Magnetic Diffraction: Tutorial

Roger Johnson

Pbnm Fe1:
$$(\frac{1}{2}, 0, 0)$$
, Fe2: $(0, \frac{1}{2}, 0)$, Fe3: $(\frac{1}{2}, 0, \frac{1}{2})$, Fe4: $(0, \frac{1}{2}, \frac{1}{2})$

- (2) 2(0.5,0,0) x,0.25,0 (3) 2(0,0,0.5) 0,0,z (4) 2(0,0.5,0) 0.25,y,0.25(1) 1

(5) -1 0,0,0 (6) b 0.25,y,z

- (7) $m \times y, 0.25$ (8) $n(0.5,0,0.5) \times y, 0.25, z$

F:

G:

- a) Identify reflection conditions of the space group
- b) Identify any additional reflection conditions of the Fe sublattice
- Identify symmetry relations between Fe sites C)
- Calculate the structure factor of the 4 magnetic structures

$$M_{uc}(\mathbf{Q}) \propto \sum_{d} \boldsymbol{\mu}_{d} \exp(i\mathbf{Q}.\mathbf{d})$$

- Identify magnetic reflection conditions of the 4 magnetic structures e)
- f) Relate answer (e) to the answers (a-c)

Pbnm Fe1:
$$(\frac{1}{2}, 0, 0)$$
, Fe2: $(0, \frac{1}{2}, 0)$, Fe3: $(\frac{1}{2}, 0, \frac{1}{2})$, Fe4: $(0, \frac{1}{2}, \frac{1}{2})$

- (2) 2(0.5,0,0) x,0.25,0 (3) 2(0,0,0.5) 0,0,z (4) 2(0,0.5,0) 0.25,y,0.25(1) 1

(5) -1 0,0,0 (6) b 0.25,y,z

- (7) m x, y, 0.25 (8) n(0.5,0,0.5) x, 0.25, z

F:

G:

- a) Identify reflection conditions of the space group
- Identify any additional reflection conditions of the Fe sublattice b)
- Identify symmetry relations between Fe sites

a) Identify reflection conditions of the space group (Pbnm)

b-glide:
$$0kl$$
: $k = 2n$ n -glide: $h0l$: $h+l=2n$ $2_1^{(x)}$: $h00$: $h=2n$ $2_1^{(y)}$: $0k0$: $k=2n$ $2_1^{(z)}$: $00l$: $l=2n$

b) Identify any additional reflection conditions of the Fe sublattice

$$hkl: h+k=2n$$
 $hkl: l=2n$

c) Identify symmetry relations between Fe sites

Fe1 <-> Fe2:
$$b$$
, $2_1^{(x)}$ Fe1 <-> Fe3: m , $2_1^{(z)}$ Fe1 <-> Fe4: n , $2_1^{(y)}$ Fe2 <-> Fe3: n , $2_1^{(y)}$ Fe2 <-> Fe3: b , $2_1^{(x)}$ Fe2 <-> Fe3: a

- d) Calculate the structure factor of the 4 magnetic structures
- e) Identify magnetic reflection conditions of the 4 magnetic structures

Neutron powder diffraction: F

Neutron powder diffraction: G

Neutron powder diffraction: A

Neutron powder diffraction: C

f) Relate answer (e) to the answers (a-c)

a) Identify reflection conditions of the space group (*Pbnm*)

b-glide:
$$0kl$$
: $k = 2n$ n-glide: $h0l$: $h+l = 2n$

$$2_1^{(x)}$$
: $h00$: $h = 2n$ $2_1^{(y)}$: $0k0$: $k = 2n$ $2_1^{(z)}$: $00l$: $l = 2n$

b) Identify any additional reflection conditions of the Fe sublattice

$$hkl: h+k=2n$$
 $hkl: l=2n$

c) Identify symmetry relations between Fe sites

Fe1 <-> Fe2:
$$b$$
, $2_1^{(x)}$ Fe1 <-> Fe3: m , $2_1^{(z)}$ Fe1 <-> Fe4: n , $2_1^{(y)}$

Fe2 <-> Fe3:
$$n$$
, $2_1^{(y)}$ Fe2 <-> Fe3: m , $2_1^{(z)}$

Fe3 <-> Fe4:
$$b$$
, $2_1^{(x)}$

$$(1+e^{\pi i(h+k)})(1+e^{\pi il})$$

a) Identify reflection conditions of the space group (*Pbnm*)

b-glide:
$$0kl$$
: $k = 2n$ n-glide: $h0l$: $h+l = 2n$

$$2_1^{(x)}$$
: $h00$: $h = 2n$ $2_1^{(y)}$: $0k0$: $k = 2n$ $2_1^{(z)}$: $00l$: $l = 2n$

b) Identify any additional reflection conditions of the Fe sublattice

$$hkl: h+k=2n$$
 $hkl: l=2n$

c) Identify symmetry relations between Fe sites

Fe1 <-> Fe2:
$$b$$
, $2_1^{(x)}$ Fe1 <-> Fe3: m , $2_1^{(z)}$ Fe1 <-> Fe4: n , $2_1^{(y)}$

Fe2 <-> Fe3:
$$n$$
, $2_1^{(y)}$ Fe2 <-> Fe3: m , $2_1^{(z)}$

Fe3 <-> Fe4:
$$b$$
, $2_1^{(x)}$

$$(1 - e^{\pi i(h+k)})(1 - e^{\pi il})$$

$$hkl: h+k = 2n+1$$

$$hkl: l = 2n+1$$