1 Elementare Wahrscheinlichkeitsrechnung

Eigenschaft	Symbol	Formel	Beschreibung
Ergebnisraum	Ω		
Zieldichte	ρ	$\rho:\Omega\to[0,1]$	$\sum_{\omega \in \Omega} \rho(\omega) = 1$
Ereignis	A	Teilmenge von Ω	Leere Menge entspricht dem unmöglichen Ereignis
Ereignisraum	2^{Ω}		Menge aller möglichen Ereigniss. Ω
Wahrscheinlichkeitsmass	P	$P: 2^{\Omega} \rightarrow [0,1]$	$sum_{\omega \in M} \rho(\omega) = 1, M \subseteq \Omega$

1.1 Kenngrössen

Mittelwert: $\mu = \frac{m}{n}$

1.2 Bedingte Wahrscheinlichkeiten

Wahrscheinlichkeit für das Eintreten des Eeignisses B unter der Bedingung oder Voraussetzung, dass das Ereignis A eintreitt. P(B|A)

1.2.1 Wahrscheinlichkeitsbaum

- Alle von einem Blatt (Verzweigungspunkt) aus mit Pfeilen erreichbare Ereignisse sind paarweise disjunkt (d.h. sie schliessen sich gegenseitig aus)
- Die Summe der Übergangswahrscheinlichkeiten aller von einem Blatt ausgehenden Pfeile ist 1.

 $P(A \cup Z) = P(A) * P(Z|A) = 0.5 * 0.9 = 0.45$

Allgemein gilt: Wahrscheinlichkeiten längs eines Pfades werden multipliziert.

Multiplikationssatz: $P(A \cup B) = P(A) * P(B|A) = P(B) * P(A|B)$

Satz von der Totalen Wahrscheinlichkeit: $P(B) = P(A) * P(B|A) + P(\overline{A}) * P(B|\overline{A})$

Satz von Bayes: $P(B|A) = \frac{P(A \cap B)}{P(A)}$

1.3 Stochastische Unabhängigkeit

Wenn A und B stochastisch unabhängig sind, beeinflusst das Eintreten des inene Ereignisses also das Eintreten des anderen Ereignisses nicht.