The maximum rate of mammal evolution

Alistair R. Evans^{a,1}, David Jones^{a,b}, Alison G. Boyer^c, James H. Brown^{d,e,1}, Daniel P. Costa^f, S. K. Morgan Ernest^g, Erich M. G. Fitzgerald^h, Mikael Forteliusⁱ, John L. Gittleman^j, Marcus J. Hamilton^{d,e,k}, Larisa E. Harding^l, Kari Lintulaaksoⁱ, S. Kathleen Lyons^m, Jordan G. Okie^{d,n}, Juha J. Saarinenⁱ, Richard M. Sibly^o, Felisa A. Smith^d, Patrick R. Stephens^j, Jessica M. Theodor^p, and Mark D. Uhen^q

^aSchool of Biological Sciences, Monash University, VIC 3800, Australia; ^bSchool of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom; ^cDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; ^dDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; ^eSanta Fe Institute, Santa Fe, NM 87501; ^fDepartment of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060; ^gDepartment of Biology and Ecology Center, Utah State University, Logan, UT 84322; ^hGeosciences, Museum Victoria, Melbourne, VIC 3001, Australia; ^hDepartment of Geosciences and Geography and Finnish Museum of Natural History, University of Helsinki, Helsinki, FIN-00014, Finland; ^hOdum School of Ecology, University of Georgia, Athens, GA 30602; ^hDepartment of Anthropology, University of New Mexico, Albuquerque, NM 87131; ^hLandscape Ecology, Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden; ^mSmithsonian Institution, Washington, DC 20013; ⁿSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 ^oSchool of Biological Sciences, University of Reading, Reading RG6 6AH, United Kingdom; ^pDepartment of Biological Sciences, University, Calgary, Calgary, AB, Canada T2N 1N4; and ^qDepartment of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA 22030

Contributed by James Hemphill Brown, December 29, 2011 (sent for review October 1, 2011)

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years. during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

haldanes | biological time | scaling | pedomorphosis

icroevolution and macroevolution characterize two extremes of the evolutionary process, representing evolution below and above the species level, respectively (1, 2). Microevolution often exhibits very fast rates over short timescales (<100 generations). At a typical generation-to-generation rate, evolution by a random walk could hypothetically produce a body mass change from that of a 20-g mouse to that of a 2,000,000-g elephant in fewer than 200,000 generations (3), a relatively brief geological interval. However, such high rates are not sustained over long intervals in the fossil record. Presumably this is because diverse physical, functional, genetic, developmental, and ecological constraints restrict large-scale macroevolution. Because these constraints may operate differently depending on whether an organism is becoming larger or smaller, it is equally important to understand whether the reverse transformation, from elephant to mouse, would be easier. Our question is how quickly such intertwined constraints can be overcome when there is a selective advantage to do so: What is the maximum rate of macroevolution? To paraphrase G. Evelyn Hutchinson "How big was it and how fast did it happen?" (4).

Body mass is the most fundamental animal trait, strongly correlated with most aspects of morphology, life history, physiology, and behavior (5–7). Evolution of body mass influences and is influenced by selection on other traits and is easily characterized. Thus, changes in body size provide some of the best examples of rapid evolution (8, 9).

Evolutionary rates of morphological traits such as size are often quantified in haldanes (h) (10, 11), which measure proportional change in a feature (M_i) between two time points (i) standardized by the available variation (pooled ln SD s_p) using a timescale in number of generations (g): $h = (\ln M_2 - \ln M_1)/(s_p \times g)$.

However, most previous measurements of evolutionary rates have been made either for well-defined lineages in a stratigraphic sequence or pairs of time points where an ancestor/descendant relationship is reasonably certain (3, 11, 12). This tends to restrict comparisons to closely related groups with relatively small evolutionary changes and low rates.

To better characterize major changes in a phenotypic trait within a clade, as opposed to a single lineage, we developed the clade maximum rate (CMR) metric. The clade maximum rate is defined as the rate of change in a specified extreme value of a trait (either the minimum or the maximum) for a clade within a given time interval. Whereas this metric describes the rate at which the maximum of a trait increases, the CMR is normally slower than the maximum rate of evolution of the trait within individual lineages of the clade (Fig. 1). CMR intentionally ignores decreases in the maximum of the trait because these can happen by true evolutionary decreases or extinction of the lineages that achieved the maximum. A major advantage of the clade maximum rate is that a detailed phylogeny is not required, only the recognition of distinct clades.

Here, we investigated the clade maximum rate for maximum body mass. We used a compilation of the maximum body mass (M) for 28 mammal orders on the four largest continents (Africa, Eurasia, and North and South America) and all ocean basins for all subepochs during the last 70 million years, covering the well-documented mammal radiation following the Cretaceous-Paleogene (K-Pg) mass extinction (13). To test for generality of

Author contributions: A.R.E. designed research; A.R.E., D.J., A.G.B., J.H.B., D.P.C., S.K.M.E., E.M.G.F., M.F., J.L.G., M.J.H., L.E.H., K.L., S.K.L., J.G.O., J.J.S., R.M.S., F.A.S., P.R.S., J.M.T., and M.D.U. performed research; A.R.E., D.J., J.G.O., and R.M.S. contributed new reagents' analytic tools; A.R.E., D.J., M.J.H., J.G.O., R.M.S., and M.D.U. analyzed data; and A.R.E., D.J., A.G.B., J.H.B., D.P.C., S.K.M.E., E.M.G.F., M.F., J.L.G., M.J.H., L.E.H., K.L., S.K.L., J.G.O., J.J.S., R.M.S., F.A.S., P.R.S., J.M.T., and M.D.U. wrote the paper.

The authors declare no conflict of interest.

See Commentary on page 4027.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120774109/-/DCSupplemental.

¹To whom correspondence may be addressed. E-mail: arevans@fastmail.fm or jhbrown@ unm.edu.

Fig. 1. Evolutionary rate of the clade maximum for a trait can underestimate the maximum evolutionary rate of subclades or component lower taxa within the clade. The black dashed line represents the maximum for a clade composed of three subclades represented by green, red, and blue lines. Each of these subclades is composed of lineages of species, shown for the green clade as thin broken lines. When a different subclade becomes the new clade maximum, it must have a higher evolutionary rate than the clade maximum for that interval: the thick lines represent this process.

the patterns, we also obtained and analyzed data for North American Artiodactyla at the finer temporal resolution of the North American Land Mammal Age (NALMA) subages. For each clade, we calculated the CMR of body size evolution in haldanes. We supplemented CMR with a reference database from the literature of 1,453 rates of mammalian body mass evolution for many phylogenetic groups at various temporal scales. A third dataset from empirical selection experiments on mouse body size (3, 14) measured evolutionary change over 1–23 generations. Directly comparing rates at different interval lengths is complicated; although a very high rate can be sustained for a short interval, over longer periods, rates tend to vary and the direction of evolution may change (12). Thus, interval length must be incorporated into any analysis.

Generation time is considered the fundamental unit of evolutionary time because evolutionary change cannot happen more quickly than a single generation (10, 11). The use of generation time rather than chronological time is crucial for the calculation of interval length because generation time increases allometrically with mass (i.e., larger species have longer generation times than smaller species). Therefore, evolutionary rates appear to slow in chronological time as the maximum size increases even when they are the same rate in generational time. If generation time were invariant with body mass, then the slope of body mass as a function of chronological time (t) would indicate a true evolutionary rate (Fig. 24). However, generation time, like many other biological processes such as lifespan, gestation, lactation, and sleep cycle, scales as $\sim 1/4$ power of body mass $(M^{0.259})$ for placental mammals (Materials and Methods). Thus, plotting $M^{0.259}$ against time gives a generation time-corrected evolutionary rate in haldanes (Fig. 2B). A straight line relationship here indicates an exponential increase in maximum size over biological time (SI Appendix).

Results

We find that the maximum body mass of terrestrial mammals evolved at a near-constant rate from 70 million years ago (Ma), just before the K-Pg, until the appearance of the largest terrestrial mammal, *Indricotherium*, at about 30 Ma. A linear regression gives an excellent fit to this time interval, with a slope equivalent to 7.1×10^{-6} haldanes ($R^2 = 0.97$; Table 1 and Fig. 2). A similar constancy, but with somewhat different absolute rates, appears in several orders: Cetacea (from Oligocene to Recent), Artiodactyla, Perissodactyla, Proboscidea, and Rodentia, and to a lesser extent the Carnivora and Primates (Table 1). The relative constancy of evolutionary rate for maximum body mass for the 35 million years following the extinction of the nonavian dinosaurs is striking and unexpected. Our results offer a different perspective from a recent analysis of body mass evolution over chronological time, but are consistent with convergence toward an asymptote for maximum body mass globally and within each continent (13) (Fig. 2A).

Across all analyzed datasets, we find that the largest changes occur in the clade maximum data (Fig. 3A). The highest magnitudes of change are about 5,000-fold (blue, Fig. 3A), much greater than the 100-fold increases seen in the reference database (yellow, Fig. 3A). This difference occurs despite the considerable overlap between our dataset and the reference data in the time intervals studied. Using the clade maximum rates for all mammals, we estimate the minimum times to evolve 100-, 1,000-, and 5,000-fold increases in body size are 1.1, 3, and 5 million generations, respectively (Table 2) and occur in

Fig. 2. Maximum mammalian body mass over time for terrestrial mammals (dashed black line) and separate mammal orders (colored lines). (A) Log(M) vs. Age shows an asymptotic relationship for the mammalian maximum. (B) Mass is scaled to the power of 0.259 on the y axis (given an empirical $M^{0.259}$ scaling of generation times), so the slope of lines indicates generation time-corrected evolutionary rates as indicated by an angular scale (haldanometer). *Inset* graphs show how an asymptotic relationship for M vs. Age can result in a linear trajectory for $M^{0.259}$ vs. Age, as found for terrestrial mammals from 70 to 30 Ma (solid black line in B). Rates were calculated separately for the orders in color; when other orders comprise the maximum size across all mammals, they are shown in gray. Artiodactyls (red circle), carnivorans (red triangle), cetaceans (orange square), creodonts (brown plus sign), multituberculates (green cross in square), perissodactyls (green asterisk), primates (cyan diamond), proboscideans (blue X), rodents (purple star), condylarths (open gray triangle), dinoceratans (open gray diamond), pantodonts (open gray circle). Time units: Paleo, Paleocene; Pl, Pliocene; P, Pleistocene.

Table 1. The maximum body mass for all terrestrial mammals and for several orders increased linearly when generation time is accounted for

	Slope	Haldanes (\times 10 ⁻⁶)	R^2	P
Terrestrial maximum	1.59	7.14	0.97	1.17×10^{-5}
Artiodactyla	0.74	3.34	0.90	3.33×10^{-5}
Carnivora	0.65	2.94	0.74	6.87×10^{-4}
Cetacea	3.25	14.60	0.83	1.70×10^{-3}
Perissodactyla	2.13	9.57	0.98	9.70×10^{-3}
Primates	0.39	1.77	0.78	1.46×10^{-4}
Proboscidea	1.08	4.84	0.91	6.25×10^{-5}
Rodentia	1.21	5.45	0.93	1.74×10^{-3}

Slope for linear regression of $M^{0.259}$ vs. Age (Ma) for each group from their origin until their maximum (except for Cetacea, which is for the period of 31 Ma to the Recent). The average rate in haldanes was calculated using the mammalian scaling relationship of generation time with body mass (SI Appendix). These time intervals are plotted as points in Fig. 3B.

cetaceans. In contrast, the maximum evolutionary rates for terrestrial mammals are much lower, taking 1.6, 5.1, and 10 million generations, respectively (Table 2).

Discussion

Although the global data provide an overall estimate of evolutionary rates across all mammals, there is interesting and likely important variation among the clades and modes of life. The maximum body mass of cetaceans yields the highest long-term rates of any order (Table 1) and higher rates than other mammals (Fig. 3B). This finding may reflect the fewer mechanical constraints on body form and function in the aquatic environment (7). Moreover, a large mass is advantageous for maintaining thermoregulatory balance, so selection pressures for large size may be stronger in an aquatic environment. However, no group yielded macroevolutionary rates approaching those reported from microevolutionary studies.

The discrepancy between microevolutionary predictions for large-scale body size evolution and actual macroevolutionary measurements of rates has long been known (3, 12, 15, 16) but little understood. Although our study cannot definitively address this issue, it does furnish some important insights. We provide strong empirical evidence that the maximum rate of body size evolution decreases with increasing time interval (12, 17). Indeed, we find an approximate linear relationship across the different datasets between the maximum amount of change and the time interval: the maximum log change scales with log time interval with a slope of 0.25 (*SI Appendix*). Using this scaling relationship, we estimate that the 100,000-fold transformation from mouse to elephant would take 24 million generations. This is substantially longer than 200,000–2 million generations suggested by microevolutionary rates (3, 15).

To investigate the converse transformation of elephant to mouse, we divided our reference data into size increases and decreases. Whereas changes in mass below twofold appear to have similar maximum rates for increases and decreases in size, above

Table 2. Minimum number of generations (millions) required to evolve various magnitudes of change in mammals

		Magnitude of change						
		×3	×10	×100	×1,000	×5,000		
All mammals	Increase	0.016	0.30	1.1	3.0	5.0		
Terrestrial mammals	Increase	0.016	0.30	1.6	5.1	10.0		
Cetaceans	Increase	0.10	0.40	1.1	3.0	5.0		
Insular dwarfism	Decrease	0.001	0.008	0.12				

this the rates are unequal (Fig. 3B). The largest decreases, such as insular dwarfism, are more than 30 times the rate of increases of the same magnitude (Table 2). This apparent asymmetry is especially surprising given the ample evidence for Cope's rule, a trend for body size to increase consistently and relatively continuously throughout the history of a lineage (18, 19).

The asymmetry between rates can potentially be explained by distinct but not necessarily mutually exclusive mechanisms. One possibility is that there are fewer physical, biological, and environmental constraints to decreasing as opposed to increasing size. Pedomorphic processes are good candidates as mechanisms of size reduction, because all animals must pass through a smaller size during their ontogeny. We hypothesize it is easier to halt the developmental program and reproduce early than to grow larger and delay maturity. Another possibility is that selection favors size decreases because smaller animals have higher rates of reproduction with life histories characterized by rapid maturity, high

Fig. 3. Maximum rates of evolution for large changes in mammalian body mass. Minimum convex polygons of rates plotted as log change in body mass (in units of SD) vs. log time interval (generations). (A) The three datasets compared in this study: experimental rates (3, 14) (brown), 1,453 rates from previous studies (yellow), and clade maximum rates (blue). Asterisks indicate minimum number of generations to evolve a given amount of change. (B) Datasets split into components. Compiled rates are separated into increases (gray) and decreases (red) and clade maximum rates (all of which are increases) into terrestrial orders (pink), cetaceans (cyan), and North American artiodactyls (orange). Points show average rates for linear increase in Table 1 for terrestrial mammals (open circle), artiodactyls (closed circle), carnivorans (square), cetaceans (triangle), perissodactyls (asterisk), primates (diamond), proboscideans (X), and rodents (star). Right-hand y axis and horizontal lines illustrate magnitude of change in body mass. Large decreases (>2-fold) require substantially less time than increases, and maximum rates for very large changes (>100-fold) in cetaceans are about twice those in terrestrial. Diagonal dotted lines are isohaldanes, equal rates measured in log haldanes.

birth rates, and short lifespans (20). Finally, decreases in size may reflect adaptation to a more generalized ecological niche, whereas increases in size require novel adaptations to obtain more food and space to fuel higher whole-organism metabolic rates.

In the reference dataset, the largest decreases in body size were rates of dwarfing in large mammals after isolation on islands by rising sea levels during the last few million years: elephants on the Mediterranean islands of Sicily, Malta, and Cyprus (9, 21); mammoths on the California Channel Islands (22); and red deer on Jersey (8) (SI Appendix). These island dwarfism cases involve body mass changes of 5- to 100-fold over estimated time intervals of 0.006-0.8 myr or 2,300-120,000 generations. Islands characteristically have fewer predators, competitors, and resources (23), thereby favoring faster life histories and more generalized ecologies and perhaps also leading to higher selection pressures (17).

Our study represents a comprehensive analysis of large-scale macroevolutionary rates for a single trait. Whereas previous work used metrics similar to our clade maximum rates (10, 24, 25) using only two data points, our clade maximum rate metric allows assessment of rates over a range of time intervals and with high temporal resolution. This allows us to make direct quantitative comparisons of microevolutionary and macroevolutionary rates (1, 3, 12, 15, 26). Maximum macroevolutionary rates have important implications for large-scale faunal changes and recovery from mass extinction (13, 19). Our results highlight the comparative difficulty of major changes in body size, especially increasing in size. At least 5 million generations were required for a mammal to increase 1,000-fold in body mass, from the size of a rabbit to the size of an elephant. Compared with an equivalent change at microevolutionary rates, this substantial length of time illustrates just how challenging this great transformation is.

Materials and Methods

We used the compilation (13) of the maximum body mass for each of 28 orders of Mammalia in each subepoch since 70 Ma (Mammoth database v. 1.0). We calculated rates for the mammal maximum and for the nine best sampled orders using the CMR method. The maximum mass of artiodactyls in North America was calculated for 18 families for each North American Land Mammal subage. Natural log body mass SD was estimated to be 0.15

- 1. Simpson GG (1953) The Major Features of Evolution (Simon and Schuster, New York).
- 2. Stanley SM (1979) Macroevolution: Pattern and Process (W. H. Freeman, San Francisco)
- 3. Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. Genetica 112-113:127-144.
- 4. Hutchinson GE (1975) Variations on a theme by Robert MacArthur. Ecology and Evolution of Communities, eds Cody ML, Diamond JM (Belknap Press, Cambridge), pp 492-512.
- 5. Peters RH (1983) The Ecological Implications of Body Size (Cambridge Univ Press, Cambridge).
- 6. Calder WA (1984) Size, Function, and Life History (Harvard Univ Press, Cambridge, MA).
- 7. Schmidt-Nielsen K (1984) Scaling: Why Is Animal Size So Important? (Cambridge Univ Press, Cambridge)
- Lister AM (1989) Rapid dwarfing of red deer on Jersey in the last interglacial. Nature
- Roth VL (1992) Inferences from allometry and fossils: Dwarfing of elephants on islands. Oxf Surv Evol Biol 8:259-288
- 10. Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51-56.
- 11. Gingerich PD (1993) Quantification and comparison of evolutionary rates. Am J Sci
- 12. Gingerich PD (1983) Rates of evolution: Effects of time and temporal scaling. Science 22:159-161.
- 13. Smith FA, et al. (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216-1219.
- 14. Falconer DS (1973) Replicated selection for body weight in mice. Genet Res 22: 291-321.

from modern species (27) as used previously (3) (SI Appendix). Generation time was estimated as age at first parturition. Regression equations for body mass vs. generation time calculated from the data for 839 placental mammal species and for 82 marsupial species (28) were used to estimate generation time for extinct taxa on the basis of body size. For each sequence of maxima, all combinations of time points were compared. Only rates of increase in maximum size were calculated for the maximum mammalian body size, as these must be due to evolutionary change. The pattern of increase in maximum body mass of terrestrial mammals ($M^{0.259}$) from 70 to 30 Ma was assessed with ordinary least squares (OLS), segmented, Gompertz, square root, exponential, and logistic regressions. The OLS regression model was the best fit according to Akaike information criterion (AIC) (SI Appendix). The pattern of increase in maximum size for seven orders was also assessed using OLS regression (Table 1). We calculated evolutionary rates for mammal data in references (3, 17, 29) where sufficient data were present in the original paper to allow estimation of body mass and time intervals. SI Appendix lists the sources of data for body size, generation time, and interval length for the studies used. Data quality for these sources will be variable, depending on factors such as the accuracy of the identification of ancestordescendant pairs and the date at which the derived morphology was actually attained. Several sensitivity tests were conducted to examine whether the incompleteness of the fossil record and/or binning data by subepoch biased rate calculations. These tests comprised sets of 100 independent random walks in 10 clades for 1,000 steps in 10 intervals. The maximum within each subclade and for the whole clade was calculated for each interval. The rates of change in the subclade and clade maxima were calculated per interval as for the CMR method. Fossilization was simulated by downsampling the data to between 1 and 0.005%. Maxima in each interval and rates of change were then calculated for each subclade and clade. These calculations indicated that the estimated evolutionary rates are not significantly biased due to these effects, although at very low preservation levels variation in measured rates increased.

ACKNOWLEDGMENTS. We thank G. Evans, M. Burd, D. Dowling, Evolutionary Biology at Monash, P. Smits, G. Sanson, J. Jernvall, F. Whiteman, M. Balk, B. Van Valkenburgh, J. Damuth, A. Lister, and P. D. Polly for discussions and comments on earlier manuscripts. This study was supported by an Australian Research Council Australian Research Fellowship (to A.R.E.), Monash University Monash Research Fellowship (to A.R.E.), National Science Foundation Grant Integrating Macroecological Pattern and Processes across Scales Research Coordination Network (IMPPS RCN) DEB 0541625 (to F.A.S., S.K.L., and S.K.M.E., principal investigators), European Union Marie Curie Grant PIOF-GA-2009-235868 (to D.J.), and a Harold Mitchell Foundation Harold Mitchell Fellowship (to E.M.G.F.). This paper is IMPPS RCN publication no. 18.

- 15. Polly PD (2001) Paleontology and the comparative method: Ancestral node reconstructions versus observed node values. Am Nat 157:596-609.
- 16. Kinnison MT, Hendry AP (2001) The pace of modern life II: From rates of contemporary microevolution to pattern and process. Genetica 112-113:145-164.
- 17. Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4:e321.
- 18. Stanley SM (1973) An explanation for Cope's rule. Evolution 27:1-26.
- 19. Alroy J (1998) Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731-734.
- 20. Sibly RM, Brown JH (2007) Effects of body size and lifestyle on evolution of mammal life histories. Proc Natl Acad Sci USA 104:17707-17712.
- 21. Davies P, Lister AM (2001) Palaeoloxodon cypriotes, the dwarf elephant of Cyprus: Size and scaling comparisons with P. falconeri (Sicily-Malta) and mainland P. antiquus. The World of Elephants: Proceedings of the 1st International Congress, Rome 2001, ed Cavarretta G (Ufficio Pubblicazioni, Rome), pp 479-480.
- 22. Lister A, Bahn PG (2007) Mammoths: Giants of the Ice Age (Univ of California Press, Berkeley), Rev. Ed.
- 23. Lomolino MV (2005) Body size evolution in insular vertebrates: Generality of the island rule. J Biogeogr 32:1683-1699.
- 24. Colbert EH (1948) Evolution of the horned dinosaurs. Evolution 2:145-163.
- 25. Stanley SM (1985) Rates of evolution. Paleobiology 11:13-26.
- 26. Estes S, Arnold SJ (2007) Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169:227-244
- 27. Silva M, Downing JA (1995) CRC Handbook of Mammalian Body Masses (CRC, Boca
- 28. Hamilton MJ, Davidson AD, Sibly RM, Brown JH (2011) Universal scaling of production rates across mammalian lineages. Proc R Soc Lond Ser B 278(1705):560-566.
- 29. Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA 104:18404-18408.

Supplementary Information Appendix Evans et al. (2012) The maximum rate of evolution in mammals

Supporting Information Corrected March 5, 2012

Materials and Methods

Calculation of evolutionary rates

Clade maximum rate (CMR) examines the maximum of a phenotypic trait for a clade over evolutionary time. Fig. 1 illustrates how CMR is calculated for three clades: the green, red and blue clades. Within the green clade are five lineages, represented as broken lines. The time scale could be either individual generations, or multiple generations binned into time intervals. For the latter, the maximum of the lineage during that interval is plotted at the centre of the time interval, and maxima of adjacent time intervals are connected by a line. For each interval, the lineage with the maximum value is identified as the 'clade maximum', shown as the solid green line. The CMR is the rate of change between any pair of points along this line. In Fig. 1 the clade maximum has also been calculated for the red and blue clades, but their component lineages are not shown for clarity. The superclade of the green, red and blue clades also has a clade maximum, shown as the dashed black line. The rate of this clade maximum can be calculated in the same manner. The CMR is a conservative estimate, being a minimum estimate of the maximum rate because maximum body mass in an order at time t + 1, compared to the maximum body mass in the order at time t, is the minimum possible amount of change to account for the difference, occurring only if the largest species at t + 1 evolved from the largest species at t. If the largest species at t + 1 evolved from any other species at t, the rate would be higher.

We used the compilation (1) of the maximum body mass for each of 28 orders of Mammalia in each sub-epoch since 70 Ma (Mammoth database v. 1.0). We calculated rates for the mammal maximum and for the nine best sampled orders (Artiodactyla, Carnivora, Cetacea, Creodonta, Multituberculata, Perissodactyla, Primates, Proboscidea and Rodentia; the paraphyletic order Artiodactyla was analysed separately from cetaceans rather than the monophyletic Cetartiodactyla due to the very different pattern of body size increase). The mean of the natural log measurements was estimated as the natural log of the mean of untransformed measurements (2).

Cetacean body masses were estimated from a new regression equation of occipital condyle breadth (OCB, mm) vs mass (M, kg) for 18 odontocete and 11 mysticete species: $M = 4.924 \times 10^{-6} OCB^{3.858}$ (Eq. S1)

(R² = 0.9447, SE = 0.2716, %PE = 55.33, %SEE = 86.89). %PE is the percent prediction error and %SEE is the percent standard error of the estimate (3, 4). Cetaceans are the only group where the maximum is found in the present day, and so underestimations of fossil taxa would result in an overestimation of the evolutionary rate. Poor sampling in the Oligocene and Early Miocene may result in underestimation of maximum size of this group, but it is unknown if this lower sampling is more extreme than for many other groups.

The maximum mass of artiodactyls in North America was calculated for 18 families and the continent as a whole for each North American Land Mammal sub-age.

For each sequence of maxima, all combinations of time points were compared. Only rates of increase in maximum size were calculated for the maximum mammalian body size, as these must be due to evolutionary change, but decreases may be due to extinctions of the previous maximum and so do not represent rates of evolution. The clade maximum rates method could also be applied to the minimum of a clade, in which case only decreases could be assessed. A

major advantage of the clade maximum metric is that a detailed phylogeny is not required, only the recognition of distinct clades.

Several methods were used to estimate body mass standard deviation (s_p). The body mass standard deviation was estimated for 64 species from eight orders from published data (5) as (ln(maximum) - ln(minimum))/4, based on an estimate that 95% of normally-distributed observations are within two standard deviations of the mean. The mean standard deviation of this estimate was 0.145, which is very similar to that of 0.15 (6) and 0.14 (7). We therefore used the value of 0.15. Using a higher estimate of 0.2 reduces all log changes in Fig. 3 by a factor of 0.125, therefore having only a small effect on the overall pattern.

For comparison, the coefficient of variation of body mass in modern mammals (8) for six species of three orders gave a mean of 0.140. The mean standard deviation for body mass estimates for fossil *Homo sapiens* (9) was 0.138. For a mass death assemblage of *Teleoceras major* where maximum and minimum body size estimates were made (10), the standard deviation was 0.070. The standard deviation for a large number of linear characters also compiled for this study was 0.054, and with an average scaling of these characters to body mass of 3 gives an estimate of the variation in body mass of 0.162.

A two-fold difference in the minimum and maximum (e.g. minimum size 1 kg, maximum size 2 kg) gives a ln standard deviation of $(\ln(1)-\ln(2))/4 = 0.173$, which is the average value for Artiodactyla.

Our results suggest that body size changes greater than 2-fold require much longer time periods. This is interesting because the range of size within a species is typically about 2-fold (In standard deviation of mammals is 0.15, while a 2-fold range gives 0.17), suggesting that size changes >2-fold might involve evolution above the species level.

Generation time was estimated as age at first parturition (age at first reproduction plus gestation time (11)) from the data for 839 placental mammal species and for 82 marsupial species (12). Ordinary least squares regression of body mass on generation time yielded the following relationships:

$$G_{plac} = 0.175 M^{0.259}$$
 (Eq. S2)
 $G_{mars} = 0.531 M^{0.091}$ (Eq. S3)

where G_{plac} and G_{mars} are generation time in years for placentals and marsupials respectively and M is body mass in grams. 95% confidence intervals for the slopes of the placental and marsupial regressions are 0.247-0.272 and 0.056-0.126 respectively. This does not incorporate the effects on generation time of varying r- and K-selection strategies, but such detailed life history information is difficult to extract from the fossil record.

The generation time G of an organism is dependent on mass M according to an allometric scaling function:

$$G = b_0 M^{b_1}. (Eq. S4)$$

The number of generations or biological time t_g experienced by a lineage or population is equal to the chronological time t experienced divided by generation time: $t_g = t / G$ or in differential form, $dt_g = dt / G$. Rearranging and substituting in Equation S4, we obtain

$$\frac{dt_g}{dt} = \frac{1}{b_0 M^{b_1}}.$$
 (Eq. S5)

If mass increases exponentially with exponential rate constant α per generation, then

$$\frac{1}{M}\frac{dM}{dt_g} = \frac{d(\log M)}{dt_g} = \alpha , \qquad (Eq. S6)$$

which in integrated form is

$$\log M = \alpha t_{g} + \log M_{0}, \tag{Eq. S7}$$

where M_0 is the initial body mass at $t_g = 0$.

 α forms the basis for the calculation of the Haldane h and many other measures of evolutionary rates (e.g., $h = \alpha/s_p$, where s_p is body mass standard deviation as defined above). To get the corresponding equations for Equations S6 and S7 in terms of chronological time we note that

$$\frac{dM}{dt} = \frac{dM}{dt_o} \frac{dt_g}{dt}$$
 (Eq. S8)

and substitute Equations S5 and S6 into Equation S8, thereby obtaining

$$\frac{dM}{dt} = \left(\frac{\alpha}{b_0}\right) M^{1-b_1} \,. \tag{Eq. S9}$$

The integrated solution is

$$M^{b_1} = \frac{\alpha b_1}{b_0} t + M_0^{b_1}$$
 (Eq. S10)

This shows that M^{b_1} depends linearly on chronological time t with a slope s of $s = \alpha b_1/b_0$. Thus, the rate of change in body size per generation is

$$\alpha = \frac{sb_0}{b_1}$$
 (Eq. S11)

and the rate of evolution of body mass can be estimated by determining through linear regression the parameters s and the coefficients b_0 and b_1 of the generation time allometric equation. The number of generations N_g occurring between two time points can now be obtained from Equations 6 and 11 as

$$N_g = dt_g = \frac{b_1 d(\log M)}{sb_0},$$
 (Eq. S12)

which can be calculated for two time points and their respective masses M_1 and M_2 as

$$N_g = \left(\frac{b_1}{sb_0}\right) \left(\log M_2 - \log M_1\right).$$
 (Eq. S13)

This calculation gives an analytically exact interpolative estimate of the interval length for that time interval. s, the slope of the time $(t_y, \text{ in years})$ vs M^{b_1} , can be calculated as:

$$s = \frac{M_2^{b_1} - M_1^{b_1}}{t_{v_2} - t_{v_1}}.$$
 (Eq. S14)

The pattern of increase in maximum body mass of terrestrial mammals (as $M^{0.259}$) from 70 to 30 Ma was assessed with linear ordinary least squares (stats:lm), linear segmented (segmented), Gompertz (drc), square root (nls), exponential (nls) and logistic (nls) regressions in R Statistical Environment v. 2.10.1 (13) using the packages in brackets. The OLS regression model was the best fit according to Akaiki information criterion (AIC) using the stats:AIC function (13). AIC was calculated as:

$$AIC = -2p + k \cdot npar$$
 (Eq. S15)

where p is the log-likelihood, npar is the number of parameters in the fitted model, and k = 2. The log-likelihood and number of parameters for each model are indicated in Tables S1 and S3. The pattern of increase in $M^{0.259}$ maximum size for seven orders from their origin to their maximum was also assessed using OLS linear regression (Table 1). The pattern of increase in cetaceans was examined for the period of the Oligocene to the Recent as the increase to the first local maximum (*Basilosaurus*) is represented by only a single time interval. In addition to using a generation scaling coefficient of 0.259, all analyses were also repeated with a generation scaling coefficient of 0.25 (Tables S2 and S3).

Reference database of evolutionary rates

We calculated evolutionary rates for mammal data in references that cited previous compilations (6, 14, 15) and others where sufficient data were present in the original paper to allow estimation of body mass and time intervals. Table S4 lists the sources of data for body size, generation time and interval length for the studies used. Data quality for these sources will be variable, depending on factors such as the accuracy of the identification of ancestor-descendant pairs and the date at which the derived morphology was actually attained. Nonetheless we have confidence in the general pattern of results that depend on them.

For most references, generation times and interval lengths were calculated as per maximum size. For others, the generation times have been estimated from a method other than directly from the body mass-generation time regression (for example, where the authors themselves or another author since has estimated the generation time), and these were used to calculate interval length in number of generations:

$$N_g = \frac{t_{y_2} - t_{y_1}}{\sqrt{G_2 G_1}},$$
 (Eq. S16)

where G_1 and G_2 are the generational times at times 1 and 2 respectively, giving the geometric mean of the start and end generation times. For small changes in body mass (e.g. <10-fold change) the differences in the interval lengths calculated by the two methods are minor (<2%).

Random walk simulations

Several sensitivity tests were conducted to examine whether the incompleteness of the fossil record and/or binning data by sub-epoch biased rate calculations. We conducted a random walk simulation with various levels of preservation. Each simulation comprised 100 independent random walks, with the movement up or down at each of the 1000 steps drawn from a normal distribution of mean 0, s.d. 1. The walks were divided into 10 subclades, and time was divided into 10 intervals. The maximum within each subclade and for the whole clade was calculated for each interval. The rates of change in the subclade and clade maxima were calculated per interval. The process of fossilization was simulated by downsampling the data to between 1% and 0.005% of all steps in all walks. Maxima in each interval and rates of change were then calculated for each subclade and clade. One hundred simulations were run with different sets of walks. 95% confidence intervals of rates for the full and fossilized datasets over all simulations were compared to see whether the fossilisation process gave a biased higher or lower estimate of the true rates (Table S5). This indicated that the estimated evolutionary rates are not significantly biased due to these effects, although at very low preservation levels variation in measured rates increased.

Examples of island dwarfism

The key examples of large decreases examined here are instances of island dwarfism, the Jersey red deer (16) and insular pygmy elephantids (17-19). These are the only examples of large change (over half an order of magnitude) for which body mass estimates have been made and there is some estimation of the timing of the split from the large ancestral species. The Jersey deer represents a change from about 200 kg to 36 kg during a maximum of 5800 years (16). As this is a maximum estimate of the divergence time, this will represent a minimum and therefore conservative estimate of the evolutionary rate.

Three examples of pygmy or dwarf elephants are examined here. The first is the pygmy elephant (*Elephas falconeri*) that evolved on Sicily and Malta, with an estimated mass of 100 kg (17). *Elephas falconeri* was probably a descendant of *E.antiquus*, which weighed approximately 10,000 kg (20). Second, the Cyprus pygmy elephant (*Elephas cypriotes*) weighed around 200 kg (18) and was also probably descended from *E. antiquus*. We have used an estimate of 800,000 years as the divergence time between *E. antiquus* and each of *E. falconeri* and *E. cypriotes*, as *E. antiquus* did not arrive in Europe until the start of the Middle Pleistocene (0.8 Ma) (61). Third is the California Channel Islands mammoth (*Mammuthus exilis*) of about 1,000 kg, derived from the mainland *Mammuthus columbi* (around 10,000 kg). The dwarf mammoth would have evolved in less than 85,000 years (19).

The Mediterranean proboscidean pygmies represent the greatest change in body mass for insular dwarfism that we are aware of, at up to 2 orders of magnitude between ancestor and descendant. If the dates of divergence differ from the estimated range of 0.8 million years, the horizontal position of the point in Fig. 3 will move but not the vertical.

Asymmetry of increases and decreases

The apparent asymmetry between rates of increases and decreases would be falsified if fossil evidence of rapid gigantism were found. We expect that it would be easier to find examples of gigantism compared to dwarfism in the fossil record due to the bias of finding larger fossils compared to small ones. For instance, even at a distance of 65 million years, dwarfed, presumably island forms of dinosaurs have been recognized in the Haţeg basin (21), but no instances of such dramatic insular gigantism in mammals are known. Examples such as the giant rabbit of Minorca (22) are undated, and represent less than one order of magnitude change from a probable ancestor.

Figures

Fig. S1. Exponential increase in body size in biological time is curvilinear in chronological time but linear when mass is scaled to account for generation time. (**A**) When evolutionary increase in body size (*M*) is exponential over biological time (in generations t_g), change in log mass is linear. (**B**) Assuming that generation time (*G*) increases with mass, $G = b_0 M^{b_1}$, log mass shows a slowing in the rate of increase in body size in chronological time (in years t_y). (**C**) When M^{b_1} is plotted versus chronological time, this trajectory is linear with a slope r. The rate of increase per generation α can be calculated from the slope r by multiplying by b_0/b_1 .

Fig. S2. Ln body mass vs standard deviation for 64 species of modern mammals (30). Mean \pm s.e. = 0.145 \pm 0.011, 95% Confidence Interval = 0.124 to 0.167.

Fig. S3. Maximum mammalian body mass over time for terrestrial mammals (dashed black line) and separate mammal orders (colored lines). Mass is scaled to the power of 0.25 on the y axis (given a theoretical $M^{0.25}$ scaling of generation times), so the slope of lines indicates generation time-corrected evolutionary rates as indicated by angular scale (haldanometer). This shows that there is no major difference in the pattern when the theoretical expected value of 0.25 is used rather than the empirical scaling coefficient of 0.259 for generation time to body mass.

Fig. S4. Maximum body mass over time for North American artiodactyls for **(A)** $\log(M)$, **(B)** $M^{0.259}$ and **(C)** $M^{0.25}$.

Fig. S5. Individual rate calculations for interval vs change for all datasets examined. Fig. 3 was generated by calculating minimum convex polygons of these data. For the experimental data, only the minimum convex polygon of the published data were available (3, 14).

Fig. S6. Maximum rate of body mass increase scales as ~0.25 of interval length. Extrapolating this relationship predicts that an interval of about 24 million years is required for a mouse-to-elephant body size transformation (100,0000-fold).

Fig. S7. Rates of evolution for large changes in mammalian body mass with change in log(difference in ln(mean)) and time interval in years. This gives evolutionary rate in darwins, plotted as isodarwins (diagonal dotted lines). Color scheme as in Fig. 3. Experimental rates are not calculated here as intervals were only given in generations, not years.

Fig. S8. Change vs time interval for reference database showing data separately for each study.

Fig. S9. Change vs time interval for reference database showing negative (red) and positive (gray) change.

Fig. S10. Log(Mass) vs Log(OCB) for 18 odontocete and 11 mysticete species.

Fig. S11. Regression of upper (A) and lower (B) first molar log(planar tooth area) vs log(body mass) for 33 species of murid rodents for estimation of body mass for Ref. (23).

Tables

Table S1. Comparison of models for maximum body mass of terrestrial mammals $(M^{0.259})$ from 70 to 30 Ma using Akaike information criterion (AIC) showing log-likelihood and number of parameters (npar) for each model.

Model	AIC	log-likelihood	npar
OLS	50.27	-22.14	3
Segmented	53.73	-21.86	5
Gompertz	52.21	-22.1	4
Square root	60.7	-28.35	2
Exponential	53.75	-23.88	3
Logistic	52.99	-22.49	4

Table S2. The maximum body mass for all terrestrial mammals and for several orders increased linearly when generation time is accounted for. Slope for linear regression of $M^{0.25}$ vs Age (Ma) for each group from their origin until their maximum (except for Cetacea, which is for the period of 31 Ma to the Recent). The average rate in haldanes was calculated using the mammalian scaling relationship of generation time with body mass.

	Slope	Haldanes (× 10 ⁻⁶)	\mathbb{R}^2	P
Terrestrial maximum	1.35	6.09	0.97	1.12×10^{-5}
Artiodactyla	0.63	2.84	0.90	3.33×10^{-5}
Carnivora	0.57	2.54	0.74	6.47×10^{-4}
Cetacea	2.71	12.20	0.83	1.58×10^{-3}
Perissodactyla	1.80	8.08	0.98	9.04×10^{-3}
Primates	0.35	1.55	0.78	1.35×10^{-4}
Proboscidea	0.92	4.11	0.91	6.46×10^{-5}
Rodentia	1.06	4.74	0.93	1.77×10^{-3}

Table S3. Comparison of models for maximum body mass of terrestrial mammals $(M^{0.25})$ from 70 to 30 Ma using Akaike information criterion (AIC) showing log-likelihood and number of parameters (npar) for each model.

Model	AIC	log-likelihood	npar
OLS	47.61	-20.8	3
Segmented	51.21	-20.61	5
Gompertz	49.64	-20.82	4
Square root	57.76	-26.88	2
Exponential	51.79	-22.9	3
Logistic	50.39	-21.19	4

Table S4. Studies used in reference database of mammalian body size evolutionary rates. Figure, Table and page references refer to the reference in the Reference column unless otherwise noted. M_1 , first lower molar; M_2 , second lower molar; M_3 , third lower molar; M^3 , third upper molar.

Reference	Taxa	Measure	Body Mass Estimation	Generation Time	Ages/Intervals
(24)	Bradypus	Body mass (Table 2)	Estimated in Table 2	6 years (25)	Estimated divergence of islands given on pp. 3-5
(26)	Merychyus	Mean basal length (Table 1)	Appendix Table 16.8 BCL (27)	Regression from body mass for placentals (12)	One interval estimated at 12 million years on p. 120
(28)	Mus musculus	Body mass of males (Table 6)	Given in Table 6	Regression from body mass for placentals (12)	Estimated intervals 70 years (Skokholm) and 100 years (May)
(29)	Mus musculus	Body mass (mean of male and female means) (Table II)	Given in Table II	Regression from body mass for placentals (12)	One interval of 625 years on p. 76
(30)	Cantius	Mean ln(M ₁ area) (ln(M ₁ length)+ln(M ₁ width)) (Appendix 1)	Table 3 ln(M ₁ area) (31)	1 year (estimated on p. 510)	Section level in metres; average sedimentary accumulation rate of 2450 yr/m in Appendix 1
(18)	Elephas antiquus- Elephas cypriotes	Body mass (p. 479)	E. antiquus estimated at 10,000 kg (20); E. cypriotes estimated at 200 kg (18)	Regression from body mass for placentals (12)	One interval of 2 million years (see notes above)
(32)	Vulpes vulpes	Mean M ₁ length (Table II)	Table 16.6 Canidae M1L (4)	Regression from body mass for placentals (12)	Estimated dates in Table I
(33)	Equids	Mean M ₁ or M ₂ length at tooth base (Table 1)	Appendix Table 16.8 Perissodactyls and hyracoids only M ₁ length (27)	3 years (11)	Estimated by (11)
(34)	Cynomys	Mean M_1 length \times width (Table 7.3)	All mammals M ₁ (35)	Regression from body mass for placentals (12)	Estimated ages given in Table 7.4
(36)	Equids	Mean metatarsal length (Supplementary Information)	Appendix Table 16.7 Equids MT1 (37)	Regression from body mass for placentals (12)	Data grouped into 5000 year intervals starting at 37500 yr.b.p
(38)	Gazelles	Mean of humerus distal medio- lateral diameter (Fig. 20.1) and mean of M ₃ length (Fig. 20.2)	Appendix Table 16.7 Bovids Only H5 (37); Appendix Table 16.9 All selenodonts M ₃ length (27)	Regression from body mass for placentals (12)	Average age of time periods given in Fig. 20.1

(39)	Crocuta crocuta	Mean M ₁ (Table 1)	Table 16.6 Total sample M1L (4)	Regression from body mass for placentals (12)	Time periods given on p. 90
(40)	Myotragus	Body mass (p. 126)	Estimated on p. 126	Regression from body mass for placentals (12)	One interval estimated at 2.8 million years on p. 126
(41)	Cosomys primus	Mean M ₁ length (Table 1)	Appendix Table 16.11 Cricetine rodents (42)	1/3 year (11)	Elevations given in feet; average sediment accumulation of 1.8 feet per ky(11)
(16)	Cervus elephas	Body mass (p. 540)	Estimated on p. 540	2.5 years (11)	One interval of 5800 years on p. 541
(19)	Mammuthu s	Body mass (p. 38)	Estimated on p. 38	Regression from body mass for placentals (12)	One interval of 85,000 years on p. 38
(43)	Marsupials	Mean M ³ or M ₃ length (Tables 67A, 75A, 46A, 67, 62, 47, 44A, 46, 22A, 28A); Table 2 (44); Table 1 (45)	Macropus: Appendix Table 16.12 TUML (27); Petrogale Appendix Table 16.12 TLML (27); Sarcophilus and Dasyurus Fig. 5 M3L (46)	Regression from body mass for marsupials (12)	One interval estimated at 10,000 years on p. 409
(47)	Sigmodon	Ln Mean M ₁ length (Fig. 1)	Equation 1	Regression from body mass for placentals (12)	One interval estimated at 3.8 million years from Fig. 1
(48)	Bison	Mean femur rotational length for males and females (Tables 22 and 30)	Appendix Table 16.7 Bovids Only F1 average of males and females (37)	3 years (11)	Estimate of 1000 year interval between <i>B. a.</i> antiquus and <i>B. b.</i> bison(11)
(49)	Apodemus argenteus	Mean anterior- posterior diameter of lower incisor (Table 1)	Anterior-posterior diameter of lower incisor (Table 3) (50)	Regression from body mass for placentals (12)	Estimated divergence of island at LGM at 0.021 Ma on p. 1270
(51)	Apodemus speciosus	Mean anterior- posterior diameter of lower incisor (Table 1)	Anterior-posterior diameter of lower incisor (Table 3) (50)	Regression from body mass for placentals(12)	Estimated divergence of island at LGM at 0.021 Ma on p. 1355
(52)	Viverravid s	Body mass (Fig. 2)	Estimated in Fig. 2	Estimated in Fig. 2	Given in Fig. 2
(53)	Miniochoe rus	Mean M ¹⁻³ length (Fig. 2)	Appendix Table 16.9 Nonselenodonts M ¹⁻³ length(27)	Regression from body mass for placentals (12)	Interpolated from regression of feet and age based on dating of three levels (Fig. 2)

(23)	Stephanom ys	Mean M ¹ and M ₁ area (Appendices 1 and 2)	Mean of regressions of M ¹ and M ₁ area from data in Fig. S11 (present paper): log(M) = 1.362*(UM1A)-1.95; log(M) = 1.404*(LM1A)-1.86	Regression from body mass for placentals (12)	Intervals read from Fig. 1
(17)	Mammuthu s primigeniu s-Elephas falconeri	Body mass (Fig. 9.4)	M. primigenius estimated at 5000 kg (20); E. falconeri estimated at 100 kg in Table 3	Regression from body mass for placentals (12)	One time interval of 0.5 million years (see notes above)
(9)	Homo sapiens	Mean body mass (Table 1)	Derived from regression of femoral head and/or stature/biiliac breadth (mean taken if both proxies used) in modern and Pleistocene <i>Homo</i> (Fig. 1)	14.5 years (54)	Ages given in Table 1
(55)	Neotoma	Mean body length (Table 1)	Formula in Fig. 4	Regression from body mass for placentals (12)	Times of island isolation given in Table 2
(56-59)	Neotoma	Mean of 10 largest pellets for Atlatl Cave (NM), Bison Alcove (UT), Fishmouth Cave (UT), Lyman Lake (AZ), Pryor Mountains (WY), Rocky Canyon (UT) and Southern Bighorn Mountains, East Pryor (MT), USA	Fig. 3 equation (59)	Estimated at 1 year (F.A. Smith)	Ages in midden sequences in years
(60)	Vulpes vulpes	Mean M ₁ length (Table 2)	Table 16.6 Canidae M1L (4)	Regression from body mass for placentals (12)	Ages of periods given on p. 49

Table S5. Fossilization slightly reduces the measured evolutionary rates compared to the full dataset. Means and 95% confidence intervals for clade maxima rates for clades and subclades for maximum preservation rate (PR = 100%) and six levels of preservation rate (PR = 1.0 to 0.005%). For PR < 0.05%, some intervals had no fossils present (percentage of intervals with no fossils preserved NFP) and so represent a very poor fossil record.

	PR (%)	Mean	2.5%	97.5%	NFP (%)
Clade rates	100	0.0639	-0.0747	0.2153	0
	1.0	0.0638	-0.0768	0.2154	0
	0.5	0.0643	-0.0744	0.2117	0
	0.1	0.0643	-0.0850	0.2199	0
	0.05	0.0604	-0.1811	0.2978	0
	0.01	0.0561	-0.2227	0.3431	0
	0.005	0.0400	-0.3306	0.4498	0
Subclade rates	100	0.0403	-0.1026	0.1907	0
	1.0	0.0403	-0.1031	0.1918	0
	0.5	0.0406	-0.1063	0.1958	0
	0.1	0.0404	-0.1141	0.2065	0
	0.05	0.0348	-0.2945	0.3490	0
	0.01	0.0261	-0.4277	0.4739	4.44
	0.005	0.0005	-0.6024	0.5245	58.89

Table S6. Maximum body size for terrestrial mammals and nine mammalian orders. Log change (SD) and log interval (generations) are shown for positive changes in body size for each time point compared to the next time point. For Fig. 3, all combinations of time points in a series were compared.

Order	Species	Maximum Mass (Kg)	Age (Ma)	Gene- ration Time (yr)	Log Change (SD)	Log Interval (Gen)
Terrestrial	F	(8)	(/)	(J-)	(~-)	()
mammals						
Proboscidea	Loxodonta africana	10000	0.00005	11.345		
Proboscidea	Loxodonta africana	10000	0.005	11.345		
Proboscidea	Elephas recki/Mammuthus columbi/Mammuthus trogontherii	12000	0.9035	12.602		
Proboscidea	Deinotherium bozasi	17450	2.703	13.105		
Proboscidea	Deinotherium bozasi/giganteum	17450	4.465	13.105		
Proboscidea	Deinotherium bozasi/giganteum	17450	8.47	13.105		
Proboscidea	Gomphotherium productum	6568	13.79	10.175	0.814	5.662
Proboscidea	Prodeinotherium bavaricum	5917	19.5	9.904	-0.157	5.755
Perissodactyla	Indricotherium transouralicum	15000	25.715	12.602		
Perissodactyla	Indricotherium transouralicum	15000	31.15	12.602		
Perissodactyla	Brontops dispar	5907	35.55	9.899	0.793	5.594
Dinocerata	Uintatherium sp.	4500	42.9	9.226	0.259	5.886
Pantodonta	Coryphodon lobatus	700	52.2	5.698	1.094	6.104
Pantodonta	Coryphodon lobatus	700	57.25	5.698		
Condylarthra	Ectoconus sp.	54.2	60.2	2.937	1.232	5.85
Condylarthra	Ectoconus sp.	54.2	63.6	2.937		
Multituberculata	Meniscoessus robustus	3.3	70.6	1.423	1.271	6.525
Orders						
Artiodactyla	Hippopotamus amphibius	2065	0.00005	6.84		
Artiodactyla	Hippopotamus amphibius	2065	0.005	6.84		
Artiodactyla	Hippopotamus gorgops	7255	0.9035	10.441		
Artiodactyla	Hippopotamus gorgops	7255	2.703	10.441		
Artiodactyla	Hippopotamus gorgops	5114	4.465	9.536	0.368	5.247
Artiodactyla	Megacamelus merriami	2162	8.47	7.63	0.759	5.671
Artiodactyla	Megatylopus matthewi	3005	13.79	8.31		
Artiodactyla	Daeodon hollandi	1519	19.5	6.964	0.658	5.875
Artiodactyla	Daeodon hollandi	1519	25.715	6.964		
Artiodactyla	Archaeotherium sp.	1829	31.15	7.307		
Artiodactyla	Entelodon sp.	497	35.55	5.214	0.939	5.851
Artiodactyla	Anthracotherium pangan	365	42.9	4.813	0.313	6.166
Artiodactyla	Bunophorus Bunophorus	35	52.2	2.623	1.194	6.411
Carnivora	Mirounga leonina	3692	0.00005	7.058		

Carnivora Odobemis rosmarus 1700 0.9035 7.17 Carnivora Arctodus simus 776 2.703 5.852 0.718 5.443 Carnivora Valenicus chulavistensis 1700 4.465 7.17 7 Carnivora Pontolis magnus 4665 8.47 9.312 2 Carnivora Amphicyon ingens 400 13.79 4.929 1.214 5.888 Carnivora Phoberocyon joinhenryi 689.3 19.5 5.675 5 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Duphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Drocynodictis vulpiceps 1.59 42.9 1.178 0.877 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 6.73 Carnivora Balaenoptera	Carnivora	Mirounga leonina	3692	0.005	7.058		
Carnivora Aretodus simus 776 2.703 5.852 0,718 5.443 Carnivora Valenictus chila/sisensis 1700 4.4665 7.17 7.17 Carnivora Pontolis magnus 4665 8.47 9.312 7.18 Carnivora Amphicyon ingens 400 13.79 4.929 1.214 5.888 Carnivora Phoberocyon johnhenryi 689.3 19.5 5.675 6.08 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Oberoulus sproteus 221.6 31.15 4.23 0.427 6.086 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Didymictis proteus 5.3 52.22 1.608 1.636 1.339 0.952 6.327 Carnivora Miacoid carnivore 10 60.2 1.896 1.876 6.73 Carnivora Miacoid carnivore 10 60.2		ŭ					
Carnivora Valenicus chulavistensis 1700 4.465 8.47 9.312 Carnivora Amphicyon ingens 400 13.79 4.929 1.214 5.888 Carnivora Phoberocyon johnhenryi 689,3 19.5 5.675 5.675 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Quercylurus sp. 221.6 31.15 4.23 0.427 6.086 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Procynodictis vulpiceps 1.59 42.9 1.178 0.877 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 0.877 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 0.877 6.73 Carnivora Didymictis proteus 5.3 57.22 1.608 0.826 6.32 Carnivora Protictis simpsoni 2.61 63.6 1						0.718	5.443
Carnivora Pontolis magnus 4665 8.47 9.312 Carnivora Amphicyon ingens 400 13.79 4.929 1.214 5.888 Carnivora Phoberocyon johnhenryi 689.3 19.5 5.675 5.675 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Didymictis proteus 5.3 52.2 1.608 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 6.32 Carnivora Miacoid carnivore 10 60.2 1.896 6.32 Carnivora Miacoid carnivore 10 60.2 1.896 6.32 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.0005 24.323 6.327 Cetacea Balaenoptera musculus 190000	Carnivora	Valenictus chulavistensis	1700	4.465			
Carnivora Amphicyon ingens 400 13.79 4.929 1.214 5.888 Carnivora Phoberocyon johnhenryi 689.3 19.5 5.675 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Quercylurus sp. 221.6 31.15 4.23 0.627 6.086 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Didymictis proteus 5.3 52.2 1.608 7.72 6.73 Carnivora Didymictis proteus 5.3 57.25 1.608 7.72 6.73 Carnivora Miacoid carrivore 10 60.2 1.896 7.33 7.52 1.608 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.0005 24.323 7.72 6.243 7.72 6.243 7.72 6.242 7.72 7.72		Pontolis magnus	4665	8.47	9.312		
Carnivora Phoberocyon johnhenryi 689.3 19.5 5.675 Carnivora Amphicyon ulungurensis 331 25.715 4.693 0.689 6.08 Carnivora Quercylurus sp. 221.6 31.15 4.23 0.427 6.216 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Didymictis proteus 5.3 57.25 1.608 8 Carnivora Didymictis proteus 5.3 57.25 1.608 8 Carnivora Miacoid carnivore 10 60.2 1.896 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.00005 24.323 1.24 1		· ·	400	13.79		1.214	5.888
Carnivora Quercylurus sp. 221.6 31.15 4.23 0.427 6.086 Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Didymictis proteus 5.3 55.25 1.608	Carnivora		689.3	19.5	5.675		
Carnivora Daphoenus lambei 4.94 35.55 1.579 1.404 6.214 Carnivora Procynodictis vulpiceps 1.59 42.9 1.178 0.877 6.73 Carnivora Didymictis proteus 5.3 52.2 1.608 1.608 Carnivora Miacoid carnivore 10 60.2 1.896 1.896 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.0005 24.323 1.874 0.826 5.1 Cetacea Balaenoptera musculus 190000 0.005 24.323 1.874 0.826 5.1 Cetacea Balaenoptera musculus 190000 0.005 24.323 1.874 0.826 5.1 Cetacea Balaenoptera musculus 190000 0.0005 24.323 1.884 0.826 5.1 Cetacea Balaenoptera musculus 57100 4.465 17.81 0.119 4.984 Cetacea <td>Carnivora</td> <td>Amphicyon ulungurensis</td> <td>331</td> <td>25.715</td> <td>4.693</td> <td>0.689</td> <td>6.08</td>	Carnivora	Amphicyon ulungurensis	331	25.715	4.693	0.689	6.08
Camivora Procynodictis vulpiceps 1.59 42.9 1.178 0.877 6.73 Carnivora Didymictis proteus 5.3 52.2 1.608	Carnivora	Quercylurus sp.	221.6	31.15	4.23	0.427	6.086
Carnivora Didymictis proteus 5.3 52.2 1.608 Carnivora Didymictis proteus 5.3 57.25 1.608 Carnivora Miacold carnivore 10 60.2 1.896 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.00005 24.323	Carnivora	Daphoenus lambei	4.94	35.55	1.579	1.404	6.214
Carnivora Didymictis proteus 5.3 57.25 1.608 Carnivora Miacoid carnivore 10 60.2 1.896 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.0005 24.323	Carnivora	Procynodictis vulpiceps	1.59	42.9	1.178	0.877	6.73
Carnivora Miacoid carnivore 10 60.2 1.896 Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.0005 24.323	Carnivora	Didymictis proteus	5.3	52.2	1.608		
Carnivora Protictis simpsoni 2.61 63.6 1.339 0.952 6.327 Cetacea Balaenoptera musculus 190000 0.00005 24.323	Carnivora	Didymictis proteus	5.3	57.25	1.608		
Cetacea Balaenoptera musculus 190000 0.00005 24.323 Cetacea Balaenoptera musculus 190000 0.005 24.323 Cetacea Balaenoptera sp. 69540 2.703 18.748 0.826 5.1 Cetacea Physeter macrocephalus 57100 4.465 17.815 0.119 4.984 Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Aglaocetus moreni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aglaocetus moreni 1223.05 25.715 6.584 0.115 5.964 Cetacea Agliocetus moreni 1223.05 25.715 6.584 0.115 5.964 Cetacea Actiocetidae USNM314627 410.08 31.15 4.961 0	Carnivora	Miacoid carnivore	10	60.2	1.896		
Cetacea Balaenoptera musculus 190000 0.005 24.323 Cetacea Balaenoptera sp. 69540 2.703 18.748 0.826 5.1 Cetacea Physeter macrocephalus 57100 4.465 17.815 0.119 4.984 Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039 0.261 Creacea Basilosaurus cetoides 4158.8 42.9	Carnivora	Protictis simpsoni	2.61	63.6	1.339	0.952	6.327
Cetacea Balaenoptera musculus 190000 0.005 24.323 Cetacea Balaenoptera sp. 69540 2.703 18.748 0.826 5.1 Cetacea Physeter macrocephalus 57100 4.465 17.815 0.119 4.984 Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039 0.261 Creacea Basilosaurus cetoides 4158.8 42.9							
Cetacea Balaenoptera sp. 69540 2.703 18.748 0.826 5.1 Cetacea Physeter macrocephalus 57100 4.465 17.815 0.119 4.984 Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Actiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Balaenoptera musculus	190000	0.00005	24.323		
Cetacea Physeter macrocephalus 57100 4.465 17.815 0.119 4.984 Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Actiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039 9.	Cetacea	Balaenoptera musculus	190000	0.005	24.323		
Cetacea Mixocetus elysius 11476.28 8.47 11.757 1.029 5.439 Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Balaenoptera sp.	69540	2.703	18.748	0.826	5.1
Cetacea Pelocetus calvertensis 2633.97 13.79 8.031 0.992 5.736 Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Physeter macrocephalus	57100	4.465	17.815	0.119	4.984
Cetacea Aglaocetus moreni 1487.23 19.5 6.926 0.581 5.884 Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Mixocetus elysius	11476.28	8.47	11.757	1.029	5.439
Cetacea Micromysticetus tobieni 1223.05 25.715 6.584 0.115 5.964 Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Pelocetus calvertensis	2633.97	13.79	8.031	0.992	5.736
Cetacea Aetiocetidae USNM314627 410.08 31.15 4.961 0.862 5.977 Cetacea Basilosaurus cetoides 4158.8 35.55 9.039	Cetacea	Aglaocetus moreni	1487.23	19.5	6.926	0.581	5.884
Cetacea Basilosaurus cetoides 4158.8 35.55 9.039 Cetacea Basilosaurus cetoides 4158.8 42.9 9.039 Cetacea Pakicetus attocki 29.7 52.2 2.513 1.518 6.261 Creodonta Dissopsalis carnifex 60 8.47 3.016 3.016 3.28	Cetacea	Micromysticetus tobieni	1223.05	25.715	6.584	0.115	5.964
Cetacea Basilosaurus cetoides 4158.8 42.9 9.039 Cetacea Pakicetus attocki 29.7 52.2 2.513 1.518 6.261 Creodonta Dissopsalis carnifex 60 8.47 3.016 <td>Cetacea</td> <td>Aetiocetidae USNM314627</td> <td>410.08</td> <td>31.15</td> <td>4.961</td> <td>0.862</td> <td>5.977</td>	Cetacea	Aetiocetidae USNM314627	410.08	31.15	4.961	0.862	5.977
Cetacea Pakicetus attocki 29.7 52.2 2.513 1.518 6.261 Creodonta Dissopsalis carnifex 60 8.47 3.016 3.28 13.79 3.28 3.28 13.79 3.28 5.507 5.507 5.507 5.507 6.14 19.5 5.507 5.507 5.507 5.636 6.14 19.5 5.507 5.636 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.49 3.731 1.059 6.19 6.49	Cetacea	Basilosaurus cetoides	4158.8	35.55	9.039		
Creodonta Dissopsalis carnifex 60 8.47 3.016 Creodonta Dissopsalis pyroclasticus 83 13.79 3.28 Creodonta Megistotherium osteothalestes 614 19.5 5.507 Creodonta Hyaenodon weilini/gigas 671 25.715 5.636 Creodonta Hyaenodon gigas 720 31.15 5.739 Creodonta Hemipsalodon sp. 760 35.55 5.82 Creodonta Patriofelis sp. 136.5 42.9 3.731 1.059 6.194 Creodonta Palaeonictis peloria 24.07 52.2 2.38 1.063 6.491 Creodonta Palaeonictis peloria 24.07 57.25 2.38 1.063 6.491 Multituberculata Neoliotomus ultimus 2 52.2 1.25 Multituberculata Sphenopsalis nobilis 10 57.25 1.896 Multituberculata Taeniolabis taoensis 30 63.6 2.52	Cetacea	Basilosaurus cetoides	4158.8	42.9	9.039		
CreodontaDissopsalis pyroclasticus8313.793.28CreodontaMegistotherium osteothalestes61419.55.507CreodontaHyaenodon weilini/gigas67125.7155.636CreodontaHyaenodon gigas72031.155.739CreodontaHemipsalodon sp.76035.555.82CreodontaPatriofelis sp.136.542.93.7311.0596.194CreodontaPalaeonictis peloria24.0752.22.381.0636.491CreodontaPalaeonictis peloria24.0757.252.38MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52	Cetacea	Pakicetus attocki	29.7	52.2	2.513	1.518	6.261
CreodontaDissopsalis pyroclasticus8313.793.28CreodontaMegistotherium osteothalestes61419.55.507CreodontaHyaenodon weilini/gigas67125.7155.636CreodontaHyaenodon gigas72031.155.739CreodontaHemipsalodon sp.76035.555.82CreodontaPatriofelis sp.136.542.93.7311.0596.194CreodontaPalaeonictis peloria24.0752.22.381.0636.491CreodontaPalaeonictis peloria24.0757.252.38MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52	Crandonta	Dissonsalis carnifor	60	8 17	3.016		
Creodonta Megistotherium osteothalestes 614 19.5 5.507 Creodonta Hyaenodon weilini/gigas 671 25.715 5.636 Creodonta Hyaenodon gigas 720 31.15 5.739 Creodonta Hemipsalodon sp. 760 35.55 5.82 Creodonta Patriofelis sp. 136.5 42.9 3.731 1.059 6.194 Creodonta Palaeonictis peloria 24.07 52.2 2.38 1.063 6.491 Creodonta Palaeonictis peloria 24.07 57.25 2.38 Multituberculata Neoliotomus ultimus 2 52.2 1.25 Multituberculata Sphenopsalis nobilis 10 57.25 1.896 Multituberculata Taeniolabis taoensis 30 63.6 2.52		1					
Creodonta Hyaenodon weilini/gigas 671 25.715 5.636 Creodonta Hyaenodon gigas 720 31.15 5.739 Creodonta Hemipsalodon sp. 760 35.55 5.82 Creodonta Patriofelis sp. 136.5 42.9 3.731 1.059 6.194 Creodonta Palaeonictis peloria 24.07 52.2 2.38 1.063 6.491 Creodonta Palaeonictis peloria 24.07 57.25 2.38 Multituberculata Neoliotomus ultimus 2 52.2 1.25 Multituberculata Sphenopsalis nobilis 10 57.25 1.896 Multituberculata Taeniolabis taoensis 30 63.6 2.52		• • •					
Creodonta Hyaenodon gigas 720 31.15 5.739 Creodonta Hemipsalodon sp. 760 35.55 5.82 Creodonta Patriofelis sp. 136.5 42.9 3.731 1.059 6.194 Creodonta Palaeonictis peloria 24.07 52.2 2.38 1.063 6.491 Creodonta Palaeonictis peloria 24.07 57.25 2.38 Multituberculata Neoliotomus ultimus 2 52.2 1.25 Multituberculata Sphenopsalis nobilis 10 57.25 1.896 Multituberculata Taeniolabis taoensis 30 63.6 2.52		•					
Creodonta Hemipsalodon sp. 760 35.55 5.82 Creodonta Patriofelis sp. 136.5 42.9 3.731 1.059 6.194 Creodonta Palaeonictis peloria 24.07 52.2 2.38 1.063 6.491 Creodonta Palaeonictis peloria 24.07 57.25 2.38 Multituberculata Neoliotomus ultimus 2 52.2 1.25 Multituberculata Sphenopsalis nobilis 10 57.25 1.896 Multituberculata Taeniolabis taoensis 30 63.6 2.52							
CreodontaPatriofelis sp.136.542.93.7311.0596.194CreodontaPalaeonictis peloria24.0752.22.381.0636.491CreodontaPalaeonictis peloria24.0757.252.38MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52							
CreodontaPalaeonictis peloria24.0752.22.381.0636.491CreodontaPalaeonictis peloria24.0757.252.38MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52						1.059	6.194
CreodontaPalaeonictis peloria24.0757.252.38MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52		, <u>.</u>					
MultituberculataNeoliotomus ultimus252.21.25MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52						1,000	01.151
MultituberculataSphenopsalis nobilis1057.251.896MultituberculataTaeniolabis taoensis3063.62.52	2	, , , , , , , , , , , , , , , , , , ,	2	27.20	2.50		
Multituberculata Taeniolabis taoensis 30 63.6 2.52	Multituberculata	Neoliotomus ultimus	2	52.2	1.25		
	Multituberculata	Sphenopsalis nobilis	10	57.25	1.896		
Multituberculata Meniscoessus robustus 3.3 70.6 1.423 1.168 6.562	Multituberculata	Taeniolabis taoensis	30	63.6	2.52		
	Multituberculata	Meniscoessus robustus	3.3	70.6	1.423	1.168	6.562

Perissodactyla	Ceratotherium simum	3600	0.00005	8.27		
Perissodactyla	Ceratotherium simum	3600	0.005	8.27		
Perissodactyla	Elasmotherium sibiricum	5000	0.9035	9.481		
Perissodactyla	Elasmotherium sibiricum	5000	2.703	9.481		
Perissodactyla	Aphelops mutilus	4325	4.465	9.131	-0.015	5.277
Perissodactyla	Iranotherium morgani	3366	8.47	8.557	0.223	5.656
Perissodactyla	Teleoceras medicornutum	2965	13.79	8.281	-0.073	5.801
Perissodactyla	Teleoceras medicornutum	2965	19.5	8.281		
Perissodactyla	Indricotherium transouralicum	15000	25.715	12.602		
Perissodactyla	Indricotherium transouralicum	15000	31.15	12.602		
Perissodactyla	Brontops dispar	5907	35.55	9.899	0.793	5.594
Perissodactyla	Telmatherium altidens	1975	42.9	7.454	0.864	5.931
Perissodactyla	Lophiodon rhinoceroides	280	52.2	4.494	1.115	6.201
Primates	Gorilla beringei graueri	275	0.00005	4.247		
Primates	Gorilla beringei graueri	275	0.005	4.247		
Primates	Gigantopithecus blacki	500	0.9035	5.222		
Primates	Gigantopithecus blacki Theropithecus (Simopithecus)	500	2.703	5.222		
Primates	oswaldi	96	4.465	3.406	1.041	5.618
Primates	Gigantopithecus blacki Afropithecus turkanensis/Graecopithecus	225	8.47	4.247		
Primates	freybergi	50	13.79	2.876	1.001	6.18
Primates	Afropithecus turkanensis/Proconsul major	50	19.5	2.876		
Primates	Dolichocebus gaimanensis	2.7	25.715	1.351	1.289	6.488
Primates	Aegyptopithecus zeuxis	7.9	31.15	1.784		
Primates	Amphipithecus mogaungensis	8.6	35.55	1.823		
Primates	Pondaungia sp.	9	42.9	1.845		
Primates	Pelycodus danielsae	6.3	52.2	1.682	0.376	6.722
Primates	Atiatlasius koulchii	0.1	57.25	0.575	1.441	6.69
Proboscidea	Loxodonta africana	10000	0.00005	11.345		
Proboscidea	Loxodonta africana	10000	0.005	11.345		
Proboscidea	Mammuthus trogontotherii	15000	0.9035	12.602		
Proboscidea	Deinotherium bozasi	17450	2.703	13.105		
Proboscidea	Deinotherium bozasi/giganteum	17450	4.465	13.105		
Proboscidea	Deinotherium bozasi/giganteum	17450	8.47	13.105		
Proboscidea	Gomphotherium productum	6568	13.79	10.175	0.814	5.662
Proboscidea	Prodeinotherium bavaricum	5917	19.5	9.904	-0.157	5.755
Proboscidea	Palaeomastodon beadnelli	3000	25.715	8.306	0.656	5.835
Proboscidea	Barytherium grave	3500	31.15	8.644		
Proboscidea	Barytherium sp.	4000	35.55	8.949		

Proboscidea	Numidotherium koholense	558	42.9	5.373	1.118	6.021
Proboscidea	Daouitherium rebouli	364	52.2	4.81	0.455	6.262
Proboscidea	Phosphatherium sp.	15	57.25	2.106	1.328	6.188
Rodentia	Hydrochoerus hydrochaeris	91	0.00005	3.016		
Rodentia	Hydrochoerus hydrochaeris	91	0.005	3.016		
Rodentia	Castoroides ohioensis	220	0.9035	4.222		
Rodentia	Josephoartigasia monesi	1211	2.703	6.567		
Rodentia	Josephoartigasia monesi	1211	4.465	6.567		
Rodentia	Phoberomys insolita	800	8.47	5.898	0.442	5.808
Rodentia	Phoberomys insolita	800	13.79	5.898		
Rodentia	Neoreomys sp.	3.7	25.715	1.465		
Rodentia	Dasyproctidae	1.54	31.15	1.167	0.768	6.618

Table S7. Maximum body mass for North American artiodactyls and 18 families. Log change (SD) and log interval (generations) are shown for positive changes in body size for each time point compared to the next time point. For Fig. 3, all combinations of time points in a series were compared.

Family	Species	Maximum Mass (Kg)	Age (Ma)	Generation Time (yr)	Log Change (SD)	Log Interval (Gen)
Camelidae	Camelops hesternus	1100	0.125	6.405		
Camelidae	Gigantocamelus spatulus	3674	0.875	8.754		
Camelidae	Gigantocamelus spatulus	3674	2	8.754		
Camelidae	Gigantocamelus spatulus	3674	3.625	8.754		
Camelidae	Megacamelus merriami	2162	5.25	7.63	0.548	5.298
Camelidae	Megatylopus matthewi	3005	6.125	8.31		
Camelidae	Megatylopus gigas	1486	7	6.924	0.672	5.061
Camelidae	Megatylopus gigas	1486	8.25	6.924		
Camelidae	Megatylopus primaevus	1400	9.5	6.818	-0.401	5.26
Camelidae	Megatylopus sp.	1400	11.25	6.818		
Camelidae	Megatylopus sp.	1400	13.05	6.818		
Camelidae	Aepycamelus robustus	446	14.3	5.07	0.882	5.326
Camelidae	Procamelus leptocolon	500	15.5	5.222		
Camelidae	Aepycamelus procerus	488	16.75	5.189	-0.791	5.38
Entelodontidae	Daeodon hollandi	1519	18	6.964		
Entelodontidae	Daeodon hollandi	1519	19	6.964		
Entelodontidae	Daeodon hollandi	1519	21.25	6.964		
Entelodontidae	Daeodon hollandi	1519	25.445	6.964		
Entelodontidae	Daeodon hollandi	1519	28.82	6.964		
Entelodontidae	Megachoerus latidens	1829	31	7.307		
Entelodontidae	Megachoerus latidens	1829	32.85	7.307		
Entelodontidae	Megachoerus latidens	1829	34.2	7.307		
Entelodontidae	Megachoerus latidens	1829	35.2	7.307		
Anthracotheriidae	Bothriodon advena	306.89	36.985	4.602	1.076	5.484
Entelodontidae	Archaeotherium mortoni	134	38.8	3.713	0.742	5.642
Entelodontidae	Brachyhyops uintensis	46	41.96	2.815	0.853	5.989
Helohyidae	Achaenodon robustus	191	45.04	4.07		
Helohyidae	Helohyus milleri	21.55	46.605	2.313	1.163	5.702
Helohyidae	Helohyus milleri	21.55	47.98	2.313		
Helohyidae	Helohyus milleri	21.55	50.39	2.313		
Diacodexeidae	Bunophorus grangeri	9.17	52.05	1.854	0.756	5.903
Diacodexeidae	Bunophorus grangeri	9.17	52.58	1.854		
Diacodexeidae	Bunophorus grangeri	9.17	53.125	1.854		
Diacodexeidae	Diacodexis ilicis	1.33	54.155	1.124	1.11	5.849

Anthracotheriidae	Arretotherium acridens	191.77	18	4.074		
Anthracotheriidae	Arretotherium acridens	191.77	19	4.074		
Anthracotheriidae	Arretotherium acridens	191.77	21.25	4.074		
Anthracotheriidae	Elomeryx sp.	326.3	25.445	4.676		
Anthracotheriidae	Kukusepasutanka schultzi	344.59	28.82	4.742		
Anthracotheriidae	Elomeryx armatus	158.42	31	3.878	0.714	5.705
Anthracotheriidae	Bothriodon americanus	281.3	34.2	4.499		
Anthracotheriidae	Bothriodon americanus	281.3	35.2	4.499		
Anthracotheriidae	Bothriodon advena	306.89	36.985	4.602		
Anthracotheriidae	Heptacodon pellionis	75.72	38.8	3.203	0.97	5.672
Antilocapridae	Tetrameryx shuleri	64.65	0.125	3.074		
Antilocapridae	Tetrameryx shuleri	64.65	0.875	3.074		
Antilocapridae	Tetrameryx sp.	64.65	2	3.074		
Antilocapridae	Tetrameryx sp.	64.65	3.625	3.074		
Antilocapridae	Hexameryx simpsoni	30.65	5.25	2.534	0.697	5.764
Antilocapridae	Hexameryx simpsoni	30.65	7	2.534		
Antilocapridae	Ilingoceros sp.	49.85	8.25	2.874		
Antilocapridae	Plioceros sp.	17.76	9.5	2.2	0.838	5.695
Antilocapridae	Plioceros sp.	17.76	11.25	2.2		
Antilocapridae	Ramoceros osborni	22.13	13.05	2.329		
Antilocapridae	Ramoceros ramosus	22.13	14.3	2.329		
Antilocapridae	Ramoceros ramosus	22.13	15.5	2.329		
Antilocapridae	Merriamoceros sp.	14.91	16.75	2.103	0.42	5.752
Antilocapridae	Merycodus sabulornis	10.18	18	1.905	0.406	5.795
Diacodexeidae	Tapochoerus egressus	8.74	41.96	1.831		
Diacodexeidae	Tapochoerus mcmillini	4.29	45.04	1.523	0.676	6.265
Diacodexeidae	Neodiacodexis emryi	5.1	46.605	1.592		
Diacodexeidae	Bunophorus pattersoni	3.77	47.98	1.473	0.304	5.953
Diacodexeidae	Bunophorus sinclairi	8.92	50.39	1.841		
Diacodexeidae	Bunophorus grangeri	9.17	52.05	1.854		
Diacodexeidae	Bunophorus grangeri	9.17	52.58	1.854		
Diacodexeidae	Bunophorus grangeri	9.17	53.125	1.854		
Diacodexeidae	Diacodexis ilicis	1.33	54.155	1.124	1.11	5.849
Helohyidae	Dyscritochoerus lapointensis	29.05	38.8	2.499		
Helohyidae	Achaenodon robustus	191	45.04	4.07		
Helohyidae	Helohyus milleri	21.55	46.605	2.313	1.163	5.702
Helohyidae	Helohyus milleri	21.55	47.98	2.313		
Helohyidae	Helohyus milleri	21.55	50.39	2.313		
Homacodontidae	Pentacemylus progressus	5.79	38.8	1.646		

Homacodontidae	Pentacemylus leotensis	6.85	41.96	1.719		
Homacodontidae	Auxontodon sp.	5.63	45.04	1.634	0.116	6.264
Homacodontidae	Homacodon n. sp. A	3.25	46.605	1.417	0.564	6.012
Homacodontidae	Homacodon n. sp. A	3.25	47.98	1.417		
Homacodontidae	Antiacodon vanvaleni	2.1	50.39	1.266	0.464	6.255
Homacodontidae	Antiacodon vanvaleni	2.1	52.05	1.266		
Homacodontidae	Hexacodus pelodes	1.83	52.58	1.221	-0.037	5.63
Homacodontidae	Hexacodus pelodes	1.83	53.125	1.221		
		-0.4.	_			
Merycoidodontidae	Merychyus sp.	79.16	7	3.24		
Merycoidodontidae	Merychyus major	79.16	8.25	3.24		
Merycoidodontidae	Merychyus novomexicanus	119.76	9.5	3.607		
Merycoidodontidae	Merychyus novomexicanus	119.76	11.25	3.607		
Merycoidodontidae	Merychyus novomexicanus	119.76	13.05	3.607		
Merycoidodontidae	Brachycrus siouense	98	14.3	3.424	0.126	5.551
Merycoidodontidae	Brachycrus laticeps	248.61	15.5	4.358		
Merycoidodontidae	Brachycrus laticeps	248.61	16.75	4.358		
Merycoidodontidae	Merycochoerus magnus	325.53	18	4.673		
Merycoidodontidae	Merycochoerus sp.	252.51	19	4.375	0.229	5.345
Merycoidodontidae	Merycochoerus sp.	252.51	21.25	4.375		
Merycoidodontidae	Merycochoerus pinensis	252.51	25.445	4.375		
Merycoidodontidae	Merycochoerus pinensis	252.51	28.82	4.375		
Merycoidodontidae	Eporeodon occidentalis Merycoidodon culbertsoni/Oreodon	63.01	31	3.054	0.966	5.773
Merycoidodontidae	macrorhinus Merycoidodon culbertsoni/Oreodon	46.84	32.85	2.828	0.296	5.799
Merycoidodontidae	macrorhinus	46.84	34.2	2.828		
Merycoidodontidae	Merycoidodon culbertsoni/Oreodon macrorhinus	46.84	35.2	2.828		
Merycoidodontidae	Merycoidodon culbertsoni/Oreodon macrorhinus	46.84	36.985	2.828		
Mampaidadantidaa	Merycoidodon culbertsoni/Oreodon	16.91	20.0	2 020		
Merycoidodontidae	macrorhinus	46.84	38.8	2.828		
Agriochoeridae	Agriochoerus sp.	43.31	25.445	2.771		
Agriochoeridae	Agriochoerus gaudryi	43.31	28.82	2.771		
Agriochoeridae	Agriochoerus guyotianus	23.84	31	2.374	0.6	5.929
Agriochoeridae	Agriochoerus antiquus	43.31	32.85	2.771		
Agriochoeridae	Agriochoerus maximus	43.31	34.2	2.771		
Agriochoeridae	Agriochoerus maximus	43.31	35.2	2.771		
Agriochoeridae	Agriochoerus maximus	43.31	36.985	2.771		
Agriochoeridae	Agriochoerus maximus	43.31	38.8	2.771		
Agriochoeridae	Protoreodon pearcei	27.53	41.96	2.464	0.48	6.082
Agriochoeridae	Protoreodon pumilus	15.54	45.04	2.125	0.581	6.129
Agriochoeridae	Protoreodon sp.	10.74	46.605	1.931	0.391	5.888
-	•					

Dromomerycidae	Pediomeryx hemphillensis	145.19	5.25	3.791		
Dromomerycidae	Pediomeryx hemphillensis	145.19	6.125	3.791		
Dromomerycidae	Pediomeryx(Yumaceras) figginsi	233.43	7	4.287		
Dromomerycidae	Pediomeryx(Yumaceras) hamiltoni	233.43	8.25	4.287		
Dromomerycidae	Cranioceras unicornis	128.86	9.5	3.676	0.598	5.498
Dromomerycidae	Cranioceras unicornis	128.86	11.25	3.676		
Dromomerycidae	Dromomeryx borealis	205.03	13.05	4.146		
Dromomerycidae	Dromomeryx borealis	205.03	14.3	4.146		
Dromomerycidae	Dromomeryx whitfordi	132.81	15.5	3.705	0.462	5.486
C 1 . 1	n I	6.24	7	1.605		
Gelocidae	Pseudoceras sp.	6.34	7	1.685		
Gelocidae	Pseudoceras sp.	6.34	8.25	1.685	1 000	5.054
Gelocidae	Pseudoceras skinneri	1.37	9.5	1.133	1.009	5.954
Gelocidae	Pseudoceras sp.	6.34	11.25	1.685		
Gelocidae	Pseudoceras sp.	6.34	13.05	1.685		
Leptochoeridae	Leptochoerus sp.	3.9	25.445	1.486		
Leptochoeridae	Leptochoerus sp.	3.9	28.82	1.486		
Leptochoeridae	Leptochoerus sp.	3.9	31	1.486		
Leptochoeridae	Leptochoerus sp.	3.9	32.85	1.486		
Leptochoeridae	Leptochoerus sp.	3.9	34.2	1.486		
Leptochoeridae	Leptochoerus sp.	3.9	35.2	1.486		
Leptochoeridae	Stibarus yoderensis	2.85	36.985	1.37	0.32	6.097
Leptochoeridae	Ibarus ignotus	2.24	41.96	1.287	0.206	6.574
Leptochoeridae	"Diacodexis" woltonensis	1.76	45.04	1.209	0.206	6.393
Leptochoeridae	"Diacodexis" woltonensis	1.76	46.605	1.209		
Leptochoeridae	"Diacodexis" woltonensis	1.76	47.98	1.209		
Leptochoeridae	"Diacodexis" woltonensis	1.76	50.39	1.209		
Leptochoeridae	"Diacodexis" woltonensis	1.76	52.05	1.209		
Maralila	n 11 .	17.76	0.5	2.2		
Moschidae	Parablastomeryx gregoryi	17.76	9.5	2.2	0.212	5 O10
Moschidae	Longirostromeryx wellsi	13.06	11.25	2.032	0.312	5.918
Moschidae	Longirostromeryx wellsi	13.06	13.05	2.032	0.100	5.707
Moschidae	Blastomeryx elegans	11.62	14.3	1.971	-0.109	5.796
Moschidae	Blastomeryx elegans	11.62	15.5	1.971		
Moschidae	Parablastomeryx sp.	15.15	16.75	2.111		
Moschidae	Parablastomeryx galushi	15.15	18	2.111	0.40	
Moschidae	Blastomeryx sp.	7.39	19	1.753	0.68	5.715
Moschidae	Blastomeryx elegans	11.62	21.25	1.971		
Oromerycidae	Eotylopus reedi	23.57	34.2	2.367		
Oromerycidae	Eotylopus reedi	23.57	35.2	2.367		
÷	-					

Oromerycidae	Montanatylopus matthewi	79.16	36.985	3.24		
Oromerycidae	Eotylopus reedi	23.57	38.8	2.367	0.907	5.815
Oromerycidae	Eotylopus reedi	23.57	41.96	2.367		
Oromerycidae	Protylopus petersoni	5.13	45.04	1.595	1.007	6.197
Protoceratidae	Kyptoceras amatorum	300.35	5.25	4.576		
Protoceratidae	Synthetoceras tricornatus	211.19	8.25	4.177	0.371	5.836
Protoceratidae	Synthetoceras tricornatus	211.19	9.5	4.177		
Protoceratidae	Synthetoceras tricornatus	211.19	11.25	4.177		
Protoceratidae	Lambdoceras trinitensis	154.77	13.05	3.854	0.316	5.652
Protoceratidae	Prosynthetoceras sp.	51.86	14.3	2.904	0.863	5.571
Protoceratidae	Lambdoceras siouxensis	163	15.5	3.906		
Protoceratidae	Lambdoceras hessei	98	16.75	3.424	0.53	5.533
Protoceratidae	Prosynthetoceras texanus	49.31	18	2.866	0.661	5.6
Protoceratidae	Prosynthetoceras texanus	49.31	19	2.866		
Protoceratidae	Syndyoceras cooki	73.3	21.25	3.176		
Protoceratidae	Protoceras sp.	43.31	25.445	2.771	0.545	6.15
Protoceratidae	Protoceras skinneri	43.31	28.82	2.771		
Protoceratidae	Protoceras celer	43.31	31	2.771		
Protoceratidae	Pseudoprotoceras longinaris	12.23	34.2	1.997	0.926	6.132
Protoceratidae	Poabromylus taylori	31.58	35.2	2.554		
Protoceratidae	Pseudoprotoceras semicinctus	31.93	36.985	2.561		
Protoceratidae	Heteromeryx dispar	22.83	38.8	2.348	0.35	5.869
Protoceratidae	Heteromeryx dispar	22.83	41.96	2.348		
Protoceratidae	Leptoreodon major	9.9	45.04	1.891	0.746	6.164
Tayassuidae	Mylohyus fossilis	67.97	0.125	3.115		
Tayassuidae	Mylohyus fossilis	67.97	0.875	3.115		
Tayassuidae	Platygonus pearcei	83.68	2	3.287		
Tayassuidae	Catagonus brachydontus	105.33	3.625	3.489		
Tayassuidae	Catagonus brachydontus	105.33	5.25	3.489		
Tayassuidae	Catagonus brachydontus	105.33	6.125	3.489		
Tayassuidae	Prosthennops serus	64.09	7	3.067	0.52	5.427
Tayassuidae	Prosthennops serus	64.09	8.25	3.067		
Tayassuidae	"Prosthennops" niobrarensis	46.86	9.5	2.829	0.32	5.628
Tayassuidae	Prosthennops serus	64.09	11.25	3.067		
Tayassuidae	Hesperhys sp.	110.19	13.05	3.53		
Tayassuidae	Hesperhys sp.	110.19	14.3	3.53		
Tayassuidae	Hesperhys vagrans	115.18	15.5	3.57		
Tayassuidae	Hesperhys vagrans	115.18	16.75	3.57		
Tayassuidae	Hesperhys pinensis	105.33	18	3.489	-0.225	5.549
Tayassuidae	Hesperhys pinensis	105.33	19	3.489		
Tayassuidae	Thinohyus lentus	51.02	28.82	2.892	0.684	6.49

Tayassuidae	Thinohyus lentus	51.02	31	2.892		
Tayassuidae	Thinohyus lentus	51.02	32.85	2.892		
Entelodontidae	Daeodon hollandi	1519	18	6.964		
Entelodontidae	Daeodon hollandi	1519	19	6.964		
Entelodontidae	Daeodon hollandi	1519	21.25	6.964		
Entelodontidae	Daeodon hollandi	1519	25.445	6.964		
Entelodontidae	Daeodon hollandi	1519	28.82	6.964		
Entelodontidae	Megachoerus latidens	1829	31	7.307		
Entelodontidae	Megachoerus latidens	1829	32.85	7.307		
Entelodontidae	Megachoerus latidens	1829	34.2	7.307		
Entelodontidae	Megachoerus latidens	1829	35.2	7.307		
Entelodontidae	Archaeotherium mortoni	134	36.985	3.713	1.241	5.527
Entelodontidae	Archaeotherium mortoni	134	38.8	3.713		
Entelodontidae	Brachyhyops uintensis	46	41.96	2.815	0.853	5.989
Entelodontidae	Brachyhyops uintensis	46	45.04	2.815		
Leptomerycidae	Pseudoparablastomeryx francescita	3.82	13.05	1.478		
Leptomerycidae	Pseudoparablastomeryx scotti	4.78	14.3	1.566		
Leptomerycidae	Pseudoparablastomeryx scotti	4.78	15.5	1.566		
Leptomerycidae	Pseudoparablastomeryx scotti	4.78	16.75	1.566		
Leptomerycidae	Leptomeryx sp.	6.7	18	1.709		
Leptomerycidae	Pronodens silberlingi	13.06	19	2.032		
Leptomerycidae	Pronodens silberlingi	13.06	21.25	2.032		
Leptomerycidae	Pronodens silberlingi	13.06	25.445	2.032		
Leptomerycidae	Pronodens silberlingi	13.06	28.82	2.032		
Leptomerycidae	Leptomeryx evansi	3.99	31	1.494	0.898	6.096
Leptomerycidae	Leptomeryx evansi	3.99	32.85	1.494		
Leptomerycidae	Leptomeryx mammifer	11.63	34.2	1.972		
Leptomerycidae	Leptomeryx mammifer	11.63	35.2	1.972		
Leptomerycidae	Leptomeryx mammifer	11.63	36.985	1.972		
Leptomerycidae	Leptomeryx yoderi	6.39	38.8	1.688	0.601	5.997
Leptomerycidae	Leptomeryx sp.	6.7	41.96	1.709		
Camelidae	Camelops hesternus	1100	0.125	6.405		
Camelidae	Gigantocamelus spatulus	3674	0.875	8.754		
Camelidae	Gigantocamelus spatulus	3674	2	8.754		
Camelidae	Gigantocamelus spatulus	3674	3.625	8.754		
Camelidae	Megacamelus merriami	2162	5.25	7.63	0.548	5.298
Camelidae	Megatylopus matthewi	3005	6.125	8.31		
Camelidae	Megatylopus gigas	1486	7	6.924	0.672	5.061
Camelidae	Megatylopus gigas	1486	8.25	6.924		
Camelidae	Megatylopus primaevus	1400	9.5	6.818	-0.433	5.228

Camelidae	Megatylopus sp.	1400	11.25	6.818	-1.545	
Camelidae	Megatylopus sp.	1400	13.05	6.818		
Camelidae	Aepycamelus robustus	446	14.3	5.07	0.882	5.326
Camelidae	Procamelus leptocolon	500	15.5	5.222		
Camelidae	Aepycamelus procerus	488	16.75	5.189	-0.791	5.38
Camelidae	Protolabis sp.	176.06	18	3.985	0.832	5.438
Camelidae	Protolabis sp.	176.06	19	3.985		
Camelidae	Stenomylus hitchcocki	58.65	21.25	2.998	0.865	5.812
Camelidae	Pseudolabis dakotensis	50.57	25.445	2.885	-0.005	6.154
Camelidae	Pseudolabis dakotensis	50.57	28.82	2.885		
Camelidae	Pseudolabis dakotensis	50.57	31	2.885		
Camelidae	Paratylopus labiatus	34.8	32.85	2.619	0.396	5.828
Camelidae	Poebrotherium sp.	23.57	34.2	2.367	0.415	5.734
Camelidae	Poebrotherium sp.	23.57	35.2	2.367		
Camelidae	Poebrotherium chadronense	24.43	36.985	2.389		
Hypertragulidae	Nanotragulus ordinatus	4.26	19	1.52		
Hypertragulidae	Nanotragulus ordinatus	4.26	21.25	1.52		
Hypertragulidae	Nanotragulus sp.	2.08	25.445	1.262	0.679	6.481
Hypertragulidae	Nanotragulus fontanus	3.05	28.82	1.394		
Hypertragulidae	Nanotragulus sp.	2.08	31	1.262	0.407	6.216
Hypertragulidae	Nanotragulus planiceps	1.79	32.85	1.214	0	6.174
Hypertragulidae	Hypertragulus calcaratus	3.05	34.2	1.394		
Hypertragulidae	Hypertragulus heikeni	4.35	35.2	1.528		
Hypertragulidae	Hypertragulus heikeni	4.35	36.985	1.528		
Hypertragulidae	Hypertragulus heikeni	4.35	38.8	1.528		
Hypertragulidae	Simimeryx minutus	1.08	41.96	1.065	0.968	6.392

References

- 1. Smith FA, *et al.* (2010) The evolution of maximum body size of terrestrial mammals. *Science* 330:1216-1219.
- 2. Lewontin RC (1966) On the measurement of relative variability. *Syst. Zool.* 15(2):141-142.
- 3. Smith RJ (1984) Allometric scaling in comparative biology: problems of concept and method. *American Journal of Physiology* 246(2):R152-R160.
- 4. Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. Body Size in Mammalian Paleobiology: Estimation and Biological Implications, eds Damuth J & MacFadden BJ (Cambridge University Press, Cambridge), pp 182-205.
- 5. Silva M & Downing JA (1995) *CRC Handbook of Mammalian Body Masses* (CRC Press, Boca Raton).
- 6. Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. *Genetica* 112-113:127-144.
- 7. Mattila TM & Bokma F (2008) Extant mammal body masses suggest punctuated equilibrium. *Proc. R. Soc. London Ser. B* 275:2195-2199.
- 8. Yablokov AV (1974) Variability of Mammals (Amerind Publishing, New Dehli).
- 9. Ruff CB, Trinkaus E, & Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. *Nature* 387(6629):173-176.
- 10. Mead AJ (2000) Sexual dimorphism and paleoecology in *Teleoceras*, a North American Miocene rhinoceros. *Paleobiology* 26(4):689-706.
- 11. Gingerich PD (1993) Rates of evolution in Plio-Pleistocene mammals: six case studies. *Morphological Change in Quaternary Mammals of North America*, eds Martin RA & Barnosky AD (Cambridge University Press, Cambridge), pp 84-106.
- 12. Hamilton MJ, Davidson AD, Sibly RM, & Brown JH (2011) Universal scaling of production rates across mammalian lineages. *Proc. R. Soc. London Ser. B* 278(1705):560-566.
- 13. R Development Core Team (2009) *R: A Language and Environment for Statistical Computing v2.10.1* (R Foundation for Statistical Computing, Vienna).
- 14. Millien V (2006) Morphological evolution is accelerated among island mammals. *PLoS Biology* 4(10):1863-1868.
- 15. Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. *Proc. Natl Acad. Sci. USA* 104(47):18404-18408.
- 16. Lister AM (1989) Rapid dwarfing of red deer on Jersey in the last interglacial. *Nature* 342(6249):539-542.
- 17. Roth VL (1992) Inferences from allometry and fossils: Dwarfing of elephants on islands. *Oxf. Surv. Evol. Biol.* 8:259-288.
- 18. Davies P & Lister AM (2001) *Palaeoloxodon cypriotes*, the dwarf elephant of Cyprus: size and scaling comparisons with *P. falconeri* (Sicily-Malta) and mainland *P. antiquus*. *The World of Elephants: Proceedings of the 1st International Congress, Rome 2001*, ed Cavarretta G (Ufficio Pubblicazioni, Rome), pp 479-480.
- 19. Lister A & Bahn PG (2007) *Mammoths: Giants of the Ice Age* (University of California Press, Berkeley, Calif.) Rev. Ed.
- 20. Christiansen P (2004) Body size in proboscideans, with notes on elephant metabolism. *Zool. J. Linn. Soc.* 140(4):523-549.

- 21. Benton MJ, *et al.* (2010) Dinosaurs and the island rule: The dwarfed dinosaurs from Hateg Island. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 293(3-4):438-454.
- 22. Quintana J, Koehler M, & Moya-Sola S (2011) *Nuralagus rex*, gen. et sp. nov., an endemic insular giant rabbit from the Neogene of Minorca (Balearic Islands, Spain). *J. Vert. Paleont.* 31(2):231-240.
- 23. Renaud S, Michaux J, Jaeger JJ, & Auffray JC (1996) Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: Nonprogressive evolutionary pattern in a gradual lineage. *Paleobiology* 22(2):255-265.
- 24. Anderson RP & Handley CO (2001) A new species of three-toed sloth (Mammalia: Xenarthra) from Panama, with a review of the genus *Bradypus*. *Proceedings of the Biological Society of Washington* 114(1):1-33.
- 25. Anderson RP & Handley CO (2002) Dwarfism in insular sloths: Biogeography, selection, and evolutionary rate. *Evolution* 56(5):1045-1058.
- 26. Bader RS (1955) Variability and evolutionary rate in the oreodonts. *Evolution* 9(2):119-140.
- 27. Janis CM (1990) Correlation of cranial and dental variables with body size in ungulates and macropodoids. *Body Size in Mammalian Paleobiology: Estimation and Biological Implications*, eds Damuth J & MacFadden BJ (Cambridge University Press, Cambridge), pp 255-299.
- 28. Berry RJ (1964) Evolution of island population of house mouse. *Evolution* 18(3):468-&.
- 29. Berry RJ, Jakobson ME, & Peters J (1978) The House mice of Faroe Islands: a study in microdifferentiation. *Journal of Zoology* 185(MAY):73-92.
- 30. Clyde WC & Gingerich PD (1994) Rates of evolution in the dentition of early Eocene *Cantius*: comparison of size and shape. *Paleobiology* 20(4):506-522.
- 31. Gingerich PD, Smith BH, & Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. *Am. J. Phys. Anthropol.* 58(1):81-100.
- 32. Davis S (1977) Size variation of fox, *Vulpes vulpes* in palaearctic region today, and in Israel during late Quaternary. *Journal of Zoology* 182(JUL):343-351.
- 33. Forsten A (1990) Dental size trends in an equid sample from the Sandalja II cave of northwestern Yugoslavia. *Paläontologische Zeitschrift, Stuttgart* 64:153-160.
- 34. Goodwin HT (1993) Patterns of dental variation and evolution in prairie dogs, genus *Cynomys. Morphological Change in Quaternary Mammals of North America*, eds Martin RA & Barnosky AD (Cambridge University Press, Cambridge), pp 107-133.
- 35. Legendre S (1986) Analysis of mammalian communities from the late Eocene and Oligocene of southern France. *Palaeovertebrata* 16:191-212.
- 36. Guthrie RD (2003) Rapid body size decline in Alaskan Pleistocene horses before extinction. *Nature* 426(6963):169-171.
- 37. Scott KM (1990) Postcranial dimensions of ungulates as predictors of body mass. *Body Size in Mammalian Paleobiology: Estimation and Biological Implications*, eds Damuth J & MacFadden BJ (Cambridge University Press, Cambridge), pp 301-335.
- 38. Klein RG (1995) The Tor Hamar fauna. *Prehistoric Cultural Ecology and Evolution: Insights from Southern Jordan*, ed Henry DO (Plenum, New York), pp 405–416.
- 39. Klein RG & Scott K (1989) Glacial interglacial size variation in fossil spotted hyenas (*Crocuta crocuta*) from Britain. *Quat. Res.* 32(1):88-95.

- 40. Köhler M & Moyà-Solà S (2004) Reduction of brain and sense organs in the fossil insular bovid *Myotragus*. *Brain Behav*. *Evol*. 63(3):125-140.
- 41. Lich DK (1990) Cosomys primus: a case for stasis. Paleobiology 16(3):384-395.
- 42. Martin RA (1990) Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. *Body Size in Mammalian Paleobiology: Estimation and Biological Implications*, eds Damuth J & MacFadden BJ (Cambridge University Press, Cambridge), pp 49-68.
- 43. Marshall LG (1973) The Lake Victoria Local Fauna. MSc. thesis, Vols. I + II MSc. thesis (Monash University, Melbourne, Australia).
- 44. Bartholomai A (1971) Morphology and variation of the cheek teeth in *Macropus giganteus* Shaw and *Macropus agilis* (Gould). *Memoirs of the Queensland Museum* 16:1-18.
- 45. Marshall LG & Hope JH (1973) A reevaluation of *Dasyurus bowlingi* Spencer and Kershaw 1910 (Marsupialia, Dasyuridae) from King Island, Bass Strait. *Proceedings of the Royal Society of Victoria* 85(2):225-236.
- 46. Gordon CL (2003) A first look at estimating body size in dentally conservative marsupials. *Journal of Mammalian Evolution* 10(1/2):1-21.
- 47. Martin RA (1986) Energy, ecology, and cotton rat evolution. *Paleobiology* 12(4):370-382.
- 48. McDonald JN (1981) *North American Bison: their Classification and Evolution* (University of California Press, Berkeley).
- 49. Millien V (2004) Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, *Apodemus argenteus*. *J. Biogeogr*. 31(8):1267-1276.
- 50. Millien-Parra V (2000) Species differentiation among muroid rodents on the basis of their lower incisor size and shape: ecological and taxonomical implications. *Mammalia* 64(2):221-239.
- 51. Millien V & Damuth J (2004) Climate change and size evolution in an island rodent species: New perspectives on the island rule. *Evolution* 58(6):1353-1360.
- 52. Polly PD (2001) Paleontology and the comparative method: ancestral node reconstructions versus observed node values. *Am. Nat.* 157(6):596-609.
- 53. Prothero DR & Heaton TH (1996) Faunal stability during the Early Oligocene climatic crash. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 127(1-4):257-283.
- 54. Jones KE, *et al.* (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. *Ecology* 90(9):2648.
- 55. Smith FA (1992) Evolution of body size among woodrats from Baja California, Mexico. *Funct. Ecol.* 6(3):265-273.
- 56. Smith FA, Betancourt JL, & Brown JH (1995) Evolution of body size in the woodrat over the past 25,000 years of climate change. *Science* 270(5244):2012-2014.
- 57. Smith FA & Betancourt JL (1998) Response of bushy-tailed woodrats (*Neotoma cinerea*) to late Quaternary climatic change in the Colorado Plateau. *Quat. Res.* 50(1):1-11.
- 58. Smith FA & Betancourt JL (2003) The effect of Holocene temperature fluctuations on the evolution and ecology of *Neotoma* (woodrats) in Idaho and northwestern Utah. *Quat. Res.* 59(2):160-171.

- 59. Smith FA & Betancourt JL (2006) Predicting woodrat (*Neotoma*) responses to anthropogenic warming from studies of the palaeomidden record. *J. Biogeogr.* 33(12):2061-2076.
- 60. Szuma E (2003) Microevolutionary trends in the dentition of the Red fox (*Vulpes vulpes*). *Journal of Zoological Systematics and Evolutionary Research* 41(1):47-56.
- 61. Lister AM (2004) Ecological interactions of elephantids in Pleistocene Eurasia: *Palaeoloxodon* and *Mammuthus. Human Paleoecology in the Levantine Corridor*, eds Goren-Inbar N & Speth JD (Oxbow, Oxford), pp. 53-60.