Uranium Nitride Corrosion

Ember L. Sikorskia

^aBoise State University

Abstract

Abstract stuff

1. Introduction

• Call for accident tolerant fuel

2. Review

- [1]
- [2]
- [3]
- [4]

3. Discussion

Arkush and Liu report NO while Jolkonnen does not - environment? Combination of nitriding, adding dopants, intermetallics Nitriding reduces interactiong at room temperature, however at higher temperature higher stoichiometric UN decays to UN. Add intermetallics for ease of fabrication, nitride for room temp handling

Computational studies at odds with experiment: experiment changes starting conditions, comp changes type of study

	Starting Material	Temperature	Pressure
Jolkkonen et al. [1]	UN pellets (77 -	400 - 425 °C	0.05 MPa
	97%TD)		
Johnson et al. [2]	UN powder (≈20	800 °C	not reported
	mg)		_
Lu et al. [4]	UN films	AFG	UHV
Lopes et al. [3]	UN pellets (95 - 99	300 °C	9 MPa
	% TD)		

4. Summary

References

CHANGE THE STYLE

- M. Jolkkonen, P. Malkki, K. Johnson, J. Wallenius, Uranium nitride fuels in superheated steam, Journal of Nuclear Science and Technology 54 (5) (2017) 513-519. doi:10.1080/00223131.2017.1291372.
 URL https://www.tandfonline.com/doi/full/10.1080/00223131.2017.1291372
- [2] K. Johnson, V. Ström, J. Wallenius, D. A. Lopes, Oxidation of accident tolerant fuel candidates, Journal of Nuclear Science and Technology (2016) 1–7doi:10.1080/00223131.2016.1262297.
 URL https://www.tandfonline.com/doi/full/10.1080/00223131.2016.1262297
- [3] D. A. Lopes, S. Uygur, K. Johnson, Degradation of UN and UNU 3 Si 2 pellets in steam environment, Journal of Nuclear Science and Technology 54 (4) (2017) 405–413. doi:10.1080/00223131.2016.1274689.
 - URL https://www.tandfonline.com/doi/full/10.1080/00223131.2016.1274689

[4] L. Lu, F. Li, Y. Hu, H. Xiao, B. Bai, Y. Zhang, L. Luo, J. Liu, K. Liu, The initial oxidation behaviors of uranium nitride UNx (x=0, 0.23, 0.68, 1.66) films, Journal of Nuclear Materials 480 (2016) 189–194. doi:10.1016/J.JNUCMAT.2016.08.025.

 $URL\ \texttt{https://www.sciencedirect.com/science/article/pii/S0022311516306304}$