6.867 Machine learning | Prof. Tommi Jaakkola | Week 12, Tuesday, November 22nd, 2013 | Lecture 22

Lecture 22: More Hidden Markov Models

We can view HMMs as Bayesian network.

We showed how this graphical structure implies independency and how they are easier to learn.

$$s_1 \perp s_3 \mid s_2 \text{ (true)}$$

 $x_1 \perp x_3 \mid s_2 \text{ (true)}$
 $x_1 \perp x_3 \mid x_2 \text{ (false)}$

What does $x_1 \perp x_3 \mid x_2 \ (false)$ say about the observable variables? That there are many possible ways to couple them together. The sequence of the observable variables is NOT a Markov model. They are *more* dependent on each other than a Markov model.

Figure 1: I have no clue where this figure was supposed to be inserted

Last time we looked over the tree problems we need to solve for an HMM.

- (1) $P(x_1, ..., x_n) = \sum_{s_1, ..., s_n} P(x_1, ..., x_n, s_1, ..., s_n)$ and the Markov structure makes it easier to evaluate that joint a. Solved last time using forward and backward probabilities
- (2) Learn $P_1(s_1), P_E(x|s), P_T(s'|s), x \in \mathcal{X} = \{1, ..., k_E\}$
- (3) Find the most likely underlying explanation for the observables in terms of states: $(\hat{s}_1, ..., \hat{s}_n) = \underset{s_1,...,s_n}{\operatorname{argmax}} P(x_1, ..., x_n, s_1, ..., s_n).$

Forward probabilities: $\alpha_t(s_t) = P(x_1, ..., x_t, s_t)$

$$\alpha_1(s_1) = P_1(s_1)P_E(x_1|s_1), s_1 = 1, \dots, k$$

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1})P_T(s_t|s_{t-1})P_E(x_t|s_t), s_t = 1, \dots, k$$

6.867 Machine learning | Prof. Tommi Jaakkola | Week 12, Tuesday, November 22nd, 2013 | Lecture 22 Backward probabilities: $\beta_t(s_t) = P(x_{t+1}, ..., x_n | s_t)$

$$\beta_{n}(s_{n}) = 1$$

$$\beta_{t}(s_{t}) = \sum_{s_{t+1}} P_{T}(s_{t+1}|s_{t})P_{E}(x_{t+1}|s_{t+1})\beta_{t+1}(s_{t+1}), s_{t} = 1, ..., k$$

$$\sum_{s_{n}=1}^{k} \alpha_{n}(s_{n}) = P(x_{1}, ..., x_{n})$$

$$\sum_{s_{n}=1}^{k} \alpha_{t}(s_{t})\beta_{t}(s_{t}) = P(x_{1}, ..., x_{n}), \forall t = 1, ..., n$$

Learning HMMs from data

Estimate $P_1(s_1), s_1 = 1, ..., k, P_T(s'|s), s, s' = 1, ..., k$, get a k^2 probability table, and $P_E(x|s), s = 1, ..., k, x = 1, ..., k$

Complete log likelihood (single input $x_1, ..., x_n$ sequence):

$$\begin{split} \log P(x_1, \dots, x_n, s_1, \dots, s_n) &= \log P_1(s_1) + \sum_{t=1}^n \log P_E(x_t | s_t) + \sum_{t=1}^n \log P_T(s_{t+1} | s_t) \\ &= \sum_{s=1}^k n_1(s) \log P_1(S_1 = s) + \sum_{s', s} n_T(s, s') \log P_T(S_{next} = s' | S_{prev} = s) \\ &+ \sum_{s, x} n_E(s, x) \log P_E(X = x | S = s) \\ &n_1(s) = [[s = s_1]] \\ &n_T(s, s') = \sum_{t=1}^{n-1} [[s = s_t]] [[s' = s_{t+1}]] \\ &n_E(s, x) = \sum_{t=1}^n [[s = s_t]] [[x = x_t]] \end{split}$$

ML estimates of the parameters given these counts:

$$\hat{P}_{1}(s) = \frac{n_{1}(s)}{\sum_{s'} n_{1}(s')}$$

$$\hat{P}_{E}(x|s) = \frac{n_{E}(s,x)}{\sum_{x'} n_{E}(s,x')}$$

$$\hat{P}_{T}(s'|s) = \frac{n_{T}(s,s')}{\sum_{s''} n_{T}(s,s'')}$$

6.867 Machine learning | Prof. Tommi Jaakkola | Week 12, Tuesday, November 22nd, 2013 | Lecture 22 What if we don't have complete data? We randomly initialize the model and compute:

$$\begin{split} n_{1}(s) \to \gamma_{1}(s) &= P(s_{1} = s | x_{1}, \dots, x_{n}) = \frac{\alpha_{1}(s)\beta_{1}(s)}{\sum_{s'} \alpha_{1}(s')\beta_{1}(s')} \\ n_{E}(s, x) \to \gamma_{t}(s) &= P(s_{t} = s | x_{1}, \dots, x_{n}) = \frac{\alpha_{t}(s)\beta_{t}(s)}{\sum_{s'} \alpha_{t}(s')\beta_{t}(s')} \\ n_{T}(s, s') \to \xi_{t}(s, s') &= P(s_{t} = s, s_{t+1} = s' | x_{1}, \dots, x_{n}) = \frac{\alpha_{t}(s)P_{T}(s' | s)P_{E}(x_{t+1} | s')\beta_{t+1}(s')}{\sum_{\tilde{s}} \alpha_{t}(\tilde{s})\beta_{t}(\tilde{s})} \end{split}$$

EM algorithm (Forward-backward algorithm for estimating HMM)

Initialization: Initialize $P_1(s_1)$, $P_T(s'|s)$, $P_E(x|s)$ with a guess

E-step: Evaluate $\gamma_t(s), \xi(s, s'), \forall t = 1, ..., n, \forall s, s' = 1, ..., k$, for a single sequence

$$\begin{split} \tilde{n}_1(s) &= \gamma_1(s) = P(s_1 = s | x_1, \dots, x_n) \\ \tilde{n}_T(s, s') &= \sum_{t=1}^{n-1} \xi_t(s, s') = \sum_{t=1}^{n-1} P(s_t = s, s_{t+1} = s' | x_1, \dots, x_n) \\ \tilde{n}_E(s, x) &= \sum_{t=1}^n \gamma_t(s) [[x = x_t]] = \sum_{t=1}^n P(s_t = s | x_1, \dots, x_n) [[x = x_t]] \end{split}$$

M-step: Exactly as before, except we use the \tilde{n} counts:

$$\hat{P}_1(s) = \frac{\tilde{n}_1(s)}{\sum_{s'} \tilde{n}_1(s')}$$

$$\hat{P}_E(x|s) = \frac{\tilde{n}_E(s,x)}{\sum_{x'} \tilde{n}_E(s,x')}$$

$$\hat{P}_T(s'|s) = \frac{\tilde{n}_T(s,s')}{\sum_{s''} \tilde{n}_T(s,s'')}$$

Example:

$$P_{1}(s_{1}) = \begin{cases} 1, s_{1} = 1 \\ 0, s_{1} = 2 \end{cases}$$

$$P_{T}(s'|s) = \begin{bmatrix} s' = 1 & s' = 2 \\ s = 1 & .9 & .1 \\ s = 2 & 0 & 1 \end{bmatrix}$$

$$P_{E}(x|s) = \begin{bmatrix} x = A & x = B \\ s = 1 & .5 & .5 \\ s = 2 & .1 & .9 \end{bmatrix}$$

6.867 Machine learning | Prof. Tommi Jaakkola | Week 12, Tuesday, November 22nd, 2013 | Lecture 22 Find the states:

$$(\hat{s}_1, \hat{s}_2) = \underset{s_1, s_2}{\operatorname{argmax}} P(x_1 = B, x_2 = B, s_1, s_2)$$

Consider the following probabilities:

$$(s_1 = 1, s_2 = 1) \rightarrow P(x_1 = B, x_2 = B, s_1 = 1, s_2 = 1)$$

= $P(s_1 = 1)P_E(x_1 = B|s_1 = 1)P_T(s_2 = 1|s_1 = 1)P(x_2 = B|s_2 = 1) = 1 \cdot 0.5 \cdot 0.9 \cdot 0.5$

Similarly, we get:

$$(s_1 = 1, s_2 = 2) \rightarrow 1 \cdot 0.5 \cdot 0.1 \cdot 0.9$$

 $(s_1 = 2, s_2 = 1) \rightarrow 0 \ prob$
 $(s_1 = 2, s_2 = 2) \rightarrow 0 \ prob$

So, the higher likelihood answer is $(s_1 = 1, s_2 = 1)$

If I observed B, B, B, B, \ldots, B the estimated ML sequence would have been 1,2,2,2,2, ...,2.

Viterbi algorithm

We can estimate the HMM model with the EM algorithm, but how can we find the most likely state sequence given some data? (Remember each state is in $\{1, ..., k\}$, so we have an exponential space of states to explore)

$$(\hat{s}_1, \dots, \hat{s}_n) = \underset{s_1, \dots, s_n \in \{1, \dots, k\}}{\operatorname{argmax}} P(x_1, \dots, x_n, s_1, \dots, s_n)$$

We can use something very similar to the **forward probabilities**, except that instead of summing over all possible previous states we take the *maximum* instead. Let,

$$\delta_n(s_n) = \max_{s_1, \dots, s_{n-1} \in \{1, \dots, k\}} P(x_1, \dots, x_n, s_1, \dots, s_n)$$

If I have $\delta_n(s_n)$ how would I determine the ML for s_n ?

$$\hat{s}_n = \operatorname*{argmax}_{s_n = 1, \dots, k} \delta_n(s_n)$$

...because
$$\max_{s_n} \delta_n(s_n) = \max_{s_1,\dots,s_n} P(x_1,\dots,x_n,s_1,\dots,s_n)$$

$$\delta_1(s_1) = P_1(s_1)P_E(x_1|s_1) = P(x_1,s_1)$$

$$\delta_2(s_2) = \max_{s_1 = 1, \dots, k} P(x_1, x_2, s_1, s_2) = \max_{s_1 = 1, \dots, k} P_1(s_1) P_E(x_1 | s_1) P_T(s_2 | s_1) P_E(x_2 | s_2) = \max_{s_1 = 1, \dots, k} \delta_1(s_1) P_T(s_2 | s_1) P_E(x_2 | s_2)$$

$$\delta_{3}(s_{3}) = \max_{s_{1}, s_{2} \in \{1, \dots, k\}} P(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}) = \max_{s_{1}, s_{2} \in \{1, \dots, k\}} P(x_{1}, x_{2}, s_{1}, s_{2}) P_{T}(s_{3}|s_{2}) P_{E}(x_{3}|s_{3})$$

$$= \max_{s_{2} = 1, \dots, k} \left(\max_{s_{1} = 1, \dots, k} P(x_{1}, x_{2}, s_{1}, s_{2}) \right) P_{T}(s_{3}|s_{2}) P_{E}(x_{3}|s_{3}) = \max_{s_{2} = 1, \dots, k} \delta_{2}(s_{2}) P_{T}(s_{3}|s_{2}) P_{E}(x_{3}|s_{3})$$

6.867 Machine learning | Prof. Tommi Jaakkola | Week 12, Tuesday, November 22nd, 2013 | Lecture 22 In general, we can prove that:

$$\delta_t(s_t) = \max_{s_{t-1}=1,\dots,k} \delta_{t-1}(s_{t-1}) P_T(s_t|s_{t-1}) P_E(x_t|s_t), \forall s_t = 1,\dots,k$$

Backtracking iteration:

We can compute the $n \times k$ $\delta_i(j)$ table for all $i \in \{1, ..., n\}$ and for all $j \in \{1, ..., k\}$ in the following order:

$$\delta_1(1), \delta_1(2), \dots, \delta_1(k); \delta_2(1), \dots, \delta_2(n); \dots; \delta_n(1), \dots, \delta_n(k)$$

Then we can find the maximum sequence of states $(\hat{s}_1, ..., \hat{s}_n)$ by doing:

$$\begin{split} \hat{s}_n &= \operatorname*{argmax}_{s_n} \delta_n(s_n) \\ \hat{s}_{n-1} &= \left(\text{the } s_{n-1} \text{ that maximized } \delta_n(\hat{s}_n) \right) = \operatorname*{argmax}_{s_{n-1}} \delta_{n-1}(s_{n-1}) \, P_T(\hat{s}_n | s_{n-1}) P_E(x_n | \hat{s}_n) \\ &= \operatorname*{argmax}_{s_{n-1}} \delta_{n-1}(s_{n-1}) \, P_T(\hat{s}_n | s_{n-1}) \\ \hat{s}_{n-2} &= \operatorname*{argmax}_{s_{n-2}} \delta_{n-2}(s_{n-2}) \, P_T(\hat{s}_{n-1} | s_{n-2}) \\ &\vdots \\ \hat{s}_1 &= \operatorname*{argmax}_{s_1} \delta_1(s_1) \, P_T(\hat{s}_2 | s_1) \end{split}$$