

School of Computer Science and Engineering Fall Semester-2024-25

Course Code: CBS3007

Course: Data Mining and Analytics

Alan Thomas

21BBS0115

Github link for the datasets and code-

https://github.com/ALANT535/DATA-MINING-RESOURCES/tree/main/DA2

Aim

To Collect the data set consists of 50 observations about patient enrolment in diet maintenance based on gender, weight, BMI etc (minimum 7 features). Implement a model that will recommend a strict diet is necessary or not for a patient using the naïve Bayes classification algorithm.

LIBRARIES USED: Pandas, Numpy, Scikit Learn

Dataset: https://github.com/ALANT535/DATA-MINING-

RESOURCES/tree/main/DA2/Q1

SECTION 1

Sample Input

Н		G	F	Е	D	С	В	△ A
der_Male	(Needs_Diet	Physical Activity	Age	BMI	Height (cm)	Weight (kg)	Patient ID
TRUE	1	1	0	58	44.3	151	101	1
FALSE	1	1	2	45	26.64	155	64	2
TRUE	1	1	3	24	30.15	191	110	3
FALSE	1	1	1	26	29.9	153	70	4
TRUE	0	0	1	25	23.04	178	73	5
TRUE	0	0	1	29	18.65	167	52	6
TRUE	0	0	0	51	23.18	175	71	7
FALSE	1	1	0	50	27.38	193	102	8
FALSE	0	0	0	65	15.23	183	51	9
FALSE	1	1	0	40	31.25	159	79	10
FALSE	1	1	1	41	25.42	185	87	11
TRUE	0	0	1	54	19.2	163	51	12
FALSE	1	1	2	52	34.88	180	113	13
TRUE	1	1	0	61	28.09	197	109	14
TRUE	1	1	2	57	26.03	164	70	15
FALSE	1	1	0	39	33.27	157	82	16
FALSE	1	1	0	44	40.27	163	107	17
FALSE	0	0	0	52	24	172	71	18
FALSE	1	1	1	18	27.43	189	98	19
FALSE	1	1	0	52	37.37	170	108	20
FALSE	1	1	2	54	33.43	165	91	21
FALSE	1	1	2	64	28.96	194	109	22
FALSE	0	0	1	31	22.95	167	64	23
TRUE	1	1	1	20	28.89	196	111	24
FALSE	1	1	1	18	37.09	173	111	25
FALSE	1	1	1	22	31.35	175	96	26
TRUE	1	1	2	43	36.66	174	111	27
FALSE	1	1	3	31	26.57	194	100	28
TRUE	1	1	0	56	28.81	190	104	29
TRUE	1	1	0	44	35.66	178	113	30
	1	1	0	44	35.66		patient_enro	

Code

```
import pandas as pd
from sklearn import naive bayes
from sklearn import model selection
from sklearn import metrics
from sklearn import preprocessing as pp
import numpy as np
data = pd.read csv('patient enrollment diet.csv')
# encoding
le = pp.LabelEncoder()
data['Physical Activity'] = le.fit transform(data['Physical Activity'])
temp = list(data.columns)
temp[7] = 'Physical Activity'
data.columns = temp
data = pd.get dummies(data, columns=['Gender'], drop first=True)
y = data['Needs Diet']
X = data.drop(['Needs_Diet', 'Patient ID'],axis = 1)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y,
test size=0.25, random state=42)
nb = naive bayes.GaussianNB()
nb.fit(X train,y train)
y_pred = nb.predict(X_test)
print('accuracy score:' , metrics.accuracy_score(y_test, y_pred))
print('precision score:' , metrics.precision_score(y_test, y_pred))
print('recall score:' , metrics.recall_score(y_test, y_pred))
```

print('F1 score:', metrics.f1_score(y_test, y_pred))

Output

SECTION 2

Aim: To Implement K-means method of clustering and use the patient details data set to classify into 3 clusters such as a person is normal, healthy and weak. A person must be clustered as any one of normal/healthy or weak based on their input values.

Libraries: Numpy, Pandas, sklearn, seaborn

Dataset: https://github.com/ALANT535/DATA-MINING-

RESOURCES/tree/main/DA2/Q2

Sample Input

4	А	В	С	D	E	F	G	Н	1	J	K
1	Name	Gender	Age	Weight (kg	Height (cm	BMI	Enrolled in	Diet Type	Activity Le	Creatine	
2	Aarav	Male	25	63.57121	155.5815	26.3	1	Vegetariar	High	1.94	
3	Ananya	Female	17	58.27933	159.3064	23	1	Non-Veget	High	0.65	
4	Neha	Female	31	75.6243	182.3772	22.7	1	Non-Veget	High	5.22	
5	Kavya	Female	25	60.44178	188.2885	17	0	Vegetariar	Low	1.05	
6	Priya	Female	28	84.6623	174.149	27.9	1	Keto	High	2.66	
7	Siddharth	Male	19	74.32142	183.1762	22.2	0	Non-Veget	High	0.83	
8	Aarav	Male	24	82.05739	189.4089	22.9	1	Vegetariar	Moderate	1.51	
9	Simran	Female	28	60.69289	164.2108	22.5	0	Vegetariar	High	1.18	
10	Harsh	Male	24	60.71909	165.1782	22.3	1	Vegan	Low	3.03	
11	Aarav	Male	27	69.04077	152.6475	29.6	0	Non-Veget	High	1.71	
12	Riya	Female	31	60.00051	155.5852	24.8	0	Keto	High	2.7	
13	Kavya	Female	24	89.9064	155.5333	37.2	0	Vegetariar	Low	4.29	
14	Aditya	Male	22	82.72278	166.8864	29.7	1	Keto	Moderate	2.73	
15	Pooja	Female	25	88.98774	184.4312	26.2	1	Vegetariar	High	3.04	
16	Kavya	Female	20	65.2725	156.3263	26.7	1	Vegan	High	0.9	
17	Harsh	Male	20	85.46815	161.9378	32.6	1	Non-Veget	Moderate	0.79	
18	Harsh	Male	33	87.14727	173.9578	28.8	0	Vegetariar	Low	2.7	
19	Aditi	Female	24	57.02738	185.1204	16.6	1	Vegetariar	High	0.93	
20	Priya	Female	34	81.80421	155.1357	34	0	Non-Veget	Moderate	0.65	
21	Neha	Female	34	81.43428	177.5947	25.8	0	Keto	High	1.54	
22	Simran	Female	33	70.80201	159.9162	27.7	1	Vegan	Low	4.04	
23	Aniket	Male	24	55.25168	178.3136	17.4	1	Non-Veget	Low	1.3	
24	Rahul	Male	19	72.99546	161.1391	28.1	0	Non-Veget	High	1.76	
25	Aniket	Male	35	71.54349	181.3848	21.7	0	Non-Veget	Low	1.31	
26	Siddharth	Male	28	69.82525	168.681	24.5	1	Vegetariar	Low	3.01	
27	Kavya	Female	20	63.70297	157.6084	25.6	0	Non-Veget	Moderate	0.65	
28	Rohan	Male	31	63.74323	186.9306	18.2	0	Vegetariar	Low	5.5	
29	Vivaan	Male	24	60.82089	169.4256	21.2	1	Keto	Low	3.4	
30	Siddharth	Male	17	89.48581	160.6081	34.7	0	Vegan	Moderate	4.14	
31	Sakshi	Female	23	65.38477	188.7484	18.4	1	Vegan	Low	1.11	

Code

```
from sklearn import naive_bayes

from sklearn import model_selection

from sklearn import metrics

from sklearn import preprocessing as pp

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

from sklearn.preprocessing import StandardScaler

import numpy as np
```

```
import seaborn as sns
data = pd.read_csv('patient_dataset.csv')
data.head(10)
data = data.drop(['Name' , 'Gender' , 'Age' , 'Enrolled in Diet Plan' , 'Diet Type' ,
'Activity Level'] , axis = 1)
# check missing vlaues
data.any().isna().sum()
data.head()
num_clusters = [i for i in range(2, 7)]
```

def kmeans_inertia(num_clusters, x_vals):

```
inertia = []
 for num in num_clusters:
   kms = KMeans(n_clusters=num, random_state=42)
   kms.fit(x_vals)
   inertia.append(kms.inertia_)
 return inertia
X_scaled = StandardScaler().fit_transform(data)
inertia = kmeans_inertia(num_clusters,X_scaled)
inertia
kmeans3 = KMeans(n_clusters=3, random_state=42)
kmeans3.fit(X scaled)
data['cluster'] = kmeans3.labels_
def give_label(cluster_num):
if cluster_num == 0:
 return 'Weak'
elif cluster_num == 1:
 return 'Normal'
else:
 return 'Healthy'
data['Class'] = data['cluster'].apply(give_label)
```

```
import matplotlib.pyplot as plt
df = data.copy()
features = ['BMI', 'Creatine']
X = df[features]
# Plotting the clusters
plt.figure(figsize=(10, 8))
for cluster in df['cluster'].unique():
  cluster_data = df[df['cluster'] == cluster]
  plt.scatter(cluster_data['BMI'], cluster_data['Creatine'], label=f'Cluster
{cluster}', s=50, alpha=0.6)
plt.xlabel('BMI')
plt.ylabel('Creatine')
plt.title('Clusters Visualization with BMI and Creatine')
plt.legend()
plt.grid(True)
plt.show()
centroids = kmeans3.cluster_centers_
print(centroids)
```

Output:

Clusters Visualization with BMI and Creatine

SECTION 3

Aim: Implement the ID3 algorithm on the dataset to recommend the decision tree to classify the data.

Libraries Used: Numpy, Pandas, sklearn, matplotlib, seaborn

Dataset: https://github.com/ALANT535/DATA-MINING-

RESOURCES/tree/main/DA2/Q3

Sample Input

road_transport_records

Road ID	Length (km)	Number of Bends	Traffic Volume	Accident Risk
SH12	50	25	18000	High
NH48	250	26	5000	High
NH27	140	30	6000	High
NH31	75	33	22000	Very High
NH48	80	8	22000	Very High
NH37	60	55	28000	Extreme
NH31	290	33	3200	Very High
SH2	300	15	12000	Moderate
SH38	600	33	27000	Extreme
NH31	260	10	20000	High
NH61	120	12	9000	Moderate
SH50	250	25	13000	High
NH27	600	31	30000	Extreme
SH17	80	38	16000	Very High
NH16	350	50	28000	Extreme
NH75	275	22	40000	Extreme
NH58	300	28	16000	High
SH10	210	18	35000	Extreme
NH75	260	12	20000	High
SH10	320	19	5000	Moderate
NH31	500	26	23000	Very High
SH38	75	17	2000	Moderate
NH1	190	17	15000	Moderate
SH1	75	38	9000	Very High
NH9	350	14	17000	High
SH25	130	38	40000	Extreme

Code and Output Code

```
Code:
import pandas as pd
import math
import matplotlib.pyplot as plt
import networkx as nx
from networkx.drawing.nx agraph import
graphviz_layout
df =
pd.read_csv(r"DA2\Q3\road_transport_record
s.csv")
def calculate_entropy(data, target_column):
 total_rows = len(data)
 target_values =
data[target_column].unique()
 entropy = 0
 for value in target_values:
   value count =
len(data[data[target_column] == value])
   proportion = value_count / total_rows
   entropy -= proportion *
math.log2(proportion) if proportion != 0 else 0
 return entropy
def calculate information gain(data, feature,
target_column, entropy_outcome):
```

```
unique values = data[feature].unique()
 weighted entropy = 0
 for value in unique values:
   subset = data[data[feature] == value]
    proportion = len(subset) / len(data)
   weighted entropy += proportion *
calculate_entropy(subset, target_column)
 information gain = entropy outcome -
weighted_entropy
 return information gain
def id3(data, target_column, features):
 if len(data[target column].unique()) == 1:
    return data[target column].iloc[0]
 if len(features) == 0:
   return data[target column].mode().iloc[0]
 entropy_outcome = calculate_entropy(data,
target_column)
 best feature = max(features, key=lambda x:
calculate_information_gain(data, x,
target_column, entropy_outcome))
 tree = {best feature: {}}
 features = [f for f in features if f !=
best_feature]
 for value in data[best_feature].unique():
   subset = data[data[best_feature] == value]
   subtree = id3(subset, target_column,
features)
   tree[best_feature][value] = subtree
 return tree
```

```
def plot tree(tree, parent name, graph,
depth, max_depth):
 if depth > max_depth:
   return
 if isinstance(tree, dict):
   feature = list(tree.keys())[0]
   for value, subtree in tree[feature].items():
     node_name = f"{feature} = {value}"
     graph.add_node(node_name)
     graph.add_edge(parent_name,
node name)
     plot_tree(subtree, node_name, graph,
depth + 1, max_depth)
 else:
   leaf_name = f"Accident Risk: {tree}"
   graph.add_node(leaf_name)
   graph.add_edge(parent_name,
leaf_name)
def visualize_decision_tree(decision_tree,
max depth=3):
 graph = nx.DiGraph()
 root_name = list(decision_tree.keys())[0]
 graph.add_node(root_name)
 plot_tree(decision_tree, root_name, graph,
0, max_depth)
 plt.figure(figsize=(20, 15))
 pos = nx.spring_layout(graph, seed=42,
k=0.5, iterations=50)
```

```
nx.draw(graph, pos, with labels=True,
node_size=3500, node_color="lightblue",
font size=12, font weight="bold",
arrows=True, connectionstyle='arc3,rad=0.1')
 plt.title("Decision Tree Visualization")
 plt.show()
features = ['Length (km)', 'Number of Bends',
'Traffic Volume']
decision_tree = id3(df, 'Accident Risk',
features)
print("\nGenerated Decision Tree using ID3
algorithm:")
print(decision_tree)
print("\n\nNow printing it-")
visualize_decision_tree(decision_tree)
```

Output:

PS C:\Users\LENOVO\Documents\Important_documents\VIT\Semesters\sem7\DATA MINING\DA> python -u "c:\Users\LENOVO\Documents\Important_do cuments\VIT\Semesters\sem7\DATA MINING\DA\DA2\Q3\ID3_algo_tree.py"

Generated Decision Tree using ID3 algorithm:
{'Traffic Volume': {18000: 'High', 5000: {'Length (km)': {250: 'High', 320: 'Moderate', 180: 'Moderate'}}, 6000: 'High', 22000: 'Very High', 28000: 'Extreme', 32000: 'Extreme', 3200: 'Very High', 12000: 'Moderate', 27000: 'Extreme', 20000: 'High', 9000: {'Length (km)': {120: 'Moderate', 75: 'Very High', 320: 'Low', 150: 'Very High'}}, 13000: 'High', 3000: 'Extreme', 15000: 'Extreme', 35000: 'Extreme', 23000: 'Very High', 2000: 'Moderate', 15000: {'Length (km)': {190: 'Moderate', 600: 'Extreme', 150: 'High'}}, 17000: 'High', 19000: 'High', 10000: {'Length (km)': {400: 'Low', 190: 'High', 500: 'Extreme'}}, 4500: 'Very High', 200: 'High', 10000: 'High', 10000: 'High', 10000: 'High', 1000: 'Moderate', 25000: 'Very High', 14000: 'Moderate', 25000: 'Very High', 14000: 'Moderate', 25000: 'Very High', 14000: 'Moderate'}}

RESULT:

Created the Decision Tree based on the concept of ID3 algorithm.

XXXXXXXXXXXXX