=> d his

L14

(FILE 'HOME' ENTERED AT 14:23:15 ON 23 FEB 2006)

6 DUP REM L13 (2 DUPLICATES REMOVED)

FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS, LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006
395086 S BACILLUS

L1	395086	S BACILLUS
L2	560	S CRYIIIA
L3	516	S L1 AND L2
L4	635	S "TTGACA" OR "TATAAT"
L5	13	S L3 AND L4
L6	6	DUP REM L5 (7 DUPLICATES REMOVED)
L7	7	S L2 AND "CONSENSUS PROMOTER"
L8	5	DUP REM L7 (2 DUPLICATES REMOVED)
		E WIDNER W/AU
L9	119	S E3-E9
		E SLOMA A/AU
L10	124	S E3
		E THOMAS M D/AU
L11	404	S E3
L12	632	S L9 OR L10 OR L11
L13	8	S L2 AND L12

Welcome to STN International! Enter x:x

LOGINID: ssspta1652mxm

PASSWORD:

NEWS WWW

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
NEWS
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
                 "Ask CAS" for self-help around the clock
NEWS
                CASREACT(R) - Over 10 million reactions available
     3 DEC 05
NEWS 4 DEC 14
                2006 MeSH terms loaded in MEDLINE/LMEDLINE
NEWS 5 DEC 14
                2006 MeSH terms loaded for MEDLINE file segment of TOXCENTER
NEWS 6 DEC 14
                CA/CAplus to be enhanced with updated IPC codes
NEWS 7 DEC 21
                IPC search and display fields enhanced in CA/CAplus with the
                 IPC reform
        DEC 23
NEWS 8
                New IPC8 SEARCH, DISPLAY, and SELECT fields in USPATFULL/
                USPAT2
NEWS 9
        JAN 13
                IPC 8 searching in IFIPAT, IFIUDB, and IFICDB
NEWS 10
        JAN 13
                New IPC 8 SEARCH, DISPLAY, and SELECT enhancements added to
                 INPADOC
NEWS 11 JAN 17
                Pre-1988 INPI data added to MARPAT
NEWS 12 JAN 17
                IPC 8 in the WPI family of databases including WPIFV
NEWS 13 JAN 30
                Saved answer limit increased
NEWS 14 JAN 31
                Monthly current-awareness alert (SDI) frequency
                 added to TULSA
NEWS 15 FEB 21
                STN AnaVist, Version 1.1, lets you share your STN AnaVist
                 visualization results
NEWS 16
       FEB 22
                Status of current WO (PCT) information on STN
NEWS 17
        FEB 22
                The IPC thesaurus added to additional patent databases on STN
NEWS 18 FEB 22
                Updates in EPFULL; IPC 8 enhancements added
NEWS EXPRESS FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a,
             CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0jc(jp),
             AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005.
              V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT
             http://download.cas.org/express/v8.0-Discover/
NEWS HOURS
             STN Operating Hours Plus Help Desk Availability
NEWS INTER
             General Internet Information
NEWS LOGIN
             Welcome Banner and News Items
NEWS PHONE
             Direct Dial and Telecommunication Network Access to STN
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

CAS World Wide Web Site (general information)

=> file medline embase biosis biotechds scisearch hcaplus ntis lifesci COST IN U.S. DOLLARS SINCE FILE ENTRY SESSION

FULL ESTIMATED COST 0.21 0.21

FILE 'MEDLINE' ENTERED AT 14:23:47 ON 23 FEB 2006

FILE 'EMBASE' ENTERED AT 14:23:47 ON 23 FEB 2006 Copyright (c) 2006 Elsevier B.V. All rights reserved.

FILE 'BIOSIS' ENTERED AT 14:23:47 ON 23 FEB 2006 Copyright (c) 2006 The Thomson Corporation

FILE 'BIOTECHDS' ENTERED AT 14:23:47 ON 23 FEB 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE 'SCISEARCH' ENTERED AT 14:23:47 ON 23 FEB 2006 Copyright (c) 2006 The Thomson Corporation

FILE 'HCAPLUS' ENTERED AT 14:23:47 ON 23 FEB 2006 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'NTIS' ENTERED AT 14:23:47 ON 23 FEB 2006 Compiled and distributed by the NTIS, U.S. Department of Commerce. It contains copyrighted material. All rights reserved. (2006)

FILE 'LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006 COPYRIGHT (C) 2006 Cambridge Scientific Abstracts (CSA)

=> s bacillus

395086 BACILLUS L1

=> s cryIIIA

560 CRYIIIA L2

=> s l1 and l2

516 L1 AND L2

=> s "TTGACA" or "TATAAT"

L4 635 "TTGACA" OR "TATAAT"

=> s 13 and 14

L5 13 L3 AND L4

=> dup rem 15

PROCESSING COMPLETED FOR L5

6 DUP REM L5 (7 DUPLICATES REMOVED)

=> d 1-6 ibib ab

ANSWER 1 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN DUPLICATE 1

ACCESSION NUMBER: 2005-30339 BIOTECHDS

TITLE: Producing a hyaluronic acid, by cultivating Bacillus

cell comprising a nucleic acid construct comprising a variant

amyL promoter, a consensus promoter, and a cryIIIA

promoter, and isolating hyaluronic acid from the cultivation medium;

production of recombinant hyaluronic acid from a

Bacillus having a triple promoter useful for a tissue engineering application

WIDNER W; SLOMA A; THOMAS M; TANG M

PATENT ASSIGNEE: NOVOZYMES BIOPOLYMER AS PATENT INFO: US 2005221446 6 Oct 2005 APPLICATION INFO: US 2005-96190 31 Mar 2005

PRIORITY INFO: US 2005-96190 31 Mar 2005; US 2004-558507 31 Mar 2004

DOCUMENT TYPE: Patent

LANGUAGE: English
OTHER SOURCE: WPI: 2005-722702 [74]

DERWENT ABSTRACT: AB

AUTHOR:

NOVELTY - Producing a hyaluronic acid comprises cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter, a consensus promoter, and a cryIIIA promoter, and isolating the hyaluronic acid from the cultivation medium.

DETAILED DESCRIPTION - Producing a hyaluronic acid comprises: (A) cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of a fully defined 614 bp sequence (SEQ ID NO. 1), a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of the hyaluronic acid; and (B) isolating the hyaluronic acid from the cultivation medium. INDEPENDENT CLAIMS are also included for: (1) a Bacillus cell comprising a nucleic acid construct which comprises: (a) a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryllia promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid, and optionally (b) an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid; (2) producing a selectable marker-free mutant of a Bacillus cell; and(3) a selectable marker-free mutant of a Bacillus cell obtained by the method above.

WIDER DISCLOSURE - Also disclosed are: (1) methods for obtaining a Bacillus host cell; and (2) nucleic acid constructs comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid.

BIOTECHNOLOGY - Preferred Method: In producing a hyaluronic acid, the variant amyL promoter is SEQ ID NO. 1. The consensus promoter is obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), where the consensus amyQ promoter has the nucleotide sequence comprising fully defined 185 bp sequence (SEQ ID NO. 42 or 43). The nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid. Preferably, the one or more coding sequences involved in the biosynthesis of the hyaluronic acid are selected from a hyaluronan synthase, UDP-glucose 6-dehydrogenase, UDP-glucose pyrophosphorylase, UDP-N-acetylglucosamine pyrophosphorylase, glucose-6-phosphate isomerase, hexokinase, phosphoglucomutase, amidotransferase, mutase, or acetyl

transferase gene. Producing a selectable marker-free mutant of a Bacillus cell comprises deleting a selectable marker gene of the Bacillus cell. The Bacillus cell contains no foreign selectable marker gene.

USE - The method is useful for producing a hyaluronic acid. Hyaluronic acid is useful in eye and joint surgery. Products of hyaluronic acid are also useful in orthopedics, rheumatology, and in dermatology.

EXAMPLE - No relevant example given. (94 pages)

L6 ANSWER 2 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN DUPLICATE 2

ACCESSION NUMBER: 2004-02033 BIOTECHDS

TITLE: Generating an expression library of polynucleotides by

introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce

the polypeptides of interest;

protein library screening using homologous recombination

AUTHOR: BJORNVAD M E; JORGENSEN P L; HANSEN P K

PATENT ASSIGNEE: NOVOZYMES AS

PATENT INFO: WO 2003095658 20 Nov 2003 APPLICATION INFO: WO 2003-DK301 7 May 2003

PRIORITY INFO: DK 2002-682 7 May 2002; DK 2002-682 7 May 2002

DOCUMENT TYPE: Patent LANGUAGE: English AB DERWENT ABSTRACT:

NOVELTY - Generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell comprises: (a) providing a non-replicating linear integration cassette; and (b) introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce the polypeptides of interest.

DETAILED DESCRIPTION - Generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell comprises: (a) providing a non-replicating linear integration cassette; and (b) introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce the polypeptides of interest. The cassette comprises: (1) a polynucleotide encoding one or more polypeptides of interest; (2) a 5' flanking polynucleotide segment upstream of the polynucleotide of (1) and comprising a first homologous region located in the 3' end of the segment; and (3) a 3' flanking polynucleotide segment downstream of the polynucleotide of (1) and comprising a second homologous region located in the 5' end of the segment. The first and second homologous regions are at least 500, 1000 or 1500 bp, each of which has a sequence identity of at least 80, 85, 90 or 95-100% with a region of the host cell genom. INDEPENDENT CLAIMS are also included for the following: (1) a non-replicating linear Gram-positive host cell integration cassette; and (2) a method of producing a polypeptide of interest.

BIOTECHNOLOGY - Preferred Method: Generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell comprises the additional step carried out between steps (1) and (2) that comprises introducing the plasmid into an intermediate Escherichia coli host cell and propagating it by replication. The integration cassette comprises: (1) an mRNA processing/stabilizing sequence derived from cryIIIa-gene; (2) a terminator downstream of the polynucleotide encoding the polypeptides of interest; and (3) a multiple cloning site with at least one recognition site for a restriction nuclease. It further comprises a marker gene located between the 5' and 3' flanking segments and at least one promoter that is a consensus promoter having the sequence TTGACA for the -35 region and TATAAT for the -10 region, and/or which is derived from amyL, amyQ, amyM, cryIIIA,

dagA, aprH, penP, sacB, spol, tac, xylA or xylB. The promoter is located between the flanking segments and is operably linked to the polynucleotide encoding one or more polypeptides of interest. Each of the 5' and 3' flanking polynucleotide segments comprises at least 500, 1000, 1500 or 2000 bp of non-homologous polynucleotides located in the 5' and 3' end of the 5' and 3' flanking segments, respectively. The promoter is one that results in that the host cells produce the polypeptides of interest in a yield of at least 10 mg/L. The polynucleotide comprises natural, synthetic or a library of shuffled or recombined homologs or variants of a gene or operon, provided by DNA breeding or DNA shuffling. The polypeptides of interest comprise enzymes, proteins or antimicrobial peptides. The enzymes are involved in the biosynthesis of hyaluronic acid. The Gram-positive host cell is Bacillus subtilis. The homologous region of the 5' and/or the 3' flanking segment is comprised in the yfmD-yfmC-yfmB-yfmA-pelB-yflS-citS region of the Bacillus subtilis genome or in the cryIIIa promoter. The non-replicating linear integration cassette is comprised in a plasmid and introduced into the host cell. The plasmid is capable of replicating in an Escherichia coli host cell but not in a Bacillus host cell. Producing a polypeptide of interest comprises culturing Gram-positive host cells comprising the integration cassette integrated into its genome, under conditions promoting expression of the polypeptide of interest. The method further comprises isolating and/or purifying the polypeptide of interest.

USE - The method is useful in generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell (claimed). (55 pages)

L6 ANSWER 3 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN ACCESSION NUMBER: 2004-08483 BIOTECHDS

ACCESSION NUMBER: 2004-08483 BIOTECHDS TITLE: Production of a secre

Production of a secreted polypeptide having L-asparaginase activity for treating leukemia, comprises cultivating a host cell comprising a nucleic acid having a sequence encoding a secretory signal peptide linked to a second sequence;

vector-mediated enzyme gene transfer and expression in host cell for recombinant protein production, amino acid

preparation and disease therapy

AUTHOR: THOMAS M D; SLOMA A

PATENT ASSIGNEE: NOVOZYMES BIOTECH INC

PATENT INFO: US 2003186380 2 Oct 2003

APPLICATION INFO: US 2003-406025 1 Apr 2003

PRIORITY INFO: US 2003-406025 1 Apr 2003; US 2002-369192 1 Apr 2002

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2004-088916 [09]

AB DERWENT ABSTRACT:

NOVELTY - Producing a secreted polypeptide having L-asparaginase activity, comprises cultivating a host cell containing a nucleic acid construct having a sequence encoding a secretory signal peptide linked to a second sequence encoding the polypeptide having L-asparaginase activity, where the signal peptide directs the polypeptide into the cell's secretory pathway, and recovering the secreted polypeptide.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a recombinant expression vector comprising the nucleic acid construct.

BIOTECHNOLOGY - Preferred Material: The polypeptide is encoded by a nucleic acid sequence contained in plasmid pCR2.1-yccC, which is contained in Escherichia coli (NRRL B-30558). The consensus promoter is obtained from a promoter obtained from the E. coli lac operon Streptomyces coelicolor agarase gene (dagA), Bacillus clausii alkaline protease gene (aprH), B. licheniformis alkaline protease gene (subtilisin Carlsberg gene), B. subtilis levansucrase gene (sacB), B. subtilis alpha-amylase gene (amyE), B. licheniformis alpha-amylase gene (amyL), B. stearothermophilus maltogenic amylase gene (amyM), B. licheniformis penicillinase gene (penP), B. subtilis xylA and xylB genes,

B. thuringiensis subsp. tenebrionis CryIIIA gene (cryIIIA) or its portions, or preferably B. amyloliquefaciens alpha-amylase gene (amyQ). The mRNA processing/stabilizing sequence is the cryIIIA mRNA processing/stabilizing sequence. The bacillus cell is B. alkalophilus, B. amyloliqifaciens, B. brevis, B. circulans, B. claussi, B. coaqulans, B. lautus, B. lentus, B. licheniformis, B. megaterium, B. stearothermophilus, B. subtilis, or B. thuringiensis. Preferred Component: The nucleic acid construct comprises a tandem promoter, in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing stabilizing sequence located downstream of the tandem promoter and upstream of the second nucleic acid sequence, encoding the polypeptide having L-asparaginase activity. It comprises a consensus promoter having the sequence TTGACA for the 35 region, and TATAAT for the 10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing stabilizing sequence located downstream of the consensus promoter, and upstream of the second nucleic acid sequence encoding the polypeptide having L-asparagine activity. The consensus promoter is obtained from any bacterial or a bacillus promoter. The nucleic acid construct comprises a ribosome binding site sequence heterologous to the host cell.

ACTIVITY - Cytostatic.

MECHANISM OF ACTION - L-asparaginase.

USE - The invention is for production of secreted polypeptide having L-asparaginase activity, for use in producing L-aspartate from L-asparagine. The inventive secreted polypeptide is useful for treatment of leukemia, e.g. acute lymphocytic leukemia.

ADVANTAGE - The invention achieves secretion of L-asparaginase enabling easy recovery and purification, high expression constructs for producing the L-asparaginase in high amounts, and the use of host cells for production that have generally regarded as safe status.

EXAMPLE - B. subtilis strains MDT51 and MDT52 were grown in Lactobacilli MRS Broth (RTM; 50 ml) at 37degreesC, and 250 revolutions/minute (rpm) for 24 hours. Supernatants were recovered by centrifugation at 7000 rpm for 5 minutes. A prominent band corresponding to a protein of the expected size for mature L-asparagine (37 kDa; amino acids 24-375) was observed in the MDT51 sample, but not in the MDT52 sample. (22 pages)

ANSWER 4 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN ACCESSION NUMBER: 2004-04169 BIOTECHDS

TITLE: Producing a polypeptide comprises cultivating a

Bacillus cell in a medium conducive to the production

of the polypeptide, where the Bacillus cell

comprises a nucleic acid construct comprising a tandem

promoter;

involving vector-mediated gene transfer and expression in

host cell for use as a selectable marker

AUTHOR: WIDNER W; SLOMA A; THOMAS M D

PATENT ASSIGNEE: NOVOZYMES BIOTECH INC US 2003170876 11 Sep 2003 PATENT INFO: APPLICATION INFO: US 2001-834271 12 Apr 2001

PRIORITY INFO: US 2001-834271 12 Apr 2001; US 1998-31442 26 Feb 1998

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2003-898275 [82]

AΒ DERWENT ABSTRACT:

> NOVELTY - Producing a polypeptide comprises cultivating a Bacillus cell in a medium conducive to the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a nucleic acid sequence encoding the polypeptide, and isolating the polypeptide from the

cultivation medium.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a Bacillus cell comprising a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide; (2) a method for obtaining a Bacillus host cell by introducing into a Bacillus cell the nucleic acid construct cited above; (3) a method for producing a selectable marker-free mutant of a Bacillus cell by deleting a selectable marker gene of the Bacillus cell; and (4) a selectable marker-free mutant of a Bacillus cell.

BIOTECHNOLOGY - Preferred Method: In producing a polypeptide, the nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide. The tandem promoter comprises two or more bacterial promoter sequences, which are obtained from one or more Bacillus genes. The tandem promoter comprises the amyQ promoter, a consensus promoter having the sequence TTGACA for the -35 region and TATAAT from the -10 region, the amyL promoter, and/or the cryIIIA promoter. The tandem promoter comprises two copies of the amyQ, amyl or cryIIIA promoter. The two or more promoter sequences of the tandem promoter simultaneously promote the transcription of the nucleic acid sequence. The one or more of the two or more promoter sequences of the tandem promoter promote the transcription of the nucleic acid sequence at different stages of growth of the Bacillus cell. The mRNA processing/stabilizing sequence is the cryIIIA or SP82 mRNA processing/stabilizing sequence, which generates mRNA transcripts essentially of the same size. The Bacillus cell contains one or more copies of the nucleic acid construct. The nucleic acid construct further comprises a selectable marker gene. The nucleic acid sequence encodes a polypeptide heterologous to the Bacillus cell. The polypeptide is a hormone or its variant, enzyme, receptor or its portion, antibody or its portion, or reporter. The enzyme is an oxidoreductase, transferase, hydrolase, lyase, isomerase or ligase. The enzyme is preferably an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, a pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase or xylanase. The nucleic acid sequence is contained in the chromosome of the Bacillus cell. The Bacillus host cell is Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus sterothermophilus, Bacillus subtilis, or Bacillus thuringiensis. This method alternatively comprises cultivating a Bacillus cell in a medium conducive for the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a consensus promoter having the sequence TTGACA for the -35 region and TATAAT for the -10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing/stabilizing sequence located downstream of the consensus promoter and upstream of the nucleic acid sequence encoding the polypeptide; and isolating the polypeptide from the cultivation medium. The consensus promoter is obtained from any bacterial promoter, preferably a Bacillus

promoter. Preferred Cell: The **Bacillus** cell comprises a nucleic acid construct that further comprises a selectable marker gene. The cell can also contain no selectable marker gene.

USE - The methods are useful for producing a polypeptide in a Bacillus cell, and for producing a selectable marker-free mutant of a Bacillus cell.

EXAMPLE - No relevant example given. (57 pages)

L6 ANSWER 5 OF 6 MEDLINE on STN DUPLICATE 3

ACCESSION NUMBER: 2001393416 MEDLINE DOCUMENT NUMBER: PubMed ID: 11234961

TITLE: Construction of protein overproducer strains in Bacillus subtilis by an integrative approach.

AUTHOR: Jan J; Valle F; Bolivar F; Merino E

CORPORATE SOURCE: Departamento de Microbiologia Molecular, Instituto de

Biotecnologia, Universidad Nacional Autonoma de Mexico,

Cuernavaca, Morelos.

SOURCE: Applied microbiology and biotechnology, (2001 Jan) 55 (1)

69-75.

Journal code: 8406612. ISSN: 0175-7598.

PUB. COUNTRY: Germany: Germany, Federal Republic of
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200107

ENTRY DATE: Entered STN: 20010716

Last Updated on STN: 20010716 Entered Medline: 20010712

We evaluated the effect of several genetic factors reported as having a AB role in the induction of the expression of significant levels of recombinant protein in Bacillus subtilis. We utilized the beta-galactosidase reporter protein from Escherichia coli as our model for measuring the overproduction of heterologous proteins in B. subtilis. The lacZ gene was expressed in B. subtilis using the regulatory region of the subtilisin gene aprE. In this study, we considered factors known to modulate the transcription and translation initiation rates and genetic and mRNA stability. We also consider the effects of different genetic backgrounds, such as degU32 and hpr2, that until now have been studied independently. By changing the native -35 promoter box to the consensus TTGACA sequence of the aprE promoter, a significant 100-fold increase in the beta-galactosidase activity was obtained. On the other hand, changes such as the GTG to ATG start codon, the construction of a consensus AAGGAGG ribosome binding site, and the addition of the cryIIIA transcription terminator at the 3' end of the lacZ gene, produced only marginal effects on the final beta-galactosidase activity.

L6 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1999:566201 HCAPLUS

DOCUMENT NUMBER: 131:180803

TITLE: Nucleic acid vectors for recombinant production of

heterologous proteins in a Bacillus cell

INVENTOR(S): Widner, William; Sloma, Alan; Thomas, Michael D.

PATENT ASSIGNEE(S): Novo Nordisk Biotech, Inc., USA

SOURCE: PCT Int. Appl., 90 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9943835	A2	19990902	WO 1999-US4360	19990226
WO 9943835	A3	19991125		

```
AL, AU, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IN, IS, JP,
             KP, KR, LC, LK, LR, LT, LU, LV, MG, MK, MN, MX, NO, NZ, PL, RO,
             SG, SI, SK, TR, TT, UA, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD,
             RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
             ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
             CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
     US 5955310
                                19990921
                                           US 1998-31442
                          Α
                                                                    19980226
     AU 9929756
                                19990915
                                            AU 1999-29756
                                                                    19990226
                          A1
     EP 1056873
                          A2
                                20001206
                                           EP 1999-911012
                                                                    19990226
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, NL, SE, PT, IE, FI
                                20020212
                                            JP 2000-533574
                          T2
     JP 2002504379
                                                                    19990226
                                20040707
                                             CN 2003-2003158121
     CN 1510145
                                                                     19990226
                          Α
     US 2003170876
                                20030911
                                             US 2001-834271
                          A1
                                                                     20010412
PRIORITY APPLN. INFO.:
                                             US 1998-31442
                                                                 A 19980226
                                                                 B3 19990224
                                             US 1999-256377
                                             WO 1999-US4360
                                                                 W 19990226
     The present invention relates to methods for producing a polypeptide,
AB
     comprising: (a) cultivating a Bacillus host cell in a medium
     conducive for the production of the polypeptide, wherein the Bacillus
     cell comprises a nucleic acid construct comprising (i) a tandem promoter
     in which each promoter sequence of the tandem promoter is operably linked
     to a single copy of a nucleic acid sequence encoding the polypeptide, and
     alternatively also (ii) an mRNA processing/stabilizing sequence located
     downstream of the tandem promoter and upstream of the nucleic acid
     sequence encoding the polypeptide; and (b) isolating the polypeptide from
     the cultivation medium. The present invention also relates to methods for producing a polypeptide, comprising: (a) cultivating a Bacillus
     host cell in a medium conducive for the production of the polypeptide, wherein
     the Bacillus cell comprises a nucleic acid construct comprising
     (i) a "consensus" promoter having the sequence TTGACA for the
     "-35" region and TATAAT for the "-10" region operably linked to
     a single copy of a nucleic acid sequence encoding the polypeptide and (ii)
     an mRNA processing/stabilizing sequence located downstream of the
     "consensus" promoter and upstream of the nucleic acid sequence encoding
     the polypeptide; and (b) isolating the polypeptide from the cultivation
     medium. Random promoters are created by placing promoters such as amyQ
     and amyL upstream of the cryIIIA promoter and its mRNA
     stabilizing sequence. Alternatively, "consensus" amyQ promoters are
     created with the cryIIIA mRNA stabilizing sequence, as well as
     tandom copies of a single promoter such as the short consensus amyQ dimer
     and trimer promoters. All of these approaches lead to significantly
     higher levels of SAVINASE gene expression (up to 620%) in Bacillus
     cells when compared to the levels obtained using single promoters such as
     amyQ and amyL.
=> d his
     (FILE 'HOME' ENTERED AT 14:23:15 ON 23 FEB 2006)
     FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS,
     LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006
L1
         395086 S BACILLUS
L2
            560 S CRYIIIA
L3
            516 S L1 AND L2
            635 S "TTGACA" OR "TATAAT"
L4
L5
             13 S L3 AND L4
L6
              6 DUP REM L5 (7 DUPLICATES REMOVED)
=> s 12 and "consensus promoter"
             7 L2 AND "CONSENSUS PROMOTER"
```

=> dup rem 17

=> d 1-5 ibib ab

L8 ANSWER 1 OF 5 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN

ACCESSION NUMBER: 2005-30339 BIOTECHDS

TITLE: Producing a hyaluronic acid, by cultivating Bacillus cell

comprising a nucleic acid construct comprising a variant amyL

promoter, a consensus promoter, and a

cryIIIA promoter, and isolating hyaluronic acid from

the cultivation medium;

production of recombinant hyaluronic acid from a Bacillus having a triple promoter useful for a tissue engineering

application

AUTHOR: WIDNER W; SLOMA A; THOMAS M; TANG M

PATENT ASSIGNEE: NOVOZYMES BIOPOLYMER AS PATENT INFO: US 2005221446 6 Oct 2005 APPLICATION INFO: US 2005-96190 31 Mar 2005

PRIORITY INFO: US 2005-96190 31 Mar 2005; US 2004-558507 31 Mar 2004

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2005-722702 [74]

AB DERWENT ABSTRACT:

NOVELTY - Producing a hyaluronic acid comprises cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter, a consensus promoter, and a cryIIIA promoter, and isolating the hyaluronic acid from the cultivation medium.

DETAILED DESCRIPTION - Producing a hyaluronic acid comprises: (A) cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of a fully defined 614 bp sequence (SEQ ID NO. 1), a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of the hyaluronic acid; and (B) isolating the hyaluronic acid from the cultivation medium. INDEPENDENT CLAIMS are also included for: (1) a Bacillus cell comprising a nucleic acid construct which comprises: (a) a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid, and optionally (b) an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid; (2) producing a selectable marker-free mutant of a Bacillus cell; and(3) a selectable marker-free mutant of a Bacillus cell obtained by the method above.

WIDER DISCLOSURE - Also disclosed are: (1) methods for obtaining a Bacillus host cell; and (2) nucleic acid constructs comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid.

BIOTECHNOLOGY - Preferred Method: In producing a hyaluronic acid,

the variant amyL promoter is SEQ ID NO. 1. The consensus promoter is obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), where the consensus amyQ promoter has the nucleotide sequence comprising fully defined 185 bp sequence (SEQ ID NO. 42 or 43). The nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid. Preferably, the one or more coding sequences involved in the biosynthesis of the hyaluronic acid are selected from a hyaluronan synthase, UDP-glucose 6-dehydrogenase, UDP-glucose pyrophosphorylase, UDP-N-acetylglucosamine pyrophosphorylase, qlucose-6-phosphate isomerase, hexokinase, phosphoglucomutase, amidotransferase, mutase, or acetyl transferase gene. Producing a selectable marker-free mutant of a Bacillus cell comprises deleting a selectable marker gene of the Bacillus cell. The Bacillus cell contains no foreign selectable marker gene.

USE - The method is useful for producing a hyaluronic acid. Hyaluronic acid is useful in eye and joint surgery. Products of hyaluronic acid are also useful in orthopedics, rheumatology, and in dermatology.

EXAMPLE - No relevant example given. (94 pages)

L8 ANSWER 2 OF 5 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN

DUPLICATE 1

ACCESSION NUMBER: 2004-02033 BIOTECHDS

TITLE: Generating an expression library of polynucleotides by

introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce

the polypeptides of interest;

protein library screening using homologous recombination

AUTHOR: BJORNVAD M E; JORGENSEN P L; HANSEN P K

PATENT ASSIGNEE: NOVOZYMES AS

PATENT INFO: WO 2003095658 20 Nov 2003 APPLICATION INFO: WO 2003-DK301 7 May 2003

PRIORITY INFO: DK 2002-682 7 May 2002; DK 2002-682 7 May 2002

DOCUMENT TYPE: Patent LANGUAGE: English AB DERWENT ABSTRACT:

NOVELTY - Generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell comprises: (a) providing a non-replicating linear integration cassette; and (b) introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce the polypeptides of interest.

DETAILED DESCRIPTION - Generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell comprises: (a) providing a non-replicating linear integration cassette; and (b) introducing the linear integration cassette into the host cell and selecting or screening for host cells that produce the polypeptides of interest. The cassette comprises: (1) a polynucleotide encoding one or more polypeptides of interest; (2) a 5' flanking polynucleotide segment upstream of the polynucleotide of (1) and comprising a first homologous region located in the 3' end of the segment; and (3) a 3' flanking polynucleotide segment downstream of the polynucleotide of (1) and comprising a second homologous region located in the 5' end of the segment. The first and second homologous regions are at least 500, 1000 or 1500 bp, each of which has a sequence identity of at least 80, 85, 90 or 95-100% with a region of the host cell genom. INDEPENDENT CLAIMS are also included for the following: (1) a non-replicating linear Gram-positive host cell integration cassette; and (2) a method of producing a polypeptide of interest.

BIOTECHNOLOGY - Preferred Method: Generating an expression library of polynucleotides integrated by homologous recombination into the genome

of a competent Gram-positive bacterium host cell comprises the additional step carried out between steps (1) and (2) that comprises introducing the plasmid into an intermediate Escherichia coli host cell and propagating it by replication. The integration cassette comprises: (1) an mRNA processing/stabilizing sequence derived from cryIIIa-gene; (2) a terminator downstream of the polynucleotide encoding the polypeptides of interest; and (3) a multiple cloning site with at least one recognition site for a restriction nuclease. It further comprises a marker gene located between the 5' and 3' flanking segments and at least one promoter that is a consensus promoter having the sequence TTGACA for the -35 region and TATAAT for the -10 region, and/or which is derived from amyL, amyQ, amyM, cryIIIA, daqA, aprH, penP, sacB, spol, tac, xylA or xylB. The promoter is located between the flanking segments and is operably linked to the polynucleotide encoding one or more polypeptides of interest. Each of the 5' and 3' flanking polynucleotide segments comprises at least 500, 1000, 1500 or 2000 bp of non-homologous polynucleotides located in the 5' and 3' end of the 5' and 3' flanking segments, respectively. The promoter is one that results in that the host cells produce the polypeptides of interest in a yield of at least 10 mg/L. The polynucleotide comprises natural, synthetic or a library of shuffled or recombined homologs or variants of a gene or operon, provided by DNA breeding or DNA shuffling. The polypeptides of interest comprise enzymes, proteins or antimicrobial peptides. The enzymes are involved in the biosynthesis of hyaluronic acid. The Gram-positive host cell is Bacillus subtilis. The homologous region of the 5' and/or the 3' flanking segment is comprised in the yfmD-yfmC-yfmB-yfmA-pelB-yflS-citS region of the Bacillus subtilis genome or in the cryIIIa promoter. The non-replicating linear integration cassette is comprised in a plasmid and introduced into the host cell. The plasmid is capable of replicating in an Escherichia coli host cell but not in a Bacillus host cell. Producing a polypeptide of interest comprises culturing Gram-positive host cells comprising the integration cassette integrated into its genome, under conditions promoting expression of the polypeptide of interest. The method further comprises isolating and/or purifying the polypeptide of interest.

USE - The method is useful in generating an expression library of polynucleotides integrated by homologous recombination into the genome of a competent Gram-positive bacterium host cell (claimed). (55 pages)

L8 ANSWER 3 OF 5 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN DUPLICATE 2

ACCESSION NUMBER: 2004-08483 BIOTECHDS

TITLE: Pro

Production of a secreted polypeptide having L-asparaginase activity for treating leukemia, comprises cultivating a host cell comprising a nucleic acid having a sequence encoding a secretory signal peptide linked to a second sequence;

vector-mediated enzyme gene transfer and expression in host cell for recombinant protein production, amino acid

preparation and disease therapy

AUTHOR: THOMAS M D; SLOMA A
PATENT ASSIGNEE: NOVOZYMES BIOTECH INC
PATENT INFO: US 2003186380 2 Oct 2003
APPLICATION INFO: US 2003-406025 1 Apr 2003

PRIORITY INFO: US 2003-406025 1 Apr 2003; US 2002-369192 1 Apr 2002

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2004-088916 [09]

AB DERWENT ABSTRACT:

NOVELTY - Producing a secreted polypeptide having L-asparaginase activity, comprises cultivating a host cell containing a nucleic acid construct having a sequence encoding a secretory signal peptide linked to a second sequence encoding the polypeptide having L-asparaginase activity, where the signal peptide directs the polypeptide into the cell's secretory pathway, and recovering the secreted polypeptide.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a recombinant expression vector comprising the nucleic acid construct.

BIOTECHNOLOGY - Preferred Material: The polypeptide is encoded by a nucleic acid sequence contained in plasmid pCR2.1-yccC, which is contained in Escherichia coli (NRRL B-30558). The consensus promoter is obtained from a promoter obtained from the E. coli lac operon Streptomyces coelicolor agarase gene (dagA), Bacillus clausii alkaline protease gene (aprH), B. licheniformis alkaline protease gene (subtilisin Carlsberg gene), B. subtilis levansucrase gene (sacB), B. subtilis alpha-amylase gene (amyE), B. licheniformis alpha-amylase gene (amyL), B. stearothermophilus maltogenic amylase gene (amyM), B. licheniformis penicillinase gene (penP), B. subtilis xylA and xylB genes, B. thuringiensis subsp. tenebrionis CryIIIA gene (cryIIIA) or its portions, or preferably B. amyloliquefaciens alpha-amylase gene (amyQ). The mRNA processing/stabilizing sequence is the cryIIIA mRNA processing/stabilizing sequence. The bacillus cell is B. alkalophilus, B. amyloliqifaciens, B. brevis, B. circulans, B. claussi, B. coagulans, B. lautus, B. lentus, B. licheniformis, B. megaterium, B. stearothermophilus, B. subtilis, or B. thuringiensis. Preferred Component: The nucleic acid construct comprises a tandem promoter, in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing stabilizing sequence located downstream of the tandem promoter and upstream of the second nucleic acid sequence, encoding the polypeptide having L-asparaginase activity. It comprises a consensus promoter having the sequence TTGACA for the 35 region, and TATAAT for the 10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing stabilizing sequence located downstream of the consensus promoter, and upstream of the second nucleic acid sequence encoding the polypeptide having L-asparagine activity. The consensus promoter is obtained from any bacterial or a bacillus promoter. The nucleic acid construct comprises a ribosome binding site sequence heterologous to the host cell.

ACTIVITY - Cytostatic.

MECHANISM OF ACTION - L-asparaginase.

USE - The invention is for production of secreted polypeptide having L-asparaginase activity, for use in producing L-aspartate from L-asparagine. The inventive secreted polypeptide is useful for treatment of leukemia, e.g. acute lymphocytic leukemia.

ADVANTAGE - The invention achieves secretion of L-asparaginase enabling easy recovery and purification, high expression constructs for producing the L-asparaginase in high amounts, and the use of host cells for production that have generally regarded as safe status.

EXAMPLE - B. subtilis strains MDT51 and MDT52 were grown in Lactobacilli MRS Broth (RTM; 50 ml) at 37degreesC, and 250 revolutions/minute (rpm) for 24 hours. Supernatants were recovered by centrifugation at 7000 rpm for 5 minutes. A prominent band corresponding to a protein of the expected size for mature L-asparagine (37 kDa; amino acids 24-375) was observed in the MDT51 sample, but not in the MDT52 sample. (22 pages)

L8 ANSWER 4 OF 5 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN ACCESSION NUMBER: 2004-04169 BIOTECHDS

TITLE: Producing a polypept

Producing a polypeptide comprises cultivating a Bacillus cell in a medium conducive to the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a tandem promoter;

involving vector-mediated gene transfer and expression in host cell for use as a selectable marker

AUTHOR: WIDNER W; SLOMA A; THOMAS M D

PATENT ASSIGNEE: NOVOZYMES BIOTECH INC
PATENT INFO: US 2003170876 11 Sep 2003

APPLICATION INFO: US 2001-834271 12 Apr 2001

PRIORITY INFO: US 2001-834271 12 Apr 2001; US 1998-31442 26 Feb 1998

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2003-898275 [82]

AB DERWENT ABSTRACT:

NOVELTY - Producing a polypeptide comprises cultivating a Bacillus cell in a medium conducive to the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a nucleic acid sequence encoding the polypeptide, and isolating the polypeptide from the cultivation medium.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a Bacillus cell comprising a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide; (2) a method for obtaining a Bacillus host cell by introducing into a Bacillus cell the nucleic acid construct cited above; (3) a method for producing a selectable marker-free mutant of a Bacillus cell by deleting a selectable marker gene of the Bacillus cell; and (4) a selectable marker-free mutant of a Bacillus cell.

BIOTECHNOLOGY - Preferred Method: In producing a polypeptide, the nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide. The tandem promoter comprises two or more bacterial promoter sequences, which are obtained from one or more Bacillus genes. The tandem promoter comprises the amyQ promoter, a consensus promoter having the sequence TTGACA for the -35 region and TATAAT from the -10 region, the amyL promoter, and/or the cryIIIA promoter. The tandem promoter comprises two copies of the amyQ, amyl or cryIIIA promoter. The two or more promoter sequences of the tandem promoter simultaneously promote the transcription of the nucleic acid sequence. The one or more of the two or more promoter sequences of the tandem promoter promote the transcription of the nucleic acid sequence at different stages of growth of the Bacillus cell. The mRNA processing/stabilizing sequence is the cryIIIA or SP82 mRNA processing/stabilizing sequence, which generates mRNA transcripts essentially of the same size. The Bacillus cell contains one or more copies of the nucleic acid construct. The nucleic acid construct further comprises a selectable marker gene. The nucleic acid sequence encodes a polypeptide heterologous to the Bacillus cell. The polypeptide is a hormone or its variant, enzyme, receptor or its portion, antibody or its portion, or reporter. The enzyme is an oxidoreductase, transferase, hydrolase, lyase, isomerase or ligase. The enzyme is preferably an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, a pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase or xylanase. The nucleic acid sequence is contained in the chromosome of the Bacillus cell. The Bacillus host cell is Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus; Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus sterothermophilus, Bacillus subtilis, or Bacillus thuringiensis. This method alternatively comprises cultivating a Bacillus cell in a medium conducive for the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a consensus promoter having the sequence TTGACA for the -35 region and TATAAT

for the -10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing/stabilizing sequence located downstream of the consensus promoter and upstream of the nucleic acid sequence encoding the polypeptide; and isolating the polypeptide from the cultivation medium. The consensus promoter is obtained from any bacterial promoter, preferably a Bacillus promoter. Preferred Cell: The Bacillus cell comprises a nucleic acid construct that further comprises a selectable marker gene. The cell can also contain no selectable marker gene.

USE - The methods are useful for producing a polypeptide in a Bacillus cell, and for producing a selectable marker-free mutant of a Bacillus cell.

EXAMPLE - No relevant example given. (57 pages)

L8 ANSWER 5 OF 5 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1999:566201 HCAPLUS

DOCUMENT NUMBER: 131:180803

TITLE: Nucleic acid vectors for recombinant production of

heterologous proteins in a Bacillus cell

INVENTOR(S): Widner, William; Sloma, Alan; Thomas, Michael D.

PATENT ASSIGNEE(S): Novo Nordisk Biotech, Inc., USA

SOURCE: PCT Int. Appl., 90 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

	PAT	CENT :	NO.			KIN	D	DATE			APPL	ICAT	ION	NO.		· D	ATE	
		9943								1	WO 1	999-1	US43	60		1	9990	226
	WO	9943						1999										
		₩:	AL,	ΑU,	BB,	ВG,	BR,	CA,	CN,	CU,	CZ,	EE,	GE,	HU,	IL,	IN,	IS,	JP,
												MK,						
			SG,	SI,	SK,	TR,	TT,	UA,	UZ,	VN,	YU,	ZW,	AM,	AZ,	BY,	KG,	KZ,	MD,
				TJ,										•	•	·	•	•
		RW:	GH,	GM,	ΚE,	LS,	MW,	SD,	SL,	SZ,	UG,	ZW,	AT,	BE,	CH,	CY,	DE,	DK,
												NL,						
			CI,	CM,	GΑ,	GN,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG	•	-		-	-
	US	5955	310			A		1999	0921	1	US 1	998-	3144	2		. 1	9980	226
	ΑU	9929	756			A1		1999	0915		AU 1	999-	2975	6		1	9990	226
	ΕP	1056	873			A2		2000	1206		EP 1	999-	9110	12		1	9990	226
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	NL,	SE,	PT,	ΙE,	FI
	JP	2002	5043	79		T2		2002	0212		JP 2	000-	5335	74		1	9990	226
	CN	1510	145			Α		2004	0707	(CN 2	003-	2003	1581	21	1	9990	226
	US	2003	1708	76		A1		2003	0911	1	US 2	001-	8342	71		2	0010	412
PRIOR	(TI	APP:	LN.	INFO	. :					1	US 1	998-	3144	2	,	A 1	9980	226
										1	US 1	999-:	2563	77		B3 1	9990	224
										1	WO 1	999-1	JS43	60		W 1	9990	226
							_				_		_	_				

The present invention relates to methods for producing a polypeptide, comprising: (a) cultivating a Bacillus host cell in a medium conducive for the production of the polypeptide, wherein the Bacillus cell comprises a nucleic acid construct comprising (i) a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and alternatively also (ii) an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide; and (b) isolating the polypeptide from the cultivation medium. The present invention also relates to methods for producing a polypeptide, comprising: (a) cultivating a Bacillus host cell in a medium conducive for the production of the polypeptide, wherein the Bacillus cell comprises a nucleic acid construct comprising (i) a "consensus" promoter having the sequence TTGACA for the

"-35" region and TATAAT for the "-10" region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide and (ii) an mRNA processing/stabilizing sequence located downstream of the "consensus" promoter and upstream of the nucleic acid sequence encoding the polypeptide; and (b) isolating the polypeptide from the cultivation medium. Random promoters are created by placing promoters such as amyQ and amyL upstream of the cryIIIA promoter and its mRNA stabilizing sequence. Alternatively, "consensus" amyQ promoters are created with the cryIIIA mRNA stabilizing sequence, as well as tandom copies of a single promoter such as the short consensus amyQ dimer and trimer promoters. All of these approaches lead to significantly higher levels of SAVINASE gene expression (up to 620%) in Bacillus cells when compared to the levels obtained using single promoters such as amyQ and amyL.

=> d his

```
(FILE 'HOME' ENTERED AT 14:23:15 ON 23 FEB 2006)
     FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS,
     LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006
L1
         395086 S BACILLUS
L2
            560 S CRYIIIA
L3
            516 S L1 AND L2
            635 S "TTGACA" OR "TATAAT"
L4
L5
             13 S L3 AND L4
L6
              6 DUP REM L5 (7 DUPLICATES REMOVED)
L7
              7 S L2 AND "CONSENSUS PROMOTER"
L8
              5 DUP REM L7 (2 DUPLICATES REMOVED)
=> e widner w/au
            32
                   WIDNER T E/AU
                   WIDNER THOMAS E/AU
E2
            2
E3
            31 --> WIDNER W/AU
E4
            7
                   WIDNER W E/AU
E5
            43
                   WIDNER W R/AU
E6
                   WIDNER WILLIAM/AU
            14
E7
           22
                   WIDNER WILLIAM R/AU
                   WIDNER WILLIAM ROY/AU
E8
            1
E9
                   WIDNER WM R/AU
            1
                   WIDNES C/AU
E10
            5
E11
                   WIDNES J/AU
            2
E12
            2
                   WIDNES J A/AU
=> s e3-e9
           119 ("WIDNER W"/AU OR "WIDNER W E"/AU OR "WIDNER W R"/AU OR "WIDNER
```

WILLIAM"/AU OR "WIDNER WILLIAM R"/AU OR "WIDNER WILLIAM ROY"/AU
OR "WIDNER WM R"/AU)

=>	е	sloma	a/au	
E1			3	SLOM T J/AU
E2			2	SLOM TREVOR J/AU
E3			124>	SLOMA A/AU
E4			15	SLOMA A P/AU
E5			60	SLOMA ALAN/AU
E6			16	SLOMA ALAN P/AU
E7			1	SLOMA ALAN PAUL/AU
E8			5	SLOMA C R/AU
E9			4	SLOMA CARI R/AU
E10)		5	SLOMA CARI ROARK/AU
E11	L		1	SLOMA D/AU
E12	2		1	SLOMA D R/AU

```
=> s e3
L10
           124 "SLOMA A"/AU
=> e thomas m d/au
            16
                   THOMAS M CARMEN/AU
E2
                   THOMAS M CUARTERO C/AU
E3
           404 --> THOMAS M D/AU
           105
                   THOMAS M D A/AU
E4
E5
             4
                   THOMAS M D H/AU
             3
                   THOMAS M D JR/AU
E6
                   THOMAS M D O/AU
E7
            2
            17
                   THOMAS M D R/AU
E8
           346
                   THOMAS M E/AU
E9
E10
            33
                   THOMAS M E A/AU
            5
                   THOMAS M E C/AU
E11
E12
            31
                   THOMAS M E M/AU
=> s e3
           404 "THOMAS M D"/AU
L11
=> d his
     (FILE 'HOME' ENTERED AT 14:23:15 ON 23 FEB 2006)
     FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS,
     LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006
L1
         395086 S BACILLUS
L2
            560 S CRYIIIA
L3
            516 S L1 AND L2
            635 S "TTGACA" OR "TATAAT"
T.4
L5
             13 S L3 AND L4
L6
              6 DUP REM L5 (7 DUPLICATES REMOVED)
              7 S L2 AND "CONSENSUS PROMOTER"
L7
L8
              5 DUP REM L7 (2 DUPLICATES REMOVED)
                E WIDNER W/AU
            119 S E3-E9
L9
                E SLOMA A/AU
            124 S E3
L10
                E THOMAS M D/AU
L11
            404 S E3
=> s 19 or 110 or 111
           632 L9 OR L10 OR L11
L12
=> s 12 and 112
             8 L2 AND L12
L13
=> dup rem 113
PROCESSING COMPLETED FOR L13
              6 DUP REM L13 (2 DUPLICATES REMOVED)
=> d 1-6 ibib ab
      ANSWER 1 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN
L14
      DUPLICATE 1
ACCESSION NUMBER: 2005-30339 BIOTECHDS
TITLE:
                  Producing a hyaluronic acid, by cultivating Bacillus cell
                  comprising a nucleic acid construct comprising a variant amyL
                  promoter, a consensus promoter, and a cryIIIA
                  promoter, and isolating hyaluronic acid from the cultivation
                  medium;
                     production of recombinant hyaluronic acid from a Bacillus
                     having a triple promoter useful for a tissue engineering
                     application
```

AUTHOR: WIDNER W; SLOMA A; THOMAS M; TANG M

PATENT ASSIGNEE: NOVOZYMES BIOPOLYMER AS
PATENT INFO: US 2005221446 6 Oct 2005
APPLICATION INFO: US 2005-96190 31 Mar 2005

PRIORITY INFO: US 2005-96190 31 Mar 2005; US 2004-558507 31 Mar 2004

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2005-722702 [74]

AB DERWENT ABSTRACT:

NOVELTY - Producing a hyaluronic acid comprises cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter, a consensus promoter, and a cryIIIA promoter, and isolating the hyaluronic acid from the cultivation medium.

DETAILED DESCRIPTION - Producing a hyaluronic acid comprises: (A) cultivating a Bacillus cell in a medium for the production of the hyaluronic acid, where the Bacillus cell comprises a nucleic acid construct comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of a fully defined 614 bp sequence (SEQ ID NO. 1), a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of the hyaluronic acid; and (B) isolating the hyaluronic acid from the cultivation medium. INDEPENDENT CLAIMS are also included for: (1) a Bacillus cell comprising a nucleic acid construct which comprises: (a) a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid, and optionally (b) an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid; (2) producing a selectable marker-free mutant of a Bacillus cell; and(3) a selectable marker-free mutant of a Bacillus cell obtained by the method above.

WIDER DISCLOSURE - Also disclosed are: (1) methods for obtaining a Bacillus host cell; and (2) nucleic acid constructs comprising a triple promoter comprising a variant amyL promoter having a mutation corresponding to position 590 of SEQ ID NO. 1, a consensus promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region, and a cryIIIA promoter, in which each promoter sequence of the triple promoter is operably linked to one or more coding sequences involved in the biosynthesis of a hyaluronic acid.

BIOTECHNOLOGY - Preferred Method: In producing a hyaluronic acid, the variant amyL promoter is SEQ ID NO. 1. The consensus promoter is obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), where the consensus amyQ promoter has the nucleotide sequence comprising fully defined 185 bp sequence (SEQ ID NO. 42 or 43). The nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the triple promoter and upstream of the one or more coding sequences involved in the biosynthesis of the hyaluronic acid. Preferably, the one or more coding sequences involved in the biosynthesis of the hyaluronic acid are selected from a hyaluronan synthase, UDP-glucose 6-dehydrogenase, UDP-glucose pyrophosphorylase, UDP-N-acetylglucosamine pyrophosphorylase, glucose-6-phosphate isomerase, hexokinase, phosphoglucomutase, amidotransferase, mutase, or acetyl transferase gene. Producing a selectable marker-free mutant of a Bacillus cell comprises deleting a selectable marker gene of the Bacillus cell. The Bacillus cell contains no foreign selectable marker gene.

USE - The method is useful for producing a hyaluronic acid.

Hyaluronic acid is useful in eye and joint surgery. Products of hyaluronic acid are also useful in orthopedics, rheumatology, and in dermatology.

EXAMPLE - No relevant example given. (94 pages)

L14 ANSWER 2 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN

ACCESSION NUMBER: 2004-08483 BIOTECHDS

TITLE: Production of a secreted polypeptide having L-asparaginase

activity for treating leukemia, comprises cultivating a host cell comprising a nucleic acid having a sequence encoding a secretory signal peptide linked to a second sequence;

vector-mediated enzyme gene transfer and expression in host cell for recombinant protein production, amino acid

preparation and disease therapy

AUTHOR: THOMAS M D; SLOMA A
PATENT ASSIGNEE: NOVOZYMES BIOTECH INC
PATENT INFO: US 2003186380 2 Oct 2003
APPLICATION INFO: US 2003-406025 1 Apr 2003

PRIORITY INFO: US 2003-406025 1 Apr 2003; US 2002-369192 1 Apr 2002

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2004-088916 [09]

AB DERWENT ABSTRACT:

NOVELTY - Producing a secreted polypeptide having L-asparaginase activity, comprises cultivating a host cell containing a nucleic acid construct having a sequence encoding a secretory signal peptide linked to a second sequence encoding the polypeptide having L-asparaginase activity, where the signal peptide directs the polypeptide into the cell's secretory pathway, and recovering the secreted polypeptide.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a recombinant expression vector comprising the nucleic acid construct.

BIOTECHNOLOGY - Preferred Material: The polypeptide is encoded by a

nucleic acid sequence contained in plasmid pCR2.1-yccC, which is contained in Escherichia coli (NRRL B-30558). The consensus promoter is obtained from a promoter obtained from the E. coli lac operon Streptomyces coelicolor agarase gene (dagA), Bacillus clausii alkaline protease gene (aprH), B. licheniformis alkaline protease gene (subtilisin Carlsberg gene), B. subtilis levansucrase gene (sacB), B. subtilis alpha-amylase gene (amyE), B. licheniformis alpha-amylase gene (amyL), B. stearothermophilus maltogenic amylase gene (amyM), B. licheniformis penicillinase gene (penP), B. subtilis xylA and xylB genes, B. thuringiensis subsp. tenebrionis CryIIIA gene (cryIIIA) or its portions, or preferably B. amyloliquefaciens alpha-amylase gene (amyQ). The mRNA processing/stabilizing sequence is the cryIIIA mRNA processing/stabilizing sequence. The bacillus cell is B. alkalophilus, B. amyloliqifaciens, B. brevis, B. circulans, B. claussi, B. coagulans, B. lautus, B. lentus, B. licheniformis, B. megaterium, B. stearothermophilus, B. subtilis, or B. thuringiensis. Preferred Component: The nucleic acid construct comprises a tandem promoter, in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing stabilizing sequence located downstream of the tandem promoter and upstream of the second nucleic acid sequence, encoding the polypeptide having L-asparaginase activity. It comprises a consensus promoter having the sequence TTGACA for the 35 region, and TATAAT for the 10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing stabilizing sequence located downstream of the consensus promoter, and upstream of the second nucleic acid sequence encoding the polypeptide having L-asparagine activity. The consensus promoter is obtained from any bacterial or a bacillus promoter. The nucleic acid construct comprises a ribosome binding site sequence heterologous to the host cell.

ACTIVITY - Cytostatic.

MECHANISM OF ACTION - L-asparaginase.

USE - The invention is for production of secreted polypeptide having L-asparaginase activity, for use in producing L-aspartate from L-asparagine. The inventive secreted polypeptide is useful for treatment of leukemia, e.g. acute lymphocytic leukemia.

ADVANTAGE - The invention achieves secretion of L-asparaginase enabling easy recovery and purification, high expression constructs for producing the L-asparaginase in high amounts, and the use of host cells for production that have generally regarded as safe status.

EXAMPLE - B. subtilis strains MDT51 and MDT52 were grown in Lactobacilli MRS Broth (RTM; 50 ml) at 37degreesC, and 250 revolutions/minute (rpm) for 24 hours. Supernatants were recovered by centrifugation at 7000 rpm for 5 minutes. A prominent band corresponding to a protein of the expected size for mature L-asparagine (37 kDa; amino acids 24-375) was observed in the MDT51 sample, but not in the MDT52 sample. (22 pages)

L14 ANSWER 3 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN

ACCESSION NUMBER: 2004-04169 BIOTECHDS

TITLE: Producing a polypeptide comprises cultivating a Bacillus cell in a medium conducive to the production of the polypeptide,

where the Bacillus cell comprises a nucleic acid construct

comprising a tandem promoter;

involving vector-mediated gene transfer and expression in

host cell for use as a selectable marker

AUTHOR: WIDNER W; SLOMA A; THOMAS M D

PATENT ASSIGNEE: NOVOZYMES BIOTECH INC
PATENT INFO: US 2003170876 11 Sep 2003
APPLICATION INFO: US 2001-834271 12 Apr 2001

PRIORITY INFO: US 2001-834271 12 Apr 2001; US 1998-31442 26 Feb 1998

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2003-898275 [82]

AB DERWENT ABSTRACT:

NOVELTY - Producing a polypeptide comprises cultivating a Bacillus cell in a medium conducive to the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a nucleic acid sequence encoding the polypeptide, and isolating the polypeptide from the cultivation medium.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a Bacillus cell comprising a nucleic acid construct comprising a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding a polypeptide, and optionally an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide; (2) a method for obtaining a Bacillus host cell by introducing into a Bacillus cell the nucleic acid construct cited above; (3) a method for producing a selectable marker-free mutant of a Bacillus cell by deleting a selectable marker gene of the Bacillus cell; and (4) a selectable marker-free mutant of a Bacillus cell.

BIOTECHNOLOGY - Preferred Method: In producing a polypeptide, the nucleic acid construct further comprises an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide. The tandem promoter comprises two or more bacterial promoter sequences, which are obtained from one or more Bacillus genes. The tandem promoter comprises the amyQ promoter, a consensus promoter having the sequence TTGACA for the -35 region and TATAAT from the -10 region, the amyL promoter, and/or the cryIIIA promoter. The tandem promoter comprises two copies of the amyQ, amyl or cryIIIA promoter. The two or more promoter sequences of the tandem promoter simultaneously promote the transcription of the nucleic acid sequence. The one or more of the two or more promoter sequences of the tandem promoter promote the transcription of the nucleic

acid sequence at different stages of growth of the Bacillus cell. The mRNA processing/stabilizing sequence is the cryIIIA or SP82 mRNA processing/stabilizing sequence, which generates mRNA transcripts essentially of the same size. The Bacillus cell contains one or more copies of the nucleic acid construct. The nucleic acid construct further comprises a selectable marker gene. The nucleic acid sequence encodes a polypeptide heterologous to the Bacillus cell. The polypeptide is a hormone or its variant, enzyme, receptor or its portion, antibody or its portion, or reporter. The enzyme is an oxidoreductase, transferase, hydrolase, lyase, isomerase or ligase. The enzyme is preferably an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, a pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase or xylanase. The nucleic acid sequence is contained in the chromosome of the Bacillus cell. The Bacillus host cell is Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus sterothermophilus, Bacillus subtilis, or Bacillus thuringiensis. This method alternatively comprises cultivating a Bacillus cell in a medium conducive for the production of the polypeptide, where the Bacillus cell comprises a nucleic acid construct comprising a consensus promoter having the sequence TTGACA for the -35 region and TATAAT for the -10 region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and an mRNA processing/stabilizing sequence located downstream of the consensus promoter and upstream of the nucleic acid sequence encoding the polypeptide; and isolating the polypeptide from the cultivation medium. The consensus promoter is obtained from any bacterial promoter, preferably a Bacillus promoter. Preferred Cell: The Bacillus cell comprises a nucleic acid construct that further comprises a selectable marker gene. The cell can also contain no selectable marker

USE - The methods are useful for producing a polypeptide in a Bacillus cell, and for producing a selectable marker-free mutant of a Bacillus cell.

EXAMPLE - No relevant example given. (57 pages)

L14 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:630833 HCAPLUS

DOCUMENT NUMBER: 135:209984

TITLE: Manufacture of large crystals of δ -endotoxins

with Bacillus thuringiensis by increasing gene copy

number

INVENTOR(S): Adams, Lee Fremont; Thomas, Michael David; Sloma, Alan

P.; Widner, William R.

PATENT ASSIGNEE(S): Valant Biosciences, Inc., USA; Libertyville, Inc.

SOURCE: U.S., 19 pp., Cont.-in-part of U.S. Ser. No. 92,338,

abandoned.
CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6280720	B1	20010828	US 1994-274608	19940713
IN 178296	A	19970322	IN 1994-MA623	19940712
CA 2167178	AA	19950126	CA 1994-2167178	19940714
ZA 9405138	A	19950223	ZA 1994-5138	19940714

```
CZ 290015
                       B6
                             20020515
                                        CZ 1996-96
                                                              19940714
    ES 2196030
                       T3
                             20031216
                                        ES 1994-922566
                                                              19940714
    US 6280721
                       B1
                             20010828 US 1995-377891
                                                              19950125
    US 6303382
                       B1
                             20011016
                                        US 1996-771190
                                                              19961220
                       B1
    US 6270760
                             20010807
                                        US 1997-872571
                                                             19970610
                                                           19980414
    US 5955367
                       Α
                             19990921
                                        US 1998-60288
PRIORITY APPLN. INFO.:
                                        US 1993-92338
                                                         B2 19930715
                                        DK 1989-6396
                                                         A 19891218
B2 19920526
                                        US 1992-853701
                                                          A2 19940713
                                        US 1994-274608
                                        US 1995-377892
                                                         B1 19950125
                                                          B1 19950125
                                        US 1995-378236
```

The invention relates to a method for producing an integrant(s) of AB Bacillus thuringiensis which produces a larger quantity of a crystal δ-endotoxin with a greater pesticidal activity than the crystal delta-endotoxin produced by the corresponding parental strain. The crystal δ-endotoxin produced by the integrant Bacillus thuringiensis will have an activity directed towards the same pest(s) as its parent Bacillus thuringiensis crystal δ -endotoxin. The invention further relates to such integrants, compns. comprising such integrants, as well as methods for controlling a pest(s) using these compns. Integration is achieved by transformation with a plasmid that does not carry a replicon that functions in B. thuringiensis but that does carry sequence that will direct efficient integration of the plasmid into the host chromosome. Use of the cryIII and cryIIIA genes is demonstrated. Parasporal crystals from integrant hosts were up to twice as long and 30% wider than crystals from parental strains. LC50's for the δ -endotoxins of the integrants were 3-8-fold lower than those of the parental strains.

REFERENCE COUNT: THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS 47 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1999:566201 HCAPLUS

DOCUMENT NUMBER: 131:180803

TITLE: Nucleic acid vectors for recombinant production of

heterologous proteins in a Bacillus cell

INVENTOR(S): Widner, William; Sloma, Alan; Thomas, Michael D.

PATENT ASSIGNEE(S): Novo Nordisk Biotech, Inc., USA

SOURCE: PCT Int. Appl., 90 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9943835	A2	19990902	WO 1999-US4360	19990226
WO 9943835	A3	19991125		
W: AL, AU	, BB, BG, BR	, CA, CN,	CU, CZ, EE, GE, HU, IL,	IN, IS, JP,
KP, KI	, LC, LK, LR	L, LT, LU,	LV, MG, MK, MN, MX, NO,	NZ, PL, RO,
			VN, YU, ZW, AM, AZ, BY,	
RU, TO				, , ,
RW: GH, GN	, KE, LS, MW	, SD, SL,	SZ, UG, ZW, AT, BE, CH,	CY, DE, DK,
ES, F	, FR, GB, GR	, IE, IT,	LU, MC, NL, PT, SE, BF,	BJ, CF, CG,
CI, CN	, GA, GN, GW	, ML, MR,	NE, SN, TD, TG	
US 5955310	A	19990921	US 1998-31442	19980226
AU 9929756	A1	19990915	AU 1999-29756	19990226
			EP 1999-911012	
R: AT, BE	, CH, DE, DK	, ES, FR,	GB, GR, IT, LI, NL, SE,	PT, IE, FI
JP 2002504379	T2	20020212	JP 2000-533574	
CN 1510145	A	20040707	CN 2003-2003158121	19990226
US 2003170876			US 2001-834271	

A 19980226 PRIORITY APPLN. INFO.: US 1998-31442

US 1999-256377 B3 19990224 WO 1999-US4360 W 19990226

AB The present invention relates to methods for producing a polypeptide, comprising: (a) cultivating a Bacillus host cell in a medium conducive for the production of the polypeptide, wherein the Bacillus cell comprises a nucleic acid construct comprising (i) a tandem promoter in which each promoter sequence of the tandem promoter is operably linked to a single copy of a nucleic acid sequence encoding the polypeptide, and alternatively also (ii) an mRNA processing/stabilizing sequence located downstream of the tandem promoter and upstream of the nucleic acid sequence encoding the polypeptide; and (b) isolating the polypeptide from the cultivation medium. The present invention also relates to methods for producing a polypeptide, comprising: (a) cultivating a Bacillus host cell in a medium conducive for the production of the polypeptide, wherein the Bacillus cell comprises a nucleic acid construct comprising (i) a "consensus" promoter having the sequence TTGACA for the "-35" region and TATAAT for the "-10" region operably linked to a single copy of a nucleic acid sequence encoding the polypeptide and (ii) an mRNA processing/stabilizing sequence located downstream of the "consensus" promoter and upstream of the nucleic acid sequence encoding the polypeptide; and (b) isolating the polypeptide from the cultivation medium. Random promoters are created by placing promoters such as amyQ and amyL upstream of the cryIIIA promoter and its mRNA stabilizing sequence. Alternatively, "consensus" amyQ promoters are created with the cryIIIA mRNA stabilizing sequence, as well as tandom copies of a single promoter such as the short consensus amyQ dimer and trimer promoters. All of these approaches lead to significantly higher levels of SAVINASE gene expression (up to 620%) in Bacillus cells when compared to the levels obtained using single promoters such as amyQ

ANSWER 6 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN T.14 DUPLICATE 2

ACCESSION NUMBER: 1995-04013 BIOTECHDS

Methods for producing large Bacillus thuringiensis crystals; TITLE:

> crystal protein overproduction by integration via homologous recombination and marker rescue, for use in

biological control agent strain improvement

Adams L F; Thomas M D; Sloma A P; Widner W AUTHOR:

PATENT ASSIGNEE: Novo-Nordisk-Entotech; Novo-Nordisk-Biotech

PATENT INFO: WO 9502695 26 Jan 1995 APPLICATION INFO: WO 1994-US7955 14 Jul 1994 PRIORITY INFO: US 1993-92338 15 Jul 1993

DOCUMENT TYPE: Patent
LANGUAGE: English
OTHER SOURCE: WPI: 19

and amyL.

WPI: 1995-067339 [09]

AB A new integrant of Bacillus thuringiensis produces an increased quantity of delta-endotoxin crystal protein with improved pesticidal activity against the same pest as the parent, and is produced by homologous recombination using a vector with a homologous region and a selectable marker (e.g. antibiotic-resistance) in the presence of increasing amounts of a selective agent for gene amplification. The toxin is encoded by the cryI, cryII, cryIII, cryIV, cryV or cryVI gene, preferably cryIIIA. The integrant may be B. thuringiensis EMCC 0082 (NRRL B-21106), EMCC 0083 (NRRL B-21107), EMCC 0115 (NRRL B-21286) or EMCC 00116 (NRRL B-21287). The toxin gene is from B. thuringiensis subsp. kurstaki, aizawai (preferred), galleriae, entomocidus, tenebrionis (preferred), thuringiensis, alesti, canadiensis, darmstadiensis, dendrolimus, finitimus, kenyae, morrisoni, subtoxicus, toumanoffi or israelensis. A 2-vector double selectable marker rescue system may be used for recombination. The host is incubated at 37 deg. The crystal protein-producing strain is active against Coleoptera or Lepidoptera

insect pests. (44pp)

=> d his

(FILE 'HOME' ENTERED AT 14:23:15 ON 23 FEB 2006)

FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS, LIFESCI' ENTERED AT 14:23:47 ON 23 FEB 2006 L1395086 S BACILLUS L2 560 S CRYIIIA 516 S L1 AND L2 L3 635 S "TTGACA" OR "TATAAT" L4L5 13 S L3 AND L4 6 DUP REM L5 (7 DUPLICATES REMOVED) L6 7 S L2 AND "CONSENSUS PROMOTER" L7 5 DUP REM L7 (2 DUPLICATES REMOVED) L8 E WIDNER W/AU L9 119 S E3-E9 E SLOMA A/AU

L10 124 S E3

E THOMAS M D/AU L11 404 S E3

632 S L9 OR L10 OR L11 L12

L13 8 S L2 AND L12

L14 6 DUP REM L13 (2 DUPLICATES REMOVED)

	Issue Date	Page s	Document ID	Title
1	20051208		2005027269	Fast dissolving dried hyaluronic acid product
2	20051201	21	US 2005026706	Dried and agglomerated hyaluronic acid product
3	20051006		ITIC	Methods for producing hyaluronic acid in a Bacillus cell
4	20031002	i	บร 2003018638	Methods for producing secreted polypeptides having L-asparaginase activity
5	20030911	57	2003017087	Methods for producing a polypeptide in a bacillus cell
6	20010703	154		Methods for producing a polypeptide in a Bacillus cell

	Issue Date	Page s	Document ID	Title
1	20001031	35	US 6140104	Nucleotide sequences for the control of the expression of DNA sequences in a cell host

	Issue Date	Page	Document	Title
1	20060223	s 32	US 2006004028	Polyhydroxybutyrate polymerase
2	20051208	21		Fast dissolving dried hyaluronic acid product
3	20051201	21	US 2005026706 8 A1	Dried and agglomerated hyaluronic acid product
4	20051103	114	1	Novel glyphosate-N- acetyltransferase (GAT) genes
5	20051006	94	US 2005022144 6 A1	Methods for producing hyaluronic acid in a Bacillus cell
6	20050901	1	2005019162	Antibiotics based upon bacteriophage lysis proteins
7	20050414	55	2005007961 7 A1	Glucose transport mutants for production of biomaterial
8	20050324	34	US 2005006456 5 A1	POLYHYDROXYBUTYRATE POLYMERASE
9	20040819	16	i	Protease, a gene therefor and the use thereof
10	20040429	86	2004008277 0 A1	Novel glyphosate N- acetyltransferase (GAT) genes
11	20040226		US 2004003826 2 A1	Ribulose 1,5- bisphosphate carboxylase/oxygenas e polypeptides and related polynucleotides
12	20040205		US 2004002320 5 A1	Method of recovering a nucleic acid encoding a proteinaceous binding domain which binds a target

	Issue	Page	Document	Title
	Date	s	ID	
13	20040108	218	US 2004000553 9 A1	Nucleic acids, genetic constructs, and library of nucleic acids encoding fusion proteins
14	20031218	61	US 2003023240 6 A1	Bacterial strains which overproduce riboflavin
15	20031204	1	US 2003022524 9 A1	32-kDa protein derived from mycobacterium tuberculosis and related peptides
16	20031127		2003021988	Directed evolution of novel binding proteins
17	20031127	224		Fusion proteins, modified filamentous bacteriophage, and populations or libraries of same
18	20031002	1	2003018638	Methods for producing secreted polypeptides having L-asparaginase activity
19	20030918	142	05 2003017590 2	Methods for producing hyaluronan in a recombinant host cell
20	20030911	57	US 2003017087 6 A1	Methods for producing a polypeptide in a bacillus cell
21	20030619		7 A1	Coniothyrium minitans beta-(1,3) exoglucanase gene cbeg1
22	20030619	190	2003011371 7 Al	Directed evolution of novel binding proteins
23	20030501	139		Novel glyphosate N- acetyl transferase (GAT) genes

			us	Directed	evolution
24	20021017	203	2002015088	of novel	binding
			1 A1	proteins	

	Issue	Page	Doci	ment	
	Date	s	i	ID	Title
		-	US		Leptospiral rare
25	20020912	33		12724	outer membrane
			0 A1	10,01	proteins
	-		l		I.awsonia
1					intracellularis
26	20060103	70	US 69	82314	proteins, and
			B2		related methods and
					materials
				50500	Directed evolution
27	20051227	303	US 69	79538	of novel binding
			B2		proteins
00	0005015		US 68	81560	Polyhydroxybutyrate
28	20050419	1 4 h	B2		polymerase
20	20050333	E.C.	US 68	41376	Bistable genetic
29	20050111	מכו	B2		toggle switch
	_				
		1	TIC 67	31311	Coniothyrium minitans .beta
30	20040511	ロン	05 67 B2	54544	(1,3) exoglucanase
			ے		gene cbeg 1
					Some open i
					Transgenic maize
31	20040413	12.17		20488	seed and method for
			B2		controlling insect
					pests
22	2004222	2.2	us 66	99482	Leptospira rare
32	20040302	33	B2		pucci membrane
	<u> </u>				proteins
			וופ כר	E1012	Nutrient medium for
33	20030422	160	US 65 B1	STATS	bacterial strains
			D.T.		which overproduce riboflavin
					Recombinant
					polypeptides and
					pentides nucleic
					acids coding for the
34	20030311	1117		31138	same and use of
			B1		these polypetides
					and peptides in the
					diagnostic of
					tuberculosis
35	20020204	2.5	US 65	28706	Polyhydroxybutyrate
၁ ၁	20030304		B1		polymerase
			110 (2	02126	Adenosine deaminase
36	20020521			92126	homologues and uses
			B1		thereof
	•		-		

37	20011127 109	US B1	6322995 Riboflavin production
----	--------------	----------	----------------------------------

	Issue Date	Page s	Do	ocument ID	Title
38	20011106	36	US B1		Maize aquaporins and uses thereof
39	20010918	ו דו	US B1	6291230	Galk promoter
40	20010724	36	US B1	6265636	Pyruvate dehydrogenase kinase polynucleotides, polypeptides and uses thereof
41	20010703	154	US B1		Methods for producing a polypeptide in a Bacillus cell
42	20010626	1/1	US B1	6252140	Promoters from chlorella virus genes providing for expression of genes in prokaryotic and eukaryotic hosts
43	19990720	16 3	US A	ちなりちちえぬ	Bacterial strains which overproduce riboflavin
44	19990629	11 1 9	US A	5916558	Recombinant polypeptides and peptides, nucleic acids coding for the same and use of these polypeptides and peptides in the diagnostic of tuberculosis
45	19981201	169	US A	5843426	Salmonella vaccines
46	19981117	162	US A	583/528	Bacterial strains which overproduce riboflavin
47	19981117	1181	US A		Directed evolution of novel binding proteins
48	19981117	133	US A		Leptospira membrane proteins
49	19980825	125	US A		Gene encoding bacterial acetoacetylco a reductase

50	19980811	21	US A		Biolog plant syster	gically safe transformation m
----	----------	----	---------	--	---------------------------	-------------------------------------

	Issue	Page	De	ocument	
	Date	s		ID	Title
-			-		Regulator of
51	19980324	114	1	5731151	contact-mediated
			A		hemolysin
		_			Mothod for producing
52	19970902	13.2		5663063	polyester
			A		biopolymers
					Gene encoding
53	19970826			5661026	bacterial beta-
			A		ketothiolase
	-				Directed evolution
54	19961105	176	US	5571698	of novel binding
			A		proteins
FF	10060700		US	5534432	Polyhydroxybutyrate
55	19960709	ירו	Α		polymerase
-					Gene encoding
56	10060430	<u> </u>	บร	5512669	bacterial
56	19960430	25	A		acetoacetyl-COA
	j				reductase
57	10060116	2.4	US	5484718	Nodulation gene
57	19960116	34	Α		promoter
			110	E4020E2	Biologically safe
58	19960109			3462632	plant transformation
			A		system
			TIC	5403484	Viruses expressing
59	19950404	1199	A	3403404	chimeric binding
					proteins
60	19931005	33	US	5250430	Polyhydroxyalkanoate
	19931003		A		polymerase
			TIC	5245023	Method for producing
61	19930914	32	A	3243023	novel polyester
					biopolymers
			US	5229279	Method for producing
62	19930720	25	A.	0227279	novel polyester
					biopolymers
					Biologically safe
63	19930706	119		5225341	plant transformation
			A		system using a Ds
					transposon
					Expression of
c a	1000101		US	5171673	heterologous DNA
64	19921215		Α		daring the patilitus
					coagulans amylase
					gene

65	19910122	13	US A	4987078	Plasmid vectors for expression in Escherichia coli and/or Bacillus subtilis	
----	----------	----	---------	---------	---	--

	Issue Date	Page s	Document ID	Title
66	19900417	36	US 4918006 A	Gene coding for insecticidal crystal protein
67	19880906	42	US 4769327 A	Secretion vector

	L #	Hits	Search Text
1	L1	1	"6852518".pn.
2	L2	4	"GST-40"
3	Ь3	1	l1 and 12
	L4	4140 1	bacillus
	L5	365	cryIIIA
6	L6	314	14 same 15
7	上 7	495	"TATAAT" or
		_	"TTGACA"
8	上8	6	16 same 17
9	L9	3016	"downstream
	ر تا	3010	region"
10	上10	1	16 same 19
11	L11	4113	WIDNER SLOMA
	штт	91	THOMAS
12	L12	120	17 and 111
13	L13	67	14 and 112