Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

BB2710-29 **Datasheet** V0.6

目录

1.概述:	3
2.物理参数:	3
3.电气参数:	4
4.硬件接口参数:	4
5.模组接口参数:	4
6.通讯参数:	6
7.UART 数据包格式	7
8.基本功能	8
0. 本抱和设置	8
9.查询和设置	o
/**叩叉尖尘 /	8
/* 设备和快组审令*/	8
/*设备和模组应答*/	9
9.1 设备通信测试	9
9.2 获取软件版本号	
应答	
9.3 获取最近连接的蓝牙设备地址	
应答	
9.4 获取蓝牙工作状态	
应答	
9.5 命令模组进入可发现状态	
应答	
▶️9.6 命令模组断开与手机的连接	11
应答	11
9.7 发送接收 SPP 数据	11
应答	11
9.8 查询电池电量	12
应答	
9.9 关机	
应答	
9 10 读取蓝牙模组的地址	12

Туре		Document No:	Issue date	2014-11-16
Product name			Version	V0.6
应答				.12
9.11 发送	送接收 LE 数据			13
应答				.13
9.12 控制	削断开后是否自动进入可发现状态			.13
应答				. 13
9.13 设置	置 LE 广播间隔时间			. 13
应答				. 14
9.14 获耳	双连接信号强度			.14
应答				.14
9.15 设置	置 LE 连接间隔时间			14
应答			\	.14
	置 UART 波特率			
	女设备名			
	女模组蓝牙地址			
	女 LE 主服务名称			
应答				. 15
	\完全透明传输模式			
应答				. 16
10.手机 AP	P 编写说明(LE)		•••••	16
11.UART 的	5发码例子	•••••		16

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

1.概述:

该模组可以同时实现 spp 和 gatt 的蓝牙连接(可连接同一个手机,也可连接不同的手机)。通过 uart 接口 将客户 MCU 和手机之间建立起蓝牙双向数据传输通道。客户 MCU 根据命令列表的内容,发相应的命令使蓝牙模组进入不同的状态和在 SPP 或者 GATT 层面上收发数据,MCU 也可以通过命令读到蓝牙模组的状态。

下一步本模块会加入 HID 协议、手机端直接控制模组读写 IIC、SPI、PWM,等等功能。或根据客户的要求 定制其他功能。

模组主要应用领域:

- 1) 蓝牙与RS232(RS483)串口数据转换
- 2) 蓝牙无线数据传输
- 3) 医疗及工业设备分布式远程控制
- 4) 蓝牙打印机、条码扫描设备
- 5) POS 系统,无线键盘、鼠标
- 6) 工业遥控、遥测
- 7) 室内定位、报警
- 8) 无线抄表、无线数据采集
- 9) 楼宇自动化、安防、机房设备无线监控、门禁系统
- 10)智能家居、工业控制
- 11) 汽车检测设备
- 12) 无线LED 显示屏系统、触摸屏设备
- 13) 蓝牙操纵杆、蓝牙游戏手柄、蓝牙遥控器、遥控玩具

page 3 / 16

2.物理参数:

Operating Frequency Band	2.4GHz-2.48GHz unlicensed ISM band
Bluetooth Specification	V2.1+EDR, BT3.0, BT4.0 (BLE)
Output Power Class	Programmable Class 1, Class 2
RX Sensitivity	-88dBm
Operating Voltage	3.3V
Main Digital Interface	UART
Other Interface	SPI, I2C, I2S
PIO Control	PWM, ADC, GPIO
Dimension	27mm(L) x 13mm(W) x 2mm(H)?

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

3.电气参数:

Rating	Min	Max
Storage Temperature	-40°C	+85℃
Operating Temperature	-25℃	+70 ℃
Supply Voltage: VDD	-0.3V	3.6V
Other Terminal Voltages	VSS-0.3V	VDD+0.3V

4.硬件接口参数:

电源	正常供电: +3.3V; 工作电流: I<100mA
主机接口	UART 串口(CMOS、TTL 电平)
接口信号	RX、TX、CTS、RTS

5.模组接口参数:

Module PCB Layout Mechanical Specification

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

管脚号 管脚名称 类型 描述 1 PCM_SYNC I/O 预留 PCM 接口 2 PCM_CLK I/O 预留 PCM 接口 3 GND Ground 接地 4 GND Ground 接地 5 ICE_DAT I/O 调试器的串行数据脚 6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO 2) I2C_SDA	
2 PCM_CLK I/O 预留 PCM 接口 3 GND Ground 接地 4 GND Ground 接地 5 ICE_DAT I/O 调试器的串行数据脚 6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO	
3 GND Ground 接地 4 GND Ground 接地 5 ICE_DAT I/O 调试器的串行数据脚 6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO	
4 GND Ground 接地 5 ICE_DAT I/O 调试器的串行数据脚 6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO	
5 ICE_DAT I/O 调试器的串行数据脚 6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO	
6 ICE_CLK I 调试器的串行时钟脚 7 GPIO7 I/O 1) GPIO	
7 GPIO7 I/O 1) GPIO	
3) SPI1_MISO	
8 GPIO8 I/O 1) GPIO	
2) 12C_SCL	
3) SPI1_MOSI	
9 GPIO9 I/O 1) GPIO	
2) SPI1_CLK	4
10 GND Ground 接地	
11 GND Ground 接地	
12 RST_N I 外部输入复位信号,低电平有效,内部	部自带上拉
13 GPIO13 I/O 1) GPIO	HISTORY
2) SPI2_MOSI	
14 GPIO14 I/O 1) GPIO	
2) SPI2_MISO	
15 GPIO15 I/O 1) GPIO	
2) SPI2 CLK	
16 GPIO16 I/O 1) GPIO	
2) SPI2_SSO	
17 UART_RX I UART1_RXD(默认使用)	
18 GPIO18 I/O 1) GPIO	
2) AD0	
3) PWMCH3	
4) UARTO_TXD	
19 GPIO19 I/O 1) GPIO	
2) INTO	
20 UART_TX I UART1_TXD(默认使用)	
21 GPIO21 I/O 1) GPIO	
2) AD1	
3) UARTO_RXD	
4) PWMCH2	
22 GPIO22 I/O 1) GPIO	
2) AD2	
23 GPIO23 I/O 1) GPIO	
2) AD3	
24 GPIO24 I/O 1) GPIO	
2) AD4	
25 GPIO25 I/O 1) GPIO	

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

			2) AD5
26	VDD	Power	电源
27	GND	Ground	接地
28	PCM_DO	0	预留 PCM 接口
29	PCM_DI	1	预留 PCM 接口

设备与蓝牙模组的连接方式如下:

设备	蓝牙模组
UART_TXD	 UART_RXD
UART_RXD	 UART_TXD
GPIO	 RST_N
VCC	 VCC
GND	 GND

6.通讯参数:

设备名称: "ITON DM"

接口:RS232

波特率: 4800~1200000 (缺省为115200)

停止位:1 数据位:8 校验位:无

以下客户设备端简称"设备",中易腾达蓝牙模组简称"模组"。

7.UART 数据包格式

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

	K-K-
1///	770
/ 11/	\rightarrow
/	\rightarrow

1		
Bytes 		Values t
1 1~4	CommandClass_t	(ACK_TYPE1~ ACK_TYPE4)
5	Command_t	
6	Response_t	
7	Payload Length	1
8->N 	Data	bytes N >= 0
N+1	checksum	checksum
	+	+

Payload Length 不包括 CommandClass_t ,command_t 和 checksum。以上数据格式针对 HID 模式。Checksum =~(Data 之和&0xff)+0x01

Checksum 只计算 Data 段,checksum 不对,模组返回 fail,设备收到之后可重发。

超时设置:设备向模组发送命令,建议使用超时时间 300ms,300ms 之内如模组不回复,可重发或者复位模组。

8.基本功能

- 1、当前支持 spp、gatt 协议。
- 1、客户设备端和手机端都可以通过发送各种命令配置蓝牙模块、通过蓝牙模块收发数据。
- 3、uart 一帧数据个数最大为 255 字节(包括 CommandClass_t, command_t)。
- 4、spp 和 gatt 模式下不记录主机信息,也不回连主机,设备通过配置蓝牙模组使模组进入可发现和广播状态。
- 5、客户设备端和手机端不发送特征码的情况下,数据作为透传数据发送和接收。

9.查询和设置

/*命令类型*/

```
typedef enum {
```

```
CMD_TYPE1 = 'i', /*命令类型*/ //0x69 74 63 7A

CMD_TYPE2 = 't', /*命令类型*/

CMD_TYPE3 = 'c', /*命令类型*/

CMD_TYPE4 = 'z', /*命令类型*/

ACK_TYPE1 = 'i', /*响应类型*/ //0x69 74 61 7A

ACK_TYPE2 = 't', /*响应类型*/

ACK_TYPE3 = 'a', /*响应类型*/

ACK_TYPE4 = 'z', /*响应类型*/

ACK_TYPE4 = 'z', /*响应类型*/

UNKNOW_TYPE = 0xff,

CommandClass t;
```

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

/*设备和模组命令*/

```
typedef enum {
   CMD TEST
                 = 0, /*设备测试*/
                 = 1, /*获取软件版本*/
   CMD VERSION
                 = 2, /*模块复位*/
   CMD RESET
   CMD ORGL
                 = 3, /*恢复默认状态(进入待机状态)*/
// CMD HIDorSPP
                 = 4,
                       /*查询设备工作状态*/
                 = 5,
                       /*获取蓝牙配对列表中设备认证数量*/
// CMD ADCN
// CMD ADLS
                       /*获取蓝牙配对列表中已认证设备地址清单*/
                 = 6,
// CMD RMSAD
                 = 7,
                       /*从配对列表清除指定配对设备*/
                       /*从配对列表删除所有配对设备*/
// CMD RMAAD
                 = 8,
                 = 9,
                       /*从配对列表查找指定认证设备*/
// CMD FSAD
   CMD MRAD
                 = 10, /*获取最近连接的蓝牙认证设备地址*/
   CMD STATE
                 = 11, /*获取蓝牙工作状态*/
// CMD HIDCODE
                 = 12, /*发送键码*/
   CMD DISCOVERABLE = 13, /*可发现状态控制*/
                 = 14, /*命令模组开始回连列表手机
// CMD RECONNECT
                 = 15, /*命令模组断开与手机的连接
   CMD DISC
                 = 16, /*发送接收SPP数据*/
   CMD SPPDATA
                 = 17, /*发送弹IOS软键盘*/
// CMD EJECT
  CMD BATMEAS
                 = 18, /*查询电池电量*/
   CMD POWERDOWN
                 = 19, /*美机*/
                 = 20, /*读取蓝牙模组的地址*/
   CMD READADDR
                 = 21, /*发送接 欠LE数据*/
   CMD ATTDATA
   CMD REENDISCOVERABLE = 22, 个控制断开后是否自动进入可发现状态*/
                 = 23, /*设置LE广播间隔时间*/
   CMD LEADVPARAMS
                  24, /*获取连接信号强度*/
   CMD RSSI
   = 26, /*设置UART波特率*/
   CMD UARTBAUD
                 = 27, /*修改设备名*/
   CMD RENAME
   CMD MODBTADDR
                 = 28, /*修改模组蓝牙地址*/
   CMD MODSVCNAME
                 = 29, /*修改LE主服务名称*/
   CMD ONLYBRIDGEMODE = 30, /*进入完全透明传输模式*/
                 = 31, /*未知命令*/
   CMD UNKNOW
  } Command t;
  //注释的内容是配合 HID 协议的,暂时不提供。
```

/*设备和模组应答*/

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

注意: Response_t 仅代表收到设备端命令(数据, checksum)的正确与否,如为 ACK_FAIL,则命令需要重发。而返回的运行结果都设置在 payload 中。

9.1 设备通信测试

CommandClass_t	Command_t	Packet Length	Data1	Data2	Data3	Data4	CHECKSUM
CMD_TYPE	CMD_TEST	4	'T'	'E'	'S'	'T'	

应答

CommandClass_t	Command_t	Response_t	Packet Length	TestResult	CHECKSUM
ACK TYPE	CMD TEST	ACK TRUE	1	1/0	

TestResult: 1 ok TestResult: 0 ng

9.2 获取软件版本号

CommandClass_t	Command_t	Packet Length	CHECKSUM	
CMD_TYPE	CMD_ VERSION	0		

应答

CommandClass_t	Command_t	Response_t	Packet Length	Data1	Data2	CHECKSUM
ACK_TYPE	CMD_ VERSION	ACK_TRUE	2	0x00	0x01	

注: 例子中版本号为 0.1, 大端格式

9.3 获取最近连接的蓝牙设备地址

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_MRAD	0	

应答

CommandClass_	Command_	Response_	Packe	Data	Data	Data	Data	Data	Data	CHECKSU
t	t	t	t	1	2	3	4	5	6	М
			Lengt							
			h							
ACK_TYPE	CMD_MRA	ACK_TRUE	6	DC	2C	26	12	34	56	
	D									

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.4 获取蓝牙工作状态

CommandClass_t Command_t		Packet Length	CHECKSUM
CMD_TYPE	CMD_STATE	0	

应答

typedef enum { usr INITIALIZED = 0, /*初始化状态*/ = 1, /*准备状态*/ usr READY = 2, /*连接中*/ usr_CONNECTING = 3, /*已连接*/ usr CONNECTED usr RECONNECTING = 4, /*正在回连*/ = 5, /*断开状态*/ usr DISCONNECTED = 6,/*扫描周围设备*/ usr INQUIRY = 1 << 4, /*可发现状态*/ //(Classic) usr DISCOVERABLE = 1 << 5, /*广播状态*/ //(LE) usr_ADVERTISEMENTS = 1 << 6, /*可连接状态*/ usr CONNECTABLE

CommandClass_t	Command_t	Response_t	Packet Length	ClassicB	TState	LEBTState	CHECKSUM
ACK_TYPE	CMD_STATE	ACK_TRUE	2	usr_INITIA	ALIZED	usr_INITIALIZED	

9.5 命令模组进入可发现状态

} BTState t;

CommandClass_t	Command_t	Packet Length	Discover Type	CHECKSUM
CMD_TYPE	CMD_DISCOVERABLE	1	0	0

Discover Type:

- 0-> 退出可发现状态
- 1-> 命令 Classic 进入可发现状态
- 2-> 命令 LE 进入可发现状态
- 3-> 命令 Classic 和 LE 同时进入可发现状态
- 注: Discover Type 上电默认值为 3。

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_DISCOVERABLE	ACK_TRUE	0	

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.6 命令模组断开与手机的连接

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_DISC	0	

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_DISC	ACK_TRUE	0	

9.7 发送接收 SPP 数据

CommandClass_t	Command_t	Packet Length	(payload)	CHECKSUM
CMD_TYPE	CMD_SPPDATA	n		

应答

CommandClass_t	Command_t	Response_t	Packet Length	Res	CHECKSUM
ACK_TYPE	CMD_SPPDATA	ACK_TRUE	1		

Res: 0->数据发送正确,不为0表示数据发送有异常。

客户设备通过 uart 向模组发送 cmd 并附带数据在 payload 中,模组根据数据校验的结果和向手机发送数据的结果返回对应的 ack,。手机向模组发送的数据,模组同样也使用 cmd 命令向设备转发。

9.8 查询电池电量

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_BATMEAS	0	

应答

CommandClass_t	Command_t	Response_t	Packet Length	Data1	Data2	CHECKSUM
ACK_TYPE	CMD_BATMEAS	ACK_TRUE	2	0х0с	0x1e	

注: 数据表示方法为: 电源电压*(采集返回值/4096),数据为大端格式。 如电源电压 3.0V 数据为 0xc1e 时,采集到的电压值应是 3.0*(0xc1e/4096)≈2.27V。 默认 AD 输入脚为 PA.0。

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.9 关机

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_POWERDOWN	0	

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_POWERDOWN	ACK_TRUE	0	

注:应答关机命令后过 500ms 模组会进入 1uA 休眠模式。

9.10 读取蓝牙模组的地址

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_READADDR	0	

应答

CommandClass	Command_t	Response	Packe	Data	Data	Data	Data	Data	Data	CHECKSU
_t		_t	t	1	2	3	4	5	6	М
			Lengt				7			
			h			4				
ACK_TYPE	CMD_READAD	ACK_TRUE	6	DC	2C	26	12	34	56	
	DR									

9.11 发送接收 LE 数据

CommandClass_t	Command_t	Packet Length	(payload)	CHECKSUM
CMD_TYPE	CMD_ATTDATA	n		

应答

CommandClass_t	Command_t	Response_t	Packet Length	Res	CHECKSUM
ACK_TYPE	CMD_ATTDATA	ACK_TRUE	1		

Res: 0->数据发送正确,不为0表示数据发送有异常。

客户设备通过 uart 向模组发送 cmd 并附带数据在 payload 中,模组根据数据校验的结果和向手机发送数据的结果返回对应的 ack,。手机向模组发送的数据,模组同样也使用 cmd 命令向设备转发。

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.12 控制断开后是否自动进入可发现状态

CommandClass_t	Command_t	Packet Length	Reen	CHECKSUM
CMD_TYPE	CMD_REENDISCOVERABLE	1		

应答

CommandClass_t Command_t		Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_REENDISCOVERABLE	ACK_TRUE	0	

Reen:

- 0-> 蓝牙连接断开后不进入可发现状态
- 1-> 命令 Classic 在断开后进入可发现状态
- 2-> 命令 LE 在断开后进入可发现状态
- 3 -> 命令 Classic 和 LE 在断开后都进入可发现状态
- 注: Reen 上电默认值为 3

9.13 设置 LE 广播间隔时间

CommandClass_t	Command_t	Packet Length	le_adv_int_msb	le_adv_int_lsb	CHECKSUM
CMD_TYPE	CMD_LEADVPARAMS	2	0x40	0x00	

le_adv_int 取值范围为 0x20~0x4000,1unit = 0.625 msec

应答

CommandClass_t	Command_t	Response_t	Packet Length	Res	CHECKSUM
ACK_TYPE	CMD_LEADVPARAMS	ACK_TRUE	1		

Res: 0 -> 输入正确

1-> 输入值超过取值范围,在这个情况下 le_adv_int 会自动设置为 0x800。

9.14 获取连接信号强度

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_RSSI	0	

应答

CommandClass_t	Command_t	Response_t	Packet Length	Rssi	CHECKSUM
ACK_TYPE	CMD_ RSSI	ACK_TRUE	1		

注: 如不存在连接,Response_t 将返回 ACK_FAIL

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.15 设置 LE 连接间隔时间

CommandClass_t	Command_t	Packet Length	conn_interval_min_msb	conn_interval_min_lsb
CMD_TYPE	CMD_LECONPARAMS	6		

接上表

conn_interval_max_ms	conn_interval_max_ls	supervision_timeout_ms	supervision_timeout_ls	CHECKSU
b	b	b	b	М

应答

CommandClass_t	ndClass_t Command_t		Packet Length	Res	CHECKSUM
ACK TYPE	CMD LECONPARAMS	ACK TRUE	1		

Res: 0 -> 输入正确

1-> 输入值超过取值范围。

各参数取值规则:

conn_interval_min 取值 \geqslant 20ms,1unit = 1.25 ms。conn_interval_max 取值 \leqslant 2s,1unit = 1.25 ms。supervision_timeout 取值 \leqslant 6s,1unit = 10ms。另外 conn_interval_max*3 \leqslant supervision_timeout。

注意: Slave Latency 恒定设置为 0;

9.16 设置 UART 波特率

CommandClass_t	Command_t	Packet Length	Baud[0]	Baud[1]	Baud[2]	CHECKSUM
CMD_TYPE	CMD_UARTBAUD	3				

波特率计算方式为: baud = (Baud [0] << 16) + (Baud [1] << 8) + Baud [2]

例如要设置为 921600 波特率,则 Baud[0] = 0x0e,Baud[1] = 0x10,Baud[2] = 0x00。

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_UARTBAUD	ACK_TRUE	0	

9.17 修改设备名

	Command Class	t Command_t	Packet Length	Name1	•••••	Name20	CHECKSUM
(CMD TYPE	CMD RENAME	len<20		•••••		

因为设备名涉及到 classic 和 ble 的设备名,所以在当前的协议里将最大设备名称长度限制为 20 字节。 修改设备名后,模组每次上电都会使用最近修改的设备名。

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD RENAME	ACK_TRUE	0	

Document: ITON BB2710-29 模组技术文档 V0.6 page 14 / 16

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

9.18 修改模组蓝牙地址

CommandClass_t	Command_t	Packet Length	Addr1	•••••	Addr6	CHECKSUM
CMD_TYPE	CMD_MODBTADDR	6		•••••		

蓝牙地址为6个字节,使用大端格式。

修改蓝牙地址后,模组每次上电都会使用最近修改的蓝牙地址。

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_RENAME	ACK_TRUE	0	

9.19 修改 LE 主服务名称

CommandClass_t	Command_t	Packet Length	Name1	•••••	Name20	CHECKSUM
CMD_TYPE	CMD_MODSVCNAME	len		•••••		

修改服务名后,模组每次上电都会使用最近修改的服务名。

应答

CommandClass_t	Command_t	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_ MODSVCNAME	ACK_TRUE	0	

9.20 进入完全透明传输模式

CommandClass_t	Command_t	Packet Length	CHECKSUM
CMD_TYPE	CMD_ONLYBRIDGEMODE	0	

进入该模式后,蓝牙模组将不会再检测各种 CMD TYPE 命令,直到蓝牙连接断开。

应答

CommandClass_t	Command_t	<u> </u>	Response_t	Packet Length	CHECKSUM
ACK_TYPE	CMD_ONLYBRIDGEN	/IODE	ACK_TRUE	0	

注:应答关机命令后过 500ms 模组会进入 1uA 休眠模式。

10.手机 APP 编写说明 (LE)

GATT 服务列表如下,手机端可以参考使用:

Type: UUID(0x): Permissions:

PRIMARY_SERVICE, FF00

CHARACTERISTIC, FF01, WRITE | DYNAMIC,

CHARACTERISTIC, FF02, READ | NOTIFY | DYNAMIC,

CHARACTERISTIC, 0000FF11-0000-1000-8000-00805F9B34FB, READ | NOTIFY | DYNAMIC,

其中:

0xff00 服务号。

0xff01 app 发送数据给模组。

0xff02 模组发送数据给 app。

0000FF11-0000-1000-8000-00805F9B34FB 用于测试,打开 NOTIFY 之后模组会间隔 1s 发送 count xx 给 app。

Document: ITON BB2710-29 模组技术文档 V0.6 page 15 / 16

Туре	Document No:	Issue date	2014-11-16
Product name		Version	V0.6

11.uart 的发码例子

6974637a000454455354c0 6974637a1006313233343536cb 6974637a1b06313233343536cb 6974637a1c06010203040512df

//-----//版本说明:

v1.23

1.2表示主版本号为1.2,该版本可以在协议中用查询版本号查询到。该版本有修改表示协议有修改和增加了功能。

0.03 表示文档编号为 3,该位只表示文档有更新或者初始化配置有修改(例如波特率和设备名),协议本身是不变的。

//-----//

历史版本信息:

141116

141115

0.52 各种设备名,服务名修改为 ikos。

0.51 uart 初始波特率改为 57600。

141103

0.5 增加手机 ARP 编写说明。

141101

0.4 增加电路连接方式描述。

141031

0.3 增加命令 CMD_RENAME = 27, /*修改设备名*/

CMD_MODBTADDR = 28, /*修改模组蓝牙地址*/

修改协议部分,双方不发送特征码时,数据当做透传数据直接发送。 增加手机端也可以使用协议中的命令和应答。

140929

0.2 增加命令 CMD_UARTBAUD = 26, /*设置 UART 波特率*/

140923

0.1 初始版本。

Document: ITON BB2710-29 模组技术文档 V0.6 page 16 / 16