Symmetry in QM:

Classical Physicsi L(9i,9i)

$$\frac{d}{dt}\left(\frac{JL}{\partial \dot{q}_i}\right) = \frac{JL}{\partial \dot{q}_i} = 0$$

So
$$P_i = const.$$

In Hamilton:
$$\frac{dP_i}{dt} = \left\{ H, P_i \right\} = \frac{2H}{2q_i} \left\{ q_i, P_i \right\} = 0$$

QM: symmetry operator (unitary): L.

If I depends on continuous parameter

$$|g\rangle \rightarrow U(t,t_0)|g\rangle_{t_0}$$

 $\downarrow = e^{-\frac{1}{L}H(t-t_0)}$ if time independent V .

$$C|_{9}\rangle_{t} = CU(t,t)|_{9}\rangle_{t}$$

$$C|_{9}\rangle_{t} = U(t,t)C|_{9}\rangle_{t}$$

$$C|_{9}\rangle_{t} = g|_{9}\rangle_{t}$$

$$C|_{9}\rangle_{t} = g|_{9}\rangle_{t}$$

13 also an exentet of H.

If
$$|n\rangle \neq L|n\rangle$$
, then En is degenerate.

Ex:
$$[D(R), H] = 0$$

Introduce: (n, j, m): eigentet of H, J, Iz

D(R) In, j, m) has the same En for all R.

$$\sum_{m=-j}^{j} |n, j, m'\rangle \mathcal{D}_{m', m}^{(j)} (R)$$

12j+1 degenerate.

If VLS =0 then we have (22+1)(25+1) degenerate.

than (2j+1) degenerate.

Parity:

-> Space Inversion:

Invert all oxis.

> Corresponding transformation of ket state:

$$\langle \alpha | \pi^{\dagger} \hat{\chi} \pi | \alpha \rangle = - \langle \alpha | \hat{\chi} | \alpha \rangle$$

$$\pi^{+} \dot{x} \pi = - \dot{x}$$

$$0 = \sqrt{\pi}, \hat{\chi}$$
 \Rightarrow
$$\sqrt{\chi}, \hat{\pi} = 0$$

$$\sqrt{\chi} = 0$$

Odd operator it: Even operator if:

$$\{\Pi, \chi\} = 0$$
 $[\Pi, \chi] = 0$

$$|\chi'\rangle$$
: position eigenket.

$$\vec{x}(\pi|\vec{x}') = -\pi(\vec{x}|\vec{x}') = -\vec{x}', \pi|\vec{x}'$$

$$\pi(\bar{x}') = -\bar{x}'$$
 \leftarrow convertion, no phase $e^{i\phi}$

$$T = T^{-1} = T^{+}$$
 \(\tag{unitary and Hermitian.}

Translation:

$$J(d\vec{x}')$$
: translation by $d\vec{x}'$

$$\pi J(d\vec{x}') = J(-d\vec{x}') \pi$$

$$T(1-\frac{1}{5}\vec{p}\cdot\vec{dx})T^{+}=(1+\frac{1}{5}\vec{p}\cdot\vec{dx})$$

$$\pi \hat{p} \pi^{+} = -p$$

$$\pi^{+} \hat{p} \pi = -\hat{p}$$

$${\{\Pi,\hat{p}\}}=0$$
So p is add under panity

$$[\pi, \tilde{L}] = 0$$
, $\tilde{L} = \vec{r} \times \hat{p}$
 \tilde{L} is even.

Rotation of 3d space:

$$R(pcrity) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = -\hat{1}$$

$$R^{(pority)}(rot) = R^{(rot)}(pority) \leftarrow for matrix.$$

TT
$$D(R) = D(R)$$
 TT \leftarrow postulate the same for 0 $= \frac{1}{h} \epsilon \hat{n} \cdot \hat{j}$

$$[\pi, J] = 0 \qquad \text{So} \quad \pi^{\dagger} \vec{J} \pi = \vec{J}$$

$$\text{Leven operator.}$$

	Kotation (J)	party (Ti)	
	-		
λP	vector	odd	Polar Vector
			axy vector
J, S, L	vector	<i>en</i> en	axial vector (pseudovector)
		_	
S.X, S.P	scalar.	odd	Pseudoscalar
٠ د			
[-3, x.p]	scalar	Neve	True Scalar.

$$\langle \vec{x} | \pi | \chi \rangle = \langle -\vec{x} | \chi \rangle = \mathcal{L}_{\chi}(-\vec{x}) = \mathcal{L}_{parity}(x)$$

$$\langle x | \pi | x \rangle = \pm \langle x | x \rangle = \pm \langle x | x \rangle$$
 $\langle -x | x \rangle = \pm \langle -x | x \rangle = \pm \langle -x | x \rangle$
 $\langle -x | x \rangle = \pm \langle -x | x \rangle$
 $\langle -x | x \rangle = \pm \langle -x | x \rangle$
 $\langle -x | x \rangle = \pm \langle -x | x \rangle$

In spherical coordinate:

$$\begin{array}{ccc}
\Gamma \rightarrow \Gamma \\
\theta \rightarrow \pi - \theta \\
\phi \rightarrow \pi + \phi
\end{array}$$

 $e^{im\phi} \rightarrow (-1)^m e^{im\phi}$

$$TT|\alpha;lm\rangle = 6|\alpha;lm\rangle$$
, $[T,L]=0$

so 6 doesn't depend on m

$$= Y_{1}^{m} (\pi - \theta, \phi + \pi) = (-1)^{\ell} Y_{1}^{m} (\theta, \phi)$$

Theorem: If [H, TT]=0, H|n) = En|n) and In > is non-degenerate.

then In) is an eigenstate of TT, so In> must be either even or odd.

Take
$$|n\pm\rangle = \frac{|\pm\pi|}{2}|n\rangle$$
 $\pi\left(\frac{|\pm\pi|}{2}\right) = \frac{\pi\pm 1}{2} = \pm\left(\frac{|\pm\pi|}{2}\right)$

$$\frac{1}{2} \prod |n_{\underline{f}}\rangle = \pm \left(\frac{1 \pm \eta}{2}\right) |n\rangle = \pm |n_{\underline{f}}\rangle$$

then
$$|N_{+}\rangle = |n_{-}\rangle$$
 $|n_{+}\rangle = 0$ $|n_{-}\rangle = 0$ $|n_{-}\rangle = |n_{+}\rangle$

Ex:
$$\frac{1}{2} \sin \left(\frac{\pi}{2L} n(x+L) \right)$$

$$E_{n} = \frac{1}{2m} \frac{\pi^{2}}{4L^{2}}$$

odd:
$$4_{2k+1}(x) = \frac{(-1)^k}{\sqrt{L}} \cos(\frac{\pi}{L}(n+\frac{1}{2})x) \rightarrow \pi 4_{2k+1} = 4_{2k+1}$$

even:
$$\forall_{2k}(x) = \frac{(-1)^k}{L} \sin\left(\frac{\pi}{L} | x \right) \rightarrow \pi + 2k = -42k$$

Ex: free parficle in 3d

 $H = \frac{p^2}{2m}$ [H, T] = 0 with eigenstale ($\frac{p}{2}$)

but $\pi|\vec{p}\rangle = |-\vec{p}\rangle$ so $|\vec{p}\rangle$ is not eigenstole of $|\pi\rangle$

Also $E_p = \frac{p^2}{2m} = E_{-p}$, so it is degenerate.

so theorem clossit apply.

We can use $\frac{|\vec{p}>\pm|-\vec{p}>}{\sqrt{2}}$ \leftarrow eigenstate of T, but \sqrt{p}

(p) < eigenstate of p, but not TI.

Parity Selection Rule:

Suppose
$$[H, \pi] = 0$$

Legenvalues of π , (± 1)
 $\pi \mid A \rangle = \varepsilon_{A} \mid A \rangle$
 $\pi \mid B \rangle = \varepsilon_{B} \mid B \rangle$

$$T \times T = X - = T \times T$$

$$\langle \beta | x | \alpha \rangle = - \epsilon_{\lambda} \epsilon_{\beta} \langle \beta | x | \alpha \rangle$$

$$\Rightarrow \left[\langle \mathbf{x} | \mathbf{x} | \mathbf{x} \rangle \left(1 + \varepsilon_{\mathbf{x}} \varepsilon_{\mathbf{x}} \right) = 0 \right]$$

* parity selection

So
$$\langle \beta | x | a \rangle = 0$$
 unless $\xi_{a} \xi_{b} = -1$ or $\xi_{a} = -\xi_{b}$

> Implys non-degenerate energy state cannot posess a permanent dipole moment.

 $\rightarrow \langle \langle \langle '; l'm' | \dot{\chi} | \chi; l.m \rangle = 0$ unless $\varepsilon_{\alpha} \varepsilon_{\beta} = -1$.

L> ε2 = (-1)1, εβ = (-1)

Ly $\epsilon_{\lambda}\epsilon_{\beta}=(-1)^{1}(-1)^{1}=\rangle$ [1-1'=add. rule.

Other discrete symethy:

- Point group Lattice translational.

```
Time Reversal Symmetry:
```

Newton: If
$$m\ddot{x}=-\dot{\nabla}V$$
: and $x(t)$ is a solution then $x(-t)$ is also a solution.

Maxwell:
$$m\vec{x} = e(\vec{E} + \vec{c} \vec{3} \times \vec{B})$$
 $\vec{P} \cdot \vec{E} = 4\pi P$ $\vec{E} \rightarrow \vec{E}$ $\vec{B} \Rightarrow -\vec{B}$ $\vec{P} \cdot \vec{B} = 0$ $\vec{P} \cdot \vec{B} = 0$ $\vec{P} \cdot \vec{B} = 0$

Now Schoolinger: it
$$\partial_t \psi = \left[-\frac{t^2}{2m} \nabla^2 + V(x) \right] \psi$$

If $\psi(x,t)$ is a solution, then $\psi^*(x,-t)$ is a solution, notice that complex conjugate.

at t=0:
$$\psi = \langle x | d \rangle$$
 - time reversal $\Rightarrow \psi^* = \langle x | u \rangle^*$

$$\langle \lambda | \pi \pi | \beta \rangle = \langle \lambda | \beta \rangle$$

$$\lambda \int \psi_{\lambda}^{*}(-x) \psi_{\beta}(-x) dx = \int \psi_{\lambda}^{*}(x) \psi_{\beta}(x) dx \leftarrow \rho c n' \psi.$$

but
$$\int dx \left(\frac{1}{4} (x) \right)^{*} \left(\frac{1}{4} (x) \right)^{*} = \left(\int dx \, \frac{1}{4} (x) \, \frac{1}{$$

time reversal of
$$|B\rangle = \langle Z | B\rangle^*$$

time reversal of $|B\rangle$ implies time reversal is not unitary.

Def:
$$|2\rangle \rightarrow |2\rangle = \theta |a\rangle$$
 Transformation.
 $|\beta\rangle \rightarrow |\beta\rangle = \theta |\beta\rangle$

$$\Rightarrow cnti-unitary.$$

If i)
$$\angle \beta | \chi \rangle = \langle \beta | \omega \rangle^{*}$$

(i) antlinear θ (c, $|\omega\rangle + c_{2}|\beta\rangle = c_{1}^{*}\theta | \omega\rangle + c_{2}^{*}\theta | \beta\rangle$

Complex anywhere $\theta = 0$

let
$$|a\rangle = \sum_{\alpha} |a\rangle\langle\alpha| a\rangle$$

 $|a\rangle = \sum_{\alpha} \langle\alpha|a\rangle^{*} |a\rangle$

Time reversal operator:

If O is unitary, so i doesn't get conjugated.

$$\theta^{-1} \frac{p^2}{2m} \theta = -\frac{p^2}{2m}$$
 — cast be, so θ is not unitary.

If O is onti-unitary:

Since onti-unitary.

If there is time reversal symmetry in the system (H) then O commutes [H,0]=0

How does
$$\theta$$
 act on operators:

 $\langle \beta | \theta | \alpha \rangle = \langle \beta | (\theta | \alpha \rangle)$, let θ always act to the right.

 $|\mathcal{Z}\rangle = \theta | \alpha \rangle$
 $|\mathcal{B}\rangle = \theta | \beta \rangle$
 $|\mathcal{B}\rangle = |\mathcal{B}\rangle = \langle \beta | \beta | \beta \rangle \Rightarrow \langle \beta | \beta \rangle$

If
$$A = AAB^{-1} = \pm A$$
 then A is even (+) or odd (-) under time reversal.
then $BA = \pm AB$

or $\langle a|A|a\rangle = \pm \langle 2|A|2\rangle + restriction on expralue in time reversal state.$

すのラ>=ーカラーウラーーロラントラン

$$\theta | \vec{p} \rangle = | -\vec{p}' \rangle$$
 up to phase.

$$\theta \vec{x} \theta^{-1} = \vec{x}$$
 $\rightarrow \theta | \vec{x}' \rangle = | \vec{x}' \rangle$

by is ever under time neversal.

$$\frac{\partial \left[x_{i}, P_{j}\right] \partial^{-1} = \partial x_{i} P_{j} \delta^{1} - \partial P_{j} x_{i} \partial^{-1}}{\partial x_{i} \partial^{-1} \partial x_{i} \partial x_{i} \partial^{-1} \partial x_{i} \partial^{-1} \partial x_{i} \partial^{-1} \partial x_{i} \partial^{-1} \partial x_{i} \partial x_{i} \partial^{-1} \partial x_{i} \partial x_{i}$$

B131, 5:00 PM:

$$\begin{bmatrix}
 J_i, J_j \end{bmatrix} = (\hbar \epsilon_{ijk} J_k J_k)
 \begin{bmatrix}
 J_i, J_j \end{bmatrix} = (\hbar \epsilon_{ijk} J_k)
 \begin{bmatrix}
 J_i = 0 J_i \\
 J_i = 0 J_i
 \end{bmatrix}
 = -i \hbar \epsilon_{ijk} J_k$$

Wavefunction:

$$t=0 \qquad |x\rangle = \int \beta x |x\rangle < x |x\rangle$$

$$(\beta |x\rangle = \int \beta x |x\rangle < x |x\rangle$$

$$(\beta |x\rangle = \int \beta x |x\rangle < x |x\rangle$$

$$(\beta |x\rangle = (\beta |x\rangle = ($$

$$\frac{\partial^{2}|\ell,m\rangle = \Theta(-1)^{m}|\ell,-m\rangle}{[-(1)^{m}\theta|\ell,-m\rangle}$$

$$= (-1)^{m}\theta|\ell,-m\rangle$$

$$= (-1)^{m}(+1)^{m}|\ell,m\rangle$$

$$\theta^{2}|\ell,m\rangle = |\ell,m\rangle$$

$$\theta^{2}|\ell,m\rangle = |\ell,m\rangle$$

Theorem: if [H, b] = 0, then wavefunction of nondegenerate states are real (up to overal phase)

proof: H & In> = & H(n> = & En In> = En O(n)

then Oln> and In> have the same eigenvalue En.

If non degenerate, then Oln>=In>

then $\langle x|n \rangle^* = \langle x|n \rangle \rightarrow so \psi(x)$ is real

Form of H dopends on representation:

 $\theta | \lambda \rangle = \frac{\pi}{2} \theta | \alpha \rangle \langle \alpha | \lambda \rangle = \frac{\pi}{2} \theta | \alpha \rangle \langle \alpha | \lambda \rangle^{*}$ $= \int d^{3}x \langle x | \alpha \rangle^{*} \theta | x \rangle = \int d^{3}x \langle x | \alpha \rangle^{*} | x \rangle$ $= \frac{\pi}{4} \frac{$

 $\psi_{\alpha}(x) \xrightarrow{\theta} \psi_{\alpha}^{*}(x)$ in position basis, we just complex conjugate under θ .

 $\theta | d \rangle = \int d^3p \langle p | a \rangle^{*} \theta | p \rangle = \int d^3p \langle p | a \rangle^{*} | p \rangle$ $= \int d^3p \langle p | a \rangle^{*} | p \rangle$

So $(p) \xrightarrow{\theta} (a-p)$ In momentum basis, complex conjugate and -p

Spin
$$-\frac{1}{2}$$
: be note $\theta | \hat{h}, + \rangle = \gamma | \hat{h}, - \rangle$

$$(\hat{\sigma} \cdot \hat{h}) | \hat{h}, + \rangle = | \hat{h}, + \rangle$$

$$(\hat{\sigma} \cdot \hat{h}) | \chi(\hat{h}, +) \rangle = + \chi(\hat{h}, +)$$

$$(\hat{\sigma} \cdot \hat{h}) | \chi^{*}(\hat{h}, +) \rangle = \chi^{*}(\hat{h}, +)$$
Using identity: $\hat{\sigma}^{*} = -6^{2} \hat{\sigma} \hat{\sigma}^{2}$ for Pauli-Matrices.
$$(\hat{\sigma} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \chi^{*}(\hat{h}, +)$$

$$(\hat{\sigma} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = -6^{2} \chi^{*}(\hat{h}, +)$$

$$= \pm \chi(\hat{h} \pm)$$
Then we see: $6^{2} \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}, +) \rangle = \eta \chi(\hat{h}, -)$$

$$(\hat{h} \cdot \hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}) \rangle = \eta \chi(\hat{h}) \hat{\sigma}^{2} | \chi^{*}(\hat{h}) \rangle = \eta \chi(\hat{h}) \rangle =$$

then
$$\theta = \eta e^{\frac{1}{\hbar}J_{\gamma}T}K = UK$$
.

tassuming \hat{z} axis is real.

For
$$S=1/2$$
: $e^{-i\frac{\pi}{2}6^2} = \cos\frac{\pi}{2} - i6^2 \text{ sin}(\frac{\pi}{2}) = -i6^2$

then
$$\theta = \eta e^{-i\pi \frac{\delta^2}{2}}$$

Find
$$\theta^2 = \gamma e^{\frac{1}{4}\pi J} | k \eta e^{\frac{1}{4}\pi J} | k$$

$$= \eta e^{\frac{1}{4}\pi J} \eta^* e^{-\frac{1}{4}\pi J} | k^2$$

$$= |\eta|^2 e^{\frac{1}{4}2\pi J} | k^2$$

$$= (-j, -jt1 \dots, j)t$$

$$= (-2j, -2jt1 \dots 2j)$$

$$= (-1)^{2j}$$

Knamers Degeneracy. suppose [H, 0] = 0

Note that it does NoT form conservation laws. because 0 is anti-unitary.

unlike party etilt = T.

If
$$[H, \Theta] = 0$$
 and $[H] > 1$ s usual eigenher of H .
Then $f(x)$ is real.

- -> Suppose [D,H]=0, then [n7 and Aln) are degenerate.
 - \Rightarrow If (n) is not degenerate, then $\theta(n) = e^{i\delta}(n)$

then
$$\theta^2 | n \rangle = \theta e^{i\delta} | n \rangle = e^{-i\delta} \theta | n \rangle = e^{-i\delta} e^{i\delta} | n \rangle$$

then
$$\theta^2(n) = (n)$$

$$(-1)^{2\sqrt{|n|}} = (n)$$
 $(-1)^{2\sqrt{|n|}} = (n)$ $(-1)^{2\sqrt{|n|}} = (n)$

So If j= half-integer, then In) and $\theta(n)$ must be different sotale with some eigenenergy. so they must be at least 2-fold degeneracy when [H, θ]=0.

Consider example:

$$E-field$$
: $V(x)=e \varphi(x)$ since its real

then
$$[0, \sqrt{]} = 0$$

So we can conclude E-field cannot lift kramer degeneracy.

Magnetic field:
$$V_1 = \vec{S} \cdot \vec{B}$$
 is real $\vec{F} \cdot \vec{A} \cdot \vec{A}$

$$0 \neq [0, \hat{8}, \hat{2}] \leftarrow \hat{2} - \hat{2} - \hat{2} = 020$$

 $0 \neq [0, \hat{8}, \hat{2}] \leftarrow \hat{q} - \hat{q} = 0$

Since O don't commute with H, then it lifts degeneracy.

74 S is large, suppose S= 17/2

$$[N_i, N_i] = i \frac{(t_i)}{2} \epsilon i k N_i$$
 $\leftarrow k' \leq k \leq \infty$, $r + \leq i \leq 0$
 $\leq k \leq k \leq k \leq 1$.