EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining

Souleymane Zida¹, Philippe Fournier-Viger², Jerry Chun-Wei Lin³, Cheng-Wei Wu⁴ and Vincent S. Tseng²

¹Department of Computer Science, University of Moncton, Moncton NB, Canada;

²School of Natural Sciences and Humanities, Harbin Institute of Technology (Shenzhen), Shenzhen GD, China;

³School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen GD, China;

⁴Department of Computer Science, National Chiao Tung University, Taiwan

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)
	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
T_5	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets (itemsets having a utility \geq minutil) For example, if minutil = 33\$, the high-utility itemsets are:

{b,d,e}2 transactions	{b,c,d} 34\$ 2 transactions
{b,c,d,e} 40\$ 2 transactions	{b,c,e} 37 \$ 3 transactions

Utility calculation

a transaction database

TID Transaction T_1 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5) T_2 (b, 4), (c, 3), (d, 3), (e, 1) T_3 (a, 1), (c, 1), (d, 1) T_4 (a, 2), (c, 6), (e, 2), (g, 5) T_5 (b, 2), (c, 2), (e, 1), (g, 2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The utility of the itemset {b,d,e} is calculated as follows:

$$u(\{\textbf{b},\textbf{d},\textbf{e}\}) = \underbrace{(5x2) + (3x2) + (3x1)}_{\text{utility in}} + \underbrace{(4x2) + (2x3) + (1x3)}_{\text{utility in}} = \textbf{36\$}$$

$$\text{utility in}_{\text{transaction}}$$

$$\text{transaction}_{\text{T}_{1}}$$

$$\text{T}_{2}$$

Challenge: utility is not anti-monotonic

Contribution

- A new algorithm named EFIM
- Three main ideas:
 - High-utility Database Projection
 - High-utility Transaction Merging
 - Utility-Bin Array to calculate utility and upperbounds

The EFIM algorithm

An algorithm for mining high utility-itemsets

It performs a depth-first search. {a} {b} {c} {d} $\{a,b\}$ $\{a,c\}$ $\{a,d\}$ {b,c} $\{b,d\}$ $\{c,d\}$ $\{a,b,c\}$ $\{a,b,d\}$ $\{a,c,d\}$ $\{b,c,d\}$ $\{a,b,c,d\}$

 It applies pruning strategies to prune the search space based on upper-bounds on the utility. **Definition 4.2 (Extension of an itemset).** Let be an itemset α . An itemset Z is an extension of α (appears in a sub-tree of α in the set-enumeration tree) if $Z = \alpha \cup W$ for an itemset $W \in 2^{E(\alpha)}$ such that $W \neq \emptyset$.

Definition 4.3 (Single-item extension of an itemset). Let be an itemset α . An itemset Z is a single-item extension of α (is a child of α in the setenumeration tree) if $Z = \alpha \cup \{z\}$ for an item $z \in E(\alpha)$.

Example 4.1. Consider the database of our running example and $\alpha = \{d\}$. The set $E(\alpha)$ is $\{e, f, g\}$. Single-item extensions of α are $\{d, e\}$, $\{d, f\}$ and $\{d, g\}$. Other extensions of α are $\{d, e, f\}$, $\{d, f, g\}$ and $\{d, e, f, g\}$.

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
$\mid T_3 \mid$	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
T_5	(b,2),(c,2),(e,1),(g,2)

Database projection

Original database

	Transaction
T_1	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
T_2	(b,4), (c,3), (d,3), (e,1)
	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2) $(e,1),(g,2)$

Projected database of {c}

TID	Transaction
T_1	(d,3), (e,1), (f,5)
T_2	(d,3),(e,1)
T_3	(d,1)
T_4	(e,2),(g,5)
T_5	(e,1),(g,2)

EFIM is a pattern-growth algorithm

It scans the horizontal database to calculate the utility and upper-bound

Using projected databases reduce the cost of database scans.

To reduce memory usage, EFIM performs pseudo-projections.

Database merging

Original database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
	(a,2),(c,6),(e,2),(g,5)
	(b,2),(c,2),(e,1),(g,2)

To further reduce the database, we can merge transactions:

- In the original database
- In each projected database

Projected database of {c}

TID	Transaction	
T_1	(d,3),(e,1),(f,5)	
T_2	(d,3), (e,1), (f,5) (d,3), (e,1)	
T_3	(d,1)	ľ
T_4	(e, 2), (g, 5)	
T_5	(e, 1), (g, 2)	

Merged database of {c}

- An idea: merge identical transactions to reduce the size of the database.
- This can reduce the size of the database and the cost of reading the database.

	Items	Weight
T1	{A,B,C,D,E,F}	1
T2	{A,B,C,D,E,F}	1
T3	{C,D,E, F}	1
T4	{B, E, F}	1

	Items	Weight
TX	{A,B,C,D,E,F}	2
Т3	{C,D,E, F}	1
T4	{B, E, F}	1

If we apply transaction merging only on the original database, this
optimization will not make the algorithm much faster.

A better idea

- Merge transactions avec each projection.
- For example, after having projected the database with an item D:

Prefix =
$$\{D\}$$

	Items	Weight	
T1	{A,B,C,D,E,F}	1	
T2	{A,B,C,D,E,F}	1	
T3	{ C, D, E , F}	1	
T4	{B, E, F}	1	

A better idea

- Merge transactions avec each projection.
- For example, after having projected the database with an item D:

Prefix = $\{D\}$

	Items	Weight
T1	{A,B,C,D,E ,F}	1
2	{A,B,C,D,E ,F}	1
T3	{ C,D, E, F}	1
T4	{B, E, F}	1

→Good, but we must be able to implement transaction merging efficiently!

Solution: Sort transactions by the total order when transactions are read backward.

e.g.

	Items	Weight
T1	{A,B,C,D,E,F}	1
T2	{A,B,C,D,E,F}	1
T3	{C,D,E, F}	1
T4	{D, A, G}	1
T5	{B, C, A, G}	1
T6	{A, E, F}	1
T7	{B, C, F, G}	1
T8	{A, C, D, F, G}	1

	Items	Weight
Т6	{A, E, F}	1
T3	{C,D,E, F}	1
T1	{A,B,C,D,E,F}	1
T2	{A,B,C,D,E,F}	1
T5	{B, C, A, G}	1
T4	{D, A, G}	1
T7	{B, C, F, G}	1
T8	{A, C, D, F, G}	1

Solution: Sort transactions by the total order when transactions are read backward.

e.g.

Property: After the sort, no matter where we « cut » transactions, transactions to be merged will always appear one after the other.

e.g. consider prefix = {a}

	Items	Weight
T6	{A, E, F}	1
T3	{C,D,E, F}	1
T1	{A,B,C,D,E,F}	1
T2	{A,B,C,D,E,F}	1
T5	{B, C, A, G}	1
T4	{D, A, G}	1
T7	{B, C, F, G}	1
T8	{A, C, D, F, G}	1

Solution: Sort transactions by the total order, but by reading the transactions backwards.

e.g.

Property: After the sort, no matter where we « cut » transactions, transactions to be merged will always appear one after the other.

e.g. consider prefix = {a}

	Items	Weight
T6	{A, E, F}	1
T3	{C,D,E, F}	1
T1	{A,B,C,D,E,F}	1
T2	{ A,B,C,D,E,F}	1
T5	{B, €, ∧, G }	1
T4	{D, ∧, G }	1
T7	{B, C, F, G}	1
T8 -	{ A , C, D, F, G}	1

Solution: Sort transactions by the total order, but by reading the transactions backwards.

e.g.

Property: After the sort, no matter where we « cut » transactions, transactions to be merged will always appear one after the other.

	Items	Weight
T6	{A, E, F}	1
TX	{A,B,C,D,E,F}	2
TY	{B, C, A, G}	2
T8	{A , C, D, F, G}	1

e.g. consider prefix = {a}

Definition 4.6 (Identical transactions). A transaction T_a is identical to a transaction T_b if it contains the same items as T_b (i.e. $T_a = T_b$). It is important to note that in this definition, two identical transactions are not required to have the same internal utility values.

Definition 4.7 (Transaction merging). Transaction merging consists of replacing a set of identical transactions $Tr_1, Tr_2, ... Tr_m$ in a database D by a single new transaction $T_M = Tr_1 = Tr_2 = ... = Tr_m$ where the quantity of each item $i \in T_M$ is defined as $q(i, T_M) = \sum_{k=1...m} q(i, Tr_k)$.

Definition 4.8 (Projected transaction merging). Projected transaction merging consists of replacing a set of identical transactions $Tr_1, Tr_2, ...Tr_m$ in a projected database α -D by a single new transaction $T_M = Tr_1 = Tr_2 = ... = Tr_m$ where the quantity of each item $i \in T_M$ is defined as $q(i, T_M) = \sum_{k=1,...m} q(i, Tr_k)$.

Transaction merging is obviously desirable. However, a key problem is to implement it efficiently. The naive approach to identify identical transactions is to compare all transactions with each other. But this is inefficient because it requires $O((nw)^2)$ time. To find identical transactions in O(nw) time, we propose the following novel approach. We initially sort the original database according to a new total order \succ_T on transactions. Sorting is achieved in $O(nw \log(nw))$ time. However, this cost is generally negligible compared to the other operations performed by the algorithm because it is performed only once.

Definition 4.9 (Total order on transactions). The \succ_T order is defined as the lexicographical order when the transactions are read backwards. Formally, let there be two transactions $T_a = \{i_1, i_2, ... i_m\}$ and $T_b = \{j_1, j_2, ... j_k\}$. The total order \succ_T is defined by four cases. The first case is that $T_b \succ T_a$ if both transactions are identical and the TID of T_b is greater than the TID of T_a . The second case is that $T_b \succ_T T_a$ if k > m and $i_{m-x} = j_{k-x}$ for any integer x such that $0 \le x < m$. The third case is that $T_b \succ_T T_a$ if there exists an integer x such that $0 \le x < \min(m, k)$, where $j_{k-x} \succ i_{m-x}$ and $i_{m-y} = j_{k-y}$ for all integer y such that $x < y < \min(m, k)$. The fourth case is that otherwise $T_a \succ_T T_b$.

Example 4.4. Consider three transactions $T_x = \{b, c\}$, $T_y = \{a, b, c\}$ and $T_z = \{a, b, e\}$. We have that $T_z \succ_T T_y \succ_T T_x$.

A database sorted according to the \succ_T order provides the following property.

Property 4.1 (Transaction order in an \succ_T sorted database). Let there be a \succ_T sorted database D and an itemset α . Identical transactions appear consecutively in the projected database α -D.

Pruning the search space using the utility

Merged database of {c}

TID	Transaction
T_1	(d,3), (e,1), (f,5)
T_2	(d,3), (e,1)
T_3	(d,1)
T_{45}	(e, 3) (g, 7)

Sub-tree utility upper-bound:

An upper-bound on the utility of itemsets that can be obtained starting with {c} is the utility of {c} plus the profit of items appearing after {c} that can be appended to {c}.

Upper-bound — local utility

Definition 3.3 (Remaining utility). Let \succ be a total order on items from I (e.g. the lexicographical order), and X be an itemset. The remaining utility of X in a transaction T_c is defined as $re(X, T_c) = \sum_{i \in T_c \land i \succ x \forall x \in X} u(i, T_c)$. Since

Definition 4.10 (Local utility). Let be an itemset α and an item $z \in E(\alpha)$. The Local Utility of z w.r.t. α is $lu(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + re(\alpha, T)]$.

Property 4.2 (Overestimation using the local utility). Let be an itemset α and an item $z \in E(\alpha)$. Let Z be an extension of α such that $z \in Z$. The relationship $lu(\alpha, z) \geq u(Z)$ holds.

Example 4.1 (Pruning an item in all sub-trees using the local utility). Let be an itemset α and an item $z \in E(\alpha)$. If $lu(\alpha, z) < minutil$, then all extensions of α containing z are low-utility. In other words, item z can be ignored when exploring all sub-trees of α .

α

 $\alpha \cup \{z\}$

Upper-bound – subtree utility

Definition 4.11 (Sub-tree utility). Let be an itemset α and an item z that can extend α according to the depth-first search ($z \in E(\alpha)$). The Sub-tree Utility of z w.r.t. α is

$$su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} \left[u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\})} u(i, T) \right].$$

Property 4.3 (Overestimation using the sub-tree utility). Let be an itemset α and an item $z \in E(\alpha)$. The relationship $su(\alpha, z) \ge u(\alpha \cup \{z\})$ holds. And more generally, $su(\alpha, z) \ge u(Z)$ holds for any extension Z of $\alpha \cup \{z\}$.

Property 4.2 (Pruning a sub-tree using the sub-tree utility). Let be an itemset α and an item $z \in E(\alpha)$. If $su(\alpha, z) < minutil$, then the single item extension $\alpha \cup \{z\}$ and its extensions are low-utility. In other words, the sub-tree of $\alpha \cup \{z\}$ in the set-enumeration tree can be pruned.

Property 4.4 (Relationships between upper-bounds). Let be an itemset α , an item z and an itemset $Y = \alpha \cup \{z\}$. The relationship $TWU(Y) \ge lu(\alpha, z) \ge reu(Y) = su(\alpha, z)$ holds.

α

About the su upper-bound, one can ask what is the difference between this upper-bound and the reu upper-bound of HUI-Miner and FHM since they are mathematically equivalent. The major difference between the remaining-utility upper bound and the proposed su upper-bound is that the su upper-bound is calculated when the depth-first search is at itemset α in the search tree rather than at the child itemset Y. Thus, if $su(\alpha, z) < minutil$, EFIM prunes the whole sub-tree of z including node Y rather than only pruning the descendant nodes of Y. This is illustrated in Fig. 2, which compares the nodes pruned in the sub-tree of Y using the su and reu upper-bounds. Thus, as explained here, using su instead of reu upper-bound, is more effective for pruning the search space.

Fig. 2. Comparison of the su and reu upper-bounds

Redefined sub-tree utility

Moreover, we make the su upper-bound even tighter by redefining it as follows. This leads to the final revised sub-tree utility upper-bound used in the proposed EFIM algorithm.

Definition 4.12 (Primary and secondary items). Let be an itemset α . The primary items of α is the set of items defined as $Primary(\alpha) = \{z | z \in E(\alpha) \land su(\alpha, z) \geq minutil\}$. The secondary items of α is the set of items defined as $Secondary(\alpha) = \{z | z \in E(\alpha) \land lu(\alpha, z) \geq minutil\}$. Because $lu(\alpha, z) \geq su(\alpha, z)$, $Primary(\alpha) \subseteq Secondary(\alpha)$.

Definition 4.12 (Primary and secondary items). Let be an itemset α . The primary items of α is the set of items defined as $Primary(\alpha) = \{z | z \in E(\alpha) \land su(\alpha, z) \geq minutil\}$. The secondary items of α is the set of items defined as $Secondary(\alpha) = \{z | z \in E(\alpha) \land lu(\alpha, z) \geq minutil\}$. Because $lu(\alpha, z) \geq su(\alpha, z)$, $Primary(\alpha) \subseteq Secondary(\alpha)$.

Example 4.7. Consider the running example and $\alpha = \{a\}$. $Primary(\alpha) = \{c, e\}$. $Secondary(\alpha) = \{c, d, e\}$. This means that w.r.t. α , only the sub-trees rooted at nodes $\alpha \cup \{c\}$ and $\alpha \cup \{e\}$ should be explored. Furthermore, in these subtrees, no items other than c, d and e should be considered.

Redefined sub-tree utility

Definition 4.13 (Redefined Sub-tree utility). Let be an itemset α and an item z. The redefined sub-tree utility of item z w.r.t. itemset α is defined as: $su(\alpha, z) = \sum_{T \in g(\alpha \cup \{z\})} [u(\alpha, T) + u(z, T) + \sum_{i \in T \land i \in E(\alpha \cup \{z\} \land i \in Secondary(\alpha)} u(i, T)].$

The difference between the su upper-bound and the redefined su upper-bound is that in the latter, items not in $Secondary(\alpha)$ will not be included in the calculation of the su upper-bound. Thus, this redefined upper-bound is always less than or equal to the original su upper-bound and the reu upper-bound. It

Counting upper-bounds, utility and support using arrays

Merged database of {c}

TID	Transaction
T_1	(d,3), (e,1), (f,5)
T_2	(d,3),(e,1)
T_3	(d,1)
T_{45}	(e, 3) (g, 7)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Utility

а	b	С	d	е	f	g
0	0	0	14	15	5	7

Sub-tree upper-bound

a	b	С	d	е	f	g
0	0	0	11	12	0	0

Support

а	b	С	d	е	f	g
0	0	0	3	3	1	1

Fig. 3. Calculating the TWU using a utility-bin array

EFIM

Algorithm 1: The EFIM algorithm

input: D: a transaction database, minutil: a user-specified threshold output: the set of high-utility itemsets

- $1 \ \alpha = \emptyset;$
- **2** Calculate $lu(\alpha, i)$ for all items $i \in I$ by scanning D, using a utility-bin array;
- **3** Secondary(α) = { $i|i \in I \land lu(\alpha,i) \ge minutil$ };
- 4 Let \succ be the total order of TWU ascending values on $Secondary(\alpha)$;
- 5 Scan D to remove each item $i \notin Secondary(\alpha)$ from the transactions, sort items in each transaction according to \succ , and delete empty transactions;
- **6** Sort transactions in D according to \succ_T ;
- 7 Calculate the sub-tree utility $su(\alpha, i)$ of each item $i \in Secondary(\alpha)$ by scanning D, using a utility-bin array;
- **8** $Primary(\alpha) = \{i | i \in Secondary(\alpha) \land su(\alpha, i) \geq minutil\};$
- 9 Search $(\alpha, D, Primary(\alpha), Secondary(\alpha), minutil);$

EFIM (2)

Algorithm 2: The Search procedure

input: α : an itemset, α -D: the α projected database, $Primary(\alpha)$: the primary items of α , $Secondary(\alpha)$: the secondary items of α , the minutil threshold

output: the set of high-utility itemsets that are extensions of α

```
1 foreach item \ i \in Primary(\alpha) do
```

```
\mathbf{2} \quad | \quad \beta = \alpha \cup \{i\};
```

- Scan α -D to calculate $u(\beta)$ and create β -D; // uses transaction merging
- 4 | if $u(\beta) \geq minutil$ then output β ;
- Calculate $su(\beta, z)$ and $lu(\beta, z)$ for all item $z \in Secondary(\alpha)$ by scanning β -D once, using two utility-bin arrays;
- 6 | $Primary(\beta) = \{z \in Secondary(\alpha) | su(\beta, z) \geq minutil\};$
- 7 | $Secondary(\beta) = \{z \in Secondary(\alpha) | lu(\beta, z) \geq minutil\};$
- 8 | Search $(\beta, \beta-D, Primary(\beta), Secondary(\beta), minutil);$
- 9 end

Experimental Evaluation

Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Accidents	340,183	468	33.8
BMS	59,601	497	4.8
Chess	3,196	75	37
Connect	67,557	129	43
Foodmart	4,141	1,559	1,559
Mushroom	8,124	119	23

- Foodmart is a real-life transaction datasets from retail stores.
- External and internal utility values have been generated in the [1, 000] and [1, 5] intervals using a log-normal distribution

Experimental Evaluation

- We compared the performance of EFIM-Closed with
 - the state-of-the-art CHUD algorithm
 - two versions of EFIM-Closed without optimizations named EFIM-Closed(lu) and EFIM-Closed(nop)

- We varied the *minutil* threshold and compared execution time and memory usage
- Computer with 12 GB of RAM, Java, Windows 7, 64
 bit Core i5 Processor

Table 10. Comparison of maximum memory usage (MB)

Dataset	HUI-MINER	FHM	EFIM	UP-Growth+	HUP-Miner	$\mathrm{d}^2\mathrm{HUP}$
Accident	1,656	1,480	895	765	1,787	1,691
BMS	210	590	64	64	758	282
Chess	405	305	65	_	406	970
Connect	2,565	3,141	385	_	1,204	1,734
Foodmart	808	211	64	819	68	84
Mushroom	194	224	71	1,507	196	468
Chain store	1,164	1,270	460	1,058	1,034	878
Pumsb	1,221	1,436	986	_	1,021	2,046
Kosarak	1,163	1,409	576	1,207	712	1,260

Table 11. Average projected database size (number of transactions)

Dataset	EFIM	EFIM(nop)	Size reduction (%)
Accident	784	113,304	99.3%
BMS	112.6	204.1	44.8%
Chess	2.6	1363.9	99.8%
Connect	1.4	43687	99.9~%
Foodmart	1.12	1.21	7.1%
Mushroom	1.3	573	99.7%
Chain store	1,085	1,326	18.1%
Pumsb	1,075	22,326	95.2%
Kosarak	1,727	3,653	53%

Thank you. Questions?

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/

EFIM-CLOSED

What is a closed high utility itemset?

It is a **high-utility itemset** that has no proper superset having the same **support** (frequency).

For example:

	{b,c,d} 34\$
2 transactions	2 transactions
{b,c,d,e} 40\$	{b,c,e} 37 \$
2 transactions	3 transactions

Interesting properties:

- A closed itemset is the largest group of items bought by a groups of customers.
- A closed pattern is always more profitable than its corresponding non closed patterns.

The EFIM-Closed algorithm

An algorithm for mining closed high utility-itemsets

It performs a depth-first search. {a} {b} {c} {d} $\{a,b\}$ $\{a,c\}$ $\{a,d\}$ {b,c} $\{b,d\}$ $\{c,d\}$ $\{a,b,c\}$ $\{a,b,d\}$ $\{a,c,d\}$ $\{b,c,d\}$ $\{a,b,c,d\}$

 It applies pruning strategies to prune the search space based on upper-bounds on the utility.

Forward/Backward extension checking

To determine if an itemset X is closed, check if there exists an item not in X that appears in all transactions where X appears.

If yes, then X is not closed

TID
 Transaction

$$T_1$$
 $(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)$
 T_2
 $(b,4), (c,3), (d,3), (e,1)$
 T_3
 $(a,1), (c,1), (d,1)$
 T_4
 $(a,2), (c,6), (e,2), (g,5)$
 T_5
 $(b,2), (c,2), (e,1), (g,2)$

e.g. {b,d,e} is not closed because of item c

Closure jumping

For an itemset X, if all items not in X that can be appended to X have the same support as X, they can be directly appended to X to obtain a closed itemset.

Pseudocode

```
Algorithm 2: The Search procedure
  Algorithm 1: The EFIM-Closed algorithm
                                                                           input : \alpha: an itemset, \alpha-D: the \alpha projected database,
   input: D: a transaction database, minutil: a
                                                                                      Primary(\alpha): the primary items of \alpha,
              user-specified threshold
                                                                                      Secondary(\alpha): the secondary items of \alpha, the
   output: the set of high-utility itemsets
                                                                                      minutil threshold
1 \alpha = \emptyset:
                                                                           output: the set of high-utility itemsets that are
                                                                                      extensions of \alpha
2 Calculate lu(\alpha, i) for all items i \in I by scanning D,
    using a utility-bin array;
                                                                         1 foreach item i \in Primary(\alpha) do
3 Secondary(\alpha) = {i | i \in I \land lu(\alpha, i) \ge minutil};
                                                                               \beta = \alpha \cup \{i\};
4 Let \succ be the total order of TWU ascending values on
                                                                        3
                                                                               Scan \alpha-D to calculate u(\beta) and create \beta-D; // with
                                                                                 transaction merging
    Secondary(\alpha);
                                                                               if \beta has no backward extension then
5 Scan D to remove each item i \notin Secondary(\alpha) from th 4
                                                                                    Calculate sup(\beta, z), su(\beta, z) and lu(\beta, z) for all
    transactions, and delete empty transactions;
                                                                                     item z \in Secondary(\alpha) by scanning \beta-D once,
6 Sort transactions in D according to \succ_T;
                                                                                     using three utility-bin arrays;
7 Calculate the sub-tree utility su(\alpha, i) of each item
                                                                                   if sup(\beta) = sup(\alpha \cup \{z\}) \forall z \succ i \land z \in E(\alpha) then
    i \in Secondary(\alpha) by scanning D, using a utility-bin
                                                                                        Output \beta \cup \bigcup_{z \succ i \land z \in E(\alpha)} \{z\} if it is a HUI;
    array;
                                                                                         // closure jumping
8 Primary(\alpha) = \{i | i \in Secondary(\alpha) \land su(\alpha, i) \geq 1\}
                                                                         8
                                                                                   else
    minutil\};
                                                                                        Primary(\beta) = \{z \in
9 Search (\alpha, D, Primary(\alpha), Secondary(\alpha), minutil);
                                                                                         Secondary(\alpha)|su(\beta,z) \geq minutil\};
                                                                                        Secondary(\beta) = \{z \in
                                                                       10
                                                                                         Secondary(\alpha)|lu(\beta,z) \geq minutil\};
                                                                       11
                                                                                       Search (\beta, \beta - D, Primary(\beta), Secondary(\beta),
                                                                                         minutil);
                                                                       12
                                                                                       if \beta has no forward extension and
                                                                                         u(\beta) \geq minutil then output \beta;
                                                                       13
                                                                                   end
                                                                       14
                                                                               end
                                                                       15 end
```


EFIM-Closed is up to 71 times faster than **CHUD**

Maximum Memory usage (MB)

Dataset	EFIM-Closed	CHUD
Accidents	895	2,603
BMS	64	707
Chess	65	327
Connect	385	1,504
Foodmart	64	215
Mushroom	71	1,308

EFIM-Closed consumes up to 18 times less memory

Number of visited nodes

Dataset	EFIM-Closed	CHUD
Accidents	1,341	29,932
BMS	7	27
Chess	348,633	7,759,252
Connect	19,336	218,059
Foodmart	6,680	6,680
Mushroom	8,017	17,621

- **EFIM-Closed** is generally more effective at pruning the search space.
- On Chess, 22 times less nodes are visited by EFIM-Closed

Conclusion

- Contribution:
 - ➤ New algorithm for mining closed high utility itemsets named EFIM-Closed
- > Experimental results:
 - EFIM-Closed is up to 71 times faster and consumes up to 18 times less memory than the state-of-the-art
 CHUD algorithm
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

