Scribed by: Kyle Dituro

We begin with a reminder of what will be one of the most fundimental definitions for this course.

Definition 1. Let X be a set. A topology on X is a set τ of subsets of X such that:

- 1. $\emptyset, X \in \tau$
- 2. If $U_i \in \tau$ of each $i \in I$ then $\bigcup_{i \in I} U_i \in \tau$
- 3. If $U_1, \ldots, U_n \in \tau$, then $\bigcap_{i=1}^n U_i \in \tau$.

A topological space is a pair (X, τ) where X is a set and τ is a topology on X. Then the elements of τ are called the **open subsets** of X.

And we remember the definition of continuity:

Definition 2. Let $(X, \tau_X), (Y, \tau_Y)$ be topological spaces. A **continuous function** $f: (X, \tau_X) \to (Y, \tau_Y)$ is a function $f: X \to Y$ such that whenever $U \in \tau_Y$, we have that $f^{-1}(U) \in \tau_X$.

And we'll proceed with a number of examples to guide our intuition of open-ness in a topological sense and continuity.

Example 1. Let $X = \mathbb{R}$ be given. We know that the usual notion of open sets defines a topology on X:

$$\tau_1 = \{ \text{open subsets of } \mathbb{R} \}$$

However, this is not the only topology that we can endow the real numbers with. In fact, I claim that:

$$\tau_2 = \tau_1 \cup \{\{0\} \cup U \mid U \in \tau_1\}$$

Let's check:

- \emptyset , $\mathbb{R} \in \tau_2$
- $\{U_i\}_{i\in I}$ with $U_i \in \tau_1$, $\{\{0\} \cup U_j\}_{j\in J}$ where $U_i \in \tau_1$. The union of these is either $\bigcup_{i\in I} U_i$ if J is empty or $\{0\} \cup (\bigcup_{i\in I\cup J} U_i)$
- $U_1, \ldots, U_n, \{0\} \cup U_{n+1}, \ldots, \{0\} \cup U_{n+m}$, the intersection of these tings is either $\{0\} \cup (\bigcap U_i)$ if n = 0 or $\bigcap U_i$ if $n \neq 0$.

Example 2. Consider the function $f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$ Under the topology τ_2 , this function is actually continuous.

Fact. The continuous functions $g:(\mathbb{R},\tau_2)\to(\mathbb{R},\tau_1)$ are the funtions continuous at all $x\in\mathbb{R}-\{0\}$ in the analysis sense of continuity. The continuous functions $f:(\mathbb{R},\tau_1)\to(\mathbb{R},\tau_2)$ are the continuous function with $g(\mathbb{R})\subseteq(-\infty,0),(0,\infty)$, or $\{0\}$.

Idea. Let $f: X \to Y$, the more open subsets Y has, the harder it is for f to be continuous, and likewise the more open subsets X has, the easier it s.

Definition 3. Let X be a set, τ_1, τ_2 two topologies on X. We say that τ_1 is coarser than τ_2 and that τ_2 is finer than τ_1 if $\tau_1 \subseteq \tau_2$.

Example 3. Notice that the discrete topology is always the finest topology on a set X, and that the indiscrete topology is the finest.

Proposition 1. Let $f: X \to Y$ be a function between topological spaces.

- 1. If X has the discrete topology then f is continuous.
- 2. If Y has the indiscrete topology then f is continuous.

Proof. 1. let $f: X \to Y$ be any function. Let $U \subseteq Y$ be an open subset. This is obvious because every subset of X is open, so of course $f^{-1}(U)$ is open.

2. Let $f: X \to Y$ be any function. Let $U \subseteq Y$ be an open set. Now since Y has the indiscrete topology, we need only check $f^{-1}(Y)$ and $f^{-1}(\emptyset)$ but $f^{-1}(Y) = X$ and $f^{-1}(\emptyset) = \emptyset$.

Thus, our function is continuous in either case.

Proposition 2. $id_X : (X, \tau_2)) \to (X, \tau_1)$ is continuous iff τ_2 is finer than τ_1 . In particular $id_X : (X, \tau) \to (X, \tau)$ is continuous.

Proof. $id_X : (X, \tau_2) \to (X, \tau_1)$ is continuous iff $\forall U \in \tau_1, id_X^{-1}(U) \in \tau_2$ iff $\forall U \in \tau_1$, have $U \in tau_2$ iff $\tau_1 \subseteq \tau_2$ which is the definition of τ_2 is finer than τ_1 .

Lemma 1. Let $f: X \to Y$, $g: Y \to Z$ be functions, $W \subseteq Z$. Then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

Proof.

$$f^{-1}(g^{-1}(W)) = \{x \in X | f(x) \in g^{-1}(W)\}$$

$$= \{x \in X | f(x) \in \{y \in Y | g(y) \in W\}\}$$

$$= \{x \in X | g(f(x)) \in W\}$$

$$= (g \circ f)^{-1}(W)$$

Proposition 3. Let $f: X \to Y$, $g: Y \to Z$ be continuous. Then $(g \circ f): X \to Z$ is as well.

Proof. Let $W \subseteq Z$ be open. Then

$$(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$$

Notice here that we are taking the pre-image of an open set by continuous functions twice. Thus, $g \circ f$ is continuous.

And so it was that Kyle never wrote an ε - δ proof again. And we have officielly moved out of the category of Sets, and have moved into the category of Topologies.