Университет ИТМО

Факультет ПИиКТ

Дисциплина: Математический анализ

Лабораторная работа №1 Численные методы интегрирования

Выполнил: Григорьев Александр Алексеевич

группа Р3130

Преподаватель: Фотин Алексей Дмитриевич

1. Аналитическая часть

Интеграл по заданию:

$$\int_{0}^{2} 2^{x} dx$$

Так как 2^x непрерывна на $[0, 2], 2^x$ интегрируема на [0, 2], то есть интеграл Римана существует.

Составим интегральную сумму. В качестве разбиение τ возьмём разбиение [0, 2] на правных отрезков. Тогда $x_i = \frac{2k}{n}$, $\Delta x_i = \frac{2}{n}$. Также выберем $\xi = x_i$. Тогда

$$\sigma_{\tau}(f,\xi) = \sum_{k=1}^{n} 2^{\frac{2k}{n}} \frac{2}{n} = \frac{2}{n} \sum_{k=1}^{n} 2^{\frac{2k}{n}}$$

По сумме геометрической прогресии:

$$\frac{2}{n} \sum_{k=1}^{n} 2^{\frac{2k}{n}} = \frac{2}{n} \frac{2^{\frac{2}{n}} (1 - 2^{2})}{1 - 2^{\frac{2}{n}}} = \frac{2}{n} \frac{3 \cdot 2^{\frac{2}{n}}}{2^{\frac{2}{n}} - 1}$$

Перейдем к пределу при $n \to \infty$ и заменим предел на эквивалентный:

$$\lim_{n \to \infty} \frac{2}{n} \frac{3 \cdot 2^{\frac{2}{n}}}{2^{\frac{2}{n}} - 1} = \lim_{n \to \infty} \frac{2}{n} \frac{3 \cdot 2^{\frac{2}{n}}}{\frac{2}{n} \ln 2} = \frac{3}{\ln 2}$$

Теперь найдём значение интеграла по формуле Ньютона-Лейбница:

$$\int_{0}^{2} 2^{x} dx = \frac{2^{x}}{\ln 2} \Big|_{0}^{2} = \frac{3}{\ln 2}$$

2. Описание метода и результаты

Метод прямоугольников - метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Он заключается в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах.

Шаг интегрирования (h)	Численное решение F	Погрешность $ F-\tilde{F} $	Количество итераций N
0.2	4.32462	$3.47*10^{-3}$	10
0.02	4.32805	$3.47*10^{-5}$	100
0.002	4.32808	$3.47*10^{-7}$	1000
$2*10^{-4}$	4.32809	$3.47*10^{-9}$	10^{5}
$2*10^{-5}$	4.32809	$3.79*10^{-11}$	10^{6}

3. Графики

1) График для разбиения τ отрезка [0, 2] на 10 отрезков, в качестве ξ_i выбрана точка x_{i-1} :

Значение заданной интегральной суммы $\sigma_{ au}(2^x,\xi)=4.32462$

 $2) \Gamma$ рафик для разбиения τ отрезка $[0,\,2]$ на 20 отрезков, в качестве ξ_i выбрана точка x_i :

Значение заданной интегральной суммы $\sigma_{ au}(2^x,\xi)=4.32722$

 $3) \Gamma$ рафик для разбиения τ отрезка $[0,\ 2]$ на 100отрезков, в качестве ξ_i выбрана точка $\frac{x_i-x_{i-1}}{2}$:

Значение заданной интегральной суммы $\sigma_{\tau}(2^{x},\xi)=4.32805$

4) График для разбиения τ отрезка $[0,\ 2]$ на 200 отрезков, в качестве ξ_i выбрана точка $\frac{x_i-x_{i-1}}{2}$:

Значение заданной интегральной суммы $\sigma_{ au}(2^x,\xi)=4.32805$

4. Код программы

Репозиторий с проектом на GitHub

5. Метод Симпсона

Метод прямоугольников - метод численного интегрирования функции одной переменной, заключающийся в приближении подынтегральной функции на отрезке [a,b] интерполяционным многочленом второй степени $p_2(x)$, то есть приближение графика функции на отрезке параболой.

1) График для разбиения τ отрезка [0, 2] на 1 отрезок:

Полученное значение: 4.33333, разница с алгебраическим: $5.24*10^{-3}$.

2) График для разбиения τ отрезка [0, 2] на 10 отрезков:

Полученное значение: 4.32809, разница с алгебраическим: $5.55*10^{-7}$.

3) График для разбиения τ отрезка [0, 2] на 100 отрезков:

Полученное значение: 4.32809, разница с алгебраическим: $5.6*10^{-11}$.

По полученным значениям можем заметить, что при увеличении количества точек разбиения, а, следовательно, и итераций, в 10 раз, точность метода прямоугольников возрастает в сравнимое с 10^2 число раз, в то время как точность метода Симпсона - в сравнимое с 10^4 число раз. Из этого можем сделать вывод, что использование метода Симпсона рациональнее.