Espacios topológicos

1.1. Espacios métricos

En estas notas supondremos que X es un conjunto no vacío.

Definición 1.1. Una aplicación $d: X \times X \to \mathbb{R}$ es una distancia en X si verifica las siguientes propiedades:

- D1. d(x,y) = 0 si y sólo si x = y.
- D2. d(x,y) = d(y,x) para todo par de puntos $x, y \in X$.
- D3. $d(x,y) \leq d(x,z) + d(z,y)$, para todo trío de puntos $x,y,z \in X$.

Un espacio métrico es un par (X,d) formado por un conjunto no vacío X y una distancia d en X.

A la propiedad D2 se la llama propiedad de simetría. La propiedad D3 es la desigualdad triangular. Si se verifican las tres propiedades anteriores, entonces $d(x,y) \ge 0$ para todo par de puntos $x,y \in X$. Esta propiedad se sigue de

$$0 \stackrel{\mathrm{D1}}{=} d(x,x) \stackrel{\mathrm{D3}}{\leqslant} d(x,y) + d(y,x) \stackrel{\mathrm{D2}}{=} 2d(x,y).$$

Algunos ejemplos de espacios métricos son los siguientes:

Ejemplo 1.2. Si $x, y \in \mathbb{R}$, la función d(x, y) := |x - y| define una distancia en \mathbb{R} .

Ejemplo 1.3. Si E es un espacio vectorial Euclídeo, y $||\cdot||$ es la norma asociada al producto escalar, entonces la distancia asociada d(u,v) := ||u-v|| es una distancia en X.

Ejemplo 1.4. Un espacio vectorial E con una norma $||\cdot||$ es un espacio métrico con la distancia asociada.

Ejemplo 1.5 (Distancia discreta). Sea X un conjunto no vacío. Definimos

$$d(x,y) := \begin{cases} 1, & x \neq y, \\ 0, & x = y. \end{cases}$$

Las propiedades D1, D2 se verifican trivialmente. Para probar desigualdad triangular D3 distinguimos los casos $x = y, x \neq y$.

Ejemplo 1.6. Si $\varepsilon > 0$ es un número positivo cualquiera fijo y d es una distancia en X, entonces $d_{\varepsilon}: X \times X \to \mathbb{R}$, definida por la igualdad:

$$d_{\varepsilon}(x,y) := \varepsilon d(x,y) \quad \forall x, y \in X,$$

es una distancia en X. En particular, en la definición de distancia discreta se puede cambiar 1 por cualquier número real positivo ε y seguimos teniendo una distancia.

© 292 © 2020-22 Manuel Ritoré. Esta obra se distribuye bajo una licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Ejemplo 1.7 (Distancia del río). Sean $x = (x_1, x_2), y = (y_1, y_2)$ puntos de \mathbb{R}^2 . Definimos:

$$d(x,y) := \begin{cases} |x_2 - y_2|, & x_1 = y_1, \\ |x_2| + |x_1 - y_1| + |y_2|, & x_1 \neq y_1. \end{cases}$$

FIGURA 1. Esquema del cálculo de d(x, y) cuando $x_1 \neq y_1$

Las propiedades D1, D2 son triviales. Para probar la desigualdad triangular D3 hay que distinguir los casos $x_1 = y_1$ y $x_1 \neq y_1$.

Si $x_1 = y_1$, consideramos dos opciones. Si $z_1 = x_1$ entonces

$$d(x,y) = |x_2 - y_2| \le |x_2 - z_2| + |z_2 - y_2| = d(x,z) + d(z,y).$$

Si $z_1 \neq x_1$ entonces $z_1 \neq y_1$ y se tiene

$$d(x,y) = |x_2 - y_2| \le |x_2| + |y_2| \le d(x,z) + d(z,y).$$

Supongamos ahora que $x_1 \neq y_1$. Si $z_1 = x_1$ entonces

$$d(x,y) = |x_2| + |x_1 - y_1| + |y_2|$$

$$\leq |x_2 - z_2| + |z_2| + |x_1 - y_1| + |y_2|$$

$$= |x_2 - z_2| + |z_2| + |z_1 - y_1| + |y_2| \leq d(x,z) + d(z,y).$$

El caso $z_1 = y_1$ se trata del mismo modo. Por último, si $z_1 \neq x_1, y_1$ entonces

$$d(x,y) = |x_2| + |x_1 - y_1| + |y_2|$$

$$\leq |x_2| + |x_1 - z_1| + |z_1 - y_1| + |y_2|$$

$$\leq d(x,z) + d(z,y).$$

Ejemplo 1.8. Si $A \subset X$ es un subespacio de un espacio métrico (X, d), la distancia inducida en A es $d_A(x, y) := d(x, y)$ para todo $x, y \in A$. Es fácil comprobar que se verifican las propiedades de distancia.

Las siguientes definiciones son básicas en la teoría de espacios métricos:

Definición 1.9. Sea (X, d) un espacio métrico, $a \in X$, r > 0.

1. La bola abierta de centro a y radio r es el conjunto $B(a,r):=\{x\in X:d(x,a)< r\}.$

- 2. La bola cerrada de centro a y radio r es el conjunto $\overline{B}(a,r):=\{x\in X:d(x,a)\leqslant r\}.$
- 3. La esfera de centro a y radio r es el conjunto $S(a,r):=\{x\in X: d(x,a)=r\}.$

Es inmediato comprobar que $S(a,r) = \overline{B}(a,r) \setminus B(a,r)$ y que $B(x,r) \subset \overline{B}(x,r)$. Además, toda bola abierta contiene una bola cerrada. De hecho, si r < s, entonces $\overline{B}(x,r) \subset B(x,s)$.

Definición 1.10. Sea (X, d) un espacio métrico. Un conjunto $A \subset X$ es abierto si es vacío o bien si, para todo $a \in A$ existe r > 0 tal que $B(a, r) \subset A$.

Definición 1.11. Sea (X, d) un espacio métrico. Un conjunto $C \subset X$ es *cerrado* si su complementario $C^c = X \setminus C = \{x \in X : x \notin C\}$ es un conjunto abierto.

Definición 1.12. Sea (X, d) un espacio métrico, $x \in X$. Un conjunto U es entorno de x si existe r > 0 tal que $B(x, r) \subset U$.

Ejemplo 1.13. En un espacio métrico discreto, se tiene:

$$B(x,r) = \begin{cases} \{x\}, & r \leqslant 1, \\ X, & r > 1. \end{cases}$$

Además, todo subconjunto de X es abierto y cerrado.

Tenemos las siguientes propiedades:

Proposición 1.14. En un espacio métrico (X, d):

- 1. Las bolas abiertas con conjuntos abiertos.
- 2. Las bolas cerradas son conjuntos cerrados.
- 3. Los puntos son conjuntos cerrados.

Demostración. 1. Tomamos la bola abierta B(a,r). Si $b \in B(a,r)$, entonces d(a,b) < r. Definimos s = r - d(a,b) > 0. Veamos que $B(b,s) \subset B(a,r)$. Como el punto b es un punto arbitrario de la bola B(a,r), deducimos que B(a,r) es un conjunto abierto. Para comprobar la inclusión $B(b,s) \subset B(a,r)$ tomamos un punto $z \in B(b,s)$ y calculamos d(x,a). Por la desigualdad triangular:

$$d(x, a) \le d(x, b) + d(b, a) < s + d(a, b) = r.$$

Por tanto, $x \in B(a, r)$ como queríamos demostrar.

2. Tomamos la bola cerrada $\overline{B}(a,r)$. Comprobemos que el conjunto complementario

$$A = \{x \in X : d(x, a) > r\}$$

es un conjunto abierto. Para ello tomamos $b \in A$, de modo que d(b,a) > r. Definimos s = d(a,b) - r > 0. Veamos que $B(b,s) \subset A$. Como $b \in A$ es arbitrario, esto demostraría que A es un conjunto abierto. Para comprobar que $B(b,s) \subset A$ tomamos $x \in B(b,s)$ y calculamos

$$d(a,b) \leqslant d(a,x) + d(x,b) < d(x,a) + s,$$

lo que implica que d(x,a) > d(a,b) - s = r, como queríamos probar.

3. La demostración de que los puntos son conjuntos cerrados es similar a la anterior.

Proposición 1.15. En un espacio métrico, todo conjunto abierto es unión de bolas abiertas.

Demostración. Sea U un conjunto abierto en un espacio métrico (X,d). Para cada $x \in U$, existe $r_x > 0$ tal que $B(x, r_x) \subset U$. Es fácil ver que:

$$U = \bigcup_{x \in U} B(x, r_x),$$

lo que concluye la demostración.

Proposición 1.16. Sean a,b dos puntos distintos de un espacio métrico (X,d). Existe entonces un entorno V_a del punto a y otro entorno V_b del punto b tales que $V_a \cap V_b = \emptyset$.

Demostración. Como $a \neq b$, la distancia r = d(a, b) es positiva. Veamos que

$$B(a, r/2) \cap B(b, r/2) = \emptyset$$
.

Si existiera un punto x en la intersección, por la desigualdad triangular

$$r = d(a,b) \leqslant d(a,x) + d(x,b) < \frac{r}{2} + \frac{r}{2} = r = d(a,b)$$

llegamos a un absurdo. Por tanto $B(a,r/2) \cap B(b,r/2) = \emptyset$. El resultado se sigue tomando $V_a = B(a,r/2), V_b = B(b,r/2)$.

Proposición 1.17. Sea (X, d) un espacio métrico. Tenemos entonces:

- 1. \emptyset , X son conjuntos abiertos.
- 2. Si $\{U_i\}_{i\in I}$ son conjuntos abiertos, entonces $\bigcup_{i\in I} U_i$ es un conjunto abierto.
- 3. Si U, V son conjuntos abiertos, $U \cap V$ es un conjunto abierto.

Demostración. 1. \emptyset es un conjunto abierto por definición. Si $x \in X$, cualquier bola abierta centrada en x está contenida en X. Por tanto, X es un conjunto abierto.

- 2. Sea $x \in \bigcup_{i \in I} U_i$. Existe entonces $i_0 \in I$ tal que $x \in U_{i_0}$. Como U_{i_0} es abierto, existe r > 0 tal que $B(x,r) \subset U_{i_0} \subset \bigcup_{i \in I} U_i$. Como x es un punto arbitrario de la unión, se sigue que $\bigcup_{i \in I} U_i$ es abierto.
- 3. Podemos suponer que $u \cap V \neq \emptyset$. Si $x \in U \cap V$, existen r, s > 0 tales que $B(x,r) \subset U$, $B(x,s) \subset V$. Tomando $t = \min\{r,s\}$ obtenemos que $B(x,t) \subset U \cap V$. Como el punto $x \in U \cap V$ es arbitrario, deducimos que $U \cap V$ es abierto. \square

Definición 1.18. A la colección de conjuntos abiertos de un espacio métrico (X, d) la llamaremos topología asociada a d y la denotaremos por T_d . La familia de conjuntos cerrados se denotará por C_{T_d} .

En principio podríamos tener la misma topología asociada a dos distancias diferentes. La siguiente definición nos proporciona una condición adecuada.

Definición 1.19. Sea X un conjunto y d, d' dos distancias en X. Diremos que son *métricamente equivalentes* si existen $\delta, \varepsilon > 0$ tales que:

$$\delta d'(x,y) \leqslant d(x,y) \leqslant \varepsilon d'(x,y)$$

para todo par de puntos $x, y \in X$.

Teorema 1.20. Dos distancias métricamente equivalentes tienen la misma topología asociada.

Demostración. Supongamos que d,d' son métricamente equivalentes. Si $x \in X$ entonces d'(x,y) < r implica que $d(x,y) < \varepsilon r$. Por tanto $B'(x,r) \subset B(x,\varepsilon r)$. Análogamente $B(x,r) \subset B'(x,\delta^{-1}r)$.

Supongamos que U es un abierto para la topología asociada a d. Para todo $x \in U$ existe s>0 tal que $B(x,s)\subset U$. Entonces $B'(x,\varepsilon^{-1}s)\subset B(x,s)\subset U$ y, por tanto, U es un abierto para la topología inducida por d'. esto demuestra $T_d\subset T_{d'}$. Análogamente se demuestra que $T_{d'}\subset T_d$.