Foundations of Convolutional Neural Networks

Sidharth Baskaran

September 2021

Computer Vision

- Image classification
 - Binary classification
- Object detection
 - Drawing boxes/bounding the objects
 - Multiple instances of object
- Neural Style Transfer
 - Content and style images
 - Repaint content w/ style
- Inputs can get large
 - E.g 64x64x3 is small but larger images have many input features

Figure 1: Example network

- If $x \in \mathbb{R}^{3M}$ then $W^{[1]} \to (1000, 3M)$
 - $-W^{[1]}x$ gives the output network vector of dimension (1000, 1)
- Implementing the convolution operation is efficient for large input images

Edge Detection

- Detecting certain festure sets of images
 - E.g. vertical and horizontal edges

- Given a 6x6 grayscale image, apply a 3x3 kernel or filter
 - Convolution operator * convolves filter over image
- Paste filter on the first such region of the image, and take elementwise product and then sum to obtain value
- Output a 4x4 image

Figure 2: Basic Convolution

- Shift the kernel stepwise to the left to fill up the output
- Is 4x4 as can shift downwards/left/right to obtain 4 unique locations $-\dim(\operatorname{Im},1)-\dim(\operatorname{Ker},1)+1$

Figure 3: Example

- In example, detects a light to dark transition
- Can also make distinction
- Example: Sobel filter \rightarrow puts weight towards central pixel, more robust for edge detection

Figure 4: Transition examples

- Rotate 90 degrees for horizontal/vertical differentiation
- Can learn the filter values with backprop
 - Treat as parameters, learn

Padding

- Given an image with input dimensions $n \times n$ and filter with $f \times f$
 - Output dimensions are $n f + 1 \times n f + 1$
- Downsides \rightarrow image shrinks
 - Lots of overlap on central pixels but corner pixels represented less
- Can pad image with border of 1px, for example
 - $-6x6 \rightarrow 8x8 \text{ image}$
- Can preserve dimension of output image
 - Padding pixels are 0 by convention
 - Let p = 1 be padding amount
- Valid and Same convolutions
 - Valid \rightarrow no padding
 - $* n \times n * f \times f \rightarrow n f + 1 \times n f + 1$
 - Same \rightarrow pad s.t. output size = input size
- By convention, f is always odd, i.e $f \mod 2 \neq 0$

Strided Convolutions

- Stride of s means moving kernel by s steps instead of default 1
- Output dimensions become following where p is the padding amount and s is the stride

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

• Floor because do not want kernel being outside of the image or padding region

- A preprocessing step on convolution in mathematics Flip the kernel vertically then horizontally (mirroring)
- Use flipped kernel for convolution \rightarrow cross-correlation
 - Not required in NNs
- Convolution obeys property of being associative but not commutative
 - -(A*B)*C = A*(B*C)