Division Algorithms: Signed- Magnitude Data

Division Algorithms: Outline

- Division: Shift subtract Methodology
 - 3 ways to represent signed number
 - Signed Magnitude
 - 1's Compliment
 - 2's Compliment
 - Dividend = divisor * quotient + remainder
- Division By Hand: Long Division
- Hardware Algorithm: Restoring Method

Division algorithms--overview

Division with a paper and pencil

We repeatedly

- •Comparison
- •Shifting
- Subtraction

Division on computers: only deals with 0s and 1s

the same procedures, only easier than the decimals

How it is done in binary—an example

Dividend: 111011 (59)

Divisor: 11 (3)

Quotient: 10011 (19)

Remainder: 10 (2)

10011 r 10

11)111011
-11
-11
-11
-11
-101
-11
-10

Division Algorithm: Long Division

- 1. Determine Quotient Sign bit
- 2. Compare divisor with partial remainder
- 3. Subtract divisor from partial remainder if partial remainder > divisor
- 4. Shift divisor to the right
- 5. Repeat 2–4 until visit least significant bit of partial remainder
- 6. Combine the sign result from number 1 with the quotient and remainder

Signed-Magnitude
Dividend = -221 = 111011101
Divisor = 3 = 011

 Q_s Divisor_s XOR Dividend_s = 1 Remainder_s = Dividend_s = 1

Quotient = 11001001 = -73 Remainder = 110 = -2 - 221 = -73 * 3 + -2

Division Algorithm: Restoring Method

- Division Overflow
 - Constraint by register size
 - Dividend = A Q; Divisor = B
 - A > B overflow
 - DVF: divide-overflow flip-flop
- Divide by Zero
 - Take care when check overflow

- 1. Determine Sign for quotient and remainder
- 2. Check for Overflow
- 3. Shift dividend to left
- 4. Check is partial remainder larger than divider
- 5. If larger, subtract divisor from partial remainder and put 1 for quotient
- 6. If smaller, do nothing
- 7. Repeat 3–6 for N times such that N = number of how many bit pattern a register can hold -1
- 8. Combine sign with quotient and remainder

Division Algorithm: Restoring Method

Example

- Ques: Perform Division algorithm on 448/17
- Sol: step 1: sign check, divisor n dividend both hv same sign.
- Step 2: 448- -> 0111000000
 - 172 10001
 - AQ2 dividend24482 0111000000
 - A201110, Q-200000
 - B210001
 - B'+12 01111
 - Step 3: EAPA-BPA+B'+1P01110+01111=11101 CARRY BIT?
 - HERE E=0
 - STEP 4:

- ShI EAQ= 0 01110 00000
- 0 11100 00000

	E	Α	Q	SC
INITIAL	0	01110	00000	101
ShI EAQ	0	11100	00000	
E=0,EA? A-B		01111		
	1	01011	00001	100
ShI EAQ	0	10110	00010	
E=0, EA?A-B		01111		
	1	00101		
E=1, Qn21			00011	011
ShI EAQ	0	01010	00110	
E=0, EA@A-B		01111		
	0	11001		
E=0, EA?A+B		10001		
	1	01010	00110	010
ShI EAQ	0	10100	01100	
E=0, EA? A-B		01111		
	1	00011		
E=1,			01101	001
ShI FAO	Ω	00110	11010	

ans

```
E - discardA- remainder- 00110Q - Quotient- 11010
```

Division Algorithm: Restoring Method

1.	Qs = 1 XC	OR 0 = 1negative	
----	-----------	------------------	--

E 0	A 0 0 0 1 1 0	Q 0 1111 1	1
0	1 1 0	1 1111	I
1 0		0 1111 1 1110 1	
0	1 1 1 0 0 1	0 111	0
$\begin{array}{c} \overline{1} \\ 0 \end{array}$	0 0 0 0 0 1 1 1 0	1 1 1 1 1 1 1 0 1	0
		0 110 1 101 1	1 0
0	1 1 1 0 0 1	0 101	0
§1) 0	0 0 0 0 0 1 1 1 0	1 1 0 1 1 0 1 0 1	0
1	0 0 0 / remainder	0 010	1 quotient

2. Check for Overflow

E = 1 not overflow; restore value

3&4. Shift to the Left Check is partial remainder big enough 6. E =0. Restore original partial remainder

3&4. Shift to the Left

Check is partial remainder big enough E = 1; Qn = 1
3&4. Shift to the Left Check is partial remainder big enough 6. E = 0. Restore original partial remainder

3&4. Shift to the Left Check is partial remainder big enough