TIØ4126 Optimering og beslutningsstøtte Løsningsforslag til øving 5

Oppgave 1

a)

La x₁, x₂ og x₃ være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir da:

$$\max Z = 24x_1 + 8x_2 + 15x_3$$

slik at

$$3x_1 + x_2 + 2x_3 \le 40$$
 (treverk)
 $2x_1 + x_2 \le 20$ (lær)
 $5x_1 + 2x_2 + 3x_3 \le 80$ (timer)

$$x_1, x_2, x_3 >= 0$$

b)

Vi må først skrive modellen på utvidet form:

$$\max Z = 24x_1 + 8x_2 + 15x_3$$

slik at

$$3x_1 + x_2 + 2x_2 + s_1 = 40$$

 $2x_1 + x_2 + s_2 = 20$
 $5x_1 + 2x_2 + 3x_3 + s_3 = 80$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

Det initielle simplex-tablået blir dermed:

BV	Z	X ₁	X2	X3	s ₁	s ₂	S ₃	RHS	FHT
Z	1	-24	-8	-15	0	0	0	0	
s ₁	0	3	1	2	1	0	0	40	
s ₂	0	2	1	0	0	1	0	20	
S ₃	0	5	2	3	0	0	1	80	

I første iterasjon pivoterer vi inn x_1 , som har minst redusert kostnad. Forholdstallstesten brukes til å bestemme hvilken variabel som skal ut av basis:

BV	Z	x ₁	x ₂	X3	s ₁	\mathbf{s}_2	S ₃	RHS	FHT
Z	1	-24	-8	-15	0	0	0	0	
s ₁	0	3	1	2	1	0	0	40	40/3 = 13 1/3
s ₂	0	2	1	0	0	1	0	20	20/2 = 10
S ₃	0	5	2	3	0	0	1	80	80/5 = 16

Vi pivoterer inn x_1 og ut s_2 :

BV	Z	x ₁	x ₂	X3	s ₁	s_2	S ₃	RHS	FHT
Z	1	0	4	-15	0	12	0	240	
s ₁	0	0	-1/2	2	1	-3/2	0	10	
X ₁	0	1	1/2	0	0	1/2	0	10	
S ₃	0	0	-1/2	3	0	-5/2	1	30	

Vi har nå utført nøyaktig én iterasjon av simplex-algoritmen, slik oppgaven spør etter.

c) Vi har nå gitt det initielle tablået

BV	Z	x ₁	x ₂	X3	s ₁	s ₂	S 3	RHS	FHT
Z	1	-24	-8	-15	0	0	0	0	
s ₁	0	3	1	2	1	0	0	40	
s ₂	0	2	1	0	0	1	0	20	
S ₃	0	5	2	3	0	0	1	80	

i tillegg til deler av det optimale tablået:

BV	Z	\mathbf{x}_1	\mathbf{x}_2	X 3	s ₁	S ₂	S ₃	RHS
Z	1				15/2	3/4	0	
X3	0				1/2	-3/4	0	
x ₁	0				0	1/2	0	
S ₃	0				-3/2	-1/4	1	

Fra delene i det optimale tablået ser vi at første linje i optimalt tablå kan skrives som 1*første linje + 15/2*andre linje + 3/4*tredje linje + 0*fjerde linje i det opprinnelige tablået:

- + 15/2*(0 3 1 2 1 0 0 40)
- + 3/4*(0 2 1 0 0 1 0 20)
- + 0*(0 5 2 3 0 0 1 80)
- = (1 0 1/4 0 15/2 3/4 0 315)

Tilsvarende kan vi skrive andre linje i optimalt tablå som 0*første linje + 1/2*andre linje - 3/4*tredje linje + 0*fjerde linje i opprinnelig tablå:

- + 1/2*(0 3 1 2 1 0 0 40)
- 3/4*(0 2 1 0 0 1 0 20)
- + 0*(0 5 2 3 0 0 1 80)
- = (0 0 -1/4 1 1/2 -3/4 0 5)

Vi kan skrive tredje linje i optimalt tablå som 0*første linje + 0*andre linje + 1/2*tredje linje + 0*fjerde linje i opprinnelig tablå.

Fjerde linje i optimalt tablå kan skrives som 0*første linje - 3/2*andre linje - 1/4*tredje linje + 1*fjerde linje i opprinnelig tablå.

Vi får da:

BV	Z	\mathbf{x}_1	\mathbf{x}_2	X 3	s ₁	s ₂	S ₃	RHS
Z	1	0	1/4	0	15/2	3/4	0	315
X3	0	0	-1/4	1	1/2	-3/4	0	5
x ₁	0	1	1/2	0	0	1/2	0	10
S ₃	0	0	1/4	0	-3/2	-1/4	1	15

d)

Optimal løsning for det primale problemet er (ikke-basisvariabler har verdi 0, og basisvariablene har verdier som angitt på høyresiden (RHS)): $x_1 = 10$ og $x_3 = 5$ (og $x_2 = 0$), med målfunksjonsverdi Z = 315.

e)

Svaret ligger i skyggeprisene (det vil si reduserte kostnader til slakkvariablene, eller verdien til dualvariablene). Det vil si, bedriften er villig til å betale 15/2 per enhet ekstra treverk, 3/4 per enhet ekstra lær, og ingenting for flere arbeidstimer.

f)

Vi er interessert i å se hva som skjer når koeffisienten foran x_3 i målfunksjonen endrer seg. Hvis koeffisienten endrer seg med Δ (til 15+ Δ) vil tablået endre seg til:

BV	Z	\mathbf{x}_1	\mathbf{x}_2	X3	s ₁	s ₂	S ₃	RHS
Z	1	0	1/4	-Δ	15/2	3/4	0	315
X ₃	0	0	-1/4	1	1/2	-3/4	0	5
\mathbf{x}_1	0	1	1/2	0	0	1/2	0	10
S ₃	0	0	1/4	0	-3/2	-1/4	1	15

I så fall må vi legge til målfunksjonsraden Δ ganger linjen hvor x_3 er basisvariabel (for å få at den reduserte kostnaden til x_3 blir 0). Dette vil gi:

BV	Z	\mathbf{x}_1	\mathbf{x}_2	X ₃	sı	s ₂	S ₃	RHS
Z	1	0	$1/4 - \Delta/4$	0	$15/2 + \Delta/2$	$3/4 - 3\Delta/4$	0	$315 + 5\Delta$
X ₃	0	0	-1/4	1	1/2	-3/4	0	5
x ₁	0	1	1/2	0	0	1/2	0	10
S ₃	0	0	1/4	0	-3/2	-1/4	1	15

For at produktmiksen skal være uendret må alle reduserte kostnader her være ikkenegative. Det vil si:

$$1/4 - \Delta/4 \ge 0$$
, som gir $\Delta \le 1$
 $15/2 + \Delta/2 \ge 0$, som gir $\Delta \ge -15$
 $3/4 - 3\Delta/4 \ge 0$, som gir $\Delta \le 1$

Med andre ord kan prisen endre seg mellom [0, 16] uten at optimal produktmiks endrer seg.

Oppgave 2

a)

Vi definerer først følgende beslutningsvariable:

 y_i = antall vindmøller i park i, i = 1,2 (heltallsvariabel)

 $x_{li} = 1$ dersom overføringskabel l benyttes for vindmøllepark i, og 0 ellers (binærvariabel)

Vi ønsker å minimere kostnader samtidig som vi må tilfredsstille følgende restriksjoner:

- Øvre grense på antall vindmøller i hver park.
- Overføringskapasiteten må være minst like stor som det som totalt (gjennomsnittlig) produseres i hver vindmøllepark.
- 3. Det kan kun være én overføringskabel fra hver vindmøllepark.
- 4. Kontraktsforpliktelser for levering av strøm.

Dette kan vi da modellere på følgende måte (restriksjonsnumrene sammenfaller med listen over):

$$\min z = \sum_{i=1}^{2} C^{M} y_{i} + \sum_{l=1}^{L} \sum_{i=1}^{2} C_{li}^{L} x_{li}$$
 (0)

$$y_i \le N \qquad \qquad i = 1,2 \tag{1}$$

$$P_i y_i \le \sum_{l=1}^L Q_l x_{li} \qquad i = 1,2 \tag{2}$$

$$\sum_{l=1}^{L} x_{li} \le 1 i = 1,2 (3)$$

$$\sum_{i=1}^{2} P_i y_i \ge D \tag{4}$$

$$y_i \ge 0$$
, og heltallig $i = 1,2$ (5)

$$x_{li} \in \{0,1\}$$
 $l = 1,2, ..., L \text{ og } i = 1,2$ (6)

En kan legge merke til at det i restriksjon (3) er ≤ og ikke =. Det er fordi en ikke nødvendigvis behøver noen overføringskabel dersom en ikke velger å ha noen vindmøller i den aktuelle parken.

b)

Nå er det altså opptil tre mulige vindmølleparker, så variablene y_i og x_{li} må defineres for i = 1,2,3. Det samme gjelder for restriksjonene (1), (2), (3) og (5). I tillegg definerer vi nå en ny variabel δ_3 som er lik 1 dersom bedriften etablerer den tredje vindmølleparken, og 0 ellers.

Den opprinnelige modellen må dermed endres som følger:

$$\min \mathbf{z} = \sum_{i=1}^{3} C^{M} y_{i} + \sum_{l=1}^{L} \sum_{i=1}^{3} C_{li}^{L} x_{li} + C^{I} \delta_{3}$$
 (0')

$$y_i \le N \qquad \qquad i = 1,2,3 \tag{1'}$$

$$Py_i \le \sum_{l=1}^{L} Q_l x_{li}$$
 $i = 1,2,3$ (2')

$$\sum_{l=1}^{L} x_{li} \le 1 \qquad i = 1,2,3 \tag{3'}$$

$$\sum_{i=1}^{3} Py_i \ge D \tag{4'}$$

$$y_i \ge 0$$
, og heltallig $i = 1,2,3$ (5')

$$x_{li} \in \{0,1\}$$
 $l = 1,2,..., L \text{ og } i = 1,2,3$ (6')

En kan imidlertid merke seg at dersom $x_{l3} = 1$, betyr det at en velger overføringskabel l fra vindmøllepark 3 til park 1. Det betyr videre at den valgte overføringskabelen fra park 1 til land må ha tilstrekkelig kapasitet til å kunne overføre det som produseres fra begge vindmølleparkene 1 og 3. Dette må inn i en ny restriksjon som følger:

$$Py_1 + Py_3 \le \sum_{l=1}^{L} Q_l x_{l1} \tag{7'}$$

En må også sikre seg at en kun bygger vindmøller i park 3 dersom en faktisk har etablert vindmølleparken (altså at $\delta_3 = 1$). Den følgende restriksjonen vil sikre dette:

$$y_3 \le N\delta_3 \tag{8'}$$

$$\delta_3 \in \{0,1\} \tag{9'}$$