Fine-Tuning Language Models & Managing Large Codebases in Limited Context Windows

Strategies for Optimizing LLM Performance with Technical Codebases

iii July 5, 2025

Introduction to Fine-Tuning Language Models

What is Fine-Tuning?

Fine-tuning is the process of **further training a pre-trained model** on a specific dataset to adapt it for particular tasks or domains.

Why Fine-Tune?

- Improves performance on domain-specific tasks
- Requires less data and compute than training from scratch
- Enables customization while leveraging pre-trained knowledge
- Reduces hallucinations for specialized applications

"Fine-tuning tailors the model to have better performance for specific tasks, making it more effective and versatile in real-world applications."

Full Fine-Tuning vs. Parameter-Efficient Fine-Tuning

Comparison

Aspect	Full Fine-Tuning	PEFT
Parameters Updated	All	Small subset
Memory Requirements	High	Low
Training Speed	Slow	Fast
Performance	Excellent	Very Good
Catastrophic Forgetting	High Risk	Lower Risk

PEFT (Parameter-Efficient Fine-Tuning) methods update only a small fraction of model parameters, dramatically reducing computational and memory requirements while maintaining comparable performance.

Key PEFT Approaches

- LoRA: Low-Rank Adaptation using matrix decomposition
- QLoRA: Quantized LoRA for even greater memory efficiency
- Adapter Tuning: Inserting trainable layers between frozen ones
- Prefix Tuning: Adding trainable prefix tokens to inputs

PEFT Techniques: LoRA, QLoRA, Adapter Tuning

LoRA (Low-Rank Adaptation)

Decomposes weight updates into **low-rank matrices**, reducing trainable parameters by 10,000×.

QLoRA (Quantized LoRA)

Combines **4-bit quantization** with LoRA for extreme memory efficiency, enabling fine-tuning of 65B+ models on consumer GPUs.

Adapter Tuning

Inserts small **trainable modules** between frozen layers, enabling task-specific adaptation with minimal parameters.

Trainable Parameters for 7B Model (Log Scale)

Parameters (Millions)

When to Fine-Tune vs. Prompt Engineering or RAG

Decision Framework

Choose Fine-Tuning When:

- Need consistent, specialized behavior
- Have high-quality labeled data (100s-1000s examples)
- Task requires deep domain adaptation
- Inference speed is critical

Choose Prompt Engineering When:

- Need quick iteration and experimentation
- Have limited examples (0-10)
- Task is within model's general capabilities
- Flexibility to change instructions is important

Choose RAG When:

- Need access to external/up-to-date knowledge
- Working with proprietary or changing information
- Factual accuracy is critical
- Want to reduce hallucinations

Approach Comparison (Higher is Better)

Hybrid approaches often yield the best results. Consider fine-tuning a model to better utilize RAG or follow instructions, then using prompt engineering to guide its behavior in specific contexts.

Challenges in Fine-Tuning Large Models

Compute Cost

Fine-tuning large models (>10B parameters) requires significant GPU resources, often making it prohibitively expensive for many organizations.

Catastrophic Forgetting

Models can lose previously learned knowledge when finetuned on new tasks, especially with small or domainspecific datasets.

Data Quality Issues

Fine-tuning results are highly dependent on data quality. Biased, noisy, or insufficient data can lead to poor performance or reinforced biases.

Evaluation Complexity

Determining if fine-tuning improved performance requires **sophisticated evaluation metrics** beyond simple accuracy measures.

Challenges: Full Fine-Tuning vs. PEFT

Mitigation Strategies:

- Use **PEFT techniques** to reduce compute requirements
- Implement continual learning approaches to combat forgetting
- Invest in high-quality, diverse datasets with careful curation
- Develop comprehensive evaluation frameworks specific to your use case

Context Window Limits in LLMs

What is a Context Window?

The **context window** is the maximum amount of text an LLM can process at once, measured in **tokens**. It determines how much information the model can "remember" during a conversation or task.

Common Context Window Sizes

4K tokens (~3,000 words): GPT-3.5, Llama 2

32K tokens (~24,000 words): GPT-4, Claude 2

128K tokens (~96,000 words): Claude Opus, GPT-4 Turbo

1M+ tokens: Experimental models (e.g., Anthropic's 100K context)

Context Window Sizes Across LLM Models

Implications for Code Processing

Llama 2

GPT-3.5

 Large codebases easily exceed context windows (e.g., Linux kernel: ~30M lines)

Claude Opus GPT-4 Turbo

- Code requires **structural understanding** across files
- Context fragmentation can lead to inconsistent responses
- Longer contexts increase latency and token costs

GPT-4

Chunking Strategies for Large Codebases

Chunking Approaches

Semantic Chunking

Divides code based on **logical units** of functionality, preserving semantic relationships.

Function-Level Chunking

Treats individual functions or methods as discrete chunks, maintaining functional integrity.

File-Level Chunking

Uses entire **source files** as chunks, preserving module-level context but potentially exceeding token limits.

Fixed-Size Chunking with Overlap

Splits code into **fixed-size segments** with **overlapping** boundaries to maintain context across chunks.

Implementation Considerations

- Chunk Size: Balance between context preservation and token limits
- Overlap Ratio: Typically 10-20% to maintain cross-chunk context
- Metadata Preservation: Include imports, class definitions, and dependencies
- Language-Specific Parsing: Use AST parsers for accurate semantic boundaries

RAG Pipelines for Code Understanding

RAG for Code

Retrieval-Augmented Generation (RAG) combines retrieval systems with generative models to enhance code understanding and generation by accessing relevant code snippets on demand.

1. Code Indexing

Parse, chunk, and embed code repository into a **vector database**, preserving metadata like file paths and dependencies.

2. Query Processing

Transform user queries into code-aware embeddings that capture programming language semantics.

3. Relevant Code Retrieval

Retrieve the most **semantically similar** code chunks using vector similarity search.

4. Context-Aware Generation

Augment LLM prompt with retrieved code to generate contextually informed responses or code completions.

Code-Specific RAG Enhancements:

- AST-aware chunking to preserve syntactic structure
- Symbol tables to track variable and function references
- Dependency graphs to capture cross-file relationships
- Multi-stage retrieval for both broad and deep context

Trade-offs Between Approaches

Approach	Latency	Accuracy	Memory	Context Integrity
Naive Chunking	***	**	***	*
Semantic Chunking	**	***	**	***
Sliding Window	**	***	**	***
RAG Pipeline	**	***	**	***
Hierarchical Attention	*	***	*	***
File-Tree Aware	**	****	**	***

Key Insight: No single approach is optimal for all scenarios. The best strategy often involves **combining multiple techniques** based on specific requirements and constraints.

Approach Comparison (Higher is Better)

Decision Factors

- Codebase Size: Larger codebases benefit more from hierarchical approaches
- Query Complexity: Complex queries require better context preservation
- Response Time: Real-time applications may prioritize latency over accuracy
- Hardware Constraints: Limited resources may necessitate simpler approaches

Limitations & Research Gaps

Current Limitations

Token Limits & Long-Range Dependencies

Even with 128K context windows, models struggle with coherence across long sequences.

RAG Limitations for Code

Standard RAG approaches often fail to capture cross-file references and global state.

Semantic Understanding Challenges

Chunking strategies struggle with complex control flow and data dependencies.

Evaluation Difficulties

Lack of standardized benchmarks for long-context code understanding tasks.

Promising Research Directions

Code-Specific Attention Mechanisms

Attention patterns that follow code structure rather than sequential proximity.

Hybrid Symbolic-Neural Approaches

Combining static analysis with neural methods for better program semantics.

Persistent Memory Architectures

External memory that persists beyond the immediate context window.

Multi-Modal Code Representations

Incorporating visual elements like control flow graphs alongside textual code.

Best Practices & Emerging Methods

Best Practices

Choose the Right Approach

Fine-tune for specialized tasks, **RAG** for knowledge-intensive tasks, **prompt engineering** for flexibility.

Optimize Chunking Strategy

Use language-specific parsers to create semantically meaningful chunks that preserve code structure.

Implement Hybrid Approaches

Combine techniques: fine-tune models to better utilize RAG, use hierarchical retrieval for large codebases.

Rigorous Evaluation

Test on diverse, real-world code samples with metrics for correctness, coherence, and execution.

Emerging Methods

Mixture-of-Experts (MoE)

Models with specialized sub-networks that activate based on input type, enabling efficient scaling.

Persistent Memory

External memory systems that maintain information beyond the immediate context window.

Flash Attention 2

Optimized attention mechanisms that reduce memory usage and enable longer contexts with less compute.

Code-Specific Architectures

Models designed specifically for code with built-in understanding of programming language semantics.