# CLASSIFYING UNDERSEA SONAR TARGETS

By Shivesh Mehrotra, Shayaan Subzwari, and Richard Hausman

#### THE PROBLEM: HOW DO WE IDENTIFY SONAR TARGETS?

- Previous studies relied on human classification of sonar targets
- Although it is easy to see if an object is present on sonar it is hard to tell what the object
- The study we attempted to replicate took a neural network approach to the to problem and was able to achieve 90.4% accuracy



#### HYPOTHESIS

- Human subjects have been able to differentiate the pings returned with 82% to 97% accuracy
- Furthermore multi-layered neural networks have also been able to successfully classify sonar signals
- Thus we predict that there are differentiable frequencies between rocks and metal cylinder targets that our ML implementation will be able to identify



FIGURE 2. Amplitude displays of a typical return from the cylinder and the rock as a function of time

#### DATA INFORMATION

- Sonar data from a metal cylinder and a cylindrically shaped rock, both on the ocean floor
- Targets were of comparable size (5ft)
- Sonar measurements were taken at a distance of 10 meters
- For each of 60 FM frequencies, aspect angles spanned 90 degrees for the cylinders and 180 degrees for the rocks





Mk-56 Bottom Mine

# DATA INFORMATION (CONTINUED)

- In total 208 data samples were collected
  - o 97 of which were rock returns
  - o 111 of which were cylinder returns
- The data was preprocessed based on previous experiments with human listeners
- The data was pre-cleaned and processed for use
- Additional information can be found

at: DGorman, R. P., and Sejnowski, T. J. (1988). "Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets" in Neural Networks, Vol. 1, pp. 75-89.

Traditional Sonar



CHIRP Sonar







## INITIAL VISUALIZATION: REPRESENTATIVE SAMPLES



# INITIAL VISUALIZATION: T-SNE



#### APPROACH AND METHODS

- Our approach was to use multiple classification models and assess both their precision, calibration and accuracy
- The models we assessed were KNN,
  SVM, Random Forest, and Logistic Regression
- Standard train/test split across models
  - Multiple trials, consistent results

#### **ML Algorithmic Trade-Off**



### K NEAREST NEIGHBORS CLASSIFICATION





- Accuracy of K Nearest Neighbors Neighbors Classifier: 77%
- Precision of K Nearest Neighbors Neighbors for Class R: 85%
- Precision of K Nearest Neighbors Neighbors for Class M : 72%
- Brier score loss of K Nearest Neighbors Neighbors: 0.1538
- In the paper, KNN achieved an accuracy of 82.7%

### SUPPORT VECTOR MACHINE CLASSIFICATION





- Accuracy of SVM : 78.8%
- Precision of SVM for Class R: 94%
- Precision of SVM for Class M: 71.4%
- Brier score loss of SVM: 0.14098

#### LOGISTIC REGRESSION CLASSIFICATION





- Accuracy of Logistic Regression: 78.8%
- Precision of Logistic Regression for Class R: 89.5%
- Precision of Logistic Regression for Class M: 73%
- Brier score loss of Logistic Regression: 0.16897

#### FINAL MODEL CHOICE: RANDOM FOREST CLASSIFICATION





- Accuracy of Random Forest: 86.5%
- Precision of Random Forest for Class R: 95.2%
- Precision of Random Forest for Class M: 80.6%
- Brier score loss of Random Forest: 0.11806

### INTERPRETING THE MOST SIGNIFICANT FEATURES: SHAPLEY



Four main bands of "Key" frequencies

- o **9-12**
- 0 18-22
- o **34-36**
- **45-50**

# SHAPLEY CONSENSUS

- o **9-12**
- o **18-22**
- o **34-36**





# VISUALIZING THE MOST IMPACTFUL FREQUENCIES



## VISUALIZING THE MOST IMPACTFUL FREQUENCIES

Shapley analysis, differences in mean amplitudes by frequencies, and visualizations of the distributions of candidate "key frequencies" all support our hypothesis





#### **USELESS**





#### INTERPRETATION

- A random forest classifier can effectively distinguish between rocks and metals using sonar, with approximately 86% accuracy.
  - On-par with human performance (82% 97%).
  - More interpretability than a Neural Network
- The four "key" frequency bands we identified give the most disparate/detectable difference between rocks and metals.

