Второ контролно по ДС1 13.01.2019г.

- 1. Нека Γ е графът.
- а) (0.75т.) Използвайки алгоритъма на Дейкстра, намерете теглата на най-леките пътища от върха D до всички останали върхове на Γ ; b) (0.75т.) Използвайки лгоритъма на Крускал, намерете минимално покриващо дърво на
- b) (0.75т.) Използвайки лгоритъма на Крускал, намерете минимално покриващо дърво на Г.

Решение:

a)

начало							
A	В	C	D	E	F	Н	непосетени
∞	∞	∞	0	∞	∞	∞	A, B, C, D, E, F, H
∞	8	5	_	2	∞	∞	A, B, C, E, F, H
∞	8	4	_	_	6	3	A,B,C,F,H
∞	5	4	_	_	6	_	A,B,C,F
∞	5	_	_	_	6	_	A,B,F
10	_	_	_	_	6	_	A,F
9	_	_	_	_	_	_	A
_	_	_	_	_	_	_	Ø

b) Тук номерата репрезентират последователността на избиране, а не тегла.

2. (1.5т.) Нека G е граф с 2n върха ($n \ge 2$), в който има точно един връх от степен n-1, а всички останали върхове са от степен поне n. Докажете, че G е свързан.

Решение:

Нека G не е свързан. Тогава той ще има поне две компоненти на свързаност, като в едната ще има точно един връх от степен n-1. В тази компонента с този връх (по условие) ще има и други върхове, които ще са пооне n на брой, а в другите ще има поне n+1 върха, което е противоречие с допускането, че G не е свързан. Следователно G е свързан граф.

3. (1.5т.) Нека $n \geq 3$ и $U = \{u_1, u_2, \dots, u_n\}$. Намерете броя на (думите) елементите на множеството $\{(A,B) | A \subseteq B \subseteq U \& | (U \backslash A) \cap B | \geq 2\}$.

Решение:

Нека $T=\{(A,B)|A\subseteq B\subseteq U\ \&\ |(U\backslash A)\cap B|\geq 2\},\ S=\{(A,B)|A\subseteq B\subseteq U\}$ и $K=\{(A,B)|A\subseteq B\subseteq U\ \&\ |(U\backslash A)\cap B|< 2\}.$

Тъй като $T, K \subseteq S, T \cap K = \emptyset$ и $T \cup K = S$, то T и K са разбиване на S и от принципа на разбиването имаме, че |S| = |T| + |K| или |T| = |S| - |K|.

На всяка наредена двойка (A, B) съпоставяме думата α .

 $(A,B)\longmapsto lpha=a_1a_2\dots a_n$. Конструираме следната азбука:

 $\sum = \{XY, X\overline{Y}, \overline{X}Y, \overline{X}\overline{Y}\}$, където за всяка буква $a_k, k \leq n$ имаме:

$$a_k = \begin{cases} XY, \ ako \ u_k \in A, \ u_k \in B, \\ X\overline{Y}, \ ako \ u_k \in A, \ u_k \notin B, \\ \overline{X}Y, \ ako \ u_k \notin A, \ u_k \in B, \\ \overline{X}\overline{Y}, \ ako \ u_k \notin A, \ u_k \notin B \end{cases}$$

Съществува биекция между множеството на думите α и множеството на наредените двойки (A,B) (принцип на взаимното еднозначно съпоставяне). Всяка дума α ще е над азбуката \sum . Следователно ще броим възможните думи.

 $S: S = \{(A,B) | A \subseteq B \subseteq U \}$ $(A,B) \in S \Leftrightarrow A \subseteq B \subseteq U \Leftrightarrow (\forall_{k \leq n})[u_k \in A \Rightarrow u_k \in B]$ $\Leftrightarrow (\forall_{k \leq n}) \neg [u_k \in A \ \& \ u_k \in B] \Leftrightarrow (\forall_{k \leq n}) \neg [a_k = X\overline{Y}]$ $\Leftrightarrow X\overline{Y}$ не участва в думата $\alpha_{(A,B)}$, т.е. $\alpha_{(A,B)}$ е дума над азбука от три типа букви $\sum \{X\overline{Y}\} \Rightarrow |S| = 3^n$.

$$K: K = \{(A,B) | A \subseteq B \subseteq U \& | (U \setminus A) \cap B | < 2\} = \{(A,B) | A \subseteq B \subseteq U \& | (U \setminus A) \cap B | = 0\} \cup \{(A,B) | A \subseteq B \subseteq U \& | (U \setminus A) \cap B | = 1\}.$$

$$K_{0}$$

 K_0 :

 $|(U\backslash A)\cap B|=0\Rightarrow A=B$ $\Rightarrow \overline{X}Y$ и $X\overline{Y}$ не може да участват в думата $\alpha_{(A,B)}\Rightarrow\alpha_{(A,B)}$ е дума над азбука от два типа букви и $|K_0|=2^n$.

 $K_1: B$ има точно един елемент повече от $A;\ \overline{X}Y$ участва точно веднъж. $\binom{n}{1}.2^{n-1}=n2^{n-1};$

Окончателно: $|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 2^n - n2^{n-1}$.