1 Description of the connected component X_{φ} containing a TRSELP φ

1.1 Recollections on the moduli space of Langlands parameters

I assume the readers to be familiar with the theory of the moduli space of Langlands parameters, see for example [3, Section 3 and Section 4], or [4, Section 2 and Section 4]. (I could also recollect the theory in the appendix.)

Let us first fix some notations.

- Let $p \neq 2$ be a fixed prime number and $\ell \neq 2$ be a prime number different from p.
- Let F be a non-archimedean local field with residue characteristic $q = p^r$ for some $r \in \mathbb{Z}_{\geq 1}$.
- Let W_F be the Weil group of F, $I_F \subset W_F$ be the inertia subgroup, P_F be the wild inertia subgroup.
- Let $W_t := W_F/P_F$ be the tame Weil group.
- Let $I_t := I_F/P_F$ be the tame inertia subgroup.

Fix Fr $\in W_F$ any lift of the arithmetic Frobenius. I will abuse the notation and also denote Fr the image of Fr in W_t . Then $W_t \simeq I_t \rtimes \langle \operatorname{Fr} \rangle$. Here I_t is non-canonically isomorphic to $\prod_{p' \neq p} \mathbb{Z}_{p'}$, which is procyclic. We fix such an isomorphism

$$I_t \simeq \prod_{p' \neq p} \mathbb{Z}_{p'}. \tag{1}$$

This gives rise to a topological generator s_0 of I_t , which correspond to (1, 1, ...) under the above isomorphism (1). Let us recall the following important relation in I_F/P_F :

$$\operatorname{Fr} . s_0. \operatorname{Fr}^{-1} = s_0^q.$$
 (2)

In fact, this is true for any $s \in I_t$ instead of s_0 .

Let

$$W_t^0 := \langle s_0, \operatorname{Fr} \rangle = \mathbb{Z}[1/p]^{s_0} \rtimes \mathbb{Z}^{\operatorname{Fr}}$$

be the subgroup of W_t generated by s_0 and Fr. Denote $W_F^0 \subset W_F$ the preimage of W_t^0 under the natural projection $W_F \to W_t$. This is known as the discretization of the Weil group. To summarize, W_t^0 is generated by two elements Fr and s_0 with a single relation Fr. s_0 . Fr⁻¹ = s_0^q .

Let G be a connected split reductive group over F. Let \hat{G} be its dual group over \mathbb{Z} . Then the space of cocycles from the discretization

$$Z^{1}(W^{0}_{t}, \hat{G}) = \underline{\mathrm{Hom}}(W^{0}_{t}, \hat{G}) = \{(x, y) \in \hat{G} \times \hat{G} \mid yxy^{-1} = x^{q}\} \tag{3}$$

is an explicit closed subscheme of $\hat{G} \times \hat{G}$ (See [3, Section 3]). An important fact (See [3, Proposition 3.9]) is that over a \mathbb{Z}_{ℓ} -algebra R (the cases $R = \overline{\mathbb{F}_{\ell}}, \overline{\mathbb{Z}_{\ell}}, \overline{\mathbb{Q}_{\ell}}$ are most relevant for us), the restriction from W_t to W_t^0 induces an isomorphism

$$Z^{1}(W_{t}, \hat{G}) \simeq Z^{1}(W_{t}^{0}, \hat{G}).$$

Therefore, we can compute $Z^1(W_t, \hat{G})$ using the explicit formula (3) above. This is fundamental for the study of the moduli space of Langlands parameters $Z^1(W_t, \hat{G})$. I refer the readers to [3, Section 3 and Section 4] for the precise definition and properties of $Z^1(W_t, \hat{G})$.

(maybe add an example here)

Let I_F^{ℓ} be the prime-to- ℓ inertia subgroup of W_F , i.e., $I_F^{\ell} := \ker(t_{\ell})$, where

$$t_{\ell}: I_F \to I_F/P_F \simeq \prod_{p' \neq p} \mathbb{Z}_{p'} \to \mathbb{Z}_{\ell}$$

is the composition. In other words, it is the maximal subgroup of I_F with pro-order prime to ℓ . This property makes I_F^{ℓ} important when determining the connected components of $Z^1(W_F, \hat{G})$ over $\overline{\mathbb{Z}_{\ell}}$ (See [3, Theorem 4.2 and Subsection 4.6]).

1.2 Tame regular semisimple elliptic *L*-parameters

I want to define a class of L-parameters, called TRSELP, which roughly corresponds to depth-zero regular supercuspidal representations. Before that, let me define the concept of schematic centralizer, which will be used throughout the article.

Definition 1 (Schematic centralizer). Let H be an affine algebraic group over a ring R, Γ be a finite group. Let $u \in Z^1(\Gamma, H(R'))$ be a 1-cocycle for some R-algebra R'. Let

$$\alpha_u: H_{R'} \longrightarrow Z^1(\Gamma, H)_{R'} \qquad h \longmapsto hu(-)h^{-1}$$

be the orbit morphism. Then the schematic centralizer $C_H(u)$ is defined to be the fiber of α_u at u.

$$C_{H}(u) \longrightarrow H_{R'}$$

$$\downarrow \qquad \qquad \downarrow^{\alpha_{u}}$$

$$R' \stackrel{u}{\longrightarrow} Z^{1}(\Gamma, H)_{R'}$$

One can show that $C_H(u)(R'') = C_{H(R'')}(u)$ is the set-theoretic centralizer for all R'-algebra R'', see for example [4, Appendix A].

Remark. Note this is enough for our applications where Γ is more generally taken as a profinite group, because $u:\Gamma\to H$ usually factors through a finite quotient Γ' of Γ .

Let me now define a tame, regular semisimple, elliptic Langlands parameter (TRSELP for short) over $\overline{\mathbb{F}_{\ell}}$, roughly in the sense of [5, Section 3.4 and Section 4.1] in the case that G is F-split, but with $\overline{\mathbb{F}_{\ell}}$ -coefficients instead of \mathbb{C} -coefficients.

Definition 2. A tame regular semisimple elliptic L-parameter (TRSELP) over $\overline{\mathbb{F}_{\ell}}$ is a homomorphism $\varphi: W_F \to \hat{G}(\overline{\mathbb{F}_{\ell}})$ such that:

- 1. (smooth) $\varphi(I_F)$ is a finite subgroup of $\hat{G}(\overline{\mathbb{F}_{\ell}})$.
- 2. (Frobenius semisimple) $\varphi(\operatorname{Fr})$ is a semisimple element of $\hat{G}(\overline{\mathbb{F}_{\ell}})$.
- 3. (tame) The restriction of φ to P_F is trivial.
- 4. (elliptic) The identity component of the centralizer $C_{\hat{G}}(\varphi)^0$ is equal to the identity component of the center $Z(\hat{G})^0$.
- 5. (regular semisimple) The centralizer of the inertia $C_{\hat{G}}(\varphi|_{I_F})$ is a torus (in particular, connected).

Concretely, a TRSELP consists of the following data:

1. The restriction to the inertia $\varphi|_{I_F}$, which is a direct sum of characters of finite abelian groups since $I_F/P_F \simeq \varprojlim \mathbb{F}_{q^n}^*$ is compact abelian and that

$$\operatorname{Hom}_{\operatorname{Cont}}(I_F/P_F, \overline{\mathbb{F}_{\ell}}^*) \simeq \operatorname{Hom}_{\operatorname{Cont}}(\underline{\lim} \, \overline{\mathbb{F}_{q^n}}, \overline{\mathbb{F}_{\ell}}^*) \simeq \underline{\lim} \, \operatorname{Hom}_{\operatorname{Cont}}(\overline{\mathbb{F}_{q^n}}, \overline{\mathbb{F}_{\ell}}^*).$$

In particular, it factors through (the $\overline{\mathbb{F}_{\ell}}$ -points of) some maximal torus, say S. Then regular semisimple means that $C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F)) = S$.

2. The image of Frobenius $\varphi(\operatorname{Fr})$, which turns out to be an element of the normalizer $N_{\hat{G}(\overline{\mathbb{F}_\ell})}(S)$ (Since $\operatorname{Fr}.s.\operatorname{Fr}^{-1}=s^q\in I_t$ for any $s\in I_t$ implies that $\varphi(\operatorname{Fr})$ normalizes $C_{\hat{G}(\overline{\mathbb{F}_\ell})}(\varphi(I_F))=S.$). And "elliptic" means that the center $Z(\hat{G})$ has finite index in the centralizer $C_{\hat{G}}(\varphi)$. As we will see later, ellipticity implies that $\hat{G}(\overline{\mathbb{F}_\ell})$ acts transitively on the connected component $X_{\varphi}(\overline{\mathbb{F}_\ell})$ of the moduli space of L-parameters containing φ (See the proof of Lemma 6), which is essential for the description (roughly, see Theorem 2 for the precise statement)

$$[X_{\varphi}/\hat{G}] \simeq [*/\underline{S_{\varphi}}]$$

where $S_{\varphi} = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(W_F))$ is the centralizer of the whole L-parameter φ .

(Maybe add an example here)

Remark. 1. Let $\overline{\Lambda} \in \{\overline{\mathbb{Z}_{\ell}}, \overline{\mathbb{Q}_{\ell}}, \overline{\mathbb{F}_{\ell}}\}$. It is important for my purpose to distinguish between the set-theoretic centralizer (for example, $C_{\hat{G}(\overline{\Lambda})}(\varphi(I_F))$) and the schematic centralizer (for example, $C_{\hat{G}}(\varphi)$). However, I might still use \hat{G} to mean $\hat{G}(\overline{\Lambda})$ sometimes by abuse of notation, for which I

hope the readers could recognize. One reason for doing this is that \hat{G} is split over $\overline{\Lambda}$, hence \hat{G} is completely determined by its $\overline{\Lambda}$ -points. And many statements can either be phrased in terms of the $\overline{\Lambda}$ -scheme or its $\overline{\Lambda}$ -points (for example, 4 and 5 in Definition 2).

2. As we will see later in Theorem 1, $S = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F))$ turns out to be the $\overline{\mathbb{F}_{\ell}}$ -points of the split torus $T = C_{\hat{G}}(\psi|_{I_F^c})$ for some lift ψ of φ over $\overline{\mathbb{Z}_{\ell}}$.

1.3 Description of the component

Now given a TRSELP $\varphi \in Z^1(W_F, \hat{G}(\overline{\mathbb{F}_\ell}))$. Pick any lift $\psi \in Z^1(W_F, \hat{G}(\overline{\mathbb{Z}_\ell}))$ of φ , whose existence is ensured by the flatness of $Z^1(W_F, \hat{G})_{\overline{\mathbb{Z}_\ell}}$ (See Lemma 1). Let $\psi_\ell := \psi|_{I_F^\ell}$ denotes the restriction of ψ to the prime-to- ℓ inertia. Note that $\psi \in Z^1(W_F, \hat{G})$ factors through $N_{\hat{G}}(\psi_\ell)$ (Since I_F^ℓ is normal in W_F). Let $\overline{\psi}$ denotes the image of ψ in $Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_\ell)))$. Let X_φ be the connected component of $Z^1(W_F, \hat{G})_{\overline{\mathbb{Z}_\ell}}$ containing φ . Note X_φ also contains ψ since ψ specializes to φ . So we sometimes also denote X_φ as X_ψ .

Theorem 1. Let $\varphi \in Z^1(W_F, \hat{G}(\overline{\mathbb{F}_\ell}))$ be a TRSELP over $\overline{\mathbb{F}_\ell}$. Let $\psi \in Z^1(W_F, \hat{G}(\overline{\mathbb{Z}_\ell}))$ be any lifting of φ . Then at least when the center $Z(\hat{G})$ is smooth over $\overline{\mathbb{Z}_\ell}$, the connected component $X_{\varphi} = X_{\psi}$ of $Z^1(W_F, \hat{G})_{\overline{\mathbb{Z}_\ell}}$ containing φ is isomorphic to

$$\left(\hat{G} \times C_{\hat{G}}(\psi_{\ell})^{0} \times \mu\right) / C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}},$$

where

- 1. $C_{\hat{G}}(\psi_{\ell})^0$ is the identity component of the schematic centralizer $C_{\hat{G}}(\psi_{\ell})$, which turns out to be a split torus T over $\overline{\mathbb{Z}_{\ell}}$ with $\overline{\mathbb{F}_{\ell}}$ -points $S = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F))$.
- 2. μ is the connected component of $T^{\text{Fr}=(-)^q}$ (the subscheme of T on which Fr acts by raising to q-th power) containing 1 (See [3, Example 3.14]), which is a product of some $\mu_{\ell^{k_i}}$ (the group scheme of ℓ^{k_i} -th roots of unity over $\overline{\mathbb{Z}_\ell}$), $k_i \in \mathbb{Z}_{\geq 0}$. Note that μ could be trivial, depending on \hat{G} and some congruence relations between q, ℓ .
- 3. $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ is the (schematic) stabilizer (definition see Appendix. Could be defined by Yoneda) of $\overline{\psi}$ in $C_{\hat{G}}(\psi_{\ell})$.

In other words, we have the following isomorphism of schemes over $\overline{\mathbb{Z}_{\ell}}$:

$$X_{\varphi} \simeq \left(\hat{G} \times T \times \mu\right)/T.$$

And we will specify in the next subsection what the T-action on $(\hat{G} \times T \times \mu)$ is.

Proof. First, recall by [3, Subsection 4.6],

$$X_{\psi} \simeq \left(\hat{G} \times Z^{1}(W_{F}, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}}\right) / C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}},$$

where $Z^1(W_F,N_{\hat{G}}(\psi_\ell))_{\psi_\ell,\overline{\psi}}$ denotes the space of cocycles whose restriction to I_F^ℓ equals ψ_ℓ and whose image in $Z^1(W_F,\pi_0(N_{\hat{G}}(\psi_\ell)))$ is $\overline{\psi}$. Explanation: Recall (See [3, Subsection 4.6]) first that the component $X_\varphi = X_\psi$ morally consists of the L-parameters whose restriction to I_F^ℓ is \hat{G} -conjugate to ψ_ℓ and whose image in $Z^1(W_F,\pi_0(N_{\hat{G}}(\psi_\ell)))$ is \hat{G} -conjugate to $\overline{\psi}$. Hence

$$X_{\varphi} \cong (\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}})/C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}} \qquad g\eta(-)g^{-1} \longleftrightarrow (g, \eta),$$

with $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ acting on $(\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}})$ by

$$(t, (g, \psi')) \mapsto (gt^{-1}, t\psi'(-)t^{-1}),$$

where $t \in C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ and $(g, \psi') \in (\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}})$. Second, $\eta.\psi \leftrightarrow \eta$ defines an isomorphism

$$Z^{1}(W_{F}, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}} \simeq Z^{1}_{Ad(\psi)}(W_{F}, N_{\hat{G}}(\psi_{\ell})^{0})_{1_{I_{F}^{\ell}}} =: Z^{1}_{Ad(\psi)}(W_{F}, N_{\hat{G}}(\psi_{\ell})^{0})_{1}$$

where $Z^1_{Ad(\psi)}(W_F,N_{\hat{G}}(\psi_\ell))$ means the space of cocycles with W_F acting on $N_{\hat{G}}(\psi_\ell)$ via conjugacy action through ψ , and the subscript $1_{I_F^\ell}$ or 1 means the cocycles whose restriction to I_F^ℓ is trivial. Explanation: This is clear by unraveling the definitions: two cocycles whose restriction to I_F^ℓ are both ψ_ℓ differ by something whose restriction to I_F^ℓ is trivial; two cocycles whose pushforward to $Z^1(W_F,\pi_0(N_{\hat{G}}(\psi_\ell)))$ are both $\overline{\psi}$ differ by something whose pushforward to $Z^1(W_F,\pi_0(N_{\hat{G}}(\psi_\ell)))$ is trivial, i.e., which factors through the identity component $N_{\hat{G}}(\psi_\ell)^0$.

Next, I show that $C_{\hat{G}}(\psi_{\ell})$ is a split torus over $\overline{\mathbb{Z}_{\ell}}$. By [3, Subsection 3.1], the centralizer $C_{\hat{G}}(\psi_{\ell})$ is generalized reductive (See Lemma 2), hence split over $\overline{\mathbb{Z}_{\ell}}$, and $N_{\hat{G}}(\psi_{\ell})^0 = C_{\hat{G}}(\psi_{\ell})^0$. So we can determine $C_{\hat{G}}(\psi_{\ell})$ by computing its $\overline{\mathbb{F}_{\ell}}$ -points. Indeed,

$$C_{\hat{G}}(\psi_{\ell})(\overline{\mathbb{F}_{\ell}}) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F^{\ell})) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F)),$$

where the last equality follows since I_F/I_F^ℓ doesn't contribute to the image of φ (See Lemma 3). Therefore, $C_{\hat{G}}(\psi_\ell)$ is a split torus over $\overline{\mathbb{Z}}_\ell$ with $\overline{\mathbb{F}}_\ell$ -points $S = C_{\hat{G}}(\overline{\mathbb{F}}_\ell)$. Denote $T = C_{\hat{G}}(\psi_\ell)$. In particular, $C_{\hat{G}}(\psi_\ell)$ is connected, hence

$$N_{\hat{G}}(\psi_{\ell})^0 = C_{\hat{G}}(\psi_{\ell})^0 = C_{\hat{G}}(\psi_{\ell}) = T.$$

Now we could compute

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0) = Z^1_{Ad(\psi)}(W_F, T) \simeq T \times T^{\text{Fr}=(-)^q},$$

where the last isomorphism is given by $\eta \mapsto (\eta(\operatorname{Fr}), \eta(s_0))$, where $s_0 \in W_t^0$ is the topological generator of I_t fixed before (See [3, Example 3.14]).

Then we show that the identity component of $T^{\operatorname{Fr}=(-)^q}$ gives μ in the statement of the theorem. Note $T^{\operatorname{Fr}=(-)^q}$ is a diagonalizable group scheme over $\overline{\mathbb{Z}_\ell}$ of dimension zero (This can be seen either by $\dim Z^1(W_F/P_F,T)=\dim T$, or by noticing that $\eta(s_0)\in T^{\operatorname{Fr}=(-)^q}$ is semisimple with finitely many possible eigenvalues), hence of the form $\prod_i \mu_{n_i}$ for some $n_i\in\mathbb{Z}_{\geq 0}$. Hence its connected component $(T^{\operatorname{Fr}=(-)^q})^0$ over $\overline{\mathbb{Z}_\ell}$ is of the form $\prod_i \mu_{\ell^{k_i}}$, with k_i maximal such that ℓ^{k_i} divides n_i . Therefore,

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1 \simeq (T \times T^{\text{Fr}=(-)^q})^0 \simeq T \times (T^{\text{Fr}=(-)^q})^0 \simeq T \times \mu,$$

(See Lemma 4 for the first isomorphism¹) where μ is of the form $\prod_{i} \mu_{\ell^{k_i}}$.

Finally, we show that $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}} = C_{\hat{G}}(\psi_{\ell})$. Recall $C_{\hat{G}}(\psi_{\ell})$ acts on $Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))$ by conjugation, inducing an action of $C_{\hat{G}}(\psi_{\ell})$ on $Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_{\ell})))$. And $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ is by definition the stabilizer of $\overline{\psi} \in Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_{\ell})))$ in $C_{\hat{G}}(\psi_{\ell})$. Now $C_{\hat{G}}(\psi_{\ell}) = T$ is connected, hence acts trivially on the component group $\pi_0(N_{\hat{G}}(\psi_{\ell}))^2$, hence also acts trivially on $Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_{\ell})))$. Therefore, the stabilizer $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}} = C_{\hat{G}}(\psi_{\ell})$ (Check).

Above all, we have

$$X_{\varphi} \simeq (\hat{G} \times Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_{\ell})^0)_1)/C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}} \simeq (\hat{G} \times T \times \mu)/T.$$

1.4 The T-action on $(\hat{G} \times T \times \mu)$

For later use, let me make it explicit the T-action on $(\hat{G} \times T \times \mu)$.

Recall (See [3, Subsection 4.6]) first that the component $X_{\varphi} = X_{\psi}$ morally consists of the L-parameters whose restriction to I_F^{ℓ} is \hat{G} -conjugate to ψ_{ℓ} and whose image in $Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_{\ell})))$ is \hat{G} -conjugate to $\overline{\psi}$. Hence X_{φ} is isomorphic to

$$(\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_\ell))_{\psi_\ell, \overline{\psi}})/C_{\hat{G}}(\psi_\ell)_{\overline{\psi}}$$

via $g\eta(-)g^{-1} \longleftrightarrow (g,\eta)$, with $C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ acting on $(\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell},\overline{\psi}})$ by

$$(t,(g,\psi')) \mapsto (gt^{-1},t\psi'(-)t^{-1}),$$

where $t \in C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}} \simeq T$ and $(g, \psi') \in (\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}})$. Next, recall that

$$Z^{1}(W_{F}, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}} \simeq Z^{1}_{Ad\psi}(W_{F}, N_{\hat{G}}(\psi_{\ell})^{0})_{1} \simeq T \times \mu \quad \eta.\psi \longleftrightarrow \eta \mapsto (\eta(\operatorname{Fr}), \eta(s_{0})).$$

¹This can be rewritten more elegantly if I have time, with as less dependence on [3] as possible.

 $^{^2\}mathrm{Explain}$ this if have time

Let's focus on the isomorphism $\eta.\psi \leftrightarrow \eta$:

$$Z^{1}(W_{F}, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}} \simeq Z^{1}_{Ad\psi}(W_{F}, N_{\hat{G}}(\psi_{\ell})^{0})_{1}.$$

Recall that $T \subset \hat{G}$ acts on $Z^1(W_F, N_{\hat{G}}(\psi_\ell))_{\psi_\ell, \overline{\psi}}$ via conjugation. Hence the above isomorphism induces an T-action on $Z^1_{Ad\psi}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1$, by

$$(t,\eta) \mapsto (t(\eta\psi(-))t^{-1})\psi^{-1}.$$

Hence in $(\hat{G} \times T \times \mu)/T$, we compute by tracking the above isomorphisms that

- 1. T acts on \hat{G} via $(t,g) \mapsto gt^{-1}$.
- 2. $T = C_{\hat{G}}(\psi_{\ell})_{\overline{\psi}}$ acts on $T \subset (T \times \mu)$ (corresponds to $\eta(\text{Fr})$) by twisted conjugacy (due to the isomorphisms $\eta.\psi \leftarrow \eta \mapsto (\eta(\text{Fr}), \eta(s_0))$), i.e.,

$$(t,t') \mapsto \left(t(t'n)t^{-1}\right)n^{-1} = tt'(nt^{-1}n^{-1}) = t(nt^{-1}n^{-1})t' = (tnt^{-1}n^{-1})t',$$

where $n = \psi(\text{Fr})$; Note here n, a prior lies in \hat{G} , actually lies in $N_{\hat{G}}(T)$ (Since $\text{Fr.s.} \, \text{Fr}^{-1} = s^q$ implies that $\psi(\text{Fr})$ normalizes $C_{\hat{G}}(\psi|_{I_F^{\ell}}) = T$. Check!). To summarize, $t \in T$ acts on T via multiplication by $tnt^{-1}n^{-1}$.

3. T acts trivially on μ . This is because $\eta(s_0) \in T$ and $\psi(s_0) \in T$ (Check!).

On the other hand, recall we have the natural \hat{G} -action on $Z^1(W_F, \hat{G})$ by conjugation, hence the \hat{G} -action on this component X_{φ} . Under the isomorphism $X_{\varphi} \simeq (\hat{G} \times T \times \mu)/T$, the \hat{G} -action becomes

$$(g',(g,t,m))\mapsto (g'g,t,m)$$
, for any $g'\in \hat{G}$ and $(g,t,m)\in (\hat{G}\times T\times \mu)/T$.

Note that the T-action and the \hat{G} -action on $(\hat{G} \times T \times \mu)$ commute with each other, we thus have the following:

Proposition 1.

$$[X_\varphi/\hat{G}] = \left[\left((\hat{G} \times T \times \mu)/T \right)/\hat{G} \right] \simeq \left[\left((\hat{G} \times T \times \mu)/\hat{G} \right)/T \right] \simeq [(T \times \mu)/T],$$

with $t \in T$ acting on T via multiplication by $tnt^{-1}n^{-1}$, and $t \in T$ acting trivially on μ .

1.5 Some lemmas

Lemma 1. Let $\varphi' \in Z^1(W_t, \hat{G}(\overline{\mathbb{F}_\ell}))$. Then there exists $\psi' \in Z^1(W_t, \hat{G}(\overline{\mathbb{Z}_\ell}))$ such that ψ' is a lift of φ' .

Proof. In the statement, $Z^1(W_t, \hat{G})$ is the abbreviation for $Z^1(W_t, \hat{G})_{\overline{\mathbb{Z}_\ell}}$. Recall that $Z^1(W_t, \hat{G}) \to \overline{\mathbb{Z}_\ell}$ is flat (See [3, Proposition 3.3]), hence generalizing (See Stack Project, 01U2). Therefore, given $\varphi' \in Z^1(W_t, \hat{G}(\overline{\mathbb{F}_\ell}))$, there exists $\xi \in Z^1(W_t, \hat{G}(\overline{\mathbb{Q}_\ell}))$ such that ξ specializes to φ' . In other words, $\ker(\xi) \subset \ker(\varphi')$. I'm going to show that $\xi : W_t \to \hat{G}(\overline{\mathbb{Q}_\ell})$ factors through $\hat{G}(\overline{\mathbb{Z}_\ell})$.

This is true by the following more general statement: Let $Y = \operatorname{Spec}(R)$ be an affine scheme over $\overline{\mathbb{Z}_\ell}$, let $y_\eta \in Y(\overline{\mathbb{Q}_\ell})$ specializing to $y_s \in Y(\overline{\mathbb{F}_\ell})$. Then $y_\eta \in Y(\overline{\mathbb{Q}_\ell}) = \operatorname{Hom}(R, \overline{\mathbb{Q}_\ell})$ factors through $\overline{\mathbb{Z}_\ell}$.

To prove the above statement, let $\mathfrak{p}:=\ker(y_{\eta})$ and $\mathfrak{q}:=\ker(y_{s})$ be the corresponding prime ideas. Then " y_{η} specializes to y_{s} " translates to " $\mathfrak{p}\subset\mathfrak{q}$ ". Recall that we are going to show that $y_{\eta}:R\to\overline{\mathbb{Q}_{\ell}}$ factors through $\overline{\mathbb{Z}_{\ell}}$. We argue by contradiction. Otherwise there is some element $f\in R$ mapping to $\ell^{-m}u$ for some $m\in\mathbb{Z}_{\geq 1}$ and $u\in\overline{\mathbb{Z}_{\ell}}^{*}$. Hence

$$\ell^m u^{-1} f - 1 \in (y_\eta) \subset \ker(y_s). \tag{4}$$

However, $\ell \in \ker(y_s)$ since y_s lives on the special fiber. This together with equation 4 implies that $1 \in \ker(y_s)$. Contradiction!

Lemma 2. The schematic centralizer $C_{\hat{G}}(\psi_{\ell})$ is a generalized reductive group scheme over $\overline{\mathbb{Z}_{\ell}}$.

Proof. To invoke [3, Lemma 3.2], I first show that

$$C_{\hat{G}}(\psi_{\ell}) = C_{\hat{G}}(\psi(I_F^{\ell})),$$

where $C_{\hat{G}}(\psi(I_F^{\ell}))$ is the schematic centralizer of the subgroup $\psi(I_F^{\ell}) \subset \hat{G}(\overline{\mathbb{Z}_{\ell}})$ in \hat{G} . This can be checked by Yoneda Lemma on R-valued points for any $\overline{\mathbb{Z}_{\ell}}$ -algebra R.

Then we could conclude by [3, Lemma 3.2]. Indeed, ψ_{ℓ} factors through some finite quotient Q of I_F^{ℓ} , which has order invertible in the base $\overline{\mathbb{Z}_{\ell}}$. So the assumptions of [3, Lemma 3.2] are satisfied.

Some explanations to use [3, Lemma 3.2]:

- 1. While [3, Lemma 3.2] is phrased in the setting that R is a normal subring of a number field, it still works for $\overline{\mathbb{Z}_\ell} \subset \overline{\mathbb{Q}_\ell}$ instead of $\mathbb{Z} \subset \mathbb{Q}$. Indeed, ψ_ℓ factors through some finite quotient Q of I_F^ℓ , say of order |Q| = N (Note N is coprime to ℓ since Q is a quotient of I_F^ℓ). Then we could use [3, Lemma 3.2] to conclude that $C_{\hat{G}}(\psi_\ell)$ is generalized reductive over $\mathbb{Z}[1/pN]$ (Check!). Hence $C_{\hat{G}}(\psi_\ell)$ is also generalized reductive over $\overline{\mathbb{Z}_\ell}$ by base change.
- 2. There is also a small issue that $\overline{\mathbb{Z}_{\ell}}$ is not finite over \mathbb{Z}_{ℓ} , but this can be resolved since everything is already defined over some sufficiently large finite extension \mathcal{O} of \mathbb{Z}_{ℓ} .

Lemma 3.

$$C_{\hat{G}}(\psi_{\ell})(\overline{\mathbb{F}_{\ell}}) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F^{\ell})) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F)).$$

Proof. The first equation is by definition (and that $C_{\hat{G}}(\psi_{\ell})$ represents the settheoretic centralizer).

For the second equation, note that $\varphi|_{I_t} = \gamma_1 + ... + \gamma_d$ is a direct sum of characters (Since $I_t \simeq \prod_{p' \neq p} \mathbb{Z}_{p'}$), so it suffices to show that each γ_i is trivial on the summand \mathbb{Z}_ℓ of $I_t \simeq \prod_{p' \neq p} \mathbb{Z}_{p'}$. Indeed,

$$\operatorname{Hom}_{\operatorname{Cont}}(\mathbb{Z}_{\ell},\overline{\mathbb{F}_{\ell}}^*) = \operatorname{Hom}_{\operatorname{Cont}}(\varprojlim \mathbb{Z}/\ell^n\mathbb{Z},\overline{\mathbb{F}_{\ell}}^*) = \varinjlim \operatorname{Hom}(\mathbb{Z}/\ell^n\mathbb{Z},\overline{\mathbb{F}_{\ell}}^*) = \{1\}.$$

Lemma 4. $Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1 \simeq (T \times T^{\text{Fr}=(-)^q})^0$.

Proof. I have omitted from the notations but here everything is over $\overline{\mathbb{Z}}_{\ell}$. Recall that $N_{\hat{G}}(\psi_{\ell})^0 = C_{\hat{G}}(\psi_{\ell})^0 = T$ and that

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0) \simeq T \times T^{\text{Fr}=(-)^q}.$$

By [3, Section 5.4, 5.5], $Z^1_{Ad(\psi)}(W_F,N_{\hat{G}}(\psi_\ell)^0)_1$ is connected (over $\overline{\mathbb{Z}_\ell}$). I check here that the assumptions of [3, Section 5.4, 5.5] are satisfied. Indeed, since $N_{\hat{G}}(\psi_\ell)^0 = T$ is a connected torus, the W^0_t -action on T automatically fixes a Borel pair of T. Moreover, s_0 acts trivially on $N_{\hat{G}}(\psi_\ell)^0 = T$ via ψ , so in particular s_0 (which is denoted by s in [3, Section 5.5]) has order a power of ℓ (which is $1 = \ell^0$).

Therefore,

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1 \subset Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)^0 \simeq (T \times T^{\operatorname{Fr}=(-)^q})^0.$$

By [3, Section 4.6]

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1 \hookrightarrow Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)$$

is open and closed. This is done by considering the restriction to the prime-to- ℓ inertia I_F^{ℓ} , and then use [3, Theorem 4.2].

Therefore,

$$Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)_1 = Z^1_{Ad(\psi)}(W_F, N_{\hat{G}}(\psi_\ell)^0)^0 \simeq (T \times T^{\operatorname{Fr}=(-)^q})^0$$

2 Main Theorem: description of $[X_{\varphi}/\hat{G}]$

Let F be a non-archimedean local field, G be a connected split reductive group over F. Let $\varphi \in Z^1(W_F, \hat{G}(\overline{\mathbb{F}_\ell}))$ be a tame, regular semisimple, elliptic Lparameter (TRSELP for short). Recall that this means that the centralizer

$$C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F)) =: S \subset \hat{G}(\overline{\mathbb{F}_{\ell}})$$

is a maximal torus, and $\varphi(\operatorname{Fr}) \in N_{\hat{G}}(S)$ gives rise to an element $w = \overline{\varphi(\operatorname{Fr})} \in N_{\hat{G}}(S)/S$ in the Weyl group (and that φ is tame and elliptic).

Assume that

- 1. The center $Z(\hat{G})$ is smooth over $\overline{\mathbb{Z}_{\ell}}$.
- 2. $Z(\hat{G})$ is finite.

Let $\psi \in Z^1(W_F, \hat{G}(\overline{\mathbb{Z}_\ell}))$ be any lifting of φ . Let ψ_ℓ denotes the restriction $\psi|_{I_F^\ell}$, and $\overline{\psi}$ denotes the image of ψ in $Z^1(W_F, \pi_0(N_{\hat{G}}(\psi_\ell)))$. Recall that the schematic centralizer $C_{\hat{G}}(\psi_\ell) = T$ is a split torus over $\overline{\mathbb{Z}_\ell}$ with $\overline{\mathbb{F}_\ell}$ -points $C_{\hat{G}}(\overline{\mathbb{F}_\ell})(\varphi(I_F)) = S$.

For later use, I record the following lemma – w can also be defined in terms of ψ instead of φ . This is helpful because we will reduce to a computation on the special fiber later. First, notice that since T is a split torus over $\overline{\mathbb{Z}_{\ell}}$ with $\ell \neq 2$, we can identify

$$\left(N_{\hat{G}}(T)/T\right)(\overline{\mathbb{Z}_{\ell}}) \simeq \left(N_{\hat{G}}(T)/T\right)(\overline{\mathbb{F}_{\ell}}),$$

and denote it by Ω . (See Lemma 8 below)

Remark. Lemma 8 below shows that $N_{\hat{G}}(T)/T$ is representable by a group scheme which is split over $\overline{\mathbb{Z}}_{\ell}$. Therefore, we will slightly abuse notations and use $\Omega, N_{\hat{G}}(T)/T, N_{\hat{G}}(S)/S$ interchangeably.

Lemma 5. The image of $\varphi(Fr)$ and $\psi(Fr)$ in the Weyl group Ω agree, hence giving a well defined element w in the Weyl group Ω . (Check carefully!)

Proof. Let

$$\Omega = (N_{\hat{G}}(T)/T) (\overline{\mathbb{Z}_{\ell}}) = (N_{\hat{G}}(T)/T) (\overline{\mathbb{F}_{\ell}})$$

as above and $\underline{\Omega}$ be the associated constant group scheme. Since ψ is a lift of φ , $\psi(\operatorname{Fr})$ specializes to $\varphi(\operatorname{Fr})$ in $N_{\hat{G}}(T)$. Then the lemma follows since

$$N_{\hat{G}}(T) \to N_{\hat{G}}(T)/T = \underline{\Omega}$$

is a morphism of schemes, hence the following diagram commutes:

Our main theorem is the following.

Theorem 2. Let $X_{\varphi}(=X_{\psi})$ be the connected component of $Z^1(W_F, \hat{G})_{\overline{\mathbb{Z}_{\ell}}}$ containing φ (hence also containing ψ). The we have isomorphisms of quotient stacks

$$[X_{\varphi}/\hat{G}] \simeq [(T \times \mu)/T] \simeq [*/C_T(n)] \times \mu,$$

where $C_T(n)$ is the schematic centralizer of $n = \psi$ in $T = C_{\hat{G}}(\psi|_{I_F^{\ell}})$, and $\mu = \prod_{i=1}^m \mu_{\ell^{k_i}}$ for some $k_i \in \mathbb{Z}_{\geq 1}$, $m \in \mathbb{Z}_{\geq 0}$ is a product of group schemes of roots of unity.

If we moreover assume that ℓ doesn't divide the order of $w=\overline{\varphi({\rm Fr})}$ in the Weyl group $N_{\hat G}(S)/S$, then

$$[X_{\varphi}/\hat{G}] \simeq [(T \times \mu)/T] \simeq [*/S_{\varphi}] \times \mu,$$

where $S_{\varphi} = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(W_F))$, and $\underline{S_{\varphi}}$ is the corresponding constant group scheme.

Proof. Recall that X_{φ} is isomorphic to the contracted product

$$(\hat{G} \times Z^1(W_F, N_{\hat{G}}(\psi_\ell))_{\psi_\ell, \overline{\psi}})/C_{\hat{G}}(\psi_\ell)_{\overline{\psi}},$$

and that $\eta.\psi \leftarrow \eta \mapsto (\eta(Fr), \eta(s_0))$ induces isomorphisms

$$Z^{1}(W_{F}, N_{\hat{G}}(\psi_{\ell}))_{\psi_{\ell}, \overline{\psi}} \simeq Z^{1}_{Ad\psi}(W_{F}, N_{\hat{G}}(\psi_{\ell})^{0})_{1} \simeq T \times \mu.$$

This implies that $[X/\hat{G}] \simeq [(T \times \mu)/T]$ with T acting on T by twisted conjugacy:

$$(t,t') \mapsto \left(t(t'n)t^{-1}\right)n^{-1} = tt'(nt^{-1}n^{-1}) = t(nt^{-1}n^{-1})t' = (tnt^{-1}n^{-1})t',$$

where $n = \psi(\text{Fr})$. In other words, T acts on T via multiplication by $tnt^{-1}n^{-1}$. And T acts trivially on μ (See Proposition 1).

So we are reduced to compute [T/T] with respect to a nice action of the split torus T on T, which should be and turns out to be very explicit.

For clarification, let me denote the source torus T by $T^{(1)}$ and the target torus T by $T^{(2)}$. Consider the morphism

$$f: T^{(1)} = T \longrightarrow T = T^{(2)}$$
 $s \longmapsto sns^{-1}n^{-1}$.

This is surjective on $\overline{\mathbb{F}_{\ell}}$ -points by our assumption 2 that $Z(\hat{G})$ is finite and φ is elliptic (See Lemma 6 below). Hence f is an epimorphism in the category of diagonalizable $\overline{\mathbb{Z}_{\ell}}$ -group schemes (See the same Lemma 6 below)(maybe add an appendix on diagonalizable group schemes?). Therefore, f induces an isomorphism

$$T^{(1)}/\ker(f) \simeq T^{(2)}$$
 (5)

as diagonalizable $\overline{\mathbb{Z}_{\ell}}$ -group schemes. Moreover, if we let $t \in T$ act on $T^{(1)}$ by left multiplication by t, and on $T^{(2)}$ via multiplication by $(tnt^{-1}n^{-1})$, this isomorphism induced by f is T-equivariant.

Note $T^{(1)} = T$ is commutative, so the T-action (via multiplication by $tnt^{-1}n^{-1}$) and the ker(f)-action (via left multiplication) on T commutes with each other. Hence by the T-equivariant isomorphism (5), we have

$$[T/T] = [T^{(2)}/T] \simeq \left[\left(T^{(1)}/\ker(f) \right)/T \right] \simeq \left[\left(T^{(1)}/T \right)/\ker(f) \right] \simeq [*/\ker(f)] = [*/C_T(n)].$$

For the last assertion, see Lemma 7 below.

Does $C_T(n) \simeq C_{\hat{G}}(\psi)$ holds?

2.0.1 Some lemmas

Lemma 6. The morphism

$$f: T^{(1)} = T \longrightarrow T = T^{(2)} \qquad s \longmapsto sns^{-1}n^{-1}$$

is epimorphic in the category of diagonalizable $\overline{\mathbb{Z}}_{\ell}$ -group schemes. And it induces an isomorphism $T^{(1)}/\ker(f) \simeq T^{(2)}$ as diagonalizable $\overline{\mathbb{Z}}_{\ell}$ -group schemes.

Proof. Recall that T is a split torus over $\overline{\mathbb{Z}_{\ell}}$, hence a diagonalizable $\overline{\mathbb{Z}_{\ell}}$ -group scheme. Notice that f is a morphism of $\overline{\mathbb{Z}_{\ell}}$ -group schemes, hence a morphism of diagonalizable $\overline{\mathbb{Z}_{\ell}}$ -group schemes. Recall that the category of diagonalizable $\overline{\mathbb{Z}_{\ell}}$ -group schemes is equivalent to the category of abelian groups (See [1, p70, Section 5] or [2]) via

$$D \mapsto \operatorname{Hom}_{\overline{\mathbb{Z}_{\ell}} - GrpSch}(D, \mathbb{G}_m),$$

and the inverse is given by

$$\overline{\mathbb{Z}_{\ell}}[M] \longleftrightarrow M,$$

where $\overline{\mathbb{Z}_{\ell}}[M]$ is the group algebra of M with $\overline{\mathbb{Z}_{\ell}}$ -coefficients.

Therefore, we could argue in the category of abelian groups via the above category equivalence: f is epimorphic if and only if the map f^* in the category of abelian groups is monomorphic. Note ellipticity and $Z(\hat{G})$ finite imply that S_{φ} is finite, hence

$$\ker(f)(\overline{\mathbb{F}_{\ell}}) = C_T(n) = S_{\varphi}$$

is finite (See Equation (6) below), hence $\operatorname{coker}(f^*)$ is finite. Therefore,

$$f^*: \operatorname{Hom}(T^{(2)}, \mathbb{G}_m) \to \operatorname{Hom}(T^{(1)}, \mathbb{G}_m)$$

is injective (i.e., monomorphism). Indeed, otherwise $\ker(f^*)$ would be a nonzero sub- \mathbb{Z} -module of the finite free \mathbb{Z} -module $\operatorname{Hom}(T^{(2)},\mathbb{G}_m)$, hence a free \mathbb{Z} -module of positive rank, which contradicts with $\operatorname{coker}(f^*)$ being finite.

The statement on the quotient follows from the corresponding result in the category of abelian groups: f^* induces an isomorphism

$$\operatorname{Hom}(T^{(1)}, \mathbb{G}_m) / \operatorname{Hom}(T^{(2)}, \mathbb{G}_m) \simeq \operatorname{coker}(f^*)$$

(See [1, p71, Subsection 5.3].)

Lemma 7. Assume that ℓ doesn't divide the order of w. $\ker(f) \simeq S_{\varphi}$ is the constant group scheme of the finite abelian group $S_{\varphi} = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(W_F))$.

Proof. We recall the following fact: Let H be a smooth affine group scheme over some ring R, let Γ be a finite group whose order is invertible in R. Then the fixed point functor H^{Γ} is representable and is smooth over R.

For a proof of the above fact, see [6, Proposition 3.4] or [4, Lemma A.1, A.13].

In our case, let H=T, $\Gamma=< w>$ the subgroup of the Weyl group $W_{\hat{G}}(T)$ generated by w. Hence

$$\ker(f) = C_T(n) = H^{\Gamma}$$

(See Lemma? for the last equalityShould be able to check by Yoneda.) is smooth over $\overline{\mathbb{Z}_{\ell}}$. Therefore, $\ker(f)$ is finite etale over $\overline{\mathbb{Z}_{\ell}}$ (Because it is smooth of relative dimension 0 over $\overline{\mathbb{Z}_{\ell}}$, by Equation (6) below). Hence $\ker(f)$ is a constant group scheme over $\overline{\mathbb{Z}_{\ell}}$, since $\overline{\mathbb{Z}_{\ell}}$ has no non-trivial finite etale cover.

Since $\ker(f)$ is constant, we can determine it by computing its $\overline{\mathbb{F}_{\ell}}$ -points:

$$\ker(f)(\overline{\mathbb{F}_{\ell}}) = C_{T(\overline{\mathbb{F}_{\ell}})}(n) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(W_F)), \tag{6}$$

where the middle equality follows by noticing $T(\overline{\mathbb{F}_{\ell}}) = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F))$ and $n = \varphi(\operatorname{Fr})$.

Finally, note by our TRSELP assumption, $C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(I_F))$ is (the $\overline{\mathbb{F}_{\ell}}$ -points of) a torus. Hence $S_{\varphi} = C_{\hat{G}(\overline{\mathbb{F}_{\ell}})}(\varphi(W_F))$ is abelian, hence finite abelian as we've noticed in the proof of the previous lemma that S_{φ} is finite (by ellipticity and $Z(\hat{G})$ finite).

Lemma 8. Let \hat{G} be a connected reductive group over $\overline{\mathbb{Z}_{\ell}}$, and T a maximal torus of \hat{G} . Then the Weyl group $N_{\hat{G}}(T)/T$ is split over $\overline{\mathbb{Z}_{\ell}}$.

Proof. By [2, Proposition 3.2.8], the Weyl group $N_{\hat{G}}(T)/C_{\hat{G}}(T)$ is finite etale over $\overline{\mathbb{Z}_{\ell}}$ and hence split over $\overline{\mathbb{Z}_{\ell}}$. In our case, $C_{\hat{G}}(T) = T$ since \hat{G} is connected (For example, use the proof of [2, Theorem 3.1.12]).

References

- [1] S Brochard, B Conrad, and J Oesterlé. Autour des schémas en groupes. *PANORAMAS ET SYNTHÈSES*, 42:43, 2014.
- [2] Brian Conrad. Reductive group schemes. Autour des schémas en groupes, 1(93-444):24, 2014.
- [3] Jean-François Dat. Moduli spaces of local langlands parameters.
- [4] Jean-François Dat, David Helm, Robert Kurinczuk, and Gilbert Moss. Moduli of langlands parameters. arXiv preprint arXiv:2009.06708, 2020.

- [5] Stephen DeBacker and Mark Reeder. Depth-zero supercuspidal l-packets and their stability. *Annals of mathematics*, pages 795–901, 2009.
- [6] Bas Edixhoven. Néron models and tame ramification. Compositio Mathematica, 81(3):291–306, 1992.