Data Science (Prof. Neff) Versuchsdatum 28.10.2020

Bestimmung der Viskosität von Spülmittel

Gruppe 6: Benjamin Hamm (2060696), Jan Klotter (2060690),

Anna Kuhn (2051063), Michael Schulze (2061282)

Rohdaten der einzelnen Gruppenmitglieder

```
dataMichael = readtable("Blasen_Steigzeit_Michael.csv");
imageFrosch = imread("frosch_AleoVera_Spuellotion.png");
dataBenjamin = readtable("Blasen_Steigzeit_Benjamin.csv");
imageW5 = imread("W5_eco.png");
dataJan = readtable("Blasen_Steigzeit_Jan.csv");
dataAnna = readtable("Blasen_Steigzeit_Anna.csv");
imageEcover = imread("ecover_Colorwaschmittel.png");
```

```
disp("Messwerte Michael - Frosch Aloe Vera Spül-Lotion")
```

Messwerte Michael - Frosch Aloe Vera Spül-Lotion

imshow(imageFrosch)


```
[d1, v1, a1, b1] = eval_data(dataMichael);
```

data = 10×2 table

	Blase_in_mm	Steigzeit_5cm_in_s
1	2.0000	19.0000
2	3.5000	9.8000
3	3.5000	9.7000
4	3.0000	8.8000
5	2.0000	21.5000
6	4.0000	8.0000
7	4.0000	8.8000
8	3.0000	9.7000
9	2.5000	22.0000
10	3.0000	11.5000

mittelwert = 1.2035

standardabweichung = 0.2735

standardunsicherheit = 0.0865

u Vdreieck = 0.0012

 $u_Ddreieck = 6.1237e-04$

 $dEta_dV = 10 \times 1$

-322.6618

-262.8867

-257.5490

-155.7357

-413.1591

-228.8128

-276.8635

-189.2197

-675.9362

-265.9614

 $dEta_dR = 10 \times 1$

10³ ×

1.6982

1.5329

1.5172

1.1798

1.9217

1.4301

1.5731

1.3005

2.4579

1.5418

$T = 10 \times 6 \text{ table}$

	d	V	eta	deltaEta	reynold	turbulent
1	0.0020	0.0026	0.8491	1.1125	0.0064	0
2	0.0035	0.0051	1.3413	0.9924	0.0136	0
3	0.0035	0.0052	1.3276	0.9812	0.0139	0
4	0.0030	0.0057	0.8849	0.7472	0.0197	0
5	0.0020	0.0023	0.9608	1.2810	0.0050	0
6	0.0040	0.0063	1.4301	0.9195	0.0179	0

2

	d	V	eta	deltaEta	reynold	turbulent
7	0.0040	0.0057	1.5731	1.0213	0.0148	0
8	0.0030	0.0052	0.9754	0.8294	0.0163	0
9	0.0025	0.0023	1.5362	1.7178	0.0038	0
10	0.0030	0.0043	1.1564	0.9988	0.0116	0

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-3.7679e-07	5.8891e-07	-0.63982	0.54018
x1	0.00063237	0.00012578	5.0275	0.0010174

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 5.66e-07

R-squared: 0.76, Adjusted R-Squared: 0.73

F-statistic vs. constant model: 25.3, p-value = 0.00102

steigung = 6.3237e-04 intercept = -3.7679e-07 se_v = 1.2578e-04 se_r_2 = 5.8891e-07

v = 0.5000

r_2 = 3.1581e-04 eta = 1.4130 dEta_dV = -2.8227 dEta_dR = 158.8373 deltaEta_LinReg = 3.6716e-04

disp("Messwerte Benjamin - W5 eco")

Messwerte Benjamin - W5 eco

imshow(imageW5)

[d2, v2, a2, b2] = eval_data(dataBenjamin);

data = 10×2 table

	Blase_in_mm	Steigzeit_5cm_in_s
1	2.0000	54
2	3.0000	26
3	4.0000	16
4	4.0000	13
5	0.5000	287
6	1.5000	44
7	0.3000	570

	Blase_in_mm	Steigzeit_5cm_in_s
8	4.0000	11
9	1.0000	64
10	1.0000	83

mittelwert = 1.6301

standardabweichung = 0.8881

standardunsicherheit = 0.2809

 $u_Vdreieck = 0.0012$

 $u_Ddreieck = 6.1237e-04$

 $dEta_dV = 10 \times 1$

10³ ×

-2.6063

-1.3595

-0.9153

-0.6042

-4.6013

-0.9733

-6.5339

-0.4326

-0.9153

-1.5393

 $dEta_dR = 10 \times 1$

10³ ×

4.8265

3.4858

2.8602

2.3239

6.4130

2.9495

7.6420

1.9664

2.8602

3.7093 T = 10×6 table

	d	V	eta	deltaEta	reynold	turbulent
1	0.0020	0.0009	2.4133	4.3503	0.0008	0
2	0.0030	0.0019	2.6144	2.7072	0.0023	0
3	0.0040	0.0031	2.8602	2.0795	0.0045	0
4	0.0040	0.0038	2.3239	1.6040	0.0068	0
5	0.0005	0.0002	0.8016	6.8688	0.0001	0
6	0.0015	0.0011	1.1061	2.1641	0.0016	0
7	0.0003	0.0001	0.5731	9.2703	0.0000	0
8	0.0040	0.0045	1.9664	1.3156	0.0095	0
9	0.0010	0.0008	0.7150	2.0795	0.0011	0
10	0.0010	0.0006	0.9273	2.9519	0.0007	0

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept) -1.9038e-07 2.2687e-07 -0.83917 0.42574 x1 0.0010673 9.9415e-05 10.736 4.9843e-06

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 4.73e-07

R-squared: 0.935, Adjusted R-Squared: 0.927

F-statistic vs. constant model: 115, p-value = 4.98e-06

steigung = 0.0011 intercept = -1.9038e-07 se v = 9.9415e-05

 $se_v = 9.9415e-05$ $se_r_2 = 2.2687e-07$


```
v = 0.5000
r_2 = 5.3345e-04
eta = 2.3848
dEta_dV = -4.7680
dEta_dR = 206.4371
deltaEta_LinReg = 4.7632e-04
```

disp("Messwerte Jan - Frosch Aloe Vera Spül-Lotion")

Messwerte Jan - Frosch Aloe Vera Spül-Lotion

imshow(imageFrosch)

[d3, v3, a3, b3] = eval_data(dataJan);

 $data = 10 \times 2 table$

	Blase_in_mm	Steigzeit_5cm_in_s
1	4	10.0000
2	2	16.7000
3	2	50.0000
4	5	1.9000
5	3	12.5000
6	3	16.7000
7	2	16.7000
8	2	25.0000
9	5	2.5000
10	5	5.0000

mittelwert = 1.2194

standardabweichung = 0.5579

standardunsicherheit = 0.1764

u_Vdreieck = 0.0012

u_Ddreieck = 6.1237e-04

 $dEta_dV = 10 \times 1$

10³ ×

-0.3575

```
-0.2493
```

-2.2345

-0.0202

-0.3142

-0.5609

-0.2493

-0.5586

-0.0349

-0.1397

 $dEta_dR = 10 \times 1$

10³ ×

1.7876

1.4926

4.4690

0.4246

1.6759

2.2390

1.4926

2.2345

0.5586 1.1173

 $T = 10 \times 6$ table

	d	V	eta	deltaEta	reynold	turbulent
1	0.0040	0.0050	1.7876	1.1790	0.0115	0
2	0.0020	0.0030	0.7463	0.9637	0.0082	0
3	0.0020	0.0010	2.2345	3.8703	0.0009	0
4	0.0050	0.0263	0.5307	0.2612	0.2541	1
5	0.0030	0.0040	1.2569	1.0960	0.0098	0
6	0.0030	0.0030	1.6792	1.5335	0.0055	0
7	0.0020	0.0030	0.7463	0.9637	0.0082	0
8	0.0020	0.0020	1.1172	1.5299	0.0037	0
9	0.0050	0.0200	0.6983	0.3447	0.1468	0
10	0.0050	0.0100	1.3966	0.7052	0.0367	0

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

1	Estimate	SE	tStat	pValue
(Intercept)	1.3295e-06	5.6794e-07	2.341	0.047341
x1	0.00023228	5.0487e-05	4.6007	0.0017538

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 1.3e-06

R-squared: 0.726, Adjusted R-Squared: 0.691

F-statistic vs. constant model: 21.2, p-value = 0.00175

steigung = 2.3228e-04 intercept = 1.3295e-06 $se_v = 5.0487e-05$

se r 2 = 5.6794e-07

v = 0.5000
r_2 = 1.1747e-04
eta = 0.5190
dEta_dV = -1.0499
dEta_dR = 96.8726
deltaEta_LinReg = 7.6399e-05

disp("Messwerte Anna - ecover Colorwaschmittel flüssig Konzentrat Apfelblüte & Freesie")

Messwerte Anna - ecover Colorwaschmittel flüssig Konzentrat Apfelblüte & Freesie

imshow(imageEcover)

[d4, v4, a4, b4] = eval_data(dataAnna);

data = 10×2 table

	Blase_in_mm	Steigzeit_5cm_in_s
1	1.5000	15.2000
2	1.0000	25.0000
3	3.0000	13.2000
4	2.0000	13.9000
5	1.0000	20.0000
6	0.5000	33.3000
7	3.0000	13.1000
8	3.0000	13.9000
9	5.0000	1.0000
10	4.5000	2.0000

mittelwert = 0.6373

standardabweichung = 0.5099

standardunsicherheit = 0.1612

u_Vdreieck = 0.0012

 $u_Ddreieck = 6.1237e-04$

 $dEta_dV = 10 \times 1$

-116.1582

-139.6563

-350.4054

```
-172.6911
```

-89.3800

-61.9454

-345.1163

-388.5550

-5.5862

-18.0995

 $dEta_dR = 10 \times 1$

10³ ×

1.0189

1.1173

1.7697

1.2424

0.8938

0.7441

1.7563

1.8636

0.2235

0.4022 T = 10×6 table

	d	V	eta	deltaEta	reynold	turbulent
1	0.0015	0.0033	0.3821	0.6400	0.0132	0
2	0.0010	0.0020	0.2793	0.7052	0.0073	0
3	0.0030	0.0038	1.3273	1.1656	0.0088	0
4	0.0020	0.0036	0.6212	0.7897	0.0119	0
5	0.0010	0.0025	0.2235	0.5582	0.0115	0
6	0.0005	0.0015	0.0930	0.4619	0.0083	0
7	0.0030	0.0038	1.3172	1.1556	0.0089	0
8	0.0030	0.0036	1.3977	1.2364	0.0079	0
9	0.0050	0.0500	0.2793	0.1370	0.9174	1
10	0.0045	0.0250	0.4525	0.2473	0.2548	1

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept) x1	8.1028e-07 0.00012196	3.685e-07 2.059e-05	2.1989 5.9232	0.059097 0.00035241

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 9.7e-07

R-squared: 0.814, Adjusted R-Squared: 0.791

F-statistic vs. constant model: 35.1, p-value = 0.000352

steigung = 1.2196e-04 intercept = 8.1028e-07 se_v = 2.0590e-05 se_r_2 = 3.6850e-07


```
v = 0.5000
r_2 = 6.1789e-05
eta = 0.2725
dEta_dV = -0.5523
dEta_dR = 70.2578
deltaEta_LinReg = 2.8277e-05
```

Plot aller Werte

```
disp("Plotten der Einzelwerte und Ausgleichsgeraden aller Gruppenmitglieder")
```

Plotten der Einzelwerte und Ausgleichsgeraden aller Gruppenmitglieder

```
x = (0:1e-3:50*1e-3);

y1 = a1*x + b1;
y2 = a2*x + b2;
y3 = a3*x + b3;
y4 = a4*x + b4;

h1 = plot(x,y1, "r");
hold on;
    plot(v1,(d1 ./2).^2, "rx");
```

```
h2 = plot(x,y2, "g");
plot(v2,(d2 ./2).^2, "go");

h3 = plot(x,y3, "b");
plot(v3,(d3 ./2).^2, "b+");

h4 = plot(x,y4, "m");
plot(v4,(d4 ./2).^2, "ms");

grid on;
title('r² vs. v | lineare Regression');
ylabel('r²_{Blase} in m²', 'Interpreter', 'tex');
xlabel('v_{Blase} in m/s', 'Interpreter', 'tex');
legend([h1 h2 h3 h4], {"Frosch - Michael", "W5 - Benjamin", "Frosch - Jan", "ecover - Anna"});
set(gcf, 'position', [0.0000, -0.0000050, 600, 500])
xlim([0.0000 0.025]);
ylim([-0.0000050 0.00000350]);
hold off;
```



```
function [r_d, r_v, r_a, r_b] = eval_data(tmpdata)
% Rückgabewerte sind Durchmesser d und Geschwindigkeit v
```

```
% sowie Koeffizienten der Geradengleichung y = a*x + b data = tmpdata
```

Konstanten

Steigzeit der Blasen für 5 cm in s

```
t = data.Steigzeit_5cm_in_s;
```

Geschwindigkeit der Blasen in m/s

```
v = s ./ t;
```

Durchmesser der Blasen in m

```
d = data.Blase_in_mm .* 1e-3;
r = d / 2;
```

Dichte des Spülmittels in kg/m³

```
%aus Sicherheitsdatenblatt Frosch Aleo Vera Spül-Lotion
rho = 1025;
```

Viskosität des Spülmittels in N*s/m²

```
eta = (2*rho*g * (d ./2).^2) ./ (9 .* v);
```

Statistische Kenngrößen der berechneten Viskosität

```
mittelwert = mean(eta)
standardabweichung = std(eta)
standardunsicherheit = standardabweichung / sqrt(length(eta))
```

Reynolds-Zahl zur Abschätzung der Strömung

```
reynold = (v .* d .* rho) ./ (eta);
%Kugeln ab Re > 0.2 als turbulente Strömung
turbulent = reynold > 0.2;
```

Abschätzung der Unsicherheiten

```
%geschätzte Unsicherheit für Durchmesser
% 0.5 mm (Halber Milimeter nach Augenmaß abschätzbar)
b_deltaD = 0.5 * 1e-3;
%geschätzte Unsicherheit für Zeit 0.5 s
% (Genaugigkeit von 0.5 Sekunden durch Software bestimmbar)
b_deltaT = 0.5;
```

```
%geschätzte Unsicherheit für Geschwindigkeit m/s
b_deltaV = b_deltaD / b_deltaT;

%Dreieckverteilung Geschwindigkeit
u_Vdreieck = b_deltaV / 2 * sqrt(6)
%Dreieckverteilung Durchmesser
u_Ddreieck = b_deltaD / 2 * sqrt(6)
```

Fehlerfortpflanzung - Kombinierte Standardunsicherheit

```
%Ableitung eta nach Geschwindigkeit
dEta_dV = - (2 * r.^2 * g * rho) ./ (9 * v.^2)
%Ableitung eta nach Radius
dEta_dR = (4 * g * rho * r) ./ (9 * v)

%Kombinierte Standardunsicherheit
deltaEta = sqrt((dEta_dV .* u_Vdreieck).^2 + (dEta_dR .* u_Ddreieck).^2);
```

Darstellung der Werte als Tabelle

```
%varNames = {"d in m" "v in m/s" "eta in kg/m³" "delta eta" "Re" "Turbulent?"}
T = table(d, v, eta, deltaEta, reynold, turbulent)
```

Ausgleichsgerade (lineare Regression) von r2 zu v

```
ausgleichsgerade = fitlm(v,(d ./2).^2, "linear")
steigung = ausgleichsgerade.Coefficients.Estimate(2)
intercept = ausgleichsgerade.Coefficients.Estimate(1)
se_v = ausgleichsgerade.Coefficients.SE(2)
se_r_2 = ausgleichsgerade.Coefficients.SE(1)
```

Plotten der Werte und Ausgleichsgeraden

```
%plot(v,(d ./2).^2, "x")
%hold on
    plot(ausgleichsgerade)
    grid on
    title('r² vs. v | lineare Regression')
    ylabel('r²_{Blase} in m²', 'Interpreter', 'tex')
    xlabel('v_{Blase} in m/s', 'Interpreter', 'tex')
    set(gcf, 'position', [0.0000, -0.0000050, 600, 500])
%hold off
```

Rückgabewerte

```
r_d = d;
r_v = v;
r_a = steigung;
r_b = intercept;
%r.^2 = (9 * eta * v) / (2 * g * rho) + b
%Zufallspunkt
```

```
v = 0.5

%Ausgleichsgerade Y-Wert zu Zufallspunkt
r_2 = v * r_a + r_b

eta = ((r_2 - r_b) * 2 * g * rho) / (9 * v)

%Ableitung eta nach Geschwindigkeit
dEta_dV = - (2 * r_2 * g * rho) / (9 * v^2)
%Ableitung eta nach Radius
dEta_dR = (4 * g * rho * sqrt(r_2)) / (9 * v)

%Kombinierte Standardunsicherheit Lineare Regression
deltaEta_LinReg = sqrt((dEta_dV * se_v)^2 + (dEta_dR * se_r_2)^2)
end
```