

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-2024(odd)

Tutorial sheet - 3

Date: 16/10/2023

Course Code &Title: 18MAB302T - Discrete Mathematics for Engineers

Year & Sem: III/V

Q. No	Questions	Answer Keys
1	Draw all the spanning trees of the graph A C D	
2	Find the minimum spanning tree for the following weighted graph using Kruskal's algorithm A 41 B 32 C 29 D 21 42 43 23 44 E 20 F 62 G 45 H	(c) 2
3	Prove that the maximum number of edges in a simple disconnected graph G with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$.	
4.	Give an example of a graph which contains an Eulerian circuit but not a Hamiltonian circuit.	
5.	If a graph G has 7 vertices then find its chromatic number.	
6.	A simple graph in which there is exactly one edge between each pair of distinct vertices is called	Complete graph
7.	Define adjacency matrix of a graph G. Draw the graphs represented by the following adjacency matrix $ \begin{array}{c cccc} A & 0 & 1 & 1 & 1 \\ B & 1 & 0 & 0 & 0 \\ C & 1 & 0 & 0 & 1 \\ D & 1 & 0 & 1 & 0 \end{array} $	

8.	Verify the handshaking theorem for the following graphs i) A B C D
	(ii) A B C C G
9.	Prove that an undirected graph is a tree if and only if there is a unique simple path between every pair of vertices.
10.	Find the number of paths of length 4 from the vertex D to the vertex E in the following undirected graph and identify those paths from the graph. A B E