## Разделяне на многоъгълник на монотонни части

Вертикално монотонна верига е начупена линия, която от всяка хоризонтална права бива пресечена в не повече от една точка. Вертикално монотонен многоъгълник е такъв, контурът на който се състои от две вертикално монотонни вериги, съединени в краищата им.

Искаме да разделим произволен многоъгълник на вертикално монотонни части. Правим това чрез метода на метящата права. Правата е хоризонтална и се движи отдолу нагоре по върховете на многоъгълника, подредени по височина. При движението построяваме подходящи диагонали.

Ако многоътълникът има върхове, разположени на една и съща хоризонтала приемаме, че все едно, изброени отляво надясно, такива върхове са всеки по-високо от предишния. В частност, за хоризонтални страни левият край е "по-ниско" от десния. Така подредбата по височина на върховете и движението на метящата права са еднозначно определени.

От гледна точка на монотонността върховете на многоъгълника биват пет вида:

- начален (НВ): изпъкнал, съседите му са отгоре;
- краен (КВ): изпъкнал, съседите му са отдолу;
- сливащ (СВ): вдлъбнат, съседите му са отдолу;
- разделящ (РВ): вдлъбнат, съседите му са отгоре;
- междинен (МВ): съседите му са единият отдолу, другият отгоре.

На фигурата 1 и 4 са HB, 8 и 10 са KB, 3 е CB, 9 е PB, а 2, 5, 6, 7 и 11 са MB. Междинните върхове биват леви – тези, за които вътрешността на многоъгълника е отдясно – и десни.



Изборът на имена за петте вида върхове се обяснява със следните наблюдения. Всеки начален връх дава начало на монотонна част от многоъгълника. Всеки краен връх завършва такава част. При сливащ и разделящ върхове се срещат две монотонни части, като в първия случай общата им граница е над върха, а във втория — под него. Междинните върхове се намират по височина между съседите си по контура на многоъгълника.

Монотонността на даден многоъгълник се изразява в отсъствие на сливащи и разделящи върхове. За да разделим многоъгълник на монотонни части, трябва да свържем с диагонали всеки негов сливащ връх с по-висок от него и всеки разделящ връх с по-нисък – в получаващите се монотони части тези върхове вече са междинни. Разбира се, нужно е и построяваните диагонали да не се пресичат един друг или със страните на многоъгълника.

При метенето разглеждаме само онези страни на многоъгълника (ребра), спрямо които вътрешността на многоъгълника е отдясно – лявогранични ребра. (При положително ориентиран контур реброто uv е лявогранично, ако u лежи по-високо от v и го предхожда по контура.) Всяко положение на метящата права се характеризира с текущо множество от лявогранични ребра, които биват пресичани от правата или са инцидентни с нея чрез своя крайна точка. Това множество бележим с TP – таблица на ребрата. Ребрата в TP са подредени отляво надясно по реда, в който метящата права ги пресича.

За всяко от ребрата в TP определяме опорен връх (OB). Това е най-високият измежду върховете върху или под метящата права, за който съединяващата го с реброто хоризонтална отсечка е вътрешна за многоъгълника. При включване на реброто в TP за негов ОВ избираме долния му край, а с преместването на метящата права ОВ на едно или друго ребро може да се променя.

Смисълът на опорните върхове е, че диагонали се построяват именно между някой от тях и текущо разглеждания връх – този, който задава положението на метящата права.

Текущия връх бележим с ТВ.

Когато ТВ е СВ, РВ или десен МВ, наляво от него непременно има поне едно ребро. Най-близкото такова ребро е лявогранично и го наричаме ляво ребро (ЛР) на ТВ. Хоризонталната отсечка между ТВ и ЛР е изцяло вътрешна за многоъгълника, а самото ребро е в ТР. За построяване на диагонали съществено е дали ТВ има ЛР и ОВ на ЛР е сливащ. Ясно е и че винаги когато ТВ има ЛР, този връх става опорен на реброто.

С ВР (входящо ребро) бележим такова от лявограничните ребра, което има ТВ за свой горен край. Аналогично, ИР (изходящо ребро) е такова лявогранично, което има ТВ за свой долен край. Очевидно кой да е връх има по най-много едно входящо и едно изходящо ребра. По-точно, НВ и РВ имат ИР, СВ и КВ имат ВР, левите МВ имат и ВР, и ИР, а десните МВ нямат нито ВР, нито ИР.

За всеки пореден ТВ, неговото ИР, ако има такова, бива добавено в ТР, а ВР бива премахнато от нея. Наред с това, според вида на ТВ и други условия определяме дали да бъде построен диагонал с край този връх и ако да — кой именно. По-конкретно, за всеки връх в подредбата по височина се извършва следното:

- ако ТВ е СВ, РВ или десен МВ, намираме неговото ЛР;
- ако ТВ е РВ или ако ТВ и ОВ на ЛР са СВ, съединяваме ОВ на ЛР с ТВ;
- ако ТВ има ВР и ОВ на ВР е СВ, съединяваме тези два върха;
- ако TB е десен MB и OB на ЛР е CB, съединяваме тези два върха;
- ако ТВ е СВ, РВ или десен МВ, заменяме ОВ на ЛР с него;
- ако ТВ има ВР, премахваме го от ТР;
- ако ТВ има ИР, добавяме го в ТР.

TP е подредена структура с логаритмично време за добавяне, премахване и търсене на елемент. Така полученият алгоритъм има скорост  $n \log n$ .

## Триангулиране на вертикално монотонен многоъгълник

- Сливаме двете образуващи контура вериги в ред на върховете отдолу нагоре:  $V_1, \ldots, V_n$ . (Ако има на една хоризонтала отляво надясно.) Образуваме стек и поставяме в него  $V_1$  и  $V_2$ .
- За всеки връх от  $V_3$  до  $V_{n-1}$ :
  - $\circ$  ако V и най-горният в стека връх T са от различни вериги:
    - докато в стека има >1 елемент:
      - извличаме връх от стека и го съединяваме с V;
    - заменяме единствения останал в стека елемент с T;

иначе (когато V и T са от една и съща верига):

докато в стека има поне два елемента S и T и или

- $S,\,T$  и V са от лявата верига и  $[STV]{<}0,$  или
- S, T и V са от дясната верига и [STV] > 0:
  - извличаме T от стека;
  - съединяваме S (сега най-отгоре в стека) с V;
- $\circ$  поставяме V в стека.
- $\bullet$  Съединяваме  $V_n$  с всички елементи на стека без първия и последния.