T5

Text-to-Text Transfer Transformer

Идея работы в том, чтобы представить любую NLP задачу как text-to-text задачу, в т.ч. задачи классификации, суммаризации, что позволяет использовать одну и ту же модель, функцию потерь, процесс обучения для различных моделей.

Используются Transformer, в котором

- PreNorm
- позиционные эмбеддинги RoPE
- $d_{ff} = 3072$
- $d_{model} = 768$
- Нелинейность ReLU

Метрики замеряли на следующих задачах:

- машинный перевод
- QA
- суммаризация
- классификация

Обучение

Каждая задача была сформулирована в формате text-to-text, поэтому для каждой задачи был свой прификс. Например при переводе с английского языка на немецкий входящая

строка может выглядеть так: "translate English to German: That is good. target:" ожидается что модель предскажет строку "Das ist gut"

Префиксное маскирование

Какое внимание использовать? Маскированное нельзя так как, например, потеряем информация английского предложения. А если сделать без маски, то получится так, что "заглядываем" в будущее при генерации ответа. Авторы предлагают использовать префиксное маскирование, идея которого заключается в следующем: в примере выше при обучении будем использовать attention без маскирования для входящей последовательности, то есть "translate English to German: That is good. target:", но для target последовательности используем masked attention.

Такой подход может напоминать BERT, так как мы используем внимание без маски на входящей последовательности, а потом делаем на ней предсказание, но их отличие в том что classifier в случае T5 уже встроен в архитектуру декодера.

Objectives

Objective	Inputs	Targets
Prefix language modeling	Thank you for inviting	me to your party last week .
BERT-style Devlin et al. (2018)	Thank you $$ me to your party apple week .	(original text)
Deshuffling	party me for your to . last fun you inviting week Thank	(original text)
MASS-style Song et al. (2019)	Thank you $$ me to your party $$ week .	(original text)
I.i.d. noise, replace spans	Thank you <x> me to your party <y> week.</y></x>	<x> for inviting <y> last <z></z></y></x>
I.i.d. noise, drop tokens	Thank you me to your party week.	for inviting last
Random spans	Thank you $\langle X \rangle$ to $\langle Y \rangle$ week.	<x> for inviting me <y> your party last <z></z></y></x>

Авторы рассмотрели несколько способов максирования текста в качестве задачи для обучения. Начали с первых трех, по бенчмарку получилось, что BERT-style objective дает лучшие результаты, после чего проверили другие варианты, основанные на нем:

- MASS-objective, BERT-style, но случайных токенов при маскировании, всегда используется токен <M>
- drop маскированных токенов
- объединение нескольких последовательных маскированных токенов в один

