Chapter 11 Notes - MC

John Yang

July 7, 2021

Contents

11	Infinite Sequences and Series	1
	11.1 Sequences]
	11.2 Series	
	11.3 The Integral Test and Estimates of Sums	4
	11.4 The Comparison Tests	
	11.5 Alternating Series	
	11.6 Absolute Convergence and the Ratio and Root Tests	ļ
	11.7 Strategy for Testing Series	ļ
	11.8 Power Series	
	11.9 Representations of Functions an Power Series	ļ
	11.10Taylor and Maclaurin Series	
	11.11Applications of Taylor Polynomials	

11 Infinite Sequences and Series

11.1 Sequences

• sequence - a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \cdots, a_n, \cdots$$

- $\bullet \ a_1$ first term; a_2 second term; a_n nth term
- For infinite series, every term a_n has a successor a_{n+1}
- Notation the sequence $\{a_1, a_2, a_3, \dots\}$ can also be written as

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

• Definition 1: limits of sequences:

$$\lim_{n \to \infty} a_n = L$$

- This means: as n becomes very large, the terms of the sequence $\{a_n\}$ approach L.
- can also be written as

$$a_n \to L \text{ as } n \to \infty$$

• If the limit at infinity exists, the sequence is convergent/converges. Otherwise, it is divergent/diverges.

• Definition 2: A more precise definition of the limit of a sequence:

$$\lim_{n \to \infty} a_n = L$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

if
$$n > N$$
 then $|a_n - L| < \varepsilon$

- Theorem 3: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$.
- Equation 4:

$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \text{ if } r > 0$$

• Definition 5: $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that

if
$$n > N$$
 then $a_n > M$

• Limit laws for sequences: If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n \lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ if } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ if } p > 0 \text{ and } a_n > 0$$

• Squeeze Theorem can be adapted for sequences:

If
$$a_n \leq b_n \leq c_n$$
 for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$

- Theorem 6: If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$
- Theorem 7: If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

• Equation 8 (example 10):

$$a_n = \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n}$$

(ex. 10)

• Equation 9 (example 11): The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1 \end{cases}$$

• Definition 10: A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

• Definition 11: A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$

It is bounded below if there is a number m such that

$$m \leq a_n$$
 for all $n \geq 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**

- Theorem 12: Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.
- Proof of theorem 12: Suppose $\{a_n\}$ is an increasing sequence. Since $\{a_n\}$ is bounded, the set $S = \{a_n | n \ge 1\}$ has an upper bound. By the Completeness Axiom it has a least upper bound L. Given $\varepsilon > 0$, $L \varepsilon$ is not an upper bound for S (since L is the least upper bound). Therefore

$$a_N > L - \varepsilon$$

For some integer N. But the sequence is increasing so $a_n \ge a_N$ for every n > N. Thus if n > N, we have

$$a_n > L - \varepsilon$$

so

$$0 \le L - a_n < \varepsilon$$

since $a_n \leq L$. Thus,

$$|L - a_n| < \varepsilon$$
 whenever $n > N$

so $\lim_{n\to\infty} a_n = L$. A similar proof can be applied if $\{a_n\}$ is decreasing.

11.2 Series

• Equation 1: infinite series/series can be written as:

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

• Partial sums:

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i$$

e.g.

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 $s_4 = a_1 + a_2 + a_3 + a_4$

- Def 2: given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, its *n*th partial sum is denoted as above.
 - If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called convergent and we write

$$a_1 + a_2 + \dots + a_n + \dots = s \text{ or } \sum_{n=1}^{\infty} a_n = s$$

- The number s is called the sum of the series. If the sequence $\{s_n\}$ is divergent, then the series is divergent.

• Geometric series:

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 where $a \neq 0$

• Equation 3: sum of a geometric series

$$s_n = \frac{a\left(1 - r^n\right)}{1 - r}$$

• Equation 4 (example 2): The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \text{ where } |r| < 1$$

If $|r| \geq 1$, the geometric series is divergent.

• Equation 5 (example 7):

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

- Theorem 6: If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$
 - Note: The converse of this theorem is not always true!
- Equation 7: Nth term test: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- Theorem 8: If Σa_n and Σb_n are convergent series, then so are the series Σca_n (where c is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n b_n)$, and

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

11.3 The Integral Test and Estimates of Sums

- The Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent IFF the proper integral $\int_1^{\infty} f(x)dx$ is convergent.
 - CONDITIONS: continuous, positive, decreasing function
 - The integral from 1 to ∞ of the function must be convergent for the series to be convergent.
- Equation 1: P-series test: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- Equation 2: Remainder Estimate for the Integral Test: Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and Σa_n is convergent. If $R_n = s s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$$

• Equation 3 (example 5):

$$s_n + \int_{n+1}^{\infty} f(x)dx \le s \le s_n + \int_{n}^{\infty} f(x)dx$$

• Equation 4:

$$a_2 + a_3 + \dots + a_n \le \int_1^n f(x) dx$$

• Equation 5:

$$\int_{1}^{n} f(x)dx \le a_{1} + a_{2} + \dots + a_{n-1}$$

- Both eqns 4 and 5 depend on the fact that f is decreasing and positive.

11.4 The Comparison Tests

- The comparison test: Suppose that Σa_n and Σb_n are series with positive terms.
 - If Σb_n is convergent and $a_n \leq b_n$ for all n, then Σa_n is also convergent.
 - If Σb_n is divergent and $a_n \geq b_n$ for all n, then Σa_n is also divergent.
- The Limit comparison test: Suppose that Σa_n and Σb_n are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both series diverge.

11.5 Alternating Series

• The alternating series test: If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \text{ where } b_n > 0$$

satisfies

(i)
$$b_{n+1} < b_n$$
 for all n

(ii)
$$\lim_{n\to\infty} = 0$$

then the series is convergent.

• Alternating series Estimation Theorem: If $s = \Sigma(-1)^{n-1}b_n$, where $b_n > 0$, is the sum of an alternating series that satisfies

$$b_{n+1} \le b_n$$
 and $\lim_{n \to \infty} = 0$

then

$$|R_n| = |s - s_n| \le b_{n+1}$$

- 11.6 Absolute Convergence and the Ratio and Root Tests
- 11.7 Strategy for Testing Series
- 11.8 Power Series
- 11.9 Representations of Functions an Power Series
- 11.10 Taylor and Maclaurin Series
- 11.11 Applications of Taylor Polynomials