Big-O 7/7 points (100%)

Practice Quiz, 7 questions

1/1 points

1.

Introduction and Learning Outcomes

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n)=O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

Yes

Correct

A logarithmic function grows slower than a polynomial function.

No

1/1 points

2.

 $n\log_2 n = O(n)$

Yes

No

Correct

To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.

Big-O

~

1/1 points

7/7 points (100%)

Practice Quiz, 7 quest 3 ns

$$n^2 = O(n^3)$$

Yes

Correct

 n^a grows slower than n^b for constants a < b.

No

1/1 points

4.

$$n = O(\sqrt{n})$$

Correct

 $\sqrt{n}=n^{1/2}$ grows slower than $n=n^1$ as 1/2<1.

1/1 points

5

$$5^{\log_2 n} = O(n^2)$$

Yes

Correct

Recall that $a^{\log_b c}=c^{\log_b a}$ so $5^{\log_2 n}=n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5=2.321\ldots>2$.

1/1 points

Big-O

7/7 points (100%)

Practice Quiz, 7 questions $n^5 = O(2^{3\log_2 n})$

Yes

No

 $2^{3\log_2 n} = (2^{\log_2 n})^3 = n^3$ and n^3 grows slower than n^5 .

1/1 points

 $2^n = O(2^{n+1})$

Yes

 $2^{n+1}=2\cdot 2^n$, that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n = \Theta(2^{n+1})$.

No

