

Fakulteta za elektrotehniko, računalništvo in informatiko

# Population-based metaheuristics for planning interval training sessions in mountain biking

Iztok Fister Jr., Dušan Fister, Andres Iglesias, Akemi Galvez, Samo Rauter, Iztok Fister E: iztok.fister1@um.si

# Agenda

- Motivation
- ② Goals of this study
- Interval training
- Problem definition
- Experiments and results
- 6 Conclusion

## Motivation

### Computational intelligence in sports

- Stochastic population-based nature-inspired metaheuristics have recently revealed that they are a very robust tool for planning sport training sessions in various sports, e.g. running, cycling, triathlon.
- Until recently, no special attention was paid to planning interval training sessions, where the high-intensity intervals are followed by low-intensity periods of recovery.

## Goals of this study

The main contributions of this study are summarized as follows:

- to elucidate the problem of planning the interval training sessions,
- to present planning the interval training sessions as an optimization problem,
- to propose a new method for particular problem that is based on the Bat Algorithm (BA),
- to apply the proposed algorithm on a real archive of collected interval training sessions.

#### Introduction

- Sport trainers are crucial components in the process of an athlete's sports training.
- Many efforts are required to become an excellent sport trainer, such as
  - experience,
  - knowledge,
  - pedagogical skills.
- Automated planning of the sport training sessions is still considered as a very challenging task.
- Artificial sport trainer is a recent effort in that direction.

## Interval training

- Interval training was first popularized by the Olympic Champion Emil Zatopek in the 1950s.
- High-intensity intervals are interspersed with recovery periods.
- Aerobic interval training is defined as an interval training which elicits aerobic metabolism at a higher ratio than anaerobic metabolism.

An example of interval training: 1 to 8 minute runs at 90 % to 100 % speed of maximal oxygen uptake, with recovery of 2 to 3 minutes.

# Problem definition 1/2

Total intensity of the interval training session is expressed as follows:

$$TRIMP(IT) = \sum_{j=1}^{n} \left( HR_{k_j}^{(I)} \cdot t_{k_j}^{(I)} + HR_{k_j}^{(R)} \cdot t_{k_j}^{(R)} \right), \tag{1}$$

subject to

$$\sum_{j=1}^{n} \left( t_{k_j}^{(I)} + t_{k_j}^{(R)} \right) \le TD, \text{ and}$$
 (2)

$$t_0^{(I)} \le t_{k_j}^{(I)} < 0, \text{ for } j = 1, \dots, n,$$
 (3)

where  $k_j$  determines the j-th interval of the selected k-th interval training session from the archive A, TD is the duration of the interval training (typically  $\leq 60$  min), and  $t_0^{(I)}$  the maximum duration of the high-intensity interval that cannot be zero.

# Problem definition 2/2

Objective function is expressed as:

$$f(IT) = |TRIMP(IT) - TRIMP_0|. (4)$$

The task of the optimization algorithm is to find the minimum value of the objective function, in other words:

$$f^*(IT) = \min f(IT). \tag{5}$$

# Experiments and results

The aim of the experimental work was to evaluate the proposed stochastic population-based nature-inspired algorithm for planning interval training sessions. In line with this, two scenarios were defined:

- scenario A: deals with interval training of low-intensity TRIMP,
- scenario B: deals with interval training of high-intensity TRIMP.

Table: Parameters setting of the BA.

| Parameter name           | Value |  |  |
|--------------------------|-------|--|--|
| Population size Np       | 50    |  |  |
| Individual size <i>n</i> | 10    |  |  |
| Pulse rate $r_i$         | 0.5   |  |  |
| Loudness $A_i$           | 0.5   |  |  |

Table: Part of the archive.

| ID | $HR_{ m ID}^{(I)}$ | $t_{ m ID}^{(I)}$ | $\mathit{HR}^{(R)}_{\mathrm{ID}}$ | $t_{ m ID}^{(I)}$ |
|----|--------------------|-------------------|-----------------------------------|-------------------|
| 1  | 185                | 5                 | 147                               | 3                 |
| 2  | 186                | 5                 | 148                               | 2                 |
| 3  | 186                | 4                 | 149                               | 2                 |
| 4  | 187                | 5                 | 148                               | 3                 |
| 5  | 188                | 4                 | 150                               | 2                 |

## Scenario A

 ${\color{red}{\sf Table:}} \ {\color{red}{\sf Generated}} \ {\color{red}{\sf interval}} \ {\color{red}{\sf training}} \ {\color{red}{\sf plan}} \ {\color{red}{\sf of}} \ {\color{red}{\sf lower-intensity}} \ {\color{red}{\sf TRIMP}}.$ 

| ID     | $HR_{ m ID}^{(I)}$ | $t_{ m ID}^{(I)}$ | $HR_{ m ID}^{(R)}$ | $t_{ m ID}^{(I)}$ | $\mathit{TRIMP}_{\mathrm{ID}}^{(I)}$ | $\mathit{TRIMP}_{\mathrm{ID}}^{(R)}$ | $TRIMP_{ m ID}$ |
|--------|--------------------|-------------------|--------------------|-------------------|--------------------------------------|--------------------------------------|-----------------|
| 1      | 183                | 5                 | 140                | 2                 | 915                                  | 280                                  | 1,195           |
| 2      | 187                | 3                 | 161                | 1                 | 561                                  | 161                                  | 722             |
| 3      | 188                | 3                 | 161                | 1                 | 564                                  | 161                                  | 725             |
| 4      | 184                | 3                 | 160                | 1                 | 552                                  | 160                                  | 712             |
| 5      | 187                | 3                 | 161                | 1                 | 561                                  | 161                                  | 722             |
| 6      | 186                | 5                 | 148                | 2                 | 930                                  | 296                                  | 1,226           |
| 7      | 183                | 5                 | 140                | 2                 | 915                                  | 280                                  | 1,195           |
| 8      | 188                | 3                 | 161                | 1                 | 564                                  | 161                                  | 725             |
| 9      | 188                | 4                 | 150                | 2                 | 752                                  | 300                                  | 1,052           |
| 10     | 188                | 3                 | 161                | 1                 | 564                                  | 161                                  | 725             |
| $\sum$ | 186.2              | 37                | 154.3              | 14                | 6,878                                | 2,121                                | 8,999           |

## Scenario B

Table: Generated interval training plan of higher-intensity TRIMP.

| ID     | $HR_{ m ID}^{(I)}$ | $t_{ m ID}^{(I)}$ | $\mathit{HR}^{(R)}_{\mathrm{ID}}$ | $t_{ m ID}^{(I)}$ | $\mathit{TRIMP}_{\mathrm{ID}}^{(I)}$ | $\mathit{TRIMP}_{\mathrm{ID}}^{(R)}$ | $\textit{TRIMP}_{\mathrm{ID}}$ |
|--------|--------------------|-------------------|-----------------------------------|-------------------|--------------------------------------|--------------------------------------|--------------------------------|
| 1      | 179                | 5                 | 120                               | 6                 | 895                                  | 720                                  | 1,615                          |
| 2      | 188                | 5                 | 151                               | 2                 | 940                                  | 302                                  | 1,242                          |
| 3      | 178                | 6                 | 148                               | 3                 | 1,068                                | 444                                  | 1,512                          |
| 4      | 174                | 8                 | 138                               | 4                 | 1,392                                | 552                                  | 1,944                          |
| 5      | 186                | 4                 | 143                               | 2                 | 744                                  | 286                                  | 1,030                          |
| 6      | 172                | 9                 | 131                               | 5                 | 1,548                                | 655                                  | 2,203                          |
| 7      | 185                | 4                 | 145                               | 2                 | 740                                  | 290                                  | 1,030                          |
| 8      | 177                | 7                 | 135                               | 4                 | 1,239                                | 540                                  | 1,779                          |
| 9      | 186                | 5                 | 148                               | 2                 | 930                                  | 296                                  | 1,226                          |
| 10     | 187                | 5                 | 148                               | 3                 | 935                                  | 444                                  | 1,379                          |
| $\sum$ | 181.2              | 58                | 140.7                             | 33                | 10,431                               | 4,529                                | 14,960                         |

# Implications in real-world

- Automated planning of interval training sessions can be integrated into Artificial Sport Trainer.
- Artificial Sport Trainer should balance the amount of interval training sessions with other types of activities, e.g. endurance and relaxation.
- Automatically planned interval training sessions from Artificial Sport Trainer were given to real sports trainers who verified the robustness of this method.
- One amateur athlete volunteered to participate in an Artificial Sport Trainer interval training program; his performance and strength are regularly examined.

### Conclusion

- Stochastic population-based nature-inspired metaheuristics are a robust tool for planning the training sessions.
- We investigated the possibility of planning the interval training sessions.
- Algorithm for planning the interval training sessions could be implemented by any stochastic population-based nature-inspired algorithm.
- The results confirmed our assumption that population-based metaheuristics can be applied for such type of planning.
- Future work: we would like to consider more information about the past (realized) training sessions.