Chapter 7. 中空 HIDE 直至, NAND, NOR HIDE

(gm)

※ AND와 OR 거10트로 이루어진 2단 이상의 퇴로를 설계하는 바바비
 → 원하는 형태의 게이트화로 (NAND, NOR 게이트)로 바꾸는 기술

7.1 다단 HIOE 회로 (AND 와 OR HIOLE)

게이트의 단수 : 회로 양격과 활격 사이에 작결로 연결된 게이트의 최대수 (NOT 케이트는 제요)

④ 또 변수와 그 남순의 보수가 괴로 애적으로 관용가능

① AND - OR 최로 : 출격에 OR HIOT트 보고 된 2단 함로 보이상의 최조 종규 ② OR - AND 최로 : 출격에 AND HIOT트 그 야 한데 OR 'HIOT트의 단으로 된 2단 최로 그 야 한데 OR 'HIOT트의 단으로 된 2단 최로 그 약에 AND 'HIOT트 단이 있고 또 그 앞에 OR 'HIOT트 단으로 된 3단 환조

AND-OR 회로에서 논리함의 합식을 인수분해하면 단수를 참나지킬수 있음 라이 하십
OR-AND 최로에서 논리합의 곱 식에서 몇명 항을 급하면 단수를 참내킬수 있음하여 급식

母 권로에서 '게이트 수', '게이트 입력 수' 그리고 '단수'는 해당 생물 弘信며 결정

Z를 3단으로 바꾸기

tb_elec_engineer@naver.com

ex) 다음 하수를 실하하기 위한 AND 와 이후 회로를 구하라

$$f(a,b,c,d) = \sum m(1.5,6.10,13,14)$$

D f 沙沙

f= a'c'd + bc'd+bcd' + acd'

② AND-OR HIOLE 到로 (智部)

고단 5711 HIO트입격

③ 알토타며 OR-AND-OR 게이트 뢰로

3단

57H HIOE

127H 71101E 0124

있음

tb_elec_engineer@naver.com

④ OR -AND HIOE 到로 (站9 部)

> 카노맵에너 o값 이용

f'=c'd'+ab'c'+cd+a'b'c $\Rightarrow f=(c+d)(a'+b+c)(c'+d')(a+b+c')$

2단 5개계이트 14개 게이트 압력

$$\Rightarrow f = \left[c + d (a'+b) \right] \left[c' + d' (a+b) \right]$$

$$= \left(c + a'd + bd \right) \left(c' + ad' + bd' \right)$$

3단 기기 게이트 16개 게이트 입격

❸ 우레 대한 식이 n 단을 가지면 이 식의 보수는 수 에 대한 n단 식이 된다.

OR 예산을 줄적으로 갖는 f'에 대한 N단 식을 먼저 찾고 단에 대한 식을 밝한 라면 AND 게이트 칼륨을 갖는 N단 회로인 두를 실현한 수 있다.

④에서 OR 연산을 출격으로 갖는 부'=c'd' + ab'c' + cd + a'b'c

= C'(d'+ab')+ c(d+a'b') = C'(d'+a)(d'+b')+ c(d+a')(d+b')

에 대한 3단 4을 찾음

f'에 대한 식물 보수화하면 f= (c+ a'd+bd)(c'+ad'+bd') 인 ⑤에서 AND HIDE 콜려울 갓는 공단 회로인 f를 실천했다.

(gm)

① AND 나 OR 게이트보다 일반적으로 더 빠르고 더 적은 부품을 사용 어떤 된 하수도 NAND 게이트 3만 또는 NOR 게이트만으로 실현 가능하다.

· NAND HOIE

(AND-NOT HIDE > NAND HIDE)

$$F = (X_1 X_2 \cdots X_n)' = X_1' + X_2' + \cdots + X_n'$$

· NOR HIDE

(DR-NOT HIDE > NOR HIDE)

$$F = \{ x_1 + x_2 + \dots + x_n \}' = x'_1 \times_2' \dots \times_n'$$

❸→ OR 마 NOT 를 한용하여 AND 상혔하기

드모건 법칙 사용

$$XY = (X'+Y')'$$

→ ANDC NOT을 直接하여 OR 2년하기×+Y= (×'Y')'

7.3 NAND와 NOP 게이트를 사용하여 2만 한다 성메하기

(gm)

AND 와 OR 게이트로 건성된 2단 할로 \rightarrow NAND 게이트 σ NOR 게이트로 건성된 결로 F=(F')' σ 드모건 법적을 적용

$$(X_{1} + X_{2} + \dots + X_{n})' = X'_{1} X'_{2} X'_{3} \dots X'_{n}$$

$$(X_{1} X_{2} \dots X_{n})' = X'_{1} + X'_{2} + \dots + X'_{n}$$

@X 최소된집의 합 형태를 다른 여러가지 2단 형태로 변환

$$F = A + Bc' + B'cD \rightarrow AND - OR$$

$$= \left[(A + Bc' + B'cD)' \right]'$$

$$= \left[A' \cdot (Bc')' \cdot (B'cD)' \right]' \rightarrow NAND - NAND$$

$$= \left[A' \cdot (B' + C) \cdot (B + C' + D') \right]' \rightarrow OR - NAND$$

$$= A + (B' + C)' + (B + C' + D')' \rightarrow NOR - OR$$

최소 논리합의 곱 형태를 다른 여러가지 2단 형태로 변환

$$F = (A+B+c)(A+B'+c')(A+c'+D) \rightarrow OR-AND$$

$$= \left\{ \left[(A+B+c)(A+B'+c')(A+c'+D) \right]' \right\}'$$

$$= \left[(A+B+c)' + (A+B'+c')' + (A+c'+D)' \right]' \rightarrow NOR-NOR$$

$$= (A'B'c' + A'Bc + A'cD')' \rightarrow AND-NOR$$

$$= (A'B'c')' \cdot (A'Bc)' \cdot (A'cD')' \rightarrow NAND-AND$$

0 (버틸) : 활격과 입격에 모두 사용 가능

(gm)

$$A \longrightarrow AB$$

$$B \longrightarrow A'+B' = B \longrightarrow (AB)'$$

$$A \longrightarrow A'B' = A \longrightarrow A'B'$$

데데) NAND 2만 이루어진 코르르 바꾸기

기-4 다단 NAND와 NOR 게이트리로 설계

(gm)

수 AND 라 OR 게이트가 서로 번질하거며 나타나 가당하게 바뀐 수 있음

tb_elec_engineer@naver.com

드모르간 법칙을 이용하여 다른 형태로 게이트 표현하기

1 AND

3 OR

$$A+B = (A'B')'$$

3 NAND

1 NOR

$$(AB)' = A' + B'$$

(A+B)' = A'B'

$$=$$
 $\frac{B}{A}$ \longrightarrow AB

$$=$$
 $A \rightarrow A+B$

에게) 다른 형태의 NAND 게이트로 바꾸 AND-야 한국 변환하기

NAND HIDE 최로

AND-OR DE

(gm)

OR라 AND 게이트 회로

NOR THOLE BY A DO C' DO DO Z

에게) AND -OR 회오를 NAND 케이트로 변란하기

AND-OR 到主

NAND HOLE AZ

지-6 2단, 다중 칼려회로 넘게

tb_elec_engineer@naver.com

(gm)

→ 압문 서로 응유하지만 활력이 다른 최로에 대한 설계

데게) F. (A,B,C,D) = \(M (11,12,13,14,15)

 $F_2(A_1B_1C_1D) = \sum_m (3,7,11,12,13,15)$

 F_3 (A,B,C,D) = $\sum m$ (3,7,12,13,14,15)

 $F_2 = ABC' + CD$

CAE	00	01	11	10
00			1	
01			1 de la constante de la consta	
11	(1		Verto-Astronomy	
10			V	
		-		

 $F_3 = A'CD + AB$

결과 회로 >

9개 개0년

起避計刊→ AB 諧 F,과 Fi이 공유

F2= ABC'+CD = ABC'+ACD+A'CD 로 배골수 있으며 F2의 ACD 함은 F1과 A'CD는 F3라 공유

다중 출력 회로 →

18개 HIOE 입격 18개 HIOE 입격 확된 회로를 만든 수 있음

tb_elec_engineer@naver.com

예계)
$$F_1 = \sum m (2,3,5,1,8,9,10,11,13,15)$$

$$F_2 = \sum m (2,3,5,6,1,10,11,14,15)$$

$$F_3 = \sum m (6.7,8,9,13,14,15)$$

Fi = BD + B'C + AB'

CAB	00	01	11	10
00				
01		STIFFERSON, S. A. S.		
11	1		Ī	1
10	l		DET PRINCE	l.,

CDAB	00	01	- lt	10
00				11
01				
11		Torqu's un	The state of the s	
10		1		

F3 = BC+ AB'C' + ABD

= A'BD + ABD +B'C+AB'C'

Fz = C+ A'BD

F3 = BC + AB'C' + ABD

공통하을 반들기 위해 쪼갬

