

Examples:

1. Write $\delta - \epsilon$ proof that shows that f(x) = 2x + 1 is continuous at x = 5.

1st approach:

a) Dom $f(x) = (-\infty, \infty)$; x = 5 is in the Dom f(x)

b) 2im (2x+1) = 11. Show 4€>0 Fb>0 st 0x|x-5|<8 ⇒ |2x+1-11| <€

Aside:

$$|2x+1-11| = |2x-10| = 2|x-5| < 2\delta$$

Stipulate S=틒

Proof:

Griven ε_{70} , choose $\delta=\frac{\varepsilon}{2}$. Suppose x satisfies $0<|x-5|<\delta$, then

$$|2x+1-11| = 2|x-5| < 2\delta = 2\frac{5}{2} = E$$
C) $f(5) = 2 \cdot 5 + 1 = 11$
QED
$$|2x+1-11| = 2|x-5| < 2\delta = 2\frac{5}{2} = E$$

$$|2x+1-11| = 2|x-5| < 2\delta = 2\frac{5}{2} = E$$

Therefore f(x) is continuous at 5.

2nd approach:

f(x) is continuous at any point a in the Domfor if kin f(x) = f(a).

We need to show: ∀E70 ∃870 St [x-a]<8 ⇒ [f(x)-f(a)]<€

Triangle Inequality (Δ) : $|A+B| \leq |A|+|B|$ Reverse Inequality (∇) : $|A-B| \geq |A|-|B|$

Exercise:

2. Prove that $f(x) = x^3$ is continuous on its domain.

Proof:

Griven E>0, Choose
$$\delta = min \left\{ 1, \frac{\varepsilon}{3(1+|a|)^2} \right\}$$
 OR $\delta = min \left\{ 1, \frac{\varepsilon}{3|a|^2 + 3|a| + 1} \right\}$
If $1 \times -a < \delta$ we have:

$$|x^3 - a^3| = |x - a| |x^2 + xa + a^2| < \delta (|x^2| + |x||a| + |a^2|) < \delta (|+|a|)^2 = \frac{\varepsilon \cdot 3(|+|a|)^2}{3(|+|a|)^2}$$

QED

 $t(x)=x_3$

3. Prove that a) f(x) is continuous at any a, except a=0.

a) f(x) is continuous at VaER - {0} if lim x3 = a3

Proof:

Given
$$\varepsilon > 0$$
, choose $\delta = \min \{ |a|, \frac{\varepsilon}{7|a|^2} \}$. If $|x-a| < \delta$, then

$$|X^3 - a^3| = |x - a| |x^2 + ax + a^2| = ... < \delta(7|a|^2) = \frac{\varepsilon}{7!a!^2} \cdot 7!a!^2 = \varepsilon$$

b)
$$f(x)$$
 is continuous at $x=0$ if $x = 0$

QED

 $\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } |x| < \delta \Rightarrow |x^3| < \varepsilon \text{, but } |x| < \delta \text{, so stipulate } \delta = 3 \varepsilon.$

Proof:

Given
$$\varepsilon > 0$$
, choose $\delta = 3 \varepsilon$. Suppose $|x| < \delta$, then $|x^3| < \delta^3 = (3 \varepsilon^3)^3 = \varepsilon$

QED

4. Prove Lim + = = = = =

1st approach:

VE70 J670 S.t. 0< |x-2| <8 ⇒ | 1/x - 2 | < €

Aside:

Given 870, choose &= 28. If 0< |x-2| < & then:

$$\left|\frac{1}{x} - \frac{1}{2}\right| = \left|\frac{2-x}{2x}\right| = \frac{\left|x-2\right|}{2\left|x\right|} < \delta^{\frac{1}{2}} = \frac{2\varepsilon}{2} = \varepsilon$$

QED

for |x| or lower bound for

2nd approach:

121-1X1 <1

Proof:

Same as 1st approach.

QED

5. Prove that $f(x) = \frac{1}{x}$ is continuous at x = a, $a \neq 0$.

We need to show that

Aside:

Let
$$\delta \leq \frac{|a|}{2}$$

$$|a|-|x| \leq |a-x| = |x-a| < \frac{|a|}{2}$$

$$|a|-|x| < \frac{|a|}{2}$$

$$\frac{|a|}{2} < |x|$$

$$\frac{|a|}{2} < \frac{2}{|a|}$$

 $\left|\frac{1}{x} - \frac{1}{a}\right| = \left|\frac{a - x}{xa}\right| = \frac{|a - x|}{|a||x|} < \frac{\delta}{|a|} \cdot \frac{1}{|x|} < \frac{\delta}{|a|} \cdot \frac{2}{|a|} = \frac{2}{|a|^2} \delta = \varepsilon$ Given:

 $\delta = \frac{\epsilon a^2}{2}$

Given $\xi > 0$, choose $\delta = \min \left\{ \frac{|a|}{2}, \frac{|a|}{2} \right\}$ If x satisfies $|x-a| < \delta$, then we have

$$\left| \frac{1}{x} - \frac{1}{a} \right| = \frac{\left| a - x \right|}{\left| a \right| \left| x \right|} \dots < \frac{\delta}{\left| a \right|} \cdot \frac{1}{\left| x \right|} < \frac{\delta}{\left| a \right|} \cdot \frac{2}{\left| a \right|} = \frac{2\delta}{a^2} = \frac{2\delta a^2}{2a^2} = \delta$$

QED

3 Important Consequences of Continuity

- + All continuous functions attain their min and max values on closed interval [a,b]
- 4 if c ∈ (a,b) then f(c) < f(b); f(a) < f(c)
- All continuous functions on closed intervals are bounded from above and from below.

The Extreme Value Theorem

If f(x) is continuous on closed interval $[a_1b]$, then there exist some values M and m in the interval $[a_1b]$ such that f(M) is the maximum value of f(x) on $[a_1b]$ and f(m) is the minimum value of f(x) on $[a_1b]$.

The Intermediate Value Theorem

If f(x) is continuous on closed interval [a,b], then for any K strictly between f(a) and f(b) there exists at least one $c \in (a,b)$ such that f(c) = K.

Upper and Lower Bounds - Infinum and Supremum

Let SCR

Set S is bounded from above if ∀x∈s ∃M∈Rs.t. x≤M

M-upperbound for S; [M,∞) - set of upperbounds

a least upper bound for S (Inb S) is called supremum S (sup S)

Inb S = Sup S

Set S is bounded from below if txES I meR s.t. x>m

m-lower bound for S; (-00, m] is the set of lower bounds

a greatest lower bound for S(glbS) is called infinum S(InfS)

glbS=InfS

Largest element of S (max S) exists if Sup S & S Smallest element of S (min S) exists if Inf S & S

Set S	Max S	Min S	Sup S	Inf S
(o.5)	No	No	12	0
(-00,3]	3	No	3	No
[-1,4)	N٥	-1	4	-(
1,3,(2n -1)}	No	1	No	1

Least Upper Bound Axiom:

Every nonempty set of real numbers is bounded from above has a supremum.

$$S_1 = (-10,0] \rightarrow S_1$$
 has largest element, $S_1 = 0$ $[0,\infty)$ is the set of upper bounds for S_1 .

 $S_2 = \{-1, -\frac{1}{2}, -\frac{1}{3}, \dots -\frac{1}{n}, \dots\} \rightarrow S_2$ does not have the largest element, so there are no Max S_2 .

 \rightarrow Sz is bounded above by 0. Sup Sz=0 [0100] is the set of upperbounds for Sz.

Theorem for Supremum

If M is Sup S and E>O, then there exist at least one number s in S such that M-E < S = M

Proot:

From the contrary supposition, assume that there is no such s in S.

If there is no M-E<S, then all $x\in S$ are less or equal to M-E. But if $x\leq M-E$, then M-E is Sup S (not M!) which contradicts the supposition.

Since we know that Sup S=M

Therefore, there is such s that M-E < S

QED

Examples:

6. Let
$$S = \{0,1,2,3,4\}$$
 $\epsilon_1 = 0.1, \epsilon_2 = 2$
Sup $S = 4$ $4 - 0.1 < S \le 4 \Rightarrow S = 4$
 $4 - 2 < S \le 4 \Rightarrow S = 3$

Greatest Lower Bound Axiom:

Every nonempty set of real numbers is bounded from below has an infinum.

$$S_1 = [-10.0] \rightarrow S_1$$
 has -10 as a smallest element, InfS_1 = MinS_1 = -10
 $(-10.10]$ is the set of lower bounds for S_1 .

$$S_2 = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \frac{1}{n}, \dots \right\} \rightarrow S_2$$
 does not have the smallest element, so there are no Min S2.
 $\rightarrow S_2$ is bounded below by O . Inf $S_2 = O$.
 $[-\infty, O]$ is the set of lower bounds for S_2 .

The ovem for Intinum

If m is Inf S and E70, then there is at least one number s in S such that m < s < m + s.

Proof.

From the contrary supposition, assume that there is no such s in S.

If there is no mt E > S, then all $x \in S$ are greater than or equal to mt E. But it $x \ge m + E$, then m + E is Inf S (not m!) which contradicts the supposition.

Therefore, there is such s that m+ E>s.

QEO