TDT4305 2021 - Assignment 4

Adwords problem

1. Given the following table of advertisers and their bids on queries, compute the advertiser-query pairs using the three algorithms. For all algorithms, tie-break on the index, smallest index first. Highlight the chosen advertiser at each time.

Advertiser	Query	Bid	
a_1	q_1	0.5	
a_1	q 3	1	
a_2	q_2	0.5	
a_3	q_2	0.5	
<i>a</i> ₃	q_4	1	
<i>a</i> ₄	q_1	0.75	

a) Assume for the Greedy algorithm that all bids are 1 or 0 and the budget of each advertiser a_i is B_i =2. Fill in the table for the Greedy algorithm.

Time	Query	Candidates	Budget left	Accu. revenue	Notes
1	q_1	<u>a1</u> , a4	$B_1 = 1$	1	Tie-break
2	q_2	<u>a2</u> , a3	$B_2 = 1$	2	Tie-break
3	q 3				
4	q_4				
5	q_3				
6	q 3				
7	q_2				
8	q_4				

Assume the following budgets B_i for advertisers a_i in the next two algorithms:

Advertiser	Budget	
a_1	3	
a_2	1	
a_3	1	
<i>a</i> ₄	2	

b) Fill in the table for the Balance algorithm.

Time	Query	Candidates & bids	Budget left	Accu. revenue	Notes
1	q_1	$(a_1, 0.5), (a_4, 0.75)$	$B_1 = 2.5$	0.5	Largest remaining budget
2	q_2	$(a_2, 0.5), (a_3, 0.5)$	$B_2 = 0.5$	1	Tie-break
3	q_3				
4	q_4				
5	q_3				
6	q_3				
7	q_2				
8	q_4				

c) Fill in the table for the Generalized Balance algorithm.

Time	Query	Candidates & bids	Scores	Budget left	Accu. revenue	Notes
1	q_1	$(a_1, 0.5), (a_4, 0.75)$	0.5(1-e ⁻¹)≈0.31 0.75(1-e ⁻¹)≈0.47	B ₄ =1.25	0.75	Highest score
2	q_2	$(a_2, 0.5), (a_3, 0.5)$	0.5(1-e ⁻¹)≈0.31 0.5(1-e ⁻¹)≈0.31	B_2 =0.5	1.25	Tie-break
3	q_3					
4	q_4					
5	q_3					
6	q_3					
7	q_2					
8	q_4					

- 2. What is the definition of the competitive ratio?
- 3. What is broad matching and why is it useful?
- 4. What is second-price auction and why is it useful?