

Labor Matlab für die industrielle und medizinische Bildverarbeitung

Prof. Dr.-Ing. Bodo Rosenhahn

Institut für Informationsverarbeitung

Einleitung

- 19.10. Introduction (1h VL, 3 L), Accountvergabe (Präsenz)
- 26.10. Local operators (Harris, etc.) (1h VL, 3L)
- 02.11. Global Operators (Hough Transform) (1h VL, 3L)
- 09.11. Region Growing / Watershed Segmentation (1h VL, 3L)
- 16.11. Bayes Classifier (1h VL, 3L)
- 23.11. K-Means / Mean shift (1h VL, 3L)
- 30.11. Shape Context (1h VL, 3L)
- 07.12. Morphological Operators (1h VL, 3L)
- 14.12. Disparity estimation (DTW) (1h VL, 3L)
- 21.12. Restarbeiten vor Weihnachten (4L)
- 11.01. Calibration and Triangulation (1h VL, 3L)
- 18.01. PCA (1h VL, 3L)
- 25.01. Tracking (1h VL, 3L)

Themen

Shape Context

Slide Credits: Vitorrio Ferrari, ETH, Zurich

Aufgaben

Korrespondenzen

Herausforderungen

Invarianz gegenüber Ähnlichkeitstransformationen (Rotation, Translation, Skalierung)

Korrespondenzen unbekannt

Toleranz gegenüber Rauschen

Shape Context

Der "shape context" wurde in Arbeiten von Belongie und Malik geprägt und beschreibt einen Feature Deskriptor der zu der Objekterkennung eingesetzt werden kann

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html

- S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL-2000).
- S. Belongie, J. Malik, and J. Puzicha (April 2002). "Shape Matching and Object Recognition Using Shape Contexts". IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (24): 509–521. doi:10.1109/34.993558.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/belongie-pami02.pdf.

- S. Belongie, J. Malik, and J. Puzicha (July 2001). "Matching Shapes". Eighth IEEE International Conference on Computer Vision (July 2001).
- S. Belongie, J. Malik, and J. Puzicha (2000). "Shape Context: A new descriptor for shape matching and object recognition". NIPS 2000.

Beispiel: Datenbankretrieval

Suche zu einem Muster "ähnliche" Muster

Einleitung

Welche Punkte auf der abgetasteten Kontur sind sich ähnlich? Warum?

Shape Context Deskriptor

Erfasse die relative Anzahl von Punkten um jeden Punkt

Shape Context Deskriptor: Histogramm

Slide Credit: Grauman / Belongie

Histogramm-Vergleich

Es ist nicht trivial zwei Histogramme zu vergleichen, bzw. eine Geeignete Metrik darauf zu definieren.

Es folgen ein paar Möglichkeiten:

Schnitt von zwei Histogrammen

$$\bigcap(Q,V) = \sum_{i} \min(q_{i},v_{i})$$

$$\bigcap(Q,V) = \frac{1}{2} \left(\frac{\sum_{i}, \min(q_{i}, v_{i})}{\sum_{i} q_{i}} + \frac{\sum_{i}, \min(q_{i}, v_{i})}{\sum_{i} v_{i}} \right)$$

Histogrammvergleich: Euklidischer Abstand

$$d(Q,V) = \sum_{i} (q_i - v_i)^2$$

Probleme: Ist auf die *Unterschiede* fokussiert, alle Zellen werden gleich gewichtet, nicht sehr diskriminativ

Histogrammvergleich: Chi-Square

$$x^{2}(Q,V) = \sum_{i} \frac{(q_{i} - v_{i})^{2}}{q_{i} + v_{i}}$$

Aufgabe

- Erkennung von Objektklassen (z.B. Buchstaben) mittels Shape Context und einem Chi-Square Maß
- Varianten von Shape Context
- Template-Aufbau

SC-Shape-Matching (Literatur)

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

Aufbau einer Kostenmatrix + Globale Optimierung (Graph Matching)

Problem: Matching nicht "glatt"

Wie kann man die Nachbarschaft mit einbeziehen?

Thin-Plate Splines

Idee: Kontinuierliche glatte Bewegung von jedem Punkt in einer Ebene zu einem anderen Punkt.

- Physikalische Analogie : Deformierung einer dünnen Metallplatte
- TPS kann zwischen zwei Punktmengen geschätzt werden

A. Bookstein, TPAMI 1989, Principal Warps: TPS and the Decomposition of Deformations http://cseweb.ucsd.edu/classes/sp03/cse252/bookstein.pdf

Thin - Plate Spline

Die Funktion f minimiert sowohl die Interpolationsbedingung als auch die Beugungsenergie:

$$E_{TPS}(f) = \sum_{a=1}^{K} \left\| y_a - f(v_a) \right\|^2 + \lambda \iint \left[\left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right) \right] dx dy$$
distance
bending

$$f(v_a, d, w) = v_a \cdot d + \phi(v_a) \cdot w$$

Entspricht:

$$f(x, y) = a_1 + a_x x + a_y y + \sum_{i=1}^{n} w_i U(|P_i - (x, y)|)$$

Matlab-Beispiel

Definiere die Matrizen (K,P,L)

$$K = \begin{bmatrix} 0 & U(r_{12}) & \dots & U(r_{1n}) \\ U(r_{21}) & 0 & \dots & U(r_{2n}) \\ \dots & \dots & \dots & \dots \\ U(r_{n1}) & U(r_{n2}) & \dots & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ \dots & \dots & \dots \\ 1 & x_n & y_n \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ \dots & \dots & \dots \\ 1 & x_n & y_n \end{bmatrix}$$

$$L = \begin{bmatrix} K & P \\ P^T & O \end{bmatrix}$$

$$- P_1=(x_1,y_1), ..., P_n=(x_n,y_n)$$
: Stützstellen

— rij = |Pi - Pi| : Abstand zwischen Punkten i und j

Thin-Plate Spline

Matlab-Beispiel

D:\home\rosenhahn\Vorlesung\HannoverTracking\MatlabExamples\tpsWarp\tpsWarp tpsWarpDemo('...\data\0505_02.jpg','map.mat','tpsDemoLandmark.mat')

Matlab-Beispiel

D:\home\rosenhahn\Vorlesung\HannoverTracking\MatlabExamples\ShapeContext\sc_demo