MAE6254: Homework 2

Due date: February 22, 2016

Problem 1 Consider the following equation of motion for a pendulum with friction:

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -\frac{g}{I}\sin x_1 - x_2.$

Using the following Lyapunov function, show that the equilibrium $x^* = [0, 0]^T$ is asymptotically stable.

$$V = \frac{1}{2}x_2^2 + \frac{1}{2}(x_1 + x_2)^2 + c\frac{g}{l}(1 - \cos x_1),$$

where c is a constant that you have to specify to show asymptotic stability.

Problem 2 Consider the following dynamic system:

$$\dot{x}_1 = -x_2 - x_1(1 - x_1^2 - x_2^2),$$

$$\dot{x}_2 = x_1 - x_2(1 - x_1^2 - x_2^2).$$

- (a) Show that $x^* = [0, 0]^T$ is an equilibrium of this system.
- (b) Find the linearized equation about $x^* = [0, 0]^T$, and determine the type (center, saddle, etc) of the equilibrium using eigenvalues.
- (c) Using the following Lyapunov function,

$$V = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2,$$

show that x^* is (locally) asymptotically stable (Hint: define a domain by restricting $x_1^2 + x_2^2$).

- (d) Find an estimate of the region of attraction from your results at (c).
- (e) Show that x^* is not globally asymptotically stable: give any initial condition x_0 such that the solution of the state equation x(t) with $x(0) = x_0$ does not asymptotically converge to the origin.

Problem 3 Consider the following dynamic system:

$$\dot{x}_1 = -\frac{6x_1}{(1+x_1^2)^2} + 2x_2,$$

$$\dot{x}_2 = -\frac{2x_1 + 2x_2}{(1+x_1^2)^2}.$$

- (a) Show that $x^* = [0, 0]^T$ is an equilibrium of this system.
- (b) Using the following Lyapunov function, show that x^* is (locally) asymptotically stable:

$$V = \frac{x_1^2}{1 + x_1^2} + x_2^2.$$

- (c) Can you claim that x^* is globally asymptotically stable from your results at (b). Why?
- (d) Draw the phase portrait of this system (plot the solutions in the $x_1 x_2$ plane for varying initial conditions using the Matlab ode 45 function), and show that the origin is not globally asymptotically stable.