

Overview

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Number Distributions Introduction **Neutron Distribution** Gamma Distribution Results Conclusions **Number Distributions**

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

Conclusions

Safeguards, nuclear materials management.

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

- Safeguards, nuclear materials management.
- NDA

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

- Safeguards, nuclear materials management.
- NDA
 - Spontaneous fission.

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

- Safeguards, nuclear materials management.
- NDA
 - Spontaneous fission.
 - Induced fission.

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

- Safeguards, nuclear materials management.
- NDA
 - Spontaneous fission.
 - o Induced fission.
 - Change of multiplicities.

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

Conclusions

Safeguards, nuclear materials management.

NDA

- Spontaneous fission.
- Induced fission.
- Change of multiplicities.
- Multiplicities and coincidences can give isotopic composition and mass of the sample.

Number Distributions

Introduction

Neutron Distribution

Gamma Distribution

Results

Conclusions

Safeguards, nuclear materials management.

NDA

- Spontaneous fission.
- Induced fission.
- Change of multiplicities.
- Multiplicities and coincidences can give isotopic composition and mass of the sample.
- A full number distribution offers deeper insight than a few factorial moments.

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

Neutron Distribution

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

Neutrons in a fissile sample can undergo different processes.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

- Neutrons in a fissile sample can undergo different processes.
 - o Induce fission.
 - o Capture.
 - \circ (n, xn)-reactions.
 - Escape the sample.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

- Neutrons in a fissile sample can undergo different processes.
 - Induce fission.
 - Capture.
 - \circ (n, xn)-reactions.
 - Escape the sample.
- The event of inducing fission will be expressed with a probability p, while failing to do so with probability 1 p.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

- Neutrons in a fissile sample can undergo different processes.
 - Induce fission.
 - o Capture.
 - \circ (n, xn)-reactions.
 - Escape the sample.
- The event of inducing fission will be expressed with a probability p, while failing to do so with probability 1 p.
- When including absorption one obtains the statistics of the escaped particles.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

- Neutrons in a fissile sample can undergo different processes.
 - Induce fission.
 - o Capture.
 - \circ (n, xn)-reactions.
 - Escape the sample.
- The event of inducing fission will be expressed with a probability p, while failing to do so with probability 1 p.
- When including absorption one obtains the statistics of the escaped particles.
- In each event of induced fission new neutrons are born which will be treated independently of their origin.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

- Neutrons in a fissile sample can undergo different processes.
 - Induce fission.
 - Capture.
 - \circ (n, xn)-reactions.
 - Escape the sample.
- The event of inducing fission will be expressed with a probability p, while failing to do so with probability 1 p.
- When including absorption one obtains the statistics of the escaped particles.
- In each event of induced fission new neutrons are born which will be treated independently of their origin.
- These events will lead to a certain number distribution for a sample that will vary with mass and composition.

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the probability distributions we used the mathematical tool Probability Generating Functions (PGFs)

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the probability distributions we used the mathematical tool Probability Generating Functions (PGFs)

$$h(z) = \sum_{n} p_1(n)z^n \quad \text{and} \quad H(z) = \sum_{n} P(n)z^n. \tag{1}$$

Starting with an initial neutron or a source event (spontaneous fission)

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the probability distributions we used the mathematical tool Probability Generating Functions (PGFs)

$$h(z) = \sum_{n} p_1(n)z^n \quad \text{and} \quad H(z) = \sum_{n} P(n)z^n. \tag{1}$$

Starting with an initial neutron or a source event (spontaneous fission)

Master equations

$$h(z) = (1 - p)z + pq_f[h(z)]$$
 (2)

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the probability distributions we used the mathematical tool Probability Generating Functions (PGFs)

$$h(z) = \sum_{n} p_1(n)z^n \quad \text{and} \quad H(z) = \sum_{n} P(n)z^n. \tag{1}$$

Starting with an initial neutron or a source event (spontaneous fission)

Master equations

$$h(z) = (1 - p)z + pq_f[h(z)]$$
 (2)

$$H(z) = q_s[h(z)]. (3)$$

Number Distributions

Neutron Distribution

- Neutrons
- Probability

Generating Functions

- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the probability distributions we used the mathematical tool Probability Generating Functions (PGFs)

$$h(z) = \sum_{n} p_1(n)z^n$$
 and $H(z) = \sum_{n} P(n)z^n$. (1)

Starting with an initial neutron or a source event (spontaneous fission)

Master equations

$$h(z) = (1 - p)z + pq_f[h(z)]$$
 (2)

$$H(z) = q_s[h(z)]. (3)$$

with PGFs

$$q_s(z) = \sum_n p_s(n) z^n \quad , \quad q_f(z) = \sum_n p_f(n) z^n. \tag{4}$$

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

The probabilities can be found as Taylor expansion coefficients of Eq. (1) i.e.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

The probabilities can be found as Taylor expansion coefficients of Eq. (1) i.e.

$$p_1(n) = \frac{1}{n!} \frac{d^n h(z)}{dz^n} \bigg|_{z=0}$$
 and $P(n) = \frac{1}{n!} \frac{d^n H(z)}{dz^n} \bigg|_{z=0}$ (6)

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

The probabilities can be found as Taylor expansion coefficients of Eq. (1) i.e.

$$p_1(n) = \frac{1}{n!} \frac{d^n h(z)}{dz^n} \bigg|_{z=0}$$
 and $P(n) = \frac{1}{n!} \frac{d^n H(z)}{dz^n} \bigg|_{z=0}$ (6)

• Calculated at z=0, more terms than for multiplicities.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

The probabilities can be found as Taylor expansion coefficients of Eq. (1) i.e.

$$p_1(n) = \frac{1}{n!} \frac{d^n h(z)}{dz^n} \bigg|_{z=0}$$
 and $P(n) = \frac{1}{n!} \frac{d^n H(z)}{dz^n} \bigg|_{z=0}$ (6)

- Calculated at z=0, more terms than for multiplicities.
- Nested functions, lower order derivatives recurring.

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The multiplicities (factorial moments) of a function f are obtained as derivatives of its PGF g(z) evaluated at z=1:

$$\langle n \rangle = \left. \frac{\partial g(z)}{\partial z} \right|_{z=1} = \sum_{n} n f(n)$$
 (5)

The probabilities can be found as Taylor expansion coefficients of Eq. (1) i.e.

$$p_1(n) = \frac{1}{n!} \frac{d^n h(z)}{dz^n} \bigg|_{z=0}$$
 and $P(n) = \frac{1}{n!} \frac{d^n H(z)}{dz^n} \bigg|_{z=0}$ (6)

- Calculated at z=0, more terms than for multiplicities.
- Nested functions, lower order derivatives recurring.
- Longer expressions, which on the other hand can be expressed recursively

Initial terms

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the terms expressed in a recursive manner we need to calculate initial terms such as $p_1(0)$

Initial terms

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

To find the terms expressed in a recursive manner we need to calculate initial terms such as $p_1(0)$

$$p_1(0) = (1 - \mathbf{p})z + \mathbf{p}q_f[h(z)]\Big|_{z=0} = \mathbf{p}\sum_{n=0}^{N} p_f(n)[p_1(0)]^n.$$
 (7)

8-th degree polynomial to be solved for $p_1(0)$, note the p-dependence for $p_1(0)$.

Including absorption

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The event of absorption can be included into the fission distribution:

$$\widetilde{p}_f(n) = \frac{p' - p}{p'} \delta_{n,0} + \frac{p}{p'} p_f(n). \tag{8}$$

Including absorption

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

The event of absorption can be included into the fission distribution:

$$\widetilde{p}_f(n) = \frac{p' - p}{p'} \delta_{n,0} + \frac{p}{p'} p_f(n). \tag{8}$$

The first master equation will then read as:

$$h(z) = (1 - p')z + p'\widetilde{q}_f[h(z)].$$
 (9)

where $\widetilde{q}_f(z)$ is the generating function of the $\widetilde{p}_f(n)$ of Eq. (8).

Including detection

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

 The process of detection can be added by considering the neutrons that have been emitted by the sample.

$$\varepsilon(z) = \epsilon z + (1 - \epsilon). \tag{10}$$

Here, ϵ is the detector efficiency for neutrons.

Including detection

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

 The process of detection can be added by considering the neutrons that have been emitted by the sample.

$$\varepsilon(z) = \epsilon z + (1 - \epsilon). \tag{10}$$

Here, ϵ is the detector efficiency for neutrons.

the new master equations will be:

$$h_d(z) = h[\varepsilon(z)]$$
 , $H_d(z) = H[\varepsilon(z)]$. (11)

Including detection

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

 The process of detection can be added by considering the neutrons that have been emitted by the sample.

$$\varepsilon(z) = \epsilon z + (1 - \epsilon). \tag{10}$$

Here, ϵ is the detector efficiency for neutrons.

the new master equations will be:

$$h_d(z) = h[\varepsilon(z)]$$
 , $H_d(z) = H[\varepsilon(z)]$. (11)

 The derivatives needed for finding factorial moments as well as the statistics change in a simple way:

$$\frac{d^n h_d(z)}{dz^n} = \frac{d^n h(z)}{dz^n} \cdot (\epsilon)^n \quad , \quad \frac{d^n H_d(z)}{dz^n} = \frac{d^n H(z)}{dz^n} \cdot (\epsilon)^n \tag{12}$$

Including detection

Number Distributions

Neutron Distribution

- Neutrons
- ProbabilityGenerating Functions
- Factorial moments and probability distributions
- Initial terms
- Including absorption
- Including detection

Gamma Distribution

Results

Conclusions

 The process of detection can be added by considering the neutrons that have been emitted by the sample.

$$\varepsilon(z) = \epsilon z + (1 - \epsilon). \tag{10}$$

Here, ϵ is the detector efficiency for neutrons.

the new master equations will be:

$$h_d(z) = h[\varepsilon(z)]$$
 , $H_d(z) = H[\varepsilon(z)]$. (11)

 The derivatives needed for finding factorial moments as well as the statistics change in a simple way:

$$\frac{d^n h_d(z)}{dz^n} = \frac{d^n h(z)}{dz^n} \cdot (\epsilon)^n \quad , \quad \frac{d^n H_d(z)}{dz^n} = \frac{d^n H(z)}{dz^n} \cdot (\epsilon)^n \tag{12}$$

For the factorial moments the full change is

$$\widetilde{\nu}_{d,n} = (\epsilon)^n \cdot \widetilde{\nu}_n. \tag{13}$$

Number Distributions Neutron Distribution Gamma Distribution Master equations Absorption and detection Photon-neutron correlation Results **Gamma Distribution** Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

The creation of photons is a more complicated process connected to neutrons. No self-multiplication.

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

The creation of photons is a more complicated process connected to neutrons. No self-multiplication.

Higher multiplicities can be favourable from a detection view-point.

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

The creation of photons is a more complicated process connected to neutrons. No self-multiplication.

Higher multiplicities can be favourable from a detection view-point. Start with master equations describing the system

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

The creation of photons is a more complicated process connected to neutrons. No self-multiplication.

Higher multiplicities can be favourable from a detection view-point. Start with master equations describing the system

$$g(z) = (1 - p) + pr_f(z)q_f[g(z)]$$
 (14)

and

$$G(z) = r_s(z)q_s[g(z)]. \tag{15}$$

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

The creation of photons is a more complicated process connected to neutrons. No self-multiplication.

Higher multiplicities can be favourable from a detection view-point. Start with master equations describing the system

$$g(z) = (1 - p) + pr_f(z)q_f[g(z)]$$
 (14)

and

$$G(z) = r_s(z)q_s[g(z)]. \tag{15}$$

With PGFs for gammas produced in spontaneous and induced fission

$$g(z) = \sum_{n} f_1(n)z^n$$
 , $G(z) = \sum_{n} F(n)z^n$. (16)

Absorption and detection

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

Photon absorption will be accounted for by the probability l_{γ} that describes the leakage probability for one single photon:

$$l(z) = l_{\gamma}z + (1 - l_{\gamma}). \tag{17}$$

Note that for photons the absorption of neutrons also play a fundamental role, while the opposite is not true.

Absorption and detection

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

Photon absorption will be accounted for by the probability l_{γ} that describes the leakage probability for one single photon:

$$l(z) = l_{\gamma}z + (1 - l_{\gamma}). \tag{17}$$

Note that for photons the absorption of neutrons also play a fundamental role, while the opposite is not true.

The next step in the simulation of the statistics obtained from measurements is to incorporate the process of detection:

$$\varepsilon_{\gamma}(z) = \epsilon_{\gamma}z + (1 - \epsilon_{\gamma}).$$
 (18)

Using this equation we can obtain the detection statistics as:

$$g_d(z) = g[l\{\varepsilon(z)\}]$$
 , $G_d(z) = G[l\{\varepsilon(z)\}]$. (19)

Photon-neutron correlation

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

Conclusions

Initial source photons are uncorrelated to source neutrons.

Photon-neutron correlation

Number Distributions

Neutron Distribution

Gamma Distribution

- Master equations
- Absorption and detection
- Photon-neutron correlation

Results

- Initial source photons are uncorrelated to source neutrons.
- Multiplication of neutrons on the other hand is the reason for additional photon multiplication as well:

$$\mathbf{Cov} \{ \widetilde{\boldsymbol{\nu}}, \widetilde{\boldsymbol{\mu}} \} = \frac{p}{1-p} \left(\nu_{s,1} \nu_{r,1} + \nu_{s,2} - \nu_{s,1}^2 \right) \mu_{r,1} \mathbf{M}^2 + \left(\frac{p}{1-p} \right)^2 \left(\nu_{s,1} + \mu_{r,1} \nu_{r,2} \right) \mathbf{M}^3.$$
(20)

Number Distributions Neutron Distribution Gamma Distribution Results Tools • Effect of absorption Comparison with Monte Carlo Detection **Results** Simulated scintillation detector results Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

The symbolic code Mathematica have been used to do the derivations and find formulae for higher order terms which grow rapidly in size.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with Monte Carlo
- Detection
- Simulated scintillation detector results

Conclusions

The symbolic code Mathematica have been used to do the derivations and find formulae for higher order terms which grow rapidly in size.

$$\begin{cases} \mathsf{h_d}\text{'}(\mathsf{z}) \to \frac{\mathsf{p'-1}}{\mathsf{p'}\nu_{d,s}(1)\text{-1}}, \mathsf{h_d''}(\mathsf{z}) \to -\frac{\mathsf{p'}\nu_{d,s}(2)\mathsf{h_d'}(\mathsf{z})^2}{\mathsf{p}\nu_{d,s}(1)\text{-1}}, \\ \mathsf{h_d}^{(3)}(\mathsf{z}) \to \frac{-\mathsf{p'}\nu_{d,s}(3)\mathsf{h_d'}(\mathsf{z})^3\text{-3p'}\nu_{d,s}(2)\mathsf{h_d''}(\mathsf{z})}{\mathsf{p'}\nu_{d,s}(1)\text{-1}}, \dots \end{cases}$$

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with Monte Carlo
- Detection
- Simulated scintillation detector results

Conclusions

The symbolic code Mathematica have been used to do the derivations and find formulae for higher order terms which grow rapidly in size.

$$\begin{cases} h_{\text{d}}\text{'}(z) \to \frac{p\text{'-1}}{p\text{'}\nu_{d,s}(1)\text{-1}}, h_{\text{d}}\text{''}(z) \to -\frac{p\text{'}\nu_{d,s}(2)h_{\text{d}}\text{'}(z)^2}{p\nu_{d,s}(1)\text{-1}}, \\ h_{\text{d}}^{(3)}(z) \to \frac{-p\text{'}\nu_{d,s}(3)h_{\text{d}}\text{'}(z)^3\text{-3p'}\nu_{d,s}(2)h_{\text{d}}\text{''}(z) \ h_{\text{d}}\text{'}(z)}{p\text{'}\nu_{d,s}(1)\text{-1}}, \\ \end{cases}$$

As a final step the parameters are replaced with values to get numerical expressions.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with Monte Carlo
- Detection
- Simulated scintillation detector results

Conclusions

The symbolic code Mathematica have been used to do the derivations and find formulae for higher order terms which grow rapidly in size.

$$\begin{cases} h_{\text{d}}\text{'}(z) \to \frac{p\text{'-1}}{p\text{'}\nu_{d,s}(1)\text{-1}}, h_{\text{d}}\text{''}(z) \to -\frac{p\text{'}\nu_{d,s}(2)h_{\text{d}}\text{'}(z)^2}{p\nu_{d,s}(1)\text{-1}}, \\ h_{\text{d}}^{(3)}(z) \to \frac{-p\text{'}\nu_{d,s}(3)h_{\text{d}}\text{'}(z)^3\text{-3p'}\nu_{d,s}(2)h_{\text{d}}\text{''}(z) \ h_{\text{d}}\text{'}(z)}{p\text{'}\nu_{d,s}(1)\text{-1}}, \\ \end{cases}$$

As a final step the parameters are replaced with values to get numerical expressions.

Saves time and makes multiple evaluations easy.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with Monte Carlo
- Detection
- Simulated scintillation detector results

Conclusions

The symbolic code Mathematica have been used to do the derivations and find formulae for higher order terms which grow rapidly in size.

$$\begin{cases} \mathsf{h_d}\text{'}(\mathsf{z}) \to \frac{\mathsf{p'}\text{-}1}{\mathsf{p'}\nu_{d,s}(1)\text{-}1}, \mathsf{h_d}\text{''}(\mathsf{z}) \to -\frac{\mathsf{p'}\nu_{d,s}(2)\mathsf{h_d}\text{'}(\mathsf{z})^2}{\mathsf{p}\nu_{d,s}(1)\text{-}1}, \\ \mathsf{h_d}^{(3)}(\mathsf{z}) \to \frac{-\mathsf{p'}\nu_{d,s}(3)\mathsf{h_d}\text{'}(\mathsf{z})^3\text{-}3\mathsf{p'}\nu_{d,s}(2)\mathsf{h_d}\text{''}(\mathsf{z}) \ \mathsf{h_d}\text{'}(\mathsf{z})}{\mathsf{p'}\nu_{d,s}(1)\text{-}1}, \dots \end{cases}$$

As a final step the parameters are replaced with values to get numerical expressions.

- Saves time and makes multiple evaluations easy.
- Comparisons with Monte Carlo simulations done with the MCNP-PoliMi code, from which we have taken the numerical value of p and the leakage and detection probabilities for neutrons and photons.

Effect of absorption

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

• Dependence on mass shown in the parameter p, and also an increased probability of absorption. 20 wt% 240 Pu and 80 wt% 239 Pu.

Effect of absorption

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

• Dependence on mass shown in the parameter p, and also an increased probability of absorption. 20 wt% 240 Pu and 80 wt% 239 Pu.

- Change compared to non-multiplying case.
- Small effect of absorption on neutrons for such a heavy element.
- Large self-shielding for photons, which are still generated with high multiplicity, but few leak out.

Comparison with Monte Carlo

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

- Good agreement with MCNP-PoliMi.
- For photons one have higher multiplicities per source event for smaller samples.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

Conclusions

- Detection efficiencies of 50% were used here.
- The chance to detect many particles from the same source event decreases for both neutrons and photons.
- The photon multiplicities decrease so much that neutrons might be more favourable to observe even though they have lower source multiplicities.

Simulated scintillation detector results

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

- Organic scintillators have the advantage to be able to detect both neutrons and photons, and to discriminate between them.
- MCNP-PoliMi was also used to simulate a scintillator detector setup with six detectors:

Simulated scintillation detector results

Number Distributions

Neutron Distribution

Gamma Distribution

Results

- Tools
- Effect of absorption
- Comparison with

Monte Carlo

- Detection
- Simulated scintillation detector results

- Organic scintillators have the advantage to be able to detect both neutrons and photons, and to discriminate between them.
- MCNP-PoliMi was also used to simulate a scintillator detector setup with six detectors:

Number Distributions Neutron Distribution Gamma Distribution Results Conclusions Conclusions **Conclusions**

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

Conclusions

 Master equations, earlier used for finding factorial moments, can be used to find probability distributions.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.
- Formal equivalence to factorial moments. We can now easily find factorial moments up to the same order as P(n).

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.
- Formal equivalence to factorial moments. We can now easily find factorial moments up to the same order as P(n).
- Excellent Agreement with Monte Carlo simulations done with MCNP-PoliMi.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.
- Formal equivalence to factorial moments. We can now easily find factorial moments up to the same order as P(n).
- Excellent Agreement with Monte Carlo simulations done with MCNP-PoliMi.
- Absorption in the modeled plutonium samples have a small effect on neutrons but a very large effect on photons.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.
- Formal equivalence to factorial moments. We can now easily find factorial moments up to the same order as P(n).
- Excellent Agreement with Monte Carlo simulations done with MCNP-PoliMi.
- Absorption in the modeled plutonium samples have a small effect on neutrons but a very large effect on photons.
- When including detection efficiencies one can beforehand make conclusions about what type of particle is favourable to observe.

Number Distributions

Neutron Distribution

Gamma Distribution

Results

Conclusions

- Master equations, earlier used for finding factorial moments, can be used to find probability distributions.
- Symbolic computation makes it possible to find higher-order terms in a recursive manner.
- Formal equivalence to factorial moments. We can now easily find factorial moments up to the same order as P(n).
- Excellent Agreement with Monte Carlo simulations done with MCNP-PoliMi.
- Absorption in the modeled plutonium samples have a small effect on neutrons but a very large effect on photons.
- When including detection efficiencies one can beforehand make conclusions about what type of particle is favourable to observe.
- Extensions
 - Compare to experiments
 - Simulate realistic multiplicity counters