Fondamenti di Data Science e Machine Learning - Prof. G. Polese - Anno Accademico 2020/21

Prova Scritta (ore 9:00) 3/11/2021

First Name and Last Name:

University ID(Matricola):

Esercizio 1 (punti 7 su 30)

Disegnare un percettrone, eventualmente multilivello, con indicazione dei pesi e delle step function, che calcoli la funzione booleana A XOR B. Successivamente, scrivere il codice TensorFlow per costruire il modello della rete prodotta.

Esercizio 2 (punti 8 su 30)

Dati i seguenti punti in uno spazio bidimensionale: (1, 2)(3, 7)(5, 14)(7, 5)(2, 10)(4, 3)(6, 2)(3,1)(1,5)

Usare l'algoritmo *K-means* per suddividere tali punti in 3 cluster, utilizzando la L3 norm e svolgendo 3 iterazioni dell'algoritmo. Per la scelta dei 3 centroidi, alla prima iterazione utilizzare il metodo che prevede la selezione del punto più vicino al centroide di tutti i punti forniti, quello più lontano da quest'ultimo e quello con la distanza totale maggiore dai due punti suddetti.

Esercizio 3 (punti 5 su 30)

Data la seguente signature matrix:

Shingle	S ₁	S ₂	S ₃	S ₄	S ₅
0	0	0	0	0	0
1	0	0	0	0	1
2	1	0	1	0	1
3	0	1	1	1	0
4	1	0	0	1	0
5	0	1	0	1	1
6	1	0	1	1	0
7	1	1	1	0	0

Calcolare la signature di ogni colonna usando le seguenti 3 funzioni hash:

$$h1(x) = (2x^3 + 2) \mod 8$$
; $h2(x) = (3x^2 + 5) \mod 8$; $h3(x) = (5x^4 + 3) \mod 8$;

Mostrare l'evoluzione della matrice delle signature di minhash simulando l'esecuzione dell'algoritmo per il loro calcolo. Inoltre, calcolare le similarità di Jaccard tra tutte le coppie di signature di minhash.

Esercizio 4 (punti 6 su 30)

Dato il seguente Dataset:

Fondamenti di Data Science e Machine Learning - Prof. G. Polese - Anno Accademico 2020/21 Prova Scritta (ore 9:00) 3/11/2021

Item	X ₁	X 2	X 3	X 4	Y
1	1	6	7	14	1
2	-1	-6	13	11	0
3	2	-2	-6	12	1
4	15	3	8	9	0
5	-10	18	-11	-9	0

Dove X_1 , X_2 , X_3 , X_4 sono gli attributi predittivi ed Y quello dipendente. Fornire la funzione di decisione di un classificatore SVM lineare che sul dataset in oggetto produca gli stessi valori per l'attributo dipendente.

Esercizio 5 (punti 4 su 30)

Si consideri un dataset con 6 attributi. Disegnare la struttura a lattice per l'estrazione di inclusion dependency ed indicare il numero totale di dipendenze candidate.