Closure Properties of Regular Languages

We show how to combine regular languages.

Closure Properties

A set is *closed* under an operation if applying that operation to any members of the set always yields a member of the set.

For example, the positive integers are closed under addition and multiplication, but not division.

Closure under Kleene

Fact. The set of regular languages is closed under each Kleene operation.

That is, if L_1 and L_2 are regular languages, then each of $L_1 \cup L_2$, L_1L_2 and L_1^* is regular.

Proving Closure under Kleene

The easiest approach is to show that the REs for L_1 and L_2 can be combined or adjusted to form the RE for the combination language.

Example: The RE for L_1L_2 is obtained by writing down the RE for L_1 followed by the RE for L_2 .

Closure under Complementation

Fact. The set of regular languages is closed under complementation.

The complement of language L, written \overline{L} , is all strings not in L but with the same alphabet.

The statement says that if L is a regular language, then so is \overline{L} .

To see this fact, take deterministic FA for L and interchange the accept and reject states.

Closure under Intersection

Fact. The set of regular languages is closed under intersection.

One approach: Use de Morgan's law:

$$L_1 \cap L_2 = \overline{(\overline{L_1} \cup \overline{L_2})}$$

and that regular languages are closed under union and complementation.

Product Construction for Intersection

Each state in the *product* is pair of states from the original machines.

Formally, if L_1 is accepted by DFA M_1 with 5-tuple $(Q_1, \Sigma, q_1, T_1, \delta_1)$ and L_2 is accepted by DFA M_2 with 5-tuple $(Q_2, \Sigma, q_2, T_2, \delta_2)$. Then $L_1 \cap L_2$ is accepted by the DFA $(Q_1 \times Q_2, \Sigma, (q_1, q_2), T_1 \times T_2, \delta)$ where $\delta((r, s), \mathbf{x}) = (\delta_1(r, \mathbf{x}), \delta_2(s, \mathbf{x}))$.

Example: Even 0's and 1's

Suppose L_1 is the binary strings with an even number of 0's, and L_2 the binary strings with an even number of 1's. Then the FAs for these languages both have two states:

And so the FA for $L_1 \cap L_2$ has four states:

Product Construction for Even 0's and 1's

Overview

A regular language is one which has an FA or an RE. Regular languages are closed under union, concatenation, star, and complementation.