

Segment trees: 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)o(N) not good anough, find o(Log N) Sol.

Segment free. Seprent -> Perform grong on a ronge (sum, max, ang, min, god) in o(logN)

ST is a binary tree which has interval info b operation.

ong 2 integor. [3, 8, 7, nterval O(N) to

 Q^{2} Sum bt a [2,6] = [2,3] + [4,5]+ [6,6] etc. (1) Node interval is inside example only. ex: [4,5] -> return the value. (2) Node interval is completely outside gray interal. (node start index) > or (grong end indrex) [2,6] -> [7,7] (Node end c grong strent)

yong. In this curs 20. me (3) Over 1 apping: [2,6] G_{x} : [6,3] or [0,7]Now to update in o (logn) time: Change Index 3 with 14 -> (3, 14)

1) Mede megher index lier is interval. If yer, then check child nodes if wild range is out, no change in val, jost roton. In the and, you will rech log. years bay as verno, ion vill up date the tree.

$$a = \begin{bmatrix} 3 & 4 & 4 & 2 & 4 \\ 3 & 4 & 4 & 2 & 4 \\ 0 & 4 & 4 & 4 \\ 0 & 1 & 4 & 4 \\ 0 & 0 & 1 & 4$$