Statistics for Data Science - 2

Week 10 Notes

1. Parameter estimation: Let $X_1, \ldots, X_n \sim \text{iid } X$, parameter Θ

Prior distribution of Θ : $\Theta \sim f_{\Theta}(\theta)$

Samples: x_1, \ldots, x_n , notation $S = (X_1 = x_1, \ldots, X_n = x_n)$

Bayes' rule: posterior \propto likelihood \times prior

$$P(\Theta = \theta \mid S) = P(S \mid \Theta = \theta) f_{\Theta}(\theta) / P(S)$$

In case of discrete: $P(S) = \sum_{\theta} P(S \mid \Theta = \theta) f_{\Theta}(\theta)$

In case of continuous: $P(S) = \int_{\Omega} P(S \mid \Theta = \theta) f_{\Theta}(\theta) d\theta$

Posterior mode: $\hat{\theta} = \arg \max_{\theta} P(S \mid \Theta = \theta) f_{\Theta}(\theta)$

Posterior mean: $E[\Theta \mid S]$, mean of posterior distribution.

2. Bernoulli(p) samples with uniform prior: $X_1, \ldots, X_n \sim \text{iid Bernoulli}(\mathbf{p})$

Prior $\mathbf{p} \sim \text{Uniform}[0, 1]$

Samples: x_1, \ldots, x_n

Posterior: $\mathbf{p} | (X_1 = x_1, \dots X_n = x_n)$

Posterior density $\propto P(X_1 = x_1, \dots X_n = x_n \mid \mathbf{p} = p) \times f_{\mathbf{p}}(p)$

Posterior density $\propto p^w (1-p)^{n-w}$

 \Rightarrow Posterior density: Beta(w+1, n-w+1)Posterior mean: $\hat{p} = \frac{X_1 + X_2 + \ldots + X_n + 1}{n+2}$

3. Bernoulli(p) samples with beta prior: $X_1, \ldots, X_n \sim \text{iid Bernoulli}(\mathbf{p})$

Prior $\mathbf{p} \sim \text{Beta}(\alpha, \beta)$

$$\Rightarrow f_{\mathbf{p}}(p) \propto p^{\alpha-1} (1-p)^{\beta-1}$$

Samples: x_1, \ldots, x_n

Posterior: **p**| $(X_1 = x_1, ... X_n = x_n)$

Posterior density $\propto P(X_1 = x_1, \dots X_n = x_n \mid \mathbf{p} = p) \times f_{\mathbf{p}}(p)$

Posterior density $\propto p^{w+\alpha-1}(1-p)^{n-w+\beta-1}$

 \Rightarrow Posterior density: Beta $(w + \alpha, n - w + \beta)$

Posterior mean: $\hat{p} = \frac{X_1 + X_2 + \ldots + X_n + \alpha}{n + \alpha + \beta}$

4. Normal samples with unknown mean and known variance: $X_1, \ldots, X_n \sim iid$ $Normal(M, \sigma^2)$

1

Prior M ~ Normal(μ_0, σ_0^2)

$$\Rightarrow f_M(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2})$$

Samples: x_1, \ldots, x_n , Sample mean: $\overline{x} = (x_1 + \ldots + x_n)/n$

Posterior: M| $(X_1 = x_1, \dots X_n = x_n)$

Posterior density $\propto f(X_1 = x_1, \dots X_n = x_n \mid M = \mu) \times f_M(\mu)$ Posterior density $\propto \exp(-\frac{(x_1 - \mu)^2 + \dots + (x_n - \mu)^2}{2\sigma_0^2}) \exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2})$

⇒ Posterior density: Normal

Posterior mean:
$$\hat{\mu} = \frac{X_1 + X_2 + \ldots + X_n}{n} \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} + \mu_0 \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}$$

5. Geometric(p) samples with Uniform[0, 1] prior: $X_1, \ldots, X_n \sim \text{iid Geometric}(\mathbf{p})$

Prior $\mathbf{p} \sim \text{Uniform}[0, 1]$

Samples: x_1, \ldots, x_n

Posterior: $\mathbf{p} | (X_1 = x_1, \dots X_n = x_n)$

Posterior density $\propto P(X_1 = x_1, \dots X_n = x_n \mid \mathbf{p} = p) \times f_{\mathbf{p}}(p)$

Posterior density $\propto p^n (1-p)^{x_1+...+x_n-n}$

 \Rightarrow Posterior density: Beta $(n+1, x_1 + \ldots + x_n - n + 1)$

Posterior mean: $\hat{p} = \frac{n+1}{X_1 + \ldots + X_n + 2}$

6. Poisson(λ) samples with gamma prior: $X_1, \ldots, X_n \sim \text{iid Poisson}(\Lambda)$

Prior $\Lambda \sim \text{Gamma}(\alpha, \beta)$

$$\Rightarrow f_{\Lambda}(\lambda) \propto \lambda^{\alpha-1} e^{-\beta\lambda}$$

Samples: x_1, \ldots, x_n

Posterior: $\Lambda \mid (X_1 = x_1, \dots X_n = x_n)$

Posterior density $\propto P(X_1 = x_1, \dots X_n = x_n \mid \Lambda = \lambda) \times f_{\Lambda}(\lambda)$

Posterior density $\propto e^{-n\lambda} \lambda^{x_1 + \dots + x_n} \lambda^{\alpha - 1} e^{-\beta \lambda}$

 \Rightarrow Posterior density: Gamma $(x_1 + \ldots + x_n + \alpha, \beta + n)$

Posterior mean: $\hat{\lambda} = \frac{X_1 + X_2 + \ldots + X_n + \alpha}{n + \beta}$