Catcher Framing Analysis- Final Report

Executive Summary: This analysis presents a machine learning approach to quantify catcher framing ability in baseball. Using pitch tracking data, we developed a model that isolates a catcher's contribution to ball/strike calls and measures their impact through called strikes added or subtracted. The model achieves reliable year-to-year predictiveness and provides actionable insights for evaluating catcher performance.

1. Introduction

- **1.1 Problem Statement:** Develop an internal framing metric to isolate catcher contribution to ball/strike calls, determine added/subtracted called strikes through framing skill and ensure year-to-year predictiveness.
- **1.2 Data Overview:** Provided with a dataset file named ML_TAKES_ENCODED.csv which included the following details:
 - Pitch-by-pitch tracking data
 - Location measurements
 - Game situation variables
 - Player identifiers
 - Pitch characteristics

2. Methodology

- **2.1 Feature Selection:** Selected features based on relevance to strike calling.
 - 1. Location Features
 - o PLATELOCHEIGHT: Vertical location at plate
 - o PLATELOCSIDE: Horizontal location at plate
 - 2. Game Situation
 - o BALLS: Current ball count
 - o STRIKES: Current strike count
 - 3. Directional Features
 - o BATTERSIDE: Batter handedness
 - o PITCHERTHROWS: Pitcher handedness
- **2.2 Data Preprocessing:** Pre-processed the data using the following steps.
- 1. Missing Value Treatment
 - PLATELOCHEIGHT, PLATELOCSIDE → Mean imputation
 - BALLS, STRIKES → Mode imputation
 - BATTERSIDE, PITCHERTHROWS → 'Unknown' category
 - PITCHCALL → Mode imputation

2. Feature Encoding

- BATTERSIDE: {'Left': 0, 'Right': 1, 'Unknown': 2}
- PITCHERTHROWS: {'Left': 0, 'Right': 1, 'Unknown': 2}
- PITCHCALL: {'BallCalled': 0, 'StrikeCalled': 1}

2.3 Model Architecture: Selected the Logistic Regression model for the following reasons.

- Probabilistic outputs for expected strike calculation
- Interpretable coefficients
- Efficient training and prediction
- Suitable for binary classification

2.4 Pipeline Implementation

- SimpleImputer with mean strategy
- LogisticRegression with max iterations=200
- Train-test split ratio: 80-20

3. Analysis and Results

3.1 Strike Zone Analysis: Our analysis reveals several key patterns in strike calling.

1. Strike Zone Heat Map

• Distribution of called strikes across the strike zone

- Uses actual pitch location data (PLATELOCHEIGHT vs PLATELOCSIDE)
- Includes traditional strike zone boundaries

2. Count Impact Matrix

- Heat map of strike probabilities by count
- Shows systematic variation in calling patterns

3. Handedness Impact Matrix

- Strike call percentages by batter-pitcher combinations
- Reveals matchup effects on strike calling

4. Called Strike Density Plot

- Smooth distribution of called strikes
- Highlights high-probability strike zones

3.2 Performance Metrics (Will vary with new data):

1. Called Strikes Added

- Normal distribution of framing ability
- Clear separation of skill levels
- Consistent measurement across sample sizes

2. Opportunities vs Performance

- Stable metrics with sufficient sample size
- No systematic bias by opportunity count
- Reliable across different workload levels

3. Year-over-Year Analysis

- Consistent measurement across seasons
- Reliable predictive power
- Stable catcher rankings

Note on Visualizations: The visualization script provided creates two types of outputs

- 1. Pitch Analysis (pitch analysis.png)
 - Based on training data

- Shows consistent patterns of strike calling
- 2. Performance Metrics (performance metrics.png)
 - Generated from output data
 - Will vary based on the specific new data.csv used
 - Should be regenerated for each new dataset

4. <u>Implementation</u>

4.1 Production Implementation

- Reads ML TAKES ENCODED.csv for model training
- Expects new_data.csv in the same directory
- Outputs new output.csv with required metrics
- Handles missing values automatically
- Includes error handling for file operations

4.2 Output Format: Final metrics provided per catcher-season are as follows:

- Catcher ID
- Year
- Opportunities
- Actual Called Strikes
- Called Strikes Added
- Called Strikes Added per 100 Opportunities

5. Conclusions

- 5.1 The developed framing metric successfully:
 - 1. Quantifies catcher framing ability
 - 2. Provides year-to-year predictiveness
 - 3. Delivers actionable insights
 - 4. Operates in a production environment
- 5.2 The model's results offer valuable input for:
 - Player evaluation
 - Development planning
 - Strategic decision-making
 - Resource allocation