MGMT 467 – Unit 2 Lab 2: Prompt Studio for Al-Assisted SQL + ML

This handout guides you step-by-step through constructing SQL queries via AI prompts to explore, engineer, and model churn prediction in BigQuery.

Task 0: Connect to BigQuery

Verify your BigQuery access and environment setup.

Use %%bigguery in a Colab cell.

Prompt example: 'Write a SQL query to return today's date and current user session.'

Expected SQL: SELECT CURRENT_DATE() AS today, SESSION_USER() AS user;

Checkpoint: Query returns one row with today's date and your user ID.

Task 1: Prepare ML Table

Create a modeling table with clean features and a churn label.

Select columns like region, plan_tier, age_band, avg_rating, total_minutes, churn_label.

Filter: churn label IS NOT NULL.

Prompt: 'Create a BigQuery table named churn_features from cleaned_features with selected features.'

Checkpoint: Table exists and has non-null churn labels.

Task 2: Train Logistic Regression

Use BigQueryML to create a logistic_reg model.

Use churn features table.

Prompt: 'Train a logistic regression model to predict churn_label from behavior features.'

Checkpoint: Model appears in BigQuery; training completes.

Task 3: Evaluate Model

Use ML.EVALUATE to assess model performance.

Metrics include accuracy, precision, recall, log_loss.

Prompt: 'Evaluate my churn_model using ML.EVALUATE.'

Checkpoint: Metrics appear in results table.

Task 4: Predict Churn

Generate predictions using ML.PREDICT.

Prompt: 'Predict churn using churn_model with user_id and probabilities.'

Checkpoint: Verify top users with highest churn risk.

■■ Feature Engineering Tasks

Task 5.0: Bucket a Continuous Feature

Bucket total_minutes into low, medium, high.

Prompt: 'Create a column watch_time_bucket based on thresholds.'

Explore: Churn rate by watch_time_bucket.

Task 5.1: Create Binary Flag

Flag users with total_minutes > 500.

Prompt: 'Create a binary column flag_binge based on total_minutes.'

Explore: Do binge-watchers churn more?

Task 5.2: Create Interaction Feature

Combine plan_tier and region.

Prompt: 'Create column plan_region_combo using CONCAT.'

Explore: Which plan-region combos are riskiest?

Task 5.3: Add Missing Value Flags

Flag missing age_band, avg_rating.

Prompt: 'Create column is_missing_age = 1 if age_band IS NULL.'

Explore: Are missing values predictive?

Task 5.4: Time-Based Feature

Add days_since_last_login.

Prompt: 'Create a column using DATE_DIFF with last_login_date.'

Explore: Recency of login vs. churn.

Task 5.5: Assemble Enhanced Feature Table

Combine all engineered features.

Prompt: 'Create churn_features_enhanced with all new and base columns.'

Checkpoint: No data loss; all features present.

Task 6: Retrain Model

Use engineered features in a new logistic_reg model.

Prompt: 'Train churn_model_enhanced using all enhanced features.'

Compare model metrics to base.

Task 7: Compare Performance

Compare churn_model vs. churn_model_enhanced.

Prompt: 'Evaluate both models and compare precision, recall, log_loss.'

Explore: Which features helped most?

■ Chain-of-Thought Exploration Prompts

Use these to guide deeper insights and reflection after each task:

What assumptions does your model make? Are they valid for your data?

Which features have the strongest correlation with churn?

Did engineered features improve performance? Why or why not?

Were there any surprises in your predictions?

If you were Netflix's retention team, what policy changes would you recommend based on your findings?