1. (40 pts) Is $L = \{ a^n b^m; n \ge 0, m \ge 0 \}$ a regular language? Prove that your answer is correct.

 ${\it L}$ is regualr.

Proof:

 $a,b \in \sum$, $\ a,b$ are regular expression.

So a^* is r.e., b^* is r.e..

Hence a^*b^* is r.e. as well.

For all word w generated by $a^*b^*, w=a^nb^m (m\geq 0, n\geq 0)$, $\Rightarrow w\in L$.

For all word $v \in L$, $v = a^n b^m (n \ge 0, m \ge 0)$. $\Rightarrow w$ is generated by $a^* b^*$.

Hence $L = \{ a^*b^* \}.$

So the following regular expression a^*b^* corresponds to L. Since we can write a regular expression for L, and a DFA could be constructed as follow,

In conclusion, L is regular.

2. (60 pts) Is L = { $a^n b^m c^{2(n+m)}$; $n \ge 0$, $m \ge 0$ } a regular language?

Prove that your answer is correct.

 ${\cal L}$ is not regular.

Proof by contradiction.

Assume L is a regular language. Then pumping lemma must hold.

Let p be the pumping length given by the Pumping lemma. $p \ge 1$ depending only on L such that every string s in L of length at least p. Then $s \in L$ and $|s| \ge p$. Pumping lemma guranantees s can be split into 3 pieces, s = xyz, such that

- $|y| \ge 1$,
- $|xy| \leq h$
- for any $i \geq 0$, $xy^iz \in L$.

Let $s = a^n b^m c^{2(n+m)}$ where n > h.

then $s=a^pa^{n-p}b^mc^{2(n+m)}$ Where $xy=a^p, z=a^{n-p}b^mc^{2(n+m)}$.

$$\Rightarrow x = a^{p-q}, y = a^q, z = a^{n-p}b^mc^{2(n+m)}$$
 since $|xy| \le h$.

By case 3 of pumping lemma, $xyyz \in L$.

$$xyyz = a^{p-q}a^{2q}a^{n-p}b^mc^{2(n+m)} = a^{p+q}b^mc^{2(n+m)}$$

 $\Rightarrow xyyz \notin L$. A contradiction.

Due to the contradiction, the pumping lemma cannot be hold for L. Hence L is not regular.