Microscopic World I – Relative Atomic Mass

How to calculate the relative atomic mass.

Relative Atomic Mass of X: 55 * 19% + 59 * 5% + 57 * 21% + 52 * 55% = 53.97

Calculate the Relative Atomic Mass of W:

	Relative abundance	
⁵⁴ ₂₆ W	5.80%	
⁵⁶ ₂₆ W	91.72%	
⁵⁷ ₂₆ W	2.20%	
⁵⁸ ₂₆ W	0.280%	

Given that Element Y has 3 isotopes and the relative atomic mass of Y is 61.8. The relative abundance of 60 Y is 30%. Calculate the relative abundance of 62 Y and 64 Y

Microscopic World I – Ion

The Force between the Electron and the Proton is Electrostatic Force

Where it can be expressed as $F_e = \frac{kQ_1Q_2}{r^2}$, Where Q_1 and Q_2 are the charge of electron and proton, k is constant.

When the distance between electron and the proton (r) increase, the electrostatic force decrease.

- When the number of occupied electron shell increase:
 - The Attraction between the proton and the outermost electron is smaller
 - ◆ It is easier to <u>loss one more</u> electron
 - ◆ It is more difficult to **gain one more** electron
- When the number of occupied electron shell decrease:
 - The attraction between the proton and the outermost electron is greater
 - ♦ It is easier to **gain one more** electron
 - ♦ It is more difficult to <u>loss one more</u> electron

How to predict an atom is reactive or not?

♦ Octet rule:

There is a strong tendency of all atoms to attain the <u>stable electronic arrangement of a noble gas</u>, where there is 8 electrons in the outermost electron shell

How to be stable - I

By Lossing one or more electron, the ion with positive charge is formed = Cation

By Gaining one or more electron, the ion with negative charge is formed = Anion

Cation + Anion → Ionic Bond

