Home assignment 2: spectral sequences

The monodromy of Gauss-Manin local system

Definition 2.1. Let $\pi: E \to B$ be a locally trivial fibration with fiber F. The family of cohomology of fibers of π is locally trivial, (what does this mean precisely?) but it might have *the monodromy*. In other words, the group $\pi_1(B)$ naturally acts on the algebra $H^*(F)$ by autmorphisms. To obtain this action, take a loop in B and trivialize the family π along small intervals of this loop; this gives an identification of $H^*(F)$ with itself, which might be non-trivial.

Remark (Understanding the monodromy action of cohomology). (From StackExchange) Let $f: X \to U$ be a proper surjective submersion and fix $u_0 \in U$.

For any path $\gamma \subset U_j$, there is a canonical diffeomorphism $\phi_{\gamma}: f^{-1}(\gamma(0)) \to f^{-1}(\gamma(1))$, using ψ_i (by a theorem of Ehresmann, all the fibers of f are diffeomorphic).

Now, for any loop γ , split γ into paths $\gamma_i \subset U_i$ and you can compose these diffeomorphisms to get a diffeomorphism

$$\varphi_{\gamma_n} \circ \ldots \circ \phi_{\gamma_1} : f^{-1}(\mathfrak{u}_0) \to f^{-1}(\gamma(\mathfrak{u}_0))$$

It induces a map on homology: you can check that it is well defined up to homotopy.

Exercise 2.1. Let $\phi^* : \mathbb{Z} \to \operatorname{Aut}(H^*(F))$ be an automorphism induced by a homeomorphism $\phi : F \to F$. Construct a locally trivial family over a circle with monodromy in cohomology induced by ϕ^* .

Interpretation Given an action $\phi^* : \mathbb{Z} = \pi_1(S^1) \to \operatorname{Aut}(H^*(F))$, construct a fibre bundle such that ϕ^* is the monodromy action on cohomology.

Proof. Consider the standard torus fibration $T^2 \to S^1$. Any path in the circle can be thought of as an number $n \in \mathbb{Z}$. Perhaps the induced automorphism on cohomology is precisely the map $\mathbb{Z} \ni a \mapsto na \in \mathbb{Z}$. But I'm not looking for an automorphism of \mathbb{Z} ... I need an automorphism of $H^{\bullet}(S^1) \cong \mathbb{Z} \oplus \mathbb{Z}$...

Leray-Serre spectral sequence

Exercise 2.4. Let $\pi: E \longrightarrow B$ be a fibration with the fiber a torus. Assume the $d_2 = 0$. Prove that all differentials vanish.

Proof. Since $d_2 = 0$, we have that $E_3^{p,q} = E_2^{p,q}$. Then

$$d_3: H^p(B) \otimes H^q(T) \longrightarrow H^{p+3}(B) \otimes H^{q-2}(T),$$

so the only way it could be non-zero is for q = 2, which implies that

$$H^p(B) \otimes H^2(T) \cong H^{p+3}(B) \otimes H^0(T) \iff H^p(B) \cong H^{p+3}(B)$$

But I don't see why this couldn't happen...

Exercise 2.5. Let $\pi: E \to B$ be a fibration with the fiber a torus. Assume that the pullback map $\pi^*: H^2(B) \to H^2(E)$ is injective. Prove that all differentials d_i vanish.

Solution. I'm not sure how to use the hypothesis since I usually deal with the total space after computing the E_{∞} page via the filtration...

Exercise 2.6. Let $\pi: E \to B$ be a fibration with the fiber a complex projective space. Assume that $d_2=0$ and $d_3=0$. Prove that all differentials d_i vanish.

Solution. Since a complex projective space hascohomology equal to the coefficients in even dimensions and 0 in odd dimensions, we have the following second page of the spectral sequence:

It is immediate that d_4 is also zero, meaning that $E_2 = E_3 = E_4 = E_5$. However the case of d_5 is not so obvious since we get a map

$$d_5: H^0(B) \to H^5(B)$$

that could be non-zero. The same will happen for all odd-index differentials. \Box

Exercise 2.7. Let $\tau: F \to E$ be the standard embedding map. Prove that the sequence

$$0\,\longrightarrow\, H^1(B)\,\stackrel{\pi^*}{\longrightarrow}\, H^1(E)\,\stackrel{\tau^*}{\longrightarrow}\, H^1(F)\,\stackrel{d_2}{\longrightarrow}\, H^2(B)\,\stackrel{\pi^*}{\longrightarrow}\, H^2(E)$$

is exact.

Exercise 2.8. Let $F = S^k$, that is, $\pi : E \to B$ is a sphere bundle. Prove that all differentials d_{k+1} vanish. Construct the *Gysin exact sequence*

$$\cdots \to \mathsf{H}^p(\mathsf{B}) \to \mathsf{H}^{p+k+1}(\mathsf{B}) \xrightarrow{\pi^*} \mathsf{H}^{p+k+1}(\mathsf{E}) \to \mathsf{H}^{p+1}(\mathsf{B}) \to \cdots$$

Solution. (This argument is adapted from the construction of Wang exact sequence found in Wikipedia). We have that $E_2^{p,q}=H^p(B)\otimes H^q(S^k)$ can only be non-zero for q=0,k. This means that the only non-zero differentials are of the form

$$d_{k+1}: E_2^{p,k} \cong H^p(B) \longrightarrow E_2^{p+k+1,0} \cong H^{p+k+1}(B)$$

$$H^0(B) \otimes H^k(S^k) \qquad \qquad H^k(B) \otimes H^k(S^k)$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$H^0(B) \otimes H^0(S^k) \qquad \cdots \qquad H^{k+1}(B) \otimes H^0(S^k) \qquad H^{k+2}(B) \otimes H^0(S^k)$$

which means that $E^{k+1} = E^{\infty}$. Since $E^{k+1} = \ker d_{k+1} / \operatorname{img} d_{k+1}$, we can write

This is the "first half" of the Gysin sequence. For the other half we must compute the E_{∞} terms. We use the filtration

$$H^{n}(E) = F^{0}H^{n} \supset F^{1}H^{n} \supset ... \supset F^{n}H^{n}$$

that we know to satisfy

$$E_{\infty}^{\mathfrak{p},\mathfrak{q}}\cong\frac{F^{\mathfrak{p}}H^{\mathfrak{p}+\mathfrak{q}}}{F^{\mathfrak{p}+1}H^{\mathfrak{p}+\mathfrak{q}}}.$$

We may write (I'm not completely sure why this works)

Putting this together with the first sequence we computed, we get that

$$\to E^{p,k}_\infty \to H^p(B) \overset{d_{k+1}}\to H^{p+k+1}(B) \to E^{p+k+1,0}_\infty \to H^{p+k+1}(E) \to E^{p+1,k}_\infty \to$$

and we simply remove the E_{∞} terms to get the Gysin sequence

$$\longrightarrow H^p(B) \xrightarrow{d_{k+1}} H^{p+k+1}(B) \longrightarrow H^{p+k+1}(E) \longrightarrow H^{p+1}(B) \longrightarrow$$

Remark. I still cannot see why the map $H^{p+k+1}(B) \to H^{p+k+1}(E)$ is the map induced by the projection.

Exercise 2.11. Let $\pi: E \to B$ be a fibration with $B = S^k$. Prove that all differentials except d_k vanish. Construct an exact sequence

$$\cdots \to H^{p+k}(F) \xrightarrow{\tilde{d}_k} H^p(F) \xrightarrow{\mu} H^{p+k}(E) \to H^{p+k+1}(F) \to \cdots$$

where μ is multiplication by π^* Vol_{S^k} and \tilde{d}_k is equal to d_k after the identification $H^p(F) = H^k(S^k) \otimes H^p(F) = E_2^{k,p}$

Solution. Like in Exercise 2.8 we see that the only non-zero differentials are

$$d_k: H^0(S^k) \otimes H^{k+p} \longrightarrow H^k(S^k) \otimes H^{p+1}(F)$$

since $E_2 = E_k$ is of the form

Again like in Exercise 2.8 we obtain a sequence

$$0 \longrightarrow E_{\infty}^{0,q} \longrightarrow H^{q}(F) \xrightarrow{d_{k}} H^{q-k+1}(F) \longrightarrow E_{\infty}^{k,q-k+1} \longrightarrow 0$$

Remark. The exercise has the map $H^{p+k}(F) \xrightarrow{\tilde{d}_k} H^p(F)$, but my computations suggest it should be $H^{p+k}(F) \xrightarrow{\tilde{d}_k} H^{p+1}(F)$.

Then we compute the E_{∞} terms using a filtration

$$H^{\mathfrak{n}}(E) = F^{0}H^{\mathfrak{n}} \supset F^{1}H^{\mathfrak{n}} \supset \ldots \supset F^{\mathfrak{n}}H^{\mathfrak{n}}, \qquad E^{\mathfrak{p},\mathfrak{q}}_{\infty} = \frac{F^{\mathfrak{p}}H^{\mathfrak{p}+\mathfrak{q}}}{F^{\mathfrak{p}+1}H^{\mathfrak{p}+\mathfrak{q}}}$$

which yields

$$0 \, \longrightarrow \, \mathsf{E}_{\infty}^{k-1,q-k+1} \, \longrightarrow \, \mathsf{H}^{\mathfrak{q}}(\mathsf{E}) \, \longrightarrow \, \mathsf{E}_{\infty}^{0,\mathfrak{q}} \, \longrightarrow \, 0$$

and then we get

$$\cdots \to H^q(E) \to H^q(F) \to H^{q-k+1}(F) \to H^{q+1}(E) \to H^{q+1}(F) \to \cdots$$

Remark. As in Exercise 2.8, I don't know why the map $H^{q-k+1}(F) \to H^{q+1}(E)$ should be multiplication by the volume form of S^k .

Exercise last. Generators here (horizontal), generators there (vertical, 1,3,5), "Extend generators by Leibniz rule, and then they just kill everyting"