Computing Word Senses by Semantic Mirroring and Spectral Graph Partitioning

Masters Thesis by Martin Fagerlund

Martin Fagerlund, Magnus Merkel, Lars Eldén, Lars Ahrenberg Departments of Mathematics and Computer Science, Linköping University

ACL 2010

ロト (個) (注) (注) 注 り(で

1/37

(LiU) ACL 2010

Outline

- Semantic Mirrors
- Graph and Spectral Theory
 - Graph theory
 - Spectral theory
- The Computation of Word Senses
- Evaluation and Results

Semantic Mirrors (Dyvik)

- Use translations to extract information from a bilingual lexicon.
- Semantically closely related words tend to have strongly overlapping sets of translations.
- Words with a wide meaning tend to have a higher number of translations, than words with a more narrow meaning.

(LiU) ACL 2010 3 / 37

4/37

5/37

7/37

Graph theory

• Connected graph with vertex set V and edge set E.

8/37

(LiU) ACL 2010

Graph theory

• Disconnected graph.

(LiU)

9/37

Graph theory

- The weight function.
- $w(v_i, v_j) = w(v_j, v_i).$
- $w(v_i, v_j) \geq 0$.

(LiU)

10/37

• The adjacency matrix.

$$A(i,j) = \begin{cases} w(v_i, v_j), & \text{if } v_i \text{ and } v_j \text{ are adjacent,} \\ 0, & \text{otherwise.} \end{cases}$$

11/37

(LiU) ACL 2010

• The Laplacian.

$$d(v_i) = \sum_j w(v_i, v_j).$$
 $D(i, j) = \begin{cases} d(v_i), & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$

• L = D - A.

• The Laplacian.

$$d(v_i) = \sum_j w(v_i, v_j).$$
 $D(i, j) = \begin{cases} d(v_i), & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$

• L = D - A.

12/37

(LiU) ACL 2010

• The normalised Laplacian.

$$\mathcal{L} = D^{-1/2}LD^{-1/2}.$$

$$\mathcal{L} = \begin{cases} 1 - \frac{w(v_i, v_j)}{d(v_i)}, & \text{if } i = j \text{ and } d(v_i) \neq 0, \\ -\frac{w(v_i, v_j)}{\sqrt{d(v_i)d(v_j)}}, & \text{if } v_i \text{ and } v_j \text{ are adjacent,} \\ 0, & \text{otherwise.} \end{cases}$$

(LiU) ACL 2010 13 / 37

Compute the eigenvalues

$$0 = \lambda_0 \le \lambda_1 \le \ldots \le \lambda_{n-1},$$

and the eigenvectors

$$\bar{u}_0,\ldots,\bar{u}_{n-1}$$

of \mathcal{L} .

 λ_1 is called the Fiedler value, and \bar{u}_1 is called the Fiedler vector.

|□▶◀∰▶◀불▶◀불▶ | 불 | 쒸٩@

(LiU)

14/37

Let $\bar{u} = (u_1, \dots, u_n)$ be the Fiedler vector.

Divide the vertices into S and \bar{S} using a splitting value s:

$$v_i \in S$$
 if $u_i > s$

$$v_i \in \bar{S}$$
 if $u_i \leq s$.

A few ways of choosing s:

- bisection: s is the median of $\{u_1, \ldots, u_n\}$.
- sign cut: s =0.
- gap cut: s is a value in the largest gap in the sorted Fiedler vector.

<ロ > < @ > < 差 > < 差 > 差 かへの

Spectral graph partitioning - An example

Spectral graph partitioning - An example

Measures of the partitioning. Let

$$d(S) = \sum_{v_i \in S} d(v_i),$$

and

$$|E(S, \bar{S})| = \sum_{v_i \in S, v_j \in \bar{S}} w(v_i, v_j).$$

Conductance,

$$\phi(S) = d(V) \frac{|E(S, \overline{S})|}{d(S)d(\overline{S})},$$

< □ > < □ > < Ē > < Ē > Ē ≥ < ♡ Q @

Measures of the partitioning. Let

$$d(S) = \sum_{v_i \in S} d(v_i),$$

and

$$|E(S,\bar{S})| = \sum_{v_i \in S, v_j \in \bar{S}} w(v_i, v_j).$$

Sparsity,

$$sp(S) = \frac{|E(S, \overline{S})|}{\min(d(S), d(\overline{S}))}$$

(LiU) ACL 2010 19 / 37

The conductance of a graph

$$\phi_{\mathcal{G}} = \min_{\mathcal{S}} \phi(\mathcal{S})$$

The sparsity of a graph

$$sp_G = \min_{S} sp(S)$$

The Cheeger inequalities

$$2\phi_G > \lambda_1 \ge \frac{\phi_G^2}{8}.$$

$$2sp_G \geq \lambda_1 \geq \frac{sp_G^2}{2}$$
.

(LiU) ACL 2010 21 / 37

Separating word senses - Translation

- English-Swedish lexicon of adjectives.
 Words into two lists.
- Translation matrix B.
 Rows correspond to English words.
 Columns correspond to Swedish words.

(LiU) ACL 2010 22 / 37

Separating word senses - Translation

• English word j defines a vector \bar{e}_i by

$$\bar{e}_j(i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

• $\mathbf{B}^T \bar{e}_i$ gives translations from English to Swedish.

(LiU) ACL 2010 23 / 37

Start with an English word, called eng1.

$$\mathbf{B}\mathbf{B}^T\bar{e}_{eng1}.$$

Start with an English word, called eng1.

24 / 37

(LiU) ACL 2010

Replace the row in **B** corresponding to eng1, with an all-zero row. Call this new matrix \mathbf{B}_{mod1} .

Replace the row in **B** corresponding to eng1, with an all-zero row. Call this new matrix \mathbf{B}_{mod1} .

(LiU) ACL 2010 25 / 37

Let \mathbf{B}_{mod2} be the matrix \mathbf{B} , with columns corresponding to the Swedish words swe1,...,swe3, replaced with all-zero columns. Then

$$\mathbf{B}_{mod2}\mathbf{B}_{mod2}^{T}\mathbf{E}$$

26 / 37

(LiU) ACL 2010

(LiU) ACL 2010 27 / 37

If in

$$\mathbf{B}_{mod2}\mathbf{B}_{mod2}^{T}\mathbf{E}$$

keeping only the rows corresponding to *eng2,...eng5*, we get a symmetric matrix **A**.

$$\mathbf{A} = \left(\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right)$$

(LiU) ACL 2010 28 / 37

(LiU)

29 / 37

- Create \mathcal{L} , and compute the Fiedler vector.
- Sort the Fiedler vector, and make n-1 cuts.
- For each cut, compute the conductance and choose the the cut that produce the lowest value.
- Partition the graph.

- Continue and partition the largest of the subgraphs obtained.
- End the iteration when a stopping criterion is fulfilled.

(LiU) ACL 2010 31 / 37

Global

absolute	full-scale	round
aggregate	intact	teetotal
all-out	integral	total
clear	integrate	unbroken
complete	international	universal
entire	mondial	utter
full	one-piece	whole
full-length	outright	worldwide

(LiU) ACL 2010 32 / 37

Global

intact	absolute	integrate	aggregate
whole	utter	unbroken	full-scale
full-length	complete	integral	
one-piece	all-out		
clear	teetotal		
round	outright		
full	entire		
	total		
worldwide	mondial	universal	
international			

(LiU) ACL 2010 33 / 37

Visiting

adventitious
alien
exotic
foreign
outlandish
strange
unaccustomed
uncouth
unfamiliar
ungenial

Visiting

alien foreign outlandish exotic	unaccustomed unfamiliar strange
adventitious	uncouth
ungenial	

Evaluation and Results

Evaluation

- 10 random words with at least 8 vertices in the graph were evaluated.
- Both conductance and sparsity were used as a measure.

Results

- The sense groups are not always completely synonymous with the seed word.
- The words are often consistent within the sense groups.

Evaluation and Results

Evaluation

- 10 random words with at least 8 vertices in the graph were evaluated.
- Both conductance and sparsity were used as a measure.

Results

- The sense groups are not always completely synonymous with the seed word.
- The words are often consistent within the sense groups.

36/37

(LiU) ACL 2010

Conclusions and future work

Conclusion

Our preliminary results indicate that graph partitioning-based semantic mirroring can be developed into an automatic method for computing word senses.

Future work

- automatic treatment of homonyms
- Tests on other dictionaries, languages
- Systematic evaluation of the method

To get a copy of Martin Fagerlund's Masters thesis, send me or him a message.