

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Ejercicios 19 a 23

19. Sea E un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ y norma asociada $\|\cdot\| = +\sqrt{\langle \cdot, \cdot \rangle}$.

A. Cuando E es un espacio sobre el cuerpo $\mathbb R$ de los números reales, demostrar que

(8) \mathbf{x} es ortogonal a \mathbf{y} sólo si $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

B. Cuando E es un espacio vectorial sobre el cuerpo $\mathbb C$ de los números complejos :

1. Mostrar un ejemplo en el que la equivalencia enunciada en (8) es falsa.

2. Demostrar que

 \mathbf{x} es ortogonal a \mathbf{y} si y sólo si $\begin{bmatrix} \|\alpha \mathbf{x} + \beta \mathbf{y}\|^2 = \|\alpha \mathbf{x}\|^2 + \|\beta \mathbf{y}\|^2 \\ \text{para todos los } \alpha, \beta \in \mathbb{C}. \end{bmatrix}$

20. Sea E un $\mathbb{K}\text{-espacio}$ vectorial con producto interior $\langle\cdot\,,\,\cdot\rangle\,.$ Se dice que una función

$$T: \widetilde{E} \longrightarrow F$$

es una isometría cuando satisface

 $\|T(\mathbf{x}) - T(\mathbf{y})\| = \|\mathbf{x} - \mathbf{y}\|$ para todos los $\mathbf{x}, \mathbf{y} \in E$.

A. Obsérvese que para cada $\mathbf{a} \in E$ la traslación $T(\mathbf{x}) = \mathbf{x} + \mathbf{a}$ satisface (9). También, que la composición $T_1 \circ T_2$ verifica (9) siempre que las funciones T_1 y T_2 son isometrías.

Demostrar que T cumple (9) si y sólo si T es la composición de una traslación y otra función T_0 que, además de ser isometría, cumple $T_0(\mathbf{0}) = \mathbf{0}$.

B. En \mathbb{C} , espacio vectorial 1-dim sobre el cuerpo \mathbb{C} , considérese la función $T:\mathbb{C}\longrightarrow\mathbb{C}$ dada por $T(\mathbf{z})=\overline{\mathbf{z}}$. ¿Es una isometría? ¿Es una aplicación lineal? ¿Satisface $T(\mathbf{0})=\mathbf{0}$?

C. Supongamos que la función T es una isometría y, además, $T(\mathbf{0}) = \mathbf{0}$.

1. Demostrar que

Re
$$\langle T(\mathbf{x}), T(\mathbf{y}) \rangle$$
 = Re $\langle \mathbf{x}, \mathbf{y} \rangle$,
 $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$,

para todos los $\mathbf{x}, \mathbf{y} \in E$.

- 2. Demostrar que T es una aplicación lineal cuando E es espacio vectorial sobre $\mathbb R$.
- 3. Cuando E es espacio vectorial sobre el cuerpo $\mathbb C$ de los números complejos, demostrar que si T es $\mathbb C$ -lineal, entonces

$$\langle T(\mathbf{x}), T(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle,$$
 para todos los $\mathbf{x}, \mathbf{y} \in E$.

- ${\sf D}.$ Supongamos ahora que T es una aplicación lineal y también es una isometría.
 - 1. Siendo T' la aplicación lineal adjunta de T, demostrar que

$$(10) T' \circ T = I,$$

la identidad en E.

- 2. Recíprocamente, demostrar que toda aplicación lineal que satisface (10) ha de ser una isometría.
- 3. Demostrar que T es invertible y su inversa es una isometría.
- 4. Demostrar que $\det T = \pm 1$.
- **21.** Considérese el espacio vectorial $\mathbb{R}^{m \times n}$ formado por las matrices $m \times n$ de números reales.
 - A. Demostrar que

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{traza} \mathbf{A}^{\! \mathrm{\scriptscriptstyle T}} \mathbf{B}$$

es un producto escalar

Demostrar que

- B. Supongamos ahora que m=n . Demostrar:
- 1. $\left|\operatorname{traza} \mathbf{A}\right|^2 \le n \operatorname{traza} \mathbf{A}^{\mathsf{T}} \mathbf{A}$.
- 2. $\operatorname{traza} \mathbf{A}^2 \leq \operatorname{traza} \mathbf{A}^{\mathsf{T}} \mathbf{A}$.
- 3.

$$\operatorname{traza} \mathbf{A}^{\! \mathrm{T}} \mathbf{B} \leq \frac{\operatorname{traza} \mathbf{A}^{\! \mathrm{T}} \mathbf{A} + \operatorname{traza} \mathbf{B}^{\! \mathrm{T}} \mathbf{B}}{2}$$
.

C. Seguimos suponiendo que m=n. Considérense los subespacios vectoriales \mathcal{S}_n y \mathcal{K}_n formados por las matrices simétricas y antisimétricas, respectivamente.

- 1. Demostrar que \mathcal{K}_n es el complemento ortogonal de \mathcal{S}_n .
- 2. Dada $\mathbf{A} \in \mathbb{R}^{n \times n}$, ¿cuál es su proyección ortogonal sobre \mathcal{S}_n ?
- 3. Calcular la distancia entre $\mathbf{A} \in \mathbb{R}^{n \times n}$ y el subespacio \mathcal{S}_n .
- D. La norma asociada a este producto escalar se llama norma de Frobenius, $\|\mathbf{A}\|_{\!_{\rm F}}$, de la matriz. Demostrar

$$\|\mathbf{A}\mathbf{B}\|_{\scriptscriptstyle{\mathrm{F}}} \leq \|\mathbf{A}\|_{\scriptscriptstyle{\mathrm{F}}} \|\mathbf{B}\|_{\scriptscriptstyle{\mathrm{F}}}$$
.

- **22.** A. Sea $\mathbf{A} \in \mathbb{C}^{n \times n}$ una matriz hermítica. Demostrar
- 1. Las matrices $\mathbf{A} + i \mathbf{I} \mathbf{y} \mathbf{A} i \mathbf{I}$ son invertibles.
- 2. La matriz

(11)
$$\mathbf{U} = (\mathbf{A} - i \mathbf{I}) (\mathbf{A} + i \mathbf{I})^{-1}$$

es unitaria y 1 no es autovalor de ${f U}$.

3. Se verifica

(12)
$$\mathbf{A} = -i(\mathbf{U} + \mathbf{I})(\mathbf{U} - \mathbf{I})^{-1}$$

- B. Recíprocamente, dada $\mathbf{U} \in \mathbb{C}^{n \times n}$ matriz unitaria que no tiene a 1 por autovalor, demostrar :
 - 1. $\mathbf{U} \mathbf{I}$ es invertible.
 - 2. La matriz A dada por (12) es hermítica.
 - 3. U se obtiene de A mediante (11).
- C. Dada $\mathbf{A} \in \mathbb{C}^{n \times n}$ anti-hermítica, las matrices $\mathbf{A} + \mathbf{I}$ y $\mathbf{A} \mathbf{I}$ son invertibles, la matriz

(13)
$$\mathbf{U} = (\mathbf{A} - \mathbf{I})(\mathbf{A} + \mathbf{I})^{-1}$$

es unitaria, 1 no es autovalor de U y además

(14)
$$\mathbf{A} = -(\mathbf{U} + \mathbf{I})(\mathbf{U} - \mathbf{I})^{-1}.$$

Récíprocamente, si \mathbf{U} es unitaria y 1 no es autovalor de \mathbf{U} , la matriz \mathbf{A} definida por (14) es anti-hermítica y (13) expresa \mathbf{U} a partir de \mathbf{A} .

23. En una base ortonormal $\mathcal{B} = \{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ del espacio vectorial \mathbb{C}^3 , la aplicación lineal $T: \mathbb{C}^3 \longrightarrow \mathbb{C}^3$ tiene matriz

$$\mathbf{A} = \begin{bmatrix} T \end{bmatrix}_{\mathcal{B}, \mathcal{B}} = -\frac{\mathrm{i}}{2} \begin{bmatrix} 0 & \sqrt{2} & 0 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 0 & -\sqrt{2} & 0 \end{bmatrix}.$$

Hallar una base ortonormal que diagonaliza la matriz de T y escribir la descomposición espectral.