Formal Languages and Neural Networks on Sequences

Ashish Sabharwal

ICGI 2023 Rabat, Morocco

Recent trend in natural language processing: large language models (LMs)

- Language model: system that predicts next word
- Modern large LMs are implemented as (large) neural networks called a transformers

 Use: Generate text or use as building block for larger systems

Goal: understand the computational power of transformers

1. What kind of computation are transformers doing and where does it fall in the Chomsky hierarchy?

2. What problems can transformers *not* solve? I.e., can we derive **upper bounds**?

Why care about transformers' computational power?

Transformer LMs are impressive; how do they work?

They can output coherent text involving logical inferences ("reasoning")

Can you prove the Myhill-Nerode theorem for me?

Certainly! The Myhill-Nerode theorem is a fundamental result in formal language theory. It provides a necessary and sufficient condition for a language to be regular, based on the concept of equivalence classes. Let's go through the proof together.

Before we begin, let's define some key terms:

- 1. Language: A language is a set of strings over some alphabet.
- Equivalence relation: A relation that partitions a set into disjoint subsets called equivalence classes.
- 3. Equivalence class: A subset of elements in a set that are all equivalent to each other under a given equivalence relation.

Now, let's state the Myhill-Nerode theorem:

Define the parity of a language to be whether the smallest string in a language has even or odd size. Let bloop(L) be the complement of L if L has even parity and L + "bloop" (where + is concatenation) otherwise. Prove that the regular languages are closed under bloop.

To prove that the regular languages are closed under the operation bloop, we need to show that given a regular language L, the language bloop(L) is also regular.

Let's consider the cases separately:

1. If L has even parity:
In this case, the smallest string in L has an even size. The complement of L, denoted as L',

consists of all strings that are not in L. Since L is regular, L' is also regular because regular

languages are closed under complementation. Now, to obtain bloop(L), we need to take

Transformer LMs often reason poorly (despite the hype!)

Prove that a^nb^n cannot be recognized by a pushdown automaton

To prove that the language $L = \{a^n b^n | n \ge 0\}$ cannot be automaton (PDA), we can use the pumping lemma for con lemma states that if L is a context-free language, there exilength) such that any string w in L with $|w| \ge p$ can be divic satisfying the following conditions:

The ChatGPT Lawyer Explains Himself

In a cringe-inducing court hearing, a lawyer who relied on A.I. to craft a motion full of made-up case law said he "did not comprehend" that the chat bot could lead him astray.

- 1. Systematic understanding of when LMs fail
- 2. Which reasoning errors will go away in bigger LMs, and which are a fundamental limitation of any transformer LM?

Main results: expressive power of transformers

- 2. Transformers can only recognize languages in **uniform TC**⁰
 - a. Cannot recognize all regular languages
 - b. Simple problems that break transformers (in theory and in practice)
- 3. Extensions and related results
 - a. Logical upper and lower bounds on transformers (tight characterization open)
 - b. Chain-of-thought adds substantial power to transformers

Tutorial outline

- 1. Part 1: Expressive power of recurrent neural networks (RNNs)
- 2. Part 2: Expressive power of transformers via circuit complexity

Break (5 minutes)

- 3. Part 3: Logical and algebraic characterization, as well as chain-of-thought
- 4. Part 4: Learning biases of transformers

Part 1: Expressive Power of Recurrent Neural Networks

Recurrent neural networks (RNNs)

• Update state vector *h* according to previous state and input token

Non-realtime RNNs

- First model studied in the 1990s
- Can keep computing past the end of input!
- Important parameter: datatype (binary, rational, real)

Non-realtime RNNs with real weights are (too) powerful

(Siegelmann and Sontag, 1994)

- Specifically, they recognize P/poly
 - Includes undecidable problems
 - Use infinite-precision reals to memorize infinite lookup table

⇒ Infinite-precision weights are unrealistic!

Natural idea: real → rational weights

- Unlike real numbers, rational numbers have a finite description
- The RNN will not be able to solve undecidable problems

Non-realtime RNNs with rational weights are Turing-complete (Siegelmann and Sontag, 1995)

- Proof idea: simulate a two-stack
 Turing machine
 - Can use 3 hidden-state neurons for a stack

 Relies on unbounded precision weights and runtime

RNNs with binary weights are equivalent to automata

- Proof idea: Only a finite number of possible hidden state vectors
- Applies with/without realtime

 Closest model to practical RNNs (realtime, bounded-precision) (Siegelmann and Sontag, 1995)

Discussion: standard realtime RNNs ≈ automata

- Turing-completeness requires unbounded precision and runtime
- Empirically, simple RNNs cannot reliably learn beyond regular languages

(Weiss et al., 2018; Delétang et al., 2023, inter alia)

⇒ What about generalized gated RNNs like LSTMs?

Long short-term memory networks (LSTMs)

• Extension of normal RNN with additive update:

(Hochreiter & Schmidhuber, 1997)

Empirically better than normal RNNs, popular before transformers

LSTMs can count (unlike basic RNNs)

(Weiss et al., 2018)

• **Recognizing** aⁿbⁿ:

Use a counter, not a stack

LSTMs can learn to count in practice

(Weiss et al., 2018)

(Variant of simple RNN)

Counting makes LSTMs more powerful than RNNs (but far from Turing-complete)

(Merrill, 2019)

 LSTMs cross-cut context-free within context-sensitive languages

○ ≈ Counter automata

 Further finegrained comparison of RNN variants (cf. Merrill et al., 2020)

⇒ But what about transformers?

Questions?

Part 2: Expressive Power of Transformers

From RNNs to transformers

 $RNNs \rightarrow RNNs w/ attention \rightarrow Transformers$

RNNs with attention

 Predict output based on weighted average of previous states

 Key/value lookup with query based on current state

Transformers ≈ stacks of attention layers

"Attention is all you need"

-Vaswani et al. (2017)

Local processing by feedforward (FF) nets

Transformers as language recognizers

Predict accept or reject after reading the full string

accept/reject

Transformers in the Chomsky hierarchy?

How to derive upper bounds on transformers?

Problem: no recurrent structure in transformers

Transformers (likely) don't fit nicely in Chomsky hierarchy

Instead: place transformer in hierarchy of circuit complexity classes

Both transformers and circuits are doing parallel computation over sequences

Detour: Circuit Complexity

Circuits

- Directed acyclic computation graph
- Input nodes represent bits (0/1)
- Internal nodes: AND, OR, NOT
- Output node (0/1)

Example: evaluate on x = 0.11

Circuit size

- Number of non-input nodes
 - Here, size = 3

Runtime without parallelism

Circuit depth

- Longest path from input to output
 - \circ Here, depth = 2

Runtime with parallelism

Circuit families

- Circuit with *n* inputs is function $C_n: \Sigma^n \to \{0, 1\}$
- Circuit family: sequence of circuits $C_1, C_2, ...$ defining formal language

Aside: uniformity and circuit families

- Nonuniform: Circuit C_n can change arbitrarily with input size n
 - o Allows circuit families to solve some undecidable problems (like real-valued RNNs)

- This issue is fine for now, but will fix later by enforcing uniformity
 - **Uniform:** circuits for different input sizes cannot be too different

AC⁰: constant-depth, poly-size circuit families

Problems parallelizable to very high (constant) degree

- Polynomial size: size(C_n) is polynomial of input sequence length n
- Constant depth: depth(C_n) fixed with respect to input sequence length n

AC⁰ is a very limited complexity class

(Furst et al., 1984)

Classically, many simple languages outside AC^0 :

- PARITY: XOR of sequence of bits

 - 101 \(\) PARITY
- MAJORITY: majority vote of sequence of bits

 - 100 € MAJORITY

Simulating (hard-attention) transformers in AC⁰

Hard Attention Upper Bound (Hao et al., 2022)

Transformers with hard attention can be simulated by constant-depth, poly-size circuit families

I.e., hard-attention transformers only recognize languages in AC⁰

Hard attention:

Implications: hard-attention transformers are weak!

- Hard-attention transformers can't solve PARITY, MAJORITY, etc. outside AC⁰
 - Cannot recognize all regular languages

- But hard attention is strong simplifying assumption
 - Transformers use soft attention to count, like LSTMs (Bhattamishra et al., 2020)
 - Empirically, transformers can recognize MAJORITY!

Recognizing MAJORITY with soft attention

(Pérez et al., 2021)

• Reminder: MAJORITY (majority vote of bits) \notin AC⁰

 Soft attention adds power compared to hard attention

⇒ Upper bound for transformers with soft attention?

Non-Uniform Upper Bound for Soft-Attention Transformers

Log-precision soft-attention transformers

Soft attention (unlike hard attention) relies on taking averages/arithmetic

Log-precision: Arithmetic in transformer gets O(log n) precision on length n

 Good middle ground to avoid unrealistic unbounded precision constructions without making transformers too weak (skipping details)

Result: upper bound on log-precision transformers

Upper Bound (Merrill et al., 2022)

Log-precision transformers can be simulated by poly-size, constant-depth threshold circuit families

I.e., they only recognize languages in TC⁰

What are threshold circuits and TC⁰?

- MAJ gate computes MAJORITY
- TC⁰: poly-size, constant-depth threshold circuits
- \Rightarrow TC⁰ more powerful than AC⁰

Proof sketch: log-precision transformers in TC⁰

Upper Bound (Merrill et al., 2022)

Log-precision transformers can be simulated by poly-size, constant-depth threshold circuit families

Proof overview: simulate each transformer component in TC⁰

- 1. Attention
- 2. Feedforward

Proof sketch: log-precision transformers in TC⁰

- 1. Attention: roughly, a weighted average
 - a. Summation and division are in TC^0

2. **Feedforward:** local function of one state

a. Any boolean function of c log n bits is in AC⁰ \subset TC⁰ (Hao et al., 2022)

Implications: transformers are inherently parallel

- Transformers can only solve problems that can be parallelized to a very high degree (TC⁰)
- Majority/counting are exactly the additional power that soft attention has over hard attention
 - Soft vs. hard attention roughly analogous to LSTM vs. RNN

- Missing: To get concrete problems transformers cannot solve
 - Need a uniform upper bound

Problems Transformers Cannot Solve (Uniform Upper Bound)

Goal: uniform TC⁰ upper bound

- Uniform ⇒ circuits for different input sizes can be constructed by resource-bounded Turing machine
 - \circ Log-space uniform \Rightarrow TM gets log space in input length

 Uniform circuit classes fall in hierarchy with other natural complexity classes

Uniform constant-depth, poly-size threshold circuits

Uniform constant-depth, poly-size circuits

Simulating transformer with uniform threshold circuits

Uniform Upper Bound (Merrill & Sabharwal, 2023a)
Log-precision transformers can be simulated by poly-size, constant-depth, log-space-uniform threshold circuits

I.e., transformers are in log-space-uniform TC⁰

Intuition: transformer is inherently uniform

- Recall: parameters shared across columns
- To build transformer for input size n, simply copy one column n times

Proof sketch: log-precision transformers in uniform TC⁰

1. Attention:

Summation and division are in uniform TC⁰

2. Feedforward:

We prove: boolean function of c log n bits is in uniform $AC^0 \subset \text{uniform } TC^0$ if it is computable in space c log n

Implications: transformers and automata (also RNNs) are (likely) incomparable

- Transformers can clearly recognize non-regular languages (e.g., MAJORITY)
- By our result, transformers cannot recognize all regular languages unless TC⁰ = NC¹
 - \circ Since word problem for S_5 is regular and NC¹-complete (cf. Barrington and Maciel, 2000)

 Intuition: Some automata are too recurrent for transformers

- Log-precision transformers
- Regular languages

Implications: limitations of transformers via circuit complexity hierarchy

Problem transformers cannot solve	Conjecture
Boolean formula evaluation	TC ⁰ ≠ NC ¹
Linear equalities (find x s.t. $Ax = b$)	TC ⁰ ≠ P
Horn satisfiability	TC ⁰ ≠ P
Given CFG + string, does CFG → string?	TC ⁰ ≠ P
Undirected/directed graph connectivity	TC ⁰ ≠ L, NL
Primality testing	PRIMES ∉ L

ChatGPT/GPT-4 can't solve graph connectivity/primes

(Zhang et al., 2023)

LMs "hallucinate" wrong explanations for wrong answers

New takeaways: transformers and circuits

- RNNs/LSTMs recognize regular/counter languages
- Transformers recognize languages in **uniform TC**⁰
 - Can't recognize all regular languages
 - Can't solve graph connectivity, etc. (in theory and in practice)

- Regular languages

Questions?

Break (5 Minutes)

Part 3: Extensions to Circuit View Logical and Algebraic Characterizations of Transformers + Power of Chain of Thought

First-order logic (FO) over strings

• Logical sentences can be used to define sets of strings:

$$\exists i. a(i) \land b(i+1)$$

"Contains bigram ab"

- First order: can quantify over positions in string (like above)
- FO[<] defines the star-free regular languages (McNaughton & Papert, 1971)

Can we capture transformers with some string logic?

Logical Upper Bound (Merrill & Sabharwal, 2023b)

Any language recognized by a log-precision transformer can be defined in first-order logic with majority (FO[M])

Example: defining a^nb^n in FO[M]:

Mi.
$$a(i)$$
 \land Mj. $b(j)$ \land $\neg \exists k$. $[b(k) \land a(k+1)]$

- 1. Most tokens are a
- 2. Most tokens are b
- 3. ba does not occur

Where does this result come from?

Strengthen TC⁰ upper bound for transformers to log-time uniform TC⁰
(as opposed to log-space)

• Log-time uniform $TC^0 = FO[M]$ (Barrington et al., 1990)

Logical characterization: lower bound

Logical Lower Bound (Chiang et al., 2023)

Any language definable in counting logic with + and MOD

(FOC[+; MOD]) can be recognized by a transformer

Open: tight (or tighter) logical characterization of transformers

Algebraic View on Transformers' Expressive Power

Back to transformers and regular languages

• Recall: transformers cannot recognize all regular languages unless $TC^0 = NC^1$

- Q: Can we characterize which automata transformers can simulate?
- A: Yes, via solvability of the syntactic monoid (Liu et al., 2023)

- Log-precision transformers
- Regular languages

Syntactic monoid of an automaton

- Each word has transition function δ : $Q \rightarrow Q$
 - How the word changes the state

$$\delta_{_{\mathrm{b}}} = \{q_{_{1}} \rightarrow q_{_{0}}\}$$

 $\bar{\delta}_{a} = \{q_{0} \rightarrow q_{1}\}$

- Syntactic monoid:
 - Set of all word transition functions
 - Forms monoid under composition

$$\delta_{\mathrm{ab}} = \{q_0 \rightarrow q_0\}$$

Solvable groups and monoids

- **Solvable group:** group can be constructed from Abelian groups via extension
- Solvable monoid: all subgroups are solvable (Liu et al. define slightly differently)

- Intuition: solvable ≈ "almost commutative"
 - Rich theory for decomposing (simplifying) solvable semigroups (Krohn & Rhodes, 1965)

Transformers can't simulate automata with non-solvable syntactic monoids

Solvability Upper Bound (*Liu et al.*, 2023)

Log-precision transformers cannot simulate the state transition sequence for automata with non-solvable syntactic monoids

 Word problem for non-solvable monoids is NC¹-complete: cannot be parallelized!

Linear-width transformers *can* simulate any automaton with a solvable syntactic monoid

Solvability Lower Bound (*Liu et al.*, 2023)

Log-precision transformers with feedforward width o(n) can simulate the transition sequence for automata with solvable syntactic monoids

Note: Allowing width to grow with input is a generous assumption (nonuniform!)

Transformers with Chain of Thought (Preliminary Results)

Chain of thought (CoT): generate tokens before answer

CoT: a way to transcend TC⁰

- TC⁰: constant-depth/lacks recurrence
- CoT adds depth/recurrence

 \Rightarrow How much power beyond TC⁰ do T(n) CoT steps give?

CoT with linear steps can recognize all regular languages

DFA simulation: write current state to CoT

(Merrill & Sabharwal, in progress)

- Chain of thought adds power beyond TC⁰
- Can extend to simulate 2-counter automaton (Turing-complete, but slow)

Upper bound for CoT transformers

CoT Upper Bound (Merrill & Sabharwal, in progress) Transformers with T(n) CoT steps are in SPACE($T(n) + \log n$)

- With log steps: transformers can transcend
 TC⁰ but remain in L (logspace)
- With linear steps: upper bound of context-sensitive languages

New takeaways: extensions to the circuit view

- RNNs/LSTMs recognize regular/counter languages
- Transformers recognize languages in **uniform TC**⁰
 - Can't recognize all regular languages
 - Can't solve graph connectivity, etc. (in theory and in practice)
- Logical upper and lower bounds for transformers tight characterization open
 - Transformers cannot simulate non-solvable automata
 - b. Chain-of-thought adds substantial power to transformers

- Log-precision transformers
- Regular languages

Questions?

Part 4: Learning Biases of Transformers

Expressive power vs. learnability

- Past section: mostly upper bounds on expressive power
 - \circ Upper bounds \Rightarrow not learnable
 - Lower bounds
 ⇒ learnable

⇒ What functions can transformers learn via gradient descent?

Outline: learning biases of transformers

1. Transformers biased to low-sensitivity functions

2. Norm growth biases transformers to sparse functions and simplifies attention

What is sensitivity?

- Robust complexity measure for boolean functions $\{0, 1\}^n \rightarrow \{0, 1\}$
 - Polynomially related to many other notions of complexity
 - Sensitivity Conjecture recently proven by Huang (2019)

- Sensitivity (at input): number of input bits that can be flipped to change output
- Average sensitivity: average across all inputs in $\{0, 1\}^n$

Sensitivity example: AND

- 1. Sensitivity of AND at 01 is 1
 - \circ AND(01) = 0 but AND(11) = 1
 - \circ AND(01) = AND(00)

- 2. What is the sensitivity of AND at 00 and 11?
 - o 00: 0; neither bit changes output when flipped
 - o 11: 2; both bits change output when flipped

- ⇒ Average sensitivity of AND is 1
 - \circ (1+1+0+2)/4

Sensitivity example: PARITY

- On input length n, sensitivity of PARITY is n for any input
- Average sensitivity of PARITY is also n

⇒ PARITY is maximally sensitive

LSTMs and transformers have bias for low sensitivity

(Hahn et al., 2021; Bhattamishra et al., 2022)

- 1. At initialization, LSTMS and transformers have low sensitivity
- 2. After training, lower sensitivity than the function they were trained on
- 3. Transformers have an even stronger low-sensitivity bias than LSTMs

Similar findings for feedforward neural networks (Franco, 2006)

Norm Growth and Saturation

What happens if you train neural nets on (sparse) parity?

(Merrill et al., 2023)

• Initially overfits but magically starts to generalize (without new data!)

• Trend referred to as **grokking** (Powers et al., 2022)

What's going on inside the model during grokking?

(Merrill et al., 2023)

- Grokking coincides with rapid norm growth
- Norm growth ⇒ sparse subnetwork controls network prediction

Norm growth also happens in transformer LMs

(Merrill et al., 2021)

 Norm growth focused at specific weights (Dettmers et al., 2022)

Norm growth simplifies attention in transformers

(Merrill et al., 2021)

 Norm growth ⇒ Attention patterns are either hard or uniform

- Why?
 - Norm growth causes
 transformers to approximate
 saturated attention

Open question: power of saturated attention

- Saturated attention: roughly, hard + uniform
- Norm growth causes transformers to approximate saturated attention
- Saturated attention also in TC⁰ (like soft)
- ⇒ Is there a separation between soft/saturated?

- Log-precision soft attention
- Saturated attention

Insights about learning biases of transformers

1. **Sensitivity:** Transformers are biased to low-sensitivity functions

2. **Norm growth:** Caused by gradient descent, induces sparsity and simplifies attention

New takeaways: learning bias of transformers

- 1. RNNs/LSTMs recognize regular/counter languages
- 2. Transformers recognize languages in **uniform TC**0
 - a. Can't recognize all regular languages
 - b. Can't solve graph connectivity, etc. (in theory and in practice)
- 3. Logical upper and lower bounds for transformers tight characterization open
 - a. Transformers cannot simulate non-solvable automata
 - b. Chain-of-thought adds substantial power to transformers
- Transformers are biased towards low sensitivity and saturation

- Log-precision transformers
- Regular languages

Conclusion and Takeaways

Themes: transformers' learning biases and limits

Part 4: What kinds of functions are transformers biased towards learning?

Part 2 + 3: What are the limits on the languages can transformers recognize?

- Lots of recent progress!
- Rich connections to different areas of TCS

Conclusion

- 1. RNNs/LSTMs recognize regular/counter languages
- 2. Transformers recognize languages in uniform TC⁰
 - a. Can't recognize all regular languages
 - b. Can't solve graph connectivity, etc. (in theory and in practice)
- 3. Logical upper and lower bounds for transformers tight characterization open
 - a. Transformers cannot simulate non-solvable automata
 - b. Chain-of-thought adds substantial power to transformers
- Transformers are biased towards low sensitivity and saturation

- Log-precision transformers
- Regular languages