Calcul Stochastique Appliqué à la Finance - 4^{ème} GF

Mouvement Brownien et Calcul Stochastique

Pr. El Mahjour

Plan

Mouvement Brownien M.B

La modélisation des actifs financiers qui sont aléatoires passent nécessairement par les processus stochastiques $(X_t)_{t\in I}$

La modélisation des actifs financiers qui sont aléatoires passent nécessairement par les processus stochastiques $(X_t)_{t\in I}$

Nous allons décrire le mouvement brownien ainsi que l'intégrale d'Itô.

Mouvement Brownien M.B

- On travaille dans l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.
- On construira le M.B sur $\Omega = \mathcal{C}_0(\mathbb{R})$.
- $\mathcal{C}_0(\mathbb{R}) o$ espace de fonctions sur \mathbb{R}^+ commençant à 0.

- On travaille dans l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.
- On construira le M.B sur $\Omega = \mathcal{C}_0(\mathbb{R})$.
- $\mathcal{C}_0(\mathbb{R}) \to \text{espace}$ de fonctions sur \mathbb{R}^+ commençant à 0.

Définition

Le M.B standard est un processus stochastique $(B_t)_{t>0}$ vérifiant

- (i) $B_0 = 0$ p.s (presque sûrement)
- (ii) Les trajectoires $t \mapsto B_t$ sont continues avec une probabilité 1.
- (iii) Pour chaque suite de temps $t_0 < t_1 < \dots wt_n$, les incréments $B_{t_1}-B_{t_0}, B_{t_2}-B_{t_1}, \dots, B_{t_n}-B_{t_{n-1}}$
- (iv) Pour chaque $0 \le s < t$, $B_t B_s$ suit une loi normale $\mathcal{N}(0, t s)$ [moyenne : 0 et variance : t s].

Quelques trajectoires 1D, 2D et 3D

Loi de gauss et incréments

Il faut bien comprendre que chaque incrément suit une loi gaussienne (normale)

De la définition précédente on tire de la propriété (iv) que

$$\mathbb{E}\left[B_t - B_s\right] = 0$$
 et $\text{var}[B_t - B_s] = t - s, \quad 0 \le s \le t$

Dans ce qui suit, la filtration $(\mathcal{F}_t)_{t\geq 0}$ sera générée par les trajectoires browniennes jusqu'à l'instant t, en d'autres termes on écrit :

$$\mathcal{F}_t = \sigma(B_s : 0 \le s \le t), \quad t \ge 0.$$

On revient maintenant à une notion déjà vu : $X_t \in \mathcal{F}_t$

 X_t est \mathcal{F}_t -mesurable si X_t est entièrement déterminée par l'information connue jusqu'à l'instant t.

\mathcal{F}_t -Mesurabilité

Supposez que t =aujourd'hui.

- La date du CC en Calcul Stochastique de 2022 est \mathcal{F}_t mesurable car c'est un événement du passé
- La date de l'année suivante du calendrier Chinois, malgré le fait que c'est un événement futur, est \mathcal{F}_t -mesurable car il est déjà connu à l'instant t.
- Le prochain cyclone qui frappera les côtes des États-Unis n'est pas \mathcal{F}_t mesurable.
- Le temps d'exercice τ d'une option américaine après le temps t n'est pas \mathcal{F}_t -mesurable car il fait référence au futur.

La propriété (iii) montre que $B_t - B_s$ est indépendant de tous les incréments précédents avant le temps $s \le t$, i.e

$$B_t - B_s \perp (B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}},)$$

avec $0 \le t_0 \le \ldots \le t_n \le s \le t$.

Donc, B_t-B_s est aussi indépendant de tout l'historique du mouvement brownien jusqu'à s, i.e : B_t est indépendant de \mathcal{F}_s , $s\geq 0$

Marche Aléatoire

- Mouvement Brownien ~ Marche Aléatoire
- Avec des petits intervalles de temps Δt
- $\Delta B_t := B_{t+\Delta_t} B_t$
- Sur un intervalle $[t,t+\Delta t]$ on a $\Delta B_t=\pm\sqrt{\Delta t}$ de même probabilité (1/2,1/2).
- Le choix de la racine carré n'est pas une coincidence
- Tout choix de $\alpha>1$ dans $\pm(\Delta t)^{\alpha}$ entrainera l'explosion du processus quand $dt \to 0$.

