Comparing Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge Distillation

2021.06.04

Taehyeon Kim*
Jaehoon Oh*
Nakyil Kim
Sangwook Cho
Se-young Yun

Why is Knowledge Distillation (KD) Beneficial

- One of the most potent model compression techniques.
- Knowledge is transferred from a cumbersome model (teacher) to a single small model (student).

Overview of KD

- KD has evolved to design a new objective function
 - KL divergence loss with temperature scaling

Degree of softness (temperature scaling)

- KD has evolved to design a new objective function
 - KL divergence loss with temperature scaling
 - Little Understanding of how the degree of softness affects the performance.

1. Learning from Ground Truth 2. Learning from Teacher model

$$\mathcal{L} = (1 - \alpha)\mathcal{L}_{CE}(\boldsymbol{p}^{s}(1), \boldsymbol{y}) + \alpha\mathcal{L}_{KL}(\boldsymbol{p}^{s}(\tau), \boldsymbol{p}^{t}(\tau)),$$

$$\mathcal{L}_{CE}(\boldsymbol{p}^{s}(1), \boldsymbol{y}) = \sum_{j} -\boldsymbol{y}_{j} \log \boldsymbol{p}_{j}^{s}(1)$$

$$\boldsymbol{p}_{j}^{t}(\tau)$$

$$\mathcal{L}_{KL}(\boldsymbol{p}^{s}(\tau), \boldsymbol{p}^{t}(\tau)) = \tau^{2} \sum_{j} \boldsymbol{p}_{j}^{t}(\tau) \log \frac{\boldsymbol{p}_{j}^{t}(\tau)}{\boldsymbol{p}_{j}^{s}(\tau)}$$

$$m{p}_k^f(au) = rac{\exp(m{z}_k^f/ au)}{\sum_{j=1}^K \exp(m{z}_j^f/ au)}$$

Preliminaries: respects to previous assumption

Conventional assumption for KD

$$\frac{\partial \mathcal{L}_{KL}}{\partial z_k^s} \approx \tau \left(\frac{1 + z_k^s / \tau}{K + \sum_j z_j^s / \tau} - \frac{1 + z_k^t / \tau}{K + \sum_j z_j^t / \tau} \right)$$

Assumption
$$\sum_{j} z_{j}^{s} = 0 \text{ and } \sum_{j} z_{j}^{t} = 0$$

Conclusion
$$\frac{\partial \mathcal{L}_{KL}}{\partial z_{k}^{S}} \approx \frac{1}{K} (z_{k}^{S} - z_{k}^{t})$$
 then, $\mathcal{L}_{KL} = \mathcal{L}_{MSE}$????

Preliminaries: respects to previous assumption

Conventional assumption does not seem appropriate.

$$\sum_j z_j^s = 0$$
 and $\sum_j z_j^t = 0$

Changes on τ

■ Depending on τ , \mathcal{L}_{KL} plays different roles

• $\tau \to 0$: Label matching

• $\tau \to \infty$: Logit matching

$$\lim_{\tau \to 0} \frac{1}{\tau} \frac{\partial \mathcal{L}_{KL}}{\partial \boldsymbol{z}_k^s} = \mathbf{1}_{[\arg \max_j \boldsymbol{z}_j^s = k]} - \mathbf{1}_{[\arg \max_j \boldsymbol{z}_j^t = k]}$$

$$egin{aligned} \lim_{ au o \infty} rac{\partial \mathcal{L}_{KL}}{\partial oldsymbol{z}_k^s} &= rac{1}{K^2} \sum_{j=1}^K \left((oldsymbol{z}_k^s - oldsymbol{z}_j^s) - (oldsymbol{z}_k^t - oldsymbol{z}_j^t)
ight) \ &= rac{1}{K} \left(oldsymbol{z}_k^s - oldsymbol{z}_k^t
ight) - rac{1}{K^2} \sum_{j=1}^K \left(oldsymbol{z}_j^s - oldsymbol{z}_j^t
ight) \end{aligned}$$

Extension from KL loss to MSE Loss

- Some term is generated.
- This term hinders complete logit matching (MSE loss) by shifting the mean of the elements in the logit.

$$egin{aligned} \lim_{ au o \infty} rac{\partial \mathcal{L}_{KL}}{\partial oldsymbol{z}_k^s} &= rac{1}{K^2} \sum_{j=1}^K \left((oldsymbol{z}_k^s - oldsymbol{z}_j^s) - (oldsymbol{z}_k^t - oldsymbol{z}_j^t)
ight) \ &= rac{1}{K} \left(oldsymbol{z}_k^s - oldsymbol{z}_k^t
ight) - rac{1}{K^2} \sum_{j=1}^K \left(oldsymbol{z}_j^s - oldsymbol{z}_j^t
ight) \ &oldsymbol{\downarrow} \end{aligned}$$

$$\lim_{ au o \infty}
abla_{oldsymbol{z}^s} \mathcal{L}_{KL} = rac{1}{K} \left(oldsymbol{z}^s - oldsymbol{z}^t
ight) - rac{1}{K^2} \sum_{j=1}^K \left(oldsymbol{z}_j^s - oldsymbol{z}_j^t
ight) \cdot \mathbb{1}$$

Bounded Convergence Theorem using each partial derivatives

$$\lim_{\tau \to \infty} \mathcal{L}_{KL} = \frac{1}{2K} ||\boldsymbol{z}^s - \boldsymbol{z}^t||_2^2 + \delta_{\infty} = \frac{1}{2K} \mathcal{L}_{MSE} + \delta_{\infty}$$

$$\delta_{\infty} = -\frac{1}{2K^2} (\sum_{i=1}^{K} \boldsymbol{z}_{j}^{s} - \sum_{i=1}^{K} \boldsymbol{z}_{j}^{t})^2 + Constant$$

Analysis on this term!!

Theoretical Analysis on δ_{∞}

lacksquare Lower bound for δ_{∞}

$$\begin{split} \delta_{\infty} &\approx -\frac{1}{2K^2} \left(\sum_{j=1}^K \boldsymbol{z}_j^s \right)^2 = -\frac{1}{2K^2} \left(\sum_{j=1}^K \sum_{n=1}^d W_{j,n}^s \boldsymbol{r}_n^s \right)^2 \\ &= -\frac{1}{2K^2} \left(\sum_{n=1}^d \boldsymbol{r}_n^s \sum_{j=1}^K W_{j,n}^s \right)^2 \\ &\geq -\frac{1}{2K^2} \left(\sum_{n=1}^d (\sum_{j=1}^K W_{j,n}^s)^2 \right) \left(\sum_{n=1}^d \boldsymbol{r}_n^{s\,2} \right) \\ &\quad (\because \text{Cauchy-Schwartz inequality}) \\ &= -\frac{1}{2K^2} ||\boldsymbol{r}^s||_2^2 \left(\sum_{n=1}^d (\sum_{j=1}^K W_{j,n}^s)^2 \right) \end{split}$$

- Increasing the norm of r (pre-logit: input of fully-connected layer)
- De-shinkage effects on weight templates

Empirical Analysis on δ_{∞}

- Logit & Pre-logit behavior
- 2-D Projection Visualization

Empirical Results

- Training Accuracy and Test Accuracy (CIFAR-100)
- With perfectly trained teacher, MSE is the best!!

(a) Training accuracy.

(b) Test accuracy.

Student	\mathcal{L}_{KL}					\mathcal{L}_{MSE}	
22	$\mid \mathcal{L}_{CE} \mid$	τ =1	τ =3	τ =5	τ =20	$\tau = \infty$	
WRN-16-2	72.68	72.90	74.24	74.88	75.15	75.51	75.54
WRN-16-4	77.28	76.93	78.76	78.65	78.84	78.61	79.03
WRN-28-2	75.12	74.88	76.47	76.60	77.28	76.86	77.28
WRN-28-4	78.88	78.01	78.84	79.36	79.72	79.61	79.79
WRN-40-6	79.11	79.69	79.94	79.87	79.82	79.80	80.25

Empirical Results

MSE is also the best compared to other alternatives!!

		Overhaul [2019a]	AB [2019b]	FT [2018]	Jacobian [2018]	AT [2016a]	FitNets [2014]	SKD [2015]	Baseline	Student
WRN-16-4 77.28 78.31 78.15 77.93 77.82 78.28 78.64 78.29	75.54 79.03 77.28	75.59 78.20 76.71								

Extreme small τ

- Robustness to Noisy Labels
- On severe noise rate (80%), low τ is better than others!
- It happens due to teacher's poor generalization.
- Label Matching is better!

$$t$$
, \mathcal{L}_{CE} ---- s , \mathcal{L}_{CE} ---- s , \mathcal{L}_{MSE}
---- s , \mathcal{L}_{KL} ($\tau = \infty$) ---- s , \mathcal{L}_{KL} in Eq.(2) —— s , \mathcal{L}_{KL} in Eq.(7)

(a) Symmetric noise 40%

(b) Symmetric noise 80%

Of Optimization and Statistical Inference LAB

Adequate τ (Noisy Teacher)

- If your teacher model is not perfectly trained,
- But has the test accuracy around 80~90% then,
- the optimal solution for τ may be some number >1.

Student	\mathcal{L}_{KL}					\mathcal{L}_{MSE}	
	τ=0.1	τ =0.5	τ =1	<i>τ</i> =5	τ =20	$\tau = \infty$	MBE
WRN-16-2	51.64	52.07	51.36	50.11	49.69	49.46	49.20

Table 4: Top-1 test accuracies on CIFAR-100. WRN-28-4 is used as a teacher for \mathcal{L}_{KL} and \mathcal{L}_{MSE} . Here, the teacher (WRN-28-4) was not fully trained. The training accuracy of the teacher network is 53.77%.

Student	\mathcal{L}_{CE}	\mathcal{L}_{KL} (Standard)	\mathcal{L}_{KL} ($ au$ =20)	\mathcal{L}_{MSE}
ResNet-50	76.28	77.15	77.52	75.84

Table 5: Test accuracy on the ImageNet dataset. We used a (teacher, student) pair of (ResNet-152, ResNet-50). We include the results of the baseline and \mathcal{L}_{KL} (standard) from [Heo *et al.*, 2019a]. The training accuracy of the teacher network is 81.16%.

- Sequential Distillation
- According to the changes of objective functions,
- The performance varies significantly even under the usage of the same architectures.

WRN-28-4	WRN-16-4	WRN-16-2	Test accuracy
X	X	\mathcal{L}_{CE}	72.68 %
		$\mathcal{L}_{KL}(\tau=3)$	74.84 %
X	\mathcal{L}_{CE} (77.28%)	$\mathcal{L}_{KL}(\tau=20)$	75.42 %
	(77.2070)	\mathcal{L}_{MSE}	75.58 %
\mathcal{L}_{CE} (78.88%)		$\mathcal{L}_{KL}(\tau=3)$	74.24 %
	X	$\mathcal{L}_{KL}(\tau=20)$	75.15 %
		\mathcal{L}_{MSE}	75.54 %
\mathcal{L}_{CE} (78.88%)	1	$\mathcal{L}_{KL}(\tau=3)$	74.52 %
	$\mathcal{L}_{KL}(\tau = 3)$ (78.76%)	$\mathcal{L}_{KL}(\tau=20)$	75.47 %
	(10.1010)	\mathcal{L}_{MSE}	75.78 %
		$\mathcal{L}_{KL}(\tau=3)$	74.83 %
	\mathcal{L}_{MSE} (79.03%)	$\mathcal{L}_{KL}(\tau=20)$	75.47 %
	(17.0570)	\mathcal{L}_{MSE}	75.48 %

E.O.D.

