Foundations of Computing Lecture 23

Arkady Yerukhimovich

April 16, 2024

Final Exam

Final exam will be on Tuesday, May 7, 10:20-12:20.

Outline

- 1 Lecture 22 Review
- @ Graph Coloring
- \bigcirc \mathcal{NP} -Intermediate Languages
- 4 co- \mathcal{NP}

Lecture 22 Review

- More \mathcal{NP} -complete problems
 - SAT
 - 3SAT
 - CLIQUE
 - VERTEX-COVER

Outline

- 1 Lecture 22 Review
- 2 Graph Coloring
- \bigcirc \mathcal{NP} -Intermediate Languages
- 4 co- \mathcal{NP}

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is \mathcal{NP} -Complete

3-Coloring is \mathcal{NP} -Complete

 $\textbf{ 0} \ \ \text{3-Coloring} \in \mathcal{NP}$

3-Coloring is \mathcal{NP} -Complete

- **1** 3-Coloring $\in \mathcal{NP}$
- **2** 3-SAT \leq_p 3-Coloring:

3-Coloring is \mathcal{NP} -Complete

- **1** 3-Coloring $\in \mathcal{NP}$
- **2** 3-SAT \leq_p 3-Coloring:

Main Tool

We need gadgets

Clause Gadget

We have 3 colors: T, F, B

Claim

- If a, b, c are all colored F, then $a \lor b \lor c$ is colored F
- If at least one of a, b, c is colored T, then there is a coloring s.t. $a \lor b \lor c$ is colored T

Putting it All Together

Putting it All Together

Claim

 $oldsymbol{0}$ If ϕ is satisfiable, G is 3-colorable

Putting it All Together

Claim

- **1** If ϕ is satisfiable, G is 3-colorable
- 2 If G is 3-colorable than ϕ is satisfiable

Outline

- 1 Lecture 22 Review
- 2 Graph Coloring
- \odot \mathcal{NP} -Intermediate Languages
- 4 co- \mathcal{NP}

ullet Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$

- \bullet Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $P \neq \mathcal{NP}$:

- \bullet Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $P \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

- Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

If $P \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.

- \bullet $L \notin \mathcal{P}$, and
- 2 *L* is not \mathcal{NP} -Complete

- Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

If $P \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.

- \bullet $L \notin \mathcal{P}$, and
- 2 L is not \mathcal{NP} -Complete

Comment: All languages useful for crypto are such \mathcal{NP} -intermediate languages

Proof

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

Proof

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

- **1** If H(n) = n, then $SAT_H \in \mathcal{P}$
- ② If $H(n) \leq c$, then SAT_H is \mathcal{NP} -Complete
- We will define H to be in between these two cases

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \leq \log \log n$ s.t. for all x, $|x| \leq \log n$, $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all x, $|x| \le \log n$, $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all x, $|x| \le \log n$, $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x
- ② Claim: $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all x, $|x| \le \log n$, $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x
- Claim: SAT_H ∈ P iff H(n) < c for all n
 (⇒) By definition of P, there is machine M_k that decides SAT_H in kn^k steps so H(n) = k

Let $M_1, M_2, ...$ be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all x, $|x| \le \log n$, $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x
- ② Claim: $SAT_H \in \mathcal{P}$ iff H(n) < c for all n (\Rightarrow) By definition of \mathcal{P} , there is machine M_k that decides SAT_H in kn^k steps so H(n) = k
 - (⇐) If H(n) < c, then there is infinitely long stretch where H(x) = i. But, then M_i decides SAT_H .

Completing the proof

Claim

 $SAT_H \in \mathcal{P} \text{ iff } H(n) < c \text{ for all } n$

Completing the proof

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

- SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is $\mathcal{NP}\text{-}\mathsf{Complete}$, contradiction!

Completing the proof

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

- **1** SAT_H \notin \mathcal{P} :
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is \mathcal{NP} -Complete, contradiction!
- **2** SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps ψ of length n to $\phi 01^H(n)$ of length n^c , but $H(n) \to \infty$ so this is super-poly in size of ϕ
 - Hence $|\phi| <<$ n, so have reduced solving long formula to solving a much shorter one.
 - Repeat this enough times to make $|\phi| = O(1)$ and solve.

Takeaway

If $\mathcal{P} \neq \mathcal{NP}$, then $\mathcal{NP}\text{-intermediate languages exist!}$

Outline

- 1 Lecture 22 Review
- @ Graph Coloring
- \bigcirc \mathcal{NP} -Intermediate Languages

Question

Do all languages have poly-size proofs?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

ullet For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$$

- For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$
- Is this in \mathcal{NP} ?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$$

- For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$
- Is this in \mathcal{NP} ?
- \bullet We define complexity class co- \mathcal{NP} to contain all such languages that are complements of languages in \mathcal{NP}

 $\overline{\mathcal{P}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

$\overline{\mathcal{NP}}$

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$

 $L\in ext{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x\in L$ for all w, V(x,w)=0

Question:

Can you prove that $x \in L$, when $L \in \text{co-}\mathcal{NP}$?

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

 It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT
- $\mathcal{NP} \neq \text{co-}\mathcal{NP}$

• There are many other complexity classes

- There are many other complexity classes
- We know some relationships between classes

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 547 complexity classes.