Time Value of Money: Compounding

Michael R. Roberts

William H. Lawrence Professor of Finance

The Wharton School, University of Pennsylvania

Last Time

Time Value of Money

- Intuition time units like different currencies
- Tools time line and discount factor
- Discounting Moving CFs back in time
- Lesson: Don't add CFs with different time units...ever!

This Time Time Value of Money

Compounding

USING THE TOOLS: COMPOUNDING

Compounding

Compounding CFs moves them forward in time

Compounding

Compounding CFs moves them forward in time

Compounding

Compounding CFs moves them forward in time

Future Value

Future value, FV_t(•) of CFs is compounded value of CFs as of t

These are future values of CFs as of year 4

$$CF_3(1+R)^1 = FV_4(CF_3)$$

$$\left| CF_2 \left(1 + R \right)^2 = FV_4 \left(CF_2 \right) \right|$$

$$CF_1(1+R)^3 = FV_4(CF_1)$$

$$CF_0 (1+R)^4 = FV_4 (CF_0)$$

How much money will I have after three years if I invest \$1,000 in a savings account paying 3.5% interest per annum?

How much money will I have after three years if I invest \$1,000 in a savings account paying 3.5% interest per annum?

Step 1: Put cash flows on a time line

How much money will I have after three years if I invest \$1,000 in a savings account paying 3.5% interest per annum?

Step 2: Move cash flow forward

How much money will I have after three years if I invest \$1,000 in a savings account paying 3.5% interest per annum?

Step 2: Move cash flow forward

How much money will I have after three years if I invest \$1,000 in a savings account paying 3.5% interest per annum?

Step 2: Move cash flow forward

This is the future value of the 1,000

How much money will we have four years from today if we save \$100 a year, beginning today, for the next three years, assuming we earn 5% per annum?

How much money will we have four years from today if we save \$100 a year, beginning today, for the next three years, assuming we earn 5% per annum?

Step 1: Put cash flows on a time line

Step 2: Move CFs forward in time

Step 2: Move CFs forward in time

Step 3: Add up cash flows

Interpretation 1: We will have \$452.56 at the end of four years if we save \$100 starting today for the next three years and our money earns 5% per annum.

Interpretation 2: The future value four years from today of saving \$100 starting today for the next three years at 5% per annum is \$452.56.

Pre-Deposit Post-Deposit
Year Interest Balance Deposit Balance
0 \$100.00 \$100.00

		Pre-Deposit		Post-Deposit
Year	Interest	Balance	Deposit	Balance
0			\$100.00	\$100.00
1	\$5.00	\$105.00		
		100 + 5.00		

		Pre-Deposit		Post-Deposit
Year	Interest	Balance	Deposit	Balance
0			\$100.00	\$100.00
1	\$5.00	\$105.00		
	FV ₁ (1	$100) = 100 \times ($	$(1+0.05)^{1}$	

		Pre-Deposit		Post-Deposit
Year	Interest	Balance	Deposit	Balance
0			\$100.00	\$100.00
1	\$5.00	\$105.00	\$100.00	

		Pre-Deposit		Post-Deposit
Year	Interest	Balance	Deposit	Balance
0			\$100.00	\$100.00
1	\$5.00	\$105.00	\$100.00	\$205.00
				105 + 100

	Pre-Deposit			Post-Deposit	
Year	Interest	Balance	Deposit	Balance	
0			\$100.00	\$100.00	
1	\$5.00	\$105.00	\$100.00	\$205.00	
2	\$10.25	\$215.25	\$100.00	\$315.25	
3	\$15.76	\$331.01	\$100.00	\$431.01	
4	\$21.55	\$452.56	\$0.00	\$452.56 *	

More Generally

Can add CFs at any point in time if same units

Lessons

- We use compounding to move cash flows forward in time
- Denote the value of cash flows in the future as future value FV_s (CF_t)

$$FV_s(CF_t) = CF_t(1+R)^{s-t}$$
 for $t < s$

Coming up next

Problem Set

 Useful shortcuts for PV and FV of common streams of cash flows