Partially observable systems and Predictive State Representation (PSR)

Nan Jiang CS 598 Statistical RL @ UIUC

Key assumption so far: Markov property (Markovianness)

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn't need *memory*

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn't need *memory*
- Examples in ML

Alan Mathison Turing OBE FRS (/ˈtjʊərɪn/; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. [2] Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the

text modeling (last word cannot predict what's next; need to capture long-term dependencies)

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn't need *memory*
- Examples in ML

Alan Mathison Turing OBE FRS (/tjʊərɪŋ/; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. [2] Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the

text modeling (last word cannot predict what's next; need to capture long-term dependencies)

- Key assumption so far: Markov property (Markovianness)
- Real-world is non-Markov / partially observable (PO)
 - Or you wouldn't need *memory*
- Examples in ML

Alan Mathison Turing OBE FRS (/ˈtjʊərɪŋ/; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. [2] Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the

text modeling (last word cannot predict what's next; need to capture long-term dependencies)

video prediction

SLAM in robotics ("this place looks familiar; did I return to the same location?")

"perceptual aliasing"

• Observation space O (finite & discrete w.l.o.g.)

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3...$ with randomness

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3...$ with randomness
- Markov systems is a special case:

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3...$ with randomness
- Markov systems is a special case:

$$\Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_{\tau}]$$

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3...$ with randomness
- Markov systems is a special case:

$$\Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_{\tau}]$$
 or, $o_{\tau+1:\tau+k} \perp o_{1:\tau} \mid o_{\tau}$ (bold r.v.; non-bold realization)

• In words, last observation is *sufficient statistics of history* for predicting future observations

- Observation space O (finite & discrete w.l.o.g.)
- Actions space A (omitted for simplicity)
- System starts from initial configuration, and outputs sequences $o_1 o_2 o_3...$ with randomness
- Markov systems is a special case:

$$\Pr[o_{\tau+1:\tau+k} \mid o_{1:\tau}] = \Pr[o_{\tau+1:\tau+k} \mid o_{\tau}]$$
or, $o_{\tau+1:\tau+k} \perp o_{1:\tau} \mid o_{\tau}$ (bold r.v.; non-bold realization)

- In words, last observation is *sufficient statistics of history* for predicting future observations
- How restrictive is Markov assumption?

• For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?
 - System fully specified by Pr[o'|h] for any history h (short for $o_{1:\tau}$)

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?
 - System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:\tau}$)
 - Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?
 - System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:\tau}$)
 - Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!
 - Even with a finite and constant observation space, fully general dynamical systems are intractable

- For a Markov chain, the complexity is measured by the number of states (i.e., number of observations)
 - System fully specified by the transition matrix $T(o' \mid o)$
 - # model parameters = $|O|^2$
- Without Markov assumption?
 - System fully specified by $\Pr[o' | h]$ for any history h (short for $o_{1:\tau}$)
 - Probabilities for different histories can be set completely independently— with horizon L, order $|O|^L$ free parameters!
 - Even with a finite and constant observation space, fully general dynamical systems are intractable
 - Need structure...

• Example structure: small & finite latent state space

- Example structure: small & finite latent state space
- "this place looks familiar; did I return to the same location?"

SLAM in robotics ("this scene looks familiar; did I return to the same location?")

- Example structure: small & finite latent state space
- "this place looks familiar; did I return to the same location?"
 - General PO system: you always visit a new location

SLAM in robotics ("this scene looks familiar; did I return to the same location?")

- Example structure: small & finite latent state space
- "this place looks familiar; did I return to the same location?"
 - General PO system: you always visit a new location
 - With structural assumptions: the building only has this many different rooms. You will return to one or another.

SLAM in robotics ("this scene looks familiar; did I return to the same location?")

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
 - SLAM example: true location

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
 - SLAM example: true location
- Model parameters
 - Emission probability: $E(o \mid z)$
 - Transition probability: $T(z' \mid z, a)$

- Observation space O (finite & discrete w.l.o.g.)
 - SLAM example: current sensory inputs
- Action space A (again will ignore for simplicity in most places)
- Latent/hidden state space Z
 - SLAM example: true location
- Model parameters
 - Emission probability: $E(o \mid z)$
 - Transition probability: $T(z' \mid z, a)$
- Markov chain is special case: identity emission

PO can stem from noisy sensors, which compresses/loses information from "world state"

- PO can stem from noisy sensors, which compresses/loses information from "world state"
- Noisier sensors = more PO?

- PO can stem from noisy sensors, which compresses/loses information from "world state"
- Noisier sensors = more PO?
- Mathematically, if we fix the underlying MDP and vary the emission function, an emission that loses more information gives a more PO process?

- PO can stem from noisy sensors, which compresses/loses information from "world state"
- Noisier sensors = more PO?
- Mathematically, if we fix the underlying MDP and vary the emission function, an emission that loses more information gives a more PO process?
- Wrong: If emission discards all information, the process becomes Markov!

 When the problem is non-Markov, people will say "oh it's a POMDP"

- When the problem is non-Markov, people will say "oh it's a POMDP"
- ...which assumes POMDP is fully general?

Myth 2 about HMMs/POMDPs

- When the problem is non-Markov, people will say "oh it's a POMDP"
- ...which assumes POMDP is fully general?
- Not really: there are systems that can be succinctly represented but require infinitely many hidden states to be represented as a POMDP/HMM

Myth 2 about HMMs/POMDPs

- When the problem is non-Markov, people will say "oh it's a POMDP"
- ...which assumes POMDP is fully general?
- Not really: there are systems that can be succinctly represented but require infinitely many hidden states to be represented as a POMDP/HMM
- Again, one most generic way to specify a PO system is just $Pr[o' | o_{1:\tau}]$, or Pr[o' | h] for short (h for history)

• Examples

- Examples
 - Text prediction: how to *compactly summarize* the sentence so far to predict future words? (that's what you are computing as the hidden vector in an LSTM)

Examples

- Text prediction: how to compactly summarize the sentence so far to predict future words? (that's what you are computing as the hidden vector in an LSTM)
- SLAM: how to map history of sensor readings to physical locations (or a belief about it)

- Examples
 - Text prediction: how to compactly summarize the sentence so far to predict future words? (that's what you are computing as the hidden vector in an LSTM)
 - SLAM: how to map history of sensor readings to physical locations (or a belief about it)
- What does state mean in the PO setting?

- Examples
 - Text prediction: how to compactly summarize the sentence so far to predict future words? (that's what you are computing as the hidden vector in an LSTM)
 - SLAM: how to map history of sensor readings to physical locations (or a belief about it)
- What does state mean in the PO setting?

Definition: **State** is a **function of history**, ϕ , that is a **sufficient statistics** for **predicting future**. That is, for all $t:=o_{\tau+1:\tau+k}$ and $h:=o_{1:\tau}$, $\Pr[t\mid h]=\Pr[t\mid \phi(h)]$

• Trivial function that is state?

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later...

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z \in Z}$, is state

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one, will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z\in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one, will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z \in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...
- Things that are not states and people call "state"

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z\in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...
- Things that are not states and people call "state"
 - Observation: e.g., Atari game frame

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one, will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z \in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...
- Things that are not states and people call "state"
 - Observation: e.g., Atari game frame
 - Hidden state ("World state"): Why?

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z\in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...
- Things that are not states and people call "state"
 - Observation: e.g., Atari game frame
 - Hidden state ("World state"): not a function of history

- Trivial function that is state?
 - History itself (identity map): $\phi(h) = h$
 - There is another one. will reveal later...
- For HMMs/POMDPs, belief state, $(\Pr[z_{\tau}=z \mid h])_{z\in Z}$, is state
- To an old-school RL person, be careful when you say "state" without a modifier...
- Things that are not states and people call "state"
 - Observation: e.g., Atari game frame
 - Hidden state ("World state"): not a function of history
 - Agent state: can be approximately a state

• Typical learning algorithm for HMMs: EM

- Typical learning algorithm for HMMs: EM
- Subject to local optimum

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an ungrounded object. If we reorder the hidden state, that gives exactly the same process (over observables)!

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an ungrounded object. If we reorder the hidden state, that gives exactly the same process (over observables)!
- World state is illusion; all matters is our sensory-motor experience. "to be is to be perceived" (George Berkeley)

- Typical learning algorithm for HMMs: EM
- Subject to local optimum
- More deeply: hidden state is an ungrounded object. If we reorder the hidden state, that gives exactly the same process (over observables)!
- World state is illusion; all matters is our sensory-motor experience. "to be is to be perceived" (George Berkeley)
- But how to inject structure???

• Recall that Pr[o'|h] fully specifies a PO system.

• Recall that $\Pr[o' | h]$ fully specifies a PO system.

• Alternatively, $\Pr[h]$ also does the job (w/ some redundancy;

can you tell?)

• Recall that Pr[o'|h] fully specifies a PO system.

Alternatively, Pr[h] also does the job (w/ some redundancy;

can you tell?)

Let's stack them in a matrix

past

• Recall that $\Pr[o'|h]$ fully specifies a PO system.

• Alternatively, $\Pr[h]$ also does the job (w/ some redundancy;

can you tell?)

Let's stack them in a matrix

past

• Recall that $\Pr[o' | h]$ fully specifies a PO system.

• Alternatively, $\Pr[h]$ also does the job (w/ some redundancy;

can you tell?)

Let's stack them in a matrix

 Claim: For HMM with n hidden states, the rank of this matrix is at most n

past

• Recall that $\Pr[o'|h]$ fully specifies a PO system.

Alternatively, Pr[h] also does the job (w/ some redundancy;

can you tell?)

Let's stack them in a matrix

 Claim: For HMM with n hidden states, the rank of this matrix is at most n

8 -<u>;</u>Ċ:future

past

See project ref page for classical refs for PSRs http://nanjiang.cs.illinois.edu/cs598project/

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, \mathbf{z}_{\tau} = z]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z, h]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z].$$

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, \mathbf{z}_{\tau} = z]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z, h]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z].$$

• Dot-product between two vectors of dimension |Z|: one only depends on history and the other only depends on future—implies low-rankness

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, \mathbf{z}_{\tau} = z]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z, h]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z].$$

- Dot-product between two vectors of dimension |Z|: one only depends on history and the other only depends on future—implies low-rankness
- rank of SDM is known as the linear dimension of the system

• Proof: for any past h and future t, let the current timestep be τ

$$\Pr[ht] = \sum_{z \in \mathcal{Z}} \Pr[ht, \mathbf{z}_{\tau} = z]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z, h]$$

$$= \sum_{z \in \mathcal{Z}} \Pr[h, \mathbf{z}_{\tau} = z] \Pr[t \mid \mathbf{z}_{\tau} = z].$$

- Dot-product between two vectors of dimension |Z|: one only depends on history and the other only depends on future—implies low-rankness
- rank of SDM is known as the linear dimension of the system
- Can we directly work with systems whose SDM has low-rank, instead of going through the latent variable route???

past $\bigcirc \dot{\Diamond} \dot{\Diamond} \dot{\Diamond}$ Pr(\sigma \sigma \sigma \sigma \) 3 ∴∴↓↓‡ future

•••

future

•••

past 8 -<u>;</u>Ò: maximal rank future

•••

past 8 -;Ò:maximal rank B_{ϕ}

•••

past 3 maximal rank B_{ϕ} B_{\circ} future •••

•••

• The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
- If $\phi(h) = \{\Pr[t' \mid h]\}_{t' \in O^*}$, then $\Pr[t \mid h] = \Pr[t \mid \phi(h)]$, trivially

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
- If $\phi(h) = \{\Pr[t' \mid h]\}_{t' \in O^*}$, then $\Pr[t \mid h] = \Pr[t \mid \phi(h)]$, trivially
- But this ϕ is infinite-dimensional and difficult to work with

- The semantics of the state representation used in PSR: $P_{\mathcal{T}|h}$
 - Or its linear transformation $U^{\mathsf{T}}P_{\mathcal{T}|h}$
 - Cond. prob. of a set of future events given the history h
- Earlier question: what is the other trivial function that is always state???
- Answer: (exact) predictions of all future events is trivially state
- If $\phi(h) = \{\Pr[t' \mid h]\}_{t' \in O^*}$, then $\Pr[t \mid h] = \Pr[t \mid \phi(h)]$, trivially
- But this ϕ is infinite-dimensional and difficult to work with
- PSR: when system has certain low-rank structure, the infinitedimensional object is uniquely determined by a subset of its coordinates, which is tractable.

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \left| B_{o_l} \right| imes \cdots imes \left| B_{o_1} \right| imes b_*$$

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

HMM can be converted into such a parametrization

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \left[oldsymbol{B}{o_l}
ight] imes \cdots imes \left[oldsymbol{B}{o_1}
ight] imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$
- "Observable Operator Model (OOM)"

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$
- "Observable Operator Model (OOM)"
 - informally, PSRs without a predictive semantics

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$
- "Observable Operator Model (OOM)"
 - informally, PSRs without a predictive semantics
 - …Really?

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$
- "Observable Operator Model (OOM)"
 - informally, PSRs without a predictive semantics
 - ...Really?
 - (informally) any state representation that can predict Pr[o'lh] using a linear rule is a (transformed) PSR! (see appendix of my NeurIPS paper this year)

• Recall
$$\Pr[o_1...o_l] = b_\infty^ op imes \boxed{B_{o_l}} imes \cdots imes \boxed{B_{o_1}} imes b_*$$

- HMM can be converted into such a parametrization
- For an HMM with transition T, emission E, initial dist. π ,
 - $b_* = \pi$, $B_o = T \operatorname{diag}\{E[o \mid z^{(1)}], ..., E[o \mid z^{(|Z|)}]\}, b_\infty = 1$
- "Observable Operator Model (OOM)"
 - informally, PSRs without a predictive semantics
 - …Really?
 - (informally) any state representation that can predict Pr[o'lh] using a linear rule is a (transformed) PSR! (see appendix of my NeurIPS paper this year)
 - Also known under the name Weighted Finite Automata (WFA)

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

$$f(h) = T^{-1} P_{\mathcal{T}|h}$$

What systems fall in PSRs \ HMMs?

• Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$

What systems fall in PSRs \ HMMs?

- Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$
- Not vice versa: there exists PSR with constant size that cannot be represented by any HMM with finitely many hidden states

What systems fall in PSRs \ HMMs?

- Recall that HMMs with n states has an SDM with rank $\leq n$, hence can be represented by a PSR with rank $\leq n$
- Not vice versa: there exists PSR with constant size that cannot be represented by any HMM with finitely many hidden states
 - "Probability lock": 0-1 sequence where the probability of 1 appearing next goes like a sine wave sampled at an interval that is not a rational multiple of the wave's period; see Jaeger [2000] for details

Almost everything extend straightforwardly

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_l]$ specifies an uncontrolled system

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]
 - obs(.) and act(.) omit actions and obs., respectively

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]
 - obs(.) and act(.) omit actions and obs., respectively
 - what you've done in the past are factual; what you could do in the future are counterfactual

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]
 - obs(.) and act(.) omit actions and obs., respectively
 - what you've done in the past are factual; what you could do in the future are counterfactual
 - Hence t stands for "test": take actions to probe the response of the system

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]
 - obs(.) and act(.) omit actions and obs., respectively
 - what you've done in the past are factual; what you could do in the future are counterfactual
 - Hence t stands for "test": take actions to probe the response of the system
 - Dynamical system research is inherently related to causality

- Almost everything extend straightforwardly
 - ... as long as you know how to define SDM
- $Pr[o_{1...}o_{l}]$ specifies an uncontrolled system
 - $Pr[o_{1...}o_{l} || a_{0...}a_{l-1}]$ specifies a controlled system
 - Actions are not r.v. (unless we fix a policy); they are interventions
 - "If I were to take $a_{0...}a_{l-1}$, what's the odds that I see $o_{1...}o_{l}$?"
 - Does it restrict us to open-loop policies? Answer: no.
- Conditional: Pr[obs(t) | h || do act(t)]
 - obs(.) and act(.) omit actions and obs., respectively
 - what you've done in the past are factual; what you could do in the future are counterfactual
 - Hence t stands for "test": take actions to probe the response of the system
 e.g., off-policy eval with unknown behavior policy
 - Dynamical system research is inherently related to causality

• Moment matching algorithm; no optimization

- Moment matching algorithm; no optimization
 - sensitive to model mismatch

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $Pr[o_{1...}o_l]$

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $Pr[o_{1...}o_l]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $Pr[o_{1...}o_l]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)
 - There are a lot of details that we don't care—need to factor that into PSR theory

- Moment matching algorithm; no optimization
 - sensitive to model mismatch
- Rely on linearity
 - some ideas extend to nonlinear but little can be said theoretically
- Cannot handle rich/continuous observations well
 - Aim to learn $Pr[o_{1...}o_l]$
 - Explicitly modeling density of rich obs is hard (c.f., GAN)
 - There are a lot of details that we don't care—need to factor that into PSR theory
- When combined with planning, the approach is model-based RL (which isn't working quite well yet in the era of deep RL)