Imports

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Q1

Question 1: What are the regional sales in the best performing country?

SQL: Selecting required data from corresponding table(s)

```
□ SELECT [TerritoryID]

,[Name]
,[CountryRegionCode]
,[Group]
,[SalesYTD]
,[SalesLastYear]
FROM [AdventureWorks2019].[Sales].[SalesTerritory]
ORDER BY SalesYTD DESC
```

q1_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Gen_Project/q1_data.csv")
q1_data.head(2)

	TerritoryID	Name	CountryRegionCode	Group	SalesYTD	SalesLastYear
0	4	Southwest	US	North America	1.051085e+07	5.366576e+06
1	1	Northwest	110	North	7 2271270±06	3 2086019706

q1_data.groupby('CountryRegionCode')['SalesYTD'].sum()

```
CountryRegionCode
AU 5.977815e+06
CA 6.771829e+06
DE 3.805202e+06
FR 4.772398e+06
GB 5.012905e+06
US 2.641106e+07
Name: SalesYTD, dtype: float64
```

best_performing_country = q1_data.groupby('CountryRegionCode')['SalesYTD'].sum().idxm
best_performing_country_data = q1_data[q1_data['CountryRegionCode'] == best_performin

```
plt.figure(figsize=(10, 6))
bars = plt.bar(best_performing_country_data['Name'], best_performing_country_data['Sa
plt.title(f'Regional Sales in the Best Performing Country ({best_performing_country})
plt.xlabel('Region')
plt.ylabel('SalesYTD')
plt.xticks(rotation=45, ha='right')

for bar in bars:
    yval = bar.get_height()
    plt.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 2), ha='center', va='
plt.show()
```


Question 2: What is the relationship between annual leave taken and bonus?

SQL: Selecting required data from corresponding table(s)

```
    NacationHours, Sales. Sales Person. Bonus
    Sales Person INNER JOIN
    HumanResources. Employee AS Employee_1 ON Sales. Sales Person. Business Entity ID = Employee_1. Business Entity ID
```

q2_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Gen_Project/q2_data.csv")
q2_data.head(2)

	VacationHours	Bonus	
0	14	0	
1	38	4100	

```
correlation = q2_data['VacationHours'].corr(q2_data['Bonus'])
print(f'Correlation between Vacation Hours and Bonus: {correlation}')
```

```
sns.regplot(x='VacationHours', y='Bonus', data=q2_data, scatter_kws={'s': 30}, line_k
plt.title(f'Relationship between Vacation Hours and Bonus (Correlation = {correlatio
plt.xlabel('Vacation Hours')
plt.ylabel('Bonus')
plt.show()
```

Correlation between Vacation Hours and Bonus: 0.3821074616559863

Relationship between Vacation Hours and Bonus (Correlation = 0.3821074616559863)

Q3

Q3: What is the relationship between Country and Revenue?

SQL: Selecting required data from corresponding table(s)

```
SELECT [TerritoryID]

,[Name]
,[CountryRegionCode]
,[Group]
,[SalesYTD]
,[SalesLastYear]
,[CostYTD]
,[CostLastYear]
FROM [AdventureWorks2019].[Sales].[SalesTerritory]

ORDER BY SalesYTD DESC
```

q3_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Gen_Project/q3_data.csv")
q3_data.head(2)

		TerritoryID	Name	CountryRegionCode	Group	SalesYTD	SalesLastYear
	0	4	Southwest	US	North America	1.051085e+07	5.366576e+06
4							•

```
total_rev = q3_data.groupby('CountryRegionCode')['SalesYTD'].sum()
total rev = total rev.sort values(ascending=False)
total_rev_ly = q3_data.groupby('CountryRegionCode')['SalesLastYear'].sum()
total_rev_ly = total_rev_ly.sort_values(ascending=False)
bar width = 0.35
indices = np.arange(len(total_rev))
plt.figure(figsize=(12, 6))
plt.title(f'Relationship between Country and Revenue')
plt.xlabel('Country')
plt.ylabel('Total Sales')
plt.bar(indices, total_rev, width=bar_width, color='green', label='SalesYTD')
plt.bar(indices + bar_width, total_rev_ly, width=bar_width, color='orange', label='Sa
for idx, value in enumerate(total_rev):
    plt.text(idx, value, round(value, 2), ha='center', va='bottom')
for idx, value in enumerate(total_rev_ly):
    plt.text(idx + bar_width, value, round(value, 2), ha='center', va='bottom')
plt.xticks(indices + bar_width / 2, total_rev.index, rotation=45, ha='right')
plt.legend()
plt.show()
```



```
plt.title('Percentage of Total Sales (YTD) by Country')
plt.pie(total_rev, labels=total_rev.index, autopct='%1.1f%%', startangle=140)
plt.axis('equal')
plt.show()

plt.title('Percentage of Total Sales (Last Year) by Country')
plt.pie(total_rev_ly, labels=total_rev_ly.index, autopct='%1.1f%%', startangle=140)
plt.axis('equal')
plt.show()
```

Percentage of Total Sales (YTD) by Country FR

Percentage of Total Sales (Last Year) by Country

Q4: What is the relationship between sick leave and Job Title (PersonType)?

SQL: Selecting required data from corresponding table(s)

```
□ SELECT ahd.Name,ahd.GroupName,ahee.JobTitle,ahee.SickLeaveHours

FROM [AdventureWorks2019].[HumanResources].[Department] as ahd

inner join [AdventureWorks2019].[HumanResources].[EmployeeDepartmentHistory] as ahe on ahe.DepartmentID = ahd.DepartmentID

inner join [AdventureWorks2019].[HumanResources].[Employee] as ahee on ahee.BusinessEntityID = ahe.BusinessEntityID
```

```
q4_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Generation/Gen_Project/project
print(len(q4_data.JobTitle.unique()))
q4_data.head(2)
```

67

		Name	GroupName	JobTitle	SickLeaveHours	
	0	Engineering	Research and Development	Vice President of Engineering	20	
	1	Engineering	Research and Development	Engineering Manager	21	
			.,	"Name")["SickLeaveHours"] eaveHours".axis = 0.ascend		
impor impor from	<pre>q4_grouped = q4_grouped.sort_values("SickLeaveHours",axis = 0,ascending= False) import seaborn as sns import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import Normalize</pre>					
color	: s	= plt.cm.pla	asma(Normalize()(q4_grou	ped.SickLeaveHours.values))	
plt.y plt.y plt.y	<pre>plt.figure(figsize=(12, 8)) bars = plt.bar(q4_grouped.SickLeaveHours.index, q4_grouped.SickLeaveHours.values, col plt.title("Average Sick Leave Hours by Department", fontsize=16, fontweight='bold') plt.xlabel("Department", fontsize=14) plt.ylabel("Average Sick Leave Hours", fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=12) plt.yticks(fontsize=12) plt.grid(axis='y', linestyle='', alpha=0.7)</pre>					
				ped.SickLeaveHours, colors / 2, value, f"{round(valu	•	
sm.se cbar	<pre>sm = plt.cm.ScalarMappable(cmap='plasma', norm=Normalize(vmin=0, vmax=max(q4_grouped. sm.set_array([]) cbar = plt.colorbar(sm, ax=plt.gca(), fraction=0.046, pad=0.04) cbar.set_label('Sick Leave Hours (Normalized)', rotation=270, labelpad=15)</pre>					
plt.t	_	nt_layout() v()				

< Q5

Q5: What is the relationship between store trading duration and revenue?

SQL: Selecting required data from corresponding table(s)

□ SELECT

[AnnualRevenue]

,[YearOpened]

FROM [AdventureWorks2019].[Sales].[vStoreWithDemographics]

q5_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Gen_Project/q5_data.csv")
q5_data["Years"] = 2023 - q5_data["YearOpened"]
q5_data.head()

	Name	AnnualRevenue	YearOpened	Years
0	Purchase Mart	150000.0	1992	31
1	Major Sport Suppliers	300000.0	1998	25
2	Family's Favorite Bike Shop	80000.0	1997	26
3	Global Plaza	80000.0	1975	48
4	Imported and Domestic Cycles	100000.0	2000	23

q5_data[q5_data.Name.duplicated()]

	Name	AnnualRevenue	YearOpened	Years
540	Friendly Bike Shop	150000.0	1996	27
558	Sports Products Store	300000.0	1999	24

q5_data[q5_data.Name == "Friendly Bike Shop"]

	Name	AnnualRevenue	YearOpened	Years
235	Friendly Bike Shop	300000.0	1980	43
540	Friendly Bike Shop	150000.0	1996	27

q5_data_grouped = q5_data.groupby("Years")["AnnualRevenue"].mean().reset_index()
q5_data_grouped.columns = ["Years", "average_AnnualRevenue"]

```
sns.set_style("whitegrid")
fig, ax = plt.subplots(figsize=(8, 6))
scatter = ax.scatter(q5_data_grouped['Years'], q5_data_grouped['average_AnnualRevenue correlation = q5_data_grouped['Years'].corr(q5_data_grouped['average_AnnualRevenue'])
cbar = plt.colorbar(scatter)
cbar.set_label('Annual Revenue', rotation=270, labelpad=15)
sns.regplot(x='Years', y='average_AnnualRevenue', data=q5_data_grouped, scatter=False
ax.set_title(f"Relationship between Store Trading Duration and Revenue (correlation = ax.set_xlabel("Years Opened", fontsize=12)
ax.set_ylabel("average_AnnualRevenue", fontsize=12)
ax.set_yticks([0, 100000, 200000, 300000])
ax.grid(True, linestyle='--', alpha=0.7)
ax.tick_params(axis='both', which='major', labelsize=10)
plt.show()
```


Q6: What is the relationship between the size of the stores, number of employees and revenue?

SQL: Selecting required data from corresponding table(s)

```
SELECT [AnnualRevenue]
,[SquareFeet]
,[NumberEmployees]
FROM [AdventureWorks2019].[Sales].[vStoreWithDemographics]
```

q6_data = pd.read_csv("C:/Users/amoha/OneDrive/Desktop/Gen_Project/q6_data.csv")
q6_data.head()

	AnnualRevenue	SquareFeet	NumberEmployees
0	80000.0	21000	13
1	80000.0	18000	14
2	80000.0	21000	15
3	80000.0	18000	16
4	80000.0	21000	17

q6_SquareFeet_grouped = q6_data.groupby("AnnualRevenue")["SquareFeet"].mean().reset_i
q6_SquareFeet_grouped.columns = ["average_AnnualRevenue", "SquareFeet"]

plt.scatter(q6_SquareFeet_grouped['average_AnnualRevenue'], q6_SquareFeet_grouped['Sq
sns.regplot(x='average_AnnualRevenue', y='SquareFeet', data=q6_SquareFeet_grouped, sc
correlation = q6_SquareFeet_grouped['average_AnnualRevenue'].corr(q6_SquareFeet_group
plt.title(f"Relationship between Store Size and Average Annual Revenue (correlation =
plt.xlabel("Average Annual Revenue")
plt.ylabel("Store Size (Sqft)")

plt.show()

Relationship between Store Size and Average Annual Revenue (correlation = 0.9998981103793151)

q6_Employees_grouped = q6_data.groupby("AnnualRevenue")["NumberEmployees"].mean().res
q6_Employees_grouped.columns = ["average_AnnualRevenue", "Employees"]

plt.scatter(q6_Employees_grouped.average_AnnualRevenue,q6_Employees_grouped.Employees sns.regplot(x='average_AnnualRevenue', y='Employees', data=q6_Employees_grouped, scat correlation = q6_Employees_grouped.average_AnnualRevenue.corr(q6_Employees_grouped.Em

plt.title(f"relationship between the NumberEmployees and average Annual revenue (corr
plt.xlabel("average Annual revenue")
plt.ylabel("NumberEmployees")

plt.show()

relationship between the NumberEmployees and average Annual revenue (correlation = 0.9973172815373986)

