Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselective reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

 $5~{\rm paths}$ found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 20.00

Figure 1: Outline of path 1

2.1.1 Takai olefination

Substrates:

- 1. Iodoform available at Sigma-Aldrich
- 2. 2-formylphenyl acetate available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC(=O)Oc1ccccc1/C=C/I}$

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.1.2 Hydrolysis of acetates

Substrates:

1. CC(=O)Oc1cccc1/C=C/I

Products:

 $1. \ \, Oc1ccccc1/C = C/I$

Typical conditions: KOH.MeOH

Protections: none

Reference: 10.3762/bjoc.10.40 and 10.1016/j.bmc.2009.11.035 and

10.1016/S0040-4020(02)01584-3

Retrosynthesis ID: 32805

2.1.3 Suzuki coupling of alkyl-9-BBNs with vinyl iodides

Substrates:

- $1. \ \, Oc1ccccc1/C = C/I$
- 2. 9-(3,3-pentamethyleneallyl)-9-borabicyclo3.3.1nonane

Products:

 $1. \ \, Oc1ccccc1/C = C/CC = C1CCCCC1$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

Retrosynthesis ID: 25168

2.2 Path 2

Score: 25.00

Figure 2: Outline of path 2

2.2.1 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. (e)-3-(2-methoxyphenyl)prop-2-en-1-ol

Products:

1. COc1cccc1/C=C/CI

Typical conditions: Imidazole.PPh3.I2

Protections: none

Reference: 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

Retrosynthesis ID: 9990040

2.2.2 Palladium catalysed alkylation of vinyl iodides

Substrates:

1. iodomethylene cyclohexane

 $2. \ \, COc1ccccc1/C = C/CI$

Products:

 $1. \ COc1ccccc1/C = C/CC = C1CCCCC1$

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

2.2.3 Demethylation of Phenols

Substrates:

 $1. \ \ COc1ccccc1/C=C/CC=C1CCCCC1$

Products:

1. Oc1ccccc1/C=C/CC=C1CCCCC1

Typical conditions: BBr3.CH2Cl2

Protections: none

Reference: DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010,

A1, page 185

Retrosynthesis ID: 10011837

2.3 Path 3

Score: 25.00

Figure 3: Outline of path 3

2.3.1 Enol esters and ethers synthesis

Substrates:

- $1. \ \ 2\text{-methoxymethylen-cyclohexanon}$
- 2. TMSCl available at Sigma-Aldrich

Products:

1. $CO/C=C1\CCCC=C1O[Si](C)(C)C$

 $\textbf{Typical conditions:} \ 1. LDA. 2. Electrophile$

Protections: none

Reference: US2467095A AND WO2014169833a1 AND 10.1016/j.steroids.2011.03.014 AND 10.1021/ol200875m (SI) AND 10.1021/ja00531a034

Retrosynthesis ID: 7797

2.3.2 Dehydrogenation of silyl enol ethers

Substrates:

1. $CO/C=C1 \setminus CCCC=C1O[Si](C)(C)C$

Products:

1. $CO/C=C1\CCC=CC1=O$

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.3.3 Synthesis of ketones and aldehydes from enol ethers

Substrates:

1. $CO/C=C1\CCC=CC1=O$

Products:

1. 6-formyl-cyclohex-2-en-1-on

Typical conditions: [H+].THF

Protections: none

Reference: 10.1081/SCC-120023437 AND 10.1016/j.bmcl.2007.11.020 AND 10.1016/j.tet.2011.03.084 AND 10.1021/ja00270a023 AND 10.1055/s-1994-25424 AND

2.3.4 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

 $1. \ \ 2-cyclohexylidenee than -1-ol- \\ available \ at \ Sigma-Aldrich$

Products:

1. ICC=C1CCCCC1

 ${\bf Typical\ conditions:}\ {\bf Imidazole.PPh 3.I2}$

Protections: none

Reference: 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

Retrosynthesis ID: 9990040

2.3.5 Takai olefination

Substrates:

1. Iodoform - available at Sigma-Aldrich

2. 6-formyl-cyclohex-2-en-1-on

Products:

1. O=C1C=CCCC1/C=C/I

Typical conditions: CrCl2.THF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.3.6 Palladium catalysed alkylation of vinyl iodides

Substrates:

1. ICC=C1CCCCC1

2. O=C1C=CCCC1/C=C/I

Products:

 $1. \ O{=}C1C{=}CCCC1/C{=}C/CC{=}C1CCCCC1$

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

2.3.7 DDQ mediated aromatization

Substrates:

 $1. \ O{=}C1C{=}CCCC1/C{=}C/CC{=}C1CCCCC1$

Products:

 $1. \ \, \text{Oc1ccccc1/C=C/CC=C1CCCCC1}$

Typical conditions: DDQ

Protections: none

Reference: 10.1021/ja054872i and 10.1021/ja00311a085 and

10.1021/ja00122a011

Retrosynthesis ID: 9999983

2.4 Path 4

Score: 25.00

Figure 4: Outline of path 4

2.4.1 Takai olefination

Substrates:

- $1. \ \, 2\hbox{-}Oxocyclohexanecarbaldehyde } \quad \textit{available at Sigma-Aldrich}$
- 2. Iodoform available at Sigma-Aldrich

Products:

 $1. \ O{=}C1CCCCC1/C{=}C/I$

Typical conditions: CrCl2.THF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.4.2 Enol esters and ethers synthesis

Substrates:

- 1. TMSCl available at Sigma-Aldrich
- 2. O=C1CCCCC1/C=C/I

Products:

 $1. \ \mathrm{C[Si](C)(C)OC1}{=}\mathrm{C(/C}{=}\mathrm{C/I)CCCC1}$

Typical conditions: 1. Et3N.Electrophile

Protections: none

Reference: 10.1016/S0040-4020(03)00977-3 AND 10.1021/ja00056a002

Retrosynthesis ID: 7799

2.4.3 Dehydrogenation of silyl enol ethers

Substrates:

 $1. \ C[Si](C)(C)OC1 = C(/C = C/I)CCCC1$

Products:

1. O=C1CCCC=C1/C=C/I

Typical conditions: Pd(OAc)2.Cu(OAc)2.O2.MeCN

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.4.4 Suzuki coupling of alkyl-9-BBNs with vinyl iodides

Substrates:

 $1. \ O{=}C1CCCC{=}C1/C{=}C/I$

2. 9-(3,3-pentamethyleneallyl)-9-borabicyclo3.3.1nonane

Products:

 $1. \ O{=}C1CCCC{=}C1/C{=}C/CC{=}C1CCCCC1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

Retrosynthesis ID: 25168

2.4.5 DDQ mediated aromatization

Substrates:

 $1. \ O{=}C1CCCC{=}C1/C{=}C/CC{=}C1CCCCC1$

Products:

1. Oc1ccccc1/C=C/CC=C1CCCCC1

Typical conditions: DDQ

Protections: none

Reference: 10.1021/ja054872i and 10.1021/ja00311a085 and

10.1021/ja00122a011

2.5 Path 5

Score: 31.25

Figure 5: Outline of path 5

2.5.1 Iodination of vinylalanes

Substrates:

1. 1-Bromo-2-ethynylbenzene - available at Sigma-Aldrich

Products:

1. C8H6BrI

 ${\bf Typical\ conditions:\ Schwartz's\ reagent. then. I2}$

Protections: none

Reference: DOI: 10.1080/00397910008087318

2.5.2 Suzuki coupling of alkyl-9-BBNs with vinyl iodides

Substrates:

- 1. C8H6BrI
- $2. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 nonane$

Products:

 $1. \ \, Brc1ccccc1/C = C/CC = C1CCCCC1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

Retrosynthesis ID: 25168

2.5.3 Br/Li exchange

Substrates:

- $1. \ \, Brc1ccccc1/C = C/CC = C1CCCCC1$
- 2. n-BuLi available at Sigma-Aldrich

Products:

 $1. \ [Li]c1ccccc1/C=C/CC=C1CCCCC1$

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.5.4 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

1. [Li]c1ccccc1/C=C/CC=C1CCCCC1

Products:

1. Oc1ccccc1/C=C/CC=C1CCCCC1

Typical conditions: B(OMe)3 then H2O2.THF

Protections: none

Reference: 10.1039/C7CC09187G (SI) and 10.1002/ejoc.201701142 and

10.1021/acscatal.6b03380 (SI,p.10) and 10.1002/chem.201702143 (SI)