Алгебра. Глава 5. Линейные пространства

Д.В.Карпов

2024

Определение

Пусть K — поле, V — множество, и определены операции $+:V\times V\to V$ и $\cdot:K\times V\to V$, удовлетворяющие следующим условиям.

1) Ассоциативность сложения.

 $\forall a, b, c \in V \quad (a+b)+c=a+(b+c).$

- 2) Коммутативность сложения. $\forall a,b \in V \quad a+b=b+a$.
- 3) *Ноль.* $\exists 0 \in V$ такой, что $\forall a \in V \quad a+0=a$.
- 4) *Обратный элемент.* $\forall a \in V \; \exists -a \in V \;$ такой, что a + (-a) = 0.
- 5) Дистрибутивность. $\forall \alpha, \beta \in K$ и $\forall a \in V$ выполнено $(\alpha + \beta)a = \alpha a + \beta a$.
- 6) Дистрибутивность. $\forall \alpha \in K$ и $\forall a,b \in V$ выполнено $\alpha(a+b)=\alpha a+\alpha b$.
- 7) Ассоциативность умножения. $\forall \alpha, \beta \in K$ и $\forall a \in V$ выполнено $\alpha(\beta a) = (\alpha \cdot \beta)a$.
- 8) Умножение на 1. $\forall a \in V$ выполнено $1 \cdot a = a$.

Тогда мы будем говорить, что V — линейное пространство над полем K, а элементы V называть векторами.

- Как правило, мы будем обозначать векторы строчными латинскими буквами, а числа из поля греческими.
- ullet 0-вектор (0 \in V) и 0 \in K разные нули, хоть мы и обозначаем их одинаково.

Свойство 1

Ноль-вектор единственен

Доказательство. Пусть есть два ноль-вектора: 0_1 и 0_2 . Тогда $0_1=0_1+0_2=0_2$.

Свойство 2

Обратный вектор — а всегда единственен.

Доказательство. Пусть a_1 и a_2 — два обратных вектора к $a \in V$. Тогда $a_1 + a = a + a_2 = 0$, откуда $a_1 = a_1 + (a + a_2) = (a_1 + a) + a_2 = a_2$.

Определение

Для $a,b \in V$ определим a-b := a + (-b).

Доказательство. $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Вычтем из левой и правой части $0 \cdot a$ и получим то, что нужно. \square

Свойство 4

Для любого $a \in V$ выполнено $-a = (-1) \cdot a$.

Доказательство.

- $a + (-1) \cdot a = 1 \cdot a + (-1) \cdot a = (1-1) \cdot a = 0 \cdot a = 0.$
- По Свойству 2, обратный вектор единственен. Значит, $-a = (-1) \cdot a$.

Линейное подпространство

Определение

Если U, V — линейные пространства над полем K, $U \subset V$, причем операции сложения и умножения в U и V одинаковы. Тогда U — линейное подпространство V, а V — линейное надпространство U.

Лемма 1

Пусть V — линейное пространство над полем K, $U \subset V$, причем U замкнуто по сложению векторов и умножению на число (то есть, $\forall \alpha \in K$, $\forall a,b \in U$ выполнено $a+b \in U$ и $\alpha a \in U$). Тогда U — линейное подпространство V (со сложением и умножением из V).

Доказательство. • При выполнении этих условий, $+: U \times U \to U$ и $\cdot: K \times U \to U$.

- ullet Отметим, что для любого $a\in U$ выполнено $-a\in U$ и $0=a-a\in U.$
- Теперь несложно понять, U линейное пространство над K со сложением и умножением из V (6 свойств из определения наследуются из V, существование 0-вектора и обратного элемента обосновано выше).

Определение

Пусть V — линейное пространство над полем K.

- 1) Пусть $x_1, \ldots, x_n \in V$, $\alpha_1, \ldots, \alpha_n \in K$. Тогда $\alpha_1 x_1 + \cdots + \alpha_n x_n$ линейная комбинация векторов x_1, \ldots, x_n . Линейная комбинация называется нетривиальной, если не все $\alpha_1, \ldots, \alpha_n$ нули.
- 2) Пусть $M \subset V$. Линейная оболочка множества M это множество $\mathrm{Lin}(M)$ всех линейных комбинаций векторов из M (с любым количеством векторов).

Свойство 1

Если $M\subset V$, то и $\mathrm{Lin}(M)\subset V$.

Доказательство. Несложно проверить, что линейная комбинация векторов линейного пространства V всегда лежит в V.

Свойство 2

Для любого $M\subset V$, $\mathrm{Lin}(M)$ — линейное подпространство V .

Доказательство. • Достаточно проверить замкнутость по сложению и умножению.

ullet Пусть $x_1, \dots, x_n \in M$, $\alpha_1, \dots, \alpha_n \in K$. Тогда

$$\beta(\alpha_1x_1+\cdots+\alpha_nx_n) = (\beta\alpha_1)x_1+\cdots+(\beta\alpha_n)x_n \in \operatorname{Lin}(M).$$

ullet Пусть, кроме того, $eta_1,\ldots,eta_n\in K$. Тогда

$$\alpha_1 x_1 + \dots + \alpha_n x_n + \beta_1 x_1 + \dots + \beta_n x_n = (\alpha_1 + \beta_1) x_1 + \dots + (\alpha_n + \beta_n) x_n \in \operatorname{Lin}(M).$$

(Здесь достаточно проверить сложение линейных комбинаций одних и тех же векторов, так как в линейную комбинацию можно добавить отсутствующие в ней вектора с нулевыми коэффициентами.)

Определение

- 1) Пусть V линейное пространство над полем K и $M \subset V$. Если $\mathrm{Lin}(M) = V$, то M порождающая система векторов пространства V.
- 2) Пространство V называется *конечно порожденным*, если оно имеет конечную порождающую систему векторов.
- В основном, мы будем изучать конечно порожденные линейные пространства.

Определение

Пусть V — линейное пространство над полем K.

- Вектора $x_1, \ldots, x_n \in V$ называются линейно зависимыми (коротко: ЛЗ), если существует их нетривиальная линейная комбинация, равная 0. (То есть, $\alpha_1, \ldots, \alpha_n \in K$ не все равны 0, а $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$.) Если такой комбинации нет, то вектора $x_1, \ldots, x_n \in V$ называются линейно независимыми (коротко: ЛНЗ).
- Бесконечное множество векторов называется *линейно зависимым*, если из них можно составить нетривиальную линейную комбинацию, равную 0 и *линейно независимым*, если нельзя.

Свойство 0

Пусть V — линейное пространство над полем K, $0 \in M \subset V$. Тогда множество векторов M Л3.

Доказательство. Есть нетривиальная линейная комбинация $1 \cdot 0 = 0$.

Свойство 1

Если множество векторов ЛЗ, то любое его надмножество тоже ЛЗ.

Доказательство. Можно не использовать добавленные вектора в линейных комбинациях.

Свойство 2

Если множество векторов ЛНЗ, то любое его подмножество тоже ЛНЗ.

Доказательство. Убрав некоторые вектора из множества, мы не добавим новых линейных комбинаций.

Если $x_1, \ldots, x_n \in V$ ЛЗ, то среди них есть вектор, который является линейной комбинацией остальных.

Доказательство. • Пусть $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$, HУО $\alpha_n \neq 0$.

Тогда

$$x_n = \frac{-\alpha_1}{\alpha_n} x_1 + \dots + \frac{-\alpha_{n-1}}{\alpha_n} x_{n-1} \in \operatorname{Lin}(x_1, \dots, x_{n-1}). \quad \Box$$

Свойство 4

Если $x_1, \ldots, x_n \in V$ ЛНЗ и $y \notin \text{Lin}(x_1, \ldots, x_n)$, то x_1, \ldots, x_n, y ЛН3.

Доказательство. • Пусть $x_1, ..., x_n, y - Л3$. Тогда существует нетривиальная линейная комбинация $\alpha_1 x_1 + \cdots + \alpha_n x_n + \beta y = 0.$

- Если $\beta = 0$, то не все $\alpha_1, \ldots, \alpha_n$ равны 0 и $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$, а значит, x_1, \dots, x_n ЛЗ, противоречие.
- Значит, $\beta \neq 0$. Тогда

$$y = \frac{-\alpha_1}{\beta} x_1 + \dots + \frac{-\alpha_n}{\beta} x_n \in \operatorname{Lin}(x_1, \dots, x_n),$$

противоречие.

Свойство 5

Если $x_1, \ldots, x_n \in V$ ЛНЗ, а $y \in V$ таков, что x_1, \ldots, x_n, y — ЛЗ, то $y \in \mathrm{Lin}(x_1, \ldots, x_n)$.

Доказательство. Прямое следствие Свойства 4.

Системы линейных уравнений

Определение

Пусть K — поле, $a_{i,j} \in K$ (где $i \in \{1,\ldots,n\}$, $j \in \{1,\ldots,m\}$), $b_1,\ldots,b_n \in K$. Пусть x_1,\ldots,x_m — неизвестные. Тогда система линейных уравнений (далее СЛУ) — это

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,m}x_m = b_1, \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,m}x_m = b_2, \\ \cdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,m}x_m = b_n. \end{cases}$$

СЛУ называется однородной (далее ОСЛУ), если $b_1 = \cdots = b_n = 0$.

- (I) Поменять местами два уравнения.
- (II) К одному уравнению прибавить другое, умноженное на $\lambda \in \mathcal{K}$.
- (III) Умножить уравнение на $\lambda \in K$, отличное от 0.
- Везде умножение уравнения на число происходит вместе с правой частью.

Лемма 2

- 1) Элементарные преобразования всех трех типов обратимы, то есть имеют обратные элементарные преобразования.
- 2) Элементарные преобразования не меняют решений СЛУ.

Доказательство. 1) • Элементарное преобразование типа (I) само себе обратно.

- Рассмотрим элементарное преобразование типа (II), пусть мы к i-му уравнению прибавили j-е, умноженное на λ .
- Тогда обратное преобразование прибавить к i-му уравнению j-е уравнение, умноженное на $-\lambda$.
- Наконец, обратное преобразование к умножению уравнения на $\lambda \neq 0$ умножить его же на λ^{-1} .

- Очевидно, элементарное преобразование системы оставляет все ее решения (все уравнения останутся верными).
- Так как такое преобразование обратимо, добавиться новые решения не могут иначе проведем обратное преобразование, и все новые решения сохранятся.

Определение

ОСЛУ приведена к ступенчатому виду, если каждое уравнение, имеющее ненулевые коэффициенты, имеет вид

$$x_{s_i} + c_{i,s_i+1}x_{s_i+1} + \cdots + c_{m,k}x_m = 0$$
,

причем $s_1 < s_2 < \dots < s_k$ (где k — наибольший номер уравнения, имеющего ненулевые коэффициенты).

Лемма 3

ОСЛУ можно привести элементарными преобразованиями к ступенчатому виду.

Доказательство. • Индукция по количеству неизвестных. База для одного неизвестного очевидна — наша система имеет вид $ax_1 = 0$.

ullet Если a
eq 0, то на a можно поделить и получить $x_1 = 0$. Если же a = 0, система уже имеет ступенчатый вид.

Переход.

- ullet Если все коэффициенты при x_1 равны 0, то достаточно привести к ступенчатому виду систему без x_1 , что можно сделать по индукционному предположению.
- Если не все коэффициенты $a_{i,1}$ равны 0, то переставим уравнения (с помощью элементарных преобразований типа (I)) так, чтобы $a_{1,1} \neq 0$, после чего поделим первое уравнение на $a_{1,1}$ оно примет нужный нам вид $x_1 + c_{1,2}x_2 + \cdots + c_{1,m}x_m = 0$.
- Теперь для всех $k \in \{2, ..., n\}$ вычтем из k уравнения новое первое уравнение, умноженное на $a_{k,1}$ во всех уравнениях, кроме первого, исчезнет переменная x_1 .
- Далее останется применить к системе из всех уравнений, кроме первого, индукционное предположение.

Лемма 4

ОСЛУ, в которой неизвестных больше, чем уравнений, имеет нетривиальное решение (не все x_i равны 0).

Доказательство. • Приведем систему к ступенчатому виду.

- Будем считать, что обозначения как в определении. Пусть осталось k уравнений с ненулевыми коэффициентами. Тогда $s_1 < s_2 < \cdots < s_k$ не более чем n < m номеров переменных.
- ullet Остались переменные с номерами не из $\{s_1,\dots,s_k\}$. Положим все их равными 1.
- ullet После чего последовательно вычислим: сначала x_{s_k} , потом $x_{s_{k-1}}$, и так далее, x_{s_1} .
- Переменную x_{s_i} мы вычисляем из i уравнения:

$$x_{s_i} = -(c_{i,s_i+1}x_{s_i+1} + \cdots + c_{i,m}x_m),$$

все значения в правой части уже известны.

Доказательство. • Пусть $y_1 = \beta_{1,1} a_1 + \cdots + \beta_{n,1} a_n, \ldots,$ $V_m = \beta_1 \,_m a_1 + \cdots + \beta_n \,_m a_n$.

• Мы хотим найти такие $\lambda_1, \dots, \lambda_m \in K$ (не все равные 0), что $\lambda_1 y_1 + \cdots + \lambda_m y_m = 0$. Это означает, что

$$0 = \lambda_1(\beta_{1,1}a_1 + \dots + \beta_{n,1}a_n) + \dots + \lambda_m(\beta_{1,m}a_1 + \dots + \beta_{n,m}a_n) = (\beta_{1,1}\lambda_1 + \dots + \beta_{1,m}\lambda_m)a_1 + \dots + (\beta_{n,1}\lambda_1 + \dots + \beta_{n,m}\lambda_m)a_n.$$

• Для равенства нулю этого выражения достаточно, чтобы были равны 0 коэффициенты при a_1, \ldots, a_n . Это дает нам ОСЛУ (относительно неизвестных $\lambda_1, \ldots, \lambda_m$):

$$\begin{cases} \beta_{1,1}\lambda_1 + \dots + \beta_{1,m}\lambda_m = 0, \\ \dots \\ \beta_{n,1}\lambda_1 + \dots + \beta_{n,m}\lambda_m = 0. \end{cases}$$

• В этой ОСЛУ неизвестных больше, чем уравнений. Значит, она имеет нетривиальное решение — соответствующие $\lambda_1,\ldots,\lambda_m$ дают линейную зависимость $y_1,\ldots,y_m,\ldots,y_m$ Алгебра, Глава 5. Линейные пространства Д. В. Карпов

Определение

- 1) *Базис* линейного пространства это линейно независимая порождающая система векторов.
- 2) Pазмерность линейного пространства V (обозначение: $\dim(V)$) это количество элементов в базисе.

Если пространство V имеет бесконечный базис, то $\dim(V) = \infty$.)

Отдельно скажем о размерности пространства, состоящего из 0: $\dim(\{0\}) = 0$.

• Позже мы докажем существование базиса в конечно порожденном пространстве. А сейчас докажем корректность определения размерности.

Лемма 6

Размерность определена корректно, то есть, любые два базиса пространства V имеют одно и то же число элементов (любые два бесконечных базиса мы считаем равными по количеству элементов.)

Доказательство. • Пусть V имеет два базиса с разным числом векторов. Рассмотрим меньший из них — скажем, e_1, \ldots, e_n .

• Тогда все вектора большего базиса принадлежат $V=\mathrm{Lin}(e_1,\ldots,e_n)$, а значит, больший базис ЛЗ по Лемме 5, противоречие.

Лемма 7

Пусть e_1, \ldots, e_n — базис линейного пространства V. Тогда для любого $x \in V$ существует единственное представление в виде линейной комбинации $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$, где $\alpha_1, \ldots, \alpha_n \in K$.

Доказательство. • Так как базис является порождающей системой векторов, такое представление существует.

• Пусть есть два представления:

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n = \beta_1 e_1 + \dots + \beta_n e_n.$$

- \bullet Тогда $(\alpha_1 \beta_1)e_1 + \cdots + (\alpha_n \beta_n)e_n = 0.$
- Так как базис ЛНЗ, отсюда следует, что $\alpha_1-\beta_1=\dots=\alpha_n-\beta_n=0$, то есть два наших представления одинаковы.

Пусть V — конечно порожденное линейное пространство над полем K. Тогда V имеет базис. Более того, из любой конечной порождающей системы векторов V можно выделить базис.

Доказательство. • Пусть a_1, \ldots, a_n — любая конечная порождающая система V (есть у конечно порожденного пространства).

- ullet Если эти вектора ЛНЗ, то они базис. Если же они ЛЗ, то по Свойству 3 ЛЗ векторов, один из них является линейной комбинацией остальных. Пусть, скажем,
- $a_n = \beta_1 a_1 + \cdots + \beta_{n-1} a_{n-1}.$
- ullet Докажем, что a_1,\dots,a_{n-1} тоже порождающая система векторов V. Пусть $x\in V$, тогда существует преставление

$$x = \alpha_1 a_1 + \dots + \alpha_n a_n = \alpha_1 a_1 + \dots + \alpha_{n-1} a_{n-1} + \alpha_n (\beta_1 a_1 + \dots + \beta_{n-1} a_{n-1}) = (\alpha_1 + \alpha_n \beta_1) a_1 + \dots + (\alpha_{n-1} + \alpha_n \beta_{n-1}) a_{n-1}.$$

• Таким образом, мы уменьшили порождающую систему на один вектор. Такие шаги не могут продолжаться бесконечно. Значит, в некоторый момент мы получим ЛНЗ порождающую систему векторов — то есть, базис.

Д.В.Карпов

Теорема 2

Пусть V — конечно порожденное линейное пространство над полем K, а векторы a_1, \ldots, a_n ЛНЗ. Тогда эти векторы можно дополнить до базиса.

Доказательство. • Если a_1, \ldots, a_n — порождающая система V, то это — базис.

- Иначе есть вектор $a_{n+1} \in V \setminus \operatorname{Lin}(a_1, \ldots, a_n)$.
- По свойству 4 ЛНЗ векторов, $a_1, \ldots, a_n, a_{n+1}$ ЛНЗ.
- Будем так действовать, пока это возможно.
- Пространство V имеет конечную порождающую систему скажем, из m векторов. Тогда по Лемме 5 не существует множества более чем из m ЛНЗ векторов.
- Значит, наш процесс должен закончиться и в некоторый момент мы получим линейно независимую порождающую систему векторов то есть, базис.

Теорема 3

Пусть V — конечно порожденное линейное пространство над полем K, а $e_1,\ldots,e_n\in V$. Тогда следующие три утверждения равносильны.

- 1° e_1,\ldots,e_n базис V.
- 2° e_1, \dots, e_n минимальная порождающая система векторов в V.
- 3° e_1,\ldots,e_n максимальная ЛНЗ система векторов в V.

Доказательство. $1^{\circ} \Rightarrow 2^{\circ}$. Если есть порождающая система f_1, \ldots, f_m из m < n векторов, то $e_1, \ldots, e_n \in \operatorname{Lin}(f_1, \ldots, f_m)$ и по Лемме 5 вектора e_1, \ldots, e_n ЛЗ, что не так.

 $2^{\circ} \Rightarrow 1^{\circ}$. Пусть e_1, \ldots, e_n — минимальная порождающая система векторов в V. По Теореме 1 из этих векторов можно выбрать базис, который также является порождающей системой векторов. Значит, в нем не может быть менее n векторов, то есть, e_1, \ldots, e_n — базис.

 $1^{\circ} \Rightarrow 3^{\circ}$. Если есть ЛНЗ система f_1, \ldots, f_m из m > n векторов, то дополним ее до базиса (это можно сделать по Теореме 2). Тогда у V существуют два базиса с разным числом векторов (n и не менее чем m), что невозможно.

 $3^{\circ} \Rightarrow 1^{\circ}$. Пусть e_1, \ldots, e_n — максимальная ЛНЗ система векторов в V. Ее можно дополнить до базиса, который тоже является ЛНЗ системой векторов, а значит, не может иметь более n векторов. Следовательно, e_1, \ldots, e_n — базис.

Лемма 8

Пусть $\{U_i\}_{i\in I}$ — множество линейных подпространств линейного пространства V над полем K. Тогда $U=\bigcap_{i\in I}U_i$ — тоже линейное подпространство V.

Доказательство. • Достаточно проверить замкнутость по сложению и умножению на число.

- ullet Пусть $a,b\in U$. Тогда для всех $i\in I$ мы имеем $a,b\in U_i$.
- ullet Следовательно, для всех $i\in I$ мы имеем $a+b\in U_i$, откуда следует, что $a+b\in U$.
- ullet Пусть $\lambda \in K$. Тогда для всех $i \in I$ мы имеем $\lambda a \in U_i$, откуда следует, что $\lambda a \in U$.

Определение

Пусть $\{U_i\}_{i\in I}$ — множество линейных подпространств линейного пространства V над полем K. Тогда $\sum\limits_{i\in I}U_i$ — это множество всех сумм вида $x_{i_1}+\cdots+x_{i_n}$, где $i_j\in I$, $x_{i_j}\in U_{i_j}$ для всех $j\in\{1,\ldots,n\}$ (число n не фиксировано).

• Другими словами, сумма линейных подпространств V — это множество всех конечных сумм элементов, взятых по одному из пространств, что мы складываем.

Лемма 9

Пусть $\{U_i\}_{i\in I}$ — множество линейных подпространств линейного пространства V над полем K. Тогда $U = \sum_{i\in I} U_i$ — тоже линейное подпространство V.

Доказательство. • Достаточно проверить замкнутость по сложению и умножению на число.

ullet Пусть $a,b\in U$. Тогда существуют представления

$$a = a_{i_1} + \cdots + a_{i_n}, \quad b = b_{i_1} + \cdots + b_{i_n},$$

где $i_1,\ldots,i_n\in I$, $a_{i_j},b_{i_j}\in U_{i_j}$ для всех $j\in\{1,\ldots,n\}$ (индексы в суммах для a и b можно считать одинаковыми: при необходимости можно дополнить суммы нулевыми слагаемыми).

- ullet Тогда $a_{i_j}+b_{i_j}\in U_{i_j}$ для всех $j\in\{1,\ldots,n\}$, откуда следует, что $a+b=(a_{i_1}+b_{i_1})+\cdots+(a_{i_n}+b_{i_n})\in U.$
- ullet Пусть $\lambda \in \mathcal{K}$. Тогда $\lambda a_{i_j} \in U_{i_j}$ для всех $j \in \{1,\dots,n\}$, откуда следует, что $\lambda a = \lambda a_{i_1} + \dots + \lambda a_{i_n} \in U$.

Теорема 4

Пусть U,W — конечномерные линейные подпространства линейного пространства V над полем K. Тогда $\dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W)$.

Доказательство. • Пусть v_1, \ldots, v_k — базис $U \cap W$. Дополним его до базиса $U: v_1, \ldots, v_k, u_1, \ldots, u_n$.

- ullet Также дополним базис $U\cap W$ до базиса $W\colon v_1,\ldots,v_k, w_1,\ldots,w_m.$
- ullet Тогда $\dim(U)=k+n$, $\dim(W)=k+m$, $\dim(U\cap W)=k$.
- ullet Нам нужно доказать, что $\dim(U+W)=k+m+n$, для чего достаточно доказать, что $v_1,\ldots,v_k,\ u_1,\ldots,u_n,\ w_1,\ldots,w_m$ базис U+W.

Утверждение 1

 v_1,\ldots,v_k , u_1,\ldots,u_n , w_1,\ldots,w_m — порождающая система векторов U+W.

Доказательство. • Пусть $v \in U + W$, тогда v = u + w, где $u \in U$, $w \in W$. Тогда существуют представления $u = \alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 u_1 + \dots + \beta_n u_n$, $w = \alpha'_1 v_1 + \dots + \alpha'_k v_k + \gamma_1 w_1 + \dots + \gamma_m w_m$, где $\alpha_1, \alpha'_1, \dots, \alpha_k, \alpha'_k, \beta_1, \dots, \beta_n, \gamma_1, \dots, \gamma_m \in K$.

• Тогда $v = u + w = (\alpha_1 + \alpha_1')v_1 + \dots + (\alpha_k + \alpha_k')v_k + \beta_1 u_1 + \dots + \beta_n u_n + \gamma_1 w_1 + \dots + \gamma_m w_m$ — искомое представление.

Доказательство. • Предположим, что

$$\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 u_1 + \dots + \beta_n u_n + \gamma_1 w_1 + \dots + \gamma_m w_m = 0.$$

• Нам нужно доказать, что все коэффициенты в этом представлении равны 0. Перепишем его в виде

$$\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 u_1 + \dots + \beta_n u_n = x = -\gamma_1 w_1 - \dots - \gamma_m w_m.$$
 (1)

- Тогда $x \in U$ (так как это линейная комбинация базисных векторов U) и $x \in W$ (так как это линейная комбинация базисных векторов W). Следовательно, $x \in U \cap W$.
- ullet Значит, можно разложить x по базису $U\cap W$:

$$x = \lambda_1 v_1 + \dots + \lambda_k v_k \tag{2}$$

• Но (1) и (2) — два разложения x по базису U, а такое разложение единственно. Значит, $\beta_1 = \beta_n = 0$.

• Теперь можно переписать (1) в виде

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k = \mathbf{x} = -\gamma_1 \mathbf{w}_1 - \dots - \gamma_m \mathbf{w}_m. \tag{3}$$

- Это два разложения x по базису W, но такое разложение также единственно. Следовательно, $\alpha_1=\dots=\alpha_k=\gamma_1=\dots=\gamma_m=0$, что и требовалось доказать.
- Из Утверждений 1 и 2 немедленно следует, что $v_1, \ldots, v_k, u_1, \ldots, u_n, w_1, \ldots, w_m$ базис U + W.
- Теорема доказана.

Определение

Пусть $\{U_i\}_{i\in I}$ — множество линейных подпространств линейного пространства V над полем K, $U=\sum_{i\in I}U_i$.

- ullet Тогда U- прямая сумма, если из $x_{i_1}+\dots+x_{i_n}=0$ (где $i_1,\dots,i_n\in I$ различные индексы, $x_{i_j}\in U_{i_j}$ для всех $j\in\{1,\dots,n\}$) следует, что $x_{i_1}=\dots=x_{i_n}=0$.
- Обозначение: $U = \underset{i \in I}{\oplus} U_i$.

Свойство

Пусть $U=\bigoplus_{i\in I}U_i$, $x\in U$, $x\neq 0$. Тогда существует единственное представление вида $x=x_{i_1}+\cdots+x_{i_n}$, где $i_1,\ldots,i_n\in I$ — различные индексы, $x_{i_j}\in U_{i_j}$ и $x_{i_j}\neq 0$ для всех $j\in\{1,\ldots,n\}$.

Доказательство. • Существование такого представления следует из определения суммы линейных пространств.

• Предположим, что есть два таких представления. Дополним их нулями так, чтобы суммировались элементы одних и тех же подпространств:

$$x = x_{i_1} + \dots + x_{i_n} = x'_{i_1} + \dots + x'_{i_n}.$$

- ullet Тогда $0=(x_{i_1}-x'_{i_1})+\cdots+(x_{i_n}-x'_{i_n}).$
- По определению прямой суммы, все слагаемые равны 0. Значит, $x_{i_1}=x'_{i_1},\ldots,x_{i_n}=x'_{i_n}$, то есть, наши представления совпадают.

Критерий прямой суммы

Теорема 5

Пусть $\{U_i\}_{i\in I}$ — множество линейных подпространств линейного пространства V над полем K, $U=\sum_{i\in I}U_i$. Для

каждого $i \in I$ пусть $U_i' = \sum\limits_{j \in I, \ j \neq i} U_j$ (сумма всех подпространств, кроме U_i). Тогда $U = \bigoplus\limits_i U_i$, если и только

если $U_i\cap U_i'=\{0\}$ для каждого $i\in I$.

Доказательство. \Rightarrow . • Предположим, что $U_i \cap U_i' \ni x, x \neq 0$ для некоторого $i \in I$.

- Из $x \in U_i'$ следует, что существует представление $x = x_{i_1} + \dots + x_{i_n}$, где $x_{i_s} \in U_{i_s}$, $j_s \neq i$ для всех $s \in \{1, \dots, n\}$.
- Тогда $-x \in U_i$ и $0 = (-x) + x_{j_1} + \cdots + x_{j_n}$ представление, которого не может быть по определению прямой суммы, противоречие.
- \Leftarrow . Предположим, что U не прямая сумма.
- Тогда существует представление $0 = x_{j_1} + \cdots + x_{j_n}$, где $x_{i_s} \in U_{i_s}, x_{i_s} \neq 0$ для всех $s \in \{1, \dots, n\}$.
- $x_{j_s} \in U_{j_s}, \ x_{j_s} \neq 0$ для всех $s \in \{1, \dots, n\}$.
 Тогда $-x_{j_1} = x_{j_2} + \dots + x_{j_n} \in U'_{j_1}$, но при этом, очевидно, $-x_{j_1} \in U_{j_1}$. Таким образом, $U_{j_1} \cap U'_{j_1} \neq \{0\}$, противоречие.

Алгебра. Глава 5. Линейные пространства

Д.В.Карпов

$$U=igoplus_{i=1}^n U_i$$
. Тогда $\dim(U)=\dim(U_1)+\cdots+\dim(U_n)$.

Доказательство. \bullet Индукция по n.

База n=2. В этом случае $U=U_1\oplus U_2$ и $U_1'=U_2$. По критерию прямой суммы, $U_1\cap U_2=\{0\}$, следовательно, $\dim(U_1\cap U_2)=0$ и $\dim(U_1\oplus U_2)=\dim(U_1)+\dim(U_2)$. Переход $n-1\to n$. • Пусть $W=U_2'=U_1+\cdots+U_{n-1}$.

Докажем, что сумма из определения W прямая.

ullet Для всех $i\in\{1,\ldots,n-1\}$ определим $W_i'=\sum\limits_{1\leq j\leq n-1,\,j
eq i}U_j.$ Тогда $W_i'\subset U_i'.$

Тогда $W_i' \subset U_i'$.

- ullet По Теореме 5, из $W_i'\cap U_i\subset U_i'\cap U_i=\{0\}$ следует, что W-прямая сумма.
- ullet Следовательно, $\dim(W) = \dim(U_1) + \cdots + \dim(U_{n-1})$.
- Так как $W \cap U_n = U_n' \cap U_n = \{0\}$, сумма $U = W + U_n$ также прямая. Следовательно, $\dim(U) = \dim(W) + \dim(U_n) = \dim(U_1) + \cdots + \dim(U_{n-1}) + \dim(U_n)$, что нам и нужно.

Следствие 1

Пусть U_1, \ldots, U_n — линейные подпространства конечномерного линейного пространства V над полем K, а $U = \bigoplus\limits_{i=1}^k U_i$. Для каждого $i \in \{1, \ldots, k\}$ пусть $e_{n_i}^i$ — базис U_i . Тогда $e_1^1, \ldots, e_{n_1}^1, \ldots, e_{n_k}^k$ — базис U.

Доказательство. • Докажем, что $e_1^1,\dots,e_{n_1}^1,\dots,e_1^k,\dots,e_{n_k}^k$ — порождающая система векторов U.

- ullet Любой вектор $x\in U$ представим в виде $x=x_1+\cdots+x_k$, где $x_i\in U_i$ для любого $i\in\{1,\ldots,k\}.$
- ullet Вектор $x_i \in U_i$ можно разложить по базису U_i : $x_i = \sum\limits_{j=1}^{n_i} lpha_j^i e_j^i.$
- ullet Тогда $x=\sum\limits_{i=1}^k\left(\sum_{j=1}^{n_i}lpha_j^i e_j^i
 ight)$ искомое представление.
- Из любой порождающей системы векторов по Теореме 1 можно извлечь базис. Но количество векторов в базисе равно $\dim(U) = \dim(U_1) + \dots + \dim(U_k)$ а именно столько векторов у нас и есть. Значит, наша система векторов и есть базис U.

Определение

Пусть U — линейное подпространство линейного пространства V над полем K, $a \in V$. Тогда $U+a=\{x+a:x\in U\}$ — аффинное подпространство V. Положим $\dim(U+a):=\dim(U)$.

- Таким образом, аффинное подпространство это сдвиг линейного подпространства на вектор.
- Простейший пример, показывающий что это такое. Пусть $V=\mathbb{R}^2$ стандартная евклидова плоскость. Тогда линейные подпространства V размерности 1 это прямые, проходящие через 0, а аффинные подпространства это все прямые.
- Здесь и далее U линейное подпространство линейного пространства V над полем K, $a,b\in V$.

Свойство 1 U + a = U + b, если и только если $a - b \in U$.

5. Линейные пространства

Доказательство. \Rightarrow . Если U + a = U + b, то $a \in U + b$. Так как a = b + (a - b), то $a - b \in U$.

 \leftarrow . • Пусть $a-b\in U$, а $x\in U+a$. Тогда существует такое $u\in U$. что x=a+u.

• Но $(a-b)+u\in U$ (линейное подпространство замкнуто по сложению), значит, $x=a+u=b+(a-b+u)\in U+b$. Таким образом, $U+a\subset U+b$.

 $U+b\subset U+a$. Свойство 2 Пусть $\lambda_1,\dots,\lambda_n\in K$, $\lambda_1+\dots+\lambda_n=1,\,x_1,\dots,x_n\in U+a$.

ullet Так как $b-a\in U$, аналогично получается, что

Доказательство. ullet Пусть $x_i = u_i + a$, где $u_i \in U$ для всех $i \in \{1, \dots, n\}$.

• Тогда $u=\lambda_1u_1+\cdots+\lambda_nu_n\in U$ и $\lambda_1x_1+\cdots+\lambda_nx_n=\lambda_1(u_1+a)+\cdots+\lambda_n(u_n+a)=(\lambda_1u_1+\cdots+\lambda_nu_n)+(\lambda_1+\cdots+\lambda_n)a=u+a\in U+a.$

Д.В.Карпов

Алгебра, Глава

....

Пусть $W \subset V$ таково, что для любых $w_1, w_2, w_3 \in W$ и таких $\lambda_1, \lambda_2, \lambda_3 \in K$, что $\lambda_1 + \lambda_2 + \lambda_3 = 1$, выполнено $\lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3 \in W$. Тогда W — аффинное подпространство V.

Доказательство. • Зафиксируем $a \in W$. Докажем, что U = W - a — линейное подпространство V. Для этого достаточно проверить замкнутость U по сложению векторов и умножению вектора на число.

ullet Пусть $x_1, x_2 \in U$. Тогда $x_1 = w_1 - a$, $x_2 = w_2 - a$, где $w_1, w_2 \in W$ и

$$x_1 + x_2 \in U \iff (w_1 - a) + (w_2 - a) \in U \iff (w_1 - a) + (w_2 - a) + a \in W \iff w_1 + w_2 - a \in W.$$
 (1)

• Последнее утверждение в (1) верно: пусть $w_3=a$, $\lambda_1=\lambda_2=1,\ \lambda_3=-1$, тогда по условию $1\cdot w_1+1\cdot w_2+(-1)\cdot a\in W$.

ullet Пусть $\lambda \in \mathcal{K}$. Тогда

$$\lambda x_1 \in U \iff \lambda(w_1 - a) \in U \iff \lambda(w_1 - a) + a \in W \iff \lambda w_1 + (1 - \lambda)a \in W.$$
 (2)

- Последнее утверждение в (2) верно: пусть $w_2=w_3=a$, $\lambda_1=\lambda$, $\lambda_2=1-\lambda$ $\lambda_3=0$, тогда по условию $\lambda w_1+(1-\lambda)a\in W$.
- Следовательно, U линейное подпространство V, а W = U + a аффинное подпространство.

Пусть U — линейное подпространство линейного пространства V над полем K.

- Факторпространство $V/U = \{U + a : a \in V\}$.
- Будем использовать обозначение $\bar{a} := U + a$.
- Сложение и умножение в V/U определим так: $\overline{a} + \overline{b} := \overline{a + b}$: $\lambda \overline{a} := \overline{\lambda a}$.
- ullet Введем отношение $a \sim b$ на V, означающее что a + U = b + U.
- ullet По доказанному ранее, $a \sim b \iff a b \in U$.
- ullet Несложно проверить, что \sim отношение эквивалентности, а классы эквивалентности — как раз аффинные подпространства вида a + U.

- 1) Сложение и умножение в V/U определены корректно.
- 2) V/U с этими операциями является линейным пространством над полем K.

Доказательство. ullet 1) ullet Пусть $\overline{a}=\overline{a'},\ \lambda\in K.$ Тогда $a-a'\in U.$

- Для обоснования коректности сложения нам нужно доказать: $\overline{a+b} = \overline{a'+b} \iff (a+b) (a'+b) = a a' \in U.$
- ullet Доказательство того, что от замены b на $b'\sim b$ результат не изменится, аналогично.
- Для обоснования коректности умножения нам нужно доказать:

$$\overline{\lambda a} = \overline{\lambda a'} \iff \lambda a - \lambda a' = \lambda (a - a') \in U.$$

- 2) Ассоциативность и коммутативность сложения, обе дистрибутивности, ассоциативность умножения, умножение на 1 напрямую следуют из аналогичных свойств в V.
- Класс $\overline{0} = 0 + U = U$ очевидно подходит в качестве 0-вектора.
- Обратный вектор определяется как $-\overline{a}:=\overline{-a}$, что несложно проверить.

Доказательство. • Пусть $u_1, ..., u_k$ — базис U. Дополним его до базиса $V: u_1, \ldots, u_k, v_1, \ldots, v_n$.

 \bullet Тогда $\dim(U) = k$, $\dim(V) = k + n$. Нам нужно доказать, что $\dim(V/U) = n$, для чего достаточно доказать, что $\overline{v_1}, \dots, \overline{v_n}$ — базис V/U.

Утверждение 1

 $\overline{v_1}, \dots, \overline{v_n}$ — порождающая система векторов V/U.

Доказательство. • Пусть $\overline{x} \in V/U$, тогда существует представление

$$x=lpha_1 v_1+\cdots+lpha_n v_n+eta_1 u_1+\cdots+eta_k u_k,$$
где $lpha_1,\ldots,lpha_n,eta_1,\ldots,eta_k\in K.$ Тогда

$$\overline{\mathbf{x}} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n + \beta_1 \mathbf{u}_1 + \dots + \beta_k \mathbf{u}_k = \alpha_1 \overline{\mathbf{v}_1} + \dots + \alpha_n \overline{\mathbf{v}_n} + \overline{\beta_1 \mathbf{u}_1 + \dots + \beta_k \mathbf{u}_k} = \alpha_1 \overline{\mathbf{v}_1} + \dots + \alpha_n \overline{\mathbf{v}_n},$$

так как $\beta_1 u_1 + \cdots + \beta_k u_k \in U$.

 $\overline{v_1}, \ldots, \overline{v_n}$ ЛН3.

Доказательство. • Предположим, что $\alpha_1 \overline{v_1} + \cdots + \alpha_n \overline{v_n} = \overline{0}$. Это означает, что

$$\overline{\alpha_1 v_1 + \dots + \alpha_n v_n} = \alpha_1 \overline{v_1} + \dots + \alpha_n \overline{v_n} = \overline{0}$$

$$\iff v = \alpha_1 v_1 + \dots + \alpha_n v_n \in U. \tag{1}$$

 \bullet Тогда вектор ν можно разложить по базису U:

$$v = \beta_1 u_1 + \dots + \beta_k u_k \tag{2}.$$

- (1) и (2) два разложения v по базису u_1, \ldots, u_k v_1, \ldots, v_n пространства V, но такое разложение единственно.
- Значит, коэффициенты этих двух разложений совпадают, что означает, что $\alpha_1 = \cdots = \alpha_n = 0$.
- Таким образом, $\overline{v_1}, \ldots, \overline{v_n}$ ЛНЗ.
- Из Утверждений 1 и 2 следует, что $\overline{v_1}, \dots, \overline{v_n}$ базис V/U, откуда следует Теорема.

