

General Description

The MAX4389/MAX4390/MAX4392-MAX4396 family of op amps are unity-gain stable devices that combine high-speed performance, rail-to-rail outputs, and disable mode. These devices are targeted for applications where an input or an output is exposed to the outside world, such as video and communications.

The MAX4389/MAX4390/MAX4392-MAX4396 operate from a single 4.5V to 11V supply or from dual ±2.25V to ±5.5V supplies. The common-mode input voltage range extends to the negative power-supply rail (ground in single-supply applications). The MAX4389/MAX4390/ MAX4392-MAX4396 consume only 5.5mA of guinescent supply current per amplifier while achieving a 85MHz -3dB bandwidth, 27MHz 0.1dB gain flatness, and a 500V/µs slew rate. Disable mode sets the outputs to high impedance while consuming only 450µA of current.

The MAX4389 single, MAX4393 dual, MAX4394 triple, and MAX4396 quad include disable capabilities. The MAX4389 and MAX4390 are available in ultra-small, 6-pin SC70 packages.

Applications

Set-Top Boxes

Surveillance Video Systems

Analog-to-Digital Converter Interface

CCD Imaging Systems

Digital Cameras

Video-on-Demand

Video Line Driver

Typical Operating Circuit

Features

- **♦ Low Cost**
- ♦ High Speed 85MHz -3dB Bandwidth 27MHz 0.1dB Gain Flatness 500V/µs Slew Rate
- ♦ Single 4.5V to 11V or Dual ±2.25V to ±5.5V Operation
- ♦ Rail-to-Rail Outputs
- ♦ Input Common-Mode Range Extends to VEE
- ♦ Low Differential Gain/Phase: 0.015%/0.015°
- ♦ Low Distortion at 5MHz -59dBc Spurious-Free Dynamic Range
- ♦ High Output Drive: ±50mA
- ♦ 450µA Disable Capability (MAX4389/MAX4393/MAX4394/MAX4396)
- ♦ Space-Saving SC70, SOT23, μMAX, or TSSOP **Packages**

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4389EXT+T	-40°C to +85°C	6 SC70	ABF
MAX4389EUT+T	-40°C to +85°C	6 SOT23	ABDC
MAX4389EUT/V+T	-40°C to +85°C	6 SOT23	ABDC
MAX4390EXT+T	-40°C to +85°C	6 SC70	ABE
MAX4390EUK+T	-40°C to +85°C	5 SOT23	ADZM

Ordering Information continued at end of data sheet.

Selector Guide appears at end of data sheet.

+Denotes a lead(Pb)-free/RoHs-compliant package. /V denotes an automotive qualified part.

T = Tape and reel.

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)	0.3\	/ to +12V
IN_+, IN, OUT_, DISABLE(VE	EE - 0.3V) to (VC	C + 0.3V
Differential Input Voltage		±2.5V
Current into Input Pins		±20mA
Output Short-Circuit Duration to		
VCC or VEE (Note 1)	Cc	ontinuous
Continuous Power Dissipation ($T_A = +7$	′0°C)	
5-Pin SOT23 (derate 7.1mW/°C abov	/e +70°C)	571mW
6-Pin SOT23 (derate 8.7mW/°C abov	/e +70°C)	696mW
6-Pin SC70 (derate 3.1mW/°C above	e +70°C)	245mW

8-Pin SO (derate 5.88mW/°C above +70°C)471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C)362mW
10-Pin μMAX (derate 5.6mW/°C above +70°C)444mW
14-Pin SO (derate 8.33mW/°C above +70°C)667mW
14-Pin TSSOP (derate 10mW/°C above +70°C)727mW
20-Pin TSSOP (derate 10.9mW/°C above +70°C)879mW
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Continuous power dissipation must also be observed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—Single Supply

 $(V_{CC} = 5V, V_{EE} = 0V, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \overline{DISABLE} = V_{CC} \text{ (MAX4389/MAX4394/MAX4394/MAX4396)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.)} \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS	
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by	CMRR test	V _{EE} - 0.2		V _{CC} - 2.25	V	
Input Offact Voltage	Vac	T _A = +25°C			5	18	mV	
Input Offset Voltage	Vos	$TA = -40^{\circ}C \text{ to } +$	85°C			26	TIIV	
Input Offset Voltage Matching		MAX4392-MAX	4396		1		mV	
Input Offset Voltage Tempco	TC _{VOS}				15		μV/°C	
Input Bias Current	IB				2.5	15	μΑ	
Input Offset Current	los				0.2	5	μΑ	
Input Resistance	Dur	Differential mod	$e (-1V \le V_{ N} \le +1V)$		70		kΩ	
input Resistance	RIN	Common mode		3		MΩ		
Common-Mode Rejection Ratio	CMRR	$(V_{EE} - 0.2V) \le V_0$	CM ≤ (V _{CC} - 2.25V)	70	95		dB	
Open-Loop Gain		$0.25V \le V_{OUT} \le 4.75V$, $R_L = 2k\Omega$		50	70			
	Avol	$0.8V \le V_{OUT} \le 4.5V$, $R_L = 150\Omega$		50	60		dB	
		$1V \le V_{OUT} \le 4V$		58				
		Pt = 2k0	V _{CC} - V _{OH}		0.065	0.25]	
		$R_L = 2k\Omega$	V _{OL} - V _{EE}		0.05	0.15		
		$R_L = 150\Omega$	V _{CC} - V _{OH}		0.3	0.5	1	
Output Voltage Swing	V _{OUT}	11[= 130\$2	V _{OL} - V _{EE}		0.25	0.5	,	
Output voltage Swing	VO01	$R_L = 75\Omega$	V _{CC} - V _{OH}		0.5	0.8	J	
		HL = 7322	V _{OL} - V _{EE}		0.45	0.8]	
		$R_L = 75\Omega$ to	V _{CC} - V _{OH}		1	1.7		
		ground	V _{OL} - V _{EE}		0.025	0.1]	
Output Current	lour	Sinking from R _L	= 75Ω to V_{CC}	40	55		mA	
Output Current	lout	Sourcing into $R_L = 75\Omega$ to V_{EE}		40	50		IIIA	
Output Short-Circuit Current	I _{SC}	Sinking or source		±100		mA		
Open-Loop Output Resistance	Rout				8		Ω	

DC ELECTRICAL CHARACTERISTICS—Single Supply (continued)

(V_{CC} = 5V, V_{EE} = 0V, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, $R_L = \infty$ to V_{CC}/2, $\overline{DISABLE}_{-} = V_{CC}$ (MAX4389/MAX4394/MAX4396), $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio	PSRR	$V_{EE} = 0V$, $V_{CC} = 4.5V$ to 5.5V	48	65		dB
Operating Supply Voltage Range	Vs	Guaranteed by PSRR	4.5		11	V
Disabled Output Resistance	Rout(off)	DISABLE_ = 0, 0 ≤ V _{OUT} ≤ 5V	40	95		kΩ
DISABLE_ Logic-Low Threshold	V _{IL}				V _{CC} - 3	V
DISABLE_ Logic-High Threshold	VIH		V _{CC} - 1.25			V
DISABLE_ Logic Input Low Current	lıL	DISABLE_ = 0		20	60	μΑ
DISABLE_ Logic Input High Current	I _{IH}	DISABLE_ = V _{CC}		5	40	μΑ
Quiescent Supply Current	lo	DISABLE_ = V _{CC}		3.2	5	mA
(Per Amplifier)	IS	DISABLE_ = 0		0.3	0.4	IIIA

DC ELECTRICAL CHARACTERISTICS—Dual Supply

 $(V_{CC}=5V,\ V_{EE}=-5V,\ V_{CM}=0V,\ V_{OUT}=0V,\ R_L=\infty\ to\ 0,\ \overline{DISABLE}_=V_{CC}\ (MAX4389/MAX4393/MAX4394/MAX4396),\ T_A=T_{MIN}\ to\ T_{MAX},\ unless\ otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Common-Mode Voltage	V _{CM}	Guaranteed by CMRR test	VEE		V _{CC} - 2.25	V
Input Offset Voltage	Voc	$T_A = +25^{\circ}C$		7	20	mV
Input Onset Voltage	Vos	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			28	IIIV
Input Offset Voltage Matching		MAX4392-MAX4396		1		mV
Input Offset Voltage Tempco	TC _{VOS}			20		μV/°C
Input Bias Current	lΒ			5	15	μΑ
Input Offset Current	los			0.5	5	μΑ
Input Resistance	D., .	Differential mode (-1V \leq V _{IN} \leq +1V)		70		kΩ
Imput nesistance	R _{IN}	Common mode (-0.2V ≤ V _{CM} ≤ +2.75V)		3		МΩ
Common-Mode Rejection Ratio	CMRR	V _{EE} ≤ V _{CM} ≤ (V _{CC} - 2.25V)	70	90		dB
Open Leon Gain	Λνοι	$-4.5V \le V_{OUT} \le 4.5V$, $R_L = 2k\Omega$	65	80		dB
Open-Loop Gain	Avol	$-4.25V \le V_{OUT} \le 4.25V, R_L = 150\Omega$	50	60		uB

DC ELECTRICAL CHARACTERISTICS—Dual Supply (continued)

(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, V_{OUT} = 0V, R_L = ∞ to 0, $\overline{\text{DISABLE}}$ = V_{CC} (MAX4389/MAX4393/MAX4394/MAX4396), T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	СО	MIN	TYP	MAX	UNITS	
		$R_1 = 2k\Omega$	Vcc - Voh		0.175	0.3	
		nL = 2K22	Vol - VEE		0.075	0.2	
Output Valtage Swing	V 0 1 7	D: 1500	VCC - VOH		0.575	0.85	V
Output Voltage Swing	Vout	$R_L = 150\Omega$	V _{OL} - V _{EE}		0.4	1.5	V
		D. 750	VCC - VOH		1.5	2.35	
		$R_L = 75\Omega$	Vol - VEE		0.75	1.6	
Output Current	lour.	Sinking from $R_L = 75\Omega$ to V_{CC}		50	95		m 1
Output Current	lout	Sourcing into R _L =	ing into $R_L = 75\Omega$ to V_{EE}		75		mA
Output Short-Circuit Current	Isc	Sinking or sourcing	g		±100		mA
Open-Loop Output Resistance	Rout				8		Ω
Power-Supply Rejection Ratio	PSRR	$V_{EE} = 0V$, $V_{CC} = 4$.5V to 5.5V	48	60		dB
Operating Supply Voltage Range	Vs	Guaranteed by PS	RR	4.5		11	V
Disabled Output Resistance	Rout(off)	DISABLE_ = 0V, -5	5V ≤ V _{OUT} ≤ +5V	40	95		kΩ
DISABLE_ Logic-Low Threshold	V _{IL}					V _{CC} - 3	V
DISABLE_ Logic-High Threshold	VIH			V _{CC} - 1.25	5		V
Quiescent Supply Current	lo	DISABLE_ = V _{CC}			6	10	mA
(Per Amplifier)	IS	DISABLE_ = 0V			0.45	0.8	IIIA

AC ELECTRICAL CHARACTERISTICS—Single Supply

 $(V_{CC}=5V,\ V_{EE}=0V,\ V_{CM}=1.5V,\ R_L=100\Omega\ to\ V_{CC}/2,\ \overline{DISABLE}_=V_{CC}\ (MAX4389/MAX4393/MAX4394/MAX4396),\ V_{OUT}=V_{CC}/2,\ A_{VCL}=1V/V,\ T_A=+25^{\circ}C,\ unless\ otherwise\ noted.)$

PARAMETER SYMI		CONDITIONS	MIN	TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	$V_{OUT} = 100 \text{mV}_{P-P}$		72		MHz
Large-Signal -3dB Bandwidth	BWLS	$V_{OUT} = 2V_{P-P}$		80		MHz
Small-Signal 0.1dB Gain Flatness	BW _{0.1dBSS}	V _{OUT} = 100mV _{P-P}		30		MHz
Large-Signal 0.1dB Gain Flatness	BW _{0.1dBLS}	V _{OUT} = 2V _{P-P}		30		MHz
Slew Rate	SR	V _{OUT} = 2V step		500		V/µs
Settling Time to 0.1%	g Time to 0.1% t_S $V_{OUT} = 2V$ step			28		ns
Rise/Fall Time	t _R /t _F	$V_{OUT} = 100 \text{mV}_{P-P}$		4		ns
Spurious-Free Dynamic Range	SFDR	$f_C = 5MHz$, $V_{OUT} = 2V_{P-P}$		-59	•	dBc

AC ELECTRICAL CHARACTERISTICS—Single Supply (continued)

 $(V_{CC}=5V,\,V_{EE}=0V,\,V_{CM}=1.5V,\,R_L=100\Omega$ to $V_{CC}/2,\,\overline{DISABLE}_=V_{CC}$ (MAX4389/MAX4393/MAX4394/MAX4396), $V_{OUT}=V_{CC}/2,\,A_{VCL}=1V/V,\,T_A=+25^{\circ}C,\,unless$ otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	0.015		degrees
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	0.015		%
Input Noise-Voltage Density	en	f = 10kHz	13		nV/√Hz
Input Noise-Current Density	in	f = 10kHz	2.1		pA/√Hz
Input Capacitance	CIN		1		рF
Output Impedance	Z _{OUT}	f = 5MHz	0.6		Ω
Disable OFF Time		MAX4389/MAX4393/MAX4394/MAX4396	80		ns
Disable ON Time		MAX4389/MAX4393/MAX4394/MAX4396	40		ns
Channel-to-Channel Isolation	CHISO	MAX4392-MAX4396, specified at DC	-97		dB

AC ELECTRICAL CHARACTERISTICS—Dual Supply

 $(V_{CC} = 5V, V_{EE} = -5V, R_L = \infty \text{ to GND, GND} = 0, V_{OUT} = 0V, Gain = 1V/V, \overline{DISABLE} = V_{CC}, and T_A = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Small-Signal -3dB Bandwidth	BW _{SS}	$V_{OUT} = 100 \text{mV}_{P-P}$	85	
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2V _{P-P}	90	MHz
Small-Signal Bandwidth for 0.1dB Gain Flatness	BW _{0.1dBss}	V _{OUT} = 100mV _{P-P}	27	MHz
Large-Signal Bandwidth for 0.1dB Gain Flatness	BW _{0.1dBLS}	V _{OUT} = 2V _{P-P}	24	MHz
Slew Rate	SR	V _{OUT} = 2V step	500	V/µs
Settling Time to 0.1%	ts	V _{OUT} = 2V step	21	ns
Rise/Fall Time	t _R /t _F	$V_{OUT} = 100 \text{mV}_{P-P}$	4	ns
Spurious-Free Dynamic Range	SFDR	$f_C = 5MHz$, $V_{OUT} = 2V_{P-P}$	-59	dBc
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	0.015	degrees
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	0.015	%
Input Noise-Voltage Density	e _n	f = 10kHz	13	nV/√Hz
Input Noise-Current Density	in	f = 10kHz	2.1	pA/√ Hz
Input Capacitance	CIN		1	рF
Output Impedance	Z _{OUT}	f = 5MHz 0.6		Ω
Disable OFF Time		MAX4389/MAX4393/MAX4394/MAX4396	80	ns
Disable ON Time		MAX4389/MAX4393/MAX4394/MAX4396 40		ns
Channel-to-Channel Isolation	CH _{ISO}	MAX4392/MAX4393/MAX4394/MAX4395/ MAX4396, specified at DC		dB

Note 2: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.

100k

FREQUENCY (Hz)

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

Typical Operating Characteristics

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25^{\circ}C$, unless otherwise noted.)

FREQUENCY (Hz)

100M

100k

FREQUENCY (Hz)

100M

100k

100M

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25$ °C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

				PIN					
MAX4389	MAX	X4390	MAX4392	MAX4393	MAX4394	MAX4395	MAX4396	NAME	FUNCTION
SC70/SOT23	SC70	SOT23	μMAX/SO	μMAX	SO/TSSOP	SO/TSSOP	TSSOP		
1	1	1	_	_	_	_	_	OUT	Amplifier Output
2	2	2	4	4	11	11	16	VEE	Negative Power Supply. Connect a 0.1µF Capacitor to GND.
3	3	3	_	_	_	_	_	IN+	Noninverting Input
4	4	4	_	_	_	_	_	IN-	Inverting Input
5	_	_	_	_	_	_	_	DISABLE	Disable. Connect to VCC to Enable.
6	6	5	8	10	4	4	5	Vcc	Positive Power Supply. Connect a 0.1µF Capacitor to GND.
_	5	_	_	_	_	_	10, 11	N.C.	No Connection. Not Internally Connected.
_	_	_	3	3	5	3	4	INA+	Amplifier A Noninverting Input
_	_	_	2	2	6	2	3	INA-	Amplifier A Inverting Input
_	_	_	1	1	7	1	2	OUTA	Amplifier A Output
_	_	_	_	5	1	_	1	DISABLEA	Shutdown Amplifier A. Connect to VCC to Enable.
_	_	_	5	7	10	5	6	INB+	Amplifier B Noninverting Input
_	_	_	6	8	9	6	7	INB-	Amplifier B Inverting Input
_	_	_	7	9	8	7	8	OUTB	Amplifier B Output

MAX4389/MAX4390/MAX4392-MAX439

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

Pin Description (continued)

				PIN					
MAX4389	MAX	K 4390	MAX4392	MAX4393	MAX4394	MAX4395	MAX4396	NAME	FUNCTION
SC70/SOT23	SC70	SOT23	μMAX/SO	μMAX	SO/TSSOP	SO/TSSOP	TSSOP		
_	_		l	6	3		9	DISABLEB	Shutdown Amplifier B. Connect to V _{CC} to Enable.
_			l	_	12	10	15	INC+	Amplifier C Noninverting Input
_	_		_	_	13	9	14	INC-	Amplifier C Inverting Input
_	_	_	_	_	14	8	13	OUTC	Amplifier C Output
_	_	_	_	_	2	_	12	DISABLEC	Shutdown Amplifier C. Connect to VCC to Enable.
_	_	_	_	_	_	12	17	IND+	Amplifier D Noninverting Input
_	_	_	_	_	_	13	18	IND-	Amplifier D Inverting Input
_		_	_	_	_	14	19	OUTD	Amplifier D Output
_	_	_	_	_	_	_	20	DISABLED	Shutdown Amplifier D. Connect to VCC to Enable.

Detailed Description

The MAX4389/MAX4390/MAX4392–MAX4396 are dual-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 500V/µs slew rates and 85MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

Applications Information

The output voltage swings to within 200mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce

gain sensitivity to load variations. The input stage permits common-mode voltages to the negative supply and to within 2.25V of the positive supply rail.

Choosing Resistor Values

Unity-Gain Configuration

The MAX4389/MAX4390/MAX4392–MAX4396 are internally compensated for unity gain. When configured for unity gain, a 24Ω resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Video Line Driver

The MAX4389/MAX4390/MAX4392–MAX4396 are low-power, voltage-feedback amplifiers featuring large-signal (2VP-P) bandwidths of 90MHz and 0.1dB large-signal gain flatness of 24MHz. They are designed to minimize differential-gain error and differential-phase error to 0.015% and 0.015°, respectively. They have a 21ns settling time to 0.1%, 500V/µs slew rates, and out-put-current-drive capability of up to 50mA making them ideal for driving video loads.

Inverting and Noninverting Configurations

Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using $2k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 79.6MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $2k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor (Figures 1a and 1b).

Figure 1a. Noninverting Gain Configuration

Figure 1b. Inverting Gain Configuration

Layout and Power-Supply Bypassing

The MAX4389/MAX4390/MAX4392–MAX4396 operate from single 4.5V to 11V or from dual ± 2.25 V to ± 5.5 V supplies. Bypass each supply with a 0.1μ F capacitor as close to the pin as possible.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Do not use wire-wrap boards; they are too inductive.
- Do not use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better, high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Low-Power Disable Mode

The MAX4389/MAX4393/MAX4394/MAX4396 feature a disable function that allows the amplifiers to be placed in a low-power, high-output-impedance state. When the disable pin (DISABLE) is active, the amplifier's output impedance is $95 k\Omega$. This high resistance and the low 2pF output capacitance make the MAX4389/MAX4390/MAX4392–MAX4396 in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading (see the Output Capacitive Loading and Stability section).

Output Capacitive Loading and Stability

The MAX4389/MAX4390/MAX4392-MAX4396 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the Optimal Isolation Resistor (Rs) vs. Capacitive Load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 10Ω to 15Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 15Ω isolation resistor on closed-loop response.

__ /N/XI/N

Figure 2. Driving a Capacitive Load Through an Isolation Resistor

Figure 3. Isolation Resistance vs. Capacitive Load

Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor

Chip Information

MAX4389 TRANSISTOR COUNT: 70
MAX4390 TRANSISTOR COUNT: 70
MAX4392 TRANSISTOR COUNT: 204
MAX4393 TRANSISTOR COUNT: 298
MAX4394 TRANSISTOR COUNT: 396
MAX4396 TRANSISTOR COUNT: 396

PROCESS: BICMOS

Pin Configurations (continued)

Pin Configurations (continued)

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4392ESA+T	-40°C to +85°C	8 SO	_
MAX4392EUA+T	-40°C to +85°C	8 µMAX	_
MAX4392EUA/V+T	-40°C to +85°C	8 µMAX	_
MAX4393EUB+T	-40°C to +85°C	10 μMAX	_
MAX4394ESD+T	-40°C to +85°C	14 SO	_
MAX4394ESD/V+T	-40°C to +85°C	14 SO	_
MAX4394EUD+T	-40°C to +85°C	14 TSSOP	_
MAX4394EUD/V+T	-40°C to +85°C	14 TSSOP	_
MAX4395ESD+T	-40°C to +85°C	14 SO	_
MAX4395ESD/V+T	-40°C to +85°C	14 SO	_
MAX4395EUD+T	-40°C to +85°C	14 TSSOP	_
MAX4395EUD/V+T	-40°C to +85°C	14 TSSOP	_
MAX4396EUP+T	-40°C to +85°C	20 TSSOP	_

⁺Denotes a lead(Pb)-free/RoHs-compliant package. /V denotes an automotive qualified part.

Selector Guide

NO. OF AMPS	DISABLE
1	Yes
1	No
2	No
2	Yes
3	Yes
4	No
4	Yes
	1 1 2 2

T = Tape and reel.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
6 SC70	X5-1	<u>21-0077</u>
6 SOT23	U6-1	<u>21-0058</u>
5 SOT23	U5-1	<u>21-0057</u>
8 μMAX	U8-1	<u>21-0036</u>
10 μMAX	U10-2	<u>21-0061</u>
8 SO, 14 SO	S8-2, S14-1	<u>21-0041</u>
14 TSSOP, 20 TSSOP	U14-1, U20-3	21-0066

(DIMENSION	12
SYMBOL	MIN	NDM	MAX
Α	0.80	0.95	1.10
A1	0.00	0.07	0.10
A2	0.80	0.90	1.00
b	0.15	0.22	0.30
С	0.10	0.14	0.18
D	1.80	2.00	2.20
е	0.65 BSC.		
E	1.15	1.25	1.35
HE	1.80	2.20	2.40
L	0.26	0.34	0.46
L1	0.425 TYP.		
Q1	0.10	0.25	0.40
PKG. CODES	X62N-	-1	

-19

SC70,

- ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS ARE INCLUSIVE OF PLATING.
 DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH & METAL BURR.
- 4. COPLANARITY 4 MILS. MAX.

 \$\frac{1}{2}\$ FOOT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM "A" AND LEAD SURFACE.
- MARKING IS FOR PACKAGE DRIENTATION REFERENCE ONLY.
- LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY
- BASIC DIMENSIONS COMPLY TO JEDEC MO-203.
 ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND LEAD FREE (+) PACKAGE CODES.

-DRAWING NOT TO SCALE-

A2

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

FOOT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A & LEAD SURFACE.

- 3. PACKAGE DUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR, MOLD FLASH, PROTRUSION OR METAL BURR SHOULD NOT EXCEED 0.25mm.
- 4. PACKAGE DUTLINE INCLUSIVE OF SOLDER PLATING.
- 5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)
- 6. PIN 1 I.D. DOT IS 0.3mm Ø MIN. LOCATED ABOVE PIN 1.
- 7. MEETS JEDEC MO178, VARIATION AB.
- 8. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEADTIP.
- 9. LEAD TO BE COPLANAR WITHIN 0.1mm.
- 10. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

SYMBOL	MIN	NOMINAL	MAX
Α	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
С	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0,45	0.60
L1	0.60 REF.		
el	1.90 BSC.		
6	0.95 BSC.		
۵	0*	2.5*	10°
PKG CODES:			

U6-1, U6-2, U6-4, U6C-8, U6SN-1, U6CN-2, U6S-3, U6F-5, U6F-6, U6FH-5, U6FH-6

PACKAGE OUTLINE, SOT 6L BODY

APPROVAL

DICLIENT EDITRIL NO.

21-0058

REV. 2/2

-DRAWING NOT TO SCALE-

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

MIXIM

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
4	11/09	Added automotive qualified parts	2, 15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim is a registered trademark of Maxim Integrated Products, Inc.