Epreuve écrite

Examen de fin d'études secondaires 2000 Nom et prénom du candidat:

Section:

B June

Branche:

Mathématiques II

I. 1) Démontrer: $\lim_{h\to 0} \frac{\ln(1+h)}{h} = 1$.

- 2) Démontrer que la dérivée de la fonction exp est la fonction exp.
- 3) $Démontrer : \lim_{x\to\infty} e^x = +\infty$.
- 4) Enoncer et démontrer le théorème relatif à l'intégration par parties.

(2+4+3+3 = 12 points)

II. On donne les fonctions f et g définies par $f(x) = \frac{3e^x - 1}{e^x + 1} \quad et \quad g(x) = \frac{2e^{2x} + 3e^x - 3}{e^x + 1}.$

- 1. Etudier la fonction f:
 - a) asymptotes
 - b) dérivée et tableau des variations
 - c) point d' inflexion et concavité
 - d) équation de la tan gente au point d'abscisse 0
 - e) représentation graphique dans un repère orthonormal.
- 2. On pose $I = \int_0^{\ln 2} f(x) dx$ et $J = \int_0^{\ln 2} g(x) dx$.
 - a) Trouver les réels a, b et c tels que $g(x) = ae^x + b + \frac{ce^x}{e^x+1}$ et calculer J.
 - b) Calculer I-J en utilisant la linéarité des intégrales.
 - c) Déduire I de a) et b) et en donner une interprétation graphique.

(8+7=15 points)

III. Soit m un paramètre réel strictement positif.

On donne la fonction f_m définie par $f_m(x) = x - m(x+1)e^{-x}$. C_m désigne la courbe représentative de f_m dans un repère orthonormal.

1) Montrer que les courbes C_m admettent un point fixe.

2) Calculer les lim ites de f_m aux bords du domaine de définition.

3) Montrer que les courbes C_m admettent une même asymptote oblique. Etudier la position de C_m par rapport à cette asymptote oblique.

4) Calculer $f'_m(x)$ et $f''_m(x)$.

5) Faire le tableau des variations de f'_m . En déduire le nombre des solutions de l'équation $f'_m(x) = 0$.

6) Montrer que toutes les fonctions f_m admettent un extremum. Faire le tableau des variations de f_m . (On désignera par x_m le réel auquel f_m admet un extremum.)

7) Construire la courbe C_1 . (On donnera une valeur approchée de x_1 à 0, 1 près.)

8) Calculer l'aire de la partie du plan définie par C_1 et les droites d'équation y = x, x = -1 et x = 1.

(2+1+2+2+3+2+3+3 = 18 points)

- IV. 1) Résoudre l'équation différentielle : 2y'' 5y' 3y = 0, puis chercher la solution vérifiant y(0) = 1 et y'(0) = -11.
 - 2) Résoudre l'inéquation : $e^{4x+4} e^{3x+3} 9e^{2x+2} 11e^{x+1} 4 \le 0$.
 - 3) On donne la fonction f définie sur IR_+^* par $f(x) = x^3 \cos(\ln x)$. Calculer la valeur moyenne de f sur [1;2].

(5+5+5 = 15 points)