

15-826: Multimedia Databases and Data Mining

Lecture #18: SVD - part I (definitions)

C. Faloutsos

5

SVD - Detailed outline

- Motivation
- Definition properties
- Interpretation
- Complexity
- Case studies
- Additional properties

15-826

CMU SCS

Copyright: C. Faloutsos (2017)

S Carlo Sc

15-826

SVD - Motivation

- problem #1: text LSI: find 'concepts'
- problem #2: compression / dim. reduction

Copyright: C. Faloutsos (2017)

• problem #1: text - LSI: find 'concepts'

$_{ m term}$	data	information	retrieval	brain	lung
$\operatorname{document}$					
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
${ m MED-TR1}$	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

15-826 Copyright: C. Faloutsos (2017)

SVD - Detailed outline

- Motivation
- Definition properties
 - Interpretation
 - Complexity
 - Case studies
 - Additional properties

15-826

Copyright: C. Faloutsos (2017)

13

SVD - Interpretation #1

'documents', 'terms' and 'concepts':

- U: document-to-concept similarity matrix
- V: term-to-concept sim. matrix
- Λ: its diagonal elements: 'strength' of each concept

15-826

Copyright: C. Faloutsos (2017)

29

31

SVD – Interpretation #1

'documents', 'terms' and 'concepts':

Q: if A is the document-to-term matrix, what is $A^T A$?

A: term-to-term ([m x m]) similarity matrix

 $O: \mathbf{A} \mathbf{A}^{T}$?

A: document-to-document ([n x n]) similarity matrix

15-826

Copyright: C. Faloutsos (2017)

CMU SCS

SVD properties

- V are the eigenvectors of the *covariance* matrix A^TA
- U are the eigenvectors of the *Gram (inner-product) matrix* **AA**^T

Further reading

- 1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002.
- 2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

SVD - Detailed outline

- Motivation
- Definition properties
- Interpretation
- Complexity
 - · Case studies
 - Additional properties

15-826

Copyright: C. Faloutsos (2017)

65

SVD - Complexity

- O(n * m * m) or O(n * n * m) (whichever is less)
- less work, if we just want singular values
- or if we want first *k* singular vectors
- or if the matrix is **sparse** [Berry]
- Implemented: in any linear algebra package (LINPACK, matlab, Splus/R, mathematica ...)

15-826

Copyright: C. Faloutsos (2017)

66

68

SVD - conclusions so far

- SVD: $A = U \Lambda V^T$: unique (*)
- U: document-to-concept similarities
- V: term-to-concept similarities
- **\Lambda**: strength of each concept
- dim. reduction: keep the first few strongest singular values (80-90% of 'energy')
 - SVD: picks up linear correlations
- SVD: picks up non-zero 'blobs'

15-826

Copyright: C. Faloutsos (2017)

67

References

- Berry, Michael: http://www.cs.utk.edu/~lsi/
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Press, W. H., S. A. Teukolsky, et al. (1992) (3rd ed.: 2007): *Numerical Recipes in C*, Cambridge University Press.

15-826

Copyright: C. Faloutsos (2017)