Formler till nationellt prov i matematik kurs 3

Algebra

Regler

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)(a-b) = a^2 - b^2$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$$

$$x^2 + px + q = 0$$

Andragradsekvationer
$$x^2 + px + q = 0$$
 $x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$

Aritmetik

Prefix

Т	G	M	k	h	d	с	m	μ	n	p
tera	giga	mega	kilo	hekto	deci	centi	milli	mikro	nano	piko
10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10-1	10-2	10-3	10-6	10-9	10 ⁻¹²

Potenser

$$a^{x}a^{y} = a^{x+y}$$
 $\frac{a^{x}}{a^{y}} = a^{x-y}$ $(a^{x})^{y} = a^{xy}$ $a^{-x} = \frac{1}{a^{x}}$

$$\frac{a^x}{a^y} = a^{x-1}$$

$$(a^x)^y = a^{xy}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{x}b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x} \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^0 = 1$$

Geometrisk summa

$$a + ak + ak^{2} + ... + ak^{n-1} = \frac{a(k^{n} - 1)}{k - 1}$$
 där $k \ne 1$

Logaritmer

$$y = 10^x \Leftrightarrow x = \lg y$$

$$y = 10^x \Leftrightarrow x = \lg y$$
 $y = e^x \Leftrightarrow x = \ln y$

$$\lg x + \lg y = \lg xy$$

$$\lg x + \lg y = \lg xy \qquad \qquad \lg x - \lg y = \lg \frac{x}{y} \qquad \qquad \lg x^p = p \cdot \lg x$$

$$\lg x^p = p \cdot \lg x$$

Absolutbelopp
$$|a| = \begin{cases} a & \text{om } a \ge 0 \\ -a & \text{om } a < 0 \end{cases}$$

Funktioner

Räta linjen

$$y = kx + m$$
 $k = \frac{y_2 - y_1}{x_2 - x_1}$

Andragradsfunktioner

$$y = ax^2 + bx + c \qquad a \neq 0$$

Potensfunktioner

$$y = C \cdot x^a$$

Exponentialfunktioner

$$y = C \cdot a^x$$
 $a > 0$ och $a \ne 1$

Statistik och sannolikhet

Standardavvikelse

$$s = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}}$$
 (stickprov)

Lådagram

Normalfördelning

Differential- och integralkalkyl

Derivatans definition

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Derivator

Funktion	Derivata			
x^n där n är ett reellt tal	nx^{n-1}			
a^x $(a>0)$	$a^x \ln a$			
e ^x	e^x			
e^{kx}	$k \cdot e^{kx}$			
$\frac{1}{x}$	$-\frac{1}{x^2}$			
f(x) + g(x)	f'(x) + g'(x)			

Primitiva funktioner

Funktion	Primitiv funktion			
k	kx + C			
$x^n (n \neq -1)$	$kx + C$ $\frac{x^{n+1}}{n+1} + C$			
e ^x	$e^x + C$			
e^{kx}	$e^{x} + C$ $\frac{e^{kx}}{k} + C$			
$a^x (a > 0, \ a \neq 1)$	$\frac{a^x}{\ln a} + C$			

Geometri

Triangel

$$A = \frac{bh}{2}$$

Parallellogram

$$A = bh$$

Parallelltrapets

$$A = \frac{h(a+b)}{2}$$

Cirkel

$$A = \pi r^2 = \frac{\pi d^2}{4}$$

$$O = 2\pi r = \pi d$$

Cirkelsektor

$$b = \frac{v}{360} \cdot 2\pi r$$

$$A = \frac{v}{360} \cdot \pi r^2 = \frac{br}{2}$$

Prisma

$$V = Bh$$

Cylinder

$$V = \pi r^2 h$$

$$A = 2\pi rh$$

(Mantelarea)

Pyramid

$$V = \frac{Bh}{3}$$

Kon

$$V = \frac{\pi r^2 h}{3}$$

 $A = \pi rs$

(Mantelarea)

Klot

$$V = \frac{4\pi r^3}{3}$$

$$A = 4\pi r^2$$

Likformighet

Trianglarna *ABC* och *DEF* är likformiga.

$$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$$

Skala

Areaskalan = $(L\ddot{a}ngdskalan)^2$ Volymskalan = $(L\ddot{a}ngdskalan)^3$

Topptriangel- och transversalsatsen

Om *DE* är parallell med *AB* gäller

$$\frac{DE}{AB} = \frac{CD}{AC} = \frac{CE}{BC} \text{ och}$$

$$\frac{CD}{AD} = \frac{CE}{BE}$$

Bisektrissatsen

$$\frac{AD}{BD} = \frac{AC}{BC}$$

Vinklar

 $u + v = 180^{\circ}$

Sidovinklar

w = v

Vertikalvinklar

 L_1 skär två parallella linjer L_2 och L_3

v = w

Likbelägna vinklar

u = w

Alternatvinklar

Kordasatsen

ab = cd

Randvinkelsatsen

u = 2v

Pythagoras sats

$$c^2 = a^2 + b^2$$

Avståndsformeln

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Mittpunktsformeln

$$x_m = \frac{x_1 + x_2}{2}$$
 och $y_m = \frac{y_1 + y_2}{2}$

Trigonometri

Definitioner

$$\sin v = \frac{a}{c}$$

$$\cos v = \frac{b}{c}$$

$$\tan v = \frac{a}{b}$$

Enhetscirkeln

$$\sin v = y$$

$$\cos v = x$$

$$\tan v = \frac{y}{x}$$

Sinussatsen

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosinussatsen

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Areasatsen

$$T = \frac{ab\sin C}{2}$$

Cirkelns ekvation $(x-a)^2 + (y-b)^2 = r^2$

Exakta värden

Vinkel v	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin v	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
cosv	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
tan v	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Ej def.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0