FIN 5330 - Homework 2

Tyler J. Brough

February 17, 2020

Problem 1

1. Simulate T = 500 observations from an AR(1) process for $\phi = \{0.25, 0.5, 0.75, 0.8, 0.9\}$.

$$y_t = \phi y_{t-1} + \epsilon_t$$

- 2. Treat the artificial from the simulations above as observed data by an econometrician.
- 3. Estimate each model via OLS.
- 4. Test the standard null hypothesis of $\phi = 0$ with a standard t-test for significance levels $\{0.01, 0.05, 0.10\}$ for each one and report the results in a table. Provide test statistics, standard errors, critical values, p-values, etc.
- 5. Pick one of the parameter values for the models above and do the following:
 - Use the Central Limit Theorem to derivive a sampling distribution for $\hat{\phi}$. Present the parameter values of the sampling distribution. Produce a graph of the distribution.
 - Use parametric Monte Carlo to simulate the sampling distribution. Use M = 10,000 repititions. Use the sample mean and standard deviation to estimate the parameter values of the distribution. Produce a histogram.
 - Use the IID Bootstrap to simulate the sampling distribution. Use B=10,000 repititions. Use the sample mean and standard deviation to estimate the parameter values of the distribution. Produce a histogram.
 - Compare all three methods.
 - Can you interpret the last two distributions as predictive densities?
- 6. Return to the problem in 5 above and redo the simulation from step one, but replace the error distribution with a Student-T distribution with df = 5 (degrees of freedom parameter). Even though we know at the generation stage that the errors come from the Student-T distribution, the econometrician assumes a normal distribution when using the CLT and parametric Monte Carlo. The bootstrap obviously does not need to make such assumptions. Compare to the results above.

Problem 2

Simulate an AR(1) process with parameter $\phi = 0.8$ by using the $MA(\infty)$ representation. **Hint:** you will have to truncate the $MA(\infty)$ representation, yielding an approximation to the AR(1). Recall that the AR(1) can be represented by the following (i.e. the $MA(\infty)$ representation):

$$x_t = x_0 + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$
 where x_0 is the initial condition.

- Plot the simulated time series.
- Estimate $\hat{\phi}$ via OLS. Report the usual suspects.

Problem 3

Take the AR(1) model above:

$$y_t = \phi y_{t-1} + \varepsilon_t$$
 with $\phi = 0.8$

- Run the following simulation:
 - Set $\varepsilon_0 = 1.0$
 - $\text{ Set } y_0 = 0.0$
 - Set all $\varepsilon_t = 0.0$ for t > 0
 - Plot the simulated process $\{y\}_{t=0}^T$ as a function of time. This is called the *impluse response* function. Interpret it in terms of the MA (θ) coefficients for the AR(1) representation.
 - Simulate T = 50 time steps in the process.

Problem 5

Simulate T = 500 observations from the following ARMA model:

$$y_t = \phi_1 y_t - 1 + \phi_2 y_{t-2} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$$

Choose appropriate values for the AR and MA coefficients, as well as for σ_{ε} .

- Plot the simulated time series.
- Calculate γ_0 , γ_1 and γ_2 .

Problem 6

• Simulate T = 500 time steps for the following two equations:

$$y_t = y_{t-1} + u_{1,t}$$
$$x_t = x_{t-1} + u_{2,t}$$

- where $u_{j,t}$ j=1,2 are independent standard white noise processes.
- Next regress y_t on x_t and estimate β (slope coefficient) via OLS in the following regression

$$y_t = \alpha + \beta x_t + \epsilon_t$$

- Test the null hypothesis $H_0: \beta = 0$ against the alternative $H_a: \beta \neq 0$. Use the standard t-test with standard significance levels (0.01, 0.05, and 0.10). What should you find? What do you find?
- Repeat the process M = 50,000 times and store the β coefficients for each run of the simulation.
- Summarize the simulated sampling distribution for β .
- Make a histogram plot of the simulated coefficients.

Problem 7

- Repeat the exercise in Problem 1 above for $\phi = 1.0$.
- Comment on your findings.

Problem 8

• Simulate T = 500 time steps from the random walk model

$$x_t = x_{t-1} + u_{1,t}$$

• Next simulate T = 500 time steps from the model

$$y_t = \alpha + \beta x_t + \epsilon_t$$

- Where $\alpha = 0.22$ and $\beta = 2.50$.
- $\epsilon \sim N(0,1)$ (white noise process)
- Use the Augmented Dickey-Fuller Test to check for the presence of a unit-root in both y_t and x_t . What do you find? What should you find?
- Implement the Engle-Granger two-step method by:
 - First, test for cointegration by submitting $\hat{\epsilon}_t$ to the ADF Test. What do you find?
 - Obtain $\hat{\beta}$ via OLS.
 - Estimate the error-correction model with p=1 and include contemporaneous x_t .