II. ОСНОВНЫЕ ПОНЯТИЯ

2.1. Данные и модели данных

Процесс получения информации из данных

• -			
Предметная область	Мозг «писателя»	Знаковая система	Мозг «читателя»
	А777 АА77 ПОВИ ДЖОН МЭРИ	Право Люди Б Мэри Джон	рак А777АА77 Пово Джон

Синтактика

Прагматика

Семантика

СЕМИОТИКА:

Атомарная единица информации

<Идентификатор объекта, Наименование признака, Значение признака, [Время]>

<Джон, Рост в см, 180> <Джек, Рост в см, 190>

<Джон, Вес в кг, 90> <Джек, Вес в кг, 80>

Рост

ID_объекта	Значение
Джон	180
Джек	190

Bec

ID_объекта	Значение
Джон	90
Джек	80

ЧЕЛОВЕК

ID_объекта	Рост	Bec
Джон	180	90
Джек	190	80

Основные понятия технологии баз данных

МОДЕЛЬ ДАННЫХ

Gs - Множество правил порождения структур данных

Gc - Множество правил порождения ограничений целостности

О - Множество операций над данными СИСТЕМА УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ

ЯОД - язык определения данных

ЯООЦ - язык определения ограничений целостности

ЯМД - язык манипулирования данными БАЗА ДАННЫХ Схема БД Структуры данных Ограничения целостности

Данные

2.2. Структуры

Способы структуризации

Иерархии

Обобщения

Агрегации

Структурные и классификационные аспекты типизации

Формы данных

$${a^2, d^1, f^3, a^1}$$

 ${a^1, d^1, f^1} = {a, d, f}$
 ${a^2, d^1, f^3} =$

<u>Интенсионал множества</u> – {a | a – целое положительное число} Экстенсионал множества – {1, 2, 3, 4,...}

Интенсионал множества – {а | а – студент, сидящий в 104 ауд.} Экстенсионал множества – {Иванов, Сидоров, Петров,...}

Однородность доменов: синтаксическая – ЦПЧ, Строки семантическая – Номера телефонов города Томска

АТРИБУТ

Номер группы

Отношение

Математика

п-местным отношением *R* на множествах $A_1,...,A_n$ называется подмножество прямого произведения $A_1 \times ... \times A_n$. Другими словами, элементы $x_1,...,x_n$, где $x_i \in A_i (i=1,...,n)$, связаны отношением *R* тогда и только тогда, когда $x_1,...,x_n \in R$.

Пусть R – бинарное отношение. Определим обратное отношение R^{-1} следующим образом: $R^{-1} = \{\langle x,y \rangle | \langle y,x \rangle \in R \}$. Таким образом, R^{-1} связывает те же пары элементов, что и R, но «в другом порядке».

Логика

Пусть $E^n = E \times ... \times E$ есть произведение n множеств E, т.е. множество всех кортежей $< x_1, ..., x_n > , \ x_i \in E(i=1,...,n)$. Отображение $P: E^n \to \{0, 1\}$ называется n-местным отношением (предикатом, логической функцией) над E. Множество $A \subseteq E^n$ всех кортежей, для которых $P(x_1, ..., x_n) = 1$, определяет «свойство» кортежей: $x_1, ..., x_n \in A$.

Отношение
 Моделирование данных

Пусть задано множество из n типов или доменов $T_i(i=1,...,n)$, причем все они необязательно должны быть различными. Тогда r будет отношением, определенным на этих типах, если оно состоит из двух частей: заголовка и тела (заголовок еще иногда называют схемой или интенсионалом отношения, а тело — экстенсионалом отношения), где:

- заголовок это множество из n атрибутов вида $A_i:T_i$; здесь A_i имена атрибутов отношения r, а T_i соответствующие имена типов;
- тело это множество из m кортежей t; здесь t является множеством компонентов вида $A_i: v_i$, в которых v_i значение типа T_i , т.е. значение атрибута A_i в кортеже t.

тношение

Брак

Муж	Жена
Джон	Мэри
Джек	Capa
Джим	Лаура

Брак ⁻¹

Жена	Муж
Мэри	Джон
Capa	Джек
Лаура	Джим

Заголовок – {Муж: Строки, Жена: Строки}

 $A_1 \qquad T_1 \qquad A_2$

{Муж: Джек, Жена: Сара},

{Муж: Джим, Жена: Лаура}

Типичное использование форм данных

Предметная область	Модель человека	Модель данных
--------------------	-----------------	---------------

Объект

Тип объектов

Связь

Тип связей

Характеристика

Значение характеристики

Кортеж отношения

Отношение

Кортеж отношения

Отношение

Атрибут отношения

Значение атрибута в кортеже

Представление данных в виде таблиц

СЛУЖАЩИЙ

№ СЛУЖАЩЕГО	РИЛИМАФ	АДРЕС	ПОЛ
123	СМИТ	ЭВЕЛИН, 19	Ж
862	ЛОКК	ШАТЕР, 85	М
781	БЭРР	КУИН, 16	М
523	джонс	джордж, з	Ж
324	ПИТЦ	ЛАНДИ, 22	Ж

КОМПАНИЯ

НАЗВАНИЕ	ГОРОД
AEC	ТОРОНТО
ИБМ	НЬЮ-ЙОРК

СЛУЖБА

ВАРИАНТ 1

№ СЛУЖАЩЕГО	РИЛИМАФ	АДРЕС	ПОЛ	НАЗВАНИЕ	ГОРОД
123	СМИТ	ЭВЕЛИН, 19	Ж	AEC	ТОРОНТО
862	ЛОКК	ШАТЕР, 85	М	AEC	ТОРОНТО
781	БЭРР	КУИН, 16	М	AEC	ТОРОНТО
523	джонс	джордж, з	Ж	ИБМ	нью-йорк
123	СМИТ	ЭВЕЛИН, 19	Ж	ИБМ	НЬЮ-ЙОРК

ВАРИАНТ 2

№ СЛУЖАЩЕГО	НАЗВАНИЕ
123	AEC
862	AEC
781	AEC
523	ИБМ
123	ИБМ

Представление данных в виде графов

2.3. Ограничения целостности

Типизация ограничений целостности

1) Ограничения целостности на значения атрибутов

Множество допустимых значений атрибутов можно задавать:

- 1) принадлежностью к определенному типу или домену Poct INTEGER
- 2) сравнением с константой или значением атрибута того же отношения (возможны более сложные выражения)

 Рост > 50 или Рост > Вес + 110
- **3) диапазоном Poct BETWEEN 50 AND 300**
- 4) перечислением значений Пол IN {'м', 'ж'}
- 5) более сложным логическим выражением, включающим в виде атомов конструкции 2 4

```
(Пол = 'ж' AND Рост > Bec + 110) OR
(Пол = 'м' AND Рост > 180)
```

Отображение в математике

Отображение (функция, оператор) есть закон соответствия, сопоставляющий каждому элементу множества A некоторый (единственный) элемент множества B. $\phi:A\to B$ означает, что задано отображение A в B, называемое ϕ .

Классификация Кофмана

Соответствие Γ между множествами E_1 и E_2 определено, если задан обычный граф $G \subseteq E_1 \times E_2$. Тогда говорят, что G – граф соответствия Γ , E_1 – область определения, а E_2 – область значений Γ . Соответствие, обратное Γ , обозначается Γ^{-1} , и E_2 – область определения, а E_1 – область значений Γ^{-1} .

<u>Отображением</u> множества E_1 во множество E_2 называется такое соответствие, которое любому $x \in E_1$ сопоставляет, по крайней мере, один $y \in E_2$. Тогда говорят, что элемент y – образ элемента x, а x – переменная или аргумент.

<u>Функцией</u> E_1 в E_2 называется такое отображение, которое каждому $x \in E_1$ сопоставляет один и только один $y \in E_2$.

Отображение в моделировании данных

В моделировании данных сложилась традиция называть самый общий случай соответствия отображением: «Бинарное отношение R множеств S_1 и S_2 определяет два отображения $R: S_1 -> S_2$ и $R^{-1}: S_2 -> S_1$, каждое из которых является обратным по отношению к другому».

Семантически значимое отображение - это понятие, определяющее некоторый закон предметной области φ , по которому каждому объекту моделируемого мира может быть поставлен в соответствие (а может быть, и нет) один или более объектов $\varphi:A\to B$.

Каждый факт соответствия φ одному объекту одного другого объекта представляет экземпляр отображения φ (или экземпляр φ -отображения), все экземпляры одного и того же отображения φ , соответствующие одному объекту-прообразу, будем называть отображением φ этого объекта (или φ -отображением объекта).

Отношение РОДИТЕЛЬ-РЕБЕНОК

Родитель	Ребенок
Сидоров	Саша
Саша	Маша
Саша	Даша

Отображение РЕБЕНОК: РОДИТЕЛЬ -> РЕБЕНОК

Сидоров ребенок Саша ребенок Маша
Саша = ребенок (Сидоров)

ребенок
Даша

Отображение РОДИТЕЛЬ: РЕБЕНОК -> РОДИТЕЛЬ

Сидоров родитель Саша родитель Маша

Сидоров = родитель (Саша)

родитель

Даша

Количественные характеристики отображений

 ϕ -отображение объекта x характеризует **кардинальное число объекта x при отображении** ϕ (обозначение - $KY_{\phi}(x)$) - мощность его области образов при этом отображении

$$\forall x \in \Psi E \Pi O B E K : K \Psi_{podumenb}(x) = 2$$

Количественные характеристики отображений (продолжение)

Минимальное кардинальное число (МинКЧ) отображения φ - это наименьшее из кардинальных чисел $KY_{\varphi}(x)$ объектов x, являющихся экземплярами области определения отображения (ООО) φ :

$$MuhKH_{\phi} = \min_{\substack{x=\text{экземпляр}(OOO(\phi))}} KH_{\phi}(x)$$

$$MuhKH_{podumenb} = 2 \qquad MuhKH_{pedehok} = 0$$

Максимальное кардинальное число (МаксКЧ) отображения φ - это наибольшее из кардинальных чисел $KY_{\varphi}(x)$ объектов x, являющихся экземплярами области определения отображения (ООО) φ :

$$MaкcKH_{\phi} = \max_{x=\mathit{экземпляр}(OOO(\phi))} KH_{\phi}(x)$$

$$MakcKH_{\mathit{podumenb}} = 2 \quad MakcKH_{\mathit{pedehok}} = \infty$$

Нотации для определения количественных характеристик отображений и бинарных отношений

R (S1 $(0, \infty)$:S2 (0, 1))

S1 (0, ∞) означает, что для отображения R⁻¹: S2 -> S1 МинКЧ = 0, МаксКЧ = ∞ S2 (0, 1) означает, что для отображения R: S1 -> S2 МинКЧ = 0, МаксКЧ = 1

1:1 («один-к-одному») - оба отображения функциональны

1:М («один-ко-многим») - одно отображение функционально, второе - нет М:N («многие-ко-многим») - оба отображения не функциональны

Отношение типа R (S1 (0, ∞):S2 (0, ∞)) или M : N

Отображение S1 -> S2 ничем не ограничено

Занятие (Сотрудник $(0, \infty)$:Студент $(0, \infty)$)

Отношение типа R (S1 (0, ∞):S2 (1, ∞)) или M : N

Отображение S1 -> S2 полностью определено

Занятие (Преподаватель $(0, \infty)$:Студент $(1, \infty)$)

Отношение типа R (S1 (0, ∞):S2 (0, 1)) или M : 1

Отображение S1 -> S2 частичное функциональное

Распределение по группам (Студент (0, ∞): Группа (0, 1))

Отношение типа R (S1 (0, ∞):S2 (1, 1)) или M : 1

Отображение S1 -> S2 полное функциональное

Рождение (Ребенок (0, ∞): Женщина (1, 1))

Отношение типа R (S1 (0, 1):S2 (0, 1)) или 1:1

Совершеннолетие (Человек (0, 1): Паспорт РФ(0, 1))

Соответствие понятий

Классификация Кофмана	Моделирование данных
Соответствие	Отображение
Отображение	Полностью определенное отображение
Функция	Полное функциональное отображение

Классификация отображений в моделировании данных

Сложные отображения

Родитель: Ребенок -> Родитель

Ребенок: Родитель -> Ребенок

Муж: Женщина -> Мужчина

Жена: Мужчина -> Женщина

Родители: Ребенок -> Мать × Отец

Ребенок : Мать × Отец -> Ребенок

Мать: Отец × Ребенок -> Мать

Отец с Ребенком : Мать -> Отец × Ребенок

Отец: Мать × Ребенок -> Отец

Мать с Ребенком : Отец -> Мать × Ребенок

2A) Ограничения целостности на отображения между атрибутами одного отношения Ключ

СЛУЖАЩИЙ

№ СЛУЖА	ЩЕГО	РИЛИМАФ	АДРЕС	ПОЛ		№ СЛУЖАЩЕГО			
123		СМИТ	ЭВЕЛИН, 19	Ж		123	LINIOLIE		
862		ЛОКК	ШАТЕР, 85	M		862	UNIQUE		
781		БЭРР	КУИН, 16	М		781			
523		джонс	ДЖОРДЖ, 3	Ж		523	PRIMARY KEY		
324		ПИТЦ	ЛАНДИ, 22	Ж		324			
				A					
ФУНКЦИОНАЛЬНЫ									
ич СПУЖАП	№ СЛУЖАЩЕГО UNIQUE или								

Недопустимость неопределенных значений

СЛУЖАЩИЙ

№ СЛУЖАЩЕГО PRIMARY KEY

CITYMAMPIN					
№ СЛУЖАЩЕГО	РИЛИМАФ	АДРЕС	пол	ФАМИЛ	RNI
123	СМИТ	ЭВЕЛИН, 19	Ж	СМИ	Т
862	ЛОКК	ШАТЕР, 85	М	ЛОКІ	<
781	БЭРР	КУИН, 16	М	БЭРГ	כ
523	джонс	ДЖОРДЖ, 3	Ж	ДЖОН	łC
324	ПИТЦ	ЛАНДИ, 22	ж	ПИТІ	4

NOT NULL

ПОЛНОСТЬЮ ОПРЕДЕЛЕНЫ

ФАМИЛИЯ NOT NULL AДРЕС NULL

2Б) Ограничения целостности на отображения между отношениями

```
ПРЕПОДАВАТЕЛЬ (№ ПРЕП, ФАМИЛИЯ, ...)
СТУДЕНТ (№ СТУД, ФАМИЛИЯ, ...)
ПРЕДМЕТ (№ ПРЕДМ, НАЗВАНИЕ, ...)
ЭКЗАМЕН (№ ПРЕП, № СТУД, № ПРЕДМ, ДАТА, ОЦЕНКА)
```

ASSERT ЭКЗАМЕН.№_ПРЕП IN ПРЕПОДАВАТЕЛЬ.№_ПРЕП ASSERT ЭКЗАМЕН.№_СТУД IN СТУДЕНТ.№_СТУД ASSERT ЭКЗАМЕН.№_ПРЕДМ IN ПРЕДМЕТ.№_ПРЕДМ

МАР FROM преп IN ПРЕПОДАВАТЕЛЬ ТО [0:100]

экз IN ЭКЗАМЕН

WHERE преп.№_ПРЕП = экз.№_ПРЕП

МАР FROM экз IN ЭКЗАМЕН ТО [1:1]

преп IN ПРЕПОДАВАТЕЛЬ

WHERE преп.№_ПРЕП = экз.№_ПРЕП

2.4. Операции

Операция над данными переводит БД из одного состояния в другое

Действия:

- Установка индикаторов текущих элементов (SET CURRENCY)
- Включение или добавление в БД новых элементов (INSERT)
- Обновление или модификация существующих элементов в БД (UPDATE)
- Удаление существующих элементов из БД (DELETE)
- Выборка информации из БД (SELECT)

Способы селекции данных:

- Селекция по указателям текущих (GET NEXT СТУДЕНТ)
- Селекция по данным (GET СТУДЕНТ WHERE Пол = 'ж')
- Селекция по связям (GET СТУДЕНТ WHERE СТУДЕНТ. Фамилия = АВТОМОБИЛЬ. Фамилия владельца)
- Комбинированный способ (GET NEXT СТУДЕНТ WHERE Пол = 'ж' AND СТУДЕНТ. Фамилия = АВТОМОБИЛЬ. Фамилия владельца)

Навигационные и спецификационные операции и языки схема

ФАКУЛЬТЕТ (№ФАК, НАЗВАНИЕ) ГРУППА (№ГРУППЫ, №ФАК) СТУДЕНТ (ФАМИЛИЯ, №ГРУППЫ)

НАВИГАЦИОННЫЙ ЯЗЫК

FIND ФАКУЛЬТЕТ WHERE HA3BAHИE = 'ФАКУЛЬТЕТ ИНФОРМАТИКИ' FIND FIRST ГРУППА WHERE №ФАК = ФАКУЛЬТЕТ.№ФАК цикл по группам факультета

GET FIRST СТУДЕНТ WHERE №ГРУППЫ = ГРУППА.№ГРУППЫ цикл по студентам группы печать СТУДЕНТ.ФАМИЛИЯ

GET NEXT СТУДЕНТ WHERE №ГРУППЫ = ГРУППА.№ГРУППЫ

конец цикла по студентам

FIND NEXT ΓΡΥΠΠΑ WHERE №ΦΑΚ = ΦΑΚΥΛΙЬΤΕΤ.№ΦΑΚ

конец цикла по группам

СПЕЦИФИКАЦИОННЫЙ ЯЗЫК

SELECT ФАМИЛИЯ FROM ФАКУЛЬТЕТ, ГРУППА, СТУДЕНТ WHERE ФАКУЛЬТЕТ.№ФАК = ГРУППА.№ФАК AND ГРУППА.№ГРУППЫ = СТУДЕНТ.№ГРУППЫ AND HA3BAHИE = 'ФАКУЛЬТЕТ ИНФОРМАТИКИ'

Процедуры БД

Хранятся и выполняются на сервере

Состоят из разделов:

- условие
- действие
- результат

Классификация процедур:

- Функции агрегирования и другие функции и процедуры общего назначения
- Виртуальные атрибуты
- Триггеры целостности
- Триггеры безопасности
- Операторы доступа
- Триггеры БД, запускаемые операциями DML (INSERT, UPDATE, DELETE) (прикладные триггеры)
- Триггеры БД, запускаемые другими событиями в БД (системные триггеры)

2.5. Демонстрационная предметная область

Типы объектов

- БОЛЬНИЦА (Название, Адрес, Телефон, Число коек (Ч/К))
- ПАЛАТА (Номер палаты (Н/П), Название, Число коек (Ч/К))
- ПЕРСОНАЛ (Фамилия, Должность, Смена, Зарплата (3/П))
- ВРАЧ (Фамилия, Специальность)
- ПАЦИЕНТ (Регистрационный номер (Р/Н), Фамилия, Адрес, Дата рождения (Д/Р), Пол, Номер медицинского полиса (НМП))
- ДИАГНОЗ (Тип диагноза (Т/Д), Осложнения, Предупреждающая информация)
- ЛАБОРАТОРИЯ (Название, Адрес, Телефон)
- АНАЛИЗ (Тип анализа (T/A), Назначенная дата (H/Д), Назначенное время (H/B), Номер направления (H/H), Состояние)

Типы связей

- БОЛЬНИЧНАЯ ПАЛАТА (БОЛЬНИЦА, ПАЛАТА)(1:М)
- ШТАТНЫЙ ВРАЧ (БОЛЬНИЦА, ВРАЧ)(1:М)
- БОЛЬНИЦА-ЛАБОРАТОРИЯ (БОЛЬНИЦА, ЛАБОРАТОРИЯ)(M:N)
- ПЕРСОНАЛ ПАЛАТЫ (ПАЛАТА, ПЕРСОНАЛ)(1:М)
- РАЗМЕЩЕНИЕ (ПАЛАТА, ПАЦИЕНТ)(1:М)(Номер койки (Н/К))
- ВРАЧ-ПАЦИЕНТ (ВРАЧ, ПАЦИЕНТ)(M:N)
- АНАЛИЗ ПАЦИЕНТА (ПАЦИЕНТ, АНАЛИЗ)(1:М)
- ДИАГНОЗ ПАЦИЕНТА (ПАЦИЕНТ, ДИАГНОЗ)(1:М)
- ОБРАБОТКА АНАЛИЗА (ЛАБОРАТОРИЯ, АНАЛИЗ)(1:М)