IMAGE READER

Publication number: JP2000295391

Publication date:

2000-10-20

Inventor:

MORITA YUKICHI

Applicant:

PFU LTD

Classification:

- international:

H04N1/00; H04N1/10; H04N1/107; H04N1/00;

H04N1/10; H04N1/107; (IPC1-7): H04N1/00; H04N1/10;

H04N1/107

- european:

H04N1/00E; H04N1/00F2 Application number: JP19990101964 19990409

Priority number(s): JP19990101964 19990409

Also published as:

EP1043882 (A2) US6661543 (B1)

EP1043882 (A3)

CA2304055 (A1)

Report a data error here

Abstract of JP2000295391

PROBLEM TO BE SOLVED: To provide a compact device for an image reader provided with a flat bed type original read mechanism and an automatic paper feeding type original read mechanism. SOLUTION: An automatic paper feeding type original read mechanism 20 is arranged so that an original carry destination of the mechanism 20 can be over an original holding cover 11 of a flat bed type original read mechanism 10. Then, a groove which is formed in an original carrying directional and has parts for lock on sidewalls is formed on the cover 11. Further, a stopper member is provided which has a base member provided with a locking part engaged with the part for locking in the groove and moval in the original carrying direction using the groove as a guide and has an upright member erecting from the base member. According to this configuration, the cover 11 can be functioned s a stacker by inserting the stopper member into the groove of the cover 11 of the mechanism 10 and moving it so that the device can be made small-sized.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-295391 (P2000-295391A)

(43)公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl.7		識別記号	F I		,	7-73-1 (参考)
H 0 4 N	1/00		H04N	1/00	D	5 C Ŭ 6 2
	1/10			1/10		5 C Ü 7 2
	1/107					

審査請求 未請求 請求項の数13 OL (全 17 頁)

(21) 出顧番号	特額平11-101964	(71) 出顧人 000136136
		株式会社ピーエフユー
(22) 出顧日	平成11年4月9日(1999.4.9)	石川県河北郡宇ノ気町字宇野気ヌ98番地の
		2
		(72)発明者 森田 勇吉
		石川県河北郡宇ノ気町字字野気ヌ98番地の
		2 株式会社ピーエフユー内
		(74)代理人 10009:072
		弁理士 岡田 光由 (外1名)
		F ターム(参考) 50062 AA02 AA05 AB02 AB32 AB35
		ACO2 ADO6
		50072 AA01 BA01 LA07 NA01 YA06
		XA01
		VVn 1

(54) 【発明の名称】 画像読取装置

(57)【要約】

【課題】本発明は、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える画像読取装置に関し、コンパクトな装置の実現を目的とする。

【解決手段】自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設する。そして、原稿搬送方向に形成されて、側壁に係止用部を持つ溝を原稿押さえカバーに形成する。更に、この溝を係止用部に係止する係止部を有するとともに、この溝をガイドにして原稿搬送方向に移動可能となる基体部材と、この基体部材から直立する直立部材とを持つストッパ部材を備える。この構成に従って、ストッパ部材をフラットベット型原稿読取機構の持つ原稿押さえカバーの溝に挿入して移動させることで、この原稿押さえカバーをスタッカとして機能させることができるようになることで、装置の小型化を実現できる。

本発明の - 実施例

【特許請求の範囲】

【請求項1】 フラットベット型原稿読取機構と自動給 紙型原稿読取機構とを備える画像読取装置において、 自動給紙型原稿読取機構の原稿搬送先がフラットベット

型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設する構成を採り、

かつ、原稿搬送方向に形成されて、側壁に係止用部を持つ満を上記原稿押さえカバーに形成し、

更に、上記係止用部に係止する係止部を有するととも に、上記溝をガイドにして原稿搬送方向に移動可能となる基体部材と、該基体部材から直立する直立部材とを持 つストッパ部材を備えることを、

特徴とする画像読取装置。

【請求項2】 請求項1記載の画像読取装置において、 原稿押さえカバー上面に、溝を渡る橋梁部材が形成され ることを、

特徴とする画像読取装置。

【請求項3】 請求項1又は2記載の画像読取装置において、

満の両端に、基体部材の挿入をガイドするテーパが形成 されることを、

特徴とする画像読取装置。

【請求項4】 請求項1~3に記載されるいずれかの画 像読取装置において、

溝の側壁に形成される係止用部が、凹形状に形成され、 基体部材に形成される係止部が、基体部材から切り欠け られる可撓性部材と、該可撓性部材から突出する形態で 形成される爪部材とで構成されることを、

特徴とする画像読取装置。

【請求項5】 請求項4記載の画像読取装置において、 爪部材の先端形状が、基体部材のスムーズな移動を可能 とする形状を持つように形成されることを、

特徴とする画像読取装置。

【請求項6】 フラットベット型原稿読取機構と自動給 紙型原稿読取機構とを備える画像読取装置において、 自動給紙型原稿読取機構の原稿搬送先がフラットベット 型原稿読取機構の持つ原稿押さえカバー上になるように と、自動給紙型原稿読取機構を配設する構成を採り、

かつ、上記原稿押さえカバーの原稿受け取り側となる端 部が、原稿搬送方向に凹む形を示す凹状に湾曲する形状 を持つことを、

特徴とする画像読取装置。

【請求項7】 フラットベット型原稿読取機構と自動給 紙型原稿読取機構とを備える画像読取装置において、 フラットベット型原稿読取機構の持つ原稿押さえカバー の端部に、外側上方向に突出して、先端に貫通孔を持つ アーム部材を設け、

かつ、スライダ部材と、該スライダ部材から突出する形態で形成されて、上記貫通孔に回転自在に挿入される回転軸部材とを持つ連結用部材を備えるとともに、

2つの原稿読取機構の接続部分に、該接続部分を被覆するとともに、垂直方向に形成されて、上記アーム部材を収納する第1の切欠け空間と、垂直方向に形成されて、上記連結用部材を収納する第2の切欠け空間とを持つカバー部材を備えることを、

特徴とする画像読取装置。

【請求項8】 請求項7記載の画像読取装置において、 スライダ部材の断面形状が、T字形を有するように形成 されることを、

特徴とする画像読取装置。

【請求項9】 請求項7又は8記載の画像読取装置において.

スライダ部材の前後面及び/又は左右面が、先端の方が 細くなる段差形状又はテーパ形状を有するように形成さ れることを、

特徴とする画像読取装置。

【請求項10】 請求項9記載の画像読取装置において

スライダ部材の前後面と左右面の双方が段差形状を有するときに、その段差位置がずれるように形成されることを、

特徴とする画像読取装置。

【請求項11】 請求項7記載の画像読取装置において、

第2の切欠け空間のスライダ部材を挿入する位置に、ガイドリブが形成されることを、

特徴とする画像読取装置。

【請求項12】 請求項7~11に記載されるいずれかの画像読取装置において、

アーム部材の貫通孔が、回転軸部材が飛び出ないように と該回転軸部材を挿入するとともに、その先端に、該回 転軸部材との間の係合を取り外すための切り欠けが形成 されることを、

特徴とする画像読取装置。

【請求項13】 フラットベット型原稿読取機構と自動 給紙型原稿読取機構とを備える画像読取装置において、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設する構成を採り、かつ、自動給紙型原稿読取機構が、フラットベット型原稿読取機構の持つ光学ユニットとは独立する形態で、原稿表面を読み取るための光学ユニットと、原稿裏面を読み取るための光学ユニットとを備えることを、

特徴とする画像読取装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フラットベット型 原稿読取機構と自動給紙型原稿読取機構とを備える画像 読取装置に関し、特に、コンパクトな装置を実現する画 像読取装置に関する。 【0002】原稿の画像情報を読み取る画像読取装置には、大きく分けて、原稿台に原稿を載置して、ラインイメージセンサを移動させることで原稿の画像情報を読み取るフラットベット型の原稿読取装置と、ホッパに積載される原稿を1枚ずつ取り出して搬送し、それを固定したラインイメージセンサを使って読み取ることで原稿の画像情報を読み取る自動給紙型の原稿読取装置と、この2つの原稿読取装置の機能を備える原稿読取装置という3種類の画像読取装置がある。

【0003】フラットベット型の原稿読取装置の機能と、自動給紙型の原稿読取装置の機能とを備える画像読取装置は、2つの機能を備えることから装置が大きくなるという欠点を有しているので、この画像読取装置の実用性を高めるために、コンパクトな装置を実現するための技術を構築していく必要がある。

[0004]

【従来の技術】フラットベット型の原稿読取装置の機能と、自動給紙型の原稿読取装置の機能という2つの機能を備える画像読取装置では、従来、図17に示すような装置構成を採っていた。

【0005】すなわち、従来の画像説取装置1では、原稿台2に載置される原稿を読み取る構成を採るフラットベット型原稿読取装置の機能と、ホッパ3から1枚ずつ原稿をピックしてスタッカ4へと送出しつつ原稿を読み取る構成を採る自動給紙型原稿読取装置の機能という2つの原稿読取装置の機能を具備する場合には、原稿台2の側にホッパ3を配設し、装置本体から突出する形態でスタッカ4を配設するという装置構成を採っていた。

【0006】ここで、ホッパ3は、装置本体に着脱自在に取り付けられるようになっていて、フラットベット型原稿読取装置として使用するときには、このホッパ3を装置本体からを取り外していったり、あるいは、装置本体に回転自在に取り付けられるようになっていて、フラットベット型原稿読取装置として使用するときには、このホッパ3を邪魔にならない位置に回転していくことで、原稿台2に載置される原稿を読み取ることになる。

【0007】そして、このような装置構成を採る場合にあって、従来の画像読取装置1では、図18に示すように、フラットベット型原稿読取装置の持つ光学ユニット5を自動給紙型原稿読取装置としての読取位置まで移動させることで、原稿の表面を読み取るとともに、その光学ユニット5とは別に用意されて自動給紙型原稿読取装置としての読取位置で固定される光学ユニット6を使って、原稿の裏面を読み取るという構成を採っていた。

[0008]

【発明が解決しようとする課題】しかしながら、このような従来技術に従っていると、スタッカ4が装置本体から突出する形態で設けられることから、装置が大きくなるという問題点があった。

【0009】例えば、A4の原稿を長手方向に読み取る

場合には、A4の原稿の長手方向の長さは約300mm であることから、約300mmの長さを持つスタッカ4 を装置本体から突出する形態で備えなければならず、装 置が大きくなるという問題点があったのである。

【0010】また、従来技術では、フラットベット型原稿読取装置の持つ光学ユニット5を自動給紙型原稿読取装置の光学ユニットと共有する形態を採っていることから、装置の長さが長くなるという問題点があった。

【0011】すなわち、図19に示すように、フラットベット型原稿読取装置の持つ光学ユニット5を自動給紙型原稿読取装置の読取位置まで移動する必要があることから、装置の長さが長くなるという問題点があったのである。

【0012】本発明はかかる事情に鑑みてなされたものであって、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える構成を採るときにあって、コンパクトな装置を実現する新たな画像読取装置の提供を目的とする。

[0013]

【課題を解決するための手段】この目的を達成するために、本発明では、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える画像読取装置において、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設する構成を採る。

【0014】そして、原稿搬送方向に形成されて、側壁に係止用部を持つ溝を原稿押さえカバーに形成する構成を採る。

【0015】更に、この溝の係止用部に係止する係止部を有するとともに、この溝をガイドにして原稿搬送方向に移動可能となる基体部材と、この基体部材から直立する直立部材とを持つストッパ部材を備える構成を採る。 【0016】この構成に従って、本発明の画像読取装置

【UU16】この構成に使って、本発明の画像試取装置によれば、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える構成を採るときにあって、ストッパ部材をフラットベット型原稿読取機構の持つ原稿押さえカバーの満に挿入して移動させることで、この原稿押さえカバーに原稿の受入れ先を用意できるようになり、これにより、この原稿押さえカバーをスタッカとして機能させることができるようになる。

【0017】このようにして、従来技術では、原稿の搬送先となるスタッカを装置本体から突出する形態で備える必要があったのに対して、本発明では、読取対象の原稿を積載するホッパを装置本体から突出する形態で備えればよく、ホッパはスタッカに比べて大きな角度で傾斜させることが可能であることから、従来技術に比べて装置を小型化できるようになる。

【0018】また、本発明では、フラットベット型原稿 読取機構と自動給紙型原稿読取機構とを備える画像読取 装置において、自動給紙型原稿読取機構の原稿搬送先が フラットベット型原稿読取機構の持つ原稿押さえカバー 上になるようにと、自動給紙型原稿読取機構を配設する 構成を採る。

【0019】そして、原稿押さえカバーの原稿受け取り 側となる端部が、原稿搬送方向に凹む形を示す凹状に湾 曲する形状を持つという構成を採る。

【0020】この構成に従って、本発明の画像読取装置によれば、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える構成を採るときにあって、フラットベット型原稿読取機構の持つ原稿押さえカバーを自動給紙型原稿読取機構の原稿搬送先として用いることで、上述した理由より従来技術に比べて装置の小型化を実現するときに、この原稿押さえカバーの原稿受け取り側となる端部が、原稿搬送方向に凹む形を示す凹状に湾曲する形状を有することから、自動給紙型原稿読取機構から搬送されてくる原稿が確実にこの原稿押さえカバーに乗ることになり、これにより、この原稿押さえカバーを原稿の搬送先として用いることができるようになる。【0021】このようにして、従来技術では、原稿の搬送先となるスタッカを装置本体から突出する形態で備え

【0021】このようにして、従来技術では、原稿の搬送先となるスタッカを装置本体から突出する形態で備える必要があったのに対して、本発明では、読取対象の原稿を積載するホッパを装置本体から突出する形態で備えればよく、ホッパはスタッカに比べて大きな角度で傾斜させることが可能であることから、従来技術に比べて装置を小型化できるようになる。

【〇〇22】また、本発明では、フラットベット型原稿 読取機構と自動給紙型原稿読取機構とを備える画像読取 装置において、フラットベット型原稿読取機構の持つ原 稿押さえカバーの端部に、外側上方向に突出して、先端 に貫通孔を持つアーム部材を設ける構成を採る。

【0023】そして、スライダ部材と、そのスライダ部材から突出する形態で形成されて、アーム部材の貫通孔に回転自在に挿入される回転軸部材とを持つ連結用部材を備える構成を採る。

【0024】更に、2つの原稿読取機構の接続部分に、その接続部分を被覆するとともに、垂直方向に形成されて、アーム部材を収納する第1の切欠け空間と、垂直方向に形成されて、連結用部材を収納する第2の切欠け空間とを持つカバー部材を備える構成を採る。

【0025】この構成に従って、本発明の画像読取装置によれば、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える構成を採るときにあって、連結用部材の回転軸部材が原稿押さえカバーの持つアーム部材の貫通孔に挿入されて、それがフラットベット型原稿読取機構と自動給紙型原稿読取機構との接続部分を被覆する接続カバー部材の切り欠け空間に挿入されることで、原稿押さえカバーの開閉動作が実現され、これにより、この原稿押さえカバーを原稿の搬送先として用いつつ、フラットベット型原稿読取機構が厚い本などの原稿を読取対象とするときにも対処できるようになること

で、この原稿押さえカバーを原稿の搬送先として用いる ことができるようになる。

【0026】このようにして、従来技術では、原稿の搬送先となるスタッカを装置本体から突出する形態で備える必要があったのに対して、本発明では、読取対象の原稿を積載するホッパを装置本体から突出する形態で備えればよく、ホッパはスタッカに比べて大きな角度で傾斜させることが可能であることから、従来技術に比べて装置を小型化できるようになる。

【0027】また、本発明では、フラットベット型原稿 読取機構と自動給紙型原稿読取機構とを備える画像読取 装置において、自動給紙型原稿読取機構の原稿搬送先が フラットベット型原稿読取機構の持つ原稿押さえカバー 上になるようにと、自動給紙型原稿読取機構を配設する 構成を採る。

【0028】そして、自動給紙型原稿読取機構が、フラットベット型原稿読取機構の持つ光学ユニットとは独立する形態で、原稿表面を読み取るための光学ユニットとを備える構成を採る。

【0029】この構成に従って、本発明の画像読取装置によれば、フラットベット型原稿読取機構と自動給紙型原稿読取機構とを備える構成を採るときにあって、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにする構成を採ることで、装置の小型化を図るとともに、フラットベット型原稿読取機構の備える光学ユニットを自動給紙型原稿読取機構の読取位置まで移動させる必要がなくなることから、従来技術に比べて装置の長さを短くできるようになる。

[0030]

【発明の実施の形態】以下、実施の形態に従って本発明 を詳細に説明する。

【0031】図1に、本発明の一実施例を図示する。

【0032】この図に示すように、本発明の画像読取装置1では、フラットベット型原稿読取機構10と自動給紙型原稿読取機構20とを一体的に実装する構成を採るときにあって、読取対象となる原稿を積載するホッパ3を装置本体から突出する形態で配設するとともに、従来技術で必要としてスタッカ4の代わりに、フラットベット型原稿読取機構10の原稿台2に設けられる原稿押さえカバー11を原稿搬送先として用いるという構成を採っている。ここで、図中に示す30は、フラットベット型原稿読取機構10と自動給紙型原稿読取機構20との接続箇所を被覆する接続カバーである。

【0033】この本発明の画像読取装置1に従うと、ホッパ3はスタッカ4に比べて大きな角度で傾斜させることが可能であることから、スタッカ4を装置本体から突出する形態で配設するという構成を採る従来技術に比べて、装置の長さを大幅に短くくできるようになる。

【0034】図2に、スタッカ4の代わりとして用いられる原稿押さえカバー11の一実施例を図示する。

【0035】原稿押さえカバー11は、長さ約400mm×幅約300mmの大きさを持ち、この図に示すように、ユーザのハンドリング箇所となるハンドリング用突出部110の他に、幅約15mm/長さ約280mm/深さ約5mmの大きさを持つストッパ用清111と、ストッパ用溝111の中央をカバー上面で渡る橋梁部112と、接続カバー30側の端部の左右両側に、外側上方向に突出する形態で設けられる2つの連結用アーム113とを備える。

【0036】ここで、図2では明確に示していないが、原稿押さえカバー11の接続カバー30側の端部は、図3に示すように、原稿搬送方向に凹む形を示す凹形状に湾曲する形状を有している。これは、自動給紙型原稿読取機構20から搬送されてくる原稿が、原稿押さえカバー11と接続カバー30との間の隙間に落ちてしまうのを防ぐために形成されている。

【0037】すなわち、原稿押さえカバー11の接続カバー30側の端部が、原稿搬送方向に凹む形を示す凹形状に湾曲する形状を有すると、自動給紙型原稿読取機構20から搬送されてくる原稿の両端部分が確実に原稿押さえカバー11に乗ることになるので、この搬送されてくる原稿が原稿押さえカバー11と接続カバー30との間の隙間に落ちることがなくなるからである。

【0038】図4に、原稿押さえカバー11に形成されるストッパ用溝111の一実施例を図示する。ここで、図4(a)は、規定の深さ位置におけるストッパ用溝111の断面図、図4(b)は、図4(a)のA方向から見た断面図、図4(c)は、図4(a)のB方向から見た断面図である。

【0039】原稿押さえカバー11に形成されるストッパ用溝111には、この図に示すように、両側の側壁に、原稿サイズに合わせて用意される凹形状を有する2×8個の係止用凹み1110が形成されるとともに、溝の両端に、原稿押さえカバー11の上面から形成される2つのガイド用テーパ1111が形成され、更に、溝の底面に、2本のガイドレール1112が形成される。

【0040】このような構造を持つストッパ用溝111 には、図5に示すような形状を持つ原稿ストッパ120 が挿入されることになる。

【0041】図6に、原稿ストッパ120の詳細図面を図示する。ここで、図6(a)は、原稿ストッパ120を上から見た図、図6(b)は、原稿ストッパ120を横から見た図、図6(c)は、原稿ストッパ120を下から見た図である。

【0042】この図に示すように、原稿ストッパ120は、ストッパ用溝111に挿入される基体部材121と、基体部材121の一部が切り欠けられることで形成される可挠性を持つ2つの係止用レバー122と、係止

用レバー122の先端に突出する形態で形成されて、ストッパ用溝111の係止用凹み1110に係止する係止爪123と、基体部材121から直立する形態で形成される原稿停止用部材124とを備える。

【0043】この係止用レバー122は、図6(c)に示すように、基体部材121の下面外周縁部に形成される縁収部分125に形成されるものであり、図7に示すように、その縁収部分125の基体部材121が逆し字形に切り欠けられることで形成される。この切り欠けにより形成される係止用レバー122と基体部材121との間の隙間は、基体部材121をストッパ用溝111に挿入する際に、係止用レバー122に大きな力がかからないようにするために、可能な限り小さなものに設定される。

【0044】一方、係止用レバー122の先端に形成される係止爪123は、基体部材121をストッパ用溝111に挿入する際に、その挿入がスムーズなものとなるようにするために、図8(a)に示すように、先端に向かうに従って細くなるテーバ形状を持つ。

【0045】更に、係止用レバー122の先端に形成される係止爪123は、基体部材121をストッパ用満111に沿って移動する際に、その移動がスムーズなものとなるようにするために、図8(b)に示すように、係止用レバー122の回転中心側の断面形状が円弧を描くように形成されるとともに、その回転中心の逆側の断面形状がテーパを描くように形成され、これにより、図中の破線で示すように、基体部材121の移動の際に、係止爪123と係止用凹み1110との間の係止がスムーズに外れるようになることで、その移動がスムーズなものとなることを実現する。

【0046】このように構成される原稿ストッパ120は、ストッパ用溝111に挿入されて、係止爪123が係止用凹み1110に係止する指定の位置で停止し、これにより、原稿停止用部材124を使って、自動給紙型原稿読取機構20から搬送されてくる原稿を受け取るように動作する。

【0047】このとき、ストッパ用溝111の持つガイド用テーパ1111により、原稿ストッパ120は、スムーズにストッパ用溝111に挿入されることになる。また、ストッパ用溝111の持つガイドレール1112により、原稿ストッパ120は、スムーズにストッパ用溝111を移動することになる。

【0048】そして、係止爪123が係止用凹み1110に係止することで指定の位置に停止された原稿ストッパ120は、原稿押さえカバー11が開いても、その係止と橋梁部112との2箇所で保持されることになるので、ストッパ用溝111から抜け落ちてしまうような不都合は起こらない。

【0049】この原稿ストッパ120の挿入は、図3に 示すように、挿入方向Φと挿入方向Φというストッパ用 溝111の2つの端から可能であることから、図9に示すように、原稿停止用部材124を原稿押さえカバー11の上で広範囲に移動させることが可能になることで、自動給紙型原稿読取機構20の読取対象とする様々な原稿サイズに対応できるようになる。

【0050】次に、原稿押さえカバー11の開閉動作を 実現する機構について説明する。

【0051】図2に示したように、原稿押さえカバー1 1は、接続カバー30側の端部の左右両側に、外側上方 向に突出する形態で設けられる2つの連結用アーム11 3を備える。

【0052】図10に、この連結用アーム113の一実施例を図示する。ここで、図10(a)は、連結用アーム113を横から見た図、図10(b)は、図10(a)のA方向から見た断面図である。

【0053】この図に示すように、連結用アーム113は、その先端部分に、貫通孔1130を持つ。この貫通孔1130は、図10(b)に示すように、入り口側(後述する回転軸部材130の挿入口となる)に挿入用のテーバ部を持ち、その奥の径が入り口部分より小さくなり、更にその奥に位置する出口側の径が再び大きくなるという形状を有している。そして、図10(a)に示すように、その出口側の径部分に、切り欠け1131が形成されている。

【0054】図11に、この連結用アーム113の貫通 孔1130に挿入される回転軸部材130の一実施例を 図示する。ここで、図11(a)は、回転軸部材130 を正面から見た図、図11(b)は、回転軸部材130 を横から見た図、図11(c)は、回転軸部材130を 上から見た図である。

【0055】この図に示すように、連結用アーム113の貫通孔1130に挿入される回転軸部材130は、基体となる下字形の断面形状を有するスライダ部材1300と、スライダ部材1300から突出される形態で形成されて、2つに分割される円筒形部材1301とを備える。

【0056】このスライダ部材1300は、図11 (a)の破線に示すように、正面方向から見た左右面 に、肉盗みで形成される先端が細くなる段差形状が形成 されるとともに、図11(b)の破線に示すように、正 面方向から見た前後面に、その左右面に形成される段差 位置とは異なる段差位置になるようにと、肉盗みで形成 される先端が細くなる段差形状が形成されている。そし て、この円筒形部材1301の先端には、テーパ部を持 つ大きな径を持つ抜け止め部1302が形成されてい る。

【0057】ここで、スライダ部材1300に段差形状を形成するのではなくて、先端が細くなるテーパ形状を形成することもある。

【0058】このように構成される回転軸部材130の

円筒形部材1301は、2つに分割されていることで収縮性を持ち、これにより、連結用アーム113の貫通孔1130に挿入されて、大きな径を持つ貫通孔1130の出口部分で抜け止め部1302が元の形状に復帰することで、連結用アーム113に回転自在に取り付けられることになる。

【0059】この円筒形部材1301の長さは、連結用アーム113の貫通孔1130に挿入されたときに、その先端が貫通孔1130を飛び出ないようにと設計されており、これから、回転軸部材130を連結用アーム113から取り外すときには、貫通孔1130の出口部分に設けられる切り欠け1131にピンなどを挿入して円筒形部材1301を収縮させることで行うことになる。【0060】このようにして回転軸部材130が連結用アーム113に挿入されるときにあって、スライダ部材1300の姿勢が原稿押さえカバー11と直交する状態にあるときには、真上からこの挿入状態を見た場合、図12に示すように、スライダ部材1300の下字形断面が見えることになる。

【0061】図2に示した接続カバー30は、図13に示すように、フラットベット型原稿読取機構10と自動給紙型原稿読取機構20との接続箇所を被覆すべく設けられるものであり、図14に示すように、回転軸部材130の挿入された連結用アーム113を垂直方向に移動可能とする形で収納する切り欠け空間300を持つことで、原稿押さえカバー11を上方向に平行移動させることを可能にし、これにより、フラットベット型原稿読取機構10が本などの厚手の原稿を読取対象とするときに対応できるようにする構成を採っている。

【0062】図11で説明したように、この切り欠け空間300に収納される回転軸部材130の基体となるスライダ部材1300は、先端が細くなる段差形状を有している。これは、本などの厚手の原稿を読取対象とするときには、切り欠け空間300に整合するあまりにきっちりとした構造を持つと余分な動きを取ることができず、対応できなくなってしまうからである。また、図11で説明したように、スライダ部材1300の持つ左右面の段差形状の段差位置と前後面の段差形状の段差位置とをずらしたのも、挿入タイミングをずらすことで、本などの厚手の原稿を読取対象とするときに、スライダ部材1300の挿入を容易にすることに、その理由がある。

【0063】この接続カバー30は、図14に示すように、ガイドリブ301とネジ孔302とを備えて、このガイドリブ301を使って、フラットベット型原稿読取機構10と自動給紙型原稿読取機構20とを接続する図示しない板金構造部品に位置決めされた後、このネジ孔302にネジ締めされるネジを使って、その板金構造部品に取り付けられることになる。

【0064】図15に、接続カバー30に設けられる切

り欠け空間300の詳細図面を図示する。ここで、図15(a)は、接続カバー30を上から見た図、図15(b)は、切り欠け空間300の部分の拡大図である。【0065】この図15(a)に示すように、接続カバー30に設けられる切り欠け空間300は、連結用アーム113を収納する第1の収納空間3001と、下字形断面形状を有するスライダ部材1300(回転軸部材130の基体となるもの)を収納する第2の収納空間3002とで構成されており、更に、この第2の収納空間3002には、図15(b)に示すように、スライダ部材1300を挿入する際に問題となる成形品のソリの影響を吸収するための4個のガイドリブ3003が形成されている。

【0066】このように構成される切り欠け空間300 を備えることで、接続カバー30は、図12に示したような姿勢状態にある回転軸部材130の挿入された連結用アーム113を、その切り欠け空間300に挿入する。

【0067】このとき、回転軸部材130の円筒形部材1301が連結用アーム113の貫通孔1130に挿入されていることで、連結用アーム113が回転可能になり、これにより、原稿押さえカバー11が開閉動作可能になる。

【0068】切り欠け空間300に挿入された連結用アーム113及び回転軸部材130は、垂直方向に移動でき、これにより、ユーザは、フラットベット型原稿読取機構10を使って本などの厚手の原稿を読み取るときに、原稿押さえカバー11を垂直方向に移動させることで、原稿押さえカバー11に無理な力をかけることなく、その原稿を読み取ることができるようになる。

【0069】この構成を採るときに、回転軸部材130の基体となるスライダ部材1300の断面形状を丁字形とし、これに合わせて、切り欠け空間300の持つ第2の収納空間3002の断面形状を丁字形とする構成を採ったが、この構造を採ることで、原稿押さえカバー11の回転ぶれを防止できるようになる。すなわち、図12に示した図から分かるように、原稿押さえカバー11の左右両端に、丁字形の回転ぶれ防止構造が形成されることで、原稿押さえカバー11の回転ぶれ(垂直軸を回転軸とする回転ぶれ)を防止できるようになるのである。

【0070】次に、本発明の画像読取装置1の備える自動給紙型原稿読取機構20の装置構成について説明する。

【0071】図16に、本発明の画像読取装置1の備える自動給紙型原稿読取機構20の装置構成の一実施例を図示する。

【0072】この実施例に示すように、本発明の画像読取装置1の備える自動給紙型原稿読取機構20は、フラットベット型原稿読取機構10の備える光学ユニット1000とは独立する形態で、原稿表面を読み取るための

光学ユニット200と、原稿裏面を読み取るための光学 ユニット201とを備えることを特徴とする。

【0073】すなわち、フラットベット型の原稿読取装置の機能と、自動給紙型の原稿読取装置の機能という2つの機能を備える従来の画像読取装置では、図18で説明したように、フラットベット型原稿読取装置の持つ光学ユニット5を自動給紙型原稿読取装置と共用する形態を採って、この光学ユニット5を自動給紙型原稿読取装置としての読取位置まで移動させることで、原稿の表面を読み取るとともに、この光学ユニット5とは別に用意されて自動給紙型原稿読取装置としての読取位置で固定される光学ユニット6を使って、原稿の裏面を読み取る構成を採っていた。

【0074】これに対して、本発明の画像読取装置1では、フラットベット型原稿読取機構10の備える光学ユニット1000とは独立する形態で、自動給紙型原稿読取機構20の必要とする原稿表面を読み取るための光学ユニット200と、原稿裏面を読み取るための光学ユニット201とを備える構成を採っている。

【0075】この構成を採ることで、フラットベット型原稿読取機構10の備える光学ユニット1000を自動給紙型原稿読取機構20の読取位置まで移動させる必要がなくなることから、従来技術に比べて画像読取装置1の長さを短くできるようになる。

【0076】フラットベット型原稿読取機構10の備える光学ユニット1000を自動給紙型原稿読取機構20の読取位置まで移動させる構成を採る場合、その移動先よりも更に先に、ある程度の大きさを持つ空間を用意しなければならないことから、そのような構成を採らない本発明に従うと、従来技術に比べて画像読取装置1の長さを短くできるようになるのである。

[0077]

【発明の効果】以上説明したように、本発明の画像読取 装置によれば、フラットベット型原稿読取機構と自動給 紙型原稿読取機構とを備える構成を採るときにあって、 従来技術では、原稿の搬送先となるスタッカを装置本体 から突出する形態で備える必要があったのに対して、読 取対象の原稿を積載するホッパを装置本体から突出する 形態で備えればよくなり、ホッパはスタッカに比べて大 きな角度で傾斜させることが可能であることから、これ により従来技術に比べて装置を大幅に小型化できるよう になる。

【0078】この本発明による小型化は、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設することで実現されることになるが、本発明では、この実現にあたって、原稿搬送方向に形成されて、側壁に係止用部を持つ溝を原稿押さえカバーに形成し、そして、その溝の係止用部に係止する係止部を有するとともに、その溝をガイドにして原稿搬送方

向に移動可能となる基体部材と、その基体部材から直立 する直立部材とを持つストッパ部材を備える構成を採っ ている。

【0079】この構成を採ることで、ストッパ部材を原稿押さえカバーの溝に挿入して移動させることで、この原稿押さえカバーに原稿の受入れ先を用意できるようになり、これにより、この原稿押さえカバーをスタッカとして機能させることができるようになる。

【0080】このとき、原稿押さえカバー上面に溝を渡る橋梁部材が形成されることがあり、これにより、原稿押さえカバーが開閉するときにも、ストッパ部材の脱落を防止できるようになる。

【0081】そして、このとき、溝の両端に、基体部材の挿入をガイドするテーパが形成されることがあり、これにより、ストッパ部材をこの溝に簡単に挿入できるようになる。

【0082】そして、このとき、溝の側壁に形成される係止用部が凹形状に形成されるとともに、基体部材に形成される係止部が、基体部材から切り欠けられる可撓性部材と、その可撓性部材から突出する形態で形成される爪部材とて構成されることがあり、更に、このとき、爪部材の先端形状が、基体部材のスムーズな移動を可能とする形状を持つように形成されることがある。これにより、ストッパ部材をこの溝の中でスムーズに移動できるようになる。

【0083】また、本発明による小型化は、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設することで実現されることになるが、本発明では、この実現にあたって、原稿押さえカバーの原稿受け取り側となる端部が、原稿搬送方向に凹む形を示す凹状に湾曲する形状を持つようにする構成を採っている。

【0084】この構成を採ることで、自動給紙型原稿読 取機構から搬送されてくる原稿が確実にこの原稿押さえ カバーに乗ることで、この原稿押さえカバーを原稿の搬 送先として用いることができるようになる。

【0085】また、本発明による小型化は、自動給紙型原稿読取機構の原稿搬送先がフラットベット型原稿読取機構の持つ原稿押さえカバー上になるようにと、自動給紙型原稿読取機構を配設することで実現されることになるが、本発明では、この実現にあたって、原稿押さえカバーの端部に、外側上方向に突出して、先端に貫通孔を持つアーム部材を設ける。そして、スライダ部材と、スライダ部材から突出する形態で形成されて、その貫通和を備え、更に、2つの原稿読取機構の接続部分に、その接続部分を被覆するとともに、垂直方向に形成されて、アーム部材を収納する第1の切欠け空間と、垂直方向に形成されて、連結用部材を収納する第2の切欠け空間と

を持つカバー部材を備える構成を採っている。

【0086】この構成を採ることで、連結用部材の回転 軸部材が原稿押さえカバーの持つアーム部材の貫通孔に 挿入されて、それがフラットベット型原稿読取機構と自 動給紙型原稿読取機構との接続部分を被覆する接続カバー部材の切り欠け空間に挿入されることで、原稿押さえ カバーの開閉動作が実現され、これにより、この原稿押 さえカバーを原稿の搬送先として用いつつ、フラットベット型原稿読取機構が厚い本などの原稿を読取対象とす るときにも対処できるようになることで、この原稿押さ えカバーを原稿の搬送先として用いることができるよう になる。

【OO87】このとき、スライダ部材の断面形状がT字 形を有するように形成されることがあり、これにより、 原稿押さえカバーの回転ぶれを防止できるようになる。 【0088】そして、このとき、スライダ部材の前後面 及び/又は左右面が、先端の方が細くなる段差形状又は テーパ形状を有するように形成されることがあり、更 に、スライダ部材の前後面と左右面の双方が段差形状を 有するときに、その段差位置がずれるように形成される ことがある。これにより、連結用部材をある程度のルー ズさをもって接続カバー部材の切り欠け空間に挿入でき るようになるとともに、簡単に挿入できるようになるこ とで、フラットベット型原稿読取機構が厚い本などの原 稿を読取対象とするときにも、対応できるようになる。 【0089】また、本発明による小型化は、自動給紙型 原稿読取機構の原稿搬送先がフラットベット型原稿読取 機構の持つ原稿押さえカバー上になるようにと、自動給 紙型原稿読取機構を配設することで実現されることにな るが、本発明では、この実現にあたって、自動給紙型原 稿読取機構が、フラットベット型原稿読取機構の持つ光 学ユニットとは独立する形態で、原稿表面を読み取るた めの光学ユニットと、原稿裏面を読み取るための光学ユ ニットとを備える構成を採っている。

【0090】この構成を採ることで、フラットベット型原稿読取機構の備える光学ユニットを自動給紙型原稿読取機構の読取位置まで移動させる必要がなくなることから、装置の小型化を一層実現できるようになる。

【図面の簡単な説明】

- 【図1】本発明の一実施例である。
- 【図2】原稿押さえカバーの一実施例である。
- 【図3】原稿押さえカバーの一実施例である。
- 【図4】ストッパ用溝の一実施例である。
- 【図5】原稿ストッパの一実施例である。
- 【図6】原稿ストッパの一実施例である。
- 【図7】係止用レバーの一実施例である。
- 【図8】係止爪の一実施例である。
- 【図9】原稿停止用部材の移動範囲の説明図である。
- 【図10】連結用アームの一実施例である。
- 【図11】回転軸部材の一実施例である。

(9) 000-295391 (P2000-295391A)

【図12】回転軸部材の取付状態の取付状態の説明図である。

【図13】接続カバーの説明図である。

【図14】接続カバーの一実施例である。

【図15】接続カバーの一実施例である。

【図16】自動給紙型原稿読取機構の一実施例である。

【図17】従来技術の説明図である。

【図18】従来技術の説明図である。

【図19】従来技術の説明図である。

【図1】

本発明の一変 監例

【符号の説明】

1 画像読取装置

2 原稿台

3 ホッパ

10 フラットベット型原稿読取機構

11 原稿押さえカバー

20 自動給紙型原稿読取機構

30 接続カバー

【図2】

原箱押さえカバーの一実施例

【図7】

係止用レバーの一支施制

【図8】 第止爪の一裏施例 122 123 (a)

【図5】

原稿ストッパの一裏旅祭

【図6】

原稿ストッパの一実施例

(b)

(図9) (図10) 原語 中止 用部 材 の 移 動 軸 国 の 世 明 図 を設備を選集 (a) (a) (b) (a) (a) (b) (b) (c) (c) (d) (d) (d) (e) (e) (e) (f) (f)

【図11】

回転軸部材の一実施例

[図12]

【図15】

接続カバーの一実施例

【図16】

【図17】

征来技術の瞬間

従来技術の説明図

【図19】 從来技術の説明図

