Progress Report

Information share on Bitcoin exchanges

Top 10 Bitcoin exchanges

Exchange	Total_trade	Total_volume	VolumePerDay	VolumePerTrade	TradePerDay	First_date	Last_date
mtgoxUSD	8295809	55575353.12	42294.79	51.740	6313.401	2010-07-17 23:09	2014-02-25 1:59
bitfinexUSD	10182252	25730210.06	18975.08	2.517	7509.035	2013-03-31 22:07	2016-12-22 12:43
bitstampUSD	12448193	20305460.20	9605.23	3.647	5888.455	2011-09-13 13:53	2017-07-17 22:23
btceUSD	32601774	14911715.96	7083.95	2.901	15487.779	2011-08-14 14:14	2017-07-17 22:34
coinbaseUSD	18192817	7500931.48	8100.36	0.436	19646.671	2014-12-01 5:33	2017-07-17 23:03
itbitUSD	1345266	4333967.33	3193.79	5.107	991.353	2013-08-25 0:21	2017-08-30 22:02
lakeUSD	3581917	2110627.84	4130.39	1.041	7009.622	2014-03-01 12:01	2017-07-05 10:56
localbtcUSD	2702973	1976944.22	1210.62	1.176	1655.219	2013-03-11 23:57	2017-08-30 21:47
krakenUSD	2314129	1355886.41	1093.46	0.642	1866.233	2014-01-07 18:18	2017-07-17 22:28
thUSD	159159	1184918.03	4720.79	8.492	634.100	2011-06-08 20:12	2012-02-13 22:26

Hacking Issues on Bitcoin exchanges

Mt. Gox (2013. Aug)

The second hack as of February 2014 caused the company to go bankrupt.
 With 744,408 BTC missing for an unknown reason

Bitstamp(2015. Jan)

• The losses amounted to 19,000 BTC or roughly \$5.2 million at the time of the breach.

Bitfinex (2016. Aug)

 In April 2017, Bitfinex announced that it was no longer able to let users withdraw their funds in USD

Hacking Issues on Bitcoin exchanges

Information share

$$IS_i = \frac{(\sigma^2 + \psi_i)\pi_i}{\sigma^2} = \pi_i \left(1 + \frac{\psi_i}{\sigma^2}\right)$$
directed calculated

- σ^2 can be observed directly as the variance of the aggregated return of the four exchanges.
- γ_i, γ_j defined in (4d) and (4e) can be observed directly as the covariance between a market and its corresponding exchange lagged two intervals.
- Only $\boldsymbol{\omega_i^e}$, $\boldsymbol{\omega_{ij}}$, $\boldsymbol{\psi_i}$, and $\boldsymbol{\psi_j}$ unknown

by Non-linear programming with constraints and no objective function

Objective function

minimize
$$Z = \sum_{i=1}^{n} |\pi_i \psi_i| = 0$$
,

Constraints

$$E[y_{jt}y_{it}] = \sigma^2 + 2\omega_{ij} + \psi_j + \psi_i$$

$$E[y_{jt}y_{i,t-1}] = -\omega_{ij} - \psi_j + \gamma_j$$

$$E[y_{jt}y_{i,t-2}] = -\gamma_j$$

$$E[y_{it}y_{j,t-2}] = -\gamma_i$$

$$\omega_i^e \geq 0$$

$$\rho_{1,ii} = \frac{-(\omega_i^e + \psi_i - \gamma_i)}{\sigma^2 + 2(\omega_i^e + \psi_i)}$$

Step1. Create 5min-interval tick-data

```
for i, file in enumerate(files):
    print(file)
    try:
        data = pd.read_csv(file, date_parser=['date'])
        data['date'] = pd.to_datetime(data['date'])

        data_within = data[(data['date'] >= dt.datetime(2013,4,1,0,5,0)) & (data['date'] <= dt.datetime(2014,2,25))]
        data_within.set_index('date',inplace=True, drop=True)
        data_within.to_csv('dated/'+ file.split('/')[-1], header='column_names', encoding='utf-8')</pre>
```

date	p_mtgoxUSD	v_mtgoxUSD	p_btceUSD	$v_btceUSD$	p_bitstampUSD	v_bitstampUSD	p_bitfinexUSD	v_bitfinexUSD
2014-02-24 23:55	173.84344	0.01077366	555.759	1.73876	535.49	0.068	517.87	1.3904
2014-02-24 23:50	174.94099	3	557.775	0.328894	542.34	0.01	509.5	2
2014-02-24 23:45	176.46678	0.01077659	555.668	0.14981	547.88	1.77675033	508.5	1.2
2014-02-24 23:40	171	5	557.53	0.000332	546.15	1.5	512.2	10
2014-02-24 23:35	176.63995	3.73253728	558.982	0.01	547.09	0.07695894	524.9999	1.5
2014-02-24 23:30	171.30013	3.57477567	558.999	0.214161	550.01	0.005027	516	1
2014-02-24 23:25	175.52	0.02799801	559.5	1.96724	550	0.5	517	0.05775061
2014-02-24 23:20	174	0.01	558	0.23146	542	5	520.11	4
2014-02-24 23:15	171.528	0.64101656	555.003	0.05	543	0.0312	523.5	5
2014-02-24 23:10	168.213	0.01	556.48	0.02	542.9	0.017	523.5	0.35
2014-02-24 23:05	168.214	0.05	556.308	0.0504	541.53	1.83025	527.7444	1
2014-02-24 23:00	166.75635	0.46338413	557.45	0.453188	542.94	0.119	523	2
2014-02-24 22:55	171.99997	1.46190054	555.98	0.0504	540	0.32488293	535.9999	0.2122052
2014-02-24 22:50	169.99998	0.00999994	555.3	1.45934	543.9	0.101716	543.749	0.01686008

Step1. Create 5min-interval tick-data

Step3. Calculate Non-linear programming with constraints

```
def objective(x):
    sum_value = 0
    for i in range(0,4):
        sum_value += abs(x[4*i]*df['pi'][i])
    return sum_value
```

```
E[y_{jt}y_{it}] = \sigma^{2} + 2\omega_{ij} + \psi_{j} + \psi_{i}
E[y_{jt}y_{i,t-1}] = -\omega_{ij} - \psi_{j} + \gamma_{j}
\rho_{1,ii} = \frac{-(\omega_{i}^{e} + \psi_{i} - \gamma_{i})}{\sigma^{2} + 2(\omega_{i}^{e} + \psi_{i})}
E[y_{jt}y_{i,t-2}] = -\gamma_{j}
E[y_{it}y_{j,t-2}] = -\gamma_{i}
```

Iteration limit exceeded (Exit mode 9)

```
x_3 = \omega_i^e
                                                  x_2 = \omega_{ii}
              x_0 = \psi_i
                               x_1 = \psi_i
                                                                 5.77526499e-09]
 mtgox [ -2.11252300e-05 4.51218139e-04 -4.89468103e-04
   btce [ -3.06263578e-05
                                                                 4.38873023e-06]
                           1.48496716e-04 -8.95843027e-05
bitstamp
          -2.93215903e-05
                            -2.61040012e-03
                                                                 4.35854438e-08]
                                               2.38997702e-03
bitfinex
                             2.20975657e-03
           1.93514624e-04
                                                                 2.04790226e-05]]
                                              -2.20827883e-03
       objective 2.778706e-09
```

Step3. Calculate Non-linear programming with constraints

```
def constraint4(x):
def constraint0(x):
    sum value = 0
                                                                                                          return x[3]
   for i in range(0,4):
        sum value += x[4*i]*df['pi'][i]
                                                                                                     def constraint5(x):
    return sum value
                                                                                                          return x[7]
def constraint1(x):
    sum up1 = 0
                                                                                                     def constraint6(x):
   for i in range(0,4):
                                                                                                          return x[11]
        sum_up1 += abs(2*x[4*i+2] + x[4*i+1] + x[4*i] + df['sigma'][i] - df['E[yj_t,i_t]'][i])
   return sum up1
                                                                                                     def constraint7(x):
                                                                                                          return x[15]
def constraint2(x):
    sum up2 = 0
   for i in range(0,4):
        sum up2 += abs(x[4*i+1] + x[4*i+2] + df['E[yj t,i t-1]'][i])
   return sum up2
def constraint3(x):
    sum up3 = 0
   for i in range(0,4):
        sum up3 += abs(((x[4*i+3] + x[4*i+0] - df['gamma_i'][i]) / (df['sigma'][i] + 2*(x[4*i+3]+x[4*i+0]))) + df['rho_ii'][i])
   return sum up3
```

Step3. Calculate

$$E[y_{jt}y_{it}] = \sigma^{2} + 2\omega_{ij} + \psi_{j} + \psi_{i}$$

$$E[y_{jt}y_{i,t-1}] = -\omega_{ij} - \psi_{j} + \gamma_{j}$$

$$\rho_{1,ii} = \frac{-(\omega_{i}^{e} + \psi_{i} - \gamma_{i})}{\sigma^{2} + 2(\omega_{i}^{e} + \psi_{i})}$$

$$E[y_{jt}y_{i,t-2}] = -\gamma_{j}$$

$$E[y_{it}y_{j,t-2}] = -\gamma_{i}$$

	rho_ii	sigma	gamma_i	gamma_j	pi	psi_i	psi_j	omega_i_j	omega^e_j	IS	IS/AS
mtgox	-0.154301	0.000114	-0.000032	1.520455e- 06	0.384279	-0.000021	0.000451	-0.000489	5.775265e- 09	0.312975	0.814446
btce	-0.105662	0.000114	-0.000033	-2.952613e- 07	0.262009	-0.000031	0.000148	-0.000090	4.388730e- 06	0.191527	0.730993
bitstamp	-0.062312	0.000114	-0.000033	2.348097e- 06	0.234716	-0.000029	-0.002610	0.002390	4.358544e- 08	0.174266	0.742454
bitfinex	-0.399637	0.000114	-0.000036	8.766151e- 07	0.118996	0.000194	0.002210	-0.002208	2.047902e- 05	0.321257	2.699736

Mt.Gox has got an information share of 0.313, meaning that 31.3% of all the information in the market comes from this exchange.

$$IS_i = \frac{(\sigma^2 + \psi_i)\pi_i}{\sigma^2} = \pi_i \left(1 + \frac{\psi_i}{\sigma^2}\right)$$

Comparison of original results

Table 4 Model parameters.

σ^2	7.55E-05						
	π	ψ_i	Market ψ_j	ω_i^e	ω_{ij}	IS	IS/AS ratio
Bitcurex	0.009	-2.2E-05	2.78E-05	3.42E-05	-2.95E-05	0.006	0.71
Bitfinex	0.073	-4.3E-05	3.55E-05	6.95E-05	-3.35E-05	0.031	0.42
Bitstamp	0.146	-1.5E-05	3.17E-05	1.97E-05	-3.48E-05	0.118	0.81
Btce	0.287	9.34E-06	4.48E-05	3.21E-05	-5.18E-05	0.322	1.12
Btcn	0.177	-1.1E-05	4.25E-05	9.67E-06	-4.55E-05	0.152	0.86
Mtgox	0.302	1.61E-05	5.73E-05	3.29E-06	-6.35E-05	0.366	1.21
Virtex	0.006	-2.4E-05	2.87E-05	2.59E-05	-2.59E-05	0.004	0.68

	rho_ii	sigma	gamma_i	gamma_j	pi	psi_i	psi_j	omega_i_j	omega^e_j	IS	IS/AS
mtgox	-0.154301	0.000114	-0.000032	1.520455e- 06	0.384279	-0.000021	0.000451	-0.000489	5.775265e- 09	0.312975	0.814446
btce	-0.105662	0.000114	-0.000033	-2.952613e- 07	0.262009	-0.000031	0.000148	-0.000090	4.388730e- 06	0.191527	0.730993
bitstamp	-0.062312	0.000114	-0.000033	2.348097e- 06	0.234716	-0.000029	-0.002610	0.002390	4.358544e- 08	0.174266	0.742454
bitfinex	-0.399637	0.000114	-0.000036	8.766151e- 07	0.118996	0.000194	0.002210	-0.002208	2.047902e- 05	0.321257	2.699736

Result

- Took a look at the covariance between the fundamental price change and the idiosyncratic shocks, ψ_i , which forms the basis for the information share
- Mt.Gox and Bitfinex have the by far biggest information share, indicating that most information is generated/incorporated at these two exchanges.
- Bitfinex has relatively lower π_i , which represents the activity share(proportion of trading volume) of each exchange.

	rho_ii	sigma	gamma_i	gamma_j	pi	psi_i	psi_j	omega_i_j	omega^e_j	IS	IS/AS
mtgox	-0.154301	0.000114	-0.000032	1.520455e- 06	0.384279	-0.000021	0.000451	-0.000489	5.775265e- 09	0.312975	0.814446
btce	-0.105662	0.000114	-0.000033	-2.952613e- 07	0.262009	-0.000031	0.000148	-0.000090	4.388730e- 06	0.191527	0.730993
bitstamp	-0.062312	0.000114	-0.000033	2.348097e- 06	0.234716	-0.000029	-0.002610	0.002390	4.358544e- 08	0.174266	0.742454
bitfinex	-0.399637	0.000114	-0.000036	8.766151e- 07	0.118996	0.000194	0.002210	-0.002208	2.047902e- 05	0.321257	2.699736

Mt. Gox (August, 2013)

Information share (2013.04 ~2014.02)

Mt. Gox (August, 2013)

Roll's measure (2013.04 ~2014.02)

Bitstamp (Jan., 2015)

Information share (2014.08 ~2015.06)

Bitstamp (Jan., 2015)

Roll's measure (2014.08 ~2015.06)

Bitfinex (August, 2016)

Information share (2016.02 ~2016.12)

Bitfinex (August, 2016)

Roll's measure (2016.02 ~2016.12)

Bitstamp (Jan. 5. 2015)

2014.12.21 ~2015.01.19

Exchange	Mean_Before	Mean_After	T-statistic	P-value
bitstampUSD	0.181	0.218	-3.347	0.003
bitfinex	0.276	0.262	1.172	0.252
btce	0.173	0.212	-2.773	0.010
lakebtc	0.368	0.305	4.309	0.0002
localbtc	0.002	0.003	-2.045	0.051

Bitfinex (August. 2. 2016)

2016.07.16 ~2016.08.16

Exchange	Mean_Before	Mean_After	T-statistic	P-value
bitstamp	0.138	0.122	1.449	0.161
bitfinex	0.263	0.228	1.454	0.160
btce	0.091	0.232	-10.880	0.000
coinbase	0.355	0.290	1.970	0.062
localbtc	0.0007	0.0006	1.260	0.221
cex	0.152	0.127	1.930	0.067

Analysis

- Hacked: Bitfinex and Bitstamp + mtgox + coincheck+ yobit
- Baseline = -7 day
- Interval = $-6 \sim +6$ day
- Diff IS = IS event day IS by exchanges

Trading day

Causality

- Does the hacking issue affect the information share?
- Other effects

Impact on information share and liquidity when exchange shut down and collapse

Lead-lag analysis

which exchange is leader (follower)?