Upravljanje resursima i raspoređivanja (scheduling)

Računarstvo u oblaku (Cloud Computing)

Sadržaj

- Uvod upravljanje resursima
- Upravljanje resursima u oblaku
- Politike i mehanizmi upravljanja resursima
- Primena teorije upravljanja i optimizacije na urpavljanje resursima
- Upravljanje resursima i raspoređivanje (scheduling)
- Raspoređivanje (scheduling) u oblaku
- Ciljevi koje raspoređivanje treba da postigne
- Upravljanje opterećenjem (Workload management)

Upravljanje resursima

- Upravljanje resursima je osnovna funkcija koju obavlja bilo koji sistem koji je napravio čovek. Direktno utiče na tri osnovna kriterijuma za evaluaciju nekog sistema: performanse, funkcionalnost i cena.
 - Neefikasno upravljanje resursima ima direktne negativne posledice na performanse i eksploatacionu cenu sistema, a najčešće indirektno pogađa i funkcionalnost sistema (jer izvršavanje nekih funkcija može postati preskupo ili trajati predugo).

Upravljanje resursima u oblaku

- Računarsko okruženje u oblaku je veoma kompleksan sistem koji treba da ispunjava nepredvidljive zahteve i na koji utiču i spoljašnji događaji koji su van njegove kontrole. Upravljanje resursima u oblaku zahteva složene politike upravljanja i odlučivanja koje se zasnivaju na "višeciljnoj" optimizaciji (multi-objective optimization).
 - Upravljanje resursima u oblaku je veoma izazovan problem upravo zbog kompleksnosti sistema, gde je skoro nemoguće imati uvid u tačno globalno stanje sistema, kao i zbog velikog broja različitih i u suštini nepredvidljivih interakcija koje takav sistem ima sa okruženjem.

Upravljanje resursima u oblaku

- Usluge u oblaku isporučuju se po različitim modelima (laaS, PaaS, SaaS) i strategije za upravljanje resursima se mogu razlikovati u zavisnosti od ovih modela.
- U bilo kom modelu ponuđač usluge mora da reši problem obezbeđivanja obećane elastičnosti u situaciji kada se suočava sa velikim, fluktuirajućim opterećenjem.
 - U nekim situacijama, kada je povećanje opterećenja predvidljivo alokacija resursa se može planirati unapred.
 - Ako se desi nagli nepredviđeni skok opterećenja, autoscaling algoritam može da se u konačnom vremenu izbori s tim, ali samo ako
 - A) u tom momentu postoje resursi koji su slobodni ili se mogu osloboditi i dodeliti za izvršavanje usluge
 - B) Postoji dobar monitoring podsistem koji omogućava kontrolnoj petlji da u realnom vremenu donese odluku koji resursi se mogu realocirati

Upravljanje resursima u oblaku

- Skoro od samog nastanka sistema u oblaku polemiše se da centralizovana kontrola teško da može da se izbori sa ovim brzim i nepredvidljivim promenama i da obezbedi kontinualnu isporuku servisa sa odgovarajućim stepenom kvaliteta
- Autonomne politike odlučivanja o raspoređivanju resursa su ovde od interesa zbog:
 - veličine samog sistema, velikog broja zahteva, velikog broja korisnika, nepredvidljivosti opterećenja pojedinih servisa

Politike i mehanizmi upravljanja resursima

- Politika definiše donošenje ključnih odluka, a mehanizam predstavlja način kako se te ključne odluke sprovode u delo (impelmentiraju). U računarstvu je često bitno napraviti jasnu separaciju ove dve stvari.
- Politike upravljanja resursima u oblaku se mogu grupisati:
 - Kontrola prihvatanja (admission control)
 - Alokacija kapaciteta (Capacity allocation)
 - Balansiranje opterećenja (Load balancing)
 - Optimizacija utroška energije
 - QoS garancije

Politike i mehanizmi upravljanja resursima

- Admission control sprečava sistem da prihvati rad na zadacima (workload) koji narušavaju postavljene politike sistema na visokom nivou.
 - Npr. ne prihvatati novi posao ukoliko to sprečava da se tekući ili već pripremljeni zadaci završe.
- Capacity allocation alociranje resursa za pojedinačnu aktivaciju servisa.
 - Kada se stanje svakog sistema često menja, ovo podrazumeva pretraživanje preko velikog broja čvorova da se nađe odgovarajući.
- Load balancing distribuiranje opterećenja ravnomerno između raspoloživih instanci servera (ili servisa).
 - Npr. opterećenje se rasporedi da svaki server radi sa 50% kapaciteta. Ali u cloudu ovo često ima drugačiji smisao minimizovati i troškove – onda ovakvo rešenje nije dobro, bolje je posao rasporediti tako da se minimizuje broj servera koji učestvuje u obradi a ostali prebace u stand-by
- Energy optimisation minimizovanje energije utrošene na izvršavanje zadataka
 - Npr. snižavanje takta i napona na procesoru može neznatno da smanji performanse, a mnogo više utrošak energije
- Quality of service (QoS) guarantees sposobnost da se ispune vremenski ili drugi zahtevi specificirani
 u ugovoru Service Level Agreement (SLA).

Primena teorije upravljanja i optimizacije na urpavljanje resursima

- Teorija upravljanja se dugo koristi kao način za analizu i dizajn sistema za adaptivno upravljanje resursima (upravljanje potrošnjom energije, upravljanje raspoređivanjem zadataka, prilagođavanje QoS u web serverima, balansiranje opterećenja).
- U svim ovim slučajevima koristi se klasična metoda povratne veze pomoću kojih se regulišu ključni operativni parametri sistema, a na osnovu merenja trenutnog izlaza iz sistema.
- Optimalno upravljanje generiše sekvencu kontrolnih (upravljajućih) ulaza (signala) estimirajući promene sistema. Koriste se tehnike optimizacije koje su usmerene na minimizaciju konveksne funkcije "koštanja" (cost function).

Upravljanje resursima i raspoređivanje (scheduling)

- Šta je problem raspoređivanja (scheduling) u računarskom sistemu odlučivanje kako dodeliti resurse sistema (vreme na procesoru, memoriju, prostor za skladištenje, I/O i mrežni propusni opseg) različitim zadacima i korisnicima.
- Scheduler program koji implementira određeni algoritam raspoređivanja resursa.

Raspoređivanje (scheduling) u oblaku

- Raspoređivanje je kritična komponenta upravljanja resursima u oblaku.
- Odgovorno je za efikasno deljenje/mulitpleksiranje resursa na različitim nivoima.
 - Hardver servera može deliti više virtuelnih mašina, na svakoj od njih se može nalaziti aktivno više programa, od kojih svaki može imati pokrenute više niti.
 - Raspoređivanje na CPU (CPU scheduling) omogućava virtuelizaciju procesora, gde se svaka nit "vidi" ponaša kao virtuelni procesor.
 - Komunkacioni link može biti multipleksiran tako da ga koristi više virtuelnih kanala.

Raspoređivanje (scheduling) u oblaku

- Scheduler (raspoređivač) odlučuje o:
 - Količini resursa koje je neophodno dodeliti nekome
 - Trajanju alokacije
- Ove odluke se donose na osnovu algoritma koji mora da bude:
 - Efikasan
 - Pravedan
 - Sprečava izgladnjivanje (starvation-free)

Ciljevi koje raspoređivanje treba da postigne

- Ciljevi mogu da variraju u zavisnosti od vrste aplikacija
 - Batch sistemi cilj je maksimizovati propusnost
 - Sistemi u realnom vremenu (real-time) završiti posao pre zadatog roka (deadline)
- Neki česti algoritmi raspoređivanja
 - Round-robin
 - First-come-first-serve
 - Shortest-job-first

Vremenska ograničenja - deadlines

- "Tvrdo" ograničenje ukoliko se neki zadatak ne završi do zadatog roka, drugi zadaci, koji od njega zavise, mogu biti pogođeni i postoje penali (kazne).
 Precizan je i izražava se u milisekundama, sekundama
- "Meko" ograničenje više kao smernica kada obaviti posao, i u opštem slučaju ne dovodi do penala ukoliko se to ne desi "na vreme". Ograničenje može i da se "prebaci" za određeni vremenski interval bez štetnih posledica.
- Mulitmedijalne aplikacije (audio, video streaming)
 - Imaju "meka" vremenska ograničenja
 - Zahtevaju statistički garantovano maksimalno očekivano kašnjenje i propusni opseg.
- Aplikacije u realnom vremenu imaju "tvrda" vremenska ograničenja

Upravljanje resursima na virtuelizovanim serverima

- Stvari koje treba uzeti u razmatranje
 - Postoji veći broj raznovrsnih zadataka (workloads)
 - Konačan broj zadataka (workloads) se može obavljati na svakom serveru
 - Zadaci mogu imati promenljive zahteve u pogledu vremena potrebnog za njihovo izvršavanje
 - Performanse i izolacija resursa između različith zadataka

Terminologija raspoređivača CPU

- Dosta raspoređivača radi po principu proporcionalne zastupljenosti Porportional Share (PS)
 - PS raspoređivanje alocira CPU u srazmeri sa "udelom" (shares), odnosno težinom koja je na neki način dodeljena zadatku
- Kriterijumi evaluacije raspoređivanja
 - Pravičnost (fairness) vremenski interval tokom kojeg raspoređivač obezbeđuje pravičnu raspodelu CPU resursa
 - Greška alokacije razlika između stvarno alociranih resursa i traženih resursa
- Fair-Share nasuprot Proportional-Share raspoređivanja
 - Raspoređivanje po principu pravičnog udela pokušava da obezbedi vremenski usrednjenu proporcionalnu raspodelu, na osnovu merenja stvarnog korišćenja resursa tokom dužeg intervala

Primer pravičnog i proporcionalnog raspoređivanja

- Problem: dva klijenta C1 i C2 dele sistem sa istovetnim udelom u CPU resursima. C1 koristi CPU već izvesno vreme a C2 je blokiran
 - Šta se dešava kada C2 ponovo postane aktivan?

- Pravični algoritam raspoređivanja će u tom momentu povećati "udeo" za C2 i obezbediti mu duži pristup CPU kako bi "dostigao" C1
- Proporcionalni algoritam će tretirati C1 i C2 istovetno, jer nije potrebno penalizovati C1 za veće korišćenje resursa koji bi inače bili nekorišćeni (idle), jer je C2 svakako bio blokiran.

Terminologija raspoređivača CPU (nastavak)

- Work-conserving (WC mode) očuvanje izvršavanja zadataka
 - Udeo u CPU resursima je samo "garancija" učešća. Sve dok ima posla koji se treba obaviti i svi klijenti su iskoristili svoj udeo, CPU će nastaviti da bude korišćen
- Non Work Conserving (NWC mode)
 - Udeo u CPU predstavlja limit. Klijenti dobijaju svoj udeo u CPU i ništa preko toga

Terminologija raspoređivača CPU (nastavak)

- Non-preemtive raspoređivači
 - Dozvoljavaju klijentima koji trenutno vrše obradu da dovrše iskorištavnje CPU resursa. Ovakvi raspoređivači donose odluku o prebacivanju CPU resursa na drugog klijenta tek nakon što tekući klijent oslobodi CPU
- Preemptive raspoređivači
 - Tekući klijent čiji se zadatak izvršava može biti "ispražnjen" iz CPU kako bi ostali klijenti došli na red. Ovakvi raspoređivači odluke o preraspodeli resursa donose čim se pojavi novi klijent.

Upravljanje opterećenjem (Workload management)

- Sposobnost da se aplikacijama precizno dodele resursi (CPU, memorija, I/O). Aplikacije saopštavaju koje performanse su im potrebne (u sklasu sa očekivanim nivoom usluge), a workload manager se brine da se aplikaciji dodele potrebni resursi kako bi ispunila te zahteve.
- Pristupi koji se koriste:
 - Statički potreba za resursima se procenjuje samo jednom i oni se statički dodeljuju aplikaciji čak i kada postoji varijabilno opterećenje
 - Dinamički resursi se dinamički prilagođavaju trenutnim zahtevima aplikacije
- Workload manageri obično koriste PS u kombinaciji na NWC režimom
 - Kako bi obezbedili izolaciju performansi

Neki od algoritama raspoređivanja CPU resursa

- Pozajmljeno virtuelno vreme (Borrowed Virtual Time)
- Jednostavni algoritam prednosti za najranije rokove (Simple Earliest Deadline First)
- Kreditno raspoređivanje (Credit Scheduler)

Borrowed Virtual Time - BVT

- Cilj: koristi princip pravične raspodele bazirane na konceptu virtuelnog vremena, dodeljujući CPU onim nitima čija VM ima najmanje stanje brojača virtuelnog vremena
- Omogućava aplikacijama koje su osetljive na kašnjenje da se "vrate unazad" u virtuelnom vremenu i time podignu svoj prioritet, i na taj način "posuđuje" vreme od svojih budućih alokacija
- Osobine:
 - Preemptive, WC režim
 - Optimalno praična raspodela
 - Mali *overhead* za implementaciju
- Ne podržava NWC pa ograničava izolaciju

Simple Earliest Deadline First - SEDF

- Kod SEDF svaki domen (izvršivi zadatak proces, nit) specificira tri vrednosti: (si, pi, xi), gde su:
- *s_i* := vremenski odsečak (slice)
- $p_i := period$
- *Dom*_i dobija si vremenskih jedinica unutar perioda pi.
- x_i := određuje da domen može dobiti ekstra vreme na CPU (WC-mode)
- Ako je WC režim omoguće, SEDF distribuira slobodno vreme ravnomerno između domena koji čekaju izvršavanje.
- Primer: Kako se može dodeliti 30% CPU nekom od domena (zadataka)?
- (3ms, 10ms, 0), ili (30ms, 100ms, 0)
- Ima li razlike?

Simple Earliest Deadline First - SEDF

- Za svaki domen SEDF prati još dve vrednosti (d_i, r_i) , gde je:
- d_i := momenat u vremenu kada se za Dom_i završava njegov tekućem period (deadline)
- r_i := preostalo alocirano CPU vreme koje Dom_i ima u tekućem periodu
- Politika raspoređivanja: Domen koji ima najbliži rok se bira da bude sledeći na redu za izvršavanje na CPU
- SEDF osobine:
 - Preemptive, WC i NWC režimi rada
 - Pravična raspodela zavisi od dužine perioda
 - Impelmentira se za CPU redove, ali mu nedostaje sposobnost globalnog balansiranja na multiprocesorskim okruženjima

Credit Scheduler

- PS raspoređivač sa automatizovanim balansiranjem opterećenja na vritualnim CPU (vCPU) formiranim nad fizičkim CPU
- Pre nego fizički CPU pređe u idle stanje, raspoređivač proverava da il postoje drugi CPU-ovi kod kojih neki od vCPU čeka u stanju spremnom za izvršavanje
- Cilj ovaj algoritam obezbeđuje da nijedan stvarni fizički CPU ne bude u idle stanju sve dok ima posla koji čeka na izvršavanje
- Za svaku VM raspoređivač dodeljuje težinu (weight) i limit (cap)
- Ukoliko je limit 0, tada ta VM može dobiti i dodatno potrebno vreme (WC režim rada)
- Ako je limit raličit od nule, onda on reprezentuje maksimalni odsečak vremena koje VM može dobiti na procesoru (NWC)

Credit Scheduler

- Raspoređivač radi sa odsečcima od 30ms: vCPU dobija 30 ms za izvršavanje pre nego što bude zamenjen nekim drugim vCPU
- U svakom vremenskom odsečku prioritet (krediti) za svaku CM se preračunavaju
- Raspoređivač radi monitoring na svakih 10 ms

- Osobine:
 - Non preemptive, WC i NWC
 - Globalno balansiranje opterećenja na multiprocesorskim sistemima

Zaključak

• Pitanja?