# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

## Лабораторная работа 3.5.1 «Изучение плазмы газового разряда в неоне»

Студент группы Б02-109

Назарчук Анна

#### 1. Аннотация

В работе исследована плазма газового разряда в неоне с помощью двойного зонда. Экспериментально получена вольт-амперная характеристика разряда в режиме поднормального тлеющего разряда. Расчитаны зондовые характеристики, измерены основные параметры плазмы.

### 2. Введение

Как известно, вещество может находиться в трёх агрегатных состояниях — твёрдом, жидком и газообразном, причём эти состояния последовательно сменяются по мере возрастания температуры. Если и дальше нагревать газ, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Такое состояние газа нельзя описывать как обычный газ с некоторыми частицами, требуются дополнительные параметры, описывающие движение такого газа (плазмы). Определение таких параметров, как тип разряда и других основных характеристик, и является целью данной работы.

### 3. Методика измерений

Для определения основных характеристик плазмы произведены измерения с помощью двойного зонда - системы, состоящей из двух одинаковых зондов на небольшом растоянии друг от друга, между которыми создается небольшая (по сравнению с потенциалом, до которого заряжается зонд, помещенный в плазму) разность потенциалов U. Теоретически получена зависимость тока от напряжения между зондами: (она также представлена на графике 1).[1]

$$I = I_{iH} th \frac{eU}{2k_{\rm B}T_e} \tag{1}$$



Рис. 1: Качественный вид экспериментальной вольт-амперной характеристики двойного зонда [1].

При рассмотрении этой формулы вблизи U=0:

$$k_{\rm B}T_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}|_{U=0}} \tag{2}$$

Для определения температуры электронов в плазме из пересечения асимптот с осью U=0 найдена  $I_{in}$  и вычислен наклон графика в начале координат. По этим известным параметрам определена концентрацию заряженных частиц, используя полуэмперическую формулу Д. Бома: [1]

$$I_{iH} \approx 0.4 n_i S \sqrt{\frac{2k_{\rm B}T_e}{m_i}} \tag{3}$$

Основными характеристиками плазмы являются плазменная частота колебаний  $\omega_p$  (определяет временной масштаб движения плазмы), дебаевский радиус  $r_{De}$  (определяет пространственный масштаб явления в плазме), поляризационная длина  $r_D$  (определяет масштаб, на котором можно считать плазму квазинейтральной), среднее число ионов в дебаевской сфере  $N_D$  (при больших значениях плазма считается идеальной). Теоретические формулы для вычисление этих величин приведены в таблице 1.[1]

Таблица 1: Теоретические выражения для основных характеристик плазмы

| Величина   | Теоретическое выражение                                           |  |  |
|------------|-------------------------------------------------------------------|--|--|
| $\omega_p$ | $\sqrt{rac{4\pi n_e e^2}{m_e}}$                                  |  |  |
| $r_{De}$   | $\sqrt{rac{k_{ m B}T_e}{4\pi n_e e^2}}$                          |  |  |
| $r_D$      | $\sqrt{\frac{k_{\rm B}}{4\pi n_e e^2} \frac{T_e T_i}{T_e + T_i}}$ |  |  |
| $N_D$      | $\frac{4}{3}\pi n_i r_D^3$                                        |  |  |

#### 4. Установка

Схема экспериментальной установки приведена на рисунке 2. Трубка наполнена изотопом неона  $^{22}Ne$  при давлении 2 мм рт. ст. При подключении к высоковольтному источнику питания анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром  $A_1$ , а падение напряжения на разрядной трубке — вольтметром  $V_1$ . При подключении к высоковольтному источнику питания анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

## 5. Измерения и обработка данных

#### 5.1. Вольт-амперная характеристика разряда

Для определения типа разряда с помощью вольтметра  $V_1$  и амперметра  $A_1$  измерена вольтамперная характеристика разряда  $I_p(U_p)$  (рис. 3)

По наклону кривой определено максимальное  $R_{\rm диф}=\frac{dU}{dI}=-68\pm11$  кОм. Полученный участок вольт-амперной характеристики соответствует поднормальному тлеющему разряду.



Рис. 2: Схема экспериментальной установки для исследования газового разряда при давлениях  $\sim$ 2 Торр.  $R_6$  - балластный резистор ( $\sim$  500 кОм),  $\Pi_1$  - переключатель,  $R_1, R_2$  - высокоомный делитель напряжения, R - потенциометр,  $V_1, V_2$  - вольтметры,  $A_1, A_2$  - амперметры, ВИП - высоковольтный источник питания.



Рис. 3: Вольт-амперная характеристика разряда в неоне при давлении  $P\sim 2$  торр, температуре ионов  $T_i\approx 300~{\rm K}$ .

### 5.2. Зондовые характеристики

Для определения характеристик плазмы в неоне при фиксированном токе разряда измерена вольт-амперная характеристика двойного зонда. (рис. 4). Для каждой зондовой характеристики определен ионный ток и наклон характеристики в начале координат по графику. Из полученных результатов рассчитаны  $T_e$ ,  $n_i$ ,  $\omega_p$ ,  $r_{De}$ ,  $r_D$ ,  $N_D$ ,  $\alpha$  - степень ионизации плазмы (по формулам из таблицы 1). Результаты приведены в таблице 2, также построены графики зависимости электронной температуры и концентрации электронов

от тока разряда (рис. 5).



Рис. 4: Вольт-амперная характеристика двойного зонда при токах  $\sim 50\mu$  A, давлении  $P\sim 2$  торр, температуре ионов  $T_i\approx 300$  K.

Таблица 2: Характеристики плазмы в неоне при давлении  $P\sim 2$  торр, температуре ионов  $T_i\approx 300~{\rm K}$  для разных токов разряда  $I_p$ 

| $I_p$ , MA                         | 1.5             | 3                 | 3.4             |
|------------------------------------|-----------------|-------------------|-----------------|
| $T_e$ , $\ni B$                    | $3.08 \pm 0.25$ | $4.23 \pm 0.10$   | $3.7 \pm 0.4$   |
| $n_i, 10^{10} \ 1/\text{cm}^3$     | $2.12 \pm 0.09$ | $4.55 \pm 0.06$   | $4.8 \pm 0.3$   |
| $\omega_p, 10^9 \; \mathrm{pag/c}$ | $8.21 \pm 0.17$ | $12.03 \pm 0.08$  | $12.4 \pm 0.4$  |
| $r_{De}, 10^{-3} \text{ cm}$       | $9.0 \pm 0.8$   | $7.17 \pm 0.20$   | $6.5 \pm 0.7$   |
| $r_D, 10^{-3} \text{ cm}$          | $0.82 \pm 0.03$ | $0.561 \pm 0.075$ | $0.54 \pm 0.03$ |
| $N_D$                              | $49 \pm 6$      | $34 \pm 1$        | $33 \pm 6$      |
| $\alpha, 10^{-5}$                  | $3.9 \pm 0.4$   | $11.6 \pm 0.3$    | $10.7 \pm 1.2$  |

## 6. Обсуждение результатов

- 1. При сравнении вольт-амперной характеристики разряда (рис. 3) и графика вольт-амперной характеристики газового разряда из [1] (рис. 6) видно, что рассматривался участок, соответствующий поднормальному тлеющему разряду.
- 2. По определению поляризационной длины  $r_{De}$  плазму можно считать квазинейтральной, так как именно электронная дебаевская длина определяет масштаб, на котором нарушается квазинейтральность из-за тепловых флуктуаций электронов относительно ионов, а  $r_{De} \sim 10^{-2}$ см, что много меньше размеров области.



Рис. 5: Зависимость электронной температуры и концентрации электронов от тока разряда в плазме неона при давлении  $P\sim 2$  торр, температуре ионов  $T_i\approx 300~{\rm K}$ .



Рис. 6: Качественный вид вольт-амперной характеристики разряда в неоне при давлении  $P\sim 1$  торр (из [1]). АБ - режим газового усилителя, ВГ - темный таунсендовский разряд, ГД - поднормальный тлеющий разряд, ДЕ - нормальный тлеющий разряд, ЕЖ - анормальный тлеющий разряд, ЖЗ - дуговой разряд

- 3. Оценив число ионов в дебаевской сфере  $N_D \sim 40$ , видно, что число частиц много больше 1, что позволяет называть плазму идеальной.
- 4. Определить зависимость электронной температуры от тока разряда с помощью полученных данных (рис. 5) невозможно из-за малого числа точек и достаточной погрешности результатов. Однако можно качественно оценить зависимость концентрации электронов от тока разряда: график напоминает линейную или степенную зависимость, что достаточно ожидаемо, при увеличении тока разряда увеличивается и число электронов в газе.

#### 7. Выводы

Из вольт-амперной характеристики разряда получено, что исследовался тлеющий газовый разряд. Экспериментальная зондовая характеристика схожа с теоретической зависимостью:  $I = I_{in} th \frac{eU}{2k_{\rm B}T_e}$ , количество ионов в дебаевской сфере  $N_D \sim 40$  показывает идеальность плазмы. Остальные характеристики плазмы получились схожими с табличными значениями [1], что показало справедливость метода измерений. Однако не удалось оценить зависимость температуры электронов от тока разряда из-за неточных измерений и малого их числа.

## Список используемой литературы

[1] Никулин М.Г., Попов П.В., Нозик А.А. и др. Лабораторный практикум по общей физике: учеб. пособие. В трех томах. Т. 2. Электричество и магнетизм