Optimisation du trajet pour un robot

DiRIGe

Dijkstra Robot Intelligent Generation

Encadré par M. Éric GUERIN

Introduction

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
 - 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

1.1) Objectifs

- Objectifs de l'application :
 - Permettre à un utilisateur de saisir un plan de l'environnement.

 Permettre à un robot de trouver le chemin le plus optimisé entre deux points.

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

1.2) Analyse concurrentielle

Résolution d'un labyrinthe par un programme

Des outils trajets routier ex: Google Map

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

1.2) Analyse concurrentielle

- Toutes ces applications utilisent des algorithmes de recherche de chemin.
 - Algorithme de Bellman-Ford
 - Algorithme de Floyd-Warshall
 - Algorithme de Dijkstra
 - Algorithme d'A *
 - etc

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

1.3) Produit développé

DiRIGe

- Permet d'éditer un environnement et de configurer un robot virtuel
- Trouve le chemin le plus optimisé
- Utilise l'algorithme de Dijkstra
- Est développé dans le langage informatique C++

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

2) Présentation—de la solution développé

- Objectifs de l'interface :
 - Être intuitive d'utilisation
 - Personnalisable
 - Adaptable à la taille de l'écran

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Barre de menu

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

- Barre d'outils:
 - Fichier

Dessin

Zoom

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Couleur

1) Présentation de DiRIGe

- 1.1) Objectifs à réaliser
- 1.2) Analyse concurrentielle
- 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Robot

Résultat

2.2) Fonctionnement

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Comment fonctionne l'application?

2.2) Fonctionnement

 L'application est divisée en 3 modules

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Récupère les actions de l'utilisateur

Affiche les résultats

Dessine l'environnement

Traduit l'image en données exploitables pour des calculs

Trouve le chemin

2.2) Fonctionnement

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

2.3) Extensions et améliorations

possibles

- L'architecture mise en place est modulable
 - Ajouter des paramètres au robot
 - Limitation d'énergie,
 - Dérapage,
 - etc...
 - Ajouter un nouvel algorithme de calcul
 - Ajouter un nouveau format d'image pouvant être traité
 - Implémenter une partie du projet dans un robot physique

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

3) Déroulement du projet

L'organisation et les difficultés majeures

Alex-Medi ZAHID, Antoine GRÉA, Blon THO

3.1) Organisation du groupe

Projet séparé en modules

Interface Homme Machine

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

Interprétation

Édition de la carte

Module algorithmique

Conception Modularité Complexité Assurer une Définition importante communication des rôles

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe
 - 3.2) Principales difficultés

IHM

Choix des éléments

Zoom

Mécanismes dynamiques pour la gestion des couleurs

Communication inter-composant

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe

...oipaicc

Interprétation

 Traduction de l'image en données exploitables

Choix de la structure de stockage

 Utilisation de design Pattern singleton

- 1) Présentation de DiRIGe
 - 1.1) Objectifs à réaliser
 - 1.2) Analyse concurrentielle
 - 1.3) Produit développé
- 2) Présentation de la solution
 - 2.1) L'interface d'utilisation
 - 2.2) Fonctionnement
- 2.3) Extensions et améliorations possibles
- 3) Déroulement du projet
 - 3.1) Organisation du groupe

molpaice

Algorithme

- Implémentation simple de Dijkstra → exécution lente
- Tas de Fibonacci

1.3) Produit développé
2) Présentation de la solution
2.1) L'interface d'utilisation 2.2) Fonctionnement 2.3) Extensions et améliorations possibles
3) Déroulement du projet 3.1) Organisation du groupe 3.2) Principales difficultés

1) Présentation de DiRIGe

1.1) Objectifs à réaliser

1.2) Analyse concurrentielle

Conclusion

- L'application remplit les objectifs.
- Le chemin trouvé est toujours le plus optimisé.
- Les possibilités offertes sont nombreuses.
- Une architecture souple permettant une réutilisation.

Merci pour votre attention

Nous remercions l'ensemble des enseignants de l'IUT A de Bourg-en-Bresse pour leur contribution à la mise en place de ce projet.

Des questions?

