Lezione 33 - 19/12/2022

Ripasso lezione precedente

Teorema

Ripasso lezione precedente

 $T\in \mathrm{End}(V)$, V spazio vettoriale e $\dim_{\mathbb{K}}V=n$

- T è diagonalizzabile se esiste una base di V formata da autovettori per f;
- $v\in V$, $v\neq 0$ è un **autovettore** per f di **autovalore** λ se $f(v)=\lambda v$. Abbiamo anche definito il seguente autospazio:

$$V_{\lambda} = \{v \in V | f(v) = \lambda v\}$$

• λ autovalore se $f-\lambda \mathrm{Id}_V$ non è **invertibile**. B base di V , $A={}_B(f)_B$

$$p_A(t) = \det(A - tI_n)$$

 $\lambda \text{ autovalore} \iff p_A(\lambda) = 0$

Gli autovalori λ hanno associati due valori:

- $\circ \ m_a(\lambda) = ext{molteplicità di } \lambda ext{ come radice di } p_A(t)$
- $m_g(\lambda) = \dim V_{\lambda}$

Si ha inoltre che $m_a(\lambda) \geq m_q(\lambda) \geq 1$.

• Autovettori relativi ad autovalori distinti sono linearmene indipendenti.

Teorema

 $T\in \mathrm{End}(V)$ è diagonalizzabile su $\mathbb K$ se e solo se

- 1. $\sum_{\lambda \text{ autovalori di } T} m_a(\lambda) = \dim V$
- 2. $orall \lambda$ autovalore di T, $m_a(\lambda) = m_g(\lambda)$

<u>Dimostrazione</u>: siano $\lambda_1,...,\lambda_k$ i **distinti autovalori** di T.

Osserviamo che T è diagonalizzabile se e solo se

$$(*) \qquad V = \bigoplus_{i=1}^k V_{\lambda_i}$$

Se T è diagonalizzabile allora vale (*) e quindi

$$\dim V = \sum_{i=1}^k \dim V_{\lambda_i} = \sum_{i=1}^k m_g(\lambda_i) \leq \sum_{i=1}^k m_a(\lambda_i) \leq \dim V$$

Quindi i \leq sono = e quindi vale la condizione 1. e anche la 2.

$$oldsymbol{igwedge} 0 \leq a_i \leq b_i, \ \sum a_i = \sum b_i \Rightarrow a_i = b_i \ orall i$$

Viceversa supponiamo che valgono 1. e 2. Sia

$$W = \sum_{i=1}^k V_{\lambda_i} = igoplus_{i=1}^k V_{\lambda_i} \subset V$$

Si ha che

$$\dim W = \sum_{i=1}^k \dim V_{\lambda_i} = \sum_{i=1}^k m_g(\lambda_i) \stackrel{2.}{=} \sum_{i=1}^k m_a(\lambda) \stackrel{1.}{=} \dim V$$

Dunque $W\subset V$, $\dim W=\dim V\Rightarrow V=W.$

Dunque $V=igoplus_{i=1}^k V_{\lambda_i}$ per (*) T è diagonalizzabile.