Rime®

LoRaWAN-Node

锐米 LoRaWAN 终端说明书

文档版本

版本	日期	描述
1.0	2017-07-28	为 LoRaWAN 终端提供操作说明
1.1	2017-08-31	添加"产品实物"和"LoRaWAN简介"
1.2	2017-09-08	切换频率到 CN470-510 80-87 Sub-Bands
1.3	2017-09-19	添加动态功耗图

目录

文档版本	1
产品实物	3
产品型号	3
产品特点	3
功能描述	4
LoRaWAN 简介	5
系统框图	6
尺寸与引脚	7
1.0 电气特性	7
1.1 最大工作条件	7
1.2 整体电气参数	8
1.3 模块接口电气特性	8
1.4 模块引脚定义	9
1.5 射频参数	9
2.0 接口定义	10
2.1 UART 通信时序	10
2.2 UART 通信参数	11
2.3 UART 数据帧定义	12
2.4 UART 数据帧解析	14
2.5 UART 通信实例	14
3.0 无线通信特性	15
3.1 空中速率档位	15
3.2 速率与接收灵敏度	15
3.2 通信频率	16
4.0 动态功耗	17
附录 A 常见问题与解决办法	18
附录 B 终端休眠 1.6uA 功耗测试(实物拍摄)	19

产品实物

产品型号

产品特点

- 完全支持 LoRaWAN 协议;
- 超长通信距离,视距可达 15km,空旷可达 5km(实测);
- 超低功耗,休眠低至 1.6uA,特别适合电池供电的产品;
- 精简指令,即插即用,无需配置,免维护;
- 数据透传,通过 UART 与用户系统对接;
- 基于 LoRa TM 扩频调制技术,高达 156dB 的 Link budget;
- 内嵌高效强大的 Contiki 物联网操作系统;
- 8 引脚简洁封装模块,符合业界尺寸与接口标准;

功能描述

锐米 LoRaWAN 终端(以下简称终端)是锐米通信提供的 LPWAN(Low Power Wide Area Network, 低功耗广域网络)产品,结合锐米 LoRaWAN 网关和锐米 LoRaWAN 云服务器可以快速搭建物联网系统。

终端完全支持 LoRAWAN Class A 协议(Calss A 以其"双向通信,超低功耗" 占据 80% 以上应用; 当 LoRaWAN 1.1 协议确定后,将升级支持 Class B 协议)和 Class C 协议,适合频段为 CN470-510 (中国地区)。

基于 LoRa ™扩频调制技术,终端具备超长通信距离,空旷实测距离为 5km,特别适合于户外通信场景,如:智能工业、智慧农业,环境监测,智能楼宇,智能停车和管道传输等。

基于超低功耗设计,终端休眠功耗低至 1.6uA,特别适合电池供电的产品。典型的抄表应用中,2 节 5 号电池可以有效工作 10 年。

上电即可工作,没有任何网络配置,无需任何网络维护,极大降低用户的使用复杂度和维护成本。

内嵌多种无线通信健壮性技术,智能解决:通信碰撞、微弱信号、外界干扰、断网继连等挑战,提供一个长期稳定运营的物联网系统。

LoRaWAN 简介

LoRa 是一种无线扩频通信技术, LoRaWAN 是基于 LoRa 的通信协议。

如上图所示,LoRaWAN 定义了: Node、Gateway 和 Server, 共 3 个实体;同时,定义了实体之间的通信接口;为保证全球厂商产品的"互联互通",公开了LoRaWAN 协议(目前,最新版本为 V1.0.2)和各国家(地区)频段。

LoRaWAN 以其"标准、开放、免费和安全",已经成为物联网的行业标准之一;相信,它会像 30 年前的 IP 协议一样成功。

了解 LoRaWAN 更多知识,请链接: http://www.rimelink.com/col.jsp?id=107

系统框图

尺寸与引脚

1.0 电气特性

终端的不同电气特性列出如下,此外详细信息和其他参数范围也可应要求提供。

1.1 最大工作条件

参数项目	测试条件	最小值	典型值	最大值	单位
存储温度		-40	-	+85	${\mathbb C}$
运行温度		-20	-	+70	$^{\circ}$
ESD				8000	V

1.2 整体电气参数

参数列表	测试条件	最大值	典型值	最小值	单位
供电电压		3.6	3.3	2.4	V
休眠功耗	RTC 开启		1.6		μA
电流消耗	射频接收,	47.0	10	10.7	
接收模式	MCU 运行	17.3	13	12.7	mA
电流消耗	射频最大发送功率	00.0	00	07.7	
发送模式	(17dBm),MCU 运行	92.3	88	87.7	mA
MCU 工作频率			16		MHz

1.3 模块接口电气特性

参数列表	测试条件	最小值	典型值	最大值	单位
输出电压(高级)	I = -3mA	VDD-0.7	-	-	V
输出电压(低级)	I = -3mA	-	-	0.6	V
输入电压(高级)	VDD=1.8 到 2.0V	0.7×VDD	-	-	V
	VDD=2.0 到 3.6V	VDD-0.6	-	-	V
* > + = //*/	VDD=1.8 到 2.0V	-	-	0.3×VDD	V
输入电压(低级)	VDD=2.0 到 3.6V	-	-	0.6	V
复位延时	VDD=1.8 到 3.6V	7	-	15	ms
UART 波特率		-	115200	-	bps

1.4 模块引脚定义

引脚号	引脚名称	引脚类型	描述
1	VCC	Supply	3.3V 电源
2	GND	Supply	电源地
3	RXD	DIN/OUT	UART 接收
4	TXD	DIN/OUT	UART 发送
5	CON1	DIN/OUT	UART 输入信号端口
6	CON2	DIN/OUT	UART 输出信号端口
7	CON3	DIN/OUT	保留
8	RST	DIN/OUT	复位引脚①
Α	1	1	固定引脚 1
В	1	1	固定引脚 2
IPEX	1	1	焊接天线使用

①RST 引脚是低电平复位,低电平维持时间至少为 300ns。在终端电路设计中, RST 已接 3.3V 上拉,即高电平,这样系统可以正常工作。

1.5 射频参数

参数列表	测试条件	最小值	典型值	最大值	单位
频率范围		410	470	525	MHz
RF 发射功率	470 MHz	-	17	20	dBm
调制方式	扩频调制				
发射频率 vs 温度		-	±7	-	kHz
发射功率 vs 温度	-20 到+70℃	-	±0.5	-	dB

2.0 接口定义

终端通过 UART 口与用户嵌入式系统(以下简称用户系统)对接,典型的硬件连接如图 2-1 所示。

LoRaWAN Node DEMO direction direction configure name name VCC VCC GND GND RXD TXD function function TXD function RXD function CON 1 input GPIO1 output output, push-pull, low level CON2 output GPI02 input input, floating CON3 GPI03 input, pull-up RST input GPI04 output output, push-pull, high level

图 2-1 用户系统与终端硬件连接实例

终端休眠低功耗能降到 **1.6uA**, 这是硬件的极限! 因为: MCU 带 RTC 的休眠 =1.4uA, RF 的休眠=0.2uA。(测试实物图,请参考附录 C)

同时,它还需要"用户系统"的配合,即将"用户系统"的引脚,配置和上图 **DEMO**系统相同。

2.1 UART 通信时序

终端是超低功耗产品,它大部分时间都处于休眠状态,因此用户系统需要先"唤醒"终端再发送 UART 数据帧;同理,考虑用户系统也可能处于休眠状态,终端在发送 UART 数据帧前也需要"唤醒"用户系统,时序如图 2-2 所示。

用户系统通过置高 P5 引脚可以唤醒终端,延时一段时间(最小 100 微秒,最大 5000 微秒,给终端响应中断和准备 UART 接收),用户系统即可从 UART 口传输数据帧;当 UART 数据帧发送完毕后,用户系统再将 P5 拉低。

终端的 P6 引脚平时处于高电平, 当终端需要发送数据帧时, 它先将 P6 拉低(唤醒用户系统), 延时 100 微秒(用户系统响应中断和准备 UART 接收), 数据帧开始从 UART 端口输出; 当 UART 数据帧发送完毕, 终端再将 P6 置高。

图 2-2 终端 UART 通信时序

2.2 UART 通信参数

通信介质

UART 口: 115200 波特率、8 位数据位、1 位停止位、无校验。

通信模式

设置和读取参数遵循主从方式,用户系统为主,终端为从。通信由用户系统发起,终端根据相应的命令进行响应,如图 2-3 所示。

图 2-3 主从模式

当终端接收唤醒通信数据帧时,它以"异步方式"发送给用户系统,如图 2-4 所示。

图 2-4 异步方式

2.3 UART 数据帧定义

用户系统与终端通信帧采用变长格式,如图 2-5 所示。大部分设备可以很好地处理以"回车符"结尾的数据帧,协议中的 Tail 等于 0x0D(回车符)。终端的协议帧定义,详见表 2-1。

图 2-5 用户系统与终端通信数据帧格式

表 2-1 数据帧定义

				ij
帧含义	Туре	数据域	字	W. 147 677 677
			节	数据解释
读取软件版本	0.04			,
(User->Node)	0x01	1	0	
回应软件版本	0,404	软件版本号	20	"RNDU470RA V3.0.0 17-04-02,
(Node->User)	0x81	(字符串,以'\0'结尾)	39	ID=333236470127004E"
主动上报数据	000	实际发送数据		数据帧(十六进制): 12 34
(User->Node)	0x02	最大字节=51 注①	2	发送 2 字节数据: 0x12 0x34
回应发送结果	0x82	发送结果	5	"TX OK"
(Node->User)	UXOZ	(字符串,以'\0'结尾)	8	"TX too large,MAX is 51"
接收唤醒数据	0,,00	公厅华 泽 粉 挹	2	数据帧(十六进制): 12 34
(Node->User)	0xC0	实际发送数据	2	接收 2 字节唤醒数据: 0x12 0x34

注①:如下表所示,按 LoRaWAN 协议,数据帧有效负载长度是变化的,从 51~222 字节。为简化使用,同时考虑 LoRa 低速率的特性,我们使用 51 字节做为上限。

DataRate	M	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6:15	Not defined			

Table 36: CN470-510 maximum payload size

注 2: CS(Check Sum)校验和,即对数据进行代数和运算,取低 8 位作为校验和结果。如:对 0x3C 0x02 0x04 0x12 0x34 0x56 0x78 共 7 个字节计算,得到代数和 0x156, CS 等于 0x56。

注 3: 用户通过"读取终端软件版本号"可以快速检验 UART 是否正确连接,该数据帧为: 0x3C 0x01 0x00 0x3D 0x0D。

2.4 UART 数据帧解析

为简化系统设计,我们强烈建议您采用"状态机"来解析 UART 数据帧,并且 把解析工作放在 ISR (中断服务程序) 完成,仅当接收到最后一个字节 (0x0D) 时,再将整个数据帧提交给进程处理。该解析状态机的原理如下图 2-6 所示:

图 2-6 用户系统接收通信数据帧状态机

接收数据帧设计原则:

1. 保持接收数据全貌; 2. 尽可能地简单; 3. 具备高度容错能力。

备注:

C: 串口输入字节; Cnt: 当前数据域的累计个数。

2.5 UART 通信实例

为帮助用户更好地理解终端的 UART 通信,我们设计了 Demo 系统,介绍了该系统的设计原理并公布源代码,请链接:

http://www.rimelink.com/nd.jsp?id=43&_np=105_315

3.0 无线通信特性

3.1 空中速率档位

如下表所示,终端支持 6 种通信速率。速率越高,有效通信距离越近;速率越低,有效通信距离越远。

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470

为简化使用,终端的通信速率由服务器动态设置,它的规律是: 离网关近,信号好的终端,采用高速率; 离网关远,信号弱的终端,采用低速率。这称之为 ADR (Adaptive Data Rate, 速率自适应)技术。

3.2 速率与接收灵敏度

SF	Data rate (bit/sec)	Sensitivity (dBm)
7	5469	-130.0
8	3125	-132.5
9	1758	-135.0
10	977	-137.5
11	537	-140.0
12	293	-142.5

3.2 通信频率

终端工作在以下 8 个通道,这是 CN470-510 最佳频段,详情请参考《中国部署 LoRaWAN 最佳频段》 http://www.rimelink.com/nd.jsp?id=48#_np=107_316

CN490_80_87_Bands								
信道 1 2 3 4 5 6 7 8								
上行信道	486.3	486.5	486.7	486.9	487.1	487.3	487.5	487.7
下行信道	506.7	506.9	507.1	507.3	507.5	507.7	507.9	508.1

附录: RX2 窗口固定通过 505.3Mhz / DR0 下发。

LoRaWAN Class A: RX1 和 RX2 时序,如下图所示。

LoRaWAN Class C: RX1 和 RX2 时序,如下图所示。

4.0 动态功耗

注 1: AppDelay 为空闲时间,由集成 LoRaWAN node 的应用产品决定注 2: 如果在 RX1 窗口,Node 接收到 Downlink; 那么,在 RX2 窗口,Node 将直接进入 Sleep

上图显示了终端的动态功耗,其中: Tjoin-requet, Tjoin-accept 的时长依赖"通信速率"; Ttx, Trx1, Trx2 的时长依赖"通信速率"和"数据长度"。 这些典型值如下表所示

SF	Tjoin-request	Tjoin-accept	Ttx(ms) (FRMPayload= N bytes)			Trx1(ms)
	(ms)	(ms)	N = 12	N = 25	N = 50	
SF7	71.94	46.34	61.7	82.18	118.02	41.22
SF8	113.15	92.67	113.15	143.87	215.55	72.19
SF9	205.82	164.86	205.82	267.26	390.14	144.38
SF10	370.69	329.73	411.65	493.57	698.37	288.77
SF11	823.3	659.46	823.3	1069.06	1478.66	577.54
SF12	1482.75	1155.07	1482.75	1974.27	2793.47	991.23

附录 A 常见问题与解决办法

问题一:无法正常通信。

请检查天线是否正确安装且匹配。

通信距离是否超过范围。

请检查网关是否正确上电。

问题二:通信质量差,距离近且丢包率高。

请检查天线是否正确安装且匹配。

是否接收环境恶劣,如:障碍物十分密集、有强干扰源。

是否有同频干扰。

附录 B 终端休眠 1.6uA 功耗测试 (实物拍摄)

Rime®

LoRaWAN-Node

销售与服务

公司名称:长沙市锐米通信科技有限公司

公司网站: www.rimelink.com

产品销售: <u>sales@rimelink.com</u> 0731-82231246 技术支持: <u>support@rimelink.com</u> 0731-82236164

公司地址:长沙市普瑞大道 278 号 36 座 1403