Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 10 - Bode Diagrams

Started on Monday, 3 April 2017, 12:25 PM

State Finished

Completed on Tuesday, 4 April 2017, 8:58 PM

Time taken 1 day 8 hours

Grade 100.00 out of 100.00

Question 1

Correct

Mark 15.00 out of 15.00

$$H(j\omega) = \frac{110(j\omega)}{(j\omega+10)(j\omega+100)}$$

E.1a 9ed

a) What is the zero of this function?

$$z_1 = \boxed{0}$$

b) What are the two poles of this function?

$$p_1 = \boxed{10}$$
 (lower frequency)

$$p_2 = 100$$
 (higher frequency)

c) What is the gain K after putting this function in *Standard Form*?

$$K = \begin{bmatrix} 0.11 \end{bmatrix}$$

Correct

Correct

Mark 17.00 out of 17.00

P14.33b_6ed

Given

$$H(s) = \frac{s}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = 50$$
 \checkmark rad/sec

 A_{dB} at 1 rad/sec = $\boxed{-33.979}$ \checkmark dB

What are the three phase inflection frequencies?

Correct

Correct

Mark 17.00 out of 17.00

P14.33d_6ed

Given

$$H(s) = \frac{3,000}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = \boxed{3000}$$
 rad/sec

 A_{dB} at 1 rad/sec = $\boxed{-0.000000965}$ \checkmark dB

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq 300$ rad/sec
 -45° for $\omega = 3000$ rad/sec
 -90° for $\omega \geq 30000$ rad/sec

Correct

Correct

Mark 17.00 out of 17.00

P14.33c_6ed

Given

$$H(s) = \frac{s}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = \boxed{3000}$$
 rad/sec

 A_{dB} at 1 rad/sec = $\boxed{-69.5}$ \checkmark dB

What are the three phase inflection frequencies?

90° for
$$\omega \le \boxed{300}$$
 rad/sec
45° for $\omega = \boxed{3000}$ rad/sec
0° for $\omega \ge \boxed{30000}$ rad/sec

Correct

Correct

Mark 17.00 out of 17.00

P14.33a_6ed

Given

$$H(s) = \frac{50}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency?

$$\omega_{\rm c} = 50$$
 \checkmark rad/sec`

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq 5$ rad/sec

$$-45^{\circ}$$
 for ω = $\boxed{50}$ rad/sec

$$-90^{\circ}$$
 for ω ≥ $\left[500 \right]$ rad/sec

Correct

Correct

Mark 17.00 out of 17.00

P14.33e_6ed

Given

$$H(s) = \frac{100}{s+125}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = \boxed{125}$$
 \checkmark rad/sec
$$A_{dB} \text{ at 1 rad/sec} = \boxed{-1.94}$$

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq 12.5$ \checkmark rad/sec -45° for $\omega = 125$ \checkmark rad/sec -90° for $\omega \geq 1250$ \checkmark rad/sec

Correct