Stance Classification of Context-Dependent Claims

Roy Bar-Haim¹, Indrajit Bhattacharya², Francesco Dinuzzo^{3*} Amrita Saha², and Noam Slonim¹

¹IBM Research - Haifa, Mount Carmel, Haifa, 31905, Israel

²IBM Research - Bangalore, India

³IBM Research - Ireland, Damastown Industrial Estate, Dublin 15, Ireland

{roybar, noams}@il.ibm.com, {indrajitb,amrsaha4}@in.ibm.com

Venue: 2017 EACL

발제자:이다현

HUMANE Lab

2024-02-27

Goal

- 논란이 되는 주제(Controversial Topic)에 대해 관련된 주장(claims)을 탐지하는 문제에 이어, 주장의 입장 분류(claim stance classification)라는 보완적인 작업을 소개
 - 첫 번째 벤치마크 데이터셋을 제공
 - 주장의 입장 분류 문제를 세 부분으로 분해
 - Open-domain target identification
 - : 주제(topic)와 주장(claim) 각각에 대한 target을 식별
 - 각 target에 대한 Sentiment classification

Target: phrase about which they make a positive or a negative statement

Introduction

- On demand generation of pro and con arguments for a given controversial topic would be of great value in many domains
- Debating support and decision support
- E.g
 - "The sale of violent video games to minors should be banned." (controversial topic)
 - (Pro)Violence is damaging the kindness of children.(claim)
 - (Pro)Love makes world peaceful and harmony.(claim)

Notable Research

• IBM의 Debater® Project

Motivation

- Sorting extracted claims into pro and con improves the usability of both debating and decision support systems.
 - Topic t and extracted claims c from t
 - Semantic model for predicting claim stance(Pro/Con)
 - Three sub-problems
 - Identify Targets
 - Identify sentiment towards target
 - Consistency or Contrast between targets
 - More general topic & contrast scope

Dataset

- Randomly selected 55 topics worded as "This house + ···"
- 2394 Claims assessed polarity by 5 annotators

#	Debate Topic (Motion)		Claim				
1	This house believes that advertising is harmful. \ominus	\Leftrightarrow	Marketing promotes consumerism and waste. ⊖				
2	This house would ban boxing. ⊖	\Leftrightarrow	Boxing remains the 8th most deadly sport. ⊖	Pro			
3	This house would embrace multiculturalism . ⊕	#	Unity is seen as an essential feature of the nation and th nation-state. ⊕				
4	This house supports the one-child policy of the republic of China. ⊕	#	Children with many siblings receive fewer resources.				
5	This house would build hydroelectric dams . \oplus	\Leftrightarrow	As an alternative energy source, a hydroelectric power source is cheaper than both nuclear and wind power. \oplus				
6	his house believes that it is sometimes right or the government to restrict freedom of peech . \ominus		Human rights can be limited or even pushed aside during times of national emergency. ⊖	Pro			
7	This house would abolish the monarchy. ⊖	\Leftrightarrow	Hereditary succession is outdated. ⊖	Pro			
8	This house would unleash the free market \oplus	#	Virtually all developed countries today successfully pro- moted their national industries through protectionism .	Con			
9	This house supports the one-child policy of the republic of China. ⊕		If, for any reason, the single child is unable to care for their older adult relatives, the oldest generations would face a lack of resources and necessities.	Con			

Table 1: Sample topic and claim annotations. Targets are marked in bold. \oplus/\ominus denote positive/negative sentiment towards the target, and $\Leftrightarrow/\not\Leftrightarrow$ denote consistent/contrastive targets.

Semantic Model

- Topic: This house supports the <u>freedom of speech</u>
- (Pro claim) "in favor of free discussion" or "criticizing censorship"
- (consistent) "freedom of speech" and "free discussion"
- (contrastive) "freedom of speech" and "censorship"

Semantic Model

- (Continuous)Claim stance classification model
 - Claim c, Topic t
 - Claim-target x_c , Topic-target x_t
 - Claim-Sentiment s_c , Topic-Sentiment s_t
 - Contrast relation $R(x_c, x_t)$
 - E.g $Stance(c,t) = s_c \times R(x_c, x_t) \times s_t$
- Real-valued prediction
 - Top K predictions
 - Threshold
 - Class: sign / Confidence: absolute value

Claim target identification

- Open-domain, generic target identification
 - x_t and s_t are given
 - Focusing on finding x_c and s_c with L2-regularized Logistic Regression Classifier

Syntactic and Positional: The dependency relation of x in c; whether x is a direct child of the root in the dependency parse tree for c; the minimum distance of x from the start or the end of the chunk containing it.

Wikipedia: whether x is a Wikipedia title, (e.g. human rights)

Table 2: Featured extracted for a target candidate x in a claim c

Sentiment: The dependency relation connecting x to any sentiment phrase in the rest of c. The (Hu and Liu, 2004a) sentiment lexicon was used. For example, *Hereditary succession* is the sentiment target of *outdated*, indicated by the subject-predicate relation connecting them (Table 1, row 7).

Topic relatedness: Semantic similarity between x and the topic target, e.g. *Marketing* and *advertising* (Table 1, row 1). We consider morphological similarity, paths in WordNet (Miller, 1995; Fellbaum, 1998), and cosine similarity of word2vec embeddings (Mikolov et al., 2013).

- True target과 같거나 상당히 겹치는 candidate phrases 🗆 positive training example
- 나머지는 negative training example로 사용

Claim sentiment Classification

Sentiment score

$$\frac{p-n}{p+n+1}$$

- Sentiment matching: Hu와 Liu의 sentiment lexicon을 이용
- Sentiment shifters application: 약 160개의 Sentiment Shifters를 포함하는 어 휘집을 수동으로 구성
- Sentiment weighting and score computation: $m{p}$ and $m{n}$ 각각 claim에서 detect 된 positive 가중합과 negative 가중합
- A weight of $d^{-0.5}$. d 는 sentiment term과 target 사이의 거리를 나타냄

Contrast Classification

- Anchor pair | Atheism & denying the existence of
 - $w(u) \times |r(\overline{u,v)}| \times w(v)$
 - $w(x) = \frac{tf(x)}{df(x)}$
- Relatedness measure

based on *co-occurrence* of the anchor pair with consistent and contrastive *cue-phrases*.

- $P(Lex + | u, v) = \frac{Freq(u, Lex +, v)}{Freq(u, v)}$
- P(Lex + | u, v) if P(Lex + | u, v) > P(Lex | u, v) otherwise, -P(Lex + | u, v)
- Contrast score → Random forest classifier
 - $P(x_c, a_c) \times r(a_c, a_t) \times P(x_t, a_t)$

Contrast Classification

- Two corpus: Query log(advertising and marketing),
 Wikipedia(Military vs diplomatic)
- Targets "atheism" and "denying the existence of God"
- Anchor pair candidate (atheism, God), (atheism, existence)
- R(atheism, God) w(atheism) and w(God)
 - $w(x) = \frac{tf(x)}{df(x)}$
- Relatedness measure
 - P(Lex + | atheism, God)
- Contrast score → consistency
 - $P(atheism, atheism) \times r(atheism, God) \times P(denying the existence of God, God)$

Evaluation

- A training set, comprising 25 topics (1,039 claims)
- A test set, comprising 30 topics (1, 355 claims)
- The training set was used to train the target identification classifier and the contrast classifier in system
- Predicting the test data
- Accuracy and coverage
 - Two baseline
 - Our model
 - · Combine our model with baseline

$$coverage(\alpha) = \frac{predicted(\alpha)}{claims}$$

$$accuracy(\alpha) = \frac{correct(\alpha)}{predicted(\alpha)}$$

Result

	Accuracy@Coverage										
Configuration	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
Baselines											
Unigrams SVM	0.688	0.688	0.659	0.612	0.587	0.563	0.560	0.554	0.554	0.547	
Unigrams+Sentiment SVM	0.717	0.717	0.717	0.709	0.693	0.691	0.687	0.668	0.655	0.632	
Our System											
Sentiment Score	0.752	0.720	0.720	0.720	0.720	0.720	0.636	0.636	0.636	0.636	
+Targeted Sentiment	0.770	0.770	0.770	0.749	0.734	0.734	0.706	0.632	0.632	0.632	
+Contrast Detection	0.849	0.847	0.836	0.793	0.767	0.740	0.704	0.632	0.632	0.632	
Our System+Unigrams SVM	0.784	0.758	0.749	0.743	0.730	0.711	0.682	0.671	0.658	0.645	

Table 3: Stance classification results. Majority baseline accuracy: 51.9%

(a) Sentiment (majority baseline: 56.2%)

(b) Contrast (majority baseline: 79.6%)

14

Figure 1: Performance of Sub-Components

Conclusion

- Open-domain claim stance classification
- 복잡한 task를 더 간단하게 쪼갠 모델 구현
- 이를 잘 설명하는 subtask 제안
- 이러한 subtask를 수행하기 위한 주석이 달린 dataset 구축

Open Question

• 수동 주석 처리나 알고리즘, 지식 그래프를 사용하는 방식에는 한계가 있을 것 같다. LLM이나 Retrieval LM을 활용해 성과를 낼 수 없을까?