension $u_C(t)$ telle que :

$$i(t) = C \frac{du_C(t)}{dt}$$

On en déduit ainsi l'équation différentielle suivante :

$$RC\frac{du_C(t)}{dt} + u_C(t) = e(t)$$

La solution de cette équation est une fonction exponentielle.

C. Étude de la charge du condensateur

On impose le signal d'entrée e(t) suivant :

Lors de la charge du condensateur on impose au circuit RC une tension constante E. L'équation qui régit la tension aux bornes du condensateur est :

$$RC\frac{du_C(t)}{dt} + u_C(t) = E$$

1

1. Allure de la tension aux bornes du condensateur

On peut mesurer la constante de temps τ (tau) en traçant l'asymptote horizontale ainsi que la tangente à l'origine. Pour un ciruit RC, cette contante de temps vaut :

$$\tau = RC$$

Au bout d'un temps $t=3\tau$ le condensateur est quasiment complètement chargé (en fait il est chargé à 95%) : $u_C(t=3\tau)=0.95E$.

Au bout d'un temps $t = \tau$ le condensateur est chargé à 63% : $u_C(t = \tau) = 0,63E$.

2. Allure du courant dans le circuit

On peut mesurer également la constante de temps pour l'évolution du courant dans le circuit et remarquer que c'est bien la même que pour l'évolution de la tension aux bornes du condensateur.

D. Étude de la décharge du condensateur

On impose le signal d'entrée e(t) suivant :

Lors de la charge du condensateur on impose au circuit RC une tension constante de 0V.

$$RC\frac{du_C(t)}{dt} + u_C(t) = 0$$

1. Allure de la tension aux bornes du condensateur

Au bout d'un temps $t=3\tau$ le condensateur est quasiment déchargé (en fait il n'est chargé plus qu'à 5%) : $u_C(t=3\tau)=0,05E$.

Au bout d'un temps $t=\tau$ le condensateur est chargé à 100%-63%=37% : $u_C(t=\tau)=0,37E$.

2. Allure du courant dans le circuit

E. Continuité ou discontinuité des grandeurs étudiées

1. Continuité de la tension aux bornes du condensateur

Á l'aide des oscillogrammes ci-dessus on peut vérifier qu'à l'instant t=0 (un peu avant et un peu après) il y a *continuité de la tension* aux bornes du condensateur.

Ceci se résume en écrivant : $u_C(t=0^-) = u_C(t=0^+)$.

2. Discontinuité du courant dans le circuit

Á l'aide des oscillogrammes ci-dessus on peut vérifier qu'à l'instant t=0 (un peu avant et un peu après) il y a discontinuité du courant dans le circuit. Ceci se résume en écrivant : $i_L(t=0^-) \neq i_L(t=0^+)$.

II. Étude d'un circuit RL

A. Montage

Soit le montage suivant :

B. Mise en équation

D'après la loi des mailles on a : $e(t) - u_R(t) - u_L(t) = 0$.

En convention récepteur sur le résistor, on a d'après la loi d'Ohm $u_R = Ri(t)$.

En convension récepteur, la bobine par courue par un courant i(t) a à ses bornes la tension $u_L(t)$ telle que :

$$u_L(t) = L \frac{di(t)}{dt}$$

On a ainsi $L\frac{di(t)}{dt} + Ri(t) = e(t)$. Ce qui s'ecrit encore :

$$\frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{e(t)}{L}$$

En regardant l'équation aux dimensions (vérification des unités) de cette dernière relation on peut déduire que la grandeur $\frac{R}{L}$ est l'inverse d'un temps donc on peut, pour un circuit RL définir la constante de temps τ :

$$\tau = \frac{L}{R}$$

C. Établissement du courant dans la bobine

On impose le signal d'entrée $\mathbf{e}(\mathbf{t})$ suivant :

1. Allure du courant traversant la bobine

2. Allure de la tension aux bornes de la bobine

D. Annulation du courant dans la bobine

On impose le signal d'entrée e(t) suivant :

1. Allure du courant traversant la bobine

2. Allure de la tension aux bornes de la bobine

E. Continuité ou discontinuité des grandeurs étudiées

1. Continuité du courant dans la bobine

Á l'aide des oscillogrammes ci-dessus on peut vérifier qu'à l'instant t=0 (un peu avant et un peu après) il y a continuité du courant dans le circuit. Ceci se résume en écrivant :

$$i_L(t=0^-) = i_L(t=0^+)$$

2. Discontinuité de la tension aux bornes de la bobine

Á l'aide des oscillogrammes ci-dessus on peut vérifier qu'à l'instant t=0 (un peu avant et un peu après) il y a discontinuité de la tension aux bornes de la bobine. Ceci se résume en écrivant :

$$u_L(t=0^-) \neq u_L(t=0^+)$$

III. Étude d'un circuit RLC

A. Montage

On impose le signal d'entrée e(t) suivant :

B. Mise en équation

D'après la loi des mailles on a : $e(t) - u_R(t) - u_L(t) - u_C(t) = 0$.

En appliquant la loi d'Ohm sur le résistor, on a $u_R(t) = Ri(t)$.

Pour la bobine, on a $u_L(t) = L\frac{di(t)}{dt}$ et pour le condensateur $i(t) = C\frac{du_C(t)}{dt}$. On obtient ainsi : $Ri(t) + L\frac{di(t)}{dt} + u_C(t) = e(t)$ On en déduit ainsi $RC\frac{du_C(t)}{dt} + LC\frac{d^2u_C(t)}{dt^2} + u_C = e(t)$. Il s'agit d'une équation différentielle du second ordre que l'on peut réécrire :

$$\frac{d^2 u_C(t)}{dt^2} + \frac{R}{L} \frac{du_c(t)}{dt} + \frac{u_C}{LC} = \frac{e(t)}{LC}$$

C. 3 régimes transitoires possibles

En faisant varier la résistance R on peut observer trois régimes de fonctionnement. La résistance R joue sur l'amortissement du système.

1. Régime pseudo-périodique

On obtient ce règime lorsqu'on diminue la résistance R. Il y a des oscillations qui sont plus ou moins amorties selon la résistance.

2. Régime apériodique

Plus R est importante plus l'amortissement du système est important car l'énergie du système est dissipée par effet Joule dans cette résistance. S'il n'y a pas d'oscillations, le régime est dit apériodique.

3. Régime critique

C'est le régime limite entre les deux précédents. On peut montrer que l'on a ce régime pour une résistance critique $R_C=2\sqrt{\frac{L}{C}}$.

Régimes sinusoïdaux

- 1

Régimes sinusoïdaux

I. Introduction

 N^{OUS} nous interessons dans ce chapitre aux circuits électriques fonctionnant en régime sinusoïdal établi. Dans un tel circuit, toutes les tensions et les intensités sont des fonctions sinusoïdales du temps et de même fréquence f.

II. Expression d'une grandeur sinusoïdale

Une tension u est dite sinusoïdale si elle peut s'écrire :

$$u(t) = \hat{U}\cos(\omega t + \varphi)$$

$$u$$

$$\hat{U}$$

$$\hat{U}$$

$$-\hat{U}$$

Remarque: on peut également écrire une grandeur sinusoïdale avec la fonction sin, cela n'a que pour effet de décaler φ de $\pi/2$.

A. Amplitude d'une grandeur sinusoïdale

L'amplitude d'une grandeur sinusoïdale est la plus grande valeur qu'elle peut atteindre. \hat{U} est donc l'amplitude de u

B. Pulsation d'une grandeur sinusoïdale

 ω est la pulsation de la grandeur sinusoïdale u.

$$\omega = 2\pi f = \frac{2\pi}{T}$$

1

- $-\omega$: pulsation en radian par seconde $(rad \cdot s^{-1})$
- f : fréquence en hertz (Hz)
- T : période en secondes (s)

C. Phase à l'origine

La phase à l'origine (des temps) φ dépend de l'instant choisi comme origine. En pratique on choisit une tension ou un courant du circuit comme «origine des phases» et pour lequel la phase à l'origine des temps est nulle.

D. Valeur movenne

La valeur moyenne d'une grandeur sinusoïdale est nulle car quelque soit l'instant t_1 considéré, si la valeur prise à cet instant vaut $u(t_1)$, il existe toujours un instant $t_2 = t_1 + \frac{T}{2}$ tel que la valeur prise à cet instant t_2 est exactement l'opposé $(u(t_2) = -u(t_1))$.

$$U_{mov} = \overline{u} = 0$$

E. Valeur efficace

Calculons la valeur efficace de $u(t) = \hat{U}\cos(\omega t + \varphi)$.

Pour faire ce calcul il faut d'abord élever u(t) au carré $u^2(t) = \hat{U}^2 \cos^2(\omega t + \varphi)$:

Ensuite il faut calculer $\overline{u^2(t)}$ la valeur moyenne de $u^2(t)$.

Pour calculer $\overline{u^2}$ développons $u^2(t) = \hat{U}^2 cos^2(\omega t + \varphi)$ en utilisant $cos^2 a = \frac{1 + cos(2a)}{2}$

On a alors $u^2(t) = \hat{U}^2 \frac{1 + \cos(2\omega t + 2\varphi)}{2} = \frac{\hat{U}^2}{2} + \frac{\hat{U}^2}{2} \cos(2\omega t + 2\varphi)$. Cette expression se décompose en un terme constant $\frac{\hat{U}^2}{2}$ et un terme sinusoïdal $\frac{\hat{U}^2}{2} \cos(2\omega t + 2\varphi)$; ce dernier terme a donc une valeur moyenne nulle, on en déduit donc $\overline{u^2} = \frac{\hat{U}^2}{2}$

Il suffit alors de prendre la racine carré de $\overline{u^2}$ et on obtient U la valeur efficace de u(t).

$$U_{eff} = U = \sqrt{\overline{u^2}} = \frac{\hat{U}}{\sqrt{2}}$$

III. Représentation d'une grandeur sinusoïdale

On impose avec un GBF une tension u(t) aux bornes de trois dipôles inconnus.

On visualise aux bornes de deux dipôles inconnus les tensions $u_1(t)$ et $u_2(t)$.

On écrit alors leur représentation temporelle.

- 1. $u_1(t) = 3\sqrt{2}\cos\omega t$ et $u_2(t) = 4\sqrt{2}\cos\omega t$
- 2. $u_1(t) = 5\sqrt{2}\cos\omega t \text{ et } u_2(t) = 2\sqrt{2}\cos(\omega t + \pi)$
- 3. $u_1(t) = 2\sqrt{2}cos\omega t$ et $u_2(t) = 5\sqrt{2}cos(\omega t + \frac{\pi}{3})$

On veut calculer la tension résultante u(t) aux bornes de l'association des deux dipôles D_1 et D_2 .

A. Calcul direct

En utilisant les formules de trigonométrie, nous allons montrer que l'on est capable de déterminer l'expression de la tension u(t).

D'après la loi des tensions on a $u(t) = u_1(t) + u_2(t)$.

- 1. $u(t) = 3\sqrt{2}\cos\omega t + 4\sqrt{2}\cos\omega t = 7\sqrt{2}\cos\omega t$
 - u(t) est une tension sinusoïdale de pulsation ω , de valeur efficace U=7V et de phase à l'origine $\varphi = 0$.

2. $u(t) = 5\sqrt{2}\cos\omega t + 2\sqrt{2}\cos(\omega t + \pi) = 5\sqrt{2}\cos\omega t - 2\sqrt{2}\cos\omega t = 3\sqrt{2}\cos\omega t$

u(t) est une tension sinusoïdale de pulsation ω , de valeur efficace U=3V et de phase à l'origine $\varphi = 0$.

Remarque: on ne peut pas appliquer la loi des mailles aux valeurs efficaces, si on l'avait fait on aurait trouvé 7 V ce qui est faux.

3. $u(t) = 3\sqrt{2}\cos\omega t + 5\sqrt{2}\cos(\omega t + \frac{\pi}{3})$

En utilisant la formule de trigonométrie cos(a+b) = cos(a)cos(b) - sin(a)sin(b) on trouve :

 $u(t) = 3\sqrt{2}\cos\omega t + 5\sqrt{2}\cos\omega t\cos\pi/3 - 5\sqrt{2}\sin\omega t\sin\pi/3$

 $u(t) = 3\sqrt{2}\cos\omega t + \frac{5\sqrt{2}}{2}\cos\omega t - 5\sqrt{2}\frac{\sqrt{3}}{2}\sin\omega t$

soit
$$u(t)=\frac{11\sqrt{2}}{2}cos\omega t-\frac{5\sqrt{6}}{2}sin\omega t$$
 que l'on peut mettre sous la forme $u(t)=\hat{U}cos(\omega t+\varphi)$

avec
$$\hat{U} = \sqrt{(\frac{11\sqrt{2}}{2})^2 + (\frac{5\sqrt{6}}{2})^2} = 7\sqrt{2}$$
 et $tan\varphi = \frac{\frac{5\sqrt{6}}{2}}{\frac{11\sqrt{2}}{2}} = \frac{5\sqrt{3}}{11}$

avec $\hat{U}=\sqrt{(\frac{11\sqrt{2}}{2})^2+(\frac{5\sqrt{6}}{2})^2}=7\sqrt{2}$ et $\tan\varphi=\frac{\frac{5\sqrt{6}}{11\sqrt{2}}}{\frac{11\sqrt{2}}{2}}=\frac{5\sqrt{3}}{11}$ u(t) est une tension sinusoïdale de pulsation ω , de valeur efficace U=7 V et de phase à l'origine φ telle que $\tan\varphi=\frac{5\sqrt{3}}{11}$ soit $\varphi\simeq38^\circ$.

Nous voyons avec ces trois calculs qu'il est difficile de continuer d'utiliser le calcul direct lorsque nous manipulons des grandeurs sinusoïdales. Nous allons voir deux «outils» permettant de faire le même travail de manière plus simple : les vecteurs de Fresnel et les nombres complexes.

B. Vecteur de Fresnel

Soit la tension $u(t) = U\sqrt{2}cos(\omega t + \varphi)$.

On peut associer à cette tension u un vecteur \vec{U} appelé vecteur de Fresnel.

On oriente le plan selon le sens trigonomètrique.

On choisit un point origine O.

On choisit un axe Ox origine des phases (généralement horizontal et vers la droite)

Le vecteur de Fresnel \vec{U} a alors les propriétés suivantes :

- origine au point O
- direction et sens tel que l'angle $(\vec{Ox}, \vec{U}) = \varphi$
- norme proportionnelle à U la valeur efficace de u

Exercice d'application:

Reprenons le cas 3: $u_1(t) = 3\sqrt{2}cos\omega t$ et $u_2(t) = 5\sqrt{2}cos(\omega t + \frac{\pi}{2})$.

On considèrera que la tension u_1 est prise comme origine des phases.

- 1. Représentez les vecteurs de Fresnel $\vec{U_1}$ et $\vec{U_2}$.
- 2. Déduisez le vecteur de Fresnel \vec{U} représentatif de u(t).
- 3. Déduisez la valeur efficace U de u et sa phase à l'origine φ .
- 4. Exprimez u(t).

C. Représentation complexe

Soit la tension
$$u(t) = U\sqrt{2}cos(\omega t + \varphi)$$
.

On peut associer à cette tension u un nombre complexe U.

Ce nombre complexe a pour module U, la valeur efficace de u et pour argument φ la phase à l'origine de u.

$$\underline{U} = (U, \varphi) = Ue^{j\varphi} = U\cos\varphi + jU\sin\varphi \text{ avec } j^2 = -1$$

Exercice d'application:

Reprenons le cas $3: u_1(t) = 3\sqrt{2}cos\omega t$ et $u_2(t) = 5\sqrt{2}cos(\omega t + \frac{\pi}{2})$.

On considèrera que la tension u_1 est prise comme origine des phases.

- 1. Donnez la représentation complexe U_1 de u_1 .
- 2. Donnez la représentation complexe U_2 de u_2 .
- 3. Déduisez la représentation complexe U représentatif de u.
- 4. Déterminez la valeur efficace U de u et sa phase à l'origine φ .
- Exprimez u(t).

IV. Déphasage entre deux grandeurs sinusoïdales de même fréauence

A. Définitions et vocabulaire

Considérons les deux grandeurs tension et intensité d'un même circuit électrique fonctionnant en régime sinusoïdal.

$$u(t) = U\sqrt{2}cos(\omega t + \varphi_u)$$

$$i(t) = I\sqrt{2}cos(\omega t + \varphi_i)$$

On appelle déphasage de i par rapport à u la différence de phase à l'origine $\varphi_{i/u} = \varphi_u - \varphi_i$.

Ce déphasage $\varphi=\varphi_{i/u}$ est l'angle que font entre eux les deux vecteurs de Fresnel associés aux grandeurs u et i.

- $-\varphi_{i/n} < 0$: le courant i est en avance sur la tension u.
- $-\varphi_{i/u} > 0$: le courant i est en retard par rapport à la tension u.
- $-\varphi_{i/u} = 0$ rad: u et i sont en phase.
- $-\varphi_{i/u} = \pi \ rad$: u et i sont en opposition de phase.
- $\varphi_{i/u} = \frac{\pi}{2} rad$: i est en quadrature retard par rapport à u.
- $-\varphi_{i/u} = -\frac{\pi}{2} rad$: i est en quadrature avance par rapport à u.

B. Mesurer un déphasage à l'oscilloscope : «méthode des neuf carreaux»

On observe à l'oscilloscope deux tensions u_1 et u_2 sinusoïdales de même fréquence.

On veut mesurer le déphasage φ_{u_1/u_2} de u_1 par rapport à u_2 . – On règle le zero des voies Y_1 et Y_2 au même niveau.

- On utilise la touche $\mathit{VAR}\ X$ pour décalibrer la base de temps afin de visualiser une demi-période de u_1 (et de u_2) sur **neuf** carreaux.
- On repère les passages par zéro en croissant de u₁ et u₂.
- On mesure le nombre de carreaux séparant le passage par zéro en croissant de u_1 et celui de u_2 .
- 9 carreaux représentent une demi-période donc 180° donc 1 carreau représente $\frac{180}{9} = 20^{\circ}$

Dipôles linéaires élémentaires en régime sinusoïdal

Introduction

L'objectif de ce chapitre est de comprendre le fonctionnement de trois dipôles linéaires élémentaires en régime sinusoïdal.

- conducteur ohmique (ou résistor)
- bobine parfaite (pas de résistance d'enroulement en série)
- condensateur parfait (pas de résistance de décharge en parallèle)

On impose aux bornes de chacun de ces trois dipôles la tension :

$$u(t) = \hat{U}cos\omega t = U\sqrt{2}cos\omega t$$

L'intensité du courant traversant le dipôle étudié est de la forme :

$$i(t) = \hat{I}cos(\omega t - \varphi) = I\sqrt{2}cos(\omega t - \varphi)$$

où φ est le déphasage de l'intensité i par rapport à la tension u; $\varphi=(\vec{I};\vec{U})$ est donc dans la représentation de Fresnel l'angle orienté allant du courant vers la tension.

- $\varphi > 0$: l'intensité i est en retard par rapport à la tension u (dipôle inductif)
- $\varphi < 0$: l'intensité i est en avance par rapport à la tension u (dipôle capacitif)

Le dipôle sera toujours étudié ici en convention récepteur car les trois dipôles indiqués plus haut sont tous passifs.

Montage

Le résistor r a une faible résistance (autour d'1 Ω) afin de ne pas trop perturber le montage. Il permet de visualiser sur la deuxième voie de l'oscilloscope la tension ri(t) et donc obtenir «l'image» du courant. L'ampèremetre est réglé en position \boldsymbol{A} \boldsymbol{C} afin de mesurer la valeur efficace I du courant i(t). Le voltmètre est réglé en position \boldsymbol{A} \boldsymbol{C} afin de mesurer la valeur efficace U de la tension u(t).

1

I. Conducteur ohmique

A. Variation de la tension efficace U à fréquence f constante

B. Variation de la fréquence f à tension efficace U constante

C. Résumé

$$u_R(t) = Ri_R(t)$$

$$\underline{U}_R = R\underline{I}_R$$

$$\underline{I}_R = \frac{1}{R}\underline{U}_R$$

$$\underline{Z}_R = R = (R; 0^\circ)$$

$$Z_R = |\underline{Z_R}| = R$$

$$\Re(\underline{Z_R})=R$$
 partie réelle

$$\Im(\underline{Z_R})=0 \text{ partie imaginaire}$$

$$\underline{Y_R} = \frac{1}{\underline{Z_R}} = \frac{1}{R}$$

II. Bobine parfaite

A. Variation de la tension efficace U à fréquence f constante

B. Variation de la fréquence f à tension efficace U constante $\frac{U_{\text{eff}}}{\text{Teff}}$ \uparrow U -acto

C. Résumé

$$\begin{split} u_L(t) &= L \frac{\mathrm{d}i_L}{\mathrm{d}t}(t) \\ &\underline{U_L} = jL\omega \underline{I_L} \\ &\underline{I_L} = \frac{1}{jL\omega}\underline{U_L} = -\frac{j}{L\omega}\underline{U_L} \\ &\underline{Z_L} = jL\omega = (L\omega;90^\circ) \\ &Z_L = |\underline{Z_L}| = L\omega \\ &\Re(\underline{Z_L}) = 0 \text{ partie réelle} \\ &\Im(\underline{Z_L}) = L\omega \text{ partie imaginaire} \\ &\underline{Y_L} = \frac{1}{\underline{Z_L}} = \frac{1}{jL\omega} = (\frac{1}{jL\omega};-90^\circ) \\ &Y_L = |\underline{Y_L}| = \frac{1}{L\omega} \end{split}$$

III. Condensateur parfait

A. Variation de la tension efficace U à fréquence f constante

B. Variation de la fréquence f à tension efficace U constante $\frac{U_{\text{eff}}}{T_{\text{eff}}} \uparrow$

C. Résumé

$$\begin{split} i_C(t) &= C \frac{\mathrm{d} u_C}{\mathrm{d} t}(t) \\ &\underline{I_C} = jC\omega\underline{U_C} \\ \\ &\underline{U_C} = \frac{1}{jC\omega}\underline{I_L} = -\frac{j}{C\omega}\underline{I_L} \\ \\ &\underline{Z_C} = \frac{1}{jC\omega} = (\frac{1}{C\omega}; -90^\circ) \\ \\ &Z_C = |\underline{Z_C}| = \frac{1}{C\omega} \\ \\ &\Re(\underline{Z_C}) = 0 \text{ partie réelle} \\ \\ &\Re(\underline{Z_C}) = \frac{1}{C\omega} \text{ partie imaginaire} \\ \\ &\underline{Y_C} = \frac{1}{\underline{Z_C}} = jC\omega = (C\omega; 90^\circ) \\ \\ &Y_C = |\underline{Y_C}| = C\omega \end{split}$$

Association série de dipôles en régime sinusoïdal Résonance

Dans tout ce chapitre on considèrera des dipôles (RC série, RL série, RLC série) alimentés par une source de tension sinusoïdale.

I. Étude d'un dipôle RC série

A. Montage

B. Diagramme de Fresnel

Donnez le relation qui lie u(t), $u_R(t)$ et $u_C(t)$.

Que devient cette relation avec les vecteurs de Fresnel?

Tracez dans le diagramme de Fresnel, les vecteurs $\vec{U}, \vec{U_R}$ et $\vec{U_C}$.

On choisit le courant i comme axe de référence des phases car le courant est commun aux deux dipôles.

1

C. Oscillogrammes

Voie A : u(t) Voie B : $u_R(t)$

En utilisant l'oscillogramme ci-dessus, tracez le diagramme de Fresnel à l'échelle (1 $V\leftrightarrow.....cm$).

II. Étude d'un dipôle RL série

B. Diagramme de Fresnel

Donnez le relation qui lie u(t), $u_R(t)$ et $u_L(t)$. Que devient cette relation avec les vecteurs de Fresnel?

Tracez dans le diagramme de Fresnel, les vecteurs \vec{U} , $\vec{U_R}$ et $\vec{U_L}$. On choisit le courant i comme axe de référence des phases car le courant est commun aux deux dipôles.

C. Oscillogrammes

Voie B : $u_R(t)$ Voie A : u(t)

En utilisant l'oscillogramme ci-dessus, tracez le diagramme de Fresnel à l'échelle (1 $V\leftrightarrow\ldots$ cm).

III. Étude d'un dipôle RLC série

u(t)

On donne les valeurs numériques suivantes : $R = 100\Omega$, L = 2, 2 mH et $C = 1\mu F$.

B. Impédance du dipôle RLC

Soit le dipôle R, L, C donné ci-dessus.

- 3. Donnez l'expression de son argument (déphasage de i par rapport à u).

.....

C. Variation de la fréquence

- 1. $f = 1 \ kHz$
- 1. Calculez l'impédance complexe $\underline{Z_L}$, donnez son module et son argument.
- 2. Calculez l'impédance complexe Z_C , donnez son module et son argument.
- 3. Calculez l'impédance complexe \underline{Z} de l'association en série de R, L et C.
- **2.** $f = 10 \ kHz$
- 1. Calculez l'impédance complexe $\underline{Z_L}$, donnez son module et son argument.
- 2. Calculez l'impédance complexe Z_C , donnez son module et son argument.
- 3. Calculez l'impédance complexe \underline{Z} de l'association en série de R, L et C.
- **3.** $f = 3, 4 \ kHz$
- 1. Calculez l'impédance complexe $\underline{Z_L},$ donnez son module et son argument.
- 2. Calculez l'impédance complexe $\underline{Z_C}$, donnez son module et son argument.
- 3. Calculez l'impédance complexe \underline{Z} de l'association en série de $R,\,L$ et C.

4. Conclusion

Comment varie le module de l'impédance lorsque la fréquence augmente?

Comment varie l'intensité efficace du courant dans le circuit lorsque la fréquence augmente?

Comment appelle-t'on ce phénomène?	
Que vaut alors l'impédance ?	
A quelle fréquence ce phénomène se produit-il?	

D. Diagramme de Fresnel

Donnez le relation qui lie u(t), $u_R(t)$, $u_L(t)$ et $u_C(t)$.

Que devient cette relation avec les vecteurs de Fresnel?

Tracez dans le diagramme de Fresnel, les vecteurs \vec{U} , $\vec{U_R}$, $\vec{U_L}$ et $\vec{U_C}$.

On choisit le courant i comme axe de référence des phases car le courant est commun aux deux dipôles.

1. $f > f_0$

2. $f < f_0$

Puissances en régime sinusoïdal

I. Rappels : puissance en régime continu

On étudie dans ce paragraphe un dipôle en convention récepteur.

$$P = U \cdot I$$

- -P: puissance reçue (W)
- -U: tension (V)
- -I: intensité du courant (A)

Étudions le signe de la puissance.

- -P>0: le dipôle **reçoit** de la puissance (c'est un récepteur étudié en convention récepteur)
- -P < 0: le dipôle **fournit** de la puissance (c'est un générateur étudié en convention récepteur)

II. Puissance instantanée

A. Définitions

Dans tout ce cours, le dipôle étudié (résistance, bobine, condensateur) est étudié en convention r'ecepteur.

$$p(t) = u(t) \cdot i(t)$$

- -p(t): puissance instantanée reçue (W)
- -u(t): tension (V)
- -i(t): intensité du courant (A)

A un instant t donné si :

- -p(t) > 0: le dipôle **reçoit** à cet instant t de la puissance.
- p(t) < 0 : le dipôle fournit à cet instant t de la puissance.

B. Régime sinusoïdal

On se place à partir de maintenant et jusqu'à la fin du chapitre en régime sinusoïdal.

Le dipôle est toujours considéré en convention récepteur.

On impose aux bornes du dipôle la tension.

$$u(t) = U\sqrt{2}cos\omega t$$

Le courant qui parcourt ce dipôle est alors :

$$i(t) = I\sqrt{2}cos(\omega t - \varphi)$$

 φ représente le déphasage de l'intensité i par rapport à la tension u.

Calculons la puissance instantanée reçue par le dipôle.

$$p(t) = u(t) \cdot i(t) = (U\sqrt{2}cos\omega t) \cdot (I\sqrt{2}cos(\omega t - \varphi)) = 2 \cdot U \cdot I \cdot cos\omega t \cdot cos(\omega t - \varphi)$$

On applique la formule de trigonométrie suivante : $cos(p) \cdot cos(q) = \frac{cos(p+q) + cos(p-q)}{2}$

On obtient alors:

$$p(t) = UI\cos\varphi + UI\cos(2\omega t - \varphi)$$

1

Le premier terme : $UIcos\varphi$ est indépendant du temps c'est la valeur moyenne de p(t). Le seconde terme : $UIcos(2\omega t - \varphi)$ est un terme sinusoïdal de pulsation 2ω .

III. Puissance active P

A. Définition

On appelle puissance active et on note P la valeur moyenne de la puissance instantanée.

$$P = UIcos\varphi$$

- P : puissance active reçue (W)
- -U: valeur efficace de la tension (V)
- I : valeur efficace de l'intensité du courant (A)

Remarque : $En\ moyenne$, un dipôle passif ne peut être que récepteur même si il peut être générateur à certains instants.

B. Puissance active de dipôles élémentaires

1. Conducteur ohmique de résistance R

u et i sont en phase donc $\varphi=0$ d'où $\cos(\varphi)=1$ d'où P=UI.

L'impédance Z_R d'un conducteur ohmique de résistance R est $R: Z_R = R$, donc :

$$P = UI = RI^2 = \frac{U^2}{R}$$

2. Bobine idéale d'inductance ${\cal L}$

$$\varphi = \frac{\pi}{2}$$
 donc $\cos(\varphi) = 0$ d'où $P = 0$.

Un dipôle purement inductif ne reçoit pas de puissance active.

3. Condensateur idéal de capacité ${\cal C}$

$$\varphi = -\frac{\pi}{2} \operatorname{donc} \cos(\varphi) = 0 \operatorname{d'où} P = 0.$$

Un dipôle purement capacitif ne reçoit pas de puissance active.

IV. Puissance apparente S

$$S = UI$$

- -S: puissance apparente (VA)
- -U: valeur efficace de la tension (V)
- I : valeur efficace de l'intensité du courant (A)

V. Puissance réactive Q

A. Définition

$$Q = U I sin \varphi$$

- Q : puissance réactive (var)
- U : valeur efficace de la tension (V)
- I : valeur efficace de l'intensité du courant (A)

B. Puissance réactive de dipôles élémentaires

1. Conducteur ohmique de résistance R

u et i sont en phase donc $\varphi=0$ d'où $sin(\varphi)=0$ d'où Q=0. Un dipôle purement résistif ne reçoit pas de puissance réactive.

2. Bobine idéale d'inductance ${\cal L}$

 $\varphi=\frac{\pi}{2}$ donc $sin(\varphi)=1$ d'où Q=UI. Un dipôle purement inductif \pmb{regoit} de la puissance réactive. On a $U=ZI=L\omega I$ on en déduit alors :

$$Q = UI = L\omega I^2 = \frac{U^2}{I\omega}$$

3. Condensateur idéal de capacité C

 $\varphi=-\frac{\pi}{2}$ donc $sin(\varphi)=-1$ d'où Q=-UI. Un dipôle purement capacitif **fournit** de la puissance réactive. On a $U=ZI=\frac{I}{C_{cr}}$ on en déduit alors :

$$Q = -UI = -\frac{I^2}{C\omega} = -C\omega U^2$$

VI. Relations entre P, Q, S et φ

On rappelle les définitions suivantes :

- -S = UI (puissance apparente)
- $-P = UIcos\varphi = Scos\varphi$ (puissance active)
- $-Q = UIsin\varphi = Ssin\varphi$ (puissance réactive)

A. Relation entre Q, P et S

$$S = \sqrt{P^2 + Q^2}$$

B. Relation entre Q, P et φ

$$Q = Ptan\varphi$$

VII. Théorème de Boucherot

A. Énoncé

La puissance active absorbée par un groupement de dipôles est égale à la somme des puissances actives absorbées par chaque dipôle du groupement.

$$P = P_1 + P_2 + P_3 + \dots = UI\cos\varphi = U_1I_1\cos\varphi_1 + U_2I_2\cos\varphi_2 + U_3I_3\cos\varphi_3 + \dots$$

La puissance réactive absorbée par un groupement de dipôles est égale à la somme des puissances réactives absorbées par chaque dipôle du groupement.

$$Q = Q_1 + Q_2 + Q_3 + \dots = UIsin\varphi = U_1I_1sin\varphi_1 + U_2I_2sin\varphi_2 + U_3I_3sin\varphi_3 + \dots$$

B. Remarque

La puissance apparente absorbée par un groupement de dipôles <u>n'est pas égale</u> à la somme des puissances apparentes absorbées par chaque dipôle du groupement.

$$S \neq S_1 + S_2 + S_3 + \dots$$

Si on veut calculer S on utilise le théorème de Boucherot et la relation entre P,Q et S:

$$S = \sqrt{(P_1 + P_2 + P_3 + ...)^2 + (Q_1 + Q_2 + Q_3 + ...)^2}$$

Exercice d'application

Soit l'association en série d'une résistance et d'un condensateur.

On donne $R = 150 \ \Omega$; $C = 22 \mu F$; $U = 230 \ V$ et f = 50 Hz

- 1. Calculer l'impédance complexe du dipôle R,C série
- 2. Déduire la norme de l'impédance complexe ainsi que son argument.
- 3. Calculer la valeur efficace I du courant dans le circuit.
- 4. Calculer la puissance active reçue P par cette association sous une tension $u(t) = U\sqrt{2}cos\omega t$.
- 5. Calculer la puissance apparente S_{RC} reçue par l'ensemble résistance, condensateur.
- 6. Calculer la puissance apparente S_R reçue par la résistance.
- 7. Calculer la puissance apparente S_C reçue par le condensateur.
- 8. Comparez $S_C + S_R$ à S_{RC} .
- 9. Calculer la puissance réactive recue Q par ce circuit (en fait il en fournit).
- 10. En utilisant P et Q, retrouver I et $\cos\varphi$.

VIII. Facteur de puissance

A. Définition

Le facteur de puissance noté f_p ou k est, par définition égale à :

$$f_p = \frac{P}{S}$$

Comme la puissance active $P = UIcos\varphi$ et la puissance apparente S = UI on en déduit :

$$f_n = cos\varphi$$

B. Importance du facteur de puissance

Soit une installation électrique absorbant une puissance P, sous une tension U avec un déphasage de i par rapport à u égal à φ .

Le courant absorbé par l'installation vaut $I = \frac{P}{U\cos\varphi}$.

Afin de minimiser les pertes par effet Joules dans la ligne il faut miniminer I et donc augmenter $\cos\varphi$ au maximum c'est à dire 1. EDF impose dans ses contrats (conditions légales) que le facteur de puissance soit supérieur à 0.93.

C. Mesurer le $cos \varphi$

Méthode 1

On mesure le déphasage φ de i par rapport à u comme indiqué dans le cours sur le régime sinusoïdal ou à la l'aide d'un appareil dédié : le phasemètre.

On calcule $f_p = \cos\varphi$.

Méthode 2

On mesure la valeur efficace U de la tension u(t).

On mesure la valeur efficace I de l'intensité du courant i(t).

On calcule alors la puissance apparente S.

On mesure la puissance active P.

On calcule $f_p = \frac{P}{S}$.

D. Augmenter (relever) le $cos\varphi$ d'une installation électrique

En général une installation électrique est plutôt de type inductif (présence de moteurs, fils non parfaits ayant une certaine inductance, etc...). Pour relever son $cos\varphi$ on place donc en dérivation par rapport à l'installation initiale un condensateur de capacité C.

On veut faire passer l'installation du facteur de puissance $cos\varphi_1 = 0, 7$ à $cos\varphi_2 = 0, 93$.

L'installation est reliée au réseau U=230~V~f=50~Hz et absorbe une puissance active $P_1=15~kW$.

- 1. Calculez φ_1 et φ_2 .
- 2. Après ajout du condensateur de capacité C, calculez la puissance active absorbée P_2 par l'installation.
- 3. Déterminez l'expression de la puissance réactive Q_C reçue par le condensateur (en fait il en fournit).
- 4. Après ajout du condensateur de capacité C, déterminez l'expression de la puissance réactive absorbée Q_2 par l'installation.
- 5. Déduisez de la relation précédente la capacité C à placer sur l'installation

E. Mesure de puissance

Pour mesurer la puissance active reçue par un dipôle, on utilise un wattmètre.

Un wattmètre est composé de deux circuits :

- -le circuit « tension »
- le circuit « intensité »

Afin d'éviter d'ouvrir le circuit de l'installation on utilise des pinces wattmétriques.

TP : Mesures de puissance et de facteur de puissance en monophasé

Objectif

L'objectif de cette séance de TP est d'apprendre à mesurer des puissances (active, réactive, apparente).

Rappels

On rappelle les définitions suivantes :

- -S = UI (puissance apparente)
- $-P = UIcos\varphi = Scos\varphi$ (puissance active)
- $-Q = UIsin\varphi = Ssin\varphi$ (puissance réactive)

I. Questions

- 1. Rappelez le nom de l'appareil permettant de mesurer une puissance active.
- 2. Indiquez en quelques mots son fonctionnement.
- 3. Quels appareils utilisez-vous pour mesurer une puissance apparente?
- 4. A partir de la mesure de la puissance active P et de la puissance apparente S, comment calculez-vous le facteur de puissance noté k, f_n ou $cos\varphi$.
- 5. A partir de la mesure de la puissance active P et de la puissance apparente S, comment calculez-vous la puissance réactive? Comment connaître son signe?

II. Montage

On branche en sortie d'un transformateur monophasé abaisseur de tension une charge (R, RL ou

On alimente le transformateur monophasé abaisseur de tension sur le réseau (haute tension)

En sortie, la tension efficace à ses bornes (basse tension) est de

Faites le schéma de montage en plaçant les appareils de mesure, leur bornes et leur mode.

III. Charge résistive R

On utilise comme charge résistive un rhéostat

On ne devra à aucun moment dépasser $I=\dots$

Placez le curseur du rhéostat au centre.

Expliquez pourquoi on prend cette précaution.

On ne changera jamais la valeur de cette résistance dans toute cette séance.

Faites varier la tension d'alimentation et relevez U, I, P, k et φ .

U(V)	I(A)	P(W)	k	φ (°)

Quelle conclusion pouvez-vous déduire de vos mesures concernant l'expression de P et de k?

1

IV. Charge inductive RL

On utilise désormais une charge résistive associée en série avec une bobine
Avant de changer de charge, éteignez l'alimentation et attendez mes recommandations.
Sortez complètement le noyau de la bobine.
– Réglez $I = \dots$
– Mesurez U, I, P et déduisez k et φ .
Avec le noyau toujours complètement sorti,
- Réglez I =
– Mesurez U, I, P et déduisez k et φ .
Placez maintenant le noyau à
– Réglez $I = \dots$
- Mesurez U, I, P et déduisez k et φ .

Toujours avec cette position de noyau.

– Réglez $I = \dots$

- Mesurez U, I, P et déduisez k et φ .

Choisissez 2 valeurs différentes de I pour chaque position du novau.

	noyau de fer	U(V)	I(A)	P(W)	k	φ (°)
L						

- 1. De quoi, selon vous, dépend le facteur de puissance du circuit?
- 2. D'après les mesures que vous avez effectuées, comment interprétez-vous l'influence du noyau de fer sur le circuit? Vous pouvez argumenter votre réflexion avec un diagramme de Fresnel.
- 3. Pourquoi la puissance active est-elle, pour un même courant, légèrement supérieure au cas de la charge résistive?

V. Charge RLC série

On utilise désormais une charge résistive	associée er	n série	avec une	bobine .	
et une boite de condensateurs					

Avant de changer de charge, éteignez l'alimentation et attendez mes recommandations. Le novau de la bobine est enfoncé pour avoir $L\simeq$

On utilise le rhéostat pour faire varier I

On define to theoretic pour time variet 1.								
$C(\mu F)$ $U(V)$		I(A)	P(W)	k	φ (°)			

- 1. Le facteur de puissance dépend-il de l'intensité efficace?
- 2. Que faudrait-il faire pour connaître le signe du déphasage??

Mathématiques Supérieures PCSI Optique géométrique

TP: Lunette - Collimateur

I. Lunette - lunette autocollimatrice

A. But.

- repérer la direction d'un objet à l'infini

B. Constitution

- Partie antérieure (du côté de l'objet) : l'objectif
- Partie postérieure (près de l'oeil) : l'oculaire

L'objectif permet d'obtenir une image de l'objet à l'infini.

Cette image sert d'objet pour l'oculaire que l'on utilise comme une loupe.

L'oculaire donne une image finale à l'infini.

Or, une image à l'infini est observée sans fatigue par l'oeil.

Un tel système (objectif + oculaire) constitue un système afocal.

C. Schéma

Fig. 1 - Schéma de principe d'une lunette

Fig. 2 – Réticule

Entre l'objectif et l'oculaire, est placé un réticule c'est à dire un objet constitué par 2 fils croisés.

Ce réticule est fixe par rapport à la lunette.

On règle la lunette :

- en déplaçant l'objectif de façon à ce que le réticule soit dans son plan focal image,
- en déplaçant l'oculaire de façon à ce que le réticule soit dans son plan focal objet.

Intérêt : L'objectif donne d'un objet à l'infini une image dans son plan focal image où se trouve également le réticule; l'oculaire permet d'observer cette image et le réticule; le positionnement de l'un par rapport à l'autre permet de repérer la direction d'un objet à l'infini.

Associée à un cercle gradué, la lunette permet de mesurer l'angle entre les directions de deux objets à l'infini : il suffit de pointer avec le réticule leur image à travers l'objectif, de noter les deux positions de la lunette et de faire la différence.

1

D. Réglage de la lunette

1. Réglage de l'occulaire

Réglez l'oculaire pour avoir une vue nette du réticule sans fatigue.

2. Réglage du tirage de la lunette (réglage de la distance objectif-réticule)

- 1er cas : lunette simple

Pointez un objet éloigné.

Réglez le tirage pour avoir simultanément le réticule et l'image nette de cet objet.

Fig. 3 – Schéma de principe d'une lunette simple

- 2^ecas : lunette autocollimatrice

- Principe:

Il existe une lame semi-réfléchissante : elle permet d'éclairer si nécessaire, le réticule à l'aide d'une source de lumière auxiliaire, sans empêcher le passage de la lumière directe.

Le tirage se règle par autocollimation ; on utilise la réflexion de la lumière par un miroir plan (ou un dioptre plan) placé devant l'objectif.

Fig. 4 - Schéma de principe d'une lunette autocollimatrice

Lorsque le réticule est dans le même plan que son image par le système (objectif-miroir plan), cela signifie qu'il se trouve dans le plan focal de l'objectif.

- Manipulation:

- Éclairez le réticule (branchez ou agir sur l'interrupteur commandant la petite lampe auxiliaire)
- Placez un miroir plan (ou une surface plane réfléchissante) sur la plate-forme et interceptez la lumière réfléchie avec la lunette,
- Réglez le tirage de la lunette pour avoir une vue nette et simultanée du réticule et de son image réfléchie.
- Lorsque le réglage est correct, le réticule et son image sont dans un même plan dont sont fixes l'un rapport à l'autre lorsqu'on déplace transversalement l'oeil.

Fig. 5 – Déplacement de l'oeil pour vérifier le réglage du tirage de la lunette

⁻ Éteignez la lampe auxiliaire éclairant le réticule pour la suite des manipulations

3. Réglage précis de l'oculaire

Ajustez le réglage de l'oculaire de façon à l'adapter à la vue de l'utilisateur mais $\emph{ON NE DOIT}$ $\emph{PLUS TOUCHER AU TIRAGE}.$

II. Le collimateur

A. But

- obtenir un objet à l'infini

B. Constitution

Le collimateur est constitué par :

- un objet (une fente, une mire)
- un système convergent

Fig. 6 - Schéma de principe d'un collimateur

Régler le collimateur signifie placer l'objet dans le plan focal objet du système convergent.

C. Réglage du collimateur

- Éclairez l'objet
- Interceptez la lumière émergente avec une lunette préalablement réglée
- Réglez le tirage du collimateur jusqu'à obtenir à travers la lunette une vue nette et simultanée du réticule et de l'image de l'objet.

Bilan

Étude d'un prisme

I. Étude générale

A. Dispositif et notations

1

- -A: angle du prisme
- La déviation se fait toujours vers la base du prisme.
- D dépend de n donc de λ .
- -D dépend de i.

B. Relations entre les angles

- Lois de Descartes
- $-\sin i = n\sin r$
- $-\sin i' = n\sin r'$
- Triangle IO'I'
- $-(i'-r') + (i-r) + (\pi D) = \pi$
- -i'+i-r-r'=D
- Triangle IOI^\prime
- $-A + (\pi/2 r) + (\pi/2 r') = \pi$
- -A=r+r'
- -D = i + i' A

C. Condition d'émergence d'un rayon

1. À l'entrée

 $n_2 > n_1$

Il existe un rayon réfracté quel que soit i.

2. À la sortie

$$n_1' > n_2'$$
; $i' > r'$

Il peut y avoir réflexion totale sur la face de sor- .

Il existe un rayon réfracté pour : $\frac{n \sin r'}{1} < 1$ $\sin r' < \frac{1}{n}$

$$\begin{aligned} & \text{soit } r' < \theta \text{ tel que } \sin \theta = \frac{1}{n} \\ & \text{II faut donc } A - r < \theta \\ & r > A - \theta \\ & \sin(i) > n \sin(A - \theta) = \frac{\sin(A - \theta)}{\sin(\theta)} \end{aligned}$$

$$1^{\operatorname{er}} \operatorname{cas}: \frac{\sin(A-\theta)}{\sin(\theta)} > 1$$

Soit si $A - \theta > \theta$ soit encore $A > 2\theta$

Il n'y a pas de rayon émergent (n=1,5 d'où $2\theta=84^{\circ}$)

$$\mathbf{2^e}\mathbf{cas}: \frac{\sin(A-\theta)}{\sin(\theta)} < 1$$

Il existe un rayon émergent pour $i>i_0$ tel que $\sin i_0=\frac{\sin(A-\theta)}{\sin\theta}$

Application numérique : $A \approx 60^{\circ}$; $n \approx 1, 5 \Longrightarrow i_0 \approx 25^{\circ}$

En pratique pour obtenir un rayon émergent,

- Choisissez l'arête
- Tournez le prisme de façon à éclairer une face en incidence quasi rasante et vers l'arête.
- Cherchez les rayons émergents dévié vers la base.

II. Pouvoir dispersif d'un prisme

Pour un angle d'incidence i donné, D dépend de n or n dépend de λ donc D dépend de λ .

Si n augmente r diminue $(\sin i = n \sin r)$ d'où r' augmente (A = r + r')d'où i' augmente $(\sin i' = n \sin r')$

D augmente avec n

Or n diminue quand λ augmente (Loi de Cauchy $n = A + \frac{B}{\sqrt{2}}$)

D'où D augmente quand λ décroît.

La déviation croît du rouge au violet dans le domaine visible.

Manipulation

Le collimateur produit un faisceau de rayons parallèles.

Chaque λ est déviée.

 L_1 fait converger chaque faisceau parallèle dans son plan focal où l'on a placé l'écran.

On obtient plusieurs images « spectre » de la source.

En pratique, on utilise une fente source colinéaire à l'arête du prisme. On observe des raies sur l'écran ou dans le plan focal de l'objectif de la lunette.

III. Étude de D = f(i)

Ici n est supposé constant : on considère les rayons de longueur d'onde λ donnée.

A. Données expérimentales

Lorsque i varie, D passe par un minimum D_m .

Pour D fixé,

- incidence $i \Longrightarrow$ émergence i'
- incidence $i' \Longrightarrow$ émergence i (principe du retour inverse de la lumière)

$$D = i + i' - A$$

Les deux incidences i et i' donnent la même déviation.

Or D_m est obtenue pour une seule incidence donc dans ce cas D = 2i - A

$$i=i' \Longrightarrow r=r' \Longrightarrow A=2r \Longrightarrow n=rac{\sinrac{D_m+A}{2}}{\sinrac{A}{2}}$$

B. Relation entre n, A et D_m

Par différenciation des formules du prime

$$0 = dr + dr'$$

$$dD = di + di'$$

$$\frac{dD}{di} = 1 + \frac{di'}{di}$$

$$\cos(i)di = \cos(r)dr$$

$$\cos(i')di' = \cos(r')dr'$$

$$\frac{di'}{di} = \frac{\cos(i)}{\cos(i')} \frac{\cos(r')}{\cos(r)} \frac{dr}{dr'}$$

$$\begin{split} \frac{dD}{di} &= 1 - \frac{\cos(i)}{\cos(i')} \frac{\cos(r')}{\cos(r)} \\ \text{On cherche le minimum} : \\ \left(\frac{dD}{di}\right)_{i=i_{\min}} &= 0 \\ i &= i' \text{ et } r = r' \text{ conviennent.} \end{split}$$

$$\frac{dD}{di}$$
 = 0

$$i = i'$$
 et $r = r'$ conviennen

$$A = 2r \Longrightarrow r = \frac{A}{2}$$

$$D_m = 2i - A \Longrightarrow i = \frac{D_m + A}{2}$$

$$\sin i = n \sin r$$

$$n = \frac{\sin \frac{D_m + A}{2}}{\sin \frac{A}{2}}$$

Application: mesure de n pour une longueur d'onde donnée. **Remarque**: il faut d'abord déterminer l'angle A du prisme.

TP: Mesure d'un angle d'un prisme

On éclaire le prisme par un faisceau de rayons parallèles.

On pointe la direction des faisceaux réfléchis par chaque face du prisme.

- direction du faisceau (1) par rapport à la direction incidente : 2α
- direction du faisceau (2) par rapport à la direction incidente : 2β

$$A = \alpha + \beta$$

L'angle entre les directions des faisceaux (1) et (2) est noté B.

On a $B = \alpha + A + \beta$ soit B = 2A

$$A = \frac{B}{2}$$

- Placez l'arête du prisme face au collimateur.
- Pointez avec la lunette la direction d'un des faisceaux réfléchis.
 Fixez la lunette lorsque l'image de la fente est dans le champ de vision puis amenez ensuite le

réticule exactement sur l'image de la fente en agissant sur la vis de déplacement fin de la lunette. **Remarque**: utilisez peu ouverte pour faire les mesures.

- Lisez sur l'échelle circulaire fixe la valeur en degré (ou en demi-degré pour les échelles graduées en demi-degré) immédiatement inférieure.
- Lisez par coïncidence sur le vernier lié à la lunette et gradué de 0 à 60 (ou de 0 à 30 si l'échelle précédente est graduée en demi degré) le nombre de minutes supplémentaires pour arriver à θ

- La précision de la mesure est la minute d'arc. On rappelle $1'=1/60^\circ$ « 1 minute » alors que $1"=1/3600^\circ$ « 1 seconde ».
- Pointez avec la lunette la direction du second faisceau réfléchi et faites la même mesure que précédemment. Déduisez des deux mesures d'angle, la valeur de l'angle du prisme.

Vous devez vous souvenir de l'arête dont vous avez mesuré l'angle.

TP : Mesure de l'indice d'un prisme

I. Visualisation du spectre de la lampe à vapeur de mercure

- Placez le prisme sur la plate-forme de façon à ce que : son arête soit proche de centre la lumière incidente soit quasiment rasante (i grand)
- Recherchez et observez à la lunette le spectre obtenu (se rappeler pour cela dans quelle sens a lieu la déviation de la lumière)
- Observez quelles sont les radiations les plus déviées
- Choisissez une longueur d'onde. Observer l'existence d'un minimum de déviation. Rappel : il s'agit d'une déviation minimum en fonction de l'angle d'incidence, Il faut donc ici modifier l'angle d'incidence en faisant tourner la plate-forme ; suivre le spectre à la lunette : D diminue puis réaugmente.

II. Mesure de l'angle de déviation minimal

- Pointez la direction incidente (mesure θ_0).
- Pointez pour la raie jaune-vert intense du mercure le faisceau dévié au minimum de déviation (mesure θ_m).
- Déduisez $D_m = \theta_m \theta_0$.

Pour effectuer le pointé,

- Faites le d'abord approximativement.
- Fixez la plate-forme et la lunette.
- Agissez sur la vis fine d'orientation de la plate-forme pour se placer au minimum de déviation.
- Agissez sur la vis fine de déplacement fin de la lunette pour pointer la raie.
- La longueur d'onde de la raie jaune-vert du mercure est de $0,5460~\mu m.$

III. Conclusion

Déduisez l'indice du prisme pour cette longueur d'onde.

TP : Goniomètre Dispersion d'un prisme Détermination d'une longueur d'onde inconnue

I. Réglage de la lunette et du collimateur

Remarque: Pour le réglage du collimateur, vous devez observer les bords de la fente source pour faire le réglage.

II. Mesure de l'angle du prisme

Remarques:

- Travaillez avec une fente fine
- Utilisez la vis de réglage fin pour la position de la lunette

Estimez l'incertitude ΔA sur la détermination de l'angle A du prisme.

III. Mesure de l'angle de déviation minimale pour une longueur d'onde donnée

La source est une lampe à vapeur de mercure.

Les longueurs d'onde des différentes raies vous sont données en annexe.

Vous ferez la mesure de D_m , angle de déviation minimale, pour les radiations les plus intenses et sur le domaine de longueur d'onde le plus large possible.

A. 1^{re} méthode

- Pointez la direction incidente
- Pointez le faisceau dévié au minimum de déviation pour chaque longueur d'onde.

Remarque:

- si elle existe, utilisez la vis de réglage fin de la position de la plate-forme pour se placer au minimum de déviation
- si elle existe, utilisez la vis de réglage fin de la position de la lunette pour repérer le minimum de déviation.
- Estimez l'incertitude ΔD_m sur D_m .

B. 2e méthode

- Pointez le faisceau dévié au minimum de déviation pour chaque longueur d'onde.
- On pourra utiliser les valeurs obtenues pour la méthode 1

1

- Retournez le prisme.
- Pointez le faisceau dévié au minimum de déviation pour chaque longueur d'onde.
- Déduisez des deux séries de mesure D_m pour chaque longueur d'onde.
- Estimez l'incertitude ΔD_m sur D_m par cette méthode.
- Comparez la précision des deux méthodes.

IV. Utilisation des mesures

A. Étude de $n(\lambda)$

- Rappelez la relation existant entre n, A et D_m à une longueur d'onde donnée.
- Exprimez Δn en fonction de ΔD_m et ΔA . Lorsque la méthode de mesure le permet on a $\Delta D_m \approx \Delta A$.
- Simplifiez alors l'expression de Δn .
- Dressez le tableau :

λ	$n(\lambda) + \Delta n$

– Vérifiez graphiquement : $n = A + \frac{B}{\lambda^2}$

B. Mesure d'une longueur d'onde inconnue

1. Courbe d'étalonnage du prisme

Tracez sur papier millimétré $D_m = f(\lambda)$ pour les radiations de la lampe à vapeur de mercure.

2. Mesure d'une longueur d'onde inconnue émise par le sodium

- Remplacez la lampe à vapeur de mercure par la lampe à vapeur de sodium.
- Mesurez D_m pour le doublet jaune du sodium.
- En déduire grâce à la coube d'étalonnage du prisme la longueur d'onde correspondante.

ANNEXE: Longueur d'onde des principales raies du mercure

Radiation	Longueur d'onde (mm)	
Violet fort	0,4046	
Violet faible	0,4077	
Bleu faible	0,4339	
Bleu faible	0,4347	
Bleu intense	0,4358	
Vert foncé	0,4916	
Vert-jaune intense	0,5460	
Doublet jaune	0,5790	
Rouge (1)	0,6260	
Rouge (2)	0,7346	

Documents divers

Année Scolaire :	Année Scolaire :
Nom :	Nom : Prénom :
Date de naissance : Ville de naissance : Pays de naissance :	Date de naissance : Ville de naissance : Pays de naissance :
Nom et adresse du responsable légal :	Nom et adresse du responsable légal :
Numéro tél. du responsable légal :	Numéro tél. du responsable légal :
Profession du père :	Profession du père : Profession de la mère :
Nombre de frères et sœurs :	Nombre de frères et sœurs :
Ancien professeur de : Sciences et vie de la Terre : Sciences Physiques :	Ancien professeur de : Sciences et vie de la Terre : Sciences Physiques :
Problèmes de santé :	Problèmes de santé :
Profession(s) envisagée(s) :	Profession(s) envisagée(s) :
Activités, loisirs :	Activités, loisirs :

Quelques conseils pour bien travailler

I. Emploi du temps
Les cours de Sciences Physiques ont lieu le :
II. Matériel
Il est nécessaire d'apporter à chaque cours :
1. 4 stylos (bleu, rouge, noir, vert)
2. 1 crayon à papier et 1 gomme
3. 1 règle, 1 compas, 1 équerre, 1 rapporteur
4. 1 paire de ciseaux, de la colle,
5. des feuilles simples et doubles prêtes à être utilisées lors des contrôles
6. son cahier de Sciences Physiques
7. le livre de Sciences Physiques
III. Comportement
1. Arriver à l'heure.
2. Se ranger dans le couloir.
3. Respecter les règles de politesse.
4. Entrer en silence et s'asseoir uniquement lorsque le professeur le demande.
$5.\ {\rm Ne}$ pas mâcher de chewing-gums ou manger ou boire quoi que ce soit en classe
6. Éteindre son portable.
7. Prendre soin du matériel (tables, chaises, et matériel de Sciences Physiques)
8. Écouter et ne prendre la parole que lorsque le professeur la donne, participer en posant des questions

- 9. Lors de certaines séances vous travaillerez en groupe; travailler dans ces conditions signifie exécuter ce qui est demandé, échanger des idées au sein de son groupe de travail, mais certainement pas bavarder, s'amuser.
- 10. Être attentif aux consignes données.
- 11. Se lever lorsqu'une personne extérieure à la classe entre et se relever lorsqu'elle ressort.

Oser le dire lorsqu'on n'a pas compris ou quand on n'est pas sûr d'avoir bien compris.

1

IV. Travail

A. En classe

- Noter au stylo le cours sur le cahier (qui doit être bien tenu)
- Noter en rouge les notions importantes

B. À la maison

- Obligatoire et à effectuer à chaque fin de cours
 - 1. Apprendre ce qui est écrit dans le cahier pour le cours suivant.
 - 2. Faire les exercices demandés après avoir appris la leçon.
- Obligatoire et occasionnel
 - Parfois un travail de recherche est demandé. Utiliser en premier lieu votre livre, compléter en consultant les documents disponibles au C.D.I. et ceux à votre disposition.
 - 2. En cas d'absence, demander un cahier et rattraper le cours.

V. Évaluations

A. Devoirs surveillés

À la fin d'un chapitre, des exercices variés permettant d'évaluer vos capacités et vos connaissances vous seront donnés et seront notés.

B. Contrôle surprise

Vous pouvez être évalués par oral ou par écrit sur le contenu de la séance précédente.

C. Autres évaluations

Vous serez également évalués sur un certain nombre de travaux pratiques, de travaux de recherches.

Signature de l'élève

Signature du responsable légal

Rédiger un compte-rendu de Travaux Pratiques

I. Matériel nécessaire

- copies doubles (afin de ne pas avoir de feuilles volantes)
- calculatrice
- règle
- papier millimétré
- stylo
- crayon à papier et gomme

II. Rédaction du compte-rendu

A. Montage

Indiquer le titre du TP puis les objectifs.

Réaliser un premier paragraphe pour expliquer ce que vous allez faire, votre démarche.

Faire un schéma du montage expérimental.

B. Mesures

1. Préliminaires

On réalise un tableau dans lequel on fait figurer les grandeurs qui seront mesurées et celles qui seront calculées.

Ne pas oublier d'indiquer les unités employées!

2. Mesures

On règle le montage et on relève une première série de mesures.

On règle le système dans une seconde position et on effectue une deuxième série de mesures.

Remarque: se servir d'un crayon à papier pour effacer les valeurs si l'on s'est trompé.

C. Exploitation des mesures Tracé du graphique

1. Préliminaires

Préparer une feuille de papier millimétré.

Calculer les échelles à prendre pour que le graphique soit le plus grand possible.

Tracer les axes; indiquer les grandeurs, les unités (entre parenthèses) et les graduations.

2. Tracé de la courbe

Chaque point de mesure est repéré par une croix — Ensuite, si l'allure obtenue est celle d'une droite, on trace cette dernière à la règle en la faisant passer le plus près possible de tous les points.

Attention: avant le tracé, se poser la question suivante : « la droite passe-t-elle par (0;0)? »

Mettre un titre à ce tracé.

3. Équation de la droite

Le coefficient directeur a représente la pente de la droite d'équation : y=ax+b

b est l'ordonnée à l'origine : c'est y pour x = 0.

On peut calculer b en prolongeant la droite et en déterminant l'endroit où elle coupe l'axe des ordonnées.

Pour mesurer le coefficient directeur (ou pente de la droite), on choisit deux points sur la droite. Les deux points choisis ne sont pas nécessairement des points de mesure. Ces deux points ne doivent pas être trop rapprochés afin de ne pas commettre d'erreur trop importante dans le calcul du coefficient directeur a.

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$$

- $-\ a$ est négatif si la droite est décroissante.
- a est positif si la droite est croissante.

 $egin{align*} Remarque: \mbox{en Mathématiques, le coefficient directeur est sans unités car il s'agit d'un rapport de deux grandeurs avec la même unité. En Physique, par contre, <math>y$ et x n'ont généralement pas la même unité donc le coefficient directeur possède bien une unité ($\frac{\mbox{unité de } x}{\mbox{unité de } y}$).

D. Interprétation et conclusion

On commente les résultats obtenus et on essaye d'énoncer la loi physique mise en évidence dans le TP.

On fait une conclusion brève pour résumer l'essentiel du TP ainsi que ce qu'il faut retenir.

1

Un exemple de compte-rendu d'élève

Objectifs

- étudier la relation entre la grandeur y et la grandeur x.

I. Protocole expérimental

Explication de la méthode de mesure.

Schéma

II. Mesures expérimentales

y	0	1	2	3	4	5	6	7	8
x	0,02	1,52	2,95	4,45	6,04	7,50	9,06	10,48	12,00

III. Exploitation des mesures

Équation de la droite :

Calcul du coefficient directeur :

IV. Interprétation

V. Conclusion

Cet élève vient de rendre ce compte-rendu!

- Entourez en vert ce qui manque et ce qui semble curieux.
- Terminez le compte-rendu avec méthode, précision et propreté.

Documents divers pour les Sciences Physiques

L'alphabet Grec

Nom	Majuscule	Minuscule
alpha	α	A
bêta	β	В
gamma	γ	Γ
delta	δ	Δ
epsilon	ϵ	E
zêta	ζ	Z
êta	η	H
thêta	θ	Θ
iota	ι	I
kappa	κ	K
lambda	λ	Λ
mu	μ	M
nu	ν	N
xi	ξ	Ξ
omicron	0	O
pi	π	П
rhô	ρ	P
$_{ m sigma}$	σ	Σ
tau	τ	T
upsilon	v	Υ
phi	φ	Φ
khi (ou chi)	χ	χ
psi	$\frac{\chi}{\psi}$	Ψ
omega	ω	Ω

Multiples et sous-multiples

Facteur multiplicatif	10^{-18}	10-15	10-9	10^{-6}	10^{-3}	10^{-2}	10^{-1}	1	101	102	10^{3}	10^{6}	10^{9}	10^{12}
$Pr\'efixe$	femte	pico	nano	micro	milli	centi	déci		déca	hecto	kilo	méga	giga	téra
Symbole	f	p	n	μ	m	c	d		da	h	k	M	G	T

Unités de volume, de masse et de masse volumique

Volume	Masse	$Masse\ volumique$		
$1 L = 1 dm^3 = 10^{-3} m^3$	$1 \text{ tonne} = 10^3 \text{ kg}$	$1 \ kg.m^{-3} = 1 \ g.L^{-1}$		
$1 cm^3 = 1 mL = 10^{-3} L = 10^{-6} m^3$	$1 \ kg = 10^3 \ g$	$1 \ kg.dm^{-3} = 1g.cm^{-3}$		
$1 m^3 = 10^3 dm^3 = 10^3 L$		$1 \ kg.dm^{-3} = 10^3 \ kg.m^{-3}$		

1

Grandeurs et unités

Grandeur	Notation littérale us uelle	$Unit \epsilon$	Symbole de l'unité
Angle	α	radian	rad
Champ magnétique	B	tesla	T
Charge électrique	q	coulomb	C
Concentration molaire	C, [X]	mole par litre	$mol.L^{-1}$
Concentration	t	gramme par litre	$g.L^{-1}$
massique (ou titre)			
Conductance	G	siemens	S
Conductivité	σ	siemens par mètre	$S.m^{-1}$
Conductivité molaire	$\lambda,~\Lambda$	siemens . mètre carré par mole	$S.m^2.mol^{-1}$
15 : , :1	E 117	1	J
Énergie, travail	E, W	joule	
Énergie de réaction	E_r F	joule par mole	$J.mol^{-1}$
Force		newton	N
Fréquence	<u></u>	hertz	Hz
Intensité du	I	ampère	A
courant électrique			
Longueur	l	mètre	m
Masse	m	kilogramme	kg
Période	T	seconde	s
Pression	p	pascal	Pa
Puissance	P	watt	W
Quantité de matière	n	mole	mol
Résistance	R	ohm	Ω
Température	T	kelvin	K
Température	θ	degré Celsius	K
Temps (durée ou date)	t	seconde	s
Tension électrique	U	volt	V
Vitesse	v	mètre par seconde	$m.s^{-1}$
Volume	V	mètre cube	m^3

Constantes fondamentales

Grandeur	Notation	Valeur	$Unit\'e$
Constante de la gravitation	G	$6,672\ 59.10^{-11}$	$N.kg^{-2}.m^{2}$
Constante de la force de Coulomb	k	$8,987 \ 55.10^9$	$N.m^{2}.C^{-2}$
Vitesse de la lumière dans le vide	c	$2,99792458.10^{-8}$	$m.s^{-1}$
Perméabilité du vide	μ_0	$1,256 \ 64.10^{-6}$	$T.m.A^{-1}$
Charge élémentaire	e	$1,602\ 18.10^{-19}$	C
Masse de l'électron	$m_{ m e}$	$9,109 \ 39.10^{-31}$	kg
Masse du proton	$m_{\scriptscriptstyle \mathrm{p}}$	$1,672\ 623.10^{-27}$	kg
Masse du neutron	$m_{\rm n}$	$1,674\ 929.10^{-27}$	kg
Nombre d'Avogadro	N_A	$6,02.10^23$	mol^-1
Constante du gaz parfait	R	8,314	$J.mol^{-1}.K^{-1}$
Constante de Faraday	$F = N_A \cdot e$	$9,65.10^4$	$C.mol^{-1}$

: : : : : : :	Montage:		Montage:
	_		
	Entrées :		Entrées :
···· ·			
	Voie Y_A : DC		Voie Y_A : DC
	ou CH_1 sensibilité : / DIV AC		ou CH_1 sensibilité :/ DIV AC
 		<u> </u>	
	Voie Y_B : DC		Voie Y_B : DC
· · · · · · · · · · · · · · · · · · ·	ou CH_2 sensibilité : / DIV AC	 	ou CH_2 sensibilité :/ DIV AC
	Mode:		Mode:
			base de temps :/DIV
	base de temps : / DIV	<u> </u> <u> </u> <u> </u>	
	mode XY		$\mod XY$
	Montage:		Montage:
·····:·····:·····:			
	Entrées :	iii	Entrées :
	Voie <i>Y_A</i> :		Voie Y_A :
 	ou CH_1 sensibilité : / DIV AC		ou CH_1 sensibilité :/ DIV AC
		<u> </u>	
	Voie Y_B : DC	 	Voie Y_B : DC
·····i····i····i····i····i			
	ou CH_2 sensibilité : / DIV AC	.	ou CH_2 sensibilité : / DIV AC Mode :
	Mode:		
<u>:</u> <u>:</u> <u>:</u> <u>-</u>	base de temps :/DIV	 	base de temps :/DIV
	mode XY		$\mod XY$
	Montage:		Montage:
	Entrées :	.	Entrées :
	Voie <i>Y_A</i> :		Voie Y_A : DC
····i···i···i···i···i····i	ou CH_1 sensibilité : / DIV AC	[····i···i···i···	ou CH_1 sensibilité:/ DIV AC
	ou chi		ou chi
	Voie Y_B : DC	 	Voie Y_B : DC
······		[·····································	
	ou CH_2 sensibilité : / DIV AC	.	ou CH_2 sensibilité :/ DIV AC
	Mode:		Mode:
[<u>-</u>	base de temps : /DIV	[····i···i···i···i···i	base de temps :/DIV
	mode XY		$\mod XY$

Devoir Surveillé

Devoir Surveillé n $^{\circ}$

20			

1