

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2024

Peter Philip

Paula Reichert, Lukas Emmert

Analysis 2 für Statistik Hausaufgabenblatt 8

Aufgabe 1 (10 Punkte)

Es sei $U \subseteq \mathbb{R}^n$ offen und $\xi \in U$. Sei $f: U \to \mathbb{C}^m$ in ξ differenzierbar. Das heißt, sowohl Ref als auch Imf sind differenzierbar in ξ . Die totale Ableitung von f in ξ wird als $Df(\xi) := D\text{Re}f(\xi) + iD\text{Im}f(\xi)$ definiert. Zeigen Sie, dass

$$\lim_{h \to 0} \frac{f(\xi + h) - f(\xi) - Df(\xi)(h)}{\|h\|} = 0.$$

Aufgabe 2 (10 Punkte)

- a) Sei $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $f(x, y, z) = 3x^2 y^2 + z^2$.
 - i) Berechnen Sie die Richtungsableitung von f im Punkt (1,2,3) in der Richtung (1,1,2);
 - ii) Berechnen Sie die Richtungsableitung von f im Punkt (1, 2, 3) in der Richtung (2, 2, 4);
- b) Sei $g: \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : y=1\} \to \mathbb{R}$ gegeben durch $g(x,y) = \frac{x}{1-y}$. Berechnen Sie die Richtungsableitung von g im Punkt (0,0) in der Richtung (1,-1).

Aufgabe 3 (10 Punkte)

Es seien $f: \mathbb{R}^m \to \mathbb{R}^n$ und $g: \mathbb{R}^n \to \mathbb{R}$ zwei C^2 -Funktionen. Betrachten Sie für $\xi \in \mathbb{R}^m$ die partielle Ableitung zweiter Ordnung $\partial_i \partial_j (g \circ f)(\xi), i, j \in \{1, 2, ..., m\}$ und drücken Sie sie durch die partiellen Ableitungen zweiter Ordnung von g und der Koordinatenfunktionen von f aus.

Abgabe bis Montag, 17. Juni 2024, 12:00 Uhr, online auf Moodle als PDF-Dokument.