安徽大学 2021—2022 学年第一学期

《概率论与数理统计 A》考试试卷 (B卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	=	111	四	总分
得 分					
阅卷人					

一、单选题(每小题3分,共15分)

得分

).

- 1. 如果P(AB) = 0,则下列选项正确的是
- A. A 与 B 不相容

鄉

C. P(A-B) = P(A)

- B. \bar{A} 与 \bar{B} 不相容
- D. P(A B) = P(A) P(B)
- 2. 设X 的概率密度函数为 $\varphi(x)$,且 $\varphi(-x) = \varphi(x)$,F(x)是X 的分布函数,则对任意实数a,下列选项正确的是 ().
- A. $F(-a) = 1 \int_0^a \varphi(x) dx$

B. $F(-a) = \frac{1}{2} - \int_0^a \varphi(x) dx$

C. F(-a) = F(a)

- D. F(-a) = 2F(a) 1
- A. $F_Z(z) = \max\{F_X(z), F_Y(z)\}$

B. $F_Z(z) = \min\{F_X(z), F_Y(z)\}$

 $C. \quad F_Z(z) = F_X(z)F_Y(z)$

- D. $F_z(z) = 1 \{1 F_y(z)\}\{1 F_y(z)\}$
- 4. 简单随机样本 X_1, X_2, \cdots, X_n 取自总体 X,且 $EX = \mu$, $DX = \sigma^2$,则()是总体方差 σ^2 的无偏估计.
 - A. $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$

B. $\frac{1}{n-1} \sum_{i=2}^{n} (X_i - \bar{X})^2$

C. $\frac{1}{n} \sum_{i=1}^{n-1} (X_i - \bar{X})^2$

- D. $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
- 5. 设随机变量 $X \sim N(\mu, \sigma^2)$, EX = 3, DX = 4, $\Phi(x)$ 为标准正态分布的分布函数,则 $P(-1 \le X \le 1) =$ ().

A. $\Phi(-\frac{1}{2}) - \Phi(-1)$ B. $\Phi(1) - \Phi(-1)$ C. $\Phi(2) - \Phi(1)$ D. $\Phi(-2) - \Phi(-4)$

二、填空题(每小题3分,共15分)

得分

- 6. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为 $\frac{1}{5}, \frac{1}{4}, \frac{1}{3}$,则三人各 射击一次,目标能被击中的概率是
- 7. 设随机变量 X 服从参数为 λ 的泊松(Poisson)分布,且已知 E[(X-1)(X-2)]=1,则
- 8. 设 X_1, X_2, \dots, X_n 是n个独立同分布的随机变量, $EX_i = \mu, DX_i = 8, i = 1, 2, \dots, n$,利用切比
- 雪夫不等式,估计 $P(|\bar{X} \mu| \ge 4) \le$ _____.

 9. 设随机变量 X与 Y相互独立,且 $\frac{X \mid -1 \quad 1}{P \mid 0.5 \quad 0.5}$, $\frac{Y \mid -1 \quad 1}{P \mid 0.5 \quad 0.5}$,则P(X = Y) =_____.
- 10. 设总体服从正态分布 $N(\mu, 0.2^2)$, 从中抽取容量为 16 的样本, 样本均值 $\bar{x} = 2.125$, u_{α} 是标准正态分布的上侧 α 分位数,则 μ 的置信度为 0.95的置信区间是______. $(\Phi(1.96) = 0.975, \Phi(1.65) = 0.95).$

三、计算题(每小题10分,共60分)

得 分

- 11. 某批产品中, 甲、乙、丙三个车间生产的产品分别占20%、35%、45%, 各车间产品的 次品率分别为5%、2%、4%,现从中任取一件.
 - (1) 求取到的是次品的概率;
 - (2) 若已知取到的是次品,求它是乙车间生产的概率.

纵

江

题勿超策

颒

$$f(x) = \begin{cases} 3e^{-3x}, & x > 0 \\ 0, & x \le 0 \end{cases},$$

- 求: (1) P(3 < X < 9);
 - (2) 随机变量X的分布函数F(x).

13. 已知 $X \sim U(0,1)$, 试求Y = 1 - X的概率密度函数 $f_{Y}(y)$.

第3页 共5页

14. 设随机变量Y服从参数为 $\lambda=1$ 的指数分布,令

- 求: (1) (X_1, X_2) 的联合分布列;
 - (2) 求在 $X_2 = 0$ 的条件下 X_1 的条件分布列.

15. 设二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x, \\ 0, & 其他. \end{cases}$$

- (1) 分别求X与Y的边缘密度函数 $f_X(x), f_Y(y)$.
- (2) 判定 X 与 Y 的独立性.

16. 设 X_1, X_2, \dots, X_n 为来自均匀分布总体 $U(0, \theta)$ 的简单随机样本,其中 $\theta > 0$ 未知,试求参数 θ 的矩估计量和极大似然估计量.

四、证明题(每小题 10 分, 共 10 分)

得分

17. 设随机变量 X 与 Y 相互独立,且分别服从参数为 λ_1 与 λ_2 的泊松分布,试证: X+Y 服从参数为 $\lambda_1+\lambda_2$ 的泊松分布.