

<u>○</u>7 IP주소 자동할당, 변환과 주소매핑, 에러보고

DHCP과 NAT 대해 살펴보고 어떻게 주소가 매핑이 되는지

<u>기 IP주소 자동할당, 변환과 주소매핑, 에</u>러보고

대표 프로토콜인 ARP와 IP프로토콜의 한계점을 보완하기 위한 에러보고에 대해 학습한다.

○ IP주소 자동할당, 변환과 주소매핑, 에러보고

DHCP와 NAT

주소매핑과 에러보고

→ DHCP의 필요성

- 》 소규모의 네트워크의 경우 각각의 IP주소를 직접 분배 및 관리 가능
- >> 그러나, 대규모의 네트워크의 경우 직접 분배와 관리가 어려움
 - DHCP가 부재 시 네트워크 관리자는 모든 클라이언트의 통신에 필요한 정보를 직접 입력 및 관리해야 함
- 》 IP를 보다 효율적으로 할당하고 관리하기 위해 필요

DHCP

- ▶ DHCP (Dynamic Host Configuration Protocol)는 정적 및 동적 할당을 제공
- ≫ 동적 주소 할당
 - DHCP 클라이언트가 DHCP 서버에 요청, 서버는 먼저 정적 데이터베이스를 검사
 - 요청된 실제 주소가 정적 데이터베이스에 존재하면 클라이언트의 영구 IP주소가 반환
 - 항목이 정적 데이터베이스에 없으면 서버는 사용 가능한 풀에서 IP 주소를 선택
 - DHCP는 제한된 시간 동안 임시 IP 주소를 제공

DHCP

- ≫ 정적 주소 할당
 - DHCP 서버에는 물리적 주소를 IP 주소에 정적으로 바인드하는 데이터베이스가 존재
 - DHCP는 서버 측은 67 / UDP, 클라이언트 측은 68 / UDP 포트 사용

→ NAT의 필요

- ≫ 공인 IP주소의 수 부족
- ≫ 외부로부터 내부망을 보호○ 내부를 사설 IP로 구성하여 외부로부터의 공격으로부터 보호
- ≫ ISP변경에 따른 내부 IP변경 최소화

- >> Network Address Translation의 약자
- NAT를 사용하면 사용자는 내부적으로 많은 수의 주소 세트를 가질수 있음
- 외부에서 하나의 주소 또는 작은 주소 세트를 가질 수 있음

→ NAT

- ≫ 3 개의 주소 세트를 개인 주소로 정해놓음
 - 내부를 사설 IP로 구성하여 외부로부터의 공격으로부터 보호

Range			Total
10,0,0,0	to	10,255,255,255	2 ²⁴
172.16.0.0	to	172,31,255,255	2 ²⁰
192,168,0,0	to	192,168,255,255	216

- >>> NAT은 그룹 내에서는 고유한 주소를 갖음
 - 내부를 사설 IP로 구성하여 외부로부터의 공격으로부터 보호
- ≫ 데이터를 주고 받는 경우, 모든 데이터는 NAT 라우터를 통과

- >>> 단일주소사용
 - 단일주소를 사용하기 위해서는 <mark>항상 사설 네트워크에서 시작되야함</mark>
 - **사설 네트워크에서** NAT을 사용할 경우
 - 네트워크 외부의 클라이언트에 대해 서버 프로그램 실행 불가능

→ NAT

- ≫ 여러 IP주소 사용
 - 사설 네트워크 호스트의 경우, 각 주소를 한 쌍으로 연결
 - 동일한 외부 호스트와 동시에 통신 가능
 - o 정적 NAT
 - 사설IP주소와 전역 IP주소 사이에 정적 맵핑
 - 기관 내에서 시스템의 실제 IP주소를 은신 가능
 - 동적 NAT
 - Pool에서 IP주소 할당

→ NAT

- ≫ IP주소와 포트 모두 사용
 - 오버로딩 or 포트 주소 변환(PAT)라고 부름
 - 주소와 포트의 조합은 패킷을 전송할 사설 네트워크 호스트를 정의

Private address	Private port	External address	External port	Transport protocol
172,18,3,1	1400	25.8.3.2	80	TCP
172,18,3,2	1401	25,8,3,2	80	TCP
			***	•••

○ IP주소 자동할당, 변환과 주소매핑, 에러보고

DHCP와 NAT

주소매핑과 에러보고

