

NOWA FORMULA

	WYPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

TERMIN: poprawkowy 2020 r. Czas pracy: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1_**1**P-204

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $(\sqrt{5} + 2\sqrt{3})^2$ jest równa

A. 11

B. 17

C. $17 + 4\sqrt{15}$ D. $17 + 2\sqrt{15}$

Zadanie 2. (0-1)

Liczbę $\sqrt[4]{9 \cdot \sqrt{3}}$ można zapisać w postaci

A. $3\frac{5}{8}$

B. $3^{\frac{11}{4}}$

C. $3^{\frac{1}{4}}$

D. $3^{\frac{9}{8}}$

Zadanie 3. (0-1)

Liczba 2log5 + 3log2 jest równa

A. $\log(2 \cdot 5) + \log(3 \cdot 2)$

B. $\log 2^5 + \log 3^2$

C. $2.3\log(5.2)$

D. $\log(5^2 \cdot 2^3)$

Zadanie 4. (0-1)

Najmniejszą liczbą całkowitą spełniającą nierówność $\frac{5(4-x)}{2} < x$ jest liczba

A. 1

B. 2

C. 3

D. 4

Zadanie 5. (0–1)

W zestawie 250 liczb występują jedynie liczby 4 i 2. Liczba 4 występuje 128 razy, a liczba 2 występuje 122 razy. Przyjęto przybliżenie średniej arytmetycznej zestawu tych wszystkich liczb do liczby 3. Błąd bezwzględny tego przybliżenia jest równy

A. 0,024

B. 0,24

C. 0,0024

D. 0,00024

Zadanie 6. (0–1)

Na początku miesiąca komputer kosztował 3 500 zł. W drugiej dekadzie tego miesiąca cenę komputera obniżono o 10%, a w trzeciej dekadzie cena tego komputera została jeszcze raz obniżona, tym razem o 15%. Innych zmian ceny tego komputera w tym miesiącu już nie było. Cena komputera na koniec miesiąca była równa

A. 3 272,50 zł

B. 2 625 zł

C. 2 677,50 zł

D. 2 800 zł

Zadanie 7. (0–1)

Funkcje liniowe f i g określone wzorami f(x) = -4x + 12 i g(x) = -2x + k + 3 mają wspólne miejsce zerowe. Stąd wynika, że

A.
$$k = -6$$

B.
$$k = -3$$
 C. $k = 3$ **D.** $k = 6$

C.
$$k = 3$$

D.
$$k = 6$$

Zadanie 8. (0-1)

Zbiorem wartości funkcji kwadratowej f określonej wzorem $f(x) = -(x+9)^2 + m$ jest przedział ($-\infty$, -5). Wtedy

A.
$$m = 5$$

B.
$$m = -5$$
 C. $m = -9$ **D.** $m = 9$

C.
$$m = -9$$

D.
$$m = 9$$

Zadanie 9. (0–1)

Osią symetrii wykresu funkcji kwadratowej f określonej wzorem $f(x) = \frac{1}{3}x^2 + 4x + 7$ jest prosta o równaniu

A.
$$x = -6$$

B.
$$y = -6$$

B.
$$y = -6$$
 C. $x = -2$ **D.** $y = -2$

D.
$$y = -2$$

Zadanie 10. (0-1)

Na rysunku poniżej przedstawiono fragment wykresu funkcji kwadratowej f określonej wzorem $f(x) = ax^2 + bx + c$.

Stąd wynika, że

$$\mathbf{A.} \ \begin{cases} a < 0 \\ c < 0 \end{cases}$$

B.
$$\begin{cases} a < 0 \\ c > 0 \end{cases}$$

B.
$$\begin{cases} a < 0 \\ c > 0 \end{cases}$$
 C. $\begin{cases} a > 0 \\ c < 0 \end{cases}$

D.
$$\begin{cases} a > 0 \\ c > 0 \end{cases}$$

Zadanie 11. (0–1)

Rozwiązaniem równania $\frac{x^2 - 3x}{x^2 + x} = 0$ jest liczba

A.
$$-3$$

Zadanie 12. (0-1)

Do okręgu o środku w punkcie S = (2, 4) należy punkt P = (1, 3). Długość tego okręgu jest równa

A. $4\pi\sqrt{2}$

Zadanie 13. (0-1)

Prosta l jest równoległa do prostej $y = -\frac{1}{2}x + 2$. Na prostej l leży punkt P = (0, 7). Zatem równanie prostej $\,l\,$ ma postać

A. y = 2x

Zadanie 14. (0–1)

Punkt S = (4, 8) jest środkiem odcinka PQ, którego koniec P leży na osi Oy, a koniec Q – na osi Ox. Wynika stad, że

A. P = (0, 16) i Q = (8, 0) **B.** P = (0, 8) i Q = (16, 0)

C. P = (0, 4) i Q = (4, 0) D. P = (0, 8) i Q = (8, 0)

Zadanie 15. (0-1)

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a wysokość CD dzieli go na dwa takie trójkąty ADC i CDB, że pole trójkąta ADC jest 4 razy większe od pola trójkąta CDB (zobacz rysunek).

Przyprostokatna BC trójkata prostokatnego ABC jest równa

A. 1,5

B. 2

C. 2.5

D. 3

Zadanie 16. (0-1)

Punkty P = (-3, 4) i O = (0, 0) leżą na jednej prostej. Kąt α jest kątem nachylenia tej prostej do osi *Ox* (zobacz rysunek).

Wtedy tangens kata α jest równy

A. $-\frac{3}{4}$

B. $-\frac{4}{3}$

C. $\frac{4}{3}$

D. $\frac{3}{4}$

Zadanie 17. (0-1)

Kąt α jest ostry oraz $\sin \alpha = \frac{2\sqrt{5}}{5}$. Wtedy

A. $\cos\alpha = \frac{5}{2\sqrt{5}}$

B. $\cos \alpha = \frac{\sqrt{5}}{5}$ **C.** $\cos \alpha = \frac{1}{5}$ **D.** $\cos \alpha = \frac{4}{5}$

Zadanie 18. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla każdej liczby naturalnej $n \ge 1$, są dane dwa wyrazy: $a_1 = 2$ i $a_2 = 5$. Stąd wynika, że n-ty wyraz tego ciągu jest określony wzorem

A. $a_n = 3n - 1$ **B.** $a_n = 3n + 2$ **C.** $a_n = 2n + 3$ **D.** $a_n = 2n - 1$

Zadanie 19. (0-1)

Funkcja f jest określona wzorem $f(x) = \left(\frac{1}{2}\right)^x$ dla wszystkich liczb rzeczywistych x. Funkcja f dla argumentu x = -3 przyjmuje wartość

A. $\frac{1}{6}$

B. $\frac{1}{8}$

C. 6

D. 8

Zadanie 20. (0-1)

Wielkości x i y są odwrotnie proporcjonalne (tabela poniżej).

x	а	3	8
у	36	24	b

Stąd wynika, że

A.
$$a = 6$$
, $b = 22.5$ **B.** $a = \frac{4}{3}$, $b = 6$ **C.** $a = 3$, $b = 96$ **D.** $a = 2$, $b = 9$

B.
$$a = \frac{4}{3}$$
, $b = 6$

C.
$$a = 3$$
, $b = 96$

D.
$$a = 2$$
, $b = 9$

Zadanie 21. (0-1)

W prostokatnym układzie współrzędnych na płaszczyźnie parę prostych prostopadłych opisują równania

A.
$$y = 2x$$
 i $y = -\frac{1}{2}$

C.
$$y = 2x \text{ i } y = \frac{1}{2}x^2$$

B.
$$y = -2x$$
 i $y = \frac{1}{2}x$
D. $y = 2$ i $y = -2x$

D.
$$y = 2$$
 i $y = -2x$

Zadanie 22. (0-1)

Dane są punkty A = (4, 1), B = (1, 3), C = (4, -1). Pole trójkąta ABC jest równe

A. 3

B. 6

C. 8

D. 16

Zadanie 23. (0–1)

Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2020 i podzielnych przez 4?

A. 506

B. 505

C. 256

D. 255

Zadanie 24. (0-1)

Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 9 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest

A. dziewięciokat.

B. ośmiokat.

C. osiemnastokat.

D. dziesięciokat.

Zadanie 25. (0-1)

Pole powierzchni całkowitej sześcianu jest równe 12. Suma długości wszystkich krawędzi tego sześcianu jest równa

A. $6\sqrt{2}$

B. $3\sqrt{2}$

C. $12\sqrt{2}$

D. $8\sqrt{2}$

Zadanie 26. (0–2) Rozwiąż nierówność:

$$-2x^2 + 5x + 3 \le 0.$$

Zadanie 27. (0–2)

Dany jest trzywyrazowy ciąg (x + 2, 4x + 2, x + 11). Oblicz wszystkie wartości x, dla których ten ciąg jest geometryczny.

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (0–2)Wykaż, że dla dowolnych różnych liczb rzeczywistych *a* i *b* prawdziwa jest nierówność

$$a(a+b)+b^2>3ab.$$

Zadanie 29. (0–2)

Dwa okręgi o promieniach r=2 i R=6 są styczne zewnętrznie i są styczne do wspólnej prostej k. Wykaż, że prosta l przechodząca przez środki S i P tych okręgów przecina prostą k pod kątem $\alpha=30^\circ$ (zobacz rysunek).

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0–2) Rozwiąż równanie $(x^3 + 8)(x^2 - 9) = 0$.

Zadanie 31. (0–2)

W pudełku jest 8 kul, z czego 5 białych i 3 czarne. Do tego pudełka dołożono n kul białych. Doświadczenie polega na losowaniu jednej kuli z tego pudełka. Prawdopodobieństwo, że będzie to kula biała, jest równe $\frac{11}{12}$. Oblicz n.

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0–4)

Dany jest trójkąt równoramienny *ABC*, w którym podstawa *AB* ma długość 12, a każde z ramion *AC* i *BC* ma długość równą 10. Punkt *D* jest środkiem ramienia *BC* (zobacz rysunek).

Oblicz sinus kąta α , jaki środkowa AD tworzy z ramieniem AC trójkąta ABC.

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (0–4)Pole powierzchni bocznej stożka jest trzy razy większe od pola jego podstawy. Wysokość tego stożka jest równa 12. Oblicz objętość tego stożka.

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. (0–5) Prosta o równaniu y=-2x+7 jest symetralną odcinka PQ, gdzie P=(4,5). Oblicz współrzędne punktu Q.

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

