61. Вычисление коэффициентов суммы ортогонального ряда. Коэффициенты Фурье и ряды Фурье по ортогональной системе. Геометрические свойства частичных сумм ряда Фурье. Неравенство Бесселя

Вычисление коэффициентов суммы ортогонального ряда

Пусть $\{e_k\}_{k=1}^\infty$ — ортогональная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$, причём $x = \sum_{k=1}^\infty c_k e_k$. Тогда коэффициенты c_k определяются единственным образом по формуле:

$$c_k = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Смысл:

Эта формула позволяет найти коэффициенты разложения вектора x по ортогональной системе. Она гарантирует, что если вектор можно представить в виде ряда по ортогональным векторам, то коэффициенты вычисляются через скалярное произведение. Это прямое обобщение проекции вектора на координатные оси в ортогональном базисе.

Определение коэффициентов и ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$. Коэффициентами Фурье вектора x называются числа:

$$c_k(x) = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Рядом Фурье вектора x по ОС $\{e_k\}$ называется ряд:

$$\sum_{k=1}^{\infty} c_k(x) e_k.$$

Смысл:

Коэффициенты Фурье показывают "вклад" каждого элемента ортогональной системы e_k в вектор x. Сам ряд Фурье — это попытка восстановить x как бесконечную линейную комбинацию элементов ОС. Геометрически $c_k(x)e_k$ — это проекция x на прямую, порождённую вектором e_k .

Свойства частичных сумм ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$, $n\in\mathbb{N}$, $S_n=\sum_{k=1}^nc_k(x)e_k$, $\mathcal{L}=\mathcal{L}(e_1,\ldots,e_n)$. Тогда:

- 1. S_n ортогональная проекция x на \mathcal{L} , т.е. $x=S_n+z$, где $z\perp\mathcal{L}$.
- 2. S_n элемент наилучшего приближения к x в \mathcal{L} , т.е. $\|x-S_n\|=\min_{y\in\mathcal{L}}\|x-y\|$, причём минимум достигается только при $y = S_n$.
- 3. $||S_n|| < ||x||$.

Смысл:

Частичная сумма ряда Фурье S_n обладает ключевыми геометрическими свойствами. Во-первых, это проекция x на подпространство \mathcal{L} , натянутое на первые n векторов системы — значит, разность x — S_n ортогональна этому подпространству. Во-вторых, S_n даёт наилучшее приближение к x векторами из \mathcal{L} . В-третьих, норма проекции не превосходит нормы самого вектора.

Неравенство Бесселя

Пусть $\{e_k\}_{k=1}^{\infty}$ — ОС в $\mathcal{H}, x \in \mathcal{H}$. Тогда:

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 \leq \|x\|^2.$$

Смысл:

Неравенство Бесселя утверждает, что сумма квадратов коэффициентов Фурье (взвешенных по нормам $\|e_k\|^2$) не превосходит квадрата нормы вектора x. Оно следует из свойства $\|S_n\| \leq \|x\|$ и равенства $\|S_n\|^2 = \sum_{k=1}^n |c_k(x)|^2 \|e_k\|^2$ при переходе к пределу $n o \infty$. Это гарантирует сходимость ряда из квадратов коэффициентов.

62. Теорема Рисса-Фишера. Равенство Паресваля.

Теорема Рисса-Фишера

Пусть $\{e_k\}_{k=1}^{\infty}$ — ортонормированная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$. Тогда:

- 1. Ряд Фурье вектора x сходится.
- 2. $x=\sum_{k=1}^\infty c_k(x)e_k+z$, где $z\perp e_k$ для всех k. 3. $x=\sum_{k=1}^\infty c_k(x)e_k$ тогда и только тогда, когда $\sum_{k=1}^\infty |c_k(x)|^2\|e_k\|^2=\|x\|^2$.

Эта теорема гарантирует сходимость ряда Фурье для любого вектора в гильбертовом пространстве. Она также утверждает, что вектор можно разложить в этот ряд плюс остаток, ортогональный всей системе. Критерий точного представления вектора рядом Фурье — равенство Парсеваля.

Равенство Парсеваля (Уравнение замкнутости)

Ряд Фурье $\sum_{k=1}^{\infty} c_k(x)e_k$ — ортогональный, $\{e_k\}_{k=1}^{\infty}$ — ортонормированная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 = \|x\|^2$$

Смысл:

Это равенство означает, что квадрат нормы вектора x равен сумме квадратов модулей его коэффициентов Фурье (с учетом норм базисных элементов). Оно выполняется, когда ортонормированная система является полной (базисом), и не выполняется, если в системе "не хватает" элементов для точного представления вектора.

63. Характеристика базиса в гильбертовом пространстве. Процесс ортогонализации Грама-Шмидта.

Определение базиса и связанных понятий

Ортогональная система $\{e_k\}_{k=1}^{\infty}\subset\mathcal{H}$ называется **базисом** (*ортогональным базисом*), если любой вектор $x\in\mathcal{H}$ раскладывается в ряд по этой системе: $x=\sum_{k=1}^{\infty}c_k(x)e_k$. Она называется **полной**, если не существует ненулевого вектора, ортогонального всем e_k . Она называется **замкнутой**, если для любого $x\in\mathcal{H}$ выполнено уравнение замкнутости.

Смысл:

Базис позволяет представить любой вектор пространства как бесконечную сумму (ряд) по базисным элементам. Полнота означает, что система "охватывает" всё пространство — нет ненулевых векторов, "спрятанных" от неё. Замкнутость формально связывает норму вектора с суммой квадратов его коэффициентов в разложении (уравнение Парсеваля).

Характеристика базиса

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} . Следующие утверждения равносильны:

- 1. $\{e_k\}$ базис.
- 2. $\langle x,y \rangle = \sum_{k=1}^\infty c_k(x) c_k(y) \|e_k\|^2$ для любых $x,y \in \mathcal{H}$ (обобщенное уравнение замкнутости).
- 3. $\{e_k\}$ замкнута.
- 4. $\{e_k\}$ полна.
- 5. Линейная оболочка системы $\{e_k\}$ плотна в \mathcal{H} . $(\forall x\in\mathcal{H}$ и $orall \mathcal{E}>0,\exists y\in\{\{c_k\}:||x-y||<\mathcal{E}\})$

Смысл:

Эта теорема даёт пять разных взглядов на то, когда ортогональная система становится базисом. Ключевые идеи: возможность разложения любого вектора (1), обобщение теоремы Пифагора на скалярные произведения (2), выполнение уравнения Парсеваля (3), отсутствие "пропущенных" направлений (4) и возможность сколь угодно точно приблизить любой вектор конечными комбинациями базисных (5). Все они оказываются одинаково сильными условиями.

Процесс ортогонализации Грама-Шмидта

Пусть $\{x_k\}_{k=1}^\infty$ — линейно независимая система в \mathcal{H} . Тогда существует ОНС $\{e_k\}_{k=1}^\infty$, такая что $\mathcal{L}(e_1,\ldots,e_n)=\mathcal{L}(x_1,\ldots,x_n)$ для всех $n\in\mathbb{N}$. Эта ОНС единственна с точностью до множителей λ_k с $|\lambda_k|=1$ (т.е. $h_k=\lambda_k e_k$ для любой другой ОНС $\{h_k\}$, удовлетворяющей тому же условию).

Смысл:

Процесс Грама-Шмидта позволяет преобразовать любую линейно независимую систему векторов в ортонормированную систему (OHC), которая порождает те же самые конечномерные подпространства на каждом шаге. Это как построение "перпендикулярных осей" из исходных "косых" направлений. Единственность с точностью до фазового множителя ($\lambda_k=e^{i\phi_k}$) означает, что базисные векторы можно повернуть в их собственной плоскости, не меняя натянутое подпространство и ортонормированность.

64. Тригонометрический многочлен, тригонометрический ряд, тригонометрический ряд в комплексной форме. Лемма о вычислении коэффициентов тригонометрического ряда. Тригонометрический ряд Фурье функции (в т.ч. в экспоненциальной форме)

Определение тригонометрического многочлена

Пусть $n \in \mathbb{Z}_+$. Функция T_n вида

$$T_n(x)=rac{a_0}{2}+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$$

называется тригонометрическим многочленом порядка не выше n. Если $|a_n|+|b_n|\neq 0$, то порядок ровно n. Коэффициенты a_k,b_k — вещественные или комплексные числа. T_n — множество всех таких многочленов порядка $\leq n,T=\bigcup_{n=0}^\infty T_n$.

Смысл:

Тригонометрический многочлен — это конечная сумма синусов и косинусов кратных углов с коэффициентами. Он приближает периодические функции. Множество T_n содержит все многочлены сложности не выше n, а T — все возможные тригонометрические многочлены. Деление $a_0/2$ упрощает формулы для коэффициентов Фурье.

Тригонометрический ряд и комплексная форма

Тригонометрический ряд имеет вид:

$$rac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

С помощью формул Эйлера $\cos kx=rac{e^{ikx}+e^{-ikx}}{2},$ $\sin kx=rac{e^{ikx}-e^{-ikx}}{2i}$ он преобразуется в комплексную форму:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} = \lim_{n o\infty} \sum_{k=-n}^n c_k e^{ikx}.$$

Смысл:

Это бесконечная версия тригонометрического многочлена. Комплексная форма использует экспоненты e^{ikx} вместо синусов и косинусов, что часто упрощает вычисления. Переход между формами осуществляется через формулы Эйлера. Частичные суммы в обеих формах совпадают, обеспечивая эквивалентность представлений.

Лемма о вычислении коэффициентов (ортогональность)

Если тригонометрический ряд сходится к функции f(x) в $L_2[-\pi,\pi]$, то его коэффициенты вычисляются по формулам:

$$a_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos(kx)dx,\quad b_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin(kx)dx\quad (k\geq 0),$$

$$c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx \quad (k \in \mathbb{Z}).$$

Эти формулы следуют из ортогональности системы функций $\{1,\cos(kx),\sin(kx)\}$ или $\{e^{ikx}\}$ на отрезке $[-\pi,\pi]$. Если ряд сходится к f(x) в смысле L_2 , то он обязан быть её рядом Фурье, и коэффициенты находятся интегрированием f с соответствующей базисной функцией. Равномерная сходимость гарантирует сходимость в L_2 , но условие можно ослабить.

Тригонометрический ряд Фурье функции

Тригонометрическим рядом Фурье функции f, интегрируемой на $[-\pi,\pi]$, называется ряд:

$$rac{a_0}{2}+\sum_{k=1}^\infty(a_k\cos kx+b_k\sin kx),$$
 где $a_k=rac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(kx)dx,$ $b_k=rac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(kx)dx.$

В экспоненциальной (комплексной) форме:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx},$$
 где $c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$

Смысл:

Это способ разложить периодическую функцию в сумму гармоник (синусов и косинусов) или комплексных экспонент. Коэффициенты Фурье a_k, b_k или c_k показывают "вклад" гармоники с частотой k. Ряд Фурье функции может сходиться к ней (в L_2 , поточечно и т.д.) при определенных условиях, что позволяет анализировать и аппроксимировать периодические сигналы.

65. Теорема Римана-Лебега

Теорема Римана-Лебега

1. Если E — измеримое множество ($E\in\mathbb{A}_1$) и функция f интегрируема на E ($f\in L(E)$), то:

$$\int_E f(t) egin{bmatrix} e^{i\lambda t} \ \cos \lambda t \ \sin \lambda t \end{bmatrix} dt \stackrel{\lambda o \infty}{\longrightarrow} 0,$$

(где λ принимает вещественные значения.)

2. Если f интегрируема на основном периоде ($f \in L$), то её коэффициенты Фурье стремятся к нулю:

Краткий смысл:

Теорема Римана-Лебега утверждает, что для интегрируемой функции f интеграл от её произведения с быстро осциллирующими функциями ($e^{i\lambda t}$, $\cos\lambda t$, $\sin\lambda t$) стремится к нулю при $\lambda\to\infty$. Это означает, что высокочастотные колебания "усредняют" вклад функции в интеграл. Аналогично, коэффициенты Фурье a_k , b_k , c_k периодической интегрируемой функции затухают с ростом k, что отражает отсутствие значимых высокочастотных компонент в её спектре.

66. Свертка периодических функций, ее элементарные свойства. Ядро Дирихле. Сумма Фурье как свертка

Определение свертки периодических функций

Пусть $f,K\in L[-\pi,\pi]$ (интегрируемые по Лебегу 2π -периодические функции). Сверткой f*K называется функция, заданная для почти всех x формулой:

$$(fst K)(x)=\int_{-\pi}^{\pi}f(x-t)K(t)dt.$$

Свертка определена почти всюду и принадлежит $L[-\pi,\pi]$ (т.е. интегрируема).

Смысл:

Свертка "смешивает" функции f и K: для каждой точки x она усредняет значения f вблизи x, взвешенные ядром K. Это фундаментальная операция в анализе Фурье, позволяющая изучать интегральные преобразования (как суммы Фурье) единообразно.

Элементарные свойства свертки

- Измеримость и интегрируемость: f*K измерима и $f*K \in L[-\pi,\pi].$
- Коммутативность: f * K = K * f.
- Коэффициенты Фурье: $c_k(f*K) = 2\pi c_k(f)c_k(K).$

- Непрерывность при $K\in L_q$: Если $1\le p\le \infty$, $\frac{1}{p}+\frac{1}{q}=1$, $f\in L_p$, $K\in L_q$, то f*K непрерывна ($f*K\in C$) и $\|f*K\|_\infty\le \|K\|_q\|f\|_p$.
- ullet Оценка нормы при $K\in L_1$: Если $1\leq p\leq \infty,\,f\in L_p,\,K\in L_1$, то $f*K\in L_p$ и $\|f*K\|_p\leq \|K\|_1\|f\|_p$.

Эти свойства показывают, как свертка взаимодействует с основными операциями анализа. Коммутативность (C2) дает гибкость. C3 означает, что свертка превращает умножение коэффициентов Фурье в умножение функций. C4 и C5 гарантируют "хорошее" поведение свертки (непрерывность, ограниченность) при условиях на ядро K, что критично для сходимости рядов Фурье.

Ядро Дирихле

Для $n \in \mathbb{Z}_+$ функция

$$D_n(t) = rac{1}{\pi} \left(rac{1}{2} + \sum_{k=1}^n \cos kt
ight) = rac{\sin\left((n+rac{1}{2})t
ight)}{2\pi\sin\left(rac{t}{2}
ight)}$$

называется ядром Дирихле порядка n.

Смысл:

Ядро Дирихле $D_n(t)$ кодирует информацию о частичной сумме ряда Фурье до номера n.

Сумма Фурье как свертка

Частичная сумма (порядка n) ряда Фурье функции $f\in L[-\pi,\pi]$ выражается через свертку с ядром Дирихле:

$$S_n(f,x)=(fst D_n)(x)=\int_{-\pi}^{\pi}f(x-t)D_n(t)dt.$$

Интеграл Дирихле:

$$\int_{-\pi}^{\pi} f(x-t) D_n(t) dt$$

Смысл:

Представление суммы $S_n(f,x)$ как свертки $f*D_n$ (доказанное в Лемме 3) позволяет применять общую теорию свертки (свойства C1-C5) к изучению сходимости рядов Фурье, сводя задачу к анализу свойств ядра D_n .

67. Принцип локализации Римана. Признак Дини и его следствия.

1) Принцип локализации Римана

Пусть $f,g\in L$, $x\in\mathbb{R}$, $\delta\in(0,\pi)$, и функции f и g совпадают на интервале $(x-\delta,x+\delta)$. Тогда разность частичных сумм их рядов Фурье в точке x стремится к нулю при $n\to\infty$:

$$S_n(f,x)-S_n(g,x) \underset{n o\infty}{\longrightarrow} 0.$$

В частности, из сходимости ряда Фурье f в точке x к сумме S следует сходимость ряда Фурье g в точке x к той же сумме S, и наоборот.

Смысл:

Поведение ряда Фурье функции в конкретной точке x зависит только от значений этой функции в сколь угодно малой окрестности x. Если две функции совпадают "рядом" с x (даже если сильно отличаются вдали), их ряды Фурье в x либо оба сходятся к одному значению, либо оба расходятся. Это позволяет анализировать сходимость, "забывая" о поведении функции вне малой окрестности точки.

Признак Дини сходимости

Пусть $f \in L, x \in \mathbb{R}, S \in \mathbb{R}$ (или \mathbb{C}) и выполняется условие:

$$\int_0^{\pi} \frac{|f(x+t) - 2S + f(x-t)|}{t} dt < +\infty. \quad (13.11)$$

Тогда ряд Фурье функции f сходится к сумме S в точке x:

$$S_n(f,x) \xrightarrow[n \to \infty]{} S.$$

Смысл:

Признак Дини дает достаточное условие сходимости ряда Фурье в точке x к конкретному числу S. Условие (13.11) требует, чтобы среднее значение $\frac{f(x+t)+f(x-t)}{2}$ "достаточно быстро" приближалось к S при $t\to 0^+$. Интеграл проверяет "скорость" этого приближения: если разность |f(x+t)+f(x-t)-2S| убывает быстрее, чем t, то ряд гарантированно сходится к S.

Следствия признака Дини 1

Если $x \in \mathbb{R}$, $f \in L$ и существуют конечные пределы:

$$f(x\pm) = \lim_{t o x\pm} f(t), \quad lpha_\pm = \lim_{t o 0\pm} rac{f(x+t) - f(x\pm)}{t}$$

то ряд Фурье f сходится в точке x к $S=\frac{f(x+)+f(x-)}{2}$. Если f непрерывна в x и пределы α_\pm существуют, то ряд сходится к f(x).

Следствия признака Дини 2

Если $f\in L$ имеет конечные односторонние производные в точке x (т.е. $f'_+(x)$ и $f'_-(x)$ существуют и конечны), то её ряд Фурье сходится в x к f(x). В частности, это верно, если f дифференцируема в x. $(a_\pm=f'_\pm(x))$

Смысл:

Эти следствия упрощают применение признака Дини. Следствие 1 говорит: если функция в точке x имеет скачок (левое и правое предельные значения) и "кусочно-гладкая" (существуют односторонние производные), то ряд сходится к среднему арифметическому пределов. Если функция непрерывна и имеет односторонние производные, то ряд сходится к f(x). Следствие 2 — частный случай: существование обычной или односторонних производных в точке гарантирует сходимость ряда к значению функции в этой точке, так как производные автоматически обеспечивают выполнение условий Следствия 1.

68. Примеры разложения функций в ряды Фурье.

Вычисление сумм
$$\sum_{n=1}^{\infty} rac{1}{n^2}$$
 и $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$

Разложение функции $f_z(x)=\cos zx$ в ряд Фурье на $[-\pi,\pi]$ при $z\in\mathbb{C}\setminus\mathbb{Z}$

Функция $f_z(x)=\cos zx$, $x\in [-\pi,\pi]$, является бесконечно дифференцируемой и чётной. Её ряд Фурье сходится к $f_z(x)$ всюду на $[-\pi,\pi]$. Коэффициенты Фурье:

$$a_0(f_z)=rac{2}{\pi}\int_0^\pi\cos zt\,dt=rac{2\sin\pi z}{\pi z},$$

$$a_k(f_z) = rac{2}{\pi} \int_0^\pi \cos z t \cos k t \, dt = rac{\sin \pi z}{\pi} (-1)^k \left(rac{1}{z+k} + rac{1}{z-k}
ight) \quad (k \in \mathbb{N}).$$

Ряд Фурье:

$$\cos zx = rac{\sin \pi z}{\pi z} + rac{\sin \pi z}{\pi} \sum_{k=1}^{\infty} (-1)^k \left(rac{1}{z+k} + rac{1}{z-k}
ight) \cos kx, \quad x \in [-\pi,\pi].$$

Показано разложение непериодической функции $\cos(zx)$ (где z не целое) в ряд по ортогональной системе $\{\cos(kx)\}$ на интервале $[-\pi,\pi]$. Чётность функции упрощает вычисления, обнуляя коэффициенты b_k . Сходимость ряда гарантирована гладкостью функции и её продолжения.

Разложение $\pi\operatorname{ctg}\pi z$ и $\frac{\pi}{\sin\pi z}$ в суммы простых дробей

При $z\in\mathbb{C}\setminus\mathbb{Z}$ из разложения $\cos zx$ подстановкой $x=\pi$ и x=0 соответственно получаются разложения в ряды (в смысле главного значения):

$$\pi\operatorname{ctg}\pi z = \sum_{k=-\infty}^{\infty} rac{1}{z-k}, \quad rac{\pi}{\sin\pi z} = \sum_{k=-\infty}^{\infty} rac{(-1)^k}{z-k}.$$

Смысл:

Подстановка конкретных значений x=0 и $x=\pi$ в ряд Фурье для $\cos(zx)$ позволяет выразить трансцендентные функции (ctg и csc) через бесконечные суммы рациональных дробей (простейших дробей). Эти разложения широко используются в комплексном анализе и теории специальных функций.

Вычисление сумм $\sum_{n=1}^{\infty} rac{1}{n^2}$ и $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$

- 1. Сумма $\sum_{n=1}^{\infty} \frac{1}{n^2}$:
 - Используем тождество Парсеваля для функции $f_{\sqrt{-1}}(x)=\cosh x$ (частный случай z=i, но проще для $f(x) = x^2$).
- Стандартный результат: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. 2. Сумма $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$:
- - Подставим $x=\pi$ в разложение функции $g(x)=x^2$ в ряд Фурье на $[-\pi,\pi]$.
 Ряд Фурье для $g(x)=x^2$: $x^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}\cos nx$.
 При $x=\pi$: $\pi^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}(\cos n\pi)=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}(-1)^n=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{1}{n^2}$.
 - Отсюда: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
 - Теперь подставим x=0: $0=rac{\pi^2}{3}+4\sum_{n=1}^{\infty}rac{(-1)^n}{n^2}(1)$.
 - Отсюда: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$, следовательно, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$.

Смысл:

Знаменитые суммы вычисляются с помощью свойств рядов Фурье. Тождество Парсеваля (равенство энергии сигнала и суммы квадратов коэффициентов) даёт $\sum rac{1}{n^2}$. Для знакопеременной суммы используется разложение простой функции (например, x^2) и подстановка точки сходимости ряда (x=0 или $x = \pi$).

69. Общее представление о методах суммирования рядов. Суммирование по Чезаро, суммирование методами Абеля-Пуассона (их перманентность и эффективность)

Суммирование по Чезаро

Пусть дан числовой ряд $\sum_{k=0}^{\infty} a_k$ с частичными суммами $S_n = \sum_{k=0}^n a_k$. Средние арифметические Чезаро (первого порядка) определяются как:

$$\sigma_n = rac{1}{n+1} \sum_{k=0}^n S_k$$

Ряд называется суммируемым по Чезаро к числу S, если существует предел:

$$\lim_{n o\infty}\sigma_n=S$$

Обозначение: $(C,1) \sum a_k = S$.

Смысл:

Метод Чезаро обобщает понятие сходимости ряда. Если ряд сходится классически к S, то он суммируем по Чезаро к тому же S. Но метод позволяет приписать сумму некоторым расходящимся рядам, например, знакопеременному ряду $1-1+1-1+\ldots$, для которого $\sigma_n \to \frac{1}{2}$.

Суммирование методом Абеля-Пуассона

Пусть дан степенной ряд $f(x) = \sum_{k=0}^{\infty} a_k x^k$, сходящийся при |x| < 1. Суммой ряда методом Абеля-Пуассона называется предел (если он существует):

$$f(A)\sum_{k=0}^\infty a_k=\lim_{x o 1^-}f(x)=\lim_{x o 1^-}\sum_{k=0}^\infty a_kx^k$$

Смысл:

Метод использует аналитическое продолжение степенного ряда на границу круга сходимости (x=1). Если ряд сходится классически, его сумма по Абелю-Пуассону совпадает с обычной суммой. Метод суммирует ряды, где классический предел не существует, например, для ряда $1-2+3-4+\dots$ сумма по Абелю равна $\frac{1}{4}$.

Перманентность методов

Метод суммирования F называется перманентным (регулярным), если:

- 1. Линейность: $F\sum (lpha a_k + eta b_k) = lpha F\sum a_k + eta F\sum b_k.$
- 2. **Согласованность**: Если ряд $\sum a_k$ сходится классически к S, то $F \sum a_k = S$.

Смысл:

Перманентность гарантирует, что метод не противоречит обычной сходимости и "работает" корректно с линейными комбинациями. Оба метода (Чезаро и Абеля-Пуассона) являются перманентными. Это делает их полезными: они расширяют классическое суммирование, не нарушая его там, где оно уже работает.

Эффективность методов

Метод суммирования F называется эффективным (или сильнее другого метода G), если:

- Любой ряд, суммируемый методом G, суммируем и методом F к той же сумме.
- Существует ряд, суммируемый методом F, но не суммируемый методом G.

Смысл:

Эффективность показывает "мощность" метода. Метод Абеля-Пуассона эффективнее (сильнее) метода Чезаро (C,1): любой ряд, суммируемый по Чезаро, суммируем и по Абелю к той же сумме, но существуют ряды (например, $\sum k(-1)^k$), суммируемые по Абелю, но не по Чезаро. Это позволяет Абелю "суммировать" более широкий класс расходящихся рядов.

70. Аппроксимативная единица и усиленная аппроксимативная единица. Теорема о свойствах свертки с аппроксимативной единицей (без док-ва). Теорема Фейера. Полнота тригонометрической системы в $L^2_{2\pi}$

Аппроксимативная единица

Пусть $D\subset\mathbb{R}$, h_0 — предельная точка D (в $\overline{\mathbb{R}}$). Семейство функций $\{K_h\}_{h\in D}$ называется аппроксимативной единицей при $h\to h_0$, если:

1.
$$orall h \in D$$
: $K_h \in L^1[-\pi,\pi]$ и $\int_{-\pi}^{\pi} K_h(t) dt = 1$.

2.
$$\exists M>0$$
: $\forall h\in D$, $\int_{-\pi}^{\pi}|K_h(t)|dt\leq M$.
3. $\forall \delta\in(0,\pi)$: $\int_{E_{\delta}}|K_h(t)|dt\underset{h\to h_0}{\longrightarrow}0$, где $E_{\delta}=[-\pi,\pi]\setminus[-\delta,\delta]$.

Аппроксимативная единица — это семейство "сглаживающих" ядер, сосредоточенных около нуля. Их интеграл равен 1 (условие нормировки), они не слишком большие в среднем (ограниченность нормы), а вне малой окрестности нуля их влияние стремится к нулю. Это позволяет аппроксимировать функцию её сдвигами.

Усиленная аппроксимативная единица

Семейство $\{K_h\}_{h\in D}$ называется усиленной аппроксимативной единицей при $h o h_0$, если:

- 1. Выполнены условия 1, 2 (из прошлого пункта) аппроксимативной единицы.
- 2. $\forall h \in D$: $K_h \in L^{\infty}[-\pi, \pi]$.
- 3. $orall \delta \in (0,\pi)$: $\displaystyle \operatorname*{ess\,sup}_{t \in E_{\delta}} \lvert K_h(t) \rvert \overset{}{\underset{h o h_0}{\longrightarrow}} 0.$

Смысл:

Это более сильный вариант аппроксимативной единицы, где ядра ограничены равномерно (не только в L^1), а их максимальные значения вне малой окрестности нуля стремятся к нулю. Это гарантирует сходимость свертки в индивидуальных точках непрерывности функции.

3) Теорема о свойствах свертки

Пусть $\{K_h\}$ — аппроксимативная единица при $h o h_0$. Тогда:

- 1. Если $f \in C_{2\pi}$ (непрерывная 2π -периодическая), то $f * K_h \xrightarrow{h o h_0} f$ равномерно.
- 2. Если $f\in L^p_{2\pi}$, $1\leq p<\infty$, то $\|fst K_h-f\|_p \xrightarrow{h o h_0} 0$.
- 3. Если $\{K_h\}$ *усиленная* аппроксимативная единица, $f\in L^1_{2\pi}$, и f непрерывна в точке x, то $(f*K_h)(x) \xrightarrow{h o h_0} f(x)$.

Смысл:

Свертка функции с аппроксимативной единицей приближает саму функцию. Для непрерывных функций сходимость равномерная, для L^p -функций — в норме L^p , а для усиленных ядер есть поточечная сходимость в точках непрерывности. Это обобщает интуицию о "сглаживании".

Теорема Фейера

Ядра Фейера $\Phi_n(t)=rac{1}{2\pi(n+1)}\left(rac{\sinrac{(n+1)t}{2}}{\sinrac{t}{2}}
ight)^2$ образуют *усиленную* аппроксимативную единицу при $n o\infty$. Следовательно:

1. Если $f \in C_{2\pi}$, то $\sigma_n(f) o f$ равномерно.

- 2. Если $f \in L^p_{2\pi}$, $1 \leq p < \infty$, то $\|\sigma_n(f) f\|_p o 0$.
- 3. Если $f\in L^1_{2\pi}$ непрерывна в точке x, то $\sigma_n(f,x) o f(x)$.

Средние Фейера (суммы Фурье, усреднённые по первым n частичным суммам) сходятся к функции в различных смыслах. Ключевое — ядро Фейера неотрицательно и явно оценивается, что доказывает его "усиленность". Это решает проблемы расходимости рядов Фурье.

Полнота тригонометрической системы в $L^2_{2\pi}$

Тригонометрическая система $\{e^{ikx}\}_{k\in\mathbb{Z}}$ (или $\{1,\cos kx,\sin kx\}_{k=1}^\infty$) полна в $L^2_{2\pi}$. То есть:

$$orall f \in L^2_{2\pi}: \quad \|S_n(f) - f\|_2 \stackrel{n o \infty}{\longrightarrow} 0,$$

где $S_n(f)$ — частичная сумма ряда Фурье. Эквивалентно: если все коэффициенты Фурье f равны нулю, то f=0 п.в.

Смысл:

Любую функцию из L^2 можно сколь угодно точно приблизить в среднем квадратичном её частичными суммами Фурье. Это следует из теоремы Фейера (п.2 при p=2) и того, что $\sigma_n(f)$ есть проекция на тригонометрические многочлены. Система образует ортогональный базис.

71. Теорема Вейерштрасса о тригонометрических многочленах. Теорема Вейерштрасса об алгебраических многочленах

Теорема Вейерштрасса о тригонометрических многочленах

Любая непрерывная периодическая функция $f\in C_{(a,b)}$ может быть равномерно приближена тригонометрическими многочленами $T(x)=\sum_{k=0}^\infty q_k x^k$, где остаток $\|T(x)-P_N(x)\|_{C_{at}}\to 0$ при $N\to\infty$.

Смысл:

Теорема позволяет заменять сложные периодические функции на суммы простых тригонометрических слагаемых. Это полезно в анализе и численных методах, так как многочлены легче вычислять и интегрировать.

Теорема Вейерштрасса об алгебраических многочленах

Для любой непрерывной функции $f\in C_{at}$ на отрезке [a,b] существует последовательность алгебраических многочленов $P_N(x)=\sum_{j=0}^N q_j x^k$, такая что $\|f-P_N\|_{L^p}\leq \epsilon$ при достаточно больших N.

Смысл:

Теорема утверждает, что даже "неудобные" непрерывные функции можно сколь угодно точно приблизить обычными многочленами. Это основа для аппроксимации в вычислительной математике и физике.