Homework for Computational Complexity

Created: 24/05/2019 Spring 2019, UPC Barcelona Last modified: 24/05/2019

Instructor: Albert Atserias

Homework 3

Exercise: IPs with deterministic verifiers Prove that dIP = NP. ¹

 $^{^{1}}$ Let dIP be defined like IP except that the verifier is deterministic instead of probabilistic: A language L is in dIP if and only if there exists a polynomial-time computable function $V: \Sigma^* \times \Sigma^* \to \Sigma^* \cup \{0,1\}$ and a polynomial psuch that for every $x \in \Sigma^*$ and for t = p(|x|) the following hold:

^{1.} if $x \in L$, then there exists a p-bounded prover P such that $(V \leftrightarrow_t P)(x) = 1$,

^{2.} if $x \notin L$, then for every p-bounded prover P we have $(V \leftrightarrow_t P)(x) = 0$.

Recall that a p-bounded prover is a function $P: \Sigma^* \times \Sigma^* \to \Sigma^*$ satisfying $|P(x,\langle m_1,\ldots,m_r\rangle)| \leq p(|x|)$ for every $x \in \Sigma^*$ and $m_1, \ldots, m_r \in \Sigma^*$, and that $(V \leftrightarrow_t P)(x)$ denotes the output of the 2t-round iteraction between V and P on input x; i.e., $(V \leftrightarrow_t P)(x) = V(x, \langle m_1, \dots, m_{2t} \rangle)$ where $m_{2i-1} = V(x, \langle m_1, \dots, m_{2i-2} \rangle)$ and $m_{2i} = P(x, \langle m_1, \dots, m_{2i-1} \rangle)$ for $i = 1, \dots, t$.