ANALYSIS 4 NOTES NICHOLAS HAYEK

Lectures by Prof. Henri Darmon

CONTENTS

I Measure	1
Motivation	1
σ -Algebras	1

1 measure

I Measure

MOTIVATION

In Analysis 3, we will formalize the concept of measure and study integration further. As motivation, consider the lower and upper Riemann integral:

$$\int_{a}^{b} f(x)dx := \inf \left\{ \sum_{i=1}^{n} \sup f_{[x_{i-1},x_i]}(x_i - x_{i-1}) \right\}$$

$$\int_{a}^{b} f(x)dx := \sup \left\{ \sum_{i=1}^{n} \inf f_{[x_{i-1},x_{i}]}(x_{i} - x_{i-1}) \right\}$$

where $a = x_0 < x_1 < ... < x_n = b$. Recall that f is called Riemann integrable if $\overline{\int}_a^b f = \underline{\int}_a^b f$, and we write instead $\int_a^b f$. Note that not all functions are integrable in this sense.

Consider $f:[0,1] \to \mathbb{R}$ such that f(x)=1 if $x \in \mathbb{Q} \cap [0,1]$ and 0 otherwise. Since \mathbb{Q} and \mathbb{Q}^c are both dense in \mathbb{R} , and in particular [0,1], we conclude that $\int_a^b f = 1$ and $\int_a^b f = 0$. Thus, f is not Riemann integrable.

We introduce the Lebesgue integral as an alternative. Let $A_i := \{x \in [a, b] : y_i \le f(x) < y_{i+1}\}$, where the y_i 's are increasing. See that now $\sum y_i |A_i| \approx \int_a^b f$. The following questions arise from this:

- 1. What is the "size" of A_i ?
- 2. What sets can we measure?

σ-ALGEBRAS

Let *X* be a non-empty set, and let \mathcal{F} be a collection of subsets of *X*. We call \mathcal{F} a σ -algebra of subsets of *X* if the following hold:

- 1. $X \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ ("closed under compliments")
- 3. If $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, then $\bigcup_{n=1}^{\infty} \in \mathcal{F}$ ("closed under countable unions").

We can derive the following from these axioms:

PROP. 1.1

1. $\emptyset \in \mathcal{F}$

Analysis 4 Notes 2

- 2. If $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, then $\bigcap_{i=1}^{\infty} \in \mathcal{F}$
- 3. If $A_1, ..., A_N \in \mathcal{F}$, then $\cap A_i$ and $\cup A_i \in \mathcal{F}$

4. If $A, B \in \mathcal{F}$, then $A \setminus B$, $B \setminus A$, and $A \triangle B \in \mathcal{F}$

For a set X, consider $\mathcal{F} = 2^X := \{A : A \subseteq X\}$, the powerset of X. This is the largest σ -algebra of X. The smallest one can construct is $\mathcal{F} = \{\emptyset, X\}$. If we'd like to include a particular subset of X, say A, we can write $\mathcal{F} = \{\emptyset, X, A, A^c\}$.

Let X be a space and C be a collection of subsets of X. The σ -algebra generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$, is defined by the following:

- 1. $\sigma(\mathcal{C})$ is a σ -algebra with $\mathcal{C} \subseteq \sigma(\mathcal{C})$
- 2. If \mathcal{F} is a σ -algebra with $\mathcal{C} \subseteq \mathcal{F}$, then $\mathcal{F} \supseteq \sigma(\mathcal{C})$.

In other words, $\sigma(\mathcal{C})$ is the smallest σ -algebra which contains \mathcal{C} . From the example " σ -algebra generated by \mathcal{C} " above, we can write $\sigma(A) = \{\emptyset, X, A, A^c\}.$

We can state the following about σ -algebras generated by C:

- 1. $\sigma(\mathcal{C}) = \bigcap \{ \mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-algebra}, \mathcal{C} \subseteq \mathcal{F} \}$
- 2. If C is a σ -algebra, then $\sigma(C) = C$
- 3. If C_1 and C_2 are such that $C_1 \subseteq C_2$, then $\sigma(C_1) \subseteq \sigma(C_2)$.

We also say that $\sigma(C)$ is the

 $A \triangle B := (A \setminus B) \cup (B \setminus A)$

PROP 1.2