Introduction to Statistics

Dr Tom Ilvento

Department of Food and Resource Economics University of Delaware

Overview

- A brief introduction to the field of statistics
- Statistics as both a field of study and a set of tools used by many other disciplines
- The distinction between descriptive and inferential statistics

2

Why should you be required to take a statistics course?

- We are surrounded by data!
 - Voting behavior
 - Medical research
 - The state of our economy
- Making sense of this data is a challenge
- Most research depends upon the use of statistics to reach a conclusion

Two thoughts I want to share up front in this course

- •Just because you see something in your data, doesn't mean it is so
- •We often are data rich.... and model poor.

The First Measured Century

http://www.pbs.org/fmc/index.htm

5

Americans work harder than they used to, so they have a lot less free time.

Yes or No?

NO!! We have more free time.

- The change in the manufacturing work week is typical of the change, which reflects
 - Mechanization
 - The state of the economy
 - Labor and social movements
- We went from 10 hour days six days a week to the now familiar 40 hour week five days a week

We are surrounding by data

What is Statistics?

- Statistics is the science of data
- It refers to every aspect of how we handle and use data
 - Collecting data
 - Classifying, summarizing, and organizing data
 - Analysis of data using summary measures and graphs
 - Interpretation of the results

8

Statistics

- Statistics is both a field of study
- ...and a set of tools used by many disciplines
 - Business and Economics
 - Social Sciences
 - Biological Sciences
 - Physical Sciences

We will focus on two types of statistical applications

• Descriptive

Inferential

Confidence Intervals					
Parameter			Upper CI		
	98.67568				
Std Dev	14.49915	11.79086	18.83382		

10

Descriptive Statistics

- Descriptive statistics uses summary measures, graphs, and measures of association to help describe the data or relationships in the data.
- The focus is on describing the data
- With an emphasis on parsimony

Parsimony - principle of economy: economy in the use of means to achieve something, especially the principle of endorsing the simplest explanation that covers a case

Look at the following data

- This is a small data set of the age of 100 randomly sampled drivers killed in traffic accidents
- Rather than looking at a set of numbers, we need an analysis strategy

```
    16
    17
    18
    20
    24
    28
    34
    44
    53
    73

    16
    17
    18
    20
    24
    28
    35
    44
    56
    74

    16
    17
    18
    20
    24
    29
    36
    45
    57
    76

    16
    17
    18
    21
    24
    29
    37
    45
    58
    76

    16
    17
    18
    21
    25
    30
    37
    45
    65
    77

    16
    17
    18
    21
    26
    30
    38
    45
    69
    81

    16
    18
    18
    22
    27
    31
    38
    51
    69
    86

    16
    18
    18
    23
    27
    31
    38
    51
    70
    87

    17
    18
    18
    24
    27
    32
    40
    51
    73
    88

    17
    18
    19
```

Basic Descriptive Statistics

These sample statistics are from Excel

Age	
Mean	35.9
Standard Error	2.1
Median	28.0
Mode	18.0
Standard Deviation	21.1
Sample Variance	447.1
Kurtosis	0.0
Skewness	1.1
Range	72.0
Minimum	16.0
Maximum	88.0
Sum	3587.0
Count	100.0

Table Percentage by Age of a random sample of drivers killed in a car accident

	Sample of	
Age Categories	Drivers Killed	Percent
16-19	30	30.0%
20-29	24	24.0%
30-39	14	14.0%
40-49	8	8.0%
50-59	8	8.0%
60-69	3	3.0%
70-79	8	8.0%
80-89	5	5.0%
ΤΟΤΔΙ	100	

13

15

A Graph of the Table Data

Descriptive statistics can be powerful tools

- Descriptive Statistics can also involve relationships between variables or sets of variables
- And involve very sophisticated techniques cross-tabulations and chi square analysis;
 ANOVA, regression, correlation, factor analysis, and logistic regression

A Scatterplot of Catalog Sales versus Customer Salary

17

Inferential Statistics

- Inferential statistics is concerned with making inferences from a sample to a population
- Whenever we deal with a sample, we deal with estimates and uncertainty
- Statistical inference helps us place our estimates in a probability framework that allows us to make conclusions from the data

Just because you see something in your sample data doesn't mean it is real!

18

Inferential Statistics

- Inferential statistics are a powerful tool for research
- It enables us to make statements about a large group (population) from a much smaller sample.
 - Survey
 - Designed Experiments
 - Observational studies

Based on principles of inferential statistics, we can survey 1,000 people and make statements about a population of 300 million

Is the country headed in the right direction?

Associated Press-Ipsos poll conducted by Ipsos Public Affairs. N=1,000 adults nationwide. **MoE ± 3.1.**

Generally speaking, would you say things in this country are heading in the right direction, or are they off on the wrong track?

19

Let's look more closely at this survey example

- It was based on a telephone poll of 1,000 adult Americans taken for the Associated Press and conducted by Ipsos Public Affairs. June 12-16, 2008.
- Generally speaking, would you say things in this country are heading in the right direction, or are they off on the wrong track?
- The Margin of Error (MoE) is ± 3.1%

Here is my interpretation

- The survey is designed to represent adult Americans in June of 2008.
- The estimate for the percent Right Direction is 17%
- Because we are taking a sample, we have some error associated with our estimate.
- Since the sample was taken randomly, we have a method to estimate the error of our estimate
- In this case, we are reasonably sure (95% sure) that the true percentage is within ± 3.1% points of our estimate
- Which means our interval inference is 13.9% to 20.1%

What is this graph about?

Summary

- Statistics are an important part of research in many fields
- All statistics should be descriptive in nature to help us describe data
- Some statistics have inferential properties that help us make statements about a population from a sample

22

23

21