

Levels of IOT Applications

IOT Level and Deployment Templates

End Device allows:

- Identification
- Remote Sensing
- Actuation
- Monitoring Capabilities

IOT system other than end device(s) comprises of multiple virtual & physical components

- Resource Software components
- Controller Service runs on device & interacts with web services
- Database local/cloud; stores data generated by device
- Applications interface to the user for control & monitoring

IOT Application Levels

IOT applications are classified into different levels based on the complexity of the applications and the complexity of the elements used to build them

- Single node/device
- Sensing/Actuation
- Store Data
- Perform Analysis
- Hosts application

Suitable for

- Low cost
- Low complexity
- Where Data is not 'big'
- Analysis not computationally intensive

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)

Example of level-1 IOT system – Home automation

- Single node controlling lights/applications remotely.
- Interfaces using relays
- Status in local database
- REST services deployed locally for database status (retrieving & updating state of each light in database status)
- Controller service to trigger relays
- User interface for controlling lights/applications
- Connected to internet most rudimentary IOT system

BITS Pilani

- Single big node
- Sensing/actuation/local analysis
- Data stored in cloud
- Cloud based application(usually)

Suitable when

- Data is 'big'
- Primary analysis is not intensive & can be done locally

Example of level 2 IOT system – Smart Irrigation.

- Single node for monitoring Soil Moisture level and controlling irrigation system.
- Soil/Moisture data from sensors
- Continuous monitoring
- Threshold moisture level for irrigation
- Actuators solenoid valves
- Cloud based web service for storing & retrieving moisture data
- Cloud based application for visualizing & making schedules

- Single Node
- Cloud based data storage & analysis

Suitable when

- Data is 'big'
- Computationally intensive analysis

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)

Example of level 3 IOT system: Package tracking (single package)

- Single node to monitor vibration levels
- Accelerometer & Gyroscope
- Send sensor data in Real-Time to cloud using web socket service
- Data stored in cloud.
- Data visualized using cloud- based application
- Triggers alerts if vibration levels > threshold

Advantage of using web socket service over REST

- sensor data can be sent in RT to the cloud
- Cloud based applications may subscribe to sensor data feeds for viewing the RT data

IOT level-4

- Multiple Nodes
- Local Analysis
- Data stored in cloud
- Cloud based Application

Observer Nodes

- Local & Cloud based observer nodes
- Process information and use it for various applications.
- Do not perform any control functions

Suitable for

- Multiple nodes required
- Data is 'big'
- Computationally intensive

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)

Example of Level 4 system: Noise Monitoring

- Multiple nodes in different locations
- Nodes equipped with sound sensors
- Nodes independent of each other- each node runs its own controller service to send data to the cloud.
- Data stored in cloud database.
- Analysis of data from multiple nodes in the cloud.
- Cloud based application for visualizing the aggregated data.

IOT Level – 5

- Multiple end nodes + one coordinator node
- End nodes : Sending/actuation
- Coordinator node:
 collects data from end
 nodes and sends to the
 cloud.
- Data stored & analysed in cloud
- Cloud based application.

Suitable for

Solutions based on WSN

 data is 'big' &
 computationally
 intensive

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)

Example of Level-5 System: Forest Fire Detection

- Multiple nodes in different locations for monitoring temp, humidity, CO_{2 in} forests.
- Coordinator nodes collect data from end nodes & provide internet connectivity.
- Controller service on coordinator node sends data to the cloud.
- Data stored in cloud database.
- Analysis to aggregate & make predictions.
- Cloud based application for visualizing data.

- Multiple independent end nodes
- End nodes: sensing, actuation and sending data to the cloud
- Data stored in cloud
- Cloud based application
- Cloud based analytics.
- Results stored in cloud
- Results visualized with cloud based applications.

Centralized cloud based controller:

- aware of the status of all the end nodes
- sends control commands to the nodes.

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)

Example of Level-6 IOT system

- Multiple nodes (end points) at different locations.
- Temperature, Humidity and pressure
- End nodes send data to cloud in RT using web socket service.
- Data stored in cloud.
- Analysis on cloud for predictions.
- Cloud based application for visualizing data

Each node directly connects to the cloud and coordinator is on the cloud.

Feature	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
Cloud Storage	-	YES	YES	YES	YES	YES
Cloud Analysis	-	-	YES	YES	YES	YES
Ext Observers	-	-	-	YES	YES	YES
Coordinator	-	-	-	-	YES	YES
Controller	-	-	-	-	-	YES

Summary

	Single Node connected to the cloud			
	Major components of the IoT System all on the end device			
Level1	No Big Data, No Complex Analysis			
	Single Node			
	Big Data, No Complex Analysis			
Level 2				
	Single Node			
	Big Data, Complex Analysis			
Level 3	Data Storage & Analyis on Cloud			
	Multiple Nodes			
	Big Data, Complex Analysis			
Level 4	olig Data, Complex Analysis			
	Multiple Nodes with Local Co-ordinator			
	Big Data, Complex Analysis			
Level 5				
	Multiple Notes with Remote co-ordinator			
Lavalo	Big-Data, Complex Analysis			
Level 6				

EEE F411: Internet of Things (Dr. Vinay Chamola, BITS-Pilani)