Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе $\mathbb{N}3$

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Эффект Холла в примесном полупроводнике»

Исходные данные.

Геометрические размеры полупроводника p-Ge: l=20 мм; h=10 мм; d=1 мм; S=hd=10 мм².

$$I = \sigma \frac{S}{l} U_{\parallel} \tag{1}$$

$$U_{\perp} = R \frac{I}{d} B \tag{2}$$

$$R = \frac{1}{en} \tag{3}$$

Результаты прямых измерений.

Вольт-амперная характеристика для полупроводника при нулевом магнитном поле:

I, мА	U_{\parallel} , B
5	0,22
10	0,46
15	0,75
20	0,98
25	1,22
30	1,49
35	1,77
40	2,07

Зависимость поперечного напряжения U_{\perp} (ЭДС Холла) от силы магнитного поля

I, A	B, Тл	U_{\perp} , B
0,0	0,007	30,0
0,2	0,014	30,8
0,4	0,032	32,7
0,6	$0,\!056$	35,4
0,8	0,080	38,2
1,0	0,103	40,7
1,2	0,123	43,0
1,4	0,148	45,6
1,6	$0,\!176$	48,5
1,8	0,207	51,7
2,0	$0,\!222$	53,3

Обработка результатов и расчёт косвенных величин.

Экстраполяция ВАХ:

Из формулы (1) $k=\sigma \frac{S}{l}$, где k=19.1 $\left(\frac{\text{мA}}{\text{B}}\right)$ - коэффициент пропорциональности ВАХ. Отсюда получаем: $\sigma=k\frac{l}{S}$

$$\sigma = 19, 1 \cdot 10^{-3} \cdot \frac{20 \cdot 10^{-3}}{10 \cdot 10^{-6}} = 38, 2 \quad (\text{Om}^{-1} \cdot \text{m}^{-1})$$

Из формулы (2): $\alpha=R\,rac{I}{d},$ где $\alpha=108,72\,\left(rac{\mathrm{B}}{\mathrm{Тл}}
ight)\Rightarrow R=\alpha\,rac{d}{I}$

$$R = 108,72 \cdot \frac{10^{-3}}{15 \cdot 10^{-3}} = 7,248 \, \left(\frac{\text{M}^3}{\text{K}_{\text{II}}}\right)$$

По формуле (3) находим концентрацию носителей заряда:

$$n = \frac{1}{1, 6 \cdot 10^{-19} \cdot 7,248} \approx 8 \cdot 10^{17} \; (\text{m}^{-3})$$