

Android 10 sys_config.fex 使用指南

版本号: 1.0

发布日期: 2020.08.06

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.08.06	AW0681	初始版本文档

目 录

1	概述		1
	1.1	系统 (SYSTEM)	1
		1.1.1 [product]	1
		1.1.2 [platform]	1
		1.1.3 [target]	2
		1.1.4 [power_sply]	2
		1.1.5 [card_boot]	3
		1.1.6 [card0_boot_para]	3
		1.1.7 [card2_boot_para]	3
		1.1.8 [gpio_bias]	4
		1.1.9 [uart_para]	5
		1.1.10 [jtag_para]	5
		clockM 配置	5
	1.3	DRAM 配置	6
		1.3.1 [dram_para]	6
	1.4	UART	7
		1.4.1 [uart0]	7
	1.5	NAND FLASH	7
		1.4.1 [uart0]	7
2	FAC		10
	2.1	1.sys_config.fex 跟 dts 配置同一个节点,会冲突吗?	10
		2. 为什么创建跟 dts 同名的节点,但是驱动一直加载不成功?	10
	2.3	3. 如果看到同一 pin 脚被两个节点复用,是否有问题?	10
	2.4	为何 sys_config.fex 相比以往的 Android 版本配置少了这么多?	11

1 概述

本文档目的是介绍 sys_config.fex 各个节点配置的意义,让用户明确掌握 sys_config.fex 配置和使用方法。使用于 Android 10 平台,本文以 T509 作为例子说明。

1.1 系统 (SYSTEM)

1.1.1 [product]

配置项	配置项含义		R
version machine	sdk 版本号 sdk 代号	6	

配置举例:

version = "100"
machine = "evb"

1.1.2 [platform]

配置项	配置项含义
eraseflag debug_mode	量产时是否擦除。0:不擦,1:擦除(仅对量产有效,OTA 无效) uboot 打印等级。0=LOG_LEVEL_NONE; 1=LOG_LEVEL_ERROR; 2=LOG_LEVEL_WARNING; 3=LOG_LEVEL_NOTICE;4=LOG_LEVEL_INFO

配置举例:

eraseflag = 1
debug_mode = 3

1.1.3 [target]

配置项	配置项含义
boot_clock	启动频率,单位:MHz
storage_type	启动介质选择 0: nand, 1: card0,2: card2,-1 (defualt):auto scan
burn_key	启动时是否需要烧 key 0: 不烧 1: 烧
$dragonboard_test$	是否编译支持卡启动的 dragonboard 固件。1:是 0:否
power_mode	axp_type, 0:axp81X, 1:dummy, 2:axp806, 3:axp2202, 4:axp858

配置举例:

```
boot_clock
                = 1008
storage_type
                = -1
burn_key
dragonboard\_test= 0
power_mode
                 = 4
```

1.1.4 [power_sply]

dragonboard_t power_mode	test= 0 = 4
1.1.4 [pc	ower_sply]
配置项	配置项含义
dcdc1_vol	在 uboot 阶段生效,前面三位为 100 表示开启电压设置,1003300 表示 3.3v
$dcdc2_vol$	dcdc2_vol 电压设置,在 uboot 阶段生效
$dcdc6_vol$	dcdc6_vol 电压设置,在 uboot 阶段生效
	xxx_vol 电压设置,在 uboot 阶段生效
dc1sw_vol	dc1sw_vol 电压设置,在 uboot 阶段生效

配置举例:

dcdc1_vol	= 1003300	
dcdc2_vol	= 1000940	
dcdc6_vol	= 1003300	
aldo1_vol	= 1003300	
aldo2_vol	= 1001800	
aldo3_vol	= 1003300	
aldo4_vol	= 1003300	
aldo5_vol	= 1001800	
bldo1_vol	= 1001800	
bldo2_vol	= 1001000	
bldo4_vol	= 1001800	
bldo5_vol	= 1001800	
cldo1_vol	= 1001800	
cldo2_vol	= 1002500	
cldo3_vol	= 1001200	
cldo4_vol	= 1001200	
dc1sw_vol	= 1003300	

1.1.5 [card_boot]

配置项	配置项含义
logical_start	启动卡逻辑起始扇区
sprite_gpio0	卡量产,一键 recovery led 指示灯 GPIO 配置

配置举例:

```
logical_start = 40960
sprite_gpio0 = port:PH6<1><default><1>
```

1.1.6 [card0_boot_para]

配置项	配置项含义
card_ctrl	卡量产相关的控制器选择 0
card_high_speed	速度模式 0 为低速, 1 为高速
card_line	4: 4 线卡, 8: 8 线卡
sdc_d1	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d0	sdc 卡数据 0 线信号的 GPIO 配置
sdc_clk	sdc 卡时钟信号的 GPIO 配置
sdc_cmd	sdc 命令信号的 GPIO 配置
sdc_d3	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

```
card_ctrl = 0
card_high_speed = 1
card_line = 4
sdc_d1 = port:PF0<2><1><3><default>
sdc_d0 = port:PF1<2><1><3><default>
sdc_clk = port:PF2<2><1><3><default>
sdc_clk = port:PF3<2><1><3><default>
sdc_cmd = port:PF3<2><1><3><default>
sdc_cmd = port:PF3<2><1><3><default>
sdc_d3 = port:PF4<2><1><3><default>
sdc_d3 = port:PF5<2><1><3><default>
sdc_d2 = port:PF5<2><1><3><default>
```

1.1.7 [card2_boot_para]

配置项	配置项含义
card_ctrl	卡启动控制器选择 2
card_high_speed	速度模式 0 为低速,1 为高速
card_line	4: 4 线卡, 8: 8 线卡
sdc_ds	ds 信号的 GPIO 配置
sdc_d1	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d0	sdc 卡数据 0 线信号的 GPIO 配置
sdc_clk	sdc 卡时钟信号的 GPIO 配置
sdc_cmd	sdc 命令信号的 GPIO 配置
sdc_d3	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2	sdc 卡数据 2 线信号的 GPIO 配置
sdc_d4	sdc 卡数据 4 线信号的 GPIO 配置
sdc_d5	sdc 卡数据 5 线信号的 GPIO 配置
sdc_d6	sdc 卡数据 6 线信号的 GPIO 配置
sdc_d7	sdc 卡数据 7 线信号的 GPIO 配置
sdc_emmc_rst	emmc_rst 信号的 GPIO 配置
sdc_ex_dly_used	ex_dly_used 信号
sdc_io_1v8	sdc_io_1v8 高速 emmc 模式配置
	·MIM
2	

```
card_ctrl
card_high_speed = 1
{\sf card\_line}
sdc\_clk
                   port:PC5<3><1><3><default>
                   port:PC6<3><1><3><default>
sdc\_cmd
                  port:PC10<3><1><3><default>
sdc_d0
                  port:PC13<3><1><3><default>
sdc_d1
                   port:PC15<3><1><3><default>
sdc d2
                 = port:PC8<3><1><3><default>
sdc_d3
                   port:PC9<3><1><3><default>
sdc_d4
sdc_d5
                 = port:PC11<3><1><3><default>
sdc_d6
                 = port:PC14<3><1><3><default>
                 = port:PC16<3><1><3><default>
sdc\_d7
{\tt sdc\_emmc\_rst}
                 = port:PC1<3><1><3><default>
                 = port:PC0<3><2><3><default>
sdc\_ds
sdc_ex_dly_used = 2
sdc_io_1v8 = 1
```

1.1.8 [gpio_bias]

配置项	配置项含义	
pc_bias	emmc 电压配置,	高速 emmc 才使用

pc bias	= 1800		
olas	= 1800		

1.1.9 [uart_para]

配置项	配置项含义
uart_debug_port	Boot 串口控制器编号
uart_debug_tx	Boot 串口发送的 GPIO 配置
uart_debug_rx	Boot 串口接收的 GPIO 配置

配置举例:

```
uart_debug_port = 0
uart_debug_tx = port:PB09<2><1><default><default>
uart_debug_rx = port:PB10<2><1><default>><default>>
                                         UNET
```

1.1.10 [jtag_para]

配置项	配置项含义
jtag_enable	JTAG 使能
jtag_ms	测试模式选择输入 (TMS) 的 GPIO 配置
jtag_ck	测试时钟输入 (CLK) 的 GPIO 配置
jtag_do	测试数据输出 (TDO) 的 GPIO 配置
jtag_di	测试数据输出 (TDI) 的 GPIO 配置

配置举例:

jtag_enable	= 1
jtag_ms	<pre>= port:PH9<3><default><default><</default></default></pre>
jtag_ck	<pre>= port:PH10<3><default><default><</default></default></pre>
jtag_do	<pre>= port:PH11<3><default><default><</default></default></pre>
jtag_di	<pre>= port:PH12<3><default><default><</default></default></pre>

1.2 clockM 配置

配置项	配置项含义	
pll4	pll4 时钟设置	
pll6	pll6 时钟设置	

配置项	配置项含义
pll8	pll8 时钟设置
pll9	pll9 时钟设置
pll10	pll10 时钟设置

pll4	= 300	
pll6	= 600	
pll8	= 360	
pll4 pll6 pll8 pll9	= 297	
pll10	= 264	

1.3 DRAM 配置

1.3.1 [dram_para]

3.1 [dram_	_para]
配置项	配置项含义
dram_clk	DRAM 的时钟频率,单位为 MHz
dram_type	DRAM 类型:8 为 LPDDR4,由源厂调节,请勿修改
dram_zq	DRAM 控制器内部参数,由源厂调节,请勿修改
dram_odt_en	ODT 是否需要使能,为了省电,一般设置为 0, 由源厂调节,请勿修改
dram_mr0	DRAM CAS 值,可为 6,7,8,9; 由源厂调节,请勿修改
dram_xxx	由源厂调节,请勿修改

配置举例:

```
dram_clk
                  = 720
                  = 3
dram_type
                  = 0 \times 07070707
dram_dx_odt
dram_dx_dri
                  = 0x0c0c0c0c
dram_ca_dri
                  = 0x0e0e
dram_para0
                  = 0 \times 11121313
dram_para1
                  = 0 \times 30 FA
dram_para2
                  = 0 \times 0000
dram_mr0
                  = 0 \times 840
                  = 0x4
dram_mr1
dram_mr2
                  = 0x8
dram_mr3
                  = 0 \times 0
dram_mr4
                  = 0 \times 0
                  = 0 \times 0
dram_mr5
dram mr6
                  = 0 \times 0
                  = 0 \times 0
dram_mr11
dram_mr12
                  = 0 \times 0
dram_mr13
                  = 0 \times 0
```



```
dram_mr14
                   = 0 \times 0
dram\_mr16
                   = 0 \times 0
dram_mr17
                   = 0 \times 0
dram_mr22
                   = 0 \times 0
                   = 0 \times 0
dram_tpr0
dram_tpr1
                   = 0 \times 0
dram_tpr2
                  = 0 \times 0
dram_tpr3
                  = 0 \times 0
dram_tpr6
                  = 0x33808080
dram_tpr10
                   = 0 \times 002 f7777
dram_tpr11
                  = 0x0d0e120f
dram_tpr12
                  = 0 \times 14131414
dram_tpr13
                   = 0 \times 40
dram_tpr14
                   = 0x1f1e1b1f
```

1.4 UART

1.4.1 [uart0]

配置项	配置项含义
uart0_used	UART 使用控制:1 使用,0 不用
uart0_port	UART 端口号
uart0_type	2: 2 线模式;4: 4 线模式;8: 8 线模式。
uart0_tx	UART TX 的 GPIO 配置
uart0_rx	UART RX 的 GPIO 配置

配置举例:

uart0_used	= 1
uart0_port	= 0
uart0_type	= 2
uart0_tx	= port:PB09<2><1> <default><default></default></default>
uart0_rx	= port:PB10<2><1> <default><default></default></default>

1.5 NAND FLASH

1.5.1 [nand0_para]

配置项	配置项含义
nand_support_2ch	nand0 是否使能双通道
nand0_used	nand0 模块使能标志
nand0_we	nand0 写时钟信号的 GPIO 配置

配置项	配置项含义
nand0_ale	nand0 地址使能信号的 GPIO 配置
nand0_cle	nand0 命令使能信号的 GPIO 配置
nand0_ce1	nand0 片选 1 信号的 GPIO 配置
nand0_ce0	nand0 片选 0 信号的 GPIO 配置
nand0_nre	nand0 读时钟信号的 GPIO 配置
nand0_rb0	nand0 Read/Busy 1 信号的 GPIO 配置
nand0_rb1	nand0 Read/Busy 0 信号的 GPIO 配置
nand0_d0	nand0 数据总线信号的 GPIO 配置
nand0_d1	1
nand0_d2	1
nand0_d3	1
nand0_d4	1
nand0_d5	1
nand0_d6	1
nand0_d7	
nand0_ndqs	nand0 ddr 时钟信号的 GPIO 配置
nand0_ce2	nand0 片选 2 信号的 GPIO 配置
nand0_ce3	nand0 片选 3 信号的 GPIO 配置

```
nand0_support_2ch
                     = 0
nand0 used
                    = 0
nand0 we
                    = port:PC00<2><0><1><default>
                    = port:PC01<2><0><1><default>
nand0_ale
                    = port:PC02<2><0><1><default>
nand0_cle
                    = port:PC03<2><1><1><default>
nand0_ce0
                    = port:PC04<2><0><1><default>
nand0_nre
                    = port:PC05<2><1><1><default>
nand0_rb0
nand0_d0
                     port:PC06<2><0><1><default>
nand0_d1
                   = port:PC07<2><0><1><default>
nand0_d2
                    = port:PC08<2><0><1><default>
nand0 d3
                    = port:PC09<2><0><1><default>
nand0 d4
                    = port:PC10<2><0><1><default>
nand0_d5
                    = port:PC11<2><0><1><default>
nand0_d6
                    = port:PC12<2><0><1><default>
nand0_d7
                    = port:PC13<2><0><1><default>
nand0_ndqs
                      = port:PC14<2><0><1><default>
nand0_ce1
                     = port:PC15<2><1><1><default>
nand0_rb1
                   = port:PC16<2><1><1><default>
nand0_regulator1
                        = "vcc-nand"
nand0_regulator2
                        = "none"
nand0 cache level = 0x55aaaa55
nand0 flush cache num = 0x55aaaa55
nand0_capacity_level = 0x55aaaa55
nand0_id_number_ctl = 0x55aaaa55
nand0\_print\_level = 0x55aaaa55
nand0_p0 = 0x55aaaa55
nand0_p1 = 0x55aaaa55
```


 $nand0_p2 = 0x55aaaa55$ $nand0_p3 = 0x55aaaa55$

2 FAQ

2.1 1.sys_config.fex 跟 dts 配置同一个节点,会冲突吗?

答: sys_config.fex 的配置会覆盖 dts 的配置。

2.2 2. 为什么创建跟 dts 同名的节点,但是驱动一直加载不成功?

```
example:
[test_first]
test_used = 1
test_para = "first_test"
```

答: 这是因为该节点的 used 节点命名问题导致该节点可能没打开,used 节点的命名必须为"节点主键"+"_used",这样才能有效的覆盖 dts 里面 status 状态,避免 dts 里面 test_first 节点的 status 的状态为 disabled,导致该节点不可用,正确配置如下:

```
example:
[test_first]
test_first_used = 1
test_para = "first_test"
```

2.3 3. 如果看到同一 pin 脚被两个节点复用,是否有问题?

答:这个问题有以下两种可能。(1)首先判断两个节点的有没有同时开启,如果没有同时开启,就不会有问题。(2)如果两个节点同时开启,需要判断以下该节点被调用的阶段是不是相同。如果两个节点被调用的阶段不同,则没问题。例如以下例子 twi 在 boot 阶段调用,uart0 在 Linux kernel 调用,则此复用不会出现问题。

```
example:
[twi]
twi_port = 0
twi_scl = port:PH0<2><default><default>
twi_sda = port:PH1<2><default><default>
```



```
[uart0]
uart0_used = 1
uart0_port = 0
uart0_type = 2
uart0_tx = port:PH0<3><1><default><default>
uart0_rx = port:PH1<3><1><default>
```

注意: 如果两个节点被调用的阶段相同,则不允许复用。

2.4 为何 sys_config.fex 相比以往的 Android 版本配置少了这么多?

答: 自 Android 10 开始,使用 longan 设计以后,大部分 BSP 的配置将不再体现在 sys_config.fex,而是写到 board.dts 文件,但是 sys_config.fex 依然保留给客户配置,方法 不变。

著作权声明

珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。