

Xavier PESSOLES

1.1 Travailler en SII 1

xpessoles@lamartin.fr-https://xpessoles.github.io/

1.1 Travailler en SII

1.1.1 Les ressources

- ► Site de classe: psietoile.lamartin.fr(ou https://psietoilelamartin.github.io/.
- ► Site personnel: https://xpessoles.github.io/.
- ► Annales corrigées de SI (jusqu'à 2021 ou 2022) : https://www.upsti.fr/espace-etudiants/annales-de-concours.

1.1.2 Connaître le cours

Mes cours sont courts. Les méthodes, les résultats et les formules sont à connaître.

1.1.3 Maîtriser les applications directes, les calculs

Vous êtes tous égaux devant la réalisation d'un calcul et devant la capacité à les mener vite et bien. Pour cela, il faut de **l'entraînement**. Cela vous permettra de gagner en efficacité, en assurance et donc de gagner des points au concours!

Pour les applications directes du concours, je vous propose des devoirs du soirs. Les corrigés (quand je les ai écrits) sont dispos sur le site de la classe. L'idée est d'en faire un par soir pour s'exercer à calculer le plus rapidement possible. Quelques points clés à maîtriser (liste non exhaustive) :

- ▶ réaliser une fermeture de chaîne géométrique;
- ▶ calculer vite et sans faute un produit vectoriel en projetant que SI c'est indispensable;
- ▶ dériver vite et sans faute un vecteur en projetant que SI c'est indispensable;
- ► calculer vite et sans faute une fonction de transfert en BO, en BF sous forme canonique;

- ► exprimer vite et sans faute la sortie d'un système asservi avec une et avec deux entrées;
- ▶ tracer vite et sans faute un diagramme de Bode;
- ► etc

Afin de vous évaluer ou de vous auto-évaluer je vous propose le découpage suivant.

o GVG	aalyser et valider les performances an système	5 STAT	Mettre en œuvre une démarche de résolution
5 SYS	Réaliser une analyse structurelle, flux, effort	STAT	Évaluer expérimentalement une action mécanique
SYS SYS	Analyser une solution technologique		
8 SYS	Analyser un cahier des charges	3 CHS Mo	odéliser un mécanisme
2 SAS	Valider les performances d'un système vis-à-vis d'un cahier des charges	5 CHS	Analyser un mécanisme en utilisant un graphe de liaisons Simplifier un mécanisme en utilisant une liaison équivalente
8 SYS	Analyser les résultats d'une simulation ou d'une expérimentation		are naison equivalence
8 SYS	Mesurer et analyser une grandeur physique		soudre un problème de dyna- que
S GEO Résoudre un problème de géométrie		2 DAN	Analyser un problème, définir une loi de mouvement Analyser un mécanisme en utilisant un graphe de structure
5 GEO	Analyser la géométrie d'un mécanisme, analyser des surfaces de	g DYN	Modéliser un solide et déterminer ses caractéristiques inertielles
8 GEO	contact, réaliser des constructions géométriques Modéliser un mécanisme en réalisant	2 DAN	Déterminer un torseur cinétique, un torseur dynamique
	un schéma cinématique paramétré Résoudre un problème de géométrie	8 DYN	Proposer une démarche de résolution en utilisant le PFD
8 GEO	: déterminer la trajectoire d'un point ou déterminer une loi Entrée - Sortie	8 DYN	Mettre en œuvre une démarche de résolution en utilisant le PFD
Résoudre un problème de cinématique		Résoudre un problème d'énergé- tique	
© CIN	Analyser un mécanisme, réaliser un graphe de liaison Déterminer un vecteur vitesse, un torseur cinématique, un vecteur accélé-	5 TEC	Analyser un mécanisme en utilisant un graphe de structure Déterminer les puissances intérieures
S CIN	ration Déterminer le rapport de transmission d'un transmetteur	8 TEC	Déterminer les puissances extérieures
4 CIN	Déterminer un loi ES cinématique, utiliser l'hypothèse de RSG	2 TEC	Déterminer l'inertie équivalente, la masse équivalente, l'énergie ciné- tique, un travail
8 STAT Ré	soudre un problème de statique	S TEC	Proposer et mettre en œuvre une démarche de résolution
5 STAT	Analyser un problème en utilisant un graphe de structure Modéliser les actions mécaniques lo- cales, globales, frottement	8 SLCI Mo	Analyser un asservissement, proposer une structure d'asservissement
STAT	Proposer une démarche de résolution en utilisant le PFS	SLCI	Modéliser un SLCI en utilisant la transformée de Laplace

Modéliser un SLCI en utilisant un Analyser un choix de correcteur (com-SLCI schéma-bloc pensation de pôles, nombre d'intégra-COR Modéliser un SLCI en utilisant un Réglér un correcteur P graphique-SLCI **COR** modèle polyphysique ment ou analytiquement Modéliser un SLCI à plusieurs en-Régler un correcteur PI graphique-COR SLCI trées, sous forme matricielle éventuelment ou analytiquement lement Régler un correcteur à avance de Linéariser un comportement, une **COR SLCI** phase équation, simplifier un modèle Modéliser un système d'ordre 1 et COR Modéliser un correcteur numérique SLCI d'ordre 2 Modélisation des non linéarité d'un SLCI Déterminer une FTBO et une FTBF NL système Identifier des fonctions de transfert NL Identifier une non linéarité (à partir d'un schéma-bloc), mettre SLCI sous forme canonique et identifier NL Modéliser une non linéarité des constantes Déterminer et identifier une réponse SLCI Modéliser un système combinatoire temporelle SEQ ou séquentiel Déterminer et identifier et analyser SLCI une réponse fréquentielle Analyser un système séquentiel en utilisant un chronogramme, analyser SEQ un système combinatoire en utilisant une table de vérité PERF Évaluer les performances d'un SLCI Modélisation par équation booléenne SEQ Évaluer la stabilité en utilisant la BF, **PERF** SEQ Modélisation par diagramme d'état les pôles de la BF Évaluer la stabilité en utilisant les **PERF** marges de la BO Résoudre un problème numérique-NUM Évaluer la rapidité de la réponse tem-**PERF** Mettre un problème sous forme ma-NUM tricielle Évaluer la rapidité à partir de la ré-**PERF** Résolution de f(x) NUM ponse fréquentielle de la BO Résolution d'une équation différen-Évaluer la précision à partir du TVF ≅ NUM Résoudre un problème numérique-Évaluer la précision en utilisant la **PERF** NUM classe de la BO ment Résoudre un problème en utilisant 8 NUM l'apprentissage automatisé

Corriger un SLCI

COR