ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

Ústav mechaniky tekutin a termodynamiky

DIPLOMOVÁ PRÁCE

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

MASTER THESIS

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Autor práce: Bc. Josef Krubner

Vedoucí práce: Ing. Michal Schmirler, Ph.D.

Konzultant: doc. Ing. Jan Halama, Ph.D.

Akademický rok 2021/2022

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: Krubner Jméno: Josef Osc	obní číslo:	473541
------------------------------------	-------------	--------

Fakulta/ústav: Fakulta strojní

Zadávající katedra/ústav: Ústav mechaniky tekutin a termodynamiky

Studijní program: Aplikované vědy ve strojním inženýrství

Specializace: Matematické modelování v technice

II. ÚDAJE K DIPLOMOVÉ PRÁCI

NIÁTOV	امنه	lomové	nrána.
INAZEV	uibi	IOIIIOVE	DIACE.

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

Název diplomové práce anglicky:

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Pokyny pro vypracování:

- 1) Popište problematiku měření teplot plynů proudících při vysokých podzvukových rychlostech, tedy s uvažováním jejich stlačitelnosti.
- 2) Popište princip fungování v názvu zmiňované DRTA sondy. Představte geometrii sondy, která bude výchozí pro další kroky v rámci návrhu zlepšení jejích termodynamických vlastností.
- 3) Popište CFD model, který budete pro simulaci termodynamických vlastností sondy používat (fyzikální model, okrajové podmínky, numerické schéma, způsoby diskretizace atd.).
- 4) Proveďte simulace vlivu jednotlivých vybraných konstrukčních úprav na termodynamické parametry sondy (hodnoty restitučních faktorů v závislosti na rychlosti nabíhajícího proudu, směrová citlivost, rozložení proudového a teplotního pole atd.)
- 5) Na základě výsledků provedených numerických simulací vyberte nejvhodnější geometrii sondy a vyhodnoťte její termodynamické vlastnosti.

C	4	. X ~ ~ 4	literatury:
Seznam	aobon	icene	meraniry

Dle pokynů vedoucího práce či konzultanta.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Schmirler, Ph.D. ústav mechaniky tekutin a termodynamiky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

doc. Ing. Jan Halama, Ph.D. ústav technické matematiky FS

Datum zadání diplomové práce: 25.04.2022 Termín odevzdání diplomové práce: 29.07.2022

Platnost zadání diplomové práce:

Ing. Michal Schmirler, Ph.D.

podpis vedoucí(ho) práce

Ing. Michal Schmirler, Ph.D.

podpis vedoucí(ho) ústavu/katedry

doc. Ing. Miroslav Španiel, CSc.

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání Podpis studenta

Prohlášení	
Prohlašuji, že jsem bakalářskou práci na ností vysokorychlostní DRTA sondy pomoc statně. Veškerá použitá literatura a podkla seznamu literatury.	
V Praze, dne	Josef Krubner

Poděkování Tímto bych chtěl poděkovat Ing. Michalu Schmirlerovi, Ph.D. a doc. Ing. Janu Halamovi, Ph.D. za cenné rady a připomínky, které mi byly nápomocny při vypracování této diplomové práce. Dále bych rád poděkoval své rodině a své přítelkyni za podporu při studiu.

Anotační list

Název práce:	Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací
Title:	Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations
Autor:	Bc. Josef Krubner
Studijní program:	Aplikované vědy ve strojním inženýrství
Druh práce:	Diplomová
Vedoucí práce	Ing. Michal Schmirler, Ph.D.
Konzultant	doc. Ing. Jan Halama, Ph.D.
Abstrakt:	TODO
Abstract:	TODO
Klíčová slova:	návrh sondy pro měření rychlosti, měření rychlosti plynů, podzvukové proudění, restituční faktor, restituční teplota, CFD simulace
Keywords:	velocimetry probe design, gas velocimetry, subsonic flow, recovery factor, recovery temperature, CFD simulation

Obsah

Se	eznar	použitých symbolů a zkratek	7
	Sezr	m symbolů	7
	Sezr	m zkratek	7
	Sezr	m použitých indexů	8
Se	eznar	obrázků	8
Ú	vod		9
1	Měi	ní teplot při vysokých podzvukových rychlostech	10
		1.0.1 Dynamický ohřev	10
		1.0.2 Restituční faktor	10
	1.1	Dynamická teplota	10
	1.2	Měření klidové teploty	10
	1.3	Měření statické teploty	10
2	DR	A sonda	11
	2.1	Princip fungování	11
	2.2	Výchozí geometrie	12
	2.3	Cíle numerických simulací	13

Seznam použitých symbolů a zkratek

Seznam symbolů

a	ms^{-1}	Rychlost zvuku
c_p	$Jkg^{-1}K^{-1}$	Měrná tepelná kapacita za konstantního tlaku
\dot{E}	1	Korekční koeficient
h	Jkg^{-1}	Měrná entalpie
I	1	Intenzita turbulence
K	1	Korekční součinitel
κ	1	Poissonova konstanta
Ma	1	Machovo číslo
μ	Pas	Dynamická viskozita
ν	$m^2 s^{-1}$	Kinematická viskozita
p_c	Pa	Celkový tlak
Pr	1	Prandtlovo číslo
p_s	Pa	Statický tlak
q	Jkg^{-1}	Měrné teplo
q_{dyn}	Pa	Dynamický tlak
q_{kin}	Pa	Kinetický tlak
r	$Jkg^{-1}K^{-1}$	Měrná plynová konstanta
r/r*	1	Recovery faktor
Re	1	Reynoldsovo číslo
ho	kgm^{-3}	Hustota
T	K	Termodynamická teplota
T_{kal}	K	Teplota podle kalibračního polynomu
T_r	K	Recovery teplota
u	ms^{-1}	Rychlost proudění
U	V	Elektrické napětí

Seznam zkratek

CCD	Charge-Coupled Device
EFV	Elastic Filament Velocimetry
Holo-PIV	Holographic Particle Image Velocimetry
HWA	Hot Wire Anemometry
ICCD	Intesified Charge-Coupled Device
LDD	Laser Doppler Detection
LPT	Lagranian Particle Tracking
OTV	Ozone Tagging Velocimetry
PIV	Particle Image Velocimetry
Scan-PIV	Scanning Particle Image Velocimetry
Tomo-PIV	Tomographic Particle Image Velocimetry

Seznam indexů

A	Sonda A
B	Sonda B
i	Stupeň iterace
∞	Nabíhající proud vzduchu
0	Stagnační
1	Před dýzou
2	Za dýzou
	v

Seznam obrázků

.1 Výchozí geometrie DRTA sondy
· · · · · · · · · · · · · · · · · · ·

$\mathbf{\acute{U}vod}$

Problematika měření rychlosti proudění tekutin je velice rozsáhlým vědním oborem a můžeme zde nalézt mnoho postupů a metodik, které se postupně vyvíjejí.

- 1 Měření teplot při vysokých podzvukových rychlostech
- 1.0.1 Dynamický ohřev
- 1.0.2 Restituční faktor
- 1.1 Dynamická teplota
- 1.2 Měření klidové teploty
- 1.3 Měření statické teploty

2 DRTA sonda

2.1 Princip fungování

Myšlenka stojící za DRTA sondou se opírá právě o měření rovnovážných teplot (viz předchozí Kapitola 1). Budeme-li uvažovat teplotní čidlo s restitučním faktorem f_A , pak bude měřená teplota T_{rA} dána následovně:

$$T_{rA} = T + f_A \frac{u^2}{2c_p} (2.1.1)$$

Jednoduchou úpravou lze odvodit vztah pro určení rychlosti proudění:

$$u = \sqrt{2c_p \frac{T_{rA} - T}{f_A}} \tag{2.1.2}$$

Takový postup by však vyžadoval znalost statické teploty nabíhajícího proudu T, nebo potažmo teploty klidové T_0 – tuto metodiku lze najít v řadě aplikací (viz metoda RTA – Recovery Temperature Anemometry [Ishibashi2004, Ishibashi2012]). Zde byl k měření použit termočlánek s restitučním faktorem uvažovaným jako \sqrt{Pr} a výsledná rychlost proudění byla stanovena ze vztahu:

$$u = \sqrt{\frac{2\kappa r}{\kappa - 1} \frac{T_0 - T_{rA}}{f_A}}$$
 (2.1.3)

Nevýhodou výše uvedené RTA metody je právě nutnost měření dalších parametrů proudění (T, T_0) , což značně omezuje možnosti jejího využití. Klíčovým krokem v návrhu DRTA sondy je proto eliminace statické teploty ze Vztahu 2.1.2. Toho lze docílit použitím odlišného teplotního čidla – odlišnost je zde reprezentovaná rozdílným restitučním faktorem, který označme f_B . Toto čidlo bude tedy indikovat teplotu T_{rB} :

$$T_{rB} = T + f_B \frac{u^2}{2c_p} (2.1.4)$$

Rychlost proudění lze následně určit z rozdílu Vztahů 2.1.1 a 2.1.4:

$$T_{rA} - T_{rB} = (f_A - f_b) \frac{u^2}{2c_p}$$

$$u = \sqrt{\frac{2c_p (T_{rA} - T_{rB})}{(f_A - f_b)}}$$
(2.1.5)

Výhoda použití dvou teplotních snímačů s rozdílnými restitučními faktory spočívá navíc v tom, že lze obdobně odvodit i vztahy pro určení Machova čísla a statické teploty nabíhajícího proudu. Pro určení Ma je třeba nejprve upravit Vztahy 2.1.1 a 2.1.4:

$$T_{rA} = T + f_A \frac{u^2}{2c_p} \frac{a^2}{a^2} = T \left(1 + f_A \frac{\kappa - 1}{2} M a^2 \right)$$

$$T_{rB} = T \left(1 + f_B \frac{\kappa - 1}{2} M a^2 \right)$$
(2.1.6)

Výsledný vztah pro Ma vznikne z podílu měřených teplot:

$$\frac{T_{rA}}{T_{rB}} = \frac{1 + f_A \frac{\kappa - 1}{2} M a^2}{1 + f_B \frac{\kappa - 1}{2} M a^2}$$

$$Ma = \sqrt{\frac{2}{\kappa - 1} \frac{T_{rA} - T_{rB}}{T_{rB} f_A - T_{rA} f_B}}$$
(2.1.7)

Určení statické teploty lze odvodit pomocí eliminace rychosti proudění ze Vztahů 2.1.1 a 2.1.4:

$$\frac{u^2}{2c_p} = \frac{T_{rA} - T}{f_A} = \frac{T_{rB} - T}{f_B}$$

$$T = \frac{T_{rB}f_A - T_{rA}f_B}{f_A - f_B}$$
(2.1.8)

2.2 Výchozí geometrie

Jak již vyplývá z principu fungování DRTA sondy, klíčovými prvky konstrukce jsou dvě teplotní čidla. V tomto případě byly zvoleny odporové teplotní snímače Pt100 (model 1PT100K2515 značky Omega Engineering) o průměru $1.5\,mm$ a délce $25\,mm$. Ty jsou uchyceny pomocí těsnění v mosazné trubici o vnějším průměru $4\,mm$ a tloušťce stěny $0.4\,mm$. Výchozí geometrie sondy je patrná z Obrázku 2.2.1, detailní rozměry jsou poté uvedeny v Příloze ??.

Obrázek 2.2.1: Výchozí geometrie DRTA sondy.

Klíčový je zde rozdíl restitučních faktorů teplotních čidel. To je zajištěno opláštěním jednoho z nich – bude značeno jako čidlo A. Při proudění plynu stínicí trubicí dochází k jeho výraznému zpomalení, což vede k nárůstu statické teploty a čidlo se tak zahřívá více, než kdyby bylo umístěné volně v proudu. Stínění je opatřeno dvěma ventilačními otvory o průměru $1\,mm$, které zajišťují proudění vzduchu trubicí. Konstrukce čidla A se tak podobá měření stagnační teploty (viz Kapitola 1), kdy je cílem se co nejvíce přiblížit stavu $f_A \to 1$.

2.3 Cíle numerických simulací

Hlavním cílem CFD simulací byla úprava geometrie sondy tak, aby byla zajištěna její co největší použitelnost nezávisle na rychlosti proudění, ani na jeho směru (zde lze hovořit o limitním natočení sondy, kdy bude ještě chyba měření přijatelná). Dalším cílem bylo dále dosažení co nejvyššího rozdílu restitučních faktorů s ohledem na další zvolené úpravy geometrie.

Charakter konstrukčních úprav se odvíjel také od snahy zachovat původní koncept sondy a měl umožnit pozdější snadnou konstrukci nového modelu pro experimentální testování.