Analyzing Fashion Trends and Customer Preferences Using Big Data Technologies

Group 6

Avirit Singh

Jay Joshi

Tanu Datt

Vaibhavi Rao

Varun Patil

Pragya Priyadarshini

Problem Statement

The most important challenge for fashion retailers is having to process efficiently and analyze large, varied data in order to arrive at actionable insights for strategic decisions. This project addresses the requirement for advanced analytic models capable of processing such huge quantities of fashion data to predict future trends and consumer preferences with accuracy. Big data technology coupled with machine learning is applied herein to enhance inventory optimization and marketing effectiveness with a view toward improvement in profitability and customer satisfaction for apparel retailers.

Proposed Method

Dataset Overview

Structure

- Directories
 - images/: Contains 44,400 high-resolution product images (JPG format), each mapped to a unique product ID.
 - o styles/: Includes metadata files (JSON format) with detailed product descriptions and attributes.
- Files
 - styles.csv: Maps product IDs to 12 key attributes (e.g., categories, display names, labels).
 - o images.csv: Provides supplementary information about the image data.

Content

- Each product is linked through a unique product ID, connecting images, metadata, and CSV records.
- styles.csv serves as the primary mapping file, detailing product attributes.
- JSON metadata complements visual data with rich product context.

Summary

- Total Files: ~88,900
- Directories: 2 (images, styles)
- File Formats: JPG, JSON, CSV
- Dataset Size: ~23.1 GB

Dataset Pre-Processing

Efficient handling of JSON

Defined a schema to process nested structures, ensuring coherence in data types.

Flattened complex fields like meta and data to query them more easily- for example, meta.code, data.price.

Exploded the arrays in individual rows to further develop the relational analysis that could be done with data crossLinks.

Data Cleaning and Validation

Addressed null/NaN values in critical columns, such as label, via checks, filters, and replacements.

Dropped irrelevant or redundant columns: notification, data_styleImages etc.

Ensured completeness and consistency in the final data for analysis.

Feature Selection and Transformations

Focused on main attributes such as data_id, data_price, data_brandName, and meta_code. Extracted new features, for example discount calculation: data.price - data.discountedPrice. Prepared data for EDA, feature engineering, and machine learning workflows.

A.] Decoding Sales Performance: A Multifaceted Data Analysis Approach

Top 10 Brands by Total Revenue

```
# Calculate total revenue (price * quantity) for each brand
top brands revenue = final df.groupBy("data brandName") \
    .agg(F.sum(F.col("data_discountedPrice")).alias("total_revenue")) \
    .orderBy(F.desc("total revenue"))
top_brands_revenue.show(10, truncate=False)
|data_brandName
                           |total_revenue|
                           |5918015
INike
                           14418246
I Puma
IADIDAS
                           13955147
|United Colors of Benetton|2678491
IFossil
                            1698697
ICASIO
                            1355145
IFNF
                            11162341
IFrench Connection
                            11142081
| Catwalk
                            1090089
|Timberland
                           1017409
only showing top 10 rows
```

from pyspark.sql import functions as F

Finding the Highest Priced Nike (any brand)Product

```
from pyspark.sql import functions as F
import matplotlib.pyplot as plt
from PIL import Image
import os
brand = input(str("Enter your Brand: "))
# Step 1: Filter rows where brand is "Nike"
nike data = cleaned df.filter(cleaned df['data brandName'] == brand)
# Step 2: Find the row with the highest data price
# Use PySpark to find the row with the highest price
max_price_row = nike_data.orderBy(F.desc("data_price")).limit(1).collect()[0]
# Extract values from the row
highest price id = max price row['data id']
data_price = max_price_row['data_price']
data_productDisplayName = max_price_row['data_productDisplayName']
data brandName = max price row['data brandName']
data ageGroup = max price row['data ageGroup']
data_gender = max_price_row['data_gender']
data displayCategories = max price row['data displayCategories']
# Print the respective values
print(f"The data_id with the highest data_price for {brand} is: INR {highest_price_id}")
print(f"Details of the product with the highest price:")
print(f"Price: INR {data price}")
print(f"Product Display Name: {data productDisplayName}")
print(f"Brand Name: {data_brandName}")
print(f"Age Group: {data_ageGroup}")
print(f"Gender: {data_gender}")
print(f"Display Categories: {data_displayCategories}")
```

```
Enter your Brand: Nike
```

```
Stage 188:======> (1350 + 8) / 138
```

The data_id with the highest data_price for Nike is: INR 44235

Details of the product with the highest price:

Price: INR 12995

Product Display Name: Nike Men Air Max+ 2012 Blue Sports Shoes

Brand Name: Nike

Age Group: Adults-Men

Gender: Men

Display Categories: Footwear

Profitability Metrics by Category

```
# Calculate profitability by category
category_profitability = final_df.groupBy("data_displayCategories").agg(
    avg("data_vat").alias("avg_vat"),
    count("*").alias("sales_volume"),
    sum("data_discountedPrice").alias("total_revenue")
).orderBy(col("total_revenue").desc())
# Show results
category_profitability.show(truncate=False)
```

data_displayCategories	avg_vat	sales_volume	total_revenue
	13.592643194955334	9515	21463790
Footwear	14.498714836498644	7003	16953850
Casual Wear	5.501028101439342	8754	9572107
NULL	9.952228749136143	5788	7395242
Footwear, Sale	14.389261744966444	894	2430895
Ethnic Wear	5.5	2082	1886113
Casual Wear,Sale	5.5	1489	1518705
Casual Wear,Winterwear	5.5	649	1281982
Sports Wear	5.540723981900452	884	1214576
Formal Wear	5.5	1012	1191554
Accessories, Sale	12.941558441558442	462	589937
Innerwear	8.025538461538462	1625	555310
Sports Shoes, Footwear and Clearance, Sale and Clearance, Footwear, Sale	14.5	143	509620
Sports Shoes, Footwear	114.5	99	374836
Sale and Clearance, Footwear, Sale	14.409090909090908	99	346462
Sports Wear,Winterwear	5.589108910891089	101	324167
Sports Wear,Sale	5.544334975369458	203	290207
Tshirts,Casual Wear and Clearance,Sale and Clearance,Casual Wear,Sale	5.5	384	259297
Footwear and Clearance, Sale and Clearance, Footwear, Sale	14.5	95	221314
Shirts,Casual Wear	5.5	134	206887

only showing top 20 rows

Top Brands by Usage Segment and Gender

data_brandName	data_usage	data_gender	usage_count
Nike	Sports	Men	1030
Puma	Casual	Men	1008
United Colors of Benetton	Casual	Men	792
Catwalk	Casual	Women	732
ADIDAS	Casual	Men	688
United Colors of Benetton	Casual	Women	679
ADIDAS	Sports	Men	666
Baggit	Casual	Women	625
Fabindia	Ethnic	Women	550
Lino Perros	Casual	Women	497
Nike	Casual	Men	455
Wrangler	Casual	Men	442
Puma	Sports	Men	412
Jealous 21	Casual	Women	402
Murcia	Casual	Women	370
Colorbar	Casual	Women	357
Myntra	Casual	Men	352
Nike	Sports	Women	338
W	Ethnic	Women	337
Femella	Casual	Women	334

Best-Selling Categories by Gender

```
# Best-selling categories by gender
final_df.groupBy("data_gender", "data_displayCategories") \
        .count() \
       .orderBy("count", ascending=False) \
        .show(20)
|data_gender|data_displayCategories|count|
          Men
                          Casual Wear | 4859 |
          Men
                             Footwear | 4559 |
       Women
                                 NULL| 4457|
                          Accessories | 4215|
          Menl
       Women
                          Accessories | 4175|
       Women
                          Casual Wear | 2954 |
       Women
                          Ethnic Wear| 1986|
       Women
                             Footwearl 1951
      Unisex
                          Accessories | 1087 |
                                 NULL| 1011|
          Men
                          Formal Wearl
                                         953 I
          Men I
          Menl
                    Casual Wear, Sale!
                                         9511
          Men
                            Innerwearl
                                         833 I
       Women
                            Innerwear
                                         783 |
          Men
                          Sports Wearl
                                         708 |
         Menl
                        Footwear, Sale I
                                         591 I
         Boys
                          Casual Wear
                                         548 |
                    Casual Wear, Sale
                                         479 |
       Women
                Casual Wear, Winte...
                                         475 I
          Men
        GirlsI
                          Casual Wearl
                                         3841
only showing top 20 rows
```

Total Revenue by Base Color [popularity]

```
color revenue = final df.groupBy("data baseColour").agg(
    sum("data_discountedPrice").alias("total_revenue")
).orderBy("total_revenue", ascending=False)
# Show the results
color_revenue.show(truncate=False)
|data_baseColour|total_revenue
IBlack
                 119197911
|White
                 110425403
Blue
                 16585835
IBrown
                 16262574
Grey
                 4572663
ISilver
                 13215362
Red
                 12998091
|Green
                 2422765
|Navy Blue
                 12233161
Purple
                 1988349
|Pink
                 11861297
Gold
                 1200152
Beige
                 11016312
Steel
                 987989
IYellow
                 804199
| Maroon
                 1672562
|Orange
                 1656709
Olive
                 650430
Cream
                 |577971
IMulti
                 1563600
only showing top 20 rows
```

Group by base color and calculate total revenue

B.] Seasonal Trends in Discounted Pricing

Seasonal Trends in Average Discounted Pricing

Usage Analysis by Season and Category

only showing top 20 rows

```
from pyspark.sql.functions import count
# Group by season and usage
season_usage_analysis = final_df.groupBy("data_season", "data_usage").agg(
    count("*").alias("usage count")
# Show the result
season_usage_analysis.orderBy("data_season", "usage_count", ascending=False).show(truncate=False)
   -----
|data_season|data_usage |usage_count|
Winter
            |Casual
                         17986
            | Formal
                         1247
Winter
Winter
            Sports
                         1117
|Winter
            |Ethnic
                         1105
|Winter
            |Smart Casual|32
|Winter
            ITravel
                         112
                         15
lWinter
            INA
                         15
Winter
            Party
                         11
Winter
                         16312
Summer
            Casual
            Sports
                         12135
Summer
|Summer
            |Ethnic
                         11887
            | Formal
                         1073
Summer
            INA
                         130
ISummer
Summer
            ITravel
                         12
Summer
            |Smart Casual|10
Summer
            Party
                         110
|Spring
            | Casual
                         12554
Spring
            INA
                         1270
Spring
            Sports
                         1110
```

Top Products by Revenue and Season

```
# Calculate total revenue for each product by season
top_products_season = final_df.groupBy("data_season", "data_productDisplayName").agg(
    sum("data_discountedPrice").alias("total_revenue")
).orderBy("data_season", "total_revenue", ascending=False)

# Show the top products by season
top_products_season.show(truncate=False)
```

data_season	data_productDisplayName	total_revenue
Winter	Nautica Men Black Dial Chronograph Watch	156435
Winter	Timex Men Black Dial Watch	120140
Winter	Titan Men White Dial Watch	105200
Winter	Giordano Men Black Dial Watch	102528
Winter	Morellato Men Silver Dial Watch	83250
Winter	Fastrack Men Black Dial Watch	78745
Winter	Ed Hardy Men Black Dial Watch	74980
Winter	Citizen Men Black Dial Chronograph Watch	73200
Winter	Titan Men Black Dial Watch	72930
Winter	Catwalk Women Black Heels	70485
Winter	Miss Sixty Silver Dial Watch	68660
Winter	Ray-Ban Men Aviator Sunglasses	68616
Winter	Titan Men Black Watch	68110
Winter	Red Tape Men Brown Shoes	64370
Winter	Citizen Men Black Dial Eco-Drive Watch	63600
Winter	Maxima Men White Dial Watch	63574
Winter	Giordano Men White Dial Watch	62396
Winter	Ray-Ban Men Aviator Gold Sunglasses	60723
Winter	Citizen Women White Dial Watch	59700
Winter	United Colors of Benetton Men Black Sunglasses	58005

Seasonal and Yearly Distribution of Base Colors in Products

 count∣	ata_baseColour	data_year	data_season
64	 Navy Blue	2012	Fall
3	Black	2017	Winter
586	Navy Blue	2012	Summer
474	Purple	2012	Summer
3	White	2018	Fall
1338	Blue	2011	Fall
1148	White	2011	Fall
760	Grey	2011	Fall
3	Charcoal	2012	Fall
9	Navy Blue	2017	Summer
163	Black	2013	Summer
21	Red	2015	Summer
73	Blue	2012	Winter
553	Black	2015	Winter
3	Coffee Brown	2012	Winter
3	Yellow	2011	Winter
14	Red	2013	Spring
168	Brown	2012	Winter
92	Black	2013	Spring
34	Blacki	2014	Summer

Multi-Level Revenue and Sales Count by Brand, Style, and Season

```
# Calculate revenue at multiple levels
multi level revenue = final df.groupBy("data brandName", "data styleType", "data season").agg(
    sum("data_discountedPrice").alias("total_revenue"),
    count("*").alias("sales count")
).orderBy("data brandName", "total revenue", ascending=False)
# Show the results
multi level revenue.show(truncate=False)
Idata brandName
                     |data_styleType|data_season|total_revenue|sales_count
yelloe
                     I P
                                                                  132
                                     Summer
                                                  151480
Ivelloe
                     IP
                                     | Fall
                                                  1790
                                                                  11
                                                  176743
                                                                  116
Ivoque
                                     |Winter
Itest
                     ID
                                     |Spring
                                                  1500
                                                                  11
                     IP
ls.Oliver
                                     |Fall
                                                  136233
                                                                  167
|s.Oliver
                                     Summer
                                                  193139
                                                                  161
                                     IWinter
                                                  1109488
                                                                  159
roxy
                                     Summer
                                                  12390
                                                                  12
roxy
                                                                  12
Ipierre cardin
                     I P
                                     Spring
                                                  13050
                     IP
                                                                  1252
|maxima
                                     Winter
                                                  |414041
| maxima
                     IRTV
                                     IWinter
                                                  111115
                                                                  14
                     IP
                                                                  12
Imaxima
                                     ISummer
                                                  14415
                                                                  12
Imaxima
                     IDEL
                                     IWinter
                                                  11174
                     IP
                                     |Winter
                                                  1102915
                                                                  117
lice watch
                     IP
                                                  |75737
                                                                  193
liPanema
                                     |Winter
                     IP
                                                  1999
                                                                  11
liPanema
                                     ISummer
                                                                  11
liPanema
                     I CDL
                                     IWinter
                                                  1699
Idunhill
                     IP
                                                  178450
                                                                 124
                                     Spring
laramis
                                     Spring
                                                  18265
                                                                 13
                                                                 12
IYves Saint Laurent|P
                                     Spring
                                                  18800
```

from pyspark.sql.functions import col, sum, count

only showing top 20 rows

C.] Retail Insights: Discount, Customer, and Pricing Analysis

Customer Segmentation by Spending Levels

```
# Group customers by total spending
customer_segments = final_df.groupBy("data_id").agg(
    sum("data_discountedPrice").alias("total_spent")
).withColumn(
    "spending_segment",
    when(col("total_spent") > 10000, "High Spender")
    .when(col("total_spent") > 5000, "Medium Spender")
    .otherwise("Low Spender")
).groupBy("spending_segment").agg(
    count("*").alias("customer_count"),
    avg("total_spent").alias("avg_spent")
)
# Show the results
customer_segments.show(truncate=False)
```

spending_segmen	t customer_c	count avg_spent
Medium Spender	1764	7012.326530612245
High Spender	1203	12590.536945812808
Low Spender	42479	1338.4696074044418

Potential Revenue Loss

```
# Filter for unsold winter products from previous years
unsold_products = final_df.filter(
    (col("data_year") < 2023) & (col("data_season") == "Winter")
).groupBy("data_productDisplayName", "data_brandName").agg(
    count("*").alias("unsold_count"),
    sum("label").alias("potential_revenue_loss") # Assuming 'label' is the original price
).orderBy(col("potential_revenue_loss").desc())
# Show results
unsold_products.show(truncate=False)</pre>
```

data_productDisplayName	data_brandName	unsold_cour	nt potential_revenue_loss
Nautica Men Black Dial Chronograph Watch	Nautica	13	156435
Timex Men Black Dial Watch	Timex	22	120140
Giordano Men Black Dial Watch	GIORDANO	19	110450
Titan Men White Dial Watch	Titan	26	105200
Morellato Men Silver Dial Watch	Morellato	9	83250
Fastrack Men Black Dial Watch	Fastrack	41	78745
Giordano Men White Dial Watch	GIORDANO	14	76400
Ray-Ban Men Aviator Sunglasses	Ray-Ban	16	76240
Ed Hardy Men Black Dial Watch	Ed Hardy	8	74980
Citizen Men Black Dial Chronograph Watch	Citizen	7	73200
Titan Men Black Dial Watch	Titan	15	72930
Catwalk Women Black Heels	Catwalk	43	70485
Miss Sixty Silver Dial Watch	MISS SIXTY	8	68660
Titan Men Black Watch	Titan	16	68110
Ray-Ban Men Aviator Gold Sunglasses	Ray-Ban	13	67470
United Colors of Benetton Men Black Sunglass	ses United Colors of Benetton	18	64450
Red Tape Men Brown Shoes	Red Tape	26	64370
Polaroid Men Sunglasses	Polaroid	18	64291
Citizen Men Black Dial Eco-Drive Watch	Citizen	6	63600
Maxima Men White Dial Watch	maxima	37	63574

Distinct Product purchased by each customer

Count distinct products purchased by each customer
customer_loyalty = final_df.groupBy("data_id", "data_gender", "data_ageGroup").agg(
 countDistinct("data_productDisplayName").alias("unique_purchases"),
 sum("data_discountedPrice").alias("total_spent")
).orderBy("total_spent", ascending=False)

Show the results
customer_loyalty.show(truncate=False)

+	+		+	·
data_id	data_gender	data_ageGroup	unique_purchases	total_spent
+	+			
35288	Unisex	Adults-Unisex		28950
35282	Unisex	Adults-Unisex	1	21950
52686	Men	Adults-Men	1	21220
59253	Men	Adults-Men	1	18995
5062	Men	Adults-Men	1	18900
28438	Women	Adults-Women	1	17995
53014	Women	Adults-Women	1	17500
52691	Women	Adults-Women	1	17150
52690	Women	Adults-Women	1	17000
29945	Men	Adults-Men	1	16450
29923	Men	Adults-Men	1	15550
51639	Men	Adults-Men	1	15495
53020	Women	Adults-Women	1	15426
29950	Men	Adults-Men	1	15350
29951	Men	Adults-Men	1	15350
29937	Men	Adults-Men	1	15350
129934	Women	Adults-Women	1	15350
29944	Men	Adults-Men	1	15350
53016	Women	Adults-Women	1	15150
52688	Women	Adults-Women	j1	15050
+	+			·

Pricing Analysis by Gender, Season, and Price Range

Group products into price ranges
pricing_analysis = final_df.withColumn(
 "price_range",
 when(col("data_discountedPrice") < 500, "<500")
 .when((col("data_discountedPrice") >= 500) & (col("data_discountedPrice") < 1500), "500-1500")
 .when((col("data_discountedPrice") >= 1500) & (col("data_discountedPrice") < 3000), "1500-3000")
 .otherwise(">3000")
).groupBy("data_gender", "data_season", "price_range").agg(
 count("*").alias("sales_count"),
 sum("data_discountedPrice").alias("total_revenue")
).orderBy("data_gender", "data_season", col("sales_count").desc())
Show results
pricing_analysis.show(truncate=False)

data_gen	der data_seaso	n price_range	e sales_c	ount total_revenue
Boys	Fall	<500	78	28957
Boys	Fall	500-1500	127	23091
Boys	Fall	>3000	5	20850
Boys	Fall	1500-3000	13	6497
Boys	Spring	<500	5	1618
Boys	Spring	500-1500	1	1999
Boys	Summer	<500	551	160526
Boys	Summer	500-1500	1137	111688
Boys	Summer	1500-3000	12	13398
Boys	Summer	>3000	11	3295
Boys	Winter	<500	118	5548
Boys	Winter	500-1500	12	1898
Girls	Fall	<500	160	23099
Girls	Fall	500-1500	21	17863
Girls	Spring	<500	13	1357
Girls	Summer	<500	419	124950
Girls	Summer	500-1500	1114	192938
Girls	Summer	1500-3000	13	15097
Girls	Winter	j<500	122	6894
Girls	Winter	500-1500	113	19372

only showing top 20 rows

Discount Analysis by Range, Sales Count, and Total Revenue

```
from pyspark.sql.functions import when, col
# Calculate optimal discount range
discount_analysis = final_df.withColumn(
    "discount percentage".
    ((col("label") - col("data_discountedPrice")) / col("label")) * 100
).withColumn(
    "discount range",
    when(col("discount percentage") < 10, "<10%")
    .when((col("discount_percentage") >= 10) & (col("discount_percentage") < 30), "10-30%")</pre>
    .when((col("discount_percentage") >= 30) & (col("discount_percentage") < 50), "30-50%")
    .otherwise(">50%")
).groupBy("discount range").agg(
    count("*").alias("sales_count"),
    sum("data_discountedPrice").alias("total_revenue")
).orderBy(col("sales_count").desc())
# Show results
discount_analysis.show(truncate=False)
```

		unt total_reven
<10%	37300	65053034
10-30%	3056	3835260
>50%	2916	1544326
30-50%	1174	1325761

ML Model

```
from pyspark.ml.evaluation import RegressionEvaluator
# Evaluate RMSE
evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(lr predictions)
print(f"Root Mean Square Error (RMSE) Linear Regression: {rmse}")
# Evaluate R2
r2_evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="r2")
r2 = r2_evaluator.evaluate(lr_predictions)
print(f"R2 Linear Regression: {r2}")
Root Mean Square Error (RMSE) Linear Regression: 0.0999982838823679
(24 + 8) / 361
R<sup>2</sup> Linear Regression: 0.999999996604294
# Print coefficients and intercept
print(f"Coefficients LR: {lr_model.coefficients}")
print(f"Intercept LR: {lr_model.intercept}")
Coefficients LR: [0.0,0.0,0.0,0.9999417273126453,0.0]
Intercept LR: 0.09854435853073856
```

ML Model

Descriptive Features:

- Categorical Features: Indexed (data_fashionType, data_brandName, data_baseColour)
- Numerical Features: Used directly (data price, data year)

Target Feature: data price

Model Implemented: linear regression **Model Performance**:

- R² Value: 0.09 Indicates perfect prediction accuracy.
- **RMSE**: Remarkably low Signifies the model's predictions precisely match the actual values.
- **Visual**: Small plot showing Actual vs. Predicted Values illustrating the direct correspondence.

Conclusion

- 1. Big Data & Machine Learning Integration: Leveraged Apache Spark and Hadoop to process over 44,000 images and metadata, enabling scalable data storage and computation.
- 2. Actionable Insights: Identified patterns in pricing, brand popularity, and demographic trends, aiding retailers in strategic decision-making.
- 3. Machine Learning Success: Applied Linear Regression with high predictive accuracy for inventory optimization and marketing enhancement.
- 4. Industry Transformation: Demonstrated the potential of big data and ML to enhance decision-making, customer experiences, and competitiveness in fashion retail.
- 5. Future Scope: Suggests incorporating real-time data streams and advanced predictive models to refine trend forecasting and customer segmentation.

Contribution

Avirit Singh- Insights, Report, ML model, Data Pre-Processing

Jay Joshi- Insights, Demo, Data Handling

Tanu Datt- Insights, Report, Data Pre-Processing

Vaibhavi Rao- EDA, Insights, PPT

Varun Patil- Insights, Report, PPT, ML Model

Pragya Priyadarshini- Insights, PPT, Data Pre-Processing