CS 440 Introduction to Artificial Intelligence

Lecture 13:

Probability and Bayesian Networks

27 February 2020

Rutgers

Summary of First Third of Class

- End of section on deterministic reasoning
 - Problem Formalization
 - State/Action/Transition/Observation/ect.
 - Local Search
 - Hill Climbing
 - Gradient descent
 - Search
 - BFS/DFS/SPF
 - Heuristics
 - A* Search
 - Adversarial Search
 - Minimax Search
 - Alpha-Beta Pruning
 - Decision Trees
 - Constructing Decision Trees
 - Constraint Satisfaction
 - Backtracking Algorithm
 - Logic

- Thus far we have assumed environment is completely observable
 - Agent know state of environment after each step
 - Agent can generate state from environment
- What to do when environment not observable
 - Example Wumpus world

95			
1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

Intro to Probability

- Probability
 - Likelihood something will happen
 - Examples
 - Probability you will get in a car accident
 - Probability you will have a heart attack
 - Probability you will win the lottery
 - Expected time for next bus to arrive
 - What factors impact probability of each of these?
 - Likelihood of an unobserved event
 - Examples
 - If I have a card in my hand what is the likelihood it is an ace
 - What is the likelihood you have cancer
 - What observations can help improve accuracy of this?

- Notation: p(x)
 - Wumpus World p(P_{3.1})
 - p(car_accident)
- Hint: Think about probabilities in terms of of total population

- p(car_accident)
 - Proportion of drivers that have gotten in a car accident
 - number of drivers who have gotten in car accident over total number of drivers
 - n accident_drivers / n drivers
- What are some limitations of this and who would we address them?
 - Hint think about a driver with a lot of accidents vs a driver with a clean record

Probability Given Observation

- Notation: p(x|y)
 - Probability of x given y
 - Example: probability you will get in a car accident given that you have a clean record
 - p(accident|clean_record)
- Compute proportion for population which condition holds
 - p(accident|clean_record) = n_{accident clean record}/n_{clean record}
 - Number of drivers with clean record that got into accident over total number of drivers with clean record
- More observations you can make more accurate your predicition

	Number	Lung Cancer
Smokers	300	105
Non- smokers	1700	20
Total	2000	125

- What is p(lung_cancer)?
- What is p(smoker)?
- What is p(lung _cancer|smoker)?
- What is p(lung _cancer | non-smoker) ?

1,4	2,4	3,4	4,4
1,3 P?	2,3	3,3	4,3
1,2 B OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- What is p(P_{1,3}), p(P_{2,2}) and p(P_{3,1})?
 - Assume all valid states of Wumpus World are equally likely
 - $p(P_{1,3}|B_{1,2} \wedge B_{2,1})$
 - Number of states with $B_{1,2} \wedge B_{2,1} \wedge P_{1,3}$ over number of states with $B_{1,2} \wedge B_{2,1}$

- Alice has lung cancer, what is the probability she is a smoker?
 - Given p(smoker), p(cancer) and p(cancer | smoker)
 - Can you compute p(smoker | cancer)?

- Alice has lung cancer, what is the probability she is a smoker?
 - Given p(smoker), p(cancer) and p(cancer|smoker)
 - Can you compute p(smoker|cancer)?
 - We know that p(smoker|cancer) equal to the number of people who are smokers with cancer over the total number of people with cancer.
 - $p(smoker | cancer) = n_{smokers, cancer}/n_{cancer}$
 - But we don't know n_{smokers,cancer} or n_{cancer}
 - What can we do?

- Alice has lung cancer, what is the probability she is a smoker?
 - Given p(smoker), p(cancer) and p(cancer|smoker)
 - Can you compute p(smoker|cancer)?
 - We know that p(smoker|cancer) equal to the number of people who are smokers with cancer over the total number of people with cancer.
 - $p(smoker | cancer) = n_{smokers, cancer}/n_{cancer}$
 - But we don't know n smokers, cancer or n cancer
 - Define n to be the size of our total population
 - We don't know what n is
 - n_{cancer} = n*p(cancer)
 - n_{smokers} = n*p(smoker)
 - n_{smokers,cancer} = n_{smokers} * p(cancer|smoker) = n*p(smoker)*p(cancer|smoker)
 - p(smoker|cancer) = p(smoker)*p(cancer|smoker) / p(cancer)

Congratulations, you just derived Bayes' Theorem!!!!

•
$$p(y|x) = p(y)*p(x|y) / p(x)$$

Bayes' Theorem Example

- Lets say you are traveling and ask 2 of your neighbors (John and Mary) to watch your house
- There is a P(B) = .001 probability there will be a burglary while you are away
- There is also a P(E) = .002 probability there will be an earthquake
- Both a burglary and an earthquake may trigger your home alarm
 - $P(A|B \land \neg E) = .94$ probability that a burglary will trigger your alarm
 - P(A|E∧¬B) = .29 probability an earthquake will trigger your alarm
 - P(A|B∧E)=.95 probability your alarm will go off if both a burglary and an earthquake occur
 - P(A | ¬E∧¬B)=.001 probability alarm will go off if there is no
- There is a P(J|A)=.9 probability John will call if the alarm goes off
 - There is also a P(J | ¬A)=.05 probability John will call if there is no alarm
- There is a P(M|A)=.7 probability Mary will call if the alarm goes off
 - There is also a $P(M|\neg A)=.01$ probability Mary will call if there is no alarm

Example Bayesian Network

Cond. Independence Properties

- · A node is conditionally independent of its non-descendants, given its parents:
 - e.g., JohnCalls is independent from Burglary and Earthquake given an Alarm

- · A node is conditionally independent of all other nodes in the network given its:
 - Markov blanket: which encompasses the parents, children and children's parents.
 - e.g., Burglary is independent of JohnCalls and MaryCalls, given Alarm

Rutgers

Bayes' Theorem Example

- Assume you are given the following
 - P(c) probability someone in construction business
 - P(a) probability someone is exposed to asbestos
 - P(a|c) probability someone exposed to asbestos given they work in construction
 - P(s) probability someone is a smoker
 - P(I) probability someone develops lung cancer
 - P(I|a) probability someone develops ling cancer given they were exposed to asbestos
 - p(l|s) probability of developing lung cancer given that someone is a smoker
- What is the probability someone who has lung cancer works in construction?
- What is the probability a smoker who works in construction will develop lung cancer?
- What is the probability someone who has lung cancer is both a smoker and works in construction?