Step-1

Given
$$W = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, x = (2,3), y = (1,1)$$

We have to find the *W*-inner product of x = (2,3) and y = (1,1), and *W*-length of x.

Step-2

W-inner product of x and y

- $=(x,y)_{w}$
- $= (Wy)^T (Wx)$

Step-3

Now

$$Wx = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$=\begin{bmatrix} 4\\3 \end{bmatrix}$$

$$Wy = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$=\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Step-4

And

$$(Wy)^T = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$\Rightarrow (Wy)^{T}(Wx) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

- = 8 + 3
- =11

Hence *W*-inner product of *x* with $y\hat{A} = \hat{A} 11$

Step-5

The W-length of x

$$= ||x||_{w}$$

= ||Wx||

Step-6

Now

$$||Wx||^2 = (Wx)^T Wx$$
$$= \begin{bmatrix} 4 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$= 16 + 9$$
$$= 25$$

Hence the *W*-length of $x \|Wx\| = 5$