UNIVERSIDADES DE CASTILLA-LEÓN – EBAU – JUNIO 2018 /ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Para las siguientes configuraciones electrónicas de átomos neutros:

- i) $1s^2 2s^2$; ii) $1s^1 2s^1$; iii) $1s^2 2s^2 2p^6 3s^2 3p^8 4s^1$; iv) $1s^2 2s^2 3s^1$; v) $1s^2 2s^2 2p^6 2d^2$.
- a) ¿Cuáles representan un estado fundamental, cuáles un estado excitado y cuáles son imposibles?
 - b) Indica a qué átomo pertenecen las configuraciones que no son imposibles.
 - c) Podemos representar un isótopo como Z_A X. Explica esta simbología.

PROBLEMA 1.- Al calentar el gas NOF se disocia según la reacción: NOF (g) \Rightarrow NO (g) + $\frac{1}{2}$ F₂(g)

En un recipiente de 1 litro se introducen inicialmente 2,45 g de NOF, se calienta a 300 °C y cuando se alcanza el equilibrio la presión total es de 2,57 atm.

- a) Calcula el grado de disociación del NOF.
- b) Calcula la presión parcial del flúor en el equilibrio.

Resultado: a)
$$\alpha = 18.8 \%$$
; b) $P_{F_2} = 0.221$ atm.

PROBLEMA 2.- El fluoruro de bario BaF₂ se caracteriza por ser muy poco soluble en agua, con un Kps que vale $1.84 \cdot 10^{-7}$. Calcula la solubilidad del BaF₂ en g · L⁻¹:

- a) En agua pura.
- b) En una disolución acuosa 1 M de NaF.

Resultado: a)
$$S = 0.6265 \text{ g} \cdot \text{L}^{-1}$$
; b) $S' = 8.05 \cdot 10^{-6} \text{ g} \cdot \text{L}^{-1}$.

CUESTIÓN 2.- Cuando en un volumen de agua oxigenada, H₂O₂, se disuelve una sal de Fe²⁺, en principio podrían ocurrir las siguientes reacciones:

$$H_2O_2 + Fe^{2+} \leftrightarrows H_2O + Fe^{3+}$$
 ó $H_2O_2 + Fe^{2+} \leftrightarrows O_2(g) + Fe(s)$.
a) Ajusta ambas reacciones por el método del ión-electrón.

- b) Justifica la espontaneidad de cada una de ellas en condiciones estándar.

DATOS:
$$E^{\circ}(Fe^{2+}/Fe) = -0.447 \text{ V}$$
; $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.771 \text{ V}$; $E^{\circ}(H_2O_2/H_2O) = 1.776 \text{ V}$ y $E^{\circ}(O_2/H_2O_2) = 0.695 \text{ V}$.

CUESTIÓN 3.- Escribe todas las aminas isómeras de fórmula $C_4H_{11}N$.

- a) Clasifícalas en grupos según sean primarias, secundarias o terciarias.
- b) Para cada una de las aminas terciarias que haya encontrado, propón una reacción de formación de la correspondiente sal de amonio cuaternario.

OPCIÓN B

CUESTIÓN 1.- Contesta las siguientes cuestiones:

- a) Define afinidad electrónica de un elemento e indica cuál tiene mayor afinidad electrónica el átomo de cloro, Cl, o el de azufre, S.
 - b) Indica razonadamente cuál sería más estable, el ión S²⁻ o el Cl²⁻.

CUESTIÓN 2.- Las nieblas de contaminación urbana se deben en parte a los óxidos de nitrógeno. Se ha estudiado la cinética de la reacción exotérmica: NO + $\frac{1}{2}$ O₂ \Rightarrow NO₂ y se ha determinado que cuando se duplica la [O₂] manteniendo constante la [NO], la velocidad de reacción se duplica; y cuando la [NO] se duplica manteniendo constante la [O₂] la velocidad de reacción se hace 4 veces mayor.

- a) Calcula el orden total de la reacción.
- b) Determina las unidades de la constante de velocidad, k.
- c) Dibuja un gráfico que represente la variación de energía durante el transcurso de la reacción, incluyendo todas las magnitudes de energía implicadas.

PROBLEMA 1.- Se disuelven 10,8 g de ácido cloroso, HClO₂, en agua suficiente hasta 525 mL finales de disolución.

- a) Calcula el pH de la disolución resultante.
- b) Calcula el volumen de agua que hay que añadir a la disolución anterior para que el pH sea 2, considerando que los volúmenes sean aditivos.

Resultado: a) pH = 1,28; b) 7,875 L agua.

PROBLEMA 2.- Se dispone de dos celdas electrolíticas conectadas en serie que contienen disoluciones acuosas de sulfato de níquel (II) (NiSO₄) y nitrato de plata (AgNO₃), respectivamente. Se hace pasar una corriente eléctrica por el circuito hasta que se depositan 0,650 g de plata en la segunda celda.

- a) Escribe las reacciones que tienen lugar en el cátodo de cada una de las celdas. Explica si el potencial será positivo o negativo.
 - b) Calcula cuántos gramos de níquel se habrán depositado en la primera celda.
- c) Calcula cuánto tiempo habrá durado el proceso si la intensidad de la corriente eléctrica ha sido de 2,5 A.

Resultado: b) 0,177 g Ni; b) 232,31 s.

CUESTIÓN 3.- Nombra y formula los productos de las siguientes reacciones y especifica el tipo de reacción en cada caso:

- a) p-clorobenzoato de metilo + agua \rightarrow
- b) but-2-eno (2-buteno) + bromo \rightarrow
- c) 3-cloro-2-metilhex-2-eno (3-cloro-2-metil-2-hexeno) + hidrógeno →