Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

Divesh Aggarwal

Centre for Quantum Technologies

Rajendra Kumar

Centre for Quantum Technologies

Yanlin Chen

Yixin Shen

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector. $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector.

 $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

Main approaches for SVP:

- ▶ Enumeration: $2^{O(n \log(n))}$ time and poly(n) space
- ► Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

Sieving

- Heuristic algorithms: fastest in practice
- ▶ Provable algorithms: important for theory → our work

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference	
$n^{\frac{n}{2e}+o(n)}$	poly(n)	[Kan87,HS07]	
$2^{n+o(n)}$	$2^{n+o(n)}$	[ADRS15]	
2 ^{2.05n+o(n)}	$2^{0.5n+o(n)}$	[CCL18]	
2 ^{1.7397n+o(n)}	$2^{0.5n+o(n)}$	Our work	

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference	
$n^{\frac{n}{2e}+o(n)}$	poly(<i>n</i>)	[Kan87,HS07]	
$2^{n+o(n)}$	$2^{n+o(n)}$	[ADRS15]	
2 ^{2.05n+o(n)}	$2^{0.5n+o(n)}$	[CCL18]	
2 ^{1.7397n+o(n)}	$2^{0.5n+o(n)}$	Our work	

Our work: first provable smooth time/space trade-off for SVP

time
$$q^{13n+o(n)}$$
 space $poly(n) \cdot q^{\frac{16n}{q^2}}$ $q \in [4, \sqrt{n}]$

- ▶ $q = \sqrt{n}$: time $n^{O(n)}$ and space poly(n), not as good as [Kan87].
- ▶ q = 4: time $2^{O(n)}$ and space $2^{O(n)}$, not as good as [ADRS15].

quantum data

Interlude: quantum memory models

Interlude: quantum memory models

Interlude: quantum memory models

Results in the Quantum Setting

Provable quantum algorithms for SVP:

Time	Space Complexity		Reference	
Complexity	Classical	Qubits	Model	nelelelice
2 ^{1.799n+o(n)}	2 ^{1.286n+o(n)}	poly(n)	QRACM	[LMP15]
2 ^{1.2553n+o(n)}	$2^{0.5n+o(n)}$	poly(n)	plain	[CCL18]
$2^{0.9535n+o(n)}$	$2^{0.5n+o(n)}$	poly(n)	plain	Our work

Remark on quantum heuristic algorithms:

- ▶ better complexity: 2^{0.265n+o(n)} [Laarhoven15]
- requires QRACM (strong assumption)
- even better complexity: $2^{0.257n+o(n)}$ [CL21]
- requires QRAQM (even stronger assumption)

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leqslant 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

[ADRS15]'s new idea: control distribution instead of length of vectors

Discrete Gaussian Sampling

$$\rho_{\mathcal{S}}(\boldsymbol{x}) = \exp\left(-\pi \frac{\|\boldsymbol{x}\|^2}{s^2}\right), \qquad D_{L,s}(\boldsymbol{x}) = \frac{\rho_{\mathcal{S}}(\boldsymbol{x})}{\rho_{\mathcal{S}}(L)}, \qquad \boldsymbol{x} \in \mathbb{R}^n, s > 0.$$

Definition (Discrete Gaussian Distribution)

On lattice L with parameter s: probability of $\mathbf{x} \in L$ is $D_{L,s}(\mathbf{x})$.

$$L = \mathbb{Z} \times 4\mathbb{Z}, s = 7$$

Discrete Gaussian Sampling (DGS)

- ▶ input: L and s
- **output:** random $x \in L$ according to $D_{L,s}$.

Bounded Distance Decoding (α -BDD): Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$

Bounded Distance Decoding (α -BDD): Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$

The two reductions use completely different DGS parameter regimes!

Bounded Distance Decoding (α -BDD):

Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$, find the closest vector $\mathbf{y} \in \mathcal{L}$.

- $ightharpoonup \alpha$ is decoding distance/radius
- $\alpha < \frac{1}{2}$ for unique solution

The two reductions use completely different DGS parameter regimes!

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

- ▶ Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$
- ▶ No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

Parameter s (width/standard deviation) of $D_{\mathcal{L},s}$:

- ▶ Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$
- ▶ No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

→ first provable time/space trade-off for SVP

Digression: Quotient and Cosets

Let q be a positive integer. Lattices $q \mathcal{L} \subseteq \mathcal{L}$, quotient:

$$\mathcal{L}/q\mathcal{L} = \{c + q\mathcal{L} : c \in \mathcal{L}\} \cong \mathbb{Z}_q^n$$

Each $c + q \mathcal{L}$ is a **coset**, there are q^n many.

▶ $x, y \in \mathcal{L}$ are in the same coset of $\mathcal{L}/q\mathcal{L}$ iff $x - y \in q\mathcal{L}$.

Digression: Quotient and Cosets

Let *q* be a positive integer. Lattices $q \mathcal{L} \subseteq \mathcal{L}$, **quotient**:

$$\mathcal{L}/q\mathcal{L} = \{c + q\mathcal{L} : c \in \mathcal{L}\} \cong \mathbb{Z}_q^n$$

Each $c + q \mathcal{L}$ is a **coset**, there are q^n many.

▶ $x, y \in \mathcal{L}$ are in the same coset of $\mathcal{L}/q\mathcal{L}$ iff $x - y \in q\mathcal{L}$.

Above smoothing parameter: if $s \geqslant \eta_{\varepsilon}(q \mathcal{L})$ then for all $c \in \mathcal{L}$,

$$\frac{1-\varepsilon}{1+\varepsilon} \leqslant \frac{\rho_{\mathbf{s}}(\mathbf{c}+\mathbf{q}\,\mathcal{L})}{\rho_{\mathbf{s}}(\mathbf{q}\,\mathcal{L})} \leqslant 1$$

Theorem (Micciancio and Peikert)

If X_1, \ldots, X_k i.i.d from DGS with parameter $s \ge \sqrt{2}\eta_{\varepsilon}(\mathcal{L})$ s.t $\sum_i X_i \in q \mathcal{L}$ then $(X_1 + \ldots + X_k)/q$ very close to DGS with parameter $s \sqrt{k}/q$.

```
Input: a list L of samples in D_{\mathcal{L},s} with s \geqslant \sqrt{2}\eta_{\varepsilon}(\mathcal{L})

1 L' \leftarrow empty list

2 while |L| \geqslant 2^n + 1 do

3 | x \leftarrow a random element from L

4 | y \leftarrow a random element from L

5 | \mathbf{if} \ x + y \in 2 \mathcal{L} \mathbf{then} 

6 | add \ (x + y)/2 \mathbf{to} \ L'

7 | remove \ x \ and \ y \ from \ L

8 return L'
```

```
Input: a list L of samples in D_{\mathcal{L},s} with s \geqslant \sqrt{2}\eta_{\varepsilon}(\mathcal{L})

1 L' \leftarrow empty list

2 while |L| \geqslant 2^n + 1 do

3 x \leftarrow a random element from L

4 y \leftarrow a random element from L

5 if x + y \in 2\mathcal{L} then

6 add(x + y)/2 to L'

7 remove x and y from L
```

8 return L'

Analysis (above smoothing):

- ▶ sum of Gaussians \approx Gaussian (Micciancio and Peikert) \Rightarrow output L' contains independent samples from $D_{\mathcal{L},s/\sqrt{2}}$
- ▶ only cosets in $\mathcal{L}/2\mathcal{L}$ matter
- ▶ if $x \sim D_{\mathcal{L},s}$ then the coset of $x \mod 2 \mathcal{L}$ is almost uniform

```
Input: a list L of samples in U(L/2L)

1 while |L| \ge 2^n + 1 do

2 | x \leftarrow a random element from L

3 | y \leftarrow a random element from L

4 | if x + y = 2L then

5 | remove x and y from L

pigeonhole: |L/2L| = 2^n

\Rightarrow \exists x, y \text{ that are equal}

uniformity: for every x, proba 2^{-n} that y works
```

Analysis (above smoothing):

- ▶ sum of Gaussians \approx Gaussian (Micciancio and Peikert) \Rightarrow output L' contains independent samples from $D_{\mathcal{L},s/\sqrt{2}}$
- ▶ only cosets in $\mathcal{L}/2\mathcal{L}$ matter
- ▶ if $x \sim D_{\mathcal{L},s}$ then the coset of $x \mod 2 \mathcal{L}$ is almost uniform

```
Input: a list L of samples in U(\mathcal{L}/2\mathcal{L})

1 while |L| \ge 2^n + 1 do

2 | x \leftarrow a random element from L

3 | y \leftarrow a random element from L

4 | if x + y = 2\mathcal{L} then

5 | remove x and y from L

pigeonhole: |\mathcal{L}/2\mathcal{L}| = 2^n

\Rightarrow \exists x, y \text{ that are equal}

uniformity: for every x, proba

2^{-n} that y works
```

Analysis (above smoothing):

- ▶ sum of Gaussians \approx Gaussian (Micciancio and Peikert) \Rightarrow output L' contains independent samples from $D_{\mathcal{L},s/\sqrt{2}}$
- ▶ only cosets in $\mathcal{L}/2\mathcal{L}$ matter
- ▶ if $x \sim D_{\mathcal{L},s}$ then the coset of $x \mod 2 \mathcal{L}$ is almost uniform

Problem: after removing x, y, L is not uniform anymore \rightarrow show that it remains sufficiently close to uniform

```
Input: a list L of samples in U(\mathcal{L}/2\mathcal{L})

1 while |L| \ge 2^n + 1 do

2   | x \leftarrow a random element from L

3   | y \leftarrow a random element from L

4   | if x + y = 2\mathcal{L} then

5   | remove x and y from L

pigeonhole: |\mathcal{L}/2\mathcal{L}| = 2^n

\Rightarrow \exists x, y \text{ that are equal}

uniformity: for every x, proba 2^{-n} that y works
```

Problem: after removing x, y, L is not uniform anymore \rightarrow show that it remains sufficiently close to uniform

Take
$$|L| = 2^n + 2M$$
, produce M vectors
• space: $2^n + 2M$ (store the list)
• time: $2^n M$ ($\approx 2^n$ tries per vector)
For $M = 2^n$, space 2^n and time 2^{2n}

```
Input: a list L of samples in D_{\mathcal{L},s} with s \geqslant \sqrt{2}\eta_{\varepsilon}(\mathcal{L})

1 L' \leftarrow empty list

2 while |L| \geqslant ??? do

3 | x_1, \dots, x_k \leftarrow random elements from L

4 if x_1 + \dots + x_k \in q \mathcal{L} then

5 | add(x_1 + \dots + x_k)/q \text{ to } L'

7 return L'
```

Sieving with *k* elements

```
Input: a list L of samples in U(L/qL)

1 while |L| \ge ??? do

2 x_1, \dots, x_k \leftarrow \text{random elements from } L

3 if x_1 + \dots + x_k = qL then

4 remove the x_i from L
```

Sieving with *k* elements

```
Input: a list L of samples in U(\mathcal{L}/q\mathcal{L})
1 while |L| \geqslant q^{n/k} do
2 | x_1, \ldots, x_k \leftarrow \text{random elements from } L
3 | if x_1 + \cdots + x_k = q \mathcal{L} then
4 | remove the x_i from L
Cosets: |\mathcal{L}/q\mathcal{L}| = q^n
Probability analysis: x_1 + \cdots + x_k \sim U(\mathcal{L}/q\mathcal{L})

ightharpoonup probability q^{-n} to be q \mathcal{L}
  |L| needs to be \geq q^n \sim |L| \geq q^{n/k}
```

Constraint: $k < q^2$ to reduce Gaussian width by a constant factor

Sieving with k elements

```
Input: a list L of samples in U(L/qL)

1 while |L| \ge q^{n/k} do

2 x_1, \dots, x_k \leftarrow \text{random elements from } L

3 if x_1 + \dots + x_k = qL then

4 remove the x_i from L
```

```
Cosets: |\mathcal{L}/q\mathcal{L}| = q^n
Probability analysis: x_1 + \cdots + x_k \sim U(\mathcal{L}/q\mathcal{L})
```

- ▶ probability q^{-n} to be $q \mathcal{L}$
- $\binom{|L|}{k}$ needs to be $\geqslant q^n \rightsquigarrow |L| \geqslant q^{n/k}$

Constraint: $k < q^2$ to reduce Gaussian width by a constant factor

Take $|L| = q^{n/k} + kN$, produce N vectors

- ▶ space: $q^{n/k} + kN$ (store the list)
- ▶ time: $q^n N$ (≈ q^n tries per vector)

For $k = q^2 - 1$, $N = q^{n/k}$, space q^{n/q^2} and time $q^{n+n/q^2} \leqslant q^{2n}$

Time-Space Tradeoff for DGS

The real algorithm is more complicated:

- split input list into two
- probabilistic + deterministic argument to prove correctness
- exponents are much worse

Theorem (Simplified)

For $q \in [4, \sqrt{n}]$, there is an algorithm that produces q^{16n/q^2} vectors from $D_{\mathcal{L},s}$ with $s \geqslant \eta_{\varepsilon}(\mathcal{L})$ in time q^{13n} and space q^{16n/q^2} .

Time-Space Tradeoff for SVP

Smooth time-space tradeoff for BDD: create a $\frac{0.1}{q}$ -BDD oracle in time q^{13n} , space q^{16n/q^2} , each call takes time q^{16n/q^2} .

Gives a smooth time-space tradeoff for SVP:

Theorem

Let $n \in \mathbb{N}$, $q \in [4, \sqrt{n}]$ be a positive integer. Let \mathcal{L} be a lattice of rank n. There is a randomized algorithm that solves SVP in time $q^{13n+o(n)}$ and in space $poly(n) \cdot q^{\frac{16n}{q^2}}$.

Time-Space Tradeoff for SVP

Smooth time-space tradeoff for BDD: create a $\frac{0.1}{q}$ -BDD oracle in time q^{13n} , space q^{16n/q^2} , each call takes time q^{16n/q^2} .

Gives a smooth time-space tradeoff for SVP:

Theorem

Let $n \in \mathbb{N}$, $q \in [4, \sqrt{n}]$ be a positive integer. Let \mathcal{L} be a lattice of rank n. There is a randomized algorithm that solves SVP in time $q^{13n+o(n)}$ and in space $poly(n) \cdot q^{\frac{16n}{q^2}}$.

- ▶ $q = \sqrt{n}$: time $n^{O(n)}$ and space poly(n), not as good as [Kan86].
- q = 4: time $2^{O(n)}$ and space $2^{O(n)}$, not as good as [ADRS15].

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

- ▶ Set $p = \lceil \frac{1}{\alpha} \rceil$.
- Enumerate all points in a ball of radius $> \lambda_1$.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

- ▶ Set $p = \lceil \frac{1}{\alpha} \rceil$.
- ▶ Enumerate all points in a ball of radius $> \lambda_1$.

The reduction is space efficient

But
$$\alpha < \frac{1}{2} \implies p \ge 3 \implies$$
 at least 3^n queries

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD.

 \sim time $2^{0.869n+o(n)}$?

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \sim very small ε , larger than necessary BDD radius, too expensive BDD

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \rightsquigarrow very small ε , larger than necessary BDD radius, too expensive BDD

New idea:

- ▶ find a well-chosen lattice $\mathcal{L} \subset \mathcal{L}' \subset \mathcal{L}/2$ such that $\eta_{\varepsilon'}(\mathcal{L}') \leqslant \eta_{\varepsilon}(\mathcal{L})/\sqrt{2}$ for $\varepsilon' \approx \varepsilon$ [ADRS15]
- ▶ run DGS on \mathcal{L}' at $s = \eta_{1/3}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}(\mathcal{L}')$ [ADRS15]
- only keep samples in \mathcal{L} (rejection)

DGS sampling: new lemma

- ► [ADRS15]: DGS of parameter $s \ge \sqrt{2\eta_{1/2}(\mathcal{L})}$ in time $2^{n/2}$
- ▶ BDD to DGS reduction requires $s = \eta_{\varepsilon}(\mathcal{L})$ for some $\varepsilon > 0$

Previous work [CCL18]: find ε such that $\eta_{\varepsilon}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}$ \rightarrow very small ε , larger than necessary BDD radius, too expensive BDD

New idea:

- ▶ find a well-chosen lattice $\mathcal{L} \subset \mathcal{L}' \subset \mathcal{L}/2$ such that $\eta_{\varepsilon'}(\mathcal{L}') \leqslant \eta_{\varepsilon}(\mathcal{L})/\sqrt{2}$ for $\varepsilon' \approx \varepsilon$ [ADRS15]
- ▶ run DGS on \mathcal{L}' at $s = \eta_{1/3}(\mathcal{L}) \geqslant \sqrt{2}\eta_{1/2}(\mathcal{L}')$ [ADRS15]
- only keep samples in \mathcal{L} (rejection)

Some details:

- $ightharpoonup \mathcal{L}'$ is chosen randomly, works with high probability
- ▶ need that $|\mathcal{L}' / \mathcal{L}| \approx 2^{n/2}$ for $\varepsilon \approx \varepsilon'$
- ▶ rejection: $|\mathcal{L}'/\mathcal{L}| \approx 2^{n/2}$ slowdown, still better than previous work!
- ▶ allows to choose $\alpha = 1/3$ for BDD, improved from 0.391 [CCL18]

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Smaller α :

- More balls
- Less expensive BDD
- → Trade-off

Improved classical SVP

Improved SVP to BDD: do 2ⁿ queries to 0.4103-BDD

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397n+o(n)}$, classical space $2^{0.5n+o(n)}$.

Improved classical SVP

Improved SVP to BDD: do 2ⁿ queries to 0.4103-BDD

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397n+o(n)}$, classical space $2^{0.5n+o(n)}$.

Theorem

There is a **quantum** algorithm that solves SVP in time $2^{1.051n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Not as good as our previous $2^{0.9529n+o(n)}$ algorithm but the story does not stop here...

Number of lattice points in a ball of radius r is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Best known relations between α and ε depends on $\beta(\mathcal{L})$:

small $\beta(\mathcal{L})$ \longrightarrow bigger α for fixed ε \longrightarrow less expensive BDD

Number of lattice points in a ball of radius r is $\leq c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Number of lattice points in a ball of radius r is $\leq c^{n+o(n)}r^n$

$$\beta(\mathcal{L}) = \text{smallest } \mathbf{c} \text{ that works for all } \mathbf{r}$$

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- ▶ Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Details on BDD to DGS reduction

The reduction from α -BDD to DGS requires a parameter $s=\eta_{\varepsilon}$ for some ε that depends on α [DSR14]

Problem: we cannot compute or even approximate η_{ε} (this is a probably a hard problem) so how do we choose s?

Details on BDD to DGS reduction

The reduction from α -BDD to DGS requires a parameter $s=\eta_{\varepsilon}$ for some ε that depends on α [DSR14]

Problem: we cannot compute or even approximate η_{ε} (this is a probably a hard problem) so how do we choose s?

Idea 1: run the DGS sampler for
$$s_i = \delta^{-i} s_0$$
 for $\delta > 1$

$$\exists i \text{ st} \quad s_i \geqslant \eta_\varepsilon \geqslant \delta^{-1} s_i$$

Probably sufficient: [DSR14] most likely works with such s_i but one would need to redo the (complicated) proof...

Details on BDD to DGS reduction

The reduction from α -BDD to DGS requires a parameter $s=\eta_{\varepsilon}$ for some ε that depends on α [DSR14]

Problem: we cannot compute or even approximate η_{ε} (this is a probably a hard problem) so how do we choose s?

Idea 1: run the DGS sampler for
$$s_i = \delta^{-i} s_0$$
 for $\delta > 1$

$$\exists i \text{ st} \quad s_i \geqslant \eta_\varepsilon \geqslant \delta^{-1} s_i$$

Probably sufficient: [DSR14] most likely works with such s_i but one would need to redo the (complicated) proof...

Idea 2: show that $s_i = \eta_{\varepsilon'}$ for some $\varepsilon^{\delta^2} \leqslant \varepsilon' \leqslant \varepsilon$ \leadsto BDD radius α' is almost unchanged for $\delta = 1 + 1/n^{O(1)}$

Proof uses a new tail-bound that involves $\beta(\mathcal{L})$ and a new lower bound on $\eta_{\varepsilon^{\delta^2}}$

Conclusions and Future work

Provable SVP:

- classical: time $2^{1.7397n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.9529n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(n) qubits
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- ▶ studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Conclusions and Future work

Provable SVP:

- classical: time $2^{1.7397n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.9529n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(n) qubits
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- ▶ studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Open problems:

- ▶ Show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving?
- Exploit the subexponential space regime in our trade-off for SVP?
- ▶ $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for DGS at smoothing parameter?