14.HAFTA

12. İLİŞKİ KATSAYILARI

İki değişken arasındaki ilişkinin belirlenmesinde ve yorumlanmasında ilişki katsayıları sıklıkla kullanılır. Örneğin, Cinsiyet ile gözlük kullanımı, ülkenin gelişmişlik sıralaması ile çevre kirliliği sıralaması, öğrencinin sınav puanı ile sınava çalışma süresi arasındaki ilişkiler gibi.

Yaygın olarak kategorik değişkenler arasındaki ilişkiyi çapraz tablolar yardımıyla Cramer's v katsayısı ile, sayısal değişkenler arasındaki ilişkiyi Spearman's ρ katsayısı ve Pearson's r katsayısı ile incelenir.

İlişki katsayılarının mutlak değerce alabileceği değerlerin genel yorumu için aşağıdaki tablodan yararlanılır.

Katsayı	Yorum
0.00-0.19	Çok zayıf ilişki
0.20-0.39	Zayıf ilişki
0.40-0.69	Orta düzeyde ilişki
0.70-0.89	Güçlü ilişki
0.90-1.00	Çok güçlü ilişki

12.1 Cramer's v katsayısı: Kategorik değişkenler arasındaki ilişkilerin gösterilmesinde çapraz tablolar ya da kontenjans tabloları kullanılır. İki ya da daha fazla gruba sahip iki kategorik değişken için çapraz tabloların genel gösterimi aşağıdaki gibidir.

		DEĞİŞKEN II				
		Grup 1	Grup 2		Grup C	Toplam
	Grup 1	G ₁₁	G ₁₂		G _{1C}	R ₁
	Grup 2	G ₂₁	G22		G _{2C}	R ₂
DEĞİŞKEN I						i
	Grup C	G _{R1}	G _{R2}		Grc	R _R
	Toplam	C ₁	C ₂		Cc	n

- i = 1, 2, ..., R olup Değişken I de R tane grup vardır.
- ❖ j = 1,2, ..., C olup Değişken II de C tane grup vardır
- G_{ij} : i inci satır ve j inci sütundaki gözlenen frekanslar.
- R_i : i inci satır toplamı.
- \bullet C_i : j inci sütun toplamı.

- ❖ n: verideki toplam gözlem sayısı olmak üzere
- ❖ $B_{ij} = \frac{R_i * C_j}{n}$ ile hesaplanan B_{ij} ye i inci satır ve j inci sütun beklenen frekans denir
- $\chi_h^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(G_{ij} B_{ij})^2}{B_{ij}}$ değerine de ki-kare hesap değeri denir.

RxC türündeki çapraz tablo ile ifade edilen iki kategorik değişken arasındaki ilişkiyi için Cramer's in \boldsymbol{v} katsayısı

$$v = \sqrt{\frac{\chi_h^2}{n * min\{(R-1), (C-1)\}}}$$

şeklinde hesaplanır. v katsayısı sıfır ile bir arasında değerler alır $(0 \le v \le 1)$. v = 0 olması iki değişken arasında ilişkinin olmadığı, v = 1 olması da iki değişken arasında tam ilişki olduğu anlamına gelir. Sıfıra yakın değerler zayıf ilişkiyi, bire yakın değerlerde güçlü ilişkiyi gösterir. Katsayının yorumu için verilen tablodan yararlanılabilir.

Örnek: Matematik bölümü öğrencilerinin cinsiyetleri ile istatistik dersinde başarılı olmaları arasında bir ilişki olup olmadığını verilen çapraz tablo yardımıyla inceleyiniz ve yorumlayınız.

	Başarı Durumu			
Cinsiyet	Başarılı	Başarısız		
Erkek	30	40		
Kadın	10	20		

Çözüm: Değişken I: Cinsiyet (Erkek-Kadın) değişkeni R=2 gruba sahip, Değişken II: Başarı Durumu (Başarılı-Başarısız) değişkeni de C=2 gruba sahiptir. Tabloda yer alan gözlenen frekanslar ile satır ve sütun toplamlarını kullanarak beklenen frekanslar B_{ij} ;

	Başarı I		
Cinsiyet	Başarılı	Başarısız	Toplam
Erkek	$G_{11} = 30$	$G_{12} = 40$	$R_1 = 70$
Kadın	$G_{21} = 10$	$G_{22} = 20$	$R_2 = 30$
Toplam	$C_1 = 40$	$C_2 = 60$	n = 100

$$B_{11} = \frac{R_1 * C_1}{n} = \frac{70 * 40}{100} = 28$$

$$B_{12} = \frac{R_1 * C_2}{n} = \frac{70 * 60}{100} = 42$$

$$B_{21} = \frac{R_2 * C_1}{n} = \frac{30 * 40}{100} = 12$$

$$B_{22} = \frac{R_2 * C_2}{n} = \frac{30 * 60}{100} = 18$$

$$\chi_h^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(G_{ij} - B_{ij})^2}{B_{ij}} = \frac{(30 - 28)^2}{28} + \frac{(40 - 42)^2}{42} + \frac{(10 - 12)^2}{12} + \frac{(20 - 18)^2}{18} = 0.79$$

$$R = 2 \text{ ve } C = 2 \text{ olup } min\{(R-1), (C-1)\} = min\{(2-1), (2-1)\} = min\{1,1\} = 1$$

$$v = \sqrt{\frac{\chi_h^2}{n * min\{(R-1), (C-1)\}}} = \sqrt{\frac{0.79}{100 * 1}} = 0.09$$

O halde cinsiyet ile başarı durumu arasındaki ilişki katsayısı v=0.09 olup sıfıra çok yakın olduğu için iki değişken arasında ilişki yok denecek kadar azdır. Ya da ilişki yoktur şeklinde yorumlanır.

Örnek: Bir kurumdaki 200 çalışandan eğitim düzeyi ve en çok izlenen TV program türü değişkenleri için veri derlenmiştir. Verilere göre iki değişken arasındaki ilişki katsayısını hesaplayınız ve yorumlayınız.

		TV program türü				
Eğitim Düzeyi	Dizi	Müzik	Haber	Diğer	Toplam	
İlköğretim	20	10	5	5	40	
Lise	10	40	15	35	100	
Üniversite	10	10	30	10	60	
Toplam	40	60	50	50	200	

Çözüm: Çapraz tabloya göre R=3 ve C=4 olup gözlenen frekanslar

$$G_{11}=20,\,G_{12}=10,\,G_{13}=5,\,G_{14}=5,\,$$
 $G_{21}=10,\,G_{22}=40,\,G_{23}=15,\,G_{24}=35,\,$ $G_{31}=10,\,G_{32}=10,\,G_{33}=30,\,G_{34}=10$ dir. Satır toplamları $R_1=40,\,R_2=100,\,R_3=60$ ve Sütun toplamları $C_1=40,\,C_2=60,\,C_3=50,\,C_4=50$ olup $n=200$ dir. Beklenen frekanslar;

$$\begin{split} B_{11} &= \frac{40*40}{200} = 8, B_{12} = \frac{40*60}{200} = 12, B_{13} = \frac{40*50}{200} = 10, B_{14} = \frac{40*50}{200} = 10 \\ B_{21} &= \frac{100*40}{200} = 20, B_{22} = \frac{100*60}{200} = 30, B_{23} = \frac{100*50}{200} = 25, B_{24} = \frac{100*50}{200} = 25 \\ B_{31} &= \frac{60*40}{200} = 12, B_{32} = \frac{60*60}{200} = 18, B_{33} = \frac{60*50}{200} = 15, B_{34} = \frac{60*50}{200} = 15 \\ \text{olup ki-kare hesap değeri} \end{split}$$

$$\chi_h^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(G_{ij} - B_{ij})^2}{B_{ij}} = \frac{(20 - 8)^2}{8} + \frac{(10 - 12)^2}{12} + \frac{(5 - 10)^2}{10} + \frac{(5 - 10)^2}{10}$$

$$+ \frac{(10 - 20)^2}{20} + \frac{(40 - 30)^2}{30} + \frac{(15 - 25)^2}{25} + \frac{(35 - 25)^2}{25}$$

$$+ \frac{(10 - 12)^2}{12} + \frac{(10 - 18)^2}{18} + \frac{(30 - 15)^2}{15} + \frac{(10 - 15)^2}{15} = 60.22$$

$$R = 3 \text{ ve } C = 4 \text{ olup } \min\{(R - 1), (C - 1)\} = \min\{(3 - 1), (4 - 1)\} = \min\{2,3\} = 2$$

$$v = \sqrt{\frac{\chi_h^2}{n * \min\{(R - 1), (C - 1)\}}} = \sqrt{\frac{60.22}{200 * 2}} = 0.39$$

elde edilir. Bu sonuca göre eğitim düzeyi ile en çok izlenen TV program türü arasında zayıf ya da orta düzeyde ilişki olduğu söylenir.

12.2 Spearman's ρ **katsayısı:** Verilerin belirli bir kritere göre sıralanarak elde edilmiş sıralama ya da oran ölçeğiyle ölçülmüş iki değişken arasındaki ilişkinin derecesini (zayıf/güçlü) ve yönünü (aynı yönlü/ters yönlü) belirlenmek için kullanılır.

n gözleme sahip iki sayısal değişken X ve Y olsun. x_i i inci gözlemin X değişkenine göre sıra puanı, y_i de i inci gözlemin Y değişkenine göre sıra puanı olmak üzere Spearman ilişki katsayısı

$$\rho = 1 - \frac{6 * \sum (x_i - y_i)^2}{n * (n^2 - 1)}$$

ile hesaplanır. Burada $-1 \le \rho \le +1$ olup, pozitif değerler aynı yönlü ilişkiyi (değişkenlerden birinin değeri artarken diğerinin de artması), negatif değerler ise ters yönlü (değişkenlerden birinin değeri artarken diğerinin azalması) ilişkiyi gösterir. Katsayının 0 ya da yakın değerler alması ilişkinin olmadığı -1 ya da +1 e yakın değerler alması da güçlü ilişkiyi gösterir.

Örnek: Aşağıdaki tabloda 10 kente ait yaşanılabilirlik değişkenine ve sosyokültürel aktivite zenginliği değişkenine göre sıralamaları verilmiştir. İki değişken arasındaki ilişki katsayısını hesaplayınız ve yorumlayınız.

Kentler	Yaşanılabilirlik	Sosyokültürel	Kentler	Yaşanılabilirlik	Sosyokültürel
Kent1	4	7	Kent6	9	9
Kent2	6	5	Kent7	10	8
Kent3	1	2	Kent8	2	3
Kent4	3	1	Kent9	5	4
Kent5	7	6	Kent10	8	10

Çözüm: Sıra puanlarına sahip değişkenler için Spearman ilişki katsayısı hesaplanır.

Kentler	Yaşanılabilirlik (x)	Sosyokültürel (y)	$(x_i - y_i)^2$
Kent1	4	7	$(4-7)^2 = 9$
Kent2	6	5	$(6-5)^2 = 1$
Kent3	1	2	$(1-2)^2 = 1$
Kent4	3	1	$(3-1)^2 = 4$
Kent5	7	6	$(7-6)^2 = 1$
Kent6	9	9	$(9-9)^2 = 0$
Kent7	10	8	$(10 - 8)^2 = 4$
Kent8	2	3	$(2-3)^2 = 1$
Kent9	5	4	$(5-4)^2=1$
Kent10	8	10	$(8-2)^2 = 4$
	Toplam		26

$$\rho = 1 - \frac{6 * \sum (x_i - y_i)^2}{n * (n^2 - 1)}$$
$$= 1 - \frac{6 * 26}{10 * (10^2 - 1)}$$
$$= 0.84$$

olup kentlerdeki yaşanılabilirlik değişkeni ile sosyokültürel aktivite değişkeni arasında pozitif (aynı yönlü) ve güçlü (0.84) bir ilişki vardır. Yani yaşanılabilirlikte üst sıralarda olan kent, sosyokültürel aktivite zenginliği bakımından da üst sıralardadır.

Örnek: Yedi şehre ait futbol ve basketbol takımlarının sezon sonu sıralamaları tabloda verilmiştir. Şehirdeki futbol takımının başarısı ile basketbol takımının başarısı arasındaki ilişkiyi ilişki katsayısını bularak yorumlayınız.

Kentler	Futbol	Basketbol
Α	1	5
В	2	6
С	3	7
D	4	3
Е	5	1
F	6	4
G	7	2

Çözüm: Sıra puanlarına sahip değişkenler için Spearman ilişki katsayısı hesaplanır.

Kentler	Futbol (x)	Basketbol (y)	$(x_i - y_i)^2$
Α	1	5	$(1-5)^2 = 16$
В	2	6	$(2-6)^2 = 16$
С	3	7	$(3-7)^2 = 16$
D	4	3	$(4-3)^2 = 1$
Е	5	1	$(5-1)^2 = 16$
F	6	4	$(6-4)^2=4$
G	7	2	$(7-2)^2 = 25$
	Toplan	94	

$$\rho = 1 - \frac{6 * 94}{7 * (7^2 - 1)} = -0.68$$

Katsayı negatif olup değişkenler arasında ters yönlü bir ilişki vardır. Yani futbolda iyi olan şehir basketbolda düşük sıralardadır. Katsayının değeri de $\rho=-0.68$ olup orta düzeyde ilişki olduğunu gösterir.

12.3 Pearson's r **katsayısı:** Sayısal iki değişken arasındaki doğrusal ilişkinin derecesini (zayıf/güçlü) ve yönünü (aynı yönlü/ters yönlü) belirlenmek için kullanılır.

Rasgele seçilen n gözleme sahip iki sayısal değişken X ve Y olsun. X değişkeni için i inci gözlem değeri x_i , aritmetik ortalaması $\bar{x} = \frac{\sum x_i}{n}$ ve standart sapması $s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$ olup benzer şekilde Y değişkeni için i inci gözlem değeri y_i , aritmetik ortalaması $\bar{y} = \frac{\sum y_i}{n}$ ve standart sapması $s_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}}$ olsun. X ve Y arasındaki kovaryans değeri $s_{xy} = \frac{\sum (x_i - \bar{x})*(y_i - \bar{y})}{n-1}$ olmak üzere Pearson ilişki katsayısı;

$$r = \frac{S_{\chi y}}{S_{\chi} * S_{y}}$$

ile hesaplanır. Burada $-1 \le r \le +1$ olup r nin 0 olması ilişkinin olmadığı, +1 e yakın değerler aynı yönlü (değişkenlerden birinin değeri artarken diğerinin de artması), -1 e yakın değerlerde ters yönlü (değişkenlerden birinin değeri artarken diğerinin azalması) ilişkinin olduğu anlamına gelir.

Örnek: Rasgele seçilen 8 öğrencinin sınava hazırlanma süreleri (saat) ve sınavdan aldıkları puana ilişkin veriler tabloda verilmiştir. Öğrencilerin sınava hazırlanma süreleri ile sınavdan aldıkları puanlar arasındaki ilişkiyi ilişki katsayısını hesaplayarak yorumlayınız.

Öğrenci	1	2	3	4	5	6	7	8
Süre (X)	30	30	25	20	18	16	12	9
Puan (Y)	80	70	70	65	60	50	50	35

Cözüm: Sayısal değiskenler arasındaki iliski için Pearson iliski katsayısı kullanılır.

Öğrenci	X	Y	$(x_i-\overline{x})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$	$(x_i - \overline{x}) * (y_i - \overline{y})$
1	30	80	10	100	20	400	200
2	30	70	10	100	10	100	100
3	25	70	5	25	10	100	50
4	20	65	0	0	5	25	0
5	18	60	-2	4	0	0	0
6	16	50	-4	16	-10	100	40
7	12	50	-8	64	-10	100	80
8	9	35	-11	121	-25	625	275
Toplam	160	480	0	430	0	1450	745

$$\bar{x} = \frac{\sum x_i}{n} = \frac{160}{8} = 20 \rightarrow s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{430}{8 - 1}} = 7.84$$

$$\bar{y} = \frac{\sum y_i}{n} = \frac{480}{8} = 60 \rightarrow s_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}} = \sqrt{\frac{1450}{8 - 1}} = 14.39$$

$$s_{xy} = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1} = \frac{745}{8 - 1} = 106.43$$
$$r = \frac{s_{xy}}{s_x * s_y} = \frac{106.43}{7.84 * 14.39} = 0.94$$

İlişki katsayısı r=0.94 pozitif ve bire çok yakın değer aldığı için iki değişken arasında aynı yönü ve çok güçlü bir ilişki vardır. Yani sınava çalışma süresi artan öğrencilerin sınav puanları da artmaktadır.

Örnek: Rasgele seçilen 8 sporcunun haftalık antrenman süreleri (X:saat) ile 100 metreyi koşma süreleri (Y:saniye) tabloda verilmiştr. İki değişken arasındaki ilişkiyi ilişki katsayısını hesaplayarak yorumlayınız.

Sporcu	X(saat)	Y (saniye)
1	10	14
2	12	14
3	14	14
4	16	13
5	18	13
6	20	12
7	22	12
8	24	12

Çözüm: Sayısal değişkenler arasındaki ilişki için Pearson ilişki katsayısı kullanılır.

Sporcu	X	Y	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$	$(x_i - \overline{x}) * (y_i - \overline{y})$
1	10	14	-7	49	1	1	-7
2	12	14	-5	25	1	1	-5
3	14	14	-3	9	1	1	-3
4	16	13	-1	1	0	0	0
5	18	13	1	1	0	0	0
6	20	12	3	9	-1	1	-3
7	22	12	5	25	-1	1	-5
8	24	12	7	49	-1	1	-7
Toplam	136	104	0	168	0	6	-30

$$\bar{x} = \frac{\sum x_i}{n} = \frac{136}{8} = 17 \to s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{168}{8 - 1}} = 4.90$$

$$\bar{y} = \frac{\sum y_i}{n} = \frac{104}{8} = 13 \to s_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}} = \sqrt{\frac{6}{8 - 1}} = 0.93$$

$$s_{xy} = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1} = \frac{-30}{8 - 1} = -4.29 \text{ olup } r = \frac{s_{xy}}{s_x * s_y} = \frac{-4.29}{4.90 * 0.93} = -0.94$$

İlişki katsayısı r = -0.94 negatif ve bire çok yakın değer aldığı için iki değişken arasında ters yönü ve çok güçlü bir ilişki vardır. Yani antrenman süresi artan sporcunun 100 metreyi koşma süresi azalmaktadır.

13. TABLOLAR

13.1 Birikimli Standart Normal Dağılım Tablosu

Birikimli (Kümülatif) Standart Normal Dağılım Tablosu

Zt	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Bazı birikimli olasılıklar için tablo değerleri

Olasılık						
Zt	1.28	1.64	1.96	2.33	2.58	3.09

13.2 Birikimli Student's t- Dağılım Tablosu

Birikimli (Kümülatif) Student's t - Dağılım Tablosu

s.d.	t _{0.70}	t _{0.80}	t _{0.90}	t _{0.95}	t 0.975	t _{0.99}	t _{0.995}	t _{0.999}	t _{0.9995}
1	0.7265	1.3764	3.0777	6.3138	12.706	31.821	63.657	318.31	636.62
2	0.6172	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248	22.327	31.599
3	0.5844	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409	10.215	12.924
4	0.5686	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041	7.1732	8.6103
5	0.5594	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321	5.8934	6.8688
6	0.5534	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074	5.2076	5.9588
7	0.5491	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995	4.7853	5.4079
8	0.5459	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554	4.5008	5.0413
9	0.5435	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498	4.2968	4.7809
10	0.5415	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693	4.1437	4.5869
11	0.5399	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058	4.0247	4.4370
12	0.5386	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545	3.9296	4.3178
13	0.5375	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123	3.8520	4.2208
14	0.5366	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768	3.7874	4.1405
15	0.5357	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467	3.7328	4.0728
16	0.5350	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208	3.6862	4.0150
17	0.5344	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982	3.6458	3.9651
18	0.5338	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784	3.6105	3.9216
19	0.5333	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609	3.5794	3.8834
20	0.5329	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453	3.5518	3.8495
21	0.5325	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314	3.5272	3.8193
22	0.5321	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188	3.5050	3.7921
23	0.5317	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073	3.4850	3.7676
24	0.5314	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969	3.4668	3.7454
25	0.5312	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874	3.4502	3.7251
26	0.5309	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787	3.4350	3.7066
27	0.5306	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707	3.4210	3.6896
28	0.5304	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633	3.4082	3.6739
29	0.5302	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564	3.3962	3.6594
30	0.5300	0.8538	1.3104	1.6973	2.0423	2.4573	2.7500	3.3852	3.6460
35	0.5292	0.8520	1.3062	1.6896	2.0301	2.4377	2.7238	3.3400	3.5911
40	0.5286	0.8507	1.3031	1.6839	2.0211	2.4233	2.7045	3.3069	3.5510
45	0.5281	0.8497	1.3006	1.6794	2.0141	2.4121	2.6896	3.2815	3.5203
50	0.5278	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778	3.2614	3.4960
60 70	0.5272	0.8477	1.2958	1.6706	2.0003	2.3901	2.6603	3.2317	3.4602
80	0.5268 0.5265	0.8468 0.8461	1.2938 1.2922	1.6669 1.6641	1.9944 1.9901	2.3808 2.3739	2.6479 2.6387	3.2108 3.1953	3.4350 3.4163
90	0.5263	0.8456	1.2922	1.6620	1.9867	2.3685	2.6316	3.1833	3.4163
100	0.5263	0.8452	1.2910	1.6602	1.9840	2.3642	2.6259	3.1737	3.3905
200	0.5258	0.8446	1.2886	1.6577	1.9799	2.3578	2.6174	3.1595	3.3735
∞	0.5256	0.8442	1.2876	1.6558	1.9771	2.3533	2.6114	3.1495	3.3614
36	0.5250	0.0442	1.2070	1.0000	1.3111	2.3333	2.0114	3.1433	3.3014

13.3 Birikimli Ki-Kare- Dağılım Tablosu

Birikimli (Kümülatif) Ki Kare Dağılım Tablosu

s.d	$\chi^{2}_{0.005}$	$\chi^{2}_{0.01}$	$\chi^2_{0.025}$	χ ² _{0.05}	$\chi^{2}_{0.10}$	χ ² _{0.25}	$\chi^{2}_{0.50}$	$\chi^{2}_{0.75}$	$\chi^{2}_{0.90}$	χ ² _{0.95}	$\chi^{2}_{0.975}$	$\chi^{2}_{0.99}$	χ ² _{0.995}
1	0.00	0.00	0.00	0.00	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.95
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	20.84	25.34	30.43	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	21.75	26.34	31.53	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	22.66	27.34	32.62	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	23.57	28.34	33.71	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49		24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51		33.66	39.34	45.62	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76			49.33	56.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46		59.33	66.98	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	61.70	69.33	77.58	85.53	90.53	95.02	100.43	104.21
80	51.17	53.54	57.15	60.39	64.28	71.14	79.33	88.13	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	80.62	89.33	98.65	107.57	113.15	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	90.13	99.33	109.14	118.50	124.34	129.56	135.81	140.17

14. FORMÜL KAĞIDI

Merkezi eğilim ve Dağılış Ölçüleri

$AO = \bar{x} = \frac{\sum x_i}{n} = \frac{\sum (x_j * f_j)}{\sum f_j} = \frac{\sum (m_j * f_j)}{\sum f_j}$	$GO = \sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[\Sigma f_j]{\prod x_j^{f_j}} = \sqrt[\Sigma f_j]{\prod m_j^{f_j}}$
$KO = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}} = \sqrt{\frac{\sum (x_j^2 * f_j)}{\sum f_j}}$ $= \sqrt{\frac{\sum (m_j^2 * f_j)}{\sum f_j}}$	$HO = \frac{n}{\sum \frac{1}{x_i}} = \frac{\sum f_j}{\sum \frac{f_j}{x_j}} = \frac{\sum f_j}{\sum \frac{f_j}{m_j}}$
$Mod = L_{Mod} + h_{Mod} \left(\frac{\Delta_1}{\Delta_1 + \Delta_2} \right)$	$Medyan(M) = L_M + \frac{h_M}{f_M} \left(\frac{n}{2} - f_B\right)$
$Q_1 = L_1 + \frac{h_1}{f_1} \left(\frac{n}{4} - f_{B1} \right)$	$Q_3 = L_3 + \frac{h_3}{f_3} \left(\frac{3n}{4} - f_{B3} \right)$
$DA = EB - EK \qquad \sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$	$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1} = \frac{\sum (x_{j} - \bar{x})^{2} * f_{j}}{n - 1}$ $= \frac{\sum (m_{j} - \bar{x})^{2} * f_{j}}{n - 1}$
$DK = \frac{s}{\bar{x}}$ veye $DK = \frac{\sigma}{\mu}$ $KA = Q_3 - Q_1$	Aykırı gözlem sınırları $(Q_1 - 1.5 * KA)$ ile $(Q_3 + 1.5 * KA)$

• Olasılık ve Koşullu Olasılık

$P(A) = \frac{m}{n}$ $veya$ $P(A) = \frac{f}{n}$	$P(A B) = \frac{P(A \cap B)}{P(B)}$ $P(B A) = \frac{P(A \cap B)}{P(A)}$
$P(A \cap B) = P(A) * P(B A) = P(B) * P(A B)$	$P(B_r A) = \frac{P(B_r \cap A)}{P(A)} = \frac{P(B_r) * P(A B_r)}{\sum_{i=1}^k P(B_i) * P(A B_i)}$

Rasgele Değişkenler

$$\mu = E(X) = \sum_{i=1}^{N} x_i f(x_i) \qquad \sigma^2 = V(X) = \sum_{i=1}^{N} (x_i - \mu)^2 f(x_i) = E(X^2) - (E(X))^2$$

$$\mu = E(X) = \int_{D_X} x f(x) dx \qquad \sigma^2 = V(X) = \int_{D_X} (x - \mu)^2 f(x) dx = E(X^2) - (E(X))^2$$

• Rasgele Değişkenler ve Bazı Önemli Dağılımlar

	0,
Binom	$f(x) = \binom{n}{x} p^x (1-p)^{n-x} ; x = 0,1,,n \text{ olup}$ $E(X) = n * p \text{ ve } \sigma^2 = n * p * (1-p)$
Geometrik	$f(x) = p * (1-p)^{x-1}$; $x = 1,2,3,$ olup $E(X) = 1/p \text{ ve } V(X) = \frac{(1-p)}{p^2}$
Poisson	$f(x) = \frac{\lambda^x e^{-\lambda}}{x!} \; ; \; x = 0,1,2, \dots \text{olup}$ $E(X) = V(X) = \lambda$
Düzgün	$f(x) = \frac{1}{b-a} \; ; \; a \le x \le b \text{ olup}$ $E(X) = \frac{a+b}{2} \text{ ve } V(X) = \frac{(b-a)^2}{12}$
Üstel	$f(t) = \frac{1}{\alpha}e^{-\frac{t}{\alpha}}$; $t > 0$ olup $E(T) = \alpha \text{ ve } V(T) = \alpha^2$
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \; ; \; -\infty < x, \mu < \infty \; ; \; \sigma > 0 \text{ olup}$ $E(X) = \mu \text{ ve } V(X) = \sigma^2$ $\text{Standartlaṣtırma: } X \sim N(\mu, \sigma^2) \text{ ve } Z = \frac{X-\mu}{\sigma} \text{ ya da } Z = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \text{ise } Z \sim N(0,1)$
Standart Normal	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < \infty \text{olup}$ $E(Z) = 0 \text{ ve } V(Z) = 1$

• Parametrelerin $(1 - \alpha)$ aralık tahminleri

Parametrelerin "e" hata payına sahip $(1 - \alpha)$ güven aralığında minimum örneklem

$$n = \left[z_{1-\frac{\alpha}{2}} \frac{\sigma}{e}\right]^2 \quad veya \quad n$$

$$= \left[\frac{N\sigma^2 \left(z_{1-\frac{\alpha}{2}}\right)^2}{(N-1)e^2 + \sigma^2 \left(z_{1-\frac{\alpha}{2}}\right)^2}\right]$$

$$n = p(1-p) \left[\frac{z_{1-\frac{\alpha}{2}}}{e}\right]^2 veya n = \left[\frac{Np(1-p)\left(z_{1-\frac{\alpha}{2}}\right)^2}{(N-1)e^2 + p(1-p)\left(z_{1-\frac{\alpha}{2}}\right)^2}\right]$$

Hipotez testi test istatistikleri

$$z_h = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \quad t_h = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \quad z_h = \frac{p - \Pi_0}{\sigma_p} \quad \sigma_p = \sqrt{\frac{\Pi_0(1 - \Pi_0)}{n}} \quad \chi_h^2 = \frac{(n - 1)s^2}{\sigma_0^2}$$

$$z_h = \frac{\bar{D}}{s_D/\sqrt{n}} \quad t_h = \frac{\bar{D}}{s_D/\sqrt{n}} \quad t_h = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad sd \approx \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

$$z_h = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad t_h = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}} \quad sd = (n_1 - 1) + (n_2 - 1)$$

$$\begin{array}{c|c} \bullet & \text{Ilişkii katsayıları} \\ \hline \chi_h^2 \\ = \sum \sum \frac{\left(G_{ij} - B_{ij}\right)^2}{B_{ij}} & = \frac{r_i * c_j}{n} & = \sqrt{\frac{\chi_h^2}{n * min\{(r-1), (c-1)\}}} & = 1 - \frac{6 * \sum (x_i - y_i)^2}{n * (n^2 - 1)} \\ \hline \\ r = \frac{s_{xy}}{s_x * s_y} & s_{xy} = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1} & r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\sum x_i^2 - n(\bar{x})^2)(\sum y_i^2 - n(\bar{y})^2)}} \\ \hline \end{array}$$

Basit Doğrusal Regresyon Analizi