CEC 16th - Past Year Paper Solution 2015-2016 Sem1 MH1812 –Discrete Mathematics

Solver: Deng Yue

Email Address: deng0068@e.ntu.edu.sg

Question 1

(a) Prove:

$$\begin{aligned} p &\longleftrightarrow q \equiv (p \to q) \wedge (q \to p) & \text{(by definition)} \\ &\equiv (\neg p \vee q) \wedge (\neg q \vee p) & \text{(by definition)} \\ &\equiv [(\neg p \vee q) \wedge \neg q] \vee [(\neg p \vee q) \wedge p] & \text{(DeMorgan's)} \\ &\equiv [(\neg p \wedge \neg q) \vee (q \wedge \neg q)] \vee [(\neg p \wedge p) \vee (p \wedge q)] & \text{(DeMorgan's)} \\ &\equiv (\neg p \wedge \neg q) \vee (p \wedge q) & \text{(operator precedence)} \end{aligned}$$

(b) \neg ($\exists x \in X, \forall y \in Y, P(x, y)$) \equiv ($\forall x \in X, \exists y \in Y, P(x, y)$)

X can only be 2 or 3:

- ① When x = 2, y = 7: x = y mod 5 = 2 That is, P (2, 7) is true.
- When x = 3, y = 8:x = y mod 5 = 3That is, P (3, 8) is true.

So $\forall x \in X$, $\exists y \in Y$, P(x, y) is true, which means $\neg (\exists x \in X, \forall y \in Y, P(x, y))$ is true.

(c) A valid argument satisfies: "If the premises are true, then the conclusion is true".

So from (ii) and (iii), $\neg r \land \neg s$ is true.

According to the definition, this argument is valid.

Question 2

(a) (1) Let $y \in f(S \cup T)$ arbitrary.

Then there exists
$$x \in (S \cup T)$$
 such that $f(x) = y$.
Since $x \in (S \cup T)$, $x \in S$ or $x \in T$, then $f(x) \in f(S)$ or $f(x) \in f(T)$.
That is, $f(x) \in f(S) \cup f(T)$ (i)

Let
$$y \in f(S) \cup f(T)$$
 arbitrary.
Then there exists $x \in S$ or $x \in T$ such that $f(x) = y$.
Since $x \in S$ or $x \in T$, $x \in (S \cup T)$, then $f(x) \in f(S \cup T)$
Thus, $f(S) \cup f(T) \subseteq f(S \cup T)$ (ii)

From (i) and (ii),
$$f(S \cup T) = f(S) \cup f(T)$$
.

(2) Disprove:

Suppose set
$$A = \{x1, x2, x3\}$$
, set $Y = \{y1, y2\}$, $f(x1) = f(x3) = y1$, $f(x2) = y2$.
If $S = \{x1, x2\}$, $T = \{x2, x3\}$, then $S \cap T = x2$, $f(x2) = y2$.
However, $f(S) = \{y1, y2\}$, $f(T) = \{y1, y2\}$, $f(S) \cap f(T) = \{y1, y2\}$, which is not equal to $y2$.

(b) Yes, we can use membership table to solve this question. We should notice that premise is $A \oplus B = B \oplus C$, and we should get the conclusion that A = C.

$A \oplus B$	$B \oplus C$	В	Α	С
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

And we can get the conclusion that A = C.

Question 3

We can use matrix representation to solve this question.

Since the relation should be reflexive, which means every element of A is related to itself, the matrix's diagonal entries should all be true while the others can be true or false.

$$\begin{bmatrix} T & T/F & T/F & T/F \\ T/F & T & T/F & T/F \\ T/F & T/F & \ddots & T/F \\ T/F & T/F & T/F & T \end{bmatrix}$$

So we can construct 2^{n*n-n} distinct matrixes. That is, there are 2^{n*n-n} distinct reflexive relations on a set with n elements.

Question 4

Figure 1: Graph

- (a) Yes, this graph is bipartite. Bipartite graph is a graph whose vertices can be partitioned into 2 (disjoint) subsets V and W such that each edge only connects a $v \in V$ and a $w \in W$.
 - Suppose $V = \{a,c,d\}$, $W = \{e,b\}$, then each edge only connects a node in V and a node in W. Thus, this graph is bipartite.
- (b) An Euler path (Eulerian trail) is a walk on the edges of a graph which uses each edge in the original graph exactly once. (The beginning and end of the walk may or not be the same vertex.)
 - If we follow this order: $e \rightarrow c \rightarrow b \rightarrow d \rightarrow e \rightarrow a \rightarrow b$, we can walk on the edges of the graph which use each edge exactly once.