Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

> Курс «Технологии машинного обучения» Лабораторная работа №1.

Выполнила: Проверил:

студент ИУ5-62Б преподаватель каф. ИУ5

Заузолков Денис Гапанюк Ю.Е.

Задание:

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов <u>здесь.</u>
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn.</u>
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть <u>здесь.</u>

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Лабораторная работа №1: "Разведочный анализ данных. Исследование и визуализация данных"

1) Текстовое описание набора данных

Датасет fortune500.csv содержит информацию о прибыли крупнейших компаний США.

Параметры датасета:

- Year год, за который была посчитана прибыль Rank место, занимаемое
- компанией по прибыли Company название компании
- Revenue годовой доход
- Profit средняя прибыль за год

Импорт бибилиотек

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="darkgrid")
```

Загрузка данных

```
df = pd.read_csv('fortune500.csv')
```

2) Основные характеристики датасета

```
In [3]: df.head()
```

Out[3]:		Year	Rank	Company	Revenue (in millions)	Profit (in millions)
	0	1955	1	General Motors	9823.5	806
	1	1955	2	Exxon Mobil	5661.4	584.8
	2	1955	3	U.S. Steel	3250.4	195.4
	3	1955	4	General Electric	2959.1	212.6
	4	1955	5	Esmark	2510.8	19.1

```
In [4]: df.tail()
```

Out[4]:		Year	Rank	Company	Revenue (in millions)	Profit (in millions)
	25495	2005	496	Wm. Wrigley Jr.	3648.6	493
	25496	2005	497	Peabody Energy	3631.6	175.4
	25497	2005	498	Wendy's International	3630.4	57.8
	25498	2005	499	Kindred Healthcare	3616.6	70.6
	25499	2005	500	Cincinnati Financial	3614.0	584

Переименуем столбцы для удобства обращения.

```
df.columns = ['year', 'rank', 'company', 'revenue', 'profit']
```

Размер датасета

```
In [6] df.shape
```

Out[6]: (25500, 5)

Список колонок с типами данных.

```
In [7]: df.dtypes
```

Out[7]: year int64 rank int64 company object revenue float64 profit object dtype: object

Столбец profit имеет тип данных, отличный от ожидаемого (ожидался тип данных float64). Найдем строии, содержащие отличные символы.

Out[8]: 228 1955 229 Norton 135.0 N.A. **290** 1955 291 Schlitz Brewing 100.0 N.A. 294 1955 295 Pacific Vegetable Oil 97.9 N.A. 296 1955 297 Liebmann Breweries 96.0 N.A. Minneapolis-Moline **352** 1955 353 77.4 N.A.

Определим, какие значения принимают строки, помимо N.A. и их количество.

```
set(df.profit[non_numberic_profits])
```

Out[9]: {'N.A.'}

```
len(df.profit[non_numberic_profits])
```

Out[10]: 369

Узнаем, равномерно ли распределены эти строки между годами и как сильно повлияет их удаление на статистику.

```
In [11]: bin_sizes = plt.hist(df.year[non_numberic_profits], bins=range(1955, 2006))
```


Удалим строки с N.A. и перепроверим типы столбцов.

```
df = df.loc[~non_numberic_profits]
df.profit = df.profit.apply(pd.to_numeric)
```

```
Out[13]: 25131
           df.dtypes
Out[14]: year
                        int64
                        int64
          rank
          company
                       object
                      float64
          revenue
          profit
                     float64
          dtype: object
         Еще раз проверим наличие пустых значений в столбцах.
           for col in df.columns:
               temp_null_count = df[df[col].isnull()].shape[0]
               print('{} - {}'.format(col, temp_null_count))
          year - 0
          rank - 0
          company - 0
          revenue - 0
          profit - 0
           df.describe()
Out[16]:
                        year
                                     rank
                                                revenue
                                                               profit
          count 25131.000000 25131.000000
                                           25131.000000 25131.000000
           mean
                  1979.926784
                                249.744777
                                            4304.961780
                                                           207.903677
            std
                   14.764827
                               144.443000
                                           11396.723687
                                                          1173.695947
                  1955.000000
                                              49.700000 -98696.000000
                                 1.000000
            min
           25%
                  1967.000000
                               124.000000
                                             357.900000
                                                            8.900000
           50%
                  1980.000000
                               250.000000
                                            1017.600000
                                                           35.500000
           75%
                  1993.000000
                               375.000000
                                            3916.100000
                                                           150.500000
            max
                 2005.000000
                               500.000000 288189.000000 25330.000000
         3) Визуальное исследование датасета
         Построим график средней прибыли за год.
           group_by_year = df.loc[:, ['year', 'revenue', 'profit']].groupby('year')
           avgs = group_by_year.mean()
           x = avgs.index
           y1 = avgs.profit
           \mathtt{def} plot(x, y, ax, title, y_label):
               ax.set_title(title)
               ax.set_ylabel(y_label)
               ax.plot(x, y)
               ax.margins(x=0, y=0)
In [18]:
           fig, ax = plt.subplots()
           plot(x, y1, ax, 'Increase in mean Fortune 500 company profits from 1955 to 2005', 'Profit (millions)')
```

Increase in mean Fortune 500 company profits from 1955 to 2005

1000

800

600

len(df)

```
9 400
200
1960 1970 1980 1990 2000
```

График средней прибыли компании похож на экспоненту с огромными провалами. Самый сильный провал наблюдается в середине 9O-х и OO-х. Это связано с крупными историческими событиями, подорвавшими экономику западного мира. Однаю каждый раз прибыль возвращается на более высокий уровень, чем было до провала.

Рассмотрим график доходов.

```
In [19]:
    y2 = avgs.revenue
    fig, ax = plt.subplots()
    plot(x, y2, ax, 'Increase in mean Fortune 500 company revenues from 1955 to 2005', 'Revenue (millions)')
```


Доходы почти не имеют провалов - по сравнения с графиком прибыли они очень незначительные.

Если рассмотреть отклонения прибыли и доходов за тот же период, можно заметить, что пока общая тенденция прибыли и доходов показывает нам среднее значение по рынку, существует множество компаний, которые зарабатывают миилиарды во время рецессии, но также существуют и те компании, которые теряют кратно больше денег, чем все остальные.

```
def plot_with_std(x, y, stds, ax, title, y_label):
    ax.fill_between(x, y - stds, y + stds, alpha=0.2)
    plot(x, y, ax, title, y_label)

fig, (ax1, ax2) = plt.subplots(ncols=2)
    title = 'Increase in mean and std Fortune 500 company %s from 1955 to 2005'
    stds1 = group_by_year.std().profit.values
    stds2 = group_by_year.std().revenue.values

plot_with_std(x, y1.values, stds1, ax1, title % 'profits', 'Profit (millions)')
    plot_with_std(x, y2.values, stds2, ax2, title % 'revenues', 'Revenue (millions)')

fig.set_size_inches(14, 4)
    fig.tight_layout()
```


4) Информация о корреляции признаков

В качестве целевого признака будем использовать признак Revenue (количественная непрерывная переменная).

```
df.corr()
```

Out[21]:

profit	revenue	rank	year	
0.169832	0.365016	-0.002677	1.000000	year
-0.184791	-0.362945	1.000000	-0.002677	rank
0.477046	1.000000	-0.362945	0.365016	revenue
1.000000	0.477046	-0.184791	0.169832	profit

Больше всего целевой признак коррелирует с Profit и отчасти с признаком Year .

sns.heatmap(df.corr(), annot=True, fmt='.3f')

Out[23]: <AxesSubplot:>

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js