- c) ¿Por qué se puede decir que se ha reunido evidencia de que el subconjunto de matrices simétricas de 4×4 es un subespacio de \mathbb{M}_{44} ?
- d) (*Lápiz y papel*) Pruebe que el subconjunto de matrices simétricas de $n \times n$ es un subespacio de \mathbb{M}_{nn} .

5.3 Combinación lineal y espacio generado

Se ha visto que todo vector $\mathbf{v} = (a, b, c)$ en \mathbb{R}^3 se puede escribir en la forma

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

en cuyo caso se dice que v es una *combinación lineal* de los tres vectores i, j y k. De manera más general se tiene la siguiente definición.

Definición 5.3.1

Combinación lineal

Sean $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vectores en un espacio vectorial V. Entonces cualquier vector de la forma

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
 (5.3.1)

donde, a_1, a_2, \ldots, a_n son escalares se denomina una **combinación lineal** de $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

EJEMPLO 5.3.1 Una combinación lineal en \mathbb{R}^3

En
$$\mathbb{R}^3$$
, $\begin{pmatrix} -7\\7\\7 \end{pmatrix}$ es una combinación lineal de $\begin{pmatrix} -1\\2\\4 \end{pmatrix}$ y $\begin{pmatrix} 5\\-3\\1 \end{pmatrix}$ ya que $\begin{pmatrix} -7\\7\\7 \end{pmatrix} = 2\begin{pmatrix} -1\\2\\4 \end{pmatrix} = \begin{pmatrix} 5\\-3\\1 \end{pmatrix}$.

EJEMPLO 5.3.2 Una combinación lineal en M₂₃

En
$$\mathbb{M}_{23}$$
, $\begin{pmatrix} -3 & 2 & 8 \\ -1 & 9 & 3 \end{pmatrix} = 3 \begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & 5 \end{pmatrix} + 2 \begin{pmatrix} 0 & 1 & -2 \\ -2 & 3 & -6 \end{pmatrix}$, lo que muestra que $\begin{pmatrix} -3 & 2 & 8 \\ -1 & 9 & 3 \end{pmatrix}$ es una combinación lineal de $\begin{pmatrix} -1 & 0 & 4 \\ 1 & 1 & 5 \end{pmatrix}$ y $\begin{pmatrix} 0 & 1 & -2 \\ -2 & 3 & -6 \end{pmatrix}$.

EJEMPLO 5.3.3 Combinaciones lineales en \mathbb{P}_n

En \mathbb{P}_n todo polinomio se puede escribir como una combinación lineal de los "monomios" $1, x, x^2, \ldots, x^n$.

Definición 5.3.2

Conjunto generador

Se dice que los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ de un espacio vectorial V generan a V si todo vector en V se puede escribir como una combinación lineal de los mismos. Es decir, para todo $\mathbf{v} \in V$ existen escalares a_1, a_2, \dots, a_n tales que

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
 (5.3.2)