Molecular Epidemiology

- Introduced by Kilbourne (1973), infectious diseases; Schulte and Perera (1993 Principles and Practices)
- Integrates Epidemiology, Medical Sciences and Molecular Biology
- Studies the influence on health of environmental and genetic risk factors measured by (holistic) molecular signatures
- Contributes to
 prediction/prognosis
 monitoring exposure, response to interventions
 etiological understanding (disease mechanisms)

Exposure Events in lifetime perspective

Life Time

Biomarkers I

- Relation of Exposure /determinant and outcome
- Exposure: environment (early, late, diet, lifestyle, chemicals, geography), host (genetic background, age), health change over time (disease, biological ageing process); outcome = phenotype
- Biomarker (WHO): a substance or biological structure that can be measured in the human body and may influence, explain or predict the incidence or prognosis of outcome of disease

Biomarkers II

or NIH biomarker working group: a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention

Classical Algorithms

Definition Metabolic syndrome

Abdominal obesitas >94 cm men, >80 cm women and ≥ two of the next:

Fasting glucose >100 mg/dL (5,6 mmol/L) or diabetes

Triglycerides >150 mg/dL (1,7 mmol/L) or treatment

HDL-cholesterol <40 mg/dL for men, < 50 mg/dl for women or treatment

Blood Pressure > 130/85 mmHg SBP or treatment

<u>Definition Framingham risk score (10 years CVD risk)</u>

- Age
- Gender
- Smoking
- Diabetes
- Total cholesterol
- HDL-cholesterol
- Systolic Blood Pressure

Adding omics data to biomarker research

You have discussed epigenome/transcriptome Now we will focus on the metabolome.

100.000 metabolites in your body In blood: 4000 metabolites.

Best platforms measure about 600 in a standardized fashion high throughput

Which tissue functions do the 1H NMR metabolites represent

What relations do scientists investigate with molecular profiling data

What relations do scientists investigate with molecular profiling data

What relations do scientists investigate with molecular profiling data

Integrated studies in humans Focused on ageing phenotypes

11 Halle 2021 1-12-2021

Molecular Biomarkers Type II Diabetes prediction 1H NMR metabolites

Datasets: BBMRI Biobanking consortium Multi-level omics data

Central databases for the research community

1H-NMR metabolomics platform

Nightingale

- NMR-based quantification:
 - Standardized
 - High-throughput
 - Quantitative (mmol/l or g/l)
- 226 metabolic biomarkers
 Lipids/FA/(apo)lipoproteins/aminoacid
 /glycolysis products
- Widely-used in epidemiological studies.
 - Diabetes (type 1 & 2)
 - Cardiovascular disease
 - Neurological diseases

14 Halle 2021 1-12-2021

1H-NMR metabolome in 25.000 Dutch Caucasians 22 Prospective Patient and Cohort studies for 7 Diseases BBMRI-metabolomics consortium

15 Halle 2021 1-12-2021

Steps to prove the molecular markers make a novel predictor

Generate a predictor: factor identification and model development:

- 1. Exploration of associations between metabolites and diverse endpoints.
- 2. Cross sectional → Prospective/longitudinal follow-up studies
- 3. Univariate (single metabolites), multivariate
- 4. Replication in independent studies
- 5. Meta-analysis in multiple studies, create predictors (for example of mortality risk) and compare to existing predictors

Prediction of disease risk Using omics variables; how to understand the literature

Classification Table (Counts)

		Predicted	Predicted Condition		
		Positive	Negative	Total	
True	Positive	True Positive (A)	False Negative (C)	A + C	
Condition	Negative	False Positive (B)	True Negative (D)	B + D	
	Total	A + B	C + D	A + B + C + D	

Receiver Operator Characteristic (ROC) curves to compare novel and traditional predictors (example 10 y CVD risk)

MORTALITY: 1H NMR based analysis 44.000 subjects and 5.500 deaths

Study	N	Males (%)	Deaths
AlphaOmega	568	428 (75.4%)	157
ALSPAC	4,351	0 (0%)	17
EGCUT	10,988	4,106 (37.4%)	912
ERF	680	307 (45.1%)	107
FINRISK97	7,603	3,778 (49.7%)	1,213
FINRISK07	4,816	2,256 (46.8%)	190
KORA	1,790	871 (48.7%)	123
LLS nonagenarians	843	326 (38.7%)	823
LLS offspring + partners	2,241	999 (44.6%)	191
PROSPER	5,329	2,583 (48.5%)	467
Rotterdam Study	2,963	1,241 (41.9%)	1,254
TwinsUK	1,996	0 (0%)	58
	<mark>44,168</mark>		<mark>5,512</mark>

1H NMR-Based Metabolites associating to Mortality

Mortality 1H NMR: Analysis of age strata: two examples Association of metabolites with mortality depends on age.

21 Halle 2021 1-12-2021

14 metabolites independently associate with mortality A score of 14 metabolites predicts mortality (cancer/inf disease/cvd) better than conventional variables. Deelen et al., Nat Comm 2019

Independent effects of 14 metabolites on mortality

5 years mortality

Lipoprotein particle sizes (VLDL, HDL), branched chain/aromatic aminoacids, Keton bodies, inflammation, glucose/lactate, PUFA, fluid balance

22 Halle 2021 1-12-2021

The effect of the biomarkers on all-cause mortality is consistent across studies and age strata

원3lle 2021 1-12-2021

Ageing is a personal process Capacity building, maintenance, and decline

Facing up to the global challenges of ageing Nature 561, pages45–56 (2018)

Biological Age (BA) versus Chronological Age (CA)

Alex Comfort 1969 Lancet. 1969;2:1411–1414.

Test-battery to measure ageing-rate in man.

Clinical variables as read out of multiple organ systems
(skeleton, body composition, liver, kidney, lung, heart; immune and metabolic health)

height, weight, BMI, waist circumference, systolic/diastolic blood pressure, fasting blood sugar, total cholesterol, (HDL-C and LDL-C), triglyceride, hemoglobin (Hgb), serum creatinine, glomerular filtration rate (eGFR), aspartate amin¬otransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transpeptidase (r-GTP), urine protein, forced expiratory volume at 1 second (FEV1), C-reactive protein (CRP), and cytomegalovirus (CMV) optical density.

Now: also molecular variables. Telomere repeat length, DNA methylation etc.

Biological Age Predictors WHY

- to measure an individual's overall health status
- predict the risk of death, surrogate endpoint
- predict the risk of age-related disease incidence
- evaluate the effect of a health care program
- evaluate the effect of lifestyle/management interventions
- to use as phenotype in etiological studies
- cross over to animal studies

26 Halle 2021 1-12-2021

Biological age – markers Clinical variables (clocks) tracking age

Output multiple organ systems. Belsky et al., PNAS 2015.

1000 subjects 38 year old. NHANES Biological Age index: 28-61 years

Longitudinal measures at 26, 32 and 38 years: personal rates of physiological decline

Fig. 3. Healthy adults exhibit biological aging of multiple organ systems over 12 y of follow-up. Biomarker values were standardized to have mean = 0 and SD = 1 across the 12 y of follow-up (Z scores). Z scores were coded so that higher values corresponded to older levels of the biomarkers; i.e., Z scores for cardiorespiratory fitness, lung function (FEV₁ and FEV₃/FVC), leukocyte telomere length, creatinine clearance, and HDL cholesterol, which decline with age, were reverse coded so that higher Z scores correspond to lower levels.

Physical capability

Cognition

Multivariate combinations of biomarkers

Frailty: an accumulation of deficits

Remark

Others have tried to make predictors of biological age on the basis of the relation of molecular patterns and chronological age (mostly in cross sectional studies). This was done for DNA methylation, transcriptome and for metabolome.

Biological Age Prediction based on chronological age Molecular data on cross-sectional blood levels

Horvath et al., DNAmAge 2013; Deelen et al., 2013

BBMRI Study Population after Quality Control

Erik van den Akker

BBMRI: 25 453 samples from 26 biobanks

RAAK ALPHAOMEGA TACTICS PROSPER LLS_SIBS -

E.B. van den Akker et al., Circ Genom Precis Med. 2020; 13

60

Age

100

2000

Samples

3000

Training the age-predictor Contributing metabolites

Construction of the metaboAge Score The age-independent part of the age-predictor

Δage = predicted age - chronological age

Regress out chronological age: metaboAge = resid(Im(Δage ~ chron. age))

AmetaboAge associates to incident mortality LLS: 811 90+ individuals; PROSER 6000 70+ individuals

van den Akker et al. Circ Genom Precis Med 2020

Phenotype	HR	95% CI	<i>p</i> -value	N _{case}	N _{control}
Coronary events	1.25	1.11 – 1.40	2.64 x 10 ⁻⁰⁴	569	4,851
Cardiovascular events	1.20	1.08 – 1.33	4.86 x 10 ⁻⁰⁴	865	4,555
Vascular mortality	1.57	1.31 – 1.88	8.56 x 10 ⁻⁰⁷	237	5,183
All-cause mortality	1.42	1.25 – 1.61	9.14 x 10 ⁻⁰⁸	477	4,943
Heart failure hospitalisation	1.68	1.37 – 2.06	5.42 x 10 ⁻⁰⁷	189	5,324

Mortality in PROSPER

Mortality in LLS : HR = $1.25 p = 2.4 \times 10 - 6$

With every year older metaboAge: 2-4% increased mortality risk Comparable to DNAmAge

Independent of BMI, smoking, diabetes and hypertension and medication

Remark

You must prove that a predictor predicts a relevant outcome: if the predictor indicates biological age than it should associate with and predict onset of disease and mortality, for example.

Regularities with chronological age. DNA methylation (Hannum, Horvath

DNAmage predicts:

Mortality Cancer risk Obesity Gestational age Brain tissue ageing

HR 1.02-1.04 Effect size for mortality:

Biogerontolgy Dublin 2018

Remark

Two attempts are being made to make predictors from the metabolome.

- 1. Based on chronological age
- 2. Based on mortality

Molecular Epidemiology

- Introduced by Kilbourne (1973), infectious diseases; Schulte and Perera (1993 Principles and Practices)
- Integrates Epidemiology, Medical Sciences and Molecular Biology
- Studies the influence on health of environmental and genetic risk factors measured by (holistic) molecular signatures
- Contributes to prediction/prognosis
 monitoring exposure, response to interventions etiological understanding (disease mechanisms)

Which metaboliotes associate at baseline with DEXA scan variables of fat distribution. Heat map Which metabolites monitor response to intervention

Measure 1H NMR metabolome In intervention studies Generate omics biomarkers for biological age prediction And generate Health biomarkers indicating a response to a lifestyle intervention

Example: indicate a change in body composition on a DEXA scan by metabolomics markers (HDL diameter)

Exercise: discussion of Marioni paper

Biomarkers of biological age:

DNA methylation Telomeres

Telomere shortening, age and mortality prediction

Biogerontolgy Dublin 2018 December 21

Regularities with chronological age. DNA methylation (Hannum, Horvath)

Biogerontolgy Dublin 2018 December 21

Questions for the Discussion on Biological Age Predictors. Marioni paper

- 1. What is the main aim of the paper, main research question and subquestions. Q1, 2 etc.
- 2. Why, do authors investigate this, what is the issue or the problem?
- 3. What new research strategy would solve the problem
- 4. What is the study design (which can be variable for answering the different questions). What is measured in which study population. Is ther anything remarkable about the study populations? Usually Table 1
- 5. What answers were found to the questions Q 1, 2 etc.
- 6. What are the main conclusions and the main discussion points the authors bring up.
- 7. What do you think of the paper? Was it clear, was it presented in a logical way, what would you have done differently.