

Für Schaltbildbeschreibung IAC, Stereodecoder, Motorregelung, Cassettenspieler siehe 22AC860. Für Schaltbildbeschreibung SK/DK-Decoder siehe 22AC864.

Service Manual

12 V ⊝-||⊪

Documentation Technique Servicio Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio

Subject to modification 4822 725 12867 Printed in The Netherlands **PHILIPS**

							,
sк	⊗ ——	\Diamond	W.	, dh	Ø	<u></u>	(I)
		A	Min. L		5212, 5211 5210, 5209		Max. 1
MW (512-1620 kHz)	468 kHz	₿	Willi. L		5207		Min.
	516 kHz		Max. L	2222	5605		
MW (512-1620 kHz)	600 kHz	₿	:		5603		Max. 1
•	1500 kHz				2222		
	1	©	Min. L				3
	IF Δf = 200 kHz (50 Hz)				5201	4>	·
FM (87.5-104 MHz)	IF 2	\$			5202 3		5
	IF AM 1 kHz 30 %				3220		Min. (1) [4]
FM (87.5-104 MHz)	96 MHz - 1 kHz (∆f = 75 kHz)	₿	5		5602 5601		Max. 1
Stereodecoder							
FM (07 F 104 MULT)	Ohne signal				3313		6
FM (87.5-104 MHz)	7	<u> </u>			3300	1	
IAC	.	1 4				·	1
FM (87.5-104 kHz)	Pilot 19 kHz (250 mV)	(F)			3267		2 8
,	1-3 V	(G)					
SK/BK/DK-decoder	200 μsec.	har S. N	(loolzer) entr	nommen		<u> </u>	
Die Signale werden ei	inem VRF-coder 157Z (Luti		naerzer/ entr		5500, 5501		Max.BK (7
FM (87.5-104 MHz)	HF + BK (A) + DK	₿			3585		Max.V8
Laufwerk angeschloss einem Zusatzdraht ein dem Hauptgerät und	und Abgleicharbeiten muss c sen sein. Ausserdem muss mi ne Massenverbindung zwisch dem Laufwerk hergestellt se stellungen ATC abschalten	it ien		dreher 6 Frequ	stand kontrollieren bis zur Stellung, enzmesser an 6 kHz (+ 500 Hz/-	, angegebe > .3313 a –300 Hz)	n in Abb.2. bgleichen
(Brücke C schliess Auf Resonnar abstimmen. D abgleicht (sieh Generators ur anschliessen, te	en). nzfrequenz der keramischen nies ist die Frequenz, worauf ne Abb. 1). Die Massen des nd des Voltmeters an Printpl und zwar möglichst nahe am nzw. am Messpunkt und B öffnen.	man atte		Feldst von M grenzt Abgle 1. We Sto 2. We au	ichung ist notwen enn das Gerät zu s ereo kommt. enn das Gerät bei f Stereo kommt. I uschniveau unakz	Gerät nac edergabe dig pät oder r zu geringe n diesem eptabel he	h und nach kommt abge- nicht auf er Feldstärke Fall ist das och.
3 Gleichspannu	ng an \$ auf \$ 5 mV abglise wird der Nulldurchgang c			spann Auf n	ere den Oszillogra ung. Zeitbasis auf ninimale Abweich Ilen (siehe Abb. 3	f 20 μsec/d ung der A	cm schalten.

4 Brücke A schliessen

				TS7544 D7525		TS7545		M5003	3			IC 7300		K5002a IC4525	TS7510	TS7511
TS7514 TS7540 S5500 TS7541 S5501 TS7548 07401,07533	D7520 D7522,D7523 TS75			TS7551,D7002	07505	D7006	D7502		·	D7305	. (K5002b	TS7512	TS7513
UEBR. 07507,07504 07530,07531 LA1001 07521 07532	F1201 D7534,S5005	3300.,51.02.	550		2547	2519	2306,2307		2300	2302 2303	2308		2304	2508,2501	2502	250
C 2530 2531 2532 2554 2533 2536 2555,2314,2535 2541	2542,2544 2545	2546 2550	2551	2561 2540 2524 2523,2518	2347	2313	2301	2522	2521		2309		2305	2513,2506	2507	251
2330 2331 2332 2332 2332 2332 2332 2332	2558 2543, 2559	2515			50.3561.3556 3555	3557 3558 330		3529 352	5	3301	3314		3310			
C 2525 2529 2553 2334,2406,2320 2556,2321 2605 2537	3588 3550	3566 3592			3562/ 3311	000, 000,00	3528,3308	3532			3313		3309			
R 3542 3543 3302 3303 3500 3500 3500 3500 3500 350	3547 3589	3518 3567	3572 35		3562 3311		3530,3307							3303		3319
R. 3541 3579 5565/554 579 579 579 579 579 579 579 579 579 579	3549 3565	3519	3593 35			3521, 3531								3304		
R 3544 3334, 3363 3643	3580	3590 3516	3594 3535,35	517		3521,3531	3333									

08c 721	1.7217 7201.7202.7205.7204	7216		7206a.7206b			7214		 TS.D.ETC.
5212		5201	5202						 S
	2204,2205,2208 ÷ 2210	2211,2212		2123,2125,2122,2213 ÷ 2216			2203		 2101÷2225
2245	2242.2246 2248					2257÷2261,2255.2270	2266.2271.2254	2272.2250 ÷2253.2267.2262 ÷2265	2268.2269 2226÷2272
3209	3214 ÷ 3217.3210.32	11		3115.3220 3134	3222.3221	3218	3208		3101÷3225
3203		2210				2258 ± 2262 2270 22	73 3380 337/ 3381	3250 ÷ 3255 3268 3269 3264 ÷ 3267	 3271 3226÷3281

Zwangslautstärke

Mit 3322 die Zwangslautstärke auf den verlangten Pegel einstellen. Dies kann während einer Durchsage folgen. Eine Durchsagesituation kann auch nachgeahmt werden, indem einen Schraubenzieher durch das Metallgehäuse gesteckt wird (siehe Abb. 4).

Abb. 2

16111C12

Abb. 4

15725A4

JUSTIEREN UND KONTROLLIEREN DES CASSETTENSPIELERS

1. Justieren des Wiedergabe-Kopfes

Kontrollieren der Kopfhöhe nach Abb. 12. Senkrechtstellung W-Kopfes mit Mutter 114a justieren und, wenn nötig, die horizontale Lage von Block 17 etwas ändern (siehe Abb. 23). Dann Mutter 114a verlacken.

Justieren des Azimuts

- Testcassette 8945 600 13501 (6300 Hz) in den Spieler schieben.
- Röhrenvoltmeter an Lautsprecherklemmen des rechten Kanals anschliessen.
- Gerät in Stellung "Wiedergabe" schalten.
- Mutter 114b so justieren, dass eine maximale Ausgangsspannung gemessen wird (Den Wert dieser Spannung notieren).
- Röhrenvoltmeter an Lautsprecherklemmen des linken Kanals anschliessen.
- Mutter 114b wieder so justieren, dass eine maximale Ausgangsspannung gemessen wird (Auch diesen Wert notieren).
- Wiedergabe-Kopf auf Durchschnittswert der beiden notierten Werte so justieren, dass die Ausgangsspannungen der beiden Kanäle gleich gross sind. Mutter 114b verlacken.

2. Kontrollieren der Bandgeschwindigkeit

a. Mit Cassetten-Service-Satz (4822 395 30052) Bandgeschwindigkeit kontrollieren.

- b. Kontrollieren mit Testcassette 8945 600 13501, der jede 4,76 m ein 800-Hz-Signal aufmoduliert ist.
- Cassette in den Spieler schieben und Gerät in Stellung "Wiedergabe" schalten.
- Die Zeit zwischen zwei Signalen muss 98-102 Sekunden betragen.
 Sollte die Geschwindigkeit zu niedrig sein, so ist zu kontrollieren, ob die Anpressrolle, die Rutschkupplung, das Schwungrad usw. einwandfrei drehen.
 Wenn nötig, ist die Bandgeschwindigkeit mit 3528 einzustellen.

3. Rutschkupplung 57 (Abb. 22)

Bei Wiedergabe soll die Reibungkraft 35-50 g betragen. Die Gegenreibungskraft bei schnellem Rücklauf soll 4-8 g betragen. Wird das Band in der Cassette nicht oder unregelmässig gewickelt, so kann das auf folgende Ursachen zurückzuführen sein:

- 1. Zu geringe Reibungskraft beim Aufwickeln.
- 2. Unrichtige Gegenreibungskraft.
- 3. Zu viel Reibung in der Cassette.

Im erstgenannten Fall ist Rutschkupplung 57 zu ersetzen. Im Zweiten Fall ist Ring 77 zu ersetzen. Für übrige Einstellungen siehe Abbn. 13 und 21.

Es empfiehlt sich, nach ungefähr 500 Betriebsstunden den Wiedergabe-Kopf, die Andruckrolle und die Tonwelle mit Alkohol zu reinigen.

LISTE MECHANISCHER EINZELTEILE, CASSETTENSPIELER

51 52 53 54 55	4822 535 70498 4822 403 50872 4822 403 50873 4822 402 50869	76 77 78 79 80	4822 532 50979 4822 532 50981 4822 532 50719 4822 522 31205 4822 532 50704	101 102 103 104 105	4822 157 50808 4822 532 51072 4822 505 10556 4822 492 31248
56 57 58 59 60	4822 532 50296 4822 522 31203 4822 532 50265 4822 528 90244 4822 522 31224	81 82 83 84 85	4822 532 50262 4822 522 31206 4822 532 10691 4822 528 70252	106 107 108 109 110	4822 410 21631 4822 520 30285 4822 492 51013 4822 492 31249
61 62 63 64 65	4822 532 50706 4822 522 31204 4822 492 51139 4822 528 20193	86 87 88 89 90	4822 532 50978 4822 492 31126 4822 492 51113 4822 528 20192	111 112 114 116 117	4822 532 14486 4822 249 10075 4822 505 10323 4822 403 40068 4822 532 50268
66 67 68 69 70	4822 532 50945 4822 492 31251 4822 358 20099 4822 492 31252	91 92 93 94 95	4822 528 90243 4822 492 40577 4822 532 54255 4822 361 70297	118 119 121 122 123	4822 493 50871 4822 492 31311 4822 130 30938 4822 410 21632 4822 492 31253
71 72 73 74 75	4822 492 40575 4822 358 20101 4822 492 62022 4822 492 40576	96 97 98 99 100	4822 528 60092 4822 532 50692 4822 520 30294 4822 532 10696		

PLAYBACK HEAD TETE REPRODUCTION

5002 3.9±0.1m 509 15724A4

Fig. 12

PRESSURE ROLLER 116 **GALET PRESSEUR 116**

Fig. 13

FLYWHEEL 96 VOLANT 96

Fig. 14

EJECT BRACKET 118

Fig. 15

Fig. 17

POSITION OF CATCHES 64,89 POSITION DES CLIQUETS 64,89

Fig. 16

POS << BRACKET 52 POS << ETRIER 52

Fig. 19

POS >> BRACKET 52 POS >> ETRIER 52

Fig. 20

EJECT BRACKET 118 ETRIER EJECTION 118

Fig. 21

Fig. 22

4211A

			:
-II-			
2110 0.82 pF-1% -100V-P100 2114,2122 10 nF-63 V 2116 8.2 pF-½pF-63 V-N220	4822 122 31214 4822 122 30043 4822 122 31281	5001 5005 5101	4822 157 50808 4822 321 20339 4822 142 50131
2117 120 pF-2% -100 V - N1500 2118 10 pF-2% -63 V - N220 2119 2.7 pF-¼pF-100 V-P100 2125 3.3 μF-10 V-tantal	4822 122 31284 4822 122 31282 4822 122 31291 5322 124 14023	5102 5201 5202 5204	4822 157 50739 4822 153 50108 4822 153 50102 4822 526 10016
2126÷2132 10 nF-63 V 2201÷2205 10 nF-63 V 2208,2210 10 nF-63 V 2209 4.7 nF-63 V	4822 122 30043 4822 122 30043 4822 122 30043 4822 122 31125	5205 5207,5211 5209,5210 5212	4822 158 10107 4822 153 10253 4822 153 10252 4822 156 40534
2211,2236 10 nF-63 V 2222 120 pF-trimmer 2225,2234 6.8 nF-5% -63 V 2232 120 pF-2 % -100 V-NP0	4822 122 30043 4822 125 50081 4822 121 50538 4822 122 31247	5500 5501 5601 5602	4822 156 40655 4822 156 40656 4822 156 20714 4822 156 20715
2233 390 pF-2% -250 V 2235,2240 22 nF-10 % -100 V 2242,2243 10 μF-40 V 2244,2245 10 nF-63 V	5322 121 54128 4822 121 40513 4822 124 20708 4822 122 30043	5603 5605	4822 156 20702 4822 156 20704
2248 22 nF-10 % -100 V 2266 10 nF-63 V	4822 121 40513 4822 122 30043	7001 CQY95	4000 400 20055
2268 10 μF-40 V 2302 10 μF-3 V-tantal 2303 0.47 μF-35 V-tantal 2308 560 pF-1% -250 V 2315,2328 0.15 μF-35 V-tantal	4822 124 20708 5322 124 10174 4822 124 10195 4822 121 50576 5322 124 14061	7002 CQY97 7006 CQY54 7101,7201 BA315 7102 BB117	4822 130 30955 4822 130 30923 4822 130 30914 4822 130 30843 4822 130 30913
2323,2326 1.8 nF-5% -63 V 2536 6.8 nF-2% -63 V 2541 22 nF-10% -100 V	5322 121 54044 4822 121 50538 4822 121 40513	7202,7204, 7205 } BA315 7206 2-AA119	4822 130 30843 4822 130 30312
2542,2546 0.47 μF-35 V-tantal 2545,2550 1 μF-35 V-tantal	4822 124 10195 5322 124 14075 4822 121 10195	7207,7208, } BA315	4822 130 30843
2551	5322 121 54073 5322 121 54073 5322 121 54073 5322 124 14074 5322 124 14064	7305 AA119 7305 BYX36-150 7501 BAW62 7502 BZX79/C4V7	4822 130 31012 5322 130 30432 4822 130 30613 5322 130 34174
2561 1 μF-35 V-tantal	5322 124 14075	7504 BZX79/B10 7507 7520÷7525 BA315	5322 130 34297 4822 130 30843
-LF	4000 400 40402	7530 AA119 7531÷7535 BA315	4822 130 31012 4822 130 30843
3210,3300 1 MΩ Einstellregler $ 3220,3267 $ 1 kΩ Einstellregler $ 3228 $ 1 MΩ - 9 V - V·D·R $ 3244 $ 91 kΩ-5 % -0.1 W	4822 100 10103 4822 100 10021 4822 116 20069 5322 111 30307		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4822 110 63092 4822 100 10035 4822 110 63121 4822 102 50016 4822 111 30466	7105,7106 BF324 7107,7219 40835 7108 40838 7216 BC548A 7217 BF241 7309,7514 BC548	5322 130 44396 4822 130 40949 4822 130 41077 4822 130 40948 4822 130 40898 4822 130 40938
3528 470 Ω Einstellregler 4.7 kΩ Einstellregler	4822 100 10023 4822 100 10236	7510,7512, BC549B 7545 7511,7513, BC548B	4822 130 40936
-Übrige		7511,7513, 7549	4822 130 40937 4822 130 40937
1001 18 V-1,8 W 1201 2A (T) 4525	4822 134 40299 4822 253 30025 4822 111 90036	7544,7550 BC558B 7548 BC548C	4822 130 44197 4822 130 44196
4525 5002 W-Kopf 5003 Motor 7111÷7113	4822 111 90036 4822 249 10089 4822 361 70297 4822 242 70249	(1111)	
		7214 TDA1001 7300 TDA1005 7301,7302 TDA1010 7518 TDA1006-S1	4822 209 80284 4822 209 80315 4822 209 80432 4822 209 80406

82994

Circuit Description

Das 22AC860 ist ein ganz neues Stereo-Cassetten-Radio.

Ausgangsleistung 2x5 W.

Spezielle Turnolock-Taste für: 3xFM, 2xMW, 1xLW

für -/84: 2xFM, 1xMW, 3xLW

Abmessungen: 180x43x135 mm

Teil I dieser Service-Dokumentation beschreibt:

1. IAC Entstörschaltung

TDA 1001

2. PLL (Phase Locked Loop) Stereo-Decoder

TDA 1005

3. Motorsteuerschaltung

TDA 1006

Description des cicuits Schaltungsbeschreibung Kredsløbsbeskrivelse Kretsbeskrivelse Kretsbeskrivning Toimintaselostus Description del circuito

BESCHREIBUNG DER ENTSTÖRUNGSSCHALTUNG (IAC Interference Absorption Circuit)

Einleitung

Funkstörung erhält man meistens über die Antenne. Die Flankensteilheit ist in der Regel gross; die Form der Störspannung zeigt abrupte Übergänge. Derartige Störungserscheinungen sind aus einer grossen Anzahl sinusförmiger Spannungen aufgebaut, und zwar in der Frequenzfolge von Null bis unendlich. Da die NF-Information bei FM-Stereo einen Bereich von ca. 53 kHz umfasst, ist es erklärlich, dass die Störungen auf FM und insbesondere auf FM-stereo eo stärker durchkommen als bei AM.

Die Wirkungsweise der IAC

Vorausgesetzt, dass ein NF-Signal mit Stör mpuls am Eingang ist (Punkt I-IC), dann durchläuft dieses Signal ein NF-Durchlassfilter und erscheint verstärkt am Eingang einer Torschaltung (Punkt 4 der IC). Das NF-Durchlassfilter ist so dimensioniert, dass:

 Der -3 dB-Punkt auf 65 kHz liegt. Die vollständige Stereo-Information wird also weitergegeben

2. Die Verzögerungszeit 2-3 µs beträgt.

Auch wird das Signal an Punkt 1 der IC durch ein Hochpassfilter geführt. Dieses Filter bildet ein differenziertes Netzwerk für Signale mit Frequenzen höher als 53 kHz.

Die so entstandenen differenzierten Nadeln, die fast nur von Störungserscheinungen abgeleitet sind, werden einem Impulsverstärker zugeführt.

Die verstärkten Impulse werden gleichgerichtet und

nach einem Schmitt-Trigger gesteuert.

Eine aus festen Komponenten bestehende RC-Kombination an Punkt 11 der IC bestimmt die Breite des Triggerimpulses aus dem Schmitt-Trigger. Der positive Impuls steuert die Torschaltung in dem

Augenblick dicht, so dass das bereits eingetroffene gestörte NF-Signal gesperrt wird.

Mit anderen Worten, das NF-Signal vom Demodulator wird auf dem Niveau, welches das Signal in dem Augenblick da die Störung beginnt, konstant gehalten. Bestimmend hierfür ist die Ladung am

Špeicherkondensator C797.

Bei einer 50 prozentigen Störung des NF-Signals kann die Störung noch mit Erfolg unterdrückt werden, vorausgesetzt, dass die Unterdrückungszeit hinsichtlich der Periodenzeit des Entstörsignals klein ist. Wird dieses Niveau überschritten, dann erfolgt eine Rückregelung, wodurch nur Störimpulse mit grosser Amplitude unterdrückt werden.

Dies erreicht man wie folgt:

Das Störsignal besteht meistens aus einem ausgebreitetem Spektrum mit Störimpulsen verschiedener Amplituden. Die Intensität der Störimpulse bestimmt das Mass der Rückregelung des Impulsverstärkers. Diese Intensität wird an Punkt 12 der IC gemessen und an einem Ausgang des Schmitt-Triggers (Punkt 10 der IC).

Diese beiden Messungen ergeben eine Regelspannung, die die Verstärkung des Impulsverstärkers derart zurückdringt, dass jetzt nur Steuerimpulse einen Triggerimpuls aus einem Schmitt-Trigger abgeben, die ein bestimmtes Niveau übersteigen. Die Störimpulse mit geringer Amplitude werden dann nicht unterdrückt.

Ein aktives RC-Filter von 19 kHz sorgt dafür, dass der 19-kHz-Pilotten bei Unterdrückung des gestörten NF-Signals in gleichem Rhythmus weiterschwingen kann (sin a im Diagramm).

Ist dies nicht der Fall - z.B. bei einem falschen Abgleich - dann ist die Phasen- und Amplitudendifferenz am Ende des Unterdrückungsimpulses zu gross (sin b im Diagramm). Dies erfährt man als einen hinderlichen Flötenton. Die Wirkungsweise des Filters wird hauptsächlich von den externen passiven Komponenten bestimmt.

Bemerkung:

Die Tatsache, dass diese Schaltung mit Erfolg Störungen unterdrückt, impliziert nicht, dass alle Autos mit eingebauter IAC nicht für FM entstört werden müssen. Es besteht dann die Möglichkeit dass der maximale Störpegel, der die Schaltung noch unterdrücken kann, zu schnell überschritten wird. In vielen Fällen kann man Entstörmaterial einsparen.

Fig. 6a

Fig. 6b

Fig. 7a

Fig. 7b

Fig. 1a

Fig. 1b

Fig. 2

Fig. 3

Fig. 4

Fig. 5

PHASE LOCKED LOOP STEREO-DECODER TDA 1005

Der IS-PLL Stereo-Decoder bietet einige wesentliche Vorteile im Vergleich zu den bisherigen Decodern.

1. Dieser Decoder lässt sich leicht abgleichen.

Man bracht nur einige Potentiometer und für Hi-Fi eine Spule abzugleichen.

2. Eine Kanaltrennung von mehr als 50 dB ist ohne Mühe zu erzielen.

Wirkungsbeschreibung

Eine PLL-Schaltung arbeitet nach dem Prinzip eines spannungsgesteuerten Oszillators. Die Frequenz wird mit einer Phasendisskriminatorschaltung konstant gehalten.

Die PLL-Schaltung bildet den wichtigsten Teil eines PLL-Stereo-Decoders (siehe Abb. 1).
Der spannungsgesteuerte Oszillator (VCO) liefert

eine Spannung mit einer Wiederholungsfrequenz von 76 kHz.

Die Form der Ausgangsspannung wird durch die Lade-und Entladekurve von Kondensator C dargestellt. Mit R stellt man auf 76 kHz ein. Dreht man R, so ändert sich die RC-Zeit.

Mit einigen Zweiteiler-Schaltungen erhält man: a. eine 38-kHz-Rechteckspannung, die die Matrix

b. zwei Rechteckspannungen von 19 kHz, die gegeneinander um 90° phasenverschoben sind. Die um 90° phasenverschobene Rechteckspannung wird dann mit dem 19-kHz-Pilotton verglichen, der vom Sendersignal herrührt.

Diese Signale werden tatsächlich multipliziert, und

zwar im Phasendiskriminator.

Wenn die Rechteckspannung genau 19 kHz beträgt (was nur möglich ist wenn der V.C.O exakt auf 76 kHz nachgeregelt ist), hat die Produkt-Kurve einen Durchschnittswert gleich Null (siehe Abb. 2). Ist die Oszillatorfrequenz höher oder niedriger als 76 kHz, dann wird der Durchschnittswert der Produkt-Kurve grösser oder kleiner als Null sein.

Die aus der Phasenvergleichschaltung gewonnene Gleichspannung steuert den Oszillator bis ein Wert von genau 76 kHz erreicht worden ist

Der Regelbereich (Fangbereich) ist 73...79 kHz.

Stereo-Anzeige

Abb. 3 zeigt die Stereo-Anzeige-Vorrichtung. Im Pilotdiskriminator findet das gleiche Verfahren statt wie im Phasendiskriminator. Der einzige Unterschied ist die Tatsache, dass die 19-kHz-Rechteckspannung und der Pilotton gleichphasig sind (siehe Abb. 4). Die Produkt-Kurve stellt dann das vollweggleichgerichtete 19-kHz-Pilotsignal dar. Das Gleichspannungsniveau zeigt an, dass das 19-kHz-Pilotsignal vorhan-

Je nach der Art der Schaltung wird Punkt 14 (Abb. 7a) benutzt für:

a. Anschliessen eines Mono/Stereo-Schalters (meistens bei Autoradios);

Zuführen einer aus dem ZF-Verstärker abgeleiteten

Dieser Spannungswert ist dem Signal/Rausch-Verhältnis proportional. Die unter B erwähnte Methode wird in HiFi- und Tischgeräten angewandt. Wenn ein Stereosignal vorhanden ist und das Signal/ Rausch-Verhältnis ausreicht, ist Stereo-Betrieb möglich. Die 38-kHz-Rechteckspannung erlaubt es, mit dem Demodulator die L- und die R-Information zu trennen. An Punkt 15 der IS wird die Stereo-Anzeigelampe angeschlossen.

Beide Schmitt-Trigger befinden sich in der Schaltung, damit vermieden wird, dass der Decoder fortwährend von Mono auf Stereo umschaltet, wenn die Feldstärke des Senders sich wiederholt ändert.

Zusammenfassung

Der Spannungsgesteuerte Oszillator erfüllt folgende Funktionen:

- 1. Rückgewinnen des 38-kHz-Hilfsträgers
- 2. Automatisches Umschalten von Stereo- auf Mono-Betrieb
- 3. Stereo-Anzeige

Die Tatsache, dass die Oszillatorspannung und das Pilotsignal immer in Phase sind, bestimmt die Qualität des Decoders - insbesondere was das Übersprechen anbelangt.

Der Demodulator, der das MPX-Signal in eine getrennte L/R-Information umsetzt, weicht grundsätzlich nicht von den bisherigen Stereo-Decoderschaltungen ab. Zwai besondere Aspekte werden jetzt ausführlicher behandelt.

Frequenz-MPX und Zeit-MPX

Dieser PLL Decoder hat zwei Anwendungsmöglich-

1. Das Frequenz-MPX-Verfahren für HiFi-Geräte

Das Zeit-MPX-Verfahren für Autoradios und Tischgeräte.

Beim Frequenz-MPX-Verfahren werden Summen oder "m"Signal und Differenz oder "S" Signal getrennt aus dem MPX-Signal gefiltert, und zwar wie folgt:

a. Das "m" Signal durch einen Tiefpass, dessen Kipp-

frequenz zirka 15 kHz beträgt;
b. Das "S" Signal durch einen gedämpften auf 38 kHz abgestimmten Kreis. Der sehr stark gedämpfte Kreis (Q ist zirka 6) bewirkt auch die Deemphasis des "S" Signals.

Der Tiefpass bewirkt die Deemphasis des "m" Signals.

Das Zeit-MPX-Verfahren wird dadurch gekennzeichnet, dass die "m" und die "s"-Wege nicht getrennt sind.

Der Matrix-Schaltung wird sowohl das komplette MPX-Signal als auch ein transformiertes Differenzsignal zugeführt. Im Demodulator sorgt die 38-kHz-Rechteckspannung nämlich dafür, dass das Differenz-signal zum hörbaren Bereich (30 Hz - 15 kHz) trans-formiert wird und das Summensignal zum Bereich dessen Mittenfrequenz 38 kHz beträgt. In dieser Weise entsteht in der Matrix-Schaltung wieder das erwünschte Ausgangssignal.

In der Praxis zeigt sich, dass beim Zeit-MPX-Verfahren der Störpegel um ca. 20 dB höher ist als beim Frequenz-MPX-Verfahren, da die filternde Wirkung des 38 kHz Kreises fehlt. Demzufolge wird die NF-Information der Nachbarsender durch die höheren Harmonischen aus dem 38-kHz-Signal demoduliert. Abb. 7 zeigt den kompletten Decoder im Frequenz-MPX-Verfahren. Die Abweichungen beim Zeit-MPX-Verfahren sind in Abb. 7b wiedergegeben.

Smooth take over

Insbesondere in Autoradios können die Sendersignale sich plötzlich ändern. Das wiederholte automatischer Umschalten von Stereo auf Mono und umgekehrt kann dann nicht vermieden werden.

Smooth take-over bedeutet: wenn das Signal/Rausch-Verhältnis schlechter wird, nimmt das Übersprechen zwischen dem linken und dem rechten Kanal zu. Diese Zunahme des Übersprechens wird dadurch erzielt, dass aus dem Zwischenfrequenzverstärker eine Gleichspannung an Punkt 6 der IS gelegt wird, die dem Signalniveau an diesem Punkt proportional ist.

Die Amplitude der 38-kHz-Rechteckspannung wird im Demodulator proportional zum Spannungsniveau an Punkt 6 eingestellt, Das "s" Signal (L-R 38 kHz moduliert) wird mit dieser 38-kHz-Rechteckspannung aus dem MPX-Signal decodiert. Es ist deutlich, dass die Amplitude des Differenzsignals von der Spannung an Punkt 6 abhängt. Das Resultat ist, dass man das Übersprechen zwischen links und rechts automatisch regeln kann

Ein Beispiel zur Verdeutlichung:

Summensional

<u>L-R</u> + <u>L-R</u> -Differenzsignal

In diesem idealen Fall gibt es eine maximale Kanal trennung.

Wenn das Differenzsignal um einen Faktor 2 abgeschwächt wird, geschieht folgendes:

Summensignal

 $\mathbf{L} \cdot \mathbf{R}$

Differenzsignal -

1/2L - 1/2R 11/2L + 1/2R

1/2L - 1/2R 1/2L · 11/2R

Die Kanaltrennung, die ursprünglich maximal war, hat dann bis 9 dB abgenommen.

Abb. 5 stellt die Beziehung zwischen Rauschpegel und Kanaltrennung dar und zeigt, dass der Rausch bis 13.5 dB abgenommen hat.

MOTORSTEUERSCHALTUNG TDA 1006, Abb. 1

Die Motorsteuerschaltung sorgt für:

1. Konstante Motordrehzahl

2. Automatischen Stop am Bandende

 Signalisierung (Wiedergabe, Bandende, Radioempfang).

 Umschalten der Speisespannung zwischen den Punkten 8 und 9 der IS (vom Radio-Teil zur Cassetten-Wiedergabe-Schaltung).

Das Laufwerk hat eine Hysteresefriktion. Aus diesem Grunde hat das Gerät einen induktiven Stop am Bandende.

Wiedergabe

Das Streufeld der Hysteresefriktion induziert in Stellung Wiedergabe eine variierende Spannung in S422. Am Ausgang des Differentialverstärkers (Punkt A) ist eine Rechteckspannung verfügbar. Wenn diese Spannung hoch ist, entlädt sich C454. An Punkt 14 entsteht jetzt eine Spannung gemäss Abb. 2. Das Spannungsniveau an B ist hoch. Das Resultat ist wie folgt:

 Die Speisespannung an Punkt 9 wird nach Punkt 10 durchgeschaltet. Dies ist die Speisung für den Cassetten-Wiedergabe-Verstärker.

- Die Motorsteuerschaltung kann funktionieren

- D415 brennt ohne Unterbrechung.

Bandende

Beim Bandende wird keine Spannung mehr in S422 induziert. Die Rechteckspannung an A ist nicht mehr vorhanden. C454 wird geladen. Die Spannung an Punkt 14 erreicht dann nach einer Sekunde einen Wert von 3 V. Das Spannungsniveau an B ist niedrig.

Ausserdem kann man folgendes feststellen:

- Die Motorsteuerschaltung wird abgeschaltet

- Die Speisespannung schaltet um von Punkt 10 nach Punkt 8 (Speisung für Radio-Teil)

D415 blinkt statt ohne Unterbrechung zu brennen.
 Für die Steuerung sorgt ein astabiler Multivibrator.
 Die Wiederholungszeit wird durch den Wert von C446 bestimmt.

Damit in Stellung "Bandende" ein Störimpuls keinen Einfluss auf die Bedingungen dieses Moments hat, schliessen D414 und R485 den Differentialverstärker. In der Situation "Bandende" stellt man fest, dass die IS einen stabilen Zustand aufweist. Damit man in diesem Moment zurückwickeln kann, wurden D419 und C453 in die Schaltung aufgenommen. Das Schliessen des Schnellwickel-Schalters SK-E hat einen negativen Spannungssprung an Punkt 14 zur Folge. Hierdurch entsteht wieder der Zustand wie bei Wiedergabe. Die Motorsteuerschaltung funktioniert wieder. Die LED brennt ohne Unterbrechung und Punkt 8 ist spannungslos.

Meistens wird man nach Bandende die Cassette aus dem Gerät nehmen. SK-D öffnet sich; LED D415 erlischt.

Motorsteuerschaltung

Die Motorsteuerung entspricht im Prinzip der Steuerung des Geräts 22RN712. Der Rege verstärker befindet sich jedoch in der IS.

Fig. 1

Fig. 2

Service Service Service

Part 2

8299A

12 V —

Service Manual

INHOUD

(GB) CONTENTS	
	Sheet
Photograph with controls	2
Specification	2
Block diagram	3-4
Circuit diagram, part 1	5-6
P.c. boards, track side	7 - 8
Circuit diagram, part 2	9-10
P.c. boards, track side	11-12
Wiring diagram, component side	13-14
Trimming instructions	15-17
Functioning of the recorder	18-21
Repair hints, recorder	22
Adjustments, recorder	23-25
Exploded view, parts list, recorder	26
Exploded view, parts list, radio	27-28
Repair hints, turnolock	29
Exploded view, parts list, turnolock	30
List of alactrical parts	31

(NE) MILOOD	
	Pagina
Foto met bedieningsorganen	2
Specifikaties	- 2
Blokschema	3-4
Principeschema, deel 1	5-6
Printen spoorzijde	7-8
Principeschema, deel 2	9-10
Printen spoorzijde	11-12
Bedradingstekening,onderdelen-	
zijde	13-14
Afregelvoorschrift	15-17
Werking van de recorder	18-21
Reparatiewenken recorder	22
Instellingen recorder	23-25
Exploded view met stuklijst,	
recorder	26
Exploded view met stuklijst.	
radio	27-28
Reparatiewenken turnolock	29
Exploded view met stuklijst,	
turnolock	30
Lijst van elektrische onderdelen	31

F TABLE DES MATIER	ES				
	Page				
Photographie avec organes ce					
commande	2				
Caractéristiques techniques	2 2 3-4				
Schéma synoptique	3-4				
Schéma de principe, section	5-6				
Platines imprimées (côté imprimé)	7-8				
Schéma de principe, section 2					
Platines imprimées (côté imprimé)	11-1				
Platines imprimées avec câb age					
côté éléments	13-1				
Instructions de réglage	15-1				
Fonctionnement du magnétophone	18-2				
Instructions de réparation du					
magnétophone	22				
Ajustages du magnétophone	23-2				
Vue éclatée et liste des pièces					
magnétophone	26				
Vue éclatée et liste des pieces radio	27-2				
Instructions de réparation turnolock	29				
Nua áciatán at lista dan niànan					

(D)

INHALT

	Seite
Abbildung der Bedienungselemente Spezifikation Blockschaltbild	2 2 3-4
Prinzipschaltbild, Teil 1	5-6
Printplatten, Lötseite	7-8
Prinzipschaltbild, Teil 2	9-10
Printplatten, Lötseite	11-12
Printplatten mit Verdrahtung	
(Bestückungsseite)	13-14
Abgleichanleitung	15-17
Wirkungsweise, Recorder	18-21
Reparaturhinweise, Recorder	22
Einstellungen, Recorder	23-25
Explosivzeichnung mit Stückliste. Recorder	26
Explosivzeichnung mit Stückliste. Radio	27-28
Reparaturhinweise, Turnolock	29
Explosivzeichnung mit Stückliste,	
Turnolock	30
Liste elektrischer Teile	31

INDICE

Liste des pièces électriques

(- /	
	Pagina
Fotografia con organi di commando Caratteristiche techniche	0 2
Schema a blocchi	2 3-4
Circuito elettrico, parte 1	5-6
Piastre stampate (lato stampato)	7-8
Circuito elettrico, parte 2	9-10
Piastre stampate (lato stampato)	11-12
Schema di cablaggio lato	
componenti	. 13-14
Instruzioni per le regolazioni	15-17
Funzionamento del registratore	18-21
Instruzioni per la riparazione	00
registratore	22
Regolazioni del registratore	23-25
Disegno spaccato e elenco dei pezzi registratore	26
Disegno spaccato elenco dei	40
pezzi radio	27-28
Instruzioni per la riparazione	27 20
turnolock	29
Disegno spaccato e elenco dei	
pezzi turnolock	30
Elenco componenti elettrici	31

Documentation Technique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio Subject to modification

4822 725 11986
Printed in The Netherlands

PHILIPS

(GB)

in part 1 is a circuit description of:

1. TDA1001 Anti-interference circuit IAC

2. TDA1005 3. TDA1006 PLL stereo decoder

Functions of the motor control IC

A la section I on trouvera la description des circuits de:

1. TDA1001 2. TDA1005

Circuit de déparasitage IAC PLL décodeur stéréophonique

3. TDA1006

Fonctions du CI de régulation de moteur

NL

In deel 1 staat een schemabeschrijving van:

8595B7

1. TDA1001 Ontstoorschakeling IAC
2. TDA1005 PLL stereodekoder

PLL stereodekoder

3. TDA1006 Funkties van het motorregel IC

D

Teil 1 enthält ein Schaltbildbeschreibung von:

1. TDA1001 Entstörschaltung IAC

2. TDA1005 PLL Stereodekoder

3. TDA1006 Funktionen motorreglungs IC

Alla parte 1 viene dato una descrizione di:

Circuito antiparasita IAC

1. TDA1001 2. TDA1005 Decodatore stereofonico PLL

3. TDA1006 Funzioni del CI di regolazione del motore

10.

CS55440

509 508

496.500.495.497.499.502.505 498.501

485 486

CS55440

S					498 500	504	501	502 491 40	1 493 50	7 422 508	509	512	
C400499	451 452	450	443	454.453.446.430.438	444 436 435 428 434	427 426							
C500590					587 588.589	.558 559	568.570.590.5	71,560 562,569,585,573	7.572 573 586	574 575 578 57	6		
C591 ··· 699					601	596 5	99 595 (600 606,650 607 6	51	613,612	614 617 652,628 616	640 645,639,638 615,630,624 627 6	29 635 637 646
R400599	502.495.499.497	00496505501494498	508, 484 486,509	504 503,488,487,48	89.469.474476.479.466.477.467								
R400···599 R600···699					695 696	694 697 6						the state of the s	65
R700799					701 735				737.738.720.739.742.	716 719.740.777.741.714.78	3.743747.775.768.776.	758 772,774,771,759,767,769,773,770	754757.762765
MISC	D416.417	SK-E IC	C403 D419,414 TS410	D420 SK-D	TS408,406 TS407	7.405 SK-A TS4:	17.431c TS433 D	454 TS441 M421	D463 D458b	TS 436b	D415 i. A 411	IC425 D466 K423 SK-B	
MISC							D453.	457.456 TS432 T	S436a D	458a D460,459	TS	436c D464	

CS55442

Fig. 4

During measurements and/or adjustments the tape deck should be switched on. Besides, an extra wire should be used for connection to earth of the main set and tape deck.

During FM adjustments the ATC should be switched off (close bridge c).

- Turn C586 to central position Turn C585 according to Fig. 4.
- 2 Seek the resonance frequency of the ceramic filters. This is the frequency on which adjustments are made. Do this according to Fig. 2. Connect the masses of the generator and the voltmeter to the print, as close as possible to resp. the injection point and test point.

Open the bridges

A

Close bridge B

GB)

5 Close bridge A

Fig. 1

Fig. 3

Fig. 5

- 6 Check the position of the hand, see Fig. 5, turn to position indicated.
- 7 Now adjust the stereo decoder in the following way: Turn R608 from extremely left to the right to the point where the stereo lamp just lights. Mark the position of the potentiometer. Repeat the action, but now from the extremely right position. Turn the wiper of R608 to the middle of the two points found.
- 8 R703 controls the area as a function of the field intensity in which mono playback gradually shifts to stereo playback.
 Adjustment is required:
 - When stereo is reached too late or not at all
 When stereo is reached at too small a field intensity. In this case, the noise level mostly is unacceptably high.
- IAC Trigger the oscilloscope externally with the square-wave voltage, set time base to 20 μ sec/cm. Adjust to minimal amplitude deviation, see Fig. 3.

1	NII	`
•	111	_

Tijdens metingen en afregelingen, moet het tape deck aangesloten zijn. Tevens moet met een extra draad een massaverbinding van het hoofdapparaat met het tape deck bestaan. Tijdens FM afregelingen ATC uitschakelen

(brug c sluiten).

- 1 Draai C586 in de middenstand. Draai C585 volgens Fig. 4.
- Zoek de resonantiefrequentie van de keramische filters. Dit is de frequentie waarop wordt afgeregeld. Doe dit volgens Fig. 2. Sluit de massa's van de generator en voltmeter aan op de print zo dicht migelijk bij respectievelijk het injektiepunt en meetpunt.

en \B Open de bruggen A

Brug B sluiten

Regel af V \rightarrow . op $\langle 5 \rangle \leq 5$ mV. Hiermee legt men de nuldoorgang van de "S" kromme goed.

Sluit brug A

- Controleer de wijzerstand, zie Fig. 5 Verdraai tot de aangegeven wijzerstand.
- Stereodekoder Regel nu volgens de onderstaande methode af. Draai R608 van de uiterste linkerstand naar rechts totdat het stereolampje juist brandt. Onthoudt de stand van de potmeter. Doe hetzelfde, maar nu van uit de uiterste rechterstand. Draai de loper van R608 nu in het midden tussen de twee gevonden punten.
- Met R703 bepaalt men het gebied als funktie van de veldsterkte waarin het apparaat geleidelijk van mono op stereoweergave komt. Afregeling is noodzakelijk:

1. Wanneer het apparaat te laat of niet op stereo komt.

2. Wanneer het apparaat bij te geringe veldsterkte op stereo komt. In dit geval is het ruisniveau doorgaans onakseptabel hoog.

Trigger de oscilloscoop extern met de blokspanning, tijdbasis 20 $\mu sec/cm$. Regel af op minimale afwijking van de amplitude, Fig. 3.

Während Messungen und Abgleicharbeiten muss das Laufwerk angeschlossen sein. Ausserdem muss mit einem Zusatzdraht eine Massenverbindung zwischen dem Hauptgerät und dem Laufwerk hergestellt sein. Während der FM-Einstellungen ATC abschalten (Brücke C schliessen)

- 1 | C586 in mittlere Stellung drehen C585 drehen wie in Abb. 4 angegeben
- Auf Resonanzfrequenz der keramischen Filter abstimmen. Dies ist die Frequenz, worauf man abgleicht (siehe Abb. 2). Die Massen des Generators und des Voltmeters an Printplatte anschliessen, und zwar möglichst nahe am Injekspunkt bzw. am Messpunkt.

und B öffnen. Brücken schliessen

Gleichspannung an (5) auf < 5 mV abgleichen. Auf diese Weise wird der Nulldurchgang der S-Kurve korrigiert.

schliessen Brücke

Zeigerstand kontrollieren. Abstimmknopf drehen bis zur Stellung, angegeben in Abb. 5. F

Avant de procéder aux mesures et aux ajustages on veillera à brancher la mécanique. Il faudra un fil suplémentaire de liaison de la masse de l'appareil à la mécanique. (Désenclencher la CAV pendant les réglages en FM (fermer le pontet

- Placer C586 en position médiane. Placer C585 selon l'indication en Fig. 4.
- Rechercher la fréquence de résonance des filtres céramiques. C'est la fréquence à laquelle on ajuste. Procéder comme indiqué en Fig. 2. Brancher les masses de générateur et voltmètre sur la platine aussi près que possible du point d'injection ou du point de mesure.

Ouvrir les pontets A et ' 3 Fermer le pontet

 $sur \leq 5$ mV. On ajuste Régler la V ... de ainsi le passage du zéro de la courbe en S.

Fermer le pontet Vérifier la position de l'index, voir Fig. 5.

- Tourner jusqu'à la position indiquée. Décodeur stéréophonique.
- Ajuster à présent selon la méthode suivante: Tourner R608 de la position d'extreme gauche vers la droite jusqu'à ce que la lampe témoin stéréo s'allume tout juste. Noter la position du potentiomètre. Répéter mais à présent de la position d'extrême droite. Amener à présent le curseur entre ces deux points.
- 8 Grâce à R703 on détermine la zone en tant que fonction de l'intensité du champ dans lequel l'appareil passe graduellement de reproduction mono à reproduction stéréo.

Il faudra procéder au réglage quand:

1. L'appareil n'émet pas ou émet à retardement en stéréo.

2. L'appareil n'émet pas en stéréo à cause de l'intensité de champ trop faible. Dans ce cas, le bruit atteint un niveau inacceptable.

Déclencher l'oscilloscope de l'extérieur avec la tension rectangulaire dont la base de temps est de 20 μ sec/cm. Ajuster sur déviation minimale de l'amplitude, voir Fig. 3.

Stereodecoder Gemäss folgender Methode abgleichen. R608 an linken Anschlag drehen. Dann nach rechts drehen bis die Stereolampe gerade brennt. Man merke sich die Stellung des Potentiometers. R608 an rechten Anschlag drehen. Dann nach links drehen bis die Stereolampe wieder brennt. Den Schleifer von R608 anschliessend mitten zwischen ermittelte Punkte stellen.

Mit R703 wird das Gebiet als Funktion der Feldstärke, in dem das Gerät nach und nach von Mono auf Stereowiedergabe kommt abgegrenzt.

Abgleichung ist notwendig

- 1. Wann das Gerät zu spät oder nicht auf Stereo kommt.
- 2. Wann das Gerät bei zu geringer Feldstärke auf Stereo kommt. In diesem Fall is das Rauschniveau unakzeptabel hoch.
- 9 Triggere den Oszillographen mit der Rechteckspannung. Zeitbasis auf 20 μsec/cm schalten. Auf minimale Abweichung der Amplitude einstellen (siehe Abb. 3).

ceramici. Si tratta della frequenza sulla quale ci si regola. Procedere come alla Fig. 2 Collegare le masse del generatore e del volt- metro alla piastra cosi vicino possibile al punto d'iniezione o al punto di misura. Aprire i ponticelli Chiudere il ponticello Regolare la V di si regola il passaggio per lo zero della curva				Regolare dall'estre la lampad tare la po l'operazi Posizion Con l'aiu quanto fu quale l'a riproduzi La regola 1. L'appa damen 2. L'appa dato l' questo inacce IAC Pilotare tensione tempi 20	quanto funzione dell'intensità di campo A nel quale l'apparecchio passa a poco a poco dalla riproduzione monofonica a quella stereofonica. La regolazione sarà necessaria quando: 1. L'apparecchio non emette o emette a ritardamento in stereofonica 2. L'apparecchio non emette in stereofonica, dato l'intensita di campo troppo debole. In questo caso il fruscio giunge ad un livello inaccettabile.			
sk	⊗ ——	\Diamond	*	(H)	Ø,	ا د د د د د د د د د د د د د د د د د د د	(A:)	
MW (510 1612 bliz)	468 kHz/80/85 460 kHz/82/83/84/89	\Diamond	Min. L		S512, S509 S508, S507		Max (1)	
MW (518-1612 kHz)		₿			\$502		Min 1	
	516 kHz		Max. L		S401e			
MW (518-1612 kHz)	600 kHz	(8)	O'		\$401c	· · · · · · · · · · · · · · · · · · ·		
	1500 kHz		× .	:	C586		Max (1)	
	148 kHz	(B)	Max. L		S506	14 14 14		
LW (149-262 kHz)	165 kHz				S401d			
	245 kHz			·	\$500		 	
	2	\oint{\oint}	Min. L				3	
	F Λf = 200 kHz (50 Hz)				S491	4		
FM (87.5-104 MHz)	IF 3	\line{\circ}			\$493 4		5	
	IF AM 1 kHz 30 %				R718		Min 1	
FM (87.5-104 MHz)	96 MHz - 1 kHz (Δf = 75 kHz)	₿	<u></u> 6		S401b S401a		Max 🚺	
Stereodekoder				·				
FM (87.5-104 MHz)	19 kHz (ca. 25 mV) (PM6455)	€			R608 7			
8 I.A.C.								
FM (87.5-104 MHz)	Pilot 19 kHz (250 mV)	₽			R770		2 9	
	Δ1-3 V	③					Ť	

18
POSITION PLAYBACK

19
POSITION FASTWIND

Working of the recorder (Figs. 6, 7 und 8)

In Figures 6, 7 und 8, arrows indicate the movements of the components when a certain operation is performed (These components are shaded). In the tables enclosed, the sequence of the movements drawn in the Figures has been indicated. Fig. 6 illustrates the starting positions. Fig. 7 and 8 represents the result of the movements shown in Fig. 6 (cassette has been inserted).

De werking van de recorder (Fig. 6, 7, 8)

In genoemde figuren zijn met pijlen de bewegingen aangegeven, die de onderdelen maken bij een bepaalde handeling. (Deze onderdelen zijn gearceerd). In de bijgevoegde tabellen is de volgorde aangegeven van de bewegingen zoals die in de figuren gelezen moeten worden.
Fig. 6 geeft de uitgangspositie weer.

Fig. 6 geeft de uitgangspositie weer.

Fig. 7 en 8 is het resultaat van de bewegingen uitgevoerd in Fig. 6 (kassette is dus ingebracht).

Fonctionnement du magnétophone (Fig. 6, 7, 8)

Dans les figures, les flèches indiquent les mouvements de certains éléments en cas de manipulations déterminées (cas éléments sont représentés en hachuré). Les tables en annexe donnent l'ordre de succession des mouvements tel qu'ils doivent être lus dans les figures.

La figure 6 représente la position de sortie. La fig. 7 et 8 est le résultat de mouvements effectués en fig. 6. La cassette a donc été introduite.

Die Arbeitsweise des Recorders (Abbn. 6, 7 und 8)

In den Abbildungen 6, 7 und 8 bezeichnen die Pfeile die Bewegungen der Einzelteile bei einer bestimmten Handlung (Diese Einzelteile sind schraffiert). In den beigefügten Tabellen ist die Reihenfolge der dargestellten Bewegungen angegeben. Abbildung 6 gibt die Ausgangsposition an. Abbildung 7 und 8 stellt die Bewegungen gemäss Abbildung 6 dar (die Cassette ist also ins Gerät gelegt).

Funzionamento del registratore (fig. 6, 7, 8)

Nelle figure, le frecce indicano i movimenti di alcune parti in caso di manipolazioni determinate: questi elementi sono rappresentati in tratteggio. Le tavole in allegato danno l'ordine di successione dei movimenti da eseguire. La figure 6 rappresenta la posizione di uscita. La fig. 7 e 8 e il risultato dei movimenti effettuati in fig. 6: la cassette è ora stata introdotta.

ADJUSTMENTS AND CHECKS RECORDER

1. Adjustment of the playback head

Check height of the head according to Fig. 12. Vertical adjustment of the head by means of nut 114a. If necessary, adapt the horizontal position of block 107, Fig. 23. Secure the nut 114a with lacquer.

Azimuth-adjustment

- Insert test cassette 8945 600 13501 (6300 Hz).
- Connect valve voltmeter to the speaker clamps of the right channel.
- Switch the recorder to "playback".
- Adjust nut 114b to read maximal output voltage (note this reading).
- Connect valve voltmeter to the speaker clamps of the left channel.
- Adjust nut 114b again to read maximal output voltage (Also note this reading).
- Adjust the playback head to the average of the two readings noted, so that one channel output voltage is the same as the other. Secure nut 114b with lacquer.

2. Checking the tape speed

- a. Check with the help of the cassette service set 4822 395 30052.
- b. Check with the help of the test cassette 8945 600 13501, on which every 4.76 m a signal of 800 Hz is modulated.
 - Insert the test cassette
 - The time between 2 signals should lie between 98 and 102 sec. Is the tape speed too low or irregular, then first check pressure roller force, winding friction and play of the flywheel
 - The speed is adjusted with R497

3. Friction coupling 57, Fig. 22

The friction force on playback should lie between 35 and 50 g. The LH-reel friction on fast rewind should lie between 4 and 8 g.

Non or irregular winding of the tape in the cassette may be caused by:

- 1. Winding friction too light.
- 2. LH-reel friction incorrect.
- 3. Too heavy friction in the cassette.

Sub 1: The friction coupling 57 should be replaced Sub 2: The lether ring 77 should be replaced. For the other adjustments see Figs. 13 through 21.

It is advisable to clean the playback head, the pressure roller and the capstan with ethylalcoholafter 500 working hours.

INSTELLINGEN EN KONTROLES RECORDER

1. Instelling van de W kop

Kontrole van de kophoogte volgens Fig. 12. Stel de vertikale stand van de W kop in m.b.v. moertje 114a en verbuig eventueel de horizontale stand van blokje 107, Fig. 23. Lak dan moertje

Azimuth-instelling

- Schuif testkassette 8945 600 13501 (6300 Hz) in de recorder.
- Sluit buisvoltmeter aan op luidsprekerklemmen van rechter kanaal
- Zet recorder in de stand "weergave".
- Stel moertje 1140 zodanig in, dat een maximale uitgangsspanning wordt gemeten (Noteer deze waarde!).
- Sluit een buisvoltmeter aan op de luidsprekerklemmen van linkerkanaal.

- Stel moertje 114b weer zodanig in dat een maximale uitgangsspanning wordt gemeten (Noteer ook deze waarde!).
- Stel de W-kop op het gemiddelde van beide genoteerde waarden in, zodat de uitgangsspanning van beide kanalen even groot is. Lak dan moertje 114b

2. Kontrole van de bandsnelheid

- a. Kontrole met behulp van de kassette service set (4822 395 30052).
- b. Kontrole met behulp van testkassette $8945\ 600\ 13501,$ waarop om de $4{,}76\ m$ een signaal van 800 Hz gemoduleerd is.
 - Schuif de testkassette in de recorder.
 - De tijd tussen 2 signalen moet liggen tussen 98 en 102 sec. Is de bandsnelheid te laag of onregelmatig, dan moet eerst de drukrolkracht, de opspoelfriktie en de speling van het vliegwiel worden gekontroleerd.
 - De snelheid stelt men in met R497.

3. Friktiekoppeling 57, Fig. 22

De friktie kracht bij afspelen moet liggen tussen 35 en 50 gram. De tegenfriktie bij versneld terugspoelen moet liggen tussen 4 en 8 gram. Niet of onregelmatig opwinden van de tape in de cassette kan veroorzaakt worden door:

- Te geringe opspoelfriktie.
- 2. Onjuiste tegenfriktie.
- 3. Te veel wrijving in de kassette.

In het eerste geval dient men de friktie koppeling 57 te vervangen. In het tweede geval dient men het leren ringetje 77 te vervangen. Voor de overige instellingen, zie Fig. 13 t/m 21.

Aangeraden wordt, om na ongeveer 500 bedrijfsuren de "W" kop, de drukrol en de toonas te reinigen met ethylalcohol.

REGLAGES ET CONTROLES DU MAGNETOPHONE

Réglage de la tête reproduction /

Vérifier la hauteur comme indiqué en Fig. 12. Régler la position verticale par l'écrou 114a et plier le bloc 107 à la verticale, si besoin en est laquer l'écrou 114a.

Réglage de l'azimuth

- Introduire la cassette d'essai 8945 600 13501 (6300 Hz) dans l'appareil.
- Brancher un voltmètre électronique aux broches du canal de droite du haut-parleur. Positionner le magnétophone sur "reproduction".
- Régler l'écrou 114b de façon à mesurer la tension de sortie maximale (prendre note de ce résultat). Brancher à présent le voltmètre électronique aux
- broches du canal de gauche du haut-parleur. Régler de nouveau l'écrou 114b de façon à mesurer
- la tension de sortie maximale (noter).
- Régler maintenant la tête reproduction à la valeur moyenne des deux valeurs notées de façon que la tension de sortie des deux canaux soit égale.
- Ensuite, laquer l'écrou 114b.

2. Vérification de la vitesse de défilement

- a. Vérifier avec un "cassette service set" (4822 395 30052)
- b. Contrôle à l'aide d'une cassette d'essai (8945 600 13501) contenant un signal modulé de 800 Hz tous les 4,76 m.
 - Disposer la cassette dans le magnétophone.
 - L'intervalle entre deux signaux doit se situer

entre 98 et 102 sec. Lorsque la vitesse est trop basse, il faudra d'abord vérifier si le galet presseur, le couple de friction, le volant etc. fonctionnent sans entraves. Dans la négative on réglera la vitesse de défilement avec R497.

3. Couple de friction 57, Fig. 22.

La force de friction lors du playback doit se situer entre 35 et 50 gr. La contre-friction au bobinage rapide, doit se situer entre 4 et 8 gr. Le non enroulement ou l'enroulement irrégulier de la bande dans la cassette peut être dû à:

1. Une friction insuffisante.

2. Une mauvaise contre-friction.

3. Trop de frottement dans la cassette.

Dans le premier cas, il faudra remplacer le couple de friction 57. Dans le deuxième cas, il faudra remplacer l'anneau de cuir 77.

Voir Fig. 13 à 21 pour ce qui est des autres réglages.

Il est conseillé, après env. 500 heures de fonctionnement, de nettoyer la tête reproduction, le galet presseur et le cabestan à l'alcool éthylique.

JUSTIEREN UND KONTROLLIEREN DES **RECORDERS**

1. Justieren des Wiedergabe-Kopfes

Kontrollieren der Kopfhöhe nach Abb. 12. Senkrechtstellung W-Kopfes mit Mutter 114a justieren und, wenn nötig, die horizontale Lage von Block 17 etwas ändern (siehe Abb. 23). Dann Mutter 114a verlacken.

Justieren des Azimuts

- Testcassette 8945 600 13501 (6300 Hz) in Recorder legen.
- Röhrenvoltmeter an Lautsprecherklemmen des rechten Kanals anschliessen.
 - Recorder in Stellung "Wiedergabe" schalten.
- Mutter 114b so justieren, dass eine maximale Ausgangsspannung gemessen wird (Notiere den Wert dieser Spannung!).
- Röhrenvoltmeter an Lautsprecherklemmen des linken Kanals anschliessen.
- Mutter 114b wieder so justieren, dass eine maximale Ausgangsspannung gemessen wird
- (Notiere auch diesen Wert!).

 Wiedergabe-Kopf auf Durchschnittswert der beiden notierten Werte so justieren dass die Ausgangsspannungen der beiden Kanäle gleich gross sind. Mutter 114b verlacken.

2. Kontrollieren der Bandgeschwindigkeit

- a. Mit Cassetten-Service-Satz (4822 395 30052) Bandgeschwindigkeit kontrollieren.
- b. Kontrolle mit Testcassette 8945 600 13501, der jede 4,76 m ein 800-Hz-Signal aufmoduliert ist.
 - Cassette in Recorder legen und Gerät in Stellung "Wiedergabe" schalten.
 - Die Zeit zwischen zwei Signalen muss 98-102 Sekunden betragen.

Sollte die Geschwindigkeit zu niedrig sein, so ist zu kontrollieren, ob die Anpressrolle, die Rutschkupplung, das Schwungrad usw. einwandfrei drehen. Wenn nötig, ist die Bandgeschwindigkeit mit R497 einzustellen.

3. Rutschkupplung 57 (Abb. 22)

Bei Wiedergabe soll die Reibungskraft 35-50 g betragen. Die Gegenreibungskraft bei schnellem Rücklauf soll 4-8 g betragen. Wird das Band in der Cassette nicht oder unregelmässig gewickelt, so kann das auf folgende Ursachen zurückzuführen sein:

- 1. Zu geringe Reibungskraft beim Aufwickeln.
- 2. Unrichtige Gegenreibungskraft.
- 3. Zu viel Reibung in der Cassette.

Im erstgenannten Fall ist Rutschkupplung 57 zu ersetzen. Im zweiten Fall ist Ring 77 zu ersetzen. Für übrige Einstellungen siehe Abbn. 13 und 21.

Es empfiehlt sich, nach ungefähr 500 Betriebsstunden den Wiedergabe-Kopf, die Andruckrolle und die Tonwelle mit Athylalkohol zu reinigen.

REGOLAZIONI E CONTROLLI DEL REGISTRA-TORE

1. Regolazione della testina di riproduzione

Regolazione della testina di cancelazione. Verificare l'altezza come indicato nella Fig. 12. Regolare la posizione verticale tramite il dado 114a e piegare il blocco 107, se necessario, alla verticale mettere della lacca sul dado 114a.

Regolazione dell'azimuth (lato sinistro)

- Introdurre la cassetta campione 8945 600 13501 (6300 Hz) nell'apparecchio.
- Collegare un voltmetro elettronico sulle prese dell'altoparlante del canale di destra.
- Mettere il registratore in posizione "Riproduzione".
- Regolare il dado 114b in modo che la tensione di uscita sia massima (prendere nota di questo risultato).
- Collegare ora il voltmetro elettronico sulla presa dell'altoparlante del canale di sinistra.
- Regolare di nuovo il dado 114b in modo che la tensione d'uscita sia massima (prenderne nota).
- Regolare ora la testina rip. al valore medio dei due valori segnati in modo che la tensione di uscita dei due canali sia uquale.
- Dopo di che mettere della lacca sul dado 114b.

2. Controllo della velocità di avanzamento

- a. Controllare con un "cassette service set" (4822 395 30052).
- b. Controllare con l'aiuto di una cassette campione (8945 600 13501) che ha un segnale modulato di 800 Hz ogni 4,76 m.
 - Mettere la cassetta nel registratore e porlo in posizione "Riproduzione"
 - L'intervallo tra i 2 segnali deve essere compreso tra 98 e 102 sec. Quando la velocità è troppo bassa, si dovrà verificare se il rullo pressore, la coppia di frizione, il volano etc. non funzionino con difficoltà. In caso negativo, si regolerà la velocità di avanzamento R497.

3. Coppia di frizione 57 (Fig. 22)

La forza di frizione alla riproduzione deve essere fra i 35 e 50 gr. La contra-frizione all'avanzamento rapido deve essere fra i 4 e i 8 gr. In caso di non avvolgimento o di avvolgimento irregolare del nastro nella cassette ci possono tre ragioni:

- 1. Frizione insufficente.
- 2. Cattiva contra-frizione.
- Troppo attrito nella cassette.

Nel primo caso occoviera sostituire la coppia di frizione 57. Nel secondo caso, bisognerà sostituire l'anel o di cuoio 77.

Per le altre regolazioni, vedere Fig. 13 e 21.

Consigliamo dopo 500 ore di funzionamento, di pulire la testina di cancellazione, il rullo pressore e il capstan con alcool etilico.

PLAYBACK HEAD

Fig. 12

25 PRESSURE ROLLER 116 B 220 gr. 200 gr. 200

Fig. 13

FLYWHEEL 96

Fig. 14

EJECT BRACKET 118

POSITION OF CATCHES 64, 89

EJECT BRACKET 118

POS de BRACKET 52

Fig. 19

POS ▷▷ BRACKET 52

Fig. 20

Fig. 21

Fig. 22

4211A

		3								
-D-			-TS-							
D413 D414,415 D450 D451 D453,454 D456,457 D459,460 D458a/b D463,464 D514 D516 D517 D519 D520	AA119 BZX75/C1V4 AA119 BB117 BA315 BA315 BA315 AA119 p AA119 BAX13 BA315 OF173 BA315 BZX79/B10	5322 130 40229 5322 130 34047 5322 130 40229 4822 130 30913 4822 130 30843 4822 130 30843 4822 130 30843 4822 130 40229 5322 130 40229 5322 130 30843 5322 130 30843 5322 130 30843 5322 130 30843 5322 130 30843 5322 130 34297	TS401 TS404 TS406 TS407 TS409 TS410 TS411 TS429 TS430a,b,c TS432 TS433 TS436a,b,c TS437 TS441 TS505,507 TS506,508	BD443 BD434 BC548 BC549C BC338-25 BC549C BC338-25 BF324 40835 BC548 BF241 40835 BF241 40835 BF495 BC548 BC549B BC548B	4822 130 41076 4822 130 40938 5322 130 44246 4822 130 40958 5322 130 44246 4822 130 40958 5322 130 44396 4822 130 40949 4822 130 40949 4822 130 40949 4822 130 40947 4822 130 40938 4822 130 40938 4822 130 40938					
<i>-</i> \$-			T\$510	BC548	4822 130 40938					
S401a	Toko code	4822 157 50832	-C-	——————————————————————————————————————						
\$401b \$401c \$401d \$401e \$476 \$478 \$479 \$491 \$493 \$498 \$500 \$501 \$502 \$504 \$507,508 \$509 \$512	20-210- 20-220- 20-290- 20-300- 20-270- 20-290- 99-740- 470 Ω (lin)	4822 157 50833 4822 156 20702 4822 156 20704 4822 156 20706 4822 156 30079 4822 153 10296 4822 526 10016 4822 153 50102 4822 153 50102 4822 156 20712 4822 156 20712 4822 156 30399 4822 153 10253 4822 153 10253 4822 153 10253 4822 156 40534	C504 C512 C513 C516 C528 C537 C539 C547 C551 ÷ 562 C568 C569 C570,571 C585 C586 C588 C589 C598 C599 C600,601 C607	$680 \ \mu F - 16 \ V$ $10 \ \mu F - 3 \ V$ $0.47 \ \mu F - 35 \ V$ $560 \ pF - 1 \ \% - 125 \ V$ $150 \ pF - 2 \ \%$ $10 \ nF - 63 \ V$ $3.9 \ pF \ _{+} 0.25 \ pF$ $10 \ nF - 63 \ V$ $10 \ nF - 63 \ V$ $10 \ nF - 63 \ V$ $4.7 \ nF - 63 \ V$ $60 \ pF \ (trimmer)$ $6.8 \ nF - 5 \ \% - 63 \ V$ $4.7 \ nF - 5 \ \% - 63 \ V$ $4.7 \ nF - 2 \ \% - 250 \ V$ $6.8 \ nF - 5 \ \% - 63 \ V$ $4.7 \ nF - 63 \ V$ $4.7 \ nF - 63 \ V$ $4.7 \ nF - 5 \ \% - 63 \ V$	4822 122 31085 4822 122 30043 4822 122 30043 4822 122 30043 4822 122 30043 4822 122 30043 4822 122 30043 4822 125 50042 5322 125 50057 4822 121 50538 4822 122 30043 4822 122 30043					
R608 R610 R615,623 R630	2.2 $k\Omega$ (Iin) 2 $k\Omega$ - 0.1 W 18 $k\Omega$ - 0.1 W 2x (17 $k\Omega$ + 5 $k\Omega$) - 2x47 $k\Omega$ + 100 $k\Omega$ 150 Ω NTC	4822 100 10029 4822 110 60115 4822 110 63141 4822 102 50014 5322 116 30111	C607 C614,615 C625 C644 C650,651	22 nF - 63 V 10 nF - 63 V 68 pF - 2 % 10 nF - 63 V 47 μF - 10 V	4822 122 30103 4822 122 30043 4822 122 31076 4822 122 30043 4822 124 20461					
R703 R718,770	1 M Ω (lin) 1 k Ω (lin)	4822 100 10103 4822 100 10024	-Miscellaneo	us-						
R735 [°]	VDR `	4822 116 20069	LA411	Ceramic filter 18 V - 100 mA	4822 242 70249 4822 134 40299					
-10-	111111		VL413 FM core	1.6 A (T) (S401a,b)	4822 253 30024 4822 526 10109					
IC408 IC425 IC503	TDA 1005 TDA 1001 TDA 1006	4822 209 80315 4822 209 80284 4822 209 80316	AM core	(S401c,d,e)	4822 526 10115					

8299A

PART I SUPPLEMENT

Circuit Description

- GB For the operation of the motor control IC, see part I.

 This supplement contains an extensive description of the functions of the other motor control components and of the end-of-tape circuit.
- NL Voor de werking van het motorregel IC wordt verwezen naar deel I.

 In dit supplement wordt een uitvoerige beschrijving gegeven van de funktie van de overige komponenten van de motorregeling en van de einde-band-schakeling.
- F Pour ce qui est du fonctionnement du CI de la commande de moteur, consulter la partie I.

 Ce supplément contient une description détaillée de la fonction des autres composants de la régulation de moteur et du circuit fin de bande
- D Für die Arbeitsweise des IC wird auf Teil I verwiesen.
 In diesem Ergänzungsteil wird die Funktion der übrigen Komponenten der Motorregelung ausführlich beschrieben. Weiter wird die Bandenabschaltung behandelt.
- Per quanto concerne il funzionamento del CI del comando del motore, riferirsi alla parte I.

 Questo supplemento contiene una descrizione particolareggiata della funzione degli altri componenti che hanno parte nella regolazione del motore e del circuito fine nastio.

Printed in The Netherlands

Motor control

For controlling the motor speed an operational amplifier (opamp) in IC403 is used (Fig. 1). This opamp has two inputs (7 and 6) and 1 output (3). At the input the difference voltage between R498/R501 and slider R497 is measured continuously. With R497 the voltage at point 6 is so adjusted that the motor has the right rpm. As connecting point for the two networks, point 3 of the opamp has been chosen. R494 is used for measuring the motor current

The Ri of the motor changes under influence of the temperature. To ensure that the motor speed is not affected, diodes D416 and D417 have been fitted (Fig. 2). Besides, R has been split up in R499 and R502, so that R497 can be easier adjusted.

C451 ensures that motor interference pulses are suppressed (Fig. 3), C450 and C452 ensure that parasitic oscillation of the control does not occur, while C450 also prevents high switch-on currents from occurring. R505 is fitted to correct the dependency of the supply voltage. R496 has no electrical function and serves only for connecting two print tracks.

In fast-winding (FW) position, point 6 of the opamp is connected to chassis via R497 and R500 (Fig. 4). As a result, the voltage across the motor increases from 6 V to approx. 12 V and the number of revolutions of the motor is doubled.

Automatic stop circuit

As a result of the turning of the hysteresis coupling, a sinoidal voltage is produced by S422 and C443 (Fig. 5). R486 provides the bias of the internal amplifier, which converts the sinoidal voltage into a square-wave voltage. This square-wave voltage finally discharges C454, which is continuously charged by R504. At the end of the tape the hysteresis coupling stops. The square-wave voltage disappears and C454 is charged now. The motor voltage disappears (motor stops) and the radio voltage (+ 6) is switched-on. Via D414 and R485 point 13 of the IC now becomes so positive that interference pulses entering via S422 have no influence (the motor is not started again).

LED415 now starts flashing at a frequency determined by C446. The voltage to D415 is limited by R488 and R489 R484 has no electrical function (connecting 2 print tacks) and has been replaced by a bridge wire during production.

For rewind at the end of the tape, C454 has to be discharged. This is effected by fitting a second capacitor (C453, Fig. 6) in parallel with C454 and connecting it to mass via D419. Afterwards, C453 is also discharged via R503. D419 ensures that the motor control is not influenced by R503 and R504.

Motorregeling

Voor de regeling van de motorsnelheid wordt gebruik gemaakt van een operationele versterker (opamp) in IC403 (Fig. 1). De opamp heeft 2 ingangen (7 en 6) en 1 uitgang (3). Aan de ingang wordt de verschilspanning tussen R498/R501 en loper R497 kontinu gemeten. Met R497 wordt de spanning op punt 6 zo ingesteld dat de motor het juiste toerental heeft. Als onderste referentie voor beide takken is punt 3 van de opamp gekozen. R494 dient voor het meten van de motorstroom. De Ri van de motor verandert onder invloed van de temperatuur. Om verandering van het toerental te voorkomen ziin de diodes D416 en D417 aangebracht (Fig. 2). Tevens is R onderverdeeld in R499 en R502, waardoor R497 gemakkelijker kan worden ingesteld. C451 dient om motorstroomimpulsen te onderdrukken (Fig. 3), C450 en C452 om parasitair oscilleren van de regeling te voorkomen, terwiil C450 ook nog grote inschakelstromen voorkomt. R505 dient om de afhankelijkheid van de voedingsspanning te korrigeren. R496 heeft geen elektrische funktie en dient alleen als verbinding tussen twee printsporen. In stand snelspoelen (FW) wordt punt 6 van de opamp via R497 en R500 met massa verbonden (Fig. 4). Hierdoor stiigt de spanning over de motor van ca. 6 V tot ca. 12 V en het toerental van de motor wordt verdubbeld.

Einde-band-schakeling

Door het draaien van de hysteresekoppeling wordt in 422 en C443 een sinusvormige spanning opgewekt (Fig. 5). R486 dient voor de voorspanning van de interne versterker, die van de sinusvormige spanning een blokspanning maakt. Deze blokspanning ontlaadt uiteindelijk C454, die door R504 kontinu wordt opgeladen. Aan het einde van de band stopt de hysteresekoppeling. De blokspanning verdwijnt en C454 wordt nu opgeladen. De motorspanning valt weg (motor stopt) en de radiospanning (+6) wordt ingeschakeld.

Via D414 en R485 wordt punt 13 van het IC nu zo positief, dat stoorpulsjes die via S422 binnenkomen, geen invloed hebben (de motor wordt niet meer op gang gebracht).

LED415 begint nu te knipperen in een frekwentie die door C446 wordt bepaald. De spanning naar D415 wordt door R488 en R489 begrensd.

R484 heeft geen elektrische funktie (verbinding van 2 printsporen) en is tijdens de produktie door een brugdraad vervangen.

Om aan het einde van de band te kunnen terugspoelen moet C454 ontladen zijn. Dit is gebeurd door parallel met C454 een tweede kondensator (C453) aan te brengen en deze via D419 met massa te verbinden (Fig. 6). C453 ontlaadt zich nadien ook via R503. D419 dient om beinvloeding van de motorregeling door R503 en R504 te voorkomen.

COMMANDE DE MOTEUR

Pour la commande du moteur, il est fait usage de l'amplificateur opérationnel (opamp) dans le CI403 (fig. 1). Cet amplificateur possède deux entrées (7 et 6) et une sortie (3). A l'entrée la tension de différence entre R498/ 501 et le curseur R497 est continuellement mesurée. Par R497, la tension sur le point 6 est réglée de façon que le moteur ait le nombre exact de tours. Le point 3 de l'amplificateur opérationnel a été choisi comme référence inférieure. R494 sert à mesurer le courant de moteur. La Ri du moteur varie selon la température. Afin d'éviter les variations du nombre des tours, les diodes D416 et D417 (fig. 2) ont été montées. R est subdivisé en R499 et R502, ce qui facilite le réglage de R497. C451 sert à la suppression d'impulsions du moteur (fig. 3), C450 et C452 servent à empêcher l'oscillation parasite de la régulation alors que C450 empêche des courants d'enclenchement trop élevés de passer. R505 sert à corriger la dépendance de la tension d'alimentation. R496 ne possède pas de fonction électrique et ne sert qu'à la liaison entre deux tracés imprimés. En position bobinage en avant (FW) le point 6 de l'amplificateur opérationnel est branché à la masse à travers R497 et R500 (fig. 4). La tension sur le moteur augmente jusqu'à env. 12 V (de 6 V) et le nombre de tours du moteur double.

Circuit fin de bande

Du fait que l'embrayage magnétique tourne, S422 et C443 engendrent une tension sinusoïdale (fig. 5). R486 sert à la pré-tension de l'amplificateur interne qui transforme la tension sinusoïdale en une tension rectangulaire. Cette tension rectangulaire décharge finalement C454 qui est continuellement chargé par R504.

L'embrayage magnétique provoque l'arrêt en fin de bande. La tension rectangulaire disparaît et C454 est à présent chargé. La tension de moteur disparaît (moteur s'arrête) et la tension radio (+6) est enclenchée. A travers D414 et R485, le point 13 du CI devient positif au point que de petites impulsions parasites qui pénètrent à travers S422 n'ont pas d'influence (le moteur n'est plus mis en train). La diode électroluminescente 415 commence à scintiller à une fréquence déterminée par C446. La tension vers D415 est limitée par R488 et R489.

R484 n'a pas de fonction électrique (elle ne sert qu'à la liaison de deux tracés imprimés) et a été remplacé en cours de fabrication par un pontet.

Afin de pouvoir rebobiner en fin de bande, C454 doit être déchargé. Cela a été réalisé en branchant C454 en parallèle avec un deuxième condensateur (C453, fig. 6) et le mettant à masse à travers D419. C453 se décharge par la suite aussi à travers R503. D419 sert à éviter l'influence de la régulation de moteur par R503 et R504.

MOTORREGELUNG

Zum Regeln der Motordrehzahl benutzt man einen Operationsverstärker in IC403 (Abb. 1). Dieser Verstärker hat zwei Eingänge (7 und 6) und einen Ausgang (3). An diesen Eingängen wird die Differenzspannung zwischen R498/R501 und dem Schleifer von R497 kontinuierlich gemessen. Mit R497 wird die Spannung an Punkt 6 so eingestellt, dass der Motor die richtige Drehzahl hat. Als untere Referenz für beide Zweige in Abb. 1 wurde Punkt 3 des Verstärkers gewählt. Mit R494 wird der Motorstrom gemessen.

Der Ri des Motors ändert sich unter dem Einfluss der Temperatur. Die Dioden D416 und D417 (Abb. 2) verhindern eine Änderung der Motordrehzahl. Ausserdem besteht R aus R499 und R502, wodurch R497 sich leichter einstellen lässt

C451 (Abb.3) unterdrückt Motorstörimpulse.
C450 und C452 verhindern, dass die Reglung parasitär oszilliert; C450 verhindert auch, dass die Einschaltstrom zu gross ist. R505 korrigiert die Abhängigkeit der Speisespannung. R496, der keine elektrische Funktion hat, dient nur als Verbindung zwischen zwei Printspuren.
In Stellung schneller Vorlauf (FW) wird Punkt 6 des Verstärkers über R497 und R500 mit Masse verbunden (Abb. 4). Demzufolge steigt die Spannung über dem Motor von ca. 6 V auf ca. 12 V; die Drehzahl verdoppelt sich dann.

Bandendabschaltung

Durch das Drehen der Hysteresiskopplung wird in S422 und C443 eine sinusförmige Spannung erzeugt (Abb. 5). R486 dient zum Herabsetzen der Vorspannung des internen Verstärkers, der die sinusförmige Spannung in eine Rechteckspannung ändert. Diese Rechteckspannung entlädt schliesslich C454, der durch R504 kontinuierlich auf geladen wird. Am Ende des Bandes stoppt die Hysteresiskopplung. Die Rechteckspannung fällt ab und C454 wird dann aufgeladen. Die Motorspannung fällt aus (der Motor stoppt) und die Radiospannung (+6) wird eingeschaltet. Über D414 und R485 wird Punkt 13 des IC wird dann so positiv, dass Störimpulse, die über S422 eindringen, keinen Einfluss haben (der Motor wird nicht mehr gestartet).

LED415 beginnt mit einer durch C446 bestimmten Frequenz zu blinken. Die Spannung an D415 wird durch R488 und R489 begrenzt.

R484 hat keine elektrische Funktion (Verbindung zwischen zwei Printspuren) und wurde während der Fertigung durch einen Brückendraht ersetzt.

Am Ende des Bandes ist Rückspulen nur möglich, wenn C454 entladen ist. Dazu ist parallel zu C454 ein zweiter Kondensator (C453, Abb. 6) angeordnet und über D419 an Masse gelegt worden. C453 entlädt sich dann auch über R503. D419 soll Beeinflüssing der Motorreglung durch

R503 und R504 verhindern.

COMANDO DEL MOTORE

Par il comando del motore è stato usato un amplificatore operazionale (opamp) nel CI403 (fig. 1).

Quest'amplificatore possiede due ingressi (7 e 6) e una uscita (3). All'ingresso la tensione differenziale fra R498/501 e il cursore R497 viene continualmente misurata. La tensione sul punto 6 viene regolata da R497 in modo che il motore abbia la velocità esatta. Il punto 3 dell'amplificatore operazionale è stato scelto come riferimento inferiore.

R494 serve per misurare la corrente del motore. La Ri del motore varia a secondo della teperatura. Per evitare le variazioni della velocità, sono state montati i diodi D416 e D417 (fig. 2). R viene suddiviso in R499 e R502, il chè facilita la regolazione di R497.

C451 serve a sopprimere gli impulsi del motore (fig. 3), C450 et C452 servono ad evitare l'oscillazione parasite della regolazione e C450 impedisce che correnti di innesto troppo alti, passino. R505 serve alla correzione della dipendenza della tensione rete.

R496 non possiede nessuna funzione elettrica serve soltanto al collegamento fra due traccie stampate. In posizione avvolgimento rapido (FW) il punto 6 dell'amplificatore operazionale è collegato a massa tramite R497 e R500 (fig. 4). La tensione sul motore aumenta fino a circa 12 V (da 6 V) e il numero dei giri raddoppia.

Circuito fine nastro

Dal fatto che l'innesto magnetico gira, S422 e C443 generano una tensione sinusoide (fig. 5). R486 serve alla pretensione dell'amplificatore interno che trasforma la tension sinusoide in una tensione rettangolare. Questa tensione rettangolare scarica finalmente C454 che viene continualmente caricato da R504.

L'innesto magnetico provoca il fermo in fine nastro. La tensione rettangolare sparisce e C454 è ora caricato. La tensione de motore sparisce (motore si ferma) e la tensione radio (+6) viene innestata. Attraverso D414 e R485, il punto 13 del CI diventa positivo in maniera che piccoli impulsi parasiti che penetrano tramite S422 non hanno incidenza (il motore non viene più avviato). Il diodo elettroluminescente 415 commincia a scintillare ad una frequenza che viene determinata da C446. La tensione in direzione di D415 viene limitata da R488 e R489. R484 non possiede nessuna funzione elettrica (serve solo al collegamento di due traccie stampate) e è stata sostituita da un ponticello nel corso della fabbricazione. In modo da poter avvolgere rapidamente in fine nastro, C454 dovrà essere scaricato. Si fa con il collegamento di C454 in parralele con un secondo condensatore (C453, fig. 6) e a massa attraverso D419. C453 si scarica poi dopo anche tramite R503. D419 impedisce l'influenza della regolazione del motore da R503 e R504.

Fig. 5

Fig. 6

PHILIPS

Sachgebiet:

Video-Geräte

Datum:

13.9.1978

Betr.:

Farbfernsehempfänger K 12 mit Song-Bedienungssystem und automatischem Sendersuchlauf.

Fehlabstimmung Station 1

Verteiler:

Gublass

Nach dem Einschalten des FS-Empfängers kann es vorkommen, daß der auf Stationstaste 1 gespeicherte Sender fehlabgestimmt erscheint. (Abstimmanzeigelampe leuchtet) Wird auf eine beliebige andere Station umgeschaltet und anschließend wieder auf Station 1, ist die Abstimmung korrekt.

In solchen Fällen muß die Leitungsverbindung zwischen den

Steckern V 26 und L 56

nachträglich hergestellt werden. Damit wird die AVR-Schaltung des "Song-Bedienungssystems" mit dem Chassis verbunden.

Form 80 048

1/21/9/5

Autoradio Cassettenspieler 22AC864

Service Service Service

Teil 1

11649A12

Circuit Description

Diese Beschreibung befasst sich mit dem kombinierten SK/DK-Decoder im Gerät 22AC864/82.

Zuerst wird der Verkehrsrundfunk im allgemeinen behandelt wonach der Aufbau des vom Verkehrsrundfunksenders ausgestrahlten Signals erklärt wird und die unterschiedlichen Decodertypen kurz beschrieben werden.

Schliesslich wird die Arbeitsweise des SK/DK-Decoders erläutert.

Subject to modification
4822 725 12212
Printed in The Netherlands

rescription des cicuits Schaltungsbeschreibung Kredsløbsbeskrivelse Kretsbeskrivelse Kretsbeskrivning Toimintaselostus Descrizione del circuito Description del circuito Subject to modification

VERKERHSRUNDFUNK

Allgemeines

In fast allen industrialisierten Ländern hat der Strassenverkehr einen mächtigen Aufschwung genommen. Deswegen sind im Interesse eines flüssigen Verkehrsablaufs und der Sicherheit der Verkehrsteilnehmer neue Massnahmen zur Verkehrslenkung notwendig geworden. Neben optischer Verkerhsregelung (Verkehrsschilder und Verkehrsampeln) können dem Kraftfahrer auch über das Autoradio Verkehrsinformationen (z.B. Verkehrsstauungen und Umleitungen) mitgeteilt werden, die für ihn wichtig sind. Seit einigen Jahren werden in der Bundesrepublik Deutschland während der normalen UKW-Rundfunkprogramme spezielle Verkehrsnachrichten durchgesagt. Der Grund, warum UKW-Sender für den Verkehrsrundfunk eingesetzt werden, ist, dass ein UKW-Sender eine verhältnismässig kleine Reichweite hat, wodurch der Kraftfahrer in einem bestimmten Bereich gezielt angesprochen werden kann. Da alle Rundfunkanstalten in der Bundesrepublik je 3 UKW-Programme zur Verfügung haben, hat jede Anstalt ein Programm ausgewählt, in dem Verkehrsinformationen durchgesagt werden. Die Ausstrahlung erfolgt über die Sender: BR 3, HR 3, NDR 2, Rias Berlin 2, SDR 1, SFB 2, SR 1, SWF 1 und WDR 2. Zum Erkennen der UKW-Sender, die Verkehrsdurchsagen geben, ist ein sog. "Kennfrequenz-System für Verkehrsdurchsagen" entwickelt worden.

Bei diesem System bedient man sich eines Hilfssignals, das der Frequenz des HF-Signals aufmoduliert ist.

Das Hilfssignal besteht aus einem Träger von 57 kHz, der mit einer bestimmten Frequenz im Bereich von 23...54 Hz plus ggf. einer Frequenz von 125 Hz amplitudenmoduliert wird.

Das Hilfssignal hat folgende Funktionen:

1. Senderkennung (SK)

Sie gibt an, dass der Sender zum Verkehrsrundfunknetz gehört. Hierfür wird der ununterbrochen ausgestrahlte Hilfsträger von 57 kHz benutzt.

2. Bereichskennung (BK)

Die modulierende Frequenz von 23...54 Hz wird ununterbrochen ausgestrahlt und ist kennzeichnend für das geographische Gebiet, in dem der Verkehrsrundfunksender arbeitet. Dafür stehen 6 Frequenzen zur Verfügung. Da der Bereich eines FM-Senders begrenzt und verhältnismässig klein ist, ist die gleiche modulierende Frequenz bei mehreren Sendern anwendbar.

3. Durchsagekennung (DK)

Sie wird ausschliesslich beim Senden der Verkehrsinformationen mit ausgestrahlt, und es wird dafür die Modulationsfrequenz von 125 Hz benutzt.

Einige technische Daten des Kennfrequenzsystems

In Abbildung 1 ist das Spektrum eines UKW-Stereosignals mit Verkehrsfunkinformation dargestellt.

a. Hilfsträger

Frequenz: 57 kHz (siehe Abb. 2a)

Frequenztoleranz bei UKW-Monosendern: ± 6 Hz

Frequenztoleranz bei UKW-Stereosendern: 0 Hz (phasenstarr von 19-kHz-Pilotsignal hergeleitet, siehe Abb.3)

Hub: 3,75 kHz

Modulation des Hauptträgers: FM

b. Bereichskennung

Modulationsfrequenzen: 23,75 (A) oder 28,27 Hz (B) oder 34,93 Hz (C) oder 39,58 Hz (D) oder 45,67 Hz (E) oder

53,98 Hz (F). Diese Frequenzen werden von 57 kHz abgeleitet (siehe Abb. 3)

Modulations des Hilfsträgers: AM

Modulationstiefe: n = 60 % (siehe Abb. 2b)

c. Durchsagekennung

Modulationsfrequenz: 125 Hz

Frequenztoleranz bei UKW-Monosendern: ± 0,5 Hz

Frequenztoleranz bei UKW-Stereosendern: 0 Hz (siehe Abb. 3)

Modulation des Hilfsträgers: AM

Modulationstiefe: n = 30 % (siehe Abb. 2c)

Decoder typen

Vorher wurde angegeben, dass das Hilfssignal eines FM-Senders, der zum Verkehrsrundfunknetz gehört, aus 3 Komponenten besteht: dem Träger von 57 kHz und zwei modulierenden Frequenzen.

Zur Verarbeitung dieser Signale wurden die Verkehrsfunkdecoder entworfen. Im Prinzip gibt es 3 Arten von Decodern: für Senderkennung, für Bereichskennung (einschl. Senderkennung) und für Durchsagekennung (einschl. Bereichs- und Senderkennung).

Die Decoder für Senderkennung setzen den Hilfsträger von 57 kHz in eine sichtbare Anzeige um (Signallampe oder LED). Diese Anzeige meldet, ob der Sender, auf den das Autoradio abgestimmt ist, Verkehrsdurchsagen ausstrahlt. Ein Beispiel davon ist der Verkehrsfunkdecoder 22EN9790, der mit einem Stecker über die TB/VF-Buchse an das Autoradio angeschlossen werden kann.

Die Decoder für Bereichskennung arbeiten mit einem Teil des Hilfssignals, der aus dem Hilfsträger und einer der modulierenden Frequenzen A bis F (Abb.3) besteht; der Decoder ist dazu mit einem Vorwahlsystem ausgerüstet, das aus 6 Drucktasten A bis F besteht. Wird beispielsweise die Taste A eingedrückt, sorgt eine bestimmte Schaltung im Decoder dafür, dass nur das Signal von Sendern mit dem Kennbuchstaben A eine sichtbare Anzeige ergibt.

Die Decoder für Durchsagekennung arbeiten mit dem kompletten Hilfssignal. Ausser den Vorwahltasten A bis F gibt es eine weitere Taste DK. Wird diese Taste betätigt, wird das Audiosignal nur in der Zeit weitergeleitet, in der der Verkehrsfunksender Verkehrsinformationen aussstrahlt. In diesem Fall ist im Hilfssignal die 125 Hz Modulation vorhanden.

Tabelle der Bereichskennungen

Rundfunkanstalt	Verkehrsbereich	Kennbuchstabe	Kennfrequenz (Hz)
SFB 2	Berlin	Α	23,75
Rias 2	Berlin	В	28,27
NDR 2	Schleswig-Holstein	В	28,27
NDR 2	Hamburg	C	34,93
NDR 2	Niedersachsen W	E	45,67
NDR 2	Niedersachsen O	D	39,58
RB 1	Bremen	A (1)	23,75
WDR 2	NordrheinlWestfalen NO	C (2)	34,93
WDR 2	NordrheinlWestfalen Mitte	C	34,93
WDR 2	NordrheinlWestfalen SW	C (3)	34,93
HR 3	Hessen	F	53,98
SWF 1	Rheinland-Pfalz	D	39,58
SWF 1	Baden-Württemberg N	E	45,67
SR 1	Saarland	В	28,27
SDR 1	Baden-Württemberg S	A	23,75
BR 3	Franken	l c	34,93
BR 3	Schwaben	- D	39,58
BR 3	Oberbayern	D (4)	39,58

Derzeit nicht benutzt
 Später ggf. B

Später ggf. A
 Später ggf. F

SCHALTUNGSBECHREIBUNG SK/DK-DECODER

Einleitung

Der SK/DK-Decoder erfüllt folgende Funktionen:

- 1. Signalisieren, ob das Gerät auf einen bestimmten Verkehrsfunksender abgestimmt ist.
- 2.1 Unterdrücken aller nicht zum Verkehrsfunknetz gehörigen Sender.
- 2.2 Stoppen der Cassettenwiedergabe während einer Durchsage und Umschalten auf Radioempfang.
- 2.3. Gewährleistung einer minimalen Lautstärke während einer Durchsage wenn der Lautstärkeregler zugedreht

Die Funktionen 2.1, 2.2, und 2.3 können nur erfüllt werden, wenn der Infoschalter gedrückt ist.

Schaltbild

Im Prinzipschaltbild sind die schraffierten Teile nicht wichtig für diese Beschreibung.

Folgende Hauptteile kommen zur Sprache:

- a. Signalweg
- b. SK-Decoder
- c. DK-Decoder

a. Signalweg

Ab A, über TS465, wird das NF-Signal dem Stereo-Decoder zugefügt.

Ist der Infoschafter (SK-G) gedrückt, so wird die Basis von TS465 nicht über R530, sondern über D485 und R532 eingestellt. Dies ist nur möglich wenn TS464 leitet, weil auf einen Verkehrsfunksender abgestimmt ist. Ist das Gerät jedoch nicht auf einen Verkehrsfunksender abgestimmt, dann blockiert TS465 das NF-Signal.

b. SK-Decoder

Der SK-Decoder besteht aus zwei Verstärkerstufen, die beide in der Kollektorleitung einen auf 57 kHz abgestimmten Kreis haben.

Das 57-kHz-Signal wird über C665 auch an D480 geführt. Die Anode führt jetzt eine negative Gleichspannung. Diese Spannung wirdt teilweise an die Basis von TS467 zurückgeführt, und ist der Stärke des 57-kHz-Signals proportional. Die Verstärkung von TS467 wird demzufolge so geregelt, dass Übersteuerung unmöglich ist. D481 bildet mit R518 und C671 einen Detektor für Frequenzen zwischen 20 und 125 Hz; R521 und C674 bilden ein Tiefpassfilter, das die 125-Hz-DK ausfiltert. Das detektierte Signal enthält also eine der BK-Frequenzen. C672, D482, D483, C675 bewirken deren Gleichrichtung und Spannungsverdopplung. Durch die gewonnene Gleichspannung wird die LED-Steuerschaltung aktiviert. TS463 wird leitend und steuert TS464 an. wodurch D442 aufleuchtet.

C681 sorgt, dafür, dass LED442 ununterbrochen leuchtet, auch wenn ein plötzlicher Abfall im Sendersignal auftritt. Wenn die modulierten 57 kHz ausfallen, verschwindet die negative Spannung an der Anode von D480.

TS462 wird leitend. Die Kollektorspannung von TS462 und die Basisspannung von TS463 sinken auf 0 V. C681 entlädt sich und TS464 bleibt leitend.

TS462 und D484 sorgen dafür, dass der Decoder nicht auf Störsignale anspricht.

Es kann verkommen, dass das Signal eines UKW-Stereosenders beispielsweise durch Reflexionen verzerrt ist. Auch wenn der betreffende Sender nicht zum Verkehrsrundfunknetz gehört, können zeitweise 57-kHz-Impulse durch die 3. Harmonische der Pilotfrequenz 19 kHz entstehen. Diese 57-kHz-Impulse werden verstärkt und detektiert. Zu gleicher Zeit führt die Anode von D480 eine negative Spannung und TS462 ist

Da die Impulse eine Art Pseudo-Modulation bilden, folgt

C672 diesem impulsförmigen Spannungssprung, wodurch die Spannung verdoppelt wird.

Die Basisspannung von TS463 wird jetzt also ansteigen, aber da die 57-kHz-Signale nur von kurzer Dauer sind wird TS463 nicht leiten. Um Aufleuchten von LED 442 zu vermeiden wird die positive Spannung über D484 an C676 geführt. Sobald das 57-kHz-Signal ausfält, verschwindet die negative Spannung an der Anode von D480. TS462 wird leitend und liegt demzufolge nahezu an Masse. D484 sperrt und C676 entlädt sich über R536. Wenn ein DK-Signal vorhanden ist bekommt der Emittor von TS462 0,9 V Spannung des Kollektors von TS470. TS462 ist nun gesperrt.

c. DK-Decoder

Der DK-Decoder kann funktionieren, wenn der Infoschalter gedrückt ist und das 57-kHz-Signal vorhanden ist.

Nur während einer Durchsage wird auch die 125-Hz-Durchsagekennung ausgestrahlt. Im Folgenden wird angenommen, dass dies der Fall ist.

Das durch D480 detektierte Signal gelangt an den DK-Decoder; dann erfolgt eine Grobfilterung durch das Hoch/Tiefpassfilter R549, C683 und C684. Der Teil der Schaltung, in dem sich TS468 befindet, ist ein aktives 125-Hz-Filter, dessen Verhalten in Abb. 4 gezeigt wird. Daraus ist ersichtlich, dass die höchste BK-Frequenz um ca. 20 dB abgeschwächt ist. Das Filter kann mit R555 abglichen werden.

Das DK-Signal wird spannungsverdoppelnd gleichgerichtet. Dadurch geschieht folgendes: . TS469 und TS470 werden leitend

. Die Emitterspannung von TS470 sinkt auf ca. 1 Volt. . TS421 wird gesperrt. Der Lautstärkeregler R630 liegt dann nicht mehr mit einer Seite an Masse. Die minimale Lautstärke ist dann von R575 abhängig. C695 verhindert, dass TS421 plötzlich gesperrt wird.

Hierdurch wird eine allmählich anschwellende Lautstärke erreicht.

Durchsage während der Wiedergabe einer Cassette

Es wird noch immer vorausgesetzt, dass das Gerät auf eine Verkehrsfunksender abgestimmt ist und ein DK-Signal vorhanden ist.

Im vorhergehenden Abschnitt wurde erklärt, dass die Emitterspannung von TS470 in diesem Zustand auf ca. 1 Volt abgenommen hat.

TS471 wird gesperrt, so dass der Motor stoppt. TS410 sorgt dann dafür, dass die Spannung an Punkt 10 des IC (die Speisespannung für den Cassettenvorstärker) schnell auf null Volt absinkt.

Selbstverständlich darf ohne DK-Signal die Speisespannung für den Empfangsteil während der Wiedergabe einer Cassette nicht abgeschaltet sein; das Sendersignal soll jedoch blockiert sein.

Das ist möglich, weil im IC411 die Speisespannung an Punkt 9 durchgeschaltet wird, und zwar nach Punkt 10, wenn der Motor läuft und nach Punkt 8, wenn der Motor nicht läuft.

Wenn der Motor läuft, steigt über R529 die Emitterspannung von TS465.

Dieser Transistor wird dann gesperrt.

Für die Beschreibung der Motorregelung wird auf die Schaltbildbeschreibung des 22AC860 verwiesen.

Schutz gegen unerwünschtes Funktionieren

Der Decoder darf nur auf 125-Hz-DK arbeiten nicht auf eine 125-Hz-Komponente aus dem Audio-Signal oder auf eine der BK-Frequenzen.

Mit dem kombinierten Hoch/Tiefpassfilter am Eingang wird nur ein Bereich von ungefähr 125 Hz aus dem Signal gefiltert.

Der DK-Decoder muss selektiv für 125 Hz sein. Dieser Frequenz muss eine bestimmte Zeit vorhanden sein, ehe der Decoder seine Schaltfunktionen erfüllt. Bevor die Schaltung auf ein DK-Signal angesprochen hat, bestimmt R552 die Eingangsimpedanz, weil D487 nicht leitet. Erst wenn sich an der Basis von TS469 eine Gleichspannung bildet, wird D487 durch Rückkopplung über R550 leitend.

Die Ausgangsspannung des Decoders kann dann hoch genug steigen, um TS469 und TS470 aufzusteuern. Die Zeit, in der das Obenbeschriebene stattfindet, beträgt 1 - 1 1/2 s.

D486 und D490 dienen als weiterer Schutz gegen un-

erwünschtes Ansprechen.

Das Sendersignal kann nämlich so gestört sein, dass TS462 leitend ist und die SK-Anzeige erlischt. Dann funktioniert auch der DK-Decoder nicht. Man muss vermeiden, dass diese Störung während einer Durchsage auftritt und der Decoder während einer Durchsage nicht funktioniert. Das Schaltbild zeigt, dass der Emitter von TS462 mit dem Kollektor von TS470 verbunden ist. Also steigt durch das DK-Signal auch die Emitterspannung von TS462, so dass dieser Transistor nicht leitend werden und dadurch den SK/DK-Decoder ausser Funktion setzen kann.

11914A10

Autoradio Cassettenspieler 22AC864/82/83

Teil 2

11649A12

Service Manual

INHALT

	Seite
Abbildung der Bedienungselemente	2
Spezifikation	2
Abgleichanleitung	3-4
Blockschaltbild	5-6
Prinzipschaltbild, AM-HF/ZF, FM-HF/ZF/IAC	7-8
Printplatten, Lötseite	9-10
Prinzipschaltbild, Stereo-Decoder, NF, Motorregelung	12-13-14
Printplatten, Lötseite	15-16
Printplatten mit Verdrahtung (Bestückungsseite)	17-18
Arbeitsweise, Recorder	19-20-21
Reparaturhinweise, Recorder	22
Einstellungen, Recorder	23-24
Einzelteilliste, Recorder	24
Explosivzeichnung, Radio	25-26
Einzelteilliste, Radio	26
Explosivzeichnung, Recorder	27
Reparaturhinweise, Turnolock	28
Explosivzeichnung, Turnolock	28
Einzelteilliste, Turnolock	28
Liste elektrischer Einzelteile	29

Teil 1 enthält eine Schaltungsbeschreibung des SK/BK/DK-Decoders

Die Entstörschaltung IAC, der PLL-Stereodecoder und die Motorregelung sind im Teil 1 des 22AC860 beschrieben worden.

Documentation Technique Servicio Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio

.

										^	152 152	D/0/ TC	170 (63	D491	TE/E/ D/	42 D485		TS/65						D443		TS424	IC423	K423a D466	U400a.b.TS405		TS406
MISC.		TS467	D	486.487	TS461	D481 TS468	D48	88.489	D480. 483. 4			D484 TS		TS409		42 0463	D/10	13403		D415	D417.416	м						K423b	TS407		TS408
MISC.	D413 TS	5409 C	D418		LA401				F402 S40	U	542	D414	IC411	15409		153.116	0413	<u>'</u>	/50	511,514		452	517.451.512	513.515.51	6			521	426.434	427,435	<u></u>
426	554 455	5				554.503	504					443			454	453.446			450	311,314	- JIO	432	317.431.312	313.313.31				525			
555	695 660	661 662.	683 644 663	664	660 685	686 665	687.671	1 672	688 674	67	5.673.689	676.680		681	591		670.677											333	······································		
484	- 524 512	511 514	509 513	515		516	518	521	517	.519	520	486 485		484.504		503		488.			495,497,505,501,498		494					604.600			
525	604	54	9	552	553,555,554	.556 551	1.557		558	550 559	535 560	536 537,562.	563, 541, 54	2.538.544	547.565.54	43.530 532	. 526.525		527.	529.603.6							604	601.602			
605	650																	6	612	609.6	510		605		606.608	6	07	614.622			
651	871					652																			:		777				
[031.	071																														

.63 D491 TS464 D442 D485	TS465	D44	43	TS424 IC423	K423a D466	U400a,b,TS405		TS406				TS422	D444	TS426 TS401.402	M
TS409 TS/71 D419	D415 D417.416	М			K423b	TS407		TS408		TS421		TS427	D445	TS428 TS403.404	M
454 453.446	450 511,514 518	452 517,451,512	513.515.516		521	426,434	427,435	430.	38 444	522 523 524	525			531	501.502 426554
681 591 670.677					535				595	538 537	539.550.564	551.9	565 552.566	6 545	555. 568 555 695
	488.489 500.499.502,495.497.505.501.498	494		- property and the second seco											484 · · · 52
484.504 503 41.542.538.544··· 547.565.543.530··· 532.526.525	527529.603.600			604	601.602			570	571	575	575				525 · · · 60/
41.542:550:544 547:507:545.656 661:6167646	611 612 609.610	605	606.608	607	614.622				615.623	630 e.f .624	630a.b.c.d.g 617.625 640		45.643 642	644.646650	
				277							860	861 8	65.863 862 8	371.651.864.866 870	651 · · · 871

Fig. 6

Fig. 7

Fig. 8

Fin 7

PLAYBACK HEAD

Fig. 12

23 PRESSURE ROLLER 116

Fig. 13

FLYWHEEL 96

POSITION OF CATCHES 64, 89

EJECT BRACKET 118

Fig. 15

EJECT BRACKET 118

PC IMBRACKET 52

POS ▷▷ ERACKET 52

Fig. 19

Fig. 20

Fig. 21

Fig. 22

4211A

JUSTIEREN UND KONTROLLIEREN DES RECORDERS

1. Justieren des Wiedergabe-Kopfes

Kontrollieren der Kopfhöhe nach Abb. 12. Senkrechtstellung W-Kopfes mit Mutter 114a justieren und, wenn nötig, die horizontale Lage von Block 17 etwas ändern (siehe Abb. 23). Dann Mutter 114a verlacken.

Justieren des Azimuts

- Testcassette 8945 600 13501 (6300 Hz) in Recorder legen.
- Röhrenvoltmeter an Lautsprecherklemmen des rechten Kanals anschliessen.
- Recorder in Stellung "Wiedergabe" schalten.
- Mutter 114b so justieren, dass eine maximale Ausgangsspannung gemessen wird (Den Wert dieser Spannung notieren).
- Röhrenvoltmeter an Lautsprecherklemmen des linken Kanals anschliessen.
- Mutter 114b wieder so justieren, dass eine maximale Ausgangsspannung gemessen wird (Auch diesen Wert notieren).
- Wiedergabe-Kopf auf Durchschnittswert der beiden notierten Werte so justieren, dass die Ausgangsspannungen der beiden Kanäle gleich gross sind, Mutter 114b verlacken.

2. Kontrollieren der Bandgeschwindigkeit

a. Mit Cassetten-Service-Satz (4822 395 30052) Bandgeschwindigkeit kontrollieren.

- b. Kontrolle mit Testcassette 8945 600 13501, der jede 4,76 m ein 800-Hz-Signal aufmoduliert ist.
 - Cassette in Recorder legen und Gerät in Stellung "Wiedergabe" schalten.
 - Die Zeit zwischen zwei Signalen muss 98-102 Sekunden betragen.
 Sollte die Geschwindigkeit zu niedrig sein, so ist zu kontrollieren, ob die Anpressrolle, die Rutschkupplung, das Schwungrad usw. einwandfrei drehen. Wenn nötig, ist die Bandgeschwindigkeit mit R497 einzustellen.

3. Rutschkupplung 57 (Abb. 22)

Bei Wiedergabe soll die Reibungskraft 35-50 g betragen. Die Gegenreibungskraft bei schnellem Rücklauf soll 4-8 g betragen. Wird das Band in der Cassette nicht oder unregelmässig gewickelt, so kann das auf folgende Ursachen zurückzuführen sein:

- 1. Zu geringe Reibungskraft beim Aufwickeln.
- 2. Unrichtige Gegenreibungskraft.
- 3. Zu viel Reibung in der Cassette.

Im erstgenannten Fall ist Rutschkupplung 57 zu ersetzen. Im zweiten Fall ist Ring 77 zu ersetzen. Für übrige Einstellungen siehe Abbn. 13 und 21.

Es empfiehlt sich, nach ungefähr 500 Betriebsstunden den Wiedergabe-Kopf, die Andruckrolle und die Tonwelle mit Äthylalkohol zu reinigen.

LISTE MECHANISCHER EINZELTEILE, RECORDER

51 52 53 54 55	4822 535 70498 4822 403 50872 4822 403 50873 4822 403 62022	76 77 78 79 80	4822 532 50979 4822 532 50981 4822 532 50719 4822 522 31205 4822 532 50704	101 102 103 104 105	4822 157 50808 4822 532 50268 4822 505 10556 4822 492 31248
56 57 58 59 60	4822 532 50296 4822 522 31203 4822 532 50265 4822 528 90244 4822 522 31224	81 82 83 84 85	4822 532 50262 4822 522 31206 4822 532 10691 4822 528 70252	106 107 108 109 110	4822 410 21631 4822 520 30285 4822 492 51013 4822 492 31249
61 62 63 64 65	4822 532 50706 4822 522 31204 4822 492 51139 4822 528 20193	86 87 88 89 90	4822 532 50978 4822 492 31126 4822 492 51113 4822 528 20192	111 112 114 116 117	4822 532 14486 4822 249 10075 4822 505 10323 4822 403 40068 4822 532 50268
66 67 68 69 70	4822 532 50945 4822 492 31251 4822 358 20099 4822 492 31252	91 92 93 94 95	4822 528 90243 4822 492 40577 4822 532 54255 4822 361 70297	118 119 121 122 123	4822 403 50871 4822 492 31311 4822 256 80032 4822 410 21632 4822 492 31253
71 72 73 74 75	4822 492 40575 4822 358 20101 4822 492 62022 4822 492 40576	96 97 98 99 100	4822 528 60092 4822 532 50692 4822 520 30294 4822 532 10696		

1979-02-09

CAR RADIO GENERAL

A79-302

Information

This replaces A77-344

Applicable for: 22AC660, 22AC860, 22AC864, 22AC868.

The FM-oscillator circuit has been drastically changed. As a result, the FM-HF/MF print (print 1) has been adapted.

This modification was necessary for the 22AC864 to suppress interference from the "Eurofunk".

For reasons of standardization the new print is also used in the other sets.

This modification is effective from factory code WA05 on.

	 	·																	
_ <u> </u>	 		101	102				119	120	121	1	113 12	3 109	127 112 1	28 125	134		130	132
R				103 1	04							110 116 1	22	124 115	126				
C	101	102	103	105	106	107	400	400										129	131
	 			103			108	116	110	121	126	123 129	117	128 12	0 114	130	131	132	
	 					104 119	118	109			127		115 1	25	122				
MISC	D401	S101		TS105	560	2 5601		S102	TS107c	0102	YD111	TS106 TS	100-	TS107b					
	 										AII III	13100 73	NUQU	1310/0		X	R112	TS108b	X2#3

Information

1977-09-14

AUTORADIO CASSETTENSPIELER 22AC864/82

A77-325

Der Abgleich des SK/BK/DK-Decoders geschieht wie folgt:

Die Signale werden einem VRF-Coder Typ 157Z (Luther & Maelzer) entnommen.

R555 auf maximale Gleichspannung abgleichen. Dann nach höherer Frequenz weiterdrehen bis die Gleichspannung zwischen 1,35 - 1,40 V liegt (DK) Siehe Abb. 1.

SK	⊗	\Diamond	*	Ø.	
FM (87.5-104 MHz)	HF+BK (A)+DK	\$		S550,S551 R555	Max. BK √ 5 →

ANDERUNGEN WÄHREND DER FERTIGUNG

SK/BK/DK Decoder

Ab Woche 725 wurden folgende Anderungen eingeführt:

R515 wird 1.2 M Ω

R516 wird 1 k Ω und wird mit +4 verbunden.

R519 wird 1 M Ω

R535 wird 220 k Ω

R541 wird 680 k Ω

R558 wird 330 k Ω

C676 wird 0,47 µF - 35 V (4822 124 10195)

C687 wird 0,22 µF - 35 V (5322 124 14074)

C684 wird 22 nF - 5% 250 V (4822 121 54073)

TS410 entfällt.

R484 wird 2,2 k Ω und verbindet jetzt Punkt 10 von IC411 mit Masse

Grund:

Veniger unrichtiges Ansprechen des DK-Decoders bei gedrückter Info-Taste.

Vereinfachung der Produktion.

Anmerkung:

Vorlaufige Lösung - C687 wurde bereits ab Woche 730 geändert.

Demzufolge ändert sich der Abgleich von R555

- Messpunkt 7 wird nach c-TS468 versetzt.
- Ein Wechselspannungsmessinstrument an (7) an schliessen.
- R555 auf max. $V \sim$ abgleichen.

HF/ZF-Teil

Ab Woche 713 wurde der Antennenanschluss 271 durch eine auf Bügel 666 gefalzte Metallbuchse ersetzt und wurde eine Kontaktfeder (Pos. 660) auf Pos. 661 (Print 2) gelötet.

Grund: Verbesserung des Kontaktes zwischen Antennenstecker und Buchse.

Ab Woche 714 wurde der Wert von C645 in 2,2 nF geändert.

Grund: Erhöhung des 19-kHz-Pilotspegels.

Gemäss Code WA02718 wurden folgende Werte geändert:

R681 wird 510 Ω

R683 wird 680 Ω

R685 wird 1 k Ω R688 wird 2,7 k Ω

R691 wird 150 k Ω

R693 wird 1,5 k Ω

Grund: Verbesserung der Gegrenzung.

Ab Woche 723 wurden R777 und R779 durch eine

Drahtbrücke ersetzt.

Grund: Vereinfachung der Produktion.

NF Teil

Ab Anfang der Produktion wurde der Wert von R609 in 2 k Ω geändert.

Ab Woche 717 wurde der Wert von R572 in 4,7 k Ω geändert.

Grund: Verminderung der Temperatureinflüsse.

Ab Woche 721 wurden die Werte von R640 und R860 in 6.8 k Ω geändert.

Grund: Verbesserung der NF-Empfindlichkeit.

Recorder-Teil

Ab Woche 715 wurde der Recorder-Print geändert. Siehe Abb. 2.

Grund: Vereinfachung der Produktion.

Gemäss Code WA01717 wurde der Wert von R483 in 1,3 k Ω geändert. Der Wert von R500 wurde in 15 k Ω geändert.

Grund: Besserer Schutz vor Überlastung des IC411.

Gemäss Code WA03731 wurden hinzugefügt:

C436, 439 (2,7 nF $\triangle\triangle$). Dazu wurde der Print angepasst.

Siehe Abb. 2.

Grund: Verbesserung der Höhenwiedergabe.

	TS -	<u> </u>		D	→	
ŀ	401,403 402,404	BD433) BD434) pair	4822 130 41076	414 413,416	BAX13 BA315	5322 130 40182 4822 130 30843
	405,407	BC549B	4822 130 40936	417	OF173	5322 130 30301
١	406,408	BC548B BC548	4822 130 40937 4822 130 40938	418 419	BZX79/B10 BA315	5322 130 34297 4822 130 30843
	409,410 421,424	BC548	4822 130 40938	442	LED 5082-4584	4822 130 30953
١	422,427	BC549C	5322 130 44246	443	AA119	5322 130 40229 5322 130 34047
	426,428 429	BC338-25 BF324	4822 130 40958 5322 130 44396	444,445 450	BZX75/C1V4 BA315	4822 130 30843
	430a,b,c	40835	4822 130 40949	451	BB117	4822 130 30913
	431a,b,c	40838 BC548A	4822 130 41077 4822 130 40948	453,454 456,457	BA315 BA315	4822 130 30843 4822 130 30843
	432 433	BF241	4822 130 40898	458a,b	2-AA119	4822 130 30312
	436a,b,c	40835	4822 130 40949	459,460	BA315	4822 130 30843 5322 130 40229
	437 441,471	BF495 BC548	4822 130 40947 4822 130 40938	463.464 480-485	AA119 BA315	4822 130 30843
	461-463	BC548B	4822 130 40937	486	AA119	5322 130 40229
	464,470	BC558B BC549B	5322 130 44197 4822 130 40937	487-491	BA315	4822 130 30843
	465 467,469	BC548B	4822 130 40937			
	468	BC549C	4822 130 44246	1.C.	L	
١	•			411	TDA1006	4822 209 80316 4822 209 80315
ļ	S	-		423 425	TDA1005 TDA1001	4822 209 80284
	401a		4822 156 20714 4822 156 20715			
	401b 401c		4822 156 20702	С	- -	
	401d 401e		4822 156 20704 4822 156 20706	426,427	$0.1 \mu \text{F} - 35 \text{V} \text{tant}.$	4822 124 10203
	476		4822 156 30079	430,438	$0.15 \mu \text{F} - 35 \text{V}$ tant.	5322 124 14061
	478		4822 153 10296 4822 526 10016	434,435 450,452	0.1 μ F - 35 V tant. 0.1 μ F - 35 V tant.	4822 124 10203 4822 124 10203
	479,501 491		4822 153 50108	504	680 μF - 16 V	4822 124 20523
	493		4822 153 50102	512,689	10 μ F - 3 V tant.	5322 124 14084
	498 500		4822 158 10107 4822 156 20712	513 516	$0.47 \mu\text{F} - 35 \text{V}$ tant. $560 \text{pF} - 1 \% - 125 \text{V}$	4822 124 10195 5322 121 50491
	502,509		4822 153 10253	528	150 pF - 2 % - 100 V	4822 122 31085
	504 507,508		4822 156 30399 4822 153 10252	537,547 539	10 nF - 63 V 3.9 pF _ 0.25 pF ₋ 100 V	4822 122 30043 4822 122 31043
- 1	512		4822 156 40535	544	220 pF - 2 % - 500 V	5322 121 54059
	550		4822 156 40655 4822 156 40656	549	3.3 μF - 10 V	5322 124 14023 4822 122 30043
	551		4022 150 40050	551-562 568,570	10 nF - 63 V 10 nF - 63 V	4822 122 30043
	_			569	4.7 nF - 63 V	4822 122 31125
	R			571,601 585	10 nF - 63 V 80 pF - trimmer	4822 122 30043 4822 125 50042
	494	1.6 Ω - 0.125 W	4822 111 30466	586	60 pF - trimmer	4822 125 50057
	497 512	470 Ω - (lin.) 1 M Ω	4822 100 10023	588,599 589	6.8 nF - 5 % 63 V 4.7 nF - 5 % 63 V	4822 121 50538 4822 121 50539
	555	4.7 k Ω - (lin.)	4822 100 10025	598	470 pF - 2 % 250 V	5322 121 54078
	575	10 kΩ - (lin.) 2.2 kΩ - (lin.)	4822 100 10035 4822 100 10029	600,607	22 nF - 10 % - 100 V 68 pF - 2 % - 100 V	4822 121 40513 4822 122 31076
	608 610	$2.2 \text{ k}\Omega - 0.1 \text{ W}$	4822 110 60115	606,625 614,615	68 pF - 2 %- 100 V 10 nF - 63 V	4822 122 31076
	615,623	18 $k\Omega$ - 0.1 W	4822 110 63141	644	10 nF - 63 V	4822 122 30043
	630	$2x(17 k\Omega+5 k\Omega) \log + 2x(47 k\Omega+100 k\Omega)$ spe		646 650,651	120 pF - 2 % - 100 V 47 μF - 10 V	4822 122 30093 4822 124 20461
	647,667	150 Ω - NTC	5322 116 30111	661	$0.47~\mu\text{F}$ - $35~\text{V}$ tant.	4822 124 10195
	703 718,770	$1 M\Omega$ - (lin.) $1 k\Omega$ - (lin.)	4822 100 10103 4822 100 10021	662 663-665	3.3 nF - 2 % - 63 V 22 nF - 63 V	5322 121 54049 4822 122 30103
	735	V D.R.	4822 116 20069	666	6.8 nF - 2 % - 63 V	4822 121 50538
		1		670 671	100 nF - 10 % 100 V 22 nF - 10 % - 100 V	4822 121 40522 4822 121 40513
	Verschiedene	S		672,681	0.47 μF - 35 V tant. 56 nF - 10 % - 100 V	4822 124 10195
	XR482 484	Ker. Filter	4822 242 70249	674 675,680	1 μ F - 35 V tant.	5322 124 14096
	LA401	18 V - 100 mA	4822 134 40299	676,677	$2.2 \mu F$ - $16 V$ tant.	4822 124 10204
	F402 FM Kern	1.6 A (T) (S401a,b)	4822 253 30024 4822 526 10115	683 684	22 nF - 5 % - 250 V 33 nF - 5 % - 250 V	5322 121 54073 4822 121 50626
	AM Kern	(S401c,d,e)	4822 526 10109	685,686	22 nF - 5 % - 250 V	5322 121 54073
	U400	Dickfilmeinheit	4822 111 90036	687,691	1 μ F - 35 V tant.	5322 124 14096 5322 124 24104
	D415, siehe E	Explosivzeichnung seite 25	5	688 689	4.7 μ F - 6.3 V tant. 10 μ F - 3 V tant.	5322 124 14084
	D442, D466	siehe Explosivzeichnung s xplosivzeichnung seite 25	eite 23-24			CS57776
	3400, siene E	Aprosivzercimung serie 25	,	<u> </u>		0007770

Information

1977-12-20

AUTORADIO-CASSETTENSPIELE 22AC864

A77-337

Bereits veröffentlicht: A77-325

Während der Produktion wurden folgende Anderungen vorgenommen:

Recorderteil

- Ab Woche 731 ist D414 (BAX13) durch BAW62 (5322 130 30613) ersetzt worden.
 Grund: Normung.
- Unter bestimmten Umständen kann es vorkommen, dass das Gerät während der Cassettenwiedergabe auf Radiowiedergabe umschaltet.

 Diese Umstände sind u.a.: Umgebungstemperaturen von 40° C bis 60° C, schwerlaufende Cassetten, Speisespannungen niedriger als 12 V, ununterbrochenes Abspielen der Cassetten während längerer Zeit. Um diesen Fehler zu vermeiden, muss man den TDA 1006 durch den TDA 1006-S1 (4822 209 80406), IC411 ersetzen.

 In der Produktion wurde diese Anderung in Woche 733 eingeführt.
- Gemäss Code WA04 sind D417 und R505 entfallen; D416 wurde durch BZX79/B4V7 (5322 130 34174) ersetzt und um 180° gedreht. Der Wert von R499 ist jetzt 10 k Ω und der von R502 680 Ω . Grund: Verbessern der Temperaturstabilisierung.

12263 A12

Fig. 1

MISC	0416	D417	SK-E	IC411.D413. 14 418.	419 T5409	SK-D	U400	TS405408	TS471 D486	491 TS468-	470 D485 TS	462465 D48	2484 \$550	551 TS461,457
C 426 -670			52 450	455	443	445,454,453.	.427.430.438	435444 434	426.688.69168	37.683685.68	35,689,680,677	673 681,672,660	566,570,67	1.674676
		2.505.497	501, 483	484: 486	509 504 503	488 489	43	9 436			525532.517	7 521,535 538	3	511516
R 541 ··· 565	<u> </u>							55055	5 5 6 5 5 5 7· 5	59.543 562.58	33.560.547.564	556,541,542,549	5-4-546	

Fig. 2

Information

1979-04-13

AUTORADIO CASSETTENSPIELER 22AC864/82

A79-307

Bereits veröffentlicht: A77-325, A77-337, A79-302 (A77-344).

FM-Teil

- Ab der Woche 826 ist die zum oberen Verbindungsstift führende Leiterbahn zum Raum zwischen dem zweiten und dritten Verbindungsstift durchgezogen. Der obere Verbindungsstift ist nach dieser neuen Insel verlagert. Die Hauptplatine wurde ebenfalls geändert. *Grund:* Montagevereinfachung.

AM-Teil

- Mit der Code WA06 entfallen C617 und R746, wurde C616 nach 1,5 nF und R747 nach 33 k Ω geändert und wurde C618 (22 nF, 10 %, 100 V, Codenummer 4822 121 40513) zwischen dem Knotenpunkt C616/R745 und R747 eingeschaltet. *Grund:* Klangänderung (siehe weiter beim NF-Teil).
- Ab der Woche 830 wurde C585 gegen einen anderen Typ von 80 pF,Codenummer 4822 125 50097 ausgetauscht.
 Auch wurde die Leiterbahn an dieser Stelle geändert.
 Grund: Unterdrückung von Krachgeräusche beim Einstellen des Antennentrimmers.
- Ab der Woche 832 wurde C578 in einen Elektrolyt von 1 μ F, 63 V (oh) und R719 nach 1 $M\Omega$, 0,125 W geändert. *Grund:* Vergrösserung der Zeitkonstante der AFR.
- Ab der Woche 834 wurden die Werte des Wahlwiderstands R773 nach 2,2 k Ω und 3,9 k Ω geändert. Grund: Streuung in der TDA1001.

NF-Teil

- Ab der Woche 802 wurde die Stelle der Bezeichnungen "R/D" und "L/G" am Hinterbügel korrigiert.
 Der Anschluss für den rechten Lautsprecher (R/D) befindet sich jetzt direkt unter dem Anschluss für die automatische Antenne.
- Bemerkung: Es empfiehlt sich, die Zeichnung 11810A der Kundendienstanleitung anzupassen.
- Ab der Woche 807 wurde die Codenummer von R630 nach 4822 102 50016 geändert.
- Grund: Ein/Aus-Schalter dieses Potentiometers besitzt ein besser definiertes Abschaltmoment. - Mit dem Code WA06 wurden folgende Teile geändert:
- C514 wird 47 nF C521, 535 werden 18 nF

C522, 536 werden 0,15 μ F - 35 V Tantal (5322 124 14061) C524, 538 werden 120 nF C525, 539 werden 100 nF Grund: Klangänderung

Ab der Woche 835 wurde D442 durch CQY97 (4822 130 30955) und D466 durch CQY95 (4822 130 30923) ersetzt.
 Grund: Normierung

Cassettenspieler

- Ab der Woche 738 wurde R515 nach 820 k Ω geändert. Grund: Vergrösserung der Verstärkung des 57 kHz Hilfsträgers.
- Ab der Woche 805 wurden C436 und C439, nach 2,7 nF 5 % 63 V (5322 121 54065) geändert.
 Grund: Mikrophonieunterdrückung.
- Ab der Woche 806 wurde R500 nach 27 k Ω geändert. Grund: Reduzierung des Temperaturanstiegs beim Schnellspulen.
- Ab der Woche 813 wurden C436 und C439 nach 2,7 nF -10 % - 63 V (4822 122 31246) geändert.
 Grund: Montagevereinfachung.
- Ab der Woche 828 wurde TS471 nach BC548 B (4822 130 40937) geändert.
 Grund: Zur Verhinderung des Nichtumschaltens des Geräts nach Cassettenwiedergabe bei Unterspannung.
- Ab der Woche 830 wurden Schalter 274 durch eine verbesserte Ausführung, Codenummer 4822 278 90341 ersetzt.
- Ab der Woche 835 wurde D415 durch CQY54 (4822 130 30914) ersetzt.
 Grund: Normierung.

Korrekturen zur Kundendienstanleitung

- Die Codenummer von S478 soll sein: 4822 157 50739
- Die Codenummer von S512 soll sein: 4822 156 40534
- Die Pos. Nr. beim Turnolock-Schieber soll 206 statt 613, Codenummer 4822 403 30293, sein.
- Die Codenummer für Pos. 261 soll sein: 4822 255 40115.