# 仓储搬运设备远程故障诊断系统 需求分析说明书

东南大学自动化学院 2015年9月13日

# 版本历史

| 版本号 | 更改描述 | 更改日期 | 修订人 |
|-----|------|------|-----|
|     |      |      |     |
|     |      |      |     |
|     |      |      |     |
|     |      |      |     |
|     |      |      |     |
|     |      |      |     |

# 目 录

| 1. | . 概 述                     | 1 |
|----|---------------------------|---|
|    | 1.1. 系统背景                 | 1 |
|    | 1.2. 编写目的                 |   |
|    | 1.3. 读者对象                 |   |
| 2  | . 功能性需求                   | 2 |
| 4. |                           |   |
|    | 2.1. 系统总体架构               |   |
|    | 2.2. 系统功能模块               |   |
|    | 2.3. 故障诊断模块软件             |   |
|    | 2.3.1. 系统配置               |   |
|    | 2.3.2. CAN 数据采集           |   |
|    | 2.3.3. IO 数据采集            |   |
|    | 2.3.4. 数据处理               |   |
|    | 2.3.5. 通信功能               |   |
|    | 2.3.6. 日志管理               |   |
|    | 2.4. 局域诊断软件               |   |
|    | 2.4.1. 系统配置               |   |
|    | 2.4.2. 数据采集               |   |
|    | 2.4.3. 数据处理               |   |
|    | 2.4.4. 数据传输               |   |
|    | 2.4.5. 日志管理               |   |
|    | 2.5. 现场单机诊断软件             |   |
|    | 2.5.1. 叉车识别               |   |
|    | 2.5.2. 当前信息查询             |   |
|    | 2.5.3. 历史信息查询             |   |
|    | 2.5.4. 维护情况记录             |   |
|    | 2.6. 服务器软件                |   |
|    | 2.6.1. <i>系统配置</i>        |   |
|    |                           |   |
|    | 2.6.3. <i>叉车状态及故障信息采集</i> |   |
|    | 2.6.4. 数据存储               |   |
|    | 2.6.5. 数据查询               |   |
|    | 2.6.6. 数据统计               |   |
|    | 2.6.7. 用户界面               | 7 |

# 1. 概 述

## 1.1. 系统背景

叉车等仓储搬运设备在使用过程中,会出现各种类型的故障。出现故障后,一般由厂家派维护人员现场维护,或者由用户自行维护。厂家现场维护不仅会增加维护成本,还会因为及时性影响用户的正常作业。另一方面,当用户自行维护时,如果用户对设备不够熟悉,则可能维护不当,会造成搬运设备使用寿命下降。

物联网、云计算等技术的快速发展,为仓储搬运设备智能维护提供了新的解决方案。通过智能终端采集搬运设备操作和运行状态信息,并汇集到企业数据中心,通过故障分析与决策,可以实现搬运设备的远程诊断,指导用户进行设备维护,从而可以提高搬运设备维护的智能化程度。

# 1.2. 编写目的

本文档的目标是描述"基于物联网的仓储搬运设备远程故障诊断系统"中有关的 需求和功能。在调研的基础上设计了系统的整体架构和功能模块。

# 1.3. 读者对象

本文档的阅读对象:项目开发人员及测试人员。

# 2. 功能性需求

# 2.1. 系统总体架构

系统总体架构如图1所示。



系统总体架构

#### 系统的组成包括:

- (1) 故障诊断模块:安装于叉车内。
- (2) 局域诊断中心: 位于企业客户现场的计算机。
- (3) 现场单机诊断: 笔记本。
- (4) 服务器: 位于如意集团。
- (5) 通信网络: GPRS、WiFi、Internet,GPS。

# 2.2. 系统功能模块

系统软件包括故障诊断模块软件、现场单机诊断软件、局域诊断中心软件和服务器 软件。

故障诊断模块软件:采集故障及状态信息,发送给服务器,或经局域诊断中心汇总后 发送给服务器。

现场单机诊断软件:根据叉车 ID,从故障诊断模块获取故障和状态信息。

局域诊断中心软件: 采集区域内故障诊断模块状态和故障信息, 汇总后发送给服务器。 服务器软件: 采集所有叉车状态及故障信息, 对数据存储, 查询, 呈现, 历史记录等。



图 2 系统数据流程

# 2.3. 故障诊断模块软件

#### 2.3.1. 系统配置

- (1) 设置叉车 ID 信息:
- (2) 设置 GPRS 相关信息;
- (3) 设置 WiFi 的相关信息;
- (4) 设置其它信息。

#### 2.3.2. CAN 数据采集

(1) 控制器故障码及状态信息采集;

故障信息:

01: 高踏板故障; 02: 预充电故障; 03: 过流; 04: 控制器过热; 05: 主回路断电; 06: 电流信号采集故障; 07: 编码器故障/电机堵转; 09:: 电池组欠压; 10: 电池组过压; 11: 电机过热; 12: I<sup>2</sup>C 存储故障; 13: 加速器故障;

18: 电机开路; 19: 输出缺相。

状态信息:

运行方向/高低速模式、转速、低功耗模式、小计里程、直流电压、电机电流、电机温度。

(2) 数据预处理。

解析 CAN 总线数据

#### 2.3.3. IO 数据采集

(1) 叉车开关量数据采集;

喇叭: 开关1个,喇叭1个,地线1个,共3个开关量

上升: 开关1个,接触器线圈两端2个,触点两端2个,共5个开关量

下降: 开关1个, 电磁阀两端2个, 共3个开关量

主接触器:接触器线圈两端2个,触点两端2个,共4个开关量

制动器:制动器两端2个,共2个开关量 线圈通断,

合计: 17 个开关量

(2) 叉车模拟量数据采集:

起升电机电流: 电流范围 0-150A, 用电流分流器转换检测

电机温度:温度范围 100℃以下,用温度传感器检测

合计: 2个模拟量输入

(3) 数据预处理。

对模拟量采集的数据进行滤波。

#### 2.3.4. 数据处理

(1) 故障逻辑预判

根据 IO 模块的数据,进行故障决策

(2) 数据缓存

故障诊断模块保存最近2小时内的状态信息

#### 2.3.5. 通信功能

- (1) WiFi 与局域诊断中心数据通信:
- (2) WiFi 与服务器(Internet)数据通信;
- (3) GPRS 、GPS 数据通信;
- (4) 调试接口数据通信;

#### 2.3.6. 日志管理

- (1) 记录系统启动、退出时间;
- (2) 记录系统错误信息;
- (3) 记录通信错误信息;

# 2.4. 局域诊断软件

#### 2.4.1. 系统配置

- (1) 设置 GPRS 相关信息:
- (2) 设置 WiFi 相关信息。

#### 2.4.2. 数据采集

(1) WiFi(GPRS)采集区域内模块状态和故障信息。

#### 2.4.3. 数据处理

- (1) 数据压缩;
- (2) 数据打包。

#### 2.4.4. 数据传输

- (1) GPRS 数据传输;
- (2) Internet 数据传输至服务器

#### 2.4.5. 日志管理

- (1) 记录系统启动、退出时间;
- (2) 记录系统错误信息;
- (3) 记录通信错误信息。

# 2.5. 现场单机诊断软件

#### 2.5.1. 叉车识别

(1) 叉车 ID 号获取;

#### 2.5.2. 当前信息查询

- (1) 获取当前状态和故障信息
- (2) 显示当前状态和故障信息

#### 2.5.3. 历史信息查询

- (1) 获取历史状态和故障信息
- (2) 显示历史状态和故障信息

#### 2.5.4. 维护情况记录

- (1) 叉车基本信息变更;
- (2) 叉车状态或故障信息纠正;
- (2) 叉车巡检或故障维护记录上传。

# 2.6. 服务器软件

## 2.6.1. 系统配置

- (1) 域名配置
- (2) 通信方式配置;
- (3) 其他配置。

#### 2.6.2. 数据通信

- (1) GPRS 通信;
- (2) Internet

## 2.6.3. 叉车状态及故障信息采集

- (1) 故障诊断模块数据获取;
- (2) 局域诊断中心数据获取;

#### 2.6.4. 数据存储

- (1) 故障信息存储;
- (2) 报修信息存储;
- (3) 维护记录存储。

#### 2.6.5. 数据查询

- (1) 叉车信息查询;
- (2) 故障记录查询;
- (3) 报修记录查询;
- (4) 维护记录查询。

#### 2.6.6. 数据统计

- (1) 按叉车信息统计;
- (2) 按部件信息统计;

- (3) 按故障信息统计;
- (4) 故障排除统计;

## 2.6.7. 用户界面

- (1) 提供中英文两种页面;
- (2) 提供数据查询、存储和统计功能;
- (3) 提供报表打印功能

# 2.6.8. 日志管理

- (1) 记录系统启动、退出时间;
- (2) 记录系统错误信息;
- (3) 记录通信错误信息。