Linear Algebra — Homework 9

25 Nov 2020 Due: 3 Dec 2020

Textbook Problems. These problems will not be graded, but you must submit solutions to receive full credit for the homework.

Problem 4.1.6. This system of equations $A\mathbf{x} = \mathbf{b}$ has no solution (they lead to 0 = 1):

$$x+2y+2z = 5$$

$$2x + 2y + 3z = 5$$

$$3x + 4y + 5z = 9$$

Find numbers y_1 , y_2 , y_3 to multiply these equations so they add to 0 = 1. You have found a vector \mathbf{y} in which subspace? Its dot product $\mathbf{y}^T \mathbf{b} = 1$, so no solution \mathbf{x} .

Problem 4.1.11. Draw Figure 4.2 (the "big picture") to show each subspace correctly for

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right] \qquad \text{and} \qquad B = \left[\begin{array}{cc} 1 & 0 \\ 3 & 0 \end{array} \right].$$

Problem 4.1.17. If **S** is the subspace of \mathbb{R}^3 containing only the zero vector, what is \mathbb{S}^{\perp} ? If **S** is spanned by (1,1,1), what is \mathbb{S}^{\perp} ? If **S** is spanned by (1,1,1) and (1,1,-1), what is a basis for \mathbb{S}^{\perp} ?

Problem 4.1.20. Suppose **V** is the whole space \mathbf{R}^4 . Then \mathbf{V}^{\perp} contains only the vector _____. Then $(\mathbf{V}^{\perp})^{\perp}$ is _____.

Problem 4.1.26. Construct a 3×3 matrix A with no zero entries whose columns are mutually perpendicular. Compute A^TA . Why is it a diagonal matrix?

Problem 4.2.5. Compute the projection matrices $\mathbf{a}\mathbf{a}^T/\mathbf{a}^T\mathbf{a}$ onto the lines through $\mathbf{a}_1=(-1,2,2)$ and $\mathbf{a}_2=(2,2,-1)$. Multiply these projection matrices and explain why their product P_1P_2 is what it is.

Problem 4.2.6. Project $\mathbf{b} = (1,0,0)$ onto the lines through \mathbf{a}_1 and \mathbf{a}_2 in Problem 5 and also onto $\mathbf{a}_3 = (2,-1,2)$. Add up the three projections $\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3$.

Problem 4.2.7. Continuing Problems 5-6, find the projection matrix P_3 onto $\mathbf{a}_3 = (2, -1, 2)$. Verify that $P_1 + P_2 + P_3 = I$. This is because the basis $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ is orthogonal!

Problem 4.2.13. Suppose A is the 4×4 identity matrix with its last column removed $(A \text{ is } 4 \times 3)$. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?

Problem 4.2.19. To find the projection matrix onto the plane x - y - 2z = 0, choose two vectors in the plane and make them the columns of A. The plane will be the column space of A! Then compute $P = A(A^TA)^{-1}A^T$.

Problem 4.2.20. To find the projection matrix P onto the same plane x - y - 2z = 0, write down a vector \mathbf{e} that is perpendicular to that plane. Compute the projection $Q = \mathbf{e}\mathbf{e}^T/\mathbf{e}^T\mathbf{e}$ and then P = I - Q.

Problem 4.2.21. Multiply the matrix $P = A(A^TA)^{-1}A^T$ by itself. Cancel to prove that $P^2 = P$. Explain why $P(P\mathbf{b})$ always equals $P\mathbf{b}$: The vector $P\mathbf{b}$ is in the column space of A so its projection onto that column space is ______.

Problem 4.2.25. The projection matrix P onto an n-dimensional subspace S of \mathbf{R}^m has rank r=n. Reason: The projections $P\mathbf{b}$ fill the subspace S, so S is the _____ of P.

Graded Problems.

Problem 1. Suppose V is the subspace of \mathbb{R}^5 spanned by the vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 3 \end{bmatrix}.$$

Find a basis for the orthogonal complement V^{\perp} .

Problem 2. Find the projection matrix P onto the subspace of \mathbb{R}^4 spanned by (1,0,1,0) and (2,-1,2,-1). Use P to project the vector $\mathbf{x} = (1,2,3,4)$ onto this subspace. Also, find the length of the error vector, $\|\mathbf{e}\|$.