Electric Charge

q = electric charge, that which creates electric force of attraction or repulsion Unit = 1 coulomb or 1 \mbox{C}

$$|\vec{F}_{\text{electric}}| = \frac{k|q_1\|q_2|}{r^2}$$

 $\vec{F}_{\rm electric}$ is conservative

Electric Fields

Units: N/C

$$\vec{E} = \frac{kq}{r^2} = \frac{F}{q}$$

Uniform \vec{E} fields:

- All lines parallel
- $|\vec{E}|$ is same everywhere

Line Charge

$$\lambda = \text{linear charge density } \lambda = \frac{q}{L} = \frac{dq}{dL}$$

Horizontal Line Charge:

$$\begin{split} E_x &= 0 \\ E_y &= \frac{k\lambda L}{y\sqrt{\frac{L^2}{4} + y^2}} = \frac{kq}{y\sqrt{\frac{L^2}{4} + y^2}} \end{split}$$