Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) a) Behauptung: Die untenstehende Sequenzkalkülregel ist korrekt:

$$(\exists\Rightarrow)\frac{\Phi,\psi(c)\Rightarrow\Delta}{\Phi,\exists x\psi(x)\Rightarrow\Delta}c \text{ kommt nicht in }\Phi,\delta,\psi(x) \text{ vor }$$

Beweis: Sei $J = (A, \beta)$ ein τ -Interpretation die Φ und für mindestens ein x, $\psi(x)$ erfüllt. Also:

$$J \vDash \Phi$$
$$J \vDash \exists x \psi(x)$$

Sei τ die Signatur die alle Relations-, Funktions- und Konstantensymbole enthält, die in Φ , Δ , $\psi(x)$ vorkommen, aber nicht c. Wir nehmen an, dass $\Phi \cup \{\exists x \psi(x)\}$ erfüllbar ist, sonst sind wir fertig. Sei also $J = (\mathcal{A}, \beta)$ eine τ -Interpretation mit $J \models \Phi \cup \{\exists x \psi(x)\}$. Sei $a \in A$ sodass $J[x/a] \models \psi(x)$. Sei J_a die $\tau \cup \{c\}$ -Interpretation, die die Konstante c mit a belegt und sonst mit J übereinstimmt. Da $J[x/a] \models \psi(x)$ und da c nicht in Φ und $\psi(x)$ vorkommt, gilt $J_a \models \Phi \cup \{\psi(c)\}$. Nach Vorraussetzung gilt $J_a \models \delta$ für ein $\delta \in \Delta$. Da c nicht in Δ vorkommt, gilt auch $J \models \delta$. Dies war zu zeigen.

b) Behauptung: Die untenstehende Sequenzkalkülregel ist korrekt:

$$(\Rightarrow \exists) \frac{\Phi \Rightarrow \Delta, \psi(c)}{\Phi \Rightarrow \Delta, \exists x \psi(x)}$$

Wir nehmen an, dass Φ erfüllbar ist, sonst sind wir fertig. Sei aber $J = (\mathcal{A}, \beta)$ eine Interpretation mit $J \models \Phi$. Falls $J \models \delta$ für ein $\delta \in \Delta$, so sind wir fertig. Sonst gilt nach Vorraussetzung $J \models \psi(c)$. Sei $a = [\![c]\!]^J$, Daraus gilt $J[x/a] \models \psi(x)$

Aufgabe 2

(i)

$$\frac{\Phi, \psi \Rightarrow \Delta}{\Phi \Rightarrow \Lambda}$$

Wir geben ein Gegenbeispiel an. Wir wählen $\Phi = \{\top\}$, $\psi = \bot$ sowie $\Delta = \{\top\}$. Dann gilt:

$$\frac{\{\top\},\bot\Rightarrow\{\top\}}{\{\top\}\Rightarrow\{\top\}}$$

Somit gilt in jeder beliebigen Interpretation \mathcal{J} , dass die obere Sequenz ungültig ist, die untere aber nicht.

(ii)

$$\frac{\Phi, \neg \forall x \varphi \Rightarrow \Delta}{\Phi \Rightarrow \Delta, \exists x \varphi}$$

Wir geben ein Gegenbeispiel an. Wir wählen $\Phi = \{\top\}$, $\varphi = (x = x)$ sowie $\Delta = \emptyset$. Dann gilt:

$$\frac{\{\top\}, (\neg \forall x \ x = x) \Rightarrow \emptyset}{\{\top\} \Rightarrow (\exists x \ x = x)}$$

Somit gibt es offensichtlich eine Interpretation, sodass die obere Sequenz gültig ist, die untere aber nicht

Aufgabe 3

Es gilt:

$$\{\forall x f(x) = x\} \Rightarrow \{f(f(c)) = c\} \equiv \{\forall x f(x) = x\} \cup \{\forall x f(x) = x\} \Rightarrow \{f(f(c)) = c\}$$

Mit dem Sequenzenkalkül kann man das Axiom nun beweisen:

$$(\mathcal{S}\Rightarrow)\frac{\{f(f(c))=c\}\Rightarrow\{f(f(c))=c\}}{\{f(c)=c,f(f(c))=f(c)\}\Rightarrow\{f(f(c))=c\}}\\ (\forall\Rightarrow)\frac{\{\forall xf(x)=x,f(f(c))=f(c)\}\Rightarrow\{f(f(c))=c\}}{\{\forall xf(x)=x\}\cup\{\forall xf(x)=x\}\Rightarrow\{f(f(c))=c\}}$$

Aufgabe 4

Da $\sigma=\emptyset$ gilt, dass alle Formeln $\varphi\in FO[\sigma]$ in der Auswertung in verschiedenen σ -Strukturen sich nur über den Quantorenrang von φ unterscheiden. Da φ endlich ist (Eingabe ist endlich), hat φ einen Quantorenrang $qr(\varphi)=m$. Würde man nun eine σ -Struktur suchen die ein Modell von φ ist, würde es reichen beliebige Strukturen mit m Elementen zu testen, da jede Struktur mit mehr als m Elementen elementar-äquivalent zu der mit m ist. Damit kann jede Berechnung der Turingmaschine die ein φ bekommen hat, nach dem untersuchen von Strukturen mit 1-m Elementen abbrechen, falls keine gefunden wurde und eindeutig sagen, dass es kein Modell gibt bzw. dass es ein Modell gibt. Dies entspricht der Definition von Entscheidbarkeit.