# Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores

Theme08 - Introduction to Systems Biology Reproducing a Research Article



Figure 1: Gammarus fossarum

Student: Vincent Talen

Student number: 389015

Class: BFV2

Study: Bio-Informatics

Institute: Institute for Life Science & TechnologyUniversity: Hanze University of Applied Sciences

**Teacher**: Tsjerk Wassenaar

**Date**: June 9, 2022

### Abstract

 ${\rm Max}$  150-250 words. CHANGE LAYOUT/STYLING ENTIRELY

## Table of Contents

| Li | List of Figures |                                    |     |  |  |
|----|-----------------|------------------------------------|-----|--|--|
| Li | ist of          | Tables                             | iii |  |  |
| 1  | Inti            | roduction                          | 1   |  |  |
|    | 1.1             | Goal                               | 1   |  |  |
|    | 1.2             | Theory                             | 1   |  |  |
| 2  | Me              | thods                              | 2   |  |  |
|    | 2.1             | The software model                 | 2   |  |  |
|    | 2.2             | Model configuration                | 2   |  |  |
|    |                 | Statistical Analysis Equations     | 2   |  |  |
|    |                 | Consumer-Resource Dynamics Model   | 2   |  |  |
| 3  | Res             | sults                              | 3   |  |  |
| 4  | Dis             | cussion and Conclusion             | 4   |  |  |
|    | 4.1             | Discussion                         | 4   |  |  |
|    | 4.2             | General conclusion and perspective | 4   |  |  |

| List            | of Figures                             |   |
|-----------------|----------------------------------------|---|
| 1               | Gammarus fossarum                      |   |
| $\mathbf{List}$ | of Tables                              | 2 |
| 1               | Definitions/explanations MTE equations | 2 |

## 1 Introduction

- 1.1 Goal
- 1.2 Theory

### 2 Methods

#### 2.1 The software model

### 2.2 Model configuration

#### Statistical Analysis Equations

The following equations were used to express the mass (M in mg) and temperature (T in Kelvin) dependence of individual RMR and IR:

$$I = \alpha M^b e^{Ea\left(\frac{T - T_0}{k_B T_0 T}\right)} \tag{1a}$$

$$I = \alpha M^b e^{p\left(\frac{T-T_0}{k_B T_0 T}\right) - q\left(\frac{T-T_0}{k_B T_0 T}\right)^2}$$

$$\tag{1b}$$

Table 1: Definitions/explanations MTE equations

| Parameter | Explanation                                                              |
|-----------|--------------------------------------------------------------------------|
| $\alpha$  | metabolic or ingestion expression level at reference temperature $(T_0)$ |
| b         | the mass-scaling exponent                                                |
| M         | dry body mass (mg)                                                       |
| Ea        | activation energy (eV)                                                   |
| $k_B$     | Boltzmann's constant $(8.62 * 10^{-5} \text{ eV } K^{-1})$               |

The standard MTE formulation (1a) is simply a particular case of the quadratic formulation (1b) where q = 0 and the equation is reduced to the MTE model where p can thus be interpreted as the activation energy.

Energetic efficiency was also calculated as follows:  $E = (IR/RMR)*A_T$ , where the ratio of IR to RMR is the ingestion to metabolism efficiency and  $A_T$  is the assimilation efficiency at temperature T. The temperature T in Kelvin dependence of assimilation efficiency was expressed, using empirical equations and values for detritivores Assimilation efficiency was following a logistic equation with the MTE equation both at the numerator and the denominator With the following formulation, assimilation efficiency is confined between 0 and 1 (no or complete assimilation):

$$A_T = \frac{\alpha e^{Ea\left(\frac{T-T_0}{k_B T_0 T}\right)}}{1 + \alpha e^{Ea\left(\frac{T-T_0}{k_B T_0 T}\right)}} \tag{2}$$

#### Consumer-Resource Dynamics Model

Below are the ordinary differential equations describing temporal change in leaf litter standing stocks (L) and Gammarus population biomass (G) (Equation 3a and 3b).

$$\frac{dL}{dt} = I - f(L)_{\rm T}G - k_{\rm T}L \tag{3a}$$

$$\frac{dG}{dt} = G\left[f(L)_{\mathrm{T}}A - RMR_{\mathrm{T}}\right] \tag{3b}$$

## 3 Results

- 4 Discussion and Conclusion
- 4.1 Discussion
- 4.2 General conclusion and perspective