How Quorum Sensing Interactions Affect Microbial Population Structure 02712 Final Project

Sid, Neel, Sarah, Deepika, Evan

Carnegie Mellon University

November 21, 2021

Public Goods and Cheating

Signal-Receptor Activation Matrix K_{ac}

▶ Represents all receptors-signal pairs (R_iS_i) present in at least 1 OTU

Signal-Receptor Activation Matrix K_{ac}

- \triangleright Represents all receptors-signal pairs (R_iS_i) present in at least 1 OTU
- K_{ac} is of dimension $|R| \times |S| = |N| \times |N|$

Signal-Receptor Activation Matrix K_{ac}

- ▶ Represents all receptors-signal pairs (R_iS_i) present in at least 1 OTU
- K_{ac} is of dimension $|R| \times |S| = |N| \times |N|$
- ▶ Different sets of receptor-signal combinations can produce the same K_{ac}

Facultative Cheaters

Background 000000

Matrix for 2 strains R_1S_1 and R_2S_2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Facultative Cheaters

Background

Matrix for 2 strains R_1S_1 and R_2S_2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Obligate Cheater

Matrix for 2 strains R_1S_1 and R_0S_0

Facultative Cheaters

Background 000000

Matrix for 2 strains R_1S_1 and R_2S_2

Obligate Cheater

Matrix for 2 strains R_1S_1 and R_0S_0

Custom Matrix

Matrix for 2 strains $R_1R_2S_1$ and R_2S_2

Model

Results

Example Section

▶ the citation file is at ./Documents/citations.bib

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file
- ▶ here is a citation of the main paper Eldar (2011)

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file
- ▶ here is a citation of the main paper Eldar (2011)
- ▶ here is a citation of the main paper (Eldar 2011)

Figure 1: HGT Mechanisms

► Transformation: Incorporation of free-floating DNA into the genome

Figure 1: HGT Mechanisms

- Transformation:
 Incorporation of free-floating
 DNA into the genome
- ► Conjugation: Transfer of DNA through cell-cell connections

Figure 1: HGT Mechanisms

- Transformation:
 Incorporation of free-floating
 DNA into the genome
- Conjugation: Transfer of DNA through cell-cell connections
- ► **Transduction:** Transfer of DNA via phage

table with math

Genotype	Environment		
	En	E_b	E _a
RCH	$1-2s_m$	$(1+s_p)(1-2s_m)$	$(1+s_p)(1-2s_m)$
RCh	$1-s_m$	$(1+s_p)(1-s_m)$	$(1+s_p)(1-s_m)$
RcH	$1-s_m$	$1-s_m$	$(1+s_p)(1-s_m)$
Rch	1	1	$1+s_p$
rCH	$1-2s_m$	$(1+s_p)(1-2s_m)$	$1-2s_m$
rCh	$1-s_m$	$(1+s_p)(1-s_m)$	$1-s_m$
rcH	$1-s_m$	$1-s_m$	$1-s_m$
rch	1	1	1

Table 1: Relative fitness values for each genotype in each environment

▶ g represents each genotype

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$

- ▶ g represents each genotype
- 1. **Gene Transfer:** $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$ \Rightarrow if g = RCH then $\neg g = rCH$, same for CH, CH, CH, CH, CH

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_p} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - \diamond h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_p} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - \diamond h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_{\sigma}^{s} = (1 \mu(g))x_{\sigma}^{t} + \mu(g)x_{\neg \sigma}^{t}$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_p} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - \diamond h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_{\sigma}^{s} = (1 \mu(g))x_{\sigma}^{t} + \mu(g)x_{\neg \sigma}^{t}$
 - ϕ $\mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_p} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - \diamond h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_{\sigma}^{s} = (1 \mu(g))x_{\sigma}^{t} + \mu(g)x_{\neg \sigma}^{t}$ ϕ $\mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_{\sigma} = \frac{x_g^s f(g)}{\bar{x}}$

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - ⋄ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$ $\phi \ \mu(g)$ is $\mu_{r \rightarrow R}$ for r genotypes and $\mu_{R \rightarrow r}$ for R genotypes
- 3. Selection: $x'_g = \frac{x_g^s f(g)}{\bar{w}}$
 - \diamond f(g) picks the correct fitness modifier from Table 2

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_p} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - \diamond if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \diamond defined for R genotypes (x_R), for r genotypes subtract the sum
 - \diamond h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_{\sigma}^{s} = (1 \mu(g))x_{\sigma}^{t} + \mu(g)x_{\neg \sigma}^{t}$ ϕ $\mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_{\sigma} = \frac{x_g^* f(g)}{\bar{x}_{\sigma}}$
 - \diamond f(g) picks the correct fitness modifier from Table 2
 - \diamond average fitness $\bar{w} = \sum_{\sigma} x_{\sigma}^{s} f(g)$

Example code block

```
def foo(bar):
    for i in range(69, 420):
        if i == 69 or i == 420:
            print('nice')
        else:
            print(bar)
    return None
```

Bibliography I

Aggarwal, Surya D., Hasan Yesilkaya, Suzanne Dawid, and N. Luisa Hiller, 2020, "The Pneumococcal Social Network," PLOS Pathogens 16 (10). https://doi.org/10.1371/journal.ppat.1008931.

Calle, M. Luz. 2019. "Statistical Analysis of Metagenomics Data." Genomics & Amp; Informatics 17 (1).

https://doi.org/10.5808/gi.2019.17.1.e6.

Dimitriu, Tatiana, Frances Medaney, Elli Amanatidou, Jessica Forsyth, Richard J. Ellis, and Ben Raymond. 2019. "Negative Frequency Dependent Selection on Plasmid Carriage and Low Fitness Costs Maintain Extended Spectrum Beta-Lactamases in Escherichia Coli." Scientific Reports 9 (1). https://doi.org/10.1038/s41598-019-53575-7.

Bibliography II

Eldar, A. 2011. "Social Conflict Drives the Evolutionary Divergence of Quorum Sensing." Proceedings of the National Academy of Sciences 108 (33): 13635-40. https://doi.org/10.1073/pnas.1102923108.

Pérez-Escudero, Alfonso, and Jeff Gore. 2016. "Selection Favors Incompatible Signaling in Bacteria." Proceedings of the National Academy of Sciences 113 (8): 1968-70.

https://doi.org/10.1073/pnas.1600174113.

Bibliography III

Pollak, Shaul, Shira Omer-Bendori, Eran Even-Tov, Valeria Lipsman, Tasneem Bareia, Ishay Ben-Zion, and Avigdor Eldar. 2016. "Facultative Cheating Supports the Coexistence of Diverse Quorum-Sensing Alleles." *Proceedings of the National Academy of Sciences* 113 (8): 2152–7. https://doi.org/10.1073/pnas.1520615113.