Spectral Graph Theory

Jacob Denson

June 19, 2017

Table Of Contents

1	Expander Graphs		
	1.1	Expanders and Edge Expansion	8
	1.2	Random Walks	10

Chapter 1

Expander Graphs

In this chapter, we assume all graphs are undirected, contain no loops, nor have any duplicate edges.

Given a graph G containing some vertex v, we let N(v) denote the set of all vertices in G connected to v by an immediate edge, and we call this set the **neighbourhood** of v in G. One can study the properties of the neighbourhood function via the **adjacency operator** $A: \mathbb{C}^V \to \mathbb{C}^V$ given by

$$(Af)(v) = \sum_{w \in N(v)} f(w)$$

With respect to the basis induced by the characteristic functions over the vertices of the graph, A is represented in matrix form by the adjacency matrix of its graph.

A graph isomorphism replaces an adjacency with a similar matrix, so the properties of the operator A invariant under basis changes are isomorphism invariant. We shall find that in particular, the eigenvalues of A give useful information about the graph G, especially if G is a regular graph. As G is undirected, A is a self-adjoint operator, and therefore is diagonalizable, with n real eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. We will write $\lambda_i(G)$ if the graph is not specified. The study of the relationship between a graph G and the eigenvalues of the operator A form the core study of spectral graph theory.

Example. The invariant subspaces of A correspond to the components of G. That is, if H is a connected component of G, then the subspace of functions

vanishing outside of H is invariant under the action of A. On the other hand, if G is a connected graph, then all the invariant subspaces of A are trivial.

Proposition 1.1. If $\Delta(G)$ denotes the maximum degree in a graph G, and $\delta(G)$ the minimum degree, then for any function $f \in \mathbb{C}^G$ with $L_0 \leq f \leq L_1$,

$$\delta(G)L_0 \leqslant Af \leqslant \Delta(G)L_1$$

Proof. We find that for any vertex v

$$\sum_{w \in N(v)} f(w) \leqslant \sum_{w \in N(v)} L_1 = |N(v)| L_1 \leqslant \Delta(G) L_1$$

and the reverse direction gives

$$\sum_{w \in N(v)} f(w) \geqslant \sum_{w \in N(v)} L_0 = |N(v)| L_0 \geqslant \delta(G) L_0$$

This gives the required inequality.

Corollary 1.2. For any eigenvalue λ of A, $|\lambda| \leq \max(\delta(G), \Delta(G))$.

Proof. The spectral radius of A is bounded by any of the matrix norms giving the space of operators a Banach algebra structure. In particular, the spectral radius is bounded by $||A||_{\infty}$, and the theorem above bounds the values of $||A||_{\infty}$ as required.

Example. As a particular example of this, we find that for K regular graphs, we find $-K \le \lambda_n \le \lambda_1 \le K$, and we actually have $\lambda_1 = K$, because A operates on constant functions by multiplication by K.

Proposition 1.3. On a K regular graph, $\lambda_2 = K$ iff G is disconnected.

Proof. If we break G into two connected components H_0 and H_1 , then the functions vanishing outside of H_0 and the functions outside of H_1 form two complementary invariant subspaces of G, and both of these subspaces contain eigenfunctions of eigenvalue 1. On the other hand, we show that if G is connected, then every eigenfunction f of eigenvalue K is constant. Let v^* maximize f over all vertices in v. Then

$$Kf(v^*) = \sum_{w \in N(v^*)} f(w) \leqslant Kf(v^*)$$

If $f(w) \neq f(v^*)$ for some $w \in N(v^*)$, the inequality above is strict, which is impossible. Thus if v^* maximizes f, then all its neighbours maximize f. Since G is connected, we conclude that f is constant on G.

Lemma 1.4. If f is an eigenfunction of a K regular graph with eigenvalue $\lambda \neq K$, then $\sum f(v) = 0$.

Proof. If $\sum f(v) \neq 0$, we may assume without loss of generality that $\sum f(v) = 1$. Then, if we take the sum of the adjacency of the operator over all vertices, we sum over each vertex K times, and so

$$K = K \sum_{v} f(v) = \sum_{v} \sum_{w \in N(v)} f(w) = \sum_{v} \lambda f(v) = \lambda$$

and this gives the required equality.

Example. If G is a K regular graph, then $\lambda_n = -K$ if and only if G has a bipartite connected component. Because of our discussion, we might as well assume G is connected, because invariant subspaces contain all the eigenfunctions of an operator. If $G = H_0 \cup H_1$ is bipartite, the function $\chi_{H_0} - \chi_{H_1}$ has eigenvalue -K. On the other hand, if f is an eigenfunction of A with eigenvalue -K, we claim that f must cycle over two distinct values, which are negations of each other. Let v^* maximize f, and let v_* minimize the function. We know that $f(v_*) < 0 < f(v^*)$. Since

$$-Kf(v^*) = \sum_{w \in N(v^*)} f(w) \geqslant Kf(v_*)$$

We conclude that $f(v_*) \leq -f(v^*)$. The same argument applied to the neighbours of v_* gives $-f(v_*) \leq f(v^*)$. Putting these two inequalities together gives $-f(v_*) = f(v^*)$. If $f(w) \neq f(v_*)$ for $w \in N(v^*)$, then the inequality above is strict, which is impossible. Similarly, we conclude that $f(w) = f(v^*)$ for each $w \in N(v_*)$. Since v_* and v^* were arbitrary vertices minimizing and maximizing f, every vertex takes one of these two values, and adjacent vertices have opposite values, so these two values give a bipartite structure on the given graph.

A K regular graph G is said to be an ε **expander** (one sided) if $\lambda_2 \le (1-\varepsilon)K$, and a *two sided* ε expander if one also has $\lambda_n \ge -(1-\varepsilon)K$. Every connected graph is an ε expander for some ε , and a non bipartite graph is a two sided expander for some ε . Thus unless we want to perform analysis parameterized by ε , we are forced to look at 'limits' of graphs which control their eigenvalues. A sequence of K regular graphs is said to be an expander family if there is a ε such that eventually the graphs are all ε expanders.

Theorem 1.5. Let G be a K regular graph on n vertices. Then

- $\sum \lambda_i = 0$.
- $\sum \lambda_i^2 = nK$.
- $\max(|\lambda_2|, |\lambda_n|) \geqslant \sqrt{K} o_K(1)$.

where $o_K(1)$ denotes a quantity tending to zero at a rate dependant on K.

Proof. In its adjacency matrix representation, the adjacency operator A has no loops, hence its diagonal vanishes and so it has trace zero. It follows that the sum of the eigenvalues of A is equal to zero. The sum of the squares of the eigenvalues is equal to the trace of A^2 , which corresponds to a kind of 'second order' adjacency operator. Since we have no multiedges,

$$(A^2 \chi_v)(v) = \sum_{w \in N(v)} \sum_{u \in N(w)} \chi_v(u) = K$$

Hence, with respect to the canonical basis on the graph, A^2 has diagonal entries K, and hence has trace Kn. Finally, this shows that

$$nK = \sum \lambda_i^2 = \sum |\lambda_i|^2 \leqslant 1 + (n-1)\max(|\lambda_2|^2, |\lambda_n|^2)$$

and therefore that

$$\max(|\lambda_2|,|\lambda_n|) = \sqrt{\max(|\lambda_2|^2,|\lambda_n|^2)} \geqslant \sqrt{\frac{nK-1}{n-1}}$$

and the last term is $\sqrt{K} - \sqrt{K}O(1/n) + K^2O(1/n^2)$.

This result places an upper bound on the rate of a two sided expansion for large graphs. A more sophisticated result sharpens the inequality to obtain the improvement

$$\max(|\lambda_2|,|\lambda_n|) \geqslant 2\sqrt{K-1} - o_K(1)$$

Graphs with $\max(|\lambda_2|, |\lambda_n|) \le 2\sqrt{K-1}$ are known as Ramanujan graphs, and have connections to number theory.

Example. For each n, let G_n be the 2-regular graph whose vertex set is \mathbf{Z}_n , and such that the neighbours of k are k+1 and k-1. Then the adjacency operator A_n is really just the combination of shifts L_1+L_{-1} in disguise. Now if χ_1,\ldots,χ_n are the basis of n characters on \mathbf{Z}_n , with $\chi_m(1)=e^{2i\pi m/n}$, then

$$A_n(\chi_m)(k) = \chi_m(k+1) + \chi_m(k-1)$$

= $(\chi_m(1) + \chi_m(-1))\chi_m(k)$
= $\cos(2\pi m/n)\chi_m(k)$

As $n \to \infty$, the space of eigenvalues of A_n becomes dense in [-1,1], so this sequence of graphs cannot be an expander family for any ε .

Example. The complete graph C_n on n vertices, which is an n-1 regular graph, is an excellent example of an expander graph family. If f is an eigenfunction of A_n with eigenvalue $\lambda_i \neq n-1$, then $\sum f(v) = 0$, and so

$$\lambda_i f(v) = \sum_{w \neq v} f(v) = -f(v)$$

so $\lambda_i = -1$, and the sequence of eigenvalues for A_n is $1, -1, \ldots, -1$. This shows that C_n is a one-sided 1 + 1/(n-1) expander, and a 1 - 1/(n-1) two sided expander. The goal of the theory of expander graphs is to find sparse graphs with similar properties to complete graphs, and so we desire sparse expander graphs.

Example. If G is a K regular graph on n edges, then the complement graph G^c is an n-K-1 regular graph. If A is the adjacency operator corresponding to G, and B the operator corresponding to G^c , then $(A+B)(f)(v) = \sum f(w) - f(v)$. In particular, if f is an eigenvector for A with eigenvalue $\lambda_i \neq K$, then $\sum f(w) = 0$, and so $Bf = -(1+A)f = -(1+\lambda_i)f$. If we assume G is connected, then the sequence $K \neq \lambda_2 \geqslant \cdots \geqslant \lambda_n$ gives the eigenvalues $-(1+\lambda_2) \leqslant \cdots \leqslant -(1+\lambda_n)$. Since none of the eigenfunctions f corresponding to the eigenvalues $\lambda_2, \ldots, \lambda_n$ are constant, we find that B has the additional eigenvalue n-K-1 corresponding to the constant function.

Example. Let G be the complete bipartite graph between two sets of n vertices. Then $\lambda_{2n} = -n$, because G is bipartite. Note that for any function f, Af is a function which is constant on each side of the bipartition, so for any eigenfunction f with a nonzero eigenvalue λ , f is constant on each side of the bipartition. But this means that if f takes the value x on one side of the bipartition, and y

on the other side, then $\lambda x = ny$, and $\lambda y = nx$. If x = 0, we find that y = 0. If $x \neq 0$, then $\lambda = ny/x$, and also $ny^2/x = nx$, so $y^2 = x^2$ implying that $y = \pm x$. These give the two eigenfunctions corresponding to the constant function with eigenvalue n and the bipartite eigenfunction with eigenvalue n. This tells us that the remaining eigenvalues $\lambda_2, \ldots, \lambda_{2n-1}$ are all equal to zero.

Viewing a graph as the discrete version of a K regular graph, and f is a function on the graph, we can define the **discrete gradient magnitude**

$$|\nabla f|(v) = \sqrt{\sum_{w \in N(v)} |f(w) - f(v)|^2}$$

The classical Poincaré inequality in Euclidean space says that $||f||_2 \le C ||\nabla f||_2$. This inequality is actually connected to the theory of expanders, because a graph G is a one sided ε expander if and only if

$$\|\nabla f\|_2^2 \geqslant 2K\varepsilon \|f\|_2^2$$

for any mean zero function f. We may assume that G is a connected graph to prove this theorem, for if G is not connected it is not an expander for any $\varepsilon > 0$. We can write

$$\sum_{v} \sum_{w \in N(v)} |f(w) - f(v)|^2 = \sum_{v} \sum_{w \in N(v)} |f(w)|^2 + |f(v)|^2 - 2\Re\varepsilon \left[\overline{f}(v)f(w)\right]$$

$$= 2K \|f\|_2^2 - 2\Re\varepsilon \left(\sum_{v} \overline{f(v)}(Af)(v)\right)$$

$$= 2K \|f\|_2^2 - 2\Re\varepsilon \langle f, Af \rangle$$

If f has mean zero, then we can write $f = \sum f_j$ for the decomposition of f into the j'th eigenspace. Since A is self adjoint, these eigenspaces are orthogonal, and so

$$\langle f, Af \rangle = \sum \lambda_j \|f_j\|_2^2$$

Since $\sum_v f_j(v) = 0$ for all j > 1, we find $0 = \sum_v f(v) = \mu_1 \sum_v f_1(v)$. Since $\sum_v f_1(v) \neq 0$, we find $\mu_1 = 0$. This means that

$$\sum \lambda_i \|f_i\|_2^2 \le \sum \lambda_2 \|f_i\|_2^2 = \lambda_2 \|f\|_2^2$$

and this shows that

$$\|\nabla f\|_2^2 \geqslant 2(K - \lambda_2)\|f\|_2^2$$

and $K - \lambda_2$ gives the maximal value of ε for which G is a ε expander.

1.1 Expanders and Edge Expansion

We now make the intuition about expander graphs having good 'expansion properties' precise. Given two disjoint sets of vertices V and W, we let E(V,W) denote the set of edges between the two vertex sets. We find that

$$|E(V,W)| = \langle A\chi_V, \chi_W \rangle$$

Given a vertex set V, we let $\delta(V)$ denote the set of edges leaving V. We define the **edge expansion ratio**

$$h(G) = \min_{|V| \leq n/2} \frac{|\delta(V)|}{|V|} = \min_{|V| \leq n/2} \frac{\langle A\chi_V, 1 - \chi_V \rangle}{|V|}$$

The choice that $|V| \le n/2$ is done to avoid trivial values where we let V be the set of all vertices in the graph, so that $\delta(V) = \emptyset$. The edge expansion ratio can be seen as a discrete isoperimetry bound for the graph, and as such it is often called the **Cheeger constant** of the graph.

Proposition 1.6. $h(G) \neq 0$ if and only if G is connected, and more generally, a family of K regular graphs G_i is an expander family if $h(G_i)$ is lower bounded.

Proof. We may assume each graph is connected. Fix $\varepsilon > 0$ such that eventually $\lambda_2 \le (1 - \varepsilon)K$. For any subset V of edges in G_i , the projection of χ_V onto the first eigenspace is |V|/n, and so

$$\langle A\chi_V, \chi_V \rangle \leqslant \frac{1}{n}K|V|^2 + (1-\varepsilon)K \left\| \chi_V - \frac{|V|}{n} \right\|^2$$

And

$$\left\| \chi_{V} - \frac{|V|}{n} \right\|^{2} = |V| \left(1 - \frac{|V|}{n} \right)^{2} + [n - |V|] \left(\frac{|V|}{n} \right)^{2}$$
$$= |V| - \frac{1}{n} |V|^{2}$$

Hence

$$\frac{1}{n}K|V|^2 + (1-\varepsilon)K\left\|\chi_V - \frac{|V|}{n}\right\|^2 \le (1-\varepsilon)K|V| - \frac{\varepsilon K|V|^2}{n} \le (1-\varepsilon/2)K|V|$$

Since $\langle A\chi_V, 1 \rangle = K|V|$, this shows that

$$\begin{split} h(G) &= \min_{|V| \leq n/2} \frac{\left| \delta(V) \right|}{|V|} = \min_{|V| \leq n/2} \frac{\left\langle A \chi_V, 1 - \chi_V \right\rangle}{|V|} \\ &= \min_{|V| \leq n/2} \frac{\left\langle A \chi_V, 1 \right\rangle}{|V|} - \frac{\left\langle A \chi_V, \chi_V \right\rangle}{|V|} \\ &\geqslant \min_{|V| \leq n/2} K - (1 - \varepsilon/2)K = (\varepsilon/2)K \end{split}$$

Another way to see this is that $\langle A\chi_V, \chi_V \rangle$ counts the number of edges between vertices in V, and since each vertex in V is adjacent to exactly K vertices, we conclude that the total number of edges leaving V is exactly $K|V|-\langle A\chi_V,\chi_V \rangle$, which we have bounded below by $(\varepsilon/2)K|V|$.

The other direction is harder. The difficulty is that the lower bound $h(G) \ge c$ enables us to conclude that $\langle A\chi_V, \chi_V \rangle \le (K-c)|V|$ for all vertex sets with $|V| \le n/2$, whereas proving that G is an expander requires us to understand $\langle Af, f \rangle$ for all functions f, because we know

$$\lambda_2 = \sup_{\sum f(v) = 0} \frac{\langle Af, f \rangle}{\|f\|_2^2}$$

so it suffices to show $\langle Af,f\rangle\leqslant (1-\varepsilon)K$ for all functions f with mean zero and with $\|f\|_2=1$, for some ε depending only on K and c. Since A is real, we may assume that f is real. We will prove that if f is non-negative, and is supported on a set of cardinality n/2, then $\langle Af,f\rangle\leqslant (1-c)K\|f\|_2^2$. To see how this implies the main inequality, note that if we write $f=f_+-f_-$, then

$$\langle Af,f\rangle \leqslant \langle Af_+,f_+\rangle + \langle Af_-,f_-\rangle$$

and $1 = \|f_+\|_2^2 + \|f_-\|_2^2$. Either f_+ or f_- is supported on a set of size less than or equal to n/2, and by symmetry we may assume this is f_- . Consider a small value σ , to be fixed later. If $\|f_-\|_2^2 \ge \sigma^2$, then applying the trivial bound $\langle Af_+, f_+ \rangle \le K \|f_+\|_2^2$

$$\langle Af_+, f_+ \rangle + \langle Af_-, f_- \rangle \leqslant K \|f_+\|_2^2 + (1-c)K \|f_-\|_2^2 \leqslant K(1-\sigma^2) \|f\|_2^2$$

TODO: FINISH BOUNDS LATER.

Example. On the graph defined on \mathbb{Z}_n we considered before, for n > 2, the set of points $\{1, ..., n/2\}$ has two boundary edges, between 0 and 1, and between

n/2 and n/2 + 1. It follows that $h(G_n) \leq 4/n$, and this is an equality, because if $|V| \leq n/2$, then $\delta(V)$ contains at least two edges, so $\delta(V) \geq 2 \geq 4|V|/n$. This is another way to think about why the graphs are not a family of expander graphs.

Example. Every 2 regular graphs breaks down into connected components, which form loops in the graph. It follows that if G is connected, it is isomorphic to \mathbb{Z}_n , and any family of such graphs which form an expander family must have bounded size.

A more precise relationship between the best value ε that makes G into a one sided expander and it's Cheeger constant. Namely,

$$\frac{\varepsilon K}{2} \le h(G) \le \sqrt{2\varepsilon}K$$

proved in the 1980s by Dodzuik and Alon-Milman.

TODO: EXERCISES

1.2 Random Walks

We now discuss how the theory of expanders connects to the theory of convergence rates of random walks on graphs. Given a graph G and an initial vertex v_0 (which can be randomly chosen), the random walk v_0, v_1, v_2, \ldots is chosen such that v_{i+1} is obtained from v_i by choosing a neighbour uniformly at random. We will let μ_i be the function on the vertices of G such that $\mu_i(v) = \mathbf{P}(v_i = v)$. Then arguing by conditional probabilities, we find that $\mu_{i+1} = (A\mu_i)/K$. Provided our graph is connected and aperiodic, the corresponding Markov chain is ergodic, and the distributions μ_i will converge pointwise to an eigenfunction for the adjacency operator of highest eigenvalue. In particular, over a K regular connected graph the distribution will eventually be indistinguishable from the uniform distribution.

We can measure how fast μ_i converges to a constant distribution by quantifying $\|\mu_i - 1/n\|_2$. It is decreasing in i, because one calculates

$$\begin{split} \|A\mu_i/K - 1/n\|_2^2 - \|\mu_i - 1/n\|_2^2 &= \left[\frac{\|A\mu_i\|_2^2}{K^2} - \frac{1}{n}\right] - \left[\|\mu_i\|_2^2 - \frac{1}{n}\right] \\ &= \frac{\|A\mu_i\|_2^2}{K^2} - \|\mu_i\|_2^2 \end{split}$$

If μ_i has a decomposition as $\sum \mu_{ij}$ via its eigenspaces, then $\mu_{i1} = 1/n$, because $\sum \mu_i(v) = 1$, and so

$$||A\mu_i||_2^2 \ge K^2 ||\mu_{i1}||_2^2 = K^2$$

Yet
$$\|\mu_i\|_2^2 = \sum \mu_i(v)^2 \leqslant \sum \mu_i(v) = 1$$
, so

$$\frac{\|A\mu_i\|_2^2}{K^2} - \|\mu_i\|_2^2 \geqslant 1 - 1 = 0$$

This is an equality only when $\mu_i = 1/n$, so the function is decreasing everywhere else. The expansion properties are intricately tied to the expansion properties of the graphs.

Theorem 1.7. Fix $\alpha > 1/2$. A sequence of K regular graphs G_n with m_n vertices is a two-sided expander family if and only if there is C > 0 independent of n such that for sufficiently large n, $\|\mu_i - m_n^{-1}\|_2 \le m_n^{-\alpha}$ for all $i \ge C \log m_n$, and all choices of initial vertices v_0 .

Note that the theorem holds for any initial probability distribution by an easy application of the Minkowski inequality. Thus from a dynamical systems point of view, the uniform distribution is a very strong attractor in the space of all probability distributions. Essentially, this theorem says that two sided expanders are those graphs such that random walks become close to uniform in $O(\log n)$ steps. On the other hand, the central limit theorem only implies that the walks \mathbb{Z}_n become close to uniformly mixing only at time beyond n^2 , as indicated by the central limit theorem (TODO: WHY?). This theorem is useful for generating near random distributions using little work by taking a random walk on some basic combinatorial structure.