Statistical Parsing: Part 2

An Example

Parameter Estimation: Maximum Likelihood Estimates

CFG rule	Rule frequency	Rule probability
$S \longrightarrow NP VP$	100 + 5 + 100 + 5	$\frac{210}{210} = 1.000$
$VP \longrightarrow V NP PP-WITH$	100	$\frac{100}{210} \approx 0.476$
$VP \longrightarrow V NP PP-ON$	5	$\frac{5}{210} \approx 0.024$
$VP \longrightarrow V NP$	5 + 100	$\frac{105}{210} = 0.500$
$NP \longrightarrow Peter$	100 + 5	$\frac{105}{525} = 0.200$
$NP \longrightarrow Mary$	100 + 5 + 100 + 5	$\frac{210}{525} = 0.400$
$NP \longrightarrow a \text{ bird}$	100 + 5	$\frac{105}{525} = 0.200$
$NP \longrightarrow NP PP-WITH$	5	$\frac{5}{525} \approx 0.010$
$NP \longrightarrow NP PP-ON$	100	$\frac{100}{525} \approx 0.190$
PP-WITH \longrightarrow with a telescope	100 + 5	$\frac{105}{105} = 1.000$
$PP-ON \longrightarrow on a tree$	100 + 5	$\frac{105}{105} = 1.000$
	400 . 7 . 400 -	
$V \longrightarrow saw$	100 + 5 + 100 + 5	$\frac{210}{210} = 1.000$

Using the PCFG for disambiguation

CFG rule	Rule frequency	Rule probability
$S \longrightarrow NP \ VP$	100 + 5 + 100 + 5	$\frac{210}{210} = 1.000$
$VP \longrightarrow V NP PP\text{-}WITH$	100	$\frac{100}{210} \approx 0.476$
$VP \longrightarrow V NP PP-ON$	5	$\frac{5}{210} \approx 0.024$
$VP \longrightarrow V NP$	5 + 100	$\frac{105}{210} = 0.500$
$NP \longrightarrow Peter$	100 + 5	$\frac{105}{525} = 0.200$
$NP \longrightarrow Mary$	100 + 5 + 100 + 5	
$NP \longrightarrow a \text{ bird}$	100 + 5	$\frac{105}{525} = 0.200$
$NP \longrightarrow NP PP-WITH$	5	$\frac{5}{525} \approx 0.010$
$NP \longrightarrow NP PP-ON$	100	$\frac{100}{595} \approx 0.190$
		525
PP-WITH \longrightarrow with a telescope	100 + 5	$\frac{105}{105} = 1.000$
		105
$PP-ON \longrightarrow on a tree$	100 + 5	$\frac{105}{105} = 1.000$
	,	105
$V \ \longrightarrow saw$	100 + 5 + 100 + 5	$\frac{210}{210} = 1.000$


```
"Peter saw Mary with a telescope"  \begin{aligned} p(\mathbf{VP} &\longrightarrow \mathbf{V} \ \mathbf{NP} \ \mathbf{PP\text{-}WITH}) > p(\mathbf{VP} &\longrightarrow \mathbf{V} \ \mathbf{NP}) \cdot p(\mathbf{NP} &\longrightarrow \mathbf{NP} \ \mathbf{PP\text{-}WITH}) \\ 0.476 > 0.500 \cdot 0.010 \end{aligned}  "Mary saw a bird on a tree"  \begin{aligned} p(\mathbf{VP} &\longrightarrow \mathbf{V} \ \mathbf{NP} \ \mathbf{PP\text{-}ON}) < p(\mathbf{VP} &\longrightarrow \mathbf{V} \ \mathbf{NP}) \cdot p(\mathbf{NP} &\longrightarrow \mathbf{NP} \ \mathbf{PP\text{-}ON}) \\ 0.024 < 0.500 \cdot 0.190. \end{aligned}
```

Try this: Mary saw a bird on a tree with a telescope

Incomplete data problem in PCFG parameter estimation

```
S \longrightarrow NP \ VP
VP \longrightarrow V \ NP
VP \longrightarrow V \ NP \ PP
NP \longrightarrow NP \ PP
NP \longrightarrow Mary
NP \longrightarrow a \ bird
NP \longrightarrow a \ worm
PP \longrightarrow on \ a \ tree
V \longrightarrow saw
```

Refer Workbook

K-means clustering: M₀

K-means clustering: E₁

K-means clustering: M₁

K-means clustering: E₂

K-means clustering: M₂

K-means clustering: E₃

K-means clustering: M₃

K-means clustering: E₄

K-means clustering: M₄

Responsibilities

• Responsibilities assign data points to clusters $r_{nk} \in \{0,1\}$

such that
$$\sum_{k} r_{nk} = 1$$

Example: 5 data points and 3 clusters

$$(r_{nk}) = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight)$$

K-means Cost Function

Minimizing the Cost Function

Minimizing the Cost Function

- E-step: minimize J w.r.t. r_{nk}
 - assigns each data point to nearest prototype
- M-step: minimize J w.r.t $oldsymbol{\mu}_k$
 - gives

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{kn} \mathbf{x}_n}{\sum_n r_{kn}}$$

- each prototype set to the mean of points in that cluster
- Convergence guaranteed since there is a finite number of possible settings for the responsibilities

Observation

Limitation: Hard assignments of data points to clusters – small shift of a data point can flip it to a different cluster

Solution: replace 'hard' clustering of K-means with 'soft' probabilistic assignments
Represent the probability distribution of the data as a *Gaussian Mixture Model*

Gaussian Mixture Model

Synthetic Data Set: Complete Data

Fitting the Gaussian Mixture

- We wish to invert this process given the data set, find the corresponding parameters:
 - mixing coefficients
 - means
 - covariances
- If we knew which component generated each data point, the maximum likelihood solution would involve fitting each component to the corresponding cluster
- Problem: the data set is unlabelled
- We shall refer to the labels as latent (= hidden) variables

Synthetic Data Set Without Labels

Synthetic Data: Incomplete Data (M₀)

GMM: M_0+E_1

GMM: M₁

GMM: M_2+E_3

GMM: M_3+E_4

Example 2: Complete data

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_A = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

Refer: shared paper

Example 2: Incomplete Data

Refer: shared paper

Example 2: Doubt posted in feedback

Refer: shared paper

Goal of E step is to estimate posteriors like P(A|O).

Estimating P(O|A) is the preparation for E step. This involves using the generative storyline.

EM intuition: lower bound maximization

x temp

Refer: shared paper

EM intuition

EM over PCFGs : an example

f(y)	y	y ₁ = "Mary saw a bird on a tree"
5 10	y_1 y_2	$y_1 = \text{``a bird on a tree saw a worm"}$

M₀ step

```
S \longrightarrow NP VP
                             (1.00)
VP \longrightarrow VNP
                             (0.50)
VP \longrightarrow V NP PP
                             (0.50)
NP \longrightarrow NP PP
                             (0.25)
                             (0.25)
NP \longrightarrow Mary
                             (0.25)
NP \longrightarrow a \ bird
NP \longrightarrow a \ worm
                             (0.25)
PP \longrightarrow on \ a \ tree
                             (1.00)
V \longrightarrow saw
                              (1.00)
```

Refer Workbook

EM over PCFGs : an example

NOICY

 $y_2 =$ "a bird on a tree saw a worm"

 $y_1 = "Mary saw a bird on a tree"$

EM over PCFGs: an example (preparation for E step)

$$\begin{array}{lll} p_0(x_1) & = & p(\,\mathrm{s} \, \longrightarrow \, \mathrm{NP} \, \mathrm{VP}\,) \cdot p\left(\stackrel{\mathrm{NP}}{\widehat{\mathrm{Mary}}} \cdot p(\,\mathrm{VP} \, \longrightarrow \, \mathrm{V} \, \mathrm{NP}\,) \cdot p(\,\mathrm{V} \, \longrightarrow \, \mathrm{saw}\,) \cdot p\left(\stackrel{\mathrm{NP}}{\widehat{\mathrm{a}} \, \mathrm{bird}} \right) \cdot p\left(\stackrel{\mathrm{PP}}{\widehat{\mathrm{on}} \, \mathrm{a} \, \mathrm{tree}} \right) \\ & = & 1.00 \cdot 0.25 \cdot 0.50 \cdot 1.00 \cdot 0.25 \cdot 0.25 \cdot 1.00 \\ & = & 0.0078125 \quad \text{P(Y|Y|)} \\ & = & 0.0078125 + 0.0312500 \quad \text{P(Y|Y|)} \\ & = & 0.0390625 \quad \text{P(S)} \end{array}$$

> (x/3) = /c (3)

 $y_2 =$ "a bird on a tree saw a worm"

) P/ 72/41)=	(2) (21)
5147/23) 6147/23) 5147/20)	$\begin{array}{c cccc} p_0(x) & x \\ \hline 0.0078125 & x_1 \\ \hline 0.0312500 & x_2 \\ \hline 0.0078125 & x_3 \\ \end{array}$	$\begin{array}{c c} p & y_1 \\ \hline p_0(y) & y \\ \hline 0.0390625 & y_1 \\ 0.0078125 & y_2 \\ \end{array}$	Place NOICY CHANNEL SENTENCE Place Place

 $y_2 =$ "a bird on a tree saw a worm"

f(y)	y	y ₁ = "Mary saw a bird on a tree"
5 10	y_1 y_2	$y_1 = \text{mary saw a on a tree}$ $y_2 = \text{"a bird on a tree saw a worm"}$

$p_0(x)$	x
0.0078125	x_1
0.0312500	x_2
0.0078125	x_3

$$\begin{array}{c|c} p_0(y) & y \\ \hline 0.0390625 & y_1 \\ 0.0078125 & y_2 \end{array}$$

$$\begin{array}{c|c|c|c}
f_{T_q}(x) & x \\
\hline
 & 1 & x_1 \\
 & 4 & x_2 \\
 & 10 & x_3
\end{array}$$

$$\begin{array}{lcl} f_{T_q}(x_1) & = & f(\mathrm{yield}(x_1)) \cdot q(x_1|\mathrm{yield}(x_1)) \\ & = & f(y_1) \cdot q(x_1|y_1) \\ & = & f(y_1) \cdot \frac{q(x_1)}{q(y_1)} \\ & = & 5 \cdot \frac{0.0078125}{0.0390625} \\ & = & 1 \end{array}$$

Refer Workbook

M step: estimate the PCFG parameters

1 instance of

4 instances of

10 instances of


```
S \longrightarrow NP VP
                                     (1.000)
VP \longrightarrow V NP
                                     (0.733 \approx \frac{1+10}{15})
                                     (0.267 \approx \frac{4}{15})
       \longrightarrow V NP PP
                                     (0.268 \approx \frac{1+10}{41})
NP \longrightarrow NP PP
                                     (0.122 \approx \frac{1+4}{41})
NP \longrightarrow Mary
NP \longrightarrow a \text{ bird}
                                     (0.366 \approx \frac{1+4+10}{41})
                                     (0.244 \approx \frac{10}{41})
NP \longrightarrow a \text{ worm}
                                     (1.000)
PP \longrightarrow on a tree
                                     (1.000)
    \longrightarrow saw
```

M step: comparison of results of M₁ and M₀ steps

After M₁ step

After M₀ step

```
S \longrightarrow NP VP
                              (1.00)
VP \longrightarrow VNP
                               (0.50)
VP \longrightarrow V NP PP
                               (0.50)
NP \longrightarrow NP PP
                               (0.25)
NP \longrightarrow Mary
                              (0.25)
NP \longrightarrow a \ bird
                              (0.25)
NP \longrightarrow a \ worm
                               (0.25)
PP \longrightarrow on \ a \ tree
                               (1.00)
                               (1.00)
V \longrightarrow saw
```

```
(1.000)
S \longrightarrow NP VP
                                     (0.733 \approx \frac{1+10}{15})
VP \longrightarrow V NP
VP \longrightarrow V NP PP
                                     (0.267 \approx \frac{4}{15})
                                     (0.268 \approx \frac{1+10}{41})
NP \longrightarrow NP PP
NP \longrightarrow Mary
                                     (0.122 \approx \frac{1+4}{41})
NP \longrightarrow a \text{ bird}
                                     (0.366 \approx \frac{1+4+10}{41})
                                     (0.244 \approx \frac{10}{41})
NP \longrightarrow a \text{ worm}
                                     (1.000)
PP \longrightarrow on a tree
V \longrightarrow saw
                                      (1.000)
```

Finally ...

CFG rule	p_0	p_1	p_2	p_3	 p_{18}
$S \longrightarrow NP VP$	1.000	1.000	1.000	1.000	1.000
$VP \longrightarrow V NP$	0.500	0.733	0.807	0.850	0.967
$VP \longrightarrow V NP PP$	0.500	0.267	0.193	0.150	0.033
$NP \longrightarrow NP PP$	0.250	0.268	0.287	0.298	0.326
$NP \longrightarrow Mary$	0.250	0.122	0.118	0.117	0.112
$NP \longrightarrow a \text{ bird}$	0.250	0.366	0.357	0.351	0.337
$NP \longrightarrow a \text{ worm}$	0.250	0.244	0.238	0.234	0.225
$PP \longrightarrow on a tree$	1.000	1.000	1.000	1.000	1.000
$V \longrightarrow saw$	1.000	1.000	1.000	1.000	1.000

Using the PCFG for disambiguation

$$p(\,\mathbf{VP} \,\,\longrightarrow\, \mathbf{V}\,\,\mathbf{NP}\,) \cdot p(\,\mathbf{NP} \,\,\longrightarrow\, \mathbf{NP}\,\,\mathbf{PP}\,) > p(\,\mathbf{VP} \,\,\longrightarrow\, \mathbf{V}\,\,\mathbf{NP}\,\,\mathbf{PP}\,)$$

CFG rule	p_0	p_1	p_2	p_3	 p_{18}
$S \longrightarrow NP VP$	1.000	1.000	1.000	1.000	1.000
$VP \longrightarrow V NP$	0.500	0.733	0.807	0.850	0.967
$\mathrm{VP} \ \longrightarrow \mathrm{V} \ \mathrm{NP} \ \mathrm{PP}$	0.500	0.267	0.193	0.150	0.033
$NP \longrightarrow NP PP$	0.250	0.268	0.287	0.298	0.326
$NP \longrightarrow Mary$	0.250	0.122	0.118	0.117	0.112
$NP \longrightarrow a \text{ bird}$	0.250	0.366	0.357	0.351	0.337
$NP \longrightarrow a \text{ worm}$	0.250	0.244	0.238	0.234	0.225
$PP \longrightarrow on a tree$	1.000	1.000	1.000	1.000	1.000
$V \longrightarrow saw$	1.000	1.000	1.000	1.000	1.000

The parse on the left is preferred if:

$$p(VP \longrightarrow V NP) \cdot p(NP \longrightarrow NP PP) > p(VP \longrightarrow V NP PP)$$

p	$p(VP \longrightarrow VNP) \cdot p(NP \longrightarrow NPPP)$	$p(VP \longrightarrow V NP PP)$
p_0	$0.500 \cdot 0.250 = 0.125$	0.500
p_1	$0.733 \cdot 0.268 = 0.196$	0.267
p_2	$0.807 \cdot 0.287 = 0.232$	0.193
p_3	$0.850 \cdot 0.298 = 0.253$	0.150
:		
p_{18}	$0.967 \cdot 0.326 = 0.315$	0.033

PCFGs: The Big Picture

Identifying CFG rules, grammar transformation etc.

Corpus annotation

Learning parameters (PCFG rule probabilities) by EM or MLE

Refer Workbook

Perpetual Motion Machine?

• Is this magic? Where does the extra knowledge come from?

 $y_1 = "Mary saw a bird on a tree"$

 $y_2 =$ "a bird on a tree saw a worm"

Ack:Wikipedia

Perpetual Motion Machine?

• Is this magic? Where does the extra knowledge come from?

The Unifying Picture

	K-means	EM	Biased Coins	PCFG
Source				
Observations				
Generative storyline (preparation for E step)				
Parameters Estimated				
Why it works				

Reference

A Tutorial on the Expectation-Maximization Algorithm Including Maximum-Likelihood Estimation and EM Training of Probabilistic Context-Free Grammars

By Detlef Prescher