Ch—07 Alternating Current

Daily Practice Problem 07

- **Q1.** An inductor coil joined to a 6V battery draws a steady current of 12A. This coil is connected in series to a capacitor and a.c. source of alternating emf 6V If the current in the circuit is in phase with the emf, find the rms current.
- **Q2**. A resistor of resistance 400Ω , and a capacitor of reactance 200Ω , are connected in series to a 220 V, 50 Hz, a.c. source. If the current in the circuit is $0.49 \ ampere$, find the
- (i) voltage across the resistor and capacitor
- (ii) value of inductance required so that voltage and current are in phase.
- **Q3.** In the a.c. circuit shown in Fig., the main supply has constant voltage but variable frequency. For what frequency will the voltage across the resistance R be maximum?

Q4. A series LCR circuit with L=4.0~H, $C=100~\mu F$ and $R=60~\Omega$ is connected to a variable frequency 240 V source as shown in Fig.

Calculate:

- (i) the angular frequency of the source which drives the circuit at resonance.
- (ii) the current at the resonating frequency.
- (iii) the rms potential drop across the inductor at resonance.
- **Q5.** A capacitor, resistor of 5Ω and an inductor of $50 \, mH$ are in series with an a.c. source marked $100 \, V, 50 \, Hz$ It is found that voltage is in phase with the current. Calculate the capacitance of the capacitor and the impedance of the circuit.
- **Q6.** A series LCR circuit containing a resistance of 120Ω has angular resonance frequency $4 \times 10^5 \ rad \ s^{-1}$. At resonance

the-voltages across resistance and inductance are 60 V and 40 V, respectively.

- **a.** The value of inductance L is
 - (1) 0.1 mH
 - (2) 0.2 mH
 - (3) 0.35 mH
 - (4) 0.4 mH

- **c.** At what frequency, the current in the circuit lags the voltage by 45°?
 - (1) $4 \times 10^5 \ rad \ s^{-1}$
 - (2) $3 \times 10^5 \ rad\ s^{-1}$
 - (3) $8 \times 10^5 \ rad \ s^{-1}$
 - (4) $2 \times 10^5 \ rad \ s^{-1}$

b. The value of capacitance C is

(1)
$$\frac{1}{32} \mu F$$

(2)
$$\frac{1}{16} \mu F$$

- (3) $32 \mu F$
- (4) $16\mu F$

- **1**. 12 A
- **2.** 196 V, 98 V, 0.64 H
- **3.** 500 Hz
- **4.** 50 rad s⁻¹, 4A, 800 V
- **5.** $2.02 \times 10^{-4} F$, 5Ω
- **6.** a. 2, b. 1, c. 3

