JEE MAINS

EE1030

APRIL 08, 2023 - SHIFT - 2

Homa Harshitha Vuddanti (EE24BTECH11062)

QUESTIONS- 16 TO 30

SECTION A

201101111			
1) The integral $\int \left(\left(\frac{x}{2} \right)^x + \left(\frac{2}{x} \right)^x \right) log_2 x \ dx$ is equal to			
a) $\left(\frac{x}{2}\right)^x log_2\left(\frac{2}{x}\right) + C$	b) $\left(\frac{x}{2}\right)^x - \left(\frac{2}{x}\right)^x + C$	c) $\left(\frac{x}{2}\right)^x log_2\left(\frac{x}{2}\right) + C$	d) $\left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x + C$

- 2) The value of $36(4\cos^2 9^\circ 1)(4\cos^2 27^\circ 1)(4\cos^2 81^\circ)(4\cos^2 243^\circ 1)$ is
 - a) 27

b) 54

c) 18

d) 36

1

- 3) Let $\mathbf{A}(0,1)$, $\mathbf{B}(1,1)$ and $\mathbf{C}(1,0)$ be the midpoints of the sides of a triangle with incentre at the point **D**. If the focus of the parabola $y^2 = 4ax$ passing through **D** is $(\alpha + \beta \sqrt{3}, 0)$, where α and β are rational numbers, then $\frac{\alpha}{\beta^2}$ is equal to
 - a) 6

b) 8

c) $\frac{9}{2}$

- d) 12
- 4) The negation of $(p \land (\sim q)) \lor (\sim p)$ is equivalent to
 - a) $p \wedge (\sim q)$
- b) $p \wedge (q \wedge (\sim p))$ c) $p \vee (q \vee (\sim p))$ d) $p \wedge q$
- 5) Let the mean and variance of 12 observations be $\frac{9}{2}$ and 4 respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is $\frac{m}{n}$, where m and n are co-prime, then m+n is equal to
 - a) 316
- b) 317
- c) 315
- d) 314

SECTION B

- 6) Let $R = \{a, b, c, d, e\}$ and $S = \{1, 2, 3, 4\}$. Total number of onto functions $f: R \mapsto S$ such that $f(a) \neq 1$, is equal to
- 7) Let m and n be the number of real roots of the quadratic equations $x^2 12x + \lceil x \rceil + 31 =$ 0 and $x^2 - 5|x + 2| - 4 = 0$ respectively, where [x] denotes the greatest integer $\leq x$. Then $m^2 + mn + n^2$ is equal to
- 8) Let P_1 be the plane 3x y 7z = 11 and P_2 be the plane passing through points (2,-1,0), (2,0,-1), and (5,1,1). If the foot of the perpendicular drawn from the point

- (7,4,-1) on the line of intersection of the planes P_1 and P_2 is (α,β,γ) , then $\alpha+\beta+\gamma$ is equal to
- 9) If the domain of the function $\ln\left(\frac{6x^2+5x+1}{2x-1}\right) + \cos^{-1}\left(\frac{2x^2-3x+4}{3x-5}\right)$ is $(\alpha,\beta) \cup (\gamma,\delta]$, then, $18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2)$ is equal to
- 10) Let the area enclosed by the lines x + y = 2, y = 0, x = 0 and the curve f(x) = 0 $min\{x^2 + \frac{3}{4}, 1 + [x]\}$ where [x] denotes the greatest integer $\leq x$, be A, then the value of 12A is
- 11) Let 0 < z < y < x be three real numbers such that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in an arithmetic progression and x, $\sqrt{2}y$, z are in a geometric progression. If $xy + yz + zx = \frac{3}{\sqrt{2}}xyz$, then $3(x + y + z)^2$ is equal to
- 12) Let the solution curve $x = x(y), 0 < y < \frac{\pi}{2}$, of the differential equation $(\ln(\cos y))^2 \cos y dx - (1 + 3x \ln(\cos y)) \sin y dy = 0$ satisfy $x\left(\frac{\pi}{3}\right) = \frac{1}{2\ln 2}$. If $x\left(\frac{\pi}{6}\right) = \frac{1}{\ln m - \ln n}$, where m and n are co-prime, then mn is equal to 13) Let [t] denote the greatest integer function. If $\int_0^{2.4} \left[x^2\right] dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3} + \delta \sqrt{5}$,
- then $\alpha + \beta + \gamma + \delta$ is equal to
- 14) The ordinates of the points \mathbf{P} and \mathbf{Q} on the parabola with focus (3,0) and directrix x = -3 are in the ratio 3:1. If $\mathbf{R}(\alpha, \beta)$ is the point of intersection of the tangents to the parabola at **P** and **Q**, then $\frac{\beta^2}{\alpha}$ is equal to

 15) Let k and m be positive real numbers such that the function $f(x) = \begin{cases} 3x^2 + k\sqrt{x+1}, 0 < x < 1 \\ mx^2 + k^2, x \ge 1 \end{cases}$

$$f(x) = \begin{cases} 3x^2 + k\sqrt{x+1}, 0 < x < 1\\ mx^2 + k^2, x \ge 1 \end{cases}$$

is differentiable for all x > 0. Then $\frac{8f'(8)}{f'(\frac{1}{2})}$ is equal to