SC201 Lecture 2

**Define Model (h(
$$\theta$$
) = θ x)** h(θ) = _____

Find the best parameter (θ)

for i in range(iteration):

$$\theta = \theta - \left[\alpha \frac{dJ}{d\theta} \right]$$

$$\frac{dJ}{d\theta} = \frac{d}{d\theta} \left(\frac{\sum_{i=1}^{m} (\theta x i - y i)^2}{2m} \right)$$

$$\frac{dJ}{d\theta} = \frac{d}{d\theta} \left(\frac{\sum_{i=1}^{m} (yi - \theta xi)^{2}}{2m} \right)$$

Fine the best parameter (θ) \longrightarrow Training

- ① <Step size (Learning Rate) α > usually _____
- ① Initialization
 ② if $\frac{dJ(\theta)}{d\theta} > 0$, $\theta \downarrow$ elif $\frac{dJ(\theta)}{d\theta} < 0$, $\theta \uparrow$ elif $\frac{dJ(\theta)}{d\theta} = 0$, θ best
 - (3) Gradient Descent (4) Iteration $\theta = \theta \alpha \frac{dJ}{d\theta}$

② <Iteration >
for i in range(iteration): $\theta = \theta - \alpha \frac{dJ}{d\theta}$

③ < Cost v.s. Iteration Plateau >

如果for i in range (100) 會超過最小值嗎?

如果Model不一定過(0,0)?

new_model ⇒ _____

_也是___的函數!

< When θ is fixed >

b =

 $< dJ_db >$

< When b is fixed >

 $\theta =$

 $< dJ_d\theta >$

for i in range(iter):

$$\theta =$$

- ____update
- to converge

Steepest Descent

for i in range(iter):

$$\theta$$
_temp = _____

$$\theta =$$

- update
- _____ to converge

Polyminal Features

- raising existing features to an exponent

<degree1> linear function

$$h(\theta,b) = \theta x + b$$

(Model we chose)

<degree2> quadratic function

$$h(\theta', \theta, b) = \theta'x^2 + \theta x + b$$

<degree3> cubic function

$$h(\theta'', \theta', \theta, b) = \theta''x^3 + \theta'x^2 + \theta x + b$$

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\theta' x i^{2} + \theta x i + b - y i)^{2}$$

<dJ_dθ'>

<dJ_dθ>

<dJ_db>

Normalizationn