Metody numeryczne, projekt 2: Aproksymacja profilu wysokościowego

Franciszek Fabiński - s197797 2 czerwca 2025

1 Wstep teoretyczny

Tematyką drugiego projektu jest apryksymacja profilu wysokościowego z wykorzystaniem dwóch metod:

- Interpolacja Lagrange'a
- Splajny kubiczne

Profil wysokościowy to wykres przedstawiający wysokość bezwzględną terenu w zależności od współrzędnej poziomej. W praktyce profil wysokościowy przydaje się np. w geodezji, gdzie jest wykorzystywany do wyznaczania kształtu terenu, a także przy planowaniu wycieczek turystycznych.

Aproksymacja funkcji stanowi jeden z fundamentalnych problemów analizy numerycznej. W praktyce zbiory danych prawie zawsze są dyskretne, więc znalezienie funkcji ciągłej, która dobrze aproksymuje dane jest często kluczowe.

1.1 Interpolacja Lagrange'a

Interpolacja wielomianowa Lagrange'a pozwala na konstrukcję wielomianu stopnia co najwyżej n-1 dla n punktów węzłowych. Główną zaletą tej metody jest prostota implementacji oraz możliwość bezpośredniego obliczenia wartości funkcji interpolującej w dowolnym punkcie bez konieczności wyznaczania współczynników wielomianu. Jednak dla dużej liczby punktów węzłowych metoda ta może prowadzić do niestabilności numerycznej oraz niepożądanych oscylacji, szczególnie w pobliżu brzegów przedziału interpolacji (zjawisko Rungego).

1.2 Splajny kubiczne

Splajny kubiczne stanowią alternatywę dla interpolacji wielomianowej wysokiego stopnia. Metoda ta polega na podziale przedziału interpolacji na mniejsze segmenty i aproksymacji danych za pomocą wielomianów trzeciego stopnia w każdym z tych segmentów. Kluczową właściwością splajnów kubicznych jest zapewnienie ciągłości funkcji oraz jej pierwszej i drugiej pochodnej w punktach węzłowych, co gwarantuje gładkość wynikowej krzywej. Splajny charakteryzują się również lepszą stabilnością numeryczną oraz mniejszą tendencją do tworzenia niepożądanych oscylacji w porównaniu do interpolacji wielomianowej wysokiego stopnia.

2 Formalizm matematyczny

2.1 Interpolacja Lagrange'a

Dla zbioru n punktów węzłowych $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}),$ gdzie wszystkie x_i są różne, wielomian interpolacyjny Lagrange'a ma postać:

$$P(x) = \sum_{i=0}^{n-1} y_i \cdot L_i(x)$$
 (1)

gdzie $L_i(x)$ to wielomiany bazowe Lagrange'a zdefiniowane jako:

$$L_i(x) = \prod_{\substack{j=0\\j \neq i}}^{n-1} \frac{x - x_j}{x_i - x_j}$$
 (2)

Każdy wielomian bazowy $L_i(x)$ ma właściwość:

$$L_i(x_k) = \begin{cases} 1 & \text{jeśli } k = i \\ 0 & \text{jeśli } k \neq i \end{cases}$$
 (3)

Dzięki tej właściwości wielomian P(x) przechodzi przez wszystkie punkty węzłowe: $P(x_i) = y_i$ dla i = 0, 1, ..., n - 1.

Stopień wielomianu interpolacyjnego wynosi co najwyżej n-1, gdzie n to liczba punktów węzłowych.

2.2 Splajny kubiczne

Splajn kubiczny dla przedziału $[x_0, x_n]$ z punktami węzłowymi $x_0 < x_1 < \ldots < x_n$ składa się z wielomianów trzeciego stopnia $S_i(x)$ w każdym podprzedziale $[x_i, x_{i+1}]$ dla $i = 0, 1, \ldots, n-1$.

Każdy segment splajnu ma postać:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
(4)

dla $x \in [x_i, x_{i+1}]$, gdzie $h_i = x - x_i$.

Warunki brzegowe i ciągłości

Dla splajnu kubicznego naturalnego ustala się następujące warunki:

1. Interpolacja w punktach węzłowych:

$$S_i(x_i) = y_i \tag{5}$$

$$S_i(x_{i+1}) = y_{i+1} \tag{6}$$

2. Ciągłość pierwszej pochodnej:

$$S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}) \tag{7}$$

gdzie $S'_{i}(x) = b_{i} + 2c_{i}(x - x_{i}) + 3d_{i}(x - x_{i})^{2}$.

3. Ciągłość drugiej pochodnej:

$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}) \tag{8}$$

gdzie $S_i''(x) = 2c_i + 6d_i(x - x_i)$.

4. Warunki brzegowe splajnu naturalnego:

$$S_0''(x_0) = 2c_0 = 0 (9)$$

$$S_{n-1}''(x_n) = 2c_{n-1} + 6d_{n-1}h_{n-1} = 0 (10)$$

 $gdzie h_i = x_{i+1} - x_i.$

Układ równań

Powyższe warunki prowadzą do układu 4n równań liniowych z 4n niewiadomymi (współczynniki a_i, b_i, c_i, d_i dla każdego segmentu $i = 0, 1, \ldots, n-1$).

Układ można zapisać w postaci macierzowej $\mathbf{A}\mathbf{x} = \mathbf{b}$, gdzie: - $\mathbf{x} = [a_0, b_0, c_0, d_0, a_1, b_1, c_1, d_1, \dots, a_{n-1}, b_{n-1}, c_{n-1}, d_{n-1}]^T$ - \mathbf{b} zawiera wartości y_i w odpowiednich pozycjach oraz zera dla warunków ciągłości

Rozwiązanie tego układu pozwala na wyznaczenie wszystkich współczynników splajnu.

3 Analiza wyników

Źródłem danych do aproksymacji były dla mnie zamieszczone przez prowadzącego dane w pakiecie **2018_paths.zip**, które zawierały dane wysokościowe dla różnych tras. W projekcie skupiłem się na czterech trasach:

- Trasa 1: Profil Wysokościowy Wielkiego Kanionu
- Trasa 2: Profil Wysokościowy Mount Everest
- Trasa 3: Profil wysokościowy "spacerniak"
- Trasa 4: Profil wysokościowy "ostrowa"

Wszystkie trasy na potrzeby obliczeń interpolacji zostały przeskalowane do dziedziny [0,1].

3.1 Mount Everest

3.1.1 Rzadkie punkty do interpolacji

rys. 1: Rzadkie punkty do interpolacji profilu wysokościowego Mount Everest

References

- $\begin{tabular}{ll} [1] Wolfram MathWorld (2025) $Cubic Spline, $https://mathworld. $wolfram.com/CubicSpline.html. $\end{tabular}$
- [2] Wolfram MathWorld Lagrange Interpolating Polynomial, https://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html