Exercise 1. Why was there a dispute over whether Newton discovered calculus?

Exercise 2. What were Leibniz' contributions to calculus? How did he think about calculus?

Exercise 3. Who introduced the word "function"?

Exercise 4. What is an algebraic function? What is a transcendental function? How do they differ?

Exercise 5. What is a "closed-form" expression?

Exercise 6. According to the textbook, "the search for closed forms was a wild goose chase." Give an example of an algebraic function that does not have an algebraic anti-derivative.

Exercise 7. *Sketch a proof of the Fundamental Theorem of Calculus.*

Leibniz (1702) was stymied by the integral $\int \frac{dx}{x^4+1}$, because he did not spot the factorization of x^4+1 into real quadratic factors.

Exercise 8 (8.6.1). Writing $x^4 + 1 = x^4 + 2x^2 + 1 - 2x^2$ or otherwise, split $x^4 + 1$ into real quadratic factors.

Exercise 9 (8.6.2). Use the factors in Exercise 8.6.1 to express $\frac{1}{x^4+1}$ in the partial fraction form

$$\frac{x+\sqrt{2}}{q_1(x)} + \frac{x-\sqrt{2}}{q_2(x)}$$

where $q_1(x)$ and $q_2(x)$ are real quadratic polynomials.

Exercise 10 (8.6.3). Without working out all the details, explain how the partial fractions in Exercise 8.6.2 can be integrated in terms of rational functions and the \tan^{-1} function.