

Tel.: +82-31-500-0133
Fax.: +82-31-500-0159

Calibration Data Sheets

E-Field Probe 3020
DAE4 559
Dipole Antenna D835V2 481
Dipole Antenna D1900V2 5d038
Dipole Antenna D2450V2 746

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

KTL (Dymstec)

Certificate No: ES3-3020 Jul07

CALIBRATION CERTIFICATE ES3DV3 - SN:3020 Object QA CAL-01.v6 and QA CAL-13.v4 Calibration procedure(s) Calibration procedure for dosimetric E-field probes July 18, 2007 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration **Primary Standards** Mar-08 GB41293874 29-Mar-07 (METAS, No. 217-00670) Power meter E4419B 29-Mar-07 (METAS, No. 217-00670) Mar-08 MY41495277 Power sensor E4412A MY41498087 29-Mar-07 (METAS, No. 217-00670) Mar-08 Power sensor E4412A SN: S5054 (3c) Aug-07 Reference 3 dB Attenuator 10-Aug-06 (METAS, No. 217-00592) Mar-08 SN: S5086 (20b) Reference 20 dB Attenuator 29-Mar-07 (METAS, No. 217-00671) Aug-07 Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Jan-08 Reference Probe ES3DV2 SN: 3013 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) DAF4 SN: 654 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Apr-08 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 RF generator HP 8648C US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Network Analyzer HP 8753E Function Signature Name Calibrated by: Katja Pokovic **Technical Manager** Niels Kuster Quality Manager Approved by: Issued: July 18, 2007

Certificate No: ES3-3020_Jul07

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3020 Jul07 Page 2 of 9

Probe ES3DV3

SN:3020

Manufactured: December 5, 2002

Last calibrated: July 17, 2006 Recalibrated: July 18, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3020

Sensitivity in Free Space ^A			Diode C		5
NormX 1.08 + 10.1%		μV/(V/m) ²	DCP X	99 mV	

NormX	1.08 ± 10.1%	$\mu V/(V/m)^2$	DCP X	99 mV
NormY	1.00 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	100 mV
NormZ	1.05 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	98 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center	to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.1	2.4
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.6	4.9
SAR _{be} [%]	With Correction Algorithm	0.9	0.2

Sensor Offset

Probe Tip to Sensor Center 2.1 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 6 of 9

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.32	1.09	6.41 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.79	1.12	6.32 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.54	1.36	5.00 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.47	1.49	4.70 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.44	1.56	4.24 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	$0.94 \pm 5\%$	0.22	1.00	6.96 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.74	1.19	6.29 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.45	1.54	4.40 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.48	1.37	3.89 ± 11.8% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

KTC (Dymstec)

Certificate No: DAE4-559 Mar07

Accreditation No.: SCS 108

Object	DAE4 - SD 000 D	004 BA - SN: 559	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	dure for the data acquisition electr	onics (DAE)
Calibration date:	March 13, 2008		
Condition of the calibrated item	In Tolerance		
The measurements and the uncert	ainties with confidence pro	onal standards, which realize the physical units obability are given on the following pages and ϕ facility: environment temperature (22 \pm 3)°C a	are part of the certificate.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	100000000000000000000000000000000000000	04-Oct-07 (Elcal AG, No: 6467)	Oct-08
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-07 (Elcal AG, No: 6465)	Oct-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	25-Jun-07 (SPEAG, in house check)	In house check Jun-08
Calibrated by:	Name Dominique Steffen	Function Technician	Signature
Approved by:	Fin Bomholt	R&D Director	.01.

Issued: March 13, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-559 Mar08

DC Voltage Measurement

A/D - Converter Resolution nominal

1LSB = High Range:

 $6.1\mu V$,

full range = -100...+300 mV

Low Range:

1LSB =

61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	403.771 ± 0.1% (k=2)	403.915 ± 0.1% (k=2)	403.951 ± 0.1% (k=2)
Low Range	3.96867 ± 0.7% (k=2)	3.95750 ± 0.7% (k=2)	3.96987 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	331°±1°
---	---------

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	199999.9	0.00
Channel X	+ Input	20000	20000.10	0.00
Channel X	- Input	20000	-20003.47	0.02
Channel Y	+ Input	200000	199999.6	0.00
Channel Y	+ Input	20000	19998.07	-0.01
Channel Y	- Input	20000	-20001.18	0.01
Channel Z	+ Input	200000	199999.6	0.00
Channel Z	+ Input	20000	20001.44	0.01
Channel Z	- Input	20000	-20002.87	0.01

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	200.18	0.09
Channel X - Input	200	-199.56	-0.22
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	199.48	-0.26
Channel Y - Input	200	-200.47	0.23
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.36	-0.32
Channel Z - Input	200	-200.92	0.46

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.80	-5.71
	- 200	8.30	6.41
Channel Y	200	17.28	17.42
	- 200	-18.47	-18.64
Channel Z	200	-8.93	-9.51
	- 200	8.77	8.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	1.44	-0.08
Channel Y	200	1.39	-	3.57
Channel Z	200	-0.59	0.22	_

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16269	14082
Channel Y	16276	16735
Channel Z	15896	14213

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.00	-0.94	0.83	0.36
Channel Y	-1.06	-2.34	0.23	0.39
Channel Z	0.11	-1.05	0.99	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2001	201.6	
Channel Y	0.2000	200.4	
Channel Z	0.2001	201.0	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9