COMS 230: Discrete Computational Structures

Homework # 3

Larisa Andrews

September 20, 2017

1. Question 1

Assume p is an odd integer.

$$\Rightarrow p = 2k + 1 \text{ for some } k \in \mathbb{N}$$

$$\Rightarrow p^3 = (2k+1)^3 = 8k^3 + 8k^2 + 4k + 1 = 2(4k^3 + 4k^2 + 2k) + 1$$

$$\Rightarrow 4k^3 + 4k^2 + 2k$$
 is an integer.

 $\Rightarrow p^3$ is an odd integer.

2. Question 2

Since x and y are non-zero rational numbers,

let x = a/b and y = c/d therefore xy = ac/bd

Then if we divide this by z we have ac/bdz

Lets assume that the product of ac/bdz is a rational number so, ac/bdz = e/f

$$\Rightarrow ac = ebdz/f \Rightarrow acf = ebdz \Rightarrow z = acf/ebd$$

Because acf/ebd is a rational number according to the definition.

This is a contradiction because z is irrational.

Therefore xy/z is irrational.

No, it is not direct because contradiction was used.

3. Question 3

By contrapositive, if $n \neq \text{even then}$, $5n + 4 \neq \text{even}$

$$\Rightarrow n = odd \rightarrow 5n + 4 = odd$$

if n is some odd integer 2k+1 where $k \in \mathbb{N}$

$$\Rightarrow 5(2k+1)+4=10k+9=2(2k+4)+1$$

 $\Rightarrow 2k + 4$ is an integer plus 1 means it is odd.

$$\Rightarrow n = odd \rightarrow 5n + 4 = odd$$

4. Question 4

Lets assume that there are less than 5 meetings in one month.

That means that the max amount of meetings there could be in one month is 4. Since 4 * 12 = 48 and there are 50 meetings this is a contradiction.

Therefore there has to be at least one month where there are 5 meetings.

5. Question 5

- case 1: m > 0 and n > 0 then m * n = mn > 0
- case 2: m > 0 and n < 0 then m * n = mn < 0
- case 3: m < 0 and n > 0 then m * n = mn < 0
- case 4: m < 0 and n < 0 then m * n = mn > 0

6. Question 6

Suppose $\sqrt[3]{2}$ is rational.

Then there exists $p/q = \sqrt[3]{2}$

$$\Rightarrow p^3/q^3 = 2 \Rightarrow 2p^3 = q^3 \Rightarrow p^3/2 = q^3$$

If p^3 can be divided by 2 then it has a factor of 2.

Let there be a k where $k \in \mathbb{N}$ and p = 2k

$$\Rightarrow 2q^3 = (2k)^3 \Rightarrow 2q^3 = 8k^3 \Rightarrow q^3 = 4k^3$$

So q^3 has a factor of 2 which is a common factor of p^3

Contradiction: p and q cannot have common factors and be rational so, Therefore $\sqrt[3]{2}$ is irrational.

7. Question 7

- 1. $\sqrt{82} = 9.05$
- 2. $\sqrt{83} = 9.11$
- 3. $\sqrt{84} = 9.16$
- 4. $\sqrt{85} = 9.21$
- 5. $\sqrt{86} = 9.27$
- 6. $\sqrt{87} = 9.32$
- 7. $\sqrt{88} = 9.38$
- 8. $\sqrt{89} = 9.43$
- 9. $\sqrt{90} = 9.48$
- 10. $\sqrt{91} = 9.53$
- 11. $\sqrt{92} = 9.59$
- 12. $\sqrt{93} = 9.64$
- 13. $\sqrt{94} = 9.69$
- 14. $\sqrt{95} = 9.74$
- 15. $\sqrt{96} = 9.79$
- 16. $\sqrt{97} = 9.84$
- 17. $\sqrt{98} = 9.89$
- 18. $\sqrt{89} = 9.94$

My proof is constructive because I gave a concrete example instead of assuming.

8. Question 8

- a) $A = [4 + 6n|n\epsilon\mathbb{N}]$ b) $A = [n^2 1|n\epsilon\mathbb{N}]$

9. Question 9

For any
$$A = x, y, z, B = a, b, c, C = d, e, f$$
 $(AxB)xC = ((x, a)d)..., Ax(BxC) = (x, (a, d))...$ $((x, a), d) \neq (x, (a, d))$
Therefore $(AxB)xC \neq Ax(BxC)$