COMP9311 - Assignment 3

Jack Jiang (z5129432)

8 October 2017

Question 1

- i. (a) Since we don't have EF, so every candidate keys must include E and F ACEF BCEF
 - (b) Key = ACEF, AD \rightarrow B violate BCNF
 - (c) {ABCDEF} FD = {AD→B, C→D, BC→A, B→D } KEY = ACEF to fix AD→B, decompose into: {ABD}{ACDEF} {ABD} FD = {AD→B, B→D} KEY = AD to fix B→D, decompose into: {BD}{AB} {ACDEF} FD = {C→D} KEY = ACEF to fix C→D, decompose into: {ACEF}{CD} Therefore, the collection of BCNF is {AB, BD, CD, ACEF}
- ii. (a) AF CF
 - (b) KEY = AF, BC \rightarrow E violate BCNF
 - (c) {ABCDEF} FD = {BC \rightarrow E, C \rightarrow AB, AF \rightarrow CD } KEY = AF to fix BC \rightarrow E, decompose into: {BCE}{ABCDF} {BCE} FD = {BC \rightarrow E, C \rightarrow B } KEY = C {ABCDF} FD = {C \rightarrow AB, AF \rightarrow CD } KEY = AF to fix C \rightarrow AB, decompose into {ABC}{ABDF} Therefore, the collection of BCNF is {ABC, ABDF, BCE}
- iii. (a) ABCF BCDF
 - (b) KEY = ABCF, CD \rightarrow E violate BCNF
 - (c) {ABCDEF} FD = {ABF \rightarrow D, CD \rightarrow E, BD \rightarrow A } KEY = ABCF to fix CD \rightarrow E, decompose into: {CDE}{ABCDF} {CDE} FD = {CD \rightarrow E} KEY = CD {ABCDF} FD = {ABF} \rightarrow D, BD \rightarrow A } KEY = ABCF to fix BD \rightarrow A, decompose into: {ABD}{BCDF} Therefore, the collection of BCNF is {ABD, BCDF, CDE}
- iv. (a) AB

- (b) KEY = AB, BCD \rightarrow EF violate BCNF
- (c) {ABCDEF} FD = {AB \rightarrow D, BCD \rightarrow EF, B \rightarrow C } KEY = AB to fix BCD \rightarrow EF, decompose into: {BCDEF}{ABCD} {BCDEF} FD = {BCD \rightarrow EF, B \rightarrow C } KEY = BD to fix B \rightarrow C, decompose into: {BC}{BDEF} {ABCD} FD = {AB \rightarrow D, B \rightarrow C } KEY = AB to fix B \rightarrow C, decompose into: {BC}{ABD} Therefore, the collection of BCNF is {BC, ABD, BDEF}

Question 2

- i. Proj[Name](Company Join[Sector='Technology'] Category)
- ii. Proj[Code](Sel[Person ; 5](Code g cout(Person)(Executive)))
- iii. Proj[Person](Sel[Code ; 1](Person g cout(Code)(Executive)))
- iv. List the Industry which have only one Company:

 Rename[Proj[Industry](Sel[Code = 1](Industry g cout(Code)(Proj[Code, Industry](Category))))](R1)

 Then list the code of those company and its Industry:

 Proj[Code, Industry](R1 Join Category)

Question 3

i.	Expression	Max	Min
	R UNION (S INTERSECT T)	r + min(s, t)	0, when $S \wedge T = \emptyset$
	Sel[C](RxS)	r*s	0, if the condition can not meet
	R-PROJ[A](R JOIN S)	r, when R Join $S = \emptyset$	0

Question 4

(a)