Math Notes

K

March 6, 2020

Contents

1	Trigonometric Concepts				
	.1 Unit Circle				
	.2 Basic Trigonometry				
	.3 Pythagorean Theorem Identities				
	.4 Half Angle Identities				
	.5 Double Angle Identities				
	.6 Power Reduction Identities				
2	Trigonometric Substitution				
}	Table of Basic Derivatives				
Ļ	Table of Basic Integrals				
5	Substitution Techniques				
•	.1 U Substitution				
	.2 Integration by Parts				
	Engineering Formulas				
	.1 Spring Formulas				
	.2 Fluid Formulas				
	Method of Partial Fractions				
	7.1 Decomposition Types				
	.2 Numerical Integration				
	7.2.1 Midpoint Rule				
	7.2.2 Trapezoidal Rule				
	7.2.3 Error Approximation (Actual Error)				
	7.2.4 Error Bounds				
	3 Improper Integrals				
	7.3.1 Type 1				
	7.3.2 Type 2				
	7.3.3 Type 3				

	7.4 The Length of the Curve	ĉ
3	Area of Revolution	9
9	Separable Equations	9
10	Additional Resources	10

1 Trigonometric Concepts

1.1 Unit Circle

Source: https://etc.usf.edu/clipart/43200/43215/unit-circle7_43215.htm

1.2 Basic Trigonometry

$$sin(\theta) = \frac{Opposite}{Hypotenuse}$$
 $cos(\theta) = \frac{Adjacent}{Hypotenuse}$ $tan(\theta) = \frac{Opposite}{Adjacent}$
 $= \frac{y}{1} = y$ $= \frac{x}{1} = x$ $= \frac{y}{x}$
 $= \frac{sin(\theta)}{cos(\theta)}$

$$csc(\theta) = \frac{1}{sin(\theta)}$$
 $sec(\theta) = \frac{1}{cos(\theta)}$ $cot(\theta) = \frac{cos(\theta)}{sin(\theta)}$

1.3 Pythagorean Theorem Identities

$$sin^{2}\theta + cos^{2}\theta = 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$
$$1 + cot^{2}\theta = csc^{2}\theta$$

1.4 Half Angle Identities

$$cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + cos(\theta)}{2}}$$

$$sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - cos(\theta)}{2}}$$

$$tan(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - cos(\theta)}{2}}$$

$$= \frac{sin(\theta)}{1 + cos(\theta)}$$

$$= \frac{1 - cos(\theta)}{sin(\theta)}$$

1.5 Double Angle Identities

$$sin(2\theta) = 2sin\theta cos\theta$$

$$cos(2\theta) = cos^2\theta - sin^2\theta$$

$$= 2cos^2\theta - 1$$

$$= 1 - 2sin^2\theta$$

$$tan(2\theta) = \frac{2tan\theta}{1 - tan^2\theta}$$

1.6 Power Reduction Identities

$$sin^{2}\theta = \frac{1 - cos2\theta}{2}$$

$$cos^{2}\theta = \frac{1 + cos2\theta}{2}$$

$$tan^{2}\theta = \frac{1 - cos2\theta}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{2}{1 + cos2\theta}$$

$$cot^{2}\theta = \frac{1 + cos2\theta}{1 - cos2\theta}$$

$$cot^{2}\theta = \frac{1 + cos2\theta}{1 - cos2\theta}$$

2 Trigonometric Substitution

Expression	Substitution	Identity
$\sqrt{a^2 - b^2 x^2}$	$x = \frac{a}{b}sin\theta$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2 + b^2 x^2}$	$x = \frac{a}{b}tan\theta$	$1 - tan^2\theta = sec^2\theta$
$\sqrt{b^2x^2 - a^2}$	$x = \frac{a}{b}sec\theta$	$sec^2\theta - 1 = tan^2\theta$

3 Table of Basic Deriva- 4 Table of Basic Integrals tives f(x) = f(x) + f(x)dx - F(x) + C

C	$\frac{dy}{dx}$	
C	0	
x	1	
$ax^2 + bx + c$	2ax + b	
x^n	nx^{n-1}	
$\frac{x^{-1}, \frac{1}{x}}{\sqrt{x}}$	$-\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}}$	
•	$\frac{1}{2\sqrt{x}}$	
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	
ln(x)	$\frac{1}{x}$	
$log_a(x)$	$\frac{1}{xln(a)}$	
a^x	$a^x ln(a)$	
e^x	e^x	
sin(x)	cos(x)	
cos(x)	-sin(x)	
tan(x)	$\frac{1}{\cos^2 x}$, $\sec^2 x$	
cot(x)	$\frac{\frac{1}{\cos^2 x}, \sec^2 x}{-\frac{1}{\sin^2 x}, -\csc^2 x}$	
sec(x)	tan(x)sec(x)	
csc(x)	-cot(x)csc(x)	

f(x)	$\int f(x)dx = F(x) + C$
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\alpha \neq 0$	
sin(kx)	$-\frac{\cos(kx)}{k} + C$
cos(kx)	$\frac{\sin(kx)}{k} + C$
$sec^2(kx)$	$\frac{k}{tan(kx)} + C$
$csc^2(kx)$	$-\frac{\cot(kx)}{k+C}$ $\frac{e^{kx}}{k+C} + C$
e^{kx}	$\frac{e^{kx}}{k} + C$
$x^{-1}, \frac{1}{x}$	ln x + C
$\frac{1}{\sqrt{1-x^2}}$	$sin^{-1} + C$
1	$tan^{-1}x + C$
$ \begin{array}{c c} \hline 1+x^2\\ a^{kx} \end{array} $	$\frac{1}{klna}a^{kx} + C$
$\frac{1}{\sqrt{a^2-x^2}}$	$sin^{-1}\frac{x}{a} + C$
$\frac{1}{\sqrt{a^2+x^2}}$	$\frac{1}{a}tan^{-1}(x/a) + C$

5 Substitution Techniques

5.1 U Substitution

5.2 Integration by Parts

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C$$

$$\int udv = uv - \int vdu$$
where: $u = g(x), du = g'(x)$

$$\int_{a}^{b} f(x)g'(x) = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x)dx$$

6 Engineering Formulas

6.1 Spring Formulas

$$F = kx$$

$$W = \int_{a}^{b} kx dx$$

$$F = \text{Force (Newtons [N])}$$

$$k = \text{spring constant (Newton meters }^{N}/_{m})$$

$$x = \text{change in distance (meters [m])}$$

$$W = \text{Work (Joules [J])}$$

$$a = \text{initial length (meters [m])}$$

$$b = \text{final length (meters [m])}$$

6.2 Fluid Formulas

$$W = F \cdot d = \int F dx$$

$$V = \pi r^2 h \text{(apply to cylinders)}$$

$$F = m \cdot a = V \cdot \rho$$

$$W = \text{Weight ()}$$

$$F = \text{Force (Newtons [N])}$$

$$d = \text{distance (meters [d])}$$

$$m = \text{mass (meters}^3[m^3])$$

$$a = \text{acceleration (meters per second}^2[m^2/s^2])$$

$$\rho = \text{Something}$$

7 Method of Partial Fractions

$$\int \frac{P_n(x)}{Q_m(x)} dx \text{ when } m > n$$

n and m are defined as the degree of the numerator and the denominator.

7.1 Decomposition Types

Type	Factor Example	Decomposition
Linear Factor	(x-4)	$\frac{A}{x-4}$
Repeated Linear Factor	$(x-4)^2$	$\frac{A}{(x+4)} + \frac{B}{(x+4)^2}$
Quadratic Irreducible Factor	$(x^2 + 4)$	$\frac{Ax+B}{x^2+4}$
Repeated Quadratic Irreducible Factor	$(x^2+4)^2$	$\frac{Ax+B}{(x^2+4)} + \frac{Cx+D}{(x^2+4)^2}$

7.2 Numerical Integration

7.2.1 Midpoint Rule

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} f(\overline{x_i}) \Delta x$$
$$x_i * = \frac{x_{i-1} + x_i}{2} = \overline{x_i}$$
$$x_i * \in [x_{i-1}, x]$$

7.2.2 Trapezoidal Rule

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x$$
$$\approx \sum_{i=1}^{n} \frac{\Delta x}{2} [f(x_{i-1}) + f(x_i)]$$

7.2.3 Error Approximation (Actual Error)

$$E_T = \int_a^b f(x)dx - T_n$$

$$E_H = \int_a^b f(x)dx - M_n$$

7.2.4 Error Bounds

$$|f''(x)| \le K \text{ on } [b, a] f(x) = \frac{1}{x}, f''(x) = -\frac{2}{x^3}$$

$$\left| -\frac{2}{x^3} \right| \le 2 = K$$

$$|E_T| \le \frac{K(b-a)^3}{12n^2} = \frac{2(2-1)^3}{12 \cdot 5^2} = 0.0012$$

$$|E_M| \le \frac{K(b-a)^3}{24n^2} = \frac{2(2-1)^3}{24 \cdot 5^2} = 0.0012$$

$$E_T \le 0.6931 - 0.6956$$

7.3 Improper Integrals

7.3.1 Type 1

 $x \in [a, b], f(x)$ is continuous on [a, b) at x = b f(x) discontinues

$$\int_{a}^{\infty} f(x) = \lim_{x \to \infty} \left(\int_{a}^{b} f(x) dx \right)$$

7.3.2 Type 2

f(x) discontinues at x = a, continuous on (a, b]

$$\int_{a}^{b} f(x)dx = \lim_{t \to a} \int_{t}^{b} f(x)dx$$

7.3.3 Type 3

f(x) discontinues at x = c, a < c < b everywhere else on [a, b] f(x) is continuous

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

7.4 The Length of the Curve

$$x = x(t)$$

$$y = y(t)$$

$$a \le t \le b$$

$$S' = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2}$$

8 Area of Revolution

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$dA = 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

$$1) \int_a^b dA = A = 2\pi \int_a^b y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$2)x = xb$$

9 Separable Equations

$$y'(x) = g(x)h(y), \frac{dy}{dx} = g(x)h(y)\Big|dx$$

$$dy = h(y)g(x)dx\Big|\frac{1}{h(y)}$$

$$\frac{1}{h(y)}dy = g(x)dx, H(y) = \frac{1}{h(y)} \longrightarrow H(y)dy = g(x)dx$$

$$\int H(y) = \int g(x)dx + C$$

Implicit Form of Solution

$$F(y) = G(x) + C$$

Explicit Form of Solution
$$y = F^{-1}(G(x) + C)$$

10 Additional Resources

Print

Calculus Study Guide: https://mt-jfk.com/ap-calculus-study-guide.pdf

Video

The Organic Chemistry Tutor: https://www.youtube.com/channel/UCEWpbFLzoYGPfuWUMFPSaoA

Black Pen Red Pen: https://www.youtube.com/user/blackpenredpen