

School of Electronics Engineering ,VIT, Vellore

Reg.No	19BEC0358	19BEC0358				
Student Name	ARPIT PATAWAT					
Commo Codo	ECE2002	L35+L36				
Course Code	ECE3003	FALL 2021-22				
Course Name	Microcontroller and its ap	plications				
Program Title	PORTS AND TIMERS					
Date of Exp.	20-09-2021	23-10-2021				
Faculty	A.Karthikeyan					

Reg no: 19BEC0358

Question

1. Write and assemble a program to toggle all the bits of P0, P1, and P2 continuously by sending 55H and AAH to these ports. Put a time delay between the "on" and "off" states.

Fall 2021-22

Then using the simulator, single-step through the program and examine the ports. Do not single-step through the time delay call.

- 2. Write and assemble a program to Get the Data From Port P1 and Send it to Port P2, Note:P1 as input Port and P2 as Output Port
 - 3. Write a program using timer 1 mode 1 to generate a 1 kHz square wave frequency on one of the pins of P1. Then examine the frequency using the oscilloscope.
 - 4. Write a program using timer 1 mode 1 to generate a 500Hz square wave frequency on one of the pins of P1. Then examine the frequency using the oscilloscope.
- 5. Assuming that clock pulses are fed into pin T1, write a program for counter 1 in mode 2 to count the pulses and display the state of the TL1 count on P2, which connects to 8 LEDs.

SENSE, VIT, VELLORE Page 2 of 19

TASK 1) -

Reg no: 19BEC0358

Aim: To write an 8051 ALP to perform to toggle all the bits of p0, p1 and p2 using keil software and to verify the result manually.

Tools Required: Keil Micro vision Software

Algorithm:

- 1. 55 is 0101 0101 and AA is 1010 1010
- 2. load 55 to the ports P0, P1 and P2
- 3. make a delay by using ACALL to move to subroutine
- 4. in delay programme, we are first decrementing R2 20 times and repeating this process 10 times (total 200 times)
- 5. after delay function execution, we are again moving back to our main function
- 6. load AA to ports P0, P1 and P2 (basically complementing)

7. again delaying and repeating this process from step 2

Program:

Label	Mnemoni cs	Operan ds	addressin g mode used	Machine cycle Require d	Memory Byte Require d	Type of Instructi on	Comment s	Flags getting affected by the Instructio n.
	ORG	0000Н					Defining origin of the program	NONE
HERE	MOV	P0, #55H	Immediate	1	2	Data Transfer	Load 55 to port 0	NONE
	MOV	P1, #55H	Immediate	1	2	Data Transfer	Load 55 to port 1	NONE
	MOV	P2, #55H	Immediate	1	2	Data Transfer	Load 55 to port 2	NONE
	ACALL	DELAY		2	2	Program branchin g	Absolute delay subroutine is called	NONE

SENSE, VIT, VELLORE Page 3 of 19

Regr	no: 19BEC03	58	Fall 2021-22	22 ECE3003 - Microcontrollers and its o				applications
	MOV	P0, #0AAH	Immediate	1	2	Data Transfer	Load AA to port 0	NONE
	MOV	P1, #0AAH	Immediate	1	2	Data Transfer	Load AA to port 1	NONE
	MOV	P2, #0AAH	Immediate	1	2	Data Transfer	Load AA to port 2	NONE
	ACALL	DELAY		2	2	Program branchin g	Absolute delay subroutine is called	NONE
	SJMP	HERE		2	2	Program branchin g	Make an unconditio nal jump to HERE label	NONE
DEL AY	MOV	R1, #10H	Immediate	1	2	Data Transfer	Load 10 to port R1	NONE
BAC K	MOV	R2, #20H	Immediate	1	2	Data Transfer	Load 20 to port R2	NONE
AGAI N	DJNZ	R2, AGAIN	Direct	2	2	Program branchin g	Decremen t R2 and jump to label if non zero	NONE
	DJNZ	R1, BACK	direct	2	2	Program branchin g	Decremen t R2 and jump to label if non zero	NONE
	RET					Program branchin g	Return to instruction after ACALL	NONE
	END						End of the program	NONE

SENSE, VIT, VELLORE Page 4 of 19

Output: Ports containing the Result: P0=P1=P2=55 or AA

Manual Calculation: NONE

Results and Observations

Program and registers before execution:

Program and registers after execution: FINAL STEP

SENSE, VIT, VELLORE Page 5 of 19

- 1. About PSW VALUES they remain unchanged
- 2. ABOUT THE OUTPUT VALUES IN REGISTERS registers need to be change for delay, the final

Result is in ports which is toggling

SENSE, VIT, VELLORE Page 6 of 19

Reg no: 19BEC0358 Fall 2021-22 ECE3003 - Microcontrollers and its applications

Result: the 8051 ALP to perform toggling of ports is executed using Keil software and the results are verified Manually.

TASK 2) -

Aim: To write an 8051 ALP to Get data from Port 1 and send to port 2 using keil software and to verify the result manually.

Tools Required: Keil Microvision Software

Algorithm:

- 1. make port 1 as input by sending FF (1111 1111)
- 2. load FF to Accumulator and then to port 1
- 3. now, move data from port 1 to accumulator
- 4. move data from accumulator to port 2
- 5. repeat from step 3.

Program:

Label	Mnemoni cs	Operan ds	addressin g mode used	Machine cycle Require d	Memory Byte Require d	Type of Instructi on	Comment s	Flags getting affected by the Instructio n.
	MOV	A, #0FFH	Immediate	1	2	Data transfer	Load FF to accumulat or	NONE
	MOV	P1, A	Register	1	1	Data transfer	Load data from A to port 1 so that it can be used as input	NONE
HERE	MOV	A, P1	Register	1	1	Data transfer	Move data form port	NONE

Page 7 of 19 SENSE, VIT, VELLORE

Reg no:	Reg no: 19BEC0358		Fall 2021-22		ECE3003 - Microcontrollers and its applications			
							1 to A	
N	MOV	P2, A	Register	1	1	Data transfer	Move data from A to port 2	NONE
	SJMP	HERE		2	2	Program branchin g	Make unconditio nal jump to HERE label	NONE
I	END						End of the program	NONE

Output: Ports containing the Result: P0 & P1

Manual Calculation: NONE

Results and Observations

Program and registers before execution:

Program and registers after execution: FINAL STEP

SENSE, VIT, VELLORE Page 8 of 19

- 1. About PSW VALUES they remain unchanged
- 2. ABOUT THE OUTPUT VALUES IN REGISTERS the final Result is in port 2 which is changed when port 1 is changed

Result: the 8051 ALP to data transfer from ports is executed using Keil software and the results are verified Manually.

SENSE, VIT, VELLORE Page 9 of 19

Reg no: 19BEC0358 Fall 2021-22

TASK 3) -

Aim: To write an 8051 ALP using timer 1 mode 1 to generate a 1000Hz square wave frequency on one of the pins of P1 using keil software and to verify the result manually.

Tools Required: Keil Microvision Software

Algorithm:

- 1.calculate the time period from given frequency
- 2.using time period, calculate the value of count
- 3. subtract the count value from FFFF and load into timer 1
- 4. now compliment port 1 by using timer 1

Program:

Label	Mnemoni cs	Operan ds	addressin g mode used	Machine cycle Require d	Memory Byte Require d	Type of Instructi on	Comment s	Flags getting affected by the Instructio n.
	ORG	000Н					Starting of program	none
	MOV	TMOD, #10H	Immediate	1	2	Data transfer	Timer 1 mode 1 is selected (0001 0000)	None
HERE	MOV	TL1, #33H	Immediate	1	2	Data transfer	Lower bit of timer = 33	None
	MOV	TH1, #0FEH	Immediate	1	2	Data transfer	Higher bit of timer = FE	None
	CPL P1.0		Direct addressing	1	1	logical	Complime nt value of port 1	none
	ACALL	DELAY		2	2	branchin g	Call delay subroutine	None

SENSE, VIT, VELLORE Page 10 of 19

Regr	no: 19BEC03	58	Fall 2021-22		ECE3003 - Microcontrollers and its applications			
	SJMP	HERE		2	2	branchin g	Short jump to here label	None
DEL AY	SETB	TR1	Direct	1	2	Boolean	Start timer	none
AGAI N	JNB	TF1, AGAIN	Direct	1	2	Boolean	Monitor timer flag, if it is 0, then go to again label	Timer flag
	CLR	TR1	Direct	1	1	Boolean	Stop timer	None
	CLR	TF1	Direct	1	1	Boolean	Reset timer flag	None
	RET		Assembler directive	1	1	Program Branchin g	Return	None
	END		Assembler directive				end	None

Output: Ports containing the Result: P1, in the form of waveform

Manual Calculation : Frequency = 1000Hz

T = 1/F = 1mS

For half cycle = T/2 = 0.5mS

Count = 0.5mS / 1.085uS = $460.82 \rightarrow 461$

Timer bits = 65536 - 461 = FE33H

Results and Observations

Program and registers before execution:

SENSE, VIT, VELLORE Page 11 of 19

- 1. About PSW VALUES they remain unchanged
- 2. ABOUT THE OUTPUT VALUES IN REGISTERS the final Result is in port1 which is complimented

SENSE, VIT, VELLORE Page 12 of 19

Continuously with frequency = 974.20Hz

Result: the 8051 ALP to to generate a 1000Hz square wave frequency on one of the pins of P1 is executed using Keil software and the results are verified Manually.

TASK 4) -

Aim: To write an 8051 ALP using timer 1 mode 1 to generate a 500Hz square wave frequency on one of the pins of P1 using keil software and to verify the result manually.

Tools Required : Keil Microvision Software

Algorithm:

- 1.calculate the time period from given frequency
- 2.using time period, calculate the value of count
- 3. subtract the count value from FFFF and load into timer 1
- 4. now compliment port 1 by using timer 1

Program:

Label	Mnemoni cs	Operan ds	addressin g mode used	Machine cycle Require d	Memory Byte Require d	Type of Instructi on	Comment s	Flags getting affected by the Instructio n.
	ORG	000Н					Starting of program	none
	MOV	TMOD, #10H	Immediate	1	2	Data transfer	Timer 1 mode 1 is selected	None

SENSE, VIT, VELLORE Page 13 of 19

Regr	no: 19BEC03	58	Fall 2021-22	2 ECE3003 - Microcontrollers and its applicat				
HERE	MOV	TL1, #66H	Immediate	1	2	Data transfer	Lower bit of timer = 66	None
	MOV	TH1, #0FCH	Immediate	1	2	Data transfer	Higher bit of timer = FC	None
	CPL P1.0		Direct addressing	1	1	logical	Complime nt value of port 1	none
	ACALL	DELAY		2	2	branchin g	Call delay subroutine	None
	SJMP	HERE		2	2	branchin g	Short jump to here label	None
DEL AY	SETB	TR1	Direct	1	2	Boolean	Start timer	none
AGAI N	JNB	TF1, AGAIN	Direct	1	2	Boolean	Monitor timer flag, if it is 0, then go to again loop	Timer flag
	CLR	TR1	Direct	1	1	Boolean	Stop timer	None
	CLR	TF1	Direct	1	1	Boolean	Reset timer flag	None
	RET		Assembler directive	1	1	Program branchin g	Return	None
	END		Assembler directive				end	None

Output: Ports containing the Result: P1, in the form of waveform

Manual Calculation : Frequency = 500Hz

T = 1/F = 2mS

For half cycle = T/2 = 1mS

SENSE, VIT, VELLORE

Reg no: 19BEC0358

Fall 2021-22

Count = $1 \text{mS} / 1.085 \text{uS} = 921.86 \rightarrow 922$

Timer bits = 65536 - 922 = FC66H

Results and Observations

Program and registers before execution:

Program and registers after execution: FINAL STEP

SENSE, VIT, VELLORE Page 15 of 19

- 1. About PSW VALUES they remain unchanged
- 2. ABOUT THE OUTPUT VALUES IN REGISTERS the final Result is in port1 which is changed

Continuously and the frequency = 491.52Hz

Result: the 8051 ALP to to generate a 500Hz square wave frequency on one of the pins of P1 is executed using Keil software and the results are verified Manually.

SENSE, VIT, VELLORE Page 16 of 19

Reg no: 19BEC0358

TASK 5) -

Aim: To write an 8051 ALP to count the pulses and display the state of the TL1 count on P2 using keil software and to verify the result manually.

Tools Required: Keil Microvision Software

Algorithm:

1. Select couter 1 mode 2 in TMOD register

2.send high to low signal to port 3.5

3. whenever we send a signal, copy the count value to accumulator and load it to port 2

Fall 2021-22

Program:

Label	Mnemoni cs	Operan ds	addressin g mode used	Machine cycle Require d	Memory Byte Require d	Type of Instructi on	Comment	Flags getting affected by the Instructio n.
	MOV	TMOD, #011000 00B	Immediate	1	2	Data transfer	counter 1 mode 2 is selected	None
	MOV	TH1, #0H	Immediate	1	2	Data transfer	Higher bit of timer = 0	None
	SETB	P3.5	Direct	1	1	Boolean	Make P 3.5 input	None
AGAI N	SETB	TR1	Direct	1	1	Boolean	Start Counter	none
BAC K	MOV	A, TL1	Direct	1	2	Data transfer	Move data from TL1 to A	P flag
	MOV	P2, A	Direct	1	2	Data transfer	Move dat from A to port 2	None
	JNB	TF1, BACK	Direct	2	1	Branchin g	Monitor the flag	None

SENSE, VIT, VELLORE Page 17 of 19

Reg r	Reg no: 19BEC0358		Fall 2021-22		ECE3003 - Microcontrollers and its applications			
	CLR	TR1	Direct	1	1	Boolean	Stop counter	None
	CLR	TF1	Direct	1	1	Boolean	Clear flag	None
	SJMP	AGAIN		2	2	Branchin g	Move to again label	none
	END							

Output: Ports containing the Result: P2, tells about count value

Manual Calculation: None

Results and Observations

Program and registers before execution:

Program and registers after execution: FINAL STEP

SENSE, VIT, VELLORE Page 18 of 19

- 1. About PSW VALUES they remain unchanged
- 2. ABOUT THE OUTPUT VALUES IN REGISTERS the final Result is in port 2 which is changed

Continuously as we give a signal to port 3.5

Result: the 8051 ALP to count the pulses and display the state of the TL1 count on P2 is executed using Keil software and the results are verified Manually.

-----XXXXXXX------

SENSE, VIT, VELLORE Page 19 of 19