STL (Theory) – LOESS and Cycle-Subseries

Time series decomposition

Contents

LOESS PARAMETERS IN STL

CYCLE-SUBSERIES

LOESS Parameters in STL

LOESS Parameters in STL

- f: Fraction of data for window size
 - Determines smoothness of data
- *i*: Number of iterations for robust regression
 - Ensures robustness to outliers

- n: Number of data points in window size
 - Must be odd so can have centred window
- n_o : Number of outer loop iterations
 - In a single outer loop we compute robustness weights to input into LOESS in the inner loop
 - Ensures robustness to outliers

LOESS Parameters in STL

- Previously showed that LOWESS uses a local, robust, and weighted linear regression
- LOESS uses a polynomial regression

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d$$

- d: Degree of polynomial to use in LOESS
- Most applications use d=1 and in some rarer cases d=2 or d=0

- n_p : Number of data points in one seasonal cycle
- Example: Monthly data with yearly seasonality, $n_p=12$
- Cycle-subseries is the time series formed from looking at the value of each period within a seasonal cycle over time
- Example: The time series of all January values over multiple years

Year-Month	у
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••		•••	•••	

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Note relation to classical decomposition for seasonality:

- 1) De-trend original time series
- 2) Average over seasonal index

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••	•••	•••	•••	•••

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Note relation to classical decomposition for seasonality:

- 1) De-trend original time series
- 2) Average over seasonal index

Month/Year	2011	2012	2013	•••	Mean
Jan	112	134	156	•••	130
Feb	146	145	151	•••	148
Mar	80	85	86	•••	82
Apr	90	93	98	•••	94
•••		•••			•••

Year-Month	у
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
	•••

Month/Year	2011	2012	2013	•••	Mean
Jan	112	134	156	•••	130
Feb	146	145	151	•••	148
Mar	80	85	86	•••	82
Apr	90	93	98	•••	94

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Month/Year	2011	2012	2013	•••	Mean
Jan	112	134	156	•••	130
Feb	146	145	151	•••	148
Mar	80	85	86	•••	82
Apr	90	93	98	•••	94
•••			•••	•••	

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••	•••	•••	•••	•••

Year-Month	у
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••	•••	•••	•••	

Year-Month	у
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••	•••	•••	•••	•••

Year-Month	У
2011-Jan	112
2011-Feb	146
2011-Mar	80
2011-Apr	90
•••	•••

This view of the data motivates a seasonality that can change with time (i.e., each year)!

Useful to enable STL to extract a time varying seasonal component

Month/Year	2011	2012	2013	•••
Jan	112	134	156	•••
Feb	146	145	151	•••
Mar	80	85	86	•••
Apr	90	93	98	•••
•••	•••	•••	•••	•••

- If seasonal cycle has n_p periods then there are n_p cycle-subseries
- In this example, $n_p = 12$ hence 12 one cycle-subseries for each month
- This view allows us to think about how seasonality changes with time and how we model it
- Example: Simple average to get constant seasonality over time like in classical decomposition

- If seasonal cycle has n_p periods then there are n_p cycle-subseries
- In this example, $n_p=12$ hence 12 one cycle-subseries for each month
- This view allows us to think about how seasonality changes with time and how we model it
- Example: Simple average to get constant seasonality over time like in classical decomposition
- Can fit smoother curves instead to model the seasonality!

- If seasonal cycle has n_p periods then there are n_p cycle-subseries
- In this example, $n_p=12$ hence 12 one cycle-subseries for each month
- This view allows us to think about how seasonality changes with time and how we model it
- Example: Simple average to get constant seasonality over time like in classical decomposition
- Can fit smoother curves instead to model the seasonality!

LOESS parameters used in STL are different from LOWESS

Summary

Cycle-subseries is a time series of one of the seasonal indexes

Cycle-subseries is a useful way to look at the data to understand and model seasonality