Application Activities - Module M Part 2 - Class Day 22

Activity 22.1 Let $A = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$. Find a 3×3 matrix I such that IA = A.

Definition 22.2 The identity matrix I_n (sometimes written as just I if n is understood) is the $n \times n$ matrix

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

It has a 1 on each diagonal element and a 0 in every other position.

Activity 22.3 Each row operation can be interpreted as a matrix multiplication. $A = \begin{bmatrix} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$.

Part 1: Find a matrix S_1 such that S_1A is the result of doubling the third row of A.

Hint: Tweak the identity matrix slightly.

Part 2: Find a matrix S_2 such that S_2A is the result of adding 5 times the third row of A to the first.

Part 3: Find a matrix S_3 such that S_3A is the result of swapping the second and third rows of A.

Observation 22.4 For any matrix A, we can find a series of matrices R_1, \ldots, R_k corresponding to the row operations such that

$$R_1 R_2 \cdots R_k A = RREF(A)$$
.

Activity 22.5 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Sort the following items into three groups of equivalent statements about T.

- (a) T is injective (i.e. one-to-one)
- (b) T is surjective (i.e. onto)
- (c) T is bijective (i.e. both injective and surjective)
- (d) AX = B has a solution for all $m \times 1$ matrices B
- (e) AX = B has a unique solution for all $m \times 1$ matrices B
- (f) AX = 0 has a unique solution.

- (g) The columns of A span \mathbb{R}^m
- (h) The columns of A are linearly independent
- (i) The columns of A are a basis of \mathbb{R}^m
- (j) Every column of RREF(A) has a pivot
- (k) Every row of RREF(A) has a pivot
- (1) m = n and A = I

Activity 22.6 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is injective, which of the following must be true?

- (a) A has strictly more columns than rows
- (b) A has more or an equal number of columns as rows
- (c) A has the same number of rows as columns (i.e. A is square)
- (d) A has more or an equal number of rows as columns
- (e) A has strictly more rows than columns

Activity 22.7 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is surjective, which of the following must be true?

- (a) A has strictly more columns than rows
- (b) A has more or an equal number of columns as rows
- (c) A has the same number of rows as columns (i.e. A is square)
- (d) A has more or an equal number of rows as columns
- (e) A has strictly more rows than columns

Activity 22.8 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix A. If T is bijective, which of the following must be true?

- (a) A has strictly more columns than rows
- (b) A has more or an equal number of columns as rows
- (c) A has the same number of rows as columns (i.e. A is square)
- (d) A has more or an equal number of rows as columns
- (e) A has strictly more rows than columns