

Fecha:

# Instituto Politécnico Nacional



# Escuela Superior de Cómputo

Contador Fibonacci

**PRACTICA** 

| wateria:   |                              |
|------------|------------------------------|
|            | Diseño de Sistemas Digitales |
| Grupo:     |                              |
|            | 2CV17                        |
| Profesora: |                              |
|            | Jiménez Ruíz René Baltazar   |
| Alumno:    |                              |
|            | Castro Cruces Jorge Eduardo  |
| Boleta:    |                              |
|            | 2015080213                   |

viernes, 28 de mayo de 2021

### **INTRODUCCIÓN**



## **DESARROLLO**

El primer paso fue elaborar la tabla de estados:

|    |           |    |    | Estado Actua | l . |    | Estado Siguiente |     |     |     |     | Flip Flop D |    |    |    |    |
|----|-----------|----|----|--------------|-----|----|------------------|-----|-----|-----|-----|-------------|----|----|----|----|
| 3  | Valor DEC | Q4 | Q3 | Q2           | Q1  | Q0 | Q4+              | Q3+ | Q2+ | Q1+ | Q0+ | D4          | D3 | D2 | D1 | D0 |
| 4  | 1         | 0  | 0  | 0            | 0   | 1  | 0                | 0   | 0   | 1   | 0   | 0           | 0  | 0  | 1  | 0  |
| 5  | 2         | 0  | 0  | 0            | 1   | 0  | 0                | 0   | 0   | 1   | 1   | 0           | 0  | 0  | 1  | 1  |
| 6  | 3         | 0  | 0  | 0            | 1   | 1  | 0                | 0   | 1   | 0   | 1   | 0           | 0  | 1  | 0  | 1  |
|    | 5         | 0  | 0  | 1            | 0   | 1  | 0                | 1   | 0   | 0   | 0   | 0           | 1  | 0  | 0  | 0  |
| 8  | 8         | 0  | 1  | 0            | 0   | 0  | 0                | 1   | 1   | 0   | 1   | 0           | 1  | 1  | 0  | 1  |
| 9  | 13        | 0  | 1  | 1            | 0   | 1  | 1                | 0   | 1   | 0   | 1   | 1           | 0  | 1  | 0  | 1  |
| 10 | 21        | 1  | 0  | 1            | 0   | 1  | 0                | 0   | 0   | 0   | 1   | 0           | 0  | 0  | 0  | 1  |

Al requerir representar el número 21 en binario, necesitamos 5 bits, por eso tenemos 5 estados y 5 FF-D de salida.

Después, calculamos las ecuaciones de los FF-D con los mapas de Karnaugh:

| _  |       |     |   |   |   |   |   |   |   |                                                                                |
|----|-------|-----|---|---|---|---|---|---|---|--------------------------------------------------------------------------------|
|    | Q4    |     | 0 | 0 | 0 | 1 | 1 | 1 | 1 |                                                                                |
| 5  | Q3    |     | 0 | 1 | 1 | 1 | 1 | 0 | 0 |                                                                                |
| Q1 | Q0 Q2 | 0   | 1 | 1 | 0 | 0 | 1 | 1 | 0 |                                                                                |
| 0  | 0     | X   | X | Х | 0 | Х | Х | X | X | D4 = \Q4 Q3 Q2 \Q1 Q0                                                          |
| 0  | 1     | 0   | 0 | 1 | Х | Х | Х | 0 | Х | D4 = Q3 Q0                                                                     |
| 1  | 1     | 0   | Х | Х | Х | Х | Х | X | X |                                                                                |
| 1  | 0     | 0   | Х | X | X | X | X | X | X |                                                                                |
|    |       |     |   |   |   |   |   |   |   |                                                                                |
|    | Q4    |     | 0 | 0 | 0 | 1 | 1 | 1 | 1 |                                                                                |
|    | Q3    |     | 0 | 1 | 1 | 1 | 1 | 0 | 0 |                                                                                |
| Q1 | Q0 Q2 |     | 1 | 1 | 0 | 0 | 1 | 1 | 0 |                                                                                |
| 0  | 0     | Х   | Х | Х | 1 | Х | Х | X | X | D3 = \Q4 Q3 \Q2 \Q1 \Q0 + \Q4 \Q3 Q2 \Q1 Q0                                    |
| 0  | 1     | 0   | 1 | 0 | Х | Х | Х | 0 | Х | D3 = \Q4 \Q3 Q2 + Q3 \Q2                                                       |
| 1  | 1     | 0   | Х | X | X | X | X | X | X |                                                                                |
| 1  | 0     | 0   | Х | Х | Х | Х | Х | Х | X |                                                                                |
|    | Q4    | 0   | 0 | 0 | 0 | 1 | 1 | 1 | 1 |                                                                                |
|    | Q3    | 0   | 0 | 1 | 1 | 1 | 1 | 0 | 0 |                                                                                |
| Q1 | Q0 Q2 | 0   | 1 | 1 | 0 | 0 | 1 | 1 | 0 |                                                                                |
| 0  | 0     | X   | X | Х | 1 | Х | Х | Х | X | D2 = \Q4 Q3 \Q2 \Q1 \Q0 + \Q4 Q3 Q2 \Q1 Q0 + \Q4 \Q3 \Q2 Q1 Q0                 |
| 0  | 1     | 0   | 0 | 1 | Х | Х | Х | 0 | Х | D2 = Q3 + Q1 Q0                                                                |
| 1  | 1     | 1   | Х | Х | Х | Х | Х | Х | Х |                                                                                |
| 1  | 0     | 0   | Х | Х | Х | Х | Х | Х | X |                                                                                |
|    |       |     |   |   |   |   |   |   |   |                                                                                |
|    | Q4    |     | 0 | 0 | 0 | 1 | 1 | 1 | 1 |                                                                                |
|    | Q3    |     | 0 | 1 | 1 | 1 | 1 | 0 | 0 |                                                                                |
| Q1 | Q0 Q2 |     | 1 | 1 | 0 | 0 | 1 | 1 | 0 |                                                                                |
| 0  | 0     | Х   | Х | Х | 0 | Х | X | X | X | D1 = \Q4 \Q3 \Q2 \Q1 Q0 + \Q4 \Q3 \Q2 Q1 \Q0                                   |
| 0  | 1     | 1   | 0 | 0 | Х | X | X | 0 | X | D1 = \Q4 \Q3 \Q2 \Q1 + Q1 \Q0                                                  |
| 1  | 1     | 0   | Х | Х | Х | Х | Х | Х | X |                                                                                |
| 1  | 0     | 1   | Х | Х | Х | Х | Х | Х | Х |                                                                                |
|    | Q4    | . 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |                                                                                |
|    | Q3    |     | 0 | 1 | 1 | 1 | 1 | 0 | 0 |                                                                                |
| Q1 | Q0 Q2 | 0   | 1 | 1 | 0 | 0 | 1 | 1 | 0 |                                                                                |
| 0  | 0     | Х   | Х | Х | 1 | Х | Х | Х | Х | D0 = \Q4 \Q3 \Q2 Q1 + \Q4 Q3 Q2 \Q1 Q0 + \Q4 Q3 \Q2 \Q1 \Q0 + Q4 \Q3 Q2 \Q1 Q0 |
| 0  | 1     | 0   | 0 | 1 | Х | Х | Х | 1 | Х | D0 = Q1 + Q3 + Q4                                                              |
| 1  | 1     | 1   | Х | Х | Х | Х | Х | Х | Х |                                                                                |
| 1  | 0     | 1   | x | х | х | х | х | × | Х |                                                                                |

Una vez que tenemos simplificadas las ecuaciones de los FF-D, pasamos a la programación en VHDL, de la gal 22v10:

```
Name
         cont00 ;
         00 ;
PartNo
Date
         27/05/2021 ;
Revision 01 ;
Designer Engineer ;
Company University of Tulsa;
Assembly None ;
Location ;
Device g22v10;
/* Definicion de pines de entrada */
PIN 1 = CLK;
PIN 3 = RST;
/* Definicion de pines de salida*/
PIN 23 = Q4;
PIN 22 = Q3;
PIN 21 = Q2;
PIN 20 = Q1;
PIN 19 = 00;
/* Definicion de ecuaciones de los FF-D*/
Q4.D = Q3&Q0;
Q3.D = Q3&!Q2 # !Q4&!Q3&Q2;
Q2.D = Q3 # Q1&Q0;
Q1.D = !Q4&!Q3&!Q2&!Q1 # Q1&!Q0;
Q0.D = Q1 # Q3 # Q4;
[Q0..Q4].ar = RST;
```

Después, generamos el archivo .jed, el cual nos va a permitir simular la programación de la gal 22v10 en proteus.

Por último, armamos el circuito en el simulador y realizamos las pruebas pertinentes.









### **CONCLUSIONES**

En conclusión, se lograron en su totalidad los objetivos de la práctica:

- Diseñar un contador recursivo con la secuencia: 1, 2, 3, 5, 8, 13, 21.
- Usar Flip Flops D.
- Programar la secuencia en VHDL.
- Utilizar el simulador Proteus y la gal 22v10.
- Simular el programa.
- · Verificar que funciones.

Cabe hacer las siguientes aclaraciones sobre la simulación:

- La gal 22v10 se encuentra en modo de trabajo en Flanco de Subida.
- El reloj tiene una frecuencia de 1Hz.
- La entrada l2 es un RESET asíncrono, que inhabilita el funcionamiento de la gal 22v10.

Con esto concluye la práctica.