Quiz 4 Solutions

MATH 100 October 29, 2018

- (1) (Q) Let $A = \{n \in \mathbb{Z} \mid n \equiv 2 \pmod{3}\}$ and $B = \{n \in \mathbb{Z} \mid n \equiv 1 \pmod{2}\}.$
 - (a) Describe the elements of the set A B.
 - (b) Prove that if $n \in A \cap B$, then $n^2 \equiv 1 \pmod{12}$.

(A)

(a) Elements satisfying the condition for A are of the form n=2+3k for $k\in\mathbb{Z}$ and so $A=\{\ldots,-1,2,5,8,11,\ldots\}$. At the same time elements in B are of the form n=1+2j for $j\in\mathbb{Z}$ implying $B=\{\ldots,-1,1,3,5,7,9,\ldots\}$. By observation B is the set of odd integers letting us know that to find the difference A-B we remove all of the odd elements:

$$A - B = \{\dots, -4, 2, 8, 14, \dots\}$$

$$= \{n \in \mathbb{Z} \mid n \equiv 2 \pmod{3} \text{ and } n \not\equiv 1 \pmod{2}\}$$

$$= \{n \in \mathbb{Z} \mid n \equiv 2 \pmod{3} \text{ and } n \equiv 0 \pmod{2}\}$$

(b) If $n \in A \cap B$, then it must be an odd integer inside the set A. Since $n = 2 + 3k \in A$ includes both even and odd integers, we can reduce down to only the odd ones by setting $n = 5 + 6k \in A \cap B$. It follows directly that:

$$n^2 = (5+6k)^2 = 25+60k+36k^2$$

and consequently $n^2 \equiv 1 \pmod{12}$.

- (2) (Q) Prove that $\sqrt{2}$ is irrational.
 - (A) We aim to prove the statement by a contradiction. Assume that $\sqrt{2} \in \mathbb{Q}$ and so $\sqrt{2} = \frac{p}{q}$ where p,q are coprime. Note that p and q cannot be simultaneously even as that would break the coprime condition. Now we proceed by noticing that $2 = \frac{p^2}{q^2}$, or rather $p^2 = 2q^2$. This implies that p^2 is even and consequently p is even. By design p = 2k for some $k \in \mathbb{Z}$ and allows us to rewrite $p^2 = 2q^2$ as $2k^2 = q^2$. It directly follows that q^2 is even and so is q. This is a contradiction as both p and q being even implies that p and q are not coprime, contrary to the initial assumption. Therefore, $\sqrt{2}$ is irrational.