INSTITUTO TECNOLÓGICO DE AERONÁUTICA

VESTIBULAR 2017

PROVA DE QUÍMICA

INSTRUÇÕES

- 1. Esta prova tem duração de **quatro horas**.
- 2. Não é permitido deixar o local de exame antes de decorridas duas horas do início da prova.
- 3. Você poderá usar **apenas** lápis (ou lapiseira), caneta preta de material transparente, borracha e régua. É **proibido portar qualquer outro material escolar.**
- 4. Esta prova é composta de **20 questões de múltipla escolha** (numeradas de 01 a 20) e de **10 questões dissertativas** (numeradas de 21 a 30).
- 5. As 20 questões de múltipla escolha correspondem a 50% do valor da prova e as questões dissertativas, aos 50% restantes.
- 6. Você recebeu este **caderno de questões e um caderno de soluções com duas folhas de rascunho.** Verifique se o caderno de questões está completo.
- 7. Numere sequencialmente de 21 a 30, a partir do verso da capa, cada página do caderno de soluções. O número atribuído a cada página corresponde ao da questão a ser resolvida. **Não** escreva no verso da parte superior da capa (região sombreada) do caderno de soluções. As **folhas centrais coloridas** deverão ser utilizadas **apenas como rascunho** e, portanto, **não** devem ser numeradas e **nem** destacadas pelo candidato.
- 8. Cada questão de múltipla escolha admite **uma única** resposta.
- 9. As resoluções das questões dissertativas, numeradas de 21 a 30, podem ser feitas a lápis e devem ser apresentadas de forma clara, concisa e completa. Respeite a ordem e o espaço disponível no caderno de soluções. Sempre que possível, use desenhos e gráficos.
- 10. Antes do final da prova, você receberá uma **folha de leitura óptica, destinada à transcrição das questões numeradas de 1 a 20**. Usando **caneta preta de material transparente**, assinale a opção correspondente à resposta de cada uma das questões de múltipla escolha. Você deve preencher todo o campo disponível para a resposta, sem extrapolar-lhe os limites, conforme instruções na folha de leitura óptica.
- 11. Cuidado para não errar no preenchimento da folha de leitura óptica. Se isso ocorrer, avise o fiscal, que lhe fornecerá uma folha extra, com o cabeçalho devidamente preenchido.
- 12. Não haverá tempo suplementar para o preenchimento da folha de leitura óptica.
- 13. Na última página do caderno de soluções, existe uma reprodução da folha de leitura óptica, que deverá ser preenchida com um simples traço a lápis durante a realização da prova.
- 14. A **não devolução** do caderno de soluções, do caderno de questões e/ou da folha de leitura óptica implicará a **desclassificação do candidato**.
- 15. No dia 20/12/2016, a partir das 10:00 horas, o gabarito da parte objetiva desta prova estará disponibilizado no *site* do ITA (www.vestibular.ita.br).
- 16. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

CONSTANTES

Constante de Avogadro $(N_A) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9,65 \times 10^4 \text{ C} \cdot \text{mol}^{-1} = 9,65 \times 10^4 \text{ A} \cdot \text{s} \cdot \text{mol}^{-1} = 9,65 \times 10^4 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$

Volume molar de gás ideal = 22,4 L (CNTP)Carga elementar = $1,602 \times 10^{-19} C$

Constante dos gases (R) = $8.21 \times 10^{-2} \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.98 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.98 \text{ cal}^{-1} \cdot \text{mol}^{-1} = 1.9$

= 62,4 mmHg·L·K⁻¹·mol⁻¹

Constante gravitacional (g) = $9.81 \text{ m} \cdot \text{s}^{-2}$

Constante de Planck (h) = $6,626 \times 10^{-34} \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-1}$

Velocidade da luz no vácuo = $3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

DEFINIÇÕES

Pressão de 1 atm = $760 \text{ mmHg} = 1,01325 \times 10^5 \text{ N} \cdot \text{m}^{-2} = 760 \text{ Torr} = 1,01325 \text{ bar}$

 $1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2}$. ln 2 = 0,693

Condições normais de temperatura e pressão (CNTP): 0° C e 760 mmHg

Condições ambientes: 25° C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol·L⁻¹ (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. $(\ell) = l$ íquido. (g) = gás. (aq) = aquoso. (CM) = circuito metálico. (conc) = concentrado.

(ua) = unidades arbitrárias. [X] = concentração da espécie química X em mol· L^{-1} .

MASSAS MOLARES

Elemento Químico	Número Atômico	Massa Molar (g·mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g·mol ⁻¹)
Н	1	1,01	Cl	17	35,45
He	2	4,00	K	19	39,10
Be	4	9,01	Cr	24	52,00
В	5	10,81	Mn	25	54,94
C	6	12,01	Fe	26	55,85
N	7	14,01	Ni	28	58,69
O	8	16,00	Cu	29	63,55
F	9	19,00	Zn	30	65,38
Na	11	22,99	Br	35	79,90
Mg	12	24,31	Pd	46	106,42
Al	13	26,98	Ag	47	107,87
Si	14	28,09	Xe	54	131,30
P	15	30,97	Pt	78	195,08
S	16	32,06	Hg	80	200,59

Questão 1. Pode-se utilizar metais de sacrifício para proteger estruturas de aço (tais como pontes, antenas e cascos de navios) da corrosão eletroquímica. Considere os seguintes metais:

I. Alumínio II. Magnésio III. Paládio IV. Sódio V. Zinco

Assinale a opção que apresenta o(s) metal(is) de sacrifício que pode(m) ser utilizado(s).

 ${f A}$ () Apenas I, II e V. ${f B}$ () Apenas I e III. ${f C}$ () Apenas II e IV.

D() Apenas III e IV. **E**() Apenas V.

Questão 2. A reação do mercúrio metálico com excesso de ácido sulfúrico concentrado a quente produz um gás mais denso do que o ar. Dois terços deste gás são absorvidos e reagem completamente com uma solução aquosa de hidróxido de sódio, formando 12,6 g de um sal. A solução de ácido sulfúrico utilizada tem massa específica igual a 1,75 g·cm⁻³ e concentração de 80 % em massa. Assinale a alternativa que apresenta o volume consumido da solução de ácido sulfúrico, em cm³.

A() 11 B() 21 C() 31 D() 41 E() 51

Questão 3. Um frasco fechado contém dois gases cujo comportamento é considerado ideal: hidrogênio molecular e monóxido de nitrogênio. Sabendo que a pressão parcial do monóxido de nitrogênio é igual a 3/5 da pressão parcial do hidrogênio molecular, e que a massa total da mistura é de 20 g, assinale a alternativa que fornece a porcentagem em massa do hidrogênio molecular na mistura gasosa.

A() 4%

B() 6%

C() 8%

D() 10%

E() 12%

Questão 4. A reação química genérica $X \to Y$ tem lei de velocidade de primeira ordem em relação ao reagente X. À medida que a reação ocorre a uma temperatura constante, é ERRADO afirmar que

- A () a constante de velocidade da reação não se altera.
- **B**() o tempo de meia-vida do reagente X permanece constante.
- C () a energia de ativação da reação não se altera.
- **D** () a velocidade da reação permanece constante.
- E () a ordem de reação não se altera.

Questão 5. Barreiras térmicas de base cerâmica são empregadas em projetos aeroespaciais. Considere os materiais a seguir:

I. BN

II. Fe_2O_3

III. NaN₃

IV. Na₂SiO₃

V. SiC

Assinale a opção que apresenta o(s) material(is) geralmente empregado(s) como componente(s) principal(is) de barreiras térmicas em projetos aeroespaciais.

A() Apenas I e V.

B() Apenas II.

C() Apenas III.

D() Apenas III e IV.

E() Apenas V.

Questão 6. A adição de certa massa de etanol em água diminui a temperatura de congelamento do solvente em 18,6 °C. Sabendo que a constante crioscópica da água é de 1,86 °C·kg·mol⁻¹, assinale a porcentagem em massa do etanol nesta mistura.

A() 10,0 %.

B() 18,6%.

C() 25,0%.

D() 31,5 %.

E() 46,0 %.

Questão 7. Na figura ao lado são respectivamente apresentadas as curvas de titulação de 50 mL de soluções aquosas 0,1 mol·L⁻¹ dos ácidos I, II e III, tituladas com uma solução aquosa 0,1 mol·L⁻¹ em NaOH. Baseado nas informações contidas na figura, assinale opção ERRADA.

- **A** () A constante de ionização do ácido III é aproximadamente 10⁻⁹.
- **B** () A região W da curva de titulação do ácido II é uma região-tampão.
- C () No ponto X o pH da solução I é igual ao pK_a do ácido I.
- ${f D}$ () O ponto Y é o ponto de equivalência do ácido II.
- **E** () No ponto Z, para todos os ácidos o pH só depende da quantidade em excesso de OH adicionada.

Questão 8. Considere duas soluções, X e Y, de um mesmo soluto genérico. A solução X tem 49% em massa do soluto, enquanto a solução Y possui 8% em massa do mesmo soluto. Quer-se obter uma terceira solução, que tenha 20% em massa deste soluto, a partir da mistura de um volume V_X da solução X com um volume V_Y da solução Y. Considerando que todas as soluções envolvidas exibem comportamento ideal, assinale a opção que apresenta a razão V_X/V_Y CORRETA.

A () 12/29.

B() 29/12.

C() 19/12.

D() 12/19.

E() 8/49.

Questão 9. O diagrama de van Arkel-Ketelar apresenta uma visão integrada das ligações químicas de compostos binários, representando os três tipos clássicos de ligação nos vértices de um triângulo. Os vértices esquerdo e direito da base correspondem, respectivamente, aos elementos menos e mais eletronegativos, enquanto o vértice superior do triângulo representa o composto puramente iônico. Com base no diagrama, assinale a opção que apresenta o composto binário de maior caráter covalente.

 ${\bf B}$ () ${\bf C}_3{\bf N}_4$

 \mathbf{C} () CO_2

Questão 10. São feitas as seguintes proposições a respeito de reações químicas orgânicas:

- Etanoato de etila com amônia forma etanamida e etanol.
- **II.** Ácido etanóico com tricloreto de fósforo, a quente, forma cloreto de etanoíla.
- III. n-Butilbenzeno com permanganato de potássio, a quente, forma ácido benzóico e dióxido de carbono.

Das proposições acima, está(ão) CORRETA(S)

- **A**() apenas I.
- **B**() apenas I e II.
- C() apenas II.
- **D**() apenas II e III.
- **E**() I, II e III.

Questão 11. Em relação às funções termodinâmicas de estado de um sistema, assinale a proposição ERRADA.

- \mathbf{A} () A variação de energia interna é nula na expansão de n mols de um gás ideal a temperatura constante.
- **B**() A variação de energia interna é maior do que zero em um processo endotérmico a volume constante.
- C () A variação de entalpia é nula em um processo de várias etapas em que os estados inicial e final são os mesmos.
- **D**() A variação de entropia é maior do que zero em um processo endotérmico a pressão constante.
- **E** () A variação de entropia é nula quando n mols de um gás ideal sofrem expansão livre contra pressão externa nula.

Questão 12. A 25 °C, o potencial da pilha descrita abaixo é de 0,56 V. Sendo E°(Cu²⁺/Cu) = +0,34 V, assinale a opção que indica aproximadamente o valor do pH da solução.

 $Pt(s)|H_2(g,\ 1\ bar),\ H^+(aq,\ x\ mol\cdot L^{-1})||Cu^{2+}(aq,\ 1,0\ mol\cdot L^{-1})|Cu(s)$

A() 6,5

B() 5,7

C() 3,7

D() 2,0

E() 1,5

Questão 13. A pressão de vapor da água pura é de 23,8 torr a 25 °C. São dissolvidos 10,0 g de cloreto de sódio em 100,0 g de água pura a 25 °C. Assinale a opção que indica o valor do abaixamento da pressão de vapor da solução, em torr.

Questão 14. Considere que a decomposição do N₂O₅, representada pela equação química global

$$2N_2O_5 \longrightarrow 4NO_2 + O_2$$
,

apresente lei de velocidade de primeira ordem. No instante inicial da reação, a concentração de N_2O_5 é de $0,10 \text{ mol}\cdot\text{L}^{-1}$ e a velocidade de consumo desta espécie é de $0,022 \text{ mol}\cdot\text{L}^{-1}\cdot\text{min}^{-1}$. Assinale a opção que apresenta o valor da constante de velocidade da reação global, em min⁻¹.

Questão 15. Um motor pulso-jato é uma máquina térmica que pode ser representada por um ciclo termodinâmico ideal de três etapas:

- I. Aquecimento isocórico (combustão).
- II. Expansão adiabática (liberação de gases).
- III. Compressão isobárica (rejeição de calor a pressão atmosférica).

Considerando que essa máquina térmica opere com gases ideais, indique qual dos diagramas pressão *versus* volume a seguir representa o seu ciclo termodinâmico.

						trica de 5 A atravé cessário para esta dep			sa de 1	nitrato de níqu	el.
A ()	4,3	B ()	4,7		C () 5,9	D ()	9,3	E ()	17,0	
Que	está	ão 17. Conside	ere as se	eguintes prop	osi	ções para espécies q	uímicas 1	no estado gaso	so:		
II. III.	O A m	momento dipo energia neces olécula de O ₂ .	olar elét sária p	rico total da 1 ara quebrar a	mc ı n	aior do que a do íon décula de XeF4 é ma nolécula de F2 é ma rílio é igual à energia	iior do qu iior do qu	ae a energia n	ecessár	ia para quebra	r a
Das	pr	oposições acin	na, está	(ão) CORRE	T/	A(S)					
A (D ()	apenas I. apenas II e III	[.	B (E ()	apenas I e IV. apenas IV.		C ()	apenas	s II.	
Que	está	ão 18. Conside	ere as p	roposições a s	seg	guir:					
II. III.	A reação do ácido butanóico com a metilamina forma N-metil-butanamida. A reação do ácido propanóico com 1-propanol forma propanoato de propila. I. 3-etil-2,2-dimetil-pentano é um isômero estrutural do 2,2,3,4-tetrametil-pentano. V. O 2-propanol é um composto quiral.										
Das	pr	oposições acin	na estão	CORRETA	S						
A (D ()	apenas I e II. apenas II, III e	e IV.	B (E ()	apenas I, II e III. apenas III e IV.		C ()	apena	as II e III.	
_		ão 19. Assinale lizam dicroma	1 2	•	a	técnica de química a	nalítica e	mpregada em	etilôme	etros (bafômetro	os)
		Calorimetria. Gravimetria.		*	-	Densimetria. Volumetria.	C ()	Fotometria.			
Que	está	ão 20. São feita	as as se	eguintes propo	osi	ções a respeito dos h	idrocarbo	onetos cuja fór	mula m	nolecular é C ₅ H	10:
II.	Existem apenas seis isômeros do C ₅ H ₁₀ . Le Pelo menos um dos isômeros do C ₅ H ₁₀ é quiral. Le m condições ambiente e na ausência de luz todos os isômeros do C ₅ H ₁₀ são capazes de descolorir água de bromo.										
Das	pr	oposições acin	na é (sã	o) CORRETA	A(S)					
A (B (C (D (E ()	apenas I. apenas II. apenas I e III. apenas II e III									

Questão 16. Deseja-se depositar uma camada de 0,85 g de níquel metálico no catodo de uma célula eletrolítica,

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESPONDIDAS NO CADERNO DE SOLUÇÕES.

AS QUESTÕES NUMÉRICAS DEVEM SER DESENVOLVIDAS SEQUENCIALMENTE ATÉ O FINAL.

Questão 21. Gás cloro é borbulhado em uma solução aquosa concentrada de NaOH a quente, obtendo-se dois ânions X e Y.

- a) Quais são estas espécies X e Y?
- **b)** Com a adição de solução aquosa de nitrato de prata poder-se-ia identificar estes ânions? Justifique sua resposta utilizando equações químicas e descrevendo as características do(s) produto(s) formado(s).

Questão 22. Ambos os íons sulfeto e sulfito reagem, em meio ácido, com o íon bromato, provocando o aparecimento de uma coloração no meio reacional.

- **a)** Escreva as equações químicas balanceadas que representam as reações que provocam o aparecimento de coloração no meio reacional.
- **b**) Escreva a equação química balanceada que representa a reação envolvendo o sulfito quando há excesso do agente redutor. Nestas condições, explique o que ocorre com a coloração do meio reacional.

Questão 23. A reação do benzeno com cloreto de metila, catalisada por cloreto de alumínio, forma um produto orgânico X.

- a) Escreva, utilizando fórmulas estruturais, a equação química que representa a síntese de TNT (trinitrotolueno) a partir do produto X, incluindo as condições experimentais de síntese.
- **b**) Escreva o nome sistemático, segundo a IUPAC, do isômero mais estável do TNT.
- c) Sabendo que a sensibilidade à fricção e ao impacto do TNT está relacionada à presença de diferentes distâncias intermoleculares no sólido, em que condições a sensibilidade do TNT é minimizada?

Questão 24. Após inalar ar na superfície, uma pessoa mergulha até uma profundidade de 200 m, em apneia, sem exalar. Desconsiderando as trocas gasosas que ocorrem nos alvéolos pulmonares, calcule a pressão parcial do nitrogênio e do oxigênio do ar contido no pulmão do mergulhador.

Questão 25. Com base no fato de que o esmalte dentário é sujeito à desmineralização, explique

- a) como se forma o ácido lático na saliva humana.
- b) como o ácido lático provoca a desmineralização.
- c) como a uréia contida na saliva ajuda a proteger contra a desmineralização do esmalte dentário causada pelo ácido lático.

Questão 26. Descreva a síntese da uréia, desenvolvida por Wöhler em 1828, a partir do cianeto de prata, oxigênio molecular e cloreto de amônio.

Questão 27. Considere que a radiação de comprimento de onda igual a 427 nm seja usada no processo de fotossíntese para a produção de glicose. Suponha que esta radiação seja a única fonte de energia para este processo. Considere também que o valor da variação de entalpia padrão da reação de produção de glicose, a 25 °C, seja igual a +2808 kJ·mol⁻¹.

- **a)** Escreva a equação que representa a reação química de produção de um mol de glicose pelo processo de fotossíntese.
- b) Calcule a variação de entalpia envolvida na produção de uma molécula de glicose, via fotossíntese, a 25 °C.
- c) Calcule a energia de um fóton de radiação com comprimento de onda de 427 nm.
- d) Quantos destes fótons (427 nm), no mínimo, são necessários para produzir uma molécula de glicose?

Questão 28. Considere as reações químicas reversíveis I e II:

I.
$$BrO_3^-(aq) + 3SO_3^{2-}(aq) \xleftarrow{k_1} Br^-(aq) + 3SO_4^{2-}(aq)$$
.

II.
$$O_2(g) + O(g) \longrightarrow O_3(g)$$
.

A respeito das reações I e II responda às solicitações dos itens a e b, respectivamente:

- a) Sabendo que a reação \mathbf{I} ocorre em meio ácido e que a sua reação direta é sujeita à lei de velocidade dada por $v = k_1 \left\lceil BrO_3^- \right\rceil \left\lceil SO_3^{2-} \right\rceil \left\lceil H^+ \right\rceil$, expresse a lei de velocidade para a reação reversa.
- **b**) Calcule a constante de equilíbrio da reação **II** dadas as seguintes reações e suas respectivas constantes de equilíbrio:

$$NO_2(g) \xrightarrow{h\nu} NO(g) + O(g)$$
 $K_{eq.} = 4.0x10^{-49}$
 $O_3(g) + NO(g) \xrightarrow{} NO_2(g) + O_2(g)$ $K_{eq.} = 2.0x10^{-34}$

Questão 29. Sobre um motor pulso jato como o apresentado na **Questão 15**, considere verdadeiras as seguintes afirmações:

- **I.** A temperatura de fusão do material que compõe a câmara de combustão é 1500 K, e acima de 1200 K o material do motor começa a sofrer desgaste considerável pelos gases de combustão;
- **II.** O material do motor resiste a pressões de até 30 atm;
- **III.** O motor opera, em cada ciclo termodinâmico, com 0,2 mol de uma mistura de gases com comportamento ideal, iniciando o ciclo em pressão atmosférica e a temperatura de 300 K.
- a) A partir destas informações e considerando que se deseja obter, de forma segura, o máximo de trabalho por ciclo, quais devem ser a pressão e a temperatura no ponto de intersecção entre os processos I e II do ciclo termodinâmico (vide Questão 15)?
- **b)** Na mistura de gases que opera em cada ciclo há uma fração de combustível, o qual tem a reação de combustão dada por:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $Q_V = 45 \text{ kJ} \cdot \text{g}^{-1}$

em que Q_V é o calor liberado a volume constante, por grama de metano. Considerando a capacidade calorífica molar a volume constante da mistura de gases igual a 25 $J \cdot K^{-1} \cdot mol^{-1}$, qual é a massa de metano utilizada pelo ciclo projetado no item anterior?

Questão 30. Considere as substâncias o-diclorobenzeno e p-diclorobenzeno.

- a) Escreva as fórmulas estruturais de ambas as substâncias.
- b) Para ambas as substâncias, forneça um nome sistemático diferente daquele informado no enunciado.
- c) Qual das duas substâncias tem maior ponto de ebulição? Justifique sua resposta.