Quadratic-Time Certificates in Linear Algebra

Kévin Polisano

A partir d'un article de E.L Kaltofen, M. Nehring & B.D Saunders

17/12/2012

- Introduction
- Résultats préliminaires
- 3 Certificats basés sur la LU decomposition
- 4 Certificats basés sur la similarité

Contents

- Introduction
- Résultats préliminaires
- Certificats basés sur la LU decomposition
- 4 Certificats basés sur la similarité

Introduction Notion de certificats

Certification

Vérifier a posteriori le résultat d'un calcul sur des données, avec une complexité inférieure au coût du calcul seul.

Algorithme de calcul d'une décomposition LU

- Entrée : matrice A de taille $n \times n$
- Sortie : matrices / et //
- Complexité en $O(n^{\omega})$ ($\omega > 2.37$)
- Certification : vérifier A = LU
- Produit matriciel coût en $O(n^{\omega})$
- Entrée + Certificat : amélioration en $O(n^2)$

Introduction

Certification probabiliste

Méthodes de Monte Carlo

- Toute méthode visant à calculer une valeur numérique en utilisant des procédés aléatoires
- La certification probabilistique renvoie vraie si la solution est vérifiée (à l'aide de l'entrée et du certificat)
- La probabilité d'obtenir « vraie » alors que la solution est incorrect doit être inférieure à 50%

Lemme

Vérifier probabilistiquement qu'une expression matricielle est nulle dans $\mathbb{Z}_p^{n\times n}$ peut s'effectuer en $O(n^2)$ avec une probabilité d'erreur de $\frac{1}{p}$

Contents

- Introduction
- Résultats préliminaires
- 3 Certificats basés sur la LU decomposition
- 4 Certificats basés sur la similarité

Certification probabilistique de la décomposition LU

Certification décomposition LU

Expression matricielle E=A-LU à vérifier la nullité modulo p. Le certificat est le couple (p,v) où $v\in\mathbb{Z}_p^n$ aléatoire. Ev=Av-L(Uv) coûte 3 multiplication + 1 soustraction. \Rightarrow Complexité en $O(n^2)$

Probabilité d'erreur

S'il y a erreur, i.e E non nul, son noyau est au plus de dimension n-1 dans \mathbb{Z}_p^n contenant p^{n-1} vecteurs parmi p^n . D'où une probabilité d'erreur de $\frac{1}{p}$

Théorème

Soit $A \in \mathbb{Z}^{n \times n}$ et $b \in \mathbb{Z}$. Les problèmes suivant ont une complexité spatiale et une certification probabilistique en $n^{2+o(1)}(\log \|[A,b]\|)^{o(1)}$:

- Non singularité de A
- Singularité de A
- **3** Consistance du système linéaire Ax = b
- 1 Inconsistance du système linéaire Ax = b

1 - Non singularité

Entrée : A

Certificat : (p, B) avec p nombre premier et $B = A^{-1} \mod p$.

 $V\'{e}rification: AB - I \equiv 0 \mod p$

Le choix du certificat détermine :

- Complexité temporelle? en $O(n^2)$ via Freivalds.
- Complexité spatiale ? $|(p, B)| = |p| + n^2|p|$ où $|p| = log_2(p)$ taille en bits qu'il occupe en mémoire.
- Probabilité d'erreur? Problème pour p|det(A)!

Kévin Polisano

Nombre de diviseurs de $|det(A)| \le n(\log(n)/2 + \log||A||)$

Si p_1, \ldots, p_k sont les diviseurs premiers de q, alors $k \leq ln(q)$. Inégalité d'Hadamard : $|det(A)| \leq (n^{1/2}||A||)^n = q$ \Rightarrow Il y a au plus M = ln(q) = n(log(n)/2 + log||A||) diviseurs premiers de det(A).

Probabilité d'erreur et complexité spatiale

On choisit p parmi les 2M premiers nombres premiers, d'où une probabilité d'erreur de 1/2. Comme le k-ième nombre premier est $\leq k(log_e(k) + loglog_e(k) - 1/2)$ pour $k \geq 20$ alors |p| en $log(n)^{1+o(1)}$ donc |(p,B)| en $n^{2+o(1)}log||A||^{o(1)}$ bits.

17/12/2012

10 / 28

2 - Singularité

```
Certificat : m = 2n(\log(n)/2 + \log||A||) nombres premiers (p_i) et vecteurs non nuls (v_i) tels que Av_i \equiv 0 \mod p_i.
```

Vérification: on tire (p_i, v_i) et on teste $Av \equiv 0 \mod p_i$

Pourquoi *m*?

Combien de nombres premiers renverront un test vrai alors que l'hypothèse est fausse (A est inversible)? $p_i \in D = \{p \text{ premier}, p | det(A) \neq 0\}$ alors $det(A) = 0 \mod p_i$ donc A n'est pas inversible modulo p_i et il existe $v_i \in (\mathbb{Z} \setminus p_i\mathbb{Z})^n$ non nul tel que $Av_i = 0 \mod p_i$ (test vrai), alors que $Av_i \neq 0$ dans \mathbb{Z} puisque A inversible. Et $\sharp D \leqslant n(\log(n)/2 + \log|A|)$.

3 - Consistence de système linéaire rationnels Ax = b

Certificat : un vecteur d'entiers x et un entier δ tels que $Ax = \delta b$, avec x_i et δ bornés par $n^{n/2} \| (A, b) \|$ Vérification : zéro équivalence de $Ax - \delta b$ modulo un p_i aléatoire.

Cas où A est carrée et non singulière

Règle de Cramer : composantes de x sont des mineurs de (A, b) et $\delta = det(A)$

Résultats préliminaires Démonstration

Cas où A est rectangulaire

$$r = rang(A)$$
, en écrivant $A = PJ_rQ$, $A = \begin{pmatrix} B & C \\ D & DB^{-1}C \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ avec $B \ r \times r$ non singulière, b taille r . $Ax = b$ étant consistant, il existe $x = (x_1, x_2)$ tel que

$$\begin{cases} Bx_1 + Cx_2 = \delta b_1 \\ Dx_1 + DB^{-1}Cx_2 = \delta b_2 \end{cases} \Rightarrow DB^{-1}b_1 = b_2$$

 x_1 solution de $Bx_1 = \delta b_1$ avec $\delta = det(B)$, on construit $x = (x_1, 0, ..., 0)$ ($x_2 = 0$) qui est alors solution du système.

Résultats préliminaires Démonstration

Vérification

Combien de nombres premiers p_i peuvent certifier que $Ax = \delta b$ alors que (x, δ) n'est pas une solution correcte? Soit $(\hat{x}, \hat{\delta})$ la vraie solution, il y a falsification si $x - \hat{x} \equiv 0 \mod p_i$ (n composantes) et $\delta - \hat{\delta} \equiv 0 \mod p_i$. p_i divise les n+1 différences. Il y en a au plus $k = 1 + n(\log(n)/2 + \log||(A, b)||)$. Choix de p_i parmi 3k + 3 premiers. Enfin 2 tests de zéro équivalence de $Ax - \delta b$ donne une probabilité $1/3 + 2/3 \times 1/4 = 1/2$

Démonstration

4 - Inconsistence de système linéaire rationnels Ax = b

Certificat : 2n(log(n)/2 + log||(A, b)||) premiers p_i et vecteurs v_i tels que $v_i^T A = 0 \mod p_i$ et $v_i^T b \neq 0 \mod p_i$ contredisant $v_i^T A x = v_i^T b$ sur les entiers.

Vérification : tirer (p_i, v_i) et tester les 2 conditions.

Inconsistence sur un corps K ($A \in K^{n \times n}$, $b \in K^{n \times 1}$)

Il n'existe pas de $x \in K^{n \times 1}$ tel que Ax = b si et seulement si il existe $u \in K^{1 \times n}$ tel que $uA = (0, ..., 0) \in K^{1 \times n}$ et $ub \neq 0$.

Preuve : $\implies \nexists x$, $Ax = b \Rightarrow rang(A|b) = rang(A) + 1 \Rightarrow dim(Ker(A|b)) = dim(KerA) - 1 \Rightarrow \exists u \in K^{1 \times n} \in Ker(A) \setminus Ker(A|b) \Rightarrow uA = 0, ub \neq 0$

Contents

- Introduction
- Résultats préliminaires
- 3 Certificats basés sur la LU decomposition
- 4 Certificats basés sur la similarité

Certificats basés sur la LU decomposition Quelques définitions

Définition 1

 $A (m \times n)$ possède une decomposition LU de rang r si A = LU avec $L (m \times r)$ matrice triangulaire inférieure unitaire et $U (r \times n)$ matrice triangulaire supérieure sans 0 sur la diagonale.

Définition 2

Soit A de taille $m \times n$, un système de LU résidus de rang r et de longueur k est une suite de k triplets distincts $(p_1, L_1, U_1), ..., (p_k, L_k, U_k)$ où les nombres premiers p_i sont strictement croissants, les entrées de L_i , U_i sont normalisés modulo p_i et $A = L_i U_i \mod p_i$ decomposition de rang r.

Certificats basés sur la LU decomposition Lemme

Lemme

Soit A de rang r et un système de LU résidus de rang s et de taille k, posons $M = n(\log(n)/2 + \log||A||)$ bornant la taille en bits de tout mineur de A. Alors $s \le r$, et si s < r on a $k \le M$.

Preuve

 $s \leqslant r$ toujours vérifié, le rang dans \mathbb{Z} est plus grand ou égal au rang réduit. A possède un rang s modulo p_i strictement inférieur à son rang r dans \mathbb{Z} que si un mineur $r \times r$ est divisible par p. Le nombre maximal de tels p est M, donc la longueur maximale du système de LU résidus est M.

Certificats basés sur la LU decomposition Certificat pour le rang

Théorème

Soit $A \in \mathbb{Z}^{n \times n}$, $M = n(\log(n)/2 + \log||A||)$. Il existe un système de LU résidus général de longueur 3M et dont les pi ont une taille en bits $(log M)^{1+o(1)}$ qui certifie rang(A). Le certificat occupe $n^{3+o(1)}(\log ||A||)^{1+o(1)}$ en espace et $n^{2+o(1)}(\log ||A||)^{1+o(1)}$ en temps.

Validation

Tirer (p, L, U) et valider zéro équivalence $PAQ = LU \mod p$ (probabilité 1/p de se tromper). Le nombre de p à l'origine d'une falsification est au plus M, on choisit p parmi 3M donc probabilité 1/3 soit au total une probabilité d'un mauvais certificat $1/3 + 2/3 \times 1/p \le 1/2$ pour p > 5.

Certificats basés sur la LU decomposition Certificat pour le déterminant

Théorème

Soit $A \in \mathbb{Z}^{n \times n}$, $M = n(\log(n)/2 + \log||A||)$. Il existe un système de LU résidus général de longueur 3M + 3 et dont les p_i ont une taille en bits $(\log M)^{1+o(1)}$ qui certifie det(A).

Validation

Si le rang du système LU est inférieur à n, cf. précédent. Tirer (p, L, U) et valider zéro équivalence $PAQ = LU \mod p$ (probabilité 1/p de se tromper) et $d = \prod_{i=1}^n U_{i,i}$. Le nombre de p à l'origine d'une falsification est au plus M+1 (diviseurs de d - det(A)), on choisit p parmi 3M+3 donc probabilité 1/3 soit au total $1/3 + 2/3 \times 1/p \le 1/2$ pour p > 5.

Contents

- Introduction
- 2 Résultats préliminaires
- Certificats basés sur la LU decomposition
- Certificats basés sur la similarité

Définition

Une matrice carrée A est sous forme normale de Frobenius si elle est la somme directe de matrices de companions de polynômes unitaires $f_1(x), ..., f_k(x)$ tels que $\forall i, f_i | f_{i+1}$

Exemple :
$$A_1 = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$$
 matrice compagnon de $x^2 + 2$

$$M = A_1 \oplus A_2 \oplus A_3 = \begin{pmatrix} 0 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Propriété

Toute matrice carrée sur un corps est semblable à une unique forme normale de Frobenius

Définition

Un système résiduel de similarité pour $A, B \in \mathbb{Z}^{n \times n}$ de taille k est une suite de quadruplet (p, S, T, \bar{B}) avec p premiers distincts, $S, T, \bar{B} \in \mathbb{Z}_p^{n \times n}$ et tels que S inversible avec $T \equiv S^{-1}$, $B \equiv \bar{B}$ et $A = S\bar{B}T$ modulo p. (\bar{B} forme normale de Frobenius semblable)

Certificat pour le polynôme caractéristique

Théorème

Soit $A \in \mathbb{Z}^{n \times n}$, $M_A = n(1 + log(n)/2 + log||A||)$. Il existe un système résiduel de similarité de longueur $6M_A + 6$ qui certifie le polynôme caractéristique f(x), $n^{3+o(1)}(log||A||)^{1+o(1)}$ en espace et $n^{2+o(1)}(log||A||)^{1+o(1)}$ en temps.

Preuve

 $c^A(x)$ vrai polynôme caractéristique de A. Le i-ème coefficient est la somme des $\binom{n}{i}$ ($\leqslant 2^n$) mineurs principaux $i \times i$ ($\leqslant 2^M$) donc $\leqslant 2^{n+M}$ soit de longueur en bits $n+M=M_A$. $g(x)=f(x)-c^A(x)$ a des coefficients de taille $k=M_A+1$, donc nul pour au plus k premiers. $k/(6M_a+6)=1/6$.

Certificat pour le polynôme caractéristique

Vérification $f(x) = c^A(x)$

- Tirer (p, S, T, \bar{B}) , vérifier zéro équivalence de ST I et $A S\bar{B}T$ modulo p en $O(n^2)$ et proba erreur 2/p.
- Vérifier dans \bar{B} que $f_i|f_{i+1}$ (en $d^{\circ}(f_{i+1})^{1+o(1)}$), former $f_p(x) = \prod f_i(x)$ modulo p en $O(n^2)$. Par unicité de la forme de Frobenius on doit avoir $c^A(x) \equiv f_p(x) \mod p$.
- Enfin vérifier que $f(x) \equiv f_p(x) \mod p$

Conclusion Ce qu'il faut retenir

Ce qu'il faut retenir

- Nécessité de vérifier des résultats, de manière fiable
 ⇒ estimer la probabilité d'erreur
- Rapidement (essentiellement quadratique $n^{2+o(1)}log ||A||$) \Rightarrow effectuée dans des corps finis + Certificats
- Limiter la place en mémoire $(O(n^{3+o(1)}log||A||)$ bits)

Conclusion Ouverture

Réduction de la complexité spatiale

- Autre type d'algorithme de vérification : Las Vegas
 toujours correct mais rapidité aléatoire.
- (Storjohann) Vérification du rang et du déterminant \Rightarrow en $n^{\omega+o(1)}log||A||^{1+o(1)}$ bits
- Dépend du coût de la brique de base de l'algèbre linéaire \Rightarrow le produit matriciel en $O(n^{\omega})$ avec $\omega \in [2, 3]$.

Questions?

