## **Greedy Algorithm**

### JOB SEQUENCING WITH DEADLINES

#### The problem is stated as below.

- There are n jobs to be processed on a machine.
- Each job i has a deadline d<sub>i</sub>≥0 and profit p<sub>i</sub>≥0.
- Pi is earned iff the job is completed by its deadline.
- The job is completed if it is processed on a machine for unit time.
- Only one machine is available for processing jobs.
- Only one job is processed at a time on the machine.

# JOB SEQUENCING WITH DEADLINES (Contd..)

- A feasible solution is a subset of jobs J such that each job is completed by its deadline.
- An optimal solution is a feasible solution with maximum profit value.

```
Example: Let n = 4, (p_1, p_2, p_3, p_4) = (100, 10, 15, 27), (d_1, d_2, d_3, d_4) = (2, 1, 2, 1)
```

# JOB SEQUENCING WITH DEADLINES (Contd..)

| Sr.No.     | <b>Feasible Processing</b> |       |          | Profit value |            |          |
|------------|----------------------------|-------|----------|--------------|------------|----------|
|            | Solution                   |       | Sequence |              |            |          |
| (i)        | (1,2)                      |       | (2,1)    |              | 110        |          |
| (ii)       | (1,3)                      |       | (1,3) or | (3,1)        | 115        |          |
| (iii)(1,4) |                            | (4,1) |          | 127 is       | s the opti | mal one  |
| (iv)(2,3)  |                            | (2,3) |          | 25           |            | <b>†</b> |
| (v)        | (3,4)                      |       | (4,3)    |              | 42         |          |
| (vi)(1)    |                            | (1)   |          | 100          |            |          |
| (vii)      | (2)                        |       | (2)      |              | 10         |          |
| (viii)     | (3)                        |       | (3)      |              | 15         |          |
| (ix)(4)    |                            | (4)   |          | 27           |            |          |

## GREEDY ALGORITHM TO OBTAIN AN OPTIMAL SOLUTION

- Consider the jobs in the non increasing order of profits subject to the constraint that the resulting job sequence J is a feasible solution.
- In the example considered before, the nonincreasing profit vector is

$$(100 27 15 10) (2 1 2 1)$$
 $p_1 p_4 p_3 p_2 d_1 d_4 d_3 d_2$ 

## GREEDY ALGORITHM TO OBTAIN AN OPTIMAL SOLUTION (Contd..)

## GREEDY ALGORITHM FOR JOB SEQUENSING WITH DEADLINE

```
Procedure greedy job (D, J, n)
                                                J may be represented by
// J is the set of n jobs to be completed// one dimensional array J (1:
   K)
// by their deadlines //
                                                 The deadlines are
                                           D(J(1)) \le D(J(2)) \le .. \le D(J(K))
  J ←{1}
  for I \leftarrow 2 to n do
                                               To test if JU {i} is feasible,
 If all jobs in JU{i} can be completed
                                               we insert i into J and verify
                                                D(J^{\otimes}) \le r \qquad 1 \le r \le k+1
by their deadlines
 then J \leftarrow JU\{I\}
end if
  repeat
 end greedy-job
```

## GREEDY ALGORITHM FOR SEQUENCING UNIT TIME JOBS

```
Procedure JS(D,J,n,k)
// D(i) \ge 1, 1 \le i \le n are the deadlines //
// the jobs are ordered such that //
// p_1 \ge p_2 \ge ... \ge p_n //
// in the optimal solution ,D(J(i) \geq D(J(i+1)) //
                            //1 \le i \le k //
integer D(o:n), J(o:n), i, k, n, r
D(0) \leftarrow J(0) \leftarrow 0
// J(0) is a fictious job with D(0) = 0 //
K \leftarrow 1; J(1) \leftarrow 1 // job one is inserted into J //
for i \leftarrow 2 to do // consider jobs in non increasing order of pi //
```

## GREEDY ALGORITHM FOR SEQUENCING UNIT TIME JOBS (Contd..)

```
// find the position of i and check feasibility of insertion //
r ← k // r and k are indices for existing job in J //
// find r such that i can be inserted after r //
while D(J(r)) > D(i) and D(i) ≠ r do
// job r can be processed after i and //
// deadline of job r is not exactly r //
r ← r-1 // consider whether job r-1 can be processed after i //
repeat
```

## GREEDY ALGORITHM FOR SEQUENCING UNIT TIME JOBS (Contd..)

```
if D(J(r)) ≥ d(i) and D(i) > r then
// the new job i can come after existing job r;
  insert i into J at position r+1 //
for I ← k to r+1 by −1 do
J(I+1)← J(I) // shift jobs( r+1) to k right by//
//one position //
repeat
```

## GREEDY ALGORITHM FOR SEQUENCING UNIT TIME JOBS (Contd..)

```
J(r+1)←i; k ←k+1

// i is inserted at position r+1 //

// and total jobs in J are increased by one //
repeat
end JS
```

### COMPLEXITY ANALYSIS OF JS ALGORITHM

- Let n be the number of jobs and s be the number of jobs included in the solution.
- The loop between lines 4-15 (the for-loop) is iterated (n-1)times.
- Each iteration takes O(k) where k is the number of existing jobs.
- ... The time needed by the algorithm is O(sn)  $s \le n$  so the worst case time is  $O(n^2)$ .

If  $d_i = n - i + 1$   $1 \le i \le n$ , JS takes  $\theta(n^2)$  time D and J need  $\theta(s)$  amount of space.

### **Example**

EXAMPLE: let n = 5,  $(p_1, -----p_5) = (20, 15, 10, 5, 1)$  and  $(d_1, --d_5) =$ (2,2,1,3,3). Using the above rule assigned slot jobs being considered action or Ø assigned to [1, 2] none {1} [1,2] 2 [0,1]3 {1,2} [0,1],[1,2] cannot fit reject as [0,1] is not free {1,2} [0,1],[1,2] assign to [2,3] {1,2,4} [0,1],[1,2],[2,3] 5 reject

The optimal solution is {1,2,4} with profit 40

#### 1. Minimum Spanning Tree (For Undirected Graph)

*The problem:* 

1) Tree

A Tree is connected graph with no cycles.

2) Spanning Tree

A *Spanning Tree* of *G* is a tree which contains all vertices in *G*.

Example:

<u>G:</u>



#### b) Is G a Spanning Tree?



Key: Yes



Key: No

Note: Connected graph with n vertices and exactly n-1 edges is Spanning Tree.

#### 3) Minimum Spanning Tree

Assign weight to each edge of *G*, then *Minimum Spanning Tree* is the Spanning Tree with minimum total weight.

#### Algorithms:

1) Prim's Algorithm (Minimum Spanning Tree)

#### Basic idea:

Start from vertex 1 and let  $T \leftarrow \emptyset$  (T will contain all edges in the S.T.); the next edge to be included in T is the minimum cost edge(u, v), s.t. u is in the tree and v is not.

Example: G











Cost = 16+5+6+11+18=56 Minimum Spanning Tree

(n - # of vertices, e - # of edges)It takes O(n) steps. Each step take

It takes O(n) steps. Each step takes O(e) and  $e \le n(n-1)/2$ Therefore, it takes  $O(n^3)$  time.

$$\Rightarrow O(n^2).$$

With clever data structure, it can be implemented in  $O(n^2)$ .

#### 2) Kruskal's Algorithm

Basic idea:

Don't care if *T* is a tree or not in the intermediate stage, as long as the including of a new edge will not create a cycle, we include the minimum cost edge

#### Example:



Step 2: T



#### Kruskal's algorithm

```
While (T contains fewer than n-1 edges) and (E \neq \emptyset) do Begin

Choose an edge (v,w) from E of lowest cost;

Delete (v,w) from E;

If (v,w) does not create a cycle in T then add (v,w) to T else discard (v,w);

End;
```

With clever data structure, it can be implemented in O(e log e).

So, complexity of Kruskal is 
$$O(eLoge)$$
  $\Rightarrow O(eLoge) \Rightarrow O(eLoge) = O(eLogn)$   $\therefore e \leq \frac{n(n-1)}{2} \Rightarrow Loge \leq Logn^2 = 2Logn$ 

- 3) Comparing Prim's Algorithm with Kruskal's Algorithm
  - i. Prim's complexity is  $O(n^2)$
  - ii. Kruskal's complexity is O(eLogn)
    - if G is a complete (dense) graph, Kruskal's complexity is  $O(n^2 Log n)$ if G is a sparse graph, Kruskal's complexity is O(nLog n).

### **Optimal Storage on Tapes**

- There are n programs that are to be stored on a computer tape of length L. Associated with each program i is a length L<sub>i</sub>.
- Assume the tape is initially positioned at the front. If the programs are stored in the order I = i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub>, the time t<sub>j</sub> needed to retrieve program i<sub>j</sub>

$$t_{j} = \sum_{k=1}^{J} L_{i_{k}}$$

### **Optimal Storage on Tapes**

• If all programs are retrieved equally often, then the mean retrieval time (MRT) =  $\frac{1}{n}\sum_{i=1}^{n}t_{j}$ 

This problem fits the ordering paradigm.
 Minimizing the MRT is equivalent to minimizing

$$d(I) = \sum_{j=1}^{n} \sum_{k=1}^{j} L_{i_k}$$

The goal is to minimize MRT (Mean Retrieval Time),

$$\frac{1}{n} \sum_{j=1}^{n} t_{j}$$

i.e. want to minimize

$$\sum_{j=1}^{n} \sum_{k=1}^{j} l_{ik}$$

Ex:

$$n=3, \quad (l_1,l_2,l_3)=(5,10,3)$$
  
There are n! = 6 possible orderings for storing them.

|   | order | total retrieval time  | MRT    |            |
|---|-------|-----------------------|--------|------------|
| 1 | 123   | 5+(5+10)+(5+10+3)=38  | 38/3   |            |
| 2 | 132   | 5+(5+3)+(5+3+10)=31   | 31/3   |            |
| 3 | 213   | 10+(10+5)+(10+5+3)=43 | 43/3   |            |
| 4 | 231   | 10+(10+3)+(10+3+5)=41 | 41/3   |            |
| 5 | 312   | 3+(3+5)+(3+5+10)=29   | 29/3 - | — Smallest |
| 6 | 3 2 1 | 3+(3+10)+(3+10+5)=34  | 34/3   |            |

Note: The problem can be solved using greedy strategy, just always let the shortest program goes first.

( Can simply get the right order by using any sorting algorithm)

#### Analysis:

Try all combination: O( n! )

Shortest-length-First Greedy method: O (nlogn)

#### <u>Shortest-length-First Greedy method</u>:

Sort the programs s.t.

and call this ordering *L*.  $l_1 \leq l_2 \leq \ldots \leq l_n$ 

$$l_1 \leq l_2 \leq \ldots \leq l_n$$

Next is to show that the ordering *L* is the best

### Optimal merge pattern

- Merge a set of sorted files of different length into a single sorted file. We need to find an optimal solution, where the resultant file will be generated in minimum time.
- If the number of sorted files are given, there are many ways to merge them into a single sorted file. This merge can be performed pair wise. Hence, this type of merging is called as 2-way merge patterns.
- As, different pairings require different amounts of time, in this strategy we want to determine an optimal way of merging many files together. At each step, two shortest sequences are merged.

- To merge a p-record file and a q-record file requires possibly p + q record moves, the obvious choice being, merge the two smallest files together at each step.
- Two-way merge patterns can be represented by binary merge trees. Let us consider a set of  $\mathbf{n}$  sorted files  $\{\mathbf{f_1}, \mathbf{f_2}, \mathbf{f_3}, ..., \mathbf{f_n}\}$ . Initially, each element of this is considered as a single node binary tree. To find this optimal solution, the following algorithm is used.

- Algorithm: TREE (n)
- for i := 1 to n 1 do
- declare new node
- node.leftchild := least (list)
- node.rightchild := least (list)
- node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)
- insert (list, node);
- return least (list);
  - At the end of this algorithm, the weight of the root node represents the optimal cost.
  - The complexity of algorithm is O(nlgn)

- Example
- Let us consider the given files, f<sub>1</sub>, f<sub>2</sub>, f<sub>3</sub>, f<sub>4</sub> and f<sub>5</sub> with 20, 30, 10, 5 and 30 number of elements respectively.
- If merge operations are performed according to the provided sequence, then
- $M_1$  = merge  $f_1$  and  $f_2$  => 20 + 30 = 50
- $M_2$  = merge  $M_1$  and  $f_3$  => 50 + 10 = 60
- $M_3$  = merge  $M_2$  and  $f_4$  => 60 + 5 = 65
- $M_4$  = merge  $M_3$  and  $f_5$  => 65 + 30 = 95
- Hence, the total number of operations is
- 50 + 60 + 65 + 95 = 270
- Now, the question arises is there any better solution?

- Sorting the numbers according to their size in an ascending order, we get the following sequence –
- f<sub>4</sub>, f<sub>3</sub>, f<sub>1</sub>, f<sub>2</sub>, f<sub>5</sub>
- Hence, merge operations can be performed on this sequence
- $M_1$  = merge  $f_4$  and  $f_3$  => 5 + 10 = 15
- $M_2$  = merge  $M_1$  and  $f_1$  => 15 + 20 = 35
- $M_3$  = merge  $M_2$  and  $f_2$  => 35 + 30 = 65
- $M_4$  = merge  $M_3$  and  $f_5$  => 65 + 30 = 95
- Therefore, the total number of operations is
- 15 + 35 + 65 + 95 = 210
- Obviously, this is better than the previous one.

#### Example of the optimal merge tree algorithm:



### **END**