

(21) Aktenzeichen: P 35 44 845.8
 (22) Anmeldetag: 18. 12. 85
 (23) Offenlegungstag: 19. 6. 87

(71) Anmelder:

Liebich, Max, 8370 Regen, DE

(74) Vertreter:

Wallach, C., Dipl.-Ing.; Koch, G., Dipl.-Ing.; Haibach, T., Dipl.-Phys. Dr.rer.nat.; Feldkamp, R., Dipl.-Ing., Pat.-Anw., 8000 München

(72) Erfinder:

gleich Anmelder

(54) Profilkantenbrett zur Herstellung von Holzplatten

Es wird ein neues Fugenprofil für die Längskanten von Profilkantenbrettern zur Herstellung von mit ihren Längskantenprofilen ineinanderreibenden, vorzugsweise an der Profilfuge verleimten Profilkantenbrettern zur Herstellung von Holzplatten, insbesondere verleimten Massivholzplatten, beschrieben. Das Fugenprofil weist zwei zueinander parallele, geradlinige, seitlich in Richtung der Platten- bzw. der Brettebene gegeneinander versetzte Höhenschanken und einen diese an ihren Innennenden miteinander verbindenden geradlinigen Querschenkel in solcher Ausbildung und gegenseitiger Anordnung auf, daß das Fugenprofil insgesamt »Siegrunen«-förmigen Verlauf besitzt, wobei der Querschenkel dem seitlich einwärts versetzten Höhenschenkeln zugewandt ist. Durch diese Ausbildung wird eine Reihe bedeutsamer Vorteile erreicht; die Überführung der zunächst nur lose ineinanderreibend gelegten Profilkantenbretter in die Schließstellung und die Anpressung für die Verleimung können sowohl durch Preßdruckbeaufschlagung in Richtung quer zur Plattenebene als auch in Richtung parallel zur Plattenebene erfolgen, wobei eine selbsttätige Fugenschließung und Verriegelung der Fugen im geschlossenen Zustand gewährleistet ist. In beiden Fällen, ob mit äußerer Quer- oder Längspressung beaufschlagt wird, entstehen dabei an sämtlichen Fugenprofilschenkeln ausreichende quer zur Schenkelfläche wirkende Kraftkomponenten zum Hineindrücken der Leimschicht in die gegeneinander anliegenden ...

1 Patentansprüche

1. Profilkantenbrett zur Herstellung von aus seitlich nebeneinander angeordneten, mit zueinander komplementären Profilen ineinandergreifenden, vorzugsweise an der Fugenfuge miteinander verleimten Brettern bestehenden Holzplatten, insbesondere Massivholzplatten, wobei die Bretter an ihren Längskanten mit einem Fugenprofil ausgebildet sind, das schräg zur vertikalen Brettfläche verlaufende Abschnitte aufweist, dadurch gekennzeichnet, daß das Fugenprofil "Siegrunen"-förmig mit zwei zueinander parallelen, geradlinigen, seitlich in Richtung der Platten- bzw. Brettabene (M , Fig. 1) versetzten Höhenschenkeln (H_1 , H_2) und einem diese an ihren Innenenden (K_3 , K_4) miteinander verbindenden geradlinigen Querschenkel (Q) in solcher gegenseitiger Anordnung ausgebildet ist, daß der seitlich einwärts versetzte Höhenschenkel (H_1) mit der zugeordneten Brettoberfläche (O_1) im Holz einen spitzen Winkel (α_1) und der seitlich auswärts versetzte Höhenschenkel (H_2) mit der zugeordneten Brettoberfläche (O_2) im Holz einen stumpfen Winkel (α_2) bildet, und daß der die Innenenden der Höhenschenkel (H_1 , H_2) verbindende Querschenkel (Q) mit den Höhenschenkeln (H_1 bzw. H_2) einen spitzen Winkel (α_3 bzw. α_4) bildet.
2. Profilkantenbrett nach Anspruch 1, dadurch gekennzeichnet, daß der Neigungswinkel (γ) der Höhenschenkel (H_1 bzw. H_2) bezüglich der zur Platten- bzw. Brettabene (M) Senkrechten (S) einen Wert im Bereich von etwa 5° bis etwa 15° vorzugsweise einen Wert von etwa 8° besitzt.
3. Profilkantenbrett nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Neigungswinkel (α_5) des Querschenkels (Q) gegenüber der Brettab- bzw. Plattenebene (M) einen Wert im Bereich von etwa 15° bis etwa 25° , vorzugsweise einen Wert von etwa 20° besitzt.
4. Profilkantenbrett nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Fugenprofil bezüglich der Mittelebene (M) des Bretts höhenmäßig angeordnet ist, derart daß der Mittelpunkt (Q_M) des Querschenkels in etwa in der Brettmittelebene (M) liegt.
5. Profilkantenbrett nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Brett (2 in Fig. 3) an seinen beiden Längskanten mit bezüglich der zur Brettabene (M) senkrechten Mittelebene (V) symmetrischen Fugenprofilen ($H'_2 - Q' - H'_1$) ausgebildet ist.
6. Profilkantenbrett nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Profilbrett (6 in Fig. 4) an seinen beiden Längskanten mit zueinander komplementären Fugenprofilen ($H_1 - Q - H_2$ bzw. $H'_2 - Q' - H'_1$) ausgebildet ist.
7. Profilkantenbrett nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die seitliche Versetzung (v , Fig. 1) der beiden Profilhöhenschenkel (H_1 , H_2) und damit die Länge des Querschenkels (Q) in Abhängigkeit von der Brettstärke (h) gewählt ist.
8. Profilkantenbrett nach Anspruch 7, dadurch gekennzeichnet, daß die seitliche Versetzung (v , Fig. 1) der beiden Profilhöhenschenkel (H_1 , H_2) in Abhängigkeit von der Brettstärke (h) einen Wert im Bereich von etwa $0,4 h$ bis etwa $0,8 h$ und vor-

5 zugsweise in der Größenordnung von etwa $0,5 - 0,6 h$ besitzt.

9. Verfahren zur Herstellung eines Profilkantenbretts mit Fugenprofil gemäß einem oder mehreren der vorhergehenden Ansprüche durch Besäumen eines Bretts an seinen vertikalen Längskanten mittels eines Fräswerkzeugs, dadurch gekennzeichnet, daß die Erzeugung des "Siegrunen"-förmigen Fugenprofils ($H_1 - Q - H_2$ bzw. $H'_2 - Q' - H'_1$) in einem Arbeitsgang unter Verwendung eines einer Fräskante (11, 12, Fig. 5) gemäß dem "Siegrunen"-förmigen Profil aufweisenden Fräswerkzeugs (8, 9, 10) erfolgt.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Profilerzeugung unter Verwendung eines Fräswerkzeugs erfolgt, welches auf einer gemeinsamen Welle (8) zwei axial hintereinander gestaffelte Frässcheiben (9, 10) mit konusförmiger Schneidkante (11, 12) aufweist.

11. Verfahren nach Anspruch 9 oder 10, zur Herstellung von Profilbrettern gemäß Anspruch 5, dadurch gekennzeichnet, daß die Erzeugung der bezüglich der Mittelsenkrechten (V) symmetrischen Fugenprofile ($H'_2 - Q' - H'_1$) an den beiden Brettlängskanten durch Besäumen unter Verwendung des gleichen Fräswerkzeugs erfolgt.

12. Verfahren nach Anspruch 9 oder 10, zur Erzeugung eines Profilkantenbretts gemäß Anspruch 6, dadurch gekennzeichnet, daß die Erzeugung der zueinander komplementären Fugenprofile ($H_1 - Q - H_2$ bzw. $H'_2 - Q' - H'_1$) an den beiden Längskanten des Bretts (6, Fig. 4) durch aufeinanderfolgendes Besäumen der Brettlängskanten mit einem und demselben Fräswerkzeug erfolgt, wobei beim zweiten Durchlauf das Brett um 180° um seine Längsachse gedreht ist.

13. Verfahren zur Herstellung von Holzplatten aus an ihren Profilfugen miteinander verleimten Profilkantenbrettern nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 8, bei welchem die an ihren seitlichen Fugenprofilen mit Leimauflauf versehenden Profilbretter seitlich nebeneinander mit ihren zueinander komplementären Profilen ineinandergreifend angeordnet, die Profilbretter in seitlicher Richtung zur Schließung der Profilfugen gebracht und die Profilfugen mit äußerem Preßdruck beaufschlagt werden, dadurch gekennzeichnet, daß die Überführung der Profilbretter in Schließstellung der Profilfugen und die Druckbeaufschlagung der Profilfugen mit Preßdruckkomponenten quer zu sämtlichen Abschnitten des "Siegrunen"-Profils in gleicher Weise durch äußere Preßdruckbeaufschlagung (PQ) in Richtung quer zur Brettab- bzw. Plattenebene (M) oder/und durch äußere Preßdruckbeaufschlagung (P_1) in Richtung der Brettab- bzw. Plattenebene erfolgen kann.

14. Anwendung von Profilkantenbrettern nach einem oder mehreren der Ansprüche 1 bis 8 für unverleimte Verlegung wie Holzdecken, Fußböden, Wandverkleidungen und dergleichen.

2 Beschreibung

Die Erfindung betrifft allgemein das Gebiet der Herstellung breiterer Holzplatten aus mit ihren Längskanten nebeneinander angeordneten und verbundenen schmäleren Brettern bzw. Bohlen oder Riegeln, insbesondere die Herstellung von aus derartigen an ihrer

aneinanderliegenden Längskanten zu einander verleimten Brettern bestehenden Massivholzplatten. Neuerdings besteht ein zunehmender Bedarf an derartigen Massivholzplatten, teils bedingt durch eine gewisse Geschmacksentwicklung (Rustikalmöbel und erhöhte Qualitätsansprüche), zum Teil auch wegen gewisser Gesundheits- und Umweltsschutzbedenken gegen die bisher in großem Maßstab (mit Kunststoffbeschichtung oder Furnierverkleidung) verwendeten Spanplatten. Angesichts der damit eröffneten erweiterten Anwendungsmöglichkeiten auf dem Möbel- und Einrichtungssektor bzw. auf dem Bausektor besteht daher ein erheblicher Bedarf an hinsichtlich Aussehen, Verarbeitung und Festigkeit qualitativ hochwertigen Massivholzplatten, insbesondere verleimten Massivholzplatten relativ großer Abmessungen.

Bei der Verleimung mehrerer Bretter entlang ihrer Längskanten zu breiten Platten wird der für die Nebeneinanderfügung und Verleimung an den Stoßkanten der Bretter erforderliche Anpreßdruck zumeist durch Druckbeaufschlagung in zur Brett- bzw. Plattenebene paralleler (d.h. in der Regel horizontaler) Richtung aufgebracht, beispielsweise im einfachsten Fall handwerklicher Arbeitsweise mittels Schraubzwingen und -knechten, oder bei fabrikatorischer Herstellung mittels entsprechender mechanischer, pneumatischer, hydraulischer oder hydropneumatischer Aggregate. Da der erforderliche Druck relativ hoch ist und zur Erzielung einer qualitativ hochwertigen Fugenverleimung im wesentlichen über die gesamte, verhältnismäßig lange Abbindezeit des Leims aufrechterhalten werden muß, bedingt dies — bezogen auf den Durchsatz — einen relativ hohen und komplizierten maschinellen Aufwand; die Arbeitsweise mit Druckbeaufschlagung in horizontaler Richtung parallel zur Brett- bzw. Plattenebene erweist sich dabei für die kontinuierliche serienmäßige Fertigung mit hohem Durchsatz und insbesondere für große Plattenabmessungen häufig nicht optimal geeignet.

Die zur Herstellung der Platten verwendeten Bretter können dabei an ihren Längskanten (Stoßfugen) maschinell in unterschiedlicher Weise bearbeitet sein; neben der einfachsten Form glatter vertikaler Stoßfugen (mit begrenzter Festigkeit gegenüber Biegebeanspruchungen) sind Fugenprofile vom Nut-Federtyp, verzahnte Fugen und dergleichen bekannt.

Aus der deutschen Patentschrift 3 73 024 ist es im Zusammenhang der Herstellung von Sperrholzplatten mit einem aus Brettern verleimten Kern und beiderseitigen Furnierschichten bereits bekannt, die Stoßkanten der nebeneinanderliegenden, die Mittellage bildenden Bretter so ineinandergreifend auszubilden, daß die Verleimung der die Mittellage bildenden Bretter miteinander gleichzeitig mit der Aufleimung der Furniere auf die Mittellage in einem Arbeitsgang unter Preßdruckbeaufschlagung quer zur Plattenebene erfolgen kann. Die Stoßkanten der Bretter können dabei schräg zur Plattenebene verlaufen und derart mit ineinandergreifenden Profilen ausgebildet sein, daß durch den auf die Schichtung senkrecht zur Plattenebene ausgerichteten Druck ein Zusammenziehen der Bretter herbeigeführt wird. Im einzelnen können gemäß den Abbildungen 6 und 7 der deutschen Patentschrift 3 73 024 (welche in Fig. 6A und 6B der vorliegenden Anmeldezeichnung wiedergegeben sind) die Bretter an ihren Längskanten mit abgerundeten Profilen in Form eines liegenden verkehrten S ausgebildet sein, die als abgerundete Nut-Federverbindung in Richtung quer zur Brett- bzw. Plattenebene bezeichnet werden kann. Diese bekannte Nutverbin-

dung ist zwar in dem Sinne selbtschließend, daß, wenn zwei nebeneinander angeordnete Bretter zum teilweisen Eingriff der vertikal gerichteten Federn miteinander gebracht sind, bei Ausübung eines vertikalen Drucks in Richtung quer zur Brett- bzw. Plattenebene die Fugenprofile in die "Schließstellung" ineinandergleiten. Jedoch weist diese bekannte Profilfugengestaltung eine Reihe von Unvollkommenheiten und Nachteilen auf, derart daß sie allenfalls für die Herstellung von Sperrholz- bzw. Furnierplatten, nicht jedoch zur rationellen Herstellung qualitativ hochwertiger Massivholzplatten ohne beidseits aufgesetzte Deckschichten (Furnier- bzw. Sperrholzplatten) brauchbar wäre.

Zum einen ist die bekannte Profilfuge nicht zur Verarbeitung mit seitlichem Preßdruck (in Brett- bzw. Plattenebene) geeignet, da hierbei die einzelnen Bretter sich entlang der Profilflächen übereinander schieben und voneinander abheben würden. Des Weiteren ist auch bei der bestimmungsgemäßen Druckbeaufschlagung in Richtung quer zur Plattenebene keine gleichmäßige Druckverteilung über das gesamte Fugenprofil gewährleistet, wie dies für eine qualitativ hochwertige Leimverfugung erforderlich ist. Des Weiteren wären für diese bekannten Fugenprofile infolge der Kurvenform sehr aufwendige und teure Fräswerkzeuge erforderlich, die zudem nur im neuen, nicht abgenutzten Zustand eine ausreichende Paßgenauigkeit der Fugenprofile gewährleisten würden. Sobald die Werkzeuge (mit erheblichem Aufwand) nachgeschliffen werden müssen, würden die zu verleimenden Flächen nicht mehr genau zusammenpassen; schon bei geringster Profilveränderung entstehen beim Verleimen Hohlräume, welche eine qualitativ hochwertige Verleimung unmöglich machen. Für Sperrholzplatten mit beiderseitiger Furnierung, wofür die bekannte Verleimung vorgesehen ist, mag eine gewisse Fehlpassung der Fugenprofile, wie sie bei der bekannten Ausführung im praktischen Einsatz unvermeidlich wäre, angehen, da hier die beidseitigen Furnierschichten einen zusätzlichen Halt gewähren. Für unfurnierte verleimte Massivholzplatten ist jedoch ein vollständig dichter Fugenschluß unerlässlich, da sonst keine ausreichende Haltbarkeit erreichbar ist.

Ganz Analoges gilt für die US-Patentschrift 18 23 039 (Gruner), welche ebenfalls Bretter mit Längskantenprofil in Form eines liegenden umgekehrten S zeigt, bei denen es sich gewissermaßen um in Richtung senkrecht zur Brettabene angeordnete Nut-Federverbindungen handelt. Diese Entgegenhaltung betrifft dabei noch nicht einmal die Herstellung selbsttragender, verleimter Holzplatten, sondern einfach lose verlegte Deckungen, wie beispielsweise Fußböden, Dacheindeckungen, Wandteile für Wagen und dergleichen, wobei die in Richtung senkrecht zur Plattenebene ausgebildeten Nut-Federprofile ein Auseinanderrücken der lose verlegten Bretter bzw. Planken verhindern sollen. Noch weiter abliegend ist eine ähnliche, aus der US-Patentschrift 7 14 987 bekannte Fugenprofilgestaltung, bei der es wiederum nicht um die Herstellung verleimter Holzplatten, sondern um lose verlegte Eindeckungen oder Abdeckungen geht, wobei wiederum zur seitlichen Festlegung der einzelnen Bretter diese im Bereich einer weit auskragenden Längskantenfuge mit jeweils nach oben bzw. nach unten quer zur Brettabene gerichteten Vorsprüngen (Federn) und Einkerbungen (Nuten) versehen sind, mit welchen sie in Eingriff gelegt werden müssen und dann in diesem Zustand gehalten werden. Für die rationelle Herstellung von verleimten Holzplatten im fabrikatorischen Maßstab wären derartige Profilbretter

vollständig ungeeignet.

Die Erfindung betrifft somit ein Profilbrett zur Herstellung von aus seitlich nebeneinander angeordneten, mit zueinander komplementären Profilen ineinander greifenden, vorzugsweise an der Profilfuge miteinander verleimten Brettern bestehenden Holzplatten, insbesondere Massivholzplatten, wobei — ausgehend etwa vom Stand der Technik nach der erwähnten deutschen Patentschrift 3 73 024 — die Bretter an ihren Längskanten mit einem Fugenprofil ausgebildet sind, das schräg zur vertikalen Brettfläche und zur Brettabene verlaufende Abschnitte aufweist.

Der Erfindung liegt als Aufgabe zugrunde, die Herstellung derartiger Massivholzplatten, insbesondere verleimter Massivholzplatten, in einfacher, insbesondere für fabrikatorische Anwendung mit hohem Durchsatz geeigneten rationellen Verfahren zu ermöglichen, bei welchem die Druckbeaufschlagung wahlweise sowohl in Richtung quer zur Brett- bzw. Plattenebene oder, in herkömmlicher Weise, in Richtung parallel zur Brettbzw. Plattenebene erfolgen kann, also universelle Anwendbarkeit für vorhandene Anlagen des einen oder des anderen Typs gegeben ist, wobei die Fugenprofilierung mit einfachen Fräswerkzeugen mit hoher komplementärer Paßgenauigkeit der ineinander greifenden komplementären Profilfugen auch über längere Benutzungsduern der Fräswerkzeuge gewährleistet ist, und das insgesamt eine qualitativ hochwertige Fugenverleimung ergibt.

Zur Lösung dieser Aufgabe sieht die Erfindung die Verwendung eines Profilkantenbretts vor, dessen Fugenprofil "Siegrunen" förmig mit zwei zueinander parallelen, geradlinigen, seitlich in Richtung der Platten- bzw. Brettabene versetzten Höhenschenkeln und einem diese an ihren Innenenden miteinander verbindenden geradlinigen Querschenkel in solcher gegenseitiger Anordnung ausgebildet ist, daß der seitlich einwärts versetzte Höhenschenkel mit der zugeordneten Brettoberfläche im Holz einen spitzen Winkel und der seitlich auswärts versetzte Höhenschenkel mit der zugeordneten Brettoberfläche im Holz einen stumpfen Winkel bildet, und daß der die Innenenden der Höhenschenkel verbindende Querschenkel mit den Höhenschenkeln einen spitzen Winkel bildet.

Durch das erfundungsgemäße Fugenprofil derartiger Profilkantenbretter für die Herstellung von Holzplatten wird eine Reihe wesentlicher bedeutsamer Vorteile erzielt.

Das erfundungsgemäße Siegrunen-Profil hat zum einen den Vorzug universeller Verwendbarkeit, insofern die Druckbeaufschlagung für die Preßverleimung sowohl als zur Plattenbzw. Brettabene senkrechter Querdruck oder auch als in Richtung der Brettabene wirkender seitlicher oder Längsdruck erfolgen kann und gegebenenfalls auch gleichzeitig als Quer- und Längsdruck. Diese hinsichtlich der Druckbeaufschlagung universelle Anwendbarkeit gestattet somit einerseits die verfahrenstechnisch besonders vorteilhafte und den Bedingungen der fabrikatorischen Herstellung mit hoher Durchsatzleistung besonders angepaßte Druckaufbringung von oben in Richtung quer zur Plattenebene, beispielsweise in Vorrichtungen nach Art der bekannten Furnierpressen, wie auch die Verarbeitung derartiger Profilbretter in vorhandenen herkömmlichen Anlagen mit seitlicher Druckbeaufschlagung in Längsrichtung. In beiden Fällen ist dabei die erfundungsgemäße Fugenprofilierung in dem Sinn "selbstschließend", daß — sofern die Bretter anfänglich mit den Fugenprofilen we-

nigstens soweit ineinander gelegt sind, daß die ausspringenden Keile wenigstens mit ihren Spitzen ineinander greifen, dann auch durch einen in Richtung quer zur Brettabene ausgeübten Querpreßdruck die Bretter selbsttätig zur vollständigen Schließung der Fuge gebracht werden können, indem die Querpreßkraft an den gegeneinander gleitenden Keilflächen der Querschenkel des Fugenprofils eine in Brett- bzw. Plattenebene wirkende Längskraftkomponente erzeugt, welche die Bretter in Schließstellung gegeneinander zieht. Bei Beaufschlagung mit einer in Brett- bzw. Plattenrichtung wirkenden horizontalen Preßkraft, durch welche die zuvor nur lose nebeneinander gelegten Profilbretter selbstverständlich ebenfalls in die genannte Fugeschließstellung verbracht werden, wird dabei der Vorteil erreicht, daß nach Erreichen dieser Schließstellung die Bretter dann in dieser verriegelt werden, derart daß die Bretter bei weiterer Ausbringung oder sogar Erhöhung der Längspreßkraft nicht etwa wieder voneinander abgehoben werden und unter Öffnung der Fuge übereinander gleiten. Diese Verriegelungswirkung kommt durch die Schrägneigung der Höhenschenkel zustande, durch welche aus der Längspreßkraft eine gewisse kleinere (aber ausreichende) abwärts gerichtete Querkraftkomponente senkrecht zur Brettabene erzeugt wird, welche die Fuge geschlossen und die Bretter in ebener Anlage nebeneinander auf der Unterlage hält.

Das erfundungsgemäße Fugenprofil gewährleistet nicht nur infolge der erwähnten Keilwirkung die selbsttätige Überführung nebeneinander liegender Bretter in die Fugeschließstellung und Verriegelung in dieser; vor allem wird hierbei eine vollständig dichte Anlage der miteinander an jeder Fuge zusammenwirkenden Siegrunen-Profilflächen erreicht und der in Quer- oder Längsrichtung aufgebrachte Preßdruck weitgehend gleichmäßig auf die verschiedenen Schrägläufen des Fugenprofils verteilt, derart daß der Leim über die gesamte eng aneinander liegenden Profilflächen hin mit dem erforderlichen Druck in die Poren des Holzes eingepreßt wird und so in der erwünschten Weise die aneinandergrenzenden Bretter in der Art vieler kleiner "Minidübel" verbindet. Die Verfahrensweise mit Druckbeaufschlagung von oben quer zur Richtung der Plattenebene gestattet eine im Hinblick auf den Durchsatz und die erzielbaren Abmessungen der Holzplatten besonders rationelle Arbeitsweise, bei gleichzeitiger Einfachheit und Unkompliziertheit der hierfür erforderlichen Anlagen. So können hierfür beispielsweise an sich bekannte Furnierpressen, mit gleichzeitiger Mehrfachnutzung (mehrere Lagen übereinander) verwendet werden, wodurch sich besonders hohe Durchsatzleistungen erzielen lassen.

Das erfundungsgemäße Fugenprofil weist lediglich geradlinige Profilabschnitte auf und ist mit einer einfachen, leicht nachstellbaren, bzw. nachschärfbaren Fräsvorrichtung mit gleichbleibend hoher Fugenpaßgenauigkeit herstellbar, wie dies für eine hohe Qualität der Fugenverleimung unerlässlich ist.

Die einzelnen Profilbretter können an ihren beiden Längskanten mit bezüglich der zur Brettabene senkrechten Mittelebene symmetrischen Fugenprofilen ausgebildet sein. Alternativ können die einzelnen Profilbretter an ihren beiden Längskanten mit zueinander komplementären Fugenprofilen ausgebildet sein. In beiden Fällen ist die Herstellung der Fugenprofile an den beiden Längskanten der Profilbretter mit ein und derselben Fräsvorrichtung möglich.

Insgesamt ermöglicht die Erfindung die rationelle

Herstellung verleimter Massivholzplatten hoher Qualität mit beträchtlich gesteigerter Durchsatzleistung. Die erfundungsgemäße Fugenprofilierung eignet sich jedoch darüber hinaus auch zur Anwendung bei Profilbrettern für unverleimte Verlegung, beispielsweise für Holzdecken, Fußböden, Wandverkleidungen und dergleichen; bei derartigen Anwendungen ergibt sich ebenfalls eine wesentliche Vereinfachung der Arbeitsweise, insbesondere hinsichtlich der Einführung der ineinandergreifenden Profile über größere Längen hin, die bei Nut-Feder-Profilbrettern bekanntlich Schwierigkeiten bereitet und häufig zum Ausbrechen der empfindlichen Federn oder Nuten führt.

Im folgenden werden Ausführungsbeispiele der Erfahrung anhand der Zeichnung beschrieben; in dieser zeigen

Fig. 1 in Querschnittsansicht zwei nebeneinander angeordnete Profilbretter mit zueinander komplementärer erfundungsgemäßer Fugenprofilgestaltung, wobei die Fuge zunächst noch in voneinander abgehobener "Öffnungsstellung" der beiden Bretter dargestellt ist,

Fig. 2 eine der Fig. 1 entsprechende Querschnittsansicht, wobei die beiden zueinander komplementären erfundungsgemäßen Fugenprofile mit ihren Keilflächen aneinandergleiten, jedoch noch nicht in den vollständigen Schließzustand überführt sind,

Fig. 3 in Querschnittsansicht drei nebeneinander liegende Profilbretter in noch nicht vollständig geschlossenem Zustand der Profilfugen, wobei jeweils jedes Profilbrett an seinen beiden Längskanten mit zur Mittelsenkrechten des Bretts symmetrischen erfundungsgemäßen Fugenprofilen ausgebildet ist,

Fig. 4 eine der Fig. 3 ähnliche Querschnittsansicht von drei nebeneinander liegenden erfundungsgemäß profilierten Brettern im noch nicht vollständig geschlossenen Zustand der Profilfugen, wobei bei dieser Ausführungsform jedes Profilbrett an seinen beiden Längskanten jeweils mit zueinander komplementären Fugenprofilen ausgebildet ist,

Fig. 5 in schematischer Querschnittsansicht ein einfaches Fräswerkzeug zur Herstellung des erfundungsgemäßen Siegrunens; profils,

Fig. 6A, 6B jeweils in Schnittansicht Profilfugenausbildungen nach dem bekannten Stand der Technik (entsprechend Abbildung 6 und Abbildung 7 der deutschen Patentschrift 3 73 024)

Fig. 1 veranschaulicht die Fugenprofilgestaltung gemäß einer bevorzugten Ausführungsform der Erfahrung; die Figur zeigt in Teil-Querschnittsansicht zwei entlang ihrer Längskanten zu einer Holzplatte zusammenzufügende Bretter 1, 2 zunächst noch in auseinandergezogenem Zustand, die an ihren einander zugewandten Längskanten mit zueinander komplementären Fugenprofilen gemäß der bevorzugten Ausführungsform der Erfahrung versehen sind. Das Fugenprofil an dem Brett 1 besteht aus einem oberen Höhenschinkel H_1 , der gegenüber der zur Brettabene Senkrechten S unter einem Winkel γ nach außen, d.h. in Richtung zur Fuge geneigt verläuft, derart daß er mit der zugeordneten oberen Brettoberfläche O_1 an der oberen Brettkante K_1 im Holz einen spitzen Winkel α_1 (d.h. einen Winkel kleiner als 90°) bildet. Das Fugenprofil am Brett 1 weist des weiteren einen gegenüber dem oberen Höhenschinkel H_1 in Brettrichtung seitlich auswärts versetzten unteren Höhenschinkel H_2 auf, der zum Schenkel H_1 parallel gerichtet ist und somit gegenüber der Vertikalen S ebenfalls den gleichen nach außen gerichteten Neigungswinkel γ bildet und mit der unteren

Brettoberfläche O_2 an der unteren, gegenüber der oberen Brettkante K_1 in Richtung der Brettabene nach außen versetzten Kante K_2 in Holz einen stumpfen Winkel α_2 (d.h. einen Winkel größer als 90°) bildet. Die Schenkel H_1 und H_2 reichen in der Höhe jeweils etwas über die Brettmittellebene M hinaus und sind an ihren inneren Enden K_3 , K_4 durch einen Querschenkel Q miteinander verbunden, der im gezeigten bevorzugten Ausführungsbeispiel gegenüber der Brettmitte M bzw. gegenüber der Senkrechten S im gleichen Sinn wie die Schenkel H_1 , H_2 geneigt verläuft, jedoch unter einem kleineren Winkel α_5 (bezüglich der Brettmitte M) bzw. größerem Winkel α_5 (bezüglich der Senkrechten S) als diese Schenkel. Auf diese Weise bildet der untere Höhenschinkel H_2 mit dem Querschenkel Q bei K_4 einen Holzkeil mit einem spitzen Keilwinkel α_4 (im Holz), und entsprechend der obere Höhenschinkel H_1 mit dem Querschenkel Q bei K_3 eine Keilöffnung mit spitzem Keilwinkel α_3 . Der Keil K_4 bildet den in horizontaler Richtung, d.h. in Richtung der Brett- bzw. Plattenebene M am weitesten auswärts vorspringenden Teil des Fugenprofils, entsprechend die Keilöffnung K_3 den in horizontaler Richtung am weitesten in das Brett 1 zurückspringenden Teil des Fugenprofils.

Die zugewandte Seitenkante des Bretts bzw. der Bohle 2 ist mit einem entsprechenden komplementären Fugenprofil ausgebildet, welches einen in Brett- bzw. Plattenebene seitlich einwärts versetzten Höhenschinkel H'_1 , der mit der Bretunterseite O'_1 (im Holz) einen spitzen Winkel α'_1 bildet, des weiteren einen in Plattenebenenrichtung nach außen versetzten Höhenschinkel H'_2 , der mit der Brettoberseite O'_2 (im Holz) einen stumpfen Winkel α'_2 bildet, sowie einen die Höhenschinkel an ihren inneren Enden K'_3 bzw. K'_4 miteinander verbindenden Querschenkel Q' aufweist.

Gemäß der gezeigten bevorzugten Ausführungsform sind die beiden Höhenschinkel H_1 , H_2 (und entsprechend H'_1 und H'_2) mit gleicher Länge ausgebildet, d.h. das Fugenprofil mittig bezüglich der Brettabene M angeordnet, d.h. daß die Querfuge Q mit ihrem Mittelbereich Q_M in etwa auf der Brettmittellebene liegt. Zwar sind grundsätzlich auch Ausführungen denkbar, bei welchen die Höhenschinkel unterschiedliche Länge haben, der Querschenkel daher in der Höhe gegenüber der Mittelebene verschoben ist. Jedoch ist sowohl aus herstellungstechnischen Gründen wie aus Festigkeitserwägungen die höhenmittige Ausbildung des Fugenprofils vorzuziehen, da hierbei sämtliche Bretter an beiden Kanten mit einem und demselben Fräswerkzeug mit dem Profil versehen werden können und an beiden miteinander zusammenwirkenden Profilen der beiden Bretter 1, 2 der jeweils vorspringende Keil $Q-K_4-K_2$ im Brett 1 bzw. $Q'-K'_4-K'_2$ im Brett 2, jeweils durch eine (fast der halben Breithöhe entsprechende) beträchtliche Materialstärke (entsprechend dem Vertikalabstand K_3-O_2 bzw. $K'_3-O'_2$) mit dem Hauptteil des betreffenden Bretts verbunden ist; hierdurch wird die Gefahr des Ausbrechens der genannten vorstehenden Teile weitgehend verringert, etwa bei der Handhabung vor der Verbindung oder beim Verpressen während der Verleimung, vgl.w.u. (im verleimten Zustand besteht eine Ausbruchgefahr praktisch nicht mehr; die erfundungsgemäße Leimfuge hat sich im ausgehärten Zustand als so fest und belastungsbeständig erwiesen, daß etwa bei Biegebelastung einer durch Verleimung erfundungsgemäß profilierte Bretter hergestellten Platte diese eher eine Bruchneigung im Vollholzbereich als im verleimten Fugenbereich zeigt).

Das vorstehend beschriebene erfundungsgemäße Fugenprofil kann — in Querschnittsansicht — als Sieg-Ruten-förmig bezeichnet werden, d.h. aus sämtlich geradlinigen Abschnitten bzw. Schenkeln bestehend, von welchen die beiden Höhenschinkel H_1 und H_2 unter einem (relativ kleineren) Winkel gegenüber der Vertikalen nach außen, d.h. in Richtung zur Fuge hin geneigt verlaufen, bei Betrachtung in einer Lage wo der seitlich vorspringende Keil ($K_3 - Q - K_4 - K_2$ in Fig. 1) unten liegt. Der die beiden Höhenschinkel H_1 , H_2 verbindende Querschenkel Q verläuft dabei unter einem Winkel α_3 gegenüber der Vertikalen S , der wesentlich größer als der Neigungswinkel γ der Höhenschinkel gegenüber der Vertikalen S ist, bzw. unter einem Neigungswinkel α_6 bezüglich der Brett- bzw. Plattenebene M . Der Querschenkel Q ist dabei in Richtung auf die seitlich einwärts versetzte, zurückspringende Profilkante K_1 gerichtet.

Fig. 2 veranschaulicht die Verhältnisse an einer mit erfundungsgemäßen Fugenprofilen ausgebildeten Fuge zwischen zwei Brettern 1, 2, die nicht mehr, wie in Fig. 1, vollständig voneinander abgehoben dargestellt sind, sondern mit ihren komplementären Fugenprofilen ineinandergelegt, jedoch noch nicht vollständig zum Fugeneingriff gebracht sind. Wie ersichtlich liegt das Brett 2 mit dem abwärts gerichteten Querschenkel Q' seines Fugenprofils auf dem nach oben gerichteten Querschenkel Q des Fugenprofils des linken Bretts 1. Das Brett 1 ist dabei auf einer (glatten) Auflage ruhend gedacht. Bei Ausübung einer Druckkraft P_Q von oben in Richtung quer zur Brettebene auf das Brett 2 wird die Fuge "geschlossen", d.h. die beiden Bretter gleiten längs ihrer aneinanderliegenden Keilflächen Q , Q' ; dabei wird die Querpresskraft P_Q durch die Keilwirkung an der Keilfläche Q , Q' teilweise in eine in Brettabenenrichtung wirkende horizontale Längskraftkomponente P_L umgewandelt, welche die Schließbewegung der beiden Bretter 1, 2 unter vollständiger Schließung der Profilfuge bewirkt, derart daß im geschlossenen Zustand die einander korrespondierenden Fugenprofilschenkel H_1 , $H'_2 - Q$, Q' und $H_2 - H'_1$ vollständig dicht gegeneinander anliegen. Dabei wird, bei reibungsarmer glatter Auflage des Bretts 1 auf der Auflage 3 das Brett 1 tatsächlich teilweise nach rechts in die Schließstellung "hineingezogen". Die erfundungsgemäße Fugenprofilierung ist somit in dem Sinn "selbstschließend", daß — sofern die Bretter anfänglich mit ihren Fugenprofilen wenigstens soweit ineinander gelegt sind, daß die Keile K_4 bzw. K'_4 übereinander hinweggehoben sind, dann durch einen in Richtung quer zur Brettabene ausgeübten Querpreßdruck P_Q die Bretter selbsttätig zur vollständigen Schließung der Fuge gebracht werden können.

Umgekehrt werden die Bretter, bei Beaufschlagung mit einer in Brett- bzw. Plattenrichtung wirkenden horizontalen Preßkraft P_L , ebenfalls in die genannte Fugen-schließstellung verbracht und in dieser "verriegelt", derart daß die beiden Bretter bei weiterer Aufbringung oder sogar Erhöhung der Längspreßkraft P_L nicht etwa wieder voneinander abgehoben werden und unter Öffnung der Fuge übereinander gleiten. Diese Verriegelungswirkung kommt durch die Schrägneigung der Höhenschinkel H_1 , H_2 nach außen (und die entsprechende Neigung der komplementären Fugenschenkel H'_2 , H'_1 des Bretts 2) zustande, durch welche aus der Längspreßkraft P_L eine gewisse kleinere (aber ausreichende) abwärts gerichtete Querkraftkomponente senkrecht zur Brettabene erzeugt wird, welche die Fuge geschlossen und die Bretter 1, 2 in ebener Anlage nebeneinander

auf der Unterlage 3 hält.

Fig. 3 veranschaulicht schematisch die Aneinanderfügung bzw. Verbindung mehrerer Bretter zu einer Holzplatte größerer Abmessung. Die Abbildung zeigt drei Bretter 1, 2, 1', wobei die Seitenbretter 1, 1' nur in Teildarstellung mit jeweils einer erfundungsgemäß profilierten Seitenkante dargestellt sind, das Mittelbrett 2 jedoch ganz mit seinen beiden erfundungsgemäß profilierten Längskanten. Dabei ist in Fig. 3 der Fall zugrundegelegt, daß die einzelnen Bretter jeweils an ihren beiden Längskanten mit zur Mittelsenkrechten V symmetrischen Fugenprofilen ausgebildet sind, das Mittelbrett 2 also an seinen linken und rechten Seitenkanten jeweils mit symmetrischen Profilen H'_2 , Q' , H'_1 . Entsprechend ist das linke Brett 1 an seiner (in der Zeichnung nicht mehr dargestellten) linken Seitenkante mit einer zur Profilierung $H_1 - Q - H_2$ der rechten Seitenkante bezüglich der Mittelsenkrechten V entsprechenden Profilierung ausgebildet. Das gleiche gilt für das rechte Brett 1' in Fig. 3.

In Fig. 3 sind die drei Bretter in einem gegenüber Fig. 2 weiter fortgeschrittenen Zustand des ineinandergreifens der Längsfugen, jedoch noch vor Erreichen des vollständigen Schließzustands dargestellt, wobei in Fig. 3 außerdem bei 4 der Leimauftrag angedeutet ist, der jeweils auf eine oder auf beide miteinander zusammenwirkende Leimfugenflächen aufgebracht wurde. In Fig. 3 ist wiederum bei P_Q die Aufbringung eines vertikal senkrecht zur Brett- bzw. Plattenebene wirkenden Preßdrucks angedeutet, durch den infolge der Keilwirkung der erfundungsgemäßen Verfugung eine in Richtung der Brett- bzw. Plattenebene wirkende Horizontal-kraftkomponente P_L hervorgerufen wird, durch welche die seitlichen Bretter 1, 1' in Richtung einwärts auf das Mittelbrett 2 gezogen werden, bis in die vollständig geschlossene Stellung, in welcher die Platten 1, 2, 1' mit ihren Oberseiten O_1 , O'_2 , O_1 (und entsprechend mit ihren Unterseiten $O_2 - O'_1 - O_2$) vollständig fluchten und die beiden Leimfugen zwischen den Brettern 1 und 2 bzw. 2 und 1' eng anliegend vollständig geschlossen und mit dem für die Verleimung zum Einbringen des Leims in die Fugenflächen gewünschten Preßdruck beaufschlagt sind.

Selbstverständlich könnte, wie bereits mehrfach betont, die Überführung der zur Platte zu verbindenden Einzelbretter bzw. Bohlen alternativ statt durch einen von oben ausgeübten Preßdruck P_Q in Querrichtung auch durch einen in Brett bzw. Plattenebenenrichtung aufgebrachten Längsdruck in Richtung der Pfeile P_L erfolgen, wobei nach vollständiger Schließung der Fugen durch den oben in Verbindung mit Fig. 2 bereits erwähnten Verrieglungseffekt erreicht wird, daß bei weiter aufrechterhaltenem oder sogar gesteigertem Längsdruck P_L (etwa auf den für die Verleimung — zum Eindringen der Leimschicht in die aneinanderliegenden Fugenflächenerwünschten Wert) die nebeneinanderliegenden, die Platte bildenden Bretter in Flucht gehalten werden und nicht etwa das Brett 2 (und entsprechend weitere Bretter in einer größeren Aufeinanderfolge von Einzelbrettern) nach oben "ausricht".

Das erfundungsgemäße Siegrunenprofil hat somit den Vorteil, daß man nach Belieben durch zur Platten- bzw. Brettabene senkrechten Querdruck oder in Richtung der Brettabene verlaufenden seitlichen oder Längsdruck verleimen kann, was für die Fertigung einen erheblichen Vorteil darstellt.

Besonders vorteilhaft eignet sich die Erfundung jedoch für die Verpressung mittels senkrecht von oben in

Richtung quer zur Brettebene aufgebrachtem Preßdruck, wobei durch die erfundungsgemäße Profilierung die einzelnen Bretter, die zunächst nur lose — mit sich überlappenden Profilkanten — nebeneinander angeordnet zu werden brauchen, durch die Keilwirkung selbsttätig in Schließstellung überführt werden; hierbei wird eine vollständig dichte Anlage der miteinander an jeder Fuge zusammenwirkenden Siegrunen-Profilflächen erreicht und gleichzeitig der in senkrechter Richtung aufgebrachte Preßdruck gleichmäßig auf die verschiedenen Schrägländer des Fugenprofils verteilt, derart daß der Leim über die gesamten eng aneinanderliegenden Profilflächen hin mit dem erforderlichen Druck in die Poren des Holzes eingepreßt wird und so in der erwünschten Weise die aneinandergrenzenden Bretter in der Art vieler kleiner Leim-“Dübel” verbindet.

Die Verfahrensweise mit Druckbeaufschlagung von oben quer zur Richtung der Plattenebene gestattet eine im Hinblick auf den Durchsatz und die erzielbaren Abmessungen der Holzplatten besonders rationelle Arbeitsweise, bei gleichzeitiger Einfachheit und Unkompliziertheit der hierfür erforderlichen Anlagen. So können hierfür beispielsweise an sich bekannte Furnierpressen, mit gleichzeitiger Mehrfachnutzung (mehrere Lagen übereinander) verwendet werden.

Dies ist in der Darstellung von Fig. 4 angedeutet, bei welcher ein flächiges Druckbeaufschlagungsorgan 8 nach Art einer Furnierpresse zur Aufbringung des vertikal von oben in Richtung quer zur Brett- bzw. Plattenebene wirkenden Preßdrucks P_0 gezeigt ist. In der Darstellung von Fig. 4 sind drei Bretter 5, 6, 7 auf einer Auflagefläche 3 in noch nicht vollständiger Schließstellung angedeutet. Die einzelnen Bretter liegen ersichtlich noch mit einer gewissen gegenseitigen Verkantung nebeneinander. Durch die Druckbeaufschlagung mit P_0 in der Furnierpresse 18 werden die Bretter sodann zur vollständigen Fluchtung unter vollständiger Schließung der Profilfugen gebracht, wobei der in Fig. 4 nicht eigens dargestellte Leimfilm durch die Keilwirkung der erfundungsgemäßen Profilierung mit einem weitgehend gleichmäßigen Penetrationsdruck in Richtung senkrecht zu den Profilflächen beaufschlagt und in die Profilflächen hineingedrückt wird, unter Bildung der erwähnten, die hohe Festigkeit bewirkenden Leim-“Miniverdübelung” über die gesamte Fugenprofilfläche hin.

Fig. 4 veranschaulicht dabei gleichzeitig eine gegenüber Fig. 3 alternative Ausbildung der jeweiligen Profilierung an den beiden Längskanten ein und desselben Bretts, derart nämlich, daß die Fugenprofile an ein und demselben Brett an den beiden Längskanten nicht bezüglich der Mittelsenkrechten V zueinander symmetrisch sind, sondern komplementär zueinander. So ist beispielsweise das Mittelbrett 6 in Fig. 4 an seiner rechten Längskante mit dem erfundungsgemäßen Fugenprofil $H_1 - Q - H_2$ gemäß der Grunddarstellung in Fig. 1, linke Hälfte versehen, während das gleiche Brett an seiner linken Längskante mit dem hierzu komplementären Fugenprofil $H'_2 - Q' - H'_1$, ausgebildet ist. Die Anbringung dieser Profilierung ist mit ein und derselben Profilfräse in einfacher Weise möglich, wobei beim zweiten Durchlauf das Brett lediglich um 180° um seine Längsachse umgeklappt zu werden braucht.

Die erfundungsgemäße Profilierung ist mit einer einfachen, leicht nachstellbaren bzw. nachschärfbaren Fräsvorrichtung mit hoher Genauigkeit herstellbar. Gemäß Fig. 5 kann das Fräswerkzeug aus zwei auf einer gemeinsamen Welle 8 angeordneten Teilen 9, 10 in Form handelsüblicher Fräser mit glatten Schneiden 11,

12 bestehen. Die Schneiden 11 bzw. 12 weisen jeweils ein Winkelprofil entsprechend dem für den Winkel zwischen dem Höhenschinkel H_1 und dem Querschenkel Q auf, wobei durch geeignete Einspannung der Fräswelle 8 der gewünschte Neigungswinkel γ der Höhenschinkel H_1 bzw. H_2 bezüglich der Vertikalen, beispielsweise 8° gemäß einer bevorzugten Ausführungsform, und des Winkels α_6 des Querschenkels Q gegenüber der Horizontalen, beispielsweise 20° gemäß einer bevorzugten Ausführung, gewährleistet wird. Die Schneiden 11, 12 können in üblicher Weise aus Hartmetall bestehen. Sie sind aufgrund ihres geradlinigen Verlaufs problemlos nachzuschärfen ohne daß sich hierdurch das Gesamtprofil verändern kann. Durch Ausbildung der Werkzeugteile 9, 10 mit ausreichender axialer Höhe d (und entsprechender Länge der Schneiden 11 bzw. 12) kann erreicht werden, daß mit ein und demselben Werkzeug beliebige Holzstärken bearbeitet werden können, wobei zweckmäßig die Schneidkantenspitze 13 in etwa auf Mittelebene des bearbeiteten Bretts 1 einzustellen ist. Gemäß einem praktischen Ausführungsbeispiel können beispielsweise die Frässcheiben 9, 10 bei einem Durchmesser der Welle 8 von 35 mm einen Durchmesser von 200 mm und eine Höhe von 30 mm besitzen. Die Schneidkantenneigungen γ bzw. α_6 können gemäß einem bevorzugten Ausführungsbeispiel 8° bzw. 20° betragen.

Die Vorteile der erfundungsgemäßen Fugenprofilierung gegenüber den aus der eingangs genannten deutschen Patentschrift 3 73 024 bekannten abgerundeten Profilen in Form eines liegenden verkehrten S sind aus Fig. 6A und 6B ersichtlich, welche den Abbildungen 6 und 7 der deutschen Patentschrift 3 73 024 entsprechen. Hierbei sind jeweils zwei Bretter 14, 15 über einen Fugenbereich 16 verbunden, der als abgerundete Nut-Federbindung in Richtung quer zur Brett- bzw. Plattenebene bezeichnet werden kann. Diese bekannte Nutverbindung ist zwar in dem Sinn selbstschließend, daß, wenn die beiden Bretter zum teilweisen Eingriff der vertikal gerichteten “Federn” 16a und 16b gebracht sind, bei Ausübung eines vertikalen Drucks in Richtung quer zur Brett- bzw. Plattenebene die Fugen in die Schließstellung gebracht werden. Jedoch eignet sich dieses bekannte Fugenprofil nicht zur Verarbeitung mit seitlichem Preßdruck (in Brett- bzw. Plattenebene), da hierbei das Brett 14 sich entlang der Profilflächen 16c über das Brett 15 schieben würde und die Bretter voneinander abheben würden. Ein dem Verriegelungseffekt beim erfundungsgemäßen Fugenprofil gegenüber seitlicher Preßdruckbeaufschlagung vergleichbarer Effekt ist bei dieser bekannten Profilstaltung somit nicht gegeben.

Des weiteren ist auch bei der — bei dem bekannten Profil allein möglichen — Verpressung in Richtung quer zur Plattenebene keine vergleichbar gleichmäßige Druckverteilung über das gesamte Profil gewährleistet wie beim erfundungsgemäßen Profilverlauf, vielmehr würde eine schlüssige Verleimung im wesentlichen nur in den vorspringenden Federbereichen 16a und 16b erreicht. Vor allem aber ist die bekannte Fugenprofilierung mit abgerundetem Verlauf nach Art eines liegenden S in der Praxis nicht brauchbar. Die erforderlichen Fräswerkzeuge wären infolge der Kurvenform sehr aufwendig und teuer; eine einigermaßen schlüssige und haltbare Fugenverleimung wäre allenfalls bei neuen, fabrikmäßig gefertigten Fräswerkzeugen möglich; sobald die Werkzeuge (mit großem Aufwand) nachgeschliffen werden müssen, würden die zu verleimenden Flächen nicht mehr zusammenpassen; schon bei geringster Pro-

silveränderung entstehen beim Verleimen Hohlräume, welche eine hochwertige Verleimung ausschließen. Eine qualitativ minderwertige Verleimung mag bei Sperrholzplatten mit beiderseitiger Furnierung, wofür die bekannte Verleimung vorgesehen ist, angehen, da hier die beidseitigen Furnierschichten einen zusätzlichen Halt gewähren. Für unfurnierte verleimte Massivholzplatten ist jedoch ein vollständig dichter Fugenschluß unerlässlich, da sonst keine ausreichende Haltbarkeit erreichbar ist.

Die erfundungsgemäße Fugenprofilierung wurde vorstehend primär im Hinblick auf die Herstellung verleimter Massivholzplatten beschrieben und erläutert, für welche sie die erwähnten bedeutsamen Vorteile bringt. Jedoch eignet sich die erfundungsgemäße Fugenprofilierung auch zur Anwendung in Verbindung mit Profilbrettern für unverleimte Verlegung, beispielsweise für Holzdecken, Fußböden, Wandverkleidungen und dergleichen. Hier ergibt die erfundungsgemäße Fugenprofilierung gegenüber den sonst für derartige Zwecke üblichen Nut-Feder-Verbindungen eine Reihe bedeutsamer Vorteile, insbesondere hinsichtlich der Einführung der ineinangreifenden Profile über größere Längen hin, die bei Nut-Feder-Profilbrettern bekanntlich Schwierigkeiten bereitet und häufig zum Ausbrechen der empfindlichen Federn oder Nuten führt.

Die Erfindung wurde vorstehend anhand bevorzugter Ausführungsformen erläutert, die in Einzelheiten abgewandelt werden können. So können der Neigungswinkel γ der Höhenschenkel bezüglich der Vertikalen und der Neigungswinkel (α_5 bzw. α_6) des Querschenkels (bezüglich der Vertikalen bzw. der Horizontalen) innerhalb gewisser Bereiche variiert werden; so kann beispielsweise für Anwendungszwecke, bei denen die Verarbeitung mit Querpressung P_Q (in Richtung senkrecht zur Brett bzw. Plattenebene) im Vordergrund steht, der Neigungswinkel α_6 des Querschenkels Q gegenüber der Horizontalen bzw. der Brett- bzw. Plattenebene etwas größer gewählt werden, um die Keilwirkung in horizontaler Richtung (Erhöhung der Kraftkomponente P_I) zu erhöhen. Umgekehrt kann bei primär für Längspressung P_I in Richtung der Brett- bzw. Plattenebene bestimmten Ausführungen der Neigungswinkel γ der Höhenschenkel H gegenüber der Vertikalen etwas größer gewählt werden, um den erwähnten Verriegelungseffekt gegen ein vertikales Abheben der Bretter unter der Wirkung der Längspressung zu erhöhen. Vorzugsweise wird der Winkel γ in einem Bereich von etwa 5° bis etwa 15° gewählt, wobei ein Wert von etwa 8° sich als besonders vorteilhaft erwiesen hat. Entsprechend ist für den Neigungswinkel α_6 des Querschenkels Q ein Wert im Bereich von etwa 15° bis etwa 25° vorzuziehen, mit einem Wert von etwa 20° als besonders vorteilhafte Ausführung. Wesentlich für den Grundgedanken ist die siegrunenförmige Profilstaltung mit (in der Betrachtungsweise von Fig. 1, linke Hälfte) nach außen geneigten Höhenschenkeln H_1, H_2 und der einwärts versetzten Kante K_1 zugewandtem Querschenkel Q .

5

10

15

20

30

35

45

50

55

60

65

3544845

Nummer:

Int. C.:

Anmeldetag:

Offenlegungstag:

3544845

B 27 M 3/08

18. Dezember 1985

19. Juni 1987

FIG. 1

FIG. 2

3544845

614

FIG. 3

FIG. 4

16-12-66

3544845

FIG. 5

FIG. 6A

Stand der Technik
Prior Art

FIG. 6B