12.005 Lecture Notes 25

Navier-Stokes Equation – dimensional form

$$-\frac{\partial p}{\partial x_i} + \eta \frac{\partial^2 v_i}{\partial x_j \partial x_j} + f_i = \rho \frac{Dv_i}{Dt}$$

Assume:

Characteristic velocity v_0

Characteristic length L

Characteristic stress $\eta v_0 / L$

Characteristic time v_0/L

Choose non-dimensional variables

$$v' = v/v_0$$
 $x' = x/L$ $p' = \frac{L}{\eta v_0} p$ $t' = \frac{v_0}{L} t$

or

$$v = v'v_0 \quad x = x'L \quad p = \frac{\eta v_0}{L} p' \quad t' = \frac{L}{v_0} t'$$

$$\frac{\partial}{\partial x} = \frac{1}{L} \frac{\partial}{\partial x'} \quad f' = \frac{L^2}{\eta v_0} f \quad \frac{\partial}{\partial t} = \frac{v_0}{L} \frac{\partial}{\partial t'}$$

Substitute into Navier-Stokes equation

$$-\frac{1}{L}\frac{\eta v_0}{L}\frac{\partial p'}{\partial x_i'} + \frac{1}{L^2}v_0\eta \frac{\partial^2 v_i'}{\partial x_i'\partial x_i'} + \frac{1}{L^2}v_0\eta f_i' = \rho v_0 \frac{v_0}{L}\frac{D v_i'}{D t'}$$

or

$$-\frac{\partial p'}{\partial x_i'} + \frac{\partial^2 v_i'}{\partial x_i'\partial x_i'} + f_i' = \frac{\rho v_0 L}{\eta} \frac{D v_i'}{D t'}$$

where
$$\frac{\rho v_0 L}{\eta}$$
 = Re

⇒ Re gives importance of inertial terms relative to viscous terms.

 $Re \ll 1$ viscous forces \approx balance acceleration negligible

 $Re \gg 1$ inertia dominates

Note: in dimensionless form, Re is the only parameter in the Navier-Stokes equation.

⇒ for given geometry (boundary conditions) ALL equivalent (non-dimensional) problems at same Re give same result!

Examples:

1. Low Reynolds number flow past a cylinder.

Re $\ll 1$ Symmetry, like in the sphere problem.

Figure 25.1 Figure by MIT OCW.

2. Re = 10
$$\frac{\partial v_i}{\partial t} = 0$$
 (steady) $v_j \frac{\partial v_i}{\partial x_{i}} \neq 0$

Asymmetry; eddies in wade.

Figure 25.2 Figure by MIT OCW.

The figure below is experimental.

Figure by MIT OCW.

$$C_D \sim 1 / Re$$
 $D \sim V$

$$D \sim V$$

$$10^2 \le \text{Re} \le 3 \cdot 10^5$$
 $C_D \sim \text{const.}$

$$C_D \sim const.$$

$$D \sim V^2$$

$$Re \sim 3 \cdot 10^5$$

big drop in C_D!

Recall

Earth's mantle: $Re \sim 10^{-19}$

canoe: Re $\sim 2 \cdot 10^5$

Summary:

For low Re, inertia not important

Navier-Stokes equation linear

"simple" results (analytic theory)

For high Re, inertia important

Navier-Stokes equation nonlinear

time dependent

complicated – experimental approach → empirical