Inverse Problems Least-squares solutions and the generalised inverse

Clarice Poon University of Bath

February 6, 2020

Least square solutions

Let $A:\mathcal{U}\to\mathcal{V}$ be a bounded linear operator between Hilbert spaces \mathcal{U} and \mathcal{V} and consider

$$Au = f$$
.

Definition 1

An element $u \in \mathcal{U}$ is called

- a least-squares solution if $||Au f||_{\mathcal{V}} = \inf \{ ||Av f||_{\mathcal{V}} ; v \in \mathcal{U} \}.$
- ullet a minimal-norm solution, denoted by u^\dagger if

$$\|u^{\dagger}\|_{\mathcal{U}} \leqslant \|v\|_{\mathcal{U}}$$

for all least-squares solutions v.

NB: If $f \notin \mathcal{R}(A)$, then a least-squares solution will not satisfy Au = f.

Learning objectives

- 1. Look at characterisation of least-squares solutions (properties, existence, uniqueness)
- 2. Review the pseudo-inverse and see that this gives the minimal norm solution.
- Compact operators (ill-posedness, properties of pseudo-inverse and SVD decomposition).

Definitions

Domain, kernel and range

Given $A: \mathcal{U} \to \mathcal{V}$, denote

- $\mathcal{D}(A) \stackrel{\text{\tiny def.}}{=} \mathcal{U}$ the domain,
- $\mathcal{N}(A) \stackrel{\text{def.}}{=} \{ u \in \mathcal{U} ; Au = 0 \}$ the kernel,
- $\mathcal{R}(A) \stackrel{\text{def.}}{=} \{ f \in \mathcal{V} ; f = Au, u \in \mathcal{U} \}$ the range.

Continuous linear operators

We say that A is continuous at $u \in \mathcal{U}$ if for all $\varepsilon > 0$, there exists $\delta > 0$ with

$$\|Au - Av\|_{\mathcal{V}} \leqslant \varepsilon \quad \forall v \in \mathcal{U} \quad s.t. \quad \|u - v\|_{\mathcal{U}} \leqslant \delta.$$

If A is a linear operator, then A is continuous if and only if it is bounded.

We will focus on inverse problems with bounded linear operators $A \in \mathcal{L}(\mathcal{U},\mathcal{V})$ with $\|A\|_{\mathcal{L}(\mathcal{U},\mathcal{V})} \stackrel{\text{def.}}{=} \sup_{\|u\|_{\mathcal{U}} \leqslant 1} \|Au\|_{\mathcal{V}} < \infty$.

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ where \mathcal{U} and \mathcal{V} are Hilbert spaces. Every Hilbert space \mathcal{U} is equipped with a scalar product $\langle \cdot, \cdot \rangle_{\mathcal{U}}$.

Adjoint

The unique **adjoint** operator of A is A^* defined by

$$\langle Au, v \rangle_{\mathcal{V}} = \langle u, A^*v \rangle_{\mathcal{U}}, \qquad \forall u \in \mathcal{U}, v \in \mathcal{V}.$$

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ where \mathcal{U} and \mathcal{V} are Hilbert spaces. Every Hilbert space \mathcal{U} is equipped with a scalar product $\langle \cdot, \cdot \rangle_{\mathcal{U}}$.

Adjoint

The unique **adjoint** operator of A is A^* defined by

$$\langle Au, v \rangle_{\mathcal{V}} = \langle u, A^*v \rangle_{\mathcal{U}}, \quad \forall u \in \mathcal{U}, v \in \mathcal{V}.$$

Orthogonal complement

We say that $u, v \in \mathcal{U}$ are orthogonal if $\langle u, v \rangle = 0$. Given $\mathcal{X} \subseteq \mathcal{U}$, the **orthogonal complement** of \mathcal{X} in \mathcal{U} is

$$\mathcal{X}^{\perp} \stackrel{\text{\tiny def.}}{=} \left\{ u \in \mathcal{U} \; ; \; \langle u, \, v \rangle = 0 \quad \forall v \in \mathcal{X} \right\}.$$

- \mathcal{X}^{\perp} is a closed subspace of \mathcal{U} and $\mathcal{U}^{\perp} = \{0\}$.
- $\overline{\mathcal{X}} = (\mathcal{X}^{\perp})^{\perp}$.
- If \mathcal{X} is closed, then $\mathcal{X} = (\mathcal{X}^{\perp})^{\perp}$ and $\mathcal{U} = \mathcal{X} \oplus \mathcal{X}^{\perp}$.

Orthogonal projection

Let $\mathcal{X}\subset\mathcal{U}$ be a closed subspace. Then, for all $u\in\mathcal{U}$, there exists $x\in\mathcal{X}$ and $x^\perp\in\mathcal{X}^\perp$ such that $u=x+x^\perp$. The mapping $u\mapsto x$ defines a bounded linear operator $P_{\mathcal{X}}$ called the **orthogonal projection** onto \mathcal{X} .

Orthogonal projection

Let $\mathcal{X} \subset \mathcal{U}$ be a closed subspace. Then, for all $u \in \mathcal{U}$, there exists $x \in \mathcal{X}$ and $x^{\perp} \in \mathcal{X}^{\perp}$ such that $u = x + x^{\perp}$. The mapping $u \mapsto x$ defines a bounded linear operator $P_{\mathcal{X}}$ called the **orthogonal projection** onto \mathcal{X} .

- P_X is self-adjoint.
- $||P_{\mathcal{X}}|| = 1$ if $\mathcal{X} \neq \{0\}$.
- $\operatorname{Id} P_{\mathcal{X}} = P_{\mathcal{X}^{\perp}}$.
- $\|u P_{\mathcal{X}}u\|_{\mathcal{U}} \leq \|u v\|$ for all $v \in \mathcal{X}$.
- $x = P_{\mathcal{X}}u$ if and only if $x \in \mathcal{X}$ and $u x \in \mathcal{X}^{\perp}$.

Orthogonal projection

Let $\mathcal{X} \subset \mathcal{U}$ be a closed subspace. Then, for all $u \in \mathcal{U}$, there exists $x \in \mathcal{X}$ and $x^{\perp} \in \mathcal{X}^{\perp}$ such that $u = x + x^{\perp}$. The mapping $u \mapsto x$ defines a bounded linear operator $P_{\mathcal{X}}$ called the **orthogonal projection** onto \mathcal{X} .

- $P_{\mathcal{X}}$ is self-adjoint.
- $||P_{\mathcal{X}}|| = 1$ if $\mathcal{X} \neq \{0\}$.
- $\operatorname{Id} P_{\mathcal{X}} = P_{\mathcal{X}^{\perp}}$.
- $\|u P_{\mathcal{X}}u\|_{\mathcal{U}} \leq \|u v\|$ for all $v \in \mathcal{X}$.
- $x = P_{\mathcal{X}}u$ if and only if $x \in \mathcal{X}$ and $u x \in \mathcal{X}^{\perp}$.

Properties of range and kernel

For $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, we have

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^*)$ and thus, $\mathcal{N}(A^*)^{\perp} = \overline{\mathcal{R}(A)}$.
- $\mathcal{R}(A^*)^{\perp} = \mathcal{N}(A)$ and thus, $\mathcal{N}(A)^{\perp} = \overline{\mathcal{R}(A^*)}$.

So,
$$\mathcal{U} = \mathcal{N}(A) \oplus \overline{\mathcal{R}(A^*)}$$
 and $\mathcal{V} = \mathcal{N}(A^*) \oplus \overline{\mathcal{R}(A)}$. Also, $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)}$.

Characterisation of least-squares solutions

Theorem 2

Let $f \in \mathcal{V}$ and $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, the following are equivalent.

- (a) u is a least-squares solution to Au = f.
- (b) u solves the normal equation $A^*Au = A^*f$.
- (c) u satisfies $Au = P_{\overline{\mathcal{R}(A)}}f$.

Characterisation of least-squares solutions

Theorem 2

Let $f \in \mathcal{V}$ and $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, the following are equivalent.

- (a) u is a least-squares solution to Au = f.
- (b) u solves the normal equation $A^*Au = A^*f$.
- (c) u satisfies $Au = P_{\overline{\mathcal{R}(A)}}f$.

Remark. For any solution u to the normal equation, its residue Au - f is normal (orthogonal) to $\mathcal{R}(A)$: for any $v \in \mathcal{U}$,

$$0 = \langle v, A^*(Au - f) \rangle_{\mathcal{U}} = \langle Av, Au - f \rangle_{\mathcal{V}}.$$

Existence and characterisation of least-squares solutions

LS solution satisfy the normal equation: (a) \rightarrow (b) For any $v \in \mathcal{U}$, $F(\lambda) = \|A(u + \lambda v) - f\|_{\mathcal{V}}^2$ is smallest at $\lambda = 0$. So, $F'(0) = 2\langle Av, Au - f \rangle_{\mathcal{V}} = 0$.

Existence and characterisation of least-squares solutions

LS solution satisfy the normal equation: (a) \rightarrow (b) For any $v \in \mathcal{U}$, $F(\lambda) = \|A(u + \lambda v) - f\|_{\mathcal{V}}^2$ is smallest at $\lambda = 0$. So, $F'(0) = 2\langle Av, Au - f \rangle_{\mathcal{V}} = 0$.

Normal equation implies
$$Au = P_{\overline{\mathcal{R}(A)}}f$$
: (b) \rightarrow (c) If $A^*(f - Au) = 0$, then $f - Au \in \mathcal{N}(A^*) = \mathcal{R}(A)^{\perp} = (\overline{\mathcal{R}(A)})^{\perp}$. So,
$$\forall v \in \mathcal{V}, \quad \langle P_{\overline{\mathcal{R}(A)}}(f - Au), \ v \rangle = \langle f - Au, \ P_{\overline{\mathcal{R}(A)}}v \rangle = 0$$
 implies $P_{\overline{\mathcal{R}(A)}}(f - Au) = P_{\overline{\mathcal{R}(A)}}(f) - Au = 0$.

Existence and characterisation of least-squares solutions

LS solution satisfy the normal equation: (a)
$$\rightarrow$$
(b) For any $v \in \mathcal{U}$, $F(\lambda) = \|A(u + \lambda v) - f\|_{\mathcal{V}}^2$ is smallest at $\lambda = 0$. So, $F'(0) = 2\langle Av, Au - f\rangle_{\mathcal{V}} = 0$.

Normal equation implies
$$Au = P_{\overline{\mathcal{R}(A)}}f$$
: (b) \rightarrow (c) If $A^*(f - Au) = 0$, then $f - Au \in \mathcal{N}(A^*) = \mathcal{R}(A)^{\perp} = (\overline{\mathcal{R}(A)})^{\perp}$. So,
$$\forall v \in \mathcal{V}, \quad \langle P_{\overline{\mathcal{R}(A)}}(f - Au), \ v \rangle = \langle f - Au, \ P_{\overline{\mathcal{R}(A)}}v \rangle = 0$$
 implies $P_{\overline{\mathcal{R}(A)}}(f - Au) = P_{\overline{\mathcal{R}(A)}}(f) - Au = 0$.

Any solution to
$$Au = P_{\overline{\mathcal{R}(A)}}f$$
 is a LS solution: (c) \rightarrow (a)
For $Au = \mathcal{P}_{\overline{\mathcal{R}(A)}}f$, we have
$$\|Au - f\|_{\mathcal{V}} = \left\| (\operatorname{Id} - \mathcal{P}_{\overline{\mathcal{R}(A)}})f \right\| \leqslant \inf_{g \in \overline{\mathcal{R}(A)}} \|g - f\|_{\mathcal{V}} \leqslant \inf_{v \in \mathcal{U}} \|Av - f\|_{\mathcal{V}}.$$

 $(c)\rightarrow(a)$

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

```
For (a): If u \in \mathbb{L}, then f = Au + (f - Au) \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} (we just saw that the normal equation implies f - Au \in \mathcal{R}(A)^{\perp}).
```

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

For (a):

If $u \in \mathbb{L}$, then $f = Au + (f - Au) \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$ (we just saw that the normal equation implies $f - Au \in \mathcal{R}(A)^{\perp}$).

Conversely, if $f \in \mathcal{R}(A) \oplus (\mathcal{R}(A))^{\perp}$, then there exists $u \in \mathcal{U}$ and $g \in \mathcal{R}(A)^{\perp}$ such that f = Au + g. Therefore, $P_{\overline{\mathcal{R}(A)}}f = Au$.

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

To show (b): Letting $B = \min_{u} ||Au - f||$, the minimal solution is

$$u^{\dagger} = \operatorname{argmin}_{u \in \{v \; ; \; ||Av - f|| = B\}} \|u\|$$

The orthogonal projection of the zero element onto a closed convex set is unique.

Lemma 3

Let $f \in \mathcal{V}$ and let \mathbb{L} be the set of least-squares solutions to Au = f.

- (a) $\mathbb{L} \neq \emptyset$ if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.
- (b) If $\mathbb{L} \neq \emptyset$, then there exists a unique minimal norm solution u^{\dagger} and all least-squares solutions are given by $u^{\dagger} + \mathcal{N}(A)$.

To show (b): Letting $B = \min_{u} ||Au - f||$, the minimal solution is

$$u^{\dagger} = \operatorname{argmin}_{u \in \{v \; ; \; ||Av - f|| = B\}} \|u\|$$

The orthogonal projection of the zero element onto a closed convex set is unique. Given any least-squares solution φ , $A(\varphi-u^\dagger)=P_{\overline{\mathcal{R}(A)}}(f)-P_{\overline{\mathcal{R}(A)}}(f)=0$. Therefore, $\varphi-u^\dagger\in\mathcal{N}(A)$.

Remark: In the finite dimensional setting, $\mathcal{R}(A)$ is closed, i.e.

 $\mathcal{R}(A) = \overline{\mathcal{R}(A)}$ so there always exists a least-squares solution.

Remark: In the finite dimensional setting, $\mathcal{R}(A)$ is closed, i.e. $\mathcal{R}(A) = \overline{\mathcal{R}(A)}$ so there always exists a least-squares solution.

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and let $Au = \left(\frac{u_j}{j}\right)_{j \in \mathbb{N}}$ and $f = \left(\frac{1}{j}\right)_{j \in \mathbb{N}}$. Then, $f \in \overline{\mathcal{R}(A)} \setminus \mathcal{R}(A)$ so no least-squares solution exists.

Remark: In the finite dimensional setting, $\mathcal{R}(A)$ is closed, i.e. $\mathcal{R}(A) = \overline{\mathcal{R}(A)}$ so there always exists a least-squares solution.

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and let $Au = \left(\frac{u_j}{j}\right)_{j \in \mathbb{N}}$ and $f = \left(\frac{1}{j}\right)_{j \in \mathbb{N}}$. Then, $f \in \overline{\mathcal{R}(A)} \setminus \mathcal{R}(A)$ so no least-squares solution exists.

• If $f \in \mathcal{R}(A)$, then Au = f implies that $u_j = 1$ for all j. But such u is not in $\ell_2(\mathbb{N})$.

Remark: In the finite dimensional setting, $\mathcal{R}(A)$ is closed, i.e. $\mathcal{R}(A) = \overline{\mathcal{R}(A)}$ so there always exists a least-squares solution.

Consider $\mathcal{U}=\mathcal{V}=\ell_2(\mathbb{N})$ and let $Au=\left(\frac{u_j}{j}\right)_{j\in\mathbb{N}}$ and $f=\left(\frac{1}{j}\right)_{j\in\mathbb{N}}$. Then, $f\in\overline{\mathcal{R}(A)}\setminus\mathcal{R}(A)$ so no least-squares solution exists.

- If $f \in \mathcal{R}(A)$, then Au = f implies that $u_j = 1$ for all j. But such u is not in $\ell_2(\mathbb{N})$.
- To see $f \in \overline{\mathcal{R}(A)}$, define sequences $u^n, f^n \in \ell_2(\mathbb{N})$ by

$$u_j^n = \begin{cases} 1 & j \leqslant n \\ 0 & j > n \end{cases} \quad \text{and} \quad f_j^n = \begin{cases} 1/j & j \leqslant n \\ 0 & j > n \end{cases}$$

Clearly, $Au^n = f^n \in \mathcal{R}(A)$. Also, $||f^n - f||_2^2 = \sum_{j>n} \frac{1}{j^2} \to 0$ as $n \to \infty$.

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, its inverse might not exist but we can define a generalised inverse by restricting its domain and range.

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, its inverse might not exist but we can define a generalised inverse by restricting its domain and range.

Consider the restriction of A to $\mathcal{N}(A)^{\perp}$:

$$\tilde{A}\stackrel{\scriptscriptstyle\mathsf{def.}}{=} A|_{\mathcal{N}(A)^\perp}: \mathcal{N}(A)^\perp \to \mathcal{V}$$

 $ilde{\mathcal{A}}$ has an inverse $ilde{\mathcal{A}}^{-1}:\mathcal{R}(\mathcal{A}) o\mathcal{N}(\mathcal{A})^{\perp}$ because

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, its inverse might not exist but we can define a generalised inverse by restricting its domain and range.

Consider the restriction of A to $\mathcal{N}(A)^{\perp}$:

$$ilde{A}\stackrel{ ext{def.}}{=} A|_{\mathcal{N}(A)^{\perp}}: \mathcal{N}(A)^{\perp}
ightarrow \mathcal{V}$$

 $ilde{\mathcal{A}}$ has an inverse $ilde{\mathcal{A}}^{-1}:\mathcal{R}(\mathcal{A}) o\mathcal{N}(\mathcal{A})^{\perp}$ because

- ullet $ilde{A}$ is a bounded linear operator.
- Injective: for all $x \in \mathcal{N}(A)^{\perp}$, $\tilde{A}x = 0$ iff $x \in \mathcal{N}(A) \cap \mathcal{N}(A)^{\perp} = \{0\}$.
- Range is $\mathcal{R}(\tilde{A}) = \mathcal{R}(A)$: Given $y = Ax \in \mathcal{R}(A)$, write $x = x_1 + x_2 \in \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A)$, then $\tilde{A}x_1 = Ax_1 = Ax = y$ so $y \in \mathcal{R}(\tilde{A})$.

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, its inverse might not exist but we can define a generalised inverse by restricting its domain and range.

Consider the restriction of A to $\mathcal{N}(A)^{\perp}$:

$$ilde{A}\stackrel{ ext{ iny def.}}{=} A|_{\mathcal{N}(A)^{\perp}}: \mathcal{N}(A)^{\perp}
ightarrow \mathcal{V}$$

 $ilde{\mathcal{A}}$ has an inverse $ilde{\mathcal{A}}^{-1}:\mathcal{R}(\mathcal{A}) o\mathcal{N}(\mathcal{A})^{\perp}$ because

- ullet $ilde{A}$ is a bounded linear operator.
- Injective: for all $x \in \mathcal{N}(A)^{\perp}$, $\tilde{A}x = 0$ iff $x \in \mathcal{N}(A) \cap \mathcal{N}(A)^{\perp} = \{0\}$.
- Range is $\mathcal{R}(\tilde{A}) = \mathcal{R}(A)$: Given $y = Ax \in \mathcal{R}(A)$, write $x = x_1 + x_2 \in \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A)$, then $\tilde{A}x_1 = Ax_1 = Ax = y$ so $y \in \mathcal{R}(\tilde{A})$.

Extend \tilde{A}^{-1} by zero on $\mathcal{R}(A)^{\perp}$ to obtain $A^{\dagger}: \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \to \mathcal{N}(A)^{\perp}$ which satisfies $AA^{\dagger}x = x$ for all $x \in \mathcal{R}(A)$.

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, its inverse might not exist but we can define a generalised inverse by restricting its domain and range.

Consider the restriction of A to $\mathcal{N}(A)^{\perp}$:

$$ilde{A}\stackrel{ ext{ iny def.}}{=} A|_{\mathcal{N}(A)^{\perp}}: \mathcal{N}(A)^{\perp}
ightarrow \mathcal{V}$$

 $ilde{A}$ has an inverse $ilde{A}^{-1}: \mathcal{R}(A)
ightarrow \mathcal{N}(A)^{\perp}$ because

- ullet $ilde{A}$ is a bounded linear operator.
- Injective: for all $x \in \mathcal{N}(A)^{\perp}$, $\tilde{A}x = 0$ iff $x \in \mathcal{N}(A) \cap \mathcal{N}(A)^{\perp} = \{0\}$.
- Range is $\mathcal{R}(\tilde{A}) = \mathcal{R}(A)$: Given $y = Ax \in \mathcal{R}(A)$, write $x = x_1 + x_2 \in \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A)$, then $\tilde{A}x_1 = Ax_1 = Ax = y$ so $y \in \mathcal{R}(\tilde{A})$.

Extend \tilde{A}^{-1} by zero on $\mathcal{R}(A)^{\perp}$ to obtain $A^{\dagger}: \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \to \mathcal{N}(A)^{\perp}$ which satisfies $AA^{\dagger}x = x$ for all $x \in \mathcal{R}(A)$.

This extension is called the Moore-Penrose generalised inverse. It is the unique extension of \tilde{A}^{-1} to $\mathcal{D}(A^{\dagger}) = \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$ with $\mathcal{N}(A^{\dagger}) = \mathcal{R}(A)^{\perp}$.

Note that $\mathcal{D}(A^{\dagger})$ is dense in \mathcal{U} , so A^{\dagger} is defined on the entire domain \mathcal{U} only if $\mathcal{R}(A)$ is closed.

In fact, A^{\dagger} is bounded (continuous) if and only if $\mathcal{R}(A)$ is closed.

We list a few additional properties of A^{\dagger} :

Lemma 4

The Moore-Penrose inverse A^\dagger satisfies $\mathcal{R}(A^\dagger) = \mathcal{N}(A)^\perp$ and the Moore-Penrose equations

- (a) $AA^{\dagger}A = A$.
- (b) $A^{\dagger}AA^{\dagger}=A^{\dagger}$
- (c) $A^{\dagger}A = \operatorname{Id} P_{\mathcal{N}(A)}$
- (d) $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}}|_{\mathcal{D}(A^{\dagger})}$.

We list a few additional properties of A^{\dagger} :

Lemma 4

The Moore-Penrose inverse A^\dagger satisfies $\mathcal{R}(A^\dagger)=\mathcal{N}(A)^\perp$ and the Moore-Penrose equations

- (a) $AA^{\dagger}A = A$.
- (b) $A^{\dagger}AA^{\dagger}=A^{\dagger}$
- (c) $A^{\dagger}A = \operatorname{Id} P_{\mathcal{N}(A)}$
- (d) $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}}|_{\mathcal{D}(A^{\dagger})}$.

The proof is left as an exercise.

NB: (a) and (b) follow immediately from (c) and (d):

- $AA^{\dagger}A = AP_{\mathcal{N}(A)^{\perp}} = A(P_{\mathcal{N}(A)^{\perp}} + P_{\mathcal{N}(A)}) = A$
- Given $f \in \mathcal{D}(A^{\dagger})$, $A^{\dagger}AA^{\dagger}f = A^{\dagger}P_{\overline{\mathcal{R}(A)}}f = A^{\dagger}f$ since $A^{\dagger}P_{\mathcal{R}(A)^{\perp}}f = 0$ by definition.

Theorem 5

For $f \in \mathcal{D}(A^\dagger)$, the minimal norm solution u^\dagger is given by $u^\dagger = A^\dagger f$.

Proof.

We already saw that u^{\dagger} exists and is unique.

Theorem 5

For $f \in \mathcal{D}(A^{\dagger})$, the minimal norm solution u^{\dagger} is given by $u^{\dagger} = A^{\dagger}f$.

Proof.

We already saw that u^{\dagger} exists and is unique.

Note that $u^\dagger \in \mathcal{N}(A)^\perp$: decompose $u^\dagger = v + w$ for some $v \in \mathcal{N}(A)$ and $w \in \mathcal{N}(A)^\perp$. Then, w is a least-squares solution and $\left\|u^\dagger\right\|^2 = \|v\|^2 + \|w\|^2$, so v = 0 by minimality of u^\dagger .

Theorem 5

For $f \in \mathcal{D}(A^{\dagger})$, the minimal norm solution u^{\dagger} is given by $u^{\dagger} = A^{\dagger}f$.

Proof.

We already saw that u^{\dagger} exists and is unique.

Note that $u^{\dagger} \in \mathcal{N}(A)^{\perp}$: decompose $u^{\dagger} = v + w$ for some $v \in \mathcal{N}(A)$ and $w \in \mathcal{N}(A)^{\perp}$. Then, w is a least-squares solution and $\|u^{\dagger}\|^2 = \|v\|^2 + \|w\|^2$, so v = 0 by minimality of u^{\dagger} .

So,

$$u^\dagger = (\operatorname{Id} - P_{\mathcal{N}(A)}) u^\dagger = A^\dagger A u^\dagger = A^\dagger P_{\overline{\mathcal{R}(A)}} f = A^\dagger A A^\dagger f = A^\dagger f.$$

14 / 27

Theorem 5

For $f \in \mathcal{D}(A^{\dagger})$, the minimal norm solution u^{\dagger} is given by $u^{\dagger} = A^{\dagger}f$.

Proof.

We already saw that u^{\dagger} exists and is unique.

Note that $u^{\dagger} \in \mathcal{N}(A)^{\perp}$: decompose $u^{\dagger} = v + w$ for some $v \in \mathcal{N}(A)$ and $w \in \mathcal{N}(A)^{\perp}$. Then, w is a least-squares solution and $\|u^{\dagger}\|^2 = \|v\|^2 + \|w\|^2$, so v = 0 by minimality of u^{\dagger} .

So,

$$u^\dagger = (\operatorname{Id} - P_{\mathcal{N}(A)}) u^\dagger = A^\dagger A u^\dagger = A^\dagger P_{\overline{\mathcal{R}(A)}} f = A^\dagger A A^\dagger f = A^\dagger f.$$

Note also that since $\mathcal{N}(A^*A)^{\perp}=\overline{\mathcal{R}(A^*A)}=\overline{\mathcal{R}(A^*)}=\mathcal{N}(A)^{\perp}$, the normal equation $(A^*A)u^{\dagger}-A^*f=0$ implies that

$$u^{\dagger} = P_{\overline{\mathcal{R}(A^*)}} u^{\dagger} = (A^*A)^{\dagger} (A^*A) u^{\dagger} = (A^*A)^{\dagger} A^* f.$$

To prove that A^{\dagger} is continuous if and only if $\mathcal{R}(A)$ is closed:

To prove that A^{\dagger} is continuous if and only if $\mathcal{R}(A)$ is closed:

Suppose that A^{\dagger} is continuous.

- Then since it is defined on a dense set, there exists a continuous extension, denote \bar{A} , to \mathcal{V} .
- From $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})}$, we have $A\overline{A} = P_{\overline{\mathcal{R}(A)}}$. Therefore, given $f \in \overline{\mathcal{R}(A)}$, $f = A\overline{A}f \in \mathcal{R}(A)$.

To prove that A^{\dagger} is continuous if and only if $\mathcal{R}(A)$ is closed:

Suppose that A^{\dagger} is continuous.

- Then since it is defined on a dense set, there exists a continuous extension, denote A
 , to V.
- From $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})}$, we have $A\overline{A} = P_{\overline{\mathcal{R}(A)}}$. Therefore, given $f \in \overline{\mathcal{R}(A)}$, $f = A\overline{A}f \in \mathcal{R}(A)$.

The converse follows from the closed graph theorem:

Let \mathcal{U},\mathcal{V} be Hilbert spaces. If $T:\mathcal{U}\to\mathcal{V}$ is a linear operator and its graph

$$\{(u,v); v = Tu, u \in \mathcal{U}\}$$

is closed subset of $\mathcal{U} \times \mathcal{V}$, then T is continuous.

To prove that A^{\dagger} is continuous if and only if $\mathcal{R}(A)$ is closed:

Suppose that A^{\dagger} is continuous.

- Then since it is defined on a dense set, there exists a continuous extension, denote \bar{A} , to \mathcal{V} .
- From $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})}$, we have $A\overline{A} = P_{\overline{\mathcal{R}(A)}}$. Therefore, given $f \in \overline{\mathcal{R}(A)}$, $f = A\overline{A}f \in \mathcal{R}(A)$.

The converse follows from the closed graph theorem:

Let \mathcal{U},\mathcal{V} be Hilbert spaces. If $T:\mathcal{U}\to\mathcal{V}$ is a linear operator and its graph

$$\{(u,v); v=Tu, u\in \mathcal{U}\}$$

is closed subset of $\mathcal{U} \times \mathcal{V}$, then T is continuous.

If $\mathcal{R}(A)$ is closed, then $A^\dagger: \mathcal{V} \to \mathcal{U}$ is defined on \mathcal{V} and we just need to check that its graphs is closed. Given $f_j \in \mathcal{V}$ so that $f_j \to f \in \mathcal{V}$ and $u_j \stackrel{\text{def.}}{=} A^\dagger f_j \to u \in \mathcal{U}$, we have $u = A^\dagger f$ because:

- $Au_j = AA^{\dagger}f_j = P_{\overline{\mathcal{R}(A)}}f_j$ So, $Au = P_{\overline{\mathcal{R}(A)}}f$. i.e. u is a least squares solution.
- $u_j = A^{\dagger} f_j \in \mathcal{N}(A)^{\perp}$ and since $\mathcal{N}(A)^{\perp}$ is closed, $u \in \mathcal{N}(A)^{\perp}$.

Definition 6 (Compact operators)

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then A is compact if for any bounded set $\mathcal{B} \subset \mathcal{U}$, the closure of its image $\overline{A(\mathcal{B})}$ is compact in \mathcal{V} . We denote the space of compact operators by $\mathcal{K}(\mathcal{U}, \mathcal{V})$.

Equivalently, if $\{u_j\} \subset \mathcal{U}$ is bounded, then $\{Au_j\}$ has a convergent subsequence in \mathcal{V} .

Examples 1 If A has finite range, then A is compact (by Bolzano-Weierstrass).

Examples 1 If A has finite range, then A is compact (by Bolzano-Weierstrass).

Examples 2 Let $g \in C([0,1];\mathbb{R})$ and define $A:C([0,1];\mathbb{R}) \to C([0,1];\mathbb{R})$ by

$$(Af)(x) \stackrel{\text{def.}}{=} \int_0^x f(t)g(t)dt$$

This is compact by Arzela-Ascoli (given $\{f_n\}_n$ uniformly bounded, check that $\{Af_n\}_n$ is also uniformly bounded and equi-continuous).

Examples 1 If A has finite range, then A is compact (by Bolzano-Weierstrass).

Examples 2 Let $g \in C([0,1];\mathbb{R})$ and define $A:C([0,1];\mathbb{R}) \to C([0,1];\mathbb{R})$ by

$$(Af)(x) \stackrel{\text{def.}}{=} \int_0^x f(t)g(t)dt$$

This is compact by Arzela-Ascoli (given $\{f_n\}_n$ uniformly bounded, check that $\{Af_n\}_n$ is also uniformly bounded and equi-continuous).

Examples 3 Let $k \in L^2(\Omega \times \Omega)$. The operator $A : L^2(\Omega) \to L^2(\Omega)$ defined by

$$(Af)(x) = \int k(x, y)f(y)dy$$

is compact.

Compact operators are very common in inverse problems. This is a major source of ill-posedness.

Theorem 7

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with infinite dimensional range. Then, the Moore-Penrose inverse of A is discontinuous.

Proof.

Since $\mathcal{R}(A)$ is infinite dimensional, \mathcal{U} and $\mathcal{N}(A)^{\perp}$ are also infinite dimensional.

Define a sequence $u_k \in \mathcal{N}(A)^{\perp}$ such that $||u_j||_{\mathcal{U}} = 1$ and $\langle u_k, u_j \rangle = \delta_{jk}$.

Compact operators are very common in inverse problems. This is a major source of ill-posedness.

Theorem 7

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with infinite dimensional range. Then, the Moore-Penrose inverse of A is discontinuous.

Proof.

Since $\mathcal{R}(A)$ is infinite dimensional, \mathcal{U} and $\mathcal{N}(A)^{\perp}$ are also infinite dimensional.

Define a sequence $u_k \in \mathcal{N}(A)^{\perp}$ such that $\|u_j\|_{\mathcal{U}} = 1$ and $\langle u_k, u_j \rangle = \delta_{jk}$.

Since A is compact, $f_j = Au_j$ has a convergent subsequence. So, for all $\delta > 0$, there exists j,k such that $\|f_j - f_k\|_{\mathcal{V}} \leqslant \delta$.

Compact operators are very common in inverse problems. This is a major source of ill-posedness.

Theorem 7

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with infinite dimensional range. Then, the Moore-Penrose inverse of A is discontinuous.

Proof.

Since $\mathcal{R}(A)$ is infinite dimensional, \mathcal{U} and $\mathcal{N}(A)^{\perp}$ are also infinite dimensional.

Define a sequence $u_k \in \mathcal{N}(A)^{\perp}$ such that $\|u_j\|_{\mathcal{U}} = 1$ and $\langle u_k, u_j \rangle = \delta_{jk}$.

Since A is compact, $f_j = Au_j$ has a convergent subsequence. So, for all $\delta > 0$, there exists j, k such that $||f_j - f_k||_{\mathcal{V}} \leq \delta$.

However,

$$\left\|A^{\dagger}f_{j}-A^{\dagger}f_{k}\right\|_{\mathcal{U}}^{2}=\left\|A^{\dagger}Au_{j}-A^{\dagger}Au_{k}\right\|_{\mathcal{U}}^{2}=\left\|u_{j}-u_{k}\right\|_{\mathcal{U}}=2.$$

18 / 27

The spectral theorem: If $A \in \mathcal{K}(\mathcal{U},\mathcal{U})$ is a self-adjoint operator on Hilbert space \mathcal{U} , then there exists an orthonormal basis $\{u_j\}_{j\in\mathbb{N}}$ of $\overline{\mathcal{R}(A)}$ and a sequence of eigenvalues $\{\lambda_j\}_j$ with $|\lambda_1|\geqslant |\lambda_2|\geqslant \cdots>0$ and $\lambda_j\to 0$ such that for all $u\in\mathcal{U}$,

$$Au=\sum_{j=1}^{\infty}\lambda_{j}\langle u, u_{j}\rangle_{\mathcal{U}}u_{j}.$$

The spectral theorem: If $A \in \mathcal{K}(\mathcal{U},\mathcal{U})$ is a self-adjoint operator on Hilbert space \mathcal{U} , then there exists an orthonormal basis $\{u_j\}_{j\in\mathbb{N}}$ of $\overline{\mathcal{R}(A)}$ and a sequence of eigenvalues $\{\lambda_j\}_j$ with $|\lambda_1|\geqslant |\lambda_2|\geqslant \cdots>0$ and $\lambda_j\to 0$ such that for all $u\in\mathcal{U}$,

$$Au = \sum_{j=1}^{\infty} \lambda_j \langle u, u_j \rangle_{\mathcal{U}} u_j.$$

If A is not self-adjoint, then no eigenvalues (and hence no eigenvectors) need to exist. But, we can consider the eigenvalues of A^*A (which is self-adjoint and compact) to obtain a similar decomposition.

Theorem 8 (SVD of compact operators)

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$. Then there exists $\sigma_1 \geqslant \sigma_2 \geqslant \cdots > 0$ and an orthonormal basis $\{u_j\}_j$ of $\mathcal{N}(A)^{\perp}$ and an orthonormal basis $\{v_j\}_j$ of $\overline{\mathcal{R}(A)}$ such that

$$Au_j = \sigma_j v_j$$
 and $A^* v_j = \sigma_j u_j$, $\forall j \in \mathbb{N}$.

For all $u \in \mathcal{U}$, we have the representation

$$Au = \sum_{j=1}^{\infty} \sigma_j \langle u, u_j \rangle v_j.$$

 $\{(\sigma_j, u_j, v_j)\}_j$ is called a singular value decomposition of A. The adjoint is

$$A^*f=\sum_{j=1}^\infty \sigma_j\langle f,\,v_j\rangle u_j.$$

Let $B = A^*A$. This is compact, self-adjoint and positive definite, so

$$Bu = \sum_{j} \sigma_{j}^{2} \langle u, u_{j} \rangle x_{j}$$

where $\{u_j\}_j$ is an orthonormal bases of $\overline{\mathcal{R}(A^*A)}$. Define $v_j \stackrel{\text{def.}}{=} \frac{1}{\sigma_j} A u_j$.

Recall: $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$.

Let $B = A^*A$. This is compact, self-adjoint and positive definite, so

$$Bu = \sum_{j} \sigma_{j}^{2} \langle u, u_{j} \rangle x_{j}$$

where $\{u_j\}_j$ is an orthonormal bases of $\overline{\mathcal{R}(A^*A)}$. Define $v_j \stackrel{\text{def.}}{=} \frac{1}{\sigma_j} A u_j$.

Recall: $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$.

Clearly,

$$A^*v_k=\frac{1}{\sigma_j}A^*Au_j=\sigma_ju_j.$$

Let $B = A^*A$. This is compact, self-adjoint and positive definite, so

$$Bu = \sum_{j} \sigma_{j}^{2} \langle u, u_{j} \rangle x_{j}$$

where $\{u_j\}_j$ is an orthonormal bases of $\overline{\mathcal{R}(A^*A)}$. Define $v_j \stackrel{\text{def.}}{=} \frac{1}{\sigma_j} A u_j$. Recall: $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$.

 $\{v_i\}_i$ is an orthonormal basis:

$$\langle v_j, v_k \rangle = \frac{1}{\sigma_i \sigma_k} \langle u_j, A^* A u_k \rangle = \delta_{jk}$$

Let $B = A^*A$. This is compact, self-adjoint and positive definite, so

$$Bu = \sum_{j} \sigma_{j}^{2} \langle u, u_{j} \rangle x_{j}$$

where $\{u_j\}_j$ is an orthonormal bases of $\overline{\mathcal{R}(A^*A)}$. Define $v_j \stackrel{\text{def.}}{=} \frac{1}{\sigma_j} A u_j$. Recall: $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$.

Extend $\{u_i\}_i$ to a basis of \mathcal{U} . Given $u \in \mathcal{U} = \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A)$,

$$Au = \sum_{j} \langle u, u_j \rangle Au_j = \sum_{j} \sigma_j \langle u, u_j \rangle v_j.$$

This also shows that $\{v_j\}_j$ is a basis of $\mathcal{R}(A) = \mathcal{N}(A^*)^{\perp}$. The spectral representation of A^*f is obtained similarly by extending $\{v_j\}_j$ to a basis of \mathcal{V}

Theorem 9

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with singular system $\{(\sigma_j, u_j, v_j)\}_j$ and $f \in \mathcal{D}(A^{\dagger})$. Then,

(a) $f \in \mathcal{D}(A^{\dagger})$ if and only if the Picard condition is satisfied:

$$\sum_{j=1}^{\infty} \frac{|\langle f, v_j \rangle|^2}{\sigma_j^2} < \infty.$$

(b) If $f \in \mathcal{D}(A^{\dagger})$, then $A^{\dagger}f = \sum_{j=1}^{\infty} \sigma_{j}^{-1} \langle f, v_{j} \rangle u_{j}$.

Theorem 9

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with singular system $\{(\sigma_j, u_j, v_j)\}_j$ and $f \in \mathcal{D}(A^{\dagger})$. Then,

(a) $f \in \mathcal{D}(A^{\dagger})$ if and only if the Picard condition is satisfied:

$$\sum_{j=1}^{\infty} \frac{\left|\left\langle f, \ v_{j}\right\rangle\right|^{2}}{\sigma_{j}^{2}} < \infty.$$

(b) If $f \in \mathcal{D}(A^{\dagger})$, then $A^{\dagger}f = \sum_{j=1}^{\infty} \sigma_j^{-1} \langle f, v_j \rangle u_j$.

Remarks:

The unboundedness of the Moore-Penrose inverse can clearly be seen from the SVD representation since $\|A^\dagger v_j\| = \sigma_j^{-1} \to \infty$, even though $\|v_j\| = 1$. In general, the series may not converge for a given $f \notin \mathcal{D}(A^\dagger)$.

Theorem 9

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with singular system $\{(\sigma_j, u_j, v_j)\}_j$ and $f \in \mathcal{D}(A^{\dagger})$. Then,

(a) $f \in \mathcal{D}(A^{\dagger})$ if and only if the Picard condition is satisfied:

$$\sum_{j=1}^{\infty} \frac{\left|\langle f, v_j \rangle\right|^2}{\sigma_j^2} < \infty.$$

(b) If $f \in \mathcal{D}(A^{\dagger})$, then $A^{\dagger}f = \sum_{j=1}^{\infty} \sigma_j^{-1} \langle f, v_j \rangle u_j$.

Remarks:

One can additionally show that if $f \in \overline{\mathcal{R}(A)}$, then $f \in \mathcal{R}(A)$ if and only if the Picard criterion is met.

Theorem 9

Let $A \in \mathcal{K}(\mathcal{U}, \mathcal{V})$ with singular system $\{(\sigma_j, u_j, v_j)\}_j$ and $f \in \mathcal{D}(A^{\dagger})$. Then,

(a) $f \in \mathcal{D}(A^{\dagger})$ if and only if the Picard condition is satisfied:

$$\sum_{j=1}^{\infty} \frac{\left|\left\langle f, \ v_{j}\right\rangle\right|^{2}}{\sigma_{j}^{2}} < \infty.$$

(b) If $f \in \mathcal{D}(A^{\dagger})$, then $A^{\dagger}f = \sum_{j=1}^{\infty} \sigma_j^{-1} \langle f, v_j \rangle u_j$.

Remarks:

We say that an ill-posed inverse problem is mildly ill-posed if the singular values decay at most with polynomial speed. There exists $\gamma, C > 0$ such that $\sigma_j \geqslant Cj^{-\gamma}$. We say it is severely ill-posed if its singular values decay faster than polynomial speed, for all $\gamma, C > 0$, $\sigma_j \leqslant Cj^{-\gamma}$ for all j large enough.

Proof of (a) [Picard condition for $\mathcal{D}(A^{\dagger})$]

• Recall that $\mathcal{D}(A^{\dagger}) = \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$. Suppose that f = Au + w where $w \in \mathcal{R}(A)^{\perp} = \overline{\mathcal{R}(A)}^{\perp}$. Since $\{v_j\}_j$ is an ONB for $\overline{\mathcal{R}(A)}$,

$$\langle f, v_j \rangle_{\mathcal{V}} = \langle Au, v_j \rangle_{\mathcal{V}} = \langle u, A^*v_j \rangle_{\mathcal{U}} = \sigma_j \langle u, u_j \rangle.$$

Therefore, $\sum_{j} \sigma_{j}^{-2} \left| \langle f, v_{j} \rangle \right|^{2} \leqslant \|u\|^{2} < \infty$.

Proof of (a) [Picard condition for $\mathcal{D}(A^{\dagger})$]

• Recall that $\mathcal{D}(A^{\dagger}) = \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$. Suppose that f = Au + w where $w \in \mathcal{R}(A)^{\perp} = \overline{\mathcal{R}(A)}^{\perp}$. Since $\{v_j\}_j$ is an ONB for $\overline{\mathcal{R}(A)}$,

$$\langle f, v_j \rangle_{\mathcal{V}} = \langle Au, v_j \rangle_{\mathcal{V}} = \langle u, A^*v_j \rangle_{\mathcal{U}} = \sigma_j \langle u, u_j \rangle.$$

Therefore, $\sum_{i} \sigma_{i}^{-2} |\langle f, v_{j} \rangle|^{2} \leq ||u||^{2} < \infty$.

• Conversely, first note that we can write any $f \in \mathcal{V}$ as $f = f_1 + f_2$ with $f_1 \in \overline{\mathcal{R}(A)}$ and $f_2 \in \overline{\mathcal{R}(A)}^{\perp}$. If the Picard criterion hold, define

$$u \stackrel{\text{def.}}{=} \sum_{j} \sigma_{j}^{-1} \langle f, v_{j} \rangle u_{j}.$$

Then, $Au=\sum_j \langle f,\, v_j \rangle v_j = P_{\overline{\mathcal{R}(A)}} f = f_1$. So, $f_1 \in \mathcal{R}(A)$ and $f \in \mathcal{D}(A^\dagger)$.

Proof of (b) [Spectral representation of A^{\dagger}]

We know that since $f \in \mathcal{D}(A^{\dagger})$, $u^{\dagger} = A^{\dagger}f$ solves $A^*Au^{\dagger} = A^*f$.

Proof of (b) [Spectral representation of A^{\dagger}]

We know that since $f \in \mathcal{D}(A^{\dagger})$, $u^{\dagger} = A^{\dagger}f$ solves $A^*Au^{\dagger} = A^*f$.

We just saw that

$$A^*Au^\dagger = \sum_j \sigma_j^2 \langle u^\dagger, \ u_j \rangle u_j \quad \text{and} \quad A^*f = \sum_j \sigma_j \langle f, \ v_j \rangle u_j.$$

So,
$$\sigma_j \langle u^{\dagger}, u_j \rangle = \langle f, v_j \rangle$$
.

Proof of (b) [Spectral representation of A^{\dagger}]

We know that since $f \in \mathcal{D}(A^{\dagger})$, $u^{\dagger} = A^{\dagger}f$ solves $A^*Au^{\dagger} = A^*f$.

We just saw that

$$A^*Au^\dagger = \sum_j \sigma_j^2 \langle u^\dagger, \ u_j \rangle u_j \quad \text{and} \quad A^*f = \sum_j \sigma_j \langle f, \ v_j \rangle u_j.$$

So,
$$\sigma_j \langle u^{\dagger}, u_j \rangle = \langle f, v_j \rangle$$
.

Therefore, since $u^{\dagger} \in \overline{\mathcal{R}(A^*)}$,

$$u^{\dagger} = \sum_{j} \langle u^{\dagger}, u_{j} \rangle u_{j} = \sum_{j} \sigma_{j}^{-1} \langle f, v_{j} \rangle u_{j} = A^{\dagger} f.$$

Example

Back to differentiation example.

The forward operator is $A: L^2[0,1] \rightarrow L^2[0,1]$,

$$Au(t) = \int_0^t u(s) ds = \int_0^1 K(s,t)u(s) ds$$

where
$$K:[0,1]^2 o\mathbb{R}$$
 is $K(s,t)=egin{cases} 1 & s\leqslant t \ 0 & ext{else}. \end{cases}$

A is a compact operator. The adjoint is

$$A^*f = \int_0^1 K(s,t)f(t)dt = \int_s^1 f(t)dt.$$

Example

The eigenvalues and eigenvectors of A^*A are such that

$$\sigma^2 x(s) = (A^* A x)(s) = \int_s^1 \int_0^t x(r) dr dt.$$

- x(1) = 0 and $\sigma^2 x'(s) = -\int_0^s x(r) dr$ so x'(0) = 0 and $\sigma^2 x''(s) = -x(s)$.
- Solutions are of the form $x(s) = c_1 \sin(\sigma^{-1}s) + c_2 \cos(\sigma^{-1}s)$ for some constants c_1, c_2 .
- To enforce the boundary conditions x(1)=0 and x'(0)=0, we see that $c_1=0$, $\sigma_j=\frac{2}{(2j-1)\pi}$ for $j\in\mathbb{N}$, and choosing $c_2=\sqrt{2}$ gives the normalised eigenvectors are

$$u_j(s) = \sqrt{2}\cos\left(\left(j - \frac{1}{2}\right)\pi s\right),$$

and

$$v_j(s) = \sigma_j^{-1}(Au_j)(s) = \sqrt{2}\sin\left((j-\frac{1}{2})\pi s\right).$$

The Picard condition becomes

$$2\sum_{j=1}^{\infty}\sigma_{j}^{-2}\left(\int_{0}^{1}f(s)\sin\left(\sigma_{j}^{-1}s\right)\mathrm{d}s\right)^{2}<\infty.$$

Expanding f in the basis $\{v_j\}$ gives

$$f(t) = \sum_{j=1}^{\infty} \left(\int_0^1 f(s) \sin(\sigma_j^{-1} s) \mathrm{d}s \right) \sin(\sigma_j^{-1} t)$$

and formally,

$$f'(t) = \sum_{i=1}^{\infty} \left(\sigma_j^{-1} \int_0^1 f(s) \sin(\sigma_j^{-1} s) \mathrm{d}s \right) \cos(\sigma_j^{-1} t)$$

The Picard condition is the condition for legitimacy of such differentiation.

From the decay of the singular values, this inverse problem is mildly ill-posed.

Summary

We looked at properties of least-squares solutions

- The minimal norm solution exists when $f \in \mathcal{R}(A) + \mathcal{R}(A)^{\perp}$ and is unique. It is $A^{\dagger}f$.
- A^{\dagger} is continuous iff $\mathcal{R}(A)$ is closed. For compact operators, this occurs only if $\mathcal{R}(A)$ is finite dimensional.
- For compact operators, we looked at the SVD representation of A^{\dagger} ill posedness is related to the decay of the singular values.

Summary

We looked at properties of least-squares solutions

- The minimal norm solution exists when $f \in \mathcal{R}(A) + \mathcal{R}(A)^{\perp}$ and is unique. It is $A^{\dagger}f$.
- A^{\dagger} is continuous iff $\mathcal{R}(A)$ is closed. For compact operators, this occurs only if $\mathcal{R}(A)$ is finite dimensional.
- For compact operators, we looked at the SVD representation of A^{\dagger} ill posedness is related to the decay of the singular values.

Takeway: $A^{\dagger}f$ is not a good solution in general! We need to regularize...