Predicting Atlantic Multidecadal Variability

Glenn Liu^{1,2}, Peidong Wang¹, Matthew Beveridge¹, Young-Oh Kwon², Iddo Drori¹

¹ Massachusetts Institute of Technology
 ² Woods Hole Oceanographic Institution

Atlantic Multidecadal Variability (AMV) and Climate Change

Atlantic Multidecadal Variability (AMV)

 ~60-70 year fluctuation in sea surface temperature (SST) anomalies over the North Atlantic

Relevance to Climate Change

- AMV has been linked to variation in:
 - Atlantic hurricane activity
 - Extreme weather events
 - Fisheries/ Ecosystem Regime Shifts
- Quantify natural climate variability and response to anthropogenic warming/change

HadISST AMV Spatial Pattern (° $C/1\sigma_{AMV}$) 1870-2018

Problem and Background

- Question: Can we predict the AMV state ahead of time (0-year to 24-year lead time)?
- Previous Work and Challenges

Existing Physical Prediction Models:

- Computationally Intensive
- Sensitive to Initial Conditions

Insufficient Data in Observations 1870-2021 (~150 years)

Prediction Objective

• Objective: Use snapshots of anomalous sea surface temperature, salinity, and atmospheric pressure, to predict AMV N-years ahead (N=0, 3, ..., 24)

a) Convolutional neural network 32 feature **Network Architectures** Input maps Flatten Max pool 64 feature layer maps Max pool Successful in layer Positive **ENSO** forecasting Neutral (Ham et a. 2019) 2x3 □ Negative b) Residual neural network Baseline: Persistence Forecast **Evaluate Transfer Learning** Performance for .e. Current AMV state will be the future Positive Pretrained Networks Neutral (Imagenet and FractalDB) **AMV State** Negative c) AutoML Input Flatten Examine other ML **Positive** architectures and Post-Pre-Feature Feature Neutral Classification → processing Test AutoML processing extraction selection Negative

Overall AMV Prediction

- All the machine learning based models outperform traditional persistence forecast at almost every lead time.
- AutoML has the best performance over simple CNN, resnet50 and FractalDB.

Prediction skills for different AMV states

 Machine learning based models are better at predicting the extreme states, which is of greater social benefits.

Lead Time (Years)

• AutoML still outperforms all the other machine learning models for predicting extreme AMV states.

Conclusions and future steps

- Predicting AMV, especially for extreme states, are of great social benefits, and all the machine learning based models outperform traditional persistence forecast.
- AutoML, with minimal user-end tuning, has the best performance. This provides
 potential for stakeholders or local climate centers to use such method without
 many technical barriers.
- Next steps: interpretability, diagnose physical mechanism using machine learning:
 - Which specific regions in North Atlantic contributes most to prediction of extreme AMV states?
 - Is AMV mainly driven by atmospheric or oceanic processes?