G12 : Correction rapide de l'examen.

Exercice 1. 1. (a) Soit $n \in \mathbb{N}^*$. On a $\mathbb{P}(U_n \in]0,1[) = 1$. Par conséquent, $\mathbb{P}(Y_n \in]0,1[) = 1$ et $F_n(t) = 0$ pour tout $t \leq 0$, $F_n(t) = 1$ pour $t \geq 1$. Si $t \in]0,1[$, comme les $(U_n)_{n\geq 1}$ sont identiquement distribuées,

$$F_n(t) = \mathbb{P}(U_1^n \le t) = \mathbb{P}(U_1 \le t^{1/n}) = t^{1/n}.$$

(b) Soient $n \in \mathbb{N}^*$ et $t \in \mathbb{R}$. Puisque les variables $(U_n)_{n \geq 1}$ sont indépendantes les $(Y_n)_{n \geq 1}$ le sont aussi et

$$H_n(t) = \mathbb{P}(V_n \le t) = \mathbb{P}(Y_1 \le t, \dots, Y_n \le t) = F_1(t) \dots F_n(t) ;$$

en particulier, pour 0 < t < 1, $H_n(t) = t t^{1/2} \dots t^{1/n} = t^{h_n}$ et $H_n(t) = t^{h_n} \mathbf{1}_{[0,1]}(t) + \mathbf{1}_{[1,+\infty[}(t).$

De la même manière, $G_n(t) = F_2(t)F_4(t) \dots F_{2^n}(t)$. Comme $1/2 + 1/4 + \dots + 1/2^n = 1 - 2^{-n}$, on a $G_n(t) = t^{1-2^{-n}}$ pour 0 < t < 1 et finalement $G_n(t) = t^{1-2^{-n}} \mathbf{1}_{[0,1]}(t) + \mathbf{1}_{[1,+\infty[}(t).$

(c) Puisque $V = \sup_{n \geq 1} V_n$, on a $\{V \leq t\} = \bigcap_{n \geq 1} \{V_n \leq t\}$. Pour tout $n \geq 1$, $V_n \leq V_{n+1}$ et donc $\{V_{n+1} \leq t\} \subset \{V_n \leq t\}$. Par conséquent, comme $\lim_{n \to +\infty} h_n = +\infty$, pour tout réel t,

$$\mathbb{P}(V \le t) = \lim_{n \to +\infty} H_n(t) = \mathbf{1}_{[1, +\infty[}(t).$$

Par suite, $\mathbb{P}(V=1)=1$.

- (d) De la même manière, $\mathbb{P}(W \leq t) = \lim_{n \to +\infty} G_n(t) = F(t)$. W suit la loi uniforme sur [0,1] puisque deux variables aléatoires ayant même fonction de répartition sont égales en loi.
 - (e) Soit $t \in \mathbf{R}$. On a, pour $n \geq 2$, comme H_n est continue,

$$\mathbb{P}(\ln n(1-V_n) \le t) = \mathbb{P}\left(V_n \ge 1 - \frac{t}{\ln n}\right) = \mathbb{P}\left(V_n > 1 - \frac{t}{\ln n}\right) = 1 - H_n\left(1 - \frac{t}{\ln n}\right).$$

Si $t \leq 0$, pour tout $n \geq 2$, $1 - H_n \left(1 - \frac{t}{\ln n}\right) = 0$. Si t > 0, pour $n > e^t$, $0 < 1 - \frac{t}{\ln n} < 1$ et $H_n \left(1 - \frac{t}{\ln n}\right) = \left(1 - \frac{t}{\ln n}\right)^{h_n} = e^{h_n \ln\left(1 - \frac{t}{\ln n}\right)}$. Comme $h_n \sim \ln n$, $\lim_{n \to +\infty} H_n \left(1 - \frac{t}{\ln n}\right) = e^{-t}$ pour t > 0. Finalement, pour tout réel t,

$$\lim_{n \to +\infty} \mathbb{P}(\ln n(1 - V_n) \le t) = \mathbb{P}(T \le t) ;$$

 $(\ln n(1-V_n))_{n\geq 1}$ converge en loi vers T.

- 2. (a) Les variables aléatoires $(\psi(U_n))_{n\geq 1}$ sont i.i.d. puisque les $(U_n)_{n\geq 1}$ le sont. D'autre part, $\psi(U_1)$ est intégrable puisque $0\leq \psi(U_1)\leq 1$. La loi forte des grands nombres assure la convergence presque sûre de la suite $(I_n)_{n\geq 1}$ vers $\mathbb{E}\left[\psi(U_1)\right]=I$ puisque U_1 suit la loi uniforme sur [0,1].
- (b) Notons h la fonction borélienne de \mathbf{R}^2 dans \mathbf{R} $h(x,y) = \mathbf{1}_{x < \psi(y)}$ de sorte que, pour tout $n \ge 1, X_n = h(U_{2n-1}, U_{2n})$. Puisque les ensembles $I_n = \{2n-1, 2n\}, n \ge 1$, forment une partition de \mathbf{N}^* , l'indépendance des variables $(U_n)_{n\ge 1}$ entraı̂ne l'indépendance des tribus $\sigma(U_{2n-1}, U_{2n}), n \ge 1$. Comme, pour tout $n \ge 1, X_n = h(U_{2n-1}, U_{2n})$ est $\sigma(U_{2n-1}, U_{2n})$ -mesurable, les variables $(X_n)_{n\ge 1}$ sont indépendantes. D'autre part, comme les $(U_{n\ge 1})$ sont i.i.d., pour tout $n \ge 1, (U_{2n-1}, U_{2n})$ a pour densité $(x,y) \longmapsto \mathbf{1}_{[0,1]}(x) \, \mathbf{1}_{[0,1]}(y)$. Par conséquent, les $(X_n)_{n\ge 1}$ sont identiquement distribuées suivant la loi de $X_1 = h(U_1, U_2)$.

(c) X_1 suit une loi de Bernoulli puisqu'elle est à valeurs dans $\{0,1\}$. De plus, par Tonelli,

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(U_{2n-1} < \psi(U_{2n})) = \iint_{[0,1]^2} \mathbf{1}_{x < \psi(y)} \, dx dy = \int_0^1 \left(\int_0^1 \mathbf{1}_{x < \psi(y)} \, dx \right) = \int_0^1 \psi(y) \, dy.$$

Les $(X_n)_{n\geq 1}$ sont donc i.i.d. suivant la loi $\mathcal{B}(I)$.

En particulier, X_1 est intégrable et la loi forte des grands nombres donne la convergence presque sûre de $\left(\overline{X}_n\right)_{n>1}$ vers $\mathbb{E}[X_1]=I$.

3. Les variables aléatoires $\psi(U_1)$ et X_1 sont bornées donc de carré intégrable. Puisque U_1 suit la loi uniforme sur [0,1] et X_1 la loi de Bernoulli de paramètre I on a

$$\mathbb{V}(\psi(U_1)) = \int_0^1 \psi^2(x) \, dx - I^2, \quad \text{et} \quad \mathbb{V}(X_1) = I - I^2.$$

Comme ψ est à valeurs dans [0,1], $\mathbb{V}(\psi(U_1)) \leq \mathbb{V}(X_1)$.

Les variables aléatoires $(\psi(U_n))_{n\geq 1}$ sont i.i.d. et de carré intégrable; il en est de même des variables $(X_n)_{n\geq 1}$. Si $\varepsilon > 0$, l'inégalité de Tchebycheff donne

$$\mathbb{P}(|I_n - I| > \varepsilon) \le \frac{\mathbb{V}(I_n)}{\varepsilon^2} = \frac{\mathbb{V}(\psi(U_1))}{n\varepsilon^2}, \quad \mathbb{P}\left(\left|\overline{X}_n - I\right| > \varepsilon\right) \le \frac{\mathbb{V}(X_1)}{n\varepsilon^2}.$$

Au vue de ces majorations, il vaut mieux choisir la suite $(I_n)_{n\geq 1}$ pour approcher I.

D'autre part, le TCL donne pour tout t > 0, notant $\sigma = \sqrt{\mathbb{V}(\psi(U_1))}$ et $\sigma' = \sqrt{\mathbb{V}(X_1)}$,

$$\lim_{n \to +\infty} \mathbb{P}\left(|I_n - I| > \frac{t}{\sqrt{n}}\right) = \lim_{n \to +\infty} \mathbb{P}\left(\frac{\sqrt{n}}{\sigma} |I_n - I| > \frac{t}{\sqrt{\sigma}}\right) = 2\left(1 - \Phi\left(\frac{t}{\sqrt{\sigma}}\right)\right)$$

où $\Phi(t) = \int_{-\infty}^{t} e^{-x^2/2} dx / \sqrt{2\pi}$, de même que

$$\lim_{n \to +\infty} \mathbb{P}\left(\left|\overline{X}_n - I\right| > \frac{t}{\sqrt{n}}\right) = \lim_{n \to +\infty} \mathbb{P}\left(\frac{\sqrt{n}}{\sigma'} \left|\overline{X}_n - I\right| > \frac{t}{\sqrt{\sigma'}}\right) = 2\left(1 - \Phi\left(\frac{t}{\sqrt{\sigma'}}\right)\right).$$

Comme $\sigma \leq \sigma'$ et Φ est croissante, $2(1 - \Phi(t/\sqrt{\sigma})) \leq 2(1 - \Phi(t/\sqrt{\sigma'}))$. Il vaux mieux choisir I_n puisque la probabilité pour que I_n s'écarte de I de t/\sqrt{n} est plus petite que celle pour que \overline{X}_n dévie de I de la même quantité pour n assez grand.

- Exercice 2. 1. Les variables aléatoires $(X_n)_{n\geq 1}$ étant i.i.d. et de carré intégrable, le théorème limite central implique la convergence en loi de $(Y_n)_{n\geq 1}$ vers Y de loi $\mathcal{N}(0,1)$ puisque X_1 est centrée et de variance 1.
- 2. (a) Pour tout $n \geq 1$, (X_1, \ldots, X_n) et $(X_{n+1}, \ldots, X_{2n})$ sont indépendantes et identiquement distribuées suivant $\mathbb{P}_{X_1}^{\otimes n}$. $Y_n = n^{-1/2} \sum_{k=1}^n X_k$ et $Z_n Y_n = n^{-1/2} \sum_{k=n+1}^{2n} X_k$ sont également i.i.d. et possèdent en particulier la même fonction caractéristique ψ_n .

D'autre part, les $(X_n)_{n\geq 1}$ étant i.i.d., pour tout réel t,

$$\psi_n(t) = \mathbb{E}\left[\prod_{1 \le k \le n} e^{itX_k/\sqrt{n}}\right] \stackrel{i.}{=} \prod_{1 \le k \le n} \mathbb{E}\left[e^{itX_k/\sqrt{n}}\right] \stackrel{i.d.}{=} \mathbb{E}\left[e^{itX_1/\sqrt{n}}\right]^n = \varphi(t/\sqrt{n})^n.$$

(b) Comme déjà dit, Y_n et $Z_n - Y_n$ sont i.i.d. Par suite, si s et t sont deux réels,

$$\mathbb{E}\left[e^{isY_n+it(Z_n-Y_n)}\right] = \mathbb{E}\left[e^{isY_n}\right] \, \mathbb{E}\left[e^{it(Z_n-Y_n)}\right] = \psi_n(s)\psi_n(t)$$

D'après le théorème de Paul Lévy, pour tout réel t, $\psi_n(t) \longrightarrow e^{-t^2/2}$, puisque $(Y_n)_{n\geq 1}$ converge en loi vers Y de loi $\mathcal{N}(0,1)$. Par conséquent,

$$\lim_{n \to +\infty} \mathbb{E}\left[e^{isY_n + it(Z_n - Y_n)}\right] = e^{-s^2/2}e^{-t^2/2} = e^{-(s^2 + t^2)/2}$$

qui est la fonction caractéristique de la loi $\mathcal{N}(0, I_2)$ c'est à dire la loi de (Y, G) où (Y, G) sont i.i.d. suivant la loi $\mathcal{N}(0, 1)$. Via le théorème de Paul Lévy, $((Y_n, Z_n - Y_n))_{n \geq 1}$ converge en loi vers (Y, G) i.i.d. suivant la loi $\mathcal{N}(0, 1)$.

(c) Observons que

$$\begin{pmatrix} Y_n \\ Z_n \end{pmatrix} = A \, \begin{pmatrix} Y_n \\ Z_n - Y_n \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Comme un endomorphsime de \mathbf{R}^2 est continu, la suite de terme général $(Y_n, Z_n)^*$ converge en loi vers $(Y, Z)^* = A(Y, G)^*$. Puisque (Y, G) suit la loi $\mathcal{N}(0, I_2)$, (Y, Z) est une vecteur gaussien centré de matrice de covariance

$$\Gamma = AI_2A^* = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Exercice 3. 1. A est un événement asymptotique de la suite $(Y_n)_{n\geq 1}$ puisque, pour tout $r\geq 1$, $A=\{\omega\in\Omega:\sum_{k\geq r}Y_k(\omega)<+\infty\}$. Comme les variables $(Y_n)_{n\geq 1}$ sont indépendantes, il résulte de la loi du tout rien de Kolmogorov que $\mathbb{P}(A)=0$ ou 1. De même pour $\mathbb{P}(B)$.

2. (a) Soit $k \in \mathbf{N}^*$. On a, si $c_k > 0$,

$$\mathbb{P}(c_k X_k \ge 1) = \mathbb{P}(X_k \ge 1/c_k) = \int_{1 \lor 1/c_k}^{+\infty} \frac{dx}{x^2} = \frac{1}{\max(1, 1/c_k)} = \min(1, c_k).$$

Cette formule est encore valable pour $c_k = 0$.

- (b) Si $\sum_{k\geq 1} c_k = +\infty$ alors $\sum_{k\geq 1} \min(c_k, 1) = +\infty$. Comme les événements $(\{c_n X_n \geq 1\})_{n\geq 1}$ sont indépendants, $\mathbb{P}(\limsup\{c_n X_n \geq 1\}) = 1$ d'après le lemme de Borel-Cantelli. Si ω appartient à $\limsup\{c_n X_n \geq 1\}$, il existe une infinité de n tels que $c_n X_n(\omega) \geq 1$ et $\sum_{k\geq 1} c_k X_k(\omega) = +\infty$ puisque les variables aléatoires $(X_n)_{n\geq 1}$ sont positives. Par conséquent, $\mathbb{P}(B^c) = 1$ et $\mathbb{P}(B) = 0$.
- 3. (a) Puisque les variables $(Z_n)_{n\geq 1}$ sont positives

$$\sum_{k\geq 1} \mathbb{E}[Z_k] = \mathbb{E}\left[\sum_{k\geq 1} Z_k\right]$$

Si $\sum_{k\geq 1} \mathbb{E}[Z_k] < +\infty$, alors $\sum_{k\geq 1} Z_k$ est une variable intégrable (tout est positif) donc finie p.s. Soit $\omega \in \Omega$ tel que $\sum_{k\geq 1} Z_k(\omega) < +\infty$. On a $\lim_{k\to +\infty} Z_k(\omega) = 0$ et $Y_k(\omega) = \frac{Z_k(\omega)}{1-Z_k(\omega)} \sim Z_k(\omega)$. La série à terme positif $\sum_{k\geq 1} Y_k(\omega)$ est donc convergente. D'où $\mathbb{P}(A) = 1$.

(b) Supposons que $\sum_{k\geq 1} \mathbb{E}[Z_k] = +\infty$. Les variables aléatoires $(Y_n)_{n\geq 1}$ étant indépendantes, il en va de même des variables $(Z_n)_{n\geq 1}$ qui sont de carré intégrable puisque bornées par 1 et

$$\mathbb{E}\left[\left|\frac{\sum_{1\leq k\leq n}Z_k}{\sum_{1\leq k\leq n}\mathbb{E}[Z_k]}-1\right|^2\right] = \frac{\mathbb{V}\left(\sum_{1\leq k\leq n}Z_k\right)}{\left(\sum_{1\leq k\leq n}\mathbb{E}[Z_k]\right)^2} = \frac{\sum_{1\leq k\leq n}\mathbb{V}(Z_k)}{\left(\sum_{1\leq k\leq n}\mathbb{E}[Z_k]\right)^2}.$$

Remarquons que, pour tout $k \geq 1$, $0 \leq Z_k \leq 1$ et donc que $\mathbb{V}(Z_k) \leq \mathbb{E}[Z_k^2] \leq \mathbb{E}[Z_k]$. Par suite,

$$\mathbb{E}\left[\left|\frac{\sum_{1\leq k\leq n}Z_k}{\sum_{1\leq k\leq n}\mathbb{E}[Z_k]}-1\right|^2\right]\leq \frac{\sum_{1\leq k\leq n}\mathbb{E}[Z_k]}{\left(\sum_{1\leq k\leq n}\mathbb{E}[Z_k]\right)^2}=\frac{1}{\sum_{1\leq k\leq n}\mathbb{E}[Z_k]}\longrightarrow 0$$

ce qui donne la convergence dans L² requise.

En particulier, il existe une sous-suite qui converge presque sûrement vers 1. Si on désigne par $(n_r)_{r>1}$ cette sous-suite, on a, presque sûrement, lorsque $r \to +\infty$,

$$\sum_{k=1}^{n_r} Z_k = \sum_{k=1}^{n_r} \mathbb{E}[Z_k] \times \frac{\sum_{k=1}^{n_r} Z_k}{\sum_{k=1}^{n_r} Z_k} \longrightarrow +\infty.$$

Par conséquent, $\sum_{k\geq 1} Z_k = +\infty$ presque sûrement. Comme x est équivalent à x/(1+x) au voisinage de 0, les séries $\sum_{k\geq 1} Z_k$ et $\sum_{k\geq 1} Y_k$ sont de même nature. Par conséquent, $\mathbb{P}(A^c) = 1$ et $\mathbb{P}(A) = 0$.

4. D'après les questions précédentes, $\sum_{k\geq 1} \mathbb{E}\left[\frac{c_k X_k}{c_k X_k + 1}\right] < +\infty$ est équivalent à $\mathbb{P}(B) = 1$. On a

$$\mathbb{E}\left[\frac{c_k X_k}{c_k X_k + 1}\right] = \int_1^{+\infty} \frac{c_k x}{(c_k x + 1)} \frac{1}{x^2} dx = \int_1^{+\infty} \frac{c_k}{(c_k x + 1)x} dx.$$

Si $c_k = 0$, on obtient 0. Si $c_k > 0$, on a

$$\frac{c_k}{(c_k x + 1)x} = \frac{-c_k^2}{c_k x + 1} + \frac{c_k}{x}, \quad \text{et} \quad \mathbb{E}\left[\frac{c_k X_k}{c_k X_k + 1}\right] = \left[-c_k \ln(c_k + \frac{1}{x})\right]_1^{+\infty} = -c_k \ln(c_k) + c_k \ln(1 + c_k).$$

On a donc $\mathbb{P}(B)=1$ si et seulement si $\sum_{k\geq 1} c_k \ln(1+1/c_k) < +\infty$ soit encore

$$\mathbb{P}(B) = 1 \iff \lim_{k \to +\infty} c_k = 0 \text{ et } \sum_{k \ge 1} c_k |\ln c_k| < +\infty.$$