

Abbildung 1: Die Varietät $V(X^2 + Y^2 - 1)$ aus [1]

Abbildung 2: Das elliptische Paraboloid $V(Z - X^2 - Y)$ aus [1]

Lemma

Sei $I \subseteq k[X_1, \dots, X_n]$ ein Ideal, das von einer Menge G von

Monomen erzeugt wird. Dann liegt ein Polynom $f \in k[X_1, \ldots, X_n]$ in I genau dann, wenn für jeden Term $a_j X^{\alpha_j}$ von f ein $g \in G$ existiert, welches $a_i X^{\alpha_j}$ teilt.

Lemma

Sei $(g_i)_{i\geq 1}$ eine Folge von Monomen in $k[X_1,\ldots,X_n]$ mit $g_1\succeq g_2\succeq \ldots$ für eine Monomialordnung \preceq . Dann existiert ein $r\in \mathbb{N}$ mit $g_n=g_r$ für alle $n\geq r$.

Proposition (Divisionsalgorithmus)

Sei \leq eine Monomialordnung und $f, f_1, \ldots, f_s \in k[X_1, \ldots, X_n]$ nicht null. Dann gilt

$$f=\sum_{i=1}^{3}h_{i}f_{i}+r,$$

mit $r, h_1, \ldots, h_s \in k[X_1, \ldots, X_n]$ und $LT(h_i f_i \leq LT(f))$ für alle $h_i \neq 0$ und r = 0 oder kein Term von r wird durch ein $LT(f_i)$ geteilt für $i \in s$.

Satz

Sei $\{0\} \neq I \subseteq k[X_1,\ldots,X_n]$ ein Ideal und \leq eine Monomialordnung auf \mathbb{N}_0^n . Sei G eine Gröbnerbasis von I mit I = (G). Dann ist eine k-Basis von $k[X_1,\ldots,X_n]/I$ gegeben durch die Restklassen von X^{α} mit

$$\alpha \in C(I) := \{ \alpha \in \mathbb{N}_0^n \mid LT(g) \nmid X^{\alpha} \forall g \in G \}.$$

Abbildung 3: Anschauliche Darstellung von $k[X_1, ..., X_n]/I$ aus [1]

Definition

Sei $I\subseteq k[X_1,\ldots,X_n]$ ein Ideal und $s\in\mathbb{N}_0$. Dann definiere $I_{\leq s}:=I\cap k[X_1,\ldots,X_n]_{\leq s}$. Nun gilt, dass $k[X_1,\ldots,X_n]_{\leq s}$ ein endlich dimensionaler Vektorraum über k mit $I_{\leq s}$ als Teilraum ist. Wir können die Funktion

$${}^{a}HF_{I}: \mathbb{N}_{0} \to \mathbb{N}_{0}, \quad s \mapsto dim_{k}(k[X_{1}, \ldots, X_{n}]_{\leq s}/I_{\leq s})$$

definieren, die (affine) Hilbertfunktion von I genannt wird.

Lemma (Macaulay)

alle $s \in \mathbb{N}_0$.

Sei \leq eine gradierte lexikographische Monomialordnung und $I \subseteq k[X_1, \ldots, X_n]$ ein Ideal. Dann ist ${}^aHF_I(s) = {}^aHF_{LT(I)}(s)$ für

Satz

Sei $I \subseteq k[X_1, \ldots, X_n]$, dann existiert ein eindeutiges Polynom

 $^{a}HP_{1}(t) \in \mathbb{Q}[t]$ (t ist eine Variable) und $s_{0} \geq 0$, sodass $^{a}HP_{I}(s)=^{a}HF_{I}(s)=dim_{k} \ (k[X_{1},...,X_{n}]_{< s}/I_{< s}), \ für \ alle \ s\geq s_{0}.$

Weiterhin besitzt ${}^{a}HP_{I}(t)$ folgende Eigenschaften:

- a) Der Grad von ${}^aHP_I(t)$ ist der größte $d \in \mathbb{N}$, sodass es $i_1, i_2, i_3, \ldots, i_d \in \mathbb{N}$ mit $1 < i_1 < i_2 < i_3 < \ldots < i_d < n$
- existieren und $I \cap k[X_{i_1}, \ldots, X_{i_d}] = \emptyset$. b) Sei $d = grad(^aHP_I)$. Dann gilt $^aHP_I(t) = \sum_{k=0}^d a_k t^k$ mit
 - $a_k d! \in \mathbb{Z}, \forall k \in d_0 \text{ und } a_d d! > 0$

Definition

Sei $V \subset k^n$ eine algebraische Menge und ${}^aHP_{I(V)}(t)$ ist das Hilbert-Polynom von $I(V) \subseteq k[X_1, \ldots, X_n]$ (nach Satz 2 ist wohldefiniert und eindeutig). Für $V \neq \emptyset$ (d.h. $I(V) \neq k[X_1, \ldots, X_n]$), wird die Dimension definiert als

$$dim(V) = grad(^{a}HP_{I(V)}).$$

Eine etwas handlichere Charakterisierung ist nach Satz 2 durch:

$$dim(I(V)) = \max \{ d \in \underline{n} : \exists 1 \leq i_1 < \ldots < i_d \leq n \text{ mit } I \cap K[X_{i_1}, \ldots, X_{i_d}]$$
gegeben.

Proposition

Sei $V\subseteq k^n$ algebraisch und $V=\bigcup_{i\in\underline{r}}V_i$ eine Zerlegung in irreduziblen Komponenten (vgl. Proposition 1.1.11). Dann gilt

$$dim(V) = \max \{dim(V_i) : i \in \underline{r}\}\$$

Definition

Sei A eine k-Algebra (kommutativer, assoziativer k-Algebra mit 1). Man nennt $a_1, \ldots, a_m \in A$ algebraisch unabhängig, falls

$$\forall F \in k[X_1, \ldots, X_m] \setminus \{0\} \text{ gilt } F(a_1, \ldots, a_m) \neq 0.$$

Man definiert

$$\partial_{\it k}(A):=\sup\left\{m\geq 0:\;\exists\;m\;\text{algebraisch unabhängige Elemente in}\;A\right\}$$

Bemerkung: Falls A ein Körper ist, dann nennt man $\partial_k(A)$ der transcendenz Grad von A über k.

Proposition

Sei $A := k[X_1, \ldots, X_n]/I$ mit $I \subseteq k[X_1, \ldots, X_n]$ ein echtes Ideal. Dann gilt $grad({}^aHP_I) = \partial_k(A)$. Ist A weiterhin einen Integrietätsbereich (IB) und K ist der Quotienten-Körper von A, dann gilt

$$grad(^{a}HP_{I}) = \partial_{k}(A) = \partial_{k}(K).$$

Insbesondere gilt dim $(V) = \partial_k(A[V])$ für jede nicht-leere algebraische $V \subset k^n$.

Lemma

Sei $V \subseteq k^n$ irreduzible algebraischer Menge und $W \subseteq V$ abgeschlossenen Teilmenge. Dann gilt $\dim(W) < \dim(V)$, falls W echte Teilmenge von V ist.

COX, David; LITTLE, John; O'SHEA, Donal: Ideals, Varieties, and Algorithms.

Third Edition Springer-Verlag, 2007