Механико-математический факультет МГУ имени М.В. Лононосова
Конспект курса «Наглядная геометрия и топология»
Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викторовна Автор конспекта: Цыбулин Егор, студент 108 группы
Москва, 17 февраля 2025 г.

Содержание

1 Топологические пространства

2

1 Топологические пространства

Определение. Mempuka — это функция $\rho(x,y) \to \mathbb{R}$, которая обладает следующими свойствами:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x,y) = \rho(y,x)$;
- 3. $\rho(x,z) + \rho(z,y) \ge \rho(x,y)$.

Определение. Множество X называется метрическим пространством, если на нём задана метрика $\rho(x,y): X \times X \to \mathbb{R}$.

Определение. ε -окрестность точки x_0 — это множество всех точек $x \in X$: $\rho(x,x_0)<\varepsilon$.

Из курса математического анализа. Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

Определение. Семейство τ подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется mononorueй.

Определение. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство подмножеств τ называется $mononorue\ddot{u}$, если оно удовлетворяет следующим условиям:

- 1. Пустое множество и само множество X принадлежат τ ;
- 2. Объединение любого семейства множеств из τ принадлежит τ ;
- 3. Пересечение любого конечного семейства множеств из τ также принадлежит τ .

Определение. Множество X с фиксированной топологией τ называется mo-norueckum пространством и обозначается через (X,τ) .

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым ε -шаром (некоторой окрестностью).

Примеры:

- 1. \emptyset, X , других нет тривиальная топология.
- 2. Семейство τ состоит из всех подмножеств множества $X-\partial u c \kappa p e m h a s$ mononorus.

Определение. Пусть X — топологическое множество, $x_0 \in X$. Окрестностью точки x_0 назовём любое открытое множество, содержащее эту точку.

Утверждение. Множество A топологического пространства X открыто \Leftrightarrow $\forall x_0 \in A \; \exists U_{x_0} \in \tau : x_0 \in U_{x_0} \subset A$

 \mathcal{A} оказательство. \Longrightarrow Пусть A открыто, x_0 — точка A, тогда $U_{x_0}=A$. \Longleftrightarrow Возьмём $x\in U_x\subset A$, где U_x открыты $(\in\tau)$. Рассмотрим $\cup_{x\in A}U_x=U$, где U открыто, т.к. все U_x открыты. При этом $A\subset U$ и $U\subset A\Rightarrow U=A\Rightarrow A$ открыто.

Определение. Обратимся к курсу математического анализа. Пусть D_f — область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке x_0 .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

— в терминах окрестностей.

Определение. Отображение $f: X \to Y$ топологии пространств X и Y непрерывно, если $\forall x_0 \in X$ и для любой окрестности δ точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(B(x_0)) \subset B_{\delta}(f(x_0))$.

Утверждение. Отображение f двух топологических пространств непрерывно \Leftrightarrow прообраз любого открытого множества открыт.

Доказательство. $\Longrightarrow f: X \to Y$. Пусть $A \subset Y$ открыто. Рассмотрим $f^{-1}(A)$. Пусть $x_0 \in f^{-1}(A) \Rightarrow \exists U$ — открытое: $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$.

 $\underline{\longleftarrow}$ Пусть прообраз любого множества открыт. Пусть $x_0 \in X \Rightarrow f(x_0) \in Y$. Возьмём $V \subset Y$, которое будет открыто. $f(x_0) \in V \Rightarrow f^{-1}(V)$ — открытое множество и $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$.

Другие способы задания топологии:

1. Топология на подмножестве: Пусть X — топологическое пространство. $X_0 \subset X$. $U \in \tau(X) \Rightarrow U \cap X_0 \in \tau(X_0)$.

2. $f: X \to Y, Y$ — топологическое пространство, f — произвольное отображение. Тогда открытые множества на X — прообразы открытых на Y.

Замечание (Дополнение с лекции №2). Топология на Y порождается отображением f: множество открыто, если его прообраз открыт.

Определение. Топологические пространства X и Y называются *гомеоморф*ными, если между ними существует непрерывная биекция $f: X \to Y$, которая и называется *гомеоморфизмом*, такая, что отображение f^{-1} также непрерывно.

Определение. Множество A топологического пространства X называется $\mathit{зa-}$ $\mathit{мкнутым}$, если его дополнение $X \setminus A$ открыто.

Определение. Топологическое пространство X называется censum a, если не существует двух открытых непустых непересекающихся множеств A и B таких, что $X = A \cup B$.

Утверждение. Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен. $\exists A, B \subset \mathbb{R} : [a, b] = A \cup B, \ A \cap B = \emptyset$, где A, B — открытые множества. Пусть $\alpha \in A$, тогда $[a, \alpha) \subset A$ (т.к. А открыто). Рассмотрим $\alpha_0 = \sup \alpha : [a, \alpha) \subset A$. Пусть $\alpha_0 \in A$, тогда:

- 1. $\alpha_0 = b \Rightarrow B = \emptyset$ противоречие.
- 2. $\alpha_0 < b \Rightarrow \alpha_0$ входит в A с окрестностью \Rightarrow существует $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$ не супремум противоречие.

Возвращаемся к гомеоморфизму.

Пример. Интервал гомеоморфен вещественной прямой \mathbb{R} . (Сюда рисунок с окружностью с выколотой точкой и прямой (стереографическая проекция), тогда можно задать гомеоморфизм между окружностью и прямой. Гомеоморфизм между отрезком и прямой строится "растягиванием окружности").

Утверждение. *Непрерывный образ связного пространства связен.*

Доказательство. $f: X \to Y$. От противного. Пусть образ несвязен. Тогда $Imf = A \cup B$, где A, B — открытые и непустые множества, $A \cap B = \emptyset$. $f^{-1}(A)$ открыто, $f^{-1}(B)$ открыто. Если множества не пересекаются, то и их образы не пересекаются. Так как множества не пусты, то и их образы не пусты. $f^{-1}(A) \cup f^{-1}(B) = X \Rightarrow X$ не связно — противоречие.

Добавь сюда что-нибудь про топологические инварианты (связность, компактность).

Определение. Непрерывная кривая (параметрическая) — непрерывное отображение ненулевого отрезка в топологическое пространство. $\gamma:[a,b]\to X$, где γ непрерывна.

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$

$$\begin{cases} x = \cos t, \\ y = \sin t, \\ t \in [0, 2\pi]. \end{cases}$$

Определение. Топологическое пространство называется *линейно связным*, если любые две его точки можно соединить кривой.

$$x,y$$
 — точки X , тогда $\exists \gamma: [\alpha,\beta] \to X: \ \gamma(\alpha)=x, \ \gamma(\beta)=y$

Утверждение. Образ линейно связного пространства линейно связен.

Доказательство. Композиция непрерывных отображений непрерывно:
$$\gamma: [\alpha, \beta] \to X, \ f: X \to Y.$$

Утверждение. Если топологическое пространство линейно связно, то оно связно. (Наоборот, вообще говоря, неверно — как задачу можно дать приведение контрпримера).

Доказательство. Пусть топологическое пространство линейно связно, но не связно. Тогда $X = A \cup B$. Возьмём $x \in A, y \in B$. Пользуемся линейной связностью: $\gamma: [0,1] \to X, \gamma$ непрерывна, $\gamma(0) = A, \gamma(1) = B, Im\gamma$ в X — связно. $Im\gamma \cap A$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X (пользуемся топологией на подмножестве), $Im\gamma \cap B$ — открыто в топологии образа $Im\gamma$, индуцированного топологии на X — получили противоречие с тем, что отрезок несвязен.

Определение. Топологическое пространство *компактно*, если из его любого открытого покрытия можно выбрать конечное подпокрытие.

Утверждение. Непрерывный образ компакта является компактом.

Доказательство. Пусть $f: X \to Y$. Покрываем образ: $Imf \subseteq \bigcup_{\alpha} U_{\alpha}$ — покрытие. $X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$ — открытое покрытие X (т.к. f непрерывно). $X \subset \bigcup_{i=1}^n f(U_i)$ — конечное подпокрытие. Пользуемся компактностью X: $Imf \subset \bigcup_{i=1}^n f(U_i)$

Утверждение. Замкнутое подмножество компакта есть компакт.

Доказательство. $M \subset X \subset Y$, M замкнуто, X компактно, Y — топологическое пространство. $M \subset \bigcup_{\alpha} U_{\alpha}$ открытое покрытие M. $(Y \setminus M) \cup \bigcup_{\alpha} U_{\alpha}$ — открытое покрытие. Выберем в нём конечное подпокрытие: $X \subset (Y \setminus M) \cup \bigcup_{i=1}^n U_i$ — конечное подпокрытие. $M \subset \bigcup_{i=1}^n U_i$.

Определение. Топологическое пространство X называется $xaycdop\phioвым$, если у любых двух его различных точек существуют непересекающиеся окрестности.

 $\tau = X, \varnothing \Rightarrow X$ не хаусдорфово.

Пемма. Компакт в хаусдоровом пространстве является замкнутым множеством.

Доказательство. $M \subset X$, M — компакт. $x_0 \in X \setminus M$, $y \in M$. Пользуемся хаусдорфовостью: $x_0 \in U^y_{x_0}, \ y \in V_y, \ U^y_{x_0} \cap V_y = \varnothing. \bigcup_{y \in M} V_y$ — открытое покрытие всего множества M. Пользуемся компактностью: выберем конечное подпокрытие $M \subset \bigcup_{i=1}^n v_{y_i}, \ y_i \in M$. $\bigcap_{i=1}^n U^{y_i}_{x_0} = U, \ x_0 \in U, \ U \cap V_{y_i} = \varnothing, \ U$ открытое $\Rightarrow X \setminus M$ открыто.

Утверждение. $f: X \to Y, f$ — непрерывная биекция, X — компакт, Y — хаусдорфово топологическое пространство $\Longrightarrow f$ — гомеоморфизм.

Доказательство. $f: X \to Y, X$ замкнуто, $M \subset X, M$ замкнуто $\Rightarrow M$ компактно $\Rightarrow f(M) \subset Y$, где f(M) тоже компактно (т.к. f непрерывно) $\Rightarrow f(M)$ замкнуто в Y.

Фактор-топология: дано топологическое пространство X, и на нём задано отношение эквивалентности: $f: X \to X \setminus \sim$. f сопоставляет каждой точке из X её класс эквивалентности. Топология $X \setminus \sim$ задаётся отображением f.

Важный пример не забудь добавить.