(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Juni 2001 (14.06.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO~01/42493~A2

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/DE00/04381

C12Q 1/68

(22) Internationales Anmeldedatum:

6. Dezember 2000 (06.12.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 59 691.3 6. Dezember 1999 (06.12.1999) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): EPIGENOMICS AG [DE/DE]; Kastanienallee 24, D-10435 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): OLEK, Alexander [DE/DE]; Kyffhäuserstrasse 20, D-10781 Berlin (DE). PIEPENBROCK, Christian [DE/DE]; Schwartzkopffstrasse 7 B, D-10115 Berlin (DE).
- (74) Anwalt: SCHUBERT, Klemens; Joachimstrasse 9, D-10119 Berlin (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR THE PARALLEL DETECTION OF THE DEGREE OF METHYLATION OF GENOMIC DNA
- (54) Bezeichnung: VERFAHREN ZUR PARALLELEN DETEKTION DES METHYLIERUNGSZUSTANDES VON GENOMISCHER DNA
- (57) Abstract: The invention relates to a method for the parallel detection of the degree of methylation of genomic DNA wherein the following the steps are performed: (a) chemical treatment at the 5' position of non-methylated cytosine bases converts said bases into uracil, thymidine or another base which exhibits hybridization behavior different to that of cytosine in a genomic DNA sample; (b) more than ten different fragments, each having less than 2000 base pairs in said chemically treated genomic DNA sample, are amplified simultaneously using synthetic oligonucleotides as a primer, whereby said primers each contain genomic sequences which are involved in gene regulation and/or transcribed and/or translated, such as those sequences which should be obtained after execution of steps (a); (c) the sequence contexts of all or a portion of the CpG dinucleotides or CpNpG trinucleotides contained in the amplified fragments are determined.
- (57) Zusammenfassung: Beschrieben ist ein Verfahren zur parallelen Detektion des Methylierungszustandes von genomischer DNA bei dem man folgende Schritte ausführt: (a) in einer genomischen DNA Probe wandelt man durch chemische Behandlung an der 5'-Position unmethylierte Cytosinbasen in Uracil, Thymidin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base um; (b) aus dieser chemisch behandleten genomischen DNA amplifiziert man mehr als zehn unterschiedliche Fragmente, die jeweils weniger als 2000 Basenpaare lang sind, gleichzeitig durch Verwendung von synthetischen Oligonukleotiden als Primer, wobei diese Primer jeweils Sequenzen aus an der Genregulation beteiligten und/oder transkribierten und/oder translatierten genomischen Sequenzen enthalten, wie sie nach einer Behandlung gemäß Schritt (a) vorliegen würden; (c) man bestimmt den Sequenzkontext aller oder eines Teils der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide.

70 01/42493

Verfahren zur parallelen Detektion des Methylierungszustandes von genomischer DNA

Die vorliegende Erfindung betrifft ein Verfahren zur parallelen Detektion des Methylierungszustandes von genomischer DNA.

Die nach den methodischen Entwicklungen der letzten Jahre in der Molekularbiologie gut studierten Beobachtungsebenen sind die Gene selbst, die Übersetzung dieser Gene in RNA und die daraus entstehenden Proteine. Wann im Laufe der Entwicklung eines Individuums welches Gen angeschaltet wird und wie Aktivieren und Inhibieren bestimmter Gene in bestimmten Zellen und Geweben gesteuert wird, ist mit hoher Wahrscheinlichkeit mit Ausmaß und Charakter der Methylierung der Gene bzw. des Genoms korrelierbar. Insofern ist die Annahme naheliegend, daß pathogene Zustände sich in einem veränderten Methylierungsmuster einzelner Gene oder des Genoms äußern.

Stand der Technik sind Verfahren, welche das Studium von Methylierungsmustern einzelner Gene gestatten. Jüngere Fortentwicklungen dieser Methode erlauben auch die Analyse kleinster Mengen an Ausgangsmaterial. Die vorliegende Erfindung beschreibt ein Verfahren zur parallelen Detektion des Methylierungszustandes genomischer DNA Proben, wobei ausgehend von einer Probe gleichzeitig zahlreiche verschiedenene Fragmente aus an der Genregulation beteiligten oder/und transkribierten und/oder translatierten Sequenzen amplifiziert werden und anschließend der Sequenzkontext in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide untersucht wird.

5-Methylcytosin ist die häufigste kovalent modifizierte Base in der DNA eukaryotischer Zellen. Sie spielt beispielsweise eine Rolle in der Regulation der Transkription, genomischem Imprinting und in der Tumorgenese. Die Identifizierung von 5-Methylcytosin als Bestandteil genetischer Information ist daher von erheblichem Interesse. 5-Methylcytosin-Positionen können jedoch nicht durch Sequenzierung identifiziert werden, da 5-Methylcytosin das gleiche Basenpaarungsverhalten aufweist

wie Cytosin. Darüber hinaus geht bei einer PCR-Amplifikation die epigenetische Information, welche die 5-Methylcytosine tragen, vollständig verloren.

Die Modifikation der genomischen Base Cytosin zu 5'-Methylcytosin stellt den bis heute wichtigsten und best-untersuchten epigenetischen Parameter dar. Trotzdem gibt es bis heute zwar Methoden, umfassende Genotypen von Zellen und Individuen zu ermitteln, aber noch keine vergleichbaren Ansätze auch in großem Maße epigenotypische Information zu generieren und auszuwerten.

Es sind im Prinzip drei prinzipiell verschiedene Methoden bekannt, den 5-Methyl-Status eines Cytosins im Sequenzkontext zu bestimmen.

Die erste prinzipielle Methode beruht auf der Verwendung von Restriktionsendonukleasen (RE), welche "methylierungssensitiv" sind. REs zeichnen sich dadurch aus, daß sie an einer bestimmten DNA-Sequenz, meist zwischen 4 und 8 Basen lang, einen Schnitt in die DNA einführen. Die Position solcher Schnitte kann dann durch Gelektrophorese, Transfer auf eine Membran und Hybridisierung nachgewiesen werden. Methylierungssensitiv bedeutet, daß bestimmte Basen innerhalb der Erkennungssequenz unmethyliert vorliegen müssen, damit der Schnitt erfolgen kann. Das Bandenmuster nach einem Restriktionsschnitt und Gelektrophorese ändert sich also je nach Methylierungsmuster der DNA. Allerdings befinden sich die wenigsten methylierbaren CpG innerhalb von Erkennungssequenzen von REs, können also nach dieser Methode nicht untersucht werden.

Die Empfindlichkeit dieser Methoden ist extrem niedrig (Bird, A.P., and Southern, E.M., J.Mol. Biol. 118, 27-47). Eine Variante kombiniert PCR mit dieser Methode, eine Amplifikation durch zwei auf beiden Seiten der Erkennungssequenz liegende Primer erfolgt nach einem Schnitt nur dann, wenn die Erkennungssequenz methyliert vorliegt. Die Empfindlichkeit steigt in diesem Fall auf theoretisch ein einziges Molekül der Zielsequenz, allerdings können mit hohem Aufwand nur einzelne Positionen untersucht werden (Shemer, R. et al., PNAS 93, 6371-6376). Wiederum ist Voraussetzung, daß sich die methylierbare Position innerhalb der Erkennungssequenz einer RE befindet.

Die zweite Variante beruht auf partieller chemischer Spaltung von Gesamt-DNA, nach dem Vorbild einer Maxam-Gilbert Sequenzierreaktion, Ligation von Adaptoren an die so generierten Enden, Amplifikation mit generischen Primern und Auftrennung auf einer Gelektrophorese. Mit diesem Verfahren können definierte Bereiche bis zur Größe von weniger als tausend Basenpaaren untersucht werden. Das Verfahren ist allerdings so kompliziert und unzuverlässig, daß es praktisch nicht mehr verwendet wird (Ward, C. et al., J. Biol. Chem. 265, 3030-3033).

Eine relativ neue und die mittlerweile am häufigsten angewandte Methode zur Untersuchung von DNA auf 5-Methylcytosin beruht auf der spezifischen Reaktion von Bisulphit mit Cytosin, das nach anschließender alkalischer Hydrolyse in Uracil umgewandelt wird, welches in seinem Basen-Paarungsverhalten dem Thymidin entspricht. 5-Methylcytosin wird dagegen unter diesen Bedingungen nicht modifiziert. Damit wird die ursprüngliche DNA so umgewandelt, daß Methylcytosin, welches ursprünglich durch sein Hybridisierungsverhalten vom Cytosin nicht unterschieden werden kann, jetzt durch "normale" molekularbiologische Techniken als einzig verbliebenes Cytosin beispielsweise durch Amplifikation und Hybridisierung oder Sequenzierung nachgewiesen werden kann. Alle diese Techniken beruhen auf Basenpaarung, welche jetzt voll ausgenutzt werden kann. Der Stand der Technik, was die Empfindlichkeit betrifft, wird durch ein Verfahren definiert, welches die zu untersuchende DNA in einer Agarose-Matrix einschließt, dadurch die Diffusion und Renaturierung der DNA (Bisulphit reagiert nur an einzelsträngiger DNA) verhindert und alle Fällungs- und Reinigungsschritte durch schnelle Dialyse ersetzt (Olek, A. et al., Nucl. Acids. Res. 24, 5064-5066). Mit dieser Methode können einzelne Zellen untersucht werden, was das Potential der Methode veranschaulicht. Allerdings werden bisher nur einzelne Regionen bis etwa 3000 Basenpaare Länge untersucht, eine globale Untersuchung Zellen von auf Tausende von möglichen Methylierungsereignissen ist nicht möglich. Allerdings kann auch dieses Verfahren keine sehr kleinen Fragmente aus geringen Probenmengen zuverlässig analysieren. Diese gehen trotz Diffusionsschutz durch die Matrix verloren.

Eine Übersicht über die weiteren bekannte Möglichkeiten, 5-Methylcytsosine

nachzuweisen, kann auch dem folgenden Übersichtsartikel entnommen werden: Rein, T., DePamphilis, M. L., Zorbas, H., Nucleic Acids Res. 26, 2255 (1998).

Die Bisulphit-Technik wird bisher bis auf wenige Ausnahmen (z.B. Zeschnigk, M. et al., Eur. J. Hum. Gen. 5, 94-98; Kubota T. et al., Nat. Genet. 16, l6-17) nur in der Forschung angewendet. Immer aber werden kurze, spezifische Stücke eines bekannten Gens nach einer Bisulphit-Behandlung amplifiziert und entweder komplett sequenziert (Olek, A. and Walter, J., Nat. Genet. 17, 275-276) oder einzelne Cytosin-Positionen durch eine "Primer-Extension-Reaktion" (Gonzalgo, M. L. and Jones, P.A., Nucl. Acids. Res. 25, 2529-2531) oder Enzymschnitt (Xiong, Z. and Laird, P.W., Nucl. Acids. Res. 25, 2532-2534) nachgewiesen. Zudem ist auch der Nachweis durch Hybridisierung beschrieben worden (Olek et al, WO9928498).

Gemeinsamkeiten zwischen Promotoren bestehen nicht nur im Vorkommen von TATAoder GC-Boxen sondern auch darin, für welche Transkriptionsfaktoren sie Bindestellen
besitzen und in welchem Abstand diese sich zueinander befinden. Die existierenden
Bindestellen für ein bestimmtes Protein stimmen in ihrer Sequenz nicht vollständig
überein, es finden sich aber konservierte Folgen von mindestens 4 Basen, die durch
das Einfügen von "Wobbles", d. h. Positionen, an denen sich jeweils unterschiedliche
Basen befinden, noch verlängert werden können. Des weiteren liegen diese
Bindestellen in bestimmten Abständen zueinander vor.

Die Verteilung der DNA im Interphase-Chromatin, das den größten Teil des nuklearen Volumens einnimmt, unterliegt jedoch einer ganz speziellen Ordnung. So ist die DNA an mehreren Stellen an die nukleare Matrix, eine filamentöse Struktur an der Innenseite der nuklearen Membran, angeheftet. Diese Regionen, bezeichnet man als matrix attachment regions (MAR) oder scaffold attachment regions (SAR). Das Anheften hat wesentlichen Einfluß auf die Transkription bzw. die Replikation. Diese MAR-Fragmente weisen keine konservativen Sequenzen auf, bestehen allerdings zu 70% aus A bzw. T und liegen in der Nähe von cis-agierenden Regionen, die die Transkription allgemein regulieren, und Topoisomerase II-Erkennungsstellen.

Neben Promotoren und Enhancern existieren weitere regulatorische Elemente für verschiedene Gene, sogenannte Insulators. Diese Insulators können z.B. die Wirkung des Enhancers auf den Promotor inhibieren, wenn sie zwischen Enhancer und Promotor liegen, oder aber, zwischen Heterochromatin und einem Gen gelegen, das aktive Gen vor dem Einfluß des Heterochromatins schützen. Beispiele für solche Insulators sind: 1. sogenannte LCR (locus control regions), welche aus mehreren gegenüber DNAase I hypersensitiven Stellen besteht; 2. bestimmte Sequenzen wie SCS (specialized chromatin structures) bzw. SCS', 350 bzw. 200 bp lang und hochresistent gegen Degradierung durch DNAase I und auf beiden Seiten von hypersensitiven Stellen flankiert (Abstand je 100 bp). An scs' bindet das Protein BEAF-32. Diese Insulators können auf beiden Seiten des Gens liegen.

Eine Übersicht über den Stand der Technik in der Oligomer Array Herstellung läßt sich auch einer im Januar 1999 erschienen Sonderausgabe von Nature Genetics (Nature Genetics Supplement, Volume 21, January 1999) und der dort zitierten Literatur entnehmen.

Patente, die sich allgemein auf die Verwendung von Oligomer Arrays und photolithographisches Maskendesign beziehen, sind z. B. US-A 5,837,832, US-A 5,856,174, WO-A 98/27430 und US-A 5,856,101. Zudem existieren einige Stoff- und Verfahrenspatente, welche die Verwendung photolabiler Schutzgruppen an Nukleosiden einschränken, so z. B. WO-A98/39348 und US-A 5,763,599.

Matrix-assistierte Laser Desorptions/Ionisations Massenspektrometrie (MALDI) ist eine neue, sehr leistungsfähige Entwicklung für die Analyse von Biomolekülen (Karas, M. and Hillenkamp, F. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10.000 daltons. Anal. Chem. 60: 2299-2301). Ein Analytmolekül wird in eine im UV absorbierende Matrix eingebettet. Durch einen kurzen Laserpuls wird die Matrix ins Vakuum verdampft und das Analyt so unfragmentiert in die Gasphase befördert. Eine angelegte Spannung beschleunigt die Ionen in ein feldfreies Flugrohr. Auf Grund ihrer verschiedenen Massen werden Ionen unterschiedlich stark beschleunigt. Kleinere Ionen erreichen den Detektor früher als größere und die Flugzeit wird in die Masse der

lonen umgerechnet.

Für die Abtastung eines immobilisierten DNA-Arrays sind vielfach fluoreszent markierte Sonden verwendet worden. Besonders geeignet sind für die Fluoreszenzmarkierung ist das einfache Anbringen von Cy3 und Cy5 Farbstoffen am 5'OH der jeweiligen Sonde. Die Detektion der Fluoreszenz der hybridisierten Sonden erfolgt beispielsweise über ein Konfokalmikroskop. Die Farbstoffe Cy3 und Cy5 sind, neben vielen anderen, kommerziell erhältlich.

Um die erwartete Anzahl von amplifizierten Fragmenten ausgehend von einer beliebigen Templat-DNA und zweien nicht für jeweils eine bestimmte Position spezifischen Primern zu berechnen, muß ein statistisches Modell über den Aufbau des Genoms zu Grunde gelegt werden.

Wir geben hier die Berechnung für drei Modelle an, beziehen uns allerdings in diesem Patent auf die in Modell 3 beschriebene Methode.

Modell 1:

Im einfachsten Fall wird angenommen, daß ein primärer DNA-Strang eine Zufallsfolge von vier gleich häufig vorkommenden Basen ist. Damit ergibt sich als Wahrscheinlichkeit, daß sich für einen beliebiger Primer PrimA (der Länge k) an einer gegebenen Stelle im Genom eine perfekte Basenpaarung ergibt:

$$P_a(PrimA) = 0.25^k$$
 (Modell 1 für DNA)

(diese Wahrscheinlichkeit ist für den sense- und anti-sense-Strang der DNA gleich)

Bei einer Bisulfitbehandlung der DNA werden diejenigen Cytosine durch Uracil ersetzt, die nicht zu einem methylierten CG gehören. Das Basenpaarungsverhalten des Uracils entspricht dem des Thymins. Da CG in der DNA sehr selten sind (unter zwei Prozent), kann die statistische Häufigkeit der Cs nach der Bisulfitbehandlung vernachlässigt werden. Die Wahrscheinlichkeit, daß sich für einen Primer *PrimB* (Länge k, davon a As,

7

t Ts, g Gs und c Cs) auf bisulfitbehandelter DNA eine perfekte Basenpaarung ergibt, ist unterschiedlich für einen mit Bisulfit behandelten Strang und den zugehörigen antisense Strang:

$$P_{Is}(PrimB) = 0.5^a * 0.25^t * 0.25^c * 0^g$$
 (Modell 1 für Bisulfit-DNA-Strang)
 $P_{Ia}(PrimB) = 0.25^a * 0.5^t * 0^c * 0.25^g$ (Modell 1 für anti-sense-Strang zu einem Bisulfit-DNA-Strang)

(wenn der Primer C oder G enthält, wird somit einer der Wahrscheinlichkeitswerte 0).

Modell 2:

Zählungen der Basenhäufigkeiten der DNA ergeben, daß die vier Basen in der DNA nicht gleichverteilt sind. Entsprechend kann man aus DNA-Datenbanken folgende Häufigkeiten (Wahrscheinlichkeiten für ein Vorkommen) der Basen ermitteln.

$$P_{DNA}(A) = 0.2811$$

 $P_{DNA}(T) = 0.2784$
 $P_{DNA}(C) = 0.2206$
 $P_{DNA}(G) = 0.2199$

Als Grundlage für diese Statistik (und die folgenden für Modell 2 und 3) dienen ca. 6% des Genoms vom Homo Sapiens aus High Throughput Sequencing Projekten (Datenbank "htgs" vom NIH/NCBI vom 6.9.1999). Die Gesamtmenge der Daten beträgt mehr als 1.5x10⁸ Basenpaare, was einem Schätzfehler für die Einzelwahrscheinlichkeiten kleiner 10⁻⁵ entspricht.

Mit Hilfe dieser Werte läßt sich das Modell 1 verbessern.

Damit ist die Wahrscheinlichkeit, daß sich für einen Primer PrimC (Länge k, davon a As, t Ts, g Gs und c Cs) eine perfekte Basenpaarung ergibt:

$$P_{2}(PrimC) = P_{DNA}(T)^{a} * P_{DNA}(A)^{t} * P_{DNA}(C)^{g} * P_{DNA}(G)^{c}$$
 (Modell 3 für DNA)

Für den mit Bisulfit behandelten Strang ergeben sich folgende Wahrscheinlichkeiten unter der Annahme, daß alle CpG-Positionen methyliert sind (man erhält eine gleiche Statistik für die Bisulfitbehandlung des DNA-sense- und des DNA-antisense-Stranges):

$$P_{bDNA}(A) = 0.2811$$

$$P_{bDNA}(C) = 0.0140$$

$$P_{bDNA}(G) = 0.2199$$

$$P_{bDNA}(T) = 0.4850$$

Damit ergibt sich als Wahrscheinlichkeit, daß sich für einen Primer PrimD (Länge k, davon a As, t Ts, g Gs und c Cs) eine perfekte Basenpaarung ergibt:

$$P_{2s}(PrimD) = P_{bDNA}(T)^a * P_{bDNA}(A)' * P_{bDNA}(C)^g * P_{bDNA}(G)^c \qquad \text{(Modell 3 für Bisulfit-DNA-Strang)}$$

$$P_{2a}(PrimD) = P_{bDNA}(A)^a * P_{bDNA}(T)' * P_{bDNA}(G)^g * P_{bDNA}(C)^c$$
 (Modell 3 für anti-sense-Strang zu einem Bisulfit-DNA-Strang)

Modell 3:

Wesentliche Schätzfehler in Modell 2 ergeben sich vor allem bei der mit Bisulfit behandelten DNA aus der Tatsache, daß C nur noch im Kontext CG auftreten kann. Modell 3 berücksichtigt diese Eigenschaft und nimmt an, daß die primäre DNA eine Zufallsfolge mit Abhängigkeit direkt benachbarter Basen ist (Markov-Kette erster Ordnung). Die empirisch aus der Datenbank (vollständig methyliert; mit Bisulphit behandelt) ermittelten paarweisen Basenwahrscheinlichkeiten ergeben sich gleich für beide DNA-Stränge als $P_{\text{bDNA}}(von;nach)$ aus der folgenden Tabelle:

9

Von\nach	A	С	G	τ
4	0.0894	0.0033	0.0722	0.1162
С	0.0	0.0	0.0140	0.0
G	0.0603	0.0036	0.0601	0.0959
T	0.1314	0.0071	0.0736	0.2729

$$P_{bDNA}(A) = 0.2811$$

$$P_{bDNA}(C) = 0.0140$$

$$P_{bDNA}(G) = 0.2199$$

$$P_{bDNA}(T) = 0.4850$$

und für den dazu revers-komplementären Strang (durch entsprechendes Austauschen der Einträge) $P_{rbDNA}(von; nach)$

Von∖nach	A	С	G	T
Α	0.2729	0.0959	0.0	0.1162
С	0.0736	0.0601	0.0140	0.0722
G	0.0071	0.0036	0.0	0.0033
Т	0.1314	0.0603	0.0	0.0894

$$P_{rbDNA}(A) = 0.4850$$
;

$$P_{rbDNA}(C) = 0.2199$$

$$P_{rbDNA}(G) = 0.0140$$

$$P_{rbDNA}(T) = 0.2811$$

Damit hängt die Wahrscheinlichkeit, daß sich für einen Primer *PrimE* (mit der Basenfolge B₁ B₂ B₃ B₄ ...; z.B. ATTG...) eine perfekte Basenpaarung ergibt, von der genauen Abfolge der Basen ab und ergibt sich als das Produkt:

$$P_{3s}(PrimE) = P_{rbDNA}(B_1) \frac{P_{rbDNA}(B_1; B_2)}{P_{rbDNA}(B_1)} \frac{P_{rbDNA}(B_2; B_3)}{P_{rbDNA}(B_2)} \frac{P_{rbDNA}(B_3; B_4)}{P_{rbDNA}(B_3)} \dots$$
 (Modell 3 für

Bisulfit-DNA-Strang)

$$P_{3a}(PrimE) = P_{bDNA}(B_1) \frac{P_{bDNA}(B_1; B_2)}{P_{bDNA}(B_1)} \frac{P_{bDNA}(B_2; B_3)}{P_{bDNA}(B_2)} \frac{P_{bDNA}(B_3; B_4)}{P_{bDNA}(B_3)} \cdots \tag{Modell 3 für anti-sense-Strang zu einem Bisulfit-DNA-Strang)}$$

Berechnung der Anzahl der zu erwartenden amplifizierten Fragmente

Die mit Bisulfit behandelte DNA wird unter Benutzung einer Anzahl Primer amplifiziert. Aus Sicht des Modells besteht die DNA aus je einem sense- und einem anti-sense- Strang der Länge N Basen (alle Chromosomen werden hier zusammengefaßt). Für einen Primer *Prim* ist zu erwarten, daß er auf dem sense-Strang

$$N*P_s(Prim)$$

perfekte Basenpaarungen ergibt - für diese Berechnung können die Funktionen P_{1s} , P_{2s} oder P_{3s} von Modell 1, 2 oder 3 eingesetzt werden, je nach gewünschter Abschätzungsgüte. Werden mehrere Primer (PrimU, PrimV, PrimW, PrimX, etc.) gleichzeitig verwendet, ergibt sich als Wahrscheinlichkeit für eine perfekte Basenpaarung auf dem sense-Strang an einer gegebenen Position:

$$\begin{split} P_s(Primers) &= P_s(PrimU) \\ &+ (1 - P_s(PrimU)) P_s(PrimV) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) P_s(PrimW) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) (1 - P_s(PrimW)) P_s(PrimX) \\ &+ \dots \end{split}$$

Und damit als Anzahl der zu erwartenden perfekten Basenparungen mit irgendeinem der Primer

$$N * P_{\mathfrak{s}}(Primers)$$

Für die Bestimmung von $P_a(Primers)$ auf dem anti-sense-Strang werden die analogen Gleichungen verwendet. Ein Amplifikat entsteht genau dann, wenn bei einer perfekten Basenpaarung auf dem sense-Strang innerhalb der maximalen Fragmentlänge M ein Primer auf dem Gegenstrang eine perfekte Basenpaarung bildet. Die Wahrscheinlichkeit dafür ist

$$P_a(Primers) \sum_{i=0}^{M-2} (1 - P_a(Primers))$$

Für große M und kleine $P_a(Primers)$ kann dieses durch folgenden Ausdruck berechnet werden:

$$\frac{1 - P_a(Primers)}{\log(1 - P_a(Primers))} [(1 - P_a(Primers))^M - 1]$$

Für die Gesamtzahl *F* der Fragmente, die durch die Amplifikation beider Stränge zu erwarten sind, ergibt sich damit:

$$F = N * P_s(Primers) \frac{(1 - P_a(Primers))}{\log(1 - P_a(Primers))} [(1 - P_a(Primers))^M - 1] \\ + N * P_a(Primers) \frac{(1 - P_s(Primers))}{\log(1 - P_s(Primers))} [(1 - P_s(Primers))^M - 1]$$

Diese Methode liefert einen präzisen Erwartungswert für die Vorhersage der Anzahl der Bindungssites bestimmter Sequenzen an ein beliebiges zuvor mit Bisulfit behandeltes genomisches DNA Fragment. Sie dient hier als Grundlage für die Berechnung der statistisch erwarteten Anzahl von Amplifikaten in einer PCR-Reaktion ausgehend von zwei Primersequenzen und einer DNA der Länge N, wobei nur die Amplifikate berücksichtigt werden, die eine Anzahl von M Nukleotiden nicht überschreiten. In diesem Patent wird davon ausgegangen, daß M den Wert 2000 hat.

Die bekannten Verfahren für den Nachweis von Cytosin Methylierungen in genomischer DNA sind prinzipiell nicht so ausgelegt, daß eine Vielzahl von Zielregionen im zu untersuchenden Genom gleichzeitig erfaßt werden. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zu schaffen, mit dem eine Probe genomischer DNA gleichzeitig an mehreren Positionen gleichzeitig auf Cytosin Methylierung hin untersucht werden kann.

Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Merkmal sind in den abhängigen Ansprüchen gekennzeichnet.

Im Unterschied zu anderen Verfahren kann nach chemischer Vorbehandlung der DNA durch Verwendung entsprechend angepaßter Primerpaare eine Amplifikation von vielen Zielregionen gleichzeitig erfolgen. Dabei ist es nicht unbedingt notwendig den Sequenzkontext aller dieser Zielregionen vorab zu kennen, da in vielen Fällen, wie nachfolgend auch beispielhaft aufgeführt, Konsensussequenzen aus der Sequenzierung verwandter Zielregionen bekannt sind, die wie unten beschrieben für das Design für bestimmte Zielregionen spezifischer oder selektiver Primerpaare eingesetzt werden können. Das Verfahren ist dann erfolgreich angewandt, wenn die Amplifikation der chemisch vorbehandelten genomischen DNA mehr Fragmente bis maximal 2000 Basenpaare Länge als statistisch zu erwarten aus den jeweils zu untersuchenden Zielregionen liefert.

Dabei wird der statistische Erwartungswert für die Anzahl dieser Fragmente über die im Stand der Technik aufgeführten Formeln berechnet. Die Anzahl der im Amplifikationsschritt hergestellten Fragmente kann dagegen mittels einer beliebigen molekularbiologischen, chemischen oder physikalischen Methode nachgewiesen werden.

Für die Durchführung der erforderlichen statistischen Betrachtungen, die auch für die unten aufgeführten Ansprüche relevant sind, werden die folgenden Werte angenommen:

Das menschliche haploide Genom enthält 3 Milliarden Basenpaare und 100.000 Gene, die wiederum im Mittel eine 2000 Basenpaare lange mRNA codieren, die Gene inklusive der Introns sind durchschnittlich 15000 Basenpaare lang. Promotoren umfassen je Gen 1000 Basenpaare durchschnittlich. Ist daher der statistische Erwartungswert für die Anzahl der Amplifikate, die ausgehend von zwei Primern in transkribierten Sequenzen liegen, zu berechnen, so ist zunächst der Erwartungswert für das Gesamtgenom nach obiger Formel (Methode 3) zu berechnen und mit dem Anteil der transkribierten Sequenzen am Gesamtgenom zu berechnen. Analog wird für Teile eines beliebigen Genoms sowie für Promotoren und translatierte Sequenzen (mRNA codierend) vorgegangen.

Die vorliegende Erfindung beschreibt somit ein Verfahren zur parallelen Detektion des Methylierungszustandes genomischer DNA. Dabei sollen mehrere Cytosin-Methylierungen in einer DNA-Probe gleichzeitig analysiert werden. Dazu werden die folgenden Verfahrensschritte nacheinander ausgeführt:

Zuerst wird eine genomische DNA Probe derart chemisch behandelt, daß an der 5'Position unmethylierte Cytosinbasen in Uracil, Thymin oder eine andere vom
Hybridisierungsverhalten her dem Cytosin unähnliche Base verwandelt werden.
Bevorzugt wird dazu die oben beschriebene Behandlung genomischer DNA mit Bisulfit
(Hydrogensulfit, Disulfit) und anschließender alkalischer Hydrolyse verwendet, die zu
einer Umwandlung nicht methylierter Cytosin-Nukleobasen in Uracil führt.

In einem zweiten Verfahrensschritt werden aus der vorbehandelten genomischen DNA mehr als zehn unterschiedliche Fragmente gleichzeitig durch Verwendung von synthetischen Oligonukleotiden als Primer amplifiziert, wobei mehr als doppelt so viele Fragmente als statistisch zu erwarten aus an der Genregulation beteiligten, transkribierten und/oder translatierten Sequenzen stammen. Dies kann mittels verschiedener Methoden erreicht werden.

In einer bevorzugten Variante des Verfahrens enthält mindestens eines der für die Amplifikation verwendeten Oligonukleotide weniger Nukleobasen als es statistisch für

eine sequenzspezifische Hybridisierung an die chemisch behandelte genomische DNA Probe erforderlich wäre, was zur Amplifikation mehrerer Fragmente gleichzeitig führen kann. Dabei ist die Gesamtzahl der in diesem Oligonukleotid enthaltenen Nukleobasen kleiner als 17. In einer besonders bevorzugten Variante des Verfahrens ist die Anzahl der in diesem Oligonukleotid enthaltenen Nukleobasen kleiner als 14.

In einer weiteren, bevorzugten Variante des Verfahrens werden für die Amplifikation mehr als 4 Oligonukleotide mit unterschiedlicher Sequenz gleichzeitig in einem Reaktionsgefäß verwendet. In einer besonders bevorzugten Varianten werden zur Herstellung eines komplexen Amplifikates mehr als 26 verschiedene Oligonukleotide gleichzeitig verwendet. In einer besonders bevorzugten Variante des Verfahrens stammt mehr als eine doppelt so hohe Anzahl, wie statistisch zu erwarten, aus an der Regulation von Genen beteiligten Genomabschnitten, z.B. Promotoren und Enhancern, stammt, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre. In einer weiteren besonders bevorzugten Variante des Verfahrens stammt mehr als eine doppelt so hohe Anzahl der amplifizierten Fragmente aus Genomabschnitten, die in mindestens einer Zelle des jeweiligen Organismus in mRNA transkribiert werden, oder aber aus nach der Transkription in mRNA gespliceten Genomabschnitten (Exons), als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre.

In einer weiteren besonders bevorzugten Variante des Verfahrens stammt mehr als eine doppelt so hohe Anzahl der amplifizierten Fragmente aus Genomabschnitten, welche für Teile einer oder mehrerer Genfamilien kodieren, oder aber sie stammen aus Genomabschnitten, welche für sogenannte "matrix attachment sites" (MARs)-charakteristische Sequenzen enthalten, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre.

In einer weiteren besonders bevorzugten Variante des Verfahrens stammt mehr als eine doppelt so hohe Anzahl der amplifizierten Fragmente aus Genomabschnitten, welche als sogenannte "boundary elements" die Verpackungsdichte des Chromatins organisieren, oder aber sie stammen aus multiple drug resistance gene" (MDR)-

Promotoren oder kodierenden Regionen, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre.

In einer weiteren, besonders bevorzugten Variante des Verfahrens werden zur Amplifkation der beschriebenen Fragmente zwei Oligonukleotide oder zwei Klassen von Oligonukleotiden verwendet, von denen eines oder eine Klasse außer im Kontext CpG oder CpNpG zwar die Base C enthalten kann, nicht aber die Base G und von denen das andere oder die andere Klasse außer im Kontext CpG oder CpNpG zwar die Base G, nicht aber die Base C enthalten kann.

In einer weiteren bevorzugten Variante des Verfahrens wird die Amplifikation mittels zweier Oligonukleotide durchgeführt, von denen eines eine vier bis sechzehn Basen lange Sequenz enthält, die zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen würde, wenn ein ebenso langes DNA Fragment, an welches einer der Faktoren

AhR/Arnt	aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator
Arnt	aryl hydrocarbon receptor nuclear translocator
AML-1a	CBFA2; core-binding factor, runt domain, alpha subunit 2
	(acute myeloid leukemia 1; aml1 oncogene)
AP-1	activator protein-1 (AP-1); Synonyme: c-Jun
C/EBP	CCAAT/enhancer binding protein
C/EBPalpha	CCAAT/enhancer binding protein (C/EBP), alpha
C/EBPbeta	CCAAT/enhancer binding protein (C/EBP), beta
CDP	CUTL1; cut (Drosophila)-like 1 (CCAAT displacement
	protein)
CDP	CUTL1; cut (Drosophila)-like 1 (CCAAT displacement
	protein)
CDP CR1	complement component (3b/4b) receptor 1
CDP CR3	complement component (3b/4b) receptor 3
CHOP-C/EBPalpha	DDIT; DNA-damage-inducible transcript 3/CCAAT/enhancer binding protein (C/EBP), alpha
c-Myc/Max	avian myelocytomatosis viral oncogene/MYC-ASSOCIATED FACTOR X
CREB	cAMP responsive element binding protein
CRE-BP1	CYCLIC AMP RESPONSE ELEMENT-BINDING PROTEIN 2, CREB2, CREBP1; now ATF2; activating transcription factor 2
CRE-BP1/c-Jun	activator protein-1 (AP-1); Synonyme: c-Jun

0050	
CREB	MP responsive element binding protein
E2F	E2F transcription factor (originally identified as a DNA-
	binding protein essential E1A-dependent activation of the
	adenovirus E2 promoter)
E47	transcription factor 3 (E2A immunoglobulin enhancer binding
	factors E12/E47)
E47	transcription factor 3 (E2A immunoglobulin enhancer binding
	factors E12/E47)
Egr-1	early growth response 1
Egr-2	early growth response 2 (Krox-20 (Drosophila) homolog)
ELK-1	ELK1, member of ETS (environmental tobacco smoke)
	oncogene family
Freac-2	FKHL6; forkhead (Drosophila)-like 6; FORKHEAD-RELATED
	ACTIVATOR 2; FREAC2
Freac-3	FKHL7; forkhead (Drosophila)-like 7; FORKHEAD-RELATED
	ACTIVATOR 3; FREAC3
Freac-4	
	FKHL8; forkhead (Drosophila)-like 8; FORKHEAD-RELATED ACTIVATOR 4; FREAC4
Freac-7	FKHL11; forkhead (Drosophila)-like 9; FORKHEAD-
	RELATED ACTIVATOR 7; FREAC7
GATA-1	GATA-hinding protoin 1/Enhancer Binding Burking CATA
GATA-1	GATA-binding protein 1/Enhancer-Binding Protein GATA1
GATA-1	GATA binding protein 1/Enhancer-Binding Protein GATA1
GATA-2	GATA-binding protein 1/Enhancer-Binding Protein GATA1
GATA-3	GATA-binding protein 2/Enhancer-Binding Protein GATA2
GATA-X	GATA-binding protein 3/Enhancer-Binding Protein GATA3
HFH-3	EKUI 10: forkbood (Danambil) 12 40 To Turney
, 11110	FKHL10; forkhead (Drosophila)-like 10; FORKHEAD-
HNF-1	RELATED ACTIVATOR 6; FREAC6
11141 - 1	TCF1; transcription factor 1, hepatic; LF-B1, hepatic nuclear
HNF-4	factor (HNF1), albumin proximal factor
IRF-1	hepatocyte nuclear factor 4
ISRE	interferon regulatory factor 1
	interferon-stimulated response element
Lmo2 complex MEF-2	LIM domain only 2 (rhombotin-like 1)
MET-2	MADS box transcription enhancer factor 2, polypeptide A
MEEO	(myocyte ennancer factor 2A)
MEF-2	MADS box transcription enhancer factor 2, polypeptide A
	(myocyte ennancer factor 2A)
myogenin/NF-1	Myogenin (myogenic factor 4)/Neurofibromin 1;
	NEUROFIBROMATOSIS, TYPE !
MZF1	ZNF42; zinc finger protein 42 (myeloid-specific retinoic acid-
	responsive)
MZF1	ZNF42; zinc finger protein 42 (myeloid-specific retinoic acid-
	responsive)
NF-E2	NFE2; nuclear factor (erythroid-derived 2), 45kD
NF-kappaB (p50)	nuclear factor of kappa light polypeptide gene enhancer in B-
	ceils pou subunit
NF-kappaB (p65)	nuclear factor of kappa light polypeptide gene enhancer in B-
,	Para and the problem of the cultural CEL III D-

	colle nGE outpurit
NE kannaD	cells p65 subunit
NF-kappaB	nuclear factor of kappa light polypeptide gene enhancer in B-
NE L	cells
NF-kappaB	nuclear factor of kappa light polypeptide gene enhancer in B-
	cells
NRSF	NEURON RESTRICTIVE SILENCER FACTOR; REST; RE1-
	silencing transcription factor
Oct-1	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
	POU2F1; POU domain, class 2, transcription factor 1
Oct-1	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
	POU2F1; POU domain, class 2, transcription factor 1
Oct-1	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
300 1	POU2F1; POU domain, class 2, transcription factor 1
Oct-1	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
OCI-1	
0-4-4	POU2F1; POU domain, class 2, transcription factor 1
Oct-1	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
	POU2F1; POU domain, class 2, transcription factor 1
P300	E1A (adenovirus E1A oncoprotein)-BINDING PROTEIN,
	300-KD
P53	tumor protein p53 (Li-Fraumeni syndrome); TP53
Pax-1	paired box gene 1
Pax-3	paired box gene 3 (Waardenburg syndrome 1)
Pax-6	paired box gene 6 (aniridia, keratitis)
Pbx.1b	pre-B-cell leukemia transcription factor
Pbx-1	pre-B-cell leukemia transcription factor 1
RORalpha2	RAR-RELATED ORPHAN RECEPTOR ALPHA; RETINOIC
	ACID-BINDING RECEPTOR ALPHA
RREB-1	ras responsive element binding protein 1
SP1	simian-virus-40-protein-1
SP1	simian-virus-40-protein-1
SREBP-1	sterol regulatory element binding transcription factor 1
SRF	serum response factor (c-fos serum response element-
OD\/	binding transcription factor)
SRY	sex determining region Y
STAT3	signal transducer and activator of transcription 1, 91kD
Tal-1alpha/E47	T-cell acute lymphocytic leukemia 1/transcription factor 3
	(E2A immunoglobulin enhancer binding factors E12/E47)
TATA	cellular and viral TATA box elements
Tax/CREB	Transiently-expressed axonal glycoprotein/cAMP responsive
	element binding protein
Tax/CREB	Transiently-expressed axonal glycoprotein/cAMP responsive
	element binding protein
TCF11/MafG	v-maf musculoaponeurotic fibrosarcoma (avian) oncogene
	family, protein G
TCF11	Transcription Factor 11; TCF11; NFE2L1; nuclear factor
101 11	· · · · · · · · · · · · · · · · · · ·
HEE	(erythroid-derived 2)-like 1
USF	upstream stimulating factor
Whn	winged-helix nude

18

X-BP-1 YY1

X-box binding protein 1 oder ubiquitously distributed transcription factor belonging to theGLI-Kruppel class of zinc finger proteins

bindet, derart chemisch behandelt würde, daß an der 5'-Position unmethylierte Cytosinbasen in Uracil, Thymidin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base verwandelt werden.

In einer weiteren bevorzugten Variante des Verfahrens wird die Amplifikation mittels zweier Oligonukleotide oder zweier Klassen von Oligonukleotiden durchgeführt, von denen eines oder die eine Klasse die vier bis sechzehn Basen lange Sequenz enthält, welche zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen würde, wenn ein ebenso langes DNA Fragment, welches über seine Sequenz oder Sekundärstruktur die spezifische Lokalisierung von Genom/Chromatinabschnitten innerhalb des Zellkerns herbeiführen kann, derart chemisch behandelt würde, daß an der 5'-Position unmethylierte Cytosinbasen in Uracil, Thymidin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base verwandelt werden.

In einer weiteren bevorzugten Variante des Verfahrens wird die Amplifikation mittels zweier Oligonukleotide oder zweier Klassen von Oligonukleotiden durchgeführt, von denen eines oder die eine Klasse eine der Sequenzen

TCGCGTGTA, TACACGCGA, TGTACGCGA, TCGCGTACA, TTGCGTGTT, AACACGCAA, GGTACGTAA, TTACGTACC, TCGCGTGTT, AACACGCGA, GGTACGCGA, TCGCGTACC, TTGCGTGTA, TACACGCAA, TGTACGTAA, TTACGTACA, TACGTG, CACGTA,

ATTGCGTGT, ACACGCAAT, GTACGTAAT, ATTACGTAC, ATTGCGTGA, TCACGCAAT, TTACGTAAT, ATTACGTAA, ATCGCGTGA, TCACGCGAT, TTACGCGAT, ATCGCGTAA, ATCGCGTGT, ACACGCGAT, GTACGCGAT, ATCGCGTAC, TGTGGT, ACCACA, ATTATA, TATAAT,

TGAGTTAG, CTAACTCA, TTGATTTA, TAAATCAA, TGATTTAG, CTAAATCA, TTGAGTTA, TAACTCAA,

TTTGGT, ACCAAA, ATTAAA, TTTAAT, TGTGGA, TCCACA, TTTATA, TATAAA, TTTGGA, TCCAAA, TTTAAA, TTTAAA, TGTGGT, ACCACA, ATTATA, TATAAT,

ATTAT, ATAAT, GTAAT, ATTAC, ATTGT, ACAAT, GTAAT, ATTAC,

GAAAG, CTTTC, TTTTT, AAAAA, GTAAT, ATTAC, ATTGT, ACAAT, GAAAT, ATTTC, ATTTT, AAAAT, GTAAG, CTTAC, TTTGT, ACAAA, TTAATAATCGAT, ATCGATTATTAA, ATCGATTATTGG, CCAATAATCGAT, ATCGATTA, TAATCGAT, TAATCGAT, ATCGATTA,

ATCGATCGG, CCGATCGAT, TCGATCGAT, ATCGATCGA, ATCGATCGT, ACGATCGAT, GCGATCGAT, ATCGATCGC,

TATCGATA, TATCGATA, TATCGGTG, CACCGATA, TATTAATA, TATTAATA, TATTGGTG, CACCAATA,

GTGTAATATTT, AAATATTACAC, GGGTATTGTAT, ATACAATACCC, GTGTAATTTTT, AAAAATTACAC, GGGGATTGTAT, ATACAATCCCC, ATGTAATTTTT, AAAAATTACAT, GGGGATTGTAT, ATACAATCCCC, ATGTAATATTT, AAATATTACAT, GGGTATTGTAT, ATACAATACCC, ATTACGTGGT, ACCACGTAAT, ATTACGTGGT, ACCACGTAAT, TGACGTAA, TTACGTCA, TTACGTTA, TAACGTCA, TGACGTTA, TAACGTCA, TTACGTAA, TTACGTAA, TTACGTAA, TTACGTAA, TGACGTTA, TAACGTCA, TGACGTTA, TAACGTTA, TAACGTTA,

TGACGT, ACGTCA, GCGTTA, TAACGC, TGACGT, ACGTCA, ACGTTA, TAACGT, TTTCGCGT, ACGCGAAA, GCGCGAAA, TTTCGCGC, TTTGGCGT, ACGCCAAA, GCGTTAAA, TTTAACGC.

TAGGTGTTA, TAACACCTA, TAATATTTG, CAAATATTA, TAGGTGTTT, AAACACCTA, GAATATTTG, CAAATATTC,

GTAGGTGG, CCACCTAC, TTATTTGT, ACAAATAA, GTAGGTGT, ACACCTAC, ATATTTGT, ACAAATAT,

TGCGTGGGCGG, CCGCCCACGCA, TCGTTTACGTA, TACGTAAACGA, TGCGTGGGCGT, ACGCCCACGCA, ACGTTTACGTA, TACGTAAACGT,

TGCGTAGGCGT, ACGCCTACGCA, ACGTTTACGTA, TACGTAAACGT, TGCGTAGGCGG, CCGCCTACGCA, TCGTTTACGTA, TACGTAAACGA, ATAGGAAGT, ACTTCCTAT, ATTTTTTGT, ACAAAAAAT,

TCGGAAGT, ACTTCCGA, ATTTTCGG, CCGAAAAT, TCGGAAGT, ACTTCCGA, GTTTTCGG, CCGAAAAC, TCGGAAAT, ATTTCCGA, ATTTTCGG, CCGAAAAT, TCGGAAAT, ATTTCCGA, GTTTTCGG, CCGAAAAC, GTAAATAA, TTATTTAC, TTGTTTAT, ATAAACAA, GTAAATAAATA, TATTTATTTAC, TGTTTATTTAT, ATAAATAAACA,

AAAGTAAATA, TATTTACTTT, TGTTTATTTT, AAAATAAACA, AATGTAAATA, TATTTACATT, TGTTTATATT, AATATAAACA, TAAGTAAATA, TATTTACTTA, TGTTTATTTA, TAAATAAACA, TATGTAAATA, TATTTACATA, TGTTTATATA, TATATAAACA,

ATAAATA, TATTTAT, TGTTTAT, ATAAACA, ATAAATA, TATTTAT, TATTTAT, ATAAATA, GATA, TATC, TATT, AATA,

TAGATAA, TTATCTA, TTATTTG, CAAATAA, TTGATAA, TTATCAA, TTATTAG, CTAATAA, GATAA, TTATC, TTATT, AATAA,

GATG, CATC, TATT, AATA,

GATAG, CTATC, TTATT, AATAA, GATAAG, CTTATC, TTTATT, AATAAA,

GTTAATGATT, AATCATTAAC, AATTATTAAT, ATTAATAATT, GTTAATTATT, AATAATTAAC, AATAATTAAT, ATTAATTAAT, GTTAATTAAT, ATTAATTAAC, ATTAATTAAT, ATTAATTAAT, GTTAATGAAT, ATTCATTAAC, ATTTATTAAT, ATTAATAAAT,

TAAAGTTTA, TAAACTTTA, TGAATTTTG, CAAAATTCA, TAAAGGTTA, TAACCTTTA, TGATTTTTG, CAAAAATCA.

AAAGTGAAATT, AATTTCACTTT, GGTTTTATTTT, AAAATAAAACC, AAAGCGAAATT, AATTTCGCTTT, GGTTTCGTTTT, AAAACGAAACC,

TAGTTTTATTTTTT, AAAAAAATAAAACTA, GGGAAAGTGAAATTG, CAATTTCACTTTCCC, TAGTTTTATTTTTTT, AAAAAAAATAAAACTA, GGAAAAGTGAAATTG, CAATTTCACTTTTCC, TAGTTTTTTTTTT, AAAAAAAAAAAAAAACTA, GGAAAAGAGAAATTG, CAATTTCTCTTTTCC,

TAGTTTTTTTTTT, AAAAAAAAAAACTA, GGGAAAGAGAAATTG, CAATTTCTCTTTCCC, TAGGTG, CACCTA, TATTTG, CAAATA,

TTTTAAAAATAATTTT, AAAATTATTTTTAAAA, AGGGTTATTTTTAGAG, CTCTAAAAATAACCCT, TTTTAAAAATAACTCC, TTTTAAAAATAACTCC, TTTTAAAAATAATTTT, AAAATTATTTTTAAAA, AGAGTTATTTTTAGAG, CTCTAAAAATAACTCT, TTTTAAAAATAACTCT, TTTTAAAAATAACTCT, AAAATTATTTTTAAAA, GGGGTTATTTTTAGAG, CTCTAAAAATAACCCC,

TGTTATTAAAAATAGAAA, TTTCTATTTTTAATAACA, TTTTTATTTTTAGTAATA, TATTACTAAAAATAAAAA, TGTTATTAAAAAATAGAAT, ATTCTATTTTTAATAACA, GTTTTATTTTAGTAATA, TATTACTAAAAATAAAAC, TTTGGTAT, ATACCAAA, GTGTTAAA, TTTAACAC GGGGA, TCCCC, TTTTT, AAAAA,

TAGGGG, CCCCTA, TTTTTA, TAAAAA. GAGGGG, CCCCTC, TTTTTT, AAAAAA, TGTTGAGTTAT, ATAACTCAACA, ATGATTTAGTA, TACTAAATCAT, TGTTGATTTAT, ATAAATCAACA, GTGAGTTAGTA, TACTAACTCAC, TGTTGAGTTAT, ATAACTCAACA, ATGATTTAGTA, TACTAAATCAT, TGTTGATTTAT, ATAAATCAACA, GTGAGTTAGTA, TACTAACTCAC. GGGGATTTTT, AAAAATCCCC, GGGAATTTTT, AAAAATTCCC, GGGGATTTTT, AAAAATCCCC, GGGGATTTTT, AAAAATCCCC, GGGGATTTT, AAAAATCCCC, GGAAATTTTT, AAAAATTTCC. GGGAATTTTT, AAAAATTCCC, GGAAATTTTT, AAAAATTTCC, GGGAATTTT, AAAAATTCCC, GGAAATTTTT, AAAAATTTCC, GGGATTTTT, AAAAAATCCC, GGAAAGTTTT, AAAACTTTCC, GGGAATTTT, AAAAATTCCC, GGGAATTTTT, AAAAATTCCC, GGGATTTTT, AAAAAATCCC, GGGAAGTTTT, AAAACTTCCC GGGATTTTTA, TAAAAAATCCC, TGGAAAGTTTT, AAAACTTTCCA, TTTAGTATTACGGATAGAGGT, ACCTCTATCCGTAATACTAAA. GTTTTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAAAAAC, TTTAGTATTACGGATAGAGTT, AACTCTATCCGTAATACTAAA. GGTTTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAAAACC. TTTAGTATTACGGATAGCGTT, AACGCTATCCGTAATACTAAA. GGCGTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAACGCC. TTTAGTATTACGGATAGCGGT, ACCGCTATCCGTAATACTAAA, GTCGTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAACGAC.

ATATGTAAAT, ATTTACATAT, ATTTGTATAT, ATATACAAAT, TTATGTAAAAT, ATTTACATAA, ATTTGTATAA, TTATACAAAT,

GAATATTTA, TAAATATTC, TGAATATTT, AAATATTCA,

GAATATGTA, TACATATTC, TGTATATTT, AAATATACA,

ATAAT, ATTAT, ATTAT, ATAAT, GTAAT, ATTAC, ATTAT, ATAAT,

AATGTAAAT, ATTTACATT, ATTTGTATT, AATACAAAT,

ATTTGTATATT, AATATACAAAT, GGTATGTAAAT, ATTTACATACC, ATTTGTATATT, AATATACAAAT, AATATGTAAAT, ATTTACATACT, ATTTGTATATT, AATATACAAAT, AGTATGTAAAT, ATTTACATACT, ATTTGTATATT, AATATACAAAT, GATATGTAAAT, ATTTACATATC,

AGGAGT, ACTCCT, ATTTTT, AAAAAT, GGGAGT, ACTCCC, ATTTTT, AAAAAT, GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC, GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC, GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC, AGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCT, TCGTTTCGTTTTAGATAT, ATATCTAAAACGAAACGA, ATATTTAGAGCGGAACGG, CCGTTCCGCTCTAAATAT,

CGTTACGGTT, AACCGTAACG, AATCGTGACG, CGTCACGATT, CGTTACGGTT, AACCGTAACG, GATCGTGACG, CGTCACGATC, CGTTACGTTT, AAACGTAACG, AAGCGTGACG, CGTCACGCTT, CGTTACGTTT, AAACGTAACG, GAGCGTGACG, CGTCACGCTC,

TTTACGTATGA, TCATACGTAAA, TTATGCGTGAA, TTCACGCATAA, TTTACGTTTGA, TCAAACGTAAA, TTAAGCGTGAA, TTCACGCTTAA, TTTACGTTTTA, TAAAACGTAAA, TGAAGCGTGAA, TTCACGCTTCA, TTTACGTATTA, TAATACGTAAA, TGATGCGTGAA, TTCACGCATCA,

AATTAATTAA, TTAATTAATT, TTGATTGATT, AATCAATCAA, TATTAATTAA, TTAATTAATA, TTGATTGATG, CATCAATCAA,

TAATTAT, ATAATTA, ATGATTG, CAATCAT,

TAGGTTA, TAACCTA, TGATTTA, TAAATCA,

TTTTAAATATTTTT, AAAAATATTTAAAA, GGGGGTGTTTGGGG, CCCCAAACACCCCC, TTTTAAATTATTTT, AAAATAATTTAAAA, GGGGTGGTTTGGGG, CCCCAAACCACCCC, TTTTAAATTTTTTT, AAAAAAAATTTAAAA, GGGGGGGTTTGGGG, CCCCAAACCCCCC, TTTTAAATATTTT, AAAATTATTTAAAA, GGGGTTGTTTGGGG, CCCCAAACACCCCC.

GAGGCGGGG, CCCCGCCTC, TTTCGTTTT, AAAACGAAA,

GAGGTAGGG, CCCTACCTC, TTTTGTTTT, AAAACAAAA, AAGGCGGGG, CCCCGCCTT, TTTCGTTTT, AAAACAAAA, AAGGTAGGG, CCCTACCTT, TTTTGTTTT, AAAACAAAA,

GGGGGCGGGT, ACCCCGCCCC, ATTTCGTTTTT, AAAAACGAAAT, GGGGGCGGGGT, ACCCCGCCCC, GTTTCGTTTTT, AAAAACGAAAC, TATTATTTTAT, ATAAAATAATA, GTGGGGTGATA, TATCACCCCAC, GATTATTTTAT, ATAAAATAATC, GTGGGGTGATT, AATCACCCCAC.

ATTACGTGAT, ATCACGTAAT, ATTACGTGAT, ATCACGTAAT, ATTACGTGAT, ATCACGTAAT, GTTACGTGAT, ATCACGTAAC,

TTTTATATGG, CCATATAAAA, TTATATAAGG, CCTTATATAA, TTATATATGG, CCATATATAA, TTATATATGG, CCATATATAA, AAATAAT, ATTATTT, GTTGTTT, AAACAAC, AAATTAA, TTAATTT, TTAGTTT, AAACTAA, AAATTAT, ATAATTT, GTAGTTT, AAACTAC, AAATAAA, TTTATTT, TTTGTTT, AAACAAA,

ATTTTCGGAAATG, CATTTCCGAAAAAT, TATTTTCGGGAAAT, ATTTCCCGAAAATA, ATTTTCGGAAAATG, CATTTCCGAAAAAT, TATTTTCGGGAAAT, ATTTCCCGAAAAATA, ATTTCCGGAAAATA, CATTTCCGAAAAATA, ATTTCCGAAAAATA, ATTTCCGGAAAATA, ATTTCCGGAAAATA, ATTTCCGAAAAATA, ATTTCCGAAAAATA,

AATAGATGTT, AACATCTATT, AATATTTGTT, AACAAATATT, AATAGATGGT, ACCATCTATT, ATTATTTGTT, AACAAATAAT,

GTATAAATA, TATTTATAC, TATTTATAT, ATATAAATA, GTATAAATG, CATTTATAC, TATTTATAT, ATATAAAAA, GTATAAAAA, TTTTTATAC, TTTTTATAT, ATATAAAAA, GTATAAAAAG, CTTTTATAC, TTTTTATAT, ATATAAAAA, TTATAAAATA, TATTTATAA, TATTTATAG, CTATAAATA, TTATAAAATG, CATTTATAAA, TATTTATAG, CTATAAAATA, TTATAAAAAA, TTTTTATAA, TTTTTATAG, CTATAAAAA, TTATAAAAAG, CTTTTATAAA, TTTTTATAG, CTATAAAAAA, GGGGGTTGACGTA, TACGTCAACCCCC, TGCGTTAATTTTT, AAAAATTAACGCA, GGGGGTTGACGTA, TACGTCAACCCCC, TACGTTAATTTTT, AAAAATTAACGTA.

TGACGTATATTTTT, AAAAATATACGTCA, GGGGATATGCGTTA, TAACGCATATCCCC, TGACGTATATTTTT, AAAAATATACGTCA, GGGGGTATGCGTTA, TAACGCATACCCCC,

ATGATTTAGTA, TACTAAATCAT, TGTTGAGTTAT, ATAACTCAACA, GTTAT, ATAAC, ATGAT, ATCAT,

TTACGTGA, TCACGTAA, TTACGTGG, CCACGTAA, TTACGTGG, CCACGTAA, TTACGTGG, CCACGTAA, TTACGTGA, TCACGTAA, TTACGTGA, TCACGTAA, TTACGTGA, TCACGTAA, GACGTT, AACGTC, AGCGTT, AACGCT,

TGACGTGT, ACACGTCA, ATACGTTA, TAACGTAT, TGACGTGG, CCACGTCA, TTACGTTA, TAACGTAA, CGGTTATTTTG, CAAAATAACCG, TAAGATGGTCG oder CGACCATCTTA

enthält, welche zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen würde, wenn ein ebenso langes DNA Fragment, welches über seine Sequenz oder Sekundärstruktur die spezifische Lokalisierung von Genom/Chromatinabschnitten innerhalb des Zellkerns herbeiführen kann, derart chemisch behandelt würde, daß an der 5'-Position unmethylierte Cytosinbasen in Uracil, Thymidin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base verwandelt werden.

In einer besonders bevorzugten Variante des Verfahrens enthalten die zur Amplifikation verwendeten Oligonukleotide außer den oben definierten Konsensussequenzen mehrere Positionen, an denen entweder irgendeine der drei Basen G, A und T oder irgendeine der Basen C, A und T vorhanden sein kann.

In einer besonders bevorzugten Variante des Verfahrens enthalten die zur Amplifikation verwendeten Oligonukleotide außer einer der oben beschriebenen Konsensussequenzen nur maximal zusätzlich so viele weitere Basen, wie es zur gleichzeitigen Amplifikation von mehr als einhundert verschiedenen Fragmenten pro Reaktion aus der chemisch wie oben behandelten DNA erforderlich ist.

In einem dritten Verfahrensschritt wird nun der Sequenzkontext aller oder eines Teils der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide untersucht.

In einer besonders bevorzugten Variante des Verfahrens erfolgt die Analyse durch Hybridisierung der bereits in der Amplifikation mit einem Fluoreszenzmarker versehenen Fragmente an einen Oligonukleotid- Array (DNA Chip). Der Fluoreszenzmarker kann entweder über die verwendeten Primer oder aber durch ein fluoreszenzmarkiertes Nukleotid (z. B. Cy5-dCTP, kommerziell von Amersham-Pharmacia erhältlich) eingeführt werden.

Dabei hybridisieren komplementäre Fragmente an die jeweiligen auf der Chipoberfläche immobilisierten Oligomere, nicht komplementäre Fragmente werden in einem oder mehreren Waschschritten entfernt. Die Fluoreszenz an den jeweiligen Hybridisierungsorten auf dem Chip erlaubt dann den Rückschluß auf den Sequenzkontext der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide.

In einer weiteren bevorzugten Variante des Verfahrens werden die amplifizierten Fragmente auf einer Oberfläche immobilisiert und anschließend eine Hybridisierung mit einer kombinatorischen Bibiliothek von unterscheidbaren Oligonukleotid- oder PNA-Oligomer-Sonden durchgeführt. Wiederum werden nicht komplementäre Sonden durch einen oder mehrere Waschschritte entfernt. Die hybridisierten Sonden werden entweder über ihre Fluoreszenzmarker detektiert oder in einer weiteren besonders bevorzugten Variante des Verfahrens mittels Matrix-assistierter Laser-Desorptions/Ionisations Massenspektrometrie (MALDI-MS) anhand ihrer eindeutigen Masse nachgewiesen. Dabei werden die Sondenbibliotheken derart synthetisiert, daß die Masse eines jeden Bestandteils eindeutig seiner Sequenz zugeordnet werden kann.

Die Amplifikate können zudem in einer weiteren bevorzugten Variante des Verfahrens hinsichtlich Ihrer durchschnittlichen Größe durch Veränderung der Kettenverlängerungszeiten im Amplifikationsschritt beeinflußt werden. Da hier vorwiegend kleinere Fragmente (ca. 200-500 Basenpaare) untersucht werden, ist eine Verkürzung der Kettenverlängerungsschritte z. B. einer PCR sinnvoll.

In einer weiteren bevorzugten Variante des Verfahrens werden die Amplifikate durch

Gelelektrophorese aufgetrennt, und die Fragmente im gewünschten Größenbereich werden vor Ihrer Analyse ausgeschnitten. In einer weiteren besonders bevorzugten Variante werden die aus dem Gel ausgeschnittenen Amplifikate unter Verwendung des gleichen Satzes an Primern erneut amplifiziert. Dabei können dann nur noch Fragmente der gewünschten Größe entstehen, da Andere als Templat nicht mehr verfügbar sind.

Ein weiterer Gegenstand der vorleigenden Erfindung ist ein Kit, enthaltend mindestens zwei Primerpaare, Reagenzien und Hilfsstoffe für die Amplifikation und/oder Reagenzien und Hilfsmittel für die chemische Behandlung und/oder eine kombinatorische Sondenbibliothek und/oder einen Oligonukleotid-Array (DNA-Chip), soweit sie für die Durchführung des erfindungsgemäßen Verfahrens erforderlich oder dienlich sind.

Die folgenden Beispiele erläutern die Erfindung.

Beispiele:

Beispiel 1:

Primer zur bevorzugten Amplifikation von CG reichen Regionen im Humangenom

Bei den CG reichen Regionen im Humangenom handelt es sich um sogenannte CpG-islands, die eine regulatorischen Funktion besitzen. Wir definieren CpG Islands derart, dass sie mindestens 500 bp umfassen sowie einen GC-Gehalt von >50% aufweisen , ausserdem ist der Quotient CG/GC > 0,6. Unter diesen Bedingungen liegen 16 Mb als CpG Islands vor. Damit liegen etwa 0,5 % der Genomsequenz in diesen CpG islands, wenn man auch noch jeweils eine Region bis 1000 bp downstream zusätzlich betrachtet. Dieser Überlegung liegen Daten aus der Ensembl Database vom 31.10.00, Quelle Sanger Centre, zugrunde. Die dort verfügbare Sequenz umfasste ca. 3,5 GB, und für die Berechnungen wurden die Repeats maskiert.

Statistisch wäre es bei 12meren zu erwarten, dass sie nur 0,005 mal so häufig an eine der CG-reichen Regionen hybridisieren wie an eine andere beliebige Region im

Genom. Es wurden nun Primer gefunden, welche 1,8 mal häufiger an eine CG reiche Region binden. Zudem ergibt sich mit den entsprechend gefundene Reverse Primer nahezu eine Spezifität für diese CpG islands.

In diesem Beispiel sind die Primer AGTAGTAGT (Seq. ID 1) AAAACAAAACC (Seq. ID 2) und alternativ AGTAGTAGT (Seq. ID 19) und ACAAAAACTAAA (seq. ID 20). Das erste Primerpaar führt mindestens zu den Amplifikaten Seq. ID 3 bis 18, das zweite Primerpaar zu den Amplifikaten der Seq. ID 21 bis 31.

Beispiel 2:

Berechnung der Vorhersage der Anzahl von Amplifikaten in Genomischen Regionen.

Gemäß Anspruch 8 im Patent wird gezeigt mehr als doppelt so viele Amplifikate erstellen zu können, als es statistisch zu erwarten wäre nach Formel 1.

$$F = N * P_s(Primers) \frac{(P_a(Primers))}{\log(1 - P_a(Primers))} [(1 - P_a(Primers))^M - 1] \\ + N * P_a(Primers) \frac{(P_s(Primers))}{\log(1 - P_s(Primers))} [(1 - P_s(Primers))^M - 1]$$
 Formel 1.

F gibt dabei die Anzahl der Vorhergesagten Amplifikate an, die zu erwarten sind, wenn man N Basen als Datenbasis aus dem Genom betrachtet. P ist die jeweilige Wahrscheinlichkeit für die Hybridisierung eines Primeroligonukleotids, getrennt nach Hybridisierung im Sense- und Antisense-Strang. M ist die maximal zulässige Länge der zu erwartenden Amplifikate.

Die Wahrscheinlichkeit P wird bestimmt durch eine Markov Kette erster Ordnung. Dabei wird die Annahme gemacht, dass die DNA eine Zufallsfolge in Abhängigkeit benachbarter Basen ist. Für die Berechnung einer Markovkette sind die Übergangswahrscheinlichkeiten von benachbarten Basen notwendig. Diese wurden empirisch aus 12% des assemblierten humanen Genoms, das vollständig mit Bisulfit behandelt wurde, ermittelt und in Tabelle 1 zusammengefasst. In Tabelle 2 sind die Übergangswahrscheinlichkeiten für den entsprechenden komplementär reversen

Strang angegeben. Diese ergeben sich durch einfaches Vertauschen der Einträge aus der Tabelle 1.

Tabelle 1

Von\nach	A	С	G	<i>T</i>
Α	0.0894	0.0033	0.0722	0.1162
С	0.0	0.0	0.0140	0.0
G	0.0603	0.0036	0.0601	0.0959
T	0.1314	0.0071	0.0736	0.2729

mit

$$P_{bDNA}(A) = 0.2811$$

$$P_{bDNA}(C) = 0.0140$$

$$P_{bDNA}(G) = 0.2199$$

$$P_{bDM}(T) = 0.4850$$

und für den dazu revers-komplementären Strang (durch entsprechendes Austauschen der Einträge) $P_{rbDNA}(von; nach)$

Tabelle 2

Von\nach	A	С	G	7
A	0.2729	0.0959	0.0	0.1162
С	0.0736	0.0601	0.0140	0.0722
G	0.0071	0.0036	0.0	0.0033
T	0.1314	0.0603	0.0	0.0894

$$P_{rbDNA}(A) = 0.4850$$

$$P_{rbDNA}(C) = 0.2199$$

$$P_{rbDNA}(G) = 0.0140$$

$$P_{rbDNA}(T) = 0.2811$$

Damit hängt die Wahrscheinlichkeit, dass sich für einen Primer PrimE (mit der

Basenfolge B₁ B₂ B₃ B₄ ...; z.B. ATTG...) eine perfekte Basenpaarung ergibt, von der genauen Abfolge der Basen ab und ergibt sich als das Produkt:

$$P_{3s}(PrimE) = P_{rbDNA}(B_1) \frac{P_{rbDNA}(B_1; B_2)}{P_{rbDNA}(B_1)} \frac{P_{rbDNA}(B_2; B_3)}{P_{rbDNA}(B_2)} \frac{P_{rbDNA}(B_3; B_4)}{P_{rbDNA}(B_3)} \dots$$

(Bisulfit-DNA-Strang)

$$P_{3a}(PrimE) = P_{bDNA}(B_1) \frac{P_{bDNA}(B_1; B_2)}{P_{bDNA}(B_1)} \frac{P_{bDNA}(B_2; B_3)}{P_{bDNA}(B_2)} \frac{P_{bDNA}(B_3; B_4)}{P_{bDNA}(B_3)} \dots$$

(anti-sense-Strang zu einem Bisulfit-DNA-Strang);

für einen Primer Prim auf dem sense-Strang ergeben sich

$$N*P_{s}(Prim)$$

perfekte Basenpaarungen - Werden mehrere Primer (*PrimU*, *PrimV*, *PrimW*, *PrimX*, etc.) gleichzeitig verwendet, ergibt sich als Wahrscheinlichkeit für eine perfekte Basenpaarung auf dem sense-Strang an einer gegebenen Position:

$$\begin{split} P_s(Primers) &= P_s(PrimU) \\ &+ (1 - P_s(PrimU)) P_s(PrimV) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) P_s(PrimW) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) (1 - P_s(PrimW)) P_s(PrimX) \\ &+ \end{split}$$

(PrimU, PrimV, PrimW... sind hier verschiedene Primer mit unterschiedlichen Basenpaarungen)

und damit als Anzahl der zu erwartenden perfekten Basenpaarungen mit irgendeinem der Primer

$$N*P(Primers)$$
.

Für die Bestimmung von $P_a(Primers)$ auf dem anti-sense-Strang werden die analogen Gleichungen verwendet.

Für das Beispiel mit zwei Primern (einem sense-Primer und einem antisense-Primer) ergeben sich folgende Wahrscheinlichkeiten:

P(AGTAGTAGTAGT) = 0.000000860027

P(AACAAAAACTAA) = 0.000030005828

Auf den CpG-Islands, die insgesamt ca. 30.000.000 Basen enthalten, erwartet man eine Häufigkeit von Hybridisierungen für:

AGTAGTAGTAGT: 25.80 auf dem sense Strang

AACAAAACTAA: 900.17 auf dem komplementär reversen Strang.

Auf den jeweils anderen Strängen können die Primer nicht hybridisieren, da auf dem sense-Strang durch die Bisulfitbehandlung keine Cs außerhalb des Kontextes CG auftreten und entsprechend komplementär auf dem antisense-Strang.

Ein Amplifikat entsteht genau dann, wenn bei einer perfekten Basenpaarung auf dem sense-Strang innerhalb der maximalen Fragmentlänge M ein Primer auf dem Gegenstrang eine perfekte Basenpaarung bildet, die Wahrscheinlichkeit dafür ist

$$P_a(Primers) \sum_{i=0}^{M-2} (1 - P_a(Primers))^i$$
;

für große M und kleine $P_a(Primers)$ wird dieses durch folgenden Ausdruck berechnet:

$$\frac{P_a(Primers)}{\log(1-P_a(Primers))}[(1-P_a(Primers))^M-1] ;$$

für die Gesamtzahl ${\it F}$ der Amplifikate, die durch die Amplifikation beider Stränge zu erwarten sind, ergibt sich damit

$$F = N * P_s(Primers) \frac{(P_a(Primers))}{\log(1 - P_a(Primers))} [(1 - P_a(Primers))^M - 1] + N * P_a(Primers) \frac{(P_s(Primers))}{\log(1 - P_s(Primers))} [(1 - P_s(Primers))^M - 1]$$
 Formel 1

Für das oben angegebene Beispiel ergeben sich für die CpG-Islands mit 30 Mega Basen 3.0498 Amplifikate. Wir können jedoch zeigen (siehe Beispiel 1), dass man mit Primern, die für bestimmte Regionen spezifisch sind, mehr als statistisch vorhergesagte Amplifikate erzeugen kann.

Patentansprüche

- Verfahren zur parallelen Detektion des Methylierungszustandes von genomischer DNA, dadurch gekennzeichnet, daß man folgende Schritte ausführt:
 - a) in einer genomischen DNA Probe wandelt man durch chemische Behandlung an der 5'-Position unmethylierte Cytosinbasen in Uracil, Thymidin oder eine andere vom Hybridisierungsverhalten her dem Cytosin unähnliche Base um;
 - b) aus dieser chemisch behandelten genomischen DNA amplifiziert man mehr als zehn unterschiedliche Fragmente, die jeweils weniger als 2000 Basenpaare lang sind, gleichzeitig durch Verwendung von synthetischen Oligonukleotiden als Primer, wobei diese Primer jeweils Sequenzen aus an der Genregulation beteiligten und/oder transkribierten und/oder translatierten genomischen Sequenzen enthalten, wie sie nach einer Behandlung gemäß Schritt a) vorliegen würden;
 - c) man bestimmt den Sequenzkontext aller oder eines Teils der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die chemische Behandlung mittels einer Lösung eines Bisulfits, Hydrogensulfits oder Disulfits durchführt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens eines der in Schritt b) verwendeten Oligonukleotide weniger Nukleobasen enthält als es statistisch für eine sequenzspezifische Hybridisierung an die chemisch behandelte genomische DNA Probe erforderlich wäre.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens eines der in Schritt b) des Anspruchs 1 verwendeten Oligonukleotide

kürzer als 18 Nukleobasen ist.

- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens eines der in Schritt b) des Anspruchs 1 verwendeten Oligonukleotide kürzer als 15 Nukleobasen ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man in Schritt b) des Anspruchs 1 mehr als 4 verschiedene Oligonukleotide gleichzeitig für die Amplifikation verwendet.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man in Schritt b) des Anspruchs 1 mehr als 26 verschiedene Oligonukleotide gleichzeitig für die Amplifikation verwendet.
- 8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als nach berechnet nach Formel 1 aus an der Regulation von Genen beteiligten Genomabschnitten, wie Promotoren und Enhancern, stammt, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist wie berechnet nach Formel 1,

$$F = N * P_{s}(Primers) \frac{(P_{a}(Primers))}{\log(1 - P_{a}(Primers))} [(1 - P_{a}(Primers))^{M} - 1] + N * P_{a}(Primers) \frac{(P_{s}(Primers))}{\log(1 - P_{s}(Primers))} [(1 - P_{s}(Primers))^{M} - 1]$$
Formel 1

wobei man die Berechnung wie folgt durchführt:

bei der mit Bisulfit behandelten DNA kann C nur noch im Kontext CG auftreten, so wird angenommen, daß die primäre DNA eine Zufallsfolge mit Abhängigkeit direkt benachbarter Basen ist (Markov-Kette erster Ordnung); die empirisch aus der Datenbank (vollständig methyliert; mit Bisullfit behandelt) ermittelten

paarweisen Basenwahrscheinlichkeiten ergeben sich gleich für beide DNA-Stränge als $P_{bDNA}(von;nach)$ aus der folgenden Tabelle:

Von\nach	A	С	G	T
Α	0.0894	0.0033	0.0722	0.1162
С	0.0	0.0	0.0140	0.0
G	0.0603	0.0036	0.0601	0.0959
T	0.1314	0.0071	0.0736	0.2729

mit

$$P_{bDNA}(A) = 0.2811$$

$$P_{bDNA}(C) = 0.0140$$

$$P_{bDNA}(G) = 0.2199$$

$$P_{bDNA}(T) = 0.4850$$

und für den dazu revers-komplementären Strang (durch entsprechendes Austauschen der Einträge) $P_{rbDNA}(von; nach)$

Von\nach	A	С	G	T
Α .	0.2729	0.0959	0.0	0.1162
С	0.0736	0.0601	0.0140	0.0722
G	0.0071	0.0036	0.0	0.0033
T	0.1314	0.0603	0.0	0.0894

$$P_{rbDNA}(A) = 0.4850$$

$$P_{rbDNA}(C) = 0.2199$$

$$P_{rbDNA}(G) = 0.0140$$

$$P_{rbDNA}(T) = 0.2811$$

;damit hängt die Wahrscheinlichkeit, daß sich für einen Primer *PrimE* (mit der Basenfolge B₁ B₂ B₃ B₄ ...; z.B. ATTG...) eine perfekte Basenpaarung ergibt, von der genauen Abfolge der Basen ab und ergibt sich als das Produkt:

$$P_{3s}(PrimE) = P_{rbDNA}(B_1) \frac{P_{rbDNA}(B_1; B_2)}{P_{rbDNA}(B_1)} \frac{P_{rbDNA}(B_2; B_3)}{P_{rbDNA}(B_2)} \frac{P_{rbDNA}(B_3; B_4)}{P_{rbDNA}(B_3)} \dots$$

(Bisulfit-DNA-Strang)

$$P_{3a}(PrimE) = P_{bDNA}(B_1) \frac{P_{bDNA}(B_1; B_2)}{P_{bDNA}(B_1)} \frac{P_{bDNA}(B_2; B_3)}{P_{bDNA}(B_2)} \frac{P_{bDNA}(B_3; B_4)}{P_{bDNA}(B_3)} \dots$$

(anti-sense-Strang zu einem Bisulfit-DNA-Strang);

für einen Primer Prim auf dem sense-Strang ergeben sich

$$N*P_s(Prim)$$
:

perfekte Basenpaarungen - Werden mehrere Primer (*PrimU*, *PrimV*, *PrimW*, *PrimX*, etc.) gleichzeitig verwendet, ergibt sich als Wahrscheinlichkeit für eine perfekte Basenpaarung auf dem sense-Strang an einer gegebenen Position:

$$\begin{split} P_s(Primers) &= P_s(PrimU) \\ &+ (1 - P_s(PrimU)) P_s(PrimV) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) P_s(PrimW) \\ &+ (1 - P_s(PrimU)) (1 - P_s(PrimV)) (1 - P_s(PrimW)) P_s(PrimX) \\ &+ \dots \end{split}$$

und damit als Anzahl der zu erwartenden perfekten Basenparungen mit irgendeinem der Primer

$$N*P_s(Primers)$$
 ;

für die Bestimmung von $P_a(Primers)$ auf dem anti-sense-Strang werden die analogen Gleichungen verwendet; ein Amplifikat entsteht genau dann, wenn bei einer perfekten Basenpaarung auf dem sense-Strang innerhalb der maximalen Fragmentlänge M ein Primer auf dem Gegenstrang eine perfekte Basenpaarung bildet, die Wahrscheinlichkeit dafür ist

$$P_a(Primers) \sum_{i=0}^{M-2} (1 - P_a(Primers))^i$$
;

für große M und kleine $P_{a}(Primers)$ wird dieses durch folgenden Ausdruck berechnet:

$$\frac{P_a(Primers)}{\log(1-P_a(Primers))}[(1-P_a(Primers))^M-1] \;\; ;$$

für die Gesamtzahl ${\it F}$ der Amplifikate, die durch die Amplifikation beider Stränge zu erwarten sind, ergibt sich damit

$$F = N * P_s(Primers) \frac{(P_a(Primers))}{\log(1 - P_a(Primers))} [(1 - P_a(Primers))^M - 1] + N * P_a(Primers) \frac{(P_s(Primers))}{\log(1 - P_s(Primers))} [(1 - P_s(Primers))^M - 1]$$
 Formel 1

- 9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Anspruch 8 aus Genomabschnitten stammt, die in mindestens einer Zelle des jeweiligen Organismus in mRNA transkribiert werden, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Anspruch 8.
- 10.Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Anspruch 8 aus nach der Transkription in mRNA gespliceten Genomabschnitten (Exons) stammt, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Anspruch 8.
- 11.Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Anspruch 8 aus Genomabschnitten stammen, welche für Teile einer oder mehrerer Genfamilien kodieren, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Anspruch 8.
- 12. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Anspruch 8. aus Genomabschnitten stammen, welche für sogenannte "matrix attachment sites" (MARs)- charakteristische Sequenzen

enthalten, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Anspruch 8.

- 13. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Anspruchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Anspruch 8 aus Genomabschnitten stammen, welche als sogenannte "boundary elements" die Verpackungsdichte des Chromatins organisieren, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre, oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Anspruch 8.
- 14. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt b) des Ansprüchs 1 mehr als doppelt so viele amplifizierte Fragmente als berechnet entsprechend Ansprüch 8 aus "multiple drug resistance gene" (MDR)-Promotoren oder kodierenden Regionen stammen, als bei einer rein zufälligen Wahl der Oligonukleotidsequenzen zu erwarten wäre oder aber deren Anteil an den insgesamt nachweisbaren Fragmenten mehr als doppelt so hoch ist als berechnet entsprechend Ansprüch 8.
- 15. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zur Amplifkation der in Anspruch 1 beschriebenen Fragmente zwei Oligonukleotide oder zwei Klassen von Oligonukleotiden verwendet werden, von denen eines oder eine Klasse außer im Kontext CpG oder CpNpG zwar die Base C enthalten kann, nicht aber die Base G und von denen das andere oder die andere Klasse außer im Kontext CpG oder CpNpG zwar die Base G, nicht aber die Base C enthalten kann.
- 16. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die in Ansprüch 1 beschriebene Amplifikation mittels zweier Oligonukleotide durchgeführt wird, von denen eines eine vier bis sechzehn Basen lange Sequenz enthält, welche zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen

würde, wenn ein ebenso langes DNA Fragment, an welches einer der Transkriptionsfaktoren

AhR/Arnt	aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear
Arnt	translocator
AML-1a	aryl hydrocarbon receptor nuclear translocator CBFA2; core-binding factor, runt domain, alpha subunit 2
/~\\V\\L \\	(acute myeloid leukemia 1; aml1 oncogene)
AP-1	activator protein-1 (AP-1); Synonyme: c-Jun
C/EBP	CCAAT/enhancer binding protein
C/EBPalpha	CCAAT/enhancer binding protein (C/EBP), alpha
C/EBPbeta	CCAAT/enhancer binding protein (C/EBP), beta
CDP	CUTL1; cut (Drosophila)-like 1 (CCAAT displacement
	protein)
CDP	CUTL1; cut (Drosophila)-like 1 (CCAAT displacement
	protein)
CDP CR1	complement component (3b/4b) receptor 1
CDP CR3	complement component (3b/4b) receptor 3
CHOP-C/EBPalpha	DDIT; DNA-damage-inducible transcript 3/CCAAT/enhancer
	binding protein (C/EBP), alpha
c-Myc/Max	avian myelocytomatosis viral oncogene/MYC-ASSOCIATED
0050	FACTOR X
CREB	cAMP responsive element binding protein
CRE-BP1	CYCLIC AMP RESPONSE ELEMENT-BINDING PROTEIN
	2, CREB2, CREBP1; now ATF2; activating transcription
CRE-BP1/c-Jun	factor 2
CREB	activator protein-1 (AP-1); Synonyme: c-Jun MP responsive element binding protein
E2F	E2F transcription factor (originally identified as a DNA-
اعرا	binding protein essential E1A-dependent activation of the
	adenovirus E2 promoter)
E47	transcription factor 3 (E2A immunoglobulin enhancer binding
	factors E12/E47)
E47	transcription factor 3 (E2A immunoglobulin enhancer binding
•	factors E12/E47)
Egr-1	early growth response 1
Egr-2	early growth response 2 (Krox-20 (Drosophila) homolog)
ELK-1	ELK1, member of ETS (environmental tobacco smoke)
	oncogene family
Freac-2	FKHL6; forkhead (Drosophila)-like 6; FORKHEAD-RELATED
_	ACTIVATOR 2; FREAC2
Freac-3	FKHL7; forkhead (Drosophila)-like 7; FORKHEAD-RELATED
- ,	ACTIVATOR 3; FREAC3
Freac-4	FKHL8; forkhead (Drosophila)-like 8; FORKHEAD-RELATED
F 7	ACTIVATOR 4; FREAC4
Freac-7	FKHL11; forkhead (Drosophila)-like 9; FORKHEAD-
	RELATED ACTIVATOR 7, FREAC7

GATA-1	GATA-binding protein 1/Enhancer-Binding Protein GATA1
GATA-1	GATA-binding protein 1/Enhancer-Binding Protein GATA1
GATA-1	GATA-binding protein 1/Enhancer-Binding Protein GATA1
GATA-2	GATA-binding protein 2/Enhancer-Binding Protein GATA2
GATA-3	GATA-binding protein 2/Enhancer-Binding Protein GATA2
GATA-X	GATA-binding protein 3/Enhancer-Binding Protein GATA3
HFH-3	FKHL10; forkhead (Drosophila)-like 10; FORKHEAD-
	RELATED ACTIVATOR 6: FREACE
HNF-1	ICF1; transcription factor 1, henatic 1 F-R1, henatic puoleer
	factor (HNF1), albumin proximal factor
HNF-4	nepatocyte nuclear factor 4
IRF-1	interferon regulatory factor 1
ISRE	interferon-stimulated response element
Lmo2 complex	LIM domain only 2 (rhombotin-like 1)
MEF-2	MADS box transcription enhancer factor 2, polypeptide A
	(myocyte enhancer factor 2A)
MEF-2	MADS box transcription enhancer factor 2, polypeptide A
	(myocyte enhancer factor 2A)
myogenin/NF-1	Myogenin (myogenic factor 4)/Neurofibromin 1;
	NEUROFIBROMATOSIS, TYPE I
MZF1	ZNF42; zinc finger protein 42 (myeloid-specific retinoic acid-
	responsive)
MZF1	ZNF42; zinc finger protein 42 (myeloid-specific retinoic acid-
	responsive)
NF-E2	NFE2; nuclear factor (erythroid-derived 2), 45kD
NF-kappaB (p50)	nuclear factor of kanna light naturantida as
(1) (1)	nuclear factor of kappa light polypeptide gene enhancer in B-cells p50 subunit
NF-kappaB (p65)	nuclear factor of kanna light notice at the second
, (1, -4)	nuclear factor of kappa light polypeptide gene enhancer in B-cells p65 subunit
NF-kappaB	nuclear factor of kanna light nolynomids
• •	nuclear factor of kappa light polypeptide gene enhancer in B-cells
NF-kappaB	· - · · -
FF	nuclear factor of kappa light polypeptide gene enhancer in B-cells
NRSF	
	NEURON RESTRICTIVE SILENCER FACTOR; REST; RE1-silencing transcription factor
Oct-1	OCTAMED DINDING TRANSCORPTION TO THE
	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
Oct-1	POU2F1; POU domain, class 2, transcription factor 1
	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
Oct-1	POU2F1; POU domain, class 2, transcription factor 1
	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
Oct-1	POU2F1; POU domain, class 2, transcription factor 1
	OCTAMER-BINDING TRANSCRIPTION FACTOR 1;
Oct-1	POU2F1; POU domain, class 2, transcription factor 1
	OCTAMER-BINDING TRANSCRIPTION FACTOR 1
P300	POUZET; POU domain, class 2, transcription factor 1
. 000	ETA (adenovirus E1A oncoprotein)-BINDING PROTEIN
P53	300-KD
	tumor protein p53 (Li-Fraumeni syndrome); TP53

Pax-1 paired box gene 1 paired box gene 3 (Waardenburg syndrome 1) Pax-3 Pax-6 paired box gene 6 (aniridia, keratitis) Pbx 1b pre-B-cell leukemia transcription factor Pbx-1 pre-B-cell leukemia transcription factor 1 RAR-RELATED ORPHAN RECEPTOR ALPHA; RETINOIC RORalpha2 **ACID-BINDING RECEPTOR ALPHA** RREB-1 ras responsive element binding protein 1 SP1 simian-virus-40-protein-1 SP1 simian-virus-40-protein-1 SREBP-1 sterol regulatory element binding transcription factor 1 SRF serum response factor (c-fos serum response elementbinding transcription factor) SRY sex determining region Y signal transducer and activator of transcription 1, 91kD STAT3 T-cell acute lymphocytic leukemia 1/transcription factor 3 Tal-1alpha/E47 (E2A immunoglobulin enhancer binding factors E12/E47) **TATA** cellular and viral TATA box elements Transiently-expressed axonal glycoprotein/cAMP responsive Tax/CREB element binding protein Tax/CREB Transiently-expressed axonal glycoprotein/cAMP responsive element binding protein v-maf musculoaponeurotic fibrosarcoma (avian) oncogene TCF11/MafG family, protein G Transcription Factor 11; TCF11; NFE2L1; nuclear factor TCF11 (erythroid-derived 2)-like 1 **USF** upstream stimulating factor winged-helix nude Whn X-BP-1 X-box binding protein 1 oder ubiquitously distributed transcription factor belonging to YY1 theGLI-Kruppel class of zinc finger proteins

bindet, einer chemischen Behandlung gemäß Anspruch 1 unterzogen würde.

17. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die in Anspruch 1 beschriebene Amplifikation mittels zweier Oligonukleotide durchführt, von denen eines die eine vier bis sechzehn Basen lange Sequenz enthält, welche zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen würde, wenn ein ebenso langes DNA Fragment, welches über seine Sequenz oder Sekundärstruktur die spezifische Lokalisierung von Genom/Chromatinabschnitten innerhalb des Zellkerns herbeiführen kann, einer chemischen Behandlung gemäß Anspruch 1 unterzogen würde.

18. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die in Anspruch 1 beschriebene Amplifikation mittels zweier Oligonukleotide durchgeführt wird, von denen mindestens eine der Sequenzen (von 5 nach 3)

TCGCGTGTA, TACACGCGA, TGTACGCGA, TCGCGTACA, TTGCGTGTT, AACACGCAA, GGTACGTAA, TTACGTACC, TCGCGTGTT, AACACGCGA, GGTACGCGA, TCGCGTACC, TTGCGTGTA, TACACGCAA, TGTACGTAA, TTACGTACA, TACGTG, CACGTA, TACGTG, CACGTA,

ATTGCGTGT, ACACGCAAT, GTACGTAAT, ATTACGTAC, ATTGCGTGA, TCACGCAAT, TTACGTAAT, ATTACGTAA, ATCGCGTGA, TCACGCGAT, TTACGCGAT, ATCGCGTAA, ATCGCGTGT, ACACGCGAT, GTACGCGAT, ATCGCGTAC, TGTGGT, ACCACA, ATTATA, TATAAT,

TGAGTTAG, CTAACTCA, TTGATTTA, TAAATCAA, TGATTTAG, CTAAATCA, TTGAGTTA, TAACTCAA.

TTTGGT, ACCAAA, ATTAAA, TTTAAT, TGTGGA, TCCACA, TTTAAA, TATAAA, TTTGGA, TCCAAA, TTTAAA, TTTAAA, TGTGGT, ACCACA, ATTATA, TATAAT,

ATTAT, ATAAT, GTAAT, ATTAC, ATTGT, ACAAT, GTAAT, ATTAC,

GAAAG, CTTTC, TTTTT, AAAAA, GTAAT, ATTAC, ATTGT, ACAAT, GAAAT, ATTTC, ATTTT, AAAAT, GTAAG, CTTAC, TTTGT, ACAAA, TTAATAATCGAT, ATCGATTATTAA, ATCGATTATTGG, CCAATAATCGAT, ATCGATTA, TAATCGAT, TAATCGAT, ATCGATTA,

ATCGATCGG, CCGATCGAT, TCGATCGAT, ATCGATCGA, ATCGATCGT, ACGATCGAT, GCGATCGAT, ATCGATCGC,

TATCGATA, TATCGATA, TATCGGTG, CACCGATA, TATTAATA, TATTAATA, TATTGGTG, CACCAATA,

GTGTAATATTT, AAATATTACAC, GGGTATTGTAT, ATACAATACCC, GTGTAATTTTT, AAAAATTACAC, GGGGATTGTAT, ATACAATCCCC, ATGTAATTTTT, AAAAATTACAT, GGGGATTGTAT, ATACAATCCCC, ATGTAATATTT, AAATATTACAT, GGGTATTGTAT, ATACAATACCC, ATTACGTGGT, ACCACGTAAT,

TGACGTAA, TTACGTCA, TTACGTTA, TAACGTAA, TGACGTTA, TAACGTCA, TGACGTTA, TAACGTCA, TTACGTAA, TTACGTAA, TTACGTAA, TGACGTTA, TAACGTCA, TAACGTTA, TAACGTTA,

TGACGT, ACGTCA, GCGTTA, TAACGC, TGACGT, ACGTCA, ACGTTA, TAACGT, TTTCGCGT, ACGCGAAA, GCGCGAAA, TTTCGCGC, TTTGGCGT, ACGCCAAA, GCGTTAAA, TTTAACGC.

TAGGTGTTA, TAACACCTA, TAATATTTG, CAAATATTA, TAGGTGTTT, AAACACCTA, GAATATTTG, CAAATATTC.

GTAGGTGG, CCACCTAC, TTATTTGT, ACAAATAA, GTAGGTGT, ACACCTAC, ATATTTGT, ACAAATAT,

TGCGTGGGCGG, CCGCCCACGCA, TCGTTTACGTA, TACGTAAACGA, TGCGTGGGCGT, ACGCCCACGCA, ACGTTTACGTA, TACGTAAACGT,

TGCGTAGGCGT, ACGCCTACGCA, ACGTTTACGTA, TACGTAAACGT, TGCGTAGGCGG, CCGCCTACGCA, TCGTTTACGTA, TACGTAAACGA, ATAGGAAGT, ACTTCCTAT, ATTTTTTGT, ACAAAAAAT,

TCGGAAGT, ACTTCCGA, ATTTTCGG, CCGAAAAT, TCGGAAGT, ACTTCCGA, GTTTTCGG, CCGAAAAC, TCGGAAAT, ATTTCCGA, ATTTTCGG, CCGAAAAT, TCGGAAAT, ATTTCCGA, GTTTTCGG, CCGAAAAC, GTAAATAA, TTATTTAC, TTGTTTAT, ATAAACAA, GTAAATAAATA, TATTTATTTAC, TGTTTATTTAT, ATAAATAAACA,

AAAGTAAATA, TATTTACTTT, TGTTTATTTT, AAAATAAACA, AATGTAAATA, TATTTACATT, TGTTTATATT, AATATAAACA, TAAGTAAATA, TATTTACTTA, TGTTTATTTA, TAAATAAACA, TATGTAAATA, TATTTACATA, TGTTTATATA, TATATAAACA,

ATAAATA, TATTTAT, TGTTTAT, ATAAACA, ATAAATA, TATTTAT, TATTTAT, ATAAATA, GATA, TATC, TATT, AATA,

TAGATAA, TTATCTA, TTATTTG, CAAATAA, TTGATAA, TTATCAA, TTATTAG, CTAATAA, GATAA, TTATC, TTATT, AATAA,

GATG, CATC, TATT, AATA,

GATAG, CTATC, TTATT, AATAA, GATAAG, CTTATC, TTTATT, AATAAA,

GTTAATGATT, AATCATTAAC, AATTATTAAT, ATTAATAATT, GTTAATTATT, AATAATTAAC, AATAATTAAT, ATTAATTAAT, GTTAATTAAT, ATTAATTAAC, ATTAATTAAT, ATTAATTAAT, GTTAATGAAT, ATTCATTAAC, ATTTATTAAT, ATTAATAAAT,

TAAAGTTTA, TAAACTTTA, TGAATTTTG, CAAAATTCA, TAAAGGTTA, TAACCTTTA, TGATTTTTG, CAAAAATCA,

AAAGTGAAATT, AATTTCACTTT, GGTTTTATTTT, AAAATAAAACC, AAAGCGAAATT, AATTTCGCTTT, GGTTTCGTTTT, AAAACGAAACC,

TAGTTTTATTTTTT, AAAAAAATAAAACTA, GGGAAAGTGAAATTG, CAATTTCACTTTCCC, TAGTTTTATTTTTTT, AAAAAAAATAAAACTA, GGAAAAGTGAAATTG, CAATTTCACTTTTCC, TAGTTTTTTTTTT, AAAAAAAAAAAAAAACTA, GGAAAAGAGAAATTG, CAATTTCTCTTTTCC, TAGTTTTTTTTTT, AAAAAAAAAAAAAACTA, GGGAAAGAGAAATTG, CAATTTCTCTTTCCC, TAGGTG, CACCTA, TATTTG, CAAATA,

TTTTAAAAATAATTTT, AAAATTATTTTTAAAA, AGGGTTATTTTTAGAG, CTCTAAAAATAACCCT, TTTTAAAAATAACTCC, TTTTAAAAATAACTCC, TTTTAAAAATAATTTT, AAAATTATTTTTAAAA, AGAGTTATTTTTAGAG, CTCTAAAAATAACTCT, TTTAAAAATAACTCT, TTTAAAAATAACTCT, CTCTAAAAATAACTCT, CTCTAAAAATAACTCT, CTCTAAAAATAACCCC,

TGTTATTAAAAATAGAAA, TTTCTATTTTTAATAACA, TTTTTATTTTTAGTAATA, TATTACTAAAAATAAAAA, TGTTATTAAAAAATAGAAT, ATTCTATTTTTAATAACA, GTTTTATTTTTAGTAATA, TATTACTAAAAATAAAAC, TTTGGTAT, ATACCAAA, GTGTTAAA, TTTAACAC GGGGA, TCCCC, TTTTT, AAAAA,

TAGGGG, CCCCTA, TTTTTA, TAAAAA,
GAGGGG, CCCCTC, TTTTTT, AAAAAA,
TGTTGAGTTAT, ATAACTCAACA, ATGATTTAGTA, TACTAAATCAT,
TGTTGATTTAT, ATAAATCAACA, GTGAGTTAGTA, TACTAACTCAC,
TGTTGAGTTAT, ATAACTCAACA, ATGATTTAGTA, TACTAAATCAT,
TGTTGATTTAT, ATAAATCAACA, GTGAGTTAGTA, TACTAACTCAC,

GGGGATTTT, AAAAATCCCC, GGGAATTTTT, AAAAATTCCC, GGGGATTTTT, AAAAATCCCC, GGGGATTTTT, AAAAATCCCC, GGGGATTTTT, AAAAATCCCC, GGAAATTTTT, AAAAATTTCC, GGGAATTTT, AAAAATTCCC, GGAAATTTTT, AAAAATTTCC, GGGAATTTTT, AAAAATTCCC, GGAAATTTTT, AAAAATTTCC, GGGATTTTT, AAAAAATCCC, GGAAAGTTTT, AAAACTTTCC, GGGAATTTT, AAAAATTCCC, GGGAATTTTT, AAAAATTCCC, GGGATTTTT, AAAAAATCCC, GGGAAGTTTT, AAAACTTCCC GGGATTTTTA, TAAAAAATCCC, TGGAAAGTTTT, AAAACTTTCCA, TTTAGTATTACGGATAGAGGT, ACCTCTATCCGTAATACTAAA, GTTTTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAAAAAC. TTTAGTATTACGGATAGAGTT, AACTCTATCCGTAATACTAAA. GGTTTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAAAACC, TTTAGTATTACGGATAGCGTT, AACGCTATCCGTAATACTAAA, GGCGTTGTTCGTGGTGTTGAA. TTCAACACCACGAACAACGCC. TTTAGTATTACGGATAGCGGT, ACCGCTATCCGTAATACTAAA. GTCGTTGTTCGTGGTGTTGAA, TTCAACACCACGAACAACGAC.

ATATGTAAAT, ATTTACATAT, ATTTGTATAT, ATATACAAAT, TTATGTAAAT, ATTTACAAAA, ATTTGTATAA, TTATACAAAT,

GAATATTTA, TAAATATTC, TGAATATTT, AAATATTCA, GAATATGTA, TACATATTC, TGTATATTT, AAATATACA,

ATAAT, ATTAT, ATTAT, ATAAT, GTAAT, ATTAC, ATTAT, ATAAT,

AATGTAAAT, ATTTACATT, ATTTGTATT, AATACAAAT,

ATTTGTATATT, AATATACAAAT, GGTATGTAAAT, ATTTACATACC, ATTTGTATATT, AATATACAAAT, AATATGTAAAT, ATTTACATACT, ATTTGTATATT, AATATACAAAT, AGTATGTAAAT, ATTTACATACC, ATTTGTATATT, AATATACAAAT, GATATGTAAAT, ATTTACATATC.

AGGAGT, ACTCCT, ATTTTT, AAAAAT,
GGGAGT, ACTCCC, ATTTTT, AAAAAT,
GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC,
GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC,
GGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCC,
AGATATGTTCGGGTATGTTT, AAACATACCCGAACATATCT,
TCGTTTCGTTTTAGATAT, ATATCTAAAACGAAACGA,
ATATTTAGAGCGGAACGG, CCGTTCCGCTCTAAATAT,

CGTTACGGTT, AACCGTAACG, AATCGTGACG, CGTCACGATT, CGTTACGGTT, AACCGTAACG, GATCGTGACG, CGTCACGATC, CGTTACGTTT, AAACGTAACG, AAGCGTGACG, CGTCACGCTT, CGTTACGTTT, AAACGTAACG, GAGCGTGACG, CGTCACGCTC,

TTTACGTATGA, TCATACGTAAA, TTATGCGTGAA, TTCACGCATAA, TTTACGTTTGA, TCAAACGTAAA, TTAAGCGTGAA, TTCACGCTTAA, TTTACGTTTTA, TAAAACGTAAA, TGAAGCGTGAA, TTCACGCTTCA, TTTACGTATTA, TAATACGTAAA, TGATGCGTGAA, TTCACGCATCA,

AATTAATTAA, TTAATTAATT, TTGATTGATT, AATCAATCAA, TATTAATTAA, TTAATTAATA, TTGATTGATG, CATCAATCAA,

TAATTAT, ATAATTA, ATGATTG, CAATCAT,

TAGGTTA, TAACCTA, TGATTTA, TAAATCA,

TTTTAAATATTTTT, AAAAATATTTAAAA, GGGGGTGTTTGGGG, CCCCAAACACCCCC, TTTTAAATTATTTT, AAAATAATTTAAAA, GGGGTGGTTTGGGG, CCCCAAACCACCCC, TTTTAAATTTTTT, AAAAAAAATTTAAAA, GGGGGGGTTTGGGG, CCCCAAACCCCCCC, TTTTAAATATTTT, AAAATTATTTAAAA, GGGGTTGTTTGGGG, CCCCAAACACCCCC.

GAGGCGGG, CCCCGCCTC, TTTCGTTTT, AAAACGAAA, GAGGTAGGG, CCCTACCTC, TTTTGTTTT, AAAACAAAA, AAGGCGGGG, CCCCGCCTT, TTTCGTTTT, AAAACAAAA, AAGGTAGGG, CCCTACCTT, TTTTGTTTT, AAAACAAAA,

GGGGGCGGGT, ACCCCGCCCC, ATTTCGTTTTT, AAAAACGAAAT, GGGGGCGGGGT, ACCCCGCCCCC, GTTTCGTTTTT, AAAAACGAAAC, TATTATTTTAT, ATAAAATAATA, GTGGGGTGATA, TATCACCCCAC, GATTATTTTAT, ATAAAATAATC, GTGGGGTGATT, AATCACCCCAC,

ATTACGTGAT, ATCACGTAAT, ATTACGTGAT, ATCACGTAAT, ATTACGTGAT, ATCACGTAAT, GTTACGTGAT, ATCACGTAAC,

TTTTATATGG, CCATATAAAA, TTATATAAGG, CCTTATATAA, TTATATATGG, CCATATATAA, TTATATATGG, CCATATATAA, AAATAAT, ATTATTT, GTTGTTT, AAACAAC, AAATTAA, TTAATTT, TTAGTTT, AAACTAA, AAATTAT, ATAATTT, GTAGTTT, AAACTAC, AAATAAA, TTTATTT, TTTGTTT, AAACAAA,

ATTTTCGGAAATG, CATTTCCGAAAAAT, TATTTTCGGGAAAT, ATTTCCCGAAAATA, ATTTTCGGAAAATG, CATTTCCGAAAAAT, TATTTTCGGGAAAT, ATTTCCCGAAAAATA, ATTTCCGGAAAATA, CATTTCCGGAAAATA, ATTTCCGGAAAATA, ATTTCCGGAAAATA, ATTTCCGGAAAATA, ATTTCCGGAAAATA, CACTTCCCGAAAAT, TATTTTCGGAAAT, ATTTCCGGAAGTG, CACTTCCCGAAAAT, TATTTTCGGAAAT,

ATTTCCGAAAAATA,

AATAGATGTT, AACATCTATT, AATATTTGTT, AACAAATATT, AATAGATGGT, ACCAACTATT, ATTATTTGTT, AACAAATAAT,

GTATAAATA, TATTTATAC, TATTTATAT, ATATAAATA, GTATAAATG, CATTTATAC, TATTTATAT, ATATAAATA, GTATAAAAA, TTTTTATAC, TTTTTATAT, ATATAAAAA, GTATAAAAA, CTTTTATAC, TTTTTATAT, ATATAAAAA, TTATAAAATA, TATTTATAG, CTATAAAATA, TTATAAAATG, CATTTATAA, TATTTATAG, CTATAAAATA, TTATAAAAA, TTTTTATAA, TTTTTATAG, CTATAAAAA, TTATAAAAAA, TTTTTATAG, CTATAAAAA, GGGGGTTGACGTA, TACGTCAACCCCC, TGCGTTAATTTTT, AAAAATTAACGCA, GGGGGTTGACGTA, TACGTCAACCCCC, TACGTTAATTTTT, AAAAATTAACGTA,

TGACGTATATTTTT, AAAAATATACGTCA, GGGGATATGCGTTA, TAACGCATATCCCC, TGACGTATATTTTT, AAAAATATACGTCA, GGGGGTATGCGTTA, TAACGCATACCCCC, ATGATTAGTA, TACTAAATCAT, TGTTGAGTTAT, ATAACTCAACA, GTTAT, ATAAC, ATGAT, ATCAT,

TTACGTGA, TCACGTAA, TTACGTGG, CCACGTAA, TTACGTGG, CCACGTAA, TTACGTGG, CCACGTAA, TTACGTGA, TCACGTAA, TTACGTGA, TCACGTAA, TTACGTGA, TCACGTAA, GACGTT, AACGCT, AACGCT.

TGACGTGT, ACACGTCA, ATACGTTA, TAACGTAT,
TGACGTGG, CCACGTCA, TTACGTTA, TAACGTAA,
CGGTTATTTTG, CAAAATAACCG, TAAGATGGTCG oder CGACCATCTTA

enthält, welche zu einer solchen DNA komplementär ist oder dieser entspricht, wie sie entstehen würde, wenn ein ebenso langes DNA Fragment, welches über seine Sequenz oder Sekundärstruktur die spezifische Lokalisierung von Genom/Chromatinabschnitten innerhalb des Zellkerns herbeiführen kann, einer chemischen Behandlung gemäß Anspruch 1 unterzogen würde.

19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß die zur Amplifikation verwendeten Oligonukleotide außer den in den Ansprüchen 16 bis 18 definierten Konsensussequenzen mehrere Positionen enthalten, an denen

entweder irgendeine der drei Basen G, A und T oder irgendeine der Basen C, A und T vorhanden sein kann.

- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die zur Amplifikation verwendeten Oligonukleotide außer einer der in den Anspruch 18 beschriebenen Konsensussequenzen nur maximal zusätzlich so viele weitere Basen enthalten, wie es zur gleichzeitigen Amplifikation von mehr als einhundert verschiedenen Fragmenten pro Reaktion aus der chemisch behandelten DNA, berechnet entsprechend Anspruch 8, erforderlich ist.
- 21. Verfahren nach einem der vorangehenden Ansprüche dadurch gekennzeichnet, daß die Untersuchung des Sequenzkontextes aller oder eines Teils der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide gemäß Anspruch 1 c) durch Hybridisierung der bereits in der Amplifikation mit einem Fluoreszenzmarker versehenen Fragmente an einen Oligonukleotid- Array (DNA Chip) erfolgt.
- 22. Verfahren nach einem der Ansprüche 1 bis 20 dadurch gekennzeichnet, daß die amplifizierten Fragmente auf einer Oberfläche immobilisiert und anschließend eine Hybridisierung mit einer kombinatorischen Bibiliothek von unterscheidbaren Oligonukleotid- oder PNA-Oligomer-Sonden durchgeführt wird.
- 23. Verfahren nach Anspruch 22 dadurch gekennzeichnet, daß die Sonden mittels Matrix-assistierter Laser-Desorptions/Ionisations Massenspektrometrie (MALDI-MS) anhand ihrer eindeutigen Masse nachgewiesen werden und damit der Sequenzkontext aller oder eines Teils der in den amplifizierten Fragmenten enthaltenen CpG Dinukleotide oder CpNpG Trinukleotide entschlüsselt wird.
- 24. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Amplifikation wie beschrieben in Schritt b) des Anspruchs 1 durch eine Polymerase Kettenreaktion ausgeführt wird, in der die Größe der amplifizierten Fragmente mittels auf weniger als 30 s verkürzter Kettenverlängerungsschritte

begrenzt wird.

- 25. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß nach der Amplifikation gemäß Schritt b) des Anspruchs 1 die Produkte durch Gelelektrophorese aufgetrennt werden und die Fragmente, die kleiner als 2000 Basenpaare oder kleiner als ein beliebiger Grenzwert unterhalb von 2000 Basenpaaren sind, durch Ausschneiden von den anderen Produkten der Amplifikation vor der Auswertung gemäß Schritt c) des Anspruchs 1 abgetrennt werden.
- 26. Verfahren nach Anspruch 25 dadurch gekennzeichnet, daß nach der Abtrennung von Amplifikaten bestimmter Größe diese vor der Durchführung des Schrittes c) des Anspruchs 1 nochmals amplifiziert werden.
- 27.Kit, enthaltend mindestens zwei Primerpaare, Reagenzien und Hilfsstoffe für die Amplifikation und/oder Reagenzien und Hilfsmittel für die chemische Behandlung gemäß Anspruch 1 a) und/oder eine kombinatorische Sondenbibliothek und/oder einen Oligonukleotid-Array (DNA-Chip), soweit sie für die Durchführung des erfindungsgemäßen Verfahrens erforderlich oder dienlich sind.

WO 01/42493

12

SEQUENZPROTOKOLL

ALLGEMEINE ANGABEN:

ANMELDER:

NAME: Epigenomics AG STRASSE: Kastanienallee 24

LAND: Berlin

POSTLEITZAHL: 10435 TELEFON: 030-243450 TELEFAX: 030-24345555

BEZEICHNUNG DER ERFINDUNG: Verfahren zur parallelen Detektion

des Methylierungszustandes von

genomischer DNA

ANZAHL DER SEQUENZEN: 31

COMPUTERLESBARE FASSUNG:

DATENTRÄGER: Diskette COMPUTER: IBM PC-komtatibel BETRIEBSSYSTEM: PC-DOS/MS-DOS

DATEN DER JETZIGEN ANMELDUNG:

ANMELDENUMMER: nicht bekannt

ANMELDETAG: 6.12.2000

ANGABEN ZU SEQ ID-NO:1:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 12 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

· TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:1:

AGTAGTAGTA GT

.

ANGABEN ZU SEQ ID-NO:2:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 12 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKULS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:2:

AAAACAAAAA CC 12

ANGABEN ZU SEQ ID-NO:3:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 973 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:3:

AGTAGTAGTA	GTAGCGTTTT	TGAAGTTTTT	TGTGGAAGGT	GAGAAATTTA	TCGATAAGTT	60
TTTTAGTAGG	AGTGTTTTTG	GGGAGGGAGT	GAGTGGGAGA	TTAGAAATGG	GGTCGGTGGA	120
ATATTTTTGT	AAAATTTTAG	GAATTATTAG	TATTTTATTT	TTTTTTATAA	AGATTGTTTT	180
TATGTTTGAG	TTGTTTTATA	TAGTGTAGAA	ATTGAGAATG	TAAACGTGTA	AACGATCGGT	240
GTGATTTATT	GAAAGGCGAT	GCGCGTTTTT	TTTTTGTAGG	TAGAATTGTT	TTAGGAAGTA	300
TGAAAGTGGA	CGTAGTTCGG	TGTTAGGTGT	TAGCGATTTG	AGTTCGTTTT	CGGGTTTTAT	360
TTATTTTTAG	TTCGGTTTTT	AGATATTTTT	CGAGGCGTTT	TTTTTTTTTC	GTTCGATTTT	420
TGAGCGGAGC	GTTTCGGGGT	GTGAGGAGAA	TCGGTAAATT	TTCGCGGGCG	TTGGGCGTCG	480
	GCGCGTTTAG			AGCGTATTTC		540
	CGTCGAGGGT		AGTAGGTTAC	GTGAGAGGAG	GAGTTTGATT	600
TATTTTTAG	GCGGTAGGCG	TATGCGTATT	TTTTATTTGC	GTTTCGGTCG	GGAGGTTTAC	660
GTGGAATCGT	ACGTGTTTGG	TTTTGTAGTT	AGGGGTTTTT	GGTTCGGGGC	GCGTAGGGGC	720
GGGTTCGTAG	TGGGATTCGC	GGAGAGGGC	GCGGCGGGC	GGAGCGTTTG	GAGATTTAGT	780
TTGCGGGTTT	CGTAATTATT	ATTCGTGATA	ATTATAGTTT	TTGGAGAGTT	GTTTAGGTTT	840
TTTGCGGGGT	TTTTTACGAA	TTTATTATAT	TTAATATTCG	TGAATTTAGA	AATTAAGATA	900
AAGATTGTAT	TTTTGTTTTG	TAAATTATTA	GTTTCGTAAT	TTAGAATTTA	TTTTGTAAAT	960
GGGTTTTTGT	TTT					973

ANGABEN ZU SEQ ID-NO:4:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 1890 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:4:

AGTAGTAGTA	GTTAAGTTTA	AGAGTGATAT	TTTTTTAGAT	ATAGTATAAT	ATTGTTTTTG	60
TAAAAGGTTA	TTTATATGAA	TATAATGTTT	TTTGGGTTAA	TTAATTCGTT	TTGAGAATAG	120
TTAGGTTAAA	ATTTTTAGGT	TTTTTATTTT	GGGTTATTTA	AGTTAGGATC	GCGACGTGAG	180
TTCGGGGTGA	GTCGAGGGGT	ATTTCGGGTC	GAGGTTATTC	GAATCGAAGT	TATGAGGCGC	240
GGGTCGGTAA	TCGGAAGTGG	TTTAGGGAGA	GTTGTACGAG	ATTCGGGGGT	TGTGATTTGG	300
AAATAAAATA	AAATAAAATA	AAATTTTAAT	TGTTTTGGGA	TTGATTTTTA	AAAGAGCGTT	360
TTTTTGGTTT	AAGAGGTCGG	CGTTCGCGGA	GATGTCGTTT	TAAAGGGTTG	TTTTTTAAGC	420
GTGTAGGTCG	CGTACGGGTT	TTTTTAGCGG	GCGGGTAAAA	TGGGCGTCGG	TATTCGGGAG	480
GCGTTTGTTT	AGGCGTTCGG	GCGTCGTTTA	TAGAGTACGT	TCGTTTGCGG	TTTTAGAGCG	540
TCGTTTTTTT	GTCGTTTTCG	TCGTTCGGTT	TGACGTTCGG	ATCGCGGTCG	GTTATCGTTT	600
TTCGTTTCGA	CGGTTACGTT	TGTTTTAAAT	CGCGCGGGCG	TTTTTTAGGT	GTTGTTGGGC	660
GGGTTTCGTT	TTCGTGTTTT	AAGGTTCGTT	TTCGCGCGTT	AGTCGCGCGT	TCGTTGTTTT	720
TTTTTCGTTT	TTATAGTTTC	GTTTTTATAG	TTTCGTTCGT	TTTTTAAGTT	TCGTTTTTTA	780
GGAATTCGCG	CGTCGAAGGT	TAGGTTTGGG	CGGAGCGTAT	AGCGTTGGGC	GTTGGGGAGG	840
TTGCGTCGTA	GTATTCGGTT	GGTTAGGATT	AAGTGGGTTC	GAGGCGGACG	TGAGAAGGGT	900
CGGGTTAAGA	TGGCGGTGTA	GGTGGTGTAG	GCGGTGTAGG	CGGTTTATTT	CGAGTTTGAC	960
GTTTTTTTCG	TTTGTTTTAA	TTACGTTTTG	AGTATAGAGA	AGGAGGAAGT	AATGGGGTTG	1020
TGTATAGGGG	AGGTGAGTAG	GTTTGTTAGT	TTGGATGGAA	TTTTGTTGAG	TAGTTTTAGT	1080
GTGTTTTCGG	GGTGGGTGTC	GGTAGTTTTT	AGGGTTGCGG	AGGTTATAGG	TATTTTCGAT	1140
TTAGGTTTTT	GGATATTTTT	TATATAGTTT	TGTCGCGGGG	AGTTTCGTTT	TTTTTGGTCG	1200
TTTGATATTT	GTTTAGTTTT	TTGCGAGTTT	TCGGCGGTTT	GTATAGGTTT	CGGGAGTTTT	1260
GTTTTTTTT	TTGTAGTTTG	GGGTTTTTTT	TTAGATTTGC	GTTTTTCGTT	CGGTTGATTA	1320
AAATTGTAAG	GTAGGTTAGA	AAGATATTGG	AGTATAATGA	GGATGTTCGG	GTATTACGAC	1380
GTAGTAGTTG	ATTATAGTTA	GAGTTTTTTG	TTTCGTTTCG	AGTTTTTTGT	TTAGGGAGTA	1440
GAGATATTAA	TTAAAGTATT	TGAAGGGTAT	CGAAGAGTTT	AATAGAAGGT	GCGGGGTTTG	1500
AAGGAAGTAA	AAGTTTTCGT	TGTATTGTGT	TGAGGAGGGG	TCGAAGAGGA	TGAGGAAATA	1560
TAGTTTAGTT	GTTTATAGTT	TAAAGTAATT	TTTTAGTTTT	TTATATTATG	TGCGTGAATA	1620
TATGATTTAA	TTGTTATATA	ATTTGTATTT	ATATATGTTA	AATAAACGTA	ATGTGATTAA	1680

ANGABEN ZU SEQ ID-NO:5:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 2222 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:5:

AGTAGTAGTA GTTTTGGAGA GTAAGTGGGT TTTATGTAAA GTGTTATTTG TTATATATTG 60 TTATTTTAN AGGATTTTAG AATATTTTCG AATTCGAAAA TAGAGTGAGT GTGGAGGGGA 120 GGGGGGTGTT TACGTGGAGG AGGGTCGCGA GAAGGAGAGT GCGTCGGGTT GATGGTTAGC
GGTGTTTCGG GGGTCGATGT CGGCGGGAT CGGCGGCGC GGGGTGGGC GACGGCGGGG
CGGCGGTCGA GTAGTAGAGG GGCGTTTCGT AGAGGTCGGG GGGGCGCGG GGTTTCGCGT 180 240 300 CGTTTTGTTA GTAGTCGTTT CGTCGTTTTT TTCGGTTCGT TCGTAATCGT CGCGGGATTC 360 GTCGGTTCGG GTTTTTGGAA TTTTTTACGG GGGATAGTCG ATCGGGGGCG TCGGGGTTCG 420 TTTTCGTATT CGATTCGGAC GGCGGTAGTA GGGGGAGGGA TGGTGTATCG AGGAAGTTAA 480 GGTTTTATTA TTTTGTTCGG CGGGTCGGCG GTTCGTTGGT TCGTTGGTTC GGAGAAGTGT 540 TGCGTTTAGG TTGGTTCGTA GGAAACGGCG GCGGCGGTTT ANTTNTANTT TTNNNNTTNT 600 TNNTTGNNAN TNTTTTTTA TAGGGGAGGG GTAGGCGGTT CGCGGGTTTC GCGTCGGTCG 660 GGCGATTGGG TACGCGAGGG AGCGGGTAGG GTAGGGGGGAA ATAAATTAAG GTCGAGATTT 720 AGAGTCGGAG AGCGCGGGAG GAGTAGCGGC GAGAGGTAGG AGAGGTAGAG AAGAAGAAAAG 840 GAGTCGTGAC GGATTTATTG TAGCGGTCGC GTTGATTCGT AATTTTAAGG TACGAAAAAA GGGGAGGGTA GAGAGGGAGG GGAAAGCGGA GTGTTGTAGC GTCGGGGCGG GGGCGGGTTT 900 TCGCGAGCGT CGTATATCG GGAATTTGTN GTTTCGTTGC GGGCGAGTGT CGCGTGTTTT GGCGAGTTTT GGTTGGGGAA NTTTGAGCGC GCGGATTACG TTCGTTTTT AGTCGGTCGT 1020 1080 TTTTTGCGTG TAGGGTGGGG GGAGGTTAGG GGCGGGGGCG CGGACGTCGG TGACGTCGCG 1140 TGGCGGAGTT TTTTCGGTTA TGTGGTTGGA GGCGGGCGGG GAAGAAGGTA AGGTTGGGAG GGGAAGGAGG AAATGCGAGG GTTTTTCGGC GGGAGGAGC GCGAGGGGTT AGCTAGAGGAGG GGATAGGGGT TTTGGAGTGG AAGTTTTGCG GGAGAGGAGG AGTAGAGGAG TAGTTTTAGG GTGTTAGAAT TATTCGGATG TCGTATTAAA AAATAGGAAA AATTTAAGTT 1260 1320 TTGCGAGAGG TAGTTAAAGG TATTTGTGTA TTCGTGTATC GATTTGGATT TATTATAGAA TTGTACGGTT TATTAGGATT GTTGTTATTT CGGTGTAGTA TTCGTAGGTT TATTTGTAAT 1440 1500 ATGAATTGGT AGAGTTAGGA ATTAGGTTGT AAAGATAGAG AAGCGAGTTA AAGTTGGTCG 1560 TAGTTCGAGG CGTGGGGAGA ATTTGGGTAA ACGAGGAGAA GGGATATTTT TTATTCGTAG 1620 AAAGATTTTT TATTTAGTTT TGTATTTTTA TAAATCGTTT AGATTTTTTT TTGGCGGAGT 1680 TTATTAGTTT TTGTTTAAAA AAAGAAAAAA ATTCGAATGT AGATTGTTCG TTTATTTTTT TAGTAGAGTT ATATTTATTT TTGTGGTAAT TATTTTTTTA GAAAATTTAG ATTATAATAG GAAATTATAT TTAGAAAAGT ATAAGGAGGA AATTTATGTT CGAGAGAAGA AATAAAGTTG TTAGGAGAGG TGTGATGAGG ATAACGAAGA AAATATTTTG TAATTATTTT AATTAGTTAT 1920 TTTTTTATAA GTTTTGATAA TCGTTCGTAT TCGTGTGTGT TTGAGAGTGT GTGTGTGTGT GTGTGTGTGT GTGAGAGAGA GAGAGAGGAT GTTTTTTGAG TGATCGGAAA TTTTTTATTG 2040 2100 2160 GTATGTATTT TTTTTTAATA AACGTTTAGC GATTTGTTTT AGGATTAAAT GGTTTTTGTT 2220 2222

ANGABEN ZU SEQ ID-NO:6:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 307 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:6:

AGTAGTAGTA GTTTCGTTAC	GAATACGATT	AGTTTATATT	GGTTGTTTAG	TATTTCGGTT	60
AGTTTTTGTG GGACGTTGGC					120
TTCGGGGTCG AGGACGAGGG					180
GCGTTTGTAG TTGTTCGGGG					240
TTCGCGTTAA GTTTGGTTTC	GGGGGTGGTT	GTCGTCGGGT	TTCGTTTGCG	TTTTTGGTTT	300
TTGTTTT					307

ANGABEN ZU SEQ ID-NO:7:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 523 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:7:

AGTAGTAGTA	GTTGTTGTTG	TTCGAGGTTT	CGGTGTAGTT	GGAAGTTTTG	GAGGTGGGGA		60
GAGGGATGTT	AGGTAAGTGG	TACGGCGAGC	GTAAGGGAAG	GGGTTAGTTA	TTGATTAGCG		120
GTAGTAATTG	TAGGAATCGT	CGTCGTAGTT	GTAGTCGTTT	TTTCGTTCGT	TTTTTCGGGT		180
TTTCGGGAAA	ATGGTTGTGG	GGTTGGTCGC	GTCGTTAAGT	TTGTTTTCGC	GCGGTGAAGA		240
GCGGGTTGTT	TGGGGGAGTC	GTTTTTTAAT	TTCGCGGCGC	GTTTATTTTT	GCGGAGTTCG		300
TGGTAGGATT	CGAGGGGTTA	CGAGTTGATA	TTTTTTTGGG	TTGTATAAAA	AGTTGAGGCG		360
GGCGTTGGGA	GGAGGTAGCG	GTTGTTGCGG	TGCGGTTTTT	TTTTTTTTT	ATATTTTGTT		420
CGGGTTATTT	TTTTTTTTTT	TTTTTTTCGT	TTTTCGTTTT	TTTTTTTACG	CGGGTTTTTC		480
GGGGTTTTGG	CGGTTTTCGG	TTGAAGGTCG	CGGTTTTTGT	TTT		.*	523

ANGABEN ZU SEQ ID-NO:8:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 653 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:8:

AGTAGTAGTA	GTAGCGTCGG	GAGTTCGCGT	AGAAACGATT	TGATTTTTCG	CGGCGTTATT	60
TTTTTTTGCG	ATTGGCGTTG	CGCGGAGAAA	ATTTAGTTTG	TCGATGTTTC	GTTTATTATT	120
TCGTTTTTAT	TTATCGCGCG	GTTTTTTGGG	AATTGTAGTT	TTTTCGTGAG	CGGTCGGTAG	180
CGGCGAGGTC	GTCGGCGGAT	TTTAGCGTTT	AGGAAGTTTT	GCGTAGGCGT	AAGCGTTTTT	240
			GATTTTGGTA			300
			TTTATTTAGA			360
ACGATTCGAG	GTTTTTTTT	TTTTTTTTTT	TATAGAAAGA	GCGGAAAGTT	TAAGAATCGG	420
GTCGCGTTTG	GTTGAGTTTG	ATAATGTTTC	GGTTTTACGC	GTATTGACGT	CGATTTTTGT	480
ATGTTTAGTG	TCGTTGCGGG	GTTGGTATTG	CGGTTCGGGT	TTGGCGTTGA	GGAGTTTGGT	540
TTAGTTCGTT	TTTGTTTTTC	GCGGAGCGTT	TGGTCGTGGG	TAAGTTTAGG	TTAGGTTGTT	600
TCGGGGACGT	AGGGTCGCGT	AGACGTTTTT	TTACGTTTCG	GGGTTTTTGT	TTT	653

ANGABEN ZU SEQ ID-NO:9:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 1461 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:9:

AGTAGTAGTA	GTAGGCGGTG	GTTAGGTCGG	GTCGGGCGGT	TATTAGCGGT	TTTCGGAGGT	60
ATTTAGGTTT	TACGGTCGAG	TTTTTGGTCG	GAGATCGGTC	GTTTACGGGG	GGTTATAGTA	120
GCGGTCGTTC	GTTTAGGATG	GAGAGGCGGG	TTTTAGGTTC	GGTTCGGAGC	GAGTTTTTTA	180
GGGTTTGTCG	ATACGGCGGG	GTTCGGTGGT	CGGTATTTGG	TTCGTACGTG	TTCGAGGGGT	240
TTTCGGGTTT	TCGGTATTAT	GGTTATTATC	GGGGTTTCGA	TTACGACGAG	GTCGATGGTT	300
CGGGTAGCGG	GGGCGGCGAG	GAGGTTATGG	TCGGGGTTTA	CGACGCGTTA	TTTTTCGTAC	360
GATACGCGTT	TTCGGGCGTT	ATCGGGCGTT	CGTTTAGGAT	TTTTCGGGTT	TCGGGTTCGG	420
TTTGCGTTTC	GTTTTTTCGG	TACGGTCGGC	GATTTTTTAA	CGGTTATTAT	TCGGCGTACG	480
GATTGGTTAG	GTTTCGCGGG	TCGGGTTTTA	GGAAGGGTTT	GTACGAATTT	TATAGCGAGA	540
GTGACGATGA	TTGGTGTTAA	GTTCGGGCGA	GGTGGCGTTC	GTTCGGTTTT	TTACGTATTT	600
TACGTATATA	TTTTATTCGA	GGAGTCGCGT	AGAGGTCGCG	GGGGTTTAGT	ATAGAGGGTT	660
CGGGAGAGGG	TTAGTCGGGA	GATTTTAGAT	TTTGGAGAGG	TTAGGGTTGG	GTTATAAGGG	720
TGTTTCGTAG	AGATTTTCGG	TTAAAAGAGA	TTTTTTTGGG	TAGTTACGGC	GTTTTTTAAT	780
TAGTTTCGAT	TTTTTTTTT	ACGATAGGGG	TTTTCGGGTG	GGAGGTAGGG	AGTAGATAAA	840
TTATATAGTT	AAGGGATTTG	AATTAATTTA	GTTATTTTTG	GAGAATTTTG	GGGAATATGA	900
AAAAAAAA	AAAAAAAAA	AAAAAAAATA	TTTTTAAAAG	AAAAAACGGG	GAGAAAAAA	960
TAGTTTTTAT	TGATGAGTTT	TATTATTTTA	ATTGAATTTT	TTTTTTTTT	GATGAAGATA	1020
GTTGGTGGTC	GAGTGCGGTA	AAGAAGTTAG	AAGGAATTAG	AATTTTAGTG	TTTTATATTT	1080
ATTATTAGAT	ATATTTATAT	TTATATACGT	TTTTAGATAT	ATATAAGAGT	GTTTGTCGGT	1140
TATATTAAAT	TTTATTATTA	TTGTTTGTAG	AAATTAATTT	AAAAAAATAA	TAATAATAAT	1200
TTTTAATAAA	AAAAAGGATA	AATTAAAAAA	TGATTGAGAA	AAGAGGTATT	TTTTTTTGAT	1260
ATTTGGTTTT	GTTTGAAATA	ATAAAAGAAG	AAGAAAAATT	TATTATTATT	ATCGATTTTT	1320
TTGTTTTTT	TTTTTTTTT	TTTTATTTTG	TTTGAAAATC	GTGGGTTTGG	GATTGTGAAT	1380
TATTGTATGA	TATTTAAAAA	GAAAAAAAA	ATAAAAAAAA	GTTGAATTAA	AGGGTTTTTG	1440
GATAGGAGTG	GTTTTTGTTT	T				1461
						1401

ANGABEN ZU SEQ ID-NO:10:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 2536 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:10:

CGAATAGAAA GGGAATTTAT GGAAAGTAGT ATTGGAGGA TAAAAAGGAA GGGATGAGGA GTAATGGGTT TTTTTCGAAA TATTATTTGA AAGCGGGGAG AAGGGAAAGA GGGAGGGAG	GAGAGTTTTT AAGGTTCGCG TTTAGAAGGG GAAGATAGAA GTTTTTTTAT AATGGATTGG TTTGAGTTTG TTTGGAAGTA	TTTTTATTTC AAGAAAAACG GGGTTTACGG GGGATGGTAA TATAAAAGGG TAGGTTTTTT GGGTTGCGTA AAGTGAATAA	CGGGCGAAGT GTTTGAGGGT GATAGAGGAA	TTGATTTTGT TTAGTATTTT TTTTGGGTGG ATTACGGGGA GGGATGTAGA	60 120 180 240 300 360 420 480 540
AAGGGAAAGA GGGAGGGGAG TGGAAATGGA AACGAGAAAG		AAGTGAATAA AGGGGTCGTT	AGAGGTAAAA TTGGAAGGGT	GAGGTAAAGT TTTGAAAAAG	540 600
GTTTAGAAAT GGGATGTTGG AATGTAAGGG AGCGTTTTAG	GGAGGTAAAG GTTTTGGGAA	GGGGATAGTT GAGGAAGGGA	TCGAGGAAGG		660 720
CGAGGTTCGG GAGTTGGAAT TCGGAGGGAG GCGATTATCG GAAGAGGGGA TGTGGATTTT			GAGGGAGGG	GAGAGTAGGG TGTTGCGGTT	780 840
	IIIAMIGIIM	UNUANDADD	GGAGGTGAAG	CGAGATAAAA	900

	CT T TT C C C C C		N.C. T. T. C.C. C.C. C.C.	COCT MOCCCC	200002000	0.00
GGAAAGGGGC	GAATAGGGAG		AGTTTGCGAC	GCGATGGGG	AGGGGAGGGA	960
GGTCGTGGGA	AGCGGTCGGG	GGGCGCGGG	ATGGGAAGGG	GTCGGGCGGG	CGGCGTGGTT	1020
ATTTTAGGTT	GCGGATTTTT	TTTTTGGGGA	GCGGCGTTGT	CGGCGGGCGG	GTTTCGTAAT	1080
TTTTCGGTTT	TTTCGTTCGT	TTTTTCGTTT	TTTTCGGGCG	GCGGCGGGG	TCGGTACGGT	1140
ACGGTTTATA	GCGGCGGTTT	TTTTGCGTCG	AGTTTCGGAT	GTTGTTTTTG	GGGAGGCGGA	1200
GGTAGCGGTA	GCGGTAGCGG	TTCGGTTCGT	ACGGTTATTA	TCGTTCGCGG	TAGTAGGCGT	1260
TCGCGGGTCG	AGTTTTTTAG	TAGTCGGCGT	CGGCGTCGGC	GGCGGCGGCG	GCGGCGGTTA	1320
TGGTTTTTTG	CGTTTGTTTT	TTTCGTTTTC	GGCGTTTTGC	GGCGGTCGCG	GTTCGATTTT	1380
CGTATTTTGC	GTTTGCGCGC	GGTTTAGTTA	GCGCGGCGCG	TTTTTTTCGC	GCGCGTTCGC	1440
GTTTATTTAT	AATCGCGTTC	GCGGAGTGTT	TTTCGTATCG	TTTTCGGTGC	GTGGGCGGGA	1500
GATATAAGTT	TAGTTAAGTT	TATATAGTTC	GGTTCGGGTG	GTTATGGAGA	GGCGTATTGT	1560
AGAGATATTT	GGACGCGTAT	TGTGATAGGC	GTTATTTTGA	TATACGTGTT	TTTTTATTTT	1620
TAAATATTAC	GGGTCGTAAG	CGTTTATATT	TATATTTATT	TGTAGGGATT	ACGTGGGAGA	1680
ATTTGAAGGG	TTGATTTTGT	TTCGGTGTAT	TCGTAGTAGT	AATGATGCGA	GAATTCGTTT	1740
TAATTTCGTT	ATTGATTGGA	TTAGATTGTA	AATTTTTTGG	CGTTTGGGAT	GGTTTAGTCG	1800
TGTTTAGTAT	TAAGTGTAGG	TATTTAAATT	TTTGTGGAGT	AAGTGATTGG	ATGAATGAAT	1860
GTATTGGAAT	TGTTTATTGA	GTATTTGTAA	TAATTTTGAT	TTTATGGTTT	GGTATAAAGA	1920
ATTTTATTGT	AGTATGAAAT	TAAATGGTGT	TTGTGTGTTT	GTTTTGTTTT	GGTTTAAGGT	1980
TTAAAATAGG	TTAATGTATG	TTTTTTTTT	TTTAACGTAG	AGGAGTTTTA	TTTTGTTTTT	2040
GTGTTAGTTT	TTATTATAGA	ATGCGTAATT	TTATTTTAAT	TTAAATGTTT	ATATTTTTTA	2100
GGGTAGGAAT	TGTTGTTTAG	AATATATAGT	TTGAAGTATA	TTGTGTGTTT	ATATAACGAT	2160
AGTTTTTTGG	GTTTGGTAAG	ATTTTTTATT	TTTTATTTGT	TTGTTATTTT	GTTTTATTAC	2220
GATTTTTTGT	AATTTTTATT	TTTATTTTT	TTGTTTTTTA	TTATTATTAA	AATTTTTTTA	2280
TTGTTTTTTG	TTTTTTTTT	CGTTAGTTTT	TGGGGAGTTA	GTTGTTATGA	GTATTTAGTT	2340
TGGTTTTAGA	TGTTGAAAGG	GTTAGTGTAT	ATAGAAGATA	TATATTTAGT	GATGGGTAAG	2400
ATGTTGTAAT	TATATTGGGT	TATGTTGAAA	TTGTGAAGTT	TTAATTTTTT	TATGTGTAAG	2460
AGAAATTAAT	GTATTGTAAT	TTCGATGTTT	GTGTTGAGGA	TTTTTTTTGT	AAATTTAAGT	2520
TTTTGGTTTT	TGTTTT					2536

ANGABEN ZU SEQ ID-NO:11:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 504 Basen ART: Nukleinsäure

 ${\tt STRANGFORM: Einzelstrang}$

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:11:

AGTAGTAGTA	GTAGCGCGTT	GAGTTCGGTT	ACGTAGAGCG	TTAGTTCGGT	GCGGTTTTGT	60
AGGTCGGCGC	GCGTGAGTAG	CGGTAGCGCG	AGTATCGAGG	CGTTTAGTAG	GAAGGTGGCG	120
AGGTTGAGAC	GCGTTTTAGA	GTTCGGCGGA	GTTCGCGTCG	CGTAGTTCGT	TATGGCGTCG	180
GGCGGCGGAT	TAGCGGGCGG	CGGCGTCGGT	TGTAGTTCGG	AGAAACGCGT	CGGTTGCGTT	240
TGCGTATTGT	GTCGTCGATG	TCGGTTCGGG	AAGGGTAGTT	GTTCGTAGTT	GCGCGTCGTT	300
TGTTAGTTTT	CGCGAGAATT	TCGGTTCGTT	TTGTTGTTGT	TCGGAATTTG	GCGGGAGCGT	360
TTCGTTCGTT	CGTTTTTTT	CGTTTTTCGG	GGATATTCGG	GTTTTGAGTT	AGATTTTGTG	420
TCGGGCGGGG	GTCGGGAAGT	GGTGGGAGAA	GTCGTCGTTC	GCGTTTGTTT	AAATTTAGTT	480
TTAAATTTAG	GAGGTTTTTG	TTTT				504

ANGABEN ZU SEQ ID-NO:12:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 2036 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:12:

AGTAGTAGTA			TATTCGAAGT	TTCGTTTACG	TTTTTTTTTT	60
TAGAGATTTT			TAGTGTCGGT	TTTTAGTTTA		120
TTTCGGTTTT	TAACGGTTCG		AGATGGAATT	ATCGTTTTTG	TTAGGTTTGA	180
GTTTTTATTA			CGTTTTAGGA	GTTCGCGGTA	TCGGGCGCGT	240
CGTTGTCGTC	0-1110001	AGTATTTGGT	TTACGGGTAT	TATTAACGCG	GTAGAGGATA	300
GTTTTTTTA	GGGGATTATT	TTAGTTAACG	GGATTATGTT	TTTTTAGAAT	TTTTCGTATT	360
ATGTTAATTT	AGTTTTCGGA		TTTCGTAGAT	CGGTTTGGCG	TAGATTTAGT	420
ATTATTAGTA	9100100100	TTTGCGTTCG	CGTCGTAGTC	GGTATAGTTA	GCGTAGTTAT	480
TATAGGCGTA	0111001110	TAGCGTCGTT	TATTCGTTAG	TTTTAGTTAG	GCGTTTTACG	540
CGTAGAGGAG	CGTCGTCGCG	GCGTACGGTT	ATTAGTTTAT	TATGATTAGT	AAGTCGTTTT	600
CGTTTTCGGC	GGTTGTAGTC	GTTGTTGTCG	TAGTCGTCGT	TTCGTCGGTT	TCGTTTAGTT	660
GGAATACGTA	TTAAAGCGTG	AATGTAGTTT	GGAGCGTATC	GTTTAATTTT	TGGGGCGGTT	720
TGTAGGCGGG	TCGGGATTTT	CGTCGGGCGG	TCGGTGTGGG	CGTGGGTGTG	GGTGTCGGGG	780
TGTTTTTTC	GTTTAATTTT	ATTTCGTCGT	TTAAAAAGTT	TTTTTTTAGT	AACGTGATCG	840
CGTCGTTTAA	GTTTTTTCGC	GCGGTTTTTT	TTATTTTAA	GTTTTGGATG	GAGGATAACG	900
TTTTTCGGAT	CGATAATGGT	AATAATTTGT	TGTTATTTTA	GGTAATATTT	TGTTGTATTT	960
ATATATTTT	TTTTTTTGTT	TCGTTTTTT	TGTTATTTTT	TTGATTTTTA	ATTATTTATT	1020
CGTTTATATT	TAAAAAGGGT	AGTAATGTTT	AGTTTTTTT	TTTTTTTTCG	AAGTTTTTAG	1080
TTTTTTAGGG	TTGTTTTATT	ATTAGAGGAT	GAGGTTGGGA	GAATATTGTG	ATTATTGGAG	1140
GAATCGTATT	CGTTTTTTTA	GGGTAGAAGA	AGTTTTTTT	TTTTAGTTTA	TTTTTTTTTT	1200
TATGGTGTTT	GTATTTTTA	TTTTGATTTT	TTTTGATAAG	TAAAGTTGTA	AGTGTGTGGT	1260
AAGGTGTCGG	TATAGTTTTA	GGATGAGTAG	GTTGAGATTT	TTATTATTTT	GAGTAGTTAT	1320
ATATTTTAGG	TTATGTAATT	TTGAGTTTAG	GGTGTCGTTT	GTAAGCGGTT	TATATTTAAA	1380
TTATTTTGAT	TTTATTTTTA	AAGAGGTTAA	TAATTTTTGA	GTGGTGTTAT	TTTAGACGGT	1440
TGCGTATGTT	TAGTTAAATT	AATGTGAATA	TATGTGTTTA	TGTTTCGTTA	AGGTGTTAGA	1500
ATTATTAATA	ATAATTAGTA	TATTGTTTTT	GTTGGGAAAA	TTATGAGTGT	GAGATTTTAA	1560
TAAATATTTA TTTTTATGTT	TTATTGTGTA	AGGGAAGGAG	GTGGAAGAGT	GGAAATTTTA	AGGGTAATTT	1620
ACGTGATTTT	ATTTAGAAGA	AGGATTTTTT	TTTTTTTTT	CGGAGGTAAG	AGATAATAGG	1680
AAAGTTGTAG	TAGAGTTATA	TTGTAATGGA	GTTTATTTGT	TAGTTAGTAT	TGAAATATTT	1740
	TGTTTTTTAT	TAGTTGGGTT	AAGAAAATAT	AGATTAATTA	TATTATTTGA	1800
AATTGGGTAA AAATGTTAAT	AGTGAAAGTT	TTGTAATTTT	AATGAAAAAT	GAGTTTTGTG	TTTTGGTGTT	1860
TTATTTTTTTT	GAAAAATTTA	GGATGTGTTT	TAGATAAAAA		AAGAGTGTTT	1920
TATTTTGGT	TTTTGTTTTT	TGATTTAGTT	TATAGTTATA		GTGTTTTGGG	1980
INITITIOGIT	TGGAAAGGCG	TAGTGCGGGT	GTGTGTTTAT	AGGCGGTTTT	TGTTTT	2036

ANGABEN ZU SEQ ID-NO:13:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 452 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:13:

TGTGTTAAGG TTTTATTCGG ATTGTTATTT TTTAGGAAAG CGTTTGTTGT GGGGGACGAG	AGATGGTGAT GGGATATTTA TTTTAGTTGT ATTTTTGGGT GTCGTGAGGG ATTTTATTAT	TTTTTTTGGA TATAATGTTA TTGTGTGTTT GTATAAATTA TATGGATGTG TGGAGTTAAG	TATTTTAGAG TTTTTTTTGA TTAGATTATG GTTTAGAATA GTATATTTTA TTGAAGGAAG	ATTTTTTTT TTAGTTTTGT ATATTTATTT GTTGGTAGTA ATGGTTATAT	ATTGGGTATG TTGTTATGAT TTATATTAAG AGTTGTTTAG ATTTGTAGAT TTATATTTTG TAGTGTTTAG	60 120 180 240 300 360
GGGGGACGAG	ATTTTATTAT	TGGAGTTAAG GGTTTTTGTT	TTGAAGGAAG	TGGAATGTTA	TAGTGTTTAG	420 452

ANGABEN ZU SEQ ID-NO:14:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 513 Basen ART: Nukleinsäure STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:14:

AGTAGTAGTA	GTAGCGGAGA	CGGAGGCGGC	GGCGGAGGCG	GCGGCGGCGA	TTTTAGCGCG	60
			GGCGAGTTGG			120
			AGGTCGTTGT			180
GAGGGGGGG	GTCGCGGTCG	GACGGGGCGG	GGTATTAGGA	GGAACGGAGT	GGGCGTTTGG	240
CGGTTTTCGC	GTTTAGATTG	GGTCGCGGGC	GTTTTTTGGT	GGTCGCGGAG	AGTTTAGGTG	300
TTCGCGGTTG	AGGGAGTTGG	AGAGGGGTAA	AATCGGGGTC	GTAGCGGGAA	GGCGGAAAGT	360
			CGTTAGCGGG			420
AAAGGGCGAT	TTGGGGGAGT	AGAGATACGA	TTAGAGTTTG	AGAAGGGTAG	GAGTAAGGGA	480
TGTTTAAGGG	GTTTGGTGGT	AGGTTTTTGT	TTT			513

ANGABEN ZU SEQ ID-NO:15:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 980 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:15:

GTATTTTCGG	TTATAAGGAT	TTTTCGAGTT	TCGTTCGTCG	GTCGCGGATT	60
TTTTTCGGTC	GTTAGGGGGC	GGGTTCGGAT	TATAGGATTG	GAGTTGGGCG	120
TTCGGAGCGG	TTGTGAATTG	GTAGGCGGTG	GGCGCGGTTT	TTGTGTCGTG	180
TTAGTTTTTT	AACGGGGTTT	CGGAGTCGAA	GATAGTTTTA	GGGTTTAGGG	240
GTTTTTGGGC	GGCGTTAGAT	TGCGGTGAGT	TGGTCGGCGT	GGGTTATTAA	300
TTTAGGGCGG	CGGTACGAGA	TAGAATAACG	GCGAATAGGA	GTAGGGAAAG	360
AGGTTAGGTT	TAGGGATTTG	CGGGGAGAGG	GCGAGGTTAA	TATTCGGTAT	420
TTGGTTTTTG	GGATTCGTTT	CGTTTACGTT	TATAGGTGGG	TTCGTATTTT	480
TCGTTTTCGT	TTTAATAGTT	TATAGTTGTT	GTTAGTTTAT	TCGTACGTTT	540
TCGAATTCGT	TATTGGTTGT	TTTTTAGCGG	TTTGTGTTGA	TTGGTTGTTC	600
TTTTTTGTCG	TGGGTTTAGT	TTCGTAAATG	CGTAGTTAAG	CGGGTGGTAA	660
GAGCGCGGGG	CGCGACGGCG	GAGGGGGCG	TGGGTAGTCG	GACGTATTTT	720
AGTAGGTGGC	GGCGGTGTAT	GGGGTTTGGT	TTTATTAGCG	GGTATTGGTT	780
GTCGGGGGGT	TATTTAGTTG	GAGAGAGAAG	GGATAGGTGA	TTCGATCGGA	840
GTTTTTAGCG	GTGGGGCGAG	AGATAGCGAG	GGGAATCGAG	GTTGGGGAGG	900
AGATTTCGGA	GGGAATTTGG	TGAGGTTTGA	ACGGAGGGAG	ATTTGGGGTT	960
TTTTTGTTTT					980
	TTTTTCGGTC TTCGGAGCGG TTAGTTTTTT GTTTTTGGGC TTTAGGGCGG AGGTTAGGTT	TTCGGAGCGG TTGTGAATTG TTAGTTTTTT AACGGGGTTT GTTTTTGGGC GGCGTTAGAT TTTAGGGCGG CGGTACGAGA AGGTTAGGTT TAGGGATTTG TTGGTTTTTG GGATTCGTT TCGAATTCGT TATTGGTTGT TTTTTTTGTCG TGGGTTTAGT GAGCGCGGGG GGCGACGGCG AGTAGGTGGC GGCGGTGTAT GTCGGGGGGGT TATTTAGTTG GTTTTTAGCG GTGGGGCGAG AGATTTCGGA GGGAATTTG	TTTTTCGGTC GTTAGGGGGC GGGTTCGGAT TTCGGAGCGG TTGTGAATTG GTAGGCGGTG TTAGTTTTTT AACGGGGTT CGGAGTCGAA GTTTTTGGGC GGCGTTAGAT TGCGGTGAGT TTTAGGGCGG CGGTACGAGA TAGAATAACG AGGTTAGGTT TAGGGATTTG CGGGGAGAGG TTGGTTTTTG GGATTCGTTT CGTTTACGTT TCGTTTTCGT TTTAATAGTT TATAGTTGTT TCGAATTCGT TATTGGTTGT TTTTTAGCGG TTTTTTTGTCG TGGGTTTAGT TTCGTAAATG GAGCGCGGGG CGCGACGGCG GAGGGGGGCG AGTAGGTGC GGCGGTGTAT GGGGTTTGGT GTCGGGGGGT TATTTAGTTG GAGAGAGAAG GTTTTTAGCG GTGGGGCGAAGTTTGA AGATTTCGGA GGGAATTTGG TGAGGTTTGA	TTTTTCGGTC GTTAGGGGGC GGGTTCGGAT TATAGGATTG TTCGGAGCGG TTGTGAATTG GTAGGCGGTG GGCGCGGTTT TTAGTTTTTT AACGGGTTT CGGAGTCGAA GATAGTTTTA GTTTTTGGGC GGCGTTAGAT TGCGGTGAGT TGGTCGGCGT TTTAGGGCGG CGGTACGAGA TAGAATAACG GCGAATAGGA AGGTTAGGTT TAGGGATTTG CGGGGAGAGG GCGAGGTTAA TTGGTTTTTG GGATTCGTTT CGTTTACGTT TATAGGTGGG TCGTTTTCGT TTTAATAGTT TATAGTTGTT GTTAGTTTAT TCGAATTCGT TATTGGTTGT TTTTTAGCGG TTTGTTTGA TTTTTTTGTCG TGGGTTTAGT TCGTAAATG CGTAGTTAAG GAGCGCGGGG CGCGACGGCG GAGGGGGGCC TGGGTAGTCG AGTAGGTGC GGCGGTGTAT GGGGTTTGGT TTTATTAGCG GTCGGGGGGT TATTTAGTTG GAGAGAGAAG GGATAGGTGA GTTTTTAGCG GTGGGCCGAG AGATAGCGAG AGATTTCGGA GGGAATTTGG TGAGGTTTGA ACGGAGGGAG	TTTTTCGGTC GTTAGGGGC GGGTTCGGAT TATAGGATTG GAGTTGGCCG TTCGGAGCGG TTGTGAATTG GTAGGCGGTG GGCGCGGTTT TTGTGTCGTG TTAGTTTTTT AACGGGTTT CGGAGTCGAA GATAGTTTTA GGGTTTAGGG GTTTTTGGCC GGCGTTAGAT TGCGGTGAGT TGGTCGGCGT GGGTTATTAA TTTAGGGCGG CGGTACGAA TAGAATAACC GCGAATAGGA GTAGGGAAAG AGGTTAGGTT TAGGGATTTG CGGGGAGAGG GCGAGGTTAA TATTCGGTAT TTGGTTTTTG GGATTCGTTT CGTTTACGTT TATAGGTGG TTCGTATTTT TCGTTTTCGT TTTAATAGTT TATAGTTGTT GTTAGTTTAT TCGTACGTTT TCGAATTCGT TATTGGTTGT TTTTTAGCGG TTTGTTTAA GAGCGCGGGG CGCGACGGCG GAGGGGGCG TGGGTAGTCG GACGTATTTT AGTAGGTGGC CGCGACGGCG GAGGGGGCG TGGGTAGTCA GGGTTATTT AGTAGGTGGC CGCGACGGCG GAGGGGGGCG TGGGTAGTCG GACGTATTTT AGTAGGTGGC GGCGGTGTAT GGGGTTTGGT TTTTATTAGCG GGTATTGGTT GTCGGGGGGT TATTTAGTTG GAGAGAGAAG GGAATCGAG GTTGGGGAGG AGATTTCGGA GGGAATTTGG TGAGGTTTGA ACGGAGGGAG ATTTGGGGTT

ANGABEN ZU SEQ ID-NO:16:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 223 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:16:

AGTAGTÀGTA	GTAATATTAT	TTTATTAAAA	AAATATTAGC	GTAGTTTTTA	ATAGAGTTTT	60
AAATTTTTAAA	GTGAAGTTAA	AAATAGGTTT	TATGTTTAAA	GTTTTTTTC	GTAGTAGGCG	120
ATACGCGTAG	ATGGAGAAAA	TATTTTTATT	GTTGGGAAAG	GGAGGCGTGT	TAACGGGGAC	180

GAAGGATATT TTATTATTTG GTAAAGTTAT TGGTTTTTGT TTT

223

ANGABEN ZU SEQ ID-NO:17:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 1145 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:17:

AGTAGTAGTA TTGTATTTAG TTTAGTTCGT TTTCGTTTAT AAGTTTTTT TTGGGGCGGT AGCGATTCGT ATTATCGTTA	GTTACGTTTT TTTTGGTTTA TTTTTTCGGT TTTGGCGATT TTGTAGTTTT TTTCGTCGTA GTATTATGTA	TTTAGATTCG GGTTTTTTT TTTTTTTAGT AGGTTTTTTT ATCGTCGAGG TCGAATTCGT CGTTATAGTT	TTTTTTTTA TGTTTTTTTC TTTGTTTTTC ATTATTTAGG AAGAGGAAGG AGTTTTATTA ATCGTTAGCG	TTAGATTACG GTTTTGAATT GGATTTTGGT GTTCGTTTTT CGTTCGTGGT TTATGTTTAT TGGTTGGGGA	TTTATCGTTT TTGTTTCGAG CGAGTATTTT GTTTGTTCGT TTGGTTTCGT TACGTCGATA	60 120 180 240 300 360 420 480
AGCGATTCGT	TTTCGTCGTA GTATTATGTA GCGGGCGTCG TTTTAATTCG TGAGATTTGG	TCGAATTCGT	AGTTTTATTA	TTATGTTTAT	TACGTCGATA	420

ANGABEN ZU SEQ ID-NO:18:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 633 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:18:

AGTAGTAGTA GTATAGTTCG GCGTTGGTTA GCGGTTTAGA GGTCGGACG GAGTTCGGAC GAGTTCGGAC GAGTTCGGAC GAGTTCGGAC GAGAGCGGTC GTAGTTTTT TCGGGGGGCC GAGAGCGGTC GTAGTTTTT TCGGGGGCC GTAGTTTTT TCGGGGGCC TTTTTTTTT TCGCGTTCGT TTTTTATTTC TCGCGTTCGT TTTTTATAAAGCC TTTTTTATTTC TCGCGTTCGT TTTCGATA GCGAGCGCC TTTTTTTTT TCGCGTTCGT TTTTTTTTT TCGCGTTCGT TTTTTTTT	AGAGG 180 AGAGG 180 AGAGG 240 AGTTTT 300 ATTTT 420 AGCGG 480
--	--

ANGABEN ZU SEQ ID-NO:19:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 12 Basen ART: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA SEQUENZBESCHREIBUNG: SEQ ID-NO:19:

AGTAGTAGTA GT

12

ANGABEN ZU SEQ ID-NO:20:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 12 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:20:

ACAAAAACTA AA 12

ANGABEN ZU SEO ID-NO:21:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 74 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:21:

AGTAGTAGTA GTTTCGGTAG TTTAGTTTAT GGCGGCGGTG GCGGCGGTAG TAGGTTTGAG 60 TTTTAGTTTT TGTT 74

ANGABEN ZU SEQ ID-NO:22:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 103 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEO ID-NO:22:

AGTAGTAGTA GTAGCGGTAG CGGTAATAGG GCGGTTGAGA ATTCGGCGGC GGCGTTTTTT 60 TTCGTTTTTT TTTTTTCGT TTCGTCGATT TTTAGTTTTT GTT 103

ANGABEN ZU SEQ ID-NO:23:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 559 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:23:

ANGABEN ZU SEQ ID-NO:24:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 1695 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:24:

AGTAGTAGTA TTATTTTAN GGGGGGTGTT GGTGTTTCGG CGGCGGTCGA CGTTTTGTTA GTCGGTTCGG TTTTCGTATT GGTTTTATA TGCGTTTAGG TNNTTGNNAN GGCGATTGGA GAGGCGAGGA GAGTCGGAG GAGGGAGGTT TTTTTGCGTA TCGCGAGCGT GTGCGAGGTT GGCGAGGTT GGCGAGGTT GGCGAAGGG AGCGAAAGG TAGTTTTAGG TTGCGAGAG TTGCGAGAGG TTGTACGGTT	AGGATTTTAG TACGTGGAGG GGGTCGATGT GTAGTAGAGG GTAGTCGTTT GTTTTTGGAA CGATTCGGAC TTTGGTTCGGA TTGGTTCGTA TNTTTTTTA TACGCGAGGG AGCGCGGGAG	AGGGTCGCGA CGGGCGGGAT GGCGTTTCGT CGTCGTTTTT TTTTTTACGG GGCGGTAGTA CGGGTCGGCG	AATTCGAAAA GAAGGAGAGT CGGCGCGCG AGAGGTCGG TTCGGTTCGT GGGATAGTCG GGGGAGGGA GTTCGTTGGT GTAGGCGGTT GTAGGCGGTA GAGAGGTAGG AATTCGGGT GTTGATTCGT GTGTTGTAGC GTGTTGTAGC GCGGATTACG GCGGGGGGG GGCGGGGGG GGCGGGGGGG GGCGGGGGG	GCGTCGGGTT GGGGTCGGGTCGGGCGCGGGGGCGCGCGC	GTGGAGGGA GATGGTTAGC GACGGCGGGG GGTTTCGCGT CGCGGGATTC TCGGGGTTCG AGGAAGTTAA GGAGAAGTGT TTNNNNTTNT GCGTCGGTCG GTCGAGATTT AAGAAGAAAA CGTCGCGTCG	60 120 180 240 300 360 420 480 540 600 660 720 780 900 960 1020 1080 1140 1200 1320 1380
TAGTTTTAGG TTGCGAGAGG TTGTACGGTT	GGATAGGGT GTGTTAGAAT TAGTTAAAGG TATTAGGATT	TTTGGAGTGG TATTCGGATG TATTTGTGTA GTTGTTATTT	AAGTTTTGCG TCGTATTAAA TTCGTGTATC CGGTGTAGTA	GGAGAGGAGG AAATAGGAAA	AGTAGAGGAG AATTTAAGTT	1320 1380
ATGAATTGGT TAGTTCGAGG AAAGATTTT TTATTAGTTT	AGAGTTAGGA CGTGGGGAGA TATTTAGTTT TTGTT	ATTAGGTTGT ATTTGGGTAA TGTATTTTTA	ACGAGGAGAA	AAGCGAGTTA GGGATATTTT AGATTTTTTT	AAGTTGGTCG TTATTCGTAG TTGGCGGAGT	1560 1620 1680 1695

ANGABEN ZU SEQ ID-NO:25:

SEQUENZCHARAKTERISTIKA: LÄNGE: 722 Basen WO 01/42493 PCT/DE00/04381 12

ART: Nukleinsäure

STRANGFORM: Einzelstrang TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:25:

AGTAGTAGTA	GTTTCGTTAC	GAATACGATT	AGTTTATATT	GGTTGTTTAG	TATTTCGGTT	60
AGTTTTTGTG	GGACGTTGGC	GCGTATATCG	TTTCGTCGGG	GGGTCGGGGA	TTTCGGGGAT	120
TTCGGGGTCG	AGGACGAGGG	AGGCGAGTAG	GTCGTTGGTT	TCGACGATTT	TGCGATCGAG	180
GCGTTTGTAG	TTGTTCGGGG	CGAGGCGGGC	GATTTTAGGT	TTTCGAGTAT	TTTCGAGATA	240
TTCGCGTTAA	GTTTGGTTTC	GGGGGTGGTT	GTCGTCGGGT	TTCGTTTGCG	TTTTTGGTTT	300
TTGTTTTTGT	TTCGACGTTT	TTGTTAATTA	GTATTTTTT	TTTTAATTTT	TTTTCGATTT	360
TTATTTTACG	TTTTTGTTAA	TTTGTTTTTT	TTTTTGTTAT	TTTTCGACGT	TCGTTTTTT	420
TTTTTTTGTT	TTTTCGTTTT	TCGTTAAGGT	ATTATTTTGT	TTATTTATTT	AGCGTTTTAT	480
TTTGTTGATT	TGGGATTTTA	CGAGTTTTTT	TGTTCGTTGT	TTTTTATTGG	GTAACGTTCG	540
GGGTAGTTAT	TTGTTTTTT	CGGGATTTAC	GCGGATAGTT	TTTCGTTTTT	GATTTTTGGG	600
ATATTGGTTA	GTTTTGTCGC	GATATTAGCG	CGTNTTTTCG	TATTTTCGTT	CGCGCGTTCG	660
GTTTTCGTTC	GTCGTTTGTA	GTTTTTATTT	TTGAGTCGAC	GTTCGTTTAT	TTAGTTTTTG	720
TT						722

ANGABEN ZU SEQ ID-NO:26:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 517 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:26:

AGTAGTAGTA	GTTCGAATTC	GCGCGCGTAG	CGGCGTATGG	TTAGGTTTAG	CGAACGTAGT	60
TTTAGCGAGT	GGCGCGTTAG	GCGTATTACG	TAGAGTACGC	GTAGCGTACG	TAGTAGTCGT	120
AGTATTAGTT	TCGCGCGTTT	TAGGAGTTTG	GTTTCGTTCG	GGTTTGTCGT	TAGTTTTAGT	180
AGTAGCGATA	CGTAGAACGG	TAGGAGCGTT	AGGATGTTAA	TGATGTTGAG	TGGCGCGCGT	240
AGGAAGGCGT	ATTTGTTTTC	GGTTTGTAGG	GAGCGTAGTA	GGAATTCGAA	GGAGAATTAG	300
GTTACGTATA	CGGTTTTTAG	TACGAATAGG	TTGCGGTATT	TGGGGGAGTA	TTCGTTTTGC	360
GGGGAGAGGG	GATACGGGGT	TGGGGGCGTA	GGTTTTTTGG	AGGGTCGGGG	GCGTTTTGTT	420
TTTTTTTTT	TAGGATTAGA	GGCGTTTTTT	AGGTTATTTT	TTTCGTTTTA	ATTTACGGAA	480
GCGGGTGTAG	GGGATATTGA	TAGGTTTAGT	TTTTGTT			517

ANGABEN ZU SEQ ID-NO:27:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 1078 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:27:

AGTAGTAGTA	GTATTAGTAA	TAGTAGTACG	AAAAGTAAAA	TTGTAATTTA	AACGGTTTTT	60
AGGGTTTAAG	TAGGTTCGAC	GAAGATTCGT	TTATTCGGTC	GTTAGAAAAT	TGGGAGTTTC	120
GTTCGTTTTT	TCGGTATTGA	AACGCGATCG	GTTTTGTTTG	GTATCGTATT	TTTTTTTTGA	180
TTTTATTTAT	ATTACGACGA	CGGACGTTCG	AGAACGTTGT	ATCGCGTTTC	GTAGGAAGTG	240
TTTTTTTGGG	CGGAAGTTTT	TGAGCGTGAT	ATAGCGGAAG	TGTTTTTTT	TTCGGTTTTT	300
TTGGTTTCGG	TCGTAGAAGC	GAGATGGTGA	GTTGTGATTG	TGGTGTTTGT	GAATCGCGTT	360

13

TTTTTTGGTC GGAGTTTGTA AAGATAAGGT GTATTTTAGA ATATTGTAGT TTTTGGTGATG GGTTTTTAGGT AACGTGAAAT GCGGGTAGTG GTTTTTAGAT TGGTATTCGT GGAAAGAGGT 720 TTTTTTCGTA GTTTCGATTT TTACGATTGT TTTTAAATTT TATTAGTAAT TTGTTTTCG 840 GAGAATCGA GTAAATTTAG AAGTTGTTAG GTTTTTAGAAT TATTTATT	TTGTTAATTG GTTTTTTGTT GAGGGAAGGA	GTGTTTGGGG TCGGTTTAAT GTTTGGGAAT	GAAAGAGGTA GATTTATTTC TTTTGGAGAT GTTTGGTTTT	TGCGGTGGTT GTCGTAATTG TTTTTACGGT	TTTAAGAGTT TGGTGTTAGA TTTAGTTTTG	GTCGTATTGT GTTGGGAGTC	420 480 540 600 660
GAGAATTCGA GTTACGATTT TTACGATTGT TTTTAAATTT TATTAGTAAT TGGTTTTTCG 840 AGACGAAGGG AACGTTATCG TTTGGAAAGC GTCGTAATAA GACGTATACG TTTGTGTCGTC 960 GTTGTGGTTT TAAGGTTTAT TATTTTTAGA AGTCGATTAC TCGTTAATGTCT 960	GGTTTTAGGT	AACGTGAAAT	GCGGGTAGTG	GTATTTTAGA	ATATTGTAAT	TTTTGCGGAG	
AGACGAAGG AACGTTATCG TTTGGAAAGC GTCGTAATAA GACGTATACG TTTGTGTCGTC 960 GTTGTGGTTT TAAGGTTTAT TATTTTTAGA AGTCGATTAC TCGTTATACGT TTGTGTCGTC 960	TITITOGIA	GITICGATIT	TTACGATTCT	ጥጥጥለልልጥጥጥ	ጥ ለ መመ አ ረ መ አ አ መ		
GIIGIGGIII TAAGGIIITAT TATTTTTAGA AGTCCATTTC TCCTAAAMCT COTTA	GAGAATTCGA	GTAAATTTAG	AAGTTGTTAG	GTTTTACAAT	T A M M M A M M M M M		•
TTAAGCGTAA GAGAAAGTGT AAGTAATATT TTTTAGGTTA ATTGTGTTAG TTTTTGTT 1020	GTTGTGGTTT	TAAGGTTTAT	TATTTTTAGA	GTCGTAATAA	GACGTATACG	TTGTGTCGTC	
	TTAAGCGTAA	GAGAAAGTGT	AAGTAATATT	TTTTAGGTTA	ATTGTGTTAG	GGTTATTTTG TTTTTGTT	1020 1078

ANGABEN ZU SEQ ID-NO:28:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 2949 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:28:

AGTAGTAGTA GTCGTAGGAG TAGCGTTTTG GGGAGGGGGG TTCGTTTTTC GGGGTGCGTT TCGTGGTTAT TTTTTTAAN GGGGGTCGTG GTCGTTTTTT AGTTTCGGCG CGTTGGGTTC 60 GTTTTAGCGG GGTTCGTCGG GCGGGGCGGG GATTTGTATT CGGGGCGTTT TTTCGGGACG 120 CGCGGGTTTT CGTTTTTTT TTTGTTTTCG GGCGAGTTCG GATTTTGTTC GGTCGCGGGG 180 TTTCGTTTAT TTGTTAAGTG AAGGTTTTAC GGGAGATAAT AAAGAAAGAA GTTGTTTTT 240 TTTTTTTTTT TTTTTTTTT TTTTTAGGAAT ATATTTTATT CGTTTTTTTT TAGAGTAGTA 360 420 ATTTTTTGCG ATGGTGTATT TTTTTGAAGT TGTTATTGTC GGAGTTTTTG GTTGTTTTTG
AAATAAGAGT TTTTTTTAT TTTTTTCGTA ATAGTTATAG TTTGATGCGA TATTTTTTTT 540 600 TTTGGGTAGA AATTAGGAAA TAAATATAAT AAGGAAAAAA TTGAATAGGA AAAAAAATGA TGTCGAATCG TTTTGTTATT TTGTTGTTGA CGGTTGGGGT TGGTGTTTTA TTTTTTTTT 720 780 GTGTATATAG GGGATCGATT TTTGATATAT AATAATTTTA GTGGGTACGT TGTACGGTTC 840 GTAGAGTGTA TCGACGGCGG GCGTTGGCGT TGGTCGTGTT GGAGTAGAGT TGTAGTAGGA 900 960 TTTTTTTTT TTTTTTCG GGCGTTCGTT TTCGTTTCGA TTTGATAGTT CGTTTTTGT TTTTTTTTT TAGAGCGGG ATTGTCGAAT GTTTATTTTT CGTCGCGAGC GCGTATTTAT 1080 TATTATATTT TTTTAAATAT AAGGAAGTCG AGTATTAGGG TTTTCGTTGA TTGGTTATCG 1140 TTGGGTGATT GGTAGGTTCG GAATGATTGG TTTAGGACGC GAGGTTTTTT TTTCGGTCGT 1200 TTCGATTGGT TGTTTTTAA TTTAGGTAGA GCGTCGTAGA AGTTGGAAAT TTGTCGTTTT 1260 TTAGTTTTTT TTTTTTTTT TATTTTTTTT TTTTCGTTTT TTTTTCGTCG TTTTTTTCGT 1320 TATATTTTAA TTTTTAGTGT TCGGTTTAGA CGTTGGCGTT TTTTCGGCGG TTTTGGCGTT 1380 CGTAATAGGT TTGGGCGGGG GGAAGAAAGG GGAGATAAAA GGGAGGGAGG GACGAGAGGG GGGAAGAGAA TTAGAAGGAA AACGAAGGGG GAAATATGAA AAATAGTAAT TTGTTTATTT TATTTAGTAC GCGTCGGGTT GTTTATTTTT TTATTTTCGT TTCGTTAGAG ATTTGTAAAG 1560 CGCGCGGTAC GGATGTATTA TTTAAGTTAA TATTTATAGA TAGATGTGTT TTTAGTGGTT 1620 CGGGGGTTCG TATCGTTAAG AGTTTTGGTC GTGGTTACGT TTTTTGGAAA TTCGTTATCG 1740 TAATTTTTCG TAGTCGTTGC GCGTCGGCGG TAGTTTTTTT TGTTTAAGTT TTCGGATGTT 1800 ATTATTTGGG AAATTTGTAG TTTAGGANNT TCGGTGTTCG CGCGTGCGAG ACGGATCGTT 1860 1920 TTTTTTTTT TTTTTTTTG GGATTCGTGT AAGTAGCGTG CGTGTTTTTG TGAGTTTGGA 1980 GGGTGTCGGT TAGCGGAGTC GTGCGATGTA TTTGAAAAGT AATTAGTTCG ATTTTTTTT 2040. ATAGAGTTAT CGTAAGTGTA TTCGATTTTA ATGGTTTTAG AAATTTTTGT GGTATTAGGA TTCGGTCGAA AGAACGGGGA TCGGTTATTC GCGTTTTTTT TTGTTTTATC GTTTTTTCGT 2160

WO 01/42493 PCT/DE00/04381

GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGATTAG	CGGTGGGGGG	GTTTGTTCGT	2280
TTTTTATTTT	TAGGTATGGT	GGTGTTTTTT	TTTTTTTTTT	TTTTGTTTTA	GATGGATTTG	2340
CGTGGTGGAT	GGGGTTGGCG	GCGATAAATG	TTTTTTTAGT	TTTAATTTAG	TTGAAAGAGT	2400
TAAGGGGGAT	GGGAGGGGA	GTGTATTCGG	TAGGCGAGAG	AAGCGGGGGT	GGGGTGGGGT	2460
GGGGTGGGG	GACGCGGTTA	AGCGGAAACG	TTGTATAGAG	GAATTTTAGC	GAATTAAGAA	2520
AAAAGAGAAA	GTGGTAACGA	AAATAAGGGT	AAATTGAGTT	TTTTTCGGGG	ATTTTTAATG	2580
AATTAATTTA	ATTCGGATAT	TTAATAAATA	TATGGTTTTT	AATGAGCGTG	CGTGTGCGTG	2640
TATTTCGTAT	TTTTAGTTGC	GGGTGCGTTC	GTTTGCGTTC	GTCGTTTTTA	GTTAGAGTTT	2700
GTATTTGGTA	GTTTCGAGTT	CGAGCGGTAG	TTTAGGACGT	AGTCGAGGAG	CGTCGTCGGT	2760
GCGTTTCGAT	TAAAATGTGA	ACGGGTTTGT	TTTTTTTTTT	CGTTGTATCG	TGTTTTTGTC	2820
GAGCGTAGTT	AAGTGAATTT	AGTGAAAGTA	GGAGTTTTTT	TGTTTAGTCG	TAGTTAGGTA	2880
GTTTTCGCGT	GATTTTAAGA	TTAATATTAG	ACGCGTAGAA	TTTATGTAGG	TTTTTGTTTA	2940
GTTTTTGTT						2949

ANGABEN ZU SEQ ID-NO:29:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 117 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:29:

ANGABEN ZU SEQ ID-NO:30:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 639 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

SEQUENZBESCHREIBUNG: SEQ ID-NO:30:

AGTAGTAGTA	GTATTATGGT	TATTTCGACG	GTCGCGTTCG	TTATTTTTTT	GCGGCGGTTT	60
AGTCGCGACG	TTGTTAGGGT	TAGTAAATTT	TTTTTATTTT	TGGGCGTAAT	GGTTGTCGGG	120
GTCGGGGTTT	TTCGCGGGTT	AGGAGGCGGT	GATTCGTTTT	GGGTTTGGGT	TTGTATTTTT	180
TCGACGGTTG	TTTTTCGTTT	TTTTTATTTT	GTTTTTGCGG	GTTTTAGTCG	CGGCGGTGTC	240
GTTTTTTAAG	TCGTTCGTTA	AGGGGAGGTT	TTTCGTGGGT	TACGTTAGGG	GTAGTTTTCG	300
ACGGTTTAGA	GTTAGTGGTT	TTTTAGTATT	TTTTCGTTTA	GTTTTAACGA	TTTTGGGTAT	360
TTGAGATTCG	CGGTTTTTCG	GACGGTTGGT	TTTTTAGGGA	TTTGAGATGT	TTGTTTTTTA	420
GATTGTTGTT	TTTTTAGGGA	TGGCGCGGTG	TTTGGGTTTT	AGATTGTTTA	GATAGATTAT	480
TTTTTGATGG	AGAGGGGATT	GTTTTTCGCG	TTTCGGACGT	TTCGGGTTTT	GAGTTGCGGG	540
TGTTGTTTAT	CGGGCGCGAT	TTTTTAGTAG	GTTTTGCGTT	TTGTTTTTTG	GTAAGTATCG	600
ATTTATTTTG	TTATTTTTGT	CGCGGTTTTA	GTTTTTGTT			639

ANGABEN ZU SEQ ID-NO:31:

SEQUENZCHARAKTERISTIKA:

LÄNGE: 304 Basen ART: Nukleinsäure

STRANGFORM: Einzelstrang

TOPOLOGIE: linear

ART DES MOLEKÜLS: chemisch vorbehandelte Genom-DNA

WO 01/42493

PCT/DE00/04381

15

SEQUENZBESCHREIBUNG: SEQ ID-NO:31:

GAGTTCGGAG	TTTGGAGGGG GTTTTTTTT	TGGGGAGGTT CGGTTTTCGT	AGTTCGGGGT TCGCGTTTAG	AGTTCGCGTA GGTCGGATCG	GGAGGGTTTT TTCGAGTTTG GAGGGAGAGG GGGCGGCGT ATTTAGTTTT	120 180
						204