Formální jazyky a překladače

Alexander Meduna & Roman Lukáš

Kapitola I. Abecedy, řetězce a jazyky

Abecedy a symboly

Definice: *Abeceda* je konečná, neprázdná množina elementů, které nazýváme *symboly*.

Abecedy a symboly

Definice: *Abeceda* je konečná, neprázdná množina elementů, které nazýváme *symboly*.

Příklad:

Pokud označíme abecedu Σ , potom $\Sigma = \{a, b, 0, 1\}$

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Pozn.: ε značí tzv. *prázdný řetězec* = neobsahuje žádný symbol.

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Pozn.: ε značí tzv. *prázdný řetězec* = neobsahuje žádný symbol.

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Pozn.: ε značí tzv. *prázdný řetězec* = neobsahuje žádný symbol.

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Pozn.: ε značí tzv. *prázdný řetězec* = neobsahuje žádný symbol.

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Pozn.: ε značí tzv. *prázdný řetězec* = neobsahuje žádný symbol.

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Příklad: Uvažujme
$$\Sigma = \{0, 1\}$$
:

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Příklad: Uvažujme
$$\Sigma = \{0, 1\}$$
:

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Myšlenka: $x = a_1 a_2 ... a_n$

Definice: Necht' Σ je abeceda.

- 1) ϵ je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a $a \in \Sigma$, potom xa je řetězec nad abecedou Σ

Myšlenka: $|a_1 a_2 ... a_n| = n$

Definice: Necht' x je řetězec nad abecedou Σ .

Délka řetězce x, |x|, je definována:

- 1) pokud $x = \varepsilon$, pak |x| = 0
- 2) pokud $x = a_1...a_n$, pak |x| = npro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Pozn.: Délka řetězce x je celkový počet symbolů v řetězci x.

Příklad: Uvažujme x = 1010

Určeme: |x|

Myšlenka: $|a_1 a_2 ... a_n| = n$

Definice: Necht' x je řetězec nad abecedou Σ .

Délka řetězce x, |x|, je definována:

- 1) pokud $x = \varepsilon$, pak |x| = 0
- 2) pokud $x = a_1...a_n$, pak |x| = npro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Pozn.: Délka řetězce x je celkový počet symbolů v řetězci x.

Příklad: Uvažujme x = 1010

Určeme: |x|

 $x = 1 \ 0 \ 1 \ 0$

Myšlenka: $|a_1 a_2 ... a_n| = n$

Definice: Necht' x je řetězec nad abecedou Σ .

Délka řetězce x, |x|, je definována:

- 1) pokud $x = \varepsilon$, pak |x| = 0
- 2) pokud $x = a_1...a_n$, pak |x| = npro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Pozn.: Délka řetězce *x* je celkový počet symbolů v řetězci *x*.

Příklad: Uvažujme x = 1010

Určeme: |x|

$$x = 1 \ 0 \ 1 \ 0$$
$$a_1 a_2 a_3 a_4$$

Myšlenka: $|a_1 a_2 ... a_n| = n$

Definice: Necht' x je řetězec nad abecedou Σ .

Délka řetězce x, |x|, je definována:

- 1) pokud $x = \varepsilon$, pak |x| = 0
- 2) pokud $x = a_1...a_n$, pak |x| = npro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Pozn.: Délka řetězce x je celkový počet symbolů v řetězci x.

Příklad: Uvažujme x = 1010

Určeme: |x|

$$x = 1010$$
 $a_1 a_2 a_3 a_4 \rightarrow n = 4$, tedy $|x| = 4$

Konkatenace (zřetězení) řetězců

Myšlenka: xy

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . *Konkatenace* x a y je řetězec xy.

Pozn.: $x\varepsilon = \varepsilon x = x$

Konkatenace (zřetězení) řetězců

Myšlenka: xy

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . *Konkatenace* x a y je řetězec xy.

Pozn.: $x\varepsilon = \varepsilon x = x$

Příklady:

Konkatenace 101 a 001 je řetězec 101001 Konkatenace ε a 001 je řetězec ε 001 = 001

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^3 = xx^2 = 10x^2$$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^3 = xx^2 = 10x^2$$

 $x^2 = xx^1 = 10x^1$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^3 = xx^2 = 10x^2$$

 $x^2 = xx^1 = 10x^1$
 $x^1 = xx^0 = 10x^0$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^{3} = xx^{2} = \mathbf{10}x^{2}$$

$$x^{2} = xx^{1} = \mathbf{10}x^{1}$$

$$x^{1} = xx^{0} = \mathbf{10}x^{0}$$

$$x^{0} = \mathbf{\epsilon}$$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^{3} = xx^{2} = \mathbf{10}x^{2}$$

$$x^{2} = xx^{1} = \mathbf{10}x^{1}$$

$$x^{1} = xx^{0} = \mathbf{10}x^{0} \longrightarrow x^{1} = \mathbf{10}\varepsilon = \mathbf{10}$$

$$x^{0} = \varepsilon$$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

$$x^{3} = xx^{2} = 10x^{2}$$
 $x^{2} = xx^{1} = 10x^{1}$
 $x^{1} = xx^{0} = 10x^{0}$
 $x^{1} = 10x^{0}$
 $x^{2} = 10x^{0}$
 $x^{2} = 10x^{0}$
 $x^{3} = x^{2} = 10x^{0}$
 $x^{2} = 10x^{0}$
 $x^{3} = x^{2} = 10x^{0}$
 $x^{4} = 10x^{0}$
 $x^{5} = 10x^{0}$

Myšlenka: $x^i = \underbrace{xx...x}_{i-\text{krát}}$

Definice: Necht' x je řetězec nad abecedou Σ .

Pro $i \ge 0$, i-tá mocnina řetězce x, x^i , je definována:

1)
$$x^0 = \varepsilon$$

2) pro
$$i \ge 1$$
: $x^i = xx^{i-1}$

Pozn.: $x^{i}x^{j} = x^{j}x^{i} = x^{i+j}$, kde $i, j \ge 0$

Příklad: Uvažujme x = 10

Určeme:
$$x^3$$

$$x^3 = xx^2 = 10x^2$$

$$x^2 = xx^1 = 10x^1$$

$$x^1 = xx^0 = 10x^0$$

$$x^1 = 10x^1$$

$$x^2 = 1010$$

$$x^1 = 10x^1$$

$$x^2 = 1010$$

Reverzace řetězce

Myšlenka: reversal $(a_1...a_n) = a_n...a_1$

Definice: Necht' x je řetězec nad abecedou Σ .

Reverzace řetězce x, reversal(x), je definována:

- 1) pokud $x = \varepsilon$ pak reversal $(\varepsilon) = \varepsilon$
- 2) pokud $x = a_1...a_n$ pak reversal $(a_1...a_n) = a_n...a_1$ pro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Příklad: Uvažujme x = 1010

Určeme: reversal(x)

Reverzace řetězce

Myšlenka: reversal $(a_1...a_n) = a_n...a_1$

Definice: Necht' x je řetězec nad abecedou Σ .

Reverzace řetězce x, reversal(x), je definována:

- 1) pokud $x = \varepsilon$ pak reversal $(\varepsilon) = \varepsilon$
- 2) pokud $x = a_1...a_n$ pak reversal $(a_1...a_n) = a_n...a_1$ pro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Příklad: Uvažujme x = 1010

Určeme: reversal(x)

reversal $(a_1a_2a_3a_4) = a_4a_3a_2a_1$, tedy

Reverzace řetězce

Myšlenka: reversal $(a_1...a_n) = a_n...a_1$

Definice: Necht' x je řetězec nad abecedou Σ .

Reverzace řetězce x, reversal(x), je definována:

- 1) pokud $x = \varepsilon$ pak reversal $(\varepsilon) = \varepsilon$
- 2) pokud $x = a_1...a_n$ pak reversal $(a_1...a_n) = a_n...a_1$ pro $n \ge 1$ a $a_i \in \Sigma$ pro všechna i = 1,...,n

Příklad: Uvažujme x = 1010

Určeme: reversal(x)

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, tedy
reversal $(1\ 0\ 1\ 0) = 0\ 1\ 0\ 1$

Myšlenka: x je prefixem řetězce xz

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je prefixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí xz = y.

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

Myšlenka: x je prefixem řetězce xz

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je prefixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí xz = y.

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

3

Myšlenka: x je prefixem řetězce xz

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je prefixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí xz = y.

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

1

Myšlenka: x je prefixem řetězce xz

```
Definice: Nechť x a y jsou dva řetězce nad abecedou \Sigma; x je prefixem y, pokud existuje řetězec z nad abecedou \Sigma, přičemž platí xz = y.
```

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

ε 1 10

Prefix řetězce

Myšlenka: x je prefixem řetězce xz

```
Definice: Nechť x a y jsou dva řetězce nad abecedou \Sigma; x je prefixem y, pokud existuje řetězec z nad abecedou \Sigma, přičemž platí xz = y.
```

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

Prefix řetězce

Myšlenka: x je prefixem řetězce xz

```
Definice: Nechť x a y jsou dva řetězce nad abecedou \Sigma; x je prefixem y, pokud existuje řetězec z nad abecedou \Sigma, přičemž platí xz = y.
```

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

Prefix řetězce

Myšlenka: x je prefixem řetězce xz

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je prefixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí xz = y.

Pozn.: pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastní prefix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny prefixy 1010

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

3

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je sufix řetězce zx

```
Definice: Nechť x a y jsou dva řetězce nad abecedou \Sigma; x je sufixem y, pokud existuje řetězec z nad abecedou \Sigma, přičemž platí zx = y.
```

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je sufix řetězce zx

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ ; x je *sufixem* y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Pozn.: Pokud $x \notin \{\varepsilon, y\}$ pak x je *vlastním sufix* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny sufixy 1010

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

3

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

ε 1,0

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

ε 1,0

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

ε 1, 0 10

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

ε 1,0 10,01

Myšlenka: x je podřetězec řetězce zxz'

Definice: Nechť x a y jsou dva řetězce nad abecedou Σ . x je *podřetězec* y, pokud existují řetězce z, z nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

ε 1,0 10,01 101

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1 0 1 0

ε 1,0 10,01 101,010

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je vlastní podřetězec řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

ε 1, 0 10, 01 101, 010 1010

Myšlenka: x je podřetězec řetězce zxz'

Definice: Necht' x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Pozn: Pokud $x \notin \{\varepsilon, y\}$, pak x je *vlastní podřetězec* řetězce y.

Příklad: Uvažujme řetězec 1010

Určeme: Všechny podřetězce 1010

Myšlenka: $L \subseteq \Sigma^*$

Definice: Necht' Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je *jazyk* nad Σ .

Pozn.: Σ^+ znační množinu $\Sigma^* - \{\epsilon\}$.

Příklad: Uvažujme $\Sigma = \{0, 1\}$:

Myšlenka: $L \subseteq \Sigma^*$

Definice: Necht' Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je *jazyk* nad Σ .

Myšlenka: $L \subseteq \Sigma^*$

Definice: Necht' Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je jazyk nad Σ .

Myšlenka: $L \subseteq \Sigma^*$

Definice: Nechť Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je jazyk nad Σ .

Myšlenka: $L \subseteq \Sigma^*$

Definice: Nechť Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je jazyk nad Σ .

Myšlenka: $L \subseteq \Sigma^*$

Definice: Necht' Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je *jazyk* nad Σ .

Pozn.: Σ^+ znační množinu $\Sigma^* - \{\epsilon\}$.

 L_1, L_2, L_3, L_4 jsou jazyky nad Σ

Konečné a nekonečné jazyky

Myšlenka: Konečný jazyk obsahuje konečný počet řetězců

Definice: Jazyk *L* je *konečný*, pokud *L* obsahuje konečný počet řetězců, jinak je *nekonečný*.

Pozn.: Nechť S je množina; card(S) značí počet prvků v S

Konečné a nekonečné jazyky

Myšlenka: Konečný jazyk obsahuje konečný počet řetězců

Definice: Jazyk *L* je *konečný*, pokud *L* obsahuje konečný počet řetězců, jinak je *nekonečný*.

Pozn.: Nechť S je množina; card(S) značí počet prvků v S

Příklad:

- $L_1 = \emptyset$ je konečný jazyk, protože card $(L_1) = 0$
- $L_2 = \{ \epsilon \}$ je konečný jazyk, protože card $(L_2) = 1$
- $L_3 = \{x: |x| = 1\} = \{0, 1\}$ je konečný jazyk, protože $\operatorname{card}(L_3) = 2$
- $L_4 = \{x: 10 \text{ je podřetězec } x\} = \{10, 010, 100, \dots\}$ je nekonečný jazyk

Sjednocení jazyků

Myšlenka: Sjednocení L_1 a L_2 je $L_1 \cup L_2$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ . Sjednocení jazyků L_1 a L_2 , $L_1 \cup L_2$, je definováno: $L_1 \cup L_2 = \{x: x \in L_1 \text{ nebo } x \in L_2\}$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

 $L_2 = \{00, 01, 10, 11\}$

Určeme: $L_1 \cup L_2$

Sjednocení jazyků

Myšlenka: Sjednocení L_1 a L_2 je $L_1 \cup L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ . Sjednocení jazyků L_1 a L_2 , $L_1 \cup L_2$, je definováno: $L_1 \cup L_2 = \{x: x \in L_1 \text{ nebo } x \in L_2\}$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

Sjednocení jazyků

Myšlenka: Sjednocení L_1 a L_2 je $L_1 \cup L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Sjednocení jazyků L_1 a L_2 , $L_1 \cup L_2$, je definováno:

$$L_1 \cup L_2 = \{x : x \in L_1 \text{ nebo } x \in L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

$$L_2 = \{00, 01, 10, 11\}$$
Určeme: $L_1 \cup L_2$

$$L_1 = \{0, 1, 00, 01, 10, 11\}$$

$$L_1 \cup L_2 = \{0, 1, 00, 01, 10, 11\}$$

Průnik jazyků

Myšlenka: Průnik L_1 a L_2 je $L_1 \cap L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Průnik jazyků L_1 a L_2 , $L_1 \cap L_2$, je definován:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ a } x \in L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},\$

 $L_2 = \{00, 01, 10, 11\}.$

Určeme: $L_1 \cap L_2$

Průnik jazyků

Myšlenka: Průnik L_1 a L_2 je $L_1 \cap \overline{L_2}$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Průnik jazyků L_1 a L_2 , $L_1 \cap L_2$, je definován:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ a } x \in L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

Průnik jazyků

Myšlenka: Průnik L_1 a L_2 je $L_1 \cap L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Průnik jazyků L_1 a L_2 , $L_1 \cap L_2$, je definován:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ a } x \in L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

Rozdíl jazyků

Myšlenka: Rozdíl jazyků L_1 a L_2 je $L_1 - L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Rozdíl jazyků L_1 a L_2 , $L_1 - L_2$, je definován:

$$L_1 - L_2 = \{x: x \in L_1 \text{ a } x \notin L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},$

 $L_2 = \{00, 01, 10, 11\}$

Určeme: $L_1 - L_2$

Rozdíl jazyků

Myšlenka: Rozdíl jazyků L_1 a L_2 je L_1 – L_2

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Rozdíl jazyků L_1 a L_2 , $L_1 - L_2$, je definován:

$$L_1 - L_2 = \{x: x \in L_1 \text{ a } x \notin L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},\$

Rozdíl jazyků

Myšlenka: Rozdíl jazyků L_1 a L_2 je $L_1 - L_2$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Rozdíl jazyků L_1 a L_2 , $L_1 - L_2$, je definován:

$$L_1 - L_2 = \{x: x \in L_1 \text{ a } x \notin L_2\}$$

Příklad: Uvažujme jazyky $L_1 = \{0, 1, 00, 01\},\$

Myšlenka: $\overline{L} = \Sigma^* - L$

Definice: Necht' L je jazyk nad abecedou Σ .

Doplněk jazyka L, \overline{L} , je definován:

$$\overline{L} = \Sigma^* - L$$

Určeme: \overline{L}

Myšlenka: $\overline{L} = \Sigma^* - L$

Definice: Necht' L je jazyk nad abecedou Σ .

Doplněk jazyka L, \overline{L} , je definován:

$$\overline{L} = \Sigma^* - L$$

Příklad: Uvažujme jazyk $L = \{0, 1, 01, 10\}$

Určeme: \overline{L}

Myšlenka: $\overline{L} = \Sigma^* - L$

Definice: Necht' L je jazyk nad abecedou Σ .

Doplněk jazyka L, \overline{L} , je definován:

$$\overline{L} = \Sigma^* - L$$

Myšlenka: $\overline{L} = \Sigma^* - L$

Definice: Necht' L je jazyk nad abecedou Σ .

Doplněk jazyka L, \overline{L} , je definován:

$$\overline{L} = \Sigma^* - L$$

Myšlenka: $\overline{L} = \Sigma^* - L$

Definice: Necht' L je jazyk nad abecedou Σ .

Doplněk jazyka L, \overline{L} , je definován:

$$\overline{L} = \Sigma^* - L$$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy : x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy: x \in L_1 \text{ a } y \in \overline{L_2}\}$

Definice: Nechť L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $L_1L_2 = \{xy : x \in L_1 \text{ a } y \in L_2\}$

Definice: Necht' L_1 a L_2 jsou dva jazyky nad Σ .

Konkatenace jazyků L_1 a L_2 , L_1L_2 , je definována jako

$$L_1L_2 = \{xy: x \in L_1 \text{ a } y \in L_2\}$$

Pozn.: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$

2) $L\varnothing = \varnothing L = \varnothing$

Příklad: Uvažujme jazyky $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Myšlenka: $reverse(L) = \{reverse(x) : x \in L\}$

Definice: Necht' L je jazyk nad abecedou Σ . Reverzace jazyka L, reverse(L), je definována: $reverse(L) = \{reverse(x) : x \in L\}$

Příklad: Uvažujme $L=\{01,011\}$

Myšlenka: $reverse(L) = \{reverse(x) : x \in L\}$

Definice: Necht' L je jazyk nad abecedou Σ . Reverzace jazyka L, reverse(L), je definována:

 $reverse(L) = \{reverse(x) : x \in L\}$

Příklad: Uvažujme $L=\{01,011\}$

Myšlenka: $reverse(L) = \{reverse(x) : x \in L\}$

Definice: Necht' L je jazyk nad abecedou Σ .

Reverzace jazyka L, reverse(L), je definována:

 $reverse(L) = \{reverse(x) : x \in L\}$

Příklad: Uvažujme $L=\{01,011\}$

Myšlenka: $reverse(L) = \{reverse(x) : x \in L\}$

Definice: Necht' L je jazyk nad abecedou Σ .

Reverzace jazyka L, reverse(L), je definována:

 $reverse(L) = \{reverse(x) : x \in L\}$

Příklad: Uvažujme $L=\{01,011\}$

Myšlenka: $reverse(L) = \{reverse(x) : x \in L\}$

Definice: Necht' L je jazyk nad abecedou Σ .

Reverzace jazyka L, reverse(L), je definována:

 $reverse(L) = \{reverse(x) : x \in L\}$

Příklad: Uvažujme $L=\{01,011\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, Lⁱ, je definována:

1) $L^0 = \{ \epsilon \}$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, Lⁱ, je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-krát}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá *mocnina jazyka L*, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá *mocnina jazyka L*, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro
$$i \ge 1$$
: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro
$$i \ge 1$$
: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro
$$i \ge 1$$
: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro
$$i \ge 1$$
: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá *mocnina jazyka L*, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L=\{0,01\}$ Určeme: L^2 00 010 $11-II^0$

Myšlenka: $L^i = \underbrace{LL...L}_{i-krát}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, Lⁱ, je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Příklad: Uvažujme $L = \{0, 01\}$ **Určeme:** L^2 00 010 001 0101

Myšlenka: $L^i = \underbrace{LL...L}_{i-\text{krát}}$

Definice: Necht' L je jazyk nad abecedou Σ .

Pro i ≥ 0 , *i*-tá mocnina jazyka L, L^i , je definována:

1)
$$L^0 = \{ \epsilon \}$$

2) pro $i \ge 1$: $L^i = LL^{i-1}$

Iterace jazyka

Myšlenka: $L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ...$ $L^+ = L^1 \cup L^2 \cup ... \cup L^i \cup ...$

Definice: Nechť L je jazyk nad abecedou Σ .

Iterace jazyka L, L^* , a pozitivní iterace jazyka L, L^+ , jsou definovány $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Pozn.: 1) $L^+ = LL^* = L^*L$

2) $L^* = L^+ \cup \{\epsilon\}$

Příklad:

Uvažujme jazyk $L=\{0,01\}$ nad $\Sigma=\{0,1\}$.

Určeme: L^* a L^+

Iterace jazyka

Myšlenka: $L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ...$ $L^+ = L^1 \cup L^2 \cup ... \cup L^i \cup ...$

Definice: Necht' L je jazyk nad abecedou Σ .

Iterace jazyka L, L^* , a pozitivní iterace jazyka L, L^+ , jsou definovány $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Pozn.: 1) $L^+ = LL^* = L^*L$

2) $L^* = L^+ \cup \{\varepsilon\}$

Příklad:

Uvažujme jazyk $L=\{0,01\}$ nad $\Sigma=\{0,1\}$.

Určeme: L^* a L^+

 $L^0 = \{ \mathbf{\epsilon} \}, L^1 = \{ \mathbf{0}, \mathbf{01} \}, L^2 = \{ \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101} \}, \dots$ $L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \{ \mathbf{\epsilon}, \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$ $L^+ = L^1 \cup L^2 \cup \dots = \{ \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$