Intro to Neural Networks Machine Learning for Health Informatics

Anna Saranti

Holzinger Group hci-kdd.org

01.04.2019

Dataset splitting and overfitting (1/5)

Dataset splitting and overfitting (2/5)

Dataset splitting and overfitting (3/5)

- Pretend that part of the data is not seen yet
- The model makes a statement about this set does this hold?

Dataset splitting and overfitting (4/5)

- https://scikit-learn.org/stable/
- sklearn.model_selection.train_test_split
- sklearn.model_selection.StratifiedShuffleSplit, sklearn.model_selection.StratifiedKFold
- Training and test set should have roughly the same percentage of data in each class
- Beware that shuffling may spread a characteristic that exists in one part of the data in all the folds!

Dataset splitting and overfitting (5/5)

 Overfitting: Model memorizes and does not generalize to unseen data (test set)

Classification Metrics

- **Don't use accuracy!** The ratio of correct predictions) is not enough when the dataset is imbalanced. If a data set contains 90% of samples belonging to a single class, the classifier that by default (no programmed logic) only chooses this class, has 90% accuracy. The classifier is not informative did not learn anything.
- Confusion matrix compare the predicted class with the actual class:

		Predicted	
		Negative	Positive
Actual	Negative	TN	FP
	Positive	FN	TP

 Mutual information - measures how many bits the classifier's output conveys about the predicted target.

Helps comparing multi-class classifiers, not directly possible with confusion matrices 2×2 , 4×4 .

Neural Network for Classification (1/5)

One artificial neuron

- Prediction: $\hat{y} = \operatorname{activation}(\sum_{i} x_i w_i + b) = f(x)$
- Error: $J = y \hat{y}$

Neural Network for Classification (2/5)

- Learn a non-linear function of the input that approximates the output/target variable
- Architecture is not known, it must be learned as the parameters
- The input must be numeric and has to be scaled

Neural Network for Classification (3/5)

- Various non-linear activation functions (sigmoid, tanh, ReLU)
- Different methods to adapt step-wise the parameters to minimize the error - Bigger steps in the beginning, smaller in the end.
- Different architectures depending on the problem (CNN, RNN)
- Adjust a little the parameters/weights a little according to the error (difference) of the computed with the actual (target) (Back-propagation)

Neural Network for Classification (4/5)

Neural Network for Classification (5/5)

- Repeat until the parameters do not change a lot
- Don't learn too much don't overfit.
- Check the output of the hidden layers and the values of the weights to discover some patterns

References

- Duda, Richard O., Peter E. Hart, and David G. Stork (2012) Pattern classification [Chapter 6] John Wiley & Sons
- Christopher M. Bishop (2006)
 Pattern Recognition and Machine Learning [Chapter 5]
 Springer
- Aurélien Géron (2017)
 Hands-On Machine Learning with Scikit-Learn and TensorFlow
 O'Reilly
- David J.C. MacKay (2003) Information Theory, Inference, and Learning Algorithms Cambridge University Press