

▼ About Dataset

▼ 50 Startups' expenditures & profits

from sklearn import metrics

 $\ \, \text{Aim of the project: We have to analysis the data expenditures vs Profit and ML prediction} \\$

Columns name:

1) R&D Spend 2) Administration 3) Marketing Spend 4) State 5) Profit

```
#Normal Library
#-----
import numpy as np
import pandas as pd
#Visulization Library
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
#Warning library
import warnings
warnings.filterwarnings('ignore')
#anova testing
import scipy.stats as stats
#scaling the data
from sklearn.preprocessing import StandardScaler
#Train Test split
from sklearn.model_selection import train_test_split
#moving dependent variale in last column.
import movecolumn as mc
#ML model - regeression
from sklearn.linear_model import LinearRegression
#ML model - regeression - Performance matrix
from sklearn import metrics
from sklearn.metrics import r2_score,mean_absolute_percentage_error, mean_squared_error
#ML model - Classification
#ML model - Classification - Performance matrix
```

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

```
#Improve the accuracy
from sklearn.model_selection import cross_val_score
```

Importing Dataset

```
Double-click (or enter) to edit
df = pd.read_csv(r"/content/50_Startups.csv")
df.head(10)
```

R&D Spend	Administration	Marketing Spend	State	Profit	\blacksquare
165349.20	136897.80	471784.10	New York	192261.83	ıl.
162597.70	151377.59	443898.53	California	191792.06	
153441.51	101145.55	407934.54	Florida	191050.39	
144372.41	118671.85	383199.62	New York	182901.99	
142107.34	91391.77	366168.42	Florida	166187.94	
131876.90	99814.71	362861.36	New York	156991.12	
134615.46	147198.87	127716.82	California	156122.51	
130298.13	145530.06	323876.68	Florida	155752.60	
120542.52	148718.95	311613.29	New York	152211.77	
123334.88	108679.17	304981.62	California	149759.96	
	165349.20 162597.70 153441.51 144372.41 142107.34 131876.90 134615.46 130298.13 120542.52	165349.20 136897.80 162597.70 151377.59 153441.51 101145.55 144372.41 118671.85 142107.34 91391.77 131876.90 99814.71 134615.46 147198.87 130298.13 145530.06 120542.52 148718.95	165349.20 136897.80 471784.10 162597.70 151377.59 443898.53 153441.51 101145.55 407934.54 144372.41 118671.85 383199.62 142107.34 91391.77 366168.42 131876.90 99814.71 362861.36 134615.46 147198.87 127716.82 130298.13 145530.06 323876.68 120542.52 148718.95 311613.29	165349.20 136897.80 471784.10 New York 162597.70 151377.59 443898.53 California 153441.51 101145.55 407934.54 Florida 144372.41 118671.85 383199.62 New York 142107.34 91391.77 366168.42 Florida 131876.90 99814.71 362861.36 New York 134615.46 147198.87 127716.82 California 130298.13 145530.06 323876.68 Florida 120542.52 148718.95 311613.29 New York	165349.20 136897.80 471784.10 New York 192261.83 162597.70 151377.59 443898.53 California 191792.06 153441.51 101145.55 407934.54 Florida 191050.39 144372.41 118671.85 383199.62 New York 182901.99 142107.34 91391.77 366168.42 Florida 166187.94 131876.90 99814.71 362861.36 New York 156991.12 134615.46 147198.87 127716.82 California 156122.51 130298.13 145530.06 323876.68 Florida 155752.60 120542.52 148718.95 311613.29 New York 152211.77

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
               Non-Null Count Dtype
# Column
                   50 non-null
    Administration 50 non-null
                                   float64
    Marketing Spend 50 non-null
                                   float64
                50 non-null
    State
                                   object
4 Profit
                   50 non-null
                                   float64
dtypes: float64(4), object(1)
memory usage: 2.1+ KB
```

Removing Duplicate Rows

```
def drop_dup(df):
    if df.duplicated().any() == True:
        df.drop_duplicates( inplace = True, Keep = "Last", reset_index = True)
        print("data after removig duplicate rows",df.duplicated().sum())
        return "No action required(No duplicate rows)"
drop_dup(df)
     'No action required(No duplicate rows)'
Checking Null Values
```

```
print(df.isnull().sum())
print(df.isnull().sum()/len(df)*100)
   R&D Spend
   Administration
                0
   Marketing Spend
                0
   State
                0
   Profit
                0
   dtype: int64
```

```
***************
              R&D Spend
                                                                  0.0
              Administration
                                                                    0.0
              Marketing Spend
                                                                0.0
                                                                   0.0
              State
              Profit
                                                                  0.0
              dtype: float64
 Check unique counts
def check_unique_count(df):
           unique_counts = df.nunique()
           print(unique_counts)
check_unique_count(df)
              R&D Spend
                                                                    49
              {\tt Administration}
                                                                    50
              Marketing Spend
              Profit
                                                                    50
              dtype: int64
 Check unique counts data entry in columns
for i in df.columns:
           print(i)
           print()
           print(set(df[i].tolist()))
           print()
              {0.0, 66051.52, 20229.59, 119943.24, 73994.56, 15505.73, 86419.7, 64664.71, 101913.08, 142
              Administration
              \{110594.11,\ 156547.42,\ 135426.92,\ 108679.17,\ 144135.98,\ 91790.61,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 103057.49,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 118671.85,\ 1186
              Marketing Spend
              {256512.92, 0.0, 304768.73, 107138.38, 118148.2, 46085.25, 294919.57, 249744.55, 261776.25
              {'New York', 'California', 'Florida'}
              Profit
              {144259.4, 192261.83, 105733.54, 108552.04, 96778.92, 107404.34, 101004.64, 126992.93, 14
 Outliers Check -
 No outlier found as below boxplot analysis
# Column(A) - R&D Spend - No Outlier found
sns.boxplot(y = "R&D Spend", data = df, palette ='Set2' )
plt.show()
```

```
# Column(B) - Administration - No Outlier found

sns.boxplot(y = "Administration", data = df, palette = 'Set2')

nlt show()
```



```
#Column(C) - Marketing Spend - No Outlier found
sns.boxplot(y = "Marketing Spend", data = df, palette ='Set2')
plt.show()
```


Normal Distribution check -

Analysis result... Skewness is close to 0, no action required.

#column(B) -Administration
plt.figure(figsize=(14,4))

plt.subplot(121)

sns.distplot(df["Administration"])
plt.title('Administration PDF')

pre-release(//w................................)

plt.subplot(122)
stats.probplot(df["Administration"], dist='norm', plot=plt)
plt.title("Administration QQ Plot")
plt.show()

#*************

 $\verb|print("skewness of the column of Administration : ",df["Administration"].skew())|\\$

#*********

skewness of the column of Administration : -0.4890248099671768

skewness of the column of Marketing Spend :

-0.04647226758360412

Finding correlation

```
plt.figure(figsize=(15,8))
corr = df.describe().corr()
sns.heatmap(corr, annot=True, cmap='coolwarm',center = 0)
plt.show()
```


Visulization Part -A

Profit state wise

```
sns.barplot(x="State", y= "Profit", data = df)
plt.xlabel("State")
plt.ylabel("Profit")
plt.title("Sum of profit vs state")
plt.show()
```


sns.pairplot(df, size = 5, kind = 'scatter')
plt.show()

it is given picture to judge, which model is best for this dataset

Cheat sheat

Top Machine Learning Algorithms for Predictions

Name	Туре	Description	Advantages	Disadvantages
Linear Regression	and the same of th	-The best fit line through all data points	-Easy to understand -you can clearly see what the biggest drivers odf the model are.	-sometimes to simple to capture cpmöex relationships between variables, -Tendency für the model to overfit.
Logistic Regression	5	-The adoption for linear regression to problembs of classification	-Easy to understand	-sometimes to simple to capture cpmöex relationships between variables, -Tendency für the model to overfit.
Decision Tree		-A graph that uses branching method to match all possible outcomes of a decision	-Easy to understand and implement.	-Not often use of ist own for prediction because it's also often too simple and not powerful enough for complex data.
Random Forest	NY NY	- Takes the average of many decision trees. Each tree is weaker than the full decision tree, but combining them we get better overall performance.	-A sort of "wisdom of the crowd", Tend to result in very high quality results. -Fast to train	-Can be slow to output predictions relative to other algorithms. -Not easy to understand predictions.
Gradient Boosting	Y	-Uses even weaker decision trees that increasingly focused on "hard examples"	-High-performing	-A small change in the future set or training set can create radical changes in the modelNot easy to understand predictions.
Neural Networks	\times	-Mimics the behaviour of the brain. NNs are interconnected Neurons that pass messages to each other. Deep Learning uses severak layers of NNs to put one after the other.	-Can handle extremely complex tasks. No other alsgorithm comes close in image recognition.	-very very slow to train. Because they have so many layers. Require a lot of power. -Almost impossible to understand predictions.

One hot Encoding concept

	R&D Spend	Administration	Marketing Spend	Profit	State_Florida	State_New York
0	165349.20	136897.80	471784.10	192261.83	0	1
1	162597.70	151377.59	443898.53	191792.06	0	0
2	153441.51	101145.55	407934.54	191050.39	1	0
3	144372.41	118671.85	383199.62	182901.99	0	1
4	142107.34	91391.77	366168.42	166187.94	1	0
5	131876.90	99814.71	362861.36	156991.12	0	1
6	134615.46	147198.87	127716.82	156122.51	0	0
7	130298.13	145530.06	323876.68	155752.60	1	0
8	120542.52	148718.95	311613.29	152211.77	0	1
9	123334.88	108679.17	304981.62	149759.96	0	0
10	101913.08	110594.11	229160.95	146121.95	1	0
11	100671.96	91790.61	249744.55	144259.40	0	0
12	93863.75	127320.38	249839.44	141585.52	1	0
13	91992.39	135495.07	252664.93	134307.35	0	0
14	119943.24	156547.42	256512.92	132602.65	1	0
15	114523.61	122616.84	261776.23	129917.04	0	1
16	78013.11	121597.55	264346.06	126992.93	0	0
17	94657.16	145077.58	282574.31	125370.37	0	1
18	91749.16	114175.79	294919.57	124266.90	1	0
19	86419.70	153514.11	0.00	122776.86	0	1
20	76253.86	113867.30	298664.47	118474.03	0	0
21	78389.47	153773.43	299737.29	111313.02	0	1
22	73994.56	122782.75	303319.26	110352.25	1	0
23	67532.53	105751.03	304768.73	108733.99	1	0
24	77044.01	99281.34	140574.81	108552.04	0	1
25	64664.71	139553.16	137962.62	107404.34	0	0
26	75328.87	144135.98	134050.07	105733.54	1	0
27	72107.60	127864.55	353183.81	105008.31	0	1
28	66051.52	182645.56	118148.20	103282.38	1	0
29	65605.48	153032.06	107138.38	101004.64	0	1
30	61994.48	115641.28	91131.24	99937.59	1	0
31	61136.38	152701.92	88218.23	97483.56	0	1
32	63408.86	129219.61	46085.25	97427.84	0	0
33	55493.95	103057.49	214634.81	96778.92	1	0
34	46426.07	157693.92	210797.67	96712.80	0	0
35	46014.02	85047.44	205517.64	96479.51	0	1
36	28663.76	127056.21	201126.82	90708.19	1	0
37	44069.95	51283.14	197029.42	89949.14	0	0
38	20229.59	65947.93	185265.10	81229.06	0	1
39	38558.51	82982.09	174999.30	81005.76	0	0
40	28754.33	118546.05	172795.67	78239.91	0	0
41	27892.92	84710.77	164470.71	77798.83	1	0
42	23640.93	96189.63	148001.11	71498.49	0	0

Spliting in Dep and In-Dependent variables

import movecolumn as mc
mc.MoveToLast(df,'Profit')

6:03	PM				50 Startup da	taset - Cola	borate
	R&D Spend	Administration	Marketing Spend	State_Florida	State_New York	Profit	H
0	165349.20	136897.80	471784.10	0	1	192261.83	ılı
1	162597.70	151377.59	443898.53	0	0	191792.06	
2	153441.51	101145.55	407934.54	1	0	191050.39	
3	144372.41	118671.85	383199.62	0	1	182901.99	
4	142107.34	91391.77	366168.42	1	0	166187.94	
5	131876.90	99814.71	362861.36	0	1	156991.12	
6	134615.46	147198.87	127716.82	0	0	156122.51	
7	130298.13	145530.06	323876.68	1	0	155752.60	
8	120542.52	148718.95	311613.29	0	1	152211.77	
9	123334.88	108679.17	304981.62	0	0	149759.96	
10	101913.08	110594.11	229160.95	1	0	146121.95	
11	100671.96	91790.61	249744.55	0	0	144259.40	
12	93863.75	127320.38	249839.44	1	0	141585.52	
13	91992.39	135495.07	252664.93	0	0	134307.35	
14	119943.24	156547.42	256512.92	1	0	132602.65	
15	114523.61	122616.84	261776.23	0	1	129917.04	
16	78013.11	121597.55	264346.06	0	0	126992.93	
17	94657.16	145077.58	282574.31	0	1	125370.37	
18	91749.16	114175.79	294919.57	1	0	124266.90	
19	86419.70	153514.11	0.00	0	1	122776.86	
20	76253.86	113867.30	298664.47	0	0	118474.03	
21	78389.47	153773.43	299737.29	0	1	111313.02	
22	73994.56	122782.75	303319.26	1	0	110352.25	
23	67532.53	105751.03	304768.73	1	0	108733.99	
24	77044.01	99281.34	140574.81	0	1	108552.04	
25	64664.71	139553.16	137962.62	0	0	107404.34	
26	75328.87	144135.98	134050.07	1	0	105733.54	
27	72107.60	127864.55	353183.81	0	1	105008.31	
28	66051.52	182645.56	118148.20	1	0	103282.38	
29	65605.48	153032.06	107138.38	0	1	101004.64	
30	61994.48	115641.28	91131.24	1	0	99937.59	
31	61136.38	152701.92	88218.23	0	1	97483.56	
32	63408.86	129219.61	46085.25	0	0	97427.84	
33	55493.95	103057.49	214634.81	1	0	96778.92	
34	46426.07	157693.92	210797.67	0	0	96712.80	
35	46014.02	85047.44	205517.64	0	1	96479.51	
36	28663.76	127056.21	201126.82	1	0	90708.19	
37	44069.95	51283.14	197029.42	0	0	89949.14	
38	20229.59	65947.93	185265.10	0	1	81229.06	
39	38558.51	82982.09	174999.30	0	0	81005.76	
40	28754.33	118546.05	172795.67	0	0	78239.91	
41	27892.92	84710.77	164470.71	1	0	77798.83	
42	23640.93	96189.63	148001.11	0	0	71498.49	
43	15505.73	127382.30	35534.17	0	1	69758.98	
44	22177.74	154806.14	28334.72	0	0	65200.33	
45	1000.23	124153.04	1903.93	0	1	64926.08	
46	1315.46	115816.21	297114.46	1	0	49490.75	
47	0.00	135426.92	0.00	0	0	42559.73	
48	542.05	51743.15	0.00	0	1	35673.41	

▼ Split the data into train and test

```
from sklearn.model_selection import train_test_split
 x\_train, \ x\_test, \ y\_train, \ y\_test = train\_test\_split(sc\_x, \ y, \ test\_size=0.2, \ random\_state=101) 
Linear regeression model
lr = LinearRegression()
lr.fit(x_train, y_train)
y_train_pred= lr.predict(x_train)
y_test_pred = lr.predict(x_test)
print("Train Prediction : ", r2_score(y_train, y_train_pred))
print("Test Prediction :", r2_score(y_test, y_test_pred))
     Train Prediction : 0.945849310601959
     Test Prediction : 0.9493973303776394
# Check linearity
plt.scatter(y_test, y_test_pred)
plt.xlabel("Actual charges")
plt.ylabel("Predicted charges")
plt.title("Actual vs Predicted charges")
plt.show()
```


Actual charges

```
# Normality of Residual
```

```
sns.distplot((y_test, y_test_pred), bins=50)
plt.show()
```


Performance Matrix check