집중력 및 심리적 안정감 조절을 위한 뉴로피드백 어플리케이션 개발

김수연, 문기원, 정혜윰, 송민석, 안민규 한동대학교 전산전자공학부 e-mail: minkyuahn@handong.edu

Development of neurofeedback application for attention and meditation control

Suyeon Kim, Giwon Mun, Hyeyoom Jung, Minseok Song, Minkyu Ahn School of Computer Science and Electrical Engineering, Handong Global University

1. 연구 필요성 및 문제점

뉴로피드백은 바이오피드백의 한 종류로써 자신의 의지로 뇌신경계의 다이나믹스를 조절하는 기술을 말하는데, 보통 뇌파를 다양한 시각, 청각, 촉각 등 모달리티를 통하여 피 드백 받는다. 기존의 뉴로피드백은 IQ 향상, ADHD 치료, 집중력 향상 등을 위해 사용되었다. 그러나 이를 위해서는 장시간의 지속된 치료가 요구되며, 경제적인 부담 또한 무 시할 수 없다. 최근 들어 뇌전도(EEG) 측정기의 개발 및 보편화로 인해 뇌파 측정 접근성과 대중성이 확보됐지만, 이를 이용한 어플리케이션은 충분히 개발되지 않고 있는 실정이다. 본 연구에서는 사용자의 활용성을 높이고 일반 인들이 쉽게 구할 수 있는 모바일 뇌전도 측정기를 활용 한 스마트폰 기반 뉴로피드백 어플리케이션을 개발한다.

2. 연구내용과 방법

뇌파 측정을 위해 시중에 판매하는 저렴한 뇌전도 측정기인 InteraXon사의 Muse 2와 NeuroSky사의 Mindwave mobile 두 기기를 이용한다. 각각 4개 전극과 1개 전극에서 뇌전도 데이터를 측정할 수 있는데, 측정된 데이터를 모바일 앱으로 전송받고 몇 가지 신호처리 과정을 거쳐 최종적으로 집중지표(Attention)과 안정지표(Meditation)로 정량화 하여 모바일 앱으로 시각화 한다.

신호처리 단계는 그림1과 같은 구조로 구성한다.

- 주파수 필터링 등을 통한 노이즈 제거
- 푸리에변환(FFT: Fast Fourier Transform)을 통한 주 파수 도메인으로 신호 변환
- ullet 뇌파분석에 활용되는 특징뇌파 정량화 $(lpha, eta, \Theta$ 파)
- 집중지표 및 안정지표 정량화

정량화된 지표 값들의 시각화는 안드로이드 환경에서 제작된 앱을 통하여 정적인 막대바 및 동적인 콘텐츠 구성을 통하여 제공한다. 이를 통해 보다 인터랙티브하게 사용자가 자신의 뇌파를 조절할 수 있도록 돕는다.

그림 1 뇌파처리 및 지표 정량화 과정

3. 결론 및 향후 연구

본 논문에서는 일반인도 쉽게 사용할 수 있는 뉴로피드백 어플리케이션을 제안하였다. 이는 모바일 앱에서 동작하며 언제 어디서든지 일반인들이 자신의 뇌파를 피드백받고 조절하는 훈련을 하는데 활용될 수 있을 것이다. 향후 연구 방향은 최소 전극을 활용한 정확한 지표를 계산하는 것과 모든 소스코드를 모듈화 및 안정화 하여 누구나 사용할 수 있도록 오픈소스로 공개하는 것이다. 아울러앱의 다양한 특성을 사용자 수준에서 평가하여 실용성을 검증하고자한다. 제안한 모바일 뉴로피드백 앱이 뉴로피드백 어플리케이션 시장의 활성화에 기억하고 일반인들의정신건강 증진에 이바지 할 수 있을 것으로 기대한다.

감사의 글

이 논문은 과학기술정보통신부와 정보통신기술진흥센터의 소프트웨어중심대학 지원사업(2017-0-00130)의 지원을 받 아 수행하였습니다.

참고문헌

- [1] Liu et al., (2013). Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors.
- [2] 심용수 등 (2003), 독립성분분석에 의한 뇌파 안구운동제거.
- [3] Erkka Heinilä (2017), Exploring EEG recordings of Focused Attention Meditation with Fourier-ICA
- [4] Pignat JM et al., (2012), The impact of denoising on independent component analysis of functional magnetic resonance imaging data.