

A Computational Biology Framework

A data analysis tool to support biomedical engineers in their research

Tim Beishuizen, October 23rd 2018

Supervisors:

Dr. Dragan Bošnački Dr. Ir. Joaquin Vanschoren

Prof. Dr. Peter Hilbers

Contents

- Introduction
 - Research questions
- Project description
- Research lines
 - Feature selection
 - Missing value handling
 - Dataset exploration
- Framework

Introduction

- Biomedical data
- Processing
- Analysis
- Framework

Main research question

What aspects are of importance to be included in a framework for Biomedical Engineers for more efficient data analysis?

Datasets

Preprocessing methods

Data issues

Analysis methods

Sub-questions

- What feature selection methods show the best performance and as such should be added to the framework?
- What missing value handling methods show the best performance and as such should be added to the framework?
- Which initial analyses help find suitable preprocessing and data analysis algorithms?

Project description

- Statistics
- Machine learning
- Data matrix
 - Samples (s)
 - Features (f)
 - Output (y)
 - Classification
- Python

Datasets

- Microarray datasets
 - Gene expression
 - Many features
 - Big datasets
- Mass spectrometry datasets
 - Protein mass
 - Many features
 - Differences between features

- Clinical datasets
 - Data out of a clinic
 - Missing values
 - Combining data issues
- Survey datasets
 - Questionnaire data
 - Missing values
 - Bias due to subjectivity

Feature selection

Feature selection

What feature selection methods show the best performance and as such should be added to the framework?

Feature selection methods

- Filter methods
- Wrapper methods
- Embedded methods

Datasets

- Microarray
- Mass spectrometry

Filter methods

• Separate features

Filter methods

- Separate features
- Evaluation function
- Selection
- Fast and simple

Wrapper methods

Feature sets

Wrapper methods

- Feature sets
- Evaluation function
- Methods
 - Forward selection
 - Backward selection
 - Combinations
- Feature dependencies
- Longer computation time

Embedded methods

• Machine learning algorithms

Embedded methods

- Machine learning algorithms
- Weights
- Selection
- Low computation time
- Some feature dependencies

Filter methods

- Evaluation functions
 - T-test/ANOVA
 - Mutual Information
- Feature selection
 - Minimum 1
 - Maximum 1000
- Quality testing
 - Logistic regression accuracy ([0, 1])

- Evaluation functions
- 200 features

FS_score

- Combination
 - Prediction score
 - Features preserved
- Correction factor

$$FS_score = score * \beta^{\#features}$$

- $\beta = 0.99$
- Optimum
- Prediction scores

Feature selection methods quality

- Quality testing
 - FS_score
 - Logistic regression accuracy ([0, 1])

- Filter and embedded methods faster
- Wrapper methods better

Automated Machine learning

- Search for best analysis pipeline
- Preprocessing algorithms
- Machine learning algorithms
- Hyperparameters

Genetic Algorithms

- Solutions
- Evolving solutions
 - Mutations
 - Crossovers
- Selecting solutions

Tree-based Pipeline Optimization tool (TPOT)

- Genetic algorithms
- Searches for and stores best pipeline
- Issues with many features

TPOT for many features

- FS_score
 - Accuracy ([0, 1])
- 2 Additions
 - Bias towards feature selection
 - New set feature selection algorithms

- Improved
- Microarray both best
- Mass spectrometry debatable

Legend

- Blue No addition
- Orange New algorithms
- Green Feature selection bias
- Red Both additions

Missing Value Handling

Missing Value Handling

What missing value handling methods show the best performance and as such should be added to the framework?

Missing value handling methods

- List Deletion
- Single imputation
- Multiple imputation

Datasets

- Clinical
- Survey

List deletion

- Available Case Analysis (ACA)
- Complete Case Analysis (CCA)
 - Weighted Case Analysis (WCA)

Single imputation

Single imputation

- Mean imputation
 - Median
 - Mode
- Hot deck imputation

Single imputation

- Mean imputation
 - Median
 - Mode
- Hot deck imputation
- Advanced imputation
 - Regression imputation
 - Nearest neighbour imputation (kNN)

Multiple Imputation

- Multiple datasets
- Multiple Imputation Chained Equations (MICE)

Feature distributions

- Mean
- Standard deviation
- T-test similarity

Results

• > 15% missing values removed

Missing value handling quality

- >15% missing values removed
- Quality output
 - Logistic regression F1-score ([0, 1])

- List Deletion
- Mean Imputation
- Regression, kNN and MICE

Dataset exploration

Dataset exploration

Which initial analyses help find suitable preprocessing and data analysis algorithms?

Exploration

- Dataset issues
- Meta-features
- Package *metalearn*

Datasets

- Clinical
- Mass spectrometry

Analysis 1

Dataset exploration with package metalearn

Issues <> meta-features

Result

- Issues recognizable
 - Multicollinearity
 - Feature irrelevance
- Needs clarification

Analysis 2

Dataset exploration with package metalearn

- metalearn addition
 - meta-features
 - Outlier detection
 - Plots

Results

- All issues explained
- Better understanding

Framework cBioF

Framework cBioF

What aspects are of importance to be included in a framework for Biomedical Engineers for more efficient data analysis?

Phases

- Datasets
- Exploration
- Preprocessing
- Analysis

Dataset

Framework program

Dataset Understanding

Microarray

Mass spectrometry

Clinical

Survey

Other

Dataset

Framework program

Dataset Understanding

Exploration

Microarray

Feature dimensionality

Mass spectrometry

Multicollinearity

Feature irrelevance

Feature imbalance

Clinical

Data types

Survey

Missing values

Other

Output imbalance

Framework program Dataset Dataset **Exploration** Understanding Additional focus Microarray — Feature dimensionality Multicollinearity Mass spectrometry Feature irrelevance Feature imbalance Clinical Data types Survey Missing values Output imbalance Other

Conclusions

Feature selection

- 200 features threshold
- Wrapper methods perform best

Missing value handling

- > 15% missing values
- Mean imputation

Dataset exploration

Possible with additions metalearn

Conclusion TPOT

- Problems many features
- FS_score
- Feature selection added:
 - Bias
 - Algorithms
- Better performance

Future work

Feature selection

- 200 features threshold
- Combination filter and wrapper

Missing value handling

New datasets

Framework

- Multicollinearity
- Other dataset issues

