MINI PROJECT 1 Inferential Statistics

Group Members Name

- 1. Dinesh Subramanian
- 2. S.Aishwarya
- 3. Vinod A

Question -1(20 Marks)

a.Read the Dataset "turnout.csv" (1 mark)

b.Identify non-numerical inputs and convert into numerical wherever needed (3 marks) (*Hint: Use replace function if needed)

- c. Check whether the dataset having null values or not. If yes, do replace them with suitable average value (2 marks) (*Think out of box)
- d.Find mean, median and mode for atleast one possible column for each (3 marks)
- e.Check the outliers and remove it from the dataset. (3 marks)

f.A city affected by 3 cyclones in a year on an average. Find the probability if the same city will getting affected by exactly 2 cyclones in the upcoming year (4 marks)

g.lf an athlete attended 6 olympics in his lifetime. Find the probability if he exactly have 2 wins (4 marks)

In [2]:

- 1 #import the libraries
- 2 import pandas as pd
- 3 import numpy as np
- 4 import seaborn as sns
- 5 **from** matplotlib **import** pyplot as plt
- 6 import scipy.stats as stats

A. Read the Dataset "turnout.csv" (1 mark)

Out[3]:

	Employee ID	event	gender	age	industry	profession	traffic	coach	head_gend
0	1011	1	m	35.0	Banks	HR	rabrecNErab	no	
1	1012	1	m	33.0	Banks	HR	empjs	no	
2	1013	1	f	35.0	PowerGeneration	HR	rabrecNErab	no	
3	1014	1	f	35.0	PowerGeneration	HR	rabrecNErab	no	
4	1015	1	m	32.0	Retail	Commercial	youjs	yes	
1124	2135	0	f	41.0	Banks	HR	rabrecNErab	my head	
1125	2136	0	f	41.0	Banks	HR	rabrecNErab	my head	
1126	2137	0	f	34.0	Telecom	Accounting	KA	no	
1127	2138	0	f	51.0	Consult	HR	empjs	no	
1128	2139	0	f	29.0	Retail	HR	youjs	no	
1129 rows × 16 columns									
4									•

B.Identify non-numerical inputs and convert into numerical whatever needed (3 marks)

(*Hint: Use replace function if needed)

Out[4]:

	Employee ID	event	gender	age	industry	profession	traffic	coach	head_gender
0	1011	1	0	35.0	Banks	HR	rabrecNErab	no	1
1	1012	1	0	33.0	Banks	HR	empjs	no	0
2	1013	1	1	35.0	PowerGeneration	HR	rabrecNErab	no	0
3	1014	1	1	35.0	PowerGeneration	HR	rabrecNErab	no	0
4	1015	1	0	32.0	Retail	Commercial	youjs	yes	1
4									>

C. Describe the statistical measures using single function (2

marks)

```
In [5]: 1 df.describe()
```

Out[5]:

		Employee ID	event	gender	age	head_gender	extraversion	independ
cc	ount	1129.000000	1129.000000	1129.000000	1129.000000	1129.000000	1128.000000	1127.000000
m	ean	1575.000000	0.505757	0.755536	31.050136	0.482728	5.593262	5.480479
	std	326.058533	0.500188	0.429959	7.419808	0.499923	1.852222	1.703578
	min	1011.000000	0.000000	0.000000	2.000000	0.000000	1.000000	1.000000
2	25%	1293.000000	0.000000	1.000000	25.000000	0.000000	4.600000	4.100000
	50%	1575.000000	1.000000	1.000000	30.000000	0.000000	5.400000	5.500000
•	75%	1857.000000	1.000000	1.000000	36.000000	1.000000	7.000000	6.900000
ı	max	2139.000000	1.000000	1.000000	98.000000	1.000000	10.000000	10.000000
4								>

D.Find mean, median and mode for atleast one possible column for each (3 marks)

```
In [6]: 1 import statistics as stat
2
3 # mean of age
4 print("Mean of column age :",stat.mean(df["age"]))
5
6 # median of age
7 print("Median of column age :",stat.median(df["age"]))
8
9 # mode of age
10 print("Mode of column age :",stat.mode(df["age"]))
```

Mean of column age : 31.050135512072632

Median of column age : 30.0 Mode of column age : 26.0

E.Check the outliers and remove it from the dataset. (3 marks)

```
In [7]:
             #dimensions of subplots (rows, columns, figsize=(width,height))
          2
             import warnings
          3
            fig, axes = plt.subplots(2, 4, figsize=(20,10))
             warnings.filterwarnings("ignore")
          4
          5
          6
            #create chart in each subplot
          7
             sns.boxplot(df['Employee ID'],ax=axes[0,0])
             sns.boxplot(df['event'],ax=axes[0,1])
             sns.boxplot(df['age'],ax=axes[0,2])
          9
             sns.boxplot(df['extraversion'],ax=axes[0,3])
         10
             sns.boxplot(df['independ'],ax=axes[1,0])
         11
             sns.boxplot(df['selfcontrol'],ax=axes[1,1])
         12
         13
             sns.boxplot(df['anxiety'],ax=axes[1,2])
             sns.boxplot(df['novator'],ax=axes[1,3])
         14
         15
         16
            fig.subplots_adjust(left=0.10, right=0.98, bottom=0, top=0.9,
         17
                                 hspace=0.5, wspace=0.8)
         18
                                0.0 0.2 0.4 0.6 0.8 1.0
event
         1000 1250 1500 1750 2000
                                                           40
age
                                                              60
                                                                80
In [8]:
             # outlier verification for some columns depends on normal distribution
          2
            columnsNeeded = ['Employee ID','age','independ','selfcontrol','anxiety','nov
          3
             for i in columnsNeeded:
          4
                 outliersList = []
          5
                 [ outliersList.append(j) for j in df[i] if (j>=((df[i].mean())+ 3*(df[i]
                 print(i,len(outliersList) , " list : ", outliersList)
          6
        Employee ID 0 list : []
        age 10 list: [2.0, 98.0, 2.0, 3.0, 54.0, 54.0, 56.0, 58.0, 54.0, 54.0]
        independ 0 list : []
        selfcontrol 0 list : []
        anxiety 0 list : []
        novator 0 list : []
        extraversion 0 list: []
        event 0 list : []
```


F. A city affected by 3 cyclones in a year on an average. Find the probability if the same city will getting affected by exactly 2 cyclones in the upcoming year (4 marks)

```
In [9]: 1 print("The Probablity of exactly getting 2 cyclones in upcoming year",stats.
```

The Probablity of exactly getting 2 cyclones in upcoming year 0.224041807655387

G.If an athlete attended 6 olympics in his lifetime. Find the probability if he exactly have 2 wins (4 marks)

```
In [ ]: 1
```