

EAST WEST UNIVERSITY BANGLADESH Department of Computer Science & Engineering

CSE360: Computer Architecture

Term II Examination

Fall 2014

Total Marks: 40 Instructor: Dr. Md. Shamim Akhter Time: 90 minutes

PART: A (20)

Consider the **single-cycle** and **multi-cycle** implementations (for your reference the datapaths for the single-cycle and the multi-cycle are provided on the last page).

- 1. Why does the **single-cycle implementation** use more hardware resources than the **multi-cycle implementation**? (3)
- 2. Answer the following questions for the **single-cycle implementation**:
 - a) The **MemWrite** signal must be set to 1 for one particular supported instruction. Describe what could go wrong if it was set to 1 for any of the other instructions. (2)
 - b) For which of the supported MIPS assembly instruction(s) must set 1 for the select line, **MemtoReg**? Explain why. (2)
 - c) For which of the supported MIPS assembly instruction(s) is (are) the **Shift-Left-2** unit necessary? Explain why? (2)
- 3. Suppose each stage of the instruction takes the following times:

$$IF = 7 \text{ ns}, ID = 8 \text{ ns}, EX = 15 \text{ ns}, MA = 10 \text{ ns}, WB = 8 \text{ ns}$$

- a) What is the cycle time for the **single-cycle implementation**? Explain. (2)
- b) What is the cycle time for the **multi-cycle implementation**? Explain. (2)
- 4. Given the below MIPS assembly code, answer the following questions. Assume the mul is as fast as an add and a blt is the same as a beq.

loop: lw \$t0, 0(\$a0)
mul \$t0, \$t0, \$a3
sw \$t0, 0(\$a1)
add \$a0, \$a0, 4

(8)

add \$a1, \$a1, 4 add \$t1, \$t1, 1 beq \$t1, \$t2, loop

- a) How many cycles would one iteration of this loop take to execute on the **single-cycle** datapath? (2)
- b) How many cycles would one iteration take on the **multi-cycle datapath**? (2)
- c) What is going on during the 12th cycle of execution (in multi-cycle datapath)? (3)

PART: B (10)

Consider the **single-cycle implementations** (for your reference the single-cycle datapath is provided on the last page).

- 1. Write the procedure to generate **ALU** (3 bit) control signals. (2)
- 2. List the value of the **control signals** associated with the following instructions:

Instructions	Reg Dst	ALU Src	MemtoReg	RegWrite	MemRead	MemWrite	ALU OP1	ALU OP0
sw \$t0,0(\$t1)								
add \$t1, \$t2, \$t3								
lw \$t1, 4(\$t2)								
beq \$t1, \$t2, Label								

PART: C (10)

- 1. Suppose we have two implementations of the same instruction set architecture (ISA). For some program: **machine A** has a clock cycle time of 10 ns and a CPI of 2.0, **machine B** has a clock cycle time of 20 ns and a CPI of 1.2. Which machine is faster for this program, and by how much? (5)
- 2. Suppose a machine- M1 contains same instruction set. The following given table contains information regarding four classes of instructions (R-type, Load, Store and Branch) with their average number of cycles and frequency.(5)

Op	Freq	CPI _i	Freq x CPI _i
R-Type	50%	1	
Load	20%	5	
Store	10%	3	
Branch	20%	2	
Overall e	$\Sigma =$		

- a) Generate the **Overall effective CPI**.
- b) How much faster would the machine be if a better data cache reduced **the average load time** to 2 cycles?
- c) How does this compare with using branch prediction to save a cycle off the branch time?
- d) What if **two R-Type instructions** could be executed at once?

Single Cycle Datapath:

Multi-Cycle Datapath:

