Esercizi con logica sequenziale / Flip-Flop

- Introduzione
- FF SR Latch (porte NAND 74LS00))
- FF SR Sincronizzato
- FF SR modificato in tipo D
- Antirimbalzo (e Marcia-Arresto)
- FF SR Latch (porte NOR 74LS02)
- Divisore di frequenza con FF JK in configurazione T

L'uscita all'istante \mathbf{t}_n dipende unicamente dallo stato degli ingressi sempre al tempo \mathbf{t}_n , (se si trascurano i ritardi interni)

Porte logiche, decoders, multiplexers, ALU

L'uscita all'istante **t**n dipende sia dallo stato degli ingressi al tempo **t**n, sia dallo stato degli ingressi ad **istanti precedenti** (**t**n-1,n-2,..,ecc.)

Ha quindi una memoria che viene chiamata **STATO**.

Latch, flip-flops, macchine a stati, contatori, shift registers

 \downarrow

astabili (nessuno stato stabile - ad esempio i generatori di onde quadre)

monostabili (un solo stato stabile - ad esempio i temporizzatori);

bistabili (due possibili stati stabili - ad esempio una cella di memoria)

Flip-Flop SR con porte NAND 74LS00 (latch)

S	R	/S1	/R1	Qn+1	/Qn+1
0	0	1	1	Qn	/Qn
0	1	1	0	0	1
1	0	0	1	1	0
1	1	0	0	?	?

- 1) Montare circuito
- 2) Collegare in uscita la basetta a 8 led
- 3) Verificare funzionamento
- 4) Funzionamento asincrono: risposta istantanea quando è applicato l'ingresso

Flip-Flop SR sincronizzato

EN	S	R	Qn+1	/Qn+1	
0	X	X	Qn	/Qn	
1	0	0	Qn	/Qn	
1	0	1	0	1	
1	1	0	1	0	
1	1	1	?	?	

- 1) Quando EN è posto a "0" logico, /S1 e /R1 sono sempre a "1" logico, condizione di HOLD per il F-F SR realizzato con porte NAND
- 2) Quando EN è posto a "1" logico, gli ingressi S e R sono abilitati. Comportamento uguale ad un SR-latch
- 3) Collegare in uscita la basetta a 8 led
- 4) Verificare funzionamento. Modificare S e R con EN basso. Ecc.ecc.

Variazione Latch: tipo D

D	EN	Qn+1	/Qn+1
0	1	0	1
1	1	1	0
X	0	Qn	/Qn

- 1) Quando EN (o CLK) è attivo ("1" logico), l'uscita assume lo stesso valore applicato all'ingresso D. Quando EN è posto a "1" logico, gli ingressi S e R sono abilitati.
- 2) In assenza di abilitazione di EN l'uscita conserva lo stato precedente, indipendentemente dal valore applicato all'ingresso D
- 3) Rappresenta l'elemento fondamentale delle memorie (concettuale)

Antirimbalzo

- 1) Verificare prima il funzionamento di un interruttore connesso direttamente ad una porta invertente. Misurare il tempo di rimbalzo.
- 2) Montare e verificare il funzionamento
- 3) Nota:

Latch SR realizzato con porte NAND -> memoria quando /S e /R sono a "1" logico.

/S e /R sono attivi bassi (Osservare che /S e /R sono in pull-up a Vcc con resistenza da 1Kohm)

Comandi separati MARCIA / ARRESTO

"MARCIA" /S	"ARRESTO" /R	Qn+1	/Qn+1
0	0	?	?
0	1	1	0
1	0	0	1
1	1	Qn	/Qn

Flip-Flop SR con porte NOR 74LS02 (latch)

- 1) Montare il circuito
- 2) Verificare il funzionamento Set, Reset, Memoria, configurazione vietata

.... per chi ha terminato gli esercizi precedenti

Divisore di Frequenza

Si possono usare FF di tipo \mathbf{T} (Toggle = Commutatore), e ottenere in uscita divisioni della frequenza in ingresso multiple di 2.

$$Fn = F / 2^n$$

- 1) Si usa l'integrato 74LS109 che contiene 2 FF di tipo JK
- 2) ATTENZIONE, il /K è attivo basso
- 3) Sono presenti piedini di PReset e Clear. Impostare il valore.
- 4) Visualizzare F, F/2, F/4 su basetta a LED e su oscilloscopio

Function Table

			Outputs				
	PR	CLR	CLK	J	$\overline{\mathbf{K}}$	Q	Q
	L	Н	X	Х	X	Н	Г
	Н	L	X	X	X	L	Н
	L	L	X	X	Χ	H*	H*
╝	Н	Н					Н
	Н	Н	1	Н	L	Toggle	
	Н	Н	\uparrow	L	Н	Q_0	Q_0
	Н	Н	↑	Н	Н	Н	L
	Н	Н	L	Х	Х	Q ₀	\overline{Q}_0

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

↑ = Rising Edge of Pulse

 * = This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) state.

 $\mathbf{Q}_0 = \mathbf{The}$ output logic level of Q before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each active transition of the clock pulse.

MODE SELECT — TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS	
OPERATING WODE	s _D	CD	J	K	Q	Q
Set	L	Н	Χ	Χ	Н	L
Reset (Clear)	Н	L	X	X	L	Н
*Undetermined	L	L	X	X	Н	Н
Load "1" (Set)	Н	Н	h	h	Н	L
Hold	Н	Н	- 1	h	q	q
Toggle	Н	Н	h	- 1	q	q
Load "0" (Reset)	Н	Н	-1	- 1	L	Н

 $^{^*}$ Both outputs will be <u>HI</u>GH wh<u>ile</u> both S_D and C_D are LOW, but the output states are unpredictable if S_D and C_D go HIGH simultaneously.

H, h = HIGH Voltage Level

L, I = LOW Voltage Level

X = Don't Care

I, h (q) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.