Électromagnétisme S14 Courants électriques II

Iannis Aliferis

Université Nice Sophia Antipolis

Vitesse des porteurs de charge	2
Vitesse de Fermi	3
Équation du mouvement des porteurs de charge	4
Vitesse de dérive dans un conducteur	5
Courants dans les conducteurs : la loi d'Ohm	6
Courants dans les conducteurs : la loi d Onm Courants dans les conducteurs	7
Conductivité: quelques valeurs typiques	8
Loi d'Ohm en Électronique	9
Relation tension-courant	10
Puissance consommée en Électronique	11
Conductory core tonsion	10

Vitesse des porteurs de charge

Vitesse de Fermi

- ▼ Électrons libres dans un conducteur métallique, en absence de champ électrique : mouvement thermique *aléatoire*
- ightharpoonup Données cuivre, température $T=300\,\mathrm{K}$
 - ▶ Vitesse de Fermi : $v_F \approx 10^6 \, \mathrm{m \, s^{-1}}$
 - ▶ Temps entre les collisions $\tau \approx 10^{-14}\,\mathrm{s}$
 - ▶ Distance entre les collisions : $d = v_F \tau \approx 10^{-8} \, \mathrm{m}$
 - \blacktriangleright Densité des électrons libres : $n\approx 10^{29}\,\mathrm{m}^{-3}$
- **▼** Densité de courant :

$$J = nqv_F \approx 10^{29} 1.6 \times 10^{-19} 10^6 \,\mathrm{A\,m^{-2}}$$
 (?)

lacktriangledown Vitesse moyenne nulle, $ec{J}=ec{0}$!

_

2

Équation du mouvement des porteurs de charge

- lacktriangledown Conducteur de longueur L, de section A
- lacktriangle Appliquer une différence de potentiel $U=V_+-V_-$
- lacktriangledown Dans le conducteur $ec{m{E}}
 eq ec{m{0}}$!

$$\vec{E} = -\overrightarrow{\operatorname{grad}} V = -\frac{U}{L} \hat{e}_{-\rightarrow+} = \frac{U}{L} \hat{e}_{+\rightarrow-}$$

- lacktriangledown Force $ec{m{F}_e}=q_eec{m{E}}$ sur les électrons libres $\left(q_e=-|q_e|
 ight)$
- lacktriangledown Collisions : force de « friction » $ec{F}_f = -f ec{v}$
- ▼ Équation du mouvement :

$$m_e \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{F}_e + \vec{F}_f = q_e \vec{E} - f \vec{v}$$

4

Vitesse de dérive dans un conducteur

▼ Forces et vitesse sur le même axe : pas de vecteurs

$$\frac{m_e}{f}\frac{\mathrm{d}v}{\mathrm{d}t} + v = \frac{q_e}{f}E\tag{1}$$

▼ Solution :

$$v(t) = C \exp\left(-\frac{f}{m_e}t\right) + \frac{q_e}{f}E$$

- **▼** Conditions initiales : $v(t=0) = 0 \longrightarrow C = -q_e E/f$
- lacktriangle Unités de f/m_e : ${
 m s}^{-1}$, on peut l'appeler 1/ au $(f=m_e/ au)$

$$v(t) = \left(1 - e^{-t/\tau}\right) \frac{q_e \tau}{m_e} E \tag{2}$$

▼ Vitesse de dérive des électrons libres :

$$v_d = \frac{q_e \tau}{m_e} E \qquad t \gg \tau \approx 10^{-14} \,\mathrm{s} \tag{3}$$

 \blacktriangledown Mobilité électrique : $\mu_e = |q_e|\tau/m_e \longrightarrow |v_d| = \mu_e E$

_

6

Courants dans les conducteurs : la loi d'Ohm

Courants dans les conducteurs

- ▼ Porteurs de charges libres dans un conducteur
- ▼ Appliquer différence de potentiel → champ électrique
- ▼ Vitesse de dérive → densité de courant :

$$ec{m{J}} = nq_e ec{m{v_d}} = nq_e rac{q_e au}{m_e} ec{m{E}}$$
 [vitesse porteurs]

▼ Loi d'Ohm (1827), formulation Kirchhoff

$$\vec{J} = \sigma \vec{E}$$
 (4)

▼ Conductivité ($\Omega^{-1} m^{-1} = \mho/m = S m^{-1}$)

$$\sigma \triangleq \frac{nq_e^2\tau}{m_e} = n|q_e|\mu_e \tag{5}$$

▼ Résistivité $\rho = \frac{1}{\sigma} (\Omega \, \mathrm{m})$

Conductivité : quelques valeurs typiques

Matériau	$\sigma (\mathrm{S} \mathrm{m}^{-1})$
Quartz	$\approx 10^{-17}$
Polystyrène	$\approx 10^{-16}$
Caoutchouc	$\approx 10^{-15}$
Porcelaine	$\approx 10^{-14}$
Verre	$\approx 10^{-12}$
Eau distillée	$\approx 10^{-4}$
Sol sec	$\approx 10^{-3}$
Eau	$\approx 10^{-2}$
Graisse animale	$\approx 4 \times 10^{-2}$
Corps humain	≈ 0.2

Matériau	$\sigma (\mathrm{S} \mathrm{m}^{-1})$
Eau salée	≈ 4
Silicone	10^{3}
Graphite	$\approx 10^5$
Acier	2×10^{6}
Plomb	5×10^6
Tungsten	1.8×10^{7}
Aluminium	3.5×10^7
Or	4.1×10^{7}
Cuivre	5.7×10^7
Argent	6.1×10^{7}

8

9

Loi d'Ohm en Électronique

Relation tension-courant

- $lackbr{V}$ $ec{m{J}} = \sigma ec{m{E}}$ ou $ec{m{E}} = rac{1}{\sigma} ec{m{J}}$
- lacktriangledown Densité de courant : J=I/A
- lacktriangledown Champ électrique : E=U/L

$$ec{E} = rac{1}{\sigma} ec{J} \longrightarrow \boxed{U = rac{1}{\sigma} rac{L}{A} I riangleq RI} \quad ext{loi d'Ohm}$$

- ▼ Attention aux « conventions » :
 - 1. $U = V_+ V_-$ (ddp ou « tension »)
 - 2. Sens de I: de (+) vers (-) (comme \vec{E} et \vec{J})
- \blacksquare Attention, R n'est pas toujours constante!
 - $ightharpoonup \sigma \propto \tau$ (temps entre collisions)
 - $\blacktriangleright \ \ I \uparrow \Rightarrow T \uparrow \Rightarrow \tau \downarrow \Rightarrow \sigma \downarrow \Rightarrow \rho \uparrow \Rightarrow R \uparrow$

Puissance consommée en Électronique

Conducteur sous tension

- lacktriangle Des charges négatives se déplacent spontanément : $\to +$
- $\Psi W_{-\to +} = q_e (V_+ V_-) = -|q_e|U$
- $lacktriangledown W_{ightarrow+} < 0$: travail restitué par la charge. . .
- ▼ ...donc fourni par le champ; consommation
- lacktriangledown Le champ dépense $\,\mathrm{d} W = U \,\mathrm{d} q$ pour chaque charge $\,\mathrm{d} q$
- lacktriangle Débit de charges déplacées : $\mathrm{d}q\,/\,\mathrm{d}t=I$
- ▼ Puissance consommée :

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{U\,\mathrm{d}q}{\mathrm{d}t} = UI\tag{6}$$

12

11

