# The RWTH Phrase-based Statistical Machine Translation System

Author: Richard Zens, Oliver Bender, Sasa Hasan, Sharam Khadivi, Evgeny Matusov, Jia Xu, Xuqi Zhang, Hermann Ney

Professor: 陳嘉平

Reporter: 陳逸昌

#### Outline

- Introduction
- Review the statistical approach
- Models used during search
- Rescoring models
- Integrating ASR and MT
- Tasks and corpora
- Experimental results

#### Introduction

- An overview of the RWTH phrase-based statistical machine translation system
- Two pass approach
  - Generate
  - Rescoring and reranking

- Source-channel approach to SMT
  - Source language  $f_1^J = f_1 ... f_j ... f_J$
  - Target language  $e_1^I = e_1 ... e_i ... e_I$

$$\hat{e}_{1}^{\hat{I}} = \arg \max_{I, e_{1}^{I}} \{ \Pr(e_{1}^{I} \mid f_{1}^{J}) \}$$

$$= \arg \max \{ \Pr(e_{1}^{I}) \cdot \Pr(f_{1}^{J} \mid e_{1}^{I}) \}$$

Log-linear model

$$\Pr(e_1^I \mid f_1^J) = \frac{\exp(\sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J))}{\sum_{e_1^{I'}} \exp(\sum_{m=1}^M \lambda_m h_m(e_1^{I'}, f_1^J))}$$

- $\blacksquare$   $h(\bullet)$  feature
- $\square$   $\lambda_1^M$  scaling factor

- Phrase-based approach
  - Segment the give source sentence into phrases
    - **EX**: sentence pair  $(f_1^J, e_1^I)$  into K blocks

$$k \rightarrow s_k := (i_k; b_k, j_k), \text{ for } k = 1...K$$

- $oldsymbol{\dot{i}}_k$  target phrase positions
- $lacktriangleright b_k$  source phrase start positions
- $oldsymbol{j}_k$  source phrase end positions



Figure 1: Illustration of the phrase segmentation.

Phrase-based model

$$p(\tilde{f} \mid \tilde{e}) = \frac{N(\tilde{f}, \tilde{e})}{N(\tilde{e})}$$

■  $N(\tilde{f}, \tilde{e})$  the number of co-occurrences

$$h_{Phr}\left(f_1^J, e_1^I, s_1^K\right) = \log \prod_{k=1}^K p\left(\tilde{f}_k \mid \tilde{e}_k\right)$$

Word-based lexicon model

$$h_{Lex}(f_1^J, e_1^I, s_1^K) = \log \prod_{k=1}^K \prod_{j=b_k}^{j_k} \sum_{i=i_{k-1}+1}^{i_k} p(f_i \mid e_i)$$

Deletion model

$$h_{Del}\left(f_{1}^{J}, e_{1}^{I}, s_{1}^{K}\right) = \sum_{k=1}^{K} \sum_{j=b_{k}}^{j_{k}} \prod_{i=i_{k-1}+1}^{i_{k}} \left[ p\left(f_{j} \mid e_{i}\right) < \tau \right]$$

 $\bullet$   $\tau$  threshold

Word and phrase penalty model

$$h_{WP}(f_1^J, e_1^I, s_1^K) = I$$

$$h_{pp}(f_1^J, e_1^I, s_1^K) = K$$

Target language model

$$h_{LM}\left(f_{1}^{J}, e_{1}^{I}, s_{1}^{K}\right) = \log \prod_{i=1}^{I} p\left(e_{i} \mid e_{i-n+1}^{i-1}\right)$$

Reordering model

$$h_{RM}\left(f_{1}^{J},e_{1}^{I},s_{1}^{K}\right) = \sum_{k=1}^{K} \left|b_{k}-j_{k-1}-1\right| + J - j_{k}$$

Clustered language model

$$h_{CLM}\left(f_{1}^{J}, e_{1}^{I}\right) = \log \sum_{c} \left[\Re_{c}\left(e_{1}^{I}\right)\right] \left(\alpha_{c} p_{c}\left(e_{1}^{I}\right) + \left(1 - \alpha_{c}\right) p_{g}\left(e_{1}^{I}\right)\right)$$

- $\mathbf{p}_{g}\left(e_{1}^{I}\right)$  global language model
- $lackbox{0.5cm} p_c\left(e_1^I\right)$  cluster-specific language model

□ IBM model 1

$$h_{IBM1}(f_1^J, e_1^I) = \log\left(\frac{1}{(I+1)^J} \prod_{j=1}^J \sum_{i=0}^I p(f_j \mid e_i)\right)$$

IBM1 deletion model

$$h_{Del}(f_1^J, e_1^I) = \sum_{j=1}^J \prod_{i=0}^I \left[ p(f_j | e_i) < \tau \right]$$

Hidden Markov alignment model

$$h_{HMM}(f_1^J, e_1^I) = \log \sum_{a_1^J} \prod_{j=1}^J (p(a_j | a_{j-1}, I) \cdot p(f_j | e_{aj}))$$

Word penalties

$$h_{WP}\left(f_{1}^{J},e_{1}^{I}\right) = \begin{cases} I \\ I/J \\ 2|I-J|/(I+J) \end{cases}$$

# Integrating ASR and MT

- Add acoustic model and the source language model in the log-linear model
- In the IWSLT, the vocabulary of the recognition system is not the subset of the translation system source vocabulary.

# Tasks and corpora

Table 1: Corpus statistics after preprocessing.

|           |                      | Supplied Data Track |         |          |         | C-Star Track |         |
|-----------|----------------------|---------------------|---------|----------|---------|--------------|---------|
|           |                      | Arabic              | Chinese | Japanese | English | Japanese     | English |
| Train     | Sentences            | 20 000              |         |          | 240 672 |              |         |
|           | Running Words        | 180 075             | 176 199 | 198 453  | 189 927 | 1 951 311    | 1775213 |
|           | Vocabulary           | 15 371              | 8 687   | 9 277    | 6 870   | 26 036       | 14 120  |
|           | Singletons           | 8319                | 4 006   | 4 431    | 2 888   | 8 9 7 5      | 3 538   |
| C-Star'03 | Sentences            | 506                 |         |          |         |              |         |
|           | Running Words        | 3 552               | 3 630   | 4 130    | 3 823   | 4130         | 3 823   |
|           | OOVs (Running Words) | 133                 | 114     | 61       | 65      | 34           | _       |
| IWSLT'04  | Sentences            | 500                 |         |          |         |              |         |
|           | Running Words        | 3 597               | 3 681   | 4 131    | 3 837   | 4 131        | 3 837   |
|           | OOVs (Running Words) | 142                 | 83      | 71       | 58      | 36           | _       |
| IWSLT'05  | Sentences            | 506                 |         |          |         |              |         |
|           | Running Words        | 3 562               | 3 9 1 8 | 4 226    | 3 909   | 4 2 2 6      | 3 909   |
|           | OOVs (Running Words) | 146                 | 90      | 293      | 69      | 10           | _       |

## Experimental results

Table 3: Official results for the RWTH primary submissions on the IWSLT'05 test set.

| Data     | Input  | Translation      | Accuracy Measures |       |            |         | Error Rates |         |
|----------|--------|------------------|-------------------|-------|------------|---------|-------------|---------|
| Track    |        | Direction        | BLEU [%]          | NIST  | Meteor [%] | GTM [%] | WER [%]     | PER [%] |
| Supplied | Manual | Arabic-English   | 54.7              | 9.78  | 70.8       | 65.6    | 37.1        | 31.9    |
|          |        | Chinese-English  | 51.1              | 9.57  | 66.5       | 60.1    | 42.8        | 35.8    |
|          |        | English-Chinese  | 20.0              | 5.09  | 12.6       | 55.2    | 61.2        | 52.7    |
|          |        | Japanese-English | 40.8              | 7.86  | 58.6       | 48.6    | 53.6        | 44.4    |
|          | ASR    | Chinese-English  | 38.3              | 7.39  | 54.0       | 48.8    | 56.5        | 47.2    |
|          |        | Japanese-English | 42.7              | 8.53  | 62.0       | 49.6    | 51.2        | 41.2    |
| C-Star   | Manual | Japanese-English | 77.6              | 12.91 | 85.4       | 78.7    | 24.3        | 18.6    |

#### Experimental results

Table 6: Rescoring: effect of successively adding models for the Chinese-English IWSLT'04 test set.

| System   | BLEU | NIST | WER  | PER  |
|----------|------|------|------|------|
|          | [%]  |      | [%]  | [%]  |
| Baseline | 45.1 | 8.56 | 48.9 | 40.1 |
| +CLM     | 45.9 | 8.24 | 48.6 | 40.7 |
| +IBM1    | 45.9 | 8.48 | 47.8 | 39.7 |
| +WP      | 45.4 | 8.91 | 47.8 | 39.4 |
| +Del     | 46.0 | 8.71 | 47.8 | 39.6 |
| +HMM     | 46.3 | 8.73 | 47.4 | 39.7 |

### Experimental results

Table 8: Translation results for ASR input in the Chinese-English supplied data track on the IWSLT'05 test set (\*: late submissions).

| System         |      | Input   | BLEU | NIST | WER  | PER  |
|----------------|------|---------|------|------|------|------|
|                |      |         | [%]  |      | [%]  | [%]  |
| Graph          | Mon* | 1-Best  | 31.1 | 6.18 | 62.1 | 52.7 |
|                |      | Lattice | 34.1 | 7.20 | 58.3 | 48.1 |
|                | Skip | 1-Best  | 33.1 | 6.51 | 61.3 | 51.7 |
|                |      | Lattice | 35.1 | 7.53 | 57.7 | 47.2 |
| SCSS (primary) |      | 1-Best  | 38.3 | 7.39 | 56.5 | 47.2 |
| +Rescoring*    |      |         | 40.2 | 7.33 | 55.1 | 46.5 |