Coarse Graining Holographic Black Holes Engelhardt & Wall 2018

William Arnold

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

Limitations:

► Time-independent (works on any Cauchy slice)

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

- Time-independent (works on any Cauchy slice)
- ▶ No notion of changing horizon area

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

- ► Time-independent (works on any Cauchy slice)
- ▶ No notion of changing horizon area
- No generalized second law

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

- Time-independent (works on any Cauchy slice)
- ▶ No notion of changing horizon area
- No generalized second law
- Can't interpret changing area as entropy

HRT as fine-grained entropy

$$S_{vN} = \frac{\text{Area}[X]}{4G\hbar}$$

- Time-independent (works on any Cauchy slice)
- ► No notion of changing horizon area
- No generalized second law
- Can't interpret changing area as entropy
- Need to coarse-grain over thermalized degrees of freedom

Pick a (compact)
 Cauchy-splitting
 surface σ

- Pick a (compact) Cauchy-splitting surface σ
- \triangleright Fix data on Σ_{out}

- Pick a (compact)
 Cauchy-splitting
 surface σ
- ightharpoonup Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$

- Pick a (compact) Cauchy-splitting surface σ
- ightharpoonup Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else

- Pick a (compact) Cauchy-splitting surface σ
- ightharpoonup Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else
- ► Glue another spacetime, α , inside

- Pick a (compact)
 Cauchy-splitting
 surface σ
- ightharpoonup Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else
- ► Glue another spacetime, α , inside
- Now have $\Sigma = \Sigma_{in}^{(\alpha)} \cup \Sigma out$

- Pick a (compact)
 Cauchy-splitting
 surface σ
- \triangleright Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else
- ► Glue another spacetime, α , inside
- Now have $\Sigma = \Sigma_{in}^{(\alpha)} \cup \Sigma out$
- ightharpoonup IVP ightharpoonup full spacetime

- Pick a (compact)
 Cauchy-splitting
 surface σ
- ightharpoonup Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else
- Glue another spacetime, α , inside
- Now have $\Sigma = \Sigma_{in}^{(\alpha)} \cup \Sigma_{out}$
- ► IVP → full spacetime
- Some state $\rho_B^{(\alpha)}$ on boundary

- Pick a (compact)
 Cauchy-splitting
 surface σ
- \triangleright Fix data on Σ_{out}
- This fixes the outer wedge $Ow[\sigma]$
- ► Forget everything else
- Glue another spacetime, α , inside
- Now have $\Sigma = \Sigma_{in}^{(\alpha)} \cup \Sigma_{out}$
- ightharpoonup IVP ightharpoonup full spacetime
- Some state $\rho_B^{(\alpha)}$ on boundary
- ► Compute $S_{vN}[\rho_B^{(\alpha)}]!$

Can define a new entropy for any surface homologous to B

$$S^{(outer)}[\sigma] = \max_{\{\alpha\}} \left[-\operatorname{tr}\left(
ho_B^{(\alpha)} \ln
ho_B^{(\alpha)}
ight)
ight]$$

Can define a new entropy for any surface homologous to B

$$S^{(outer)}[\sigma] = \max_{\{\alpha\}} \left[-\operatorname{tr}\left(
ho_B^{(lpha)} \ln
ho_B^{(lpha)}
ight)
ight]$$

 $\alpha \in \mathsf{all}$ possible spacetimes created from an inner wedge

Can define a new entropy for any surface homologous to B

$$S^{(outer)}[\sigma] = \max_{\{lpha\}} \left[-\operatorname{tr}\left(
ho_B^{(lpha)} \ln
ho_B^{(lpha)}
ight)
ight]$$

 $\alpha \in \mathsf{all}$ possible spacetimes created from an inner wedge For an HRT Surface, X,

$$S^{(outer)}[X] = -\operatorname{tr}(\rho_B \ln \rho_B) = \frac{\operatorname{Area}[X]}{4G\hbar}$$

$$lackbox{m{\heta}}_{(k)}=0, heta_{(l)}=0$$
: Extremal

- lacksquare $\theta_{(k)}=0, \theta_{(l)}=0$: Extremal
- ▶ Relax conditions: only $\theta_{(k)} = 0$

- lacksquare $\theta_{(k)}=0, \theta_{(l)}=0$: Extremal
- ▶ Relax conditions: only $\theta_{(k)} = 0$
- Marginal surface, stationary in the k direction

• $\theta_{(k)} = 0, \theta_{(l)} = 0$, Minimal Area: HRT

- $\theta_{(k)} = 0, \theta_{(l)} = 0$, Minimal Area: HRT
- Only $\theta_{(k)} = 0$, Minimal Area: **minimar** (minimal area, marginal) surface

- $\theta_{(k)} = 0, \theta_{(l)} = 0$, Minimal Area: HRT
- Only $\theta_{(k)} = 0$, Minimal Area: **minimar** (minimal area, marginal) surface
- ▶ Small extra condition: $\nabla_k \theta_{(l)} \leq 0$

- $\theta_{(k)} = 0, \theta_{(l)} = 0$, Minimal Area: HRT
- Only $\theta_{(k)} = 0$, Minimal Area: **minimar** (minimal area, marginal) surface
- ▶ Small extra condition: $\nabla_k \theta_{(I)} \leq 0$
- True on HRT Surfaces

For choice of α , $Ow[\mu]$

► Have outer wedge, boundary

- ► Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT

- ► Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT
- ▶ Find $\bar{\mu}(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$

- ▶ Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT
- ▶ Find $\bar{\mu}(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$
- $X_B^{(\alpha)}, \bar{\mu}(\Sigma^{(\alpha)}), B$ all homologous

- Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT
- ▶ Find $\bar{\mu}(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$
- $X_B^{(\alpha)}, \bar{\mu}(\Sigma^{(\alpha)}), B$ all homologous

$$S[
ho_B] = rac{\mathsf{Area}[X_B^{(lpha)}]}{4G\hbar}$$
 (HRT)

- Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT
- ▶ Find $\bar{\mu}(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$
- $X_B^{(\alpha)}, \bar{\mu}(\Sigma^{(\alpha)}), B$ all homologous

$$S[
ho_B] = rac{\mathsf{Area}[X_B^{(lpha)}]}{4G\hbar} \hspace{1cm} ext{(HRT)}$$
 $\leq rac{\mathsf{Area}[ar{\mu}(\Sigma^{(lpha)})]}{4G\hbar} \hspace{1cm} ext{(maximin)}$

- Have outer wedge, boundary
- ► Maximin: $\exists Σ^{(α)}$ with X_B HRT
- ▶ Find $\bar{\mu}(\Sigma^{(\alpha)})$ on $\Sigma^{(\alpha)}$
- $X_B^{(\alpha)}, \bar{\mu}(\Sigma^{(\alpha)}), B$ all homologous

$$S[
ho_B] = rac{\mathsf{Area}[X_B^{(lpha)}]}{4G\hbar} \hspace{1cm} ext{(HRT)}$$

$$\leq rac{\mathsf{Area}[ar{\mu}(\Sigma^{(lpha)})]}{4G\hbar} \hspace{1cm} ext{(maximin)}$$

$$\leq rac{\mathsf{Area}[\mu]}{4G\hbar} \hspace{1cm} ext{(NCC)}$$

• Know that $S[\rho_B^{(\alpha)}] \leq \frac{\text{Area}[\mu]}{4G\hbar}$

- Know that $S[\rho_B^{(\alpha)}] \leq \frac{\text{Area}[\mu]}{4G\hbar}$
- lacksquare Since $S^{(outer)}[\mu] = \max_{\{\alpha\}} \left[S[
 ho_B^{(\alpha)}] \right]$, we have

$$S^{(outer)}[\mu] \leq rac{\mathsf{Area}[\mu]}{4G\hbar}$$

- Know that $S[\rho_B^{(\alpha)}] \leq \frac{\text{Area}[\mu]}{4G\hbar}$
- lacksquare Since $S^{(outer)}[\mu] = \max_{\{\alpha\}} \left[S[
 ho_B^{(\alpha)}] \right]$, we have

$$S^{(outer)}[\mu] \le rac{\mathsf{Area}[\mu]}{\mathsf{4}G\hbar}$$

How tight is this bound?

- Know that $S[\rho_B^{(\alpha)}] \leq \frac{\text{Area}[\mu]}{4G\hbar}$
- lacksquare Since $S^{(outer)}[\mu] = \max_{\{\alpha\}} \left[S[
 ho_B^{(\alpha)}] \right]$, we have

$$S^{(outer)}[\mu] \le rac{\mathsf{Area}[\mu]}{\mathsf{4}G\hbar}$$

- How tight is this bound?
- ightharpoonup Can always find α that saturates:

$$S^{(outer)}[\mu] = \frac{\mathsf{Area}[\mu]}{\mathsf{4}G\hbar}$$

ightharpoonup Can glue on stationary N_{-k}

- ► Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$

- ightharpoonup Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \leq 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$

- ightharpoonup Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$
- $\theta_{(l)} \text{ increasing along } -k$

- ► Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$
- $\theta_{(I)}$ increasing along -k
- ► Can find cross-section of N_{-k} with $\theta_{(I)} = 0$

- ightharpoonup Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$
- $\theta_{(I)}$ increasing along -k
- ► Can find cross-section of N_{-k} with $\theta_{(I)} = 0$
- \triangleright Gives us extremal X_B

- ► Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$
- $\begin{array}{c} \bullet \\ \theta(l) \\ -k \end{array}$ increasing along
- ► Can find cross-section of N_{-k} with $\theta_{(I)} = 0$
- \triangleright Gives us extremal X_B
- N_{-k} stationary, so Area $[X_B]$ = Area $[\mu]$

- ► Can glue on stationary N_{-k}
- $\theta_{(k)} = 0, \theta_{(l)} \le 0 \text{ at } \mu$
- ▶ Have $\nabla_k \theta_{(I)} \leq 0$
- $\begin{array}{c} \bullet \\ \theta(l) \\ -k \end{array}$ increasing along
- ► Can find cross-section of N_{-k} with $\theta_{(I)} = 0$
- \triangleright Gives us extremal X_B
- N_{-k} stationary, so Area $[X_B]$ = Area $[\mu]$
- \triangleright Can X_B be HRT?

▶ Need to build $Iw[\mu]$

- ▶ Need to build $Iw[\mu]$
- ► Use CPT symmetry through *X*_B

- ▶ Need to build $Iw[\mu]$
- ► Use CPT symmetry through *X*_B
- Wormhole-like geometry

- ▶ Need to build $Iw[\mu]$
- ► Use CPT symmetry through *X*_B
- Wormhole-like geometry
- Cauchy surface: $\widetilde{N}_{-l} \cup \widetilde{N}_{-k} \cup N_{-k} \cup N_{-l}$

- ▶ Need to build $Iw[\mu]$
- ► Use CPT symmetry through *X*_B
- Wormhole-like geometry
- Cauchy surface: $\widetilde{N}_{-l} \cup \widetilde{N}_{-k} \cup N_{-k} \cup N_{-l}$
- ightharpoonup IVP ightharpoonup Full spacetime

► Is it HRT?

- ► Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.

- ► Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.
- Try other extremal surfaces X'_1, X'_2

- ▶ Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.
- Try other extremal surfaces X'_1, X'_2
- ▶ Look at $X'_{1,2}$ on Σ_{min} and N_{-k}

- ► Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.
- Try other extremal surfaces X'_1, X'_2
- ▶ Look at $X'_{1,2}$ on Σ_{min} and N_{-k}
- Area $[\overline{X_1'}]$ = Area $[\mu]$ (stationarity)

- ► Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.
- Try other extremal surfaces X'₁, X'₂
- ► Look at $X'_{1,2}$ on Σ_{min} and N_{-k}
- Area $[\overline{X_1'}]$ = Area $[\mu]$ (stationarity)
- Area $[\overline{X_2'}] \ge \text{Area}[\mu]$ (minimality)

- ► Is it HRT?
- Pick partial $\widetilde{\Sigma}_{min}, \Sigma_{min}$ where μ minimal area.
- Try other extremal surfaces X'₁, X'₂
- ▶ Look at $X'_{1,2}$ on Σ_{min} and N_{-k}
- Area $[\overline{X'_1}]$ = Area $[\mu]$ (stationarity)
- Area $[\overline{X_2'}] \ge$ Area $[\mu]$ (minimality)
- Representatives are always smaller!

 $\mathsf{Area}[X'_{1,2}] \geq \mathsf{Area}[\overline{X'_{1,2}}] \geq \mathsf{Area}[\mu] = \mathsf{Area}[X_B]$

Given any μ minimar, $\mathit{Ow}[\mu]$, we have

Given any μ minimar, $Ow[\mu]$, we have

$$S^{(outer)} \leq \frac{\mathsf{Area}[\mu]}{4G\hbar}$$

Given any μ minimar, $Ow[\mu]$, we have

$$S^{(outer)} \leq rac{\mathsf{Area}[\mu]}{4G\hbar}$$
 $\exists lpha \; \mathsf{with} \; S^{(outer)} = rac{\mathsf{Area}[\mu]}{4G\hbar}$

Given any μ minimar, $Ow[\mu]$, we have

$$S^{(outer)} \leq rac{\mathsf{Area}[\mu]}{4G\hbar}$$
 $\exists lpha \; \mathsf{with} \; S^{(outer)} = rac{\mathsf{Area}[\mu]}{4G\hbar}$ $\mathsf{So} \; S^{(outer)} = rac{\mathsf{Area}[\mu]}{4G\hbar}$

Given any μ minimar, $Ow[\mu]$, we have

$$S^{(outer)} \leq rac{\mathsf{Area}[\mu]}{4G\hbar}$$
 $\exists lpha \; \mathsf{with} \; S^{(outer)} = rac{\mathsf{Area}[\mu]}{4G\hbar}$ $\mathsf{So} \; S^{(outer)} = rac{\mathsf{Area}[\mu]}{4G\hbar}$

Natural generalization of HRT with coarse graining!

► Fix state before *t_i*

- Fix state before t_i
- Allow "simple" sources: bulk fields that propagate causally from boundary

- Fix state before t_i
- Allow "simple" sources: bulk fields that propagate causally from boundary
- ightharpoonup Preserves N_I and μ

- Fix state before t_i
- Allow "simple" sources: bulk fields that propagate causally from boundary
- ightharpoonup Preserves N_I and μ
- ▶ Let ρ vary after t_i

- Fix state before t_i
- Allow "simple" sources: bulk fields that propagate causally from boundary
- ightharpoonup Preserves N_I and μ
- ▶ Let ρ vary after t_i
- Maximize S_{vN} over this to get $S^{(simple)}$

What about the boundary?

- Fix state before t_i
- Allow "simple" sources: bulk fields that propagate causally from boundary
- ightharpoonup Preserves N_l and μ
- ▶ Let ρ vary after t_i
- Maximize S_{vN} over this to get $S^{(simple)}$
- Can show

$$S^{(simple)}[t_i] = S^{(outer)}[\sigma]$$

Kind of...

Can foliate space with minimars

- Can foliate space with minimars
- Moving out means less data, higher entropy

- Can foliate space with minimars
- Moving out means less data, higher entropy
- ► Greater area

- Can foliate space with minimars
- Moving out means less data, higher entropy
- Greater area
- ► S^(simple) increases at later times

- Can foliate space with minimars
- Moving out means less data, higher entropy
- Greater area
- ► S^(simple) increases at later times
- ► Opposite case for moving in

Outer entropy doesn't work for BH Horizons

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
- Still no nice BH area second law...

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
- Still no nice BH area second law...
- Semi-classical gravity?

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
- Still no nice BH area second law...
- Semi-classical gravity?
 - Quantum marginally trapped surfaces

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
- Still no nice BH area second law...
- Semi-classical gravity?
 - Quantum marginally trapped surfaces
 - Redo coarse graining

- Outer entropy doesn't work for BH Horizons
- Counterexample is tricky, has to do with nonlocal properties of the horizon (arxiv:1702.01748)
- Still no nice BH area second law...
- Semi-classical gravity?
 - Quantum marginally trapped surfaces
 - Redo coarse graining
 - Raphael, Ven, Arvin did this (arxiv:1906.05299)

Thanks!