Bounded Gaps Between Products of Primes with Applications to Elliptic Curves and Modular *L*-functions

Frank Thorne

University of Wisconsin - Madison

May 16, 2007

Work of Goldston, Graham, Pintz, Yıldırım

Notation:

 $p_n := n^{\mathsf{th}} \mathsf{prime}$

 $q_n := n^{\text{th}} E_2$ number (product of two primes)

Theorem (Goldston, Pintz, Yıldırım)

$$\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log n}=0.$$

Theorem (Goldston, Graham, Pintz, Yıldırım)

$$\liminf_{n\to\infty}(q_{n+1}-q_n)\leq 6.$$

Natural generalizations:

Natural generalizations:

▶ Can a similar bound be proved for E_r numbers, for any $r \ge 3$?

Natural generalizations:

- ▶ Can a similar bound be proved for E_r numbers, for any $r \ge 3$?
- ► Can a similar bound be proved when the prime factors are required to lie in some "nice" set of primes \mathcal{P} ?

Natural generalizations:

- ▶ Can a similar bound be proved for E_r numbers, for any $r \ge 3$?
- ► Can a similar bound be proved when the prime factors are required to lie in some "nice" set of primes \mathcal{P} ?

Yes.

Main Theorem

Notation:

 $\mathcal{P}:=$ subset of the primes; must be "fairly well distributed".

 $q_n:=n^{\mathsf{th}}\ E_r$ number with all prime factors in $\mathcal{P}.$

Main Theorem

Notation:

 $\mathcal{P} := \text{subset of the primes; must be "fairly well distributed"}$.

 $q_n := n^{\mathsf{th}} \, E_r$ number with all prime factors in \mathcal{P} .

Theorem (T.)

For any such \mathcal{P} and $r \geq 2$ there exists an explicit constant $C(r, \mathcal{P})$ such that

$$\liminf_{n\to\infty}(q_{n+1}-q_n)\leq C(r,\mathcal{P}).$$

Main Theorem

Notation:

 $\mathcal{P}:=$ subset of the primes; must be "fairly well distributed".

 $q_n := n^{\mathsf{th}} \, E_r$ number with all prime factors in \mathcal{P} .

Theorem (T.)

For any such \mathcal{P} and $r \geq 2$ there exists an explicit constant $C(r,\mathcal{P})$ such that

$$\liminf_{n\to\infty}(q_{n+1}-q_n)\leq C(r,\mathcal{P}).$$

We will describe our result more explicitly, and give some applications.

Conditions on \mathcal{P}

 $ightharpoonup \mathcal{P} = a$ set of primes with a natural density > 0.

Conditions on ${\mathcal P}$

- $ightharpoonup \mathcal{P} = a$ set of primes with a natural density > 0.
- $ightharpoonup \mathcal{P}$ is well-distributed in arithmetic progressions: \mathcal{P} satisfies a Bombieri-Vinogradov or Siegel-Walfisz condition.

Conditions on ${\mathcal P}$

- $ightharpoonup \mathcal{P} = a$ set of primes with a natural density > 0.
- P is well-distributed in arithmetic progressions: P satisfies a Bombieri-Vinogradov or Siegel-Walfisz condition.
- An exceptional modulus M is allowed: we can allow bad distribution modulo q when (q, M) > 1.

Admissible *k*-tuples

An M-admissable k-tuple is a set

$$\{a_1n+b_1,\ldots,a_kn+b_k\}$$

which:

Admissible k-tuples

An M-admissable k-tuple is a set

$$\{a_1n+b_1,\ldots,a_kn+b_k\}$$

which:

never simultaneously represents all residue classes modulo p, for any prime p.

Admissible k-tuples

An M-admissable k-tuple is a set

$$\{a_1n+b_1,\ldots,a_kn+b_k\}$$

which:

- never simultaneously represents all residue classes modulo p, for any prime p.
- ▶ satisfies $a_i|M$ and $(M, a_i/M) = 1$ for each i.

Admissible k-tuples, cont.

Goal: Infinitely often, two or more $a_i n + b_i$ represent E_r numbers. If $a_1 = \cdots = a_k = M$, our k-tuple gives bounded gaps.

Admissible *k*-tuples, cont.

Goal: Infinitely often, two or more $a_i n + b_i$ represent E_r numbers. If $a_1 = \cdots = a_k = M$, our k-tuple gives bounded gaps.

To each linear form, associate a *density* δ_i : the proportion of E_r numbers represented by $a_i n + b_i$ which are products of primes in \mathcal{P} .

Admissible *k*-tuples, cont.

Goal: Infinitely often, two or more $a_i n + b_i$ represent E_r numbers. If $a_1 = \cdots = a_k = M$, our k-tuple gives bounded gaps.

To each linear form, associate a *density* δ_i : the proportion of E_r numbers represented by $a_i n + b_i$ which are products of primes in \mathcal{P} .

Write δ for the minimum of the δ_i .

Bounded gaps between E_2 numbers

Theorem

Suppose $\mathcal P$ satisfies BV with a level of distribution ϑ . Let $\{L_i(n)\}$ be an M-admissable k-tuple of linear forms. There are $\nu+1$ forms among them which simultaneously represent E_2 numbers with prime factors in $\mathcal P$ infinitely often, provided

$$k \geq \frac{2e^{-\gamma}(1+o_k(1))}{\vartheta}e^{\nu/2\vartheta\delta^2}.$$

Very similar to a result proved in [GGPY2].

We may take

$$o_k(1) = \frac{1}{3} \left(\frac{5}{k} + \frac{1}{\sqrt{k}} \right).$$

Bounded gaps between E_r numbers $(r \ge 3)$

Theorem

Suppose \mathcal{P} satisfies BV with a level of distribution ϑ , and let $\{L_i(n)\}$ be an admissable k-tuple. There are $\nu+1$ forms among them which simultaneously represent E_r numbers with prime factors in \mathcal{P} infinitely often, provided

$$k > 3 \exp(\left[\frac{29B\nu(r-1)!}{\delta}\right]^{\frac{1}{r-1}}) + 2,$$

where

$$B := \max\left(\frac{2}{\vartheta}, r + 2\right).$$

Bounded gaps between E_r numbers $(r \ge 3)$, II

For the weaker Siegel-Walfisz condition:

Theorem

Suppose $\mathcal P$ satisfies SW, and let $\{L_i(n)\}$ be an M-admissable k-tuple. There are $\nu+1$ forms which simultaneously represent E_r numbers with prime factors in $\mathcal P$ infinitely often, provided

$$k > 3 \exp(\left[\frac{29\nu(r+4)(r-2)!}{\delta}\right]^{\frac{1}{r-2}}) + 2.$$

Sketch of the proof

Follow the same idea as GPY/GGPY. Consider

$$S = \sum_{n=N}^{2N} \left(\sum_{i=1}^{k} \beta_r(a_i n + b_i) - \nu \right) \left(\sum_{d \mid \prod_i (a_i n + b_i)} \lambda_d \right)^2,$$

where

 $\beta_r(n)$ = characteristic function of "good" E_r 's, λ_d = any real numbers.

Sketch of the proof

Follow the same idea as GPY/GGPY. Consider

$$S = \sum_{n=N}^{2N} \left(\sum_{i=1}^{k} \beta_r(a_i n + b_i) - \nu \right) \left(\sum_{d \mid \prod_i (a_i n + b_i)} \lambda_d \right)^2,$$

where

 $\beta_r(n) = \text{characteristic function of "good" } E_r \text{'s,}$

 $\lambda_d = \text{any real numbers}.$

Goal: Prove S > 0.

Break S up:

$$S^{-} = \sum_{N < n \leq 2N} \left(\sum_{d \mid \prod_{i} (a_{i}n + b_{i})} \lambda_{d} \right)^{2}$$

and

$$S_j^+ = \sum_{N < n \le 2N} \beta_r(a_j n + b_j) \left(\sum_{d \mid \prod_j (a_j n + b_j)} \lambda_d \right)^2.$$

Choose λ_d so S^- is small and S_i^+ is large.

Our choice of λ_d will be as in the Selberg sieve.

► Change the order of summation, use BV estimates and Selberg diagonalization.

- ► Change the order of summation, use BV estimates and Selberg diagonalization.
- Write our sums as nonnegative Stieltjes integrals, and approximate by integrals of smooth functions.

- ► Change the order of summation, use BV estimates and Selberg diagonalization.
- Write our sums as nonnegative Stieltjes integrals, and approximate by integrals of smooth functions.
- ▶ Bound these integrals from below (or evaluate them numerically.)

Bound gaps interesting integers n that satisfy interesting properties, such as:

▶ The class number $h(\mathbb{Q}(\sqrt{-n}))$ is divisible or indivisible by some fixed integer k.

Bound gaps interesting integers n that satisfy interesting properties, such as:

- ▶ The class number $h(\mathbb{Q}(\sqrt{-n}))$ is divisible or indivisible by some fixed integer k.
- ▶ For a fixed elliptic curve E/\mathbb{Q} , the quadratic twist E(n) has rank 0.

Bound gaps interesting integers n that satisfy interesting properties, such as:

- ▶ The class number $h(\mathbb{Q}(\sqrt{-n}))$ is divisible or indivisible by some fixed integer k.
- ▶ For a fixed elliptic curve E/\mathbb{Q} , the quadratic twist E(n) has rank 0.
- As above, and moreover, the Shafarevich-Tate group of E(n) has an element of order $\ell > 1$.

Bound gaps interesting integers n that satisfy interesting properties, such as:

- ▶ The class number $h(\mathbb{Q}(\sqrt{-n}))$ is divisible or indivisible by some fixed integer k.
- ▶ For a fixed elliptic curve E/\mathbb{Q} , the quadratic twist E(n) has rank 0.
- As above, and moreover, the Shafarevich-Tate group of E(n) has an element of order $\ell > 1$.

We apply works of Ono, Balog-Ono, Murty-Murty, and Soundararajan to address some of these applications.

Class numbers

Theorem (Soundararajan)

Suppose $d \equiv 1 \mod 8$ is positive and square-free with all prime factors $\equiv \pm 1 \mod 8$. Then $Cl(\mathbb{Q}(\sqrt{-d}))$ has an element of order 4.

Class numbers

Theorem (Soundararajan)

Suppose $d \equiv 1 \mod 8$ is positive and square-free with all prime factors $\equiv \pm 1 \mod 8$. Then $\mathit{Cl}(\mathbb{Q}(\sqrt{-d}))$ has an element of order 4.

Corollary

There are infinitely many pairs of E_2 numbers, say m and n, such that the class groups $Cl(\mathbb{Q}(\sqrt{-m}))$ and $Cl(\mathbb{Q}(\sqrt{-n}))$ each have elements of order 4, with

$$|m-n| \leq 64$$
.

Class numbers: the proof

Consider the 6-tuple

$$\mathcal{L} = \{8n + 49, 8n + 65, 8n + 73, 8n + 89, 8n + 97, 8n + 113\}.$$

Half of the E_2 numbers represented will meet Soundararajan's condition. So our density δ is 1/2.

Class numbers: the proof

Consider the 6-tuple

$$\mathcal{L} = \{8n + 49, 8n + 65, 8n + 73, 8n + 89, 8n + 97, 8n + 113\}.$$

Half of the E_2 numbers represented will meet Soundararajan's condition. So our density δ is 1/2.

This is a lot better than 1/8.

Class numbers: the proof

Consider the 6-tuple

$$\mathcal{L} = \{8n + 49, 8n + 65, 8n + 73, 8n + 89, 8n + 97, 8n + 113\}.$$

Half of the E_2 numbers represented will meet Soundararajan's condition. So our density δ is 1/2.

This is a lot better than 1/8.

Check: our E_2 theorem allows k = 6.

Elliptic curves: background

Given an elliptic curve

$$E: y^2 = x^3 + ax^2 + bx + c.$$

If D is a fundamental discriminant, the D-quadratic twist is

$$E(D): Dy^2 = x^3 + ax^2 + bx + c.$$

Question

How do the ranks of E(D) vary with D?

Elliptic curves: background

Given an elliptic curve

$$E: y^2 = x^3 + ax^2 + bx + c.$$

If D is a fundamental discriminant, the D-quadratic twist is

$$E(D): Dy^2 = x^3 + ax^2 + bx + c.$$

Question

How do the ranks of E(D) vary with D?

Conjecture (Goldfeld)

$$\sum_{D} \operatorname{ord}_{s=1}(\mathit{L}(\mathit{E}(D),s)) \sim rac{1}{2} \sum_{D} 1.$$

Ono's result

Theorem (Ono)

Suppose E does not have a \mathbb{Q} -torsion point of order 2. Then

$$\#\{D: |D| \le X, L(E(D), 1) \ne 0\} \gg \frac{X}{\log^{1-\alpha} X},$$

where α is the density of a Chebotarev set of primes S_E .

Ono's result

Theorem (Ono)

Suppose E does not have a \mathbb{Q} -torsion point of order 2. Then

$$\#\{D: |D| \le X, L(E(D), 1) \ne 0\} \gg \frac{X}{\log^{1-\alpha} X},$$

where α is the density of a Chebotarev set of primes S_E . The D are constructed as products

$$Np_1p_2\ldots p_{2j},$$

for primes $p_i \in S_E$.

Bounded gaps for elliptic curves

Theorem (Murty-Murty) Chebotarev sets satisfy BV.

Bounded gaps for elliptic curves

Theorem (Murty-Murty)

Chebotarev sets satisfy BV.

Theorem

Let E/\mathbb{Q} be an elliptic curve without a \mathbb{Q} -rational torsion point of order 2. There is $C_E > 0$ and infinitely many pairs of square-free integers m and n for which:

(i)
$$L(E(m), 1) \cdot L(E(n), 1) \neq 0$$
,

(ii)
$$rank(E(m)) = rank(E(n)) = 0$$
,

(iii)
$$|m-n| < C_E$$
.

Bounded gaps for elliptic curves

Theorem (Murty-Murty)

Chebotarev sets satisfy BV.

Theorem

Let E/\mathbb{Q} be an elliptic curve without a \mathbb{Q} -rational torsion point of order 2. There is $C_E > 0$ and infinitely many pairs of square-free integers m and n for which:

(i)
$$L(E(m), 1) \cdot L(E(n), 1) \neq 0$$
,

(ii)
$$rank(E(m)) = rank(E(n)) = 0$$
,

(iii)
$$|m-n| < C_E$$
.

This can be made effective for particular examples.

Question on Shafarevich-Tate Groups

Look at D such that E(D) has rank 0 and an element of order $\ell \in \{3,5,7\}$ in the Shafarevich-Tate group. Can we say anything?

Question on Shafarevich-Tate Groups

Look at D such that E(D) has rank 0 and an element of order $\ell \in \{3,5,7\}$ in the Shafarevich-Tate group. Can we say anything? By work of Balog and Ono, we should find solutions to an equation

$$Mcp_1 \dots p_{2\ell} = m^{2\ell} - n^2$$

with $p_i \in S_E$.

Question on Shafarevich-Tate Groups

Look at D such that E(D) has rank 0 and an element of order $\ell \in \{3,5,7\}$ in the Shafarevich-Tate group. Can we say anything? By work of Balog and Ono, we should find solutions to an equation

$$Mcp_1 \dots p_{2\ell} = m^{2\ell} - n^2$$

with $p_i \in S_E$.

Get a simultaneous multiplicative and additive question. Can one prove bounded gaps? We would be interested to see a proof.