AMENDMENTS TO THE SPECIFICATION

IN THE TITLE

Please amend the title as follows:

RECORDING MATERIAL COMPRISING DIPHENYL SULFONE-USING

DIPHENYLSULFONE DERIVATIVE AND NOVEL DIPHENYL SULFONE

DIPHENYLSULFONE DERIVATIVE COMPOUND

Following the title, please insert the following paragraphs:

Cross-Reference to Prior Application

This is a U.S. National Phase application under 35 U.S.C. §371 of International Patent Application No. PCT/JP2003/013689 filed October 27, 2003, and claims the benefit of Japanese Patent Application No. 2002-315812 filed October 30, 2002 and which is incorporated by reference herein. The International Application was published in Japanese on May 13, 2004 as WO 2004/039770 A1 under PCT Article 21(2).

Please replace Table 2 beginning on page 9 ending on page 10 with the following:

Table 2

$$\text{HO} \xrightarrow{\text{(R}^3) \text{ p}} \text{SO}_2 \xleftarrow{\text{(R}^4) \text{ q}} \text{O} \xrightarrow{\text{R}^1} \text{O} \text{C} \text{N} < \text{R}^6$$

Compound No.	R ¹	R ²	n	(R ³)p	(R ⁴)q	R ⁶	R ⁷	Melting point (°C)
52	Н	Н	1	none	none	Н	Н	
53	Н	Н	1	none	none	CH ₃	Н	
54	Н	Н	1	none	none	CH ₃	CH ₃	
55	Н	Н	1	none	none	C ₂ H ₅	Н	
56	Н	Н	1	none	none	C ₂ H ₅	C ₂ H ₅	223-226
57	Н	Н	1	none	none	n-C ₃ H ₇	n-C ₃ H ₇	
58	Н	Н	1	none	none	n-C ₄ H ₉	Н	
59	Н	Н	1	none	none	n-C ₄ H ₉	n-C ₄ H ₉	209-212
60	Н	Н	1	none	none	Ph	Н	
61	Н	Н	1	none	none	Ph	Ph	
62	Н	Н	1	none	none	CH ₂ Ph	Н	
63	Н	Н	1	none	none	CH ₂ Ph	CH ₂ Ph	
64	CH ₃	Н	1	none	none	CH ₃	Н	
65	CH ₃	Н	1	none	none	CH ₃	CH ₃	
66	CH ₃	Н	1	none	none	C ₂ H ₅	Н	
67	CH ₃	Н	1	none	none	C ₂ H ₅	C ₂ H ₅	
68	CH ₃	Н	1	none	none	n-C ₃ H ₇	n-C ₃ H ₇	
69	CH ₃	Н	1	none	none	n-C ₄ H ₉	Н	
70	CH ₃	Н	1	none	none	n-C ₄ H ₉	n-C ₄ H ₉	
71	CH ₃	Н	1	none	none	Ph	Н	
72	CH ₃	Н	1	none	none	Ph	Ph	
73	CH ₃	Н	1	none	none	CH ₂ Ph	Н	
74	CH ₃	Н	1	none	none	CH ₂ Ph	CH ₂ Ph	
75	CH ₃	CH ₃	1	none	none	C ₂ H ₅	C ₂ H ₅	
76	CH ₃	CH ₃	1	none	none	n-C ₃ H ₇	n-C ₃ H ₇	
77	CH ₃	CH ₃	1	none	none	n-C ₄ H ₉	n-C ₄ H ₉	
78	Н	Н	2	none	none	CH ₃	Н	
79	Н	Н	2	none	none	CH ₃	CH ₃	

Table 2 (continued)

Compound No.	\mathbb{R}^1	R ²	n	(R³)p	(R ⁴)q	R ⁶	R ⁷	Melting point (°C)
80	Н	Н	2	none	none	C ₂ H ₅	Н	()
81	Н	Н	2	none	none	C ₂ H ₅	C ₂ H ₅	
82	Н	Н	2	none	none	n-C ₃ H ₇	n-C ₃ H ₇	
83	Н	Н	2	none	none	n-C ₄ H ₉	Н	
84	Н	Н	2	none	none	n-C ₄ H ₉	n-C ₄ H ₉	
85	Н	Н	2	none	none	Ph	Н	
86	H	H	2	none	none	Ph	Ph	
87	Н	H	2	none	none	CH ₂ Ph	Н	
88	Н	Н	2	none	none	CH ₂ Ph	CH ₂ Ph	
89	Н	Н	1	3,5- (CH ₃) ₂	2,6- (CH ₃) ₂	C ₂ H ₅	C ₂ H ₅	
90	Н	Н	1	3,5- (CH ₃) ₂	2,6- (CH ₃) ₂	n-C ₄ H ₉	n-C ₄ H ₉	
91	Н	Н	1	3,5-(Br) ₂	2,6-(Br) ₂	C ₂ H ₅	C ₂ H ₅	
92	Н	Н	1	3,5-(Br) ₂	2,6-(Br) ₂	n-C ₄ H ₉	n-C ₄ H ₉	
93	Н	Н	1	2-Allyl	2-Allyl	C ₂ H ₅	C ₂ H ₅	
94	Н	Н	1	2-Allyl	2-Allyl	n-C ₄ H ₉	n-C ₄ H ₉	

Please replace the first full paragraph, beginning on line 24, page 16 and ending on line 15, page 17:

As the fluorescent dyes, for example, 4,4'-bis[2-anilino-4-(2-hydroxyethyl)amino-1,3,5 triazinyl 6 amino|stilbene 2,2' disulfonic acid disodium salt, 4,4' bis[2 anilino 4 bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino|stilbene-2,2'-disulfonic acid-disodium salt, 4,4'bis[2 methoxy 4 (2-hydroxyethyl)amino 1,3,5 triazinyl-6-amino stilbene 2,2'-disulfonic acid=disodium salt, 4,4' bis[2-methoxy-4-(2-hydroxypropyl)amino-1,3,5-triazinyl-6amino]stilbene-2,2'-disulfonic acid=disodium salt, 4,4'-bis[2-methoxy-4-(2-hydroxypropyl)amino-1,3,5 triazinyl-6 amino stilbene 2,2' disulfonic acid disodium salt, 4,4' bis[2-m-sulfoanilino-4bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'-disulfonic acid-disodium salt、 4-[2p-sulfoanilino-4-bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino-4' [2-m-sulfoanilino-4bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino|stilbene-2,2' disulfonic acid=tetrasodium salt; 4,4' bis[2-p-sulfoanilino 4-bis(hydroxyethyl)amino-1,3,5 triazinyl-6-amino|stilbene-2,2'-disulfonic acid=tetrasodium-salt, 4,4'-bis[2-(2,5-disulfoanilino)-4-phenoxyamino-1,3,5-triazinyl-6amino]stilbene-2,2'-disulfonic acid=hexasodium salt, 4,4'-bis[2-(2,5-disulfoanilino)-4-(pmethoxycarbonylphenoxy)amino-1,3,5 triazinyl-6-amino|stilbene-2,2'-disulfonic acid-hexasodium salt, 4,4' bis[2-(p-sulfophenoxy)-4-bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'disulfonic acid=tetrasodium salt, 4,4'-bis[2-(2,5-disulfoanilino)-4-formalinylamino-1,3,5-triazinyl-6-amino|stilbene-2,2' disulfonic acid=hexasodium salt, 4,4'-bis[2-(2,5-disulfoanilino) 4bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'-disulfonic acid=hexasodium salt, and the like can be mentioned.

With the following paragraph:

As the fluorescent dyes, for example, 4,4'-bis[2-anilino-4-(2-hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'-disulfonic acid disodium salt, 4,4'-bis[2-anilino-4-bis(hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'-disulfonic acid disodium salt, 4,4'-bis[2-methoxy-4-(2-hydroxyethyl)amino-1,3,5-triazinyl-6-amino]stilbene-2,2'-disulfonic acid

the like can be mentioned.

6