Application No.: 09/417,251 Docket No.: BB1085 US NA

oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a portion of a protein disulfide isomerase precursor or an RB60 amino acid sequence.

Paragraph starting at page 6, line 11:

In the context of this disclosure, a number of terms shall be utilized. As used herein, a "polynucleotide" is a nucleotide sequence such as a nucleic acid fragment. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, or synthetic DNA. An isolated polynucleotide of the present invention may include at least 40 contiguous nucleotides, preferably at least 30 contiguous nucleotides, most preferably at least 15 contiguous nucleotides, of the nucleic acid sequence of the SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, or 19.

Paragraph starting at Page 7, line 21:

Substantially similar nucleic acid fragments may be selected by screening nucleic acid fragments representing subfragments or modifications of the nucleic acid fragments of the instant invention, wherein one or more nucleotides are substituted, deleted and/or inserted, for their ability to affect the level of the polypeptide encoded by the unmodified nucleic acid fragment in a plant or plant cell. For example, a substantially similar nucleic acid fragment representing at least 30 contiguous nucleotides derived from the instant nucleic acid fragment can be constructed and introduced into a plant or plant cell. The level of the polypeptide encoded by the unmodified nucleic acid fragment present in a plant or plant cell exposed to the substantially similar nucleic fragment can then be compared to the level of the polypeptide in a plant or plant cell that is not exposed to the substantially similar nucleic acid fragment.

Paragraph starting on page 7, line 32:

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one

Application No.: 09/417,251

Docket No.: BB1085 US NA Page 3

positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least 40 (preferably at least 30, most preferably at least 15) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and the complement of such nucleotide sequences may be used in methods of selecting an isolated polynucleotide that affects the expression of a polypeptide (such as PDI precursor or PDI RB60) in a host cell. A method of selecting an isolated polynucleotide that affects the level of expression of a polypeptide in a host cell (eukaryotic, such as plant, or prokarotic such as yeast bacterial or virus) may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level a polypeptide in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide in the host cell containing the isolated polynucleotide with the level of a polypeptide in a host cell that does not contain the isolated polynucleotide.

Paragraph starting at page 10, line 6:

"Codon degeneracy" refers to divergence in the genetic code permitting variation of the nucleotide sequence without affecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

Paragraph starting at page 14, line 7:

In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor

Šĺ

Application No.: 09/41, 251 Docket No.: BB1085 US NA

encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) Proc. Natl. Acad. Sci. USA 85:8998-9002) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al. (1989) Proc. Natl. Acad. Sci. USA 86:5673-5677; Loh et al. (1989) Science 243:217-220). Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman and Martin (1989) Techniques 1:165). Consequently, a polynucleotide comprising a nucleotide sequence of at least 40 (preferably at least 30, most preferably at least 15) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and the complement of such nucleotide sequences may be used in such methods to obtain a nucleic acid fragment encoding a substantial portion of an amino acid sequence of a polypeptide (such as PDI precursor or PDI RB 60). The present invention relates to a method of obtaining a nucleic acid fragment encoding a substantial portion of a polypeptide (such as PDI precursor or PDI RB 60) preferably a substantial portion of a polypeptide of a plant gene, comprising the steps of: synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least 40 (preferably at least 30, most preferably at least 15) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and the complement of such nucleotide sequences; and amplifying a nucleic acid fragment (preferably a cDNA inserted in a cloning vector) using the oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a portion of a polypeptide (such as PDI precursor or PDI RB 60).

In the Claims:

Please cancel Claims 1 through 15 without prejudice or disclaimer.

Please add the following new claims:

An isolated polynucleotide that encodes a protein disulfide isomerase, the polypeptide having a sequence identity of at least 85%, based on the Clustal method of alignment, when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, and 20.

o, 10, 12, 11, 10, 10, and 20.

The polynucleotide of Claim 16 wherein the sequence identity is at least 90%.

The polynucleotide of Claim 1 wherein the sequence identity is at least 95%.

P