Integration and Integration

K

March 30, 2021

Contents

In	troduction	5
Ι	σ -algebra and measures	7
1	Family of Sets 1.1 Symmetric Difference 1.2 Ring of Sets 1.3 Algebra of Sets 1.4 σ -Ring 1.5 Monotone Class 1.6 σ -Algebra 1.7 Product Algebra?? 1.8 Rectangles 1.9 Borel σ -algebra 1.10 Exercises	9 10 11 11 11 11 12 12 13
2	Measure	17
II 3	Lebesgue Integral Measurable Functions	19 21
4	Convergence Theorems	23
II	I Applications	2 5
5	Cavalieri's Principle	27
6	Fubini's Theorem	29
7	Finding Volume by Rotation	31
8	Transformation Formula	33
IJ	More Theory	35
9	Lebesgue Space	37
1 /	Manifolds	20

4 CONTENTS

Introduction

One problem of the Riemann integral is that some functions are not Riemann integratable.

Example 0.0.1 (Dirichlet function). For $[a,b] \subset \mathbb{R}$, define the Dirichlet function as

$$g:[a,b]\to\mathbb{R}, x\mapsto g(x):=\begin{cases} 1 \text{ for } x\in\mathbb{Q},\\ 0 \text{ for } x\in\mathbb{R}\setminus\mathbb{Q}.\end{cases}$$
 (1)

What are the properties a generalized concept of volumina should have?

- 1. positive valued
- 2. null empty set
- 3. monotonous
- 4. translationinvariance
- 5. normalization

Definition 0.1. Let $\mu: \mathcal{P}(\mathbb{R}^n) \to \overline{\mathbb{R}}_0^+$.

- μ is monotonous.
- μ is translation invariant.
- μ is σ -additive.

Theorem 0.1.1 (Vitali's Theorem).

6 CONTENTS

Part I $\sigma\text{-algebra and measures}$

Family of Sets

We have the following tree of inclusion. NOTATION GUIDE:

- 1. X as the superset
- 2. $\mathcal{P}(X)$ is the power set of X.
- 3. $A, B \in \mathcal{P}(X)$ as subsets
- 4. $\mathcal{R}, \mathcal{A} \subset \mathcal{P}(X)$ system of subsets

1.1 Symmetric Difference

Definition 1.1 (Symmetric difference). Let A, B be sets. The binary set operation symmetric difference is defined as

$$A \triangle B := (A \setminus B) \cup (B \setminus A). \tag{1.1}$$

In other words, $x \in A \triangle B$ implies x is either in A or B, but not in both.

Proposition 1.1.1 (Properties of Symmetric Difference). Let A, B, C, X and Y be sets. Moreover, let A_i and X_i be sets with an arbitary non-empty index set $i \in I$. Then, the following identities hold.

- 1. $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- 2. $(A\triangle B)\triangle C = A\triangle (B\triangle C)$. (Symmetric difference is associative.)
- 3. $A\triangle B = B\triangle A$. (Symmetric difference is commutative.)
- 4. $A \triangle \emptyset = A$ and $A \triangle A = \emptyset$
- 5. $(A \triangle B) \cup C = (A \cup C) \triangle (B \cup C)$.
- 6. $A \cap B = \emptyset \Rightarrow A \triangle B = A \cup B$.
- 7. $B \subset A \Rightarrow A \triangle B = A \setminus B$.
- 8. $X \cap Y = \emptyset \Rightarrow A \cap B \subset (X \triangle A) \cup (Y \triangle B)$.
- 9. $(\bigcup_{i \in I} X_i) \triangle (\bigcup_{i \in I} A_i) \subset \bigcup_{i \in I} (X_i \triangle A_i)$

Proof. Elementary.

1.2 Ring of Sets

Definition 1.2 (Ring of sets). There are two equivalent definitions. Let X be a set and $\mathcal{R} \subset \mathcal{P}(X)$ a system of subsets. Then \mathcal{R} is a ring of sets over X, if

- 1. the following axioms are met.
 - (a) $\mathcal{R} \neq \emptyset$ (\mathcal{R} is nonempty.)
 - (b) $A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$ (\mathcal{R} is closed under relative complement.)
 - (c) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$ (\mathcal{R} is closed under finite unions.)
- 2. $(\mathcal{R}, \Delta, \cap)$ is a ring in the algebraic sense, with Δ as addition and \cap as multiplication.

Proof. We show that the two definitions above are indeed equivalent.

- $(1 \Rightarrow 2)$ Let \mathcal{R} be nonempty, closed under the relative complement, and closed under finite unions. First, consider (\mathcal{R}, Δ) . Let $A, B \in \mathcal{R}$. It is
 - 1. (Closure under addition) $A \cup B \in \mathcal{R}$ because \mathcal{R} is closed under finite unions. We also have $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ as \mathcal{R} is closed under the relative complement. From these it follows that $A \triangle B = (A \cup B) \setminus (A \cap B) \in \mathcal{R}$ by using the closure under the relative complement again.
 - 2. (Associativity)
 - 3. (Commutativity)
 - 4. (Neutral element) \emptyset
 - 5. (Inverse element) A

Therefore, (\mathcal{R}, \triangle) is an abelian group. Secondly, consider (\mathcal{R}, \cap) . \cap is associative and commutative. The identity element is the union of all sets (does this exist??).

Remark. Since we have the identity $A \cap B = A \setminus (A \setminus B)$, the condition that \mathcal{R} is closed under the relative complement, i.e.

$$A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R} \tag{1.2}$$

can be replaced with closure under finite intersection, therefore

$$A, B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{R}. \tag{1.3}$$

Example 1.2.1. Let X be a set.

- 1. $\mathcal{P}(X)$ and $\{\emptyset, X\}$ are ring of sets.
- 2. $\{\emptyset\}$ is a ring of sets.

1.3 Algebra of Sets

Definition 1.3 (Algebra of sets). There are two equivalent definitions. Let X be a set and $\mathcal{R} \subset \mathcal{P}(X)$ a system of subsets. Then \mathcal{A} is a algebra of sets over X,

- 1. if \mathcal{A} is a ring of sets that contains X, or
- 2. if the following axioms are met
 - (a) $\mathcal{A} \neq \emptyset$ (\mathcal{A} is nonempty.)
 - (b) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$ (\mathcal{R} is closed under the absolute complement.)
 - (c) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$ (\mathcal{R} is closed under finite unions.)

1.4 σ -Ring

Definition 1.4 (σ -Ring). Let X be set and $\mathcal{R} \subset \mathcal{P}(X)$ a system of subsets. \mathcal{R} is a σ -ring over X, if

- 1. $\mathcal{R} \neq \emptyset$. (\mathcal{A} is nonempty.)
- 2. $A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$ (closed under the relative complement.)
- 3. $A_1, A_2, A_3, ... \in \mathbb{R} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathbb{R}$ (Closed under countable unions.)

1.5 Monotone Class

Definition 1.5 (Notation for Monotonous Sequence of Sets).

Definition 1.6 (Monotone class). Let $\mathcal{M} \subset \mathcal{P}(\Omega)$ a system of sets and $k \in \mathbb{N}^*$. Then, \mathcal{M} is a monotone class, if

- 1. Let $X_k \in \mathcal{M}$ with $X_k \uparrow X$, then $X \in \mathcal{M}$.
- 2. Let $Y_k \in \mathcal{M}$ with $Y_k \downarrow X$, then $Y \in \mathcal{M}$.

Intersection of arbitary many monotonous class is again a monotonous class. Therefore, for all $\mathcal{E} \subset \mathcal{P}(\Omega)$ with $\mathcal{E} \neq \emptyset$ there exists the smallest monotonous class around \mathcal{E}

$$\mathcal{M}_{\mathcal{E}} := \bigcap_{\mathcal{M} \text{ is monotonous class}, \mathcal{E} \subset \mathcal{M}} \mathcal{M}$$

$$\tag{1.4}$$

Remark. All σ -algebras are monotone class.

Theorem 1.6.1. Let $\mathcal{A} \subset \mathcal{P}(\Omega)$ an algebra of sets. Then, the following are equivalent

- \mathcal{A} is a σ -algebra.
- For $A_k \uparrow A$, $A \in \mathcal{A}$.

1.6 σ -Algebra

CHEAT SHEET

- 1. closed under complementation (absolute and relative)
- 2. closed under countable unions
- 3. closed under countable intersections
- 4. closed under symmetric differences

Definition 1.7 (σ -algebra). Let X be a set and $\mathcal{A} \subset \mathcal{P}(X)$ a system of subsets. \mathcal{A} is a σ -algebra over X, if

- 1. $\mathcal{A} \neq \emptyset$.
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 3. $A_1, A_2, A_3, \ldots \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$

Example 1.7.1. Trivial examples for the above structures.

Definition 1.8. Let $\mathcal{E} \subset \mathcal{P}(\Omega)$ be a system of sets. Define

$$\mathcal{F}(\mathcal{E}) := \{ \mathcal{A} \subset \mathcal{P}(\Omega) | \mathcal{E} \subset \mathcal{A}, \mathcal{A}\sigma\text{-Algebra} \}$$
(1.5)

$$\langle \mathcal{E} \rangle^{\sigma} := \sigma(\mathcal{E}) := \bigcap_{\mathcal{A} \in \mathcal{F}(\mathcal{E})} \mathcal{A}$$
 (1.6)

The first is the family of all σ -algebras that contain \mathcal{E} . The second is the smallest σ -algebra that contains \mathcal{E} .

1.7 Product Algebra??

Definition 1.9. Let Ω_1 and Ω_1 be sets; let $\mathcal{R}_1 \subset \mathcal{P}(\Omega_1)$ and $\mathcal{R}_2 \subset \mathcal{P}(\Omega_2)$ be ring of sets, and $\Omega := \Omega_1 \times \Omega_2$. Define

$$\mathcal{R} := \mathcal{R}_1 \boxtimes \mathcal{R}_2 := \left\{ \bigcup_{i=1}^m A_i \times B_i \middle| A_i \in \mathcal{R}_1, B_i \in \mathcal{R}_2, m \in \mathbb{N} \right\}$$

$$(1.7)$$

 \mathcal{R} is a ring of sets over Ω .

Theorem 1.9.1. In above definition, if \mathcal{R}_1 and \mathcal{R}_2 are algebra of sets, then \mathcal{R} is a algebra of set.

Theorem 1.9.2.

$$\mathfrak{Q}(\mathbb{R}^n) \tag{1.8}$$

is a ring of sets.

Remark. From $\mathfrak{Q}(\mathbb{R}^n)$ we can construct one very important σ -algebra, the Borel-Algebra of \mathbb{R}^n .

Definition 1.10 (Products of σ -algebras). Let \mathcal{A}_1 and \mathcal{A}_2 be σ -algebras on Ω_1, Ω_2 . Then, let

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(\mathcal{A}_1 \boxtimes \mathcal{A}_2) \tag{1.9}$$

Example 1.10.1.

$$\mathcal{B}(\mathbb{R}^{n+m}) = \mathcal{B}(\mathbb{R}^n) \otimes \mathcal{B}(\mathbb{R}^m) \tag{1.10}$$

Definition 1.11. Let $(X_k)_{k \in \mathbb{N}^*}$ be a sequence of sets with $X_1 \subset X_2 \subset X_3 \subset \ldots$ and $X := \lim_{k \to \infty} := \bigcup_{k \in \mathbb{N}^*} X_k$. Similar for monotonously decreasing.

1.8 Rectangles

Example 1.11.1. Let

$$\mathfrak{Q}(\mathbb{R}) := \left\{ \bigcup_{i=1}^{m} [a_i, b_i] \middle| m \in \mathbb{N}; a_i, b_i \in \mathbb{R} \right\}$$
(1.11)

be the set of all unions of finitely many right half open intervals on \mathbb{R} . Then, $\mathfrak{Q}(\mathbb{R})$ is a set of rings. Similary for the left half open sets, but not for open or closed intervals! $\mathfrak{Q}(\mathbb{R})$ is neither σ -ring, σ -algebra nor an algebra of sets. One can generalize this to higher dimensions.

1.9 Borel σ -algebra

Definition 1.12 (Topology). Let X be a set. A collection $\mathcal{U} \subset \mathcal{P}(\Omega)$ of subsets of X is called a topology on X if it satisfies the following axioms.

- 1. The empty set and X itself belong to the toplogy, i.e. $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$.
- 2. The topology is stable under finite intersections, i.e. if $n \in \mathbb{N}$ and $U_1, \ldots U_n \in \mathcal{U}$ then $\bigcap_{i=1}^n U_i \in \mathcal{U}$.
- 3. The topology is stable under arbitary unions, i.e. if I is any index set and $U_i \in \mathcal{U}$ for $i \in I$ then $\bigcup_{i \in I} U_i \in \mathcal{U}$.

A topological space is a pair (X, \mathcal{U}) consisting of a set X and a topology $\mathcal{U} \in \mathcal{P}(X)$.

Example 1.12.1 (Standard Topology on $\overline{\mathbb{R}}$). The set of open subsets \mathcal{T} of $\overline{\mathbb{R}}$ is the standard topology on $\overline{\mathbb{R}}$. Concretely, \mathcal{T} contains countable union of open intervals in \mathbb{R} and sets of the form $(a, \infty]$ or $[-\infty, b)$ for $a, b \in \mathbb{R}$.

Definition 1.13 (Borel algebra). Let (Ω, \mathcal{T}) be a topological space, then $\mathcal{B}(\Omega) := \sigma(\mathcal{T})$ is the Borel σ -algebra of Ω . The elments of \mathcal{B} are called Borel (measurable) sets.

Theorem 1.13.1. Let (Ω, \mathcal{T}) be a topological space. Then the following holds.

- 1. Every closed subset $F \subset \Omega$ is a Borel set.
- 2. Every countable union $\bigcup_{i=1}^{\infty} F_i$ of closed subsets $F_i \subset \Omega$ is a Borel set.
- 3. Every countable intersection $\bigcap_{i=1}^{\infty} F_i$ of open subsets $F_i \subset \Omega$ is a Borel set.

Theorem 1.13.2. It is

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathfrak{Q}(\mathbb{R}^n)) \tag{1.12}$$

Moreover, define

$$\mathfrak{Q}_{\mathbb{Q}}(\mathbb{R}^n) := \left\{ \bigcup_{i=1}^m [a_{1,i}, b_{1,i}) \times \dots [a_{n,i} \times b_{n,i}) \middle| m \in \mathbb{N}; a_{\nu,i}, b_{\nu,i} \in \mathbb{Q}; \nu = 1, \dots, n \right\}$$
(1.13)

the ring of sets of finite unions of quadern with rational edge points. Then, we even have

$$\mathcal{R}(\mathbb{R}^n) = \sigma(\mathfrak{Q}_{\mathbb{O}}(\mathbb{R}^n)) \tag{1.14}$$

Lemma 1.13.1. Open subsets $U \subset \mathbb{R}^n$ are disjoint union of countably many right half open dices with edge points in \mathbb{Q}^n

1.10 Exercises

Exercise 1.1

Let X be a nonempty set and for all $1 \le i \le m$ with $m \in \mathbb{N}$ let $A_i \subset X$ be a finite amount of subsets. Set

$$S := A_1 \triangle A_2 \triangle \dots \triangle A_m. \tag{1.15}$$

Because of the associative property of the symmetric difference, S is uniquely defined regardless of the order of the operations.

Show that $x \in X$ belongs to S if and only if x belongs to an odd number of sets A_k , i.e. when the number of indices $k \in \{1, 2, ..., m\}$ with $x \in A_k$ is odd.

Solution 1.1

Exercise 1.2

Let X be a nonempty set and $R := \{f : X \to \mathbb{F}_2\}$ where $\mathbb{F}_2 = \{0,1\}$ is a field of two elements equipped with the common addition and the common multiplication. Moreover, define the operations

$$(f \oplus g)(x) := f(x) + g(x) \tag{1.16}$$

$$(f \otimes g)(x) := f(x) \cdot g(x). \tag{1.17}$$

Show the following statements.

- 1. (R, \oplus, \otimes) is a commutative ring with the identity element.
- 2. The map $\mathcal{P}(X) \to R, A \mapsto \chi_A$ that maps a subset $A \subset X$ to its characteristic function is bijective.
- 3. For all $A, B \in \mathcal{P}(X)$ we have

$$\chi_{A \triangle B} = \chi_A \oplus \chi_B \qquad \qquad \chi_{A \cap B} = \chi_A \otimes \chi_B. \tag{1.18}$$

- 4. Conclude from the statements above that $\mathcal{P}(X)$ is isomorphic to R as a ring with \triangle as its addition and with \cap as its multiplication.
- 5. A subset $\mathcal{R} \subset \mathcal{P}(X)$ is a ring of sets if and only if \mathcal{R} is a subring of $\mathcal{P}(X)$ with respects to the ring structure defined above.

Solution 1.2

Exercise 1.3

Exercise 1.4

Exercise 1.5

Show explicitly that the following subsets generate the same σ -algebra on \mathbb{R} .

$$\mathcal{E}_1 := \{ (a,b) \mid a, b \in \mathbb{R}, \ a \le b \}
\mathcal{E}_3 := \{ [a,b) \mid a, b \in \mathbb{R}, \ a \le b \}
\mathcal{E}_4 := \{ (-\infty,b) \mid a, b \in \mathbb{Q}, \ a \le b \}$$
(1.19)

$$\mathcal{E}_3 := \{ [a, b) \mid a, b \in \mathbb{R}, \ a \le b \}$$

$$\mathcal{E}_4 := \{ (-\infty, b) \mid a, b \in \mathbb{Q}, \ a \le b \}$$
 (1.20)

Solution 1.5

We want to proof

$$\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_3) = \sigma(\mathcal{E}_4). \tag{1.21}$$

We will do this by showing four inclusions. In each step, our goal is to show that an arbitary interval from the generator of the superset is included in the σ -algebra of the subset.

1. First we show $\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2)$. Fix $a, b \in \mathbb{Q}$ with $a \leq b$ and consider the interval [a, b). If a=b, then the interval is empty and $[a,b)=\varnothing\in\sigma(\mathcal{E}_1)$ immediately. Now let $x,y\in\mathbb{R}$ with x < y < a. The set $(x,a)^c \cap (y,b)$ is included in $\sigma(\mathcal{E}_1)$ as σ -algebras are closed under absolute complements and intersections. We also have

$$(x,a)^c \cap (y,b) = ((-\infty, x] \cup [a,\infty]) \cap (y,b) = [a,b).$$
 (1.22)

Therefore, it follows that $[a,b) \in \sigma(\mathcal{E}_1)$ and hence $\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2)$.

1.10. EXERCISES 15

2. Next, we show $\sigma(\mathcal{E}_2) \subset \sigma(\mathcal{E}_3)$. As before, fix $a, b \in \mathbb{R}$ with $a \leq b$ and consider the interval [a, b). If this interval is empty, it is included in $\sigma(\mathcal{E}_2)$, so assume a < b. Let $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}}$ sequences in \mathbb{Q} with $a < a_k$ and $b_k < b$ and with a and b as their limits respectively. Since a σ -algebra is closed under countable unions, $\bigcup_{k=1}^{\infty} [a_k, b_k)$ is included in $\sigma(\mathcal{E}_2)$, but we also have

$$\bigcup_{k=1}^{\infty} [a_k, b_k) = \lim_{k \to \infty} [a_k, b_k) = [a, b)$$
 (1.23)

We conclude that $[a,b) \in \sigma(\mathcal{E}_2)$ and therefore, $\sigma(\mathcal{E}_2) \subset \sigma(\mathcal{E}_3)$.

3. Now we will show $\sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4)$. Again, fix $b \in \mathbb{Q}$ and consider $(-\infty, b)$. Let $(x_k)_{k \in \mathbb{N}}$ be a sequence in \mathbb{Q} with $x_k < b$ for each $k \in \mathbb{N}$ and diverging to negative infinity. As σ -algebras are closed under countable unions, we have $\bigcup_{k=1}^{\infty} (x_k, b) \in \sigma(\mathcal{E}_3)$. On the other hand, it is

$$\bigcup_{k=1}^{\infty} (x_k, b) = \lim_{k \to \infty} (x_k, b) = (-\infty, b).$$
 (1.24)

This means that $(-\infty, b) \in \sigma(\mathcal{E}_3)$ and from this we have $\sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4)$.

4. Lastly, we want to show $\mathcal{E}_4 \subset \mathcal{E}_1$. Fix $a, b \in \mathbb{R}$ with $a \leq b$ and consider (a, b). Again, if a = b, then the interval is empty and included in $\sigma(\mathcal{E}_4)$. So assume a < b.

Let [x,y) with $x,y \in \mathbb{Q}$ and x < y be a half left open interval. This is included in $\sigma(\mathcal{E}_1)$ because $(-\infty,x)^c \cap (-\infty,y) = [x,y)$ and σ -algebras are closed under absolute complements and intersections.

Now let $(x_k)_{k\in\mathbb{N}}$ be a sequence in \mathbb{Q} with $x_k < y$ for all $k \in \mathbb{N}$ and converging to x, then $\bigcap_{k=1}^{\infty} [x, x_k] = \lim_{k \to \infty} [x, x_k] = \{x\}$ is also in $\sigma(\mathcal{E}_1)$.

Measure

Definition 2.1. Let $\mathcal{R} \subset \mathcal{P}(\Omega)$ a ring of sets, and let $\mu : \mathcal{R} \to [0, \infty]$ be an application. μ is called a content, if

1.
$$\mu(\emptyset) = 0$$
.

2.
$$\mu(A \dot{\cup} B) = \mu(A) + \mu(B)$$

An σ -additive content is called premeasure.

A premeasure $\mu: \mathcal{A} \to [0, \infty]$ on σ -algebra \mathcal{A} is called a measure.

 μ is finite if for all $A \in \mathcal{R} : \mu(A) < \infty$.

 μ is σ -finite if there exists are sequence $(A_m)_{m\in\mathbb{N}^*}$ in \mathcal{R} with $\mu(A_m)<\infty$ and $\bigcup_{m\in\mathbb{N}^*}A_m=\Omega$.

Lemma 2.1.1. If $\mu(A \cap B) < \infty$, then

$$\mu(A \cap B) = \mu(A) + \mu(B) - \mu(A \cup B) \tag{2.1}$$

Theorem 2.1.1 (Properties of premeasure).

Example 2.1.1 (Dirac-measure). Let $\Omega \neq \emptyset$. Let $\mathcal{A} \subset \mathcal{P}(\Omega)$ a σ -algebra. Define for all $x \in \Omega$ a $\delta_x : \mathcal{A} \to \mathbb{R}_0^+$ with

$$\delta_x(A) := \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{else.} \end{cases}$$
 (2.2)

 δ_x is a finite measure, called the Dirac-measure.

Definition 2.2. Let

$$\mathfrak{Q}(\mathbb{R}^n) := \left\{ \bigcup_{i=1}^m [a_{1,i}, b_{1,i}) \times \dots [a_{n,i} \times b_{n,i}) \middle| m \in \mathbb{N}; a_{\nu,i}, b_{\nu,i} \in \mathbb{R}; \nu = 1, \dots, n \right\}$$
 (2.3)

define

$$\lambda^n : \mathfrak{Q}(\mathbb{R}^n) \to \mathbb{R}_0^+, A \mapsto \lambda^n(A) := \sum_{i=1}^m \prod_{\nu=1}^n (b_{\nu,i} - a_{\nu,i})$$
 (2.4)

is a premeasure.

Definition 2.3.

$$\mathcal{R}^{\uparrow} := \{ A \in \mathcal{P}(\Omega) | \exists (A_k)_{k \in \mathbb{N}^*} \subset \mathcal{R} \text{ with } A_k \uparrow A \}$$
 (2.5)

 \mathcal{R}^{\uparrow} is the set of all $A \in \mathcal{P}(\Omega)$ that can be expressed as countably many sets from \mathcal{R} . \mathcal{R}^{\uparrow} is not a ring of sets.

Definition 2.4. Let $\mu: \mathcal{R} \to [0, \infty]$ be a premeasure on \mathcal{R} , and $A_k \uparrow A$. Then,

$$\tilde{\mu}: \mathcal{R}^{\uparrow} \to [0, \infty], A \mapsto := \tilde{\mu}(A) = \lim_{k \to \infty} \mu(A_k)$$
 (2.6)

is an extension of μ on \mathcal{R}^{\uparrow} . This is not in general a premeasure.

Theorem 2.4.1 (Properties of the first extension).

Definition 2.5. Let $\mathcal{R} \subset \mathcal{P}(\Omega)$ a set of rings, $\mu : \mathcal{R} \to [0, \infty]$ a σ -finite premeasure on \mathcal{R} , and $\tilde{\mu} : \mathcal{R}^{\uparrow} \to [0, \infty]$ the first extension on \mathcal{R}^{\uparrow} . Moreover, let $X \subset \Omega$ a subset of Ω . Then,

$$\mu^*: \mathcal{P}(\Omega) \to [0, \infty], X \mapsto \mu^*(X) := \inf \left\{ \tilde{\mu}(A) \middle| A \in \mathcal{R}^{\uparrow}, X \subset A \right\}$$
 (2.7)

is the outer measure.

Theorem 2.5.1 (Properties of the second extension).

Bla Bla bla

Definition 2.6 (Lebesgue measure).

Part II Lebesgue Integral

Measurable Functions

There is measurable, Borel measurable and Lebesgue measurable.

Definition 3.1 (Measurable Function). Let (X, \mathcal{A}_X) and (Y, \mathcal{A}_Y) be measurable spaces. A map $f: X \to Y$ is called measurable if the pre-image of every measurable subset of Y under f is measurable subset of X, i.e.

$$B \in \mathcal{A}_Y \Rightarrow f^{-1}(B) \in \mathcal{A}_X.$$
 (3.1)

Definition 3.2. Let $(X\mathcal{A}_X)$ be a measurable space. A function $f:X\to\overline{\mathbb{R}}$ is called measurable if it is measurable with respect to the Borel σ -algebra on $\overline{\mathbb{R}}$

Definition 3.3 (Borel Measurable Maps).

Theorem 3.3.1. Let (Ω, \mathcal{A}) be a measurable space, and $\mathcal{B} = \sigma(\mathcal{E})$ for a generator $\mathcal{E} \subset \mathcal{P}(\Omega)$. If for all $E \in \mathcal{E}$ it is $f^{-1}(E) \in \mathcal{A}$, then f is measurable.

Example 3.3.1. Let $f:(\mathbb{R},\mathcal{B})\to(\mathbb{R},\mathcal{B})$ defined as

$$f(x) := \begin{cases} 1x \in Q \\ -1x \notin Q \end{cases} \tag{3.2}$$

for a $Q \notin \mathcal{B}(\mathbb{R})$. Then, $f^{-1}(1) = Q \notin \mathcal{B}$ and therefore, f is not measurable even though |f| = 1 is measurable.

Convergence Theorems

Theorem 4.0.1 (Beppo Levi). Let $(\Omega, \mathcal{A}, \mu)$ a measure space, and for $k \in \mathbb{N}^*$, let $f_k : \Omega \to \mathbb{R}$ be a sequence of integratable functions such that

$$\forall x \in \Omega, \forall n \in \mathbb{N} : f_n(x) \le f_{n+1}(x). \tag{4.1}$$

Moreover, if there exists $M \in \mathbb{R}$ with $\forall k : \int f_k d\mu \leq M$, then

$$f := \lim_{k \to \infty} f_k : \Omega \to \overline{\mathbb{R}}$$
 (4.2)

integratable with

$$\int f d\mu = \lim_{k \to \infty} \int f_k d\mu \tag{4.3}$$

Theorem 4.0.2. If the Riemann integral exists, it matches the Lebesgue integral.

Theorem 4.0.3. Let $(\Omega, \mathcal{A}, \mu)$ a measure space, let $g: X \to [0, \infty)$ be an integrable function, and let $f_n: X \to \mathbb{R}$ be a sequence of integrable functions satisfying

$$|f_n(x)| \le g(x) \text{ for all } x \in X \text{ and } n \in \mathbb{N}$$
 (4.4)

and converging pointwise to $f: X \to \mathbb{R}$. Then f is integrable and, for every $E \in \mathcal{A}$

$$\int_{E} f d\mu = \lim_{n \to \infty} \int_{E} f_n d\mu \tag{4.5}$$

${\bf Part~III} \\ {\bf Applications}$

Cavalieri's Principle

Definition 5.1 (Cross-section). Let $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^l$ with $n, k, l \in \mathbb{N}^*$, and $A \subset \mathbb{R}^n$. Then for a $y \in \mathbb{R}^l$

$$A_y := \left\{ x \in \mathbb{R}^k \middle| (x, y) \in A \right\} \tag{5.1}$$

is the l-dimensional cross-sections of A.

Remark. Immediately from the definition above, we have

$$A = \dot{\bigcup}_{y \in \mathbb{R}^l} (A_y, y). \tag{5.2}$$

In other words, $\{(A_y, y)\}_{y \in \mathbb{R}^l}$ is a patition of A.

Theorem 5.1.1 (Generalized Cavalieri's principle). Let $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^l$ with $n, k, l \in \mathbb{N}^*$. Let $A \subset \mathbb{R}^k \times \mathbb{R}^l$ a Borel subset of \mathbb{R}^n , and let $\{(A_y, y)\}_{y \in \mathbb{R}^l}$ be a patition of A via cross-sections. Then we have the following

- 1. For all $y \in \mathbb{R}^l$, A_y is Borel subset of \mathbb{R}^k .
- 2. Let $F_A: \mathbb{R}^l \to [0, \infty], y \mapsto F_A(y) := Vol_K(A_y) = \lambda^k(A_y)$ be the k-dimensional volume of A_y . Then F_A is Borel measurable on \mathbb{R}^l .
- 3. $\operatorname{Vol}_n(A) := \int_{\mathbb{R}^l} \operatorname{Vol}_k(A_y)$

Proof. 1. Fix $y \in \mathbb{R}^l$

Corollary 1. For $K \subset \mathbb{R}^n$ compact, we have

$$Vol_n(K) = \int_{\mathbb{R}} Vol_{n-1}(K_t)$$
(5.3)

Example 5.1.1 (Volume of a Cylinder). Let $B \in \mathbb{R}^{n-1}$ be compact and $Z := B \times [0, h] \subset \mathbb{R}^n$. Z is called the generalized n-dimensional cylinder with a basis B and height h where $h \geq 0$. For the cross-sections we have

$$Z_t = \begin{cases} B & \text{if } t \in [0, h] \\ \varnothing & \text{else.} \end{cases}$$
 (5.4)

and for the Volume of the Cylinder, we have

$$\operatorname{Vol}_{n}(Z) = \int_{0}^{h} \operatorname{Vol}_{n-1}(B) \, \mathrm{d}t$$
 (5.5)

$$= \operatorname{Vol}_{n-1}(B) \int_0^h \mathrm{d}t \tag{5.6}$$

$$= \operatorname{Vol}_{n-1}(B) \cdot h \tag{5.7}$$

as $\operatorname{Vol}_{n-1}(\varnothing) = 0$.

Exercise 5.1

Let $B \subset \mathbb{R}^n$ be a Borel set and $f: B \to \mathbb{R}_0^+$ a non-negative measurable function. Show the following.

1. The set

$$V := \{(x, y) \in B \times \mathbb{R} \mid 0 \le y \le f(x)\}$$

$$(5.8)$$

is a measurable subset of \mathbb{R}^{n+1} .

2. f is integratable over B if and only if the (n+1)-dimensional Lebesgue measure of V is finite and it is

$$\lambda^{n+1}(V) = \int_{B} f(x) \, \mathrm{d}\lambda^{n}(x) \tag{5.9}$$

Solution 5.1

2. Fix a $x \in \mathbb{R}^n$ and define

$$V_x := \{ y \in \mathbb{R} \mid (x, y) \in V \} \tag{5.10}$$

$$= \{ y \in \mathbb{R} \mid (x, y) \in B \times \mathbb{R}, \ 0 \le y \le f(x) \}$$
 (5.11)

$$Vol(V_x) = f(x) - 0 = f(x)$$
(5.12)

$$\lambda^{n+1}(V) = \operatorname{Vol}_n(V) = \int_B \operatorname{Vol}_1(A_y) \, \mathrm{d}^n y \tag{5.13}$$

$$Vol_1(A_y) (5.14)$$

Fubini's Theorem

Exercise 6.1

1. In case of existence, compute the following Riemann and Lebesgue integrals for each permutation of the integration order.

$$\int_0^2 \int_1^2 y \sin(\pi x y) \, \mathrm{d}x \, \mathrm{d}y \tag{6.1}$$

$$\int_{[0,2]} \int_{[1,2]} y \sin(\pi x y) \, \mathrm{d}\lambda(x) \, \mathrm{d}\lambda(y) \tag{6.2}$$

2. In case of existence, compute the following Riemann and Lebesgue integrals for each permutation of the integration order.

$$\int_0^1 \int_0^\infty (2 - xy) xy \exp(-xy) \, \mathrm{d}x \, \mathrm{d}y \tag{6.3}$$

Solution 6.1

First, we solve the inner integral. First, apply linearity.

$$\int (2 - xy)xy \exp(-xy) dx = -y \int x(yx - 2) \exp(-yx) dx$$
(6.4)

Now define

$$f(x) = x(yx - 2) \Rightarrow f'(x) = 2yx - 2$$
 (6.5)

$$g'(x) = \exp(-yx) \Rightarrow g(x) = -y^{-1} \exp(-yx)$$
 (6.6)

Rewrite and apply integration by parts.

$$-y \int x(yx-2) \exp(-yx) dx = -y \int f(x)g'(x) dx$$
(6.7)

$$= -y \left(f(x)g(x) - \int f'(x)g(x) dx \right)$$
(6.8)

$$= -y \left(x(yx-2) \cdot y^{-1} \exp(-yx) - \int (2yx-2)(-y^{-1} \exp(-yx)) dx \right)$$
(6.9)

We will solve this integral

$$\int (2yx - 2) - y^{-1} \exp(-yx) \, \mathrm{d}x = \tag{6.10}$$

Finding Volume by Rotation

Definition 7.1. $F: \mathbb{R}^n \to \overline{\mathbb{R}}$ is rotationally symmetric in \mathbb{R}^n if there exists a $f: [0, \infty) \to \overline{\mathbb{R}}$ such that for all $x \in \mathbb{R}^n$ it is F(x) = f(||x||).

Theorem 7.1.1. The volume of the unit sphare is

$$\tau_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)} \tag{7.1}$$

Theorem 7.1.2. Let $B \subset [0, \infty)$ a Borel subset and $A := \{x \in \mathbb{R}^n | ||x|| \in B\}$. Then the Lebesgue measure of A is

$$\lambda^n(A) = n\tau_n \int_B r^{n-1} dr \tag{7.2}$$

where τ_n is the volume of the unit sphere.

Theorem 7.1.3. Let $f:[0,\infty)\to\overline{\mathbb{R}}$ is Borel measurable. Then the following are equivalent.

- 1. $F: \mathbb{R}^n \to \overline{\mathbb{R}}, x \mapsto F(x) := f(\|x\|)$ is Lebesgue integrable over \mathbb{R}^n .
- 2. $r^{n-1}f:[0,\infty)\to\overline{\mathbb{R}}, r\mapsto r^{n-1}f(r)$ is Lebesgue integrable over $[0,\infty).$

Moreover, if one of the above is true, then we have the formula

$$\int_{\mathbb{R}^n} f(\|x\|) d^n x = n\tau_n \int_{[0,\infty)} r^{n-1} f(r) dr$$
 (7.3)

Example 7.1.1. For a $R \in \mathbb{R}^+$ and $1 \leq i \leq n$ let

$$I_i := \int_{\|x\| \le R} x_i^2 d^n x. \tag{7.4}$$

We Immediately have $I_i = I_j =: I$ for all i, j.

$$I = \frac{1}{n} \sum_{i=1}^{n} I_i \tag{7.5}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\|x\| \le R} x_i^2 d^n x \tag{7.6}$$

$$= \frac{1}{n} \int_{\|x\| \le R} \sum_{i=1}^{n} x_i^2 d^n x \tag{7.7}$$

$$= \frac{1}{n} \int_{\|x\| \le R} \|x\|^2 d^n x \tag{7.8}$$

(7.9)

Now with the formula above, we have

$$I = \frac{1}{n} \cdot n \cdot \tau_n \int_0^R r^{n-1} r^2 dr \tag{7.10}$$

$$=\tau_n \int_0^R r^{n+1} dr \tag{7.11}$$

$$=\tau_n \frac{R^{n+2}}{n+2} \tag{7.12}$$

Example 7.1.2.

$$\int_0^\infty \exp(-x^2) = \frac{\sqrt{\pi}}{2} \tag{7.13}$$

Proof. Define

$$I = \int_{-\infty}^{\infty} \exp(-x^2) dx \tag{7.14}$$

Consider

$$I^{2} = \left(\int_{-\infty}^{\infty} \exp(-x^{2}) dx\right) \left(\int_{-\infty}^{\infty} \exp(-y^{2}) dy\right)$$
 (7.15)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-x^2) \exp(-y^2) dx dy \tag{7.16}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-(x^2 + y^2)) dx dy$$
 (7.17)

$$= \int_{\mathbb{R}^2} e^{-\|x\|^2} d^2 \lambda \tag{7.18}$$

$$= \int_0^\infty r e^{-r^2} dr \tag{7.19}$$

Example 7.1.3. Let $B_1 := \{x \in \mathbb{R}^2 | ||x|| < 1\}$ be the open unit disk. Find the integral

$$\int_{B_1} \frac{1}{\sqrt{1 - \|x\|^2}} d\lambda^2(x) \tag{7.20}$$

Proof. Define $f:[0,\infty)\to\overline{\mathbb{R}}$ as

$$f(x) = \frac{1}{\sqrt{1 - x^2}} \chi_{[0,1)}(x). \tag{7.21}$$

As [0,1) is a Borel set of \mathbb{R} , $\chi_{[0,1)}$ is Borel measurable. On the other hand, $\frac{1}{\sqrt{1-x^2}}$ is continuous for all $x \in [0,1)$, so the composition of these two functions f is again Borel measurable. Now consider, rf(r). We have

$$\int |rf(r)|dr = \int_0^1 \frac{r}{\sqrt{1 - r^2}} dr$$
 (7.22)

$$= -\sqrt{1 - r^2} \tag{7.23}$$

$$= 0 + 1 \tag{7.24}$$

$$=1 \tag{7.25}$$

Example 7.1.4. Compute the following integral

$$f(\xi,\eta) := \int_{B_1} \frac{\exp(i(x\xi + y\eta))}{\sqrt{1 - x^2 - y^2}} dxdy$$
 (7.26)

Transformation Formula

Theorem 8.0.1. Suppose $\phi: U \to V$ is a C^1 -diffeomorphism between open subsets of \mathbb{R}^n . If $f: V \to \mathbb{R}$ is Lebesgue integrable OR continuous with a compact support, then

$$\int_{U} (f \circ \phi) |\det(d\phi)| dm = \int_{V} f dm. \tag{8.1}$$

Example 8.0.1. (2D) From polar coordinates to cartesian coordinates.

$$\phi: \mathbb{R}_0^+ \times [0, 2\pi) \to \mathbb{R}^2, (r, \varphi) \mapsto \phi(r, \varphi) := (r \cos \varphi, r \sin \varphi)$$
(8.2)

$$D\phi(r,\varphi) = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix} \tag{8.3}$$

$$\det D\phi(r,\varphi) = r \tag{8.4}$$

(3D) From spherical coordinates to cartesian coordinates.

$$\phi: \mathbb{R}_0^+ \times [0, \pi] \times [0, \pi) \to \mathbb{R}^3 \tag{8.5}$$

$$(r, \theta, \varphi) \mapsto \phi(r, \theta, \varphi) := (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$$
 (8.6)

$$D\phi(r,\theta,\varphi) := \begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi\\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}$$
(8.7)

$$\det D\phi(r,\theta,\varphi) = r^2 \sin\theta \tag{8.8}$$

(3D) From cylindrical coordinates to cartesian coordinates.

$$\phi: \mathbb{R} \times \mathbb{R} \times [0, 2\pi) \to \mathbb{R}^3 \tag{8.9}$$

$$x = r\cos\theta \tag{8.10}$$

$$y = r\sin\theta \tag{8.11}$$

$$z = z \tag{8.12}$$

$$D\phi(r,\theta,z) = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(8.13)

$$\det D\phi(r,\theta,z) = r \tag{8.14}$$

Part IV More Theory

Lebesgue Space

Definition 9.1 (L^p -Norm). Let X, \mathcal{A}, μ a measure space, and $f: X \to \overline{\mathbb{R}}$ measurable. Then for $p \in [1, \infty)$ the L^p -norm is defined as

$$||f||_p := \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}.$$
 (9.1)

Theorem 9.1.1 (Holder Inequality). Let $p, q \in (1, \infty)$ such that $p^{-1} + q^{-1} = 1$. Let $f, g : X \to \overline{\mathbb{R}}$ measurable. Then we have

$$\|fg\|_1 \le \|f\|_p \cdot \|g\|_q \tag{9.2}$$

Theorem 9.1.2 (Minkowski Inequality). Let $f, g: X \to \overline{\mathbb{R}}$ measurable and f+g well defined on X. Then

$$\forall p \in [1, \infty) : \|f + g\|_p \le \|f\|_p + \|g\|_p \tag{9.3}$$

Definition 9.2. Let X, \mathcal{A}, μ be a measure space and $p \in [1, \infty)$. Define

$$\mathcal{L}^{p}(X, \mathcal{A}, \mu) = \left\{ f : X \to \mathbb{R} \middle| f \text{ is } \mathcal{A}\text{-measurable and } \|f\|_{p} < \infty \right\}$$
 (9.4)

aaa Also define

$$L^p(\mu) := \mathcal{L}^p(\mu) / \sim \mu \tag{9.5}$$

Part V Manifolds

Definition 9.3 (Homeomorphism). A function $f: X \to Y$ between two topological spaces is a homeomorphism if it has the following properties:

- 1. f is a bijection.
- 2. f is continous.
- 3. the inverse function f^{-1} is continous.

Definition 9.4 (Immersion). Let $T \subset \mathbb{R}^k$ be an open subset. $\varphi : T \to \mathbb{R}^n$, $t \mapsto \varphi(t)$ is called an immersion or embedding if φ is continuously partially differentiable and for all $t \in T$ it is $\operatorname{rank}(\mathrm{D}\varphi) = k$

Remark. If k = n, then φ is locally inversible.

Theorem 9.4.1. Let $T \subset \mathbb{R}^k$ open and $\varphi : T \to \mathbb{R}^n$ an immersion. Then, for all $t \in T$ there exists an open neighbourhood $V \in \mathcal{U}_t$, such that $\varphi|_V : V \to \varphi(V)$ is a homeomorphism.

Definition 9.5. $M \subset \mathbb{R}^n$ is a k-dimensional submanifold, if

• For all $a \in M$ there exists an open neighbourhood U around a in \mathbb{R}^n and there exists a n-k continuously partial differentiable $f_j: U \to \mathbb{R}$ for $j = 1, \ldots, n-k$ such that

$$M \cap U = \{x \in U | f_1(x) = \dots = f_{n-k}(x) = 0\}$$
 (9.6)

and for all $x \in U$

$$\operatorname{rank} \frac{\partial (f_1, \dots, f_{n-k})}{\partial (x_1, \dots, x_n)}(x) = n - k$$
(9.7)

Example 9.5.1. Let's construct the simplest submanifold. Let n=2 and k=1.

$$M = \left\{ x \in \mathbb{R}^2 \middle| f(x, y) = c \right\} \tag{9.8}$$

Theorem 9.5.1. If $M \subset \mathbb{R}^n$ is a k-dimensional submanifold then the following are equivalent.

1. For all points $a \in M$ there exists a open neighbourhood $U \in \mathcal{U}_a(\mathbb{R})$, and there exists a function $f_i: U \to \mathbb{R}$ with $1 \le i \le n-k$ that is n-k continuously (partially) differentiable such that

$$M \cap U = \{x \in U | f_1(x) = \dots = f_{n-k}(x) = 0\}$$
 (9.9)

and for all $x \in U$ Df(x) = n - k.

2. There exists a numbering of the coordinate system, such that

Example 9.5.2. The figure eight is described by $f: \mathbb{R} \to \mathbb{R}^2$, $f(t) := (\cos t, \sin 2t)$. Define

$$M := \{ x \in \mathbb{R} | \cos x = 0, \sin 2x = 0 \}$$
(9.10)

then

$$D\phi(x) = \begin{pmatrix} -\sin t \\ 2\cos 2t \end{pmatrix} \tag{9.11}$$

Definition 9.6. A submanifold is k-dimensional of the class C^{α} if the n-k functions that describe the submanifold is α times continuously differentiable.

Theorem 9.6.1. Let $M \subset \mathbb{R}^n$ a k-dimensional submanifold of the class \mathcal{C}^{α} . Let i = 1, 2 $T_i \subset \mathbb{R}^k$ open and $\varphi_i : T_i \to V_i \subset M$ KARTEN, i.e. in parameter form of the class \mathcal{C}^{α} with $V := V_1 \cap V_2 \neq \emptyset$.

Exercise 9.1

Let $f, g: \mathbb{R}^3 \to \mathbb{R}$ defined as

$$f(x,y,z) := x^2 + xy - y - z g(x,y,z) := 2x^2 + 3xy - 2y - 3z (9.12)$$

Show that

$$C := \{(x, y, z) \in \mathbb{R}^3 | f(x, y, z) = g(x, y, z) = 0\}$$
(9.13)

is a submanifold of \mathbb{R}^3 and that

$$\phi: \mathbb{R} \to \mathbb{R}^3, \phi(t) := (t, t^2, t^3) \tag{9.14}$$

is a global parametrzation of C.

Solution 9.1

Define $F: \mathbb{R}^3 \to \mathbb{R}^2$ as F(x,y,z) = (f(x,y,z),g(x,y,z)), then C can be rewritten as

$$C = \{(x, y, z) \in \mathbb{R}^3 | F(x, y, z) = 0 \}.$$
(9.15)

We have

$$\partial_x f(x, y, z) = 2x + y \qquad \qquad \partial_x g(x, y, z) = 4x + 3y \qquad (9.16)$$

$$\partial_u f(x, y, z) = x - 1 \qquad \qquad \partial_u g(x, y, z) = 3x - 2 \tag{9.17}$$

$$\partial_z f(x, y, z) = -1 \qquad \qquad \partial_z g(x, y, z) = -3 \tag{9.18}$$

therefore

$$DF(x,y,z) = \begin{pmatrix} 2x+y & x-1 & -1\\ 4x+3y & 3x-2 & -3 \end{pmatrix}$$
(9.19)

To check if DF surjective, it is enough to show that

are linearely independent. For that, we compute the determinant of the matrix created by the two vectors.

$$\det\begin{pmatrix} x-1 & -1\\ 3x-2 & -3 \end{pmatrix} = -3x+3+3x-2 = 1 \tag{9.21}$$

So, DF has a rank of 2, therefore surjective. With this, C is a submanifold of \mathbb{R}^3 .