2023-2024 学年第一学期 《高等数学》 期中试题

- 一、计算下列各题 (本题满分 72 分, 每小题 8 分)
- 1. 求极限 $\lim_{r\to 0} \left(1 + \sin x \sin(\sin x)\right)^{\frac{1}{x^3}}$.
- 2. 用泰勒公式求极限 $\lim_{x\to 0} \left[\frac{a}{x} \left(\frac{1}{x^2} a^2 \right) \ln(1+ax) \right], \quad (a \neq 0).$
- 3. $x \to 0$ 时, $e^{-x^2} \cos \sqrt{2}x$ 与 ax^n 为等价无穷小, 求 n.
- 4. 设 f(x) 对任意的 x, y 恒有 $|f(x) f(y)| \le e^{(x-y)^2} 1$, 求 f'(x).
- $_{5. \text{ QBM } f(x) = }$ $\begin{cases} \underset{1}{\operatorname{arctan } x,} & x \leq 1, \\ \frac{1}{2}(2xe^{x^2-1}-x) + \frac{\pi}{4}, & x > 1. \end{cases}$ 注意:第5题题目多
- 6. 设函数 y = f(x) 由方程组 $\begin{cases} x = 3t^2 + 2t \\ y = e^y \sin t + 1 \end{cases}$ 确定, 求 $\frac{dy}{dx}\Big|_{t=0}$.
- 7. 设函数 f(x) 在 x = 3 处连续, 且 $\lim_{x\to 0} \frac{f(3-x)-7}{\arcsin 2x} = 5$, 证明: f(x) 在 x = 3 处可导, 并求 f'(3).
- 8. 设函数 f(x) 在 x = 0 点连续, 且满足: $\lim_{x \to 0} \left(\frac{\sin x}{x^2} + \frac{f(x)}{x} \right) = 2$, 求 f'(0).
- 9. 求函数 $f(x) = \frac{4(x+1)}{x^2} 2$ 的极值, 并求曲线 y = f(x) 的拐点.
- 二、解答下列各题 (本题满分 28 分)
- 10. (8 分) 设函数 f(x) 在闭区间 [1,4] 上连续, 在开区间 (1,4) 内可导, 且满足 f(4) = 0, 证明在区间 (1,4) 内至少存在一点 ξ , 使 $(1-\xi)f'(\xi) = 2f(\xi)$.
- 11. (8 分) 求曲线 $y = \frac{1}{x} + \frac{x^2}{\sqrt{1+x^2}}$ 的所有渐近线.
- 12. (7 分) 设函数 f(x) 在区间 [a,b] 上连续, f(a) = f(b) = 0, 且 f'(a)f'(b) > 0, 证明: 在区间 (a,b) 内存在点 ξ , 使 $f(\xi) = 0$.
- 13. (5 分) 设在 $(-\infty, +\infty)$ 内 f''(x) > 0, 又 $\lim_{x \to 0} \frac{f(x)}{x} = 1$, 试证明: $f(x) \ge x$ $(-\infty < x < +\infty)$.