离散数学习题课

第十一讲——群论(三)

Homomorphisms

Fundamental theorem on homomorphisms:

Given two groups G and H and a group homomorphism

 $f:G\to H,$ let $\varphi:G\to G/K$ be the natural surjective

homomorphism.

For any $K \leq G$, if $K \subseteq \ker f$, then there exists a unique

homomorphism $h: G/K \to H$ such that $f = \varphi \circ h$.

First isomorphism theorem

If G, H are groups, $f: G \to H$ is a homomorphism, then

- (1) $\ker f \leq G$
- (2) $G/\ker f \cong f(G)$
- (3) $f(G) \leq H$

Second isomorphism theorem

If G is a group, $H \leq G$, $K \leq G$, then

- (1) $HK \leq G$
- $(2) K \leq HK$
- (3) $H \cap K \leq H$
- (4) $HK/K \cong H/(H \cap K)$

Third isomorphism theorem

If
$$N, K \leq G, N \subseteq K$$
, then

- $(1) N \leq K$
- (2) $K/N \leq G/N$
- $(3) (G/N)/(K/N) \cong G/K$

Comments:

- Let $\varphi: G_1 \to G_2$ be a homomorphism, then
 - (1) $H \leq G_1 \implies \varphi(H) \leq \varphi(G_1) \leq G_2$
 - $(2) H \unlhd G_1 \implies \varphi(H) \unlhd \varphi(G_1)$
 - $(3) |G_1| < \infty \implies |\varphi(G_1)| = [G_1 : \ker \varphi] | |G_1|$
 - $(4) |G_2| < \infty \implies |\varphi(G_1)| | |G_2|$

Automorphisms

Definition:

Let G be a group, the set of all endomorphisms on G is $\operatorname{End} G = \{f \mid f : G \to G \land f \text{ is a homomorphism}\}\$

Let G be a group, the set of all <u>automorphisms</u> on G is Aut $G = \{f \mid f : G \to G \land f \text{ is an isomorphism}\}$

Let G be a group, the set of all inner automorphisms on G is $\operatorname{Inn} G = \{ f_a \mid a \in G \land \forall x \in \overline{G(f_a(x) = axa^{-1})} \}$

Comments:

• $\langle \operatorname{End} G, \circ \rangle$ is a monoid; $\langle \operatorname{Aut} G, \circ \rangle$ is a group; $\operatorname{Inn} G \subseteq \operatorname{Aut} G$.

Symmetric groups

Definition:

The set $S_n = \{f \mid f : \mathbb{Z}_n \xrightarrow[onto]{1-1} \mathbb{Z}_n\}$ forms a group (called symmetric group) under function compositions.

Comments:

- For every finite group G with |G| = n, there is a group $H \leq S_n$, such that $G \cong H$.
- $\langle S_n, \circ \rangle$ contains <u>all kinds</u> of groups of order n.
- Note that $|S_n| = n!$

Problems

1. Show that, for any group G,

$$G/Z(G) \cong \operatorname{Inn} G$$

2. For any group G, let $\varphi: G \to G$, $\forall x \in G$, $\varphi(x) = x^{-1}$, show that

G is abelian $\iff \varphi$ is an automorphism

3. Let G be a group, $H \leq G, N \leq G$, show that $(|H|, [G:N]) = 1 \implies H \leq N$

Thank you

Any questions?