of EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 23rd September 2024

□ Silicon *p-n* junction

- > physical structure
- > electrostatics
- > I-V characteristics & capacitance
- physical layout

Module Roadmap

CMOS Digital Integrated Circuit

Recap: Lecture 2

Semiconductor Material Fundamentals

- Crystal Structure:
- ✓ Defines the periodic arrangement of atoms.
- ✓ Creates a periodic potential for electrons.

Formation of Energy Bands

- Quantum Mechanics in Periodic Potentials:
- ✓ Leads to valence, conduction bands & band gap (E_a) .

Effective Mass (m*) and Band Structure

- m*: Derived from the curvature of energy bands.
 - ✓ Lower m^* : carriers accelerate more easily.
- **Density of States (DOS):** in 3D: DOS \propto $(m^*)^{3/2}$
- ✓ Higher $m^* \Rightarrow$ Higher DOS.

Carrier Concentration and Doping

- Intrinsic Carriers (n_i) : $np = n_i^2$
 - ✓ Generated thermally across E_a .
- ✓ Depends on DOS (m^*) , E_g , and temperature.
- **Doping:** introducing impurities to control carrier concentration (Boron for p and Phosphorus for n).

Linking Material Properties to Transport

- Effective Mass Influences:
 - ✓ **Mobility:** Lower $m^* \Rightarrow$ Higher μ
- ✓ **DOS:** Higher $m^* \Rightarrow$ Higher DOS
- \checkmark n_i : Higher DOS \Rightarrow More states \Rightarrow Higher n_i
- Bandgap Affects Carrier Concentration:
- ✓ Smaller $E_a \Rightarrow$ Higher intrinsic n, p
- Scattering Determines Mobility:
- ✓ Fewer Defects/Impurities \Rightarrow Higher $\tau \Rightarrow$ Higher μ

Carrier Transport Mechanisms

- **Drift:** movement under electric field.
 - ✓ Current Density: $J_{\text{drift}} = e n \mu E$
- **Diffusion:** movement due to concentration gradient.
- ✓ Current Density: $J_{diffusion} = eDdn/dx$
- Einstein Relation: links μ and D ($D=\mu k_BT/e$).

Carrier Mobility (μ)

- Dependence on Effective Mass & Scattering:
 - $\checkmark \mu = q\tau/m^*$; τ =mean free time between collisions.
- Scattering Mechanisms:
- ✓ Phonon Scattering: Due to lattice vibrations.
- ✓ Impurity Scattering: From defects and dopants.

Silicon CMOS Digital ICs

(billions of transistors)

☐ In modern digital ICs, a massive number of transistors are packed in a small chip area.

- ➤ In 2018, an Intel microprocessor (e.g. Core i7) contains multibillion transistors.
- ➤ 101 million transistors per mm² in the 10-nm technology node.

Silicon CMOS Digital ICs

(from MOS transistor to complex construction)

□ Silicon **CMOS** digital ICs of whatever complexity start from the **MOS** transistor for their construction.

From: J. M. Rabaey et al., *Digital Integrated Circuits: A Design Perspective*, 2nd edition, © 2003 Pearson, USA.

Silicon CMOS Digital ICs

(building blocks for complex construction)

- ☐ One can imagine the huge complexity of digital ICs constructed with billions of transistors.
- □ No matter how complex the digital IC are, they are still constructed using the fundamental building blocks, namely silicon semiconductor devices.
 - > At the **physical layout** design level, the major building block is the **MOS transistor**, with **interconnect** wires also being essential in connecting different MOS transistors to form complex circuits.
 - > A basic understanding of the underlying <u>building blocks</u> is needed before complex construction. Xi'an Jiaotong-Liverpool University
 - > Start from basics in engineering.

西交利物浦大學

(*p-n* junction & MOS transistor)

- □ The MOS transistor itself is composed of two fundamental structures in semiconductor electronics, namely the p-n junction and the MOS capacitor.
- ☐ The *p-n* junction is essentially a **diode** from the circuit point of view.
 - > A **diode** allows current to flow in only one direction.
- □ The *p-n* junction as a **diode** is not explicitly used in the silicon CMOS digital ICs (except in the I/O ports' electrostatic discharge protection).
 - > It is everywhere in a silicon CMOS IC.

西交利物浦大學

(existence in digital ICs)

- □ Two MOS transistors (*n*MOS and *p*MOS) are used to construct the fundamental logic gate, inverter.
 - > Do you see where the p-n junctions are in the circuit?

(existence parasitic diode)

 \Box The existence of the *p-n* junction is more obvious when looking at the 3D cross-sectional structure.

> It exists as *parasitic* **diodes** which are usually reverse-biased.

Xi'an Jiaotong-Liverpool University 西交利物浦大學

(normally reverse-biased)

- □ The nMOS transistor (shown here) contains two p-n junctions which do not conduct current in the normal situation as they are reverse-biased.
- ☐ The *p-n* junction however can directly influence the behaviour of the device, not in the static case.

The parasitic capacitance of the p-n junction affects the switching speed of the MOS circuits.

(parasitic diode)

- ☐ In some mixed-signal ICs, integrated resistors may be used in the circuit design.
 - ➤ The implementation of an integrated resistor using an *n*-well on a *p*-substrate contains the *p-n* junction as a distributed *parasitic* diode.

From: R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, 3e, © 2010 Wiley-IEEE Press, USA.

p-n Junction – CMOS implementation

(simplest semiconductor device)

- □ To help the physical layout design of CMOS digital ICs, it is good to know the basic properties and device equations of the *p-n* junction as a **diode**.
- □ As the simplest semiconductor device, the p-n junction diode is typically implemented as shown in the cross-sectional diagram here.

➤ The structure consists of a *p*-type region on an *n*-type substrate or vice versa.

(physical structure)

 \square For simplicity of explanations, the p-n junction diode is usually represented by a structure with a **p**-type block next to an **n**-type. Cross-sectional area

x = 0

From: Donald A. Neamen. Microelectronics: Circuit Analysis & Design, 4th edition, © 2010 McGraw-Hill. USA.

> The p-region is doped with acceptor impurities (e.g. boron) of concentration N_a while the nregion donor impurities (e.g. phosphorous or arsenic) of N_d .

(majority & minority carriers)

- □ In the *p*-region, there are plenty of holes as the majority carriers, with the hole concentration $p_p \approx N_a$ at room temperature.
 - \triangleright The subscript p in p_p means that it is in the p-region.
- □ In the *n*-region, there are plenty of **electrons** as the **majority carriers**, with the electron concentration $n_n \approx N_d$ at room temperature.
 - \succ The subscript n in n_n means that it is in the n-region.
- The minority carrier concentrations are respectively n_p (electron concentration) in the p-region and p_n (hole concentration) in the n-region.

 Xi'an Jiaotong-Liverpool University 西交利的消入學
 - mass action law

Carrier Concentrations

(mass action law)

- □ In <u>thermal equilibrium</u>, the **mass action law** applies in the **p**-region as well as in the **n**-region.
 - ➤ The minority carrier concentrations can be determined accordingly.

Can you distinguish the Cathode different carrier concentrations p_p, p_n, n_p , and n_n ?

From: R. C. Jaeger & T. N. Blalock, Microelectronic Circuit Design, 4e, © 2010 McGraw-Hill, USA.

Xi'an Jiaotong-Liverpool University 西交利物浦大學

Concentration Gradient

(carrier diffusion across junction)

□ Due to the large **concentration gradient** in both electrons and holes between the **p**-region and the **n**-region, carrier **diffusion** occurs across the junction and an equilibrium state is reached.

- Holes diffuse from the p-region to the n-region.
- Flectrons diffuse from the *n*-region to the *p*-region

Carrier Diffusion

(immobile dopant ions)

■ When the holes leave the p-type region, they leave behind immobile acceptor dopant ions, which are negatively charged.

Similarly, when the electrons leave the n-type region, immobile donor dopant ions are left behind and they are positively charged.

Carrier Drift

(electric field from immobile charges)

■ With the opposite charges on the two sides near the boundary of the p-type and n-type regions, an electric field is created.

Electron drift

Blalock. Microelectronic

Circuit Design, 4e, © 2010 McGraw-Hill, USA.

- It points from the *n*-type region to the*p*-type region.
- It causes drift action of the charge carriers, opposite to the diffusion direction.

Depletion Region

(equilibrium of drift & diffusion)

With the **drift** action counteracting with the carrier **diffusion**, an **equilibrium** is attained

A space-charge region or called depletion region is formed at the metallurgical junction.

p-n Junction: Electrostatics

(charge density to electric potential)

- Using electrostatic analysis, the electric field can be determined from the charge density and the electric potential from the electric field.
- There is a **potential** difference (V_{bi}) between the p-type and n-type regions.

p-n Junction: Electrostatics

(changes when reverse voltage increases)

When a reverse-biased voltage V_R is applied across the p-n junction, the depletion region extends; the magnitude of the electric field increases and the same is the potential difference.

From: R. C. Jaeger & T. N. Blalock, *Microelectronic Circuit Design*, 4e, © 2010 McGraw-Hill, USA.

(c) Electrostatic potential

p-n Junction: band diagram

 $(E_f$ aligned with each other)

☐ Using the energy band diagram, the Fermi energy E_f level on the side of the **p**-type region aligns with that on the side of the *n*type region, when an **equilibrium** is reached.

p-n Junction

(key parameters)

- \Box There are a few key parameters in the p-n junction:
 - \succ the **built-in potential** ϕ_{bi} or called **built-in voltage** V_{bi}
 - > the width W_o of the depletion region which consists of the depletion width W_p on the p-type side and also W_n on the n-type side
 - \succ the **depletion capacitance** C_d or junction capacitance C_j
- \Box V_{bi} is needed for calculating for W_0 ; and W_0 is in turn used for determining C_d .
 - ➤ In silicon CMOS digital ICs, the *p-n* junction is zero-biased (i.e. open-circuited) or reverse-biased in most situations.
 - Other parameters of concern?

p-n Junction

(built-in potential/voltage)

□ The built-in potential or built-in voltage V_{bi} is given by:

$$V_{bi} = \frac{k_B T}{e} \ln \left(\frac{N_A N_D}{n_i^2} \right)$$
$$= V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

- > $V_T = k_B T/e$ is called the thermal voltage and $\underline{V}_{\underline{T}} \approx 26$ mV at T = 300 K.
- ightharpoonup is the electronic charge (1.60×10⁻¹⁹ C)

From: Donald A. Neamen, *Microelectronics: Circuit Analysis & Design*, 4th edition, © 2010 McGraw-Hill, USA.

Note: $k_B = 1.38 \times 10^{-23}$ J/K is the Boltzmann constant

(zero-biased depletion width)

- \square With typical doping concentrations N_D and $N_A \approx$ 10^{16} cm⁻³, V_{hi} is about 0.7 V for the silicon p-njunction at room temperature.
- ☐ As for the width of the **depletion region** at <u>zero-</u> bias, it is given by

as, it is given by
$$W_0 = W_p + W_n = \sqrt{\frac{2\varepsilon_{Si}(N_A + N_D)V_{bi}}{eN_AN_D}}$$

$$V_0 = W_p + W_n = \sqrt{\frac{2\varepsilon_{Si}(N_A + N_D)V_{bi}}{eN_AN_D}}$$

$$V_0 = \frac{N_D}{N_A + N_D} W_0$$

$$V_0 = \frac{N_D}{N_A + N_D} W_0$$

ightharpoonup Note $\mathcal{E}_{Si} = 11.9 \,\mathcal{E}_{O} = 11.9 \times (8.85 \times 10^{-12} \, \text{F/m})$

Digital Integrated Circuits: A Design

 $W_n = \frac{N_A}{N_A + N_D} W_0$

Xi'an Jiaotong-Liverpool University

(reverse-biased depletion width)

□ When the p-n junction is reverse-biased, the depletion width increases sub-linearly with the reverse-biased voltage V_R :

$$W_0 = W_p + W_n = \sqrt{\frac{2\varepsilon_{Si}(N_A + N_D)(V_{bi} + V_R)}{eN_A N_D}}$$

- \triangleright Note the inclusion of the <u>magnitude</u> of the reversebiased voltage V_R in the above expression.
- \Box What happens if the p-n junction is forward-biased?
 - \succ The **depletion width** approaches to zero if the forward-biased voltage V_F is close to V_{bi} .

$$W_0 = \sqrt{\frac{2\mathcal{E}_{Si}\left(N_A + N_D\right)\!\!\left(\!V_{bi} - \!V_F\right)}{eN_A\!N_D}} \\ \frac{eN_A\!N_D}{e^{\rm EEE201~CMOS~Digital~Integrated~Circuits}} \\ \frac{eEE201~CMOS~Digital~Integrated~Circuits}{e^{\rm Semester~1,~2024/2025~by~S.Lam@~XJTLU}}$$

Silicon *p-n* Junction Current

(exponential behaviour)

Silicon *p-n* Junction current

(60 mV per decade)

- With the <u>exponential</u>
 <u>behaviour</u>, the forward biased current of the *p n* junction is a straight
 line in a semi logarithmic plot.
- □ The inverse of the slope is 60 mV per decade, which is a useful number later for looking at the MOS transistor.

Capacitance of *p-n* Junction

(parallel-plate capacitance)

☐ With *immobile* dopant ions of opposite charge on both sides of the metallurgical junction, the p-n junction is almost like a parallel-plate capacitor.

In a parallel-plate capacitor, the capacitance is:

$$C = \frac{\mathcal{E}A}{d} \implies C_j = \frac{\mathcal{E}_{Si}A_j}{W_0}$$
 dynamic capacitance C_j 数文利为演人学

Capacitance of *p-n* Junction

(voltage dependent)

□ Under reverse bias, the *p-n* junction can be viewed as a voltage-dependent capacitor.

From: Behzad Razavi, Fundamentals of Microelectronics, 2

 \square By varying the reverse bias voltage V_R , the depletion width changes, therefore changing the capacitance.

☐ This junction capacitance, or called depletion capacitance, can be expressed as $C_{j\uparrow,\downarrow}$

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_{bi}}}}$$

Junction Capacitance

(forward-biased)

■ When forward-biased, the depletion width becomes smaller. As a result, the junction capacitance increases with the forward-bias voltage before reaching the built-in voltage.

2nd

The voltage dependence of the junction capacitance has a slight difference between an abrupt junction and a linear junction.

Junction Capacitance

(sidewall capacitance)

- □ In estimating the **junction capacitance** in CMOS IC design, the <u>zero-bias **junction capacitance**</u> C_{j0} needs to be determined first.
- \Box C_{j0} consists of two parts given in the parameter data of a CMOS IC process: one proportional to the area while the other (called **sidewall capacitance**) to the perimeter.

Note: C_{j0a} & C_{j0sw} are normalised capacitances with data provided by the CMOS process.

(simple implementation)

(improved implementation)

From: R. C. Jaeger & T. N. Blalock, *Microelectronic Circuit Design*, 4e, © 2010 McGraw-Hill, USA.

- □ An improvement can be made in the contact of the n-type substrate by using a heavily doped n+ region.
- □ The electrical connection is better in this case because siO₂ of the so-called ohmic contact.

(further improved implementation)

□ To reduce the series resistance of the *p-n* junction diode, an *annular* layout can be used.

n-type silicon

From: R. C. Jaeger & T. N. Blalock, Microelectronic Circuit Design, 4e, © 2010 McGraw-Hill, USA.

The current can flow in more paths from the anode to the cathode. Such a design can also accommodate a larger diode current. However, the junction capacitance will increase unavoidably.

EEE201 CMOS Digital Integrated Circuits Semester 1, 2024/2025 by S.Lam@XJTLU

Junction Capacitance Estimation

(silicon *p-n* junction example)

p-n Junction in MOSFET

(source/drain diffusion regions)

- □ In silicon CMOS digital ICs, the *p-n* junction is inherent in the MOSFET though it is not obvious in the physical layout.
 - ➤ The source/drain diffusion regions form *p-n* junctions with the substrate.
 - Note the junction depth x_j of the source/drain diffusion region.
 xi'an Jiaotong-Liverpool University 西交利が消入学

STI: shallow trench isolation

p-n Junction in MOSFET

(junction capacitance)

- ☐ If the IC layout of a MOSFET is given (as on slide 37), can you determine **junction capacitance** associated with the source/drain diffusion region?
 - What value is *layout_area* (or called bottom area)?
 - > Any difference of *layout_area* when the gate terminal is open-circuit or has an applied voltage (for channel formation)?
- Usually, the dopant concentration (e.g. n- or p-type doping) and junction depth data are not available from the IC fabrication service provider (e.g. TSMC). Instead, data of C_{j0a} and C_{j0sw} in a particular fabrication run are available for IC layout design (for capacitance estimation in post-layout simulation).
 - > You are expected to understand $C_{j0a} \& C_{j0sw}$ from the p-n junction basics.

