```
In [ ]:
        #Load statistical analysis
        import pandas as pd
        from scipy.stats import f_oneway
        from statsmodels.stats.multicomp import pairwise_tukeyhsd
        anova_data = pd.read_csv('treatment2.csv')
In [ ]:
         anova_data
Out[]:
              Variables
                         PR1
                                PR2
                                        PR3
                                               DR1
                                                       DR2
                                                                DR3
                                                                     MR1
                                                                             MR2
                                                                                    MR3
             CONTROL
                        20.33
                               21.48
                                      20.85
                                              642.7
                                                     594.30
                                                              603.67
                                                                     106.4 113.26 103.99
          1 NHT0254b
                         -2.93
                                -1.31
                                       -2.34
                                              497.2
                                                     526.34
                                                              512.53 132.5 138.13 132.77
                                1.69
          2 NGB00749
                        1.75
                                        1.74 1052.4 1059.70 1029.26
                                                                      93.0
                                                                             90.50
                                                                                    85.92
          3
              NHT356b
                         -4.45
                                -1.82
                                       -0.88
                                              582.4
                                                     545.93
                                                              549.94 160.6 151.67 168.40
            NHT0343a
                         9.11
                                9.59
                                        8.76
                                              350.7
                                                     374.33
                                                              363.21
                                                                     230.5 226.70 237.14
            NHT0216a
                        1.91
                                1.95
                                        1.89
                                              749.4
                                                     755.19
                                                              740.74 104.6
                                                                          102.27 102.18
          6
              NHT0366
                        -0.30
                                -0.05
                                       -0.24
                                              374.8
                                                     356.03
                                                              381.00
                                                                    196.1
                                                                           208.53
                                                                                  195.82
          7 NHT0355a
                        -7.04
                                -1.34
                                       -1.18
                                              353.0
                                                     353.82
                                                              332.06 398.9 367.27 416.24
          8
              NHT034a
                        12.12
                               11.52
                                      12.54
                                              871.0
                                                     850.51
                                                              819.58 103.8 110.73 108.64
          9
              NHT0347 -10.92 -11.43
                                       -3.94
                                            1162.0 1099.16 1165.73 199.3 209.93 213.56
            NHT0339a -16.09
                                              424.4
         10
                                -1.87 -14.17
                                                     447.64
                                                              440.64
                                                                     314.2 305.47 310.67
         11
            NHT0259a -17.56 -12.12 -15.90
                                              294.7
                                                     271.93
                                                              300.03 227.1 223.81 236.35
         12 NGB00739
                         -0.13
                                -0.13
                                       -0.03
                                              698.3
                                                     666.36
                                                              748.54 176.0 176.83 175.70
            NGB00711
                         3.93
                                 3.75
                                        4.06
                                              210.7
                                                     217.59
                                                              223.25 221.3 223.21 235.37
         13
         14 NGB00733
                         -3.27
                                -0.82
                                       -1.44
                                              356.4
                                                     336.96
                                                              379.76 172.1 158.87 178.78
In [ ]: # Reshape the data to long format for Data P
        data_pt = anova_data.melt(id_vars='Variables', value_vars=['PR1', 'PR2', 'PR3'],
In [ ]: # Group the data by 'PT' and collect all values into lists (for ANOVA)
        grouped_data = data_pt.groupby('Variables')['Value'].apply(list)
        # Perform one-way ANOVA
        anova_result = f_oneway(*grouped_data)
        anova_result
Out[]: F_onewayResult(statistic=35.50527199861019, pvalue=8.326226584879168e-15)
        # Perform Tukey's HSD test (ANOVA - POSTHOC)
In [ ]:
         tukey_result = pairwise_tukeyhsd(endog=data_pt['Value'], groups=data_pt['Variabl
        print(tukey_result.summary())
```

=======	========	=======	======		-======	======
	group2		-		upper	_
	NGB00711					
CONTROL	NGB00733	-22.73	0.0	-30.5949	-14.8651	True
CONTROL	NGB00733 NGB00739	-20.9833	0.0	-28.8483	-13.1184	True
CONTROL	NGB00749	-19.16	9.9	-27.0249	-11.2951	True
	NHT0216a					
	NHT0254b					
	NHT0259a					
	NHT0233a					
	NHT0333a					
	NHT0343a					
CONTROL	NHT0347	0 0267	0.0	16 6016	0 0617	True
	NHT0355a					
	NHT0366					
	NHT356b					
	NGB00733					
	NGB00739					
NGB00/11	NGB00749	-2.186/	0.999	-10.0516	5.6/83	False
NGB00/11	NHT0216a NHT0254b	-1.996/	0.9996	-9.8616	5.8683	False
	NHT0259a					
	NHT0339a					
	NHT0343a					
	NHT0347					
	NHT034a					
	NHT0355a					
NGB00711	NHT0366	-4.11	0.8226	-11.9749	3.7549	False
	NHT356b					
	NGB00739					
NGB00733						
	NHT0216a					
	NHT0254b			-8.2149		
	NHT0259a					
NGB00733				-16.7316		True
NGB00733				3.1317		True
NGB00733	NHT0347			-14.7849	0.9449	
NGB00733	NHT034a			6.0384		True
NGB00733						
NGB00733						
NGB00733					7.3249	False
NGB00739			0.9999			
NGB00739						
NGB00739				-9.9616		
	NHT0259a					
NGB00739				-18.4783		
NGB00739			0.0102			
NGB00739	NHT0347	-8.6667	0.0204	-16.5316	-0.8017	True
NGB00739	NHT034a	12.1567	0.0003	4.2917	20.0216	True
NGB00739				-10.9549		
NGB00739	NHT0366			-7.9649		
NGB00739	NHT356b	-2.2867	0.9985	-10.1516	5.5783	False
NGB00749	NHT0216a	0.19	1.0	-7.6749	8.0549	False
NGB00749	NHT0254b	-3.92	0.8647	-11.7849	3.9449	False
	NHT0259a	-16.92		-24.7849		
NGB00749				-20.3016		
NGB00749						
NGB00749	NHT0347	-10.49	0.0022	-18.3549	-2.6251	True

```
NGB00749 NHT034a 10.3333 0.0027 2.4684 18.1983 True
       NGB00749 NHT0355a -4.9133 0.5966 -12.7783 2.9516 False
       NGB00749 NHT0366 -1.9233 0.9998 -9.7883 5.9416 False
       NGB00749 NHT356b -4.11 0.8226 -11.9749 3.7549 False
       NHT0216a NHT0254b -4.11 0.8226 -11.9749 3.7549 False
       NHT0216a NHT0259a -17.11 0.0 -24.9749 -9.2451
       NHT0216a NHT0339a -12.6267 0.0001 -20.4916 -4.7617
                                                     True
       NHT0216a NHT0343a 7.2367 0.0963 -0.6283 15.1016 False
       NHT0216a NHT0347 -10.68 0.0018 -18.5449 -2.8151 True
       NHT0216a NHT034a 10.1433 0.0034
                                     2.2784 18.0083
       NHT0216a NHT0355a -5.1033 0.5385 -12.9683 2.7616 False
       NHT0216a NHT0366 -2.1133 0.9993 -9.9783 5.7516 False
      NHT0216a NHT356b -4.3 0.775 -12.1649 3.5649 False
                         -13.0 0.0001 -20.8649 -5.1351 True
       NHT0254b NHT0259a
       NHT0254b NHT0339a -8.5167 0.0242 -16.3816 -0.6517 True
       NHT0254b NHT0343a 11.3467 0.0008 3.4817 19.2116 True
                                             1.2949 False
       NHT0254b NHT0347 -6.57 0.1816 -14.4349
       NHT0254b NHT034a 14.2533 0.0 6.3884 22.1183 True
       NHT0254b NHT0355a -0.9933 1.0 -8.8583 6.8716 False
       NHT0254b NHT0366 1.9967 0.9996 -5.8683 9.8616 False
      NHT0254b NHT356b -0.19 1.0 -8.0549
                                             7.6749 False
      NHT0259a NHT0339a 4.4833 0.7247 -3.3816 12.3483 False
      NHT0259a NHT0343a 24.3467 0.0 16.4817 32.2116 True
      NHT0259a NHT0347 6.43 0.2055 -1.4349 14.2949 False
      NHT0259a NHT034a 27.2533 0.0 19.3884 35.1183 True
      NHT0259a NHT0355a 12.0067 0.0003 4.1417 19.8716 True
      NHT0259a NHT0366 14.9967 0.0 7.1317 22.8616 True
      NHT0259a NHT356b 12.81 0.0001 4.9451 20.6749 True
      NHT0339a NHT0343a 19.8633 0.0 11.9984 27.7283 True
      NHT0339a NHT0347 1.9467 0.9997 -5.9183 9.8116 False
       NHT0339a NHT034a 22.77 0.0 14.9051 30.6349 True
       NHT0339a NHT0355a 7.5233 0.0719 -0.3416 15.3883 False
       NHT0339a NHT0366 10.5133 0.0022 2.6484 18.3783 True
       NHT0339a NHT356b 8.3267 0.03 0.4617 16.1916 True
       NHT0343a NHT0347 -17.9167 0.0 -25.7816 -10.0517 True
       NHT0343a NHT034a 2.9067 0.9849 -4.9583 10.7716 False
       NHT0343a NHT0355a -12.34 0.0002 -20.2049 -4.4751 True
       NHT0343a NHT0366 -9.35 0.0091 -17.2149 -1.4851 True
       NHT0343a
               NHT356b -11.5367 0.0006 -19.4016 -3.6717
                                                      True
       NHT0347 NHT034a 20.8233 0.0 12.9584 28.6883 True
       NHT0347 NHT0355a 5.5767 0.4004 -2.2883 13.4416 False
       NHT0347 NHT0366 8.5667 0.0228 0.7017 16.4316
       NHT0347 NHT356b 6.38 0.2146 -1.4849 14.2449 False
       NHT034a NHT0355a -15.2467 0.0 -23.1116 -7.3817 True
       NHT034a NHT0366 -12.2567 0.0002 -20.1216 -4.3917 True
       NHT034a NHT356b -14.4433 0.0 -22.3083 -6.5784
                                                     True
       NHT0355a NHT0366 2.99 0.9808 -4.8749 10.8549 False
       NHT0355a NHT356b 0.8033 1.0 -7.0616 8.6683 False
       NHT0366 NHT356b -2.1867 0.999 -10.0516 5.6783 False
      ______
In [ ]: # Reshape the data to long format for Data D
       data_dt = anova_data.melt(id_vars='Variables', value_vars=['DR1', 'DR2', 'DR3'],
In [ ]: # Group the data by 'DT' and collect all values into lists (for ANOVA)
       grouped_data = data_dt.groupby('Variables')['Value'].apply(list)
       # Perform one-way ANOVA
```

```
anova_result = f_oneway(*grouped_data)
anova_result

Out[]: F_onewayResult(statistic=522.0569566426879, pvalue=7.887730813394322e-32)

In []: # Perform Tukey's HSD test (ANOVA - POSTHOC)
    tukey_result = pairwise_tukeyhsd(endog=data_dt['Value'], groups=data_dt['Variabl print(tukey_result.summary())
```

=======						======
group1	group2	meandiff	p-adj	lower	upper	reject
CONTROL	NGB00711	-396.3767	0.0	-459.9035	-332.8499	True
CONTROL	NGB00733	-255.85	0.0	-319.3768	-192.3232	
CONTROL	NGB00739	90.8433		27.3165		
CONTROL		433.5633	0.0		497.0901	
CONTROL		134.8867			198.4135	
CONTROL					-38.0065	
	NHT0259a			-388.1968		
CONTROL				-388.1988		
		-175.9967				
CONTROL	NHT0343a	-250.81		-314.3368		
CONTROL	NHT0347				592.2668	
CONTROL		233.4733		169.9465		
CONTROL					-203.7365	
CONTROL		-242.9467			-179.4199	
CONTROL				-117.6601		
NGB00711	NGB00733	140.5267		76.9999		
NGB00711	NGB00739	487.22	0.0	423.6932		
NGB00711	NGB00749	829.94	0.0	766.4132	893.4668	True
NGB00711	NHT0216a	531.2633	0.0	467.7365	594.7901	True
NGB00711	NHT0254b	294.8433	0.0	231.3165	358.3701	True
NGB00711	NHT0259a	71.7067	0.0159	8.1799	135.2335	True
NGB00711	NHT0339a	220.38	0.0	156.8532	283.9068	True
NGB00711	NHT0343a	145.5667	0.0	82.0399	209.0935	True
NGB00711	NHT0347	925.1167	0.0	861.5899	988.6435	True
NGB00711	NHT034a	629.85	0.0	566.3232	693.3768	
NGB00711	NHT0355a	129.1133	0.0	65.5865	192.6401	True
NGB00711	NHT0366	153.43	0.0	89.9032	216.9568	
NGB00711	NHT356b	342.2433		278.7165		
NGB00733	NGB00739	346.6933		283.1665		
NGB00733	NGB00749	689.4133		625.8865	752.9401	
NGB00733	NHT0216a	390.7367		327.2099		
NGB00733	NHT0254b	154.3167		90.7899		
	NHT0259a			-132.3468	-5.2932	
NGB00733				16.3265	143.3801	
NGB00733		5.04	1.0	-58.4868		
NGB00733	NHT0347	784.59		721.0632		
NGB00733	NHT0347	489.3233		425.7965		
NGB00733		-11.4133		-74.9401		
NGB00733	NHT03358	12.9033		-50.6235		
NGB00733	NHT356b	201.7167				
NGB00733	NGB00749	342.72				
NGB00739			0.0			
		44.0433				
NGB00739		-192.3767			-128.8499	
		-415.5133			-351.9865	
NGB00739	NHT0339a	-266.84			-203.3132	
NGB00739		-341.6533			-278.1265	
NGB00739		437.8967			501.4235	
NGB00739	NHT034a	142.63	0.0		206.1568	
NGB00739		-358.1067			-294.5799	
NGB00739	NHT0366	-333.79			-270.2632	
NGB00739		-144.9767			-81.4499	
NGB00749		-298.6767			-235.1499	
NGB00749		-535.0967			-471.5699	
NGB00749	NHT0259a	-758.2333	0.0	-821.7601	-694.7065	True
NGB00749	NHT0339a	-609.56	0.0	-673.0868	-546.0332	True
NGB00749	NHT0343a	-684.3733	0.0	-747.9001	-620.8465	True
NGB00749	NHT0347	95.1767	0.0004	31.6499	158.7035	True

```
NHT034a -200.09 0.0 -263.6168 -136.5632
      NGB00749
                                                        True
      NGB00749 NHT0355a -700.8267 0.0 -764.3535 -637.2999 True
      NGB00749 NHT0366 -676.51 0.0 -740.0368 -612.9832 True
      NGB00749 NHT356b -487.6967 0.0 -551.2235 -424.1699 True
      NHT0216a NHT0254b -236.42 0.0 -299.9468 -172.8932 True
      NHT0216a NHT0259a -459.5567 0.0 -523.0835 -396.0299
                                                        True
      NHT0216a NHT0339a -310.8833 0.0 -374.4101 -247.3565 True
      NHT0216a NHT0347 393.8533 0.0 330.3265 457.3801
                                                        True
      NHT0216a NHT034a 98.5867 0.0003 35.0599 162.1135
                                                       True
      NHT0216a NHT0355a -402.15 0.0 -465.6768 -338.6232 True
      NHT0216a NHT0366 -377.8333 0.0 -441.3601 -314.3065 True
      NHT0216a NHT356b -189.02 0.0 -252.5468 -125.4932
                                                        True
      NHT0254b NHT0259a -223.1367 0.0 -286.6635 -159.6099
                                                       True
      NHT0254b NHT0339a -74.4633 0.0106 -137.9901 -10.9365 True
      NHT0254b NHT0343a -149.2767 0.0 -212.8035 -85.7499 True
      NHT0254b NHT0347 630.2733 0.0 566.7465 693.8001
                                                        True
      NHT0254b NHT034a 335.0067 0.0 271.4799 398.5335 True
      NHT0254b NHT0355a -165.73 0.0 -229.2568 -102.2032 True
      NHT0254b NHT0366 -141.4133 0.0 -204.9401 -77.8865 True
      NHT0254b NHT356b 47.4 0.3246 -16.1268 110.9268 False
      NHT0259a NHT0339a 148.6733 0.0 85.1465 212.2001 True
      NHT0259a NHT0343a 73.86 0.0116 10.3332 137.3868 True
      NHT0259a NHT0347 853.41 0.0 789.8832 916.9368 True
      NHT0259a NHT034a 558.1433 0.0 494.6165 621.6701
                                                      True
      NHT0259a NHT0355a 57.4067 0.1095 -6.1201 120.9335 False
      NHT0259a NHT0366 81.7233 0.0036 18.1965 145.2501 True
      NHT0259a NHT356b 270.5367 0.0 207.0099 334.0635
                                                        True
      NHT0339a NHT0343a -74.8133 0.0101 -138.3401 -11.2865 True
      NHT0339a NHT0347 704.7367 0.0 641.2099 768.2635 True
      NHT0339a NHT034a 409.47 0.0 345.9432 472.9968 True
      NHT0339a NHT0355a -91.2667 0.0008 -154.7935 -27.7399 True
      NHT0339a NHT0366 -66.95 0.0313 -130.4768 -3.4232 True
      NHT0339a NHT356b 121.8633 0.0 58.3365 185.3901 True
      NHT0343a NHT0347 779.55 0.0 716.0232 843.0768
                                                        True
      NHT0343a NHT034a 484.2833 0.0 420.7565 547.8101
                                                       True
      NHT0343a NHT0355a -16.4533 0.9996 -79.9801 47.0735 False
      NHT0343a NHT0366
                        7.8633 1.0 -55.6635 71.3901 False
               NHT356b 196.6767 0.0 133.1499 260.2035
      NHT0343a
                                                       True
       NHT0347 NHT034a -295.2667 0.0 -358.7935 -231.7399 True
       NHT0347 NHT0355a -796.0033 0.0 -859.5301 -732.4765 True
       NHT0347 NHT0366 -771.6867 0.0 -835.2135 -708.1599 True
       NHT0347 NHT356b -582.8733 0.0 -646.4001 -519.3465
                                                        True
       NHT034a NHT0355a -500.7367 0.0 -564.2635 -437.2099 True
       NHT034a NHT0366 -476.42 0.0 -539.9468 -412.8932 True
       NHT034a NHT356b -287.6067 0.0 -351.1335 -224.0799
                                                       True
      NHT0355a NHT0366 24.3167 0.9797 -39.2101 87.8435 False
      NHT0355a NHT356b 213.13 0.0 149.6032 276.6568
                                                       True
       NHT0366 NHT356b 188.8133 0.0 125.2865 252.3401
                                                        True
      ______
In [ ]: # Reshape the data to long format for Data M
       data_mt = anova_data.melt(id_vars='Variables', value_vars=['MR1', 'MR2', 'MR3'],
In [ ]: # Group the data by 'DT' and collect all values into lists (for ANOVA)
       grouped_data = data_mt.groupby('Variables')['Value'].apply(list)
       # Perform one-way ANOVA
```

```
anova_result = f_oneway(*grouped_data)
anova_result

Out[]: F_onewayResult(statistic=281.3710259114196, pvalue=7.803091774193629e-28)

In []: # Perform Tukey's HSD test (ANOVA - POSTHOC)
    tukey_result = pairwise_tukeyhsd(endog=data_mt['Value'], groups=data_mt['Variabl print(tukey_result.summary())
```

=======	========		======			======
group1	group2	meandiff	p-adj	lower	upper	reject
CONTROL	NGB00711	118.7433	0.0	92.9121	144.5746	True
CONTROL	NGB00733	62.0333	0.0	36.2021	87.8646	True
CONTROL	NGB00739	68.2933		42.4621	94.1246	True
CONTROL		-18.0767			7.7546	
CONTROL		-4.8667		-30.6979		
CONTROL				0.7521		
	NHT0259a	121.2033	0.0	95.3721		
CONTROL		202.23		176.3988		
CONTROL	NHT0343a	123.5633		97.7321		
CONTROL	NHT0347	99.7133				
CONTROL	NHT0347	-0.16		-25.9912		
CONTROL	NHT035a	286.2533		260.4221		
CONTROL	NHT03358	92.2667		66.4354		
CONTROL	NHT356b	52.34		26.5088		
NGB00711	NGB00733	-56.71		-82.5412		
NGB00711	NGB00733	-50.45				
NGB00711 NGB00711	NGB00739	-136.82		-162.6512		
NGB00711 NGB00711	NHT0216a	-130.82		-149.4412		
NGB00711	NHT0210a	-92.16		-149.4412		
	NHT02540	2.46				
NGB00711				57.6554		
NGB00711		4.82		-21.0112		
NGB00711		-19.03		-44.8612		
NGB00711		-118.9033		-144.7346		
NGB00711	NHT0354a	167.51	0.0			
NGB00711	NHT03358			-52.3079		
NGB00711	NHT356b	-66.4033	0.0			
NGB00733	NGB00739		0.9998			
NGB00733	NGB00749	-80.11		-105.9412		
NGB00733	NHT0216a	-66.9				
NGB00733	NHT0254b		0.0015		-9.6188	
	NHT0259a	59.17	0.0	33.3388	85.0012	
NGB00733		140.1967		114.3654	166.0279	
NGB00733	NHT0343a	61.53	0.0	35.6988		
NGB00733	NHT0347		0.0006			
NGB00733	NHT034a	-62.1933	0.0			
NGB00733		224.22				
NGB00733	NHT0366	30.2333		4.4021		
NGB00733	NHT356b	-9.6933				
NGB00739	NGB00749	-86.37	0.0	-112.2012		
NGB00739	NHT0216a	-73.16		-98.9912		
NGB00739	NHT0254b		0.0001	-67.5412		
NGB00739	NHT0259a	52.91				
NGB00739	NHT0339a			108.1054		
NGB00739	NHT0343a	55.27		29.4388	81.1012	True
NGB00739	NHT0347	31.42	0.007	5.5888	57.2512	True
NGB00739	NHT034a	-68.4533	0.0	-94.2846	-42.6221	True
NGB00739	NHT0355a	217.96	0.0	192.1288		
NGB00739	NHT0366	23.9733	0.0904	-1.8579	49.8046	False
NGB00739	NHT356b	-15.9533	0.6137	-41.7846	9.8779	False
NGB00749	NHT0216a	13.21	0.8428	-12.6212	39.0412	False
NGB00749	NHT0254b	44.66	0.0	18.8288	70.4912	True
NGB00749	NHT0259a	139.28	0.0	113.4488	165.1112	True
NGB00749	NHT0339a	220.3067	0.0	194.4754	246.1379	True
NGB00749	NHT0343a	141.64	0.0	115.8088	167.4712	True
NGB00749	NHT0347	117.79	0.0	91.9588	143.6212	True

NGB00749	NHT034a	17.9167	0.4344	-7.9146	43.7479	False
NGB00749	NHT0355a	304.33	0.0	278.4988	330.1612	True
NGB00749	NHT0366			84.5121		True
NGB00749	NHT356b	70.4167	0.0	44.5854	96.2479	True
NHT0216a	NHT0254b	31.45	0.0069	5.6188	57.2812	True
NHT0216a	NHT0259a	126.07	0.0	100.2388	151.9012	True
NHT0216a	NHT0339a	207.0967	0.0	181.2654	232.9279	True
NHT0216a	NHT0343a	128.43	0.0	102.5988	154.2612	True
NHT0216a	NHT0347	104.58	0.0	78.7488	130.4112	True
NHT0216a	NHT034a	4.7067	1.0	-21.1246	30.5379	False
NHT0216a	NHT0355a	291.12	0.0	265.2888	316.9512	True
NHT0216a	NHT0366	97.1333	0.0	71.3021	122.9646	True
NHT0216a	NHT356b	57.2067	0.0	31.3754	83.0379	True
NHT0254b	NHT0259a	94.62	0.0	68.7888	120.4512	True
NHT0254b	NHT0339a	175.6467	0.0	149.8154	201.4779	True
NHT0254b	NHT0343a	96.98	0.0	71.1488	122.8112	True
NHT0254b	NHT0347	73.13	0.0	47.2988	98.9612	True
NHT0254b	NHT034a	-26.7433	0.0369	-52.5746	-0.9121	True
NHT0254b	NHT0355a	259.67	0.0	233.8388	285.5012	True
NHT0254b	NHT0366	65.6833	0.0	39.8521	91.5146	True
NHT0254b	NHT356b	25.7567	0.0512	-0.0746	51.5879	False
NHT0259a	NHT0339a	81.0267	0.0	55.1954	106.8579	True
NHT0259a	NHT0343a	2.36	1.0	-23.4712	28.1912	False
NHT0259a	NHT0347	-21.49	0.186	-47.3212	4.3412	False
NHT0259a	NHT034a	-121.3633	0.0	-147.1946	-95.5321	True
NHT0259a	NHT0355a	165.05	0.0	139.2188	190.8812	True
NHT0259a	NHT0366	-28.9367	0.0172	-54.7679	-3.1054	True
NHT0259a	NHT356b	-68.8633	0.0	-94.6946	-43.0321	True
NHT0339a	NHT0343a	-78.6667	0.0	-104.4979		True
NHT0339a		-102.5167		-128.3479	-76.6854	True
NHT0339a	NHT034a	-202.39			-176.5588	True
NHT0339a	NHT0355a	84.0233		58.1921		True
NHT0339a	NHT0366	-109.9633		-135.7946		True
NHT0339a				-175.7212	-124.0588	True
NHT0343a	NHT0347		0.0939	-49.6812	1.9812	False
NHT0343a	NHT034a	-123.7233		-149.5546	-97.8921	True
NHT0343a	NHT0355a			136.8588		True
NHT0343a	NHT0366			-57.1279		True
NHT0343a	NHT356b			-97.0546		True
NHT0347				-125.7046		True
NHT0347	NHT0355a			160.7088		True
NHT0347	NHT0366			-33.2779		False
NHT0347	NHT356b					True
NHT034a	NHT0355a					True
NHT034a	NHT03366			66.5954		True
NHT034a	NHT356b	52.5		26.6688		True
NHT035a		-193.9867			-168.1554	True
NHT0355a		-233.9133		-259.7446		True
NHT03366	NHT356b					True
141110300	טטככווואו	33.3207	0.0000	05.7575	17.0774	ii uc
