

Closed-loop multi-sensor SLAM using factor graphs for fixed-wing UAV.

Adam Radomski

Master Thesis
Supervised by Timo Hinzmann, Thomas Schneider

Motivation

Develop localization framework which can simultaneously:

- Estimate local navigation solution with minimal latency
- Find optimal solution given all the measurements

Approach

Splitting the problem into short and long term problems

- Short local navigation solution
- Long solution given all data

Work done so far - STS

- Short Term Smoother
 - building a full factor graph given sensor data
 - estimating position and passing data to LTS

Work done so far - LTS

- Long Term Smoother
 - building a map with the input data
 - "translating" the map to a factor graph
 - optimizing the factor graph and updating data in the map

Localization framework (STS and LTS)

Current challenges

- Reading landmarks from the map and translating them into a factor graph
- Inserting "fixed" landmarks into STS

Future work

- 3-stage landmark initialization
 - Stage 1: compute 3D landmark coordinate and initialize the feature as binary factor (state x_k and x_{k+1}).
 - Stage 2: formulate the feature re-projection factors connecting the 3D landmark state and pose.
 - Stage 3: once uncertainty converges marginalize landmark state and switch back to binary factor formulation.
- Sliding-Window STS
 - Reduce the STS problem to a sliding-window factor graph

Discussion

