

Escuela Profesional de Ciencia de la Computación

Proyecto Final : Reconocimiento de actividad humana utilizando datos de acelerómetro de sensores portátiles

Curso : Tópicos en Base de Datos

Docente : PhD. Edgar Sarmiento Calisaya

Alumnos : Miguel Alexander Herrera Cooper

Milagros Celia Cruz Mamani Yordy Williams Santos Apaza Alexander Cordova Ccana

INDICE

- 1. Introduccion
- 2. Motivacion
- 3. Objetivos
- 4. Definición del Problema
- 5. Pasos de Minería de Datos
- 6. Resultados y Evaluación
- 7. Conclusiones

1

Introduccion

Introduccion : ¿Qué es el reconocimiento de la actividad humana?

- Reconocer múltiples conjuntos de actividades humanas diarias en condiciones del mundo real.
- ¿Qué dispositivos se utilizan para recopilar datos para el reconocimiento de actividades humanas?
 - Smartphones
 - Wearable devices

- Cada uno de estos dispositivos tiene un acelerómetro integrado (biaxial / triaxial) que realiza un seguimiento del movimiento del cuerpo humano en los ejes x, y, z.
- ¿Dispositivo que estamos usando?

Acelerómetro Wocket (+ - 4g, frecuencia de muestreo = 90Hz)

Introduccion

- El acelerómetro Wocket contiene un acelerómetro triaxial, un microprocesador, un transmisor Bluetooth y una batería recargable.
- Estos son lo suficientemente pequeños y se pueden usar cómodamente en todas las ubicaciones del cuerpo al mismo tiempo.
- Los datos sin procesar del acelerómetro se adquieren y se envían mediante bluetooth a un teléfono inteligente.

Wocket listo para ser colocado en el cuerpo

2

Motivacion

Motivacion

- Analizar y comprender el proceso de los dispositivos portátiles comerciales.
 - Los sistemas de reconocimiento de actividad física disponibles comercialmente como Fitbit, Nike + FuelBand, etc. se utilizan ampliamente, pero su algoritmo no ha sido validado, es decir, sigue siendo un sistema de caja negra.
 - ➤ En este proyecto, informamos nuestros esfuerzos para reconocer las actividades humanas trabajando en datos similares de acelerómetro sin procesar.
 - Al hacerlo, obtenemos una comprensión profunda del sistema de clasificación de actividades y proporcionar recomendaciones basadas en nuestros hallazgos.

Motivacion

- Aplicaciones de estos dispositivos en industrias como:
 - Salud: seguimiento de la actividad física, control de la salud, detección de caídas.
 - Social: comparta sus actividades de acondicionamiento físico en sitios de redes sociales como Facebook, etc.
 - Estilo de vida: comportamientos sensibles al contexto.
 - Publicidad dirigida: publicidad basada en las actividades del usuario.
 - Gestión y Contabilidad Corporativa.

3

Objetivos

Objetivos

- Clasificar de las actividades diarias del usuario mediante el análisis y el procesamiento de datos del acelerómetro de wocket.
- Sugerir la mejor posición posible para la ubicación del sensor según la precisión.
- Sugerir la mejor combinación de sitios de colocación de sensores para clasificar las actividades.

4

Definición del Problema

Definición del Problema

- Estamos trabajando en este proyecto para reconocer algunas de las actividades humanas cotidianas más importantes:
 - > Caminando
 - Ciclismo
 - Acostado boca arriba
 - Sentado
- Los acelerómetros se colocan en cinco lugares del cuerpo al mismo tiempo.
 - > Brazo dominante
 - ➤ Muñeca dominante
 - Cadera dominante
 - Muslo dominante
 - Tobillo dominante
- Estos sitios de colocación fueron seleccionados debido a su relevancia en la investigación de monitoreo del ejercicio.

5

Pasos de Minería de Datos

Proceso General

Data Set

Dataset

Tenemos un conjunto de datos sin procesar de 33 participantes. Para cada participante tenemos los siguientes archivos:

- 5 archivos son los diferentes archivos de salida de cada sensor colocado en diferentes lugares.
- ☐ El sexto archivo es el archivo de intervalo de anotación (AnnotationIntervals.csv).

Los archivos antes mencionados son:

- AnnotationIntervals.csv
- Wocket_00_DatosDominantesCorregidos.csv
- Wocket 01 DatosRefutados MusloDominante.csv
- Wocket_02_DatosRayosCorregidos_CaderaDominante.csv
- Wocket_03_DatosRayosCorregidos_MuñecaDominante.csv
- Wocket_04_DatosDominantesCorregidos.csv

Los archivos AnnotationIntervals.csv tienen los intervalos de tiempo y las anotaciones de actividad y los archivos wocket tienen la aceleración x,y,z junto con la marca de tiempo.

Dataset

Demographics: 33 participants

11 Varones

22 Mujeres

Edad :18-75

Altura: 168.5 +/- 9.3cm

Peso: 70.0 +/- 15.6 kg

STARTTIME	ENDTIME	activity	
12-02-2009 10:38	12-02-2009 10:39	sitting	
12-02-2009 10:39	12-02-2009 10:40	cycling:-70-rpm50-watts7-kg	
12-02-2009 10:40	9 10:40 12-02-2009 10:43 walking:-natural		
12-02-2009 10:43	12-02-2009 10:45	lying	

Sample Annotations.csv

Time Stamp	X	Υ	Z
1.25975E+12	427	434	434
1.25975E+12	486	510	420
1.25975E+12	481	477	423
1.25975E+12	475	490	422

Sample Wacket.csv

PreProcesamiento

Preprocesamiento

Para el preprocesamiento, se extrajo los archivos mencionados de cada participante y se creó un archivo combinado. Este archivo combinado se crea para cada participante. Para la fusión, tomamos cada archivo wocket con la marca de tiempo y lo fusionamos con el archivo de anotación colocando cada marca de tiempo en el intervalo de tiempo correcto. En el archivo de anotaciones añadimos 2 segundos a la hora de inicio y restamos 2 segundos a la hora de finalización para evitar la fase de transición entre dos actividades. La fase de transición se descartó para que los datos resultantes fueran lo más inequívocos posible en cuanto a su etiqueta de actividad. El archivo final fusionado tiene las columnas X,Y,Z, Ubicación del sensor, Sello de tiempo y Actividad. Esto se realizó para los datos de los 33 participantes.

Preprocesamiento

Administrador C:\Windows\system32\cmd.exe-python preprocessor.py

Annotation: Stanford2010Data\dec0209\merged\AnnotationIntervals.csv

Wocket: Stanford2010Data\dec0209\merged\Wocket_00_RawCorrectedData_Dominant-Upper-Arm.csv
Wocket: Stanford2010Data\dec0209\merged\Wocket_01_RawCorrectedData_Dominant-Hip.csv
Wocket: Stanford2010Data\dec0209\merged\Wocket_02_RawCorrectedData_Dominant-Ankle.csv
Wocket: Stanford2010Data\dec0209\merged\Wocket_03_RawCorrectedData_Dominant-Thigh.csv
Wocket: Stanford2010Data\dec0209\merged\Wocket_04_RawCorrectedData_Dominant-Wrist.csv
Stanford2010Data\dec0209\merged Processed
Subject: output/dec0709-activity.csv
Annotation: Stanford2010Data\dec0709\merged\AnnotationIntervals.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_00_RawCorrectedData_Dominant-Upper-Arm.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_01_RawCorrectedData_Dominant-Hip.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_02_RawCorrectedData_Dominant-Ankle.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_03_RawCorrectedData_Dominant-Thigh.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_03_RawCorrectedData_Dominant-Thigh.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_03_RawCorrectedData_Dominant-Thigh.csv
Wocket: Stanford2010Data\dec0709\merged\Wocket_04_RawCorrectedData_Dominant-Wrist.csv

Control Data

Magnitud de señal media para cada sitio de sensor

Magnitud de señal media para cada sitio de sensor

Frecuencia antes del Filtrado

Magnitud de señal media para cada sitio de sensor

Frecuencia después del Filtrado

Algoritmos

Patrones KNN y Random Forest (Usando Gridsearch)

KNN (K-Nest-Neighbors) y RF (Random Forest) fueron los algoritmos usados en el desarrollo del proyecto, debido a que demostraron ser los más óptimos para la clasificación de los datos.

KNN es un algoritmo de aprendizaje supervisado, cuyo aprendizaje está basado en instancias o aprendizaje perezoso, en el cual la función sólo se aproxima localmente y todo el cálculo se aplaza hasta la parte de la clasificación, es uno de los algoritmos más sencillos y con menor complejidad O(n).


```
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.cross_validation import cross_val_score
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.grid_search import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
```


Se puede obtener un valor óptimo de K mediante varias técnicas heurísticas, por ejemplo, la validación cruzada. Y también con el uso del método Gridsearch.


```
knn_wrist = KNeighborsClassifier(n_neighbors=3, algorithm='auto', weights='uniform')
param grid = {
    'n_neighbors': range(3,11,2),
    'algorithm': ['auto', 'ball tree', 'kd tree'],
    'weights': ['uniform', 'distance'],
knn wrist gs = GridSearchCV(knn wrist, param grid=param grid)
knn wrist gs.fit(train data wrist, target label wrist)
predicted = knn wrist gs.predict(test data wrist)
print "Best parameters to be used for training the model", knn wrist gs.best params
print "\n"
```


KNN fue usado en la clasificación de las actividades anteriormente mencionadas además de la lectura y clasificación de los datos captados por los sensores de la cintura, del brazo y otros sensores ubicados en otras áreas del cuerpo de los participantes, también participó en la lectura de los datos de entrenamiento.

- ★ Los bosques aleatorios están basado en los árboles de decisión y es un algoritmo de aprendizaje por conjuntos para la clasificación, que funcionan construyendo múltiples árboles de decisión
- ★ RF es veloz y se ejecuta de manera eficiente en grandes bases de datos, además los bosques generados pueden reusarse en otros datos sin tener que ajustarse en exceso y su complejidad es O(M(mn log n)), siendo n las instancias, m los atributos y M el número de árboles creados.


```
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.cross_validation import cross_val_score
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.grid_search import GridSearchCV
```


RF crea múltiples árboles de clasificación, con el fin de clasificar un nuevo objeto a partir de un vector de entrada, este vector es colocado en cada árbol del bosque, cada árbol da una clasificación sobre el vector y se puede decir que el árbol votó por esa clase, de esa forma el bosque elige la clasificación que tiene más votos en todo el bosque.


```
# clf = RandomForestClassifier(n estimators=100, criterion='entropy')
# clf.fit(train data wrist, target label wrist)
# predicted = clf.predict(test data wrist)
rfc_wrist = RandomForestClassifier(n_estimators=100, criterion='entropy',n_jobs=-1)
param grid = {
    'n estimators': [50, 100, 200],
    'criterion': ['entropy', 'gini']
rfc wrist gs = GridSearchCV(rfc wrist, param grid=param grid)
rfc_wrist_gs.fit(train_data_wrist, target_label_wrist)
predicted = rfc wrist gs.predict(test data wrist)
# print "Best parameters to be used for training the model", rfc wrist gs.best params
```

36

GridSearch

Gridsearch ayuda a restringir el rango de valores necesarios para los algoritmos anteriormente descritos, esta restricción de rango ayuda a poder limitar los valores necesarios y por lo tanto optimizar los resultados.

GridSearch

Gridsearch aceptó un rango de parámetros que fueron usados para ajustar los datos y este a su vez puede ser optimizado por la búsqueda cruzada, usando ambos métodos se llegó a obtener los siguientes rangos de valores para KNN y RF.

GridSearch

- KNN:

- El rango de K es [9-11] y el peso es uniforme para todos los puntos.
- Cálculo de las distancias: euclidiana.

- RF:

- Rango de árboles de decisión generados es [50-200].
- Algoritmo empleado: InfoGain (es una entropía).

6

Resultados y Evaluación

Resultados

Visualización

wissing. u	(0%) Dist	tinct: 4	Unique: 0 (0%)
No.	Label	Count	Weight
1	walking:-natural	304100	304100.0
2	lying:-on-back	55659	55659.0
3	sitting:-legs-straight	466600	466600.0
4	cycling:-70-rpm50	106752	106752.0

Resultados

Trazado de los valores de aceleración x, y, z para actividades sentado y acostado para la posición del sensor en la parte superior del brazo

Usamos los siguientes métodos para evaluar nuestro modelo:

- Validación cruzada de 10 veces
- o Leave-One-Subject-Out (LOSO): simula una situación de la vida real

Las medidas de resultado incluyeron Exactitud, Precisión, Recuperación y puntuación F1.

Matriz de confusión después de LOSO CV basada en datos de muñeca :

Matriz de confusión después de LOSO CV basada en los datos del brazo dominante superior:

Matriz de confusión después de LOSO CV basada en datos del muslo :

Random Forest

Matriz de confusión después de LOSO CV basada en datos de tobillo :

LOSO Dominant-Ankle Normalized confusion matrix

Random Forest

Matriz de confusión después de LOSO CV basada en datos de Cadera :

Random Forest

k-NN

Clasificador	CV	Posicion del Sensor	Caminar (Walking)	Cycling(Ciclismo)	Sentado (Sitting)	Lying
Random Forest	LOSO	Muneca	88.76 %	80.24 %	91.89 %	50.83 %
		Cadera	93.95 %	88.47 %	95.47 %	80.45 %
		Muslo	95.52 %	96.36 %	93.01 %	23.93 %
		Tobillo	92.95 %	88.86 %	97.46 %	75.90 %
		Brazo	92.95 %	91.37 %	94.29 %	65.32 %

Clasificador	CV	Posicion del Sensor	Caminar (Walking)	Cycling(Ciclismo)	Sentado (Sitting)	Lying
KNN L		Muneca	85.58 %	56.68 %	85.36 %	41.12 %
		Cadera	93.69 %	89.48 %	95.50 %	40.29 %
	LOSO	Muslo	95.20 %	90.84 %	94.93 %	11.96 %
		Tobillo	93.26 %	91.32 %	97.67 %	51.40 %
		Brazo	91.37 %	77.59 %	94.22 %	39.05 %

Clasificador	CV	Posicion del Sensor	Caminar (Walking)	Cycling(Ciclismo)	Sentado (Sitting)	Lying
Random Forest	10 Fold	Muneca	87.93 %	78.04 %	90.98 %	47.73 %
		Cadera	94.97 %	91.39 %	95.45 %	80.46 %
		Muslo	95.55 %	98.19 %	91.18 %	25.69 %
		Tobillo	95.07 %	86.26 %	98.07 %	75.44 %
		Brazo	94.14 %	94.53 %	94.78 %	60.73 %

Clasificador	CV	Posicion del Sensor	Caminar (Walking)	Cycling(Ciclismo)	Sentado (Sitting)	Lying
KNN	10 Fold	Muneca	83.27 %	60.44%	83.58 %	36.93 %
		Cadera	94.17 %	89.87 %	95.74 %	45.86 %
		Muslo	95.54 %	92.40 %	92.54 %	16.02 %
		Tobillo	93.85 %	90.63 %	96.58 %	53.65 %
		Brazo	90.78 %	79.52 %	92.93 %	39.78 %

Combinando datos de los dos sitios de colocación principales, para este caso Cadera y Tobillo.

	Caminar (Walking)	Cycling(Ciclismo)	Sentado (Sitting)	Lying
Precision	0.95429058	0.899217	0.956576	0.879931
Recordar	0.9537383	0.887182	0.979197	0.874007
F1	0.95011728	0.887496	0.966129	0.862288
Accuracy	0.953738298	0.887182	0.979197	0.90132

Por lo tanto, podemos ver en la tabla anterior que la combinación de datos de Cadera y Tobillo mejoró las medidas de resultado generales.

7

Conclusiones

Conclusiones

- Características predictivas: Media, Desviación Estándar, Mediana, junto con características del dominio de frecuencia extraídas del vector de magnitud de la señal.
- Tanto para LOSO como para Cross Validation de 10 iteraciones, RF se comportó mejor que k-NN.
- Los datos de la cadera dominante fueron los más discriminativos en la clasificación, seguidos por el tobillo dominante.
- Recomendamos la combinación de ambos sitios para mejorar la clasificación.

GRACIAS

