

Networks
Convolutional Laver

Machine Learning

Machine Learning

Lecture Machine Learning vom 24.3.2022

Lars Gabriel, Felix Becker, Mario Stanke Institut für Mathematik und Informatik Universität Greifswald

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Layer

Image classification problem

Given an image - say 64×64 pixels with 3 color channels - predict a probability distribution over predefined classes e.g. cat, dog, cow, plant, One can then assign the image to the most likely class.

Lars Gabriel, Felix Becker, Mario Stanke

Networks

Convolutional Laver

Image classification problem

Given an image - say 64×64 pixels with 3 color channels - predict a probability distribution over predefined classes e.g. cat, dog, cow, plant, One can then assign the image to the most likely class.

Related problems

- Object detection
- Image segmentation
- Videos (i.e. timeseries of images) as input

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura

Convolutional Layer

input images

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neur

Convolutional Layer

Another feature to classify a dog

input images

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neu

Convolutional Layer

High- and low-level filters

The detection of complex high level filters depends on low-level filters.

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Layer

Problems with Fully Connected Artificial Neural Nets (only ${\tt Dense}$ layers)

high number of parameters

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Layer

Problems with Fully Connected Artificial Neural Nets (only ${\tt Dense}$ layers)

- high number of parameters
- when images are input:

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Laver

Problems with Fully Connected Artificial Neural Nets (only Dense layers)

- high number of parameters
- when images are input:
 - · no notion of pixel neighborhoods
 - no translation invariance

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura

Convolutional Layer

Idea of a CNN

ullet suppose we have K filters like in the previous slides

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Laver

Idea of a CNN

- suppose we have *K* filters like in the previous slides
- each filter can detect some feature somewhere in the image

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neura Networks Convolutional Laver

Idea of a CNN

- suppose we have *K* filters like in the previous slides
- each filter can detect some feature somewhere in the image
- stacked layers can start with simple features (low-level) that contribute to the detection of more complex features (high-level)

Machine Learning

Lars Gabriel, Felix

Becker Mario Stanke

Convolutional Neura Networks Convolutional Laver

Idea of a CNN

- suppose we have *K* filters like in the previous slides
- each filter can detect some feature somewhere in the image
- stacked layers can start with simple features (low-level) that contribute to the detection of more complex features (high-level)
- prediction is based on the filters in the last layer

Cross-correlation (2-dimensional)

Definition 1

Let $A = (a_{ij})_{0 < i,j < m}$ be a square $m \times m$ -dimensional matrix and

$$B = (b_{ij})_{\substack{0 \le i < h \\ 0 < i < w}}$$

be another matrix of shape $h \times w$.

The $h - m + 1 \times w - m + 1$ -dimensional matrix C with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{i'=0}^{m-1} a_{i',j'} \cdot b_{i+i',j+j'}$$

is the 2-dimensional cross-correlation of A and B. We write C = A * B.

Cross-correlation (2-dimensional)

Definition 1

Let $A = (a_{ij})_{0 \le i, i \le m}$ be a square $m \times m$ -dimensional matrix and

$$B = (b_{ij}) \underset{0 < j < w}{\underset{0 \leq i \leq h}{0}}$$

be another matrix of shape $h \times w$.

The $h - m + 1 \times w - m + 1$ -dimensional matrix C with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{i'=0}^{m-1} a_{i',j'} \cdot b_{i+i',j+j'}$$

is the 2-dimensional cross-correlation of A and B. We write C = A * B.

Example 2

$$m = 2, h = 4, w = 5.$$

$$A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 & 0 & 2 & -1 \\ 0 & 1 & 4 & 0 & 1 \\ 2 & -2 & 7 & 3 & 0 \\ -1 & 0 & 1 & 0 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -13 & 6 & 0 \\ 9 & -28 & 9 & 5 \\ 2 & -12 & 6 & -9 \end{pmatrix}$$

Cross-Correlation of an Image

"filter" A

input image B

output image C = A * B

Cross-Correlation of an Image

input image B

(6.6 7.4 5.0 4.19 4.7 4.3 4.7 5.2) (6.2 7.9 8.8 4.56 5.3 5.4 4.6 6.2 5.2 5.9 9.2 3.27 4.6 5.2 3.8 6.6 4.7 5.2 12.1 2.57 4.6 5.0 4.0 5.5 4.4 4.1 11.0 0.85 2.0 3.7 3.1 5.1 7.7 9.3 19.3 11.13 11.9 10.8 8.4 7.2 2.7 2.7 9.6 3.9 4.4 5.7 5.4 6.7 3.7 3.1 7.9 4.14 4.8 5.2 5.3 6.0)

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neural Networks

Convolutional Layer

3-dimensional input

- Want to
 - 1 use multiple filters in parallel and
 - 2 stack several (convolutional) layers.
- Also, color images are naturally encoded as 3-dimensional (each pixel has a red, green and blue value).
- Solution: Define convolution for 3-dimensional tensor input as well.

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neural Networks

Convolutional Layer

3-dimensional cross-correlation

Let
$$B = \begin{pmatrix} b_{ijk} \end{pmatrix}$$
 $0 \le i < h \atop 0 \le j < w \atop 0 \le k < d}$ be a tensor of shape $h \times w \times d$ and

let
$$A = (a_{ijk})_{\substack{0 \le i, j < m \\ 0 \le k < d}}$$
 be another tensor ("filter").

The cross-correlation of A and B is then the $h-m+1 \times w-m+1$ -dimensional matrix C=A*B with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{i'=0}^{m-1} \sum_{k=0}^{d-1} a_{i',j',k} \cdot b_{i+i',j+j',k}.$$

Deep Learning for Computer Vision

$$z_{i,j} = \sum_{i'=0}^{m-1} \sum_{j'=0}^{m-1} \sum_{k=0}^{d-1} x_{i+i',j+j',k} \cdot f_{i',j',k}$$

Deep Learning for Computer Vision

$$z_{i,j,r} = \sum_{i'=0}^{m-1} \sum_{j'=0}^{m-1} \sum_{k=0}^{d-1} x_{i+i',j+j',k} \cdot f_{i',j',k,r} + b_r$$
bias

Deep Learning for Computer Vision

Convolutional Layer

$$X^{i+1} = \max(Z^{i+1}, 0)$$

(Rectified Linear Unit)

 The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (*parameter sharing*).

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s − 1 positions in each direction when 'sliding' A over B ⇒ decreases output layer size up to a factor of s².
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (*parameter sharing*).
- Output neurons of convolution can detect lower-level features like ("lower left corner", "pupil") and be combined in deeper layers.

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neural Networks Convolutional Laver

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool_size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \\ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s ≥ 2 and therefore reduces height and width
- often s = m, can have different strides for each dimension
- intuition:

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neural Networks

Convolutional Layer

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool_size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \\ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s ≥ 2 and therefore reduces height and width
- often s = m, can have different strides for each dimension
- intuition: checks local presence of at least one feature (e.g. a green stroke) rather than summing up if there are multiple

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s > 2 and therefore reduces height and width
- often s = m, can have different strides for each dimension
- intuition: checks local presence of at least one feature (e.g. a green stroke) rather than summing up if there are multiple

With an analogous definition, average pooling averages over regions of size $m \times m$, but is used less often.

Lars Gabriel, Felix Becker, Mario Stanke

Convolutional Neural Networks

Convolutional Layer

Multi-Layered CNN example

Photo classification

- CNN from 2012 ("AlexNet")
- classification into 1000 categories

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, 201: