Economics 7103 - Homework 2

Ana Mazmishvili

January 29, 2024

Python

Note: While working on this homework, I received assistance from Afi solely with some Python code.

Question 1.1

Response: Randomization worked which is demonstrated by comparison across control and treatment groups that indicates statistical balance in observables. Column 3 presents the differences in means and the standard errors of the differences in brackets. The differences are small and in case of electricity consumption statistically significant.

	Control	Treatment	P-value
Monthly electricity usage by HHs (kWh)	1181.33	1086.75	0.001
	(454.31)	(423.96)	[3.403]
Square feet of home	1633.05	1657.55	0.572
	(682.90)	(686.27)	[-0.566]
Outdoor average temperature (°F)	79.89	79.89	0.987
_ , ,	(2.16)	(1.97)	[-0.016]
Observations	501	499	. ,

Table 1: Summary Statistics for the treated and control groups.

Question 1.2

Figure 1: Kernel density plots of the electricity use for treated group and control group.

Question 1.3

(a) I used the Numpy package in Python to create an array X that is the 1000×4 matrix of the predictor variables (3) and a column of ones and an array Y that is the 1000×1 vector of the dependent variable. The codes are provided in the Python code file. I used matrix operations to calculate $\hat{\beta}$. Recall that

$$\hat{\beta} = (X'X)^{-1}X'Y$$

I obtained $\hat{\beta}$ that are presented in the first column of Table 2. (b) I was not able to solve this part according to your instructions. I used LinearRegression function from sklearn.linear_model to estimate $\hat{\beta}$, but I did not apply Scipy.optimize.minimize() as was suggested. I do not understand this part, but I will review solutions.

(c) I used StatsModels package to estimate $\hat{\beta}$ and the results are presented in the third column.

	By hand	LeastSquare	StatsModels
Square feet of home	0.615	0.615	0.615
=1 if house received retrofit	-109.666	-109.666	-109.666
Outdoor average temperature (°F)	3.255	3.255	3.255
Constant	-83.603	0.000	-83.603

Table 2: Liniear Regression Coefficients using three approaches

Stata

Question 2.1

I created a table that displays each variable's sample mean, sample standard deviation, and p-values for the two-way t-test between treatment and control group means. Please see the Table ??

Question 2.2

I created a two-way scatterplot of electricity consumption and square feet of home data using Stata. Please refer to the Figure below.

	Control	Treatment	P-value
electricity	1181.33	1086.75	0.001
	(454.31)	(423.96)	[3.404]
sqft	1633.05	1657.55	0.572
	(682.90)	(686.27)	[-0.566]
temp	79.89	79.89	0.987
	(2.16)	(1.97)	[-0.016]
Observations	501	499	1,000

Table 3: Summary statistics produced using Stata

Figure 2: Scatterplot with electricity consumption and square feet of home

Question 2.3

I estimated model using OLS and obtained heteroskedasticity robust standard errors and coefficients. Please refer to the Table below.

	(1)	
VARIABLES	electricity	
retrofit	-109.7***	
	(7.943)	
sqft	0.615***	
	(0.00678)	
temp	3.255*	
•	(1.932)	
Constant	-83.60	
	(154.7)	
Observations	1,000	
R-squared	0.919	
Robust standard errors in parentheses		
*** p<0.01, ** p<0.05, * p<0.1		

Table 4: OLS regression results using Stata