PART 3 BLOCKING/CANOPY GENERATION

Blocking: Motivation

- Naïve pairwise: $|R|^2$ pairwise comparisons
 - 1000 business listings each from 1,000 different cities across the world
 - 1 trillion comparisons
 - -11.6 days (if each comparison is 1 μ s)

- Mentions from different cities are unlikely to be matches
 - 10 million comparisons
 - 10 seconds (if each comparison is 1 μ s)

Blocking: Motivation

- Mentions from different cities are unlikely to be matches
 - May miss potential matches

Blocking: Problem Statement

Input: Set of records *R*

Output: Set of blocks/canopies

$$\{C_1, C_2, \dots, C_k\}, where \ \forall_i C_i \subset R \ and \bigcup_i C_i = R$$

Variants:

Disjoint Blocking: Each mention appears in one block.

$$\forall_{i,j} C_i \cap C_j = \emptyset$$

 Non-disjoint Blocking: Mentions can appear in more than one block.

Blocking: Problem Statement

$$\{C_1, C_2, \dots, C_k\}, where \ \forall_i C_i \subset R \ and \bigcup_i C_i = R$$

Metrics:

• Efficiency (or reduction ratio):

number of pairs compared total number of pairs in $R \times R$ $|\{(x,y) \mid \exists i C_i, s.t. \ x,y \in C_i\}|$

$$= \frac{|\{(x,y) \mid \exists i \ C_i, s. \ t. \ x,y \in C_i\}|}{r(r-1)/2}$$

• Recall* (or pairs completeness) : $\frac{number\ of\ true\ matches\ compared}{number\ of\ true\ matches\ in\ R\times R}$

*Need to know ground truth in order to compute this metric

Blocking: Problem Statement

Metrics:

- Efficiency (or reduction ratio) : $\frac{number\ of\ pairs\ compared}{total\ number\ of\ pairs\ in\ R\times R}$
- Recall* (or pairs completeness): $\frac{number\ of\ true\ matches\ compared}{number\ of\ true\ matches\ in\ R\times R}$
- Precision* (or pairs quality): $\frac{number\ of\ true\ matches\ compared}{number\ of\ matches\ compared}$
- Max Canopy Size: $max_i |C_i|$

*Need to know ground truth in order to compute this metric

Blocking Algorithms 1

Hash based blocking

- Each block C_i is associated with a hash key h_i .
- Mention x is hashed to C_i if $hash(x) = h_i$.
- Within a block, all pairs are compared.
- Results in disjoint blocks.

What hash function?

- Deterministic function of attribute values
- Boolean Functions over attribute values [Bilenko et al ICDM'06,
 Michelson et al AAAI'06, Das Sarma et al Corr'11]
- minHash (min-wise independent permutations) [Broder et al STOC'98]

Blocking Algorithms 2

- Pairwise Similarity/Neighborhood based blocking
 - Nearby nodes according to a similarity metric are clustered together
 - Results in non-disjoint canopies.

- Techniques
 - Sorted Neighborhood Approach [Hernandez et al SIGMOD'95]
 - Canopy Clustering [McCallum et al KDD'00]

Simple Blocking: Inverted Index on a Key

Examples of blocking keys:

- First three characters of last name
- City + State + Zip
- Character or Token n-grams
- Minimum infrequent n-grams

Learning Optimal Blocking Functions

- Using one or more blocking keys may be insufficient
 - 2,376,206 American's shared the surname Smith in the 2000 US
 - NULL values may create large blocks.
- Solution: Construct blocking functions by combining simple functions

Complex Blocking Functions

- Conjunction of functions [Michelson et al AAAI'06, Bilenko et al ICDM'06]
 - {City} AND {last four digits of phone}
- Chain-trees [Das Sarma et al Corr '11]
 - If ({City} = NULL or LA) then {last four digits of phone} AND {area code}else {last four digits of phone} AND {City}
- BlkTrees [Das Sarma et al Corr '11]

Learning an Optimal function [Bilenko et al ICDM '06]

- Find k blocking functions that eliminate the most nonmatches, while retaining almost all matches.
 - Need a training set of positive and negative pairs

Algorithm Idea: Red-Blue Set Cover

Positive Examples

Blocking Keys

Negative Examples

Pick k Blocking keys such that (a) At most ε blue nodes are not covered

(b) Number of red nodes covered is minimized

Learning an Optimal function [Bilenko et al ICDM '06]

Algorithm Idea: Red-Blue Set Cover

Positive Examples

Blocking Keys

Negative Examples

Pick k Blocking keys such that (a) At most ε blue nodes are not covered

(b) Number of red nodes covered is minimized

Greedy Algorithm:

- Construct "good" conjunctions of blocking keys $\{p_1, p_2, ...\}$.
- Pick k conjunctions $\{p_{i1}, p_{i2}, ..., p_{ik}\}$, such that the following is minimized

number of new blue nodes covered by p_{ij}

number of red nodes covered by p_{i_j}

minHash (Minwise Independent Permutations)

- Let F_x be a set of features for mention x
 - (functions of) attribute values
 - character ngrams
 - optimal blocking functions ...
- Let π be a random permutation of features in F_{χ}
 - E.g., order imposed by a random hash function
- minHash(x) = minimum element in F_x according to π

Why minHash works?

Surprising property: For a random permutation π ,

$$P(minHash(x) = minhash(y)) = \frac{F_x \cap F_y}{F_x \cup F_y}$$

How to build a blocking scheme such that only pairs with Jacquard similarity > s fall in the same block (with high prob)?

Probability that (x,y) mentions are blocked together

Similarity(x,y)

Blocking using minHashes

• Compute minHashes using r * k permutations (hash functions)

 Signature's that match on 1 out of k bands, go to the same block.

minHash Analysis

False Negatives: (missing matches)

P(pair x,y not in the same block with Jacquard sim = s) = $(1 - s^r)^k$

should be very low for high similarity pairs

False Positives: (blocking non-matches)

P(pair x,y in the same block

with Jacquard sim = s) = $k \times s^r$

$$r = 5, k = 20$$

Sim(s)	P(not same block)
0.9	10-8
0.8	0.00035
0.7	0.025
0.6	0.2
0.5	0.52
0.4	0.81
0.3	0.95
0.2	0.994
0.1	0.9998

Sorted Neighborhood [Hernandez et al SIGMOD'95]

- Compute a Key for each mention.
- Sort the mentions based on the key.
- Merge: Check whether a record matches with (w-1) previous records.
 - Efficient implementation using
 Sort Merge Band Join [DeWitt et al VLDB'91]
- Perform multiple passes with different keys

Canopy Clustering [McCallum et al KDD'00]

Input: Mentions M, d(x,y), a distance metric, thresholds $T_1 > T_2$

Algorithm:

- 1. Pick a random element x from M
- 2. Create new canopy C_x using mentions y s.t. $d(x,y) < T_1$
- 3. Delete all mentions y from M s.t. $d(x,y) < T_2$
- 4. Return to Step 1 if *M* is not empty

Summary of Blocking

- $O(|R|^2)$ pairwise computations can be prohibitive.
- Blocking eliminates comparisons on a large fraction of non-matches.
- Equality-based Blocking:
 - Construct (one or more) blocking keys from features
 - Records not matching on any key are not compared.
- Similarity based Blocking:
 - Form overlapping canopies of records based on similarity.
 - Only compare records within a cluster.