0.1 Endomorfismi

Lezione del 20/11/2019 (appunti grezzi)

Oggi parliamo del polinomio minimo di un endomorfismo di uno spazio vettoriale di dimensione finita.

Sia K un campo, V un K-spazio vettoriale con $\dim_K(V) < \infty$ e sia $\alpha \in \operatorname{End}_K(V)$. Sia $\phi_\alpha \colon K[x] \to \operatorname{End}_K(V)$ definita come $\phi_\alpha(f) = f(\alpha)$, cioè, preso $f(x) = \sum_{k=0}^n a_k x^k$, $\phi_\alpha(f) = \sum_{k=0}^n a_k \alpha^k$, dove α^k indica la composizione k volte inteso che $\alpha^0 = \operatorname{id}_V$. Allora, ϕ_α è una mappa K-lineare, perché $\phi_\alpha(\lambda f + \mu h) = \lambda \phi_\alpha(f) + \mu \phi_\alpha(g)$ per ogni $\lambda, \mu \in K$ e per ogni $f, g \in K[x]$. Inoltre, tale mappa è un omomorfismo di anelli, essendo $\phi_\alpha(f \cdot g) = f(\alpha) \circ g(\alpha)$. Dunque, essendo $\dim(K[x]) = \infty$ e $\dim(\operatorname{End}_K(V)) = \dim_K(V)^2$, per il principio dei cassetti ϕ_α non può essere iniettiva, cioè $\ker(\phi_\alpha) \neq \{0_K\}$. Poiché $\ker(\phi_\alpha) \lhd K[x]$ è non banale, esiste un unico generatore monico $\min_\alpha(x) \in \ker(\phi_\alpha)$ cioè $\ker(\phi_\alpha) = \langle \min_\alpha(x) \rangle$.

Definizione

Tale polinomio $\min_{\alpha}(x)$ si dice polinomio minimo dell'endomorfismo $\alpha \in \operatorname{End}_K(V)$.

Vogliamo ora fare due cose: innanzitutto capire come calcolare il polinomio minimo, e poi, analogamente a GAL, trovare un'opportuna base $\mathcal B$ di V tale che $[\alpha]_{\mathcal B}$ abbia una forma piacevole (Teorema di Jordan). Adesso ci dedichiamo a fare la prima cosa. Per fare la seconda cosa, c'è un teorema molto generale detto Teorema fondamentale per moduli finitamente generati su un dominio a ideali principali. Applicando questo teorema a $(V,*_{\alpha})$ proveremo il Teorema di Jordan (per K campo algebricamente chiuso), e applicandolo a $\mathbb Z$ troveremo il Teorema per gruppi abeliani finitamente generati. Inoltre, c'è un altro teorema detto di Decomposizione primaria che permette la caratterizzazione deglii endomorfismi diagonalizzabili. Tale seconda cosa è molto complessa, e ci staremo sopra fino a Natale.

Teorema 3.X.Y: Teorema di Cayley-Hamilton

Sia V un K-spazio vettoriale con $\dim_K(V) < \infty$ e sia $\alpha \in \operatorname{End}_K(V)$. Allora, $\min_{\alpha}(x)$ è un divisore del polinomio caratteristico $\operatorname{char}_{\alpha}(x) = \det(\alpha - x \cdot \operatorname{id}_V)$.

Dimostrazione. Basta provare che (non ha detto niente lol).

Mettiamo a posto qualche pezzo di ieri, quando ha usato la somma diretta come se niente fosse. Sia R un anello e siano M e N degli R-moduli sinistri. Allora, $M \oplus N = \{(m,n) : m \in M, n \in N\}$ è un R-modulo sx, ove $(m_1,n_1) + (m_2,n_2) = (m_1+m_2,n_1+n_2)$ e $r \cdot (m,n) = (r \cdot m,r \cdot n)$. Analogamente, se M_1,\ldots,M_k sono R-moduli sinistri, poniamo $\bigoplus_{i=1}^n M_i = M_1 \oplus \ldots \oplus M_k = \{(m_1,\ldots,m_k) : m_i \in M_i\}$ e questo è un R-modulo sx con le ovvie operazioni $(m_1,\ldots,m_k) + (m'_1,\ldots,m'_k) = (m_1+m'_1,\ldots,m_k+m'_k)$ e $r \cdot (m_1,\ldots,m_k) = (r \cdot m_1,\ldots,r \cdot m_k)$.

Dimostriamo ora la proposizione che è l'analoga di quella di teoria dei gruppi, che serve per dimostrare che il prodotto diretto interno è isomorfo al prodotto diretto esterno sotto ipotesi ragionevoli (tra l'altro la seconda parte è più bella di come la sta facendo lui).

Proposizione

Sia R un anello, M un R-modulo sinistro e siano $A, B \subseteq M$ degli R-sottomoduli tali che $A \cap B = \{0_M\}$. Allora, $A + B \simeq A \oplus B$. In generale, se ho A_1, \ldots, A_k che sono R-sottomoduli di M tali che $A_j \cap \sum_{i \neq j} A_i = \{0_M\}$ per ogni $j = 1, \ldots, k$, ho che

$$\sum_{i=1}^k A_i \simeq \bigoplus_{i=1}^k A_i.$$

Procediamo ora per induzione su k. Per k=1 non c'è nulla da dimostrare, per k=2 lo ho già fatto. Supponiamo quindi che $\sum\limits_{i=1}^{k-1}A_i\simeq \oplus_{i=1}^{k-1}A_i$ e dimostriamolo per k. Per ipotesi

$$A_k \cap \sum_{i=1}^{k-1} = \{0\}, \text{ quindi } \sum_{i=1}^k A_i = \sum_{i=1}^{k-1} A_i + A_k \simeq \bigoplus_{i=1}^{k-1} A_i \oplus A_k \simeq \bigoplus_{i=1}^k A_k.$$

Proposizione

Sia V un K-spazio vettoriale di dimensione finita e sia $\alpha \in \operatorname{End}_K(V)$. Siano $U, W \leqslant V$ sottospazi vettoriali tali che $\alpha(U) = U$ e $\alpha(W) = W$, cioè U e W sono α -invarianti. Siano $\alpha_U \in \operatorname{End}_K(U)$ e $\alpha_W \in \operatorname{End}_K(W)$ gli endomorfismi indotti. Se U + W = V e $U \cap W = \{0_K\}$, allora $\min_{\alpha}(x) = \operatorname{mcm}(\min_{\alpha_U}(x), \min_{\alpha_W}(x))$.

Dimostrazione. Poiché $\ker(\phi_{\alpha}) = \operatorname{Ann}_{K[x]}(V, *_{\alpha}) = K[x] \min_{\alpha}(x), ^{1} \operatorname{vale}(V, *_{\alpha}) \simeq (U, *_{\alpha_{U}}) \oplus (W, *_{\alpha_{W}}).$ Dunque $\operatorname{Ann}_{K[x]}(V, *_{\alpha}) = \operatorname{Ann}_{K[x]}(U, *_{\alpha_{U}}) \cap \operatorname{Ann}_{K[x]}(W, *_{\alpha_{W}}),$ da cui risulta $K[x] \operatorname{mcm}(\min_{\alpha_{U}}(x), \min_{\alpha_{W}}(x)) = K[x] \min_{\alpha_{U}}(x) \cap K[x] \min_{\alpha_{W}}(x).$

¹Dimostrare l'uguaglianza tra ker e Ann usando le doppie inclusioni.