KL33P64M48SF6 Rev. 5, 08/2015

Data Sheet: Technical Data

Kinetis KL33 Microcontroller

48 MHz ARM® Cortex®-M0+ and 128/256 KB Flash

The KL33 series is optimized for cost-sensitive and batterypowered applications requiring low-power segment LCD. The product offers:

- Low power segment LCD up to 28x8 or 32x4
- Embedded ROM with boot loader for flexible program upgrade
- · High accuracy internal voltage and clock reference
- FlexIO to support any standard and customized serial peripheral emulation
- Down to 54uA/MHz in very low power run mode and 1.96uA in deep sleep mode (RAM + RTC retained)

MKL33Z256Vxx4(R) MKL33Z128Vxx4(R)

Core Processor

• ARM® Cortex®-M0+ core up to 48 MHz

Memories

- 128/256 KB program flash memory
- 16/32 KB SRAM
- 16 KB ROM with build-in bootloader
- 32-byte backup register

System

- 4-channel asynchronous DMA controller
- Watchdog
- · Low-leakage wakeup unit
- Two-pin Serial Wire Debug (SWD) programming and debug interface
- · Micro Trace Buffer
- Bit manipulation engine
- Interrupt controller

Clocks

- 48MHz high accuracy (up to 0.5%) internal reference clock
- 8MHz/2MHz high accuracy (up to 3%) internal reference clock
- 1KHz reference clock active under all low-power modes (except VLLS0)
- 32–40KHz and 3–32MHz crystal oscillator

Peripherals

- Segment LCD supporting up to 28x8 or 32x4 segments
- One UART module supporting ISO7816, operating up to 1.5 Mbit/s
- Two low-power UART modules supporting asynchronous operation in low-power modes
- Two I2C modules and I2C0 supporting up to 1 Mbit/s
- Two 16-bit SPI modules supporting up to 24 Mbit/s
- One FlexIO module supporting emulation of additional UART, IrDA, SPI, I2C, I2S, PWM and other serial modules, etc.
- One serial audio interface I2S
- One 16-bit 818 ksps ADC module with high accuracy internal voltage reference (Vref) and up to 16 channels
- High-speed analog comparator containing a 6-bit DAC for programmable reference input
- · One 12-bit DAC
- 1.2 V internal voltage reference

Timers

- One 6-channel Timer/PWM module
- Two 2-channel Timer/PWM modules
- One low-power timer
- · Periodic interrupt timer
- · Real time clock

Operating Characteristics

• Voltage range: 1.71 to 3.6 V

Flash write voltage range: 1.71 to 3.6 V
Temperature range: -40 to 105 °C

Packages

- 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm thickness
- 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm thickness

Security and Integrity

- 80-bit unique identification number per chip
- · Advanced flash security

I/O

 Up to 54 general-purpose input/output pins (GPIO) and 6 high-drive pad

Low Power

- Down to 54uA/MHz in very low power run mode
- Down to 1.96uA in VLLS3 mode (RAM + RTC retained)
- · Six flexible static modes

Ordering Information

Product		Memory		Package		IO and ADC channel		
Part number	Marking (Line1/ Line2)	Flash (KB)	SRAM (KB)	Pin count	Package	GPIOs	GPIOs (INT/HD) ¹	ADC channels (SE/DP)
MKL33Z128VLH4	MKL33Z128V//LH4	128	16	64	LQFP	54	31/6	20/4
MKL33Z256VLH4	MKL33Z256V//LH4	256	32	64	LQFP	54	31/6	20/4
MKL33Z128VMP4	M33P7V	128	16	64	MAPBGA	54	31/6	20/4
MKL33Z256VMP4	M33P8V	256	32	64	MAPBGA	54	31/6	20/4

1. INT: interrupt pin numbers; HD: high drive pin numbers

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KLX3PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL33P64M48SF6RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_1N71K ¹
Package drawing	Package dimensions are provided in package drawings.	64-LQFP: 98ASS23234W ¹ 64 MAPBGA: 98ASA00420D ¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

Table of Contents

1	Rati	inge		4
i		•	al handling ratings	
			re handling ratings	
			andling ratings	
			e and current operating ratings	
2		_		
_			ectrical characteristics	
	2.2		vitching electrical specifications	
		2.2.1	Voltage and current operating requirements	
		2.2.2	LVD and POR operating requirements	
		2.2.3	Voltage and current operating behaviors	
		2.2.4	Power mode transition operating behaviors	
		2.2.5	Power consumption operating behaviors	
		2.2.6	EMC radiated emissions operating behaviors.	
		2.2.7	Designing with radiated emissions in mind	
		2.2.8	Capacitance attributes	
	2.3	Switch	ing specifications	
		2.3.1	Device clock specifications	
		2.3.2	General switching specifications	
	2.4	Therm	al specifications	
		2.4.1	Thermal operating requirements	
		2.4.2	Thermal attributes	
3	Peri	ipheral	operating requirements and behaviors	
			nodules	
		3.1.1	SWD electricals	
	3.2	Syster	n modules	24
	3.3	Clock	modules	24
		3.3.1	MCG-Lite specifications	24
		3.3.2	Oscillator electrical specifications	26
	3.4	Memo	ries and memory interfaces	28
		3.4.1	· · · · · · · · · · · · · · · · · · ·	
	3.5	Securi	ty and integrity modules	30
	3.6	Analog	1	30

		3.6.1	ADG electrical specifications	30
		3.6.2	Voltage reference electrical specifications	35
		3.6.3	CMP and 6-bit DAC electrical specifications	36
		3.6.4	12-bit DAC electrical characteristics	38
	3.7	Timers	i	41
	3.8	Comm	unication interfaces	41
		3.8.1	SPI switching specifications	41
		3.8.2	I2C	46
		3.8.3	UART	48
		3.8.4	I2S/SAI switching specifications	48
	3.9	Humar	n-machine interfaces (HMI)	52
		3.9.1	LCD electrical characteristics	52
4	Dim	ensions	S	54
	4.1	Obtain	ing package dimensions	54
5			d Packaging	
	5.1	KL33 S	Signal Multiplexing and Pin Assignments	54
	5.2	KL33 F	Family Pinouts	57
6	Ord	ering pa	arts	59
	6.1	Determ	nining valid orderable parts	59
7	Part	identifi	cation	59
	7.1	Descri	ption	59
	7.2	Forma	t	60
	7.3			
	7.4	Examp	le	60
8	Terr	•	y and guidelines	
	8.1		ons	
			lles	
	8.3		I-value conditions	. 62
	8.4	Relatio	onship between ratings and operating	
		•	ements	
			ines for ratings and operating requirements	
9	Rev	ision Hi	story	63

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V_{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	0.06 × V _{DD}	_	V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins	-25	_	mA	
.,	Negative current injection	.,	.,	.,	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V_{RAM}	V _{DD} voltage required to retain RAM	1.2		V	

All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} - V_{IN})/II_{ICIO}I.

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

^{2.} Open drain outputs must be pulled to V_{DD}.

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV = 01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV = 00)	1.74	1.80	1.86	V	
V_{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV = 10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV = 11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

^{1.} Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -1.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — high drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -18 \text{ mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — normal drive pad • 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OL} = 5 mA	_	0.5	V	1
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 1.5 mA	-	0.5	V	
V _{OL}	Output low voltage — high drive pad				1
		_	0.5	V	

Table 7. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 18 \text{ mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA				
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μА	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	64	μА	2
l _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

^{1.} PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	152	166	μs	
	• VLLS1 → RUN	_	152	166	μs	
	• VLLS3 → RUN	_	93	104	μs	
	• LLS → RUN	_	7.5	8	µs	

^{2.} Measured at V_{DD} = 3.6 V

^{3.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Table 8. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	VLPS → RUN					
		_	7.5	8	μs	
	• STOP → RUN					
		_	7.5	8	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	5.76	6.40	mA	
	• at 105 °C	_	6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.21	3.85	mA	
	• at 105 °C	_	3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	6.45	7.09	mA	
	• at 105 °C	_	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C		3.95	4.59		
	• at 105 °C	_	4.23	4.87	mA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	2.68	3.32	mA	
	• at 105 °C	_	2.96	3.60		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C		8.08	8.72	mA	
	• at 105 °C	_	8.39	9.03		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C		3.90	4.54	mA	
	• at 105 °C	_	4.21	4.85		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.66	3.30	mA	
					1117 (
	• at 105 °C	_	2.94	3.58		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C		2.03	2.67	mA	
		_			IIIA	
	• at 105 °C		2.31	2.95		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V		5.50	0.40		
	• at 25 °C		5.52	6.16	mA	
	• at 105 °C	_	5.83	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	5.29	5.93	mA	
	• at 105 °C	_	5.56	6.20		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	6.91	7.55	mA	
					''''	
	• at 105 °C	_	7.19	7.91		

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPRC} O	Very Low Power Run Core Mark in Flash in Compute Operation mode: Core@4MHz, Flash @1MHz, V _{DD} = 3.0 V • at 25 °C	_	826	907	μА	
I _{DD_VLPRC} O	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	405	486	μΑ	
I _{DD_VLPRC} O	Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	154	235	μΑ	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	108	189	μА	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	39	120	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	249	330	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	337	418	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	416	497	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	494	575	μА	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	166	247	μΑ	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	50	131	μА	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	208	289	μΑ	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.81	1.89	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.22	1.39	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	172	182	μА	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	69	76	μА	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	36	40	μА	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V _{DD} = 3.0 V				_	
			1.81	2.06	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 \text{ V}$					
			1.00	1.25	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	161.93	171.82		
	• at 50 °C	_	181.45	191.96		
	• at 85 °C	_	236.29	271.17	μA	
	• at 105 °C	_	390.33	465.58	F	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below		3.31	5.14		
	• at 50 °C	_	10.43	17.68		
	• at 85 °C		34.14	61.06		
	• at 105 °C	_	104.38	164.44	μΑ	
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V • at 25 °C and below	_	3.21	5.22		
	• at 50 °C	_	10.26	17.62		
		_	33.49	60.19	μA	

Table 9. Power consumption operating behaviors (continued)

Description	Min.	Тур.	Max.	Unit	Notes
• at 85 °C	_	102.92	162.20		
• at 105 °C					
Low-leakage stop mode current, all peripheral					
	_	2.06	3.33	μΑ	
	_	4.72	6.85		
	_	8.13	13.30		
	_	13.34	24.70		
• at 105 °C	_	41.08	52.43		
Low-leakage stop mode current with RTC					
	_	2.46	3.73	μΑ	
	_	5.12	7.25		
	_	8.53	11.78		
	_	13.74	18.91		
• at 105 °C	_	41.48	52.83		
Low-leakage stop mode current with RTC					3
current, at 1.8 V	_	2.35	2.70	μΑ	
	_	4.91	6.75		
	_	8.32	11.78		
	_	13.44	18.21		
	_	40.47	51.85		
• at 105 °C					
Very-low-leakage stop mode 3 current, all					
at 25 °C and below	_	1.45	1.85	μΑ	
	_	3.37	4.39		
	_	5.76	8.48		
	_	9.72	14.30		
• at 105 °C	_	30.41	37.50		
Very-low-leakage stop mode 3 current with RTC					3
current, at 3.0 V	_	2.05	2.45	μΑ	
	_	3.97	4.99		
	_	6.36	9.08		
• at 85 °C	_	10.32	14.73		
		1	I .	I	1
	 at 85 °C at 105 °C Low-leakage stop mode current, all peripheral disable, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V at 25 °C and below at 50 °C at 70 °C at 70 °C at 70 °C at 70 °C at 3.0 V at 25 °C and below at 50 °C at 70 °C at 105 °C Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 70 °C at 70 °C at 70 °C at 85 °C at 105 °C 	at 85 °C at 105 °C Low-leakage stop mode current, all peripheral disable, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V at 25 °C and below at 50 °C at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V at 25 °C and below at 50 °C at 105 °C at 85 °C at 105 °C Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 1.8 °C at 25 °C and below at 50 °C at 70 °C at 85 °C at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V at 25 °C and below at 50 °C	• at 85 °C • at 105 °C Low-leakage stop mode current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 70 °C • at 70 °C • at 70 °C • at 85 °C • at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 70 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 70 °C • at 70 °C • at 70 °C	• at 85 °C • at 105 °C Low-leakage stop mode current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 105 °C Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 70 °C • at 85 °C • at 70 °C • at 85 °C • at 105 °C Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C	* at 85 °C

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					3
	current, at 1.8 V • at 25 °C and below	_	1.96	2.36	μA	
		_	3.86	5.67		
	• at 50 °C	_	6.23	8.53		
	• at 70 °C		10.21	13.37		
	• at 85 °C	_	30.25	37.02		
	• at 105 °C					
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all					
	peripheral disabled at 3.0 V • at 25 °C and below	_	0.66	0.80		
	• at 50°C		1.78	3.87		
	• at 70°C	_	2.55	4.26	μA	
	• at 85°C	_	4.83	6.64		
	• at 105 °C	_	16.42	20.49		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V					3
	at 25 °C and below	_	1.26	1.40		
	• at 50°C	_	2.38	4.47		
	• at 70°C	_	3.15	4.86	μΑ	
	• at 85°C	_	5.43	7.24		
	• at 105 °C	_	17.02	21.09		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					3
	enabled at 1.8 V		1.16	1.30		
	• at 25 °C and below	_	1.96	2.28		
	• at 50°C	_	2.78	3.37	μA	
	• at 70°C		4.85	6.88	P	
	• at 85°C	_	15.78	18.81		
	• at 105 °C		10.70	10.01		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all					
	peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V					
	at 25 °C and below	_	0.35	0.47	μA	
	• at 50 °C	_	1.25	1.44		
	• at 70 °C	_	2.53	3.24		
	• at 85 °C	_	4.40	5.24		
	• at 105 °C	_	16.09	19.29		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					
	= 1) at 3 V					

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	at 25 °C and below	_	0.18	0.28		
	• at 50 °C	_	1.09	1.31	μA	
	• at 70 °C	_	2.25	2.94		
	• at 85 °C	_	4.25	5.10		
	• at 105 °C	_	15.95	19.10		

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description		7	empera	ature (°0	C)		Unit
		-40	25	50	70	85	105	
I _{IRC8MHz}	8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	93	93	93	93	93	93	μА
l _{IRC2MHz}	2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	29	29	29	29	29	29	μА
IEREFSTEN4MHz	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	224	230	238	245	253	μΑ
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. • VLLS1 • VLLS3 • LLS • VLPS • STOP	440 440 490 510	490 490 490 560 560	540 540 540 560 560	560 560 560 560 560	570 570 570 610 610	580 580 680 680	nA
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	

Table 10. Low power mode peripheral adders — typical value (continued)

Symbol	Description		7	empera	ature (°0	C)		Unit
		-40	25	50	70	85	105	
								nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
l _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	114 34	114 34	114 34	114 34	114 34	114 34	μА
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	147 42	147 42	147 42	147 42	147 42	147 42	μА
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	330	330	330	330	330	330	μА
I _{LCD}	LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption.	4.5	4.5	4.5	4.5	4.5	4.5	μА

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 2. Run mode supply current vs. core frequency

General

Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	11	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	12	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	10	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	6	dΒμV	
V_{RE_IEC}	IEC level	0.15–1000	N	_	2, 3

^{1.} Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM

Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = IRC48M, f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbo	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit			
	Normal run mode						
f _{SYS}	System and core clock ¹	_	48	MHz			
f _{BUS}	Bus clock ¹	_	24	MHz			
f _{FLASH}	Flash clock ¹	_	24	MHz			
f _{LPTMR}	LPTMR clock	_	24	MHz			
	VLPR and VLPS modes ²						
f _{SYS}	System and core clock	_	4	MHz			
f _{BUS}	Bus clock	_	1	MHz			
f _{FLASH}	Flash clock	_	1	MHz			
f _{LPTMR}	LPTMR clock ³	_	24	MHz			
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz			

Table 13. Device clock specifications (continued)

Symbol	Description	Min.	Max.	Unit
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	_	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{LPUART0/1}	LPUART0/1 asynchronous clock	_	8	MHz

- 1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48MHz is used as the clock source.
- 2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

- 1. The synchronous and asynchronous timing must be met.
- 2. This is the shortest pulse that is guaranteed to be recognized.
- 3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T_J	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

 Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: T_J = T_A + R_{θJA} × chip power dissipation.

2.4.2 Thermal attributes

Table 16. Thermal attributes

Board type	Symbol	Description	64 LQFP	64 MAPBGA	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	70	50.3	°C/W	1
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	51	42.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	58	41.4	°C/W	
Four-layer (2s2p)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	45	38.0	°C/W	
_	$R_{\theta JB}$	Thermal resistance, junction to board	33	39.6	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	20	27.3	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	4	0.4	°C/W	4
_	Ψ_{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	12.6	°C/W	5

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Figure 4. Serial wire clock input timing

Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications

Table 18. IRC48M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD}	Supply current	_	400	500	μΑ	_
f _{IRC}	Output frequency	_	48	_	MHz	_
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature	_	± 0.5	± 1.5	%f _{irc48m}	1
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1

Table 18. IRC48M specification (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Tj	Period jitter (RMS)	_	35	150	ps	_
T _{su}	Startup time	_	2	3	μs	_

1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma).

Table 19. IRC8M/2M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_2M}	Supply current in 2 MHz mode	_	14	17	μA	_
I _{DD_8M}	Supply current in 8 MHz mode	_	30	35	μΑ	_
f _{IRC_2M}	Output frequency	_	2	_	MHz	_
f _{IRC_8M}	Output frequency	_	8	_	MHz	_
f _{IRC_T_2M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
f _{IRC_T_8M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
T _{su_2M}	Startup time	_	_	12.5	μs	_
T _{su_8M}	Startup time	_	_	12.5	μs	_

Figure 6. IRC8M Frequency Drift vs Temperature curve

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
		_	1.2	_	mA	

Table 20. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz	_	1.5	_	mA	
	• 32 MHz					
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μΑ	
	• 4 MHz	_	400	_	μΑ	
	• 8 MHz (RANGE=01)	_	500	_	μΑ	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	-	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

V_{DD}=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

Peripheral operating requirements and behaviors

- C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 21. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 22. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	_	52	452	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 23. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	_	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time	_	175	1300	ms	2

^{1.} Assumes 25 MHz flash clock frequency.

^{2.} Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program Flash					
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

^{2.} Cycling endurance represents number of program/erase cycles at −40 °C ≤ T_i ≤ 125 °C.

3.6.1.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	3
V_{REFL}	ADC reference voltage low		V_{SSA}	V _{SSA}	V _{SSA}	V	3
V_{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 x VREFH	V	_
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	24	MHz	5
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	5
C _{rate}	ADC conversion	≤ 13-bit modes					6
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	1200	ksps	
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	6

- 1. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. VREFH can act as VREF_OUT when VREFV1 module is enabled.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 7. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for sample times					
TUE	Total	12-bit modes	_	±4	±6.8	LSB ⁴	5
	unadjusted error	• <12-bit modes	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to	LSB ⁴	5
	linearity	• <12-bit modes	_	±0.2	+1.9 -0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	_	±0.5			

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
					-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		• <12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
E _Q	Quantization	16-bit modes	_	-1 to 0	_	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode				bits	6
	number of bits	• Avg = 32	12.8	14.5		bits	
		• Avg = 4	11.9	13.8	_		
		16-bit single-ended mode			_	bits	
		• Avg = 32				bits	
		• Avg = 32 • Avg = 4	12.2	13.9	_		
			11.4	13.1	_		
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB + 1.76		dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode	_	-85	_		
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode		0.5	_	dB	7
	dynamic range	• Avg = 32	82	95		dB	
		16-bit single-ended mode	78	90	_	ub	
		• Avg = 32	. •				
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

^{1.} All accuracy numbers assume the ADC is calibrated with $V_{\mbox{\scriptsize REFH}}$ = $V_{\mbox{\scriptsize DDA}}$

Peripheral operating requirements and behaviors

- 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 Voltage reference electrical specifications

Table 28. VREF full-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage	3.6		V	_
T _A	Temperature	Operating temperature range of the device		°C	_
C _L	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 29 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Table 29. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)	_	_	50	mV	1
I _{bg}	Bandgap only current	_		80	μΑ	1
I _{lp}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	_	_	100	μs	_
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled	_	_	35	ms	_
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

- 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
- 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	T _A	Temperature	0	50	°C	_

Table 31. VREF limited-range operating behaviors

Symbo	I Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	_

3.6.3 CMP and 6-bit DAC electrical specifications

Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μΑ
V _{AIN}	Analog input voltage	V _{SS} - 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

^{3.} $1 LSB = V_{reference}/64$

Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

^{1.} The DAC reference can be selected to be V_{DDA} or V_{REFH} .

^{2.} A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.4.2 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V_{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T_GE	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	High power (SP _{HP})	1.2	1.7	-		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	High power (SP _{HP})	550	_	_		
	Low power (SP _{LP})	40	_	_		

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- 6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 12. Typical INL error vs. digital code

Figure 13. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

SPI switching specifications 3.8.1

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Symbol Num. Description Min. Max. Unit Note 1 Frequency of operation f_{periph}/2048 f_{op} f_{periph}/2 Hz SPSCK period 2 2048 x 2 t_{SPSCK} 2 x t_{periph} ns tperiph 3 Enable lead time 1/2 t_{Lead} **t**SPSCK Enable lag time 4 1/2 t_{Laq} t_{SPSCK} 5 Clock (SPSCK) high or low time t_{periph} - 30 1024 x ns t_{WSPSCK} tperiph 6 Data setup time (inputs) 18 t_{SU} ns 7 Data hold time (inputs) 0 t_{HI} ns 8 Data valid (after SPSCK edge) 15 t_v ns 9 Data hold time (outputs) 0 ns t_{HO} 10 Rise time input t_{RI} t_{periph} - 25 ns Fall time input t_{FI} 11 Rise time output 25 ns t_{RO} Fall time output

Table 35. SPI master mode timing on slew rate disabled pads

 t_{FO}

Table 36. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

^{2.} $t_{periph} = 1/f_{periph}$

Table 36. SPI master mode timing on slew rate enabled pads (continued)

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

^{1.}If configured as output

Figure 15. SPI master mode timing (CPHA = 1)

Table 37. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2.5	_	ns	_
7	t _{HI}	Data hold time (inputs)	3.5	_	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	31	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

^{2.} $t_{periph} = 1/f_{periph}$

^{3.} Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

Table 38.	SPI slave	mode timing	on slew rate	enabled	pads
-----------	-----------	-------------	--------------	---------	------

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1		t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. t_{periph} = 1/f_{periph}
 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Figure 16. SPI slave mode timing (CPHA = 0)

Figure 17. SPI slave mode timing (CPHA = 1)

3.8.2 I²C

3.8.2.1 Inter-Integrated Circuit Interface (I2C) timing Table 39. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

- The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and
 SCL lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 7. $C_b = total$ capacitance of the one bus line in pF.

To achieve 1MHz I2C clock rates, consider the following recommendations:

- To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate.
- Use high drive pad and DSE bit should be set in PORTx_PCRn register.
- Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching.
- Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	_	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 40. I ²C 1Mbit/s timing

2. $C_b = \text{total capacitance of the one bus line in pF}$.

^{1.} The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range.

Figure 18. Timing definition for devices on the I²C bus

3.8.3 **UART**

See General switching specifications.

3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

3.8.4.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15.5	ns

Table 41. I2S/SAI master mode timing

Table 41. I2S/SAI master mode timing (continued)

Num.	Characteristic	Min.	Max.	Unit
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	19	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	26	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 19. I2S/SAI timing — master modes

Table 42. I2S/SAI slave mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns

Table 42. I2S/SAI slave mode timing (continued)

Num.	Characteristic	Min.	Max.	Unit
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1	_	28	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 20. I2S/SAI timing — slave modes

3.8.4.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns

Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK		_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 21. I2S/SAI timing — master modes

Table 44. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	87	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1		72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 22. I2S/SAI timing — slave modes

3.9 Human-machine interfaces (HMI)

3.9.1 LCD electrical characteristics

Table 45. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency					
	• GCR[FFR]=0	23.3	_	73.1	Hz	
	GCR[FFR]=1	46.6	_	146.2	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	_	100	_	nF	
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	_	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}				V	3
	• RVTRIM=0000	_	0.91	_		
	• RVTRIM=1000	_	0.92	_		
	• RVTRIM=0100		0.93	_		
	• RVTRIM=1100		0.94	_		
	• RVTRIM=0010	_	0.96	_		
	• RVTRIM=1010	_	0.97	_		
	• RVTRIM=0110	_	0.98	_		
		_	0.99	_		

Table 45. LCD electricals (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• RVTRIM=1110	_	1.01	_		
	• RVTRIM=0001	_	1.02	_		
	• RVTRIM=1001	_	1.03	_		
	• RVTRIM=0101	_	1.05	_		
	• RVTRIM=1101	_	1.06	_		
	• RVTRIM=0011	_	1.07	_		
	• RVTRIM=1011	_	1.08	_		
	• RVTRIM=0111	_	1.09	_		
	• RVTRIM=1111					
Δ_{RTRIM}	V _{IREG} TRIM resolution	_	_	3.0	% V _{IREG}	
I _{VIREG}	V _{IREG} current adder — RVEN = 1	_	1	_	μΑ	
I _{RBIAS}	RBIAS current adder					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	10	_	μΑ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	1	_	μΑ	
R _{RBIAS}	RBIAS resistor values					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	0.28	_	ΜΩ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	2.98	_	ΜΩ	
VLL1	VLL1 voltage	_	_	V _{IREG}	V	4
VLL2	VLL2 voltage	_		2 x V _{IREG}	V	4
VLL3	VLL3 voltage			3 x V _{IREG}	V	4
VLL1	VLL1 voltage			V _{DDA} / 3	V	5
VLL2	VLL2 voltage	_	_	V _{DDA} / 1.5	V	5
VLL3	VLL3 voltage	_		V_{DDA}	V	5

- 1. The actual value used could vary with tolerance.
- 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.
- 3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} 0.15 V
- 4. VLL1, VLL2 and VLL3 are a function of V_{IREG} only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1).
- 5. VLL1, VLL2 and VLL3 are a function of V_{DDA} only under either of the following conditions:
 - The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = V_{DDA} through the internal power switch (GCR[VSUPPLY]=0).
 - The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to V_{DDA} externally (GCR[VSUPPLY]=1).

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
64-pin LQFP	98ASS23234W				
64-pin MAPBGA	98ASA00420D				

5 Pinouts and Packaging

5.1 KL33 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
_	E4	VDD	VDD	VDD							
1	A1	PTE0	DISABLED	LCD_P48	PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	LCD_P48
2	B1	PTE1	DISABLED	LCD_P49	PTE1	SPI1_MOSI	LPUART1_RX		SPI1_MISO	I2C1_SCL	LCD_P49
3	_	VDD	VDD	VDD							
4	C4	VSS	VSS	VSS							
5	E1	PTE16	ADC0_DP1/ ADC0_SE1	LCD_P55/ ADC0_DP1/ ADC0_SE1	PTE16	SPI0_SS	UART2_TX	TPM_CLKIN0		FXI00_D0	LCD_P55

64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
6	D1	PTE17	ADC0_DM1/ ADC0_SE5a	LCD_P56/ ADC0_DM1/ ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_CLKIN1	LPTMR0_ ALT3	FXIO0_D1	LCD_P56
7	E2	PTE18	ADC0_DP2/ ADC0_SE2	LCD_P57/ ADC0_DP2/ ADC0_SE2	PTE18	SPI0_MOSI		I2C0_SDA	SPI0_MISO	FXIO0_D2	LCD_P57
8	D2	PTE19	ADC0_DM2/ ADC0_SE6a	LCD_P58/ ADC0_DM2/ ADC0_SE6a	PTE19	SPI0_MISO		I2C0_SCL	SPI0_MOSI	FXIO0_D3	LCD_P58
9	G1	PTE20	ADC0_DP0/ ADC0_SE0	LCD_P59/ ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUARTO_TX		FXI00_D4	LCD_P59
10	F1	PTE21	ADC0_DM0/ ADC0_SE4a	LCD_P60/ ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUARTO_RX		FXIO0_D5	LCD_P60
11	G2	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX		FXIO0_D6	
12	F2	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX		FXIO0_D7	
13	F4	VDDA	VDDA	VDDA							
14	G4	VREFH	VREFH	VREFH							
15	G3	VREFL	VREFL	VREFL							
16	F3	VSSA	VSSA	VSSA							
17	H1	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
18	H2	PTE30	DACO_OUT/ ADCO_SE23/ CMPO_IN4	DACO_OUT/ ADCO_SE23/ CMPO_IN4	PTE30		TPM0_CH3	TPM_CLKIN1	LPUART1_TX	LPTMR0_ ALT1	
19	H3	PTE31	DISABLED		PTE31		TPM0_CH4				
20	H4	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
21	H5	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
22	D3	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
23	D4	PTA1	DISABLED		PTA1	LPUARTO_RX	TPM2_CH0				
24	E5	PTA2	DISABLED		PTA2	LPUART0_TX	TPM2_CH1				
25	D5	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
26	G5	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
27	F5	PTA5	DISABLED		PTA5		TPM0_CH2			I2S0_TX_ BCLK	
28	H6	PTA12	DISABLED		PTA12		TPM1_CH0			I2S0_TXD0	
29	G6	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
30	G7	VDD	VDD	VDD							
31	H7	VSS	VSS	VSS							
32	H8	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_RX	TPM_CLKIN0			

Pinouts and Packaging

64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
33	G8	PTA19	XTAL0	XTAL0	PTA19		LPUART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
34	F8	PTA20	RESET_b		PTA20						RESET_b
35	F7	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8	LCD_P0/ ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				LCD_P0
36	F6	PTB1	LCD_P1/ ADC0_SE9	LCD_P1/ ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1				LCD_P1
37	E7	PTB2	LCD_P2/ ADC0_SE12	LCD_P2/ ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				LCD_P2
38	E8	PTB3	LCD_P3/ ADC0_SE13	LCD_P3/ ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				LCD_P3
39	E6	PTB16	LCD_P12	LCD_P12	PTB16	SPI1_MOSI	LPUARTO_RX	TPM_CLKIN0	SPI1_MISO		LCD_P12
40	D7	PTB17	LCD_P13	LCD_P13	PTB17	SPI1_MISO	LPUART0_TX	TPM_CLKIN1	SPI1_MOSI		LCD_P13
41	D6	PTB18	LCD_P14	LCD_P14	PTB18		TPM2_CH0	I2S0_TX_ BCLK			LCD_P14
42	C7	PTB19	LCD_P15	LCD_P15	PTB19		TPM2_CH1	I2S0_TX_FS			LCD_P15
43	D8	PTC0	LCD_P20/ ADC0_SE14	LCD_P20/ ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	LCD_P20
44	C6	PTC1/ LLWU_P6/ RTC_CLKIN	LCD_P21/ ADC0_SE15	LCD_P21/ ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		I2S0_TXD0	LCD_P21
45	В7	PTC2	LCD_P22/ ADC0_SE11	LCD_P22/ ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1		I2S0_TX_FS	LCD_P22
46	C8	PTC3/ LLWU_P7	LCD_P23	LCD_P23	PTC3/ LLWU_P7	SPI1_SCK	LPUART1_RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	LCD_P23
47	E3	VSS	VSS	VSS							
48	C5	VLL3	VLL3	VLL3							
49	A6	VLL2	VLL2	VLL2/ LCD_P4	PTC20						LCD_P4
50	B5	VLL1	VLL1	VLL1/ LCD_P5	PTC21						LCD_P5
51	B4	VCAP2	VCAP2	VCAP2/ LCD_P6	PTC22						LCD_P6
52	A5	VCAP1	VCAP1	VCAP1/ LCD_P39	PTC23						LCD_P39
53	B8	PTC4/ LLWU_P8	LCD_P24	LCD_P24	PTC4/ LLWU_P8	SPI0_SS	LPUART1_TX	TPM0_CH3	I2S0_MCLK		LCD_P24
54	A8	PTC5/ LLWU_P9	LCD_P25	LCD_P25	PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	LCD_P25
55	A7	PTC6/ LLWU_P10	LCD_P26/ CMP0_IN0	LCD_P26/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	LCD_P26
56	В6	PTC7	LCD_P27/ CMP0_IN1	LCD_P27/ CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	12S0_RX_FS	SPI0_MOSI		LCD_P27
57	C3	PTD0	LCD_P40	LCD_P40	PTD0	SPI0_SS		TPM0_CH0		FXI00_D0	LCD_P40

64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
58	A4	PTD1	LCD_P41/ ADC0_SE5b	LCD_P41/ ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	LCD_P41
59	C2	PTD2	LCD_P42	LCD_P42	PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	LCD_P42
60	В3	PTD3	LCD_P43	LCD_P43	PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	LCD_P43
61	A3	PTD4/ LLWU_P14	LCD_P44	LCD_P44	PTD4/ LLWU_P14	SPI1_SS	UART2_RX	TPM0_CH4		FXI00_D4	LCD_P44
62	C1	PTD5	LCD_P45/ ADC0_SE6b	LCD_P45/ ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	LCD_P45
63	B2	PTD6/ LLWU_P15	LCD_P46/ ADC0_SE7b	LCD_P46/ ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_RX		SPI1_MISO	FXIO0_D6	LCD_P46
64	A2	PTD7	LCD_P47	LCD_P47	PTD7	SPI1_MISO	LPUART0_TX		SPI1_MOSI	FXIO0_D7	LCD_P47

5.2 KL33 Family Pinouts

Figure below shows the 64 LQFP pinouts:

Figure 23. 64 LQFP Pinout diagram

Figure below shows the 64 MAPBGA pinouts:

Figure 24. 64 MAPBGA Pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Table 46. Part number fields descriptions

Field	Description	Values
Q	Qualification status	M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL33
Α	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	
R	Silicon revision	(Blank) = MainA = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel

7.4 Example

This is an example part number:

MKL33Z256VMP4

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition	
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:	
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 	
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.	
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip	
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions	
Typical value	A specified value for a technical characteristic that:	
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 	
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.	

8.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3 TM	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	3.3 V supply voltage	3.3	V

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Table 47. Revision History

Rev. No.	Date	Substantial Changes	
3	09 August 2014	Initial Public release • Updated Table 9 - Power consumption operating behaviors.	
4	03 March 2015	 Updated the features and completed the ordering information. Removed thickness dimension from package diagrams. 	

Table 47. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Updated Related Resources table to include Chip Errata resource name and Package Drawing part numbers in the respective rows. Updated Table 7. Voltage and current operating behaviors. Specified correct max. value for I_{IN}. Updated Table - 9 Power consumption operating behaviors. Rows added for IDD for reset pin hold low (I_{DD_RESET_LOW}) at 1.7V and 3V. Measurement unit updated for I_{DD_VLLS1} from nA to μA. Footnote 1 was moved in the beginning of the table as text. Added Table - 11 EMC radiated emissions operating behaviors for 64-pin LQFP package under section 2.2.6. Updated Table - 18 (IRC48M specification) and Table - 19 (IRC8M/2M specification) under section 3.3.1 - 'MCG-Lite specifications'. Removed supply voltage (V_{DD}), temperature range (T), untrimmed (f_{IRC_UT}), trim function (Δf_{IRC_C}, Δf_{IRC_F}) data from Table - 18 (IRC48M specification). Removed supply voltage (V_{DD}), temperature range (T) data from Table - 19 (IRC8M/2M specification). Added Figure 6. IRC8M Frequency Drift vs Temperature curve after Table - 19 (IRC8M/2M specification). Updated Table 29. VREF full-range operating behaviors. Removed A_C(Aging coefficient) row. Added T_{chop_OSC_Stup} parameter. Updated typical value of the V_{out} parameter. Added VREF specifications (V_{REFH} and V_{REFL}) to Table 26. 16-bit ADC operating conditions. Removed note: "This device does not have the USB_CLKIN signal available."
5	12 August 2015	 In Table 9. Power consumption operating behaviors: Updated Max. values of I_{DD_WAIT}, I_{DD_VLPW}, I_{DD_STOP}, I_{DD_VLPS}, I_{DD_LLS}, I_{DD_VLLS3}, I_{DD_VLLS0} Modified unit of I_{DD_VLLS0} from nA to μA. Removed I_{DD_RESET_LOW} information. In Table 13. Device clock specifications, added a footnote for normal run mode. In Table 15. Thermal operating requirements, modified the footnote for Ambient temperature. In Table 18. IRC48M specification, removed f_{IRC_T} data and added Δf_{irc48m_of_lv} and Δf_{irc48m_of_hv} specifications. In Table 26. 16-bit ADC operating conditions, updated Max. value of f_{ADCK} and C_{rate}.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2015 Freescale Semiconductor, Inc.

Document Number KL33P64M48SF6 Revision 5, 08/2015

