PROGRAMA DA UNIDADE CURRICULAR

Índice

Objectiv	vos da aprendizagem	2
1.	Compreender, saber implementar e manipular estruturas de dados do tipo array;	2
2.	Compreender, saber implementar e manipular pilhas e filas de espera;	2
3.	Compreender e saber implementar técnicas de programação recursivas;	2
4.	Compreender, saber implementar e manipular linked lists (listas encadeadas);	2
5.	Compreender, saber implementar e manipular árvores.	2
Program	na	2
1.	Introdução à Algoritmia e Estruturas de Dados	2
2.	Vectores – Arrays	2
3.	Pilhas e Filas de Espera	2
4.	Recursividade – Conceitos e técnicas	2
5.	Listas encadeadas	3
6.	Árvores	3
Metodo	ologia de ensino e avaliação	3
Demons	stração de coerência entre metodologias de ensino e resultados de aprendizagem	3
Bibliogra	afia	4
Fundamental:		4
Com	plementar:	4
Interr	net:	4
Notas d	do professor	5
Pré-re	equisitos	5
Ferra	amenta nara desenvolvimento	5

Objectivos da aprendizagem

Para concluir com sucesso esta unidade curricular, os alunos deverão demonstrar possuir os seguintes conhecimentos e capacidades:

- 1. Compreender, saber implementar e manipular estruturas de dados do tipo array;
- 2. Compreender, saber implementar e manipular pilhas e filas de espera;
- 3. Compreender e saber implementar técnicas de programação recursivas;
- 4. Compreender, saber implementar e manipular linked lists (listas encadeadas);
- 5. Compreender, saber implementar e manipular árvores.

Os algoritmos e estruturas de dados serão implementados usando as linguagens C e C++.

Programa

- 1. Introdução à Algoritmia e Estruturas de Dados
- 2. Vectores Arrays
 - 2.1. Introdução aos vectores
 - 2.2. Implementação de um vector
 - 2.3. Adicionar, alterar e remover elementos de um vector
 - 2.4. Ordenação de um vector
 - 2.5. Pesquisa sequencial e pesquisa binária ou dicotómica

3. Pilhas e Filas de Espera

- **3.1.** O que são Pilhas
 - 3.1.1. Implementar uma Pilha
 - 3.1.2. Adicionar, alterar e remover elementos a uma Pilha
- 3.2. O que são Filas de Espera
 - 3.2.1. Implementar uma Fila de Espera
 - 3.2.2. Adicionar, alterar e remover itens a uma fila de espera

4. Recursividade - Conceitos e técnicas

- **4.1.** Recursividade Conceitos base
- **4.2.** Função Factorial
- **4.3.** Recursão excessiva Fibonacci Numbers
- 4.4. Tail Recursion
- 4.5. Problemas na utilização de funções recursivas

Listas encadeadas

- 5.1. Listas simplesmente encadeadas
 - 5.1.1. Criar uma lista simplesmente encadeada
 - **5.1.2.** Percurso e localização de um item
 - 5.1.3. Adicionar, alterar e remover itens em qualquer ponto de uma lista simplesmente encadeada
- 5.2. Listas duplamente encadeadas
 - 5.2.1. Implementar uma lista duplamente encadeada
 - **5.2.2.** Adicionar, alterar e remover itens de uma lista duplamente encadeada
- **5.3.** Listas encadeadas circulares
 - 5.3.1. Implementar uma lista encadeada circular
 - **5.3.2.** Adicionar, alterar ou remover um conjunto de itens a uma lista encadeada circular

6. Árvores

- 6.1. Conceitos base
- 6.2. Representação de árvores
- **6.3.** Árvores binárias
- 6.4. Árvores de ordenação binária
- 6.5. Atravessamento de uma árvore
- 6.6. Localizar e inserir itens em árvores de ordenação binária
- 6.7. Implementar uma árvore de ordenação binária
- 6.8. Inserir um nó numa árvore de ordenação binária
- **6.9.** Verificar se existe um dado nó numa árvore de ordenação binária
- 6.10. Calcular o número de nós da árvore de ordenação binária

Metodologia de ensino e avaliação

As aulas desta unidade curricular são de natureza teórico-prática. Estão previstas 60 horas de contacto. O tempo total de trabalho do aluno corresponde a 162 horas. Em todas as aulas, exercícios de aplicação prática dos algoritmos e das estruturas de dados complementam a exposição teórica dos apresentados. Esta metodologia permite que os alunos adquiram, não apenas os conhecimentos teóricos, mas também as necessárias competências para aplicar as estruturas de dados a situações práticas simuladas.

De acordo com o Regulamento de Funcionamento do ISTEC a avaliação é efectuada através de um exame escrito individual e obrigatório. Na classificação final, poderão ser considerados elementos de avaliação contínua, tais como testes, trabalhos individuais ou em grupo, assim como a participação nas aulas presenciais e em recursos de aprendizagem proporcionados por sistemas de e-learning.

Demonstração de coerência entre metodologias de ensino e resultados de aprendizagem

A obtenção dos objectivos da unidade curricular é assegurada pela natureza teórico-prática das aulas da unidade curricular que são planeadas para permitir a compreensão teórica e prática dos conceitos, partindo das estruturas de dados mais simples para as construções mais complexas.

Bibliografia

Fundamental:

Rocha, António A., Estruturas de Dados e Algoritmos em C, 2014, 3ª. edição, FCA, ISBN 978-972-722-769-3.

Shaffer, Clifford A. Data Structures and Algorithm Analysis in C++, Third Edition (2011)

Complementar:

Goodrich, Michael T.; Tamassia, Roberto e Mount, David M. Data Structures and Algorithms in C++, Second Edition, John Wiley & Sons

Internet:

Acesso a publicações da especialidade, gratuitamente, através da rede SPRINGER: https://link.springer.com/

Notas do professor

Pré-requisitos

Para compreender o conteúdo desta unidade, o aluno deve estar na posse dos conhecimentos transmitidos na unidade curricular **Programação I**, particularmente os conceitos e manipulação de:

- Arrays
- Strings
- Structures
- Pointers
- Objectos
- Funções (passagem de parâmetros)
 - o Valor
 - o Referência de endereço
 - o Pointer
- Recursividade

Também deve ser capaz de:

- Gerar um executável a partir do código
- Utilizar o debugger
- Conhecer um ambiente integrado de desenvolvimento (IDE) para C++

Ferramenta para desenvolvimento

Nesta unidade utilizar-se-á um IDE que pode ser:

- DevC++
 - Bom para aprender, pois "ajuda" pouco com sugestões
 - o O debugger é pouco evoluído
- Visual Studio (VS)
 - É suficiente a versão gratuita, Community
 - o Ambiente muito complexo
 - o Gera um enorme conjunto de pastas e ficheiros
- Visual Studio Code (VSCode)
 - o Equilibrado entre "ajuda" e complexidade
 - o Precisa de um compilador, que não faz parte da ferramenta
 - o Tem a vantagem de funcionar em várias plataformas (Windows, Linux e Mac)
 - É extremamente versátil devido às extensões que se podem adicionar
 - o Este é o que recomendo

Documentação auxiliar

Documento para ajuda à instalação do Visual Studio Code, bem como do compilador de C++.

Documento com os passos para criação de uma aplicação usando o Visual Studio.