Classification With K-Nearest Neighbors

GA DAT5

Supervised vs. Unsupervised Learning

	continuous categorical			
supervised unsupervised	•	classification		

Supervised vs. Unsupervised Learning

supervised regression classification unsupervised dimension clustering reduction

Supervised Learning

150
observations
(n = 150)

Fisher's <i>Iris</i> Data						
Sepal length ¢	Sepal width \$	Petal length ¢	Petal width ¢	Species ¢		
5.1	3.5	1.4	0.2	I. setosa		
4.9	3.0	1.4	0.2	I. setosa		
4.7	3.2	1.3	0.2	I. setosa		
4.6	3.1	1.5	0.2	I. setosa		
5.0	3.6	1.4	0.2	I. setosa		
5.4	3.9	1.7	0.4	I. setosa		
4.6	3.4	1.4	0.3	I. setosa		
5.0	3.4	1.5	0.2	I. setosa		

4 predictors
$$(p = 4)$$

Classification Problems

Q: How does a classification problem work?

A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Source: http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

Suppose we want to predict the color of the gray dot.

QUESTION: What are the predictors? What is the response?

Suppose we want to predict the color of the gray dot.

1) Pick a value for k.

Suppose we want to predict the color of the gray dot.

1) Pick a value for k.

Suppose we want to predict the color of the gray dot.

- 1) Pick a value for k.
- 2) Find colors of k

nearest neighbors.

3) Assign the most

common color

to the gray dot.

Advantages of KNN:

- Simple to understand and explain
- Model training phase is fast
- Nonparametric (does not presume a "form" of the "decision boundary")

Disadvantages of KNN:

- Prediction phase can be slow when n is large
- Sensitive to irrelevant features

Q??