$Th.\ \lambda_1,\ldots\lambda_p$ - различные собственные значения $\mathcal{A}:V\to V$, им соответствуют U_{λ_i} - собственные подпространства V для λ_i

ные подпространства
$$V$$
 для λ_i
$$\exists \ e^{(1)} = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}\}, e^{(2)} = \{e_1^{(2)}, \dots, e_{k_2}^{(2)}\}, \dots \text{ - базисы } U_{\lambda_1}, U_{\lambda_2}, \dots$$

Составим систему $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$ (*)

Тогда система e - линейно независима

□ Составим линейную комбинацию:

1)
$$\supset \frac{\alpha_1 e^{(1)}_{\lambda_1}}{\alpha_1 e^{(1)}_1 + \dots + \alpha_{k_1} e^{(1)}_{k_1}} + \dots + \underbrace{\gamma_1 e^{(p)}_1 + \dots + \gamma_{k_p} e^{(p)}_{k_p}}_{k_p} = 0$$

Тогда $\Sigma_{i=1}^p x_i = 0 \ (x_i$ - линейно независимы, так как λ_i - различны) - этого не может быть, так как $\forall i \ x_i \neq 0 \ ($ как собственный вектор)

2) В $\forall U_{\lambda_i}$ содержится 0-вектор. Тогда $\Sigma_{i=1}^n x_i = 0 \Longleftrightarrow \forall x_i = 0$

Но $x_j = \sum_{j=1}^{k_i} c_i e_i^{(j)} = 0$ ($e_i^{(j)}$ - базисные, т. е. л/нез) $\Longrightarrow \forall c_j = 0$ (комбинация должна быть тривиальна)

Nota. Таким образов объединение базисов собственных подпространств U_{λ_i} образует линейно независимую систему в V^n

Что можно сказать о размерности системы $e\ (*)$?

Обозначим $S=\Sigma_{i=1}^p \dim U_{\lambda_i}=\Sigma_{i=1}^p \beta_i, \; \beta_i$ - геометрическая кратность λ_i

Очевидно, S ≤ n

 $Th. S = n \iff \exists$ базис V^n , составленный из собственных векторов

 \square Система $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$ состоит из собственных векторов

Если S=n, получаем n собственных векторов, линейно независимых - базис V^n

Если \exists базис из n лин. незав. собственных векторов, тогда $\dim e = S = n$

Nota. Условие th равносильно: $V^n = \Sigma_{i=1}^p \oplus U_{\lambda_i}(\lambda_i \neq \lambda_j)$

Действительно: $\dim V^n = \sum_{i=1}^p \dim U_{\lambda_i}$ и $\forall i, j \ U_{\lambda_i} U_{\lambda_j} = 0$

Ex. Если $\exists n$ различных собственных чисел $\lambda_1, \ldots, \lambda_n$, то $\dim U_{\lambda_i} = 1 \forall i$

 $\mathit{Def}.$ Оператор $\mathcal {A}$ диагонализируемый, если существует базис $e \mid A_e$ - диагональна

 $\mathit{Th}.\ \mathcal{A}$ - диаг.-ем \Longleftrightarrow \exists базис из собственных векторов

 $\square \longleftarrow e = \{e_1, \dots, e_n\}$ - базис собственных векторов

Собственный вектор (def): $\exists \lambda_i \mid \mathcal{A}e_i = \lambda_i e_i = 0 \cdot e_1 + \dots + \lambda_i e_i + \dots + 0 \cdot e_n$

$$\begin{cases}
\mathcal{A}e_1 = \lambda_1 e_1 + \Sigma_{k \neq 1} 0 \cdot e_k \\
\mathcal{A}e_2 = \lambda_2 e_2 + \Sigma_{k \neq 2} 0 \cdot e_k
\end{cases}
\iff
\begin{cases}
\lambda_1 & 0 & \dots & 0 \\
0 & \lambda_2 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \lambda_n
\end{cases}$$

$$\cdots e_i = \mathcal{A}e_i$$

 $\Longrightarrow \exists f$ - базис, в котором A_f - диагональная (по def. $\mathcal A$ - диаг.-ем)

$$A_f = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix} \qquad \text{Применим } \mathcal{A} \text{ к } f_i \in f$$

$$\mathcal{A}f_i=A_ff_i=egin{pmatrix} lpha_1&\ldots&0\\ \vdots&\ddots&\vdots\\ 0&\ldots&lpha_n \end{pmatrix}\!f_i=lpha_if_i\Longrightarrowlpha_i$$
 - собственное число (по def), а f_i - собственный вектор

Nota. О связи алгебраической и геометрической кратностей (α - алг., β - геом.)

1) α, β не зависят от выбора базиса

 $\Box \beta_i$ по определению $\dim U_{\lambda_i}$ и не связана с базисом

Для α : строим вековое уравнение $|A_f - \lambda I| = 0 \Longrightarrow \lambda_i$ с кратностью $\alpha_i, \ \alpha = \Sigma \alpha_i$

 $\sqsupset A_q$ - матрица $\mathcal A$ в базисе g

Но $A_g = T_{f o g} A_f T_{g o f}$ или для оператора

$$A_g-\lambda I=T_{f\to g}(A_f-\lambda I)T_{g\to f}=\overline{T_{f\to g}A_fT_{g\to f}}-\overline{\lambda T_{f\to g}IT_{g\to f}}=A_g-\lambda I$$
 Таким образом, матрицы $A_g-\lambda I$, $A_f-\lambda I$ - подобные

Def. Подобные матрицы - матрицы, получаемые при помощи преобразования координат Тогда $\det(A_f - \lambda I) = \det(A_g - \lambda I)$ (инвариант) \Longrightarrow одинаковая кратность

П

2) Геометрическая кратность не превышает алгебраической. У диагонализируемого оператора $\alpha = \beta$

2.8 Самосопряженные операторы

- 1* Сопряженные операторы
- !!! Далее будем рассматривать операторы только в евклидовом пространстве над вещественном полем

Пространство со скалярным произведением над комплексным полем называется унитарным

Мет. Скалярное произведение

$$(x, y): \mathbb{R}^2 \to \mathbb{R}$$

- 1) (x + y, z) = (x, z) + (y, z)
- 2) $(\lambda x, y) = \lambda(x, y)$
- 3) $(x, x) \ge 0$, $(x, x) = 0 \Longrightarrow x = 0$
- 4) (x,y)=(y,x) в \mathbb{R} . Но в комплексном множестве: $(x,y)=\overline{(y,x)}$. Тогда $(x,\lambda y)=\overline{(\lambda y,x)}$