Chapter 5

Homotopy Theory

5.1 Homotopy Groups

The table of homotopy groups of S^n (Toda 1962):

$\pi_i(S^n)$													
		<i>i</i> 1	2	3	4	5	6	7	8	9	10	11	12
n	1	Z	0	0	0	0	0	0	0	0	0	0	0
1	2	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
•	3			\mathbb{Z}			\mathbb{Z}_{12}		\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	4		0		Z		\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$			$\mathbb{Z}_{24} \times \mathbb{Z}_3$		\mathbb{Z}_2
	5		0		0	$\mathbb{Z}^{}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}
	6				0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	Z	\mathbb{Z}_2
	7	0	0		0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0

From the table

(1) $\pi_i(S^n) = 0$ for all i < n (cellular approximation theorem).

(2)
$$\pi_1(S^1) = \mathbb{Z}$$
, $\pi_i(S^1) = 0$ for all $i > 1$.

(3)
$$\pi_i(S^{2n}) \cong \pi_{i-1}(S^{2n-1}) \oplus \pi_i(S^{4n-1})$$
 for all n and i (James's theorem) .

- (4) The first non-zero homotopy group of X is isomorphic to the first non-zero homology group (the Hurewicz theorem) .
- (5) For all i > n, $\pi_i(S^n)$ is a finite group except for $\pi_{4k-1}(S^{2k})$. For all k, one has $\pi_{4k-1}(S^{2k}) \cong \mathbb{Z} \oplus \mathbb{Z}_p$ for a prime p(Serre's theorem 1950).
- (6) The groups $\pi_{n+k}(S^n)$ with each fixed k has the stability property, it eventually become independent of n when n becomes large enough (Freudenthal suspension theorem 1940).

Homotopy sets

For $n \geq 0$, the *n*-th homotopy set

$$\pi_n(X) = \pi_n(X, *) = [f \mid f : (S^n, p) \longrightarrow (X, *)] = [S^n, X] = [f \mid f : (I^n, \partial I^n) \longrightarrow (X, *)].$$

is a group when $n \ge 1$ and an abelian group when $n \ge 2$.

Peterson complex

For $n \geq 2$ and finitely generated abelian group $G = F \oplus T$, define the 1-connected Peterson complex $P^n(G)$ such that

$$\widetilde{H}^{i}(P^{n}(G); \mathbb{Z}) = \begin{cases} G & i = n \\ 0 & \text{else} \end{cases}.$$

Proposition

For
$$G=F\oplus T$$
, one has $\widetilde{H_i}(P^n(G))=$

$$\begin{cases} T & i=n-1\\ F & i=n\\ 0 & \text{else} \end{cases}$$
. Then $P^n(F\oplus T)\simeq M(F,n)\vee M(T,n-1)$ has

unique homotopy type.

Proof:

By the universal coefficient theorem $H^n(X;A) = \text{Hom}(H_n(X),A) \oplus \text{Ext}(H_{n-1}(X),A)$ one has

$$\operatorname{Hom}(H_{n-1}(P^n(G)), \mathbb{Z}) = 0$$
, $\operatorname{Ext}(H_n(P^n(G)), \mathbb{Z}) = 0$. $\Longrightarrow H_n(P^n(G))$ is free.

$$F \oplus T \cong \operatorname{Ext}(H_{n-1}(P^n(G)), \mathbb{Z}) \oplus \operatorname{Hom}(H_n(P^n(G)), \mathbb{Z}) \cong H_{n-1}(P^n(G)) \oplus H_n(P^n(G))$$
.

Proposition

- $(1) \Sigma P^n(G) = P^{n+1}(G) .$
- (2) $P^n(\mathbb{Z}) = S^n$, $P^n(\mathbb{Z}_k) = S^{n-1} \cup_k e^n$ where $k: S^n \longrightarrow S^n$ is of degree k with mapping cone $P^n(\mathbb{Z}_k)$.

Homotopy sets with coefficients

For n=1 and $F=\bigoplus_{\alpha}\mathbb{Z}$ a finitely generated free abelian group,

$$\pi_1(X; F) = \pi_1(X, *; F) = [P^1(F), X] = [\bigvee_{\alpha} S^1, X] = \bigoplus_{\alpha} \pi_1(X)$$
.

For $n \geq 2$ and $G = F \oplus T$ a finitely generated abelian group,

$$\pi_n(X;G) = \pi_n(X,*;G) = [P^n(G),X]$$
.

- (1) $P^n(G \oplus G') \simeq P^n(G) \vee P^n(G')$, then one has $\pi_n(X; G \oplus G') = [P^n(G) \vee P^n(G'), X] = [P^n(G), X] \oplus [P^n(G'), X] = \pi_n(X; G) \oplus \pi_n(X; G')$.
- (2) If X is an H-group, the multiplication $\mu: X \times X \longrightarrow X$ define a group structure on [Y, X]. If Y is an H-cogroup, the comultiplication $\nu: Y \longrightarrow Y \vee Y$ define a group structure on [Y, X].
- (3) If X is an H-space and Y is an H-cospace, then the set [Y, X] is an abelian group where two structures in (2) are same.
- (4) $\pi_n(X;G)$ is a group for $n \geq 3$ and abelian group for $n \geq 4$.

Relative homotopy sets

For $n \geq 1$, the *n*-th relative homotopy set

$$\pi_n(X, A) = \pi_n(X, A, *) = [f \mid f : (B^n, S^{n-1}, p) \longrightarrow (X, A, *)] = [(B^n, S^{n-1}), (X, A)].$$

is a group when $n \geq 2$ and an abelian group when $n \geq 3$.

Relative homotopy sets with coefficients

For $n \geq 3$ and $G = F \oplus T$ a finitely generated abelian group,

$$\pi_n(X, A; G) = [(CP^{n-1}(G), P^{n-1}(G)), (X, A)]$$

is a group for $n \ge 4$ and abelian group $n \ge 5$.

Proposition

- (1) $\pi_n(X, *, *) = [(B^n, S^{n-1}), (X, *)] = [(B^n/S^{n-1}, p), (X, *)] \cong [S^n, X] = \pi_n(X, *) = \pi_n(X)$. $\pi_n(X, *; G) = \pi_n(X; G)$.
- (2) And there is a well-defined map $\delta: \pi_{n+1}(X,A) \longrightarrow \pi_n(A,*)$ given by

$$[(B^{n+1}, S^n), (X, A)] \longrightarrow [(B^{n+1}, S^n), (X, A)]|_{S^n} = [(S^n, S^n), (A, A)] \cong [S^n, A]$$
.

(3) There are exact sequences in (\mathbf{Set}_*) :

$$\cdots \longrightarrow \pi_n(A) \xrightarrow{\pi_n(i)} \pi_n(X) \xrightarrow{\pi_n(j)} \pi_n(X, A) \xrightarrow{\delta} \pi_{n-1}(A) \longrightarrow \cdots \longrightarrow \pi_0(X) ,$$

$$\cdots \longrightarrow \pi_n(A; G) \longrightarrow \pi_n(X; G) \longrightarrow \pi_n(X, A; G) \xrightarrow{\delta} \pi_{n-1}(A; G) \longrightarrow \cdots \longrightarrow \pi_2(X; G) .$$

- (1) $X' \subseteq X$ is the path-component containing $p : \Longrightarrow \pi_n(X',p) \cong \pi_n(X,p)$. There is a path from p_1 to p_2 in $X : \Longrightarrow \pi_n(X,p_1) \cong \pi_n(X,p_2)$.
- (2) $f: X \longrightarrow Y$ is a homotopy equivalence. $\iff X \simeq Y$ (the equivalent relation in $\mathbf{Ho}(\mathbf{Top}_*)$). $\implies \pi_n(f): \pi_n(X, p) \cong \pi_n(Y, f(p))$.
- (3) X is contractible.

$$\iff \mathbb{1}_X \simeq c \ , \ c: X \longrightarrow * \in X \ .$$

 $\iff \mathbb{1}_X \text{ is a nullhomotopy.}$

$$\iff \pi_n(X) = \pi_n(X, *) = 0$$
.

- (4) $\pi_1(X \times Y) \cong \pi_1(X) \oplus \pi_1(Y)$ if X and Y are path-connected.
- (5) For $n \ge 2$ one has $\pi_i(\mathbb{R}P^n) = \begin{cases} \mathbb{Z}_2 & i = 1 \\ \pi_i(S^n) & i \ge 2 \end{cases}$.
- (6) $\pi_1(SO(2)) = \mathbb{Z}$, $\pi_1(SO(3)) = \mathbb{Z}_2$.
- (7) $p: C \longrightarrow X$ is a covering space, then $\pi_n(X) \cong \pi_n(C)$ for all $n \geq 2$.
- (8) For a *H*-cospace X, $\pi_1(X)$ is a free group.

Classification theorem for covering spaces

For the covering space $p: E \longrightarrow X$, there is a one-to-one correspondence between all the connected covering spaces and the conjugacy classes of the subgroups of $\pi_1(X)$.

Moreover, for the covering space $p: E \longrightarrow X$, there is a one-to-one correspondence between all the connected covering spaces and the actual subgroups of $\pi_1(X)$.

 π_0 functor : (Top) \longrightarrow (Sets)

Objects:
$$X \xrightarrow{f} Y \dashrightarrow \pi_0(X) \xrightarrow{\pi_0(f)} \pi_0(Y)$$

Morphisms:

- (1) For continuous map f, $\pi_0(f)$ is a function on sets.
- (2) If f keeps the number of path components, then $\pi_0(f)$ is bijective.

 $\pi_1 \text{ functor} : \mathbf{Ho}(\mathbf{Top}_*) \longrightarrow (\mathbf{Gp})$

Objects:
$$(X,x) \xrightarrow{f} (Y,y) \dashrightarrow \pi_1(X,x) \xrightarrow{\pi_1(f)} \pi_1(Y,y)$$

Morphisms:

- (1) For continuous maps $f \simeq g$, $\pi_1(f) = \pi_1(g)$ is a homomorphism of groups.
- (2) If f is a homotopy equivalence, then $\pi_1(f)$ is an isomorphism.

 π_n functor $(n \ge 2)$: $\mathbf{Ho}(\mathbf{Top}_*) \longrightarrow (\mathbf{Ab})$

Objects:
$$(X,x) \xrightarrow{f} (Y,y) \xrightarrow{} \pi_n(X,x) \xrightarrow{\pi_n(f)} \pi_n(Y,y)$$

Morphisms:

- (1) For continuous maps $f \simeq g$, $\pi_n(f) = \pi_n(g)$ is a homomorphism of Abelian groups.
- (2) If f is a homotopy equivalence, then $\pi_1(f)$ is an isomorphism.

n-connected spaces

A topological space X is (-1)-connected.

$$\iff X \neq \emptyset$$
.

A topological space X is 0-connected.

 $\iff X \neq \emptyset$ is path-connected.

$$\iff \pi_0(X) = 0$$
.

A topological space X is n-connected.

 $\iff \pi_1(X) = \cdots = \pi_n(X) = 0 \text{ and } \pi_0(X) \text{ is a set with only one path-component } (\pi_0(X) = 0).$

 \iff Every $f: S^i \longrightarrow X$ is homotopic to a constant map $c: S^i \longrightarrow p \in X$ for all $i \leq n$.

 \iff Every $f: S^i \longrightarrow X$ extends to a map $D^{i+1} \longrightarrow X$ for all $i \le n$.

One has:

(-1)-connected \leftarrow connected \leftarrow 0-connected \leftarrow path-connected \leftarrow

1-connected = simply connected \Leftarrow 2-connected \Leftarrow \cdots n-connected \Leftarrow \cdots .

n-connected maps

A continuous map $f: X \longrightarrow Y$ is n-connected (or n-equivalence).

 $\iff \pi_i(f): \pi_i(X) \longrightarrow \pi_i(Y)$ is an isomorphism for $i \leq n-1$.

 \iff The homotopy fibre M_f is an (n-1)-connected space.

 \iff The mapping cone C_f is n-connected for 1-connected X.

 \implies The pair (I_f, X) is n-connected, C_f is n-connected.

The 0-connected map is also called connected map.

The 1-connected map is also called simply connected map.

n-connected pairs

The pair (X, A) is n-connected.

 \iff The inclusion $A \longrightarrow X$ is an n-connected map.

 $\iff \pi_1(X,A) = \cdots = \pi_n(X,A) = 0 \ (\pi_0(X,A) \text{ is not well defined}).$

 \iff Every $f:(B^n,S^{n-1})\longrightarrow (X,A)$ is homotopic to a map $B^n\longrightarrow A$ rel S^{n-1} .

 $\Longleftrightarrow \text{Every } f: (B^n, S^{n-1}) \longrightarrow (X, A) \text{ is homotopic through such maps to map } \widetilde{f}: B^2 \longrightarrow A \ .$

 \iff Every $f:(B^n,S^{n-1})\longrightarrow (X,A)$ is homotopic through such maps to the constant map c .

Proposition

(1) (CX, X) is (n+1)-connected. $\iff X$ is n-connected.

(2) If all the cells in $X \setminus A$ have dimension greater than n, then the CW pair (X, A) is n-connected.

(3) For n-connected X , ΩX is (n-1)-connected, ΣX is (n+1)-connected.

(1) For an *n*-connected map $f: X \longrightarrow Y$ of 0-connected CW complexes, one has

$$H_i(f): H_i(X) \longrightarrow H_i(Y) \text{ is } \begin{cases} \text{injective} & i \leq n-1 \\ \text{surjective} & i \leq n \end{cases},$$

$$H^i(f;G): H^i(Y;G) \longrightarrow H^i(X;G) \text{ is } \begin{cases} \text{surjective} & i \leq n-1 \\ \text{injective} & i \leq n \end{cases}.$$

(2) For an *n*-connected map $f: X \longrightarrow Y$,

$$[CW, X] \longrightarrow [CW, Y]$$
 is
$$\begin{cases} \text{injective} & \dim CW \leq n - 1 \\ \text{surjective} & \dim CW \leq n \end{cases}$$
.

(3) For an *n*-connected inclusion $A \longrightarrow CW$ (*n*-connected pair)

$$[CW, Y] \longrightarrow [A, Y]$$
 is
$$\begin{cases} \text{surjective} & \text{if } \pi_i(Y) = 0 \text{ for } i \ge n \\ \text{injective} & \text{if } \pi_i(Y) = 0 \text{ for } i \ge n+1 \end{cases}$$
.

- (4) If f, g are n-connected, then $g \circ f$ is also n-connected.
- (5) If $g \circ f$ is n-connected, then one has : f is (n-1)-connected. $\Longrightarrow g$ is n-connected. g is (n+1)-connected. $\Longrightarrow f$ is n-connected.

Whitehead's first theorem

The weak homotopy equivalence between connected CW complexes is a homotopy equivalence.

Whitehead's second theorem

An n-connected map between 0-connected CW complexes is a homological n-equivalence. A weak homotopy equivalence between 0-connected CW complexes is a homological equivalence.

Proposition

A weak homotopy equivalence $f: X \longrightarrow Y$ induces isomorphisms

$$H_n(f): H_n(X;G) \longrightarrow H_n(Y;G) ,$$

 $H^n(f): H^n(X;G) \longrightarrow H^n(Y;G) ,$
 $[CW,X] \longrightarrow [CW,Y] ,$

for all n , coefficients G and CW complexes.

Group action of π_1 on π_n

Take
$$[l \mid l : [0,1] \longrightarrow X$$
, $l(0) = l(1) = x_0$, $l(\frac{1}{2}) = x_1] \in \pi_1(X, x_0)$.
Take a path $\gamma : [0,1] \longrightarrow X$, $\gamma(0) = l(0) = x_0$, $\gamma(1) = l(\frac{1}{2}) = x_1$.

Consider $\pi_1(X, x_0) \times \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1)$, $[l] \cdot [f] = [\gamma \circ f \circ \gamma^{-1}]$, this gives a group action of π_1 on π_1 changing the base point.

For $n \geq 2$, the group action $\pi_1(X, x_0) \times \pi_n(X, x_0) \longrightarrow \pi_n(X, x_1)$ is given by $[l] \cdot [f] = \beta_{\gamma}[f]$, this gives a action of π_1 on π_n changing the base point.

For an $[l] \in \pi_1(X, x_0)$, there is a induced homomorphism $\beta_r : \pi_n(X, x_0) \longrightarrow \pi_n(X, x_1)$, since $\pi_1(X, x_0) \cong \pi_n(X, x_1)$, thus $\beta_r \in \operatorname{Aut}(\pi_n(X))$ called the action of π_1 on π_n (n > 1). If π_1 acts trivially on π_n , the space X is called n-simple, and X is simple means it is n-simple for all n.

This action makes the Abelian group $\pi_n(X, x_0)$ a $\mathbb{Z}[\pi_1]$ -module ($\mathbb{Z}[\pi_1] = \{\sum_i n_i r_i \mid n_i \in \mathbb{Z}, r_i \in \pi_1\}$) by

$$(r_1 + r_2) \cdot f = \beta_{r_1}(f) + \beta_{r_2}(f) ,$$

$$r \cdot (f + g) = \beta_r(f) + \beta_r(g) ,$$

$$r_1 \cdot (r_2 \cdot f) = r_1 r_2 \cdot f = \beta_{r_1} \circ \beta_{r_2}(f) ,$$

$$0 \cdot f = \beta_0(f) = \mathbb{1}(f) = f .$$

Group action of π_1 on homotopy classes

Take
$$[l \mid l : [0,1] \longrightarrow X$$
, $l(0) = l(1) = x_0$, $l(\frac{1}{2}) = x_1] \in \pi_1(X, x_0)$. Take a path $\gamma : [0,1] \longrightarrow X$, $\gamma(0) = l(0) = x_0$, $\gamma(1) = l(\frac{1}{2}) = x_1$.

Consider the right group action $[Z,X]_* \times \pi_1(X,x_0) \longrightarrow [Z,X]_*$, $[f_0] \cdot [l] = \beta_{\gamma}([f_0])$, this gives an action of π_1 on $[Z,X]_*$.

Proposition

- (1) If Z is a CW complex and X is 0-connected, then the natural map $[Z,X]_* \longrightarrow [Z,X]$ induces a bijection from orbit set $[Z,X]_*/\pi_1(X,x_0)$ to [Z,X].
- (2) If X is 1-connected, then $[Z, X] \cong [Z, X]_*$.
- (3) If X is an H-space, then the group action of π_1 on $[Z, X]_*$ is trivial.
- (4) One can construct a finite CW complex with π_n not finitely generated as a $\mathbb{Z}[\pi_1]$ -module, for $n \geq 2$.

5.2 Techniques on Homotopy

Compression lemma

Let (X, A) be a CW pair, (Y, B) be any pair with $B \neq \emptyset$.

If $X \setminus A$ has cells of dimension n and $\pi_n(Y, B, y_0) = 0$ for all $y_0 \in B$, then every map $f: (X, A) \longrightarrow (Y, B)$ is homotopic to a map $X \longrightarrow B$ rel A.

Extension lemma

Let (X, A) be a CW pair, Y be path-connected.

If $X \setminus A$ has cells of dimension n and $\pi_{n-1}(Y, y_0) = 0$ for all $y_0 \in Y$, then $f : A \longrightarrow Y$ can be extended to a map $X \longrightarrow Y$.

Cellular approximation theorem

Such a map $f: X \longrightarrow Y$ satisfying $f(X^n) \subseteq Y^n$ for all n is called a cellular map.

Every map $f:X\longrightarrow Y$ between CW complexes is homotopic to a cellular map. If $f:X\longrightarrow Y$ is cellular on the subcompex $A\subseteq X$, then the homotopy may be taken to be a stationary on A.

Relative cellular approximation theorem

Every map $f:(X,A)\longrightarrow (Y,B)$ of CW pairs can be deformed through maps $(X,A)\longrightarrow (Y,B)$ to a cellular map. This follows by first deforming $A\longrightarrow B$ to be cellular, then extending this to a homotopy of f on X (by the homotopy extension property), and deforming $X\longrightarrow Y$ to be cellular.

The homotopy of f can be taken to be stationary on any subcomplex of X where f is already cellular.

 $\pi_n(S^n) \cong \mathbb{Z}$ is generated by the identity map $\mathbb{1}_{S^n}$ for all $n \geq 1$. The degree map $\pi_n(S^n) \longrightarrow \mathbb{Z}$ is an isomorphism.

Proposition

Let X be a CW complex with subcomplexes A and B such that $X = A \cup B$, $A \cap B \neq \emptyset$ is connected. If $(A, A \cap B)$ is m-connected and $(B, A \cap B)$ is n-connected, then the induced map: $\pi_i(A, A \cap B) \longrightarrow \pi_i(X, B)$ is an isomorphism for $i \leq m + n - 1$ and a surjection for i = m + n.

For a r-connected CW pair (X,A) with s-connected A, (s+1)-connected (CA,A). Then $(X,X\cap CA)=(X,A)$ is r-connected, $(CA,X\cap CA)=(CA,A)$ is (s+1)-connected, then : $\pi_i(X,A)\longrightarrow \pi_i(X\cup CA,CA)$ is an isomorphism for $i\leq r+s$ and a surjection for i=r+s+1.

CW approximation theorem

For every space X, there is a CW complex and a weak homotopy equivalence $f: CW \longrightarrow X$. This such a map is called a CW approximation to X.

CW models

Suppose (X,A) is a pair with a CW complex A, an n-connected CW model for (X,A) is an n-connected CW pair (CW,A) and a map $f:CW\longrightarrow X$ satisfying $f|_A=\mathbbm{1}$ such that $\pi_i(f):\pi_i(CW)\longrightarrow \pi_i(X)$ is an isomorphism for $i\geq n+1$ and an injection for i=n (thus isomorphism for all i).

Constructing n-connected CW model

For every pair (X,A) with nonempty CW complex A, there exists an n-connected CW model $f:(CW,A)\longrightarrow (X,A)$ for all $n\geq 0$ and CW can be obtained form A by attaching cells of dimension greater than n (if n=0, X is path-connected, A=*, this map f is a CW approximation).

One can construct 0-connected (CW, A) to be the union of subcomplexes $A = CW_0 \subseteq CW_1 \subseteq CW_2 \subseteq \cdots$, $CW = \bigcup_n CW_n$ (for the *n*-connected, construct $A = CW_n \subseteq CW_{n+1} \subseteq CW_{n+2} \subseteq \cdots$) where CW_n is obtained by attaching *n*-cells to CW_{n-1} .

For every cellular map $[S^k, CW_k]_*$ generating the kernel of $\pi_k(f): \pi_k(CW_k) \longrightarrow \pi_k(X)$, attach e^{k+1} to CW_k by this map to get $CW_k \bigsqcup_{\alpha} e_{\alpha}^{k+1}$, then $\pi_k(f)$ is injective.

For every cellular map $[S^{k+1},X]_*$ generating $\pi_{k+1}(X)$, wedge with sphere S^{k+1}_{β} to $CW_k \bigsqcup_{\alpha} e^{k+1}_{\alpha}$ by this map to get CW_{k+1} , then $\pi_{k+1}(f)$ is surjective.

Then we get CW_{k+1} from CW_k such that $\pi_{k+1}(f)$: is surjective, $\pi_k(f)$ is injective.

surjective on π_1 to X $A=CW_0 \qquad CW_0 \sqcup e^1_\alpha \qquad CW_1=CW_0 \sqcup e^1_\alpha \vee S^1_\beta$ injective on π_0 to X

If the induction begins with k=0, $CW_0=A$, then we get a 0-connected CW model (CW,A) such that $\pi_i(f):\pi_i(CW)\longrightarrow\pi_i(X)$ is an isomorphism for $i\geq 1$ and an injection for i=0, then one can choose the A such that π_0 is automatically surjective.

Relative CW approximation

construct by the five lemma.

For an n-connected CW model $f:(CW,A)\longrightarrow (X,A)$ and an (n+k)-connected model $f':(CW',A')\longrightarrow (X',A')$ with map $g:(X,A)\longrightarrow (X',A')$, there is a unique $h:CW\longrightarrow CW'$, $h|_A=g$ up to homotopy rel A such that this diagram commutes up to homotopy.

Proposition

(1) The universal covering of $S^1 \vee S^n$ is homotopy equivalent to $\bigvee_{\alpha} S^n_{\alpha}$. One has the fact that a finite CW complex need not have finitely generated homotopy groups.

(2) If the action of π_1 on all π_n is trivial, then one has: the homotogy groups are finitely generated. \iff the homology groups are finitely generated. (Serre)

Plus construction theorem (Levin)

For every 0-connected CW complex, there is a 1-connected CW complex obtained by attaching 2-cells and 3-cells to CW, $CW \subseteq CW^+ = CW \sqcup e_{\alpha}^2 \sqcup e_{\beta}^3$ such that the inclusion $i: CW \longrightarrow CW^+$ induces isomorphism $H_i(i): H_i(CW) \longrightarrow H_i(CW^+)$ for i > 1.

Attach e^2 by the cellular map generating $\langle S^1, CW \rangle$, then $\pi_1(CW \sqcup e^2_\alpha) = 0$. $p: CW \sqcup e^2_\alpha \longrightarrow CW \sqcup e^2_\alpha/CW = \bigvee_\alpha S^2$ is a collapsing. $\pi_2(\bigvee_\alpha S^2)$ is free as well as its subgroup $\mathcal{I}m(\pi_2(p)) = \bigoplus_\beta \mathbb{Z}$.

Take a section δ such that $\pi_2(p) \circ \delta = \mathbb{1}$.

Attach e^3 by the preimage $(\pi_2(p))^{-1}(p_i) = \langle S^2, CW \sqcup e_\alpha^2 \rangle$, $CW^+ = CW \sqcup e_\alpha^2 \sqcup e_\beta^3$. By the Hurewicz Theorem : $H_3(CW^+, CW \sqcup e_\alpha^2) = \bigoplus_\beta \mathbb{Z}$. $\pi_2(p) \circ \delta$ is injective.

Then there is a long exact sequence of triple $(CW^+,CW\sqcup e^2_\alpha,CW)$:

$$H_3\left(CW \sqcup e_{\alpha}^2, CW\right) \longrightarrow H_3\left(CW^+, CW\right) \longrightarrow H_3\left(CW^+, CW \sqcup e_{\alpha}^2\right) \xrightarrow{\pi_2(p) \circ \delta} H_2\left(CW \sqcup e_{\alpha}^2, CW\right)$$

By the exactness, $H_3(CW^+, CW) = 0$ and $H_i(CW^+, CW) = 0$ for i > 3 by the dimensional resean. Then there is a long exact sequence of pair (CW^+, CW) :

$$\cdots \longrightarrow H_{n+1}(CW^+, CW) \longrightarrow H_n(CW) \longrightarrow H_n(CW^+) \longrightarrow H_n(CW^+, CW) \longrightarrow \cdots$$
$$0 \longrightarrow H_2(CW) \longrightarrow H_2(CW^+) \longrightarrow H_2(CW^+, CW)$$

Then one has $H_i(CW^+) \cong H_i(CW)$ for i > 2 and an injection $H_2(CW) \longrightarrow H_2(CW^+)$.

 $H_2(i)$ is surjective by the exactness since $H_2(\bigvee_{\beta}S^3)=0$, $\pi_2(p)\circ H_2(f)=0$ by the exactness since $\operatorname{\mathcal{K}er}(H_2(f))=\operatorname{\mathcal{I}m}(\pi_2(p)\circ\delta)$, then j=0, $H_2(CW)\stackrel{\beta}{\longrightarrow} H_2(CW^+)$ is surjective thus isomorphism.

5.3 Topics with Homology

Moore spaces

For $n \geq 2$ and an abelian group G, define the 1-connected Moore space M(G,n) such that

$$\widetilde{H}_i(M(G,n)) = \begin{cases} G & i = n \\ 0 & \text{else} \end{cases}$$
.

Eilenberg-MacLane spaces

For $n \geq 1$ and an abelian group G define the n-1-connected Eilenberg-MacLane sapce K(G,n) such that

$$\pi_i(K(G, n)) = \begin{cases} G & i = n \\ 0 & \text{else} \end{cases}.$$

Proposition

- (1) $\Sigma M(G, n) = M(G, n+1)$, $\Omega K(G, n+1) = K(G, n)$.
- (2) The Hurewicz map $h_n: \pi_n(M(G,n)) \longrightarrow H_n(M(G,n))$ is an isomorphism.
- (3) The abelian group homomorphism $\varphi: G \longrightarrow H$ induces

$$f: M(G,n) \longrightarrow M(H,n)$$
 such that $H_n(f) = \varphi: H_n(M(G,n)) \longrightarrow H_n(M(H,n))$,
 $g: K(G,n) \longrightarrow K(H,n)$ such that $\pi_n(g) = \varphi: \pi_n(K(G,n)) \longrightarrow \pi_n(K(H,n))$.

(4)
$$\pi_n(X;G) = [M(G,n),X]$$
 ($n \ge 2$), $H^n(X;G) = [X,K(G,n)]$ where G is an abelian group.

The Hopf classification theorem

For a CW complex X with dim $X \leq n$, one has $[X, S^n] \cong H^n(X; \mathbb{Z})$.

The Hurewicz theorem

For $n \geq 2$:

If X is
$$(n-1)$$
-connected, $\pi_1(X) = \cdots = \pi_{n-1}(X) = 0$,
then $\widetilde{H}_i(X) = 0$ for $i \le n-1$ and $\pi_n(X) \cong H_n(X)$.

If
$$(X, A)$$
 is $(n-1)$ -connected with nonempty A is 1-connected, $\pi_1(X, A) = \cdots = \pi_{n-1}(X, A) = 0$, then $H_i(X, A) = 0$ for $i \leq n-1$ and $\pi_n(X, A) = H_n(X, A)$.

The Hopf invariant

For a map $f: S^m \longrightarrow S^n$ with $m \ge n$, construct a CW complex CW_f by attaching an (m+1)-cell on S^n . Then the homotopy type of CW_f depends only on the homotopy class of f.

When m=2n-1, choose generators $\alpha \in H^n(CW_f)$, $\beta \in H^{2n}(CW_f)$, then the cohomology ring $H^*(CW_f)$ is determined by $\alpha \vee \alpha = H(f)\beta$ where H(f) is called Hopf invariant of f.

Proposition

- (1) If f is constant, then H(f) = 0.
- (2) If n is odd for $f: S^{2n-1} \longrightarrow S^n$, then H(f) = 0.
- (3) For even n, the map $f: S^{2n-1} \longrightarrow S^n$ of Hopf invariant 2 always exists. For even n, the map $f: S^{2n-1} \longrightarrow S^n$ of Hopf invariant 1 only exists when n = 2, 4, 8. (Adams 1960)
- (4) \mathbb{R}^n is a division algebra only for n = 1, 2, 4, 8.
- (5) S^n is an H-space only for n = 0, 1, 3, 7.
- (6) S^n has n linearly independent tangent vector fields only for n=0,1,3,7 .
- (7) The only fiber bundles $S^p \longrightarrow S^q \longrightarrow S^r$ occur when (p,q,r) = (0,1,1), (1,3,2), (3,7,4), (7,15,8).
- (8) The Hopf invariant $H: [S^{2n-1}, S^n]_* \longrightarrow \mathbb{Z}$ is a homomorphism.
- (9) $[S^{2n-1}, S^n]_*$ contains a \mathbb{Z} direct summand when n is even.

Whitehead products

For $f \in [S^m, X]_*$, $g \in [S^n, X]_*$, define the Whitehead product $[f, g] \in [S^{m+n-1}, X]_*$ to be the composition

$$S^{m+n-1} \longrightarrow S^m \vee S^n \xrightarrow{f \vee g} X$$

where $S^{m+n-1} \longrightarrow S^m \vee S^n$ is the attaching map of attaching e^{m+n} to $S^m \times S^n$.

Minimal cell structure

For a 1-connected CW complex X with finitely generated $H_n(X)$, one has a CW complex M and a cellular homotopy equivalence $f: M \longrightarrow X$ such that the cell in M is either:

- (a) a generator *n*-cell mapped by f to a generator in $H_n(X)$,
- (b) a relator (n+1)-cell with boundary a multiple of one torsion generator cell.

Proposition

A map f between 1-connected CW complexes is a homotopy equivalence if $H_n(f)$ is an isomorphism for each n.

Proposition

For a space X homotopy equivalent to a 1-connected CW complex with only nontrivial reduced homology $H_2(X) = \bigoplus_k \mathbb{Z}$, $H_4(X) = \mathbb{Z}$, its homotopy type is determined by the cohomology ring $H^*(X)$. In particular the homotopy type of any 1-connected closed 4-manifold X is determined by the cohomology ring $H^*(X)$.

Stable splitting of spaces

For connected CW complexes X and Y, one has

$$\Sigma(X \times Y) \simeq \Sigma X \vee \Sigma Y \vee \Sigma(X \wedge Y)$$
.

For James reduced product J(X) of CW complex X one has

$$\Sigma J(X)\simeq\bigvee_n\Sigma(X^{\wedge n})$$
 where $X^{\wedge n}=X\wedge\cdots\wedge X$ (n copies),
$$\Sigma J(S^n)\simeq S^{n+1}\vee S^{2n+1}\vee\cdots,$$

$$\Sigma K(\mathbb{Z}_{p^n},1)\simeq X_1\vee\cdots\vee X_{p-1}$$

where
$$X_i$$
 is a CW complex such that $\widetilde{H_k}(X_i) = \begin{cases} \text{nonzero} & k \equiv 2i \pmod{2p-2} \\ 0 & \text{else} \end{cases}$.

Loop-suspension spaces

For every connected CW complex X one has a weak homotopy equivalence $J(X) \longrightarrow \Omega \Sigma X$.

The Freudenthal suspension theorem

For an *n*-connected CW complex X , the suspension $\pi_i(X) \longrightarrow \pi_{i+1}(\Sigma X)$ is an isomorphism for $i \leq 2n$ and surjection for i = 2n + 1.

EHP sequences

There is an exact sequence

$$\pi_{3n-2}(S^n) \xrightarrow{\Sigma} \pi_{3n-1}(S^{n+1}) \longrightarrow \pi_{3n-2}(S^{2n}) \longrightarrow \pi_{3n-3}(S^n) \xrightarrow{\Sigma} \pi_{3n-2}(S^{n+1}) \longrightarrow \cdots$$

Proposition

- (1) $\pi_n(S^n) = \mathbb{Z}$ is generated by $\mathbb{1}_{S^n}$.
- (2) $\pi_{n+1}(S^n) = \mathbb{Z}_2$ is generated by Hopf map $h: S^3 \longrightarrow S^2$ or $\Sigma^k h: S^{3+k} \longrightarrow S^{2+k}$.
- (3) $\pi_i(S^{2n})$ in the EHP sequence are stable homotopy groups since $i=3n-2,3n-3,\dots \leq 4n-2$.
- (4) In the EHP sequence, table homotopy groups $\pi_i(S^{2n})$ are measuring the lack of stability of the groups $\pi_i(S^n)$ in the range $2n-1 \le i \le 3n-2$ called metastable range.

Excisive triads

pair (X; A, B) is called an excisive triad if $X = Int(A) \cup Int(B)$.

For two excisive triads (X;A,B) and (Y;C,D), the map $f:(X;A,B)\longrightarrow (Y;C,D)$ satisfies $f:X\longrightarrow Y$, $f(A)\subseteq C$, $f(B)\subseteq D$.

Excision as homotopy

For a map $f:(X;A,B)\longrightarrow (Y;C,D)$ of excisive triads, one has (let $\pi_0(A,A\cap B)=\pi_0(A)/\pi_0(A\cap B)$):

$$\begin{cases} \pi_i(A,A\cap B) \longrightarrow \pi_i(C,C\cap D) \text{ is an isomorphism for } i \leq n-1 \text{ and surjective for } i=n \ . \\ \pi_i(B,A\cap B) \longrightarrow \pi_i(D,C\cap D) \text{ is an isomorphism for } i \leq n-1 \text{ and surjective for } i=n \ . \end{cases}$$

$$\Longrightarrow \begin{cases} \pi_i(X,A) \longrightarrow \pi_i(Y,C) \text{ is bijective for } i \leq n-1 \text{ and surjective for } i=n \ . \\ \pi_i(X,B) \longrightarrow \pi_i(Y,D) \text{ is bijective for } i \leq n-1 \text{ and surjective for } i=n \ . \end{cases}$$

By the excision axiom, one has $H_i(X,A) \cong H^i(B,A \cap B)$, $H_i(Y,C) \cong H^i(D,C \cap D)$.

Gluing weak homotopy equivalences

For open covers $\{U_i\}$ of X, $\{V_i\}$ of Y, if $f: X \longrightarrow Y$ such that each $f(U_i) \subseteq V_i$ is a homotopy equivalence, then $f: U_1 \cap \cdots \cap U_k$ and $f: X \longrightarrow Y$ are also homotopy equivalences.

Quasi-fibrations

The map $p: E \longrightarrow X$ with 0-connected X is a quasi-fibration if any following one is satisfied:

- (1) $\pi_i(E, p^{-1}(x)) \cong \pi_i(X, x)$ for all $x \in X$.
- (2) Exist open sets V_1 , V_2 such that $X = V_1 \cup V_2$, $p^{-1}(V_1) \longrightarrow V_1$, $p^{-1}(V_2) \longrightarrow V_2$, $p^{-1}(V_1 \cap V_2) \longrightarrow V_1 \cap V_2$ are quasi-fibrations.
- (3) $X = \varprojlim (X_1 \xrightarrow{i} X_2 \xrightarrow{i} X_3 \longrightarrow \cdots) = \bigcup_n X_n$ such that $p^{-1}(X_n) \longrightarrow X_n$ is quasi-fibration for each n.
- (4) There are retract $r: E \longrightarrow E' \subseteq E$ and covering retract $r': X \longrightarrow X' \subseteq X$ such that $E' \longrightarrow X'$ is a quasi-fibration and $r: p^{-1}(x) \longrightarrow p^{-1}(r'(x))$ is a weak homotopy equivalence.

Infinite symmetric product

For a based space X , let $X^k = X \times \cdots \times X$ (k copies) , define

$$SP(X) = \bigsqcup_{k} X^{k} / \sim \text{ where } (x_{1}, \dots, x_{k}) \sim \text{ permutations of } (x_{1}, \dots, x_{k}) .$$

 $SP_n(X)$ is a CW complex and $SP_n(X) \longrightarrow SP_{n+1}(X)$, $(x_1, \dots, x_n) \longmapsto (x_1, \dots, x_n, *)$ is an inclusion.

Proposition

- (1) $f \simeq g : X \longrightarrow Y$ induces $SP_n(f) = SP_n(g) : SP_n(X) \longrightarrow SP_n(Y)$. For connected CW complexes $X \simeq Y$, one has $SP(X) \simeq SP(Y)$.
- (3) $SP(S^2) = \mathbb{C}P^{\infty}$. $SP_2(S^n) \cong C_f$ where $f: \Sigma^n \mathbb{R}P^n \longrightarrow S^n$.

The Dold-Thom theorem

For cofibre sequence $A \xrightarrow{f} X \longrightarrow C_f$, $SP(X) \longrightarrow SP(C_f)$ is a Quasi-fibration with fibre SP(A). Functors $\widetilde{H}_i(-;\mathbb{Z})$ and $\pi_i(SP(-))$ coincides on the category of connected CW complexes.

Proposition

- (1) SP(X) is an commutative associative H-space.
- (2) For connected CW complex X , SP(X) is 0-connected, has weak homotopy type of $\prod_{n} K(H_n(X), n)$.

5.4 On Fibre bundles

Fibre bundles

A surjective continuous map $p: E \longrightarrow X$ is a fibre bundle over X with the fibre F.

- \iff \forall $x\in X$, \exists open U containing x such that $p^{-1}(U)\cong U\times F$ and the first diagram commutes. Thus $E_x=p^{-1}(x)\cong \{x\}\times F$.
- \iff \forall open cover $\{U_{\lambda}\}$ of X, one has $p^{-1}(U_{\lambda})\cong U_{\lambda}\times F$ for all λ and the second diagram commutes. $\{U_{\lambda}\}$ is called a trivialising cover of X.

Homeomorphism $p^{-1}(U) \longrightarrow U \times F$ is called local trivialisation of the fibre bundle $F \longrightarrow E \xrightarrow{p} X$. p is an open map since π_1 is also an open map.

Proposition

- (1) Fibre bundle $F \longrightarrow X \times F \xrightarrow{p} X$ is called trivial bundle. Fibre bundle $\mathbb{R}^n \longrightarrow E \xrightarrow{p} X$ is called real vector bundle. Fibre bundle $B^n \longrightarrow E \xrightarrow{p} X$ is called disk bundle. Fibre bundle $S^n \longrightarrow E \xrightarrow{p} X$ is called sphere bundle.
- (2) $\mathbb{Z} \longrightarrow \mathbb{R} \xrightarrow{p} S^1$ is a fibre bundle given by $p : \mathbb{R} \longrightarrow S^1$, $\theta \longmapsto e^{2\pi i \theta}$. $(p : \mathbb{R} \longrightarrow S^1$ is also a covering space.)
- (3) For a continuous map $p: C \longrightarrow X$, if for every $x \in X$, there exists an open U containing x such that $p^{-1}(U)$ is a disjoint union of open sets of C which are homeomorphic to each other, then $p: C \longrightarrow X$ is a covering space.

 ($p^{-1}(U)$ need not be nonempty, so p need not be surjective.)
- (4) For fibre bundle $F \longrightarrow E \xrightarrow{p} X$, if F carries the discrete topology, then $p: E \longrightarrow X$ is a covering space.

But a covering space is not a fibre bundle necessarily, since if X is not path-connected, $p^{-1}(U_x)$ and $p^{-1}(U_y)$ is not homeomorphic to the same F respectively.

(5) For a fibre bundle $F \longrightarrow E \xrightarrow{p} X$ with $A \subseteq X$, if (X, A) is n-connected, then $(E, p^{-1}(A))$ is also n-connected.

Hopf fibrations

There are some natrually continuous maps (which actually are fibre bundles):

$$S^{(n+1)-1} = \{(x_0, \dots, x_n) \mid x_i \in \mathbb{R} , \sum_i ||x_i|| = 1\} \longrightarrow \mathbb{R}P^n ,$$

$$S^{2(n+1)-1} = \{(x_0, \dots, x_n) \mid x_i \in \mathbb{C} , \sum_i ||x_i|| = 1\} \longrightarrow \mathbb{C}P^n ,$$

$$S^{4(n+1)-1} = \{(x_0, \dots, x_n) \mid x_i \in \mathbb{H} , \sum_i ||x_i|| = 1\} \longrightarrow \mathbb{H}P^n .$$

Thus there are the fibre bundles called Hopf fibrations:

$$S^{1-1} \longrightarrow S^{(n+1)-1} \stackrel{p}{\longrightarrow} \mathbb{R} \mathbf{P}^n ,$$

$$S^{2-1} \longrightarrow S^{2(n+1)-1} \stackrel{p}{\longrightarrow} \mathbb{C} \mathbf{P}^n ,$$

$$S^{4-1} \longrightarrow S^{4(n+1)-1} \stackrel{p}{\longrightarrow} \mathbb{H} \mathbf{P}^n .$$

Moreover we have $\mathbb{C}\mathrm{P}^n\cong S^{2n}$ thus the second Hopf fibration can be written by :

$$S^1 \longrightarrow S^{2n+1} \xrightarrow{p} S^{2n}$$
.

The Bott periodicity theorem

There are three fiber bundles:

$$O(n-1) \longrightarrow O(n) \xrightarrow{p} S^{n-1}$$
,
 $U(n-1) \longrightarrow U(n) \xrightarrow{p} S^{2n-1}$,
 $Sp(n-1) \longrightarrow Sp(n) \xrightarrow{p} S^{4n-1}$,

where p is an evaluation of an orthogonal, unitary, or symplectic transformation on a fixed unit vector.

Since $O(n-1) \longrightarrow O(n)$ induces isomorphism on π_i for $i \le n-3$, $\pi_i(O(n))$ is independent of n if n is large enough. Then one has the periodicity of homotopy groups.

$i \bmod 8$	0	1	2	3	4	5	6	7
$\pi_i(O(n))$	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}
$\pi_i(U(n))$	\mathbb{Z}_2	0	\mathbb{Z}_2	0	\mathbb{Z}_2	0	\mathbb{Z}_2	0
$\pi_i(Sp(n))$	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}

Pullback bundles

For a fibre bundle $F \longrightarrow E \xrightarrow{p} X$ and a continuous map $f: Y \longrightarrow X$, the pullback $E_f = E \times Y/\sim$ makes $F \longrightarrow E_f \xrightarrow{p'} Y$ a fibre bundle called pullback bundle.

Fibre bundle pairs

For two fibre bundles $F \longrightarrow E \xrightarrow{p} X$ and $F' \longrightarrow E' \xrightarrow{p'} X$ such that $F' \subseteq F$, $E' \subseteq E$ and $p' = p|_{E'}$, $(F, F') \longrightarrow (E, E') \xrightarrow{p} X$ is called a fibre bundle pair.

Cohomology extension of fibres

For a fibre bundle $F \longrightarrow E \stackrel{p}{\longrightarrow} X$ and commutative ring R, define the cohomology extension of fibre to be the homomorphism $\xi: H^n(F;R) \longrightarrow H^n(E;R)$ such that

$$H^n(F;R) \xrightarrow{\xi} H^n(E;R) \xrightarrow{H^n(i_x)} H^n(E_x;R) \cong H^n(F;R)$$

is an isomorphism for $n \geq 0$. Equivalently, there exist $\{\langle c_j \rangle\} \subseteq H^n(E;R)$ such that $\{H^n(i_x)\langle c_j \rangle\}$ is a basis of $H^n(F;R)$.

For a fibre bundle pair $(F, F') \longrightarrow (E, E') \stackrel{p}{\longrightarrow} X$ and commutative ring R, define the cohomology extension of fibre to be the homomorphism $\xi: H^n(F, F'; R) \longrightarrow H^n(E, E'; R)$ such that

$$H^n(F, F'; R) \xrightarrow{\xi} H^n(E, E'; R) \xrightarrow{H^n(i_x)} H^n(E_x, p^{-1}(x) \cap E'; R) \cong H^n(F, F'; R)$$

is an isomorphism for $n \geq 0$.

The Leray-Hirsch theorem

For a fibre bundle $F \longrightarrow E \stackrel{p}{\longrightarrow} X$ such that $H^n(F;R)$ is a finitely generated free R-module for $n \ge 0$ and the cohomology extension exists, one has an isomorphism

$$H^*(X;R) \otimes_R H^*(F;R) \longrightarrow H^*(E;R) , \langle x \rangle \otimes \langle f \rangle \longmapsto H^*(p) \langle x \rangle \smile \xi \langle f \rangle .$$

This isomorphism need not be a ring homomorphism.

The relative Leray-Hirsch theorem

For a fibre bundle pair $(F, F') \longrightarrow (E, E') \stackrel{p}{\longrightarrow} X$ such that $H^n(F, F'; R)$ is a finitely generated free R-module for $n \ge 0$ and the cohomology extension exists, one has an isomorphism

$$H^*(X;R) \otimes_R H^*(F,F';R) \longrightarrow H^*(E,E';R)$$
, $\langle x \rangle \otimes \langle f \rangle \longmapsto H^*(p) \langle x \rangle \sim \xi \langle f \rangle$.

This isomorphism need not be a ring homomorphism.

For CW complexes X and Y the cross product

$$H^*(X;R) \otimes_R H^*(Y;R) \longrightarrow H^*(X \times Y;R)$$

is a graded ring isomorphism if $H^n(Y;R)$ is a finitely generated free R-module for all n.

For CW pairs (X, A) and (Y, B) the cross product

$$H^*(X, A; R) \otimes_R H^*(Y, B; R) \longrightarrow H^*(X \times Y, A \times Y \cup B \times X; R)$$

is a graded ring isomorphism if $H^n(Y, B; R)$ is a finitely generated free R-module for all n.

Notice that $A \otimes_R B = A \otimes B$ if $R = \mathbb{Z}_m, \mathbb{Z}$ or \mathbb{Q} .

Proposition

(1) By the Leray-Hirsch theorem, one has

$$H^*(U(n); \mathbb{Z}) = \Lambda_{\mathbb{Z}}[x_1, x_3, \cdots, x_{2n-1}]$$
 where $\deg(x_i) = i$,
 $H^*(SU(n); \mathbb{Z}) = \Lambda_{\mathbb{Z}}[x_3, x_5, \cdots, x_{2n-1}]$ where $\deg(x_i) = i$,
 $H^*(Sp(n); \mathbb{Z}) = \Lambda_{\mathbb{Z}}[x_3, x_7, \cdots, x_{4n-1}]$ where $\deg(x_i) = i$.

(2) Denote $G_n(\mathbb{R}^{\infty})$ as Grassmann manifold of *n*-dimensional vector subspaces of \mathbb{R}^{∞} , by the Leray-Hirsch theorem, one has

$$H^*(G_n(\mathbb{R}^\infty); \mathbb{Z}_2) = \mathbb{Z}_2[x_1, \cdots, x_n]$$
 where $\deg(x_i) = i$,
 $H^*(G_n(\mathbb{C}^\infty); \mathbb{Z}) = \mathbb{Z}[x_2, x_4, \cdots, x_{2n}]$ where $\deg(x_i) = i$,
 $H^*(G_n(\mathbb{H}^\infty); \mathbb{Z}) = \mathbb{Z}[x_4, x_8, \cdots, x_{4n}]$ where $\deg(x_i) = i$.

Thom classes

For the fibre bundle pair $(B^n, S^{n-1}) \longrightarrow (E, E') \xrightarrow{p} X$, a Thom class for p is a cohomology class $\langle t \rangle \in H^n(E, E'; R)$ such that $H^n(i_x) \langle t \rangle \in H^n(E_x, E'_x; R) = H^n(B^n, S^{n-1}; R) = R$ is a generator of R.

The Thom isomorphism theorem

For a fibre bundle pair $(B^n, S^{n-1}) \longrightarrow (E, E') \xrightarrow{p} X$, if it has a Thom class $\langle t \rangle$, then one has isomorphism

$$H^i(X;R) \longrightarrow H^{i+n}(E,E';R)$$
, $\langle x \rangle \longmapsto H^i(p)\langle x \rangle \smile \langle t \rangle$ for $i \ge 0$

and $H^{i}(E, E'; R) = 0$ for $i \le n - 1$.

Proposition

- (1) For fibre bundle pair $(B^n, S^{n-1}) \longrightarrow (E, E') \xrightarrow{p} X$, the Thom class exists for $R = \mathbb{Z}_2$ and it is unique.
- (2) Disk bundles $(B^n, S^{n-1}) \longrightarrow (E, E') \xrightarrow{p} X$ is orientable. \iff It has a Thom classes with \mathbb{Z} coefficients.

Gysin sequences

X is 1-connected or take cohomology with \mathbb{Z}_2 .

- \Longrightarrow The fibre bundle $S^{n-1} \longrightarrow E \xrightarrow{p} X$ is orientable.
- \Longrightarrow There is an exact sequence

$$\cdots \longrightarrow H^{i-n}(X;R) \xrightarrow{\smile \langle e \rangle} H^i(X;R) \xrightarrow{H^i(p)} H^i(E;R) \longrightarrow H^{i-n+1}(X;R) \longrightarrow \cdots$$

where $\langle e \rangle \in H^n(X; R)$ is a Euler class.

Since $H^i(X;R)=0$ for negative i, one has $H^i(X;R)\cong H^i(E;R)$ for $i\leq n-2$.

5.5 Steenrod Algebra

Bockstein homomorphisms

For an exact sequence of abelian groups $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$, take the covariant exact functor $\operatorname{Hom}(C_n(X), -)$ since $C_n(X)$ is free, one has exact sequence

$$0 \longrightarrow C^n(X; A) \longrightarrow C^n(X; B) \longrightarrow C^n(X; C) \longrightarrow 0$$
.

Then one has long exact sequence

$$\cdots \longrightarrow H^n(X;A) \longrightarrow H^n(X;B) \longrightarrow H^n(X;C) \xrightarrow{\beta} H^{n+1}(X;A) \longrightarrow \cdots$$

where $\beta: H^n(X; C) \longrightarrow H^{n+1}(X; C)$ is called a Bockstein homomorphism.

Cohomology operators

A natrual transform $\Theta: \mathcal{H}^m(-;G) \longrightarrow \mathcal{H}^n(-;H)$ is called a cohomology operator.

$$\{\Theta \mid \Theta : \mathcal{H}^m(-;G) \longrightarrow \mathcal{H}^n(-;H)\} \cong H^n(K(G,m);H)$$

is given by $\Theta \longmapsto \Theta(\alpha)$ where $\langle \alpha \rangle \in H^m(K(G,m);G)$ is a generator.

Steenrod squares

The Steenrod square $Sq^i: H^n(X; \mathbb{Z}_2) \longrightarrow H^{n+i}(X; \mathbb{Z}_2)$ for $i \geq 0$ is a cohomology operator satisfying:

(1)
$$Sq^{i}(H^{n}(f)\langle\alpha\rangle) = H^{n+i}(f)(Sq^{i}\langle\alpha\rangle) \text{ where } f: X \longrightarrow Y.$$

(2)
$$Sq^{i}\langle\alpha+\beta\rangle = Sq^{i}\langle\alpha\rangle + Sq^{i}\langle\beta\rangle .$$

(3) The Cartan formula :
$$Sq^i\langle\alpha\smile\beta\rangle=\sum_j Sq^{i-j}\langle\alpha\rangle\smile Sq^j\langle\beta\rangle$$
 .

(4)
$$Sq^i\sigma=\sigma Sq^i \text{ where } \sigma:H^n(X;\mathbb{Z}_2)\longrightarrow H^{n+1}(\Sigma X;\mathbb{Z}_2) \text{ is an isomorphism }.$$

(5)
$$Sq^{i}\langle\alpha\rangle = \alpha^{2} \text{ for } i = \deg(\alpha) , Sq^{i}\langle\alpha\rangle = 0 \text{ for } i \geq \deg(\alpha) + 1 .$$

(6)
$$Sq^0 = \mathbb{1} .$$

$$Sq^1 = \beta \text{ is the } \mathbb{Z}_2 \text{ Bockstein homomorphism given by}$$

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$

$$\cdots \longrightarrow H^n(X; \mathbb{Z}_2) \longrightarrow H^n(X; \mathbb{Z}_4) \longrightarrow H^n(X; \mathbb{Z}_2) \stackrel{\beta}{\longrightarrow} H^{n+1}(X; \mathbb{Z}_2) \longrightarrow \cdots.$$

Stable homotopy groups $\pi_{n+1}(S^n)$, $\pi_{n+3}(S^n)$ and $\pi_{n+7}(S^n)$ are nontrivial

If $f: S^{2k-1} \longrightarrow S^k$ has Hopf invariant 1, then $[f] \in \pi_{n+k-1}(S^n)$ is nontrivial. Proof:

For $f: S^{2n-1} \longrightarrow S^n$ with Hopf invariant H(f) = 1, take $CW_f = S^n \cup_f e^{2n}$, one has

$$Sq^n: H^n(CW_f; \mathbb{Z}_2) \longrightarrow H^{2n}(CW_f; \mathbb{Z}_2)$$

is nontrivial given by $\alpha \smile \alpha = \beta \in H^{2n}(CW_f; \mathbb{Z}_2)$, so is

$$Sq^n: H^{n+k}(\Sigma^k CW_f; \mathbb{Z}_2) \longrightarrow H^{2n+k}(\Sigma^k CW_f; \mathbb{Z}_2)$$
.

If $[\Sigma^k f] = 0$ then one has $\Sigma^k CW_f \simeq S^{n+k}$ then one has contradiction.

$$H^{n+k}\left(S^{n+k}; \mathbb{Z}_{2}\right) \xrightarrow{\cong} H^{n+k}\left(\Sigma^{k}CW_{f}; \mathbb{Z}_{2}\right)$$

$$Sq^{n} \downarrow \qquad \qquad \downarrow Sq^{n}$$

$$0 = H^{2n+k}\left(S^{n+k}; \mathbb{Z}_{2}\right) \xrightarrow{\cong} H^{2n+k}\left(\Sigma^{k}CW_{f}; \mathbb{Z}_{2}\right)$$

Steenrod powers

The Steenrod power $P^i: H^n(X; \mathbb{Z}_p) \longrightarrow H^{n+2i(p-1)}(X; \mathbb{Z}_p)$ for p an odd prime is a cohomology operator satisfying:

(1)
$$P^{i}(H^{n}(f)\langle\alpha\rangle) = H^{n+i}(f)(P^{i}\langle\alpha\rangle) \text{ where } f: X \longrightarrow Y.$$

(2)
$$P^{i}\langle \alpha + \beta \rangle = P^{i}\langle \alpha \rangle + P^{i}\langle \beta \rangle .$$

(3) The Cartan formula :
$$P^i\langle\alpha\smile\beta\rangle=\sum_j P^{i-j}\langle\alpha\rangle\smile P^j\langle\beta\rangle$$
 .

(4)
$$P^i\sigma = \sigma P^i \text{ where } \sigma: H^n(X; \mathbb{Z}_p) \longrightarrow H^{n+1}(\Sigma X; \mathbb{Z}_p) \text{ is an isomorphism }.$$

(5)
$$P^{i}\langle\alpha\rangle = \alpha^{p} \text{ for } 2i = \deg(\alpha) , P^{i}\langle\alpha\rangle = 0 \text{ for } 2i \geq \deg(\alpha) + 1 .$$

Notice that $\alpha^2 = 0$ for $deg(\alpha)$ is odd.

$$(6) P^0 = 1.$$

Total Steenrod squares and powers

$$Sq = \sum\limits_{i=0}^{\infty} Sq^i$$
 and $P = \sum\limits_{i=0}^{\infty} P^i$ are graded ring homomorphisms since $Sq\langle \alpha \smile \beta \rangle = Sq\langle \alpha \rangle \smile Sq\langle \beta \rangle$,

 $P\langle\alpha\smile\beta\rangle=P\langle\alpha\rangle\smile P\langle\beta\rangle$ by the Cartan formula.

Proposition

$$Sq^{i}\langle\alpha^{n}\rangle = \binom{n}{i}\alpha^{n+i} \text{ for } \alpha \in H^{1}(X; \mathbb{Z}_{2}) .$$

$$P^{i}\langle\alpha^{n}\rangle = \binom{n}{i}\alpha^{n+i(p-1)} \text{ for } \alpha \in H^{2}(X; \mathbb{Z}_{2}) .$$

By these one has:

$$Sq\langle\alpha\rangle = \alpha + \alpha^2 = \alpha \smile (1+\alpha) , \ \alpha \in H^1(X; \mathbb{Z}_2) ,$$

$$Sq\langle\alpha^n\rangle = \sum_{i=0}^{\infty} \binom{n}{i} \alpha^{n+i} = \alpha^n \smile (1+\alpha)^n , \ \alpha \in H^1(X; \mathbb{Z}_2) ,$$

$$P\langle\alpha\rangle = \alpha + \alpha^p = \alpha \smile (1 + \alpha^{p-1}) , \ \alpha \in H^2(X; \mathbb{Z}_p) ,$$

$$P\langle\alpha^n\rangle = \sum_{i=0}^{\infty} \binom{n}{i} \alpha^{n+i(p-1)} = \alpha^n \smile (1 + \alpha^{p-1})^n , \ \alpha \in H^2(X; \mathbb{Z}_p) .$$

By the Pascal triangle:

For $\alpha \in H^1(X; \mathbb{Z}_2)$:

$$Sq\langle\alpha^2\rangle = \alpha^2 + \alpha^4 ,$$

$$Sq\langle\alpha^3\rangle = \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 .$$

For $\alpha \in H^2(X; \mathbb{Z}_3)$:

$$P\langle\alpha^2\rangle = \alpha^2 + 2\alpha^4 + \alpha^6 ,$$

$$P\langle\alpha^3\rangle = \alpha^3 + \alpha^9 .$$

Adem relations

$$Sq^{a}Sq^{b} = \sum_{j=0}^{\infty} \binom{b-1-j}{a-2j} Sq^{a+b-j}Sq^{j} \text{ if } a \leq 2b-1 ,$$

$$P^{a}P^{b} = \sum_{j=0}^{\infty} (-1)^{a+j} \binom{(p-1)(b-j)-1}{a-pj} P^{a+b-j}P^{j} \text{ if } a \leq pb-1 ,$$

$$P^{a}\beta P^{b} = \sum_{j=0}^{\infty} (-1)^{a+j} \binom{(p-1)(b-j)}{a-pj} \beta P^{a+b-j}P^{j} - \sum_{j=0}^{\infty} (-1)^{a+j} \binom{(p-1)(b-j)-1}{a-pj-1} P^{a+b-j}\beta P^{j} \text{ if } a \leq pb .$$

5.6 Homotopy Decomposition

The Postnikov Tower

For a connected CW complex X, one can construct a sequence \widetilde{X}_n such that $\pi_i(X) \cong \pi_i(\widetilde{X}_n)$ for $i \leq n$ and $\pi_i(\widetilde{X}_n) = 0$ for i > n.

For every generator of $\langle S^{n+1}, X \rangle$ in $\pi_{n+1}(X)$, by the cellular approximation theorem one can make it to be cellular. If we attach a e^{n+2} to X by this cellular map, then one has:

- (1) $\pi_i(Y) \cong \pi_i(X)$ for $i \leq n$ since the *i*-skeletons of Y and X are the same, by the cellular approximation theorem, one can make $\langle S^i, Y \rangle$ homotopic to $\langle S^i, X \rangle$.
- (2) $\pi_{n+1}(Y) = 0$ since the generators in X are nullhomotopy in Y .

Let X=Y and repeat this process, one can get a CW complex $\widetilde{X_n}$ such that $\pi_k(i):\pi_k(X)\longrightarrow\pi_k(\widetilde{X_n})$ is an isomorphism for $k\leq n$ and $\pi_k(\widetilde{X_n})=0$ for k>n.

(1) By the extension lemma:

 $X \longrightarrow \widetilde{X_1}$ can be extended to a map $\widetilde{X_2} \longrightarrow \widetilde{X_1}$.

$$X \xrightarrow{\widetilde{X_2}} (X \sqcup e_{\beta}^4 \sqcup \cdots \text{ retracts to } X_2)$$

$$X \xrightarrow{\circlearrowright} \widetilde{X_1} (X \sqcup e_{\alpha}^3 \sqcup e_{\beta}^4 \sqcup \cdots \text{ retracts to } X_1)$$

(2) Map $\widetilde{X_n} \longrightarrow X_{n-1}$ factors as $\widetilde{X_n} \longrightarrow X_n \longrightarrow X_{n-1}$.

(any map can be turned into a fibration up to homotopy)

- (1) (\widetilde{X}_n, X) is an (n+1)-connected CW model for (CX, X).
- (2) The unique map $X \longrightarrow \varprojlim_n X_n$ is a weak homotopy equivalence, X is a CW approximation to $\varprojlim_n X_n$ since $\pi_k(X) \longrightarrow \pi_k(\varprojlim_n X_n) \longrightarrow \varprojlim_n \pi_k(X_n)$ is an isomorphism for n sufficiently large.

Principal fibrations

A fibration $p: E \longrightarrow B$ with fibre F is called equivalent to a principal fibration if there is a homotopy equivalence $E \longrightarrow M_k$ where $k: B \longrightarrow K$ such that the diagram commutes.

Thus one must have a weak homotopy equivalence $F \longrightarrow \Omega K$.

The induced fibration $p':M_k\longrightarrow B$ is called the principal fibration induced by $p:E\longrightarrow B$.

Proposition

A connected CW complex X has a Postnikov tower of principal fibrations.

 $\iff \pi_1(X) \text{ acts trivially on } \pi_n(X) \text{ for all } n \geq 2$.

Any 1-conected CW complex X has a Postnikov tower of principal fibrations.

k-invariants

If the fibration $p:X_{n+1}\longrightarrow X_n$ is principal in the Postnikov tower, then one has an induced fibration $k_n:X_n\longrightarrow K(\pi_{n+1}(X),n+2)$ with fibre M_{k_n} (homotopy equivalent to X_{n+1}).

Thus there is a fibre sequence $K(\pi_n(X),n)\longrightarrow X_n\longrightarrow X_{n-1}\longrightarrow K(\pi_n,n+1)$.

 $k_n: X_n \longrightarrow K(\pi_{n+1}(X), n+2)$ is a class in $H^{n+2}(X_n; \pi_{n+1}(X))$ called the *n*-th *k*-invariant (Postnikov invariant) of X (By the Brown representability theorem, $H^{n+2}(X_n; \pi_{n+1}(X)) \cong [X_n, K(\pi_{n+1}(X), n+2)]_*$).

Functoriality of Postnikov towers

Consider the category of the tower-like diagrams, the object is the Postnikov tower $\mathcal{P}(X)$ of space X, the morphism is $f \prod_{n} f_n$ where $f: X \longrightarrow Y$, $f_n: X_n \longrightarrow Y_n$ (assume that all are 1-connected).

Proposition

For CW pairs (X,A) where cells in $X\setminus A$ have dimension $k\geq n+2$, then there is an induced map $\langle A,Y\rangle \longrightarrow \langle X,Y\rangle$.

If $\pi_m(Y)=0$ for $n\geq n+2$, then $\langle A,Y\rangle \longrightarrow \langle X,Y\rangle$ is injective.

If $\pi_m(Y) = 0$ for $n \ge n+1$, then $\langle A, Y \rangle \longrightarrow \langle X, Y \rangle$ is surjective.

Consider the inclusion $i_n: X \longrightarrow \widetilde{X_n}$, then there is a unique $[\widetilde{f_n}]$ such that $[i'_n \circ f] \longmapsto [\widetilde{f_n}]$ where $i'_n: Y \longrightarrow \widetilde{Y_n}$, $\widetilde{f}: \widetilde{X_n} \longrightarrow \widetilde{Y_n}$, thus $f_n: X_n \longrightarrow Y_n$ is well defined.

If f is a homotopy equivalence, then f_n is a homotopy equivalence.

For the homotopy inverse g, one has

$$f_n \circ g_n \simeq (fg)_n \simeq \mathbb{1}_{Y_n} \ , \ g_n \circ f_n \simeq (gf)_n \simeq \mathbb{1}_{X_n} \ .$$

Take $f=\mathbbm{1}_X$, Y=X , then for two section X_n and X_n' they are homotopy equivalent.

Commutativity with k-invariant

For two Postnikov towers of X, one has X_n and X'_n are homotopy equivalent, then one has the diagram commutes.

Thus $H^{n+2}(X_n; \pi_{n+1}(X)) \cong \langle X_n, K(\pi_{n+1}(X), n+2) \rangle = \langle X'_n, K(\pi_{n+1}(X), n+2) \rangle \cong H^{n+2}(X'_n; \pi_{n+1}(X))$.

The Whitehead tower

For a connected CW complex X, one has the commutative diagram such that $W_n \longrightarrow W_{n-1}$ is a fibration with fibre $K(\pi_n(X), n-1)$ for each n

where $\pi_k(W_n) \longrightarrow \pi_k(X)$ is an isomorphism for $k \geq n+1$ and $\pi_k(W_n) = 0$ for $k \leq n$.

The Postnikov tower of spectra

The Universal Coefficient Theorem for Homotopy

Define the homotopy group with coefficient $\pi_n(X;G) = \langle M(G,n), X \rangle$, for $n \geq 2$ there is an exact sequence of Abelian groups

$$0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^1(G, \pi_{n+1}(X)) \longrightarrow \pi_n(X; G) \longrightarrow \operatorname{Hom}(G, \pi_n(X)) \longrightarrow 0$$
.

The Moore tower

If X is 1-connected, then X has a Moore tower (commutative diagram) of principal cofibrations.

 $i_n:X_n\longrightarrow X_{n+1}$ is a principal cofibration inducing the cofibration $k_n':M(H_{n+1}(X),n)\longrightarrow X_n$ with cofibre $C_{k_n'}$ (homotopy equivalent to X_3).

Thus there is a cofibre sequence $M(H_{n+1}(X), n) \longrightarrow X_n \longrightarrow X_{n+1} \longrightarrow M(H_{n+1}(X), n+1)$.

The Moore tower has no factoriality

Take an 1-connected $X=M(\mathbb{Z}_2,n)\vee S^{n+1}$, take $X_n=M(\mathbb{Z}_2,n)$, $X_{n+1}=M(\mathbb{Z}_2,n)\vee S^{n+1}=X$. By the universal coefficient theorem one has $\langle M(\mathbb{Z}_2,n),S^{n+1}\rangle=\pi_n(X;\mathbb{Z}_2)\cong \operatorname{Ext}^1_{\mathbb{Z}_2}(\mathbb{Z}_2,\mathbb{Z})=\mathbb{Z}_2$ since $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}_2)=0$. Thus there is a nonconstant map $q:M(\mathbb{Z}_2,n)\longrightarrow S^{n+1}$. Consider $f=i_2\circ\operatorname{fold}\circ(q\vee\mathbb{I}):X\longrightarrow X$.

If $f \circ i_1 \simeq i_1 \circ f_n$, then $q = (q \lor c) \circ i_2 \circ q = (q \lor c) \circ f \circ i_1 \simeq (q \lor c) \circ i_1 \circ f_n = c$ makes a contradiction.

5.7 Spectral Sequences

Cohomology spectral sequences

A graded differential ring (algebra) is a graded ring R with a map $d: R \longrightarrow R$ such that $d \circ d = 0$ and satisfies the Leibniz rule $d(x_m \cdot y_n) = d(x_m) \cdot (y_n) + (-1)^{m+n} x_m \cdot d(y_n)$ for $x_m \in R_m$, $y_n \in R_n$.

A filtration of an R-module M is a sequence $0 \subseteq \cdots \subseteq F_{-1}M \subseteq F_0M \subseteq F_1M \subseteq \cdots \subseteq M = \bigcup_n F_nM$, and M is not even to be graded. If M is a filtered module, then take $G_n = F_nM/F_{n-1}M$, $G = \bigoplus_n G_n$ is a graded module.

If R is a field, then we can get F_1M from the G_0 and G_1 since the exact sequence $0 \longrightarrow F_0M \longrightarrow F_1M \longrightarrow F_1M/F_0M \longrightarrow 0$ is unique, and we can use $G = \bigoplus_n G_n$ to approximate $M = \bigoplus_n F_nM$ and the same holds if G_n is a free R-module for each n.

A cohomological spectral sequence is a sequence of graded R-modules $E_r^{p,q}$ together with the differentials $d_r: E_r^{p,q} \longrightarrow E_r^{p+r,q-r+1}$ such that $d_r \circ d_r = 0$, the bidegree is (r,-r+1) and the total degree is 1. In this sequence, the next page is $E_{r+1}^{p,q} = H^d(E_r^{p,q}) = \mathcal{K}er(d_r: E_r^{p,q} \longrightarrow E_r^{p+r,q-r+1})/\mathcal{I}m(d_r: E_r^{p-r,q+r-1} \longrightarrow E_r^{p,q})$. The infinite page is $E_{\infty}^{p,q} = \underbrace{Colim}_r E_r^{p,q}$.

We say the spectral sequence $E_r^{p,q}$ converges to the graded R-module $M=\bigoplus_n M_n$ denoted by $E_r^{p,q}\Longrightarrow M^{p+q}$, if for each (p,q) there exists a r_0 such that the differentials $d_r=0$ for all $r\geq r_0$, and for the filtration of M, one has an isomorphism $0\subseteq\cdots\subseteq M=\bigcup_n F_nM$, $E_\infty^{p,n-p}=\underbrace{Colim}_r E_r^{p,n-p}\cong G_n=F_nM/F_{n-1}M$ for each n.

A homological spectral sequence is a sequence of graded R-modules $E^r_{p,q}$ together with the differentials $d^r: E^r_{p,q} \longrightarrow E^r_{p-r,q+r-1}$ such that $d^r \circ d^r = 0$, the bidegree is (-r,r-1) and the total degree is -1. In this sequence, the next page is $E^{r+1}_{p,q} = H_d(E^r_{p,q}) = \mathcal{K}er(d^r: E^r_{p,q} \longrightarrow E^r_{p-r,q+r-1})/\mathcal{I}m(d^r: E^r_{p+r,q-r+1} \longrightarrow E^r_{p,q})$. The infinite page is $E^\infty_{p,q} = \underbrace{Colim}_r E^r_{p,q}$.

First quadrant spectral sequences

Exact couples

Let X be a CW-complex, $\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X = \bigcup_n X_n$ is the cellular filtration where X_n is the n-skeleton, each $i_p : X_p \longrightarrow X_{p+1}$ induces a long exact sequence $\cdots \longrightarrow H_n(X_p) \longrightarrow H_n(X_{p+1}) \longrightarrow H_n(X_{p+1}, X_p) \xrightarrow{\delta} H_{n-1}(X_p) \longrightarrow \cdots$ in homology.

This is a homology spectral sequence where the first page is $E^1_{p,q} = H_{p+q}(X_p, X_{p-1})$ and $d^1: E^1_{p,q} = H_{p+q}(X_p, X_{p-1}) \longrightarrow E^1_{p-1,q} = H_{p+q-1}(X_{p-1}, X_{p-2})$, E^r_{p+q} converges to $H_{p+q}(X)$, $E^r_{p+q} \Longrightarrow H_{p+q}(X)$

$$E_{p,q}^2 = \mathcal{K}er(d^1: H_{p+q}(X_p, X_{p-1}) \longrightarrow H_{p+q-1}(X_{p-1}, X_{p-2})) / \mathcal{I}m(d^1: H_{p+q+1}(X_{p+1}, X_p) \longrightarrow H_{p+q}(X_p, X_{p-1})) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p) \longrightarrow H_{p+q}(X_p, X_{p-1})) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p) \longrightarrow H_{p+q}(X_p, X_{p-1})) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p) \longrightarrow H_{p+q}(X_p, X_p)) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p) \longrightarrow H_{p+q}(X_p, X_p) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p)) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p)) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p)) / \mathcal{I}m(d^1: H_{p+q+1}(X_p, X_p)) /$$

In this homology spectral sequence,
$$H_{p+q}(X_p, X_{p-1}) = \widetilde{H_{p+q}}(X_p/X_{p-1}) = \widetilde{H_{p+q}}(\bigvee_k S^p) = \begin{cases} \bigoplus_k \mathbb{Z} & q = 0 \\ 0 & q \neq 0 \end{cases}$$

The Leray-Serre spectral sequence

 $p: E \longrightarrow B$ is a (weak) fibration with a connected fibre F where B is path-connected, for an Abelian group A, there is a first quadrant homology spectral sequence and a first quadrant cohomology spectral sequence.

$$E_{p,q}^2=H_p(B;H_q(F;A))$$
, $E_{p,q}^r\Longrightarrow H_{p+q}(E;A)$, $H_q(F;A)$ is the local coefficient. $E_2^{p,q}=H^p(B;H^q(F;A))$, $E_r^{p,q}\Longrightarrow H^{p+q}(E;A)$, $H^q(F;A)$ is the local coefficient.

If A is a commutative ring, then this cohomology spectral sequence has an algebraic structure.

Let B be a finite CW-complex, there is a filtration $B_0 \subseteq B_1 \subseteq \cdots \subseteq B_n \subseteq \cdots B$, then lift to the total space there is another filtration $p^{-1}(B_0) \subseteq p^{-1}(B_1) \subseteq \cdots \subseteq p^{-1}(B_n) \subseteq \cdots E$.

$$E^1_{p,q} = H_{p+q}(p^{-1}(B_p), p^{-1}(B_{p-1})) \ , \ E^r_{p,q} \Longrightarrow H_{p+q}(E)$$

$$E_{p,q}^1 = H_{p+q}(p^{-1}(B_p), p^{-1}(B_{p-1})) = \widetilde{H_{p+q}}(p^{-1}(B_p)/p^{-1}(B_{p-1}))$$

Since
$$p^{-1}(B_p)/p^{-1}(B_{p-1})$$
 is homotopy equivalent to $\bigvee_k S^p \times F$, $E^1_{p,q} = \widetilde{H_{p+q}}(\bigvee_k S^p \times F)$.

By the Künneth formula
$$H_n(X \times Y) \cong (\bigoplus_{i+j=n} H_i(X) \otimes H_j(Y)) \oplus (\bigoplus_{k+l=n-1} \operatorname{Tor}(H_k(X), H_l(Y)))$$
,

$$H_{p+q}(\bigvee_k S^p \times F) = (\bigoplus_{i+j=p+q} H_i(\bigvee_k S^p) \otimes H_j(F)) \oplus (\bigoplus_{k+l=p+q-1} \operatorname{Tor}(H_k(\bigvee_k S^p), H_l(F)))$$

$$=H_p(\bigvee_k S^p)\otimes H_q(F)=\bigoplus_k \mathbb{Z}\otimes H_q(F)\cong C_p^{cell}(B)\otimes H_q(F)=E_{p,q}^1$$

By the definition,
$$E_{p,q}^2=H_d(E_{p,q}^1)=H_p^{cell}(B;H_q(F))=H_p(B;H_q(F))$$

Computations by Serre spectral sequence

The loop-path fibration $p: PX \longrightarrow X$ with fibre ΩX induced a Serre spectral sequence with $E_2^{p,q} = H^p(X; H^q(\Omega X))$ and $E_r^{p,q} \Longrightarrow H^{p+q}(PX) \cong H^{p+q}(\{x_0\})$.