(51)

Int. Cl.:

C 11 d, 1/00

BUNDESREPUBLIK DEUTSCHLAND

82

Deutsche Kl.: 23 e

(1) (1)	Offenlegu	ngsschrift 2029 598
②		Aktenzeichen: P 20 29 598.1
2		Anmeldetag: 16. Juni 1970
43		Offenlegungstag: 23. Dezember 1970
	Ausstellungspriorität:	_
30 .	Unionspriorität	·
8	Datum:	17. Juni 1969
89	Land:	Großbritannien
3	Aktenzeichen:	30640-69
6 9	Bezeichnung:	Wäßrige Reinigungsmittel
60	Zusatz zu:	
@	Ausscheidung aus:	. _
0	Anmelder:	La Citrique Belge, S. A., Tirlemont (Belgien)
	Vertreter:	van der Werth, DrIng. A.; Lederer, DiplChem. Dr. F.; Patentanwälte, 2000 Hamburg und 8000 München
®	Als Erfinder benannt:	Smeets, Dr. Adéla Alfred Joseph, Tirlemont (Belgien)

Patentanwälte
Dr. Ing. A. van der Werth
Dr. F. Lederer
21 Hamburg 90
Wilstorfer Straße 32

15. Juni 1970

Cas 36.65.06

LA CITRIQUE BELGE, S.A.
Tirlemont, Pastorijstraat, Belgien

Wässrige Reinigungsmittel

Prioritat: Britische Patentanmeldung Nr. 30640/69 vom 17. Juni 1969.

Die Erfindung bezieht sich auf wässrige Reinigungsmittel, welche, obwohl sie höhere Mengen an Natriumtripolyphosphat als die Sättigungskontzentration dieses Salzes in Wasser enthalten, die Form von im wesentlichen homogenen Lösungen besitzen. Diese Mittel sind für die Reinigung von Gegenständen mit nicht poröser Oberfläche und für das Waschen von Textilien verwendbar.

Das Natriumtripolyphosphat (abgekürzt TPP) ist zur Zeit das am meisten verwendete Alkaliphosphat in festen Reinigungsmitteln zur Verwendung im Haushalt und in der Industrie wegen seiner vielfachen Vorzüge: es sequestriert die schweren Kationen des Wassers und stellt daher einen wirksamen Wasserenthärter dar; es verstärkt die reinigende Wirkung von oberflächenaktiven anionischen und/oder nichtionischen Agentien, wie sie üblicherweise in Reinigungsmitteln benutzt werden; es trägt in hohem Grade zur Entfernung von Schmutz von den zu reinigenden Gegenständen bei und erleichtert das Ver-

bleiben des Schmutzes in Suspension in der Waschflotte; es ist wenig korrodierend gegenüber den Metallen und/oder metallischen Legierungen, welche für den Bau von Waschmaschinen, Waschgefäßen und dergleichen benutzt werden. Zu diesen vielen Vorzügen des TPP kommt außerdem sein wirtschaftlicher Einstandspreis hinzu, was erklärt, daß es praktischalle anderen Alkalipolyphosphate verdrängen konnte, wie beispielsweise das Natriumpyrophosphat und Natriumhexametaphosphat.

Das TPP hat eine verhältnismäßig geringe Löslichkeit in Wasser, seine Sättigungskonzentration in Wasser bei gewöhnlicher Temperatur ist ungefähr 164 g/l, d.i. ungefähr 14 Gew.%. Diese geringe Löslichkeit ist nicht ein Übelstand für die festen Reinigungsmittel wie Pulver, Körner, Kügelchen und dergleichen. Dagegen stellt sie ein praktisch unüberwindbares Hindernis für die Herstellung homogener flüssiger Reinigungsmittel dar, weil diese normalerweise ungefähr 18 -40 Gew. % daran enthalten sollten, wie dies meist der Fall für die handelsüblichen festen Reinigungsmittel ist. Tatsächlich kann die Menge an TPP, welche in flüssige Reinigungsmittel eingeführt werden kann, nur erheblich weniger als die 14 Gew. % der Theorie sein (welche die Sättigungskonzentration an TPP darstellen) wegen insbesondere der Anwesenheit der Tenside. Es ist wohlbekannt, daß die Tenside und das TPP sich gegenseitig in ihren Löslichkeiten beeinflussen. Je größer die Konzentration an den Tensiden ist, umso weniger kann sich an TPP in den flüssigen Mitteln und umgekehrt auflösen. Ein anderes ebenso kritisches Problem wie die Löslichkeit des TPP ist dasjenige seines Widerstands gegen Hydrolyse. Es ist bekannt, daß in Gegenwart von Wasser das TPP hydrolysiert gemäß der Gleichung

TPP Natriumpyrophosphat + Natriumorthophosphato

Diese Hydrolyse vernichtet einen wichtigen Teil der vorteilhaften Eigenschaften des TPP.

Nun besteht aber eine zunehmende Neigung, die festen Reinigungsmittel durch flüssige wässrige Reinigungsmittel zu ersetzen. Die Überlegenheit dieser letzteren liegt offen zu Tage:

- (a) Sie sind homogen, während die festen Reinigungsmittel dies wegen der verschiedenen Korngrößen und spezifischen Gewichte ihrer Bestandteile nur selten sind;
- (b) Die flüssigen Reinigungsmittel sind viel leichter in abgemessenen Mengen als die festen Mittel in automatische Waschmaschinen einzusetzen (kein Verstopfen, kein Verkleben, kein Stäuben);
- (c) Sie eignen sich besser für eine örtliche Anwendung auf dem zu reinigenden Gegenstand.

Die bisherigen flüssigen Reinigungsmittel enthalten als Phosphate praktisch nur Kaliumphosphate (Pyrophosphat, Tripolyphosphat), weil diese viel löslicher als die entsprechenden Natriumphosphate sind (siehe O. Pfrengle und C. Petruck, Fette, Seifen, Anstrichmittel, 64, 1962, S. 321-326). Man kann auf diese Weise Konzentrationen an Phosphaten einbringen, welche praktisch von der gleichen Größenordnung sind, wie in den üblichen festen Reinigungsmitteln. Aber das Kaliumpyrophosphat und -tripolyphosphat sind viel Kostspieliger als die entsprechenden Natriumsalze. Es würde daher interessant sein, flüssige Reinigungsmittel zu schaffen, in welchen das überwiegende Phosphat das Natriumtripolyphosphat wäre. Auf die Lösung dieses Problems bezieht sich die Erfindung.

Es wurde überraschenderweise gefunden, daß es möglich ist, wässrige Reinigungsmittel herzustellen, welche beträchtlich höhere Mengen an Natriumtripolyphosphat enthalten als die Grenzkonzentration der Löslichkeit dieses Salzes in Wasser bei normalen Bedingungen, d.i. eine Konzentration an Natriumtripolyphosphat von über 14 Gew.%, welche sogar 35 Gew.% erreichen kann. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man zusätzlich zu dem Natriumtripolyphosphat eine geeignete Menge an anorganischen oder organischen Salzen des Kaliums und/oder Ammoniums, gegebenenfalls in geeigneter Weise ausgewählte Tenside, ferner gegebenenfalls

Hydrotrope, organische Sequestranten, Perverbindungen und andere übliche Zusätze zu festen und/oder flüssigen Reinigungsmitteln einführt, wobei der Rest aus Wasser besteht.

Die Erfindung hat daher zum Gegenstand flüssige homogene Reinigungsmittel, welche gewichtsmäßig enthalten:

- (a) 14 35 Gew. Natriumtripolyphosphat,
- (b) 0,1 50 Gew.% mindestens eines Salzes von Kalium und/oder Ammonium mit einer anorganischen oder organischen Säure,
- (c) 0 35 Gew.% mindestens eines Estersalzes einer Sulfopolycarbonsäure,
- (d) 0 20 Gew.% mindestens eines anionischen Tensids,
- (e) 0 15 Gew.% mindestens eines nichtionischen Tensids,
- (f) 0 20 Gew.% mindestens eines Hydrotrops,
- (g) 0 20 Gew. mindestens organischen Sequestranten,
- (h) 0 20 Gew. # mindestens einer Perverbindung,
- (i) 0 5 Gew.% insgesamt an Farbstoff, Parfum, Verdicker, optischer Aufheller, Korrosionsinhibitor, das Anlaufen verhindernde Substanz,
- (j) Wasser zum Auffüllen auf 100 %.
- (a) Das in den wässrigen erfindungsgemäßen Mitteln angewendete Natriumtripolyphosphat, Na₅P₃O₁₀, kann sich in jeder kristallografischen Form und in jeder Hydratationsstufe von der wasserfreien Verbindung Na₅P₃O₁₀ bis zur Hexahydratverbindung Na₅P₃O₁₀·6H₂O, befinden. Es wird in den erfindungsgemäßen Mitteln in einer Konzentration von 14 35 Gew.%, vorzugsweise von 18 ungefähr 28 Gew.%, benutzt, je nach der Verwendung, für welche die Mittel bestimmt sind und auch unter Berücksichtigung der Konzentrationen der anderen Bestandteile des jeweiligen Mittels.
- (b) Das Kalium- und/oder Ammoniumsalz, welches benutzt wird, um die Löslichkeit des TPP in den erfindungsgemäßen wässrigen Reinigungsmitteln zu vergrößern, kann das Salz einer beliebigen anorganischen oder organischen Säure sein, beispielsweise ein Sulfat, Chlorid, Nitrat, Carbonat, Bicarbonat, Borat, Orthophosphat, Methaphosphat, Pyrophosphat,

Maleat, Adipat, Aconitat, Citrat, Tartrat, Athylendiamintetraacetat, Nitriltriacetat, Diathylentriaminpentaacetat, Succinat usw. Während die organischen und anorganischen Natriumsalze die Löslichkeit von TPP in Wasser verringern, erhöhen die organischen und anorganischen Salze des Kaliums und/oder Ammoniums, welche erfindungsgemäß benutzt werden, diese Löslichkeit, wie es noch im folgenden gezeigt wird. Jedoch kann die Art des organischen oder anorganischen Anions des zu den Mitteln zugesetzten Kalium- und/oder Ammoniumsalzes die Löslichkeit des TPP beträchtlich beeinflussen. Beispielsweise ist Kaliumsulfat wirksamer als Kaliumchlorid. Kaliumcarbonat ist wirksamer als Kaliumbicarbonat, usw. Gegebenenfalls kann der Gehalt an Kalium- und/oder Ammoniumsalz nur 0,1 Gew.% des gesamten flüssigen Reinigungsmittels betragen und kann 50 Gew.% erreichen. Jedoch hat man aus offenbaren wirtschaftlichen Gründen kein Interesse daran, den Gehalt an Kaliumsalz zu übertreiben, und daher ist der bevorzugte Gehalt an Kaliumsalz 1 - 10 Gew.% des gesamten Mittels. Das Kaliumpyrophosphat nimmt unter den Kaliumsalzen eine bevorzugte Stellung ein. Es ist nicht nur ein Sequestrant, welcher die Löslichkeit des TPP in Wasser verbessert, sondern es wurde auch gefunden, daß es auch in wirksamer Weise das Tripolyphosphat gegen Hydrolyse in wässriger Lösung zu Natriumpyrophosphat und Natriumorthophosphat, wie ebenfalls noch gezeigt wird, stabilisiert. Es ist daher besonders interessant, das Kaliumpyrophosphat in die erfindungsgemäßen flüssigen Reinigungsmittel einzusetzen. Sein Gehalt wird jedoch nicht so groß sein können, um durch eine Reaktion doppelten Austauschs mit dem TPP Natriumpyrophosphat zu bilden, welches, wie bekannt, eine sehr geringe Löslichkeit in Wasser besitzt und sich daher in der Form eines Niederschlags ausscheiden könnte. Es hat sich auch gezeigt, daß die optimale Menge an Kaliumpyrophosphat, welche in die erfindungsgemäßen flüssigen Mittel einzusetzen ist, ungefähr 5 - 25 % der in den Mitteln vorhandenen Menge an TPP ausmachen soll.

(c) Die Tenside vom Typ Estersalz einer Sulfopolycarbonsaure

deren Verwendung gemäß der Erfindung in Betracht gezogen wird, besitzen überlegene Eigenschaften über die anionischen und nichtionischen Tenside hinsichtlich der Erzeugung von flüssigen wässrigen reinigenden Lösungen, weil 1. sie ebenso wirksam sind wie diese, jedoch bei viel niedrigeren Konzentrationen, 2. sie eine bessere Löslichkeit in Wasser besitzen, 3. sie eine viel größere Widerstandsfähigkeit gegen Aussalzen durch die Elektrolyte besitzen und 4. sie hydrotrope Eigenschaften aufweisen, was noch in den folgenden Beispielen gezeigt wird.

Beispiele von Estersalzen von Sulfopolycarbonsäuren sind die Kaliumsalze von sulfonierten Derivaten einer oder mehrerer alpha-Di- oder Tricarbonsäuren, beta-ungesättigt verestert mit der Hydroxylgruppe eines oder mehrerer nichtionischer Tenside, wie beschrieben in der deutschen Patentanmeldung P 1 803 881.8 der Anmelderin, oder auch die Kaliumsalze von Sulfopolycarbonsäuren, teilweise verestert durch die Hydro-xylgruppe eines oder mehrerer nichtionischer Tenside, wie beschrieben in der deutschen Patentanmeldung P 1 768 842.5 der Anmelderin, oder auch die Kaliumsalze von Sulfopolycarbonsäuren, verestert mit der Hydroxylgruppe eines nichtionischen Tensids, wie beschrieben in der deutschen Patentanmeldung P 1 962 510.6 der Anmelderin. Anstelle der Kaliumsalze kann man gegebenenfalls auch Dinatrium oder organische Aminsalze, Beispielsweise von Triäthanolamin, verwenden.

Spezifische Beispiele für diese Verbindungen sind: für die Verbindungen Nr. 1 - Nr. 6 einschließlich ist die Ausgangssäure die ungesättigte Polycarbonsäure, erhalten

Ausgangssäure die ungesättigte Polycarbonsäure, erhalten durch Pyrolyse von Calciumcitrat gemäß dem Verfahren der deutschen Patentschrift 1 768842.5 der Anmelderin.

Verbindung Nr. 1 (abgekürzt ASP 1) wird erhalten, indem man das Pyrolyseprodukt von Calciumcitrat sich mit Schwefeldioxyd umsetzen läßt, um eine SO3H Gruppe an der Doppelbindung zu fixieren, und so nach der Ansäuerung eine Sulfopolycarbonsäure erhält. Man verestert 1/4 der COOH Gruppen dieser Säure mit einem nichtionischen Tensid, erhalten durch Äthozylierung eines linearen C12-C14 Alkohols mit 6 Mol Athylens

oxyd (A.O.). Die restlichen 3/4 der COOH-Gruppen und die SO₃H Gruppe werden dann mit Kaliumhydroxyd neutralisiert (siehe deutsche Patentanmeldungen P 1 962 510.6 und P 1 768 842.5).

<u>Die Verbindung Nr. 2</u> (ASP 2) ist die gleiche wie ASP 1, abgesehen davon, daß das nichtionische Agens ein C₁₂-C₁₄ Alkohol äthoxyliert mit 3 Mol Ä.O. ist.

Die Verbindung Nr. 3 (ASP 3) ist die gleiche wie ASP 1, abgesehen davon, daß das nichtionische Agens ein mit 6 Mol Ä.O. äthoxyliertes Nonylphenol ist.

Die Verbindung Nr. 4 (ASP 4) ist die gleiche wie ASP 1, abgesehen davon, daß das nichtionische Agens ein mit 7 Mol Ä.O. äthoxylierter skundärer $C_{11}-C_{15}$ Alkohol ist.

Die Verbindung Nr. 5 (ASP 5) ist gleich ASP 4, aber es wurde mit Natriumhydroxyd neutralisiert.

Die Verbindung Nr. 6 (ASP 6) ist die gleiche wie ASP 1, aber das nichtionische Agens ist ein mit 9 Mol Ä.O. äthoxylierter C₁₆-C₁₈ Alkohol.

Die Verbindung Nr. 7 (ASP 7) ist das sulfonierte Produkt der Aconitinsaure, d.i. die Sulfotricarbonsaure, von der eine Carboxylgruppe verestert wurde mit einem nichtionischen Agens, erhalten durch Äthoxylierung des Nonylphenols mit 8,5 Mol Ä.O. und die zwei anderen COOH Gruppen und die SO₃H Gruppe mit Kaliumhydroxyd neutralisiert wurden (siehe deutsche Patentanmeldung P 1 803 881.8).

Die Verbindung Nr. 8 (ASP 8) ist das sulfonierte Produkt der Maleinsäure, d.i. die Sulfobernsteinsäure, deren eine Carboxylgruppe mit einem nichtionischen Agens, erhalten durch Äthoxylierung eines linearen C₁₂-C₁₄ Alkohols mit 6 Mol Ä.O., verestert wurde, und die andere Carboxylgruppe und die SO₃H Gruppe mit Kaliumhydroxyd neutralisiert wurden (siehe deutsche Patentanmeldung P 1 803 881.8).

Die Sulfopolycarbonsäuren, deren Vertreter die eben erwähnten Verbindungen Nr. 1 - Nr. 8 sind, können in den erfindungsgemäßen flüssigen Reinigungsmitteln angewendet werden in

JAGUST L

Mengen von 0 - 35 Gew. % des gesamten Mittels, vorzugsweise in Mengen von 1 - 20 Gew. %.

- (d) Das in den erfindungsgemäßen flüssigen Reinigungsmitteln benutzte anionische Tensid wird insbesonders aus der Gruppe der Seifen und der organischen synthetischen Sulfonate und Sulfate ausgewählt. Die vorzugsweise benutzten Seifen sind Kaliumseifen von Fettsäuren mit C_{10}^{-C} 22, wie beispielsweise Cocosöl- oder Talgfettsäuren. Die organischen synthetischen Sulfonate und Sulfate werden vorzugsweise aus den folgenden Gruppen ausgewählt:
- 1) Sulfonate von Olefinen mit 8 25 Kohlenstoffatomen, beispielsweise Natrium- oder Kaliumdodecylsulfonat,
- 2) Alkylbenzolsulfonate, enthaltend 10 16 Kohlenstoffatome
- in der Alkylgruppe, deren Kette gerade oder verzweigt sein kann, wie beispielsweise die Kaliumsalze der Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl- oder Hexadecylbenzolsulfonsäure,
- 3) sekundäre Alkylsulfate des Typs TEEPOL (Warenzeichen),
- 4) sulfatierte primäre aliphatische Alkohole mit 8 18 Kohlenstoffatomen, wie Kaliumlauryl- oder -Hexadecylsulfat,
- 5) Kaliumalkyl- oder -alkylarylpolyoxyalkylensulfate, worin die Alkylgruppe 8 18 Kohlenstoffatome enthält, und die Alkylarylgruppe aus einer Alkylgruppe mit C₈-C₁₂ und einer Arylgruppe, vorzugsweise einer Phenylgruppe, besteht, und worin die Polyoxyalkylengruppe vorzugsweise eine Polyoxyätylengruppe mit einem Gehalt von 1 4 Mol Ä.O. ist.

Das anionische Tensid von der oben genannten Art wird in den erfindungsgemäßen flüssigen Reinigungsmitteln in einer Menge von 0 - 20 Gew.%, vorzugsweise 1 - 15 Gew.%, des gesamten Mittels angewendet.

- (e) Das in den erfindungsgemäßen flüssigen Reinigungsmitteln verwendete nichtionische Tensid wird vorzugsweise aus der folgenden Gruppe ausgewählt:
- 1) Äthoxylierte Alkylphenole, enthaltend 6 12 Kohlenstoff-

atome in der Alkylkette und 3 - 25 Mol A.O. pro Mol Alkyl-phenol,

- 2) äthoxylierte primäre oder sekundäre Alkohole, abgeleitet aus natürlichen oder synthetischen Alkoholen mit C_8-C_{22} und mit einem Gehalt von 1 50 Mol Ä.O. pro Mol Alkohol,
- 3) äthoxylierte Alkanolamide und Alkylamide, z.B. das äthoxylierte Diäthanolamid von Cocosolfettsäure,
- 4) Mischpolymeren zwischen verschiedenen Alkylenoxyden, welche im Handel unter der Bezeichnung PLURONICS bekannt sind, und Polymeren, wie z.B. Polyäthylenglykol und Polypropylenglykol,
- 5) Ester von Polyhydroxylverbindungen, z.B. Sucrosestearat, Sucroselaurat, usw.
- 6) tertiäre Aminoxyde, tertiäre Phosphinoxyde, z.B. Dimethyl-dodecylaminoxyd, N-dodecylmorpholinoxyd, Dodecyldimethyl-phosphinoxyd und dergleichen.

Das nichtionische Tensid, für welches eben Beispiele gegeben wurden, tritt in die erfindungsgemäßen Verbindungen in Mengen von 0 - 15 Gew.%, vorzugsweise 1 - 10 Gew.%, des gesamten Mittels ein.

Wie noch in Beispiel 2 gezeigt wird, besitzen die unter Punkt (d) erwähnten anionischen Agentien ebenso wie die nichtionischen Agentien unter Punkt (e) einen viel weniger guten Widerstand gegen das Aussalzen durch Elektrolyte als die Agentien vom Typ Ester einer Sulfopolycarbonsäure, wie unter Punkt (c) erwähnt. Daher benutzt man die Mindestmenge, welche das gesuchte Reinigungsvermögen bedingt, ohne eine Aussalzung der erfindungsgemäßen flüssigen Reinigungsmittel hervorzurufen. Wenn man größere Mengen davon zu gebrauchen wünscht, d.h. Mengen nahe der oberen Grenze des oben angegebenen Konzentrationsbereichs, muß man sich mit der Benutzung eines Hydrotrops oder einer Mischung des hydrotropen Agens mit einer Sulfopolycarbonsäure des oben unter (c) erwähnten Tpys behelfen.

(f) Das hydrotrope Agens ist eine organische Verbindung,

welche die Löslichkeit in Wasser wenig löslicher Substanzen verbessert. Bekannte Beispiele dieser Agentien sind Xylolsulfonsäure, p-Toluolsulfonsäure, p-Cumolsulfonsäure und dergleichen, verwendet vorzugsweise in der Form ihrer Kaliumsalze. Jedoch, wie noch besonders in Beispiel 3 gezeft wird, kann das hydrotrope Agens besonders durch ein Kaliumsalz des Esters der Sulfocarbonsäure, beschrieben unter Punkt (c), ersetzt werden. Dieser Teilersatz ist vorteilhaft, weil der Ester der Sulfopolycarbonsäure ausgezeichnetes Reinigungsvermögen besitzt, während das hydrotrope Agens solche Eigenschaften nicht hat und daher einen inaktiven Ballast in den erfindungsgemäßen flüssigen Reinigungsmitteln darstellt.

Das Hydrotrope Agens wird in einer Menge von 0 - 20 Gew.%, und vorzugsweise von 1 - 12 Gew.%, des gesamten flüssigen Reinigungsmittels angewendet.

- (h) Gegebenenfalls in den erfindungsgemäßen Mitteln angewendete Perverbindungs ist eine wasserlösliche Perverbindung, z.B. Wasserstoffperoxyd, ein Perborat, Percarbonat, Persulfat, vorzugsweise des Kaliums. Die an dieser Perverbindung zugesetzte Menge kann 0 20 Gew.%, vorzugsweise 1 5 Gew.%, des gesamten Mittels betragen.
- (1) Die erfindungsgemäßen Mittel können auch die üblicherweise in flüssigen oder festen Reinigungsmitteln verwendeten Hilfsstoffe enthalten. Diese Zusätze sind beispielsweise Farbstoffe, Parfüme, Verdicker, z.B. Carboxymethylcellulose,

Polyvinylpyrrolidon, Polyvinylalkohol und dergleichen, die Korrosion oderdas Anlaufen verhindernde Substanzen, optische Aufheller usw. Die Menge an allen diesen Zusätzen zusammen kann 0 - 5 Gew.%, vorzugsweise 1 - 4 Gew.%, des gesamten Mittels ausmachen.

(j) Die erfindungsgemäßen Mittel enthalten mindestens die notwendige Wassermenge, um ein flüssiges Reinigungsmittel zu ergeben.

Aus dem vorhergehenden sieht man, daß die flüssigen erfindungsgemäßen Reinigungsmittel sehr mannigfaltige Ansätze haben konnen, je nachdem man einen oder mehrere der verschiedenen oben erwähnten Bestandteile hinzugibt. Ihr gemeinsames Merkmal besteht darin, daß sie immer eine höhere Menge an TPP als 164 g/l (oder 14 Gew.%) enthalten, was bisher noch nicht verwirklicht werden konnte in flüssigen Reinigungsmitteln, und daß sie immer ein Kalium- oder Ammoniumsalz einer organischen oder anorganischen Säure in ausreichender Menge enthalten, um die Löslichkeit des TPP in Wasser zu gewährleisten. Die anderen Bestandteile der erfindungsgemäßen Mittel sind fakultative und werden nach Art und Menge als Funktion der vorgesehenen praktischen Anwendung ausgewählt. Um die erfindungsgemäßen Mittel herzustellen, kann man das nachfolgende Verfahren anwenden, welches nur beispielsweise zur Erläuterung und nicht zur Beschränkung gegeben wird. Man gibt in einen Behälter etwa 50 - 60 % der vorgesehenen Wassermenge, fügt dann unter gutem Rühren die Tenside vom Typ (c), (d) und/oder (e), den Farbstoff, das Parfüm, den Verdicker, den Korrosionsinhibitor, die das Anlaufen verhindernde Substanz hinzu. Dann gibt man das hydrotrope Agens und den optischen Aufheller hinzu und setzt das Rühren bis zum Erhalten einer homogenen Lösung fort. Man führt dann, immer unter Rühren, die Kaliumsalze und dann Wasser bis zum Erreichen von etwa 85% der gesamten vorgesehenen Menge ein. Unter starkem Rühren gibt man dann das TPP hinzu, und nachdem es aufgelöst ist, filtriert man die Lösung. Man gibt dann die Perverbindung hinzu, stellt das pH auf etwa 7 - etwa 9

ein, und zwar durch Zusatz von entweder Schwefelsäure oder Kaliumhydroxyd, und fügt dann die restliche Wassermenge hinzu.

Unter den für die erfindungsgemäßen Mittel in Betracht kommenden Anwendungsgebieten werden insbesondere genannt das Enthärten von Wasser, die Reinigung von Gegenständen von nicht poröser Oberfläche, z.B. Glas, Porzellan, Email, Holz, Metall und mit Kunststoffen überzogene Oberflächen, z.B. Karrosserien und dergleichen, ebenso das Waschen der verschiedensten TEXXXXXX natürlichen oder synthetischen Textilien, sowohl Feinwäsche wie Grobwäsche.

Die folgenden Beispiele dienen zur Erläuterung der erfindungsgemäßen flüssigen Mittel, aber nicht zu ihrer Beschränkung.

Beispiel 1

Wirkung von Kaliumsalzen auf die Löslichkeit von TPP in Wasser.

Man stellt Lösungen her, welche steigende Mengen des löslichmachenden Salzes enthalten (Kalium- oder Ammoniumsalz). Zu
100 ml jeder dieser Lösungen setzt man unter starkem Rühren
Natriumtripolyphosphat in einer solchen Menge hinzu, daß ein
Teil davon sich nicht auflöst. Man rührt die so erhaltene
Suspension während einer Stunde mittels eines magnetischen
Rührwerks. Dann läßt man sie über Nacht bei gewöhnlicher
Temperatur stehen. Man filtriert darauf und bestimmt die
Menge an Natriumtripolyphosphat in Lösung unter Zuhilfenahme
folgender analytischer Methoden:

- a) Bestimmung des gelösten Natriums durch Flammenphotometrie,
- b) kolormetrische Bestimmung des Phosphations mittels Ammoniummolybdat und Ammoniummonovanadat unter Verwendung eines Spektrophotometers.

Die anderen Substanzen werden durch die üblichen Verfahren der chemischen Analyse bestimmt.

Das benutzte Natriumtripolyphosphat hat die Hexahydratform, weil die anhydrische Form Veranlassung zur Bildung übersättigter Lösungen gibt, welche in der Folge kristallisieren.

In allen folgenden Beispielen sind die Gehalte ausgedrückt in g/l. Für das TPP sind die Mengen ausgedrückt in g/l der anhydrischen Form.

Einfluß von NaCl und KCl

	NaCl	Na ₅ P ₃ O ₁₀	KOl		Na ₅ P ₃ O ₁₀
	0	163	0		163
	50	86	35		194
.•	101	46	74	·	202
	201	34	195		185

Einfluß von Na₂SO₄, K₂SO₄ und (NH. 4)₂SO₄.

Na ₂ SO ₄	Na5P3010	K ₂ SO ₄	Na5P3010	(NH ₄) ₂ SO ₄	Na ₅ P ₃ O ₁₀
0	163	0	163	0	163
42	152	8,7	174	19	205
82	138	17	193	41	238
145	112	33	205	74	271
		51	227	213	289
		68	247	340	219
• •		88	252		· :

Einfluß von Na₂CO₃, KHCO₃ und K₂CO₃.

Na ₂ CO ₃	Na ₅ P ₃ O ₁₀	KHCO3	Na ₅ P ₃ O ₁₀	K ₂ CO ₃	Na ₅ P ₃ O ₁₀
0	164	0	164	0	164
54	111	45	212	44	230
105	80	92	235	222	301
264	41	230	270	435	288

Einfluß von KBO2 und KBO2.H2O2.

KBO ₂	Na ₅ P ₃ O ₁₀	кво _{2•} н ₂ о ₂	Na ₅ P ₃ O ₁₀
0	164	0	164
1.5	198	22	230

•		- 14 -	
KB02	Na ₅ P ₃ 010	KB02•H202	Na ₅ P ₃ O ₁₀
39	223	52	285
76 .	259	100	336
191	291		

Einfluß von Natriumcitrat 2H20 und Kaliumcitrat 1H20.

2029598

Citr.Na ₃	Na ₅ P ₃ O ₁₀	Citr.K3	Na ₅ P ₃ O ₁₀
o	164	0 .	164
65	130	17	185
114	102	45	220
262	54	. 87	240
543	22	. 218	264
	• •		

Einfluß von Kaliumaconitat und -maleat.

Aconitat K ₃	Na ₅ P ₃ O ₁₀	Maleat K ₂	Na ₅ P ₃ O ₁₀
0	164	. 0	164
40	207	39	193
83	224	79 ·	215
207	245	201	221
412	231		

Einfluß WKK der Kaliumsalze von E.D.T.A. (+) und N.T.A. (++)

E.D.T.A. K4	Na ₅ P ₃ O ₁₀	N.T.A. K	Na ₅ P ₃ O ₁₀
O	164	. О	164
25	176	25	174
70	182	70	185
140	188	140	187
270	179		

(+) E.D.T.A. : Äthylendiamintetraessigsäure

(++) N.T.A. : Nitrilotriessigsäure.

Die vorsbehenden Tabellenzeigen, daß unabänderlich die Natriumsalze die Löslichkeit des Natriumtripolyphosphats er-

niedrigen, und daß die Kalium- und Ammoniumsalze sie steigern. Man sieht gleichfalls, daß gewisse der erfindungsgemäß benutzten Salze das Kaliumtripolyphosphat weit in seiner löstlichmachenden Wirkung auf das TPP übertreffen.

Beispiel 2

Widerstand gegen das Aussalzen der Tenside durch die Elektrolyte.

Die Methode zur Bestimmung des Widerstands gegen das Aussalzen ist folgende:

Für jedes untersuchte Tensid bereitet man drei wässrige Lösungen zu, die 1%, 5% und 10 Gew.% des aktiven Stoffs enthalten. Man bereitet ferner eine wässrige Lösung vor, welche 900 g/l an Kaliumcitratmonohydrat enthält, und man benutzt sie, um die drei Lösungen des aktiven Materials zu titrieren. Man vermerkt die Menge an Citrat, welche man zu jeder dieser Lösungen hinzusetzen muß, damit sich eine Trübung bildet (Phasentrennung). Auf einer Kurve trägt man die drei Mengen an Citrat entsprechend den drei Konzentrationen an aktivem Material auf. Man erhält so eine Gerade, welche man extrapoliert, um die fiktive Konzentration an Citrat entsprechend 0% an aktivem Material kennen zu lernen, um zwischen ihnen die Widerstandsfähigkeiten gegen Aussalzen durch die Elektrolyte der verschiedenen untersuchten aktiven Materialien vergleichen zu können.

Die erhaltenen Ergebnisse sind in der nachstehenden Tabelle wiedergegeben:

Tensid	Widerstand gegen Aussalzen: Kon- zentration in g/l an anhydrischem Kaliumcitrat extrapoliert bei 0% an aktivem Material
ASP 1	555
ASP 2 Kaliumsalze	620
ASP 3 von Estern von	330
ASP 4 Sulfopolycarbon-	482
ASP 5 . säuren	425
ASP 7 (ASP 5 = Natriums	alz) 292
ASP 8	316
Lineares Kaliumalkylbenzol	sulfonat zu wenig löslich
Lauryläthersulfat mit 3,5	Mol Ä.O. 180
C ₁₂ -C ₁₄ Alkohol	
äthoxyliert mit 6 Mol Ä.O.	70
Nonylphenol	
äthoxyliert mit 8,5 Mol Ä.	0. 25
sekundärer C ₁₁ -C ₁₅ Alkohol	
mit 7 Mol A.O.	50

Die Tabelle zeigt, daß die Estersalze von Sulfopolycarbonsäuren der Klasse (c), wie sie vorzugsweise als Tenside verwendet werden, eine Widerstandsfähigkeit gegen das Aussalzen durch Elektrolyte haben, die deutlich höher ist als diejenige der anionischen und nichtionischen Tenside der Klassen (d) und (e).

Diese Ergebnisse werden durch die folgende Erfahrung bestärtigt, in welcher die maximale Menge (in g/l) des zu untersuchenden aktiven Agens bestimmt wird, welches man in eine wässrige Reinigungsmittellösung einführen, welche 200 g/l TPF 20 g/l Kaliumpyrophosphat und 20 g/l Kaliumsulfat enthält, ohne daß sich eine Phasentrennung bildet (siehe folgende Tabelle).

- 17 -	2029598
ASP 2 Kaliumsalze von Estern von	220 g/l
ASP 3 > Sulfopolycarbonsäuren	200 g/l
ASP 5 (ASP 5 = Natriumsalz)	220 g/l
lineares Kaliumalkyl(C ₁₀ -C ₁₃)-benzolsulfonat	<30 g/l
Lauryläthersulfat mit 3,5 Mol A.O.	< 80 g/1
Kaliumalky1(C ₁₂ -C ₁₄)-sulfat	< 20 g/l
C ₁₂ -C ₁₄ Alkohol äthoxyliert mit 6 Mol A.O.	<20 g/l
Nonylphenol äthoxyliert mit 8,5 Mol Ä.O.	<20 g/l

Beispiel 3

Hydrotropes Vermögen der Estersalze von Sulfopolycarbonsäuren.

In Beispiel 2 wurde gezeigt, daß die üblichen anionischen und nichtionischen Tenside die Neigung haben, durch Elektro-lyte bei verhältnismäßig niedrigen Konzentrationen an den Tensiden ausgesalzen zu werden. Um diese Neigung zu bekämpfen, muß man zu den Reinigungsmitteln ein hydrotropes Agens hinzusetzen.

In den vorliegenden Beispielen verwendet man ein flüssiges Reinigungsmittel, welches ein Kaliumsalz eines Esters einer Sulfopolycarbonsäure (ASP 1), ein im Handel bekanntes nicht-ionisches Agens, das Tergitol 15S3, welches das Kondensationsprodukt eines sekundären C₁₁-C₁₅ Alkohols mit 3 Mol Ä.O. ist, ferner TPP, Kaliumpyrophosphat und Kaliumxylolsulfonat (P.X.S.), enthält, welch letzteres das hydrotrope Agens darstellt.

In der folgenden Tabelle I wird gezeigt, daß, um ein Trennen der Reinigungsmittellösung in zwei Phasen zu verhindern, man die Konzentration an P.X.S. erhöhen muß, wenn die Konzentration an Tergitol 1583 erhöht wird.

In Tabelle II wird gezeigt, daß der Gehalt an P.X.S. verringert werden kann unter der Bedingung, daß parallel dazu der Gehalt an ASP 1 erhöht wird, was die hydrotrope Aktivität dieser Verbindung beweist.

In den zwei folgenden Tabellen bedeuten die Zahlenwerte g/l.

Tabelle I

Versuch Nr.	ASP 1	Tergitol 1583	TPP	Kalium- pyrophosphat	P.X.S.
1	80	0	180	'20	0
2	80	10	180	30	5 .
3	80	20	180	20	20
· 4	80	30	180	20	50
5	80	40	180	. 20	60

Tabelle II

Versuch Nr.	ASP 1	Tergitol 1583	TPP	Kalium- pyrophosphat	P.X.S.
1 2	0 20 .	40 40	180 180	20 20	108 .82
3	40	40	180	20	. 72
4	60	40	180	20	70
· 5	80	40	180	20	60

Beispiel 4

Inhibierende Wirkung des Kaliumpyrophosphat auf die Hydrolyse von TPP.

Die wässrigen Lösungen von Natriumtripolyphosphat entwickeln sich rasch durch Hydrolyse zu einem Gleichgewicht, welches ungefähr 2% Natriumorthophosphat und ungefähr 15% Natriumpyrophosphat, bezogen auf die Gesamtkonzentration an Phosphaten (s. CHABEREK & MARTELL, "Organic Sequestring Agens", New York, John Wiley Inc. S. 304), umfaßt.

Um die inhibierende Wirkung des Pyrophosphats auf die Hydrolyse von TPP zu zeigen, wurde folgende Reinigungsmittellösung zubereitet:

100 g/l ASP 4

- 10 g/l Tergitol 1583 (sekundärer C₁₅ Alkohol äthoxyliert mit 7 Mol Ã.O.)
- 4 g/l Kaliumdiäthylentriaminpentaacetat (Versenex 80, Handelsname)
- 200 g/l TPP enthaltend 2,5% Natriumpyrophosphat und 1% Na-

triumorthophosphat

- 20 g/l Kaliumpyrophosphat
- 50 g/l Kaliumxylolsulfonat
- 20 g/l Kaliumsulfat (pH = 8,62).

Man bewahrt dieses Mittel bei 25°C auf und bestimmt in verschiedenen Zeitabständen die Gehalte (in Gew.%) an Tripolyphosphat, Pyrophosphat und Orthophosphat des Mittels. Die Resultate sind in der folgenden Tabelle wiedergegeben:

Zeit	Orthophosphat	Pyrophosphat	Tripolyphosphat
Nach O Tagen	0,9	11,4	87,7
nach 11 Tagen	1,0	11,3	87,7
nach 20 Tagen	0,9	11,4	87,7
nach 27 Tagen	1,0	11,8	87,2
nach 57 Tagen	1,2	12,7	86,1

Man sieht, daß der Gehalt an TPP von 87,7 % auf 86,1 % nach Ablauf von 57 Tagen gefallen ist, was beweist, daß die Hydrolyse praktisch durch die Gegenwart von Kaliumpyrophosphat verhindert wurde.

Beispiel 5

Flüssige Reinigungsmittel mit einem Gehalt an Tensiden des Typs (d) und (e).

In diesen Reinigungsmitteln, welche alle enthalten:

- 200 g/l TPP
- 20 g/l Kaliumpyrophosphat
- 20 g/l Kaliumsulfat
- 150 g/l Kaliumxylolsulfonat,

wurden die in der folgenden Tabelle angegebenen Mengen an Tensiden des Typs (d) und (e) einverleibt:

(d) Kaliumalkyl(C ₁₀ -C ₁₃).benzolsulfonat :	: •.	200	g/1
Lauryläthersulfat mit 3,5 Mol A.O. :		200	g/L
(e) C ₁₂ -C ₁₄ Alkohol äthoxyliert mit 3 Mol Ä.O.		100	g/1
Nonylphenol athoxyliert mit 6 Mol A.O.	•	100	g/1

Beispiel 6

Flüssige Reinigungsmittel mit einem Gehalt an Tensiden des Typs (c) zusammen mit Tensiden des Typs (d) oder (e).

In der folgenden Tabelle sind die Konzentrationen der verschiedenen Bestandteile in g/l ausgedrückt.

Typ (c)	Typ (d) oder (e)	K- oder NH ₄ -	Hydrotrop	K ₄ P ₂ O ₇	TPP
80 ASP 4	10 Alk.sek. (C ₁₅)- 3 ÄO	50 K ₂ SO ₄	70 P.X.S.	25	250
80 ASP 4	10 Alk.sek. (C ₁₅)-3 ÄO	75 K ₂ SO ₄	70 P.T.S.	25	250
50 ASP 2	10 Alk.sek. (C ₁₅)- 7 ÄO	75 (NH ₄)2so ₄	125 P.X.S.	25	250 ·
20 ASP 6	10 Nonzel		120 P.X.S.	. 25	250
30 ASP 2	10 Nonyl- phenol - 6 Å	о 75 кноо ₃		· - - · ·	
100 ASP 2	20 Nonyl- phenol - 6 Ä	50 K ₃ Citr. 0 1H ₂ O	100 P.X.S.	20	200
100 ASP 7	10 (C ₁₂ -C ₁₄) Alk. 12 614 XO	20 K ₂ SO ₄	150 P.X.S.	20	200
100 ASP 8	10 (C ₁₂ C ₁₄)A1	.k. 20 k ₂ so ₄	150 P.X.S.	20	200
100 ASP 2	20 K-Seife (C ₁₆ -C ₁₈)	20 K ₂ SO ₄	50 P.X.S.	20	200

(x) P.T.S. = Kaliumtoluolsulfonat.

Beispiel 7

Flüssige Reinigungsmittel für die Grobwäsche bei hoher Temperature

Die Wirksamkeit der erfindungsgemäßen Mittel für die Grobwäsche wird im Launder-O-Meter bei einer Temperatur von 85°C während 20 Min. bei einer Konzentration von 5 ml/l in Wasser von französischer Härte von 17° geprüft. Die künstlich beschmutzten Standard-Bänder wurden geliefert von TEST FABRICS Inc. STANDARD (abgekürzt TF) und von US TESTING Cy

STANDARD (abgekürzt U.S.T.). In dieser Prüfung mißt man den Prozentgrad des von den Bändern durch die Wäsche entfernten Schmutzes.

In der folgenden Tabelle wurden die Versuche Nr. 1 - 3 mit erfindungsgemäßen Mitteln bewirkt, welche alle enthielten:

- 100 g/l ASP 2
 - 6 g/l Tetranatrium E.D.T.A.
 - 2 g/l Polyvinylpyrrolidon
- 100 g/l Kaliummylolsulfonat
 - 20 g/l K₄P₂O₇
- 200 g/l TPP.

Außerdem enthielt das Mittel für den Versuch Nr. 1 20 g/l Nonylphenol, äthoxyliert mit 6 Ä.O., 50 g/l Borsäure und 12,5 g/l KOH; das Mittel für den Versuch Nr. 2 enthielt 20 g/l Nonylphenol, äthoxyliert mit 6 Ä.O. und 50 g/l Kaliumcitrat; das Mittel für den XXXXXXX Versuch Nr. 3 enthielt 20 g/l C16-C20Alkohol, äthoxyliert mit 6 Ä.O. und 50 g KHCO3.

Die Versuche Nr. 4 und Nr. 5 wurden mit pulverförmigen handelsüblichen Grobwaschmitteln, nämlich "ALL" (Nr. 4) und "Prodixan" (Nr. 5) unter Verwendung von 5 g/l ausgeführt.

Versuch Nr.	TF	U.S.T.
1	64,7	18,1
2	64,5	18,7
3	65,1	18,0
4	54,9	15,6
5	56,0	16,9

Man wird die Überlegenheit der Versuche Nr. 1 - 3 gegenüber den Versuchen Nr. 4 und 5 feststellen.

Beispiel 8

Interesse an der Steigerung der Konzentration an TPP in flüssigen Reinigungsmitteln.

Die Prüfung auf Wirksamkeit dieses Beispiels ist die gleiche wie diejenige des Beispiels 7, wobei gleichfalls die Bänder TF und U.S.T. im Vergleich mit Ergebnissen mit den Wasch-

pulvern "ALL" und "PRODIXAN" verwendet wurden. Das benutzte Wasser hatte eine französische Härte von 40°.

Die Versuche Nr. 1 - 5 wurden mit erfindungsgemäßen flüssigen Waschmitteln ausgeführt, welche wachsende Mengen an TPP enthielten, nämlich (in g/1): 0, 50, 100, 150, 200, wobei der Rest des Mittels folgender war:

- 100 g/l ASP 2
- 20 g/l Nonylphenol äthoxyliert mit 6 Ä.O.
 - 2 g/l Polyvinylpyrrolidon
 - 6 g/l Tetranatrium EDTA
- 100 g/l Kaliumxylolsulfonat
- 20 g/1 K4P207
- 20 g/l K2SO4.

Die Versuche Nr. 6 und 7 wurden mit "ALL" und "PRODIXAN" durchgeführt.

Versuch Nr.	TP	U.S.T.
1	23,2	3,7
2	32,2	5,5
3	53,9	7,4
4	64,6	11,5
5	67,6	16,0
6	52,7	14,6
7	56,2	15,7

Die vorstehende Tabelle läßt deutlich die zunehmende Wirksamkeit der Mittel mit wachsenden Gehalten an TPP erkennen.

Beispiel 9

Flüssige Waschmittel für die Grobwäsche bei niedriger Temperatur.

Die Mittel sind in g/l angegeben:

Beispiel 10

Flüssige Waschmittel für die Feinwäsche.

Die Versuche wurden in einem Tergometer während 10 Minuten bei einer Temperatur von 40°C unter Verwendung von 5 ml des Waschmittels pro Liter eines Wassers von französischer Härte von 17° ausgeführt.

Man benutzte künstlich verschmutzte Standardbänder, geliefest von der Firma TESTFABRICS Inc., USA. Sie bestehen aus Nylon (N), ferner Polyester-Baumwolle 65/35 (P) und Wolle (L).

Man benutzte vier erfindungsgemäße Waschmittel, welche alle enthielten:

- 60 g/l ASP 2
- 6 g/l Tetranatrium EDTA
- 90 g/l Kaliumxylolsulfonat
 - 1 g/l Polyvinylpyrrolidon
- 20 g/1 K₂SO₄
- 20 g/l K₄P₂0₇
- 200 g/1 TPP,

welche sich aber voneinander unterschieden durch die Anwesenheit folgender Verbindungen:

Mittel für den Versuch Nr. 1

- 20 g/l sekundärer C₁₅Alkohol äthoxyliert mit 3 Mol A.O.
- 20 g/l sekundärer Alkohol (C15) äthoxyliert mit 7 Mol A.O.
- 20 g/l äthoxyliertes Diäthanolamid von Cocosölfettsäure.

Mittel für den Versuch Nr. 2

- 40 g/l Nonylphenol äthoxyliert mit 6 Mol A.O.
- 20 g/l Monoäthanolamid von Cocosölfettsäure.

Mittel für den Versuch Nr. 3

40 g/l Nonylphenol athoxyliert mit 6 Mol A.O.

Mittel für Versuch Nr. 4

- 40 g/l Nonylphenol äthoxyliert mit 6 Mol A.O.
- 10 g/l Diäthanolamid von Laurinsäure
- 10 g/l Lauryläthersulfat mit 2,5 Mol Ä.O.

Die Versuche Nr. 5 und 6 wurden mit handelsüblichen flüssigen Feinwaschmitteln, nämlich "OSA" (Nr. 5) und "SOLILAINE" (Nr. 6) ausgeführt, welche bei den Versuchen ebenfalls in einer Konzentration von 5 ml/l angewendet wurden.

Die erhaltenen Resultate sind in der folgenden Tabelle angegeben:

Versuch Nr.	N	P	L
1	80,3	36,2	90,1
2	80,1	41,1	92,9
3	75,5	41,8	92,3
4	81,7	40,0	76,4
5	71,1	23,5	25,2
6	64,6	30,9	65,9

Die Überlegenheit und Vielseitigkeit der erfindungsgemäßen flüssigen Waschmittel (Versuche Nr. 1 - 4) sind somit offenbar, obwohl die handelsüblichen Mittel (Versuche Nr. 5 und 6) einen höheren Gehalt an Tensiden (über 25%) enthalten. Die erfindungsgemäßen Mittel eignen sich ebenso gut für das Waschen mit Hand wie mit Maschine.

Patentansprüche

- 1. Flüssiges homogenes Wasch- und Reinigungsmittel mit einem gewichtsmäßigen Gehalt an
 - (a) 14 35 Gew. Natriumtripolyphosphat,
 - (b) 0,1 50 Gew.% von mindestens einem Kalium und/oder Ammoniumsalz einer organischen oder anorganischen Säure,
 - (c) 15 85,9 Gew.% Wasser.
- 2. Flüssiges homogenes Wasch- und Reinigungsmittel nach Anspruch 1, gekennzeichnet durch einen gewichtsmäßigen Gehalt an
 - (a) 14 35 Gew. % Natriumtripolyphosphat,
 - (b) 0,1 50 Gew.% von mindestens einem Kalium- und/oder Ammoniumsalz einer organischen oder anorganischen Säure,
 - (c) 0 35 Gew.% mindestens eines Estersalzes einer Sulfopolycarbonsäure,
 - (d) 0 20 Gew.% mindestens eines anionischen Tensids,
 - (e) 0 15 Gew.% mindestens eines nichtionischen Tensids,
 - (f) 0 20 Gew.% mindestens eines Hydrotrops,
 - (g) 0 20 Gew.% mindestens eines organischen Sequestranten,
 - (h) 0 20 Gew. # einer Perverbindung,
 - (i) 0 5 Gew.% insgesamt an Farbstoff, Parfum, Verdicker, optischem Aufheller, Korrosionsinhibitor, das Anlaufen verhindernder Substanz,
 - (j) Rest Wasser zum Auffüllen auf 100 Gew.%.
- 3. Flüssiges homogenes Wasch- und Reinigungsmittel nach den vorhergehenden Ansprüchen, gekennzeich nach durch einen Gewichtsmäßigen Gehalt an
 - (a) 18 28 Gew. Natrium tripolyphosphat,
 - (b) 1 10 Gew.% von mindestens einem Kalium- und/oder Ammoniumsalz einer organischen oder anorganischen Säure,
 - (c) 1 15 Gew. # mindestens eines Estersalze einer Sulfopolycarbonsaure.
 - (d) 1 15 Gew.% mindestens eines anionischen Tensids,
 - (e) 1 10 Gew.% mindestens eines nichtionischen Tensids,

- (f) 1 12 Gew. mindestens eines Hydrotrops,
- (g) 0,5 10 Gew.% mindestens eines organischen Sequestranten,
- (h) 1 5 Gew.% mindestens einer Perverbindung,
- (i) 1 4 Gew.% insgesamt an Farbstoff, Parfum, Verdicker, optischem Aufheller, Korrosionsinhibitor, das Anlaufen verhindernder Substanz,
- (j) Rest Wasser zum Auffüllen auf 100 Gew.%.
- 4. Mittel nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß es als Kalium- und/oder Ammoniumsalz das Kaliumpyrophosphat in einer Menge von 5 25 Gew.%, bezogen auf das Natriumtripolyphosphat, enthalt.
- 5. Mittel nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Kalium- und/oder Ammoniumsalz aus der Gruppe, bestehend aus Kaliumsulfat, Ammoniumsulfat, Kaliumcarbonat, Kaliumbicarbonat, Kaliumorthoborat, Kaliummetaborat, Kaliumtetraborat, Kaliumperborat, Kaliummaleat und Kaliumcitrat, ausgewählt ist.
- 6. Mittel nach den Ansprüchen 2 und 3 , d a d u r c h g e k e n n z e i c h n e t , daß es als Kalium- und/oder Am- moniumsalz Kaliumpyrophosphat in einer Menge von 5 25 Gew.% bezogen auf das Natriumtripolyphosphat enthält.
- 7. Mittel nach den Ansprüchen 2 und 3, dad urch gekennzeich net, daß das Kalium- und/oder Ammoniumsalz aus der Gruppe, bestehend aus Kaliumsulfat, Ammoniumsulfat, Kaliumcarbonat, Kaliumbicarbonat, Kaliumorthoborat,
 Kaliummetaborat, Kaliumtetraborat, Kaliumperborat, Kaliummaleat und Kaliumcitrat, ausgewählt ist.
- 8. Mittel nach den Ansprüchen 1-7, dad urch geken nzeich net, daß das Kalium- und/oder Ammoniumsalz aus einer organischen oder anorganischen Säure in situgebildet ist.

- 9. Mittel nach den Ansprüchen 2 8, d a d u r c h g e k e n n z e i c h n e t, daß das Estersalz einer Sulfopoly-carbonsäure das Salz des sulfonierten Derivats einer oder mehrerer alpha-Dicarbonsäuren ist, welche beta-ungesättigt und mit der Hydroxylgruppe eines oder mehrerer nichtionischer Tenside verestertsind.
- 10. Mittel nach den Ansprüchen 2 8, d a d u r c h g e k e n n z e i c h n e t, daß das Estersalz einer Sulfopoly-carbonsäure das Salz des sulfonierten Derivats einer oder mehrerer alpha-Tricarbonsäuren ist, welche beta-ungesättigt und mit der Hydroxylgruppe eines oder mehrerer nichtionischer Tenside verestert sind.
- 11. Mittel nach den Ansprüchen 2 8, dad urch gekennzeich net, daß das Estersalz einer Sulfopolycarbonsäure das Salz der ungesättigten Polycarbonsäure ist,
 welche durch Pyrolyse von Calciumcitrat und durch Sulfonierung der Doppelbindung, Ansäuerung, Veresterung mit der Hydroxylgruppe eines oder mehrerer nichtionischer Tenside und
 Salzbildung erhalten ist.
- 12. Mittel nach den Ansprüchen 2 11, dad urch ge-kennzeich net, daß das Estersalzeiner Sulfopoly-carbonsäure ein Salz des Natriums, Kaliums oder eines Amins, vorzugsweise das Kaliumsalzist.
- 13. Mittel nach den Ansprüchen 2 12, d a d u r c h g e k e n n z e i c h n e t, daß das anionische Tensid aus der Gruppe, bestehend aus Sulfonaten von Olefinen, Alkylbenzol-sulfonaten, primären Alkylsulfaten, sekundären Alkylsulfaten und Alkyl- oder Alkylarylpolyoxyalkylensulfaten ausgewählt ist.
- 14. Mittel nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, daß das anionische Tensid die Form eines Salzes von Natrium, Kalium oder einem Amin, vorzugsweise die Form eines Kaliumsalzes hat.

- 15. Mittel nach den Ansprüchen 2 14, dad urch gekennzeich net, daß das nichtionische Tensid aus
 der Gruppe, bestehend aus äthoxylierten Alkylphenolen,
 äthoxylierten primären oder sekundären Alkoholen, äthoxylierten Alkanolamiden oder Alkylamiden, Polymeren oder Mischpolymeren von Alkylenoxyd, Estern von polyhydroxylierten Verbindungen und tertiären Aminoxyden oder tertiären Phosphinoxyden
 ausgewählt ist.
- 16. Mittel nach den Ansprüchen 2 15, d a d u r c h g e k e n n z e i c h n e t, daß das hydrotrope Agens aus der Gruppe, bestehend aus Xylolsulfon-, p-Toluolsulfon- und p- Cumolsulfonsäure, vorzugsweise in der Form eines Kaliumsalzes, ausgewählt ist.
- 17. Mittel nach den Ansprüchen 2 16, dad urch gekennzeich net, daß der organische Sequestrant aus der Gruppe, bestehend aus Aminopolycarbonsäuren und Hydroxylpolycarbonsäuren, vorzugsweise in der Form ihrer Kaliumsalze, ausgewählt ist.
- 18. Mittel nach den Ansprüchen 2 17, dad urch gekennzeich net, daß die Perverbindung unter Wasserstoffperoxyd und Kaliumperborat ausgewählt ist.
- 19. Sequestriermittel gemäß Anspruch 1.
- 20. Mittel zum Waschen von Textilien gemäß den Ansprüchen 2 18.
- 21. Mittel zum Reinigen von Gegenständen mit nicht poröser Oberfläche gemäß einem der Ansprüche 2 18.