✓ matthew@ml-evs.science †* ml-evs.science • ml-evs

Matthew Evans

energy storage materials · ab initio calculations crystal structure databases · open science & software

EDUCATION

2016– **PhD Physics**, Theory of Condensed Matter Group, University of Cambridge.

2015–2016 MPhil Scientific Computing, University of Cambridge, Pass with distinction.

2011–2015 MPhys Physics with Theoretical Physics, University of Manchester, First Class (Hons).

EXPERIENCE

2020- Researcher

with Prof Gian-Marco Rignanese (Universitè catholique de Louvain)

- Data management and analysis software for fundamental materials research.
- Machine learning for small materials datasets (MODNet).
- High-throughput workflows for computational materials science.

2016–2020 PhD student: Crystal structure prediction for next-generation energy storage

with Dr Andrew Morris (University of Cambridge/University of Birmingham)

- Computional materials discovery for conversion anodes for Li, Na and K-ion batteries
- Author of two open-source Python packages: database approaches for high-throughput calculations and materials design with matador and crystal structure prediction with ilustrado
- Contributed to the CASTEP and OptaDOS codes.
- Active member of the OPTIMADE consortium for materials database interoperability and author of the optimade-python-tools package and odbx implementation

2019 Visiting Researcher

Department of Applied Physics, Aalto University

Received HPC-Europa funding to visit the group of Prof Adam Foster for 7 weeks, with computational resources provided by the Finnish IT center for science (CSC).

2019 Scientific Software Developer (Intern)

Enthought Inc., Cambridge

Worked on the open source, Horizon 2020 FORCE project, with a focus on adding functionality to the workflow manager for multi-criteria optimisations. Helped develop Cython bindings for the ACADO toolkit.

2014, 2015 UG research: Interactions of quantised vortices in superfluid helium

with Dr Paul Walmsley & Prof Andrei Golov (University of Manchester)

2014–2015 MPhys project: Electronic structure of defects in graphene superlattices

with Prof Francisco Guinea (University of Manchester)

2013 UG research: Hard sphere packing of nanotube-encapsulated fullerenes

with Dr Ho-Kei Chan & Prof Elena Besley (University of Nottingham)

COMPUTING

Exposure: Daily, Intermittent, Occasional.

Languages Python, Fortran, Cython, C++ Databases MongoDB, SQL, Elasticsearch
Tools git, vim, Docker Practices Test-driven development, CI

(TEACHING + SERVICE)

- 2020- Co-chair of the Research Data Alliance (RDA) Interest Group "Materials Data, Infrastructure & Interoperability"
- 2018- Reviewed manuscripts for Scientific Reports, npj. Computational Materials
- 2016–2020 Active member of TCM sysadmin team, Cavendish Laboratory
- 2019-2021 Demonstrator: Part II Computational Physics, Cavendish Laboratory
 - Demonstrated scientific Python to beginners in weekly labs (2019 only).
 - Wrote and delivered a tutorial on the basics of version control with Git (2019-2021).
- 2016–2018 Supervisor: 2x Part IB Electromagnetism, Dynamics and Thermodynamics, Selwyn College
 - Small group teaching, providing detailed feedback on assigned problems.
- 2016–2019 Demonstrator: 3x Part IB Introduction to Computing (C++), Cavendish Laboratory
- 2016-2019 Demonstrator: 4x at annual CASTEP workshop, University of Oxford
 - 2017 Volunteer: 2nd Conference of Research Software Engineers, University of Manchester
- 2016–2017 Volunteer: Key Stage 2 Code Club, Ridgefield Primary School, Cambridge
- 2012–2015 Tutor: GCSE Maths & Key Stage 2 Programming for The Tutor Trust, Manchester
 - Provided tuition to small groups and 'looked after children' across 15 schools.
 - Helped lead a successful pilot to teach primary school children programming using Scratch.

(AWARDS + HONOURS)

- 2021 PI for "Interoperable data management for fundamental battery research", BIG-MAP External Stakeholder Initiative, total funding €150,000 (personal allocation €50,000).
- 2019 HPC-Europa 3 funding to visit Aalto University for 7 weeks and associated computing time.
- 2018 Tier-2 HPC Resource Allocation: PI on project awarded 2 MCPUh, *Crystal structure prediction for next-generation solar absorbers*, **M. L. Evans**, D. O. Scanlon and A. J. Morris.
 - HPC Midlands+ Substantial Project: awarded 1.3 MCPUh for *High-throughput materials discovery for energy applications*, **M. L. Evans** and A. J. Morris.
- 2017 Tier-2 HPC Resource Allocation: Co-investigator on project awarded 4 MCPUh, *Ab initio structure prediction for next-generation battery materials*, B. Karasulu, **M. L. Evans** and A. J. Morris.
- 2015 Tesella Prize for Software, University of Manchester, for the most effective use of software in a final year physics project.
- 2013, 2014 Undergraduate research bursary for two summers as an undergraduate, totalling £4200.
- 2011–2015 Means-tested and merit based scholarship to study at the University of Manchester, worth £12,000.

SELECTED PRESENTATIONS

- 2015– Presented posters and talks at over 20 conferences and workshops both nationally and internationally. Selected works can be found on my personal website.
- 2020 Invited talk: *The OPTIMADE Specification*, Research Data Alliance (RDA) 16th Virtual Plenary Meeting: Data Infrastructure for Collaborations in Materials Research

Last modified: June 3, 2021

- Invited talk and workshop demonstration: odbx & OPTIMADE and optimade-python-tools, CECAM Workshop, Open Databases Integration for Materials Design 2020
- 2019 Contributed talk: Phosphorus anodes for potassium-ion batteries: insights from crystal structure prediction, EMRS Spring 2019, Nice, France
 - Invited talk: matador & OPTIMADE, CECAM Workshop, Open Databases Integration for Materials Design 2019, EPFL, Switzerland
- 2018 Contributed talk: Sn-P anodes for potassium-ion batteries: insights from crystal structure prediction, SMARTER6 Conference, Ljubljana, Slovenia
 - Invited talk: matador: databases and crystal structure prediction (slides), CECAM Workshop, Open Databases Integration for Materials Design 2018, EPFL, Switzerland
- 2017 Invited talk: Crystal structure prediction for next-generation battery anodes (slides), Solid State Seminar Series, University of Cambridge
 - Poster Presentation: 13th RSC Conference in Materials Chemistry (poster), University of Liverpool
- 2016 Poster Presentation: SMARTER5 Conference, University of Bayreuth, Germany

PUBLICATIONS

Status: in preparation, preprint, published. Underline indicates (joint) first authorship or lead theory authorship.

- 11. **Evans, M. L.** & Andersen, C. W. optimade-python-tools. (in preparation), (2021).
- 10. Ellis, A. W., Evans, M. L., Groh, M., Morris, A. J. & Marbella, L. E. Phase transformations in tin phosphide anodes for K-ion batteries: A solid-state NMR and DFT study. (in preparation), (2021).
- 9. **Evans, M. L.** *et αl.* Phosphorus anodes for K-ion batteries: insights from *αb initio* structure prediction. (*in preparation*), (2021).
- 8. Andersen, C., Armiento, R., Blokhin, E., Conduit, G., Dwaraknath, S., <u>Evans, M. L.</u>, Fekete, A., Gopakumar, A., Grazulis, S., Merkys, A., Mohamed, F., Oses, C., Pizzi, G., Rignanese, G., Scheidgen, M., Talirz, L., Toher, C., Winston, D., *et al.* OPTIMADE: an API for exchanging materials data, (2021). arXiv:2103.02068.
- 7. De Breuck, P. and **Evans, M. L.** and Rignanese, G. Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet, (2021). arXiv:2102.02263.
- 6. **Evans, M. L.** & Morris, A. J. matador: a Python library for analysing, curating and performing high-throughput density-functional theory calculations. *Journal of Open Source Software*, (2020). DOI:10.21105/joss.02563.
- 5. Harper, A. F., **Evans, M. L.** & Morris, A. J. Phases of Copper Phosphides from Computational Structure Searches. *Chem. Mater.* **32**, (2020). DOI:10.1021/acs.chemmater.0c02054. arXiv:2005.05375.
- 4. Harper, A. F., **Evans, M. L.**, Darby, J. P., Karasulu, B., Koçer, C. P., Nelson, J. R. & Morris, A. J. *Ab initio* structure prediction methods for battery materials: A review of recent computational efforts to predict the atomic level structure and bonding in materials for rechargeable batteries. *Johnson Matthey Technology Review* **64**, 103–118, (2020). DOI:10/ggrmgf.
- 3. Mayo, M., Darby, J. P., Evans, M. L, Nelson, J. R. & Morris, A. J. Correction to Structure Prediction of Li–Sn and Li–Sb Intermetallics for Lithium-Ion Batteries Anodes. *Chem. Mater.* 30, (2018). DOI:10.1021/acs.chemmater.8b02803.
- Marbella, L. E., <u>Evans, M. L.</u>, Groh, M. F., Nelson, J., Griffith, K. J., Morris, A. J. & Grey, C. P. (De)Sodiation via Helical Phosphorus Intermediates in High Capacity Anodes for Sodium-ion Batteries. *J. Am. Chem. Soc.* 140, 7994–8004, (2018). DOI:10.1021/jacs.8b04183.
- 1. Zhu, T., **Evans, M. L.**, Brown, R. A., Walmsley, P. M. & Golov, A. I. Interactions between unidirectional quantized vortex rings. *Phys. Rev. Fluids* **1**, 044502, (2016). DOI:10.1103/PhysRevFluids.1.044502. arXiv:1603.04313.

REFEREES

Referees available on request.