第三届中国大学生数学竞赛赛区赛

试题参考答案 (数学类, 2011)

一、 (本题 15 分) 已知四点 A(1,2,7), B(4,3,3), (5,-1,6), $(\sqrt{7},\sqrt{7},0)$. 试求过这四点的球面方程.

解答: 设所求球面的球心为 $(\bar{x}, \bar{y}, \bar{z})$, 则

$$(\bar{x}-1)^2 + (\bar{y}-2)^2 + (\bar{z}-7)^2$$

$$= (\bar{x}-4)^2 + (\bar{y}-3)^2 + (\bar{z}-3)^2$$

$$= (\bar{x}-5)^2 + (\bar{y}+1)^2 + (\bar{z}-6)^2$$

$$= (\bar{x}-\sqrt{7})^2 + (\bar{y}-\sqrt{7})^2 + \bar{z}^2.$$

......(8 分)

即

$$\begin{cases} 3\bar{x} + \bar{y} - 4\bar{z} = -10, \\ 4\bar{x} - 3\bar{y} - \bar{z} = 4, \\ (\sqrt{7} - 1)\bar{x} + (\sqrt{7} - 2)\bar{y} - 7\bar{z} = -20. \end{cases}$$

 \dots (10 分)

$$(\bar{x}-1)^2 + (\bar{y}-2)^2 + (\bar{z}-7)^2 = 25.$$

于是所求球面方程为

$$(x-1)^{2} + (y+1)^{2} + (z-3)^{2} = 25.$$
.....(15 $\%$)

结论得证.

(10分)

三、 (本题 15 分) 设 F^n 是数域 F 上的 n 维列空间, $\sigma: F^n \to F^n$ 是一个线
性变换. 若 $\forall A \in M_n(F), \ \sigma(A\alpha) = A\sigma(\alpha), \ (\forall \alpha \in V), \ 证明: \ \sigma = \lambda \cdot \mathrm{id}_{F^n}, \ 其中 \lambda$
是 F 中某个数, id_{F^n} 表示恒同变换.
证明: 设 σ 在 F^n 的标准基 $\varepsilon_1, \dots, \varepsilon_n$ 下的矩阵为 B , 则 $\sigma(\alpha) = B\alpha$ ($\forall \alpha \in$
F^n). (5 分)
由条件: $\forall A \in M_n(F), \sigma(A\alpha) = A\sigma(\alpha), \forall \alpha \in F^n, f BA\alpha = AB\alpha, \forall \alpha \in F^n.$
故 $AB = BA$, $(\forall A \in M_n(F))$
设 $B = (b_{ij})$, 取 $A = \text{diag}(1, \dots, 1, c, 1, \dots, 1)$, 其中 $c \neq 0, 1$, 由 $AB = BA$ 可
得 $b_{ij} = 0$, $\forall i \neq j$. 又取 $A = I_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}$, 这里 E_{st} 是 $(s\ t)$ 一位置
为 1 其它位置为 0 的矩阵.则由 $AB=BA$ 可得 $a_{ii}=a_{jj},$ $(\forall i,j).$ 取 $\lambda=a_{11}.$ 故
$B = \lambda I_n$, 从而 $\sigma = \lambda \cdot \mathrm{id}_{F^n}$ (15 分)

四、 (本题 10 分) 对于 ΔABC , 求 $3\sin A + 4\sin B + 18\sin C$ 的最大值.

解答: 三角形三个角 A, B, C 的取值范围为

$$(A, B, C) \in D \equiv \{(\alpha, \beta, \gamma) | \alpha + \beta + \gamma = \pi, \alpha > 0, \beta > 0, \gamma > 0\}.$$

我们首先考虑 $3\sin A + 4\sin B + 18\sin C$ 在 D 的闭包

$$E = \{(\alpha, \beta, \gamma) | \alpha + \beta + \gamma = \pi, \alpha \ge 0, \beta \ge 0, \gamma \ge 0\}$$

上的最大值. (1 分) 我们有

$$\max_{\substack{(A,B,C)\in E\\(A,B,C)\in E}} (3\sin A + 4\sin B + 18\sin C)$$

$$= \max_{\substack{A+C\leq \pi\\A,C\geq 0}} (3\sin A + 4\sin(A+C) + 18\sin C)$$

$$= \max_{\substack{0\leq C\leq \pi\\0\leq A\leq \pi-C}} \left((3+4\cos C)\sin A + +4\sin C\cos A + 18\sin C \right)$$

$$= \max_{\substack{0\leq C\leq \pi\\0\leq C\leq \pi}} \left(\sqrt{(3+4\cos C)^2 + 16\sin^2 C} + 18\sin C \right)$$

$$= \max_{\substack{0\leq C\leq \pi\\0\leq C\leq \pi}} (\sqrt{25+24\cos C} + 18\sin C).$$

......(4 分)

考虑

$$f(C) = \sqrt{25 + 24\cos C} + 18\sin C, \qquad 0 \le C \le \pi.$$

易见

$$f(C) \ge f(\pi - C), \quad \forall C \in [0, \frac{\pi}{2}].$$

......(5 分)

直接计算得

$$f'(C) = 18\cos C - \frac{12\sin C}{\sqrt{25 + 24\cos C}}.$$
(6 $\frac{1}{2}$)

计算得 f'(C) = 0 等价于

$$(8\cos C - 1)(27\cos^2 C + 32\cos C + 4) = 0.$$

五、 (本题 15 分) 对于任何实数 α , 求证存在取值于 $\{-1,1\}$ 的数列 $\{a_n\}_{n\geq 1}$ 满足

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \sqrt{n + a_k} - n^{\frac{3}{2}} \right) = \alpha.$$

证明: 由 Taylor 展式, $\forall x \in [-\frac{1}{2}, \frac{1}{2}]$, 存在 $\xi \in [-\frac{1}{2}, \frac{1}{2}]$ 使得

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8(1+\xi)^{\frac{3}{2}}}.$$

......(1 分)

从而

$$\left|\sqrt{1+x} - \left(1 + \frac{x}{2}\right)\right| \le x^2, \qquad \forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$$

$$(2 \ \female x)$$

于是当 $n \ge 2$ 时, 不管我们怎么选取只取值 ± 1 的数列 $\{a_n\}_{n\ge 1}$, 均有

$$\sum_{k=1}^{n} \left| \sqrt{n + a_k} - n^{\frac{3}{2}} - \sum_{k=1}^{n} \frac{a_k}{2\sqrt{n}} \right|$$

$$= \sqrt{n} \sum_{k=1}^{n} \left| \sqrt{1 + \frac{a_k}{n}} - \sum_{k=1}^{n} (1 + \frac{a_k}{2n}) \right|$$

$$\leq \sqrt{n} \sum_{k=1}^{n} \left(\frac{a_k}{n} \right)^2 \leq \frac{1}{\sqrt{n}}.$$

(5 分)

可以有很多种方法选取只取值 ± 1 的数列 $\{a_n\}_{n\geq 1}$ 使得

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{a_k}{2\sqrt{n}} = \alpha.$$

此时就成立

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \sqrt{n + a_k} - n^{\frac{3}{2}} \right) = \alpha.$$
(6 $\cancel{\pi}$)

例如, 我们可以按以下方式选取: 取 $a_1 = 1$, 依次定义

$$a_{n+1} = \begin{cases} 1, & \text{mR } \sum_{k=1}^{n} a_k < 2\alpha\sqrt{n}, \\ -1, & \text{mR } \sum_{k=1}^{n} a_k \ge 2\alpha\sqrt{n}. \end{cases}$$

 \dots (10 分)

记

$$y_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k, \qquad n = 1, 2, \dots$$

我们有

$$-\sqrt{n} \le y_n \le \sqrt{n}$$
.

若 $y_n > 2\alpha$, 我们有

$$y_{n+1} - y_n = \frac{y_n \sqrt{n-1}}{\sqrt{n+1}} - y_n$$
$$= -\frac{\sqrt{n+1} + \sqrt{n} + y_n}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})},$$

这时

$$-\frac{2}{\sqrt{n+1}} < y_{n+1} - y_n < 0;$$

.....(12 分)

而当 $y_n < 2\alpha$ 时, 我们有

$$y_{n+1} - y_n = \frac{y_n \sqrt{n+1}}{\sqrt{n+1}} - y_n$$
$$= \frac{\sqrt{n+1} + \sqrt{n} - y_n}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})};$$

这时

$$0 < y_{n+1} - y_n < \frac{2}{\sqrt{n+1}};$$

于是当 $y_{n+1} - 2\alpha$ 和 $y_n - 2\alpha$ 同号时,

$$|y_{n+1} - 2\alpha| \le |y_n - 2\alpha|,$$

而当 $y_{n+1} - 2\alpha$ 和 $y_n - 2\alpha$ 异号时,

$$|y_{n+1} - 2\alpha| \le |y_{n+1} - y_n| \le \frac{2}{\sqrt{n+1}}.$$

一般地有

注意到对任何 N>0, 总有 $m\geq N$, 使得 $y_{m+1}-2\alpha$ 和 $y_m-2\alpha$ 异号. 由上面的讨论可得到

$$|y_k - 2\alpha| \le \frac{2}{\sqrt{m+1}} \le \frac{2}{\sqrt{N+1}}, \qquad \forall k = m+1, m+2, \dots$$

因此, $\lim_{n \to +\infty} y_n = 2\alpha$. (15 分)

六、 (本题 20 分) 设 A 是数域 F 上的 n 阶方阵. 证明: A 相似于 $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, 其中 B 是可逆矩阵, C 是幂零阵, 即存在 m 使得 $C^m = 0$.

证明: 设 V 是 F上 n 维线性空间, σ 是 V 上线性变换, 它在 V 的一组基下的矩阵为 A. 下面证明存在 σ —不变子空间 V_1, V_2 满足 $V = V_1 \oplus V_2$, 且 $\sigma|_{V_1}$ 是同构, $\sigma|_{V_2}$ 是幂零变换.

首先有子空间升链: $\operatorname{Ker} \sigma \subseteq \operatorname{Ker} \sigma^2 \subseteq \cdots \subseteq \operatorname{Ker} \sigma^k \subseteq \cdots$ 从而存在正整数 m 使得 $\operatorname{Ker} \sigma^m = \operatorname{Ker} \sigma^{m+i}$, $(i=1,2,\cdots)$. 进而有 $\operatorname{Ker} \sigma^m = \operatorname{Ker} \sigma^{2m}$.

下面证明 $V = \operatorname{Ker} \sigma^m \oplus \operatorname{Im} \sigma^m$.

 $\sigma|_{\text{Im}\,\sigma^m}$ 是满线性变换, 从而可逆.

 $\forall \alpha \in \operatorname{Ker} \sigma^m \cap \operatorname{Im} \sigma^m$,由 $\alpha \in \operatorname{Im} \sigma^m$,存在 $\beta \in V$,使得 $\alpha = \sigma^m(\beta)$.由此 $0 = \sigma^m(\alpha) = \sigma^{2m}(\beta)$,所以 $\beta \in \operatorname{Ker} \sigma^{2m}$,从而 $\beta \in \operatorname{Ker} \sigma^m = \operatorname{Ker} \sigma^{2m}$.故 $\alpha = \sigma^m(\beta) = 0$. $\operatorname{Ker} \sigma^m \cap \operatorname{Im} \sigma^m = (0)$,从而 $V = \operatorname{Ker} \sigma^m \oplus \operatorname{Im} \sigma^m$. (12 分) 由 $\sigma(\operatorname{Ker} \sigma^m) \subseteq \operatorname{Ker} \sigma^m$, $\sigma(\operatorname{Im} \sigma^m) \subseteq \operatorname{Im} \sigma^m$ 知 $\operatorname{Ker} \sigma^m$,用 $\sigma^m \in \sigma^m$,至间.又由 $\sigma^m(\operatorname{Ker} \sigma^m) = (0)$ 知 $\sigma_{\operatorname{Ker} \sigma^m}$ 是幂零变换.由 $\sigma(\operatorname{Im} \sigma^m) = \operatorname{Im} \sigma^m$ 知

注: 如果视 F 为复数域直接用若当标准型证明, 证明正确可以给 10 分: 存在可逆矩阵 P, 使得

$$P^{-1}AP = \text{diag}(J(\lambda_1, n_1), \cdots, J(\lambda_s, n_s), J(0, m_1), \cdots, J(0, m_t)),$$

其中 $J(\lambda_i, n_i)$ 是特征值为 λ_i 的阶为 n_i 的若当块, $\lambda_i \neq 0$; $J(0, m_j)$ 特征值为 0 的 阶为 m_i 的若当块. (5分) **�** $B = \operatorname{diag}(J(\lambda_1, n_1), \cdots, J(\lambda_s, n_s)),$

$$B = \operatorname{diag}(J(\lambda_1, n_1), \cdots, J(\lambda_s, n_s)),$$

$$C = \text{diag}(J(0, m_1), \cdots, J(0, m_t)),$$

则
$$B$$
 为可逆矩阵, C 为幂零矩阵, A 相似于 $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$. (10 分)

七、 (本题 15 分) 设 F(x) 是 $[0,+\infty)$ 上的单调递减函数, $\lim_{x\to+\infty}F(x)=0$, 且 $\lim_{n\to+\infty}\int_0^{+\infty}F(t)\sin\frac{t}{n}\,dt=0.$ 证明: (i) $\lim_{x\to+\infty}xF(x)=0$, (ii) $\lim_{x\to0}\int_0^{+\infty}F(t)\sin(xt)\,dt=0$.

证明: 首先, 对任何 $x \in \mathbb{R}$, 不难由关于无穷积分收敛性的 Dirichlet 判别法得到 $\int_0^{+\infty} F(t) \sin(xt) dt$ 收敛. 下记

$$f(x) = \int_0^{+\infty} F(t) \sin(xt) dt, \quad \forall x \in \mathbb{R}.$$

由于F单调下降,

$$\int_{2k\pi}^{(2k+2)\pi} F(nt) \sin t \, dt$$

$$= \int_0^{\pi} \left(F(2nk\pi + nt) - F(2nk\pi + 2n\pi - nt) \right) \sin t \, dt$$

$$\geq 0, \qquad \forall k = 0, 1, 2, \dots$$

从而

$$f\left(\frac{1}{n}\right) = \int_{0}^{+\infty} F(t) \sin\frac{t}{n} dt$$

$$= \int_{0}^{+\infty} nF(nt) \sin t dt$$

$$= \sum_{k=0}^{\infty} \int_{2k\pi}^{(2k+2)\pi} nF(nt) \sin t dt$$

$$\geq \int_{0}^{2\pi} nF(nt) \sin t dt$$

$$= \int_{0}^{\pi} n\left(F(nt) - F(2n\pi - nt)\right) \sin t dt$$

$$\geq \int_{0}^{\frac{\pi}{2}} n\left(F(nt) - F(2n\pi - nt)\right) \sin t dt$$

$$\geq n\left[F\left(\frac{n\pi}{2}\right) - F\left(\frac{3n\pi}{2}\right)\right] \int_{0}^{\frac{\pi}{2}} \sin t dt$$

$$= n\left[F\left(\frac{n\pi}{2}\right) - F\left(\frac{3n\pi}{2}\right)\right]$$

$$\geq 0.$$

结合
$$\lim_{n \to +\infty} f\left(\frac{1}{n}\right) = 0$$
 得

$$\lim_{n\to +\infty} n \Big[F\Big(\frac{n\pi}{2}\Big) - F\Big(\frac{3n\pi}{2}\Big) \Big] = 0.$$

这样, 任取 $\delta > 0$, 有 N > 0 使得当 n > N 时, 有

$$n\left|F\left(\frac{n\pi}{2}\right) - F\left(\frac{3n\pi}{2}\right)\right| \le \delta.$$

从而对任何 m > 0, n > N 有

$$0 \leq nF\left(\frac{n\pi}{2}\right)$$

$$\leq \sum_{k=0}^{m} n \left| F\left(\frac{3^k n\pi}{2}\right) - F\left(\frac{3^{k+1} n\pi}{2}\right) \right| + nF\left(\frac{3^{m+1} n\pi}{2}\right)$$

$$\leq \sum_{k=0}^{m} \frac{\delta}{3^k} + nF\left(\frac{3^{m+1} n\pi}{2}\right)$$

$$\leq \frac{3\delta}{2} + nF\left(\frac{3^{m+1} n\pi}{2}\right).$$

上式中令 $m \to +\infty$, 由 $\lim_{x \to +\infty} F(x) = 0$ 得到

$$0 \le nF\left(\frac{n\pi}{2}\right) \le \frac{3\delta}{2}, \qquad \forall n > N.$$

所以

$$\lim_{n \to +\infty} nF\left(\frac{n\pi}{2}\right) = 0.$$

......(9 分)

进一步利用单调性, 当 $x > \frac{\pi}{2}$ 时, 有

$$0 \le xF(x) \le \pi \left[\frac{2x}{\pi}\right] F\left(\left[\frac{2x}{\pi}\right] \cdot \frac{\pi}{2}\right),$$

其中 [s] 表示实数 s 的整数部分. 于是可得

$$\lim_{x \to +\infty} x F(x) = 0.$$

第13页 (共13页)