Graph Theory: Lecture No. 19

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in The least integer k such that G has an edge coloring from any family of lists of size k is the list chromatic index ch'(G) of G. That is ch'(G) = ch(L(G)) where L(G) is the line graph of G. Clearly $ch'(G) \geq \chi'(G)$

The List Coloring Conjecture: Every graph G satisfies $ch'(G) = \chi'(G)$.

Let D be a directed graph. An independent set $U \subseteq V(D)$, such that for every vertex $v \in D - U$, there is an edge in D directed from v to a vertex in U, is called a kernel of D.

Let H be a graph and $(S_v)_{v \in V(H)}$ be a family of lists. If H has an orientation D with $d^+(v) < |S_v|$ for every vertex v and such that every induced subgraph of D has a kernel, then H can be colored from the list S_v .

Let a family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on E(v) a set of preferences for G. Then call a matching M in G stable if for every edge $e\in E-M$, there exists an edge $f\in M$ such that e and f have a common vertex v with $e\leq_v f$.

Graph Theory: Lecture No. 19

For every set of preferences, ${\cal G}$ has a stable matching.

Every bipartite graph G satisfies, $ch'(G) = \chi'(G)$.

A matching M in G is better than a matching $M' \neq M$ if M makes the vertices in B happier than M' does, i.e. if every vertex b in an edge $f' \in M'$ is incident also with some $f \in M$ such that $f' \leq_b f$.

Given a matching M, call a vertex $a \in A$ acceptable to $b \in B$ if $e = ab \in E - M$ and any edge $f \in M$ at b satisfies $f \leq_b e$.

 $a \in A$ is happy with M if a is unmatched or its matching edge $f \in M$ satisfies $f>_a e$ for all edges e=ab such that a is acceptable to b.