§ 1.1 - 1.5 Intro to Fields Jessica Wei

Fields

DEF | Field

A field F is a set of values with defined operations for addition and multiplication. The operations satisfy the following:

- (i) Closure: for $x, y \in \mathbb{Z}$ $x + y \in F$ $xy \in F$
- (ii) Commutative x + y = y + xxy = yx
- (iii) Associative; $z \in \mathbb{F}$ x + y + z = x + (y + z)(xy)z = x(yz)
- (iv) Identity element I $x+I_{+}=I_{+}+x=x \text{ for any element x} \\ x\cdot I_{+}=I_{x}\cdot x=x$
- (v) Inverse Element $x + \bar{x} = I_+$ for every $x \in F$ $x \cdot \hat{x} = I_x$
- (vi) Distributive Identity: $x, y, z \in F$ x(y+z) = xy + xz

Example 1. Verify that the set of real numbers $\mathbb R$ is a field.

- (i) For any two real numbers $x, y \in \mathbb{R}$ $x + y \in \mathbb{R}, xy \in \mathbb{R}$
- (ii) x + y = y + x is TRUE xy = yx is TRUE
- (iii) Associativity (x+y) + z = x + (y+z)
- (iv) Identity $x + 0 = 0 + x = x \quad 0 \text{ is identity element under } I_+ \\ x \cdot 1 = 1 \cdot x = x \quad I_x = 1$

(v) Inverse x + (-x) = 0 where $-x \in \mathbb{R}$ is the additive inverse $x(\frac{1}{x}) = 1$ $\frac{1}{x} \in \mathbb{R}$ is the multiplicative inverse as long as $x \neq 0$

(vi) Distributive
$$x(y+z) = xy + xz$$
 i.e. $2(3+4) = 2(7) = 2 \cdot 3 + 2 \cdot 4 = 14$

Example 2. Is \mathbb{Z} a field under the usual definitions of + and \cdot ?

No. For any integer $a \in \mathbb{Z}$, it is not possible to find a multiplicative inverse $a \in \mathbb{Z}$ such that $a\hat{a} = 1$.

DEF | Complex Numbers

The set of complex numbers C is the set of numbers of the form

$$a + bi$$

where a is the real part, bi is the imaginary part, and $i^2 = -1$. *Note \mathbb{C} is a field under the following operations:

For
$$z_1, z_2 \in \mathbb{C}$$
:
Addition: $z_1 + z_2 = (a_1 + b_i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i$
Multiplication: $z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 i^2$
= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

Example 3. Perform the operation

(a)
$$(3+2i) + (1+i) = (3+1) + (2+1)i = 4+3i$$

(b)
$$(3+2i)(7-5i) = 21-15i+14i+10 = 31-i$$

(c)
$$(3+2i)(3-2i) = 9-6i+6i+4=13$$

(d)
$$\frac{31-i}{7-5i} \cdot \frac{7-5i}{7-5i} = \frac{(217+155i-7i-5)}{49+25} = \frac{222+148i}{74} = \frac{222}{74} + \frac{148}{74}i = 3+2i$$

Visualizing Complex Numbers

Imaginary is on the y axis, real is on the x axis. We represent 3 + 2i as a vector \overrightarrow{z} on the coordinate plane. Suppose that z = a + bi is any complex number.

$$\Rightarrow tan\theta = \frac{b}{a}$$

$$\Rightarrow |\overrightarrow{z}| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$$

Notice that $(a + bi)(a - bi) = a^2 + b^2$ and \bar{z} is conjugate

$$cos\theta = \frac{a}{|\vec{z}|}, sin\theta = \frac{b}{|\vec{z}|}$$
$$cos^2\theta = \frac{a^2}{|\vec{z}|^2}, sin^2\theta = \frac{b^2}{|\vec{z}|^2}$$

1.
$$1 = \cos^2\theta + \sin^2\theta = \frac{a^2}{|\overrightarrow{z}|^2} + \frac{b^2}{|\overrightarrow{z}|^2}$$
$$\Rightarrow a^2 + b^2 = |\overrightarrow{z}|^2$$

2.
$$a = |\overrightarrow{z}|cos\theta, b = |\overrightarrow{z}|sin\theta$$

 $z = a + bi = |\overrightarrow{z}|cos\theta + |\overrightarrow{z}|sin\theta i$
 $= |\overrightarrow{z}|(cos\theta + sin\theta)$

Euler's Identity: $e^{ie} = cos\theta + sin\theta$

$$\Rightarrow z = |\overrightarrow{z}|e^{i\theta}$$

where
$$|\overrightarrow{z}| = \sqrt{a^2 + b^2}$$
 and $tan\theta = \frac{b}{a}$
 $\Rightarrow z = re^{i\theta}$

Translations

DEF | Translations

Define $f(z) = z + z_1$ where $z_1 = a_1 + b_1 i$ is given (constant). Then f(z) describes a translation:

$$f(z) = z + z_1$$

= $(a + bi) + (a_1b_1i)$
= $(a + a_1) + (b + b_1)i$

e.g.
$$a_1 = 2, b_1 = 3$$

Add a_1, b_1 to original values of a, b on the graph. In this case, the point/vector representing z = a + bi has shifted **2 units right** and **3 units up**.

In general for $z_1 = a_1 + b_1 i$, we have the following cases:

 $a_1 > 0$ shift right

 $a_1 = 0$ no horizontal shift

 $a_1 < 0$ shift left

 $b_1 > 0$ shift up

 $b_1 = 0$ no vertical shift

 $b_1 < 0$ shift down

Let
$$f_1(z) = z + z_1 \& f_2(z) = z + z_2, z_1, z_2 \in \mathbb{C}$$
 given"

$$f_1 \circ f_2 = f_1(f_2(z)) = f_1(z + z_2) = z + z_2 + z_1$$

$$= z + w$$

where $w = z_2 + z_1$. Also describes a translation and $f_2 \circ f_1 = f_1 \circ f_2$

Scaling & Rotation

DEF | Scaling Define $h(z) = \alpha z$ where $\alpha \in \mathbb{R}$ Notice $|h(z)| = |\alpha z| = |\alpha(a+bi)| = |a\alpha + b\alpha i|$

$$= \sqrt{(a\alpha)^2 + (b\alpha)^2}$$
$$= \sqrt{a^2\alpha^2 + b^2\alpha^2}$$
$$= \sqrt{a^2(\alpha^2 + b^2)}$$
$$= |\alpha||z|$$

Hence multiplying $z \in \mathbb{C}$ by a scalar α , scales the magnitude of z.

Cases:

 $\alpha>1$ $\,$ extends the line straight along its original path (magnitude increases)

e.g. z = 2.5 + 2i and $\alpha = 2$

$$2z = 5 + 4i$$

 $0<\alpha<1$ shrinks the line straight along its original path (magnitude decreases) e.g. z=2.5+2i and $\alpha=\frac{1}{2}$

$$\frac{1}{2}z = 1.25 + 1i$$

 $-1 < \alpha < 0$ reverses direction and shrinks the line (rotation by 180 and shrinking in) e.g. z = 2 + 4i and $\alpha = \frac{1}{2}$

$$-\frac{1}{2}z = -1 - 2i$$

 $\alpha<-1$ reverse direction and expands (rotation by 180 and magnitude increases) e.g. z=2.5+2i and $\alpha=-1$

$$-1z = 2.5 + 2i$$

DEF | Rotations by τ rad.

Recall $z = re^{i\theta}$

To obtain a rotated point/vector,

$$w = re^{i(\theta + \tau)}$$

To scale out by a factor of 2 and rotate by $\frac{\pi}{3}rad$.

$$w = 2re^{i(\pi + \frac{\pi}{3})}$$

Example 4. What is the result of scaling z = 1 + i by $\alpha = 3$ and rotating $\frac{pi}{2}$ rad?

$$z = re^{i\theta}$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta = tan^{-1}(1) = \frac{\pi}{4}$$

$$z = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$w = 3\sqrt{2}e^{i(\frac{pi}{4}) + \frac{\pi}{2}}$$

$$= 3\sqrt{2}e^{3\frac{\pi}{4}}$$

$$= 3\sqrt{2}(\cos(\frac{3\pi}{4}) + \sin(\frac{3\pi}{4}))$$

$$= -3 + 3i$$

Note: $\theta = tan^{-1}(\frac{b}{a})$