

Model Optimization and Tuning Phase

Date	17 th June 2025	
Team ID	SWTID1749820017	
Project Name	Dog Breed Identification using Transfer Learning	
Maximum Marks	10 Marks	

Motivation for optimization

When we first loaded the NASNetLarge model with the flatten() layer we realized that the model was extremely huge even before training had been done(547.26MB). Shown below:

So we decided to replace the flatten() layer with a GlobalAveragePooling2D() layer which decreased the size of the model by 40% (325.78MB). Shown below

normal_add_4_18 (Add)	(None, 11, 11, 672)	0	normal_left4_18[normal_right4_18	
normal_add_5_18 (Add)	(None, 11, 11, 672)	θ	separable_conv_2 normal_bn_1_18[3	
normal_concat_18 (Concatenate)	(None, 11, 11, 4032)	0	adjust_bn_18[][normal_add_1_18[normal_add_2_18[normal_add_3_18[normal_add_4_18[normal_add_5_18[
activation_519 (Activation)	(None, 11, 11, 4032)	0	normal_concat_18	
global_average_poo (GlobalAveragePool	(None, 4032)	0	activation_519[3	
dense_1 (Dense)	(None, 120)	483,960	global_average_p	
Total params: 85,400,778 (325.78 MB) Trainable params: 10,538,424 (40.20 MB) Non-trainable params: 74,862,354 (285.58 MB)				

Experimental Comparisons:

a) Accuracy and Loss

b) Confusion Matrix

c) Validation accuracy

- d) Precision, Recall and F1-Score
 - Model 1: NASNetLarge with Flatten() layer

```
Weighted F1 Score: 0.9182
Weighted Precision: 0.9206
Weighted Recall: 0.9182
```

- Model 2: NASNetLarge with GlobalAveragePooling2D() layer

```
Weighted F1 Score: 0.9297
Weighted Precision: 0.9324
Weighted Recall: 0.9295
```

e) Model size:

```
from pathlib import Path

path1 = Path('/content/drive/MyDrive/Dog_Classifier/Models/nasnet_flatten_best_model.h5')

path2 = Path('/content/drive/MyDrive/Dog_Classifier/Models/nasnet_globalavgpool_best_model.h5')

size1 = path1.stat().st_size / (1024 * 1024)

size2 = path2.stat().st_size / (1024 * 1024)

print(f"NASNetLarge with Flatten() layer model size: {size1:.2f} MB")

print(f"NASNetLarge with GlobalAveragePooling2D() layer model size: {size2:.2f} MB")

NASNetLarge with Flatten() layer model size: 1075.35 MB

NASNetLarge with GlobalAveragePooling2D() layer model size: 410.90 MB
```

Conclusion:

From the above experimental results we can conclude that the NASNetLarge with GlobalAveragePooling2D() layer model is not only smaller but also provided high validation accuracy, recall score, precision score and F1-socre than the NASNetLarge with Flatten() layer model.