Data Structures

Sorted or unsorted lists

- Make a choice between sorted or unsorted implementation
- Depends upon the operations to be supported by the list and relative importance of these operations
- To search for an element in a sorted list, we can use binary search

```
Ex: A = \{2, 3, 6, 8, 12, 23, 33, 45, 65\}

We want to search "65"

Initialize L=0 and R = 8

compute m = floor((L+R)/2)=4; Since 12 < 65, update L as: L = 5

compute m = floor((L+R)/2)=6; Since 33 < 65, update L as: L = 7

compute m = floor((L+R)/2)=7; Since 45 < 65, update L as: L = 8

compute m = floor((L+R)/2)=8; since 65 found at position 8 return the same
```

Sorted or unsorted lists

 To search for an element in an unsorted list, we have to use sequential search

```
Ex: A = {2, 3, 6, 8, 12, 23, 33, 45, 65}
We want to search "65"
```

- Similar is the case with deletion operation
- Depending upon the relative importance of the operations we can make a choice between sorted and unsorted lists

Analysing Algorithms

- Analysing the dependency of running time on the size of input
- A general methodology that associates a function f(n) to characterize the running time in terms of input
 - A language for describing algorithms
 - A computational model that algorithms execute within
 - A metric for measuring algorithm running time
 - An approach for characterizing running times

Pseudo-code

- The programming language constructs that will be used:
 - Use standard mathematical symbols to describe numeric and Boolean operations/expressions
 - Use "←" for assignment instead of "="
 - Use "=" for equality relationship
 - Method declaration: Algorithm name(param1, param2)
 - Decision structures: if ... then ... [else ...]
 - while-loops: while . . . do
 - for-loops: for . . . do
 - Array indexing: A[i], A[i,j]
 - Method calls: object.method(args)
 - Method return: return value
 - Use indentation to signify the beginning of a new loop

Analytic approach

- Define a set of high-level primitive operations independent of programming language
 - Data movement (assign)
 - Switching control (branch, subroutine call, return)
 - Logical and arithmetic operations (addition, comparison)
 - Indexing into an array
- The execution time of these primitive operations is dependent on the hardware and software environment (constant)
- Count the number of primitive operations executed by the algorithm and use that count as a high-level estimate of the running time

Count the primitive operations

```
Algorithm arrayMax(A, n)
```

Input: An array A storing n integers and the size

Output: The maximum element in A

currentMax \leftarrow A[0]

for i←1 to n-1 do

if currentMax < A[i] then

currentMax \leftarrow A[i]

return currentMax

2 units

1 + n units

2(n-1) units

0-2(n-1) units

2(n-1) units

1 unit

Count the primitive operations

- Total running time of arrayMax is:
 - Best case: elements are in sorted decreasing order: 2+1+n+4(n-1)+1 = 5n
 - Worst case: elements are sorted increasing order: 2+1+n+6(n-1)+1 = (7n-2)
 - Average case: elements are partially sorted: between 5n and (7n-2)

Best, average, and worst case

Expected running time based on a given input distribution

Best, average, and worst case

- We are mainly interested in worst-case bound
- Need to identify the worst-case scenario
- An algorithm that performs best in the worst-case scenario also performs best in the best case scenario (expectation)

- The approach of counting primitive operations would be cumbersome to analyse complicated algorithms
- A simplified analysis that estimates the number primitive operation executed by an algorithm up to a constant factor by counting the steps of the algorithm
- Asymptotic notation facilitates analysis by getting rid of details

- The "big-Oh" O-Notation
 - Provides asymptotic upper bound on the running time
 - f(n) is O(g(n)), if there exist constants "c" and " n_0 " s.t. $f(n) \le cg(n)$ for $n \ge n_0$
 - f(n) and g(n) are functions over nonnegative integers and non-decreasing functions

- f(n) = 2n + 6 and g(n) = n
- f(n) is O(g(n)), with c = 4 and $n_0 = 3$

- How to find the order of a function?
 - If f(n) is a polynomial of degree "d", then f(n) is O(nd)
 - $\log n^x$ is $O(\log n)$ for any fixed x > 0
- Simple rule: drop lower order terms and constants

Ex: 50 n log n is $O(n \log n)$, 7n - 2 is O(n), $8n^2 \log n + 5n^2 + n$ is $O(n^2 \log n)$

Note: Though 50 n log n is $O(n^5)$, it is expected that such an approximation be of as small an order as possible

Characterize the given function as closely as possible

Asymptotic analysis of running time

- Using O-notation, express the number of primitive operations executed as a function of input size
- How to compare asymptotic running times?
 - Algorithm that runs in O(n) time is better than that runs in O(n²)
 - O(log n) is better than that O(n)
 - Hierarchy of running times: $\log n < n < n^2 < n^3 < a^n$

Example of asymptotic analysis

Algorithm prefixAverages1(X): Input: An n-element array X of numbers. Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i]. for $i \leftarrow 0$ to n-1 do a ← 0 for $j \leftarrow 0$ to i do $a \leftarrow a + X[j] \leftarrow 1$ $A[i] \leftarrow a/(i+1)$ step return array A Analysis: running time is O(n²)

Example of asymptotic analysis

```
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such
that A[i] is the average of elements X[0], ..., X[i].
s \leftarrow 0
for i \leftarrow 0 to n-1 do
  s \leftarrow s + X[i]
   A[i] \leftarrow s/(i+1)
return array A
Analysis: Running time is O(n)
```

Classes of functions

- Logarithmic: O(log n)
- Linear: O(n)
- Quadratic: O(n²)
- Polynomial: $O(n^k)$ $(k \ge 1)$
- Exponential: O(aⁿ) (n > 1)