

2020 HSC Mathematics Advanced Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	В
3	A
4	В
5	С
6	В
7	A
8	A
9	С
10	D

Section II

Question 11 (a)

Criteria	Marks	
Provides the correct solution	1	

Question 11 (b)

Criteria	Marks
Provides the correct solution	2
Draws the graph of volume for tank B, or equivalent merit	1

Sample answer:

29 minutes

Question 11 (c)

Criteria	Marks
Provides the correct answer	1

Sample answer:

45 minutes

Criteria	Marks
Provides the correct solution	3
Attempts to use the sum of an arithmetic series, or equivalent merit	
OR	2
Finds the number of terms in the series	
• Finds the values of a and d , or equivalent merit	1

Sample answer:

$$4 + 10 + 16 + \dots + 1354$$

$$d = 6 \qquad a = 4$$

$$1354 = 4 + (n - 1) \times 6$$

$$\frac{1350}{6} = n - 1$$

$$n = 226$$

$$S_n = \frac{n}{2}(a + \ell)$$

$$= \frac{226}{2}(4 + 1354)$$

$$= 153 454$$

Question 13

Criteria	Marks
Provides the correct solution	2
• Finds the anti-derivative of $\sec^2 x$, or equivalent merit	1

$$\int_0^{\frac{\pi}{4}} \sec^2 x \, dx$$

$$= \left[\tan x \right]_0^{\frac{\pi}{4}}$$

$$= \left[\tan \frac{\pi}{4} - \tan 0 \right]$$

$$= 1$$

Question 14 (a)

Criteria	Marks
Provides the correct solution	2
Finds the number of students who study both History and Geography, or equivalent merit	1

Sample answer:

$$40 - 7 = 33$$
$$20 + 18 - 33 = 5$$

$$\frac{5}{40} = \frac{1}{8}$$

Question 14 (b)

Criteria	Marks
Provides the correct answer	1

Sample answer:

$$P(\overline{H}|G) = \frac{13}{18}$$

Question 14 (c)

Provides the correct solution	2
• Obtains the probability of a student studying History as $\frac{20}{40}$, or equivalent merit	1

$$\frac{20}{40} \times \frac{20}{39} = \frac{10}{39}$$

Question 15 (a)

Criteria	Marks
Provides the correct solution	1

Sample answer:

$$100^{\circ} - 35^{\circ} = 65^{\circ}$$

Question 15 (b)

Criteria	Marks
Provides the correct solution	2
Attempts to use the cosine rule to find the distance AB	1

Sample answer:

$$AB^2 = 7^2 + 9^2 - 2 \times 7 \times 9 \cos 65^\circ$$

= 76.75...
 $AB = 8.76 \text{ km}$

Question 15 (c)

Criteria	Marks
Provides the correct solution	2
• Finds another angle in $\triangle APB$, or equivalent merit	1

Criteria	Marks
Provides the correct solution	4
Finds the stationary points and the point of inflection, or equivalent merit	3
Finds the stationary points, or equivalent merit	2
Finds the derivative of the function, or equivalent merit	1

Sample answer:

$$y = -x^{3} + 3x^{2} - 1$$
$$\frac{dy}{dx} = -3x^{2} + 6x$$
$$= 3x(2 - x)$$

When
$$\frac{dy}{dx} = 0$$
, we have $3x(2-x) = 0$.

$$x = 0,$$
 $x = 2$
 $y = -1$ $y = -2^3 + 3(2)^2 - 1$
 $= 3$

Stationary points are (0, -1) and (2, 3).

$$\frac{d^2y}{dx^2} = -6x + 6$$

When $\frac{d^2y}{dx^2} = 0$, we have 6(1 - x) = 0.

$$x = 1$$

$$y = -1^3 + 3 \times 1^2 - 1$$
$$= 1$$

The point of inflection is (1, 1).

Criteria	Marks
Provides the correct solution	2
Writes an anti-derivative involving the log function, or equivalent merit	1

Sample answer:

$$\int \frac{x}{4+x^2} dx = \frac{1}{2} \int \frac{2x}{4+x^2} dx$$
$$= \frac{1}{2} \ln(4+x^2) + c$$

Question 18 (a)

Criteria	Marks
Provides the correct solution	2
Attempts to use the product rule	1

Sample answer:

$$2e^{2x}(2x+1) + 2e^{2x}$$

$$= 2e^{2x}(2x+1+1)$$

$$= 2e^{2x}(2x+2)$$

$$= 4e^{2x}(x+1)$$

Question 18 (b)

Criteria	Marks
Provides the correct answer	1

$$\int (x+1)e^{2x} dx$$

$$= \frac{1}{4} \int 4(x+1)e^{2x} dx$$

$$= \frac{1}{4}e^{2x}(2x+1) + c$$

Criteria	Marks
Provides the correct solution	2
• Shows that the LHS is equal to $\frac{1-\cos^2\theta}{\cos\theta}$, or equivalent merit	1

Sample answer:

$$\sec \theta - \cos \theta = \sin \theta \tan \theta$$

$$LHS = \frac{1}{\cos \theta} - \cos \theta$$

$$= \frac{1 - \cos^2 \theta}{\cos \theta}$$

$$= \frac{\sin^2 \theta}{\cos \theta}$$

$$= \sin \theta \times \frac{\sin \theta}{\cos \theta}$$

$$= \sin \theta \times \tan \theta$$

$$= RHS$$

Question 20

Criteria	Marks
Provides the correct solution	2
Attempts to use the trapezoidal rule	1

$$\frac{\frac{5}{60} - 0}{2(5)} [60 + 67 + 2(55 + 65 + 68 + 70)]$$

$$= \frac{643}{120}$$

$$= 5.4 \text{ km}$$

Question 21 (a)

Criteria	Marks
Provides the correct answer	1

Sample answer:

$$T = 25 + 70(1.5)^{-0.4 \times 4}$$
$$= 61.5891...$$
$$\doteq 61.6^{\circ}$$

Question 21 (b)

Criteria	Marks
Provides the correct solution	2
Finds the derivative of <i>T</i> , or equivalent merit	1

Sample answer:

$$\frac{dT}{dt} = 70(1.5)^{-0.4t} (-0.4) \ln(1.5)$$

When t = 4,

$$\frac{dT}{dt} = 70(1.5)^{-1.6} (-0.4) \ln(1.5)$$
$$= -5.934...$$

Therefore at t = 4 the tea is cooling at 5.9°C per minute.

Question 21 (c)

Criteria	Marks
Provides the correct solution	3
Uses the log function to solve the equation	2
• Makes $1.5^{-0.4t}$ the subject of the equation, or equivalent merit	1

Sample answer:

$$55 = 25 + 70(1.5)^{-0.4t}$$

$$\frac{30}{70} = 1.5^{-0.4t}$$

$$\ln\left(\frac{3}{7}\right) = -0.4t\ln(1.5)$$

$$t = -\frac{\ln\left(\frac{3}{7}\right)}{0.4\ln(1.5)}$$

Criteria	Marks
Provides a correct solution	4
• Calculates area of $\triangle AOB$, or equivalent merit	3
Finds <i>OA</i> , or equivalent merit	2
Finds <i>AB</i> , or equivalent merit	1

$$AB = 80 \div 10$$

$$= 8 \text{ cm}$$

$$\angle AOB = 360^{\circ} \div 10 = 36^{\circ}$$

$$\angle OAB = \frac{180^{\circ} - 36^{\circ}}{2}$$

$$= 72^{\circ}$$

Question 23 (a)

Criteria	Marks
Provides the correct solution	2
Writes an equation involving a definite integral set equal to 1, or equivalent merit	1

Sample answer:

$$\int_0^k \sin x \, dx = 1$$

$$\left[-\cos x \right]_0^k = 1$$

$$-\cos k + \cos 0 = 1$$

$$\cos k = 0$$

$$k = \frac{\pi}{2}$$

Question 23 (b)

Criteria	Marks
Provides the correct solution	2
Writes the definite integral	1

$$\int_{0}^{1} \sin x \, dx$$

$$= \left[-\cos x \right]_{0}^{1}$$

$$= -\cos 1 + 1$$

$$= 0.4597$$

Criteria	Marks
Provides the correct solution	3
Finds the centre and the radius of the original circle or of the reflected circle, or equivalent merit	2
Completes the square for the equation, or equivalent merit	1

Sample answer:

$$x^{2} - 6x + y^{2} + 4y - 3 = 0$$
$$x^{2} - 6x + 9 + y^{2} + 4y + 4 = 3 + 9 + 4$$
$$(x - 3)^{2} + (y + 2)^{2} = 16$$

The original circle has centre (3, -2) and radius 4.

The reflected circle has centre (3, 2) and radius 4.

Question 25 (a)

Criteria	Marks
Provides the correct solution	3
• Writes an expression for the perimeter in terms of x and y and finds a correct expression for y in terms of x , or equivalent merit	2
Writes an expression for a perimeter in terms of <i>x</i> and <i>y</i> which includes the curved length of a quadrant, or equivalent merit	1

$$xy + \frac{1}{4}\pi x^2 = 36$$

$$xy = 36 - \frac{1}{4}\pi x^2$$

$$y = \frac{36}{x} - \frac{1}{4}\pi x$$

$$P = 2y + 2x + \frac{1}{4} \times 2\pi x$$

$$= 2\left(\frac{36}{x} - \frac{1}{4}\pi x\right) + 2x + \frac{1}{2}\pi x$$

$$= \frac{72}{x} - \frac{1}{2}\pi x + 2x + \frac{1}{2}\pi x$$

$$= 2x + \frac{72}{x}$$

Question 25 (b)

Criteria	Marks
Provides the correct solution	4
• Verifies that at $x = 6$ there is a minimum turning point, or equivalent merit	3
• Solves $\frac{dP}{dx} = 0$, or equivalent merit	2
• Finds $\frac{dP}{dx}$, or equivalent merit	1

Sample answer:

$$\frac{dP}{dx} = 2 - \frac{72}{x^2}$$

Setting
$$\frac{dP}{dx} = 0$$
, we have

$$2 = \frac{72}{x^2}$$

$$x^2 = 36$$

$$x = 6 \qquad \text{(since } x > 0\text{)}$$

$$\frac{d^2P}{dx^2} = \frac{144}{x^3}$$

When x = 6,

$$\frac{d^2P}{dx^2} = \frac{144}{6^3}$$
 which is greater than zero.

 \therefore *P* is a minimum when x = 6.

The minimum perimeter
$$= 2 \times 6 + \frac{72}{6}$$

= $12 + 12$
= 24 m

Question 26 (a)

Criteria	Marks
Provides the correct solution	2
- Finds the value of \boldsymbol{A}_1 , or equivalent merit	1

Sample answer:

$$A_1 = 60\ 000(1.005) - 800$$

$$= $59\ 500$$

$$A_2 = 59\ 500(1.005) - 800$$

$$= $58\ 997.50$$

$$A_3 = 58\ 997.50(1.005) - 800$$

$$\stackrel{?}{=} $58\ 492.49$$

Question 26 (b)

Criteria	Marks
Provides the correct solution	2
Finds by how much the balance is reduced, or equivalent merit	1

Sample answer:

Total withdrawals after 3 months

- $= 800 \times 3$
- = \$2400

Balance is reduced by

- $=60\ 000 58\ 492.49$
- =\$1507.51

Interest

- = \$2400 \$1507.51
- = \$892.49

Question 26 (c)

Criteria	Marks
Provides the correct solution	3
- Finds an expression for ${\cal A}_{94}$, or equivalent merit	2
- Attempts to develop a formula for A_{94} , or equivalent merit	1

$$\begin{split} A_1 &= 60\ 000(1.005) - 800 \\ A_2 &= 60\ 000(1.005)^2 - 800(1.005) - 800 \\ \vdots \\ A_{94} &= 60\ 000(1.005)^{94} - 800\left(1 + 1.005 + \dots + 1.005^{93}\right) \\ &= 60\ 000(1.005)^{94} - 800\frac{1.005^{94} - 1}{0.005} \\ &= \$187.85 \end{split}$$

Criteria	Marks
Provides the correct solution	5
Finds value of b, or equivalent merit	4
• Substitutes \overline{x} and \overline{y} into the regression equation, or equivalent merit	3
• Finds the value of \overline{x} and \overline{y} , or equivalent merit	2
• Finds the value of \overline{x} or \overline{y} or the median of the temperature, or equivalent merit	1

Sample answer:

$$\overline{x} = 22 - 0.525$$

$$= 21.475$$

$$\overline{y} = \frac{684}{20}$$

$$= 34.2$$

Substituting $(\overline{x}, \overline{y})$ into the regression equation, we have

$$34.2 = -10.6063 + b(21.475)$$

$$\frac{44.8063}{21.475} = b$$

$$b = 2.08644...$$

When
$$x = 19$$
, $y = -10.6063 + 2.08644... × 19= 29.03606...$

∴ 29 chirps are expected.

Question 28 (a)

Criteria	Marks
Provides the correct solution	3
• Finds the percentage of adults earning between \$15 and \$30 and finds a probability using $1-P(\text{neither earns })$, or equivalent merit	2
• Finds a probability using $1 - P(\text{neither earns})$, or equivalent merit	
OR	1
Finds the percentage of adults earning between \$15 and \$30, or equivalent merit	1

Sample answer:

P(\$15 < hourly rate of pay < \$30)

$$= 68\% + \frac{95\% - 68\%}{2}$$
$$= 68\% + 13.5\%$$

= 81.5%

P(at least one earns between \$15 and \$30 per hour)

= 1 - P(neither earns between \$15 and \$30 per hour)

$$= 1 - (1 - 0.815)^2$$

= 0.965775

Question 28 (b)

Criteria	Marks
Provides the correct solution	2
Finds the probability of randomly choosing an adult who works or the probability of an adult earning more than \$25 per hour	1

Sample answer:

 $P(\text{chosen adult works}) = \frac{3}{4}$

∴ P(chosen adult works and earns more than \$25 per hour) =
$$\frac{3}{4} \times \frac{1}{2}$$

= $\frac{3}{8}$

Question 29 (a)

Criteria	Marks
Provides the correct solution	2
• Finds the gradient of the tangent at $x = p$, or equivalent merit	1

Sample answer:

$$y = c \ln x$$

$$\frac{dy}{dx} = \frac{c}{x}$$

The gradient of the tangent at x = p is $\frac{c}{p}$.

At
$$x = p$$
 $y = c \ln p$

$$\therefore y - c \ln p = \frac{c}{p}(x - p)$$

$$\therefore y - c \ln p = \frac{c}{p}x - c$$

$$\therefore \qquad y = \frac{c}{p}x - c + c\ln p$$

Question 29 (b)

Criteria	Marks
Provides the correct solution	2
• States that $\frac{c}{p} = 1$ or $-c + c \ln p = 0$, or equivalent merit	1

Sample answer:

$$\frac{c}{p} = 1$$
 (since the tangent has a gradient of 1)

$$\therefore c = p$$

 $-c + c \ln p = 0$ (since the tangent passes through the origin)

$$-c + c \ln c = 0$$

$$c(-1 + \ln c) = 0$$

$$c = 0, \quad \ln c = 1$$

$$c = e \quad (\text{as } c > 0)$$

Question 30 (a)

Criteria	Marks
Provides the correct solution	2
 Attempts to solve a quadratic equation to find the x-coordinate of A, or equivalent merit 	1

$$ax^2 = 4x - x^2$$

$$(a+1)x^2 - 4x = 0$$

$$x[(a+1)x-4] = 0$$

$$x = 0$$
, $(a+1)x - 4 = 0$

$$(a+1)x = 4$$

$$x = \frac{4}{a+1}$$

Question 30 (b)

Criteria	Marks
Provides the correct solution	4
Correctly substitutes the limits into the anti-derivative, or equivalent merit	3
Finds the anti-derivative, or equivalent merit	2
Writes an expression for the area involving an integral of the difference between two functions, or equivalent merit	1

$$\int_{0}^{\frac{4}{a+1}} (4x - x^2 - ax^2) dx = \frac{16}{3}$$

$$\therefore \int_{0}^{\frac{4}{a+1}} (4x - (a+1)x^{2}) dx = \frac{16}{3}$$

$$\left[2x^2 - \frac{(a+1)x^3}{3}\right]_0^{\frac{4}{a+1}} = \frac{16}{3}$$

$$\frac{2 \times 16}{(a+1)^2} - \frac{(a+1)}{3} \times \frac{64}{(a+1)^3} - 0 = \frac{16}{3}$$

$$\frac{32}{(a+1)^2} - \frac{64}{3(a+1)^2} = \frac{16}{3}$$

$$\frac{96-64}{3(a+1)^2} = \frac{16}{3}$$

$$\frac{32}{3(a+1)^2} = \frac{16}{3}$$

$$\therefore (a+1)^2 = 2$$

$$a = \sqrt{2} - 1 \qquad \text{(since } a > 0\text{)}$$

Question 31 (a)

Criteria	Marks
Provides the correct values for a and b	2
Provides the correct value of <i>a</i> or the correct value of <i>b</i> , or equivalent merit	1

Sample answer:

$$a = \frac{35\,000 - 5000}{2}$$
$$= 15\,000$$
$$b = \frac{35\,000 + 5000}{2}$$
$$= 20\,000$$

Question 31 (b)

Criteria	Marks
Provides the correct solution	3
 Finds the values of t when the population of mice increases and the values of t when the population of cats increases 	2
Finds the values of <i>t</i> when the population of mice increases, or equivalent merit	1

Sample answer:

The population of mice increases for 0 < t < 13 and 39 < t < 52.

The population of cats increases for 10 < t < 36.

Therefore both populations are increasing for 10 < t < 13.

Question 31 (c)

Criteria	Marks
Provides the correct solution	2
• Correctly differentiates $m(t)$, or equivalent merit	1

Sample answer:

The cat population reaches a maximum at t = 36.

$$m'(t) = \frac{\pi}{26} \times 15\,000\cos\left(\frac{\pi}{26}t\right)$$
$$m'(36) = \frac{\pi}{26} \times 15\,000\cos\left(\frac{\pi}{26} \times 36\right)$$
$$= -642.7...$$

Therefore the mice population is decreasing at 643 mice per week.

2020 HSC Mathematics Advanced Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MA-F1 Working with Functions	MA11-1
2	1	MA-F2 Graphing Techniques	MA12-1
3	1	MA-S1 Probability and Discrete Probability Distributions	MA12-8
4	1	MA-C4 Integral Calculus	MA12-7
5	1	MA-F1 Working with Functions	MA11-2
6	1	MA-T3 Trigonometric Functions	MA12-5
7	1	MA-C4 Integral Calculus	MA12-7
8	1	MA-C3 Applications of Differentiation	MA12-3
9	1	MA-S3 Random Variables	MA12-8
10	1	MA-C2 Differential Calculus	MA12-6

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	1	MA-F1 Working with Functions	MA11-2
11 (b)	2	MA-F1 Working with Functions	MA11-1
11 (c)	1	MA-F1 Working with Functions	MA11-2
12	3	MA-M1 Modelling Financial Situations	MA12-4
13	2	MA-C4 Integral Calculus	MA12-7
14 (a)	2	MA-S1 Probability and Discrete Probability Distributions	MA11-9
14 (b)	1	MA-S1 Probability and Discrete Probability Distributions	MA11-7
14 (c)	2	MA-S1 Probability and Discrete Probability Distributions	MA11-7
15 (a)	1	MA-T1 Trigonometry and Measuring Angles	MA11-1
15 (b)	2	MA-T1 Trigonometry and Measuring Angles	MA11-3
15 (c)	2	MA-T1 Trigonometry and Measuring Angles	MA11-3
16	4	MA-C3 Applications of Differentiation	MA12-3, 6,10
17	2	MA-C4 Integral Calculus	MA12-7
18 (a)	2	MA-C2 Differential Calculus	MA12-6
18 (b)	1	MA-C4 Integral Calculus	MA12-3
19	2	MA-T2 Trigonometric Functions and Identities	MA11-4

Question	Marks	Content	Syllabus outcomes
20	2	MA-C4 Integral Calculus	MA12-7
21 (a)	1	MA-E1 Exponentials and Logarithms	MA11-6
21 (b)	2	MA-C3 Applications of Differentiation	MA12-6
21 (c)	3	MA-E1 Exponentials and Logarithms	MA11-6
22	4	MA-T1 Trigonometry and Measuring Angles	MA11-9
23 (a)	2	MA-S3 Random Variables	MA12-8
23 (b)	2	MA-S3 Random Variables	MA12-8
24	3	MA-F2 Graphing Techniques	MA12-1
25 (a)	3	MA-F1 Working with Functions	MA11-1
25 (b)	4	MA-C3 Applications of Differentiation	MA12-10
26 (a)	2	MA-M1 Modelling Financial Situations	MA12-2
26 (b)	2	MA-M1 Modelling Financial Situations	MA12-2
26 (c)	3	MA-M1 Modelling Financial Situations	MA12-4
27	5	MA-S2 Descriptive Statistics and Bivariate Data Analysis	MA12-8
28 (a)	3	MA-S3 Random Variables	MA12-8
28 (b)	2	MA-S3 Random Variables	MA12-8
29 (a)	2	MA-C2 Differential Calculus	MA12-6
29 (b)	2	MA-C2 Differential Calculus	MA12-6
30 (a)	2	MA-F1 Working with Functions	MA11-1
30 (b)	4	MA-C4 Integral Calculus	MA12-7
31 (a)	2	MA-T3 Trigonometric Functions	MA12-5
31 (b)	3	MA-T3 Trigonometric Functions	MA12-5
31 (c)	2	MA-C3 Applications of Differentiation	MA12-6