s1: Simple test-time scaling

Niklas Muennighoff* Zitong Yang* Weijia Shi* Xiang Lisa Li* Li Fei-Fei Hannaneh Hajishirzi Luke Zettlemoyer Percy Liang Emmanuel Candès Tatsunori Hashimoto

Niklas Muennighoff X: @Muennighoff

OpenAl o1

Researc

Saf

Company

Q

September 12, 2024

Learning to Reason with LLMs

We are introducing OpenAl o1, a new large language model trained with reinforcement learning to perform complex reasoning. o1 thinks before it answers —it can produce a long internal chain of thought before responding to the user.

Contributions

OpenAl o1 ranks in the 89th percentile on competitive programming questions (Codeforces), places among the top 500 students in the US in a qualifier for the USA Math Olympiad (AIME), and exceeds human PhD-level accuracy on a

o1 - Reasoning

o1 - Test-time scaling

Reasoning

Test-time scaling

Reasoning

Test-time scaling

Riemann-hypothesis P!= NP String theory

Simplest Recipe?

s1

Simple test-time scaling

Data Test-time scaling

s1K + Budget forcing

s1

Data

s1-prob

Show that the uniform distribution on \\([0,1]\\] is not the convolution of two independent, identically distributed variables.

s1-prob

Show that the uniform distribution on \\([0,1]\\] is not the convolution of two independent, identically distributed variables.

Suppose you roll three fair 100-sided die. What is the expected value of the lowest roll?

s1-prob

Show that the uniform distribution on \\([0,1]\\] is not the convolution of two independent, identically distributed variables.

s1-teasers

Suppose you roll three fair 100-sided die. What is the expected value of the lowest roll?

•••

Difficulty

Distill reasoning traces & answers

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun were the same size, but it produced the same amount of power per unit volume as a human, what would its surface temperature be?...

Distill reasoning traces & answers

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun were the same size, but it produced the same amount of power per unit volume as a human, what would its surface temperature be?...

s1: Google Gemini

The problem asks for the surface temperature of the sun if it had the same size but produced power per unit volume as a human.

First, let's find the power density of a human...

Distill reasoning traces & answers

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun were the same size, but it produced the same amount of power per unit volume as a human, what would its surface temperature be?...

s1: Google Gemini

The problem asks for the surface temperature of the sun if it had the same size but produced power per unit volume as a human.

First, let's find the power density of a human...

s1.1: DeepSeek r1

Okay, so there's this fun fact saying that humans produce more power per unit volume than stars. The question is asking if the Sun were the same size as a human (but with the same power per unit volume as a human), what would its surface temperature be? The answer choices are given, and I need to figure out which one is correct...

Longer traces

s1K: 1000 high-quality, difficult & diverse samples

Test-time scaling

Budget Forcing

How many r in raspberry?

Question

Let's break down the process of counting the letter 'r' in the word "raspberry" ...

- * First letter: 'r' This is an 'r', count = 1.
- * Second letter: 'a' Not an 'r', count remains 1 ...
- * Sixth letter: 'e' Not an 'r', count remains 1.
- * Seventh letter: 'r' This is an 'r', count = 2.
- * Eighth letter: 'y' Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.

Wait, let's re-read the question carefully. It asks "How many r in raspberry?" ... * r - a - s - p - b - e - r - r - y ... * First 'r' ... * Second 'r' ... * Third 'r' ... Count = 3 ... Reasoning trace

My initial answer of 2 was incorrect due to a quick reading of the word. **Final Answer:** The final answer is **3 Response**

Other

Conditional length-control

Rejection sampling

Scaling

Performance

Training & Results

Training

Qwen2.5-32B

16 H100s

26min

Models

SFT / Distill

s1/s1.1

r1-distill

Sky-T1

Bespoke-Stratos

Models

SFT / Distill (SFT+) RL

s1/s1.1 r1

..

r1-distill

Sky-T1

Bespoke-Stratos

Models

SFT / Distill

(SFT+) RL

s1/s1.1

r1-distill Sky-T1

Bespoke-Stratos

01

QwQ

s1 - Strong reasoning

s1 - Test-time scaling

Zooming in

Sequential vs Parallel

Data ablations

Model	AIME 2024	MATH 500	GPQA Diamond
1K-random	36.7	90.6	52.0
1 K-random	[-26.7%, -3.3%]	[-4.8%, 0.0%]	[-12.6%, 2.5%]
1K-diverse	26.7	91.2	54.6
11X-diverse	[-40.0%, -10.0%]	[-4.0%, 0.2%]	[-10.1%, 5.1%]
1K-longest	33.3	90.4	59.6
1 K-longest	[-36.7%, 0.0%]	[-5.0%, -0.2%]	[-5.1%, 10.1%]
59K-full	53.3	92.8	58.1
	[-13.3%, 20.0%]	[-2.6%, 2.2%]	[-6.6%, 8.6%]
s1K	50.0	93.0	57.6

Scaling ablations

BF = Budet Forcing

T/S/C-CC =
Token/Step/ClassConditional Control

RS = Rejection Sampling

Method	Control	Scaling	Performance
BF	100%	15	56.7
TCC	40%	-24	40.0
TCC + BF	100%	13	40.0
SCC	60%	3	36.7
SCC + BF	100%	6	36.7
CCC	50%	25	36.7
RS	100%	-35	40.0

Scaling ablations

Model	AIME 2024	MATH 500	GPQA Diamond
No extrapolation	50.0	93.0	57.6
2x without string	50.0	90.2	55.1
2x "Alternatively"	50.0	92.2	59.6
2x "Hmm"	50.0	93.0	59.6
2x "Wait"	53.3	93.0	59.6

Rejection sampling

Scaling limits

Flattening

Context Window

Scaling further

Minimal recipe for Reasoning & Test-time scaling

s1K + Budget forcing = s1

Thanks!

Open-source on GitHub: <u>simplescaling/s1</u> <u>arxiv.org/abs/2501.19393</u>

Niklas Muennighoff X: @Muennighoff

Acknowledgements: Thanks to my amazing co-authors: Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, Tatsunori Hashimoto. Thanks to Ryan Marten for help with generating traces from DeepSeek r1. Thanks to Stanford for the Stanford Marlowe GPU cluster. Thanks to Alexander M. Rush, Andrew Ilyas, Banghua Zhu, Chenglei Si, Chunting Zhou, John Yang, Ludwig Schmidt, Samy Jelassi, Suhas Kotha, Tengyu Ma, Xuechen Li, Yu Sun and Yue Zhang for very constructive discussions. Thanks to Jason Wei for slide inspiration.

Backup

Token-Conditional Control

-		WOODOWS W OW	0.0000000.000	-	
Tokens instructed (→)	1024	2048	4096	8192	16384
N	o interventi	on at test-	time		
Thinking tokens	7939	7158	8263	7108	7500
Answer tokens	689	669	659	722	724
AIME24	26.7	30.0	33.3	33.3	40.0
Forcing end of	thinking wi	hen token	budget is i	reached	
Thinking tokens	1024	2048	4031	5664	6330
Answer tokens	15	15	142	722	691
AIME24	3.3	30.0	33.3	33.3	40.0

Step-Conditional Control

Steps instructed (→)	16	32	64	128	256
i	No interventi	on at test-	time		
Steps used	123	90	80	82	136
Tokens per step	60	70	69	66	56
Thinking tokens	7252	6277	5396	5552	7551
Answer tokens	665	653	735	777	754
AIME24	33.3	23.3	33.3	36.7	33.3
Forcing end	d of thinking	when 0 ste	eps are red	ıched	
Steps used	16	32	59	78	136
Tokens per step	96	94	80	70	56
Thinking tokens	1517	2963	4636	5409	7551
Answer tokens	1111	788	799	794	754
AIME24	23.3	23.3	33.3	36.7	33.3

Class-Conditional Control

Prompt appended to the question after two newlines	AIME24	MATH500	GPQA
Answer after a short amount of thinking. Do not spend excessive time double-checking your work.	30.0% /	90.4% /	56.6% /
	8033	2537	4177
Answer after a long amount of thinking. If you feel like you are finished early, spend the extra time trying to double-check your work until you are absolutely sure that you have the correct answer.	36.7% /	91.4% /	51.0% /
	9651	3875	4827
Without generic prompt appending	50.0% /	93.0% /	57.6% /
	6109	3298	3510

s1.1

			-
Model	# Examples	AIME 2024	AIME 2025 I
A	API only		
o1-preview	N/A	44.6	37.5
o3-mini-low	N/A	56.3	44.2
o3-mini-medium	N/A	75.8	66.7
o3-mini-high	N/A	83.8	76.7
Оре	en Weights		
QwQ-32B	N.A.	46.7	37.2
r1	≫800K	79.8	65.0
r1-distill-Llama-70B	800K	57.1	51.4
r1-distill-Qwen-14B	800K	61.7	46.7
r1-distill-Qwen-32B	800K	58.3	46.1
Open Weigh	nts and Open I	Data	
LIMO	817	56.3	44.5
s1 vanilla	1K	50.0	26.7
s1 with Budget Forcing "Wait" 1x	1K	53.3	26.7
s1.1 vanilla	1K	56.7	53.3
s1.1 with Budget Forcing "Wait" 1x	1K	56.7	60.0