Program Equivalence: An Interactive Relational Separation Logic Prover Implemented in Maude

Andrei-Alin Corodescu

Scientific Coordinator: Conf. Dr. Ciobâcă Ștefan

July 4, 2018

Outline

- The Problem
- Technologies and theoretical concepts
 - Relational Separation Logic
 - Maude

3 Demonstration

The Problem

Problem Description

- Program Equivalence.
- Absence of an implementation for Relational Separation Logic, theoretical framework supporting formal proofs for program equivalence.

The Problem

Problem Description

- Program Equivalence.
- Absence of an implementation for Relational Separation Logic, theoretical framework supporting formal proofs for program equivalence.

Difficulties

- Representing the theoretical concepts
- Computationally-hard problems
- User experience

Example

Program 1:

while (c != nil) do x := [y]; [c] := -x;

c := [c + 1]

Program 2:

Note

od

If the address y is part of the list starting at c, the two programs are not equivalent.

Outline

- The Problem
- 2 Technologies and theoretical concepts
 - Relational Separation Logic
 - Maude

3 Demonstration

Relational Separation Logic

- Helps reason about how two programs are related
- Hoare Quadruples : $\{R\} \frac{C}{C} \{S\}$
- Example proof rule (Consequence) :

$$\frac{R \Rightarrow R_1 \qquad \{R_1\} \frac{C}{C'} \{S_1\} \qquad S_1 \Rightarrow S}{\{R\} \frac{C}{C'} \{S\}}$$

• Axioms : $\{E \mapsto -\}[E] := F\{E \mapsto F\}.$

Relational Separation Logic - Example

Consider the two programs exemplified earlier to be denoted by C_1 and C_2 .

Example

• List
$$x \stackrel{def}{=} (x = nil \land Emp) \lor \exists na. \begin{pmatrix} x \mapsto a, n \\ x \mapsto a, n \end{pmatrix} * List n$$

•
$$\left\{\left(Same * List \ c * \begin{pmatrix} y \mapsto x_0 \\ y' \mapsto x_0 \end{pmatrix}\right) \land y = y' \land c = c'\right\}$$

$$C_1$$

$$C_2$$

$$\{Same \land y = y\prime \land c = c\prime\}$$

Outline

- 1 The Problem
- 2 Technologies and theoretical concepts
 - Relational Separation Logic
 - Maude

3 Demonstration

Maude

- Based on Rewriting logic
- Natural Representation of logics through sorts and operators
- Powerful meta language applications

Example

```
[Consequence] : { R } C1 — C2 { S } \Rightarrow ((R \Rightarrow R1) \Leftrightarrow ({
 R1 C1 — C2 \{S1\}) \Leftrightarrow (S1 \Rightarrow S) [nonexec].
```

Demo

Conclusions

- The prover showcases:
 - A promising executable environment for Relational Separation Logic which can be improved upon in the future
 - The features of Maude that make it fit for this purpose
- Personal conclusions:
 - Learning by modelling and applying logics
 - Shortcomings of Maude because of it not being widely adopted