Enunciats dels problemes de teoria de grafs

Aleix Torres i Camps

1 Nocions bàsiques

Aquest apartat tracte sobre problemes relacionats amb les nocions bàsiques de connexió i distancia. A més, de problemes vinculats amb les formes matricials d'un graf. \equiv

Problema 1: El nombre de vèrtexs de grau senar en un graf G = (V, E) és parell.

Problema 2: Qualsevol graf amb $n \geq 2$ vèrtexs, en té dos del mateix grau.

Problema 3: Quants grafs hi ha de 4 vèrtexs i 3 arestes? Quants n'hi ha no isomorfs?

Problema 4: Siguin a_n el nombre de grafs d'ordre n i b_n el nombre de grafs no isomorfs d'ordre n. Proveu que $\log_2 a_n = n^2/2 + \mathcal{O}(n)$ i $\log_2 b_n = n^2/2 + \mathcal{O}(n\log n)$. En particular, $\log b_n \sim \log a_n$, $(n \to \infty)$.

Problema 5: El graf complementari \bar{G} de G=(V,E) és $\bar{G}=(V,\binom{V}{2}\smallsetminus E)$.

- (a) Proveu que $G \cong G'$ si i només si $\bar{G} \cong \bar{G}'$.
- (b) Un graf G és autocomplementari si és isomorf a \bar{G} . Proveu que el seu ordre és $n \equiv 0, 1 \pmod{4}$. Comproveu que per a k = 4, 5 hi ha grafs autocomplementaris.
- (c) Proveu que, si $n \equiv 1 \pmod{4}$, i G és un graf autocomplementari d'ordre n, aleshores té un nombre senar de vèrtexs de grau (n-1)/2.
- (d) Proveu que un graf autocomplementari té diàmetre 0, 2 o 3.

Problema 6: Considereu el graf d'ordre n > 2 que té per vèrtexs $V = \binom{[n]}{k}$, per un k entre 1 (inclòs) i n/2 (no inclòs), i té per arestes $E = \{uv : u \cap v = \emptyset\}$. Determineu l'ordre, la mida i el grau dels vèrtexs de G. Per a n = 5, k = 2 dibuixeu el graf que s'obté. Proveu que, per a k > n/3, el graf no té triangles.

Problema 7: Una seqüència $0 \le d_1 \le d_2 \le \cdots \le d_n$ d'enters és gràfica si hi ha un graf G amb $V(G) = \{v_1, \ldots, v_n\}$ tal que $d_i = d(v_i), 1 \le i \le n$. Proveu que la seqüència

$$1 \le k = d_1 \le d_2 \le \cdots \le d_n$$

és gràfica si i només si, la seqüència

$$d_2 - 1, d_3 - 1, \dots, d_{k+1} - 1, d_{k+2}, \dots, d_n$$

és gràfica.

Problema 8: Determineu quina de les seqüències és gràfica: (a) (3,3,2,2,2); (b) (4,4,3,2,1); (c) (4,3,2,2,2); (d) (3,3,3,3,2,2); (e) (3,3,3,3,2,2); (f) (5,3,2,2,2).

Problema 9: Considerem el graf complet K_n amb conjunt de vèrtexs [n]. Calculeu el nombre de subgrafs de mida 5 que contenen exactament dos triangles.

Problema 10: Sigui G un graf d'ordre $n \ge 1$ i mida m que no té triangles.

- (a) Demostreu que si u i v són vèrtexs de G adjacents, aleshores $d(u) + d(v) \le n$.
- (b) Proveu que si n = 2k, aleshores $m \le k^2$.
- (c) Proveu que $m \leq n^2/4$.

Problema 11: L'excentricitat d'un vèrtex v en un graf connex G és la màxima distància de v a un altre vèrtex de G. El radi r(G) de G és la mínima excentricitat dels seus vèrtexs. Proveu que $r(G) \leq diam(G) \leq 2r(G)$. Proveu que les designaltats són justes.

Problema 12: Sigui G un graf connex. Proveu que, si l és la llargada màxima d'un camí, dos camins de llargada l intersequen en algun vèrtex.

Problema 13: Doneu les matrius d'adjacència i d'incidència (amb una ordenació adequada dels vèrtexs i de les arestes) de cadascun dels següents grafs.

- (a) El graf complet K_4 .
- (b) El camí P_5 .
- (c) El cicle C_6 .
- (d) El graf bipartit complet $K_{3,3}$.

Problema 14: Sigui G un graf amb conjunt de vèrtexs $\{v_1, v_2, \ldots, v_n\}$ i sigui A la seva matriu d'adjacència, amb els vèrtexs ordenats segons els subíndexs. Demostreu les afirmacions següents.

- (a) Si J és la matriu quadrada d'ordre n amb totes les entrades iguals a 1, $(AJ)_{i,i} = d(v_i)$, $1 \le i \le n$.
- (b) La traça de A^2 és el doble de la mida de G.
- (c) La traça de A^3 és 6t, on t és el nombre de triangles que hi ha a G.

2 Arbres

Aquest apartat tracte sobre problemes relacionats amb les propietats dels arbres, seqüències de Prüfer, arbres binaris, ...

Problema 15: Un graf acíclic és un bosc. Proveu que si F és un bosc, cada component connexa és un arbre, i si F té n vèrtexs i k components aleshores té n-k arestes.

Problema 16: Proveu que els boscos són els únics grafs tals que cada subgraf connex és un subgraf induït.

Problema 17: Sigui T un arbre de n vèrtexs.

- (a) Proveu que el nombre de fulles és $2 + \sum_{v:d(v)>3} (d(v)-2)$.
- (b) Proveu que el nombre de fulles és almenys $\Delta(T)$.

Problema 18: Proveu que un graf G amb grau mínim $\delta = \delta(G)$ contè com a subgrafs tots els arbres de $\delta + 1$ vèrtexs.

Problema 19: Proveu que el camí P_n és l'únic arbre amb dues fulles i l'estrella $K_{1,n-1}$ és l'únic arbre amb n-1 fulles. Quants arbres no isomorfs hi ha amb tres fulles? I amb n-2 fulles?

Problema 20: Un vèrtex v d'un graf connex G és central si la seva excentricitat és el radi de G. Proveu que un arbre té un o dos vèrtexs centrals.

Problema 21: Sigui $1 \le d_1 \le d_2 \le \cdots \le d_n$ una seqüència d'enters. Proveu que existeix un arbre T amb $V(T) = \{v_1, \ldots, v_n\}$ tal que $d(v_i) = d_i$, $1 \le i \le n$ si i només si $\sum_{i=1}^n = 2(n-1)$.

Problema 22: Calculeu el nombre d'arbres generadors diferents dels grafs següents.

- (a) El cicle d'ordre $n \geq 3$.
- (b) El graf bipartit complet $K_{2,r}$, $r \geq 1$.
- (c) El graf $G = ([4], \{13, 14, 23, 24, 34\}).$
- (d) El graf $G = ([5], \{12, 13, 23, 25, 34, 35, 45\}.$
- (e) El graf $G = ([6], \{12, 13, 23, 34, 45, 46, 56\}.$

Problema 23: Determineu la sequència de Prüfer dels arbres següents.

- (a) $T = ([5], \{12, 13, 24, 35\}).$
- (b) $T = ([6], \{12, 13, 14, 15, 56\}).$
- (c) $T = ([8], \{12, 13, 14, 18, 25, 26, 27\}).$
- (d) $T = ([15], \{12, 13, 23, 34, 45, 46, 56\}).$

Problema 24: Detemineu els arbres que tenen seqüència de Prüfer:

- (a) (1,2,3,4).
- (b) (2,2,4,1,3).

- (c) (4,5,1,4,1,5).
- (d) (11,7,11,9,5,5,2,2,1,1).

Problema 25: Calculeu el nombre d'arbres diferents amb conjunt de vèrtexs V = [11] tals que tenen un vèrtex de grau 4, dos vèrtexs de grau 3, dos vèrtexs de grau 2 i sis vèrtexs de grau 1.

Problema 26: Sigui T un arbre binari, és a dir, té un vèrtexs v arrelat i cada un dels vètexs té 0 o 2 fills. Un vèrtex d'un arbre binari és intern si té dos fills.

- (a) Quantes fulles d'un arbre binari amb t vèrtexs interns.
- (b) Quants arbres binaris (no ordenats) hi ha amb n vèrtexs.
- (c) Quants arbres binaris ordenats hi ha amb n vèrtexs.

3 Cicles i circuits

Aquest apartat tracte sobre els *Teorema de Euler* (per cicles Eulerians), el *Teorema de Ore* (per cicles Hamiltonians) i els seus derivats.

Problema 1: Un recorregut Eulerià és un recorregut (v_0, v_1, \ldots, v_m) que conté totes les arestes de G i $v_0 \neq v_m$.

- (a) Proveu que un graf G conté un recorregut Eulerià si i només si tots els vèrtexs de G tenen grau parell llevat de dos, i que aquests dos són v_0 i v_m
- (b) Donat un graf G amb 2k vèrtexs de grau imparell, quin és el mínim nombre d'arestes que cal afegir per a obtenir un graf (o multigraf) Eulerià?
- (c) Quin és el nombre mínim de vegades que s'ha d'aixecar el llapis per a dibuixar el graf de Petersen?

Problema 2: Proveu que si G és un graf d'ordre imparell tal que ell i el seu complementari G^c són tots dos connexos. Aleshores, G és Eulerià si i només si ho és G^c .

Problema 3: El graf Q_n té per vèrtexs les paraules binàries de llargada n, $\{0,1\}^n$, i dues paraules són adjacents si difereixen exactament en una de les coordenades. Determineu els valors de n pels quals Q_n és Eulerià i per quins valors és Hamiltonià.

Problema 4: Donats dos grafs G, H el seu producte cartesià $G \square H$ té per conjunt de vèrtexs el producte cartesià $V(G) \times V(H)$ i dos vèrtexs (x_1, y_1) , (x_2, y_2) són adjacents a $G \square H$ si, o bé $\{x_1, x_2\} \in E(G)$ i $y_1 = y_2$, o bé $x_1 = x_2$ i $\{y_1, y_2\} \in E(H)$.

- (a) Comprove que $Q_n = K_2 \square \cdots \square K_2$ (n vegades).
- (b) Proveu que si G i H són Eulerians aleshores $G \square H$ també ho és. Proveu que, si G té un nombre imparell de vèrtexs, el recíproc tambè és cert.
- (c) Proveu que si G i H són Hamiltonians i V(H) és parell aleshores $G \square H$ també és Hamiltonià.
- (d) Proveu que si G és Hamiltonia, aleshores $G \square K_2$ també ho és.

Problema 5: El graf línia LG d'un graf G té per vèrtexs V(LG) = E(G) i dos vèrtexs són adjacents a LG si i només si les arestes corresponents són incidents a G.

- (a) Proveu que si G és Eulerià aleshores LG és Eulerià i Hamiltonià. És cert el recíproc?
- (b) Proveu que si G és Hamiltonià, aleshores LG és Hamiltonià.

Problema 6: Proveu que un graf amb grau mínim $\delta(G) \geq 2$ conté un camí de llargada $\delta(G)$ i un cicle de llargada $\delta(G) + 1$. Proveu que les cotes són òptimes.

Problema 7: Un camí Hamiltonià en un graf és un camí que passa per cada vèrtex una única vegada. Proveu que si el grau mínim d'un graf G amb $n \ge 2$ vèrtexs satisfà $\delta(G) \ge (n-1)/2$ aleshores G té un camí Hamiltonià.

Problema 8: Sigui G un graf amb n vèrtexs i m arestes. Proveu que, si $m \ge \binom{n-1}{2} + 2$ aleshores G és Hamiltonià.

4 Aparellaments

Aquest apartat tracte sobre el *Teorema de Hall* (per aparellamets de grafs bipartits) i els seus derivats i apliacions.

Problema 9: Proveu que un graf bipartit regular contè un aparellament perfecte. Proveu que, a més, les arestes del graf es poden partir en d aparellaments perfectes, on d = d(G) és el grau del graf.

Problema 10: Sigui $\{A_1, \ldots, A_k\}$ una família de subconjunts de [n]. Un transversal de la família és una seqüència (x_1, \ldots, x_k) amb $x_i \in [n]$ tal que tots els elements són diferents i $x_i \in A_i$ per a cada $i = 1, \ldots, k$. Proveu que $\{A_1, \ldots, A_k\}$ té un transversal si i només si, per a cada subconjunt no buit $I \subset [k]$, es satisfà

$$|\bigcup_{i\in I} A_i| \ge |I|$$

Problema 11: Una matriu de permutació P és una matriu quadrada d'ordre n amb entrades a $\{0,1\}$ tal que cada fila i cada columna contenen exactament un 1 (i la resta són zeros). Sigui A una matriu quadrada d'ordre n amb entrades a $\{0,1\}$. Proveu que A es pot escriure com $A = P_1 + \ldots + P_k$, on cada P_i és una matriu de permutacions si i només si la suma dels elements de cada columna val k i el mateix passa amb la suma dels elements de cada columna.

Problema 12: Sigui G un graf bipartit amb bipartició $\{V_1, V_2\}$ tal que hi ha $U \subset V_1$ amb |U| < |N(U)| (G no satisfà la condició de Hall). Sigui

$$k = \max\{|U| - |N(U)| : U \subset V_1\}$$

Proveu que hi ha un aparellament M amb $|V_1| - k$ arestes i que és un aparellament de mida màxima.

Problema 13: Sigui $G = (V_1 \bigcup V_2, E)$ un graf bipartit tal que, per a cada $U \subset V_1$ tenim |N(U)| > |U|. Proveu que cada aresta es pot estendre a un aparellament de V_1 a V_2 .

Problema 14: Sigui $n \ge 2k \ge 2$. Proveu que hi ha una aplicació injectiva $f: \binom{[n]}{k} \to \binom{[n]}{k+1}$ tal que $A \subset f(A)$ per a cada $A \in \binom{[n]}{k}$.

5 Coloració

Problema 22: Solució:

Problema 22: Solució: