

04_deskriptive_statistik

Lage- und Verteilungsmaße

Laden der Daten für weitere Schritte

Einlesen der Daten der Kursteilnehmer:

- > setwd("--ihr R-Verzeichnis--") > laender<-read.csv2("laenderdaten.csv")</pre>
- > laender[1.3]

	raender[r.J,]							
	Name	Einwohnerzahl	Fläche.in.km.				Amtssprache	BIP
1	Königreich Dänemark	5732173	2244490.0				Dänisch	3.3320e+11
2	New Zealand	4445000	269652.0	Englisch,	Maori,	neuseeländische	Gebärdensprache	1.6181e+11
3	Schweden	9644864	438575.8				Schwedisch	5.3820e+11
Weltrang.nach.BIP Weltrang.CPI Einlieferer kontinent								
1	32	1	breske E	uropa				
2	56	1	breske	<na></na>				
3	21	1	breske E	uropa				

Christian-Albrechts-Universität zu Kiel

Deskriptive Statistik

Summarische Darstellung einer Menge von beobachteten Daten Die Verteilung der Daten innerhalb der Stichprobe wird wiedergegeben

Darstellungsarten

Tabellarisch – Kontingenztabelle Graphisch – Diagramme Numerisch – Mit Hilfe von Kennwerten für die Verteilung

Deskriptive Statistik macht (eigentlich) keine Aussagen über die Grundgesamtheit, sondern beschreibt nur die Stichprobe! (im Unterschied hierzu Inferenzstatistik)

Aspekte von Verteilungen

Tendenz zur Mitte (zentrale Tendenz):

Gibt an, wo in der Spannweite der Werte die Mitte liegt

Arithm. Mittel, Median, Modus

Streuung:

Gibt an, wie breit die Werte streuen

Variationsbreite, Varianz, Standardabweichung, Variationskoeffizient

Form:

Form der Verteilungskurve

Symmetrisch/Asymmetrisch

Schiefe und Kurtosis(Wölbung)

Studenten, die sich nach ihren Testergebnissen in Reihen auf einem Footballfeld aufgestellt haben – eine Häufigkeitsverteilung.

Quelle: Phillips 1997

Tendenz zur Mitte [1]

Terrueriz zur Mitte [1]

Arithmetisches Mittel

Der Klassiker, auch Durchschnitt oder Mittelwert genannt. Geht für metrische Daten (intervall oder verhältnis)

Summe der Werte/Anzahl der Werte, oder

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

R:

> sum(laender\$Fläche)/length(laender\$Fläche)
[1] 943844
> mean(laender\$Fläche)
[1] 943844

Tendenz zur Mitte [2]

Median

Läßt sich für metrische und ordinale Variablen bestimmen.

Bei ungerader Anzahl: der mittlere Wert einer sortierten Reihe

```
1 2 3 4 5 6 7
|
R:
> median(c(1,2,3,4,5,6,7))
[1] 4
```

Bei gerader Anzahl: das Arithm. Mittel der mittleren Werte einer sortierten Reihe

```
1 2 3 4 5 6 7 8

R:
> median(c(1,2,3,4,5,6,7,8))
[1] 4.5
```


Christian-Albrechts-Universität zu Kiel

Modus (Modalwert)

Tendenz zur Mitte [3]

Der häufigste Wert einer Datenreihe. Läßt sich für metrische, ordinale und nominale Variablen bestimmen.

Ziege Schaf Ziege Rind Rind Ziege Schwein Ziege

Modus: Ziege

```
In R:
```

```
> which.max(table(c("Ziege", "Schaf", "Ziege", "Rind",
"Rind", "Ziege", "Schwein", "Ziege")))
Ziege
```


Tendenz zur Mitte [4]

Merkmal ist		
nominal- skaliert	ordinal- skaliert	intervall- skaliert+
Modus	Modus	Modus
-	Median	Median
-	-	Arith. Mittel
		Nach: Dolić 2004

CAU

Christian-Albrechts-Universität zu Kiel

Tendenz zur Mitte [5]

Vergleich der Mittelwerte

Anfälligkeit für Ausreißer: Der Mittelwert ist sehr anfällig für Ausreißer, der Median deutlich weniger, der Modus kaum.

```
> test<-c(1,2,2,3,3,3,4,4,5,5,6,7,8,8,8,9,120)
> mean(test)
[1] 11.64706
> median(test)
[1] 5
> which.max(table(test))
3
3
```

Der Modus eignet sich kaum für die Beschreibung von metrischen oder nominalen Daten, nur dann, wenn eine einigermaßen symmetrische Verteilung vorliegt.

```
> which.max(table(c(1,2,2,3,3,3,4,4,4,4,5,5,5,6,6,7)))
4
```


Christian-Albrechts-Universität zu Kiel

Tendenz zur Mitte Aufgabe

Beschreiben Sie die Mittelwerte

Zu analysieren sind die Messungen der Breite an Tassen aus dem Gräberfeld Walternienburg in cm (Müller 2001, 534; Auswahl):

- > tassen<-read.csv2("tassen.csv",row.names=1)</pre>
- > tassen\$x

Bestimmen Sie Modus, Median und Arith. Mittel und geben Sie an, ob die Schiefe positiv (rechtsschief) oder negativ (linksschief) ist.

Christian-Albrechts-Universität zu Kiel

Tendenz zur Mitte Aufgabe

Beschreiben Sie die Mittelwerte

Zu analysieren sind die Messungen der Breite an Tassen aus dem Gräberfeld Walternienburg in cm (Müller 2001, 534; Auswahl):

```
> tassen<-read.csv2("tassen.csv",row.names=1)
> tassen$x
```

Bestimmen Sie Modus, Median und Arith. Mittel und geben Sie an, ob die Schiefe positiv (rechtsschief) oder negativ (linksschief) ist.

```
> mean(tassen$x)
[1] 13.67727
> median(tassen$x)
[1] 12
> which.max(table(tassen$x))
8.1
3
```

Der Median ist kleiner als das Arithm. Mittel: positiv (rechtsschief).

Abb. 4.1 Zwei Verteilungen mit denselben Ns, aber unterschiedlicher Streuung.

Quelle: Phillips 1997

Streuung [1]

Variationsbreite

Einfach die Spannweite der Werte in einer Datenreihe

```
> range(laender$Fläche)
[1] 14954 9826675
> range(tassen$x)
[1] 7.5 26.1
```

Da sich das Maß auf die Extremwerte bezieht, ist es logischerweise sehr ausreißeranfällig

Streuung [2]

(empirische) Varianz

Maß für die Variabilität in den Daten, unabhängiger gegen Ausreißer

Entspricht der Summe der quadrierten Abstände zum Mittelwert durch die Anzahl der Beobachtungen

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

In R per Hand:

Achtung: es gibt da noch die andere Varianz σ^2 (mit n statt n-1), die ist aber nur für die Grundgesamtheit (die meist nicht bekannt ist), nicht für Stichproben anwendbar.

Streuung [3]

(empirische) Standardabweichung

Varianz hat durch Quadrierung quadrierte Einheiten (mm → mm²)

Um Kennzahl mit ursprünglichen Einheiten vergleichbar zu machen: Wurzel ziehen: Standardabweichung

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

- > sqrt(sum((tassen\$x-mean(tassen\$x))^2)/(length(tassen\$x)-1))
- > sd(tassen\$x)

Entspricht sozusagen der durchschnittlichen Abweichung vom Mittelwert

Achtung: es gibt da noch die andere Standardabweichung σ (mit n statt n-1), die ist aber nur für die Grundgesamtheit (die meist nicht bekannt ist), nicht für Stichproben anwendbar.

Streuung [4]

Variations-Koeffizient

Standardabweichung liegt in der jeweiligen Einheit (z.B. mm) vor

Zum Vergleich zweier Zahlenreihen mit unterschiedlichen Einheiten: Variantionskoeffizient=Standardabweichung/Mittelwert

Bsp. Variieren Fläche und Einwohnerzahl der Länder etwa gleich stark?

```
> sd(laender$Fläche)/mean(laender$Fläche)
[1] 2.576648
> sd(laender$Einwohnerzahl)/mean(laender$Einwohnerzahl)
[1] 2.479968
```

Einwohnerzahl variieren etwas schwächer als Fläche

Streuung [5]

Quantile

Das 1., 2., 3. und 4. Viertel der Daten (sortiert und durchgezählt) bzw. deren Trennwerte

> quantile (tassenSx)

Linksschiefe Verteilung mit einer in Viertel geteilten Fläche.

Quelle: Phillips 1997

Streuung [5]

Quantile

Das 1., 2., 3. und 4. Viertel der Daten (sortiert und durchgezählt) bzw. deren Trennwerte

```
> quantile(tassen$x)
   0% 25% 50% 75% 100%
7.5 9.0 12.0 18.9 26.1
```

Jetzt neu: Perzentile (Das gleiche für Zehntel)

```
> quantile(tassen$x, probs=seq(0,1,0.1))
   0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
7.50 8.10 8.52 9.27 10.02 12.00 13.08 18.81 19.38 20.31 26.10
```

Streuungmaß Innerquartilsabstand

```
> IQR(tassen$x)
[1] 9.9
```

Unempfindlicher gegen Ausreißer als Standardabweichung, dafür geht Information verloren

Christian-Albrechts-Universität zu Kiel

Streuung Aufgabe

Bestimmen Sie die Streuung der Daten

Zu analysieren sind die Größen der von versch. Megalithgräbern aus sichtbaren Flächen (Demnick 2009):

- > altmark<-read.csv2("altmark denis2.csv",row.names=1)</pre>
- > altmark\$sichtflaeche

Finden Sie heraus, in welcher der Regionen die Gräber eine einheitlichere Sichtfläche haben.

Christian-Albrechts-Universität zu Kiel

Streuung Aufgabe

Bestimmen Sie die Streuung der Daten

Zu analysieren sind die Größen der von versch. Megalithgräbern aus sichtbaren Flächen (Demnick 2009):

```
> altmark<-read.csv2("altmark_denis2.csv",row.names=1)
> altmark$sichtflaeche
```

Bestimmen Sie für jede der Regionen die Standardabweichung.

```
> sd(altmark[altmark$region=="Mitte",1])
[1] 60.56687
> sd(altmark[altmark$region=="Ost",1])
[1] 51.46048
> sd(altmark[altmark$region=="West",1])
[1] 28.73535
```

Die Standardabweichung ist für die Region West am kleinsten, die Sichtflächen sind hier am einheitlichsten

Form der Verteilung [1]

Wichtige Parameter

Anzahl der Gipfel der Verteilung: unimodal, bimodal, multimodal

Schiefe der Verteilung: Rechtsschief, Linksschief

Kurtosis (Wölbung): flach, mittel, steil

linksschief

Verteilungsformen (nach Bortz 2006)

b asymmetrisch

c unimodal

d bimodal

e schmalgipflig

f breitgipflig

g linkssteil

h rechtssteil

j abfallend

i u-förmig

Form der Verteilung [2]

Schiefe

Mittelwert rechts oder links vom Median Ablesen aus dem Diagramm ;-)

Berechnen:

$$\hat{S} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{n * s^3}$$

Positive bei Linksteil(rechtsschief), negativ bei rechtsteil(linksschief)

In R:

```
schiefe <- function (x) {
m3 <- sum((x-mean(x))^3) #Zähler
skew <- m3 / ((sd(x)^3)*length(x)) #Nenner
skew}
> test<-c(1,1,1,1,1,1,1,1,1,1,2,3,4,5)
> schiefe(test)
[1] 1.406826
> test<-c(3,3,3,3,3,3,3,3,3,3,3,3,3,2,1)
> schiefe(test)
[1] -2.231232
```


Christian-Albrechts-Universität zu Kiel

Form der Verteilung [3]

Kurtosis

Die Wölbung der Verteilung Ablesen aus dem Diagramm ;-)

Berechnen:

$$K = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{n * s^4} - 3$$

Positive bei steilerem, negativ bei flacherem Anstieg als bei der Normalverteilung

In R:

```
> kurtosis <- function (x) {
m3 <- sum((x-mean(x))^4)
skew <- m3 / ((sd(x)^4)*length(x))-3
skew}
> test<-c(1,2,3,4,4,5,6,7)
> kurtosis(test)
[1] -1.46875
> test<-c(1,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,7)
> kurtosis(test)
[1] 2.011364
```

