STA732

Statistical Inference

Lecture 15: Asymptotic Analysis of MLE

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 14

- Convergence in probability
- Convergence in distribution
- Calculus for functions of converging random variables: continuous mapping theorem, Slutsky's theorem, Delta method

Goal of Lecture 15

- 1. Maximum likelihood estimator (MLE)
- 2. Asymptotic efficiency
- 3. Intuition for the asymptotic distribution of MLE
- 4. Consistency and Asymptotic normality of MLE

Chap. 8.3, 8.5, 9.2, 9.3 of Keener or Chap. 6.2-6.4 of Lehmann and Casella

Maximum likelihood estimator (MLE)

Def. maximum likelihood estimator

For a dominated family $\mathscr{P}=\{P_{\theta},\theta\in\Omega\}$ with densities p_{θ} , data X drawn from p_{θ} , the value that maximizes the likelihood function is called the maximum likelihood estimator of θ

$$\begin{split} \hat{\theta}_{\text{MLE}}(X) &= \arg\max_{\theta \in \Omega} p_{\theta}(X) \\ &= \arg\max_{\theta \in \Omega} \ell(\theta; X) \end{split}$$

The log-likelihood is $\ell(\theta; X) = \log p_{\theta}(X)$.

Remark

- In general, argmax may not exist, be unique or be computable
- MLE does not depend on the parametrization: MLE for $g(\theta)$ is $g(\hat{\theta}_{\mathrm{MLE}})$

MLE in exponential family

$$\begin{split} p_{\eta}(x) &= e^{\eta^{\intercal} T(x) - A(\eta)} h(x) \\ \ell(\eta; x) &= \eta^{\intercal} T(x) - A(\eta) + \log h(x) \end{split}$$

Find MLE. Is it unique?

Asymptotic of 1-parameter MLE in exponential family

$$X_1,\dots,X_n \overset{\mathrm{i.i.d.}}{\sim} e^{\eta T(x) - A(\eta)} h(x), \eta \in \Xi_0 \subseteq \mathbb{R}$$

Show that

- MLE is consistent
- MLE is asymptotically normal
- MLE achieves the CRLB asympotically

MLE for the natural parameter in Poisson distribution

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\theta), \eta = \log(\theta)$$
 Find MLE for η

- Asymptotic distribution of MLE?
- finite-sample risk under squared error loss?

Asymptotically small modification does not have effect on the convergence in distribution

Prop.

If
$$\mathbb{P}(B_n) o 0, X_n \Rightarrow X, Z_n$$
 arbitrary, then $X_n \mathbf{1}_{B_n^c} + Z_n \mathbf{1}_{B_n} \Rightarrow X$ proof: $\mathbb{P}(|Z_n \mathbf{1}_{B_n}| > \epsilon) \leq \mathbb{P}(B_n) \to 0.\mathbf{1}_{B_n^c} \overset{p}{\to} 1$, apply Slutsky

Asymptotic efficiency

Asymptotic efficiency

Setting

 $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} p_{\theta}(x), \theta \in \mathbb{R}^d.$ p_{θ} is twice differentiable and the second derivative is continuous. Let $\ell_1(\theta;X_i) = \log p_{\theta}(X_i)$, $\ell_n(\theta;X) = \sum_{i=1}^n \ell_1(\theta;X_i)$ $I_1(\theta) = \operatorname{Var}_{\theta}(\nabla \ell_1(\theta,X_1))$

Def. Asymptotic efficiency

We say an estimator $\hat{\theta}_n$ is asympotitically efficient if

$$\sqrt{n}(\hat{\theta}_n - \theta) \Rightarrow \mathcal{N}(0, I_1(\theta)^{-1})$$

 $I_n(\theta) = \operatorname{Var}_{\theta}(\nabla \ell_n(\theta, X_1)) = nI_1(\theta)$

similar for $g(\theta)$

Intuition for	the asymptotic
distribution	of MLE

At θ_0 , we know many things about MLE

Denote the true parameter by θ_0 .

Derivatives of ℓ_n at θ_0

- $\mathbb{E}\nabla \ell_1(\theta_0; X_i) = 0$
 - $\operatorname{Var} \nabla \ell_1(\theta_0; X_i) = I_1(\theta_0)$
- $\frac{1}{\sqrt{n}}\nabla\ell_n(\theta_0;X)\Rightarrow\mathcal{N}(0,I_1(\theta_0))$
- $\bullet \ \ \tfrac{1}{n} \nabla^2 \ell_n(\theta_0;X) \overset{p_{\theta_0}}{\to} -I_1(\theta_0)$

Informal proof for the asymptotic distribution of MLE

The estimating equation for MLE

$$0 = \nabla \ell_n(\hat{\theta}_n) = \nabla \ell_n(\theta_0) + \nabla^2 \ell_n(\tilde{\theta}_n)(\hat{\theta}_n - \theta_0)$$

Solve $\hat{\theta}_n$, we get

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\left(\frac{1}{n}\nabla^2\ell_n(\tilde{\theta}_n)\right)^{-1}\frac{1}{\sqrt{n}}\nabla\ell_n(\theta_0)$$

Pointwise convergence seems not enough, need uniform convergence results?

Informal asymptotic picture of MLE (d = 1)

The log-likelihood is approximated locally by a quadratic function

$$\ell_n(\theta) - \ell_n(\theta_0) \approx \ell_n'(\theta_0)(\theta - \theta_0) + \frac{1}{2}\ell_n''(\theta_0)(\theta - \theta_0)^2$$

Consistency of MLE

Question: assume the model is identifiable $P_{\theta} \neq P_{\theta_0}$ for $\theta \neq \theta_0$, when do we have

$$\hat{\theta}_n \stackrel{p}{\to} \theta_0$$
?

KL divergence

Def. Kullback-Leibler (KL) divergence

$$\mathcal{D}_{\mathsf{KL}}(\boldsymbol{\theta}_0 \parallel \boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}_0} \log \frac{p_{\boldsymbol{\theta}_0}(X_1)}{p_{\boldsymbol{\theta}}(X_1)}$$

Show that $\mathcal{D}_{\mathrm{KL}}(\theta_0 \parallel \theta) \geq 0.$

Difference in log-likelihood

Define

$$\begin{split} W_i(\theta) &= \ell_1(\theta; X_i) - \ell_1(\theta_0; X_i) \\ \bar{W}_n &= \frac{1}{n} \sum_{i=1}^n W_i \end{split}$$

Note that

- $\hat{\theta}_n \in \arg\max_{\theta \in \Omega} \bar{W}_n(\theta)$
- $\bullet \ \bar{W}_n(\theta) \xrightarrow{p} -\mathcal{D}_{\mathrm{KL}}(\theta_0 \parallel \theta)$

But point-wise convergence is not enough to say about the argmax, need uniform convergence!

Convergence in sup-norm

Def.

For a compact set
$$K$$
, let $C(K)=\{f:K\to\mathbb{R}, \text{continuous}\}$. For $f\in C(K)$, let $\|f\|_{\infty}=\sup_{t\in K}|f(t)|$. We say $f_n\to f$ in sup-norm if
$$\|f_n-f\|_{\infty}\to 0.$$

Law of large numbers for random functions

Thm. 9.2 in Keener

Assume K compact, W_1,W_2,\ldots , i.i.d. random functions in C(K), each with mean μ and $\mathbb{E}\left\|W_i\right\|_{\infty}<\infty$, then

$$\|\bar{W}_n - \mu\|_{\infty} \stackrel{p}{\to} 0$$

proof omitted. proof idea: make use of ϵ -cover of K.

This is stronger than the point-wise law of large numbers

Usefulness of uniform convergence

Thm. 9.4 in Keener

Let G_1,G_2,\dots , random functions in C(K) , K compact. $\|G_n-g\|_\infty\stackrel{p}{\to} 0$, for some fixed $g\in C(K)$. Then

- If $t_n \overset{p}{\to} t^* \in K$, then $G_n(t_n) \overset{p}{\to} g(t^*)$
- If g is maximized at unique value t^* and $G_n(t_n) = \max_t G_n(t)$, then $t_n \overset{p}{\to} t^*$
- If g(t)=0 has unique solution t^* , and t_n solves $G_n(t)=0$, then $t_n\stackrel{p}{\to} t^*$

None of the above is true if one only has point-wise convergence

proof:

Consistency of MLE for compact Ω

Thm. 9.9 in Keener

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} p_{\theta_0}$$
 , $p_{\theta}(x)$ continuous in θ for a.e. $x.$ Assume

- Ω is compact
- $\mathbb{E}_{\theta_0} \|W_i\|_{\infty} < \infty$
- model identifiable

Then
$$\hat{\theta}_{{\rm MLE},n} \overset{p}{\to} \theta_0$$

proof: Thm 9.2 + Thm 9.4

Consistency of MLE for general (non-compact) Ω

Thm. 9.11 in Keener

 $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} p_{\theta_0}$, $p_{\theta}(x)$ continuous in θ for a.e. x . Assume

- For all compact K, $\mathbb{E} \left\| \mathbf{1}_K W_i \right\|_{\infty} < \infty$
- $\exists r > 0$, $\mathbb{E} \sup_{\|\theta \theta_0\|_2 > r} W_i(\theta) < 0$
- · model identifiable

Then
$$\hat{\theta}_{\mathrm{MLE},n} \overset{p}{\to} \theta_0$$

proof: Let $A = \left\{\theta \mid \|\theta - \theta_0\|_2 > r\right\}$, $\alpha = \mathbb{E}\sup_{\theta \in A} W_i(\theta) < 0$ Consider $\hat{\theta}_n^A = \hat{\theta}_n \mathbf{1}_{\hat{\theta}_n \in A^c} + \theta_0 \mathbf{1}_{\hat{\theta}_n \in A}$ Show $\mathbb{P}(\hat{\theta}_n \in A) \to 0$

Finally, after proving consistency, we can derive the asymptotic distribution of MLE.

Asymptotic distribution of MLE

Thm. 9.14 in Keener

$$X_1,\dots,X_n \overset{\mathrm{i.i.d.}}{\sim} p_{\theta_0}$$
 , $\theta_0 \in \Omega$. Assume

- $\hat{\theta}_n \in \arg\max_{\theta} \ell_n(\theta; X)$, is consistent
- In a neighborhood $\bar{B}_{\epsilon}(\theta_0) = \left\{\theta: \left\|\theta \theta_0\right\|_2 \leq \epsilon\right\}$
 - $\ell_1(\theta;x)$ has two continuous derivatives, $\forall x$
 - $\mathbb{E}\left[\sup_{\theta \in \bar{B}_{\epsilon}} \left\| \nabla^{2} \ell_{1}(\theta; X_{i}) \right\|_{2} \right] < \infty$
- Fisher information $I_1(\theta_0) \succeq 0$

Then

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \Rightarrow \mathcal{N}(0, I_1(\boldsymbol{\theta}_0)^{-1})$$

proof sketch:

Summary

Under regular model,

- · MLE is consistent
- MLE is asympotically normal, efficient

What is next?

Hypothesis testing

Thank you