Kereső algoritmusok a diszkrét optimalizálás problémájához

A. Grama, A. Gupta, G. Karypis és V. Kumar: "Introduction to Parallel Computing", Addison Wesley, 2003. könyv anyaga alapján

A kereső eljárások pontosabb tárgyalása Futó Iván (szerk.): Mesterséges Intelligencia, Aula, 1999. fejezetéből származnak

Vázlat

- A diszkrét optimalizálási probléma
- Soros megoldás
- Párhuzamos megoldási lehetőségek és problémák

Diszkrét optimalizálás

- A diszkrét optimalizálási problémák komoly számítási igényűek. Jelentős elmélettel és gyakorlati fontossággal rendelkeznek (ütemezési feladatok, pályatervezés, digitális áramkörökhöz tesztpéldák generálása, logisztikai feladatok, stb.).
- A kereső algoritmusok a feltételeknek megfelelő megoldások terét szisztematikusan vizsgálják.

Definíció

- A diszkrét optimalizációs probléma (DOP) a következő módon fejezhető ki: (S, f).
 - □ S bizonyos feltételeknek eleget tévő megoldások véges, vagy megszámlálhatóan végtelen halmaza,
 - \Box f költségfüggvény S minden eleméhez valós R értéket rendel.
- A DOP megoldása olyan x_{opt} megoldás keresése, hogy $f(x_{ovt}) \le f(x)$ minden $x \in S$ esetén.

Gyakran NP-teljes probléma.

Diszkrét optimalizáció: példa

- Egyértékű lineáris programozási feladat (0/1 integer-linearprogramming problem): adott A m×n mátrix, b m×1 vektor és c n×1 vektor.
- A cél egy olyan \overline{x} $n \times 1$ vektor meghatározása, amelynek elemei csak 0 és 1 értékekből állhatnak, a vektor teljesíti a következő feltételt: $A\overline{x} \geq b$

és az f függvénynek minimuma kell legyen: $f(\overline{x}) = c^T \overline{x}$

*: Duális megfogalmazás

DOP és a gráfkeresés

- Az S lehetséges elemeinek száma nagyon nagy.
- A DOP gyakran úgy is megfogalmazható, hogy egy gráfban minimum költségű utat keressünk egy kezdőponttól egy vagy több lehetséges cél csomópontig.
- Az S minden x elemét tekinthetjük egy útnak a kezdőponttól valamely célig.
 - □ A gráf csomópontjai állapotok
 - Az állapotok vagy végpontok, vagy nem végpontok
 - □ Bizonyos állapotok lehetséges megoldáshoz tartoznak, mások nem
 - Az élekhez költségek tartoznak, amelyek az egyik állapotból a másikba történő átmenet ráfordításai.
- A gráfot állapottérnek nevezzük.

100

Állapottér gráf: példa

- Egyértékű lineáris programozási feladat
 - □ Az állapotok az x vektor egyes koordinátáihoz rendelt értékek => fa

Example 11.3 The 0/1 integer-linear-programming problem revisited Consider an instance of the 0/1 integer-linear-programming problem defined in Example 11.1. Let the values of A, b, and c be given by

$$A = \begin{bmatrix} 5 & 2 & 1 & 2 \\ 1 & -1 & -1 & 2 \\ 3 & 1 & 1 & 3 \end{bmatrix}, \ b = \begin{bmatrix} 8 \\ 2 \\ 5 \end{bmatrix}, \ c = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -2 \end{bmatrix}.$$

The constraints corresponding to A, b, and c are as follows:

$$5x_1 + 2x_2 + x_3 + 2x_4 \ge 8$$

$$x_1 - x_2 - x_3 + 2x_4 \ge 2$$

$$3x_1 + x_2 + x_3 + 3x_4 \ge 5$$

and the function f(x) to be minimized is

$$f(x) = 2x_1 + x_2 - x_3 - 2x_4$$
.

$$\sum_{x_j \text{ is free}} \max\{A[i,j], 0\} + \sum_{x_j \text{ is fixed}} A[i,j]x_j \ge b_i, \quad i = 1, \dots, m$$

Figure 11.2 The graph corresponding to the 0/1 integer-linear-programming problem.

8-as kirakó

- Egy kezdeti
 állapotból találjuk
 meg azt a
 legrövidebb
 lépéssorozatot,
 amely a
 célkonfigurációba
 vezet.
- Állapottér: gráf

Kereső algoritmusok tere

A keresési tér gráf vagy fa?

A gráf fává történő kiterítése gyakran nagyméretű

feladathoz vezet.

Kereső stratégiák I.

- Nem módosítható keresés
 - Nincs visszalépés. Pl. hegymászó algoritmus (gradiens keresés).
- Visszalépéses keresés
 - □ Törli a zsákutcát.
 - □ Ha körre futunk, akkor visszalépés.
 - Mélységi korlátot használhatunk (heurisztika).
 - Azonos szinten célszerű sorrendi heurisztikát használni.
 - ☐ Kis memória igényű.
 - Nem garantálja az optimális megoldást (csak növekvő mélységi korláttal és iterálva).

Négy-királynő probléma

 Visszalépéses keresés + azonos sorban haladva, mindig balról jobbra helyezzük el a királynőket.

Kereső stratégiák II. Nem informált gráfkeresés

- Nem informált gráfkeresések a gráf kiértékelő függvényben (f(n) = g(n) + h(n)) beépülő heurisztikát nem használunk.
- Csúcsok NYÍLT és ZÁRT listája.
- Mélységi keresés
 - □ Egységnyi élköltséget tekintünk.
 - \Box f(n):=-g(n) minden n NYÍLT csúcsra.
 - Mélységi korlát használható, iterációs változatban is.
 - □ Fa állapottérnél előnyös.
- Szélességi keresés
 - Egységnyi élköltséget tekintünk.
 - \Box f(n):=g(n) minden n NYÍLT csúcsra.

Iteratív mélységi keresés

- Gyakran a megoldás a gyökérhez közeli, de másik ágon van.
- Az egyszerű mélységi keresés nagy részt dolgozna fel mielőtt erre az ágra jut.
- Iteratív módon növeljük a mélységi határt, ameddig keresünk.
- Ha nem találunk megoldást, akkor a határt növeljük és ismételjük a folyamatot.

Mélységi keresés: tárolási követelmény és adatstruktúra

- A mélységi keresés minden lépésénél a még ki nem próbált alternatívákat el kell tárolni.
- Ha m egy állapot tárolásához szükséges adatterület, és d a maximális mélység, akkor a mélységi kereséshez szükséges teljes tér O(md) nagyságrendű.
- Ha a keresendő állapottér fa, akkor a mélységi keresést veremmel hatékonyan lehet reprezentálni.
- A verem memória szükséglete egyenesen arányos a fa mélységével.
 Kereső algoritmusok diszkrét

optimalizáláshoz

Mélységi keresés: tárolási

követelmény é

(a) Mélységi keresés fa esetén; pontozottan jelennek meg a már felkeresett csúcsok; (b) A verem a még ki nem próbált alternatívákat tárolja csak; (c) a verem a ki nem próbált alternatívákat és szüleiket (szürkített) tárolja.

Kereső algoritmusok diszkrét optimalizáláshoz

Mélységi keresés korláttal: példa

Szélességi keresés: példa

17

Heurisztikus gráfkereső stratégiák

- Az f(x) kiértékelő függvénybe valamilyen heurisztikát építünk be (f(x) = g(x) + h(x)). Gyakran például becsülhető a cél elérésének költsége az aktuális csúcsból.
- A becslést heurisztikus becslésnek nevezik.
- Ha a becslés garantáltan alábecsül, akkor megengedő heurisztikáról beszélünk.
- Elképzelés: ha heurisztikát használunk, akkor a "rossz", vagy "nem sokat ígérő" utakra nem költünk.

Diszkrét optimizálás példához heurisztika

A 8-as kirakóhoz (megengedő) heurisztika

■ W(n) (n NYÍLT), ahol W a rossz helyek száma

A 8-as kirakóhoz megengedő heurisztika

- A rács minden pontja a koordinátáival azonosítható.
- Az (i, j) és a (k, l) pozíciók távolsága: |i k| + |j l|. Ez a Manhattan távolság.
- A kezdeti és cél pozíciók közötti Manhattan távolságok összege (P-vel fogjuk jelölni) megengedő heurisztika.

Kereső stratégiák III. Heurisztikus gráfkereső stratégiák

- Előretekintő keresés
 - \Box f(n) = h(n) minden n NYÍLT csúcsra.
- A*
 - □ Kiértékelő fgv. f(n) = g(n) + h(n) minden n NYÍLT csúcsra, ahol h(n) megengedő heurisztika.
 - Garantálja az optimális megoldást.
 - □ Nagy a memória igény.
 - Meglátogatott csúcsokkal (állapotokkal) arányos.
 - Mind fák, mind gráfok estében hatékony.

Előretekintő keresés f = William

W hibásak száma, hátralévő mozgások alsó becslését adja.

A* példa P heurisztikával

Párhuzamos diszkrét optimalizáció: motiváció

- DOP általában NP-teljes problémák. Segít-e a párhuzamosítás?
- Sok problémánál az átlagos eset polinomiális idejű.
- Sokszor viszonylag kis állapotterünk van, de valós idejű megoldásra van szükségünk.

Többletráfordítás

- A soros és párhuzamos keresés közötti munkamennyiség gyakran különböző.
- □ Ha W a soros munka és W_P a párhuzamos, a többletráfordítás $S = W_P/W$.
- \square A sebességnövekedés határa $p \times (W/W_P)$.

Párhuzamos mélységi keresés

- A keresési teret miként osszuk fel processzorok között?
- A különböző ágakat lehet párhuzamosan keresni.
- De az ágak nagyon eltérő méretűek lehetnek.
- Nehéz becsülni az ágak méretét a gyökerükből.
- Dinamikus terhelés kiegyenlítés szükséges.

A statikus dekompozíció strukturálatlan fakeresést és nem kiegyensúlyozott terheléshez vezet.

Párhuzamos mélységi keresés: dinamikus terhelés kiegyenlítés

- Amikor egy processzor befejezi munkáját, akkor egy másiktól kér.
- Osztott memóriás modellnél ez lockolással és a munka szétvágásával történik (lásd később).
- Ha valamely processzor megoldáshoz és, akkor a többi terminál.
- Az eddig fel nem dolgozott részeket saját veremben tárolhatja minden processzor.
- Kezdetben az egész teret egy processzorhoz rendeljük. Kereső algoritmusok diszkrét

Párhuzamos mélységi keresés: dinamikus terhelés kiegyensúlyozás

> Kereső algoritmusok diszkrét optimalizáláshoz

Párhuzamos mélységi keresés:

munkafelosztás

Mélységi keresés: a két részfa a verem reprezentációval.

Kereső algoritmusok diszkrét
optimalizáláshoz

Terhelés kiegyenlítés

A munka kiosztásának sémája:

- Aszinkron (lokális) körbeforgó: minden processzor egy számlálót tart karban ((target +1) mod p) és az igényét a felé közvetíti.
 - Nagyszámú munkaigényt generál.
- Globális körbeforgó: A rendszer tart karban egy számlálót és az igények körbeforgó módon kerülnek kezelésre.
 - □ Legkevesebb munkaigényt generálja.
- Véletlen ciklikus: Véletlenszerűen kerül kiválasztásra egy processzor.
 - Megfelelő kompromisszum.

Sebesség anomáliák párhuzamos keresésnél

Total number of nodes generated by sequential formulation = 13

Total number of nodes generated by two-processor formulation of DFS = 9

A párhuzamos mélységi keresés kevesebb csomópontot jár be, mint a soros.

Kereső algoritmusok diszkrét optimalizáláshoz

Sebesség anomáliák párhuzamos keresésnél

Total number of nodes generated by sequential DFS = 7

Total number of nodes generated by two-processor formulation of DFS = 12

A párhuzamos mélységi keresés több csomópontot jár be, mint a soros. Kereső algoritmusok diszkrét

optimalizáláshoz