Computer Vision

EqMotion Meets Assembly 101

Scope of the Project

Explore the applicability of the *EqMotion* model in domains beyond those previously investigated.

- Goal: evaluate EqMotion for predicting hand motions in procedural tasks.
- Dataset: **Assembly101**.

• <u>Framework</u>: integration into **4D-Hands** for **fair comparison** with other models (baseline, equivariant and GMN-based models) thanks to shared hyperparameters and same

training/test set.

Assembly101

- The **Assembly101** dataset was used to evaluate/compare the EqMotion's performance.
- Main characteristics:
 - It consists of 362 unique sequences of people dis/assembling 101 toy vehicles.
 - Recorded by 12 (8 static and 4 egocentric) synchronized cameras.
 - No strict ordered recipe/script.

- Sequences are annotated with:
 - Fine-grained actions (ST/ET).
 - Coarse actions (ST/ET).
 - Correct, wrong or recovery action.
 - 42-node representation of 3D hands positions (21 per hand).

EqMotion

- The EqMotion model was specifically designed for motion prediction tasks.
- Characteristics:
 - Input: $X \in \mathbb{R}^{N \times T_p \times d}$.
 - Output: $\mathbf{Y} \in \mathbb{R}^{N \times T_f \times d}$
 - 5 main components (FI, IRM, EGFL, IPFL, EOL).
 - Preserve equivariance and invariance.
 - → Ensure consistent predictions.
 - → Lead to faster training.

EqMotion: Two Key Properties

Equivariance

Invariance

Let x denote an input and $f(\cdot)$ a given operation. The operation f is said to be **equivariant** under and Euclidian transformation if, for every transformation T, it holds that:

$$f(T(x)) = T(f(x)).$$

Let x denote an input and $f(\cdot)$ a given operation. The operation f is said to be **invariant** under and Euclidian transformation if, for every transformation T, it holds that:

$$f(x) = f(T(x)).$$

UNIVERSITÀ DEGLI STUDI DI MILANO

EqMotion: Feature Initialization

• The feature initialization (FI) layer is designed to obtain the initial geometric features $G^{(0)} \in \mathbb{R}^{N \times C \times d}$ and pattern features $H^{(0)} \in \mathbb{R}^{N \times D}$.

• For each node *i*, the initial features are computed according to the following formulas:

$$G_i^{(0)} = \phi_{init_g}(X_i - \overline{X}) + \overline{X} = W_{init_g} \cdot (X_i - \overline{X}) + \overline{X}$$

$$V_i = \Delta X_i \in \mathbb{R}^{T_p \times d}$$

$$p_i^t = ||V_i^t||_2$$

$$\theta_i^t = \operatorname{angle}(V_i^t, V_i^{t-1})$$

$$h_i^{(0)} = \phi_{\operatorname{init_h}}([p_i; \theta_i]) \in \mathbb{R}^D$$

C = latent space size of geometric features
D = latent space size of pattern features
ϕ = linear layers or MLPs
W = learnable weights
V = velocity

Implementation details

- In EqMotion.forward(...).
- Main differences:
 - Velocity as input.
 - Concatenation after the embedding.

EqMotion: Invariant Reasoning Module

• The **invariant reasoning module** (IRM) is used to infer the **type of interaction** (if not known a priori) between each **pair of nodes** (complete graph).

• Each node pair (i,j) receives a soft assignment c_{ij} over K (hyperparameter) possible categories according to the following formula:

$$m'_{ij} = \phi_{rm}([h_i^{(0)}; h_j^{(0)}; ||G_i^{(0)} - G_j^{(0)}||_{2,col}])$$

$$p'_i = \sum_{j \in \mathcal{N}_i} m'_{ij}$$

$$h'_i = \phi_{rh}([p'_i; h_i^{(0)}])$$

$$c_{ij} = sm\left(\frac{\phi_{rc}([h'_i; h'_j; ||G_i^{(0)} - G_j^{(0)}||_{2,col}])}{\tau}\right) \in [0, 1]^K$$

 τ = temperature (1.) sm = softmax function

Implementation details

- In EqMotion.calc_category(...).
- Main differences:
 - Velocity embedding concatenated to $G^{(0)}$.

EqMotion: Equivariant Geometric Feature Learning (1)

• The L (hyperparameter) **equivariant geometric feature learning** (EGFL) layers update the geometric features.

- Each layer $l \in \{1, ..., L\}$:
 - Input: $G^{(l-1)}$, $H^{(l-1)}$, c.
 - 3 main operations:
 - 1. Equivariant inner-agent attention;
 - 2. Equivariant inter-agent aggregation;
 - 3. Equivariant non-linear function.
 - Output: *G*^(l).

Implementation details

- In FeatureLearning.forward(...).
- Main differences:
 - Between step (2) and (3), a new velocity embedding is added to G⁽¹⁾.

EqMotion: Equivariant Geometric Feature Learning (2)

• Equivariant inner-agent attention: attention mechanism is applied to geometric features to capture and exploit temporal dependencies.

• So, the geometric features of each node i are first updated according to the following formula:

$$G_i^{(l)} \leftarrow \phi_{att}^{(l)}(h_i^{(l)}) \cdot (G_i^{(l)} - \overline{\mathbf{G}}^{(l)}) + \overline{\mathbf{G}}^{(l)}$$

Equivariant Geometric Feature Learning Layer

Implementation details

• In FeatureLearning.inner_agent_attention(...).

EqMotion: Equivariant Geometric Feature Learning (3)

• Equivariant inter-agent aggregation: aggregation is performed by exploiting the previously computed interaction categories to capture spatial dependencies.

• After the attention mechanism, the geometric features are updated as follows:

$$e_{ij}^{(l)} = \sum_{k=1}^{K} c_{ij,k} \cdot \phi_k^{(l)}([h_i^{(l)}; h_j^{(l)}; ||G_i^{(l)} - G_j^{(l)}||_{2,col}])$$

$$G_i^{(l)} \leftarrow G_i^{(l)} + \sum_{j \in \mathcal{N}_i} e_{ij}^{(l)} \cdot (G_i^{(l)} - G_j^{(l)})$$

Equivariant inter-agent attention

Equivariant inter-agent aggregation

Equivariant non-linear function

Equivariant Geometric Feature Learning Layer

Implementation details

• In FeatureLearning.inter_agent_aggregation(...).

EqMotion: Equivariant Geometric Feature Learning (4)

 Equivariant non-linear function: apply non-linear operations to enhance neural network performance. The terms are adopted in analogy with multi-head attention.

• Finally, each c-th coordinate of geometric features of each node is transformed as follows:

$$\begin{split} Q_i^{(l)} &= W_Q^{(l)} \cdot (G_i^{(l)} - \overline{\mathbf{G}}^{(l)}) \\ K_i^{(l)} &= W_K^{(l)} \cdot (G_i^{(l)} - \overline{\mathbf{G}}^{(l)}) \\ g_{i,c}^{(l+1)} &= \begin{cases} q_{i,c}^{(l)} + \overline{\mathbf{G}}^{(l)} & \text{if } \langle q_{i,c}^{(l)}, k_{i,c}^{(l)} \rangle \geq 0 \\ q_{i,c}^{(l)} - \langle q_{i,c}^{(l)}, \frac{k_{i,c}^{(l)}}{||k_i^{(l)}||_2} \rangle \cdot \frac{k_{i,c}^{(l)}}{||k_i^{(l)}||_2} + \overline{\mathbf{G}}^{(l)} & \text{otherwise} \end{cases} \end{split}$$

Equivariant inner-agent attention

Equivariant inter-agent aggregation Equivariant non-linear function

Equivariant Geometric Feature Learning Layer

Implementation details

In FeatureLearning.non linear(...).

EqMotion: Invariant Pattern Feature Learning

• In parallel, L invariant pattern feature learning (IPFL) layers update the pattern features.

- Each layer $l \in \{1, ..., L\}$:
 - Input: $G^{(l-1)}$, $H^{(l-1)}$.
 - Pattern features updated according to the equation below.
 - Output: H^(l).

$$\begin{split} m_{ij}^{(l)} &= \phi_m^{(l)}([h_i^{(l)}; h_j^{(l)}; ||G_i^{(l)} - G_j^{(l)}||_{2,col}]) \\ p_i^{(l)} &= \sum_{j \in \mathcal{N}_i} m_{ij}^{(l)} \\ h_i^{(l+1)} &= \phi_h([p_i^{(l)}; h_{il}^{(l)}]) \end{split}$$

Implementation details

• In FeatureLearning.edge_model(...), FeatureLearning.node_model(...) and FeatureLearning.forward(...).

EqMotion: Equivariant Output Layer

- After the L feature learning layers, the final geometric features $G^{(L)}$ and pattern features $H^{(L)}$ are obtained.
- So, for each node i, the final prediction is computed by the **equivariant output layer** (EOL) as follows:

$$\widehat{Y}_i = W_{out} \cdot (G_i^{(L)} - \overline{\mathbf{G}}^{(L)}) + \overline{\mathbf{G}}^{(L)}$$

Implementation details

In EqMotion.forward(...).

EqMotion: Optional Operations

- A series of **optional operations** can be performed during the computation:
 - **Discrete Cosine Transform**: the data in input can be converted into the frequency domain. The inverse DCT is then applied to the final prediction to recover the motion back in the original domain.
 - **Agent token**: pattern features can be enriched with a learnable token specific to each agent, which is directly optimized during the training.
 - **Residual connections**: they can be enabled within the feature learning layers allowing the model to stabilize training and improve the flow of information across layers.

```
class EqMotion(nn.Module):
    def forward(self, h: torch.Tensor, x: torch.Tensor, vel: torch.Tensor, edge_attr: torch.Tensor|None = None) ->
    # Sec. B.1: Optional Operation - DCT transform
    if self.apply_dct:
        # Normalize 'x' (keep dims for broadcasting)
        x_mean = torch.mean(x, dim=(1,2), keepdim=True) # -> (B, 1, 1, C)
        x = x - x_mean

# Discrete cosine transform
    dct_m, _ = self.get_dct_matrix(self.in_channel, x)
    dct_m = dct_m[None, None, :, :].repeat(batch_size, num_agents, 1, 1) # -> (B, N, T_in, T_in)

# Inverse discrete cosine transform
    _, idct_m = self.get_dct_matrix(self.out_channel, x)
    idct_m = idct_m[None, None, :, :].repeat(batch_size, num_agents, 1, 1) # -> (B, N, T_out, T_out)

# Eq. x_i <- W_dct * (x_i - x_mean)
    x = torch.matmul(dct_m, x) # -> (B, N, T_in, C)
    vel = torch.matmul(dct_m, vel) # -> (B, N, T_in, C)
```

```
class FeatureLearning(nn.Module):
    def node_model(self, h: torch.Tensor, edge_feat: torch.Tensor) -> torch.Tensor:
    return out + h if self.residual else out
```

Code snippet showing the implementation.

Experimental Results: Action Prediction

• The first experiment investigates how EqMotion's performance varies when training is restricted to predicting hand movements during the execution of specific actions.

- All hyperparameters are set to the default values:
 - K = 4;
 - L = 2;
 - C = 32.
 - D = 32.

Training & Test Error per Action										
IV1-	Inspect		Rotate		Global		Pick-up		Put-down	
Epoch	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$								
1°	0.80	0.76	0.76	0.71	0.48	0.35	0.67	0.57	0.68	0.61
5°	0.60	0.57	0.59	0.53	0.25	0.26	0.37	0.39	0.36	0.36
10°	0.42	0.43	0.44	0.49	0.20	0.19	0.24	0.25	0.30	0.29
25°	0.30	0.31	0.31	0.27	0.15	0.15	0.17	0.20	0.23	0.25
35°	0.25	0.28	0.27	0.25	0.13	0.13	0.16	0.18	0.19	0.21
50°	0.22	0.26	0.25	0.24	0.12	0.12	0.14	0.17	0.18	0.21
Size	163		163 148		2216		514		631	

Experimental Results: Impact of Hyperparameters (1)

- The first hyperparameter analysed is the number of feature learning layers L. It directly affects the number of trainable parameters, and so the level of complexity it can handle.
- A training set comprising all actions was used and all the other hyperparameters were fixed at their default values.

Training & Test Error by Number of Feature Learning Layers									
N° of Layers	N° of parameters	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$						
2	69,188	0.118	0.124						
3	91,044	0.115	0.122						
4	112,900	0.114	0.120						
5	134,756	0.113	0.119						
6	156,612	0.107	0.116						
7	178,468	0.107	0.115						

Experimental Results: Impact of Hyperparameters (2)

• Subsequently, the impact of the optional operations on the model's performance was examined.

•	Even when these operations are
	combined, the loss does not fall below
	0.10 in either the training or testing
	phases.

Number of parameters remains essentially unchanged.

	Training & Test Error w/ Optional Operations										
Encoh	Defa	ault	w/ I	OCT	w/ Res	iduals	w/ Agent Token				
Epoch	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$	$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$			
1°	0.21	0.21	0.44	0.31	0.22	0.22	0.20	0.20			
5°	0.14	0.14	0.20	0.19	0.15	0.15	0.14	0.14			
10°	0.13	0.13	0.16	0.16	0.13	0.13	0.12	0.12			
35°	0.11	0.11	0.12	0.12	0.11	0.11	0.11	0.11			
50°	0.10	0.10	0.11	0.12	0.11	0.11	0.10	0.10			

Training & Test Error w/ Optional Operations

Experimental Results: Impact of Hyperparameters (3)

• By contrast, increasing the **number of categories** K has a stronger influence on the model's parameter count; however, similar to the optional operations, it does **not significantly affect the final loss**.

Experimental Results: Impact of Hyperparameters (4)

- Last hyperparameters tested are latent dimensions of geometric (C) and pattern (D) features.
- Enlarging latent spaces (C, D) reduces final loss, but requires a trade-off:
 - Slow decrease in final loss.
 - Rapid increase in trainable parameters → higher computational demands.

	Training & Test Error by Latent Space Size											
		D										
		8	8 16 32 64									
	8	0.128/0.128 (6K)	0.112/0.113 (11K)	0.111/0.112 (24K)	0.108/0.112 (66K)							
10	, 16	0.113/0.114 (14K)	0.112/0.113 (20K)	0.107/0.107 (36K)	0.106/0.108 (83K)							
11	32	0.119/0.119 (40k)	0.113/0.113 (66K)	0.107/0.108 (69k)	0.106/0.107 (127K)							
	64	0.115/0.114 (134K)	0.113/0.112 (148K)	0.107/0.108(178K)	0.095/0.098 (257K)							

Experimental Results: Benchmarking

 Lastly, evaluate EqMotion against commonly adopted reference models: (i) baseline models, (ii) equivariant models and (iii) GMN-based models.

	Training & Test Error											
	Epoch											
	Model	1	0	5°		10°		25°		50°		Size
		$\mathcal{L}_{ ext{train}}$	$\mathcal{L}_{ ext{test}}$									
	EqMotion	0.244	0.188	0.142	0.140	0.126	0.123	0.113	0.114	0.102	0.103	74K
	Constant	0.127	0.124	0.126	0.124	0.127	0.124	0.127	0.124	0.127	0.124	
l o	GWNET	0.345	0.306	0.301	0.291	0.297	0.284	0.142	0.135	0.127	0.126	334k
Baseline	Temporal	0.502	0.361	0.166	0.165	0.146	0.148	0.133	0.131	0.116	0.116	15K
3as	GCN	0.525	0.382	0.171	0.162	0.170	0.161	0.136	0.136	0.128	0.128	17K
	LSTM	0.525	0.348	0.231	0.212	0.172	0.170	0.140	0.139	0.129	0.129	558k
	GAT	0.484	0.381	0.171	0.159	0.150	0.169	0.130	0.126	0.122	0.118	17K
nt	ENN	0.088	0.081	0.080	0.076	0.078	0.073	0.079	0.074	0.075	0.072	3K
Equivariant	ETNN	0.094	0.081	0.080	0.076	0.078	0.073	0.075	0.072	0.074	0.070	17K
luiv	EGNN	0.241	0.206	0.217	0.201	0.210	0.193	0.186	0.171	0.151	0.140	17K
ğ	ESTGCN	0.166	0.113	0.090	0.085	0.084	0.077	0.078	0.074	0.076	0.072	44K
	ATT	0.091	0.079	0.079	0.075	0.078	0.073	0.075	0.071	0.074	0.071	42K
GMN	LSTM	0.300	0.214	0.107	0.098	0.091	0.086	0.083	0.078	0.080	0.076	33K
G	GMN	0.256	0.181	0.106	0.098	0.091	0.087	0.084	0.081	0.080	0.077	27K
	LSTM INV	0.189	0.160	0.112	0.104	0.098	0.093	0.087	0.008	0.082	0.077	33K

Epoch LSTM — Test — Test — Test

Conclusion Remarks

• In conclusion:

- Model performance:
 - Effective on full dataset.
 - Performance influenced by data quantity and action complexity → more complex actions → higher errors.
- Hyperparameter insights:
 - More feature layers & larger latent spaces → better accuracy.
 - Optional operations & number of categories → minor effect on final loss.
- Comparison with other models:
 - Outperforms baseline models thanks to equivariance.
 - Underperform (slightly) other equivariant or GMN-based models.

• Future work:

- Further theoretical & experimental analyses:
 - To better understand strengths and limitations.
 - To improve efficiency and robustness.

Grazie

