

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

NEERING ON THE PROPERTY OF THE

B2M32BTSA - Bezdrátové technologie BE2M32BTSA - Wireless Technologies and Sensor Networks

Medium Access Methods

Pavel Mach

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Telecommunication Engineering

ALOHA

Developed in 1970s at University of Hawaii How does it work?

- ▶ If you have data then transmit
- ► When two or more packet transmissions overlap in time -> collision
- ▶ If ACK not received within timeout set backoff timer
- ▶ When backoff timer zero -> re-transmit

ALOHA - Analysis

Offered traffic G

Average number of packets transmitted within packet time

Throughput
$$S = Ge^{-2G}$$

Average number of acknowledged packets within a packet time (theoretical maximum is 1 => if there are no collisions)

Maximal throughput?

$$\frac{\partial S}{\partial G} = e^{-2G} - 2Ge^{-2G} = 0$$

$$G = \frac{1}{2} \to S = \frac{1}{2e} = 0.184$$

Slotted ALOHA

Principle

- ► Transmit only at the beginning of each slot
 - > Packet transmission duration equal as slot duration
- ► Collision only in slots
 - ➤ Backoff in multiples of slot times => transmit again

Slotted ALOHA - Analysis

Offered traffic *G*

► Average number of packets transmitted within one slot

Throughput $S = Ge^{-G}$

Average number of acknowledged packets within a slot (theoretical maximum is 1
 if there are no collisions)

Maximal throughput?

$$\frac{\partial S}{\partial G} = e^{-G} - Ge^{-G} = 0$$

$$G = 1 \to S = \frac{1}{e} = 0.368$$

Objectives

Show figure(s)

See slide 10 for more details

Assumptions

- ► Offered traffic generated with Poisson distribution
- ► Number of stations (N) is 20
- ► Simulation lasts over 10 000 time slots

Template

- ► It is possible to use a template (available at moodle)
- ► You can write your own code without the use of template!!

How to proceed?

How to proceed?

- ▶ 1. Define number of stations and number of slots in the simulation
 - Matlab example: No_stations=20;
 No_slots=10000;
- ▶ 2. Define packet arrival (lambda) for Poisson distribution
 - > 41 predefined values of lambda (between 1 and 200)
 - Lower value of lambda => more packets are transmitted (i.e., higher G)
 - ➤ Matlab example: packet arrival=[1:20 25:5:50 60:10:200];
- ▶ 3. Define variables for results
 - ➤ G = Offered traffic
 - S_analyt = Analytical throughput
 - > S_sim = Simulated throughput
 - Matlab example: G=zeros(1,41);

 S_analyt=zeros(1,41);
 S sim=zeros(1,41);

- ▶ 4. Select current lambda value used for Poisson
 - > Selection from "packet_arrival" defined in 2. Step
 - For example, lambda=1 in the first loop, lambda=2 in the second loop, etc.
 - Matlab example: lambda=packet_arrival(1,lambda_set);

How to proceed?

- ▶ 5. Generate initial packet arrival for each station
 - Only for first slot!
 - Determine slot in which each station is going to transmit data for the first time
 - - For example, if StationTimeToTx = 5, station waits for 5 slots and generates packet in the 6th slot
- ▶ 6. Determine if there are stations that are supposed to transmit
 - If value in StationTimeToTx for any station is 0
- ▶ 7. Check for collisions (only if there is some station transmitting in the current slot)
 - > Determine next packet arrival or backoff (use Poisson for both)
- ▶ 8. Save results for current lambda
 - G = No. of all transmitted packets/No_slots
 - S_analyt (see slide 5 for calculation)
 - S_sim = Transmitted packets w/o collisions/No_slots
- ▶ 9. Plot the results

Expected results and rating

Slotted ALOHA

- ► Analytical throughput (1 point)
- ► Simulated throughput (1 point)
- Probability of collisions/successful transmission (1 BONUS point)
- Try different distribution for packet arrival (1 BONUS point)

Pure ALOHA

► Analytical throughput (0.5 BONUS point)

Simulated throughput (1.5 BONUS point)

Maximum is 4 points!

Evaluation

- During courses
- ▶ 4th week of the semester (17.3.)
 - Short discussion on results and code understanding
 - Points given only if student is understanding the code and basic principle of (Slotted) ALOHA!!

Optional (each student can select what can be done)

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

machp2@fel.cvut.cz