OLYMPIC CƠ HỌC TOÀN QUỐC -2016 ĐỀ THI

1. CƠ HỌC KỸ THUẬT

Bài 1. Rô to của động cơ O_1 là một trụ tròn đồng chất bán kính r_1 , khối lượng m_1 , quay quanh trục cố định nằm ngang qua O_1 . Ngấu lực tác dụng lên trục động cơ M_{dc} . Băng truyền giữa trục động cơ và trục tời được xem là đồng chất có chiều dài ℓ và khối lượng riêng γ (kg/m) và luôn ở trạng thái căng, không giản. Tời O_1 gồm hai đĩa tròn đồng chất ghép cứng với nhau, có khối tâm ở trục quay hình bọc O_2 . Khối lượng và bán kính tương ứng của chúng là m_1 , m_2 và r_1 , r_2 . Tời kéo vật A, có khối lượng m_3 chuyển động theo mặt phẳng nghiêng không nhãn, có hệ số ma sát trượt f, nghiêng một góc α so với mặt phẳng ngang. Vật A nối với con lăn B bằng dây cáp, con lăn B là một đĩa tròn đồng chất, khối lượng m, bán kính r chuyển động lãn không trượt theo mặt nghiêng. Bỏ qua khối lượng các đoạn dây cáp nối vật A với tời và với vật B và các đoạn dây luôn ở trạng thái căng. Bỏ qua ma sát ở các ổ trục và ma sát lãn.

- 1) Tính động năng cơ hệ là hàm của vận tốc v của vật A và tính công suất cần thiết của động cơ để kéo vật A có vận tốc v và gia tốc a.
- 2) Giả sử $M_{dc}=a_0-b_0\overline{\omega}$, trong đó a_0,b_0 là các hằng số dương đã biết, $\overline{\omega}$ là vận tốc góc của động cơ, giả sử ban đầu hệ đứng yên. Tìm biểu thức vận tốc góc $\overline{\omega}$ của động cơ là hàm của thời gian và giá trị vận tốc góc bình ổn (vận tốc góc tới hạn). Tính thời gian T^0 để vật A đạt được vận tốc bằng 95% vận tốc của chế độ bình ổn.
- Tính lực căng trong nhánh dây giữa vật A và B.
- Bài 2. Một bàn nghiễn rung có khối lượng m_1 di chuyển theo phương ngang, không ma sát, được kích động bằng quả văng có khối lượng m (xem là chất điểm) nằm cách trục quay I khoảng cách e và quay đều với vận tốc góc ω . Bộ giảm chấn lò xo có độ cứng e và giảm chấn thủy lực với hệ số giảm chấn b. Một đĩa tròn đồng chất, có khối lượng m_1 bán kính r lần không trượt theo lỗ tròn của bàn rung có bán kính R. Chọn các tọa độ suy rộng là x và θ , trong đó x kể từ điểm mút của lò xo khi chưa biến dạng đến mép của bàn nghiền, θ là góc nghiêng của đường qua tâm O_1O_2 đối với phương thẳng đứng . Độ dài của lò xo khi chưa biến dạng lễ ℓ_0 .

Hình 2

- 1) Viết phương trình vi phân chuyển động của cơ hệ.
- 2) Xét trường hợp $m_2 << m_1$, θ bé, giả thiết rằng $\cos \theta \approx 1$, $\sin \theta \approx \theta << 1$, $m_2 \sin \theta \approx 0$. Từa chuyển động của cơ hệ trong chế độ bình ổn.

- 1) Tính động năng cơ hệ là hàm của vận tốc v của vật A và tính công suất cần thiết của động cơ để kéo vật A có vận tốc v và gia tốc a.
- 2) Giả sử $M_{dc}=a_0-b_0\overline{\omega}$, trong đó a_0,b_0 là các hằng số dương đã biết, $\overline{\omega}$ là vận tốc góc của động cơ, giả sử ban đầu hệ đứng yên. Tìm biểu thức vận tốc góc $\overline{\omega}$ của động cơ là hàm của thời gian và giá trị vận tốc góc bình ổn (vận tốc góc tới hạn). Tính thời gian T^0 để vật A đạt được vận tốc bằng 95% vận tốc của chế độ bình ổn.
- Tính lực căng trong nhánh dây giữa vật A và B.
- Bài 2. Một bàn nghiễn rung có khối lượng m_1 di chuyển theo phương ngang, không ma sát, được kích động bằng quả văng có khối lượng m (xem là chất điểm) nằm cách trục quay I khoảng cách e và quay đều với vận tốc góc ω . Bộ giảm chấn lò xo có độ cứng e và giảm chấn thủy lực với hệ số giảm chấn b. Một đĩa tròn đồng chất, có khối lượng m_1 bán kính r lần không trượt theo lỗ tròn của bàn rung có bán kính R. Chọn các tọa độ suy rộng là x và θ , trong đó x kể từ điểm mút của lò xo khi chưa biến dạng đến mép của bàn nghiền, θ là góc nghiêng của đường qua tâm O_1O_2 đối với phương thẳng đứng . Độ dài của lò xo khi chưa biến dạng lễ ℓ_0 .

Hình 2

- 1) Viết phương trình vi phân chuyển động của cơ hệ.
- 2) Xét trường hợp $m_2 << m_1$, θ bé, giả thiết rằng $\cos \theta \approx 1$, $\sin \theta \approx \theta << 1$, $m_2 \sin \theta \approx 0$. Từa chuyển động của cơ hệ trong chế độ bình ổn.

8. ỨNG DỤNG TIN HỌC TRONG CƠ HỌC

8.1. Ứng dụng tin học trong Cơ học kỹ thuật

Bài 1. (6 điểm)

Hệ ba lực \mathbf{F}_A , \mathbf{F}_B , và \mathbf{F}_C (xem hình vẽ) tương đương với một hệ xoán gồm lực \mathbf{F}_R và véc tơ ngấu lực \mathbf{M} song song nhau, lực \mathbf{F}_R đặt tại điểm P(0,y,z). Hãy xác định: (a) véc tơ lực \mathbf{F}_R và véc tơ ngấu lực \mathbf{M} . (b) tọa độ y và z của điểm P(0, y, z) trên mặt yz. Trong hình vẽ ba véc tơ đơn vị của ba trục tọa độ xyz tương ứng là $\{i, j, k\}$.

Bài 2. (10 điểm)

Trục AB được giữ nằm ngang nhờ ổ đỡ chặn tại A, ổ đỡ tại B, và thanh nhẹ CD. Các lực tác dựng lên hệ gồm lực đứng 80N và lực ngang 200 N tác dụng tại E. Biết rằng các trục x, y trong mặt phẳng ngang còn trục z thẳng đứng, với ba véc tơ đơn vị tương ứng là $\{i,j,k\}$. Bỏ qua trọng lượng các vật. a) Vẽ đồ thị ứng lực của thanh CD khi tọa độ z_D thay đổi từ 65 đến 100 mm, trong khi các tọa độ x_D và y_D không thay đổi. Các điểm C và E không thay đổi. b) Đưa ra giá trị của ứng lực thanh CD, các phản lực liên kết tại A và B khi: $z_D = 65$ và $z_D = 100$ mm;

Bài 3. (12 điểm)

Cơ cấu chuyển động trong mặt phẳng đứng Oxy như hình vẽ. Tay quay OA quay đều quanh trục ngang O với vận tốc góc $\omega=3$ rad/s, $\varphi=\omega t$. Cho biết các kích thước OA = r = 0.10, AB = $L_1=0.30$, BC= BE = $L_2=0.40$, dx = 0.15, dy = 0.50 m. Hãy đưa ra các kết quả sau:

- 1) Trị số của góc θ và tọa độ x_E khi: $\varphi=0\,,\;\varphi=\pi/2,\;\varphi=\pi,\;$ và $\varphi=3\pi/2\,.$
- 2) Đồ thị trong khoảng thời gian $t \in [0, 4\pi/\omega]$ s của:
 - a) góc $\theta(t)$ và vận tốc góc của thanh BC (cùng trên một đồ thị),
 - b) di chuyển $x_{\rm g}(t)$ và vận tốc của con trượt E (cùng trên một đồ thị).
- 3) Quỹ dạo trung điểm M của AB trong mặt phẳng Oxy.

Bài 4. (12 điểm). Xét mô hình cầu trục như trên hình vẽ: Xe goòng có khới lượng m_i chuyển động trên dẫm ngang. Tải trọng được coi là vật rắn

có khối lượng $m_{_2}$, khối tâm C, BC = r, mô men quán tính đối với khối tâm là J_o . Dây treo khối lượng không đáng kể, chiều dài L, luôn căng và không giãn. Chọn các tọa độ suy rộng cho hệ là x,φ,θ . Hệ chuyển động trong mặt phẳng đứng. Biết rằng biểu thức động năng của hệ được viết

dạng:
$$T = \frac{1}{2} \Big(m_{11} \dot{x}^2 + m_{22} \dot{\varphi}^2 + m_{33} \dot{\theta}^2 + 2 m_{12} \dot{x} \dot{\varphi} + 2 m_{13} \dot{x} \dot{\theta} + 2 m_{23} \dot{\varphi} \dot{\theta} \Big)$$

- 1) Hãy viết ra biểu thức chữ các số hạng: $m_{11}, m_{22}, m_{33}, m_{12}, m_{13}, m_{23}$.
- 2) Đưa ra các giá trị của x, φ, θ tại thời điểm t = 1 s.
- 3) Đồ thị các đại lượng $x(t), \varphi(t)$ theo biến thời gian, $t=[0,\ t_f]$, trên cùng một đồ thi.
- 4) Quĩ đạo chuyển động của khối tâm C của tải trọng.

Thực hiện câu 2), 3) và 4) với các số liệu sau:

$$m_1 = 1.0 \text{ kg}; \quad m_2 = 3 \text{ kg}; \quad r = 0.5 \text{ m};$$

$$J_C = 0.2 \text{ kgm}^2$$
; $g = 9.81 \text{ m/s}^2$; $L = 1 \text{ m}$;

$$u = -30(x-2) - 40\dot{x};$$
 $t_f = 10 \text{ s},$

với các điều kiện đầu:

$$x(0) = 0; \dot{x}(0) = 0; \varphi(0) = 0; \dot{\varphi}(0) = 0; \theta(0) = 0; \dot{\theta}(0) = 0;$$