WILLETTON SENIOR HIGH SCHOOL

YEAR 12 MATHEMATICS METHODS TEST 1 2023

Section 1: Calculator Free

Student Name:				
Circle your teacher's	s name.			
Miss Ahern		Mr Galbraith		
Mrs Gatland		Mrs Sun		
Mark:	/ 26			
Time:	25 mins			
For section 1 of this test:				
No notes.				
No calculators.				
Formula sheet as provided.				
Show working.				

QUESTION ONE (2, 3, 3 = 8 MARKS)

a) Find the second derivative of $y = \frac{1}{2x}$, simplifying your answer

,[2]

b) Differentiate $m = 2n^4(3n-2)^3$ with respect to n, writing your answer in factorised form.

[3]

c) If $f(x) = \frac{2x}{x-1}$ and $g(x) = \sqrt{x}$ determine $(f \circ g)'(x)$, simplifying your answer.

[3]

QUESTION TWO (2, 2 = 4 MARKS)

a) Find the antiderivative of $(3x + 7)^{\frac{4}{3}}$

[2]

b) Determine $\int \frac{8x-16}{\sqrt{x^2-4x+7}} dx$

[2]

QUESTION THREE (3 MARKS)

Determine f(x) if $f'(x) = \frac{2}{(4-2x)^2}$ and f(1) = 2

QUESTION FOUR (3, 2 = 5 MARKS)

An athlete who has been running at a steady speed of 5 m/s, decides to accelerate for a period of 6
seconds. During this 6 second period the acceleration increases at a constant rate from 0 m/s² to 3 m/s²

a) At what speed is the athlete running at the end of the acceleration period?

[3]

b) How far does the athlete travel during the acceleration period?

[2]

QUESTION FIVE (6 MARKS)

For the graph of $y = f(x) = 7 + 4x - x^3 - \frac{1}{4}x^4$, determine the location of any points of inflection, and justify why they are points of inflection.

WILLETTON SENIOR HIGH SCHOOL

YEAR 12 MATHEMATICS METHODS TEST 1 2023

Section 2: Calculator Assumed

Student Name:			
Circle your teacher's	name.		
Miss Ahern	Mr Galbraith		
Mrs Gatland	Mrs Sun		
Mark:	/ 24		
Time:	25 mins		
For section 2 of this test:			
Calculators allowed.			
One A4 single side of notes allowed.			
Show working.			

Formula sheet as provided.

QUESTION SIX (3, 2 = 5 MARKS)

A particle moves along a straight line. Its displacement, x cm from a fixed-point O on the line at time t seconds, is given by $x = \frac{10t}{t^2+1}$.	
a) Determine the velocity of the particle when the acceleration is zero.	[3]
b) At what time(s) is the speed of the particle increasing?	[2]
QUESTION SEVEN (2,2 = 4 MARKS)	
The acceleration 'a' in cm/s ² of a particle P moving in a straight line from a fixed point O at time t second given by $a = 12 - 6t$. The initial velocity of P is equal to -9 cm/s when it is 4 cm to the right of O.	nds is
a) At what time(s) does the particle experience maximum velocity?	[2]
b) When is the position of the particle to the left of the fixed point O?	
	[2]

QUESTION EIGHT (3 MARKS) The side, x, of a cube is measured with 3% error. Estimate, with the aid of the increments formula, the approximate percentage error in the surface area of the cube. **QUESTION NINE (2,1,3 = 6 MARKS)** A television company has 1000 subscribers who are paying \$5 per month. The company can get 100 more subscribers for each \$0.10 decrease in the monthly fee. a) If x represents the monthly fee, show that the number of subscribers(N) in terms of x is -1000x + 6000. [2] b) Find the revenue(R) in terms of x. [1]

c) Find the monthly fee that will yield the maximum revenue and state this maximum revenue.

[3]

QUESTION TEN (4, 2 = 6 MARKS)

A cubic function f has the rule $f(x) = ax^3 + bx^2 + \frac{150}{7}x$. The graph of this cubic function has a stationary point at x = 1 and a point of inflection at x = 3.

a) Find the values of a and b exactly.

[4]

[2]

b) Sketch the graph of y = f'(x) below.

END OF SECTION 2