FIITJEE

ALL INDIA TEST SERIES

FULL TEST – XI

JEE (Main)-2025

TEST DATE: 30-03-2025

ANSWERS, HINTS & SOLUTIONS

Physics

PART - A

SECTION - A

1. E

Sol. Applying conservation of angular momentum of system about centre of mass of disc

$$mvR = mv'R + \frac{2mR^2}{2}\omega$$

$$v^\prime = R \omega$$

$$mvR = mv'R + mv'R$$

$$v'=\frac{v}{2}=\frac{\sqrt{2g\ell}}{2}=\sqrt{\frac{g\ell}{2}}$$

2. E

Sol. I = neA (
$$\mu_e$$
 + μ_h) E
= 1.0×10⁶×1.6×10⁻¹⁹×4×10⁻⁴(1.0)× $\frac{2}{2\times10^{-3}}$ = 6.4 × 10⁻¹⁴ A

3.

Sol. Basic concepts

4. C

Sol.
$$C = C_V + \frac{dW}{ndT}$$

$$\int dW = \int_{T_0}^{3T_0} \alpha T dT - \int_{T_0}^{3T_0} \frac{5R}{2} dT \text{ for one mole}$$

$$W = (4\alpha T_0 - 5R)T_0$$

Sol.
$$\frac{dN}{dt} = R - \lambda N$$

So
$$\int_{0}^{N} \frac{dN}{R - \lambda N} = \int_{0}^{t} dt \Rightarrow \ln(R - \lambda N) \Big|_{0}^{N} = -\lambda t$$

So
$$ln \frac{R - \lambda N}{R} = -\lambda t$$

So
$$1 - \frac{\lambda N}{R} = e^{-\lambda t} \Rightarrow N = \frac{R}{\lambda} (1 - e^{-\lambda t})$$

Sol. Zener current will be maximum, when
$$V = 15V$$

 $15 - (i \times 2.5k) = 5$
 $i = 4 \text{ mA}$
 $i_z = 3 \text{ mA}$

Sol.
$$\frac{R_{Ge}}{R_{Be}} = \left(\frac{X}{9}\right)^{1/3}$$

Number of neutron = 72 - 32 = 40

$$n_1 = \left(\frac{1400 + 100}{1400}\right) \times 40 \times 10^3 = \left(\frac{15}{14}\right) \times 40 \times 10^3$$

Frequency reflected by submarine

$$n_2 = \left(\frac{1400}{1400 - 100}\right) n_1 = \left(\frac{15}{13}\right) \times 40 \times 10^3 \text{ Hz} = \frac{600}{13} \text{kHz}$$

Sol.
$$f = \frac{2\pi(1-\cos\theta_C)}{4\pi}$$

$$f = \frac{2\pi}{4\pi} \left[1 - \sqrt{1 - \frac{1}{\mu^2}} \right] = \frac{1}{2} \left[1 - \sqrt{1 - \frac{1}{\mu^2}} \right]$$

Sol. For
$$(r \le R)$$

$$E \times 4\pi r^2 = \int\limits_0^r cx 4\pi x^2 dx \, / \, \epsilon_0$$
 So $E \propto r^2$

and For
$$(r \ge R)$$

$$E \propto \frac{1}{r^2}$$

...(i)

Sol.
$${}_{1}^{2}H + {}_{1}^{2}H = {}_{2}^{4}He$$

BE_H = 1.1 MeV

Q_{value} = Binding energy of product – Binding energy of reactants

=
$$(4 \times 7 - 4 \times 1.1)$$
 MeV = 23.6 MeV
= $23.6 \times 1.6 \times 10^{-19} \times 10^6 = 37.76 \times 10^{-23}$

$$= 23.6 \times 1.6 \times 10^{-19} \times 10^{6} = 37.76 \times 10^{-23}$$

Sol.
$$B = \frac{\mu_0 dI}{2\pi R} = \frac{\mu_0 I d_0}{(2\pi R)(2\pi R)} = \frac{\mu_0 I d_0}{4\pi^2 R^2}$$

13.

Sol. After long time,

$$I_A = \frac{2V}{7R} = 20 \text{ mA}$$

Immediately after the key is closed,

$$I = \frac{V}{3R} = \frac{70}{3} \text{ mA}$$

14.

Sol. For 1st secondary minima
$$\frac{ax}{D} = \lambda_1$$

For 1st secondary maxima
$$\frac{ax}{D} = \frac{3\lambda_2}{2}$$

$$\lambda_1 = \frac{3}{2}\lambda_2$$

$$\lambda = 440 \text{ Å}$$

16.

When S is open Sol.

So charge flown = $60 \mu C$

From A to B

Sol.
$$E2\pi r = \frac{d}{dt}(B\pi r^2)$$

$$E = \frac{r}{2} \frac{dB}{dt}$$

$$\tau = QEr = \frac{Qr^2}{2} \frac{dB}{dt}$$

Sol.
$$B = \frac{\mu_0 i}{2R}$$

$$\phi = B\pi r^2 = \frac{\mu_0 i\pi r^2}{2R}$$

Mutual inductance,
$$M=\frac{\varphi}{i}=\frac{\mu_0\pi r^2}{2R}$$

$$-\frac{dT}{dt} = \frac{\varepsilon \sigma A (T^4 - T_s^4)}{mC} = r$$

$$\frac{r_{sphere}}{r_{cube}} = \frac{m_{cube}}{m_{sphere}} = \frac{\rho a^3}{\rho \frac{4}{3} \pi r^3}$$

given,
$$4\pi r^2 = 6a^2$$

$$\frac{r_{sphere}}{r_{cube}} = \frac{3\left(\frac{4\pi}{6}\right)^{3/2} r^3}{4\pi r^3} = \sqrt{\frac{\pi}{6}}$$

SECTION - B

Sol. Separation between two maxima
$$\beta = \frac{\lambda D}{d}$$

Sol.
$$v_0^2 = 4v_0^2 - (2)(\mu g)(d) \Rightarrow 2\mu gd = 3v_0^2$$

 $v_0^2 = v^2 - (2)(5\mu g)(d) \Rightarrow v^2 = v_0^2 + 15V_0^2$
So $v = 4v_0$

$$Sol. \qquad \frac{2v}{2\left(\ell_0+1.2d\right)} = \frac{3v}{4\left(\ell_c+e\right)}$$

So
$$4(23+e) = 3(30+2e)$$

So $e = 1 \text{ cm}$

24. 9
Sol.
$$E_0 = CB_0$$

= $3 \times 10^8 \times 3 \times 10^{-8} = 9 \text{ V/m}$

25. 30
Sol.
$$\frac{1}{f_e} = -2\frac{1}{f_\ell} + \frac{1}{f_m}$$
,
Where $\frac{1}{f_\ell} = \left(\frac{4}{3} - 1\right) \left(\frac{1}{40}\right) = \frac{1}{120}$
So $\frac{1}{f_e} = -2\frac{1}{120} - \frac{1}{20} = -\frac{1}{15}$ cm
So R = 30 cm

Chemistry

PART - B

SECTION - A

26. B

Sol. $P_1V_1 = P_2V_2$

 $10m \times (4) \times A = (10 + h)m \times h \times A$

h = 3.06 m

27. C

Sol. Dithionous acid $\rightarrow H_2S_2O_4$

S = +3

Dithionic acid $\rightarrow H_2S_2O_6$

S = +5

28. Sol.

29. D

Sol.

30. B Sol.

Me

31.

Sol. LiClO₄ is more soluble than LiF.

32. D

Sol. Factual

33. B

Sol. BF₃ is electron deficient and is used to generate electrophile in F.C. reactions. Therefore, acts as catalyst in industrial processes.

- 34. E
- 35. A
- Sol. Degenerate orbitals = n^2 = $(5)^2$ = 25
- 36. D
- Sol. $\Delta S \rightarrow$ State function $\Delta S = \Delta S_1 + \Delta S_2$ $\Delta S = \frac{q}{T} \text{ since q = same; smaller temperature, higher entropy.}$
- 37. D
- $$\begin{split} \text{Sol.} & \quad \text{Ti}^{+3} \longrightarrow 3\text{d}^1 \longrightarrow t_{2g}^1 \\ & \quad \text{Cr}^{+3} \longrightarrow 3\text{d}^3 \longrightarrow t_{2g}^3 \\ & \quad \text{Mn}^{+3} \longrightarrow 3\text{d}^4 \longrightarrow t_{2g}^3 \text{eg}^1 \\ & \quad \text{Co}^{+3} \longrightarrow 3\text{d}^6 \longrightarrow t_{2g}^4 \text{eg}^2 \end{split}$$
- 38. A
- Sol. Factual
- 39. E
- Sol. MnO₂ oxidises unhindered primary allylic and benzylic alcohols to aldehyde.
- 40. C
- Sol. $\frac{1}{x_o a} \frac{1}{x_o} = k_2 t$

Rearranging

$$\frac{a}{x_0 - a} = x_0 k_2 t$$

 $\therefore \frac{a}{x_o - a} \text{ vs. t gives } x_o k_2 \text{ as slope.}$

41.

Sol.

HOOC

СООН

ĊООН

Sol. For KCN:
$$\Delta I_f = i K_f . m \Rightarrow 0.8 = K_f . 0.2 \times 2$$

$$K_f = 2 \qquad ... (i)$$

$$Hg(CN)_2 + mCN^- \longrightarrow Hg(CN)_{m+2}^{-m}$$
Initial 0.1 0.2 -
Final $(0.2 - 0.1 \text{ m})$ 0.1
Final effective molality = $(0.2 - 0.1 \text{ m}) + 0.1 + 0.2$

$$= 0.5 - 0.1 \text{ m}$$
New: $\Delta T_f = K_f . m$

$$0.6 = 2 \times (0.5 - 0.1 \text{ m})$$

m = 24m = 8

Mathematics

PART - C

SECTION - A

Sol.
$$A = \{1, 2, 3, \dots, 141\}$$

 $A \cap (B - C) = \{5, 11, 14, 17, 23, 26, 29, \dots, 134, 137\}$
Sum of elements = $(5 + 11 + 17 + \dots, 137) + (14 + 26 + 38 + \dots, 134)$

Sol.
$$x^2 - ax + 4 = 0$$
 must have atleast one positive root $\alpha \beta > 0$
 $both roots must be positive$
 $a \ge 4$

Sol.
$$30(1 + x + x^2)^{30} (1 + 2x) = \sum_{r=0}^{60} ra_r x^{r-1} (1 + x + x^2)$$

Equating coefficient of x^{20} on both sides we have, $30(a_{20} + 2a_{19}) = 21a_{21} + 20a_{20} + 19a_{19}$
 $\Rightarrow 21a_{21} = 10a_{20} + 41a_{19}$

Sol. Use
$$\int (xg'(x)+g(x))dx = xg(x)+C_1$$

Sol.
$$k = 2500 = 2^2.5^4$$

 \therefore number of factor = 5

Sol.
$$b = -4, c = 9$$

 $2\sin^2\theta = 3\cos\theta$
 $\Rightarrow 2\cos^2\theta + 3\cos\theta - 2 = 0$
 $\cos\theta = \frac{1}{2}$: $\sin^2\theta = \frac{3}{4}$
: $4x^2 - 4y^2 + xy + 12x + \frac{3}{2}y + 9 = 0$

Sol.
$$r = \frac{r_1 r_2}{r_1 + r_2 + 2\sqrt{r_1 r_2}}$$

Sol.
$$A = \frac{1}{2} (4 - 8t) 8t^2 = 16(t^2 - 2t^3)$$

$$\frac{dA}{dt} = 16(2t - 6t^2) = 0 \implies t = 0, \frac{1}{3}$$

$$\frac{d^2A}{dt^2} = 16(2 - 12t) < 0 \text{ at } t = \frac{1}{3} \implies A \text{ is maximum}$$

$$\therefore Q\left(\frac{16}{3}, \frac{8}{9}\right) \text{ lies on the line } \therefore m = \frac{2}{3}$$

Equation of tangent to $(x + a)y = \lambda$ is

$$y=2x+\frac{\lambda}{t}+2\big(a-t\big);\,\lambda=-2t^2$$

$$\therefore \quad 2a - 4t = +8 \Rightarrow a - 2t = 4$$

and
$$(a - 2)4 = \lambda = -2t^2$$

$$(t + 2)^2 = 0$$

$$\Rightarrow$$
 t = -2

$$\therefore \quad \lambda = -8 \& a = 0$$

Sol.
$$4a^2 - b^2 = 25$$

Equation of auxiliary circle is $x^2 + y^2 = 8$

$$\Rightarrow$$
 a² = 8, b² = 7

Also
$$a^{2} + b^{2} = A^{2} - \lambda^{2}$$

⇒
$$a^2 = 8, b^2 = 7$$

Also $a^2 + b^2 = A^2 - \lambda^2$
⇒ $\lambda^2 = 25 - 15 = 10$

$$\therefore \quad \text{eccentricity of ellipse } e = \sqrt{1 - \frac{10}{25}} = \sqrt{\frac{3}{5}}$$

Sol. IF =
$$e^{x/2} \sqrt{\sin x + \cos x}$$

: solution is
$$ye^{x/2}\sqrt{\sin x + \cos x} = \int e^{x/2} (\tan x + 2 \sec^2 x) dx$$

$$ye^{x/2}\sqrt{\sin x + \cos x} = 2e^{x/2}\tan x + c$$

$$\because y\left(\frac{\pi}{4}\right) = 2^{3/4} \therefore c = 0$$

$$y = \frac{2 \tan x}{\sqrt{\sin x + \cos x}}$$

Sol.
$$\operatorname{Arg}\left(\frac{z^4-z}{z^2-z}\right)=0$$

$$\Rightarrow Arg\left(\frac{z(z-1)(z^2+z+1)}{z(z-1)}\right) = 0 ; z \neq 0, 1$$

$$\Rightarrow$$
 z² + z + 1 is positive real number (x + iy)² + x + iy + 1 > 0

$$\Rightarrow x^2 - y^2 + x + 1 > 0 \text{ and } y(1 + 2x) = 0$$
(i) $y = 0, x^2 + x + 1 > 0 \Rightarrow x \in R$

(i)
$$y = 0, x^2 + x + 1 > 0 \implies x \in R$$

(ii)
$$x = -\frac{1}{2}, y^2 < \frac{3}{4} \Rightarrow y \in \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right).$$

Sol.
$$\frac{a}{a-\sqrt{3}} + \frac{b}{b-\sqrt{5}} + \frac{c}{c-\sqrt{7}} = 2$$

If
$$a = 2\sqrt{3}$$
, then $\frac{b}{b-\sqrt{5}} + \frac{c}{c-\sqrt{7}} = 0$

Possible value of
$$b = \frac{2\sqrt{5}}{3}$$
, $c = 2\sqrt{7}$.

Sol.
$$\frac{\frac{1}{2}\sin\left(\tan^{-1}\frac{4}{3}\right)BD\sin\theta}{\frac{1}{2}\sin\left(\tan^{-1}7\right)BD\sin\left(\frac{\pi}{4}-\theta\right)} = 2$$
$$\Rightarrow \frac{\frac{4}{5}\sin\theta}{\frac{7}{5\sqrt{2}}\left(\frac{\cos\theta - \sin\theta}{\sqrt{2}}\right)} = 2 \Rightarrow \cot\theta = \frac{11}{7}$$

Sol.
$$P(A) = \frac{2}{5}, P(B) = \frac{3}{5}$$

$$P(D) = \frac{3}{20}$$

$$6 \times \frac{2}{5}x + \frac{3}{5} \times x = \frac{3}{20} \Rightarrow x = \frac{1}{20}$$

$$P\left(\frac{B}{D^{C}}\right) = \frac{P(B \cap D^{C})}{P(D^{C})} = \frac{\frac{3}{5} \times \frac{19}{20}}{\frac{85}{100}} = \frac{57}{85}$$

Sol.
$$\frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i} = \frac{15a + 25b + 980}{26 + a + b} = \frac{277}{9}$$

Also
$$30 + \frac{\frac{26 + a + b}{2} - (a + b + 3)}{11} \times 10 = \frac{335}{11}$$

 $\Rightarrow a + b = 19$...(2)
From (1) and (2) $a = 7$, $b = 12$.

67. B

68. A

Sol.
$$\tan(\alpha + \beta) = \frac{h}{50}$$

$$\Rightarrow \frac{h}{50} = \frac{\frac{8}{21} + \frac{h}{250}}{1 - \frac{8}{21} \times \frac{h}{250}} = \frac{2000 + 21h}{5250 - 8h}$$

$$h = 25$$

...(1)

69. B
Sol.
$$35 = 9 \times 5 = 45$$
 $8 \times 5 = 40$
 $8 \times 9 \times 9 \times 5 = 3240$
 $8 \times 9 \times 9 \times 5 = 3240$
 $8 \times 9 \times 9 \times 5 = 3240$

SECTION - B

71. 5

Sol.
$$\sum_{m=1}^{15} \frac{\sin\left(\theta + m\frac{\pi}{18} - \left(\theta + (m-1)\frac{\pi}{18}\right)\right)}{\cos\left(\theta + m\frac{\pi}{18}\right)\cos\left(\theta + (m-1)\frac{\pi}{18}\right)}$$

$$= \sum_{m=1}^{15} \tan\left(\theta + m\frac{\pi}{18}\right) - \tan\left(\theta + (m-1)\frac{\pi}{18}\right)$$

$$\Rightarrow \tan\left(\theta + \frac{5\pi}{6}\right) - \tan\theta = 4 + 2\sqrt{3}$$

$$\Rightarrow \cos\left(2\theta + \frac{5\pi}{6}\right) = 1$$

$$\Rightarrow \theta = n\pi - \frac{5\pi}{12}; n \in I.$$

72. 59
Sol. Squaring and adding
$$1 + \sin^{6}A + \cos^{6}A + 2(\cos^{4}A - \sin^{4}A) = 1/4$$

$$\Rightarrow 2 + 1 - 3\sin^{2}A \cos^{2}A + 2\cos 2A = 1/4$$

$$2 - 3/4 \sin^{2}2A + 2\cos 2A = 1/4$$

$$\Rightarrow 3\cos^{2}2A + 8\cos 2A + 4 = 0$$

$$\cos 2A = -2/3$$

$$\sin A = \sqrt{\frac{5}{6}}$$

$$\therefore \quad cosB = 2\left(\sqrt{\frac{5}{6}} - \frac{5}{6}\sqrt{\frac{5}{6}}\right) = \sqrt{\frac{5}{54}}.$$

73. 13
Sol.
$$a = \frac{5\pi}{12}, b = \frac{\pi}{3}$$

$$\int_{\pi/3}^{5\pi/12} \left[\frac{\tan x}{\sqrt{3}} \right] dx$$

$$= \int_{\pi/3}^{\tan^{-1} 2\sqrt{3}} 1 + \int_{\tan^{-1} 2\sqrt{3}}^{5\pi/12} 2 dx = \cot^{-1} 2\sqrt{3} = \csc^{-1} 13.$$

Sol. Let
$$A = I + B$$
 where $B = \begin{bmatrix} 0 & 0 & 0 \\ \sqrt{a} & 0 & 0 \\ a\sqrt{a} & \sqrt{b} & 0 \end{bmatrix}$, $B^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{ab} & 0 & 0 \end{bmatrix}$, $B^3 = 0$ (Null)

$$\therefore A^n = I + {}^nC_1B + {}^nC_2B^2$$

$$\Rightarrow A^n = \begin{bmatrix} 1 & 0 & 0 \\ n\sqrt{a} & 1 & 0 \\ na\sqrt{a} + \frac{n(n-1)}{2}\sqrt{ab} & n\sqrt{b} & 1 \end{bmatrix}$$

$$A^n = I + {}^nC_1B + {}^nC_2B^2$$

$$\Rightarrow A^{n} = \begin{bmatrix} 1 & 0 & 0 \\ n\sqrt{a} & 1 & 0 \\ na\sqrt{a} + \frac{n(n-1)}{2}\sqrt{ab} & n\sqrt{b} & 1 \end{bmatrix}$$

$$\Rightarrow$$
 $\sqrt{a} = \sqrt{b} = 72$ \Rightarrow a = b and 72a + $36(72 - \sqrt{a}) = 3600$

$$\Rightarrow \sqrt{a} = 4 \Rightarrow a = 16$$
 and $n = 18$.

Sol. Let
$$P(t, t^2)$$
, $Q(t^4, t^2)$

$$\int_{0}^{t} (x^{2} - f(x)) dx = 2 \int_{0}^{t^{2}} (\sqrt{y} - y^{2}) dy$$

$$\Rightarrow t^{2} - f(t) = 2(t - t^{4})2t$$

$$\Rightarrow f(t) = 4t^{5} - 3t^{2}$$

$$f(\frac{1}{2}) = \frac{4}{32} - \frac{3}{4} = -\frac{20}{32}.$$

