

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Názov opove žeího pro svojev.	
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	SPS III
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 3. ročník
Sada číslo:	C-08
Pořadové číslo vzdělávacího materiálu:	09
Označení vzdělávacího materiálu:	VY_32_INOVACE_C-08-09
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Pevnostní výpočet ozubených převodů
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Pevnostní výpočet ozubených převodů

Výpočet sil v ozubení

Kroutící moment hnacího kola převodu vyvozuje síly, které se přenesou do kola hnaného. Teoretickou velikost těchto sil řešíme v místě dotyku roztečných kružnic obou ozubených kol.

Velikost sil u kol s přímými zuby

Normálná síla \mathbf{F} (síla kolmá na povrch zubu v místě dotyku) se rozkládá na dvě vzájemně kolmé složky, na sílu obvodovou \mathbf{F}_o (síla vyvozená kroutícím momentem) a sílu radiální \mathbf{F}_r (odtlačuje kola od sebe).

Pro obvodovou sílu platí:

$$F_o = \frac{M_k}{\frac{D}{2}} = \frac{2 \cdot M_k}{D}$$

Kde M_k je přenášený kroutící moment;

D je průměr roztečné kružnice hnacího kola.

Pro radiální sílu platí:

$$\tan \alpha = \frac{F_r}{F_o} = F_r = F_o \cdot \tan \alpha$$

Síly F_o a F_r namáhají hřídel na ohyb a to ve dvou na sobe kolmých rovinách. M_k namáhá hřídel na krut.

Velikost sil u kol se šikmými zuby

Zde je teorie výrazně složitější, protože normálná síla F_n se rozkládá hned do tří složek. Kromě obvodové síly F_o a radiální síly F_r vzniká ještě axiální síla F_o (je rovnoběžná s osou kola).

Pro obvodovou sílu opět platí:

$$F_o = \frac{M_k}{\frac{D}{2}} = \frac{2 \cdot M_k}{D}$$

Pro radiální sílu platí toto odvození:

$$F_n \cdot \cos \alpha = \frac{F_o}{\cos \beta}$$

$$F_r = F_n \cdot \cos \alpha \cdot \tan \alpha = \frac{F_o \cdot \tan \alpha}{\cos \beta}$$

Poznámka: Bude-li $\beta=0$, bude pak i $F_a=0$ a výsledná $F_r=F_o\cdot \tan \alpha$.

Pro axiální sílu platí:

$$F_a = F_o \cdot \tan \beta$$

Axiální síla F_a působí v ose ozubeného kola a musí být zachycena ložisky.

Pevnostní výpočet ozubených kol

Předmětem této kapitoly jsou pevnostní kontroly čelních ozubených kol s přímými i šikmými zuby. Výpočty ostatních druhů ozubených kol jsou značně složité a jdou nad rámec rozsahu požadovaného učiva.

Provádíme tři druhy kontrol:

Kontrola únosnosti v ohybu

Protože je zub ozubeného kola vlastně vetknutým nosníkem namáhaným na ohyb. Namáhána je především pata zubu a z hlediska času jde o zatížení míjivé. Díky tomu v patě hrozí vznik únavového lomu.

Pro ohybový moment v patě zubu platí vztah:

$$M_o = F_o \cdot l$$

Následně počítáme srovnávací ohybové napětí dle vzorce:

$$\sigma_F = \frac{M_o}{W_{op}} \cdot koef$$

Kde W_{op} je modul průřezu paty zubu v ohybu;

koef je koeficient střídavého zatížení.

Nakonec spočítáme bezpečnost ozubení proti únavovému lomu k_F , která by měla mít minimální hodnotu 1,7.

$$k_F = \frac{\sigma_{F \ lim}}{\sigma_F} \le 1.7$$

kde $\delta_{F lim}$ je časovaná pevnost v ohybu, která závisí na materiálu a tepelném zpracování kola. Je to vlastně **mez únavy**, určená experimentálně a najdeme ji ve strojnických tabulkách.

Kontrola únosnosti v dotyku

Při dotyku zubů dochází vlivem otlačení k vydrolování povrchu boků zubů. Vznikají tam jamky, které nazýváme **pitting**.

Počítáme bezpečnost ozubení proti tvorbě pittingu k_H , která by měla mít minimální hodnotu 1,2.

$$k_H = \frac{\sigma_{h \ lim}}{\sigma_h} \le 1.2$$

Kontrola proti zatížení

Zjišťujeme, zda v provozu nedochází k nadměrnému zahřívání boků zubů a k navařování částic kola na sebe. Všechna ozubená soukolí, která jsou trvale nebo velmi často v provozu, je **potřeba mazat**. Důležitá je viskozita použitého oleje.

Opakovací otázky a úkoly

- Urči vzorce pro stanovení velikosti sil v ozubení u čelního soukolí s přímými zuby.
- Urči vzorce pro stanovení velikosti sil v ozubení u čelních soukolí se šikmým ozubením.
- Urči vzorce pro pevnostní kontrolu ozubených kol.

Seznam použité literatury

- KŘĺŽ, R. a kol.: Stavba a provoz strojů II, Převody. Praha: SNTL, 1978.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.