Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5º edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

Interação entre roteamento

<u>e repasse</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Abstração de grafo

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Grafo: G = (N,E)

N = conjunto de roteadores = { u, v, w, x, y, z }

 $E = conjunto de enlaces = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Abstração de grafo: custos

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- c(x,x') = custo do enlace (x,x')
 - p. e., c(d,f) = 5
- custo poderia ser sempre 1, ou inversamente relacionado à largura ou inversamente relacionado ao congestionamento

Custo do caminho $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Pergunta: Qual é o caminho de menor custo entre a e f?

<u>algoritmo de roteamento:</u> algoritmo que encontra o caminho de menor custo

Classificação do algoritmo de roteamento

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

informação global ou descentralizada?

global:

- todos os roteadores têm topologia completa, informação de custo do enlace
- algoritmos de "estado do enlace" (Link State - LS)

descentralizada:

- roteador conhece vizinhos conectados fisicamente, custos de enlace para vizinhos
- processo de computação iterativo, troca de informações com vizinhos
- algoritmos de "vetor de distância" (Distance Vector - DV)

Estático ou dinâmico?

estático:

rotas mudam lentamente com o tempo

dinâmico:

- rotas mudam mais rapidamente
 - atualização periódica
 - em resposta a mudanças no custo do enlace

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

Algoritmo de roteamento de estado do enlace

REDES DE COMPUTADORES E A INTERNET 5¹ edição

Uma Abordagem Top-Down

algoritmo de Dijkstra

- topologia e custos de enlace conhecidos de todos os nós
 - realizado por "broadcast de estado do enlace"
 - todos os nós têm a mesma informação
- calcula caminhos de menor custo de um nó ("origem") para todos os outros nós da tabela de repasse
- iterativo: após k iterações, sabe caminho de menor custo para k destinos

notação:

- C(x,y): custo do enlace do nó x até y; = ∞ se não forem vizinhos diretos
- D(v): valor atual do custo do caminho da origem ao destino v
- p(v): nó predecessor ao longo do caminho da origem até v
- N': conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Algoritmo de Dijkstra

REDES DE COMPUTADORES E A INTERNET 5' edição

```
1 Inicialização:
   N' = \{u\}
   para todos os nós v
    se v adjacente a u
       então D(v) = c(u,v)
5
       senão D(v) = ∞
6
  Loop
    acha w não em N' tal que D(w) é mínimo
10 acrescenta w a N'
    atualiza D(v) para todo v adjacente a w e não em N' :
      D(v) = \min(D(v), D(w) + c(w,v))
12
    /* novo custo para v é custo antigo para v ou custo conhecido
   do caminho mais curto para w + custo de w para v */
15 até todos os nós em N'
```

Algoritmo de Dijkstra: exemplo

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Eta	.pa	N'	D(b),p(b)	D(d),p(d)	D(c),p(c)	D(e),p(e)	D(f),p(f)
	0	a	2,a	5,a	1,a	∞	∞
	1	ac ←	2,a	4,c		2,c	∞
	2	ace←	2,a	3,e			4,e
	3	aceb 🗸		3,e			4,e
	4	acebd 🗲					4,e
	5	acebdf ←					

Algoritmo de Dijkstra: exemplo (2)

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

árvore resultante do caminho mais curto a partir de u:

tabela de repasse resultante em u:

destino	enlace
b	(u,b)
C	(u,c)
d	(u,c)
е	(u,c)
f	(u,c)

Algoritmo de Dijkstra, discussão

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

complexidade do algoritmo: n nós

- 🗖 cada iteração: precisa verificar todos os nós, w, não em N
- n(n+1)/2 comparações: O(n²)
- implementações mais eficientes possíveis: O(nlogn)

oscilações possíveis:

p. e., custo do enlace = quantidade de tráfego transportado

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5³ edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

Algoritmo de vetor de distância

Uma Abordagem Top-Down

Equação de Bellman-Ford (programação dinâmica)

defina

d_x(y) : = custo do caminho de menor custo de x
 para y

depois

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

onde min assume todos os vizinhos v de x

Exemplo de Bellman-Ford

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

claramente, $d_b(f) = 5$, $d_c(f) = 3$, $d_d(f) = 3$

equação B-F diz:

$$d_{u}(z) = min \{ c(a,b) + d_{b}(f), c(a,c) + d_{c}(f), c(a,d) + d_{d}(f) \}$$

$$= min \{2 + 5, 1 + 3, 5 + 3\} = 4$$

nó que alcança mínimo é o próximo salto no caminho mais curto → tabela de repasse

Algoritmo de vetor de distância

REDES DE COMPUTADORES E A INTERNET 5º edição

- $\Box D_{x}(y) = estimativa do menor custo de x para y$
- □ nó x sabe custo de cada vizinho v: c(x,v)
- □ nó x mantém vetor de distância $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- nó x também mantém vetor de distância de seus vizinhos
 - para cada vizinho v, x mantém $\mathbf{D}_{v} = [\mathbf{D}_{v}(y): y \in \mathbb{N}]$

Algoritmo de vetor de distância (4)

Uma Abordagem Top-Down

ideia básica:

- de tempos em tempos, cada nó envia sua própria estimativa de vetor de distância aos vizinhos
- assíncrono
- quando um nó x recebe nova estimativa DV do vizinho, ele atualiza seu próprio DV usando a equação de B-F:

$$D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$$
 para cada nó $y \in N$

sob condições modestas, naturais, a estimativa $D_x(y)$ converge para o menor custo real $d_x(y)$

Algoritmo de vetor de distância (5)

iterativo, assíncrono: cada iteração local causada por:

- mudança de custo do enlace local
- mensagem de atualização do DV do vizinho

distribuído:

- cada nó notifica os vizinhos apenas quando seu DV muda
 - vivinhos, então, notificam seus vizinhos, se necessário

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

Cada nó:

espera (mudança no custo do enlace local ou msg do vizinho)

recalcula estimativas

se DV a qualquer destino tiver mudado, notifica vizinhos $D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$ REDES DE = $min\{2+0, 7+1\} = 2$ COMPUTA

tabela nó x

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Uma Abordagem Top-Down

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

		$\infty \setminus / \setminus$
tabela nó	<u>Z</u>	
	custo	para\/ \/
	ху	z
V	~ ~	\sim

X

 $\begin{array}{c|cccc}
x & \infty & \infty & \infty \\
y & \infty & \infty & \infty \\
\hline
z & 7 & 1 & 0
\end{array}$

tempo

Vetor de distância: mudanças de custo do enlace

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

mudanças de custo do enlace:

- nó detecta mudança de custo no enlace local
- atualiza informação de roteamento, recalcula vetor de distância
- se DV mudar, notifica vizinhos

"boas notícias correm rápido" no tempo t_0 , y detecta a mudança do custo do enlace, atualiza seu DV e informa aos seus vizinhos.

no tempo t_1 , z recebe a atualização de y e atualiza sua tabela. Calcula um novo custo mínimo para x e envia seu DV aos vizinhos.

no tempo t_2 , y recebe a atualização de z e atualiza sua tabela de distância. Menores custos de y não mudam, e daí y não envia qualquer mensagem a z.

Vetor de distância: mudanças de custo do enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

mudanças de custo do enlace:

- \square antes da mudança temos: Dy(x) = 4 e Dz(x) = 5
- y detecta a mudança e atualiza Dy(x)=6 e repassa para z

- y atualiza Dy(x)=8 e repassa para z
- **□**

solução:

- ao repassar vetor de distância aos vizinhos, se utiliza o vizinho como rota, mude valor para infinito
 - y detecta a mudança e atualiza Dy(x)=6, mas repassa
 Dy(x)=∞ para z
- z atualiza Dz(x)=50 e repassa para y
- \Box y atualiza Dy(x)=51 e repassa Dy(x)=∞ para z

slide 1 não ocorre mais alteração em z

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Comparação dos algoritmos LS e DV

complexidade da mensagem

- LS: com n nós, E enlaces, O(nE) mensagens enviadas
- DV: troca apenas entre vizinhos
 - tempo de convergência varia

velocidade de convergência

- LS: algoritmo O(nlogn) requer O(nE) mensagens
 - pode ter oscilações
 - **DV**: tempo de convergência varia
 - podem ter loops de roteamento
 - problema da contagem até o infinito

REDES DE COMPUTADORES E A INTERNET 5¹ edição

Uma Abordagem Top-Down

robustez: o que acontece se roteador der defeito?

LS:

- onó pode anunciar custo do *enlace* incorreto
- cada nó calcula apenas sua própria tabela

DV:

- o nó DV pode anunciar custo do caminho incorreto
- tabela de cada nó usada por outros
 - erro se propaga pela rede

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

Roteamento hierárquico

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

nosso estudo de roteamento até aqui - o ideal:

- todos os roteadores idênticos
- rede "achatada"
- ... não acontece na prática

escala: com 200 milhões de destinos:

- não pode armazenar todos os destinos nas tabelas de roteamento!
- troca de tabela de roteamento atolaria os enlaces!

autonomia administrativa

- Internet = rede de redes
- cada administrador de rede pode querer controlar o roteamento em sua própria rede

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- roteadores agregados em regiões, "sistemas autônomos" (AS)
- roteadores no mesmo AS rodam o mesmo protocolo de roteamento
 - protocolo de roteamento "intra-AS"
 - roteadores em ASes diferentes podem executar protocolo de roteamento intra-AS diferente

roteador de borda

Enlace direto com roteador em outro AS

ASes interconectados

REDES DE COMPUTADORES E A INTERNET 5' edição

- tabela de repasse configurada por algoritmo de roteamento intra e inter-AS
 - intra-AS define entradas para destinos internos
 - inter-AS & intra-AS definem entradas para destinos externos

Tarefas inter-AS

- suponha que roteador no AS1 recebe datagrama destinado para fora do AS1:
 - oroteador deve encaminhar pacote ao roteador de borda, mas qual?

REDES DE COMPUTADORES AS1 deve: E A INTERNET 54 edição

- 1. descobrir quais destinos são alcançáveis por AS2 e quais por AS3
- propagar essa informação de acessibilidade a todos os roteadores no AS1

Tarefa do roteamento inter-AS!

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

Roteamento intra-AS

- também conhecido como Interior Gateway Protocols (IGP)
- protocolos de roteamento intra-AS mais comuns:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway roteamento Protocol (proprietário da Cisco)

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - **O ICMP**
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5³ edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - o roteamento hierárquico
- 4.6 Roteamento na Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

RIP (Routing Information Protocol)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- algoritmo de vetor de distância
- incluído na distribuição BSD-UNIX em 1982
- métrica de distância: # de saltos (máx. = 15 saltos)

Do roteador A às sub-redes:

<u>destino</u>	saltos
u	1
V	2
W	2
X	3
y	3
Z	2

Anúncios RIP

REDES DE COMPUTADORES E A INTERNET 54 edição

- vetores de distância: trocados entre vizinhos a cada 30 s por meio de mensagem de resposta (também conhecida como anúncio)
- cada anúncio: lista de até 25 sub-redes de destino dentro do AS

RIP: Exemplo

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Rede de destino	Roteador seguinte	Núm. saltos até dest.
W	A	2
у	В	2
Z	В	7
X		1

tabela de roteamento/repasse em D

REDES DE

tabela de roteamento/repasse em D

RIP: falha e recuperação do enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

se nenhum anúncio for ouvido após 180 s --> vizinho/enlace declarado morto

- o rotas via vizinho invalidadas
- o novos anúncios enviados aos vizinhos
- vizinhos por sua vez enviam novos anúncios
- o informação de falha do enlace se propaga para rede inteira
- reversão envenenada usada para impedir loops de pingue-pongue (distância infinita = 16 saltos)

Processamento de tabela RIP

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- tabelas de roteamento RIP controladas por processo em nível de aplicação chamado routed (daemon)
- anúncios enviados em pacotes UDP, repetidos periodicamente

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - endereçamento IPv4
 - ICMP
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - o roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Roteamento broadcast e multicast

OSPF (Open Shortest Path First)

REDES DE COMPUTADORES E A INTERNET 5' edição

- "open": publicamente disponível
- usa algoritmo Link State
 - disseminação de pacote LS
 - mapa de topologia em cada nó
 - o cálculo de rota usando algoritmo de Dijkstra
- anúncio OSPF transporta uma entrada por roteador vizinho
- anúncios disseminados ao AS inteiro (com inundação)
 - transportados nas mensagens OSPF diretamente por IP (em vez de TCP ou UDP)

Recursos "avançados" do OSPF (não no RIP)

REDES DE COMPUTADORES E A INTERNET 5¹ edição

- segurança: todas as mensagens OSPF autenticadas (para impedir intrusão maliciosa)
- múltiplos caminhos de mesmo custo permitidos (apenas um caminho no RIP)
- para cada enlace, múltiplas métricas de custo para diferentes tipos de serviços (p. e., custo de enlace de satélite definido "baixo" para melhor esforço; alto para tempo real)
- OSPF hierárquico em grandes domínios

REDES DE COMPUTADORES E A INTERNET 5' edição

- hierarquia em dois níveis: área local, backbone.
 - o anúncios de estado do enlace somente na área
 - cada nó tem topologia de área detalhada; somente direção conhecida (caminho mais curto) para redes em outras áreas.
- roteadores de borda:
 - "resumem" distâncias às redes na própria área, anunciam para outros roteadores de borda.
 - o conectam-se a outros AS's.
- roteadores de backbone: executam roteamento OSPF limitado ao backbone.

Capítulo 4: Camada de rede

- 4. 1 Introdução
- 4.2 Redes de circuitos virtuais e de datagramas
- 4.3 O que há dentro de um roteador?
- 4.4 IP: Internet Protocol
 - formato do datagrama
 - o endereçamento IPv4
 - ICMP
 - O IPv6

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4.5 Algoritmos de roteamento
 - estado de enlace
 - vetor de distâncias
 - roteamento hierárquico
- 4.6 Roteamento na Internet
 - RIP
 - OSPF
 - O BGP
- 4.7 Roteamento broadcast e multicast

Roteamento inter-AS da Internet: BGP

- BGP (Border Gateway Protocol): o padrão de fato
- BGP oferece a cada AS um meio de:
 - obter informação de acessibilidade da sub-rede a partir de ASs vizinhos.
 - propagar informação de acessibilidade a todos os roteadores internos ao AS.
 - 3. determinar rotas "boas" para sub-redes com base na informação e política de acessibilidade.
- permite que a sub-rede anuncie sua existência ao resto da Internet: "Estou aqui"

Por que roteamento intra e inter-AS diferente?

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

política:

- inter-AS: admin deseja controle sobre como seu tráfego é roteado, quem roteia através de sua rede
- intra-AS: único admin, de modo que nenhuma decisão política é necessária

escala:

 roteamento hierárquico salva tamanho de tabela, tráfego de atualização reduzido

desempenho:

- intra-AS: pode focalizar no desempenho
- inter-AS: política pode dominar sobre desempenho