

Contents

- Project plan
- Key requirements
- Trade-off method
- Subsystem Trade-offs
- Orbit design
- Software tool

1.

Project plan

Mission need statement

Demonstrate that a satellite constellation, consisting of a single emitter and several receivers, will perform superior (in terms of cost, lifetime and performance) to existing spaceborne laser altimetry systems.

Project Organization

2.

Key requirements

Key Requirements

Low cost

• Lifetime of ~ 5 yrs

Performance equivalent to ICESat

Additional Requirements

- Mass ≤ existing spaceborne laser altimetry systems
- No scanner may be used
- Recreation of the DEM
- Extraction of the BRDF

3.

Tradeoff method

Trade-off Method

- A set of criteria are defined
- Each criterium is assigned weight w.r.t. importance
- Varies for each subsystem
- Each subsystem is graded
- Highest score wins

4.

Subsystem trade off

Pruned Design Option Tree ADCS

Selected ADS concepts

- 1. Maryland Aerospace Inc. IMI-100 ADACS
- 2. Sun Sensors and a Star Tracker
- GPS based attitude control

Sources: http://www.cubesatkit.com/docs/datasheet/DS CSK ADACS 634-00412-A.pdf Dr. Q.P. Chu. Spacecraft attitude dynamics and control, course notes

Trade-off ADS

Criteria	Weight Factor	Concept 1	Concept 2	Concept 3
Accuracy	9	4	8	4
Size	7	2	6	4
Power	7	6	5	7
Price	3	3	5	4
Development	5	8	4	5
Weighed total		141	184	150

Winner ADS

Sources: Dr. Q.P. Chu. Spacecraft attitude dynamics and control, course notes

Selected ACS concepts

- Thrusters
- 2. Reaction wheels and magnetic torquers
- 3. Maryland Aerospace Inc. IMI-100 ADACS

Sources:

http://www.tno.nl

http://www.cubesatshop.com

http://www.cubesatkit.com/docs/datasheet/DS_CSK_ADACS_634-00412-A.pdf

Trade-off ADS

Criteria	Weight Factor	Concept 1	Concept 2	Concept 3
Rate	5	8	6	6
Accuracy	8	4	8	7
Size	7	2	6	5
Power	7	3	6	6
Price	3	2	8	7
Development	5	4	6	8
Weighted total		133	232	224

Winner ADS

Sources: Dr. Q.P. Chu. Spacecraft attitude dynamics and control, course notes

Selected Pointing Mechanism Concepts

- Using the ADCS
- 2. Using two stepper motors
- 3. Using one axis reaction wheel and one stepper motor

Trade-off pointing mechanism

Criteria	Weight Factor	Concept 1	Concept 2	Concept 3
Pointing accuracy	10	2	8	6
Pointing rate	10	2	8	6
Added weight	4	8	2	5
Power	4	7	2	4
Influence	6	2	3	7
Complexity	6	8	2	6
Weighted total		208	221	228

Winner Pointing Mechanism

Aspects considered

- Communications architecture
- Frequency bands
 - Ground-space link
 - Intersatellite link
- Antenna configuration
- Tracking

Aspects considered

- Communications architecture
- Frequency bands
 - Ground-space link
 - Intersatellite link
- Antenna configuration
- Tracking

Communications architecture

•Swarm elements:

- Emitter satellite (1)
- Receiver satellites (multiple)
- Ground station

- 1 ground-space link for emitter sat.
- Intersatellite links between receiver sats & emitter sat
- Decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - Intersatellite links between receiver sats & emitter sat
- Extremely decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - No intersatellite links

Swarm elements

Communications architecture

- •Swarm elements:
 - •Emitter satellite (1)
 - Receiver satellites (multiple)
 - Ground station

Receiver sat Receiver sat Intersatellite links Ground-space link Ground station

Centralized architecture

- 1 ground-space link for emitter sat.
- Intersatellite links between receiver sats & emitter sat
- Decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - Intersatellite links between receiver sats & emitter sat
- Extremely decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - No intersatellite links

Communications architecture

- •Swarm elements:
 - •Emitter satellite (1)
 - Receiver satellites (multiple)
 - Ground station

- 1 ground-space link for emitter sat.
- Intersatellite links between receiver sats & emitter sat

Decentralized architecture

- •Ground-space link for emitter sat & each receiver sat
- Intersatellite links between receiver sats & emitter sat
- Extremely decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - No intersatellite links

Communications architecture

- •Swarm elements:
 - •Emitter satellite (1)
 - Receiver satellites (multiple)
 - Ground station

- 1 ground-space link for emitter sat.
- Intersatellite links between receiver sats & emitter sat
- Decentralized architecture
 - •Ground-space link for emitter sat & each receiver sat
 - Intersatellite links between receiver sats & emitter sat

Extremely decentralized architecture

- •Ground-space link for emitter sat & each receiver sat
- No intersatellite links

Communications architecture

Centralized architecture:

- Advantages
 - •Low mass, power consumption & volume receiver sat
 - Scientific data compressed before transmitting to the ground station
- Disadvantages
 - Less robust
 - High mass, power consumption & volume emitter sat
 - High data rate ground-space link

Communications architecture

Decentralized architecture:

- Advantages
 - Low data rate ground space link
 - More robust
- Disadvantages
 - Higher mass, power consumption & volume receiver sat

Communications architecture

Extremely decentralized architecture: Receiver sat

- Advantages
 - Low data rate ground space link
 - No frequency allocation required for intersatellite links
- Disadvantages
 - Higher mass, power consumption & volume receiver sat

Desynchronization

Communications architecture

Winning architecture:

- Centralized architecture
 - No danger for synchronization
 - Lower total mass
 - Maximum use of allocated frequency

Aspects considered

- Communications architecture
- Frequency bands
 - Ground-space link
 - Intersatellite link
- Antenna configuration
- Tracking

Frequency allocation

Ground space link:

- Possible frequency bands
 - C-band
 - S-band
 - X-band
 - Ku-band
 - •Ka-band
 - •SHF/EHF-band

Frequency allocation

Ground space link:

- Possible frequency bands
 - C-band
 - S-band
 - X-band
 - High data rate possible
 - Most common for large Earth observation sats
 - Ku-band
 - Ka-band
 - •SHF/EHF-band

Frequency allocation

Ground space link:

- Possible frequency bands
 - C-band
 - S-band
 - Low data rate
 - Good for house keeping data
 - X-band
 - Ku-band
 - Ka-band
 - •SHF/EHF-band

Frequency allocation

Intersatellite link:

- Possible frequency bands
 - C-band
 - S-band
 - X-band
 - Ku-band
 - Ka-band
 - •SHF/EHF-band

Frequency allocation

Intersatellite link:

- Possible frequency bands
 - C-band
 - S-band
 - X-band
 - Ku-band
 - •Lots of existing systems for reference during design
 - Ka-band
 - SHF/EHF-band
 - V-band

Aspects considered

- Communications architecture
- Frequency bands
 - Ground-space link
 - Intersatellite link
- Antenna configuration
- Tracking

Antenna configuration

Ground space link:

- Possible high gain antennas
 - Parabolic reflector
 - High volume
 - Low mass
 - Phased array
 - Low volume
 - High mass

Antenna configuration

Ground space link:

- Possible high gain antennas
 - Parabolic reflector
 - High volume
 - Low mass
 - Phased array
 - Low volume
 - •High mass

Antenna configuration

- Intersatellite links
 - Horn antenna
 - Low gain
 - •>4 Ghz
 - Helix antenna
 - Low gain
 - •<2 Ghz

Antenna configuration

- Intersatellite links
 - Horn antenna
 - Low gain
 - •>4 Ghz
 - Helix antenna
 - Low gain
 - •<2 Ghz

Aspects considered

- Communications architecture
- Frequency bands
 - Ground-space link
 - Intersatellite link
- Antenna configuration
- Tracking

Tracking method

- GPS
 - High precision
 - Provides time signal
- TDRS
 - High accuracy
 - Requires TDRS tracking antenna
- Satellite crosslinks
 - Reuses communication hardware
 - Only gives relative position
- Ground tracking
 - Well established
 - Operations intensive

Tracking method

- GPS
 - High precision
 - Provides time signal
- TDRS
 - High accuracy
 - Requires TDRS tracking antenna
- Satellite crosslinks
 - Reuses communication hardware
 - Only gives relative position
- Ground tracking
 - Well established
 - Operations intensive

Electrical Power System

EPS – Thin Film CIGS

- Multiple layers of thin photovoltaic material
- Copper-Indium-Gallium-Selenium absorber
- Low efficiency
- Low production cost
- High absorptance coefficient

EPS – Triple Junction

- Multiple pn-junctions
- High efficiency
- High production cost
- Larger covering of the solar spectrum

*A/R: Anti-Reflective Coating

EPS – Triple Junction

EPS – Trade-off

	Weight factors	Candidates		
		Thin sheet (CIGS)	Triple-junction	
Efficiency	10	4	10	
Mass	10	10	3	
Cost	10	10	4	
Degradation	8	10	9	
Packing factor	7	8	8,5	
Resistance to vibrations	5	8	6	
Height	7	10	2	
Total	570	486	345,5	

Optical Receiving Payload

- Single-Photon Detection
 - Photonmultiplier tube
 - Single Photon Avalanche Diode (SPAD)
- Wavelength Estimation
 - Atmospheric transmittance
 - Wavelength ratio

Optical Receiving Payload

Single-Photon Detection

- Convert light (photons) to measurable quantity (Voltage or current)
- Multiple ways
 - Photomultiplier tube
 - SPAD
 - Quantum dot (underdeveloped)

Photomultiplier tube

Typically 1000 to 2000 V is used

SPAD

Single Photon Avalanche Diode

- Based on p-n junction
- Reversed biased voltage
- Sensing avalanche current
- Small size, less power

Atmospheric Absorption Bands

Wavelength estimation

- General sufficient wavelength range 400nm to 900nm
- Atmospheric transmittance Vs. Photon detection efficiency
- Wavelength ratio
 P = transmittance \(\Delta \rightarrow \(\Delta \rightarrow \rightarrow \Delta \rightarrow \Delta \rightarrow \(\Delta \rightarrow \Delta \rightarrow \Delta \rightarrow \Delta \rightarrow \Delta \rightarrow \(\Delta \rightarrow \Del

R = transmittance^2*efficiency

Wavelength estimation

Laser Optics

- To get the desired footprint.
- Three options:
 - No optics
 - Two lenses
 - Mirrors

Laser Optics – No Optics

Advantages:

- Really simple
- No optics to get out of focus
- Dirt-cheap

- Footprint directly depends on:
 - Laser beam divergence
 - Orbit altitude
- These two dependencies severely limit design options
- Characteristics might not be optimal

Laser Optics – Two lenses

Advantages:

Technology is well-understood

- Very heavy (even with Fresnel lenses)
- Focal length of > 4 m, so:
- Need mirrors to add light path length
- Still limits the footprint a lot
- Limits the orbit altitude a little

Laser Optics – Mirrors

Advantages:

- Much lighter than lenses
 - Herschel: <4 mm thick mirror
- Any footprint, any orbit altitude
- Potentially tunable in flight
- Small (~20 cm)
- Lense optional for some lasers

- Most complicated system
- Assembly must remain rigidly fixed

Receiver Optics – Common Part

Basically the reverse of the laser optics.

The secondary mirror is really small (mm range).

The difference is in the receiver assembly.

Receiver Optics – Fill Factor

Fill factor = \sim 2%. Then fraction of light detected is: QDE x FF = 37% x 2% = 0.74%

This is clearly unacceptable. Therefore, we need focusing optics after the main collector.

Receiver Optics – Noise

As the Sun bombards the Earth with photons, we need to filter the light, to prevent an unacceptable SNR.

Optical filters degrade fast and also filter put some of the wanted photons.

Therefore, we will use a prism to filter out unwanted noise.

Receiver Optics – Microlenses

Advantages:

- Lightweight
- Conventional

- Only improves the fill factor to 10%
- This means: QDE x FF = 37% x 10% = 3.7%
- Needs to be rigidly fixed
- Still unacceptible

Receiver Optics - Faceted Mirror

Advantages:

- Improves the fill factor to over 80-95%
- This means: QDE x FF = 37% x 80-95% = 30-35%
- Is acceptable

- Manufacturing is complicated
- Needs to be rigidly fixed

Receiver Trade-off

Criteria	Weight Factor	MPD	SILAT	SPAD + microlenses	SPAD + mirrors
Power	7	6	6	9	9
Mass	8	5	5	9	8
Volume	8	4	3	8	8
Reliability	7	8	8	6	5
Efficiency	10	7	6	1	5
Cost	5	4	3	7	5
Availability	3	10	8	5	3
Lifetime	10	8	8	6	6
Resolution	8	7	7	10	10
FOV	6	6	6	9	9
Weighed total		462	433	495	504

Ocean Reflectance

Large part of the Earth is covered by water

However, the fractional reflectance is highest

'blue' has the highest absorption depth

Continuous Versus Pulsed Waves

- By default: continuous
- By altering the laser: pulsed ~ nano- or picoseconds

Analysis of individual pulses

Increased spatial resolution

Blue types of laser

- Optimum wavelength according to analysis ~ 425 500 [nm]
- Possible 'blue' lasers
 - Gas lasers
 - Wavelength: 441.6 [nm] (Helium-Cadmium)
 - Wavelength: 488 [nm] (Argon)
 - Solid-State laser (Nd-YAG: Neodymium-doped Yttrium Aluminium Garnet)
 - Wavelength: 946 [nm]
 - Diode laser
 - Difficult to produce for lifetimes > 1 year

Nd-YAG wavelength correction

Second Harmonic Generation (non-linear optics)

Nd-YAG energy levels

Non-linear (Lithium-Boron) frequency doubling crystal

From 946 [nm] to 473 [nm]

Pulse Duration Deviation

 Change pulse length (and pulse energy) over specific time intervals

5.

Orbit design

- Polar orbit
- Repeat orbit
- Sun Synchronous orbit
- Frozen orbit

Repeat orbit

Allows an area to be viewed more than once.

Assuming a footprint size of 100 meters:

40.000.000/(2*100)=200.000 revolutions 200.000*90 (minutes) = 34 years

Sun synchronous orbit

- Orbital plane fixed w.r.t. the sun vector
- Most useful orbit is the dawn/dusk orbit
 - Solar panels are in the sunlight continuously
 - Allows pointing to the night side of the Earth

Frozen orbit

- Reduces the need for orbit station keeping.
- A constellation in formation flight has strict constraints.
 - > A frozen orbit helps meet these constraints

Frozen orbit design equations

$$\dot{e} = \frac{3}{2} \frac{J_3 r_{eq}^3}{p^3} (1 - e^2) n \sin i \cdot \cos \omega \left(\frac{5}{4} \sin^2 i - 1 \right)$$

$$\frac{di}{dt} = \frac{3}{2} \frac{J_3 n}{\left(1 - e^2\right)^3} \left(\frac{R_e}{a}\right)^3 e \cos i \cdot \cos \omega \left(\frac{5}{4} \sin^2 i - 1\right)$$

$$\dot{\omega} = \frac{3J_2n}{\left(1 - e^2\right)^2} \left(\frac{R_e}{a}\right)^2 \left(1 - \frac{5}{4}\sin^2 i\right) F$$

$$F = 1 + \frac{J_3}{2J_2(1 - e^2)} \left(\frac{R_e}{a}\right) \left(\frac{\sin^2 i - e^2 \cos^2 i}{\sin i}\right) \frac{\sin \omega}{e}$$

Frozen orbit design equations

$$\frac{di}{dt} = \frac{3}{2} \frac{J_3 n}{\left(1 - e^2\right)^3} \left(\frac{R_e}{a}\right)^3 e \cos i \cdot \cos \omega \left(\frac{5}{4} \sin^2 i - 1\right) = 0$$

Circular orbit, so e = 0

$$\frac{di}{dt} = 0$$
 for any a, i or ω

Frozen orbit design equations

$$\dot{e} = \frac{3}{2} \frac{J_3 r_{eq}^3}{p^3} (1 - e^2) n \sin i \cdot \cos \omega \left(\frac{5}{4} \sin^2 i - 1 \right) = 0$$

With e = 0 this becomes

$$\dot{e} = \frac{3}{2} \frac{J_3 r_{eq}^3}{a^3} n \sin i \cdot \cos \omega \left(\frac{5}{4} \sin^2 i - 1 \right) = 0$$

Equation is satisfied for any a and i if ω = 90 degrees

Frozen orbit design equations

$$\dot{\omega} = \frac{3J_{2}n}{\left(1 - e^{2}\right)^{2}} \left(\frac{R_{e}}{a}\right)^{2} \left(1 - \frac{5}{4}\sin^{2}i\right) F$$

$$F = 1 + \frac{J_{3}}{2J_{2}\left(1 - e^{2}\right)} \left(\frac{R_{e}}{a}\right) \left(\frac{\sin^{2}i - e^{2}\cos^{2}i}{\sin i}\right) \frac{\sin \omega}{e}$$

With e = 0 these equations reduce to

$$\dot{\omega} = 3J_2 n \left(\frac{R_e}{a}\right)^2 \left(1 - \frac{5}{4}\sin^2 i\right) F$$

$$F = 1$$

Frozen orbit

$$\dot{\omega} = 3J_2 n \left(\frac{R_e}{a}\right)^2 \left(1 - \frac{5}{4}\sin^2 i\right)$$

- Is equal to zero if i = 63.4 OR i = 116.6 degrees
- However a polar orbit is an orbit of 90 degrees inclination
 - ➤ Definition: An orbit is a polar orbit if $80 \le i \le 100$ degrees

Frozen orbit

$$\dot{\omega} = 3J_2 n \left(\frac{R_e}{a}\right)^2 \left(1 - \frac{5}{4}\sin^2 i\right)$$

- The orbit is circular
 - \triangleright It does not matter if ω rotates in the orbit plane
- Taking collision avoidance into collision avoidance
 - \rightarrow i = 85 degrees

Summary

- Sun synchronous is not required
- Repeat orbit is unfeasible
- The end result is a

Frozen, polar orbit with

- > e = 0 degrees
- > i = 90 degrees
- $\triangleright \omega = 90 \text{ degrees}$

Orbit Altitude Analysis

Orbit Altitude Analysis Perturbations

Drag

$$\Delta a = -2\pi \left(C_D \frac{A}{m} \right) \rho a^2$$

$$\Delta P = -6\pi \left(C_D \frac{A}{m} \right) \rho \frac{a^2}{V}$$

$$\Delta V = \pi \left(C_D \frac{A}{m} \right) \rho aV$$

Drag - ΔV

Environment Trapped particle radiation

Environment Trapped particle radiation

Orbit Altitude Summary

- As high as possible to reduce propellant mass
- Mission timeframe is crucial solar min/max
- Keep ballistic coefficient close

Orbit Altitude Summary

Formation Design

Formation Design

$$\lambda = 2.18^{\circ}$$

 $i_R = 2.18^{\circ}$

Formation Design Stationkeeping

Keeping the general constellation to insure better measurement data.

What affects it?

- Perturbations
- Differences in initial conditions

Formation Design Stationkeeping

What can be done?

- Nothing
- Relative Stationkeeping
- Absolute Stationkeeping

Formation Design

Collision Avoidance

Why is it important?

- Loss of 2 satellites, possibly vital
- · Increased possibility of collision due to debris spread

Formation Design Collision Avoidance

Formation Design Collision Avoidance

Parameters	5 Satellite Formation in 3 Planes	9 Satellite Formation in 5 Planes
No. of satellites	5	9
No. of orbit planes	3	5
Vertical dispersion [km]	1	1
In-track dispersion [km]	276	276
Potential impact area [km ²]	276	276
Collision opp. per orbit	20	72
Orbit period [min]	94.62	94.62
Collision opp. per year	$1.1*10^5$	$4.0*10^5$
Collision opp. in 5 years	$5.6*10^5$	$2.0*10^6$
Collision prob. per opp.	$1.0*10^{-6}$	$1.0*10^{-6}$
Mean number of collisions per	0.11	0.4
year		

Information based on Wertz, 2001

6.

Software tool

Software tool

Two parts

Simulation

Simulate the laser pulse photons and noise as received by the sensor.

Data analysis

Reconstructing the digital elevation model and BRDF from the received time series.

Noise

- Noise is introduced into the system
- Sources are the Earth and the Sun
- In a selective wavelength band
- Strong dependence on
 - Receiver footprint area
 - Receiver sensitivity band
 - Constellation altitude

Photon count variation with altitude

- Exponential decrease in photon count with altitude
- Lower is better
- Higher altitudes:
 - larger receiver aperture
 - higher emitter power

$$photons = e^{-0.0052 \cdot alt + 0.6558}$$

Solar noise photons fraction

Orbit at 450 km, 33W laser, 10 nm filter

Simulation results:

• Pulses sent: 24989 (about 5s)

Photons from pulses received: 12289 (86.5%)

Sun noise photons received: 1930 (13.5%)

Total photons received: 14219

Majority of the photons from the emitter laser Noise can be filtered out (constellation)

Terrain Reconstruction Algorithm

- Define time range
- Find the peaks
- Calculate altitudes
- •Find the most common altitude

Defining Range

- Known:
 - Time pulse sent
 - Time <u>SOME</u> pulse received
- Window: 1/5000 sec = 200 micro sec
- Offset: $500 \text{km/c}^2 = 3.333 \text{ milliseconds travel time}$
- Height range: 60 km

Find the Peaks

- The peaks correspond to received pulses
- Noise introduced creates "false" peaks
- N*mean threshold
- Intermediate step for BRDF determination

Calculate altitudes

- Required:
 - Position of emitter
 - Position of receiver
 - Travel time

Finding most common altitude

- Filtering noise
- Peak = specific altitude
- Least standard deviation configuration

7.

Summary and conclusions

Summary

ADCS
 Sun sensor & star tracker

Reaction wheels and magneto torquers

COMS Centralized architecture

EPS Thin film solar cells

ORP 32x32 SPAD with faceted mirror

OEP Nd-YAG laser 473 nm

• ORBIT Frozen polar orbit, 500 km, $I = 85^{\circ}$, $\lambda_{max} = 2.18^{\circ}$

