

Virtuelle Systeme - Storage

FS-2018

Christoph Bühlmann

Agenda

- 1. Vorstellung
- 2. Semester
- 3. Ablauf
- 4. Problemstellung
- 5. Lösungsansätze
- 6. Hands on

Vorstellung

- Name / Vorname
- Firma & Funktion
- Vorkenntnisse

Semester

Grober Inhalt des Semesters

- Storage
- Servervirtualisierung
- Clientvirtualisierung (VDI)
- Container / Docker
- (Überwachung)

Bewertung des Moduls

- Schriftlicher Test, ca. 1h
- Projektnote

Ablauf

Tagesinhalt

- Wenig Theorie
- Viel praktisch, Laborcharakter

Fixpunkte Samstag

- Beginn 0800 (Züge?)
- 0930 Uhr grosse Pause, kleine Pausen während Praktischem Teil individuell

Problemstellung – Ausgangslage

Produktionsfaktor

- Verfügbarkeit wichtig für Erfolg
- Hohe Management-Attention
- Grosses Datenwachstum
- Externe (Umwelt-) einflüsse

Regulatories

- Archivierungspflicht (Betriebsrechnung und Bilanz, Buchungsbelege und Geschäftskorrespondenz...)
- E-Mail ist i.d.R. Geschäftskorrespondenz

Problemstellung – Herausforderungen

Verfügbarkeit

- Daten sollen am besten 100% verfügbar sein
- Schnelle Zugriffe

Backup

Archivierung über mindestens 10 Jahre

Sicherheit

Keine unbefugten Zugriffe

Skalierbarkeit

- Storage ist billiger als Manpower
- System muss in kürzester Zeit erweiterbar sein
- Zugriff von verschiedenen Systemen nötig («Teilen» des Speichers)

Basics - RAID 0

- Stripping der Laufwerke
- Performancesteigerung machbar
- Keine
 Verfügbarkeitssteigerung

Basics - RAID 1

- Spiegeln der Laufwerke
- Sehr einfach (Auch Recovery)
- Doppelte Lesegeschwindigkeit
- Kapazität des kleineren Laufwerks

Basics - RAID 5

- Kostengünstigste Möglichkeit der Redundanz
- Maximal 1 Platte Ausfall
- Daher normalerweise mit Hot-Spare
- N-1x Nutzdaten, 1x
 Parität
 - Langsamer Schreibvorgang (da 2 Phase)
- Vorsicht beim Rebuild

Basics – RAID

Levels lassen sich kombinieren, bsp. RAID10 oder RAID51

Ein RAID Ersetzt keine Datensicherung!

Lösungsansätze – DAS

Direct Attached Storage

- Jeder Server hat seinen dedizierten Speicher
- Zugriff über SCSI, SAS, SATA

Lösungsansätze – DAS

Direct Attached Storage

- Skaliert (~)
- Diskausfall (✓)
- Externe Einflüsse (*)

- Shared (*)
- Administrierbar (~)

Lösungsansätze - SAN

Unabhängiger Speicherort der Daten

- Dediziertes Speichernetzwerk (weg vom LAN)
- Glasfasertechnologien (Fibrechannel), 16Gbit/s bis 20Gbit/s
- Kupfer (~10Gbit/s)
- Blockbasierter Datenzugriff

Redundanz / Ausfallsicherheit

- Aufbau gleiche Elemente wie LAN (Switches, Gateways)
- Redundante Auslegung Netz und alle Netzelemente
- Somit auch GEO-Redundanz möglich

Erweiterbarkeit / Administrierbarkeit

- Intelligente Storage (managed)
- Snaphots, Remote-Mirroring (2 Phase)
- Implementierung proprietär, wenig Standarts

Lösungsansätze – SAN

Storage Area Network

- Skaliert (✓)
- Diskausfall (✓)
- Externe Einflüsse (✓)

- Shared (✓) Thin Provisioning
- Administrierbar (✓)

Lösungsansätze - SAN

«Intelligente» Storage / Storage Array

Lösungsansätze - NAS

Unabhängiger Speicherort der Daten

- Speichernetzwerktechnologie = TCP/IP (LAN)
- Bis zu 100 Gbit/s (802.3ba)
- Zugriff über OS
- Filebasierte Zugriff, NFS / CIFS (smb)

Redundanz / Ausfallsicherheit

Wie LAN

Erweiterbarkeit / Administrierbarkeit

Intelligente Storage (managed) -> wie ihr NAS zuhause

Lösungsansätze – NAS

Network Attached Storage

- Skaliert (✓)
- Diskausfall (✓)
- Externe Einflüsse (✓)

- Shared (✓)
- Administrierbar (✓)

Network Attached Storage

Network Attached Storage

Lösungsansätze – SAN vs. NAS

It depends!

- Blockbasierter oder Filebasierter Zugriff gewünscht
- Filesystem Cache erwünscht
- Grösse der Schreib- und Leseoperationen
- SAN oder NAS Hersteller bzw. Technologie (bsp. dNFS Oracle)

Entwicklung

- Preissensitivität (LAN ist Massenware)
- Richtige Konfiguration (wiederum bsp. dNFS Oracle)
- Einsatz von Jumbo-Frames im LAN zwingend
- In jedem Fall separates Netz

Lösungsansätze – Unified Storage

Alle Systeme vereint

blockbasierte & filebasierte zugriffe auf einer vereinheitlichten Plattform

Lösungsansätze – iSCSI

iSCSI Komponenten

- iSCSI Initiator Client im Speichernetzwerk (zum Beispiel DB-Server)
- iSCSI Target Server im Speichernetzwerk (i.d.R als HW-Appliance)
- LUN Logical Unit, wird von einem iSCSI Target zur Verfügung gestellt
 - Ein Target kann ein oder mehrere LUN bereitstellen
 - Die Zuordnung bzw. Verteilung Target <-> LUN ist Vendor-Specific

Lösungsansätze – Fibre Channel

Fibre Channel Komponenten

- WWNN (World Wide Node Name), eindeutige Identifikation eines Gerätes
- WWPN (World Wide Port Name), eindeutige Identifikation eines Ports.
 - Ein WWNN kann mehrere WWPN haben
 - systool -c fc_host -v | grep -e port_name -e node_name
- Verschieden Topologien möglich

Point To Point (FC-P2P) / Arbitrated Loop (FC-AL) / Switched Fabric (FC-SW)

Thin Provisioning

Effizientes nutzen der Ressourcen

- Ressourcenkonsolidierung als Grund
- Gewisse Überbuchung vorhanden
- Kann auf Storage-Level (LUN-Level) oder auch höher erfolgen

Effizientes nutzen der Ressourcen

- Dynamisch wachsen und schrumpfen
- Anwendungen belegen nur die Storage welche sie auch nutzen
- Das Gastsystem sieht dennoch die volle Grösse

Hands On – Aufsetzen Laborumgebung

Proxmox VE

- 2er Gruppen bilden und ein Blade nehmen
 - Zugang NUR via Management-VM!
 - virt-viewer auf persönlichem Notebook installieren (zu finden im Ilias)
- HP Onboard Administrator (bzw. ILO Zugang) siehe nachfolgende Slides
- Installation von Proxmox auf dem Blade (der Installer ist bereits gebootet)
 - IP so wie vom DHCP verteilt, dns-name blade[x].tsbe.local (z.B. blade9.tsbe.local)
- Zusätzliche vmbr1 auf den 10 NIC konfigurieren. Grösstenteils via GUI machbar, nur DHCP aktivieren im /etc/network/interfaces

Hands On – Aufsetzen Laborumgebung

Storage

 rescan-scsi-bus macht was der Befehl sagt -> spätestens jetzt sollten Sie mit 1sscsi mehr als ein Device sehen

Hands On – Nice to know Management-VM

Hands On – Nice to know Management-VM

Hands On – HPE Onboard Administrator

https://10.24.6.20/

Username: student Passwort: Start1234

