SYSTEM DESIGN

Key Definitions

Architecture design

•Plans for how the system will be distributed across computers and what the hardware and software will be used for each computer.

Hardware and software specification

• Describes the hardware/software components in detail to aid those responsible for purchasing those products.

Interface

- The user interface defines how the system will interact with external entities.
- The system interfaces define how systems exchange information with other systems.

Architectural Components (Functions) of Software

- Data storage
- Data access logic
 - Processing required to access stored data
- Application logic
 - Processing logic of the application
- Presentation logic
 - Information display and user command processing

Architectural Design Purpose

- •Determine what parts of the application software will be assigned to what hardware.
- Hardware options:
 - Clients
 - Input/output devices employed by users
 - PCs, laptops, handheld devices, cell phones
 - Servers
 - Larger computers storing software
 - Accessible by many users

Client-Server Architectures

Client-Server Architecture (Two-Tiered)

Two-Tier Client-Server Architecture

Client-Server Attributes

BENEFITS

- Scalable
- Works with multiple vendors/products through middleware
- Improved modularity of web-based systems
- No central point of failure

LIMITATIONS

- Complexity
- New programming languages and techniques (adds stress for personnel)
- More complex to update

Three-Tiered Client-Server Architecture

 In 3-tier architecture, an application is virtually split into three separate logical layers

N-Tiered versus 2-Tiered Client-Server Architectures

BENEFITS

- Separates processing to better balance load on different servers.
- More scalable.

LIMITATIONS

- Greater load on the network
- More difficult to program and test

Factors in Hardware and Software Selection

- Functions and Features What specific functions and features are needed (size of monitor, software features …)
- Performance How fast the hardware and software operates (processor, number of database writes per second ...)
- Legacy database and systems How well the hardware and software interacts with legacy systems (can it writes to this database ...)
- Hardware and OS strategy What are the future migration plan
- Cost of ownership What are the cost beyond purchase (incremental license cost, annual maintenance, training cost ...)
- Vendor performance

User interface

Key Definitions

- The navigation mechanism provides the way for users to tell the system what to do.
- The input mechanism defines the way the system captures information.
- The output mechanism defines the way the system provides information to users or other systems.

- Layout Concepts
 - •The screen is often divided into three boxes.
 - Navigation area (top)
 - Status area (bottom)
 - Work area (middle)
 - •Information can be presented in multiple areas.
 - Like areas should be grouped together

Layout Concepts

- •Areas and information should minimize user movement from one to another.
- Ideally, areas will remain consistent in
 - Size
 - Shape
 - Placement for entering data
 - Reports presenting retrieved data

- Content Awareness
 - •All interfaces should have titles.
 - •Menus should show where you are where you came from to get there.
 - •It should be clear what information is within each area.
 - •Fields and field labels should be selected carefully.
 - •Use dates and version numbers to aid system users.

Lưu

Ngôn ngữ

Trợ giúp

Thoát

Thêm

Sửa

Xóa

In

Aesthetics

- Interfaces need to be functional and inviting to use
- Avoid squeezing in too much, particularly for novice users
- Design text carefully
 - Be aware of font and size
 - Avoid using all capital letters

Aesthetics

- Colors and patterns should be used carefully
 - Test quality of colors by trying the interface on a black/white monitor
 - Use colors to separate or categorize items

Three clicks rule

•Users should be able to go from the start or main menu of a system to the information or action they want in no more than three mouse clicks or three keystrokes.

- Basic Principles of Navigation Design
 - Assume users
 - Have not read the manual
 - Have not attended training
 - Do not have external help readily at hand
 - •All controls should be clear and understandable and placed in an intuitive location on the screen.

- Basic Principles of Navigation Design
 - Prevent mistakes
 - Limit choices
 - Never display commands that can't be used (or "gray them out")
 - Confirm actions that are difficult or impossible to undo
 - Simplify recovery from mistakes
 - Use consistent grammar order

- Types of Navigation Control
 - Languages
 - Command language
 - Natural language
 - Menus
 - Generally aim at broad shallow menu
 - Consider using "hot keys"
 - Direct Manipulation
 - Used with icons to start programs
 - Used to shape and size objects
 - May not be intuitive for all commands

Types of Menus

Message tips

- Should be clear, concise, and complete
- Should be grammatically correct and free of jargon and abbreviations
- Avoid negatives and humor

Types of Messages

Input design

- The goal is to simply and easily capture accurate information for the system
- Reflect the nature of the inputs
- Find ways to simplify their collection
- Online processing immediately records the transaction in the appropriate database
- Batch processing collects inputs over time and enters them into the system at one time in a batch

Input design

- Minimize Keystrokes
 - Never ask for information that can be obtained other ways
 - Lookups
 - Dropdown lists
 - Default values

Types of inputs

Output design

- Understand report usage
 - Reference or cover-to-cover?
 - •Frequency?
 - •Real-time or batch reports?
- Manage information load
 - •All needed information, no more
 - Minimize bias

Types of reports

Physical data design

Clustering

- Reduce the number of times storage must be accessed by physically placing like records close together.
 - •Intrafile clustering similar records in a table are stored together
 - •Interfile clustering combine records from more that one table that are typically retrieved together

Indexing

- A minitable that contains values from one or more fields in a table and the location of the values within the table
- Similar to the index of a book.
- For each table, create a unique index that is based on primary key.
- For each table, create an index that is based on foreign key to improve the performance of joins.
- Create an index of fields that are used frequently for grouping, sorting or criteria.

Estimating Storage Size

- Raw data sum of the average widths of all fields in a table.
- Calculate overhead requirements based on DBMS vendor recommendations
- Estimate initial number of records
- Estimate growth rate of records

Calculating Volumetrics

Field	Average Size (Characters)
Order number	8
Date	7
Cust ID	4
Last name	1.3
First name	
State	2
Amount	9 2 4 2
Tax rate	2
Record size	49
Overhead	30%
Total record size	63.7
Initial table size	50,000
Initial table volume	3,185,000
Growth rate/month	1,000
Table volume @ 3 years	5,478,200

No Attribute Data Size Decimal Default MIN MAX Primary Unique NOT Foreign Description

NOT Foreign Description