Estimating offshore wind farm installation performance with

satellite data

Aljoscha Sander<sup>1,3</sup>, Eize Stamhuis<sup>1</sup>, and Albert Baars<sup>4</sup>

<sup>1</sup>University of Groningen, Groningen, The Netherlands

<sup>3</sup>University of Bremen, Bremen, Germany

<sup>4</sup>University of Applied Sciences Bremen, Bremen, Germany

**Correspondence:** A.S. (aljoscha.sander@rug.nl)

Abstract.

5

- Offshore wind maturing, installations are a massive challenge

- Little public data on offshore wind farm installation performance available

- Offshore Wind Farm Installation massively influenced by weather limits

- Combining Automatic Identification System (AIS), ERA5 and public wind farm data allows to assess performance of

offshore wind farm installation as a function of metocean data, location, wind turbine type and installation vessel

Copyright statement. TEXT

Introduction

With 5,795 offshore wind turbines operational in Europe alone (June 2022), offshore wind has become a major source of

electricity in several countries, and more than 20 years of installing offshore wind farms has led to a significant amount of

learning in the industry. While a great deal of scientific literature is available on wind turbine design and operations, the body

of literature dealing with offshore wind farm installations is comparatively small, even though installing wind turbines offshore

imposes a complex and thus scientifically interesting problem.

The installation of an offshore wind farm is by no means an easy undertaking: metocean conditions must be within narrow

limits to allow save operations. Specialized equipment, vessels, and crews are required. The continuously increasing size of

turbines, as well as increasing water depths, and new locations where little experience is available, add to the risks associated

with installations. Unforeseen downtimes are costly and put additional strain on already difficult operations.

In this study, we investigate how metocean conditions correlate with offshore wind farm installation times. We compile a

statistical overview of offshore wind farm installations: from satellite data, we extract correlations between turbine size, wind

1

Table 1. AIS vessel data used in this study.

| MMSI      | Name           | Data time range |
|-----------|----------------|-----------------|
| 218389000 | Thor           | 2010 - 2021     |
| 218657000 | Vole au Vent   | 2013 - 2021     |
| 219019002 | Sea Challenger | 2013 - 2021     |
| 229044000 | Brave Tern     | 2012 - 2021     |
| 229080000 | Bold Tern      | 2013 - 2021     |
| 235090598 | Blue Tern      | 2015 - 2021     |
| 245179000 | Aeolus         | 2010 - 2021     |
| 245924000 | MPI Adventure  | 2010 - 2021     |
| 246777000 | MPI Resolution | 2010 - 2021     |

farm locations, installation vessels and installation duration with metocean conditions during the installation process. Finally, we extract the observed metocean limits for turbine sizes, manufacturers, vessels, and locations

### 2 Material and Methods

### 2.1 Vessel tracks

### 2.1.1 Data acquisition and pre-processing

To reliably extract installation times for as many offshore wind farms as possible, we acquired hourly *Automatic Identification System* (AIS) vessel data from a data broker. The AIS data includes 9 offshore wind installation vessels over a period of 11 years (see Table 1).

Each AIS vessel record includes latitude, longitude, speed, heading, course and a timestamp for a given vessel.

### 2.1.2 Clustering vessel tracks to extract wind farms

To extract installation times per turbine per offshore wind farm, we preselected vessel records where the speed of the vessel was 0 and further removed records where the vessel was close to shore or in port. The vessel records were then automatically clustered using the DBSCAN algorithm as implemented in the scikit-learn python package.

### 2.1.3 Clustering wind farms to extract single turbines

To yield vessel records corresponding to single turbine installations, each wind farm cluster was clustered again with the DBSCAN algorithm, yielding vessel records corresponding to individual turbines. Only turbine locations where at least two vessel records were available were kept for further analysis. Installation times per turbine were then calculated by assuming,

that the first available AIS vessel record corresponds to the beginning of turbine installation activities and the last AIS record marks the end of installation activities.

### 2.2 Wind farms

These clusters were then cross-referenced with the locations of offshore wind farms to select vessel records within a given radius of a known wind farm.

### 2.3 Metocean data

Based on the time stamps of the AIS records per turbine, ERA5 metocean data was requested for the wind farm location. ERA5 data includes wind speed and wind direction at several altitudes, wave direction, wave period and significant wave height. For each wind farm, metadata such as wind turbine model, rated power and foundation type were collected, and all data was combined into a SQLite database. The database will be made available to the public once analysis has been completed.

3 Results and Discussion

Table 2. Overview of detected wind farms and number of extracted wind turbines per wind farm

| Wind Farm Name      | Number of Turbines | Rated Turbine Power | Wind Farm Capacity | Number of Extracted Wind Turbines |
|---------------------|--------------------|---------------------|--------------------|-----------------------------------|
| Luchterduinen       | 43                 | 3.00                | 129.00             | 4                                 |
| Westermost Rough    | 35                 | 6.00                | 210.00             | 32                                |
| Arkona              | 60                 | 6.42                | 385.00             | 49                                |
| East Anglia One     | 102                | 7.00                | 714.00             | 11                                |
| Dudgeon             | 67                 | 6.00                | 402.00             | 61                                |
| Gode Wind I & II    | 97                 | 6.00                | 582.00             | 61                                |
| Hornsea             | 174                | 7.00                | 1218.00            | 100                               |
| Borssele I/II       | 94                 | 8.00                | 752.00             | 55                                |
| Humber Gateway      | 73                 | 3.00                | 219.00             | 83                                |
| Northwind           | 72                 | 3.00                | 216.00             | 52                                |
| Deutsche Bucht      | 31                 | 8.40                | 260.40             | 14                                |
| Veja Mate           | 67                 | 6.00                | 402.00             | 19                                |
| Galloper            | 56                 | 6.30                | 352.80             | 11                                |
| Global Tech I       | 80                 | 5.00                | 400.00             | 22                                |
| Butendiek           | 80                 | 3.60                | 288.00             | 76                                |
| Moray East          | 100                | 9.50                | 950.00             | 68                                |
| Borkum Riffgrund 2  | 56                 | 8.00                | 448.00             | 48                                |
| Borkum Riffgat      | 30                 | 3.77                | 113.25             | 20                                |
| Merkur              | 66                 | 6.00                | 396.00             | 59                                |
| Trianel Borkum 2    | 32                 | 6.33                | 202.56             | 9                                 |
| Gemini              | 150                | 4.00                | 600.00             | 29                                |
| Albatros            | 16                 | 7.00                | 112.00             | 11                                |
| Nobelwind           | 50                 | 3.30                | 165.00             | 41                                |
| Kriegers Flak       | 72                 | 8.00                | 576.00             | 72                                |
| Wikinger            | 70                 | 5.00                | 350.00             | 64                                |
| Yunlin              | 80                 | 8.00                | 640.00             | 11                                |
| Horns Rev 3         | 49                 | 8.30                | 406.70             | 46                                |
| Sandbank            | 72                 | 4.00                | 288.00             | 73                                |
| Teesside            | 27                 | 2.30                | 62.10              | 25                                |
| Rampion             | 116                | 3.45                | 400.20             | 41                                |
| BARD Offshore I     | 80                 | 5.00                | 400.00             | 15                                |
| Northwester 2       | 23                 | 9.50                | 218.50             | 41                                |
| EnBW Baltic II (MP) | 39                 | 3.60                | 140.40             | 42                                |



Figure 1. duration distribution

# 4 Conclusions



Figure 2. Overview of installation data



Figure 3. duration distribution



Figure 4. duration distribution



Figure 5. duration distribution

# Code and data availability. All code related to the present publication is available on github under creative-commons licence: https://github.com/k323r/2022\_WES\_offshore-wind-installation Sample availability. TEXT Appendix A A1 Competing interests. TEXT

5

Conclusions

Disclaimer. TEXT

Acknowledgements. TEXT

## References

60 REFERENCE 1

REFERENCE 2