Spectral Clustering

Part 3: The Normalized Laplacian

Ng Yen Kaow

More constraint for balance

- Further constraints can be added to the eigenvalue system
- The solution to these problems will require the **generalized eigensystem** $Lx = \lambda Dx$

Generalized eigensystem $Lx = \lambda Dx$

 Proposed as a solution to the problem of representing hypergraphs in Euclidean space (Fukunaga *et al.*, 1984)

An edge in a edges hypergraph can be Find a representation where the vertices connected by connected to multiple edges with large weights are vertices brought closer to each other 8 vertices

Generalized eigensystem $Lx = \lambda Dx$

- The problem is shown to be equivalent to that of solving $Lx = \lambda Dx$ (Van Driessche and Roose, 1995) which is the same as
 - Minimize $x^T L x$ subject to $x^T D x = 1$
 - In this case, let $y = D^{1/2}x$ (i.e. $x = D^{-1/2}y$) Then $x^{T}Lx \Rightarrow y^{T}D^{-1/2}LD^{-1/2}y$, and $x^{T}Dx = 1 \Rightarrow y^{T}y = 1$
 - $\Rightarrow \text{Minimize } yD^{-1/2}LD^{-1/2}y$ subject to $y^{T}y = 1$

which is a standard eigendecomposition problem of the matrix $D^{-1/2}LD^{-1/2}$

Normalized Laplacian $D^{-1/2}LD^{-1/2}$

- □ The matrix $D^{-1/2}LD^{-1/2}$ is now known as the **normalized Laplacian**
 - Since it was used to solve the Normalized Cut problem (next slide)
- □ It is shown to be positive semi-definite (Van Driessche and Roose, 1995)
 (This does not matter for spectral clustering but still nice)
- □ However, $D^{-1/2}LD^{-1/2}$ cannot be related to some form of incidence matrix, nor does it have the mathematical property like with the graph Laplacian

Normalized Cut Problem

Given weight matrix $W = (w_{ij})$ and weighted degree matrix $D = (d_i)$, the normalized cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that

$$\operatorname{ncut}(S, \bar{S}) = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right)$$

is minimized, where $\operatorname{vol}(S) = \sum_{i \in S} d_i$, that is, sum of all the weights of the edges adjacent to vertices in S, and $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, i \in \bar{S}} w_{ij}$

Normalized Cut

 \square Represent a partition S, \overline{S} of V with $x \in \mathbb{R}^n$, where

$$x_i = \begin{cases} \frac{1}{\operatorname{vol}(S)} & \text{if } i \in S \\ -\frac{1}{\operatorname{vol}(\bar{S})} & \text{if } i \in \bar{S} \end{cases}$$
 As in Ratio Cut, $|x_i|$ changes according to the solution

1.
$$x^{\mathsf{T}} L x = \sum_{ij} w_{ij} (x_i - x_j)^2 = \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}\right)^2 \sum_{ij} w_{ij}$$
$$= \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}\right)^2 \operatorname{cut}(S, \bar{S})$$

2.
$$x^{\mathsf{T}}Dx = \sum_{i} d_{i}(x_{i})^{2} = \sum_{i \in S} \frac{d_{i}}{\operatorname{vol}(S)^{2}} + \sum_{i \in \bar{S}} \frac{d_{i}}{\operatorname{vol}(\bar{S})^{2}} = \frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}$$

$$1 + 2 \Rightarrow \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} D' x} = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right) = \operatorname{ncut}(S, \bar{S})$$

Constrained optimization problem

 \square Minimize $x^{\top}Lx$ where L=D-W

subject to
$$x_i \in \left\{\frac{1}{\text{vol}(S)}, -\frac{1}{\text{vol}(\bar{S})}\right\}$$
, $x^T D x = 1$, and $\mathbf{1}^T D x = 0$

- Problem is NP-hard
- □ Note:

- $\frac{1}{\text{vol}(S)}$, $-\frac{1}{\text{vol}(\bar{S})}$ are not the only possible choices
 - See https://arxiv.org/abs/1311.2492

Relaxed Rayleigh quotient version

- □ Minimize $x^T L x$ where L = D Wsubject to $x^T D x = 1$ and $\mathbf{1}^T D x = 0$
- This is equivalent to the earlier **generalized** eigensystem $Lx = \lambda Dx$ except for the additional requirement of $\mathbf{1}^{\mathsf{T}}Dx = 0$

Generalized eigensystem

- □ Minimize $x^T L x$ where L = D Wsubject to $x^T D x = 1$ and $\mathbf{1}^T D x = 0$
- Let $y = D^{1/2}x$, that is, $x = D^{-1/2}y$ $x^{\mathsf{T}}Lx \Rightarrow y^{\mathsf{T}}D^{-1/2}LD^{-1/2}y$ $x^{\mathsf{T}}Dx = 1 \Rightarrow y^{\mathsf{T}}y = 1$ $\mathbf{1}^{\mathsf{T}}Dx = 0 \Rightarrow \mathbf{1}^{\mathsf{T}}D^{1/2}y = 0$

Hence equivalently

□ Minimize $yD^{-1/2}LD^{-1/2}y$ subject to $y^{\mathsf{T}}y = 1$ and $\mathbf{1}^{\mathsf{T}}D^{1/2}y = 0$

Generalized eigensystem

- □ Minimize $yD^{-1/2}LD^{-1/2}y$ where L = D W subject to $y^{\mathsf{T}}y = 1$ and $\mathbf{1}^{\mathsf{T}}D^{1/2}y = 0$
- \square All eigenvectors of $D^{-1/2}LD^{-1/2}$ fulfill $\mathbf{1}^{\mathsf{T}}D^{1/2}y=0$
 - As 1 is a eigenvector for $Lx = \lambda Dx$ with eigenvalue 0, $D^{1/2}$ 1 is a eigenvector for this system with eigenvalue 0 (smallest)
 - Since eigenvectors of this system are orthogonal, $(D^{1/2}\mathbf{1})\mu_{k-1} = 0$ $\Rightarrow \mathbf{1}^{\mathsf{T}}D^{1/2}y = 0$ fulfilled

In fact the eigenvalues for this system are the same as those for $Lx = \lambda Dx$, even though the eigenvectors are different (related by $y = M^{1/2}x$)

 \Rightarrow Eigendecomposition of $D^{-1/2}LD^{-1/2}$ suffices

Eigendecomposition

Edges and vertices have weight 1

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	
1.6760	1.5100	1.42700	1.3100	0.9900	0.5880	0.4990	0.0	
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	0.3922	•
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922	4
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397	*
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397	
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638		K
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397	K
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	0.2774	V
-0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	0.3397	

The limiting distribution of the normalized Laplacian is not f(v) = const since the normalized Laplacian is unrelated to the incidence matrix

© 2021. Ng Yen Kaow

Shi and Malik (1997, 2000)

- Proposed the NP-hard ncut problem
- Related ncut to generalized eigenvalue system, resulting in the now ubiquitous normalized Laplacian
- □ Use Gaussian function $e^{-d^2/2\sigma^2}$ for weights
 - Previously used for min-cut (Wu and Leahy, 1993)
 - Used for RatioCut later (Wang and Siskin, 2003)
- □ Clustering with multiple eigenvectors (Van Driessche and Roose, 1995; Shi and Malik, 2000)

Clustering w/ multiple eigenvectors

With normalized Laplacian

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_{7}	μ_8
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	`\0.3922
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	¦0.3397
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	¦0.3922
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	¦0.3397
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	¦0.2774
-0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	, 0.3397

Use the values from the top few eigenvectors for clustering (with, for example, *k*-means)

© 2021. Ng Yen Kaow

Clustering w/ multiple eigenvectors

Edges and vertices have weight 1

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_{6}	μ_6
0.5677	-0.1583	-0.4862	0.3536	0.2315	-0.2855	0.1766	μ_6
-0.4281	0.6222	-0.2059	0.3536	0.0622	0.2469	0.2690	0.3536
0.3517	0.1203	0.2984	-0.3536	0.5170	0.5007	-0.0694	¦0.3536
-0.0855	0.0612	0.6267	0.3536	0.1159	-0.4899	-0.3044	¦0.3536
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	¦0.3536
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	¦0.3536
-0.0354	-0.1476	0.2596	-0.3536	-0.2798	-0.2029	0.7349	¦0.3536
-0.0540	-0.5251	0.0654	0.3536	-0.4096	0.5286	-0.1411	/ 0.3536

The resultant eigenvectors are less suitable for clustering

Single/multiple eigenvectors use

- Historical use based on Fiedler vector
 - Sign cut or zero threshold cut
 - Median cut (ensures balance)
 - Sweep/criterion cut
 - Sort vertices by Fiedler vector values and cut at the lowest value of some cost function
 - Jump/gap cut
 - Sort vertices by Fiedler vector values and cut at the point of largest gap
- After Shi and Malik, multiple eigenvectors
 - Simultaneous *k*-way (Shi and Malik, 2000)
 - k-means (Ng, Jordan and Weiss, 2001)

Theoretical justification

- How should we view the normalized Laplacian
 - Since normalized Laplacian cannot be related to the incidence matrix, it requires a new characterization
 - ⇒ Random walk characterization (Meilă and Shi, 2000)
- Arguments based on minimizing divergence and objective functions justify only the use of only one eigenvector (not multiple eigenvectors)
 - Furthermore, the argument from minimizing divergence is no longer valid for the normalized Laplacian
 - ⇒ (Weiss, 1999; Meilă and Shi, 2000; Ng, Jordan and Weiss, 2001) successively give justification for the use of the eigenvectors

- \Box Let $P = D^{-1}W$ (where L = D W)
 - A solution x for $Px = \lambda x$ is a solution for the generalized eigensystem $Lx = \lambda Dx$ (with eigenvalues 1λ), and vice versa Proof.

$$Lx = \lambda Dx \Rightarrow D^{-1}(D - W)x = D^{-1}\lambda Dx$$
$$(I - P)x = \lambda x$$
$$Px = (I - \lambda)x$$
$$Lx = \lambda Dx$$

$$Px = (I - \lambda)x \Rightarrow D^{-1}Wx = (I - \lambda)x$$
$$(I - D^{-1}W)x = \lambda x$$
$$(D - W)x = D\lambda x$$
$$Lx = D\lambda x$$

- \Box Let $P = D^{-1}W$ (where L = D W)
 - A solution x for $Px = \lambda x$ is a solution for the generalized eigensystem $Lx = \lambda Dx$ (with eigenvalues 1λ), and vice versa
 - □ The normalized Laplacian $D^{-1/2}LD^{-1/2}$ computes the solutions to $Px = \lambda x$ for the normalized matrix P
 - However, P is not symmetric
 - Doesn't decompose to orthogonal eigenbasis
 - On the other hand $D^{-1/2}LD^{-1/2}$ is symmetric
 - Chosen over P for spectral clustering

- Each row in P sums to 1 (normalized)
 - P is a Markovian transition matrix
- □ To start a walk from v_1 , let $x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$, then $P^l x$ is the probability distribution after l steps from v_1
- x_i for neighboring vertices will become more similar \Rightarrow gradients decrease
- Parts of the graph will even out more quickly

- □ Each row in *P* sums to 1 (normalized)
 - P is a Markovian transition matrix
- □ A limiting/stable/stationary state for a random walk P is a distribution x^* where $Px^* = x^*$
 - By definition x^* is a eigenvector of P with $\lambda = 1$

Furthermore, x^* is everywhere constant if P is

- A transition matrix for a regular graph
 By symmetry of the graph, a random walk from any vertex is equally likely to be at any other vertex in the limit
- A Laplacian $L = MM^{T}$ for incidence matrix MFirst note that x^{*} minimizes $x^{T}Lx$. On the other hand we know that $x^{T}Lx = \sum_{v} f(v)\Delta f(v)$. Since $\Delta f(v) = 0$ for the everywhere constant x', we have $x'^{T}Lx' = 0$, its minimum. Hence $x^{*} = x'$

Why use multiple eigenvectors

- For illustrative convenience use (an adjacency matrix) $L' = D^{-1/2}(W)D^{-1/2}$ instead of the normalized Laplacian L
 - L' = I L (L =normalized Laplacian)

Proof.
$$L = D^{-1/2}(D - W)D^{-1/2}$$

= $D^{-1/2}(D)D^{-1/2} - D^{-1/2}(W)D^{-1/2}$
= $I - D^{-1/2}(W)D^{-1/2} = I - L'$

- Results in the same eigenvectors but eigenvalues become $1 \lambda_1, ..., 1 \lambda_k$
 - □ Since eigenvalues of L has range in [0,2], eigenvalues of L' has range in [-1,1]

Why use multiple eigenvectors

Matrix	Eigenvalues/vectors (decreasing order)				
L'_u	$\lambda_1^u = 1$ $\lambda_2^u = 0$ $\lambda_3^u = -1$	$v_1^u = [.5 .7 .5]$ $v_2^u = [.7 0 7]$ $v_3^u = [.5 7 .5]$			
L_l'	$\lambda_1^l = 1$ $\lambda_2^l =5$ $\lambda_3^l =5$	$v_1^l = [.6 .6 .6]$ $v_2^l = [0 7 7]$ $v_3^l = [8 .4 .4]$			
L'	$\lambda_1 = 1$ $\lambda_2 = 1$ $\lambda_3 = 0$ $\lambda_4 =5$ $\lambda_5 =5$ $\lambda_6 = -1$	$v_1 = [0 0 0 .6 .6 .6]$ $v_2 = [.5 .7 .5 0 0 0]$ $v_3 = [.7 0 7 0 0 0]$ $v_4 = [0 0 0 0 7 .7]$ $v_5 = [0 0 0 8 .4 .4]$ $v_6 = [.5 7 .5 0 0 0]$			

- The eigenvalues/vectors of L' compose of the eigenvalues/vectors of the submatrices L'_u and L'_l , with unconnected vertices set to 0
- \Box The largest eigenvalue of L'_u and L'_l are both 1 for the ideal case

Why use multiple eigenvectors

□ The largest eigenvalue of L'_u and L'_l is 1 for the ideal (disconnected) case

$$\lambda_1 = \lambda_2 = 1 \Rightarrow |\lambda_1 - \lambda_2| = 0$$

- In non-ideal case, $\lambda_2 < \lambda_1$
- The larger the eigenvalue (for L'), the more cohesive the cluster (this is opposite for L)
- $\square |\lambda_k \lambda_{k+1}|$ is called **eigengap** or spectral gap
 - Large $|\lambda_k \lambda_{k+1}|$ implies higher cohesion in the clusters given by μ_k than those by μ_{k+1}
 - Evaluate whether to use a eigenvector in clustering by its eigengap from the previous

Reconciliation with divergence

- No direct relation between the normalized L' (or L) with divergence
 - \Rightarrow Cannot assume that values in the eigenvector of largest eigenvalue μ_1 (for L') is constant
- However, from Fourier analysis, it remains the case that values in the eigenvectors of smaller eigenvalues will vary more rapidly across the graph (Shuman et al., 2000)

Reconciliation with divergence

 Values in eigenvectors of smaller eigenvalues vary more rapidly across the graph

Example:

- At the largest eigenvalue (for L')
 - Not exactly but still, almost constant everywhere
 - Coincides with the lowest divergence case
- At larger eigenvalues (for L')
 - Smaller variation across connected vertices
 - Coincides with lower divergence case
- At small eigenvalues (for L')
 - Large variation across connected vertices
 - Coincides with higher divergence case

 L_u' from earlier example

$$\lambda_1^u = 1$$

$$.5 .7 .5$$

$$0 - 1 - 2$$

$$not constant!$$

$$\lambda_2^u = 0$$

$$.7 \qquad 0 \qquad -.7$$

$$0 \qquad 1 \qquad 2$$

$$\lambda_3^u = -1$$
.5 -.7 .5
0 - 1 - 2

Other generalized eigensystem

- □ A partitioning problem was proposed in (Hendrickson *et al.*, 1996)
- The problem gives rise to an interesting eigensystem $Lx = \lambda Mx$, as pointed out in (Shewchuk, 2011)
- For completeness we discuss this problem here

Graph Partitioning Problem

 \square Given edge weight matrix $W = (w_{ij})$ and vertex mass matrix M with diagonal elements (m_i) , a 2-partitioning of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, j \in \bar{S}} w_{ij}$ is minimized under the constraint that $\sum_{i \in S} m_i = \sum_{i \in \bar{S}} m_i$, or $1^{T}Mx = 0$

Observe that if $m_i=1$ for all i, then the condition $\sum_{i\in S} m_i = \sum_{i\in \bar{S}} m_i$ is the same as $|S|=|\bar{S}|$

Constrained optimization problem

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}M \in \{1, -1\}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\}$ and $\mathbf{1}^T M x = 0$ together enforce balance in the solution
 - However, problem is NP-hard
 - Recall that even the minimum bisection problem, where all edges and vertices have the same weight, is NP-hard

Relaxed Rayleigh quotient version

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\} \Rightarrow x^T M x = \sum_i m_i$ but not the other way around
 - Balance no longer enforced but that's the least of our worry for now because instead of the standard eigensystem
- Optimization must now be achieved through solving the generalized eigensystem

$$Lx = \lambda Mx$$

Relaxed Rayleigh quotient version

- □ Minimize $x^{\top}Lx$ where L = D' Wsubject to $x^{\top}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{\top}Mx = 0$
- \square Optimize through $Lx = \lambda Mx$
- \square Since 1 fulfills condition for L and M, $\mu_k = 1$
 - However, eigenvectors in the solutions are not orthogonal but rather, M-orthogonal ($\mu_i M \mu_j = 0$ for $i \neq j$)
 - \square $\mathbf{1}^{\mathsf{T}} M \mu_{k-1} = 0$ is fulfilled
- □ Convert to a standard eigenvalue system $M^{-1/2}LM^{-1/2}x = \lambda x$ to compute

Generalized eigensystem

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
- Let $y = M^{1/2}x$, that is, $x = M^{-1/2}y$ $x^{\mathsf{T}}Lx \Rightarrow y^{\mathsf{T}}M^{-1/2}LM^{-1/2}y$ $x^{\mathsf{T}}Mx = \sum_{i} m_{i} \Rightarrow y^{\mathsf{T}}y = \sum_{i} m_{i}$ $\mathbf{1}^{\mathsf{T}}Mx = 0 \Rightarrow \mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Hence equivalently

□ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{\mathsf{T}}y = \sum_i m_i$ and $\mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Generalized eigensystem

- □ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{\top}y = \sum_i m_i$ and $\mathbf{1}^{\top}M^{1/2}y = 0$
- By similar arguments as those for the Normalized Cut problem, it suffices that we eigendecompose $M^{-1/2}LM^{-1/2}$