Chapter 5

Model Government as entity that consumes G of output but must abide by Government Budget Constraint (no budget surpluses or deficits)

$$G = T \Longrightarrow \text{Government spending ... taxes}$$
 Exogenous Variables
$$= (G, Z, K)$$
 Endogenous Variables
$$= (C, N^s, N^d, T, Y, w)$$
 Competitive Equilibrium
$$\Longrightarrow \text{ consumes and forms arc price (i.e., wage) takers.}$$

$$\Longrightarrow \text{ equilibrium wage is above } N^s(w) = N^D(w)$$

$$\Longrightarrow \text{ Agent Max } U[c, l] \text{ s.t., budget constant } C = D - T + wN^s$$

$$\Longrightarrow \text{ firms maximizes profits } D = \max_{N} \left\{ ZF(K, N^D) - wN^D \right\}$$

$$G = T$$

Note: Combining

*
$$C = D - T + wN^s$$

*
$$D = Y - wN$$

$$* G = T$$

We find Y = C + G = Income/Expenditure equality

Define : Products Possibility Factor (PPF) = Consumption as a factor of leisure C=Y-G=ZF(K,h-l)-G C(l)=ZF(K,h-l)-G taking (Z,K,h,G) as exogenous.

Define: Marginal Rate of Transformation (MRT) = rate can convert one good into another

$$\begin{array}{rcl} -\frac{\partial c}{\partial l} & = & -\frac{\partial Y}{\partial N}\frac{\partial N}{\partial l} = \frac{\partial Y}{\partial N} \Rightarrow \text{ since, } \frac{\partial N}{\partial l} = -1 \\ MRT_{l,c} = MP_N & = & -\text{slope of PPF} \end{array}$$

Next step: combine PPF with indifference curves.

At equilibrium, Tangent of PPF = tangent of indifference curves.

-slope at the tangent will equal minus wage

$$\Longrightarrow MRS_{l,c} = MRT_{l,k} = MP_N$$

Proof:

$$D = \max_{N} \left[Y(N) - wN \right]$$

$$\text{FOC}: 0 = \frac{\partial Y}{\partial N} - w$$

$$\text{Consumer}: \max U\left[c, l = h - N\right] s.t., C = D - T + wN$$

$$= U\left[c, l = h - N\right] + \lambda \left[D - T + wN - C\right]$$

FOC:
$$\frac{\partial}{\partial N} : 0 = U_l(-1) + \lambda w$$

 $\frac{\partial}{\partial c} : 0 = U_c - \lambda$
 $\frac{U_l}{U_c} = w$

Optimality

Connection betwen competitive ... and economic efficiency ... for two resons.

- Show how free markets can produce socially optional outcomes.
- ... to analyze social optimum then a competitive equliibrium.

Define: A competitive equlibrium is "Pareto Optional" if there is no way to make ... better off without ... wage off.

Introduce social planner \Rightarrow no need for markets, and thus no need for prices/wages.

Objective :
$$\max_{(c,l)} U(c,l)$$
 such that, $C = D - T + w(h-l)$

$$= Y(h-l) - T$$

$$\dots = U(c,l) + \lambda(Y(h-l) - T - C)$$

$$\frac{\partial}{\partial c} : 0 = U_c - \lambda$$

$$\frac{\partial}{\partial l} : 0 = U_l - \lambda \frac{\partial Y}{\partial N}(-1)$$

$$U_c = \lambda$$

$$U_l = \lambda \frac{1}{N}$$

$$\frac{U_l}{U_c} = \frac{1}{N}$$
(1)

Thus, MPL = MRS, just as in the competitive equlibrium case.

First Fundamental Theorem of Welfare Economics : under certain conditions, competitive equlibirum is Pareto Optimal.

Second Fundamental Theorem of Welfare Economics : under certain conditions, a Pareto Optimal is competitive equlibirum.

Adam Smith, wealth of nations, "Unrestricted market economy would behave as it ... invisible hand were ... actions that were beneficial for all"

Sources of Social Inefficiencies

(1) Externalities: ... problem is that there is not a market to ... externaly negative: firm does not pay for pollution positive: frim not compensated for external benefit

(2) Distorting taxes : For example, proportional wage tax

effective wage $\equiv w(1-T)$

Tax derives a wedge between MRS and MPL

- (3) Firms (or workers) not price takers.
- (4) Incomplete Markets (Externality is a special case)

 $\Delta G \uparrow$ on :

- (1) $\Delta Y \uparrow$
- (2) $\Delta c \downarrow$
- (3) $\Delta l \downarrow$
- (4) $\Delta w \downarrow$

Basically, increase in ... spending, and hence, an increase in ... syntax, has a negative increase effect. This ... both consumption and leisure. Less leisure means more labor, means more output. More labor supply imples lower wages.

 $\Delta Z \uparrow$ on :

- (1) $\Delta Y \uparrow$
- (2) $\Delta c \uparrow$
- (3) Δl intermediate; need it to drop for ... with ... cycles.
- $(4) \Delta w \uparrow$

 $Z\uparrow$ imples $MPL=\frac{\partial V}{\partial N}$ increases. This will create a positive income effect, but it will also make leisure more expensive (i.e., wages are higher)thus there is a susbititution effect causing consumption further, bit more than leisure indeterminate.

For model to be consistent with business cycling need $\Delta Z \uparrow \Rightarrow \Delta N \uparrow (\Delta l \downarrow)$ tat is, for substitution effect to dominate income effect. Now, in long run, since N = constant, we have income effect ... substitution effect. But, can argue that ..., substitution effect dominates.

Emprically, shocks to productivity appear to play a role in business cycles.

Diluting tax on Wage Income