In the Claims

- **1.** (currently amended) A process for increasing the molecular weight and/or for the modification of a polycondensate, which process comprises adding to the polycondensate
 - a) at least one bis-acyllactam[[;]] and
 - b1) at least one phosphite, phosphinate or phosphonate; or
 - b2) at least one benzofuran-2-one type compound or
 - b3) at least one phosphite, phosphinate or phosphonate and one benzofuran-2-one type compound and

processing the mixture in the melt.

- 2. (currently amended) A process according to claim 1 wherein the polycondensate is an aliphatic or aromatic polyester, an aliphatic or aromatic polyamide or polycarbonate[[,]] or a blend or copolymer thereof.
- **3.** (currently amended) A process according to claim **1** wherein the polycondensate is polyethylene therephthalate (PET), polybutylene therephthalate (PBT), polyethylenenaphthenate (PEN), a copolyester, PA 6, PA 6,6[[,]] or a polycarbonate containing bisphenol A, bisphenol Z or bisphenol F linked via carbonate groups.
- **4.** (original) A process according to claim 1 wherein the polycondensate is PET or PBT or a copolymer of PET or PBT.
- 5. (currently amended) A process according to claim 1 wherein the bis-acyllactam is of formula la or lb

$$(CH_2)n \longrightarrow (CH_2)n \qquad (Ia)[[,]] \qquad (CH_2)n \qquad (Ib)$$

wherein A is C_1 - C_{18} alkylen<u>e</u>, C_2 - C_{18} alkylene interrupted by at least one oxygen atom, C_1 - C_{18} alkenylene, phenylene- C_1 - C_{18} alkylene, C_1 - C_{18} alkylene-phenylene- C_1 - C_{18} alkylene; m is 0 or 1 and n is a number from 3 to 12.

6. (currently amended) A process according to claim 1 wherein the phosphonate is of formula II

Q
$$(CH_2)$$
 P OR_{104} (II) [[,]]

wherein

 R_{103} is H, C_1 - C_{20} alkyl[[,]] or unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl,

 R_{104} is hydrogen, C_1 - C_{20} alkyl[[,]] or unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl; or is M^{r^*} / r,

M^{r+} is an r-valent metal cation or the ammonium ion,

n is 0, 1, 2, 3, 4, 5 or 6[[,]] and

r is 1, 2, 3 or 4;

Q is hydrogen, -X-C(O)-OR $_{107}$ [[,]] or a radical

$$\underbrace{\text{or}}_{R_{101}} = \underbrace{\text{OR}_{106}}_{R_{102}},$$

 R_{101} is isopropyl, tert-butyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups, R_{102} is hydrogen, C_1 - C_4 alkyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups, R_{105} is H, C_1 - C_{18} alkyl, OH, halogen or C_3 - C_7 cycloalkyl;

R₁₀₆ is H, methyl, trimethylsilyl, benzyl, phenyl, sulfonyl or C₁-C₁₈alkyl;

R₁₀₇ is H, C₁-C₁₀alkyl or C₃-C₇cycloalkyl[[;]] and

X is phenylene, C₁-C₄alkyl group-substituted phenylene or cyclohexylene.

7. (currently amended) A process according to claim 6 wherein the phosphonate is of formula IIa

$$R_{101}$$
 $(CH_2)_{n}$
 P
 OR_{104}
 OR_{104}
 OR_{103}
 OR_{103}

wherein

 R_{101} is H, isopropyl, tert-butyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups, R_{102} is hydrogen, C_1 - C_4 alkyl, cyclohexyl, or cyclohexyl which is substituted by 1-3 C_1 - C_4 alkyl groups, R_{103} is C_1 - C_{20} alkyl[[,]] or unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl,

 R_{104} is hydrogen, C_1 - C_{20} alkyl[[,]] <u>or</u>unsubstituted or C_1 - C_4 alkyl-substituted phenyl or naphthyl; or is M^{r^+} / r;

M^{r+} is an r-valent metal cation,

r is 1, 2, 3 or 4[[;]] and n is 1, 2, 3, 4, 5 or 6.

8. (currently amended) A process according to claim [[1]]6 wherein the phosphonate is of formula III, IV, V, VI or VII

$$H_3C$$
 H_3C
 H_3C

wherein the R_{101} are each independently of one another hydrogen or M^{r^+} / r.[[;]]

9. (currently amended) A process according to claim 1 wherein the phosphinates are of the formula XX

$$R_{201} P O (XX)$$

wherein

 R_{201} is hydrogen, C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl; biphenyl, naphthyl, $-CH_2$ -O- C_1 - C_{20} alkyl or $-CH_2$ -S- C_1 - C_{20} alkyl,

 R_{202} is C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl; biphenyl, naphthyl, - CH_2 -O- C_1 - C_2 0alkyl or - CH_2 -S- C_1 - C_2 0alkyl, or R_{201} and R_{202} R_4 -and R_2 together are a radical of the formula XXI

wherein

 R_{203} , R_{204} and R_{205} independently of each other are C_1 - C_{20} alkyl, phenyl or C_1 - C_4 alkyl substituted phenyl; and

 R_{206} is hydrogen, C_1 - C_{18} alkyl or the ion of an alkali metal or the ammonium ion or R_{206} is a direct bond, which forms together with R_{202} an aliphatic or aromatic cyclic ester.

10. (currently amended) A process according to claim **1** wherein the benzofuran-2-one type compound is of formula X

$$\begin{bmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ &$$

wherein, if n = 1,

 R_1 is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino, or R_1 is a radical of formula XI

$$\begin{array}{c}
R_9 \\
R_7
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(XI)[[,]]

and[[,]]

if n = 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or - R_{12} -X- R_{13} - ,

 R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen, chloro, hydroxy, C_1 - C_{25} -alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 -

 C_{25} alkanoyloxy, C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyloxy; C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N - R_{14}$; C_6 - C_9 cycloalkylcarbonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a

benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring, R_4 is additionally -(CH_2) $_p$ - COR_{15} or -(CH_2) $_q$ OH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of formula XII

$$R_{2}$$

$$R_{16}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

wherein R_1 is as defined above for n = 1, R_6 is hydrogen or a radical of formula XIII

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$(XIII)[[,]]$$

wherein R_4 is not a radical of formula XII[[,]] and R_1 is as defined above for n=1, R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently of one another hydrogen, halogen, hydroxy, C_1 - C_2 5alkyl; C_2 - C_2 5alkyl which is interrupted by oxygen, sulfur or $N - R_{14}$; C_1 - C_2 5alkoxy;

 C_2 - C_{25} alkoxy which is interrupted by oxygen, sulfur or $N - R_{14}$; C_1 - C_{25} alkylthio, C_3 - C_{25} -alkenyl,

 C_3 - C_{25} alkenyloxy, C_3 - C_{25} alkynyl, C_3 - C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_2 alkanoyl; C_3 - C_2 alkanoyl which is interrupted by oxygen,

sulfur or $N-R_{14}$; C_1-C_{25} alkanoyloxy; C_3-C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or

N-R₁₄; C₁-C₂₅alkanoylamino, C₃-C₂₅alkenoyl; C₃-C₂₅alkenoyl which is interrupted by oxygen,

sulfur or $N-R_{14}$; C_3-C_{25} alkenoyloxy; C_3-C_{25} alkenoyloxy which is interrupted by oxygen, sulfur or

N—R₁₄; C₆-C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted

$$R_{20}$$
 R_{21} R_{21} R_{22} R_{23} or, in formula II, R_7 and R_8 , or R_8 and R_{11} , together with the linking carbon R_{22}

atoms, form a benzene ring,

R₁₂ and R₁₃ are each independently of the other unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxy, $\left[-O^{-}\frac{1}{r}M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25} ,

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl, R_{20} is hydrogen or C_1 - C_4 alkyl,

 R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulfur or $N - R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulfur or $N - R_{14}$ and which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl, or R_{20}

and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl,

 R_{23} is hydrogen, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulfur or $N-R_{14}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

 R_{24} and R_{25} are each independently of the other hydrogen or $C_1\text{-}C_{18}\text{alkyl}\text{,}$

R₂₆ is hydrogen or C₁-C₈alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulfur or

N—R₁₄; C₂-C₁₈alkenylene, C₂-C₂₀alkylidene, C₇-C₂₀phenylalkylidene, C₅-C₈cycloalkylene, C₇-

 $C_8 \text{bicycloalkylene},$ unsubstituted or $C_1\text{-}C_4 \text{alkyl-substituted}$ phenylene,

$$\sqrt{s}$$

$$R_{28}$$
 is hydroxy, $\left[--0^{-1} \frac{1}{r} M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

$$R_{29}$$
 is oxygen, -NH- or $N = C - NH - R_{30}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

X is a direct bond, oxygen, sulfur or -NR₃₁-,

n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3[[,]] and

s is 0, 1 or 2.

11. (currently amended) A process according to claim **10** wherein the benzofuran-2-one type compound is of formula XIV

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{11}$$

$$R_{11}$$

$$R_{11}$$

$$R_{11}$$

wherein

- 11 -

R₂ is hydrogen or C₁-C₆alkyl,

R₃ is hydrogen,

R₄ is hydrogen or C₁-C₆alkyl,

R₅ is hydrogen,

R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of one another hydrogen, C₁-C₄alkyl, C₁-C₄-alkoxy or

$$-O-C-C-O-R_{23} \quad \text{, with the proviso that at least two of } R_7,\,R_8,\,R_9,\,R_{10} \text{ or } R_{11} \text{ are hydrogen,} \\ H \quad R_{22}$$

 R_{20} , R_{21} and R_{23} are hydrogen[[,]] and

R₂₃ is C₂-C₄alkanoyl.

12. (original) A process according to claim **11** wherein the benzofuran-2-one type compound is of formula XIVa or XIVb

or a mixture or blend of the two compounds of formulae XIVa and XIVb.

13. (currently amended) A process according to claim 1 wherein the benzofuran-2-one type compound is of formula XV

$$R_{301}$$
 R_{302}
 R_{303}
 R_{304}
 R_{304}
 R_{305}
 R_{306}

wherein

 R_{301} and R_{302} are each independently of one another hydrogen or C_1 - C_8 alkyl, R_{303} and R_{304} are each independently of one another C_1 - C_{12} alkyl[[,]] and R_{305} is C_1 - C_7 alkyl.

- **14. (original)** A process according to claim 1 wherein the bis-acyllactam is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
- **15.** (original) A process according to claim 1 wherein the phosphite, phosphinate or phosphonate is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
- **16.** (original) A process according to claim **1** wherein the benzofuran-2-one type compound is used in an amount of 0.01 to 5 % by weight based on the weight of the polycondensate.
- 17. (currently amended) A process according to claim 1 wherein the ratio of the bis-acyllactam to <u>b1)</u> the phosphite, phosphinate[[,]] <u>or phosphonate</u> or to <u>b2)</u> the benzofuran-2-one type compound or <u>to b3)</u> the sum of all is from 1:10 to 5:1.
- **18.** (original) A process according to claim 1 wherein the maximum mass-temperature of the melt is from 170° to 320° C.
- 19. (original) A process according to claim 1 wherein an oxazoline compound is additionally present.

- 20. (currently amended) A composition comprising
 - a) a polycondensate;
 - b) at least one bis-acyllactam[[;]] and
 - c1) at least one phosphite, phosphinate or phosphonate; or
 - c2) at least one benzofuran-2-one type compound or
 - c3) at least one phosphite, phosphinate or phosphonate and one benzofuran-2-one type compound.
- 21. (currently amended) A polycondensate obtainedable by a process according to clam 1.
- 22. (canceled)