MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype:
J#:	\mathbf{Quiz}	
Date: 2017 June 08		
Standard: This student is able to C01: SurfaceEQ. Identify and sketch surfaces in three-dimensional Euclidean space.		Mark:
2/4 * reatt	empt due on:	

Consider the quadric surface $z = y^2 - x^2$.

First sketch six traces for the surface given by x = -2, x = 0, x = 2 and y = -2, y = 0, y = 2 in two dimensions.

Then use those traces to draw a rough three-dimensional sketch of the surface. (This quadric surface is called a hyperbolic paraboloid.)

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	\mathbf{Quiz}	
Date: 2017 June 08		
Standard: This student is able to C02: VectFunc. Model curves in Euclidean space with vec-		Mark:
tor functions. $2/4$ * reatt	empt due on:	

Give a vector function modeling the line passing through $\langle 1,2,3 \rangle$ and parallel to the line with vector function $\mathbf{r}(t) = \langle 3-t, 5+2t, 4t \rangle$.