Cours 5 : Lien Cours — TD L'algèbre et la Dualité

Eric Bourreau

+ Vincent Boudet

Exemple PLNE

$$\begin{cases} Max & 4x_1 + 3 x_2 \\ & 3x_1 + 4x_2 \le 24 \\ & 4x_1 + 2x_2 \le 18 \\ & x_1, x_2 \in \mathbb{N} \end{cases}$$

La dualité Cours-TD

• Quel rapport y a t'il entre votre cours ...

•	Forme	canonique

(n variables, m contraintes)

max	Cx	
s.c.	Ax	$\leq b$
	X	$\geq 0^{n}$

Forme standard

(n+m variables, m contraintes / équations)

max Cx
s.c. Ax' = b
$$x' > 0^{n+m}$$

Simplexe

Max coût réduit positif $Min \frac{b_j}{a_j^l}$ Pivoter x et x

Pivoter x et x

- Et la modélisation que l'on fait en TD ??
- Monsieur Clothes désire ouvrir trois nouvelles boutiques qui lui coûteront 250 000 €, 100 000 € et 170 000 €. Déterminez le montant à emprunter à chacune des banques ?

	Boutique de Nantes	Boutique de Troyes	Boutique de Lorient
Banque 1	5 %	6,5 %	6,1 %
Banque 2	5,2 %	6,2 %	6,2 %
Banque 3	5,5 %	5,8 %	6,5 %

(1)
$$\operatorname{Min} \sum_{i=1}^{Ba} \sum_{j=1}^{Bo} x_{ij} \frac{T_{ij}}{1 - (1 + T_{ij})^{-n}}$$

(2)
$$\forall j = 1...Bo: \sum_{i=1}^{Ba} x_{ij} = P_j$$

(3)
$$\forall i = 1...Ba: \sum_{i=1}^{Bo} x_{ij} \leq Mmax$$

(4)
$$\forall i = 1...Ba, \forall j = 1...Bo : x_{ij} \ge 0$$

La résolution des emprunts bancaires expliquée

 Monsieur Clothes, directeur d'une chaîne de magasins de vêtements, désire ouvrir trois nouvelles boutiques : une à Nantes, une à Troyes et une à Lorient. L'ouverture de chaque nouvelle boutique lui coûtera respectivement 250 000 €, 100 000 € et 170 000 €. Pour financer ses projets, il fait appel à trois différentes banques

	Boutique de Nantes	Boutique de Troyes	Boutique de Lorient
Banque 1	5 %	6,5 %	6,1 %
Banque 2	5,2 %	6,2 %	6,2 %
Banque 3	5,5 %	5,8 %	6,5 %

• En fonction de l'emplacement de ces boutiques et des risques évalués, chaque banque décide de financer au plus 300 000 € sur 8 ans et propose des taux différents suivant les boutiques. Déterminez le montant à emprunter à chacune des banques pour financer chaque boutique de façon à minimiser les dépenses totales de M. Clothes

Solution

(1) Min
$$\sum_{i=1}^{Ba} \sum_{j=1}^{Bo} x_{ij} \frac{T_{ij}}{1 - (1 + T_{ij})^{-n}}$$

(2)
$$\forall j = 1...Bo : \sum_{i=1}^{Ba} x_{ij} = P_j$$

(3)
$$\forall i = 1...Ba : \sum_{i=1}^{Bo} x_{ij} \leq Mmax$$

(4) $\forall i = 1...Ba, \forall j = 1...Bo : x_{ij} \ge 0$

								ASSIST	ant Fonction			
Dépenses to	tales	82 218,07 €				Fonctions	Structure	VPM	Résultat d	e la fonction	-38 680,45 €	
	Emprunt	maximum auprès des l	pangues	300 000.00 €		Structure						
Nombre d'années maximum pour l'emprunt		8		<u> </u>		Calcule le montant total de chaque remboursemen investissement à remboursements et taux d'intérêt						
						▼ 🛅 VPM = -3						
		Boutique de Nantes	Boutique de Troyes	Boutique de Lorient		✓ B12 =		Taux (requis)				
Coût d'ouve	rture	250 000,00 €	100 000,00 €	170 000,00 €		✓ \$D\$6 = 8 ✓ B22 = 250 000.00 €		Le taux d'intérêt par période.				
								Le taux d'interet	pai periode.			
Taux d'emp	runt	Boutique de Nantes	Boutique de Troyes	Boutique de Lorient								
Banque	1	5,0%	6,5%	6,1%					Taux f _×	B12		
Banque :	2	5,2%	6,2%	6,2%								
Banque :	3	5,5%	5,8%	6,5%					NPM f _×	\$D\$6		
Annuité:	s	Boutique de Nantes	Boutique de Troyes	Boutique de Lorient					VA f _×	B22		
Banque	1	38 680,45 €	0,00€	8 083,69 €								
Banque	2	0,00€	0,00€	19 477,56 €					VC f _×			
Banque	3	0,00€	15 976,36 €	0,00 €								
								Formule		Résultat	38 680,45	
Montant emp	orunté	Boutique de Nantes	Boutique de Troyes	Boutique de Lorient	Total emprunté							
Banque	1	250 000,00 €		- € 50 000,00 €	300 000,00 €			=-VPM(B12;\$D\$	6;B22)			
Banque	2		- €	- € 120 000,00 €	120 000,00 €							
Banque	3		- € 100 000,00 €		- € 100 000,00 €							
Total empru	ınté	250 000,00 €	100 000,00 €	170 000,00 €								

Résolution manuelle en déroulant le simplexe

 On part des matrices A, B et C suivantes : (0,154 0,164 0,161 0,156 0,162 0,162 0,158 0,160 0,164) $\chi_{3,3}$ $x_{3,2}$ 300 $Banq_1$ 300 $Banq_2$ 300 $Banq_3$ 250 $Bout_1$ 100 $Bout_2$ $Bout_3$ 170 0

Partitionnement des indices

- On peut partitionner les indices des variables en deux parties :
 - Ceux des variables dans la base : B
 - Ceux des variables hors-base : N
- Cette partition se retrouve dans les contraintes

$$\sum_{i=0}^{j=n+m} a_{ij} x_j = \sum_{j \in B} a_{ij} x_j + \sum_{j \in N} a_{ij} x_j \quad pour \ i = 1..m$$

• D'un point de vue matriciel, on partitionne les colonnes de A et les composantes

$$c = (c_B c_N)$$

$$A = (B N)$$

$$x = (x_B x_N)$$

de x et c

$$x = (x_B x_N)$$

Décomposition matricielle

• Exprimons les variables en base* en fonction des variables hors bases:

$$Ax = b \iff Bx_B + Nx_N = b$$

$$\iff x_B + B^{-1}Nx_N = B^{-1}b$$

$$\iff x_B = B^{-1}b - B^{-1}Nx_N$$

• Ce qui donne en remplaçant x_B dans la fonction objectif :

$$z = cx = c_B x_B + c_N x_N$$

= $c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N$
= $c_B B^{-1}b + (c_N - c_B B^{-1}N)x_N$

*si B-1 est inversibles (i.e. : colonnes linéairement indépendantes)

Cout réduit!!

Le dictionnaire matriciel

• Le dictionnaire s'écrit :

max
$$z = c_B B^{-1} b + (c_N - c_B B^{-1} N) x_N$$

s.c. $x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

Une solution est :

$$z = c_B B^{-1} b$$
$$x_B = B^{-1} b$$

- Condition de réalisabilité : $B^{-1}b \ge 0$
- Condition d'optimalité : $c_N c_B B^{-1} N \le 0$

L'algorithme du simplexe matriciel

Soit un dictionnaire

max
$$z = c_B B^{-1} b + (c_N - c_B B^{-1} N) x_N$$

 $s. c. x_B = B^{-1} b - B^{-1} N x_N$
 $x_B, x_N \ge 0$

- 1. Si $\bar{c}_N = c_N c_B B^{-1} N \leq 0$ alors la solution est optimale STOP
- 2. choisir une variable entrante $k \in N$ telle que $(\bar{c}_N)_k \ge 0$
- 3. Si $(\bar{a}_{i,k})_{i=1,\dots,m} = (B^{-1}N)_k \le 0$ alors le problème est non borné
- 4. Choisir une variable sortant $s \in B$ telle que

$$s = argmin_{j \in B} \left\{ \frac{\overline{b}_j}{\overline{a}_{j,k}} = \frac{B_{j,.}^{-1}b}{B_{j,.}^{-1}N_{.,k}} : \overline{a}_{j,k} \ge 0 \right\}$$

5. Pivoter avec $B = (B \setminus \{s\}) \cup \{k\}$ et $N = (N \setminus \{k\}) \cup \{s\}$ Retourner en 1