	DS & BDA Lab
	Group B - Experiment 5
	TITLE: Perform the following operations
	using R/Python on the Air quality &
	Heart Diseases data sets.
	OBJECTIVE:
	1. 10 understand & apply the Analytical concept
	of Big data using R/Python.
	2. To study détailed concept R/Python.
	SOFTWARE REQUIREMENTS:
	1. Wrinty 14.04/14.10
	2. GNU C Compiler
	1 3 Hadoop
	4 gara
	5 Python platform
9	PROBLEM STATEMENT: Purform the following operations
	using R/ Python on the Air quality & Heart
	Diseases data sets:
	1) Data chaning
	2) Data integration
	3) Data transformation
	4) Evror verrecting.
	5) Data model building.
	THEORY:
	Data charing, or data preparation is an usential
	part of statistical analysis.

Data Transformations: A number of reasons can be attributed to when a predictive model crumples such as: - Inadequate data pre-processing.

- Inadequate model validation.

- Unjustified extrapolation.

- over-fitting - Predictor / Independent / Attributes / Descriptors: are different turns that are used as input for the - Response / Dependent / Target / Class / Outcome: are turns ; that refer to the outcome event that is to predicted. & scaling: Centering variable centering is perhaps the most intuitive approach used in predictive modeling. To centre a predictor variable, the average predictor value is subtracted from all the values, as a result of centering, the predictor has zero mean. To scale the data, each predictor value is divided by its standard deviation (sd). 2. Resolving Skewness: skewners is measure of shape. A common approach to check for skewners is to plot the predictor value. Negative skurners indicates that mean of data value is less than median, & data distribution is leftskewed. Positive skewness would indicate that mean of data values is larger than median, & data distribution is right-skewed.

3	Resolving Outliers: The function outliers () gets the extreme most observation from the mean: Outlier Treatment: A: Imputation: Imputation with mean/median/mode. B: Capping: For missing values that he outside, all the values will be considered as
	the dataset gives that capping number.
4	Missing value treatment: Impute Missing values with median or mode. Impute missing values based on k-nearest nughbours. There are many other types of transformations like treating collinearity, dummy variable, encoding, avariance treatment.
	conclusion: Thus we have learnt how to perform the different data cleaning & data modeling operations using python.

DS & BDA Lab Group A - Experiment 2 TITLE: Design a distributed application using MapReduce. OBJECTIVE : 1. To explore different Big data processing techniques with use cases 2. To study detailed concept of Map-Reduced. SOFTWARE REQUIREMENTS: 1. Illruntu 14.04/14.10 2. GNU (compiler 3. Hadoop 4. Java PROBLEM STATEMENT: Design a distributed application using MapReduce (Using Java) which processes a log file of a system. List out the users who have logged for maximum period on the system. Use simple log file from the Internet & process it a pseudo distribution mode on Hadoop platform THEORY: Introduction: Mapkeduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large dusters of commodity hardware in a reliable manner. MapRèduce is a processing rechnique & a program model for distributed

