MÈTODES NUMÈRICS I. Grau de Matemàtiques. Curs 2019-20. Tardor SOLUCIÓ RESUMIDA DE L'EXAMEN FINAL. 10 de gener de 2020

Problema 1 Si n = 4, llavors $h = \frac{b-a}{4}$, i $x_k = a + kh$, $k = 0, \dots, 4$ i anomenem $f_k = f(x_k)$.

a) Calculant les difererències dividides per a les abscisses x_0, x_2 i x_4 , obtenim el polinomi interpolador

$$p(x) = f_0 + \frac{f_2 - f_0}{2h}(x - x_0) + \frac{f_4 - 2f_2 + f_0}{8h^2}(x - x_0)(x - x_2).$$

Avaluat en x_1 , tenim

$$p(x_1) = \frac{-f_4 + 6f_2 + 3f_0}{8}$$

Fita de l'error en x_1 :

$$|f(x_1) - p(x_1)| = \frac{|f'''(\xi)|}{6} |(x_1 - x_0)(x_1 - x_2)(x_1 - x_4)| \le \frac{M_3}{2} h^3$$

b) Usant el mètode de Lagrange, hem de calcular els polinomis de Lagrange:

$$L_0(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}, \ L_1(x) = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}, \ L_2(x) = \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

El polinomi interpolador és $p(x) = f_1L_0(x) + f_2L_1(x) + f_3L_2(x)$.

Tenim

$$\int_{a}^{b} p(x) dx = f_{1} \int_{a}^{b} L_{0}(x) dx + f_{2} \int_{a}^{b} L_{1}(x) dx + f_{3} \int_{a}^{b} L_{2}(x) dx$$

Cal calcular els pesos $\int_a^b L_i(x) dx$ per a i = 0, 1, 2.

Fent el canvi de variable x = a + sh, dx = hds, (x = a, s = 0), (x = b, s = 4) i integrant obtenim

$$\int_{a}^{b} L_{0}(x) dx = \frac{8h}{3}, \int_{a}^{b} L_{1}(x) dx = \frac{-4h}{3}, \int_{a}^{b} L_{2}(x) dx = \frac{8h}{3}$$

Per tant, la fórmula obtinguda és

$$\int_{a}^{b} f(x) dx \simeq \frac{h}{3} [8f_1 - 4f_2 + 8f_3]$$

c) En el nostre cas [a,b] = [0,1], $h = \frac{1}{4}$ i els punts $x_k = kh$, k = 0, ..., 4. Per tant, $x_1 = 0.250, x_2 = 0.5$ i $x_3 = 0.75$, i l'aproximació

$$\frac{1}{12}(8f(0.250) - 4f(0.5) + 8f(0.75)) = 0.746530$$

d) Per a Simpson simple, tenim $h = \frac{1}{2}$ i els punts a agafar són $x_0 = 0, x_2 = 0.5, x_4 = 1$

$$\frac{h}{3}(f(x_0) + 4f(x_2) + f(x_4)) = 0.747181$$

Per a Simpson amb dos intervals: $h = \frac{1}{4}$

$$S(h) = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4)) = 0.746855$$

- **Problema 2** a) En primer lloc observem que f(0) = -1 i $f(1) = 1.5 \cos 1 > 0$. Per tant en l'interval (0,1) existeix un zero de f. A més, $f'(x) = x + 1 + \sin(x) \ge x > 0$ si x > 0, el que implica que el zero és únic i I = [0,1].
 - b) Si $x \in I$ llavors $\cos x > 0$ i això implica que la funció està ben definida. Per altra banda, si $x \in I$ és un punt fix de g llavors $(x+1)^2 = 1 + 2\cos x$. Per tant, $x^2 + 2x = 2\cos x$, amb el que $x = \alpha$.
 - c) Sigui $x \in I$. Tenim que $g'(x) = \frac{-\sin x}{\sqrt{1 + 2\cos x}}.$

A més $\cos x \ge \cos 1 > 0$. Per tant, $|g'(x)| \le \frac{\sin 1}{\sqrt{1 + 2\cos 1}} < 0.584 < 1$. Per tant, pel teorema del valor mitjà, podem agafar L = 0.584.

d) Sabem que $x_0 = 1/2$ i que $\alpha \in I$. Per tant, $|x_0 - \alpha| \le \frac{1}{2}$. Per altra banda, g'(x) < 0 si $x \in I$, i per tant, $g(I) = [g(1), g(0)] = [-1 + \sqrt{1 + 2\cos 1}, -1 + \sqrt{3}] \subset I$. Així:

$$|x_k - \alpha| \le |g(x_{k-1}) - g(\alpha)| \le L|x_{k-1} - \alpha| \le \dots \le L^k|x_0 - \alpha| \le \frac{1}{2}L^k.$$

Per tant, cal que $\frac{1}{2}L^k < 10^{-30}$. Prenent logaritmes obtenim que $k_0 \ge \frac{-\log 2 - 30\log 10}{\log L} \approx 126.89$ amb el que podem agafar $k_0 = 127$.

e) Cal calcular $h'(\alpha)$. És fàcil veure que $\alpha \in [0.6, 0.7]$ i com que $h'(x) = -\sin x - x$, $h''(x) = -\cos(x) - 1 < 0$ si $x \in I$. Llavors $h'([0.5, 0.7]) = [-\sin 0.7 - 0.7, -\sin 0.6 - 0.6]$, amb el que $|h'(\alpha)| > 1$ i per tant no és convergent.

Problema 3 a) Per la fórmula 1 tenim

$$\operatorname{fl}\left(\det A\right) = \left(ad(1+\epsilon_1) - cb(1+\epsilon_2)\right)(1+\epsilon_3) = \det A\left(1 + \frac{ad\epsilon_1 - cb\epsilon_2}{\det A} + \epsilon_3 + O(u^2)\right),$$

on $|\varepsilon_i| \le u$, i = 1, 2, 3. Per tant, a primer ordre tenim que

$$|e_r(\operatorname{fl}(\operatorname{det} A))| \le \left(\frac{|ad| + |cb|}{|\operatorname{det} A|} + 1\right) u = K_1 u.$$

b) Per la fórmula 2

$$\mathrm{fl}\;(\mathrm{det}A) = a\left[d - \frac{c}{a}(1+\epsilon_1)b(1+\epsilon_2)\right](1+\epsilon_3)(1+\epsilon_4) = \mathrm{det}A\left[1 - \frac{cb}{\mathrm{det}A}(\epsilon_1 + \epsilon_2)\right](1+\epsilon_3 + \epsilon_4 + O(u^2)),$$

on $|\varepsilon_i| \le u$, i = 1, 2, 3, 4. Per tant, a primer ordre tenim que

$$|e_r(\operatorname{fl}(\det A))| \le 2\left(\frac{|cb|}{|\det A|} + 1\right)u = K_2u.$$

- c) La primera fórmula serà la millor si $K_1 < K_2$ i la segona serà la millor si $K_2 > K_1$.
- d) En aquest cas, $K_1 = 2$, $K_2 = -2bc/\det A + 2 > 2$, i per tant sempre és millor la primera fórmula.
- e) Sabem que $|e_a(\bar{a})| \lesssim |\bar{a}|u$, $|e_a(\bar{b})| \lesssim |\bar{b}|u$, $|e_a(\bar{c})| \lesssim |\bar{c}|u$, $|e_a(\bar{d})| \lesssim |\bar{d}|$, on \bar{a} , \bar{b} i \bar{b} són els valors aproximats (resp.) de a, b, c i d. Usant la fórmula generalitzada de propagació de l'error tenim que

$$|e_a(\det \bar{A})| \lesssim 2(|\bar{a}|\cdot|\bar{d}|+|\bar{c}|\cdot|\bar{b}|)u.$$

Problema 4 a)

$$M = UD^{-1}U^{T} = \begin{pmatrix} d_{1} + \frac{b_{2}^{2}}{d_{2}} & -b_{2} \\ -b_{2} & d_{2} + \frac{b_{3}^{2}}{d_{3}} & -b_{3} \\ & & \ddots & \ddots \\ & & & d_{n-1} + \frac{b_{n}^{2}}{d_{n}} & -b_{n} \\ & & & -b_{n} & d_{n} \end{pmatrix}$$

Igualant terme a terme, obtenim $d_n = a_n$, $d_i + \frac{b_{i+1}^2}{d_{i+1}} = a_i$, $i = n-1, \dots, 1$. Per tant,

$$d_n = a_n$$
 $d_i = a_i - \frac{b_{i+1}^2}{d_{i+1}}, i = n-1,...,1$

$$D^{-1}U^Tv = U^{-1}e_1$$

b) De
$$UD^{-1}U^Tv = e_1$$
, tenim

$$D^{-1}U^Tv = U^{-1}e_1$$

 U^{-1} és un matriu triangular superior, per tant aplicada a e_1 és múltiple de e_1 , en particular $\frac{1}{d_1}e_1$

c) Per resoldre el sistema $D^{-1}U^Tv=\frac{1}{d_1}e_1$, primer resolem el sistema $D^{-1}y=\frac{1}{d_1}e_1$, que té la solució $y = e_1$ i després el sistema $U^T v = e_1$ o el sistema $D^{-1} U^T v = \frac{1}{d_1} e_1$ que és un sistema triangular inferior, i es resol per substitució cap endavant.

S'obté

$$\begin{cases} v_1 = \frac{1}{d_1} \\ v_i = \frac{b_i}{d_i} v_{i-1} = 0, \ i = 2, \dots, n \end{cases}$$

Per tant,

$$v_1 = \frac{1}{d_1}$$

$$v_i = \frac{b_2 \cdots b_i}{d_1 \cdots d_i}, i = 2, \dots, n$$

- d) De $M = UD^{-1}U^T$ tenim que det $M = \det U \det D^{-1} \det U^T = d_1 \cdots d_n$.
- e) En el càlcul dels v_i veiem que a partir del v_k són tots nuls, per tant només cal calcular $v_1 = \frac{1}{d_1}$ i $v_i = \frac{b_i}{d_i} v_{i-1} = 0, i = 2, \dots, k-1$: k-2 productes i k-1 divisions.

Cal comptar també les operacions necessàries per a calcular els d_i .