U of A

STAT151 Final EXAM STUDY GUIDE

Lecture Notes

Section 1 / Chapter 1 in textbook - INTRODUCTION

- **Statistics** "the science of collecting, classifying, analyzing, describing, and presenting data as well as drawing scientific conclusions about the phenomena being studied."
 - 1. Research design
 - 2. Descriptive stats
 - 3. Inferential stats
 - Hypothesis tests (determine whether there is enough evidence to infer about N)
 - o Compares the null hypothesis (H₀) and alternative hypothesis (H₀ or H₁)
 - Confidence intervals
 - Estimating about N (based on n)
- **Purpose of statistics** see the bigger picture, compare groups/treatments, find cause/effect relationships or associations between variables
- Study/experimental units the subjects being studied
- Types of variables and data
 - Qualitative (categorical)
 - Quantitative
 - Discrete countable
 - Continuous

Section 2 / Chapters 9-11 in textbook - GATHERING DATA AND RESEARCH DESIGN

- Population size N
- Sample size n
- Sample fraction n/N
- **Sampling variability** variation between samples taken from the same population. High sample size = lower variability.
- **Pilot study** used as a trial run to:
 - Design real study
 - Test study methods, like questionnaires or recording devices

- **Parameter** vs statistic
 - Parameter describes population
 - Uses Greek letters. Population mean = μ . Population SD = σ
 - Statistic describes sample
 - Sample mean = [x with line over top]. Sample SD = S

Randomness

- Random Sampling an unbiased selection
 - 1. All individuals have an equal chance of being chosen
 - 2. Selection is independent (selection of one does not affect the selection of others)
- Methods:
 - Random number table table with random numbers...
 - o **Computer programs** not completely random but very common
- Replacement:
 - Sampling with replacement an individual can be selected more than once
 - Sampling without replacement individuals can only be selected once
 - Violates the rule of independent selection (under random sampling) because not every individual will have an equal chance of being chosen. Common, esp. in social surveys.
- Types of random sampling:
 - Simple random sampling (SRS) completely random and independent sampling
 - Ex. not useful: choosing random locations on a map of Alberta. Major cities are undercovered and rural communities are overcovered.
 - Systematic first sample selected randomly, following are all selected sequentially
 - Stratified dividing a population into homogenous subpopulations (strata) generally based on characteristics so that the strata are mutually exclusive. SRS is conducted within each strata using proportional allocation.
 - Ex. allocating areas of Alberta whose size is proportional to the internal population. Conduct SRS within each strata. (small section for Edmonton, larger sections in rural areas)
 - Multistage selecting a sample from N, selecting a sample from the sample, selecting a sample from that sample, etc.
 - Cluster select groups (clusters) and sample every individual in the clusters. Less accurate than other methods.
 - Ex. randomly select some apartment blocks then interview ALL tenants in the selected blocks
- Cluster vs Stratified:
 - o Cluster → each cluster is considered one subject unit
 - Strata → elements within the strata are studied

Problems in sampling

- Convenience sampling (ex. observing animals next to a highway instead of deep in the wilderness; their behaviour would be different b/c they are accustomed to humans. Or surveying people in a mall.)
- Voluntary response bias reduces randomness and creates bias
- Response bias questions that appear to prompt or suggest a specific response.
- **Nonresponse bias** a large number of study units fail to respond to some or any of the questions. May be caused by vague or unclear questions.
- Incomplete sampling frame some members of the population are not included in the sampling frame (sampling frame must include all members of N)
- **Undercoverage** portion of population given less or no representation. May be due to an incomplete sampling frame or using SRS instead of stratified.

Research design - the 5 Ws of research design

- Study/experimental units on which variables are measured
- Randomness
- Explanatory and response variables
 - Explanatory/predictor (independent) variables that are expected to affect others, but are not affected themselves (ex. age, but not height)
 - o Response (dependent) variables that are affected by others (ex. height, but not age)
- Extraneous variables irrelevant explanatory variables; may interfere with the study. Sometimes not measured or cannot be measured (hidden variables).
- Factors explanatory variables used in the study
 - Has to be categorical
- Aspects of design:
 - o Temporal when
 - Spatial where
 - o Purpose why
 - Techniques how

Observational vs Experimental

- Observational:
 - Called a sample/social survey when used for people's opinions

- Tries to estimate parameters of population
- Random selection of study units from target population
- No manipulation or control used, only observation
- o **Population inferences** can be made
- Can observe correlation but CANNOT establish causation
- 2 types:
 - Prospective subjects identified beforehand and data recorded as study proceeds
 - Retrospective subjects identified and data collected after event has occurred

Experimental:

- Researcher sets up an experiment
- Randomness:
 - 1. Study units randomly selected from population
 - 2. Study units are randomly assigned to treatment and control groups
- Manipulation of factors (relevant explanatory variables)
 - Treatment groups
 - Control groups (involves placebos when study units are people)
- Extraneous variables controlled or made constant in all groups (constants)
- Response variable measured and recorded in all treatments and control groups
- Both causal and population inferences can be made if selection and assignment are random
- More accurate and definitive than observational, but may be unethical when observational are not
- Replication (in experimental studies)
 - Required to:
 - Confirm results
 - Apply statistical analysis
 - Estimate precision (standard deviation), give probability of accuracy
 - Number of replicates = n (number of samples / sample size)
 - Increase the "power" of the test
- **Blinding** (in experimental studies)
 - Involves those who could influence (subjects, test administrators) or evaluate (researchers, judges) the results
 - Double- vs single-blind

Example:

 Experimental - randomly select units, randomly allocate to Vitamin E supplement or placebo. More accurate, controlling extraneous variables, can draw causal inferences.

 Observational - many extraneous variables. Observe if there is a correlation between people taking vitamin E and having heart disease. Someone who takes vitamin E is more likely to have a healthier lifestyle, which prevents against heart disease.

Types of research design

• Completely Randomized Single-Factor Design

- Test units allocated randomly to treatments/groups
- Analyzed with two-sample tests if has two samples or Single- Factor ANOVA if there are more than 2

Paired Design

- Pairs of observations, generally each study unit is measured twice
- Paired Sample t-Test analyzes whether the mean difference between two (sets of) observations is zero
- o Analyzes two populations paired in space or time or by a relationship
- o Ex. before and after design

• Randomized Block Design

- Uses Randomized Block ANOVA (Analysis of Variance)
- o Extension of the paired design
- Experimental area is divided into blocks, each block is assumed to be homogeneous even though the blocks themselves differ
- o Requires an equal number of cells for all treatments

Completely Randomized Two-Factor Design

- Analyzed with Two-Factor ANOVA
- The effects of two factors are tested at the same time

Multi-Way Factorial Design

- Analyzed with Multi-Factor ANOVA
- More than two factors

Section 3 / Chapter 2 in textbook - DESCRIPTIVE STATISTICS: CATEGORICAL DATA

Grouping qualitative data

- Need to group the data before it is possible to analyze it
- **Frequency** (f) number of times a value of a variable occurs
- **Frequency distribution** a listing of all values for a variable and their frequencies. Can be either a table or a graph.
- **Relative frequency** ratio of frequency of one value to total number of observations.
 - Class frequency / sum of all frequencies
 - o $f_i / \sum f_i$
 - As a percent formula x100 (relative percent frequency)

Other methods

- **Pie charts** %frequency x 360° = angle
- Bar graphs and contingency tables
 - Simple bar graph shows f of categories of one variable (same info as a pie chart)
 - o Area principle area under the graph must equal the value being presented
 - Contingency tables gives frequencies for two qualitative variables at the same time (bivariate data). Also called two-way tables or cross-tabulation tables. Shows how one variable is contingent on the other.
 - Segmented bar graph stacked bars. Similar to multiple bar graph.
 - Multiple bar graph

Table distributions

- Joint distributions values in the body of a graph. Joint value of two events. Measured as %.
 - Frequency of joint event / grand total x 100
- Marginal distributions total values for a variable (shown in bottom/right margins of graph).
 Measured as %.
 - Total frequencies of category / grand total x 100
- **Conditional distribution** frequency distribution for one category of a variable at a time. Measured as %. Can be vertical or horizontal.
 - Frequency of specific category / total for variable x 100

Independence of variables

• Variables are independent if the distributions for the categories of one variables are all the same (ie. not dependent on the categories of the other variable)

Association of variables

- A change in one variable causes a change in another variable / one variable is dependent upon the other
- Conditional and marginal probabilities must be equal for there to be no association
- Data for a sample is a **subjective method** of deciding of there is any association. Need to use a chi-square test (inferential)
- Data for a population is an objective method
- A segmented bar graph can be used to assess association

Section 4 / Chapters 3-4 in textbook - DESCRIPTIVE STATISTICS: QUANTITATIVE DATA

Describing the distribution of a quantitative variable:

- 1. Shape
- 2. Center
- 3. Spread

Grouping quantitative data

• Uses classes/bins (used to group data)

• Limit grouping

- Used more often in tables
- Lower class limit
- o Upper class limit
- o Class width
- Class mark middle of the class

• Cutpoint grouping

- Used more often in graphs
- Lower cutpoint
- Upper cutpoint equivalent to the lower cutpoint of next higher class
- o Class width difference between two cutpoints
- o Class midpoint middle of class

Histograms

- Like a bar graph but no space between bars
- o For both discrete and continuous quantitative data
- X-axis → classes of data
- o Y-axis → frequencies
- **Single-value frequency distribution / "grouping"** class with one value. Used more often for discrete data.

Dotplots

- Useful for comparing two or many populations or treatments
- Need to analyze shape, center, AND spread to reach a conclusion

Stemplots

- First 1-2 digits of the data are on the left (stem), following digits are listed on the right (leaf)
- Like a sideways histogram but with more information
- Can also be a split-stem diagram
 - Two of each number in the stem (first number takes 0-4, second takes 5-9)

- May truncate the last digit and use the second last as the leaf
- Back-to-back stemplots use a common stem for two plots
- Comparison between histograms, dotplots, and stemplots
 - o Can see the shape better in a histogram
 - A histogram can summarize large datasets, dot and stemplots are restricted to small datasets
 - o Can see the details in dot and stemplots
 - Dotplots are good for visual comparison of many groups
- Other graphs for quantitative data
 - Boxplots
 - Normal probability plots
 - Scatter plots

Distribution shapes

- Symmetrical use StDev to assess spread
 - Bell, triangle, uniform (horizontal line)
- Skewed use quartiles to assess spread
 - Left (negative) lower on left (leaning right)
 - Right (positive) lower on right (leaning left)
 - J-shaped ex. unlimited population growth (in ecology/biology)
- Modality number of peaks
 - o Unimodal, bimodal, multimodal

Measures of central tendency (centre)

- Mean
 - Very influenced by skewness (nonresistant)
 - o More useful for symmetric data
 - Population mean μ
 - Sum of all items in population / population size
 - $\Sigma v_i / N$
 - y = data point; $i = i^{\text{th}}$ observation; N = population size
 - o Sample mean y
 - Sum of all items in a sample / sample size
 - $\Sigma y_i / N$
- Median
 - Resistant measure (more resistant to outliers)
 - Median class the class in which the median is found

- More useful for skewed data
- **Mode** may be more than one (in accordance with modality)
- Comparison
 - Mean center of gravity (if the median is the fulcrum). Skewness pulls the mean in the direction of the long tail
 - o Mode at the peak
 - o Median 50% area on one side, 50% on the other

Measures of variation (spread)

- Range
 - Difference between highest and lowest observations (max-min)
 - Biased by outliers
- Sample variance s²
 - o Find the mean, find the distance from mean of each point, square, add and divide by n-1
- Sample standard deviation s
 - Variance square root
- Degrees of freedom (df)
 - o Number of **independent** observations
 - o n 1 in sample standard deviation
 - Explanation: http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-are-degrees-of-freedom-in-statistics
- Population standard deviation σ
 - o Denominator: N
 - σ² for variance
- Calculation should be rounded to one more decimal place than in the raw data

Five-number summary and boxplots

- Percentiles divide the data set into 100 equal parts
- Deciles
- Quartiles
 - First quartile median of first half of data set (when divided in two halves by median of entire data set)
 - o Second quartile median
 - o Third quartile median of second half of data set
 - o Interquartile range difference between first and third quartiles
- Five-number summary
 - o Min, Q₁, Q₂, Q₃, Max

- Calculating limits and outliers
 - Lower limit \rightarrow Q1 1.5 x interquartile range (IQR)
 - Upper limit \rightarrow Q3 + 1.5 x IQR
 - Values outside of these limits are potential outliers
 - o Adjacent values the most extreme values that lie within the limits
 - If there are no potential outliers, the max and min are the adjacent values
- Boxplots (box and whisker plots)
 - o Rectangles on a graph
 - Median of data = middle line (horizontal) in box
 - Q1 and Q3 = edges of box
 - Adjacent values (extreme points that lie within the limits) = whiskers
 - Potential outliers = asterisks
- When determining Q1 and Q3, don't include the median (no averaging in an odd number of items). Average all the medians in an even number of data points
- **Determining shape** using mean / median and quartiles → bottom of section 4 notes

Section 5 / Chapter 5 - THE STANDARD DEVIATION AS A RULER AND THE NORMAL MODEL

- **Density curve** a model for a frequency distribution where the area/density under the curve represents the relative frequencies and probabilities
 - Area under curve = relative frequency = probability = percent of observations
- Continuous probability model
 - Smooth curve, used for continuous quantitative variables
 - Assign probabilities as the area under the density curve
 - Types of distributions:
 - Uniform
 - Normal
 - Exponential

SD as a ruler

- **Z-score** number of SDs a data point is from the mean
 - \circ x = (y μ) / σ
 - o Z-score = (data point pop. mean) / pop. SD
 - \circ Useful for comparing grades (same grade in two classes \rightarrow better relative standing in the class with the lower mean)
- Z-distribution
 - Same shape as original data
 - Center mean is 0
 - o Spread SD is 1
- Standardized normal variable
 - Same as z-distribution
 - Creates a normal curve

Normal model

- The **normal distribution** is a specific type of continuous density curve
 - Forms a bell curve
 - o Most populations are appr. normal (not completely normal)
- Characteristics:
 - Completely defined by its mean and SD called the parameters (unique, like species names)
 - ο The notation of $N(\mu, \sigma)$ defines a normal distribution
 - Area under curve = 1

- Measures of center all coincide
- Extends indefinitely in either direction (only approaches the horizontal axis)
- o Follows the empirical rule
- The area under a single point is 0
- Empirical rule describes normal curves
 - o The **68.26 95.44 99.74** rule:
 - 68.26% of all observations lie within 1 SD from the mean (either direction)
 - 95.44% is within 2 SDs
 - 99.74% is within 3 SDs
- Standard Normal Table
 - http://math.arizona.edu/~rsims/ma464/standardnormaltable.pdf
 - o Represents percent of data found to the left of specific z-scores
- Standardizing variables using z-scores
 - o Shape no change
 - o Measures of center each point subtracts the mean, so mean becomes 0
 - o Spread each point (y) is divided by SD (lower case sigma), SD becomes 1
- Non-linear transformations
 - o Include log, square root, etc.
 - Change the shape, center, and spread
- Rules:
 - Each point in a graph of continuous data has an area of 0
 - Round the answer to the same number of decimal points as in the standard normal table
- Misc.
 - o Percentile notation: P_x

Assessing normality

- Knowing if the distribution is normal or appr. normal determines which kinds of tests you can use with the data
- Take a random sample and assess if it is normal or not
- Histograms, stemplots, and dotplots
 - Compare the distribution with a bell curve
 - Very subjective method
- Normal probability plot
 - o Turns data into a line; if the line is straight, the data is normal (or appr. normal)
 - Also called a Q-Q plot
 - This rule should only be applied loosely to a small sample
 - Uses confidence interval lines
 - P-value (lower means not normal)
- Chi-Square Goodness of Fit test (hypothesis test)

- o Inferential test
- o Objective
- Empirical rule
 - o Find z-scores and percentages and compare those with the empirical rule

Transformations of data

- Linear adding/subtracting/multiplying/dividing by a constant for each data value
 - o Shifting data adding or subtracting a constant (spread and shape do not change)
 - Rescaling data multiplying or dividing by a constant (shape does not change but spread does)

Section 6 / Chapters 12-13 - PROBABILITY CONCEPTS AND RULES

- Probability theory the science of uncertainty
 - Mathematical basis for inferential statistics
- Sample space (S) all possible outcomes for an experiment or trial
- Outcome (O) a single observation of an experiment
- Event any subset of the sample space (any outcome or set of outcomes)
- Probability model a mathematical representation of a random phenomenon
 - o Consists of sample space and a way of assigning probabilities to events
- Notation
 - o P(A) = the probability of event A

Properties

- 1. Probability is between 0 and 1 or 0% and 100%, inclusive
- 2. Sum of all possible outcomes or trials is 1. In other words, P(S) = 1
- 3. P(impossible event) = 0
- 4. P(guaranteed event) = 1

• Interpretations of probability

- 1. **Equal-likelihood model** prediction based on a theoretical model (ie. you will get a head 0.5 times after 1 coin flip, theoretically)
- 2. **Law of large numbers (LLN)** the probability of an event tends towards a single value the more trials there are. Example:

• **Proportion of an event** - cumulative percentage of the event

Equal-likelihood model

• The f/N rule

- o If there are N possible outcomes that are equally likely, A being an event, then:
- \circ P(A) = f/N
- Probability = relative frequency

Complementary and addition rules

- Complement rule, when E is an event that can occur and c is a negation
 - o P(E) = 1 P(not E)
- Mutually exclusive events (disjoint) no overlap (no common outcomes)
- Events with common outcomes (not mutually exclusive)
 - o **P(A or B)** | either A or B (or both) occur | $A \cup B$ | "A union B"
 - o **P(A and B)** | both A and B at the same time | $A \cap B$ | "A intersect B"
 - o General addition rule -
 - P(AUB) = P(A) + P(B) P(A and B)
 - Special addition rule for mutually exclusive events (disjoint)
 - Same rule but without the last term because A and B can't both occur at the same time
 - You don't need to subtract the overlap because nothing overlaps
 - Mutually exclusive means that A intersect B is impossible

Conditional probabilities

- P(B|A) "the probability of B given A"
- Conditional probability rule
 - \circ P(B|A) = (P(B intersect A)) / P(A)
- Proof: (Joint event / total) / (total for category / total) = joint event / total for category = conditional

Multiplication and independence rules

- General multiplication rule dependent events
 - o multiply both sides of conditional probability equation by the denominator
 - o A x (B given A)
 - O P(B intersect A) = P(B|A) x P(A)
- Independence when the probability of one event does not affect another
 - B is independent of A if P(B|A) = P(B)
 - A and B are independent if P(A and B) = P(A) x P(B)

- Special multiplication rule two or more independent events
 - o $P(A \text{ and } B) = P(A) \times P(B) \text{ (same as above)}$
- Disjoint vs independent
 - Disjoint = dependent (if one occurs, the other cannot)
 - o Independent = not disjoint (can both occur, regardless of each other's occurrence)
 - o Joint events (can occur together) = either dependent or independent
 - Dependent events = either joint or disjoint
- Dependence =/= causality
- Tree diagrams
 - o First set of branches unconditional probabilities of categories for one variable
 - Each node branches into categories for other variable. Number of these nodes represents number of total outcomes
- Total probability rule
 - \circ P(A) = P(A and B) + P(A and B^c)

Section 7 / Chapter 14 - RANDOM VARIABLES AND PROBABILITY MODELS

- Applying mean, SD, and relative frequency distributions to probability distributions
- Random variables, two types:
 - o Discrete random
 - o Continuous random (ex. the normal distribution)

Probability distributions and discrete random variables

- Random variable a quantitative variable whose value depends on chance (or as close to chance as possible)
- **Probability distribution** a listing of possible outcomes with their respective probabilities (or a formula for the probabilities)
- **Discrete random variable** a quantitative variable whose value depends on chance and can be listed (continuous data cannot). Uses a capital letter.

Formulas:

- Sum of the probabilities of a discrete random variable (ie 100%)
 - $\circ \quad \sum P(x) = 1$
- Mean of a discrete random variable
 - The mean is known as the expected value (E(X))
 - \circ $\sum xP(x)$
 - Explanation of formula: https://www.thoughtco.com/formula-for-expected-value-3126269
- Standard deviation and variance of a discrete random variable
 - $\circ \quad \sigma = \sqrt{\Sigma(x-\mu)} 2 P(x)$
 - $\circ \quad Var(X) = \Sigma(x-\mu)2 P(x)$

Interpretation of the mean of a random variable

More observations = average of random variable X is closer to mean

Linear transformations and combinations of random variables

- Adding/subtracting by a constant shifts the mean/expected value but does not change the spread.
 - $\circ \quad E(X \pm b) = E(X) \pm b$
 - o Var(X ± b) = Var(X)
- Multiplying by a constant multiplies the mean by that constant and the variance by the square
 of the constant
 - \circ E(aX) = aE(X)
 - \circ Var(aX) = a^2 Var(X)
- Both addition/subtraction and multiplication
 - \circ E(aX ± b) = aE(X) ± b
 - \circ Var(aX ± b) = a^2 Var(X)
 - \circ SD(aX ± b) = |a|SD(X)
- Sums of random independent variables
 - o The mean of the sum is the sum of the means
 - $\bullet \quad \mathsf{E}(\mathsf{X}+\mathsf{Y})=\mathsf{E}(\mathsf{X})+\mathsf{E}(\mathsf{Y})$
 - o The mean of the difference is the difference between the means
 - $\bullet \quad \mathsf{E}(\mathsf{X}-\mathsf{Y})=\mathsf{E}(\mathsf{X})-\mathsf{E}(\mathsf{Y})$
 - o Variance of sum or difference is the sum of the variances
 - Var(X ± Y) = Var(X) + Var(Y)
 - o With constants:
 - E(aX + bY + c) = aE(X) + bE(Y) + c
 - $Var(aX + bY + c) = a^2Var(X) + b^2Var(Y)$

Continuous probability distributions

• Total area under curve = 1

The Uniform Model

- Simplest continuous probability density function
- Constant value for y between specified values for x (a and b)
- $X \sim U(a,b)$
- Height:
 - o Area of 1 / length
 - \circ 1/(b a)
- The random variable of X is equally likely to take values between a and b
- Probability between two values
 - o P(c < X < d) = (d c) / (b a)
 - Distance of interest / total distance

• Expected value (mean) = median

o
$$E(X) = (b + a) / 2$$

• Variance

o
$$Var(X) = (b - a)^2 / 12$$

• Interquartile range

$$\circ$$
 $(b-a)/2$

Section 8 (Chapter 15) - SAMPLING DISTRIBUTIONS

Sampling error and distributions

- Sampling distribution of the sample mean distribution of the y-bar (sample mean) values for variable x and sample size n
 - Also called: distribution of all possible sample means of a given sample size, or distribution of the variable y-bar
- Sampling error the error from using a sample to infer about a population, like mean or SD
- Sample size and sample error
 - When n = N, y-bar = μ

Mean and standard deviation of the sample mean

- Mean of sample mean
 - o The mean of all possible sample means is the population mean
 - $\bigcirc \quad Mean(y-bar) = \mu_{y-bar} = \mu$
- Standard deviation of sample mean
 - Called the standard error of the sample mean because it determines the amount of sampling error to be expected when inferring to the population
 - The formula applies to sampling with replacement from a finite population or an infinite population
 - o SD of y-bar is the SD of the variable divided by the square root of n
 - $\circ \quad \sigma_{y-bar} = \sigma / \sqrt{n}$
 - o As n increases, SD of the sample means gets smaller until it is 0 when n=N

Sampling distribution of the sample mean for normally distributed variables

- Involves 3 aspects:
 - Shape the sampling distribution of all possible sample means are normally distributed
 - \circ **Center** mean(y-bar) = μ
 - **Spread** SD(y-bar) = σ/\sqrt{n}

Standardized version of y-bar (sample mean)

- $z = (y-bar \mu)/(\sigma/\sqrt{n})$
- z-score = (sample mean population mean) / (sample mean SD)

Sampling distribution of the sample mean for any distribution type

- Central Limit Theorem (CLT)
 - The y-bar (mean) variable is appr. normally distributed for any data, esp. larger sample sizes
 - o **n > 30** → generally accepted as a "large" sample size
 - See notebook
- Shape normal
- Center mean(y-bar) = μ
- **Spread** SD(y-bar) = σ/\sqrt{n}

Assumptions and conditions of the sample mean distribution

- Independence assumption all samples must be independently drawn from the population
- Randomized condition everything must be random
- Sample size assumption and condition -
 - Large enough sample size must be "large"
 - 10% condition applies to sampling without replacement. Sample size should be no more than 10% of the population

Sampling distribution for the difference between two means

- y-bar₁ y-bar₂ = $\mu_{y-bar1-y-bar2}$ = μ_1 μ_2
- Standard deviation
 - Square root of $(\sigma^2_1/n_1 + \sigma^2_2/n_2)$

Sampling distribution of a sample proportion

- Sometimes mean and SD cannot be calculated (ex. with yes/no outcomes) in this case, we find sample proportions
- **Population proportion (p)** percent of the population with a specific attribute (a parameter)

- Sample proportion (\hat{p}) percent of a sample from a population with a specific attribute (a statistic)
 - o y/n
 - o y = number of members with specific attribute; n = sample size
 - o Appr. normally distributed for a large sample size (n)
 - Condition for normality outcome, > or = 10 and outcome, > or = 10
- Sampling distribution of sample proportion
 - Mean $(\hat{p}) = p$
 - o SD (standard error, or SE) = √(p(1 p) / n)
- Z-score of proportions
 - o $(\hat{p} p) / SD$ formula

Assumptions and conditions of the sampling distribution of a sample proportion (\hat{p})

- Independence assumption
- Randomized condition
- Sample size assumption and condition
 - o Large enough (at least 10)
 - o 10% condition
- ^ all are the same as above

Sampling distribution for the difference between two sample proportions

- Difference $\rightarrow \hat{p}_1 \hat{p}_2 = p_1 p_2$
- SD of difference \rightarrow square root of $(((p_1(1-p_1))/n_1+(p_2(1-p_2))/n_2)$

Section 9 (Chapters 16-18) - INFERENTIAL STATISTICS: HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

Stats in the scientific method

- Research design (sampling strategy)
- Data collection
- Descriptive and inferential stats
- Hypothesis tests
- Drawing conclusions
- Scientific writing

Inferential stats

- Two main components
 - Hypothesis testing
 - Confidence intervals

Hypotheses

- Objectives in research lead to two possible outcomes:
 - Null hypothesis (H₀)
 - No relationship among variables, no difference among groups
 - Alternative hypothesis (H_a)
 - There is a relationship between variables
- Research hypotheses are usually based on the alternative hypothesis
- Two types of objectives/hypotheses encountered in research
 - o Differences between treatments of one variable
 - Relationships between two or more variables (positive or negative)
- Tailedness of hypothesis tests
 - o "Tail" refers to the skewness of a distribution (left skewed = tail on left)
 - o **One-tailed** → data deviates in one direction from the reference
 - Can be left-tailed or right-tailed
 - Two-tailed → data deviates in either direction from the reference

Various statistical test jargon

- Test statistic used to decide whether or not to reject the null hypothesis
 - o Calculated value calculated from data
 - Critical value obtained from a table showing theoretical distribution; compared with calculated value to decide about hypothesis
- Rejection region set of values for the test statistic that lead to a rejection of the hypothesis
- Nonrejection region
- Power of a statistical test probability of making a correct decision (to increase: choose most powerful test, use larger sample sizes)
- **P-value** probability of making a type I error

Errors

- Type I (α) rejecting null hypothesis when it is true
 - P (making a type I error) = α → significance level
 - o Probability determined with a theoretical distribution
 - \circ Alpha \rightarrow the maximum probability of the type 1 error you will allow when rejecting H₀
- Type II (β) accepting null hypothesis when it is false
 - P (making a type II error) = β
 - o Generally not determined by a hypothesis test
- Relationship between alpha and beta
 - Inversely proportional
 - o Only way to decrease both → increase sample size

Steps in hypothesis testing

1. Choose test

- a. ex. t-test, ANOVA, correlation
- b. Consider which hypothesis, types of variables, purpose, etc.
- c. Choose whether to test differences between one variable or association between two variables
- d. Categorical → chi-square

2. State hypothesis

- Also identify **significance level** (α)
- a. Common α assumption = 0.05 (less than a 5% chance of making a mistake)
 - 3. Calculate test statistic
- Calculated value (not critical)
 - 4. Decide (non)rejection of H_o and strength of evidence for or against H_o

- . Find **P-value** (probability of type I error) from theoretical distribution with appropriate n or df
- a. Rules:

i.If P-value ≤ significance level (α), H₀ is rejected

ii.If **P-value** > α , **H**₀ is accepted (alternative hypothesis is rejected)

5. Conclusion (in words)

Critical value approach

- o Can be used instead of step 4 to decide whether to reject H_o
- Gives same conclusion, except for strength of evidence
- o Rules:
 - If |calculated test statistic|≥ |critical value|, H₀ is rejected
 - If |calculated test statistic|< |critical value|, H₀ is accepted

Confidence intervals

- **Point estimate** of a parameter value of the corresponding sample statistic used to infer the parameter
 - o Of a population mean y-bar (sample mean used to estimate population mean)
- Confidence-interval estimate
 - o Confidence interval (CI) range of numbers derived from a point estimate
 - Confidence level amount of confidence (as a %) that the parameter lies within the confidence interval. Confidence level = 1-alpha
 - o Confidence-interval estimate level and interval

(Non)parametric methods in inferential stats

• Parametric

- Estimation of population parameters
- Involve assumptions about the population:
 - Random sampling
 - Normally distributed
 - Equal variances between samples
- o Ex. t-tests, ANOVA

Nonparametric

- o Fewer assumptions, only assumption is random sampling
- Can be applied to categorical data
- Less powerful
- Ex. chi-square test

Section 10 (Chapters 16-19) - INFERENCES FOR ONE AND TWO POPULATION PROPORTIONS

- Two types of proportion inferences:
 - One population proportion
 - Two population proportions

Inferences for one population proportion (one-sample case)

- Sampling distribution of the sample proportion
 - Mean (p̂) = p
 - SD (ie standard error) (\hat{p}) = $\sqrt{p(1-p)}/n$
 - o p̂ is appr. normally distributed if:
 - Number of successes → np ≥ 10
 - Number of failures \rightarrow n(1-p) \ge 10

Assumptions and conditions of the sample proportion distribution

- Independence assumption
- Randomized condition
- Sample size assumption and condition
 - Success/failure condition (large enough) number of successes (y) and failures (n y) are both at least 10
 - 10% condition (not too large) when sampling w/o replacement, sample size should be no more than 10% of the population

One population proportion hypothesis testing

One-proportion z-test

1. Check purpose and assumptions to confirm this is an appropriate test

Purpose of test - to check for differences between a population proportion (based on a sample proportion) and a hypothesized proportion (p_0)

Assumptions:

- Simple random sample; independent sampling
- Large (at least 10)
- 10% condition

2. State the null and alternative hypotheses

```
a. Null hypothesis \rightarrow H_0: p = p_0
```

b. Alternative hypothesis (one of the following) \rightarrow

i.H_a: $p \neq p_o$ (two-tailed) ii.H_a: $p < p_o$ (left-tailed) iii.H_a: $p > p_o$ (right-tailed)

3. Obtain the calculated value of the test statistic

- a. Proportion z-score formula
- 4. Decide whether to reject or accept the null hypothesis and state the strength of evidence

Difference between alpha and p-value

- Significance level (alpha) = probability of making a type 1 error
- P-value taken from a table and based on the calculated test statistic = observed probability of a type 1 error

Hypothesis test general formula

Test statistic = Estimate - H₀ value / SE

Confidence intervals for one population proportion

- Confidence interval general formula
 - Estimate ± Critical value * SE (estimate)
- Margin of error = half of confidence interval

Point estimate = average of two p endpoints

One proportion z-interval procedure

Purpose: find population proportion based on sample proportion

Assumptions:

- 1. Simple random sample, independence
- 2. Success/failure assumption (at least 10)
- 3. Sample size no more than 10% of population
- 1. For a given confidence level (1 alpha), use the **z-score table to find Z**_{3/2} (critical value)
- 2. Find confidence interval for p from the endpoints:
 - p-hat $\pm z_{a/2} \times \sqrt{(p-hat (1-p-hat)) / n)}$
- 3. Interpret confidence interval
 - If p is close to 0.5, it is more accurate and n doesn't have to be as big

Relationship between hypothesis tests and confidence intervals

- Rejecting H₀ if and only if the (1 alpha) confidence interval for p does not contain the hypothesized proportion
- Not rejecting H₀ if the confidence interval does contain the hypothesized proportion
- **Two conditions** must be met to ensure the conclusions from a hypothesis test and confidence interval performed on the same data are the same:
 - Confidence level is the complement of the significance level applied in the hypothesis test

Determining required sample size

- Conservative (not guessing)
 - When ME = maximum margin of error,
 - o $n = 0.25 (z_{a/2} / ME)^2$
- Making an educated guess
 - \circ \hat{p}_g = educated guess
 - o $n = (z_{a/2} / ME)^2 (\hat{p}_g (1 \hat{p}_g))$

- o Requires previous information
- o Educated guess should be as close to 0.5 as possible

Plus four confidence interval for small samples

- When the success/failure condition is not met
- Sample proportion of $\hat{p} = y / n$ becomes p[tilde] = (y + 2) / (n + 4)
- Sample size n becomes n [tilde] = n + 4
- Confidence interval same basic formula

Inferences for two population proportions

- **Distribution of the difference between two sample proportions** (large and independent samples)
 - O Difference \hat{p}_1 \hat{p}_2 = p_1 p_2
 - o SD of the difference $\sqrt{(p_1(1-p_1))/n_1} + (p_2(1-p_2))/n_2$

Hypothesis test for the difference between two population proportions

Two-proportions z-test

Purpose: find difference between two population proportions based on two sample proportions

Assumptions:

- 1. Simple random sample, independence
- 2. Two independent samples
- 3. Large (at least 10)
- 4. Not too large (no more than 10% of population)

Null hypothesis: $p_1 = p_2$

Alternative hypothesis:

p1 ≠ p2

p1 < p2

p1 > p2

- 1. Find the calculated value of the test statistic:
 - $z = (\hat{p}_1 \hat{p}_2) / \sqrt{(\hat{p}_{pooled} (1 \hat{p}_{pooled}) (1/n_1 + 1/n_2)}$
 - H_0 value = 0
- 2. Decide whether to reject H0 and determine strength of evidence

Confidence interval for the difference between two population proportions

Two-proportions z-interval procedure

Purpose: find confidence interval for the difference between two population proportions based on two sample proportions

Assumptions: same as above

- 1. For a given confidence level (1 alpha), find the critical value (**Z**_{3/2}) from a standard normal table
- 2. The endpoints for p are given by:
 - $(\hat{p}_1 \hat{p}_2) \pm z_{a/2} \times \sqrt{(p_1(1-p_1)) / n_1) + (p_2(1-p_2)) / n_2}$
- 3. Interpret confidence level

Relationship between hypothesis tests and confidence intervals for two population proportion inferences (two tailed)

- Rejecting H0 if and only if the confidence interval does not contain 0 (endpoints are either both negative or both positive)
- **Not rejecting H0** confidence interval contains 0 (one endpoint is positive and the other is negative)
- If 0 is within the interval, there is no significant difference, thus the null hypothesis is not rejected
- Conditions:
 - Confidence level is a complement of the significance level (alpha)
 - Same sidedness/tailedness

Sample size required for estimating difference between two population proportions

- Not guessing:
 - $o n_1 = n_2 = 0.5 (z_{a/2} / E)^2$
- Making an educated guess using previous information

Section 11 (Chapter 23) - CHI-SQUARE TESTS

The chi-square distribution

- Applied to categorical data
- Chi is the Greek letter □
- There is one chi-square distribution for each degree of freedom
- Basic properties:
 - 1. Total area under curve = 1
 - 2. The curve starts at 0 on the horizontal axis and extends infinitely to the right, never touching the axis
 - 3. Right skewed
 - 4. Higher the df \rightarrow more like a normal curve
- The df is always rounded down
- Chi-square tests are right-tailed (never two-tailed)

Chi-square goodness-of-fit test

Hypothesis test for one categorical variable

Purpose: to compare observed frequencies with expected (theoretical) frequencies

Assumptions:

- Simple random sample, independence
- Sample is no more than 10% of the population
- All expected frequencies are at least 5

Hypotheses

- H₀: no difference between observed and expected
- Ha: observed and expected frequencies are different

Calculation of expected frequencies

• E = np, where p is an expected theoretical proportion

Test statistic:

- $\Box^2 = \Sigma$ (observed expected)² / expected
- df = number of categories 1

Using the chi-square table

- Calculated values are in the body of the table
- P-values at the top
- df on the side

Chi-square test for independence / association

- Hypothesis test involving two variables
- Requires a contingency table

Purpose: to test if two variables are independent or associated

Assumptions:

- Simple random sample, independent sampling
- Sample is no more than 10% of the population
- All expected frequencies are at least 5

Hypotheses

- H₀ there is no association between the variables
- H_a there is an association between the variables

1. Calculate expected frequencies

- E = RC / n
- E is expected frequency, R is row total, C is column total, n is sample size

2. Calculate test statistic

- Same formula as above
- df = (#rows 1)(#columns 1)

Contributions to the chi-square test statistic

- **Signed terms** data points that contribute most to the test statistic (ie. most different from the expected value)
 - o The (O E)2/E terms
 - Neutral in the equation, but given signs (+/-)
- Standardized residual
 - o Normalizes data to make it easier to compare
 - \circ $\;$ (Observed Expected) / $\sqrt{\;}$ Expected
- Assumptions
 - o If one or more assumptions are violated:
 - Combine rows or columns to increase expected frequencies when they are too small
 - Eliminate rows or columns where expected frequencies are too small
 - Increase sample size
- Association and causation
 - o A chi-square test indicates association but not causation

Chi-square test for homogeneity

• Exactly the same as the test for independence/association except for the wordings of the hypotheses and conclusion

Section 12 (Chapter 20) - INFERENCES FOR ONE MEAN

- Inferences about a population are made with one sample, using two methods:
 - One proportion (section 10)
 - o One mean

The t-distribution

- If σ is known (rare)
 - $\circ z = (y-bar \mu 0) / (\sigma / \sqrt{n})$
 - Similar to proportion z-score formula
- Unknown σ:
 - \circ Estimate σ using the sample SD and obtain:
 - The student t version of the sample mean (y-bar)
 - $t = (y-bar \mu) / (s / \sqrt{n})$
 - df = n-1 because it uses sample SD not population SD
- The *t*-distribution is almost as statistically important as the normal distribution
- Why it is called the student t-distribution:
 - t-distribution inventor William Gosset originally published it under the name of "student"
- Properties:
 - 1. Total area under curve = 1
 - 2. Symmetrical at 0
 - 3. Extends infinitely in either direction, never touching the x-axis
 - 4. Different t-distribution for each sample size (identified by df)
 - 5. Higher df = *t*-curve approaches the normal curve until is is the normal curve when df = infinity

Applying the one-mean t-test and the one-mean t-interval procedure

- Guidelines for inferences:
 - o Small samples (n < 15) → t-interval procedure is only used when the variable under study is normal or appr. normal
 - Moderate samples (15 < n < 30) → t-interval procedure is used unless the variable is very far from normal or there are outliers
 - o Large samples (n > 30) → t-interval procedure can be used
- The *t*-test and *t*-interval procedure are fairly resistant to violations of normality but can be affected by outliers

- *t*-table
 - o Either one-tailed, two-tailed, or both

One-mean t-test (also: one-sample)

Purpose: test for a difference between population mean and a hypothesized mean

Assumptions:

- Simple, random sample, independent
- Normal or large sample
- Sample is no more than 10% of the population

Hypotheses:

- H0: $\mu = \mu_0$
- Ha: $\mu \neq \mu_0$ or $\mu < \mu_0$ or $\mu > \mu_0$

One-mean t-test formula:

• $t = (y-bar - \mu_0) / (s / \sqrt{n})$

Confidence interval for one population mean

One mean t-interval procedure

- 1. For a given confidence level (1-alpha), use the t-table showing the t-test critical values to find $t_{\tiny a/2}$ using the appropriate df
- 2. Confidence interval for μ is given by the endpoints:
 - a. y-bar $\pm t_{a/2} x (s / \sqrt{n})$
- 3. Interpret confidence interval

Confidence intervals, margins of error, and precision

- Margin of error is half the confidence interval
- Y-bar is in the middle of the confidence interval

• Precision:

- $\circ\quad$ Margin of error determines the precision with which μ can be estimated
- o Increased by increasing sample size
- Length of confidence interval is inversely proportional to precision; a shorter confidence interval is ideal

