信息安全的数学基础(1)

唐灯

上海交通大学网络空间安全学院

第一章 预备知识

§1.1 数论预备知识

§1.2 集合论预备知识

§1.1 数论预备知识

- 整除
- 整除的性质
- 辗转相除法 (更相减损术)
- 算数基本定理
- ■同余
- 同余的性质
- 中国剩余定理
- RSA 和 Rabin 公钥密码方案

整除

定义 1

设 $a,b\in\mathbb{Z}$, 其中 $b\neq 0$, 如果存在一个整数 q 使得等式

$$a = qb$$

成立, 我们就说 b **整除** a 或 a 被 b 整除, 记作 $b \mid a$, 此时我们把 b 叫作 a 的因子, 把 a 叫作 b 的倍数. 如果整数 q 不存在, 我们 就说 b 不能整除 a 或 a 不被 b 整除, 记作 $b \nmid a$.

注 1.1

对任意 $a, b, c \in \mathbb{Z}$, 由整除的定义可得:

- (1) $b \mid a$, 则 $b \mid ta$, 其中 $t \in \mathbb{Z}$;
- (2) $b \mid a$ 且 $a \mid b$, 则 $a = \pm b$;
- (3) a, b 都是 m 的倍数, 则 $sa \pm tb$ 也是 m 的倍数, 其中 $s, t \in \mathbb{Z}$;
- (4) $c \mid b$ 且 $b \mid a$, 则 $c \mid a$.

素数

定义 2

如果整数 p > 1, 并且 p 只能被 ± 1 和 $\pm p$ 整除, 那么称 p 为素数 (prime number).

定理 3 (带余除法)

若 $a,b \in \mathbb{Z}$, 其中 b>0, 则存在 $q,r \in \mathbb{Z}$, 使得 $a=qb+r, 0 \leq r < b$

成立, 而且 q 及 r 是惟一的. 其中 q 叫做 a 被 b 除所得的**不完全 商**, r 叫作 a 被 b 除所得到的**余数**.

证明

作整数序列

$$\cdots, -3b, -2b, -b, 0, b, 2b, 3b, \cdots$$

则 a 必在上述序列的某两项之间, 即存在一个整数 q 使得

$$qb \le a < (q+1)b$$

成立. 令 a-qb=r, 则 a=qb+r 且 $0 \le r < b$. 下面我们用反证法证明 q,r 的惟一性. 设 $q_1,r_1 \in \mathbb{Z}$ 且

$$a = q_1 b + r_1, 0 \le r_1 < b$$
, 则有

$$q_1b + r_1 = qb + r,$$

于是

$$(q-q_1)\,b=r_1-r,$$

可得

$$|q - q_1|b = |r_1 - r|$$
.

由于 r 及 r_1 都是小于 b 的非负数, 所以上式右边是小于 b 的. 如果 $q \neq q_1$ 则上式左边大于 b. 这是不可能的. 因此 $q = q_1$ 从而 $r = r_1$.

最大公因子

定义 4

设 a_1, a_2, \cdots, a_n 是 n ($n \ge 2$) 个整数. 若整数 d 是它们之中每一个的因子,那么 d 就叫作 a_1, a_2, \cdots, a_n 的一个公因子. 整数 a_1, a_2, \cdots, a_n 的公因子中最大的一个叫作最大公因子 (greatest common divisor),记作 (a_1, a_2, \cdots, a_n) 或 $\gcd(a_1, a_2, \cdots, a_n)$. 特别地,若 $(a_1, a_2, \cdots, a_n) = 1$,我们称 a_1, a_2, \cdots, a_n 互素;若 a_1, a_2, \cdots, a_n 中任意两个不同的整数都互素,我们就称它们**两两** 互素.

注 4.1

- (1) 任意非零 $a, b \in \mathbb{Z}$ 的最大公因子为正整数, 且 (a, b) = (|a|, |b|);
- (2) 0 可被任意非零整数整除, 故对任意非零整数 b 有 (0,b) = |b|.

证明: (1) 设 d 是 a, b 的任一公因子, 由定义 $d \mid a$ 且 $d \mid b$, 因而 $d \mid |a|$ 且 $d \mid |b|$, 故 d 是 |a|, |b| 的一个公因子, 同法可证, |a|, |b| 的任一公因子都是 a, b 的一个公因子, 所以 a, b 和 |a|, |b| 有相同的公因子, 也即具有相同的最大公因子.

(2) 由于任何非零整数都是 0 的因子, 故 |b| 的每一个因子均是 0 与|b| 的公因子. 由于 |b| 的最大正因子是 |b|, 故 (0,b) = (0,|b|) = |b|.

定理 5

设 a,b 是两个不全为零的整数, 令 $S=\{xa+yb>0\mid x,y\in\mathbb{Z}\}$, 则 $(a,b)=\min S$.

证明: 不失一般性, 假定 $b \neq 0$. 首先证明 $S \neq \emptyset$. 若 b > 0, 则 $b = 0a + 1b \in S$, 若 b < 0 则 $-b = 0a + (-1)b \in S$. 设 $d = \min S = ma + nb > 0$, 其中 $m, n \in \mathbb{Z}$. 以下证明 d = (a, b). 注意到 a 可写为 a = qd + r, 其中 $0 \leq r < d$. 于是,

$$r = a - qd = a - q(ma + nb) = (1 - qm)a + (-qn)b.$$

若 r>0, 则有 $r\in S$. 注意到 r< d, 这与 d 的定义矛盾, 故 r=0. 于是 a=dq, 由此 $d\mid a$. 类似地, 考虑 b=q'd+r', 其中 $0\leq r'< d$, 可得 r'=0, 从而 $d\mid b$. 因此 d 是 a 与 b 的公因子. 由于 (a,b) 为最大公因子, 故 $d\leq (a,b)$. 另一方面, 由于 $(a,b)\mid a$ 且 $(a,b)\mid b$, 由注 1.1 第 (3) 条可得 $(a,b)\mid d$, 从而 $(a,b)\mid d$, 于是 $(a,b)\leq d$. 因此可得 d=(a,b).

定理 6

设 a, b 是两个正整数, 则存在整数 m, n 使得 (a, b) = ma + nb.

注 6.1

定理 6 中的整数 m,n 不唯一. 事实上有:

$$(a,b) = ma + nb$$

= $ma - ab + nb + ab$
= $(m-b)a + (n+a)b = m'a + n'b$.

推论 7

设 a, b 是两个都不为零的整数, 则 a 与 b 的公因子都是 (a, b) 的因子.

定理8

设 a,b 是两个都不为零的整数, 如果正整数 d 满足下述两个条件:

- (1) $d \mid a \perp d \mid b$;
- (2) 若 $c \mid a$ 且 $c \mid b$, 则 $c \mid d$,

则 d 是 a 与 b 的最大公因子.

证明: 令 (a,b) = d' > 0. 由定理 6 可知存在 $m,n \in \mathbb{Z}$ 使得 d' = ma + nb. 由 (1) 和注 1.1 第 (3) 条立即可得 $d \mid d'$. 在 (2) 中取 c = d' 立即可得 $d' \mid d$. 综上可得 d = d'.

定理 9

如果 a 和 b 是不全为零的两个整数, 则 (a,b)=1 当且仅当存在整数 m,n 使得 ma+nb=1.

证明: 若 (a,b) = 1, 则由定理 6 知存在整数 m,n 使得 ma + nb = 1. 相反地, 若有 ma + nb = 1. 如果 d = (a,b) > 0 则 $d \mid a$ 且 $d \mid b$, 于是由注 1.1 第 (3) 条可得 $d \mid ma + nb$. 从而有 $d \mid 1$, 于是 d = 1.

定理 10

若 a, b, c 是三个整数, 且 (a, c) = 1, 则:

- (1) ab, c 与 b, c 有相同的公因子;
- (2) 若 b, c 不全为零则 (ab, c) = (b, c).

证明: (1) 由 (a,c) = 1 知存在两个整数 m,n 使得 ma + nc = 1. 两边乘以 b 得 mab + ncb = b. 设 d 是 ab 和 c 的任一公因子,则 $d \mid b$,因而 d 是 b,c 的一个公因子. 反之 b,c 的任一公因子显然是 ab,c 的一个公因子. 于是 (1) 得证.

(2) 因为 b, c 不全为零, 故 (b, c) 是存在的, 因而由 (1) 即知 (ab, c) 存在且 (ab, c) = (b, c).

推论 11

若 a,b,c 是三个整数,则:

- (1) 若 (a,c) = 1 且 (b,c) = 1, 则 (ab,c) = 1;
- (2) 若 (a,c) = 1 且 $c \mid ab$, 则 $c \mid b$;
- (3) 若 c 为素数且 $c \mid ab$, 则 $c \mid a$ 或 $c \mid b$.

证明: (1) 若 (a,c) = 1, 则由定理 10 第 (2) 立即可得 (ab,c) = (b,c) = 1.

- (2) b=0 时显然成立. 当 $b\neq 0$ 时由定理 10 第 (2) 条可设 (ab,c)=(b,c)=d. 若有 $c\mid ab$, 则 c 为 ab 和 c 的公因子, 由推论 7 可知 $c\mid d$. 又 $d\mid b$, 故 $c\mid b$.
- (3) 因为 c 为素数, 若 $c \nmid a$ 则 (a, c) = 1, 由 (1) 得 $c \mid b$.

辗转相除法

定理 12

设 a, b, c 是任意三个不全为 0 的整数, 且有 a = qb + c, 其中 $q \neq 0$. 则 a, b = b, c 有相同的公因子, 因而 (a, b) = (b, c).

证明: 设 d 是 a,b 的任一公因子, 由定义知 $d \mid a,d \mid b$. 于是 d 是 c = a + (-q)b 的因子, 因而 d 是 b,c 的一个公因子. 同法可证 b,c 的任一公因子是 a,b 的一个公因子. 于是定理的前一部分获证, 第二部分显然随之成立.

辗转相除法

注 12.1

由定理 12 可得对任意 $a,m\in\mathbb{Z}$ 有 (a,m)=(a+tm,m), 其中 $t\in\mathbb{Z}$.

■ 由此可知 $(a_1, a_2, \dots, a_n) = (|a_1|, |a_2|, \dots, |a_n|)$. 给定两个正整数 a, b, 由带余除法有下列等式:

$$a = q_{1}b + r_{1}, \ 0 \le r_{1} < b$$

$$b = q_{2}r_{1} + r_{2}, \ 0 \le r_{2} < r_{1}$$

$$r_{1} = q_{3}r_{2} + r_{3}, \ 0 \le r_{3} < r_{2}$$

$$r_{2} = q_{4}r_{3} + r_{4}, \ 0 \le r_{4} < r_{3}$$

$$\cdots \qquad \cdots$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n}, \ 0 \le r_{n} < r_{n-1},$$

$$r_{n-1} = q_{n+1}r_{n} + r_{n+1}, \ r_{n+1} = 0.$$

$$(1)$$

辗转相除法

- 因为每进行一次带余数除法, 余数就至少减一, 而 b 是有限的, 所以我们最多进行 b 次带余数除法就可以得到一个余数是零的等式.
- 反复运用定理 12, 可以计算出两个正整数的最大公因子, 该方法称为**辗转相除法** (在西方常把它叫做欧几里得除法), 它也是我国著名的古代数学著作《九章算术》中提出的"更相减损术".
- 例如, 可由下列步骤求 (169,121):

$$169 = 1 \times 121 + 48,$$

$$121 = 2 \times 48 + 25,$$

$$48 = 1 \times 25 + 23,$$

$$25 = 1 \times 23 + 2,$$

$$23 = 11 \times 2 + 1,$$

$$2 = 2 \times 1 + 0.$$

于是有 (169, 121) = 1. 进一步, 注意到 $1 = 23 - 11 \times 2 = 23 - 11(25 - 1 \times 23) = \cdots = 58 \times 169 - 81 \times 121$.

最小公倍数

定义 13

设 a_1, a_2, \dots, a_n 是 n ($n \ge 2$) 个整数. 若 d 是这 n 个数的倍数,则 d 就叫作这 n 个数的一个公倍数. 又在 a_1, a_2, \dots, a_n 的一切公倍数中的最小正数叫作最小公倍数 (least common multiple),记作 [a_1, a_2, \dots, a_n] 或 $lcm(a_1, a_2, \dots, a_n)$.

注 13.1

由于任何正数都不是 0 的倍数, 故讨论整数的最小公倍数时, 一概假定这些整数都不是零.

最小公倍数的性质

定理 14

设 a,b 是任意两个正整数,则:

- (1) a, b 的所有公倍数就是 [a, b] 的所有倍数;
- (2) $[a, b] = \frac{ab}{(a,b)}$.

算数基本定理

定理 15 (算术基本定理)

设 a 是任一大于 1 的整数, 则 a 可表为素数的乘积, 即

$$a = p_1 p_2 \cdots p_n, \ p_1 \le p_2 \le \cdots \le p_n,$$

其中 p_1, p_2, \cdots, p_n 是素数. 并且若

$$a = q_1 q_2 \cdots q_m, \ q_1 \le q_2 \le \cdots \le q_m,$$

其中 q_1, q_2, \dots, q_m 是素数, 则 $m = n, q_i = p_i, i = 1, 2, \dots, n$.

证明: 我们首先用归纳法证明 a 可表为素数的乘积. 显然 a=2 时成立. 假定对一切小于 a 的正整数均成立. 现在讨论 a. 若 a 是素数, 显然成立; 若 a 是合数, 则有两正整数 b, c 满足条件

$$a = bc, 1 < b < a, 1 < c < a.$$

由假定

$$b = p'_1 p'_2 \cdots p'_l, \ c = p'_{l+1} p'_{l+2} \cdots p'_n,$$

于是

$$a = p_1' p_2' \cdots p_l' p_{l+1}' \cdots p_n'.$$

证明 (续)

将 p_i' 的顺序适当调动后即满足定理描述的第一部分, 由数学归纳 法可得 (1) 对于任意大于 1 的正整数成立.

现证明 $n=m, p_k=q_k, k=1,2,\cdots,n$. 若有 $a=p_1p_2\cdots p_n=q_1q_2\cdots q_m$. 此时有 $p_1\mid q_1q_2\cdots q_m$. 则一定有 $q_j,j\in\{1,\cdots,m\}$ 使得 $p_1\mid q_j$, 因为 p_1,q_j 是素数,则 $p_1=q_j$, 对 q_1 同理,即一定有 $i\in\{1,\cdots,m\}$ 满足 $p_i=q_1$. 又 $p_i\geq p_1,q_j\geq q_1$,故 $q_j=p_1\leq p_i=q_1$,于是 $q_1\geq q_j$. 又 $q_1\leq q_j$,故 $q_j=q_1$,进而 $p_1=q_1$. 以此类推即得 $n=m,p_k=q_k, k=1,2,\cdots,n$.

算数基本定理

推论 16

设 a 是任一大于 1 的整数. 则 a 能够惟一地写成

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, \alpha_i > 0, i = 1, \cdots, k,$$

其中 p_i $(1 \le i \le k)$ 为素数且对任意 $1 \le i < j \le k$ 都有 $p_i < p_j$. 该式称作 a 的标准分解式. 并且 a 的正因子 d 可表示成如下形式:

$$d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}, \alpha_i \ge \beta_i \ge 0, i = 1, 2, \cdots, k.$$

证明: 将定理 15 的分解式进行整理立即可得 a 的唯一性表示.

若 $d\mid a$, 则 a=dq, 由于 a 的标准分解式是惟一的, 故 d 的标准分解式中出现的素数都在 p_j $(j=1,2,\cdots,k)$ 中出现, 且 p_j 在 d 的标准分解式中出现的指数 $\beta_j \not > \alpha_j$, 亦即 $\beta_j \le \alpha_j$. 反过来当 $\beta_j \le \alpha_j$ 时, d 显然整除 a.

同余

定义 17

给定一个正整数 m, 如果用 m 去除任意两个整数 a 与 b 所得的 余数相同, 我们就说 a,b 对模 m **同余**, 记作 $a \equiv b \pmod{m}$. 如果余数不同, 我们就说 a,b 对模 m **不同余**, 记作 $a \not\equiv b \pmod{m}$.

注 17.1

设 m 是任一正整数, 则模 m 的同余是等价关系, 即:

- (1) (自反性) $a \equiv a \pmod{m}$;
- (2) (对称性) 若 $a \equiv b \pmod{m}$, 则 $b \equiv a \pmod{m}$;
- (3) *(*传递性) 若 $a \equiv b \pmod{m}, b \equiv c \pmod{m}$, 则 $a \equiv c \pmod{m}$.

同余

定理 18

整数 a, b 对模 m 同余的充分与必要条件是 $m \mid a - b$, 即 a = b + tm, 其中 $t \in \mathbb{Z}$.

证明: 设 $a = q_1 m + r_1, b = q_2 m + r_2, 0 \le r_1 < m, 0 \le r_2 < m.$

若 $a \equiv b \pmod{m}$, 则 $r_1 = r_2$, 于是 $a - b = (q_1 - q_2)m$, 因此 $m \mid a - b$, 即 a = b + tm, 其中 $t = q_1 - q_2$.

反之, 若 $m \mid a - b$, 则 $m \mid (q_1 - q_2)m + (r_1 - r_2)$, 即存在 $q \in \mathbb{Z}$ 使得 $(q_1 - q_2)m + (r_1 - r_2) = qm$, 于是 $r_1 - r_2 = (q - q_1 + q_2)m$, 因此 $m \mid r_1 - r_2$. 但 $|r_1 - r_2| < m$, 故 $r_1 = r_2$.

注 18.1

定理 18 说明同余这一概念又可定义为: 若 $m \mid a-b$, 则 a,b 叫做 对模 m 同余.

同余的性质

定理 19

若 $a \equiv b \pmod{m}, u \equiv v \pmod{m}$, 则:

- (1) $ax + uy \equiv bx + vy \pmod{m}$, $\mathbf{H} \mathbf{P}(x, y \in \mathbb{Z})$;
- (2) $au \equiv bv \pmod{m}$;
- (3) $f(a) \equiv f(b) \pmod{m}$, 其中 f(x) 为任意给定的一个整系数多项式.
- 证明: (1) 由定理 18 有 $m \mid a b$ 且 $m \mid u v$. 于是 $m \mid (a b)x + (u v)y \Rightarrow m \mid (ax + uy) (bx + vy)$. 由定理 18 即知 $ax + uy \equiv bx + vy \pmod{m}$.
- (2) 由定理 18 有 $m \mid a b$ 且 $m \mid u v$. 于是 $m \mid (a b)u + b(u v)$, 即 $m \mid au bv$, 从而 $au \equiv bv \pmod{m}$.
- (3) 由 (1)和 (2) 立即可得.

同余的性质

定理 20

若 $a \equiv b \pmod{m}$, 则下述三条成立:

- (1) $a_1 \equiv b_1 \pmod{m}$, $\not \equiv a = a_1 d, b = b_1 d, (d, m) = 1$;
- (2) $a \equiv b \pmod{d}$, 其中 $d \mid m \perp d > 0$;
- (3) (a, m) = (b, m), 因而若 d 能整除 m 及 a, b 二数之一, 则 d 必能整除 a, b 中的另一个.

证明: (1) 由定理 18 得 $m \mid a-b$. 由于 $a-b=d(a_1-b_1)$, 故 $m \mid d(a_1-b_1)$. 因为 (d,m)=1, 由推论 11 中 (2) 可知 $m \mid a_1-b_1$, 于是 $a_1 \equiv b_1 \pmod{m}$.

- (2) 由定理 18 得 $m \mid a b$, 因为 $d \mid m, d > 0$, 由整除的传递性 (注 1.1 中 (4)) 可知 $d \mid a b$, 再次由定理 18 可得 $a \equiv b \pmod{d}$.
- (3) 由定理 18 知存在 t 使得 a = tm + b. 由定理 12 立即可得 (a,m) = (b,m). 进一步, 易得若 d 能整除 m 及 a,b 二数之一, 则 d 必能整除 a,b 中的另一个.

同余的性质

定理 21

若
$$a \equiv b \pmod{m_i}, i = 1, 2, \dots, k$$
, 则
$$a \equiv b \pmod{[m_1, m_2, \dots, m_k]}.$$

剩余类

定义 22

若 m 是一个给定的正整数,则全部整数可分成 m 个集合,记作 C_0,C_1,\cdots,C_{m-1} ,其中 C_r $(r=0,1,\cdots,m-1)$ 表示所有形如 qm+r $(q=0,\pm 1,\pm 2,\cdots)$ 的整数组成的集合,则 C_0,C_1,\cdots,C_{m-1} 叫做模 m 的一个剩余类.

注 22.1

设 m 是任一正整数, C_0, C_1, \dots, C_{m-1} 是模 m 的一个剩余类, 则:

- (1) 若有 (r, m) = 1, 则由定理 12 或注 12.1 知 C_r 中所有的数均与 m 互素:
- (2) 在数论中, 通常将 C_r 记做 \bar{r} , 并将 $C_0, C_1, \cdots, C_{m-1}$ 构成的 集合称为剩余类集, 记为 \mathbb{Z}_m , 即 $\mathbb{Z}_m = \{\bar{0}, \bar{1}, \cdots, \overline{m-1}\}$.

剩余类的性质

定理 23

若 m 是一个给定的正整数, 则 $C_0, C_1, \cdots, C_{m-1}$ 具有下列性质:

- (1) 对任一 $a \in \mathbb{Z}$, 则存在唯一的 $0 \le r \le m-1$ 使得 $a \in C_r$;
- (2) 对任一 $0 \le r \le m-1$ 以及 $a,b \in \mathbb{Z}$,则 $a,b \in C_r$ 当且仅当 $a \equiv b \equiv r \pmod{m}$.

证明: (1) 由定理 3 知存在唯一整数 q 和 $0 \le r < m$ 使得 a = qm + r,

故 a 在 C_r 内且 r 由 a 惟一确定.

(2) 由题设有

$$a = q_1 m + r, b = q_2 m + r,$$

故 $a \equiv b \pmod{m}$. 反之若 $a \equiv b \equiv r \pmod{m}$, 则由同余的定义即知 $a, b \in C_r$.

完全剩余系

定义 24 (完全剩余系)

设 m 是一个给定的正整数, 若 a_0, a_1, \dots, a_{m-1} 是 m 个整数, 并且其中任何两数都不同在一个剩余类里, 则 a_0, \dots, a_{m-1} 叫做模 m 的一个完全剩余系.

定理 25

m 个整数组成模 m 的一个完全剩余系的充分与必要条件是两两对模 m 不同余.

完全剩余系

定理 26

设 m 是正整数, (a, m) = 1, b 是任意整数, 若 a_0, a_1, \dots, a_{m-1} 是模 m 的一个完全剩余系, 则 $aa_0 + b$, $aa_1 + b$, \dots , $aa_{m-1} + b$ 也是模 m 的一个完全剩余系.

证明: 由定理 25, 我们只需证明 $aa_0+b, aa_1+b, \cdots, aa_{m-1}+b$ 两两不同余即可. 我们用反证法来证明. 假定有 $aa_i+b\equiv aa_j+b\pmod{m},\ i\neq j$. 则由定理 19 第 (1) 条可得 $aa_i\equiv aa_j\pmod{m}$. 又因为 (a,m)=1, 由定理 20 第 (1) 条可得 $a_i\equiv a_j\pmod{m}$, 这与 a_0,a_1,\cdots,a_{m-1} 是模 m 的一个完全剩余系矛盾. 从而 $aa_0+b,\ aa_1+b,\cdots,aa_{m-1}+b$ 中没有两个数对模 m 同余, 由定理 25 即得它们是模 m 的一个完全剩余系.

例 27

由定理 26 我们知道下述序列都是模 m 的完全剩余系:

$$0, 1, \cdots, m-1;$$

$$-m, 1-m, \cdots, a-m, \cdots, -1;$$

$$0, m+1, \cdots, a(m+1), \cdots, (m-1)(m+1).$$

完全剩余系

定理 28

设 m,n 是两个互素的正整数. x_1,x_2,\cdots,x_m 是模 m 的一个完全剩余系, y_1,y_2,\cdots,y_n 是模 n 的一个完全剩余系, 则 $my_1+nx_1,my_1+nx_2,\cdots,my_1+nx_m,\cdots,my_n+nx_1,my_n+nx_2,\cdots,my_n+nx_m$ 是模 mn 的一个完全剩余系.

证明: 只需证明这 mn 个整数对模 mn 两两不同余即可. 假定 $my_i+nx_j\equiv my_{i'}+nx_{j'}\pmod{mn},$ 其中 $x_j,x_{j'}$ 取自 $x_1,x_2,\cdots,x_m,y_i,y_{i'}$ 取自 y_1,y_2,\cdots,y_n . 注意 到 m,n 都整除 mn. 因此, 由定理 20 第 (2) 条得 $my_i+nx_j\equiv my_{i'}+nx_{j'}\pmod{m},$ $my_i+nx_j\equiv my_{i'}+nx_{j'}\pmod{n}.$

证明 (续)

于是

$$nx_j \equiv nx_{j'} \pmod{m},$$

 $my_i \equiv my_{i'} \pmod{n}.$

注意到 (m,n)=1, 由定理 20 第 (1) 条即得 $x_j\equiv x_{j'}\pmod m$, $y_i\equiv y_{i'}\pmod n$. 于是 $x_j=x_{j'},\ y_i=y_{i'}$. 因此定理获证.

简化剩余系

定义 29 (简化剩余系)

如果一个模 m 的剩余类里面的数与 m 互素, 就把它叫做一个与模 m 互素的剩余类. 在与模 m 互素的全部剩余类中, 从每一类中任取一数所作成的集合叫做模 m 的一个简化剩余系 (也称既约剩余系或缩系).

注 29.1

欧拉函数

定义 30 (欧拉 (Euler) 函数)

欧拉函数 $\varphi(n)$ 是定义在正整数上的函数, 它在正整数 n 上的值等于序列 $1,2,\cdots,n-1$ 中与 n 互素的数的个数.

注 30.1

由欧拉函数可知:

- (1) 若 n 是素数, 则 $\varphi(n) = n 1$;
- (2) 模 m 的每个简化剩余系含有 $\varphi(m)$ 个元素.
- (3) 模 m 的每个简化剩余系是由与 m 互素的 $\varphi(m)$ 个对模 m 不同余的整数组成的.

简化剩余系

定理 31

设 $x_1,x_2,\cdots,x_{\varphi(m)}$ 是模 m 的一个简化剩余系. 若 (a,m)=1, 则 $ax_1,ax_2,\cdots,ax_{\varphi(m)}$ 是模 m 的一个简化剩余系.

证明: 由于 (a,m)=1 且对任意 $1\leq i\leq \varphi(m)$ 有 $(x_i,m)=1$, 故 $(ax_i,m)=1$. 并且, 对任意 $1\leq i\neq j\leq \varphi(m)$, 若 $ax_i\equiv ax_j\pmod m$, 则有 $x_i\equiv x_j\pmod m$. 故 $ax_1,ax_2,\cdots,ax_{\varphi(m)}$ 是 $\varphi(m)$ 个与 m 互素的整数, 且两两不同余, 是模 m 的一个简化剩余系.

Euler 定理

定理 32 (Euler 定理)

设 n 是大于 1 的整数. 若 (a,n)=1, 则 $a^{\varphi(n)}\equiv 1\pmod{n}$.

证明: 设 $x_1, x_2, \dots, x_{\varphi(n)}$ 是模 n 的一个简化剩余系, 由定理 31 知

$$ax_1, ax_2, \cdots, ax_{\varphi(n)}$$

也是模 n 的一个简化剩余系. 由定理 19 第 (2) 条得 $(ax_1)(ax_2)\cdots(ax_{\omega(n)})\equiv x_1x_2\cdots x_{\omega(n)}\pmod{n}$,

即

$$a^{\varphi(n)}x_1x_2\cdots x_{\varphi(n)} \equiv x_1x_2\cdots x_{\varphi(n)} \pmod{n}.$$

又因为 $(x_1, n) = (x_2, n) = \cdots = (x_{\varphi(n)}, n) = 1$, 由推论 11 第 (1) 条可得 $(x_1x_2\cdots x_{\varphi(n)}, n) = 1$. 于是, 由定理 20 第 (1) 条即得 $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Fermat 小定理

推论 33 (Fermat 小定理)

若 p 是素数, 则 $a^p \equiv a \pmod{p}$.

证明: 若(a,p)=1, 则由定理 32 可得 $a^{\varphi(p)}\equiv 1\pmod{p}$. 注意到 $\varphi(p)=p-1$, 可得 $a^{p-1}\equiv 1\pmod{p}$. 由定理 19 第 (2) 条立即 可得 $a^p\equiv a\pmod{p}$. 若 $(a,p)\neq 1$, 则 $p\mid a$, 于是 $p\mid a^p-a$. 由定理 18 即得 $a^p\equiv a\pmod{p}$.

简化剩余系

定理 34

设 m,n 是两个互素的正整数. $x_1,x_2,\cdots,x_{\varphi(m)}$ 是模 m 的一个简化剩余系, $y_1,y_2,\cdots,y_{\varphi(n)}$ 是模 n 的一个简化剩余系, 则 $my_1+nx_1,my_1+nx_2,\cdots,my_1+nx_{\varphi(m)},\cdots,my_{\varphi(n)}+nx_1,my_{\varphi(n)}+nx_2,\cdots,my_{\varphi(n)}+nx_{\varphi(m)}$ 是模 mn 的一个简化剩余系.

欧拉定理的性质

推论 35

若 m,n 是两个互素的正整数, 则 $\varphi(mn) = \varphi(m)\varphi(n)$. 特别地, 若 m,n 是两个不相同的素数, 则 $\varphi(mn) = (m-1)(n-1)$.

证明: 由注 22.1 第 (1) 以及简化剩余系的定义可知 $\varphi(mn)$ 等于模 mn 的简化剩余系中元素的个数, 由定理 34 立即可得 $\varphi(mn)=\varphi(m)\varphi(n)$. 特别地, 若 m,n 是素数, 则 $\varphi(m)=m-1, \varphi(n)=n-1$.

欧拉定理的性质

定理 36

若 $n = p^t$, 其中 p 是素数, 则 $\varphi(n) = p^t - p^{t-1}$.

证明: 显然, p^t 的因子都是 p 的幂次. 因此任何小于等于 n 且是 p 的倍数的数都与 p 有大于 1 的最大公因子, 而其它小于等于 n 的非负整数都与 p 互素. 注意到小于 n 的正整数中 p 的倍数有 $p, 2p, \cdots, (p^{t-1}-1) \cdot p$, 其个数为 $p^{t-1}-1$. 于是可得 $\varphi(p^t)=(p^t-1)-(p^{t-1}-1)=p^t-p^{t-1}$.

欧拉定理的性质

定理 37

设 $n=p_1^{t_1}p_2^{t_2}\cdots p_s^{t_s}$, 其中 p_1,p_2,\cdots,p_s 是 s 个两两不同的素数.则

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_s}\right).$$

证明: 由推论 35 易得

$$\varphi(n) = \varphi(p_1^{t_1})\varphi(p_1^{t_2})\cdots\varphi(p_1^{t_s}).$$

由定理 36 知, 当 p 是素数时

$$\varphi(p^t) = p^t - p^{t-1}.$$

综上即得

$$\varphi(n) = (p_1^{t_1} - p_1^{t_1 - 1})(p_2^{t_2} - p_2^{t_2 - 1}) \cdots (p_s^{t_s} - p_s^{t_s - 1})$$
$$= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_s}\right).$$

同余式

定义 38 (同余式)

若用 f(x) 表示多项式 $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, 其中 n>0, a_i $(i=1,2,\cdots,n)$ 是整数. 又设 m 是一个正整数, 则 $f(x)\equiv 0\pmod m$

叫做模 m 的同余式. 若 $a_n \not\equiv 0 \pmod m$, 则 n 叫做同余式的次数. 若 a 是使 $f(a) \equiv 0 \pmod m$ 成立的一个整数, 则 $x \equiv a \pmod m$ 叫做同余式的一个解, 并且把满足 $f(x) \equiv 0 \pmod m$ 且对 m 相互同余的一切数算作同余式的一个解.

一次同余式

主要关注一次同余式::

$$x \equiv b_1 \pmod{m_1}, x \equiv b_2 \pmod{m_2}, \dots, x \equiv b_k \pmod{m_k}.$$

例 39

 $x \equiv 2 \pmod{3}, \ x \equiv 3 \pmod{5}, \ x \equiv 2 \pmod{7}.$

一次同余式

引理 40

设 p 是素数, a 是任一整数. 若有 (a, p) = 1, 则存在唯一整数 $0 \le m < p$ 使得 $ma \equiv 1 \pmod{p}$.

证明: 由定理 6 知存在整数 m,n 使得 ma+np=1, 于是对任意整数 t 都有 (m-tp)a+(n+ta)p=1, 因此必有 m_1,n_1 使得 $m_1a+n_1p=1$ 且 $0\leq m_1< p$. 下证 m_1 的唯一性. 假设存在 m_2,n_2 使得 $m_2a+n_2p=1$ 且 $0\leq m_2< p$, 则有 $(m_1-m_2)a=(n_1-n_2)p$, 于是 $p\mid (m_1-m_2)a$. 由推论 11 第 (3) 条以及 (a,p)=1 立即可得 $p\mid m_1-m_2$. 由于 $|m_1-m_2|< p$, 故 $m_1-m_2=0$, 即 $m_2=m_1$.

中国剩余定理

定理 41 (中国剩余定理)

设 m_1, m_2, \cdots, m_k 是 k 个两两互素的正整数, $m = m_1 m_2 \cdots m_k$, $M_i = m/m_i, i = 1, 2, \cdots, k$, 则同余式组 $x \equiv b_1 \pmod{m_1}$, $x \equiv b_2 \pmod{m_2}$, \cdots , $x \equiv b_k \pmod{m_k}$ 的解是 $x \equiv M_1' M_1 b_1 + M_2' M_2 b_2 + \cdots + M_k' M_k b_k \pmod{m}$,

其中 $M_i'M_i \equiv 1 \pmod{m_i}$, $i = 1, 2, \dots, k$.

证明: 注意到对任意 $i \neq j$ 有 $(m_i, m_j) = 1$, 于是由推论 11 第 (1) 条可得 $(M_i, m_i) = 1$, 故对每一个 M_i , 由引理 40 知存在 M_i' 使得 $M_i'M_i \equiv 1 \pmod{m_i}$.

证明 (续)

另一方面, 由于 $m=m_iM_i$, 因此 $m_j\mid M_i, i\neq j$, 于是

$$\sum_{j=1}^{k} M'_{j} M_{j} b_{j} \equiv M'_{i} M_{i} b_{i} \equiv b_{i} \pmod{m_{i}}$$

即为定理中同余式组的解.

下证解的唯一性. 若 x_1, x_2 是定理中同余式组的任意两个整数解,则

$$x_1 \equiv x_2 \pmod{m_i}, i = 1, 2, \cdots, k.$$

因 $(m_i, m_j) = 1$, 于是由定理 21 可得 $x_1 \equiv x_2 \pmod{m}$, 故同余式组的解具有唯一性.

RSA 公钥密码方案

RSA 公钥密码方案

(1) 密钥的产生:

随机选两个不同的大素数 p 和 q, 计算 n = pq,

 $\varphi(n)=(p-1)(q-1)$; 任意选取一个大整数 $1\leq e\leq \varphi(n)$ 满足 $(\varphi(n),e)=1$; 计算d, 满足 $de\equiv 1\pmod{\varphi(n)}$. 以 $\{e,n\}$ 为公钥, $\{d,n\}$ 为私钥.

(2) 加密运算:

对明文 m < n 进行加密:

$$c = E(m) \equiv m^e \pmod{n}$$
.

(3) 解密运算:

接收方对 c 进行解密:

$$m = D(c) \equiv c^d \pmod{n}$$
.

Rabin 公钥密码方案

Rabin 公钥密码方案

随机选取两个大素数 p,q, 并且 $p\equiv q\equiv 3\pmod 4$, 令 n=pq. 以 $\{n\}$ 为公钥, $\{p,q\}$ 为私钥. 将明文 m 加密为 $c\equiv m^2\pmod n$.

§1.2 集合论预备知识

- 集合的定义
- 集合的基本运算
- 集合的映射
- 等价关系
- 集合的分类

集合的定义

定义 42

将一些不同的对象放在一起,即为**集合** (set), 其中的对象称为集合的元素 (element). 通常使用大写字母 A,B,C,\cdots 来表示集合,用小写字母 a,b,c,\cdots 来表示集合的元素. 集合通常有列举式记法和描述性记法.

例 43

例如 $\mathbb{N} = \{0, 1, 2, \dots\}$ 是列举法记法, 奇数集合 = $\{a \text{ 为整数 } | a \equiv 1 \pmod{2} \}$ 是描述性记法.

集合族

定义 44

设 I 为一集合且任意 $i \in I$ 都对应一个集合 A_i , 则由这些 A_i $(i \in I)$ 的全体构成的集合称为**集合族**, 通常记为 $\{A_i\}_{i \in I}$, 其中 I 称为该集合族的**下标集合**或**指标集合**.

子集

定义 45

设 A 为一个集合. 如果 a 是 A 中的元素, 则称 a 属于 A, 记为 $a \in A$, 否则记为 $a \notin A$. 如果集合 A 中的每一个元素均是集合 B 中元素, 则称 A 是 B 的子集 (subset), 即若 $a \in A$, 则 $a \in B$, 记为 $A \subseteq B$ 或 $B \supseteq A$.

- 如果集合 $A \subseteq B$ 且 $B \subseteq A$, 即 $a \in A$ 当且仅当 $a \in B$, 称 $A \in B$ 相等, 并记为 A = B.
- 如果 $A \subseteq B$ 且 $A \neq B$, 我们称 A 为 B 的真子集 (proper subset), 记为 $A \subset B$ 或者 $A \subsetneq B$.
- 不含任何元素的集合称为**空集** (empty set), 记为 ∅. 显然, ∅ 是任何集合的子集, 且是任何非空集合的真子集.
- 集合 Ω 的所有子集的集合称为 Ω 的幂集 (power set), 记为 $\mathcal{P}(\Omega)$, 即 $\mathcal{P}(\Omega) = \{A \mid A \subseteq \Omega\}$.

集合的阶

定义 46

如果集合 A 的元素个数有限, 称 A 为**有限集** (finite set), 其元素 个数称为集合的**阶**或**基数** (cardinality 或 order of finite set), 记为 |A| 或 #A. 元素个数无限的集合, 即**无限集** (infinite set), 它的阶 定义为 ∞ . 特别地, 如果 |A| 是有限的, 通常写为 $|A| < \infty$.

集合的交

定义 47

设 A 和 B 是两个集合,它们的公共元素组成的集合叫做 A 和 B 的**交集** (intersection),表示成 $A \cap B$,即

$$A \cap B = \{x \mid x \in A \perp \!\!\!\!\perp x \in B\}.$$

更一般地, 设 $\{A_i\}_{i\in I}$ 为一集合族, 则 A_i $(i\in I)$ 的交为

$$\bigcap_{i \in I} A_i = \{x \mid x \in A_i$$
 对每个 $i \in I$ 成立}.

集合的并

定义 48

集合 A igcup B 的并集 (union) 表示成 $A \cup B$, 定义为 $A \cup B = \{x \mid x \in A \text{ 或 } x \in B\}.$ 更一般地,设 $\{A_i\}_{i \in I}$ 为一集合族,则 $A_i \ (i \in I)$ 的并为 $\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ 对某个 } i \in I \text{ 成立}\}.$ 进一步,如果 $\{A_i\}_{i \in I}$ 满足对任意 $i \neq j \in I$ 都有 $A_i \cap A_i = \emptyset$,则 称 $\bigcup_{i \in I} A_i$ 为不交并 (disjoint union),并记为 $\bigcup_{i \in I} A_i$.

集合的差集与补集

定义 49

设 A, B 为某固定集合 Ω 的子集, 则 A 关于 B 的**补**集或**差集** (complement), 记为 A - B 或 $A \setminus B$, 定义为 $A - B = \{x \mid x \in A \perp 1 \text{ If } x \notin B\}.$

特别地, 如果所讨论的集合都是固定集合 Ω 的子集, 则 A 关于集合 Ω 的补集通常简称为 A 的补集, 并记为 \overline{A} .

集合的直积

定义 50

设 A 和 B 是两个集合. 我们把集合

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

叫做 $A \subseteq B$ 的直积 (direct product) 或笛卡尔积 (Cartesian product). 在 $A \times B$ 中, (a,b) = (a',b') 当且仅当 a = a' 且 b = b'. 更一般地, 设 $\{A_i\}_{i \in I}$ 为一集合族, 则 A_i $(i \in I)$ 的直积为

$$\prod_{i \in I} A_i = \{(a_i)_{i \in I} \mid a_i \in A_i\}.$$

集合的映射

定义 51

设 A, B 是两个集合. A 到 B 的一个映射 (map) f 是一个使得对每个 $a \in A$ 都有唯一一个 $b \in B$ 与之对应的对应法则. 这里 b 叫做 a 在映射 f 之下的**像** (image), a 叫做 b 在 f 下的**原像** (inverse image). 从 A 到 B 的映射 f 记为

$$f: A \to B, \quad a \mapsto f(a),$$

或简记为

$$f: A \to B \ \vec{\mathbf{x}} \ A \xrightarrow{f} B,$$

其中 A 称为映射 f 的定义域 (domain), $f(A) = \{f(a) \mid a \in A\}$ 称为映射 f 的**像集**或**值域** (codomain).

集合映射

注 51.1

- 当集合 B 是数 (有理数, 实数等) 的集合时, 映射 f 习惯上 称为**函数** (function);
- 对任意 $a_1, a_2 \in A$, 当 $f(a_1) = f(a_2)$ 时, 则有 $a_1 = a_2$, 我们 称映射 f 为**单射** (injective);
- 如果对任意 $b \in B$, 存在 $a \in A$, 使得 f(a) = b, 我们称 f 为 满射 (surjective);
- 如果 f 既是单射, 又是满射, 我们称 f 为**双射** (bijection) 或 ——映射 (one-to-one mapping);
- 设 g 也是一个从 A 到 B 的映射, 如果对于任意 $a \in A, f(a) = g(a)$, 称映射 f 与 g 相等, 记为 f = g.
- 集合 A 到自身的一个映射称为集合 A 上的一个**变换**. 特别地, 将集合 A 中每个元素均映成其自身的映射

$$1_A: A \to A, 1_A(a) = a.$$

叫做集合 A 的**恒等映射**或恒等变换, 它显然是 A 到 A 的一一对 α .

复合映射

定义 52

设 $f: A \to B$ 和 $g: B \to C$ 都是集合之间的映射. 则可经过连续作用, 得到一个从 A 到 C 的映射

$$g \circ f : A \to C$$
, $(g \circ f)(a) = g(f(a))$.

映射 $g \circ f$ 叫做 $f \vdash g$ 的复合映射或合成映射.

■ 对映射 $f: A \to B$, 如果存在映射 $g: B \to A$ 使得 $g \circ f = 1_A$ 且 $f \circ g = 1_B$, 则称 f 是可逆映射, 称 g 是 f 的 逆映射 (inverse).

结合律

引理 53

设 $f:A\to B,\ g:B\to C$ 和 $h:C\to D$ 为集合间的映射,则 $(h\circ g)\circ f=h\circ (g\circ f).$

■ 利用结合律可知, 若 f 可逆, 则其逆映射唯一, 记这个唯一的 逆映射为 f^{-1} . 事实上, 设 g_1, g_2 都是 f 的逆映射, 则 $g_1 = g_1 \circ 1_B = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = 1_A \circ g_2 = g_2$.

引理 54

映射 $f: A \to B$ 是一一映射的充分必要条件是 f 是可逆映射.

引理 55

设 $f:A\to B$ 和 $g:B\to C$ 都是一一映射, 则 $g\circ f:A\to C$ 也是一一映射, 并且 $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.

集合论悖论

注 55.1

- (1) 以上关于集合的陈述使用的是朴素集合语言, 但是朴素集合语言会产生悖论, 如培里悖论 (1906, G. G. Berry) 和罗素悖论 (1902, B. Russell), 其中罗素悖论曾经导致了所谓"第三次数学危机".
- (2) 为解决这些悖论, 人们发展了公理集合论. Ernst Zermelo (1908) 和 Abraham Fraenkel (1922) 提出了 Zermelo-Fraenkel 公理系统 (ZF公理), 如果另加选择公理 (axiom of choice), 则称 ZFC 公理系统.

无限集合

注 55.2

- (1) 关于集合的阶, 前面说的"元素个数"也是使用的朴素语言. 设 A, B 是集合. 如果有单射 $f: A \to B$, 我们就说 A 的阶不大于B 的阶, 记作 $|A| \le |B|$. 果有双射 $f: A \to B$, 我们就说 A 的阶等于 B 的阶, 记作 |A| = |B|.
- (2) 显然, 当集合 A 和 B 都是有限集时, 则它们阶相等当且仅当它们的元素个数相同. 当 A 是无限集时, 若 \mathbb{N} 到 A 存在一一映射, 我们就称 A 是**可数无限集合** (countably infinite set) 或简称 A 是可数的, 否则称 A 为**不可数无限集合** (uncountably infinite set) 或简称 A 是不可数的.
- (3) 康托 *(Cantor)* 发现 $0 \le 1$ 之间的实数集合 [0,1] 是不可数的, 即 $|\mathbb{N}| < |[0,1]|$, 从而揭示有本质上不同的"无限": 可数的和不可数的, 并且可数的无限是最小的无限.

关系

定义 56

设 S 是一个非空集合, \mathcal{R} 是关于 S 的元素的一个条件. 如果对 S 中任意一个有序元素对 (a,b), 我们总能确定 a 与 b 是否满足条件 \mathcal{R} , 就称 \mathcal{R} 是 S 的一个**关系** (relation). 如果 a 与 b 满足条件 \mathcal{R} , 则称 a 与 b 有关系 \mathcal{R} , 记作 $a\mathcal{R}b$; 否则称 a 与 b 无关系 \mathcal{R} . 关系 \mathcal{R} 也称为二元关系.

■ 集合的关系可用直积和映射来等价表述.

例

例 57

在整数集 \mathbb{Z} 中, 规定 $a\mathcal{R}b \Leftrightarrow a \mid b$. 因为 $a \mid b$ 与 $a \nmid b$ 有且仅有一个成立, 所以 "|" 是 \mathbb{Z} 的一个关系. 这个关系具有反身性和传递性.

例 58

在整数集 \mathbb{Z} 中, 规定 $a\mathcal{R}b \Leftrightarrow (a,b)=1$ (即 a 与 b 互素). 因为 (a,b)=1 与 $(a,b)\neq 1$ 有且仅有一个成立, 所以互素是 \mathbb{Z} 的一个关系. 这个关系既不满足反身性也不满足传递性, 但却满足所谓的对称性, 即对任意两个整数 a,b, 由 (a,b)=1 可推出 (b,a)=1.

等价关系

定义 59

设 R 是非空集合 S 的一个关系, 如果 R 满足

- (1) 反身性, 即对任意的 $a \in S$, 有 $a\mathcal{R}a$;
- (2) 对称性, 即若 $a\mathcal{R}b$, 则 $b\mathcal{R}a$;
- (3) 传递性, 即若 $a\mathcal{R}b$, 且 $b\mathcal{R}c$, 则 $a\mathcal{R}c$,

则称 \mathcal{R} 是 S 的一个等价关系 (equivalence relation), 并且如果 $a\mathcal{R}b$, 则称 a 等价于 b, 记作 $a \sim b$.

等价类

定义 60

如果 \sim 是集合 S 的一个等价关系, 对任意 $a \in S$, 令 $[a] = \{x \in S \mid x \sim a\}.$

称子集 [a] 为 S 的一个等价类 (equivalence class). S 的全体等价类的集合称为集合 S 在等价关系下的商集 (quotient set), 记 S/\sim .

例

例 61

易知, 三角形之间的相似是等价关系.

例 62

实数域 \mathbb{R} 上 n 阶方阵之间的相似是等价关系.

例 63

设 m 是任一正整数, 由注 17.1 知 $\mathbb Z$ 模 m 的同余是等价关系, 相应的商集为 $\mathbb Z$ 模 m 剩余类集 $\mathbb Z_m$.

例 64

设 $\{S_i\}_{i\in I}$ 是由某些集合构成的集合族. 在 $\{S_i\}_{i\in I}$ 上定义如下的关系: 对于 $A,B\in\{S_i\}_{i\in I}$, 定义

 $A \sim B \Leftrightarrow$ 存在从 A 到 B 的——映射.

容易验证, 这是 $\{S_i\}_{i\in I}$ 上的等价关系 (反身性: $1_A:A\to A$ 是一一映射, 从而 $A\sim A$; 对称性: 若 $f:A\to B$ 是一一映射, 则由引理 54 知 $f^{-1}:B\to A$ 也是一一映射, 从而 $A\sim B\Rightarrow B\sim A$; 由引理 55 立即可得传递性). 对于这种等价关系, 彼此等价的集合叫做是等势的. 显然, 两个有限集合等势的充要条件是它们的元素个数相同, 即 |A|=|B|. 应当注意的是, 无限集的一个真子集可能会与其自身等势. 例如, 偶整数全体构成的集合与整数之间存在一一映射, 从而它们等势.

等价类的性质

引理 65

如果 \sim 是集合 S 的一个等价关系, 则 S 中每个元素一定在某个等价类中, 并且不同等价类交集为空.

证明: 显然 S 中每个元素一定在某个等价类中.

设 [a] 和 [b] 是 S 的两个等价类. 如果 $[a] \cap [b] \neq \emptyset$, 则有 $c \in [a] \cap [b]$. 于是 $c \sim b, c \sim a$, 从而由对称性知 $b \sim c$, 再由传递性知 $b \sim a$. 又对任意的 $b' \in [b]$, 则 $b' \sim b$, 同样由传递性得 $b' \sim a$. 于是 $b' \in [a]$, 因此 $[b] \subseteq [a]$. 同理可证 $[a] \subseteq [b]$. 于是 [a] = [b]. 所以不同的等价类没有公共元素.

分类

定义 66

如果非空集合 S 是它的某些两两不相交的非空子集的并, 则称这些子集为集合 S 的一种**分类**或**分拆** (partition), 其中每个子集称为 S 一个**类** (class). 如果 S 的子集族 $\{S_i\}_{i\in I}$ 构成 S 的一种分类, 则记作 $\mathcal{P}=\{S_i\}_{i\in I}$.

注 66.1

由分类的定义可知, 集合 S 的子集族 $\left\{S_i\right\}_{i\in I}$ 构成 S 的一种分类 当且仅当:

- (1) $S = \bigcup_{i \in I} S_i$;
- (2) $S_i \cap S_j = \emptyset, i \neq j$.
- (1) 说明 S_i ($i \in I$) 这些子集无遗漏地包含了 S 的全部元素; (2) 说明两个不同的子集无公共元素. 从而 S 的元素属于且仅属于一个子集. 这表明, S 的一个分类必须满足不漏不重的原则.

例

例 67

设 $\mathrm{M}_n(\mathbb{R})$ 为 \mathbb{R} 上全体 n 阶方阵的集合, 令 M_r 表示所有秩为 r 的 n 阶方阵构成的子集, 则有

- (1) $M_n(\mathbb{R}) = \bigcup_{i=0}^n M_i$;
- (2) $M_i \cap M_j = \emptyset, i \neq j$.

所以 $\{M_i\}_{i\in\{0,1,\cdots,n\}}$ 是 $M_n(\mathbb{R})$ 的一种分类.

例 68

 $\mathbb{Z}_m = \{\bar{a} \mid a = 0, 1, 2, \cdots, m-1\}$ 是整数集 \mathbb{Z} 的一种分类.

例 69

对实数集 \mathbb{R} , 令子集 $\mathbb{R}_i = [i,i+1], i \in \mathbb{Z}$. 由于 $i \in \mathbb{R}_i$, 且 $i \in \mathbb{R}_{i-1}$, 同一元素在两个子集中重复出现, 所以 $\{[i,i+1] \mid i \in \mathbb{Z}\}$ 不是 \mathbb{R} 的一种分类.

等价关系与分类

定理 70

集合 S 的任何一个等价关系都确定了 S 的一种分类, 且其中每一个类都是集合 S 的一个等价类. 反之, 集合 S 的任何一种分类也都给出了集合 S 的一个等价关系, 且相应的等价类就是原分类中的那些类.

证明: 首先, 设为集合 S 的一个等价关系, 则

- (1) 对任意的 $a \in S$, 由反身性知 $a \in [a]$, 所以 $S = \bigcup_{a \in S} [a]$.
- (2) 根据引理 65 立即可知不同的类没有公共元素, 于是由注 66.1 可得全体等价类形成 S 的一种分类, 显然每一个类都是 S 的等价类.

证明 (续)

其次, 如果已知集合 S 的一种分类 \mathcal{P} , 在 S 中规定关系 " \sim " : $a \sim b \Longleftrightarrow a$ 与 b 属于同一类, $a, b \in S$.

对任意的 $a \in S$, 由于 a 属于其本身所在的类, 所以 $a \sim a$. 如果 $a \sim b$, 即 a = b 属于同一类, 自然 b = a 也属于同一类, 所以 $b \sim a$. 最后, 如果 $a \sim b, b \sim c$, 即 a = b 属于同一类, b = c 属于同一类, 因而 a = c 同在 b 所在的类中, 所以 $a \sim c$. 因此 "~" 是 $a \sim b$ 的一个等价关系. 显然, 由此等价关系得到的等价类就是原分类中的那些类.

例 71

设 $S = \{a, b, c\}$, 试确定集合 S 的全部等价关系.

解. 由定理 70 知, 只要求出 S 的全部分类, 即求出 S 的所有可能的子集分划即可.

- (1) 如果 S 仅分划为一个子集, 则有 $\mathcal{P}_1 = \{S\}$;
- (2) 如果 S 仅分划为两个子集,则有 $\mathcal{P}_2 = \{\{a\}, \{b, c\}\}, \quad \mathcal{P}_3 = \{\{b\}, \{a, c\}\}, \quad \mathcal{P}_4 = \{\{c\}, \{a, b\}\}.$
- (3) 如果 S 分划为三个子集,则有 $\mathcal{P}_5 = \{\{a\}, \{b\}, \{c\}\}.$

解 (续)

因此, 集合 S 共有五个不同的等价关系, 它们是:

$$\begin{split} \sim_1 &= \{a \sim a, b \sim b, c \sim c, a \sim b, b \sim a, a \sim c, c \sim a, b \sim c, c \sim b\}; \\ \sim_2 &= \{a \sim a, b \sim b, c \sim c, b \sim c, c \sim b\}; \\ \sim_3 &= \{a \sim a, b \sim b, c \sim c, a \sim c, c \sim a\}; \\ \sim_4 &= \{a \sim a, b \sim b, c \sim c, a \sim b, b \sim a\}; \\ \sim_5 &= \{a \sim a, b \sim b, c \sim c\}. \end{split}$$