TREATISE ON GENERAL AND INDUSTRIAL ORGANIC CHEMISTRY

1:

- CHEMISTRY, INORGANIC AND ORGANIC. By C. L Bloxam Eleventh Edition, revised by A G Bloxam and S Judd Lewis 310 Illustrations 36s.
- CLOUDS AND SMOKES: THE PROPERTIES OF DISPERSE SYSTEMS IN, GASES. By W E. Gibbs 30 Illustrations 10s. 6d.
- THE THEORY OF EMULSIONS AND EMULSI-FICATION. By W Clayton 9s. 6d.
- THE FUNDAMENTAL PROCESSES OF DYE CHEMISTRY. By H E Fierz-David Translated by F A Mason 21s.
- A TEXT-BOOK OF PRACTICAL CHEMISTRY. By G F Hood and J A Carpenter. 21s.
- COCOA AND CHOCOLATE: THEIR CHEMISTRY AND MANUFACTURE. By R. Whymper Second Edition 42s.
- GENERAL AND INDUSTRIAL CHEMISTRY. By Ettore Molman. Second English Edition, translated by T. H. Pope Inorganic, 42s. Organic, Part I., 30s.; Part II., 30s.
- QUALITATIVE CHEMICAL ANALYSIS. By T W
 Fresenius Translated by C A. Mitchell, 17th
 Edition 36s.
- APPLIED ANALYTICAL CHEMISTRY.

 By V. Villavecchia Translated by T H Pope.

 Vol I, 21s.; Vol. II, 25s.

TREATISE ON

GENERAL AND INDUSTRIAL

ORGANIC CHEMISTRY

BY

DR. ETTORE MOLINARI

PROFESSOR OF INDUSTRIAL CHEMISTRY AT THE ROYAL MILAN POLYTECHNIC AND AT THE LUIGI BOCCONI COMMERCIAL UNIVERSITY

SECOND ENGLISH EDITION

TRANSLATED FROM THE THIRD ENLARGED AND REVISED ITALIAN EDITION BY

THOMAS H. POPE, B.Sc., A.C.G.I., F.I C.

PART II

WITH 303 ILLUSTRATIONS

IONDON OF TONDON OF THE LANGE TO THE LANGE T

1923

,);

Printed in Great Britain

CONTENTS

μ.

VIIII DODDO (O L ŽI L IV. C. IV. C. IV. C. IV.	PAGE 457
VIII ESTERS (Oils, Fats, Waxes, Candles, Soaps)	457
GLYCERIDES, OILS, FATS	460
Tripalmitin, tristearin, triolein, 460, Reichert-Meissl-Wollny number, 461; cerotic acid, 462, lecithin, 462; drying oils, varnishes, 462, Soxhlet extraction apparatus, 462, rancidity of oils, 463, refractive index, butyro-refractometer, 463; blown oils, ozone number, Maumené number, Tortelli thermo-oleometer, 464.	200
WAXES beeswax, virgin wax, white wax, carnauba wax, Japanése wax, uses of wax Table of physical and chemical constants of fats, oils and fatty acids, 466.	465
SAPONIFICATION OF FATS AND WAXES, 467; hydrolysis of ammonia soaps, 467, saponification number, 468.	
· ANIMAL OILS AND FATS	468
Tallow, 468, oleomargarine and margarine (artificial butter), 470, butter, milk and cheese, 474; casein, 474, analysis of milk, 475, renovated butter, 477, bone fat, 477, lard, 478, fish oils—whale oil, cod-liver oil, spermaceti, 478, dégras, 478, wool fat, 479, chrysalis oil, 480	
INDUSTRIAL HARDENING OF OILS BY MEANS OF HYDROGEN	4 80
VEGETABLE OILS	482
Table, 482, extraction by pressure, hydraulic presses, 483, extraction by solvents, Florentine receiver, 486; refining, deodorising and bleaching, 488. Olive oil, 490, sulphocarbon oil, 491; adulterations, 492. Castor oil, 493; ricinoleic acid, sulphoricinate, 494. Lanseed oil, 494; drying power, oil varnishes and lacs, copal, 495 Walnut oil, 496. Palm oil, 496. Palm-kernel oil, 497. Coconut oil, copra, 498 Vegetable tallow, 499. Cottonseed oil, 499. Kapok oil, 499. Maize oil, 499. Sesamé oil, 500 Arachis oil, 500. Colza oil, 501. Soja bean oil, 502. Grapeseed oil, 502. Tomatoseed oil, 502. Wood oil, 503.	
TREATMENT OF FATS FOR MAKING CANDLES AND SOAPS Saponification with lime, 503. Solid fatty acids, 504. Krebitz process, 505. Hydrolysis with sulphuric acid, 506. Distilled oleine and stearine, 506. Hydroxystearic acid, 506 Transformation of oleic acid into solid fatty acids, 506. Hydrolysis by hot water under pressure, 507. Biological or Enzymic process, 507. Twitchell's Catalytic process, 508.	503
MANUFACTURE OF CANDLES	510
MANUFACTURE OF SOAP, 513. History, 513. Theory of action of soap, 513. Oleine soap, 517. Mottled soap, 519. Transparent soaps, 520. Soft soaps, 520. Analysis of soap, 522.	
GG. ALDEHYDIC OR KETONIC POLYHYDRIC ALCOHOLS	-00
CARBOHYDRATES	523
A. MONOSES, 524; general methods of formation, 525. Formation of carbohydrates in plants, 525. Tetroses, pentoses, pentosans, and their estimation, 525; furfuroids, 528. Hexoses, 529, d-glucose, 531; invert sugar, 531; caramel, 533, fructose, 533; mannose, 534; galactose, 534, glucosides, 534.	

	PAG E
B HEXABIOSES, 535 Maltose, lactose, 536. Saccharose, 538; history of beet-sugar, 539, maple sugar, 540, sugar-cane, 540; development of the beet-sugar industry, 545. Extraction of sugar from beet, 545, extraction by diffusion, 548; Steffen process, 553, Claassen process, 554, defecation with lime, 555, filtration under pressure, 556, concentration of the juice, 559, vacuum concentration, 559, boiling of the concentrated juice, 564; centrifugation of the massecurte, 565, refining, 567, revivification of the animal charcoal, 568, cube sugar, 570, pilé sugar, 570 Molasses and its utilisation by the osmosis, lime, strontia and baryta processes, 570. Yield of sugar, cost of production, statistics, fiscal regulations, etc., 574. Estimation of sugar, 577, polarimetry, 579, chemical determination, 582 Purification of waste-waters from sugar-works	584
C. TRIOSES, 584. Raffinose, 584.	
D. TETROSES, 585 Mannotetrose, 585	
E HIGHER POLYOSES, 585 Starch, 585, soluble starch, 596. Dextrin, 596 Gums, 598. Glycogen, 598 Cellulose, 598 Cellulose acetate, 599. Artificial parchment, 600 Paper industry, 602, treatment of rags, 603, mechanical wood-pulp, 605, chemical wood-pulp, 607. Cork, 615.	
PART III. CYCLIC COMPOUNDS	
AA ISOCYCLIC COMPOUNDS	616
A AROMATIC HYDROCARBONS	622
B HALOGEN SUBSTITUTION DERIVATIVES OF BENZENE Table, 636	63 4
C. SULPHONIC ACIDS	636
D PHENOLS	
E. QUINONES	647
F. NITRO-DERIVATIVES OF AROMATIC HYDROCARBONS Table, 650. Nitrobenzene, dinitrobenzenes, trinitrobenzenes, nitrotoluenes, trinitrotoluenes, phenylnitromethane, pseudo-acids, 648-654.	648
G. AMINO-DERIVATIVES OF AROMATIC HYDROCARBONS Table of Aromatic Amines, 655: (1) primary monamines; (2) secondary monamines, (3) tertiary monamines; (4) quaternary bases; (5) diamines, triamines, tetramines. Aniline, nitraniline, methylanilines, diphenylamine, phenylsulphaminic soid, acetanilide, etc. Homologues of aniline: toluidines, xylidines, benzylamine, phenylenediamine, 654-663.	
H. NITROPHENOLS, AMINOPHENOLS, AND THIOPHENOLS Nitrophenol, pioric acid, aminophenols, phenacetin, salvarsan, thiophenols, 663-667.	663

Furfuran, furfural, thiophen, pyrrole, pyrazole, pyramidone, thiazole, iminazole, lysidine, oxazole, osotriazole, triazole, tetrazole, azoxazole, 736. Pyridine and its derivatives: picoline, lutidines, collidines, pyridines, pyridines,

carboxylo acids, hydropyridines, piperidine, 740. Alkaloids · Separation and tests, synthesis of alkaloids and medicine, table, anæsthetics, adronaline, conune, nicotine (tobacco), atropine, morphine, cocaine, narcotine, strychnine, quinne, 743. Quinoline and its derivatives quinaldine, isoquinoline, chromone, flavone, coumarone, isatin, indoxyl, skatole, indole, indazole, indigo (natural and artificial), 753.

CO. COLOURING MATTERS

764

Witt's theory, chromophores, chromogens, auxochromes, 764 Rosanilme, fulvene derivatives, conjugated double linkings, basic, acid and neutral colouring matters, behaviour of colouring matters towards fibres and mordants, 765 Physiological action of dyestuffs, 772 Ostwald's new theory of colours and their numerical definition, 773 Rosenstiehl's colour system, 774 Manufacture of colouring matters, 776 Classification of colouring matters · I Nitro-colouring matters, 778 II Azo- colouring-matters, 778 III. Derivatives of hydrazonos and pyrazolones, 782 IV Hydroxyquinones and quinoneoximes, 783. V. Diphenyl- and triphenyl-methane colouring-matters, 783 VI. Derivatives of quinonimide, 785. VII. Aniline black, 786 VIII. Quinoline and acridine IX Thiazole colouring-matters, 787. X Oxyketones, derivatives, 787 xanthones, flavones, and coumarins, 787 XI. Indigo and similar and other natural colouring-matters, 788, indanthrene group, 789 XII Sulphur colouring-matters, 790. Dyewoods, cochineal, chlorophyll, 791 Testing of colouringmatters, 795 Recognition of the principal colouring matters on dyed fibres, 803

TEXTILE FIBRES

804

Wool, 804 Cotton, 807 Kapok, 810 Flax, 810. Hemp, 812. Jute, 812 Silk, 813 Sea silk, 820 Artificial silk, 821 Chemical tests for the recognition of different textile fibres, 827 Quantitative analysis of mixtures of textile fibres, 828 Dyeing and printing tests on fibres, 830. Fastness tests, 831. Theory of dyeing, 832 Machinery used in dyeing and finishing textiles, 835

DD. PROTEINS

857

General characters, reactions, hydrolysis and synthesis, polypeptides, 857. I Natural proteins (1) Albumins, leothin, egg industry, 859. (2) Globulins. (3) Nucleo-albumins, 861 (4) Fibringen, myosin (5) Histones. (6) Protamines, 862 II Modified proteins (1) Albumoses and peptones. (2) Salts of proteins, 862. III Conjugated proteins (proteids) (1) Hemoglobin (2) Nucleo-proteins (3) Glucoproteins, 862. IV. Albuminoids (1) Elastin. (2) Keratin (3) Collagen, 863 V. Various proteins, 865.

GLUCOSIDES AND OTHER SUBSTANCES OF UNCERTAIN OR UNKNOWN COMPOSITION. Amygdalm, saponin, digitalin, salicin; æsculin, populin; hesperidin, phloretin, iridin, arbutin; comferin, sinigrin; santonin; aloin; lecithin, cerebrin, iodothyrin, taurocholic, glycocholic, and cholic acids; biliverdin, bilifuchsin, and bilirubin, cantharidin, chitin; cholesterol, vitamins, 865.

PART II

VIII. ESTERS

(Oils, Fats, Waxes, Candles, Soaps)

The compounds or esters formed by alcohols with morganic acids have already been studied (see pp 234 et seq), and we shall now consider the esters resulting from the substitution of the typical hydrogen of organic acids by alkyl radicals. Various isomerides exist with these compounds, eg, methyl butyrate is isomeric with ethyl propionate, butyl formate with propyl acetate. Attention will, however, be paid more especially to the esters of glycerine (glycerides), since on these are based the fat, oil, soap, and candle industries.

PREPARATION These esters may be obtained by the general methods already described ($loc\ crt$), $e\ g$, by the action of the acid chlorides or anhydrides on the alcohols or sodium alkoxides

$$C_2H_5 \cdot CO \quad Cl + C_2H_5 \cdot OH = HCl + C_2H_5 \quad COOC_2H_5$$

They are formed also by the interaction of the silver salt of the acid and the alkyl iodide, and by the action of gaseous hydrog n chloride on a hot alcoholic solution of the nitrile of the acid. Further, the alcohols and acids themselves react, slowly in the cold and more rapidly although not completely in the hot, with formation of esters

$$\mathbf{C_2H_5} \cdot \mathbf{OH} + \mathbf{CH_3} \cdot \mathbf{CO_2H} = \mathbf{CH_3} \cdot \mathbf{CO_2C_2H_5} + \mathbf{H_2O}.$$

In practice the preparation is carried out as follows—the dry organic acid is mixed with an excess of absolute alcohol and the mixture saturated with dry hydrogen chloride gas, left for some time in a moderately warm place and then poured into water; the ester separates in an insoluble form after neutralisation of the aqueous liquid with alkali in the cold

In this reaction the acid chloride is probably formed as an intermediate product $\mathrm{CH_3}\cdot\mathrm{CO_2H} + \mathrm{HCl} = \mathrm{H_2O} + \mathrm{CH_3}\cdot\mathrm{CO}\cdot\mathrm{Cl}$, the latter—which with water might give the reverse reaction—being in presence of excess of the alcohol, forms the ester (equation given above) Esterification is, however, never complete, as the reaction is a reversible one, the hydrochloric acid and also other inorganic acids such as sulphuric acid, even in the dilute state, behaving as true moist catalysts (Berthelot, 1879 , V. Meyer, Fischer and Speier, 1895 ; Senderens and Aboulenc, Sabatier and Mailhe, 1909–1913)

$$C_nH_{2n+1} \cdot OH + C_nH_{2n}O_2 \Longrightarrow H_2O + C_nH_{2n-1}O_2 \cdot C_nH_{2n+1}$$

After a certain time a system is obtained which contains given quantities of alcohol (a), and (b), water and ester (z). The same equilibrium is attained by mixing 1 mol. of ester and 1 mol. of water as by mixing 1 mol. of and and 1 mol. of alcohol, and this equilibrium is represented by the following equation for bimolecular reactions (see Vol. I., p. 69). $k(a-z)(b-z)=k_1z^2$, where a and b represent the respective initial concentrations of alcohol and ester and z that of the ester and water when equilibrium is reached, all expressed in mols. (gram-molecules); k and k_1 are constants depending on the nature of the reaction and, according to a definite law, slightly on the temperature. If, for convenience, $\frac{k_1}{k}$ is made equal to K, the equation becomes: $(a-z)(b-z)=Kz^2$.

With 46 grams of alcohol and 60 grams of acetic acid (gram-molecules), it is found experimentally that K=0 25, and, as a and b both assume the value 1, 1 mol. of each reacting, the equation becomes $(1-z)^2 = 0.25 z^2$, i e, 1-z = 0.5 z or z. Thus means that when a state of equilibrium is reached, the system contains ! mol of acetic and $+\frac{1}{3}$ mol of alcohol $+\frac{2}{3}$ mol of ester $+\frac{2}{3}$ mol of water. Every substance partici pating in the equilibrium acts in proportion to its mass. If the above equation is given the form $\frac{a-z}{z} = K \frac{z}{b-z}$, it becomes evident that, in order to displace the equilibrium so as to have a greater value of z (i.e., of esterification), the value of a must be increased and that of b decreased, esterification being complete when $a = \infty$ The same final result is obtained when b is much greater than a, esterification again being complete when bIn practice, almost complete esterification is attained when 1 mol of acid is employed per 10 mols of alcohol or vice versa That the same result is obtained with excess of alcohol as with excess of acid is shown by the above equation, since, if instead of m mols of both acid and alcohol, n times as many molecules of acid are taken, the equation becomes: $\frac{m-z}{z}=K\frac{z}{n-m-z}$, whilst if n times as many molecules of alcohol are taken, it becomes $\frac{n-m-z}{z}=K\frac{z}{m-z}$. These two equations are identical, multiplication of the terms of the former by $\frac{n}{m-z}$ giving the latter

The limit of esterification is modified but slightly by change of temperature, and amounts, in the case of acetic acid, to 62 2 per cent at 10° and to 66 5 per cent at 220°.

Sabatier and Mailhe (1909–1913) have shown that in many cases esters are obtained with dry catalysts, especially thorium oxide or, better, titanium oxide at about 300°, over these is passed the mixed acid and alcohol vapours in suitable proportions, ie, with excess of one or the other component. When, however, a certain temperature, varying with the nature of the catalysing oxide, is exceeded the reaction becomes reversible and more or less decomposition occurs.

The esters of monohydric alcohols and monobasic fatty acids are neutral liquids lighter than water (0 8 to 0 9) and pleasant smelling (some forming artificial fruit essences), they are slightly soluble in water (the first members more soluble than the higher ones) and they boil undecomposed

By means of Grignard's reaction (see p 243) they yield tertiary alcohols. The esters are hydrolysed into their components when heated with alkali, mineral acid, or aluminium chloride, or superheated with water. The mineral acid has a purely catalytic accelerating action on the following reaction due to the water, which is very slow in its action.

$$\mathrm{CH_3} \ \mathrm{CO_2C_2H_5} + \mathrm{H_2O} = \mathrm{C_2H_5} \ \mathrm{OH} + \mathrm{CH_3} \cdot \mathrm{CO_2H}.$$

With bases, the hydrolysis is expressed by the equation:

$$CH_3 \quad CO_2C_2H_5 + NaOH = C_2H_5 \cdot OH + CH_3 \cdot CO_2Na.$$

The hydrolysing velocity of acids and bases depends on their degrees of dissociation, i.e., on their strengths, so that feeble acids and bases hydrolyse far more slowly than the strong ones. In the case of acids, the hydrolysis is caused by the hydrogen ions, and in that of bases by the hydroxyl ions. In the latter instance, however, the velocity of hydrolysis is greater than with acids, and with methyl acetate, the value of K for decinormal potassium hydroxide is 1350 times that for decinormal hydrochloric acid. In the hydrolysis of fats, the acids of which are feeble and the resultant salts therefore hydrolytically dissociated to a marked extent (i.e.), even with excess of fatty acid, there always remains free base or hydroxyl ions), complete hydrolysis is obtained industrially with a quantity of base (e.g., lime) much less than that required theoretically

As has been already mentioned, the esters of the first monobasic acids and monohydric alcohols are, in general, substances of pleasing odour and are used with suitable admixtures as artificial fruit essences 1

ETHYL FORMATE, H · COOC₂H₅, boils at 55° and 18 used for artificial rum or arrack

METHYL ACETATE, sp gr 0 9577, b -pt 57 5°, is used to dissolve cellulose to make the varnish ("dope") for aeroplanes, in its manufacture from acetates, sulphuric acid and methyl alcohol, the plant is rapidly attacked, even if Duchemin obtains the ester directly from pyroligneous acetic acid and methyl alcohol by means of a catalyst (the nature of which is not disclosed), a yield of 95 per cent being thus obtained and the intermediate preparation of calcium acetate avoided, the resulting ester is then rectified (see also Ger. Pats 232,818, 277,111, 277,187, 277,188, 285,990, and 286,812)

ETHYL ACETATE or Acetic Ester, CH₃ · COOC₂H₅, is used in medicine and for the preparation of ethyl acetoacetate, which is of considerable importance in organic syntheses. It is prepared by heating alcohol with acetic and sulphuric acids under the conditions given above. It boils at 77° and has the

sp gr 0 9238 at 0°.

AMYL ACETATE, $CH_3 \cdot COOC_5H_{11}$, has the sp g1. 0 8762 at 15° and b-pt. 138° to 139°, and forms a colourless, fairly mobile inflammable liquid, of neutral reaction and with the odour of pears; it is very highly soluble in alcohol or ether and slightly so in water, and burns with a luminous flame. It is used as a solvent for cellulose acetate and celluloid in the preparation of varnishes, especially aeroplane "dope", to some extent it serves for making alcoholic

solutions of artificial fruit (pear) essences

The crude impure product is prepared directly from fusel oil (see p 165) and acetic and sulphuric acids (calcium acetate is also used) The pure ester is obtained by heating 100 parts of pure amyl alcohol, 100 of glacial acetic acid, and 50 of concentrated sulphuric acid for two to three hours at 100° in a copper vessel fitted with a reflux condenser. It is then distilled in a current of steam, the vapours being rectified slightly by means of a short column The distillate is washed with a little sodium bicarbonate solution and twice with a little water, and is then dried by means of fused calcium chloride. The final product contains 85 to 95 per cent. of amyl acetate, the rest being amyl alcohol. The yield is about 95 per cent., the loss of sulphuric acid amounting to 6 per cent A second rectification yields a purer product. Amyl acetate may be obtained also by passing amyl alcohol and acetic acid vapours over a catalyst, eg, dry titanium oxide at 280° to 290° (or oxide of thorium or glucinum). Prior to the war the commercial product cost £5 to £6 per cwt, and the pure ester about double as much.

 Commorcial fruit essences are prepared from the following mixtures of esters, and formerly cost from 2s &d to 5s per kilo:
 Essence of princapple 25 grams ethyl butyrate + 135 grams amyl valerate + 5 grams chloroform + 5 grams aldehyde + 850 grams alcohol
 Essence of apples. 50 grams ethyl intrite + 50 grams ethyl acctate + 100 grams amyl valerate + 40 grams glycerol + 75 grams aldehyde + 75 grams chloroform + 745 grams alcohol.

Essence of pears 200 grams amyl acetate + 50 grams ethyl acetate + 100 grams ethyl nitrite + 20 grams glycerol + 630 grams alcohol
Essence of appricols 45 grams benzaldehyde + 190 grams amyl butyrate + 10 grams chloro-

Essence of upricus ab grams benzaidenyde + 190 grams amyl butyrate + 10 grams chloro-form + 705 grams alcohol

Essence of strauberries 27 grams amyl acetate + 18 grams amyl valerate + 9 grams amyl
butyrate + 9 grams amyl formate + 15 grams othyl acetate + 7 grams essence of violets + 915 grams alcohol

Essence of peaches 100 grams amyl valerate + 100 grams amyl butyrate + 20 grams ethyl acetate + 10 grams benzaldehyde + 770 grams alcohol

The natural essences of the citrus fruits were given on p. 415

The amounts of different volatile oils and essences imported into France were (tons): 845 in

1913, 612 in 1914, and 759 in 1915.

ETHYL BUTYRATE, C_3H_7 COOC₂H₅, boils at 121° and is used as essence of pincapple and in rum

ISOAMYL ISOVALERATE, C₄H₉ · COOC₅H₁₁, boils at 194° and is used in

essence of apples

The higher esters form constituents of waxes (Cetyl Palmitate, $C_{16}H_{31}O_2C_{16}H_{33}$, Melissyl Palmitate, $C_{16}H_{31}O_2C_{30}H_{61}$, Ceryl Cerotate, $C_{26}H_{51}O_2C_{26}H_{53}$, etc.) These higher esters distil unchanged only in a vacuum, under ordinary pressure they decompose into olefines and fatty ecids

Esters of Polybasic Acids are prepared by the general methods described above, acid esters are obtainable if one or more of the carboxyl groups are

not esterified.

The esters of oxalic acid are obtained, for instance, by heating anhydrous oxalic acid with alcohols, the normal ester being separated from the acid ester

by fractional distillation

The importance of Malonic Esters in organic syntheses has already been illustrated on pp 368 et seq , the normal methyl ester boils at 181° and the ethyl at 198° (sp gr 1 068 at 18°) The two hydrogen atoms united with the middle carbon atom may also be replaced by alkyl groups. Thus, for example, Ethyl Dimethylmalonate, $(C_2H_5 \quad CO_2)_2 \quad C(CH_3)_2$, is obtained from the sodium derivative by treatment with methyl iodide. These compounds, when heated, lose CO_2 and yield alkylacetic derivatives. Similar relations are found with the alkyl derivatives of succinic acid or esters.

The preparation of Ethyl Acetoacetate and its importance in organic syn-

theses have been dealt with on p 396

The Normal Methyl Ester of succinic acid, CH_3 CO_2 CH_2 CH_2 $CO_2 \cdot CH_3$, melts at 19° and boils at 80° under 10 mm. pressure, the *ethyl ester* boils at 216°.

GLYCERIDES, OILS, FATS

Glycerol being a trihydric alcohol, its three alcoholic groups may be partially or wholly esterified by acid residues. It suffices, indeed, to heat glycerol with fatty acids to obtain mono-, di-, and tri-glycerides. These glycerides are also formed by the action of the tissues of the pancreas on a mixture of oleic acid and glycerol, a still better method for synthesising fats being the treatment of the sulphuric ethers of glycerol with fatty acids dissolved in concentrated sulphuric acid. Most fats and oils are formed of triglycerides, which, according to the nature of the fatty acid saturating the three alcoholic groups of the glycerol, are termed Tripalmitin (melts at 60°), Tristearin (inelts first at 55° and, after resolidification, at 71 6°), and Triolein (liquid, solidifying at about 0°)

Triolein, which is the principal component of liquid fats and especially of olive oil, is formed by the esterification of the glycerol molecule with 3 mols. of oleic acid (sce p 358).

$$\begin{array}{ccc} \mathrm{CH}_2 & \mathrm{O} \cdot \mathrm{O} \cdot \mathrm{C}_{18} \mathrm{H}_{33} \\ | & \mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{O} & \mathrm{C}_{18} \mathrm{H}_{33} \\ | & & \mathrm{CH}_2 \cdot \mathrm{O} & \mathrm{O} \cdot \mathrm{C}_{16} \mathrm{H}_{33} \end{array}$$

Mono- and di-glycerides are not found in the fats (only ravison oil contains a diglyceride, *dicrucin*; see also esters of polyhydric alcohols and glycerol with mineral acids, pp 356, 381 et seq.).

Certain fats (butter, cocoa-butter) contain mixed triglycerides, i.e., with different acid radicles, some of them being of acids of low molecular weights, soluble in water 1. A. Grun (1906–1909) synthesised mixed glycerides con-

Volatile fatty acids soluble in water The number of c c. of decinormal potassium hydroxide solution required to neutralise the volatile fatty acids soluble in water from 5 grms. of the fat

taming three acid residues, all different.1 The most simple glyceride is Triformin, $C_3H_5(CO_2H)_3$, which was obtained crystalline by P van Romburgh (1910) by protracted heating of glycerol with 100 per cent formic acid, it crystallises with difficulty, melts at 18°, boils at 266° (762 mm pressure), and at 210°, under ordinary pressure, decomposes. It is hydrolysed slowly by cold, rapidly by hot water.

constitutes the so-called Reichert-Meissl-Wollny number, and serves to ascertain the purity of certain fats, especially of butter. The determination is made as follows—exactly 5 grms of the fat (melted at a low temperature and lapidly filtered) is heated in a flask of about 350 c c capacity with 10 c c of alcoholic potash (20 grms of KOH in 100 c.c 70 per cent alcohol) on a water-bath with frequent shaking until almost all the alcohol is evaporated, the remainder of the alcohol is completely expelled by shaking the flask and introducing a current of air every After about twenty minutes, when the smell of alcohol is no longer detectable, 100 c c of distilled water is added, the heating being continued until a clear solution is obtained (if the liquid does not become clear the test must be commenced anew, hydrolysis being moomplete). To the tepid solution are then added 40 c c of the dilute sulphure and (1 vol

adouble wire-gauze and the liquid distilled, the dimensions of the apparatus being shown in min in Fig. 254 In about half an hour, exactly 110 c c of liquid distills over, thus is mixed and filtered through a dry filter, 100 c c of the filtrate being titrated with decinormal KOH solution in presence of phonolphthalein. The volume of the alkali used is increased by one-tenth of its value (the volume of the distillate being 110 c c) and diminished by the number of c c of the alkali obtained from a control experiment made without fat as a check on the reagents employed. The result is the Reichert-Meissl-Wollny number. At the present time many laboratories employ the Leffmann-Beam-Polenske method, which effects more rapid hydrolysis. (see later, Butter) For butter the limits for this number allowed by law are 20 to 31 5 (Municipal Laboratory of Milan), the butter being suspected if it gives a value of 22 to 26, although the butter of certain districts and from certain animals may, in exceptional cases, give a number as low as 21 The value for rancid butter, even two months old, is only slightly lower (by about 2) than the normal

Insoluble fatty acids The quantity of fatty acid insoluble in water obtainable from 100 parts of fat is called the Hehner number, and is determined as follows into a flask of about 200 cc capacity is dropped, from a weighed vessel containing the dry filtered fat, 3 to 4 grms of the substance, the vessel being then reweighed exactly. After addition of 50 cc of alcohol and 1 to 2 grms of KOH, the flask is heated on a water-bath for five minutes, a clear solution being obtained. If the addition of a drop of water produces turbidity, saponification is incomplete, and the heating is continued for a further period of five minutes, the liquid being then tested as before

F10 254

Evaporation 18 then continued until there remains a dense mass, which is taken up in 100 to 150 c c of water, acidified with dilute sulphuric acid, and heated until the clear fatty acids float on the surface. The liquid is then poured on a dry, tared filter (about 12 cm in diameter and in a funnel either without a neck or with a very short one), previously half filled with hot water. The acids are washed with boding water until the washing water ceases to show an acid reaction (as much as 2 litres of water is sometimes required). The filter is then cooled in a beaker of water so that the fatty acids solidify. The filter is then detached from the filter and introduced, with the gails with a tared backer, which is heated in an oven at 100° to 102° until its weight. the acids, into a tared looker, which is heated in an oven at 100° to 102° until its weight remains almost constant (difference between two weighings less than 1 mgm). The weight of

The weight of fatty acids, referred to 100 parts of fat, represents the Heliner number.

Unadulterated fats generally have Heliner numbers of 95 to 97 (for butter it is 875, for eccount oil, 85 to 92; for palm-kernel oil, 91)

The synthesis of triolein has been applied practically by (1 Gianoli (1891) to diminish the rancidity of oils, especially of oline oil obtained from the pressed residue by means of carbon disulphide. This oil contains 20 to 30 per cent., or even more, of oleic acid, and is heated in an autoolaye with the corresponding quantity of glycerol (or even a slight average of the selection of the pressed residue by means of carbon disulphide. autoclave with the corresponding quantity of glycerol (or even a slight excess) at 250° in a slow stream of CO₂, or in a vacuum with a trace of oxalic acid to facilitate mixing of the liquids and avoid blackening of the mass owing to the presence of hydroxy-acids, the distillation of the water formed in the reaction is hastoned by adding fragments of tin to the mass. This procedure water formed in the reaction is hastoned by adding fragments of tin to the mass. This procedure yields a neutral or almost neutral oil with an iodine number less than 75 and a marked viscosity, so that it may be used even for mixing with lubricating oils. Belluon (1911) also achieved an almost quantitative synthesis by heating together the theoretical proportions of glycerol (1 mol.) and fatty acid (3 mols.) at 180° to 260° for two hours in a vacuum, so as to expel the water formed, which would otherwise produce the reverse reaction, in a current of CO₂, the same reaction takes place at the ordinary pressure. A. Walter (1911) obtained a mixture of tri- and di-olems by treating glycerol and acetic acid in presence of the enzymes of castor oil seeds, which act as catalysts. Indeed, catalysts cause reversible reactions, and while in presence of water the enzymes of castor oil seeds hydrolyse fats (see later, Biological Saponification) with formation of glycerol and fatty acids, if water is excluded as much as 35 per cent of the fatty acids may be converted into glycendes. acids may be converted into glycerides.

Oils and fats have coefficients of expansion greater than those of other

liquids (100 litres of olem at 0° becomes 101 6 at 20°)

Fats and, still more, waxes contain also non-glyceride components, $e\,g$ Cetyl Alcohol, C16H34O, which, as such or as palmitic ester, forms one of the principal constituents of spermaceti fat Cerotic Acid, C₂₇H₅₂O₂, and its ester occur in large proportions in wax Non-hydrolysable substances (cholesterol, phytosterol, isocholesterol, aromatic alcohols, etc.) are always found in small quantities in fats (olive oil, about 0 75 per cent, ravison oil, 1 per cent, cottonseed oil, 1 6 per cent, lard, 0 25 per cent, cod liver oil, 0 5 to 3 per cent, tallow, 0 02 to 0.6 per cent, bone fat, 0 4 to 2 4 per cent, wool fat more than 7 per cent) The oils of cereals and of Leguminosec contain abundant amounts of LECITHIN, C42H86O9NP, which is decomposed by the enzyme of the pancreas or castor oil seed, but not by that of the blood (serum lipase) The fat of peas contains 1 17 per cent of phosphorus or 30 4 per cent of lecithin, and that of wheat, 0 25 per cent of phosphorus or 6 5 of lecithin Lecithm abounds in the brain, nerves, blood corpuscles, and egg-yolk, for its The amount of lecithin is obtained by constitution, see chapter on Proteins multiplying that of phosphorus by 26

Fresh fats and oils contain minimum proportions of free fatty acids (less than I per cent), these increasing with lapse of time, especially if the fats are not melted

This rancidity is facilitated by sunlight and also by the protein substances of unrefined fats and oils. Coconut oil does not readily turn rancid, but with olive oil the proportion of free oldic acid reaches 25 per cent, and with palm oil as much as 70 per cent of free acids may be formed. The taste and smell of fats depend, not on the glyceiides, but on other substances

The specific gravity of oils and fats varies from 0 875 to 0 970 (see Table given later) and is determined by means of an aerometer or Westphal balance (see Vol I, p 76). They are almost completely insoluble in water, acctone, or cold alcohol (this dissolves a certain amount of castor oil and of olive-kernel oil).

The solubility increases markedly in boiling alcohol and is complete in ether, chloroform, carbon disulphide or tetrachloride, petroleum or petroleum ether (in the last two, castor oil is slightly soluble, while ether dissolves a little *pure* tristearm) ¹

When heated on a spatula held some distance above a flame, all fats give greenish flames, owing to the presence of carbon monoxide and sodium, also all fats are blackened by osmium tetroxide (sensitive reaction)

Oils dissolve small quantities of sulphur or phosphorus and larger quantities of soaps even when they are dissolved in ether or petroleum ether.

The oxygen of the air exerts a marked and rapid influence, as it is fixed by the *drying oils* (linseed, walnut, hempseed, poppyseed, etc.), which are thus transformed into *varnishes*, this occurring more readily if the oils are boiled with oxide of lead or of manganese.

¹ To determine the quantity of fat contained in any solid substance, a weighed portion of the latter in a finely divided, dry state (5 to 15 grms is taken and, if pasty, mixed with fragments of pumice) is introduced into a filter-paper cartridge situate in a Sozillet apparatus (Fig. 255)

The Soxillet apparatus is connected at the bottom with a tared flask resting one water both and at the top with a reflect paper. From 100 to 150 and of the state of the

on a water-bath, and at the top with a reflux condenser. From 100 to 150 c c. of petroleum ether or ether is then added and extraction continued for 2 to 4 hours in such a way that the solvent siphons over 15 or 20 times per hour. A calcium chloride tube may be attached to the extremity of the condenser to prevent access of mosture from the air. The solvent is afterwards evaporated from the flask and it died at 100° to 102° with almost constant in weather.

the residual fat dried at 100° to 102° until almost constant in weight

The difference between the weight of fat and that of the original substance gives the solids
not fat

p s a n t li H i s o o p p s a n t li H i s o o o p p s a o o

Frg. 255.

IODINE NUMBER. REFRACTIVE INDEX 463

With the other—non-drying—oils, the air (together with light) gradually causes runcidity, which, however, some attribute to the action of bacteria, or rather to hydrolysing and oxidising enzymes, however this may be, the acidity increases owing to formation of butyric, caproic, oleic, etc, acids, but the rancid taste and smell are due more especially to the formation of aldehydic, ketonic, and ethereal substances, hydroxy-acids, and volatile acids which can be eliminated by repeated washing with dilute solution of alkali and subsequently of bisulphite (for the aldehydes and ketones, see later, Renovated

When fats turn rancid, the wdine number 1 is lowered and the index of refraction,2 the dropping or melting-point (see pp 5 and 6), and the acetyl

¹ The Iodine Number is characteristic of a fat (see Table, p. 466), and expresses the percentage of rodine absorbed by the fat (see, by its unsaturated components, e.g., cleic and or the corresponding glycerides, two atoms of rodine being fixed for each double linking, see p. 107). This determination requires (1) An sodine solution obtained by mixing, 48 hours before using, equal volumes of the two following solutions: (a) 25 grms of rodine in 500 c c of pure 95 per cent alcohol, and (b) 30 grms of mercuric chloride in 500 c c of pure 95 per cent alcohol,, prepared by dissolving 24 grms of the pure solit in a litre of water, the titre in rodine being ascertained as follows: 3 8657 grms of pure, dry potassium dichromates dissolved in water at 15° and the solution made up to a litre, exactly 20 c c of this solution is introduced into a flask with a ground stopper, about 15 c c of a 10 per cent potassium iodide solution (free from hydroxide) being added and then 5 c c of concentrated hydrochloric acid. This procedure results in the liberation of exactly 0.2 grm of iodine. The thiosulphate solution is then run in from a burette until the solution is only faintly yellow. A few drops of fresh starch-paste are then added and addition of the thiosulphate continued until the blue colour disappears. It is thus found how much iodine corresponds with 1 c c of thiosulphate solution, the strength of which remains constant for

solution, the strength of which remains constant for

several months

The iodine number is determined by dissolving a known weight of the fat or oil (0.2 to 0.5 grm or, for drying-oils, 0.1 to 0.12 grm), in a 500 to 800 c c flask with a ground stopper, in 15 c c of pure chloroform and adding 25 c.c of the iodine solution (propared 48 hours previously, as stated above), if, after two hours, the liquid is no longer very brown, a further measured volume of iodine solution is added and the whole left in the dark After six hours the excess of iodine left unabsorbed by the fat is determined by adding 20 c.c. of 10 per cent. KI solution, diluting with 150 c c of water, and adding more KI if the reddish brown solution is not clear. The excess of iodine is then thrated with the thiosulphate solution The rodine number is determined by dissolving a

. 4

with 150 c c of water, and adding more KI if the reddish brown solution is not clear. The excess of iodine is then threated with the thiosulphate solution in the manner already described. Immediately afterwards, 25 c.c of the iodine solution employed is titrated. The difference between the two values thus obtained, expressed as grams of iodine per 100 grms of the fat, represents the iodine number.

The index of refraction is measured in the Zoiss Butyro-refractometer (Fig. 256), by observing the total reflection of a very thin layer of oil or fat situate between two prisms, p, mounted in the two chambers, A and B (the latter rotates on the linge, C, so as to squeeze uniformly the film of oil smeared in p the screw. F, fixes B against A). Indirect light from the sun or from a powerful sodium lamp is passed through the prisms by means of the mirror, J, and the limit between the light and dark portions of a scale reading from 0 to 100 is read through the eye-piece, K. A thermometer, M, indicates the temperature at which the observation is made, and this temperature may be regulated (s) as to melt solid fats) by passing water, at a higher or lower temperature, in at E and through the rubber tube, D, to the outflow, e. The refraction is usually stated in the centesimal degrees of the Zeiss scale, the temperature—normally 25°—being indicated. Values obtained at other temperatures may be referred to the normal temperature by adding or subtracting 0 55 for each degree above or below 25° (the number 0.55 is accurate for butter, but slightly inexact for other fats)

The index of refraction is obtained from the reading on the Zeiss scale by adding to the value 14220 as many ten-thousandths as are obtained by multiplying the scale degrees by 7.8 when the reading is between 0 and 30; 7.5 if between 30 and 50, 7.3 if between 50 and 70, and 70 if between 70 and 100. (This procedure, too, gives accurate values for butter, but slightly inaccurate ones for other fats). Thus, 30° on the Zeiss scale would correspond with a refract

index of $1.4220 + 30 \times \frac{78}{10000} = 14220 + 00234 = 14454$, which agress a'm ist exactly with

1 \$ { }

In butter rancidity is facilitated by the presence of number (see p. 224) rise the casem and milk-sugar, which give rise to other decompositions. Although not rigorously exact, the degree of rancidity is expressed by the number of c c of normal potash necessary to neutralise 100 grms of the fat A butter with 10° of rancidity should be rejected. The free fatty acids in fats and oils are usually determined with a decinoimal alkali solution, 5 to 10 grms of the fat being dissolved in 50 to 60 c.c. of a perfectly neutral mixture of alcohol and ether (1 2) and phenolphthalem being used as indicator number gives the number of n grms of KOH necessary to neutralise 1 grm of fat

By passing a current of air through oils heated to 70° to 120°, the so-called blown or oxidized oils, rich in triglycerides of hydroxy-acids, are obtained These are dark in colour and have the density of castor oil (but are soluble in petroleum ether), but if "blown" in the cold for a longer time, they are obtained almost colourless Blown oils are valued as lubricants If the blowing is continued, yellow or brown gelatinous masses are obtained. With the exception of the iodine number and the Hehner number—which are lowered the chemical and physical constants of blown oils (thickened oils, etc.) are higher than those of the original oils Oils also fix ozone in proportion to the unsaturated fatty acids they contain, and at the same time become denser (see p 359), olive oil has the ozone number 15 8 (grms of ozone fixed per 100 grms of oil. Fenaroli, 1906), maize oil, 21, linseed oil, 33, and castor oil, 16 Also sulphur is dissolved and combined in amount increasing with the proportion of glycerides of unsaturated acids present, giving very viscous, brown liquids, sometimes almost solid and gummy.

Chlorine acts on fats, partly replacing hydregen and partly combining

directly.

Iodine is added slowly, but the addition becomes rapid in alcoholic solution

and in presence of mercuric chloride (Hubl)

Addition of concentrated sulphuric acid to oils results in the development of heat and the evolution of sulphur dioxide, in the cold, sulphuric ethers of the triglycerides are formed 1

Dilute nitric acid, in the hot, slowly oxidises fats, while the concentrated

acid attacks them with evolution of red vapours.

Nitrous Acid renders non-drying oils denser and solidifies them, the triolein being converted into trielaidin (see p 359), the drying oils remain liquid, although their specific gravity, viscosity, and saponification number increase,

and the sodine number and Hehner number (per cent of

msoluble fatty acids) diminish.

When burnt, fats give the characteristic odour of acrolein, which is derived from the glycerol.

the true index of refraction (1.4452), similarly, 60° on the scale means a refractive index of $1\,4220+60\times\frac{7\,3}{10000}=1\,4658$. Inversely, the scale reading is obtained by subtracting 1 4220 from the refractive index and dividing the remainder by 78, 75, 73, or 70.

The colour of the line of demarcation on the scale sometimes gives an

indication of impurity in the fat, being colourless for pure butter, blue if margarine is present, and orange with admixtures of certain other fats.

Maumene found that the rise of temperature produced by suphuric acid of definite concentration serves to distinguish different fats (see Table

Fig 257. given later) This constant (Maumené number) is nowadays determined by means of the Tortells thermo-oleometer (1905) 20 c.c. of the oil is poured into the glass receiver, A (Fig 257), the jacket of which has been evacuated. The oil is striced for one minute with the thermometer, B, fitted with platinum vanes, and the initial temperature read 5 c.c. of concentrated sulphuric acid (sp. gr. 18413 or 66° Bé) is then added from a pipette in 30 seconds, the liquid being kept stirred as long as the temperature rises. The rise of temperature is the Maumené number. If the sulphuric acid has not the density given above, but is allowed to absorb even traces of moisture, discordant results are obtained

On paper, fats and oils produce a translucent spot, insoluble in water (different from glycerol)

All these reactions serve as qualitative and quantitative tests to establish the purity of fatty substances (see later)

WAXES. Unlike fats, waxes are usually composed, not of triglycerides, but of esters derived from the higher monohydric alcohols ($e\,g$, cetyl, myricyl, and ceryl alcohols, cholesterol, etc.), and sometimes dihydric alcohols also. They contain, in addition, the high acids ($e\,g$, palmitic, stearic, cerotic, oleic, etc.) and alcohols in the free state. Further, beeswax contains as much as 15 per cent. of high melting-point hydrocarbons

They form homogeneous muxtures in all proportions when fused with fats and give also a greasy spot on paper, but they yield no odour of acrolein when burned (unlike fats) and do not become rancid when exposed to the au

The commonest waxes are beeswax, Japanese wax, spermaceti wax (from whales), and carnauba wax (from the leaves of certain palms)

Beeswax forms the hexagonal cells of beehives—After the honey has been expressed, the mass is melted with water to remove impurities, on cooling, a solid layer of crude wax separates at the surface, and this, after being melted and cast into blocks, forms virgin or yellow wax—This is placed on the market in various qualities and colours, some of them being olive-brown, they bear the name of the place of origin and can be bleached with varying facility.

The European waves have the following physical and chemical constants, which allow of the detection of the frequent adulteration to which they are subjected: melting-point, 62° to 64°; solidification point, 60°, specific gravity at 98° to 100°, 0 822–0·847, saponification number, 95 to 97 (rarely 88 to 105), acid number, 19 to 22, difference between saponification number and acid number (ester number), 74 to 76, inding number, 8 to 11, degrees on the Zeiss butyro-refractometer at 40°, 44 to 45 5 (rarely 42) Foreign waxes have somewhat different constants.

The bleaching of the wax is effected by melting it several times with slightly acidified water, allowing it to cool slowly so as to separate the impurities more thoroughly and then causing it to solidify in thin layers on a cylinder half immersed in water and exposing these to the sun and air for five to six weeks. A more expeditious method of bleaching consists in treatment with hydrogen peroxide or other oxidising agent (dichromate and dilute sulphuric acid), or with animal charcoal. The white wax thus obtained—often improved in appearance by the addition of 4 to 5 per cent of tallow—presents almost the same physical and chemical constants as the viigin wax, the iodine number alone being lowered by 1 to 7.

The wax is insoluble or only slightly soluble in cold alcohol or ether, but dissolves in the boiling solvents. It dissolves in the cold in chloroform, oil of turpentine, carbon disulphide, or fatty oils. It resists dilute caustic alkalis and concentrated alkali carbonates. It is used for making candles, waxed cloth and paper, mastics, artificial fruit and flowers, etc.

Carnauba wax is exuded from the leaves of certain palms (Corypha cerifera) of Brazil and Venezuela. In the crude state, it is hard and brittle, and of a yellowish green colour, it melts at 83° to 88°, has the acid number 4 to 8, the saponification number 80 to 95, the ester number 75 to 76, and the iodine number 7 to 13, and contains more than 50 per cent. of non-hydrolysable substances. It is used for the manufacture of candles and, mixed with potash (soft) soap, forms the encaustic with which pavements are cleaned

Japanese wax is the fat extracted from the fruit of certain Japanese and Chinese trees of the order Terebinthacese (Rhus succedanea, R vernicifera, and R. sylvestris). It differs from beeswax in having an ester number of about 200 and a saponification number of about 220. It is completely hydrolysable, since it consists of glycerides of palmitic, stearic, and arachic acids, and contains also 9 to 13 per cent of free palmitic acid.

Uses Wax was formerly used mostly for making the wax candles prescribed for religious ceremonies in Roman Catholic churches, and about the beginning of the present century the Holy Synod of the Orthodox Russian Church rendered obligatory the use of candles of beeswax. Admixture with beeswax of stearin, paraffin wax, and various other substances is, however, not easy to detect by analysis

Before the European War, yellow beeswax cost up to £150 per ton and the bleached wax £170.

PHYSICAL AND CHEMICAL CONSTANTS OF OILS, FATS, AND THE CORRESPONDING FATTY ACIDS

		FANIC CHEMISTRY	
Index of refraction at 60°	Fatty aclds	1 4548 1 4506 1 440 1 440 1 4401 1 4510 1 4510 1 4200 1 4205 1 4750 (at 20°)	1 4375 1 4370 1 4395 1 4321
Butyro- refractometer reading	Fat	72 5 at 40° 63 4 at 40° 68 4 at 25° 68 at 25° 78 at 25° 67 at 25° 67 at 25° 62 4 at 25° 63 at 40° 47 at 40° 34 at 40°	19 at 10° 53 7 at 10° 11-42 at 10° 18-51 at 10° 75 at 25° 70 at 25° 70-72 at 25°
Maumené number	Fat	110-126 86-89 86-89 75-90 75-90 75-91 148 55 45-51 41-45 11-45 11-45	24-27 24-27 102-113 92
Iodine number	Fatty acids	179-198 141 141 189 110-125 110-125 110-13 110-103 87-68 87-68 89-103 89-104 89	41 5 55 7 55 7 28-81 28-31 64 65 3 130-170 131 138-150
Ιοά πιια	Fat	171-195 148 139-143 116 108-110 108-102 108-102 109-102 139-102 131-14 131-14 131-14 131-14 132-110	38-46 46-56 71-86 26-38 50-70 61 5 67-71 167-71 121-136
ication iber KOH	Fatty acids	197 188 4 202-208 200 4 185 185 192 204 201 6 183 205-204 183 205-204 100 205-204	197 200 202 6 210-220 202 202 202+ 204+207
Sapomfication number mgrms, KOH	Fat	192-195 172-192 18-193 189-196 189-196 170-179 170-179 191-191 191-195 191-250 192-250 193-250 193-250 193-250	193-200 191 191 196 227 195 193 171-189 188 184-196
Reichert- Metsal- Wellny number		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.25 0.25 0.3 0.7-2 01-0-4
Acetyl mumber		148 888818 1115 1147-150 106 108 28-8 28-8 1-12	2.5.8 11.1
Hebner		95 5 2 95 2 95 2 95 2 95 2 95 95 95 95 95 95 95 95 95 95 95 95 95	95.6 86-94 88-94 87-90 93-96 95.3 95.3 95.3 95.3 95.3
Melting- point	Fatty acids	17-21 18-19 18-19 18-19 18-19 18-32 16-22 21-1-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21	48° 44° 85° 85° 85° 85° 85° 85° 85° 85° 85° 85
¥ a	Fat	- 20° 20° 	28°-40° 28°-43° 38°-40° 38°-40° 17.5°
ring t	Fatty acids	13°-17° 15°-17° 15°-18° 11°-14° 22°-25° 21°-23 6° 22°-29° 22°-29° 22°-29° 22°-29° 22°-29° 22°-29° 22°-29° 22°-29° 22°-29° 22°-20° 22°-16° 22°-	38°-46° 28° 37°-38° 39°-38° 30·5° 31°-32° 18°-24° 23·4°
Sclidifying point	[Fat	-16° to -27° 1 - 28° - 20° - 20° - 20° - 10° to -18° - 10° to -18° - 10° to -29° - 20° to -7° -	35°-27 15°-22° 43°-30° 20°-23° 27°-30° 15° 18°-20° 0° to -10° 9°-2°
Specific gravity at 15°		0 0315-0-9375 0 0255-0-9370 0 0255-0-0250 0 0220-0-0310 0 0400-0-0310 0 0400-0-0670 0 0400-0-0670 0 04176-0 0106 0 04176-0 04176 0 0500-0 04476 0 0500-0 04476	0-9430-0-9520 0-9140-0-9160 0-9189 0-920-0-9400 0-9033 0-9270-0-9270 0-9270-0-9270 0-9270-0-9270
		Vegetable Oils and Fats Linnsed oil Emrysed oil Poppysed oil Poppysed oil Rotas oil Cortoneed oil Sesuné oil Colta oil Colto oil Colto oil Colto oil Pomy co	Animal Fats Ox fat(fallow) Bone fat Horse fat Butter Bong's fat Gard) Human fat Coose gresse Cod fiver off Whale off
			+ 100

Hydrolysis (Saponification) of fats and waxes. The term saponification is applied to the decomposition of fats into the alcohols and acids composing them with simultaneous addition of a molecule of water (hydrolysis), by heating with water under pressure at 200° or by the action of acid or alkali (see p. 458), when alkali is used, the alkali salt (soap) of the fatty acid and not the free acid itself is obtained

$$\rm C_3H_5(O\cdot OC_{18}H_{35})_3 + 3KOH = C_3H_5(OH)_3 + 3C_{18}H_{35}O_2K$$
 Tristeurin Potassium stearato

The mechanism of the saponification of fats was for long a matter of controversy. Some regarded it as occurring gradually, 1 mol of fat first reacting with 1 of alkali (bimolecular reaction) (see Vol I, p. 69) and di- and monoglycerides being formed as intermediate products, whilst, according to others, saponification was a single (tetrainolecular) reaction. Only since the investigations of Geitel (1897), Lewkowitsch (1898–1901) and, more especially, Kremann (1906), does it appear to be established with certainty that saponification is gradual, consisting of successive bimolecular reactions. Contrary to the view of Fortini (1912), J. Meyer (1913) showed that the various glycerides, glycerol, and soap occur together in an equilibrated mixture, the equilibrium undergoing gradual displacement towards complete saponification, as was indicated by the results of Kellner (1909) and of Kremann (1905–1908)

Saponification with lime, baryta, or lead oxide is never so complete as with caustic potash or soda in the hot, while with an alcoholic solution of caustic potash or soda it is complete and rapid, formation of the ethyl ester of the fatty acids and liberation of glycerine first occurring and then complete hydrolysis of the ethyl ester. The latter may be obtained directly from fats by heating

them with slightly acidified alcohol.

Sodium and potassium carbonates do not attack fats

Fats may be saponified by treatment with a small proportion of aqueous ammonia in an autoclave, but the early attempts to render this process practicable on an industrial scale were unsuccessful. The reaction was, however, investigated systematically by Garelli, Barbé and De Paoli, who obtain complete saponification by heating the fat for seven to eight hours in a lead-lined autoclave under a pressure of 6 atmos, with a minimum amount of ammonia (1) 6 per cent.), which acts catalytically and liberates the fatty acids. This process is undoubtedly an improvement on the lime, magnesia and zinc oxide processes, but since the ammonia cannot be recovered, it cannot compate with the enzymic decomposition of fats in open wooden vats at comparatively low temperatures (see later). The use of 6 to 7 per cent of ammonia, as proposed by Buisine (1883), or even of 2 to 3 per cent., in an autoclave leads to serious difficulty owing to the formation of a completely emulsified mass of ammonia soaps which do not allow the glycerine solution to separate, and to the trouble and expense of treating the ammonia soaps with steam to separate the fatty acids. Garelli, Barbé and De Paoli (Ger. Pat 209,537, 1906) transform the ammonia soaps directly into soda soaps by simple treatment with sodium chloride, just as in the Solvay soda process (Vol I, p 596), the recovery of the ammonia is, however, difficult and the loss exceeds 8 per cent

A process patented some years ago for saponifying fats by means of sulphur dioxide or bisulphite in autoclaves at 10 to 15 atmos offers no promise of

practical application.

No matter how difficult the saponification of a fat, it may be rendered complete even in the cold by the Henriques process, which consists in dissolving, say, 3 to 4 grms. of the fat in 25 c.c. of petroleum ether and 25 c.c. of normal alcoholic potash, the mixture being shaken from time to time during a period of twelve hours, on heating, waxes are also dissolved in this manner

111.

To determine the quantity of alkali fixed (saponification number), the excess

of alkalı is titrated with normal acid solution

Dilution of the saponified waxes with a considerable amount of water results in the separation of the higher alcohols, which can be extracted with ether Spermaceti contains 40 to 60 per cent of these insoluble alcohols (which are known industrially as non-saponifiable substances), becswax 53 per cent., and carnauba wax 55 per cent

ANIMAL OILS AND FATS

It is not possible here to study in detail all fats, so that only the more important ones, the processes of treating which are partially applicable to the

others, will be considered

Classification of fats into those of animal and those of vegetable origin or into solids (tallow, lard, sheep's tallow, goose grease, and coconut butter) and liquids (oils) is of no practical value, but it is necessary, with the liquid vegetable fats, to distinguish between those which have drying (linseed, walnut, poppyseed) and those with non-drying properties (olive, colza, arachis, castor, cottonseed, maize, etc)

Animal fats are usually melted (by direct-fire heat or by steam) or compressed either hot or cold, although sometimes they are extracted with solvents. Vegetable oils are extracted from the disintegrated seeds by pressing them hot or by treatment with suitable solvents. In both cases they are refined by a series of mechanical and chemical operations which will be described more

particularly in dealing with tallow, butter, and olive oil

TALLOW (ox fat, sheep fat, etc., but not hog's fat) melts at 35° to 37°, contains 75 per cent of stearn and palmitin (in equal parts) and 25 per cent of clein. In the crude state, as it comes from the slaughterhouse, it is incorporated in a cellular tissue and contains various impurities, such as blood, skin, etc., which gradually putrefy, giving a bad odour to the tallow To prepare the real fat from the crude tallow, the latter is cut up in suitable machines fitted with knives and is then melted in open iron or copper boilers provided with stirrers and heated either wholly by direct-fire heat or partly in this way (Fig. 258) and partly by injecting direct steam, superheated to 180° to 200° through the tube, D. The strongly smelling gases evolved are led by the pipe, a, under the hearth and there burned.

¹ The Saponification number, or Köttstorf number, indicates the number of milligrams of KOH necessary to saponify 1 grm of fat or wax completely. The determination is made as follows 15 to 22 grm. of the filtered fat is weighed into a 150 to 200 c c, wide-necked liask, to which is then added 25 c c of seminormal alcoholic KOH solution prepared with 90 per cent. alcohol and also 25 c c of neutralised alcohol. The mixture is then heated for 15 to 20 minutes and also 25 c c of neutralised alcohol. The mixture is then heated for 15 to 20 minutes. in a reflux apparatus on a water-bath previously heated to boiling, and, while still topid, is titrated with seminormal hydrochloric acid (not sulphuric acid, which would precipitate $K_0S()_4$), using phenolphthalein as indicator Multiplication of the number of c.c. of seminormal K()H solution actually consumed in the saponification by 0 0301 gives the number of mgrms, of KOH, which is calculated for 1 grm of the fat

Non-appointable substances (mineral oils, etc) added to fats as adulterants can be detected by the following qualitative test devised by Holde two drops of the oil are boiled for one minute with a solution of a piece of caustic potash the size of a pea in 5 c c. of boiling absolute alcohol, 3 to 4 c c of water being afterwards added to the liquid; in presence of as little as 1 per cent of non-saponifiable compounds, a turbidity is produced. Also a benizene solution of migrating and gives a red coloration with fat contaming 1 per cent of migration.

I per cent of non-saponitable compounds, a turbicity is produced. Also a benzene solution of pione acid gives a red coloration with fat containing I per cent. of mineral oil.

For detecting traces of neutral fats (non-saponified) in pure fatty acids of commerce, Geitel's test is employed. 15 c c of ammonia solution is added to a solution of 2 grms of the fatty acids in 15 c c of hot alcohol. Turbidity of the liquid indicates the presence of much neutral fat. If, however, the liquid remains clear, cold methyl alcohol is poured carefully on to its surface; a turbid ring is formed between the two layers of liquid in presence even of traces of neutral fats (this test does not answer with palm oil)

fats (this test does not answer with palm oil)

The addition of resin to fat is discovered by the Liebermann-Storch-Morawski test applied to the fatty acids obtained in determining the Hehner number (see p. 461): a few drops of cold sulphuric acid of 50° Bé are added to a well-cooled solution of 1 to 2 grms of the fatty acids (which contain the resins) in 1 c.c of acetic acid. If traces of resin (pine or colophony) are present, an intense red or violet coloration forms immediately and rapidly gives way to a brown fluorescence (presence of cholesterol or wool-fat produces a reddish brown coloration, which changes to blue and then to green).

The clear, molten fat, after a long rest, is discharged through the tap, E, and filtered through a bag, the solid fragments of cellular membranes and other impurities being retained by a perforated double bottom. These impurities, while still hot, are squeezed in a press such as that made by C. E. Rost, of Dresden (Fig. 259), being placed inside the perforated cylinder, a, which is surrounded by the jacket, h, and closed by the cover, b,

FIG. 259

fixed by the screws, d, the pressure is exerted underneath on a plate raised by means of the lever, e. The pressed residue is then either treated with carbon disulphide to recover the small amount of fat still retained, or used directly as cattle-food. A powerful press, which is largely used, is shown in Fig. 260.

Fusion of Tallow with Acid (d'Arcet method) This method increases the yield and improves the flavour of the tallow. It is carried out in the Fouché apparatus (Fig 261), consisting of a closed boiler, which can be heated both by indirect steam circulating through

Fig 261.

a coil on the bottom and by direct steam issuing from a perforated pipe passing also to the bottom. 100 kilos of tallow are mixed with 50 kilos of water containing 1 kilo of sulphuric acid of 66° Bé., the whole being heated for two hours at 105° to 110°. The clear, fused fat floats on the surface of the acid solution, which is replaced by pure water, the tallow being heated and mixed with the latter by means of direct steam; after some time, the washed tallow is discharged from a lateral tube—which, inside the vessel, is free and floats—through a cloth bag. When this acid process is used, the solid fragments separated cannot be used for feeding cattle.

Fusion with Alkali. Evrard heats the tallow with a very dilute solution of sodium

carbonate, while Rorard treats 1000 kilos of the tallow with 200 of water containing a kilo of caustic soda, the mixture being then melted at 100° in the Fouché apparatus. The alkaline process gives a diminished yield and does not diminish the amount of pungent gases evolved

Refining. If the fusion, especially when acid is used, has been successfully carried out, refining is usually unnecessary. It is, however, required when the tallow is to be used for food or for fine soaps, that employed for candles is sometimes bleached. In general, it is heated and stirred with water for a long time in suitable vats. It is then left at rest until it separates from the water and is filtered through a cloth bag and collected in a tank, heated outside in order to retard solidification and give time for any further impurities present to deposit

If the fused tallow is allowed to cool slowly at a temperature above 28°, it sets to a granular mass, as crystals of stearin and palmitin first separate, from this mass the olem is more easily removed by subsequent compression

Many different processes have been suggested for the bleaching of tallow, but the only ones deserving of mention here are those consisting in heating with animal charcoal, boneblack, and fuller's earth (magnesium hydrosilicate, see pp. 80, 89, and Vol I, p. 738), and then filtering, and those in w hich, say, 1000 kilos of tallow is heated with a solution containing 20 kilos of water, 10 of concentrated sulphuric acid, and 5 of potassium dichromate (or 60 kilos of concentrated hydrochloric acid and 15 of permanganate at 40°), after stirring. the mixture is left for a time and then washed several times with hot water. In some cancer. the tallow is stirred and heated to 40° with 25 kilos of an aqueous solution containing 250 grms of potassium permanganate, and 250 gms of concentrated sulphuric acid, and well washed with hot water, a little sodium bisulphite being finally added. Chlorine, which 14 sometimes used for vegetable oils, is harmful to animal fats. Excellent results have been obtained recently by bleaching with sodium hydrosulphite (Vol I, p 586) Certain fats can be well bleached at 80° to 100° with 1 to 2 per cent of barum peroxide, which is added gradually and with continual stirring Fats and fatty acids are sometimes deadorised by treating with 20 per cent of concentrated sulphuric acid at 30° to 40°, and then distilling the fatty acids under reduced pressure.

The purity of tallow is determined by the analytical methods already given (see also Table on p 466), and for industrial purposes the solidification temperature of the fatty acids obtained by the Hehner method (see p. 461) is measured by introducing them in the fused state into a double-walled test-tule (best, that of the Tortell thermo-olcometer, p. 464) and stirring with a thermometer until they begin to turn turbid. The temperature then ceases to fall and at a certain moment rises (the heat of solidification being developed) and remains constant until the whole mass has solidified, this constant temperature is that of solidification and, for good tallow, should be at least 43° Adulteration with cotton seed oil is detected by Halphen's reaction a mixture of 20 c c of the fat, 20 c c of amyl alcohol, and 2 c c of a 1 per cent. solution of sulphur in carbon disulphide is boiled in a test-tube; after about ten minutes' heating, a dark orange or red coloration will appear if even as little as 5 per cent of cottonseed oil be present If no coloration is evident after the lapse of ten minutes, a little more carbon disulphide may be added and the heating continued ten minutes longer If the suspected tallow or the cottonseed oil before addition to the tallow were heated to 200° to 250°, Halphen's reaction would not be given.

The greater part of the tallow made is used in the manufacture of soap and candles, but an appreciable proportion is employed in margarine factories (see below). A well-fattened ox may give as much as 100 kilos of crude tallow

Continental Europe imports large quantities of tallow from America, Australia, and England The price varies somewhat, and, while in 1870 it was £40—£56 per ton, in 1884 it was £33, in 1885 £28, in 1886 £22, in 1888 £27, in 1892 £24, and in 1893 £27, in 1906 the price on the Italian markets varied from £28 to £31, in 1907 from £32 to £36, and in 1908 from £30 to £33

France imported 16,500 tons of tallow in 1913, 17,190 tons in 1914, and 10,180 in 1915

Germany imported 6226 tons of tallow in 1888 and almost 11,000 tons in 1891 (see later, Importation of melted tallow for oleomargarine)

In 1909 England imported 110,000 tons of tallow and stearin, and in 1910 123 150 tons, while the United States exported 8500 tons in 1910 and 22,000 tons in 1911.

OLEOMARGARINE and MARGARINE (Artificial Butter). The oleomargarine obtained

from tallow serves to prepare margarine or artificial butter by churning it up with milk It is also used to some extent for making the so-called margarine-cheese from separated milk, the butter being replaced by oleomarganine, which is incorporated by means of emulsifiers

It was Napoleon III. who, on account of the rise in price of provisions and more especially of butter, offered in 1870 a prize for the discovery of a cheap fat to replace butter, and placed at the disposal of the inventor a large works at Poissy, near Paris, adapted to the development of the industry. The prize was awarded in 1871 to the Mège Mouriès process for the manufacture of oleomargarine from tallow by a method which is almost identical with that used at the present day (the addition of sheep's stomach to render soluble the cellular membranes enveloping the fat has now, however, been abandoned). As early as 1873 30 tons of margarine was consumed in Paris

As a rule, oleomargaime factories are situated close to the slaughterhouses, so that the tallow may be obtained fresh from the animals. The tallow is cooled immediately by washing it in a current of cold water, which removes the blood and other impurities, and if it cannot be worked at once is hung in separate pieces in a cold chamber

The tallow is then cut up and introduced, with one-fourth of its weight of water at 55°, into a vat similar to that used for the melting of tallow (see p 468), but nowadays the heating and incling are effected by the circulation of hot water at 60° to 70° instead of steam, so as to avoid scalding the mass. The latter is kept slowly stirred and a couple of hours is sufficient time to melt 2000 kilos of tallow, which floats on the water, whilst the bits and membranes are deposited on the bottom, this separation is facilitated by the addition of 2 per cent of salt, previously dissolved in water

After the mass has remained at rest for some time, all the impurities settle and the molten fat is removed by a tap connecting inside the vat with a free, floating tube which gradually falls as the layer of fat diminishes. the latter is collected in tinned, double-walled tanks surrounded by hot water, so that further clarification may result on long standing. The fat then bears the name premier-jus and is mixed in small proportion into margarine, while the remainder is poured into flat, tinned moulds holding about 20 kilos and allowed to solidify in a chamber kept at a temperature of about 30°

The semi-solid mass thus formed is placed in cloths and squeezed—not too strongly—in hydraulic presses (similar to those used in making stearic acid for candles, see later) in a room at about 25°. This procedure yields about 45 per cent of a solid residue of stearin (for candles) mixed with a little clein, and a liquid product (55 to 60 per cent) composed of 55 per cent of triolein, 35 per cent of tripalmitin, and 10 to 15 per cent of tristearin, this is oleomargarine, which assumes an almost pasty consistency at ordinary temperatures and has a yellow colour and a pleasant odour similar to that of butter

It is used in some cases as fat for cooking, but usually it is converted into artificial butter.

Olcomargarine has the sp gr 0 850 to 0 860 at 100°, inclts at 33 7°, has the Hehner number (see p 461) 95 5, the Reichert-Meissl-Wollny number (see p. 461) 0 4 to 0 9, and the jodine number (see p. 463) 44 to 55

MARGARINE (or Artificial Butter) is prepared from oleomargarine, from one-tenth to one-fifth of sesamé or arachis or even cottonseed oil being added for the lower qualities (in America maize oil is used). In some countries no milk is now used, attempts being made to flavour the oleomargarine directly with certain strongly flavoured cheeses prepared for this express purpose, or with butyric acid or its homologues, or with a special flavouring placed on the market under the name of margol

It is necessary that artificial butter, when fried, should give the same smell as natural butter, and this result is attained partly by adding a little cholesterol (Ger Pat. 127,376) to the milk used to render the eleomargarine pasty. Margarine is also required to brown and froth like natural butter when fried, and this is attained by adding about 2 per cent. of egg-yolk (Ger. Pat. 97,057) or 0.2 per cent. of lecithin (a constituent of yolk of egg., Ger. Pat. 142,397) and a small quantity of glucose, while it has also been proposed to add a little powdered casein, egg-yolk and pastourised milk-cream (Ger. Pat. 170,163)

The yellow colour of commercial, natural butter is imitated by the addition of a little butyroflavine (dimethylaminoazohenzene) dissolved in sesamé or cottonseed oil (placed on the market by the Société Fab. de Produits Chimiques de Thann et de Mulhouse).

In the manufacture of first-quality margarine, the fats to be mixed (e.g., for summer margarine, 600 kilos of oleomargarine, 30 kilos of premier-jus (see above), and 60 kilos of

sesamé oil, for winter margarine, the premier-jus is replaced by a similar quantity of sesamé oil) are first melted separately at 40° to 45°. For inferior margarines, less oleomargarine, more premier-jus, and a certain amount of cottonseed oil are used. Half of the molten, homogeneous fat is introduced into a churn (that of H Grasso, of Hertogenbosch, Holland, Fig 262, gives good results) containing 300 litres of milk 1 previously churned to the clotting point and mixed with 50 grms of colouring solution, 0 1 per cent

of glycerine is sometimes added to render the mixing more complete The churn has a closely fitting lid and is jacketed so that it can be surrounded with water at 35° to 45°; it is fitted with stirrers (120 revs per minute) and the inner surface is thickly tinned After 10 to 15 minutes' churning the remaining half of the milk and molten fat is introduced, the churning being continued for a further period of 20 to 25 minutes When the mass has reached a temperature of 30° to 45° (better quality but diminished yield is obtained at 30°), it is allowed to flow into a shallow double-walled vessel cooled by the circulation of water at 0° to 2°, and, as it flows, it is washed with a powerful jet of water at 2° and is constantly mixed with wooden blades The wash-water is then run off and the hardened, disintegrated mass left overnight so that the wash-water may separate better A homogenising machine of the Schroeder type has been introduced

Fig 262

recently, and this allows of continuous working and effects a far more perfect mixing of the fats and milk, while it yields a more aromatic and stable product.

To complete the separation of the whey and washing-water, and to obtain a homogeneous pasty mass, the cold mixture is introduced gradually into an ordinary butter kneader (Fig 263) with rotating base, this being situate in a cold chamber After passing under the grooved cone eight or ten times, the mass is collected in blocks, which are left for

Fra 263

24 hours. If it is desired to mix a little cream or the allowed quantity of water (10 to 12 per cent) into the mass, the latter is introduced into the Werner-Pfleiderer kneader (similar to that used for kneading bread), which can easily be reversed so as to expel the excess of liquid and finally the paste itself (Fig 264)

The margarine thus obtained is made up into cakes by means of suitable moulds bearing the trade mark and is then wrapped in parchment-paper previously disinfected in brine. In some countries this paper is marked with coloured stripes to allow the public readily to distinguish margarine from butter, and in all

countries it is obligatory to exhibit margarine for sale in shops with a placard which distinguishes it from butter. In Germany and Austria the law requires margarine to be prepared with at least 10 per cent. of sesamé oil and not more than 10 per cent. of butter; by this means, the detection of butter adulterated with margarine is facilitated, as, owing to the sesame oil present, it gives the Baudouin reaction for furfural 2 If more than

¹ For the finer margarines, cream is used, but for ordinary varieties skim-milk from the separators is employed. In all cases, in order to obtain a margarine which will keep, even in summer, the milk is pasteurised at 55° to 60° and then subjected to slight acid fermentation with pure cultures of bacteria, which are sold by butter manufacturers.

The cooled milk is kept in clean, closed vessels in a cool place, and is consumed as soon as possible so as to avoid contamination. It may be centrifuged after pasteurising and cooling If it is not rendered acid, the milk, and also the butter obtained therefrom, keep badly and do not moorporate well with the other fats.

* 10 c c. of margarine, filtered into a separating funnel, is shaken for half a minute with 10 c c of HCl (sp. gr 1·125) If the acid is coloured red, it is decented off and the residue shaken with a fresh quantity of the acid. After removal of the acid, 5 c c of the fat is poured into a graduated cylinder with a ground stopper, where it is shaken with 10 c c of HCl (sp gr 1·19)

 $10\,$ per cent. of butter is added to margarine the Roichert-Meissl-Wollny number (see p $\,$ 461) exceeds 2 $\,5\,$

Normal margarine contains 8 to 9 per cent of water and 1 to 2 per cent of NaCl, and has the saponification number 193 to 203 (occount fat raises this number to 220 and the Wollny number to 5) and the iodine number 52 to 60

The experiments of Luhrig (1900) have shown with certainty that margarine is digested by man as well as butter

In 1911 many cases of fatal poisoning occurred in Germany owing to the use in margarine of cardamom oil (or Marotti fat) which may contain the poisonous chaulmoogric acid, $C_{18}H_{32}O_2$, in -pt 69°, and possibly also hydrocarpic acid, $C_{16}H_{28}O_2$, m -pt 60 4°, which is likewise poisonous

The consumption of margarine, which costs little more than half as much as butter, is continually increasing in all countries. Germany possessed 55 factories in 1886 and 83, employing 1555 workmen, in 1895, and in 1899 produced 91,000 tons (worth more than £3,800,000) of first- and second-quality margarines, 55,000 tons of animal fats, 23,000 of vegetable fats and oils. 53,000 of skim-milk, and 4800 of salt being employed. Germany imported 28,500 tons of oleomargarine in 1903 and about 23,000 tons in 1903, and exported

297 tons of artificial butter in 1906 and 525 in 1909. In North Germany, margarine of first quality is used, but in the South margarine without butter and without milk.

In 1907 there were 31 margarine factories in Norway. Thirty-seven factories existed in the United States in 1886, and the output, which was less than 6000 tons in 1902, rose to 45,000 tons in 1908 and 70,000 in 1910 (almost all not coloured), the exports being 1550 tons in 1910 (almost all coloured) 1910-1911 the output in the United States fell to about 65,000 tons In Denmark 22 factories produced 30,000 tons in 1909 and 34,300 tons in 1910, when the exports amounted to 1100 tons. England imported 1650 tons of oleomargarine in 1909 and 4050 tons in 1910 and exported 3295 tons in 1909 and 8138 tons (£206,360) in 1910 The principal exportation from the United States consists of the prime material, oleo oil, which is largely used in other

Fra 204

countries for preparing the different margarines or artificial butters; in 1910, 50,000 tons of this oil (of the value of £2,360,000) and 1700 tons of eleomargarine (£80,000) were exported, and in 1911, 77,000 tons of eleo oil (of the value £3,120,000), and 18,000 tons of eleomargarine (£84,000) In 1907, Sweden produced 15,000,000 kilos, and in Holland there are over 100 factories The total output of Holland and Belgium in 1910 was 65,000 tons (of the value £3,600,000), about 48,000 tons being exported In Paris, more than 30 tons of margaime were manufactured per day as early as 1875. In Italy, the first factory, that of Regondi and Chierichetti, was erected in 1874 at Milan, with branches in Rome and Tuscany; even in 1888 this firm produced almost 400 tons of margarine, and at the present time, as a company (Chierichetti and Torriani), it still occupies the premier position. A considerable amount of suspicion was removed from the industry in Italy as the result of a valuable report prepared for the Royal Italian Society of Hygiene by Korner and Gabba in 1888, and in 1911 the consumption (largely for adding to butter) reached about 8000 tons, the importation of artificial butter was 121 tons in 1908, 64 tons m 1910, 49 tons in 1914, 119 tons in 1916, and about 500 tons in 1919 and 1920, while the amount exported (tons) was 216 in 1908, 286 in 1911, 808 in 1914, 47 in 1915, and 5 in 1919. In the Customs returns for Italy oleomargazine is included with other fats, so that the quantity imported is not known

and 0.1 c.c of 1 per cent solution of furfural in alcohol (absolute) for half a minute. If, after standing, the layer of acid shows an *intense* red coloration, the margarine contained the required quantity of sesamé oil. This reaction has, however, been criticised as being in some cases indecisive.

Owing to the high price of tallow in recent years, attempts have been made to prepare margarine by the addition of coconut oil in the kneader, after complete expulsion of the water (so as to prevent rancidity) There is now on the market margarine which bears the name of cunerol (or kunerol), and is made exclusively from coconut oil kneaded and treated with a saline solution of yolk of egg (instead of milk)

BUTTER is the fat obtained from milk,1 in which it occurs emulsified in small drops

1 Milk is a liquid secreted by female mammals after parturation, and serves as the first nutriment of the offspring, but that of certain animals (cows, goats, etc) has been largely used, from the earliest times, for feeding infants and adults, and for the preparation of cheese, casein, milk-sugar, etc The mean daily consumption of cows' milk per head is about 200 grms in England, 450 in Canada, 600 in Holland, 260 in Paris, 600 in Munich, and 150 in London The supply of milk to large towns constitutes a serious problem, since, for example, Genoa consumes 500 hectols per day, Turin 700, Milan 1300, Berlin 8000, Paris 9000, and New York 16,000. In 1903 the United States exported £3,200,000 worth of condensed milk to China, Japan, the Philippines, Corea, Russia, Africa, and Mexico The number of cows in France in 1909 was 7,336,000, and the yield of milk 132,000,000 hectols Hungary in 1909 produced 26,000,000 hectols, of milk In 1913 the large Swiss companies exported condensed milk to the value of £2,000,000 In 1903 Australia obtained from 1,300,000 cows about 16,000,000 hectols. of milk, 50,000 tons of butter (one-third being exported), and 6000 tons of cheese (barely one-fifth exported) In the United Kingdom 4,000,000 cows produced in 1909 about 72,000,000 hectols exported) In the United Kingdom 4,000,000 cows produced in 1805 about .- 1,000,000 of milk. In 1910 Norway produced 10,000,000 hectols of milk. Germany possessed 10,000,000 cows in 1917.

In Denmark the dairy industry has attained a high degree of perfection, 1150 co-operative dairies treating 77 per cent. of the total milk produced in 1909 Marked improvements have been effected in the selection of milk cows and in their feeding, the mean yield of milk per cow increasing from 1400 kilos in 1884 to more than 2600 in 1912, the number of cows was 900,000

in 1881 and about 1,030,000 in 1912

The mean percentage composition of the milk obtained by complete milking is found from some thousands of different analyses to be as follows water, 87 22, fat, 3 32, introgenous some thousands of different analyses to be as follows water, 87 22, fat, 3 62, introgenous substances (casem and a little albumm), 3 66, milk sugar, 4 82, and mineral matter, 0 68. The casem forms a kind of colloidal solution, which holds, in an emulsified and suspended condition, fat-drops of varying magnitude (diameter, 0 01 to 0 0016 mm). Casem in milk occurs, indeed, in the form of a non-reversible hydrosol (see Vol. I., p. 106) and its coagulation by acids or heat can be retarded or prevented by the presence of a reversible colloid (protecting colloid, like gelatine or gum). In cows' milk the relation between casem (non-reversible) and albumin (reversible) is 3 02 0 53, whilst in human milk this relation is 0 75 1 00, in human milk, then, there is abundance of albumin (reversible) and the coagulability is eight times less than with cows' milk. These relations explain the different nutritive effects of the two milks on infants. on infants

On infants

Boiled milk may be distinguished from raw milk as it no longer contains reductase or catalase (see p 135), also exidation of the whey with a little hydrogen peroxide and treatment with pyramidone at 60° yields, with raw milk, a violet coloration, while that of boiled milk gives no coloration. The sugar and, partly, the salts are found in the aqueous solution composing the whey Milk has an acid and an alkaline reaction (amphoteric reaction) at the same time, owing to the presence of primary (acid) and secondary (alkaline) phosphates. The natural acidity of milk is due, not to factic acid, but to phosphates, carbon dioxide, citric acid, etc. Milk is alkaline to methyl orange and acid to phenolphthalein, factic acid acts on methyl orange only when it has precipitated the casein and transformed the dicalcium phosphate into monocalcium phosphate (Bordas and Touplain, 1911). Urea, dioyandiamide, amino-acids, polypeptides, urethane, albumoses, xanthine bases, albuminoids, etc., are also amphoteric in reaction.

Milk changes very readily and, especially in hot weather, becomes acid and congulates in a few hours. It keeps sound longer if cooled, boiled, sterilised or pasteurised, and then kept in hermetically sealed vessels, to prevent separation of the fat from the milk, the latter is first passed under great pressure through capillary ornices so as to rupture the fat globules. The sterilisation of milk by means of ozone has been suggested, but this is impracticable, since ozone acts quantitatively on the fat, forming ozonides which readily decompose, giving free fatty

ozone acts quantitatively on the fat, forming ozonides which readily decompose, giving free fatty acids. Sterilisation by ultra-violet rays is incomplete and alters the composition and taste

of the milk to some extent

From milk defatted by centrifugation (skim-milk, containing less than 0 3 per cent of fat), casein for making cheese and for industrial purposes is separated by addition of rennet (from the mucous membrane of the fourth stomach of young calves), which induces clotting owing to the enzyme it contains. Coagulation, with formation of lactic acid (increase from 3° to 15° of acidity), is also caused spontaneously in 24 to 48 hours by adding a dilute acid and keeping at 55° to 63°, the casein probably exists as calcium salt (155 per cent. CaO), which is decomposed by acids the increase in the amount of soluble calcium salts favorage the separation of the casein. at 55° to 60°, the case in probably exists as calcium salt (155 per cent. CaO), which is decomposed by acids, the increase in the amount of soluble calcium salts favouring the separation of the case in. This case in, separated in the hot and pressed, gradually undergoes fermentation and conversion into Cheese. The latter may be either whole-milk cheese or filled cheese, prepared from milk the fat of which has been partially or completely removed and replaced by margarine. Copper vessels turn the cheese green on exposure to the air, and to avoid this, all the operations are carried out in vessels of wood, zinc, timplate, or tinned copper (Besana), although, according to Fascetti, traces of dissolved copper are advantageous in cheese since they retard lactic fermentation, the latter author suggests, however, the addition of hydrogen peroxide, which has the advantages of the copper without its disadvantages. To avoid secondary fermentations MILK 475

which separate at the surface on standing, or, better, on centrifugation in a separator of the de Laval type (Fig. 265)

After filtration through cotton-wool or, better, after a brief centrifugation to remove

during maturation and prevent the swelling and spoiling of the cheese—which otherwise frequently occur—certam selected ferments are initially added under favourable conditions (Gorm, 1905), occurrently solution is paid (Someni, 1910) to the chemical surroundings in which maturation takes place (see p 151)

After the choose has been separated from the skim-milk, further boiling and coagulation

of the latter yield the dissolved albumin (ricotta), the whey finally remaining being used either as food for calves or pigs or for the manufacture of milk-sugar (see later, Lactose) Skim-milk is used in some countries for the properation of cheap and highly nutritious bread or of kephir (see p. 191), while in recent years it has been utilised for making milk-powder by evaporating it rapidly on a large 10 tating cylinder of metal heated by steam at 147° and in some cases enclosed in an evacuated chamber A knife is arranged to detach the dry powder, which falls into a box The milk may also be concentrated to some extent in vacuo and then either pulversed with hot air at 150° or passed in a thin film on to two revolving drums heated internally by hot water

at 48°, the dried crust being seraped off, dried in a vacuum and powdered internally by not water at 48°, the dried crust being seraped off, dried in a vacuum and powdered in some cases the water is removed from the milk by freezing and continual stirring, the residue being subsequently dried. Being deprived of fat, this powder does not become rancid, and if a little calcium saccharate is added, it dissolves and gives skim-milk on dilution with water Milk-powder is also used by pastrycooks.

When case in it to be separated for industrial purposes, when case in its to be separated for industrial purposes. it is obtained pure by treating the skim-milk at 50° to 60° with a current of sulphur dioxide (Soncini and Todtenhaupt, Ger Pat 184,300), it is dried in a stream of hot air or, to obtain it in a more soluble state, in a vacuum, while, if a highly pure product is required, it is dissolved C. 52 90 .

in alkali and reprecipitated with intric acid (it then has the percentage composition H, 730, N, 1560, U, 2254, S, 076; P, 084) Besides being soluble in alkalis and borax, casein dissolves in solutions of potassium iodide, sodium thiocyanate, sodium phosphate, etc. When dry and powdered, it may be used phosphate, etc When dry and powdered, it may be used for certain concentrated food products (plasmon, nutrose, tropon, sanatogen, somatose, etc), either in conjunction with, or in place of, meat extracts and peptones concentrated foods are obtained by heating the powdered casem on a water-bath with alkali solution or hydrochloric acid, the latter being afterwards neutralised with sodium carbonate and the liquid filtered and concen-trated in a vacuum Casein serves also for dressing textiles and for making greased paper (rendering it soluble with sodium carbonate or borate) and material similar to bone or celluloid, by compressing it when hot and hardening it with formaldehyde, gallalith and lactite are made in this way ANALYSIS OF MILK.

Fig 266

Milk being a valuable nutrient for man, and being also easy to adulterate, it is usually analysed chemically to test its nutrent for man, and being also easy to additerate, it is usually analysed enemically to test its genuineness. Milk from cows of different breeds and districts varies within relatively narrow limits, but, in doubtful cases of adulteration, a mixture of the total milk of all the cows of the hord from which the suspected sample is funnished is also analysed. The specific quanty is measured with a hydrometer of a Westphal balance at 15° (see Vol 1, p 76), for natural milk it varies between 1 0205 and 1 0335, and for separated milk between 1 033 and 1 036, while if much water has been added it is below 1 0295. The value of the specific gravity is not sufficient to prove watering, as this value is sometimes maintained unchanged by simultaneous removal of croam and addition of water. In such a case, use may be made of the spreific grantly of the whey, which is never loss than 1 027 with pure milk. Watering, even to the extent of only 5 per cent, is also readily detectable by the cryoscopic method examined in 1898 by (i. Cornalba (for fresh, non-acid milks free from antiseptics, the cryoscopic point.) 1898 by C. Cornalba (for fresh, non-acid miles free from antiseptics, the cryoscopic point varies from 0.54 to 0.56) or by observing the whey in the Zeiss butyro-refractometer (see p. 463). The latter method was proposed recently by Ackermann, who prepares the whey rapidly by clotting 30 c.c. of milk with 0.25 c.c. of a calcium chloride solution of sp. gr. 1.1375, heating for 15 minutes on the water-bath, cooling to 17.5° and separating the serum by decantation, the reading on the Zeiss scale is 38.8 to 40 for pure milk, 37.7 for milk + 5 per cent. of water, 36.7 with 10 per cent., 34.8 with 20 per cent., 33.3 with 30 per cent. 32 with 40 per cent. Cf. Cornalba (1908) holds that genuine milk contains at least 0 per cent of soluble substances (t c dry residue less fat and casein), every 0 2 per cent less than this amount indicating 5 per cent of added water. Since natural milk does not contain intrates, which are, however, present in

mearly all waters, watering may also be detected by testing the milk for intrates in the same way as wine is tosted. Watered milk appears slightly blue when compared with genuine milk.

Comanducci and Frontera (1912) detect watering by means of the rotatory power of the whey in a 10 cm. tube at 15°, for pure milk this is 2 38° to 2.48°, whilst milk with 10 per cent., 30 per cent and 60 per cent. of added water shows respectively 2 31°, 1.50° and

0 58°.

The total residue and ash are determined by evaporating 5 grms of milk with a drop of acetic acid in a platinum dish, drying in an oven at 105°, and weighing, the dry residue thus obtained is then heated to redness until completely momentated, and weighed, the ash is used for the detection of borax or sodium bicarbonate.

suspended impurities, the milk passes, while still tepid, to the chamber of the centrifuge, A, mounted on the axle, S, actuated by a pulley which is not shown in the figure (265) and which rotates several thousands (6 to 7) of times per minute. In this manner the skimmlik is expelled to the periphery and carried off by the tube, b, into the collecting plate, Bc, whilst the lighter cream rises and is discharged by the channel, e, into the collector, Cf. These separators easily treat 10 hectols of milk per hour. The cream that separates is agglomerated into small lumps of butter by churning (see, for instance, Fig. 262), knead-

Fra 265

ing, and so on, just as with margarine. To obtain a butter that will keep, however, the cream is subjected to pasteurisation and acidification (see Note on p. 472), the butter being worked with water that has been sterilised, for instance, by ozone or ultra-violet rays. The flavour of butter, which was formerly regarded as due to the esterification of the fatty acids, seems to result from the fermentation of lactose and the formation of aldehydes.

The percentages of the various fatty acids entering into the composition of the glycerides of butter are as follow stearic, 7 to 11, palmitic, 14 to 18, myristic, 11 or more, lauric, 14 to 16, oleic, 25 to 30, higher unsaturated acids, 4 to 57; also the volatile acids, butyric, caproic, caprylic, and capric, further, small proportions of acetic, arachic, and hydroxy-acids, cholesterol, phytosterol, leci-

thin, and a yellow colouring-matter, winter butter is loss yellow than that of summer (green feeding of the cows). Unlike other fats, butter contains a mixed palmito-olcobutyric glyoeride, $C_3H_5(C_{16}H_{31}O_2)(C_{18}H_{39}O_3)(C_4H_7O_2)$

Also, in comparison with all other fats, butter contains a large quantity of volatile acids soluble in water. The mean percentage composition of natural butter is \cdot water, 15, fatty substances, 83, lactose, 05, proteins, 07, and mineral salts, 05

Commercial butter should contain not less than 82 per cent of fat, the remainder consisting of water, about 16 per cent, and salt, 2 per cent.

In judging the purity of butter, an examination is made of the butter fat obtained by heating the butter to about 50° and then leaving it to clarify and to deposit the water salts, etc. The constants for this fat are compared with those given in the Table on p. 466, attention being paid to the remarks on pp. 460 and 463 referring to the soluble volatile acids and to the butyro-refractometric reading, which should have the following values at different temperatures: 41.5 at 45°, 43.6 at 43°, 43.7 at 41°, 44.7 at 30°, 45.9 at 37°, 47 at 35°, 48.1 at 33°, 49.2 at 31°, 50.3 at 29°, 51.4 at 27°, and 52.5 at 25°.

Genuine milk has not less than 12 per cent of dry residue, or, subtracting the amount of fat, not less than 9 per cent The dry residue (r) may also be calculated from the specific gravity (s) and the percentage of fat (g) by Fleischmann's formula $r=1.2g+2.665 \frac{100s-100}{s}$.

Determination of Fat. This is usually made with the Gerber butyrow ter (Fig. 200). Into a special wide-mouthed flask with a long, narrow, graduated neck are pipetted 10 c.c. of concentrated sulphuric acid (sp. gr. 1.825), 1 c.c. of amyl alcohol, and 11 c.c. of milk, which are allowed to flow gently down the side. The flask is then tightly closed with a rubber stopper, wrapped in a cloth and shaken rapidly and vigorously, the flask with the pink or red liquid is immersed for six or seven minutes in a water-bath at 65° to 70° and then centrifuged on a flat plate, being arranged radially in clips with the mouth towards the circumference. After a few minutes centrifugation, the fat is separated from the acid casein solution and the percentage of fat by weight is read off on the graduated neck of the flask after the latter has been left for a few minutes on the water-bath

The official method—which is used rarely and only in cases of dispute—of estimating fat is that of Soxhlet, and is based on the density of the ethereal solution of the fat extracted from the milk after rendering alkaline. In nearly all countries in has been established that a natural milk, obtained by milking completely a number of cows, contains as a rule not less than 3 per cent of fat, in very rare cases 2 9 per cent, and more frequently 3 5 per cent.

If the specific gravity (s) and the dry residue (r) of a milk are known, the fat (g) that it should contain is deduced from Fleischmann's formula $g=0.833r-\frac{2.22\ (100s-100)}{s}$. To calculate the dry residue (r) of a whole milk use may be made of Fleischmann's corrected formula $r=1.2g+\frac{2.665\ (100s-100)}{s}$, while that of a skim-milk is given by $r'=0.2g+2.665\ (100s-100)$

The most certain method of detecting adulteration of butter with coconut oil is by determining the volatile fatty acids insoluble in water (Polenske number),1 and for other adulterations various tests are made

The degree of ranculity is determined as described on pp 463 and 464

In order to avoid rangidity, butter must be kept or despatched in ice or in cold chambers Butter may be coloured yellow by saffron, turmeric or, more commonly, annatto, which is an extract of the fruit of Bixu orellana made into a paste with an oil, the use of coal-tar dyes is prohibited

Renovated butter is prepared in America from rancid butter, which is kneaded with a solution of sodium bicarbonate (e.g. in the Werner and Pfleiderer kneading machine, Fig 264, p. 473), and is then washed with just topid water in the rotating-plate kneader (Fig. 263, p. 472) until it no longer gives an alkaline reaction. It is then kneaded again in the former machine with milk, cooled with a jet of very cold water and treated like ordinary butter a second time in the latter kneader. Natural butter can be distinguished from renovated butter since when melted at a moderate temperature, the former gives a limpid and the latter a turbid mass

BONE FAT is obtained mainly from glue factories, and is extracted from the crushed bones either by boiling with water (see Vol I, p 647) and skimming the fat which collects at the surface, or by treatment with benzine or carbon disulphide in an extraction apparatus (see later). The first method yields 3 to 4 per cent. of fat, and the second 7 to 9 per cent. The latter has, however, an unpleasant smell and is dark and of inferior quality; it may be refined by means of dilute sulphuric acid or sulphuric acid and dichromate or barium peroxide (see Tallow). Its constants are given in the Table on p 466

It is used in making soap, especially resin-soap, and also candles and cart-grease

Polenske (1904) showed that coconut oil contains a high and constant proportion of volatile fatty acid insoluble in water, whilst butter contains very little of these—If the Polenske number (or new butter-value) is expressed in a c of decinormal KOH necessary to neutralise the insoluble (or new buller-rathe) is expressed in c c of decinormal KOH necessary to neutralise the insoluble volatile acids contained in 5 grms of the fat, its value is 16 8 to 17 8 for coconut oil and 1 5 to 3 for pure butter. The Reichert-Meisel-Wollny number and the Polenske number may be determined by a single operation, the butter being saponified in the following mainer (Leffmann and Beam) 5 grms of the filtered butter, together with 20 grins, of glycerine and 2 c c of caustic soils solution (100 NaOH to 100 H₂O), are placed in a flask of about 300 c.c capacity, this being heated with a naked flame. After 5 to 8 minutes' boiling, the water evaporates, frothing crasses, and the mixture becomes clear, the heating being then continued for a few minutes longer. When the liquid has cooled to 80° to 90°, 90 c c of water at 80° are added, a clear and almost colourless solution of the seap formed being thus obtained. To this solution, beautiful apply to boiling, are added 50 as of dilute sulphyric and (25 c c of the concentrated heated nearly to boiling, are added 50 e of dilute sulphuric and (25 e e of the concentrated acid in a litre) and \(\frac{1}{2} \) grm of powdered pumee, the volatile acids being then distilled so that 110 e c is collected in 19 to 21 minutes in an apparatus corresponding exactly with that shown

in Fig 251 on p. 461
The 110 c c. flask is cooled in water at 15° and inverted several times to cause the drops of insoluble fatty acids to collect
The liquid is filtered, tituation of 100 c c of the filtrate with of insoluble fatty acids to collect. The liquid is filtered, titiation of 100 c c of the filtrate with decinormal KOH giving the Reicheit-Meissl-Wollny number. The tube of the condenser and the 110 c c dask are then washed with three separate amounts of 15 c c of water, which is passed through the filter, the flask boing subsequently washed with three quantities, each of 15 c c of neutralised 90 per cent alcohol Titration of the whole of the alcoholic filtrate with decinormal KOH gives the Polenske number, which allows of the detection of 10 per cent of coconut oil in lutter The result has been stated to be inconclusive if the cows have been fed with coconut

ouke.

Adulteration with margarine is readily detected by the content of aggregated crystals which

Adulteration with margarine is readily detected by the content of aggregated crystals which are observed under the microscope in polarised light or, better, in light which has previously passed through a selenite plate. Fresh, non-melted butter does not, indeed, yield crystals, but old and rancid or melted butter does give them, so that, in this case, the test is invalid. The determination of water, fat, solids not fat (casen, lactose, and mineral salts) can be simply carried out, according to Fahrion (1908), as follows in a platinum crucible, tared together with a glass rod, are weighed 25 to 3 grms of butter, which is then heated over a small flame and stirred until it is melted and clear, reweighing gives the proportion of water. The residue is then dissolved in light petroleum and the solution filtered through a tared filter, which is well washed with solvent. The filtrate is distilled in a tared flask and the remaining fat dried for an hour in an oven at 100° to 102° and weighed. After drying at 100° the weight of the filter less the tare gives the non-fat. By burning the filter in the crucible, incurerating and weighing. less the tare gives the non-fat By burning the filter in the crucible, incinerating and weighing, the salts (NaCl) or mineral substances are obtained

No addition of antiseptic, for the keeping of butter, is allowed, boric and salicylic acids can be detected as in beer. The presence of formaldehyde may be ascertained by distilling 25 c.c. of water in a current of steam from a flask containing 50 grms of butter and 50 c c of

boiling water; the distillate is tested by means of Rimini's reaction (see p 131).

Addition of artificial yellow colouring-matter is shown by the intense coloration assumed by absolute alcohol when shaken with the fused butter.

The second of th

HOG'S FAT (Lard) is obtained by melting the fatty parts of the pig, as in the case of tallow (Refining, see p 470). In Germany large quantities of it are consumed for culmary purposes, and in Italy almost the whole of this product is used by the lower classes as a substitute for butter and oil. Considerable amounts are employed in making soap and candles. In 1891 Germany imported 75,000 tons from the United States, but since this was prepared with all the refuse of oxen and pigs, and also with the residues of diseased animals, while addition of appreciable quantities of cottonseed oil and bleaching by the addition of lard stearine were also resorted to, the food-value was greatly lowered. The Table on p 466 give its constants. The presence of cottonseed oil is detected by Halphen's test (see p 470).

In the United States the production of lard is continually increasing, 21 millions of pigs being killed in 1902 and 25½ millions in 1905, the exports amounted to 250,000 tons (£10,800,000) in 1911

FISH OILS WHALE OIL and COD-LIVER OIL The fat of the whale, seal, and dolphin is extracted from a species of lard contained in the membranes of the brain and back, it is, however, worked in a primitive manner, being left to melt and putrefy in barrels exposed to the sun. The oil being thus separated, the residue is boiled with water to extract the tallow. When heated with water, the oil loses its unpleasant odour to some extent.

The head and other parts of the body of certain whales, especially *Physeter macrocephalus* (Cachelot whale), contain an oil already separated and different from that of the lard, it solidifies at the ordinary temperature, giving the so-called SPERMACETI (or Sperm Oil), which, after filtration, pressure (to separate the stearin or solid wax), boiling with water and a little caustic soda and repeated washing with water, forms a fat or oil of great value in the manufacture of pharmaceutical products, perfumes, and high-class candles.

Cod-liver Oil (from the fresh liver of Gadus morrhua, caught in large numbers in Norway and elsewhere) is used in considerable quantities as a recuperative medicine in virtue of the small proportion of chemically combined iodine and of the large amounts of readily emulsifiable fatty acids it contains. It is now obtained with a less unpleasant taste and smell, as it is being prepared in a more rational way by melting it in closed vessels with hot water or direct steam, the best results being obtained in absence of air—in an atmosphere of hydrogen or carbon dioxide or in a vacuum (Eng. Pat. 25,683, 1906)

Natural cod-liver oil, prepared by the old process, has a considerably higher acidity (acid number, 8 to 25) than that separated by the more modern methods (acid number, 0 7 to 1 4)

The production of cod-liver oil in Norway shows a continual increase, although it varies in different years, according to the abundance or scarcity of the fish, from 20,000 to 100,000 tons per annum, about one-half of this amount being obtained by the newer methods of extraction

Adulteration of the oil is detected by analysis, taking account of the constants given in the Table on p $\,466$

Fish-oil Waste consists of inferior oils of unpleasant odour and taste, the odour being due especially to an unsaturated compound, chipanodonic acid, C₁₈H₂₈O₂, which combines with 8H to form stearic acid. These oils are used in dressing leather, in the manufacture of DÉGRAS,¹ also employed for treating skins, and in the preparation of fatty acids for soap-

DÉGRAS is obtained in the chamoising process (separation of the fat from the skins after it has served to oil them during taining) and is used for taining other skins. It consists essentially of water (30 to 40 per cent), rancid fish oil, resinous substances (dégragème or dégras-former, 14 to 20 per cent) from the oxidation of the oil, mineral substances (about 2 per cent consisting of lime, soda, and sulphates) and residues of skin, membranes, har, etc (about 5 per cent) It has an acidity number of 25 to 35, an iodine number of 34 to 36, a saponification number of 144 to 155, an acetyl number of 32 to 44, and 1 to 3 per cent. of non-saponifiable substances. It is yellowish brown, has an odour of fish oil and readily forms a very persistent emulsion with water. Digragène is the characteristic constituent and, unlike other resins, is insoluble in light petroleum.

Its value in dressing skins lies in its property of penetrating readily, and in large quantities the sems-moist skins, in the pores of which it becomes uniformly distributed, imparting very desirable softness and fullness, as well as keeping qualities

desirable softness and fullness, as well as keeping qualities

This use of dégras has been known for many years and has increased so rapidly that the supply is no longer sufficient, factories for making artificial dégras having been established. This is prepared by kneading refuse and clippings of skins with fish oil, exposing the mass to the air to oxidise and pressing out the artificial dégras or moëllon the residue is then treated with a

making, these fatty acids are deodorised by heating with 15 to 20 per cent of concentrated sulphuric acid at 30° to 40°, washing and distilling with superheated steam cossful attempts have been made to harden these oils by hydrogenation (see p 480) In Norway in 1913 a single factory treated daily 150 tons of these oils with 4500 cu. metres of electrolytic hydrogen

Pliny mentions the use of this fat in medicine, and its employment for WOOL FAT this purpose extended to the seventeenth century. In 1856 Chevreul classified it with the waxes owing to its richness in cholesterol, and in 1867 Vohl proposed its preparation from the wash-waters of wool. When washed with tepid water, soap, and a little potassium or ammonium carbonate, certain greasy wools (from Australia) lose as much as 40 to 50 per cent. of their weight as soil, fatty acids, potash soapy substances and fat, secreted by the superficial cells of the skin The wool from certain races of sheep may contain from 7 to 35 per cent of true fat (if the sheep are not washed before shearing).

In some factories the wool fat is extracted from the dried wool by means of carbon disulplide or, better, of benzine (at Verviers, in Belgium, the wool from all the establishments in the city has for several years been washed with benzine in a large works), subsequent washing with water and a little soap being then more easy and economical crude fut obtained in this way after distillation of the solvent is slightly coloured and almost free from water, and is ready for the market Usually, however, the dirty wool is washed in the Leviathan machine, the soapy, greasy wash-waters being first allowed to stand to deposit earthy matters and then treated with dilute milk of lime or, better, with calcium chloride solution slightly acidified with hydrochloric acid The scaps and fatty acids (palmitic, cerotic, a little caproic and cloic and traces of stearic, isovaleric, butyric, myristic, carnaubic, and lanoceric) are precipitated as calcium salts and carry down the wool fat, which is only slightly saponifiable owing to its large content (55 to 60 per cent) of cholesterol, isocholesterol, ceryl alcohol, lanolyl alcohol (C12H24O) and carnaubyl alcohol (C24H50O), which do not contain glycerides After this treatment the wash-waters are either left to stand or coarsely filtered to separate the pasty mass, in some cases the water is removed from the calcium soap and fat by centrifuging in a separator similar to that used for milk (Fig 265, p 476). The paste thus obtained is dried in the sun or in an oven and then made into cakes with sawdust, etc., the rather dark crude wool fat being extracted from these by means of carbon disulphide or, better, benzine. The residue from the cakes. when treated with dilute sulphuric acid, yields fatty acids, and the resultant aqueous emulsion, coarsely filtered to remove solid substances, deposits the fatty acids when heated.

Thus obtained, wool fat is dirty yellow, transparent, and very viscous (it can be obtained pale yellow by special refining processes); it melts at 35° to 40°, and has the saponification number 85 to 105, the iodine number 13 to 17, the acid number 0 5 to 1.3, the Hehner number 85 to 95, the Reichert-Messl number 6 to 7, and 0 5 to 1 per cent of water, while its rotatory power in saccharimetric degrees is + 10 2 to + 11 2 Commercial lanoline does not contain more than 30 per cent. of water

Wool fat is better suited than any other fat or even vaseline as a basis for salves and cintments, and has also considerable power to penetrate the skin. It mixes readily with large proportions (up to 105 per cent.) of water (which separates in the hot) and, if mixed with 20 per cent of olive oil, it can absorb 320 per cent. of water.

In some cases the crude wool fat is distilled with superheated steam, this procedure giving a wool oil or wool oleine containing 40 to 50 per cent. of fatty acids, 35 to 45 per

fresh quantity of fish oil, this operation being repeated until practically no residue remains. Attempts have also been made to obtain mobilion by pulverising fish oil in the air at 120° and omulaifying with water. At the present time, the term degrae is applied to a complex substance for dressing skins and consisting of a mixture of moëllon with wool fat, tallow, and other solid fats, whilst by moëllon is indicated the aqueous emulsion of oxidised fish oil. Artificial degras is now preferred to the natural product, since different types can be prepared for different purposes, such types being of more constant composition, and hence more certain in their effects. A good artificial dégras usually contains 15 per cent. or more of dégragène and less than 20 per cent. of water. When such dégras contains more than 1 to 2 per cent of non-saponifiable substances, these are derived, not from the fish oil, but rather from the wool fat, resin oil, mineral oil, etc. these are derived, not from the fish on, but rather from the wood law, tesh on, the firsh on, ever french dégras sometimes contains 1 to 2 per cent. of soap and as much as 5 to 6 per cent. of skin fibres. in general, it should contain less than 0.05 per cent. of iron and, when spread in a thin layer on glass and kept for 10 hours in an oven at 100°, it should not form a varnish, but should assume only a horny consistency. When smeared on moist and well-pressed paper, it should be absorbed within an hour, leaving only a minimum residue.

Natural dégras costs about 28s, per owt., the artificial product of the first quality about 20s.,

and the French (moëllon) about 34s.

cent of hydrocarbons, and 5 to 10 per cent of alcohols, while the distillate deposits a wool steurine, which melts at 42° to 55°, has the iodine number 37, and the saponification number 170, and contains cholesterol and, altogether, 73 to 88 per cent of free, solid fatty acids

In 1905 Germany exported 134 tons (130 in 1903) of lanoline, of the value £10,000

CHRYSALIS OIL. The dead silkworm chrysalides remaining after removal of the silk from the occoon contain 25 to 27 per cent of oil recoverable by pressure or extraction by solvents. The oil is reddish-brown and of somewhat unpleasant odour, deposits stearine at the ordinary temperature and sets to a buttery mass at 0°. Its iodine number is 112 to 118, and its saponification number 190 to 195, and its fatty acids melt at 32° to 36° and solidify at 28° to 30°. The oil contains up to 30 per cent of free fatty acids and may be decolorised with fuller's earth. The chrysalides were formerly used directly as a nitrogenous fertiliser (7 to 8 per cent N), but, nowadays, the oil is first extracted, the residue, containing 10 to 12 per cent of organic nitrogen, being used as a fertiliser. The crude oil was utilised partly for making inferior odorous soaps, and also for the separation of the fatty acids. After distillation in a vacuum the oil gives hard, odourless, fatty acids (Molinari and Fachini, 1907)

Tsujimoto (1914) deodorises and decolorises chrysalis oil by shaking it for an hour with 6 to 8 per cent of 50 per cent sulphuric acid at 100° , then washing it well with water and treating it at 130° with 15 to 20 per cent of Kambara earth (a Japanese earth superior to Florida earth , see Vol I , p 738) Thus prepared, the oil yields consistent fats on hydrogenation (vide infra)

Italy produces about 50,000 tons of fresh cocoons, giving about 15,000 tons of air-dried chrysalides, from which at least 3000 to 3500 tons of crude oil is obtainable

INDUSTRIAL HARDENING OF OILS BY MEANS OF HYDROGEN

Glycerides of unsaturated fatty acids (oleic, linolic, linoleic, etc.) preponderate in ordinary liquid oils and fats, and those of saturated fatty acids in ordinary solid fats, which are largely used as fatty foods and for making soap and candles. Large quantities of certain oils are, therefore, converted into solid fats which are of higher value and more readily utilisable (see note 1, p. 369)

Although various hydrogenation processes had been known in the laboratory, inclustrial application of these to the hardening of oils was not attempted until after the work of Sabatier and Senderens on the hydrogenation of organic compounds in general (see pp. 35, 67, 124). On the basis of these investigations, Normann (Ger. Pat. 141,029, 1902) first applied hydrogenation to unsaturated fatty acids and glycerides (cils). The process was not, however, at once applied on an industrial scale in Germany, but was used first in England by Crosfield and Sons, of Warrington, and also in Holland, only in 1911 was it utilised in Germany, finely divided nickel being employed as catalyst.

Better results are obtainable with finely divided palladium, which works at 80° to 90° (in 1908, Paal used colloidal palladium at almost the ordinary temperature), but, although a large part of the palladium (which serves for a long time and is not so sensitive as inckel to poisons such as sulphur, H₂S, CS₂, Cl, organic thio-compounds, hydrocarbons, etc.) is recoverable, it is, nevertheless, very expensive Palladium chloride, which Skita proposed to use at a pressure of 2 to 3 atmos, is cheaper, and at 100° one part of palladium suffices for 100,000 parts of oil.

The nickel catalyst is prepared by reducing the oxide obtained either by calcining the nitrate or by precipitating the sulphate by means of an alkali, the oxide being deposited on an inactive, porous support such as pumice, coke, asbestos, etc., and then reduced by hydrogen at about 300°. The active, finely subdivided nickel thus obtained completely hydrogenates oil at temperatures below 150°. Decomposition of nickel tetracarbonyl (see Vol I, p. 846) also yields an active product

When prepared in this way, the catalyst is emulsified with the oil. The oxide itself may be mixed with some of the oil and then reduced by hydrogen in a jacketed autoclave at 230° to 240° for two hours; the emulsified catalyst thus formed is mixed with the oil to be hardened, a temperature of 120° to 160° being sufficient for this operation.

Bedford and Erdmann (Ger Pat 292,649, granted in 1916 in spite of opposition from Normann) applied to unsaturated fatty acids the methods developed in 1907 to 1909 by Ipatiev and in 1910 by Wilbuschewitsch (who effected catalytic hydrogenation of organic

substances in the hot at pressures of 8 to 10 atmos by means of nickel) Erdmann used apparatus of copper or aluminum, which may, however, influence the taste and odour of the product. Wimmer and Higgins use as catalyst nickel lactate, acetate or formate, the action of which is improved by addition of carbon, nickel borate has also been used Nickel oxide has a slow action and hardens oils at temperatures above 200° to 240°, the oil being darkened. Erdmann considers the catalytic action of the oxide as due to the alternate formation of the oxide and suboxide, but others suppose that the oxides are reduced by the hydrogen to nickel, to which the true catalytic effect is due

A diagram of the plant proposed by Wilbuschewitsch (Eng Pat 30,014, December 10th, 1910) for use in the preparation of the catalyst, and in the hardening of the oils, is shown in Fig 267. The highly active nickel catalyst is obtained by soaking burnt clay in sulphuric acid, then in nickel sulphate solution, and afterwards in sodium carbonate solution, the nickel carbonate thus formed being converted by heating into the exide and this into nickel by the hydrogen. The finely powdered mass is readily exidisable and is emulsified directly with oil and kept. In R is placed the oil to be treated and in O the catalyst, the two liquids being drawn by the pumps, A and A_1 , in the proper proportions to be emulsified in B and passed through the pipe, G, and distributed by the valve, H, and the pulveriser, C, to the jacketed autoclaves, J_1 , J_2 , etc. The hydrogen is injected by a compresser, K, at a

Fig. 267

pressure of 9 atmost through the tube, X, to the bottom of the autoclave, where it is finely subdivided by the distributors, D_1 , D_2 , D_3 . The autoclave is heated first to 100° to 160° , according to the kind of oil, the partly reduced oil collecting in the conical base of J, being drawn off by the pump, E, and injected into J_2 , while the hydrogen escaping from J_1 passes into J_1 through the pipe, Y, the oil then goes through the pump E_2 to J_3 . In the passage of the oil through each autoclave, the melting-point is raised by about 15°, and when the desired melting-point has been reached, the oil is discharged through the cock, U, into the centrifugal separator, F, the solidified oil being separated in N, while the oil containing the catalyst passes through the pipe, Z, and the cocks, S and T, to be circulated again in the autoclaves. As the catalyst becomes exhausted the amount used is increased (1 per cent. of the fresh material suffices), being discharged into P when almost completely exhausted. On the other hand, the hydrogen not absorbed in the last autoclave, J_0 , issues from the valve, W, and through the tube, Q, to the cooling coil, L, and thence to the washer, M (containing sodium carbonate), from which it returns to the cycle through the compressor, K. The reduction generates heat and the temperature in the autoclaves is sometimes regulated by passing cold water through the jackets.

The amount of hydrogen required varies with the nature of the oil and the degree of hydrogenation required, and is usually 8 to 12 cu. metres per 100 kilos of the oil. The hydrogen from water gas should, after purification, contain less than 2 per cent. of CO and

less than 0.1 per cent of H₂S (see Vol. I, p. 141). The rapidity of the reaction and the life of the catalyst increase with the purity of the gas.

The rodine number of all hardened oils is very low (5 to 25) The cholesterols and phytosterols undergo no change and serve to indicate if the original oil was a mixture of vegetable and animal oils Hydrogenation is applied to inferior oils (olive, cottonseed, fish, etc.) to obtain consistent fats for making margarine and candles. In general, oils thus treated lose their original odour and assume that of tallow

In Germany about 200 tons of hardened oils were produced per day in 1913, and during the European War the manufacture assumed enormous importance. In France two factories have an output of 20,000 tons per annum. Before the War the total cost of hydrogenation was calculated at £6 to £8 per ton of oil

Haidened oils, sold under different names (talgol, talghin, candelite, cruteolin, etc.), have m-pt 38° to 50°, acid value 3 5 to 4, iodine number 20 to 60, saponification number 189 to 192, non-saponifiable substances 0 3 to 0 5. They give increased yields of soaps, but these form less lather and wash more slowly. The refractive index is lowered somewhat and the colour reactions are attenuated or annulled Almost all of them retain minimum traces of catalyst, and nickel may be detected in the ash by means of dimethylglyoxime (see p. 398).

VEGETABLE OILS

In plants oils accumulate especially in the seeds and the fleshy parts of the fruit, rarely in the roots. The composition of these oily parts varies somewhat with the locality and with the character of the season 1

 1 The Mean Compositions of Oily Seeds and Fruits (the maxima and minima are 10 to 15 per cent above and below the mean values) are as follows —

	Water per	Ash poi	Oil	Organie matter free from	Proteins in 100 parts of	Cakes after pressing	
	cent	cent	cont	oll per cent	organic matter	Fut per cent	Protein per cent
Olive pulp kernel (shell) seed	24 22 4 20 6 20	2 68 4 10 2 10	56 40 5 75 12 20	10 70 85 80 79 38	1 10 2 50 2 16	} 5-15	4-8
Linseed winter summer	8 65 7 80	3 15 3 20	35 20 31 60	53 57 40	22 10 24	8-0	30-38
Rioinus (seeds) Italian Indian	8 7 26	2 93 3 40	52 62 55 23	36 45 34 11	25 50 24 26	} 7-10	28-31
Sesamé (seeds) brown Levant yellow Indian	5 90 7 06	7 52 6·85	55 03 50 84	30 95 35 25	$\frac{21}{22} \frac{42}{30}$	}10-15	35-40
Cottonseed Egyptian American	7 54 8 12	8 60 9 44	23 95 20 58	59 91 61 86	27 20 28 12	12-16_	36-48
Colza or rape (seeds) Ravison (seeds) fresh	6 9 10	4 30 4 80	38 86 80	51 70 49 30	20 2 50	8–10	29-32
two years old Arachis (shelled nuts) fresh	5 25 7 37	4 36 2 43	39 25 37 84	51 14 52 36	4·20 27·25	7–10	29-32
old Hempseed	2 75 8 65	2 50 3 45	41 63 33 60	53 12 54 30	27 85 15 95	} 6-9 8-12	44-50 28-33
Mustard black white	6 78 7	4 21 4 45	22 20 29 30	66 81 50 25	20 52 28 20	-	20-33
Poppy white . black	8 85 9 50	3 42 4	55 62 51 36	32 11 35 14	16 89 17 50	} 9-11	38-37
Sweet almonds Maize . whole grain	9 53	2 86	51 42 6 10	38 19	22 50	<i>–</i>	
germ Palm fruit	=	=	44 46 65 72	=	Ξ	6–10	14-18
Palm kernel Coconut	=	=	45·50 45 68	Ξ	Ξ	7-9 10-14	14-17 18-22

The oil is extracted by two processes by pressure and by means of solvents. Edible oils are always obtained by the former method, as also are most of the others, solvents being used to extract the remaining oil from the pressed residues (oil-cake), when these are not to be used for cattle-food

According to the power and degree of perfection of the pressing appliances, from one-fourth to one-seventh of the total oil is left in the cake Extraction of the powdered cake with solvents removes all but the fifteenth part of the total amount of oil (1 to 2 per cent instead of 10 to 12 per cent)

The seeds are not worked up immediately after gathering, but are first matured, dried, and turned in bins or silos. They are then cleaned with sieves

Frg 270.

and fans, crushed in a kind of roller press (Figs 268, 269) and powdered (sometimes this is done directly) in vertical cast-iron or stone mills like that illustrated in Fig 185 on p. 269. A mill with a diameter of 1 7 metre converts about 35 litres of linseed into flour in twenty-five minutes

To obtain the edible and so-called virgin oil, the flour is pressed cold, although more commonly the pressing is carried out in the hot, this increasing the yield but injuring the quality and colour. The flour is heated in the apparatus shown in Fig. 270, this being furnished with discharge orifices, a, which allow the quantity corresponding with each cake to be delivered. Steam heating is applied in the upper chamber, c, while the lower one, b, is well insulated so as to maintain the temperature of the mass.

Nowadays the pressing is effected almost everywhere with hydraulic presses of various forms, and only in small works are wooden or metal screw-presses still employed.

¹ The HYDRAULIC PRESS is based on Pascal's principle, according to which a pressure exerted on any point of a liquid mass is transmitted with the same intensity in all directions. So that, if a pressure of 1 kilo is exerted, by means of a piston 1 sq om in area, on a liquid in one arm of a U-tube, the other branch of which is closed by a piston 16 sq om. in area, this would require a pressure of 16 kilos to balance the first piston (Fig. 271), the pressure transmitted by the pressing surface being proportional to the area receiving the pressure

would require a pressure of 16 kilos to balance the first piston (Fig. 271), the pressure transmitted by the pressing surface being proportional to the area receiving the pressure

The hydraulic press consists of a suction pump, P (Fig 272), which draws water from the reservoir, A, and forces it through the strong copper tube, t, into the thick-walled chamber, B, hermetically sealed at the upper part by a large piston, b, carrying a wide plate, c, on which is placed the material to be compressed. The compressing surface is that of the base of the small pump-piston and the surface receiving the pressure is given by the base of the piston, b, the pressure received being dependent on the ratio of the sections of the pistons and on the

A hydraulic press which is widely used is the ring-press of Brück and Hubner, of Mannheim shown in Fig 275 The powdered seeds are placed on the rings, a, the base of which

ratio between the arms, OP and PR, of the pump-lever—If PR is ten times as long as PO and the force exerted at R is 30 kilos, the piston of the pump receives a pressure of 300 kilos (30 \times 10); if, on the other hand, the section of the large piston, b, is fifteen times as great as that of the small piston, the pressure exerted on the former will be 4500 kilos (300 imes 15)

Frg 271.

Fig 272

When the piston, b, rises, the plate presses the substance against a strong cover, d, fixed three or four columns, e. When the pressure is to be released, the water is discharged from by three or four columns, e the chamber, B, and the piston descends. The pump is provided with a safety-valve which regulates the maximum pressure desired. The large piston is made tight by encircling it at b with a leather ring (devised by the Englishman Bramah) with an inverted U-section, the water, in its attempts to escape along the sides of the piston, enters the ring and forces its edges against the piston with a pressure increasing with the pressure of the water, and thus forms a true hermatic scal.

Nowadays horizontal hydraulic presses, which discharge the oil and cake more easily, are also used, but these occupy more space, while at the same time the piston does not recede of itself at the end of the oversition.

itself at the end of the operation

In practice, when a substance is to be compressed with a hydraulic press, two or more punips

are used. The first, which has a long stroke, raises the piston and plate rapidly, since at first the resistance is small, when the pressure increases, the compression is continued more slowly by means

To avoid attention to a number of pumps and loss of energy, works employing many hydraulic presses make use of the so-called hydraulic accumulators (Armstrong, 1843), which provide a store of water under high pressure for the feeding of several presses at once (Figs 273 and 274) A piston, several presses at once (rigs 2/3 and 2/4). A pixton, L, moving in a cylinder, B, just as in an ordinary hydraulic press, receives pressure from below by means of compressed water from a pump, passing through p and v_1 ; the upper part of the pixton is fixed to the centre of a plate, C, which, by means of three columns, S, supports the plate, E, carrying the heavy iron discs, D. When the pixton is raised by the compressed water entering A, the whole by the compressed water entering A, the whole accumulator, E, C, and the discs, D, are raised. When v_1 is closed A contains a store of water under great pressure which transmits pressure to a number of hydraulic presses simultaneously when

the cock, $v_{\rm g}$, communicating with these presses is opened. In order to prevent the piston, L, from being reased too much and so forced out of the cylinder, B, the lower part of the piston is provided with a small vertical channel with a lateral exit, when the latter is forced from the top of the cylinder, B, the water escapes, the pressure is lowered and the piston falls. Large works are supplied with two or more accumulators, so that when one is raised and the other at its low position excess of compressed water supplied by the pumps at any moment is directed to the latter accumulator, which is hence raised. In this ways also the final pressure of the hydraulic press can be utilized before discharging it appears. way, also, the final pressure of the hydraulic press can be utilised before discharging it, energy that would otherwise be lost being thus saved

By these means, a uniform and persistent pressure may be exerted on several presses, but it is exerted, not gradually, but instantaneously, which may be disadvantageous in certain cases, unless indeed various accumulators at different pressures are employed. Accumulators with small pistons may be used for pressures up to 400 atmos. The circular iron rings composing the accumulator may be replaced by a single large cylinder filled with scrap iron or stones. The pressure of a hydraulic accumulator may be exerted in some degree gradually by connecting it with a compressed-air chamber (automatic accumulator). As higher for use in the accumulators, water, glycering, or oil may be employed.

the accumulators, water, glycerine, or oil may be employed.

consists of a movable, perforated steel plate covered with a disc of woollen or horsehair material. The flour is well pressed by hand or by a suitable machine, covered with a second woollen or horsehair disc, and passed along the guides, b, being thus brought between two plates, e, which are smooth underneath and grooved on the top and fit exactly into the

two rings containing the flour, one above and the other below. The grooved side of the plate has also a circular, peripheral channel which collects the oil issuing from the perforated base of each of the rings when the press is working

The automatic changing of the rings requires one to two minutes, about the same length of time being occupied in discharging them, while, under a pressure of 200 to 300 atmos, the pressing is complete in eight to ten minutes. Especially with palm oil and coconut oil, the pressing may be carried out in the hot, the plates being arranged so that they can be heated, this procedure shortens the time of pressing and increases the yield of oil. In

some cases the pressing is carried out first at a low pressure, which gives an oil of improved quality, the cake thus obtained being ground (e.g. by an Excelsior mill, p. 200) and squeezed under a high pressure for the extraction of a further quantity of oil of lower grade.

The presses most commonly used are of the type shown in Fig 276 (in plan at t), d being a cylindrical cage made of a number of vertical steel bars fixed to stout horizontal rings surrounding them (Fig 277), so as to leave vertical slits through which the oil flows. The cakes consisting of 2 to 3 kilos of the hot flour and well wrapped in strong horsehair material, are placed in d, the superposed cakes being separated by fluted steel disos. The pressure is raised gradually to 200 to 300 atmos. When batteries of several cages are used (Fig. 278) hydraulic accumulators (Figs 273, 274) are often employed.

Fig. 277.

1

Double hydraulic presses are sometimes used (Fig. 279), the two cages being rotatable round the column s. One cage is discharged and recharged while the pressure is acting on the other cage.

With the presses about 70 per cent of the oil of seeds and fruits is extracted; by means of suitable solvents 98 to 99 per cent. may be obtained.

Extraction of the oil by means of solvents (first attempted in England in 1856), from the crushed seeds or broken cake, is effected with carbon disulphide (see Vol I, p. 493)—which has considerable solvent action on fats, even in the cold, but also removes a certain amount of chlorophyll—or with light petroleum (benzine), which exerts its maximum solvent effect in the hot. The use of carbon tetrachloride has also been suggested (see Vol. I., p. 470), since it is not inflammable like the other two solvents and, further, allows of the extraction of the oil from most substances

The extraction may be carried out by direct exhaustion or by systematic exhaustion. In the former case, the substance is treated with pure solvent, so that large quantities of dilute solutions which must be concentrated are obtained, in the other process, a number of apparatus are arranged in a series so that the solvent passes from one to the other and leaves the last completely saturated, while the first apparatus, as it becomes exhausted, is charged with fresh material and placed last in the series (see exhaustion of beet in the diffusers, under the heading Sugar, later). From the saturated solution of the oil, the solvent

Fig 278

is distilled by means of direct or indirect steam and is thus completely recovered, while the crude fat remaining is refined

There are various forms of apparatus corresponding with the first method of extraction, such as the Merz universal extractor, that of Pallenberg, and the Wegelin and Hübner (Fig 280) form, which is fairly widely used. In the last of these the fatty material is placed in the vessel, A, into which solvent is introduced from D by means of the tube, rq. The solvent saturated with fat is discharged into the still, G, where, by means of indirect steam passing through the coil, y, the solvent is distilled, its vapour ascending the tube, t, and condensing in B, and the liquid collecting in D. The fat remaining in C can then be drawn off through the tap, x, but if it retains solvent tenaciously, it is first heated by a current of direct steam, solvent and water then condensing together in the condenser, B, owing to their mutual insolubility, these two liquids can be separated by means of a suitable Florentine receiver 1 situated at w between B and D, the water being thrown out. If the solvent

¹ The Florentine Receiver consists (Fig. 281) of an iron cylinder, D^1 , joined at the bottom to the tube, C, and provided with a lateral tube, D, slightly higher than the top of the tube W_1 (h=2 to 4 cm., according to the difference in density between the two liquids to be separated, $e\,g$, water and benzine) The tube, B, carries the condensed mixture of water and solvent to the bottom of the separator, the benzine rising to the top and being gradually discharged through

saturated with fat, instead of being drawn off by the tube, u, is caused to rise to the top to the tube, l, whence it falls into the tube, v, the extraction is effected with continuous circulation of the solvent until the substance is exhausted To expel and recover the solvent

retained by the substance remaining in A, a current of direct steam is passed into the latter, this carries off the vaporised solvent along the

tube, k, through the valve, n, to the cooling coil, B, the condensed water and oil being passed through the separator, w, before the latter liquid is collected in D.

By means of the Merz extractor,

slightly modified by Fisher (Eng. Pat. 123,645), extraction may be effected in either an upward or a downward direction and also in the hot, the extractor and still, shown in front and side views in Figs. 282 and 283, form a single apparatus, the vapour of the solvent heating the mass to be extracted before it reaches the condenser The material is introduced at A into the cylinder, B, having a closed base, C, on which are a series of closed coils, D, for indirect heating, and the perforated coil, E, for the introduction of direct steam, which

Fig. 279

D to the tank (D, Fig. 280), while the water is discharged through W_1 At the commencement of the operation water is introduced through the tap, t, into U until it flows out at W_1 ; during the distillation a trickle of water enters at t If at any If at any instant irregular distillation causes a sudden excess or deficit of pressure in the separator, either the excess of gas may escape momentarily from s, forcing a column of water into u, or suction at s is absorbed by a small quantity of water falling into the

at e is absorbed by a small quantity or water falling into the funnel, e, which leads it to the bottom of the separator without mixing the benzine and water layers. When a solvent heavier than water, such as carbon disulphide, chloroform, etc., is used, the tube, W_1 , is connected with the solvent tank, the water discharging from the tube, D. When the extraction is complete and all the solvent has been expelled from the fat and from the residual cake, only water vapour condenses, as may be seen the calculating a sample of the liquid from the tan W_1 . by collecting a sample of the liquid from the tap, W ..

D

Fig 281.

660

N211.2

serves for expelling the solvent from the extracted mass—Steam enters the coil, F, above which is a double perforated plate supporting the mass to be extracted, at the level of this plate is a rectangular door, G, for the discharge of the exhausted material

The solvent arriving from the tank through the pipe, H, may be directed to the top or bottom of the mass by the 3-way cock, 2. At the top it enters at K, escapes through the holes of the annular tube, J, is heated by falling over the double steam coil, I, and is distributed over the mass to be discharged through I into the still, below CEF. In order to extract from the bottom upwards, the solvent is passed in at M and overflows the upper perforated plate, N, to collect in the chan-

nel, O, and thus pass through P and the inspection glass, Q, into the still beneath

The still is furnished with a heating coil which can be dismounted and withdrawn, for cleaning or repair, through the manhole, R Direct steam may be introduced, by the coil, S, to eliminate the last traces of solvent from the oil. The hot solvent vapour surrounds the extractor, keeping the mass to be extracted hot, and escapes at the top of the apparatus through the east-iron pipe, T, to the cooling and condensing coils. The residual oil is discharged from the still through

the valve, 3, at the bottom The condenser is separated from the solvent tank by a plate, U, and consists of three coils round which the cooling water flows The condensed solvent passes, together with the steam, into the automatic separator, V (see Fig 282) The steam for the extraction should be at 4 to 5 atmos. pressure and should be dry, and if possible, slightly superheated

Large works, however, always use batteries of extraction apparatus arranged in series. In a good extracting plant, the loss of solvent does not usually exceed 0.5 per cent of the weight of oil extracted and is always less than 1 per cent. 1

REFINING of oils, to separate as far as possible the tannins, proteins, and colouringmatters extracted from the oily seeds and fruits, is generally effected by means of dehydrating or oxidising agents (the latter attack the colouring-matters more especially)

In order that sulphuric acid may not act on the glycerides (forming ethers) and heat and partially carbonise the oil, it must be used at a concentration of about 60° Bé and in small quantity (1 to 2 per cent) with oil heated to 50° to 60°, or with the cold oil; under

¹ The solvents most commonly used for extracting oils for industrial—not food—purposes are benzine, carbon disulphide, benzene, ether, etc., which are insoluble in water, but are highly inflammable and give explosive mixtures with air. The use of such solvents caused 206 accidents, 60 persons being killed and 187 injured, in Germany in 1911. For this reason increasing use is being made of non-inflammable solvents such as carbon tetrachloride and other chloroderivatives of hydrocarbons (see p. 122).

these conditions the few impurities are first carbonised and the oil becomes coloured, but after filtration it is obtained paler, purer, and clear.

Zinc chloride often gives almost the same results as sulphuric acid, and is added in concentrated solution (sp gr 1 S5) and in amounts up to 1 5 per cent. of the oil, the black flocculent matter formed separates on standing or filtration

In some cases it is sufficient to leave the oil in large closed tanks of tinned iron with conteal bases fitted with taps so that the impurities which gradually settle may be removed Fragments of coal, peat, willow, etc., may be added, these carrying down the impurities

as they settle In order to avoid prolonged contact of the oil with the an, pressure filters (described in the section on Sugar) are preferred, either the oil is placed at a higher altitude than the filter, or the pressure is applied by means of pumps, it being possible in this way to filter 1000 to 2000 kilos of oil m 24 hours To purify with sulphume acid (see later, Twitchell process), the latter is poured in a thin stream into the oil contained in a lead-lined vat and kept well stirred After seven to eight hours, by which time small black clots of carbonised impurities have deposited, the oil is decanted into a second vat, washed two or-three times with water at 40° to 60° (in some cases a small quantity of sodium carbonate is added to the second water), being stirred meanwhile or emulsified by air from a Korting injector, after being left to stand, it is either decanted or filtered

The water is sometimes intimately mixed with the oil to be washed by means of the so-called emulsor-centrifuge (Fig 284), consisting of two superposed metal plates with the concave parts inside and mounted on a hollow axle rotatable at 8000 to 10,000 revs. per minute, while through a central aperture commanded by two taps-exactly adjustable -the oil and water are introduced in the desired proportions. The distance between the two plates can be altered so as to give a slit between their edges from 0 02 to 2 mm. in width, the more or less completely emulsified mass being forced out through the slit by the plates themselves. If the oil does not separate from the water on standing, the emulsion may be destroyed by adding powdered and calcined sodium sulphate or carbonate (which act as dehydrating agents) or by agitating the emulsion with animal black or magnesium silicate (which separates the components), but the best results are obtained with centrifugal

Fig. 283.

separators, like that used for milk (see p. 476), the water and impurities being forced to the periphery, where they adhere, while the oil is discharged by the central tube. The acid also may be mixed in the same way, and continuous working may be attained by means of a battery of emulsors and another of centrifugal separators, the latter serve well to purify the dregs of the oil and, in general, colloidal and soapy products of oils. When the emulsified or colloidal condition is due to the presence of gum or wax, it is preferable to initiate freezing of the glycerides, this breaking down the emulsion so that it can be filtered When stable emulsions of oil and water are required, as is sometimes the case, they can be obtained by pouring the oil, mixed with salified stearo-amilide, into a boiling mixture of water and VOL II.

ammostearic acid; when mixed, the dense emulsion is stable, even in the cold (Kosters, 1907).

To deodorise oils, they are passed through bone-black or, sometimes, clim-bank. The passage of superheated steam through the oil heated to about 200° gives better results. In some cases, and more especially when very rancid, oils are purified by deacidifying them with a concentrated solution (8° to 10° Bé for cottonseed oil and 36° to 38° Bé for olive oil) of caustic soda in amount slightly exceeding that calculated from the acid number, this treatment, however, readily leads to the formation of persistent circulations and to loss of glycerides and also of fatty acids. These emulsions, which are due to the presence of soaps, are broken down in the manner already described, first being heated to 50° to 60° Emulsification is sometimes avoided by adding sufficient lime or ammonia to neutralise the free acidity and then completing the refining by the passage of steam. If the acidity exceeds 30 per cent, the losses would be so high that deacidification is not advisable, such oils (e.g., highly acid olive oil after refining with sulphuric acid) cannot be used as lubicants or for softening wool, but are used solely for soap, unless indeed the fatty acids are transformed into glycerides by treatment with glycerine as described on p. 461.

Bleaching with hydrogen peroxide, dichromate or permanganate is carried out as with

tallow (see p 470), but if the oil is first deaculified.

1 kilo (instead of 15 kilos) of dichromate per ton is sufficient. If it is required to eliminate every trace of soap, the oil is heated with a boiling solution of 5 per cent sulphuric acid. Vegetable oils are frequently decolorised nowadays with fuller's earth (see Vol I, p. 738), and good results are obtained also by heating with alkaline solutions of sodium hydrosulphite.

OLIVE OIL is obtained by pressing the fresh olives of Olea europæa in the period from October to December (in Morocco, in August and September) The olive grows in abundance in Central and Southern Italy, on the shores of Lake Garda, on the Genoese Riviera, and in Southern France, Spain, Portugal, Dalmatia, Istria, Greece, Morocco, California, and Southern India.

The composition of the fruit is given in the Table on p 482

It is not advisable to extract the oil from stored or fermented olives, those giving the so-called hurle tournante, which is rich in fatty acids and yields a persistent circlision when shaken with soda solution, and a Turkey-red oil—similar to the sulphoricinate (see p. 300)—

when treated with concentrated sulphuric acid.

If the olives cannot be worked at once, fermentation is prevented by storing them in a cold, dry, and well-ventilated place. The fermentation (according to Tolomei) is due to an enzyme (olease) occurring with the oil, which, in the presence of air and light, it decolorises; if the clease is removed by washing the oil with water, the oil is not decolorised under the influence of light.

The extraction of olive oil is not always effected by rational processes and plant, but usually the olives are first crushed by means of the ordinary edgo-runners (see Fig. 185, p 269).

¹ Fuller's earth has been long used in Northern Africa for clarifying olive oil; in Chicago it was thus employed as early as 1878, but its use was considerably extended subsequently to 1890. It consists of aluminium and magnesium hydrosilicates, and is found in granular or powdery deposits in Florida and also at Fraustadt, in Silesia. The decolorising action of this earth depends on its state of hydration, the maximum effect being obtained if it is first lightly roasted (at about 200°), while if the roasting is carried too far so that all the water of hydration is lost, the decolorising power is entirely destroyed. The oil is shaken with 1 to 3 per cent of the earth, and the mass heated for a short time at a temperature (60° to 100°) varying with the nature of the oil and then passed to the filter-press, the first turbid portions of the filtrate being refiltered,

The second of th

The pulp is next placed in suitable bags of tenacious vegetable fibre or wool surrounded by horsehair and then pressed, the type of press employed varying widely with the locality. The ring hydraulic press (see Fig. 275, p. 485) and other forms, still further improved, give excellent results. In some cases a moderate pressure is first employed, the result being oil of superfine quality (virgin oil). The residues are steeped in hot water and subjected to increased pressure. Repetition of this procedure, employing a still higher pressure, gives an industrial oil. The cake from the second pressing may, however, be agitated in a vat through which water flows, part of the remaining oil is thus removed, this being collected in a second vat, where it undergoes protracted washing with water, yielding so-called washed oil.

The Kuess-Funaro process (1902), which results in an improved yield and a readier extraction, consists in emulsifying each time with feebly alkaline aqueous solutions ¹

The residual cakes (known in Italy as sanse), after being dried, still contain 7 to 11 per cent of oil, which is nowadays extracted in large works by means of carbon disulphide, which gives the very given, so-called sulphocarbon oil, almost all of this being used in the manufacture of green soap for the textile industries ² This soap is sometimes called Murseilles soap, and is used especially for the treatment of raw silk, in France, however, and to some extent in Italy, this name is given to high-grade white soap, mostly prepared from copia and arachis oils.

Pure olive oil is yellowish or, in some cases, almost colourless or slightly green. The finer qualities taste but little, freshly pressed Puglia oil has a rather bitter and unpleasant taste (due to camphene, eugenol, and other substances investigated by Canzoneri), which it gradually loses

The composition of olive oil varies with the district of origin and with the conditions of extraction, the solid glycerides fluctuating from 10 to 28 per cent (more especially palmitin). The liquid glycerides, which occur to the extent of 70 to 90 per cent, were formerly thought to consist of triolein alone, but the presence of linoleic acid (as much as 6 per cent, this explaining the high iodine number of the oil) has now been proved, and there appears also to be about 1.5 per cent of a mixed glyceride and 0.2 to 1.5 per cent.

A new process of extracting olive oil proposed by Acapulco (1910–1911), and tested with favourable results in the experimental oil plant of the Portici Higher Agricultural School, is based on the different surface tensions of the two liquids (oil and water) which are present in the pulp of the clive and have to be separated, and hence on their different capillary behaviour towards the vegetable tissues constituting the pulp. The surface tension of the oil is about one-half that of the water, so that separation of the two liquids is easily attained by even slight diminution of the pressure below that of the atmosphere. The separation is also facilitated by rise of temperature and by the fact that the water present has a capillary constant higher than that of the oil, so that it remains more strongly adherent to the vegetable tissues. The essential part of the machinery of this process—after the stones have been separated from the pulp—consists of the so-called filtering extractors, formed of superposed metallic cylinders, inside which is a metal filtering cloth, an annular space communicating with the vacuum pump being left between the walls and the cloth. A stirrer fitted with varies continually moves the mass of pulp contained in the extractor and spreads it in thin layers on the filtering cloth so that the liquid portion is separated from the pulp. By steam-heating the extraction can be carried out at any temperature, but even in the cold the exhaustion of the pulp is more complete than that obtained by the older systems, while in the hot it surpasses that reached by pressing the "sanse" in the most powerful hydraulic presses. It is said that the Acapulco process is more economical than those proviously used and that it lends itself to the production on a large scale of pure, slightly coloured oils of constant type, but, as yet, this process has not been subjected to decurve commercial tests.

commercial tests.

2 To distinguish sulphocarbon oil, which has a lower iodine number (77 to 80), from that obtained by pressure, Halphon's test may be employed. To 50 c.c. of the oil heated to 100° sadded 12° c° of alcoholic caustic potash diluted with an equal volume of water, the mixture being heated for 10 minutes at 110° and cooled to 100°, 200° c.c of hot water is then added and the liquid, after cooling, shaken with 200° c.c. of saturated sodium sulphate solution, 20° c.c. of 30 per cent copper sulphate is then added, and the liquid filtered. If the filtrate is not green a little more of the copper sulphate solution is added and the liquid filtered again if necessary. S° c.c. of silver intrate solution (containing 1 vol of 1 per cent. aqueous silver intrate solution and 5 vols. of glacial acetic acid) is then added to the liquid, which is boiled, allowed to cool, supersaturated with ammonia and filtered, the filter being washed with dilute ammonia. If black silver sulphide remains on the filter, the presence of sulphocarbon oil (or impure cruciferous oils—colza, mustard, etc —which cannot be detected otherwise) is certain. Cusson (1909) has devised a simple test · 200 grms of the oil is vigorously shaken with 50 grms. of 90 per cent alcohol and then distilled on a water-bath, the distillate being collected in a well-cooled flask containing a little alcoholic potash. Even traces of carbon disulphide thus yield potassium ranthate, which gives a yellow coloration or precipitate on addition of alcoholic cupric acetate solution.

32-2

: 3

of volatile acids, besides 0.7 to 1.6 per cent of non-saponifiable substances (phytosterol and, according to Sam, an oil not yet defined). It contains a variable quantity of free fatty acids, and when impure readily becomes rancid. If the acid number exercis 16 (2.0, 8.1 per cent of acids calculated as olcic acid), it cannot be used as machine oil, as it attacks metals

Pure olive oil is used as a comestible and the very pure and more liquid qualities for oiling clocks, while the other qualities are employed in large quantities in the manufacture

of soap, lubricants, burning oil, and Turkey-red oil

The purity of the oil is controlled by various tests referring to the constants given in the Table on p 466, and by certain special tests. Ohve oils of certain origins give abnormal constants, eg , Algerian and Moroccan oils have an iodine number of 96 and are reddened by mitric acid, pure Tunisian olive oil gives the reaction for sesamé oil (Villavecchia and Fabris' test) but not the Belliez reaction (test for sesamé oil with a saturated solution of resorcinol in benzeno and intuo acid), the extraneous substances of Tunisian oil which give the Villavecchia and Fabris test can be removed by shaking the oil with hot water Detection of added sesame oil is effected by Tortelli and Ruggeri's modification of Baudouin's test on the fatty acids (see p 472), or more rapidly on the oil itself by means of Villaveochia and Fabris' test, taking care to dilute 5 oc of the resulting red acid liquid with four times its volume of distilled water and to shake the mixture in a cylinder, and observing the lapse of time required for the disappearance of the red coloration. With any pure olive oil, if there is a coloration, this disappears within five minutes or, in exceptional cases, in eight minutes, whilst if sesame oil (even only 3 per cent.) is present the colour will persist for 30 minutes (Zega and Todorovic, 1909) The presence of cottonseed oil is indicated by the Halphen reaction (see p. 470) or by Tortelli and Ruggeri's modification of Becchi's reaction, which is carried out on the liquid fatty acids in the following manner: 20 cc. of the suspected oil is hydrolysed with alcoholic potash in the ordinary way (see p. 468), the aqueous solution of the soap being neutralised with acetic acid and precipitated with lead acctate, the lead salt, separated by filtration, is shaken with other and the filtered ethereal solution decomposed in a separating funnel by dilute hydrochloric acid. The othereal layer is filtered and the other evaporated, and to 5 c c. of the residue (liquid fatty acids) 1 are added 10 c.c. of 90 per cent alcohol and 1 c c. of 5 per cent. aquecum silver nitrate solution, if a black precipitate is then formed on heating for some time on a water-bath at 60° to 70°, the presence of cottonseed oil is proved. In certain special cases the Becchi reaction alone is insufficient to indicate with certainty the presence of cottonseed oil. Traces of mineral oils in vegetable oils are detected by the formation of a yellowish red solution on addition of a benzene solution of commercial pieric acid (F. Schulz, 1908, see Note, p. 468). To detect fish oh in vegetable oil, 100 drops of the latter are treated with a mixture of 3 c.c. of chloroform and 3 c c. of accide acid, sufficient bromine being their added to produce a persistent brown coloration, after 10 minutes' rest the vessel is introduced into boiling water, when the liquid will remain liquid if the vegetable oil is pure, whilst insoluble brome-compounds will separate if fish oil is present. With boiled oil, the metals are first eliminated. Where the oil has been coloured yellow with auramine, this is detected by boiling 1 c c. of the oil with 20 c.c. of 8 per cent. alcoholic potash and a little zine dust in a reflux apparatus, 20 e.c. of pure benzene and 50 c.e. of water being added after cooling; the benzene solution is evaporated and the residue taken up in glacial acetic and, a blue coloration, becoming darker on heating, being formed if auramine is present. Sanse oil or sulphocarbon oil, extracted from the cake or marc by means of carbon disulphide, has a dark green colour, and the corresponding fatty acids have a rather low rodine number (as low as 75) and a somewhat higher melting-point than usual.

The presence of arachis oil in olive oil is shown by the Tortelli and Ruggeri test, which has been modified by Fachini and Dorta (1910) as follows: 20 grms, of the oil is saponified with alcoholic potash, the alcohol being then expelled, the soap dissolved in water, the fatty acids liberated by hot dilute sulphuric acid, and the clear fused acids collected on a moist filter; they are then washed with hot water and dissolved in 150 c.c. of pure, tepid acetone, water being subsequently added, drop by drop, until a turbidity is formed; the liquid is

¹ The liquid fatty acids can be separated, to a considerable extent if not quantitatively, from the solid ones by dissolving the mixtures in light petroleum or, better, in acetone and crystallising out almost all the solid fatty acids by cooling to —20° (Fachini and Dorta, 1910). According to Twitchell (U.S. Pat. 918,612, 1909) the liquid fatty acids are separated from the solid ones by fusion with 1 per cent. of aliphatic sulpho-acids, which render the liquid acids solible even in water.

finally rendered clear by the addition of a few drops of acctone at 40° to 45° and then left to crystallise. In presence of arachis oil, characteristic shining crystals separate at 15°, after an hour these are collected on a filter, washed with 10 c c of dilute acctone (32 vols. water + 68 vols acctone) and examined for arachic and liquideeric acids by the Tortelli and Ruggeri test—one-half is dissolved in 100 c c. of 70 per cent alcohol, warmed slightly—and allowed to cool, separation of crystals indicating arachidic acid (m-pt. 75° to 76°) with certainty.

STATISTICS —The cultivation of the olive is widespread in Italy and Spain, the output of oil (tons) being as follows

			1907	1910	1914	1916
Italy			260,540	124,610	160,560	206,200
Spain			306,415	108,510	207,765	207,115

Owing to the high price of coal during the European War, the old olive trees were

largely burnt as fuel Portugal produces annually about 25,000 tons of olive oil, Algeria about 32,000 tons, and Tunis about 36,000 tons. The output and price vary with the season and with the demand. In some years the producers sell at £4 and in others at about £2 10s per hectol, but during the European War far higher prices were obtained

CASTOR OIL is extracted from the seeds of Ricinus communis (Fig. 285), a plant cultivated in India, Indo-China, Java, Italy, Mexico, California, Egypt, Algeria, Tunis, Paraguay, Argentine, United States, Spain, and Greece. The oval seeds are 10 to 15 mm. long, about 6 mm. broad, and rather flat, and are covered with a brownish or marbled, shining, brittle skin; when peeled they contain 45 to 55 per cent. of oil The seeds contain

Fig 285 — Ricinus communis Shoots with flowers, male below and female above.

marbled, shining, brittle 1, stamens; 2, anthers, magnified; 3, ovary with three stigskin; when peeled they mata, 4, fruit, half size; 5-8, sections of fruit, 9-12, seeds and sections thereof.

about 10 per cent of nitrogenous substances and an enzyme capable of hydrolysing the fats into free fatty acids and glycerol (see Soap). The husks of the seeds contain poisonous substances (ricin, ricinin), which do not pass into the oil, but the pressed cake cannot be used as cattle food, and is employed as fertiliser, as it contains about 4 per cent. of assimilable organic nitrogen, 2 per cent. of P_2O_5 and $1\cdot 12$ per cent. of K_2O .

The oil was at one time extracted by pressing the ground seeds twice in the dry state and then pressing the residue after steeping in hot water. Nowadays, however, three consecutive pressings of the hot crushed seeds with increasing pressures are employed, modern hydraulic presses being used. This procedure yields first a fairly pure pale oil, then one less pure, and finally a more highly coloured oil for secondary industrial purposes. One hundred kilos of the seeds yield 9 kilos of husks, 43 of residual cake (with 8 per cent. of oil), 20 to 25 of oil of the first, 6 to 8 of the second, and 4 to 6 of the third pressing. The oil is purified by heating with an equal volume of boiling water, which precipitates many protein and gummy substances, it is decolorised by means of bone-black or by the ordinary processes given for tallow. The medicinal oil is obtained by a first cold pressing, and is then filtered in a vacuum to prevent rancidity.

The refined oil is almost colourless or faintly yellow, and has a high specific gravity, considerable viscosity, and a peculiar, unpleasant taste and smell—It forms an excellent purgative, the less pure qualities being used in the manufacture of sulphonicinate (see p 390) and of transparent soaps capable of retaining considerable quantities of water—It is used for softening leather and for making pegamoid.—Its soap differs from others in not rendering water opalescent.

Its specific gravity mostly has between 0 961 and 0 964, and it freezes between — 12° and — 18°, and owing to its high viscosity even at high temperatures, its slight solubility in benzine, and the small amount of solid residue left on combustion, it serves as an excellent lubricant for high-speed engines (for aeroplanes, etc.)

Castor oil contains various glycerides but is free from tripalmitin. Triminolem is solid, and there appear to be glycerides of a recinolete acid and of a recinisolete acid, also of a hydroxystearic acid (melting at 141° to 143°) and a dihydroxystearic acid (which explains the characteristic high acetyl number of castor oil)

The oil yields, besides ricinoleic acid, more or less highly polymerised compounds with less and less marked acid characters (eg. ricinisoleic acid), these increasing in amount with the age of the oil.

Castor oil is strongly dextro-rotatory (24 to 25 saccharimetric degrees in a 20 mm. tube) Unlike other oils, it is soluble in all proportions in absolute alcohol, glacial acetic acid, or ether, at 15° it dissolves in 2 parts of 90 per cent alcohol or 4 parts of 84 per cent alcohol, but is insoluble in light petroleum or vaseline oil (which dissolve all other oils and fats) Hence, if a castor oil is insoluble in light petroleum and gives a clear solution with 5 vols. of 90 per cent alcohol, it may be regarded as pure. The solubility relations are completely inverted if the oil is heated to 300° and 10 to 12 per cent of it distilled; there then remains a product termed floricin, which solidifies at -20° , is insoluble in alcohol, dissolves in all proportions in mineral oil, and forms a stable emulsion with 5 parts of water. A similar product is also obtained by heating castor oil to 200° in presence of 1 per cent of formaldehyde, if heated with zinc obloride solution, it thickens. The potassium salt of the thickened product, with water and formaldehyde, gives a disinfectant solution producing the same effects as lysoform or ozoform.

The constants of castor oil are given in the Table on p 466

LINSEED OIL is a drying oil, as it contains much linder and linderne acids (see pp 363 and 364), and when spread out in a thin layer on a sheet of glass slowly forms a solid skin (varnish), this forming more rapidly with the boiled oil.

Lanseed oil is extracted from the seeds (containing 35 per cent of oil) of *Linum usitutis-simum*, which are converted into flour by the ordinary edge-runner mills and pressed hot in hydraulic presses.

Linseed is cultivated especially in the Baltic provinces of Russia, and also in Southern Russia, Eastern India, the United States, and the Argentine, and to a less extent in Egypt. Belgium and Italy. Linseed oil extracted by means of solvents contains more unsaturated fatty acids and less volatile acids than the expressed oil

According to Fahrion (1903 and 1910), the fatty acids separated from linseed oil contain 17 5 per cent. of olcic acid, 30 per cent of linole acid, 38 per cent. of linolenic acids, and iso-linolenic acids, 8 per cent of palmitic and steams acids, all combined with 4.2 per cent. of glycerine and 0.6 per cent of non-saponifiable substances

The purity of the oil is indicated by means of the constants given in the Table on p 466, especially by the iodine number and the refractive index, which, in the different qualities, varies from I 484 to I 488 at 15° (or from 81 to 85 Zeiss at 25° or 87 to 91 Zeiss at 15°), whilst cottonseed oil gives no more than I 477 and maize oil no more than I 4765 at 15°.

A good proportion of the oil is used in the form of boiled linseed oil (see Note on next page), since on boiling it acquires drying properties especially necessary to the varnishes prepared with the oil.

The drying power may be determined by Livache's method. On a watch-glass is spread 1 grm. of lead-powder (obtained by immersing a strip of zinc in the solution of a lead salt and washing the precipitate with water, alcohol and ether, and drying), on which 0.6 to 0.7 grm of oil is allowed to fall slowly in drops, the whole being then weighed exactly and left at a moderate temperature in a well-lighted situation. After 18 hours the weight begins to increase, the maximum increase (12 to 15 per cent.) being obtained within two or at most three days (it then diminishes slightly). Other drying oils give the following increases: walnut oil, 7.9 per cent.; poppyseed oil, 6.8 per cent; cottonseed oil, 5.9 per cent.

cod-liver oil, 7 4 per cent, the remaining oils increase in weight only after the fourth or fifth day to a maximum of 2 9 per cent after seven days. The drying properties are deternuned best and most rapidly by spreading a given weight of the boiled linseed oil on a definite area of glass (1 mgrm. per sq. cm) and leaving the latter in a horizontal position until the oil is no longer adhesive when pressed lightly with the finger (the temperature should always be noted) The drying power of an oil may be determined also from the ozone number (Molmari and Scansetti, 1910).

In a 20mm tube, pure linseed oil gives a rotation of -0.3° in the Laurent saccharimeter at 15°, whilst other resm oils and sesamé oil are dextro-rotatory.

Linseed oil is used mostly in the manufacture of lacs and varnishes, mastics and lino-

¹ Oil Varnishes and Lacs are liquids which, when spread out in a thin layer on an object, colourng-matters of certain minerals in the hot Oil lacs are obtained by adding to the almost boiling oil varnish (free from gummy matter) fused copal or other resin, and diluting with oil of turpentine at the moment of using all these new components contribute to increase the fixation of oxygen.

fixation of oxygen.

Copal is a resin derived from various species of more or less fossilised plants. The harder copals melt at temperatures up to 300 and the softer ones at 100. They have specific gravities lying between 1 035 and 1 07, and they dissolve partially in ether, alcohol, benzene, acetone or chloroform, and almost completely, but slowly, in a mixture of alcohol and ether, they are insoluble in petroleum ether, fatty oils and oil of turpentine, but soluble in rubberseed oil or copal oil (from the distillation of copal). To render them soluble in linseed and other oils and in oil of turpentine, they are heated for 6 to 10 hours at 300° to 320°, best in presence of either steams acid or the fatty acids of linseed or castor oil. Copal consists of resin acids (trachylolic and isotrachylolic acids), resens (copal resens), a bitter substance and an essential oil. The acid number varies from 80 to 150, the iodine number from 58 to 70, and the saponification number from 100 to 165. Before the European War copal was sold at 32s, to 100s per cwt.

Crude linseed oil requires four to five days to dry in a thin layer, but the fixing of oxygen, that is, the drying, may be markedly accelerated by the presence of small quantities of dissolved

metals which act as catalysts

At one time oil varnish (boiled linseed oil) was prepared by heating the oil to 220° to 300° for two to three hours in presence of minium, litharge, or manganess dioxide (dryers) This procedure yielded daily varnishes (boiled varnishes), and was accompanied by danger from fire, the heating hours are record for the desired days the control of the desired days of the control of t the heating being carried out in open iron vessels furnished with stirrers and heated directly over the fire Nowadays the dryer (0 1 to 0 25 per cent Mn or 0 5 per cent. Pb + 0 1 per cent. Mn is sufficient) is dissolved by heating at a far lower temperature (100° to 120° and best in a vacuum) for four or five hours (by indirect steam at 135° to 150°), it being added (when the oil ceases frothing) as manganese borate or, better, manganese linoleate oil resulate, and the mass stirred with compressed air, in this way, the so-called cold varnishes are obtained. These are paler varnishes which dry in 6 to 8 hours, whilst the others require as long as 24 hours. It has been proposed to decolorise boiled linseed oil with ultra-violet rays. The drying is far more rapid in the hot than in the cold. Prolonged boiling of linseed oil without dryers increases not so much the drying properties as the consistency, certain components of the oil being polymerised and linoxyn formed, and the iodine number consequently diminished (e.g., from 154 to 27), these oils, thickened at 295° to 340°, bear the names Dickol, Standol, and lithographes standard. The action of oxygen during the drying of varnishes seems to lead to the decomposition of the glycerides of the saturated acids and of olon acid with subsequent complete oxidation of the glycerine and acids, the glyceride of hydroxylinole acid (hydroxylinolein), insoluble in ether, being also formed as well as anhydrides and polymerised substances. If 2 to 3 per cent. of pyridine, quinoline or other organic base is added to a linseed oil varnish, cracking will not occur, even after years (Ger. Pat. 239,280, 1008).

In the manufacture of lacs, a difficult and important operation is the fusion of the copal oil ceases frothing) as manganese borate or, better, manganese linoleate oi resmate, and the

occur, even after years (Ger. Pat. 239,289, 1908).

In the manufacture of lacs, a difficult and important operation is the fusion of the copal—previously prepared in lumps—in cylindrical or slightly conteal, enamelled iron or aluminium vessels, these are protected at the bottom by an iron or copper casing when heated by direct fire heat and are provided with a cover and chimney to carry off the noxious vapours, which are carefully condensed or burnt. The temperature is closely watched by means of a thermometer immersed in the fused copal (300° to 360°). It is nowadays regarded as preferable to heat with hot water under pressure (up to 300°) circulating in coils situate in the lower part of the boiler. Complete, uniform fusion occupies 3 to 4 hours (with a loss in weight of 15 to 30 per cent), the linesed oil containing the dryer and heated to about 100° being then mixed in , if any turbidity appears, the mass is heated to 300°. It is then allowed to cool to 150° to 200°, the addition of the oil of turpentine—which dissolves the lac—and, if necessary, of the dryer, being then begun. The diluted lac is filtered under pressure and discharged into smaller vessels, in which it is allowed to cool completely. The addition of calcium salts of colophony renders the lac harder but more brittle.

brittle.

The copal is sometimes replaced by colophony and other resins, which are, however, readily saponifiable, a mixture of Japanese wood oil with resin and a little lime gives a good lac. Lacs are improved by prolonged storage (at least a year). Linseed oil for making lacs should be free

leum.The last, first prepared by Walton in 1860 and improved by Parnacott and Taylor. is obtained by oxidising (blowing) hot linseed oil, after addition of the dryer (see Note), for 18 to 20 hours with hot air until it thickens to linoxyn, about 30 per cent. of colophony is then added, the whole being converted into a paste with cork-dust at a temperature exceeding 100°. The mass swells and is compressed hot (140°) on a strong textile previously varnished to protect it from moisture, the whole being repeatedly pressed between hot rollers. It is finally dried for some weeks in suitable chambers at 30° to 35°, where it loses its smell and acquires elasticity and weight. It is coloured in the pasty condition with mmeral colouring-matters According to Bitter (1911) linoleum exerts a marked germicidal action.

Lincrusta also is made from linoxyn, a stream of air being passed through linseed oil at 100° for some days until a dense mass is formed. This is mixed with white chalk and other pigments and cement, the mixture being spread and pressed on to strips of paper by means

of hot rolls which impress designs on to the surface

Linseed oil is used also for making soft, transparent soaps (see later).

The mean annual production of linsocd throughout the world in 1907-1916 amounted to about 2,750,000 tons.

WALNUT OIL -This is a drying oil like linsced The fresh nuts are freed from the outer green husk and left to dry for some weeks, after which they are stored in heaps for 3 to 4 months; this treatment increases the yield of oil and leads to the disappearance of the milky juice of the nuts, which would be difficult to separate from the oil. After removal of the shell, the dried nuts give 25 to 30 per cent. of fruit yielding 30 to 35 per cent of pale yellow, virgin oil in a first pressing in

Fig 286 —Oil palm (Elais gumeensis)

1, male flowers, 2 and 3, male flowers, magnified, 4, stamens, 5, fruit with three stigmata, 6, nut with three stigmata, 6, nut with the read apertures at the top; 7, section of the nut with the seed maide, 8, transverse section of the seed.

bags in the cold, and a further 15 to 20 per cent of greenish oil when the residual cake is broken, treated with hot water and pressed hot. The fresh virgin oil is sometimes used as a comestable, but it quickly turns ranged and has a pronounced flavour; it is used more commonly for lighting and as a drying oil for varnishes and for artists' uso.

It contains glycerides of cleic, lincleic, linclenic, lauric and myristic acids and has the specific gravity 0.925, iodine number 142 to 152, saponification number 186 to 197, Tortelli thermo-oleometer reading 104°, Zeiss butyro-refractometer reading 64 to 68 at 40°, melting-

point of the fatty acids 16° to 20°.

PALM OIL is extracted from the fruit of certain varieties of palm (Elais guineensis and Elais melanococca, which grow in Western and Central Africa and in America, and Astrocaryum acuale and Astrocaryum vulgare, growing in Ginana). The orange-brown fruit, of the size of walnuts, hangs in bunches; each bunch weighs 10 to 20 kilos and contains 1000 to 2000 fruits, and each plant yields, on the average, four bunches per annum.

from gummy matters, which may be removed by filtration through Florida earth (see p. 490 and Vol. I., p. 738) The softer lacs contain more than 50 per cent, and the harder ones less than 50 per cent. of linseed oil.

The pulp constitutes, according to the variety, 25 to 75 per cent of the fruit, which contains a nut, and this a white seed also yielding an oil (palm-nut or palm-kernel oil . see Fig 286)

The extraction of the oil in the districts where the palm is grown is carried out in an prational manner, the fruit being sometimes heaped up until it putrefies and the oil then pressed out In other cases the fruit is stored and compressed in excavations in clay soil, being left to putrefy until the oil separates at the surface. In other places the fruit is fermented for a month and then heated with water, so that the pulp becomes detached from the stone and can then be heated and pressed again with water until the fused oil comes to the top and can be decanted off In these ways more than one-half of the oil is lost, and machinery is now being introduced for detaching and disintegrating the pulp and for the rational pressing of the latter.

When freshly expressed, the oil has a buttery consistency, an intense orange-yellow colour and a faint smell of violets, the colour and odour persist in the soap prepared from it. It can be decolorised by heating it when exposed to the air and light, but this is effected best and most rapidly by fusing and heating it until it loses the water remaining from any preliminary heating with water for the removal of impurities, this separates from the fused mass in 24 hours — After this it is introduced into a metal vat or cylinder (Fig. 287) provided with a cover and tube for carrying the gases to the chimney; the fat is heated to 120° to 130° by means of an indirect steam coil, VP, and a vigorous and finely divided stream of air passed through the oil from a perforated tube, R In 3 to 4 hours'

decolorisation is complete; at the same time the pleasant odour of the fat remains, although it is destroyed if the fat is

decolorised by simple heating to 220°

Chemical decolorisation is often employed, the oil (1000 kilos), already purified by treatment with water and by fusion, being heated in a boiler to 50°, at which temperature 30 to 50 kilos of commercial hydrochloric acid and 8 to 10 kilos of potassium dichromate dissolved in 18 to 20 litres of boiling water are stirred in After 15 to 20 minutes, 1 to 2 kilos of sulphuric acid are sometimes added, the stirring being continued until the oil becomes limpid, stirring is then stopped and 70 to 80 kilos of boiling water sprayed on the oil to wash it After standing overnight, the water is decanted off, the acid separated from below, and the oil washed once or twice by boiling with water

Even when fresh it contains 12 per cent. of free fatty acids, and as it becomes older it decomposes spontaneously with increasing case, separation of fatty acids (up to 55 per cent)

The colouring-matter of palm oil admits of various characteristic colour reactions, with sulphurie acid, a bluish green coloration is obtained, whilst mercurous nitrate colours it first

canary-yellow, then pale green, and finally straw-yellow.

Palm oil is used in large quantities in the manufacture of soap and candles, its value being related to the melting-point of its fatty acids. It is calculated that the palm oil placed on the market (that is, exclusive of the large amounts consumed where produced), amounts to 70,000 to 80,000 tons per annum. Before the European War, the price varied with the year from 20s. to 26s. per cwt The best qualities of palm oil are from Lagos; then come those of Old Calabar, Benin, and Acora, while among the more impure varieties are those from Gabun, Liberia, and the Cameroons.

PALM-NUT OIL (or Palm-kernel Oil) is obtained by crushing and then either pressing in hydraulic presses or extracting with solvents the stones contained in the fruit of the West African palm (Elais guineensis), freed from shell, the seed forms 9 to 25 per cent. of the weight of the fruit and contains 43 to 55 per cent. of fat, which is white or strawcoloured and free from fatty acids when fresh, although it turns rancid fairly easily in the ar, it melts at 26° to 30° .

It consists of about 15 to 25 per cent. of triolein, 33 per cent of triglycerides of stearic, palmitic, and myristic acids, and about 45 to 55 per cent. of triglycerides of lauric (in preponderance), capric, caprylic, and caproic acids.

It bears a great resemblance to coconut oil, even in the property of its soaps of taking up large proportions of water—as much as 600 per cent (coconut soap up to 1200 per cent.)—and of being somewhat soluble in solutions of salt. The total quantity of palm nuts placed on the market is about 1,125,000 tons

COCONUT OIL (or Coconut Butter) is obtained from the coconuts yielded twice a year by the palms Cocos nucrfera and Cocos butyracea, which grow abundantly in Africa, Ceylon, Cochin China, and the Indies

The coconut is oval (Fig. 288) and about 20 to 25 cm long and 12 to 16 cm broad, it is covered with a fibrous mass, used for making matting, cord, and baskets, and with a hard, woody shell, 8 to 12 mm thick, which some time before maturation contains a sweetish, watery liquid (coconut milk), this subsequently disappearing and giving place to a soft edible pulp. The latter hardens in the air and is sold under the name of copra

Fig 288.—Cocos nucifera

1, flowers, 2, round female flower and two male flowers, 3, male flower; 4, male flower, separated from leaves and calyx, magnified; 5, female flower, separated from leaves and calyx, magnified, 6, fruit; 7, same in longitudinal section, the bony seed being surrounded by a fibrous layer; 8, the seed with one-half of the fibrous layer removed, 9, the bony seed with three orifices, 10, section of the inner seed with chamber filled with latex, 11, lower portion of the husk with the embryo, 12, embryo

(60 to 70 per cent. of oil) for the extraction of oil. At the place of production this is carried out in a very primitive manner, but in European factories the dry pulp is ground, steeped in boiling water and pressed, first cold and then hot

The oil is nowadays decolorised with bone-black or absorbent earths (magnesium hydrosilicates), and in the white form thus obtained is used as a comestible (coconut butter, see Margarine), after the free acids have been removed with highly concentrated solutions of caustic soda and after the odorous constituents have been expelled by means of superheated steam. The best form for use as food is the softer, almost liquid butter obtained by the first pressing in the cold. Its digestibility is equal to that of margarine and butter. If it contains more than 2 per cent. of free fatty acids (expressed as cleic acid), it cannot be used for food and then goes to the soap factory as industrial coconut oil.

Its composition is variable, and of the unsaturated acids it contains only cleic acid (about 10 per cent.), while glycerides of myristic and lauric acids are present in large quantities and those of caproic, caprylic, and capric acids to the extent of 2 to 3 per cent.

COTTONSEED OIL LE 1. 499Y

The pure fat contains no free fatty acids, or at most traces. At has already been mentioned that it gives a soap separable from solution only by very large quantities of salt, it is, however, capable of absorbing as much as 10 to 12 times its own weight of water, and is hence highly valued by soap manufacturers. It is used alone for culmary purposes and for mixing with margarine and adulterating cacao butter.

In its analysis, attention is paid to the physical and chemical constants given in the Table on p. 466.

A large area of the earth's surface (about 1,400,000 hectares) is under coconut palms, which in a good year would yield 960,000 tons of coconut oil.

VEGETABLE TALLOW (Chinese Tallow) is obtained by pressing the fruit (separated more or less from the seeds) of Stillingia sebifera (tallow-tree), which grows in China, Indo-China, etc. Pressing of the seeds (3 per fruit) yields stillingia oil, which is to some extent drying (todine number more than 135). The tallow, however, serves well for making soap and has an iodine number of about 30, but this varies somewhat owing to variation of the amount of stillingia oil present. The tallow melts at 35° to 44°, and is sold in 40- to 50-kilo cakes wrapped in straw.

COTTONSEED OIL is obtained by pressing the shelled, washed seeds of the cotton plant (Gossypium herbaccum and barbadense cultivated in North America, and G religiosum, hirsutum, and arboreum, cultivated in Egypt, India, China, Siam, etc.) The whole cotton-seed, with the husk, contains 7 to 10 per cent. of water, 15 to 20 per cent. of introgenous substances, 18 to 22 per cent of oil, 15 to 23 per cent. of cellulose, 24 to 30 per cent. of non-introgenous extractive matter, and 3 5 to 4 5 per cent. of ash; the decorticated seed contains 28 to 38 per cent. of oil. About 1 per cent. of down remains adherent to the husk (45 per cent. of the weight of the seed), and this is separated to make cotton wool, paper, and introcellulose.

The whole, or decorticated, seeds are ground and the flour pressed at 100° in hydraulic presses in two or three stages. The pressed cake is used as fodder or as fertiliser, and contains 3 to 9 per cent of oil and 15 to 30 per cent. of nitrogenous matter if from the whole seeds, or 8 to 20 per cent. of oil and 35 to 50 per cent of nitrogenous matter if from decorticated seeds

The crude oil is reddish-brown (sulphuric acid produces a red coloration) and is decolorised by stirring with 6 to 10 per cent of caustic soda solution of 10° to 15° Bé. and passing through it a vigorous current of air, first in the cold (40 to 50 minutes) and then when heated to 50° to 55° by indirect steam. It is then allowed to settle, and is afterwards washed with 10 per cent. of salt water (at 10° Bé.) to remove the last traces of scap, decented off, and passed through filter-presses to obtain it clear and of a fine straw-yellow colour. It may be bleached also by heating it to 70° with 10 per cent of fuller's earth and 1 per cent. of salt. The fatty acids separated from the glycorides of cottonseed oil contain about 26 per cent of cleic acid, 47 per cent of linche acid (the oil is hence partly drying), and about 24 per cent. of saturated fatty acids (palmilic and up to 3 per cent. of a hydroxyacid), besides a small proportion of an aldehydic substance (to which Becchi's reaction is due). It contains also 1 5 per cent. of a non-saponifiable sulphur compound and apparently a chloro-compound.

Tests for the detection of cottonseed oil in other oils have already been described (p 402), and the analysis of the oil is carried out with reference to the constants given on p. 466.

About two-thirds of all the cottonseed oil is used directly or indirectly (as adulterant) as food, the remainder (second and third qualities) serves, with palm oil and coconut oil, for making white soaps, although in some cases it gives rise, after some time, to yellowish spots.

The total output of cottonseed should be about double that of the cotton produced. The United States produced 6,997,000 tons of the seed in 1911 and 6,104,000 tons in 1912, the output of the oil being 800,000 and 750,000 tons respectively in the two years.

KAPOK OIL. This oil, obtained in 25 per cent. yield by pressing kapok seeds (from Errodendrum anfractuosum, growing in Java, East Africa, the Antilles, and Central America), exhibits slight drying properties and has the specific gravity 0 920, iodine number 95 to 115, and saponification number 180 to 195. The crude oil has an acrid odour and a repulsive taste, but the refined product is insipid and odourless and is used mostly for making soap. With Becchi's reagent it gives an intense reddish-brown coloration, and with Halphen's reagent a pale red colour.

MAIZE OIL (m America, Corn Oil) is now prepared in large quantities in America and

The state of the s

Italy from maize germs, which are separated during grinding. These germs contain 40 to 50 per cent of oil, and after being pressed hot leave an excellent cake for cattle-food (5s. to 6s per cwt.) The dense oil has a fine golden yellow colour and a faint odour of maize, and serves well for soap-making and for adulterating edible oils and linseed oil. That obtained by extracting the dried grains from spirit manufacture (see p. 182) is reddish brown, and is used for burning and as a lubilicant when mixed with olive and mineral oils, but is not used alone, as it tends to resinify. As a drying oil it has no great value.

The fatty acids of the glycerides of maize oil are—steam and palmitic (4 to 25 per cent.), oleic (about 40 per cent.), linelic and linelenic (about 45 per cent, so that the oil is partly a drying one), and small proportions of arachic, hypogenic, caproic, caprylic, and capric acids, the oil contains also about 1 2 per cent of lecithin and 1 4 per cent of non-saponifiable substances, mostly cholesterol, or, more precisely, sitesterol, identical with that

obtained from wheat and ryo.

If in North America (Illinois) alone the oil were extracted from the germs of all the maize produced (about 6,000,000 tons—the world's total production being over 7,500,000 tons, 900,000 of this in Italy), more than 250,000 tons of the oil should be obtained, but only about 40,000 tons of maize oil are produced at the present time, about one-half of it being exported

SESAMÉ OIL (Gingelly Oil, Teel Oil) is obtained from the seeds of Sesamum undicum

Fig. 289.—Sesamum indicum, with white seeds

A and B, ripe' fruit seen from the front and side,
C, longitudinal section of fruit, D, transverse section of
the fruit and four rows of seeds, E, seeds. All natural
size.

(brown, oval, flat seeds, 4 mm long, 2 mm broad, and 1-mm. thick · Fig. 289) and of Sesamum orientale (violet-brown or black), the latter giving as much as 50 per cent. of oil when pressed once in the cold and twice hot The first oil expressed serves as a food for 250 millions of the mhabitants of India, where the area under sesamé exceeds ten millions of acres (i.e., 4,000,000 hoctares). The exportation of sesamé seeds from India amounts to about 120,000 tons annually, nearly all of this being directed to the Marseilles market, whence other countries are supplied. The Levant produces about one-tenth as much

as India, and a little is produced in Africa, China, and Japan. In France the sesamé oil industry is declining owing to the obstinate empiricism of the older manufacturers and to the almost prohibitive Customs duties of various countries, but more than 1000 truckloads of the oil are still exported per annum.

Sesamé cake (dark or pale), so largely used as cattle-food, has the composition: water, 10 to 12 per cent.; protein substances, 37 to 39 per cent.; fat, 9 to 10.5 per cent.; and

ash, 9.5 per cent.

Sesamé oil has a golden-yellow colour, that from the Levant being the paler, it consists of glycerides of stearic, palmitic, oleic, and linolic acids, 78 per cent. of the fatty acids being liquid with an iodine number of 140. The physical and chemical constants are given in the Table on p 466, and the characteristic reactions for detecting it when mixed with other oils on p 492. It is dextro-rotatory $(+0.8^{\circ} \text{ to } +2.4^{\circ})$

The characteristic reactions, especially the colormetric ones, are due to special components, such as sesamin, a lawo-rotatory alcohol, sesamol, $C_{26}H_{44}O$, $\frac{1}{2}H_{2}O$, which gives Baudoum's reaction (p. 472), and the methylene ether of hydroxyhydroquinone, $C_{7}H_{6}O_{8}$.

Sesamé oil is used in the manufacture of oleomargarine and soap and as burning oil. ARACHIS OIL (Earthnut Oil, Peanut Oil) is obtained from the seeds of Arachis hypogea, cultivated as a herbaceous annual in Africa (largely in Senegambia and in less degree in other parts), India, United States, Java, Sumatra, the Philippines, Japan, Formosa, the Plate, Southern China, Indo-China, and to some extent in Spain, the south of France and Italy.

The fruit develops in the ground and attached to the roots, and consists of a yellow fibrous husk containing two seeds covered with a reddish-brown skin (Fig. 290). Senegal seeds contain about 14 per cent. of water, 48 per cent* of oil, 25 per cent of nitrogenous substances, 3 per cent of cellulose, and 2 per cent of ash, the African seeds contain up to 50 per cent. of oil, the Indian 44 per cent, and the American 42 per cent

The toasted seeds, which are consumed as a fruit, readily turn rancid and acquire a repulsive flavour, and are usually eaten immediately after toasting. Large quantities of the nuts prepared in this way are consumed in America, while considerable amounts are also ground, converted into a paste and slightly salted (4 per cent) to make *peanut butter*. Before the War the nuts were sold in the husk at 10s. to 12s per owt. and the dehusked nuts at 16s.

The ground, dehusked nuts yield about 30 per cent of oil at the first cold pressing, 7 to

Fig. 200.—Arachis hypogæa

A, whole plant (one-third natural size) with fruit; B, fruit (three-fourths natural size); C, fruit open, with one seed out, D, separate flower (double natural size).

8 per cent at the second cold pressing, and about 7 per cent at the third pressing when hot. The oil obtained by the first cold pressing is almost colourless, has a slight flavour of beans, and is largely used as a comestible and for adulterating olive oil, although it readily turns rancid. The second pressing in the cold gives burning oil, and the third, in the hot, oil for soap-making. Arachis cake causes abortion in cattle. The liquid components contain triclein and trilinolein; the presence of hypogesic acid is uncertain; the solid constituents are composed of triglyoerides of lignoceric acid, and to a less extent of arachic acid (5 per cent. of the oil). In olive oil arachis oil is detected by Renard's test, as modified by Tortelli and Ruggeri and by Fachini and Dorta (see p. 492).

COLZA OIL. This is obtained by pressing the seeds of Brassica campestris which is grown in France, Belgium and Germany, although most of the seeds come from India. The seeds are reddish-yellow and contain 5 to 7 per cent of water, 4 to 6 per cent of ash, 6 to 15 per cent. of cellulose, 19 to 22 per cent of introgenous substances, and 38 to 45 per cent.

Č

of oil (the Indian seeds are the richest, but contain also more singin and myrosin, which

give mustard oil with water, so that the cake is not utilisable as cattle food)

The ravison (Brassica napus) yields the brownish-yellow ravison oil, with an unpleasant taste and penetrating odour; its colour and taste are improved by refining by means of concentrated sulphuric acid, zinc chloride, etc. The oil consists of glycerides of cloic, crucic, stearic and arachic acids, with 1 per cent. of phytosterol—It is used for illuminating purposes, as it gives a bright, non-smoky flame, it serves also for making soft soap and, when heated to a high temperature in a current of an, yields a viscous product (oxidised oil) Rubbor substitutes are obtained by heating it with sulphur or sulphur chloride

SOJA BEAN OIL (Chinese Bean Oil) is extracted from the beans of Soja hispida (or Soja japonica or Phaseolus hispidus), which are cultivated in China and Japan (Formosa) The crushed beans are heated in jute bags over jets of steam and then pressed. A large part of the oil is used for soap-making. After purification by standing, the oil has the sp. gr 0.9255 at 15°, acidity, 0, sapomication number, 193 2, inding number, 135, Helmer number, 95 95, Reichert-Meissl number, 0 45; Maumené number, 86 to 87, index of refraction, 1 4750 at 20°, solidification point, — 8° to — 16°, melting-point of the fatty acids, 27°; and solidification-point of the fatty acids, 22° (Octtinger and Buckta, 1911)

The exportation of the oil from China amounts to 60,000 tons per annum

GRAPESEED OIL. The seeds of the grape contain 10 to 20 per cent of oil (more in white and sweet grapes). They are separated from the skins by drying in the sun oil in ovens and then beating, the sun-dried seeds containing 10 to 12 per cent of water, 9 to 12 per cent of carbohydrates, 10 to 11 per cent of introgenous matters, and 2 5 to 4 per cent of ash. The sieved seeds are dried completely, ground, steeped in 10 per cent of water, heated, and pressed, the cake is broken up, treated with 20 to 25 per cent, of water, and pressed again, this treatment being repeated so that all the oil may be extracted. The oil can also be extracted by means of solvents (benzine or carbon disulplude). When dark-coloured (extracted from the seeds of distilled mare or in the hot with solvents), it can be readily decolorised with animal-black or fuller's earth. It has not a very pleasant odom and is rather bitter (if expressed in the hot). Pressure of the seeds yields 9 to 13 per cent, of oil

This oil consists of glycerides mainly of linolic acid, together with those of solid fatty acids (10 per cent), and a little erucic, linolenic, and ricinoleic acids. It has the sp gr 0 9202 to 0 9350

1t has slight drying properties and solidifies between -10° and -15° , its sapoinfication number is 178 to 180; indine number, 130 to 140, Wollny number, 0.46, Maumené number, 52 to 54, and butyro-refractometer reading, 60 at 40°. The acetyl number of the fatty acids varies from 43 to 144, according to the extent of oxidation, it thus resembles caster oil to some extent, so that it is recommended for the manufacture of sulphoriemate (see p. 390)

The pure oil expressed in the cold is used as a food, and the other varieties for soapmaking, but if purified with sulphuric acid; t serves well as a lighting oil, not so much on account of its luminosity, which is rather low, but more especially because it gives a smoke-

loss flame.

After the removal of the fat, the cake contains 10 to 15 per cent of water, 14 to 18 per cent of protein substances, 6 to 18 per cent. of fat, and 6.5 to 7 per cent. of ash, and is used as cattle-food and also as a fuel.

In Italy the extraction of grapesced oil is capable of considerable development. A few oil-crushing mills of Southern and Northern Italy treat a certain amount of the seed. Seeds obtained from distilled vinasse are of less value, as they yield an inferior, brown oil

TOMATOSEED OIL. Dried tomato seeds 1 contain 18 to 22 per cent. of oil, two-thirds

¹ Tomatces are the fruit of a herbaceous plant (Solanum lycopersicum) of Peruvian origin, and from 1700 to 1850 were cultivated in various countries as a garden plant for local domestic use Since 1860 they have been grown extensively in North America, especially in California, where in 1911 15,000 tons were marketed, large quantities being exported to other countries in the fresh condition. In Italy also they are cultivated on a large scale.

Fresh tomatoes contain 92 to 95 per cent of water, 1 to 3 per cent of skin, 2 to 5 per cent of seeds, 0 9 per cent of introgenous compounds, 0 2 per cent of fat, 2 5 per cent of sugars, 0 8 per cent of cellulose, 0 6 per cent of ash, and 0 4 per cent of free acids (mostly citrio).

Concentrated tomato preserve is prepared by rupturing the fresh fruit, centrifuging and hydraulically pressing the mass, and concentrating the whole of the liquid in vacuum pans

of which is extracted by subjecting the ground seeds to a pressure of 300 to 400 atmos. The residual cake forms an excellent cattle food (superior to linear cake), as it contains 36 to 38 per cent of proteins, 10 to 12 8 per cent of fat, about 30 per cent of non-introgenous extractives, 8 to 10 per cent of water, 6 per cent of cellulose, and 5 per cent of ash

The oil expressed in the cold from sound seeds is straw-yellow, and with 20 per cent of

tallow gives a good washing soap

Analysis of the oil gives the following results (Fachini) density at 15°, 0 9215, refractive index, 1 4765, acid number, 0 46, saponification number, 1916, incline number, 114, indine number of the fatty acids, 1227; indine number of the liquid fatty acids, 1422, Hehner number, 938, accept number, 204

WOOD OIL (from Japan and China) is derived from the seeds of Aleurites condata. These contain as much as 53 per cent of oil with an odour like that of castor oil and yield 42 per cent when pressed cold, the oil has the specific gravity 0 936 to 0 943, and the iodine number 155 to 166, and exhibits drying properties. At 250° it sets to a solid, transparent, clastic mass, and it is used for making paint and for rendering wood and fabries impermeable.

TREATMENT OF FATS FOR THE MANUFACTURE OF SOAP AND CANDLES

Candles are mostly made from solid fatty acids (steams and palmitic) obtained by decomposing fats and oils into glycerine and fatty acids and pressing from the latter the liquid fatty acids, which are used, either alone or together with the solid acids, for soapmaking. Liquid oils and soft fats, which contain little steams and palmitic acids, are hence used not for candles but only for soap, but the stiffer fats are often treated in one and the same works for making candles and soap

The resolution of fats into acids and glycerine is carried out in very varied ways by

means of lime, sulphure acid, or superheated steam, or by biological or catalytic methods

(1) Saponification with Lime and Separation of the Solid Fatty Acids Theoretically 100 kilos of fat (see p 467) require 9.5 kilos of lime for hydrolysis, but when this process was first used industrially by Milly in 1834 as much as 15 per cent. of lime was used, so that a very large amount of sulphuric acid was consumed in liberating the fatty acids from the calcium scaps formed, while fatty acids were carried down by the enormous quantities of calcium sulphate formed and hence lead.

On this account the process was not used, but Milly showed later (1855) that, by heating in an autoclave under pressure instead of in open pans, the amount of line could be reduced to 2 to 3 per cent.—that is, less than the theoretical quantity—and yet practically complete saponification effected (see p. 457) Indeed, after one hour 64 per cent of the fat remained unsaponified, after two hours, 24 per cent, after four hours, 15 per cent,

after six hours, 9 per cent, after nine hours, 2 per cent, and after 12 hours, 0.7 per cent. The saponification is now carried out in large vertical copper autoclaves (Fig. 201) (5 to 6 metres high, 1 to 1 2 metre in diameter, of sheet copper 15 to 20 mm. thick), into which are passed several cwts. (up to 2 tons) of the fused fat from the tank, A (Fig. 293).

(see chapter on Sugar) until a red pulp or sauce containing about 60 per cent. of water is obtained. This is mixed with 2 to 3 per cent of salt and either bottled or scaled in cans after being sterilised at 100°

The pressed residues, amounting to 7 to 9 per cent of the weight of the original fruit, contain 6 to 8 per cent. of skin, 22 to 24 per cent of seeds, and about 60 to 70 per cent of water, and readily putrefy Nowadays they are broken up immediately they come from the presses, and are then dried and besten while hot to separate the skins from the seeds,

and then about one-third as much milk of lime, containing 2 to 3 per cent of lime (calculated on the fat), from the vessel B. The heating is continued for six to eight hours at a pressure of 8 to 10 atmos, steam free from air being passed in, first at low pressure from the boiler, D, and then at high pressure (10 to 12 atmos.) by the tube, e (Fig. 292), reaching to the bottom of the autoclave and terminating in a perforated coil. The steam alone

keeps the mass mixed without the special stirrers formerly used, if the precaution is taken of allowing a little steam to escape continually from a valve at the top. At the end of the operation the steam is shut off, and when the temperature has fallen to 125° to 130° (about 3 5 atmos pressure) the internal pressure is utilised to discharge first of all the aqueous glycerine from below by opening the valve, c, connected with a tube reaching to the lottom of the autoclave. In a similar manner the fused and subdivided calcium soap mixed with free fatty acids is forced into the tank, E, where a further quantity of aqueous glycerine separates, or the calcium soap is passed directly to the lead-lined vessels, F, where it is decomposed by a sufficient quantity of sulphune acid to neutralise all the lime added 1 After shaking, the gypsum is deposited and can be separated, and the fatty acids, which float, are washed several times with hot water, and then, if the fatty acids are distilled—as is done in certain factories where dark fats are treated—they are forced by a pump, U,

Fig 294.

to the tank, H The latter feeds a castron or copper (this is considerably attacked) boiler, K, which is heated partly by almost direct-fire heat and partly by superheated steam (at 180° to 230°) passed into the interior from the superheater, J The steam carries the fatty acids, which distil, into the tinned copper condensing coil, L, these acids finally collect in a white condition, together with condensed water, in S, while the non-condensed gases are evolved from the tube, M (see later Decomposition with Sulphuric Acid).

Where the fatty acids are not distilled, they are solidified by passing them into a number of superposed tin-plate pans

(Fig. 294) fed by the tubes, D, from the fused fatty-acid tank, F. When all the pans are full, the tubes, D, are closed with wooden plugs, E, and in 24 hours many of the pans

¹ During recent years several factories have replaced the lime by magnesia (calcined natural carbonate), which possesses various advantages—when it is used in the proportion of 1.5 to 2 per cent., a pressure of 4 to 5 atmos is sufficient to produce complete saponification, since the magnesium scap formed gradually emulsifies and almost dissolves in the remaining fat, which is thus easily resolved by the water and magnesia. Then, too, decomposition of the magnesium scap with sulphuric acid, instead of giving an insoluble and useless salt (calcium sulphate, which always retains a little fat), gives magnesium sulphate, which is soluble in water, readily separable by simple decantation and in some cases utilisable. For similar reasons, zinc carde is now used in some of the Italian factories. Bottaro (1908) has suggested the use of sulphurous anhydride to decompose the calcium scap from the autoclave.

contain solid cakes, consisting of a mixture of solid steams and palmitic acids and liquid oleic acid In order to separate the latter, the cakes are wrapped in woollen or camel hair or gont's hair cloths and are then placed between metal plates and pressed, first in the cold with a pressure gradually increasing to 200 to 260 atmos A second pressing at 40°, either in the same press or in a horizontal press, results in the almost complete separation of the clere acid, which, however, retains in solution a little palmitic and stearic acids The latter acids are separated by cooling the oleic acid and, after some time, filtering or decanting off the oleine (p 358), which is then put on the market or used for soap-making.

The solid white cakes of stearic and palmitic acids, freed from the dark edges, bear the commercial name of stearms and melt at 56° to 56 5°. These are often melted again, washed with warm water, poured into pans to solidify, and then pressed hot in hydraulic piesses so as to remove the final portions of cleic acid, this product, known as double

steurine, melts at 57 5° to 58°

The solidification of the crude acids, after liberation by sulphuric acid, is now effected more rapidly and more perfectly by passing the fused acids at g (Figs. 295 and 296) into a easing into which dips a large, rotating, double-walled cylinder. Between the walls flows a non-congealing solution like that from an ice machine (see Vol I, pp 259, 621), and the layer of fatty acid solidifying at the surface is detached by means of a scraper, h, and falls

into a cooled hox, F, connected with the pump, P, and functioning as a filter-press. This process of the firm of Petit Frères has now been improved by replacing the cylinder by a highly cooled toothed wheel In some cases, also, channelled cylinders are used, whilst in others the liquid fatty acids are withdrawn from the cold pasty mass containing the mixture of liquid oleme and the stearme in small crystals, by immersing in the mass a rotating vertical cylinder formed of metallic gauze and covered with a wellstretched cloth; inside the cylinder the pressure is reduced by means of a suction-pump, so

VOL. II.

Fig 295.

Fig 290.

that the liquid oleic and is sucked in, while the steam acid is gradually scraped from the surface of the cylinder and pressed in a hydraulic press

Messrs. Lanza Bros. of Turin, instead of separating the liquid from the solid fatty acids by means of hydraulic presses, suggest emulsifying and dissolving the liquid acids with solutions of sulpho-oleic acid, so that they separate at the surface, while crystals of the solid fatty acids collect underneath (Ger Pat. 191,238). The sulpho-oleic acid is prepared by shaking 100 parts of oleic acid with 50 parts of sulphuric acid of 66° Be. in the cold and then diluting with 4000 parts of water

The decomposition of fats by lime in an autoclave at not too high a pressure has the advantage of giving the fatty acids in a sufficiently clear condition to render distillation unnecessary; the resulting glycerine and stearine are also clear 1

During recent years, industrial application has been made of the Krebitz process (Ger. Pat. 155,108, 1902), which is a simplification of the lime process with direct production of sods soap, and is attended by considerable saving in fuel, caustic soda, and plant. To the fused fat is added the necessary quantity of lime (10 to 12 per cent. CaO) mixed to a paste with three to four times its weight of water, the mass being well mixed, boiled for five minutes, covered, and allowed to stand operation. By this means separation is completed and a calcium and allowed to stand overnight By this means saponification is completed and a calcium soap is obtained which can be readily ground up in a mill. When this is washed in a vet with a perforated bottom, the first portion of hot wash-water removes the major part of the glycerne as a solution of 10 to 20 per cent concentration, while a second washing gives a more dilute glycerine solution which is used for the first washing of the calcium soap of a subsequent operation. When treated in the hot with sodium carbonate solutions, the calcium soap yields sode soap and solution carbonates which require shalled manufactor for their proper separation. In this case calcium carbonate, which require skilled manipulation for their proper separation. In this case also, fusion and treatment with hot water is employed for the complete removal of impurities. This process is not applicable to the manufacture of soft scaps.

(2) Decomposition with Sulphuric Acid (proposed by Achard in 1777 and by Frémy in 1836) This method is now used more especially for very dark fats, which should, however, be freed from impurities, dried by fusion at 120°, and decented after long standing. The fused fat is introduced into a double-walled, lead-lined, copper or iron boiler fitted with a hood for carrying off the sulphur dioxide which is always evolved. According to the nature of the fat, it is heated with 5 to 10 per cent of concentrated sulphuric acid at 120° for I to $1\frac{1}{2}$ hours, steam being passed through the jacket and the mass kept mixed by a current of air passing through it. The operation is finished when a test portion, placed on a dark plate, crystallises on cooling, the mass is then passed into large wooden vats and heated with water until the emulsion first formed is resolved into two layers, the glycerine below (this is separated and freed from sulphuric acid by means of lime) and the acids The latter is subsequently boiled several times with water until the excess of sulphuric acid is removed, the sulphuric ethers of oleic acid being decomposed with formation of solid hydroxystearic acid. The resulting fatty acids are dark, since they retain in solution the impurities of the fat partially carbonised by the sulphuric acid, to purify and whiten them, they are distilled with superheated steam, as described above (see also Fig. 293), the first and last portions which distil are the more highly coloured and these are Hirzel (Ger Pat 172,224, 1906) has devised an arrangement for continuous distillation, all that is required being a boiler of moderate size into which the crude fatty acids are run in a constant stream, the pure acids distil over, while the tur remaining at the bottom of the boiler is discharged.

Redistillation of this tar gives a final residue of black stearms pitch, amounting to about 2 per cent of the fatty acids distilled. In some works the fatty acids are distilled in a vacuum at a temperature not exceeding 240°, higher temperatures than this giving a coloured product, the acrolein and hydrocarbons given off are condensed

The fatty acids obtained by distillation are separated into liquid and solid by pressure in hydraulic presses, liquid distilled cleine and white, solid distilled steurine being thus obtained. This cleine always contains a little acrolein and hydrocarbons, as the crude fatty acids which are distilled invariably include a small proportion of non-saponified neutral fat. On the other hand, distillation results in the formation of an increased amount of solid fatty acids (about 15 to 18 per cent.), since sulphuric acid converts cleic acid partly into the corresponding sulphuric ether, which yields solid hydroxystearic acid, m.-pt. 84°, when boiled with water.

$$\begin{aligned} & \text{C}_{17}\text{H}_{33} \text{ CO}_2\text{H} + \text{H}_2\text{SO}_4 = \text{C}_{17}\text{H}_{34} & \text{CO}_2\text{H} \\ & \text{C}_{17}\text{H}_{34} & \text{CO}_2\text{H} \\ & \text{C}_{17}\text{H}_{34} & \text{CO}_2\text{H} \\ & \text{O} \text{ SO}_3\text{H} \end{aligned} + \text{H}_2\text{O} = \text{H}_2\text{SO}_4 + \text{C}_{17}\text{H}_{34} & \text{CO}_2\text{H}. \end{aligned}$$

During the distillation with superheated steam, the hydroxystearic acid is transformed almost entirely into iso-oleic acid, m.-pt. 44° (see p. 359). It must, however, be borne in mind that hydroxystearic acid is not very good for making candles, as it accumulates in a fused state in the cup formed by the burning candle round the wick; further, when melted with stearic acid it tends to separate in layers instead of giving a homogeneous mass.

In order to obtain a greater proportion of solid fatty acids, some works combine these two systems of saponifying by means of lime and acid. The saponification is first carried out in autoclaves in the ordinary way, but not to completion, the acids and the remaining fat (4 to 5 per cent.) being then separated by means of sulphuric acid; the fatty acids and fat are dried and completely saponified with 2 to 2 5 per cent. of concentrated sulphuric acid at a temperature of 110° to 120° maintained for an hour. The resulting fatty acids are not distilled but are simply washed with boiling water, being thus rendered rich in solid hydroxystearic acid, this process also yields a much purer glycerine.

L. Fournier (Fr Pat 262,263) has suggested a method of increasing the amount of solid fatty acids by effecting the sulphonation with concentrated sulphure acid in a carbon disulphide solution of the fat, the reaction then proceeding immediately without heating.

¹ Transformation of Oleic Acid into Solid Fatty Acids For some years (about 1877–1885) oleic acid was converted on an industrial scale in France and England (by the process of Olivier and Radisson) into solid palmitic acid by utilizing Varientrapp's reaction, according to which this change is almost quantitative on fusion with solid causin potash (see pp. 350 and 359) · $C_{18}H_{84}O_8 + 2KOH = H_1 + CH_2 CO_2K + C_{16}H_{31}O_2K$, but the greasiness and unpleasant odour of the candles obtained compared with those made from stearing, the necessity

A COUNTY OF THE PROPERTY OF TH

(3) Hydrolysis by Hot Water under Pressure (proposed by Tilghmann in 1854, and improved by Price in England) is but little used owing to the low yields obtained and the very high pressures required. The fat, emulsified with water, is circulated in coils arranged m a furnace so as to attain a temperature of 290° to 315°

Direct distillation of fats with superheated steam and collection of the glycerine and

fatty acids in the distillate always gives low yields.

(4) The Biological or Enzymic Process has been applied industrially since 1902, as a result of the work of W Connstein, E Hoyer, and H Wartenburg, and is based on the observations of Pelouze (1855), of Green and of Sigmund (1890) according to which, when oily seeds are pounded with water, fatty acids are gradually liberated by the action of lipolytic enzymes (see p. 134) It is found that the most active enzymes are those of castor oil seeds (in which they occur to the extent of 70 parts per 1000 of fat), especially after removal of the oil, but better results are now obtained by using aqueous emulsions rich in enzymes (extract of castor oil seeds), but much poorer in proteins (which are harmful) and containing 60 per cent of water, 37 per cent of castor oil, and 3 per cent of proteins Other active seeds are, according to Fokin, those of Chelidonium majus, Linaria purpurea, When castor oil seeds are used, a milky emulsion is obtained by crushing the seeds in presence of the necessary amount of water (50 to 60 per cent) and is decanted off roughly from the skins and treated with 0 06 per cent of acetic acid (calculated on the weight of fat to be decomposed subsequently) Of the seeds or the enriched extract, 50 to 80 kilos are used per 1000 kilos of fat (the maximum for fats with the higher saponification number, although tallow requires the maximum amount and a temperature of 40°) To accelerate the decomposition, 0 15 to 0 20 per cent (on the weight of fat) of manganese sulphate (activator) dissolved in a little hot water is added, and if the fat contains much protein or guinny matter, it is well to clarify it by heating with 1 per cent of sulphuric acid diluted with a little water, the last traces of this acid are then removed by repeated and thorough washing with boiling water, as they would be deleterious to the reaction. With liquid fats, the decomposition is carried out at 23° and with solid ones at 1° to 2° above the melting-point, provided however that this does not exceed 42°, since at 44° the enzymes no longer act in the desired direction, if necessary, fats with high melting-points are mixed with liquid oils 1

The practical working of the process is as follows (see Fig. 297) A leaden coil a, b, for indirect steam and a tube, d, for the injection of air reach almost to the bottom of a leadlined iron boiler, A, with a conical base; discharge cocks, f, are fitted to the boiler at the of distilling the resultant dark and, and the difficulty of eliminating all the acetic and, led to the abandonment of this process. Also de Wilde and Reychler's moores for transforming of the into stearine by heating in an autoclave at 260° to 280° with 1 per cent of iodine or chlorine or bromme seems to have been given up in practice since 1800, the yield being less than 75 per cent. (the combined chlorine was eliminated by heating under 8 to 10 atmos, in presence of zinc

dust or iron, and then decomposing the metallic scap).

The industrial transformation of olese acid into solid elastic acid by treatment with a little mirrous acid (see p. 359) does not give satisfactory practical results, first because elaidic acid is not a very good material for candle-making, and also because the reaction is reversible and succeeds well only with fairly pure and fresh cleic acid and not with the commercial acid (partly polymerised). Max v. Schmidt treats 10 parts of cleic acid with 1 of zinc chloride at 180°, then decomposes the zinc scap by boiling first with dute HCl and afterwards with water, and finally distils the fatty acids, which can be separated into liquid and solid by means of hydraulic presses. By this process Benedikt (1890) obtained 75.8 per cent. of stearolactone, $C_{18}H_{04}O_{2}$ (the internal anhydride of γ -hydroxystearic acid, m.-pt 48°), 15.7 per cent of iso-close acid, and 8.5 per cent. of other saturated acids. This method was applied in Austria, but was soon abandoned, as much of the oleine remains unaltered.

K. Hartl, jun (Ger Pat. 148,062, 1903), in order to avoid the browning produced by the action of sulphure and on the impurities of the cleic and, does not treat the cleine directly with concentrated sulphure and (as had long been the custom; see Shukoff, Ger. Pat. 150,798, 1902), but first distils the oleic and in steam and afterwards treats it with sulphuric acid of 58° to 60° Bé. (e.g., at a temperature of 60° to 80° and using 1 mol of sulphuric acid per 1 mol of cleic acid); the resulting fatty acids are then washed and decolorised by heating in open pans with 1 to 10 per cent of zinc dust at 100°, the zinc soap being finally decomposed by hot dilute hydrochloric acid. W H Burton (US. Pat. 772,129, 1904) uses a process similar to that of Fourmer (see above), benzine or naphtha being employed as solvent and the sulphonic ethers being decomposed in solution by the direct action of steam; the final product melts at 85° to 90°, but december and the paraffer ways, when fixed

but does not mix well with paraffin wax, even when fused

Nowadays, however, the industrial transformation of oleic into stearic acid is effected solely

by catalytic hydrogenation (see p 480).

Dunlap and Gilbert (1911) found that, when oleic acid is treated with glycerine in presence of defatted castor oil seeds and linseed, 26 per cent. of the cleic acid is transformed into glyceride ın II days

bottom and at various heights The fat, and about 35 per cent of water heated to the. desired temperature in B (see above) are introduced and are kept stirred by means of a current of air from the compressor, L, and the reservoir, W — The castor oil seed extract, mixed with 0 2 per cent of manganese sulphate and 0 06 per cent of acotic acid (on the weight of fat; the reaction starts and proceeds well if the mass is faintly acid at first) is then added, the whole being mixed for about 15 minutes so as to give a homogeneous The vessel is then tightly covered so that the temperature may be maintained, the mass being mixed from time to time to keep it emulsified After 24 to 36 hours, when more than 90 per cent of the fat is decomposed, the mass is mixed and heated to 80° to 85°, 0 2 to 0 3 per cent (of the weight of fat) of concentrated sulphuric acid (66° Bé) diluted with one-half its weight of water being then added. The whitish emulsion soon becomes dark owing to the separation of the fused fatty acids, and when this occurs the heating and stirring are suspended and the mass left overnight. The various taps are then set in operation to separate the bottom layer of fairly concentrated glycerine, the intermediate emulsified layer (3 to 4 per cent of the fatty acids, used for soap-making) and the clear fused fatty acids which are boiled with water to free them from sulphuric acid Originally, when the seeds were used instead of the extract, the resulting glycerine was very dark, and it was necessary to decolorise it with bone-black (nowadays it is as good as that given by saponification with lime), while the intermediate emulsified layer formed as much as 22 per

cent of the total fatty acids (now only 2 to 4 per cent) The aqueous glycerine (sweet water) of the enzymic process is first concentrated to 10° Bé in open pans, the sulphuric acid being separated by means of barium carbonate in the hot. The barium sulphate is removed by filter-pressing and the filtered liquid further concentrated in a multiple-effect vacuum apparatus to 28° Bé , a clear, brownish glycerine containing only 0.2 to 0.4 per cent. of ash being thus obtained.

The biological process has spread rapidly during recent years, since the whole of the glycerine is readily recovered, while the fatty acids obtained are of far better quality than those prepared by decomposing the fat in autoclaves by means of lime, etc. The fatty acids from sulphocarbon clive oil retain, however, their characteristic green colour, and those from palm oil their orange colour. The fatty acids yielded by this process contain neither hydroxy-acids, as do those obtained under pressure, nor calcium soaps, and are hence more suitable for the manufacture of either candles or soap (see later, Soap).

(5) Twitchell's Catalytic Process. The decomposition is here analogous to that with sulphuric acid (which also, strictly speaking, is catalytic), but with Twitchell's reagent (benzenestearosulphonic acid or hydroxystearonaphthalenesulphonic ester) it takes place far more readily, probably because this reagent dissolves in the fat more easily than does sulphuric acid. The fats are first purified by heating to 90° to 100° in a lead-lined covered vat, A (Fig 298), with 1 5 to 2 per cent. of sulphuric acid at 60° Bé., direct steam being

passed in so that when the acid is discharged after standing overnight it has the specific gravity 8° Bé (for cottonseed or linseed oil, 15° Bé) The purified fat is passed into other wooden vats, B_1 and B_2 , provided with wooden covers, one half of which is removable; it is here mixed with 20 per cent of distilled or condensed water (from the tank H), the mixture being then boiled by direct steam and 0 5 to 0 15 per cent of the Twitchell reagent added (the minimum with pure fats and the maximum with highly impure third-grade fats) The current of steam is continued so that a homogeneous emulsion is rapidly obtained, and after being heated in this way for 24 hours about 90 per cent of the fatty acids are liberated and the glycerme separated No more steam is then passed through the mass, but a slow jet is kept flowing into the space between the surface of the liquid and the cover to prevent the fatty acids from turning brown during the subsequent operations owing to contact In about an hour's time, the emulsion breaks up and the fatty acids float on the aqueous glycerine, if the emulsion should not disappear, it is mixed gently for a few moments with 0 1 to 0 2 per cent. of sulphuric acid of 60° Bé and then left water is discharged through the separator, S, into the tank, C, it usually has the specific gravity 5° B6 (15 per cent.) and forms 50 per cent of the weight of the fat, and if this is not the case, the quantity of distilled water added initially and the dryness of the steam employed are varied when further quantities of fat are treated. The sweet water is neutralised with lime and concentrated in F_1 and F_2 and collected in G (see p. 221). For soap-making the fatty acids, which are discharged into D_1 and D_2 , may be used as they are,

but as a rule the saponification is completed by adding 10 per cent. of pure water and heating for 12 to 24 hours with direct steam, any small amount of emulsion formed at the surface of the liquid by the steam being destroyed by the addition of a little sulphure acid. In this way, 97 to 08 per cent. of the theoretical amount of fatty acids is obtained Barium carbonate (1 part per 10 parts of Twitchell's reagent used. or more if sulphuric acid were added to destroy emulsion), mixed with a little water, is now added, and the whole heated for 15 to 20 minutes; if the lower layer of water now has an acid reaction towards methyl orange, more

barium carbonate must be added. The current of steam, both in and above the liquid, is now stopped, since after this the fatty acids are no longer turned brown by the air. The sweet water drawn off after clarification is very dilute and is used in place of water in the treatment of further quantities of fat. After crystallising and pressing to separate the solid from the liquid acids (see above), the fatty acids are now ready for converting into soap and candles. In general they are less coloured as the amount of Twitchell's reagent used and the duration of its action are diminished. Good results are not obtained until after five or six operations, by which time the surface of the wooden vessels ceases to be attacked

Just as with the preceding process, the use of the Twitchell process has spread considerably in America and in Europe. The Twitchell reagent cost, before the War, about 1s. 2d per kilo. A reagent, known as Kontakt, prepared in Petrograd in 1914, effects the scission of fats to the extent of 90 per cent. in 10 to 15 hours, and is hence three times as active as Twitchell's feagent. It was obtained by sulphonating the cyclic hydrocarbons (naphthenes) of petroleum.

¹ The plant for a factory using the biological or catalytic process is considerably less expensive than for one employing anticlaves, while there is also a decided economy in the working expenses. In the case of small plants, the cost of working increases somewhat with the Twitchell process, but these is always an advantage owing to the less initial outlay required.

MANUFACTURE OF CANDLES.1

The prime materials for the manufacture of candles are the combustible fatty matter and the wick.

A good candle should give a white light, should burn slowly, should not "gutter" or diffuse an unpleasant smell, should not be greasy to the touch, should be white and give a smokeless flame, and should not splutter, while the relation between the size of the wick and that of the candle must be properly chosen

The object of the wick is to feed the flame regularly with the melted material. It is usually made of filaments (15 to 20) of pure cotton or linen without knots. Animal fibres should be rejected, as they give an unpleasant smell and a fused carbonaceous mass which diminishes the luminosity. Wicks formed of filaments which are only twisted require frequent snuffing, since they do not bend on themselves and do not burn completely, whilst, if they are plaited or woven and twisted, as Cambacères proposed, this inconvenience is overcome. For stearine candles obtained by fusion, the wick is of twisted cotton braid, while for more readily fusible materials (wax, tallow, etc.), more or less twisted wicks are used according as the candles are made by fusion or by compression. Nowadays wicks are made with suitable machines like those used for knitting, these effecting also the twisting of the filaments.

Wicks which have not been pickled do not act well for candles, as they leave a carbon-aceous residue which diminishes their capillary property. In 1830, Milly found that the combustion of the wick is facilitated by steeping it in a solution of boric or phosphoric acid, such treatment being, however, only of advantage with braided wicks. Many other substances have since been proposed for this purpose. Thus, in France the wicks are immersed for three hours in a solution of 1 kilo of boric acid in 50 litres of water, and are then pressed, centrifuged, and dried, in some cases a trace of sulphuric acid is added to the bath. In Russia the wick is left for 24 hours in a solution of sulphuric acid (50 grms per litre), squeezed, dried in hot air, steeped in a bath containing 4.5 grms of boric acid and 18 grms of ammonium sulphate per litre of water, and then dried. Another solution giving good results is composed of 60 grms. of borax, 30 grms. KCl, 30 grms. KNO₃, 30 grms. NH₃ and 3.5 litres of water. The borax renders the flame white.

In general these products either induce a more ready oxidation (chlorates, nitrates) or melt the ash of the wick, which thus gradually falls by its own weight. In some cases the penetration of the solution into the wick is hastened by the addition of a little alcohol.

If the candle is too large in comparison with the wick, the excess of stearine melts and forms a kind of cup with raised edges full of the fused stearine, which cannot be completely absorbed by the wick and so makes the flame smaller, then, when the edges fall, the stearine overflows and produces guttering. If, on the other hand, the wick is too large,

The ancient Romans used for illuminating purposes a kind of torch steeped in wax or bitumen. Only after the second century of the Christian era was a distinction drawn between wax candles and those of tallow, the use of the latter was regarded as a luxury, while wax candles were employed in churches. The Catholic religion used them exclusively for religious functions, and thus caused a great increase in the consumption, which diminished only after the spread of the Reformation. Very soon, however, the consumption of wax candles again increased very considerably owing to their extended use at the courts of kings and princes. Meanwhile the employment of tallow candles for domestic purposes was continually spreading, and in the eighteenth century several important factories were working in England, but the candles produced were high in price and burned very quickly. Only after Chevreul's work on the nature of fats in the early part of last century (after 1815) led to improvements in the saponification and to the preparation of solid fatty acids was the rational manufacture of candles initiated. Chevreul himself, together with Gay-Lussac, patented in 1825 a process for preparing candles from stearic acid, but the resulting industrial undertakings were soon abandoned, owing to the difficulties encountered in the saponification and in the preparation of the wick. It was only when Cambacères, in 1830, devised plaited and twisted wicks, and when Milly, in 1834, introduced saponification with lime and the subsequent decomposition of the calcium soap with sulphuric acid, that the manufacture was placed on a stable and remunerative basis. Milly's first factory for stearine candles was erected in Austria in 1837, and in 1840 one was started in Berlin and another in Paris. Important improvements were made in 1842 by saponifying the fats with sulphuric acid, and in 1854 by saponifying the fats and distilling the fatty acids with superheated water or steam (processes of Tilghmann, Berthelot, and Melsen). Almost immediately af

an insufficient quantity of wax is melted and no cup is formed to contain it, the candle guttering continually from the sides and the flame being less luminous.

In 1904 a patent was filed for the manufacture of artificial silk candle-wicks, which seem to give good results.

Formation of the Candles The white blocks of stearic and palmitic acids from the presses are scraped at the surface and edges to remove adherent impurities. The purer residue is melted and shaken in a leaden vessel with sulphuric acid (3° Bé.) to dissolve and separate the impurities (iron, hairs from the press bags, etc.); the sulphuric acid is then decanted off and the stearine washed repeatedly with boiling water to remove all

trace of the mineral acid. In some cases the fused fatty acids are shaken with a little coagulated albumin. In cooling, the stearine tends to crystallise, the resultant candles being then less homogeneous and more brittle. At first arsenious acid was used to prevent crystallisation, but, now that this is prohibited, the stearine is kept continually shaken until it almost solidifies when it is introduced into the moulds, and the candles then rapidly solidified. It is often more convenient to add a little white wax or paraffin wax (2 to 10 per cent.), which also prevents crystallisation of the stearine.

The quality and purity of the stearine are ascertained by the usual tests, the neutral fat being determined by Geitel's test (see p. 468), the paraffin wax, cerasin, cholesterol, and carnauba wax by the saponification number and by the non-saponifiable matter (see p. 468), and the amount of cleic acid by the melting-point (which is 56° to 56 5° for pure stearine pressed once and 57 5° to 58° for doubly pressed stearine) and the solidification point, making use of de Schepper and Geitel's Table 1 obtained by mixing saponification stearine, solidifying at 48°, with cleine having a solidifying point of 5 4°.

The first of these methods is the oldest and is now almost entirely abandoned. It was employed originally for tallow cundles, and is now sometimes used to mask the presence of inferior fat or stearine, the wicks suspended from frames being first immersed in the impure fused fat, while the outer layers are obtained by dipping into a purer fat or fatty and

In China considerable use is still made of tallow candles of peculiar shape with a hole in the middle.

Certain long tapers are obtained by pressure, the semi-fused wax or stearine and the wick being forced through a tube

Almost all candles are now made by fusion in highly perfected machines, which admit of a maximum output being rapidly obtained with a minimum of labour. The moulds, which are very smooth inside, have the shape of the candles—with the pointed end below and the enlarged base at the top (Fig. 299)—and are imperceptibly conical; they are made of an alloy composed of three parts of tin and I part of lead. For the fusion of a large number of candles at a time (100 or more) a machine is used similar to that shown in Fig. 300. The moulds of all the candles pass through the closed metallic box, E.D, to the bottom and cover of which they are screwed. Topid or cold water can be passed at will through the box at I or H, so as to surround the moulds. The lower part of each

¹ De Schepper and Gestel's Table of the solidifying points of mixtures of fatty acids .

Tempera- ture of solidifica- tion	Por cent of stearine melting at 48°	Tempera- ture of solidification	Per cont of stearine melting at 48°	Tempera- ture of solidification	Per cent of stearine melting at 48"	Tempera- ture of solidification	Por cont of stearing melting at 48°
5 4° 6° 7° 8° 9° 10° 11° 12° 13° 14°	0 0 3 0.8 1.27 2.2 3.2 3.8 4.7 6.6	16° 17° 18° 19° 20° 21° 22° 23° 24° 25° 26°	7 7 8 8 9 8 11 1 12 1 13 2 14 5 15 7 17 20 0	27° 28° 29° 30° 31° 32° 33° 34° 35° 36°	21 7 23:3 25:2 27:2 29:5 31 8 33 8 36 6 39 5 48 9	38° 30° 4()° 41° 42° 43° 44° 45° 46° 47° 48°	50.5 54.5 58.0 63.6 68.5 78.5 78.9 83.5 89.0 94.1

mould contains a kind of small piston which has exactly the shape of the point of the candle and can be made to traverse the whole length of the mould, being joined to an

iron tube, B, fixed to a frame capable of being raised and lowered by the rack and pinion, C. All the pistons can be raised at once so as to force all the solidified candles from the moulds In order that the wick may be always in the middle of the candle, it is wound on bobbins, A, and passes through the iron tube which raises the piston to the upper part of the mould. The semi-fused opalescent stearine, which is poured into the moulds kept by means of warm water (45° to 60°) at a temperature slightly above the melting-point, is then cooled by passing cold water round the moulds. When solidification is complete, the enlarged bases at the top of the candles are cut off by a knife and the candles forced out and

grasped by the rods, L. In rising, the candles unwind from the bobbins new wicks which are thus brought into the middle of the moulds ready for the next operation. When the second batch of candles is solidified in the moulds, the wicks of the first batch are cut so as to make way for the others to be removed from the moulds. When shorter candles are required, the pistons are raised in the moulds to the desired height and the

Frg. 301.

The candles thus obtained are bleached by arranging them vertically on trucks in metal gauze frames and leaving them for some days in the open air exposed to the action of the air, sunlight, and dear.

After this, the candles are washed, polished, and sawn off to a uniform length in a machine of the Binet type (Fig. 301). The

candles are first dipped in a bath, V, containing soapy water or a dilute solution of soda, and are then placed in the grooves of the wheel, M, the head being against the left-hand edge, while the bases are cut off by a small circular saw, n, the fragments drop on to the frame, X, and so into the box beneath. The candles fall into the grooves of the travelling endless plane, TM', and are rubbed and polished by a brush, B, moved eccentrically from V^1 , when they reach M' they fall into the trough, B. The finished candles are stamped automatically with the trade mark and are then tied and wrapped up in packets of 12 or 24 (or $\frac{1}{2}$ or 1 kilo) and placed in weeden boxes for transport.

S O A P 513

Some factories make lighter, perforated candles, and some coloured candles or mixed candles containing wax or paraffin. To remove the semitransparency of paraffin candles and so make them resemble those of stearine, about 5 per cent of stearine and 5 per cent of paraffin oil are added. The same effect may be obtained with a small quantity of β -naphthol (Ger Pat 165,503) or any other substance which dissolves the paraffin wax in the hot and deposits it in the cold in a finely divided state (e.g., solid fatty acids, amides, phenols, ketones, etc.) Mixed paraffin candles, containing more than 30 per cent of paraffin wax, are now manufactured on a vast scale, wax of higher melting-point being used and the defects formerly encountered eliminated.

MANUFACTURE OF SOAP1

Theoretically soaps include all metallic salts of the higher fatty acids, but practically the name is given only to salts of oleic, stearic, and palmitic acids, and, in general, of the fatty acids contained in natural oils and fats. Importance attaches mainly to the sodium soaps and, to a less extent, to those of potassium and ammonium. It was at one time thought that soaps were composed largely of margaric acid, but it has been shown that this acid does not occur in natural fats, the confusion arising from the fact that a mixture of palmitic and stearic acids was obtained with a melting-point identical with that of synthetic margaric acid (see p. 350).

Almost in its entirety soap is used for washing and for cleaning and removing grease from textile fibres, sweaty garments, and the greasy, dirty epidermis of the human body, but it is sometimes employed as a subsidiary dressing in certain industrial operations, e.g., in the dyeing of silk and cotton,

etc.

The theory of the saponification of fats has already been discussed on p 467, and we shall here consider the *cleansing action* of soaps. It is well known that the quantity of fat or grease that a soap is able to remove from a dirty garment is greater by far than corresponds with the amount of alkali liberated on dissolving the soap in water.

Being formed from weak acids, soap in dilute aqueous solution is undoubtedly partly hydrolysed into caustic alkali and either acid soaps in the cold or fatty acids in the hot.

thicking of Soap. Soap was not known to the ancient Hebrews and Phonicians or to the knockets of the time of Homer, who washed their garments with the ashes of plants and water, and by mechanical rubbing. Some races used the juices of certain plants, and later it was discovered that when ashes were heated with lime they gave rise to natron, which was much more effective than the ashes themselves. Yet the writers of the Bible, who are certainly not conscientious and exact historians, several times mention soap, and quote the following supposed phrase of the prophet Jeremah (who would have lived several centuries before the Christian era): "Though thou wash thee with nitre [natron] and take thee much soap, yet thine miquity is marked before me" Senece and Pliny mention soap in their writings and attribute its discovery to the Gauls, who prepared it from the sakes of plants and goats' fat and used it as a hair-wash and for medicinal purposes (lead plaster). It is said that Calen (second century of the Christian era) proposed the use of soap for washing. In the excavations of Pompen has been found a complete soap factory with utensils and saponified material. Marseilles did a large trade in soap as early as the ninth century, but in the eleventh century it had a serious rival for the premier position in Savona. In the fifteenth century the industry itensished at Venice, and in the seventeenth at Genoa, which, together with Savona, Marseilles, and Alicante, enjoyed a monopoly in soap-making. In England the industry began to develop after 1650, and in Germany it assumed considerable importance after Chevreul's investigations on fats (1810–1823). With the development of the soda industry and increases of the trade in palm oil and coconut oil, the conditions in Germany and, to some extent, in other countries favoured extension of soap-making. At the present time Marseilles, although partly surpassed by the large English factories, still preserves its early fame, which, however, the Italian factories have lost. Several

This can readily be shown by the opalescence of the dilute aqueous solutions and by the violet colour imparted to phenolphthalein by a perfectly neutral (i.e., not yet dissociated) alcoholic solution or highly concentrated aqueous solution of soap, after pouring into a large quantity of water. If, then, part of the grease can be rendered soluble by the saponifying action of the alkali gradually liberated from the soap, another part is certainly carried away mechanically by the emilsifying action of the soap itself and of its fatty acids, this action is accompanied by the abundant production of lather, which, together with the water, incorporates and removes all the grease with which it comes into contact. It is for this purpose—the formation of lather and emulsification of the grease—that rubbing is necessary in the washing of a garment with soapy water. A mere solution of caustic soda, even in excess, does not produce a detergent effect equal to that of soap

Soap is detergent when it dissolves in water, so that pure stearing soaps (eg., soaps from pure tallow) which are insoluble in the cold are detergent only in the hot, whereas soft soaps, consisting principally of sodium cleate, occount, or clive oil soaps, and soluble in cold water, are detergent even in the cold.

in cold water, are detergent even in the cold

Castelfranco (1909) considers the detergent action to be due partly to the affinity of neutral soaps to fats and fatty acids, this leading to the formation of acid soaps which yield lather, and hence result in ready emulsion and removal of extrancous substances. Thus, if an object is smeared with a thick layer of soap, it is not easy to take it away with water unless slight oiling is resorted to. For instance, hands soiled with tar or minoral oil are difficult to wash with soap and water, but if a little olive oil is first applied washing becomes easy

According to Plateau and Hillger (1903) the detergent power, and hence the ready

formation of lather, depend on the high surface viscosity of soap solutions.

Spring (1910) found that soap exercises a detergent action even on substances which do not contain fat (eg, defatted lamp-black), since these decompose the soap, forming an acid soap which agglutinates with them by absorption. Indeed, if an aqueous suspension of lamp-black is filtered, the paper is blackened owing to absorption of the black by the cellulose, on the other hand, a mixture of lamp-black with soap solution may be filtered without staining the paper, since the absorption compound of soap with lamp-black is more stable than that of cellulose with lamp-black.

As regards the molecular condition of soap in its concentrated, non-dissociated solutions, it appears demonstrated that it there exists in a colloidal condition, since an increase in the concentration is not accompanied by rise in the boiling-point, which approximates to that of water, while the electrical conductivity is minimal. According to McBain and Taylor (1910), however, in highly concentrated solutions soap is apparently not a colloid, as it conducts the electric current

The solubility in water of almost all soaps is diminished rapidly to the point of complete separation by the addition of soluble salts which do not decompose the soap, eg, NaCl, KCl, Na₂SO₄, NH₄Cl, Na₂CO₃, and even NaOH, etc, this action being due to a change in the density of the solution and in its degree of dissociation. This phenomenon is the basis of the salting-out or graining of soap during its manufacture, but it must be noted that if the fats or fatty acids used in the making of the soap contain hydroxy-acids, these are almost entirely lost, as they are not separated as insoluble soaps by salting out, and mostly pass into the spent lye. Hence account is now taken of the proportion of fatty hydroxy-acids (less soluble in benzine than ordinary fats or fatty acids) present in fatty materials.

Sodium soaps are more stable than those of potassium or ammonium, since sodium salts partly displace potassium or ammonium from their soaps with

formation of sodium soaps

Alkalı soaps are precipitated by the soluble salts of the alkaline earths and heavy metals in the form of insoluble metallic soaps. Strong acids separate the weaker fatty acids from soaps

The alkaline soaps are usually soluble in alcohol and insoluble in ether, benzine, or benzene Evaporation of the alcoholic solution yields a transparent soap

Saponification of fats is accompanied by increase in weight; each molecule

S O A P 515

of glyceride that decomposes fixing 3 molecules of alkali or water. A fat containing a mixture of glycerides with a mean molecular weight of 880, in reacting with 120 of NaOH (3 mols or about 13 6 NaOH per 100 of fat), gives 92 of glycerine and 908 of water-free soap. So that theoretically 100 kilos of fat can produce about 10.5 kilos of glycerine and 102 of soap, in practice about 1.5 to 2 kilos of glycerine is lost, while 140 to 160 kilos of soap, containing a considerable amount of water is obtained. Potash soaps are softer than those of soda, and soaps of liquid fatty acids softer than those of solid fatty acids.

Soap may be made either from the fatty acids obtained from fats by the methods described above, or from the fats themselves. In the former case the saponification is carried out mainly by sodium carbonate, and is completed (since with the carbonate it proceeds only to the extent of about 90 per cent) by caustic soda, but in the latter case concentrated solutions of caustic soda in the hot are employed, the carbonate is, indeed, linable to resolve glycerides, and that amount of it which always occurs in the caustic

alkali is lost during the subsequent operations of salting-out, etc

Mention has already been made (see p 467) of the process of decomposing fats in an autoclave by means of ammonia and sodium chloride, which was studied by Leuchs (1859), Witelw (1876), Buisine (1883), and Polony (1882), and improved by Garelli, Barbé, and de Paoli (Ger. Pat 209,537, 1906). This process leads directly to the sodium soap with formation of ammonium chloride, from which the ammonia may be recovered in the usual way, and, according to the above patent, gradual decomposition of the ammonia by means of steam results in a considerable separation of the solid fatty acids from the liquid ones, the ammonia soaps of the former being the first to decompose. Such separation can be effected also by cold water, which dissolves the ammonia soaps of the liquid fatty acids (electes) almost exclusively (see also p 467, and Note, p. 492).

In the manufacture of soaps from fats or oils, various stages are to be distinguished (1) mixing or pasting of the fat with the alkaline lye, (2) mixing in the hot to form the soap and separate it partially from the excess of water; (3) salting-out (or "graining" or "cutting the pan") to render the soap insoluble and separate it from the lye, which thus collects under the layer of soap; (4) boiling to saponify the last traces of fat, to eliminate the soum and the excess of water still remaining in the soap and to collect the latter into a perfectly homogeneous, curdy mass, (5) the soap is often subjected to a finishing process, that is, a final treatment with dilute alkali hydroxide or carbonate solution, in order to separate the more thoroughly the residual impurities (aluminium or iron soaps) and so avoid a partial mottling, and to give to the soap, first, the quantity of water necessary to the particular type, and, secondly, a still more homogeneous appearance.

A well-finished soap contains 35 to 40 per cent of water and only 0 20 to 0.36 per cent. of sailt and free alkali together. When excess of free caustic soda remains in the soap, considerable efflorescence, due to formation of sodium carbonate by the carbon dioxide in the air, occurs at the surface during the subsequent drying. In order to avoid such a serious inconvenience, it is necessary to treat repeatedly with sodium carbonate solutions, because, over if a little of the latter is left in the soap, only a slight powder forms at the surface on

If inishing is best effected when the soap contains a certain proportion of water, namely, 10 mols. of water (40.5 per cent.) per 1 mol. of sodium oleate, or 16 mols. (48.5 per cent.) per mol. of sodium stearate. If the soap is more concentrated than this, it remains too viscous and opposes too great a resistance to the precipitation of the impurities and of the drops of saline and caustic solutions; but if, in the finishing, the necessary quantity of water is restored (by adjusting the concentration of the lye), a small part of the soap dissolves, the mass becomes more liquid and, on standing, the impurities are able to fall to the bottom the more readily. Soaps which are too insoluble in the salt solution or caustic lye (colza, sesamé, linseed, poppysed, etc.) can be finished only when mixed with readily soluble soaps (occonut, easter, etc.) On the other hand, it is necessary to prevent the soap taking up too much water, for, if this happens, it pastes together and adheres to the sides of the pan, does not transmit heat readily to the interior and hence boils with difficulty, is not easily finished and becomes uneven. Agitation of the mass and the consequent inclusion of a considerable amount of air are to be avoided, the finishing being retarded thereby. When the finishing is complete and the mass has been allowed to stand, a slight frothy layer is observed at the surface and then comes the thick layer of pure, homogeneous soap, well separated from the lye, above this is a small, irregular, and gelatinous layer composed of more soluble soaps (of hydroxy-acids) of calcium, magnesium, and iron, and of certain other impurities insoluble in the lye (colouring-matters, coagulated proteins, etc.), and it is this mass which forms the refuse.

drying and this can be readily eliminated. In some cases, a small proportion of a non-sapomfiable fat $(e\ g$, wool fat) or even of a dense mineral oil is added to the soap, the caustic soda being thereby preserved from direct contact with the air

At one time the coppers used for soap-making were largely made of masonry, but nowadays they are almost universally of iron and are heated either by fire or by direct or indirect

Fig. 302 Fig. 302A

steam, as is shown in Figs 302, 302A, 303, 303A. Small coppors hold 10 to 50 hectols and large ones 100 to 400.

For every 100 kilos of fat to be saponified, a copper-volume of 500 litres is taken

In most scap-works the mixing is done by wooden blades worked by hand, although coppers are made fitted with stirrers of various forms

The saponification of 100 kilos of fat or oil requires theoretically about 136 kilos of

NaOH, but practically rather more than this amount is used. Tallow soap is made in the following manner: The tallow is mixed and gently heated in the copper with about one-fourth of the necessary amount of caustic soda in the form of a solution of 10° Bé. First of all an emulsion is formed and then saponification gradually proceeds, the mass begins to become homogeneous and to boil gently and the volume to increase slightly. When a little is removed on the blade, it forms a jelly which does not separate the lye, and the soap-boiler judges of the fixation of the alkali by observing when the caustic tasts of the alkali disappears. Much of the fat remains unsaponified, so that a hot caustic source of the alkali disappears.

of 12° to 14° Bé is gradually added until the stirred, boiling mass thickens, becomes clear and homogeneous, and falls from the spatula in transparent ribbons. At this stage, in order to judge if the alkali has been added in the proper proportion, a little of the soap is poured on to a glass plate, if a solid white edge first forms round the drop of soap, while the interior of the mass remains transparent until solidification is almost complete, the whole of the fat is saponified and there is no excess of alkali. If, however, the edge immediately turns greyish and the mass turbid, non-saponified fat is present and alkali lacking, whereas, if the whole mass becomes covered with a whitish pelhole without previous formation of a solid edge, excess of alkali is present, this being corrected by adding a little fused tallow to the mass in the copper. Thus treated, the gluey paste, which has a slightly caustic taste, is boiled more strongly until it loses sufficient water to form a homogeneous ropy paste on the mixing-blade.

At this stage the separation of the soap from the liquid is induced by the gradual addition of salt either in the solid state (4 to 8 per cent of the weight of fat) or in concentrated solution (20° to 22° Bé). The first addition of salt renders the mass more fluid, while successive additions cause separation of the soap, which finally floats on the lye, the latter being drawn off after some hours by means of either a tap or a siphon—When hard water is used, a little sodium carbonate is always added to the salt

The residual lye should have not a caustic, but a brackish and somewhat sweet taste owing to the glycerine present, and its density should be at least 7° to 8° Bé (for soaps from coconut, palm-kernel, oxidised oils, etc., 16° to 24° Bé.) If too little salt has been added, the lye will retain dissolved soap, and the separation of the latter will not be sharp, since between it and the lye will be formed a third layer consisting of an irregular, gelatinous mass which increases the waste and diminishes the yield. With too much salt, the soapy mass separates rapidly and in large clots which rotain the lye, but if the operation has been properly carried out, the soap adheres to the mixer in soft flocculent masses which, when squeezed between the fingers, are moderately stiff, do not exude liquid and give a hard and dry, not a sticky, flake.

When treated repeatedly with salt solution, some soaps lose part of their combined alkali owing to the readiness with which they dissociate; in such cases a little caustic soda is added to the salt.

The soap is then subjected to the boiling process (in some cases this is preceded by a further heating with weak alkali of 4° to 6° Bé, and a little salt, the subnatant lye being decanted after a time). This consists in covering the copper, boiling vigorously, and, if necessary, stirring to prevent the frothing mass from overflowing. By this means the small quantity of residual lye is concentrated and hence separates more easily, while the soap gradually becomes denser owing to the loss of nearly the whole of the water (only 15 to 35 per cent. being left). The bubbles at the surface gradually increase in size and then disappear completely, while large bubbles of steam form at the bottom of the copper, force their way noisily through the mass and produce large puffs at the surface. The heat (fire or steam) is then very soon stopped. A little of the soap pressed between the thumb and the palm of the hand then forms a dry, soft, waxy paste, but does not stick.

The scap could next be moulded, but it is often subjected to a finishing process (see above), dilute caustic scda (3° to 6° Bé., or hot water alone if the scap has been treated originally with excess of alkali, or very dilute scdium carbonate) being gradually added to the scap in the boiler, the mass being heated and gently stirred until it becomes more liquid, less granular and perfectly uniform. The copper is next covered and left for a day, the scap being then transferred to the moulds or cooling frames. To obtain white scap, an addition of 0 2 to 0·3 per cent. of sodium hydrosulphite is sometimes made to the mass before discharging.

As a rule, soaps are made not from pure tallow, but from mixtures of various fats and oils, e.g., palm oil, clive oil, cleine, etc.; in such cases the concentration of the caustic soda must be varied, clive oil soap, for example, requiring lye of 25° to 28° Bé., which sometimes renders salting-out unnecessary.

At one time *Marseilles soaps* were prepared from olive oil alone, very dilute lye being first used and then more and more concentrated ones, but nowadays cottonseed, arachis, coconut, palm-kernel oils, etc., are generally added, the processes employed, whether for white or for Marseilles mottled soap, being those used for other soaps.

SOAPS FROM FATTY ACIDS or OLEINE. Oleine, elaine, or commercial cleic acid forms a more or less dense liquid with a colour varying from pale yellow to dark brown.

1 .

Less highly coloured is the cleine obtained by saponification of pure fats in autoclaves and separation from the stearine by pressing (cleine of suponification) or by enzymic of catalytic decomposition (catalytic cleine), whilst that obtained from impure fats (bone fat, etc.) or by means of sulphuric acid is generally darker and is separated after distillation of the fatty acids (distillation cleine). If an oleine contains more than 3 per cent of non-saponifiable substances, it is certainly distillation cleine (1 to 9 per cent.), but a less content than this does not necessarily indicate cleine of saponification since the modern methods of exact distillation yield cleines almost free from non-saponifiable matter

Oleme always contains small quantities of neutral fats and, more especially, of solid fatty acids (5 to 20 per cent palmitic, stearic, etc.), but its iodine number should be between 75 and 85, and its acid number at least 179 (about 90 per cent of fatty acids, expressed as oleic acid)

Saponification oleme was at one time sold at a rather lower price than tallow, and distillation oleme at a still lower price (before the War at £24 to £28 per (on). Besides for sompmaking it is used for treating wool which is to be carded or combod.

Pure oleic acid and its properties have already been considered on p. 358

The manufacture of soap from fatty acids (see pp. 505 et seq), although it gives no glycerine, is economical in various ways, thus, it allows of a more rapid superification with a diminished consumption of fuel and renders possible the use of sodium carbonate which is cheaper than caustic soda

100 kilos of oleme would require about 19 kilos of sodium carbonate (instead of 13 5 of caustic soda), but in practice only about 90 per cent of this amount is used, the saponification being completed with caustic soda in order to transform the small amount of neutral fat present in the commercial oleme. A hot solution (about 30 per cent.) of the whole of the sodium carbonate is prepared in a wide, shallow copper, the cleme being then added gradually in a thin stream, the mass being mixed and heated by a jet of direct steam so as to liberate the carbon dioxide and prevent the froth from overflowing; the latter end is best attained either by adding a little salt to the soda solution at the beginning or by the passage of a current of air. The caustic soda solution (15° to 18° Bé.) is then introduced and the whole heated, salted out and boiled, as already described for tallow soap. Pure cleme soap is at first rather soft, but it gradually dries, hardens, and becomes of a paler yellowish-brown colour than the fresh soap

When soap is made from oleme and fats together, the latter are first saponified and the oleme added subsequently.

RESIN SOAPS are now made in large quantities and by almost all scap manufacturers. Colophony (see Part III) contains acids which behave like the fatty acids and yield similar scaps, which lather well with water and, when mixed with ordinary fat scaps, diminish the price considerably, as colophony costs only £7 to £14 per ton.

The saponification of the resm is effected with a rather strong lye (to avoid excessive frothing). It is necessary to employ pure fats and pure resm (with the saponification number 160 to 180), and when saponification is complete, the scap must be well "finished" in order to avoid excess of alkali, which would cause efflorescence (also avoidable by the addition of a little sodium silicate at the end of the manufacture).

The resn may be introduced as a powder directly into the fused fat, but it is more generally added after the fats have been saponified and the soap salted out and separated from the lye. The concentrated caustic soda (100 kilos at 20° Bé. or 90 kilos at 25° Bé. per 100 kilos of resin) is then added and the resin gradually disintegrated by heating and stirring. Boiling is continued until the froth almost disappears and the soapy mass separates well from the lye below and exhibits the proper consistency when pressed between the fingers. After the lye has been removed, the soap is finished with a little boiling water, then left for 12 to 24 hours, and finally solidified in the ordinary frames or moulds.

Good resin soaps should not contain more than 40 per cent. of resin, but in some cases they show as much as 100 per cent (compared with the fat), and it is a question whether resin soap should be regarded as adulterated, to this view the manufacturers object for obvious reasons. Although attempts have been made at various congresses to fix limits (10, 20, or 30 per cent) to the proportion of resin allowable, none of these are regarded. The case would be met by stamping the resin-content on every cake of soap, as there could then be no question of adulteration or fraud.

Some scaps are not separated from the lye, or grained or finished, but are left introd with the lye and the glycerine; the fats employed must here be pure, since otherwise

the impurities would colour the soap — Coconut oil and palm-kernel oil are more especially used, as they have the property of becoming incorporated or remaining dissolved in a large excess of alkali or salt and of forming hard soaps with even large proportions of water (200 to 300 per cent) — They are made by either the hot or the cold process, and are generally cheap soaps, as they can be resined and charged, not only with large quantities of water, but also with salt, silicate, tale, flour, etc.—Solutions of salt or caustic soda (20° Bé), even in excess, facilitate hardening, whilst potassium carbonate produces a certain softness and lustre — The silicate and salt are mixed with hot caustic soda and are added finally to the soap at 90° to 95°. The method of procedure is that generally employed the fat is added to part of the caustic or carbonate solution, with which it is stirred and heated to boiling, the rest of the alkali is then introduced and finally the salt or silicate solution in small portions, the mass is mixed, left in the covered copper overnight, when it falls to a temperature of 75°, then skinmed and cooled in the frames ¹

When these soaps are prepared in the cold, the palin-kernel or coconut oil is mixed with the theoretical quantity of concentrated caustic lye (for coconut oil, 50 per cent of lye at 38° Bé), which saponifies these and other fats (tallow, lard, cottonseed oil, arachis oil, iosin, etc.), even in the cold, with spontaneous rise of temperature, they are commonly loaded with silicate, tale, salt, etc.

MOTTLED SOAPS. Until 30 to 40 years ago, mottled soap of the Marseilles type was made with olive oil, the mottling being produced by adding to the soap, either before or after graining, ferrous sulphate, ferrio oxide, ultramarine, etc (0 2 to 0 6 per cent. of the weight of fat), discharging into the cooling frames at a temperature of 75° to 80° and allowing to cool slowly (four to six days)

Mottling is satisfactory only when the soap does not contain more than 32.5 to 34 per cent of water, and hence constitutes a safeguard to the consumer, showing that he is not being cheated with soap overcharged with water Olive oil soap can be well mottled if it does not contain more than the above quantities of water and colouring-matter, and not more than 2 per cent. of salt, since it is only under these conditions that it acquires just that fluidity which, at the solidifying temperature, offers a resistance to the minute coloured particles (iron, aluminium, and manganese soaps, and metallic hydroxides); the latter gradually group themselves into veins, whilst the drops of lye and soluble salts fall to the bottom If the quantity of water is raised, the equilibrium is displaced and the fluidity increased, so that the colouring-matters are deposited, but if other solid fats are used in conjunction with the olive oil, the required consistency can be obtained with as much as 50 per cent of water With coconut, palm-kernel, and palm oils, mottled scaps can be prepared containing 70 per cent or even more of water, in addition to an increased amount of alkali. These soaps, however, should not contain more than 2 per cent. of sodium carbonate, and less than 10 per cent of dissolved salts, otherwise the soap will effloresce on drying, provided that it is sufficiently stiff to permit of mottling.

A type of mottled soap which is often prepared with a yield of 180 to 200 per cent is that from almost equal quantities of sulphocarbon olive oil and coconut or palm oil. In this case the manufacture of the olive oil soap is carried out separately as far as the stage where it is separated from the lye, so as to remove the impurities, it is then introduced into the pan where the coconut oil has been saponified in the hot with caustic soda of about 20° Bé., together with some 13 per cent. of sodium carbonate dissolved in water. Unger (1869) found that, in order to prevent coconut or palm oil soap from efflorescing on drying, it should not contain more than 43 per cent. of sodium carbonate, calculated on

1 High yields are given by the following mixtures -

	Coco-	Coco- nut oil Crude palm- kernel oil	Palm oil	Tallow	Resin	Caustic soda (26° Bó)	Potassium carbonate 25°–30° Bé	Salt		ti si
Yield								20°-22° 136	8°10° Bé	Sodium Silicate
										
About 250 % ,, 300 % ,, 300 % (resined)	kilos 90 50	kilos [or 90] 100 40	<u></u>	10 —		60 60 60	65 100 65	40 65 65		=
,, 400 % ,, 800 % ,, 1000 %	100 100 100	[or 100] [or 100]	111	=	=	60 80 150–160 (22° Bé)	260 (20° Bé) —	100 800 —	50 60 —	800 800

the weight of coconut oil (s.e, 1 mol of sodium carbonate per 4 mols of pure coconut soap) After mixing, the two soaps are boiled and 4 to 5 per cent (on the total fat) of sodium chloride solution of 24° Bé gradually added, the heating is continued until the pasto boils readily without adhering to the sides of the copper, and the steam evolved produces. at the surface of the soap, vennings and crevices in the form of rosettes. The soap will then emit a hollow sound and will not form bubbles when struck with the stirrer, from which it falls in broad folds which become covered with a dry skin, while between the fingers it does not pull out, but tends to solidify It is important that it should not contain an excess of caustic soda (not more than 0 2 to 0 3 per cent, it is best neutral) as with finished soaps, any excess may be eliminated by adding the calculated quantity of coconut oil or of hydrochloric acid, determined by titration At this point the colouring matter is well mixed in, the soap being then cooled to about 75° and poured into large solidifying frames (holding at least a ton) so as to cause slow cooling (in winter these are wrapped round with cloths), and hence satisfactory mottling. These mottled soaps of high yield (up to 400) per cent) bear the name of blue mottled or Eschweg soaps, and were largely used some years ago. Even now their consumption is considerable, as they have a higher detergent power than finished soaps owing to their richness in alkali carbonates, they dry more rapidly than resun soaps and owing to their hardness they are preferred for laundry purposes, there being no waste even when the clothes are vigorously rubbed.

The formation of mottling in soaps probably obeys the laws holding in the solidification of alloys (solid solutions) and the figures given on pp. 515 and 810, and in Plates I. and

II., p 830, of Vol. I of this work ("Inorganic Chemistry") represent well the impression produced by the mottling of soap

When almond-mottling is required, an iron rod 12 to 15 mm. in diameter is drawn vertically through the semi-solid soap in the solidifying frame, so as to make a kind of longitudinal cut, similar cuts, parallel to the first, are then made throughout the whole mass at distances of 4 to 6 cm., and afterwards a similar series perpendicular to the others. When solidification is complete, the whole of the soap is traversed by dark markings in the shape of almonds arranged like the leaves on acadia twigs. Other mottlings are made either by machinery or by hand.

For Eschweg scaps mixtures of various fats are used, eg, 20 to 25 per cent. of tallow, 25 to 30 per cent of bone fat, 10 to 15 per cent of cottonseed oil, 20 to 40 per cent. of palm-kernel oil, and 20 to 30 per cent. of coconut oil. The yield is usually 205 to 215 per cent, although additions of silicate (10 to 12 per cent) are sometimes made.

TRANSPARENT SOAPS were at one time obtained by dissolving ordinary soaps in alcohol, evaporating the latter and moulding the transparent residue. The amount of alcohol used was subsequently diminished by adding glycerine, and at the present time transparent or so-called glycerine soaps are made from mixtures of decolorised tallow with castor, linseed, and coconut oils, with addition of glycerine and also of 20 to 30 per cent. of saccharose or glucose, which enhances the transparency. To this mixture, melted in the copper, is added caustic lye at 30° to 36° Bé., the whole being mixed until a homogeneous emulsion is formed; 2 to 5 per cent of alcohol is then introduced, and the mass heated to 75°, cooled to 50°, and poured into the moulds. For some of these soaps as much as 40 per cent of pale resin is employed

SOFT SOAPS are usually potash soaps of linseed oil or oleine, while in summer cottonseed, colza, sesamé, palm, or fish oil is also used. Some of these soaps are transparent (plain or variegated), others opaque and white or yellowish. For every 100 kilos of fat, about 160 kilos of caustic potash of 24° Bé are used, the yield being sometimes as much as 235 per cent , if caustic soda is partly employed, a harder soap is obtained, but the yield is diminished. Also 10 to 15 per cent of resin may be used or 10 to 15 per cent of oil. In general these soaps contain carbonates

The boiling is carried out in the usual way, and is continued until fiothing ceases, and

a small portion placed on glass remains clear for some time without forming a skin and, on cooling, becomes turbed at the edges and exhibits slight vennings of lye. If this test portion remains clear but presents no such vennings, lack of alkali is indicated.

Many of the soft soaps now used contain white granules, produced by the addition of tallow or stearine, which crystallises out throughout the mass of soap during the cooling, the latter occupying 4 to 8 weeks, this change is known as figging and the yield of such soaps is often as high as 240 per cent

The manufacture of soda soap from glycerides by means of lime and sodium carbonate (Krebitz process) has been described on p 505

Cooling and Solidification The soap from the copper is cooled in large chests or frames,

formerly of wood but now of iron, as was suggested by Krull in 1876 (Fig. 304). The sides of these are fixed by means of bolts and nuts and hence fit perfectly and are readily taken apart In some cases, the frames are mounted on three wheels so as to be transportable. To prevent any impurities depositing in one place and so producing mottling, the pasty soap in the frame is stirred with wooden crutches until it begins to solidify, but if

slow solidification is required (for mottled soaps), the sides of the frame are covered with straw mattresses or wool, especially in winter (Fig 305). The frames vary in capacity from 100 to 6000 kilos and, according to the amount and quality of the soap, the cooling lasts one or several weeks. The walls of the frame are then removed and the large block out into smaller prismatic blocks by means of thin steel wires worked by a toothed-wheel winch, which is applied to various points of the block (Fig. 306). The small blocks are discharged on to a truck carrying a platform which can be raised (Fig. 307) and are then transferred to the barring machine (Fig. 308), where each block is placed between A and B

AOT' IX

and forced by means of the plate A and the toothed wheel, R, against the frame, B, fitted with adjustable crossed steel wires. The long bars thus obtained between B and C are then pressed against the vertical wires of the frame, C, and thus cut into cakes of the There are many such machines of different types, some fitted with fixed required size and others with universal frames

During recent years a method has been devised of preparing cakes directly from the hot soap from the copper, without using the large cutting machines (slabbers), in this way much time is saved, waste and scraps are diminished in amount and the subsequent seasoning shortened. The hot soap is rapidly cooled and compressed in the Klumpp apparatus (Fig 309), being first transferred to the jacketed reservoir, L, where it is kept hquid by means of hot water in the jacket The plate, c, consisting of a double-walled box surrounded by cold water, has a movable base, h, resting on the piston of a hydraulic pump, K. The box, c, is filled with liquid soap and the wheel, V, turned so as to press on to the surface of the soap the large plate, a, which is kept horizontal by the four rods, N, of the press, while inside it cold water circulates.

When this plate is firmly fixed and the soap begins to solidify, a pressure of 50 atmos is applied by means of the press, K, this pressure being increased to 250 atmos when the

Fig 309.

soap is quite cold and solid The ordinary cutting machines are then used to out these slabs into marketable pieces, which lose little water even in the air

Seasoning or drying of the soap, to bring it to the degree of moistness required by the trade, is effected by keeping the cakes on frames in well-ventilated chambers for several weeks or even months This slow drying is now generally replaced by drying in hot air, furnished cheaply by Perret furnaces, which burn waste coal or The soap is spread on gratings superposed on trucks, which are gradually introduced into a brickwork gallery, hot air traverses the gallery, entering at the

opposite end at 50° to 60° and being discharged at 35° to 45° The seasoning is complete in 3 to 6 days, but if the temperature is too high at first, or the drying too rapid, the scap softens and becomes deformed and crushed. To give the cakes a smooth surface, and so render efflorescence and cracking more difficult, as they issue from the dryer they are subjected to the action of a slight steam-jet, which melts them superficially.

The value of soap 1 varies considerably with the quality, the degree of fineness, the

Analysis of Soap. As a rule, the commercial value of a soap is determined from the quantity of combined fatty acids which it contains, and as the percentage of those varios with the degree of moistness, great care must be taken in sampling the soap. The cake is first weighed and the sample cut in such a way that the inner and outer portions are taken in the proper proportions, the sample is then cut up fine, rapidly mixed and immediately enclosed in a vessel

with a ground stopper so that water may not be lost

The analysis consists of some or all of the following determinations:

(1) Water. This estimation is not usually made, as it involves a long operation, while it is possible to calculate the proportion of water indirectly after all the other components have is possible to calculate the proportion of water indirectly after all the other components have been determined. The direct estimation is made by weighing 5 to 10 grms, of the finely divided soap rapidly in a tared dish containing a small glass rod and filled to the extent of one-third with sand which has been previously calcined. The dish and its contents are heated first in an oven at 60° to 70°, the fused soap being carefully mixed with the sand until a skin of soap no longer forms at the surface, the temperature is then raised to 105° to 110°, at which it is maintained until constant weight is reached. The total loss in weight represents the water.

(2) Unsaponified Fat. The dry residue from the water estimation is introduced into a Soxhlet extractor (see p. 462) and extracted for a couple of hours on the water-bath with light netroleum

(2) Unsaponified Fat. The dry residue from the water estimation is introduced into a Soxhlet extractor (see p. 462) and extracted for a couple of hours on the water-bath with light petroleum in a tared flask, the solvent is subsequently distilled off and the extracted fat dried at 110°

until of constant weight.

(3) Fatty Acids, Free Alkals, Glycerine, and Resin. The residual matter in the Soxhlet apparatus (or the dry soap itself) is extracted with neutralised absolute alcohol, which dissolves the soap, glycerine, and free causic alkals—the last of these is determined immediately by titrating the alcoholic solution with normal sulphuric acid in presence of phenolphthalem. The liquid is afterwards largely diluted with water, heated for a long time on the water-bath to remove all

content of fatty acids, and the degree of purity The ordinary scape unit in laundin and in the textile industries, which are made from sulphocarbon olive oil and contain an automatic per cent. of fatty acids, cost before the war £22 to £24 per ton, according to the condition. of the market and the prices of prime materials (fats and oils). Scrape bould with water and other substances may cost much less; fine, perfumed somps cost up to the forther

GG. POLYHYDRIC ALDEHYDIC OR KETONIC ALCOHOLS

CARBOHYDRATES

(Sugars, Starch, Cellulose)

This group of substances might have been included in the preceding chapter. FF, where, in paragraphs D and E, certain very simple addenvite and known alcohols have been considered Partly owing to custom famer it has been the rule to include in the group of Carbohydrates only ketonic or aldehydic polyhydric alcohols with six (monosaccharides) or a multiple of six carbon atoms (polysaccharides) and containing hydrogen and oxygen in the proportion of 2 1, as in water], and partly because this group embraces all the sugars, which exhibit special characters very different from those of glacollic ableliate (which should be the first member), the carbohydrates are, however, considered separately, although the brilliant researches of Emil Fischer, commenced in 1887, have extended this group to compounds with five. four, or three ribon atoms, on the one hand, and to monosaccharides with six, eight, or even much carbon atoms on the other

These monosaccharides bear the name of Monoses (bioses, trunes, telepres, pentoses, hexoses, heptoses, octoses, nonoses, etc., according to the munder of carbon atoms they contain), while the polysaccharides (formed by the condensation of two or more monose molecules) are called generally pulposes and,

the alcohol, and treated with a measured volume, in excess, of normal sulphings on it, the liquid being then heated in a beaker on a water-bath and on a sand-bath until the stee latte and (and the resm, if present) separate at the surface. After cooling, the sulfitited levet of a bis is pierced with a rod and the liquid poured on to a tared filter in a structure function fails. ands being then washed with hot water, and the whole brought on to the filter. The regions of free sulphure and in the whole of the wash-water is determined by titration with normal caustic potash. This then gives the amount of sulphure acid his che with in the wash and hence also the combined alkali expressed as Na₂(). Evaporation of the topic in the region and hence also the combined alkali expressed as Na₂(). and hence also the combined alkali expressed as Na₂O. Evaporation of the femal to dranew and extraction with absolute alcohol romoves any glycerine present in the sorat, the lating acidinal after evaporation of the alcohol. The fatty acids on the filter are treated with a couple of alcohol to remove any moisture and then with sufficient light petroleum to disaster all these acids, the filtrate is evaporated in a tared dish, dried at 105° to constant weight and the resultal fatty acids weighed. To determine any resin which may be present in the latter such part of the latter is weighed, dissolved in 20 c c of alcohol and, after nebilition of phenolphthale in hydrolysed in the hot with a slight excess of alkali; after cooling, the liquid is made up to this stearate, palmitate, and eleate. One-half of the filtered solution (contraining soluble alter resinate) is treated with 20 c c of dilute hydrochloric acid (1 · 2) and filtere is an aliqued part of the filtrate being evaporated in a tared capsule, dried at 100° and the resining soluble after the weight of the resin is dimmished by 0·00235 grm. for every 10 a.c. of otherwal solution of silver resinate, this being the amount of elect and removed by the other. The true weight of the fally acids, free from resin, can then be calculated.

acids, free from resin, can then be calculated.

(4) Soda, Sali, Sulphates, Silcate, etc. The residue from the Fluxhilet apparatus, after separation of the fat and soap, is treated two or three times with 50 to (6) to (6) to a fine water and the solution filtered, made up to a definite volume and divided into four parts: such the situated with normal sulphure acid, using phenolphthalein as indicator. To sacritain the sodium carbonate: in a second portion, the sodium chloride is determined by different the section the nitrate, the third is precipitated with barnum chloride and the weight of the barium sulphate in the soap, determined. The fourth portion is treated with hydrochloric acid and the siles, thus separated from the silicate, weighted.

(5) Ash and Mineral "Filing" The ash obtained by burning a definite weight of pure soap is about 40 per cent greater than the total alkali (expressed as Nag()). If the proportion is much higher than is indicated by this relation, the excess represents indicated filling.

in particular, hexabioses, hexatrioses, etc., according as they are formed by the condensation of two, three, etc., hexose molecules

A. MONOSES

All the monoses are aldehydic or ketonic polyhydric alcohols contaming the characteristic grouping, -C-C-, ie, a hydroxyl group united with a carbon atom adjacent to a carbonyl (CO) group When the carbonyl exists as an aldehydic group, -C-C-H, these monoses are called Aldoses, whilst

when it exists as a ketonic group, —Ċ—C—C, they are termed keloses, so OH Ö

that we have aldohexoses, ketohexoses, etc 1

The monoses have the general properties of the aldehydes or ketones and hence form, on oxidation, the corresponding monobasic acids, e.g. quentonic, hexome acids, etc Since the aldoses contain a primary alcoholic group,

they can also be oxidised to dibasic acids, containing the same number of carbon atoms, whilst when the ketoses are oxidised, the carbon atom chain is ruptured and acids with lower numbers of carbon atoms formed.

On reduction, both the aldoses and the ketoses take up two atoms of hydrogen, forming the corresponding alcohols, the hexoses give hexitals and the pentoses pentitols

Like all aldehydes, they reduce ammonical silver solutions in the hot,

giving silver mirrors

When heated with alkali, they turn brown and then resinify

They reduce alkaline copper solution (Fehling's solution) in the hot (see p. 255, and later)

When heated with excess of phenylhydrazine dissolved in acetic acid, they yield yellow, crystalline phenylosazones, insoluble in water 2

1 The two classes of sugars, aldoses and ketoses, are distinguished by means of Romijn's reaction with a solution of iodine and borax, which oxidises all the aldoses (galactose, glucose, mannose, arabinose, xylose, rhamnose, maltose, lactose), while it either does not oxidise the ketoses or oxidises them but slightly (sorbose, fructose, saccharose and raffinose are oxidised to a small extent)

Betti (1913) finds that the aldoses, but not the ketoses, react with \$-naphtholbenzylamine, forming crystalline products They form first phenylhydrazones (see p 246)

H.—C.—OH

$$C = O + H_2 N NH \cdot C_6 H_5 = H_2 O + C. = N NH C_6 H_5,$$

these phenylhydrazones then react with two other molecules of phenylhydrazine, giving ammonia, anılıne, and phenylosazone

In dealing with the hexoses later, we shall see how the constitutions of the

monoses in general are determined

Of the various monoses, containing from 2 to 9 carbon atoms, only certain of the hexoses are fermentable, that is, give alcohol and carbon dioxide under the action of ferments or enzymes (see pp 134 and 146) Of the hexoses, some ferment readily, others with difficulty, and others again not at all, in dependence on their stereochemical configurations and possibly on the asymmetric constitution of the enzymes d-Glucose, d-mannose, and d-fructose ferment easily, and d-galactose with difficulty, whilst l-glucose and l-mannose do not ferment

GENERAL METHODS OF FORMATION OF THE MONOSES:

(a) From the polyoses by hydrolysis with dilute acids, water being added and several molecules of hexose obtained.

$$C_{12}H_{22}O_{11}$$
 (sacoharose) + $H_2O = 2C_6H_{12}O_6$

- (b) By exidation of the corresponding alcohols by intrie acid eg., Arabitol, $C_bH_{12}O_b$, gives Arabinose, $C_5H_{10}O_9$ (pentose), xylitol (stereoisomeric with arabitol) gives xylose, and Mannitol, C₆H₁₁O₆, mannose
- (c) Oxidation of glycerol gives dihydroxyacetone, OH CH2 CO CH2 OH, which is a triose, its constitution being indicated by the fact that it forms a cyanohydrin, OH CH₂ ((OH)(CN) CH₂ OH, the latter yielding trihydroxyisobutyric acid, OH CH, C(OH)(COOH) CH, OH, and this, on reduction, isobutyric acid having a known constitution
- (d) By treating the bromo-derivatives of the aldehydes with baryta water. Thus monobromaldehyde gives Glycollic Aldehyde,

$$\label{eq:charge_energy} \text{C'H$_2$Br} \ \text{C'} \underset{H}{\overset{O}{\longleftarrow}} + \text{H}_2\text{O} = \text{HBr} + \text{OH} \ \text{CH}_2 \ \text{C'} \underset{H}{\overset{O}{\longleftarrow}} ,$$

which is the simplest member of the sugir group and does not gives all the reactions of the

(e) With lime-water, formaldehyde undergoes aldol condensation (see p 245), giving Formose,

which is a syrupy mixture of compounds, CoH12O6.

Under the influence of light and moisture, plants fix ${
m CO_{g}}$ and form starch ${
m (C_{0}H_{10}O_{5})_{n}}$, which is a polyhexose, $6CO_2 + 6H_2O = C_0H_{12}O_0 + 6O_2$, the hexose then giving up water and yielding starch. According to Baeyer (1870), the CO_2 gives first formaldehydo, then a hoxose (monose), and finally starch (polyose).1

which is the characteristic group of the phenylosazones. The latter crystallise readily and in a pure state from a dilute pyridine solution. Reduction of the phenylosazones yields osamines, e.g., glucosamine, C₈H₁₁O₈ NH₂.

¹ From the analogy in the behaviour of hemoglobin and chlorophyll, Baeyer supposed the latter, like the former, to be capable of uniting with carbon monoxide. In such case the chlorophyll would decompose ('O₂ into O and CO, and water into O and H₂, the oxygen being evolved, the ('O, fixed by the chlorophyll, would split off and combine with the hydrogen to give formaldehyde, the chlorophyll being regenerated. Union of the formaldehyde with H₂O would then yield methyloneglycol, CH₂(OH)₂, which would condense to glucose 6CH₂(OH)₂ = 6H₂O + C₆H₁₂O₆. Baeyer's hypothesis does not seem satisfactory, since dissociation of two highly exothermic substances like CO₂ and H₂O is difficult to conceive, while, in addition, plants are indifferent towards CO.

It was shown by Butlerow that formaldehyde—and later by E. Fischer that glyceraldehyde—can, under certain conditions and in the presence of bases (baryta), give rise to sugar (α-acrose). In 1905 H. and A. Euler found that under no conditions of sodium carbonate or, better, with calcium carbonate or lead hydroxide at 100°, first glycollaldehyde and glyceraldehyde are formed and finally a keto-arabinose, the phenylosazone of which melts at 159° to 161°. The conditions for the production of hexoses from formaldehyde are not yet defined, but O. Loew stated that

and finally a keto-arabinose, the phenylosazone of which meits at 109° to 101°. The conditions for the production of hexoses from formaldehyde are not yet defined, but O. Loew stated that, with milk of lime, he obtained formose, which is a mixture containing s-fructose (a-acrose).

D. Berthelot and H. Gaudechon (1910) found that the action of ultra-violet rays on 10 per

Also 2 mols of glyceraldehyde (derived, eg, from acrolein) undergo the aldol condensation and yield a hexose (termed acrose) which is a constituent of formose

(f) It is possible to pass from one aldose to a higher one through the cyanohydrin, which is first hydrolysed to an acid with an extra carbon atom. Such an acid readily forms a lactone with the hydroxyl in the γ -position, and treatment of the lactone with sodium amalgam (addition of H2) yields the higher aldehyde (aldose).

OH CH₂ CH(OH) CH(OH) CH(OH) CH(OH) C
$$\stackrel{\circ}{\text{H}}$$

OH CH₂ CH(OH) CH(OH) CH(OH) $\stackrel{\circ}{\text{CH}}$ CH(OH) CH(OH) COOH

OH CH₂ CH(OH) CH(OH) $\stackrel{\circ}{\text{CH}}$ CH(OH) CH(OH) CO + H₄

OH CH₂ CH(OH) CH(OH) CH(OH) CH(OH) CH(OH) C $\stackrel{\circ}{\text{CH}}$

By the same ketonic (lactonic) synthesis, the heptose can be converted into octore and nonose

TETROSES, C4H8O4, and PENTOSES, C5H10O5

Just as the hexoses can be converted into pentoses, the latter can give rise to TETROSES. For instance, d-, l-, and i-erythrose are obtained by oxidising

cent solutions of various sugars at a temperature of 80° to 90° leads to the rapid formation of the following quantities of gas

	CO	CH_4	$\mathbf{H_2}$	CO,
Levulose (ketose)	83	8	9	15
Glucose (aldose)	12	12	76	22
Maltose (gives 2 mols glucose)	12	11	77	21
Saccharose (gives glucose and levulose)	45	8	4 7	16

They found also that prolonged action of ultra-violet rays on a mixture of CO₂ and H₂ yields a small quantity of CO and of formaldehyde

These facts tend to confirm J Stoklasa's observations (1906–1910) on the formation of hydrogen as final product of the degradation of carbohydrates by the action of glycolytic enzymes, which have an important function in the assimilation of carbon dioxide in the chlorophyll cells, and also to render valid Stoklasa's hypothesis (1907) that the formaldehyde necessary to the formation of carbohydrates by the simple polymerisation assumed by Baeyer may result from the reaction, 2CO₂ + 2H₂ = O₃ + 2H CHO Stoklasa and Zdobnický (1910) have obtained inactive sugars and aldehyde by the action of ultra-violet rays on carbon dioxide and hydrogen in the nescent state in presence of caustic potash (with initial formation of potassium licarbonate, which, in the nescent state and with nescent hydrogen, generates the sugar) and have disproved the view held by Fischer (1888–1889), Loew (1888–1889), Neuberg (1902), and Euler (1906) that, in the synthesis of sugars from formaldehyde, pentoses are formed, the sugars they obtained are not asymmetric and are hence not fermented by ordinary alcoholic ferments. In 1912 Stoklasa, Sebor and Zdobnický showed that formic acid constitutes an intermediate product in the formation of CO₂ and H₂O by the action of ultra-violet light on formaldehyde in presence of potassium hydroxide and air Subjection of CO₂ and KOH, mixed with a ferrous salt, to the influence of ultra-violet rays gives haveness (aldoses and ketoses) which are optically inactive and non-fermentable. According to Stoklasa, the function of the chlorophyll in plants is to absorb the ultra-violet rays of sunlight. From the aqueous distillate of the leaves of various plants, F. Hartwig and T Curtius (1910) have separated (by means of m-introbenzhydrazide, and also to render valid Stoklasa's hypothesis (1907) that the formaldehyde necessary to the

α β-hexylencaldehyde, CH3 CH2 CH2 CH · CH CK , the hydrazone of which melts at 167°. H

According to Baur (1913) the formation of carbohydrates in green plants from CO₂ is probably accompanied by the transitory formation of various soids and alcohols. Similarly the genesis of sugars in the animal organism may result from the glyoine which forms a product of the decomposition of the proteins and produces glycollic acid and formaldehyde in passing through

Baly, Heilbron and Barker (1921) find that aqueous carbon dioxide solution yields formaldehyde when exposed to light of wave-length $200~\mu\mu$, the yield of the aldehyde being greatly increased in presence of paraldehyde, sodium phenoxide and certain salts which absorb light increased in presence of paradeayue, somum phenoxide and certain satts which absorp light of wave-length 290 $\mu\mu$, these substances protect the formaldehyde produced from the polymerisation to reducing sugars effected by this light (290 $\mu\mu$). Chlorophyll appears to be an ideal photo-catalyst for both stages of the synthesis of carbohydrate from carbon dioxide and water, the absence of free formaldehyde in the growing leaf being thus explained

, § !

d-arabonic acid, d-arabinosoxime, and natural i-erythritol respectively with hydrogen peroxide

OH CH₂ [CH OH]₃·COOH + O = H_2O + CO_2 + OH CH_2 ·[CH OH]₂ CHO

The tetroses are also obtained by oxidising (with H₂O₂) the calcium salts of pentonic acids in presence of ferric acetate, which acts as an oxidising catalyst

The pentoses (Arabinose, Xylose, etc.) occur abundantly as Pentapolyoses or Pentosans (Araban, Xylan) in many vegetable organisms (straw, wood, maize husks, etc), from which they are obtained by simple boiling with dilute acids. So-called non-nitrogenous extractives present in abundance in plants and in foods consist especially of pentoses, hexoses, lignin and cutin (Konig, 1913), which exhibit varying solubility in water and in acids at different temperatures and pressures Pentoses do not ferment

Arabinose and xylose are aldoses, $OH \cdot CH_2$ [CH(OH)]₃ · CHO. By bromine water these two pentoses are oxidised with formation respectively of arabonic and xylonic acids, $OH \cdot CH_2 \cdot [CH \cdot OH]_3$ CO_2H , which are stereoiso-

¹ By the term Pentosans are meant those polysaccharides which are related to the pentoses in the same way as are starch, mulin, etc., to the hexoses, and which give pentoses and also hexoses on hydrolysis. From starch they are distinguished by their lawo-rotation. From plants the pentosans are extracted by means of dilute alkah according to the method given by Tollens, Stone, and Schulze (1888–1901)—the finely divided vegetable matter is treated twice, for some Stone, and Schulze (1888–1901) the finely divided vegetable matter is treated twice, for some hours at the ordinary temperature, with seven times its weight of 2 per cent ammonia solution to climinate in the soluble state part of the proteins, salts, etc., and to remove the more soluble part of the hemicallulose (this would give little pentose on subsequent hydrolysis). After the durk ammoniacal liquid has been separated by filtration through cloth and by squeezing in a press, the solid residue is extracted with ten times its weight of 5 per cent caustic soda solution, with which it is first macerated in the cold for 10 to 12 hours, and then heated in a reflux apparatus on a water-bath for six hours. The mass is next filtered through cloth and the residue pressed and washed several times with water until the total volume of solution obtained is equal to that of the caustic soda solution used that of the caustic soda solution used

This brown liquid is evaporated to some extent on a water-bath and is then treated in the cold with an equal volume of 90 per cent, alcohol. The voluminous, flocculent precipitate of qum (pentosans) thus obtained is collected on cloth, washed and purified by repeatedly dissolving in chlute acid and reprecipitating with alcohol, this procedure being continued until the gum leaves a minimal ash on incineration.

To pass from the pentosans to the pentoses, the moist gum is hydrolysed (Connoler and Tollens, 1892 and 1903) by digestion for 12 hours with 25 parts of water and 25 parts of hydrochloric acid of sp. gr. 1-19, the mixture being finally heated on a water-bath until the furfural reaction (red coloration with aniline acetate paper) begins to make its appearance (about two hours). After filtration of the cold liquid and neutralisation with lead carbonate (testing with Congo-red paper), a few drops of barrum hydroxide are added and the liquid filtered to remove Congo-red paper), a few drops of barrum hydroxide are added and the liquid filtered to remove precipitated lead chloride and barrum carbonate. The solution is concentrated on a water-bath under reduced pressure, mixed with a little alcohol, filtered and concentrated to a syrup. This is taken up with methyl alcohol and the solution filtered to remove mineral and other impurities.

is taken up with methyl alcohol and the solution intered to remove mineral and other impurities. The alcohol is then evaporated and the residue seeded with a few orystals of vylose or arabinose and left in a desiccator until the whole mass crystallises (this sometimes requires several weeks). In order to separate the arabinose and xylose, which often occur together, Ruff and Ollendorff (1899) treat the mixed pentoses with eight times their weight of 75 per cent alcohol and nearly their own weight of benzylphenylhydrazine dissolved in a little absolute alcohol. After several hours, and there separates archinose benzulinkenithultrazone, which. hours' rest with frequent shaking, there separates arabinose benzylphenylhydrazone, which, in the pure state melts at 174° and, when treated with excess of formaldehyde, liberates the arabinose, the latter is soluble in water, whilst formaldehyde benzylphenylhydrazone remains

undissolved.

undissolved.

The aqueous arabinose solution, after separation and concentration to a syrupy consistency, deposits pure arabinose in crystals. The corresponding hydrazone of xylose is soluble in 75 per cent. alcohol, and yields xylose when decomposed with formaldehyde in the manner described above. The xylose can also be separated, according to Bertrand and Tollens (1900), by treating the mixture of pentoses with 2 parts of water, 1 part of cadmium carbonate, and 0.5 part of bromine. The mixture is heated for a short time on the water-bath, then left for 12 hours, evaporated, taken up with water, filtered, again evaporated, and mixed with alcohol, this procedure yields crystals of cadmium bromoxylonate, C₅H₅O₆BrCd. Before carrying out this separation, however, it is necessary to make sure that the mixture contains no galactose or gluosse. These sugars can be detected by oxidising the mixture with nitric acid (sp. gr. 1 15) on the water-bath and evaporating the liquid to two-thirds of its volume. If the liquid remains turbid in the cold, the presence of mucro acid, derived from galactose, is indicated, and if, after neutralising with potassium estbonate, acidifying with acetic acid and concentrating, potassium hydrogen saccharate separates, the presence of glucose—which gives saccharic acid on oxidation—is demonstrated. is demonstrated.

meric, with more energetic oxidising agents, they give trihydroxyglutaric acid On reduction they yield the corresponding alcohols, arabitol and xylitol (see pp 225, 525), which are also stereoisomerides. By way of the corresponding cyanohydrins they can be converted into hexoses (via hexonic acids) All these reactions aid in establishing the constitution of these pentoses

As they contain asymmetric carbon atoms, these sugars are optically active, and they exhibit the phenomenon of mutarotation; thus, for freshly prepared solutions of xylose, the value of the specific rotation is $[a]_p = 75^{\circ}$ to 80° , while five minutes after the sugar is dissolved it has the stable rotation $+19^{\circ}$

When pentoses are boiled with dilute sulphuric acid or with hydrochloric acid of sp gr 106 (12 per cent), they yield furfural, C4H3O CHO (aldehyde), which distils over and gives a characteristic and intense red coloration with aniline and hydrochloric acid, a phenylhydrazone with phenylhydrazine, and a slightly soluble condensation product with phloroglucinol 1

Treatment of any pentose or hexose with caustic soda in presence of air or other oxidising agent (e g , HgO) yields no trace of saccharic acid, but gives formic acid and monobasic hydroxy-acids (eg, glycollic, dl-glyceric, trihydroxybutyric, and various pentonic and hexonic acids); if air is excluded, aldotetroses, formaldehyde, a little 2 3 -dienols, bioses, and glyceraldehyde are mainly formed

Recent work has shown that the furfural obtained on distillation of vegetable substances with 12 per cent hydrochloric acid is derived not merely from true pentosans, but also from oxycellulose, glycuronic acid, etc., methylpentosans give methylfurfural Hence Cross and Bevan suggest the name furfuroids for substances other than true pentosans which give furfural On the other hand, it has been proposed by Tollens that the term pentosan be applied to the whole of the substances (furfuroids and true pentosans) which give furfural when distilled with 12 per cent hydrochloric acid Hydroxymethylfurfural (see below) does not distil in presence of acids but undergoes resinification, and hence escapes the Tollens method of estimating furfural

Until comparatively recent times it was assumed that the pentosans were derived from the hexoses and polyhexoses, since it was known that 4-hydroxymethylfurfuraldehyde,

is obtained on heating levulose, d-mannose, d-glucose, d-galactose, chitose, etc., in a scaled tube with 0 3 per cent of oxalic acid, while 4-bromomethylfurfural,

¹ Quantitative Ditermination of Pentoses and Pentosans. Finit and Tollens (1902) distil in a flask similar to that shown in Fig 18 (p. 12), about 5 grms of the substance with 100 c c. of 12 per cent hydrochloric acid, the heating being carried out in an oil-bath at 100° Thirty c c of liquid are distilled over every 12 to 15 minutes, in which time 30 c c of fresh acid are added by means of a tapped funnel, this procedure being continued as long as the distillate reddens a strip of filter-paper moistened with an acetic acid solution of aniline. To the distillate is added a strip of filter-paper moistened with an acetic acid solution of aniline. To the distillate is added an excess (double the amount of furfural expected) of pure phloroglucinol dissolved in 12 per cent hydrochloric acid. The volume of the liquid is made up to 400 cc with the same acid in a graduated flask, which is well shaken and left for 12 hours, at the end of which time the precipitate is collected on a tared filter, washed with 150 cc of water, dried for four hours in an oven and weighed. The weight of furfural is obtained by dividing this weight by a variable factor, which has the following values for different amounts (in grms) of the phloroglucinol compound 0.20 grm (1820), 0.22 (1839), 0.24 (1856), 0.26 (1871), 0.28 (1884); 0.30 (1895), 0.32 (1904); 0.34 (1911), 0.36 (1916), 0.38 (1919), 0.40 (1920), 0.45 (1927), 0.50 (1930); 0.60 or more (1931). The xylan is calculated by multiplying the quantity of furfural by 1.64, the araban by 2.02, while for mixed pentosans, the factor 1.84 is employed.

If the phlotogluoide is formed in alcoholic solution, it may be estimated colorimetrically or spectroscopically (Pinoff and Gude, 1913).

Another method of procedure consists in precipitating the furfural with phenylhydrazine

Another method or procedure consists in precipitating the furfural with phenylhydrazine and estimating the nitrogen in the precipitate

Jolles (1906), however, neutralises almost completely (to methyl orange) the distillate containing the furfuraldehyde, then adds 10 cc (more, if necessary) of a decinormal sodium bisulphite solution, and after two hours titrates the excess of bisulphite with a decinormal rodine solution (1 cc of which corresponds with 0 0075 grm. pentose)

Many plants contain methylpentosans as well as pentosans. The solubility of methylfurfural-phloroglucide in alcohol, in which furfuralphloroglucide is almost completely insoluble, serves as a means of estimating the former (Ishida and Tollens, 1911).

is obtained by heating levulose (or filter-paper, cotton, cellulose, straw, starch, dextrose, lactose, glycogen, etc.) under pressure with chloroform saturated at 0° with hydrogen brounde. Further, when the exime of levulose is heated with concentrated caustic potash solution, the nitrile is first formed and then hydrocyanic acid and d-arabinose.

OH ('H, [CH · OH], CH NOH
$$\rightarrow$$
 H,O + OH CH, CHO OH], CN

Oxidation of d-glucome acid with peroxides also gives d-arabinose

Ketohexoses in general, when heated with dilute acids (e.g., with 0.3 per cent of oxalio acid under a pressure of 3 atmos), are largely transformed into hydroxymethylfurfural, whilst the aldohexoses undergo this change only to a very slight extent; if immeral acids are used, or oxalio acid in larger quantity, levulinic acid is obtained instead of hydroxymethylfurfural.

U Nof's work (1910) tends to show that, in plants, pentosans cannot be derived from the hexoses, but that they are formed rather from either addeteroses and formaldehyde or 2-carbon-atom sugars and glyceraldehyde. The hexoses, in their turn, would be formed, not from pentoses and formaldehyde, but rather from 2 mols. of glyceraldehyde or 3 mols. of a 2-carbon-atom sugar, or even from 1 mol. of a 2-carbon-atom sugar and 1 of an aldotetrose.

XYLOSE is readily obtained by boiling with dilute sulphuric and plants containing it, especially jute, bran, straw, or, better still, approof stones or maize husks. It bears also the name of wood-sugar, and is yielded by the decomposition of glucome and

When pure, it crystallises and forms a phonylosazone melting at 160°

d-ARABINOSE is lawo-rotatory, but is obtained from calcium d-gluconate and hydrogen peroxide and from d-glucose. In the pure state if forms prismatic crystals

i-ARABINOSE is the optically inactive racemic isomeride, and is found in the urine of persons suffering from *pentosurus*

l-ARABINOSE is obtained by boiling vegetable gum with dilute sulphuric acid. It is dextro-rotatory, but is designated a lavo-compound because it is related chemically to l-glucose. It forms sweet-tasting crystals melting at 160°, and its phenylosazone melts at 157°.

Two other pentoses are RIBOSE, which, with mascent hydrogen, gives admitol (a pentahydric alcohol, $OH \cdot CH_2 \cdot [CH \ OH]_3$ CH_2 OH, and the only sugar-alcohol yet discovered in plants, the leaves of which are able to transform it into starch; the sap of Adoms vernulis contains as much as 4 per cent of adonitol), and D-LYXOSE, which is obtained from galactome and and melts at 101° .

Higher homologues are the Methylpentoses FUCOSE, contained in algoe; CHINO-VOSE, ISORHAMNOSE, and RHAMNOSE (or Isodulcite), $(l_5H_0)l_5 \cdot CH_3$, which is obtained by boiling quercetin and certain other glucosides with dilute sulphuric acid.

According to Rosenthaler (1909), Methylpentose in presence of pentoses may be recognised by heating the solution for a few minutes on a boiling water-bath with HCl of sp. gr. 140 and observing the yellow liquid thus obtained in the spectroscope; methylfurfural, from methylpentose (even as little as 0.0005 grm.) gives absorption bands between the blue and green. The reaction is still more sensitive if a little acctone is added before heating, the liquid then being coloured red (by the methylfurfural) and giving a sharp absorption band in the yellow (D line); pentoses do not give this reaction if the liquid is heated. Other sensitive reactions are obtained with phloroglucinol, ordinol, resorcinol, pyrogallol, aniline acctate, etc.

HEXOSES, CoH19O4

These are of frequent natural occurrence and exist as various optically active stereosomerides, since they contain four asymmetric carbon atoms, while they also form inactive racemic compounds. They are substances of sweet taste, and are extremely soluble in water, but in alcohol they dissolve but slightly and in ether not at all; they crystallise with great difficulty and decompose

t s the transfer

when distilled Their phenylhydrazones are soluble, and their phenylosazones insoluble in water. When boiled with hydrochloric acid they all give (1) Levulinic Acid (CH₃ · CO · CH₂ · CH₂ · CO₂H), the silver salt of which forms characteristic crystals, and (2) a brown amorphous mass of so-called humic substances. With methyl alcoholic ammonia, the hexoses form Osamines, e.g., Glucosamine, $C_8H_{11}O_5$ · NH_2

They reduce Fehling's solution or ammoniacal silver solution in the hot, and with oxidising agents they yield hexonic acids and then lower acids down

to oxalic

With lime they form additive compounds decomposable by carbonic acid, with boiling milk of lime they turn brown and give Hexosaccharine (lactone of saccharic acid), $C_8H_{10}O_5$. By the combined action of concentrated sulphuric and nitric acids, they are converted into pentanitrates, while with alcohols and gaseous hydrogen chloride they form ethers (glucosides). The aldohoxoses give the fuchsine-sulphurous acid reaction (see p. 246), which is, however, not shown by the ketohexoses. The mode of formation of the phenylosazones is described on p. 524

With hydroxylamine they form oximes, e.g., d-Glucosoxime, which can be converted into the corresponding nitrile and then, by elimination of HCN, into

the aldopentose (d-arabinose)

The hexoses are formed in various organisms and can also be obtained by

hydrolysing polyhexoses with dilute acids or enzymes

The optical activity of the hexoses indicated by the prefixes d-, l-, and iindicates the sign of that of the substances with which they are connected
genetically, but the fact that the actual direction of the rotation does not
always correspond with this prefix is a source of some confusion. It must also
be noted that the rotatory powers of the hexoses and pentoses are lowered when

the sugars are dissolved in a centinormal alkali solution at 37°

Synthetically the hexoses can be obtained from formaldehyde (see Note, p 525), as well as from the hexahydric alcohols by gentle oxidation and from the hexonic acids by reduction E. Fischer has synthesised d-glucose completely from glycerine, by way of (1) glyceraldehyde, (2) mactive fructose, which, with hydrogen, yields (3) mactive mannitol, oxidation of this giving (4) mannose and (5) racemic mannonic acid, the latter being resolved into its (6) active components by means of strychnine, d-mannonic acid, in presence of pyridine and water in the hot, produces (7) d-gluconic acid and this, on reduction, d-glucose.

The relations between hexoses and pentoses were indicated in the Note on

p 527.

As was mentioned above, fermentation with yeast occurs only with d-glucose, d-fructose, d-galactose, d-mannose, and glycerose, no fermentation taking place with sorbose, the pentoses, l-glucose, l-fructose, l-mannose, or d-manno heptose. Thus only the stereoisomerides of a certain group are fermentable

The structures of the hexoses are deduced partly from their general reactions

and partly from the following facts ·

The chain of six carbon atoms in the hexoses is normal, since reduction with hydrogen yields a hexahydric alcohol, which is further reduced by heating with hydriodic acid to normal sec. hexyl iodide, $CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_1 \cdot CH_3$; the constitution of the latter is shown by the fact that the corresponding secondary alcohol is oxidised to n-propylacetone, $CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_3$, this, on oxidation, giving finally butyric and acetic acids of known constitution

The hexoses contain five hydroxyl groups, as they yield pentacetyl-derivatives when boiled with acetic anhydride and sodium acetate or zinc chloride. Their constitutional formula hence cannot be other than:

since, if two hydroxyl groups were at any moment united with one carbon atom, a molecule of water would be eliminated immediately. Further, with hydrogen the hexoses form heritols, which are not aldehydic but only alcoholic in character and do not give up H₂O under any conditions, so that two hydroxyl groups are not combined with one carbon atom. Norther can it be supposed that three hydroxyl groups are united with the terminal carbon, thus.

OH, because if this were so water would be readily separated and an

acid formed, in which case the aqueous solution should conduct the electric current and have a dissociation constant much greater than that of acetic acid, but this is not found to be the case

Combination with bases does occur (with the hexabioses), but the com-

pounds formed are additive compounds.

Since then there are a number of different hexoses, all showing the same general behaviour, they must have the same constitution, the differences being due to differences in the spacial structure

Theoretically, 16 active stereoisomeric aldoliexoses are possible and have been already prepared. The rotatory powers of the phenylosuzones and phenylhydrazones may be of opposite signs to those of the corresponding hexoses.

d-GLUCOSE (Grape Sugar, Dextrose, Starch Sugar), C6H111O6, 18 an aldose found in abundance in grapes and many other sweet fruits in company with d-fructose, it also occurs in the urine of diabetic patients. It has a sweet taste, which is less intense (about twothirds) than that of sucrose It crystallises from water with 1H₂O, which it loses at 120°, and from alcohol in the anhydrous form, melting at 146°. In aqueous solution it has the specific rotation + 53° at a temperature of 20°, but it exhibits mutarotation, the rotatory power being about double the above value in freshly prepared solutions which have not been boiled. Owing to its rotatory power glucose may be estimated polarimetrically (see later, Sugar). Yeast resolves it completely into alcohol and carbon dioxide.

When saccharose (a dextro-rotatory hexabiose) is heated with dilute acid, it is converted into a lavo-rotatory mixture of equal proportions of glucose (📙) and fructions or levulose (--), which bears the name Invert Sugar, the change being known as inversion,

since it is accompanied by alteration of the sign of the optical rotation.

On oxidation, d-glucose gives d-Gluconic Acid, OH · CH2 · [CH · OH] · COOH, and then the dibasic Saccharic Acid, CO2H [CH OH]4 · CO2H, which, like turturic need, given a slightly soluble acid potassium salt; the latter serves to characterise diglineose, it being sufficient to oxidise with nitric acid and then precipitate the saccharic acid with saturated potassium acetate solution. When reduced, d-glucose yields d-sorbital (hexabydric alcohol).

The sugar forms a phenylosazone, melting at 204° to 205°, and two phenylhydrazones, melting respectively at 115° and 144°.

When heated above 140°, glucose is converted into caramel.

In dilute solution it reduces Fehling's solution in the hot, and on this reaction is based the estimation of glucose.2

¹ Invert Sugar, of the consistency of honey, is a commercial product used by brewers

Invert Sugar, of the consistency of honey, is a commercial product used by brewers and in making preserves, etc., it is employed also to make artificial honey.

Estimation of Glucose. In the chemical way the estimation is effected by means of Fehling's solution by the method described later in the section on Saccharose, about 10 grms. of solid glucose or 15 to 20 grms of the syrupy product being dissolved in water, made up to 100 c.c. in a graduated flask and filtered through a dry, covered filter. Polarimetric estimation is not usually applicable, owing to the presence of dextrin, sometimes to the extent of 40 per cent., this increasing the rotation. The dextrin is determined by dissolving 5 grms. of the glucose in 400 c.c. of water, adding 40 c.c. of HCl of sp gr 1·125, heating for two hours on a boiling water bath, cooling, neutralising exactly with NaOH and making up to 500 c.c. The total

Barfoed has proposed the following reaction for detecting the presence of minimum quantities of glucose (0.2 mgrm) mixed with lactose, maltose, dextrin, and saccharose. to 5 c c of Barfoed's reagent (an acetic acid solution of normal cupric acetate) in a test-tube is added the dilute aqueous sugar solution (about 1 per cent), the mixture being heated on a boiling water-bath for three and a half minutes, allowed to cool for 10 minutes, and filtered If the filter retains red cuprous oxide, the presence of dextrose is demonstrated

MANUFACTURE OF GLUCOSE One hundred kilos of starch are mixed with 300 litres of boiling water containing 3 kilos of concentrated sulphuric acid, or 1 kilo of concentrated hydrochloric acid, and the mass heated in a suitable autoclave or converter (conical or cylindrical, capable of withstanding 6 atmos), coated internally with lead and externally with insulating material A current of steam is then passed in and the temperature raised to about 120° for an hour if liquid glucose, consisting one-half of glucose and the other of dextrin, or to 140° for 2 to 3 hours if crystallisable glucose containing only 30 per cent of dextrin is desired By allowing the steam to escape subsequently, the empyreumatic oils (which are of disagreeable odour) are carried away, the steam is condensed in cooled coils (the heat being used to heat water) The temperature of the mass is then maintained at 80° until a test portion gives no blue colour with iodine and no precipitate with lead acetate (or potassium silicate), these being indications of the saccharification of the dextrin and gummy matters, a further sign of this is the non-formation of a precipitate with alcohol

The mass, at about 17° Bé (= 30 per cent of carbohydrates), is then decanted into the neutralisation vats, which are furnished with stirrers, and finely divided calcium carbonate, suspended in a large quantity of water, gradually added in order to neutralise and precipitate the sulphuric acid After thorough mixing of the mass, it is allowed to settle and the hquid then decanted into another vessel, where the calcium sulphate remaining in solution is precipitated by the addition of a little ammonium oxalate. If hydrochloric acid were used, this is neutralised with sodium carbonate

The liquid is next filter-pressed, evaporated in a vacuum to 30° to 32° Bé., decolorised in the hot by means of boneblack or dry blood mixed with powdered wood charcoal or by passing it through vertical filters filled with the charcoal similar to those used in sugarrefineries It is then concentrated in a vacuum (see Sugar Industry) either to 42° to 44° Bé, to give solid compact glucose separating in the cooling vats (fitted with stirrers), or to about 65° Bé., when ready formed crystals of glucose are added The temperature is lowered to 18° to 20°, and after 3 or 4 days the separated crystals centrifuged and so freed from the syrupy portion, which retains the dissolved dextrin and other impurities To obtain granulated glucose the solution is concentrated only to 32° Bé, after 8 to 10 days in the cold, a granular hydrated glucose, CoH12O6, H2O, separates

When a very dense liquid glucose (so dense that its specific gravity cannot be determined with the ordinary hydrometers) is required, a little dextrin is left in the sugar so as to prevent crystallisation.

The theoretical yield of pure glucose from 100 kilos of dry starch is 110 kilos

In some factories the starch is saccharified with a little nitric acid, which gives a less highly coloured syrup and is more rapid in its action. The nitric acid is then eliminated by means of sulphurous acid, which is oxidised at the expense of the nitric acid to sulphuric acid, this being readily precipitable with lime

dextrose (including that formed by hydrolysis of the dextrin) in this solution is now determined by means of Fehling's solution. The difference between the amounts of glucose found before and after the action of acid, multiplied by 0.9, gives the quantity of dextrin. The acidity should not exceed 2 c c of normal caustic soda per 100 grms of syrup. The proportion of ash varies The acidity should from 0 2 to 0 7 per cent
Solid commercial glucose contains 65 to 75 per cent of glucose and the liquid 35 to 45 per cent.

In pure solution, glucose may be estimated by means of the specific gravity

Density	Degrees	Per cent, of pure	Density	Degrees	Per cent of pure
at 17 5°	Bé.	glucose	at 17 5°	Bé.	
1 0192	27	5	1 1310	16 4	35
1 0381	53	10	1 1494	18 8	40
1 0571	75	15	1 1680	20 6	45
1 0761	101	20	1 1863	22 7	50
1 0946	124	25	1 2040	24 4	55
1 1130	146	30	1 2218	26 1	60

The advantages of transforming starch into glucose by means of hydrofluoric acid consist in rapid and complete hydrolysis, ready separation of the whole of the acid as barium fluoride, and the production of a glucose with a pure flavour

In 1901 Calmette found that, after heating crushed cereals with double the amount of 1 per cent hydrochloric acid for one hour at 100°, one hour at 110°, and a third hour at 120°, and then cooling, the mass may be converted completely into glucose by the action of Mucedina

USES Large quantities of glucose are consumed for making sweet syrups, caramel, fermented liquors, sweets and wine, preserving fruit, adulterating honey, dressing
textiles, etc

d-FRUCTOSE (Levulose, Fruit-Sugar) occurs abundantly, together with glucose, in sweet fruits, and is also found in large quantities in honey (which contains natural invert sugar). The hydrolysis of inulin (a polyhexose found in dahlia tubers) yields d-fructose alone. The sugar is lavo-rotatory and formentable. It has the constitution of a ketose, OH CH₂ [CH OH]₈ CO CH₂ OH, hydrolysis of its eyanohydrin giving the heptome acid.

OH $CH_2 \cdot [CH OH]_3$ C(OH) CH_2 OH COOH

The phenylosazone of d-fructose is identical with that of d-glucose

Methylphenylhydrazine forms osazones only with ketoses and not with aldoses, with which, however, it forms colourless hydrazones, these being usually soluble and hence readily separable from the slightly soluble, intensely yellow osazones (see pp. 308 and 524).

When phenylosazones are heated gently with hydrochloric acid, they lose 2 mols of phenylhydrazine with formation of osones which contain two carbonyl groups. Thus phenylglucosazone yields Glucosone, OH $\mathrm{CH_2}~[\mathrm{CH}\cdot\mathrm{OH}]_8$ CO CHO, and this when treated with nascent hydrogen (from zine and acctic acid) takes up 2H at the terminal carbon atom, fructose being thus obtained from glucose. On the other hand, reduction of a ketose gives the corresponding hexahydric alcohol, which, on exidation, yields the monobasic hexanic acid, the latter loses water, giving rise to the lactone, and this gives the aldose on reduction d-Fructose is laevo-rotatory, $[a]_n = -92^\circ$ at a temperature of 20° .

This sugar has been suggested for the use of diabetic and tuberculous patients and as a substitute for cane-sugar, since it is sweeter, and in syrups and honey it hinders the crystallisation of the other sugars

In view of these uses, attempts have been made to prepare fructose industrially. König in 1895 and Steiner in 1908 proposed its extraction from endive roots and dahlia tubers (these contain from 8 per cent. to 17 per cent of inular). The crushed tubers are treated in the hot (below 65°) with a little milk of lime and with steam, and are then pressed. The juice, after defecation with day, is allowed to crystallise in a rotating cooler, the mass of inulin crystals being centrifuged, redissolved in hot water, and converted into fructose by means of dilute acid (see Glucose); the fructose solution is concentrated in a vacuum, Steiner calculates that the sugar can be made by this process at a cost of 1s. per kilo.

A characteristic reaction for the detection of fructose in presence of other reducing sugars is obtained with the following solution: to a solution of 12 grms of plycocoll in hot water are slowly added 6 grms of pure cupric hydrate, the liquid being heated on a water-bath for about 15 minutes until complete solution takes place and then cooled to 60°; after 50 grms of potassium carbonate have been added, the volume is made up to 1 litre and the whole filtered. This reagent is reduced in the cold only by levulone (1 to 5 per cent. solution), the time required varying from 4 to 9 hours; other sugars, including the pentoses, reduce it only at temperatures above 40°.

¹ Caramel (or sugar colouring) is prepared by fusing and heating glucose or saucharose at a temperature of 160° to 180° (not beyond this) in an iron vessel fitted with a stirrer. To glucose 1 to 3 per cent of soda (ammonia is also largely used) is added to accelerate the operation and to neutralise the acid formed (saccharose also yields acid, being first partly inverted by the heating), and after the change is complete, 50 per cent. of hot water is added and the mass well mixed and filtered through charocal. A brown, syrupy mass is thus obtained which is soluble in water or alcohol, giving a brown or yellow solution according to the dilution.

That obtained from saccharose, which does not contain dextrin and dissolves completely in 80 per cent alcohol, is used for colouring spirits, whilst that from glucose, which contains dextrin and is entirely soluble in 75 per cent. alcohol, is used to darken beer and vinegar. The presence of more than 5 per cent. of ash indicates that a caramel has been prepared from molasses;

good qualities contain only 1 per cent. of ash.

A control of the cont

, 1

d-MANNOSE, C₆H₁₂O₆, is an aldose stereoisomeric with glucose, and is fermentable, it is obtained from mannitol, the corresponding alcohol, by oxidation. It melts at 136°, and differs from other monoses in forming a phenylhydrazone m.-pt. 195° to 200°, only slightly soluble in water. With oxidising agents it forms first monobasic d-mannonic acid and then dibasic d-mannosaccharic acid, COOH. [CH. OH]₄·COOH

A general method for converting one hexose into a stereoisomeric one, eg, d-mannose into d-glucose, is as follows. the d-mannose is oxidised to d-mannonic acid and the latter dissolved in quinoline and the solution boiled; in this way the acid undergoes partial transformation into the stereoisomeric d-gluconic acid, reduction of the lactone of which yields d-glucose. The reverse change of d-gluconic into d-mannonic acid is also produced to some extent by boiling with quinoline, so that d-glucose can be converted into d-mannose. These sugars (and acids) differ only in the space arrangement of the groups united with the asymmetric carbon atom in the a-position, OH CH₂ [CH OH]₃ CH(OH) CHO, since the phenylosazone of d-mannose is identical with that of d-glucose, a

OH CH₂ [CH OH]₃ C C N NHC₆H₅
$$\parallel N \text{ NHC}_6 \text{H}_5$$

It is this a-carbon atom, adjacent to the aldehyde group, which is influenced when a hexonic acid is boiled with quinoline or pyridine.

When glucose, fructose, or mannose is treated with a very dilute alkali solution, a mixture of all three sugars results. The fructose seems to be an intermediate product, since the dextro-rotation of mannose gradually changes to a levo-rotation, owing to formation of fructose, the amount of the levo-rotation subsequently diminishing as the fructose becomes converted into glucose

l-MANNOSE and l-GLUCOSE, $C_0H_{12}O_6$ (Aldoses), are obtained together from l-arabinose by the cyanohydrin synthesis and reduction of the lactones of the resulting acids Application of this synthesis to an aldehyde yields, in general, two optically active stereoisomerides, since a new asymmetric carbon atom is created and the chances of formation of the two isomerides are equal. The final mixture will, however, be mactive only when the initial molecule is mactive, while, when this is optically active (as with arabinose), the mixture will be active, as the components will not have equal and opposite activities, one of these will have a rotation greater than that of the original molecule by a certain amount and the other a rotation less by the same amount.

d-GALACTOSE, $C_6H_{12}O_6$ (Aldose), is obtained by oxidising dulcitol, $C_6H_8(OH)_6$, or by hydrolysing milk-sugar, in which case it is formed together with glucose. It melts at 168°, is fermentable, and exhibits mutarotation. It is an aldose, giving on oxidation first monobasic d-galactoric acid and then dibasic mucic acid, COOH. [CH. OH]₄. COOH, which is inactive.

HEPTOSES, OCTOSES, and NONOSES have not been found in nature, but are prepared synthetically from mannose by means of the cyanohydrin synthesis.

GLUCOSIDES

These are of frequent occurrence in the vegetable kingdom and, when heated with acid or alkali or subjected to the action of certain enzymes, decompose into a glucose and an alcohol (or phenol, aldehyde, or nitrogen compound), they are hence ethereal derivatives of the monoses (e.g., Amygdalin, Salicin, Populin, Coniferin, etc.).

Artificial glucosides have been prepared by E Fischer by the interaction of an alcohol and a monose in presence of hydrochloric acid (which withdraws water). The glucosides are analogous in structure to the acetals

$$R \cdot C = H_2O + R \cdot C = H_2O + R \cdot C = OCH_3 \text{ (acetal),}$$

but only 1 molecule of alcohol takes part in the reaction.

$$\begin{array}{c} \mathrm{OH}\cdot\mathrm{CH_2}\cdot\mathrm{CH}(\mathrm{OH})\cdot\mathrm{CH}(\mathrm{OH})\cdot\mathrm{CH}(\mathrm{OH})\cdot\mathrm{CH}(\mathrm{OH})\cdot\mathrm{CHO} + \mathrm{CH_3}\cdot\mathrm{OH} = \\ \gamma & \beta & \alpha \end{array}$$

OH
$$CH_2 \cdot CH(OH) \cdot \overset{7}{C}H \cdot CH(OH) \cdot CH(OH) \cdot CH(OCH_3) + H_2O.$$

The glucosides are readily resolved into their components, so that union of these directly through carbon atoms is excluded. The combination with the oxygen of the hydroxyl in the γ -position is deduced from analogous reactions, such as formation of lactones The constitution of bioses is explained similarly (see later)

According to Auld (1908) the constitution of Amygdalin is as follows:

Ciamician and Ravenna (1908) showed that, when glucosides are introduced into plants (maize and beans), they are absorbed and transformed without producing any effect, whilst the decomposition products of the glucosides (benzaldehyde, salicylic alcohol, hydroquinone, etc.) act as poisons. Hence the formation of glucosides in plants seems to have the effect of paralysing the poisonous action of certain substances. The same authors (1909) found that, when maize is made to absorb saligenin, this is partly transformed into its glucoside, salicin; in a similar manner they obtained benzylglucoside (1911)

B. HEXABIOSES

Almost all the bioses at present known decompose into hoxoses (either two different monoses or 2 mols. of one and the same monose). No biose gives a hexose and a pentose.

This decomposition of bioses, which is known as hydrolysis,

$$C_{12}H_{22}O_{11} + H_2O = 2C_6H_{12}O_6,$$

can be effected by boiling with dilute acid or by the action of enzymes, and since it takes place with great readiness, it is assumed that the constituent monoses of the bioses are united, not between carbon atoms, but more probably between oxygen atoms It would appear, however, that the hydrolysis is not a monomolecular reaction (see Vol I, p. 69).

Synthetic bioses are obtained by treating, for instance, a hexose with acetyl chloride, the resulting acetochlorhexose, in presence of sodium alkoxide and a hexose, giving the acetyl derivative of a biose, elimination of the acetyl group by means of soda then yields the biose itself.

Bioses may also be obtained by the action of certain enzymes on monoses, thus, with maltase, glucose gives isomaltose (not, as was formerly thought, maltose; see p 126). The lactase of kephir acts on a mixture of glucose and galactose, giving isolactose: with glucose alone it yields a different biose (litrose and galactose may also be condensed by the action of emulsin (see pi 136).

of the hexabioses, maltose, lactose, and saccharose will be considered (for melionic, see later, under Raffinose).

MALTOSE forms crystals of the formula $C_{12}H_{22}O_{11} + H_2O$ and is strongly dextrorotatory. As was seen in considering the manufacture of alcohol and of beer, it is prepared

industrially from starch by the action of diastase (see pp 133, 134, 141).

Hydrolysis of maltose by dilute acid yields only d-glucose It gives reactions similar to those of the monoses Thus, it reduces Fehling's solution, and with phenyllydrazine forms phenylmaltosazone, C24H32O9N1 On oxidation it yields monobasic Maltobionic Acid, C₁₂H₂₂O₁₂, which gives d-Gluconic Acid, OH CH₂ [CH OH]₄ COOH, on hydrolysis Hence maltose contains only one carbonyl group and not the two corresponding with the 2 constituent glucose molecules, the phenylosazone being formed with 2, and not 4, mols of phenylhydrazine, while oxidation of the sugar yields a monobasic and not a dibasic acid Hence the 2 mols. of glucose in the maltose molecule are joined in such a way that only one carbonyl group remains free to exert its characteristic reactions, the other serving to link up the 2 glucose molecules. It is usual to include between brackets the monose residue which has no free carbonyl owing to the oxygen atom of this group being joined to the other monose residue, and to place outside the brackets those monose residues which retain free carbonyl. Maltose would then be represented by the formula (C₆H₁₁O₅ O) C₆H₁₁O₅. Maltose is not fermentable directly, the maltase of yeast first d-glucoso converting it into fermentable glucose (see p 134).

Isomaltose is not fermentable and has $[a]_b + 70^\circ$; with phenylhydrazone it yields soluble phenylisomaltosazone

LACTOSE (or Milk-Sugar), $C_{12}H_{22}O_{11}+H_2O$, is contained in milk (up to 5 per cent.) and is less sweet than cane-sugar—Its reactions are similar to those of the monoses (reduces Fehling's solution, etc.), and it yields d-glucose and d-galactose on hydrolysis—It does not ferment with beer-yeast, which contains no enzyme capable of hydrolysing it—The glucose residue has its carbonyl free, whilst the carbonyl of the galactose takes part in the union of the 2 monose molecules, so that it will be represented thus— $(C_6H_{11}O_5-O)$ $C_6H_{11}O_5$

In fact, oxidation of lactose by means of bromine water results in the formation of monobasic lactobronic acid, which, on hydrolysis, gives d-galactose and d-gluconic acid

Cold water dissolves 16 6 per cent and boiling water 40 per cent of the sugar

INDUSTRIAL PREPARATION. Unless a dairy has an average production of at least 60 to 80 hectols of whey per day, it is not expedient to extract the milk-sugar. The preparation is now carried out as follows. The whey is treated immediately after the first coagulation of the cheese. The concentration is carried out in single or double-effet vacuum pans, similar to those used in sugar factories. Whey is passed continuously into the concentrator until the liquid attains a density of 30° Bé in the hot (about 60 per cent of the sugar). It is then collected in iron vessels holding about 700 litres, in which it is cooled by water circulating through a surrounding jacket. In the course of 24 hours, during which the mass is well stirred three or four times, the temperature is lowered to 20°. A pasty mass of fine crystals then separates, with an only layer at its surface.

The crystals are separated by diluting the mass with a little cold water $\binom{2}{5}$ and centrifuging, the crystals being retained in the drum of the centrifuge by means of a cloth. When a sufficient quantity of crystals has been thus collected in the basket of the centrifuge, the mass is washed with a gentle spray of cold water, the crude, slightly yellow sugar thus

obtained representing 3 6 to 4 3 per cent of the whey taken.

This crude milk-sugar contains 88 per cent. of sugar and 12 per cent of water and various impurities (proteins, etc.) The liquid from the centrifuge still contains about 30 per cent of the total sugar (not crystallised but forming a syrup). This liquid, which usually has a density of about 15° Bé, is heated to boiling by direct steam in a vessel with a flat, perforated false bottom, the albumin being thus coagulated. After half an hour's rest, the albumin collects as a compact layer at the surface, the liquid being then drawn off from below so as to leave the cake of albumin on the false bottom; this is removed, pressed in bags, and given to pigs or mixed with white flour to make bread. The albuminfree liquid is concentrated in vacuum pans to 35° Bé. (measured in the hot) and allowed to cool for several days, with occasional stirring, in iron vessels. This procedure yields a dark pasty mass of the crystalline sugar, which is collected by diluting with a large quantity of cold water and centrifuging as before, this sugar amounts to 0 3 to 0 7 per cent. of the original quantity of whey.

¹ Dairies not producing sufficient whey simply purify it by boiling with acid whey to coagulate the albumin, and filtering. It is then despatched to works which treat it further.

The mean yield of crude milk-sugar is 4 3 per cent of the whey (the maximum of 4 8 per cent being obtained in winter and the minimum of 3 9 per cent. in summer).

The liquid from the second crystallisation and centrifugation is not treated further, unless by osmosis, it is preferably utilised as cattle-food, as it is rich in potassium salts, nitrogen, and phosphoric acid

The crude sugar is either dried and placed on the market or subjected to a refining process. If left in heaps, it deteriorates to some extent

The refining is carried out as follows The sugar is dissolved, in an open boiler with a double bottom (heated by indirect-fire heat), in water at 50°, the liquid being well stirred so as to obtain a solution of 13° to 15° Bé (24 to 27 per cent of sugar) A little bone-black, or fuller's earth (see p, 490), and about 0 2 per cent. (on the weight of sugar) of acctie acid are then added, and the heating continued until the boiling-point is approached, when magnesium sulphate (about 0.2 per cent) is added and the liquid subsequently The mass suddenly froths very considerably (if kept boiling for a few minutes necessary, the steam-cock is closed, the boiler should not be too full initially) and the temperature rises to 102° to 105°. The charcoal decolorises the liquid and absorbs unpleasant flavouring substances, while the albumin is coagulated in large flocculent masses (by the acetic acid) and the phosphoric acid is precipitated by the magnesium The hot liquid is filter-pressed, and the solid residue, after being washed with water and treated with a suitable amount of sulphuric acid, constitutes an excellent nitrogenous superphosphate. The clear liquid from the filter-press is concentrated as usual in vacuo to 35° Be in the hot (65 per cent of sugar), the formation of froth being prevented. It is then crystallised, and when the maximum quantity of crystals has separated, these are separated by centrifuging, giving first product. After subsequent concentrations of the mother-liquor, second and third products are obtained. These three products together amount to about 3 to 3.5 per cent of the original quantity of whey, they may be kept separate or mixed and then recrystallised

To obtain the sugar in the very white powdery form in which it is now sold, the refined product (first, second, or third) is dissolved in hot water to give a solution of 15° Bé, which is boiled, and, after a little aluminium sulphate (0 1 per cent) has been added, filter-pressed, the clear watery filtrate being concentrated to 32° Bé. It is then crystallised in copper vessels, contrifuged, and dried in revolving inclined drums round which hot water passes.

It is dry when it no longer adheres when compressed between the hands. The cold sugar is ground and sieved to an impalpable powder. The average yield over the whole year is 2.5 kilos of the powdered sugar per 100 litres of whey. This powder should be left in open vessels for some days, as, if packed immediately, it develops an unpleasant smell (which, however, it loses if spread out in the air)

To obtain the sugar in masses of aggregated crystals, solutions of the gravity 21° to 24° B6, are crystallised in wooden vessels containing numbers of small wooden rods, the crystallisation sometimes occupies as much as a fortnight, and a liquid of 13° B6, remains which can be concentrated anew.

The albumn separated when whey is boiled contains, after pressing, about 60 per cent. of water and 40 per cent. of dry matter composed of 17 per cent of protein substances, 11 per cent. of milk-sugar, 2 3 per cent. of fat, 5 per cent. of ash (one-half of which is insoluble in water), and 1.7 per cent. of lactic acid

The final mother-liquor, or *lactose molasses*, is brownish black, and contains about 73 per cent. of water, 6 per cent. of ash (two-thirds soluble in water), 0 10 per cent of fat, 0.6 per cent of introgen, 1.5 per cent of acid (calculated as lactic acid), and 22 5 per cent. of substances which reduce Fehling's solution (calculated as milk-sugar).

The pre-war price varied from £34 to £48 per ton.

Tests for Milk-Sugar. Adulteration with mineral substances is recognised by the asliexceeding 1 per cent in amount. When dextrin is present, this does not dissolve in alcohol, while the presence of glucose or saccharose (even as little as 2 per cent.) is indicated by evolution of carbon dioxide from a 10 per cent. solution of the sugar mixed with a little (0.2 grm) fresh pressed beer-yeast and kept at 20° to 30° for two days; the invertase present in the yeast inverts the saccharose, which then ferments, but it does not break down the lactose, which consequently does not ferment. It is also found that when the Bulgarian ferment (Bacterium bulgaricum) acts on a mixture of saccharose and lactose, the laster alone is destroyed.

35

VOL. II.

SACCHAROSE (Sucrose, Cane-sugar), C12H23O11

Saccharose may be regarded chemically as the condensation product of two hexamonoses, glucose and fructose, which are generated by hydrolysis with dilute acid. The characteristic reactions of the monoses are lacking in saccharose, which does not reduce Fehling's solution, form osazones, or turn brown when treated with caustic soda solutions. It must therefore be assumed that the saccharose molecule contains no free carbonyl group (aldehydic or ketonic), the two such groups in the two monoses being annulled in the condensation. This is seen clearly from the following equation, in which a constitutional formula with the lactonic groupings so common to these substances (see p. 526) is attributed to saccharose:

OH
$$CH_2 \cdot CH(OH)$$
 $CH \cdot CH(OH) \cdot CH(OH) \cdot CH$

$$O + H \cdot OH = OH \cdot CH_2 \cdot CH \cdot CH(OH) \cdot CH(OH) \cdot C \cdot CH_2 \cdot OH$$

$$OH \cdot CH_2 \cdot [CH \cdot OH]_4 \cdot C \xrightarrow{O} + OH \cdot CH_2 \cdot [CH \cdot OH]_3 \cdot CO \cdot CH_2 \cdot OH$$

$$OH \cdot CH_2 \cdot [CH \cdot OH]_4 \cdot C \xrightarrow{O} + OH \cdot CH_2 \cdot [CH \cdot OH]_3 \cdot CO \cdot CH_2 \cdot OH$$

The rational formula (see Maltose) of saccharose will hence be:

$$(C_6H_{11}O_6 \cdot O C_6H_{11}O_5).$$

Saccharose and the bioses generally are not changed by the direct action of alcoholic ferments or of the majority of enzymes, so that they cannot be converted immediately into alcohol and carbon dioxide, as is the case with the hexoses. In order that alcoholic fermentation of cane-sugar may take place, it is necessary that the sugar should be first inverted by the invertase—almost always present in yeasts—into fermentable glucose and fructose. Hence, yeasts which contain no invertase cannot ferment saccharose. Saccharomyces octosporus, for instance, leaves this sugar unchanged, although it ferments maltose, owing to the presence of maltase, which hydrolyses the maltose to glucose.

It has already been mentioned that saccharose is readily hydrolysed by heating it with a very small quantity of a dilute mineral acid, and that this hydrolysis is known as inversion (see pp 531, 533) because the dextro-rotatory saccharose ($[a]_n = +665^{\circ}$) is changed into a lawo-rotatory mixture of equal proportions of glucose and fructose (invert sugar). The velocity of inversion, s, is proportional to the amount of cane-sugar present in the solution at any moment, and is hence expressed by s = k (p - x), where p is the quantity of the original sugar and x that which has already undergone inversion. The inversion constant, k, varies with the nature of the acid employed and is proportional to the degree of electrolytic dissociation of the acid, the rate of inversion increasing with the number of free hydrogen ions. It is, indeed, possible to determine the ionic concentration of an acid solution by means of the velocity of inversion, or the amount of reducing sugar formed in unit time, in a saccharose solution of definite concentration. In the cold, sulphurous and carbonic acids have searcely any inverting power.

Saccharose melts at 160° and, on solidification, forms an opaque, amorphous, glassy mass, which then crystallises in inclined monoclinic or rhombic prisms with blunted angles; at a higher temperature it caramelises to a brown

mass with evolution of gas (see p 533) It has the sp $\,\mathrm{gr}\,$ 1 5813. When heated for a long time at 180° to 220°, it yields acetone

One part of water dissolves 2.5 parts of saccharose at 0° and 4.5 parts at 100° It is almost insoluble in absolute alcohol or ether, but dissolves slightly in methyl alcohol It readily forms supersaturated aqueous solutions, which then rapidly deposit anhydrous crystals, this phenomenon is utilised in its industrial preparation

Cane-sugar forms compounds (sucrates) with inorganic bases; thus, with lime it forms (1) Monocalcium Sucrate, $C_{12}H_{22}O_{11}$, CaO, $2H_2O$, soluble in water, (2) Dicalcium Sucrate, $C_{12}H_{22}O_{11}$, 2CaO, also moderately soluble in water, and, on heating a solution of either of these compounds, (3) Tricalcium Sucrate, $C_{12}H_{22}O_{11}$, 3CaO, $3H_2O$, insoluble in water

A sensitive reaction for the detection of small quantities of sugar is indi-

cated on p 533

Pozzi-Escot (1909) has devised a still more sensitive reaction for the sugars. Into a test-tube are introduced 2 cc of the aqueous solution, 1 cc of 5 per cent ammonium molybdate solution and, after mixing, 10 to 12 c.e of concentrated sulphuric acid, which is poured carefully down the side of the tube. The formation of a blue ring within 20 minutes indicates the presence of more than 0 0005 per cent of sugar, and if the blue ring appears within 30 minutes when the upper part of the liquid is heated to boiling, the solution contains at least 0 00002 per cent. of sugar

INDUSTRIAL PREPARATION OF SACCHAROSE 1

Saccharose is contained in varying quantity (5 to 20 per cent) in different vegetable organisms. For instance, the sugar-cane (Saccharum officinarum)

¹ History of Beet-sugar. The first saccharme material worked and utilised by man as food was probably honey. The sugar-cane was known to the ancient Chinese, the Indians, and also the Persians and Arabs 200 years before Christ and only later was it introduced into Egypt, Greece, and Sicily, the medicine-men of this epoch employed cane-juice and honey as medicine. In the seventh century sugar in the solid form was an article of commerce, and in the eighth century the Persians extracted it from the sugar-cane and prepared it in cakes, after the ninth century, the results extracted it from the sugar-cane and prepared it in cakes, after the ninth century, the cultivation of the cane was extended by the Arabs to Egypt, Syria, (rete, Sicily, and Spain In the fifteenth century, the Portuguese introduced the culture into Madeira and Brazil, while the Spaniards carried it to the East Indies and the Canary Islands, and the Dutch to Java and Guiana. At the present time the sugar-cane is largely cultivated in Cuba, Java, Manila, Martinique, Jamaica, Louisiana, Brazil, Peru, China, Japan, India, Egypt, and part of Australasia. In Europe it is grown to a small extent only in Spain.

In 1806, when France and the allied nations established the Continental blockade against England (Insting until 1814) and the supply of Colonial sugar-furnished by England to the whole

England (lasting until 1814) and the supply of Colonial sugar furnished by England to the whole of Europe hence failed, attempts were made to discover a substitute for cane-sugar.

As early as 1705 the French agriculturist, Olivier de Serres, had observed that the beet contained a considerable proportion of sugar, and in 1747 the Berlin pharmacist, Signsmund Marggraf, attempted the extraction of the sugar, obtaining a yield of 6 per cent, but at that time it could not compete with the much cheaper Colonial sugar. Carl Achard, a pupil of Marggraf, after 20 years of experimental work on the selection of the best qualities of beet, etc., erected a factory for the manufacture of beet-sugar at Kunern, in Silesia (1801), but it was not found possible to extract more than 3 per cent of crystalline sugar, which did not cover the expenses, so that the factory was closed. Achard, however, continued to perfect his process, and when the Continental blockade produced in 1811 a tenfold increase in the price of sugar, several beetsugar factories were started in Germany, but these were still so imperfect that they were obliged to suspend operations when the blockade ceased. At this same time Napoleon I. induced the to suspend operations when the blockade ceased. At this same time Napoleon I. induced the most eminent scientific and technical men in France to apply themselves to this problem, and the extraction processes were rapidly improved, machines being devised for rasping and pressing the beets. With the introduction of the use of steam for concentrating the juices and of granulated bone-black for decoloration, beet-sugar began to compete seriously with Colonial sugar, even after the raising of the blockade. In 1828 there were indeed 58 large and flourishing factories in France, producing annually 30,000 tons of sugar. Napoleon I. had distributed in prizes to encourage this industry the sum of £40,000 and had himself erected four factories and brought 32,000 hectares of land under beet cultivation.

In Germany the sugar industry was started again in about 1836 aspecially in the reighbour.

In Germany the sugar industry was started again in about 1836, especially in the neighbourhood of Magdeburg, where a fortunate choice was made in the quality of best employed, the lot of the agriculturist—at that time depressed owing to poor grain crops—being thus greatly ameliorated. The further development of this industry was favoured by protective duties imposed by the Government, in France—until a few years ago—and in Germany and Austria,

gives 15 to 20 per cent; the beetroot (Beta vulgaris), 7 to 17 per cent, Sorghum saccharatum, 7 to 12 per cent; the pineapple, 11 per cent.; strawberries, 5 to 6 per cent., maize stems, sugar maple, etc, also contain small proportions of Most sweet vegetable juices, however, contain glucose (grapesugar) and levulose. The plants employed industrially for the extraction of sugar are the maple, sugar-cane, and beetroot Unsuccessful attempts have been made with maize stems, which contain as much as 11 per cent. of sugar when the unripe heads are cut, but the sugar extracted sometimes contains 12 per cent of invert sugar and other impurities.

LACER SACCHARINUM NIGRUM (Sugar Maple), which is largely cultivated in Canada, and, to a less extent, in the United States, yields a sap containing a considerable proportion of sugar. The sap is withdrawn from the living tree by means of two or three

holes bored in the stem a few feet above the ground, a metal tube fitted into each hole commanding a From these tinned-iron vessel. vessels the sap is collected twice a day during the sugar season, which lasts for about three weeks in the year. A single tree yields from 12 to 24 gallons of sap each senson, and from 45 to 6 gallons of the sap give 1 lb. of maple sugar. In some cases the sap is treated with chemical agents which precipitate certain of the impurities, but usually the sap is concentrated and crystallised directly, since the commercial value of the sugar depends principally on the flavour due to the "non-sugars" or impurities present. In Canada the industry flourishes mainly in the province of Quebec, where the output of the sugar amounted to 13,000 tons in 1919 and to 13,400 tons in 1920.

II. THE SUGAR-CANE is the principal source of Colonial sugar.

It is a plant (Saccharum officinarum, Fig. 310) which has been cultivated from the most remote times in India, Persia, and Arabia, whence it passed into Egypt and Greece. At the time of the Normans it was cultivated in Sicily, and from there it was introduced in 1420 into

Portugal and Spain, and thence into the West Indies, the Dutch carried it to the East Indies, where its development was very rapid. At the present time it is cultivated most widely in Cuba, Porto Rico, San Domingo, Havana, Brazil, and the East Indies (Bengal, Java, and the Philippines)

The plantations are made with shoots from the living plant (obtained from seed), these being placed about 1 metre apart and weeded after four to five months. The cane begins

where the prosperity of the sugar factories is continually increasing. The industry then developed in Belgium and Russia, while in Italy it was initiated only towards the end of the last century. In England the cultivation of the sugar-beet has been attempted, apparently with success, on a small scale only during recent years.

In 1855 the world's production of beet-sugar already amounted to 1,500,000 tons, and in 1900 Central Europe alone produced 8,500,000 tons.

During the same lapse of time the output

of cane-sugar increased only from 11 to 21 millions of tons.

to sprout in 12 months and requires a further six months to mature, when it has a yellowish colour and is 3 to 6 metres high and 4 to 6 cm in diameter, it sometimes reaches a weight of 9 kilos

The stem and roots of each plant will yield cane for twenty consecutive years without

renewal The negro labourers remove the head (used for eattle-food) from the cane with a blow from a scythe, and with another sever the cane at the base, the leaves (used for thatching) are then removed, and the cane worked up each day, as it rapidly ferments if left in heaps. The omnivorous ant is the enemy most feared by the planter At one time the bundles of cane were crushed in a primitive mill formed of three vertical cylindrical tree-trunks, shod with iron and worked by water-wheels or horses, but nowadays use is made of three horizontal cylinders, the distances between which can be regulated so as

The liquid thus expressed is termed raw juice, and the woody residue bagasse or megass. After each pressing the cane is moistened with water and finally contains 1 to 1 5 per cent. of sugar. In Mexico bagasse and the leaves of Henequen plants are now used for the manufacture of spirit. The total juice, including that from the second pressing, forms about 90 per cent of the weight of the cane and contains 15 to 19 per cent of sugar. In the East Indies, owing to irrational methods of working, more than one-half of the sugar is lost,

Fig. 312,

whilst in Brazil, where improved processes are in use, more than 60 per cent. of pure sugar is obtained. In North America the diffusion process has been introduced, and the loss of

¹ The following information has been furnished by Alberto Bianchi, who visited (in 1911) various cane-sugar factories in South America. The most important centres in South America.

sugar reduced to less than 20 per cent, diffusion has also been tried in Brazil, but was abandoned owing to its expense, especially as regards fuel 1 Treatment of the fresh nuce with a considerable amount of sulphur dioxide is often employed to prevent the resulv fermentation which otherwise occurs Attempts have also been made to decolorise with sodium bydrosulphite.

Even recently cane-sugar constituted about one-half of the total sugar produced,

Fig 313

but it is nearly all consumed where grown in a more or less refined condition, whilst a very large trade is done in beet-sugar in a highly refined form, and in some cases this sugar competes with cano-sugar in districts where the latter is produced output of cane-sugar in Cuba alone 700,000 tons in 1898 and 1,050,000 m 1904 In order to encourage the cultivation of the sugarcane, the United States Government have instituted a system of bounties (as much as 5s 6d. per ewt.), and in 1910 paid £13,800,000 in this way: in addition to this there is a protective duty of 24s per quintal on the sugar, this being paid by the

In the East Indies the production increased to 2,166,000 tons in 1904. (The consumer European output of beet-sugar is about 8,000,000 tons per annum)

for the production of the sugar cane are in Brazil, the States of Pernambuco, Bahin, Rio de for the production of the sugar-cane are in Brazil, the States of Fernanduco, Dania, No or Janeiro, and San Paulo, and, in a less degree, Maccio and Maranhao, in Argontine, much came-sugar is produced in the northern provinces, especially in Tucuman. The varieties of came most widely grown in Brazil have been imported from Java and Hatt and yield from 10 to 17 per cent of crystallisable sugar. The works are erected in the plantations, and the more primitive ones, in which the juice is still concentrated under the ordinary pressure, are called Engenhos, whilst those furnished with modern machinery and multiple-effet vacuum plant are termed Usinas

In the Engenhos, the broken cane is crushed between wooden rollers worked by oven or horses When the juice is not defecated, it is concentrated in large copper pans heated by direct lire, and is then left to crystallise in wooden vessels, the molasses being subsequently decented of and the crystalline mass placed to drain in barrels with perforated bottoms. When defectation is employed, the juice is boiled with lime and skimmed several times, the defecated juice them passing into a series of two or three pans, each lower than the preceding one; in the last of these the desired concentration is attained. The sugar thus obtained is always moist, owing to the residual molasses, and varies in colour from yellow to brownish black, the yield is less than

6 per cent

In the Usinas, where the yield may amount to 10 to 11 per cent (by the wet process, or 7 to 9 per cent by the dry process, or 6 per cent when the cane is prossed in a single pair of rolls), the canes are pressed between three pairs of double rollers by hydraulic prossure, poorer juice (wet process) being gradually sprayed on to the partially pressed cane, the pressed cane is used as fuel. The juice, with a density of 5° to 10° Bé., is pumped to the sulphitation tauks (sulphur dioxide or calcium bisulphite is used, but this is not done in all factories) and thence passes to copper vessels with spherical bottoms and holding 2000 to 4000 litres. In these it is defecated with milk of lime, being heated by steam coils and skimmed once or twice. After carbonation, the juice is transferred to other vessels of about the same size as the former ones and placed at a lower level, in these it is again boiled and skimmed. It is next removed to the depositing tanks and, after some hours, is pumped to the triple-effet vacuum concentrators, from which it passes at 23° to 26° Bé to copper boilers of 2000 to 4000 litres capacity (clarifiers), where it is boiled by means of steam coils for about half an hour—until it ceases to form scum (which is removed). The juice is next boiled in a vacuum apparatus, in which crystallisation commences, the subsequent treatment and refining of the sugar are carried out as in beet-sugar factories (see later).

In many factories, the yield of white, first-jet sugar is increased by decolorising the juice, not by sulphitation, but by the addition of blankite (sodium hydrosulphite) in the proportion of 300 to 500 grms per ton of sugar; this is added partly to the clarifier and partly to the

concentration vessel

It is calculated that the cost price (pre-war) of cane-sugar in the factory, without reckoning interest on capital, was £7 12s per ton in Java, £9 4s in Cuba, and £12 8s in Hawaii

1 Since 1910 attempts have been made, especially in Cuba, to utilise the bagasse for the preparation of cellulose, the sugar being extracted by the diffusion process.

Cane-sugar molasses is of value owing to its agreeable flavour and smell, and it is therefore converted, by fermentation and distillation, into rum, that of Jamaica being especially

III The BEETROOT was formerly an annual, but became changed by selection into a biennial, giving flowers and fruit (or seeds) only in the second year Different varieties of Beta vulgaris or Beta maritima (Linnæus) are now grown The original wild varieties con-

314.

tained only 5 to 6 per cent. of sugar, but after careful and repeated selection during a period of 25 years, varieties have been obtained which, under the most favourable conditions, contain as much as 18 per cent. of sugar 1

Nearly all of the best varieties now

Fra 315.

cultivated are derived from the Klein-Wanzleben The shape of the root is of considerable importance. Thus, the rounder beets are generally rich in sugar but give a small crop, roots of oblong and swollen form crop well but are poor in sugar, whilst fusiform roots which are not too smooth and have little top and tail (waste products of the sugar factory) are the ones preferred by the agriculturists and manufacturers (see Fig. 314).

Value attaches, besides to the shape, also to the specific gravity, and still more to the sugar-content. Fig. 315 shows the saccharme content of the various zones composing It will be seen that the richness in sugar diminishes from the centre to the the beetroot. periphery, and especially to the top and tail, which also give the more impure juices.

Achard himself recognised varieties of the best best adapted for the manufacture of sugar, but it was Vilmoun, in France, who in 1856 rationally selected the first variety rich in sugar (Vilmorin's white) by repeated reproduction of the roots with the highest saccharine content, this he arrived at by immorsing the roots in saline solutions of different concentrations so as to determine their specific gravities, from which he deduced the content of sugar. Later, however, Scheibler showed that there is not always proportionality between the specific gravity and saccharine value

In Germany, more rigorous methods of selection were introduced by Rabbethge and Gresecke (1862), who analysed selected beets cut into portions and dotermined, not only the richness in sugar, but also the purity of the juice Kuhn then improved the selection still further by microscopic polarimetrically. examination of the seeds.

Choice of seed is of great importance and seed should be obtained only from reliable firms; a saving of a few shillings in buying seed sometimes involves serious losses.

Special preparation of the seed (shelling, impregnation, etc.) does not appear to have any practical value, but, on the other hand, Briem (1910) states that repeated selection and adaptation to the new intensive culture methods is able to produce in 20 years an increase in the mean saccharine content from 14 to 19 per cent, besides an increase in the weight of the beets owing to the roots becoming accustomed to more energetic fertilizers.

There are now numerous varieties of bestroot known by the names of their producers or of places where they were first selected. Among such varieties the best are the Klein-Wanzleben, ppc, Kuhn, Braune, Vilmorin, etc., these may be distinguished, although not always readily, of the roots and leaves and by the saccharine content.

Frg. 316.

Beetroots for fodder or for domestic purposes are yellow or red, but those selected for sugar are white, and any variegation or colouring with the original tint indicates faulty selection and degeneration or reversion to the primitive type Roots with few leaves or with long stems are poor in sugar, and denote that the soil is of a character not adapted to their cultivation 1

The proportions of the principal components of the beetroot vary between the following

Frg 317

limits (percentages) water, 75 to 86, sugar, 9 to 18; cellulose and lignin, 08 to 25, nitrogenous (protein and ammo-) substances, 08 to 3, fat, 02 to 05, mineral matter (potassium and other salts), 0 2 to 2. Other and less important components of the beet are, glucose, raffinose, organic acids (oxalic, malic, tartario, citric, malonio, succinic, glutaric, gluconic, tricarballylic), amido- and amino-compounds (leueme, asparagme, betame, tyrosme), gums, pectic matters, coniferin, etc.

The value of the beets was formerly arrived at by measurmg the density of the juice with the Brix densimeter, but the results varied considerably with different varieties of beet and also from other causes. It is usual nowadays to determine the

quantity of the sugar in the juice by means of the polarimeter (e g., the Solcil-Ventzke-Scheibler or, better, the three-field instrument of Schmidt and Haensoh, see luter)

¹ Beet Cultivation. Sandy or very compact (clayey) soils are not suited to the growing of beet. The most suitable are medium soils which can be worked to a considerable depth (35 cm) in the summer months. In Italy, where the rain is not so well distributed as in Central

Europe, it is necessary to sow early in order to avoid the excessively dry season.

Fertilisation should be abundant, since from a hectare of soil boots remove annually as much Fertilisation should be abundant, since from a hectare of soil beets remove annually as much as 120 kilos of potash (K₂O), 52 of phosphoric anhydride, and 60 of nitrogen. Stable manure serves well as the fundamental fertiliser, but the sugar manufacturers require the farmers to apply it in the summer, during tilling, and not in the spring, any large use of nitrogenous manures is madvisable. According to Stoklasa (1910), the most suitable manuring for beet is obtained by a rational application of nitragine (see Vol. I., p. 349). As supplementary fertilisers, superphosphate (about 4 quintals per hectare) and sodium intrate (1 to 1.5 quintal per hectare) are largely used. To ascertain if a soil requires also potash (kainit, carnallite, chloride, etc.), the presence or absence of potassium salts in the drainage water is determined by analysis. In general, however, 15 to 2 quintals of potash fertiliser are employed per hectare. In all cases these chemical fertilisers should be administered at intervals prior to May, as otherwise the sugar manufacturer may refuse the roots owing to the excessive amount of salts in the julie; not only is the latter rendered more impure, but the salts, especially chlorides, prevent the crystallisation manufacturer may refuse the roots owing to the exits, especially chlorides, prevent the crystallisation of part of the sugar Irrigation is madvisable, and in some cases, is prohibited. A large area of soil in the province of Magdeburg became infertile owing to the repeated cultivation of beet, of soil in the province of Magdeburg became infertile owing to the decading the decader. but it recovered its original fertility after the discovery of the deposits of potassium salts at

Stassfurt
In sowing (which is carried out between the beginning of March and the middle of April, with a drilling machine giving rows 35 to 40 cm. apart), excess of seed is always used, so that after the plants have begun to grow, 15 to 16 per sq. metre may remain. The roots then attain an average weight of 500 to 600 grms. (isolated beets sometimes weigh 4 to 5 kilos) and, under favourable conditions, a hectare yields 300 to 400 quintals of beet (in Ferrarese as much as 600 quintals are obtained, while in the other Italian provinces the average is about 300). If sowing is delayed too long, the roots do not mature well but remain acid and give very impure

Growth begins five or six days after sowing, and when the seedlings are a few centimetres high women and children proceed to thin them out with ordinary hoes, just as is done with maize. Later on, the ground is hoed several times to remove weeds and to keep the soil sweeter If the season is a wet one, the roots are late in maturing (end of September or, in Germany

A sample of the beets arriving at the factory is obtained by allowing 50 to fall into a basket while the waggon is being unloaded, placing the 50 m a row and taking the alternate ones, repeating this operation on the 25, and of the 12 thus obtained choosing one small, one medium, and one large. From each of these three, a longitudinal portion is removed by means of the Pellet rasp, which gives directly a homogeneous paste, the june being expressed from this by a hand-press (Fig. 317) Of the well-mixed junce, 26 048 grms. (the normal weight of the polarimeter, see later) are introduced into a 100 c c. measuring flask, which is filled to the extent of about two-thirds with water and 5 c.c. of basic lead acetate solution, after the flask has been well shaken, one or two drops of other are added to remove the froth, and the solution made up to volume with water, filtered through a dry filter, and read in the polarimeter in a 20 cm tube (see later).

At the same time the Brix densimeter is used to determine the density, so that the quantity of non-saccharine substance (non-sugar) and the purity may be estimated. The quotient of purity is obtained by multiplying by 100 the ratio between the true sugarcontent and that (greater) indicated by the densineter

The sugar may also be determined by direct extraction for 2 hours in a Soxhlet apparatus (see p. 462) of 26 048 grms. of the beet pulp, mixed with 3 cc of busic lead acetate solution, with 75 cc of 90 per cent alcohol. The alcoholic sugar solution is cooled, made up to 100 c c with water, filtered through a dry filter, and polarised in a 20-cm tube. A very sensitive test for indicating if all the sugar has been extracted from the pulp in the two hours consists in adding to a couple of drops of the last drainings from the Soxhlet apparatus 2 c.c of water and 5 drops of a fresh 20 per cent alcoholic a-naphthol solution, and then pouring 10 cc of concentrated sulphuric acid (free from intricacid) carefully down the side of the test-tube, in presence of sugar, a violet ring (not green, yellow, or reddish) forms at the surface of separation of the two liquids (see also p. 539).

EXTRACTION OF THE SUGAR FROM THE BEET. After many and varied technical and economic difficulties had been overcome, the beet-sugar industry became firmly established and has during the past 40 years assumed great importance, not only on account of its magnitude, but also owing to its technical perfection, which makes it a model of what a great modern chemical industry should be.1

end of October) and are poor in sugar, and have soft tissues which readily give up their juice. In Italy, harvesting takes place normally in August, or, in some cases, earlier than this.

When the beets are ripe the leaves dry somewhat and, if the roots are not dug immediately, m warm climates new leaves may be formed to the detriment of the sugar-content account the factories are arranged so that they can deal in a short time with the whole of the The harvesting is carried out in several portions, since the manufacturer requires roots

not more than 3 to 4 days old, alteration occurring on storing

Beets which have flowered prematurely (in a cold spring or a very dry season) are hard and difficult to exhaust, and the manufacturer demands that such plants should be pulled up or, at least, that the flowering shoots should be suppressed Putrefaction of the roots, besides injuring the quality and quantity of the crop, sometimes damages a large part of the beet. Among the various process injuring the database to the state of the state of the state. the various insects injurious to the beet is one which destroys the feeble plants

In soil which is worked insufficiently and not deep enough, or is treated too late with stuble manure, the beets tend to form bifurested roots and so give an increased amount of waste, which is not paid for by the manufacturer.

The manufacturer usually deducts 5 per cont or, in exceptional cases, more, on account of admixed stones, soil, etc. As a rule, roots containing less than 9 per cent. of sugar are not accepted.

f A few years ago the proposal was made that the dried leaves of the beet should be utilised

A few years ago the proposal was made that the dried leaves of the beet should be utilised as fodder, of which Germany alone could produce £8,000,000 worth annually.

¹ History of the Technical Development of the Beet-sugar Industry. - In his earliest industrial trials, Achard (1786) extracted the sugar by boiling the boots in water, expressing the juice, concentrating this to a syrupy consistency, and allowing to crystallise in the cold. In France, to facilitate the separation of the juice, the beets were disintegrated by means of rasps which converted them into a fine paste, this being squeezed in screw presses and later in far more powerful hydraulic presses. The juice was then defecated with lime and, after neutralisation with sulphuric acid, concentrated in copper pans. On cooling, crude crystalline sugar was obtained. orystalline sugar was obtained.

In Germany, however, the juice was first treated with sulphuric acid and, after a short rest, neutralised with chalk, heated with lime and filtered. The saccharine solution was concentrated by direct-fire heat and decolorised with animal charcoal, albumin, or even blood.

orystallisation was carried out in wide, shallow pans.

In some places use was made of the old Colonial process of concentrating the juice until, on cooling, it gave a dense mass of crystals which was introduced into inverted conical moulds. The peint of the cone was closed by a plug, which was then removed to allow the liquid to flow away, the sugar-loaf being subsequently removed.

We shall now follow shortly the whole of the working of a rational sugar factory as far as the refining of the crude sugar and the utilisation of the inclasses

(1) Storing and Washing of the Beets When the beets are topped and freed from soil

Fig. 318

and stones they are weighed (1 cu. metre weighs 500 to 600 kilos) and then discharged under long sheds (Fig 318) with pavements sloping to a longitudinal channel or flume, A,

Only later, after a proposal made by Weinrich, was the lime used for defecating the juice neutralised by carbon dioxide instead of by sulphuric acid, inversion of the sugar being avoided and improved defecation obtained. At the outset, the carbon dioxide was prepared by the costly method of treating calcium carbonate with hydrochloric acid, but later it was obtained from the combustion of coal, and finally by heating chalk in suitable retorts or furnaces, the residual lime being also utilisable

Further improvements were made also in the rasps, as the living cells of the beet, being coated inside with protoplasm impermeable to the cold saccharine liquid, do not allow the sugar to exude, it is hence necessary to rupture the cells as completely as possible

A considerable advance was made in 1836 by Pelleton, who introduced cold maccration of the rasped beet with a counter-current of water. This systematic exhaustion was improved by Schutzenbach, who arranged the vessels of beet-pulp in steps, the water entering the top vessel and being collected after it leaves the lowest one and then pumped to the top, and so on, the pulp was exhausted with fresh water and the exhausted pulp replaced by a fresh supply It was necessary to attend to the cleanlness of the plant in order to avoid the development of micro-organisms capable of inverting the sugar. In 1837 Schützenbach suggested the preliminary drying of the pulp and its extraction with water at 90°, which renders permeable those cells not broken by the rasp Fesca and Schrottler, on the other hand, centrifuged the fresh pulp directly—just as is now done with the crystallised sugar (see later)—and subsequently sparged the pulp with cold water in the centrifuge itself so as to obtain more perfect evaluation, but all these processes were too expensive and did not give complete without of the but all these processes were too expensive and did not give complete extraction of the sugar, much of which was still lost.

It was only after 1865, when the diffusion process was devised, that complete extraction of the sugar became possible (see above and later)

Defenation was also facilitated by separating the organic impurities precipitated by the lime, not with slow and cumbrous bag-filters, but by the filter-press invented by Needham in 1828, improved by Kite and employed in defecating by Danèk in 1862 By this means, working was hastened and cheapened, and further improvement was made when the filter-press was so modified as to permit of the washing and exhaustion of the calcium carbonate with hot water in the press itself

The application of animal charcoal (bone-black) filters, which had been proposed for other industries by Figurer in 1811, proved of considerable advantage in the clarification and decolorisation. The bone-black readily fixes the colouring-matters and the chalk, but does not retain the sugar. As it becomes enriched in calcium carbonate, however, it loses its decolorising property and hence required frequent renewal at great expense. Subsequently the activity of the charcoal was restored by treatment with dilute hydrochloric acid to eliminate the activity of the charcoal was restored by treatment with dilute hydrochloric acid to eliminate the carbonates and then fermenting at a suitable temperature and with a suitable proportion of mosture, in order to destroy much of the organic matter, the charcoal was then washed thoroughly with water and dried in long fron tubes heated to low redness in a furnace (see later). A factory with a capacity of 4000 quintals of beet per day should have at its disposal 6000 quintals of animal black throughout the whole season. The cost of this is considerable, and during recent these filters are being dispansed with in the sugar factory, methods of defeated the house years these filters are being dispensed with in the sugar factory, methods of defecation being improved and the filters used only in the refinery.

The sugar solutions were, at one time, evaporated by direct-fire heat, a total of 40 kilos of coal being consumed per quintal of beets. In 1828, Moulfarine and Decquer in France introduced the use of steam-oals, and in 1840 the employment of the Hovard vacuum evaporator reduced the consumption of coal to 25 kilos Since 1852, simple or multiple-effet vacuum evaporators (Rillieux) have come into use, and these, after many improvements, have still further diminished the amount of coal required, until nowadays it is only 7 to 8 kilos.

The state of the state of

which is covered with movable boards or gratings and has water flowing through it (Fig. 319). The beets should not be kept long in these siles, as after a few days loss of sugar occurs.

The sugar-works are, however, designed to deal with a large quantity of beets every day (4000 to 8000 quintals), so that the whole of the year's crop may be worked up in 50 to 60 days. In order to transport the beets to the place where they are first required, the covering of the water-channel is gradually removed so that the roots fall into the water, which carries them half floating to the principal elevator, B, this separating the mud and water and delivering the beets to the washer, C.

Fig 319

The elevator may consist of a large wheel fitted with a number of perforated plates (Fig 320) or of an inclined screw having a perforated sieve-plate at G (Fig 321)

Nowadays, however, the beets are conveniently raised by applying the principle of the Maminoth pump (see Vol I., p 303), which also admits of a more complete washing

The washing is carried out in iron or concrete vessels, 4 to 6 metres long and 1 5 to 2

Frg 320

metres wide, furnished with a longitudinal bladed spindle by which the roots are beaten in the water and transferred to the other end of the washer, on the bottom are indentations or an in lined plane on which any stones collect, to be discharged from the orifices, D and E (Fig. 321)

In 24 hours such a washer can treat as many as 500 tons of beet, about 5000 hectolitres of water being consumed.

From the washer the beets fall into basins, whence they are raised by a large vertical elevator to a higher part of the factory and dropped into a double automatic weighing machine, which discharges 50 to 100 kilos or more at a time into the cutter or sheer; in the latter they are reduced to thin slices suitable for extraction by the diffusion process. The shoing machine is formed of a vertical chamber, A (Fig. 322), which receives the roots, and the base of which consists of a circular cast-iron plate, C,

Frg 321.

rotated by means of a vertical shaft and furnished with 10 to 15 rectangular apertures, α a (see plan and section, Fig. 323). In these apertures fit east-iron frames carrying a series of undulating cutting blades which form knives of various shapes (Fig. 324). The beets at

the bottom of the chamber are forced by those above against the rotating knives and so sliced. The form of these slicers varies somewhat in different factories, and in some cases the revolving plate has a diameter of 1 2 to 1 5 metre and a velocity of 100 to 140 turns per minute. The beet-chamber is

about 15 metre high

At one time use was made of knives with several superposed blades at various distances apart, but these give smooth slices or prisms (if cut longitudinally) which readily adhered one to the other and hence presented a diminished surface in the subsequent diffusion operations Good results are, however, obtained with those having a zig-zag section (Fig 325) and giving slices having the form of triangular channels, sometimes a blade is placed at the apex of each angle, so as to prevent the formation of wide slices. The side of the triangle in the blades is 6 to 7 mm, and the thickness of the slices is regulated by the height of the knives above the plate, a (Fig 324)

Centrifugal slicing machines are also used, these having knives fixed to the inner periphery of the vertical drum, which receives the roots and projects them against the blades. These machines give a greater output and uniform working, the knives being replaceable when in action. The knives usually wear rapidly, especially if stones occur in the interior or in indentations of the roots, and they should be changed frequently, as otherwise they do not cut cleanly but tear, this resulting in slow extraction of the sugar in the diffusors. The knives are sharpened with triangular files or with suitable milling-cutters.

EXTRACTION OF SUGAR BY THE DIFFUSION PROCESS. In the note on p 545

Fig. 322.

mention has already been made of the various steps made in the extraction of sugar from beets and of the diffusion process, which is now used and which presents marked advantages over earlier methods. The diffusion process is based on the general laws of osmosis (see Vol I., p 80) If a solution of sugar (or salt or, in general, any ory stalloid) is enclosed in a porous membrane immersed in water, the sugar molecules pass slowly through the membrane to the outside (exosinosis), while water passes from the outside to the inside (endosinosis). This process continues until the specific gravities of the sugar solutions inside

and outside are identical (equal numbers of sugar molecules then pass through the membrane outwards and inwards); or, if it is required to remove all the sugar from the inside, the water outside is continually renewed. The same phenomenon is shown by the sugar-containing vegetable cells of the beet. The envelope of the cell functions as an osmotic membrane, although the sugar inside the cell and the walls of the latter also are coated with protoplasm which, at the ordinary temperature, prevents or greatly retards the osmotic flow.

At a temperature of 70° osmosis takes place more readily through the saccharine

cells of the beet, the protoplasm then coagulating and the walls becoming permeable to the osmotic currents. Under these conditions the complete extraction of the sugar is possible (not more than 0 3 to 0 4 per cent. is left).

The first industrial application of this method was attempted in 1864 by Robert in the

The state of the s

celebrated factory at Scelowitz (Moravia), and the results were so favourable that by 1867 about thirty factories had adopted it—It was soon found, however, that diffusion juices were difficult to filter after defecation with lime, but after Jélinek, in 1865, made use of the filter-presses first shown at the International Exhibition in London, it became possible to

Fro. 324

Fig 325

defecate even with 2 to 3 per cent of lime in place of 1 per cent, which was the maximum formerly employable. It was then that the idea was evolved of cutting the beets into slices to facilitate the osmotic phenomena, the extraction being effected by systematic and continuous exhaustion in a series of cylindrical vessels containing the slices. Water at 70° enters the first cylinder, carries away part of the sugar, and then passes to the other cylinders in succession, until it reaches in the last the same density (about 10 to 12 per cent of sugar) as the saccharine juice of the cells of the fresh beet. When the first cylinder is exhausted it is recharged with fresh slices and placed at the other end of the series. What was previously the second cylinder now receives the pure water and is hence exhausted, after which it is filled with fresh slices and made the last of the battery, and so on. In such manner the process becomes systematic and continuous, being carried on day and night during the whole of the campaign. The circulating water is brought to a temperature of 70° while passing from each cylinder to the next.

Diffusor Batteries. The diffusors are vertical iron cylinders with a capacity of 40 to 70 hectols, and a height double the diameter. They are furnished with an upper aperture

Fro. 326

for charging with the slices and one at the bottom or side for the discharge of the exhausted pulp.

They are arranged in batteries of 12 to 24 diffusors connected by pipes and valves, heating tubes being placed between. For a factory treating P tons of beet per 24 hours, diffusors having capacities of $\frac{P}{10}$ hectols. each are now used.

The diffusors are often arranged in two parallel rows (Figs 326, 327, 328), and if they are then discharged laterally the exhausted slices can be collected by means of a single

screw or travelling band, h, which carries them to the elevators, m, where they are discharged through an aperture in the base (Fig. 329), two channels with screws are used

Sometimes the diffusors are placed in a ring, as is shown in section in Fig. 330 and in

plan in Fig 331. The diffusors are charged by means either of suspended tubs coming from the sheing machine, or of an endless belt moving above them on rollers and flanked with a fixed plate forming an edge fitted with doors corresponding with the various diffusors. By opening a door and placing a plate diagonally on the belt, the shees are forced off the latter into a sloping channel and so into the diffusor; this operation is repeated until all the diffusors are full.

When the diffusors are arranged in a circular battery, the sheing machine (D, Fig. 330) is placed so that it commands the diffusors, which are charged by means of a shoot, E.

A perforated false bottom and an upper perforated disc in each diffusor prevent the penetration of the beet slices into the tubes that supply water or carry off the juice. To avoid accidents when operations are started, the tubes are provided with safety-valves. Air-cooks on the covers allow of the escape of the air displaced by the water entering the diffusors. Thermometers are inserted in the tubes to indicate the temperature of the water and of the circulating juice. There are tubes for cold water, transference of the juice, washing water, discharge of the water, steam for the heaters, and discharge of the juice.

The heaters used to regulate the temperature of the circulating juices consist of a series of steam-pipes (see 6, Fig 327) round which the juice passes — A less rational method of raising the temperature consists in blowing steam into the juice, this not only dilutes the juice but may cause caramelisation

Water is supplied to the diffusor battery through two pipes which join just before the

diffusor is reached, one of these comes from a cold-water eistern 8 to 10 metres above the level of the diffusors and the other from the boiler. Mixture of the hot and cold water in the proper proportions gives the temperature required for diffusion, this being at first about 35° and later 70° to 75°, to which it is brought by the heaters Fig 382' represents diagrammatically the arrangement of a series of diffusors: I to VII, with the heaters

between them , a_1 to a_7 , are the air-cocks b_7 , c_1 to c_7 , and d_1 to d_7 , denote valves The junce-pipe is shown at the top, and b_1 to

The amount of juice extracted normally by every diffusor is about 48 to 55 litres per hectolitre capacity of the diffusor (i e., 100 to 110 per cent of the weight of the beets, since each hectolitre holds 50 to 60 kilos of slices). The amount of water necessary for complete diffusion (including washing water) is 1 2 to 15 times the weight of the beet (hence the water-tank should have a capacity at least as great as three or four of the diffusors) In many factories the press waters from the exhausted slices are now recovered (Claassen process), and, together with that from the final diffusor, allowed to settle and afterwards roughly filtered, care being taken that they do not ferment This procedure is advantageous where introduction of these waters into public waterways is forbidden.

Pressing and Drying the Pulp. The pulp (exhausted shoes containing less than 0.5 per cent of sugar) discharged from the diffusors is transported by a screw or endless band to an elevator which discharges it into the pulp-press (B, Fig. 333), where the water it contains (95 per cent) is removed as completely as possible. Presses of various forms are used for this purpose

Fra 329

That of the Klusemann type consists of a vertical, revolving cone of perforated sheet-metal, C (Figs 333, 334), fitted with oblique vanes and enclosed in a stationary cylinder, also perforated The vanes, which are arranged helically along the cone, compress the mass of pulp against the perforated cylinder and gradually move it downwards

where the space becomes narrower, so that a considerable part of the water is squeezed out through the cone and cylinder, which are enclosed in a jacket, E; all the water is carried off by the tubes F, G, and H, while the pressed pulp is discharged through the annular orifice, I. An arrangement similar to this has also been combined with the pulp-

elevator, which consists of an inclined screw, the pulp being thus raised and pressed at the same time

The Klusemann press has been improved by Bergreen and others in order to obtain pulp containing much less water and from 14 to 18 per cent. of solid matter Each 100 kilos of beet yields about 80 kilos of pressed pulp containing, on an average, 85 per cent

Fig 331.

of water, 1 5 per cent of ash, 1 2 per cent of protein, 0 27 per cent. of fat, 3.5 per cent. of cellulose, and 8 per cent of non-introgenous extractive matter (0 5 per cent. being sugar).

The pressed pulp is loaded directly on the farmers' waggons to be used as fodder, about 8s per ton being paid for it (pre-war), but part of it (30 per cent of the amount of beets they supply to the factory) is given to them free of cost. If the pulp cannot be sold immediately, it is stored in silos until sold, but if this is done, it readily undergoes putrefactive fermentation, the gasogenic bacteria of which contaminate milk and cause inflation of cheese, so that in some countries an addition of pure lactic acid organisms is made, these

preventing other secondary fermentations and enhancing the digestibility. Where fuel is not expensive, it is preferred to dry the pulp at once. It is known, too, that fresh pulp in silos loses as much as 30 per cent of its solid matter, which is rendered soluble and volatile by bacteria, the sugar being converted almost completely into lactic acid. Furnace gases are sometimes used to dry the pulp.

Of the various types of apparatus for drying the pulp, that of Buttiner and Meyer (see Fig 335), which was devised in 1887–1888 and rapidly came into use in Germany, France, Belgium, and Austria, gives good results—In 1898 sixty German factories were employing pulp-driers on this plan. The moist pulp is raised by means of an elevator, p, and dropped at f into an upper chamber, B, composed of four semi-cylindrical channels containing mixers revolving in opposite senses which stir and lift the pulp and at the same time transport it to the mixers of the similar chamber below; thence it passes to a third chamber. A current of air at 400° from a furnace enters A at f and is moved in the same direction as

The second of th

the pulp by the aspirator, C, which then forces it into the dust chamber, D, and thence to the shaft—The pulp should issue at a temperature of 110° so that moisture may not condense on it, and the supply of pulp is regulated so that the final proportion of water present is 12 to 14 per cent.

The composition of the dry pulp is as follows 12 per cent of water, 6 5 per cent of ash, 8 per cent of protein, 1 2 per cent of fat, 18 per cent of cellulose, and 55 per cent of

Fra. 335.

non-nitrogenous extractive substances (5 to 7 per cent being sugar). Tests made by Gorini (1911) show that the dry pulp is not sterile, and may hence be harmful to milk

THE STEFFEN PROCESS. Some years ago Carl Steffen patented (Ger. Pat 149,503) a process of extracting sugar from the beet without the use of diffusion, a process resembling that used by Achard 125 years ago (see Note on p. 545). The beet slices (containing 75 to 80 per cent of water) are pressed, giving a juice of 20° to 25° Brix. The remaining pulp is then heated to 85° with more dilute juice (15° to 17° Brix), which is thus enriched with sugar extracted from the pulp. The latter is compressed in a powerful press in the hot, the residual pulp being rich in sugar and hence of greater value for cattle-food. This

vol. II

process yields less molasses and more first-jet sugar, while it requires less expenditure of water, coal, and labour, and a less expensive plant, than when diffusers are used. For each 100 kilos of beet there are 45 litres of water less to evaporate The Steffen apparatus is shown diagrammatically in Fig. 336. The beets pass into an ordinary slicer, H, and the shoes fall into G and then into a horizontal cylinder, M, containing the juice heated to 95° to 98° (600 litres of this juice and 100 kilos of cold slices give a mixture at 85°) horizontal screw, Z, transports the slices to T, where they meet a double-jacketed (the inner casing perforated) worm-conveyor, F, which raises them and presses them to some extent, so that the juice runs back into M. At the top of this conveyor they are discharged into a press of the type described on p 551 (Figs 333, 334). The expressed juice returns through the tube, V, to M, while the pulp falls into Y and is conveyed to the drying apparatus. In order to maintain the juice at a temperature of 85°, part of it is continually forced by the pump, P, through the tube, X_2 , to the sieve, K_2 , then to the heater, C_1 , and through X_3 to the cylinder, M; if necessary, steam is injected by means of the injector, C_4 . In order to dilute the juice in M so as to keep it always at 15° to 16° Brix, dilute sugar solution from the washing of the defecation mass in the filter-presses (see later) is introduced both directly into the cylinder, M, at R_2 and into the inclined conveyor at R_1 . The execus of juice flows continuously through the funnel, A, to the sleve, K_1 , which retains finely

divided pulp, and then through the tube, X_1 , to the defecation apparatus.

This process admits of the rapid treatment of large masses of material, which is heated to 85° in 2 to 3 minutes and yields 70 to 80 per cent. of juice purer than diffusion juice and about 30 per cent of pulp (containing 70 per cent. of water and 10 per cent. of sugar), which, after drying, contains 10 per cent. of water, 7 6 per cent. of proteins, 0.4 per cent. of fat, 10 per cent of cellulose, 36 per cent. of non-nitrogenous extractive matters, 52 per cent. of sugar, and 4 per

cent of ash, the expense of drying in Germany is about 6.5d. per 100 kilos of the dry pulp

The diminution of 2 to 2 5 per cent in the yield of commercial sugar is compensated in various ways, the dry pulp is worth about three times as much as diffusion pulp and before the War was sold in Germany at £5 10s per quintal, in addition to which the diffusion process leads to various small absolute losses.

It must be admitted that, after many trials and much discussion, during recent years, the most competent technical opinion varies with regard to the advantages claimed by the Steffen process. It can, however, be stated that only the most efficient diffusion plant can compete with the Steffen process, which up to the present has been found most advantageous in districts and in seasons in which prices for the dried saccharine pulp are more favourable than those of raw sugar

In 1910 a dozen factories in Germany alone produced 130,000 tons of sugar by the Steffen process

In a new process devised by Claassen, all the water from the diffusion of the molasses and that resulting from the pressing of the exhausted pulp are used directly for the extraction of the sliced beets in the diffusors. In this manner all the soluble substances of the beet are returned and utilised, so that an increased yield of sugar is obtained with a diminished consumption of water. This process requires, however, much supervision and care

The new process devised by Hýroš and Rak employs more perfect machinery than the

Steffen process, yet is identical with the latter in many points, the heating to 85° is, however, carried out in three stages and the final pulp is not dried. This process has been little used, but, according to Herzfeld, could be combined advantageously with the Steffen process.

Other processes, such as those of Bosse, Naudet, Garez, etc., are concerned mainly with the rapid heating of the slices below the slicing machine, pressure or diffusion then being employed

Juice Measurers. These are special automatic apparatus used to measure the juice extracted at intervals from the diffusors, each such quantity of juice being registered automatically on a strip of paper together with the time elapsing between one discharge and the next. This paper serves to control the working, while it also indicates any stoppages taking place. The underlying principle of such apparatus is the same as that on which alcohol meters (see p 173) are based

The juice is then discharged through coarse filters to remove vegetable fibres, which are eventually rejected, its concentration is 13° to 15° Balling (11 to 13 per cent of sugar) and its colour dark brown, and it is subjected to further treatment to prevent its alteration.

This dilute juice is turbid owing to the presence of pectic substances and other suspended impurities, and tends to undergo acid or alcoholic fermentation, as it contains spores which have withstood the temperature of the diffusors. The pectic matters ferment, yielding two mucilaginous acids (Pectic acid, $C_{32}H_{41}O_{30}$, and Pectosinic acid, $C_{32}H_{46}O_{31}$) which render the juice highly viscous and partially invert the sugar. The juice contains also potassium quadrantoxalate and minimum proportions of invert sugar, citric and malic acids, cholesterol, resin, coniform (which may undergo hydrolysis yielding coniforyl alcohol and then, by oxidation, vanillin; the latter sometimes flavours the raw sugar slightly), catechol, glutamine, betaine, allantoin, and legithm. Decomposition of the inorganic ammonium salts always present and of the glutamine yields ainmonia, which is evolved during the concentration of the juices

DEFECATION WITH LIME When the fresh juice is treated with lime, if the latter is not in excess, insoluble calcium pectates separate and part of the sugar may form soluble monocalcium sucrate (see p 539), but if excess of lime is present, the juice is liable to lactic and butyric fermentations, with development of unpleasant odours. If the lime is added to the hot juice no fermentation occurs and part of the organic impurities is precipitated, part also being carried down by the calcium carbonate in the subsequent saturation with carbon dioxide. The latter also decomposes the monocalcium sucrate, liberating the sugar. The potassium oxalate is precipitated as calcium oxalate, soluble potash being liberated; the citric and make acids and various colouring materials are also precipitated. A small portion of the calcium oxalate redissolves in the saccharine juice.

The treatment of the juice with lime is carried out at 85° in suitable vessels provided with stirrors. The lime is added in the quantity previously determined in the laboratory (2 5 to 3 5 per cent), and may be as lumps or powder, in which case it heats the juice, or in the form of milk of lime, the concentration of the latter being measured by means of automatic floating densimeters, which give the quantity of lime present. Kowalski and Kosakowski have shown that if, as was long ago recommended, the juice is well agitated during defecation and heating (for 15 to 20 minutes), the total quantity of lime required may be reduced to as little as 1 5 per cent. The lime in the juice is estimated by means of soap solution (Pellet's method) in a way similar to that used to determine the hardness of water (Vol. I., p. 239).

The defecation is followed immediately by carbonatation or saturation with carbon dioxide; in some factories the defecation and carbonatation are carried out simultaneously and continuously. The carbonatation is effected at 70° to 75°, since at a lower temperature the monocalcium sucrate forms a voluminous double salt rendering filtration difficult.

The operation of saturation with carbon dioxide must be controlled rigorously and continuously in the laboratory, since it is the principal source of loss.¹

The lime and carbon dioxide used in sugar-works are generally prepared in a vertical lime-furnace (see also Vol. I, p 615), the upper outlet of which communicates with one or two water-ousterns, into which the gas is drawn by an aspirator to be washed and cooled before being conveyed to the saturators. Chalk of good quality (free from iron and containing little sulphate or silica) is used and is mixed with 9 to 10 per cent of coke (anthracite should be avoided, in order to prevent the presence of odorous and tarry impurities in the gas). The gases contain about 30 per cent of CO₂, and the size of the suction-pump is calculated on the basis that every quintal of lime produced corresponds with at least 300 cm. metres of gas. The treatment of

In order to avoid the risk of redissolving the calcium carbonate (as bicarbonate), the saturation is first carried on for 20 to 40 minutes at a temperature of nearly 90' until a certain degree of alkalimity remains (0 11 to 0 13 per cent), the juice is then filtered. heated, saturated again for about 15 minutes until the alkalimity falls to 0 02 to 0 04 and

finally filtered a second time. In Austria and Bohemia, however, a little lime (0 5 to 1 per cent., leaving an alkalinity of 0 05 to 0 07 is added before the second saturation in the hot (95°) The juice is then filtered and the third saturation carried out at 100° (10 minutes), the alkalimity being reduced to 001 to 003 After a fresh filtration, the juice is thoroughly heated for a long time in another boiler, again filtered and despatched to the concentrators In some factories the third saturation is now made with sulphur dioxide, which has a greater purifying action than carbon dioxide and at the same time decolorises the solution Liquid sulphur dioxide may be employed, but it is cheaper to produce the gas in furnaces (see Vol. I, p 278) In some works continuous saturation is practised, but without great advantage

The iron saturation vessels (Figs 337, 338) formerly used were provided at the top with a

Fra 337

large tube for the escape of the excess of gas. That used for the first saturation is often 7 metres high, but is filled with juice only to the height of 2 metres (30 to 50 hectols), the remainder of the space gradually becoming filled with a dense froth, that for the second saturation is 3 metres high, less foam being formed in this case (a large saturation chamber

> is shown in Fig. 339) If too much froth forms, it can be reduced by the addition of a little coconut oil

> The juice is heated for the first saturation by means of a steam-coil, and the earbon dioxide is introduced at the bottom by a perforated tube, b. A glass is inserted to permit of the operation being viewed, and a closed orifice, E, serves for the inspection and cleaning of the

The completion of saturation is shown by phenolphthalem paper, which ceases to turn violet workmen also carry out titrations

A plant for saturation with sulphur dioxide is shown in Fig. 340 The air-pump, A, feeds the sulphur furnace, B, and the mixture of air and sulphurous acid then passes through the tube, C, into the saturator, D, the excess issuing by the tubes, E

Behm, Dammeyer, and Schalmeyer propose to purify the juice at 75° with a current of 40 to 50 amperes at 6 to 8 volts for 8 to 10 minutes, using zine electrodes This treatment seems to result in the deposition of various organic impurities, but, although promising well, the process has not been adopted.

Filtration of the Defecated, Saturated Juice. The precipitated calcium carbonato is separated by passing the juice through filter-presses,1 which allow the clear sugar-juice to pass through and

Fig 338

5000 quintals of beet per 24 hours requires about 300 quintals of chalk (occupying, in lumps, about 15 cu metres), which give 170 quintals of quicklime with a consumption of about 85 quintals of coke (9 3 cu metres in lumps)

of core (3.5 cm metres in rumps)

1 Filter-presses are formed of a number of iron frames, alternately empty and filled in and supported on two horizontal, parallel rods. An empty frame is shown at A (Figs. 341, 342) and a filled-in one at B (Figs. 341, 343). The latter is filled in with sheet-iron grooved on both and a filled-in one at D (Figs. 5*1, 5*5). The latter is lined in what sheet-from growth on both sides, the grooves ending below in two horizontal channels communicating with a single tap, r (Fig 343), or f (Fig 342), the grooves of the two sides are covered with a perforated plate On the empty frames are stretched cotton or linen cloths, which form two filtering

rctain the suspended impurities and the calcium carbonate in the form of cakes, which, after being washed, are readily extracted by unscrewing the press and removing the

Fra 339

frames, they fall into conveyors or trucks underneath, and are often used as line fertilisers. The first wash-water is added to the filtered juice, while the last is used to slake the lime for defecation.

Fro. 340.

The filtering surface of the filter-presses necessary after the first saturation is calculated at 0.5 sq. metre per ton of beet worked in 24 hours, after the second saturation 0.25 sq. metre suffices. The pressed cakes of chalk form 12 to 14 per cent of the weight of the

surfaces of the same area as the frame. The frames are squeezed together and against the strengthened block, P, by the screw, V, so that hermetic joints are formed at the edges of all the frames. Each frame is provided with bored projections, a and b, at the top and bottom. When the frames are joined up, the holes in the projections form two continuous channels. The turbid juice enters at a and thence passes through af into all the empty frames, the air being forced out from these through the valve, d. When d is closed, the juice passes under pressure through the cloths on the two sides and the clear liquid flows down the grooves and

beets (i.e., four times the weight of quicklime used) The washing of these cakes require

1 litre of water per kilo

After the second and third defecations, use is often made, not of filter-presses but of mechanical filters (Fig. 345) which also serve for removing suspended matter and residues

of the slices from the diffusor-juice

During the whole of its course from the diffusors and saturators, the junce is under pressure and should rise in temperature from 70° to 100°, but since heat is lost in all the pipes, in order that monocalcium sucrate may not be deposited or the liquor become turbid, the use of heaters is necessary for the first and second saturation junces, etc.

These heaters consist of a species of tubular boiler divided into three parts by two plates, p (Fig 346), each of the two end parts is divided into 10 chambers, communicating

in pairs at the two ends alternately. Opposite chambers are connected by groups of long tubes, 4 to 5 cm. in diameter, through which the juice circulates; steam enters at ℓ ', follows a smuous path round the partitions, \mathcal{V} , and finally issues at D. The juice enters chamber 1 of compartment I at A, and passes through the tubes to chamber 1 of compartment II, then to chamber 2 of compartment II, through the tubes to chamber 2 of compartment I, and so on, until it reaches chamber 10 of compartment I and hence leaves the heater at B.

is discharged at r into the tank, S. When the frames, A, are filled with calcium carbonate, the latter is washed with water to remove the sugar it retains. Since only the alternate grooved plates communicate with the tube, b, water introduced under pressure at b will pass through the cakes of calcium carbonate in the direction of their thickness and into the grooved plates (not communicating with b) to be discharged at the taps r. In this way, each cake is brought into thorough contact with the washing water, which can be measured in S.

In other filter-presses there are no empty plates (Fig. 344), but each of these has a central aperture over which the filter-cloth, with a hole exactly in the middle, is screwed with a ring from both sides. The juice is introduced into the chambers between adjacent plates, and the wash-water passes under pressure into alternate (odd) plates from the tube, m, traversing the cakes, and collects in the other alternate (even) plates which communicate not with m but with k, the wash-water being thus discharged; the air is initially discharged from the odd frames through \star Each press contains 20 to 50 plates, each 3 to 5 cm. thick, and with a length of side 60 to 100 cm. The juice to be filtered is pumped in under a pressure of 3 to 4 atmos.

1 1 1 1 1 5 1 W

After the third saturation the juice passes into a final heater or boiler, where it is thoroughly boiled but not under pressure. The juice is moved by means of pumps, a separate one being used after each operation (for raw juice, first saturation juice, second saturation juice, etc.): double-action

piston pumps or Girard pumps, with an efficiency of 80 to 85 per cent, are employed

When the tax is based on the volume and density of the defecated juice, before the latter goes to the evaporators it passes into tanks under the supervision of the Inland Revenue authorities, who measure the density at 85° to 90° and then reduce it to the normal temperature by means of tables

CONCENTRATION OF THE JUICE. The defecated, saturated, and filtered juice is pale yellow and perfectly clear, it contains 88 to 90 per cent. of water, 10 to 11 per cent of sugar, and 0 8 to 1 per cent. of salts. The formation of crystallised sugar requires first considerable evaporation or concentration and then boiling

The concentration of the dilute juices is one of the most important problems in sugar factories, the preparation of 74 tons of massecuite containing 7 per cent of water from 500

F1G 345

tons of beet with a sugar-content of 12 per cent involving the evaporation of 426 tons of water. Enormous economies are effected by evaporating or concentrating at reduced pressure, which also prevents excessive colouring of the juice, since the boiling-points of liquids are lowered as the pressure is reduced.¹

¹ The boiling-point of water for different degrees of vacuum is as follows (Regnault-Claassen) with a vacuum of 50 mm., 98 l°, 100 mm, 96 l°, 150 mm, 94°, 200 mm, 91 r°, 300 mm, 86 5°; 400 mm., 80 4°; 500 mm, 72 5°; 600 mm., 61 6°; 650 mm., 53 6°, 700 mm., 41 7°, 720 mm, 34 2°; 740 mm., 22 4°; 750 mm., 11 8°. It must, however, be remembered that saccharine solutions boil at higher temperatures than water. Thus, under the ordinary pressure, a solution containing 30 per cent. of sugar boils at 100 6°, 60 per cent., 103 1°, 80 per cent., 115°.

pressure, a solution containing 30 per cent. of sugar boils at 100 6°, 60 per cent., 103-1°, 80 per cent, 110-3°, 85 per cent, 115°.

The boiling-point of a liquid for a given degree of vacuum is obtained approximately by Dilhring's line, according to which the difference between the boiling-points of a liquid at two different pressures bears a constant relation to the corresponding difference for a second liquid. The values of this constant, q, when the second liquid is water are given, for a number of liquids, in the following table, which gives also the boiling-points under various pressures

Substance	Constant		Vacu	Vacuum in millimetres						
Sittometro	q	0	526	611	710	750				
		Bolling-point								
Water Alcohol Ether Acetic acid Benzylidenc chloride Benzzleldenyde and benzyl chloride Benzene Turpentine Butyric acid Glycerol Mercury S.Nophthol Phenol Oresol	. 0.904 1 10 1 164 1 485 1 353 1.125 1 329 1 1.228 2 2 2 2	100° 78.26 34.97 119.7 210.0 178.0 80.36 159.15 161.70 290 357.25 290 178 190	70° 51·14 4 97 84·58 165·5 133·4 46·61 119·28 124·86 252·5 297·25 230 142	60° 42 1 -5.03 73 17 150.6 113.9 35 80 106 111 6 240 277 25 210 130 145	40° 24 02 -25.02 40.84 120 9 96 8 12.86 70 81 87.02 215 237.25 170 104	10 -31 -5503 15 78.4 562 -20.9 8954 51.2 177.5 177.25 110 70 82				

The commonest type of vacuum apparatus with a single vessel or *effet* is the spheroidal form shown in Fig. 347, which is steam-heated and is simple and inexpensive, and is often used in small works dealing with alimentary and other products

In multiple-effet apparatus the evaporation bodies are simply large wrought or east

Fra 346

iron (formerly copper) boilers surrounded by an insulating earth. These bodies are of various shapes and are placed sometimes vertically and sometimes horizontally. They are usually divided (Fig 348) into three compartments by means of two partitions, held rigid by a number of brass tubes, 2 to 2 5 cm in diameter, connecting the first and third compartments. In boilers with horizontal tubes (Figs 349, 350) the steam circulates in the

Fig. 347.

tubes in a similar manner to the juice in the heater described above (Fig 346), while the juice surrounds all the tubes. In vertical bodies (Fig 348) the steam, entering at A and issuing at B, circulates in the chamber between the two partitions and heats the numerous connecting

Frg. 348.

THE TOTAL CONTRACTOR CONTRACTOR

tubes The saccharme solution is thus brought into a condition of vigorous chillition and circulates rapidly between the lower and upper chambers, as indicated by the arrows in the figure. The level of the liquid, which can always be controlled by the

external glass tube, a, is kept just above the tubes, in this way, less froth is formed, the free vapour space is increased, and danger of caramelisation is avoided. The boiling may be observed through the window, r. In order to separate the drops of liquid carried away in the steam, about two-thirds of the way up the boiler is placed a plate, P, with a large

Fig. 350

central aperture, C, above which is arranged a kind of metal umbrella, p, at a height adjustable by the levers, e, w, and h. This height is chosen so that the liquid condensing above P contains no sugar

Figs. 349 and 350 show a high-power horizontal evaporator of the Wellner-Jelinek type, and Fig. 351 the arrangement of the pipes therein. The heating tubes occupy only the lower part and are covered by a thin layer of the sugar solution, the steam passing through a long length of tubing.

In a triple-effet plant (as in Fig. 352) the first effet or body on the left is charged with solution previously heated in A and is heated in D by steam at 112° entering the bundle of tubes E at G. The steam from the liquid in the first effet, which boils at 94 6° (vacuum 112 mm.), passes through the wide pipe E and is condensed round the tubes of the second

effet, where the boiling-point is 77 4° (vacuum 442 mm) The steam from effet 2 passes through H to be condensed round the heating tubes of effet 3, which communicates directly by K with the barometric columns LNQ and by SR with the vacuum pump of effet 3 which gives a vacuum of 608 mm in F, the liquid thus boiling at 60°. The pipe, K, conveys the

steam from effet 3 to the chamber, L, furnished with an iron barometer tube, M, at least 12 metres long, which dips into a well or water-tank, T The condensation water collects in the tube, M, to a height corresponding with the vacuum formed in L, and hence in the effet 3, but the majority of the steam condenses in the chamber, N, into the top of which the tube, O, introduces a fine cold-water spray which produces an abundant and rapid

condensation of steam and a considerable lowering of pressure, so that a large quantity of hot water passes into the vessel, *U*, from the barometer tube, *P*. A little steam condenses in the chamber, *Q*, communicating by the tube, *S*, with the suction pump which maintains the vacuum. The vacuum pump may also be connected, by means of three narrow tubes, with the three evaporation bodies, in which the vacuum may be regulated as desired. It is

Fig 352.

evident that in the three evaporation bodies, especially in P, the water must not be kept at too high a temperature, so that it may not evaporate in its turn and may help the condensation of the steam.

In small plants use is made of simple horizontal evaporators with bundles of heating tubes on to which the liquid falls in a thin film in continual circulation, while in Kestner's evaporator the liquid circulates in a thin layer in a system of vertical tubes (see Vol I., p. 563).

In various industries special methods of concentration of solutions are applied, and of these the following may be mentioned.

The solvent may be frozen and removed in the solid condition. Monti

(Ger Pat. 194,235, 1907) suggested the industrial application of this process, which finds a use particularly in the wine industry but is not convenient in the manufacture of sugar. The Honigmann-Kayser system of evaporation is described in Vol. I. (p. 568).

The auto-condenser evaporator of Prache and Boullon is based on the principle that, if steam emitted from a boiler at a certain temperature is compressed, its temperature is raised so that it may be used to heat the liquid in the boiler and thus cause continuous evaporation. This evaporator has been developed and has now reached a state of high efficiency.

A somewhat similar method has been applied, in which use is made of a turbo-compressor of the Zoelly type giving an energy efficiency of 60 per cent or more (Fig. 353). In this apparatus the liquid to be concentrated passes into the vertical boiler and is first heated by live steam circulating round the system of tubes. When the liquid boils the steam is drawn off at the top to the turbo-compressor, which compresses it and forces it round the heating tubes, as shown by the arrow. This compressed steam is condensed and thus evaporates the liquid to be concentrated. Thus the turbo-compressor functions as a thermal pump, transforming mechanical energy into thermal energy. After evaporation has started, very little live steam is required. This system is practicable only when very cheap electrical energy is available. It is not applicable under reduced pressures and cannot be used with liquids giving vapours which attack the metallic parts of the turbo-compressor

In factories where there is not an abundance of water (that required by vacuum plant is ten to twelves times the quantity of juice to be concentrated), it is convenient to utilise the hot condensed water from the steam-engines (an engine of 350 to 400 h p requires about 1 cu metre of water per minute for condensation) and that from the vacuum concentration batteries. This water is cooled in suitable atmospheric coolers, T (Fig. 354), so that it can be used in the barometric tubes and also for the washing and hydraulic transport of

Fra 353.

the beets The tank, K, corresponds with that marked U in Fig. 352. A pump, A, forces this water to the top of the pile, T (see also Vol. I., p. 568), whence it flows down over the faggets built up under a kind of hood, which produces a strong upward draught of air and so evaporates and cools the water (e.g., from 50° to 60° down to 25° to 30°). The latter collects underneath in the tank, r, and is then transferred by the pump, M, to the chamber, F, where the dissolved air is separated and passes out through the pipe, g (higher than G). The water rises in the tube, G, to the top of the barometric condenser, G, which is evacuated by the pump, G, and the tube, G, it is pipe, G or is corresponds with the tube, G, of the preceding figure and communicates with the third evaporation vessel.

Other more efficient arrangements are also used for the cooling of the hot water. Fig 355 shows a system consisting of numbers of vertical rods arranged in layers crossing one another in a manner similar to those of the apparatus depicted in Figs. 249, 250 (p. 343). The hot water, entering by the pipe, A, is distributed homogeneously by means of the tooth-edged channel, C, and collects in the vessel, B, underneath; the air drawn upwards between the rods carries with it a cloud of steam. Another arrangement is shown in Fig. 356; here a wooden cap or cover fits over walls composed of sticks arranged in the form of venetian blinds, while at the bottom a Korting injector produces a powerful jet of pulverised water in the shape of an inverted cone. The upward air-current evaporates the water while the latter ascends or while it flows down in a thin film on the boards (in this manner only 4 per cent. of the water is lost). Equally ingenious and simple is the

i diga ta and

cooling effected by forcing the hot water under pressure into a circular pipe fitted with a number of Korting pulverisers, catching the water in a large tank and, if necessary, passing it again through the pulverisers (Fig 357), but by this procedure more than 10 per cent of the water is lost.

In those seasons of the year and on those days when the air is warm and dry, the temperature of the water can generally be reduced to that of the air, but if the air is cold and not very dry, the temperature of the water remains 6° to 7° above that of the atmosphere

BOILING OF THE CONCENTRATED JUICE. The juice from the evaporators has a density of 28° to 30° Bé (= 50° to 55° Brix) and an intense brown colour, and in order to induce crystallisation of the sugar it is necessary to concentrate it until not more than 15 per cent of water remains (85° Brix) This concentration or boiling is carried out in simple vacuum boilers or vacuum pans, the juice being first filtered through mechanical filters, collected in tanks and drawn into the pans which are already evacuated.

Fig 354.

These pans resemble ordinary evaporators and are made of sheet-iron, they may be either horizontal (like that shown in Figs 349 and 350) or vertical. In the lower part of the pan is a dense coil of copper or brass pipes arranged either in a zigzag mainier or in concentric circles, and through these passes the steam (Fig 358); in some cases, however, the bottom of the pan is steam-jacketed (Fig 359). The concentration or boiling is carried out at as low a temperature as possible and the pan is fitted with a froth-separator (see Figs 348, 349), a tap for the removal of test-samples of the mass towards the end of the operation, and a wide discharge pipe, K.

The first thing to be done is to evacuate the pan by connecting it with the condenser and with the vacuum pump. Next the cock of the tube dipping into the concentrated juico tank is opened, the required quantity of juice being allowed to enter. Steam is then passed through the heating tubes. During the boiling, the level of the juice is not allowed to fall beneath the top of the heating tubes, since otherwise sugar would dry on these tubes and be decomposed, so that fresh concentrated juice is introduced from time to time. At a certain stage of the concentration small crystals begin to form and gradually increase in size. The operator extracts samples and spreads them out on glass in order to ascertain the size of the crystals and the density of the mass, and when he considers that sufficient of this massecuite—consisting mainly of crystals with a certain amount of dark molasses—has been deposited on the tubes, the heating is stopped and the ordinary pressure estab-

lished in the pan—The whole mass is then discharged from the outlet, K, into a large vessel furnished with sturers, where it is gradually cooled and the crystallisation completed. The boiling and discharging of the massecuite occupy altogether about 10 hours. Fig. 360 shows a battery of Bock cylindrical crystallisers fitted with stirrers

Larger crystals are obtained by adding to the crystallising vessels a little unboiled juice, which lowers the sugar-content somewhat and retards the crystallisation. When no further

Fig 355

Fra. 356

crystallisation takes place, the mass is discharged, by means of a parachute at the bottom of the crystalliser, into the centrifuges, which readily separate the liquid molasses from the solid sugar

This process of boiling is termed boiling to grain to distinguish it from the boiling to thread, now used only in refining. In the latter case the boiling is not continued until crystals form, the proper density of the boiled juice being ascertained by squeezing a drop between the finger and thumb and then sharply withdrawing the finger; if a filament is

F10 357.

thus formed, the boiling is not finished, but the breaking of the thread with formation of two projections indicates the end of the boiling. The syrup is then poured into moulds, which are kept lukewarm until the whole mass sets to an almost solid block composed of finer crystals than in the preceding case

CENTRIFUGATION OF THE FIRST MASSECUITE. The centrifuges for the massecuite have drums of perforated steel with an inner coating of fine-meshed gauze. The diameter of the drum is about 80 to 100 cm., the height 40 to 45 cm, and the speed of rotation 800 to 1000 per minute. The motive force is applied underneath, and the centrifuged sugar remaining in the drum is discharged either above (Fig 361) or through a door which can be opened in the base of the drum (Fig 362). The massecuite is passed directly

from the crystallisers to the centrifuges, and, in order to effect more complete separation of the molasses adhering to the surface of the crystals, especially in the layer adjacent to the gauze, so-called *covering* or *clearing* is resorted to , while the centrifuge is still in motion,

sugar is sprayed with finely divided cold or tepid water (Fig. 363), or even with a jet of steam applied inside or, better, to the outside of the basket, the molasses being thereby rendered more liquid. This procedure naturally gives a whiter raw sugar (first product) but in diminished yield, a small part of the sugar being carried away with the molasses by

Frg. 360

the water. This loss is diminished by using, in place of water or steam, sugar juices (syrups) gradually increasing in purity, so that the molasses and less pure syrups are removed and the sugar left covered with a solution of pure sugar. In this way minute, moderately white crystals of sugar are obtained, and these are sometimes placed on the market without refining, but the public suspects them of being adulterated and prefers quite white crystals or cubes.

CENTRIFUGATION OF THE MASSECUITE

The molasses from the centrifugation of the first massecuite, after separation of the first-product sugar (first runnings), is further concentrated and boiled in syrup pains, which

are similar to vertical evaporators and are worked under a vacuum, but are usually of single effet The boiling is continued until the syrup gives a long thread (see above), the impurities present preventing boiling to grain.

This second massecurte is then placed in large tanks in the molasses room, where it is kept for 25 to 30 days at a temperature of 35° to 40° . The blocks of crystals which separate are broken up with suitable bladed machines, and are then delivered to the centrifuges by means of screws or piston pumps The resulting second-product sugar is rather yellow. The molasses which then separates is further con-

 \mathbf{F}_{10} 361

centrated and the third massecuite sent to the molasses room, but no more sugar separates, since the various potassium and other salts present prevent about five times their own

Fig. 362.

¹ In some works the second product is obtained much more rapidly by the Bock or the Grosse process. In the first of these, the molasses is not left for 25 to 30 days in the molasses room but is crystallised in 4 to 5 days by continually shaking in large, jacketed drums heated to 90° to 65° and address a considerable quantity (25° to 95° and adding a considerable quantity (25 to 30 per cent) of crystallised sugar It is then allowed to cool slowly, but at certain times it is heated one or two degrees above the temperatures tt shows at those times, so that the smaller crystals formed, and these only, are redissolved. When formed, and these only, are redissolved When the mass has been cooled to 35°, the crystalline blocks are crushed and centrifuged, the amount required (25 to 30 per cent.) to induce the molasses (see above) to crystallise being previously removed. In the Grosse process, the mass is kept in

motion by a vertical Archimedean screw rotating

weight of sugar from crystallising This molasses is hence sold as it is for the preparation of cattle-foods or for the manufacture of spirit (see p. 166) In some countries, however, it is treated by special processes for the extraction of the sugar still present.1 Every 100 kilos of beet treated yield 1 to 3 kilos of molasses.

The first- and second-product sugars from the centrifuges are sent to the stores, where they are sleved to break up the crusts, which retain molasses. The two products are often mixed, put up in bags holding 100 kilos, and despatched to the rofinery

SUGAR REFINING The run sugar (first and second products, with a purity

Fra. 363.

in the vacuum pan. With this procedure, crystallisation takes place in 48 hours and, after cooling to 40°, the crystalline mass is disintegrated and centrifuged.

Löblich, Zschene, Stenzel, and others have tried mixing the molasses with fresh juice and

of 88 to 96 per cent.) is not usually placed on the market, but is purified in refineries, where it is dissolved in hot water, the purer and less coloured qualities of high rendement 1

being kept separate from the more impure grades of low rendement

The solution, with a density of 37° to 39° Bé, is treated with a little lime, with 3 to 4 per cent of animal charcoal and often with 2 per cent of ox-blood, after which it is boiled, the frothy crust forming at the surface being continually broken. The suspended matter is then removed by rapid mechanical filters or by filter-presses. The residue (refinery black) is utilised as a manure, while the hot and still coloured solution is passed through a battery of four or six tower filters, 8 to 9 metres in height and 60 to 80 cm in diameter, filled with animal charcoal (Fig. 364 A, tube for dense juice, B, for dilute juice, C for

water, D for steam) and previously heated with steam (D) to prevent the sugar separating and to obtain the maximum decolorising action of the charcoal, this being exerted in the hot.

The animal charcoal or bone-black has considerable affinity for colouringmatter and for lime, but only a slight one for sugar, but in course of time the pores of the charcoal become obstructed and its decolorising power diminished, so that after a few weeks it becomes necessary to revivify the charcoal 2

The solution is passed through the filters in succession and, if necessary, this procedure is repeated When the syrupy liquid is decolorised, it is concentrated and boiled in ordinary single-effet vacuum pans (of copper) until it shows the grain or short-thread test (see above)

When the massecuite reaches this degree of concentration, it is poured into a jacketed copper vessel, in which it is kept at 85° to 90° to initiate the formation of large crystals It is then allowed to flow into conical copper moulds with their apices, closed by plugs, underneath. The mass, which has just begun to crystallise, is well stirred, and when it has

defecating the mixture in the ordinary way, but this process does not seem to offer any great

advantage

1 The rendement expresses the percentage of refined sugar obtainable from the raw sugar

that exercil part of ash diminishes the relined and is determined indirectly on the assumption that every 1 part of ash diminishes the relined sugar by 5 parts, thus a raw sugar containing 96 per cent of pure sugar and 0.4 per cent, of ash would give a rendement of $96 - (0.4 \times 5) = 94$ per cent. The rendement is regarded as low

if it is less than 94 per cent

Revivification of Animal Charcoal. The charcoal is first treated with hydrochloric acid to remove the calcium carbonate, and if more than 1 5 per cent. of calcium sulphate then remains, this is eliminated by means of hot soda solution. After washing, the wet charcoal is allowed to ferment (first alcoholic fermentation sets in, then acid fermentation and finally putrefaction), and is afterwards washed thoroughly with water, treated with steam, dried and gently ignited in long cast-iron tubes, O (Fig 305), which are heated to about 400° by the gases from the furnace, A, access of air to the retorts being excluded. The cooled, free portions are then gradually discharged from the lower parts of the retorts (E) into covered metal waggons, so that the charcoal, which is not yet quite cold, may not take fire in the air. The discharge of the putrid washing water from the fermented charcoal into rivers causes serious inconvenience, and nowadays this water is either passed on to the soil or subjected to biological purification (see Vol I., p 250)

The plant for decolorising with animal charcoal and the revivifying furnaces are very costly,

a large amount of the charcoal being required

Soxhlet avoids the carbon decolorising plant by using filter-presses the chambers of which are filled with a cake composed of wood-meal mixed with various indifferent materials (ground coke or pumice, etc). By this means sugar solutions can be decolorised moderately well even in the cold.

assumed a certain consistency it is left at rest at a temperature of 35°, so that all the molasses collects at the bottom and can be discharged by removing the plug. In order to remove the molasses completely, the sugar-loaves with their casings are introduced into the moulds of a Fesca centrifuge (Fig. 366), which holds sixteen of them, arranged alter-

Fig 365

nately in two superposed series of eight. The point of the sugar-cone communicates with the aperture, b', of the drum of the centrifuge, and when the latter is charged it is fitted in the middle with a cylinder, h h' k, which rotates with the drum and is provided with channels, S, communicating with all the cones, so that the covering solutions (see above) may be run in from the tank, r. These solutions consist of three or four pale syrups and three or four concentrated solutions of pure sugar. In order to remove the last traces of yellow

Fra. 366.

In order to remove the last traces of yellow colour from the sugar and to blue it slightly, as is sometimes required, the final covering syrup is mixed with a minimum amount of ultramarine (5 grms per 10 tons of sugar) or methyl or ethyl violet or, better still, according to a recent suggestion, indanthrene. The

Fig 367

white loaves thus obtained are then dried in suitable chambers or in revolving apparatus, at a temperature of 55°

To obtain white sugar directly, the final massecuite is sometimes decolorised with 30 to 50 grms. of blankite per hectolitic (see Note, p. 542; blankite is pure, crystallised sodium hydrosulphite, the use of which is rapidly extending in sugar-works, see Vol. I., p. 586).

The beet-sugar of commerce should always have a very faint alkaline reaction (towards phenolphthalein), since otherwise it undergoes partial inversion. Cane-sugar, however, has usually a slight and reaction

Cube sugar was formerly obtained by sawing the large blocks, this entailing considerable loss, but at the present time suitable centrifuges (Adant type, Figs. 367 and 368) yield directly long rods of sugar of the requisite thickness, these being then sawn with a minimum of loss. A platform, F, carries eight vertical prisms, c, furnished with screws by which they are fixed to an upper annular disc. The latter is slotted (c) to allow of massecuite being introduced into the chambers (a a) remaining between each prism and the next, and divided into a number of tall narrow chambers by fixed plates in the grooves, b. The platform is introduced into the cylinder, H, which fits tightly the periphery of the moulds, these being closed inside by a second cylinder. All the chambers are filled with massecuite introduced through the slots, c, the whole being allowed to cool for 12 to 14 hours with occasional shaking. After complete crystallisation, the whole platform is withdrawn by the orane, G, and placed in the centrifuge, D, which makes about 700 revolutions per minute. The covering is effected at a reduced velocity with sugar solutions entering by the tube, C, from a reservoir at a height of δ metres. After the sticks of sugar have been

Fig 368.

removed, the platform and moulds are washed with water and are then ready to receive a fresh quantity of massecuite.

Pile or crushed sugar is obtained in a more simple manner by covering the crystalline sugar (from massecuite) in the centrifuge itself by means of water, steam, or pure sugar solution. Slight prolongation of the centrifugation yields a hard, compact mass, which is removed in large blocks and broken into small irregular pieces (pilé sugar) by a special crusher having an indented drum (Fig 369).

Powdered sugar or farin is obtained by grinding lump sugar and any soraps between two smooth, horizontal rollers (d and d', Fig. 370) which are brought near to one another by springs and are furnished with sorapers, f, to detach the powdered sugar; the latter is subsequently sieved. Powdered sugar can also be obtained by means of the Excelsior mill (see Fig. 164, p. 201), which yields as much as 2000 kilos per hour of a sugar not too finely powdered.

UTILISATION OF MOLASSES. The processes employed for the extraction of beet-sugar yield about 3 per cent. (of the weight of beets) of molasses, 2 3 per cent. being obtained in the factories and 0.8 per cent. in the refineries. These are dense, dark-coloured syrups, containing 40 to 50 per cent. of sugar. This does not crystallise owing to the presence in the molasses of 8 to 10 per cent. of mineral salts, which prevent about five times their weight of sugar from crystallising. Hence, in general, it is difficult or almost impossible to

extract sugar by direct crystallisation from syrups with a degree of purity less than 60 to 65 per cent. The percentage composition of molasses varies between the following limits. water, 19 to 28 (mean, 23), sugar, 45 to 54 (mean, 48), soluds not sugar, 26 to 29 (mean, 28), ash, 6 to 8 (mean, 7, largely potassium salts), invert sugar, 0 1 to 0 4 (mean, 0.15), nitrogen, 1 25 to 1 85 (mean, 1 65) The degree of purity ranges from 62 to 67 per cent. (mean, 64 per cent) The molasses contains about 10 per cent of the total sugar of the beet

The recovery of the sugar from molasses involves indirect processes which are not

Fig *369

always convenient in practice, and when this is the case the molasses is employed for the manufacture of cattle-food or spirit (see p. 186). In spirit factories the molasses is diluted to 12" to 14° Bé (about 15 per cent of sugar), when it can be fermented (see p 166) Ton tons of molasses yield 23 to 25 hectols, of alcohol (calculated as anhydrous spirit) and 1800 kilos of CO2 The potassium salts are extracted from the residual vinasse by the process described in Vol I., p 545. 100 kilos of molasses give 35 kilos of concentrated vinasse (40° Bé). and by calcining this 10 kilos of vinasse charcoal are obtained. In some factories the vinasse is now treated for the recovery of the ammonia and fatty acids by the Effront process described

on p 183, without, however, losing the potassium salts.1

In Italy, before the modification of the fiscal regulations which taxed the defocated saccharme juices directly and left untaxed the sugar in the molasses, various factories applied certain of the chemical and physical methods used in other countries for the extraction of the sugar from molasses—by means of osmosis, lime, strontia, baryta (formerly by means of alcohol), etc. When these methods (see later) are used, it is calculated that the final molasses does not exceed 0 5 to 1 per cent of the weight of the original boots

(1) Osmosis Process. This was first proposed by Dubrunfaut in 1863, and is based on the osmotic properties of crystalloids, which pass through a membrane immersed in water (see Vol I, p. 80). Different crystalloids traverse the

¹ The molasses vinasse wash) remaining after the distillation of the alcohol has a density of about 4° Bé and contains 6 to 7 per cent. of solids When utilised, it is first concentrated to 40° Bé. (100 kilos of molasses give 35 kilos of this concentrated vinasse), when it contains 75 per cent. of solids with about 4 per cent of nitrogen About one-half of the solid substances are nitrogenous compounds The solids contain 10 to

Fig. 870.

compounds The sounds contain to to 12 per cent of betaine, 5 to 7 per cent. of glutamic acid, and 1 to 2 per cent of leucine and isoleucine, besides varying quantities of amino-acids and nuclein bases, the non-nitrogenous constituents consist of about 15 per cent. of fatty acids (formic, acetic, lactic, butyric, and homologous acids), and 15 to 20 per cent of other organic compounds not completely investigated. Effront thinks it possible, from 10 tons of molasses, to obtain 75 kilos of ammonium sulphate and 95 to 120 kilos of fatty acids, by the action of yeasts which decompose the amino-acids into ammonia and fatty acids, separable by distillation. According to F Ehrlich, however, yeasts transform amino-acids into alcohol and succinic acid, the formation of ammonia and fatty acids being due not to yeasts but to butyric and other bacteria which always occur with yeasts, and decompose the amino-acids into ammonia, fatty soids, and various amines just as in ordinary putrefaction. Hence the effect of the Effront process could also be obtained by adding to the aqueous vinasse a little putrefied meat and allowing putrefaction to proceed The manipulation of large masses of putrefied meat and not, however, be very agreeable or hygienic.

membrane at varying speeds, the sugar, for instance, far more slowly than salts—Hence, if the molasses is placed in a dialyser and surrounded with water, after a time the water will contain more salts than sugar, while the molasses will be diluted with water but will contain relatively more sugar and less salts than at first

The apparatus now used for osmosis (Fig. 371) consists of a series of wooden frames 4 cm. in thickness and of the size of those used in filter-presses, these are separated by sheets of parchment paper, the whole being pressed tightly together. The compartments thus formed are filled alternately with water and molasses. The upper part of the whole of the osmogen constitutes an open reservoir formed by the upper vertical projections of the frames. The molasses for feeding the alternate chambers is placed in this reservoir and is kept circulating in various ways. The water chambers are fed from the lower part and are discharged through a common upper tube as they become enriched with salts.

The osmotic effects occur best in the hot, so that the molasses is introduced at 80° and the water at 90°

The taps through which the liquids enter and leave the osmogen are regulated by automatic floats which close or open the taps more or less so as to maintain a constant relation between the density of the exosmosed aqueous solution and that of the osmosed molasses. This relation is determined beforehand in the laboratory, and corresponds with the conditions least favourable to the loss of sugar with the osmosis water and most favourable to the purity of the residual molasses.

Fig 371.

The exosmosed water generally has a density of 3° Brix (3 per cent. of sugar and salt together), and the osmosed molasses 35° to 40° Brix (measured at 75° C.); the latter is concentrated and boiled in ordinary syrup pans until it shows the string test. Crystallisation is carried out in the molasses room at 40° to 45° or in the Grosse apparatus. The crystallised sugar is separated by centrifugation and the new molasses obtained again subjected to osmosis. This operation is repeated once or twice more—in fact, until the quantity of sugar extracted would be insufficient to pay the cost. In some cases the osmosis waters are concentrated and reosmosed

The final molasses and the final osmosis waters—rich in salts and also in sugar—serve for making spirit, shoe-polish, or potassium salts (see p. 183) They are also given to cattle, but must then be diluted with solid vegetable products as an excess of salts may exert harmful effects

(2) Lime Process. Steffen found that the addition of finely powdered, sieved quicklime in small portions to a solution of molasses of a suitable concentration (about 12° Brix, i.e., 7 per cent, of sugar, obtained from 1 ton of molasses + 70 hectols, of water), and kept at a temperature below 15°, results in the separation of insoluble sucrate containing rather more lime than tricalcium sucrate, whilst the impurities remain dissolved in the aqueous molasses

The operation is carried out in a vessel (Figs 372, 373) similar to the Grosse apparatus, the steam-pipes being used, however, for the circulation of cold water at about 12°, so that after each addition of lime, when the temperature rises 7° to 8°, it can be brought rapidly down below 15°. The addition of lime is continued until all the sugar is precipitated (about

100 kilos of lime per 100 kilos of sugar), this being ascertained by reading the clear liquid in the saccharimeter.

The resultant sludgy mass is filter-pressed at a pressure not exceeding 1\frac{1}{2} atmosphere, the filtrate still containing about 0.5 per cent of sugar, which can be separated as tricalcium sucrate by heating the liquid to 90° and filtering.

The cakes of sucrate are washed several times in the filter-press and the fairly pure residue used to defecate fresh diffusion juice before saturation with carbon dioxide, or the sucrate may be treated with any cold saccharine solution so as to form the soluble monosucrate, the precipitated excess of lime being removed by filtration and the filtrate then saturated with carbon dioxide in the ordinary manner.

(3) Strontia Process When an excess of crystallised strontium hydroxide is added to a dilute sugar solution at a temperature of about 100° and the liquid boiled, a granular,

sandy precipitate of strontium discerate is obtained, which is stable in the hot whilst in the cold it decomposes into sugar and strontium hydroxide

In a suitable boiler provided with steam-coils and stirrers, a 10 per cent solution of strontium hydroxide is boiled, further quantities of the hydroxide being added until a 20 to 25 per cent. solution is obtained. The molasses is now added in amount equal to about one-third of that of the strontium solution, which is stirred rapidly and heated meanwhile. Strontium hydroxide is subsequently introduced in such amount that the mass has 12 to 13 per cent. of excess alkalimity The total strontium hydroxide is related to the sugar in the molasses in about the proportion 2.5 1

The precipitated disuorate is filtered rapidly in the hot through bag-filters and washed with boiling 10 per cent. strontium hydroxide, the latter being recovered from the filtrate. The disuorate is then dissolved in a cold strontium hydroxide solution and the solution introduced into metallic vessels situate in an apartment kept below 10°. In the course of three days one-half of the hydrate separates in a crystalline form, the saccharine solution being then decanted and the residue centrifuged. The sugar solution is then saturated with carbon dioxide until it shows an alkalinity of 0 05, all the strontium being thus separated as carbonate. The very pure sugar solution obtained after filtration is concentrated and

boiled as usual, the crystallised sugar obtained being placed directly on the market without

being refined.

A somewhat different mode of procedure is that based on the formation of strontium monosucrate, but this does not yield the whole of the sugar as the above process does. In Germany the desaccharification of molasses is effected almost exclusively with strontia in

large works specialising in such work.

(4) Baryta Process. When solutions of molasses and of barium hydroxide are mixed in the hot in the proportion of 1 mol. of sugar to 1 mol. of the hydroxide, a heavy, saidy precipitate of barium monosucrate is formed which is stable to either hot or cold water; this is collected as usual on filters and freed from impurities by washing with cold water. It is then saturated with earbon dioxide in order to liberate the sugar and, after dilution with other sugar juices, is filtered, concentrated, and crystallised ¹

YIELD AND COST OF PRODUCTION. Formerly a hectare of land yielded with difficulty 20 tons of beet, but as the result of long-continued improvement of the methods of cultivation, manuring, selection of seed, etc., as much as 30 to 40 tons are now obtained,

and in certain special regions (e g , Ferrarese) as much as 60 to 65

For every 100 kilos of beet worked, the loss is calculated to be 1 6 kilo of sugar in Italy and only 1 kilo in Germany. The cost of cultivating 1 hectare of beet, including manure, transport, etc., amounted before the war to £12

Italian manufacturers calculate that in bad seasons the production of 100 kilos of refined sugar required 1 ton of beet, the cost of working this being 7s. to 8s. (including 3s. for coal) Refining cost about 5s. 6d. (100 kilos of raw sugar give about 90 of refined).

In Germany 100 kilos of beet gave not more than 8 4 of sugar in 1870, about 12 5 in 1890, and 15 8 (including that from the molasses) in 1909–1910. The mean production per hectare was 24 tons of beet in 1871 and 30 in 1910

The consumption of coal in working 100 kilos of beet in Germany was 35 kilos in 1867, 24 kilos in 1877, 10 kilos in 1890, and 7 kilos (8 in Italy) in 1900 By the use of Kestner concentrators (see above) a further saving in coal has since been effected

The cost of manufacturing 100 kilos of cane-sugar in Java varied, before the War, from 12s. to 16s, and transport to England or the United States amounted to 2s.

STATISTICS.2 The history of the development of the sugar industry in Europe and

¹ The barrum carbonate filtered off is converted into the oxide and then into the hydroxide

by heating in suitable high-temperature furnaces

This barum process was used for some time in Italy, after it had been shown that no danger to health was to be feared from the use of a barum compound, since this is eliminated almost completely by carbon dioxide and the final traces by calcium sulphate. The barum hydroxide required is imported principally from America and Germany, but by 1903, four factories had been creeted in Italy for supplying all the baryta necessary to the sugar factories. One of these factories, at Calolzio, starts from barum sulphate, another, at Milan, heats the barum carbonate from the sugar-works; while the remaining two, at Foligno and Pont St. Martin respectively, treat barum carbonate in electric furnaces, making first barum carbide, which with water gives accepted and barum hydroxide (Garelly's process)

acetylene and barium hydroxide (Garelli's process)

Such treatment of molasses in Italy was found feasible as long as the sugar extracted in this way remained free from taxation, that is, while the tax was levied solely on the defecated diffusion level. Since 1904, however, the total quantity of sugar produced, including that extracted from molasses, has been hable to duty, and the molasses is consequently utilised in the distillery and in the manufacture of cattle-food. Recently some sugar factories have resorted to treatment of the molasses with barium sulphide, which is much cheaper than the hydroxide and is obtained

directly from the sulphate in the electric furnace.

² The Commercial, Customs, and Fiscal Conditions of the sugar industry in Italy and other countries. In some countries this great industry has been extended artificially owing to the direct and indirect help afforded by the State, and to the speculations of financiers. With the excuse of protecting national industries, Governments have levied heavy Customs duties, with the result that the public has paid dearly for its sugar, while manufacturers have accumulated enormous profits and have been enabled to export sugar at less than cost price to other countries. At first the protective duty was from 24s, to 32s per quintal, while in France it was raised to 64s. The form taken by the protection was then changed by the institution of export bounties, which allowed the sugar to be sold abroad at a low price, while large profits were made owing to the high prices at home and to the bounties. First Belgium and then France established a bounty of 8s to 10s for every quintal of sugar exported, France being thus subjected to an enormous burden amounting to over £2,000,000, without counting the rebate on the freight from the factory to the frontier. This enormous sum has been paid by the mass of the population, to the exclusive advantage of a few manufacturers (rule of the Méline Ministry)

to the exclusive advantage of a few manufacturers (rule of the Méline Ministry). In Germany and Austria, where the export bounties were relatively low, the manufacturers formed sale syndicates (cartels), which operated in the following manner. the manufacturers pledged themselves to supply all the raw sugar to the refiners, who granted a bounty of 24s. per

the importance this industry has assumed during the past quarter of a century have already been discussed on p 545 Reference has also been made to the production of cane-sugar compared with that of beet-sugar. While in 1854 beet-sugar formed only 14 per cent of the world's total production (1,423,000 tons), in 1866 the proportion was 30 per cent. (on a total of 2,000,000 tons), in 1878, 44 per cent. (on 3,000,000 tons); in 1887, 47 per cent. (on more than 5,000,000 tons), in 1893, 55 per cent (on about 6,000,000 tons), in 1899, 64 per cent (on 7,500,000 tons); in 1901, 67 per cent. on almost 9,000,000 tons. In 1908-1909 cane-sugar again assumed first place, which it has since maintained.

To give an idea of the progress made by the beet-sugar industry during the last 80 years, the production of raw sugar in the two countries where this industry has developed

most is given in the following Table .

			Gern	nany
	In France	In Germany	Yiekl of sugar per 100 kilos beet	Annual consump- tion per head
1840 1850 1860 1870 1890 1903 1905 1906 1909 1912–13 1913–14	Tona 22,784 62,165 126,480 282,136 750,000 1,080,000 — 730,000 807,500 960,900 738,440	Tons 14,200 53,300 126,520 186,000 1,336,000 1,921,000 1,605,000 2,400,000 2,037,400 2,700,000 2,478,700	5 9 kilos 7 3 ,, 8 6 ,, 8 6 ,, 12 5 ,, 14 4 ,, 14 9 ,, 14 7 ,, 16 3 ,, 16 2 ,, 15 7 ,,	2 5 kilos 3 1 " 4 3 " 4 7 " 8 5 " 13 " 14 9 " 19 5 "

quintal to the manufacturer and sold the sugar to the home consumer at a very high price, there being no fear of competition, as they enjoyed a monopoly. The sufferers, as always, were the The home profits were so enormous that sugar could be sold abroad at less than consumers cost price and competition thus vanquished On the other hand, England, the greatest consumer of sugar, found its markets deluged with cheap Continental sugar, which competed scriously with that from its Colonies, which had also become considerable exporters.

Under these conditions a more rational solution was found for the problem of sugar with reference to international commerce. The initiation of such an undertaking could come only from England, who was able finally to impose her conditions on all countries sending sugar to her markets. The Brussels Convention, convoked on Soptember 1, 1902, was subscribed to by England, Germany, Austria, France, Belgium, Holland, and Italy

The result was the abolition of export promiums and the reduction of the boundary duty to 5s. per quintal above the manufacturing tax, from September 1, 1903, onwards. Such duty was to be enjoyed only by those countries conforming to the Brussels Convention

Italy did thus conform in a modified way: the boundary duty remained as before, namely, 23s. for first quality and 10s. 6d. for second quality, while a pledge was given not to export sugar to other countries and to impose an exceptionally heavy Customs duty on countries not adhoring to the Brussels Convention (especially on Russia and the Argentine Republic, but Russia entered the Convention in January, 1908, and pledged herself to export for six years not more than 200,000 tous per annum of bounty-fed sugar After 1908 England held herself free to import premiumed sugar without imposing supertaxation). Spain and Sweden were treated like Italy by the Brussels Convention, to which then Luxemburg, Peru, and Switzerland conformed. In

Spain an overproduction crisis arose.

In Italy the price of sugar fell, owing to overproduction and frenzied competition, to 92s. per quintal, so that in 1901-1903 almost all the sugar factories showed either minimum profits or quintal, so that in 1901-1903 almost all the sugar factories showed either minimum profits or considerable losses. Indeed, deducting the tax of 56s, there remained 36s as the price of the sugar. According to the manufacturers, 10 quintals of boet, giving 1 of sugar, cost 16s., while the cost of production of crude sugar was 8s (including 4s. for coal), that of refining about 6s 4d. and that of transport 1s 8d: total, 32s. Thus only 4s remained to provide interest on capital as well as depreciation. Hence, in 1904, all the sugar-makers combined to form a syndicate and raise prices, and early in 1905 an increase of 16s (to 108s) per quintal was enforced, with a production of 1,000,000 quintals, this amounted to an annual burden on the consumer of £800,000. Adding to this the protective duty of £1,200,000, it will be seen that, for the luxury of a native sugar industry, the Itahans paid an annual tax of £1,200,000 to £2,000,000, the sole gainers being some 30 factories with a capital of about £3.200.000. gainers being some 30 factories with a capital of about £3,200,000.

The European War brought all these conventions to an end, and in some countries the fiscal

regulations have been rendered more severe.

Some of the large factories in France and Belgium have diffusion plants in the middle of the beet-growing districts, the sugar juices after treatment with lime being forced through pipes, often several kilometres long, to the factories, where they are further worked up

In Germany the beet-sugar industry has reached its greatest perfection and magnitude, and from 1880 to 1902 Germany was the largest exporter (as much as two-thirds of its output) In 1909–1910, in spite of the diminution of exports resulting from the Brussols Convention, Germany exported 423,000 tons of refined sugar and 310,000 tons of the raw product, the home consumption being 1,260,000 tons. The exports were 740,000 tons in 1890, 883,000 in 1904, and 1,145,000 in 1906. In 1908–1909, 358 factories and 39 refineries were working in Germany. Certain German factories, employing 46 workmen, treat 400 to 500 tons of beet, but in Italy many more employees are required. In 1909–1910 Germany produced 10,600,000 tons of beet, but in 1910–1911 only 5,200,000 tons

In Austria large batteries of diffusors are used and a more complete exhaustion is obtained even at a lower temperature, in general, indeed, the modern plants are more perfect than those in Germany. In 1908 Austria-Hungary exported 610,000 tons of refined and 195,000 of raw sugar.

The following Table shows, for different countries. I, manufacturing tax in pence per kilo, II, retail price in pence per kilo, III, mean annual consumption in kilos per head in 1899, 1909, and 1913; IV, kilos of refined sugar obtained from 100 kilos of beet; V, kilos of refined sugar from 1 hectare, and VI, number of sugar factories

	I	п		III		IV	v	VI
			1800	1909	1013			
England	0 96	53	40	41 1	48	l —		
United States .	0 96	48	28 4	372	40	12 44	2706	75
Switzerland	0 67	4.8	25 7	30 2 _,	36			
Denmark .	0 575	67	216	35 5		13 82	3950	9
Sweden	2 88	7.7	157	24 5) 17 8		14 26	3803	21
Germany .	1 92	62	13 7	197	21	16 35	4809	380
Holland .	5 47	96	13	19.8	_	14 80	3803	26
France	26	72	128	169	20	13 03	3445	300
Belgium .	1 92	67	10.5	15 1	16	14 37	4032	67
Austria-Hungary	3 45	8 15	83	112	13	15 74	3900	222
Russia	27	8 25	6	91	12	16 37	2230	289
Spain	0 77	8 15	45	54		11 88	3439	32
Portugal			6	62				
Greece .	24	8 15	3	38				_
Roumania	_		3.5	41		14 53	2392	6
Turkey	5.47	96	3 5	5.7	_			
Italy	67	144	2.8	39	5	11.27	3378	41
Servia	3 17	77	3	35				

¹ The Fiscal System in Germany from 1841 to 1866 was based on the quantity of beets, the object being to bring about improvements in the cultivation of the beet and hence increase in the sugar-content, the tax corresponded with about 18s per quintal, and was refunded to the manufacturer for all exported sugar. From 1870 to 1886 the tax was 1s 7d per quintal of beet, it being assumed that 12 5 kilos of beet were required to give 1 kilo of sugar, but even in 1870 1 kilo of sugar could be obtained from 11 9 kilos of beet, and in 1887 from 8·1 kilos. Since the exports increased enormously and the taxes refunded remained the same, the manufacturers enjoyed indirectly a considerable export bounty, which diminished the Exchequer receipts from £3,000,000 to less than £760,000 (1888). A modification was hence made in the system of taxation, sugar produced and consumed at home paying a tax of £1 per quintal, while that exported was freed from tax and received a bounty of 2s 6d. (rew) or 3s. 6d. (refined) per 100 kilos (1896–1903) Further, the import duty was left at £2 per quintal, so that German producers were allowed to sell their sugar at high prices at home (even during the abundance of 1900–1901) and to employ part of their profits to lower the price of sugar sold abroad in competition with other countries. After the Brussels Convention, however, export bounties ceased and the import 'y was reduced, to 5s + 16s. (manufacturing tax in Germany). Under these new conditions,

DETERMINATION OF SUGAR-CONTENT. Sugar is estimated in various ways With an aqueous sugar solution, the content of saccharose may be determined by means of the specific gravity at 17 5°, compared with water at 17 5°, this being measured by hydrometers, pyknometers, etc (see Vol I, p 75). In the factory, use is generally made of a hydrometer (saccharometer) which, at 17 5°, gives directly the percentage of saccharose present

These saccharometers were first proposed by Balling and were subsequently corrected by Brix, degrees Brix expressing the percentage of sugar. In France and Belgium, and sometimes also in Germany, saccharometers gauged at 15° and referred to water at 15° are used, and the Berlin Royal Commission for the control of standards prescribed the use of saccharometers giving the density of solutions at 20° referred to that of water at 4°

The following Table gives the densities and degrees Brix (grms. of sugar per 100 grms of solution) for the temperature 17 5°, and also, for each 10°, the values from the other two Tables, so that the intermediate values in these two Tables can be calculated roughly, The saccharometer is read with the precautions and in the manner indicated on p. 77 of Vol I and on p. 174 of this volume. The Table gives densities above 66° Brix, which cannot be determined by hydrometers, but which serve to calculate the degree of purity of impure saccharine solutions (molasses, etc.; see later).

MATEGOZEK AND SCHEIBLER'S TABLE, GIVING THE SPECIFIC GRAVITIES AND DEGREES BRIX OF SACOHARINE SOLUTIONS

Sp gr	Degrees	Sp gr	Degrees	Sp gr	Degrees	Sp gr	Degrees	Sp gr	Degrees
at 17 5°	Brix	at 17 5°	Brix	at 17 5°	Brix	at 17 5°	Brfx	at 17 5°	B fx
1 00388 1 00770 1 01173 1 01670 1 01970 1 02373 1 022770 1 03187 1 03187 1 04027 1 04014 1 04027 1 058143 1 04520 1 05703 1 005703 1 00586 1 07884 1 08320 1 08852 1 08856 1 08856	1 2 3 4 5 6 6 7 7 8 9 10 10 10 11 12 13 14 15 16 17 18 19 20 20 20	1 09778 1 09257 1 09086 1 10145 1 10607 1 11072 1 11641 1 12013 1 12908 1 12908 1 12908 1 1340 1 1340 1 13934 1 14015 1 16017 1 16413 1 17043 1 17043 1 17043 1 17044 1 17044	212234500 22234500 222	1 18440 1 18081 1 10505 1 2003 1 1 20505 1 21100 1 21100 1 2182 1 22728 1 22728 1 22380 1 24300 1 24651 1 25617 1 26686 1 27235 1 27235 1 27235 1 28080 1 28080	41 42 44 45 47 48 50 50 50 51 52 58 56 56 60 60	1 20631 1 30177 1 30777 1 31381 1 31989 1 32601 1 38217 1 3836 1 34460 1 36182 1 36182 1 36720 1 36355 1 36955 1 40056 1 41058 1 41	61 623 64 66 67 68 69 70 70 71 77 77 77 77 77 77 80 80	1 42258 1 42034 1 4304 1 4308 1 44088 1 44088 1 46078 1 17071 1 17778 1 18700 1 18700 1 19007 1 40100 1 90015 1 60035 1 6035 1	81 82 83 84 85 86 87 88 89 90

If the degrees Brix are read with solutions at temperatures other than the normal, corrections must be made by means of the following Tables.

the exports diminished somewhat, but the home consumption increased owing to the lowered prices. The wholesale price in 1910 was £2 per quintal (that of sugar for export, without tax, being 19s.); the retail price was 14d per kilo in 1875, 7d in 1902, and 6d. in 1910. The German Government received £5,750,000 in sugar taxes in 1900-1901, almost £3,000,000 in 1909-1910, and over £9,000,000 in 1913. In 1912 the manufacturing tax was 23s 6d per quintal Diminution of the tax by 33 per cent. increased the consumption by 60 per cent.

STAMMER'S TABLE	FOR	REDUCING	TO	17	5°	DEGREES	Brix	READ	ΔT	DIFFERENT
		r	ими	PRILA	LTI	TRES				

	Degrees Brix of the Solutions												
	Temporature	б	10	15	20	25	30	35	40	60	60	70	75
18° 15°	These corrections to be subtracted	0·18 0·11	019 012	0-21 0 14	0-2.2 0-14	0-24 0-16	0 20	0 27 0-17	0.28 0-17	0 20 0 17	033	0.36	0 30
17°	from the ob served Brix degrees	0-02	0-03	0 03	0 03	0 04	0 04	0.04	0.04	0.04	0 05	0 05	0 06
18° -	1	0 03	0-03	0 03	0-03	0 03	0-08	0.03	0.03	0-03	0.03	0 03	0.03
190	These corrections	0 08	0.08	0 00	0.00	0 10	0 10	010	0 10	0.10	0 10	0.08	0.00
21^	to be added -	0 220	0 22	0.24	0-24	0.25	0-25	0-25	0 20	0.20	0 25	0.24	0.18
23°	Brix degrees	0 32	0 85	0 37	0.38	0 89	0 80	0-30	0 40	0-42	0-30	0-80	0 33
25°	, (0 44	0-47	0-10	0 51	0 58	0 54	0 65	0.00	0.08	0.54	0-51	0.48

Example.—If a sugar solution shows 40° Brix (* e., 40 per cent of sugar) at a tempera ture of 23° , 0.4 must be added to reduce the reading to the true Brix degrees at 17° , so that 40+0.4=40.4 degrees Brix at 17°

SCHEIBLER'S TABLE SHOWING DEGREES BRIX AT 15° AND THE CORRESPONDING DEGREES AT OTHER TEMPERATURES (FROM 10° TO 25°)

Tenipam- ture		DEGREES DRIX OF PERCENTAGE OF SUGAR													
10°	5 1 6	10-10	15 22	20-24	25 27	30-20	85 30	40 81	50-88	ar-00	70 86	75 36			
120	5 10	10-12	15 14	20-15	25-17	80 18	85 18	40 19	50-20	60 21	70 21	75 21			
14"	5 04	10 04	15.05	20-05	25 06	30 06	85 06	40-07	50-07	00 07	70 07	75 07			
15°	6 00	10-00	15-00	20-00	25 00	80 00	35 00	40 00	50-00	00-00	70 00	75 00			
17°	4 02	0 01	14 00	10 80	24 88	20 87	84 87	80 87	40 86	50-80	00 BG	74 80			
10°	4 83	9 80	14 78	10 77	24.75	20 74	84 78	39 78	40 72	50 71	60 71	7171			
21°	4 72	0 00	14 60	10 04	24 62	20 60	34-50	40 50	40 57	50 57	00 67	74 57			
78°	4 01	0 57	14 53	10-50	24 48	29 46	84-45	30 44	40 42	50 42	00 12	7142			
26"	4 40	0 44	14-40	10 86	24 84	20 82	84 80	30 20	40 27	69 27	60 27	71.28			

Example.—If a solution reads 19 36° Brix at a temperature of 25°, this would correspond with 20° Brix at the normal temperature of 15° For intermediate values, either of temperature or of concentration, the corresponding results are easily obtained by interpolation. Thus, 18° Brix at temperature 15° would give, at other temperatures, values higher than those corresponding with 15° Brix by three fifths of the difference between the values in the 15° Brix and 20° Brix columns. So that a solution showing 18° Brix at the temperature 15° would show, at the temperature 17°, 14 90 $+\frac{\pi}{5}$ (19 89 - 14 90) = 14 90 + 2 99 = 17 89° Brix.

In the quantitative determination of sugar, use is commonly made of its action on polarised light (see p 28), this being measured in the polarimeter. The rotatory power of a sugar solution is proportional to the concentration and almost independent of the temperature. In these determinations it is necessary to use pure sugar solutions, decolorised by means of a little basic lead acetate (or, better, mercuric acetate or phosphotungstic acid), which precipitates the albuminoids, colouring matters, and other impurities, the filtered solution is examined in the polarimeter. If the saccharose is accompanied by another optically active sugar—for instance, glucose (dextro rotatory)—allowance must be made for the rotation of the latter. In such a case the diminution in rotation produced by inversion of the saccharose with dilute acid would give the amount of this sugar

, 1

The use of the reflactonictor for the estimation of sugar has also been proposed (see p 463, also Villavecchia, "Applied Analytical Chemistry," Vol. II, p 93)

POLARIMETERS AND SACCHARIMETERS 1 One of the best-known polarimeters is the Laurent shadow instrument (Fig. 374), which contains, in place of the compensator and double polarisation quartz plato, a special semicircular quartz plate, D, half a wavelength in thickness and occupying one half of the field polariser, B, is rotated by means of the rod, X, and the rotation which restores the two halves of the field to the

same luminosity is indicated on a graduated circle, C, provided with a vernier, read by means of the lens, N, and illuminated by the mirror, M

1 It has been mentioned already (see p 27) that crystals of Icoland spar and quartz have the property of decomposing a ray of light into two polarised rays, the ordinary and the extra ordinary. If a prism of Icoland spar with longth greater than the breadth, with its acute angle of 58°, is cut diagonally and longthwise so as to divide it into two rectangular triangular prisms (Pig 375), and these are comented together again with Canada belown the result is a Nicel wise. When a ray of balsam, the result is a Nicel prism. When a ray of light, lm, enters the nicel, of the two refracted rays (mo, mp), the ordinary one, mo, is totally reflected by the layer of Canada balsam and is thrown out

by the layer of Canada balsam and is thrown out of the crystal (cr), whilst the extraordinary ray, mp, passes through the prism (pgs) and emerges polarised. This ray is able subsequently to traverse a second nicol only when the principal section of this analysing nicol is parallel to that of the first polarising nicol. If, on the other hand, the two principal sections are perpendicular, the ray under gives total reduction and will not pass through the second nicol, in intermediate positions, varying quantities of light are allowed to pass. If a layer of water is placed between the perpendicular nicols, still no light will pass through the analyser, but if a sugar solution is interposed, the light passes with a greater or less intensity through the analyser, which must be rotated through a certain angle (proportional to the quantity of sugar) to produce total disappearance of the light. In order to determine exactly the quantity of sugar) to produce total disappearance of the light In order to determine exactly

when the luminous ray is extinguished (even in this case a kind of half-shadow is always observed), Soleil attempted to divide the luminous field into two halves with complementary colours Indeed, if a ray of polarised light is passed through a quartz plate-placed hetween the two nicols, one half of this plate being dextro- and the other levo rotatory, and the junction of the two lying exactly on the axis of the light, the two halves of the field will appear illuminated with complementary colours. If the plate is 3.75 mm, in thickness and the analyser is rotated through

1 - 1 1 1

The source of monochromatic light is a double bunsen flame coloured with sodium chloride, the light being collected by the lens, B, and the observation made through the eye piece, O The scale of the apparatus is regulated by the screw, Z, so that it reads zero when the two halves of the field are equally illuminated If a tube containing a liquid, interposed between the two mools, causes the right hand half of the field to darken, the liquid is dextro rotatory, while darkening of the left hand half indicates a layo rotatory compound From the rotation read on the scale, the specific rotation may be calculated by the formulæ given on p 28

The practical examination of sugars is made with polarimeters furnished with special scales and known as saccharimeters; the Laurent polarimeter has a saccharimetric gradua-

tion as well as that showing or cular degrees

In the French saccharmeters (Soleil and Laurent) the 100 division corresponds with a normal aqueous solution of pure saccharose (obtained by precipitation of a very concentrated aqueous solution with alcohol and drying at 60° to 70°) containing 16 350 grins in 100 c c at 17 5°, the reading being made in a tube 20 cm long (the same reading is given by a quartz plate 1 mm in thickness) In the German instruments (Ventzke Scheibler, Schmidt and Haensch) the 100 reading is obtained with a length of 20 cm of a saccharose solution of sp gr 11, which contains 26 048 grms. per 100 cc at the temperature 17 5°1 Thus, a reading of one division corresponds with 0 26048 grm of saccharose per 100 c c , or 1 grm. of sugar per 100 c c. gives a reading of 3 839 divisions

The source of light for modern saccharimeters is an incandescent gas burner enclosed in a blackened metal chimney fitted with a ground glass window, or an incandescent electric lamp of at least 32 candle-power with a ground glass globe and also enclosed in a

black case In order that the apparatus may not become heated, the lamp should be placed at a distance of about 15 cm, and to render the luminous fields more distinct the light is passed first through a glass cell with parallel walls filled with 6 per cent. bichromate solution in a layer 15 mm thick, in this way the more refractive rays are absorbed and a uniform yellow light obtained The normal tube of the saccharimeter contains a column of

liquid exactly 20 cm long, but for very dilute and slightly rotating solutions tubes of 30, 40, and 50 om are used, whilst for solutions which are not quite colourless tubes of 10 or 5 cm may be employed, in all cases the readings are referred to the normal length of 20 cm. Some tubes are provided with an aperature for the introduction of a thermometer, so that the temperature of the solution may be read in the instrument.

The saccharmeter scale extends from 0 to 100 divisions on the positive side and to 30 on the negative side. The integral divisions are given by the zero of the vernior, N (Fig. 377), and the decimal parts by that division of the vernier scale which coincides exactly with a division on the scale, in Fig. 377 the reading is +26 divisions.²

24 5°, the two halves of the field are almost completely extinguished and assume a pale red coloration, similar in the two halves. If, however, a sugar solution is interposed, the two halves assume different colours, extinction being restored by rotation of the analysing nicel Later assume different colours, extinction being restored by rotation of the analysing nicol Lator Soleil suggested compensating the rotation of the sugar solution by introducing, to a greater or less extent, between the nicols, a conical quartz plate or compensator, moved by a rack indicating on a scale the thickness of the plate and hence the equivalent rotation. The more modern saccharimeters of the Soleil Ventzke type have two compensators, each formed of two quartz wedges (MN and HK, Fig. 376) of opposite rotations, and are fitted also with the Lippich polarium formed of three nicols (P), which give a field divided into three zones; when these zones are not equally illuminated, the two lateral ones show a colour different from that of the middle one. The analyser is enclosed in a metal box to protect it from dust. The two compensators with their scales are regulated by two screws, V and V' When the two scales indicate zero, the three zones should be equally illuminated

1 That is, in 100 Mohr c.c., 1 Mohr c c being the volume of 1 grm of water at 17 5° weighted in air with brass weights. The true c.c. is the volume of 1 grm of water at 4° weighed in air with brass weights. The true c.c. is the volume of 1 grm of water at 4° weighed in air with brass weights. The true c.c. is the volume of 1 grm of water at 4° weighed in air with brass weights. The true c.c. is the volume of 1 grm of water at 4° weighed in a varue calculation on the basis of the coefficient of expansion of water shows that 100 Mohr c or are equal to 100-234 true c c, so that 100 true c.c. of the normal saccharces solution at 17 5° would contain 25 987 grms. of saccharces. The International Commission for uniform methods of sugar

contain 25 987 grms. of saccharose. The International Commission for uniform methods of sugar obtain 20 67 gims. of secondaries. The intermediate to ministent metric in internal of a sugar analysis proposed in 1900 the fixing of the 100 point of the secondarimeter by a length of 20 cm of a solution obtained by dissolving 26 grms, of pure secondarose in water to a volume of 100 true c c. at 20° and polarising at 20° (100 true c c. of water at 20° weigh 99 7174 grms in air

and 99 8294 grms. in vacuo)

With double compensation saccharimeters (furnished with two scales, a working scale

The specific rotatory power of saccharose varies little with the concentration (up to 30 per cent.) and with the temperature (between 15° and 25°), but it is best to work near to 20°, when $[a]_{p}^{p} = +665^{\circ}$ ¹

and a control, V and V', Fig. 370) the procedure is as follows. When the tube with the sugar solution is introduced between the modes the control scale is placed at zero, the working scale being then moved by the screw until the field is uniformly illuminated and its position read. The sugar solution is next removed and the control scale moved until the field is again uniform, the reading of this scale being nearly equal to the first reading of the working scale. The tube of solution is now again introduced and the position of the working scale, near to the zero point, read after its adjustment to give uniform luminosity. Finally the tube is again removed and the control scale moved until the field is uniform and its position read. The final result is obtained by subtracting the mean of the second pair of readings from the mean of the first pair. Thus, if the readings were + 780, + 784, +02, and -03, the result would be 785-005

1 CONSTANTS OF THE PRINCIPAL SUGARS

Hugar	[a] ^D	per	nther of g 100 to g n of one o	lving (oor of divi		grum. 100 c Fehl	ber of which luce e of lug's tion	Number of t a of Febling 8 solution reduced by 1 grm		
		Cheular degrees (true e.c.)	Ventrke divisions (trae c.c.)	Ventake divisions (Mohr c.c.)	Chrubar degrees (true e.e.)	Ventzke divisions (true c c)	Ventzke divisions (Mohr c.c.)	Non-dilluted	Diluted with 4 vols. of water	Son-dilated	vith 4 vole of water	
Sacolaroso Invert sugar (Hucuso Lovuloso Malteso Lactoso	1 1 14 1 -01 0 -50 1 -50 1	0 7610 2 176 0-047 0-6 170 0 3618	0 2000 0 8880 0 8276 0 1838 0 1266	0 20048 0 8306 0 1281 0 1841 0 1268	1 330 -0404 1 056 -1 860 2 764	7 846 -1 198 3 053 -6 430 7 908	3 839 -1 191 8 048 -6 190 7 010	0 404 0 475 0 51 t 0 770	0 515 0 1015 0 517 0 741	178 1 101 1 510 1 505 1	1 16 102 2 180 180	
(hydrated) Raffinese (hydrated) (anhydrous)	+179 1 +179 1 +272 1	0 9518 0 4785 0 400	0-3288 0-10545 0-14039	0-8205 0-10678 0-14005	1 051 2 000 2 463	3 041 0 044 7 123	3 035 0 083 7 110	U 070	0 070	118	148	

Invert sugar has a rotatory power varying markedly with the concentration and temperature A solution of saccharose containing the normal weight (20 048 grms.) contains, after inversion, 27 410 grms. of invert sugar, and if this is contained in 100 c c it gives a deviation of -32 00 in a 20 cm tube at 20°. The variation per degree of temperature is 0 5, so that at 0° this reading would be -42 00 and, in general, at any temperature, t, it would be -42 00 + 0 5 t 1 f no account is taken of variations due to the concentration, 1 division Ventzke corresponds with 0 8305 grm of invert sugar in 100 c c (Mohr), the solution being read in a 20 cm tube at 20°; or 1 grm of invert sugar dissolved in 100 Mohr c.c. gives a reading of -1 101 division. The specific rotatory power of invert sugar for different concentrations (from 1 to 35 per cent.) is given by the formula $[a]_{0}^{\infty} = -19$ 057 -0 03011c, a indicating the weight of invert sugar in 100 c c. For concentrations near 15 per cent the value -20 2° may be taken for the specific rotation of invert sugar, 1 circular degree then corresponding with 2 475 grm of invert sugar in 100 true c c and 1 grm, of invert sugar in 100 true c c. giving a rotation in circular degrees of -0 404.

Glucose has the specific rotation, $[a]_{B}^{0} = +52.8^{\circ}$, which is constant after mula rotation has ceased (see p 28), i.e., if the observation is made after the solution has been either left for 24 hours or boiled for 15 minutes. The concentration and the temperature have virtually no influence on the rotatory power.

on the rotatory power

For fructose (levulose) the data are uncertain owing to the difficulty of obtaining pure crystals, and the rotatory power varies with the concentration (for solutions of about 10 per cent strength, $[a]_{0}^{20} = -93^{\circ}$) and with the temperature (an increase of 1° of temperature diminishes the specific rotatory power by 0 67°)

specific rotatory power by 0 67°)

Lactose For C₁₂H₂₀O₁₁ + H₂O, after the disappearance of the muta-rotation, the specific rotation, which is but slightly influenced by the concentration, is [a]^{b1} = + 52 53°, this

diminishes by 0.075° for every degree rise in temperature.

Mallose has a specific rotation (after muta rotation has been destroyed, see Glucose) varying with the temperature and concentration according to the equation: $[a]_t^t = 140.375 - 0.01837 c = 0.095 t$, where t indicates the temperature and c the percentage by weight of anhydrous maltose. For medium concentrations, $[a]_t^{20} = +138.2^\circ$

Raffinose, $O_{18}H_{88}O_{16} + 5H_8O$, has the specific rotation, $[a]_0^{80} = +104.5^\circ$, which is almost independent of the temperature and concentration.

CHEMICAL DETERMINATION OF SUGARS With the exception of saccharose and raffinose, the angars (glucose, levulose, etc.) reduce Fehling's solution (an alkaline solution of copper sulphate containing salts of organic hydroxy acids, see pp 255 and 400) in the hot, with separation of a corresponding amount of cuprous oxide.1

NON-SUGAR, APPARENT DENSITY, TRUE DENSITY, AND QUOTIENT OF PURITY Sugars and their solutions are distinguished, commercially and industrially, by their content of saccharose, water, and soluls not sugar (e.g., salts and various organic substances)

The Brix saccharometer is graduated with pure sugar solutions, and honce gives results which are increasingly inaccurate as the degree of impurity of the sugar solutions increases

¹ Felling's solution is obtained by mixing, just before using, equal volumes of the two following solutions: (a) 09 278 gross of pure crystallised copper sulphate (CuBO₄ + 5H₃O), air dried until constant in weight, dissolved in water to 1 litre, (b) 340 grms of Rochelle salt (sodium potassium tartrate) and 100 grms of pure solid sodium hydroxide dissolved in water to 1 litre. Since saccharose does not reduce Febling's solution, it must be flust inverted. For this purpose, 9 5 grms, of the sugar are dissolved in 700 c of N/3 hydrochloric acid and the solution heated for 30 minutes in a water bath at 75°, neutralised with caustic sodia, and made up to 1 litre. This solution, which contains 10 grms of invert sugar, is then ready for testing. The Rebling test may be either volumetric or grayimetric, the conventration of the sugar

up to I litre. This solution, which contains 10 grass of invertinger, is then ready for testing. The Fehling test may be either volumetric or gravimetric, the concentration of the sugar being reduced to about 1 per cent. (by a preliminary trial) and the details of the procedure being followed exactly Volumetric method 40 c c of water and 10 c c of Fehling's solution (5 c c of each of the component solutions) are brought to boiling in an Erleumeyer ilask, a measured quantity (4 to 5 c c) of the sugar solution run in from a burette, and the liquid again heated and kept boiling for a definite time (two minutes for glucose or invert sugar, four minutes for maltose, and six for lactose), the flame is then removed, a few drops of the liquid litered, and the filtrate acidified with a little acctic acid and tested with a drop of potassium ferrocyunide solution. If a red coloration is produced, the test is repeated with a larger quantity of sugar solution, whilst if no red coloration appears, a less quantity of the sugar is tried. This procedure is continued untal in the last two tests, representing excess and deficiency of the sugar solution. is continued until in the last two tests, representing excess and deficiency of the sugar solution, the difference between the two volumes is not more than 0.1 c c, the mean of these two volumes is employed in calculating the sugar content of the solution. 100 c c of undiluted Folling's solution, under the above conditions, corresponds with 0 4945 grm. of glucoso, 0 533 of levulese, 0 515 of invert sugar, 0 740 of maltose, and 0 676 of lactose (hydrated)

The gravimetric estimation is carried out as follows (Allihn's method)

To 00 a a of Fehling's solution, diluted with 60 a a of boiled distilled water and heated to boiling, are added 25 a a of

solution, diluted with 60 a c of boiled durilled water and heated to boiling, are added 25 c c of the sugar solution of about 1 per cent concentration, the liquid being then again heated and kept boiling for a definite time (two minutes for glucose, levulose, and invert sugar, four for maltime, and six for lactose). The solution is then filtered at once, with the aid of a filter pump, through a dried and weighed Soxhlet tube containing a layer of asbestos, the cuprous oxide being repeatedly washed with a total quantity of 300 to 400 a.c of boiling water, then with two or three portions of alcohol, and finally with ether. The tube is then dried in an even, and the cuprous oxide subsequently reduced to metallic copper by passing a current of dry hydrogen through the tube and gently heating the exide with a small flame, the hydrogen is kept passing until the tube is quite cold, when the weight is taken. From the weight of copper thus obtained, the corresponding weight of sugar is read off from the following Table, all the numbers representing milligrams.

milligrams	
------------	--

Соррег	Glucose	Invert	Mattose	Lactose	Соррет	Clucose	Invert	Maltose	Тастове	Copper	Glucose	Invert	Maltore	Lactose
80 86 40 40 50 60 60 70 80 100 110 120 120 140 145 160	10 60 0 4 0 0 1 20 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	40 0 5 1 5 1 8 5 7 6 1 7 8 9	25 8 20 8 88 9 88 3 42 6 47 0 51 8 55 7 60 1 68 0 78 2 7 82 1 80 1 90 9 104 4 117 9 118 4 117 9 122 6 119 14	71 6 76-8 76-8 79-8 80 4 90-8 1015 1 108 8	155 160 165 175 185 196 206 216 220 225 220 225 220 226 226 226 226 226 227 227 227 227 227	70 1 7 84 3 86 9 5 92 1 04 7 8 100 0 105 3 107 0 118 5 121 2 123 9 126 6 118 7 8 140 0 142 8	81 6 84 3 86 7 0 80 7 4 96 2 96 2 100 6 103 4 100 1 111 7 117 5 112 2 120 0 181 8 184 8 140 4 140 1 140 1	136 0 140 4 144 0 140 4 158 8 158 8 158 7 171 6 180 5 185 5 185 5 103 0 189 5 103 0 103 0	112 0 116 4 120 2 123 0 127 8 181 6 135 4 136 4 136 4 136 7 154 5 160 7 154 5 161 7 168 7 168 8 168 7 199 6 199 6 199 6 190 8 200 8 200 8	280 285 200 305 305 815 825 825 825 840 845 845 856 870 376 886 870 385 886 896 895	146 5 148 3 151 0 168 8 150 8 150 8 169 5 170 1 175 0 170 1 175 0 178 7 181 6 184 8 167 2 100 0 105 7 198 4 207 4 210 0 212 9	161 9 164 0 167 8 160 8 160 8 160 8 172 7 176 0 178 0 181 7 178 0 181 7 180 8 190 8 190 8 203 0 200 1 200 2 212 4 215 5 221 8	247 8 2 266 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	904-1 812-3 816-3 812-3 812-3 82-4 92-4 92-4 92-4 92-4 92-4 92-4 92-4 9

Apparent density is that shown by the Brix hydrometer, while the real density corresponds with the true content of sugar determined by direct analysis (by the polarimeter or, after inversion, by Fehling's solution) The difference between the real and apparent densities, expressed in degrees Brix, indicates the non-sugar in Brix degrees, while the ratio between the real and apparent densities, in degrees Brix, is termed the quotient of purity and, when multiplied by 100, shows the percentage of sugar present independently of the water

In the unalysis of a mixture of various sugars a number of optical and chemical tests must be made in order to deduce, directly or indirectly, the quantities of the separate components (see Villavecchia, "Applied Analytical Chemistry," Vol. II, pp. 114 ct seq 1)

¹ If only saccharose and another sugar are present, p grms, of the mixture are dissolved m water to 100 e.e. and the polarisation, P, read, if a_1 is the rotation of 1 grm of saccharose per 100 e.e. and a_2 that of 1 grm, of the other sugar, the quantities x and y of saccharose and the other sugar respectively are given by the formulæ (I) $x = \frac{P}{a_1} - \frac{a_2 p}{a_2}$, (II) $y = \frac{a_1 p}{a_1} - \frac{P}{a_2}$, since x + y = p (III) and $a_1 x + a_2 y = P$ (IV) The values of a_1 , a_2 , and P must be given their proper algebraic signs (+ or -)

(1) In the special case of a maxime of succharose and glucose, the components x and y may be determined in various ways:

(1) The glucese (y) may be estimated by means of Fehling's solution, formula IV then (1) The gluence (y) may be estimated by means of Ferning's solution to a very slight extent, gives $x = \frac{P - a_2 y}{a_1}$ (V) Since saccharose reduces Felling's solution to a very slight extent, small proportions of gluence are best determined by means of Soldaim's reagent, which consists of 150 graps, of potassium brearbonate, 104 4 graps, of normal potassium carbonate, and 100 c c of the copper sulphate solution used for Fehling's solution, made up to a litre with water (2) The solution of the mixture is polarised (P), the saccharose being inverted and the polarisation again read (P_1) If a_2 is the rotation of 1 grap, of invert sugar (=-1101), then, since 1 graph of saccharose gives 1053 grap of invert sugar, we have 1053 $a_0x + a_1y = P_1$ (VI)

and honce $x = \frac{P - P_1}{a_1 - 1058a_8}$ (VII) and $y = \frac{a_1P_1 - 1058a_0P_1}{a_2(a_1 - 1058a_0)}$ (VIII), a_1 having the value 3 830 and a_2 3 057, it follows that $x = \frac{P - P_1}{6003}$ (IX) and $y = \frac{3830P_1 + 1254P}{5003 \times 3057}$ (\$\lambda\$), which are the quantities of the two sugars in p grans, of the mixture. The percentages will therefore be $\frac{100x}{\text{and}}$ and $\frac{100y}{\text{respectively}}$ For a mixture of saccharose and levelose, $a_1 = -5439$, so that $y = -3830P_1 - 1254P$, for saccharose and invert sugar, $a_2 = -1191$ and the denominator y = -27701. becomes 0.000 instead of 27 701, for maxtures of succharose and mallose, $a_2 = 7.040$ and $y = \frac{3.830P_1 + 1.254P}{5.003 \times 7.040}$, for succharose and lactose hydrate, $a_2 = 3.035$

(3) The glucose is first determined by means of Fehling's solution, in another portion of

(3) The glucose is first determined by means of Febling's solution, in another portion of the solution the saccharose is inverted and the reducing sugars again estimated with Febling's solution the difference between these two estimations gives the invert sugar and this, multiplied by 0.95, the saccharose and raffinose, the polarisation is determined before (P) and after (P_1) inversion, a_1 and a_2 being the known rotations of 1 grm of each of the two sugars and a_0 and a_4 those of 1 grm of the respective inverted products, it follows that $a_1x + a_2y = P_1$ (XIII) and 1.053 $a_2x + 1.030$ $a_4y = P_1$ (XIV), substitution in these of the values $a_1 = 3.899$, $a_2 = 7.11$, 1.053 $a_4 = -1.254$ and 1.030 $a_4 = 3.643$ gives $x = \frac{0.5124P - P_1}{3.2211}$

and $y = \frac{1254P + 3830P_1}{220}$ For the determination of the radiuose by means of methyl

phenylhydrazine, in presence of saccharose and invert sugar, see Raffinose, p 585 ((*) When two reducing sugars but neither saccharose not raffinose is present, it is sufficient to measure the polarisation and apply formule I to IV. But if a non-saccharine substance is also present, it is necessary to determine also the number (F) of o o of Febling's solution reduced by a weight, p, of the substance, if b_1 and b_2 are the volumes (o o) of Febling's solution reduced by I gem, of each of the two sugars dissolved in 100 c c, then: $a_1x + a_2y = P$ (XV) and $b_1x + b_2y = F$ (XVI) and hence $x = \frac{b_2P - a_3F}{a_1b_2 - a_2b_1}$ and $y = \frac{a_2F - b_1P}{a_1b_2 - a_2b_1}$ With a maxime of theorem and levulose, $a_1 = 3.057$, $a_2 = -5.439$, $b_1 = 202.4$, and $b_2 = 180$, so that $x = \frac{180P + 5.439F}{1609}$ and $y = \frac{3.057F - 202.4P}{1609}$ For maximes of glucose and mallose, a_3 has the

value 7 040 and b_a 135; these last two numbers hold also for mixtures of sneet sugar and mallose, but then $a_1 = -1$ 101 and $b_1 = 194$, for mixtures of gluces and lactose, $a_1 = 3$ 057, $a_2 = 3$ 035, $b_1 = 2024$, and $b_2 = 148$, while for sneet sugar and lactose, a_1 and b_2 have the values just given, but $a_1 = -1$ 101 and $b_1 = 104$.

(D) With a mature of saccharose (x), glucose (y), and levulose (z), if a weight, p, is dissolved to 100 c c., and a_1 , a_2 , a_3 , a_4 represent the respective rotations of 1 grm of each of these sugars and of invert sugar in 100 c.c., b_2 and b_3 the number of c.c. of Fehling's solution reduced by 1 grm. of each of the reducing sugars, P and P_1 , the polarisations before and after

The total ash of a sugar is determined by weighing 3 grain into a taird platinum dish, moistening it with a few drops of concentrated sulphuric acid, carbonising over a bunsen flame and momerating in a muffle at a low red heat (about 700°) so that the ash does not fuse From the sulphated ash, one-tenth of its weight is deducted in order to correct for the morease due to the formation of sulphates By means of tables the quantity of soluble ash can also be deduced

The water is determined by heating 5 to 10 grms of the sugar in a flat glass dish covered with a clock glass at 105° to 110° first for 2 hours and subsequently to constant weight Subtraction from 100 of the water and the sugar gives the percentage of total non sugar, while further subtraction of the ash gives the organic non sugar. The alkalimity of the sugar is determined by titrating an aqueous solution of 20 grms of the product with deer normal sulphure acid in presence of phenolphthalom, the result is calculated as grams of CaO per 100 grans, of sugar

PURIFICATION OF WASTE-WATERS FROM SUGAR-WORKS The waters requiring purification, since they are highly contaminated and readily fermont, are those used in emptying and washing the diffusors, those from the pulp presses and, partly, those in which the beets have been washed. The first contain up to 0.5 per cent of suspended matter and 0 6 to 0 8 per cent of dissolved organic matter, with about 0 3 per cent of sugar, they have a bad smell, and it is usually prohibited to introduce them as they stand into streams

Chemical purification (with lime or iron oxide or sulphate) is costly and insufficient, while the mechanical method of filtration to remove the suspended matter does something but only partially solves the problem. Biological purification (see Vol I, p 240), preceded by filtration or by aeration (omitting the septic tank) gives better results than the older processes, but is not entirely satisfactory (it eliminates 40 to 70 per cent. of the organic The principal bacteria which destroy saccharose are Leuconostoe and Clostrulium The problem of the complete purification of these waste-waters still remains unsolved

C. TRIOSES

RAFFINOSE, $C_{18}H_{32}O_{16} + 5H_{2}O$, forms pointed crystals and has a very high rotatory power ($[a]_{0}^{10} = +1045^{\circ}$), and since also succhaiose containing

inversion, and F the number of a c of Fehling's solution reduced by weight p of the substance, then (XVII) $P = a_1x + a_2y + a_3z$, $P_1 = 1.053$ $a_4x + a_2y + a_5z$; $F - b_2y + b_3z$. The first two of these give $x = \frac{P - P_1}{a_1 - 1.053a_4}$, which corresponds with formula VII. Then (NVIII) $a_2y + a_3z = P - a_1x$ and $b_2y + b_3z = F$, which are analogous to formula AV, allow of the determination of the values of y and z. Thus $x = \frac{P - P_1}{5.093}$ and for y and z we have, in analogy to formula XVI (diminishing the polarisation, P, by the rotation of the saccharose, 3.830x), $y = \frac{233P + 714P_1 + 27.7F}{8500}$ and $z = \frac{15.57F - 254P - 777P_1}{8500}$ With a maxture of succharose (x) and lactors (z) the saccharose (z)(x), envert sugar (y) and lactose (z), the saccharose as arrived at as above, and then $y = \frac{1546F - 1856P - 508P_1}{2900}$ and $z = \frac{0.000F + 243P + 745P_1}{2000}$. 3890 8800

Practical Examples 26-048 grms. of the sugar or mixed sugars are dissolved in a 100 (or flask and, if the solution is coloured, basic lead acctate solution (10 to 30 drops) is added drop by drop until it forms no further turbidity, the solution is made up to 100 c or with water, filtered through a dry filter and polarised in a 20 cm. tube, a drop of acetic acid being proviously added, if necessary, to make the liquid clearer

If it is thought desirable to eliminate the excess of lead acctate, the liquid is made up to volume with saturated sodium sulphate solution instead of with water.

To the case of a mixture of invert sugar and saccharose, if the normal weight solution gives

In the case of a mixture of invert sugar and saccharose, if the normal weight solution gives a rotation of +24 0 before and -27 0 after inversion, the quantity of saccharose in 100 c c of the solution will be $\frac{24+27}{6.093} = 10$ 01, and that of invert sugar $\frac{8.899\times27-1.254\times21}{0.000}$ 12 12 grms.

If other sugars are also present, the invert sugar is first determined with Fehling's solution such quantity of the sugar solution being taken (after a preliminary trial) as contains about 0.2 grm. of invert sugar and the determination being made with 50 cc of Fehling's solution by the gravimetro method. The result is subject to a slight correction, according to a Table by Meisal and Hiller, for the influence of the saccharose on the Fehling's solution, but this only in cases where the invert sugar is present in relatively small proportion compared with the saccharose, as, for instance, when samples of saccharose are being analyzed

raffinose exhibits pointed crystals and an increased rotation, raffinose is known in Germany as Spitzenzucker or Phiszucker— It is a hexatriose, and when hydrolysed takes up $2H_2O$, giving equal proportions of d-glucose, d-fructose, and d-galactose—By restricting the hydrolysis, most suitably by effecting it with enzymes, an intermediate stage may be realised, consisting of d-fructose and melibiose (isomeric with lactose), which is subsequently resolved into d-glucose and d-galactose—Raffinose is found together with cane-sugar in the sugar-beet, its amount varying with the season—In the manufacture of saccharose, it accumulates in the molasses and often occurs abundantly in the sugar extracted from beet-molasses by the strontia process, in the final syrup from this treatment it occurs sometimes to the extent of 20 per cent—Raffinose does not give the reactions of the monoses (reduction of Fehling's solution, etc.), and hence contains no carbonyl group, its rational formula being

Mclibrose, which, like lactose, exhibits the reactions of the monoses and contains a curbonyl group, is represented thus $(C_0H_{11}O_5 \ O) \ C_0H_{11}O_5$ So that raffi-

nose usually decomposes first at the point where a carbonyl group occurs (between glucose and fructose), otherwise it would yield a biose without a free carbonyl group. Indeed, Neuberg (1907) has shown that the action of emulsin on raffinose gives galactose and cane-sugar (which does not give the monose leactions), this decomposition thus occurring at the opposite end of the mole cule. This observation supports Herzfeld's hypothesis that in the beet raffinose is formed from saccharose and galactose, the latter originating in the decomposition of pectic substances, possibly by the action of an anti-emulsin.

In presence of saccharose and invert sugar, raffinose may be determined quantitatively by the optical method previously described (Saccharimetry), or by the method devised by Ofner (1907), who extracts the whole of the raffinose with pure methyl alcohol, evaporates the alcohol, hydrolyses the remaining syrup for 3 hours on the water bath with 3 per cent sulphuric acid, and then propipitates the galactose as methylphenylhydrazone, which is quite insoluble and can be easily weighed; the corresponding weight of raffinose can then be calculated. An exact determination of raffinose in sugar, which almost always contains less than 0.5 per cent of it, is very difficult. The presence of raffinose in small proportion in saccharose is regarded as probable if the ratio between non-sugar and ash is less than 1.5

D. TETROSES

MANNOTETROSE, C₂₄H₄₂O₂₁, is found in manna, and yields 2 mola galactose, 1 of fruotose, and 1 of glucose on hydrolysis

E HIGHER POLYOSES

Starch, Dextrin, Gum, Glycogen, Cellulose

These are not, or but slightly, sweet, and are amorphous and, in some cases, insoluble in water. On hydrolysis they usually give either pentoses alone or hexoses alone, pentoses and hexoses being formed together only in raise instances. Their molecular weights are unknown, but their molecules are very large and are represented by the general formula, $n\left(C_6H_{10}O_6\right)-(n-1)H_2O$, where n is very large, this approximates to $(C_6H_{10}O_6)^n$, which represents the results of analysis

STARCH, (C₆H₁₀O₅)_s It has already been pointed out (pp 133, 140, and 125) how starch originates in vegetable organisms and how it passes from the eaves, where it is formed under the influence of chlorophyll and of light, to the reserve stores of the plants (tubers, seeds, etc., in cryptogams, which have no chlorophyll, starch is not formed). It is a carbohydrate, and occurs in white granules insoluble in both cold and hot water, although with the latter to swells up, forming starch paste, which is coloured a characteristic deep blue

by dilute iodine solution Starch paste is dissolved by acids, forming glucose (see p 532), and by diastase (see pp 133, 140, and 201), forming intermediate polyoses with less complex molecules (dextrins) and then maltose and isomaltose Starch does not give the reactions of the monoses (ι e, with Fehling's solution, phenylhydrazine, etc.), and hence contains no free carbonyl

groups, so that its rational formula (see pp 523, 538) will be $(C_0H_{10}O_5 O)$ $(C_0H_{10}O_4 O C_6H_{10}O_4)$ $(O C_6H_{10}O_5)$, where there is only one dicarbonyl linking, possibly in the middle, two such linkings are madmissible, since otherwise decomposition should give, together with d-glucose, another substance with two carbonyl groups Such a substance has, however, never been obtained

The molecular weight has not been established, but it must be very high, and, according to Syniewski, the formula is $C_{210}\dot{H}_{300}O_{180}$, the molecule consisting of twelve C_{10} nuclei

The shape of the starch granules varies with the plant from which they are obtained, so that it is possible to ascertain the origin of staich by observing it under the microscope (with a magnification of 200 diameters, see Figs. 378) to 385) 1 When examined in polarised light, between crossed nicols, potatostarch granules, having a stratified structure and an eccentric nucleus, show a black cross like the multiplication sign (X) (Fig. 386), while other stratified starch granules with a central nucleus also behave like doubly refructing crystals but show a black cross more like the sign of addition (+), this is seen well with wheat starch (Fig 387) Starch granules show their strutification better under the microscope if they are treated with a dilute solution of chromic acid containing a little sulphuric acid, and in some cases durk radial stræ also appear

Commercially the name flour is given to starches from cereals, leguminosess, acorns, chestnuts, etc., and that of starch to those from potatoes, manioc root, arrowroot, palm stems, sago, etc., but chemically there is no difference flour of these plants contains more or less gluten (wheat, 12 pc. cent), rice, 3 to 5 per cent), and wheat yields 55 to 65 per cent of starch, maize, 00 to 65 per cent , rice, 70 to 73 per cent , rye, 45 per cent , oats, 32 per cent , bailey,

38 per cent , beans, peas, and lentils, about 38 per cent 2

¹ Starches of different kinds may possess granules of smiler form, but may be distinguished by the varying mean magnitudes of the granules, although in most kinds there are a greater or less number of granules much smaller than the average, these being sometimes grouped together in evold or bunch like masses (e g, rice, oat, starch, etc.) The average sizes of the granules of the different starches, in micromillimetres (μ), are generally as follows

(1)	Wheat:	large	granules,	20-20 д,	more	common,	emall	granul	34, 7μ	
(2)	Barloy	,,	- 19	20μ,	,,	99	- 11	. ,,	4 5u	
(3)	Rye	,,	,,	36µ.		11	**		6µ	
(4)	Potato		.,	60-80µ.			••	••	20μ	
(5)	Rice b	unche		204	of sev	reral grant	iles . s	oparata	granules	Бu
(0)	Oats	11	-	30μ,					E	84
(7)	Maize		granules.		more	common ,	amall	granule	м. Ки	٦,
	Buckwh					nedra)	,,	"	Δ, ομ σμ	

² The mean percentage compositions of potatoes, wheat, and rice are as follow:

	Water	Starch	Non nitrogenous extractives	Celiuloso	Fat	Proteins	Ash
Potatoes Wheat	76 18 5	18 7 64	1 8 8	0 8 2 5	0 2 2 0	2 1 12 5	12
Rico	18 1	70	3 8	0.6	0.6	78	1.0

Potato starch in particular always contains, as a component resisting elimination by any purification, 0 165 per cent. of P_aO_a , corresponding with 0 35 per cent. of ash, and it has been

suggested that starch consists of the molecular complex, $(C_0H_{10}O_5)n.PO \leftarrow O_0O_6$, n being 260

.

Fig 378 -Rice starch.

Fig. 879 —Maise starch.
(a) Free granules, (b) horny part

Fra 380 —Buckwheat starch

Fig. 381—Oat starch.

Collular tissue, (b) free granules.

Fra 382 -Rye starch

Fre 383 -- Whoat starol.

Fro. 384.—Barley starch

Fra 385 —Potato starch

Fig. 387 —Wheat starch in polarised light.

Fig. 386.—Potato staroli in polarised light.

88--2

The specific gravity of potato starch, when air-dried, is 1 5029, and when dried at 100°, 1 6330

When heated above 160° it is transformed into dextrin

MANUFACTURE In Italy starch is extracted principally from rice, maire, etc., but in Germany almost exclusively from potatoes A starch factory should always have a supply

of pure cold water, not very hard and free from iron.

Fresh mature potatoes contain about 20 per cent of storch (minimum 18 per cent, maximum 21 per cent), the proportion being determined sufficiently exactly by a very rapid physical process, proposed in 1837 by Berg, applied in 1845 by Balling, and improved in 1880 by Behrend, Märcker, and Morgon An exact relation exists between the specific gravity of potatoes and their starch-content, and it has been found that the difference

between the total dry substance (S) and the starch content (F) is constant (the proportion of non starch, N, is on the average 5 752 per cent.) Thus a determination of the dry matter gives the proportion of starch, since F = S - N Further, if the relation between F and the specific gravity is determined once for all, a Table oan be prepared showing the proportion of dry matter or of starch from the specific gravity, which can be determined from the loss in weight of a given weight of potatoes in air (5 kilos) when weighed immersed in water, if, for instance, this weight is 400 grms, the loss of weight will be 4000 grms

375	Weight in water of 5 kilos of potatoes, grms	Specific gravity	Dry matter per cent.	Starch per ceut.	Weight in water of 6 kilos of potatoes grms	Specific gravity	Dry matter, per cent	Starch. per cent	Weight in water of 5 kilos of potators, grms	Specific	Dry matter per cent.	Starch, per cent.
445 1 098 23 8 17 7 550 1 124 29 1 23 8 055 1 151 450 1 000 28 7 17 9 555 1 125 29 3 23 5 060 1 152 455 1 100 24-0 18 2 560 1 120 29-5 23 7 066 1 153 460 1 101 24-2 18 4 565 1 127 29-8 24 0 070 1 153 465 1 102 24 4 18 6 570 1 129 30-2 24-4 675 1 156	380 385 386 400 405 410 415 420 425 430 446 446 455 460	1 081 1 083 1 084 1 086 1 087 1 088 1 091 1 092 1 093 1 094 1 095 1 097 1 098 1 090 1 100 1 101	19 9 20 3 20 5 20 9 21 2 21 4 21 6 22 0 22 2 22 4 22 7 22 9 23 8 23 5 24 0 24 2	14 1 14 5 14 7 15 1 15 6 16 2 16 4 16 6 17 1 17 7 17 7 18 2 18 4	485 490 495 505 510 515 520 525 530 535 540 545 556 560 565	1 107 1 109 1 110 1 111 1 112 1 113 1 114 1 115 1 117 1 110 1 120 1 121 1 128 1 124 1 126 1 120 1 121	25 5 25 0 20 1 20 3 20 5 26 5 26 9 27 2 28 0 28 3 28 5 28 9 29 1 29 8	19 7 20 1 20 8 20 6 20 6 20 7 20 9 21 1 21 4 21 8 22 2 22 7 28 1 28 3 28 5 24 0	500 506 600 6105 610 616 620 625 630 636 640 640 645 640 656 660	1:134 1:135 1:136 1:136 1:138 1:140 1:142 1:143 1:144 1:145 1:147 1:148 1:149 1:151 1:152 1:153 1:155	30 8 31 5 31 5 31 7 32 1 32 3 32 5 33 2 33 4 34 4 35 4 36 4 36 4 36 4 36 6 36 6 36 6 36 6 36	25 0 1 25 5 7 2 26 5 7 2 26 5 7 2 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

and the specific gravity $5000 ext{ } 4000 = 1 ext{ } 087$, which the Table shows to correspond with 21 2 per cent. of dry matter and 15 4 per cent of starch. By means of the balance shown in Figs 388 and 380 or of the Reimann or Schwarzer basket steelyard the potatoes can be rapidly weighed in air and in water at 17 5° . To calculate the practical yield the value

given in the Table should be diminished by 1 5 per cent., since part of the starch is converted, during extraction, into soluble sugar, which may also exist to a small extent in potatoes

which are either not too ripe of too old. The washing of potatoes in storol factories is most important, and is carried out in machines of valous types. The first washing, to remove the soil and stones, which are present to the extent of about 8 per cent., can be done in the machine shown in Fig. 105 (p. 142) or in transporter channels like those used for sugar beets (see Figs. 318–320). The potatoes are then raised by an inclined Archinedean screw in a perforated channel (see Fig. 321), the washing being repeated with copious jets of water in a long vessel having a concave perforated bottom and fitted with vaned stirrers, which are sometimes furnished with brushes (Siemen's washer,

Fto 394.

Fig 390). The potatoes pass along the vessel in the opposite direction to that taken by the water, which is introduced clean at the extremity where the washed potatoes emerge. The washing of 40 tons of potatoes per 24 hours requires, on an average, 20 cu metres of water per hour

The rasps used to convert the potatoes into pulp, by rupturing all the starch containing

cells, consist of a number of saw-edged steel plates fixed radially round a drum which hadiameter of 50 to 60 cm (Figs. 391 and 392) and rotates at a speed of 800 to 1000 revolutions per minute. The Angele rasp (Fig. 393) consists of such a drum working in a cylindrical casing, which in some forms has a saw toothed inner surface (Schmidt rasp., Fig. 394).

the potatoes from the feeder being forced against the drum by means of an adjusta wooden compressor, A, and the resulting pulp drawn between the two indented surface A powerful water-jet keeps the saw-edges clean and washes the pulp into a tank und neath. The pulp from which the starch has been removed (100 tons of potatoes give 3 to tons of dried residues) still contains unaltered starch cells, and as a loss of 2 to 3 per ce

of starch would thus result, the pulp is passed into ordinary horizontal stone mills like those used in flour mills, the stones having a diameter of about a metre and making 150 turns per minute. The Champoniois rasp, used in France, is composed of a drum, E (Figs. 305 and 306), formed of a number of saw blades with the teeth turned inwards,

the washed potatoes enter by the feeder, J, and are forced against the saw edged periphery by the blades, F, which are rapidly rotated by the pulley, H. A water jet supplied at K washes the pull between the saw blades into the vessel, N, below, loss by spiriting being prevented by the casing, M

For large factories, however, Uhland has suggested the replacement of the null by a special machine which completely disintegrates the remaining starch containing cells without rupturing the fibres. This machine consists of a horizontal cone of east iron, either channelled or edged (Figs. 307 and 308) and enclosed in a casing of similar shape, by means of a screw regulator, V, the distance between the cone and casing can be varied. The coarse paste is introduced by a hopper and fed on

Fra 800

to the cone, C, by the blades, S, being subsequently discharged through the channel, R. In order to separate the starch granules from the residual pulp, which holds in solution the vegetable juice and in suspension the cellular residues of the vegetable tissues, epidermis, etc., the pulp is passed immediately (to avoid fermentation) on to copper sieves of various

Fra 400

types (usually semi cylindrical and soveral metros in length), these retain the residues, while a water-spray, helped by suitable scrapers, carries the starch granules through the meshes (see transverse section, Fig 309), the same scrapers, which are arranged helically, carry the exhausted residues to the far end of the sieve and keep the latter clean

When these operations are carried out properly and in large works, the total loss is not more than 0 3 kilo of dry starch on 100 kilos of washed potatoes, these losses are detected by estimating chemically the starch in the ultimate exhausted

residues.

The milky liquid collected under the sieves also contains, in addition to starch, small proportions of colouring and gummy matters, proteins, dextrin, and very fine particles of epidermis, sand, etc. In order to separate these impurities, the starch milk is introduced into large concrete vessels, where the sand separates in a few minutes. The liquid with the

suspended starch is then removed to another vessel, where the whole of the starch separates after a rest of 10 to 12 hours, but in some cases the starch is subjected to levigation with a gentle current of water in a number of vessels, in which the starch forms successive deposits. The water and the dissolved impurities are readily separated, either during or after standing, by means of a floating syphon consisting of a funnel joined to an india rubber tube (Fig. 400). The volume of the deposit tanks is taken to be about 1 cu metre per 100 kilos of potatoes treated

In some starch factories the starch is still separated from the milky liquid by a kind of levigation on in clined planes, the liquid passing slowly along large wooden or cement channels, 30 metres long, 1 to 3 metres wide, 50 to 60 cm. deep, and with a slope of 3 to 5 mm. per metre. The coarser starch, together with

a little sand, is deposited in the first parts of the channel, then comes the best starch, while the smallest granules, mixed with a few organic impurities, are the last to settle. The water which emerges from the end of the channel is passed through two or three depositing tanks before being rejected. In order that the working may be continuous, two channels are always employed, one being in use while the starch is being removed from the other. The channels are fed from large reservoirs provided with stirrers so that the density of the starch suspension may be kept constant and uniform (3° Bé., the liquid

being fed at the rate of 6 litres per minute per 2 5 sq metres of channel surface) The crude starch from the first and last portions of the channel may be purified by repeating the levigation, but that obtained from depositing tanks forms a compact mass compose of a lower layer of coarse granules mixed with a little sand, an intermediate purer layer and a grey uppermost layer mixed with organic detritus. It is indispensable to wash the starch quickly, as in time the impurities impart to it a pale yellow colour. For this purpose the layer of starch—the so called green starch (i.e., impure, moist starch)—is covered with double its depth of water, a suspended stirrer fitted with long blades (Pig. 401

being then lowered to the surface of the starch, the first more impure layer is thus stirred up so as to form a dense milk of 4° to 5° Bé., this being deposited in an adjacent wooden vat or on the inclined channel. The middle purer layer is then stirred up and the suspension removed, and so on.

In these wooden vats (see Fig 401) the starring is repeated,

this operation being continued until a perfectly white starch is obtained, the wash-waters

being removed after each deposition

When the starch is not refined in this way and dried, the growth of mould is prevented by keeping it under water slightly addified with sulphuric and until it is to be sold. This green starch, which is used, for example, for manufacturing glucose, contains about 50 to 55 per cent, of water, part of this can be removed in centrifuges similar to those used for sugar (p. 565), the perforated drum being coated inside with a fine cloth to retain the granules. The superficial layer of the cake of starch is scraped off, as it contains impurities, and the remainder (with 35 to 40 per cent of moisture) then discharged below, with a drum 80 cm in diameter 50 kilos of starch are obtained. The centrifuges are fed with a dense suspension of the starch of 20° Bé. The impure grey starch obtained in the secondary sedimentation vessels is mixed to a dense milk and passed through fine silk sieves, which

retain the detritus and solid proteins, etc., the sleved milk being convoyed to other finer sieves and then to the inclined channels or sedimentation vats. To prevent bacterial action and to increase the whiteness of starch, 0.5 kilo or more of calcium bisulphite solution (in some cases sulphurous acid is used) is sometimes added to each cubic metre of the milk. These reagents, as well as sulphuric acid or caustic soda in small proportions, facilitate the deposition of the starch in the tanks, but they impart a faint reaction to the final starch, and it is advisable to employ them only in the treatment of frozen or bad potatocs, where the product readily ferments and turns yellow. Bleaching is sometimes effected with dilute, filtered calcium hypochlorite solution (1–300), together with sulphuric acid, after a few minutes' contact, the starch is washed in an abundant supply of cold water until the reaction of the chlorine disappears. The last trace of yellow in the starch may be corrected by slight blueing with ultramarine, indigo carmine, Prussian blue, eto

When potato or cereal starch is to be prepared in cubical or similar cakes, the mass

, + ;

from the sedimentation tanks is introduced into moulds of galvanised or timed iron with perforated bases (the cubes are 10 cm in each direction), these are either enclosed in evacuated cases or, as Uhland suggested, subjected to considerable air pressure, so as to remove the water as far as possible (see Fig. 402). Fig. 403 shows how the batteries of moulds are arranged in large factories, the dense starch-oream from the vat fills a hoppor travelling on a suspended iron rail and stopping above each mould to fill it, when all the moulds are full, they are closed hermetically and the air compressor started. With a suitable machine the smooth cakes are removed whole from the moulds, and as they contain very little water, the time required for drying is considerably shortened.

Modern plants make use of another arrangement devised by Uhland (Fig 404) Here the moulds are fitted inside with a rubber bag with a perforated base and covered with cloth, this fits closely to the walls and gives a purer starch, while the moulds can be thoroughly cleaned after each operation

The drying of the starch is carried out in hot air desiccators, which readily reduce the moisture to 20 per cent., which is the customary proportion, if more moisture is present an allowance is made to the purchaser, but if there is less than 20 per cent, the seller loses, as no allowance is then made. In order to obtain starch of good appearance the tem perature of drying should be about 30° to 35° (at 50° it begins to swell and form lumps) and the air should issue from the desiccator almost saturated with moisture after traversing all the frames or gratings on which the moist starch is spread in a thin layer or in cakes. The best arrangement consists of channels or galleries 10 to 12 metres long, 1 2 metre wide,

and 2 metres high, through which trolleys carrying the frames pass from one end to the other, the iot, dry air is injected under slight ressure in the opposite direction by a large beheal fan, gentle suction eing applied at the far end if necessary Rapid drying depends not in much on the temperature as on he supply of the proper amount of pure, dry air The doors of he drying tunnel slide up, and

Fra 404

re opened just sufficiently to allow of the entry and exit of the trolleys from time to time every hour)

It has recently been proposed to employ mechanical driers consisting of a number of tories fitted with endless bands, or of long revolving cylinders, while in some cases drying a a vacuum has been practised as with distillery residues (see Fig. 151, p. 183), time and pace being thus economised and the output consequently greatly increased

The dried starch forms friable lumps, and to obtain it in powder it is passed first into rooved cylinders and then into sieves similar to those employed in nulls. For the use of all mills, see Vol I, p 652, this Vol, p 260. Microscopical appearance, see p 587

Yield of Starch and Treatment of Residues Of 20 knlos of starch present in potatocs, 7 to 18 are usually obtained in the pure, dry state, the rest going into the residues. The telst pulp, freed from starch (within 0 5 per cent.), contains the parenchyma and epidermis f the potatoes, which are composed largely of cellulose saturated with aqueous junces he pressed pulp (about 16 per cent. of the weight of the potatoes), which is sometimes ried (it then constitutes 3 to 4 per cent of the weight of the potatoes and contains 50 to 1 per cent. of starch), forms a good cattle-food, either alone or mixed with bran, chaff, etc. is dried in the vacuum apparatus used for "grains" (see p 183) or for beet pulp (see ig 335, p 553) The waste waters contain potash salts (0 06 per cent. $K_1O + 0$ 017 per nt. $P_2O_5 + 0$ 1 per cent. ash + 0 24 per cent sugar + 0 12 per cent. gum + 0 17 per nt. nitrogenous substances) and may be used for irrigating pasture land, if it is not gested quickly it undergoes fermentation. These waters are readily clarified by colloidal uminium hydroxide. The moist, non pressed pulp has the following percentage compositive water, 86; protein, 0 7 to 0 9, fat, 0 1, starch and extractives, 11 2, cellulose 5, ash, 0 4

WHEAT STARCH Since wheat also contains, in addition to 56 to 65 per cent of arch, 12 to 16 per cent of gluten, the separation of the latter renders the preparation of the arch more difficult. By the fermentation process (Halle) the gluten is rendered soluble

and consequently lost, so that only wheats containing little gluten are treated in this manner The non fermentation process, in which the gluten is recovered, is the one usually employed, more especially because no large amount of bad smelling liquor is formed, as is the case with the other method.

In the fermentation process the wheat is cleaned and steeped in water in apparatus similar to that used with barley to be malted (see Fig. 155, p. 195). When sufficiently soft to be squeezed between the fingers, the wheat is passed between a pair of smooth rolls which break the epidermis without crushing it too much. The mass is placed in large tanks and covered with the acid liquid from a previous fermentation, alcoholic fermenta tion starting in a few days and being followed by soid fermentations (lactic, butyric, acctic, eto) with evolution of gas, the fermentation is complete in 10 or 12 days in summer or 20 days in winter, the liquid being then clear, yellow, and covored with mould, but not yet smelling The sold liquid is decented off, and the starch separated from the brun in a finely perforated drum under a current of water The solid residue serves as entitle food, while the starch-milk is allowed to deposit in the ordinary vats, where it is washed, it is then conveyed to the fine sieves and inclined channels (see under Potato Starch) pure starch separated in this way should, however, contain a small proportion of gluten, since, during the drying, this facilitates the formation of so called crystals desirable in the commercial product.

The orude starch milk can be purified more rapidly in the Fosca-Docustio contribuge, which has a non-periorated drum. The purer starch is deposited first in a compact layer on the inner surface of the basket and the less pure starch milk remaining is discharged automatically before it deposits its impurities, new starch milk being introduced and treated similarly until a thick layer of moderately pure storch is obtained. The centrifuge is stopped, the water discharged from the middle, and the yellowish, superficial portion of the starch, which contains gluten, etc., removed with a sponge. The starch is then discharged, mixed with water in a vat fitted with a stirring arrangement, and the starch cream, sometimes after a little ultramarine or indigo carmine has been added, introduced into the suction moulds

The drying of the cakes (see Potato Starch) is carried out immediately (to avoid mouldgrowth), and in winter time this is done in an oven, the temperature of which is raised from 30° to 75°, in the summer the drying is begun in the air When a cortain stage is reached in the drying process, the cakes shrivel at the surface, this less pure portion is removed and the cakes broken into smaller blocks, which are wrapped in paper and dried further Under this treatment the mass gradually assumes the radiating structure 1

In the non-fermeniation process the arushed wheat is treated with a stream of water, being manipulated meanwhile in the form of a paste, which is placed on perforated channels or sieves so that the whole of the starch is gradually removed and the pasty gluten left The starch is then deposited in the ordinary manner, while the gluton is transferred to rotating cylinders with their inner surfaces covered with points, which retain the pure gluten, 2 the bran is washed away with water.

According to a suggestion by Fesca, the dry ground wheat is mixed with water and the paste introduced into a centrifuge with a perforated drum, the starch being separated by a continuous current of water, while the gluten remains in the centrifuge; the further operations are as usual. The Fesca process is very simple and more convenient than that

Wheat flour attains its maximum whiteness 30 to 60 days after grinding and retains it until about the sixth month, after which it slowly darkens. In America various patents have been filed, during the last few years, for obtaining this maximum whiteness more rapidly by treating the flour with ozone, chlorine, bromine, sulphur dioxide, etc., but better results are obtained with nitrogen peroxide (NO₂) According to some observers, flours bleached in this way begin to darken earlier, irregular staining taking place. The process which has given the most favourable results and has been largely applied in America and before the War also in Italy, is that of Wesener (Ger Pats. 209,550 and 232,204), according to which flour is bleached instantaneously in contact with a current of air containing mere traces of nitrosyl chloride (see Vol I, p 380); I kilo of the latter is sufficient to bleach 100 tons or even more of flour.

" In presence of a little water and at a moderate temperature, the glutan thus obtained undergoes a slight fermentation and becomes liquid, when dried in thin layers on metal plates, this is obtained in transparent sheets, which are used as a glue in the manufacture of boots Or the gluten is mixed with 5 per cent. of powdered salt and made into strings in presses, the strings are dried in an oven, when they become friable and readily convertible into flour, which is used in the preparation of dough and serves as a foodstuff when mixed with other products. The gluten contains 75 per cent. of nitrogenous substances, 21 of non-nitrogenous substances, 1 to 6 of fat and 1 5 of sah. a In presence of a little water and at a moderate temperature, the gluten thus obtained

described above. The average yields, calculated as percentages on the wheat, are $^{f\Pi}_{-}$ follow first quality starol, air dried, 54, gluten flour, 12, bran, mixed with a little gluten and staroh, 10 5, matters dissolved in the waste water, 14.

Microscopical appearance, see p 587

RICE STARCH On the average, rice 1 contains 77 per cent. of starch and less gluten (4 to 5 per cent.) than wheat, but the starch is more difficult to separate (for 1 part of gluten about 1 part of starch is lost) Of all the processes which have been suggested, that devised by Orlando Jones in 1840 still gives the best results. Use is generally made of waste rice (broken rice, costing 14s to 24s per quintal according to the season), which is softened in a large galvanused iron or iron steeping cylinder with a conical base, by means of dilute solutions of caustic soda (0 3 per cent. in winter, 0 5 per cent in summer) Here it is left for 5 to 15 hours, being mixed every 3 to 5 hours with a vigorous air jet, in winter the alkali solution is heated to 20° The duration of the steeping varies with the quality of the rose and with the season of the year, Italian rose requires 5 to 6 hours and Rangoon rice as much as 14 hours, the soda solution being changed in the latter case after six or eight hours. After steeping, the rice can be readily crushed between the fingers. The dissolved gluten (20 to 30 grass per litre) is separated from the alkaline liquid simply by accidification with sulphuric acid (in order to bring the gluten into such a condition that it can be filtered in a filter press, the temperature is raised to 80° or 1 kilo of lime is added per culno metro of the alkaline solution) In some cases the glutan is extracted with an alkaline liquid in an apparatus similar to beet-diffusors (see p. 572), while in others the extraction is carried out in a vacuum with agitation. The swellen and softened rice, con taining a little of the alkaline solution, is then ground between horizontal millstones, a liquid paste with 22 to 26 per cent. of starchy matter being obtained, this is pumped up into large square coment tanks provided with stirrers (see Fig. 401), where it is treated with more dilute caustic soda solution (0 2 per cent.), care being taken in summer that the temperature does not rise sufficiently to admit of fermentation. In these tanks the separation of the starch from the liquid occupies about 11 hours after the stirring is stopped. The liquid is decented and the residual starch mixed with a fresh quantity of () 2 per cent. NaOH solution and left for 45 minutes to settle. In some cases this washing is repeated a third and fourth time, the thin surface layer of yellow starch containing gluten, oto, being scraped off each time before adding fresh washing water, the scrapings from the first and second settlings are ground again in the stone mill, sieved, and mixed with the other starch. After the final washing, for which water is used, the starch-milk is conveyed to other coment depositing tanks, being proviously passed through oscillating, inclined silk sloves or through revolving perforated cylinders sprayed outside with water to prevent obstruction by impurities or by solid gluton (the gluten separates best with rather hard,

1 Rice (Oryza saism) is an annual plant belonging to the Graminem indigenous to Eastern India and, according to some, to Ethiopia. In Europe it is cultivated principally in Italy and also in Spain and in the south of Russia, particularly on irrigable lands. In Japan and Brazil it is grown in the moist soil of warm, tainy regions, while in America it is extensively cultivated in Florida and Southern Carolina. In rice plantations the bottom of the plant is kept under almost stagnant water, and, on account of the miasmata, which cause malarla, the fields should be at some distance from any habitation, the ripening of the head is brought about by the intense heat of summer. After the harvest the rice is separated from the car by means of sutable machines (threshers), but still retains the glumes or husk, being known as paddy rice. This is separated from the residues by means of concentric toothed cylinders and is then sleved and placed between two light, horizontal, stone discs (or brahmsn), one of which is fixed while the other revolves; in this way the husk is removed. The husk was formerly, and to some extent is now, separated from the rice by means of vertical pastles, which fall automatically but without touching the bottom of the mortar filled with the rice, the grains of rice are thus rubbed, one against the other, and the husk removed. The complete removal of the husk and dust is effected by means of a simple vertical mill similar to the double one used for black powder (Fig. 185) and making 30 to 40 turns per minute. The rice is finally polished in a double vertical conical apparatus, the inner cone of which is provided with brushes of vertical metal wires and revolves at the rate of 200 turns per minute, and rubs the rice against the outer perforated cone, the polished rice is discharged at the bottom. 100 kilos of paddy rice give 77 kilos of dehusked rice, or 67 of commercial rice, or 63 of unpolished or partially polished rice, or 59 of polished rice is discharged at the bottom. 100 kilos of paddy rice

chalky water) The deposited starch is mixed with water and centrifuged in a non per forated drum in the manner employed for wheat starch, the yellow surface layer being removed with a sponge Finally, it is made into a thick paste (24° Bé or about 50 per cent. of water, alkalimity less than 0.2 per cent) with water and inculded under an airpressure of two atmospheres or with a suction pump giving a vacuum of 600 mm (sec Figs 402, 403, 404), the starch has not a very bright appearance if made nito cakes immediately it leaves the centrifuge. In this way blocks containing 40 to 50 per cent of water are obtained, and these are subjected to a preliminary drying in an oven at 40° to 45°, after 5 to 8 days the mass contains 30 per cent of water and is shrivelled at the surface, owing to efflorescence of the gluten, etc This impure, yellow portion, which may constitute 15 per cent. of the whole, is sawn off, washed, centrifuged, filter pressed, and then either treated again or dried and sold as a lower grade product. The remaining blocks are dried further in the air or, more commonly, after wrapping in paper, in an oven, where the temperature is raised to 25° in two days, to 28° on the third, and then slowly to 32° or 35° In 15 to 20 days the mass contains 12 per cent of water and is crystallised com pletely in long, fragile needles with irregular surfaces, these blocks are then exposed to the air (sheltered from dust), the normal moisture-content of 15 to 18 per cent. being thus acquired (the alkalimity is usually below 0 15 per cent.) According to Ger Pat. 205,763, the formation of needles is accelerated by drying the moist starch rapidly, grinding and compressing in the moulds, the cakes are then wrapped in paper and placed in the ordinary channel ovens, through which warm, most air is passed. The starch may be bleached in the ordinary way with sulphur dioxide and blued with ultramarine (about 150 to 200 grms being added per 500 litres of dense cream before introducing it into the moulds) Difficulties are often encountered in the manufacture of rice starch, owing to the readiness with which fermentation occurs, this leading to generation of gas and to trouble in the settling and clearing of the liquids, the remedy lies in increasing the concentration of the alkali employed or in the use of sulphur dioxide. Rice gluten, separated from the various residues and alkaline wash waters, cannot be used for making shoemaker's paste.

Ruce starch is employed largely for making face powder and almost exclusively for the starching of linen, a gloss being obtained in the latter case by the addition of borax (6 to 8 per cent.), finely powdered steams and (2 to 3 per cent.), etc.

Statistics, see later Microscopical examination, see p 587

MAIZE STARCH The maize, which has an average starch content of 02 to 65 per cent., is softened in tepid water for 3 or 4 days and ground coarsely, the germ and bran being then separated and the remaining flour treated several times with sulphurous acid It is then sieved and the resulting starch milk treated as usual in sedimentation tanks, the last portions of gluten being removed. The form of the granules is shown on p 587

SOLUBLE STARCH This is used in large quantities as a dressing for textile fibres and as an adheave. It is prepared by the action on starch at different temperatures of many different reagents, such as alcohol and water, caustic soda, sulphuric acid, calcium hypo chlorite, gaseous chlorine, ammonium persulphate, hydrogen peroxide, formic acid, gaseous hydrogen chloride, diamali (a dense diastose syrup or malt extract, known in Germany as diastofor), hydrofluosihoic acid (at 80°), etc.

USES OF STARCH Large quantities of starch are used as a dressing in the spinning and weaving of textile fibres, in calico printing as a thickening material, in the manufacture of paper, in the preparation of adhesive paste, in the laundry and kitchen, as well as for making dextrin and glucose.¹

DEXTRIN is found ready formed in various vegetable juices, but is always mixed with starch and sugar, while that prepared artificially from starch by the action of heat, acid, or diastase consists of a mixture of products intermediate to starch and sugar (maltose and glucose) Several dextrins of various molecular magnitudes are known (achroodextrin, amylodextrin, erythrodextrin, etc.) Biltz and Truthe (1913) determined the molecular weights of various dextrins by measuring the osmotic pressures of their solutions, use being made of artificial membranes of copper ferrocyanide enclosed in pure collodion. The

¹ The adhesive power of starch is determined by heating a mixture of 4 grms with 50 c.c of water over a naked bunsen flame and boiling for a minute until it becomes transparent and begins to form froth, the flame being then removed, it, after shaking and allowing to cool, the paste is thick and cannot be poured out, the adhesive properties are satisfactory.

values obtained were amylodextim, 20,500 to 22,000 , achroodextrm, 8200 to 11,700 , erythrodextrm, 3000 to 6800 , β -dextrm, 950

According to some, dextrin has a marked aldehydic character, and hence gives all the reactions of the monoses, including those with phenylhydrazine and Fehling's reagent, while others hold that the aldehydic character is feeble, and others, again, that Fehling's solution is not reduced, even on boiling. This diversity of view is explained by the great difficulty of separating chemical individuals from the mixtures containing them, in any case all the dextrins prepared commercially reduce Fehling's solution to a greater or less extent. Dextrin is not fermented directly, and diastase does not transform it entirely into fermentable sugar (maltose), 15 per cent remaining unchanged, although this slowly becomes fermentable under the prolonged action of diastase (see p. 141).

Dextrin is known also by various commercial names (vegetable gum, sturch gum, artificial gum, gomineline, British gum, ctc), and forms a light powder

having a slight smell of new bread, it is white, yellowish, or even brownish, according to the purity, the method of preparation, and the purpose for which it is intended It is sometimes sold in semi-transparent, yellowish lumps It dissolves completely in water when pure and has a high notatory power ($[\alpha]_0 =$ about 194°), it is insoluble in With iodine solution it alcohol gives a reddish coloration, and boiling dilute hydrochloric or sulphuric acid converts it into glucose, while malt transforms it into maltose, with concentrated nitic acid it gives oxalic acid

Commercial dextrins often contain a little starch and glucose, so that they then give a violet coloration with indine and reduce Fehling's solution in the hot, the specific rotation varies from 125° to 225°

MANUFACTURE According to the ordinary House process, 1000 kilos of starch are moistened with 2 kilos of nitric acid of 40° Bé diluted with 300 litres of water, the paste being made into loaves which are dried in the air, ground finely, and heated for about two hours at 100° to 120° For this purpose the starch is either spread in thin layers on a number of trays, which are arranged in a suitable oven, or placed in a circular Uhland apparatus (Fig 405), the base of which is heated with superheated steam while the mass is mixed continually by means of a stirrer fitted with a number of page. If the temperature is raised to 130° to 140°, the duration of heating is shortened, but yellow and not white dextrin is obtained.

Dextrinification is complete when the product is entirely soluble in water and gives no longer a blue, but only a reddish brown colour with iodine solution.

The preparation of dextrin by torrefying starch is, however, a very simple process, which can also be carried out in the Uhland apparatus, the starch being stured and heated at 180° to 200° by means of superheated steam until it assumes a brownish yellow colour and gives the reactions just mentioned. The steam pipes are utilised for the circulation of cold water immediately dextrinification is complete. Its moisture-content is adjusted to about 12 per cent before it is marketed

To distinguish commercial dextrins from gum arabic, the aqueous solution is treated with either oxalic acid or ferric chloride in the cold or concentrated intric acid in the hot dextrin is not altered in this way but the gum becomes turbid or gelatinises. Further, dextrins are strongly dextro rotatory, while gums are almost always lawor rotatory.

GUMS These are also polyoses $(O_6H_{10}O_8)_z$, which are frequently formed in plants and are soluble in water or swell up, giving viscous, sticky liquids, they are insoluble in alcohol and other solvents of the resus Gum Arabic is excreted, from December to May, as an adhesive juice from the bark or, better, from the roots of certain African acadias, 3 to 5 metres in height, after drying, it has the sp gr 1 487, and the various components viold d-glucose and arabinose on hydrolysis. In Egypt these acacias occupy entire forests, especially in the provinces of Kordofan and Gedda (White Nile) The natives make a number of mousions in the roots, and the liquid which issues condenses in the air into nutlike masses, these being detached before the commencement of the ramy season The grains have the colour of amber and become white when exposed to the an, so that there are two qualities of the gum. It is used in large quantities by pastrycooks and in textile dyeing and printing, and generally as an adhesive.

A similar type of gum, obtained in abundance from Senegal, issues from certain wounds of cherry and peach-trees, while Gum Tragacanth is extracted from certain varioties of Astragalus in Serbia, Syria, Persia, etc., and, after being rendered mucilaginous by prolonged contact with water, is used as a thickening material in calico printing, etc

The value of a gum is ascertained by determining the viscosity of its solution (see 91)

GLYCOGEN or Animal Starch is also a polyose (CaH10Oh), found principally in the blood and liver of mammals. It is a white amorphous powder insoluble in cold water, and is coloured reddish violet by iodine solution. It is converted into maltose by an enzyme, whilst on the death of the animal containing it or on boiling with dilute acids it is trans formed into d-glucose

CELLULOSE, $(C_0H_{10}O_5)_n$

The actual molecular magnitude of cellulose has not yet been established but is certainly very great ¹ Like starch, it may be regarded as a multiple of CaH10O5, but, while starch is able to undergo transformations (into dextrin, maltose, etc) in the vegetable organism, cellulose represents a stable complex Together with lignin, cellulose forms the principal component of the cell-walls of plants It occurs, for metance, in wood and cotton, in different degrees of purity, while in different vegetable organisms the cells assume distinct and characteristic forms, readily recognisable under the microscope (see Part III, Textile Fibres) Cotton-wool and Swedish filter-paper consist of cellulose in an

almost chemically pure state 2
Pure cellulose forms a white amorphous mass and can be obtained by treating cotton (flocks) successively with hot dilute caustic potash, hot dilute hydrochloric acid, alcohol and ether, and drying at 125° to eliminate the water with which a small part of the cellulose is hydrolysed

In order to determine at least mammum values for the molecular magnitudes of the polyosos, Skraup (1905) applied to these compounds a reaction given by the bloses, when the latter are treated with acetic anhydride and dry hydrogen chloride gas, they give chloracetyl derivatives without undergoing hydrolysis, and the chlorine-contents of these derivatives indicate the molecular weights. In this manner the molecular weight of cellulose is found to be at least 5508, that of soluble starch 7440, and that of glycopen 10,350

If rom the grade cellulose or woody parts of plants, J König (1900) separated four components giving the following reactions (1) hemicallulose, which is hydrolysed by dilute mineral acids, (2) cutsn or subersn, which is oxidisable by weak oxidising agents, (4) true cellulose, insoluble in dilute acid or alkali, soluble in ammonical copper oxide, not oxidisable by hydrogen peroxide.

The part of the cellulose which enters into the formation of the cell, but gives no glucose on hydrolysis, constitutes the hemicellulose group, the hemicelluloses of lupins, certain lichens, etc, give galactose, xylose, mannose, etc., on hydrolysis.

Cross and Bevan divide celluloses into four groups (1) celluloses which are hydrolysed with difficulty and contain no active carbonyl groups (aldehydic or ketonic), the characteristic type of this group being the cellulose of cotton, (2) celluloses which contain active carbonyl and, sometimes, methoxyl groups, and give furfural when hydrolysed with hydrochloric acid, such are the celluloses. In order to determine at least minimum values for the molecular magnitudes of the polycies,

(4) complex celluloses.

The furfural and methylfurfural formed by the celluloses of group (2) may be derived from the pentoses yielded by the pentosens of the celluloses or from the furfuroids which occur in abundance in vegetable organisms, and although they contain no pentosens yet give furfural

(see p 528)

LIBRA599

Cellulose does not dissolve in ordinary solvents, but a completely soluble m concentrated zinc chloride solution, concentrated supplieric acid, nutric acid (sp. gr. 1.52), 41 per cent hydrochloric acid (which converts to completely integlucose in 48 hours), hydrofluoric acid, phosphoric acid, xanthic acid, (1.11.4) OS SH) or, best of all, in an ammoniacal solution of copper oxide (Schweitzer's reagent, propared by dissolving freshly precipitated, well-washed copper hydroxide in concentrated aminonia solution in the proportion of CuO to $4NH_3 + 4H_2O$), from this solution it is reprecipitated as gelatinous hydrocellulose by acids, alkali salts, or sugar solutions Hydrocellulose dissolves in a mixture of caustic soda and carbon disulphide, and is reprecipitated in a gelatinous state by salts, etc These jellies are used for the manufacture of antificial silk

Dubose (1906) found that solutions of thiocyanates constitute good solvents for cellulose, amnionium thiocyanate, for example, gives viscous solutions from which water separates gelatinous cellulose. In dissolving in any solvent, however, collulose generally dissociates into simpler molecular complexes, which cannot be converted into the original cellulose but give hydro- or oxy-cellulose,

which show more marked reducing properties 1

The prolonged action at moderate temperatures of acids, alkalis, and enzymes results in the gradual hydrolysis of cellulose, so that, while before hydrolysis only a brown colour is obtained with rodine solution, after the action of concentrated sulphuric acid a blue reaction is given, in this reaction the cellulose swells and dissolves into a kind of paste, and the action on this of water separates substances similar to starch (amyloids) If the hydrolysis is carried further the reactions of the dextrins may be obtained, dilution with water and boiling then resulting in the formation of monoses (hexoses and pentoses) 2 Cellulose may hence be regarded as composed of complex anhydrides of hexoses and pentoses, and recent investigations indicate that the behaviour of cellulose is best explained by regarding it as a colloid containing groups with acidic hydrogen ions, others with basic hydroxyl ions and some non-dissociated groups, the reactions of cellulose with both basic and acidic substances are explainable in this way

Cellulose has alcoholic characters, the hydrogen of each of the hydroxyl groups being replaceable by an acetyl- (see p 381) or nitro-group, etc. Not more than three or four hydroxyl groups correspond with each six carbon atoms, with nitric soid three nitrate groups can be introduced, while with acetic anhydride, in presence of sulphuric soid, esters (cellulose acetates) corresponding with four hydroxyl groups per C_0 are obtainable (Cross and

Bevan, 1905)

According to H Ost (1906) the ordinary methods of acetylation always yield tracetates of cellulose, but hydrocellulose is first formed as an intermediate product, (C.H.10O.)0, H.2O. and it is this which forms the plastic triacetate, $[C_0H_7O_8(COOH_0)_0]_n$, H_4O , used as artificial silk, etc 8 If the action of sulphuric acid and acetic anhydride is carried too far, frieble

¹ Other solvents for cellulose, as given by Denning (1911), are: concentrated aqueous solutions of SbOl₂, SnOl₄, ZnBr₃, best in presence of a halogenated acid; CaOl₃, CaBr₃, lacl₂, MgBr₄, LiCl, KBr, in presence of formic acid or of formic and hydrochloric acids together. A solution of zinc chloride in concentrated hydrochloric acid dissolves cellulose more easily than

solution of sine chloride in concentrated hydrochloric acid dissolves centiose more cherry and aqueous sine chloride.

*Numerons attempts have been made to convert wood industrially into saccharine substances and so prepare alcohol (see p. 167), but it was only in 1910-1911 that Flochsig, Ost, and Wilkening showed that cellulose can be transformed completely into fermentable glucose by dissolving it in concentrated sulphunic acid, diluting until the solution contains only 1 to 2 per cent. of acid, and then heating at 110° to 120° (but not to 125°, as was done by Simonsen, since a part of the glucose is thereby destroyed) Cohol (1912) obtained 25 per cent of reducing substances from sawdust by heating the latter under pressure at 125° to 160° in presence of 0 5 to 0 3 per cent. of hydrochloric acid.

*Cellulose Acetate is soluble in chloroform, tetrachloroethane, aniline, pure acetic seid, epichlorhydrin, and boiling nitrobensene. The less highly acetylated products are soluble in alcohol, giving a solution which, together with camphor, serves for the preparation of celluloid. The

acetates of no industrial value are obtained, the ultimate product being a crystalline outoacetate of a biose, cellose or cellobrose (C5H10O5)2, H2O, which can be liberated from the acetate by hydrolysing with alcoholic potash but is of no value industrially. The rotatory power of cellobrose is 33 7°, the solubility of its phenylosazone in boiling water 1 135, and the melting point of its phenylosazone 198°, it is thus quite different from maltose (rotatory power, 142 5°, melting point of phenylosazone, 206°, solubility of phenylosazone, osazone in boiling water, 1 75) The origin of cellulose in plants connot be regarded as a condensation of starch, the latter is probably converted into glucose, which gives collulose The preparation of natrocellulose (paroxylin, guncotton, colloction on condensation cotton) has already been described in the chapter on Explosives (p. 286)

Cellulose Formate (Blumer, Ger Pat 179,590) has also been propared

At 210° cotton begins to decompose with evolution of carbon monoxide and dioxide, methyl alcohol, acetic acid, acetone, hydrocarbons, etc (see Distillation of Wood, p. 330) By the dry distillation of pure cellulose (Swedish filter paper) under ordinary pressure, Erdmann and Schaefer (1910) obtained about 5 per cent of tar, 42 per cent. of acid liquors, and a residue of carbon, together with gas containing 66 per cent. CO, 10 per cent CH4, 11 5 per cent. H_2 , etc., from the acid liquors, acetone, formaldehyde, furfural, methoxy furfural, mallel ($C_0H_6O_8$, which, according to Peratoner and Tamburello, has the con

stitution

or under the action of bacteria, etc., cellulose undergoes various changes (see Poat, Lignite, Coal, Vol. I, pp 443 et seq, and Mothane, p 33 of this Vol.)

With hot I per cent sulphure acid, pure cellulose yields only traces of forme and acetic acids, of which wood, straw, etc., yield as much as 2 8 per cent., the formyl and acetyl groups hence originating in the lignin. The acetic acid formed during the dry dis tillation of wood has a different origin from that obtained by heating with very dilute sulphurio acid

Pure cellulose, which contains 0 04 per cent of ash, has the absolute ap gr 1 58, and dissolves to the extent of 0 5 to 0 9 per cent in 16 per cent, sodium hydroxide solution and, after boiling for 6 hours, to the extent of 2 per cent in 3 per cent. sodium hydroxide solution. When dry it is an excellent electrical insulator, but its insulating power diminishes rapidly as its moisture content increases in the air. Suspended threads of cotton pass to the anode when a current passes The hygroscopic moisture varies, with the degree of communution of the fibre, from 5 to 8 per cent

Pure collulose remains unaltered up to 150°, but at higher temperatures begins to turn brown and decompose, if contaminated, even with oxycellulose, it decomposes at a lower temperature. When distilled it gives no methyl alcohol, the exothermal process during the distillation occurs at about 200° and is characterised by abundant separation of

Mineral acids, even when very dilute, hydrolyse cellulose more or less, and if any traces of acid remain during the drying of the product hydrolysis proceeds rapidly, causing diminished strength of the fibre and increased reducing power Concentrated (or even 6.3 per cent) sulphure acid transforms cellulose into a colloidal solution , 69 per cent, acid gives amyloul and 78 per cent sold parchment.

triacetyl compound is used for making artificial silk (see later), and is prepared by treating hydrocellulose in the cold with acetic anhydride, a few drops of concentrated sulphuric acid, and a little glacial acetic acid or phenolsulphonic acid

More or less successful attempts have also been made to acetylate cellulose in the hot with acetyl chloride and metallic acetates, the reaction being facilitated by the addition of a small quantity of pyridine or quincline and, in some cases, of a solvent of cellulose acetate (e.g., acetone,

quantity or pyridine or quincine and, in some cases, or a solvent or centures accetate (e.g., acceptance, nitrobenzene, naphthalene, etc.)

The following method of manufacture (from Fr. Pat. 347,908) admits of the direct acetylation of cotton textiles and may be taken as an example 10 kilos of defatted cotton, containing 10 to 20 per cent of moisture, are heated with 40 kilos of acetic anhydride (containing 0.25 per cent of concentrated sulphuric acid) and 150 kilos of benzene, at 70° to 75°, in a reflux apparatus until a small portion of the cotton dissolves completely in chloroform, the whole mass is then pressed and dried

Cross, Bevan, and Briggs (1907) obtain cellulose acetates easily and cheaply, without preparing hydrocellulose, cellulose is treated directly with a mixture of 100 parts of glacial acetic acid, 30 of zino chloride, and 100 of acetic anhydride, the whole being heated for 36 hours at 45° Cellulose acetate is largely used as "dope" for aeroplanes and as a coating for the fabric of airships to render them impermeable to gas — It forms a good electrical insulator

The action of sulphuric acid on cellulose varies somewhat with the concentration of the soid, the duration of the reaction, and the temperature. The concentrated and has a gelatinising action and dissolves part of the cellulose, which is reprecipitable by water or aminonia. If the action is protracted, the very friable Hydrocellulose, CigHageO11 [(C_gH₁₀O₅)₈, H₂O], is formed, but, in general, hydrocelluloses of diminishing molecular weight and increasing friability (e.g., cellobiose, see above) are successively formed. The hydrocollulose formed in the preparation of artificial silk is only slightly friable, and has probably the formula (C₅H₁₀O₅), H₂O Since also these hydrocelluloses exhibit rather different behaviour towards dyes, it has been suggested that the name hydrocellulose be given to that resulting from advanced hydrolysis by non oxidising acids, the increase of weight during this change, owing to the addition of hydrolytic water, is 3 5 to 5 per cent, this being lost at above 125°, whilst the hygroscopic moisture is expelled at 104°. This hydrocellulose reduces Fehling's solution (Ost, Cross and Bevan, 1909) On the other hand the name cellulose hydrate or hydracellulose is given to that obtained by gentle alka line hydrolysis, which produces an augmentation in weight of 8 to 10 per cent., here, too, this hydrolytic water is given up at temperatures above 125° Hydrocellulese does not reduce Fehling's solution Schwalbe (1007) measured the reducing power of hydrocellulose towards Fehlung's solution 1

¹ Cross and Bevan proposed for cellulose the formula

or some polymeride of this, such as

On the basis of the formation of the trinitrate and triacetate, Green (1894) suggested for cellu СH(OH)—СН—— >0 low a formula (or some multiple of it) containing 3 OH, namely

CH(OH)—CH——CH(OH), and for hydrocellulose the formula | >0 , those constitutions explain the CH(OH)—CH——CH₂ OH formation of furfural by the decomposition of cellulose and also the formation, under the action of oxidising and bleaching agents, of oxycellulose containing ketonic groups which react with phenylhydrazme, reduce Fohling's solution, and admit of direct dyeing by basic dyes (**y*, methylene blue) Two oxycelluloses are, however, distinguished the one very similar to hydrocellulose and insoluble in boiling dilute alkali, and the other possessed of considerable reducing power and soluble in alkali.

The hardening of cellulose in the formation of wood is due to its partial transformation into LIGNIN, which is not yet well defined chemically but certainly contains methoxy groups, which

LIGNIN, which is not yet well defined chemically but certainly contains methoxy groups, which explain the formation of methyl alcohol and acetic acid when wood is distilled. According to Green, lignin is formed by dehydration of cellulose and would be a polymeride of CH: C—CHOH

CH : 0 >0 >0 O >O , but Klason is of the opinion that lignin is a kind of glucoside with two

aromatic nuclei containing methoxy- and hydroxy groups, also lateral groups, CH: CH and CH, OH, besides the fundamental cellulose grouping; it is probably represented by the formula $(C_{4a}H_{44}O_{11})_{a}$, into which there enters a condensation product of conferyl or isoconferyl alcohol

(C₄₀H₄₈C₁₁₎, into which there enters a condensation product of coniferyl or isoconiferyl alcohol Dry wood contains 26 to 30 per cent. of lignin. Schultze, Tolians, and König hold the view that the hard part of wood is formed of cellulose, together with small proportions of pentesans and of lignin. The formation of wood in plants has been attributed by Wislicenus to the colloidal character of the plant fluids which, in the initial phase, transport into the tissues the cellulose-hydrogel as a superficial, chemically indifferent substance; in a second phase, the latter is lignified by absorption and surface gelatinisation of the colloidal metabolic substances contained in the sap Lignocellulose is hydrolysed and dissolved by anno chloride solution and by ammoniacal copper exide solution, clutte acids and alkalis also exerting a hydrolysing action Lignin gives a number of colour reactions, e.g., with aniline sulphate (yellow), with phloroglucinol and hydrochloric acid (red), with potassium ferricyanide it forms potassium ferrocyanide, and with fuchsine decolorised by sulphur dioxide it gives a red colour, it fixes various aniline dyes you.

When sheets of pure, unaized paper are immersed for a few minutes in sulphuric acid of 50° to 60° Bé. and then washed immediately in a plentiful supply of water, they are converted into parchment paper (artificial parchment), amyloids being formed at the surface These artificial parchments are distinguished from the natural ones by the presence of nitrogen in the latter, and from paraffined paper by the extraction of the parafflu from these by ether Parchment paper is rendered softer and more transparent by immersion in glycerme or glucose solution. If cellulose pulp is well ground and beaten in the hollander until it forms an almost gelatinous pulp, a translucent paper can be obtained which is similar to artificial parchment and, under the name of pergamm, is largely used as a wrapping for foods and fatty materials, this may easily be distinguished from vegetable parchment, which is composed of cellulose hydrate (amyloids) and is hence coloured blue by a solution of rodine in potassium rodide, whilst pergamin gives no such coloration

With concentrated zinc chloride solution, cellulose gives compounds similar to those it forms with sulphume and papers thus prepared and then superposed and compressed form the so called vulcan fibre, this is very hard, impermeable to water, and a bad con ductor of electricity, and is used for making plaques, tubes, and noiseless genring

When cellulose is treated for a long time with energetic oxidising agents, it is converted into oxycellulose (C18H26O18)2, which lowers the resistance of the tissues and, unlike cellulose, reduces Fehling's solution and fixes, although feebly, basic dyes and alizarine without a mordant Hydrocellulose reduces Fehling's solution slightly and is not coloured by basic dyes

When cellulose (spun or woven cotton) is treated in the cold with concentrated caustic soda solution (25° to 35° Bé.), it swells and becomes semi transparent owing to the formation of sodsocellulose, and treatment of this with a large amount of water converts it into hydrocellulose (see above), the original appearance of the cellulose being retained. In the hot, however, sodiocellulose cannot be obtained (see Part III, Textile Fibres and Morcerised Cotton), prolongation of the action then resulting in decomposition into oxalic acid Hygroscopic water held by cellulose is eliminated by heating at 100° to 105°, the water of hydration in hydrocellulose is determined by heating in toluenc or petroleum or at The hydration occurring during mercensation increases the weight of the action by 8 to 10 per cent.

PAPER INDUSTRY

As prime material in the paper industry, use has been and is still made of all the cellulose fibres obtained from most widely differing plants,1 linen and cotton rags, straw, wood, hemp, etc

(e.g., methylene blue, coan, etc.) directly Wood is regarded by Cross and Bovan as an ester of lignocellulose, derived from cellulose (polyhydric alcohol) and lignic artif (lignin)

1 History of the Paper Industry The origin of paper dates back to the second century BC, when the first traces of it were evident in Chua. In early times races marked their records and writings on stone, wood, and parchment. In the seventh and eighth conturies the Japanese and other neighbouring peoples learnt how to prepare paper from the bark of various trees, this industry then becoming known to the Arabs, but only much later in Europe. In 1190 paper made its appearance in Germany, in 1250 in France, in 1275 in Italy, and in 1430 in Switzerland.

In the East begins have a second content of the content of the

In the East, besides bark, cotton and linen rags were also employed for paper making Italy the first important factory furnished with grinders and pistons for the preparation of the raw material was erected at Fabriano in 1320 With the subsequent discovery of printing, the paper industry underwent an unforeseen and marked development, and grow to enormous proportions in the nineteenth century

About the middle of the eighteenth century, the pistons and grindstones in use up to that time for treating the raw materials were gradually replaced by the so called hollanders, which led to an increase in the output and an improvement in the quality of the product. The demand for paper increased largely at the end of the eighteenth century, the form being improved and the price lowered.

Mechanics and chemistry came to the aid of the paper manufacturer, and as early as the beginning of the nineteenth century the pasts of octon or linen fibres, mixed in large tanks, was transformed into a thin sheet of paper by means of a revolving, perforated drum, through which the water escaped. It was about 1825 that rudimentary continuous machines were first employed, these supplying an uninterrupted strip of paper a metre in width at a rate of 10 metres per minute. The imposing and complex, but very accurate continuous machines of the present day give The imposing and complex, but very accurate, continuous machines of the present day give paper as much as 4 metres wide at 150 metres per minute.

Great advances were also made in the chemical treatment of the raw materials. In the first

quarter of the nineteenth century, the putrefaction to which the rags were subjected so that

-11į

PAPER 608

It is not possible here to review all the wonderful mechanical improvements which rendered paper making one of the most interesting and important industries of the nineteenth century From the arrival of the wood in the factory to the despatch of the rolls or reams of paper, all the operations are carried out mechanically by means of perfected machinery, which is not only more rapid in its action but more accurate than hand labour.

A description cannot be given here of all the varied and ingenious dressings employed to obtain different kinds of paper, or of the mineral loading of kaolin, barnum sulphate, typsum, etc, with which some papers are so impregnated that the mineral substances exceed the vegetable matter, to the delight of the tradesinan who sells gypsium for cheese

What will be attempted here will be simply a brief description of the various treatments o which the raw material is subjected to convert it into paper

Paper factories require a plentiful supply of pure water, which must not contain iron and should be filtered if turbid.

The rags, gathered in places of all sorts and in all conditions, are acquired from the ragnerchants, who separate those of wool and silk, which go to wool factories, etc., and often ort the remaining linen and cotton rags into light and dark sorts.

The rags arrive at the paper factory in large bundles, some light and others dark reference is given to linear rags, since these give longer and tougher fibres and are used lse to improve those of cotton. The first operation to which the rags should be subjected s disinfection, either by heat (great care being then taken to avoid fires) or by gaseous liminfectants (e.g., by introducing the bales into large iron cylinders, which are then eva uated and filled with formaldehyde vapour) In many factories, however, this disinfecion is omitted, the health of the sorters being thus jeopardised Sorting is carried out by orkpeople who spread the loose rags on tables and separate carefully those which are more

hey might be more easily disintegrated was replaced by heating with soda and lime in open ollers and, later on, in closed boilers under steam pressure. Then came bleaching of the fibres ith gaseous chlorine and subsequently with chloride of lime. The yellow collulese obtained om straw can also be bleached in this way, and since 1830 has been used in large quantities in the commoner papers and for mixing with rags. Sixing of paper by means of rosin soap, though suggested in 1800, only later came into general use.

With the rapidly increasing consumption of paper, there came a time of dearth of raw that the continuous and linear area was to be compared the conficient quantities.

With the rapidly increasing consumption of paper, there came a time of dearth of raw interials, cotton and linen rags were no longer obtainable in sufficient quantities, and straw build not be used alone. It hence become necessary to look for other sources of cellulose, and is to Keller that we owe the happy solution of this pressing problem. In 1843 he succeeded utilising wood cellulose by means of machines which, retating rapidly against logs of wood up wet, gradually converted the wood into an aqueous pulp made up of the separate fibres, case machines were improved later by Völter, and the first factories of mechanical wood pulpers or creeked. This inexhaustible material can be purified by beiling it with caustic soda in gesters under pressure and bleaching the resultant brown mass with chloride of lime; this coedure gives chemical wood pulp, which to day forms the basis of almost all kinds of paper, on the finest to the commonest. om the finest to the commonest.

om the finest to the commonest.

In 1884 Dahl effected considerable coonomy in the manufacture of wood pulp by replacing the expensive caustic soda to a large extent by sodium sulphate, calcination of the evaporated sidue of the exhausted lye yields mainly caustic soda, sodium carbonate, sulphide, iosulphate, etc., and a solution of this product acts on wood, giving a whiter and more resistant oduct. Although this process was applicable with advantage to straw cellulose, which gives not results only when treated with alkali or sulphate (the consumption of straw is limited to be in the processingly high price) it was not convenient for dealing with the appropriate. od results only when freated with alkali or sulphate (the consumption of straw is limited wadays by its increasingly high price), it was not convenient for dealing with the enormous antities of wood necessary to meet the growing demands for paper 'As early as 1805, Tilgman America had attempted the chemical purification of mechanical wood pulp by digestion with id sulphites, and in 1874 Ekman's large factory at Bergvik was working regularly with agresium bisulphite. Meanwhile, Professor Mitscherlich of Munich (1872) had suggested a improvement of this process by using calcium bisulphite in large digesters under pressure. On that time, and especially after the improvements introduced by Keller, the use of bisulphite read gradually in Germany and other European countries and received a fresh impotus on the use of Mitscherlich's patents. At the present time, with rare exceptions—these including the atment of straw, which contains silicates not attacked by bisulphite—almost all wood pulp transformed into cellulose by the bisulphite process. This process not only effects economy the digestion of the wood pulp, but results in an increased yield of a whiter and stronger places. doubc

With improvements in the chemical methods and especially by the use of energetic bleaching cosses (chlorine, chloride of lime, electrolytic alkali, hypochlorite, etc.), it became possible utilize the wood of many different trees—from the fir to the poplar—so that there is now no nger that raw material for paper-making may some day fail. In Canada alone there are still ests large enough to supply the whole world with paper for 800 years, even with a much larger nual consumption than at present.

or less white and those which are coloured to varying degrees, the larger pieces are then cut by special cutters (Fig. 406), having a number of horizontal knives fixed to the periphery of a cylinder, the seams, buttons, hooks, etc., being previously removed. The different qualities then pass to suitable machines to be cleaned and brushed. Fig. 407 shows a simple form of duster, in which the rags are beaten vigorously by pegs on rapidly

Frg 407

revolving horizontal wooden cylinders and carried to the opposite end of the machine, while the dust is removed by an air draught to be deposited in chambers or in large bag filters of various types (Fichter, Beeth, etc.)

After this the rags are washed a little with water in vessels similar to hollanders (see pp 291 and 610) without knives but with a vaned wheel and a gauze drum for renewing the water. They are next removed to revolving spherical boilers, where the residual dirt is eliminated and any dye, fat, resin, starch, gum, or other impurity destroyed. This is effected by boiling, sometimes with soda or caustic soda, but more commonly with lime (2)

Fig 408

to 5 per cent. on the weight of the rags) and water These boilers (Fig 408) hold as much as 2000 kilos of rags and make about two revolutions per minute, while steam is passed in through a tube traversing the axis until a pressure of 2 to 3 atmos is reached. The boilers are coated with insulating material, and the boiling lasts for 6 to 12 hours, according to the nature of the material When the boiling is finished, the steam under pressure is released into the adjacent boiler, in which the operation is just starting, and the rags removed, rinsed well in water, and reduced to a fine pulp in machines similar to hollanders (see later) with castiron or reinforced concrete tanks, the knives of the drum not being set too close to those of the fixed plate. About 20 horse-power is required by the hollanders for a

charge of 200 kilos of rags. The loss in weight in all the operations up to the present stage varies, according to the quality of the material, from 12 per cent. to 40 per cent. In hollanders or similar vessels holding up to 800 kilos of rags, the bleaching is carried out with a clear solution of chloride of lime, of which 2 to 10 kilos are required per 100 kilos of rags, a little sulphuric acid (100 to 200 grms per 10 kilos of chloride of lime) is finally added to liberate all the chlorine from the bleaching agent. In some factories fresh electrolytic solutions of sodium hypochlorite (see Vol. I., p. 572) are used. The bleaching must not be

too prolonged, and the pulp is afterwards washed in large quantities of water until all smell of chlorine has disappeared and potassium iodide starch paper is no longer turned blue or blue litinus paper reddened, as a precaution, 30 to 50 grms of sodium throsulphate (anti-chlor) and soda are added to each vessel. The bleached mass or half-stuff, as it is called, is freed from water and allowed to drain for some days in brickwork chambers with floors of absorbent grooved bricks. From these it is taken in the moist state as required for mixing with bleached wood pulp. The mixture is beaten in true hollanders, the knives being set more or less close according as more or less fine refined pulp is required.

WOOD-PULP (Mechanical Pulp) The treatment of the woody parts of the various plants suitable for paper making [fir, pine, larch, poplar (*Populus nagra* or, better, *Populus canadensis*), beech, birch, esparto (of which Algeria exports half a million quintals annually), straw, hemp, broom, etc | varies somewhat, as the cellulose and the surrounding liquin are present in different proportions and in different states of aggregation. Logs

containing few knots are cut into the required lengths (40 cm), which, after the knots have been removed by a horing machine, are barked in another machine The logs are then defibred by being pressed against a stone mill, which rovolves rapidly and removes the fibres tangentially This mill is about 14 metre in diameter and 35 to 40 cm thick, and it revolves either horizontally or vertically (at 150 to 180 turns per minute) To the latter type belongs the vertical grander devised by Voith and subacquently improved in various ways (Figs. 409) The three chambers corresponding with the three toothed rods, B, contain the logs out to the proper length, and, while the grinder revolves, these are pressed against it by the cor responding covers which are forced

lown by the toothed rods, the latter connect with gearing worked by a chain, D, the velocity of which is proportioned to that of the grinder. The pressure is newadays

¹ In the disintegrated wood, the proportion of cellulose is determined by digesting several innes with sodium bisulphite solution and then treating repeatedly with chlorine at 0°, by which neans almost all the constituents except the cellulose are dissolved. For the determination of the crude cellulose in plants, Weender's older method, medified by Honneberg and Stohmann, as been largely replaced by that of Gabriel (or Lange and König): 2 grms of the finely divided substance is heated in a beaker with 60 c.c. of alkaline glycerine (3° grms. of caustic soda dissolved a litre of glycerine) at 180°, the mass being then cooled to 140° and poured into a basin con aning 200 c.c. of belling water, with which it is mixed and allowed to settle. The supernatant iquid is drawn off through a siphon covered with doth at the end dipping into the liquid, and he deposit belled with 200 c.c. of water which is suphened off as before. The belling is repeated vith 200 c.c. of water containing 5 c.c. of concentrated hydrochloric acid, and the residue linuly rought on to a tared filter, washed with water, alcohol, and ether successively, dried and weighed as crude cellulose.

To determine the pure cellulose, almost free from pentosans, ash, etc., König's method is used grms, of the finely divided, air dried material is treated with 200 c c of glycerine (sp. gr 1 230) ontaining 4 grms of concentrated sulphuric acid in a dish which is heated in an oven at 137° or exactly one hour, the liquid being then allowed to cool to 80° to 100°, mixed with 200 to 60° c c of hot water, boiled and filtered hot through an asbestos filter with the help of a pump he filter is then washed with 300 to 400 c c of hot water, then with boiling alcohol, and finally with a hot mixture of alcohol and ether. The filter with its contents is next introduced into a latinum crucible, which is dried at 105° to 110° and weighed. The crude cellulose is then ashed y heating to redness, the loss in weight thus produced representing the crude cellulose free from she II, in a second estimation, the cellulose is not dried and ashed, but is repeatedly treated or several hours with strong hydrogen peroxide and ammonia, and finally washed, dried, weighed, shed, and again weighed, the proportion of pure, white cellulose is obtained. The difference etween the crude and the pure cellulose represents the liquin.

exerted hydraulically, Fig 410 shows a series of such vertical grinders in which hydraulic pressure is employed. Horizontal grinders (Fig 411, vertical section, Fig 412, general view) with hydraulic pressure are now widely used, as they admit of a larger number of logs being ground at the same time. While in operation, the grinder is continually sprayed with water to prevent heating and to remove the woody fibres as they are liberated

Frg 410

According to the pressure of the logs on the grinder and to the speed of the latter a more or less fine pulp is obtained with a smaller or larger content of splinters, dust, and other irregular and unusable portions, these are removed by means of sloping sloves, B and C (Fig 413), on to which the channel, A, conveys the water to carry away the crude wood pulp, while powerful water jets carry the splinters (b), the good fibre (c), and the

dust (B) to various collecting channels. Cylindrical or superposed sieves are also used. When the wood-pulp is to be used immediately for making paper, it is mixed with the necessary quantities of rag-pulp and dressing and worked up as described below, but generally the wood-pulp is placed on the market, in which case the water is removed and the pulp converted into sheets by sucking it on to drums of metal gauze or travelling planes, through which the water is drawn by suction, the continuous layer of pulp is cut into lengths and is best dispatched in the wet state (with 40 to 60 per cent of water). Sometimes, however, the sheets are dried on hot drums, although this renders difficult the subsequent treatment necessary to transform them into pulp in the hollanders.

Wood-pulp is yellowish or rather brown, and still contains all the encrusting substance (ligiun), it cannot be used as it is for paper, the action of light altering its colour immodiately It cannot be bleached with chloride of lime or alkaline reagents, which intensify its yellow colour, but good results are obtained with sulphur dioxide, which does not,

indeed, remove the yellow tint but prevents the browning or reddening which gradually sots in.

Barked and cleaned logs yield about one-half their weight of dry wood pulp (containing 12 to 15 per cent of moisture)

CHEMICAL WOOD-PULP This is obtained by removing the encrusting matter from the wood or other raw materials (straw, hemp, alfalfa, espario, espario) by means of

It was Payen who first, in 1840, attempted this purification various chemical agents with nitric acid, and who afterwards tried caustic alkalis, sulphurous acid, etc. The proparation of the collulose in the chemical way can be affected by (a) the soda process, (b) the braulphrie process, (c) the electric process, (d) the chlorine process

(a) The logs freed from bark and knots are converted into stocks I cm. thick, which are heated for some hours with caustic sode of 12° Bé under a pressure of 6 to 8 atmos (160° to 170°) in large digesters, 100 to 200 on metres in Various types of digester are in use, capacity Fig 414 showing the vertical type devised by Smolair This consists of an iron cylinder, A, 5 to 6 motres in height, with conical extremities, a charging orifico, O, a wide horizontal discharge tube, C_1 , a tube, b, by which the caustic soda is introduced, and an inner perforated jacket, which is filled to the extent of four fifths with the The reservoir, G, contains a supply of caustic soda solution, and circulation in the digester may be effected with the help of a Körting injector, the cooks of the tubes, h_1 and h, being opened, the latter conveys the alkali on to the sticks, while that collected between the perforated jacket and the inner wall of the digester ascends through h_1 The hot gases from the hearth, K, heat the digester and pass through B to the chimney At the end of the operation the highly coloured alkali is discharged from the tap, V, and can be used for several successive treatments, being reinforced each time with a little sodium carbonate. The soda is eventually recovered from this liquor by evaporating in a vacuum, calcining the residue, extracting the

sodium carbonate thus formed with water, boiling with milk of lime, and decenting the resultant caustic sods solution (see Vol. I, p 554) But for this recovery of the sods, this process would be inapplicable. A method which is more economical and more generally used consists in reinforcing the alkali liquor first used with sodium sulphate, instead of the carbonate, for subsequent operations; the liquor is then ultimately evaporated in a vacuum and calcined, the sodium sulphate, in presence of carbonised organic matter. being converted partly into caustic sods and partly into sodium sulphide (which exerts

¹ Espario and alfalfa, which are very similar, are the leaves of Lygeum sparium and Sispa tenacissima respectively, and are used for making nets, sandals, mats, ropes, paper, etc.

on wood the same action as caustic soda), just as in the preparation of soda by the Loblanc process (see Vol I, p 591) Extraction of the calcined mass with water yields a liquor

containing sodium sulpliate, sulphide, and carbonate, and is ready to act on fresh quantities of wood in the digester Cellulose thus prepared is termed sulphate pulp The concentration of the alkaline liquor is accompanied by the production of pungent and disagreeable odours, which are a source of annoyance to the neighbourhood, so that in certain countries (eg, Scandinavia) such concentration is prohibited. It has been suggested to destroy these odours (due to mercaptan) by nitrous vapours, or to condense the noxious fumes or pass them over metallic oxides

Use is also made of horizontal autoclaves arranged in series like sugar diffusors (see p 549), while ordinary vertical iron digesters, as shown in Fig 415, are largely employed. The digesters may be heated with indirect steam for 24 to 48 hours, or, more economically and rapidly, by direct steam (10 to 15 hours) to 140° to 150° (12 to 15 atmos), but the yield is then rather lower and the mass slightly more attacked. The residual cellulose 18 washed, in the digesters themselves or in hollanders, with water and steam, and is then mixed with the quantity of rag half stuff necessary for the kind of paper

 $\mathbf{F}_{\mathbf{I}0}$ 415

required, the whole being then worked in the hollander into the refined pulp (see later) (b) Calcium Bisulphite (Mitscherlich) or Magnesium Bisulphite (Ekman) Process 'This

process is the one most largely used at the present time, as it gives a cellulose of better quality than the preceding method. The wood is heated under pres sure (115° to 130° or 2 5 to 4 atmos) in large autoclaves lined inside with cement or brockwork with a solution of calcium bisulphite, Ca(SOaH), or magnesum bisulphite, which dissolves the encrusting matter but does not act on the cellulose 1, the liquid is circulated made the boiler by means of an injector or by leaving a small upper tap slightly open 'The bisulphite solution of 4° to 5° Bo (about 30 grass of SO2 per litre, approximately one third being combined with lime) is prepared in very tall wooden towers (that of Harpf being as much as 35 metres high), usually lined with lead and filled with limestone or dolomite (Fig 416) A current of sulphur dioxide ascends from the bottom to the top of the tower, while the trough, b_1 , supplied by the reservoir, S, at the top, yields a fine spray of water, the bisulphite solution is collected at the bottom Harpf's tower has ten gratings (I to X), connected by steps not shown in the figure, each of these can be charged and attended to independently of the others by means of the door, k The first six gratings are cleaned every four weeks, but the others far less often

The sulphur dioxide issues from pyrites furnaces into the iron tube, c, and passes down the earthenware

pipe b, B B being for convenience of cleaning The calcium or magnesium bisulphite solutuon deposits its suspended matter in L and is then discharged into storage tanks. When

Lignin is dissolved with remarkable ease by calcium bisulphite, giving a stable soluble compound, the sulphur dioxide in which is neither detectable by iodine, nor capable of being set free by sulphurio acid, nor able to exert reducing action. Sulphurous acid alone does not act so well as the bisulphite, the lime being necessary for the formation of these sulphonic salts and for the neutralisation of the sulphurio acid always formed

the whole of the tower is to be washed, the plug, P, of the castern is raised Towers with bundles of wide vortical tubes are also used (Fig. 417)

Wood in logs is treated in suitable boilers, either horizontal as in the Mitscherlich process or vertical (Fig. 418) as in the Ritter Kellner process. These are of iron and were formerly lined with thick lead to resist the action of the sulphurous acid, but now a lining of acid resisting brick or special coment is preferred, the cooks are of phospher bronze.

To ascertain the completion of the action of the bisulphite on the wood in the digesters, a sample of the liquid is removed now and then and treated in a graduated tube with aminoma, when the calcium sulphite occupies one sixteenth of the volume of the sample the heating is stopped, and when this fraction is reduced to one thirty second the operation

is finished and the coloured liquor can be discharged. The whole operation, including charging and discharging, preliminary treatment of the wood and action of the bisulphite, lasts 50 to 60 hours. The spent bisulphite liquor is highly coloured and charged with salts, gummy matters, tannin, glucose, pentoses, acctic acid, nitrogenous compounds, etc., and it is usually forbidden to turn it into watercourses or bottomiess wells., so that it is often purified by precipitation of the sulphite with lime, the calcium sulphite being then reconverted into the bisulphite by sulphur dioxide. Attempts have also been made, but with little success, to evaporate the residual liquor and so obtain adhesive gummy substances utilisable in the preparation of coal briquettes. In a factory with two boilers, each of 120 cu. metres capacity (12 to 15 metres high, 3 5 to 4 metres in diameter, and about 2 cm. thick), each of these is charged with about 200 quintals of wood and 85 cu. metres of bisulphite solution. With a monthly output of 1000 quintals of cellulose, the daily production of spent liquor is 30 cu metres, the organic residue amounting to 8 per cent. and the ash

to 2 per cent. The rational disposal of these spent liquors is always a serious problem, which still awaits solution, the attempts made to prepare alcohol from them are mentioned in the note on p. 169

The yield of cellulose varies with the quality of the wood, but is about 40 to 55 per

cent

(c) Electric Process This was proposed by Kellner, and consists in passing through closed receptacles containing the wood a solution of sodium chlorido at 120°, through

Fig 419

which an electric current passes, the chlorine, hypochlorous acid, and caustic soda act together in the pascent state, dissolving the encrusting substances of the wood and liberating the cellulose. This process has not yet been much used

(d) Chlorine Process This has been often attempted without success, but during recent years has been again tried on an industrial scale, owing to the large supplies of chlorine rendered available by the development of the electrolytic manufacture of caustic scale. The processes now being applied are derived from the analytical method proposed long ago by Cross and Bevan to separate cellulose from lightin.

Fig 420

MECHANICAL REFINING OF THE CELLULOSE AND MECHANICAL WOOD-PULP The mass of wood, more or less finely divided, extracted from the digesters is coarsely defibred in suitable disintegrating machines, and the cellulose and the mechanical pulp, either together or separately, according to the kind of paper required, are introduced into the so called hollanders, where they are completely defibred and converted into a very fine pulp, bleaching with calcium hypochlorite and the subsequent washing are also carried out in the hollanders, as is the addition of dressing, colour, size, resin, alum, etc, necessary for the desired paper

The hollander beating machine consists of a large, oblong wooden or, better, cement vessel (A, Figs 419 and 420), in the middle of which is a vertical, longitudinal partition, B,

which does not extend to the ends of the vessel. In one part of the vessel is a large revolving drum, D, furnished at its periphery with a number of cutters which circulate the water containing the cellulose or mechanical pulp. The bottom of this part of the vessel is in the form of a ridge $(PR, \operatorname{Fig}\,420)$, and at a point, F, on one of the slopes are fitted cutters, the drum can be moved up or down by means of the lever, HG, and the distance between its cutters and those at F thus adjusted as required. The movement of the water produced

Fra 421

by the rotation of the drum causes almost the whole of the cellulose and pulp to pass between the fixed and revolving cutters, and after some time the woody fibres swim separately in the water. As the process goes on, the knives are gradually brought closer together until the desired degree of fineness is attained. The mass passes up the plane, P, down the plane, R, round the partition, B, again up the plane, P, and so on

The washing water can be changed by immersing in the

free half of the vessel a fine gauze drum from which the water can be aspirated by means of a pump. This drum is then raised by the chain and pulley, R (Fig. 410), and fresh water introduced into the vessel. To avoid spurting from the drum, D, it is fitted with a cover, T. In the base of the vessel and in front of the inclined plane is a recess for catching pieces of iron or stone accidentally present in the wood pulp, the cutters thus being protected from damage. Fig. 200 on p. 201 shows a battery of hollanders, which are also used for guncotton.

SIZING AND FORMATION OF THE PAPER containing the different raw materials (rags, woodpulp, collulose, etc) in the requisite proportions, is blued and sized before being transferred to the continuous machines. The blucing is effected by adding, a short time before the end of the beating, 500 to 1000 grms of ultramarine, Prussian blue, or aniline blue, a little later the size is added, which renders the paper impervious to water and prevents ink from running on it, if blotting paper or filterpaper is required, the sizing is omitted Sizing may be carried out on the finished paper, but it is usually preferred to add the dressing directly to the finished pulp while this is still suspended in water, since in this way all the fibres become coated with the size without loning the power of adhering, one to the other, to form a homogeneous, felted mass of paper. Animal size was at one time used, but, owing to its ready putrefaction or alteration even while it is being applied, it has been almost entirely replaced by resin (colophony) previously rendered

The refined pulp in the hollander,

soluble (resin soap) by means of caustic soda. With water this soap forms very fine, homogeneous and persistent emulsions, the efficacy of which may be increased by the addition of starch paste (in amount sometimes equal to that of the resin) or of casein dissolved in dilute soda solution. The total dressing added amounts to 2 to 5 per cent. of the dry paper

In order to precipitate the resin in a fine state of division on the fibres, a solution of aluminium sulphate (or of potash alum) is added to the homogeneous mixture of pulp and resin soap; as was shown by Wurster, this effects the precipitation of the resin, starch (or casein), and a very small amount of aluminium resinate. Nowadays one half of the aluminium sulphate is sometimes replaced by the cheaper magnesium sulphate. The

so called loaded papers are obtained by adding, in addition, a considerable quantity (sometimes 50 per cent.) of kaolin, barium sulphate, tale, or calcium sulphate.

The colouring matters (mineral dyes, lakes, or substantive aniline dyes) are also added directly to the finished pulp, organic dyes being the more commonly used. The lakes are produced by mixing basic dyes with the pulp and then precipitating with tannin solutions, for direct dyeing, substantive dyes (see later, Colouring Matters) are employed. Powdered lakes obtained by precipitating either acid aniline dyes with aluminium hydroxide or basic dyes with tannin or tartar emotic may also be used.

After all these additions have been made, separation of any of the components from the homogeneous pulp is prevented by conveying the latter into two vats, where it is kept in motion by stirrers, the resultant milk being more or less dense according to the thickness of paper required. Before going to the continuous machine to be converted into paper, the pulp is passed through a purifier (Fig 421) which removes any clots of fibre still present. This purifier consists of two or three slightly inclined, oscillating plates, perforated with very fine slots, when the pulp is fed regularly on to these plates, the fine fibres pass through while the lumps are discharged into channels provided for the purpose

The homogeneous pulp collected under the vibrating plates is convoyed to the continuous machine at an almost absolutely regular speed, and on this depends the uniformity in the thickness of the resultant paper, the pulp regulator or feeder should hence be constructed with great care. If this homogeneous pulp is placed on a very fine sieve, the water passes through, leaving a thin layer of interlaced, adhering fibres which can be removed in

Frg 423

the form of a wet sheet. The preparation of the paper in the continuous machine takes place in a similar manner. The pulp is distributed uniformly on a very flue endless copper gauze after a good proportion of its water has been removed by draining and suction. A cloth then passes the wet sheet to a pair of rolls, which compress it and give it more consistency, other rolls heated to 130° gradually dry the paper, while others, again, press it and give it a little polish. When it leaves the endless gauze, the paper is sufficiently consistent to be conveyed to the supercalendar (Fig. 422), where it is pressed and polished between several pairs of rolls. Other machines wind it into rolls, out it, rule it, etc.

A large modern continuous machine may cost several thousands of pounds. A general view of such a machine is shown in Fig. 423, the two vats of pulp are seen at a, while b represents the circular feeder carrying buckets, c the drum sleve which collects the pulp and passes it as a wet sheet to the metal gauze, d, this transferring it to the cloth at f and passing back round the rollers, c, underneath to take up fresh pulp, g shows the drying rolls and b where the cloth returns, the continuous length of paper being drawn off at i to the winding apparatus.

It is not possible here to consider the different kinds of paper now manufactured, or the different pulps required, or the special modern machines devised to meet all the requirements of the trade, but a few words may be devoted to the testing of paper, the pulp

¹ Testing of Paper The presence of mineral loading is detected by determining, in a platinum crucible, the ask of 1 to 2 grms. of the paper, cut up and dried at 100° to 105°; non loaded paper contains 0 4 to 2 5 per cent. of ask To detect the presence of mechanical wood pulp, the paper is immersed in an aqueous solution of aniline sulphate, which imparts a golden yellow colour to the crude wood fibre, or use may be made of aqueous phloroglucinol faintly acidified with hydrochloric acid, this dysing the crude wood fibre (mechanical pulp) red. The impermeability or coldisty of the sixing is determined by Leonardi's method; on to the paper,

used boung recognisable under the nucroscope by the magnitude and form of the fibres (see Figs 424 et seq) As will be shown in the chapter on Textile Fibres, the fibres of paper are corroded and somewhat distorted and resemble the original fibres only in certain characters

The fibres of the white fir are shown in Fig. 424 at A and in transverse section at B, they are brown and are characterised by the pores arranged in concentric circles Fig 425 shows at B altered cotton fibres and at L those of linen Fig 426 gives an idea of the microscopical appearance of incchanical wood pulp of the conifers (fir, pine, etc.) with medullary rays, while Fig 427 shows chemical pulp from the conifers, in the latter case, the concentric circular pores are less marked and the fibres more homogeneous. Fig 428 shows straw cellulose with the very thin parenchymatous cells, a_i rounded at the ends, and the superficial toothed cells of the epidermis, o, mixed with the bulk of ordinary clougated and structed fibres. Especto fibres resemble those of stray to some extent but are lacking in thin and terminal cells, while the toothod edges are different in nature and are found in smaller cells than in straw, esparto contains certain isolated fibres having the form of teeth or clongated pears. Spain exported more than 90,000 tons of esparto in 1872 and about 46,000 in 1900 Algeria now exports 80,000 tons, Tunis 30,000, Tripoli 75,000 and Morocco 4000 Algoria contains 5,000,000 hectares under esparto England imports about 200,000 tons of esparto per annum

Books and reviews often contain contradictory and fantastic statistics STATISTICS concerning the output of paper According to the most trustworthy data, the world's production of paper and pastoboard in 1906 amounted to about 8,000,000 tons, and that of cellulose in 1908 was estimated at 1,600,000 tons of the value of £16,000,000, and in 1913 at 3,000,000 tons In 1913 the paper industry of the world consumed 38,000,000 tons of

stretched and inclined at 60°, a solution containing 1 per cent. of ferric chloride, 1 per cent. of gum arabic, and 0 2 per cent. of phenol is allowed to fall drop by drop so as to form a number of moist strips which are then allowed to dry, similar strips, crossing the first and perpendicular to them, are next made with a solution containing 1 per cent. of tannin and 0 2 per cent. of phenol, the formation of a black stain of tannate of iron at the point of intersection undicates bad sizing absonce of stain shows perfect sizing, and stains more or less grey denote more or less good sizing

Items sixtny is recognised by pouring a few drops of other on to the paper and allowing them to evaporate, the formation of transparent rings indicates the probable presence of resin. Or a few grins of the paper may be belied with absolute alcohol containing a few drops of pure acetic audi, the solution being atterwards poured into distilled water; if the latter becomes turbid, the presence of resin is certain.

To detect animal sixing, a few gross of the paper are boiled with a very small quantity of distilled water, the liquid being filtered, highly concentrated and treated with a solution of tunnin; if size is present, whitish grey flocks are formed, which, when observed under the microscope in contact with a dilute solution of iodine in potassium iodide, are seen to be coloured brown while if startely in research this is accounted blue; the test for starte way to made directly brown, while if starch is present this is coloured blue; the test for starch may be made directly

on the paper itself
The presence of free nuncral and is ascertained by boiling the paper in a little distilled water

The presence of free mineral acid is ascertained by bolling the paper in a little distilled water and noting if the solution turns Congo red paper blue or black

For the microscopical examination (see Figs 424-428), the fibres are liberated as follows:
3 to 5 sq cm. of the paper is bolled and vigorously shaken for two minutes with 3 to 4 per cent-caustic sods solution, the pulp thus formed being poured on to a very fine motal slove and washed well with topid water. The fibres are then tested microchemically with solutions containing (1) 6 parts of rodine, potassium iodide, 10 parts of glycerol, and 90 of water, and (2) 100 parts of zine chloride, 10 5 of potassium iodide, 0 5 of iodine, and 75 of water, the clear liquid being, in this case, decanted from the precipitate formed, linen, hemp, and cotton are coloured pale to dark brown by solution (1), the thin fibres remaining almost colourless, while with solution (2) a more or less intense wine-red coloration is obtained.

An alcoholic solution of phloroglucinel containing hydrochloric acid does not colour pure

a more or less intense wine-red coloration is obtained.

An alcoholic solution of phloroglucinol containing hydrochloric acid does not colour pure collulose but reddons impure cellulose, the presence of wood pulp (ie, impure cellulose) in paper being hence detectable in this manner Further, aniline sulphate or naphthylamine hydrochloride colours impure cellulose yollow, but does not alter pure cellulose

The bursing strain of paper, called also the degree of elasticity, is determined in the directions of the length and breadth by means of suitable dynamometric apparatus, the clongation which occurs before rupture being expressed as a percentage of the length (this varies from 1 & to 4 per cent. for different papers)

The breaking length expresses the length of a uniform strip of paper which would tear under its own weight if suspended from one end if a strip 10 om wide of paper of which 1 sq metre weighs 70 grms, breaks under a load of 3500 grms the breaking ength is $\frac{3500}{70 \times 10} \times 1000 = 5000$ ength is $\frac{3000}{70 \times 10} \times 1000 = 5000$

The remetance to folding is determined roughly by crushing and rubbing an irregular ball of the paper between the hands, when different papers are compared in this way, that with the least number of creases is the best.

wood, valued at about £32,000,000, the consumption increasing by about 5 per cent. each year In some countries as much as two thirds of the wood used is converted into collulose, 90 per cent of the latter being obtained by the bisulphite process

The following numbers represent the mean annual consumption of paper in kilos per inhabitant for various countries, these being regarded as a rough indication of progress 1

United States, 193, England, 172, Germany, 14, France, 115, Austria, 95, Italy 75, Spain, 25, Russia, 23, Serbia, 00, China, 06, India, 013

¹ Prior to the War about 75,000 new books were published per annum throughout the world, these requiring 30,000 tons of mechanical pulp. In addition, some 70,000 daily papers are published with a total disculation of 11,000,000,000, these requiring 15,000 tons of mechanical

pulp per day

Of the total output of paper, 32 per cent. is for ordinary printing, 10 per cent. consists of fine paper and writing paper, 10 per cent. of brown paper and cardboard, 6 3 per cent. of fine collidose and rag paper for fine printing, 5 per cent. of straw paper and card, 3 per cent of paper for placards, etc., 3 per cent. of wall paper, 0 6 per cent. of drawing paper, 0 5 per cent of silk paper, of garette paper, and paper for making flowers; 0 4 per cent. of blotting- and

of silk paper, digarette paper, and paper for making flowers; 0.4 per cent, of plotting- and filter paper, etc.

Although the consumption of paper has increased to an extent that would have been incredible a few years ago, yet the day is far distant when a scarcity of raw material will be experienced Canada alone, with its 322,000,000 hectares of forest land, can supply the whole world for several centuries. Of other reserves of forest the most important are those of the United States, 200,000,000 hectares, Russia, 184,000,000, Queensland, 86,000,000, Siberia, 38,000,000, British India and Burmah, 26,000,000; Finland, Sweden, and Japan (excluding Formosa and Hokkaido), 20,000,000 each, Germany, 17,000,000, Austria and France, 10,000,000 each, Hungary, Croatia, and Slavonia, 9,000,000, New Zealand, 8,000,000; Asiatic Turkey, 7,000,000; Norway, 6,000,000, Hokkaido (Japan), 6,000,000, Italy, 4,500,000, etc. In Burmah and elsewhere there are immense tracts of bamboo, which will one day be utilised for the manufacture of paper

of paper
It cannot, however, be denied that an immense amount of wood is used for building purposes, and in Italy, for instance, many of the forests have been destroyed, so that the imports of wood, which in that country amounted to £840,000 in 1871, increased to £2,000,000 in 1900, to £2,840,000 in 1905, and to still greater extents (mostly from Austria-Hungary and America) in recent years (see Vol. I., p. 228)

C O R K 615

CORK

This forms the principal component of the bark of the cork oak (Querous suber), cultivated in Spain, Portugal, France, Italy, Algeria, Tunisia and Morocco. The corky bark may attain the thickness 25 to 45 cm, but in order to prevent it from deteriorating and cracking owing to excessive age, its collection is commenced after the tree is 15 to 20 years old. From each tree about 6 kilos of cork may be obtained every 10 years. The best qualities are golden yellow, the poorer ones greenish yellow.

The density of cork varies between 0 215 and 0 24, and moreases with age. It consists of suberm, which is soluble in alcohole potassium hydroxide, and of other substances yielding phellome and other acids when hydrolysed with alcoholic potash. The percentage composition of air dry cork is water, 8, crude cellulose, 22 to 23, fats and resins, 46, various non nitrogenous substances, 58, nutrogenous materials, 6, ash, 13

From 8 to 12 kilos of cork 1 kilo of cork stoppers is obtained, the waste being utilised, either by agglomerating with pitch or chalk to make insulating material for the refrigerating industry, or for making *linoleum* (see p. 498), or for packing fruit, etc

PART III. CYCLIC COMPOUNDS

The aliphatic series contains various groups of closed-chain compounds (e.g., lactones, uric acid derivatives, anhydrides of dibasic acids), which are readily opened by simple reactions giving ordinary open-chain compounds of the fatty series

Numerous substances are, however, known containing a closed-chain nucleus which is composed of 3, 4, 5, or more commonly 6, carbon atoms united in a special manner and is resistant to the most energetic reagents. These

compounds form the important group of isocyclic compounds

Other groups of cyclic substances are also known with nuclei composed, not of carbon atoms alone, but of several elements, eg, pyridine, C_aH_bN , in which the nucleus contains 5 carbon atoms and 1 nitrogen atom, pyrrole, C_aH_bN , with C_a and N in the nucleus, furan, C_aH_aO , with a C_aO nucleus, thiophen, C_aH_aS , with a C_aS nucleus, pyrazole, $C_3H_4N_2$, with the nucleus C_3N_2 , etc. These compounds are called heterocyclic

There are also many substances derived from more complex nuclei formed by the condensation of two or more of the nuclei mentioned above, eg, naphthalene, $C_{10}H_8$, in which are condensed two benzene nuclei held together by 2 carbon atoms common to the two nuclei, and quinoline, with a nucleus analogous to that of naphthalene but composed of one benzene and one pyridine

nucleus

AA. ISOCYCLIC COMPOUNDS

These contain 1 or several homogeneous carbon atom rings, and can be subdivided, according to the type of linking, into (1) Polymethylene Compounds, which contain singly linked carbon atoms and are less resistant to chemical reagents than (2) Benzene Derivatives, where the carbon atoms are linked very differently (see later) Compounds of the first group approach those of the aliphatic group in their chemical properties and are hence intermediate to methane and benzene derivatives

I CYCLOPARAFFINS AND CYCLO-OLEFINES OR POLYMETHYLENE COMPOUNDS

TRIMETHYLENE (Cyclopropane), CH₁ , is obtained by the action of sodium CH₁ , is obtained by the action of sodium cH₁ the browne being eliminated as NaBr and

on $\alpha\gamma$ dibromopropane, CH_2Br CH_2Br , the bromme being eliminated as NaBr and the chain closed. It is a gas which liquefies at a pressure of 5 to 6 atmos. and combines very slowly with bromine or hydricidic acid giving open chain compounds, so that it is easily distinguished from propylene CH_2 CH CH B Its heat of combustion is much greater than that of propylene, into which it is partially converted at 400°

Its derivatives are obtained from ethylene bromide by means of the ethyl malonate synthesis (see p 369)

Trimethylenedicarboxylıc Acid, | CO₂H , was obtained by Perkin by the inter-CO₂H action of ethylene bromide and ethyl sodiomalonate.

Ţ

818

1 1

TETRAMETHYLENE (Cyclobutane) is not known in the free state, but derivatives of it are obtainable by syntheses similar to those used for trimethylene compounds.

derivatives are prepared by the ethyl malonate synthesis

According to Bacyer's tension hypothesis (see p 107 and Fig 252, p 366), it is easy to understand why pentamethylene is the most stable of the preceding compounds, a ring of five carbon atoms being the only one which can be formed without tension of the linkings Indeed, while trimethylene combines with Br or HI with rupture of the ring, pentamethylene does not unite with bromine and resists the action of nitric or sulphuric send like a saturated hydrocal bon, the properties of saturated open and closed chain compounds hence differing but little

KETOPENTAMETHYLENE (Cyclopentanone), C₅H₈O, is obtained by the dry distillation of calcium adapate

by reduction and subsequent treatment with HI it gives pentamethylens, whilst exidising agents convert it into glutaric acid, these reactions proving its constitution. Ketchexamethylene is obtained similarly by distilling Calcium Pimelate, $C_7H_{10}O_3Ca$, and higher homologues by distilling the corresponding calcium salts of higher dibasic acids, Calcium Suberate, $C_8H_{18}O_4Ca$, for example, yields Ketcheptamethylene (subcrons). The yield diminishes with increase of the number of carbon atoms.

first distillate of orude benzone and also in illuminating gas, it combines with iodine and with hydrogen sulphide. The presence of two double linkings in the nucleus is deduced from the fixation of four atoms of halogen. The two hydrogen atoms of the CH_2 readily eact, eg, with acctone, giving intensely red hydrocarbons

his compound is known as Dimethylfulvene, fulvone being an isomeride of henzene of the

HEXAMETHYLENE (Cyclohexane, naphthene, hexahydrobenzene), C_6H_{12} , is a colourloss quid, b pt 81°, m pt. + 6°, and is obtained similarly to pontamethylene and also by ydrogenating benzene in presence of nickel (according to Sabaticr and Senderons, nee 35), platinum, or palladium. It occurs in Russian and Galician petroleum

Numerous less hydrogenated derivatives, and also some with ketonic groups, are nown. *Cyclohexanone*, an oil with the smell of mint, boils at 155°, is found in wood oil, and is converted completely into adapte and on exidation. Some of its derivatives occur the decomposition products of occame and atropine.

CYCLOHEPTANE (Heptamethylene, suberane), (CH₂), is a colourless liquid, b pt. 117°, and is obtained by reducing suberone (see below), bromune and aluminium bromide con act the ring, pentabromotoluene being formed.

SUBERONE (Ketcheptamethylene), (CH₂)₆ CO, is formed by the ketonic intransocular transformation of the calcium salt of suberic acid. It is a liquid, b pt 170°, and 1 oxidation gives pimelic acid and on reduction suberanc (see above)

leeks, and occurs among the products of the decomposition of cocaine and atropine It

is obtained from subcrone by complex reactions, and resembles oleftices and not aromatic compounds, thus it unites energetically with hydrobromic acid

CYCLO-OCTANE, $(CH_2)_8$, is a liquid, b pt 147° , and was obtained by decomposing an alkaloid, N methylgranatonine, derived from the bark of the pomegranate tree and having the constitution

CYCLO-OCTATETRENE, C_8H_8 , is a yellow liquid which behaves like the cyclo olefines and not as an aromatic compound, although its constitution is analogous to that of behavene, CH CH CH CH

| With hydrogen in presence of spongy platinum it yields pure cycle CH CH CH CH.

octane Such compounds are not in harmony with Baeyer's tension theory of valency

II BENZENE DERIVATIVES OR AROMATIC COMPOUNDS

It was observed by several chemists about the middle of last century that a whole series of compounds, mostly aromatic in nature, besides exhibiting certain common physical and chemical characters, showed on analysis proportions of hydrogen very low in comparison with those of carbon and also very low compared with those of hydrogen in saturated or unsaturated compounds of the methane series, eg, C_nH_{2n+2} , C_nH_{2n} , C_nH_{2n-2} , etc

In general the hydrocarbons of these substances correspond with the fundamental formula, $C_n H_{2n-\theta}$, and the various transformations of the atomatic substances often yield Benzene, $C_6 H_6$, from which they can again be prepared. If the constitutional formula of benzene were an open-chain one, it would be necessary to assume the presence of double or triple linkings between carbon and carbon which would load to ready addition of bromme and to ready exidation. These reactions do not, however, occur, and the great stability of the compounds of this group, and of benzene in particular, can be explained only by the existence of a stable nucleus of carbon atoms, probably joined in the form of a closed ring

It was found later that benzene forms only one monosubstituted product (nitrobenzene, bromobenzene, etc.), and that all the hydrogen atoms of benzene exist under similar conditions, three isomeric disubstituted products (eg, dinitro or dibromo-benzene) are, however, known,

With the empirical formula C_6H_6 correspond the three rational formula: (a) $C_4(CH_3)_6$, (β) $C_3(CH_2)_8$, and (γ) (CH)₆ Formula (a) and (β) would give only two isomeric disubstituted products, whilst in the case of (γ), if the six CH groups were joined in the form not of an open chain but of a closed ring, the six hydrogen atoms would be under the same conditions, and the formation of a single monosubstituted product and of three isomeric disubstituted products would be explained.

It was Kokuló who, in 1865, first advanced the ingenious hypothesis that the fundamental compound of aromatic substances is benzene, the constitutional formula of which must be represented as a closed, hexagonal chain of carbon atoms united alternately by single and double linkings, the fourth valency of each carbon atom being united to a hydrogen atom. Such an arrangement is figured in the scheme

or, if the six carbon atoms are represented by tetrahedra, in the diagram shown in Fig. 430. The carbon atoms combined with the substituents in the three disubstituted derivatives would then be (a) I and 2 (ortho derivatives), (b) I and 3 (meta derivatives), and (c) I and 4 (para derivatives), the 1 5- and 1 6 compounds would be identical with the 1 3

and 1 2- compounds respectively. For the sake of shortness, the terms ortho, meta, and para are contracted to o, m and p-, these being prefixed to the names of the compounds

The constitutional formula given for benzene by Kekulé and also those of Claus (1867), Baeyer (1868), Korner (1869), and Ladenburg (1870) would seem to indicate the possible existence of 2 ortho-substituted derivatives, since the 1 and 2 carbon atoms are joined by a double linking and numbers 1 and 6 by a single linking. Hence Claus and Korner proposed the hexagonal formula with the fourth valencies of the carbon atoms joined diagonally (para-linking) (Fig 431, A), while Ladenburg preferred the prismatic formula (Fig 431,

 B_1 , B_2 , and B_3), and Armstrong and Baeyer the centric formula, with the fourth valencies in a latent (or potential) state and directed towards the centre (Fig 431, C), see also Fig 432

In order to obtain a better interpretation of the formation of the disubstituted iso merides of benzene, Kekulé (1872) developed his theory further on the assumption that

the linkings between the carbon atoms are to be regarded as vibrations, so that carbon atoms 2 and 6 of the Kekulé formula are in identical conditions. These oscillations would explain why benzene does not unite readily with halogens or ozone (see p. 107), or give Bacyer's permanganate reaction (see p. 107), thus behaving almost like a saturated compound. Even Kekulé's oscillatory formula does not, however, explain completely the optical and thermal behaviour of the aromatic compounds or the interesting results of Bacyer's

work on the hydrogenated derivatives of benzene subsequently to 1886 Indeed, when two or four hydrogen atoms are added to benzene so as to form dihydro- or tetrahydro-benzene, the latter are found to be quite different from true aromatic compounds and to resemble elefine compounds, it must, then, be assumed that where the hydrogen has not been added, true double linkings are formed capable of combining with halogens or ozone and of giving Bacyer's permanganate reaction. Bacyer's centric formula would harmonise with this behaviour, since each of the valencies directed towards the centre is kept in equilibrium with all

the others, stability being thus conferred on the molecule, if, then, two or four of the central valencies are used in the addition of hydrogen or other groups, the remaining central valencies becomes true, olefinic, double linkings

There are, however, aromatic compounds, especially those with several condensed benzene nuclei, with which Baeyer's centric formula alone cannot be assumed. In 1899 Thiele attempted to harmonise all the chemical and physical phenomena observed with benzene and its derivatives on the assumption that when two carbon atoms are united

by a double linking the two affinities are not completely utilised, parts of the unsatisfied valencies (partial valencies) remaining. These are regarded as bringing about addition processes, and are represented by dotted lines, e.g., C = C, C = C - C = C, etc., but

when, as in the latter formula, a conjugated system of double bonds is present, the addition of hydrogen, halogens, etc., occurs only at the two extreme carbon atoms, the partial valencies of the two middle atoms forming a new mactive double bond, C = C - C = C,

after the addition at the extreme carbon atoms, the central mactive bond becomes active again, the constitution then being, $\frac{C-C=C-C}{H}$ In Kekulé's benzene formula, we may assume the existence of three conjugated double bonds with three mactive bonds,

would not readily form additive products, and why, when even a single inactive double bond is broken down, true active elefinic double linkings would appear (see Theory of Double Linking, Note on p 107)

A plausible explanation of the constitution of benzene is also arrived at by means of the ideas of motochemistry, according to which double or single linkings are represented by double or single vibrations or blows per unit of time (E. Molinari, Gazzetta Chinnea Italiana, 1803, Vol. II, p. 47, and Journal fitr praktische Chemie, 1803, p. 113)

ISOMERISM IN BENZENE DERIVATIVES

It has been seen already that when one of the hydrogen atoms of benzene is replaced by a halogen or an organic residue, the same monosubstituted compound is always obtained, no matter at what point of the molecule the substitution occurs. If two substituent groups, either similar or different, are introduced, three disubstituted derivatives are obtainable. If the benzeno molecule is represented simply by a hexagon, each angle of which indicates a carbon atom united with a hydrogen atom, replacement of the latter by another atom or group (x, y, z, etc.) may be shown by placing the symbol of the substituent at the angle of the hexagon. With disubstituted compounds, if one group is assumed to occupy the position 1, the other may go to either 2 or 6 (ortho-position), 3 or 5 (meta), or 4 (para)

With the trisubstituted derivatives, three isomerides are possible when the three substituents are similar (1 2 3- or *ordinal*, identical with 1 6 5-, the symmetrical, 1 3 5-, identical with 2 4 6-, and finally, the unsymmetrical, 1 2 4-, identical with 1 4 5-).

CHARACTERS OF BENZENE DERIVATIVES 621

When one of the three substituents is different from the remaining two, six isomerides are possible

With four similar substituent groups, it will readily be seen that three

isomerides are possible

The number of isomerides may be further increased in cases where one or more of the substituents form lateral chains capable of isomerism, eg, saturated hydrocarbon or unsaturated alcohol or acid groups, in these compounds, further replacement of hydrogen may occur either in the benzene nucleus of in the side-chain, fresh cases of isomerism being thus possible

It was Korner (1869-1874) who first showed how it is possible to determine experimentally the positions of the various substituent groups in the

benzene nucleus, examples will be given later

GENERAL CHARACTERS OF BENZENE DERIVATIVES

While the saturated hydrocarbons of the aliphatic series offer considerable resistance to oxidising agents and to concentrated sulphuric or nitric acid, those of the aromatic series readily give nitro-derivatives with nitric acid, and sulphonic derivatives, having an acid character, with sulphuric acid $C_0H_0 + HNO_3 = H_2O + C_0H_5$ NO₂ (nitrobenzene), $C_0H_0 + H_2SO_4 = H_2O + C_0H_5$ SO₃H (benzenesulphonic acid) In the latter, the sulphur is united directly to a carbon atom of the benzene nucleus, this being confirmed by the fact that benzenesulphonic acid is also obtained by the action of oxidising agents on thiophenol, C_0H_5 SH, in which the sulphur is known to be joined to carbon

Oxidation of aromatic hydrocarbons containing side-chains leads to the replacement of the latter by *carboxyl* groups, CO₂H, the benzene nucleus remaining unchanged, in this way the various aromatic acids are obtained

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}$$

The halogen substitution derivatives, which are readily obtained by the direct action of the halogens, have less reactive properties than the halogen compounds of the aliphatic series and are more resistant to substitution

The hydroxyl-derivatives (e.g., phenol, C_0H_5 OH) are more decidedly acid in character than the alcohols of the fatty series, the *phenyl* group, C_0H_5 , for example, being more negative than the ethyl group, their resistance to oxidising agents is similar to that of the tertiary alcohols, to which they are analogous in constitution, the group >C OH being present in both cases.

in constitution, the group >C OH being present in both cases. The amino-derivatives, which are readily obtainable by reducing the nitro-lerivatives (C_8H_5 $NO_2+6H=2H_2O+C_6H_5$ NH_2 , aniline) with internediate formation of azo-compounds ($q\ v$), are easily converted by the action of nitrous acid into diazo-compounds, the latter are formed only seldom and with difficulty in the case of aliphatic compounds

In their last investigations Körner and Contardi (1908) show how, with the

substitution products of benzene, the formation of one isomeride in their than another sometimes depends on minimal differences in the physical conditions under which the reactions take place. Thus, in the nitration of aniline or of halogenated derivatives, a very slight difference in the concentration (even in the second decunal place of the specific gravity) is sufficient to alter the yield very considerably or even to give entirely different products

FORMATION OF BENZENE AND ITS DERIVATIVES

When vapours of aliphatic compounds are passed through red-hot tubes, the products formed contain aromatic compounds At a red heat acetylene gives benzene (the reverse reaction is also possible) $3C_2H_2 = C_0H_0$

Another source of aromatic products is the distillation of lignite tar or

petroleum residues (sec Cracking Process, p. 87)

When allylene, C₃H₄, is distilled with dilute sulphuric acid, inesitylene, C₆H₃(CH₃)₃ (1 3 5), is obtained, while under similar conditions crotonylone,

C₄H₆, forms hexamethylbenzene, C₆(CH₃)₆
In presence of concentrated sulphuric acid, several aliphatic ketones undergo condensation to aromatic hydrocarbons, thus, acetone forms 1 3 5-

trimethylbenzene, $3C_3H_0O=3H_2O+C_6H_3(CH_3)_3$ Acetoacetaldehyde, OH_3 CO OH_2 CHO, when liberated from its sodium derivative, is transformed immediately into triacetylbenzene, $C_0H_3(COCH_3)_3$

Various aromatic compounds may also be obtained by the action of sodium on ethyl bromoacetoacetate or ethyl succinate, by heating ethyl sodiomalonate and by certain other syntheses

From the tar obtained by distilling coal, wood, or lignite, many aromatic compounds can be separated 5 to 10 per cent of naphthalene, 1 to 1 5 per cent of benzene and toluene, besides quinoline, anthracene, etc

Benzoic and salicylic acids, bitter almond oil, etc., occur naturally in the vegetable kıngdom

A AROMATIC HYDROCARBONS

Those with saturated side-chains are colourless, refractive liquids of characteristic odour, insoluble in water, but extremely soluble in other or absolute alcohol, they are lighter than water (0 830 to 0 806)

General Methods of Preparation (1) Alkyl chlorides and aromatic hydrocarbons in presence of aluminium chloride give mono- and poly-substituted hydrocarbons, which can be separated by fractional distillation $C_0H_0 + CH_3Cl$ = HOl + 0_8 H₅ CH₅ (Friedel and Craft's synthesis), intermediate aluminium compounds are first formed. Ferric chloride, zinc chloride, or zinc turnings act in the same way as aluminium chloride. The latter salt also brings about the decomposition of the higher hydrocarbons into more simple ones

(2) In presence of sodium, monobromo-substitution derivatives of aromatic hydrocarbons and alkyl bromide or iodide give higher aromatic hydrocarbons (Fittig's synthesis, analogous to that of Wurtz for the aliphatic series)

$$C_0H_5Br + C_2H_5I + Na_2 = NaBr + NaI + C_0H_5 \cdot C_2II_5$$

(3) Distillation of calcium salts with soda lime (analogous to the synthesis of aliphatic hydrocarbons)

$$(C_6H_5CO_2)_9Ca + Ca(OH)_9 = 2CaCO_3 + 2C_6H_6$$
Calcium bonscote

(4) Aromatic sulphonic derivatives give the hydrocarbons when heated with sulphuric or hydrochloric acid, best in presence of steam C6H5 SO6H+ $H_2O = H_2SO_4 + C_6H_6$ On this reaction is based the method used for separating aromatic hydrocarbons from those of the aliphatic series, the former with concentrated sulphuric acid giving soluble and the latter (paraffins) insoluble sulphonic acids

1 ,

(5) When an aromatic hydrogarbon is dissolved in an alcohol in piesence of zinc chloride at about 300°, water separates and a higher hydrocurbon is formed $C_6H_6 + C_5H_{11}OH = H_2O + C_6H_5$ C_5H_{11}

COAL TAR

The cheapest and most abundant hydrocarbons used as raw material for the prepara tion of large numbers of important aromatic compounds (from artificial perfumes to amline dyes) are obtained by the distillation of tar While at one time this product constituted an unpleasant and moonvenient residue of the illuminating gas industry (see pp 40 et seq), it is now so much in demand by large manufacturers of chemical products that it is some times very searce, and attention has been turned to the utilisation of the tar produced in metallurgical coke factories, this having been formerly discarded 1

Westphalian coal gives, on an average 2 5 per cent. of tar, that of Saar as much as 4 per cent, and that of Silema even more than 4 per cent.

COMMONEST AROMATIC HYDROCARDONS WITH A SINGLE BENZENE NUCLEUS

	Namo	Rational formula	Position of substituents	Melting point	Boiling point	Specific gravity
Celfe	Bonzono	_		+ 2 4°	+ 80 4°	0 874 (20°)
C7H8	Toluone or methyl-	Сань Онв		liquid	110°	0-800 (10°)
СвП10	o Xylono = o-dimothyl	• • •		- 28°	1420	1 ''
3	hanzene n Xylene = m-dimethyl	C ₀ H ₄ (CH ₅) ₂	1 2			0.803 (0°)
	p Xylene - p dimethyl	,,	18	- 58°	130°	0·881 (0°)
A	bonzono Isthylbonzono	Сень Сепь	1_4	+ 1 3° Uqnid	188° 186°	0 880 (0°) 0 888 (0°)
CBILTE	Hemimellithene = tri methylbenzene (r)	C6H3(CH3)3	1 2 3	,,	175°	_
	Proudommono - tri methylbenzono (as)	,,	124	.,	100 5°	0 805 (0°)
į	Mesitylene — trimethyl benzene (s) n-Propylbenzene	Сана Сан7	1 3 5	"	165° 150°	0 865 (14°) 0 867 (14°)
	Isopropylbonzone = ommone	,,	_	**	163°	0.806 (10)
C10H14	Prehnitone = tetra- mothylbonzene	O8H2(OH5)4	1284	1°	204"	_
,	Isodurone — totra- mothylbonzone (as)	11	1285	Hquid	105°	-
- 1	Durono = tetramethyl benzene (as)	,,	1246	+ 80°	102°	_
	m-Cymene = methyl isopropylbenzene Cymene = methyliso	C8H4 OH5(C3H7)	1 3	liquid	175°	0 802 (20°)
ļ	propylbenzene	CeH5 CHB	1 4	.,	176° 180°	0 850 (20°) 0 804 (15°)
	n Butylbenzone soc Butylbenzone	OBTP OFT	1 1	33	175°	0-867 (15°)
	Isobutylbenzene	11	_	11	171° 167°	0-871 (15") 0-871 (15°)
CuTt ₁₈	tort, Butylbensene Pentamethylbensene	C8H(OH3)5	12845	+ 81 6° liquid	2810	0-847 (104°)
, 11, 110	11-Amylbonzono	Conf Collin	<u> </u>	liquid	202°	0-800 (22")
	Iscamylbenzene Hazamethylbenzene	a-court.	1 2 3 4 5 6	- 1'0e°	104° 205°	0-886 (1H°)
C12H18	n Hoptylbonzono	Co(OH ₃) ₆ Colls C ₇ H ₁₅		liguid	100° (10 mm)	_
O14 H22 (116 H26	a Octylbonzono	CaHa CaHir		_ 7°	208°	0 862 (14°)
(1161726	Pentaethylhenzene Hexaethylbenzene	UgH(CgHg)g Ug(CgHg)g	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$	Hqnid ⊦ 129°	277° 298°	0 800 (20°) 0 830 (130°)
(listīs) (lgg1138	(htylbenzene	Calla ClaHzz		120 27°	280° (15 mm.)	0-857 (27")
C241148	Octadocylbenzene	CaHa CiaHay		-1 80°	240° (15 mm)	<u> </u>
U251L44	Rexapropylbenzene Trimethylectylbenzene	C6(C3H7)8 C8H2(CH3)8(C16H33)	128450	+ 118° + 40°	258° (15 mm)	0-845 (40°)

1 The first attempt to utilise ter dates back to 1834, when, in a works at Manchester, it

The first attempt to utilise tar dates back to 1834, when, in a works at Manchester, it was distilled out of contact with air in primitive retorts, the liquid products being collected and the residual pitch employed for making black varnish. Bethell subsequently patented a process for obtaining from tar erecords oil for the impregnation and preservation of wood. Still later the more volatale products of the distillation of tar were used both as an illuminant and as a cleaning liquid. Nitrobenzene was then prepared from it to replace essence of mirbane, but it became possible to develop an industry for the regular utilisation of tar only after the wonderful discovery by Perkin (1856), who prepared synthetically the first artificial coal tar dye, thus laying the foundation of one of the most important industries for which the nineteenth century is famous. century is famous

Numerous industries then arose for the more complete and more rational utilisation of tarfor employing to the best advantage the various products of its fractional distillation. Since

After separation from the ammoniacal liquors of gas manufacture (by centrifugation), tar forms a dense, somewhat viscous, blackish (since it contains 10 to 30 per cent. of suspended carbon particles) liquid of sp gr 11 to 13 It contains many varied and, basic, and indifferent products, the first can be extracted by agitating with aqueous alkali solution, the second with acids, while the neutral compounds, consisting principally of aromatic hydrocarbons, form the residue The composition of tar varies, however, with the nature of the coal, the type of furnace, and the temperature of distillation

It seems that tar contains at least 300 different substances, of which 150 have been established either directly or indirectly and 90 have been isolated with containty and studied, although only four have wide application in the pure state housene, phonol, toluene, and naphthalene

Only to a small extent is tar used as it is for varnishes, coal briquettes, bitumenised paper, lampblack, treating roads to render them less dusty, etc., but for such purposes the residue from the distillation of tar can also be used

A little tar is used in preparing the basic lining of Besseiner converters for the manufacture of steel.

OTHER TARŞ These include (1) Lignite tar, which consists mainly of paraffluoid hydrocarbons, both saturated and unsaturated, but contains also phonol, crosol, various bases, sulphur compounds, benzene and its homologues, naphthalone, naphthenes, paraffin wax, etc It is dense and yellowish brown or black with a greenish fluorescence, its sp gr being 0 82 to 0 95 at 45° and its m. pt. 25° to 35° When distilled it yields various light and heavy oils, creosote oil and hard and soft paraffin waxes (see pp 95 et seq) (2) Wood tar or Vegetable tar (see pp. 128, 333, 335) has the sp gr 1 06 at 15° and is of less value than coal tar, its most important constituents are those soluble in alkali, these consisting of methyl ethers of polyhydric phenols (pyrocatechol, pyrogallol and homologues, forming

that time a continuous series of mechanical improvements in the plant and chemical ones in the processes have been introduced. Improvements in the coke furnaces to admit of the collection of the whole of the products of distillation and of the rational recovery of the heat have been dealt with in Vol. I. (p. 451)

1 Lampblack is prepared by the incomplete combistion of tar, colophony, vegetable ells, the pitch or heavy oils from tar, etc. The liquid or fused substance of the receivers, a, is passed through pipes to the long pans, A (Fig. 438), in which it is heated while a carefully regulated unitial air current is passed over the surface of the liquid so as to have the according to account the product of the liquid so as to have the according to the content of the liquid so as to have the according to the content of the liquid so as to have the according to the content of the liquid so as to have the according to the liquid so as to have the according to the content of the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the according to the liquid so as to have the liq

minimal air current is passed over the surface of the liquid so as to burn the vapours manufactely and separate the greater part of the carbon in a free and finely divided state. This is carried away by the air into the first arched chamber, B, where it is partly deposited, then into the second arched chamber, c, and finally into D (before the chimney, O), in which the final traces

of lampblack are deposited on a thin cloth in front of the mouth of the shaft. This operation is continued for five days, the sixth day (Sunday) being occupied in cooling down and the seventh in restarting. A very fine lampblack is obtained by burning paraffin oil in a kind of lamp with a wide thin jet and allowing the flame to imping on an iron cylinder inside which water circulates, the cylinder thus cools the flame and the lampblack deposited on it is removed from time to time by an automatic scraper. With more or less intense cooling the lampblack has a lower or higher than the cooling than the cooling than the lampblack has a lower or higher than the cool by an automatic scraper With more or less intense cooling the lampblack has a lower or higher specific gravity 100 kilos of tar yield 25 kilos of lampblack, while 100 kilos of resin residue give 20 kilos. Lampblack contains, in addition to free carbon, tarry impurities and only distillation products Attempts have been made, apparently without success, to prepare lampblack by exploding acetylene with a measured proportion of air in closed vessels. The Frank process seems to be more advantageous, in this, acetylene is burned with a certain proportion of carbon monoxide or dioxide $C_1H_1 + CO = H_2O + 3O$ Before the War Swedish lampblack cost 10s to 20s per quintal, that from resinous wood 40s to 52s, and that from lamps 48 to £20 It is used for making black varnishes, printers' ink, boot polish, etc. Boot polish is made by mixing lampblack with wax, molasses, turpentine, and sometimes also sulphuric acid or a little chestnut tannin extract to preserve the skin or leather

crossste oil), which are used for making guaiacol. Wood tur is distilled in a vacuum, the gases which do not condense being utilised for power or heating purposes, as they have a calorifle value of 6000 to 9000 cals per cubic metro. (3) Peat tar gives, when distilled, the following products (percentages) aqueous liquid, about 50, this contains 1.5 per cent. of acotic acid and about 2 per cent of aminonia, coke, 33, gas, 8 to 10 (28 to 38 per cent H_2 , 20 to 25 CO, 6 to 10 CO₂, 32 to 38 CH₄, 8 to 12 of heavy hydrocarbons), tar, 8

DISTILLATION OF TAR

Nowadays tar is mostly subjected to distillation for the extraction of the following products (1) Indifferent substances, in which benzone hydrocarbons prodominate (benzone, toluene, xylene, tri- and tetra methylbenzene, and, to a still greater extent, naphthalenc, anthracene, etc.), those of the methane series being small in amount (these occur abundantly in the distillation products of lights or peat tax and of hituminous shale, see pp. 95-100). Small quantities of introgen compounds occur, such as acctenitric, benzon intrile, carbazole, and pyrrole derivatives, and also traces of carbon disulphide, thiophene, cumarone, etc., (2) Acul substances, among which phonol (carboho acid), cresol, xylenol, and the naphthols abound. (3) Busic substances, which are found in small amount and contain small proportions of pyridine and quinoline compounds and a trace of aniline.

In order to prevent humping and frothing over during distillation, tar must be com

pletely freed from water, which it holds tonaciously In gas works the wet tar passes continuously into a small tank C (Fig. 434) where the ammoniacal liquor overflows into A, while the tar is syphoned into B. Gypsum or coment is also used for removing the water 1

Treatment of the wet tar with water removes a large proportion of the ammonia cal liquor, this being especially advantageous when the tar is subjected to continuous distillation owing to the removal of ammonium compounds hable to obstruct the cooling coils and to prevention of corrosion by the hydrogen chloride produced by dissociation of the ammonium chloride. Application of heat first to the upper part of the boiler, and only later to the lower, is suggested for preventing aqueous tar from frothing over The ammonia water may also be largely removed by centrifuging the tar. In large

F10 434

distilleres the dehydration and distillation of the tar are carried out simultaneously. The old type of boiler is shown in Fig. 435, but preference is now given to horizontal stills, which are sometimes multitubular, like locomotive boilers, in order to obtain more homogeneous and more rapid heating 2 . It will be seen in the figure that direct-fire heat is used (at b), the mass is mixed at intervals by means of a stirrer or of a steam jet introduced

¹ Estimation of water in tai is not easy, since when the tar is heated in a dish it readily froths and everflows. Beck and Rispler (1909 and 1904) allow 200 guns, of the tar to fall drop by drop from a separating funnel on to about 500 grms of water free heavy tai oil contained in a flask of about 2 litres, each drop of tar, as it falls, is instantly evaporated, and the water distilling over is condensed in the refrigerator connected with the flask and collected, together with a little tar oil, in a graduated cylinder, the temperature is finally raised to 300°. The cylinder is kept at a moderate temperature, so that the water separates from the oil, its volume is then read. If much naphthalone also distils ever, it is difficult to read the volume of the water, in this case, the whole of the distillate is poured on to a small filter-paper steeped in benzone, so that only the tar oil filters. The filter paper is subsequently pierced and the water allowed to pass into a graduated cylinder. Ott, on the other hand, heats 400 grms of tar in a copper retort, the heating being carried out from the top by means of an annular gas pipe with orifless in its lower side.

being carried out from the top by means of an annular gas pipe with orifices in its lower side.

The rapid wear of the iron vessels and coils is due especially to HCl, NH₈, H₂S, HCN, eto, formed by the dissociation at high temperatures of chlorides (e.g., ammonium chloride, dissociating at 360°), sulphides, cyanides, etc., and perhaps also by certain electrolytic processes. The base of the still is often 18 to 20 mm in thickness. Cast-iron coils last better than those of wroughteron, and are composed of superposed straight tubes connected at alternate ends by semicircular.

pipes of cast iron

at x and subdivided on the arched base of the still by a number of pipes, z. The tar enters at r, and at the end of the operation the pitch is discharged through a much wider orifice than that marked a. A thermometer or pyrometer is inserted at v, while t serves as exit for the vapours, which are condensed in a coil surrounded by cold water in the case of the

first products and by hot water in that of the last products, these are collected in order of density in a number of small receivers, from which they are passed to large store tanks The stills are arranged in batteries under light roofs open at the sides so that the damage in case of fire or explosion may be mini mised, the further precaution being taken of placing the fire hearths outside in the open When the products formed at 270° are distilled over, the yield is increased and the pitch rendered more liquid, and so prevented from charring, by introducing a current of superheated steam, this removing various substances (anthracene oil) which would otherwise remain in the pitch. The latter is then discharged, while hot, into old, disused steam boilers so as to avoid contact with the air, which might ignite the mass, when almost cold but still fluid, it is run into shallow yessels or pits dug in the earth and allowed to solulify

With a still holding 300 to 400 quintals, each distillation (including charging and discharging) lasts about four days. Distillation in a vacuum saves time, lessons repairs, and gives an improved yield of oil, better pitch, and a smaller deposit of coke, so that it suffices to clean the retorts after 25 or 30 charges

In large tar distilleries, after the temperature in the still has reached 270°, the distillation is completed by passing into the mass a current of superheated steam at 275', the

products boiling at higher temperatures being thus distilled unaltered and a harder pitch obtained, if a soft pitch is desired, heavy oil is introduced into the holler at the end of the distillation.

Various systems of continuous distillation have been introduced to economise plant, fuel and labour—In the Lenhard process the washed and dried tar, heated to 100°, is forced slowly (70 tons per 24 hours) through a weldless iron coil about 800 metres in length, heated in a furnace by means of producer gas. The temperature of the tar may reach 350°

and, as the mass passes from the coil to a separating vessel, the hot pitch separates and the remainder is transformed instantly into vapours, which are condensed in several successive coils

In the Hirzel system the whole distillation is effected continuously in a current of superheated steam, only the final products being distilled by direct fire heat from a still

Figs 438-439

connected with the first one—In this way the different oils distil at temperatures lower by 125° to 150° than in the ordinary apparatus, and, hence, are not only less highly coloured, but are also obtained in better yields.

In the Ray system, five or more cylindrical iron retorts are arranged parallel, but alternately, with one extremity high and the other low (Figs. 436—439). The tar from a raised tank enters at the bottom of the first boiler and passes out at the top to enter the second boiler at the base, and so on. The furnace gases heat the last boiler first, so that this

attains the highest temperature and the first boiler the lowest temperature. The vapours from the different boilers are condensed in separate colls

Wernecke (Ger Pat 301,372, 1907, and 237,823, 1911), has proposed the use of a comeal, stepped still, A, fitted with a number of superposed peripheral channels, E, inside (Fig. 440) The cover, B, is fitted with a vapour outlet, b, and a pipe, a, for the continuous introduction of the tar (which first passes through a heater, where the water and light oils are distilled) The latter enters the uppermost channel, II, and overflows into the lower channels, gradually diminishing in volume owing to the distillation of various products, the more or less liquid pitch is discharged at d. The vapours of the medium oils pass through the upper orifice, b, to refrigerators, but those of the heavy oils from the lower channels are collected by the perforated pipe, DF, which is provided with a cap, G, and is

surrounded by metal gauze, and carries them through c to refrigerators. The still is heated by the gases from the hearth, r, which circulate in the flues, c. The distillation is interrupted only once in 4 to 8 weeks to allow of the removal of the coke deposited on the inner surface of the still. Although the total capacity of the channels is only 600 kilos of tar, the daily output is equal to that of a still of the old type holding 2500 to 3000 kilos. Such a still also serves well for the distillation of lubricating oils from petroleum residues.

PRODUCTS OF THE DISTILLATION OF COAL TAR. The products which distil below

110° at ordinary pressure (sp gr 0 900 to 0 910) are somewhat similar to the ammoniacal liquor of gasworks, and consist of a more or less coloured liquid on which floats an oil con-

taining a little benzene and toluene

Fro 441

The second portion (3 to 5 per cent.) which is collected is that distilling between 110° and 170°, this forming the so called light tar oils (sp gr 0 910 to 0 950)

From 170° to 230° the phenols or medium oils or creosote oils (6 to 9 per cent) are collected. The next fraction (25 to 30 per cent) consists of heavy oils (up to 270°, sp gr 0 980 to 1 030), and the final one, the anthracene oil (7 to 9 per cent) passes over at 270° to 320° (sp gr 1 050 to 1 005) and forms a buttery mass composed of oils and crystalline substances. The final residue constitutes the puch.

The percentage amounts of the different pro ducts obtained from tar are, on the average, as benzene, about 06, toluene, 04, homologues of toluene, 05, crude phenol, 1, higher phenois, 4 to 5, pyridure bases, 02, naphthalene, 7 to 10, heavy oils, 23 to 26, anthracene, 03, phenanthrene, 06, pitch, 55 to 60, ammonia liquor, 4, gas, about I 51

The various fractions obtained in the first distillation of tar are treated as follows

(A) The LIGHT OILS are brownish yellow and darkon in the air and light position varies with the quality of the tar, as is shown by the following results obtained in actual practice

	Cingworks tar	Coke-oven tar
Crude benzene I (distilled up to 135°)	36 12 per cent	12 66 per cent
" " II (distilled at 185° to 165°)	15 50 per cent	10 42 per cent
Phonol ods (165° to 195°)	18 01 per cent.	18 47 per cent
Residue (medium oils)	26 51 per cent	49 36 per cent.
Water and less	3 67 per cent	3 00 per cent

The light oils are distilled and rectified in a column apparatus (Fig. 441) with stills holding 100 to 200 quintals and heated by direct fire or by superheated indirect steam, the first three fractions (up to 105°) are collected separately. The crude bearenes I and II can be purified from the small amount of phenols they contain by washing with caustic soda solution, the remaining benzene is then rectified again in order to remove the toluene, of which it may contain as much as 25 per cent (see later, Benzone) The phonol oils (dis tilled between 165° and 195°) contain appreciable quantities of naphthelene, and are therefore worked up with the medium oils

- (B) MIDDLE or CREOSOTE OILS vary in amount from 5 to 10 per cent according to the type of tar used and to the temperature of distillation (110° to 180°) They are brown. and at the ordinary temperature become pasty owing to the separation of naphthalone orystals They darken in the air and on distillation give the following components
- In a large German coke tar distillery, where retorts holding 350 quintals were used, the mean yields of several years were as follows. Ammoniacal liquor, 427 per cent., light oils, 406, medium oils, 1038; heavy oils, 611, anthracene oil, 1371, pitch, 6040, loss, 098. The tar distilled contained on an average 24 per cent. of matter (carbon) insoluble in benzene, and the mean cost of distilling 1000 kilos of tar was as follows: Labour, 77d, coal (at 1s 7d per quintal), 144d, steam, 48d; various materials, 14d, repairs, 88d, depreciation, 115d, total, 43 dd In a large distillery fitted with retorts holding 180 quintals and working at reduced pressure a largor annual output was attained, while the mean cost per ton distilled was 305d, the yields were as follow Ammoniacal liquor, 386 per cent.; light oils, 124, medium oils, 1202, heavy oils, 850, anthracene oil, 1868; pitch, 5456, loss, 114 When tar free from water is distilled the consumption of coal is diminished from 75 to 5 per cent.

		Modiun	n tar-olla	
	Gu		Metallur	gioni ente
Crude benzene II (to 165°)	4 15 pc	r cent	1 78 p	or cont
Phonol oils (165° to 195°)	21 77	17	19 91	,,
Naphthalene oil (195° to 280°)	43 45	,,	28 68	21
Residue	26 91	,,	48 18	20
Water and loss	3 72	12	1 45	

(C) HEAVY OILS constitute 25 to 30 per cent, of the tar and form a semi-solid, blackish mass, that obtained from gas (metallurgical coke) tar containing about 28 (30) per cont. of naphthalone and 16 (10) per cent of phenols. They are fractionally distilled, the main middle fraction being either used directly for various purposes 1 or distilled in a vacuum

1 Heavy tar-oil, when not redistilled in a vacuum to recover the anthracene, is used as an illuminant, or for the manufacture of lighting gas, or as fuel, or for impregnating wood. To obtain illuminating gas the oil is run in a thin stream into heated from retorts (as in the cracking of petroleum, see p. 87), carbon and an oil still containing a considerable proportion of benzene

being formed in addition to the lighting gas.

When these oils are used directly for heating purposes, they are pulverised under the furnaces

At the Doutz gas-engine works (near Cologne), heavy tar oil has been applied in Diesel outlines. Tar itself may be used in these engines, especially that from vertical furnaces, which contains far less naphthalene (2 to 3 per cent) than that from horizontal or inclined gas retorts, the lower the temperature at which coal is distilled the greater is the proportion of parafilm hydrocarbons obtained

A considerable amount of heavy tar oils is used for the disinfection and decdorisation of urnals, continuous rinsing of these with water may be replaced with advantage by brushing on a thin layer of a mixture of tar oils of various compositions (heavy tar oils mixed with heavy mineral oil, soap, etc.) This mixture should answer the following requirements ap gr 0 900 at most, b pt. 105° at least; it should remain liquid at 0° and should not separate into different layers on standing, it should not contain soap, alcohols, or free alkalis or mineral acids, at least 75 per cent. should distill at 350°, it should contain at least 7 per cent. of cresol.

Very large quantities of heavy oils are now used for the preservation of wood. Timber, relivant slearers talgarant poles set, exceedily when in contact with the ground are invised.

very large quantities of neavy one are now used for the preservation of 1900d. Timber, railway sleepers, telegraph poles, etc., especially when in contact with the ground, are injured and become unusable in a few years owing to the attacks of various moulds and micro organisms (Merulus lacrimans, Polyporus vaporarius, etc.) Even when hard wood is used it gradually becomes considerably attacked. Telegraph poles and railway sleepers have been successfully treated by smearing with putch or bitumen the parts which come into contact with the castil, and superficial charring of the wood at the points most subject to attack has also been tried. Formerly much use was made of the method of mineralising wood Concentrated and more or less hot solutions of various salts (ferrous or copper sulphate, zine chloride, etc.) are forced or tess not solutions or various saits (refrous or copper suppaste, zino chloride, etc.) are forcided into the pores of the wood under pressure, or the wood is heated in a large autodiave, which is then evacuated to remove all the air and water from the pores and subsequently filled with the sait solution, which thus impregnates the wood completely. The process which gives the best results and has become widely used in recent years is, however, that of Bethell, which consists in the complete impregnation of the timber with heavy tar oils (grade creened oil), these contain phenols, cresols, etc., which have a marked disinfecting action. In Italy this process has been applied for some years, and is carried out, not in autoclaves, but in open vessels, such as are used in America, the treatment being completed in zing solutions according to the process has been applied for some years, and is carried out, not in autoclaves, but in open vessels, such as are used in America, the treatment being completed in zinc solutions according to the improvements of the Giussani patents. The beams are first immersed for 5 to 6 hours in a bath of fused masut (see p. 80) kept at 160° to 170°, by which means the wood is deprived of its air and water and sterilised, they are then passed into a cold vessel containing medium tar oil (the portion distilling at 210° to 240° and having an acidity of 25 per cent. due to various phonols) where, after 20 to 30 minutes' cooling, the oil penetrates the pores to a depth of 1 cm or more. The wood is finally left for 3 to 4 hours in a cold, concentrated solution of zinc olloride, which forces the oil further in and forms a thin superposed layer in the porce (the wood absorbs as much as 15 per cent. of the zinc chloride solution) Thus treated, wood resists the action of weather, water, and soil for 15 to 20 years, soft wood being as resistant as lard.

The German railways require that every sleeper, 2 7 × 0 26 × 0 16 metres, shall contain 7 kilos of creceote oil. In order to economise tar oil, Ruping's process is often used This consists in creating an air pressure of 5 atmos. in the autoclave containing the wood and then

consists in creating an air pressure of 5 atmos. in the autoclave containing the wood and then introducing the crossote oil at 10 atmos. pressure. When the pressure in the autoclave subsequently falls off, the excess of oil is forced out by the air compressed in the pores, the latter remaining coated inside with a thin layer of oil. In this way 2 kilos of crossote oil give the same

sterilising effect.

Tar olls freed from the phenols have a bactericidal effect three times that of zinc chloride, especially if they are emulafied with about 6 per cent. of resin scap and then diluted with 40 times

(D) ANTHRACENE OIL or green oil, obtained in the direct distillation of tar, is a deite almost buttery, greenish brown mass of specific gravity 1 09 to 1 125, fluid at 60° It co tains 6 to 10 per cent of crude anthracene (40 per cent of anthracene), besides naphthalor methylnaphthalene, phenanthrene, acenaphthene, diphenyl, methylanthracene, pyrer chrysene, retene, fluorene, fluoranthrene, benzerythrene, carbazole, acridine, about 6 p cent of lugher phenols, a and β naphthols, and various basic substances.

The anthracene oil is usually collected in two fractions, I and II Anthracene cul with specific gravity up to 1 100, is used for the preparation of anthracene, and anthrace oil II either for making oil gas (see p 64), or lamp-black, or for removing the naphthalo from coal gas (see p 47), or for making carbolineum, which is used to preserve and sta

wood.

(E). PITCH is the final residue of the direct distillation of coal tar (or peat or light

tar) and forms about 50 to 55 per cent. of the tar

According to whether the pitch (residue) is required to be more or less liquid or solu the distillation is suspended after the third or fourth fraction has been collected, to rend the pitch shiny, it is mixed in the still with the heavy oil remaining after the crystallisatic of the anthracenc.

Soft pitch melts at 50°, medium pitch at about 70° (used in making briquettes fro coal residues, see Vol. I, p 459), and hard pitch, of sp gr 1 25 to 1 275, at 90°

Artificial pitch is made by interrupting the distillation of the tar when the light pr ducts have been eliminated and passing a current of air through the liquid at 100° render the pitch more readily fusible, it is fused with sulphur

The percentage elementary composition of pitch is C, 85 to 92, H, 46 to 46

O + N + S, 3 to 7, ash, 0 5 to 2 5

Pure carbon remains undissolved when putch is extracted with tar phenols, but benzer extracts from pitoli a *pure bituinen* used in electrotechnics, the insoluble part being employe

either to make lamp black or as retort graphite for making electrodes

Perkin calculated the value of the final products of the complete and rational treatmen of 9,000,000 tons of coal (costing £5,400,000) to be as follows—dyes, £3,350,000, amin num sulphate (195,000 tous), £1,960,000, pitch (325,000 tous), £365,000, creosote c (1,125,000 hectols), £208,000, crude carbolic acid (45,000 hectols.), £220,000, col Total, £8,503,000, exclusive of the 30 cu. metres of gas per ton of co £2,400,000 carbonised

BENZENE (or Benzol), C₆H₈ This was discovered by Faraday in 1825: the liquid obtained on compressing illuminating gas, but the more abundan source, tar, was found by Hofmann in 1845

It is obtained pure by the dry distillation of benzoic acid with lime, an then forms a colourless, mobile, highly refractive liquid of sp. gr. () 8841 at 15 b-pt 80 4° (a mixture of 60 65 parts of benzene with 39 35 of methyl alcohboils unchanged at 58 35°), and m-pt +54°, it burns with a luminou

The calorific value of benzene is 10,050 cals per kilo, the latent heat evaporation being 94.4 cals, and the vapour pressures at different temperature

as follows

Temperature -- 10° 0 10 20 30 40 50 60 70 80 90 10 Mm of Meroury 14 8 26 5 45 4 74 7 118 2 181 269 388 6 547 4 753 6 10 10 134

The commercial product contains thiophen and traces of carbon disulphidwhich may be eliminated in various ways, eg, with moist ammonia (Schwalb) Ger. Pat 133,761) which separates insoluble oil drops, or by boiling with mei

their weight of water, less than 1 kilo of tar oils is thus sufficient for a railway sleeper Goc results have also been obtained with heavy petroleum oils heated to 200° with 2 per cent. of sulphi and then mixed with 40 per cent. of creosote oil

According to Friedmann and Heidenstam, wood is preserved well by impregnating it wit calcium cresolate (soluble in water) and then precipitating calcium carbonate and cresol in the process by simple exposure of the wood to air or, better, to fumes rich in carbon dioxide (Danis Pat. 12,419 of 1909)

Injection of a hot solution of zinc \$\beta\$ naphthalenesulphonate, which insoluble in the cold. has also been suggested. insoluble in the cold, has also been suggested.

curio acotate, sulphin chloride, or 0 5 per cent of aluminium chloride, according to Ger. Pat 211,239, formaldehyde, acetaldehyde, or phthalic anhydride may also be used, all these substances combining with thiophen dissolves resms, fats, sulphin, rubber, gutta-percha, camplior, etc., it mixes with alcohol, ether, acetone, etc., and is almost completely insoluble in water

The preparation of artificial benzene, starting with petroleum, was described on p 87 Benzene forms the prime material for many varied syntheses of arountic compounds, such as nitrobenzene, aniline, phenol, etc., and of dyes (also nowadays of artificial indigo) In presence of AlCl₃ it is rendered more active chemically, as though it contained a true double linking. It is used as a solvent for fats and for purifying many organic compounds, the addition of 15 per cent of benzene to the alcohol used with an Auer mantle for lighting purposes results in a saving of 27 per cent of the alcohol Large quantities of 90 per cent benzene are now used for carburetting illuminating gas to which It is also employed for dissolving rubber water-gas has been added (see p 58) and lacs for making limoleum, for removing fat from bones, and for automobile engmes, but should contain toluene to prevent it from freezing in winter

At one time it was obtained exclusively from gas tar, this yielding also larger quan tities of toluene, the uses of which were limited. After 1880, when the tendency was to obtain increased yields of illuminating gas by raising the temperature of carbonisation of the coal, the quantity of tar diminished, as also, in still greater proportion, did the amount of benzone. In 1882, the price of benzone, then in great demand by dye manufacturors, exceeded £12 per quintal. It was then that attention was turned to the recovery of the tar from metallurgical coke factories, but although this tar is obtainable in large amounts, it is very poor in benzene, most of which escapes with the gases and is wasted in the fur naces Darby was the first to suggest the recovery of the benzene from the gases of the coke furnaces, and newadays these gases, before being burnt, are either strongly cooled to condense the benzene or washed with slightly volatile tar-oils, in which the benzene dissolves and from which it is recovered by subsequent heating (see Note, p 58) 1. As a

¹ Benzene is now recovered from its solutions in heavy mineral or tur oils by means of the Kubierschky rectifying column (Ger Pat 104,567, 1906), which works continuously and gives a sharper separation of the components of a mixture than other systems. The action of this column is based on the displacement of a vapour or

Into action of this column is assed on the displacement of a vapour of gas by superposition of another lighter vapour or gas, the two layers do not mix if the velocity of movement is less than 0.75 metre per second, and usually the velocity in such an appearatus is 0.3 metre per second. In the ordinary rectifying column (see p. 158) the mixed vapour (for instance, of alcohol and water) passes upwards and has to overcome the resistance of the liquid layers in the chambers above, further, the lighter, heater and less concentrated vapours below do not merely displace the cooler, heavier and more concentrated vapours of the upper chambers, but mix heavier and more concentrated vapours of the upper chambers, but mix with them to some extent and render the rectification less perfect. In the Kubicrschky column, however, the lighter vapour passes from the lower part of one chamber to the upper part of the chamber above and settles gently on the heavier and colder vapour contained therein, this being thus forced to the upper part of the chamber above (see Fig 442) The ciliute halloulelle liquid enters helf way up the column by the wine and decended forced to the upper part of the chamber above (see Fig 442). The dilute alcoholic liquid enters half way up the column by the pipe a and descends as a spray through the perforated plates of chambers 0, 5, and so on At the same time steam at slightly above 100° enters by b into chamber 1 and descends along with the spray of alcoholic liquid from the perforated base of chamber 2. This liquid gives up to the steam any traces of alcoholic still contains and is discharged from the perforated bottom of chamber 1 through the pipe a. The steam passes into the upper part of chamber 2 and there forms a layer above the slightly more alcoholic (and hence heavier) vapour therein and forces this into the top of chamber 3, and so on The ascending vapours are not subjected to friction, since they fall with the liquid spray and never bubble through liquid layers. At the top of the column, in chamber 14, the vapour rich in alcohol rises through the pipe a to the dephlegmator, a (acting as a preheater for the dilute alcoholic liquid entering the column at a), where a little water and a very little alcohol condense and fall as spray into chamber 14 and the lower chambers. The alcohol rich vapour not condensed in the dephlegmator issues through the

bolidense and rain as spray into distance are though the spray of the dephlegmator issues through the Fro 442 pipe o and is condensed in a coil a short distance away. The column is composed of a number of flanged east or wrought iron rings or elements bolted together. Communication between the lower part of one chamber and the upper part of the chamber

result of this process, the production of benzene became more than ten times that of talue the price, which was £2 to £3 per quintal in the period 1885-1800, falling to 20% to 2 in 1898-1910, and to below 16s in 1913 Pure thophen-free benzene cost before the W about 1s 6d per kilo and the puriss product, obtained from benzoic acid, 32s per kilo

Various forms of apparatus are used for distilling and rectifying crude benzone, being heated by means of indirect steam Use may be made of Hirzel's apparatus (p. 8 or of the similar one of Heckmann (p. 165), but having a still with a smaller base in a form of a short, horizontal cylinder and with a dephlegmator in the upper part of eolumn.1

above is effected by means of various arrangements, for example, by tubes, as shown in Fig. 1 above is effected by means or various arrangements, for a space (Fig. 44). The liquid collect on the bottom of a contral tube and a peripheral annular space (Fig. 44). The liquid collect on the bottom of each chamber passes into the chamber beneath through hydraulically see the chambers being thus prevented. The

of the spray may be rendered slower by the insertion in the chambers of perforated plates

metallic gauze (Fig 444)

For the recovery of benzene from its solutions in heavy oils use may be made of two s columns superposed. In the lower one the solution, falling as a spray, comes into contact w steam which removes the benzene, the mixed water and benzene vapours then passing upwa through the upper column, where they meet a spray of crude benzene. The mixed water is benzene vapours issuing from the top of this column are condensed and the water separated decentation

decantation

1 The different fractions obtained on rectification are as follows: (1) commercial 90 per chenzene I of sp gr 0 885 at 15° (90 per cent. of this distils at 100° and 100 per cent at 12 it contains about 20 per cent of toluene; 120° is termed the dry point of the benzene), (2) 50 cent benzene II with sp gr 0 880 (50 per cent. of this distils at 100° and 90 per cent at 12(3) heavy benzene or solvent nayltha with sp gr 0 875 (20 per cent. of this distils at 130°; 90 per cent at 160°, it serves as a good solvent for rubber)

The testing of commercial benzene is carried out by determining its density and by fraction distilling it, 100 c.c are distilled in an ordinary flask with a side tube (see p. 75) and heaven a metal gauze with a flame so adjusted that two drops distill over per second; the fit is removed for a minute before changing the cylinders in which the separate fractions (1: 120°, 130°, 100°) are collected. In some cases a nitration test is made, note being taken of yield of nitrobenzene, purified by steam, and then rectified (see later, Nitrobenzene).

PURE BENZENE, now required in considerable quantities for various chemical industries, such as the manufacture of synthetic phenol (see later), the manufacture of introbenzene for making pure ambine, etc., is obtained from purified 90 per cent. benzene. This is washed several times with a total of 2 to 3 per cent of 96 to 98 per cent sulphuric acid or of 2 per cent of cleum. After standing for some time, it is washed first with a little water and then with 18 per cent. caustic soda solution (0.4 per cent. of NaOH calculated on the weight of the benzene), and afterwards subjected to careful fractional distillation, being heated by indirect steam. The fraction boiling at 80° to 85° is further rectified, and then yields 90.5 per cent. benzene, b. pt. 80.2° to 80.8° at 700 mm. pressure, a variation of 1 mm. in the pressure alters the boiling point by about 0.05°

The final purification of small quantities of benzone may be effected by cooling the liquid until it freezes and then squeezing or centrifuging away the toluoue, etc., from the crystals

When shaken with an equal volume of pure concentrated sulphure acid, pure benzene should not turn the acid yellow. If traces of the opten are present, the benzene will give the blue colour of indephenen when treated with satin and concentrated sulphure acid.

TOLUENE (or Methylbenzene), C_6H_5 CH₃, is formed by the dry distillation of balsam of Tolu and of various results, and is obtained in appreciable quantities by the distillation of tar (see above). It boils at 110 4°, does not solidify even at -28°, and has the sp. gr. 0.87 at 15°. It occurs to the extent of 10 to 15 per cent in crude benzone I and of 25 per cent. or more in crude benzone II

Crude toluene is purified from the hydrocarbons of the fatty series which always accompany it (and are not eliminated by rectification) by washing it with hot sulphuric acid containing a little nitric acid, the elefines being thus polymerised and the thiophen decomposed. It may also be purified by heating with sodium

Commercial pure toluenc gives 99 per cent. of distillate below 112° and 95 per cent between 108° and 110° (two drops per second) It does not colour on protracted shaking with concentrated sulphure acid, and if 90 c c. of toluene and 10 c c. of nitric acid (44° Bé.) are shaken together for some minutes in a tall glass-stoppered cylinder, the nitric acid should become only a transparent red and not a greenish black and should not thicken

Toluene is used in the manufacture of dyes, pharmaceutical products, perfumes, etc., and, during recent years, of trinitrotoluene (see later), which is used in large quantities as an explosive.

XYLENES (Dimethylbenzenes), $C_6H_4(CH_3)_2$ Xylene obtained from tar contains the three isomerides, o, m-, and p, metaxylene being present to the extent of 70 to 80 per cent. They cannot be separated by fractional distillation owing to the small differences between their boiling points $(o - 142^\circ$, $m - 130^\circ$, $p - 138^\circ$)

Treatment with concentrated sulphuric acid in the cold, however, converts the o- and m- compounds into the corresponding sulphonic acids, the p xylene remaining unchanged. The sodium salt of o toluenesulphonic acid crystallises more readily than that of the m compound, so that the three hydrocarbons can be separated With exidising agents, the xylenes give phthalic acids (see later)

It is mostly m xylono which is used in the manufacture of dyes

ETHYLBENZENE, C_0H_5 , C_2H_5 , is obtained by Fittig's synthesis (see p. 622) and gives benzoic acid on oxidation (difference from the xylenes)

TRIMETHYLBENZENES, C₈H₃(CH₈)₈ (see Table, p. 623) The following isomerides are known

- (a) Mesitylene (symm 1 3 5) is a liquid of pleasant odour boiling at 165° Its constitution is proved by its synthesis from acctone or allylene, by the fact that it does not form isomeric compounds by further substitution in the nucleus, and by its oxidation products nitric acid oxidises the three side chains successively and chromic acid simultaneously
- (b) Pseudocumene (asymm 1 2 4-) is prepared from bromo p-xylene (1:4 2) or bromo m xylene (1 3 4) by Fittig's synthesis, which indicates its constitution. It is obtained in small proportion from the distillation products of tar, and is separated from mesitylene by conversion into the slightly soluble sulphonic acid (see Xylenes)

iddition of petroleum spirit to benzene is detected by the lowering pirit does not dissolve tar pitch or ploric add, which are readil the latter reacts vigorously with concentrated nitric add, which pirit

PURE BENZENE, now required in considerable quantities for various chemical industries, such as the manufacture of synthetic phonol (see later), the manufacture of nitro benzene for making pure amiline, etc., is obtained from purified 90 per cent benzene. This is washed several times with a total of 2 to 3 per cent. of 96 to 98 per cent sulphure acid or of 2 per cent of olcum. After standing for some time, it is washed first with a little water and then with 18 per cent. caustic sods solution (0.4 per cent of NaOH calculated on the weight of the benzene), and afterwards subjected to careful fractional distillation, being fraction by indirect steam. The fraction boiling at 80° to 85° is further rectified, and then yields 99.5 per cent, benzene, b. pt. 80.2° to 80.8° at 700 mm. pressure, a variation of 1 mm. in the pressure afters the boiling point by about 0.05°

The final purification of small quantities of bonzone may be effected by cooling the liquid until it freezes and then squeezing or centrifuging away the toluene, etc., from the crystals

When shaken with an equal volume of pure concentrated sulphure acid, pure benzene should not turn the acid yellow. If traces of the open are present, the benzene will give the blue colour of indephenin when treated with isatin and concentrated sulphure acid. Toluene (or Methylbenzene), C_8H_5 CH₃, is formed by the dry distillation of balsain of Tolu and of various resins, and is obtained in appreciable quantities by the distillation

of tar (see above) It boils at 110 4°, does not solidify even at — 28°, and has the sp gr 0 87 at 15° It occurs to the extent of 10 to 15 per cent. in crude benzene I and of 25 per cent.

cont or more in crude begizene II

Crude toluene is purified from the hydrocarbons of the fatty series which always accompany it (and are not eliminated by rectification) by washing it with hot sulphuric acid containing a little nitric acid, the cleffines being thus polymerised and the thiophen decomposed. It may also be purified by heating with sodium.

Commercial pure toluene gives 99 per cent. of distillate below 112° and 95 per cent between 108° and 110° (two drops per second) It does not colour on protracted shaking with concentrated sulphuric acid, and if 90 c c of toluene and 10 c c of nitric acid (44° B6) are shaken together for some minutes in a tall glass-stoppored cylinder, the nitric acid should become only a transparent red and not a greenish black and should not thicken

Toluene is used in the manufacture of dyes, pharmaceutical products, perfumes, etc., and, during recent years, of transtrotoluene (see later), which is used in large quantities as an explosive.

XYLENES (Dimethylbenzenes), $C_8H_4(CH_0)_2$ Xylene obtained from tar contains the three isomerides, o, m-, and p-, metaxylene being present to the extent of 70 to 80 per cent. They cannot be separated by fractional distillation owing to the small differences between their boiling points (o- 142° , m- 130° , p 138°)

Treatment with concentrated sulphuric acid in the cold, however, converts the o and n-compounds into the corresponding sulphonic acids, the p-xylene remaining unchanged. The sodium salt of o toluenesulphonic acid crystallises more readily than that of the n compound, so that the three hydrocarbons can be separated. With oxidising agents, the xylenes give phthalic acids (see later)

It is mostly m-xylene which is used in the manufacture of dyes.

ETHYLBENZENE, C_0H_5 , is obtained by Fittig's synthesis (see p 622) and gives benzow and on exidation (difference from the xylenes).

TRIMETHYLBENZENES, C₆H₃(CH₃)₃ (see Table, p. 623) The following isomerides are known

- (a) Mesitylene (symm 1 3 5) is a liquid of pleasant odour boiling at 165° Its constitution is proved by its synthesis from accione or allylene, by the fact that it does not form isomeric compounds by further substitution in the nucleus, and by its oxidation products nitric acid oxidises the three side chains successively and chromic acid simulaneously
- (b) Pseudocumene (asymm 1 2 4-) is prepared from bromo-p-xylene (1 4 2) or promo-m-xylene (1 3 4) by Fittig's synthesis, which indicates its constitution. It is obtained in small proportion from the distillation products of tar, and is separated from nesitylene by conversion into the slightly soluble sulphonic acid (see Xylenes)

ddition of petroleum spirit to benzene is detected by the lowering of the density, also petroleum pirit does not dissolve tar-pitch or pieric acid, which are readily soluble in benzene. Further, he latter reacts vigorously with concentrated nitric acid, which does not attack petroleum purit

The chlorine in the nucleus of chlorotoluene is united as firmly as in chlorobenzene, whilst the chlorine in benzyl chloride is readily replaceable, just as is the case with that in methane derivatives To ascertain whether the halogen is present in the nucleus or in the side-chain, the exidation products are studied, thus, chlorotoluene gives chlorobenzoic acid, CaH4Cl CO2H, whilst benzyl chloride yields benzoie acid

For distinguishing isomeric halogen derivatives, the same methods are used

as for the xylenes, etc

In order to be able to name aromatic derivatives the more readily, the following names are given to the more common of the different groups or aromatic residues (known as aryl radicals and denoted generally by A1) —OH, phonolic, — CO_gH , carboxyl, —O CII_3 , methoxy, — C_6II_5 , phonyl, — CH_2 C_6H_5 , benzyl, —CO C_6H_5 , benzyl, —CN, mitrile, — SO_3H , sulpho

or sulphone, C C_0H_5 , benzenyl, $C_0H_4 < \frac{C}{CO} > 0$, phthalyl, CII C_0H_5 , benzylidene or benzal, -CoH4 CoH4-, diphenylene

GENERAL METHODS OF FORMATION (1) In direct sunlight, chloring and bromme act on benzene, giving additive products, eg, $C_6H_0Cl_6$ and $C_0ll_6ll_6$, but in diffused light (best in presence of traces of rodine, aluminium chloride, anti-mony trichloride, etc.), substitution products are formed. With homologues of benzene, if the reaction is carried out in the cold and in the dark (or in diffused light) or in presence of iodine (which acts catalytically), the halogen enters only the benzene ring (even in the hot, if iodine is present), whilst in the hot or in direct sunlight, the substitution takes place principally in the side-chain

(2) By heating halogenated acids with lime

$$C_0H_4Cl$$
 $CO_2H = C_0H_5Cl + CO_2$

(3) By withdrawing oxygen from oxygenated compounds (phenols, aromatic alcohols, ketones, acids, aldelydes) by means of PCl_5 , cy, C_0H_5 OH + PCl_5 = $POCl_3$ -+ HOl + C_0H_5Cl (4) By boiling with cuprous chloride or potassium iodide the diazonal college of the corresponding vitros or annual compounds.

compounds obtained from the corresponding intro- or anniho-compounds C_0H_5N $NCl = C_0H_5Cl + N_2$, C_0H_5N $NCl + KI = KCl + N_2 + C_0H_5I$ (5) Iodo-derivatives may be obtained by the action of rodine, rodic and

being added to oxidise the hydriodic acid which is formed. They are, however,

usually obtained by process (4)

(6) Iodobenzene, C_6H_5I , unites with two atoms of chlorine, forming rodosobenzene chloride, $C_6H_5ICl_2$, digestion of which with alkali yields rodosobenzene, C_6H_5I O, the latter, when heated or oxidised (with chloride of lime) giving rodylbenzene, $2C_8H_5IO = C_6H_5I - C_6H_5IO_2$ or $C_6H_5IO + O = C_6H_6IO_2$ (an explosive, crystalline compound)

Chlorination or bromination of toluene yields the para- and ortho-derivatives in equal quantities, the meta-derivative is obtained indirectly (from diazo-

compounds)

BENZYL CHLORIDE, CaH, CHaCi, is a colourless liquid with a pungent odom, melting at - 40° and boiling at 178°, its specific gravity at 15° is 1 113 It was first propared by Cannizzaro in 1853, and is obtained by chlorinating boiling toluene. With potassium acetate this chloride gives the acetyl derivative, with potassium hydrosulphide a mercaptan, and with ammonia amino-bases On protracted boiling with water it is transformed into benzyl alcohol, while boiling with lead nitrate converts it into benzaldehydo, when heated with finely divided copper, it loses chlorine and condenses to dibenzyl, C_6H_5 CH_8 CH_8 C_6H_8

It is used for the preparation of oil of bitter almonds and for numerous aromatic syntheses

its chlorine atom being readily replaceable.

Benzyl bromide, when treated with potassium rodide, gives Benzyl iodide These

ORGANIC CHEMISTRY

PRINCIPAL HALOGEN DERIVATIVES OF BENZENE

Km piricul formula	Namo	Molting point	Holling Joint	Hpar life gravity
	Chloro-derrnatives			
CaHaCl	Monochlorobenzene	45°	4- 132°	1 128 at 0°
C ₀ H ₄ Cl ₂	o-Dichlorobenzene (1 2)	_ 40	1700	1 120 (60 ()
0,22401	/r 0\	_	172"	,
}	/1 4	+ 53°	172)
C ₆ H ₃ Cl ₃	v Trichlorobenzene (1 2 3)	16°	2180	
1 04113018	(1.0.4)	63°	2130	ı
l	8 (1 3 5)	54°	2080	
C ₅ H ₂ Cl ₄	v-Tetrachlorobenzene (1 2 3 4)	400	254°	
l ogragora	/a - /1 - 9 m/	20.	2400	
•	8- , (1 2 4 5)	137°	240 244°	
CoHCIs	Pentachlorobenzene	80°	270°	
O ₀ Cl ₀	Hexachorobenzene	220°	326°	
1 0,02,0		220	1 020	
	Bromo derivatives		;	
O_0H_bBr	Monobromobenzene	— 31°	; -{ 155° ;	1 517 at 0"
C ₆ H ₄ Br ₂	o Dibromobenzene (1 2)	— 1°	224°	2 003 at 0°
	m ,, $(1 3)$	+ 1°	2200	1 ՍԾԾ ռն 20^
a, a.	p	87°	210°	1 841 at 80°
$C_0H_3Br_3$	v-Tribromobenzene (1 2 3)	87°		
	as- ,, (1 2 4)	44°	275°	
	e " (I 3 5)	120°	278°	
$C_6H_2Br_4$	v-Tetrabromobenzene (1 2 3 4)	_		
	as " (1 2 3 5)	ก8°	320°	
	8- ,, (1 2 4 5)	175°		
C ₆ Br ₆	Hexabromobenzene	above 315°	- i	
C ₀ H ₄ Br CH ₅	o Bromotoluene (1 2)	20°	181°	1 422 at 20°
	m- ,, $(1 3)$	39 8°	184°	1 410 at 20°
a - a	p ,, $(1 4)$	- - 28°	185°	1 302 at 20°
C ₆ H ₅ CH ₂ Br	Benzyl bromide	liquid	108°	1 438 at 22°
	Iodo-derrvaimes			
C ₆ H ₈ I	Iodobenzene	30°	1000	
C ₆ H ₄ I ₂	o Di-iodobenzene (1 2)		188"	
0011418	71 0	+ 27° 40°	280"	
!	· /1 /		2850	
ļ l	<i>p</i> ,, (1 4)	12{)°	285°	
			. 1	

products are also formed from benzyl alcohol, C_0H_5 CH_2 OH, and halogen hydracids, the may be converted back into the alcohol by boiling with water or potassium carbona solution.

BENZAL or BENZYLIDENE CHLORIDE, C_6H_6 CHCl₂, and Benzotrichloride, $({}^{\circ}_6H_6$ ('C are obtained either by protracted chlorination of boiling toluene or by the action of PCl₆ benzaldehyde or benzom and.

Benzal chloride boils at 204° and has the sp gr 1 205 at 16°, while the trichloride mel at -22° , boils at 213°, and has the sp gr 1 380 at 14°

Mixed halogen derivatives are known, as also is Hexachlorohexahydrobenzene, C_6H_6C Numerous halogenated derivatives of unsaturated aromatic hydrocarbons have likewise be prepared, e.g., a Bromostyrene, C_6H_5 CBr CH_3 , and β Bromostyrene, C_6H_5 CH CHBr.

C SULPHONIC ACIDS

These are formed directly from the aromatic hydrocarbons by the actu of concentrated or fuming sulphuric acid or of chlorosulphonic acid, Cl. SO₈I Improved yields are obtained in presence of mercury or ferrous sulphat which exerts a catalytic action

They are crystalline substances, readily soluble in water and even hygroscopic, and are separated from the excess of sulphuric acid either by means of their calcium or barium salts, which are soluble, or by saturation of the aqueous solution with sodium chloride and subsequent cooling, in the latter case, the sodium sulphonate separates, this being decomposed with the calculated quantity of a numeral acid and the free sulphonic acid extracted with ether

When treated with superheated steam or with hydrochloric acid, they lose the sulphonic group, the aromatic hydrocarbon being thus regenerated. With PCl₅ they form the acid chlorides, $e \ q$, C_6H_6 SO₂Cl, which, with ammonium carbonate, yield the sulphanides, C_0H_6 SO₂ NII₂ (see later). On energetic reduction, throphenol (phenyl hydrosulphide), C_0H_6 SH, is formed

BENZENESULPHONIC ACID, C_0H_6 SO₀H, is obtained by the direct action of concentrated sulphure acid on benzene $C_0H_6 + H_9SO_4 = H_9O + C_0H_6$ SO₀H. Its barum and lead salts being soluble, it can be readily separated from the excess of sulphure acid

It is very stable and is not decomposed on boiling with alkali or acid (as is othylsulphonic acid), but if heated with hydrochloric acid at 150° or with superheated steam in presence of concentrated phosphone acid, it takes up water, giving between C_6H_5 SO₃H + H₂O = $C_0H_0 + H_2SO_1$ When distilled with potassium cyanide, it forms between the SO₃K + KCN = K₂SO₃ + C₆H₅ CN

When fused with alkalı it forms phonol, C_0H_5 SO₃K + KOH = $K_0SO_0 + C_0H_5$ OH, while with PCl₅ it yields Benzene sulphochloride, C_0H_5 SO₃H + PCl₅ = PO(l₇ + H(l) + C_0H_5 SO₅Cl (decomposable by water)

With ammonia, ammonium carbonate, or primary or secondary amines, benzene sulphochloride gives more or less substituted Benzene sulphonamides, a.g, C_0H_5 SO₂ NH₃, C_0H_5 SO₂ NR₃, which crystallise well. As the tertiary amines do not give this reaction, they can be separated from other amines.

Owing to the highly and character of the SO_2 group, the ammo group does not form salts, but its hydrogen can be replaced by metals, e.g, by dissolving in sodium hydroxide solution. Sulphur trioxide converts benzene into Sulphobenzide (sulphone), $(C_0H_0)_3SO_2$

Nitration of benzenesulphonic acid yields mainly in nitrobouzenesulphonic acid, but small quantities of the ortho- and para derivatives are also formed.

Reduction of p introbenzenesulphonic acid yields Sulphanilic acid (p animohenzenesulphonic acid), NH₂ C₆H₁ SO₃H (discovered by Gerhardt in 1845), which is also obtained on heating aniline with furning sulphuric acid or on heating aniline sulphate at 200°. This acid and also the corresponding meta-acid are used in the manufacture of artificial dyestuffs, and both of them can be diszotised (see later).

Sulphonic compounds and their salts are of importance in the dye industry as they give dyes soluble in water and readily applicable to the dyeing of textile fabrics

Polysulphonic acids of benzene and its homologues are also known, some of them serving for the separation of isomeric atomatic hydrocarbons (see Toluene)

D PHENOLS

Phenols contain hydroxyl groups in place of one or more hydrogen atoms of the benzene nucleus. They have a characteristic odour (phenol, thymol), and certain of them are partially soluble in water, while all of them are soluble in alcohol and in ether, they distil unchanged and have a more or less marked antiseptic action.

Their properties resemble, to some extent, those of tertiary alcohols and those of weak acids. Thus, ethers are formed by the action of alkyl halogen compounds on the sodium derivatives of the phenols, anisole, C_6H_5 OCH₃, and phenyl sulphate, C_6H_5 O SO₃H, being obtained in this way, the latter compound is readily hydrolysed. They are, however, stable towards oxidising agents, nitric acid forming substitution products. The hydroxyl group is with some difficulty replaced by chlorine by the action of POl₅. They act as weak acids, but with alkalis form stable salts, which are soluble in water, are decomposed even by carbonic acid, and show only slight electrical conductivity.

Halogens and nitric acid replace the benzene hydrogen of phenols me casily than that of benzene itself or its homologues, so that even in dilicultion phenol can be precipitated quantitatively as tribiomophenol by taction of bromine water

If the hydroxyl group is joined to a side-chain and not to the benze nucleus directly, the compound is an aromatic alcohol and not a phenol

Oxidation of homologues of phenol yields hydroxy-acids, the side-chabeing oxidised while the phenolic groups remain intact

When distilled with zine dust, phonols give the corresponding aromat

hydrocarbons

In aqueous neutral solution, phenols give a violet, green, or other colorati with ferric chloride, calcium hypochlorite, or, in some cases, iodine. In general

they exert a reducing action

With nitrous acid, phenols form isonitroso-derivatives (oximes), and, presence of concentrated sulphuric acid, intensely coloured solutions a formed which are turned blue by potash (*Liebermann's reaction*). The sodin or potassium derivatives of the phenols (*phenoxides*), with carbonic acid (CCl₄ + KOH) give aromatic hydroxy-acids

$$C_6H_5$$
 OH + CO_2 = OH C_6H_4 CO_2H

With chloroform and sodium hydroxide, they yield the corresponding aldehydd They react with diazo-compounds and various other compounds formula colouring-matters (see later)—The action of zinc chloride (or calcium chlorid and aminonia on phenois results in replacement of the OH by NH₂

With formaldehyde they yield characteristic resinous condensation produc (see Backelite, p 641) The commoner phenols are obtained from coal-

wood-tar

(a) MONOHYDRIC PHENOLS

These are found alone or together with polyhydric phenols, and partly the form of ethers (e.g., guaracol,OH $\rm C_6H_4$ OCH₃, crosol, etc.) in the trobtained by the dry distribution of wood or coal. They are separated fro the tar-oils by means of caustic soda, which renders them soluble, and, afterparation, are set free by mineral acid and subjected to fractional distribution

They are also obtained industrially by fusing salts of sulphonic acids wit

alkalı (in iron vesesis, in the laboratory silver vessels are used)

$$C_0H_5 SO_3K + 2KOH = C_0H_5 OK + K_2SO_4 + H_2O$$

If the nucleus contains chlorine atoms, these are also substituted by hydrox groups by this reaction

Phenols are formed by boiling diazo-compounds (see later) with water i

dilute sulphuric acid solution

$$C_0H_5$$
 $N_2Cl + H_2O = N_2 + HCl + C_6H_5$ OH

Also, when benzene is oxidised with H_2O_2 , or with oxygen in presence aluminium chloride, phenois are obtained.

Chlorine atoms or amino-groups joined directly to the nucleus may a replaced by hydroxyl-groups by the action of sodium hydroxide, but only who the nucleus contains also strongly negative groups, eg, NO₂

PHENOL (Carbolic Acid), C₆H₅ OH, was first discovered by Runge in tar and occurs, a small extent and in combination, in urine.

It is separated from tar-oils (see pp 628, 629) by treatment with caustic soda solution (sp gr 100) and agitation by a current of air, steam is passed through the decants alkaline solution of phenol, this removing the naphthalene, etc. The phonol is the liberated by H_2SO_4 or CO_3 (e.g., flue gases) and washed several times with water, or CO_3 (e.g., flue gases) and washed several times with water, or CO_3 (e.g., flue gases) and washed several times with water, or CO_3 (e.g., flue gases) and washed several times with water, or CO_3 (e.g., flue gases) and washed several times with water, or CO_3 (e.g., flue gases) and CO_3 (flue gases) and CO_3 (flue gases)

THE MOST IMPORTANT PHENOLS

Specific gravity	1-039 at 58 5° 1 043 at 23° 1 035 at 13 6° 1 034 at 18° 1 035 at 18° 0 971 at 81° 1 040 at 0° 0 979 at 20° 0 9982 at 9 6° 0 9982 at 9 6° 0 9982 at 114° 0 9982 at 114°
Bolfing-point	183° 191 203 203 203 213 222 218 209 209 219 219 229 229 229 229 236 237 240 260 260 277 (15 mm.)
Melting point	+ + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Хөлхө	Phenol (hydroxybenzene) o-Cresol or o-hydroxytoluene (1-methyl-2-hydroxybenzene) m- " (1- " 4- ") o-Xylenol (v) (1 2-dimethyl-3-hydroxybenzene) o- " (2s) (1 2- " 4- ") m- " (1 3- " 2- ") m- " (1 4- " 2- ") p- " (1 4- " 2- ") p- " (1 4- ") p- Ethylphenol (1-ethyl-2-hydroxybenzene) p- Ethylphenol (1-sopropyl-4-hydroxybenzene) p- tert. Butylphenol (1-tert, butyl-4-hydroxybenzene) p- tert. Butylphenol (1'-tert, butyl-4-hydroxybenzene) p- tert. Amylphenol (1'-tert, butyl-4-hydroxybenzene) Herndylphenol (1'-propo-1-butyl-4-hydroxybenzene) Herndecylphenol (1'-propo-1-butyl-4-hydroxybenzene) Herndecylphenol (1'-propo-1-butyl-4-hydroxybenzene) Herndecylphenol (1'-propo-1-butyl-4-hydroxybenzene) Gotylphenol (1'-propo-1-butyl-4-hydroxybenzene) Gotylphenol (1'-propo-1-butyl-4-hydroxybenzene) Herndecylphenol (1'-propo-1-butyl-4-hydroxybenzene) Gotylphenol (1'-propo-1-butyl-4-hydroxybenzene)
Formula	C,H, OH CH, C,H, OH CH, C,H, OH CH, C,H, OH C,H, C,H, OH CH, CH, CH, OH CH, CH, CH, OH CH, C,H, OH CH, CH, CH, OH CH, CH, OH CH, CH, CH, CH, OH CH, CH, CH, CH, OH CH, CH, CH, CH, CH, CH, OH CH, CH, CH, CH, CH, CH, CH, CH, OH CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,

carbolic acid (containing 40 per cent of phonol, the rest crossote, etc.) of sp. gr. 1 05 to 1 00 being thus obtained.1

Borck (Ger Pat. 322,242, 1919) proposes to extract all the phenol from tar oils by treatme them with metallic sodium, $2C_0H_8$ OH + $2Na = 2C_0H_8$ ONa + H_8 , since water is no formed in the reaction, inversion of the latter does not take place as when sodium hydroxide

Phenol is purified by repeated distillation between 175° and 185° or, better, rectification until it crystallises at the ordinary temperature and no longer turns red in the air. To free at from final traces of crosol, it is diluted with 12 to 15 per cent of water and the hydrate orystallised at -8° to -10° (crosol hydrate orystallises at -20°), centrifuged and distilled until a strength of 99 per cent is attained, repotition of the operation and of the distillation (in earthenware vessels) gives chemically pure phenol Minimal quantities of water provent crystallisation at the ordinary temperature.

This is economically possible when beazone is cheap Synthetic Preparation of Phenol Germany supplied Great Britain with synthetic phonol during the Boor War, but after the war the price of phonol became normal again and its manufacture in this way council During the European War (1914 to 1918) enormous quantities of phonol were consumed, not only as an antiseptic, but more particularly for making pioric acid to be used as an explosive Coal-tar phenol being quite insufficient to supply the demand, the manufacture of synthetic phenol from benzene was carried out in various countries on an enormous scale

Pure benzene is introduced slowly into a steam-jacketed east from boiler containing the necessary amount of concentrated sulphume acid, the mass being at first mixed without heating and afterwards heated to 115° so as to form benzenomonosulphonic acid separate the latter from the excess of sulphuric acid, the acid mixture is poured into a hot, almost saturated sodium sulphate solution, slow cooling then resulting in the senaration of a crystalline mass of sodium benzenesulphonate, which is centrifuged and added in small quantities to fused sodium hydroxide, and the temperature finally raised to 320° fused mixture of sodium phenoxide and sodium sulphate thus obtained is poured into a small quantity of water, the latter then crystallising out and the phenoxide remaining dis-After filtration the solution is treated with sufficient dilute sulphuric and to liberate the phenol, which floats on the sodium bisulphate solution, and is decanted off and distilled in a vacuum

Synthetic phenol may be obtained also by heating chlorobenzene with very dilute alkalı solution at 300° under pressure (Bergius and Meyer, 1911)

Pure phenol crystalluses in colourless needles, melting at 42 5° and boiling unaltered at 181°, but very little water suffices to keep it liquid. It has the sp gr 1 084 at 0° and 1 070 at 25°, and it dissolves in 20 parts of water at 16°, in 8 parts at 77°, and in all proportions at 84°, 100 parts of phenol at 9° dissolve 28 parts of water It is readily soluble in alcohol or ether and has a characteristic odour, this being less marked with synthetic phenol. It is poisonous and 1 grm on a wound or 8 grm ingested may cause death, calcium sucrate or sodium sulphite serves as antidote On account of its great antisoptic power it is largely used as a disinfectant in medicine and surgery a, in many cases it is, however, replaced by

Testing of Carbolic Acid Commercial pure phonol melts at 30°, other pure forms molting at 30° to 35° and boiling at 183° to 186° When pure, phonol should dissolve completely to a clear solution in 15 parts of water and should leave no residue on evaporation. Phonol which does not crystallise at the ordinary temperature contains at least 10 per cent. of higher phenol liquors. The exact quantitative estimation of pure phenol (not containing cresols, which behave like phenol) is effected by transforming it into tribromolegizance by Koppeschaar's method. There is no characteristic reaction for distinguishing the phonols from cresols, but the latter are the less soluble in water. An approximate method, which is used in practice, and is suggested also in the Gorman Pharmacopaia, for determining the phenol content of ornde carbolic acid is as follows: 10 vols. of the product are shaken for a long time with 90 vols of sodium hydroxide solution (sp. gr. 1079) in a graduated cylinder and then left to stand until two layers separate, the volume of the undissolved non-phanol is then read off and, after this has been removed, the residue is acidified with HOI and NaCl added to separate the whole of the phenol, the volume of which is subsequently measured.

The action of Antiseptics or Disinfectants (see also p. 151) depends on the chemical character of the antiseptics ubstance and partly on the quantity and nature of the substance to be disinfected. The poisonous action of disinfectants is the result of a chemical action with the proteins of the plasma of the living cells, this having varying affinities towards different autiseptics; the concentration of the latter, the duration of the latter), derivant to occur between the proteins and the antiseptic varies with the nature of the latter), certain to occur between the proteins and the antiseptic varies with the nature of the latter), certain

then antisoptics (corresive sublimate, crossels, etc.) which have not the impleasant edeur f phenol. The maximum antisoptic action of phenol is exerted in aqueous solution and i presence of acid, owing to its partial dissociation into the ions $C_6H_6O^1$ and H, according a Pflügge, when dissolved in pure alcohol or in oil, it has no antisoptic action, since it is hen not dissociated. It is used for making piero and salicylic acids and dyes.

It dissolves in caustic alkali solutions (forming phenoxides, e.g., O_6H_6 ONa), but not in hose of alkali carbonates. With formaldohyde it forms resinous condensation products Backelite, see below)

A pine splinter, moistened with hydrochloric acid, is coloured bluish green by phonol is little as 1 part of phonol in 40,000 of water gives a white, flocoulent turbidity of tribromohenol on addition of bromue water

With hydrogen in presence of nickel phonol is converted quantitatively into cyclohexano t 100° or into cyclohexanone at 230° Phonol coagulates proteins

In 1913 Great Britain exported 8,000 tons of crude phenol (£160,000) and during the irrepean War manufactured and exported enermous amounts of synthetic phenol, in 319 the exports were only 6500 tons, and in 1920, 9,000 tons

Before the war the price of commercial dark carbone and (25 to 30 per cent) was about 3 8s to £8 per ton, the 50 to 60 per cent product, £10 to £12, 100 per cent, £15 to £20, 10 pelo celd, £17 to £28, pure redistilled crystals, m-pt 35°, £55, channally pure crystals, 38, synthetic, £74 Calcium phenoxide cost £8 and £14 respectively per ton for the 20 at 50 per cent. products During the war the prices rose to very high values.

Backelite, obtained by condensing phenol with formaldehyde, resembles, in appearance id behaviour, certain resins and plastic materials. It was prepared and patented in 1907 y L H Backeland in the United States Previous experiments in this direction were ade by a number of investigators, but Backeland carried out an exhaustive theoretical id technical examination of the question and found that, according to the temperature inditions and to the nature of the condensing agent employed, three distinct products a obtainable

- 1 From phenols and formaldehyde with acid condensing agents, the so-called scaling as substitutes, easily fusible and soluble in alcohol, acetone, alkalı, etc., are formed
- 2 If the phonol is replaced by a phenolic alcohol, such as saligenin, OH $\rm Cl_6H_1$ ('Hg OH, id the heating is carried out at 150° in presence of sulphuric acid, a resincus mass, subsection, formed which is almost insoluble in solvents and softens but does not make when heated, is represents a polymerised anhydride of saligenin
- 3 By condensation of phenois with formaldehyde in presence of alkali (less than one fifth that necessary to form the sodium phenoxide) three important products may be obtained, takentes A, B and C

Baskelite A, obtained by protracted heating below 100°, is viscous or liquid in the t, solid and brittle when cold, and soluble in various solvents, it results from partial hydridisation of the condensation product of phenols with formaldehyde.

Backelite B, formed by keeping backelite A slightly above 100°, is a resmous product soluble in solvents, but sometimes swelling in them, it softens without melting when atod and may then be moulded. It may be regarded as the complete anhydride of ekelite A

Backelite C is obtained by heating backelite B at 160° to 180°, but in order that the

oro organisms fix the whole of the metal of the antiseptic (e.g., copper or moreoury from their ts), the solution does not then react with hydrogen sulphide, while the cells of the micropanism do so. The following Table shows the approximate doses of different antiseptics sessary to kill 10 grms of beer yeast (containing 30 per cent., s.e., 3 grms, of dry matter), these numbers would doubtless require considerable modification in the disinfection of other terials

```
grm. carbolic acid
)05 to 01
                                               0 01 to 0 02 grm silver nitrate
002 ,, 004
100 ,, 200
                                                     ,, 01
                    formaldehyde
                                                0 05
                                                                   zino sulphato
                ,,
                   acetaldehyde
o-hydroxybenzaldehyde
                                                     " ō ī
                                                0.05
                                                                    load acctate
                "
                                                                ,,
     ,, 07
                                                     " 0 î
) 5
) 2
                                                0 05
                                                                   hydrochloric acid
                                                                "
     ,, 05
                                                     "01
"005
                    acetic sold
                                                0.05
                                                                   caustic soda
                ,,
                                                                ,,
0001 ,, 0002
                    copper sulphate
                                                0 02
                                                                   potassium permanganate
                ,,
                                                                ,,
                                                0 015 ,, 0 03
000 , 001
                    corrosive sublimate
                                                                    chlorine
                ,,
                                                      ,, 10
) 05 ,, 01
                    sodium fluoride
                                                05
                                                                   tannin
                ,,
      ,, 0 025
                   hydrofluorio acid
```

In some cases more concentrated solutions are less active than the more dilute; the activity pends also on the nature of the solvent used.

mass may be free from air and non spongy, the heating is carried out under pressure of air or $\rm CO_2$ at 6 to 8 atmos , superheated steam is used as source of heat

The mixture used to make backelite may consist, for example, of 100 parts of phenol, 60 to 120 of concentrated formaldehyde and 4 to 12 of commercial aqueous ammonia. The hot mass becomes first liquid and then viscous, a layer of water separating at the surface and afterwards evaporating, the reaction may be arrested at the A, B or C stage

Backelite C has sp gr 1 25, is so hard that it cannot be dented by the finger nail, and is not plastic even when hot, it resists pressure, shock and heat, and does not soften even at 300°, at higher temperatures it chars, burning with difficulty and without flaine. It is resistant to the action of moisture, acids and alkalis, but is attacked slightly by hot concentrated sulphuris or intricated. It forms an excellent insulator for heat and electricity, and is readily turned or sawn. When pure it is transparent and pale yellow, but during manufacture it may be coloured with alcoholo solutions of aniline dyes. It is almost as clastic as ivery and hence serves for making billiard balls, it also forms a good substitute for anibor, celluloid, gallalith (from casein), etc., for making eigar holders, umbrella handles, combs, brushes, tooth brushes, buttons, gramophone records, etc. The moulds are made of glass, copper or highly polished bronze. Alcoholic solutions of backelite may be used as varnishes for wood, metal, dynamo coils, paper, etc., the last being rendered hard and dielectric (48,000 volts per mm.). Compressed and backelised abrasive powders form very hard grindstones.

Various products, similar in character to backelite, are known. Involite, patented by Pollak, is obtained from phenol, paraformaldehyde, water and phenolsulphonic acid Raschig (1912) obtained similar resins by varying the proportions of phenol and formaldehyde and using also cresols, and regards all such products as condensation products of diphenylmethane derivatives. According to Wohl (1913), however resite is a polymerised product of methylene derivatives of the form COCHCHCHCCH

Phenol forms phenoxides with many metals (Na, K, Hg, Cu, oto) The alkali phenoxides, when heated with alkyl reddes, give ethers, e.g., ANISOLE, C_0H_0 O CH_s (sp gr 0 991 at 15°, b pt 132°), PHENETOLE, C_0H_0 O C_0H_0 (sp gr 0 9822 at 0°, b pt. 172°)

These others are neutral, very stable liquids, and, as is the case with the corresponding aliphatic compounds, boil at lower temperatures than the phenols

They are decomposed only in energetic reactions — For instance, hydrodic acid at 140° acts on them with formation of methyl iodide, this reaction serving for the estimation of methoxy groups in phenolic ethers (Ziesel) — C_6H_6 OCH $_6$ + HI = CH $_3$ I + C_6H_6 OH 1

¹ Estimation of Alkory-groups by Zeisel's Method When the apparatus (Fig. 445) has been found to be air tight, 0.2 to 0.3 grm of the substance is introduced into the flask, λ (30 to 35 c c), 50 c c of alcoholic silver nitrate (2 grms fused nitrate + 5 c c. water + 45 c c absolute alcohol)

into the two flasks, C, and then 10 c.c. of pure hydriodic acid (sp. gr. 17) into A. The latter is then attached to the condenser, K, through which water at 40° to 50° circulates, the Geissler bulbs, B, which are kept at 50° to 60°, contain water with red phosphorus (0.3 to 0.4 grm.) in suspension to retain hydrogen icidide. The flask, A, is heated in a glycorine bath until its contents boil, carbon dioxide being passed slowly (2 bubbles in 2 seconds) through the flask. The operation requires about 15 minutes and is complete when the precipitate formed in A separates sharply from the supernatant clear liquid. The total contents of the two flasks, C, are diluted in a beaker with 500 c.c. of water and concentrated to about one half the volume on a water-bath

Phonol also forms Acid Derivatives, c_{ij} , phonylsulphurio acid, $C_{ij}H_{ij}$ O SO₃II, which is stable only as salts, these being obtainable, for instance, by the action of aqueous potassium prosulphate on potassium phenoxule. They are formed in the urine by the putrefaction of proteins, and are estimated by determining the amount of sulphure and liberated in he hot by dilute hydrochleric and Carbonic and acetic acids also form analogous abnuounds

HALOGEN DERIVATIVES OF PHENOLS The hydroxyl group of phenol facilitates he replacement of the hydrogen atoms of the benzene nucleus by halogens, even in the old, bromme water forms Tribromophenol Chlormation can be offected by the direct action of chloring or by sulphuryl chloride, while replacement by jodine is facilitated in decholic solution, or in presence of mercanic exide (which exidises the hydrodic acid as t is formed), or in an aquoous alkaline solution. The halogen usually assumes the orthoor para-position with respect to the hydroxyl.

While σ - or p eresol combines with only two atoms of bromine, the action of chlorine n anisole, Calla O CH3, at 60° in presence of a little rodine, yields tetra or even pentahlmoansole, CaCla OCH, Halogen derivatives of phenois may also be obtained by

hazotising halogenated aminophenols

In general, they are colouless crystalline compounds of pungent odour and decidedly eid character (traditorophenol decomposes carbonates), when they are fused with potash, he halogen atom gives way to another hydroxyl group, which, however, often enters partly a position different from that occupied by the halogen. Under the further action of blorine, tri- and penta-chlorophonols yield additive products, the C OH group being at he same time converted into CO

PHENOLSULPHONIC ACIDS, OH CoH, SO3H, are obtained by treating phenol with oncentrated sulphure acid, the o and p compounds being formed with equal case, the is converted into the p-compound by heating with water. The m-compound is obtained ndirectly by fusing benzene m disulphonic acid with alkali.

HOMOLOGUES OF PHENOL (see Table, p 630) Oxidation of the side chains in these

ands to aromatic hydroxy-neids.

The Cresois are not exidused by chromic acid mixture, but are completely decomposed y permanganate, if, however, the hydroxylic hydrogen is replaced by an alkyl or by

octyl, oxidation proceeds in the ordinary way

The three isomeric Hydroxytoluenes, CH, CoH, OH, bear the generic name of cresols hey are present in wood-tur and in the middle oils of ordinary tai, and may also be preared from the corresponding amino derivatives or sulphone acids. The cresols react with romine water The crude cresols mixed with soap solution form creoline and lysol, which ervo as convenient antiscritics and are largely used. 1 p-Cresol, CH2 OH, is formed i the putrefaction of proteins

Crude crosses contain the o, m and p-isomerides, which cannot be easily separated by actional distillation, the respective boiling-points being 191°, 203° and 204° a

THYMOL, CH₃ OH CH₃, is found in oil of thymic and has an antiseptic ction. One of its iodo-derivatives, Aristol, is used as a substitute for iodoform

little water and a few drops of intris acid are then added and the liquid heated until the silver slide separates, this being then filtered, dried, and weighed in the usual manner Various indiffications of this method have been suggested for volatile substances and especially for those mtaining sulphur (the substance is hydrolysed with concentrated NaOH and the products bsorbed after first passing through a U tube containing pumice moistened with CuSO4, a

proposed after first passing through a U tube containing pumpe moistened with CuSO₄, a recent of an and not of CO₂ is used in this case)

1 Creoline Mixtures of excepts oil and concentrated soap solution were used as binfectants us early as 1874. Creoline is obtained by protracted heating on a water bath t a mixture of 1 part of concentrated resin soap solution with 4 parts of medium tar-oils (creosote is, best with b pt 200° to 210°), the mixture being stirred for several hours and allowed to and the water them second the water that second the water than second the water than second the water than second the second to be considered.

is, pest with D pt 200° to 210°), the mixture being stirred for several nours and allowed to and, and the water then separating removed by decantation.

§ The components may, however, be separated as barium salts. Orthograsol serves for aking commorin perfume and m-crosol for making artificial musk, while p-crosol is the raw aterial for preparing anisaldehyde, a delicate perfume sold as nubepins.

When a mixture of p and m crosols is treated with sulphuryl chloride, only the m-crosol mats, forming p-chloro m-crosol, which is an excellent odourless desinfectant, only slightly soluble twater, but readily emulanted by soap (see Crooline). It is sold as hysochlor

CARVACROL, CH₈ CH<CH₃, occurs in Origanum hirtum, and is formed 1

heating camphor with iodine or by the action of phosphoric acid on carvond (see Terpenes ANETHOLE, CH₈O C₀H₂ CH CH CH₈, is a colourless solid inclining at 22°, both at 233°, and having the sp gr 0 986 at 21 5°, it has a pleasing odom and occurs in 1m oil (from the seeds of Pimpinella ansum, or the fruits of Illicium verum or star anise from which it is obtained by repeated fractional distillation or by freezing. Syntheticall it is prepared from anisaldehyde and sodium propionate by Perkin's reaction (see p. 352 1ts constitution being thus proved. In the pure state it cost 20s per kilo before the war

(b) DIHYDRIC PHENOLS

These contain two hydroxyl groups united to the carbon of the benzen nucleus. They are analogous in their chemical behaviour to monohydric phenoliculd are prepared by similar methods, certain of them show marked reducin proporties. With lead acetate, pyrocatechol gives a white precipitate, hydroquinone is precipitated in presence of ammonia, while resorcinol is not precipitated.

PYROCATECHOL (Catechol), $C_6H_4(OH)_3$ (1–2), forms crystals melting at 104° , boiling at 240° , and subliming, it dissolves readily in water, alcohol, or other, and reduces silve salts in the cold and Fehling's solution in the hot. It is found in various resins and obtained by distilling catechu (*Mimosa catechu*), it is now prepared by fusing o pheno sulphonic acid (see p. 643) with caustic potash. It is usually synthesised from o bicomo- or o-chloro phenol, which is readily obtained by passing bromine vapour or chlorin into phenol heated at 150° to 170° in a reflux apparatus and purified by washing wit alkali and distilling in a vacuum, and is stirred and heated for 8 to 10 hours in an autoclave at 180° to 250° with about its own weight of caustic soda dissolved in one and hatimes its weight of water. The mass is afterwards dissolved in a little water, acidified wit sulphuric acid, and extracted with ether

It is used as a photographic developer and serves for the preparation of its dimethy other, veratrole, m-pt 22 5°, b-pt. 205°

Its alkaline solution is unstable, and is coloured first green and then black by the oxygen of the air, it reduces alver salts, and by ferric chloride is coloured green or viole if a little aminonia is present (characteristic reaction of ortho-drhydroxy compounds). With broming water it gives tribromoresoromal, which make at 118°, is soluble in water, and turn brown in the air.

Its monomethyl Ether, OCH₃, is called GUAIACOL and occurs abundantles in becchetar, it is used in mediane as an expectorant. It is obtained by shaking the orecords oil (fraction boiling at 200° to 250°) from the distillation of the above tar wit ammonia, treating with alcoholic potash, washing with other, crystallising the potassium compound from alcohol, and decomposing it with dilute sulphuric soid. It is obtained systalline by allowing its light petroleum solution to evaporate slowly. Syntheticall it is propared by diazotising of anisidine, acidifying with dilute sulphuric acid, and distilling in steam. It melts at 29°, boils at 205°, and dissolves in about 60 parts of water at 15° it is readily soluble in other or alcohol. With ferric chloride its alcoholic solution gives blue coloration, changing rapidly to green and then to yellow. It yields o chloroanisol with PCI₈, catechol when fused with alkali, anisole when distilled with zino dust, and year trole our methylation, it forms an orange red picrate, m. pt. 80°

Gunincol is used in the synthesis of vanillin and is employed in medicine as an expectant and, especially in the form of various salts, in the treatment of pulmonary tuber culosis. Before the war it cost 10s to 13s per kilo

RESORCINOL, $C_6H_4(OH)_2$ (1 3), is formed on fusing various resins, such as *galbanur* and *asafostida*, with potash, and also from m-phenoisulphonic add or m bromobenzene

1 According to Ger Pat 805,281 synthetic gualscol may be obtained by heating cateche at 100° to 180° with alkali salts of methylsulphuric acid in presence of a diluent and slowly adding sodium carbonate or bicarbonate.

1 1

sulphone and, it is prepared industrially from m- or p-benzenodisulphone and (prepared from toluone free bonzone) by fusion with potash. It forms rhomble crystals melting at 110°, and bods at 270° with partial decomposition. It turns brown in the air, is soluble in water, alcohol, and other, and slightly so in benzene, and reduces silver nitrate. It is a less energetic disinfectant than carbolic acid.

With introus and or diazo compounds it forms dyes and, like all m-dihydroxybenzenes, with phthalic anhydride at 200° it yields fluorescent. Before the war commercial resoremed cost 4s to 5s per kilo and the pure compound 20s. It is largely used in dyeing and

printing cotton

HYDROQUINONE (Quinoi), $C_6H_4(OH)_8$ (I 4), is obtained by exidising aniline in the cold with sulphurio and chromic acids, or by reducing quinone with sulphurous acid. It forms dimorphous crystals melting at 169° , and with animonia gives a reddish brown coloration. Oxidising agents convert it into quinone. Owing to its strong reducing properties it is used as a photographic developer

The chemically pure compound cost, before the war, 8s per kilo

anhydride Its ammoniaeal solution exidises in the air, giving Orceine, $C_{sq}H_{st}O_7N_{sp}$ which is the principal component of natural archil and is related to litmus

The unsaturated derivative, Eugenol, CH₂ CH CH₂ OH, is the principal component (90 per cent.) of clove oil, from which it is extracted with aqueous potash, being then liberated with sold and rectified in a stream of CO₂. It is a liquid boiling at 247 5° and has the sp gr 1 073 at 14° Hot alcoholic potash displaces the double linking of

eugenol, giving Isoeugenol, CH₃ OH OH OH OH, which also has a pleasant, characteristic odour

(c) TRIHYDRIC PHENOLS (Trihydroxybenzenes)

The constitutions of the three isomeric trihydroxybenzenes have now been fixed with certainty Pyrogallol, 1.2.3, Hydroxyhydroquinone, 1.2.4 (as), and Phloroglucinol, $1.3 \cdot 5$ (s)

PYROGALLOL (1 2 3-Trihydroxybenzene, also improperly called Pyrogalic acid), $C_0H_3(OII)_q$, is prepared by heating gallic acid (see later) for half an hour in an autoclave at 200° to 210° with 2 to 3 times its weight of water, the solution is decolorised by boiling with animal charcoal, filtered, concentrated, and crystallised The pyrogallol thus obtained is purified by sublimation and then forms shining, white, poisonous scales or needles, melting at 132° and boiling at 210°. It may also be prepared by distilling a mixture of 1 part of gallic acid with 2 parts of powdered primice in a current of CO_8

It dissolves in 1.7 part of water or ether, or in 1 part of alcohol. In alkaline solution it is an energetic reducing agent and absorbs oxygen from the air with avidity, it is used in gas analysis in all cases in which oxygen is to be absorbed (see Orsat Apparatus, Vol I, p 463). By fresh solutions of forrous sulphate it is coloured blue, by ferric chloride brown, and by silver nitrate black.

```
and almost tasteless, insoluble in water and soluble in hot alcohol,

Characol phosphate, PO(O C<sub>a</sub>H<sub>4</sub> OOH<sub>5</sub>)<sub>2</sub>, has m. pt. 98°

OCH<sub>3</sub>

Potassium quasacol-o-sulphonate (thyocoll),

SO_K
```

in alcohol.

It does not react with hydroxylamine (see Phloroglucinol) ether (Dimethyl pyrogaliate), OH C₆H₃(OCH₃)₂, is contained, along with a homologous ethers, in beech-tar

It is used in photography, in electro-plating, in medicine, and in hair dy

When pure it cost, before the war, 12s to 14s 6d per kilo

HYDROXYHYDROQUINONE (1 3 4-Trihydroxybenzene), Calla(OH) obtained by fusing hydroquinone with caustic soda and has not been closely studied. It crystallises from ether in plates melting at 140 5°, rea undergoes change in aqueous solution, and does not react with hydroxyla (see Phloroglucinol)

PHLOROGLUCINOL, CoHoO3, is obtained by fusing various icsus KOH Baeyer prepared it synthetically by condensing 3 mols of ethyl se

malonate in the hot, 3 mols of alcohol being thus eliminated

acidification of this product results in the substitution of the sodium by hydr with formation of phlorogluoinoltricurboxylic acid, which, when fused caustic potash, loses its carbethoxy-groups and gives phlorogluonol The k should, therefore, have the constitution $CO < \frac{CH_2 - CO}{OH_2 - CO} > CH_2$ which contain double linking and corresponds with triketohexamethylene, in accord with structure, it reacts with 3 mols of hydroxylamine, giving a trioxime

On the other hand, it behaves also as a trihydroxybenzene or trihy phenol, giving a triacetyl-derivative with acetyl chloride, so that it is abl

exist in two tautomeric forms

This explains why, when it is treated with alcoholic potash or with an i rodide, the alkyl groups unite with carbon and not with oxygen (as they w with a triphenol), giving, $e\,g$, hexamethylphloroglucinol Pure phloroglucinol cost, before the war, about £16 per kilo

(d) POLYHYDRIC PHENOLS

From dimitroresoronol is obtained a Tetrahydroxybenzene, C₈H₂(OH)₄ (1 2 4 which boils at 220°, while chloranilic acid (see later) is formed by the oxidation o dichloro-derivative

HEXAHYDROXYBENZENE, C6(OH)6, is obtained as potassium derivative, C6() in the manufacture of potassium by reduction of its carbonate $K_aCO_a + C_a = 3CO$ and $6K + 6CO = C_0O_6K_0$ These reactions represent a further example of the synt of organic substances from morganic matter Hexaliydroxybenzone is a white, cryste substance which exidises readily in the air and yields benzene when distilled with dust

Of the additive products formed by polyhydric phenols with hydrogen, querestol mositol may be mentioned.

QUERCITÓL (Pentahydroxycyclohexane or Acorn Sugar)

is found in accorns and is similar to mannitol, it has a sweet taste and forms monoc prisms melting at 234°, its specific rotation being $[a]_{p}^{16} = +24.16^{\circ}$ When heated to

in a vacuum or fused with alkali it loses water yielding various aromatic derivatives (by dro-pumone, quinoue, and pyrogallol), on reduction with HI, it gives benzene, phenol, pyrogallol, quinone, and hexane. When exclused with intrie acid it forms intere and trihydroxy-plutaric acids, while with permanganate it yields malonic acid, the presence of the methylene group, $\mathrm{CH_g}$, being thus confirmed. It forms a pentacetyl derivative, an explosive penta nitrate, and a pentachlorohydrin, $\mathrm{C_gH_7Cl_g}$, melting at 102° , the formation of these combinates demonstrates the presence of five hydroxyl groups

INOSITOL (Hexahydroxycyclohexane or Muscle Sugar), C. H. (OH), 18 similar to queratel, but contains a CH OH group in place of the CH. It has the appearance and, to some extent, the sweet taste of the sugars, with which it was for long confused. That it is a syclohexane derivative is shown by the formation of phenol, benzene, and tri-adophenol on reduction with HI, and that of quinone and some of its derivatives on treatment with PCI. The presence of six hydroxyl groups is proved by the formation of a haza-acclate m pt 212°) when it is treated with acotic anhydride and zine chloride, and of a hein wirate, $C_6H_6(NO_7)_6$ (m. pt. 120°), under the action of concentrated sulphura and introduced . the hexanitrate is highly explosive and reduces Folling's solution. Four optical isomerdes (1) mastive, (2) dextro rotatory, $[a]_0 + 684^\circ$, crystallising with $2H_s()$ and nelting at 247° , (3) layorotatory, $[a]_n = 65^{\circ}$, in pt 247° , (4) raconic, melting at 250° Baoyer's storeochemical conceptions indicate eight possible isomerides, according to the urrangement of the OH and H above or below the plane of the hexagon - Inositel, especially he mactive form, occurs in beans, lentils, peas, the muscles of the heart, the hum, etc The inactive modification crystallises from water with 2H₂O at temperatures below 50', and in an anhydrous form, in -pt. 225°, at higher temperatures, it boils unchanged in a zacuum at 319° and is not fermented by yeasts. It does not combine with phenylhydrazine or reduce Fehling's solution, but it reduces ammoniacal silver intrate solution, it forms t basic lead salt, (CaH11Oa), Pb, PbO It does not yield quoroital whom reduced, so that the tydroxyl groups are symmetrically distributed

The monomethyl other of i inositol, or bornesitol, is found in Borneo rubber, and the limethyl other, or dambonitol, $C_i\Pi_0(OH_0)_i(OCH_0)_i$, in Gabon rubber. The monomethyl other of d inositol, or protol, which occurs in many plants and plant-juices, melts at 186°, within at 200°, and has a rotation of + 67 5°. The monomethyl other of l inositol, or rubrachitol, melts at 186°, boils at 200° in vacuo and with HI forms l-mositol, it occurs in quobracho bark.

E OUINONES

These may be regarded as derivatives of phonols obtained by elimination of hydroxyl groups, with consequent displacement and partial elimination of the louble linkings of the benzene nucleus. They are usually yellow and of sungent odour and possess exidising properties, they are volatile in steam, with partial decomposition.

Oxidation of meta- and ortho-diphenols does not yield quinones.

BENZOQUINONE or simply Quinone, $C_0H_1O_2$, can be obtained by oxidising either aninophenolor sulphanilic acid (1 4 — $NH_8C_6H_1$ SO_9H), or p phenolaulphonic acid, r hydroquinone, or anilino (on a large scale) with throma acid

On sublimation it forms fine yellow crystals which melt at 116°, giving a characteristic door. It is soluble in alcohol or other and slightly so in cold water. It fixes hydrogen, which transforms it into hydroquinone, while the halogens give addition or substitution roducts according to the conditions. With HCl it forms monochlorohydroquinone, ${}_{6}H_{4}O_{8} + HCl = C_{6}H_{3}Cl(OH)_{8}$. With amines and with phonols it forms dyes which rystallise well but are only slightly soluble.

With hydroquinone it forms a condensation product, Quinhydrone, $C_8H_4O_9$ $C_8H_4(OH)_e$, which consists of green prisms with a metallic lustre, and may be regarded as an itermediate product in the exidation of hydroquinone or in the reduction of quinone,

Constitution That quinone contains two carbonyl groups is deduced from the fact that ith hydroxylamine it yields quinonemonoxime and quinonedioxime

It contains two double linkages, since in benzene solution it absorbs four atoms bromme, while ozone is also fixed quantitatively (see pp. 107 and 359)

example of the convertibility of the centric form of benzone into that with two doublinkages

Tetrachloroquinone (chlorani), $C_6Cl_4O_8$, prepared by oxidising trichlorophenol with dichromate and sulphuric acid, serves for the manufacture of coal tar dyes. Thinquinon $C_6H_3O_8$ CH_8 , vyloquinone, thymoquinone, etc., are known, as also are quinoneimides (e., C_0H_4O NH) and quinonedimides [e.g., $C_6H_4(NH)_8$]

F NITRO-DERIVATIVES OF AROMATIC HYDROCARBONS

These are readily obtained by treating the hydrocarbons with concentrate nitric acid, best in presence of concentrated sulphuric acid, which fixes the water as it is formed

$$C_6H_6 + HNO_3 = H_9O + C_6H_6 NO_9$$

With the hydrocarbons homologous with benzene, nitration is still more easy, but not more than three nitro-groups can be introduced directly, tetranitric derivatives are prepared indirectly. Aromatic nitro-compounds cannot be obtained by the action of silver nitrite on chlorobenzenes, as is the case with those of the fatty series, but this method serves for the introduction of nitrogroups into side-chains.

The nitro-compounds are liquid or solid and usually more or less yellow although some are red, they are heavier than water and dissolve readily alcohol, ether, or acetic acid, but are mostly insoluble in water. They dist unchanged and are volatile in steam

The nitro-group is united very firmly to the nucleus, especially in monce nitrobenzene, and is not directly replaceable. It can be reduced to the amino group by means of nascent hydrogen in acid solution, reduction in alkalin solution results in the formation of azoxy-, azo-, and hydrazo-compounds, while in neutral solution or with hydrogen sulphide, the nitro-group becomes hydroxylamino-group. On electrolytic reduction, nitro-derivatives yield amino-phenols

Polynitrobenzenes are easily obtained by the action of furning nitric acid in the hot, the meta-derivative is formed first, and this, by further nitration will nitric and furning sulphuric acids at 140°, gives symm trinitrobenzene

The polynitro-compounds react more readily than mononitro-derivatives when the former are oxidised, a phenolic group is formed, while the nitro groups remain intact

With para- and ortho-dimitrobenzenes, sodium alkoxide replaces one nitro group quantitatively, whilst with m-dimitrobenzene no reaction occurs

$$O_6H_4(NO_2)_2 + O_2H_5$$
 ONe = NaNO₂ + NO₂ O_6H_4 OO₂H₅

¹ The nitrogen of aromatic derivatives in which the nitro group is united directly to the benzene nucleus may be determined by the Kjeldahl method only when this is surfably modified

By boiling o-dimitrobenzene with caustic soda, o-nitrophenol is formed

$$\underbrace{-\frac{\text{NO}_2}{\text{NO}_2} + \text{NuOH} = \text{NuNO}_2 + \underbrace{-\frac{\text{OH}}{\text{NO}_2}}_{\text{NO}_2}$$

while boiling with alcoholic ammonia yields o-nitianiline

NITROBENZENE, C_6H_5 NO₂, is an almost colourless, faintly yellow, refractive liquid which has the sp gr 1 209 at 15° and, after solidification, inclts at 3° and boils at 206° Owing to its pleasant bitter-almond smell, it is used in perfumery under the name of artificial essence of nurbane, but its vapour is somewhat poisonous. It is insoluble in water, but it mixes in all proportions with alcohol, ether, or benzene

It is of considerable industrial importance, as it forms the raw material for the manufacture of aniline, benzidine, quinoline, azobenzene, various explosives, etc.

On a large scale it is prepared in wrought- or cast-iron vessels, employing precautions and methods similar to those used in making nitroglycerine (sec p 278) The nitro-sulphuric mixture, consisting of 120 kilos of HNO₈ (42° B6) and 180 kilos of H₂SO₄ (66°Bé), is poured gradually (in 8 hours) into 100 kilos of benzene The mass is kept mixed by means of a stirrer, and during the first 5 to 6 hours is maintained at 25° by means of cold water circulating outside the apparatus In the final phase of the reaction the temperature is raised by external steam to 70° to 90°, the heating being then stopped, while the surring is continued for a further 6 hours. The mass is then forced by a suitable elevator The acid mixture gradually settles to the into a tank with a conical base bottom, while the nitrobenzene floats, the former is then drawn off through taps (see Nitroglycerine), and the nitrobenzene, after repeated washing with water, distilled in a current of steam from a vessel with a jucketed bottom heated with steam at 2 to 3 atmos pressure. A second distillation yields moderately pure nitrobenzene According to Ger Pat 221,787 of 1907, nitrobenzene can also be obtained by running benzene into a mixture of sulphuric acid and sodium nitrate at 70° to 90°. It was sold at £30 to £52 per ton before the war

DINITROBENZENES By the action of fuming native acid or of a suitable nitro sulphure mixture on benzone, m-dinitrobenzone is formed along with small proportions of the ortho and para-compounds. The meta derivative crystallises from alcohol in pale yellow rhombic plates, m. pt. 90°, b.-pt. 207°, and is insoluble in water, but readily soluble in alcohol or ether

Its heat of combustion is 4103 cals per grm. When boiled with sodium hydroxide it is converted into m-dantroazoxybenzens, NO₂ C₂H₄ NO N C₃H₄ NO₃. It is often mixed with other explosives, s.g, trinitrotoluene, to lower the melting-point. It is used on a large scale, not only for explosives, but for making dyes and m phenylenediamine and m nitraniline.

The ortho- and para isomerides, multing at 117° and 172° respectively, are not of industrial importance, and are obtained either from the mother liquors of the meta-compound or, indirectly, from the corresponding dimercantlines.

TRINITROBENZENES, $C_0H_0(NO_2)_8$ The three possible isomerides are known. The symmetrical, 1–3–5 compound, is obtained by protracted heating of m-dinitrobenzene with a concentrated mixture of nitric and sulphuric scids. The asymmetric, 1–2:4-compound, m-pt. 62° , is formed similarly from p-dinitrobenzene. The vicinal, 1–2–3 compound, m-pt 127–5°, was obtained by Körner and Contardi only in 1914 by diazotising 2–6-dinitroaniline

s Trinitrobanzene, m-pt. 121° to 122°, dissolves sparingly in water, to a somewhat greater extent in methyl or ethyl alcohol, and readily in acetone, ether or benzene. Its explosive properties are superior to those of trinitrotoluene or piorio acid, the equation

43

More Important Nitro-Derivatives

F	Venne	Pos tions of groups	groups	Melting-	Boffing-	Specific gravity
FORTHUM	ляше	Alkyi	Nitro	polut	point	
D. C.	Without constant		-	7	°806	1 204 at 20°
	Introduction Company		1 2	1170	319°	
C644(14O2/3	2-Dillia Obeliació	1	- m	8	305	1 369 at 98°
F6 :	: : : : : : : : : : : : : : : : : : :		7	172°	299°	1
C.H.(NO.),	sym. Trintrobenzene	1	1 3 5	122°	I	1
	. 88	1	124	57 5°	1	I
C.H.(CH.)(NO.)	o-Nitrotoluene (methylnitrobenzene)		63	- 10 5°	218°	1 168 at 15°
(7 \Q)\.		-	က	+ 16°	230°	1 168 at 22°
R 1		7	4	54°	236°	1 123 at 54°
C.H.JCH.J(NO.).	Durtrotoluene (methyldmrtrobenzene)	-	2 4	-02 200		1 321 at 76°
C H.(CH.).(NO.)	Nitro-o-xylene (dimethylnitrobenzene)	1 2	4	28°	258°	1 139 at 30°
77		1 3	4	20	246°	1 135 at 15°
: :		1 4	61	liquid	240°	$1132~\mathrm{at}~15^{\circ}$
C.H.(CH.),(NO.),	Dmrtro-m-xylene (dimethylduntrobenzene)	- 3	2 4	850		I
4/4		1 3	4 6	93°		I
C.H(CH.),(NO.),	-53	es =	2 4 6	182°		ı
C.H. (CH.), (NO.)	Nitromestrylene (trimethylmtrobenzene)	1 3 5	63	44°	256°	I
C.H(CH.),(NO.),	Dantromentylene (tramethylduntrobenzene)	135	2 4	86°	ĺ	!
C,(CH,),(NO,)	Transcohemmellithene (trimethyltrinstrobenzene)	1 2 3	4 5 6	208°		1
	Trantropseudocumene	124	3 5 6	185°		I
: 1	Trimtromentylene	135	2 4 6	231°	1	í
C.H(CH.),(NO.)	Nitroprehntene (tetramethylmtrobenzene)	1234	ıĢ	61°	295°	I
C.H.(CH.)(C.H.)(NO.)	Nitrocymene (methylusopropylantrobenzene)	1.4	83	praby	1	1 085 at 15°
C.(CH.),(NO.),	Dmutroprehmtene (tetramethyldmutrobenzene)	1234	50	178°		I
	Dinitroisodurene ""	1235	4 6	156°	1	I
: :	Dmrtrodurene "	1245	3	205°	1	1
C.H(CH.)(C.H.)(NO2)3	Trantro-tert, butyltoluene	1 3	2 4 6	97,		l
		_	_		_	

presenting the theoretical decomposition being $2C_0H_3(NC_0)_3 = 9CO + 3H_2O + 3N_2 + 3C$ readily forms additive compounds with organic bases and hydrocarbons.

With a view to the use of this compound as an explosive, attempts have been made, it with unsatisfactory results, to prepare it either by intrating dinitrobenzene, or dehalonating chlorodinitrobenzene by means of reduced copper, or by exidising transfordence clater) with sulphuric and chromic acids (Ger Pat 127,325) and decomposing the resultant introbenzene acid by heat.

NITROTOLUENES

Nitration of toluene by nitro acid either alone or mixed with sulphuric acid, under iditions yielding mononitrotoluenes, gives always a mixture containing about 57, 40 d 3 per cent of the o, p- and m- compounds respectively. Further nitration of m nitrouene yields the 2 3, 3 4 and 3 6 dimitro compounds, the 3 5 compound, when tained otherwise, does not give transtrotoluenes when further nitrated

Direct intration of toluene or mono or di-nitrotoluenes yields only 2 4 6 (a), 2 3 4-1, and 2 4 5-(γ) trinitrotoluenes, but the other three isomerides, 3 4 5-(δ), 2 3 5-(δ) 1 2 3 6-(γ), have been recently prepared indirectly by Körner and Contardi (1914–17) Tetra and ponta introtoluenes are unknown.

MONONITROTOLUENES The three isomerides may be separated to some extent by etional distillation and crystallisation

o-Nitrotoluene is obtained pure by reducing 2. 4-dimitrotoluene by means of ammonium phide, diazotising the 2-intro 4 toluidine formed and decomposing the diazo compound. It boiling alcohol. It exists in two morphotropic forms, solidifying at -10° and -4° , 1 is used for making o nitrochlorobenzil, o nitrobenzaldehyde, o hydrazotoluene and cluidine m-Nitrotoluene is obtained similarly from the diazo compound derived from itro 4-toluidine, and occurs in the liquid portion of the dimitrotoluene prepared indusily in the manufacture of trimitrotoluene, it has few practical applications. p-Nitro tene serves for making p nitro and p amino benzaldehyde and, especially, p nitrouene o sulphonic and, which is used in the manufacture of amine A fast yellow and cado orange 4R. With alcoholic sodium hydroxide it gives an orange coloration of itroazostilbene (Green) or dinitroazoxystilbene (Giua)

DINITROTOLUENES, $C_6H_0(CH_8)(NO_8)_8$, exist in six isomeric forms, which are prepared I named in various ways. Denoting the methyl group by M (always in position 1) and nitro-group by N, the isomerides have the following configurations

Of the various names, the last given in each case is the simplest and clearest.

2 4 Dinitrotoluene is prepared similarly to nitrobonzene and is the one in most common istrial use, while it serves also for making ordinary (2 4 6) trinitrotoluene. It is fied by crystallisation from alcohol or carbon disulphide and forms monoclinic crystals ing at 70 5°, it is insoluble in water, slightly soluble in cold alcohol or ether, still less

so in earbon disulphide (2.2 per cent), and readily soluble in benzene. It dissolves in alkali, giving a red solution, from which acids precipitate a reddish brown substance. In acetone solution it is coloured blue by caustic potash. It decomposes at 300°, but distils unchanged in a vacuum. Furning intric acid exidises it slowly, and in the hot gives the corresponding o p dinstrobenzoic acid, $C_6H_3(CO_2H)(NO_8)_2$. With hot, concentrated intro sulphuric mixture, it forms ordinary triutrotoluene (see below). Ammonium sulphide reduces it in the cold to o nitro p-toluidine (in pt 105°), while in the hot, p-nitro o toluidine (in pt 78°) is also formed. By zinc and hydrochloric acid it is reduced to toluidineduamine.

- 2 6 Dinitrotoluene is obtained along with the 2 4-isomeride and accumulates in the mother-liquous, when monomitrotoluene (ortho) is nitrated further. It is prepared in the pure state by eliminating the amino-group from dinitro p toluidine (m-pt 108°). It forms shining needles, m pt 65 5°, dissolves to some extent in alcohol, and with ammonium sulphide gives o nitro o-toluidine. With acetone and alkali it gives no coloration
- 2 3-Dinitrotoluene is obtained by heating o m dinitro-p tolue acid with dilute hydro chloric acid for 6 hours at 265° and distilling in a current of steam, the crystals formed being pressed or centrifuged, it separates from light petroleum solution in yellow crystals, m pt. 63°
- 2 5-Dinitrotoluene is obtained together with the 2 4-derivative when toluene or nitrotoluene is run into furning nitric acid, it crystallises from alcohol in yellow needles, m pt 52 5° Alcoholic aminonium sulphide reduces it to o nitro-m-toluidine.
- 3 5-Dinitrotoluene is formed by eliminating the amino group by diazotisation (see Aniline) from dinitro o toluidine (m.-pt 208°) or from m -dinitro-p toluidine (m pt 168°) From water, in which it is sparingly soluble, it crystallises in needles, m pt. 92° It is soluble slightly in light petroleum, more so in cold alcohol or in carbon disulphide, and readily in chloroform, ether, or benzene. It distils easily in a current of steam, and with benzene forms the crystalline double compound, $C_6H_8(OH_9)(NO_9)_8 + C_6H_8$
- 3 4-Dinitrotoluene is obtained by protracted agrication of m nitrotoluene with concentrated nitric acid (sp gr 1 54). From carbon disulphide (which dissolves 2 19 per cent.), it crystallises in long needles melting at 60°

TRINITROTOLUENES The following an momerides are possible, all being known

a TRINITROTOLUENE (ordinary or 2 4 6 Trinitrotoluene) forms long, pale yellow prismatic crystals, in pt 80 65° (corrected), deflagrating above 260° but distilling un changed in a vacuum. A pressure of 2500 atmos increases the density of the crystalling mass to 1 59, whereas a pressure of 3 to 4 atmos on the material during crystallisation combined with shaking, gives a density of 1 61

This compound is slightly soluble in water or light petroleum, more so in alcohol o carbon disulphide, and readily so in acetone, ether, benzene, toluene or chloroform. The action of similable and air turns it brown and lowers its melting-point. By concentrated nitric acid at 110°, or concentrated sulphuric acid and chromic acid at 50° to 60°, it is turned into a trinitrobenzoic acid, whilst furning nitric acid at 200° converts it into trinitrobenzone

With caustic alkalı, alkalı carbonate or potassınım cyanıde it gives a deep reddish brown or violet coloration

With various organic bases it forms red additive compounds

When aniline is poured into an alcoholic solution of trinitrotoluene, a double compound $C_0H_2(CH_3)(NO_2)_3+C_0H_5$ NH₂, separates in red accoular crystals melting at 84° Whilst piece and readily forms with metals piecates dangerous to handle, trinitrotoluene (see p 304) does not react with metals and can be manipulated safely even in the hot, since it burns slowly without exploding, it is not hygroscopic and does not form a bitter and poisonous dust like piecic and. It is highly stable to shock, and when compressed is exploded with a mercury fulminate cap, but when fused and then solidified it is exploded only by a detonator of moderately compressed, crystalline trinitrotoluene, which in its turn is exploded by a fulminate cap. The velocity of detonation in a charge 50 min in diameter and with a density of 155 is 7500 metres (piece acid, 8000 metres) per see

The theoretical decomposition is expressed by $2C_0H_4(CH_3)(NO_2)_3 = 12CO + 2CH_4 + H_2 + 3N_2$, 1 kilo giving 778 litros of gases, which are incompletely burnt owing to lack of exygen. If the gases formed are free from methano (see Note, p 259), the equation would be rather, $2C_2H_6(NO_2)_6 = 12CO + 6H_2 + 3N_2 + 2C$

The use of transtrotoluene as an explosive was suggested in 1891, and attempts were made to compensate the deficiency of oxygen by addition of ammonium nitrate, but it has been largely used, mainly as a result of Biohel's investigations, only since 1904, and in the crystalline state it now forms a very important military explosive. In the compressed or solidified state it is used for charging projectiles, groundes, etc (it does not serve for propelling projectiles, owing to its shattering power and to the abundance of fumes it forms on explosion) Different firms produce it under various names (trotyl, trolite, tribite, tribole)

Industrially it is made by nitration of mono- or di-nitrotoliuone, and its purity is checked by determination of its melting-point. During the European War it was manufactured in enormous quantities in the various combatant countries.

For some time a plastic product called *plastrotyl* (Biohel, 1906) was prepared from trinitrotoluene, resu, collection, and crude liquid dinitrotoluene, but this is no longer manufactured.

 β -TRINITROTOLUENE or 2 3 4-Trinitrotoluene is formed in small proportion with a large proportion of the γ isomeride (see below) when m-introtoluene is boiled for a day with nitro and sulphurio acids, and may be obtained also by nitrating 2 3- or 3 4-dinitro toluene. With hot alcoholic ammonia it gives β dinitrotoluedins, m-pt 94°

 γ -TRINITROTOLUENE or 2 4 5-Trinitrotoluene is formed with the β -isomeride (see above), from which it can be separated in virtue of its slight solubility in alcohol or carbon disulphide. It forms yellowish, shining crystals, melting at 104° . Its physical and chemical properties are similar to those of its isomerides

The δ -, ϵ - and η -compounds also exhibit similar proporties

o NITROCHLOROBENZENE (m -pt. 32 5°, b -pt. 246°) and p NITROCHLOROBENZENE (m pt. 83°, b -pt. 230°), are obtained together by nitration of chlorobenzene. The chlorine atom in these compounds is very mobile and is readily replaced by OH, OCH₈, NH₈ or NHC₆H₅. The meta isomeride, m -pt. 44 4°, b pt. 235 6°, is of less importance. All are very poisonous

2 4 DINITROCHLOROBENZENE is an important product, being used in making dinitrophenol, and hence Sulphur Black T, dinitroaniline, pieric acid, nitroaminophenol, and di, tetra, and hexa nitrodiphenylamines
It may be obtained in almost theoretical yield by suitable nitration of chlorobonzene

It forms rhombic crystals, sp gr 1 697, m -pt 51°, b pt 315° (slight decomposition), and is a poisonous product with an irritating action on the skin, this being apparently due to the presence of the 2 6 isomeride.

TRINITROtert BUTYLXYLENE has an odour of musk and is used as a perfume.

PHENYLNITROMETHANE, C₆H₅ CH₅ NO₂, contains the nitro group in the sidechain, as is shown by its method of preparation

$$C_8H_5$$
 $CH_aCl + AgNO_g = AgCl + C_6H_5$ CH_g NO_g Bensyl chloride

It is obtained also by heating toluene with nitric acid (sp. gr. 1.12) under pressure. This compound exists in two isomeric (or tautomeric) forms, one being known as a pseudo-

acid (1) CaHa CHa NOa and (2) CaHa OH NO OH (pseudo and), the former doc not react with ferric chloride, while the latter gives a coloration. Modification (1) is liquid, and its aqueous solution gives, with sodium alkoxide, the sodium salt of the pseudo acid, when the acid is liberated by means of a mineral acid it forms a crystalline product which has the same composition as the original compound and gradually changes int this, becoming liquid The presence of a hydroxyl group in the pseudo-acid is demonstrated by the formation of the characteristic dibenzlindroxamic (or dibenzoyllydroxamic) acid b treatment with benzoyl chloride

That these isonitro compounds contain hydroxyl is shown also by the fact that the react in the cold with phenyl isocyanate, while the nitro compounds do not.

Similar behaviour is shown by
$$m$$
 Nitrophenylnitromethane, $\begin{array}{c} NO_8 \\ \hline CH_2 & NO_8 \end{array}$, th

passage from the yellow pseudo and to the colourless nitro-compound is clearly shown by the change both in colour and in electrical conductivity, which is very high for the pseudo acid (as for acids in general) and almost zero for the normal nitro-compound, into which it as gradually converted

These nitro derivatives of the side chain can hence yield metallic derivatives—of the pseudo-soids, treatment of these derivatives with soid yields the normal form, and the latter in presence of alkali is only slowly neutralised, this being characteristic of the pseudo

In benzene solution the true acids combine rapidly with ammonia, forming insoluble ammonium salts, while pseudo acids combine only slowly or not at all with ammonia.

G AMINO-DERIVATIVES OF AROMATIC HYDROCARBONS

When the hydrogen atoms of benzene are replaced by ammo-groups or the hydrogen of ammonia or of a primary aliphatic amine by phenyl groups, the resulting products are mono-, di-, or tri-amines in the first case and secondary and tertiary ammes in the second

Some of the aromatic amines are similar to but weaker than the alighatic bases, the phenyl group being somewhat negative in character compared with

the positive alkyl groups

Aromatic amines form salts with acids and double salts with platinum In contact with the vapours of volatile morganic acids they form white fumes in the air in the same way as ammonia, they distil undecomposed The diamines are more highly basic than the monamines

Isomerides of the amines are formed when the amino group enters side-chains

1 PRIMARY MONAMINES

Primary, secondary, and tertiary aromatic monamines are distinguished by the

same reactions as are used for aliphatic amines (by nitrous acid, etc., see p. 240) FORMATION (a) Mono-, di-amines, etc., are usually obtained by reducing the nitro-derivatives with tin or stannous chloride and hydrochloric acid, or with iron and acetic acid, or with ammonium sulphide, etc C_6H_5 $NO_2 + 6H =$ $2H_2O + C_0H_5$ NH₂ The reduction may also be effected electrolytically (see later, diazo-compounds) In the electrolytic reduction of organic compounds m an acid medium, electrodes of lead containing a small proportion of copper are mostly used in place of pure lead electrodes, the resulting products being then purer (Ger Pat 252,759, 1911)

(b) By heating phenols (or, better, nitrophenols or naphthols) with ammoniacal zine chloride at 300°, primary amines are readily obtained with small proportions of secondary amines C_6H_5 OH + NH₃ = $H_2O + C_6H_5$ NH₂ (c) By heating secondary and tertiary bases (substituted amines) with

Battonal formula	Name	Melting-point	Bolling-point	Specific gravity
C,H, NH,	Anilme (amnobenzene)	‰ 	184.4°	I 026 at 16°
CH, C,H, NH,	ethy.	₽.	1880	0-999 at 20°
	m_{-} , $(1^{-}$, 3^{-} , 3^{-} , 3^{-}	64 64	198	0 998 at 25°
(CH.),C.H. NH.	P , P ,	° 2	083°	0.997 at 15°
	0- " (as) (1 2- , -4- ")	46,	226°	1 076 at 17°
		Ę	215°	1
	m- , $(a8)(13 +)$	pd.	215°	$0.918 \text{ at } 25^{\circ}$
66	m, (8) $(1 3$, -5 ,)	pd.	223°	0-972 at 15°
	p_{-} , (1 4 ., -2 .,)	15-5°	215°	0 980 at 15°
C.H. C.H. NH.	p-Ammoethylbenzene (1-ethyl-4-ammobenzene)	ا ا	214°	$0.975 \text{ at } 22^{\circ}$
	Meadure (1 3 5-trimethyl-2-amnobenzene)	pī —	233°	ı
	Pseudocumidine (1 2 4-trimethyl-5 ammobenzene)	.89	234°	1
(C,H, CH2) C,H, NH2	p-Ammopropylbenzene (I-propyl-4-ammobenzene)	рц	225°	1
(CH2), CH CH4 NH2	Cumidine (1-isopropyl-4-aminobenzene)	Ъľ	218°	I
CH3),C,H NH2	Prehndne (I 2 3 4-tetramethyl-5-ammobenzene)	200	260°	I
	Isodundne (1 2 3 5 , 4 ,,)	243	2552	0-978 at 24°
(CH ₃)(C ₃ H ₇)C ₆ H ₃ NH ₃	Carracrylamine (1-methyl-4-propyl-2-aminobenzene)	ħ,	2412	0 944 at 24°
r	Thymensmine (1- ,, 4- ,, -3- ,,)	bц	230°	l
CH ₂),CH CH ₂ C,H ₄ NH ₄	$_{1}$ p-Ammonsobutvibenzene (1- γ -methylpropyl-4-ammobenzene)	17	2302	0-937 at 25°
(CH ₂) ₅ C ₆ - NH ₂	Ammopentamethylbenzene (pentamethylammobenzene)	152°	278°	I
C ₆ H ₁₁ C ₆ H ₄ ·NH ₂	p-AmmonsoamyIbenzene	Ìц	260°	ļ
Can, Can, NH,	p-Aminooctylbenzene (1-octyl-4-aminobenzene)	19 5°	310°	1
CieHas CeH, NH,	Aminocetylbenzene (hexadecylaminobenzene)	22	255 (14 mm.)	ı
C18H37 C4H1 NH2	Ammooctodecylbenzene (octodecylaminobenzene)	610	274 (15 mm.)	1
CeH(NH2)3	o-Phenylenediamme (1 2-diammobenzene)	105°	25.23	1
	£	9	2873	ı
2	P " (14 ")	1472	267°	1
CH, C,H,(NH,),	Tolylenediamine 1-methyl-2 3-diammobenzene)	61°	255°	1
£	, (I-,, -2.4- ,,)	°66	280°	l
	" (four other isomerides)	1	ı	ı
C.H.3(NH ₂)3	Traminobenzenes	1		l
		•		

concentrated hydrochloric acid at 180°, C_6H_5 $N(CH_3)_2 + 2HOl = C_6H_5$ $NH_2 + 2CH_3Cl$, at higher temperatures the alkyl chloride reacts with the nucleus, giving homologous amines higher than the original one C_6H_5 $NH_2 + CH_3Cl = C_6H_4(CH_3)$ NH_2 , HCl In the same way, trimethylphenylammonium iodide yields mesidine hydriodide, $C_6H_2(CH_3)_3$ NH_2 , HI (the methyl groups of the nucleus never assume the major never never assume the major never assume the major never never assume the major never neve nucleus never assume the meta-position)

The primary monamines are liquid or solid and turn brown PROPERTIES With acids they form crystalline salts soluble in water, but with in the air carbonic acid they do not give salts, so that they may be liberated from their salts by means of sodium carbonate With platinum chloride they form double salts (platinichlorides), eg (C₆H₅ NH₂, HCl)₂, PtCl₄, which are only slightly soluble and serve for the separation of these bases

With methyl iodide they form secondary, tertiary, and quaternary compounds C_6H_5 NH CH_3 , HI $\rightarrow C_6H_5$ N(CH₃)₂, HI $\rightarrow C_6H_5$ N(OH₃)₃I, the base can easily be separated from the acid by caustic soda

Benzaldehyde reacts with aniline, forming benzylideneaniline C_0H_5 CHO + C_0H_5 $NH_2 = H_2O + C_0H_5$ CH N C_0H_5 , while acetaldehyde gives ethylidenediphenyldiamine

$$2C_0H_5$$
 $NH_2 + CH_3$ $CHO = H_2O + \frac{C_0H_5}{C_0H_5} \frac{NH}{NH} > CH$ CH_3

The action of the organic acids on amines gives acianihdes, which are decomposable by alkalı

$$C_8H_5$$
 $NH_2 + CH_3$ $COOH = H_2O + C_6H_5$ NH C_2H_3O

When heated with chloroform and alcoholic potash, the primary aimines form isonitriles (carbylamines), which have most unpleasant odours carbon disulphide they give thousas, which with P_2O_5 give mustard oils of the aromatic series

With nitrous acid (or nitrites) in acid solution, amines yield diazo- or drazoammo-compounds, these giving phenols when boiled with water the amino-group is in the side-chain, no diazo-derivative is formed

Aniline, see later

2 SECONDARY MONAMINES

These are basic in character, not when they are purely aromatic compounds, but only when they contain also aliphatic radicals These mixed derivatives are obtained from primary amines by treatment with methyl iodide and, if the acetylated primary base is employed, the simultaneous formation of tertiary base is avoided C_0H_5 NH $COCH_8+CH_8I=HI+C_6H_5$ N(CH₃)(COCH₈), the acetyl group may be removed by subsequent hydrolysis

The secondary bases may be separated from the tertiary by means of nitrous acid (potassium nitrite), with which the former yield nitrosamines C_0H_5 NH $CH_8 + NO$ OH $= H_2O + C_6H_5$ N(NO) · CH₈, which are neutral compounds, insoluble in water. When these nitrosamines are heated with hydrochloric acid (alcoholic), the NO group passes into the benzene nucleus C_0H_5 N(NO) CH₃ gives C_6H_4 (NO) NH CH₃

Pure aromatic secondary monamines are obtained by heating the primary bases with the corresponding hydrochlorides.

bases with the corresponding hydrochlorides

$$C_6H_5$$
 $NH_2 + C_6H_5$ NH_2 , $HOl = (C_0H_5)_2NH + NH_4Cl$

3 TERTIARY MONAMINES

These are formed by alkylating primary or secondary bases

Triphenylamine is obtained from bromobenzene by the action of dipotassioand $2\ddot{O}_{6}H_{5}Br + C_{6}H_{5}$ $NK_{2} = 2KBr + (C_{6}H_{5})_{8}N$

The purely aromatic tertiary monamines are not basic in character, and

hence do not form salts They do not give isonitriles with chloroform, or mustard oils with CS2

With alkyl iodides they form quaternary compounds When they are treated with nitrous acid, the NO group enters the benzene nucleus, this reaction distinguishing these bases from the tertiary bases of the fatty series

4 OUATERNARY BASES

These are analogous to the corresponding aliphatic compounds Trimethylphenylammonium hydroxide, C_0H_5 N(CH₃)₈OH, for example, is strongly alkaline, colourless, and bitter, and is decomposed on heating

5 DIAMINES, TRIAMINES, TETRAMINES, ETC

These are obtained by reducing the corresponding nitroamino- or polynitroderivatives, thus tetraminobenzene is formed from dinitro-m-diaminobenzene

The polyamines give various reactions with nitroso-compounds of tertiary

amines, with certain azo-dyes, etc

The diamines and polyamines are solid substances, which distil undecomposed and are soluble in hot water They are colourless, but turn brown in the air with a rapidity increasing with the number of amino-groups, they give characteristic colorations with ferric chloride

The ORTHODIAMINES form Anhydro-bases or Benziminazoles, eg,

$$C_8H_4$$
 N
 C
 CH_8
Further, aldehydes react with the hydrochlorides of

diamines, forming Anhydro-bases or Aldehydo-bases

Glyoxal yields Quinoxaline, etc., while nitions acid gives Azimino-com-

pounds, e.g., Azıminobenzene (amınoazophenylene),
$$C_0H_4$$
 $\stackrel{NH}{\sim}$ N

m-DIAMINES give, with nitrous acid, yellowish brown colouring-matters (Bismarck brown sensitive reaction) With diazobenzene chloride they yield azo-dyes (chrysoidine) When exidised together with p-diamines, they give a blue colour which becomes red on boiling

p-DIAMINES, when exidised with $MnO_2 + H_2SO_4$, yield quinone, $C_0H_4O_2$, and a homologue with a peculiar odom, some of them give colouring-inattors

when treated with solutions of hydrogen sulphide and ferric chloride

ANILINE (Aminobenzene, Phenylamine), C₆II₈ NH₂ ¹

Industrially it is prepared by treating nitrobenzene with mascent hydrogen produced by the action of hydrochloric acid on iron filings or, better, turnings, as was proposed in 1864 by Béchamp, who first used acetic soid in place of hydrochloric.

$$C_0H_5$$
 $NO_2 + 6HCl + 3Fe = C_0H_8$ $NH_2 + 3FoCl_2 + 2H_2O$

The quantity of HCl consumed is, however, only one fortieth of the theoretical amount, so that after a certain point the reduction is perhaps continued by the action of the iron on water in presence of ferrous chloride $2\text{Fe} + \text{C}_{2}\text{H}_{5} \text{ NO}_{2} + 4\text{H}_{2}\text{O} = 2\text{Fe}(\text{OH})_{8} +$ CaHs NH, The apparatus for manufacturing aniline consists of a cast iron cylinder, A (Fig 446), the lower half of which is furnished with a discharge tap and is replaceable, as it corrodes rapidly, it is provided with a cover, through which pass a vertical stirrer, B,

¹ Aniline was discovered in 1826 by Unverdorben among the products of the dry distillation of indigo and was called *crystalline*, since with solds it readily formed crystalline masses. It was then found also by Runge in 1834 in coal-tar, and he named it *kyanol* or *blue osl*, since with hypochlorite it gave a blue coloration and its salts a violet coloration.

In 1841 Fritsche obtained it by distilling indigo with potash, and he termed it, after the native name of the plant, "anil" anilm In 1842 Zinin gave the name benzidam to the product obtained by reducing nitrobenzene with ammonium sulphide. The identity of these various substances and their true constitution was proved by Hofmann in 1843.

worked by toothed wheels, and a direct steam coil The cover is also fitted with a reflu condenser, NOG, and a hopper, F, with a wooden plug for the introduction of the iro turnings. A tube fixed laterally to the lower part of the reflux condensor carries off th amiline distilling with the steam to a condensing coil, O, and a receiver, R The operation is carried out as follows 300 litres of water, 180 kilos of iron turnings, and 60 kilos of coi centrated hydrochloric acid are kept stirred in the cylinder while 750 kilos of nitrobenzel. are introduced. The reaction is started by a jet of direct steam, and is afterwards mail tained by gradually adding moist iron turnings up to a total quantity of 650 kilos, the additions are made over a period of 6 to 7 hours and are arranged so that the mas is kept hot $(90^{\circ}$ to 95°), but the reaction is allowed to calm down before fresh iron is intra duced If the reaction becomes violent, benzene and ammonia are formed instead of aniling A further quantity of 100 to 150 kilos of iron turnings is added. The nitrobenzene evaporat ing with the water is condensed in the reflux condenser. At the end of the operatio the vessel contains and p-toluidines together with a little unaltered nitrobenzene and some impurities such as avobenzene, etc Thick milk of lime is then added until the reaction is strongly alkaline, and the mass di-

Fig 440

tilled with superheated direct steam. The distillate condensed in R separates into two layers, the lower one of aniline and the upper one of water containing 2 to 3 per cent of aniline in suspension or solution, this lower layer is used in the reduction of subsequent quantities of nitrobenzene. The decented aniline is purified by distillation in vicuo from an iron still. The decomposition of the aniline hydrochloride by milk of lime takes place according to the equation

$$2O_6H_5$$
 NH_2 , $HCl + Ca(OH)_2 = CaOl_2 + 2H_2O + 2O_6H_5$ NH_2

It has also been proposed (Ger Pat 184,809) to reduce nitrobenzene by means o sodium bisulphite in the hot

At one time the nitrobenzene employed was obtained from crude 90 per cent. benzence containing toluene, the resultant product being a mixture of aniline and toluidine, which served well for the preparation of certain dyes, but nowadays it is regarded as preferable to start from pure benzene and pure toluene separately and to mix the aniline and toluidine subsequently in the required proportions.

And also be obtained by other processes which have not yet been applied or a large scale, e.g., by passing a mixture of nitrobenzene vapour with excess of hydroger (or water-gas) over reduced copper turnings heated to 300° to 400°, the copper acts as a catalyst and remains unchanged (Ger Pat. 139,457) Some importance is now being

assumed by the electrolytic process, according to which nitro-derivatives can be converted into amino-derivatives in presence of nietallic salts (e.g., copper salts), which also separate at the cathode (see Diazo compounds)

Kunz's process, based on reduction of nitrobenzene by means of sodium bisulphide, $C_6H_5NO_9+Na_2S_9+H_9O=C_6H_5NH_9+Na_2S_9O_9$, gives a good yield and allows of the separation of pure sodium thiosulphate by concentration of the residual aquoous solution

Aniline is a liquid which boils at 184 4° (92° at 33 mm pressure), has the sp gr 1 020 at 16°, and solidifies at — 6 3° (or — 20° if impure). It is colourless and refractive (refractive index, 1 585 at 20°), but becomes brown in the air at a rate increasing with the proportion of impurities present. It is soluble in alcohol, other, benzone, fatty oils and, to a slight extent (3 per cent, whilst aniline dissolves 5 per cent of water) in water, and it dissolves sulphur (in the hot), phosphorus, camphor, indigo, a little water (in the hot), etc., it is readily exidesable. It distils easily and completely in steam, and its vacquir is somewhat poisonous 1 and combustible. As a base it is weaker than airmonia in the cold but stronger in the hot, but its aqueous solution does not react with litmus or turmeric paper. Although it is a weak base, it precipitates salts of zine, aluminium, and irou, and in the hot it displaces airmonia from various salts.

With formaldehyde it gives a characteristic (for aniline and for the aldehyde) condensation product (CaH N CHa)3, melting at 40° With chloride of lime a solution of aniline becomes intensely blue if pure or violet if impure (sensitive reaction), the colour rapidly changing to brown, if the aniline solution is very dilute this coloration does not appear, but a red colour will then form on further addition of a few drops of ammonium hydro sulphide, minimal traces (1 250,000) of audine being thus detectable. Aniline or one of its salts forms p aminobenzenesulphonic acid with concentrated sulphuric acid, but in presence of a drop of potassium dichromate solution a fine blue colour is produced which disappears very rapidly, in dilute solution a green and then a black colour (aniline black) is formed. Different methods of oxidising aniline give varied products mtroso and nitro benzene, β phenylhydroxylamme, p-ammophenol, quinone, p-aminophenylamine, violaniline (with arsonic acid) Oxidation of a mixture of aniline and toluidune yields fuchaine, while a mixture of amiline and p-toluylenediamine gives safranine 3 Chlorine transforms dry aniline into a tarry substance, while in presence of water trioblorand ine and trichlorophenol are formed. The action of calcium hypochlorite on a solution of aniline in chloroform yields azobenzene.

Some of the more important salts and derivatives of aniline and its homologues are as follow

ANILINE HYDROCHLORIDE (Aniline salt), C_6H_8 NH₂, HCl, is obtained pure and dry in white crystals by passing a current of dry hydrogen chloride into an ethercal solution of aniline. It melts at 198° and partly sublines, and boils unchanged at 245°, it dissolves readily in water or alcohol, but is insoluble in ether

It is prepared industrially by neutralising aniline at 100° with concentrated hydrochloric acid, free from chlorine. After standing for some days, crystalline aniline salt separates out, this being contrifuged and dried at 50°, the mother liquors are then evaporated and crystallised. In the air the white scales assume a reddish or greenish tint. In presence of HCl its aqueous solution imparts a yellow colour to pine wood or elder-pith.

Aniline acts on the nervous system, and even when its action is slight the edges of the lips are turned bluish and an effect similar to drunkenness is produced, but the face becomes pale and the appetite fails, in such cases Epsom salts are administered as purgative, alcoholic liquors being harmful. Clothes soaked in aniline may produce serious poisoning and giddiness so acute as to cause collapse, the lips becoming dark blue or even black. When this happens, recourse should be had to excitants or ablution or to small doses of other administered internally. Benzene and nitrobenzene vapours are also injurious to health

**For the making of aniline black and other dyes, the following qualities of aniline are placed on the market aniline oil for blue, which is almost pure aniline, b pt. 182° to 186°, sp gr 1 034 to 1 036, aniline oil for red, consisting of about 1 part of aniline and 2 parts of o- and p toluidines and boiling at 190° to 198°, aniline oil for extrance, sp gr 1 032 to 1 034, containing 35 to 50 per cent of aniline and 50 to 65 per cent. of o-toluidine. Aniline oil is tested commercially by measuring the fractions distilling at different temperatures from 100 grms. of the oil in a suitable distilling flack fitted with a thermometer graduated in fifths of a degree from 150° to 225°, the heating being carried out on a sand bath. The best qualities of aniline oil give 95 to 98 per cent. of distillate between 182° and 185°. It is also advisable to make small dyeing tests with aniline black in order to ascertain which of the different aniline oils and salts on the market gives the finest and most intense black (see later, Dyeing Processes).

ANILINE SULPHATE, $(C_0H_5 NH_2)_2$, H_2SO_4 , is only slightly soluble in water Various other salts of organic and inorganic acids are known

ANILINE PLATINICHLORIDE, $(C_0H_3 NH_2, HCl)_2$, PtCl₁, forms yellow leaflots c solving readily in water and, to a less extent, in alcohol.

METHYLANILINE, C_8H_5 NH CH_5 , is obtained by heating 100 parts of audine hyd chloride with 30 parts of methyl alcohol (free from acetone) at 180° in an enamelled ir autoclave. It is a colourless liquid, sp. gr. 0.972 at 15°, b. pt. 1938, with an odour rese bling, but stronger than, that of aniline. With chloride of lime it gives first a violet a then a brown coloration. The corresponding NITROSAMINE, C_8H_8 NO CH_3 , is obtain by methylating phenylnitrosamine or by treating methylatinine with nitrous acid. It for a yellow oil which distils unchanged only in a current of steam and gives Liebermani reaction, characteristic of the nitrosamines and of various nitroso derivatives, this reactions is in the formation of a dark blue coloration when the nitroso compound is heated with phenol and sulphure acid and the liquid then diluted with water and neutralised with potage

DIMETHYLANILINE, C_6H_5 N(CH₃)₂, is a mixed tertuary amine and is obtained I heating annine hydrochloride with methyl alcohol, methyl chloride being formed as a intermediate product and reacting with the annine. If, however, dimethylannine hydrichloride is heated with gaseous hydrogen chloride at 180°, methyl chloride and annine are formed. When dimethylannine is heated to a high temperature, the alkyl groups paranto the nucleus. The hydrogen in the para-position of these dialkylamines is readily replace able by different groups, thus, the action of nitrous and yields pintrosodimethylaniling which forms green crystals and gives a yellow hydrochloride. Permanganate converts the NO group into NO₄, giving nitrodimethylaniline (m. pt. 162°), while boiling with caust soda results in the elimination of dimethylamine and the formation of nitrosophene NO C₆H₄ OH. It gives a straw yellow coloration with chloride of time and reacts with aldehydes and various other compounds.

Dimethylaniline, which is of importance owing to its use in the manufacture of varior dyes, is a colourless, only liquid, solidifying at 2 5°, b -pt 192 5°, density 0 962 at 15. The pure compound falls in temperature when mixed with an equal weight of acetic analydride, whereas if annine or monomethylaniline is present the temperature rises.

DIPHENYLAMINE, C_0H_0 NH C_0H_0 , is obtained by heating aniline with its hydrichloride in an autoclave at 220° to 230° for 10 hours

$$C_6H_5$$
 NH_2 , $HOI + C_8H_5$ $NH_2 = NH_4OI + C_8H_5$ NH C_6H_5

Contardi (1918) developed a method which requires no autoclave and may be rendere almost continuous

Diphenylamme melts at 54° and boils at 302° , and forms a very sensitive reagent for the detection of traces of nitric and, with which, in presence of concentrated sulphuric acid it gives an intense blue coloration (also given with introus acid and various exidising agents see Detection of Nitrates in Water, Vol I, p. 234). It is also largely used to stabilise smoke less introcellulose powders (4 to 6 per cent.) and golatine dynamites, and serves also in the manufacture of orange IV, metanil yellow, diphenyl blue, etc

forms a yellowish, crystalline mass, m pt. 193°, and was largely used in poison shells during the war, 0 012 grm rendering 30 cu m of air irrespirable. It is prepared by heating either diphenylamine with arsenic trichloride for 24 hours at 160° to 190° in a reflux apparatus or diphenylamine hydrochloride with arsenicus anhydride.

Various nitro- and nitroso derivatives are known, as well as triphenylamine, N(C₆H₅)₈ which crystallises in large plates melting at 127° and distils unchanged.

BENZYLANILINE (Benzylphenylamine), C_6H_5 CH₂ NH C_6H_5 , is obtained oither by heating henzyl chloride (1 mol.) with aniline (2 mols.) or by reducing thiobenzanilide, C_6H_5 OS NH C_8H_8 It forms crystals melting at 33° and boils at 310°

{aurantia is its ammonium derivative, NH_4 $N[C_6H_2(NO_4)_8]_8$ }, but is prepared in large quantities as a shattering explosive for charging torpedoes. In its manufacture 2.4-

.

limitrochlorobenzene is treated with aniline, giving directodryhenylamine, C_0H_5 NH $C_0H_3(NO_2)_6$, in pt. 157° Nitration of the latter yields tetranstrodryhenylamine, in pt. 180° to 190°, and intration of this hexanitrodryhenylamine, in pt. 240° to 250° (decomp.), this compound is turned brown by similght, is somewhat sensitive to shock, and inflames the skin and irritates the mucus of the eyes

PHENYLSULPHAMINIC ACID, C₆H₅ NH SO₆H, is obtained by the action of sulphur trioxide on the amine, and is very unstable except in the form of salts

ANILIDES are derivatives of aniline in which one or both of the hydrogen atoms of the aniline group of aniline are replaced by one or two inorganic or organic and residues, in the latter case, compounds of considerable interest are formed

FORMANILIDE, C₆H₅ NH CHO, obtained by heating annline with formic acid, malts at 46° and is used for making p nitroaniline.

ACETANILIDE (Antifebrin), C_eH_8 NH COCH₈, is obtained by boiling a mixture of aniline and glacial acetic acid for a couple of days in an earthenware vessel fitted with a reflux condenser

$$C_6H_5$$
 $NH_2 + CH_8$ CO $OH = H_2O + C_6H_5$ NH $COCH_8$

Industrially it is made in thick, seamless, aluminium vessels placed in iron vessels to protect them from direct fire heat. It is purified by repeatedly crystallising or distilling, best in vacuo. It melts at 115° and boils at 303 8°, with partial sublimation at 95°. It dissolves in 174 parts of cold or 18 parts of boiling water or in 3½ parts of alcohol, it is readily soluble in ether or chloroform. The hydrogen atom united to nitrogen can be replaced by metals (Na, K, etc.). It causes considerable lowering of the temperature of animal organisms, and is hence used as an antipyretic. It may be used to replace campho in making celluloid, and is employed also to adulterate certain perfunes (vanillin, musk, piperonal, etc.)

Di- and Tri-acetanilides have analogous properties, and Methylacetanilide, C_8H_5 N(CH₈) COCH₉, is used under the name of exalgin as a specific against headache. Diacetanilide melts at 37°

CHLORACETANILIDE, C_8H_4Cl NH COCH₃, exists in three isomeric forms the ortho compound, melting at 88°, the meta-, at 72 5°, and the para , at 172°. The chloro- and brome-derivatives of acetamide and other anilides are obtained by the action of chlorine or bromine on the anilide or by the interaction of acetyl chloride and the substituted anilines. Another series of isomerides is that in which the substitution is in the acid group, s.y , Phenylchloracetamide, C_8H_5 NH CO CH₂Cl (m -pt. 134°), which is obtained from chloracetyl chloride and aniline. Phenyldichlor- (m -pt. 118°) and phenyltrichloracetamide (m, pt. 82°) are also known

NITRACETANILIDE, NO₂ C_8H_4 NH COCH₈ The three isomerides are obtained by the action of acetyl chloride on the corresponding nitranilines, the o compound melts at 92° (yellowish crystals), the m- at 142°, and the p- at 207°

PHENYLACETANILIDE (Diphenylacetamide), $(C_0H_8)_2N$ CO CH_8 , is obtained by treating a benzene solution of diphenylamine with acetyl chloride, it melts at 90 5°

BENZANILIDE (Phenyibenzamide), C_6H_5 NH COC_6H_5 , is prepared from benzoyl chloride and aniline and melts at 102° It is very stable, but is decomposed by fusion with alkali It is insoluble in water, but dissolves in alcohol.

PHENYLGLYCOCOLL (Phenylaminoacetic or Anilidoacetic acid), C_6H_5 NH CH_5 CO₅H, is obtained by protracted heating of obloroacetic acid (1 mol) and aniline (2 mols) with water It forms crystals melting at 127° , gives characteristic mercury and copper salts,

and when heated at 150° gives up water and yields the anhydride C_6H_8 N $\stackrel{CH_8}{\mid}$, melting at 263°

HOMOLOGUES OF ANILINE, POLYAMINES, AND THEIR DERIVATIVES (see Table, p 655)

ORTHO- and PARA-TOLUIDINES, CH₃ C₄H₄ NH₅, are obtained by reducing the corresponding nitro-compounds. Since the three isomerides are formed simultaneously in the nitration of toluene, reduction yields a mixture of the three toluidines (m-toluidine in small amount). In order to separate them, the mixture is poured into a solution of oxalic acid containing hydrochloric acid and the liquid heated to boiling, the p-toluidine oxalate, which is only slightly soluble in water and insoluble in ether, is then separated,

the filtrate containing the soluble hydrochlorides of the other toluidines. Also Willin has shown that only amines which have the para-position free can be converted (by HCl \dashv NaNO₈) into the corresponding aminoazo derivatives, the unaltered p toluidine bein then separable by distillation in steam p Toluidine can also be separated by cooling, sine it freezes first. The toluidines are distinguished from amiline by the different solubilities of the nitrates, hydrochlorides, and acetyl derivatives. p Toluidine, like the mota compound, costs double as much as the ortho isomeride. o-Toluidine, which is also found in coal tar, is a liquid (sp. gr. 1.09) boiling at 190° and turning brown in the air p Toluidine is a solid melting at 43°, and boils at 198°, it is sparingly soluble in cold water, but dissolves readily in alcohol, ether, or benzene. The toluidines are used in the manufacture of dyes

m TOLUIDINE is obtained indirectly by nitrating acetylated p-toluidine, the com

pound
$$CH_3$$
 NH $COCH_3$ being thus formed, the acetyl group is then eliminated NO_2

by boiling with hydrochloric acid and the amino-group by diazotisation Reduction of the resultant m nitrotoluene yields m-toluidine, which is a colourless oil (sp. gr. 0.998 at 25° boiling at 197°

XVLIDINES Six isomerides are known (see Table, p. 655), and all are formed together by nitrating crude xylene and reducing the resulting nitro compounds, the most important is m-xylidine. Various methods of separating the different xylidines are known, almost all of them being patented and based on the varying solubilities of the acetates and hydrochlorides of p- and m-xylidines. The separate isomerides are prepared pure from the corresponding pure nitro compounds

BENZYLAMINE, C_8H_5 CH_8 NH_8 , is isomeric with the toluidines and behaves like the amines of the aliphatic series. It is obtained together with di and tri-benzylamine by heating benzyl chloride with ammonia. It is a colourless liquid of ammoniacal odour and boils at 185°, it has an alkaline reaction and is a more energetic base than audine, the amino group being further removed from the benzene nucleus, which has a somewhat negative (acid) influence.

o-PHENYLENEDIAMINE, $C_0H_4(NH_2)_2$, m.-pt. 102°, b pt. 257°, obtained by reducing o nitroaniline with caustic soda and zino dust, is of little practical importance.

m PHENYLENEDIAMINE, m.-pt. 63°, b-pt 287°, is made by reducing m dinitrobenzene with iron turnings and hydrochloric acid. With a trace of a nitrite and hydrochloric acid it gives the characteristic brownish-yellow coloration of Bismarok brown. It is used as a developer in dyeing and printing cotton, but more especially for making numerous azo and other dyes, e.g., Bismarok brown, anthracene acid brown B, Columbia black FB, FT, vesuvine, azo bordeaux, ohrysoidine, diamine brown V, neutral violet.

p PHENYLENEDIAMINE is obtained by the reduction of aminoazobenzene (dissolved in aniline) with hydrogen sulphide, or hydrochloric acid and iron turnings, or, more casily, by heating p dichlorobenzene or p chloraniline with ainmonta in presence of a copper salt (Ger Pat. 204,408), or by reducing p-introaniline with hydrochloric acid and iron turnings

It melts at 147°, boils at 267°, and is soluble in alcohol or ether, and to a less extent in water, in the air it browns slightly. Addition of a trace of its hydrochloride and then a few drops of ferric chloric solution to dilute hydrogen sulphide solution gives a characteristic violet coloration (*Lauth's violet*)

It is used in making many dyes—sthyl acid violet, azidine orange, brown and black, azoalizarin black, direct brown R, paraphenylene blue and violet, etc—With raw, but not with boiled, milk it gives a violet coloration. It colours woody fibre brick-red, and has been proposed as an accelerator of the vulcanisation of rubber—It is frequently employed for dyeing hair by oxidising it with hydrogen peroxide, but its use for this purpose should be prohibited owing to its poisonous properties.

TOLYLENEDIAMINES, $C_gH_g(CH_g)(NH_g)_q$ The most common of these is the *o* p-compound, i.e., the one with the amino-groups in the 2 and 4 positions and the methyl group in the position 1 It is obtained by reducing the corresponding dinitrotoluene (see p 651) with iron and hydrochloric acid and is used for making dyes and, together with sodium sulphite, for dyeing hair, as it does not seem to be injurious to health, as p phenylenediamine is It costs about 16s. per kilo.

NITROANILINES Concentrated nitric acid acts very energetically on amiline, and in order that the nitro-groups may be introduced into the benzene nucleus without the amino-group being attacked, either the amino-group is acetylated or the nitration is carried out in presence of a large proportion of concentrated sulphinic acid

o NITROANILINE, NO₈ C₆H₄ NH₂, forms orange-yellow orystals, m-pt 71 5°, and is obtained by heating o chloromtrobenzene with concentrated ammonia solution under pressure. It is of little industrial importance.

m-NITROANILINE, prepared by reducing m-dimitrobenizene with sodium polysulphides, forms yellow crystals, in, pt 114°, dissolves in water to the extent of 7 12 per cent., and is used for making alizarin yellow GG and dimethylmtraniline orange.

p NITROANILINE is made either by heating p introchlorobenizone with ammonia under pressure, or by nitrating acetamilide to p-introacetamilide and hydrolysing the latter. It forms yellow crystals, in. pt 147°, dissolves to the extent of 0.08 per cent in water and 5.84 per cent in alcohol, and is used for making alizarin yellow R, p intransline red and p phonylonediamine.

2 4 DINITROANILINE, obtained by heating 2 4-dinitrochlorobenzene with concentrated ammonia under pressure, forms yellow crystals, in pt 188°, and serves for making violet G for wool and permanent red 2G. The presence of the two nitro groups attenuates the basic character of the amino group, which is diazotised only in concentrated sulphuric acid solution.

8 (2 4 6) TRINITROANILINE (PICRAMIDE), NH₂ $C_0H_2(NO_2)_8$, obtained from pieryl chloride and ammonis, forms orange red needles, m -pt 186°, it has not been directived

2 3 4 6 TETRANITROANILINE, m pt 210°, prepared by nitrating m-nitroanline, is a more powerful explosive than other aromatic nitro-compounds but less so than nitroglycerine. Characteristic is the mobility and hence the ready replaceability of the nitrogroup in position 3

TRINITROPHENYLMETHYLNITROAMINE (Tetryl), $C_0H_0(NO_2)_3$ N(NO₂) CH₈, prepared by nitration of dimethylaniline, forms yellow crystals, m -pt 129°, and is an endothermic compound (— 40 8 cals) It is a highly stable compound but is more sensitive to shock than pieric acid, and is used as a secondary detonator

H NITROPHENOLS, AMINOPHENOLS

NITROPHENOLS The ortho- and para-compounds are obtained mixed by treating phenol with dilute nitric acid, a larger proportion of the paraderivative being formed in the cold and of the ortho- in the hot. The latter is volatile in steam, and can hence be readily separated from the former

m-Nitroaniline gives m-nitrophenol only by passing through the diazocompound, but o- and p-nitroanilines give the corresponding nitrophenols when simply fused with potash

Nitrophenols are more markedly acid than the phenols and decompose the alkali carbonates, forming Nitrophenoxides

o NITROPHENOL, free from the para-isomeride, is obtained by distilling o nitro p-phenolsulphonic acid in steam superheated to 150°, or by heating o chloronitrobenzene with sodium carbonate solution, or by boiling o-nitrobenzene with caustic soda. It forms yellow crystals with a peculiar aromatic odour, sp gr 1 447, m.-pt 44 5 to 45°, b pt. 214° It forms orange red salts, when heated at 200° with methyl sulphate and methyl alcohol, the sodium salt gives o nitrophenol methyl ether, which, on alkaline reduction, yields diamsidine, this being used for making azo dyes

m-NITROPHENOL, prepared from m-minaniline and nitrous acid, forms yellow crystals, m pt. 96°, b pt. 194° (in vacuo), and is not volatile in steam

p MITROPHENOL, colourless needles, m.-pt. 114°, is used especially in making phenacetin (q v), and is obtained by heating p nitransline with caustic sode solution.

p NITROPHENETOLE, which is the ethyl ether of p-nitrophenol, NO₂ C₅H₄ OC₂H₅, forms crystals, m.-pt 58°, b pt. 283°, and is used in making p phenetidine (qv) It is prepared by mixing p-nitrophenol, alcohol and 50 per cent. caustic soda solution, allowing to cool overnight, and heating under pressure with ethyl chloride and alcohol.

DINITROPHENOLS, OH C₈H₈(NO₂)₂ Various isomerides are known. The 2–4 corpound is used for making colouring matters, especially sulphur black, and was made in larguantities during the war for mixing with pioric and to lower its melting point. It obtained by intrating chlorobenzene and treating the resultant dinitrochlorobenzene will sodium carbonate. It is used also for preserving timber. It inelts at 114° and has the sign 1–683. The and hydrochloric acid convert it into 2–4-diaminophenol (amidol), whit with ammonium sulphide it gives 4 nitro 2 aminophenol, and with toluene a-sulph chloride 1-chloro 2–4 diantroben/ene.

by Amato di Welter, but was used first as a dye and much later as an explosive It is formed by the action of concentrated nitric acid on various substances such as silk, wool, indigo, certain resins, etc., and by the oxidation of s-trimtre benzene with potassium ferricyanide. Further nitro-groups cannot be introduced directly into pieric acid.

The first tests on its explosive properties were made by Sprengel in 1871, and on Turpin representations it was applied by the French Government under the name melinite (see p. 303) for charging grandes

Before the war it was prepared industrially as follows—equal weights of sulphuric act (66° Bé) and pure phenol were heated at 120° in a cast-iron vessel and continually stirre until a small portion of the mass dissolved in water without separation of phenol. The phenolsulphonic acid thus obtained was poured into two parts of cold water and the solution introduced gradually into earthenware jars containing 65 per cent. nitric acid (sp. g. 1.400) in the proportion of 3.5 parts per 1 part of phenol. The jars were surrounded by water-bath and were covered over so that the nitrous fumes, which were at first freed evolved, could be drawn off. Towards the end of the reaction the water bath was heated the boiling. The stages of the process are represented by the following equations.

(1)
$$C_6H_8$$
 OH + $H_2SO_4 = H_2O$ + OH C_6H_4 SO₃H,
(2) OH C_6H_4 SO₃H + 3HNO₃ = $2H_2O$ + H_2SO_4 + OH $C_6H_3(NO_2)_8$

When the mass is cool it solidifies, and it was then centrifuged and washed with a little water, by this means the pieric and crystals can be efficiently separated from the mother liquor

During the European War it was prepared on a large scale by treating pure synthetic placenol with sulphuric acid, and nitrating the resultant phenoidi (and tri) sulphonic acid be means of sodium nitrate and nitric acid

A suggestion has been made to prepare pieric acid in the cold, as follows (Fr Pai 345,441) 1 part of crude phenol is stirred into a mixture of 10 parts of nitric acid (sp gi 1.4) with 3 parts of denatured alcohol, the mass being poured into hot water at the end c thic reaction, the yield is good, but part of the alcohol is exidised and lost. When pheno is dear, aniline is sometimes used, being converted into the sulphonic acid, diazotised, an treated with the theoretical quantity of nitric acid (Ger Pat. 125,096)

PROPERTIES Picric acid forms yellowish, very bitter, and somewha poisonous leaflets, which melt at 122 5° and have the sp gr 1 7635 or, in th fused state, 1 62 to 1 64. It burns without exploding, but if it is heated in a closed vessel, or if its vapour is superheated, it may explode with great violence. In the open, mercury fulminate is not able to explode it, a detonator of driguncotton (or lead picrate) with a mercury fulminate cap being necessary. When it is exploded in a closed vessel, its shattering effect is double that o dynamite

One hundred parts of water dissolve 0 626 part of picric acid at 5°, 1 16 part at 15°, 1 225 part at 20°, or 3 89 parts at 77° It is readily soluble in alcoho or benzene. In aqueous solution it is dissociated to some extent and shows a marked acid action. The yellow colour of its aqueous solution is due to the anion, in light petroleum it gives a colourless solution, and is hence non-ionised.

It is non-volatile in steam. Its hydroxyl-group is highly reactive, owing to the presence of the three nitro-groups. The potassium and ammonium salts are exploded by percussion, whilst the free acid requires a detonator

With many aromatic hydrocarbons it forms well-crystallised, molecular compounds which serve for the identification and separation of the hydro-

carbons, pieric acid is eliminated from these compounds by ammonia

When reduced with tin and hydrochloric acid it yields 2 4 6-triaminophenol, whilst with ammonium sulphide or sodium hydrosulphide, or on electrolysis (in presence of vanadium salts) it gives 4 6-dinitio-2-aminophenol (picramic acid)

With potassium cyanide it gives a characteristic and sensitive red coloration (isopurpuric acid) With nitron acetate it gives a precipitate of nitron proponitrate, $C_{20}H_{16}N_4$, $C_6H_3O(NO_2)_3$, which is insoluble in extremely dilute aqueous solutions acidified with sulphuric acid, and can be filtered off, washed with water, dried at 110°, and weighed

Nitron has the structure

$$N = C$$

$$N \cdot C_0H_5$$

$$C_0H_5, \text{ and in presence of } C_0H_5$$

acetic acid precipitates NO_3 ions from very dilute solutions even when nitrites are also present

With calcium hypochlorite pieric acid forms chloranil (p. 648) and chloropierin (p. 236), the yellow stain of the acid being removable from fabrics or the hands in this way

The decomposition of picric acid on explosion has not been thoroughly investigated, but is represented approximately by the equation

$$C_6H_2(OH)(NO_2)_3 = 6CO + H_2O + 3N + H$$
,

the acid is hence too poor in oxygen to give the maximum effect, the carbon monoxide and hydrogen not being oxidised

USES Pierre and is employed in the proparation of certain organic compounds and was at one time used for dyeing silk and wool yellow, but the colour is not very stable, it has also been used for colouring foodstuffs. It is now mostly used as an explosive, either as and or in the form of ammonium or potassium salt, these exploding at 310° or on percussion (see Explosives, pp 258 et seq) Melinits, a very powerful explosive suggested by Turpin for filling grenades, is merely pierre and which has been fused in a tinned vessel, it is poured into the empty grenade, the interior of which is also tinued. A cold saturated aqueous solution of pierre and is used for alleviating the pains of burns.

From ammonium pierate and ammonium salts of trinitrocresol, sometimes with addition of potassium nitrate, powerful and stable explosives are obtained, these bearing various names (lyddste, ecraste, etc.)

TRINITRORESORCINOL, CaH(OH)s(NOs)s, has also been proposed as an explosive.

AMINOPHENOLS o Aminophenol, NH_2 C_8H_4 OH, forms colourless orystals which turn brown and resinify in the air, it melts at 174° and sublimes. Its acid properties are weak and it forms salts only with acids. With ferric chloride it gives a red coloration, turned blue and then green by addition of stannous chloride. It is obtained by reducing o introphenol and is used for dyeing furs. Its methyl ether, o-anisidine, $NH_2 \cdot C_8H_4$ OCH₀, prepared by reducing o-nitroanisole, is used in the preparation of synthetic guaiacol (see p. 644), and hence of synthetic vanillin (see later), and of various important azo dyes (fast chrome yellow G^1G^2 , azoeosin, azoeosin, adazo scarlet)

m-Aminophenol, m.-pt. 122°, is prepared by heating resorcinol, aqueous ammonia and ammonium chloride under pressure and is used for making dyes. The corresponding dimethyl- and diethyl amino compounds serve for making rhodamines

p Aminophenol, m. pt. 184°, is readily oxidisable, and is prepared by reducing p nitrophenol, or by the electrolytic reduction of nitrobenzene. It is used for making various vol. ii

dyes, for dyeing hair and furs, and as a photographic developer under the name rodi (see Vol I, p. 714) ¹

p Methylaminophenol Sulphate, OH C_eH_4 NH CH_3 , $\frac{1}{2}H_2SO_4$, is largely used as developer under the name metol, and is prepared from quinol and methylamine unpressure, it melts at 250° to 260°

AMINOANISOLES (Anisidines), NH₂ C₀H₄ OCH₃, and Phenetidines, NH₂ C₀I OC₂H₅, are used in making azo dyes and are similar to aniline. Glacial acotic acid yiel for example, phenaceism (Acciyl p-phenetidine), CH₃ CO NH C₆H₄ OC₂H₅, phenet being C₆H₅ OC₂H₅. Phenaceism is used as an antipyretic and antineuralgic and for colourless and tasteless white crystals, m -pt. 135°, which are soluble in alcohol and slight so in water.

p PHENETIDINE (ethyl other of p-aminophenol) is used in making various dyes (sta acid blue, alizarin yellow 5G, etc.), and its hydrochloride, when heated with urea, for duloin (sucrol), C₂H₅O C₆H₁ NH CO NH₂, m pt 173°, which is 200 times as sweas sugar (sacobarin is 500 times as sweet) Phenetidine is used also in pharmacy

PHENACETIN (see above), in doses of 0.5 grm, is an excellent antipyretic and a speciantineuralgic, causing no disturbance in the system. It melts at 135° and is obtained heating together p phenoticine and acotic acid. In its manufacture use is found for t p nitrophenol obtained in large quantities as a waste product in making blue are dyes

2 4 DIAMINOPHENOL is used as a photographic developer as sulphate (annulol) hydrochloride (diamol), and is employed also for dyeing hair and furs deep chestinit

DIHYDROXYDIAMINOARSENOBENZENE is the product prepared by Ehrlich as Bertheim as hydrochloride and placed on the market in 1910 under the name subursan 606. It is a straw-yellow powder, dissolving in water to an acid solution, and it contains 34 per cent of arsenic. It also bears the name Hata, since it was Dr. Hata, of the Ehrlich Institute, who first imported it into animals and found it to be highly efficacious in cass of syphilis in rabbits, which were able to withstand a certain dose of the preparation was applied to man by Alt in the case of a syphilitic paralytic, and was subsequently large used with success by Iversen.

Salvarsan is a specific remedy for syphilis, the spirochetes being killed in 24 to 48 hou and the syphilitie symptoms disappearing rapidly even where treatment with mercury rodine is without effect. The cure seems, however, to be very painful, relapse and secondal effects sometimes occurring. The firm of Meister, Lucius und Brüning (Höchst, near Fraul fort), who make salvarsan, sold a million pounds' worth of it in 1911.

Salvarsan has the constitution

so that it is p - p' dihydroxy m - m' diaminoarsenobenzene dihydroxhloride.

Salvarsan cannot be injected as such into the veins, but must first be transformed int the sodium salt, the two phenohe hydroxyl groups being salified. The solution for injectic should be prepared a few instants before use in order to avoid the formation of the high poisonous salvarsan oxide *Neosalvarsan*,

is more resistant to oxidation, but may deposit the base of 606, which the feeble alkalinit of the blood may be unable to dissolve, to avoid this inconvenience neosalvarsan may I mixed with various salts (neosalvarsan, 1914) which, however, lower the arsenic conter from 30 6 to 20 to 21 per cent

Besides being used for ouring syphilis (90 per cent. of oures), salvarean is administere also in cases of sleeping sickness, tertiary malaria, etc

THIOPHENOL (Phenyl hydrosulphide), C.H. SH, is obtained by heating phenol wit

¹ Aromatic photographic developers should contain several hydroxyl or amino groups, at least one group of each kind, if the hydrogen of the hydroxyl and amino groups is particulated, the compounds lose their developing properties, unless some of these groups remain unchanged

phosphorus pentasulphide or by reducing benzonesulphonic chloride, C_aH_a SO₃Cl. It is a liquid of very unpleasant odour and exhibits the characters of the mercaptans

It readily forms salts, that of moreury, $(C_0H_0S)_2Hg$, for example, orystallising in needless When exidused in ammoniacal solution, this phenol yields Phenyl disulphide, $(C_0H_0)_2S$, melting at 60°

Phenyl sulphide, $(C_5H_5)_8S$, is obtained from thiophenol and diazobenzeno chloride, and has an alliaceous odour

AMINOTHIOPHENOLS, NH₂ C_6H_1 SH The ortho compound readily forms condensation products of the type C_6H_4 CH, or of greater complexity, such as primu-

line (a yollow dye diazotised on the fibre), which is obtained by heating p toluidine with sulphur and then sulphonating. When heated with sodium sulphide and sulphur, p-amino phenol yields $Vidal\ black$, which colours cotton in an alkaline and reducing bath of sodium sulphide. The black thus obtained is brilliant and stable, like most of these sulphur dies

PHENOLSULPHONIC ACIDS, OH C_6H_4 SO_6H , are obtained from phenol and concentrated sulphure acid or, better, from henzenesulphone acid. The ortho and para compounds are preferably formed, and the former is transformed into the latter on heating. The meta derivative is prepared indirectly. The ortho compound is used as an antisciptic under the name sozolic acid or aseptol.

I. AZO-, DIAZO-, AND DIAZOAMINO-COMPOUNDS AND HYDRAZINES

1 AZO DERIVATIVES

These are intermediate reduction products of nitio-compounds and contain a characteristic group of two nitrogen atoms, each of which is united to an aiomatic group

In acid solution hydrogen reduces nitro-derivatives directly to aromatic amines, but in *alkaline* solution two benzene nuclei condense and become joined by two nitrogen atoms. In this way the following compounds can be obtained from nitrobenzene. (1) Azoxybenzene, C_0H_5 , N, C_0H_5 , (2) Azobenzene,

 C_0H_5 N N C_6H_5 , (3) Hydrazobenzene, C_0H_5 NH NH C_0H_5 Reduction of nitrobenzene with zinc dust in neutral solution yields Phenylhydroxylamine, C_8H_5 NH OH

When aliphatic amines are oxidised, the alkyl groups are detached in the form of acids and aminonia is generated, but the aromatic amines yield important intermediate compounds, eg, azoxy-derivatives

Azo-compounds are crystalline, indifferent, more or less vellowish red compounds. They are soluble in alcohol, but insoluble in water, and some of them distributed Halogens replace the hydrogen in their aromatic nucleus, oxidising agents convert them into azoxy-compounds, and reducing agents into hydrazo- and amino-compounds. They are obtained, together with azoxy-compounds, also by oxidising amines with permanganate $2(l_0H_5 - NH_2 + O_2 = C_0H_5 - N - N - N - C_0H_5 + 2H_2O$

AZOBENZENE (Benzeneazobenzene), C_6H_5 N N C_6H_5 , is obtained by reducing nitrobenzene with a solution of stannous chloride in excess of potassium hydroxide or by listilling azoxybenzene with iron filings. It forms orange-red crystals melting at 68° and boils at 293° without decomposition, it is insoluble in water and is volatile in steam. On reduction in acid solution it yields benzidine

Higher homologues, such as Azotoluene, are also known

Azoxy derivatives are neutral compounds obtained by reducing the corresponding nitro compounds with alcoholic sodium hydroxide or by oxidising azo compounds by means of hydrogen peroxide.

AZOXYBENZENE is formed by oxidising aniline with potassium permanganate in

alkaline solution or, better, by boiling nitrobenzene with alcoholic potash. It form yellow crystals melting at 36° When heated with concentrated sulphure acid, it verted into HYDROXYAZOBENZENE

$$C_eH_5$$
 $N-N$ $C_eH_5 \rightarrow C_eH_5$ N N C_eH_4 OH

Hydroxyazo compounds are formed also by the action of diazo compounds on 1 (especially resoranol and the naphthols) in presence of alkali

$$C_6H_6 \quad N_2 \quad CI + C_6H_5 \quad OK = C_0H_6 \quad N \quad N \quad C_6H_4 \quad OH + KCI$$

These compounds form yellow, red, or brown crystals, readily soluble in alcohimsoluble in water. They are azo dyes (tropoclines)

AMINOAZOBENZENES are obtained by the following methods, which introduces aim of group into the para position. Aminoazobenzene itself is formed by intrating benzene and reducing the mononitroazobenzene thus obtained, or by transposition diazoamino compounds (see p. 672), and hence indirectly from diazobenzene and a proof secondary amine, or by coupling diazo compounds with tertiary antines, in which the aminic cannot enter the para position, owing to this being occupied, the reaction becomes difficult and o aminoazo derivatives are formed. The interaction of diazo compounds in diamines yields diaminoazobenzenes, which are yellow, red, or brown dyes at termed Chrysoidines, C_6H_5 N_2 $Cl + C_8H_4(NH_2)_8 = HCl + C_6H_5$ N N $C_0H_6($ (chrysoidine) The amino group of p aminoazobenzenes can also be diazotised, diazo compounds, which again react with amines to form a group of substances bisazo compounds or tetrazo-compounds, e.g., C_6H_5 N N C_0H_4 N N C_0H_4 trisazo compounds are also known. These substances are used for making Bielrich s oroceine, etc

p Aminoazobenzene, or aniline yellow, C_0H_6 N N C_0H_4 NH₂, forms yellow n or scales, m pt 127°, b pt 225° at 12 mm pressure , it boils without decompositio at the ordinary pressure. It dyes woollen fabrics yellow but the colour is not fast slowly sublimes , it is used as alcohol yellow to dye lacs, fats, butter, cheese, etc. It two hydrochlorides, the yellow having possibly the quinonoid form, C_0H_6 NH N (NH₂Cl, and the flesh red the structure, C_0H_6 N N C_0H_4 NH₈, HCl. It is used in m many diazo colouring matters, acid yellow or stable yellow (mono and di sulphonic ac sodium salts), p-phenylenediamine, indulines, etc

Di- and tri-aminoazobenzenes and aminoazotoluenes are also known

Dimethylaminoazobenzene, C_0H_5 N N C_0H_4 N(CH₃)₃, obtained by coupling a benzene chloride with dimethylamiline, forms yellow scales, in pt 117°, and its no chloride, violet needles, it is used for colouring butter. The sodium salt of its morphonic derivative, SO_3Na C_0H_4 N N C_0H_4 N(CH₃)₃, is the indicator methyl ϵ (or troppoline II or orange III), which is insensitive to carbonic acid and to hyd sulphide.

HYDRAZO-DERIVATIVES are colourless, crystalline substances of neutral regularity which are decomposed on boiling, hydrazobenzene, for instance, gives aniline and benzene. They are obtained by reducing azo compounds with ammonium sulphic sodium hydrosulphite, or zinc dust and alkali. Oxidising agents (e.g., FeCl₃ or, all the air) convert them into azo-compounds, energetic reducing agents, such as so amalgam, give amino compounds. Strong acids produce molecular transpositions (or ally if the para-position to the NH group is free) with formation of diaminodiphenyl pounds, hydrazobenzene giving benzidine (see below)

HYDRAZOBENZENE, C₆H₅ NH NH C₆H₅, is obtained by reducing azobenyen nitrobenzene with zinc dust and alcoholic potash, and forms colourless crystals meltin 131° With energetic reducing agents it gives aniline, while oxidising agents (FeC atmospheric oxygen) convert it into azobenzene.

Under the action of a strong and it undergoes transformation, even in the cold, Benzidine (diamsnodiphenyl)

which forms a sulphate only slightly soluble in cold water. The formation of benzidi this way shows that it contains the amino groups in the para positions, and this is

1 , 2 , 2 , 1

firmed by the fact that this transformation does not occur with a hydrazobenzene in which

the para hydrogen is replaced by another group

Electrolytic Reduction of Nitro-derivatives This has been studied more especially by Gattermann, Habor and Elbs, who found that, in the electrolytic conversion of intro benzone to ambine in acid solution, various intermediate products are formed, the primary ones being

$$C_6H_5$$
 NO_2 \longrightarrow C_6H_5 NO \longrightarrow C_6H_5 NH OH \longrightarrow C_0H_5 NH_2 , Nitrobouzone Nitrosobenzone Phonylhydroxylamine Antiline

whilst in alkaline alcoholic solution two secondary reactions occur, the nitrosobonzene first formed reacting with the phenylhydroxylamine formed later, giving azoxybenzene

$$C_0H_5$$
 NH OH + C_0H_5 NO = H_9O + C_6H_5 N - N C_8H_5 ,

this being subsequently reduced to hydrazobenzene, which reacts with the excess of nitrobenzene, forming azobenzene and azoxybenzene

The reduction of hydrazobenzene to amline requires a tension at the cathode much greater than suffices for the fermation of nitrosobenzone and phenylhydroxylamine, with 1 47 volts, only traces of audine are formed

2 DIAZO-DERIVATIVES

In the diazo-compounds of the aromatic series (discovered by ${
m P}$ Grisss in 1859) the characteristic group, $-N_2$ —, is united to only one atomatic radical (aryl, Ar) and to an acid residue (X) This group therefore forms two series of compounds

(1) Diazonium salts, in which one atom of nitrogen is pantavalent as in ammonium salts Hantzsch showed their structure to be Ai N N

(2) True diazo-compounds with two trivalent nitrogen atoms, $Ar \cdot N - N - X$, these exist in two stereoisomeric forms (see p 22), the somewhat unstable syn-drazo-compounds, Ar · N, and the stable anti-drazo-compounds, Ai N

The two groups Ar and X are far apart in the anti-compounds, so that they cannot easily react, these compounds honce being the more stable. The cyanide of antidiazo-p-chlorobenzene, Cl CoH4 N, is not decomposed by powdered copper

N CN

and, on the other hand, cannot have the constitution of a diazonium salt, Cl C₆H₄ N N, which, like ammonium salts, should be colourless (whereas

the cyanide is yellow) and should have an alkaline reaction and conduct the electric current in aqueous solution, neither of these properties is shown by this cyanide, although they are found with the analogous diazoanisole cyanido, CH₃O C₆H₆ N

The antidiazotates behave partly like acids and the corresponding pseudo-Indeed, antidiazo-hydrate gives the reaction for hydroxyl and forms a conducting aqueous solution, it is unstable and is converted by acids into the nitrosamine (pseudo-acid), which no longer gives the reactions for hydroxyl, does not conduct, has a neutral reaction, and in dry ethereal solution does not form the ammonium salt with ammonia (as, for example, Phenylnitromethane does) By alkali the nitrosamine is immediately reconverted into the antidiazotate.

PREPARATION The gradual addition of sodium nitrite (I grin solution to a solution of the salt of the amine (1 grm -mol) cooled wi results in the formation of the soluble diazonium salt

$$C_6H_5$$
 NH_2 , $HCl+NO$ $OH=2H_2O+C_6H_5$ N_3 Cl Antiline hydrochloride Phony idioxonlum chloride

When aliphatic amines are treated with nitrous acid, nitrogen is ovand a primary alcohol formed C_2H_0 $NH_2 + NO$ $OH = N_2 + H$ C₂H₅ OH

These diazonium salts are highly explosive when dry, so that they are a

used in aqueous solution, when they are completely harmless

In these compounds the group C_0H_5 N_2 behaves like the ammeration and with strong mineral acids gives neutral salts, while the salts for with carbonic acid have alkaline reactions, since, like the alkaline carbo (see Vol I, pp 271 and 546), they readily undergo hydrolytic dissociation

These salts have extremely high conductivities, and hence are dissoc like potassium and ammonium chlorides, and like these, too, they form and num plainichloride, (C₆H₅ N₂ Cl)₂PtOl₄. The hydroxide, C₆H₅ N₂ (from the chloride + AgOH), is known, although it has not yet been isolated to the chloride of the chloride of the chloride. it is soluble, colourless, and strongly alkaline. All these reactions indicat existence of a pentavalent nitrogen atom in the group N_2 . Two constituting C_8H_5 N N formulæ are hence possible C_6H_5 N NX and $\frac{1}{X}$, various reactions indicated and $\frac{1}{X}$.

indicate the latter to be the more probable (see above)

PROPERTIES There are various ways of eliminating the nitrogen diazo-compounds in the free state, union taking place between the beinucleus and the other group joined to the N_2 complex

(a) By heating the aqueous solution of a diazonium salt a phonol is for

 C_6H_5 N_8 $Cl + H_2O = C_6H_5$ $OH + N_2 + HCl$ (b) When a diazonium salt is heated with alcohol the benzene nucleus in with the alkoxy-group

$$\mathrm{C_6H_5} \ \mathrm{N_2} \ \mathrm{HSO_4} + \mathrm{C_2H_5} \ \mathrm{OH} = \mathrm{C_6H_5} \ \mathrm{O} \ \mathrm{C_2H_5} + \mathrm{N_2} + \mathrm{H_2SO_4}$$

under certain conditions, however, the alcohol is oxidised and aldehyde liber along with the nitrogen

$$NO_3$$
 C_6H_4 N_3 $Cl+C_2H_5$ $OH=C_6H_5$ $NO_2+N_2+HCl+CH_3$ C_p Nitrodiazobeuzone chloride

(c) When a diazonium chloride is treated with either cuprous chl dissolved in concentrated hydrochloric acid (Sandmeyer) or finely divided co (Gattermann), the chlorine (or other halogen) is introduced into the nuc C_6H_5 $N_2Cl = C_0H_5$ $Cl + N_2$, or C_6H_5 $N_2Cl + CuBr = CuCl + N_2 + C_0I$ Azo-derivatives may, however, also be formed $2C_6H_5N_2Cl + 2CuCl = 2C_6H_5N_2Cl + 2C_6H_5N_2$ $+ C_6H_8 N_2 C_6H_5 + N_2^{-1}$

 $^{^1}$ Contardi (1922) found that in many reactions, especially with more or less haloge anilines, cupric salts give results as good as, or even better than, cuprous salts, the format

(d) Hydrodic acid, potassium todide, and hydrogen sulplied often act in an analogous manner, whilst by means of cuprous cyanide it is possible to replace an amino group by a cyanogen group by passing through the diazo-compound

$$C_0\Pi_5$$
 $N_2Cl + KCN = KCl + N_2 + C_0H_5$ CN

This is a general reaction for obtaining (by subsequent hydrolysis) aromatic acids (e) Dry diazobenzene chloride, when treated with benzene in presence of aluminium chloride, gives diphenyl

$$C_6H_5N_2Cl + C_6H_6 = N_2 + HCl + C_6H_5$$
 C_6H_5

(f) Treatment of a diazo-compound with a pilmary or necondary amine (or treatment of the amine with nitrous acid without other acid) yields diazoamino-compounds (see later), which are then easily converted into anniholzo-compounds

With tertiary amines, diazonium salts condense in the para-position, giving aminoazo-derivatives

$$C_6H_5N_2Cl + C_6H_6N(CH_3)_2 = HCl + C_6H_5 N N C_6H_4(CH_3)_2$$

Diazonium salts also form hydroxyazobenzenes (see p 668)

DIAZOBENZENE CHLORIDE (Phenyldiazonium chloride), C_0H_δ N_3 Cl, forms colour less needles soluble in water and is obtained by the action of moist AgCl on the corresponding bromide, the *bromide* is obtained in nacroous scales by the interaction of ethercal solutions of bromine and diazoaminobenzone (tribromoaniline remains in the solution). In solution, as usually employed, it is obtained by diazotising aniline hydrochloride

DIAZOBENZENE NITRATE (Phenyldiazonium nitrate), C_8H_8 N_2 NO_0 , is the salt which is most widely used, and is obtained by passing nitroso-nitric fumes into a cold othereal solution of diazoniunobenzone or into an aqueous paste of aniline nitrate until this is dissolved, to the filtered liquid are added the triple volume of alcohol and then ether until the nitrate separates in colouless needles. It is readily soluble in water but insoluble in ether, benzone, chloroform, etc. It has a strong acid reaction and is easily exploded by shock.

DIAZOBENZENE SULPHATE (Phenyldiazonium sulphate), C_6H_5 N_2 HSO₄, is best obtained by treating a concentrated solution of crude diazohenzene nitrate with moderately concentrated sulphuric acid, precipitating several times with excess of alcohol and with ether, and allowing to crystallise in a desicoator—It forms crystals which are readily soluble in water and deflagrate at 100°

DIAZOBENZENE PERBROMIDE, C_0H_3 , N_2 , Br_0 , is prepared by the action of hydrobromic acid and bromine water on diazobenzene salts, and when treated with ammonia gives DIAZOBENZENEIMIDE (Benzeneazimide), $C_0H_5N_2Br_6 + NH_6 = 3HBr + C_6H_5$

N \parallel , thus is more easily obtained by the action of nitrous acid on phonylhydrazine and

may be regarded as the phonyl derivative of azoimide (Vol. I, p 376)

$$C_8H_4$$
 , and is obtained by adding a mixture of sodium sulphanilate and sodium SO_3

azo compounds being then impossible For cupric salts the interpretation given by Hantzsch for cuprous salts holds

Some nitrohalogenated amines, after conversion into diazonium salts, undergo further nitration in the nucleus when treated with sodium nitrite in acid solution, thus, with 2 6 dichloro-4-nitroaniline NO₂ $O_0H_2Ol_1$ $N(NO_2)$ $N \longrightarrow NO_2$ $O_0H_2Ol_2$ $N(NO_2)$ $N \longrightarrow NO_3$ $O_0H_2Ol_2$ $N(NO_2)$ $N \longrightarrow NO_3$ $O_0H_2Ol_2$ NO_3 $O_0H_3Ol_3$ NO_3 $O_0H_3Ol_3$ NO_3

nitrite to dilute sulphuric soid. It forms white needles readily soluble in water, and is used

to prepare azo dyes.

With KOH, phenyldiazonium hydroxide forms a potassium compound, C_8H_8 N_9 OK, and hence behaves as an acid besides as a base, but as it cannot be assumed that these two functions are exhibited to such marked extents by one and the same substance, Hantzsch supposes that, in aqueous solution, it forms a mixture of phenyldiazonium hydroxide, C.H. N OH.

CaHs N OH, and syn-drazobenzene hydroxide, CaHs N N OH, so that the general N

reactions mentioned above would be explained thus

$$C_0H_a$$
 N N+H OH = HCl+ C_0H_a N N OH \rightarrow C_0H_a OH+N.N

None of the reactions referred to above can be explained well without assuming the passage of diazonium salts with pentavalent nitrogen into true diazo compounds with trivalent nitrogen (-N=N-) (see above)

3 DIAZOAMINO DERIVATIVES

These contain the aminodiazo-group, — N=N-NH-, and are yellow, crystalline substances which do not combine with acids. They are obtained by adding to diazo-salts (freshly formed in solution) primary or secondary amines, eg, aniline hydrochloride, the separation of the yellow crystalline mass is hastened by addition of concentrated sodium acetate solution.

$$C_0H_5 \cdot N_2$$
 $Cl + C_0H_5$ $NH_2 = HCl + C_0H_5$ N_2 NHO_6H_5

To 2 mols of aniline and 3 mols of hydrochloric acid, kept cool with ice, is slowly added 1 mol of sodium nitrite, the liquid being then precipitated with concentrated sodium acetate solution

They are also formed directly from free aniline and nitrous acid, in which case diazobenzene hydroxide must be regarded as an intermediate product.

(a)
$$C_6H_5$$
 $NH_2 + HNO_2 = H_2O + C_6H_5$ N_2 OH ,

(b)
$$C_6H_5$$
 $N_8 \cdot OH + C_6H_5$ $NH_2 = H_2O + C_6H_5$ N_8 NHC_6H_5

With nitrous and in and solution, diazonimo-compounds are converted into diazonium salts, the remaining animic residue, — NHC_6H_6 , being diazotised

$$C_6H_5$$
 N N NHC₆H₆ + HNO₂ + 2HCl = 2II₂O + 2C₆H₅ N₂Cl.

When heated with aniline hydrochloride, diazoaminobenzene solution yields aminoazobenzene, which is a colouring matter from which others are derived. In this transformation, which is common to all diazoamino-compounds, the aniline hydrochloride acts catalytically and takes no part in the reaction, the amino-group is carried to the para-position with respect to the diazo group, or, if this is occupied, to the ortho-position

if this is occupied, to the ortho-position
$$C_8H_5 \quad N \quad NHC_8H_5 \quad \longrightarrow \quad C_8H_5 \quad N \quad N \quad C_6H_4 \cdot NH_9.$$
Diasoaminobenzeno Aminoacobenzono

It has been shown by H Goldschmidt that the velocity constant of this transformation increases with the amount of the catalyst (aniline hydrochloride), and the catalytic powers of the different amine salts are proportional to their degrees of dissociation in water

4 HYDRAZINES

These compounds are obtained by reducing diazonium salts with a hydrochloric acid solution of stannous-chloride

$$C_6H_5N_2Cl+4H=C_6H_5$$
 NH NH₂, HCl
Phenylhydrazine hydrochloride

The use of sodium sulphite in place of stannous chloride gives first the hazosulphonate, which, when treated with zinc dust and acetic acid and subsequently boiled with hydrochloric acid, gives phenylhydrazine hydrochloride, his salt separates out, being only slightly soluble in water and less so in acid

The three stages of the reaction are as follow

(a)
$$C_6H_6N_2Cl + Na_2SO_3 = C_6H_5 N_2 SO_3Na + NaCl$$
 Dissolventance chloride Sollina dissolvente supplies the solling dissolvent supplies the solution of the solution of

(b)
$$C_6H_5$$
 N₂ $SO_3Na + 2H = C_0H_5$ NH NII SO_3Na Sodium phenylhydraethesulphonaeth

(c)
$$C_0H_5$$
 NH NII $SO_3Na+H_2O=NaHSO_4+C_0H_5$ NH NH₂ Phonylhydragine

PHENYLHYDRAZINE, C₆H₅ NH NH₂, is the most important member of this group nd has a basic character, forming well crystallised salts. It is a colourless, only liquid which turns brown in the air, it dissolves only slightly in water, molts at 19 6°, and boils t 243° with slight decomposition, it distrils unchanged in a current of steam. With energetic reducing agents it forms and ine and ammonia, and with exidusing agents (e.g., chloride if lime) it can form diazonium compounds, but usually nitrogen is eliminated with formal lon of water and benzone. It gives characteristic reactions with lactones, sugars, aldehydes, and kelones (see pp. 246 and 253), and reduces Fehling's solution in the cold

With dikotones it forms *phenylosazones* (see p 524), and with acotoacetic acid it orms phenylmothylpyrazolone, from which, by methylation, antipyrine is obtained. Vith nitrous acid phenylhydrazine gives the highly poisonous nitrosophenylhydrazine,

H₅ N(NO) NH₂

The constitution of phonylhydrazine is proved by the fact that nitrosomethylaniline, ${}^{l}_{6}H_{8}$ N(CH₃) NO (obtained from the secondary amine, methylaniline, ${}^{l}_{6}H_{8}$ NH CH₃, y the action of nitrous acid), on reduction, yields as phenylmethylhydrazine, ${}^{l}_{8}N_{5}$ N(CH₃) NH₂, which can also be obtained from phenylhydrazine by the action f metallic sodium (this replaces the iminic hydrogen) and subsequently of methylodide

Replacement of the amnie hydrogen by an acid residue yields hydrozides (a and \$\mathcal{\eta}\$), thich give a reddish violet coloration with sulphure acid and potassium dichromate. The ydrazides are misoluble in water and may hence be used for the precipitation of soluble ads.

DIPHENYLHYDRAZINE, $(C_0N_b)_2N$ NH_B, is obtained by reducing diphenylnitroamine, $(C_0H_5)_2N$ NO, in alkaline solution with zine dust and acetic acid. It is a base oiling at 34° almost without decomposition, and oxidising readily in the air; its salts are notable. It is insoluble in water and honce reduces Fehling's solution only slightly, ven in the hot. With concentrated sulphuric acid it gives a blue coloration. The otion of oxidising agents distinguishes it from the isomeric hydrazobenzene, the latter ives azobenzene, whilst diphenylhydrazine yields in the cold tetraphenyltetrazone, $_{0}H_{5})_{2}N$ N N N($C_{6}H_{0})_{2}$, and in the hot diphenylamine and violet colouring matters ith abundant evolution of nitrogen. With introvas acid, hydrazobenzene forms nitrosoenvatives, whilst diphenylhydrazine, like other secondary hydrazines, gives diphenylitrosamine and nitrous oxide.

BENZYLPHENYLHYDRAZINE, $C_6H_5 \cdot CH_2 \cdot N(C_6H_5) \cdot NH_2$, is obtained from phenylydrazine and bonzyl ohloride. Benzylhydrazine, $C_6H_5 \cdot CH_2 \cdot NH \cdot NH_2$, boiling at 135° n vacuo), is also known

p-NITROPHENYLHYDRAZINE, obtained from p-nitraniline, forms yellow crystals

nd is a useful reagent for aldehydes and ketones.

 β -PHENYLHYDROXYLAMINE, C_eH_g NH OH, is obtained by the gentle oxidation is aniline or the cautious reduction of nitrobenzene with zinc dust and water, and forms plourless crystals melting at 81°. With acids it gives p aminophenol, with oxygen azoxyenzene and with dichromate nitrosobenzene. The α isomeride, NH_g OC_eH_g, is of little aportance.

ROMATIC ALCOHOLS, ALDEHYDES, AND KETONES

In these compounds the primary alcohol group, the aldehyde group, α the ketonic group forms a side-chain to the benzene nucleus and shows all the general properties of these groups Di- and trihydric alcohols are also known, eg, Phthalic alcohol (ortho) Xylylene alcohol (para), $C_6H_4(OH_2 OH)_2$, Phenylglycerol, C_6H_5 CH(OH) CH(OH) CH_2 OH

BENZYL ALCOHOL, C_6H_5 CH_2 OH (discovered by Cannizzaro in 1853), is isomeric with the cresols, CH_8 C_6H_4 OH, and is obtained by the interaction of benzyl chloride and potassium acetate and subsequent hydrolysis of the acetyl derivative thus obtained, or, better, by the action of aqueous potassium hydroxide on benzaldehyde

$$2C_6H_8$$
 CHO + KOH = C_6H_5 CO_2K + C_6H_5 CH_2 ()H

The alcohol readily gives benzyl chloride when treated with PCl₅ On exidation it gives first benzaldehyde and then benzoic acid, its constitution being thus proved. It forms simple and mixed ethers and esters. It differs from aliphatic alcohols by resinifying with sulphuric acid. It has the characters of a true alcohol and is hence insoluble in alkali (unlike the phenols) It is slightly soluble in alcohol and boils at 206°

Various higher homologues are known Tolylene alcohols, ('Ha ('all, ('Ha ())[,

Cumyl alcohol (p), C₃H₇ C₆H₄ CH₂ OH, eto
Styryl alcohol, C₆H₅ CH CH CH₃ OH, containing an unsaturated side chain, is found as ester (styracin) in storax, it forms accoular crystals with an odoni of hyacinth

With alcoholic potash aromatic aldehydes are partly oxidised and partly reduced, benzaldehyde, for instance, being converted into potussium benzonte and benzyl alcohol

$$2C_{\theta}H_{\delta} \quad CHO + KOH = C_{\theta}H_{\delta} \quad CO_{g}K + C_{\theta}H_{\delta} \quad CH_{2} \quad OH$$

With dimethylandine or phenol these aldehydes give derivatives of triphenylmethane

almonds in the form of a glucoside - It is a liquid of pleasant odour and dissolves slightly in water, it boils at 179°, has the sp gr 1 05 and constitutes biller almond oil When pure it forms crystals, m pt 26° It oxidises easily and forms crystalline products with bisulphites, while it combines with hydrogen, hydrogen cyanide, etc., forming an oxine, a hydra With ammonia it gives hydrobenzamide, $3C_6H_8$ CHO + $2NH_3 = 3H_2()$ (C.H. CH), N. It is formed by distilling a mixture of calcium formate and benzoate and also by oxidising benzyl alcohol

Until recently it was prepared industrially by heating benzylulene chloride under pressure with milk of lime and calcium carbonate

$$C_8H_8$$
 $CHCl_2 + Ce(OH)_2 = CeCl_4 + C_8H_8$ $CHO + H_9O$

By using catalysts (finely divided iron, etc.) Schulze found that this reaction could be rendered complete at low temperatures in open vessels, very pure hydrochloric and being recoverable. Benzaldehyde may also be obtained by treating benzene with a gaseous muxture of carbon monoxide and hydrogen chloride in presence of Cu₂Cl₂ or AlBr₅ (Ger. Pat 126,241)

A method now largely used is that discovered by Poner of the Badische Anilin und Soda-Fabrik (1887) and kept secret for some years but published in 1898 in the French Patent No 276,268 It consists in shaking toluene vigorously with sulphuric and (52° Bé) and gradually adding precipitated manganese dioxide, the temperature being kept at 40° The benzaldehyde formed is free from chlorine and may be separated from the toluene by a current of steam, or, better, by diluting the toluene benzaldehyde mixture with four

times its weight of water and treating the liquid with sulphur dioxide until about 26 per cent is absorbed. In this way all the aldehyde passes into solution (improvement on the use of sodium bisulphite) and can be decanted from the undissolved toluene. It is then sufficient to heat the sulphurous solution slowly from 30° to 100° to eliminate all the sulphur dioxide, which is passed into a further portion of the aldehyde mixture. After cooling the solution, almost the whole of the heavidehyde is obtained in a pure state and the mother liquors are utilised in succeeding operations so that the small amounts of aldehyde remaining dissolved may not be lost.

Commoroud benealdehyde and that for industrial uses cost before the war about 3s, the pure product about 4s, and the chemically pure about 9s 6d per kilo. For industrial purposes, it should have a specific gravity of 1 052 to 1 054, and should distil completely in a current of hydrogen between 176° and 180°. Its solution in concentrated sulphuric acid should be only slightly brown and it should dissolve completely in ammonium bisul phite. Any benzoic and present can be titrated with phenolphthalem as indicator. It is used mainly as oil of bitter almonds and in perfumery, and also for making dyes of the triphonylmethane series.

HOMOLOGUES OF BENZALDEHYDE are obtained by treating aromatic hydrocarbons with gaseous hydrogen chloride and carbon monoxide in presence of AlCl₂ or Cu₂Cl₂ The first product obtained under these conditions is probably formyl chloride, which then reacts thus

$$X \quad C_0H_5 + Cl \quad CHO = HCl + X \quad C_0H_4 \quad CHO$$

Aldehydes are also obtained from ethyl chloroxalate and aromatic hydrocarbons in presence of $AlCl_3$, the ketonic ester obtained being hydrolysed and the acid subjected to dry distribution in order to expel CO_8

The action of HCl and HCN on aromatic hydrocarbons also yields aldehydes, aldines being formed as intermediate products

$$C_{6}H_{6} + HCN + HCl = C_{6}H_{5} \quad CH \quad NH, HCl \\ Benzaldine hydrochloride$$

$$C_6H_6$$
 CH NH, $HCI + H_2O = C_6H_6$ CHO + NH₄Cl

CINNAMALDEHYDE, C_0H_5 CH: CH CHO, is an oil of pleasant odour, boiling at 240°, it is volatile in steam and is separated from elimamon oil, of which it is the chief constituent, by means of sodium bisulphite

NITROBENZALDEHYDES, NO₂ C₀H₁ CHO, are prepared in various ways. The ortho compound is obtained either from a nitrobenzyl chloride or by axidising a introtoluene. It forms colourless crystals melting at 46° and with acctone and caustic soda leads to the synthesis of indigo

Nitration of benzaldehyde yields mainly the m compound, together with 20 per cent. of the a derivative

CUMINALDEHYDE (Cuminol, Isopropylbenzaldehyde), C₃H₇ C₆H₄ CHO, occurs in Roman cumin oil.

AROMATIC KETONES

ACETOPHENONE, C₆H₅ CO CH₅, is obtained by distilling calcium accetate with calcium honzoate or, better, by treating benzene with accetyl chloride in presence of AlCl₃

It forms crystals melting at 20° and boils at 200°, it dissolves only slightly in water, has a pleasant smell, and is used as a hypnotic under the name of hypnone. On exidation it gives either benzylformic soid or benzoic acid and carbon dioxide, halogous give products substituted in the side chain.

BENZOPHENONE (Diphenyl ketone), C_0H_5 CO C_0H_5 , is obtained oither by the dry distillation of calcium benzoate or by the action of benzoyl chloride on benzene in presence of AlCl₂ Its behaviour is similar to that of aliphatic compounds, and with hydrogen it forms Benzhydrol, C_0H_5 CH(OH) C_0H_5 , and Benzopinacone, $(C_0H_5)_2 = C - C = (C_0H_5)_2$

он он

When fused with potassium hydroxide, it gives benzene and potassium benzoate

$$C_6H_5$$
 CO $C_6H_5 + KOH = C_6H_5 + C_6H_5$ COOK

Benzophenone exists in two modifications which differ physically an unstable fo m pt. 27°, and a stable form, m pt. 49°

 C_0H_4 CO, is the ketone corresponding with diphonyle C_0H_4 DIPHENYLENEKETONE,

methane (see later), and is obtained by heating phonanthraquinone with lime With masc

C₆H₄ OH (colourless scales, in pt 153°), a hydrogen it gives Fluorene alcohol,

when fused with potash, Diphenylcarboxylic acid, C₀H₅ C₆H₄ CO₂H

Polysostones, such as Benzoylacetone, C₆H₅ CO CH₂ CO CH₃, and Acetopheno acetone, CoH₅ CO CH₂ CH₂ CO CH₃, are also known

Condensation of benzaldehyde with acetophenone or acetone in presence of Nat gives unsaturated ketones Benzalacetone, C_6H_5 CH CH CO CH_3 (m-pt. 41 Benzalacetophenone (chalkone), C_6H_5 CH CH CO C_6H_5 (m pt 58°)

AROMATIC OXIMES present interesting cases of isomerism (see pp. 22 a. 253) Thus, Benzaldoxime is known in two forms liquid anti-benzaldoxim which boils unaltered, and solid syn-benzaldoxime, which readily loses wat C_0H_5 C $H=H_2O+C_0H_5$ C (with acetic anhydride), forming benzonitrile \parallel N OH

Under these conditions the anti-aldoxime gives an acetyl-derivative, so that t two aldoximes may be distinguished in this way

With kelowines two isomerides are formed only when the two groups unitto the carbonyl group are different

$$X - C - X'$$
 and $X - C - X'$
 $N - OH$ $OH - N$
 Syn $anti$

which are, however, obtained if a hydrogen atom of one of the benzene group is replaced by a halogen, alkyl group, etc

The ketoximes show Beckmann's transposition, in which the isomeri ketoximes, which have different melting-points, give rise to two different substituted amides according as the transposition takes place with the grou X or X' (see Note)

¹ The Beckmann transposition is that obtained with ketoximes in general by treating their with acctyl chloride or concentrated sulphuric acid or, in some cases, merely by fusion. The oxygen of the oxime changes places with a radical united to the ketonic carbon giving a substitute amide, an unstable, tautomeric, hydroxyl compound being probably formed as an intermediat product. product

The structure of the isomeric syn- and anti-oximes can be determined by Beckmann's reaction. Thus, if the above oxime is the anti-compound, the transposition with the syn isomeride woul be as follows

$$\begin{array}{ccc} \text{OH M} & \rightarrow & \begin{array}{c} \text{M} \\ \text{X O X'} \end{array} \rightarrow & \begin{array}{c} \text{M} \\ \text{Y} \end{array} > \text{M} \end{array}$$

BENZALAZINE, C_0H_5 CH N N CH C_6H_5 , is obtained by the condensation of 2 mols of benzaldehyde with 1 mol. of hydrazine (sulphate), and forms yellow crystals melting at 93°

BENZALDEHYDEPHENYLHYDRAZONE, C₈H₅ CH N NHC₆H₅, forms colourless crystals melting at 132° and forms sterooisomorades

K AROMATIC HYDROXY-ALCOHOLS, HYDROXY-ALDEHYDES, AND KETONIC ALCOHOLS

CoH₄ <
$$_{\rm CH_2}^{\rm OH}$$
 OH $_{\rm p}^{\rm o}$ alcohols $_{\rm CH_3}^{\rm o}$ OCH₃ $_{\rm p}^{\rm o}$ and $_{\rm cH_4}^{\rm o}$ OCH₃ $_{\rm o}^{\rm o}$ OCH₃ $_{\rm o}^{\rm o}$ OCH₄ $_{\rm o}^{\rm o}$ OCH₃ $_{\rm o}^{\rm o}$ OCH₄ $_{\rm o}^{\rm o}$ OCH₃ $_{\rm o}^{\rm o}$ OCH₄ $_{\rm o}^{\rm o}$ OCH₄ $_{\rm o}^{\rm o}$ OCH₄ $_{\rm o}^{\rm o}$ OCH₅ $_{\rm o}^{\rm o}$ OCH₆ $_{\rm o}^{\rm o}$ OCH₆ $_{\rm o}^{\rm o}$ OCH₇ $_{\rm o}^{\rm o}$ OCH₇ $_{\rm o}^{\rm o}$ OCH₈ $_{\rm o}^{\rm o}$ OCH₉ $_{\rm o}^{\rm o}$ OCH₁ $_{\rm o}^{\rm o}$

The three isomeric hydroxybenzyl alcohols are known, their melting-points being as follows o_7 , 82° , m_7 , 67° , p_7 , 110° The most common of these is

SALIGENIN (o Hydroxybenzyl alcohol, see above), OH C₆H₄ CH₂·OH, occurring in the glucoside saliom, from which it can be obtained by the action of emulsin, ptyshn or dilute acid (Pirla, 1845)

 $C_0H_{11}O_5$ O C_0H_4 CH₂ OH + H₂O = OH C_8H_4 CH₂ OH + $C_6H_{12}O_6$ (glucose)

It is soluble in alcohol, other, or boiling water and gives a blue coloration with ferricable of the coloration of

AROMATIC HYDROXYALDEHYDES, or phenolic aldehydes, are obtained (1) by the action of chloroform and caustic potash on phenols C_0H_0 OH + 4KOH + CHCl₀ = 3KOl + $3H_2O$ + CHO C_0H_0 OK, or (2) by the action of hydrocyanic and hydrochloric acids on phenols in presence of aluminum chloride or zine chloride, adds in hydrochlorides being formed as intermediate products

With difficulty by oxidising agents, but readily by fusion with alkali, these aldehydes give the corresponding hydroxycarboxylic soids. They reduce ammoniacal silver solution but not Fehling's solution. With alkali they give soluble alkali phenoxides which form the alkyl derivatives of the phenois when treated with alkyl indides.

SALICYLALDEHYDE (o Hydroxybenzaidehyde), OH C₆H₄ CHO, is found in the volatile oil of *Spwea ulmaru*: Its synthesis by means of chloroform is indicated above and it is separated from the p aldehyde formed at the same time by distillation in steam. It is a liquid, b-pt 196°, sp gr 1 172 at 15°, it dissolves to some extent in water and gives a violet coloration with ferric chloride. Like all o hydroxy-aldehydes it colours the skin yellow

ANISALDEHYDE (see above) is obtained by the cautious oxidation of Anethole, CH₃ OH CH C₆H₄ OCH₅, with dichromate and sulphuric acid, the aldehyde being distilled in steam and purified by means of sodium bisulphite. It boils at 248°, has sp gr 1 128 at 15°, and, owing to its strong odour of hawthorn, is used in perfumery

VANILLIN, $C_0H_3(OH)(OCH_0)(CHO)$ 4 3 I (m-Methoxy-p-hydroxybenzaldehyde), is found (about 2 per cent.) in the pods or fruit of vanilla (Vanilla plansfolia) 1 and as a gluco-

I Vanilia is a climbing, herbaceous plant growing well in Mexico, Réunion and elsewhere. The fruit is fleshy and collindrical (15 to 25 cm long) and contains a number of round black seeds with a pleasant odour. The fruit is gathered before it is quite ripe, as otherwise the pods open and the seeds are lost. Their vitality is destroyed by steeping them in water at 80° to 85° or placing them in an oven at 50° to 70° or in the sunlight. The capsules thus turn dark brown and after being allowed to sweat for 20 to 30 days at 30° to 40° they become covered with a

side (coniferin, $C_{16}H_{22}O_8+2H_2O$) in the sap of the conifers (Coniferin, $C_{16}H_{22}O_8+2H_2O$), in asparagus, in beet juice, in certain woods, in asafætida, etc., it is also formed by oxidising the resin of olives

It is readily obtained artificially by treating clove oil with dilute alkali, which dissolves the eugenol and transforms it into Isoeugenol, $C_0H_0(OH)(OCH_0)(CH-CH-CH_0)$, which is then exidised by ezone or permanganate. It forms slender white crystals which melt at 81° to 815°, and sublime, and it boils at 285°. It has a strong edour of vanilla. Considerable quantities of synthetic vanillar are now made by various processes, the details of which are kept secret.

By HCl at 200° it is transformed into protocatechu aldehyde, the methylene ether of

(in pt 37°, b pt 263°), costing before the war from 16s to 28s per kilo, according to its purity. Formerly it was obtained by oxidising piperinic acid (see Piperidine), but it is now made by oxidising isosafrole, prepared by the action of alkali on safrole,

BENZOYLCARBINOL, C_6H_δ CO CH_8 OH, obtained from Phenacyl bromide, C_6H_δ CO CH_9Br , forms stable, shining scales, and possesses strong reducing properties, The corresponding acetonal dehyde is Phenylgiyoxai, C_6H_δ CO CHO, analogous to pyruvic aldebyde.

L AROMATIC ACIDS

Like the aliphatic acids, these form salts, anhydrides, esters, amides, etc., and give in addition other products by substitution in the benzene nucleus

Here, too, the characteristic group is the carboxyl, COOH, and the acids may be either mono- or poly-basic according to the number of carboxyl groups, this being indicated in the name

Aromatic acids with unsaturated side-chains are also known, these behaving like unsaturated aliphatic compounds

There are also various acids derived from the hydrobenzenes, with characters resembling those of aliphatic compounds

Aromatic hydroxy-acids with a hydroxyl group in the nucleus behave partly like phenols and partly like acids, and are analogous to the aromatic alcoholacids containing acid groups and true alcoholic groups in the side-chains

orystalline, perfumed powder They are then tied up in bundles of 50 and sold in boxes holding 3 to 10 kilos. Of inferior quality are the smaller fruit and those from the Antilles, Brazil, and Guiana. They are used for pastry, liquors, perfumes, and chocolates.

1 Consferin, in pt 185°, is a glucoside of the larch having the constitution OH CH₂ (H OH OCH₃). OCH₄ [CH OH]₄ CHO + 2H₂O It is invorotatory and yields glucose and conserved of the larch having the constitution of the constitution of the larch having the larch having the constitution of the larch having the larch having the larch having the constitution of the larch having the larc

reduction it gives eugenol and glucovanully alcohol, whilst on exidation it forms first glucovanullin, CHO CH₂ [CH OH₄ CHO, which gives vanillin on hydrolysis with dilute acid.

In each of the aliphatic acids a hydrogen atom can be replaced by a benzene residue, giving aromatic acids of the acetic acid series (cq, Phenylacetic Acid,

CoH5 CH2 CO3H) and of the glycollic and succinic sories, etc

In general, aromatic acids are crystalline and only slightly soluble in water, while they are often soluble in alcohol or other. The more simple ones sublime or distil unchanged and lose CO, only on distillation with soda-lime, this occurring with the more complex acids simply on heating. Their alkalino salts are soluble in water, but the acids are precipitated in the free state on addition of a mmeral acid

METHODS OF FORMATION (a) When hydrocarbons GENERAL homologous with benzene are oxidised, each side-chain, no matter what its length or nature, yields only a single emboxyl group attached directly to the benzene nucleus When several lateral chains are present, dilute intric acid oxides them gradually, whilst with chromic acid they are all oxidesed together C₆H₅ CH₇ gives C₆H₅ CO₂H, C₆H₅ C₂H₅ gives C₆H₅ CO₂H, C₆H₆ CH CH CO₂H gives C₆H₅ CO₂H, C₆H₄(CH₃)₂ gives C₆H₄(CO₂H)₃ Of the disubstituted derivatives, the ortho-compounds are oxidised very castly and do not give carboxyls unless the oxidation is carried out with great cure, $e\,g$, with dilute nitric acid or permanganate, para-derivatives are readily oxidised by chromic acid and the meta- less readily. Compounds containing a negative group, even OH, in the ortho-position are not oxidised even by chromic

(b) By oxidising primary alcohols and aldehydes in the usual way

(c) By hydrolysing nitriles C_0H_5 $CN + 2H_2O = NH_3 + C_0H_5$ COOH The nitriles are formed by distilling, eg, potassium phenylsulphonate, with potassium eyanide or ferrocyanide C_0H_5 $SO_3K + KCN = K_2SO_3 + C_0H_5$ CN (benzonitile) or from the chlorides of compounds with side-chains C_0H_5 $CH_2Cl + KCN = KCl + C_0H_5$ CH_2 CN (benzyl cyanide) Nitriles can also be obtained from primary amines by diazotising and subjecting the diazo-compounds to Sandnieyer's reaction (see p. 670), also from the aldehydes by way of the oxunes (see p. 246)

(d) By the action of $\mathrm{CO}_{\mathtt{q}}$ on monobromobenzene in presence of sodium (Kekulé), or by treating benzene or its homologues with phosgene (COCl2)

in presence of AlOl₃ (Friedel and Crafts)

$$\rm C_0H_5B_1+\rm CO_2+2Na=\rm C_0H_5$$
 COONs + NaBı , $\rm C_0H_6+\rm COOl_2=\rm HCl+\rm C_0H_5$ CO Ol (which, with H2O, gives the acid)

(e) Phenolic acids are obtained by the action of CO2 or CCl4 and alkali on sodium phenovides

$$\begin{array}{ccc} C_0H_5 & \mathrm{ONa} + \mathrm{CO}_2 &= C_0H_4 < & \mathrm{OH}_4 \\ C_0\mathrm{OONa} & & \mathrm{CO}_4 &= C_0H_4 < & \mathrm{COI}_3 + \mathrm{NaCl, and} \\ C_0H_4 < & \mathrm{OH}_3 + 4\mathrm{NaOH} = 3\mathrm{NaCl} + 2\mathrm{H}_2\mathrm{O} + \mathrm{C}_0\mathrm{H}_4 < & \mathrm{OH}_4 \\ \mathrm{COONa} & & \mathrm{COONa} \end{array}$$

If chloroform is used in place of carbon tetrachloride, ortho- and para-

hydroxyaldehydes are obtained

(f) The syntheses with ethyl acetoacetate or ethyl malonate are analogous to those of the fatty series (see pp 368 and 397) and are carried out with phonols, derivatives with halogens in the side-chain, etc., complex ketonic acids are obtained which undergo both the acid and the ketonic decomposition

Aromatic acids with unsaturated side-chains are obtained by the methods used for aliphatic unsaturated acids, or by Perkin's reaction (see p 352) between fatty acids and aromatic aldehydes in presence of acetic anhydride, which

removes the water formed.

With substituted benzaldehydes a varied series of unsaturated aromatic acids can be obtained

Also benzal chloride and sodium acetate give unsaturated acids

$${\rm C_GH_5 \ CHCl_2 + CH_3 \ COOH = 2HCl + C_6H_5 \ CH \ CH \ COOII}$$

Ethyl acetoacetate and also make acid act on phenols in presence of concentrated sulphuric acid, giving anhydrides of unsaturated phenolic acids, c g,

(a) MONOBASIC AROMATIC ACIDS

The isomerism among these compounds is similar to that of the halogen derivatives of aromatic hydrocarbons.

BENZOIC ACID, C_0H_5 COOH, is found naturally in various resins (e.g., gum benzoin) and in balsam of Tolu, from which it is obtained by sublimation or by heating with milk of lime. It is formed in the urino of herbivolous animals as Hippuric acid, which gives glycocoll and benzoic acid on putrefaction or whom heated with acid or alkali. It forms white leaflets, sp. gr. 1.292, molting at 121.4°, and boils at 249.2°, it sublimes at 100° to 120° and distils in steam. It has an irritating odour and is soluble in boiling water; its alkali salts crystallise well (C_0H_5 CO₂K $+\frac{1}{2}H_2O$) and dissolve in water

It is prepared industrially by converting toluene (from light tar oils), by means of chlorine, in presence of a little powdered iron, into benzenyl trichloride, C_tH_5 CCl₃, and heating this with milk of lime under pressure $2C_0H_5$ CCl₃-4Ca(OH)₂ = 3CaCl₂ + $(C_0H_5$ COO)₂Ca + $4H_2$ O (with traces of chlorobenzoic scid) Instead of being treated with lime, the benzenyl trichloride may be oxidised directly with dilute nitric acid, in vessels fitted with stirrors, as long as hydrogen chloride is evolved, the benzoic acid being then distilled, allowed to crystallise, centariuged, and purified by sublimation Jessnitzer (Ger Pat 236,489 of 1910) proposes to oxidise with calcium hypochlorite instead of with nitric acid

Benzonitrile, C_8H_5 CN, found in the middle tai oils, gives pine benzoic acid when hydrolysed (Ger Pat 109,122)

According to Ger Pat 136,410, benzoic and phthalic acids are readily obtainable by heating naphthol or other naphthalene derivative with fused or dissolved alkali in presence of metallic oxides (MnO_2, CuO, Fe_2O_3) , the benzoic acid is separated from the mixture by distillation

USES Benzoic acid is used in medicine, in making certain aniline blues of the anthraquinone dye group, in the seasoning of tobacco, in printing textiles, and for preserving foodstuffs, although it has not been shown to be harmless when used in this way, experiments made in the United States in 1910 showed that doses of 1 grm per day of benzoic acid or sodium benzoate have no injurious effect. It cost about 3s to 4s per kilo before the war, and as much as 32s during the war.

BENZOIC ANHYDRIDE, $(C_6H_6 \quad CO)_2O$, is obtained by heating an alkali benzoate with benzoyl chloride

$$C_0H_5$$
 $CO_2Na + C_0H_5$ CO $Cl = NaCl + (C_0H_5$ $CO)_0O_5$

¹ Of the various methods for detecting benzon and in foods, the following may be mentioned According to Jonescu (1909) the presence of benzon acid in milk may be shown by converting it into schepks acid by means of 3 per cent. hydrogen percented diluted ten times, and then testing for salicyle acid with ferric chloride solution (sp gr 1 28) diluted ten times (as in the examination of beer) In the case of butter or margarine this is additied with sulphuric acid and distilled with steam, the distillate being tested as above (see also Salicylic Acid).

MONOBASIC AROMATIC ACIDS

Formula	Nam.	Position of the groups	Melting point
'6H5 UO2H 'H5 U614 CU2H 'H6 U614 CU2H 'H8 UCH3 UCH4 'H8 UCH3 UCH4 'H8 UCH4 UCH4 'H8 UCH4 UCH4 'H8 UCH4 UCH4 'H8 UH CH U2H 'H8 UH UH UH UH UU2H 'H8 UH UH UH UH UU2H 'H8 UH UH UH UH UH UU2H 'H8 UH UH UH UH UH UU2H 'H8 UH UH UH UH UH UH UH 'H8 UH UH UH UH UH UH 'H8 UH UH UH UH UH UH 'H8 UH UH UH UH UH 'H8 UH UH UH UH UH 'H8 UH UH UH UH 'H8 UH UH UH 'H8 UH 'H	Benzole (benzenecarboxylk) o Tolule (o methylhenzeneurboxylk) "" (p p)	- 2 7 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	121° 105° 111° 170° 111° 170° 111° 160° 080° 122° 40° 1080° 112° 1080° 112° 1080° 112° 1080° 117° 1080° 117° 1080° 107° 107° 1080° 107° 1080°

or, according to Gor Pat 146,690, by heating nearly 2 parts of sodium chlorosulphomate, G1 SO₈Na, with 3 parts of sodium benzoate, by changing these proportions, benzoyl chloride (see below) may be obtained.

In the cold it is not decomposed by water, but on boiling it gives benzoic acid

BENZOYL CHLORIDE, C. H. CO Cl, is formed by the action of PCl. or POCl. on bonzoic acid, and is obtained industrially either by the action of chlorine on bonzaldehyde or from sedium chlorosulphonate (see above, Benzoic anhydride). It is a colourless liquid which boils at 194°, and has a very purgent odour. Water decomposes it very slowly in the cold (distinction from acetyl chloride), giving hydrochloric and benzoic acids. It reacts reachly with many compounds in alkaline solution, introducing into them the benzoil group (Schotten and Baumann's method). For instance, a mixture of benzoyl chloride with a little potassium hydroxide acts in the cold on aniline, forming Benzamilide, C. H. NH. CO C. White compound, melting at 158°, and boiling unaltered). With hydroxylamine it gives Benzhydroxamic acid, C. H. CO NH. OH, which gives a violet coloration with ferric chloride

Benzoyl chloride is used in the preparation of benzaldehyde and of various dyes ETHYL BENZOATE, C₆H₈ CO₄C₈H₈, has an odour of mint, and is obtained by heating benzoic acid with alcohol in presence of sulphuric acid

BENZAMIDE, C_0H_5 CO NH_9 , is obtained by the action of ammonia (or ammonium carbonate) on benzoyl chloride, or by the interaction of sulphuric acid and benzonitrile. It forms nacreous crystals melting at 128°, and is soluble in boiling water It forms metallic derivatives more easily than acetamide.

Dibenzamide, (C₆H₅ CO)₂ NH, melts at 148°

BENZHYDRAZIDE, C. H. CO NH NH2, is obtained from hydrazine hydrate and benzoic ester, with nitrous said, it gives

BENZAZIDE (Benzoylazonmide), C₈H₅ CO N | , which is readily hydrolysed,

giving hydrazoic and benzoic acids.

HIPPURIC ACID, C6H5 CO NH CH2 CO2H, is obtained by heating benzone anhydride with glycocoll. It occurs in the urine after ingestion of benzoic acid or toluene, and is found in considerable quantities in the urine of horses and other herbivorous animals. It forms rhombic crystals melting at 187°, and is soluble in hot water

CHLOROBENZOIC ACIDS, CaHaCl COaH The halogen enters preferably the mota position, and nitric acid (in presence of concentrated sulphuric acid) gives mainly m Nitrobenzoic acid, NO₂ C₆H₄ CO₂H, which, on reduction, yields Azobenzoic acids and Aminobenzoic acids, NH₂ C₂H₄ CO₂H The latter, like glyone, exhibit the functions of both acids and bases, with introus acid, they form Diazobenzoic acids, $({}^{'}_{0}H_{4}<{}^{N}_{({}^{'}O_{4}}>$

Polysubstituted benzoic soids, having the substituents (Cl, Bi, NO2, CH2, CO2H, etc.) in the ortho-position with respect to the carboxyl, give no esters when treated with alcohol and hydrochlome acid, such acids being hence separable in this way

ANTHRANILIC ACID (o Aminobenzoic acid), NH2 C6H4 CO2H, serves for making synthetic indigo and many azo colouring matters, drugs and perfumes, especially thic salicylic acid and methyl anthranilate. 8 It has m -pt 145° and sublimes readily, it has a very sweet taste and, when distilled, decomposes into CO₂ and amiliac.

Its formation by the intramolecular transposition of o-introphenol is of interest, although it is not of practical utility. It is best obtained by treating phthalimide with the theoretical NH + NaOCl -|- 3NaOH proportions of sodium hypochlorate and caustic soda CaH, $= H_1O + NdCl + Na_2CO_3 + NH_2 C_6H_4 CO_2Na.$ It forms an internal anhydride,

Of the dibasic Sulphobenzoic acids, $C_0H_4(SO_0H)(CO_2H)$, the ortho-isomeride is of interest, since its imino derivative forms SACCHARIN (b Benzoicsulphimide), $C_6H_4 < \frac{SO_6}{CO} > NH$, which is a white orystalline substance exhibiting marked phosphorescence when its crystals are fractured. It melts at 224° with partial decomposition, and sublimes unaltered in a vacuum. It dissolves slightly in cold water and to a greater extent in cold alcohol, its heat of combustion is 4751 3 cals

Seccharm is about 550 times as sweet as sugar but is rapidly eliminated unchanged from

o Chlorobenzosc acid, m. pt 140°, b pt. 287°, is formed in appreciable amount as a byeproduct in the manufacture of benzaldehyde (see p 674), one works alone accumulating 30 tons in a few years. A few years ago Mettler succeeded in transforming it into an excellent colouring matter, errochromoflavine A, C, H, Cl CO, H + HNO, -> NO, or \rightarrow NH^{*} \langle χIJ, Co,H, H.OÙ which on diazotisation and coupling with salicylic and gives an azo dyestuff of little value, OH, when the latter is heated at 135° with potash and a little copper oxide, it gives errochromoflaum or azosahcyho acid, OH

* m Nitrobenzoic acid, m pt. 144°, sp gr 1 494, gives, on reduction with iron and acetic acid, m-aminobenzoic acid, m. pt. 174°, sp gr 1 51, which is used in making azo dyestuffs.

S Transtrobenzoic acid melts at 210° with evolution of CO, and formation of trinitrobenzoic, and is obtained by oxidising trinitrotoluene with either nitric and sulphuric acids, or nitric acid and potassium chlorate, or chromic and sulphuric acids. When boiled with water it is converted completely into trinitrobenzone. completely into trinitrobenzene.

* Methyl anthranslate has m pt. 24 5°, b pt. 135 5°, occurs m neroli and jessamine oils, and has a pronounced odour of orange blossoms and mandarins.
Methyl methylanthranslate, CO₂OH₂ O₂H₄ NH CH₂, m pt. 19°, b pt. 130°, occurs in mandarin oil and has a feebler odour than the preceding ester

the animal system It behaves as an energetic acid, being able to decompose carbonates and acetates, forming salts, all of which are very sweet , the sodium salt, $C_6H_4 < \stackrel{{
m SO}_2}{\sim} NNa$

+ 2H₂O, is used as a sweetoning agent owing to its solubility in water. It was discovered accidentally by Fahlberg and Remson in 1870, being obtained by the oxidation of o-toluenesulphamide, NH2 801 C.H.Me. Its manufacture was gradually improved by Hempel and especially by Heyden, and the price fell to 12s per kilo before the European War 1

Paul (1920) found that the sweetening power of saccharin may be increased by admix ture with certain other substances, such as dulcm, NH CO NH CoH, OC2H, m-pt. 173°, which is obtained by heating urea with p phenetidine and is itself 200 times as sweet RS SUGAR

In large doses secoharm has an antifermentative action, but it is harmless in the small amounts usually introduced into foods. In some countries its use has been prohibited for fiscal or supposed hygienic reasons. An International Convention at Brussels in 1900 passed a resolution that all countries should prohibit the use of saccharin in foods and beverages and place severe restrictions on its sale.

TOLUIC ACIDS, CH₃ C₆H₄ COOH The three isomerides are obtained by exiding the corresponding xylenes with dilute nitric acid (see Table, p. 681) The three isomerides are obtained by p-Toluic acid is formed also by the oxidation of turpentine

Phenylacetic acid (a-Toluro acid), C₆H₅ CH₂ CO₂H, is isomeric with the toluic acids, but it gives benzoic acid on oxidation, whereas the toluic acids give phthaho acids

XYLIC ACIDS, C0H3(CH3)2 · CO2H, various isomerides are known (see Table, p 681)

CUMINIC ACID (p Isopropylbenzoic acid), C3H7 C6H4 CO2H, is formed in anumal rganisms by the exidation of cymene, and is obtained by exidation of Roman chamomile oil with permanganate. It melts at 117° and yields cumone when distilled with lime.

CINNAMIC ACID, C₆H₅ · CH CH · CO₂H, is found in storax and in certain balsams (Tolu, Peru, etc.), and remains as sodium salt when these are distilled with caustic soda. It is prepared according to Perkin's synthesis (p. 352) by leating benzaldehyde with soditim acetate in presence of a dehydrating agent acetic anhydride), or by heating benzylidene chloride (benzal chloride) with odium acetate in an autoclave at 200°, or by the malonic synthesis from enzaldehyde and ammonia

$$C_{e}H_{5}$$
 OHO + $CH_{2}(OOOH)_{2} = H_{2}O + OO_{2} + C_{e}H_{5} \cdot CH \cdot OH$ OOOII

Cinnamic acid melts at 133° and boils at about 300°. It readily forms addiive products owing to the double linking in the side-chain, and on this account Jso reduces permanganate in presence of sodium carbonate (Baeyer's reaction,

According to theory, the presence of the double linking should result in the xistence of two stereoisomerides

ut, in addition to these, two others, Allocinnamic (in -pt 68°) and Isocinnamic cids (m-pt 58° to 62°), are known and have been studied by Liebermann,

The method now used for making saccharin is as follows: pure toluene is treated in the ild with chlorosulphonic acid, a mixture of toluene ortho (35 per cent.) and para- (65 per cent.) ulphochlorides being obtained. The mixture of sulphochlorides is cooled to a low temperature in dentrifuged to separate the crystalline para compound (m.-pt. 69°) from the liquid orthompound, which distils unaltered in a vacuum at 126° and has the sp gr 1 3443 at 17° By eatment with ammonia the latter is converted into o toluenesulphamide, which is oxidised permanganate to the potassium salt of o-bansenesulphaminic add, the action of an acid this then results in the formation of saccharin. The oxidation of the sulphamide may also reflected by means of dichromate and sulphuric acid.

Michael, and Erlenmeyer, jun Bulmann (1909) shows allocumanic and the two isocinnamic acids to be merely trimorphous modifications of one and the same chemical individual—the cis-acid—so that they are identical in the fused of dissolved state. Previous failures to separate the three crystalline forms were due to the difficulty of excluding minute crystals of the common form from the solutions, this was finally overcome by the use of cotton-wool plugs.

Cunnamic acid cost before 1913 16s per kilo, and it is used in medicine and

in the synthesis of various perfumes

PHENYLPROPIOLIC ACID, C. H. C C CO.H, is obtained by heating the dibromide of ethyl cinnamate with alcoholic potash

$$C_6H_5 \quad CHBr \quad CHBr \quad CO_2C_2H_5 + H_2O = 2HBr + C_6H_5 \quad C \quad CO_2H + ({}^t_2H_5 \quad OH) + ({}^t_2H_5 \quad OH)$$

It forms shining needles which melt at 137° and readily sublimes. Its sodium salt is used in 1 to 3 per cent solution as an inhalation in cases of tuberculosis, and cost £4 per kiloprior to the European War o Nitrophenylpropiolic acid, obtained in a similar manner from ethylo nitrocinnamate, is used in the synthesis of indigo

(b) DIBASIC AND POLYBASIC AROMATIC ACIDS

The basicity of these acids is given by the number of carboxyl groups, and the phenomena of isomerism are similar to those of the dihalogenated derivatives. The carboxyl groups may be united directly to the benzene nucleus of to side-chains, and by means of them esters, amides, acid chlorides, etc., can be formed

PHTHALIC ACID (Phenylene-o-dicarboxylic acid), $C_0H_4 < COOH(1)$, is obtained by oxidising compounds with two lateral chains, but not by chromic acid, which would partially destroy the benzene nucleus

At one time it was prepared industrially by chlorinating naphthalene and then oxidising (Laurent), but for some years it has been obtained more conveniently by oxidising naphthalene with fuming sulphuic acid in presence of mercury salts or, better, rare earth salts (thorium, etc.), which act as catalysts

This catalytic process, which is due to Sapper, allows of the recovery of the whole of the mercury, while the sulphur dioxide evolved is converted again into sulphur trioxide, so that the oxidation of the naphthalme may be regarded as taking place at the expense of the oxygen of the air. This economical process has rendered possible the industrial preparation of artificial indigo.

The process of fusing naphthols with alkali in presence of metallic oxides also seems to give good results and yields benzoic acid at the same time (see above) According to Ger Pat 152,063, the electrolysis of naphthalene in presence of an acid solution of a cerium compound yields naphthaquinone and phthalic acid

When phthalic acid is substituted in the ortho-position, that is, adjacent to one of the carboxyl groups, only one of the latter can be esterified

It is a white, crystalline substance soluble in hot water, alcohol, and ether It melts at 213° and is then transformed into Phthalic anhydride, $C_0H_4 < ^{CO}_{CO} > 0$, which melts at 128° and boils at 277°, but sublimes considerably below this temperature, the anhydride has a characteristic odour and gives phthalic acid when boiled with water

With PCl₅, phthalic and gives Phthalyl chloride,
$$C_6H_4 < \frac{CCl_2}{CO} > 0$$
, which gives Phthalider $C_6H_4 < \frac{CH_2}{CO} > 0$, on reduction, and Phthalophenone, $C_6H_4 < \frac{CCl_2}{CO} > 0$, with benzene (+ AlCl₅).

When heated with phenols and sulphuric and, phthalic anhydride forms phthaleins, e.g.,

$$C_{\theta}H_{4} < \stackrel{CO}{c_{O}} > 0 + 2C_{\theta}H_{\delta} \quad OH = H_{\theta}O + C_{\theta}H_{1} < \stackrel{C(C_{0}\Pi_{4} \quad OH)_{2}}{c_{O}} > O \text{ (phenolphthalesn)}$$

Phenolphthalem is a yellow powder and, being a phenol, dissolves in alkali, the solution having a violet red colour (it forms an excellent indicator, see Vol I, p 100). When heated with resorcinol in presence of zine chloride at 210°, plithalic anhydride yields Fluorescein (resorcinolphthalem),

$$00 < {^{C_0H_4}_{-O}} > 0 < {^{C_0H_0(OH)}_{-O}} > 0,$$

which, even in very dilute alkaline solution, shows an intense greenish yellow fluorescence, while by transmitted light the solution appears reddish (see Triphenylmethane Dyes).

Tetrabromofiuorescein, or cosm, gives alkaline solutions showing a marked reddish green yellow fluorescence, and is used for dyeing silk rod, producing a beautiful fluorescent effect, the colour is, however, not very stable, especially towards light.

With dry ammona in the hot, phthalic anhydride gives Phthalimide, $C_8H_4 < {}^{CO}_{CO} > NH$, which is of importance since the immic hydrogen can be replaced by metals and the latter, under the action of alkyl halides, by alkyl groups. The compounds thus obtained, when heated with acid or alkali, yield phthalic acid and a primary amine free from secondary or tertiary amine (important general synthesis of primary amines, discovered by Gabriel)

Phthalic acid is used in the synthesis of indigo and of dyes of the pyronine group, and is usually placed on the market as the anhydride (although called acid) at a pre-war price of £60 per ton (65 per cent strength), chemically pure, it cost 4s per kilo

ISOPHTHALIC ACID, $C_0H_1(CO_0H)_0(1-3)$, is obtained by exidation of colophony with nitric acid, or, in general, by the exidation of meta-derivatives of benzeno. The barium salt is soluble in water

TEREPHTHALIC ACID, $C_0H_4(CO_2H)_2(1-4)$, is formed by oxidising oil of turpentine or chamomile oil, or by oxidising p tolute acid with permanganate. It is almost insoluble in water and alcohol and sublimes unchanged. It gives a sparingly soluble barium salt, but does not form an anhydride

POLYBASIC ACIDS The tri-, tetra-, penta-, and hexa-carboxylic acids are known, but are of little practical importance.

The Benzenetricarboxylic Acids are. Trimesic acid (1 3 5), derived from mesitylene, Trimesilitic acid (1 2 4), obtained from colophony, Hemimesilitic acid (1 2 3)

The Benzenetetracarboxylic Acids are Pyromellitic acid (1:2 4.5), molting at 264°, Prehnitic acid (1 2 3 4), molting at 237° and forming an anhydride, Mellophanic acid (1 3 4 5), which molts, and is converted into anhydride, at 280°

MRLLITIC ACID (Benzenehexacarboxylic acid), $C_8(COOH)_6$, is obtained from mellito, which is a kind of mineral found in deposits of lignite, and consists of yellow, quadratic octahedra of aluminium mellitate, $C_6(COO)_6Al_2 + 18H_2O$.

Mellitic and may also be obtained by oxidising wood charcoal with alkaline permanganate. It forms needles insoluble in water and alcohol and, when heated, loses 2H₂O and

2CO_g, forming Pyromellitic anhydride,
$$0 < {00 \atop OO} > C_6H_9 < {00 \atop CO} > O$$
, which gives Pyromellitic

acid, C6H2(CO2H)4, with water

¹ This property is sometimes utilised to ascertain if underground watercourses communicate with one another and to detect inflitrations into wells.

Mellitic acid cannot form substitution products, since all the benzene hydrogons are already substituted, but on reduction with sodium amalgam it readily yields Hydromellitic acid, C6H6(COOH)8, which gives benzene when distilled with lime

(c) HYDROXY-ACIDS OR PHENOLIC ACIDS

These are formed by the methods given on p 679 or by oxidising homologues of phenol or fusing them with alkali. The basicity is given by the number of carboxyl and phenolic groups, both of these leading to salt-formation, but the basicity towards sodium carbonate is determined by the carboxyl gioups alone When both the carboxyl and hydroxyl groups are etherified, only the former can be subsequently hydrolysed

SALICYLIC ACID (o-Hydroxybenzoic acid), OH CaHa COOH, is the most important of the hydroxy-acids, and was discovered by Piria in 1839 and pre-

pared in 1885 by treating salicylaldehyde with alkali

Kolbe established its constitution in 1853 from its ready decomposition into CO_s and phenol, and in 1860 synthesised it from these products in presence of metallic sodium

It is derived from salicin (glucoside of willow bark), which, when hydrolysed first gives glucose and Saligenin

$$\begin{array}{lll} C_{6}H_{4} < & O & C_{0}H_{11}O_{5} \\ CH_{2} & OH & CH_{12}O \\ & Salicin & Salicin & Glincose \end{array} \\ + H_{2}O & = C_{0}H_{4} < & OH \\ - CH_{2} & OH & C_{0}H_{12}O_{0}, \\ & Gallgonin & Glincose & Glincose \\ \end{array}$$

the saligenin giving salicylic acid on oxidation The acid is found as methyl ester in the essence of Gaultheria procumbens

It is prepared industrially by heating sodium phenoxide with carbon dioxide in an autoclave at 140°, according to Kolbe's process, from the resulting sodium salicylate the acid is liberated by treatment with a mineral acid. In Marusse's method a mixture of phenol and potassium carbonate is heated in presence of CO₂ at 140° to 160°, but the yields are very low Only later, when the conditions of the reaction were studied, were the yields and quality of the product improved.

By the action of CO₂ in the hot, sodium phenoxide is converted, to the extent of one-half, into the salicylate, NaO C₆H₄ CO₂Na, whereas potassium phenoxide yields the para-compound, p-KO C₆H₄ CO₂K. In the first case the reaction begins at 100° and the yield increases up to 180°, no further increase occurring even up to 300°, with the potassium compound, the ortho-dipotassium salicylate is formed at 100° to 150°, the para-isomeride being formed as the temperature is raised and constituting the sole product at 220° At the latter temperature monopotassium salicylate is transformed into the para-dipotassium compound, 20H C_6H_4 $CO_2K = CO_2 + C_6H_5$ OH + OK C_6H_4 CO_2K , whereas under no conditions does monosodium salicylate give the para-momeride The monosodium para-salt may be obtained otherwise, and at 290° gives phenol, CO₂ and disodium salicylate

According to Schmitt, phenol may be converted wholly into salicylic acid by the action of CO₂ at the ordinary temperature on sodium phenoxide, the sodium phenyl carbonate, C₀H₅ CO₃Na, thus formed yielding sodium salicylate when heated out of contact with the air S Tymstra, jun, showed, however (1905—1912), that the final product formed in this process is o-Oxysodiobenzoic acid, ONa O_6H_4 CO_2H , which arises by simple addition of CO_2

On the basis of these results the more economical and rational method of manufacture now in use has been developed, the various phases of the reaction being carried out in an autoclave provided with a stirrer and with either a double jacket or coils through which steam or water may be passed

Salicylic acid forms white crystals melting at 156 8°, subliming at 200°, and distilling in superheated steam at 170°. It is readily soluble in alcohol or in ether, and 1 part dissolves in 444 parts of water at 15° and in 18 parts of hot water It has a sweetish astringent taste. When heated with POCla it gives the Internal anhydride, C₆H₄CO, which forms a white powder softening at 110° and melting at 261°

With bromine water it gives a precipitate, C₆H₂Br₃ OB1, and with ferric chloride it gives a violet coloration even in alcoholic solution (phenol is coloured only in aqueous solution) With lime-water in the hot it forms a basic salt, $C_0H_4{<}^{-\mbox{$\rm COO$}}_{\mbox{$\rm COO$}}{>}{\rm Ca},$ and can thus be separated from its isomerides, which do not give this reaction

It is used as an antiseptic for preserving foodstuffs, and in the manufacture of dyes and perfumes Its sodium salt is largely used as a medicine

When heated to 200° it loses CO₂, giving Phenyl salicylate (salol)

$$20H C_{6}H_{4} CO_{2}H = CO_{2} + H_{2}O + OH C_{6}H_{4} CO_{2}C_{6}H_{5},$$

which is used as an antiseptic for the intestines, it melts at 42° and boils at 172° ın a vacuum Industrially it is obtained by heating a mixture of sodium salicylate, sodium phenoxide and phosphorus oxychloride (or phosgene) at 125°, the product being washed with water, decolorised with animal charcoal and crystallised from alcohol

ACETYLSALICYLIC ACID, C2H3O O C6H4 CO2H, prepared by heating salicylic acid with acetic anhydride and sulphuric acid, is largely used under the name ASPIRIN as an antipyretic, antineuralgic and analgesic. It has an acid taste and forms lustrous, white crystals, molting at 135° and solidifying at 118° Unlike salicylic acid and salol, it gives no coloration with ferric chloride, and it passes unchanged through the stomach but undergoes decomposition in the intestmes

m and p-HYDROXYBENZOIC ACIDS give mediable basic barium salts and yield no

coloration with ferme chloride, the m-acid is more stable to heat than the o or p acid.

Anisic acid, CH_0O C_0H_4 CO_2H , resembles the monobasic acids more than the phenols and is obtained from p hydroxybonzoic acid, methyl alcohol, potassuun hydroxide, and methyl rodide, the dimethyl ether obtained being then partially hydrolysed.

Methyl salicylate, OH OgH, COgOH, forms 90 per cont of oil of Gaultheria, and is prepared artificially by the interaction of salicylic acid (2 parts) and methyl alcohol (2 parts) in presence of concentrated sulphuric acid (1 part) It boils at 224° and is used as a per

p-HYDROXYPHENYLACETIC ACID, OH CoH, CHa COaH, formed during the putrefaction of proteins and occurring in the urine, gives a dirty green coloration with ferric

Of the Dihydroxybenzoic acids, PROTOCATECHUIC ACID (3.4 Dihydroxybenzoic acid), CaHa(OH) CO2H, forms shining scales or crystals soluble in water, in solution it is coloured green by ferric chloride, the colour being changed to blue and then to red by a little soda. It can be obtained synthetically, together with the 2:3 dihydroxy acid, by heating catechol with ammonium carbonate, and is propared by fusing various resins with alkalı Like catechol, it exhibits reducing properties Its monomethyl ether (S OCH2) is VANILLIC ACID, which is formed by the oxidation of vanillin (p 677); its dimethyl other [(OCH0)a] is VERATRIC ACID, found in the seeds of Veratrum Subadulla, and its Methylene ether, CO_3H $C_0H_3 < 0 > OH_2$, is PIPERONYLIC ACID, which is also obtained by exidising piperine soid.

¹ The examination of foods for the presence of salicylic acid is carried out in the same way as with beer (p 212), but baked starchy substances (bread, etc) contain mallol, which gives the same reaction as salicylic acid and is, like the latter, volatile. In this case Jorissen's method must be used in testing for salicylic acid 10 o.c of the liquid distilled with steam is treated with 5 drops of 10 per cent. potassium nitrite solution, 5 drops of 50 per cent acetic acid, and 1 drop of 10 per cent copper sulphate solution. The liquid is then boiled, and in presence of even less than 0 0001 grm of salicylic acid a reddish coloration forms, which rapidly becomes blood-red (H. C Sharman, 1910)

GALLIC ACID (3 4 5-Trihydroxybenzenecarboxylic acid), C₆H₂(OH)₃ CO₂H, occurs naturally as glucosides in various plants and in tea, gall-nuts, etc. It is formed by the action of mould on solutions of tannin or by boiling the latter with dilute acid or caustic soda

It reduces gold and silver salts and becomes oxidised and turns brown in With ferric chloride it gives a black coloration, and, on this account, the air it is used in making ink 1, its reducing properties are utilised in photography

When pure it forms colourless needles (+ H₂O) which at 120° lose the water of crystallisation and melt at 220° to 240°, when distilled it decomposes into carbon droxide and pyrogallol It is only slightly soluble in ether or cold water but dissolves readily in alcohol or hot water It icduces Fehling's solution, gives a bluish-black coloration with ferric chloride, and in alkaline solution absorbs atmospheric oxygen and becomes brown

It is used in making pyrogallol, dyes of the anthraquinone (anthracene brown, etc) and gallocyanin and galloflavin groups, inks and drugs airol, CoH2(OH)8 CO.B.I. OH, used on wounds instead of iodoform, is odourless and non-irritant dermatol, $C_6H_9(OH)_3$ $CO_2B_1(OH)_2$, serves as an antiseptic for wounds, intestinal

and stomach maladies, and for perspiring feet

Gallic acid is made by treating gall-nuts with water and yeast at 38° to 40°, the mass being afterwards extracted with a mixture of 4 parts of ether and 1 part of alcohol, and the alcohol and ether carefully distilled off through a rectifying The crude gallic acid separating from the resulting aqueous solution is purified by treatment with albumin, decolorised by means of hydrosulphite and animal charcoal, and crystallised Gallic acid may be obtained also by treating tannin (or the mother liquors from its preparation) with dilute sulphuric acid or with a pure culture of Aspergillus gallomyces

There are a number of hydroxy-acids with hydroxyl and carboxyl groups in

the side-chains, mention may be made of

(1) COUMARIC ACID (o-Hydroxycinnamic acid), OH C6H4 CH CH CO8H, which does not give an anhydride owing to its fumaroid structure (see Fumaric acid), while the maleic stereoisomeride, Coumarinic acid, is known only as salts,

since in the free state it immediately forms Coumarin, C5H4

latter may also be obtained by heating salicylic acid with sodium acctute (Perkin synthesis see Aldehydes)

(2) MANDELIC ACID, CoH₅ CH(OH) CO₂H, of the various stereoisomerides, that occurring naturally is leevo-rotatory, whilst that obtained synthetically (from benzaldehyde and hydrocyanic acid, with subsequent

1 INK is made by adding to aqueous gallic acid or tannin ferrous sulphate solution slightly addified with acetic or hydrochloric acid in order to prevent exidation and the formation of a black precipitate. To this brownish solution is added a solution of indige carmine or logwood to render the writing visible. When the ink is exposed on the paper to the air, it becomes black and insoluble, owing to the evaporation or neutralisation of the acid by the sizing of the paper (albumen, etc.), and the consequent ready exidation by atmospheric exygen, which changes the original blue colour to a deep black.

the original blue colour to a deep black.

To make the ink adhere without spreading, a little gum is added, and to preserve it, a little phenol (I litre of this normal ink may be obtained from 23 4 grms. of tannin, 7 7 grms. of gallio acid, 10 grms. of gum, 7 5 grms. of concentrated hydrochloric acid, 30 grms. of ferrous sulphate, 1 grm. of phenol, and the rest water, the liquid is left at rest for four days and then decanted from the deposit and coloured with indigo carmine or logwood extract)

A logwood ink may be obtained as follows 20 grms. of dry logwood extract or 30 grms. of the paste (hæmaten) are dissolved in 800 c.c. of water, and to the hot solution are added 16 grms of soda crystals (7 grms of Solvay soda), and then, drop by drop, and with shaking, 100 c.c. of a solution containing 1 grm of normal potassium chromate, this process gives a fine blue-black tint, and the ink, which does not attack steel pens and dress easily, can be preserved by a trace of phenol.

Coloured inks are aqueous, gummy solutions of aniline dyes. Copying inks are similar to ordinary writing inks, but are more concentrated, and contain also glycerine, sugar, dextrin, calcium chloride, etc., by which the writing is kept moist for some time.

hydrolysis) is the raceinic form. In solutions of the latter, certain Schizomycetes destroy the d- and leave the l-isomeride, whilst Pencellium glaucum destroys the l- and leaves the d-compound. Also, if the cinchonine salt of the racemic form is prepared, the d-salt crystallises out first

The Dihydroxycinnamic acids include CAFFEIC ACID (see Chapter on Glucosidos), FERULIC ACID and UMBELLIC ACID (p-hydroxy-o coumance acid, which is readily transformed into its anhydride, umbelliferone), a similar acid is PIPERINIC ACID,

$$CH_{a} < {}_{O}^{O} > C_{a}H_{a}$$
 CH CH CH CH CO_aH,

which is formed in the decomposition of piperine

The derivatives of the Trihydroxycinnamic acids are dealt with in the Chapter on Glucosides (asculin and daphnin from horse chestnuts and Daphne mezereum, etc., respectively) Mention may be made here of ASCULETIN (a Dihydroxycoumarin),

CaHg(OH)g | and of the isomeric DAPHNETIN, which have also been obtained

TANNIN (Galiotannic or Tannic acid), $C_{14}H_{10}O_9$, was studied originally by Berzelius, Pelouze, and Liebig According to Hlasiwetz (1867) and to U Schrif (1873), tannin is probably a partial and imixed analydride of gallic acid, 2 mols of which are condensed with loss of 1 mol of water from a corboxyl and a hydroxyl group and formation of a Digallic acid (or ether of 3 gallolylgullic acid)

According to the investigations of Nierenstein (1908) on the neetyl derivatives and hydrolysis, commercial tannin would seem to be a mixture of digallic acid and Leucotannin (or ether of 3-hydroxygallolylgallic acid)

There appear, however, to be various more or less highly polymerised tannins with yieldy varying molecular weights. Some uncertainty still prevails as to the true molecular nagnitude of tannin. Paterno (1907, 1913) found that in aqueous solutions tannin acts is a colloid and by cryoscopic measurements on acetic acid solutions arrived at the formula, $\rm C_{14}H_{10}O_{9}$ (mol. wt. 322), whilst Walden (1898), by the challescopic method, obtained numbers between 760 (about $\rm C_{75}$) and 1600 (about $\rm C_{70}$), which are sharply listinguished from that of digallic acid (332) ¹

¹ P Bigmelli (1911), on the bass of the property shown by tannin of forming additive products with water, alcohol and other [e.g., $C_{d_1}H_{a_2}O_{a_3}$, $C_4H_{10}O$ (other), which is stable even a vacuum and is analogous to the oily compound, $C_{d_1}H_{a_3}O_{a_5}$, $6C_4H_{10}O$, $7H_4O$, previously obtained by Pelouze, and to others of Biginelli's compounds, namely, $C_{d_1}H_{a_2}O_{a_3}$, $6C_4H_{10}O$; $C_{d_1}H_{a_2}O_{a_3}$, $C_{d_2}H_{d_3}O_{a_3}$, $C_{d_3}H_{d_3}O_{a_3}$, $C_{d_3}H_{d_3}O_{a_3}O$

ux molecules of gallic soid condensed round the hexavalent nucleus, O

The nature and mode of condensation of the tannus varies with the nature of the vegetable organisms from which they are derived, two fundamental groups being recognised: (1) Hydrolysable tannins, (2) Condensed tannins The former comprise estors of phenol carboxylic acids combined with phenols, carbohydrates and polyhydric alcohols, also cthers of phenolearboxylic acids formed either among themselves or with other hydroxy-acids (the latter are known as depades), and glucoaides formed by union of soin acetals of sugars (glucose, rhamnose, etc) with alcohols, phenols and their derivatives. All tailling of this first group have gallic acid for their fundamental component and are hydrolysed by emulsin and by tannases

The tanning of the second group contain as fundamental component the phloroghusinol residue, which may be isolated by treating with alkalı, whilst treatment with strong acids or oxidising agents or bromide yields amorphous compounds of low molecular weight (sometimes red tanners) One class of this group comprises tanning with a basis of philoroglucinol (or catechol) combined with a benzene nucleus,1 a second class including those with a basis of hydroxyonnamic acid

Tannin is widespread in nature and occurs in abundance in the wood or bark of various plants and in oak galls (gall nuts), which are pathological excrescences caused by incusion of the oak branches by meets. 2 To extract the tannin, the gall nuts are ground to a course powder, which is treated with hot water in a battery of diffusors similar to those used for extracting beet-sugar (see p 549) The crude aqueous solution of tannin thus obtained is filtered through a battery of filters and extracted, in a closed copper (or bronze) vessel fitted with a stirrer, with crude ether (aqueous or not free from alcohol). After the liquid

The results of the last investigations of Fischer and his pupils (1909–1919) have cast new light on the constitution of tannin. Fischer and Freudenberg (1912) hydrolysed a pure tannin and concluded that it is formed by the condensation of \underline{b} molecules of digallic acid with 1 molecules. of glucose, free carboxyl groups being absent. Indeed, Fischer prepared synthetically a compound similar to tannin and having the constitution CH(OR) CH(OR) CH(OR) CH(OR) CH(OR) ('H₂ OR n.

in which the five groups R united with the glucose are formed of 5 residues of pontamethy!-m

digallic acid,
$$OOH_3$$
 OOH_3 OOH_3 Hence this derivative of glucose will be a OOH_3

penta (pontamethyl m-galloyl) glucose, which consists of a mixture of two storocisomerides corresponding with a- and β glucoses and is similar to Herzig's methyliannin (1905), obtained by treating natural tannin with diazomethane.

by treating natural tannin with diazomethane.

According to Procter, tannins may be classified in two fundamental groups calculations (those of pine, quebracho, oak, gambier, mangrove, etc.) and pyrogallol tannins (chestnut, sumae, myrobolan, divi-divi, valonia, gall nuts, etc.) When distilled with zine dust, the former yield catechol, the latter pyrogallol (sometimes phloroglucinol)

In the vegetable kingdom there occur three allied groups which contain phloroglucinol, anthocyanne, the flavous colouring matters, and phenyl styryl ketone all of these are derived from αγ diphenylpropane, C₆H₈ OH, CH₂ OH, CH₃ OH, and are more or less exidised in the three carbon atom chains joining the two benzene groups, which in their turn contain hydroxyl groups are recorded as the sum of the contain hydroxyl groups. Tannin and tanning extracts are mostly obtained from the following plants:

Oak {bark of Quercus gall-nuts Divi divi (fruit of Casalpuna corraria) Sumao (leaves and branches of Rhus corraria and coin Valonia (cupole of Quercus ayalone (cupole of Quercus vallonea)	Per cont of tauning authornoon 10—12 30—35 40—45 nus) 20—30	Por cent of sugar 2 53 U 71 80 45 2 53-6
Quebracho (wood of Schnopsis or Quebrach	}	Z D3'0
Lorentzas) Myrobolana (fleshy fruit of Myrobalanus) Algarovilla (beans of Ocealpnua brevifolia) Acacia bark of Acacia decurrens extract of wood of A catechu Chestnut wood or bark of Casianea vesca extract of wood of Oceana vesca	10—24 25—40 40—50 30—35 45—55 8—12	0 2—0 5 5—6 8—9 0 8—1 —
Pine {barks of Abres canadenses { extract of bark Mimosa (barks of various Australian acacias, especi A decurrens, the so called black wattle bark)	2040 1012 2826 ally 3045	2—3 5 3—4 7—8

has been left at rest in vats for eight to ten days, the donse lower layer containing the annin is decented and freed from other by distillation. The evaporation of the water resent is effected in heated, rapidly rotating drums, or on zine places placed in desiccators. The dry mass is then subjected to short and gentle treatment with steam—a very soft, sale, ethereal tanium being thus obtained. Tanium solutions are also concentrated under educed pressure in multiple effet apparatus (see Sugar, p. 560).

Aqueous or Alcoholic Tannin, which is extracted by water or alcohol without being surfified by means of other, is less pure.

Pure tannin forms a pale yellow light powder or sometimes crystals. It is darkened a colour by light, turns brown in the air, and dissolves in its own weight of water, double is weight of alcohol or eight times its weight of glycerol or ethyl acetate. It is almost isolable in ether, benzene, chloroform, petroleum other or carbon disulphide. With iron alts it forms a bluish black prompitate, and with albumin or starch a gelatinous prompitate, a aqueous solution it is dextro rotatory (+ 15° to + 20°)

Tannin is used mainly, in conjunction with autimony salts, as a mordant in the dyeing f cotton with basic dyes. It is employed also in making ink and, along with gelatine, in larifying beer and wine, forming, together with gelatine, a guinny precipitate which radually settles and carries down with it the suspended matter of the liquid.

TANNING EXTRACTS Powdered barks or woods are used, either before or after extraction, in tanning hides.

These tanning extracts [from oak back (containing 10 to 20 per cent. of tannin), mimosa 30 per cent.), leaves and twigs of simac (15 to 30 per cent.), valoria (20 to 45 per cent.), leaves gall nuts (55 to 75 per cent.), European gall-nuts (25 to 30 per cent.), disn-divi (40 per cent.), myrobolans (30 per cent.), quebracko wood (22 per cent.), horse-chestnut bark (2 to per cent.), catechu or cutch (40 oi 50 per cent.), etc.] are now rationally prepared on an normous scale by extracting the finely divided material with hot water in batteries of iffusors. The exhausted material is centrifuged and then buint as fuel. From the diffusors the liquid issues at about 5° to 6° Bé (about 6 per cent.) from the diffusors the divided contains less than 2 per cent. The dilute solutions are filter pressed, vaporated under reduced pressure in a double-effet apparatus to about 15° Bé, and then litered hot, first through coarse and then through fine filtering cloth, the liquid being some-mes mixed with infusorial earth or bone-black so as to give a clear liquid. This is further oncentrated in vacuum pans to 28° to 32° Bé or, with extracts required to solidify whon old, to 45° Bé

For some years these extracts have been purified and decolorised, either before or after oncentration, by many different materials, but principally by sulphites, bisulphites, ydrosulphites, alkali sulphoxylates, etc ¹

The most important extract is that of quebracho wood, which is still crudely prepared i the country of origin (Argentine), and contains about 65 per cent. of tanning material,

Formerly use was made of aluminium sulphate and barium hydroxide, aluminium iosulphate, blood albumin or blood itself, casein and soda, etc., but better results are obtained ith compounds of sulphurous add. Bisulphite renders the extracts much more soluble, as converte part of the tannin substances into soluble sulphonic compounds, while in the resincus stract of quebrache it also causes decomposition of a glucoside present, giving the product the roperty of imparting a yellow colour to akins with an audiline mordant. Decoloration is, owever, due more especially to the hydrosulphite either added directly (Lapotit's putent) or roduced by reduction of the bisulphite added to the extract (1) by zinc or aluminium dusting Pat. 11,502 of 1902). (2) by treating the caude extract with aluminium sulphate and dium bisulphate and then heating under pressure at 120° to 130° (US Pat. 740,283). (3) by cating the extract with a mixture of formaldehyde bisulphite and formaldehyde sulphoxylate fr. Pat. 362,780); or (4) according to the recent patent of L. Dufour (Genos), by reducing the sulphite with thiosulphate, and then with formaldehyde. Use has also been made of the aste sulphite liquors from the manufacture of cellulose (Ger. Pat. 132,224 and 152,236, S. Pat. 909,343, January, 1909), of aluminium amalgam (Ger. Pat. 220,021), and of chromous ults (chloride, sulphate, acetate, etc.)

'S lat 900,343, January, 1909), of aluminium amalgam (Ger Pat. 220,021), and of chromous its (chloride, sulphate, acetate, etc.)

An interesting method of clarifying quebracho extract and rendering it soluble even in the old is that of A. Reslich, L. Pollak, and C Jurenka (Ger Pat. 212,876 of 1908) The paste eposited from the crude, cooled extract is shaken for six to seven hours with 1 part per thousand I sode at 50° to 100°, 50 litres of the red solution thus obtained being mixed with 1000 litres if the crude extract previously decanted and the whole left to stand. A flocoulant deposite thus obtained and a pale solution of pure extract which is decanted off and can be concentrated, the flocoulant precipitate can be dissolved again in dilute sode and used to clarify further unnities of crude extract. Any excess of red alkaline solution may be employed for clarifying stracts of sumac, etc.

5 per cent of non tannus, 18 per cent of water and 12 per cent of insoluble matters. It is refined in European works to obtain a product poorer in phlobaphenes and more readily

The price of tanning extracts is loughly proportional to their content of tanning or tannin substances, which may vary from 20 per cent, to 50 per cent, but for a given content of tannin, extracts rich in red or orange colouring-matters have the greater value, these matters are estimated in special colorimeters or in the spectroscope. A Gansser (1900) suggested the replacement of the direct test on hide by one on strips of animalised cotton (the latter being immersed in a bath of gelatine and then in one of formaldehyde), the resultant colour on the textile is similar to that obtained on hides

During recent years use has been made for tanning of certain artificial compounds known as syntans, and prepared by Stiasny (Ger Pat. 262,558, 1913), by condensing phenoleulphome soid with formaldehyde, or by similar means Neradol D, first made by the Badische Anilin- und Soda-Fabrik, is one of these compounds, nerallol ND is made by treating naphthalenesulphonic acid with formaldehyde, and similar products are prepared from amino- and hydroxy-naphthalenesulphonic acids—On analysis these artificial extracts correspond with an extract containing 30 per cent of tanning material and before the war were sold at about £44 per ton They produce a very pale tanning of the hide but give no merease in weight, so that they are used either for flue goat and sheep skins, etc., or for mixing with ordinary tanning extracts, of which they increase the solubility

TANNING OF HIDES The hides of oxen, horses, sheep, etc., even when freed from hair and flesh (i e, in the form of corrum), do not keep and readily putrefy during drying or in presence of moisture. When dressed (this was carried out as early as 2000 B U), and, more especially, when tanned, the hides are more tenacious and resistant, do not putrefy, and do not gelatinise with boiling water, since the fibres on which the tanning material is fixed (to the extent of 30 per cent. or even more) do not agglutinate during drying, and hence remain fibrous and do not become compact and horny The corsum or derma, se, the fibrous substance of the skin, is converted by tanning into leather 2 Rational tanning

Analysis of tanning materials See Villavocohla's "Applied Analytical Chemistry," Vol. II. p 331

THEORY OF TANNING In the first half of last century, Davy, Soguin, Dumas, and Berzelius regarded the absorption of tannin by hides as a chemical reaction In 1858 Knapp defined leather as an animal skin the fibres of which do not adhere during drying owing to the pores separating the fibres being filled with the tannin, tanning would hence be a simple physical phenomenon. Similar views were expressed by Reiner (1872), Heinzerling (1882),

physical phenomenon Similar views were expressed by Reiner (1872), Heinzerling (1882), Schröder and Pässler (1892)

Th Kornei (1898–1903) also regarded it as a physical process, mince neither the tanning material nor the fibres constituting the hides are electrolytically dissociated, and therefore cannot combine to form a kind of salt. Herzog, Adler, and Wielicenus (1904) also supported the physical

As it has been established that the hide is capable of absorbing at its surface like a colloidal As it has been established that the hide is capable of absorbing at its surface like a colloidal solution, Stiasny (1908) holds that tanning consists simply of a physical absorption, since tannin reacts with scarcely any of the known hydrolytic products of hides. Just as colouring-matters are fixed by carbon, silica, and alumina without there being any special groups to effect combination, so also in tanning all the known phenomena support the physical absorption hypothesis. According to Stiasny, every tanning process consists in the absorption of a dissolved colloidal substance by the gel of the hide and in simultaneous secondary transformations (polymerisations, exidations, etc.), to which the absorbed matter is subjected by the catalytic action of the hide, and which render the absorbed tannin insoluble and the process irreversible. This is more a physical chemical them a physical theory.

physico chemical than a physical theory

Konnstein (Vienna) also regards the phenomenon as a physical one, owing to the absence of stoichelometric relations

of stoichelometric relations
On the other hand, Mitntz (1870) and Schreiner (1890) hold that tanning must be due to
a chemical phenomenon, since the same hide always absorbs the same maximum amount of
a given tanning material, but Schröder and Pässler advance the objection that below the limit
of maximum absorption the quantity fixed varies with the concentration of the bath, there
being no stoicheiometric relations characteristic of chemical combination
N O Witt (1891) maintains that leather should be regarded as a solid solution of the tanning

Substances in the animal fibre (the hide), in which they are more soluble than in water Suida, Gelmo, and Fahrion (1903–1908) revert to the chemical theory, and assert that, as taining is preceded by treatment with acid or mordant, slight dissociation or hydrolysis may occur (as is the case in the dyeing of wool) Further, hide powder fixes substantive dyes better than wool itself, and that the combination does not exhibit stolchelometric proportions is explained by the fact that the hide consists of compact fibres and not of separate molecules as in solution, so that the tanning liquor penetrates only slowly into the interior of the mass, and is gradually impoverished and exhausted

Fahrion (1908-1919) points out that in tanning with formaldehyde there can be no question

was introduced only when the anatomical structure of the skin became exactly known and the effects of tanning materials on the different parts of the hide were studied

A clean out in a fresh ox-hide shows the following layers—the thin exterior layer of epidermis or cuticle (Fig. 447), the thicker layer l immediately below is the corium or derma, which constitutes the leather after tanning, below the corium is the fatty layer f

In the unhairing of the hide, the hairs and also the epiderinis are removed, the corium

being exposed with a papillary surface covered with a fine membrane, p, surrounding the hair-orifices and giving the natural lustre of the tanned hide, its sinussities form the so-called natural grain, which serves to distinguish the hides of different animals. The dry hide contains 50 per cent C, 25 per cent O, 7 per cent H, 17 8 per cent. N and traces of mineral matter

Various methods of tanning are in use (a) Mineral Tanning or tanning, by means of alum and sodium chloride, (b) Oil Tanning or chamoising, with fatty materials, (c) Ordinary Tanning with tannin substances, (d)

Fra 447

Chrome Tanning, using chromium salts (tanning with formaldeliyde, proposed by Trillat and Payne, with quinone by Meunier and Seyowetz; with naphthols by Weinschenek, with rare earths by Garelli, with fatty acids by Knapp, or with the corresponding ammonium soaps by Garelli and Corridi, 1909)

Garelli (1914) obtained a pseudo tanning with bismuth nitrate, mainitol (or glyoerol) being added to prevent separation of basic compounds. Apostolo (1914) showed that ludes may absorb suspended substances and effected pseudo-tanning with precipitated sulphur (or fats). Knapp obtained distinct tanning with fatty acids.

of colloidal material (as with tannin), and with regard to the elimination of alum or tannin from leather by the mere action of water, this is due to pseudo tanning, se, to the formation of labilo, readily hydrolysable compounds, the tannin of which becomes distributed between the hide and the water. With reference to the non stoicheometric relations, he observes that the fixation of more tannin from concentrated than from dilute solutions is in accord with the law of mass action for reversible chemical reactions.

According to Heidenhain, Zacharas, and Fahrion (1908), both the dyeing and the tanning processes occur in two phases, the absorption and penetration of the tanning substance and the subsequent chemical combination of this substance with the inde. (farelli (1907–1910), from the results of his tanning experiments with rare earths (certs, thouls, zirconia), supports this theory, and holds that all substances which in aqueous solution can undergo hydrolysis forming base hydroxides or salts (like chronium, iron, and aluminium salts) are capable of tanning hides (i.e., the hide hydrolyses and decomposes the salts, which thus deposit hydrates or basic salts on the fibres of the corsum or derma, the fibres and the salts combining to form leather). Thus, Garolla effected tanning with the rare earths, i.e., with compounds of the trivalent (corium, lanthanum, and didymium) or tetravalent elements (cerium, thorlum, and zirconium. Zacharias had used stannic salts in 1903), and the tanning, as when alum is used, is facilitated by sodium chloride (this was not used with ceric salts, which would generate olitorine). The most effective tannings are those in which an exidation plays a part (the metals pass from the higher to the lower valency) and those with alum, which cannot give salts of lower valency but are not very stable, and do not resist even the prolonged action of cold water (pseudo lanning). Chromium salts are reduced to exides by the skin and fixed, while oils and fats must be exidised (to hydroxy-adda), as otherwise the tanning is not complete.

acids), as otherwise the tanning is not complete

R. Lepetit (Ann. d. Soc. chim. ds Milano, 1007, p. 83) asserts that in the tanning of sole and upper leather it is not sufficient to offcot separation and stabilisation of the fibres, but that it is necessary to produce swelling and filling of the interstices between the fibres with phiobaphenes. These are colloidal substances dissolved or suspended in the tannin extracts and consisting partly of internal anhydrides of soluble tannins (see p. 687) and partly of condensation products of formaldehyde with polyphenols and phenoloarboxylic acids derived from the tanning vegetable organisms. Indeed, according to Nieronstein, the products of the reaction between formalm and polyphenols exhibit tanning proporties, and at the present time glove leather is successfully tanned by formaldehyde (Trillat and Payne). Also Weinschenok (1907–1908) stated that a- and \$\beta\$-naphthols in presence of formaldehyde are able to tan hides, but this is denied by Stiasny and Ricovuto (1908). In tanning with quinone derivatives (suggested by Meunier and Seyewetz) leather is formed, owing to the hydroquinone derived from the quinone reacting with the amino groups of the proteins. With formaldehyde, there is probably production by aldol condensation, of complex colloidal polymerides of formaldehyde (especially in presence of alkali carbonate), these reacting with aminic complexes in the same way as formaldehyde and the aldols react with aniline (see p. 659). Thuan (1909) found that if the hides are previously treated with formaldehyde subsequent chrome tanning is hastened.

The tanning power of the various materials used in practice may be established roughl by determining the temperature of gelatinisation or shrivelling of the strips of tanned hid when heated with water, the best tanned hides showing the highest temperature. If th gelatinising temperature of the best chrome tanned hides is taken as 100, those for othe tanning will be quinone tanning, 100, chamoising, 85 to 90, formaldehyde tanning 85 to 90, neradel tanning, 80 to 86, 70 for vegetable tanning, 58 to 90 for fatty and an resin tanning, and 50 for alum tanning

Various bacteria, even injurious ones, develop on insufficiently dried or fresh hides. The ordinary antiseptics (phenols, formaldehyde, etc., which have taiming actions) cannot be employed, and the most convenient treatment is with dilute formic acid, or 0.1 per cent sodium hydroxide, or 0.2 per cent sodium sulphide solution at 18°. The fresh hides a they come from the slaughterers are termed green hides, and in this condition an ox hid will weigh from 30 to 40 kilos, its weight being reduced to one half by taiming. Man hides are imported from South America in the dried and salted or smoked state. Ox hide give the heaviest leather for boot soles, while for lighter soles cow hide is used, the upper are made preferably from calf skin. Saddles are made from horse-hide, pig skin, and seal skin, while sheep skin is used for bookbinding leather and goat skin for morococleather. Deer-skin, goat skin, etc., are tained with oil to obtain chamois or buff leather (see later).

The hides are first softened by soaking for two days or longer (according as they are

green or dry) in soft water, which removes blood and other adherent impurities. This may be accelerated, especially with large and dry hides, by adding about 3 kilos of crystallised sodium sulphide or 1 kilo of caustic soda per cumetre of water. The hides are then placed on a "beam" (Fig. 448) and scraped on the flesh side with a curved knife (Fig. 440), which is drawn across them horizontally. They are then soaked for 24 hours, scraped again, washed in water for a few hours, thrown on the beam and allowed to drain. This operation is hastened if the softened hides are subjected to fulling in a revolving vessel (Fig. 450) or in a vat containing cold water in which they are worked with wooden mallets.

In order to remove the hair fixed in the epidermis (not in the corium), the epidermis must be attacked and almost destroyed, this being effected in various ways (by putrofaction, lime, or sulphides) Putrefaction ("sweating") is carried out by salting the ficsh side of the hides or sprinkling them with crude acetic acid, bending the hides in two longitudinally with the hair outside and stacking them in tanks or in a warm chamber (30° to 50°); fermentation soon sets in, accompanied by heating and evolution of ammonia, the hides being then unhaired on the beam with a suitable knife. In order to avoid the possibility of excessive heating, the hides are sometimes placed in cement troughs fitted with perforated, wooden, false bottoms, water being sprayed on to the hides at the top, so that the temperature is kept down to 10° to 12°, after 8 to 12 days the hides can be readily unhaired. The more delicate skins of small animals are treated with sulphides, being smeared with rusma, which consists of a mixture of 1 part of arsenic sulphide (orpiment) with 2 to 3 parts of slaked lime, calcium hydrosulphide is also used and gives better results. In recent years, sodium sulphide has also been used for heavy hides, unhairing being easily carried out by scraping the hides (after washing) with a knife against the set of

the hair, the operation being facilitated, if necessary, by sprinkling a little sand or ashes on the hide, the han serves for the manufacture of felt, but that treated with sulphide is converted into fertiliser

In large tanneries unhaning is effected by means of machines (Fig. 451), in which the

Fra 451

hides are spread on three or four vertical plates and pressed against revolving rollers with helical knives inclined in two directions. The ludes are then washed in a large quantity of water, spread out and beaten on the beam, and the defleshing of the under side completed either with a curved knife or in the machine shown m Fig 452, the flesh removed is mixed with lime and sold for making glue In many factories large hides are rendered uniformly thick and then split into 3 to 6 sheets, sometimes only a fraction of a millimetre in thickness, by means of a moving, endless knife, a band knife splitting machine is shown in Fig 453

The hides are often further de fatted either by pressing oi, better, by means of a solvent such as benzing or trioliloroethylene, the fat being recovered and used for seap making

In order to preserve the hides if they are not to be tanned immediately, or to prepare them for chrome tanning, they are pickled by immersion for about an hour in a bath containing 7 5 grms. of $\rm H_2SO_4$ and 80 grms. of NaOl per litre, the acid is rainfly absorbed, and the salt prevents excessive swelling. They are then runsed in saturated salt solution and, after draining, may be made up into bales. To eliminate the pickling prior to tanning, the

hides are washed in a salt bath containing borax. Pickled hides yield a pasty leather and require less tanning material.

The hides have by this time lost about 12 per cent. In weight, and those which have been limed are next kept for two or three days in several successive infusions of barley flour or bran ("bran drench") in active acid fermentation, to these are added sulphurous or sulphuric acid, lactic acid (or better, according to Boehringer, Ger Pat. 234,584 of 1909, a solution of lactic anhydride in ammonium lactate), or acetic or butyric acid, the calcium scaps on the hides being

Fig 452,

thus decomposed; the acids separate at the surface and the soluble calcium salts are climinated by washing (at one time, mixtures of dog and bird dung with water were used, the action of these being due to enzymes and amine hydrochlorides, these enzymes, however, act on the gelatine of the hide, this being eliminated, together with the lime, by washing with tepid water) The dung is now preferably replaced by various selected bacterial cultures and enzyme preparations. After a few days the hides swell up to double their original size and become yellowish and transparent. Excessive swelling is prevented by the addition of a little tanning material to the infusion.

All these preparatory operations are required to make the material to be tanned more

permeable and more uniform in its behaviour towards the taining agents, which are fixed to the extent of about 30 per cent. (calculated on the dry cornum) The taining can now be carried out by the following methods

(a) Infusion taining This process, which is used for lighter hides, consists in passing the hides into taining baths of gradually increasing strength, so that the taining may be gradual and penetrative. The total time required is 6 to 9 weeks, and between each

bath and the succeeding one the hides are drained, pressed, and fulled m order to facilitate the absorption of the tannin.

(b) Tanning in layers was once largely used but is now employed more particularly for sole leather. Fifty or sixty hides are placed, alternately with layers of powdered or crushed tanning material (bark, wood, etc.), in a cement or wooden vessel, the empty spaces being then filled with the tanning material and the whole covered with water. The vessel is then closed with an air tight cover and left for about 2 months, the hides being then transferred to a second similar vessel containing rather less tanning material, where they are left for 3 to 4 months, and finally to a third vessel containing still less tanning material (4 to 5 months)

1:1.

If the hides are very heavy and resistant, they are passed to a fourth and sometimes to a fifth bath or pit, the whole operation then occupying about two years and the consumption of bark being about five times the weight of the dry hides. The completion of the tanning is ascertained by cutting the hide and observing that the section is uniform and without horny or fleshy layers, and that the grain does not crack when the hide is carefully bent ¹

(c) Rapid tanning, which gives a greater output of leather, has been attempted in many different ways. By immersing and compressing the hides in relatively concentrated tanning baths prepared from active, modern extracts, and containing a certain amount of acid to prevent wrinkling of the hides, the tanning liquor being circulated by means of pumps without moving the hides, or the skins are placed in revolving barrels or drums, the lower half dipping into tanning liquor so that the hides are pressed at intervals. The diffusion process is also applied by placing the tanning bath in bags composed of various hides sown together. Tanning in a vacuum has likewise been used in order to effect better penetration of the tanning material, considerable pressure being exerted automatically on the hides at regular intervals, and the operation being facilitated by gentle heat, etc. By these rapid processes (see also Use of Quinone, Ger. Pat. 206,957, 1907) tanning can be completed in 6 to 8 weeks, this including the preliminary preparation of the hides. The actual

Fig 454

tanning may, indeed, be limited to 30 hours if revolving barrels are used with hot, highly concentrated tanning baths (8° to 10° Bé). When such a rapid process is used it is, however, indispensable to eliminate all traces of lime beforehand by immersion in formic acid solution. Other very lapid methods which are largely used are chrome tanning (see above) and formaldehyde tanning as proposed by Payne.

According to Gilardini (Fr Pat. 485,044, 1917) instantaneous tanning may be effected by passing concentrated tanning extracts (25° to 30° B6.) under pressure through the hide rolled on a perforated drum, the outside space being evacuated. The best results are, however, obtained with the artificial tannins, neraded D and ND

Accelerated taining is facilitated by the mechanical action of periodic compression of the hides in rotating chests (Fig. 450) or drums (Fig. 454). When the drum rotates the hides are lifted to a certain height by means of pags and then allowed to fall forcibly into the taining solution and on to the hides in it.

(1) Mineral Tanning or tawing is frequently used for light lamb, sheep, and goat skins, which, after unhairing, are passed into the limes and are then, just as in ordinary tanning, swelled in an acid bath, which also removes all the lime. They are then placed in the

¹ F Carini (Ann d Soc. chim ds Milano, 1903, p 23, and 1904, p. 144) proposes to use the hydrostatic balance in order to obtain the weight of the dry hide from that of the wet hide, without drying. The hides can thus be followed through all the operations, from their entry in a more or less moist state. The quantity of tanning material fixed can also be determined at any moment in this way.

VOL. II

20

;

tanning vat containing alum or sodium chloride solution, without impregnating them with fatty substances. For twenty hides, about 1500 grms of alum and 500 grms of sodium chloride are dissolved in 50 litres of tepid water. The hides are well saturated with this bath and are heaped up still wet for two or three days, after which they are pressed, washed, and allowed to dry in the air.

The finishing of the tanned hides is carried out as described later

Mineral tanning is usually a rapid process, and the alum combines with the corium and preserves it, but the leather is not so lasting as that prepared with tannin and can still be gelatinised by prolonged boiling with water. A highly elastic leather is, however, obtained

Chromium salts (the alum and chloride) are often used nowadays in place of alum and sodium chloride.

(2) Chrome Tanning has assumed considerable importance of recent years (since 1895), as it is rapid and furnishes boot leather highly resistant to wet, it is often used also for girths, etc. Both alum and chrome tanning give a light, soft and tenacious leather, chrome tanned leather being far more resistant to boiling water and to tenacon than vegetable tanned leather.

With chrome tanning the hide fixes only 3 to 4 per cent. of chromium oxide, the latter being hence sold by measure instead of weight. If dried the leather cannot be swellen, so that it is dyed and dressed immediately. This mode of tanning may be carried out in either a single bath or in two baths at 25° to 30°. In the first case the hides are immersed directly in a solution of a basic chromium salt, whilst in the second they are first seaked in chromic

Frg 455

acid solution (potassium or sodium biohromate with sulphuric or hydrochloric acid), then rinsed and placed in a second bath containing a reducing substance (best sodium thiosulphate, although sodium sulphite or bi sulphite, arsenious acid, hydrogen peroxide, nitrous acid, etc., are also used)

(a) Single Bath The basic chromium salt is obtained either

by treating chrome alum with sufficient soda to give the desired basicity, corresponding, for example, with the formula, $\operatorname{Cr_2(OH)_2(SO_4)_2}$, or from potassium bichromate, an and and a reducing agent ¹ The completion of the tanning is determined by examining a clean cut made in the thickest part of hide or by the absence of wrinkling when a piece is placed for a few minutes in boiling water

- (b) Two Baths The first bath may contain 1000 litres of water, 10 kilos of bichromate and 5 kilos of hydrochloric acid per 250 kilos of hides, less acid being used with pickled hides, more bichromate is often used. For this bath vats with reels or the revolving drums may be employed, the hides being treated until they are coloured yellow throughout, then left to drain for some hours in the dark, and then immersed in drums containing the second, reducing bath. This may contain 1000 litres of water, 25 kilos of thiosulphate and 13 kilos of hydrochloric acid per 250 kilos of hides. The treatment in this bath lasts some hours or at most a day. The sulphur which always separates is partly absorbed directly by the hides and partly transforms the thiosulphate into tetra- and penta-thionate. When, as is now more commonly the case, a single bath is used, this contains chromo base, which is a basic sulphate prepared by the firm of Lepetit, Dollfuss, and Gansser; the procedure is as in the preceding case. The use of chromium lactate has been recommended, since lactic acid reduces chromium salts, even in the cold.
- (3) Oil Tanning or chamousing This is used to obtain very soft leather for gloves, clothing, etc. Deer, stag, lamb, kid skins, etc., are smeared or rubbed with various fats [fish oil, wool fat, paraffin, egg yolk, alum, carbolic acid, sodium chloride, etc., or, according to Garelli and Apostolo (1914) with stearic, palmitic, clene acids, etc., or resin acids such
- 1 The basic chromium salt is formed as follows $\begin{array}{l} \operatorname{Cr}_{1}(\mathrm{SO}_{4})_{8}, \ \mathrm{K}_{2}\mathrm{SO}_{4}, \ 24\mathrm{H}_{2}\mathrm{O} + \mathrm{Na}_{2}\mathrm{CO}_{3} = \mathrm{Cr}_{3}(\mathrm{OH})_{8}(\mathrm{SO}_{4})_{2} + \mathrm{K}_{2}\mathrm{SO}_{4} + \mathrm{Na}_{2}\mathrm{SO}_{4} + \mathrm{CO}_{3} + 23\mathrm{H}_{2}\mathrm{O}, \\ \operatorname{Cr}_{2}\mathrm{Cr}_{3}\mathrm{O}_{7} + 3\mathrm{H}_{2}\mathrm{SO}_{4} + 3\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3}, \\ \operatorname{SH}_{2}\mathrm{O} = \mathrm{K}_{2}\mathrm{SO}_{4} + \mathrm{Cr}_{3}(\mathrm{OH})_{3}(\mathrm{SO}_{4})_{2} + 7\mathrm{H}_{2}\mathrm{O} + 3\mathrm{Na}_{2}\mathrm{SO}_{4} + 3\mathrm{S}_{2}\mathrm{O}_{3}. \end{array}$

OIL TANNING

as those from colophony, or, better, according to Fabrion, with innaturated fatty acids with several double linkings], the absorption of which is effected by repeated working of the skins, followed by drying in tend chambers, the skins are thus representation, while they can be washed many times without losing their taining.

Pta 450

fluidly amoved by ashing in soda solution, the omulsion thus formed, known as degras (see p 478) being used for currying ordinary hides.

Heavier hides (cow, horse, ox, buffalo) intended for saddlery are subjected to mineral tanning (without being treated with lime) and afterwards to a kind of oil tanning which imparts to the leather considerable resistance to tension.

The tanned hides are then subjected to flushing, which varies considerably with the nature of the hide and the kind of leather required

(a) Smoothing and Stretching. The tanned, most linde is stretched on a plate moving on wheels mounted on a trolley so as to give both longitudinal and transverse movements, the machine being known as a striking out and scouring machine (Fig. 455). A band moving over two pulleys is furnished with inclined blades of bronze, chonite, glass, etc.,

these impinging more or less strongly on the bloom side of the hide and so squeezing out the water and smooth ing out the folds A better machine for this purpose is shown in Fig 450, in this, the hide is pressed and stretched by a bronze oylinder having doubly inclined helical vancs Machines similar to those used for defleshing (Fig. 452) are also omployed

(b) In order to pre vent cracking or split ting during drying, the hides are subjected to slight orling, with fish oil, linseed oil, castor oil, lanoline, degras, egg

J'n 457

yolk, tallow, stearine, puraffin wax, etc., according to the type of hide and to the rigidity or softness required

- (c) Sharing generally follows, this consisting in stretching the hide on a rubber cylinder (Fig 457), which presses it against a second cylinder furnished with helical blades, one-half of these sloping one way and the rest the other way
- (d) Drying of the hides is carried out carefully in circulating air, which is dry rather than warm and does not effect complete drying
- (e) To render the almost dry hides less stiff and softer, adherent and hardened fibres are detached by bending and pulling out hides in all directions, this is usually effected mechanically

(f) To render sole leather more compact and more resistant to wear, the hides are subjected to striking by means of a bronze piston operated by a lever (Fig. 458), excessive striking marks the leather. A preferable method consists in rolling by means of a weighted roller moved backwards and forwards by means of an endless screw (Fig. 459)

(g) Many skins are glazed, and to obtain a good, resistant lustre they should be free from fat and dry If too greasy they are rubbed with 5 per cent lactic acid or ammonia solution. When dry they are rubbed with a very thin layer of a special dressing (aqueous egg.)

albumin and milk, and other pale dressings known as seasoning), the rubbing being effected by a smooth agate or glass cylinder

(h) If this cylinder is finely grooved the leather assumes a rough, fine grained surface, which may be rendered more marked (morocco leather) either by bending the hide over on itself and rubbing the surface gently with a cork utensil (Fig. 460), or by passing the hide between two at rollers different revolving abeeda More pronounced impressions to give the appearance of

Fra 458

goat, seal, orocodile skins, etc., are obtained by means of calculors suitably inciscol, the upper roller being heated to render the impression more stable

Those hides which are required to show not graining but a smooth surface, are first rendered perfectly uniform at the surface by rubbing both sides with purpose by hand or more conveniently by a kind of spindle shaped grandstone covered with energy (Fig. 461), against which the surface of the hide is gently pressed. In some cases this operation is completed by polishing the bloom side with a concave piece of wood, similar to that of Fig. 460, but with a smooth surface lined with cork

(t) Certain hides and leathers are rendered waterproof by immersing them for a couple of hours in baths of soap and glue and then in aqueous alum and salt solutions. Good

Fto 459

results are obtained also with 2 per cent gelatine solution, followed by 5 per cent formalin Iterdened leather for boot soles is treated with 2 per cent formalin for 24 to 48 hours, chrome tanned leather being subjected also to a bath containing 8 per cent, of aluminium sulphate and 1 per cent of sulphuric acid.

(b) Some hides are dressed to increase their weight with starchy substances or dextrin (brillantine, containing over 60 per cent. of

dextrin, 9 per cent of soluble starch, 5 per cent of maltose, and 25 per cent of water) in strong solution, with which they are treated for a couple of hours in drums; the increase is greater if magnesium sulphate or barium chloride is used. Hides are loaded also with excess of tanning agent, oils and fats, sulphite liquors from collubra factories, glucose, barium sulphate, magnesium sulphate, etc

(l) Bleaching and dyeing of hides are carried out by the varied processes used for textile fibres, especially animal fibres (wool and silk). For bleaching, which prepares the hides for taking the paler tints, use is made of hydrogen peroxide, sulphurous acid, sulphites, oxalic acid, permanganate followed by sodium bisulphite, dilute hypochlorite, ato Dyeing of vegetable or alum tanned hide is effected at 40°, and that of chrome tanned ones at 60°

Leather for boot uppers is coloured black on the flesh side by rubbing with concentrated solutions of iron acetate and sulphate, treating with oil, wax, soap, lampblack, etc, and then polishing with smooth wood until a shining surface is obtained.

For special purposes ludes and leathers are coloured with basic or mordant amiliac colours, the ludes being first prepared by immersion for 12 hours in cold water in which is

Classolved the white of an egg for each hide. The dyeing is carried out at a temperature of 30° Certain leathers are varnished with ordinary resin varnishes. In order to supply the great demand for large hides for the hoods end, of carriages, ox-hides and cow hides are nowadays clivided, the more resistant part being kept for the hoods, and the flesh aide for the seats, etc.

In order to avoid the formation of the white efflores conce—caused by the use of hard water and due to the combination of lime with the fatty matters of the tanning materials—it has been proposed to replace the fats by immeral oils, which do not give calcium salts, or to wash the hides well with drifte lactic or formic acid which form soluble calcium salts. The suggestion has also been made that the hides be dressed, not with fats, but with the anhydrides or lactones of fatty acids, as these

form calcium salts more slowly (the purgatal recently placed on the market consists mainly of anhydrides or lactones)

M NITRO-DERIVATIVES OF BENZOIC ACIDS

o-Nitrobenzoic acid melts at 147°, has a sweetish taste and at 16° dissolves in 164 parts of water. The m-Acid, in -pt 141°, dissolves in 425 parts of water at 16° and yields a sparingly soluble barium salt. The p-Acid, in -pt 238°, is very slightly soluble in water.

2 4-Dimitrobenzoic acid (800 p 652) has m -pt 179°, the 2 5-Acid, m -pt 177°

the 2 6-Acid, m -pt 202°, the 3 4-Acid, m -pt 165°

2 4 6-Trinitrobenzoic acid melts at 210° losing CO₂ and yielding s-trinitrobenzene (see p 649) Its use as an explosive was proposed by the Grieshein-Elektron Company (Ger Pat 79,314, 1893)

Numerous halogenated derivatives of the nitrobenzoic acids are known.

N HYDROGENATED BENZENE COMPOUNDS

Considerable interest attaches to the numerous hydrophilahe and studied by Baeyer in their various constitutional and storeo-isomerides (ois- and hums-

inomerides sec p 22)

They behave largely like unsaturated alaphatic compounds (see pp. 106—108), as they no longer possess the stability of the true benzene nucleus. The position of the true double linkings in these compounds is determined by the addition of bromine and by subsequent elimination of the latter by reduction, with or without substitution of hydrogen, according as the two bromine atoms are in para- or ortho-positions. Simple boiling with alkali often effects displacement of a double bond (as with oleic acid, see p. 358), so that it is possible to pass from one isomeride to another

The di-, tetra, and hexa-hydrophthalic and terephthalic acids can be dehydrogenated in stages by heating with bromine at 200°, many of them form anhydrides

From the results of his investigations on the hydrophthalic acids Baeyer drew important conclusions concerning the constitution of the benzene nucleus.

Many important hydrogenated benzene derivatives occur naturally, among them the naphthenes, found in abundance in Russian petroleum (see p 71), which contain hexamethylene groupings (see Polymethylenes, p 616) Synthetically they may be obtained, for example, from calcium pimelate

$$\mathbf{CH_2} < \overset{\mathrm{CH_2}}{\mathrm{CH_2}} \overset{\mathrm{CH_2}}{\mathrm{CH_2}} \overset{\mathrm{CO_2}}{\mathrm{CO_2}} > \mathbf{Ca} = \mathbf{CaCO_3} + \mathbf{CH_2} < \overset{\mathrm{CH_2}}{\mathrm{CH_2}} \overset{\mathrm{CH_2}}{\mathrm{CH_2}} > \mathbf{CO} \text{ (ketohexamethylene)}.$$

Also, by condensing 2 mols of ethyl succinate with sodium and then hydrolysing the product and heating at 200°, p-diketohexamethylene is obtained Hydrogenation of benzene and its homologues, by passing their vapours, mixed with hydrogen, over heated finely divided nickel, yields he unnellaplene 1 and its homologues, hexalydrophenol (b-pt 160 5°), and p-dikelohexumethylene (m-pt The latter gives the corresponding alcohol, quantul (p-diligitorylaria) methylene), which forms various cis- and trans-isomorides Inosital, Callie On the hexahydric alcohol derived from hexamethylene, is isometic with the hexamet, but with HI or PCl_s yields true benzene derivatives

Various naphthenic acids are obtained by oxidation of the naphthenes of Russian petroleum, or more easily by acidifying the alkaline solutions used in refining this petroleum (see pp 79, 89), and are distinguished from open-claim acids by forming soluble magnesium and calcium salts, by this mouns they can be detected when used in the manufacture of soaps 2 Charitschkov (1911) showed that these acids are not of the hexamethylenecarboxylic acid group, since the latter acid melts at a higher temperature and does not give the characteristic reaction with copper or cobalt salts obtained with naphtheme acids. The litter

resemble rather Pentamethylenecarboxylic acid, CO₂H CH₂ CH₂ , and CH₃ CH₂ CH₂ . which give the reactions mentioned Naphthenic acids are outrally unadapased.

msoluble in water, and boil unchanged. The first terms are mobile liquids of unpleasant odour, which disappear as the molecular weight increases, the higher members are viscous but of lower density (0 98 to 0 05)

QUINIC ACID (Tetrahydroxyhexahydrobenzoic acid), CO2H C2H7(OH)4, 18 optically active, but only an mactive modification is known It is obtained

from the roots of coffee, cinchona, etc , and forms white crystuls

Still more interesting are the terpenes and the camphors, which are found in various plants and form the principal constituents of many ethercul oils and essences and of many resins

TERPENES

These are regarded chemically as hydrogenated derivatives of symens (dihydrocymene) and its homologues, and have the generic formula (10Hig. They are not soluble in water, but can be readily isolated from the natural products owing to their volatility in steam

The chemical constitutions of the principal terpenes have been established mainly by O Wallach's investigations over a period of more than twenty years. By their syntheses, their halogenated additive compounds, then behaviour towards oxidising agents and their molecular refraction (see p. 27), it has been shown that they contain two double linkings and a closed ring of six carbon atoms

There is, however, a group of more complex terpence (pinene, camphene, fenchene, etc), which have only one double bond In order to define the position of the double linkages (A), Baeyer numbered the fundamental carbon atoms

¹ HEXAMETHYLENE (hexahydrobenzene, cyclohexane, or naphthrur) is found in Caucasian petroleums and is obtained synthetically from iodohexamethylene or 1 3 dibrumopropane. It is a colourless liquid smelling like petroleum, and it bolls at 80° and resists the action of permanganate. By hydrodic acid at 750°, or in presence of alumina at lower temperatures and preferably under pressure, it is converted into methylpentamethylene.

² Naphthenic acids serve for the regeneration of rubber, for preserving wood in virtue of their antiseptic properties, and for making alkaline scaps of marked detergent power, the aluminium salt is used for impregnating wood, and the manganese and load salts as dryers for oils, the corresponding glyceride is used as a lubricant, as a tanning agent, etc.

of the cymene as in the first figure of the following scheme, which shows the constitution of five terpularies out of fourteen possible theoretically without counting enautiomorphs

To indicate the position of the double linking in the side-chain, instead of giving only the lower number of the two carbon atoms united to the double linking, as in the case of the nucleus (e.g., III = $\Delta^{1.5}$ -terpadiene, II = $\Delta^{1.5}$ terpadiene or a-phellandiene, I = $\Delta^{1.5}$ -terpadiene or γ -terpinene), the numbers of both the carbon atoms united to the double linking are given, the higher number being bracketed (e.g., IV = $\Delta^{1,400}$ -terpadiene or terpinolene, V = $\Delta^{1,400}$ -terpadiene or limonene) In the official nomenolature the name terpane is given to Hexahydrocymene, $C_{10}H_{20}$, Tetrahydrocymene, $C_{10}H_{18}$, being called terpene and the Dihydrocymenes, $C_{10}H_{10}$, terpudienes

As separated from plants or fruits, the terpenes are generally mixtures,

and when obtained from comfers are termed oil of turpentine lemon gives citiene, thyme, thymene, cumin, carvene, orange, hesperidine, etc Although their boiling-points differ little (160° to 180°), they form tetrabromoderivatives and dihydrochlorides with widely different melting-points, these

compounds hence serving for their separation

PROPERTIES Owing to the presence of double linkings, which act as in aliphatic compounds, the terpenes can combine with 4 biomine atoms or 2 mols of HCl (the halogen being readily replaced by hydroxyl, with formation of camphor) and also react with nitrous acid or nitrosyl chloride, forming solid Nitrosites, $C_{10}H_{10}(NO_8)(NO)$, or Nitrosochlorides, $C_{10}H_{10}(NO)Cl$, which are also solid and sometimes blue

They oxidise easily and with mild oxidising agents give benzene derivatives, whilst on energetic exidation they resimify, they polymerise readily, and by acids, for instance, are converted into more stable isomerides. In alcoholic solution they give characteristic colorations with concentrated sulphuric acid. They are usually optically active

They often accompany the natural perfumes of fruits and flowers, which, now that they have been subjected to thorough chemical study, can be obtained purer and of increased value 1

¹ PERFUME INDUSTRY A considerable number of the natural perfumes have been prepared from the very earliest times, but with the perfected methods of extraction new available they are obtained in higher yields and in a more highly refined condition. The most abundant supplies of raw material have always been, and are still, obtained from castern countries, where whole provinces are often devoted to the cultivation of flowers

The most delicate perfumes are those obtained from flowers which contain, along with the prous principle, other substances which refine the aroms and render it setter. The name odorous principle, other substances which refine the aroma and render it softer. The name artificial perfumes was at one time given to mixtures, in proportions carefully chosen, of the fundamental natural essences, a great variety of perfumes being thus obtained, this, however, required a very highly developed sense of small in the operator.

The discovery of artificial perfumes did not diminish the consumption of the natural products

since these became cheaper and thus appealed to a large public.

The consumption of perfumes fluctuates with the fortunes of a nation. The early Eastern races and then the ancient Egyptians introduced perfumes into religious ceremonies, their secular use being often forbidden Gradually, however, they became used for domestic purposes, together with many different pomades and, in some cases, dyes. Egyptian pomades were held in high

CINENE (A1,800 Terpadiene or Dipentene, Inactive Limonene), C10H16, is found together with emeol in Oleum once and also in Laurus camphora and in Russian and Swedish turpentine oils It is formed by isomeric change when camphene, active limenene, pinene, etc, are subjected to protracted heating at 260° to 270°, and is obtained, together with

esteem by Cleopatra With the ancient Greeks, the use of perfumes and cosmetics assumed considerable importance and often degenerated into abuse, and Socrates states that if even

considerable importance and often degenerated into abuse, and Scorates states that if even a slave is anointed with a good perfume he will exhale the same odour as his master. Perfumery flourished under the Romans and declined with the Empire, being recentablished in Italy only at the time of the Romans and declined with the Empire, being recentablished in Italy only at the time of the Romans and declined with the Empire, being recentablished in Italy only at the time of the perfumed Court of Louis XV.

Until about the middle of last century, France enjoyed almost a monopoly in this industry, but when science pervaded this branch of human activity, the French rule of thumb manu facturers did not grasp quickly enough the benefit to be derived from a rational development of their industry, of which England and Russia and, more especially during the past quarter of a century, Germany have taken advantage. At Grasse and Cannes, in the South of France, however, the natural perfume industry is still of importance, certain factories dealing with as much as 3000 kilos of violets (40 to 50 millions of flowers) at a time.

As has been already mentioned, the prime materials come mainly from Eastern Europe, and at the present time also from the Far East, but the cultivation of plants for perfumes is still largely carried on in the South of France and in Stolly.

In annuals the essential oil is formed in the green organs, and the majority of it is found.

In annuals the essential oil is formed in the green organs, and the majority of it is found in the flowers before fertilisation. The extraction of perfumes from flowers and leaves is equiled in the flowers before fertilisation. The extraction of perfumes from nowers and leaves is dufficed out in various ways: (1) By distillation with direct or indirect steam or in variou, the distillation of different densities being separated, this method is used for lavender, resenuity, thypne, orange blossom, and roses, which are unaltered at steam heat. (2) By sufusion for 12 to 48 hours at 60° to 65° with pure fats (clive oil, etc.), the flowers being renewed four to six times until the fat is highly perfumed, the extracted flowers are pressed to free them from fat, and the perfumed fat run into enamelled iron vessels as a concentrated pomade, in this way are treated perfumed fat run into enamelied iron vessels as a concentrated pomade, in this way are treated cassa, violets, jonguils, and sometimes orange blossom and roses, when mixed with other flowers (3) By absorption in the cold of the more delicate perfumes of jessamine, heliotrope, and tuberoses in vessels with glass walls smeared with fat or covered with cloth soaked in oil, the petals are pressed and rubbed, being renewed every day, after some days or at the end of the souson the perfumed fats are shaken for a long time with alcohol, which extracts all the perfume "To obtain colourless products, Piver passes a slow current of air through the flowers and then on to the fatty surface (4) By dissolution. The use of this method is spreading, as it gives highly concentrated, very delicate perfumes. The flowers are immersed in petroleum other, carlion dissulphide, etc., the perfume being extracted by a current of steam from the solvent, which is afterwards recovered (5) By pressure with hand or hydraulic presses, this method being employed with orange peel, bergamot, iris rhizomes, etc. The yields obtained per 1000 kilos of leaves or flowers are about as follow, the prices being those of 1913—1 kilo of orange oil on nevols, from the flowers (value £24 to £28), or 3 kilos of petit gruin (from the leaves); 1 kilo of essence of basal (£0 to £8 per kilo), 1200 grms of essence of insumine (from frosh flowers); 1 kilo of geranum oil (£0 to £8 per kilo), 1200 grms of essence of finantime (from frosh flowers); 1 kilo of geranum oil (from flowers and leaves), 10 kilos of oil of lavender, (6 kilos of marjoram oil, 2 kilos of ment oil, 3 kilos of myrile oil, 2 to 10 kilos of rosemary oil, and 200 to 500 grms. In Germany, although the climate does not seem very favourable, the cultivation of portain

In Germany, although the climate does not seem very favourable, the cultivation of certain flowers for perfumes is largely carried on in some districts. The perfumery factories have hundreds of hectares of land under flowers, not only for commercial purposes but also for analytical and research work. One hectare yields 10,000 to 15,000 kilos of rose leaves. At one time the firm of Schimmel (Leipzig) treated as much as 600,000 kilos of fresh rose leaves per day, 300 kilos of rose oil being extracted, this was repeated two or three times in a month (June). A kilo of the oil is sometimes obtained from 2000 kilos of the leaves.

of the oil is sometimes obtained from 2000 kilos of the leaves.

Rose cultivation is, however, carried on most extensively in Turkey and Bulgaria, where preference is given to the red rose (Rosa damascana), which gives on an average I kilo of oil per 4000 kilos of leaves, although white roses (Rosa alba), giving I kilo of oil per 5000 kilos of fresh petals, are also largely grown. The product from the latter variety is less fine, but it gives an oil crystalliaing at 18° to 20° and is used to mask oils of lower quality, the market value of the oil is judged more particularly from the freezing point, which should be between 17° and 10° for good qualities. Adulteration with alcohol or spermaceti is easily discovered, but it is more difficult to detect additions of geranium oil or palmarosa oil

In 1887 Turkey produced 2400 kilos of pure rose oil (attar of roses), whilst in 1904 and 1906 the output reached 3600 kilos. The annual production varies very considerably, as the plants suffer greatly in dry seasons, especially if water is scarce in the month of May preceding the harvest, in 1907, indeed, the output was only 2000 kilos.

At one time two thirds of the oil went to France, but even prior to the war only one third was ent to the French factories, one-third going to Germany, and the rest to Great Britain and the United States

The price of atlar of roses varied before the war from £32 to £80 per kilo, and was formerly higher than this

1

In 1904 H von Soden patented a process for obtaining more refined and delicate perfumes from flowers. He first obtained a petroleum ether extract which was then evaporated and the

exoprene, when rubber is distilled 2 mols of the veoprene CH_a CH C(CH_b) CH₂, under going condensation

It has a pleasant odour of lemons, and bods at 176 Nitrosodipentene (mactive car Noxime) melts at 93 — With HCL cinency less two stereoisomeric dipentene diluptrochlorides (1 4 dichloroterpanes), melting at 50 and 25. The tetrabrounde melts at 125

CARVENE (d Limonene, Hesperidine, Citrene), CigHig, forms the greater part of enange

residue taken up in alcohol, the latter being distilled off and the residue distilled in storm niet, lowover be pointed out that with this process, I kilo of the fluest rose oil would now cost 14520 and I kilo of oil of violets even more From what has been already stated, it will be recognised that considerable interest attaches

to the study of the composition and constitution of those essences and to their artificial production by synthetical methods. In former times, various artificial perfumes have been obtained empirically, as was also the case with the first coal tar dye, yet it has required systematic chemical investigation to open up new helds in this direction. During the last 30 years, the consumption of performes has increased from \$180,000 to \$2,100,000, owing to the diminished prices of the

natural and artificial products

The first artille fall perfume was nitrobenzon or artificial myrbane oil, which was discovered by Mitscherhele in 1844, placed on the market by Colles and manufactured on a large scale by ultrating hencone from tar by Mansfield in 1817. In about 1840, Pulia exhibsed scalerin in glucoside intrating hencene from (a) by Mansfield in 1817. In about 1840, Pu in oxhibsed scatters (a glucoside found in willow back) and thus obtained safe yieldebyde, which is the pleasant smelling essence of Sparan almana (meadow sweet). A few years later in 1844. Cahours succeeded in isolating the active principle of gaultheria or mentergreen od, consisting of methyl saheylate, which can be obtained synthetically by heating salicytle neid with methyl alcohol (wood spirit) and sulphuric acid. Many of the natural perfumes contain aldebydes, and in 1853. Bertagnin showed how they could be separated pure by first combining them with bisulphite. Bertaglichyde was they could be separated pure by first combining them with bisulphite. Henzaldehyde was synthesised by Cahours in 1868, and commerce, the essence of Isperula edorata, by Perkin in 1876. In 1876 Hammann and Tiemann ascertained the constitution of condin later preparing it from oniferm or, better still, from engenol extracted from clove oil—In 1888 Baur prepared artificial nusk

In 1893 Tiermann and bringer succeeded in effecting the synthesis of violet oil, previously defined at chormons expense from the natural flowers. They also separated *irone*, the ederous arm sph of its root, and determined its chemical constitution. Immediately afterwards they orepared synthetically an isomeride of frome, nanone (see later), to which the delicate islour of he violet is due. These investigators heated entral, which occurs in abundance in Isomone, nanone (see later). with acctone actic anhydride, acotic acid, and sodium acctate, obtaining first pseudo ionone, which has an amplement smell, and, when treated with inhural acid, yields lonone. These graceses were patented by Tiomann and disposed of by him to the most important perfume uninfacturers for 4.50 000

The study of the themsed constitution of the components of perfumes reveals a certain clation between the around and the presence of definite atomic groupings (osmophores) and attempts were made to establish a parturns theory on a similar basis to the releast theory of miline dyes, the characteristic groups of which are termed chromophores. It has not yet been ound possible to formulate a them yets rigorous as that for the colouring matters, and all that ms been fixed as that aldehydes, ketones, mixed others, etc., often outer into the constitution of performes, and that the introduction of certain alcoholic residues into the molecules may ntensify or modify the aroma. The tertiary butyl group produces the odom of musk in

rinitrofoluene, trinitroxylene, etc

The action of perfunce on the offactory nerves is not thoroughly understood, hishough tis regarded by some as due to vibrations of the other similar to those by which light and heat re transmitted, these vibrations originating from the exidation of the substance in the ah his hypothesis seems to be supported by the fact that many odorous substances emit no smell her worked and distilled in an inert gas instead of in all — It is now, however, generally assumed hat the smell is propagated by small particles or molecules, which become detached and, in he state of gas, come into contact with and excite the papillae of the mean innouns membrane he state of gas, come into contact with and excite the pupilise of the mosal mineous membrane he fact that certain substances have little smell in the pure or concentrated state and acquire held maximum smell only when considerably dlinted, is well explained by modern views on obtains, albestelation in dlinte solutions giving rise to the corresponding inus, which become banded and excite the offactory sense. That minimal traces of these substances transmit softune is shown by the retention of this property by garmonts which have been washed five r six times (see Experiment described in Vol. 1, p. 4). A series of tests, controlled by the ifactometer, showed that meat men - who have by no means a very delicate sense of smell in omparison with other animals—per cived the adour of 1 part of prussic acid in 100,000 of water, per cent of the individuals examined detecting it in a dilution of 1 in 2,000,000. Of the women eated, however, not one was able to detect means and in a dilution as small as 1 in 20,000. ested, however, not one was able to detect pressle sold in a dilution as small as 1 in 20,000 'hese results support the view that male animals are very sensitive to the edeur of the females, thich serves to excite their sexual passions. Some individuals, termed uncernes, are quite ithout sense of smell

The influence exercised by the artificial perfumes on the price of perfumes in general is lustrated by the fact that before the war synthetic vanillin was sold, in large amounts, at 0s per kilo, whereas 30 years carlier the natural product cost up to £140. Also heliotropin cost 1881 £100 per kilo in 1890 £15, and in 1902 not more than 30s.

peel oil and also occurs abundantly in cumm oil, anothum oil, etc., lemon oil is a m of pinene and limonene. It is a liquid boiling at 175° and is optically active alt readily convertible into inactive dipentene. It forms a dextro rotatory tetrahr melting at 104°

l-Limonene, $C_{10}H_{16}$, the constitution of which is shown on p 703 (V), can be obfrom d carvone, and occurs, together with l-purene, in pine oil Its tetrabromide at 104°

SYLVESTRENE, $C_{10}H_{10}$, is possibly derived from m-cylinene and forms a dextro ro component of turpentine. It boils at 176° and gives an intense blue coloration wit centrated sulphuric acid and acetic anhydride.

TERPINOLENE ($\Delta^{1.4(8)}$ Terpadiene), $C_{10}H_{10}$, has the constitution shown at IV on J It is obtained by the elimination of water from terpineol and melts at 185°

TERPINENE, C₁₀H₁₆, boiling at 179° to 180°, is obtained in the transformat various terpenes. Its nitrosite forms monoclinic crystals melting at 155°

DIHYDROCYMENE, $C_{10}H_{10}$, obtained synthetically from ethyl succinylsuccinate at 170°

PHELLANDRENE, $C_{10}H_{10}$, is known in both the lawo- and dextro rotatory forms having the same chemical and physical properties (excepting the optical rotation boiling at 172° The former (l-) is found in Australian eucalyptus oil and the law Anethum famiculum and in water feined oil (Phellandrium aquaticum)

MENTHENE, $C_{10}H_{10}$, boils at 166° MENTHANE (Hexahydrocymene), $C_{10}H_{20}$,

MENTHENE, $C_{10}H_{18}$, boils at 166° MENTHANE (Hexahydrocymene), $C_{10}H_{20}$, lat 170°, does not occur naturally, but is obtained by hydrogenatury cymene in prof nickel

COMPLEX TERPENES

Like the preceding, these are composed of a monocyclic system, but two rings, they have only one double linking, and hence combine with two ϵ of hydrogen or halogen

They can be converted readily into cymene and its derivatives

The following four diagrams show how a trimethylene ring or brue formed in Carane (not known in the free state, although the corresponsaturated, synthetic ketone, Carone, is known), a tetramethylene ring in pland pinene, and a pentamethylene ring in camphane

PINENE (Terebenthene, Laurene, Menthene, etc.), C₁₀H₁₆ (constitution, see above), one of the principal components of oil of turpentine, occurs also in sage and juniper of mixed with sylvestrene and dipentene, forms Russian and Swedish turpentine oil

When moisions are made at suitable sensons in certain varieties of pine, fir, and a kind of balsam is exuded in the form of a juice which gradually changes to a soft more or less clear according to the quality. This is known as ordinary turpentins or Am French, Venetian, according to the particular tree and to the locality of origin

Ordinary turpentine consists mainly of resin ands (abietic and other acids a corresponding products of and exidation), its saponification number being 155 to 1 its indine number about 150 When turpentine is distilled with steam, the liquid

or oil of turpentine (turps) is collected separately, the residue which is solid in the cold, being Colophony! The direct extraction of the turpentine from resmons woods or tree stumps by means of suitable solvents has been suggested. The stumps are first cleaved by explosives and then sawn up and rasped, the tine mass being distribed with steam to recover turpentine oil and the residue extincted with benzene or trichloroethylene or hot wood far mixed with pine oil (U.S. Pat. 852-230), after recovery of the solvent by distillation, a dense mass remans composed of 90 per cent of colophony and 10 per cent of oil of tur pentine. Oil of turpentine is rectified by heating with steam in presence of 0.5 per cent of quickline. As the oil always resimiles to some extent when exposed to the nic, it is often desirable to redistil it before use. The strong and less agreeable odour of Russian and Greek turpentine oils is removed or lessened by shirking with a solution of permangainate, dichromate, or persulphate

Fresh oil of turpentine is clear, colourless, and highly mobile. It has the sp. gr. 0.855 to 0.876 and bods at 156 to 161. It absorbs and combines with considerable quantities of ozone and oxygen - part of the latter being converted into ozone and the oil at the same time resunifying. It dissolves sulphur, phosphorus, rubber, and resuss, and is hence used for varmshes, lacs, oil munts, etc. 2

Permangamate in acid solution transforms it partly into Pinonic acid, $C_{10}\Pi_{10}O_{p}$ while with dilute ratio and it gives Terephthalic and Terebinic acids, $C_7\Pi_{10}O_4$. It reacts violently with indine in the hot, forming syntene. The relation between results and atomatic compounds is established by the fact that when the former are distlifed with zine dust they form aromatic hydrocarbons, while if fused with potash they give dis and trishydroxy benzenes Resin substitutes or artificial resins are now prepared by heating phenois with formaldehyde (** Backchte, p. 641)

According to the preponderance of hove or dextro-places, turpentine oil is have rotatory (Venetian, German, and French) or dextro rotatory (Australian)

Pinene contains only one double linking, and hence unites with only 1 mol of HCL giving Pinene hydrochloride, CapliarCl, which malts at 125, and has the small of camphor (artificial camphor). When treated with alcoholic patient, this hydrochloride is converted

1 COLOPHONY (rosen) is hard and brittle, its sp. gr. being 1 050 to 1 085 at 15, and its Colophony (rosen) is hard and brittle, its sp. gr. being 1050 to 1085 at 15 and Its fracture shining and concluded. According to the quality, its colour varies from yellow to brown, but it gives a whilsh powder. At 70 at becomes soft and it forms a kind of camison with hot water. It always melts below 155 and it is readily soluble in abolio (1 in 10), other, benzene, petroleum other, and carbon disniphide. It burns with a smoky liame and, when subjected to dry distillation out of contact with the ali, yields rosen oil. It contains abortic acid. C₁₀H₂₀O₂, which has two double linkings, melts at 165, and is soluble in hot alcohol. From galliput rosen (Prims mardina) pararie acid. C₁₀H₂₀O₃, in pt. 148, has been obtained. Colophony has the rotatory power. 50 6°, and the acid number 145 to 185. One cut metre of the contains about 10 kilos of turpentine, which yields as much as 7 kilos of colophony, while I cut metre of pine gives 22 kilos of turpentine, this leaving 16 6 kilos of colophony, the larch gives an intermediate yield. Colophony is used in large quantities for mixing with soaps (see Resin Soaps, p. 518), for

Colophony is used in large quantitles for mixing with soups (see Resin Soups, p. 518), for my paper, for making varmshes, mustles, etc.—In the United States 45 per cent of the total sizing paper, for making variashes, mustles, etc.

output is used in soap making

Large quantities of it are incorporated with artificial way (corasin), which is thus cheapened; to deadors the restn, it is flucly ground, more rated with dilute sulphuric need for B or B days and then suspended in hot water and subjected to a jet of steam for some time

treatment it melts and mixes well with the ecrashi

Colophony is also used for making scaling wax by mixing with shellar, turpentine, and a larger or smaller number of mineral substances (chalk, burnt gypsum, magnesia, sine oxide, baryta, kaolin, etc.), according to the quality required; the fused mass is coloured with clumbar (for the finer red qualities), minium, feed oxide, or red other. The best qualities contain only 40 per cent of mineral matter and are mainly shellar, while the inferior kinds contain as much as 70 per cent, of mineral matter, the residue being principally edophory. Scaling wax is coloured black by lamphlack or bondblack, green by Prossian blue, yellow by chrome yellow, or blue by ultramarine; when fused, colophory may be coloured also with algol or indauthrone dyes $(q|e_i)$. Substitutes for scaling wax are now prepared from artificial resins $(we|e_i)$. $(logal|e_i)$ resin has already been described (p|495). Dammar, a similar resin, gives line, pule variables. Australian dammar or copal is known also as kauri gum.

4 Olf of Turpentine consists almost outirely of l pinene (lorebeathene) and d pinene (australene). The most common commercial varieties are French, English, Russian, German and American

and American

The smell of European turpentine oil has been improved by treatment with exidising agents, auch as permanganate, persulphates, or chromic acid, or, better still, with hydrogen peroxide, sedium peroxide, barlum peroxide, or oxides of nitrogen

By suitable application of Halphen's reagent (p. 637) or mercuric accetate, C. Grimuldi (1910) was able to detect adulteration with pine oil or resin oil

into CAMPHENE, C10H16, m pt. 50°, which is known in three optical modifications and transformed by oxidising agents into camphor and by ozone into the ozonide (Hairie 1910), these reactions establishing its constitution. FENCHENE is similar to camplici but is an optically inactive liquid, boiling at 158° to 160°, it resists the action of intr acid, but not that of permanganate

CAMPHANE, C10H18, forms white volatile crystals melting at 154° and boiling at 168 and is obtained by reducing d or l bornyl iodide. It is optically inactive, and is the saturate

hydrocarbon of the camphor nucleus

HOMOLOGUES OF TERPENES The most interesting lower homologue is Hein terpene or Isoprene, C, H, (see p 109), which gives various terpenic polymerisation preduots, such as $(C_5H_8)_3$ (Clovene, Cedrene, Caryophyllene, etc.), $C_{20}H_{02}$ (Colophene), $(^{1}_{10}II)$

RUBBER (caoutchouc) is obtained from the milky juice (litter) exhibing when incision are made in the stems of certain plants growing in the tropical regions of South Americ (especially Brazil), East and West Africa, Asia and Polynesia (Coylon, Malacon, Sumatra Java, etc.) The plant families giving rubber are Euphorbiaceae (the genus Henen brus henses of Brazil and Ceylon gives the best Para rubber, Manshot, also of Brazil, etc.)

In some districts the trees were formally out down to obtain the rubber, but nowadays V shaped or spiral or herring bou messions are skilfully made in the bark (Fig. 463), the late being collected each day When the growing use of the automobil involved a great morease in the demand for rubber, plantation were laid out with selected seeds and plants, which are carefull

Coagulation of the Rubber 18 an important and delicate opera tion According to Henri (1906-1008), the family alkaline late contains the rubber, ready formed, in the form of munut emulsified drops (50 millions per cc), which are in continua movement, and of which this author was able to obtain cinematographic representation, a coagulum is produced b ands, by salts of divalent metals (Ca, Mg, Ba, etc.), and los rapidly by salts of trivalent metals, etc., but not by alkalis conditions of coagulation, which are not identical with differen

. .

fresh latex in a mould by means of hot gases until about a hundred layers, each about 0 i mm. in thickness, are obtained. The commoner qualities are set by the heat of the sun with addition of acid and water, the electrolytic separation of rubber has also been sug gested (Ger Pat 218,927, 1908), but better results appear to be obtained with HI or ('() (Pahl, Ger Pat 237,789, 1910) or with formalin or a trace of mercuric chloride. Various plant junces, salt solutions, soap solution, etc., are also used.

The ideal coagulant should leave the proteins unchanged and should form harmless salts with the mineral constituents. Such substances as acetic acid do not answer these requirements. The coagulating action of smoke, used by the natives, is due to the carbon dioxide present, this being, unlike other coagulants, harmless in excess. Frank and Marck wald (1912) obtain good results with tannin. Coagulation by heating in churns or by centrifugation is spreading nowadays. To preserve the latex and prevent exidation, the addition of 4 grms of hydrosulphite per litre has been suggested.

The coagulated rubber is marketed in different forms I and is distinguished as: American (Brazil, Mexico), African (tropical, East and West Africa), and Asiatic (Malay States, Polynesia, etc) All these forms are brown or almost black outside but pale brown or almost white inside

Raw Rubber has sp gr 0 91 to 0 97 and is of more or less unpleasant odour. It is highly elastic at ordinary temperatures but only slightly so at 0° When pasted for some time at 60° at becomes plastic and loses its elasticity, which is regained at ordinary temperatures.

1 Rubber is sold as crêps, balls (10 to 50 kilos) and marbles (3 to 5 kilos), sheets, laces, flats, buttons, cakes or biscuits, scraps or niggers, strips, twists, clusters, thimbles, flakes and lumps,

At 100° it becomes soft, and at 140° viscous, and at 180° it melts, the original proporties peing regained only slowly at ordinary temperature. It is a good electrical insulator, is asoluble in cold water, and swells in hot water or alcohol, it swells even more and dis solves slightly in carbon bisulphide, benzine, other or oil of turpentine, and completely in ubber oil obtained by the dry distillation of rubber. It resists the action of alkalies and blute acids, but in the air oxidises slowly at the surface, undergoing resimilication and When heated it dissolves considerable amounts of sulphur, assuming new properties which render possible its application for many purposes (see later, Vulcanisation)

Treatment of Rubber The raw product is softened in hot water and then repeatedly subjected to great pressure between iron rollers revolving at different rates, impurities seing washed away by means of a water spray The loss attending this treatment amounts o 10 to 40 per cent.

The product is then mastrated to give a homogeneous mass free from porcs. Strips ere placed in a stationary, horizontal drum inside which a second drum, furnished with esth or veins, and heated internally, revolves eccentrically. During this treatment and he succeeding passage of the rubber between two tepul cylinders rotating at different ates, the various initional filling materials for colouring of weighting (10 to 50 per cent.) the ubber may be introduced, together with the necessary amount of sulphur (4 to 15 per ent.) for the subsequent vulcanisation. For colouring use is made of antimony or mercury innabar, ferrie oxide, or ochre, barium sulphate, zine white, lithopone, gypsum, tale, shalk, kaolin, magnesia, etc., being employed as fillers 1. Other additions are also made for btaining the various qualities of rubber required for making different articles

Rubber thus prepared is then vulcansed, the strength and elasticity being thus enhanced, and the rubber rendered more stable towards changes of temperature and to exidation Juleanised rubber is not soluble at ordinary temperatures in the usual solvents of raw ubber, is not tacky in the cold, is almost impervious to water, and more resistant towards oids, alkalies and the air, and maintains its elasticity between - 20" and + 120° Dichloroethylene (dieline, see p 122) forms a good solvent for it

Vulcanisation with sulphur was suggested in 1830 by Goodyear and by Hancock, the ubber boing mixed with sulphui and heated at 120° to 140° Addition of various subtances (oxides of lead, zinc, magnesium, calcium, etc.) in small amounts as accelerators of ulcanisation has been proposed, and nowadays the time required is considerably shortened by means of organic accelerators, e.g., piperadine, aldehydo-ammonias, p. phonylonediamine, he nitroso derivatives of dimethylaniline, diphonylamine, methylaniline, etc., or, better, he dithio derivatives of imino bases, e.g., dimethylaminonium dimethyldithiocarbamato nd piperidine piperidyldithioon bamate (Bayer, 1915)

A system of rapid vulcanisation, long known and widespread at the present time, is the o called cold vulcaniation 2

Addition of 0.5 per cent of zinc oxide to rubber increases by 0.26 per cent, the sulphur ombined during vulcanisation and also increases the tensorty and resistance to torsion, further ddition being without effect Magnesia behaves almost like zine exide, but tale is indifferent r hormful

* Rapid cold vulcanisation, proposed by Parkes in 1846, consists in immersing the rubber is a solution of sulphur chloride in carbon disalphide. Henriques (1893) showed that the sulphur hloride combines with the rubber, this result being confirmed by Wober (1894) Later, finrichsen, Kindscher and Bernstein found that 2 mols, of jubber units with 1 mol of the hloride, giving the compound $(C_{10}H_{16})_8$, S_2Cl_8 (15 per cent. of S), the addition taking place a the same way as that of sulphur chloride to othylene, amylene, etc. Since, however, a rubber ontaining 5 per cent. of sulphur is over-vulcanised, that is, hard and brittle, the chemical attempristation of the phenomenous is insufficient. aterpretation of the phenomenon is insufficient

E. Stern (1909) holds that the quantity of sulphur fixed is variable, while Osiwald (1910) xplans vulcanisation as an adsorption phenomenon of the colloidal rubber, and assumes that he sulphur forms a sense of reaction products, the first and last members of which cannot be solated, and that the process is partly reversible. Other explanations have been advanced by pence and Young (1912), Skellon (1913), Bisow, Bruni and Amadori (1919), etc.

In practice, use is made of 2 to 4 per cent solutions of sulphur chloride in carbon disulphide r benzinc, which is safer. The rubber articles are immersed in the solution for a few seconds

r minutes, according to the thickness of the material and the degree of vulcanisation required. Imail and thin objects may be readily vulcanised in the vapour of sulphur chloride, rendered nore volatile with a little carbon tetrachloride. Peachey (Eng Pat. 129,826, 1919) obtains apid and complete vulcanisation in the cold by producing nascent sulphur within the rubber y alternate treatments with hydrogen sulphide and sulphur dioxide.

In general, the sulphur chloride process gives a too superficial vulcanisation. Bruni's process

1920), which appears more satisfactory, consists in forming in the rubber thiogarbanilides or

With age, rubber (tubing, etc.) becomes hard and brittle, and cracks. According to Wo Ostwald (Ger. Pat. 221,310 of 1908), it lasts longer if quinolline, and incidently laudine, etc., it used in its preparation. Introduction of excess of sulphur during vulcamentation causes rubbe to deteriorate more easily in the air., in some cases the excess of sulphur is climinated by treatment with hot soda solution. Small articles keep well in closed vessels containing petroleum

In the regeneration of rubber from old vulcanised articles, the material is freed as false possible from vegetable and inneral impurities and from any portions containing textile fabric. The necessary removal of the sulphur cannot be effected by solvents, which dissolve only the free sulphur. The sulphur compound of rubber consists of a more or less highly condensed product of $C_{10}H_{10}$ with $C_{10}H_{16}S_0$ (or S_2Cl_3), and many processes have been devised for the removal of the sulphur from this complex. Rubber rich in combined sulphur, i.e., hard rubber (ebonite) is not readily devulcanised and is usually powdered and used in making fresh ebonite. If not too hard, rubber free from fabric is disintegrated and impregnated while hot with fatty or mineral oils, paraffin wax, etc., the resulting product being mixed and passed between hot rollers so as to obtain clastic sheets.

Waste containing fabric (goloshes, tyres, etc.) is occasionally treated mechanically, being powdered and then winnowed to eliminate the particles of fabric. Such separation is, however, imperfect and it is preferable to dissolve out the rubber rather than the fibric by means of solvents. The Mitchell process consists in dissolving the fibric in hot 65 to 70 per cent sulphuric acid, the mass being washed with water and dilute caustic soda and then rendered plastic by steam and hot rollers, this procedure does not, however, remove mineral constituents (chalk, zinc oxide, etc.). The alkaline process suggested by Marks (1899) gives better results, and consists in heating the waste rubber with 10 per cent caustic soda under pressure, the hydrocellulose being removed and the residual rubber well washed and rolled hot, the caustic soda dissolves also fatty oils (i.e., of factis)

In the processes of the other class, the rubber is dissolved in hot between or its homologues or certain chloro compounds (dieline), the extraction being carried out in ordinary extractors or in autoclaves.

According to Hinrichsen and Kindscher (1912) cold vulcanised rubber may be completely desulphurased by heating it for several days in a reflux apparatus with alcoholic caustic soda and scrap copper, and hot vulcanised rubber by heating, in a copper lined autoclave, with benzene, caustic soda and zinc. Various other methods have also been suggested. Sachs (Ger Pat 275,061, 1913) utilises old powdered rubber by mixing it with 20 per cent. of colza oil and 50 per cent. of magnesium sulphite and heating at a pressure of 5 to 7 atmos, for 20 to 30 hours.

Regenerated rubber contains at most 80 per cent, of true rubber and sometimes only 25 to 30 per cent, but is little inferior to virgin rubber. The coefficient of rubcanisation, that is, the amount of combined sulphur per 100 parts of rubber, does not exceed 4 to 5 in recovered rubber.

USES OF RUBBER Rubber is used in enormous quantities in making tyres, water proof fabries, horse shoes, gloves, hosepipes, floor coverings, artificial leather and sponges, toys, etc. Mixed with guttapercha 1 and sawdust it is used to make kamplulican, and large amounts are utilised in the manufacture of ebonite 2

other disubstituted aromatic thioureas, eg, $2C_0H_0$ $NH_0 + CS_0 = H_0S + CS(NH_0)_0$, the action being accelerated by sulphur or zinc oxide

Romani (1920) finds that tetra-alkylthiouram disulphides, c_{ij} , (CH_{a)}N CS S CS N(CH_{a)}s, form ultra auto-accelerators, as they vulcanise in 15 minutes at 145° in presence of rine oxide, addition of free sulphur being unnecessary

addition of free sulphur being unnecessary

Scott and Bedford (1920), who obtained the same results as Bruni (see above) by using piperidine in place of aniline, attribute the accelerating action to the formation of vine piperidyldithiocarbamate.

GUTTAPERCHA resembles rubber, but is more resinous and is obtained from the latex of various plants of the Sapotaceae family growing in Sungapore, Malacca, Bornoo, Sumatra, Java, Banca, etc. It occurs to the extent of 10 to 12 per cent also in the trunk, branches and leaves and may be extraoted by means of solvents such as toluene, potroleum ether, carbon disulphide. Its specific gravity is about 0.97 or, when rolled, up to 1.02. Between 45° and 60° it is highly plastic and may be drawn into thin threads and wolds readily with itself. It melts at about 120° and at higher temperatures docomposes, giving a repulsive colour. It is a bad conductor of heat and electricity, and becomes electrified when rubbed. It dissolves in benzene, chloroform, oil of turpentine, etc., and to a slight extent in alcohol, ether and petroleum ether, but is insoluble in water. It resists the action of dilute noids.

Guttapercha contains 76 to 84 per cent. of gutta (a solid hydrocarbon, m pt 53°), 14 to 15 per

For this note see next page

SYNTHETIC or ARTIFICIAL RUBBER must not be confused with rubber substitutes 1 During the European War large plant was erected at the works of Fr Bayer at Lever rusen for the production of 2000 tons of synthetic methyl rubber per annum When the var ceased the manufacture was abandoned owing to the enormous increase in the production of natural rubber and to the low prices provailing

The chemical constitution of the hydrocarbon of rubber, C10H18, was determined by Harries (1905) by means of its azunude, $C_{10}H_{16}O_8$, which decomposes into levulinic aldehyde, so that the hydrocarbon must be regarded as derived from an 8 carbon atom ring (a CHa C CHa CHa CH

ing never yet found in natural products), (dimethylovelo-СН СН, СН, С СН,

potadiene) The results of later work (1907-1914) led Harnes to abandon this formula, since decomposition of the ozonide of a iso rubber (obtained by heating the hydrochloride of rubber with pyridine under pressure) yields, beardes levulinic aldehyde, also marked quantities of discotylpropane, undecatrione, pentadecatotrone, forme, levulinic and hydrochelidonic acids, etc. These products, especially the pentadecatetrone, CH3 CO [CH2] CO [CH2]3 CO [CH2]8 CO CH3, exclude the view that the nucleus of rubber is formed from an 8 carbon atom ring, rings of 12 or 16 atoms being ruled out for other reasons. Most probably rubber contains a ring of 20 carbon atoms, which may yield numerous isomerides

The molecular weight of the corresponding penta ozonide in behivene (in place of acctio acid, formerly used) is 535, approximating to the formula Can Handon, so that isoprene rubber would be a pentamethyleyeloeicosanediene Butadiene rubber will not contain the five mothyl groups, whereas dunothylbutadione subber will contain ten methyl groups, numerous isomerides being possible in both cases

In 1909 Harries and Hoffmann obtained an artificial subbar by polymerising isopreme in presence of glacial acetic acid in scaled tubes at 100° ($2C_5H_8$), = ($C_{10}H_{18}$), but the process is too expensive to be used industrially The firm of Bayer (Elberfeld) also obtained

RUBBER SUBSTITUTES Many of those have been prepared, but the only one of much practical importance is the so called facts, of which two types are on the market—white and brown or black—The latter is made by boiling rape oil or lineact oil in an open vessel for two hours, cooling, and passing a current of air through it for 36 hours. It is then vulcanised by adding 2 per cent. of flowers of sulphur, heating for two hours at 140°, adding a further 1 per cent of sulphur, and raising the temperature to 160°, when it hegins to rise—White facts is obtained by treating the oil with 20 to 25 per cent of sulphur chloride (free from dichloride), the energy of the reaction may be modified by adding the sulphur chloride dissolved in carbon disulphice. The mass is obtained in these or blocks by requiring it immediately on to cold motal plates or The mass is obtained in sheets or blocks by pouring it immediately on to cold metal plates or moulds. These substitutes are almost as cleatic as jubbet and are used to adulterate rubber, they are insoluble in water or add, but dissolve slightly in dilute alkali. They are distinguished from rubber by being saponlflable with alcoholic potash

cent. of albanan (white, crystalline substance, m. pt 195°, soluble in het alcohol, in benzene, etc.) and 6 to 4 per cent of fluant (yellowish resin, m. pt. 110°, soluble in cold alcohol). It is used as an electrical insulator, for making tubing and vessels resistant to alkalis and dilute solds, for making mastics and varnishes, and also in electroplating, as it takes the finest impressions. It yields vulcanised products like rubber and hard materials like ebouite. It costs rather less than rubber

BALATA, similar to guttapercha, is obtained from the latex of Minusops balata (Sapotacem), a large tree of Venezuela, Brazil and, especially, British and Dutch (Iuiana. It is used as an insulating material and for making waterproof shoes and power transmission belts. Its price is about one half that of rubber

* EBONITE is obtained by mixing rubber with 30 to 40 per cent. of sulphur and with various mineral substances (kine sulphide, chalk, lead carbonate, heavy spar, magnesia, pigmente, etc.), compressing the material in moulds, coating the objects with tinfoll and vulcanising at 130° to 150° for some days

It is a hard brown or black material, which is a poor electrical conductor, expands considerably when heated, and is resistant towards alkalis and dilute acids. Under pressure the various better, that is resident towards making and things and to the remaining of the various solvents dissolve first the sulphur and then the rubber, the mineral matter remaining it may be turned in the lathe and polishes well, and becomes plastic when warmed. It is used for making many varied articles (boxes, combs, buttons, accumulator boxes, gramophone discs, knife handles, batons, etc., mixed with emery it is used for artificial grindstones) artificial rubber from isoprene and from erythrene C, He (see p 109, also Ger Pat. 235,423 and 235,686 of 1909 and Fr Pat. 425,582 of 1911), by prolonged heating in presence of benzene, etc., but this product is also very expensive

The Badische Anilin- und Soda Fabrik (Ludwigshafen) obtained rubber by heating isoprene and dimethylbutadiene (Fr Pats 417,170 and 417,768 and Eng Pat. 14,281 of 1910) in presence of alkali, which has a polymerising action. Contrary to Weber's statement, Hinrichsen (1909) showed that the latex of rubber trees does not contain diterpenes, which polymerise to form rubber, but that the latter exists ready formed in the latex

Synthetic rubber obtained from the isoprene formed on decomposition of turpentine. cannot be vulcanised (unless a little natural rubber is added), whereas that obtained from the isoprene of rubber is vulcanised with less difficulty

The polymerising action of sodium on isoprene which yields rubber even in the cold, was

discovered by Matthews in 1910 and by Harries shortly afterwards.1

STATISTICS AND PRICES In 1840 the world's consumption of rubber was only 400 tons, but after 1860, when methods of vulcanisation had been studied, the consumption began to moreose enormously

The World's output of rubber (in tons) from the old forests and the new plantations was as follows

	1906	1010	1018	1015	1916	1917	1018	1019	1020	1021
					01.500	97,000	25.000	35,600	30.000	20,000
Brazil	35,000	40,800	99,370	37,220	34,500	37,000	20,000	נאטווימני	80,000	20,000
Africa, Moxico, etc	27,000	21,000	21,000	18,000	_	10,528	10,829	11,185	0,015	3,000
New Plantations	145	8,200	47,018	107,807	-	213,070	255,950	286,225	308,816	270,000
Total	02,146	70,000	107,088	158,087	_	205,008	201,570	881,860	94H 781	203,000

I ISOPRENE is obtained in 25 per cent yield by heating oil of turpentine, as proposed by Tildan. By working under reduced pressure and first preparing dipentenc, Standinger and Clottlob raised the yield to 05 per cent., but even then the supply of oil of turpontine is inadequate and its price too high. On this account the firm of Fr. Bayer prepared isoprene by treating acetone and its homologues with formaldehyde and dimethylamine so as to obtain methylamine oxides which, by the further action of methyl halides and subsequent decomposition of the

oxides which, by the little action in the little ac

depends on a supply of amyl alcohol, which is formed in small amount during electronic forments from Trimethylethylene was then obtained quantitatively from the pentane, isopentane and tetramethylmethane cocurring in petroleum

Polymerisation of isoprene, by either heat or sodium, yields an abnormal rubber which vulcenises incompletely and has, as fundamental constituent, a hydrocarbon different from that of natural rubber, and is partially soluble in beuzone. The Badische Company obtained from isoprene normal rubber, which is insoluble in or only slightly swellen by benzene and exhibits great tensoity, by two different methods (1) by treating isoprene with the ozonide of terpenes or other unsaturated compounds, a good yield of so-called ozone rubber is obtained.

(2) by condensing with sodium in presence of CO₁, carbon dioxide rubber being thus formed. The differences between the various artificial rubbers probably depend on differences in the degree of polymerisation. Of interest also are the methods of obtaining isoprene by pyrogonic decomposition of crude petroleum and its residues, although all the petroleum in the world would not yield more than 10 per cent of the rubber derived from plantations.

The preparation of s dimethylbutadiene, CH₂ C(CH₂) C(CH₃) O(H₃—by converting acetylene successively into acetaldehyde, acetic acid and acetone, this by reduction (with aluminium and acetic acid) giving pinacone and the latter, by dehydration, dimethylbutadiene—polymerisation of which yields methyl rubber, is not economically practicable nowadays. The same is the case with the preparation of isoprene from isopentane (2 methylbutane) by the following stagos oblicoisopentane (with Cl) — trimethylethylene (amylene or pental), C(CH₃)₂ CH CH₃ (by red-hot lime) — dichlorosopentane (with Cl), which, if passed as vapour over alumina at 400°, gives isoprene or isomerides which yield isoprene when heated with estalysts.

The practical difficulties encountered in the Bayer works at Leverkusen were very great

reports of the polymerisation occupied, however, as much as three months, the vulcanisation was completed by means of various accelerators (see above), such as piperidine or, better, p phenylenediamine, p-aminoazobenzene, toluidine, etc., which also protect the rubber against atmospheric oxidation. Substances capable of increasing the elasticity of these synthetic rubbers may also be added

. : 1 ·

The consumption in tons in different countries in 1920 (1910) was United States, 220,000 (230,000), Great Britain, 25,000 (33,000), France, 14,000 (22,000), Italy, 6000 (14,000), Canada, 11,000 (9500), Australia and Japan, 9000 (10,000), Germany, Russia and Austria, 9000 (5500), Scandinavia, 6000 (3500), Bolgium, 2000 (2000), various other countries, 1000 (3500)

Experts calculate that the total output of rubber will be about 420,000 tons in 1022, 470,000 in 1923, 520,000 in 1924, and almost 600,000 tons in 1025, in spite of restrictions imposed by an association of the principal producers

The price of rubber has fallen greatly in recent years, owing to increased output and diminished domaind, and in 1921 was less than 1s and in March, 1922, 8d per lb

OXYTERPENES

Other hydrocarbons related to the terponos are some and some, two isomerides of the formula, $C_{18}H_{18}$, the ketones of which, $C_{18}H_{19}O$, are some and some, s.e., the aromatic principle of iris root, having a marked violet smell.

IONONE (Artificial essence of violets) was propared synthetically by Tiemann and Krüger in 1883 by shaking equal proportions of citral and acctone with barium hydroxide solution, extracting with other and expelling the latter by evaporation

The fraction of the residue boiling at 138° to 155° is pseudoionone, which is transformed into the isomeric ionone by the action of dilute acid (Ger Pat 75,120). According to Ger Pat 113,672, the condensation may be effected by water in an autoclave at 170°, while in presence of sodamide it takes place at the ordinary temperature (Ger Pat 147,830). See also Ger Pat. 138,939

The constitution of synthetic ionone is represented by the annexed formula

Ionone (100 per cent) cost before the war £152 per kilo, and β -vonone, £60, the 20 per cent solutions were sold at one-fifth of these prices

MUSCONE, C₁₆H₂₆O or C₁₆H₃₆O, is the odorrforous component of natural muck, which is obtained from a pouch situated behind the navel of the male muck deet (Moschus moschiferus), living in the mountains of Central Asia (Thibet, Tartary, Siberla, Cochin China, Tonkin, China). The entire pouches are placed on the market and weigh 20 to 40 grms, 60 per cent. consisting of muck. Of the latter, 60 to 70 per cent. dissolves in water (and effervesces with acids), 10 to 12 per cent. in alcohol, and very little in ether, chloroform or benzene, the moisture amounts to 15 per cent and the ash to 8 per cent. Muck contains lats, albuminoids, ammonium carbonate and 0.5 to 2 per cent. of a volatile oil which distils a steam and forms muscone (density 0.9268, rotation + 10°, b.-pt. 330°), which is a ketone and has a very intense, pure odour of muck. Before the war, Tonkin muck in the pouch was sold at about £140 per kilo and Siberian at less than £80. Muck is often largely adularated. The price fell as a result of the manufacture of artificial musk.

 1 ARTIFICIAL MUSK has not the composition of muscone, but has the same marked adour, although a little less delicate. It was prepared by Baur in 1888, and manufactured by the Fabriques de Produits Chimiques de Thann et de Mulhouse, by introducing into s trinitro-

oluene the tert-butyl group, the constitution being $OH_a \longrightarrow NO_a$ Of the many

themically analogous products very few have the musk odour, among these being xylol musk, because by condensing m-xylene with tert isobutyl chloride in presence of aluminium chloride and nitrating the pseudobutyl m-xylol thus formed. The purified product has m-pt 112° and, liluted with nine times its weight of acetanilide to attenuate the excessively powerful perfume, was at first sold at £100 per kilo, natural musk then costing £200 per kilo. Various similar redducts have been made

VOL IL

CAMPHORS

While the terpenes are liquids, the camphors are generally solid. Thus contain alcoholic or ketonic oxygen and the principal ones with a single ring are. Methone, $C_{10}H_{18}O$, and Terpinol with the same formula, while Menthol and Carvomenthol are $C_{10}H_{20}O$, and Terpin $C_{10}H_{20}O_2$. Among the camphors with complex rings are true Camphor, Fenchone, and Carone, $C_{10}H_{16}O$, and Borneol, $C_{10}H_{18}O$

The camphors poorer in hydrogen and oxygen contain double linkings form additive products, and are readily oxidised, while the others behave like

saturated compounds

When reduced with sodium, the ketonic camphors yield the alcoholic camphors, which are converted into the former on oxidation. It is possible to pass from the camphors to the terpenes by way of the chlorides, and reduction of the alcoholic camphors often gives the terpene hydrocarbons. Thus, Terpane (hexahydrocymene) can be obtained by reducing the Terpanol (menthol, $C_{10}H_{20}(\cdot)$), which contains a hydroxyl or secondary alcoholic group, this being transformed by oxidation into the ketonic group with formation of Terpanone (menthone), so that the hydroxyl should be in the ortho-position with respect to the CH $_3$ and C_3H_7 groups, as is shown below in the constitutional formulæ. On the other

hand, since Carvacrol, $C_0H_3(OH)(CH_3)(C_3H_7)$ (isomeric with corvone of carvol) of known constitution, gives on reduction a terpanol (carvomenthal, with the hydroxyl in the position 2) different from that of menthol, the hydroxyl of the latter must be in position 3

MENTHOL (3-Terpanol), C₁₀H₁₀ OH, occurs in abundance in oil of peppermint, from which it can be obtained crystalline by cooling. It melts at 42°, boils at 213°, and has the strong odour of peppermint. The position of the OH is established by the fact that, with bromine in chloroform solution, menthons (which is the corresponding ketone, boiling at 207°, and also having a strong smell of peppermint) gives dibromomenthone, and elimination

the CH_s and OH are here undoubtedly in the meta-position, since elimination of the $C_n\Pi_s$ by means of P_sO_s yields *m*-cresol. When heated with copper sulphate, menthol yields cymene. Four isomerides of menthol are possible theoretically. It is used as an ansesthet m and as a disinfectant. Its alsoholic solution is here rotatory

MENTHONE (3 Terpanone or 3-Menthanone), $C_{10}H_{10}O$, is formed by exidation of menthol with bushromate and sulphurm acid and yields menthol again when reduced with sodium. It is also found in perperment oil and is a liquid, b.-pt. 207°, with a delicate perperment odour. It may be converted into thymol.

PULEGONE ($\Delta^{4(8)}$ Terpen-3 one), $C_{10}H_{18}O$, predominates in oil of pennyroyal (Menthu pulegrum) It is a ketone boiling at 222°, and on reduction gives menthol, so that the carbonyl group is in position 3

CARVONE (Carvol or Terpadien-2 one), $C_{10}H_{10}O$, is a ketone giving Carvoxime, $C_{10}H_{1i}$; NOH, which exists in optical isomerides and is identical with nitrosolimonene. It forms

¹ Ciamusian and Silber (1910) showed that, in alcoholic solution and under the action of light, menthone is hydrolysed with formation of decole acid, and an aldehyde isomeric with cut nellul (p 252)

the principal component of cumin oil, boils at 228°, and is converted into Carvacrol, $C_{10}H_{18}$ OH, when heated with potash or phosphoric acid

TERPENOL ($\Delta^{4(8)}$ Terpen-1-01), $C_{10}H_{18}O$, melts at 70°, and, like tetramethylothylone, forms a solid blue nitroscoliloride, the double linking being in the 4(8) position, between two tertiary earbon atoms.

TERPINEOL (Δ^1 Terpen 8-ol), $C_{10}H_{18}O$, melts at 35°, bolls at 218°, and is known in the form of various optically active isomerides. It has a pleasing odour of lily of the valley, lilac and cyclamen, and occurs in ethercal oils. With sulphuric acid it forms terpin hydrate, which is also converted back into terpineol by sulphuric acid.

TERPIN (I 8-Terpandiol), $C_{10}H_{18}(OH)_8$ Terpin hydrate, $C_{10}H_{80}O_8$, H_8O , is slowly formed from oil of turpentine, $C_{10}H_{10}$, in contact with dilute nitric acid and alcohol. This crystalline hydrate melts at 117° and then loses I mol of H_8O , anhydrous terpin distilling over at 258° This is optically inactive and is not obtainable in active modifications, so that the presence of asymmetric carbon atoms is excluded. The hydrate is obtainable also from geramol by the prolonged action of 5 per cent sulphuric acid, $2H_8O$ being added at the double linkings

Nitrie acid exidises torpin, giving Terebic Acid, which has the known constitution

so that the position 8 must be occupied by a hydroxyl, the other hydroxyl can only be in position 1, since otherwise an asymmetric carbon atom would be obtained.

CINEOL, $C_{10}H_{19}O$, has the constitution of terpin less H_2O , which is eliminated from the two hydroxyls, an atom of oxygen thus remaining united to the two earbon atoms I and 8 Cineol melts at -1° , boils at 176° and occurs in abundance in eucalyptus oil and in oil of wormseed.

FENCHONE, $C_{10}H_{16}O$ The dextro-form occurs in fennel oil and the lawo in thuja oil. It is a ketone similar to camphor and can be converted into Fenchene

CAMPHOR (ordinary camphor, laurel camphor, or Japan Camphor), C10H16 is the constituent which separates in the solid form from the essential oil Laurus camphora, a tree which is cultivated in China, Japan, and Formos

and grows well in Southern Europe (Italy)

The wood (thirty to forty years old) is chopped up and boiled with wat until the camphor floats at the surface, on cooling, the crude camphor se to a solid mass, which can readily be separated In some cases the cumpli is distilled directly from the wood in a current of steam. The yield is abo 1 kilo per quintal of wood The crude product is refined by mixing with quic lime and charcoal and subliming at a gentle heat

It is obtained thus as a white, crystalline, and not very haid mass, while has a characteristic odour, and partially sublimes at the ordinary temperatur It melts at 178°, boils at 207°, and has the sp gr 0 922-0 995 (the tiner Born camphor has sp gr 1 10) In alcoholic solution it is more or less dextro-rotator according to its origin, but matricaria camphor (from the leaves of feverfo

Matricaria parthenium) is lævo-rotatory

With iodine in the hot it forms carvacrol (see above), while oxidation wi nitric acid gives Camphoric Acid, C8H14(CO2H2), which exists in two noti and two mactive forms Further oxidation yields Camphoronic Acid, CuH14(which gives trimethylsuccinic acid on dry distillation When distilled wi P2O5, camphor loses H2O and forms cymene On reduction with musco hydrogen, ordinary camphor gives Borneol (Borneo cumphor), $\rm C_{10}II_{17}$ Ol which melts at 208°, boils at 212°, and when oxidised gives ordinary campho which it strongly resembles

Between 1860 and 1893 various constitutional formulæ for camphor we proposed by Kekulé, Armstrong, Bredt (1884), and G Oddo (1891), the last whom gave a formula which explained well all the reactions and properti observed up to that time More and more acceptable constitutions we given by Widmann (1891), Collie (1892), Bouveault (1892), etc., and final

by Bredt (1893)

The constitution of camphor now seems to be definitely established as the result of various syntheses, especially that from ethyl oxalate and eth $\beta\beta$ -dimethylglutarate, two compounds which are obtainable synthetically fro their elements. The various stages in this synthesis are as follow, R indicating the alkyl group

This constitutional formula proposed for a-camphor by Biedt, although still contested, is the one generally accepted by chemists, since it corresponds best with most of the reactions of camphoi In 1911, Bredt and Hilbing prepared β -camphor, containing the CO group in the β -position, from bornylenecurboxyloc acul , it melts at 182° and boils at 213 4°

Camphor forms strongly rotating energetic sulphonic acids, eg, CH SO₃H , which are able to resolve many racemic compounds into

their active components

Owing to the continually increasing demand for camphor, especially for making celluloid, and since many terpenes give camphor when oxidised, many attempts have been made to prepare artificial camphor from oil of turpentine. The latter contains pinene, $C_{10}H_{18}$, which is readily convertible into borneol, C10H17 OH, or isoborneol, this giving the mactive facernic compound corresponding with natural camphor on oxidation

According to Ger Pat 134,553, when anhydrous turpentine is heated for a long time at 120° to 130° with dry oxalic acid, a mixture of camplior with puryl formate and oxalate is obtained, after washing with water, the latter are hydrolysed with alkali and the resultant borneol converted into camplior by exidation with dichromate and sulphuric pord

At Monville, near Ronon, a factory was erceted in 1906 to manufacture artificial camphor by the process described in Fi Pat 349,896 (of Béhal, Magnier, and Tissier, and similar to US Pat 779,377) A mixture of oil of turpentine and salleylic acid is heated and, after elimination of the excess of the reagonts, the isoborneol other is hydrolysed to a mixture of borneol and isoborneol. Another factory, near Calais, utilises Schering's method (Fr Pat. 341,513), already in use on a large scale in Berlin, and also applied in a factory established in 1909 in Finland

According to Fr Pat 349,852, pinene hydrochloride is first propared and then heated under pressure with lead acctate in acctae and solution, thus giving camphone, which with permanganate forms camphor, or treatment of the pinene hydrochloride with a formate gives the formic ester of borneol, which can be readily hydrolysed. The final exidation to obtain camphor is carried out in various ways by oxidising the horneol, in benzone or petroleum ether solution, with aqueous alkaline permanganate (Ger Pat 157,590), or by means of ozone, air, or chlorine water (see Eng Pat 28,036 of 1007 and Ger Pats. 106,722

¹ CELLULOID is obtained by mixing nitrocellulose and camphon in the following manner: well stabilised, powdered, and partially dried colledion cotton (with 10 to 11 per cent. N., well stabulsed, powdered, and partially dried collection cotten (with 10 to 11 per cent. N., see p 204) is seaked in alcohol in a covered centrifuge, then gelatinised with alcohol and one third or one fourth of its weight of camphor, coloured, if necessary, homogenised between rolls and then formed into dense, compact blocks by pressing while hot—It is then ready to be cut, sawn, compressed, polished, etc., its marked plasticity when hot being utilised in working it—It is a homogeneous, transparent, colourless, or yellowish substance without taste and of ap gr. 1-37 If sufficiently dry it is oflourless, but, when rubbed or heated, it develops a slight smell of camphor It is a very bad conductor of heat and electricity, and its clasticity is about equal to that of

Colluloid is used for making toys, balls, combs, walking stick handles, tortoiseshell objects (substitutes for tortoiseshell, amber, aboute, etc.), films, and the disadvantage of burning rapidly and energetically (without explading) when brought into contact with an ignited or incandescent body. If the collection used is well stabilised, celluloid will withstand a temperature of 125° or even higher. It can be charged with minoral substances to render it less inflammable and heavier.

ARTIFICIAL LEATHERS. Colluloid is used to some extent in making artificial leather,

it less inflammable and heavier

ARTIFICIAL LEATHERS Colluloid is used to some extent in making artificial leather, the commonest types of these being (1) Pegamoid This is obtained by spreading on cotton fabrics a solution of colluloid in sthyl or methyl alcohol mixed with caster oil so as to form a soft, elastic paste, which may be coloured by anniline dyes or pigments. By means of moised rollers imitations of different leathers may be obtained A substitute for pagamoid may be made by spreading on the fabric a dones glue solution and then treating the surface with formaldehyde solution, which renders the glue consistent and insoluble, the surface may afterwards be made shiny with a thin layer of celluloid or cellite (see p 599) (2) Artificial leather, made by pressing between rollers several layers of fabric impregnated with glue or, better, rubber solution Artificial leather is also made by reducing scrap leather to fibre, incorporating it, either alone or mixed with other animal or vegetable fibre, with a little boiled linseed oil, and compressing it into sheets, which may finally be varnished.

and 154,107), or by oxidising isoborneol in aqueous acid solution with permanganate (Ger Pat 197,161 of 1906)

Camphor was obtained by A Hesse by means of the Grignard reaction, and it is also formed by fusing borneol with finely divided nickel (1911) 1

Natural camphor may be distinguished from the artificial product by mixing it intimately with an equal weight of chloral hydrate the former gives a syrupy mass, but the latter does not liquely Also with vanillin sulphate or hydrochloride the two give different colour reactions About 13 per cent of the total output of camphor is used for pharmaceutical purposes, 15 per cent for fixeworks, nightlights, etc., 70 per cent for making celluloid, and about 2 per cent for rendering explosives insensitive to shock

O CONDENSED BENZENE NUCLEI

1 DIPHENYL AND ITS DERIVATIVES

DIPHENYL, C₆H₅, Or < , is formed by treating an ethereal solution of bromobenzene with sodium (Fittig), by the transformation of hydrazobenzene, or by diazotising benzidine and decomposing the resultant product It can also be obtained by passing benzene vapour through a red-hot tube

It forms colourless crystals melting at 71° and boiling at 254°, and is soluble in alcohol and in ether On oxidation with chromic acid, it gives benzoic acid, its constitution being thus confirmed

Of monosubstituted products of diphenyl, three isomerides are possible, corresponding with the o-, m-, and p-positions with respect to the curbon joined to the second nucleus Disubstituted derivatives exist in numerous isomeric forms, as the substitution may occur in only one nucleus or in both, in general,

however, the substituents enter preferably the para-positions

BENZIDINE (p p-Diaminodiphenyl), NH₂ C_gH_4 C_gH_4 NH₂ Nitration of diphenyl yields p p-dimitrodiphenyl, which, when reduced with zinc dust in alkaline solution, gives benzidine. The latter may also be obtained by electrolysis of nitrobenzene, see also Ger Pat 122,046, according to which azobenzene is electrolysed in hydrochloric acid solution in presence of stanious chloride

When pure, benzidine forms colourless scales melting at 122° and then subliming It dissolves slightly in cold water, but readily in hot water, ether or alcohol It is a discid base and gives a sulphate, $O_{19}H_8(N11_2)_2$, H_9SO_4 , almost insoluble in water

It is largely used in making substantive dyestiffs (such as Congo red and chrysamine, which dye cotton without mordants), being first diszotised and then combined with naphthylamine or naphthalenesulphonic acids

Crude benzidine cost before the war less than 2s 6d per kilo and the pure product 40s The crude sulphate in paste (63 per cent.) cost 2s per kilo and the pure 28s

A higher homologue of benzidine is o-Tolidine, $O_{12}H_6(OH_3)_2(NH_2)_2$, which

A inglier homologue of benzidine is c-Tolidine, $C_{12}H_6(\mathrm{OH}_3)_2(\mathrm{NH}_2)_2$, which

1 ARTIFICIAL CAMPHOR—Before the European War it was noticed that a difficulty
might be placed in the way of the further development of the artificial camphor industry by
the excessive price of oil of turpentine, this having risen from 56s per quintal in 1900 to 56s
in 1906, these conditions might easily be aggravated by the formation of a trust. Further,
the demand for camphor may diminish in the future, since substitutes are continually being
found capable of replacing it in celluloid, which up to the present has consumed about two thirds
of the total camphor produced. The fact that natural camphor—almost entirely monopolised
by the Japanese Government—can be sold, without loss, at 144s per quintal constitutes a menace
to the future of artificial camphor, which could never be sold at that price and depends on a raw
material the price of which cannot be regulated.

Since the war, however, conditions have radically changed, and if the high price of camphor
does not return to a more normal figure, the production of both natural and artificial camphor
may be stimulated

melts at 128°, and the diazo-compound of which combines with naphthionic acid to form a red substantive dyestuff, benzopurpurne 4B. The dimethoxy-compound, (O CH_3)₂, of tolidine is diaminatine, which with a-naphthol-a-sulphonic acid forms benzoazurne G (substantive blue)

CARBAZOLE, NH, is found in coal-tar, and can be obtained C6H4

synthetically by distilling o-ammodiphenyl over red-hot lime or by gently heating diphenylamine vapour

The unions of the nitrogen with the two phenyl groups are in the diortho-

positions,

so that carbazole may be regarded as a pyrrole derivative (see later). It forms colourless scales melting at 238° and readily subliming, and it dissolves in concentrated sulphuric acid, giving a yellow coloration.

From diphenyl can be derived four isomeric dihydroxydiphenyls, $C_{18}H_8(OH)_8$, the diphenylsulphonic acids, diphenyl oxide, $(C_6H_4)_8O$, hexahydroxydiphenyl, $C_{18}H_8(OH)_6$ (the mother-substance of carulignone), and the diphenylcarboxylic acids (the di-p-acid is a white powder, insoluble in water, alcohol or ether, the di-p-acid is diphenic acid, OO_8H O_6H_4 O_6H_4 OO_9H , m-pt 229°) which give diphenyl when heated with line

2 DIPHENYLMETHANE AND ITS DERIVATIVES

These compounds may be obtained by condensing either 2 mols of benzene (or its homologues) with one of methylene chloride, or 1 mol of benzyl chloride (or benzyl chloride) with one of benzene (or its homologues or derivatives) in presence of aluminium chloride

$$\begin{array}{lll} 2C_{\theta}H_{\theta}+CH_{2}Cl_{2}=2HOl+C_{\theta}H_{5} & CH_{2} & C_{\theta}H_{5} \\ C_{\theta}H_{0}+C_{\theta}H_{5} & CH_{2} & Ol=HOl+C_{\theta}H_{5} & CH_{2} & C_{\theta}H_{5} \end{array}$$

Condensation of 2 mole of benzene with aldehydes (Baeyer) or 1 mol of an aromatic alcohol with 1 of benzene (V Meyer) under the influence of concentrated sulphuric acid (ketones, phenols, tertiary anilines, etc., also act similarly)

DIPHENYLMETHANE, C_0H_5 $CH_2 \cdot C_0H_5$, forms white crystals melting at 26° and boiling at 262°, has a smell of oranges and is soluble in alcohol or in ether. It is obtained synthetically (see above) With water at 150°, its bromoderivative, $CHBr(O_6H_5)_2$, is converted into benzhydrol (diphenylcarbinol), $(O_6H_5)_2OH$ OH, which is also obtained on reducing benzophenone.

p-Diaminodiphenylmethane, $CH_2(C_0H_4 NH_2)_2$, and tetramethyldiaminobenzhydrol, OH $CH[C_0H_4 N(OH_3)_2]_2$, the latter obtained by reducing Michler's ketone (see below) in alkaline solution, are used in the preparation of dyestuffs

TETRAMETHYLDIAMINODIPHENYLMETHANE or tetramethyl base, $\mathrm{CH_{3}[C_{0}H_{4}N(CH_{3})_{2}]_{2}}$, is used in making dyestuffs and serves also as an excellent reagent for detecting small amounts of lead, manganese, ozone, gold, etc., with which it gives characteristic colorations.

BENZOPHENONE (Diphenylketone), C_0H_5 (CO · C_0H_5 (see p 675) TETRAMETHYLDIAMINOBENZOPHENONE or Michler's ketone, $CO[C_8H_4N(CH_3)_2]_2$, is prepared by treating dimethylaniline with carbon

oxychloride, heating the resulting dimethyl-p-aminobenzoyl chloride in an autoclave with water, removing residual dimethylaniline by steam distillation, dissolving in dilute hydrochloric acid and precipitating the ketone from the filtered solution by means of sodium hydroxide. The crude ketone, after punification, melts at 174° It may be obtained also by heating together dimethylammobenzanilide, dimethylaniline and phosphorus chloride When treated with phosphoryl chloride, it yields the corresponding chloride With ammonia Michler's ketone gives auramine, with diethylandine, ethyl molet, with benzylmethylandine, acid violet 4BN, and with β -naphthol, worl green S, etc

o DIHYDROXYBENZOPHENONE, [CgH4(OH)]gCO, by the elimination of a molecule of water from the two hydroxyls, gives xanthone, $C_0H_1 < {}^{CO}_0 > C_0H_4$ p Dihydroxybenzophenone is obtained from anisaldehyde, so that the hydroxyl groups must be in the para positious Trihydroxybenzophenone is formed by the condensation of benzom and with pyrogallol in presence of zine chloride. It is used in dyeing under the name alizarin yellow C (see Dyestuffs)

Other higher derivatives of diphenylmethane are as follow

as-DIPHENYLETHANE (see later symm dibenzyl) is liquid and is formed from paralle hyde and benzene (see above) Benzilic acid (diphenylylycollic nord), (CaHs) C(OH) COuH, 18 a solid and 18 obtained by the action of KOH on benzil, by reduction with HI it gives diphenylacetic acid, (C,H,)2OH CO,H

Tolyiphenylmethane, C_6H_5 CH_2 C_6H_4 CH_5 , exists in several isomeric forms. Tolyi phenyl ketones, C_6H_5 CO C_0H_4 CH_3 The storeoisomeric eximes of these ketones were employed by Hantzsch in developing the stereochemistry of nitrogen (see

Benzoyibenzoic Acids, C. H. CO C. H. CO. H. the ortho-acid gives authraquinone when heated at 180° with P2O5

FLUORENE (Diphenylenemethane), | CH₂, is found in coal tax, and is formed on heating diphenylmothene vapour It melts at 113°, boils at 205°, and forms scales showing a violet fluorescence.

3 TRIPHENYLMETHANE AND ITS DERIVATIVES

These are prepared synthetically by processes analogous to those used for diphenylmethane, but under such conditions as to lead to the condensation of three benzene nuclei in the methane molecule. The action of chloroform on benzene in presence of AlCl3 gives TRIPHENYLMETHANE (in -pt. 93°, b-pt 359°), $CHOl_3 + 3O_6H_6 = 3HOl + OH(C_0H_5)_3$

The condensation of benzaldehyde and dimethylaniline yields tetramethyldiaminotriphenylmethane, C_6H_5 CH[C_6H_4 N(CH₃)₂]₂, which is a knico-base (see Dyestuffs) of malachite green, phenols, etc., condense similarly. When this colourless leuco-base is oxidised with PbO₂ and HCl, it gives tetramethyl-diaminotriphenylcarbinol, C_6H_5 C(OH)[C_6H_4 N(CH₃)₂]₂, which is also a colourless base base and forms colourless. When, however, these salts are heated in solution, they lose water and form an intense green colouring-mailer, the double salt of this with zinc chloride or oxalate being known as malachite green

ouble salt of this with zinc chloride or exalate being known as maintain green
$$C_6H_5 \quad C = \begin{array}{c} C_0H_4 & N(CH_3)_2, HCl \\ C_0H_4 & N(CH_3)_2, HCl \\ OH & \\ \end{array} = \begin{array}{c} II_2O + C_0H_5 & C \\ \\ C_0H_4 & N(CH_3)_2, HCl \\ \end{array}$$
or $C_0H_4 \quad N(CH_3)_2, HCl$

$$C_0H_4 \quad N(CH_3)_2, HCl \\ C_0H_4 \quad N(CH_3)_2, HCl \\ \end{array}$$

on reduction, the colouring-matter (+ 2H) gives the leuco-base again.

PARAROSANILINE is obtained by oxidising 1 grm -mol of p-toluidine and 2 gim inols of aniline with arsenic acid or nitrobenzene. The methyl of the toludine furnishes the carbon atom for the methane nucleus

$$\mathrm{CH_{3}\ C_{0}H_{4}\ NH_{2}+2C_{6}H_{5}\ NH_{2}+3O}=2\mathrm{H_{2}O}+\mathrm{OH}\ C\overset{C_{6}H_{4}}{\underset{C_{6}H_{4}}{\sim}} \overset{\mathrm{NH}_{2}}{\underset{\mathrm{NH_{2}}}{\sim}}(\mathrm{base})$$

With acids, this base gives a red colouring-matter which is precipitated by alkalı When reduced with zine and hydrochloric acid it yields paralcucaniline, HC(C₀H₄ NH₂)₃, in colourless crystals which give the coloured base again on oxidation

Elimination of the amino-groups by diazotisation leads to triplicinglinethane, while nitration of the latter, followed by reduction, gives paraleucaniline, which yields triaminotriphenylcarbinol on oxidation. When treated with acids the latter loses H₂O, giving the colouring-matter

OII
$$C(C_0H_4 NH_2)_2 = H_2O + CO(C_0H_4 NH_2)_2$$

ROSANILINE is formed by oxidising a mixture of o- and p-toluidines and and ine with arsonious anhydride, inercurio nitrate, or nitrobenzene the carbon of the methane nucleus being furnished in this case also by the p-toluidine

$$\begin{array}{c} \text{CH}_{3} \\ \text{NH}_{2} \end{array} (p) + \text{C}_{6} \text{H}_{4} \\ \begin{array}{c} \text{CH}_{3} \\ \text{NH}_{2} \end{array} (o) + \text{C}_{6} \text{H}_{5} \\ \text{NH}_{2} \end{array} \text{NII}_{2} + 3 \text{O} = \\ 2 \text{H}_{2} \text{O} + \text{OH} \\ \text{C} \\ \begin{array}{c} \text{C}_{0} \text{H}_{3} < \text{CH}_{3} \\ \text{NH}_{2} \end{array} (o) \end{array}$$

Rosaniline hydrochloride (with 1 HCl) or fuchsine forms crystals with a green metallic lustre, while the aqueous solution is red owing to the presence of the monovalent cation, C₁₀H₁₈N₃, the salt being almost completely ionised. All fuchsine salts, at the same dilution, give the same absorption spectrum, as they contain the same estimates.

as they contain the same cation

If 3HCl are combined, the salts become yellow (yellow trivalent cation), indeed, with excess of HOl fuchaine is almost decolorised, although in dilute solution the red cation is again formed by dissociation 1

Replacement of the hydrogen atoms of the ammo-groups by alkyl groups gives various colouring-matters, the intensity of the violet colour increasing with the number of methyl groups

Pentamethylpararosaniline is the methyl violet of commerce

ROSOLIC ACID and AURIN are the phenolic compounds corresponding with iosanilme and paraiosamiline, from the diazo-compounds of which they are obtained by boiling with water

¹ It is commonly thought that in the hydrochloride the chlorine is joined to the amino group and not to the carbon of the methane, since, as Tortella showed (1895), all the chlorine is precipitable by silver nitrate, the compound is hence a salt and not an ether. It cannot, however, be denied that there are compounds, such as traphenylmethyl chloride, (O₆H₈)₀ O Cl, which behave similarly, being hydrolysable by water and then completely precipitable by silver nitrate. Then, too, methyl rodide is hydrolysed by water alone to the extent of 0 0 per cent. in 43 hours, whilst in the presence of silver nitrate 96 per cent. of the iodide is hydrolysed in the same time. It is hence more accurate to state that, aften hydrolysis, these ethereal compounds behave like salts. Rosenstiehl maintains that every double decomposition between salts (especially organic) is preceded by hydrolysis, and those salts and ethereal compounds which hydrolyse slowly he salts bradolytes, and those which hydrolyse rapidly, stenolytes

They are colouring-matters of an acid character and of but little importance, and they form dark red prisms with a greenish, metallic reflection

PHTHALOPHENONE,
$$C = C_6H_5$$
 may be regarded as a derivative of C_6H_4 CO

phthalic acid (see p 684) or of triphenylmethane

It is the anhydride of triphenylcarbinol-o-carboxylic acid, C(OH)(CoH b)2 (CoH, COoH), and is obtained by heating phthalyl chloride with benzene in presence of aluminium chloride It forms scales melting at 115" and dissolves in alkalı gıvıng a salt of the acid, the latter not being obtainable in the free

state Its phenolic derivatives are the *phthalems* (see p 685)

HEXAPHENYLETHANE, (C₆H₅)₃C C(C₆H₅)₃, is of some interest theoretically, as its molecule was at first regarded as C(C₆H₅)₃ (Triphenylmethyl) and was looked upon as the first example of an organic compound containing trivalent carbon, but cryoscopic examination shows that it has the doubled molecular weight, and hence indicates the constitution (CoH5)3C C(CoH5)3 It was prepared by Gomberg by the action of zinc on triphenylchloromethane, and is a solid, stable substance which, in solution, has a yellow colour and becomes unstable owing to its great power of reacting, with the oxygen of the an it forms a peroxide, $(C_8H_5)_3$ C O O $C(C_0H_5)_3$ On account of the facility with which it forms additive products, hexaphenylethane is regarded by some as having in solution the constitution

$$(C_{6}H_{5})_{2} \quad C \quad C \xrightarrow{\begin{array}{c} H \quad H \\ \mid \quad \mid \\ C = C \\ \downarrow \quad \mid \quad \mid \\ H \quad H \end{array}} C \xrightarrow{C(C_{6}H_{5})_{3}}$$

An analogous compound is Pentaphenylethane, $(C_6H_5)_3C$ CH $(C_0\Pi_5)_2$, stuble at the ordinary temperature but not in the hot

4. DIBENZYL AND ITS DERIVATIVES

The constitution of these compounds is shown by their methods of synthesis and by the fact that they all yield benzoic acid on oxidation

DIBENZYL (symm Diphenylethane), C6H5 CH2 CH2 C6H5, is obtained

from benzyl chloride and sodium

$$2C_0H_5$$
 CH_2 $Cl+Na_2=2NaCl+C_0H_5$ $CH_2\cdot CH_2$ C_0H_5 , it melts at 52°

STILBENE (symm. Diphenylethylene), CaH, CH CH CaH, melts at 125°, and 18 obtained from benzal chloride (benzylidene chloride) and sodium Owing to its double linking, it can unite with two atoms of Br, which can be eliminated as HBr by treatment with alcoholic potash, the resulting product being TOLANE (diphenylacetylene), CaHs C C C.H., melting at 60°, and behaving like an acetylene derivative

P DIAMINOSTILBENE, NH, CaH, CH; CH CaH, NH, is used, especially in the form of the corresponding sulphonic acids, for the preparation of various substantive

BENZOIN, C. H. CH(OH) CO C. H., is formed by oxidising HYDROBENZOIN, C.H. CH(OH) CH(OH) C.H., which is obtained by treating benzaldehyde with sodium amalgam Benzoin exists in two stereoisomeric modifications, melting at 188° and 119° It reduces Fehling's solution even in the cold (giving benzil) and forms a phenylosazone, since it contains, like the sugars, the group CO CH(OH)

BENZIL, C_eH₅ CO CO C_eH₈, is a yellow diketone and forms three benzildioximes (see pp 22, 253)

When heated with alcoholic potash, benzil combines with H2O, giving benzylic acid

$$C_0H_5$$
 CO CO $C_0H_5 + H$ OH = $(C_0H_5)_2O < \frac{OO_0H}{OH}$

DESOXYBENZOIN, C_8H_5 CH₂ CO C_6H_5 , is obtained from phenylacetyl chloride, C_6H_5 CH₂ CO Cl, and benzene in presence of alumnium chloride, and also from benzoin and benzil It melts at 55° and gives dibenzil when reduced with hydrodic acid

HEXABENZYLETHANE, $(C_8H_5)_3C$ $C(CH_2C_8H_5)_3$, was prepared by Schmerda (1909) by heating tribonzylearbinol with hydrodic acid in a scaled tube at 200°, the product being shaken with bisulphite, extracted with other and the latter distilled off. It forms a yellowish crystalline mass which is recrystallised from acctonic and glacial acctic acid, it melts at 80° to 81°. From the mother-liquor dibenzyl is obtained

5 NAPHTHALENE AND ITS DERIVATIVES

NAPHTHALENE, $C_{10}H_8$, discovered in tar in 1819 and 1821 by Garden and Kitt, occurs in abundance in crude illuminating gas and in coal tar. When the latter is distilled (see

pp 625 et seq), the naph thalene is obtained from the portions distilling between 170° and 230° and by redistilling the residues of the oils from which the carbolic acid has been extracted with caustic soda, care being taken to surround the condenser colls with hot water to prevent stoppages

The first separation of the naplithalene from the crude oils yielded at various stages of the distillation

is effected by cooling in large tanks, crystallised naphthalone separating out

The oily impurities of the crystals are removed in a hydraulic press with heated plates Attempts have been made to centrifuge the crude naphthalone, but even when this is steamed in the centrifuge, the residual product is always very impure and unsuitable for distillation or sublimation. In consequence of this, use has been made of hydraulic prosses with horizontal rods and vertical plates heated by steam, but these give insufficient pressure and too much waste, and require too much time and attention. The best results are given by presses with vertical colums and ring plates (similar to the presses described on pp 484, 485), which work continuously and readily attain a pressure of 102 kilos per square contimetre with a diminished consumption of steam Nowadays hydraulic presses with perforated steel bells are used-similar to those used for oily seeds-and in 10 hours each of these can effect 30 compressions of 100 kilos, when several presses are worked, hydraulic accumulators (see p 484) are used If well pressed, naphthalone has the mean solidifying point 78 6° and 95 5 per cent. of it distils between 216 5° and 218 5° Attempts have been made to purify naphthalene with a solution of resin soap, but such a method is too expensave (a centrifuged naphthalene containing 7 per cent. of oil gives, with 5 per cent. of colophony and the corresponding quantity of caustic alkali solution, 85 per cent. of pure naphthalene with the solidifying point 78 8°) The compressed naphthalene is purified further in metal vessels with conical bases and fitted with stirrers (sometimes with airjets) In these the molten naphthalene is agitated for 15 minutes with 5 per cent. of sulphuric soid of 50° Bé. (already used once) to dry the mass somewhat and free it from pyridine compounds, after removal of this acid, the mass is shaken successively v 5 to 6 per cent of sulphuric acid of 60° Bé for 30 minutes, 4 per cent of hot water, 4 cent of caustic sods solution of 19° Bé (already used once), and finally, 2 per cent hot water. After settling and removal of the water as far as is possible by decentat the naphthalene is distilled in large stills holding 100 to 150 quintals and furnished will rectifying column 2 to 3 metres high. Water distills over first and then pure naphthal which is collected in metal boxes, allowed to crystallise in moulds and granulated

means of a crushor, the soliding point is then 70 7°, w 97 5 per cent distils betw 216 6° and 218°

A purer product, in the fe of large, shining scales, car obtained by *sublimation* (inst of distillation) in an open ver a (Fig 404), having an area 2 to 3 sq metres and cove with an inclined wooden pl loading to a large wooden chi ber, 20 to 25 on metres capacity The naphthalene heated by a pressure steam and sublines and condenses the large chamber, forming the walls a thick layer of shind white scales of pure naphthale In order to avoid loss and obtain continuous working,

naphthalene is introduced into long cylindrical boilers, bricked in like steam boilers a connected with a large wooden chamber (350 on metres, Fig. 405), which has a base fit with conical outlets leading to sacks for catching the naphthalene as it becomes detail from the walls (these are knocked from time to time). In this way 70 kilos of pure naphthalene are obtained per 12 hours for each 100 on metres of capacity

Pure naphthalene forms shining scales melting at 79 6° and boiling at 218°. It insoluble in water, but dissolves readily in boiling alcohol or in other, it volatilises even the ordinary temperature and distils readily in steam.

The calorific value of naphthalene is 6040 cals, and its vapour pressure at differtemperatures as follows (mm of moreury)

0°	20°	50°	80°	100°	120°	141°	150°	185°
0 022	0 080	0 81	74	185	40.2			

Its sp gr is 1 152 at 15° and 0 977 at its melting point. If pure it does not colour or contrated sulphuric acid at 80°

Constitution of Naphthalene The following structural formula is attributed naphthalene

and to indicate the positions occupied by groups replacing the hydrogens in derivative carbon atoms are numbered or lettered with Greek letters, thus

That the two nuclei are united by means of two earbon atoms in the ortho position is shown by the fact that exidation of naphthalone in such a way as to destroy one of the nuclei results in the formation of phthalo acid, which is known to contain two earboxyl groups in adjacent positions

Further, since when phenylisocrotonic and is heated a naphthalenc derivative, namely, a naphthol, results, it is clear that the second nucleus is formed by the elimination of a molecule of water with closure of the chain of the four carbon atoms of the side chain of the original and and two ortho carbon atoms in the benzene nucleus

That there are two condensed benzene nuclei is also deduced from the fact that oxidation of a nitronaphthalene gives introphthalic acid, the benzene nucleus containing the nitrogroup being preserved and the other destroyed. If, however, the nitrogroup is first reduced to an amino group, oxidation results in the destruction of the nucleus containing the amino group and in the preservation of the other, phthalic acid, which undoubtedly contains a benzene nucleus, being formed. That the linkings between carbon and carbon are different in the two nuclei is shown by the addition of four hydrogen atoms to one of the nuclei, which probably has true double linkings, while the other nucleus would seem to have a true benzence character with centric linkings (Bamberger), further, the addition of ozone proves with certainty the presence of olefinic double linkings (E. Molinari, 1907)

USES Naphthalone is used in large quantities in the preparation of various dyestiffs (cosin, indigo, Martius yellow, tropæchu, Biebrich scarlet, croceine scarlet, etc.), phthalic acid, lampblack, variables, and cart grease, and is employed also as an antiseptic and as a preventative of moth in clothes. For some time it has been mixed with camphor in order to render celluloid less inflammable and loss explosive.

Crude naphthalene cost before the war 11s to 12s per quintal, while the pure white scales were sold at 16s, pure in tapers at 17s 6d, and chemically pure at 80s per quintal.

The isomerides of the substitution products of naphthalone are more numerous than in the case of benzene. Thus, there are two isomeric mono-substituted derivatives, the a compound with the substituent in the 1-, 4-, 5-, or 8-position, and the β compound with the substituent in the 2-, 3-, 6-, or 7-position. The isomeric disubstituted compounds with two similar substituents are ten in number, while with two different substituting groups fourteen isomerides are possible, and, in some cases, all known.

Compounds with substituents in the 1- and 8- or the 4- and 5-positions are known as

au- or per-compounds, eg, Perinaphthalenedicarboxylic acid, COOH readily forms an anhydride owing to the proximity of the hydroxyls.

The number of isomerides being so large, it is sometimes difficult to determine the constitution of a derivative To this end the oxidation products are often studied, the forma-

tion of phthalic acid indicating that all the substituents are in the one benzene nucleu destroyed by the exidation, while the formation of a substituted phthalic acid indicate the opposite to be the case

 α -CHLORONAPHTHALENE, $C_{10}H_7Cl$ Treatment of naphthalene with olderine yield preferably additive products with two or four chlorine atoms in the same benzene nucleus. On the other hand, the action of chlorine on a cold solution of naphthalene in carbon tetrachloride in presence of a catalyst (e.g., ferric chloride) yields substituted products α -monochloro-, then 1 4- and 1 5 and small proportions of 1 2- and 1 7-dichloronaph thalenes.

Also with boiling naphthalene chlorine forms directly a chloronaphthalene, but this i obtained in a purer form by diazotising a naphthylamine and then decomposing with copper chloride (Sandineyer's reaction, p. 670). It is a liquid of sp. gr. 1 1938, b. pt. 203° and forms a yellow, crystalline picrate, m. pt. 187°. When nitrated it forms mainl 1-chloro 4-intronaphthalene, together with a little 1–5 and 1–8 compounds. It serves for making various chlorosulphonic acids and also naphthalene green V, and has been suggested as a lubricant.

Of importance in the explosives industry are various nitro derivatives of naphthalone and in the dyestuffs industry, besides nitro derivatives, also the aminocompounds, and especially the numerous sulphonic derivatives

a NITRONAPHTHALENE, $C_{10}H$, NO₃ Of the α - and β -intronaphthalenes, only th former is of industrial importance, being used for making dinitronaphthalene and

particularly a naphthylamine.

The industrial preparation is carried out in a nitrating vessel (see p 640), 100 kilos of pure ground naphthalene being added rapidly, with stirring, to 300 kilos of 55 per cent sulphuric and (45° Bé), the temperature being raised to 50°, 200 kilos of a mixture con taming 26 per cent of $\rm HNO_3$, 60 per cent. of $\rm H_2SO_4$, and 14 per cent. of water is then added alowly, the temperature being raised gradually to 60° and mixing continued for a couple of hours. The residual acid, containing about 63 per cent of $\rm H_2SO_4$ and 0.5 per cent of $\rm HNO_3$, in then decanted off, and, after dilution to 55 per cent, used for treating a fresh batch of naphthalene. The fused intronaphthalene is run into a vessel of hot water furnished with a stirrer, and is washed twice with almost boiling water and once with a very dilute sodium carbonate solution, the moltan compound being poured into cold water, kept stirrer and thus granulated, and then contribuged and used moist for reduction to a naphthylamine It is used also for making 1-nitronaphthalene-5-sulphonic acid, and when fused with sulphur gives blue and green sulphur colouring matters.

When a nitronaphthalene vapour and hydrogen are passed at 340° over finely divided copper, a naphthylamine is formed directly, but if the copper is replaced by powdered mokel, tetrahydronaphthalene (and NH₃) is obtained as a secondary product. With sulphites it gives naphthionic and naphthylamine-2. 4 disulphonic soids, and with chloring in presence of catalysts at 40° to 60° it forms 1-chloro 5-nitro and also 1 chloro-8 nitro naphthalenes (Ullmann and Consonno, 1902)

It is used for removing the fluorescence from inneral oils, being stored away from the oil to minimise damage in case of fire.

It is poisonous and forms a yellow, crystalline mass, m pt 61° (the commercial product has m pt 58° to 59°), b-pt 304°, and when molten has sp. gr 1 223 It is insoluble it water, but dissolves in benzene, ether, carbon disulphide or hot alcohol

The crude product cost 64s. to 76s. per quintal before the war, and the pure crystals 90s DINITRONAPHTHALENES, $C_{10}H_6(NO_8)_8$ Nitration of a-nitronaphthalene or direct nitration of naphthalene with a suitable nitro-sulphuric acid mixture yields always a mixture of various dinitronaphthalenes, consisting principally of the 1 · 8- (about 60 per cent.) and the 1 5-compound (about 30 per cent.) together with other isomerides and truntronaphthalene. The mixture may be used directly for explosives (see p. 305)

The two dinitro compounds may be separated by dissolving in hot sulphume acid o 62° Bé which, on cooling, deposits the 1 5-compound, whilst the 1 8 derivative separates at a lower temperature or, better, on slight dilution with water. Also a hot pyridine solution deposits the 1 5-compound on cooling, removal of two thirds of the pyridine by distillation and subsequent cooling resulting in the crystallisation of 1:8 derivative.

1 5- (or a-) Dinitronaphthalene, which is used for making naphthazars black (see later) crystallises in yellowish needles, m.-pt 214°, and is readily sulphonated by furning sulphuric acid. When reduced with ammonium sulphide it gives first 1 nitro 5 aminonaph

thelene and then 1 5 naphthylonediamine, when boiled with sedium bisulphite or aminonium sulphite solution it yields 1 5 naphthylenediaminedisulphone and

1 8 (or β) Dinitronaphthalene, in -pt 172°, is more soluble in various solvents than the 1 5 compound. With sodium bisulphite it gives 1 8-naphthylonediammetrisulphonic sold. It behaves like the 1 5 isomeride with furning sulphuric acid and is used for making sulphur blacks and blue

TRI and TETRA-NITRONAPHTHALENES are otamed by nitrating naphthalene or the mono and di nitro-compounds with more concentrated nitric sulphuric acids and with rather more than the theoretical quantity of nitric acid

a NAPHTHYLAMINE (1-Aminonaphthalene), $C_{10}H_1$ NH₈. The commercial product forms lustrous, square scales with a reddish brown tent, it contains a little naphthalene and water and has a slight feeal odour (β naphthylamine is odourless). The pure, freshly made product is pale pink, melts at 50° and boils at 300 8°. It has no alkaline reaction, and is readily soluble in alcohol, ether, benzene, toluene, etc., 100 c e. of water dissolves only 0 167 grm. With exidising agents such as ferric chloride, chromates, etc., its salts give a blue precipitate of naphthamine, changing to purple red (different from β naphthylamine), this reaction is used by van Eok (1915) for the colorimetric estimation of chromates

With CaCl₂ or ZnCl₃ at 280° it gives a little ammonia and a dinaphthylamine (see later) With sodium nitrite naphthylamine salts in slightly and solution give a brown precipitate of amnoazonaphthalene, $C_{10}H_7$, N_2 , $C_{10}H_6$, NH_9 , and in highly acid solution, a-diazonaphthalene, $C_{10}H_7$, N_2 , X_1 . On protracted boiling with water it is converted partly into a-naphthol. The hydrochloride sublimes at 200°, and the sulphate crystallises with $2H_9O$

a-Naphthylamine is used to make a naphthol (see later), various sulphonic derivatives, numerous azo dyestuffs, and Magdala rod. It serves also for many direct diazotisations on cotton fibre, to be coupled with, for instance, β -naphthol to obtain a bluish rod colour (Bordeaux) fast against soap, etc. It is also employed in photography, together with oxidising agents, to obtain bluish tones. Before the war it was sold at about 1s. 6d. per kilo

MANUFACTURE It is usually obtained, similarly to annine, by reducing a-nitro naphthalene with iron and hydrochloric and Electrolytic reduction (Bochringer, Ger Pat. 116,942) and reduction with hydrogen in presence of a catalyst (e.g., copper), as suggested by Sabaticr and Senderens (1902), do not give satisfactory results in practice. It is purified by distillation in a vacuum.

 β NAPHTHYLAMINE Nitration of naphthalone does not yield β -nitronaphthalone, and β naphthylamine is obtained by heating β naphthol (100 grms) with 150 c c of 40 per cent. ammonium sulphite solution and 100 c c of 20 per cent. ammonia solution in an auto clave at 140° to 150° until all the β naphthol has reacted, the slightly cooled mass being filtered by suction, washed with dilute caustic soda, dissolved in tepid dilute hydrochloric acid solution and filtered from insoluble $\beta\beta$ dinaphthylamine. The β naphthylamine, precipitated by dilute caustic soda, has m-pt. 112°, b pt 294°. It is used for making β naphthylaminesulphonic acid and various azo dyestuffs, and costs three times as much as its a-isomeride.

The following are important derivatives of the naphthylamines (1) Ethyl-a-naphthylamine, $C_{10}H_7$ NH C_2H_5 , is used in making lanacyl violet B and new Victoria blue B, a basic dyestuff which dyes wool directly and cotton, after mordanting, pure sky blue. (2) Phenyl-a-naphthylamine, from aniline and a naphthylamine at 230° to 250° in presence of iodine, or from aniline hydrochloride and a-naphthol, serves to make sulphonazurine D, jet black R, etc. (3) p Tolyl-a-naphthylamine, $C_{10}H_7$ NH C_0H_4 CH_8 , is used for making night blue. The corresponding β -naphthylamine derivatives are used for making. (1) Developer B (Bordeaux) for primuline dyestuffs, (2) night blue, (3) wool black.

a NAPHTHOL, C₁₀H₇ OH, forms lustrous, monoclinio needles, m -pt. 94°, b pt 279°, and dissolves in alcohol, ether, benzene, etc., but is insoluble in water With ferric chloride or a hypochlorite it forms a-dinaphthol in blue flocks. When fused with alkali in presence of copper oxide it gives benzois and phthalic acids. It unites with two molecules of diazonium salts in the o- and p-positions to the hydroxyl. It is used in making numerous azo dyestuffs (brown, black, crange), indephenol and, especially, various sulphonic acids as intermediates for important dyestuffs (Martius yellow, naphthol yellow S, etc.). It condenses with Michler's ketone to give indigoid dyestuffs and naphthol blue,

PREPARATION. a-Naphthol is obtained pure by heating a-naphthylamine and sul-

phure acid in a lead lined or enamelled autoclave at 200° (14 atmos), the mother liquoryiclding ammonium sulphate. The process most commonly used and possibly more econormical is the following, which yields a-mixed with a little β naphthol. Sodium naphthalenc a-sulphonate is first prepared by heating naphthalene with sulphure acid and pouring the mass into sodium sulphate solution. This salt is pressed hydraulically under 200 atmos pressure so that a product with only about 15 per cent of water is obtained, this being fused with commercial caustic soda and a little water and the mass poured into cold water which is subsequently neutralised with sulphuric acid. The a-naphthol crystals are pressed fused to eliminate water, and distilled under a pressure of 50 mm, at a temperature of about 165°.

 β -NAPHTHOL forms lustrous white orystals, in.-pt 123°, b-pt 285°, sublines readily and distils well in superheated steam. It dissolves in 5000 parts of cold or 75 of bolling water, and is readily soluble in alcohol, ether, benzone, etc. With ferric obloride it gives a greenish coloration and afterwards white flocks of β β dinaphthol. When exidised in alkaline solution with potassium permanganate it yields o-carboxyonnamic acid, and when fused with caustic soda in presence of copper exide, phthalic and benzow acids.

It is used in making numerous dyestuffs, especially of the also group, since it may be coupled in many different ways (enange II, parantraniline red, various ponceaus and scarlets for wool and for silk, diamisidine blue, greens, blacks, etc., etc.) It is used also as a disinfectant in skin diseases, and its methyl and ethyl esters form fruit essences

PREPARATION Industrially it is prepared solely from sodium β is aphthalonesul phonate by a process analogous to that used for making the a isomeride, special conditions being employed to prevent formation of a-naphthol and disulphonic acids.

Betol or Naphthosaioi (the salicylic ester of β naphthol), $C_{10}H_7$ O CO $(I_0H_4]$ OH melts at 95°, and is used in medicine under the name of salol

Neroline, $C_{10}H_7$ OC₁H₈, is the ethyl (or methyl) ether of β naphthol and has the same odour as orange flower oil (neroli)

Dihydroxynaphthalenes, $C_{10}H_6(OH)_8$, are known in various isomerides the 1–5 compound, m pt. 250°, obtained by the alkaline fusion of sodium naphthalenedisulphonate serves for making benzidine blue dyestuffs, diamond black PV, etc. The 1–8, 2–3 and 2–7-isomerides are also used for making azo dyestuffs, etc.

Aminonaphthols, OH $C_{10}H_6$ NH_9 the various isomerides are used for preparing dyestuffs.

SULPHONIC DERIVATIVES OF NAPHTHALENE, NAPHTHOLS, AND NAPHTHYLAMINES

These form an important group comprising the principal *intermediates* used in making dyestuffs. Only the more important can be referred to here

The sulphonation of naphthalene is analogous to that already given for benzene (see p 637) and, since naphthalene sulphonates readily and gives a large number of isomerides mixtures difficult to separate are often obtained. The a derivatives are formed preferably at comparatively low temperatures and the β derivatives at higher temperatures (100° to 200°). Sodium amalgam eliminates a- more readily than β -sulphonic groups.

NAPHTHALENE-a-SULPHONIC ACID, $C_{10}H_7$ So₂H, m.-pt 87°, gives the β isomeride when heated with concentrated sulphure acid, dissolves appreciable amounts of phenol and is used for making α naphthol

NAPHTHALENE- β -SULPHONIC ACID serves for making β -naphthol and precipitate proteins in the cold.

1-AMINO 2 NAPHTHOL, NH₂ $C_{10}H_6$ OH, is obtained by nitrating β naphthol othy other and then reducing The ethyl ether, m -pt. 51°, is used for making diamine blue 6G diamond green, and various bluish naphthyl blacks

1-NAPHTHOL 2-CARBOXYLIC ACID, obtained like salicyle acid (p. 686) by heating dry sodium a-naphtholate with CO_2 in an autoclave at 130°, is used as an antiseptic and it making chrome blue.

2-NAPHTHOL-1-CARBOXYLIC ACID, obtained similarly, melts at 128° to 156° witl evolution of CO_3 . It is used to replace β -naphthol in making lakes coloured directly of the fibre.

1 NAPHTHOL-4-SULPHONIC ACID, known also as Nevle and Winther's acid or NV acid, forms transparent tubular crystals, melting and generating gas at 170° It is used it making azo dyestuffs, e.g., azococcine 2R, fast red VR, cloth red G and B, diamond black

F, alizarine bordeaux W, anthracene red, diamond blue 213, diamine blue BX, benzo azurine G, eto

 β -NAPHTHOLSULPHONIC AND DISULPHONIC ACIDS Treatment of β naphthol with sulphure and yields various products according to the concentration of the acid and the temperature. Owing to the difficulty of obtaining a single sulphonation product, mixtures of two acids are usually made and then resolved into the components

2 NAPHTHOL 6 SULPHONIC ACID, or Schilffer's acid, melts at 125° , gives dihydroxynaphthalene, in pt 213° , when fused with alkali, and is used for making azo dyestuffs brilliant orange O, fast red BT, bordeaux G, diaminogen blue BB, alizarin acid black SN, the iron salt of the introso derivative forms naphthol green S

1 NAPHTHOL 5-SULPHONIC ACID, or Cleve's and, m pt 110° to 120°, obtained by boiling the diazo derivative of 1 naphthylamine 5 sulphonic and with water, is used for making coolineal searlet 4R, diamond black F, benzo azurine 3G, etc

2 NAPHTHOL 3 6 DISULPHONIC ACID (R and) and 2 NAPHTHOL 6 8 DISULPHONIC ACID (G and) are obtained by adding fluely divided β -naphthol gradually to sulphure and (monohydrate), the mixture being kept cold. The G and is used for making γ and. The potassium salts are used for making orange III, alwarm and red B, Congo blue 2B, naphthol black, diamine scarlet B, etc.

1 NAPHTHOL 3 6 8 TRISULPHONIC ACID is used in large quantities for making naphthol yellow S

NAPHTHIONIC ACID or 1 NAPHTHYLAMINE 4 SULPHONIC ACID is obtained like sulphanihe acid (p 637) by heating naphthylamine acid sulphate at 180° to 200° and is used in making many azo dyestuffs—naphthylamine brown, azorubine, croccin scarlet, cochineal red, benzo orange, benzo purpurines 4B and 10B, dianil black, etc—The sodium salt is used in making colloidal gold solutions

CLEVE'S ACID is the 1 7 isomoride, used for Biebrich black

DAHL'S ACID is 2 naphthylamme 5 sulphone acid mixed with the 2 8-compound and is used for making ponceau for silk Θ

DAHL'S ACID II, I naphthylamine 4 6 disulphonic acid, is used, mixed with Dahl's acid III (2 6 8), for making various naphthol blue blacks

AMINO R ACID, 2 naphthylamine-3 6 disulphonic acid, and the isomeric AMINO ACID G (2 6 8), serve for making brilliant croccin, amine blue 6G, naphthol black B, etc

Eikonogen is the sodium salt of a^1 amino β^1 -implified β^2 sulphonic acid and is used as a photographic developed

γ-ACID or 2 amino 8-naphthol 6-sulphonic acid, prepared together with more or less J-ACID (2 5 7), gives two series of azo dyestuffs by coupling with diazo compounds in acid and alkaline solutions and also directly on action fibre—It is used for making diamino violet N, diamine blacks, diaminogen blue, diamil black PR, etc., all these for dyeing action without mordants

H-ACID or 1 amino 8 naphthol 3 6 disulphonic acid is the most important of the naphthalene sulphonic derivatives and is used in making numerous azo dyestuffs for dyeing cotton without mordants or wool and silk—various diamine blues, naphthylamine black 10B, diamine bronze G, diamine green B, fast and magenta, lanacyl dyestuffs, etc—Before the war it cost 4s—per kilo, and during the war as much as £4

CHROMOTROPE ACID or 1 8 dihydroxynaphthalene-3 6-disulphonic acid, obtained by fusing naphthylaininetrisulphonic acid with alkali in an autoclave, is used for making chromotrope blue and black, Victoria violet 4BS, dianil blue, etc., its sodium salt forms chromogene 1

by exidising naphthalene with chromic acid in boiling acetic acid solution. From its constitution those of other substitution products of naphthalene can be deduced, since, when the substituent groups are in the para-position, exidation always leads ultimately to a-naphthaquinone. It is volatile in steam.

ammonaphthol, and crystallises in reddish yellow loaflots blackening at 115° to 120°

2 6 NAPHTHAQUINONE forms odourless, reddish yellow crystals turning grey at 135° and is a more energetic oxidising agent than the preceding isomorkies

HYDROXYNAPHTHAQUINONE (O O $OH = 1 \ 4 \ 2$) is known, and its 1 4 5 isomeride is juglone, found in the green outer shell of the walnut and readily oxidising to a blackish brown compound.

The following compounds are also known Oxy- and Dioxy naphthaquinones (naphtha zarin black), a and β Methylnaphthalenes, $C_{10}H_7$ CH_3 , Naphthoic acids, $C_{10}H_7$ CO_2H Hydroxynaphthoic Acids, $C_{10}H_8(OH)(CO_2H)$, Naphthalic Acid, $C_{10}H_8(CO_2H)_2$, Dinaphthyl

 $C_{10}H_7$ $C_{10}H_7$, Acenaphthene, $C_{10}H_6$, in which the unions with the othylene group CH_8

are in the a_1 - and a_4 positions (found in tar, colourless, incling at 85°, boiling at 277°, and giving naphthalic acid on exidation)

ADDITIVE PRODUCTS OF NAPHTHALENE

Naphthalene gives additive products more readily than benzene does, those containing four atoms of chlorine or hydrogen being well known. It has been shown that this addition occurs in only one of the nuclei, and similar behaviour is shown on oxidation. Chloring reacts with naphthalene at the ordinary temperature and forms naphthalene tetrachloride,

acid on oxidation, and dichloronaphthalene, $C_{10}H_6(l_g)$, when treated with alcoholic potash. When β -naphthylamine is reduced (Na + amyl alcohol), four hydrogen atoms are added to the nucleus containing the amino-group, giving tetrahydronaphthylamine,

$$H$$
 H_{1} $H(NH_{2})$, which behaves exactly like an aliphatic amine and does not form H H_{1} H_{2}

diazo compounds, it is exidised by permanganate, giving o carboxyhydrocinnamic acid CH₂ CH₃ CO₂H

 CH_1 CH_2 CO_2H CO_2H a Naphthylamine also gives a tetrahydro derivative, which

behaves, however, as an aromatic amine and can be diazotised , on oxidation it gives a diple $\mathrm{CH}_{\mathtt{a}}$

nucleus which does not contain the amino group

HYDRONAPHTHALENES Duhydro and tetrahydro naphthalenes occur in tar especially in that obtained from coal by direct extraction with solvents (e.g., liquid SO₁ or from vacuum tar (see Vol. I., p 442) Bamberger and Kitschelt (1800) hydrogenated

naphthalene with sodium and amyl alcohol and Sabatici and Senderens (1904–1910) with hydrogen in presence of finely divided mokel. Schroeter (1915) obtained tetrahydronaph thalene by heating pure fused inaphthalene in presence of finely divided mickel with hydrogen under pressure (Ger. Pat. 324,861 and 324,862, 1915) and from naphthalene vapour and hydrogen at the ordinary pressure with the aid of various catalysts (Ger. Pat. 301,275, 1917), the naphthalene is completely purified beforehand by treating it with a readily fusible metal or with kieselguhr or animal charcoal.

The tetrahydronaphthalene obtained from the crude product by distillation in a vacuum forms an oil stable in the air, sp gr about 0 974, b-pt 206°, in. pt below — 20° Its commercial name is tetraline, and since 1917 it has been used in various industries, e.g., as a solvent for rubber, celluloid and cellon, which renders it possible to prepare softer photo graphic films and to obtain substitutes for backelite, gallalith, and liquid and coloured lacs (Ditmar, 1921)

In 1917 Schroeter and almost simultaneously Kantorowicz found that viscous, only substances are formed when tetraline is heated with a little aluminum chloride. Schroeter and van Hulle (1918–1920) showed that these oils consist principally of octahydrophenan three (octanthrene), $C_{11}H_{18}$, or

and of octahydroanthrucene (octhrucene), $C_{14}H_{18}$, or

These are accompanied by a little benzone, $\beta\beta$ ditetrally, etc

Like those obtained similarly from petroleum hydrocarbons, such viscous products appear to have practical applications as lubricating oils, as oils for internal combustion engines, etc., and disclose new methods for utilising the large amounts of naphthalene produced.

INDENE, CoHa, may be regarded as formed by the condensation of a benzene group

is found in coal-tar and in crude pseudocumene , it has an odour of naphthalone and gives phthalic acid on exidation and Indrane, C_9H_{10} , on reduction

6 ANTHRACENE GROUP

coal-tar to the extent of 0 25 to 0 45 per cent The crude anthracene oil which

passes over at a high temperature (above 270°) in the distillation of this is subjected to a further jectification which yields a 50 per cent anthracene This is purified by distillation from iron retorts with potassium carbonate,

This is purified by distinction from 152 C_0H_4 which holds back the large amount of Carbazole, | NH, as the non-volutile C_aH_4

potassium compound, C_6H_4 NK The distillate then contains only authracene C_8H_4 and C_8H_4 NK The distillate then contains only authracene

and phenanthrene, the latter being removed by dissolving it in outbon disulphide or a mixture of this solvent with concentrated sulphune acid (Ger. Pat 164,508 and Fr Pat 349,337) The residual anthracence is purified by crystallisation from crude benzene (see Treatment of Tar described on pp 630 et seg), and

by sublimation with superheated steam

The proposal has also been made to purify crude anthracono (contaming, say, 46 per cent of anthracene and 13 per cent of carbazole) with hot naphthu and sulphuric acid, which convert all the basic substances into sults and dissolve them, the anthracene being afterwards separated by decantation Isouporation of the naphtha gives anthracene of about 84 per cent strength, and this gives a product of 95 per cent purity on crystallisation from benzene. In place of sulphure and use may be made of aqueous caustic potash solution, the distillation being carried out at 145° until water no longer passes over, the conduct naphtha solution is decanted from the carbazole salt and cooled to deposit the pure anthracene (Kinzelberger, Eng. Pat. 144,648, 1920)

It forms shining, colourless scales with a blue fluorescence, and melts at 216 5° and boils at 351°, it dissolves slightly in ether or alcohol, but is readily soluble in hot benzene Its calorific power is 9541 cals. At 100° it begins to sublime, its vapour pressure in min of mercury being

Sunlight gradually converts it into the polymenic pure-Anthracene ($C_{14}H_{10}$)₂ With pieric acid it forms a molecular condensation product, ($I_{14}II_{10}$, $C_{6}H_{2}(NO_{2})_{3}OH$, melting at 138° By reducing agents, anthracene is transformed into Hydroanthracene, $C_{6}H_{4} < \frac{CH_{2}}{CH_{2}} > C_{6}H_{4}$, which melts at 107" and is readily soluble in alcohol

Its constitution is deduced from its various syntheses. Ansolute obtained it from tetrabromoethane and benzene in presence of AlCla

$$2C_6H_6 + \bigcup_{\mathrm{OHBr}_9}^{\mathrm{CHBr}_9} = 4\mathrm{HBr} + C_6H_4 \bigvee_{\mathrm{CH}}^{\mathrm{CH}} C_6\mathrm{II}_4$$

It is formed also when o tolyl phenyl ketone is heated with zine dust
$$C_{6}H_{4} \stackrel{CH_{8}}{\longleftarrow} C_{6}H_{5} = H_{2}O + C_{6}H_{4} \stackrel{CH}{\longleftarrow} C_{6}H_{4};$$

this synthesis establishes the ortho position of the connections between the two mudei and also the presence of the CH CH group. Confirmatory evidence is obtained from the following synthesis

$$2 \frac{\text{CH}_2}{\text{CH}_2 \text{Br}} + 4 \text{Na} = 4 \text{NaBr} + \frac{\text{CH}_2}{\text{CH}_3}$$

Dillydroanthracene

o-Bromobenzyl bromide

which, on oxidation, loses 2H and gives anthracene.

Phthalic anhydride, when heated with benzeno and AlCl₃, gives o benzoylhenzoic acid, from which PCl₅ eliminates water with formation of anthraquinone, the latter giving anthracene when reduced with zinc dust in the hot

$$C_6H_6+C_6H_4 < \begin{matrix} CO \\ \\ CO \end{matrix} O = C_0H_4 \\ \begin{matrix} CO \\ \\ COOH \end{matrix} \xrightarrow{CO} H_8 O + C_6H_4 \\ \begin{matrix} CO \\ \\ CO \end{matrix} C_0H_4 \xrightarrow{CO} Anthracene$$

Centric linkings do not seem to be present in the nuclei of anthracene, which readily combines with ozone (E. Mohnari, 1907), this property being characteristic of oleffine double linkings (see p. 107).

It is used in the manufacture of anthraquinous and alizarin.

Crude anthracene oil (green oil) was sold before the war at 11s to 12s 6d per quintal, crude 20 per cent anthracene at 1s 6d per kilo, and the purified product at 6s to 8s per kilo

OCTAHYDROANTHRACENE, C14H18 (866 p 731)

SUBSTITUTION PRODUCTS OF ANTHRACENE

The possible isomerides are here very numerous, but only few of them have yet been prepared. Three monosubstituted isomerides are possible, as is seen from the constitutional formula (see above). The constitution of the isomerides is ascertained from a study of the exidation products and of the methods of synthesis. When the substituents are in the γ_1 or γ_2 position, exidation gives anthraquinone ¹

by oxidising anthracene with dichromate and dilute sulphuric acid in the hot, or, better, with nitric acid, which does not give nitro-derivatives. It can also be obtained from phthalic anhydride and benzenc in presence of AlCl₈ (see above) or by electrolysing anthracene in 20 per cent sulphuric acid in presence of cerium, chromium, or manganose salts (Ger. Pat 152,003, and Perkin, 1904)

of cerium, chromium, or manganese salts (Ger. Pat 152,003, and Perkin, 1904)

1 Of the many Derivatives of Anthracene, the following may be mentioned anthracene-carboxylic aculs (a, β, and γ), chlorobromoanthracenes, which contain the hilogens in the γ positions, as they form anthraquinone on exidation, nsire and densire anthracenes (γ); β anthrawine, C₁₄H₉ NH₉, obtained from β anthrol and NH₀, anthrols (a and β), C₁₄H₄ C₁₄ C

It can be purified by crystallisation from nitrobenzene or aniline, which dissolve it in the hot but not in the cold. Kinzelberger (Eng. Pat. 143,885, 1920) purifies it by heating and shaking it with chlorobenzene or solvent naphtha in presence of aqueous alkali (or with concentrated sulphuric acid), the anthraquinone solution being decanted off and the solvent removed by distillation. It gives two isomeric monosubstituted derivatives

It forms yellowish needles melting at 274° and boiling above 360°, and it dissolves in concentrated sulphunic acid, but is precipitated unchanged on dilution. It is very stable, is not easily oxidised and has the character of a diketone rather than of a quinone. It is not readily reduced, is only slightly volatile and has no pungent odour. That the two lateral benzene nuclei have centric linkings and not olefinic double bonds is shown by the fact that, unlike anthracene (see above), anthraquinone does not fix ozone.

When fused with potash, it gives benzoic acid and, when heated with zinc dust and NaOH, Hydroxyanthranol, $C_0H_4 < \frac{CH(OH)}{CO} > C_0H_4$, which has a blood-red colour in alkaline solution and is oxidised to anthraquinone in the air Reduction of anthraquinone with Sn and HCl gives Anthranol,

$$C_6H_4$$
 C_6H_4 , which is a weak phenol

More energetic reduction, such as distillation over zinc dust, yields anthracene. The Schmidt reaction permits of the introduction of sulphonic or nitrogroups into the non-substituted or the substituted nucleus of anthraquinone derivatives, according as the reaction occurs in presence or in absence of boric acid. α - or β -Nitroderivatives can also be obtained, at will, by means of the same reaction (Ger. Pat. 163,042 of 1905), which is facilitated by the presence of mercury salts.

Commercial anthraquinone cost before the war about 0s per kilo, and the sublimed chemically pure product 28s

The most important derivative of anthraquinone is the 1 2-dihydroxy-compound or alizain CO OH

one time obtained exclusively from madder roots (Rubia tinatorum), from which Ruberythric Acid (a glucoside of the formula $\rm O_{20}H_{28}O_{14}$) is extracted, this is separated into glucose and alizarm by boiling with dilute sulphuric acid. It is a very beautiful red colouring-matter and was known to the ancients Since 1870, following Graebe and Liebermann's synthesis (1869), it has been prepared only artificially in the following manner—anthracene is converted by oxidation with $\rm H_2SO_4$ and $\rm Na_2Cr_2O_7$ into crude anthraquinone

This is then heated at 100° with concentrated sulphuric acid, which leaves the authraquinone unaltered, while it converts the impurities into sulphonic acids soluble in water. The anthraquinone is then filtered and washed and heated at 160° with furning sulphuric acid (containing 50 per cent. of free SO₃), which converts it largely into the monosulphonic acid. The latter is dissolved in water and filtered to separate it from unaltered anthraquinone, neutralisation of the solution with caustic soda results in the deposition of the sodium salt, which is only slightly soluble in cold water. One hundred parts of this salt are mixed with 25 parts of caustic soda and 12 to 14 parts of potassium chlorate, which facilitates the reaction, the mixture is dissolved in the smallest possible amount of water and

¹ In 1868 France produced and exported madder to the value of £1,720,000 and £1,240,000 respectively The exportation fell to £800,000 in 1871 and to £160,000 in 1876, the production then ceasing

the liquid heated at 180° for two days in an autoclave fitted with a stirrer. The sulphome group is thus replaced by hydroxyl (or ONa), and at the same time a second OH group is formed by the action of the chlorate.

$${\rm C_6H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_6H_3} \ {\rm SO_3Na + 3NaOH + O} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_2O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O + C_0H_4} {<_{\rm CO}^{\rm CO}} {>} {\rm C_0H_3(ONa)_3} = {\rm Na_2SO_3 + 2H_3O_3} = {\rm Na_2SO_3 + 2$$

Sodium anthraquinone monosuiphonate

The fused mass is run into water and acidified with sulphuric acid, the colouring matter (alizarin) being thus liberated

According to Fr Pat 333,144, if funing sulphuric acid acts on anthraquinone in presence of mercury, there is no partial formation of the m sulphonic compound, the sulpho group entering exclusively the ortho position to the ketonic group

Alizarın may also be prepared (Ger Pat 186,526) without sulphonation by treating, say, 300 kilos of a mixture of NaOH and KOH with 30 kilos of NaClO₃ (or Na₃O₃, BaO₃, PbO₃, etc.) dissolved in 100 litres of water, 100 kilos of anthraquinone being then added and the liquid heated at 200° in an oil bath until the exidising agent disappears. After this, the mass is poured into water through which air is then passed, the alizarin is precipitated with milk of lime, the precipitate being filtered off and decomposed with HCl and the alizarin purified from anthraquinone residues by means of caustic soda. This method yields a purer product than other processes

Alizarin has been prepared recently by passing an electric current through a mixture of anthraquinone and fused potash.

Alizarin sublimes in fine, orange-red needles, melts at 289°, and is almost insoluble in water and slightly soluble in alcohol, owing to its phenolic groups it dissolves in alkali and also forms a diacetyl-derivative. When distilled with zinc dust it forms anthracene

With metallic oxides it forms insoluble lakes of various colours, and on this is based its use in dyoing. With ferric oxide it gives a blush black colour and with lime a blue lake, the lakes of tin and aluminium are red (Turkey red).

with lime a blue lake, the lakes of tin and aluminium are red (Turkey red)

The constitution of alizarin is shown also by its synthesis from phthalic
anhydride and catechol at 150° in presence of sulphuric acid

$$C_0H_4 < ^{CO}_{OO} > O + C_0H_4 < ^{OH}_{OH} \stackrel{(1)}{(2)} = H_2O + C_6H_4 < ^{OO}_{CO} > C_6H_2 < ^{OH}_{OH}$$

Derivatives of authraquinone and of hydroxyanthraquinone, especially the amino-derivatives, form colouring-matters only when the two hydroxy-groups are in the ortho-position to one another

PHENANTHRENE,
$$C_{14}H_{10}$$
, or $\begin{vmatrix} C_0H_4 & OH \\ & \parallel \\ C_0H_4 & OH \end{vmatrix}$, is an isomeride of anthracene,

with which it occurs in the When pure, it forms shining, colourless scales, soluble in ether, less so in alcohol (with blue fluorescence) and only slightly soluble in water, it melts at 99° and boils at 340°. The separation of phenanthrene from anthracene is described above (see Anthracene). Synthetically it is obtained by condensing I mol of o-nitrobenzaldelyde (or its higher homologues) with I mol, of sodium phenylacetate in presence of acetic anhydride.

Reduction and diazotisation eliminate the NO₂, treatment with powdered

copper then gives
$$\beta$$
-Phenanthrenecarboxylic Acid, $\begin{vmatrix} O_6H_4-OH \\ & | & | \\ O_0H_4-O & OO_2H \end{vmatrix}$, from

which CO2 is eliminated in the ordinary way with formation of phenanthrene

When exidesed with chromic acid, it gives first Phenanthraquinone, $\begin{bmatrix} C_6H_4 & CO\\ & \end{bmatrix}$

yellow crystals, m -pt 200°), and then Diphenic Acid, C₁₄H₁₀O₄, or

The constitution of phenanthrene is established by its syntheses and by its oxidation products. The double linking between the two methinic carbon atoms is not shown by the ordinary reaction with permanganate (Baeyer) (see p. 107), but is made evident by the reaction with ozone (E. Molinari, 1907, see p. 107). The constitutional formula of phenanthrene may be represented thus

and it may, therefore, be regarded as formed by the condensation of three benzene nuclei

OCTAHYDROPHENANTHRENE, C₁₄H₁₈ sec p 731

OTHER CONDENSED NUCLEI OF LESS IMPORTANCE, found in the portions of petroleum and tar distilling above 360°, are as follow

Retene has m-pt 08° and b pt 994° , Chrysene, m-pt 250° , b pt 448° , Picene, m-pt 304° , Fluoranthrene, m-pt 110° and b pt 250° (60 mm), Pyrene, m pt 148° , b-pt 260° (60 mm)

BB. HETEROCYCLIC COMPOUNDS

These are substances containing at least one nucleus, the atoms forming the ring being of more than one kind, i.e., they are not all carbon atoms as in the homocyche compounds as yet studied, one or more of these carbon atoms being replaced by nitrogen, oxygen, sulphur, etc. One of the simplest of these heterocyclic compounds is furfuran

1 FURFURAN (Furan), C₄H₄O, is a colourless liquid which is insoluble in water, smells like chloroform, boils at 32°, and is found among the first products of the distillation of pine-tar. With metallic sodium it does not give hydrogen, so that the oxygen is not present as OH, nor is it in the form of carbonyl (CO), since furan does not react with phenylhydrazine or hydroxylamine. It can be converted into occulinic aldehyde, while, under suitable conditions, succindialdehyde loses H₂O giving furan. These reactions indicate its constitution.

$$\begin{array}{c}
\text{CH}_2 & \text{CHO} \\
\text{CH}_2 & \text{CHO} \\
\text{CH}_2 & \text{CHO}
\end{array} =
\begin{array}{c}
\text{H}_2\text{O} + \left(\begin{array}{c}
\text{CH} & \text{CH} \\
\text{CH} & \text{CH} \\
\text{Firms}
\end{array} \right)$$
Succided in idea by the second succided in

A shaving of pinewood moistened with IICl gives a green coloration with furan. The latter reacts with IICl, forming a white mass

FURFURAL (a-Furoi, Furfuraldehyde), $C_6H_4O_2$, is obtained readily and abundantly by the action of sulphuric acid on pentoses, pentosans, and woody substances (see p. 527), it is found in fusel oil and in clove oil—it is a colourless oil of aromatic odour, turning brown in the air and boiling at 162° , it is soluble in alcohol and, to a less extent, in water

Its aldohydic properties justify the constitution O With alcoholic potash it gives a corresponding Furfuryl alcohol, O , and Pyromucic acid, O ,

the latter melts at 132°, sublimes readily, dissolves in hot water, decolorises alkaline permanganate and combines with 4 atoms of bromme, the presence of two true elefinic double linkings being thus confirmed. If heated in a scaled tube at 275° it gives furfuran and ${\rm CO_{3}}$ With aniline and HCl, or with aniline accetate paper, it gives a characteristic intense red coloration (see p. 528)

2 THIOPHEN, C₄H₄S, occurs in tar and always accompanies benzone, on account of theh similarity in boiling point (84°) and other properties. For the preparation of benzone free from thiophen, see pp. 630, 633

Thiophen is produced on a large scale, but in small yield, by passing acceptance or ethylene through boiling sulphur, or by passing illuminating gas over red-hot pyrites W Steinkopf (1911) obtains an increased yield by passing a current of acceptance over pyrites contained in a revolving iron drum and heated to 300° in a furnace, the exhausted pyrites being continually discharged and fresh pyrites introduced. The condensed liquid product contains 40 per cent of the ophen, which can be extracted by fractional distillation

One of the syntheses of throphen consists in the distillation of succime acid in presence of phosphorus sulphide, hydrogen and hydrogen sulphide being evolved, this synthesis confirms the constitution

$$H_aC CO_aH$$
 $H_bC CO_aH$
 $HC = CH$
 $HC = CH$

Thiophen is a colourless and almost odourless, refractive liquid, boiling at 84°, and having the sp gr 1 062 at 23°. The presence of the double hukings is confirmed by the quantitative addition of ozone.

Pure thiophen, prepared synthetically, costs as much as £18 per kilo

Dimethylthiophen (thioxene), | S, is obtained by the interaction of the CH C(CH₀)

enolic form of acctonylacetone and phosphorus pentasulphide, and 1 4-diketones in general yield higher homologues of thiophen, which, when exidised, give earboxyl groups in place of the side-chains

Thophon compounds, such as halogen and nitro derivatives, sulphonic acids, etc., behave very similarly to those of benzone

With isatin and concentrated sulphuric acid, thiophen gives a blue coloration (indophenin, $O_{18}H_7$ NOS)

3 PYRROLE, C₄H₅N, is found in small quantity in tar and in larger quantity in Dippel animal oil (bone oil), especially in the fraction distilling at about 130°, which is freed from pyridine bases by saponifying with sods and washing with dilute sulphuric soid. It is purified by converting into the potassium derivative, O₄H₄NK (by the action of potassium), which is washed with other, in which it is insoluble, and then treated with water, the pyrrole being thus liberated

After fractional distillation, it is obtained as a light, colourless oil, boiling at 131°, and possessing a faint odour of chloroform. It readily turns brown and polymerises under the action of light. With isatin and sulphuric acid it gives the blue indephenin reaction (see above)

ÖH CO

A reaction characteristic of the pyrroles is the red coloration they give with a pine shaving moistened with HOL.

The hydrogen of the iminic group is replaceable by metals, acetyl, and alkyl groups

Pyrrole now forms the basis of a number of important compounds, which are obtained by various syntheses investigated by Ciamician and his collaborators during the past quarter of a century

The constitutional formula of pyrrole is as follows

this being deduced from a number of reactions and syntheses, e,g, the formation of pyrrole by the action of ammonia on γ -diketones or on successe aldehyde, with intermediate formation of diammonal dehyde

$$OH_2$$
 CHO $OH_3 = 2H_2O + OH$ CH CH OH OH CH

This pyridine nucleus occurs frequently in nature, in combination with other groups in alkaloids (nicotine, etc.), in the colouring-matter of the blood and of chlorophyll, etc.

When boiled with hydroxylamine, pyrrole gives succindialdoxime, CH₂ CH N OH

CH₂ CH N OH

which, with introus acid, gives succinic aldehyde, | CH₂ CHO

Pyrrole is formed by the distillation of succinimide, NH, with sodium OH, CO

or zano dust, while the exidation of pyrrole with chromic acid gives malaimide,
OH CO

Pyrrole is changed by acids, with HCl in the hot, it polymerises and condenses to a red mass (pyrrole red). It has a faint basic character, but gives a hydrochloride, $(C_4H_8N)_0$, HCl, only in ethereal solution.

With the halogens it gives not additive products but only, like benzene, substituted derivatives. Tetraiodopyrrole (*2001*) is obtained from pyrrole by the action of an alcoholic, alkaline solution of iodine, it is an efficient antiseptic and is used instead of iodoform, being without the unpleasant odour of the latter. It melts at 190°, and is colourless when freshly prepared, but it gradually turns brown and deposits iodine

With nitric and sulphure acids, pyrrole resimfles, the nitro derivatives, which contain the *sonitro-group, NOOH, are prepared indirectly (e.g., with alkyl nitrate)

Pyrrole is analogous in many of its properties to the substituted phenols and anilines; thus, a methyl- or acetyl-group united to the nitrogen (N derivatives) is displaced, on heating, to a carbon atom (C-derivatives)

Potassum pyrrolate, C_4H_4NK , and CO_2 give pyrrolecarboxylic acid, $C_4H_3(CO_2H)$ NH (in -pt 102°), this loses CO_2 and gives pyrrole again when heated, while it loses water and

forms a dimolecular anhydride, Pyrocoli, On N , when treated with acctic

anhydride

Like the substituted phonols, the C alkylpyrroles give pyrrolecarboxyle acids by simple fusion with potash. In analogy with the formation of nitrosophenols from phenols, pyrrole, with ethyl mitrite in presence of sedium alkoxide, forms Nitrosopyrrole, which exists in tantomeric modifications.

By means of chloroform and sodium alkoxide, another atom of carbon is introduced into the nucleus, a pyridine derivative being formed.

Hydrogenated derivatives of pyrrole are formed more easily than those of benzene, and, like the latter, do not show purely aromatic properties. When pyrrole is reduced by means of zine and hot acetic or cold hydrochloric acid, it yields Dihydropyrrole (or pyrroline, m-pt. 91°), which, with HI and P, gives Tetrahydropyrrole (or pyrrolidine, b pt 87°),

$$H_2$$
 H_3 , the latter, together with N methylpyrroline, are the sumplest cyclic alkaloids NH

known and are found in tobacco Pyrrolidine is found in carrot seeds and a C methyl pyrroline in pepper

When protons are decomposed by means of trypsin or hydrochloric acid, the ammoscids formed are accompanied by layo rotatory a Pyrrolidinecarboxylic Acid Among the products formed by the degradation of egg albumin by baryta is a'-pyrrolidone a-carboxylic

a neutral reaction and, whon heated, loses CO_a and H_aO_s , forming pyrrola.

PYRAZOLE, $C_gH_4N_g$, is a hoterocyclic compound with two nitrogen atoms in the ortho positions. It can, indeed, be obtained by the condensation of 1 mol. of diazomethane with 1 mol. of acetylene.

It is very stable, melts at 70°, is a feeble base, and has a neutral reaction in water The $a'\beta'$ dihydro compound is known as Pyrazoline, $C_3H_0N_2$, and the a' keto derivative

of this,
$$|$$
 NH, as Pyrazolone. Condensation of methylphenylhydrazme, CH_2 CO

CH₃ NH NH C_6H_5 , with ethyl acctoacetate yields Dimethylphenylpyrazolone, $CH_3 \cdot C-N(CH_3)$

N C₂H₅, which bears the name anispyrene and is used medicinally

owing to its marked antipyretic action on the animal organism; it melts at 113°, dissolves in water and in alcohol, and gives a greenish blue coloration with nitrous acid and a red coloration with ferms chloride.

PYRAMIDONE is dimethylaminoantipyrine or phenyldimethylaminopyrazolone,

$$C_6H_8$$
 N(CH₃) C CH₈ , and is prepared by reducing isometroscountipyrine, with CO—C N(CH₃)₂

subsequent alkylation (Meister, Lucius und Brüning, Ger Pat 71,261, 1891) — It forms a white orystalline powder, m -pt 108°, has a somowhat bitter taste and dissolves radily in alcohol and in 18 parts of cold water — It is used as an antipyrotic, the dose being 0.3 grin

group replaced by N It shows analogies with the pyridine bases. Just us beared may be obtained from amiline, this zole may be obtained from aminothiazole (see la low)

AMINOTHIAZOLE, C₃H₂NS NH₂, is obtained by the action of monochloracetaldehyde on pseudo thiourea

and is a base analogous to amiline.

IMINAZOLE or Glyoxaline,
$$C_8H_4N_9$$
 or | NH, molting at 92°, is a strong base $HC=CH$

with a flahy odour, and is isomeric with pyrazole (see above), it is obtained by the action of ammonia on glyoxal in presence of a little formaldehyde. Alloxan (see p. 435) may be regarded as a derivative of immazole.

LYSIDINE, Methyldihydrouminazole or Ethenylethylenediamine, $C_3H_3(CH_1)N_2H_2$, administered as a solvent for uno soid.

with furfuran (see above) Its phenyl derivatives are known, as also are those of Isoexazole,

It melts at 22°, boils at 204°, and is soluble in water

ın water

at 155° and 13 soluble in water

4 PYRIDINE AND ITS DERIVATIVES

Pyridine is a heterocyclic nucleus containing 5 carbon atoms and 1 of nitrogen It resembles benzene in its behaviour, but it is more stable or more indifferent towards sulphuric, nitric, and chromic acids, permanganate, etc. Oxidation of the homologues with side-chains gives pyridinecarboxylic acids, and the latter, when distilled with lime, give pyridine.

Its hydro-derivatives are readily formed in a similar manner to hydrobenzenes

Halogen derivatives are obtained more easily by the action of PCl_5 or SbCl_5 at a high temperature than by the action of the halogens themselves

Oxidising agents attack only the side-chains and not the pyridine nucleus With sulphuric acid, a pyridinesulphonic acid is obtained, and this gives a hydroxyl-derivative of pyridine on fusion with potash, or a nitrile when treated with KCN. There is hence a marked analogy to benzene, although direct nitration of pyridine is not possible unless phenolic or annuic groups are present.

Pyridine and its derivatives are decidedly basic in character (tertiary bases) and form soluble salts with hydrochloric or sulphuric acid and insoluble ones with chromic acid, the double salts with platinum and gold chlorides are slightly soluble. Like tertiary bases, they combine with methyl iodide to form quaternary bases.

From the complex alkaloidal groupings, pyridino compounds are often obtained either by distillation with caustic potash or includy by energetic exidation

Coal-tar and Dippel anunal oil contain various pyridine compounds which are separated after conversion into salts

General Methods of Formation (a) The exidation of quinoline (see later) yields first quinolinic acid (pyridinedicarboxylic acid), $C_5 \Pi_3 N(CO_2\Pi)_2$, which then loses CO_3 , giving pyridine β -Methylpyridine is obtained by distilling acraldehyde-ammonia, this explains the presence of pyridine products in Dippel oil, acrolein and ammonia being formed in the dry distillation of non-defatted bones

An important synthesis is the general one of Hantzsch by which ethyl dihydrocollidinedicarboxylate, for example, is obtained by heating aldohydrammonia with ethyl acetoacetate, other pyridine compounds are obtained from different aldehydr-ammonias and β -ketonic acids.

From the ester thus formed the hydrogen of the NII and CH is eliminated by means of introus acid, and the resulting collidinedicarboxylic acid, when treated with potash and distilled with lime, loses the two carboxyls and gives collidine (trimethylpyridine), oxidation of the latter gives pyridinecal boxylic acid, and elimination of carboxyl from this in the ordinary way forms pyridine

When ethylulone chlorule is heated with alcoholic auminonia, it yields Aldehydine, C_8H_{11} N

The constitution of pyridine corresponds with that of benzene in which one methinle group, CH, has been replaced by a nitrogen atom. Körnen in 1869 proposed the following constitutional formula, which still agrees well with all the general properties of the pyridine compounds

HO CH
$$\beta^{1}$$
 δ^{4} β^{3} δ^{4} δ^{5} δ^{4} δ^{5} δ^{5}

When pyridine is reduced with alcohol and sodium, it fixes six atoms of hydrogen, giving piperidine or hexahydropyridine, the constitution of which is shown by its synthesis when pentamethylenediamine hydrochloride is rapidly heated

When piperidine is heated with sulphuric acid it gives pyridine, and the latter, when strongly heated with hydrodic acid, gives normal pentane The constitution of pyridine is confirmed by the fact that the isomeric substitution products correspond exactly in number with those derivable theoretically from Körner's formula. There are, indeed, three monosubstituted isomerides $(a, \beta, and \gamma)$, and six disubstituted isomerides aa', $a\beta$, $a\beta'$, $\beta\gamma$, $\beta\beta'$, and $a\gamma$

The position of a substituent group is determined by converting it into a carboxyl group with formation of the corresponding acid of known constitution (see later) Thus, picoline soid has the carboxyl in the α -position, meeting and in the β , and isonicoting

acid in the y-position.

PYRIDINE, C_5H_5N , is a colourless liquid, boiling at 115° and having the sp gr 10033 at 0°. It dissolves in water in all proportions and has a slight alkaline reaction (not sensitive to phenolphthalem, slightly to htmus, and more so to methyl orange)

It has an unpleasant odour and is hence used to denature alcohol (see p. 177) It forms a slightly soluble ferrocyanide, by means of which it can be purified It forms pyridineammonium iodides, eg, C₅H₅N,CH₃I, which with KOH in the hot gives dihydromethylpyridine, C₅H₄H₂ NCH₃, with a characteristic

pungent odour

Metallic sodium polymerises pyridine, forming dipyridine, $C_{10}H_{10}N_2$ (b-pt 290°), and γ -dipyridyl, $C_{10}H_8N_2$ or NC_5H_4 C_5H_4N (m-pt 114°) With sulphuno acid it gives β -pyridinesulphonic acid, NC_5H_4 SO_3H

Pyridine is administered in cases of asthma and has been suggested as a

means of purifying synthetic indigo

Mixed pyridine bases for denaturing cost before the war about 1s 2d per kilo and pure pyridine 8s

Of the homologues of pyridine, the following may be mentioned

PICOLINE (Methylpyridine), NC₅H₄ CH₃, exists as three isomeric liquids similar to pyridine and of disagreeable odour, their boiling points are a, 120°, β , 142°, γ , 144° Besides by general synthetical methods (see above), β picoline is formed by heating strych nine with lime. a-Methylpyridine condenses with aldehydes by means of the methyl group, giving alkines NO_5H_4 $CH_3 + CH_5$ $CHO = NO_5H_4$ CH_2 CH(OH) CH_3 This a-picolylallane gives up a molecule of water yielding a pyridine donvative with an un saturated side chain, e g , a allylpyridine, NC,H4 CH CH CH,

These reactions proceed in one stage if zinc chloride is present with the aldehyde

LUTIDINES (Dimethylpyridines), $NC_8H_3(CH_3)_8$, three isomerides are known, with the

boiling points aa', 143°, $\beta\beta'$, 170°, $a\gamma$, 157° COLLIDINES (Trimethylpyridines), $NO_5H_3(CH_8)_3$, are isomerae with propylpyridine a-Allylpyridine (see above) fixes hydrogen (alcohol and sodium), giving the alkaloid CONIINE (mactive racemic), which is a-propylpiperidine, fractional crystallisation of the tartrate separates the lavo- from the dextro-form, the latter being identical with natural conline (the poison of hemlock), boiling at 167° The asymmetric carbon atom causing the activity is the a- one united with the propyl group

PYRIDONES or HYDROXYPYRIDINES, NC, H4 OH The three isomerides are known, their boiling-points being a, 107°, β , 124°, and γ , 148°. They are obtained by heating the corresponding hydroxypyridmecarboxylic soids with lime They are phenolic in character and give red or yellow colorations with ferric chloride. a-Hydroxypyridine forms two senses of derivatives corresponding with the two tautomeric formulæ

$$C_2H_2$$
 C_3H_4
 C_3H_4
 C_3H_4
 C_3H_4
 C_3H_4
 C_3H_4

the former giving, for instance, a methoxypyridine and the latter a methylpyridene.

PYRIDINEMONOCARBOXYLIC ACIDS, NC,H4 CO,H The three isomerides are as follow a or picolinic acid, m -pt. 135°, β or nicotinic or nicotic acid, m.-pt. 231°, γ or isomeotinic acid, m -pt. 309°

They are formed by oxidation of pyridine derivatives with a side chain or by elimination of one carboxyl from the pyridinedicarboxylic soids, that nearer to the nitrogen being the

· P

more easily eliminated. Nicotinic acid is obtained on oxidation of nicotine. When holled with sodium amalgam in a highly alkaline solution, these acids lose nitrogen as NH_3 and give saturated, open chain, dibasic hydroxy acids

When the carboxyl is in the a position (with the dearboxylic acids also), an orange

coloration is given with FeSO4

As they are both acid and basic in character, they exhibit analogies with glycocoll (see p 423)

The PYRIDINEDICARBOXYLIC ACIDS, NC₅H₃(CO₂H)₆, have the following melting points aa' or dipicolinic acid, 226° , $\beta\beta'$ or dinicolinic acid, 323° , $a\beta$ or quinolinic acid, 190° , $a\beta'$ or isocinchomeronic acid, 236° , $a\gamma$ or lutidinic acid, 235° , $\beta\gamma$ or cinchomeronic acid, 240°

Quinoline acid is formed by the exidation of quinoline, its constitution being thus established, and since in the hot it loses CO_2 from the a position, giving nicotinic acid, the constitution of the latter is also fixed

Pyridinetricarboxylic acids (obtained by exidising emchanine or quinine), as well as pentacarboxylic acids and hydroxypyridinecarboxylic acids, are also known.

HYDROPYRIDINES The dihydropyridines are mentioned above. The tetruhydro pyridines and their derivatives are known also as pregridenes, while the hexahydropyridines and their derivatives—included in the term prevalence—embrace procedure, NC₆H₁₀ CH₃, lunctedure, NC₇H₆(CH₈), correlatives, NC₈H₆(CH₈), correlatives, NC₈H₆(CH₈), correlatives.

lupetidine, NC₅H₀(CH₅)₂, copellidine, NC₅H₈(CH₃)₅, oto
PIPERIDINE, NC₅H₁₁, is obtained by heating piperine or piperylpiperidine, ('₅H₁₀N C₁₂H₉O₅ (m pt 120°), which is the alkaloid contained in popper, and is formed by the condensation of 1 mol of pipers or piperine acid, C₁₂H₁₀O₄, or

$$CH_2 < {}_{O} > C_6H_3$$
 OH CH OH CH CO_2H ,

with 1 mol. of piperidine. For the constitution and syntheses of the latter, see p 741

Piperidine boils at 100°, has an odom of pepper, is strongly basic, and is soluble in water

or alcohol With HaO2 it gives aminovaleraldehyde

Piperidme, being a secondary base, forms with $2CH_{\eta}I$ an ammonium iodide derivative which, when distilled with silver exide, gives an unsaturated open chain, tertiary base, in its turn the latter, with $CH_{\eta}I$, $Ag_{\eta}O$ and distillation, loses trimethylanume and forms piperilene, CH_{η} CH CH_{η} CH_{η} CH CH_{η} CH CH_{η} CH CH_{η} CH_{η

To the group of heterocyclis compounds belong the following, which are of little importance

From these compounds may be derived counciline or comanic acid, $C_5H_3O_2$ CO_2H (also formed from malic acid), meconic acid, $C_5HO_2(OH)$ ($CO_2H)_2$, which can be obtained from opium and gives pyromeconic acid by elimination of CO_2 , chelidonic acid, $C_5H_2O_2(CO_2H)_2$, which is found in celandine, loses CO_2 giving comanic acid and pyrone.

ALKALOIDS

These are found in various plants and have medicinal and often poisonous properties, some of them, such as caffeine, theobromine, etc., were described on pp 437 et seq, and the principal ones having basic characters (vegetable bases) will be considered here

They are almost all levo-rotatory and have an alkaline reaction and a

They are soluble in alcohol and to a less extent in ether, and are usually insoluble in water and in alkali, in acids they dissolve with formation of crystallisable salts Nearly all alkaloids are precipitated from their solutions by tannin, phosphomolybdic acid, potassium mercury iodide, HgI_2 , KI , or aromatic nitro-derivatives (e.g., picric acid, etc.), etc. Fioin plants they are extracted with acid solutions and are then liberated with alkali and either distilled in steam or, if they are non-volatile, filtered off

When converted into salts by means of strong acids, then specific rotatory power is not greatly influenced, since these acids are almost completely dissociated in aqueous solution, with weak acids, however, the salts are only slightly dissociated, and hence the rotatory power is different, being due to very

A Pictet (1906) regards the alkaloids not as assimilation products of the organism, but rather as nitrogenous decomposition products of proteins, nucleus, chlorophyll, etc, which have condensed with other substances present in the plants It is supposed that alkaloids containing the pyrrole group have then origin in protein of chlorophyll, in which such group is certainly present, while those with a pyridine grouping have a similar origin, the transformation of the pyrrole into the pyridine nucleus being possible even in the laboratory, the pyridine or quinoline group itself does not appear to exist in the proteins, chlorophyll, etc 2

¹ Separation and Tests of Alkaloids A mixture of these is separated as follows
I From the neutral or acid aqueous solution, other extracts duplatin, picrolorin, and colchicine, and from a solution of these the first and last are precipitated by tannin
II. From the alkaline aqueous solution, other extracts consine, nicoline, brucine, delphinine, nascoine, veraline, atropine, strychine, aconstine, quinnie, codeine, and physosisymme
III From the alkaline aqueous solution, chloroform extracts cinchonic, caffeine, curaring, duptalin, prerotoxin, and

morphine, solanne, and theobronine
The separate alkaloids can be distinguished by the following colorimetric tests, arranged by Hager The colours are represented shortly (as with thoughing matters, are lu(r)) as follow O = orange, B = blue, Br = brown, D = decolorised or colourless, Y = yellow, Cr = grey, Bl = black, R = red, r = rese, Cr = green, V = violet, V = intense, V = weak. The reagents most commonly used are

(1) Erdmann's reagent to 20 drops of a solution containing 10 drops of HNO_a (sp gr 1 15)) and 20 c.c of water are added 40 c.c of concentrated H₂SO₄. One cubic continuous of this liquid is poured on to 1 to 2 grms. of the dry alkaloid and the changes observed after 15 to 30

minutes

(2) Fröhde's reagent 0 5 grm. sodium molybdate in 100 c c conc H₂SO₄
(3) Mandelm's reagent 1 grm ammonium vanadate in 200 grms. H₂SO₄ (monohydrate)
(4) Marques's reagent a solution of formalin in sulphuric sold
(5) Lafou's reagent sulphuric sold solution of ammonium selenite

2 Synthesis of Alkaloids and Medicine Evon during the most romote ages human beings sought remedies for their allments in the principles contained in various plants and animals. Galen (A D 131-200) studied various medicines more rationally than had been previously done by Hippocrates (400 B C.)

by Hippocrates (400 s.c.)

Numerous medicines proposed by Galen were used as sovereign remedies for some centuries, until indeed Paracelsus (1493–1541) gave a new direction to medicine by contesting the theory of Galen and of Avicenna and by founding *cdrochemsiry*, which had such a large following in the Middle Ages, and which ultimately degenerated into the most fantasin screery (**e** History of Chemistry," Vol. I, p. 14)

Modern chemistry alone could yield medicine real support, by rigorous control of the physiological and chemical actions of all the natural and arbificial drugs.

In the past the curative properties of various substances were discovered by pure chance, this was the case, for instance, with antifobrin (acetanilide), which was administered to a patient in mistake for naphthalene Nowadays, however, a rational procedure is followed, use being made ather of analogy in chemical constitution between the substance under consideration and others of known action or of systematic physiological tests, first on animals and afterwards on human of known action or of systematic physiological tests, first on animals and afterwards on human

Until the beginning of the nineteenth century, the energies of chemists were directed to the discovery of the active and essential principles of those parts of plants successfully applied in medicine. When these were isolated in the pure state, attempts were made to establish their chemical structures and, in some cases, to effect their manufacture synthetically

As early as 1805 Sortimer discovered and isolated morphine, the active principle of opium, and in 1821 Pelletter and Caventon discovered the alkaloids of ciucions bark, which were studied in 1850 by Strecker with the object of ascertaining their chemical constitution. The synthesis of these alkaloids was by no means an easy task, but in cases where they themselves have not been obtained by laboratory reactions, simple derivatives have been prepared, and these often

4 1 4 1

Alkaloid	H ₂ 8O ₄	HNOs spgr 14	Mrd mann's reagont	b röhde's rongent	Mando lin's rougent	Marquis s rongent	Infous rongout	2 per cent aqueous furfural
Acoultino	1 Nr., after 21 hours Br R , after 48	Y	T Rr , in the hot R Br	I' Br, thon D	-	_	-	-
Atropias	D or Hr	aubatanco Br adu-	D	v	_	-	_	_
Brudno	- r	tlou <i>D</i> + R, thou O	R and thou 1	R, then 1 , after 24 hours	-	-	r	-
Quinine Quinkline Olnekontue Digitalin	D — D D D Br thon R	D D D Hr	- D - D D R Hr, then R after 15 hours + R	D or − (In − D D + O thon + R, in 30 minutes M Br, after 24 Gn-1	1111	1111		1111
Caffoino Codolno	D, after 8 days B	r thon Y	D then B	D Ga thon B or after 21	Un in hot	_v	(th	-
Cocalne Colchicine	D + Y	D V then B and Y	D Y	hours — Y D I and —Gn-Y	=		[]	=
Contino	D	D then	n	P		-	_	
Morphine	D, in hot R then F and Ga	— 1" thon D O thon Y	$-R$ then $R_{\it F}$	V, then Gu, Br, after 14		R	<i>Un</i>	R
Narcotino	- I' then O and ofter 24	Y then D	r, o	hours V Gr. then Br. Y. r	R	1	Gn Br lu the het R	-
Narroino	hours r Br then Y	Y	Y thon	Br thon I	O, lu tha	Y	B, Br	
Nicotino	D	r thou R r and thon D	– Br D	and D Y then r	hot R		-	
Papaverine	V then B	O	7 thon 13	V thon B		-		
Physostigmino Piperino	1' then Gn R then O	O and with alkali	– Tin	I then - Br III	n r -an	\overline{R}	(in Br	T Hu to HnB
Solanino	O, and after 20	D then — B	- Y	R then Brawl Y	O	Br	R Br	R than V
8tryclinino	hours Br D and with bichro	¥	D, with MnO ₂ V	D	v	~	-	-
Tholmino	mate V R then ()	¥	thon R R thon O	R then O	\boldsymbol{n}	R	_	R Hion
Theobromine Veratrine	O thon R	D Y	D O then R	P thon R	\widetilde{R}	\overline{n} \overline{n}	=	V. in hot
Adrenaline		-		Y Br then	Y, Br	n, nr	Gn	- Y
Borborino	Gn	R Br	<i>Gn</i>	On R On Br	B V thon	Y in hot,	Br Gn	
Hydrastino Plerotoxin Digitoxin	Ξ	111	111	An Ar O Hr	R Y Gn Ilr V	R	Br Br V	 7

exhibit similar therapeutic properties. Thus synthesis has given codeins (or methylmorphine) and discrime (ethylmorphine), which in many cases are excellent substitutes for morphine, as they are searcely if at all poisonous. Derivatives of cocaine, such as eucaine (a derivative of \(\gamma\) methoxy piperidine, Ger Pats 90,235 and 07,672), and of quinine, such as eugainne (the carbethoxy-derivative of quinine, without the bitter taste of the mother substance), have also been prepared. Chemical investigation not only gives new products but leads to improved manufacture and consequent cheapening of the old ones. Thus, quinine, which 20 years ago cost \$40 per kilo, was sold before the war in a highly pure state for 32s. Vast works now turn out enormous quantities of synthetic drugs, although these are administered in doses of centigrams; thus, antipyrine, discovered by Knorr, was consumed to the extent of hundreds of thousands of kilos in the first few years during which influence made its appearance.

Modern industrial conditions have rendered possible the development of serotherapy (see p. 168), and great results are now promised by organilarapy of coolingary. This is based on the fairly general phenomenon that in the different organs of a healthy individual substances are continually produced capable of guarding them against different affections. This principle, introduced vaguely and confusedly by Brown-Sequent in France in 1891, was in 1806 brought towards.

And the state of t

VOL. IL

The work of Pictet and of Ellinger has shown how these groups, occurring in the alkaloids, may be derived from the transformation of the pyrrole and indole Ciamician and Ravenna (1911-1913) found that the production of

with triumph by Baumann, who found that in many persons gottre is due to defluent scoretion of iodo products by the thyroid glands (see Vol I, p 102), and, having extracted the active iodine principle, thyroidin, from the thyroid of healthy sheep, that this constitutes a rapid and effective cure for goitre. For the treatment of other diseased organs, overm, cerebran, nuclein,

iodine principle, theroidin, from the thyroid of healthy sheop, that this constitutes a lapid and effective cure for goltre. For the treatment of other diseased organs, ovarin, exclurin, nuclein, etc., were prepared from the corresponding organs of healthy animals.

Coal-tar derivatives have been employed for the synthesis, not only of artifleial alkaloids, antipyretics, and antiseptics, but also of an important group of ancethrite or hypiotic substances which have been of great service to medicine and especially to surgery in rendering painless the most complianted operations. At first, substances such as other and chiroform were employed which produced general ancesthesia of the organism, but the use of those, especially of chloroform, was attended by much inconvenience and often by death of the patient. Sulphinric other was recognised as an ancesthetic by Faraday as early as 1818, but it was used for the first time by the American doctor, C. W. Long, in 1842.

The anaesthetic is carried by the blood into contact with the nerve centres which perceive pain, producing a poisoning and a paralysis which last for some time, but at the same time those centres which govern the action of the heart and of respiration are also affected, thus causing the dangers and disturbances accompanying general ancesthesia. The nervous currents start from the periphery, from the points where the surgical operation begins, and are transmitted to the brain, which transforms them into the sensation of pain, and it is precisely by the influence of the ancesthetic on the cerebral centres that pain is avoided. Ancesthesia consecte be dangerous when the paralysis is effected on the peripheral nervo centres at the beginning of the nervous when the paralysis is effected on the parapheral nervo centres at the beginning of the norvous currents, without, however, reaching the brain. In this way the ideal of local annealisms was arrived at, this being much more rational and much less dangerous, since by its means only the single organ or region of the body to be operated on is rendered insensible.

To chloroform, ether, etc, were added, in 1885, cocame, which paralyses only the sensitive peripheral nerves and does not influence the motor nerves. It can now be indicated which specific atomic groupings in the molecules of anasthetics or hypnotics confor on these their special

properties

Hypnotics include those of (1) the chloral hydrate group, to which belong also chloralamide (chloralformamide) and paraldehyde. (2) the tert anyl alcohol class, $(H_0^{-1}) < (H_0^{-1})$, characterised by the presence of a hydroxyl and of a carbon atom united to three alkyl groups, the action of these compounds increasing with the molecular weight, (3) the intermediate derival [tert amylchloral, CCl₂ CH(OH)(OC₂H_{1,1})] class, (4) the urethinae derivatives, including hedonal [methylpropylcarbinol urethane, NH₂ CO O CH(CH₀)(C₂H₁)]; (5) a group of compounds containing a single carbon atom united to two alkyl groups and to two sulphonic residues, as a trional, C₂H₅ C C₅C₂C₁H₅ (methylsulphonal or disthylsulphonemethylethylmethane), (6) a group studied by E Fischer and consisting of urea derivatives, e.g., NH₃ CO NH CO CH(C₂H₃)₂ (disthylacetylurea) or, better, dethylmalonylurea, CO NH CO CC₂H₅ (disthyl barbiturio acid), which bears the name of veronal (m. pt. 191°, it was prepared by E Fischer and J Mering, patented by Messrs. Merck in 1903 and then made by Messrs. Fr. Bayor, of Elberfeld) and serves to replace chloroform, being free from the dangerous consequences of the latter (provided that it is not administered to patients with weak kidneys). Change of the alkyl groups in veronal is accompanied by change in the proporties—thus, dimethylbarbituric acid has no hypnotic properties, dipropylbarbituric acid is more effective than voronal, while dibenzylbarbiturio acid is without action, possibly owing to its slight solubility.

According to H. Meyer and Overton, all substances capable of dissolving fats are more or less ancethetic, and according to Nicloux (1909) the substance of the nervous system contains an abundance of lepods, s.e., of compounds soluble in the same solvents as fats and honce capable of fixing the ancethetics (they may contain nitrogen and also phosphorus). Thus the quantity of ancethetic fixed by the organism and hence effective is directly related to the quantity of ancethetic fixed by the organism and hence effective is directly related to the quant (chloralformamide) and paraldehyde. (2) the tertamvl alcohol class, $(H_3 > C < (H_3 + C) + (H_3 + C) < (H_3 + C) + (H_3 + C)$

Of the numerous other ansisthetics, orthoform (methyl ester of m amino-p hydroxylonzoic

ordinary belocasse, may be mentioned

In order, however, that local ansesthesis may be efficacious and lasting, it is necessary to prevent the ansesthetic incoulated at a certain place from being carried away (resorbed) by the blood, and this was at first attained by causing the venous blood at that place to stagnate by preventing droulation

The same end was reached later by intense local cooling produced by the rapid evaporation of ethyl or methyl chloride.

For internal surgical operations (a.g., in the theory at a large later (A.H. (O.H.), (A.H.))

For internal surgical operations (e.g., in the thorax, etc.), advenables, C₈H₈(OH), CH(OH) CH₈ NH CH₈, is of the greatest use, as it produces considerable contraction of the blood vessels without driving all the blood from them, although it prevents fresh blood from arriving; the anæsthetic can thus be kept as long as is desired in the inoculated region. The substitution of cocaine by stowane (less poisonous) leads to partial spinal anæsthesia or medullary anæsthesia,

' ; I .

alkaloids in plants (eg, in Datura and tobacco) may be increased up to 30 per cent by inoculating the plants with pyridine tartrate, which undergoes complete transformation into alkaloids. Salicylic alcohol impected into maize plants yields salicin and in general chemical compounds inoculated are found in the plants, not in the free state, but converted into glucosides. Thus, the plant protects itself against the poisonous action of these substances by converting them into innocuous compounds. These observations explain why the powerful alkaloids produced in certain plants as waste products of the decomposition of complex nitrogenous substances exert no harmful action on the plants, although in the free state they exercise serious effects on the animal organism, which is not able to immunise itself. Inoculation of plants with non-introgenous substances may also increase the formation of alkaloids, injection of glucose into tobacco increasing the amount of nicotine formed by 40 per cent.

CONITNE, C₈H₁₇N, is found in hemlock (Consum magnitum) For its constitution and syntheses, see above

NICOTINE, $C_{10}H_{14}N_0$, is a strong diaoid base which, in combination with malic and citric acids, forms the poisonous alkaloid of tobacco—1t is an oil boiling at 247° and possessing a very strong odour, it is soluble in water, alcohol, or other, and turns brown in the air When exidused by permanganate it forms nicotine acid, and as further it contains also a pyrrolidine group, its constitution is represented as follows

Synthetically it is obtained from β -aminopyridine which is converted into its nucleasid salt, and then passes through the following stages

Practically it is prepared from ordinary tobacco extract, by diluting, rendering strongly alkaline with NaOH, and extracting with other. From the ethereal solution, the alkaloid is extracted by shaking with dilute sulphuric acid and decenting off the acid solution. The latter is again made strongly alkaline and shaken with ether, and the ethereal solution dehydrated by means of solid NaOH. The other is then distilled off and the remaining meetine distilled in a stream of hydrogen.

It is a very powerful poison and is used medicinally to counteract nervous irregularity

which now pormits the most difficult surgical operations on the abdominal organs and even renders possible pointess childbirth

Adrenaline of suprarenanc, OH OH OH, NH OH, was extracted from

the suprarenal gland in 1901 by Takamine Synthetically it may be prepared in various ways, e.g., treatment of chloracetocatechol (from catechol and chloracetic acid) with excess of methylamine gives methylamineacetocatechol (adrenatone), and reduction of the latter forms racemic adrenaline, which is less active than the natural lavo rotatory compound, separation of the optical antipodes is effected by preparing the d-tartrate, the sait of the lavo base being only slightly soluble in methyl alcohol. Nagai (1919) treats discetyl protocatechual dehyde with nitromethane (1 mol) in presence of a weak alkall; the discetoxyphenylnitrocthanel, O₂H₃(O·CH₂CO)₂ OH(OH) OH₂ NH₃, formed being crystallised, washed with ether, and treated with zinc and acetic acid in presence of formal dehyde. Simultaneous reduction and methylation then occur, giving discetyladrenaline. The zinc is removed as sulphide, and hydrolysis of the discetyl compound effected by means of hydrochloric acid.

ېــ48

of the heart and is employed in agriculture, as tobacco extract, to kill insects ¹ Impure 75 per cent mootine cost before the war 148s per kilo, and the pure product 184s The French and Italian Governments place at the disposal of agriculturists tobacco extract (2 to 10 per cent of nicotine) at about 2s 6d per kilo (pre-war)

¹ Tobacco is a herbaceous plant, originally an annual but now sometimes a blennial, of the order Solonacem (Nicotana tabacum), which includes about fifty species and sub-species of American origin, cg, the Virginia tobacco plant (Nicotana tabacum, see Fig. 406), the Maryland large leaved tobacco (N latissima, N rustica, N suffritteesa, etc.) These grow well in various countries, as is shown by the following Table, giving the mean production of raw tobacco a few years ago (the figures given are tons)

	Output	Imports less Exports	Exports loss Imports		Output	Imports	Exports
United States British India Austria Hungary Russia Turkey (a) Bolgium, (b) Al geria, (c) Australla, (d) Porto Rico, (e) Ro um a ni a, (f) San Domingo, (g) Coylon, cach about (a) Italy, (b) Switzer land, (c) Swedon, cach from 1,600 to	250,000 185,000 70,000 58,000 40,000 37,000		115,000 	Dutch Indies Japan France Cuba Philippines Brasil Greece (a) Bosuia, (b) Notherlands, (c) Ar gentine, (d) Cochin Uhina, (e) Mexico, ench about (a) Ohina, (b) Para guay and other countries, together Great Britain	74,000 20,000 26,000 26,000 22,000 17,000 9,000 3,800	21,000 	18,000 13,500 12,000 11,000 5,000 (a) 5,500 (b) 5,000

Italy imported before the war about 2000 tons of tobacco leaf (about £1,080,000) and exported manufactured tobacco to the value of about £200,000

The world's pre war production of raw tobacco varied from 900,000 to 1,000,000 tons, of the value of £48,000,000 to £56,000,000

The price was about £32 to £40 per ton for the ordinary quality and £120 to £100 for the finer qualities (Manila, Havana, Sumatra)

Ordinary tobacco plants are only slightly branched and have a height of about 1 metre, although some exceed 15 metre. They are studded with sticky hairs, and the leaves are wide and oval or, sometimes, long and narrow, as with Chinese tobacco (N chineness). The flowers are in clusters and resemble those of potatoes, but are usually flesh red. The cultivation of tobacco requires a good soil rich in humus, and the climate, soil, and mode of growing exert a considerable influence on the quality of the tobacco. The readiness with which a tobacco burns in the form of cigars depends on the potash content of the plant, while chlorides hinder the combustion. On this account fertilisation with stable manure, sowage, or potassium chloride is avoided, preference being given to potassium or ammonium sulplate mixed with a little Thomas slag and stable manure. The young plants from the foreing house are planted out in about March, and at the beginning of July the dry and dirty leaves near the soil are detached, together with the useless branches and the flowers. The other, useful leaves are then removed as they begin to yellow and are dried on strings or in steam drying ovens, and are then sorted and tiled in bundles.

In January the leaves are placed in heaps so as to include fermentation, which renders them brown

and gives them flavour The leaves arrive at the factory in cloth bales. They are first sorted into kinds suitable for different types of tobacco and are then beaten to remove sand and dust. They are then arranged in layers, each of which is sprinkled with 5 to 10 per cent. salt solution (it is this which renders organs hygroscopic) to soften it, to facilitate the subsequent operations and to prevent putrid fermentation. In this state it is sometimes placed in tepid apartments to initiate a second

ATROPINE, C17H23O3N, as the alkaloid of the herries of Atropa belladonna (deadly mightshade) and of the fruit of Datura strumonoum (thorn apple) In dilute solution it is used as a mydratic (enlarging the pupil of the eye) and as an analgeme (relieving pain) It is somewhat poisonous and inelts at 115 5° As the products of the decomposition of atropine in various ways comprise heptamothylene derivatives, substituted pyrrolidines and paperidines, tropine, $NC_8H_{18}O$, and tropic acid $[C_9H_{10}O_8]$, or a-phenyl- β -hydroxypropionic acid, OH CH2 CH(CoH3) CO2H], atropine is regarded as an ester, a tropate of tropine, the structure of the latter (which has also been propared synthetically) being,

Hyoscyamine, stereoisomerie with atropine, melts at 109°

Tropine, formed by the splitting of atropine with barium hydroxide, is a tertiary base containing a secondary alcoholic group and is therefore known also as trapanol When oxidised with chromic acid, it forms first a ketone, tropinone, CaH18ON, and then tropinic acid, CHaN C4Ha(COaH)(CHa COaH), owing to the rupture of the piperidine ring With

fermentation, which refines the milder qualities, in some cases this end is attained by washing with dilute solutions of salts, alkalı, or acid, or, more rarely, by torrefying at 60° to 70°

The best flavour and aroms are obtained, however, by curing, te, by immersing the loaf in an aqueous solution of secolarine substances, various drugs, intro, colouring matters, aromatic substances, alcohol, etc (each manufacturer has his particular method of curing), the drained or pressed leaves are then left in heaps for a longer or shorter time until they are uniformly soa ked

By suitable machines the ribs of the leaves are either out or beaten off and the cut leaves then dried by heating in revolving metal drums, the dried leaves are rapidly cooled in a current of air, etc. The subsequent operations for the proparation of eigers, eigerettes, out tobacce for

pipes, or snuff are merely mechanical and need not be described here.

of air, etc. The subsequent operations for the proparation of eights, eightests, out tobacco for pipes, or shuff are merely mechanical and need not be described here.

Montion may, however, be made of recent attempts to diminish the hornful effects of tobacco, which is now smoked in every country in the world. It seems that when the Spaniards invaded America, the use of tobacco was already known in that country, and they not only extended its use there but introduced it into Europe (by the Thévet brothers in 1817), arousing grave apprehension owing to a statement by the medical men that it was highly injurious to health. In 1613 Tear Michael Federowitz prohibited its use in his territory under penalty of death or of the cutting off of the nose. James I of England published in 1619 a decree forbidding the use of tobacco and describing smoking as a "habit disgusting to the sight, naussating to the smell, dangerous to the brain, harmful to the heart, and spreading around the smoker repugnant exhalations." In 1600 the Schate of Berne punished the use of tobacco like robbery or homicide, and in 1623 Amurat IV prohibited its use by the Turks in order that they might not become intoxicated or infertile. To human nature, however, the folbidden fruit is the most desired, and, being useless, is none the less necessary. The employment of tobacco spread rapidly everywhere, and many States, to limit its consumption, imposed enormous taxes on tobacco, and ended by making it a Government monopoly and thus deriving a vast income to the Treasury Since then no Government has compiled itself with the leath of its subjects, the only care being the enlargement of the Exchaquer. In Italy, after the partnership between the Government and a private company from 1868 to 1883, the trade in tobacco became a monopoly of the State, which derived from it a net annual income of about £7,000,000 (pre-war., in 1920 for more). The mean yearly pre-war consumption of tobacco per head was as follows: North America, 3 1 kilos. Notherlands, 2 5, Bel

The harm caused by tobacco is due especially to the nicotine, to which man becomes accustomed without serious inconvenience, in the same way as to change of climate, food, druk, or other conditions Attempts have been made in recent years to render tobacco less injurious by extraction of the nicotine with one of a number of solvents, but such treatment results in the removal of the aromatic substances of the tobacco (see also Ger Pats 178,962, 197,159, and 212,410 of 1908)

Better results are obtained by filtering the smoke through fibres or textile materials before it reaches the mouth. Thus the Thoms process (Ger. Pat. 145,727), which has proved very satisfactory, consists in arranging in the mouthpiece of the pipe a small plug of cotton wool impregnated with ammoniscal ferric chloride or ferrous sulphate, this retaining all the burning ethereal oils, the hydrogen sulphide, a considerable proportion of the hydrogenic acid, and almost all the microtine and its basic derivatives in the smoke. Treating the raw tobacco with exone has also been employed with the view of fatilitating the elimination of the nicotine, moreasing the combustibility, and improving the quality. The aroma of tobacco is also intensified by the addition of small quantities of methylogenal and methyliscougenal.

concentrated HCl, tropine forms tropidine (or *tropene*), $C_8H_{13}N$, which is obtained also by elimination of CO_8 from anhydroeogonine and forms an oily base, b pt 162°

OTHER ALKALOIDS are Veratrine (cevadine), $C_{32}H_{20}O_2N$, found in Veratrum album, Sparteine, $C_{15}H_{26}N_2$, found in Sparticum scoparsum, Sinapine, $C_{10}H_{36}O_6N$, found in the seeds of white mustard and derived from choline and from sinapic acid (dimethyltric hydroxyonnamic acid), $C_{11}H_{12}O_5$, Hydrastine, $C_{21}H_{21}O_6N$, obtained from the roots of Hydrastis canadensis, has similar properties to the alkaloid from Secale cornulum and gives hydrastinine, $C_{11}H_{11}O_2N$, H_2O_3 , on oxidation.

MORPHINE, $C_{17}H_{19}O_3N$ The latex of the capsule of *Papaver sommiferum* when condensed forms opum, which, along with various other compounds (see below), contains considerable quantities of *morphine* (about 10 per cent). Morphine, melting and decomposing at 230°, is slightly soluble in water and odourless, and possesses narrotic and analgesic properties, being used in medicine as hydrochloride, $C_{17}H_{10}O_3N$, HCl_3H_aO . It is a tertiary base with phenolic characters and, when distilled in presence of zinc dust, gives pyridine, pyrrole, quinoline, and phenanthrene.

Morphine is extracted from opium by means of water, the evaporated aqueous extract being treated with sedium carbonate to precipitate all the alkaloids (about twenty) of the opium, after 24 hours the precipitate is washed with water and then with alcohol, which removes the resins and all the alkaloids excepting nearly the whole of the morphine. The crude morphine remaining is dissolved in acetic acid (which leaves behind the narcotine impurities), the solution filtered through animal charcoal, and the morphine liberated by means of ammonia, washed with cold water and dried. It is obtained in a purer form by repeatedly boiling its alcoholic solution with animal charcoal and recrystallising.

The action of opium on the human organism is analogous to that of other stupedying agents, being intermediate to that of alcohol, ether, etc., and that of cocaine. The smoking of opium, either alone or together with tobacco, is a habit which has been long rooted in certain countries, especially China.

The action of opium is due to the presence of a number of alkaloids, which are divided by A. Pietet into

(1) The Morphine Group, including

Morphine, $C_{17}H_{17}ON(OH)_2$ Pseudomorphine, $[C_{12}H_{16}ON(OH)_2]_2$ Codesne, $C_{17}H_{17}ON(OH)(OCH_0)$ Thebarne, $C_{17}H_{18}ON(OCH_0)_3$

(2) The Papaverine Group, comprising mainly isoquinoline derivatives, which have a mild physiological action

Papaverne, $C_{10}H_0N(OCH_0)_4$ Laudanidine, $O_{17}H_{15}N(OH)(OCH_0)_8$ Codamine, $C_{18}H_{18}ON(OH)(OCH_0)_8$ Narcotine, $C_{19}H_{14}O_4N(OCH_0)_8$ Protopine, $C_{20}H_{19}O_5N$ Tritopine, $(O_{21}H_{27}O_5N)_8O$ Papaveramine, $C_{21}H_{31}O_5N$ Santaline, $C_{27}H_{60}O_9$ Lautopine, $C_{25}H_{65}O_4N$

Laudamine, $C_{17}H_{18}N(OH)(OCH_0)_0$ Laudanosine, $C_{17}H_{18}N(OCH_0)_4$ Cryptopine, $C_{10}H_{17}O_0N(OCH_0)_8$ Oxymarcotine, $C_{10}H_{14}O_0N(OCH_0)_8$ Narceine, $C_{20}H_{18}O_6N(OCH_0)_8$ Meconidine, $C_{21}H_{20}O_4N$ Gnoscopine, $C_{22}H_{28}O_7N$ Hydrocotamine, $C_{11}H_{18}O_2N(OCH_0)$ Berberine, $C_{20}H_{17}O_4N$

Opum contains also Meconic Acid, $C_7H_4O_7$, in combination with various alkaloids, and further—wax, proteins, caoutchouc, pectic and gummy matters, lactic and sulphuric acids, ammonium salts, etc

Good opium contains 8 to 24 per cent of water, 3 5 to 5 per cent of ash, 45 per cent of aqueous extract, 9 to 15 per cent. of morphine, about 5 per cent. of narcotine, 0 8 per cent. of papaverine, 0 4 per cent of thebaine, 0 3 per cent of codeme, and 0 2 per cent of narcodne.

The pre-war price of good opium was 28s to 32s, per kilo, pure crystalline morphine costing £24 and its hydrochloride £18 per kilo. In 1905 Germany imported 68 tons of opium of the value of £80,000. China imported 2600 tons in 1908, about 2500 in 1909, and nearly 2000 in 1910. In 1910 Great Britain imported about 220 tons of opium and in 1911 exported 22 tons. The United States imported 300 tons in 1911.

COCAINE, $C_{17}H_{21}O_4N$, is obtained, together with other alkaloids (Cinnamyleocaine, Cinnamyleogonine, a-Truxilline, Hygrine, etc.), from the leaves of a small shrub (*Erythroxylon coca*) which grows abundantly in Peru, Bohvia, Colombia, Brazil, and Argentine and is now cultivated also in Ceylon and Java. Peru and Bohvia alone produce annually

about 15,000 tons of dry coca leaves containing 0.5 to 2.6 per cent, of various alkaloids, including 0.2 to 0.8 per cent of cocaine. The leaves are mostly used by the natives, who chew them, and are partly treated on the spot for preparing crude cocaine containing 80 to 00 per cent of cocaine and 10 to 12 per cent of other alkaloids, this being marketed at Hamburg and London Before the war the dry leaves were sold in London at about £4 per cent

Not only cocaine, but also the other alkaloids accompanying it in coca leaves, are derived from a single base cogonine

Pure cocame, m pt. 98°, is law rotatory and has an analgesic action, it is used in opthalmology and surgery to effect local anosthesia, and is employed by drug-takers owing to its stupodying action.

Strong ands in the hot decompose it into methyl alcohol, benzole and and ecgonius, $C_9H_{18}O_8N$ (Losson, 1865), which is the a-carboxyl derivative of tropine (see above), and, as with methyl alcohol and benzole acid it gives cocaine again, the latter must contain the

groups $C_9H_{13}O_2N$ ${OCH_3 \choose COC_9H_5}$, confirmation of this is given by the synthesis (rather a complicated one) of cocaine. The constitution of cocaine is as follows (Willstitter, 1808): CH_3-CH —CH—CH—CH5

residue, while elimination of the methyl group united to the nitrogen atom or of the CO_2CH_3 group scarcely affects the anosthetic properties. On the other hand, almost all the aminohydroxybenzoic esters are mild local anosthetics (Einhorn and Heinz, 1897), e.g., anosthesin or othyl p aminobenzoate, NH_2 C_3H_4 $CO_2C_3H_5$. The anosthetic characters of these substances are intensified if, in place of NH_2 , $N(CH_3)_2$ groups are present, preferably joined to other methyl groups. This is the case, for instance, in

prepared by Messra. Bayer in 1905 Both of these are less poisonous than occane, but have not its property of contracting the blood vessels. They are therefore mixed with *adrenatine*, which shows this property in a marked degree and also diminishes the toxicity of cortain alkaloids, especially of occaine

The price of cocaine was about £800 per kilo prior to 1885, £140 in 1887, £22 in 1906, and £12 in 1913. During and after the war the price rose enormously. Owing to the high price of cocaine, many substitutes have been prepared, of these a few have been success fully used, such as β successe (trimethyl γ exypiperidine o benzoate), holocaine, obtained by condensing phenacetin with p phenetidine (in spite of its lack of the benzoyl anisations), acoine (di p anisyl-p phenetylguanidine), etc

HYGRINE, obtained from coca leaves, has the constitution-

NARCOTINE, $C_{22}H_{23}O_7N$, exists to the extent of 6 per cent in opium, melts at 126°, and is a slightly poisonous, weak, tertiary base containing three methoxyl groups. When hydrolysed, narcotine gives meconic anhydride, $C_{10}H_{10}O_4$, and cotarnine, $C_{10}H_{10}O_6N$, which is a derivative of isoquinoline (see later), and with bromine gives dibromopyridine.

STRYCHNINE, $C_{21}H_{25}O_2N_2$, is present, with brucine, $C_{28}H_{26}O_4N_2$, and curarine, in the seeds of Strychnos nux vomsos. They are very powerful poisons, which, even in small closes, cause death, accompanied by tetanic muscular contormons, curarine is used as an anti-dote to the other two alkaloids. Strychnine melts at 265°, and is a mono-acid tertiary base slightly soluble in water, it gives indole and quinoline when fused with potash and β picoline on distillation with lime.

QUININE, C20H24O2N2 The bark of various species of dinchona has yielded, up to the present, twenty four alkaloids, the most important being quinine and cinchonine,

 $C_{10}H_{22}O_2N_3$, both of these possessing in different degrees febrifugic properties. The other alkaloids include Hydroquinine, $C_{20}H_{36}O_2N_2$, Cinchonidine, $C_{10}H_{22}ON_3$, Hydrocinchonidine, $C_{10}H_{22}ON_3$, Hydrocinchonidine,

 $C_{19}H_{24}ON_2$, Quanidine, $C_{20}H_{24}O_2N_2$, etc

Quinine is law or rotatory, slightly soluble in water and odourless and has an intensely bitter taste, it melts at 177°, or, when crystallised with $3\rm H_2O$, at 57°. It is a diagod base, containing two tertiary introgen atoms capable of salt-formation with two equivalents of acid, then often giving aqueous solutions showing blue fluorescence characteristic of quinine. It contains a hydroxyl and a methoxyl group, and its constitutional formula, although not completely established, must consist of two cyclic systems, $NC_{10}H_{16}(OH) - NC_0H_6$. OCH₈, the first being somewhat analogous to tropine (see above) and the second representing 5-methoxyquinoline, which can be obtained by fusing quinine with potash. After protracted investigation, W. Königs (1906–1907) arrived at the following probable structures for anchonine and quinine.

Rabe (1906-1907), however, proposed for cinchonne the formula

which is in harmony with the Beckmann oxime reaction

Oxidation of quinine gives, among other products, Quinic acid, C₂H₅N(OCH₃) CO₂H To combat fever, especially malarial fever, use is made of the normal sulphate of quinine, (C₂₀H₂₄O₂N₃)₁,H₂SO₄,8H₃O (from alcohol it crystallises with 2H₂O), or of quinine hydrochloride, C₂₀H₂₄O₂N₃,HCl,2H₂O, which is far more readily soluble in water

Quinine bisulphate or acid sulphate contains 1 mol. of quinine per 1 mol. of sulphuric acid.

Quinine is extracted from the finely ground bark by mixing it with line and extracting with hot mineral oils (paraffin oil, etc.) of high boiling point. From this solution the ilkaloid is obtained by shaking with dilute sulphuric acid, neutralisation of the acid solution with sodium carbonate in the hot resulting in the crystallisation of most of the quinine is sulphate from the cold solution, the other alkaloids remaining dissolved. From the sulphate the quinine is liberated by means of ammonia.

1 Since quinine and its true salts are very bitter, attempts have been made to prepare less atter compounds. In 1896 tasteless sugarante, or quinine ethyl carbonate, $(C_{10}H_{10}ON_{2})$

The purification of quiline is not easy and is sometimes effected by precipitating it from solution as tartrate by addition of Rochelle salt

STATISTICS Before the war quinine bisulphate cost about 28s per kilo, the sulphate 32s, and the hydrochloride 40s The world's output of amohous back was 12,000 tons in 1916 1

5 QUINOLINE AND ITS DERIVATIVES

Quinoline and pyridine are related in the same way as naphthalone and benzene

QUINOLINE,
$$C_9H_7N$$
, ic ,

highly refractive, colourless liquid of peculiar odour and is found in bone tar and also in coal-tar, but is now prepared in the pure state by Skraup's synthesis

It is slightly soluble in water, has the sp gr 1 1081 at 0°, boils at 236° and functions as a tertiary base (the nitrogen not being combined with nitrogen) With acids it forms salts, eg, the bichromate $(C_9H_7N)_9H_9Cr_9O_7$

Its constitution is deduced from the following syntheses

(1) By the interaction of allylaniline and PbO, at a red heat

(2) Skraup obtained it by heating aniline with glycerol, sulphuric acid, and nitrobenzene, in this way acrolem is formed, which then gives acrolemniline, C_8H_5 N CH CH CH_2 The nitrobenzene acts purely as an exidising igent and may be replaced by As_2O_3 Margosches (1904) suggested the replacement of the nitrobenzene by rare exides of the cerum group

(3) o-Nitrocinnamaldehyde on reduction gives o-aniinocinnamaldehyde, which loses 1 mol H₂O and yields quinoline, the fact that the latter is an ortholerivative of benzene being thus proved

$$\begin{array}{c}
\text{OH} \\
\text{OH} \\
\text{O}
\end{array} =
\begin{array}{c}
\text{OH} \\
\text{N}
\end{array}$$

When quinoline is oxidised, the benzene nucleus is attacked first, with

COOHormation of a dibasic quinolinic acid, which gives pyridine, соон,

C₃H₃)CO₃, was placed on the market (Zimmer, Ger Pats 91,370 and 118,352), and in 1902, ristoguistic (aristochin), or quinine carbonate, (C₃₀H₃₂ON₂)₂CO₀ (Bayer and Zimmer, Ger Pats 105,606, 1898) It was claimed that 2 grms of either of these products has the effect of grm of quinine. Biginelli (1914) showed, however, that they are not salts of carbonic acid, hat true quinine carbonate is very bitter, that their action on the organism is slight and slow compared with that of quinine, and that euquinine is ethyl quininecarboxylate, Y₂₀H₃₂O₃N₃ COOC₂H₃, and aristochin, carbonylquinine, (C₃₀H₃₂O₄N₃)₂CO

¹ At one time cinchona was cultivated extensively in Coylon, but, owing to over production a 1885 and consequent lowering of prices, it was abandoned and replaced by rubber In Southern and the consequent lowering of prices, it was abandoned and replaced by rubber In Southern and however, the industry increased, 1050 tons of the bark being exported in 1914, and nearly 00 tons in 1916 In Java the production commenced in 1879, 3000 tons of bark being exported a 1889, 0500 tons in 1910, and about 10,500 tons in 1915

, when distilled with lime Hence, as was suggested long ago by Korner,

quinoline contains a benzene and also a pyridine nucleus. It is analogous to naphthalene, one a-CH group being replaced by a nitrogen atom. That the linkings in quinoline are, at least in part, olefinic double bonds is shown by the behaviour of this compound to ozone

Quinoline forms many isomeric derivatives, seven monosubstituted, twenty-

one disubstituted, and still more trisubstituted compounds being possible

The positions of the replaceable hydrogen atoms are indicated by numbers or by the letters α , β , and γ for the pyridine nucleus and o, m, p, a (orthometa-, para-, ara-) for the benzene nucleus

The constitution of quinoline derivatives can be determined by means of the general synthesis of Skraup, variously substituted anilines with the substituents in the benzene nucleus being used, or often by oxidation, which usually attacks the benzene nucleus and not the pyridine nucleus, so that it is easily ascertained whether the substituent is in the one or the other nucleus

The sulpho-acids (or sulphonic acids) of quinoline, when fused with KOH, give hydroxy-quinolines, and these, on being heated with KON, form cyanoquinolines, which are converted by hydrolysis into the corresponding quinolinecarboxylic acids—those containing the carboxyl in the benzene nucleus are called quinolinebenzocarboxylic acids Oxidation of cinchonine gives cinchonic acid, C₂H₈N CO₂H (m -pt 254°), which is quinoline γ carboxylic acid, and from this is derived quinic acid (see above), C₂H₈N(OCH₈) CO₂H (p γ), consisting of yellow prisms melting at 280° When acridine is oxidised it yields quinolinear β-dicarboxylic acid or acridio acid.

dissolving in alkali and being reprecipitated by CO2, etc.

When quinoline is reduced with nascent hydrogen, this unites with the introgenated

nucleus, forming tetrahydroquinoline,
$$C_0H_{11}N$$
, or H_2 , which behaves as a

secondary aromatic amine (>NH).

If the reduction is pushed further, the hydrogen is added also to the between nucleus, forming decally droguenolous, $C_0H_{17}N$, which behaves like an aromatic amine.

Quinaldine or a-methylquinoline, C₁₀H₀N, 18 found in coal tar and boils at 240°, with phthalic anhydride it gives a fine colouring-matter, quinoline yellow, C₁₀H₇N(CO)₂C₆H₄

When quinoline is heated with metallic sodium it gives diquinoly, C_0H_4N C_0H_6N , analogous to dipyridyl and diphenyl. Polymerisation of quinoline yields diquinoline, $(C_0H_7N)_4$, drystallising in yellow needles

METHOXYQUINOLINE, C₉H₈N OCH₂, corresponding with ansole, resembles quinoline, among its derivatives are the antipyretic, thailine, C₉H₁₀N OCH₂, and analgen (o ethoxy-a-benzoylaminoquinoline)

melting at 21° and forming a slightly soluble sulphate.

It is obtained from tar and also synthetically by heating the ammonium salt of homo phthalic acid

When exidised it gives phthalic and and circhomeronic acid, $C_5H_5N(CO_8H)_2$ (a pyridine derivative)

Since it does not fix ozone, it must be assumed, contrary to the former view, that it does not contain elefinic double linkings, but that centric bonds are probably present in both nuclei (Molmari, 1907)

Other condensed nuclei, similar to quinoline, are as follow

pt 71°, is well known.

CO

CO

FLAVONE, the phenyl derivative of chromone,
$$C_8H_4$$

O

CO

CH

ours as hydroxy derivatives in many glucosides, to which it imparts the yellow coloration.

occurs as hydroxy derivatives in many glucosides, to which it imparts the yellow coloration. Thus it occurs in quercetin (or flavin), which is a pentahydroxyflavene, while with isodulated it forms the glucoside quercitrin, $C_{81}H_{88}O_{18}$, obtained from tea, hops, and the bark of Quercus tinctoria (morin is an isomeride of quercetin, and is found in Maclura tinctoria) Chrysin, $C_{15}H_{10}O_4$, is a dihydroxyflavene found in poplar buds. Luteoim, $C_{15}H_{10}O_5, 2H_8O_6$, is a tetrahydroxyflavene, and forms the colouring matter of Reseda luteola, while apigenin is a glucoside of trihydroxyflavene, and is found in paraley and celery

Of the many condensed cyclic groups, the following, which contain a benzenc nucleus and also a furfuran, thiophen or pyrrole nucleus, and are obtained by various syntheses, may be mentioned

Of all these groups numerous halogenated, acid, alcoholic, othereal derivatives, etc are known.

COUMARONE is a liquid, b pt. 177°, is obtained synthetically, and also, together with

various methyleoumarones, from coal-tar Concentrated sulphure and polymerses it to coumarone resin, which, on dry distillation, yields commarone and phenol with partial charring At 200°, alcoholic potash opens the smaller nucleus, various products being formed. It readily unites with two halogen atoms a-Bromocommarone loses bromine and yields a-nitrocoumarone, in. pt 134°, when treated with N2O3

BENZOTHIOPHEN, m. pt 32°, b pt. 221°, occurs in lignito tar

Of numerous dyestuffs formed by the condensation of heterocyclic groups, incution will be made later in the chapter on colouring matters, but a group of substances with heterocyclic nuclei and intimately connected with indigo will be considered here

ISATIN, CeH4 < NH CO CO, forms reddish yellow prisms soluble in alcohol and in hot water, and may be regarded as the lactam (see p. 423) of Isatinic acid, NII_3 (' $_0II_4$ ('() C()() If It is obtained from o nitrobenzoylformic acid (see later, Indole), by oxidising indigo with nitric acid, etc. It dissolves in KOH, giving first a violet colour (CoH4 < NK >('O), while

in the hot it yields potassium isatinate, $C_8H_4 < \frac{NH_2}{CO}CO_2K$ Oxidation of isatin with chromo acid gives rise to Isatic acid (anhydride of anthraniloarboxylic acid), (IgH1 (II)

From Pseudoisatin, CoH4 OH (which would be a lactim) is derived the

methyl ether or Methylpseudoisatin, CaHaCONO OCH3 (rod powder) Methylisatin,

 $C_8H_4 < \frac{N(CH_3)}{-CO} > CO$, is also known.

DIOXYINDOLE, C₅H₄<CH(OH) >CO, is formed by reducing isatin with sine and HCl and readily gives is stin again on exidation. It is the internal anhydride of a ammominudelic acid, and exhibits both basic and acid properties. It crystallises in colourless prisms, melting at 180°

OXINDOLE, $C_8H_4 < \stackrel{\text{NH}}{CH_0} > CO$, acts both as an acid and as a base, and hence dissolves in alkali and in HCl. It is the lactam of o aminophonylacetic acid, and can, indeed, be obtained by reducing o nitrophenylacetic soid It forms colourless needles, in pt 120", and forms dioxyindole on oxidation.

INDOXYL, CoH₄ C(OH) CH, is isomeric with the preceding compound, and is

formed by fusing indigo with KOH or by the elimination of CO, from sudveylse used or undophore.

It occurs in the urine of herbivorous animals in the form of Potassium indoxylsulphate, C_8H_6N O SO_3K (indican of the urine) Derivatives of Pseudoindoxyl, $C_6H_4 < \stackrel{NH}{CO} > OH_{41}$ are also known.

SKATOLE, CeHaCC(CHa) CH, is formed during the putrefaction of protein or by

fusing the latter with KOH, and is hence found in the fæces It forms white scales, m pt. 95°, with an intense fæcal odour

INDOLE, CeHaCH, is of importance owing to its intimate connection with

ındıgo By treating o nitrobenzoyl chloride with AgCN, the nitrile is obtained and this, on hydrolysis, gives o nitrobenzoylformic soid

$$C_0H_4 < \frac{COCI (1)}{NO_3 (2)} \rightarrow C_0H_4 < \frac{CO}{NO_3} \stackrel{ON}{\longrightarrow} C_0H_4 < \frac{CO}{NO_3} \stackrel{COOH}{\longrightarrow}$$

is add, on reduction, gives the amine, which loses 1 mol H_gO , forming Isatin

$$C_8H_4$$
 C_8H_4
 C_8H_4
 C_8H_4
 C_8H_4
 C_8H_8
 C

Indole is obtained by distilling oxindole with zinc dust and by various synthetical occases (see later, Indigo), it is formed in the pancreatic putrefaction of protein or on iion of this with KOH. In the impure state it has a fiscal odour, but when pure and the diluted it smalls like flowers, and is hence used in perfumery. It forms shining iles which melt at 52°, are volatile in steam, and with ozone give indigo

With sodium hisulphite it forms a crystalline compound, and with nitrous acid a red colpitate, it imparts a red colour to a pine shaving moistened with HCl. It may be saided as formed by the condensation of 1 mol of benzone and 1 mol, of pyrrole

It forms numerous derivatives with

bstituents in the benzene or pyrrole nucleus, the o CH groups near the NH being termed a and β

INDAZOLE, CaHa NH N, is a weak base

epared by decomposing the diazo compound of nitro o toluidine with acetic acid in the hot and en eliminating the NO₂ group

INDIGO, C₁₆H₁₀O₂N, is a very stable, itural, blue colouring-matter, which was use in the Far East in the most remote nes, and was bartered to the Egyptians—ummies of the Eighteenth Dynasty (1580 sais B c) are found with wrappings coloured ith indigo—then to Greece, and later to aly Until the middle of the nineteenth ntury the trade in indigo remained a onepoly of the Dutch

It is extracted from the branches and aves (of a yellowish green colour) of Indi-

Fra 407

fera tinctoria (Fig 467), which grows very readily in tropical countries id is extensively cultivated in India, Java, China, etc., being sown in the ring and cut two or three times a year before flowering. At one time it

The cultivation of indigo reached its greatest extent in 1890–1897 with a total area 640,000 hoctares, one third in Bengal, one-fourth in the North West Provinces, one-fourth Madras, and one-twelfth in the Punjab In 1880 India contained 2800 indigo factories and 100 works employing primitive methods of extraction, the total number of persons employed, colusivo of agricultural labourers, being 360,000 After the appearance of artificial indigo, in area under indigo steadily diminished, being only 180,000 hectares in 1900–1907. There is a tendency in India to extend the cultivation only on the most suitable soils, and charden the add works of what in favour of Notal under which gives a greater yield of

There is a tendency in India to extend the cultivation only on the most suitable soils, and abandon the old varieties of plant in favour of Natal indigo, which gives a greater yield of aves containing a higher proportion of colouring matter Rational methods of extraction are so being introduced.

¹ Indigo belongs to the leguminous plants, and is hence capable of enriching the soil with trogenous products owing to the action of bacteria which fix atmosphere nitrogen (see Vol. I, 348) It has therefore been proposed to plant indigo in rotation with sugar-cane, especially soils which have been exhausted by the latter—At every cutting 25 to 30 quintals of indigo ants are obtainable per hectare and 5 to 0 kilos of 60 per cent, indigo for every ton of plants. In India indigo is sown in February or March in well tilled land at the rate of about 14 kilos seed per hectare—After three months the flowering stage is reached, the plants, which then intain the maximum of colouring matter, being out off close to the ground, tied in bundles, ind despatched immediately to the factory to be extracted—A second cutting in September ves a smaller quantity of indigo—The cultivation of indigo reached its greatest extent in 1896-1897 with a total area 640,000 hectares, one third in Bengal, one-fourth in the North West Provinces, one-fourth

was extracted also in Europe (Hungary, Thuringia, etc.) from word (Isatis tinctoria, Fig 468), where, however, it occurs only in the leaves and in smaller There are several varieties of Indigofera (tinctoria, disperma, and, argentea, and others of less importance) They are herbaceous shrubs 50 to 100 om in height, covered with silky hairs, with pinnate leaves and many small leaves

From the results of tests made at Calcutta it would seem that Indigofora leptostachya, cultivated in Java but indigenous to Natal, is better in every respect than Indigofera tinctoria, while it lasts four to five years Still better results seem to be given by Indigofera erecta

In order that the indigo may be extracted from the out plants, it is necessary that the glucoside they contain (indican)—consisting of a compound of glucose with indexyl—be decomposed by fermentation in large vessels with water After 10 to 14 hours the glucose is fermented, while the indigo, owing to the presence of ammonia, forms a yellowish solution The liquid is transferred to deep vats, where it is subjected to "beating" for two

to three hours with wooden paddles or wheels, or to "blowing" by means of a current of an The oxida tion thus effected causes the separation of the indigo in flocks, which are removed by decantation after three to four hours

$$\begin{array}{c|c} C_0H_4 & C_0H_4 & C_0H_4 & \rightarrow \\ \hline & NH & Indlgotin \\ 2C_0H_4 & CO & CH \\ \hline & NH & Indloxyl \\ \hline & C_0H_4 & CO & CO \\ \hline & CO & C$$

The 5 per cent. indigo paste separated by decantation is passed through sieves to remove fragments of the plants and is then boiled by means of steam for 15 minutes in order to sterilise the mass-which

: 1

would otherwise undergo change—and to eliminate part of the brown matter and to effect better separation of the particles of indigo These then deposit more easily and are collected on a large cloth filter, the first liquid passing through being returned to the filter until it comes through faint red, the 8 to 12 per cent paste thus obtained is pressed in primitive presses. The large cakes thus formed contain about 80 per cent. of water and are out into small oubes, which are arranged on grids, dried in the air for two or three months and placed on the market in boxes holding 50 to 140 kilos under the name of cakes During the drying, these cakes evolve ammonia and become covered with mould, which is finally removed with brushes. The yield of indigo is about 0.2 per cent on the weight of the green plant or 2 per cent on that of the dry plant.

To combat the competition of artificial indugo, various improvements have been intro duced during recent years into the methods of cultivation, manuring, and extraction, attention may be directed to the rational fermentation with suitable enzymes (oxydases) proposed by Calmette and others (Fr Pats 300,826 and 302,169)

The indigo-content of the cakes varies considerably, some of those on the market containing only 20 per cent, and others as much as 90 per cent. It hence becomes necessary to determine the value of any sample on the basis of the proportion of pure indigo ascertained by exact analysis 1 According to Fr Pat. 323,036 an increased yield and an improved

¹ Analysis of Commercial Indigo Commercial indigo from Bengal contains, on an average, 60 per cent. of indigotin, that of Madras, 30 to 50 per cent., that of Java, 72 to 82 per cent., that of Guatemala, about 40 per cent., that of Martinique, 60 to 70 per cent., and per cent., that of Guatemaia, about to per cent.

that of Cambay, China, and Tonkin, 8 to 15 per cent.

Indepoin may be estimated as follows 1 grm. of well dried indigo is mixed (in a bottle

product are obtained by macerating the fresh plants in prosonce of tannin materials which leave only the indigo undissolved.

The cakes of indigo are blackish blue in colour and give a fracture showing a bronzy reflection. Natural indigo always contains, besides indigotin, other substances and colouring-matters (such as indigo gum, indigo brown and red, etc.) which affect the trut, sometimes favourably

A good Bengal indigo gave, on analysis, 62 per cent of indigo blue, 7.3 per cent of indigo red, 4.7 per cent of indigo brown, 1.5 per cent of indigo gum, 6 per cent of water and 10 per cent of inneral matter

Pure or refined indigo is obtained in various ways, $e\,g$, the crude indigo is treated with a mixture of concentrated acetic and sulphuric acids, the indigo alone passing into solution as sulphate, which is decomposed after filtration by excess of water, this precipitating pure indigo or indigotin. In order to avoid dilution with water and loss of acid, it has been proposed to separate the sulphuric acid directly by addition of calcined sodium sulphate which transforms it into bisulphate, the acetic acid is then distilled off and the bisulphate removed together with a little water. According to Ger. Pat. 134,139 pure indigo is extracted from the crude product by means of hot, crude pyridine. To purify artificial indigo, it is heated, according to Ger. Pat. 170,351, at 200° to 270°, at which temperature it does not sublime or decompose, while the indigo red and other impurities are destroyed, leaving an indigo highly valued for its fine bronzing

Of some interest is colloidal indigo, which behaves like dissolved indigo, and has been recently prepared by Möhlau by heating, out of contact with the air, a suspension of indigo in an aqueous solution of alkali and sodium hydrosulplute, the liquid being treated, after cooling, with protailinic acid (obtained by Möhlau by the alkaline hydrolysis of protoin and subsequent dialysis, this acid has the power of precipitating various metals in a colloidal state from their salts) Addition of hydrogen peroxide to the filtered liquid gives indigo blue in the colloidal condition, which is retained even after evaporation.

PROPERTIES Pure indigo forms a dark blue powder which, when rubbed, gives a metallic, coppery reflection. It sublimes at about 300°, giving red vapour and forming copper-red, shining prisms. It is insoluble in water, alcohol, ether, alkali, or acid, and dissolves only slightly, even in the hot, in amyl alcohol, chloroform, phenol, carbon disulphide, pure acetic acid, nitrobenzene, aniline or melted paraffin wax. It has neither odour nor taste and is indeed an almost completely indifferent substance, this explains why, although materials have been dyed from time immemorial in the Far East, in Europe no process for dyeing textile fibres was discovered for so many centuries—until the sixteenth

The portion soluble in hot aniline colours this blue but colours fused paraffin

with a ground stoppor) with 10 grms of garnets or glass beads and 20 cc of sulphuric acid mixture (composed of 3 parts of concentrated sulphuric acid and 1 part of oleum containing 20 per cent of free SO₃) The mass is thoroughly mixed and is afterwards shaken occasionally over a period of 12 hours or so, until solution is complete, the whole being then poured carefully into cold water and the bottle thoroughly rinsed out. The aqueous solution is boiled for 10 minutes and filtered, the filter being washed with hot water until the washings become colourless and the filtrate then made up to a litre. Fifty cubic centimeters of this solution is mixed with 900 cc of distilled water, and the liquid titrated with 0.05 per cent potassium permanganate solution until the blue colour becomes golden yellow without green reflection. In order to accustom the eye to this end point, which is not sharp, it is advisable to make a companitive test with pure indigo of known strength, 1 cc of the permanganate solution corresponds with about 0.0125 grm of indigotin. In order to prepare pure 100 per cent, marked B AS F or M L B is treated in a beaker with 120 grms of caustic sods solution (sp. gr. 1.21), 330 grms of concentrated sodium hydrosulphite solution and 100 grms of water (or, if 50 grms of 20 per cent, indigo paste is taken, only 60 grms, of water are added), the mixture being heated on a water bath at 40° to 50° with occasional shaking and the air being gradually expelled from the beaker by means of a current of coal gas. When solution is complete, the liquid is rapidly filtered and a current of air passed into the yellow or greenish filtrate. The precipitated indigo is collected on a hardened filter and washed first with hot veter, then with hot dilute hydrochloric acid (30 c c of the concentrated sold diluted to a litre), next with water again, and repeatedly with alcohol and with alcohol and ether. When dried at 101° to 110° until of constant weight, the product represents pure 100 per cent indigo

wax purple-ied, from these solutions, rhombic crystals showing marked dichroism separate on cooling

From hot oil of turpentine indigo crystallises in blue plates

Concentrated sulphuric acid converts it in the hot into a monosulphonic derivative, soluble in water but insoluble in salt solutions. With fuming sulphuric acid it forms the disulphonic compound, which gives more soluble salts, the sodium salt being sold as a paste under the name of *indigo-carmino*, this dyeing wool like an acid aniline dye.

When dry distilled, indigo gives aniline and other aromatic compounds Energetic oxidising agents (nitric or chromic acid or permanganate) decolorise it more or less rapidly, converting it into isatin. Chlorine, bromine, and iodine

give halogenated derivatives of isatin

Indugotin white, which is the leuco-base of indigo blue, is obtained from the latter in a soluble form, by the action of alkaline reducing agents (sodium amalgam, ferrous sulphate, hypophosphorous or hydrosulphurous acid, glucose, gallic acid, etc.) or enzymes. When heated with acid, the greenish yellow alkaline solution deposits indigotin white, which is readily converted into the blue form by the oxygen of the air.

form by the oxygen of the air

Indigo may be regarded as a substantive dye which colours both animal and vegetable fibres without a mordant. It is first reduced in the vats by means of enzymes in presence of sugar, urine, zinc, arsenic, or reducing salts (sulphites, hydrosulphites), thus becoming decolorised, soluble in alkali and capable of impregnating textile fibres, on which it becomes firmly fixed when rendered

insoluble by the action of atmospheric oxygen

In 1890 the German Government permitted alizarin blue to be used for dyeing part of the cloth for military uniforms, these having been previously coloured exclusively with indigo

The first efforts to ascertain the chemical nature of indigo were those of Erdmann and of Laurent, who simultaneously (in 1840) obtained isatin by exidising indigo with nitric acid. In 1848 Fritzsche obtained aniline by distilling indigo with caustic potash, Baeyer and Knop, in 1865, reduced indigo to dioxyindole, exindole, and indole, the last of these being prepared synthetically by Baeyer and Emmerling in 1869 from o nitro connamic acid in 1870 Engler and Emmerling effected the first complete synthesis of indigo by heating o-nitroacetophenone with lime and zinc dust, and in 1874 Nencki prepared indigo by exidising indole and ozone.

In an interesting series of studies extending from 1870 to 1878 Baoyer and his pupils established the constitution of, and synthesised, exindole, transforming it into isatin, and the latter, in various ways, into indigo The new complete synthesis effected by Baoyer in 1880–1882 firmly established the structure of the indigo molecule.

Of the new syntheses of induge following that of Baeyer—which, in spite of costly attempts, could not be rendered capable of industrial application—the most important from a practical point of view is that of Heumann (1890), in which fusion of phenylglycine-o carboxylic acid with alkali is succeeded by exidation.

I. The starting point and the various intermediate products of Bacyer's 1880 synthesis of indigo are as follow

Baeyer's other synthesis, which was tried on an industrial scale by the Badische Anilinund Soda-Fabrik of Ludwigshafen in 1882, and gave a yield of 60 per cent., started from

The second secon

benzaldehyde, the product of the interaction of benzylidene chloride and sodium acetate being nitrated (and subsequently esterified) and a mixture of 70 per cent. of o-nitroginamic acid and 30 per cent. of p nitroginamic acid thus obtained. After removal of the latter, the former is converted into the dibromide, which, with alcoholic potash, loses 2HBi and forms o-nitrophenylpropiolic acid, this giving indigo when heated with alkali and glucose

$${\rm C_6H_4}{<_{\rm NO_3}^{\rm CH}} \stackrel{\rm CH}{\to} {\rm CO_2H} \rightarrow {\rm C_6H_4}{<_{\rm NO_3}^{\rm O}} \stackrel{\rm C}{\to} {\rm CO_2H} \rightarrow {\rm C_6H_4}{<_{\rm NH}^{\rm CO}}{>}{\rm C} \quad {\rm C<_{\rm NH}^{\rm CO}}{>}{\rm C_6H_4}$$

o-Nitrodunamie acid

o-Nitrophenylpropiolic acid

Indig

Owing to the high price of o nitrophenylpropiolic acid, this artificial indigo is used only for printing textiles

II In 1882, by means of a new and theoretically elegant synthesis, Baeyer and Drewson succeeded in raising the yield to 70 per cent., o-nitrobenzaldehyde and acetone were condensed in presence of caustic soda, indigo being formed as follows

In printing, the synthesis takes place directly on the fabric, the acctone being rendered soluble by conversion into the bisulphite compound (Kalle's salt) The industrial prepara tion of o nitrobenzaldehyde presented, however, a serious disadvantage, the direct nitration of benzaldehyde yielding a considerable proportion of the unusable m-nitrobenzaldehyde whilst, starting from benzil, the p nitro compound is obtained. A happy solution of this difficulty was found in the preparation of o nitrotoluene directly from toluene (only 40 per cent of p nitrotoluene is formed), oxidation with manganese dioxide and sulphuric acid then giving a good yield of o nitrobenzaldehyde. To the general application of this process were opposed a number of difficulties In order that the artificial indigo might displace the natural product, the annual consumption of which was about 5,000,000 to 6,000,000 of kilos (100 per cent.), it was necessary that there should be on the market a sufficient quan tity of raw material (toluene) at a reasonable price. It was found that, even although the use of modern metallurgical coke furnaces (see Vol. I, p 451, and this Vol., p 632) increased the quantity of crude benzene (in 1900 the total output in Europe amounted to 30,000 tons), yet, since the latter contains only one-sixth of its weight of toluene and since 4 kilos of toluene are required to furnish 1 kilo of artificial indugo, the use of all the toluene extractable from the benzene on the market would give only 1,000,000 kilos of indigo, $\circ c$, one fifth or one sixth of the whole consumption. Increase of the production of crude benzene for the purpose of obtaining more toluene would lead to over production of unusable benzene, and hence to increase in the price of toluene and in that of artificial indigo, which would be unable to compete with the natural product.

III After much further investigation and many unsuccessful trials, the industrial preparation of artificial indigo has, however, become an accomplished fact. Having acquired Baeyer's patents for a sum approaching £20,000 without deriving any practical benefit from them, the Badische Anilin und Soda-Fabrik of Ludwigshafen did not hesitate to purchase later the patents of K. Heumann, who was the first to discover, in 1890, that indigo is obtained on fusion of phenylglycocoll with caustic potash, but that a better yield is obtained if the phenylglycocoll is replaced by phenylglycine-o-carboxyllo acid, C₆H₄(CO₂H)(NH CH₂ CO₂H) The economical preparation of this acid necessitated investigations and trials extending over more than seven years, and the synthesis became of industrial value only when it was found possible to employ naphthalene as the initial substance. Quite 50,000 tons of naphthalene are produced annually in the distillation of tar, and up to that time only about 15,000 tons of this had been utilised, the rest being left in the heavy tar oils or used for making lamp black (p. 624) The complete synthesis takes place in the following stages:

The exidation of naphthalene to phthalic anhydride by means of chromic acid is too expensive, but the same end was attained by the use of furning sulphure acid rich in sulphur trioxide, after it had become possible to prepare this cheaply by the catalytic method (see Vol. I) The action of the acid was moderated with mercury bisulphate, while the sulphur dioxide was recovered by the catalytic process (in 1901 the Badische Company recovered in this way, for the manufacture of phthalic anhydride alone, about 40,000 tons of sulphur dioxide)

Phthalmide is then easily obtained by the action of ammonia, while the monochloroacetic and can be prepared cheaply and in large quantity by using the liquid chlorine
(1,000,000 kilos in 1900) resulting from the electrolytic manufacture of caustic soda or
potash, and glacial acetic acid (about 20,000 quintals) obtained from the distillation of
wood (about 100,000 ou metres per annum). The reaction between anthramilic acid and
monochloroacetic acid proceeds readily, but the formation of indoxylic acid was found to
be much more difficult, the conditions required for the fusion of the phenylglyunic arboxylic
acid being inconvenient, this obstacle was, however, finally overcome. The ultimate oxidation of the indoxyl is effected by means of a current of air. The indigo separates in small
crystals, and in order to obtain it in a finely divided state, it is converted into sulphate and
this decomposed with water. After being washed, the paste thus formed is identical with
natural indigo and is, indeed, of greater value owing to its higher purity and to its
constancy of composition.

IV Process of the Farbwerks vormals Messier, Lucius and Briting of Höchel (1900) This consists in the action of sodamide (obtained by treating gaseous ammonia with sodium) on phenylglycocoll, subsequently heating in an autoolave at 250°

 $NH_2Na + C_6H_5$ NH CH_2 $CO_2Na = NH_3 + Na_2O + C_6H_4 < \frac{CO}{NH} > CH_2$ (indoxyl), 2 mols of the indoxyl then condensing in presence of oxygen

$$2C_{6}H_{4} < \begin{matrix} CO \\ NH \end{matrix} > CH_{2} + O_{2} = 2H_{2}O + C_{6}H_{4} < \begin{matrix} CO \\ NH \end{matrix} > O \quad O < \begin{matrix} CO \\ NH \end{matrix} > C_{0}H_{4}$$

This process was originally patented by the Deutsche Gold- und Silber Scheide Austali (Frankfort), from whom it was purchased. A yield as high as 65 per cent has been obtained, but sodium at 28d per kilo is too expensive to make the process practicable

V Sandmeyer's synthesis (patented by Messrs Geigy of Basle, Eng Pat. 15,497 of 1899) Amline is treated with carbon disulphide in presence of alcoholic potash, diphenylthiourea being obtained $CS_8 + KOH + 2C_6H_5$ $NH_2 = KHS + CS(NH C_6H_5)_2 + H_2O$ The action of lead cyanide on diphenylthiourea gives Hydrocyanocarbodiphenyl-

$$C_6H_5$$
 N C CN, which with ammonium sulphide yields the Thioamide, C_6H_5 N C CN, which with ammonium sulphide yields the Thioamide, C_6H_5 N C CNH C_6H_5 N C CNH C_6H_5 N C CNH C_6H_5 N C CNH C_6H_5 C N C N C N C N C C N C

reduction of the latter by means of ammonium sulphide then giving indigo. All the materials used in this synthesis are cheap, but the indigo produced was not able to compete for long

with that of the Badische Company and of Messrs. Meister, Lucius und Briting, who continually lowered the price in order to suppress natural indigo and made use of the two mproved Heumann processes starting from phenylglycocoll and phenylglycinecarboxylic roid.

The struggle, lasting for more than twenty years, between the producers of natural ndigo and the scientific men connected with the various industrial undertakings has now ended in uncontested victory for the latter. The figures already given showing the areas under indigo at different times (see p 759) justify the conviction that in a few years' time "Indigofera unctoria will be of interest only historically, just as is the ease with madder, now supplanted by artificial alizarin

With its lower price, its more ready applicability in dyeing, and the considerable use 10w made of its halogenated derivatives, the consumption of indigo will certainly increase In 1908, owing to the slight difficulty of reducing indigo, even when finely powdered, several firms placed on the market the leuco product itself (undigo white), this being btained by reduction with iron and alkali, or, better, with hydrosulphite (Grandmougan),

The following figures will give a clearer idea of the commercial and industrial importance of indigo, both natural and artifloial

The production in India was 50,000 quintals in 1892 and 75,000 quintals STATISTICS containing 56 to 70 per cent. of indigotin), of the value of £3,200,000, in 1896 Of Indian ndigo 60 per cent. is sold at Calcutta, which supplies Europe and America, 30 per cent at Madras to Egypt and the East, and 10 per cent at Bombay and Karachi.1

The output of indigo (with 56 to 70 per cent of indigotin) and the surface under cultiva-.ion in India were as follows

1892 1806 1912 1913 1917 1918-19 1919-20 1920-21 1909 12,000 23,850 Quintals 50,000 75,000 18,800 48,000 22,000 19,000 24,000 Ficotares 640,000 150,000 86,000 80,000 170,000 120,000 95,000 73,000

In 1895 the consumption of indigo in different countries was as follows 13,000 quintals, United States, 11,500, Germany, 10,000, France, 7100, Belgium, 1500, Austria Hungary, 5500 In 1913 the world's consumption of indigo (calculated for 100 per cent) was estimated to be 100,000 quintals, the price being lowered by the competition of new vat dyestuffs (indanthrene, etc.) which compare favourably with indigo as regards fastness and price.

The price of indigo (100 per cent.) was 16s per kilo between 1805 and 1900, 12s in 1902 and 6s 6d m 1904, the fall being due partly to competition between the two great firms, .he Badische Anilin und Soda-Fabrik, and Messrs Meister, Lucius und Brüning, who ater came to an agreement, the price then rising to 8s per kilo. In 1917 the price was nore than quintupled, and in 1921 it fell to about double the pre-war value

In 1907 the total output of artificial indigo was estimated at about 4320 tons (100 per ent), se, about four fifths of the world's consumption &

¹ In 1882 the Indian Government abelished the expert duty on indige Until 1865 almost all the indigo was sent to London, which was the centre of the European trade In 1905-1906 expertation from India had fallon to 15,000 quintals (£400,000), the cultivation of indigo being eplaced by that of rubber (28,000 quintals), turmerse (25,000 quintals), hemp, cotton, tanning plants, etc. During recent years the cultivation of natural indigo has increased in the districts more suitable to it and diminished in those less fitted

In 1866 the Philippines experted 251,574 kilos of indigo paste (£00,950) and 059,200 kilos of liquid indigo (tintarron) (£28,180) The industry was still flourishing in 1875–1881, when the producers began to adulterate with sand and other substances, prices were thus ruined and oll from £12 per quintal to £4, the cultivation being to some extent abandoned With careful

oll from £12 per quintal to £4, the cultivation being to some extent abandoned. With careful sultivation, as much as 4 quintals of good indigo can be obtained per hectare. By 1905 the expertation had diminished to a total of £50,000 kilos of pasty and liquid indigo. The output in Java amounted to 500,000 kilos in 1905, but in 1909 the experts were only 100,000 kilos. The increasing competition of artificial indigo led to the formation, in 1920, of the Indigo lantors' Co-operative Association, supported by about one half of the countries producing indigo, with the objects of centralising the treatment, placing on the market a uniform grade of neligo free from adulteration, and improving the methods of cultivation, since much land used for growing indigo had become almost sterile. It has been found that suitable artificial fortilisa or growing indigo had become almost sterile It has been found that suitable artificial fortilisa tion, especially with superphosphates, raises the yield to 45 kilos per hectere The fermentation of indigo was formerly carried out in cement tanks and was retarded by the lime liberated by ydrolysis of the cement.

It appears that natural indigo, properly prepared, gives results about 10 per cent. better than hose yielded by the artificial product having the same indigotin content.

The first artificial indigo plant of the Badische Anilin- und Soda-Fabrik in 1897 cost

CC COLOURING-MATTERS

Only a certain proportion of the innumerable coloured substances are capable of being fixed on vegetable or animal fibres, imparting to them a more or less stable coloration, and only those able to fulfil this function, directly or indirectly, belong to the true Colouring-Matters

Coloured substances are those which absorb constituents of white light of

certain definite wave-lengths, emitting the rest

Generally speaking, only the luminous waves visible to the eye have yet been closely studied, and it is probable that new laws, possibly more important than those already known, will be discovered when the infia-red and ultraviolet rays absorbed or reflected by coloured substances are considered

Hartley has indeed shown that the apparently colourless substance, benzone, is, strictly speaking, coloured, as it absorbs certain ultra-violet rays invisible to the eye, and that in the benzene series the luminous vibrations are gradually rendered slower and so made visible as the molecular weight is increased by

substituent groups

Dichroic Substances allow certain rays to traverse them and reflect certain others, so that they appear to be of one colour by transmitted, and of another by reflected, light, such are, for example, fluorescent substances. Certain alkaline fluorides, such as those of the alkali metals, allow infra-red and ultraviolet radiations to pass through them, while various nitrates, nitric acid, the hydrocarbons, the aldehydes, etc, although they do not retain any of the constituents of white light and hence appear colourless, yet do absorb waves of many wave-lengths

Light itself is to the human organism only a sensation due to absorption of

a portion of the radiations by the crystalline lens of the eye

Between coloured and non-coloured substances there is often complete or nearly complete identity in chemical composition, so that the colour depends, not on the composition, but only on the constitution or atomic structure of the molecule

It is now universally admitted that the colour of substances is closely dependent on the presence in the molecule of certain well-defined atomic

groupings or nuclei

As early as 1867 Graebe and Liebermann arrived at the conclusion that the colouring-matters capable of fixing hydrogen with decoloration and formation of the so-called *leuco-bases* (see p 721) are transformed into colouring substances on oxidation

In 1876 N O Witt defined the nature of these simple groups, termed chromophores (e.g., — NO₂, — N N —, = CO, = NH, \equiv O NO, = O = S, = O O =, — N N —, etc.), which by union with more complex groups (even colourless ones like the aromatic hydrocarbons, benzene, naphthalene, etc.) form the so-called chromogens, these being usually more or less coloured, but not colouring. Thus, azobenzene, C_6H_5 , N·N C_6H_5 , is a chromogen containing the chromophore, — N N —, and is coloured red, but does not dye textile fibres, although it is the mother substance of dyestuffs. Repetition of one and the same chromophore in a chromogen may alter the colour, e.g., from yellow to green, blue, etc. (such chromophores are called hypsochromic), or from yellow to orange, red, etc. (bathochromic)

£480,000, and in 1900 two competitors, namely, Messrs Meister, Lucius and Brüning and Messrs Geigy, made their appearance, the considerable fall in price thus produced resulting in Messrs. Geigy's abandonment of the manufacture and of the fusion of the indigo interests of the two remaining firms with a capital of £1,200,000 In 1910 the manufacture of artificial indigo was started by the Rahtjen Company of Hamburg—which is a company with a capital of £280,000 and makes use of Rahtjen's improved Sandmeyer process—and by the firm of Heyden (Radebeuf) which employs the phenylglycine method. The Society of Chemical Industry in Basic also began making artificial indigo in 1911–1912 During the war the manufacture was commenced in England, the United States, and France.

14121

Coloured chromogens usually become colourless by fixation of hydrogen, thus, C_6H_5 N N· C_8H_5 (azobenzene, orange) + H_2 = C_6H_5 NH NH C_0H_5 (hydrazobenzene, colourless), $C_6H_4O_2$ (benzoquinone, yellow) + H_2 = $C_8H_6O_2$ (quinol, colourless) The original coloured compound is obtained on oxidation of the colour or oxidation of the colour or oxidation of the colour oxidation tion of the colourless compound, which is known as a leuco-derivative

phenylenethene,
$$C_6H_4$$
 C_6H_4 , a red hydrocarbon, gives the colourless dibiphenylenethane, C_6H_4 CH CH CH , on reduction ¹

CHROMOGENS are numerous and of very varied composition 2

¹ Some of these leuco products regenerate the original colouring matter simply by excitation, while others do not. For instance, reduction of nitro groups gives, as final products, aminoderivatives, which yield nitro groups again on exidation. The complete reduction of ave compounds yields amino groups, but there may also be intermediate, less highly reduced products (hydrazo compounds), which are themselves new leuco derivatives.

In some cases reduction leads to more highly coloured substances. For instance, the groomshiples of the products of the

yellow authraquinoneazine gives deep blue indanthrene on reduction :

the two imino groups formed being intense auxochromos, especially if they occur in a closed ring Similarly indige with the auxochromo, -00-0=0-00-, should be yellow, but is blue owing

Phenoxagina

Thiodiphenylamine

Introduction of amino groups into the chromogen azobenzene is accompanied by a deepening of the colour from yellow to orange to brown, these chromophores being bathychromic

Aminoazobenzene, $C_{12}H_6N_g$ NH_3 , is pale yellow Diaminoazobenzene, $C_{12}H_8N_2(NH_2)_3$, is orange Triaminoazobenzene, $C_{12}H_7N_2(NH_2)_3$, is brown

Chromogens are mostly neutral substances and if groups termed auxochromes-capable of imparting a basic or acid character are introduced, colouring matters capable of dyeing textile fibres are obtained The auxochromes are, more especially, hydroxyl and amino groups and their alkyl or phenyl derivatives OH, NH_2 , OCH_3 , $NHCH_3$, $N(CH_3)_2$, NHC_6H_5 , $N(C_6H_5)_2$ Hydroxylamine and hydrazine residues, NH OH and NH NH_2 , may also behave as auxochiomes, but the auxochromic character diminishes or disupposits on cutiy of an acid substituent, as in O COCH₃, NH COCH₃, N(OH₃) NO, etc Sometimes the auxochrome group is formed during the dyeing, as when the group = CO becomes \equiv C OH $^{\rm T}$

Further, what are usually the more energetic chromophores couse to be so when they occur in molecules which are small or poor in carbon is due the very small number of colouring-matters in the aliphatic series

Thirteen chromophores of well-defined constitution are now known, while concerning others there is still doubt owing to the pseudoisomerism (tautonici isin) they exhibit 2

In these chromogens is seen the analogy between the chromophores in the different molecules, characterised by divalent or polyvalent atoms or atomic groups (= NH, = N-, = () = (), S, -O-, >CO) united to the ring in a closed chain, the whole forming the true chromophore, which, joined to the rest of the molecule, gives the chromogen

which, joined to the rest of the molecule, gives the chromogon

The passage from simple to more complex chromophores is often accompanied by change

from a yellow colour to a more intense yellow or to red or blue

With fuchsines (resamlines and p resamilines) the colour becomes more intense and more
violet with increase in the alkyl groups replacing the aminic hydrogen. The family add, phenolic
colouring matters which are fixed by mordants give highly resistant colours if they contain
at least two OH groups, or OH and COOH, in the ortho position, and better still if these are also
in ortho positions with respect to the chromophores. In the colouring matters of the nitrophonol
group, the colour passes from greenish yellow to orange-yellow as the distance between the OH
and NO₃ groups increases. Fast colours on inordants are given especially by those colouringmatters containing hydroxyl groups in the ortho position with respect to one another and to
the chromophore (alizarin, etc.) the chromophere (alizarm, etc)

Of the triphenylmethans colouring-matters, those which have a sulphonic group (SO H) in the ortho position with respect to the central carbon atom are stable to alkali and to scap (Susis and Sandmeyer)

and Sandmeyer)

According to Hantzsch (1906) all the true nitro hydrocarbons of the aromatic or aliphatic sense and also all polyntro-compounds are colourless when quite pure, so that the NO₄ group by itself is never a chromophore Only certain nitrophenels are coloured when their phenolic hydrogen is free and hence mobile (forming tautomeric compounds), and for the same reason all salts of nitrophenels are coloured By the discovery of the quinonic (aci) ethers of nitrophenels besides the true ethers, it was shown that many colourless or almost colourless hydrogenated compounds capable of forming highly hydrogenated salts, are pseudo-acids, so that the coloured salts are derived from a hydrogenated compound differing from the original, if it were possible to obtain these free, they also would be coloured

Nitrophenels are certainly true tautomeric hydrogenated compounds which give two

Nitrophenols are certainly true tautomeric hydrogenated compounds which give two which gives also by nitrous, sulphurous, hydrogyano, and cyanu acids The true nitrophenolic ethers are colourless, while the aci ethers (tautomeric) are coloured an intense red; the former correspond with the general formula, C_8H_4 (derived from the colourless true nitrophenol, C_8H_{47}), and the latter

NO.

Certain acid groups ($\rm CO_3H$, $\rm CO_2H$, etc.), i.e., salt-forming groups, influence the colour but, even more than the chromophores, reinforce the influence of the auxochromes. Thus, azobenzene, $\rm C_6H_5$ N N $\rm C_0H_5$, although a coloured

hence possible to tell, from the more colour, to which of the two groups a given nitro-compound When true nitrophonols (even in the solid state) are slightly coloured, it is assumed that a minimum quantity of the aci nitrophenol is dissolved in a large quantity of true introphenol (solid solution) Also, the fact that the colour of the substance is sometimes not intensified by increase in the number of nitro groups is explainable, not on the old view of the theory of chromophores, but only by the new theory of transposition (tautomerism)

$$C_0H_4$$
 OH
 OH
 OH
 OH
 OH

The tendency to tantomeric transposition may, indeed, be increased or diminished by the entry of new groups. Thus, in solutions of nitrophenols and their salts, the coloration is not—as it would be according to the modern theory of indicators (see Vol. I., p. 100)—due to ionisation, but rather to the formation of coloured tautomeric compounds (aci nitrophenolic ethers) in agreement with the old chemical theory of indicators.

It is thus proved that the formation of coloured salts and coloured ions derived from colourless hydrogenated compounds is of a purely chemical nature—It is caused that of all by intramolecular transposition, from which, by the action of a positive metal (salt), there results a negative quinonic atomic grouping (chromophore), the appearance of coloured ions being a secondary reaction Hence the actions of chromophore and of auxochrome cannot be held to be distinct but are exerted together, both of them (nitro and phenol group) causing the appearance of colour at the expense of their mutual transformation, which generates a quinonic grouping containing neither nitronor phenohe group

These views may be extended to other groups of organic substances since, in general, colourless acids unchangeable in constitution (* e**, not giving tautomeno forms) give only colourless ions and yield colourless salts with colourless metallic exides, and colourless ethers and esters with colouriess organic radicals (alkyl and acyl) If coloured ions and salts are derived from a colour-less alkyl compound, it may be stated with cortainty that intramolecular change occurs

According to E. Fischer and O. Fischer (1900) many colouring matters derive their properties from the presence in the molecule of quinonoid groups, although A. v. Baeyer (1902–1905) and Hantzsch (1905) showed that the true quinone group does not always cause coloration (ϵc , is not the chromophore), and Kostanecki and Haller pointed out that, in addition to the two carbonyl

diketohexamothylene,
$$H_{a}C$$
 OH_{a} , which has not those double bonds, is completely colourless

As a metaquinone with two ethylene double linkings cannot exist, such mota compounds are incapable of producing colouring matters

Turther, according to Willstätter's results (1908), conversion of the banzenoid to the quinonoid form is not sufficient to produce intense coloration, since then the complete quinonoid derivatives (holoquinonoid) should be highly coloured, whereas the benzoquinones, like the quinoninines O C₀H₄ NH and NH C₄H₄ NH, are only slightly coloured. On the other hand, quinhydrones, formed by the condensation of quinol and quinone vid the partial valency, are highly coloured compounds. highly coloured compounds

chromogen (containing the chromophole N N), does not colour textile fibres since it is neutral, whilst its sulphonic derivative is a feeble colouring-matter. Also the direct introduction of sulphonic groups into true colouring matters usually produces, not an intensification, but a distinct attenuation However, these groups, which are feeble auxochromes, give to the colouring matter an acid character which influences its behaviour towards various textile fibres and thus, besides rendering certain insoluble colouring matters soluble in water, makes them suitable (either as they are or after salt-formation) for dyeing wool and silk directly in an acid bath, that is, they form the group of acid dyestriffs. The auxochromic function of the sulphonic group increases with its proximity to the chromophore group

The basic auxochromes usually consist of amino groups more or less substituted by alkyl or phenyl residues, etc., and are transformed under certain conditions into chromogens, giving rise to basic dyestuffs which die wool and silk directly in a neutral or slightly acid bath and dye cotton only after this has been

mordanted with tannin

When similar auxochromes and chromophores are both able to form salts, the salt-formation of the chromophore is the more important, as is shown by the behaviour of the rosanilines ¹

These partially quinonoid compounds are termed meriquinonoid. The intense colour of magenta may be explained by the simultaneous presence of a quinonoid nucleus probably united by partial valencies to the benzenoid group or groups and, moreover, to the methane carbon atom.

With certain groups of substances intensification of the colour is due more esponally to a phenomenon of salt formation, e.g., with the resamilines, the base of malachite green and crystal violet. Colouriess phenolphthalein gives a red sodium salt, and yellow alizaria becomes intense violet in alkaline solution. In certain cases only salt formation annuls the coloration, thus the three nitrosullines are yellow, but become colouriess when salified by an acid, the latter paralysing the auxochrome action of the amino group

one concentiones are yellow, but become colourless when salified by an acid, the latter paralysing the auxochrome action of the amino group

On salt formation aminoazobenzene gives an orange yellow colour for the avoid form, C₆H₅ N:N C₆H₄ NH_a,HCl, and a violet colour for the quinonoid from, C₆H₅ NH N:C'₆H₄ NH, HCl.

$${}^{1} \text{ Rosanilune, } \text{ HN} = C \underbrace{\begin{array}{c} \text{CH} & \text{CH} \\ \text{CH} & \text{CH} \\ \end{array}}_{\text{CH}} C = C \underbrace{\begin{array}{c} \text{C}_{6}\text{H}_{8} \\ \text{NH}_{2} \\ \text{C}_{6}\text{H}_{4} \\ \text{NH}_{2} \\ \end{array}}_{\text{(see corresponding base, p 721),}}$$

which is coloured, contains as chromophore the group NH = COH = OH

auxochromes two amino groups. When the salt with a single molecule of HCl is obtained and the substance is dyed red, proof is given that the salt is formed with the imino group of the chromophore, since a red coloration is formed on the fibres. On the other hand, salts of resantline with 2 or 3 molecules of HCl, which form salts also with the auxochrome amino groups, are yellow but do not dye textile fibres yellow. It can hence be affirmed that the suxcohromes do not unite with the fibres and hence have no action as salt-forming groups but only contribute to increase the basic character of the colouring-matter or even to increase the intensity of the colour, thus is clearly shown with safranine (see later and also above, Aminoacobenzene). In general, the union of an acid chromophore with a basic auxochrome gives colouring matters of slight intensity; for instance, the nitroanilines are feeble and the nitrophenols more intense colouring matters.

The replacement of the hydrogen of the auxochrome OH by a metal increases the power of the auxochrome, while an alkyl or aromatic radical lowers it and an and radical often annuls it

If the auxochrome of a colouring-matter is weak and the chromophore strong, or vice versa, the colouring-matter is generally feeble

Kaufmann (1921) considers that carboxyl and sulphoxyl, SO₂ OH, act as auxochiomes, not when they are united directly to the chromophore, but only when separated from it by either a benzene nucleus or a corresponding group

The carboxyl group, a weak and auxochrome, increases the fastness of the colour and often imparts the ability to form lakes with metallic mordants

The nitro group acts as a chromophore and, when added to other chromophores, lenders the colour faster and displaces it towards the blue. A similar action is shown by the halogens, but iodine is little used owing to its cost, bromine, which deepens the colour, is used for cosins and also for vat dyestuffs

Alkyl groups, as part of the chromogen, exert little influence, but render the colour more blue and more brilliant if they occur in the auxochromes as either alkylaminic groups, as in Hofmann's violet, or alkyloxy groups Similar behaviour is shown by arylaminic groups, NHAr, as in aniline blue and alkali blues

Colour in an organic compound was formerly regarded as being connected with the presence in the molecule of nitrogen, oxygen or sulphur, and the colour of a few hydrocarbons was considered exceptional or due to traces of impurities Various coloured hydrocarbons are, however, now known Diphenylbutadiene and the two tetraphenylbutadienes, C_0H_5 CH CH $C(C_0H_5)$ $C(C_0H_5)$ and $C(C_0H_5)$ C $C(C_0H_5)$, are colourless, but diphenylhexatriene and tetraphenylhexatriene, C_0H_5 CH OH CH $C(C_0H_5)$ $C(C_0H_5)$, are yellow

Of more interest are the following hydrocarbons derived from fulvene

Many coloured fulvene derivatives were prepared by Courtot (1915) by means of the Grignard reagent

Substitution of the hydrogen of the auxochrome $\mathrm{NH_2}$ by alkyl radicals raises the colouring power, while two aromatic radicals sometimes lower it considerably, exceptions to this being shown by sulphonyl and picryl, $C_0H_0(\mathrm{NO_2})_p$, which cause the $\mathrm{NH_2}$ group to assume an add character. The hydroxinamic groups also behave as auxochromes, thus phenylhydraxine is slightly yellow while anline is colourless, and introphenylhydraxine is more highly coloured than nitroaniline. Anthraquinone (faintly add chromogen) gives an intensely coloured derivative with hydroxine groups. The hydroxylamine derivatives are few in number and have been but little studied. H. Kaufmann (1911) has shown that two auxochromes reinforce one another when they are in the para-position and to a less extent or not at all when they are in the orthorized position. This rule is confirmed, not only by the greater intensity of the colour, but also by the increased luminescence or fluorescence assumed by these substances when they are exposed to ultra-violet rays (see Vol. I., p. 125), in solution, only compounds of the para series give direct fluorescence. By the law of distribution it is proved that the maximum and sometimes the only effect of auxochromes in the para position is exerted when the chromophore and auxochrome are in the same benzene nucleus

first contains only two conjugated double linkings and the second the linking C=C=C=C, both of these compounds being colourless, the coloured diand tetra-phenylhexatrienes contain three conjugated double linkings. Perylene contains six such linkings and is coloured, whereas tetraphenylethylene is colourless, as the conjugated linkings are not accumulated in a restricted nucleus as in perylene. It is sufficient, however, to establish a conjugation between two double linkings of two phenylic nuclei to obtain a yellow colour, as in diphenyldibenzo-fulvene (I), two such conjugations, as in diphenylenedibenzo-fulvene (II) giving a red colour

$$C = C$$

The fact that phenyldibenzofulvene is colourless, whilst phenylbenzofulvene, with the same number of conjugated double linkings, is coloured is explained by the presence in the latter of fewer benzene nuclei and hence of a greater accumulation of double linkings (Kaufmann, 1904)

As regards the constitution of dyestuffs benzenic double linkings must be distinguished from ethylene linkings, the latter being less saturated than the former and combining more readily with bromine and hydrogen owing to the

residual partial valencies (see p 620)

For dyeing purposes the colouring-matters are placed on the market in a state soluble in water, the auxochrome groups being converted where possible into salts (e g, SO₈Na, etc.) When wool (which is both basic and acid in character) is dyed with acid colours, since the basic properties of the wool are usually not sufficiently strong to displace the metal (Na) of the acid colour, an energetic acid (acetic or sulphune) is added to the hot aqueous dyeing bath, this liberating the acid residue of the colouring-matter, which can then combine with the basic group of the wool to form a coloured stable insoluble salt in the fibre itself

Thus wool is dyed directly both by soid and by basic colours (with the latter it is not necessary to render the bath soid) Cotton, on the other hand, is not usually dyed by soid dyes but only by basic ones, and then only when the fibres

are previously mordanted with tannin materials and metallic salts

During the past twenty years, however, numerous neutral or substantive dyestiffs have been discovered, capable of dyeing cotton directly in a neutral or faintly alkaline, but not acid, bath, previous mordanting being unnecessary Many of these colouring-matters have a common benzidine group (see p 718), others contain a basic group (primulin) and others again a phenolic group (curcumin) Colouring-matters sometimes acquire this property by mero accumulation of chromophores in a single molecule (Rupe, 1901). The nature of the metal present in these colouring-matters alters to some extent the properties and the affinity towards cotton, but this is always related to the capillary constant of the aqueous solution. The precipitation of the unaltered colouring-matter on the fibres is facilitated by increasing the osmotic pressure of the bath by the addition of considerable quantities of salts (NaCl or Na_oSO₄)

As a rule phenolic compounds form weak colouring-matters, but they have the property of giving intensely coloured lakes with metals (phenoxides), the metallic atom united to the phenolic oxygen functioning as an energetic auxochrome. These colouring-matters having no affinity for textile fibres, the latter are previously charged with metallic oxides (mordants). Lakes of different colours are formed with different metals (Hummel hence called such colouring-matters polygenetic), but for practical purposes it is indispensable that they

1 4 2

should be resistant to atmospheric agents and to ordinary physico-chemical treatment 1 The best among these substances are those containing in the ortho-position either two phenolic groups (OH) or one OH and one COOH, and of such those are best in which these groups are in the ortho-position with respect to the chromophore (Liebermann and Kostanecki, 1887–1893) and in which the auxochiome is formed from iron, aluminium, or chiomium Not all colouringmatters which give insoluble lakes can be fixed on fibres mordanted with metallic oxides, and this perhaps depends on the fact that only certain coloured lakes are capable of combining with the fibre, the constitution of the colouring-matter (see Alizarin) being here also of considerable importance 2

When basic or neutral colouring-matters are sulphonated with concentrated H₂SO₄, acid colouring-matters (Simpson and Nicholson, 1862) are often obtained In the form of soluble salts of the alkali metals, these can be fixed directly, in an acid bath, on animal fibres with the same colour as the colouring-matter, the animal fibre forming a kind of new salt, indeed the fibre assumes the colour of the original salt of the colouring-matter and never that of its free coloured acid liberated in the bath by means of acetic or sulphuric acid (see above, Process of Dyeing) These acid colours are fixed also by cotton, provided the latter is first iendered basic either by nitrating and then reducing, or by oxidising (oxycellulose), or by hydrating (with NaOH mercerisation), or by treating with NH₃ under pressure in presence of ZnCl₂ (Vignon)

Basic colouring-matters which owe their basicity to the chromophore and more especially to the auxochrome NH₂, form salts with acids and are used in practice in the form of hydrochlorides, sulphates, etc., from hot acidified aqueous solutions of which wool and silk fix the coloured base. These basic dyes also form insoluble salts with tannin, etc., so that they are capable of dyeing cotton which has no affinity for basic dyes—if this is previously mordanted by prolonged immersion in cold solutions of tannin extracts (sumac, etc.), followed by fixation of the tannin in another bath containing an antimony, aluminium, or iron salt, or gelatine In the subsequent dyeing-bath, the dye is fixed rapidly, even in the cold (the fixation is more regular, ie, slower, in presence of a little alum) The full (intense), bright colours thus obtained on cotton resist the different reagents well but are destroyed during washing by the rubbing In 1901 C Favre suggested the use of resorcinol and formaldehyde

¹ In addition to what has been already stated with reference to the application of lakes, it may be said that they are derived from acid or basic colouring matters, coloured jugments, or colouring matters of the anthraquinone group. The soluble acid colouring matters are precipitated by salts of calcium, barium, strontium, aluminium (chlorides), magnesium (sulphate, oto Solutions of basic dyes are precipitated by tannin, Turkey red oil, resin, or, more commonly, sodium phosphate or sodium arsenate. Anthraquinone dyes (alizarin, corrilon, etc.) form lakes with greater difficulty, and it is necessary to observe rigorously the proper temperature conditions. In preparing lakes, great importance attaches also to the substance on which the precipitated lake is deposited or with which it is mixed (aluminum hydroxide, barytes, zinc or lead white, formed with first all proper property and of these thickness and the content of ferric oxide, fresh aluminium silicate, etc.), and of these, the ones more casily decomposable by dilute acids retain the colour best. Lake formation is hence not a simple absorption phenomenon but also a chemical phenomenon

as mordants in place of tannin ⁸

There are certain substances which are fixed on mordants even if they contain no hydroxyl such as 1 4 5 8 tetra alphylaminoanthraquinones (R = an aliphatic group), groups, NHR NHR

beryllium mordants, with which they give a deep blue lake, whereas 1 4-dihydroxyanthraquinone dyes well with various mordants. Werner showed that even colourless substances may colour dyes well with various mordants. Werner showed that even colourless substances may colour certain mordants, thus, dimethylglyoxime yields a deep blue coloration with nickel mordants owing to the formation of complex metallic salts (see Vol. I, p. 848)

* Behaviour of Colouring-Matters towards different Fibres and Mordants according

PHYSIOLOGICAL ACTION OF DYESTUFFS Certain dyestuffs, oven dilute solution, are very readily fixed by cellular protoplasm and may cui death, thus methylene blue is used for staining bacteria and other inicroscop

to Noelting If a skein of wool, silk, or cotton is immersed for some hours in a solut of a basic ferric salt, the fibres assume a brown colour, having fixed a certain amou of ferric oxide or basic salt. The same holds generally for all salts of oxides corresponding with formula R₂O₃. The salts of protoxides (RO), e.g., those of copport, froit, manganose, niclosolat, etc., especially the tartrates or in presence of tartar, are fixed by wool or silk, but not all or but slightly by vegetable fibres.

Not only metallic salts, but also certain organic substances (tamun materials) and salts hydroxycleic and hydroxysteanic (sulpho cleates) acids, can be fixed by threes.

A large number of colouring matters are fixed directly on animal fibres in a noutral or a bath, more rarely in an alkaline bath. To this group balong the nitro derivatives of the phonenidamines—the azo, basic, and acid dyes, basic, and, or sulphonated derivatives of triphonenthalines, phenoxazine derivatives (gallocyanine and Meldola's blue), phenylacidic complexes (phosphine), quinoline complexes (oyanine, quinoline red, quinophitalone), hydroxid osazones (tartrazine), ketonimides (auramine) and, among the natural colours, indigo carmin berberine, safflower, saffron, archil, and cateciru. Almost all of those dyes are fixed in minute quantity or not at all on vegetable fibres. Those which are fixed by the latter are less numeric and include—a first group of substances which are fixed only with difficulty (better with tainities, cartain aminoaco compounds, phenylane brown, chrysoidine, methylone blue, Victoria blisafranine, a second group fixed stably and directly and consisting of numerous azo derivative of benzidine, tolidine, diaminostilbene, p-phenylonediamine, naphthylonediamine, canarine (oxidation product of thiocyanates), and the sulphur dyes of Croissant and Bretonne're, a third growhich do not dye wool, ootton, or silk directly but give bright fast colours if these fibres (expecial with wool) are previously mordanted with salts of iron, a which do not dye wool, cotton, or silk directly but give bright fast colours if these libres (especial with wool) are previously mordanted with salts of iron, aluminium, or chromium—such a certain phthaleins (gallein), derivatives of anthraquinoine (alizarin purpurin, alizarin orang anthragallol), anthraquinoline (alizarin blue), phenoxyanthranoi (corulein), and almost all tentural colouring-matters (logwood, cochineal, quercitron, oudboar, sandalwood, oto.) Noelti gave the name substantive dyes to those which dye animal and vegetable fibres directly and the of adjective dyes to those which dye the fibres only after mordanting.

Certain dyestiffs are fixed directly by wool and silk and only indirectly by cotton, i.e., who the latter has been mordanted. Such are gallocyanine and various carboxylic acids of az compounds. In dyeing with ansime black, the fibre fixes both the aniline salt and also the conditing agent, the latter exidising the aniline on the fibre with formation of an insoluble aniline black. Dyes which are not fixed directly by cotton, dye it only after mordanting with tannor sulpholeio ands if they are basic in character, or after mordanting with metallic exides, who without sulpholeates, if they are said.

Further, various substantive colouring-matters have the property of fixing others on then

or without sulpholeates, if they are and

Further, various substantive colouring-matters have the property of fixing others on then
for instance, ohrysamine and canarine, which are yellow, fix basic colouring matters, such a
magenta forming an orange, malachite green forming a yellowish green, and methylone bli
forming a blue colour. All the benzidine colours have the same property, to which Noelti
gives the name secondary dysing, a term applicable also to all dysing with mordants. Directly
dysing would then be primary dysing.

In some cases a third colouring-matter can be superposed. for instance, the violet lake a
slizarin and iron combines with methyl violet giving a brilliant triple lake. The red lake a
lizarin, alumina, and lime, which is not very bright and rather opaque, is rendered brilliant an
more fast by the fixation of a sulpholeate, which forms a quadruple lake; finally, this can at
fix an from a scapy solution of tin salt, a new lake with five components being formed.

If a fabric removed from a solution of a basic iron salt, instead of being washed immediated

fix an from a scapy solution of tin salt, a new lake with five components being formed.

If a fabric removed from a solution of a basic iron salt, instead of being washed immediated (in which case it becomes yellowish), is treated directly with alkali or scap (or with a solutio of a salt the acid readue of which forms an insoluble compound with oxide of iron), it become much more intensely coloured and the quantity of iron fixed by the fibres is considerably increased Oxide of iron can be accumulated on the fibre, not only, as just mentioned, from an alkaline but but also by impregnating the fibre itself with ferrous salts of volatile acids, e.g., the acetatend then exposing it in the moist state to the air. The ferrous salt is thus converted into basiferic salt, this in warm, most air losing part of its acid and undergoing change into an insoluble highly basic salt, which is not removed from the fibre even by repeated washing.

In order to help the action of the air and render a larger quantity of basic salt insoluble, th fibre may be passed into a bath of cow-dung or lime and potassium silicate, phosphate, or arsenate Aluminium salts are similarly rendered insoluble by formation of a basic salt. The basic chromium salt is fixed by a subsequent bath of sodium carbonate or, better still, by impregnating the caustic alkali being thus converted into carbonate, which precupitates the sesquioxide cohromium, matead of exposure to the air, the action of steam may be employed. Chromou oxide is precupitated by simple washing of the impregnated tissue with a tui salt. Sulphoricinat is fixed by solutions of aluminium salts, and tannin by solutions of tartar emetic or ferric o aluminium salts.

The action of a chromate bath on catechu is twofold; first, the catechu undergoes oxidation with a still administration of a catechu is twofold; first, the catechu undergoes oxidation.

The action of a chromate bath on catechu is twofold; first, the catechu undergoes oxidatio with considerable darkening, and then combination takes place between the oxidation product and the chromatum sesquioxide resulting from the reduction of the chromate.

preparations Formerly, when prepared with arsenious acid, triphenylmethane dyes were poisonous. More or less poisonous are Victoria orange, aurin, metanil yellow, safranine, orange II, fast yellow, Martius yellow, methyl orange, magenta, acridine red. Methyl violet and auramine are used in ophthalmology and surgery as a bacterioide, and methylene blue (base) is employed as an internal analgesic in cases of malaria, carcinoma, etc.

The use of the potassium derivative of dinitro-o-cresol (antinonnin) has been suggested to combat the growth of fungi in moist situations and on beams. If fluorescein is imjected into the living body it turns yellowish-green in a few immutes, whilst if the body is dead, no change occurs. The use of zinc, copper,

barium, etc., salts for salt-formation gives poisonous dyestuffs

OSTWALD'S NEW THEORY OF COLOURS AND THEIR NUMERICAL DEFINITION (1916–1920) The perception of colour is a psychic phenomenon Absolute colours are those apparent in a dark field, as in emission spectra (see Vol I, p 57), that is, pure colours uninfluenced by the white light of the surroundings, the latter darkens the colour, what is observed being the relative colour resulting by reflections from the luminous surfaces present in relation to their intensity and extent. Thus, if a bright orange-yellow disc is projected on to a dark screen the colour appears in all its purity and brightness, but if white light is projected all round the disc, the latter appears chestnut-colour, that is, is darkened. In practice these relative colours are the more important.

Distinction must also be drawn between non-chromatic colours, i.e., greys comprised between white and black, and chromatic colours, comprising the rest (reds, blues, yellows, etc.) White is the colour which gives a complete diffusion of the incident light (typical is precipitated barium sulphate). The ideal black is that observed on looking into the orifice of a dark wooden box, lined with black silk velvet, but the most intense black practically obtainable in painting still reflects 2 per cent of the light. A grey formed of 51 per cent of ideal white and 49 per cent of ideal black appears very light, whilst that appearing to the eye to be the true mean between black and white reflects only 14 per cent of the light, this is explained by Fechner's law, according to which the excitation on the organ of sight should increase in arithmetic ratio, because the sensation increases in this way. The fact that the practical mean grey is formed of 14 parts of white and 86 of black being established, it is possible to make up the whole scale of greys by fixing types judged by the eye

Similarly, with the chromatic colours, we can form a graduated colour scale by arranging the fundamental colours (yellow, red, blue) at equal distances on the circumference of a circle and interpolating intermediate colours between these. In this way is obtained a chromatic circle, in which the differences are greatest for two colours diametrically opposite, these being known as complementary colours, since an optical mixture of them yields a neutral grey

If two moderately near colours a and b on the chromatic circle are chosen, it is always possible to find experimentally a colour c which, when mixed in an equal amount of a, gives b, the distance on the circle between c and b equals that between b and a. Hence any colour can be analysed or defined by this system, but to make such mixtures it is necessary to be able to determine and define the pure colour which lends itself to such mixture. To this end Ostwald supposes that every practical chromatic tint is composed of a mixture of white (w), black (b), and pure colour (p), so that w + b + p = 100. For a pure colour, w + b = 0, whilst for a grey, p is zero or w + b = 100

w + b = o, whilst for a grey, p is zero or w + b = 100In practice no pure colour, giving a single coloured line in the spectrum, exists, the range of wave-lengths being moderately wide, and Ostwald states

¹ To the question, Is black a colour? Ostwald replies that in the region of absolute colours black does not exist, but in that of relative colours black is a colour, since it does not represent total absence of luminous emanation, this emission may be very slight (even only 0 5 per cent), but is perfectly determinable.

that any pure colour practically consists of waves corresponding with the half of its chromatic circle

The practical procedure for the qualitative and quantitative defaution and

analysis of a colour is as follows. A continuous spectrum is projected on to the coloration, the part on which radiations of the same colour impinge should appear white, but actually appears a greyish white which can be analysed by comparing it with the linear scale of greys, corresponding with known percentages of white It can then be affirmed that, in the and black colour analysed, there is as much black as there is in this grey. The percentage of white in the original coloration is determined by illuminating the latter with that part of the spectrum which corresponds with its complementary colour, this

being easy to define as it makes the coloration appear black or, more accurately, very dark grey The percentage of white in this dark grey and hence the amount in the original colour are then ascertained by comparison with the linear scale of greys The percentages of black (b) and white (w) being thus determined, that of the pure colour is p = 100 - w - b For this analysis, the spectrum used may be replaced by a transparent chromatic screen, through which the colour to be analysed is observed

Ostwald has collected the principal laws of the new theory in a colour primer and has added an atlas of about $30\bar{0}0$ colours, so that the analysis of any ω lour may be made by simple comparison He has prepared also a centesimal chromatic

circle containing 100 gently graded colours, any two complementary colours, complementary colours 1 occupying polar positions The positions of the 100 colours on the circle are indicated by the numbers, 00, 01, 02, to 99 To render the characterisation of any tint more easy, Ostwald has prepared, for each of the 100 colours, an equilateral triangle, the vertices being occupied by pure coloui (P), pure white (W) and pure black (B)respectively (see Fig 470) To synthesise any given coloration, that point in one of the triangles is ascertained which agrees exactly with the coloration P The straight line joining this point with the apex p is continued to meet the opposite side, wb, at a point indicating the grey which, together with the pure colour, p, gives the coloration under investigation

equi colour equi white equi black Fra 470

In 1884 Chevreul prepared a chromatic scale comprising 14,421 colours, and from this Valette and Klinksiec constructed a code of 720 colours

¹ Rosenstiehl's Old Colour System is less perfect, but far simpler, than that of Ostwald It is based on Young's theory, according to which any coloration is produced in the eye by superposition of three fundamental colour sensations. At the vertices of Maxwell's triangular diagram are placed the three fundamental or primary colours, red, yollow and blue (Fig. 409), colours exactly intermediate to any two of these are the secondary colours (orange, green, violet) Mixture of the colour (material) of any apex with that represented by the mid-point of the opposite side gives black, whilst mixture of the corresponding luminous waves forms white. Rosenstiehl constructed a diagram of 24 colours, representing 12 pairs of complementary colours, the angle between two adjacent colours being 15°

In 1884 Chevreul prepared a chromatic scale comprising 14.421 colours, and from this Valette

laws concerning the so-called harmony of colours. He points out that every pure colour may vary its tone in three ways, in the intensity or value of the pure colour, thus forming the equi-colour scale, in becoming lighter owing to the presence of more or less white, thus forming the equi-white scale (Weissgleiche Reihen), and in becoming darker owing to the presence of more or less black, the equiblack scale (Schwarzgleiche Reihen) being formed. For the quantitative definition of the equi-colour scale the chromatic circle may be divided into eight principal zones of colour, starting from yellow (yellow, orange, red, violet, turquoise, sky-blue, green, and yellowish green), and each of these eight zones may be subdivided into three components, the twenty-four components thus obtained being defined quantitatively by the following divisions of the centesimal chromatic circle.

Zone	Component	ts of eac	ılı zone
	1	2	3
Yellow	00	04	08
Orange	13	17	21
Red	25	29	33
Violet	38	42	46
Turquoise	50	5 4	58
Sky blue	63	67	71
Green	75	79	83
Yellowish green	88	92	96

In this manner each tint is standardised, and to indicate the white and the black entering into any colour to be synthesised the rules indicated to establish harmony in the non-chromatic colours, $i\ c$, the greys (see preceding note), may be followed

For instance the tint with the colour index, 17l, g, is that occurring in the orange zone in the second component and contains as much white as there is in the grey l, and as much black as in the grey g. The content in white may range from c to p, and that in black from a to n, and as the second letter should always be less than the first, for every tint there are 28 derivatives differing in their contents of white and black. Hence for the 24 fundamental colorations of the preceding table there will be $24 \times 28 = 672$ chromatic standards, which are sufficient to satisfy all practical demands

For each colour there exists an *isochromic triangle*, the chromatic indices for the triangle having the same number whilst the letters exhibit all possible variations. The colours may, however, be disposed so that the letter remains constant whilst the numbers vary, the resulting *equivalent circle* having equal contents of white and black

The principal rules of harmony in colours are (1) Any colour may be replaced wholly or partially by those of its equi-colour scale, and (2) Any colour may be replaced completely by the colours immediately adjacent to it in the chromatic circle. In general, harmony in colours depends firstly, on the contents of white and black and, secondly, on the pure colour itself.

During recent years various attempts have been made, without practical success, to utilise the colouring matters produced by certain chromogenic bacteria, e.g., B produgiosus

¹ More simple are the rules for establishing harmony in the non chromatic colours (white, grey, black) If the linear scale of the greys (see above) is divided into, say, 20 equal parts distinguished by the letters a, b, c, etc., a will represent white and b a very light grey, while beyond l the grey becomes almost black and t represents the most intense black realisable in painting. For practical purposes these gradations are too close, and the alternate ones, a, c, c, etc., suffice. Such gradations, still equidistant, dominate the whole region of the greys. Arbitrary superposition of three different greys may produce an effect of incoherence or discord, but harmony is obtained if three equidistant gradations, such as c, c, g or a, g, n, are chosen

MANUFACTURE OF COLOURING-MATTERS

Since 1856-1860, when Perkin in England made mauveme and Renard and Frank in France made fuchsine (magenta) on an industrial scale, scientific progress in colouring-matters has advanced para passu with the industrial

development

In the history of the artificial colouring-matters, side by side with the names of the scientific men, such as Perkin, Williams, A. W. Hofmann, Graebe, Liebermann, Baeyer, Witt, Nietzki, Noelting, Caro, etc., who laid the first stones in this marvellous chemical edifice, are those, not less worthy, of the brilliant and daring industrial workers who, by uninterrupted energy and the application of ingenious piocesses, carried these theoretical discoveries into the larger field of industry and commerce

The dye industry, although not born on German soil, has there reached its greatest development and borne its richest fruit, far in excess of the dreams of its founders This result has been reached in Germany as a result of various

fortunate circumstances 1

At first France was at the head of the aniline dye industry, with numerous pioneers, such as Verguin, Renard Brothers, Frank, Poirrior, Guinon Marias and Bonnet, Coupler, Givard and de Laire, Baubigny, Persoz, Bardy, Lauth, Kopp, Rosenstiel, Roussin, etc., but of all these very few have been able to withstand the wonderful organisation of the large German manufacturers. Even England, the oradle of the industry, is now in a position greatly inferior to that of Germany The six English factories working in 1013 employed altogether 35 chemists, whilst the six largest German firms employ 600, besides 350 engineers and technical directors. From 1886 to 1900, the English firms took out 36 patents, while the six more important German cues took out 948. The principal English firms producing dyes were—Brooke, Simpson, and Spiller, London, The Clayton Aniline Company, Manchester, Read, Holliday, and Sons, Limited, Huddersfield, and I Lovinstein and Company, Limited, Manchester.

The German firms which enjoyed almost a monopoly of the world's trade in amiline colours. At first France was at the head of the annine dye industry, with numerous pioneors, such

(4) Leopold Casella and Co, Frankfort, (a) Action-Greenisanart for Anim Provinces on, 1987m., (b) Kalle and Co, Biebrich, of less importance are the firms of Oshler in Offenbach, Leonhardt of Mulhelm, etc. Firms (1), (2), and (5) work together to regulate the output and trade, and the same is the case with (3), (4), and (6). In 1916 these two federations, together with other companies, united to form a syndicate, termed the Interessengemeinschaft, with a capital of 1,000,000,000 marks. In connection with this syndicate another company was formed, with a capital of 500,000,000 marks, for the manufacture of synthetic ammonia. The dividend paid

companies, united to form a syndicate, termed the Interessengemeinschaft, with a capital of 1,000,000,000 marks. In connection with this syndicate another company was formed, with a capital of 500,000,000 marks, for the manufacture of synthetic ammonia. The dividend paid by this vast organisation was 12 per cent. in 1918, 18 per cent. in 1919 and 20 per cent in 1920. Of the German factories, the Badusche Anilin- und Soda-Fabrik alone, with a capital of over £1,400,000, employed in 1908 about 8000 workmen (in 1896 less than 5000 and in 1865, the first year of working, 30), and more than 160 chemists and 75 engineers, for more than 20 years before the war the dividends paid by this company had been about 25 per cent.

The Bayer Company of Elberfeld employed, in its various works, 170 chemists, 35 engineers, and about 6000 workmen. Its principal works were originally at Elberfeld, but the most important of their manufactures—colouring-matters, pharmaceutical and photographic materials — were transferred several years ago to a new factory at Leverkusen, near Cologne, which occupies an area of 520 hectares and in 1912 found employment for 4000 workpeople. The company, starting from the idea that the employer owes to the employes more than his wages, has created a number of institutions which in 1912 represented a total capital of £000,000. Among these was a library of 12,000 volumes used by 44 per cent of the workpeople, the books demanded in 1907 consisting of popular works on scientific subjects to the extent of 52 per cent and of miscellaneous literature to the extent of 48 per cent., the library committee consists of chemists, engineers, and workmen. Eve hundred baths were built, 150,000 baths being taken annually. There were dormitories with beds at 2½d per night, refectories which supply the three meals of the day to men for a shilling and to boys and girls for 9d. There were also free technical schools and schools of art and musio. A lying in hospital (also for wives of workmen not employed in the factory) co and conferences, another for lectures, concerts, etc., and a third for conferences of workmen, cost £18,000. There were sickness funds, savings banks, and a life insurance scheme, supported to the extent of two thirds by the funds of the company, also old-age pensions, and socident funds in addition to the State fund, the company paying for the first three days after the accident (not paid by the insurance companies) and supplementing the legal payment by 50 per cent. The sale of alcoholic thrinks—beer included—is forbidden in the refectories, but coffee, tea, milk, etc., are obtainable at very low prices. On all these institutions the Bayer Company spent more than £80,000 annually and was yet able to pay its shareholders a dividend of 25 to 30 per cent. on a capital of £1,200,000.

The scientific and technical work of the company is indicated in the 4000 patents filed up to the year 1907.

the year 1907

To the world's output of dyestuffs Germany contributed in 1913, 75 per cent, Switzerland, 75 per cent, Great Britain, 6 per cent, France, 5 per cent, United States, 35 per cent, Austria, 16 per cent, Russia, 11 per cent, and Belgium, 06 per cent

In 1912 the total amounts of the principal dyestuffs made were

	tons	
Indigo (100 per cent)	8000 at £400 per ton	£3,200,000
Sulphur, black	15,000 at £80 ,,	£1,200,000
Various sulphur dyes	5000 at £80 ,,	£400,000
Azo dyes	60,000 at £80 ,,	£4,800,000
Triphenylmethane dyes, etc	10,000 at £240 ,,	£2,400,000
Ant racene dyes, etc	6,000 at £240 ,,	£1,440,000
Various dyes	6,000 at £120 ,,	£720,000
•		
Total	110,000 Total	£14,160,000
		

Of these, the United States consumed 26,000 tons , Great Britain, 19,000, Germany, 15,000, France, 9500, Russia, 10,000, Italy, 8000, other countries, 22,500

The prime materials for dyes—besides sulphuric, nitric and hydrochloric acids, sodium carbonate and hydroxide, aminonia, lime, etc—are the various aromatic hydrocarbons obtained from tar, which may, however, be first transformed into substances more active chemically (phenols, amines, etc.), i.e., the so-called intermediates

The fundamental reactions to which the distillation products (benzenes, phenols, naphthalene, pyridine, etc.) of tar are subjected consist, in general, of nutration, reduction, diazotisation, sulphonation, fusion with caustic soda, chlorination, and oxidation

These reactions lead to intermediate products very near to the true colouringmatters. Thus, nitrobenzene and its homologues yield aniline, toluidine, etc., by simple reduction with iron turnings and hydrochloric acid, and aniline then gives diphenylamine, dimethylamiline, sulphanilic acid, etc.

Oxidation of aniline, toluidine, etc., gives fuchsine (magenta), safranine, methyl violet, etc. The nitroanilines serve for the preparation of azo-dyes, while the action of sulphur on amines leads to primuline and the new class of sulphur-dyestuffs.

With another reducing agent (Zn + KOH), nitrobenzene gives other products (hydrazobenzenes, etc.), from which other classes of colouring-matters organists.

A further important reaction consists in the introduction of sulphuric acid residues (sulphonic group, SO₃H) into benzene (or naphthalene) nuclei in place of hydrogen or other groups by treatment of benzene derivatives with concentrated sulphuric acid. The resulting sulphonic acids are of great importance and often decide whether a dyestuff is acid in character and hence able to dye wool and silk directly in an acid bath, or neutral (or almost so) and capable of colouring cotton directly, or still basic and able to dye cotton mordanted with tannin or wool and silk directly in a neutral or faintly alkaline bath

Many of the Russian and French factories were branches of German ones In point of magnitude, the German firms are immediately followed by those of German Switzerland (Basle) Gesellschaft für chemische Industrie, Durand, Huguenin & Co, Geigy; Kern and Sandoz, etc

During the European War, when Germany was isolated, attempts were made in France, Great Britain, America and Italy to develop the manufacture of dyestuffs, assistance being accorded by the respective States — In the United States such attempts met with considerable, if not complete, success. In Great Britain various projects were supported to the extent of some millions of pounds starling without, however, achieving all the results desired, and this country is far from being emancipated from German importations

The sulphonic group, in its turn, may be replaced by hydroxyl by fusion of the sulphonic acid with caustic soda, this being a very important reaction, as it allows of the ready preparation of resorcinol and of alizarin. The OII group may also be introduced into the molecule directly by means of the Bohn-Schmidt reaction, which consists in treating various substances in the hot with sulphur trioxide dissolved in concentrated sulphuric acid

Oxidation is likewise of great value and was first used for proparing magenta, safranine, etc. It has been found that naphthalene can be exidesed with sulphuric acid in presence of mercury, giving phthalic and anthramilic acids at a cost so low as to admit of the competition of artificial Indigo with the natural

product (see p 760)

The methods of dyeing textile fibres are becoming continually more simple and more certain and capable of giving the most varied colouis Nowadaya stable dyes can be produced directly on the cotton fibre in a single operation, starting with simple chemical reagents

CLASSIFICATION OF COLOURING-MATTERS

Nietzki divides the artificial organic colouring-matters into the following

general groups, with reference especially to their chemical composition

I Nitro- colouring matters II Azo- colouring-matters III Derivatives IV Hydroxyqumones and quinoneoximes of hydrazones and pyrazolones V Diphenyl- and triphenyl-methane colouring-matters VI Derivatives of quinonimide VII Andine black VIII Quinoline and acriding derivatives Thiazole colouring-matters X Oxyketones, xanthones, flavones, and coumarins XI Indigo and similar and other natural colouring-matters XII Sulphur colouring-matters

For practical dyeing, however, more importance is attached to the division into the following five groups on the basis of the behaviour of the colouringmatters towards different textile fibres, since in practice it is more important to know if a colouring-matter is basic or acid, or if it dyes with or without mordant,

than to know if it is a nitro-compound, quinone, hydrazone, etc

1 Basic colouring-matters, which in a neutral bath dye animal and vegetable fibres, the latter should, however, be previously mordanted with tannin

2 Acid colouring-matters, which dye animal fibres in an acid buth

- 3 Adjective or mordant colouring-matters, which dye fibres mordanted with metallic oxides (of iron, chromium, aluminium, etc.)
- 4 Almost neutral or substantive colouring-matters, which, as alkali salts, dys vegetable textile fibres directly, without mordanting
- 5 Insoluble colouring-matters or pigments are formed directly on the fibre, i e, are used for vat-dyeing or are developed on the fibre
- L NITRO-COLOURING-MATTERS All the nitro derivatives of the amines and phenois are energetic dyestuffs, those of the phenois especially being markedly acid colouring matters, since the chromophore NO, reinforces the acid character of the OH group Even the basic substances may become acid if many NO, groups are present. It is particularly the salts of these compounds which are coloured, p nitrophonol, for example, is colouriess whilst its salts are yellow

The coloration of the nitrophenols disappears if the phonolic groups are etherified by

alkyl groups.

Of the mitrophenols the ortho products (OH NO = 1 2) are the more important and the more highly coloured. Examples are Picric acid (transtrophenol), $C_8H_2(NO_2)_5$ OH, Naphthol yellow S = sodium salt of dimironaphtholsulphonic and, C10H4(NO2)(NO2)(OH) 4 1 7), Victoria yellow (or Victoria orango) = dinstrocresol, CaHa(OH) (SO₈H) (2 (OH,)(NO,)

II. AZO-COLOURING-MATTERS The azo colouring matters, unlike other groups, have retained their original importance, not only owing to the number that can be produced, but especially because the gradations of colour and the stability can be modified

, , , ,

at will. Thus, the aze group includes substantive dyestiffs, which die cotton without a mordant, wool colouring matters fast to milling and to sulphuring, and stable adjective dies such as alizarin

Their basic chromophore is -N = N - and the chromogen, R-N = N-R', R and R' being aromatic radicals

These compounds form the largest and perhaps the most important group of artificial colouring matters. They are not of themselves (especially in the case of the more simple ones, such as azobenzene) intense dyestuffs, but they become such on the introduction into the benzene nuclei of acid (OH) or basic (NH₂) auxochromes, and with increase of the number of these the intensity increases, passing from yellow to red, to blue or to brown Blues are obtained with several chromophores —N = N— (di- and tetra azo-compounds), while naphthalene groups give reds. The higher the molecular weight the more intense becomes the colour

In certain cases it must be assumed that these auxochromes are united in some way with the chromophore, and, since β -naphthazobenzene no longer exhibits phenolic character, Liebermann attributed to it the structure C_0H_5 —NH—N— $C_{10}H_6$, instead of the ordinary

constitutional formula C_0H_5 N N $C_{10}H_6$ OH

Certain azo-compounds show behaviour recalling that of quinones and ketones, e.g., they combine with sodium bisulphite. In such case, the formula is represented thus C_8H_5 NH N $C_8H_{10}O$

Almost all azo compounds dissolve in concentrated sulphuric acid, giving a charico tensic coloration, which, in general, serves for their recognition and distinction from other colouring matters (see Table given later)

Substituted azo compounds are always obtained by coupling a diazo compound with a phenol or with an amine, and, in the latter case, diazoamino compounds are formed as intermediate products.

The first azo dyestuff of industrial importance (triaminoazobenzone) was prepared in 1867 by Caro and Griess, and it was only with the dyes discovered by Witt and Roussin subsequently to 1876 that this group assumed a position of practical importance

After 1880 azo colouring matters again came to the front owing to the preparation of direct dyes for cotton, and later these dyes were produced directly on the cotton fibre, new dyeing methods being thus created

They are prepared industrially by first diazotising the amine, or its sulphonic and diluted with water, by means of hydrochloric and and sodium nitrite, the mass being cooled with ice and tested with starch potassium include paper so as to avoid any large excess of nitrite. After diazotisation, the coupling is carried out by pouring the whole slowly into an alkaline solution of the phonol, the mass being kept alkaline. The colouring-matter thus formed is separated in an insoluble state on addition of salt and is then filter-pressed. The reaction between the amines and the diazo-compounds is more complex R. $NH_2, HOl(+\frac{1}{2}N_2O_3) \rightarrow R$. $NCl. N(+R'. OH, phenol) \rightarrow HCl + R$. N. N. R'. OH. The diazo group enters in the para-position to H, OH, or NH_2 , or if this is occupied, in the ortho position

Azo colouring matters are so numerous and so varied in constitution and behaviour that they may be divided into several sub-groups

The MONOAZO-COMPOUNDS may be sulphonated (aminoazo derivatives give basic colouring matters and the hydroxyazo derivatives without carboxyl, acid colouring-matters) or not sulphonated (the aminoazo compounds give basic and acid colouring-matters and the hydroxyazo compounds basic and adjective colouring-matters) POLY-AZO-COMPOUNDS yield substantive and adjective dyestuffs (i.e., without benzilline nuclei, and then form acid, basic, and mordant colouring-matters) Finally there is the sub-group, the members of which are generated directly on the cotton fibre.

(a) Aminoazo-derivatives These are obtained in the usual way, in the cold and in alkaline solution, from diazo-compounds (amino- or not) and amines

Among these are fast yellow, and yellow, tropsolin, thrysoidin [CoH₅ N N—NH₂,HCl], the oranges, Indian yellow (nutro derivative of phenylaminoazobenzenesulphonic and), orange IV or tropsolin OO (sodium salt of the non nitrated product, SO₃H CoH₄

N N C. H4 NH C. H5) and vesuvine or Bismarck brown, which is the hydrochloride of irrammoazobenzene, NH2 CaH4 N N CaH3(NH2)2, mixed with CaH4 N N CaH3(NH2)8]2

Indom is a basic blue obtained by coupling diazotised safranine with β naphthol.

On textiles they are not very fast to light, the less fast being those which do not contain the sulphonic group. In printing textiles these colours are corroded by the stannous

hydroxyazobenzene, (b) Hydroxyazo-derivatives azoxy compounds), (or 6.77 C_0H_5 N N C_0H_4 OH Tropwolin O is a dihydroxyazobenzenesulphonic acid.

Of greatest importance are the derivatives of a and β naphthols,

and
$$(\beta)$$
, the compounds with the auxochrome in the *ortho* β position with

respect to the chromophore (N N) being colouring matters of greater fastness to acid and alkali than the ortho a-compounds If, however, another azo group be introduced

into the latter, it will occupy the β ortho position, , the fast brown

dvestuffs being obtained.

Those most used are the sulphonic derivatives, obtained from various naphtholsulphonic acida

Of the numerous colouring-matters of this group, the most important are \cdot orange II 1 , tropæolin 000 N II or N I, croceine orange, orange G, etc., Ponceau (various), Bordeaux S

amaranth, rocelline, crocesne, azorubin
$$S$$
 $\begin{pmatrix} N-C_{10}H_6 & SO_3H & (4) \\ \parallel & OH & (1) \\ N-C_{10}H_5 & SO_3H & (4) \end{pmatrix}$, oto

(c) Azo-Colouring-Matters derived from Carboxylic acids are obtained from carboxylic diazo compounds and phenols or amines

These compounds (especially the o-hydroxycarboxylic acids, such as salicylic acid) have an affinity for metallic mordants, particularly for chromium oxide The hydroxyl and carboxyl groups are in the ortho-positions

Among the nitrobenzeneazosulphonic acids are alizarin yellow, the diaminul yellows, etc. which, on cotton and wool, give colours very resistant to light and to fulling The hydroxyazo acids molude various tropacolins (V, R, O, OOO, etc.), chrysoin, cochineal scarlet, ponceau, palatine scarlet, eto

(d) Azo-Colouring-Matters derived from Dihydroxynaphthalenes Several of these com pounds are fixed by mordants when they have two hydroxyl groups in the ortho (1 2)

Orange II, prepared from diazotised sulphanile acid and g naphthol, has the constitution:

pounds are used practically, not on mordants, but for the dyeing of wool, as they give very regular results (such are the azofuchsines), while the peridihydroxynaphthalenes are used on mordants and form the so called chromotrops colouring matters, which dye unmordanted wool in an acid bath, giving a fine red turned violet by addition of alumina mordants or blue black with chrome mordants.

POLYAZO-COLOURING-MATTERS (di- and tetra azo) contain the chromophore N N several times and vary according as the chromophores are in the same benzene nucleus or in different nuclei and as the auxochromes are or are not in the same nuclei as the chromophores.

Here are found benzidine derivatives in which the two chromophores are in two different nuclei, joined by a single linking

Among the sulphonic derivatives are, for example, Brebrich scarlet, and the croceines, while among the polyazo compounds are also naphthol black, naphthylamine black D diamond black (which is obtained from aminosalicylic soid and is fixed by mordants), oto

nitrous and, gives a tetrazo derivative which yields yellow, red, blue, or violet colours on combination with amines or phenols. With naphthionic and, tetrazodiphenyl gives Congo red, which was the first substantive dyestuff obtained and was patented by O Böttiger in 1882.

$$C_0H_4$$
 N N $C_{10}H_8 < SO_3H(\alpha)$
 C_0H_4 N N $C_{10}H_8 < NH_2(\alpha)$
 $SO_8H(\alpha)$

the free sulphonic acid is blue while the salts are red and are fixed directly on cotton, but have the disadvantage of becoming blue or black in contact with even weak acids

The Benzopurpurines (see p 719) are obtained in a similar manner

These benzidine derivatives cease to form substantive colouring matters if the metapositions (with respect to the NH₂) are occupied.

Substantive or direct colours, when fixed on cotton, function as weak mordants for basic dyestuffs.

The different firms making colouring-matters place on the market a large number of substantive dyes under various names. For instance, Messra. Cassella have a long and important series of diamine colours (diamine yellow, green, red, black, blue, etc.), while Meister, Lucius und Brüning call their substantive colouring matters diamic colours. The Bayer Company have the most numerous and important series of substantive dyes, which they term beaudine or benzo dyestuffs (e.g., benzo azurines, benzo browns, benzo reds, etc.) The Actien Gesellschaft für Anılin Fabrikation, Berliu, call these dyes Columbia, Zambesi, etc

The Derivatives (e.g., sulphonse) of azoxystilbene,
$$C_6H_4$$
, C_6H_4 , have the

special property of dyeing cotton directly in an acid bath.

The firm of Meister, Lucius und Brüning, in 1896, placed on the market a class of strongly basic colouring matters (*Janos dyes*), which colour cotton directly—without previous mordanting—in an aoid bath and also dye with the same colour the wool and cotton of a mixed fabric when the latter is boiled in a bath acidified with sulphuric acid. These dyes change their tint temporarily if brought into contact with hot objects (hot iron)

Of very great importance is the group of azo-dyes produced directly on the fibre by processes of diazotisation and combination, these bearing the name of Ingrain Colours

Cotton fabrics or yarns are impregnated in the cold with a base (aniline, p nitraniline, aminoazobenzene, benzidine, safranine, etc.), or they may be first dyed with one of the substantive tetrazo dyes containing free auxochrome amino-groups (e.g., diamine black, primuline yellow, benzo brown, blue, or black, etc.) They are then transferred for 15 minutes to a wooden vessel containing a cold diazotising solution, this consisting, per 100

kilos of cotton, of 2000 litres of water, 2 to 4 kilos of sodium nitrite, and 6 to 10 kilos of hydrochloric acid at 20° Be , this diazotisation is carried out in dunly lighted rooms, since sunlight readily decomposes the diazo-compounds formed After removal from this bath, the cotton is allowed to drain for a short time and is then placed in a developing bath (coupling bath) containing 2000 litres of water, 0.5 kilo of sodium carbonate and 0.5 to 1 kilo of B naphthol previously dissolved in 415 to 430 grms of caustic soda solution at 40° B6 The cotton is manipulated rapidly and in a few minutes intense development of the colour takes place. When substantive dyestuffs are thus further diazotised on the fibre, they exhibit increased fastness to scouring, and this is still more the case if the fabric is subse quently treated with a bath of potessium or sodium bichromate at 90° to 95° for 20 minutes, a final copper sulphate bath at 50° for 25 minutes gives greater fastness to light, but both copper and chromium compounds diminish the brightness of the colour to some extent, and on this account the firm of Gergy suggests the use of a final bath of formalm Instead of β naphthol, a-naphthol, resordinol, phenylenediamine, benzonstrole (diazotised p nitrani line), etc, may be used 1 By this method of diazotising and developing on the fibre the original tint of the basic substance is intensified, certain yellows become orange or scarlet (p-intraniline gives with β naphthol a fine searlet similar to Turkey red, while with α naph thol it yields a violet red), certain reds become brown or even blue, the blues become intense blacks, etc Different developers give different colours or shades

The coupling of a phenol with a diazo-compound is prevented by the presence of a reducer which destroys the latter, as reducing agent stannous chloride was at one time used, but use is now made of sodium or zine hydrosulphite, which permits of the printing of textiles in white designs on a coloured ground

III HYDRAZONE AND PYRAZOLONE COLOURING-MATTERS Hydrazones are obtained by the action of phenylhydrazine, C_4H_5 NH NH₂, on compounds containing ketoine groups (see p 252) Thus, for example, the condensation of phenyl-

hydrazine with a naphthaquinone, QO, gives a hydrazone of the constitution

 C_6H_8 NH N $C_{10}H_8$ O The same compound is obtained by the interaction of a-naphthol and diszobenzene, so that its constitution might be that indicated by the equation

$$C_6H_6$$
 N_8 $Cl + C_{10}H_7$ $OH = HCl + C_6H_6$ N N $C_{10}H_6$ OH

one hydrogen atom being mobile and oscillating between nitrogen and oxygen. The hydrazones may hence be regarded as also compounds and can be prepared from diagoderivatives and phenols. This is true for aromatic compounds (which can be diagotised), but not for those of the aliphatic series, which are only exceptionally diagotised, in the latter case, the hydrazones must be obtained by means of phenylhydrazine

The colouring-matters of the hydrazone group have not as yet been practically applied, as they are too weak. It was formerly thought that tartrazine was a hydrazone, but Anschütz showed it to be a pyrazolone. In general the Tartrazines are obtained by condensing, in hot soid solution, the aromatic hydrazines (sulphonated) with dihydroxytartaric acid, CO₂H C(OH)₂ C(OH)₃ CO₂H, which probably reacts with phenylhydrazine

as a true di kotone, CO₂H CO CO CO₂H, giving CO₂H C N NH C₆H₄ SO₆H CO₂H CO N NH C₆H₄ SO₆H a molecule of water is then lost from a carboxyl and an immo group,

then lost from a carboxyl and an imino group,
$$N(C_0H_4 SO_0H) CO$$

$$N(C_0H_4 SO_0H) CO$$

$$N NH C_0H_4 SO_0H$$

The sodium salt is used as a fast yellow for wool, in an acid bath. Some tartrazine nitrates are fixed also by mordants. In an acid bath tartrazine dyes wool a bright and fairly fast yellow

 1 O N Witt (1913) avoids diszonsation on the fibre (with saving in ice) by using p-nitrobenzenediszonium in the form of the crystallised double salt obtained by condensation with sodium naphthalanesulphonate, NO $_{1}$ $\rm O_{3}H_{2}N$ N SO $\rm O_{10}H_{7}+SO_{3}Ns$ $\rm O_{16}H_{7}+H_{2}O$ Such salts are non-explosive and highly stable, even at 60° to 70°, and dissolve in water

IV COLOURING-MATTERS DERIVED FROM QUINONES AND QUINONOXIMES. All these colouring-matters give very fast tints on fibres mordanted with metallic oxides, with which they form lakes. If the hydroxyl groups present are not in the ortho position with respect to one another and to the chromophere CO<, the lakes formed have no affinity for the fibres ¹

The most important colours of this group are formed by int oducing into the chromo phores, naphthalone groups, e.g., Naphthazarin, which is a dibydrox, naphthaquinone,

The quinonoxunes contain the group N OH in place of the ketonic oxygen, they have properties similar to the hydroxyquinones, and here too the affinity for metallic mordants is most marked in the derivatives of the orthoquinones. A few colouring

matters derived from the oxume O= NOH, are known, e.g., fast green for cotton, naphthol green, etc.

Among these quinone derivatives are almost all the alizarin (see p 734 and anthracene (see p 731) colouring-matters, purpurin, etc., in all gradations from yellows to reds, blues, blacks, greens, etc.

For hundreds of years alizarin was the sole epresentative of a group of excellent colours, and was only obtained naturally mixed with purpurin, from which it was separated with difficulty Nowadays, not only is alizarin prepared artificially, but there are quite fifty other colouring matters of this group, fast to light and chemical and atmospheric reagents.

While nature yields colours such as madder and indigo in an impure condition (as these are secondary products of vegetable life) and not directly applicable for dyeing, the artificial products are highly pure, much brighter in colour and more easily utilisable as dyes.

Alzarm and anthracene dyes, which are the prototypes of mordant colouring-matters, are used in large quantities for the fast dyeing of wool for clothing and military uniforms. As a rule the wool is mordanted first, by boiling for an hour with an aqueous solution containing 2 to 3 per cent. of potassium dichromate and 1 per cent. of sulphuric acid and amounting to 15 to 20 times the weight of the wool. After mordanting, the wool is ruised well in water and dyed in a solution of the dyestuff faintly acidified with acetic acid, this bath is heated very gradually to boiling, the latter being maintained for 1 to 2 hours to obtain the maximum intensity and fastness. If fresh addition of the colouring matter is necessary in order to obtain the desired shade, it is best first to lower the temperature of the bath to 40° to 50° with cold water in order to prevent non uniformity of tint

V DIPHENYL- AND TRIPHENYL-METHANE COLOURING-MATTERS, $CH_2 < \frac{C_8H_5}{C_6H_5}$ and C_6H_5 — $CH < \frac{C_6H_5}{C_6H_5}$ It has been shown on p 764 that in these colouring

 1 Mordant colouring matters are generally obtained with the following groups in the orthoposition. OH and NO (or CO and NOH), 2NOH, 2OH. Also, according to Noelting (1909), in the anthraquinone series intense mordant dyes are obtained also with OH and NH $_{\rm s}$ in the ortho position (less important and less intense are those with OH and NH $_{\rm s}$ in the para position) OH

Anthracene Brown, or alzarin brown or anthragallol (trl to hexa-hydroxy anthraquinone),
OH

matters the chrome phore consists of the benzene group with two double linkings in the para-position, R = C

The mode of formation and the general properties of diphenyl and triphenyl mothane derivatives were described on pp 719, 720

In this group are found Auramine (basic)¹ and Pyronine (also basic) which dye wool in an acid bath and cotton mordanted with tannin

The resamine group embraces all the basic colouring matters derived from triphonyl methane, e.g., malachite green, methyl violet, formyl violet, fuchsine, etc., while with sulphonic and other groups, acid dyes are obtained, such as patent blue (carmine blue), acid fuchsine, etc.

There are also azo derivatives of triplienylmethane, such as Rosamine, which dyes silk violet red with a yellow fluorescence, and has the formula

$$C_{\theta}H_{\delta} \quad C \quad C_{\theta}H_{3}[N(CH_{\theta})_{\delta}C]$$
 The Rosolic Acid group, $O = C_{\theta}H_{3}[N(CH_{\theta})_{\delta}C]$ The Rosolic Acid group, $O = C_{\theta}H_{\theta}(OH_{\theta})$ OH, formed by fusion of phenol with oxalic acid in presence of concentrated $H_{\theta}SO_{4}$, also furnishes numerous colouring matters, e.g., aurine, coralline, pittacal, chrome violet

Benzo azurine is formed from 1 mol. of phenylohloroform with 2 mols of phenod 0 $C < \frac{C_6H_4}{C_6H_5}$ of these colouring matters, which have no practical application, are obtained by the condensation of phenols with phthalic anhydride

$$C_{e}H_{4} \underbrace{CO}_{CO}O + 2C_{e}H_{5} \quad OH = H_{2}O + C_{e}H_{4} \underbrace{C(C_{e}H_{4} \quad OH)_{2}}_{Phonolphibhalohn}O$$

Phthalens (see p 685) with the hydroxyls in the para-positions are of some importance if resorance, $C_gH_4(OH)_g$, is used in place of phenol, Fluorescein (the sodium salt of which is uranine) is obtained

while if dimethylaminophenol is taken instead of resorcinol, or if fluorescein chloride is heated with a secondary amine, NHR₂, fine red colouring matt rs, Rhodamines, which are basic in character, result

If previously brominated phthalic anhydride is used, the Eosins are obtained

$$C_0H_4$$
 $C_0HBr_2(ONa)$ $C_0HBr_2(ONa)$

Auramine has the formula H₂ NCI ON(OH₈)₈

} *** .** ?

these give beautiful fluorescent red colours on salk but are not very fast to light (see p 685)

VI COLOURING-MATTERS OF THE QUINONIMIDE GROUP To this belong the derivatives of indophenol and indamine.

Of the hypothetical quinonimides, HN= O and NH= NH

various derivatives and condensation products are known, e g, Indamine,

Thiazimes (e.g., Lauth's violet or thronine, methylene blue, methylene green, etc., which are basic dyes)

The Oxamines and Osazones have an oxygen atom in place of the sulphur of thiazones,

blue, etc , which are also basic

The Cyanamines are related to Nile blue, Resorufin is an osazone, namely, hydroxy-

nitrosodimethylaniline with gallic acid in alcoholic solution. They dye chrome mordanted wool a very fast violet, and are used in printing linen, which is treated with sodium bisulphite and chromium acetate and subsequently steamed

The Azines were formerly called Safranines, the simplest type is Phenazine,

$$C_6H_4$$
 N C_6H_4 The *eurodynes* are used for dyeing cotton mordanted with tannin

The Safrannes contain four nitrogen atoms and three aromatic nuclei

and are strongly basic and give red colours on cotton mordanted with tannin

colours cotton, mordanted with tannin, a brilliant blue

Indulines are obtained by heating amline hydrochloride with aninoazobouzene Tho following constitution has recently been established for one of the indulines

represented by the formula

VII ANILINE BLACK The oxidation in various ways of aniline salts in acid solution gives aniline black, which is of considerable importance in the dyeing of cotton

Among the different exidising agents, a special place is occupied by vanadium salts (suggested by Witz in 1877), which bring about the exidation of large quantities of aniline (transferring exygen by catalytic action), 1 part of vanadium, in presence of a sufficiency of potassium chlorate, exidises as much as 270,000 parts of aniline hydrochloride. In point of efficiency, vanadium is followed by consium, uranium, copper, manganese and lead, the action of iron being much less

Aniline black has a feebly acid character and is insoluble in almost all solvents. It dissolves with difficulty in aniline and forms with it a violet and then a brown colour, phenol dissolves it more easily, giving a green coloration. With fuming H_2SO_4 , it yields soluble, coloured sulpho compounds. Acetic anhydride gives a faintly coloured acetyl derivative, and potassium dichromate a violet-black product. When treated with parmanganate and then with oxalic acid, aniline black is partially decolorised. Energetic reducing agents (Sn + HOl) decompose it completely ¹

The chemical constitution of aniline black has been the subject of much discussion. Assuming that the first intermediate product of the exidation of aniline is aniline black (Nietzki), it cannot be true, as is often thought, that the transformation of aniline into quinone by exidation takes place through the intermediate stages of phenylhydroxylamine and p aminophenol, since those do not yield aniline black on exidation, phenylhydroxylamine giving a nitrosobenzene and not a quinone, nor can aminodiphenylamine (Nover, 1907) be formed, since this, on exidation, gives eneraldine, a compound never obtained in the exidation of aniline. It has now been found possible to convert aniline black to the extent of 95 per cent into quinone by exidising with lead perexide (chromic acid giving less than 80 per cent), so that the indaminic formula (proposed by Bucherer, 1907) can no longer be attributed to aniline black, since, according to this, it would give only 50 per cent of quinone. This result led R. Willstätter and 8. Dorogi (1909) to suggest for aniline black the formula (O₂H₄N. C₃H₄. NH)₄, *e., C₄H₈N₈, which is confirmed by the fact that the exidation requires 1½ atom of exygen per molecule of aniline with a yield of 97 per cent. Further, the determination of the molecular weight by hydrolysis of aniline black with dilute sulphure acid at 200° indicates clearly the separation of one-eighth of the mitrogen as ammonia

 C_eH_4N C_eH_4 $NH + H_8O = C_eH_4N$ C_eH_4 $O + NH_8$ All these results point to the trebly quinonoid formula of aniline black as the most probable:

N

N

NH

NH

NH

NH

NH

This amiline black is obtained by oxidising aniline in the cold with rather less than the theoretical quantity of dichromate, chlorate, or persulphate. Further oxidation with H_1O_1 , for example, results in the elimination of 2H and the formation of a quadruply quinonoid anilino black, $O_{48}H_{86}N_8$, the base of which is very dark blue-black while the salts are dark green. It

, , , 1

In practice and me black is produced directly on the fibre, and the use of this very stable colouring matter is due especially to the studies and mitiative of Prud'homme, C Koecklin, Paraf, etc

After many improvements, the production of aniline black (termed also exidation black or fine black) directly on cotton fibre is now carried out as follows (the quantities given are for 50 kilos of cotton). The three following solutions are prepared separately I 5 5 kilos of aniline oil (see p 659) + 4 25 kilos of commercial HCl + 50 litres of water, II 3 5 kilos of sodium (or potassium) chlorate + 50 litres of water (1 5 kilo of starch is sometimes added), III 3 kilos of potassium ferrocyanide in 20 litres of water. When cool, the solutions are mixed (1 grm of vanadium chlorate is sometimes introduced) and the yarn or fabric immersed until it is well soaked. It is then gently pressed and passed slowly over rollers through the exidation chamber (see illustration given later) so that at least an hour clapses before it emerges at the opposite and. The temperature of the chamber should not exceed 50° and the humidity 25°. The fabric assumes a coarse greenish colour which is changed to a fine black when it is transferred to a Jugger (see later) containing 2 kilos of potassium dichromate, 250 grms of sulphuric and and 100 to 120 litres of water at the temperature 50°. The black thus obtained, when thoroughly washed, is turned green only to a slight extent in the light

VIII QUINOLINE AND ACRIDINE COLOURING-MATTERS Among the quinoline dyestuffs are quinoline yellow (water or alcohol soluble), quinoline red, cyanine, etc., all of

them contain one or more of the chromophores,
$$C_8H_4$$
 \subset $N=CH$, or its homologues $N=CH$

Acridine derivatives possibly contain a quinonoid chromophere of the formula

$$RC \xrightarrow{C_6H_3(NH)} NH$$

They are obtained by condensing m-diamines with formaldehyde, heating the resulting tetraininodiphenylinethane with said to remove ammonia, and finally exidising with ferric chloride. To this group belong acridine orange and yellow, phosphine, benzoflavine, etc.

IX THIAZOLE COLOURS These contain the group
$$|$$
 C— with the

chromophore —C = N— and are formed by heating p tolumine with sulphur, the resulting Primuline being probably of the constitution

it may be easily sulphonated, does cotton directly and may be diazotised and developed on the fibre (see p. 781). The methyl derivative is Thioflavine. These colouring matters are not very fast against light

X COLOURING-MATTERS OF THE OXYKETONES, XANTHONE, FLAVONE, COUMARIN This group embraces many valuable mordant colouring-matters alizarin yellow, anthracene yellow, alizarin black (see Alizarin Colouring Matters, p 783), flavopurpurin, alizarin green, alizarin blue, alizarin cyanine, anthracene blue, etc The characteristic

absorbs only $2\frac{1}{2}$ HCl whilst the trobly quinonoid black absorbs 4HCl, all of the latter are displaced by ammonia, which, however, in the former case, leaves 1HCl (45 per cent. of Cl in the nucleus) In practice the quadruply quinonoid black is obtained with excess of a slow oxidising agent acting in the cold, eg, with chlorate and copper sulphate or with chlorate and vanadium. On hydrolysis, the quadruply quinonoid black also loses one eighth of its nitrogen as ammonia, forming the more complete black, $C_{23}H_{30}ON_{7}$, which is not turned green by SO_{2} Oxidation of the corresponding product of hydrolysis of the trebly quinonoid black gives the same quadruply quinonoid black, $C_{43}H_{30}ON_{7}$. The practical preparation of aniline black in a single bath leads to the quadruply quinonoid black that turns green, and further exidation of this in the hot yields the black which does not turn green, the terminal immo group being hydrolysed. This latter black is obtained also by the two (or more) bath process or by steaming. Oxidation of ammodiphenylamine instead of aniline gives first the reddish blue imine (C_{24}), emeraldine, which then polymerises, forming the black (trebly quinonoid)

Indian yellow is a hydroxy derivative of xanthone

XI INDIGO, INDIGOIDS, AND OTHER NATURAL COLOURING-MATTERS addition to what has been stated with reference to indigo (see p 757 ct seq), it may be said that there are a number of derivatives of artificial indigo which are reduced with hydro sulphite and alkalı and give very fast colours which are superior to indigo and resist even concentrated solutions of chloride of lime 1

¹ Bohn has given the name vat dyestuffs to those insoluble pigments the molecule of which contains at least one ketonic group capable of being reduced (e.g., by hydrosulphitos), taking up hydrogen and thus becoming soluble in an alkaline liquid and fixable by animal and vogetable fibres. These vat dyestuffs may be divided into two classes sudipods and sudunibrene derivatives. The first class comprises two series symmetrical (indigo, etc.) and unsymmetrical (indurable, etc.), and each series contains various families of the following types, to all of which the chromogen, —CO—C=C—CO, is common.

(1) With nitrogenous chromogen.

(2)

(3)Symmetrical with sulphur chromogen

$$(4) \qquad \qquad \begin{array}{c} -NH \\ -CO \end{array} = C \begin{array}{c} CO \\ -NH \end{array}$$

Indirubin with asymmetric nitrogen chromogen

Indepo and its halogenated and other substitution derivatives chloro-, bromo , alkyl-, and naph thol indigo The substitution takes place in the thol indigo The substitution takes place in the benzene nucleus, many polyhromo derivatives are formed. The colours range from reddish blue to greenish blue The antique purple recently studied by Friedländer is 6 0' dibromoindigo 5 Bromoindigo (pure indigo R), 5 5' dibromoindigo (pure indigo 2B), 5 7:5' tribromoindigo (Ciba blue B), 5 7 5' 7'-tetrabromoindigo (Ciba blue 2B or indigo 4B) have been propared.

Besides the chromophere NH 0 = of indigo, these

have also the chromophore = 0 $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ Belonging

to this family are Osba grey \tilde{G} (monobromo derivatives), Osba violet R, B, 3R (those are polybromo derivatives of Csba violet A)

The first term is Friedlander's throndigo (or throundigo red B), Ciba bordeaux B (5 5' dibromo thioindigo) and numerous derivatives in which the 5 and 5' positions are occupied by alkoxy- and thioalkyl groups have been prepared, among those being red and brown colours and the various colours of the helindone series of Meister Lucius and Refining und Brining

Indirubin is not a colouring-matter, since on reduction it forms indigo, but use is made of tetrabromo andsruban (Osba heliotrope B)

$$C_aH_aBr_a \stackrel{NH}{<_{CO}} C = C \stackrel{CO}{<_{C_aH_aBr_a}} NH$$

The dibromo derivative forms throundsgo scarlet G (or Osba red G)

$$C_{\bullet}H_{\bullet} \stackrel{S}{\longleftrightarrow} C = C \stackrel{CO}{\longleftrightarrow} NH$$

is known by the name of thioindigo scarlet 2G (Ciba scarlet (7)

The Indanthrene Colours, which were at first very expensive, are now obtainable at more reasonable prices and give medium and dark shades. They are so resistant to various reagents that they are used as pigments in place of ultramarine, etc., they are used also for blueing sugar and other foodstuffs, as they are fast to light and non poisonous.

Materials dyed with indanthrene dyestuffs do not stand heating in an autoclave with alkali, the colours being reduced and rendered soluble. The Badische Amilia und Soda

$$\begin{array}{c|c} (7) & Y & A_1 \\ \hline -N & C & N \\ \hline -(0) & C & C \\ \hline \end{array}$$

This is a new family which has given the first yellow 3G and Cibn yellow G, which is a dibrono derivative of the preceding)

The group Ar is the benzoyl residue, but it is not known whether Y is H or OH, or whether it represents a double linking to the nitrogen atom

The second class is that of the anthracene derivatives, with the following families

Indanthrene is formed by condensing 2 mols of admithrene is formed by condensing a most commonthraquinous by means of fused alkali and is a dianthraquinous hydroazme. With reducing agents, partal reduction of the ketome group occurs, dillydroindanthrene becoming soluble in alkali and dyoing cotton directly. The halogenated derivatives are of a more greenish blue, resistant to oxidising agents and to chlorine Use is made of sudanthene blue GO, GCD, 3G, and 3 RO and of algot blue and algot green. The GCD blue is obtained by boiling industriene with aqua regia. Anthroflaume (yellow) is similar to indanthrone, but without the NH groups

(2)

Flananthrene

Flavanthrene (or industhrene yellow G and R) is obtained by exidising 2 aminoanthraquinene with ontined by extensing 2 aminoantinaquinous with antinony pentachloride in boiling nitrobensence schutten. An analogous compound which has an orange yellow colour, and in which the two nitrogen atoms are replaced by CH, is pyranthrene (or indanthrene golden orange C), the halogen derivatives of which tend to red, of those, dibromopyranthrene (or indanthrene scarlet O) 18

(3)

Benzanthrone is obtained by condensing anthra-quinous or its derivatives with glycerol in presence of concentrated H₂SO₄ Benzanthrone and its halogen derivatives are not colouring matters, but by various condensations they lend to excellent colouring matters, such as violanthrone, the di brome derivative of which is indanthrane green B , moviolanthene (which has a similar constitution to pyranthrone) and its debloro-derivative (indan threne widel RR ceim)

(4)

Indantheene bordeaux B and andanthrene red (f and Rare formed from 3 mals of anthraquinone joined in various ways by two inino-groups Algol red, which was the first red vat dyestuff of the authra quinone series, consists of 2 mols of authra quinone united by an NH group, one of them being condensed with a pyridone ring

Anthroquinonimide derivatives

Benzanthi one

ин со ин Helindone yellow 8GN

(5) Anumunoanth agunous derivatives (Characteristic of these is the complex of several NH groups united once or more times to CO groups Helindone yellow 3G represents two anthro quinone groups condensed with urea Various other condensations of aminoanthraquinones with benzoyl, succinic, tartaric, phthalic, etc., groups give algol reds G. R., and 5G, etc Fabrik recommend the addition of an oxidising agent to the autoclave bath to prevent the reduction.

XII SULPHUR COLOURING-MATTERS These colouring matters, which have been discovered since 1893, are very fast on cotton, which they dye directly without a mordant, but in alkaline and reducing solution (sodium sulphide and sometimes a little glucose) which prevents any unevenness which might be produced in the colouring owing to contact with the air. The sulphur colouring matters do not dye wool or silk in presence of sodium silicate (or of blood or diastofor), so that two colours can be obtained on wool and cotton fabrics, the wool being dyed first with an acid dyestuff and the cotton subsequently with a sulphur colouring matter in a bath of sodium sulphide and silicate (or blood or diastofor)

They are obtained by melting together sulphur or sodium sulphide and various other colouring matters or other organic compounds. Cachou de Land has been known since 1873 but has been used but little. It was obtained by Croussant and Bretonindio by fusing sawdust, bran, or the like with sodium sulphide. In 1893 the discovery of Vidal black directed the attention of manufacturers to this interesting group of colouring matters, which now include almost all tints except red, and are obtained by fusing with sulphur or sodium sulphide, derivatives of benzene, naphthalene, diphenylamine, anthraquinone, etc. These colouring matters are placed on the market by various firms under different names, although their compositions are practically the same—the firm of Cassella calls them immedial colours, the Bayer Company, kaispense colours, the Badische Company, kriogense colours, the Berlin Aktien Gesellschaft, sulphur colouring matters, etc. The constitution of these colours has not been firmly established, but during recent years a little light has been thrown on them. According to Sandmeyer (1901) they are derivatives of Plazthiol

When diphenylamine derivatives are fused with Na₂S, black colouring matters are preferably formed, with aminohydroxydiphenylamine derivatives and the corresponding N-alkyl and N-aryl compounds blue colours are obtained, while in presence of stable metasubstituted compounds, brown or yellow colouring matters are formed

(6)

Various types Rufanthrene, leucol, cibanones, hydrones, indigolignoids

These colouring matters are obtained by fusing ammoanthroquinenes with sulphur or alkaline sulphides (rufanthrene browns, greys, clives), g, mainthrene brown, estamone brown, estamone gellow, the first estamone black was obtained from methylbenzanthrene, and the leveol colours of the firm of Bayer are also of this group. A mixed indigoid anthracene group has also been obtained. Thus, the action of isatin chloride, etc., on a naphthol (or its ortho derivatives) gives the indigoid colouring matter and an isomeride of analogous properties, e.g., indinaphthalene or indelignone (Friedländer and Bezdzich, 1909); both the indigoid and the indolignone are docom posed by alkali into anthramilic acid and the corresponding hydroxynaphthaldehyde. A group of sulphur vat dyestuffs is that of the indrone blues (Cassella), derived from carbazole, which with p-nitrosophenol gives a base,

and this, when fused with sulphur or sulphides forms reducible colouring matters soluble in alkali. In general the reaction takes place with preliminary formation of aromatic mercaptans or polymercaptans (in the ortho position with respect to N or to O), which give further condensation products, ey, black derivatives of thiodiphonylamine (of thiszing),

They form usolable condensed products (disulphides) with the oxygen of the air, these being rendered soluble again by alkaline reducing agents (sodium sulphide, hydrosulphites, etc.) The fixation and development of the colour in the cotton fibres consist simply in the exidation of the increaptan to disulphide. The black of blue sulphire colouring matters are quinonimino derivatives of the thiazine group. These colouring matters are now used in large quantities, the production of sulphire black alone in 1909 being estimated at nearly 5,000,000 kilos. It has been proposed (1909) to render them faster to washing by treatment with formaldehyde or by immersion in a nickel sulphate bath

The principal natural mordant colouring matters are logwood, brazilein, archil, coolineal, catcelin, sandalwood, etc., and the natural substantive dyes for cotton and wool are lovin, curemmin, carthamin, etc.

These dyewoods are placed on the market in small trunks or in chips, for economy in transport and convenience in use, dense aqueous or concentrated dry extracts are often prepared

LOGWOOD or Campeachy is obtained from the barked trunk of a tree (Hematoxylon compechanium). Fig. 471 shows twig, leaves, flowers, and social) which grows in Central America and in the Antilles, the best qualities being those of Hondmas, San Domingo, and Jamaica. Just as the consumption of indigo has not diminished in spite of the competition of the numerous artificial aniline and alizarin colours, so also the use of logwood in dyeing tends to increase, although not in similar proportion to the artificial dyes. The wood arrives in Europe in logs weighing 150 to 200 kilos, which are sawn into short pieces, chopped and reduced to chips or raspings, more rarely they are ground

The colouring-matter of logwood was studied by Chevreul in 1810, by Erdmann in 1842, and by Hess and Relm in 1871—It consists of a glucoside which occurs in the fresh wood and which, perhaps by simple formentation or by the action of water and air, separates the base of the colouring-matter, i e, Hæmatoxylin, $C_{10}H_{10}O(OH)_8$, and this, under the influence of atmospheric oxygen (best in presence of alkali), gives the colouring matter hæmatein (which does with metallic exides), $C_{18}H_{18}O_6$, 21f being thus lost—Hæmatein is moderately soluble in water, alcohol, ether, or glacial acetic and, and insoluble in chloroform or benzene. In ammoniacal solution it assumes a purple red colour, which becomes brown in the air—By reducing agents (H_0S , SO_2 , Zn + HCl, etc.) hæmatein is decolorised without, however, giving hæmatoxylin

Hiematoxylin is probably 3 · 4 3', 4'-Tetrahydroxyrufenol

and harmatein would have a quinonoid formation in place of the hydroxyl of the first nucleus, H being lost together with another H from the para-CH of the second nucleus.

In dyoing, logwood is used in chips or as an extract. The chips are first matured ? fermented) by moistening with water, heaping up and stirring every two or three days or one or two weeks, care being taken to prevent heating of the mass, which would destroy he colouring matter. The wood changes from a yellowish to a brownish red colour and a extracted with boiling water, to which it gives up 2 5 to 3 per cent. of its weight. The

solution, which is rich in hæmatein, is used as it is in the dye vat, whereas logwood extracts are prepared in the way used to obtain taining extracts (p. 691), these extracts are very rich in hæmatoxylin. Solid hæmatein, a pure, granular product, free from tainins, is obtained by direct extraction of the ground logwood with ether

Hæmatein is a mordant colouring matter, s.e., is fixed and gives intense and fast colours only on mordanted fibres, and is generally used for black or blue black shades with various shot effects, according to the nature of the mordant with aluminium salts it gives a greyish violet-black, with chromium salts blue-black, with iron salts grey black, with copper salts greenish blue black, and with tin salts violet black

A fine black is usually obtained by mordanting, e.g., wool, for 2 hours in a boiling bath containing 2 to 3 per cent of potassium dichromate, 3 to 4 per cent of tartar (or 2 per cent. sulphuric acid, 3 per cent. lactic acid, etc.) and 0.5 to 1 per cent of copper sulphate (all calculated on the weight of fabric). The mordanted fabric is well washed and dyed in a boiling aqueous bath, to which is added the dilute logwood extract or 5 to 8 per cent

in bags. To obtain black black (coal black without blue reflection), 0.2 to 0.5 to 1 per cent of Cuba yellow wood extract is added. Dyeing is followed by thorough washing in cold water.

Cotton is first mordanted in the usual way in

of the concentrated extract or the matured chips

Cotton is first mordanted in the usual way in a tannin bath (2° to 3° Bé. overnight), then passed into an iron nitrate bath (see Dycing of Silk, and note on p 771), rinsed and dyed in the hot aqueous bath with logwood and yellow wood. After dycing the bronze red appearance is removed by a soap bath.

For dyeing alk black, see later

Logwood extracts are often adulterated with chestnut-bark extract, molasses, dextrin, sumac, etc, and as a rule the best test consists in dyeing equal weights of mordanted fabric with equal weights of the suspected and a pure extract. Sugar (molasses) or dextrin may be detected by precipitating with a slight excess of load acetate and examining the filtrate by means of either Fehling's solution or the polarimeter.

Chestnut-bark extract is detected by treating 1 grm of the extract, dried at 100°, with ether and weighing the portion dissolved by the other. The residue is then extracted with absolute alcohol and the amount dissolved determined. A good, dried extract contains 86 to 88 per cent. of matter

soluble in ether and 12 to 14 per cent soluble in alcohol, while, if chestnut bark extract is present, less dissolves in ether and more in alcohol

ARCHIL is extracted from Roccella tindoria (2 to 12 per cent.) or from other lichens growing on the coast or on bare rocks in mountainous districts. The red colouring-matter is formed after fermentation in presence of a little ammonia, and after the action of atmo spheric oxygen. Prior to fermentation, the colourless compounds contain roccellic acid (p 365) and crythric acid, while, after the decomposition, ordin (see p 645) is present, the latter, when oxidised in presence of NH_3 , gives ordeine (see p 645), which forms violet red lakes. Archil is placed on the market as extract or solid preparation.

Cudbear (or perseo) is obtained from Lecanora tartarea and dyes wool and silk very uniformly in presence of alum, tin salt, and tartaric acid.

Litmus (or tournesol) is formed from ordin by the action of ammonia or soda, and is obtained from various lichens (Roccella tinctoria) The extract is mixed with gypsum or chalk and made into tablets, which contain various colouring matters (azolitmin, crythrolein, crythrolitmin, spaniolitmin) It is very sensitive to acids, which redden it, and to alkalis, which turn it blue, and hence serves as an excellent indicator

COCHINEAL has been long used as a colouring-matter and is the female of the insect Coccus cacts, which lives on the cactus of the Canary Islands, Algeria, Java, Guatemala, etc.

4 1 4 4 1

When the insect is three months old (weight = 0 0065 grm) it is killed with hot water (black grain) or in an oven (silver grain). The colouring matter is Carminic Acid, $C_{17}H_{19}O_{10}$. The dry insects are powdered and extracted several times with boiling water, the dye bath being prepared with hot water, 3 per cent of exalic acid and 0.5 per cent of times at the wool is immersed in this for at least 30 minutes at a boiling temperature. The wool may be first mordanted separately with exalic acid and times alt and then dyed in the aqueous cochineal.

YELLOW WOOD or Cuba Wood (Old fustic) is obtained from the trunks of Morus tinctoria or of Maclura tinctoria of the West Indies, Brazil, and Mexico, the best kinds being, however, those of Cuba, Tampico, Porto Rico, and Jamaica. The colour may be extracted from the wood by means of steam, and the concentrated extract contains a taming material (maclurin), since a brighter yellow is obtained on dyeing if a little gelatine is added to precipitate this tanning substance, if this is not done, prolonged boiling gives dark or brownish shades. Although Cuba yellow dyes pure fibres directly, really fast colours are obtained only by chrome mordanting, etc., hence Cuba yellow is used together with logwood or even alizarin or anthracene colouring matters.

QUERCITRON is sold in small chips or, botter, as a coarse powder obtained by grinding the bark—freed from epidermis—of *Quercus tinctoria* and *Q nigra*, which grow in Penn sylvania, Carolina, Scotland, France, and the South of Germany

The dilute aqueous extract does not keep, and must hence be used immediately. Chevreul separated from the bark the compound Quercitrin, $C_{21}H_{22}O_{11} + 2H_{2}O$, which when boiled with acid takes up 1 mol. $H_{2}O$, giving Quercetin, $C_{18}H_{10}O_{7}$, and Isodulcitol, $C_{0}H_{14}O_{6}$ Quercetin is 1 3 3' 4'-Tetrahydroxyflavanol

it dissolves in alkali, giving an o ange yellow coloration, and yields phloroglumiol and protocatechnic acid when fused with alkali. It is sulphonated by concentrated sulphuric acid, forming a direct dye for wool.

It dyes more especially animal fibres (wool) either previously mordanted or with an alum or chrome mordant added to the dye bath. Similar behaviour is shown by *flavin*, which is a more concentrated preparation of quereitron and contains quercetrin and quercetin.

synthetically by condensing hydroquinonocarboxylic acid with β -resorcylic soid)

Natural Indian yellow functions as a mordant dyestuff, but is now scarcely used for textiles, as it is not very stable to light.

BRAZIL WOOD or Red Wood is obtained from the trunk of Casalpana brasilensis and other varieties. The colourless glucoside it contains gives, on farmentation or when treated with ands, glucose and Brazilin, $C_{16}H_{14}O_5$ or $C_0H_0(OH)_2 \cdot C_4H_4O$ $C_6H_6O_2$, which is coloured carmine by alkali and decolorised by ands or reducing agents, it gives intensely coloured lakes and oxidises in the air, forming Brazilein, $C_{16}H_{19}O_5$, while with concentrated nutric and it gives trinitroresorcinol and, when fused with alkali, resorcinol It is a red mordant (alum or chrome) colouring-matter, but is only slightly fast to light.

Brazilin seems to have a constitution analogous to that of hamatoxylin (see p 791) with a hydroxyl group less in the first benzene nucleus, brazilein being apparently the occresponding quinonoid derivative similar to hamatein (see above)

SANDALWOOD is the wood of *Ptercarpus santalmus*, which grows in Madagascar, tropical Asia, and Ceylon. Santalin or Santalic Acid, C₁₇H₁₆O₆, which forms the colouring-vol. ii. 51

matter of this wood, occurs in abundance in other plants (in barwood or Baphia nitida of Sierra Leone and in camwood or kambewood from West Africa)

Santalin gives resoroined, acetic acid, etc., when fused with alkali, but its constitution is not yet established. It is a mordant colouring-matter, like logwood, and was once used with alizarin to due cotton red.

CATECHU (or Cutch) and GAMBIER are extracted from various plants of India, Bengal, Malay, etc (palm, mimosa, Rubiaces, Acada catechu, Areca catechu, Uncara gambier, etc) They contain tannin and colourless catechol, partly combined to a brown colouring matter. When fused with alkali, they give phlorogluonol, pyrocatechol, and protocatechuic acid. With various mordants they give stable browns or clives, which do not, however, withstand chlorine or acid. On cotton they give reddish or yellowish brown colours which become fast to light after treatment with alkali dichromate at 60° to 70° (khaki used for uniforms in the British, German, and Italian armics)

Nowadays a much faster khaki is obtained by impregnating the white fabric in a cold concentrated bath of pyrolignite of iron, chromium acetate, and a very small proportion of manganese chloride, drying it thoroughly, immersing it in a boiling bath of caustic soda (11° Bé) and a little sulphoricinate, and oxidising in a hot-air chamber or by means of dichromate solution. With a less concentrated soda bath or one not bolling, the metallic oxides would be precupitated superflorally on the fibre, and the dry fabric would be dusty and would wear out sewing needles.

This khaki is very fast against light, scouring, and chlorine, but does not resist perspiration (test with a mixture at 1° Bé of hydrochloric, formic, and acetic acids for 5 hours). Fastness to perspiration is given by boiling the dyed fabric for 2 hours in a silicate bath at 6° to 7° Bé.

CHLOROPHYLL is not a colouring-matter for textiles but is the green pigment which occurs in many plants (those which assimilate CO₂) and brings about the transformation of the carbon dioxide into starch in the leaves under the action of sunlight—especially of certain rays of the spectrum—and apparently also with the help of an enzyme (Willstätter and Stoll, 1911) known as Chlorophyllase With starch, wax, etc., it forms the characteristic chlorophyll granules of green leaves (see p. 525)

It is soluble in oil, alcohol, ether, or chloroform, its solutions showing blood red fluores cence and readily undergoing change. Its constitution is still uncertain, and it does not appear to contain combined iron, as was formerly thought. Following the indications of the botanists Borodin (1882) and Monteverde (1893), Willstätter and Bory (1908) obtained a pure chlorophyll ¹ (2 grms. from I kilo of dried leaves) in dark, bluish black crystals with a metallic lustre, which are insoluble in petroleum ether but soluble in alcohol or ether, giving a bluish fluorescence. The green solution of this product, which exhibits the same spectrum as the chlorophyll of fresh leaves, is turned brown by alkali, but again becomes green. Its formula is probably $C_{35}H_{78}O_0N_4Mg$, and the magnesium present (3 per cent) is perhaps the cause of the catalytic action effecting the transformation of CO_2 into starch, it does not contain phospholus, as many, including Stoklasa, have thought. Acids remove all the magnesium, the residue being Phœophytin, which is similar to chlorophyll, is ethereal in character, and forms various products (e.g., methyl alcohol, phytol, phytochlorin, and phytorodin, which has the formula, $C_{34}H_{34}O_7N_4$, is acid in character and contains four pyrrole groups) and three carboxyl groups when hydrolysed with alkali.

Phytol forms one-third by weight of the chlorophyll of plants and is a primary, unsaturated, monohydric alcohol, $C_{80}H_{40}O$, capable of combining with Br_s Plants produce also an amorphous chlorophyll which, unlike the other, gives phytol on hydrolysis. It is thought that it is analogous in chemical composition to the colouring matter of the blood (see later), since both yield pyrrole when distilled with zinc dust. Willstätter and Isler (1911) showed that chlorophyll contains two colouring matters: (a) bluish green and (b) greyish black (one-fourth as much as of the first), having the formula, $C_{55}H_{70}O_8N_4Mg$, thus confirming the hypotheses of Stokes (1867 and 1873) and of Tswett (1906), the two colours are separated

As chlorophyll readily undergoes change, it is extracted in the cold with methyl alcohol from the carefully dried, powdered leaves (Willstätter), previously washed with petroleum ether. In order to separate it from other colouring impurities, its alcoholic extract is suitably diluted and extracted with ether (benzene or carbon disulphide), many of the impurities remaining dissolved in the alcohol, or the alcoholic extract may be shaken with a large amount of water which dissolves the chlorophyll in the colloidal state, the decanted aqueous solution being treated with salt and extracted with petroleum ether containing a little alcohol. From this solution the chlorophyll is deposited pure if the whole of the alcohol is eliminated by washing

by more or less dilute alcohol. Chlorophyll is used in practice to colour oils, soaps, fats, preserved vegetables, etc., before the war it cost 8s per kilo or, for the highly purified product, 80s per kilo

TESTING OF COLOURING-MATTERS

Out of the thousands of colouring matters sold by different firms under most varied and fanciful names, the majority represent, not chemical individuals, but intimate mixtures of several colours which give directly the tints desired.

The colouring matters obtained at the end of the manufacture by precipitation or separation from their solutions by means of salt (just as with soap) are not sold in the pure state, but are diluted with 50 per cent. or 75 per cent. of finely ground sodium chloride or sulphate. A mixture may be distinguished from a chemical individual by the following sumple test—a few milligrams are blown in a cloud from a watch glass and are caught on a moist filter paper spread on a sheet of glass at a short distance from the watch glass. If the filter paper were not too moist, it shows on drying isolated, swellen points of colour, the uniformity or non uniformity of which is readily seen—A variation of this test consists in sprinkling a little of the powder on to the surface of concentrated sulphuric acid contained in a flat porcelain capsule.

The use of the spectroscope has been suggested for differentiating between various groups of colouring matters, the positions of the absorption bands being observed when white light is passed through an aqueous or alcoholic solution of the colouring matter of definite concentration contained in a glass vessel with parallel glass walls. The spectroscope is now, however, scarcely ever used, owing to the uncertainty of the results obtained, but it is useful in detecting the colouring-matter of the blood (see later Hæmoglobin)

The qualitative analysis of colouring matters for the detection of the principal groups may be carried out according to the method of A G Roto ¹ or to those of Weingärtner and Green. The latter, which are largely used, are briefly as follow

- I COLOURING-MATTERS SOLUBLE IN WATER (A) If the aqueous solution gives
- ¹ Rota's method, extended by Buzzi (1911), for analysing colouring matters consists of four series of tests
- A This is based on the usually quinonoid character of these matters and hence on their behaviour towards said reducing agents, preferably stannous chloride, the alkaline reducing agents do not serve well, as with all colouring matters they give leuco-derivatives which are not very characteristic.

very characteristic

The behaviour with SnCl₂ + HCl permits of the division of all colouring matters into the following four groups

following four groups

I Those which are decomposed may contain the following chromogens (p. 764)

II Those which are reduced to colourless leave compounds, which can be recordised, contain the chromogens

III Colouring matters which are neither reduced nor decomposed, but have a basic character and are partly decolorised or precipitated by caustic soda, contain the chromogens:

a precipitate with a solution containing 10 per cent. of tennin and 10 per cent of sodium acetate, the presence of basic colouring-matters is denoted

- (1) If the solution of the colouring matter is reduced with zine dust and dilute hydrochloric acid, a few drops of the decolorised solution are placed on a piece of filter paper
 - (1a) The reappearance of the original colour of the substance when the paper is waved

IV Those which are neither reduced nor decomposed, and have a phonolic character (feebly sold) and are moreased in colour and solubility by caustic soda, contain the chromogens

Groups III and IV always contain the chromophore Contain to these belong the cordines, the this coles, the auramines, the resamilines, the pyronines, the resummer, the phthalelus, the rhodamines, the hydroxyacetones, th

B To distinguish between the different chromogens of the separate groups, other special reactions are used, for instance

The acridines, with concentrated sulphuric acid, give a fluorescence resembling that of petroleum

The azo dyestuffs, with concentrated nitric acid, regenerate the respective diago salks

The hydroxygastonic, hydroxyguinonic, etc., colouring matters are precipitated as lakes by stannous chloride and subsequent treatment with sedium acctate

The transformation of azo colouring matters and their derivatives into thiazole (polychronin). The conversion, by special reagents, of one colouring matter into another, e.g., gallein into corulein.

C After the restriction of the colouring matter to one of the four groups and after the various tests for defining more exactly the character of the chromophore have been carried out, the process of identification is continued by means of systematic dycing tests which vary with the auxochromes and salt-forming groups (see p 766), imparting to the colouring matter a basic, seid, phenolic, substantive, or a mixed character, such as basic phonolic, acid phonolic, substantive basic, substantive phenolic

The group with azo chromophores contains, for example, Bismarck brown, which is basic

In the group with hydroxyazine chromophores are, for instance, Meldola's blue,

which is basic phenolic in character

So, also, the thiazine group (see p 785) contains methylene blue, which is basic, and thiocarmine, which is acid

The dyeing tests are made in hot neutral and acid baths, in each of which four samples are mmersed, namely, cotton, cotton mordanted with tannin, wool, and wool mordanted with

in the air indicates azines, exazines, thiazines, and acridines, s.e., according to the colour, pyronine, safranine, rosinduline, phosphine, benzoflavine, induline, etc.

- (1b) If the original colour appears but weakly or not at all, but is formed immediately on moistening with a drop of 1 per cent. chromic acid solution, the colouring matter belongs to the rhodamines or to the triplienylinethane group,
- (1c) The non appearance of the original colour under any conditions indicates suramine, thioflavine, chrysoidine, Janos colours, Bismarok brown.
- B Non precipitation of the solution by tannin, etc (see above), denotes the presence of acid colouring matters
- (2) The solution of the colour is reduced as in (1) or with $Zn + NH_3$ and a drop placed on a strip of paper
- (2a) The reappearance of the original colour on shaking the paper in the air indicates sulphone or mordant dyes of the groups of azines, oxazines, thiazines, soluble induline, nigrosines or azocarmine, thiocarmine, indigo carmine, gallocyanine, Mikado orange.
- (2b) If the coloration reappears only after treatment with chromic acid or ammonia vapour, the original aqueous solution is addified with sulphuric and and shaken with ether, coloration of the ether and complete or almost complete decolorisation of the solution indicates phthalems or auramines, while non coloration of the ether shows triphenyl methane dyes
- (2c) Non coloration of the paper even when heated in a flame or treated with ammonia vapour points to azo, nitro, nitroso, or hydrazine colours, which, when burnt in powder

dichromate (for the mordanting, see p 771 and later, Dyoing Tests) The more or less intense colours assumed by the samples give indications concerning the character of the colouring matter (see p 772), and confirmation of this is obtained by various tests on the dyed fabric

(a) The colour is substantive if, when the dyed sample of natural wool is heated in faintly

(b) The colour is accountable to the white cotton placed in the same bath,

(b) The colour is acid if the change indicated in (a) is not observed, and if, when the bath is acidified, the wool takes up the colour it gave to the alkaline bath,

(c) The colour is base if in bath (a) the colour passes from the wool to a sample of white

cotton mordanted with tannin

(d) The colour is phenolic if the tint on mordanted wool varies with the nature of the mordant. Tests may also be made on the solution of the colouring matter, thus, if it is precapitated by tennin or picric acid, the colour is basic, if ether extracts the colouring-matter in an acid medium, the colour is phenolic, whereas if other extracts the coloured base in an alkaline medium, the colour is basic

If it is established that the colouring matter, contaming a given chromophore, is basic in nature, all acid, substantive, phenolic, etc., colouring matters with the same chromophore are oxoluded

D For the further individualisation of the colouring matter, useful information is given by the following reactions characteristic of the substituent radicals

The NH group is recognised by diagotising and then coupling (see p 782), by which means a new ago colouring matter is formed, or by boiling the diagotised product with water, the formation of the OH group being shown by the increased solubility in NaOH compared with that of the original colour
'The more or less basic groups are indicated by the greater or less sensitiveness of the solution

to mineral acids

The N(CHa)a group is sonsitive, as seen in methyl violet and methyl orange.

The NH, group is less sensitive, as in fuchsine and sold yellow,

is less sensitive still, as in andine blue and metanil yollow The group -NH-Different colorations with different concentrations of acid indicate several salt-forming groups.

To complete the characterisation of a colouring matter, the latter must be tested for ogens and nitro groups Thus, to distinguish allzarın yellow R (see above) from diamond halogens and nitro groups OH, the nitro group is tested for by reduction and yellow G, CO.H. co'Ĥ

diazotisation, its presence indicating alizarin yellow. Other colouring matters are differentiated by testing for chlorine and bromine. The azo dyestuffs are characterised also by the formation of the corresponding diazonium nitrates when treated with concentrated nitric acid.

 $-N = N NO_3 + NO_4$ OH N = NOH

then, by testing for diazo compound with \$ naphthol and ascertaining the solubility of the nitro derivative, the position of the sulphonic group in the molecule may be determined.

The Tables given on pp 798-802 afford considerable help in the rapid characterisation of colouring matters.

RECOGNITION OF THE PRINCEAL DYES ON FIBRES

MATTER	Conc. H ₂ BO ₄	10 per cent. H ₂ 804	Come	HNO ₅ (sp. gr 1.40) on F 1	10 per cent NaOH	Sucts +
Blacks and Violets on Wool and Silk			,			
Indigo	F = Gn, with sq. = B	Ħ	m.	Y, rfm Gn	Ħ	F-in hot somewhat D
Logwood (M. cr.)	F = Go Br	۶	BV	O and rim R.	۵	6 - Gn - Y V then Br
(M. ft.) Alisaria placit (M. cr.)	B - climest ma.	=	F = shoot m	V 0	٠. د د	e c
Gellogenthe (M er)	10 L m + 1		G		4 15 1 + 1	
Alferrin bine 8 (M. or)	F - GaB		A A L	Y and rim V	F = B - Gr	} 1 4
Alizacin synnide B. (M. cr.)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	21 1 1 1 1 1	Gn Gr	# + B	+
Alizacia ayanine brill. 8 G (M. cz.)	B = + B, with eq. V	I	# I		<u> </u>	\$
Acid ago-black 8 BL (M. cr.)	BY V	ø	F = - Bl - r	E E	A	ا
Whitthed black B or 3 B	F = F	- r stmost un	B. Br. F. atmost un.	## ## 0	+ B. V elmost un.	, A ;
Naphthylamine black D Anthracene black D	8 = B Gn, with 8q v 8 - Bi B, with 8q B v F - Bi V	£	F = almost un.	A Go with Britin	# T	almost un.
Wool black	8 B, with eq V	=	F = Br V	Y with rim B.	, Þ † † 	4 4 4
Victoria violet 4 B S	FBV	# +	P BY	0 1 8	, på	
Add violet 2 B	A L A Gr	Y Gn	F T G	Y with rim B Gn	s - th bot D	۳ ا
Acid violet 4 B K		₩	м	Y with rim — Gn	A .	, # - E
Formyl wieles 4 S B	- E	gt I	₩ ₩ ₩	Þ	almost D	5
Past acid violet 10 B	7 G	Gn B	F = Gu, then X	Gn. with rim Y Gn		5
Albali wielet	501	Gn B	8 - Y Gr	, ,	C 1	ا ا
Violamine R.	8 H B B B B B B B B B B B B B B B B B B	1	. H.	R - Y Gr	1 E	- B
Yellow Colours on Wool			4 	-		_
Yellow wood	F = + T to Br B	almost un.	4 +	1	1 E	Þ
Alizarin yellow A (M. cr.)	T= Tell	1	F - almost un.	Y Gn	70 H	1 -

W	0	OL	DYJ	E-8 ,	الميِّد"	4-19.	` <u>{</u> `	3
elmost un. Gn Y - Y	+ 1	F = - Gn, 8 = - T Br Y	$F = B \times In \text{ hot, } e = B$ $F = + B, e = \Gamma$ $B \times B$	E + + H	TABLE DE LA COMPANION DE LA CO	R R	TOR	more desired (6)
H H G H	A	nost un. B	- B, B = B Br 8 = Br	1 B = + 38	R V 8 = V 7 B, 8 = B 8 = 1 - B	H B C + Br B	B B C Gr	- chamae

			حواديا ت	
	- Y then D D + Y - Y	Property of the state of the st	F = B Y In hor, s = B B = B B B B B B B B B B B B B B B B B B	LIBRAR
F = + X F = 20 B F = 20 B F = 0 B F = + X F = + X F = + X F = + X	F - Y H, 6 - Y F - Y then D	F=+Gn F=+Gn F=D F=D F=D F=D	F = + B, a a B; F = + B, a a B; F = B, B a B; F = B, B B C B, B B C B, B C, B C	F = B V 8 = V F = B V B, 8 = B F = F = B F B = V F = B F B = V F = B F B F B F B F B F B F B F B F B F
O, rim B V Y Gr Y Y B - Br B, rim B V Y, rim B Y Y, rim B Y	я пт пт п	Br, rim B Br rim Gn Gn B Y Gn B 1 B 1 Y Gr	V. Then B. P. Con. V. Then B. V.	R Gr X, rim B V Y, rim O R, rim B Y, rim B G, rim B Y " O Y Y
F F F F	H + 1, s T H + 1, s T H + 1, s T H H + 1, s T H H H H H H H H H H H H H H H H H H	$F = B B, s = r$ $F = Gn B, s = - \Upsilon$ Gn $F = + \Upsilon$ $F = + Gn, s = \Upsilon$ $F = + Y, wtb aq = Gn$ $F = + Y, wtb$ $F = simost m, s = r$	F F F B S F B F F F F F F F F F F F F F	F = AB $F = AB$ $F = BB$
F=almost m., s=+0 F=almost m., s=+0 F=-almost m. F=-X FX +X +X +X -X +X +X +X -X +X +X -X +X +X -X +X -X +X -X	2₫ [™] 1 [™]	++ 1	PO I	Y B T B H H H B L B L B L B
F = B; s = B; G; F = + 0, s = - B; F = Y (x, wth, q - X; s = wth, q - X; F = B; s = D; F = T; v B; F =	$F = + \overrightarrow{X}, S = \overrightarrow{Y}$ $F = B, \forall th aq = \overrightarrow{Y}$ $F = -\overrightarrow{Y}, S = \overrightarrow{Y}$ $F = -\overrightarrow{Y}, then D$ $F = B, then D$	F = + B, s = B F = 7 (m B s = B dn Gn Gr F = Y, with aq = Gn F = B, with aq = Gn B = B, with aq = Gn Gr Gn F = almost un, s = r	F = - Br B, 8 cc Br F = Br 8 cc Br F = simost m., 8 cc Br F = B T, 8 cc Br F = B R, with aq simost D B = B V, with aq simost D B = B V, with aq simost D	F = Tr, ss = -T B B $F = -Tr, ss = -B B$ $F = -B B, ss = B B$ $F = B V, ss = B$ $F = -B S, ss = -B$ $F = -H S, ss = -H$ $F = -H B, ss = -H$
(M. cr.) (M. cr.) 18	on Wool	Altarin green (M. cr.) Distancind green (M. cr.) Figure green (G. Farit green for wool Malachtic green Brilliant green Altarin cynthice green Dark altarin green W. (M. cr.)	Red Colours on Wool Braul (red) wood (M. al.) Braul (red) wood (M. cr.) Madder (M. cr.) Cochmal (M. al.) Arthii and cadbear	Alizarth B (M. cr.) Goch: red B Goch: red B Poncessu S B (cyclidine scarlet) Praction scarlet A Bachrich scarlet A Bachrich scarlet S Poncessu S B Poncessu S Poncessu S Poncessu S Poncessu S Poncessu S Poncesu S Poncesu S Poncesu S Poncesu S Azafuchatine G Azafuchatine G Actif Includine

1 Abbreviations B = blue, Bl = black, Br = brown, D = decolarised or colouriess, F = flure, Gn = grey, M = more or dark, M cr = chrome mordanted, &f, \(\tilde{\chi} \), \(\tilde{\chi} \) \(\tilde{\chi

SnCl ₂ + ECl	elowyy D Y O D D + r Br + r	H Br	Gn, then — Y	Fin bot – Y B L Gn	2 PA - I +	almost un fin bot D almost un fin bot D almost un almost un Gn B
10 per cent. NaOH	F = Err F = almost D F = + B F = + B F = + B F = + B F = r B B = D almost un.	- B.Y F.B. F F.B. F F.B. F. B. B. F. B. B.	1 un. F wn. F w Gn, s = − B	F = Gn, s = -Gn in $F = -V$ $S = D$ $F = -V$	ı 'ı"+	F = - B R Ca Gr almost un. F = - B s = B n bot almost un. f = Gr B s = - Br un. s nost un. g = Gr B un. s nost un. s nost un.
HNO ₅ (sp gr 1 40) on F 1	**	A H H H H H H H H H H H H H H H H H H H	x rm ca Br Gn, rim + Gn Y, rim Gn Gn, rim – Gn	P D Y Y	$\Gamma = \Gamma B$, then Γ $\Gamma = Gn$, rim B $\Gamma - Bn$ rim Gn	Br, thm Gr Y Br Gr O D Y Br Y Br Y Br F = - Br Gr Br Gr Br Gr Br
Cone. HCI	F = + B, s = B F = Y, 6 = - Y F = - Y B F = D F = D F = D Y Br	F I B S I B S I B I B I B I B I B I B I B	F = B GI F = C B F = G B F = G I V V, S = V + G B	F = Gn = D F = O	F = E = B = E = B = B = B = B = B = B = B	F 6n B 6 B B 6n Cn, then Y
10 per cent. H ₂ SO ₄	If c=+B,B,8=D -YB, slowly D slowly D +r slowet un.		# ## + I	— — — — — — — — — — — — — — — — — — —	ور ا ا م _{نظ}	F = abnost un. S = - R B abnost un. un. in. almost un. almost un. un. elmost un. un.
Come. Hg8O4	F = + Gn, 8 = - Gn F = - Y Br 8 = Y F = - O to Y Br F = 0 to Y Br F = 0 to Y Gr F = Y, with aq = B + Gn H Br	F = H-B F = H-B = B F = + B, s = Br F = B F = B	F = 00 or wineq b F = 00 B, s = B F = + B, s = B Br F = + Gn to Y F = + Gn s = 6n - Gr	with eq = B $F = 0$, with eq = B $S = 0$, with eq = B $F = 0$, with eq = B	Gn - V, s = 0 with aq = Gn F=+B, then Gn-Gr F=B, with aq = B F=B, with aq = B F=B, s = Br	F = + Gn - Gr Gn, then V Br Y B Gn Gr Gn P = V Br with aq S = N Br W Gn V Gr Gn, then V Br
NAME OF COLOURING. MATTER	Azocarmine (roshndulln) Fuchsche Eceta (yellowlah) Phlozin Bengal red B Brodamine B Bordamine 2 G Ecesamin B	Grownofton 2 B Wood Intribute And accounting B Hast chrome red B(M. cr. after dyshig) Blue Dyes on Wool	Italigo extrace Sulphocyanine G Altali blue 4 B Carmine blue Thiocarmine B.	Cyanole A B Methyl violet 6 B	Æ	Industrie Lenacy libre B B Cynnole extra Albarin scholing B Albarin risol B Wool blue B Bricyanhe Albarin dark acid blue S N (M. cr after dyring) Janon blue B Commine blue P(on sift)

	_	<u>_</u>										ı	ş]
	almost un.	Br, slowly D	!	A) s	a ×	Almost: D	•	م م	F B Br Y	AF	Bl Br, after	washing - R Gr F - D	Ē	'	, Þ	A f	AA.	AF	a A	e l	ا	4	6	a 概	AF	aA	Af	A F	Þ. 4	1	Br. O Y	
_	F = Gn Br to Bl, 8 = D	I I I I I I I I I I I I I I I I I I I		F-VB.s-r		e e	PÅ	f	4.5	P4	1	1	F B	F Gn B	elmost m	<u> </u>	4. 4.	H + H	+⊳ ₽,8	P L	2	# F	-	¥ - •	i i	1 F4	٠	F O K S II	F - R Y, 8 - D	0 H	 	F = B, 8 = Y	
		F=Bi, s= Br B		٨		i k	+ 34	į.	12	F + B, 8 = - Gr Y	A ■ A ■ ■ A ■ A ■ ■ A ■ A ■ A ■ A ■ A ■	<u></u>	- 1	B = Y, 6 = - Y	H H		rd rd	10日本	B E	0 6 4	_ 4 Μ,	B = - KBr F = V B. S = V B.		eq I	ă;	٠!	Þ£	đÞ	·Al	х Н	Y B	Ħ,	
	F - Br Y, 8 Br F Br R = - Br	H. 19.		F B, 8 - D	E	F + G	almost un.	Þ	elmost un.	F + B		1	# # #	# I I I	ž A	# + ·	H H H H	η. Ο Ε Ι		F = slmost un.	,	F = - B, 8 = B	•	F - Y	Y = 8 Y - = 4	F = ŶB	E V B V B V B V B V B V B V B V B V B V	ŀ	Ω = 0, a = Σ	# = C, 8 = X	YB	u ■ 8, 8 ■ U	Mark D. Learn D. Asselvated as sales as M. C. C.
	BB	almost un. F = + Br	Q = s	ø	E] 1	elmost un.	Ē	į	F + B		1	H H		Ħ	almost un.		a,	almost un.	almost un.	# E	F = EF		Τ -	o	H	Þ. €	elmost un.	06	Þά	j ģ	# I	
	F = Br B, 6 = Br F = B V 8 = B V	R 7, TH	8 - Br &	F = + B, 5 = B	1	- + f	1		E E	H H H	+ G	超	ě	F = G B G,	E pp	# G # F	A P	F = Gn, s = - B	F - B Gn, 8 -	H G	E A	F=+B,s=B		7 Br, 8 - W		r.	H - V B, B - V	F - V B, 8	A .	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
דיייים או מייים או מייים ו	Anthracene brown (M. cr.) Anthracene acid brown B (M. cr.)	Altario brown G Bismarck brown G G	Black Dyes on Cotton	Diamine black B 0 or B 0	phenylenediamine)	Diazo brilliant black B (developed with	Columbia black B.	Pluto black G	Vidal black	Sulptur black 4 B extra Immedial Mack Va extra	Zembest black	Arithme black	developed with	Indenthrene	Diago bine	Drawing the R. R. B. Drawing of the prosecution	Disminogen blue B B	Diamine violet N	Benzo azurine G G G	Bearoblus B. X. 2 B. 3 B (diaming blue)	Sulphur blue L'exters	Immedial pure blue	Yellow Dyes on Cotton		Allzazh yellow A	Chrystanine B.	Certazole vellow	Chrysophenins	This of yellow	Primuline (developed with resorchio)	Banes creams Pallow A	Sulphin yellow B extra	14 - 17 th - 17 th

1 Abbrertaens B = blue, Bl = black, Br = brown, D = decolorised or colorises, F = flue, Gn = green, Gr = grey, M = morfanted, M, σr = chrome mordanted, &c.,
0 = grange, B = red, r = rose, s = solution, m. = mechanged, Y = violet, Y = yellow, + = more or dark, - = less or faint.

NAME OF COLOURING- MAITER	Conc H ₂ 804	10 per cent. H ₂ 804	Come	HNO ₅ (sp. gr 1 40) on F 1	10 per cent. NaOH	Bodg +
Green Dyes on Cotton						
Italian green	+	担	+ Gn	F = - Bl, 8 = B Br	- Gn X	
Pyrogen green B	A S	E .	Ħ	Ġ	F + Gn	[] [4
Sulphur green Gertra Diamine green B	2 E E	F = 4	5 A H H	작 + 원 •	E Ga	F = Gr, men v Gr D
Red Dyes on Cotton						
Turkey-red (alisarin with M. alum)	ا م	II.	F = 0 to - Y	0	E4 4	h cold, almost m.
Janos red B	G B	Ħ	i P	RHG	A I I I	I B.
Rhodamine 6 G	F = Y, with $aq = r$	FI I	F = Y 0	0 H	Σ= 1 Ε = 1	1
Phodemine S		ij	F = Y O	0 8	, 14 	H
Forteme (magenta)	F-TRB-T	+ BB	Y — # 18 — T	Þ	F = almost D	slowly D, 0
Safrantee		F = 18 B, B =	H = + B, 8 = B	pë p	elmost D	,
Induline scarles	F = + B. 5 = B	j m	Q = S = E	40	F = plmost un.	90
Benzo purpurin 4 B	F = + B, 6 = B	+ 13 Gr	H + B, s - D	H	F - elmost un.	iAi
Dismine scarlet B	F=VB,s=V	almost III.		14 &	0 1 Å	D T then D
This the red R	H H	almost un.	EV ST	(#1 +	# +	n o
Brilliant guranine B	E 23	# 1	. ح	> C	+	96
Bossnibrene B (dissotised and coupled	4 18 18 18 18 18 18 18 18 18 18 18 18 18	# # # # # # # # # # # # # # # # # # #	4 # + 1 # H	F B Br	F E F	#4 + #4
with p-nephthol)	6 - with 29 T		£ .	P	P P	t rimolo
Germine 9 B	F - V - B - B	almost m.	F - slmost un.	almost un.	P P	or from
p-Ntraulline red	F = R B, with an - R O, a = + B,	EB.	F = slmost m.	F - R	E E	Q
Brown Dyes on Cofton	O AT = De Day					
Janos brown	H.	Ė	田田	H G		Y Br almost D
Benso brown G B (terracotts F, alkali	20 20 21 21 21 21 21 21	almost m.	F = simost un.	### ###	F = simost un.	Slowly D
brown, brown for cotton B)		and the second	1 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	P	P - 1	C promis
TACTO OFFICE AND	F F			i	1	
Diamine Intown V	F = + BB, s = Br	Ę	F = almost un.	٠ ٩	þ	almost D
Diamine bronze	[] [2] [4]	ı g		H H H H	F = 15 (noc), 8 = 15 (noc)	(cond) In (port)
Diago hrown R extra	BLV	目	e4 i	B Br Gr	almost un.	, F
Thinking brown R.	- e		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	되는	4 kg	ا ت
Sarphur cachon B.	F - almost un.	F B	F - + Br 8 - Br B.		F I B	'
Sulphin brown 6	*+ BY, 8 = - BY		B = - BrY	F = Br Y, S = - Br		F = - Br Y
Lynden recent m	T = 77'8 = 74	11		- Dt, 8 -		D = UIL

, 李章

1 ARRENTATIONS B = blue, Bl = black, Br = brown, D = decolorised or colorabes, F = flue, Gr = greer, Gr = grey, M = morehanted, M. cr = chrome mordented, &c., O = orange, R = red, r = rose, s = solution, un. = unchanged, Y = riolet, X = yellow, + = more or dark, - = less or faint

directly on a platinum foil, give coloured vapours (e.g., naphthol yellow S, pieric acid, Victoria yellow)

- (2d) If on reduction the solution is not decolorised but becomes reddish brown and in the air regains its original colour more or less, alizarin S, alizarin blue S, and the like are indicated.
- (2e) Complete or almost complete failure of $Zn + NH_3$ or Zn + HCl to decolorise the solution shows thiazole yellow, mimosa, quinoline yellow S, primuline, thioflavine S, chloramine yellow, etc.
- II. If the colouring matter, in a little water and HCl, is precipitated and gives an evolution of SH₂ (detectable with lead acetate paper), and is redissolved in 10 per cent sodium sulphide solution, the presence of a sulphur dyestuff is certain
- III If the colouring matter is unsoluble in water, it is moistened and treated with a couple of drops of 5 per cent. NaOH solution
- A If it dissolves it is reduced with zine dust and ammonia and a paper streaked with it (1) the rapid reappearance of the original colour in the air shows occurrien, gallocyanine, galloin, galloflavin, alizarin blue, black, or green, (2) the non appearance of the colour in the air indicates alizarin derivatives, alizarin itself, nitrosonaphthol, nitrosoresorenol, Soudan brown, etc
- B The colouring matter does not dissolve in NaOH but is soluble in 70 per cent. alcohol (a) the solution shows fluorescence, which with 33 per cent. NaOH solution either disappears (Magdala red) or does not disappear (alcohol soluble eosin, cyanosine), (b) the solution is not fluorescent and is coloured reddish brown by 33 per cent. NaOH (alcohol soluble induline, alcohol-soluble nigrosine, alcohol-soluble aniline blue), (c) the solution remains fluorescent (indophenol)
- O The colouring-matter dissolves in neither NaOH nor 70 per cent. alcohol [indigo alizarin black, sulphur colours (soluble in sodium sulphide)]

Green (1905) has shown that the different groups of colouring matters may be characterised by their behaviour towards the compound of sodium hydrosulplute with formaldehyde.

RECOGNITION OF THE PRINCIPAL COLOURING-MATTERS ON DYED FIBRES. When the nature of a colouring matter is to be studied, a dyeing test should always be made first (see later) and the tests described below carried out in the cold on the dry, dyed fabric, a small piece (about 1 sq. cm.) being treated in a porcelain dish with 1 to 2 cc of the reagent and any change observed. In testing with intrice and, one or two drops of the latter are placed on the fabric and the colour of the drop and that of its edges noted. The hydrochloric acid solution of stannous chloride is prepared by dissolving 100 grms of the latter in 100 grms. of the concentrated acid and 50 grms. of water. Abbreviations of the names of the colours and of the changes produced are used, and when a compound colour is formed, it is indicated by the two fundamental colours composing it, thus combination of red (R) and yellow (Y) gives searlet (RY), green (Gn) and brown (Br) give obvo (Gr Br), etc. (see Note at foot of Table, pp. 708 et seq.)

To ascertain if an indigo dys on wool contains also logwood or sandalwood, a piece of the fabric is heated with dilute nitric acid (1-6), indigo alone gives a straw yellow, while in presence of either of the other colouring-matters, a more or less brownish colour is obtained. Or the shredded dyed textile is heated for an hour with fused phenol on the water-bath, the phenol being decanted off, the operation repeated with fresh phenol, and the material washed two or three times with strong alcohol and pressed. If the wool were dyed with pure indigo it will be quite white, but if there were threads dyed with other colours (e.g., anthracene blue, sandalwood, etc.) these are seen under the microscope to be still coloured.

According to E Knecht (1909) the indigo on a cotton fabric may be determined quantitatively as follows 4 grms. of the fabric, out into pieces, is dissolved at 40° in 25 c.c of 80 per cent sulphure acid; the volume is then made up to 120 c c with water, the indigotin of the soluble sulphate being thus precipitated. This is collected on a Gooch filter, dried at 110° to 115° and weighed. It may be reclissolved in a little sulphuric acid by heating on the water-bath for an hour, the indigotinsulphonic acid in the diluted solution being titrated with permanganate. The presence of basic or sulphur colours does not interfere with the estimation, since these either remain dissolved or are decomposed. If the fabric has a coating of manganese dioxide, it must first be dissolved in bisulphite

p Nutraniline red may be distinguished from other reds (Turkey-red, benzo purpurine, primuline, etc.) on cotton by heating the fabric at one point over a small flame. A clear spot is formed and part of the colour sublimes on to a piece of paper placed above the fabric. The spot does not resume its original colour either on cooling or on moistening (Knecht, 1905)

TEXTILE FIBRES

Before a description is given of the processes and plant used in dyeing textile fibres, the physico chemical properties of these may be outlined.

WOOL Only sheep and certain goats furnish true wool used in the great textile indus-

goats furnish true wool used in the great texthe industries. The wool fibre is readily distinguished from the hairs of other animals by its softness and fineness and by its waviness and curling, which can be seen with the naked eye. Also under the microscope a marked difference from all other hairs is easily discernible (Figs 472 and 473). The whole filament seems to be composed of closely superposed scales, which are more or less large according to the quality of the wool. It is the saw like or scriated structure of these scales which explains why wool readily forms a felt when rubbed, the filaments becoming more or less firmly attached one to the other.

The quality of a wool is closely dependent on the breed of sheep producing it and only partially on the climate, food, and age The yield of wool is greatest from the second to the sixth year The finer wools, furnished generally by the merino breed, are long, slender, soft, and very wavy, and form the so-called combing wool for the best woollens Shorter

wools cannot be combed but only carded (Silesian, Saxon), although nowadays nearly all could be combed with the unproved machinery available, and a large part of the carded

¹ The whole of the wool covering the sheep forms the fleece, which is kept entire even after shearing (this is done in May) owing to the scally structure of the filaments. Wool obtained by shearing twice a year is called bistose, while that from slaughtered sheep is termed skin wool and frequently contains dead hairs, which have little affinity for colouring matters and are often impure owing to the use of lime, arsenic, etc., as preservatives. If the sheep is washed in the tank before shearing, the wool is known as washed, the other being called in grease or unwashed.

and frequently contains dead hairs, which have little affinity for colouring matters and are often impure owing to the use of lime, arsenio, etc., as preservatives. If the sheep is washed in the tank before shearing, the wool is known as washed, the other being called in grease or unwashed. The fleece (weighing 2.5 to 3 kilos) contains different parts of different qualities, and these the sorters separate by cutting. In one and the same fleece the fluest wool is that of the shoulders, then comes that of the neck, stomach, flanks, and back, the poorest qualities being those of the head and legs. Certain African sheep (Morocco), and, to some extent, the Lincoln, Leicester, and Wellington breeds, give long, coarse, and only slightly curved fibres, which are used for special fabrics and for mattresses.

special fabrics and for mattreases

Merinos are indigenous to the plains of Estremadura and Andalusia (Spain), where they were jealously guarded for some centuries, exportation being prevented in the nineteenth century the Spaniards themselves introduced them into the Argentine, where three principal types were developed Rambouillet, Negrette, and Lancoln, and a similar result followed the

.

WOOL 805

wool is obtained from shoddy 1 The lengths of wool fibres vary from 4 cm to 30 cm and the diameter from 0 014 mm to 0 06 mm The fluer wools (merinos, Fig 472) have as many as 13 waves per centimetre, while the more ordinary ones have only 3 (Fig. 472 B. natural size)

The world's output of weel was about 1.300.000 tons in $1903.^{9}$ 1.450.000 in 1907, 1.530.000in 1913, and 1,400,000 in 1920, the consumption in 1920 being 875,000 tons

The great market for wool in Europe is at Antwerp, and the price is fixed by auction. account being taken of the yields of the various wools (Conditioning, see later) after washing, some of them losing 40 to 70 per cent. of their weight owing to the removal of dirt, grease, ete, the normal or natural moisture, after washing and drying, is taken as 18 25 per cent The price of raw wool varies somewhat from year to year and even in the same season from about 18 2d to 2s per kilo (pre war) Australian wool is worth more than that from the Argentine

Unwashed wool (Australian weighs about 160 kilos per bale), after sorting, is washed with soap and soda at 45° to 50° in vessels (Leviathans) provided with loose forks for mixing and, when rused, is dried in revolving drums by means of hot air The washed (or salted, such as Italian or Cape wool, weighing about 110 kilos per bale) wool is then carded and

concessions made to France and Sweden. The English introduced them, with great success, into Australia and Capo Colony The Electoral breed originated in mornos which were imported in 1700 into the Electorate of Hesse, and spread into Silesia, Saxony, Würtemberg, Hanover, Moravio, and Hungary, it now furnishes a large proportion of the raw material of German and Austrian wool factories.

In England the Chevrot breed has assumed considerable importance and yields a long, yellowish wool, not so fine as merino Crossbreeds, obtained by crossing Argentines with Cheviots, are also

largely bred in England

The Russian breeds are derived from pure and Saxon merinos The commonest varieties are the fitsugak, asdarsk, rescetsoveak, and romanovak (this is used for furs) the Burgundy and of the Berry is highly valued In France the wool of

Italian wools, which were once famous, are now of little importance, and only Apulia, the Tuscan marshes, and the Roman province furnish a small part of the wool consumed in Italy

Good wool is also obtained from certain breeds of goats, such as those of Cashiner, which flourish in the Himalayas, nearly 5000 metres above sea level. They furnish a very flue wool, mixed, however, with much white or grey hair, it is experted to France and Russia. The Thebetan goat, acclimatised also in France and in Bengal, likewise yields a valuable wool. The Augura goat of Asia Minor gives milk and a long wool (mohair) valued for its lustre, even after

dyoing

The vicina of the Peruvian, Chilian, and Mexican mountains gives a fine wool, used in certain cioths, which are now made partly from rabbit fur (the name vicuna or vigogne yarn is also applied to fabrics of wool and cotton which are quite distinct from vicuna wool) Alpaca is greyish, and is furnished by a kind of tall, long nocked sheep (lama) indigenous to Peru Camel hair, which is worked like wool, has coarse fibres, and in its natural colour is woven into certain very

strong textiles, used, for matance, for the seats and curtains of railway carriages

1 Shaddy is obtained by disintegrating woollen rags (previously sorted with respect to colour and separated from those mixed with cotton) by means of an opener or devil, formed of a drum furnished with a number of steel points and rotating rapidly fuside a second, fixed drum also provided with points, from this the rags issue in short, floorulent fibres, which are carded and then spun—This industry, started in England in 1846 and since then extended to other countries, provided with points, from this the rags issue in short, hocomon three, which are carded and then spun. This industry, started in England in 1845 and since then extended to other countries, allows of the utilisation of all woollen waste (fabrics and yarn). England alone imports from all parts of the world about 15,000 tons of woollen rags per annum. The coloured rags may often be partially decolorised by boiling them with 2 to 3 per cent, potassium dichromate and a little sulphuric acid. Admixed cotton (sewing and other) may be eliminated from the rags by so called carbonisation, which consists in immersing the rags in sulphuric acid. (4° to 5° Bé), contribuging and heating them in ovens, the temperature of which is raised to 120° to 140°. In the course of an hour the collulose of the cotton is transformed into brittle hydrocellulose and partly carbonized so that it can be called removed by subsequent rubbing or by weaking with variety carbonized, so that it can be easily removed by subsequent rubbing or by washing with water, this also carrying away the acid from the wool, which is not affected by such treatment. In some cases, hydrochloric acid vapour or aluminium chloride solution is used instead of sulphure The carbonised wool shows increased affinity for said colouring-matters

Also woollen fabrics which contain bits or fibres of cotton in such quantity that it is impracticable to plok them out by hand are carbonised with sulphuric acid or aluminium chloride

impracticable to pick them out by hand are carbonised with sulphure and or aluminium chloride before dyeing and are thoroughly washed after removal from the oven.

Decolorised shoddy mixed with new wool can be recognised under the microscope owing to its different colour, which often recalls the original tint.

* The greatest sheep breeding countries are as follows, the numbers of thousands of sheep in 1916 being given in brackets Spain (16,052), France (10,845), Great Britain (25,007), Italy (11,824), European and Asiatic Russia (77,000), Turkey (27,095), United States (48,483), Argen tine (81,485), Uruguay (11,482), British India (28,010), Union of South Africa (35,711), Australia (69,245), and New Zealand (25,000)

combed In some districts the washing is preceded by treatment with benzene to remove the grease (see pp. 486, 488)

The great European market for combed wool, not yet spun but would into balls of 4 to 5 kilos (tops), is in France, at Roubaix (and also at Tourcoing and Lille), where prices are fixed at auction, although there is a considerable trade in combed wool at Bradford and to a less extent at Leipzig

These wools are classified, according to their fineness, as A, B, F, the first being the finest and the last the commoner sorts, very fine wools are marked AA or AAA

Before being spun the washed wool is subjected to the operation of blending, i.e., the various qualities of wool (fine, ordinary, long, short, waste, shoddy, etc.) being mixed so as to obtain yarn of the desired count and fabric corresponding with the price and quality

Fig 474

To facilitate spinning and avoid felting, the wool is slightly oiled (with olive oil, commercial oleine, soap emulsion, etc., but not with non saponifiable substances, such as nuneral oils or resus, which would be difficult to remove from the fabric by washing, and would lead to irregular dyeing) In passing through the combs or cards, the various fibres are perfectly mixed and rendered parallel. The coarse strands (tops) are gradually con verted into fluor but not twisted strands, which are wound on bobbins (prepared) and are then, by means of ingenious, self acting machines of enormous capacity, spun to the desired fineness to give, when twisted, yarn of the required count 1 During spinning, the air of the room must be kept moistened with water vapour (see Vol I, p 337) to prevent the parallel fibres from diverging and giving a non uniform yarn Satisfactory weaving also requires a certain degree of moisture.

Chemical Properties of Wool Pure wool consists of O, H, O, N,

and S, the last varying somewhat in amount and being partly removed by repeated washing in boiling water. It is hence improbable that wool consists of a single chemical compound (it was at one time thought to be *keratin*, containing 4 to 5 per cent. S, but there appear to be other substances also). In 1888 Richard showed that the compounds forming wool contain NH₂ and NH groups. In a solution of alkali or a selt, wool fixes chemically

 1 The Count of Yarn, either cotton or wool, is given by the number of kilometres weighing 1 kilo (international count) or half a kilo (French count). In Great Britain, the count represents the number of hanks of 840 yards (1 yard =0.914 metre) per 1 lb (453 grms), hence English count No 1 is equal to French count No 0.847 and to international count No 1.694. Division of the international count by 1.66 gives the English count, multiplication of the French count by 2 gives the international count, while division of the English count by 1.18 gives the French count.

A thread spun from two yarns of count 60 has the count 30, its weight per unit length being doubled Time wools are spun so as to give a count of 60 to 80 or even of 120, while the commoner qualities give counts of 30 or even less

qualities give counts of 30 or even less

For silk, the International Congress at Paris in 1900 accepted the Italian count, which expresses the weight in denari (1 denaro = 0.05 grm) of a length of 450 metres, the finer yearns thus having the lower counts

Silk is often spun to a count of 12 to 20 denari, and artificial silk to 60 to 120 denari.

part of the alkali or salt Concentrated alkali dissolves wool, forming amino acids, the most important being langue and, which was isolated by Knecht and Appleyard and exhibits the same behaviour towards colouring matters as does wool

(Magnified 300 times)

It is probable, therefore, that wool contains at least one carboxyl group The affinity of wool for acid colouring matters (often sulphonic acids) is explained by the presence of amino groups and that for basic dyes by the presence of the carboxyl group Certain highly basic colouring matters (such as methyl green) do not, however, colour wool, the acid character of which is too weak, while they colour silk, which is more markedly acid. The fixation of metallic oxides (of Cr., Fe, Cu, Al, etc) in the mordanting of wool is due to the formation of salts with the carboxyl group

The salt-forming property of wool can be easily demonstrated by immersing it in a hot colourless solution of resentline (base), which colours it red just as though it were dyed with red resaniline hydrochloride. Knecht, Witt, and Nilsen have shown that the action of chlorine on wool is to intensify its acid character, so that it fixes basic dyes the more readily, at the same time it loses partially its capacity to felt.

Bolley found that wool decomposes potassium bitartrate in boiling solution, generating the neutral tertrate and fixing tartaric acid. In 1898 Kertesz utilised indus trially, for the simultaneous production of two colours on wool, the property this shows of fixing and colouring matters more intensely at points where it has been carefully treated with caustic soda, the latter neutralising the carboxyl group and thus rendering the basic character more pronounced

Wool loses much of its affinity for soid colours when treated with phosphotungstic acid, but recovers it when subjected to the action

of ammonium bioarbonate (Serida, 1909)

Of practical importance is the behaviour of wool (or cotton) waste containing ordinary oils or fats (not wool fat), as it readily ignites owing to energetic oxidation and causes fires (see Pyrophoric Substances, Vol. I, p 189)

An aqueous extract of pure wool gives a precipitate with either tannin or basic lead acctate, while true glue or gelatine yields no precapitate with the latter reagent. Pure wool contains 14 per cent. of nitrogen.

COTTON is the white down surrounding the black cotton seed and is contained in capsules (each weighing about 30 grms, 10 grms. being cotton) which, to the number of 300 to 400, form the fruit of Gossypunn-a shrub 2 to 4 metres in height (see Fig 474) When the fruit is ripe (in America in August), the capsule opens and throws out a white tuft of cotton, which is fixed to the seeds After harvesting, the cotton is fixed from seeds by means of cotton gins and compressed hydraulically into bales holding 500 lbs. (227 kilos) Cotton is produced most abundantly in North America and, to a less extent, in South America (Brazil, Peru, Colombia, etc.), and the

Antilles (Haiti, Cuba, etc.) Its cultivation is also of importance in (Magnified 200 times. the East Indies, Syria, Macedonia, etc Egyptian cotton (make) is

Fra 476

valued on account of its lustre and length of fibre. Cotton is also grown in Australia. Attempts have recently been made to cultivate it in the Italian colony of Eritres, but without great success.

The best qualities have fibres 30 to 40 mm in length and the lower qualities (Indian) 10 to 14 mm. The fibres are 0 015 to 0 020 mm in thickness and under the microscope have the appearance of flattened ribbons with a twist here and there (Fig 475, the upper part of which shows the transverse sections) When treated with ammoniacal copper exide solution, cotton swells very considerably, forming superposed capsules separated by con-

By cold concentrated caustic soda solution (30° to 35° Be) the flat strictions (Fig. 476) fibre is converted into a cylindrical one almost circular in section (Fig. 475 l., sec Mcroeri sation) with a thin central channel If immersion in the soda is prolonged for two or three minutes, during which the skein or fabric is kept stretched, and the soda is subsequently washed away while the tension is maintained, the skein will not contract and the fibres present a lustrous appearance (mercerosed cotton) and are stronger and heavier than in their original state (soda cellulose and then hydrocellulose are formed) 1

In 1844 J Morcer, chemist in a ¹ History and Properties of Mercerised Cotton 1 History and Properties of Mercerised Cotton In 1844 J Mercer, chomist in a Lancashire calico-printing works, having filtered a concentrated caustic soda solution through a cotton filter, noticed that the cloth had contracted somewhat and had become thicker and transparent. Before filtration the liquid had the sp gr 1 300, but after filtration only 1 200 On studying the phenomenon more closely, Mercer found he could reproduce it at will with yarn immersed in caustic soda solution of 20° to 30° Bé, while he established with certainty that, under such treatment, the cotton fibre shortens by 20 to 25 per cent, thickens and becomes stronger (by about 50 per cent) and of increased affinity for colouring matters. He showed, too, that the phenomenon is more rapid and more intense at low temperatures, while at the beiling point no contraction occurs. Similar changes are produced by treating cutton with sulphuric acid of 50° to 55° Bé or with zinc chloride solution.

In October, 1850, Mercer was granted an English patent (13,200) for mercasing, by this

In October, 1850, Mercer was granted an English patent (13,206) for mercasing, by this treatment, the strength and compactness of cotton and its affinity for dyes

In 1884 P and C Depoully patented a process for the partial mercerisation of fabrics by which

In 1884 P and C Depoulty patented a process for the partial morcorsation of moreon by which parts of the fabric were brought into contact with an alkali solution, these parts contracted and caused the other parts to curl, beautiful crape effects being thus obtained. In 1896 the textile world was astounded to see on the market samples of line cotton of the most brilliant colours and the lustre and feel of silk. This product was prepared by the great dyeing firm Thomas and Prevost of Crefeld, according to their German Patent, No 85,501 of March 24, 1895, which reads "improvement in the mercerisation of vegetable fibres with all almost a good solutions by subjecting the stability the stability of the faction. with alkaline or and solutions, by subjecting the tightly stretched yarn or fabric to the aution of alkali (caustic soda of 15° to 32° Bé), or of acid (sulphuric acid of 40 5° to 55 5° Bé), the stretching being maintained until washing is complete—when it is relieved spontaneously— and the shortening of the yarn or fabric thus prevented." The specification does not refer to the lustre assumed by the yarn, but this is mentioned in a later addition

These Thomas and Prevost patents were, however, annulled a couple of years later in all countries, since various competitors found that an identical process had been patented (No. 4452) in England in 1890 by H. A. Lowe but had not been renewed within a year because Lowe could not find an English manufacturer disposed to make practical use of it. Lorgo quantities of Large quantities of

mercensed cotton are now freely produced in all countries

The shortening of the fibre and its increased strength produced by concentrated alkali solution
may be understood if the changes occurring in the fibre itself are followed under the interescope
While the fibre of ordinary cotton is seen to be a flattened empty tube with an excasional twist,
that treated with caustic soda without stretching is shortened and swollen and forms an oval,
almost round tube with thickened walls, but still with an internal channel, couldn't it shows
creases and a rough surface. By mercerisation under tension, however, the fibre becomes like a straight, round tube, smooth and without visible creases outside and almost entirely filled

like a straight, round tube, smooth and without visible creases outside and almost entirely lilled up inside. These changes explain the silky lustre and also the increased strongth, the fibre becoming more compact. Buntrook's experiments showed that mercerisation occurs very repidly with caustic soda of 30° Bé, the shortcaing of the fibre after one minute is 23 per cent, and after 33 minutes 29 per cent, which is the maximum attainable. We Vieweg (1908) determines the degree of mercerisation by a method based on the fact that, in 13 to 24 per cent NaOH solution, cotton fixes an amount of NaOH corresponding with (C₆H₁₀C₅),NaOH, while in a 40 per cent, solution it fixes double this amount, (C₆H₁₀C₅),2NaOH. This soda-cellulose loses its soda when washed, and the recovered cellulose has the property of taking up more or less caustic soda in a 2 per cent. NaOH solution, non mercerised action fixing 1 per cent., and mercerised 1 to 3 per cent. of NaOH according to the degree of previous mercerisation. In practice this degree of mercerisation is ascertained as follows: 3 grms, of the dry mercerised cotton is shaken for an hour with 200 c.c of exactly 2 per cent. NaOH solution in a separating funnal, 50 c.c of the solution being then titrated with semi-normal acid and the amount of NaOH absorbed by the cotton calculated. A qualitative test for detecting mercerised cotton mixed with ordinary cotton and oxycellulose was given on p. 002. To ascertain if a fabric is mercerised H. David (1907) places a drop of concentrated soda on the fabric, which is then washed and dyed with a substantive dye, a more intense colouring on the place touched by the

is mercerised H. David (1807) places a drop of concentrated sods on the fabric, which is then washed and dyed with a substantive dye, a more intense colouring on the place touched by the sods indicates that the original fabric was not mercerised.

To distinguish between mercerised and ordinary cotton, Knecht proposed the following test, which, however, sometimes gives uncertain results: A mixture of the two cottons is dyed in 5 cc of hot benzo purpurine 4B solution (0 1 gm in 100 cc of water), about 2 cc of concentrated hydrochloric and being added to the hot bath, non mercerised cotton then becomes bluish black, whilst mercerised remains red. If oxycellulose (formed by the action of calcium hypochloric) is present, the cotton is dyed in Congo red and add then added ordinary cotton. hypochlorate) is present, the cotton is dyed in Congo red and add then added ordinary cotton and oxycellulose turn bluish black, whilst mercerised cotton remains red, after prolonged washing, the pure cotton than becomes red, the oxycellulose remaining black and the mercerised

cotton red.

Lange (1903) soaks a piece of the fabric in saturated zinc chloride solution and then drops

The chemical characters of cotton are those of cellulose described on p. 599, purified. cotton being pure cellulose. For its behaviour towards different dyes, ses p 772, and also inter

The world's production of cotton was about 3,500,000 tons in 1904, 5,000,000 in 1908-9, and 6,228,600 (27,703,000 bales) in 1913-14 The world's consumption was 17,500,000 bales in 1919-20, including 3,800,000 bales in the continent of Europe, 3,200,000 in Great Britain, and 6,500,000 in the United States,1

The conversion of cotton from flock to your is effected by carding or combing in a similar manner to shoddy (see above) Very fine counts (150) are spun in some countries, but in Italy, where at one time 30 was the finest, 60 and 90 are the usual ones, although 130 is sometimes obtained.

The immense importance of the cotton industry is shown by the following Table -

Country	Number of Milis	Thousands of Spindles		Thousands of Looms		Thousands of Work- people	Consumption in thousands of bakes of 200 to 225 kilos
	1005	1005	1014	1005	1020	1006	1905
England United States, North ,, ,, South Russia Poland Germany France Austria Hungary Switzerland Italy Spain Portugal Syria Norway Denmark Holland Belgium Roumania Turkey Greece Asia Minor India China Japan Brazil Canada Mexico	2207 573 650 227 56 670 420 130 3 68 760 257 15 35 0 3 23 43 — 5 — 4 101 18 04 142 22 114	50,905 14,810 8051 8555 1260 8832 6150 3280 104 1711 2435 2615 160 372 88 60 370 1222 40 80 970 60 5110 620 1332 450 774 628	56,000 31,800 9100 11,400 7400 } 4900 4600 7400 1300 3000	704 341 174 155 12 212 206 110 17 110 68 20 24 21 45 2 23 18 20	800 650 — 210 — 190 180 170 — 150 — — — — — — — — — — — — —	550 197 120 350 35 350 90 100 — 19 139 — — 17 15 — — 185 — 08 20 10 26	3640 2168 2203 1177 325 1761 840 650
Total	6715	119,127		2120			17,511

¹ The total quantity of cottonseed produced annually throughout the world (11,000,000 tons) should yield almost 2,000,000 tons of oil, but in the United States more than one-half of the oil and cake are wasted

on to different parts of it 10 to 12 drops of a solution containing 20 grms. of KI and 1 grm. of I in 100 0.0 of water The fabric is manipulated and pressed for a minute and then gently squeezed between the fingers under a gentle water jet until the brownish red colour at first seen just disappears under this treatment mercerised cotton remains deep blue, whereas non mercerised cotton becomes white Similar results are obtained by Hübner (1908), who immerses the

In one of the cotton mills of the United States 134 workpeople are sufficient to ever let 2000 Northrop looms, a clever workman attending as many as 20 looms, while with the

less expert the number never falls below 12, these looms make 165 strokes per minute with good warp and weft.

KAPOK 18 a cotton like fibre from the fruit or capsules of the tree, Errodendrum anfractuosum, growing particularly in the East Indies (Java), and is separated from the only seeds (see p 499), just as with cotton. As its fibre is not very long, it is largely used for stuffing mattresses, cushions, etc. The fibre is pale yellowish grey and lustrous, is difficult to wet and readily floats, being used also to make life-belts. From 8000 to 10,000 tons of kapok fibre is exported annually from Java, mainly to Holland

FLAX (Linum usitalissimum) 18 & herbaceous annual, growing usually in temperate regions, and reaching a height of 60 to 80 cm (Fig 477) It bears clusters of blue flowers which give cap sules (Fig 478, 2) containing flattened lentioular seeds (Fig. 478, 1) It was oulti vated first in Egypt, then in Greece, and later in Italy and various other parts of Europe (Belgium, Holland, Russia, etc), in Italy the cultivation has diminished very considerably, although it is still followed in some parts and is carried ou

in the south of Sicily for obtaining the seeds. There are two ordinary varieties which as grown for both fibre and seed autumn or winter flax, which has a course fibre and is sow m October and harvested at the end of spring, the ground being left free for another crop

and that sown in March, which is pulled in the summer when th seeds begin to brown but are not quite ripe. Plax plants are pulle by hand and arranged in sheaves to dry and to mature the seed After removal of the latter by threshing, the plants are made int large bundles, which are left for 15 to 20 days in stagnant water where the action of micro organisms (Amylobacter, butyrio buoteric results in the dissolution of those parts of the tissues which unit the long fibres to the cortex and to the pith. The hundles are the

moistened and squeezed cotton for a few seconds in a solution of 2 grms of iodine in 100 c c of saturated potassium iodide solution.

When cotton is mercerised with tension its strength moreases b

35 per cent, and when more erised without tonsion by as much a 08 per cent. The elasticity is greater in cotton increased without tension (27 per cent.), while with cotton increased under tension is unchanged (20 per cent.) The lustre of increased cotton is neglected based on the cotton is neglected. The lustre of mercerised cotton is no

Fro 479
altered by washing or dyeing
(Magnified 200 times)
In order to obtain satisfactory results and a good lustre be mercerising, it is best to use long fibred cotton, the shorter the filly the greater must be the tension. It is also necessary to boil the cotton thoroughly and was it could be before playing at much and hather the source that he could be the source that the source that the could be the source that the it completely before placing it in the caustic soda bath, as otherwise, besides obtaining lo-lustre, there is great danger of irregular dyeing

The dyeing is carried out in the usual way with basic dyes, being preceded by mordanting or, better, with substantive dyes in baths containing a little Turkey rod oil or soap, the tempory

or, better, with substantive dyes in datas containing a little Turkey red oil or soap, the tempore ture being kept low at the start to avoid non uniformity. Old caustic soda baths, which become largely converted into sodium carbonate and so diminish in activity, can be used for soap making. To impart a silky feel to mercerised cotton, the latter is well washed, immersed for a feminutes in a calcium acetate bath at 0 5 Bé, pressed, introduced into a bath of Marsellles soa (1 grm per litre), again pressed, placed in an acetile or tartaric acid bath (10 grms. per litre and finally pressed and dried without washing

F L A X 811

opened and dried in the field. Instead of being relied in this way, flax is in some countries heated in large autoclaves for half an hour at 125° with water from a preceding operation and then for an hour with steam at expressure of 5 atmos. The dried flax is freed from the

triable cortex by brusing between sticks, the operation being completed by blows from scutching knives (the waste forms the tow). The flax is then combed and placed on the market in large, twisted tresses of 200 to 300 grms, the price before the war being 144s per quintal or 80s to 90s, for short filtre. In Italy, a hectare of winter flax yields at out

300 kilos of fibro and 900 kilos of seed, March flax giving 200 and 700 kilos respectively, in Iroland, Belgium, and Germany double as much fibro is obtained.

The number of spindles for spinning flax was, in 1912 100,000 (flax and henry) in Italy, 1,500,000 in the British Isles (three fourths in Ireland), and 700,000 in France. The cultivation of flax is falling in all countries except Russia. Thus, France had at one time 120,000 hectares under flax but now has only 20,000 (in spite of Government awards of £100,000 annually to encourage its growing), about 800,000 quintals being imported (four fifths from Russia) to supply its 700,000 spindles, 20,000 hand looms, and 22,000 power looms.

In 1913 England produced 12,000 tons of flax and imported 90,000 tons (80,000 from

Fro 482 (Magnified 200 times)

Russia) In 1014 Iroland had 22,860 heatares under flax and in 1918 almost 35,500 heatares, whilst the area in Yorkshire increased from 516 heatares in 1914 to 7545 in 1918

The flax fibre has a diameter of 0.02 mm. and is readily distinguishable under the microscope from other vegetable fibres (Fig. 479 1, spiral striction, 2, extremity of the fibre and polygonal section, 3, bruised places) The fibre is spun into yarn in the same way as with cotton, but special machines are used for the recombing and repreparing of coarse fibres, which are drawn out in the moist state to a finer thread, and, at a certain

stage, twisted. The tow from these operations is worked up by carding (see Shoddy) Flax can be spun by hand to a count of 300, but by machinery only to 200, certain quali ties of flax can be hand-spun, for very fine work, to a count of 1400, such yarn costing (pre-

war) as much as £80 per kilo

HEMP (Cannabis sativa) belongs to the order Cannabinese and bears male and female flowers on different plants (dicectous) When growing wild it branches (Fig. 480), but when cultivated for industrial purposes it grows to a height of 2 metres or more without branching and has a finer and closer tuft in the case of the female plants Of the different varieties of hemp (Fig 481) (Manila, New Zcaland, Bombay, and ordinary), the most important is the ordinary It is sown very close in heavy, deeply worked soil, and is gathered in August, the plants being dried in bundles on the ground The treatment is aimilar to that of flax, but with a more protracted macaration. The residue from the breaking is used to some extent in paper making, the hemp, more or less combed, is twisted into tresses like flax and made up into bales of 150 kilos. Hemp fibres have a diameter of 0 04-0 05 mm and are easily distinguished microscopically from other fibres (Fig. 482 1, displaced fibres, 2, a-d, form of the tip of the fibre, 3, section of a bundle of fibres, 4, struction the crossed transverse lines are not always seen, the parallel longitudinal structions being more common) The long stems are cut into three lengths of about 70 cm and are combed first by hand and then by a machine with long, coarse points, the waste forming the first and second tow, which can be subsequently carded. A third combing is carried out with finer and closer teeth, the coarse and then the finer ribbon being passed through

machines similar to but coarser than those used for cotton and wool (preparing), and finally twisted for coarse twine yarn, for canvas yarn (count of 7 to 10), etc. Two twines twisted together give a string, several strings com-

> bined and twisted form a rope, and soveral ropes a cable. As well as for string, rope, etc., hemp is largely used. for making coarse, strong cloth for bags, waggon covers, sails, etc In order to render hemp fabrics more compact and durable, they are sometimes mercensed.

> JUTE (Corchorus capsularis of the order Tiliacem) has been grown on an enormous scale in India and Bengal from time immemorial and is now replacing indigo Even in 1851 India exported 282,350 quintals, and in 1858 the exports of jute sacks were valued at almost £240,000 These figures are now nearly doubled, owing to the development of the large works in Calcutta. In Europe its cultivation was commenced subsequently to 1830 It is grown also in South America and in the United States

> Jute requires a moist, hot climate and soil. It is sown in spring, and the plants, 15 to 20 cm apart, mature

in four months and attain a height of 3 to 4 metres. The shape of the leaves, stem, seeds, etc, is shown in Fig 483 It is treated in a similar manner to hemp, and the bales, weighing 180 kilos, are tightly pressed for transport. The principal European centre of the jute trade and industry is at Dundee The jute fibre is brownish yellow, and is blesched in a faintly alkaline chloride of lime bath (5° Bé.) at 25° to 30°, then rinsed, immersed in a 0 5 per cent. sulphure acid bath for 15 minutes, and finally thoroughly washed,

(Magnifled 200 times)

SILK 818

Raw jute fibres are easily distinguished from other fibres under the inicroscope (see Fig 484 1, irregular lumen of the fibre dotted at the top, 2, fibre with broken lumen, 3, tip of fibres, 4 and 5, sections of fibre with thin or thick walls) and show more or less lustre according to their flueness.

Jute competes directly with homp since it serves for makin; the same articles (sacks, packing cloth, carpets, tents, furniture coverings, etc.), but when mide of jute these do not withstand washing or continuous jubbing, although they resist the action of acid or alkaline solutions rather better than cotton.

SILK The Chinese seem to have known the *silkworm* as early as 2000 years B.C. Although they understood the preparation of silk materials, they did not at once trade with other races, but maintained great secreey on the rearing of silkworms and strictly prohibited the exportation of the eggs

According to tradition it was only in 150 n c. that silkworms arrived in Japan, where they were imported secretly by the daughter of a Chinese emperor, and whence they spread later throughout the rest of Asia. They were apparently imported into Italy in the sixth century by three monks who hid them in their stayes, although the manufacture of imported silk was begun in Italy three centuries earlier. From that time up to the present Italy has maintained the first place among the countries of Europe for the rearing of silk-worms and the production of silk.¹

¹ Silk is produced by one of the Lepidoptera, Bombys more, a larva which after birth when it weighs about 0.5 mgrm), feeds on mulberry leaves (Morus alba) and attains the height of its development (with a weight of 3 to 5 grms) in five weeks, passing through four moults or sleeps during which it easts its skin. It finally passes to brushwood arranged above, where it

Fig. 485 —a, double thread (bava) with scales, d, b, section of double thread; c, isolated, smooth bava, after cleansing (Magnified 120–180 times)

Fra 486

constructs a cocon with the silky exudation secreted by two long glands filled with fibron and leading along the body beside the intestinal canal to two very fine apertures in the mouth. The two contiguous and parallel threads thus formed are immediately stuck together by a liquid (serioln) exuded by two other channels near the first pair, the result being an apparently single thread, which is either white or some shade of yellow (the double thread is shown in Fig 485). In three days the silkworm is transformed into a chrysalis from which the butterfly originates (in 10 to 14 days) if the temperature is sufficiently high (16° to 30). The butterfly emits from its mouth an alkaline liquid with which it moistens one end of the coupon and then perforates it and issues to proceed to the coupling necessary for the preservation of the species.

it and issues to proceed to the coupling necessary for the preservation of the species.

Immediately afterwards the female deposits numerous fertile eggs (graine), and both it and also the male die, their short life cyclo being at an end (Fig 486). One kilo of coccons gives 3 cunces of eggs. Part of the eggs (or of the butterflies) are selected under the microscope and are kept in a cool place until the following spring, when they are hatched by incubating for a couple of weeks in an oven, the young worms being distributed to the rearing houses.

By means of extreme clearliness, disinfection of the brushwood and microscopic tests of the eggs, the numerous diseases which cause haven among sillworms at all stages (colored and flathers.

By means of extreme cleantiness, disinfection of the brushwood and microscopic tests of the eggs, the numerous diseases which cause have among silkworms at all stages (calcino, flacherie, etc.) have been partially overcome. The crossing of different varieties has also proved beneficial, and in Lombardy the use of the Chinese cross is fairly general. The silkworms from an ounce of eggs consume altogether about 12 quintals of leaves. It has been proposed to disinfect the leaves with lysoform, tachyol (ozone. Molmari, 1908), etc., but without good results.

In the twelfth century screenlture developed considerably in Sicily, and during the Middle Ages it flourished in Tuscany, Emilia, Venetia and Lombardy In the thirteenth

In order that a maximum yield of good silk may be obtained, the butterfly is not allowed In order that a maximum yield or good silk may be obtained, the butterly is not allowed to issue from the cocoon, since the silk cannot subsequently be readily unwound from perforated cocoons, and much waste is produced, indeed, when the cocoons are placed in water (see later), the perforated ones become filled with water and sink, thus breaking the thread during the unwinding. The formation of the butterfly in the cocoon is prevented by stifling (s.e., killing) the chrysalis by heating in an oven, where the cocoon loses two thirds of its weight. Such procedure also allows of the sale of the cocoons at the season of the year when the prices are most remunerative. Ten or 11 kilos of fresh cocoons yield 4 kilos of dry cocoons, and these give l kilo of silk

An ounce of eggs yields 50 to 00 kilos of cocoons, which before the war were sold, freed from waste, at prices varying in different years from 2s to 3s (id per kilo, as waste are considered doubled cocoons (douplons), stanted or mouldy cocoons, those attacked by calcino, and also incomplete, light, soft cocoons, and the flake silk or cover which surrounds the cocoons and

attaches them to the brushwood.

The suffocated cocoons have an average weight which varies, more particularly with the variety, from 0 5 to 0 8 grm The ratio between the weight of dead chrysalis and silk lies between 14 1 and 1 6 1 and the length of silk per gram is 900 to 1500 metres, the thread (bava) varies in thickness from 0 018 to 0 030 mm

The cocoons are first placed, a few at a time, in basins of almost boiling water and are rubbed with a hand brush of twigs, to which the tangled filaments covering the cocoons become attached with a hand brush of twigs, to which the tangled filaments covering the cocoons become attached Among those filaments is that by which the cocoon can be completely unwound. The other filaments form the floss, which is worked up with the other waste (see above). Five (or more) of the threads are attached to a reel, which revolves rapidly and completely unwinds the cocoons. The latter float in hot water, which softens and dissolves part of the gum uniting the threads, while the remainder of the gum dries again on the reeled silk, joining the five threads to a single filament constituting raw silk. As one cocoon is finished, it is replaced immediately by another so as to form a homogeneous thread. The chrysalides remaining form about 70 per cent. of the weight of the fresh cocoons and contain 22 to 26 per cent. of oil (fetid), they are generally defatted and sold as nitrogenous fertiliser (for homp, etc.) at 18s or 14s per quintal. Cocoons which do not unwind regularly also pass into the waste not unwind regularly also pass into the waste

Good cocoons give as inioh as 800 metres of good silk and the count of the angle thread varies from 15 to 4 denan according to the breed of silkworm, the tenacity lies between 5 and 12 grms and the elasticity between 80 and 150 mm

White or greenish yellow cocoons give white or almost white (Chinese) silk and the yellow ones golden yellow silk. The following types of silk are distinguished commercially European, Japanese, Chinese, Canton, Bengal, tussah (Chinese wild silk), and Indian tussah, and of each of these there are various qualities

In the raw silk trade the variations of the count are indicated, thus, first-quality silk from 8 to 10 denari is marked $\frac{1}{10}$, first-grade tussah of 40 to 45 denari, $\frac{4}{10}$, otc.) The price of tussah silk (16s to 24s per kilo) is less than half that of fine European silk, but the prices vary from

With Asiatic silk it is always stated whether spun in Europe or on the spot, the latter gives much more waste in the subsequent operations

Raw silk threads are seldom made into textiles (then called raw silk) and real silk thread is obtained by joining two or more threads of raw silk and twisting them to form the tram silk

or organeine (warp) used in weaving

sobtained by joining two or more threads of raw silk and twisting them to form the tram silk or organame (warp) used in weaving

To this end the raw silk is first wound on bobbins, from which it passes through felted forks—
to free it from down—to other bobbins. It is then ready for twisting, which is carried out in different ways for tram silk and for warp (organsne). For the latter the best silks are used, these being at once twisted from right to left, the product being known under different names according as the number of the twists per metre are 244 to 440, 440 to 488, or 488 to 610. The twisted threads are then joined in twos, threes, or fours, the combined threads being twisted from left to right (or nee versa)—380 to 450 twists per metre for tailota, 320 to 300 for satin, 550 to 500 for velvet, and 2200 to 3000 for Chinese orape. Before dyeing or bleaching, the raw organsine is ungummed or strapped for about 30 minutes in boiling neutral scap solution (25 to 30 per cent. of scap calculated on the silk). In order to remove the gum and to obtain a maximum lustre, a second boiling scap bath is used, and finally a third. The boiled silk weighs about 25 per cent less than the original organsine. When the organsine is to be dyed a pale or delicate colour, it is subjected to special treatment with sulphur or hydrogen peroxide (see Vol. I., pp 267, 278), tussab organsine (brownish) is only bleached with hydrogen peroxide (see Vol. I., pp 267, 278), tussab organsine (brownish) is only bleached with hydrogen peroxide (see Vol. I., pp 267, 278), tussab organsine (brownish) is only bleached with hydrogen peroxide (see Vol. I., pp 267, 278), tussab organsine silk the raw threads are not immediately twisted, but are first joined in fives or tens (or more) and then twisted, but only with 80 to 125 twists per metre. The eleansing with scap is carried out at 35° and the colouring matter is readily destroyed by immersion for 15 minutes in an aqua regia bath (25° to 3° Bé) at 20° to 25°, and thorough washing with waten T

century it was started in France, being introduced by Italian immigrants The Arabs introduced it into Spain in the year 740

In 1443 Florence contained 84 large silk factories and in 1580 Milan began to acquire the ascendancy, but fell back later, to advance again in the middle of the nineteenth cen-In 1804 Como had only 920 looms, which increased to 1800 m 1858, while Lyons possessed 10,000 looms as only as 1685, 40,000 in 1834, and 65,000 in 1852 (present con ditions are indicated later)

Raw silk consists of 60 to 70 per cent of Fibroin (the fundamental constituent of pure silk) and 25 to 35 per cent of Sericin, which is the gum surrounding the threads and holding them together, and can be easily eliminated with hot water and soap or, partially, with hot water alone

Various formulæ have been attributed to fibrom C₁₅H₂₀O₆N₅ (Schützenberger), C₇₁H₁₀₇O₂₅N₂₄ (Bourgeois, 1875) From the chemico-tintorial point of view, silk has the character of an amino-acid (or of the corresponding internal anhydride), but its acid nature is more marked than that of wool. The decomposition of fibroin by means of hydrochloric acid gives glycocoll, aminopropionic acid, tyrosine, l-leucine, and other amino-acids (E Fischer)

The formula $C_{18}H_{15}O_8N_5$ is ascribed to Sericin, which closely resembles fibrom, but gives large proportions of diamino-acids. It is thought by some that the alkworm contains only fibroin, and that at the moment when the thread is produced this is transformed superficially into seriou under the influence of air and moisture. The yellow colour of certain raw silk is due to a natural colouring-matter, Carotin (Dubois' hydrocarbon)

Under the microscope raw silk has the appearance of slightly flattened, cylindrical, transparent threads, not very smooth on the surface, and composed of two bave joined by the serion (which can be distinguished from the inner part or fibroin) and thinly covered with an adhesive soluble in hot water and different from sericin, which dissolves only in hot soap solution

In many cases the Dyeing of silk, especially with mordant dyestuffs, is similar to that of wool. Under all circumstances, however, the silk should be thoroughly cleaned before dyeing, and as in spinning and weaving the silk is treated with dressing (soap emulsion, vascline oil emulsion, soluble starch, etc.) to facilitate the operations and sometimes also to morease the weight, both yarns and fabrics (even if white) are subjected to rapid cleansing with hot scap solution (80° to 85°) containing a little sodum carbonate, and are then well rinsed in tepid water 1 If the wares are to remain white, they are sulphured (see Note) or treated with hydrogen peroxide solution, the characteristic rustic (scroop or crackle) of silk being imported by immersion in a 1 to 2 per cent. sulphuric or acctic acid bath, contrifu gation and drying without rinsing

Dyoing is in general carried out in soap baths, using one-third or one fourth of the soap solution remaining after the boiling of the raw silk, acidifying it with sulphuric soid

crop of account and often goes under the name of floss (sold before the war at 4s to 6s per kile , orop or coccous and otten goes under the name of noss (sold before the war at as to the per kilo) real floss cost the to 7s pot kilo). It is worked very similarly to cotton and to woollon rags by means of special earling and combing machines, giving first a kind of wadding and then ribbons and threads with parallel fibros. These can be converted into yarn called chappe, which is consumed in large quantities as it costs less than one half as much as pure silk and for some fabrics (volvets) is a good substitute for ordinary silk. The waste from the carding and combing of chappe is also spun, giving bourstles. In Italy a large company with seven works enjoys a kind of monopoly in this trade, they work up foreign waste and part of the native waste, the Italian Government imposing a small export duty which acts detrimentally against the spinner and forms a protective duty on foreign waste varn

Italian Government imposing a small export duty which acts detrimentally against the spinner and forms a protective duty on foreign waste yarm.

1 It is generally necessary to ascertain, before dyong, what will be the loss in weight of the silk during ungumming or stripping. White Italian silk loses on an average 21 5 per cent. Japanese, 20 per cent. Canton and Chinese, 24 per cent, raw yellow Italian, 24 per cent, and chappe, 4 per cent. The loss, which includes also any weighting of the yarn with vaseline, soap, oils, glycerine, etc., is determined as follows 50 grms of the silk is manipulated in a solution of 15 grms, of seasoned Marseilles soap of good quality in a litre of hot water, which is allowed to boil gently for half an hour, and is then removed, pressed or centrifuged, boiled for a further period of 30 minutes in a soap bath similar to the first, and weshed thoroughly with water until period of 30 minutes in a soap bath similar to the first, and washed thoroughly with water until the latter remains clear, after being centrifuged, the allk is dried in an oven until of constant weight. The loss of weight on stripping is referred to 100 grms of dry silk, so that allowance should be made for the normal humidity (11 per cent.) of silk,

boiling and agitating The silk is immersed in this emulsion for a time and then removed, the bath being diluted with water and the colouring matter (acid or basic), the dyeing is begun at 35° to 40°, the temperature being gradually raised almost to the boiling-point. Acid colouring matters are fixed by silk also from a hot acidified aqueous solution, but the tints are not so lasting

The dyed silk is riused in water and transferred to the acid bath to obtain the crackle which becomes more pronounced as the acidity and temperature of the bath are raised, but the acid remaining in the dry fibre slowly attacks it, with injury to its tensoity and clasticity

Nowadays silk is usually weighted, i.e., impregnated with various substances (organic and inorganic), in order to increase its weight (by 30 to 40 per cent and sometimes, with black silk, even by 300 per cent or more). Silk possesses, indeed, the property of absorbing from solution large quantities of tannin, this can be fixed by means of salts, and fresh tannin can then be absorbed, and so on. Successive amounts of insoluble metallic salts (tin salts, phosphates, silicates, etc.) may also be precipitated on silk. To weight white silk, the boiled silk is soaked for an hour in a stannic chloride bath of 25° to 30° Bé. (at one time pink salt, SnCl₄,2NH₄Cl (see Vol. I., p. 781) was largely used, but at the present time, crystallised tim salt, SnCl₄,5H₈O, is mostly employed), manipulated for 30 to 40 minutes in a hot disodrum phosphate bath (4° to 5° Bé.) washed slightly with water, introduced into a sodium silicate bath (3° to 4° Bé.) and again washed. Treatment with this series of baths (stannic chloride, phosphate, and silicate) is repeated several times, according to the degree of weighting desired, five such repetitions give a weighting of 100 to 120 per cent. (the weight being doubled) 1 Weighted silk can be dyed, and in the pre-

The phenomenon of weighting is explained, according to Sialey (1911), by regarding silk as a colloid (see Vol I, p 106), which absorbs hydrogels (s.g., stannio) of various salts of polybasic acids, but many substances which give precipitates and insoluble salts do not serve for weighting, since they are not firmly retained by the silk fibre—and are therefore eliminated during washing and dyeing—and are not dyed. The weightings which have given the best results in practice are (1) tin hydroxide (used as early as 1860 in a Lyons dyeworks), (2) tin phosphate, (3) tin silicophosphate. (4) tin and aluminium silicophosphates. Sisley (1806) showed, and Frinckel and Fasal (1897) and Severni (1900) confirmed, that weighting is due purely to a physical and not to a chemical phenomenon, since the weighting bath undergoes no chemical change and no alteration in concentration. Further, when alk soaked in stannic chloride is washed with water, the precipitated stannic hydroxide which is formed in abundance as a result of hydrolysis is not fixed by the silk and is derived from the chloride on the surface of the thread, that absorbed inside the fibre remaining as a kind of colloidal solution of stannic hydroxide in hydrochloric and, the soid diffuses into the fibre, which retains it, whilst the stannic hydroxide is fixed as a gel and does not influence the feel and lustre of the silk. The absorption of stannic chloride is avoided if the silk is previously treated with tannin. In 12 hours silk which has absorbed 11 per cent of tannin fixes from a stannic chloride bath of 30° Bé, only 125 per cent. of SnO₃, while silk without tannin fixes from a stannic chloride bath of 30° Bé, only 125 per cent. of SnO₃, while silk without tannin fixes from a stannic chloride bath of forms a labile compound of Na₂CO₃ and SnO₄,2H₂O, this being decomposed by and with formation of a tin hydroxide insoluble in acid and in subsequent stannic chloride baths.

Bolling or treatment with a scen bath of world solution of stanning SnO₂, 2H₂

insoluble in and and in subsequent stannic chloride baths.

Boiling or treatment with a soap bath of washed silk containing SnO₂,2H₂O results in the separation, in a firmly fixed condition, of the hydrate Sn₂O₂H₂O, i.e., Sn₄O(OH)₄, which has, however, but little affinity for phosphates and silicates (Gianolli, 1907). Weighting with stannic obloride gives a regular increase of 10 to 12 per cent, in the weight for each separate operation on the same silk. In weighting with tin phosphate (after the chloride bath, the silk is passed into a hot disodium phosphate bath and them washed thoroughly with water, the operation being repeated if necessary), the first operation gives an increase of about 20 per cent, but subsequent operations produce larger increases, the third may give as much as 35 per cent. Silk alone has no affinity for salts of polybasic acids (phosphoric, tungsto, etc.), but if it is first passed into a tin salt bath it fixes them, for example, as SnO₂,Na₂WO₄ or SnO₂,Na₂HPO₄ (sodium phosphotannate, insoluble in water but soluble in concentrated sodium phosphate solution), only phosphates containing hydroxyl groups are fixed by tin, so that trisodium phosphate and sodium pyrophosphate are not fixed. If the sodium carbonate bath follows the obloride bath, less sodium phosphate is subsequently fixed. Treatment of the silk in the acid bath results in the removal of the whole or a good part of the sodium. When the silk has been treated in the first sodium phosphate bath, it is weahed and introduced a second time into the stannic chloride bath, the double decomposition thus produced resulting in the formation of insoluble phosphate of tin, which is fixed on the fibre, and of sodium alloride, which passes into the bath while at the same time the silk becomes impregnated anew with SnCl₂—this fixing tin hydroxide on the fibre when the latter is washed. This tin hydroxide gives fresh sodium phosphostannate when introduced into a second disodium phosphate bath, while the bath, which be

Still higher weighting is obtained if the sodium phosphostannate silk is introduced into one

paration of black silk, the weighting may be increased considerably by passing the weighted white silk (washed with a little soda) into a cold bath of forrugine (a slightly acid solution of basic ferric sulphate prepared by heating a solution of foreous sulphate with sulphure and nitric solds), slightly washing the silk thus coated with oxide of iron and immersing it in a bath of potassium forrocyanide (acidified with HCl) which colours it blue. It is then placed in an almost boiling tannin bath (e.g., chestnut extract), next in a tin bath to fix the tannin, and finally in a hot bath of logwood extract to obtain an intense black tint, the dyed slik is rinsed in seap solution or an acidified oily emulsion, livened in a sulphuric acid bath, centrifuged and dried. By repeating the tannin and metallic baths ten or fifteen times, weighting of 300 to 400 per cent. may be obtained. Black silk weighted

to the extent of 400 per cent and partly attacked shows under the microscope a heavy incrustation round the fibre (Fig 487), much of its strength has been destroyed, and under the action of sunlight it undergoes rapid corromon (umbrellas of heavily weighted black silk split even without using) O Meister at Zurich (1902) and independently G Granoli at Milan (1904, Ger Pat. 163,622) found that this inconvenience can be largely avoided

Fig 487

by means of a thiocyanate bath. In 1906 the Società della stagionatura della seta di Milano (as a result of investigations of Sisley at Lyons and of Gianoli and Colombo) filed a patent in America for the preservation of weighted silk by introducing it in a bath of thiourea faintly acidified with citric acid, US Pat. 873,902, was granted in February, 1008, and appears to give excellent results in practice 1 O Meister (1910) suggests the use of formalde

or several more or less concentrated and more or less hot sedium allicate baths By this means part of the phosphate residue united to the the oxide is replaced by silica, the compound 38:0, Na, O, SnO, being formed, the silicate bath becomes acid and contains trisodium phosphate. In the acid bath, this silk readily loses sodium, being formed of insoluble tin trisilicate. This weighting was patented by Neuhaus in 1893, but had been previously used in

The highest weighting of silk is obtained by following repeated phosphete baths with a bath of an alum salt, as was proposed by Puller (Crefeld) (Fr. Pat. 254,669 of 1900). In this way the aluminum is fixed as phosphate and a little sodium passes into solution. After washing this silk is passed into a sodium silicate bath and has the property of fixing much more siles than in the case described by Nathana further the silk passed. than in the case described by Neuhaus, further, the silk loses practically nothing in the acid bath, since the sodium of the tin silicophosphate has been replaced by aluminium. Nicolle and Sisley (1911) found that various other salts may be used in place of those of aluminium, but

that only those of zinc gave good results in practice.

This general theory of Sisley on the phenomenon of weighting of silk is not universally accepted P Heermann (1904–1911) holds that while the silk is immorsed in the stannic chloride bath the latter diminishes in concentration, and part of the tin remains fixed even when the silk is washed with water, he also regards the formulae of the salts fixed on the silk as different from those given by Sisley

In determining the weighting of silk 2 grass is boiled for two hours in a soap bath (30 grasses are little) and then for at least an hour (to excel the amments) in a seedling conducts but the

scap por litre) and then for at least an hour (to expel the ammonia) in a sodium carbonate bath at 1.5° B6, the water evaporated being gradually replaced. It is then rinsed well with water at 1 5° B6, the water evaporated being gradually replaced. It is then rinsed well with water and dried and the nitrogen in 0 0 to 0 8 grm. determined (as was suggested by St. Clare Deville in 1878) by Kjeldahl's method (see p 11), from this the quantity of true fibroin can be determined, knowing that 5 455 parts of fibroin correspond with 1 part of nitrogen. With black silk containing cyanide (Prussian blue), the latter must be previously eliminated. In order that the fibroin may be acted on as little as possible, P. Sisley (1907) separates it as follows: 2 grms of the fabric is belied for 10 minutes in 25 per cent. acetic cold, washed, heated for 10 minutes at 50° m a 3 per cent. sodium phosphate (Na₂PO₄,12H₂O) solution, washed again, and belied for 20 minutes in a bath containing 3 per cent. of seap and 0.2 per cent. of soda, this procedure is repeated, the tissue being washed and dried and its nitrogen content determined. The percentage weighting p (the increase in weight of the original silk) is given by p = 100(g - c)/c, where g indicates the weight of the dyed silk while a represents that of the raw silk (s.e., fibroin + serioin + 11 per cent. moisture) or fibroin + normal loss on stripping (21 5 or 24 per cent. see preceding Note). A silk is said to be weighted 50 per cent. when 1000 grms. of raw silk give 1000 grms of dyed silk. of dyed silk.

During recent years, another simple method has been used for determining the ordinary During recent years, another simple method has been used for determining the ordinary tin silicophosphate weighting 2 grms. of weighted silk of known moisture content (ϵ_H , 10 per cent.) is treated for an hour in a platinum dish with 100 c of a cold aqueous 2 per cent. hydrofluoric acid solution, the latter is poured away and another 100 c c. of the acid added and left in contact with the silk for an hour. The silk is washed seven times with successive amounts of 150 c c of water, pressed, and dried at 100° to 105° until of constant weight. If the latter is 0.95, then 2 grms, of moist silk == 1.8 grm, dry silk, and 1.8 = 0.95 = 9.85 (weighting). hyde bisulphite (1 to 5 per cent. bath) to check this corrosion, while Berg and Janhoff (1911) prefer the use of hydoxylamine The use of a diastofor bath (see p 140) after dyeing has also been proposed. Silk weighted with ZnCl₂ is preserved in a thiosulphate bath (Horzig, 1908)

STATISTICS The world's production of raw silk (excluding the local consumption of the Far East, this being valued at about 55,000 quintals for China and 47,000 for Japan, in 1906, and about one-third more in 1907) is shown in quintals by the following Table (the pre-war value of raw Italian silk may be taken as 32s to 36s per kilo)

Locality	Average for the years						
Dodn's	1880-1800	1800-1000	1001-1005	1006	1000	1913	
Italy France	33,110	42,150	43,260	47,450	42,500	35,400	
7.	6,920 720	6,500 830	5,010 800	6,050 560	6,740 800	3,500 820	
Spain Andrea Tungane	2.650	2,720	3,150	3,420	3,800	2,600	
Austria Hungary Anatolia (Brusa)	1,860	4,020	5,180	5,540	3,000	2,000	
Syria and Cyprus	3,030	4,560	4.870	4,700	15,700	11,800	
Salonica, Adrianople	1,340	1,620	2,350	2,570	10,,00	11,000	
Balkan States	1,010	470	1,410	1,850	3,150	1,250	
Greece and Crete	21	410	640	750	700	2,100	
Caucasia		2,760	3,910	4,550	5,400	3,850	
Turkestan	94	1,680	4,680	6,280	,	2,250	
China, exported from Shanghai China, exported from Cau-	27, 570	45,080	42,270	42,620		n8,000	
ton	1,277	20,210	21,280	19,620	157,200	27,800	
Japan, exported from Yokohama ¹ India, exported from Cal- cutta and Bombay	20,560 4,360	34,590	48,650 2,560	50,020 325	107,200	118,500	
	7,000	2,000	2,000	340	ľ <u></u>	1,000	
World's totals, quintals	116,000	170,530	100,920	209,130	242,000	270,000	

In China the exportation of real silk tends to diminish, but that of wild mlk (or tussah) increases, this is produced by Anterea mylista and is readily recognised under the micro scope (Fig. 488) China exported 1,260,000 kilos in 1900, 1,325,000 in 1903, and 2,000,000 in 1904

To the quantity of raw silk produced in Italy from home grown cocoons must be added that obtained from cocoons imported from abroad, viz , 3000 quintals in 1893 , 7320 in 1898 , 11,000 in 1903, and 13,000 in 1906. The mean annual importation from 1901 to 1905 of cocoons (oblimated dry) was 37,736 quintals (46,000 in 1906) with a mean yield of

Hence, if the raw silk is calculated to lose 24 per cent on stripping, the weighting will be 0.95 - 0.85 = 70 x (70 is the percentage of silk remaining after stripping) and a = 0.8, hence the dyed dry silk contains 70 parts of dry stripped silk (or 100 of raw silk) and 68 of weighting, total 144. The silk was hence weighted 44 per cent. Gianoli and Colombo (1907) showed, however, that in some cases when metastannic acid is formed on the fibre, e y, by the fixation of tin salts with sodium carbonate, the whole of the weighting is not eliminated by hydrofluoric acid, even when this is followed by a bath of HCl. A more certain result is then obtained by the old method (see above) or by using first soda and then potassium hydrogen oxelate. P. Heermann (1909) proposes to modify the alternate treatment with hydrocliloric acid and eaustic potash (Ristenpart, 1908) of black on tin salt and catechu, by replacing the caustic potash with a solution of normal caustic potash and concentrated glycerine (28° Bé) in equal parts, the latter preserving the silk, readily dissolving Prussian blue (by treatment for an hour in the cold or 10 minutes at 80°), but leaving the exide and tannate of iron unchanged.

¹ In Japan a second crop of cocoons (bivoltine) is gathered in summer, and a third (trivoltine) in autumn. About 60 per cent of the total crop is obtained in the spring, 12 per cent in the

summer, and 28 per cent in the autumn

Japan also produces a considerable amount of green wild silk—of Bombys yamamas, which feeds on chestnut and oak leaves (the wild silkworm of India eats castor oil leaves)

1 kdo of silk per 4 kdos of dry occoons (at 7s to 9s 6d per kdo) or per 11 5 kdos of fresh

To the 50,000 quintals of raw silk yarn produced in Italy must be added 24,000 quintals of silk simply treated and imported from the Far East to be spun and twisted, but only about 10,000 quintals are woven in Italy, the rest being exported (50,000 quintals, besides 39,000 of twistod)

The Italian weaving industry is capable of considerable extension, its produce being valued at only £3,200,000, while Switzerland 1 (with 35,000 looms) produces silk fabrics to

the value of £5,600,000, France 2 (with 140,000 looms) £19,600,000, England about £13,000,000 (unporting £8,800,000) with 87,000 looms, and about the same for Germany If Italy were to weave the £8,000,000 worth of yarn which it exports, the value would be increased to £16,000,000 (a kilo of fabric costs about double as much as a kilo of yarn) while 200,000 more workpeople would be employed

The Italian silk industry has passed through various crises, not on account of excessive production—since working on stock is not usual with silk articles and the demand is often greater than the supply—but owing to various circumstances, not the least among which are the tariffs raised against Italy as retaliation for the protection of many Italian industries by the tariff of July, 1887 The most soute crises of the Italian silk industry were those of 1893 and 1903, which were the cause of numerous fluancial disasters, and that of 1907-1908, the effects of which are still folt, and which resulted from the great American

Fig 488

orisis and is now being aggravated by French and Japanese competition. The quinquantial average price of raw Italian silk fell gradually from 62 1s per kilo in 1876-1880 to 38 1s in 1901-1905, mainly owing to increase in the world's production (see Table, p 818) In 1908 and 1907 a rise in price of raw silk occurred, thus, that of organsine sublime (count $\frac{1}{6}$) was 40s per kilo at the end of 1905, and rose to 40s 6d towards the end of 1906 and to 60s 6d in August, 1907, after which a fall took place owing to the American

Silk twisting in Italy in 1010 employed 800,000 spindles (four fifths in Lombardy and the remainder in Piedmont), which produced 4,500,000 kilos of organisms and tram, about one-half from imported raw silk.

¹ Switzerland has two very important centres at Zurich and Basle, where the output of alk goods is continually increasing, although the production of cocoons is gradually diminishing. In the canton of Ticino, where the silkworm is reared, the cocoons produced have diminished from 187,500 kilos in 1872 to 58,000 in 1004, while there has been a corresponding increase in the importation of raw silk from Ohina, Japan, and Italy The importation rose from 514,400 kilos in 1893 to 637,000 (worth £900,000) in 1002, but about one third of this, after being twisted in the Swiss factories, is exported to Germany, Russia, and Italy In the canton of Zurich alone in 1900 there were at work about 21,000 hand looms and 13,330 power-looms for silk and mixed silk falves.

The Swiss experts of pure silk tissues in 1803 were 900,700 kilos (£2,500,100), those of mixed tissues being valued at £680,000 In 1903 the experts of silk fabrics were 1,700,300 kilos, worth £3,780,000, while the total imports in the same year were 140,000 kilos (£330,800) of slik fabrics and also mixed fabrics to the value of £112,000. One half of the experts goes to England. The

silk ribbon and embroidery industry of Switzenland is steadily advancing
Germany is a large importor of raw silk (about 3,000,000 kilos, largely Italian), and, besides
supplying home demands, exports considerable quantities of manufactured goods (see Table later)
Russia consumes about 1,500,000 kilos of raw silk annually

Russia consumes about 1,001,001 kies of raw silk animaly

None the less interesting is the condition of affairs in France, although the production
of fresh cocoons is only 8,000,000 kilos (1905). The imports of raw silk are calculated to be about
0,000,000 kilos, and the silk industry (almost entirely concentrated in the city of Lyons) comples
one of the foremest positions among French industries. The province of Lyons contains more
than 25,000 power looms for silk weaving, in addition to a larger number of hand looms. In
order to reduce the importation of raw silk and increase that of cocoons, and so encourage the
direct spinning of the latter, the French Government in 1892 offered a premium of £16 for every

new four threaded basin established, but the results did not come up to expectations. While in 1893 the production of silk goods was valued at £15,150,000, in 1902 it reached

£17,800,000 The French exportation of silk wares of all kinds amounted in 1890 to 4,220,000 kilos, worth about £10,000,000, while in 1904 it rose to 5,700,000 kilos, of the value of £13,200,000 (including about £1,200,000 worth despatched by pardel post)

The value of the products woven in Lyons in 1004 was £18,360,000, in 1905 £15,640,000, and in 1906 £17,040,000 In the department of Saint-Etienne the output of silk rebbon in 1906 was valued at £3,780,000, one-third of it for export

The French home consumption of silk wares is about 4,000,000 kilos, this large amount

helping considerably to maintain the silk industry in an active condition.

The silk-wasts which was produced in Italy in 1910 (and was exported to the extent of two-fifths while the remainder was worked up in Italy) amounted altogether to 5,300,000 kilos of the value of £500,000

Silk, carded and combed in Italy, amounts to about 1,500,000 kilos and the chappe yarn to almost 900,000 kilos, of which 200,000 kilos are consumed in Italy and the rest exported. Six thousand workpeople are employed in the treatment of waste, the ten establishments in this trade containing about 80,000 spindles in 1912

During the past twenty five years the silk weaving industry has become of considerable importance in the United States, where raw silk is almost free from customs duty, while the manufactured products (yarn and fabric) are very heavily taxed. These conditions have led to the rapid development of American spinning and weaving 1 The importation of raw silk into the United States shows continuous and rapid increase, the annual averages being 1881-1885, 15,300 quintals, 1886-1890, 23,100, 1891-1895, 31,300, 1896-1900, 43,500, 1901-1905, 65,300 quintals, which is about one third of the world's production (excluding the local consumption of the Far East)

The countries with large outputs of occoons are not always large consumers of silk wares, while in general large consumers are not producers. Italy has a total internal consumption of 6500 to 7500 quintals of silk articles, and the relation between home consumption and exportation for the principal countries in 1809 was as follows:

	Home	Exports		Homo	lixports
	consumption Per cent	Per cent.		oonsumption For cont.	Por cont
France	61	30	Switzerland	5	95
Germany	60	40	United States	95-100	0-5
Austria	88 5	12 5	China	about 50	about 50
Italy	20	80	Japan	50	,, 50

As regards the quantity of raw silk passing through their conditioning establishments, the two principal silk markets in the world are Lyons and Milan, which together receive about two thirds of all the alk conditioned in Europe, the separate amounts being as follow

	Milan	Lyona
1881	36,652	53,48 0
1890	43,477	44,072
1900	72,335	60,418
1903	83,725	66,508
1905	94,391	70,102
1906	101,484	71,710
1908	95,293	73,728

In 1908 13,186 quintals arrived at Lyons from Europe, 7564 from the Levant, and 50,000 from the Far East, and at Milan, 67,187 quintals from Europe, 1477 from the Levant, and 36,530 from the Far East During recent years Milan has lost ground compared with Lyons.

SEA SILK (Byssus) is found in tufts protruding from the shells of a molluse (Punnus

The protective duty on manufactured wares was 50 per cent. ad valorem in 1883, while it rose to 75 per cent in 1897, and later to 90 per cent. In 1882 there were only 8000 power looms (including 2500 for ribbon) and 3100 hand looms for silk in the United States, while in 1901 the number of power-looms was 52,000 (7000 for ribbon) and that of hand looms was reduced to 800 In the same period the number of spindles for twisting and spinning increased from 450,000 to 1,900,000. The output of silk gloves was 2000 dozens in 1887 and more than 180,000 dozens (£200,000) in 1001. The production of silk articles increased sixtyfold during the latter half of The production of silk articles increased sixtyfold during the latter half of the nineteenth century

The output in America is, however, not equal to the consumption, the proportion between them being 67 3 per cent for silk fabrics, 85 per cent. for ribbons, and 53 per cent. for velvet. In 1901 the United States imported silk wares to the value of £5,760,000, later diminished to £3,200,000—43 per cent from France, 18 per cent from Japan, 17 per cent from Germany, and 16 per cent from Switzerland The American Government have several times, by offering prizes, attempted to initiate the cultivation of mulberries and the rearing of silkworms, but with poor success, probably because skilled agricultural labour is lacking and is not easy to form rapidly, and also because labour is expensive.

The attempts which have been made in the Argentine have been somewhat more successful but not altogether satisfactory. To the 800,000 mulberry trees planted during the course of 20 years, 4,000,000 have been added during the past four years, and in 1907 the grop of occoons

was 250 quintals.

nobiles), 30 to 40 cm long and 15 to 20 cm. broad, attached to the rocks of the Red Sea and the Mediterranean (Sicily, Sardinia, Elba) It has a pale golden, more or less brownish colour, and sometimes shows greenish reflection. After being washed with soap and water and dried in the shade, it is combed and spun like other textile fibres. Although sometimes regarded as an abundant product, it is in reality rare, at least in Italy, and figures rather in museums than on the market

ARTIFICIAL SILK is the maccurate name given to the product which has been for some time on the market in competition with natural silk. There is, indeed, no chemical relation between the two products In place of the fibroin and serious produced by Bombur mors, the new silvery thread contains merely cellulose, as is the case with so many other vegetable products It has, however, the lustrous appearance of natural silk and only by reason of this property does it compete with the latter 1

The struggle between the natural and the artificial product has scarcely begun and it is not easy to foretell within what time and what limits the one or the other will I e victorious We are certainly on the eve of neither a serious convulsion in the agricultural industry nor the disappearance of the mulberry and silkworm, but it may be affirmed that artificial silk has established a position in the making of certain fabrics formerly obtained solely from the natural product

The new artificial fibre has still, however, many defects which limit its use, for the present, to definite branches of the textile industry, and time is thus given to the producers of natural silk to repair the grave error, committed in the past, of spoiling their valuable product by excessive weighting, and so injuring its sale.

The first beneficial effect of the appearance of artificial silk should hence be to bring the silk industry to the sound basis on which it was built, and which would enable it to withstand any artificial competitor for many years to come.

The prime material for the preparation of artificial silk is cellulose, that remarkable substance which has so simple a composition—earbon, hydrogen, and oxygen—but so complex and highly polymerised a molecule (see p 508), and already yields so many most important industrial products-from mercerised cotton to celluloid and peganicid, from guncotton to collection, from explosive, smokeless gelatines to alcohol, and finally to artificial ailk. 2

The struggle between the various types of artificial silk which have been placed on the market has resulted in victory for viscose silk, this, owing especially to its low cost, having practically displaced all others.

Of the hundreds of patented processes for preparing artificial silk from cellulose, most are of no practical importance and but few require mention 8

Artificial silk, although of recent preparation, has already an interesting history As early as 1731 Reaumur foresaw the possibility of proparing lustrous fibres, similar to silk, from gummy or adhesive substances, and in 1885 Audomars (of Lausaumo) attempted but with imperiod success to put Réaumur's idea into practice

Expectation of success in the solution of this important problem areas only later when it was found possible to prepare slender collection fibres for the manufacture of the carbon filaments of meandescence electric lamps. In 1886 Count Hilarre de Chardonnet of Besançon, then a student at the Paris Polytechnic, illed a patent for the manufacture of artificial silk by spinning colledion solutions, and at the Paris Exhibition of 1880 he showed his first machine working Swan, in London, had previously obtained fibres of artificial silk, but these were without practical industrial results

When collulose is in the form of wood for fuel, I on metre cost (pre-war) about 6s , the same cubic metre of wood, when boiled with lime, soda, and sulphite gives a paper pulp worth about 32s and yielding paper valued at 50s., or more. If this pulp is transformed into artificial silk, its value may be as high as ±80 to £240, according to the articles prepared (artificial hair and silk, cellulose acetate)
(1) Netrocellulose sile, obtained by the denitration of collodion cotton previously dissolved

in a mixture of alcohol and other and then reduced to very fine fibres by means of special spinning

machinery (de Chardonnet, Lohner, Viviers)
In 1801 de Chardonnet formed a company at Besançon with a capital of £240,000, for the manufacture of this new product on a large scale, but for some years de Chardonnet silk could not be used, as it was composed of nitrocellulose, and hence highly dangerous to the wearer and to warehouses in which it was stored, owing to its inflammability. Attempts to render the silk harmless by the addition of various substances proved futile, and the problem was solved subse quently to 1893 by the elimination of the nitro-groups combined with the cellulose by treatment with alkali hydrosulphides and the regeneration of the cellulose without alteration of its lustre, its strength, especially when wet, 18, however, diminished by one-third. When treated in this way it burns almost like other cotton. After denitration, hydrated oxycellulose remains.

To obtain Chardonnet alk, collodion cotton is prepared in the way described in the section

VISCOSE SILK In 1802 (Eng Pat 8700, Ger Pat 70,999, of Jan 13, 1893) E J Bevan, C F Cross and C Beadle, by treating ordinary paper cellulose with caustic soda

on Explosives (pp 280, 204), and after elimination of the acid by thorough washing, the cotton is pressed hydralically or centrifuged to reduce the mouture content to 25 to 30 per cont. In this condition it is dissolved in 5 to 10 times its weight of a mixture of 3 parts of ether and 2 of alcohol, with which it is shaken for a couple of hours in revolving iron drums, do Chardonnet. aloohol, with which it is shaken for a couple of hours in revolving root drums. do Chardonnet first prepared solutions of collodion with dried introcellulose, but found later (Ger Pat. 16,932, 1910) that moist introcellulose also dissolves in alcohol and ether, avoiding the danger of drying and also giving a more homogeneous fibre. If a little mineral acid is added to the collodion solution (Lehner) the mass becomes much more fluid and requires less pressure for spiniting [according to Eng. Pat. 16,932 of 1910, acetylene tetrachloride (see p. 122) is an excellent solvent for introcellulose. The dense collodion solution is passed under a pressure of 40 atmost through a cotton wool filter, then left for a couple of days for the air bubbles to escape, and finally forced first through cotton wool and then through capillary glass tubes having a bore of 0.2 to 0.08 mm, under a pressure of 60 to 80 atmos

The slender threads issuing from the capillary tubes under pressure and in a closed in machine,

through which a current of air passes to carry off the alcohol and ether vapour (recovered as described in Note, p 231), are united in a number varying from 0 to 20, and under a water jut are wound on glass spools in a coagulated condition, but still somewhat adhesive owing to the moisture left in the nitrocellulose. After a short time on these spools the fibre solidifies completely and can be manipulated without danger of the filaments adhering. It is then combined,

twisted, and reeled in the same way as silk

Donitration is effected by treating the moist skeins with hydrosulphides of calcium (0 4 to 0 5 per cent solution) or magnesium, or, better, with dilute sodium sulphide solution for three

Fig 489 —(Pauly) d, sign of crossed fibres, st, striction, b, air bubbles, q, fine transverse strictions, B, sections of fibres

490 -(Chardonnet) air Fra bubbles, B, sections of fibres.

to four hours in the cold The department must be carried out with great care since otherwise rregular structions are obtained on dyeing. In practice all but 0.05 per cent. of N can be eliminated, this small amount of nitrogen is detectable by the diphenylamine reaction (Vol 1, p 234, footnote), and thus allows of the distinction of this artificial silk from other silks, both artificial and natural Artificial silks may also be distinguished from natural silk by microscopic examination (see Figs. 489, 490)

In 1021 the most important factory in Europe making Chardonnet silk was that of Tubice (Beignum), with a production of more than 3000 kilos per day. It is possible that this works may continue to flourish, as it produces excellent silk, especially for weaving, and also fine years (50 denari, whereas 120 denari is a common count for viscose silk), further, its plant is written off, it has cheap alcohol and ether at its disposal, and it obtains high prices. If, however, the

latter fell, it could not survive.

(2) Glanzstoff, propared by passing hydrocellulose (mercerised cotton) dissolved in ammoniacal copper oxide solution, through very fine capillary glass tubes so as to obtain—after complete coagulation in a bath of sulphuric acid at 16° to 20° Bé or one of 5 per cent, caustic soda—filaments so slender that 225,000 metres do not weigh 1 kdo (Pauly or Fremery and Urban

The first patent for this process was that of Despeissis in 1890, but this was not renewed in a year's time. The process was improved and rendered practicable by Pauly, Bronnert, Fremery, and Urban, and the manufacture was undertaken by the Vereinigten-Glanzstoff Fabriken of Elberfeld. Well defatted, bleached cotton waste is lixuated with sodium carbonate and hydroxide in an autodaye for 3 to 4 hours, rinsed, bleached with cold hypochlorite solution, well washed and centrifuged. The mass is then treated with concentrated caustic

(which produces sodio cellulose), and then dissolving in earbon disulphide, obtained a dense, viscous, orange-yellow solution of collulose sodioxanthate or sodio cellulose xanthate or sodio collulose dithiocarbonato $C_0H_{10}O_5 + 2NaOH + CS_2 = H_1O + NaS OS O$ C4H2O4 NaOH, the composition of which is analogous to that of sodium xanthate formed when sodium alkoxide is treated with CS_2 $CS_2 + C_2H_5$ $ONe = NeS CS OC_2H_5$

In alkalme solution this substance constitutes the so called viscose, but the molecule gradually polymerises and becomes continually poorer in sulphur owing to the separation of the complexes S C SNa and the formation of more and more highly condensed moleoules, NaS CS O(C₆H₉O₄)₂OH, NaS CS O(C₆H₉O₄)₃(OH)₈, NaS CS O(C₆H₉O₄)₄(OH)₈, and even higher polymerides (Ger Pat 187,360 of 1904, 92,590 of 1896, and Fr Pat. 334,636 of 1904) This process is the so called maturation of the viscose ² After 24 hours is formed and the viscose is soluble in water, after at 15° the cellulose complex C₁₂ 6 to 7 days the complex becomes Cg4 and the viscose is then soluble no longer in water but only in excess of alkali, and is readily coagulable on neutralisation with dilute and, with less dilute and or after the lapse of a longer time the viscose decomposes giving insoluble collulose hydrate These last changes occur readily and rapidly during the spinning process, so that there remains finally a slender thread of lustrous cellulose, moderately strong and clastic During the coagulation (see later) of the filament, the impurities remain dissolved and are eliminated.

For the coagulation, Stearn (Ger Pat. 108,511 of 1898) used a solution of an ammonium salt, particularly the chloride. Numerous mixtures of salts were subsequently patented, the problem being solved by the use of more or less and solutions of sodium sulphate or

soda to mercerise it and form sodio cellulose, which is more soluble than cellulose in the cuprosons to mercense it and form social controls, which is more solute than collitions in the capro-ammoniacal liquid (0 to 7 kilos of cotton per 100 litres of solution). The latter is prepared beforehand in large tanks (in cellars) containing sorap copper and concentrated ammonia solution kept in circulation by a pump which also injects an until each litre of solution contains about 15 grms of dissolved copper. In this liquid, stirred now and then, cellulose dissolves in six to cight days, the solubility increasing as the amount of copper present increases and as the temperature is lowered (between 0° and 4°). As soon as the cellulose has dissolved and the mass become dense and stringy it must be filtered under pressure, since if this is delayed two or three days the collulose begins to undergo depolymerisation (especially in a warm place), and the mass

days the collulose begins to undergo depolymensation (especially in a warm place), and the mass loses its viscosity, with the result that the silk obtained is of poor quality, irregular and week. Spinning follows closely on filtration. The threads from the capillary glass tubes were at one time coagulated by passing them into sulphuric acid of about 20° B6, but there is then changer of weakening of the fibre owing to excessive hydration, which is facilitated by the rise of temperature caused by the neutralisation of the aminonia. On this account it is now preferred to produce coagulation by means of 5 per cent caustic soda, this giving a softer and more lustrous silk from which a very weak sulphure acid bath readily eliminates the traces of copper hydrate precipitated by the soda. According to Gor. Pat. 221,041 (1908) coagulation with alkaline sulphite or bisulphite solution appears advantageous.

Glanzstoff competed for some years with nitrocollulose silk, but it has now succumbed in

favour of viscose alk, which is cheaper and possibly superior

(3) The silk prepared from celluluse accluse by Cross and Bovan soems to be free from the defects mentioned above and to be superior to all other artificial silks in its strength, which is equal to that of natural silk The manufacture of this was started some years ago by Count Domnersmark, using acctic anhydride and chloroform, but it is too costly to compete with other silks, and is dyed only in dilute alcoholic solutions (Ger Pat 152,432) Excellent solvents for callulose acctate have been found in tetrachloroethane and formic acid (Ger Pat 237,718 of 1907)

(4) Millar and Hummel's Vandura silk, obtained from gelatine solution and now from casein is not read processed.

is not used practically

(5) K Hofmann (Ger Pat 227,198 of 1909) obtains artificial silk and also hair and films by dissolving cellulose at 220° in a mixture of concentrated phosphoric and acetic soids, and then

by dissolving collicious at 220° in a mixture of concentrated phosphoric and acetic acids, and then precipitating with water or salt or alkall solution.

(6) According to a Dutch putent of 1911 (No 431,052), part of the casein suited to the manufacture can be separated by prompletting the unsuitable casein (which gives brittle products) from skim milk by means of sodium pyrophosphate solution (3 grms of the salt per litre of milk) From the decented liquid, the soluble part of the casein is then precipitated by means of dilute acid, again pressed, rendered plastic with a little ammonia, and spun, the thread is rendered insoluble by means of dilute formaldelyde solution.

1 Treatment of callulose with a solution containing more than 12 per cent of NaOH gives

insoluble by means of diffus formaldehyde solution.

1 Treatment of cellulose with a solution containing more than 12 per cent of NaOH gives sodio cellulose in the ratio $(C_4H_{10}O_5)_2$ 2NaOH, which is decomposed by excess of water, giving cellulose hydrate and caustic soda, if the sodio cellulose is treated with absolute alcohol, 1 molecule of the alkali separates, leaving semisodio cellulose, $(C_4H_{10}O_5)_3$. NaOH

2 That the sodium atoms of the sodio cellulose take part in the formation of viscose is shown by the fact that the sodium atoms of viscose may be eliminated by treatment with lodine solution,

in accordance with the equation

bisulphate (Mitiler, Ger Pat 187,947, 1905) Later patents improved Mitiler's solution which gave a silk of poor lustre, owing to its excessive acidity (up to 20 per cent of free soid) The acidity necessary to produce coagulation is 1 to 5 per cent, and the greater or less rapidity of the insolubilisation depends on the quantity of sulphate, the duration of the action, and the temperature, these factors also affecting the lustre and the stickiness of the fibres (Ger Pat 267,731, 1911, 287,955, 1912, Fr Pat 449,563, 1912, cto). In general, the acidity must be less than that of the bisulphate. The presence of glucose in the spinning bath is also advantageous.

The industrial manufacture of viscose silk is now carried out approximately as follows. Cellulose in sheets, as used in making paper (see p. 605), is dried at 50° and then immersed in about 18 per cent caustic soda solution (45 kilos or more of the solution per 15 kilos of cellulose). After 8 to 10 hours the soaked and swollen sheets are pressed hydraulically to eliminate the excess of soda, broken into lumps, and reduced in a toothed pulper to a flocculent mass. This is kept in cylinders away from the air for 4 or 5 days at 26° to 28° to allow of the complete conversion of the cellulose into sodio-cellulose.

Dithiocarbonation is effected in mixers of the Werner and Pfleiderer type (p. 472), either

of iron or nickel lined, with a tight fitting cover and with a jacket for the circulating cold water. For 15 kilos of cellulose 10 to 11 kilos of pure, washed carbon disulphide is required Mixing proceeds slowly for 2 to 3 hours, the orange yellow, spongy, elotted mass obtained being mixed vigorously in a vertical drum with about 45 kilos of 15 per cent. caustic soda solution, sufficient water is mixed in to give a final solution of density about 1 13, corresponding with about 7 5 per cent. of cellulose and an alkalinity of about 12 per cent., expressed as NaOH. The degree of maturation required may be determined in the laboratory

In these maturation vessels the mass (sometimes filtered beforehand through filterpresses with cloths stuffed with cotton-wool) is left at 14° to 15° for 3 to 4 (sometimes 6) days, air-bubbles and excess of carbon disulphide being expelled by prolonged evacuation of the vessels. The matured viscose solution is filtered and, clear and air-free, is conveyed to the tanks which feed the spinning machines through a pipe A (Fig 491, transverse section, Fig 492, view of front part), kept at constant temperature by means of a jacket

¹ The cellulose should contain as little hemicellulose as possible (less than 18 per cent), since this is not congulated by the acid bath and is lost.

The hemicellulose is determined by heating the cellulose for an hour with 18 per cent. caustic sods solution, washing it thoroughly with hot water, drying and weighing the residual cellulose; the loss is principally hemicellulose.

The pipe, A, runs horizontally along the whole of the double bench carrying the two long troughs, D and D^1 , containing the congulating solution of density about 1 38 (at 20°) and temperature at most 55° If the temperature in the troughs is kept between 50° and 55° the viscose filament coagulates and becomes insoluble during its passage from the mouth of the capillary tube, C, to the spool, G, which is partially immersed in a trough, H, containing bisulphate solution of density about 1 15 and acidity 8 per cent at 15°

From the main pipe, A, the viscose solution is pumped into the tubes, B and B^i , carrying thick glass tubes, C, terminating in a point closed with a platinum disc having 18 capillary perforations (Fig. 403) From the latter issue the slender threads (becoming far more slender on drying), which are collected into a single thread, this passing through the eye, R, at the rate of 40 to 50 metres per minute.1

The waste yarn and the lumps forming at the orifices of the capillaries when the thread breaks are thrown into the troughs, N and N^1 . The threads are freed from part of the and solution they hold during their passage in a stretched state past the fixed glass rods, V and V1 The alteration of the acidity of the solution in the troughs by the alkaline viscose is counterbalanced by addition of fresh solution The threads are wound crosswise on the spools to diminish their tendency to adhere

The wound silk is washed in running water for 2 or 3 days, dried in circulating air at 65° to 70°, steamed to fix the twisting, skeined, and treated in hot dilute sodium sul phide solution to remove adherent traces of sulphur from the coagulating bath. Finally the skeins are washed in running water, bleached with dilute (e q, 0 15 per cent) tepid

calcium hypochlorite solution, softened and rendered more lustrons in a dilute sulphoriomate bath, centrifuged, and dried in a current of air at 50° to 60°. The dry skems are beaten by hand and sorted into skeins of equal weights and hence of equal counts, those differing by more than 8 to 10 grms per 250 grms. being discarded, with good working those discarded in this way should amount to less than 7 to 8 per cent, but with bad working they may exceed 20 per cent

Properties, advantages and defects of artificial silk Donitrated silk shows dumnished strongth and, as with other qualities of artificial silk, the strength is considerably less in the moist state, under such conditions it can still compete with heavily weighted natural silks 8

Tunacity in kilos per so jum

In general a fibre of artificial ailk can be distinguished from one of natural silk owing to the small resistance of the former to tension when in the moist condition. Artificial silk is now rendered resistant to moisture and to water by treatment with formaldehyde, but this diminishes to some extent the softness and elasticity

A further disadvantage of artificial silk is its high specific gravity, the same weight of yarn of the same size giving a larger quantity of fabric in the case of the natural silk than

¹ The machinery used in spinning artificial silk has now undergone further improvements which permit of the production at once of bundles of threads, these being subjected during their development to rapid rotation so that the completely twisted yarn is obtained in a single operation. There are also machines which give two bundles of threads twisted in opposite directions and at the same time wind the two bundles one on the other so as to produce finished organsine of two threads

* According to Hassack the strongths are as follow

		TOURSCION IN MINOR IN	
	Riasticity	Dry	
Natural silks boiled and lustred	20	37 5	35
			15 G
,, ,, red, slightly weighted	20	20 0	
blue blook 100 per cent weighting	20	12 1	80
	20	79	U 3
,, ,, black, 140 per cent weighting			• •
,, ,, ,, 500 ,, ,,	20	2 2	_
Cellulose acotate silk	17	10 2	58
	1.	14 1	17
White Chardonnet silk	9		_
Lehner (Frankfort) silk	U	17 1	43
	14	19 1	32
Pauly (Elberfeld) silk			-
Viscose allk	14	21 5	
	14	11 5	10 G
Cotton thread	7.2		

The clasticity is the elongation exhibited by 100 cm of the fibre before breaking or strength of natural silk is 3 to 13 grms for the single thread (bava) Echallier (Lyons) has recently increased the strength of viscose in the moist state by treating it in a bath containing 15 per cent. of formaldehyde, 5 per cent of alum and 5 per cent of lactic acid

with the artificial But while, with the first artificial silks, the excess of specific gravity was 15 to 20 per cent, the difference is now reduced to 7 to 8 per cent, and further progress in this direction is not improbable. Natural silk has the sp. gr. 1.36 and cellulose accetate silk 1 251, while other artificial silks show values exceeding 1 5

Marked advances have been made also in the count of the thread. Until a few years ago, only yarn of 120 denari (75,000 metres per kilo) could be made, but nowadays counts of 80 denam (112,000 metres per kilo) are regularly spun, and in some cases, with Chardonnet silk, 40 denam (225,000 metres per kilo) has been reached. These are still far from the fineness of natural silk (10 to 20 denam, s.e., 6 to 7 million metres per kilo), but represent an appreciable step forward. Viscose silk of 160 or even 120 denam is commonly spun

Considerable difficulty was at first encountered in the dyesng of artificial silk, but

nowadays the ordinary methods are used.1

Artificial silk of cellulose hydrate is somewhat hygroscopic and in the air absorbs 11 per cent. of moisture, whilst that with esterified hydroxyls (cellulose nitrate or acctate), like natural silk, absorbs only 3 to 5 per cent

In its behaviour towards polarised light, artificial silk shows itself doubly refracting By a red ammoniacal solution of ruthenium oxycliloride, denitrated Chardonnet silk and viscose silk are coloured red, but non denitrated and ammoniacal cupric oxide silk are not coloured.

When heated in a closed tube at 200°, artificial silk chars but natural silk undergoes little change.

USES OF ARTIFICIAL SILK. The most valuable property of artificial silk is its great lustre, which exceeds that of natural silk and permits of its use for a large number of Beautiful new effects are obtained by using it as weft in figured textiles with warp of natural silk, a new opening being thus provided for the latter. It is also used with advantage as weft in silk ribbons. For some years it has held almost undisputed sway in the lace industry Fringe and cord for ornamenting garments, lace, embroidery, etc., are now largely made from artificial silk. Special articles which cannot be obtained with natural silk are made from the artificial product. There is now a large consumption of artificial have prepared from artificial silk by fusing together several thin fibres so as to form a single large compact filament which, unlike large fibres obtained directly by spinning, is flexible and resistant. This artificial white hair, which can be dyed various colours, is in great demand as a substitute for horsehair, which is difficult to bleach and also rather expensive owing to the increased demand for horses for military purposes. This hair is used for various ornaments but mostly for making wigs for ladies, and artificial bristles

Another interesting application of artificial silk is in the manufacture of incandescent gas mantles according to Plassetty's patent such mantles are more resistant to shock even after burning, and can be used in trains.

Largely used also is a new product obtained from viscose, namely, a kind of ebonic, which serves well for the manufacture of artistically worked and coloured umbrella handles, knife handles, etc., and resists the action of the acids and alkalis with which it is likely to come into contact.

When the artificial silk factories supply a homogeneous product, dyeing is usually accom plished without difficulty on skeins of yarn, just as with cotton and silk. The methods of dyeing are those used for cotton or, more exactly, for mercerised cotton, which is also cellulose. The dyeing can be carried out without special mordants if substantive dyestuffs (duamine, benze, The methods of congo, etc.) are used in a bath of sodium sulphate and a little sodium carbonate at the tomperature of 50° to 60° , various presautions being taken in the manipulation

With basic dyes, a tennin or tartar emetic mordant is used, just as with cotton, the dyeing being commenced in the cold and terminated at a gentle heat in presence of 2 to 3 per cent of scotic acid Certain basic colours dye Chardonuet silk even without mordanting The new

sulphur colours are also used.

These different processes give all colours, from the pale and more delicate ones to black, all shades. One merit of artificial silk is that it cannot be weighted so heavily or so easily

as natural silk Only when black can it be relatively heavily weighted

Cellulose acetate silk is not readily dyed by aqueous solutions of colouring matters, but as it easily fixes phenois even from dilute solution, a fine paranitraniline red can be obtained by passing the silk into a hot 0 5 per cent. β naphthol bath and then into a 1 5 per cent. ρ intramine hydrochloride bath containing sodium acetate. Cellulose acetate silk acquires increased affinity for colouring-matters if treated with ammonium thiocyanate

Scroop or rustle may be conferred on artificial silk by treatment in a bath of glycerine and glucose and then in one of acetae or tartaric and. It is freed from polysulphides by means of

sodium thiosulphate.

Casem products, which have also been suggested for these purposes, cannot compete with viscose ebourte, which exhibits marked advantages over bone and horn in the manufacture of brushes, as it can be more easily worked and more easily pierced to allow of the fixing of the bristles.

As hair ornaments for ladies, great use is made of artificial silk in thin sheets or ribbons showing brilliant colours and sparkle. Artificial silk is also used in large quantity for making materials for tapestry, upholstery, neckties, hat-linings, etc., with which no resistance to the action of water is required. With rine salts viscose sineared on paper or fabric shows fine silky effects and fine results are also obtained with bronze powder made into a paste with viscose and spread on different cloths

Important new outlets would offer themselves for artificial silk if the resistance to the action of water could be improved. It seems to be a question of saturating the hydroxyl groups of hydrocollulose so as to render the latter stable towards water, and the most promising attempt yet made is that with collulose acetate, which gives a silk highly resistant but as yet too expensive, since acetae anhydride is used in its manufacture, while the cellu lose acetate must be dissolved in chloroform to be spun. In America this new product is used as an electrical insulator (its dielectric constant is 4 and that of viscose 7, compared with 5 0 for porcolain). Other uses of cellulose acetate were mentioned on p. 599

Numerous patents have been granted during the past ten years for the manufacture of cinematograph films, first from cellulose acetate (which, is, however, too elastic) and then from viscose, which is less inflammable than celluloid.

Viscose has been largely used in recent years to propare cellophane, which is obtained by rendering sedium xanthate solutions insoluble by means of ainmonium chloride and forming thin films (0.02 mm thick and up to 2 kilometres in length), which are as transparent and colourless as water even when superposed to form sheets weighing from 15 to 1600 grms. per sq. metre. Cellophane is highly elastic, and its elasticity, tonacity and impermeability are increased by treating its with glycerine. It can be stamped so as to produce artistic effects. Considerable use is made of it as wrapping for sweetmeats, perfumed substances, etc., which are thus protected against water, fatty matters and gases. It resists alcohol and water even at 100°, and has been proposed as a suitable material for making cinematograph films and for rendering fabrics waterproof.

STATISTICS The world's production of artificial silk was about 2,500,000 kilos in 1905, more than 6,000,000 kilos in 1911 (about 2,500,000 being nitrocollulose silk, an equal amount amnonical copper oxide silk, and nearly 1,500,000 kilos viscose silk), 7,000,000 kilos in 1913, 0,000,000 kilos (2,000,000 in France) in 1914, and probably more than 12,000,000 kilos in 1921 France exported 63,700 kilos in 1908, 78,500 in 1909, 101,700 in 1910, and 179,200 in 1911

Italy consumes large quantities of artificial silk. Before the war the three large Italian factories (Padua, Pavia, and Turin) were working under adverse conditions owing to the excessive cost of patents and the keen foreign competition, but in 1920 and 1921 two new factories for making, like the others, viscose silk were started, with potential outputs of 3000 and 2000 kilos respectively per day. Large quantities of artificial silk are also imported.

The United States began to produce artificial silk in 1911 (150,000 kilos), and prior to the war imported large amounts from Europe. During and after the war new factories were creeted, the output being 4,500,000 kilos in 1920, new plant capable of doubling this output is either complete or in course of construction.

Artificial silk, which was sold at 28s to 32s per kilo in 1903 and 1904, could be bought at 20s in 1905, while the price fell to 16s in 1906, 13s 6d in 1908, and 12s in 1910, the process qualities being sold at 6s to 8s per kilo. The price again fell when viscose silk was put on the market and reached 8s in 1913.

Even before the war many artificial silk works realised enormous profits (the dividends being 30 to 60 per cent. for some years), in spite of the huge royalties paid. Since almost all the more important patents have now expired, it is probable that this industry will undergo still greater development.

CHEMICAL TESTS FOR THE RECOGNITION OF DIFFERENT TEXTILE FIBRES

The commonest test for distinguishing animal from vegetable fibres consists in burning a thread, the former burn slowly, giving an odour of burnt nails and forming a round

granule of carbon at the point of the thread where combustion ceases, while vegetable fibres burn more rapidly, are converted into ash and give but little smell, which recalls that of burnt paper. Other reactions are as follow

Boiling 10 per cent caustic potash Homp, jute, flax, cotton, and artificial silk are insoluble and are not coloured (excepting jute, which becomes yellow), wool, silk, and

artificial gelatine silk dissolve after a few minutes

Cold cone sulphure acid (after two hours) Hemp, flax, jute, cotton, unweighted silk, and artificial silk are soluble or almost so, hemp being coloured brownish yellow, jute brownish black, and mercerised cotton yellowish, while the rest remain colourless. Wool and weighted silk do not dissolve.

Boiling zinc chloride (60° Bé) Flax, hemp, jute, and cotton are insoluble, jute alone being coloured a faint brown Wool, silk and artificial silk are soluble.

Schweitzer's reagent (see p 599), after two hours in the cold, dissolves more or less completely (better if freshly prepared), hemp, flax, jute, cotton, unweighted silk (in less than an hour) and artificial silk Wool is insoluble

Millon's reagent (solution of mercury in an equal weight of nitric and of sp gr 141, first cold, then heated gently, diluted with double the volume of water and decented after standing). Cotton, flax, hemp, and Chardonnet Lehner artificial silk are not coloured, jute is turned yellow, wool and pure silk violet red, and weighted silk and tussah silk ochre-red.

Conc aqueous magenta (just decolorised with NaOH) Wool and silk are coloured red, whilst cotton and flax remain uncoloured

Silver nutrate solution Wool is coloured violet to black, whilst cotton and flax are not coloured.

Iodo-zmc chloride solution (1 part iodine + 5KI + 30 fused ZnCl₂ + 14 water) in the cold. Flax, hemp, cotton, and artificial silk are coloured violet brown (mercerised cotton almost black), jute, wool, and tussah silk are turned yellowish and with time become colourless, true silk is not coloured

Lowe's reagent (shake 10 grms, copper sulphate, 100 c c of water, and 5 grms, of pure glyoerine and add caustic potash in quantity scarcely sufficient to redissolve the precipitate formed) in the cold dissolves only natural silk and is used for the quantitative separation of natural from artificial silk

Diphenylamine sulphate (1 grm in 100 c c conc H_9SO_4) in the cold. Homp, flax, jute, and tussah silk are dissolved, giving more or less intense brown colorations (flax dissolves less easily and is less coloured), cotton and wool dissolve with yellow coloration, silk dissolves, giving a colourless or faintly brown solution, artificial silk assumes an intense, characteristic blue colour

Molesch's reagent (obtained by dissolving 15 grms of a naphthol in 100 c c alcohol) the fibre, dyed or otherwise, is first purified by boiling with 2 per cent sodium carbonate solution and washing thoroughly with water. One centigramme of the fibre is treated with 1 c c of water, 2 drops of Molesch's reagent, and 1 c c of cone $\rm H_2SO_4$, all the vegetable fibres, including artificial silk, dissolve with a violet-blue coloration , wool is insoluble and is coloured reddish , silk is dissolved, giving a reddish (or, if weighted, an intense red) solution , tussah silk dissolves, yielding a yellowish solution

Iodine solution (1 grm KI, 100 c c $H_{\rm g}$ 0, and excess of iodine) 0.1 grm of the white fibre, purified as above with sodium carbonate, is treated with a few drops of iodine solution, the excess being removed by means of filter paper, hemp, flax, cotton, and artificial silk are coloured blackish brown (flax more intensely than hemp and unmercerised cotton reddish brown), wool and silk become orange-yellow and jute reddish yellow

QUANTITATIVE ANALYSIS OF MIXTURES OF TEXTILE FIBRES

It is often of importance for trade or fiscal purposes to determine quantitatively substances extraneous to textile fibres in order to ascertain their commercial weight. This is determined by means of the so called conditioning

In conditioning, which is now carried out officially, the moisture is estimated by drying in an oven with automatic regulation, and thus determining very exactly the amount of dry fibre (absolute weight) remaining after silk has been heated at 120° or wool and cotton

, 1

at 105° to 110° To obtain the commercial weight the absolute weight is increased by the normal moisture which the hygroscopic fibre absorbs from the air, this being fixed at 12 per cent for flax and hemp, 13.75 per cent for juic, 8.5 per cent for cotton, 18.25 per cent for combod wool, 17 per cent for spun and carded wool, and 11 per cent for sille (120°), also the amount of dressing in the fibre must be deducted. It is, however, to be noted that usually wool has only 11 per cent, silk 8.5 per cent, and cotton 7.5 per cent of moisture when in ordinary surroundings.

Dressing 5 grms, of the fabric are well washed with water, wrung out, boiled for 15 minutes in 150 c c of 0 1 per cent sodium carbonate solution, washed in water and rubbed—all the fibres being grasped—heated to boiling with 150 c c of 1 per cent HCl and kept on the steam bath for 15 minutes, again washed and rubbed, boiled for 15 minutes with distilled water, washed with cold water, pressed in a towel, washed two or three times with alcohol and two or three times with alcohol and two or three times with ether, dried in the air and then in an oven to constant weight

The loss in weight, after allowing for the moisture (see preceding determination) represents the dressing and colouring matter, the latter is almost always a negligible quantity, but in the case of black may be taken at about 0 3 per cent. of the weight of the pure fibre.

Mixed Cotton and Wool Fabric After the moisture and dressing have been determined, the actton may be estimated and the wool deduced by difference or vice versa. The cotton is determined by boiling 3 grms of yarn or fabric with 100 c c of 10 per cent caustic potash solution, the wool quickly dissolving, the residue is well washed with water, boiled for 15 minutes with distilled water, squeezed, washed with alcohol and with other, and finally heated at 100° to 105° until of constant weight, representing the dry cotton. In reducing this to percentage, account is taken of the moisture and of the dressing. If, however, the wool is to be determined directly and the cotton by difference, 3 grms. of the fabric are boiled for 15 minutes with 0.1 per cent sodium carbonate solution, riused in water, well wrung out in a towel and left for two hours in cold sulphuric acid of 58° B6, it is then washed in a large amount of water—care being taken that the remaining wool does not become heated—boiled for 15 minutes in distilled water, squeezed, washed with alcohol and with other, and dried at 100° to 105° until of constant weight, which represents the dry wool

Mixed Cotton and Silk Fabric — After the moisture and dressing have been determined (see above), the same piece of dried fabric is immersed for a minute in a boiling solution of zine chloride (60° Be) and washed first with water slightly acidified with HNO₀ and then with pure water until the wash water gives no zine precipitate with ammonium sulphide, the remaining cotton being washed with alcohol and with other and dried at 100° to 105° until of constant weight, the silk is calculated by difference—In the case of tussah silk, the action of the zine chloride is prolonged somewhat—In order that no loss may occur with a heavily weighted silk, the dressing is chiminated by means of sodium carbonate alone, treatment with hydrochloric acid being omitted

Mixed Wool and Slik Fabric The silk is dissolved in zine chloride and the residual wool weighed, the silk being determined by difference (see above)

Natural and Artificial Slik Fabric The natural silk is dissolved in Löwe's reagent (see above)

Cotton and Linen Fabric As a rule the different fibres can be separated by hand, but when this is not possible the cotton (after the moisture and dressing have been determined on the same piece of fabric) is dissolved by immersing the tissue for 1 to 2 minutes in concentrated sulphuric acid, the fibre is washed well with water—being rubbed meanwhile—then with water and aminonia, and again with water, the linen remaining being dried and weighed. The cotton is obtained by difference.

Different Artificial Silks Those from nitrocellulose (Chardonnot, Lehnor, etc.) contain traces of nitro derivatives and with diphenylamine and sulphure acid give a blue reaction, which is not shown by other silks. P. Maschner (1910) distinguishes different silks by treatment with concentrated H₂SO₄, that from nitrocellulose colours the liquid a faint yellow only after 40 to 60 minutes, ammoniacal copper exide silk is coloured yellow or brownish yellow immediately, while the liquid becomes brownish yellow after 40 to 60 minutes, viscose is at once coloured earmine-red, the liquid turning brown after 40 to 60 minutes. The fibres dissolve after about 20 minutes and then carbonise

DYEING AND PRINTING TESTS ON TEXTILE FIBRES

Of some importance are the tests which admit of the classification of colouring matters according to their basic, acid, neutral, or mordant character. To this end, dyeing or printing tests are made on a small scale with wool and cotton (see also p. 795 et seq.). Tosts made with colorimeters, which compare the intensities of coloration of solutions in tubes of equal lengths or vessels of equal thickness, are of little practical value. Hence to ascertain the dyeing power of any commercial product, the latter is compared with a standard colouring-matter by weighing out equal quantities (0.1 to 1 grin per litre of water) of the two, and dyeing equal weights of wool, cotton, or silk fabric with definite volumes of the more or less diluted solutions. The quantity of dye used is always referred to the weight of the fabric, independently of the dilution of the bath, this is especially the case with wool (0.1 per cent of the dye for pale colours and 2 to 4 per cent for dark colours). The dyeing tests are made on 1 to 2 grms of wool or cotton yarn or tissue in glass or procedain beakers of 150 to 250 c c capacity, these being heated in a bath of concentrated sodium sulphate solution or of glycerine giving a temperature of 101° to 102° in the dye bath (see Fig. 494)

If the bath retains much colour after the dyeing, a second portion of the textile is dyed without adding fresh dye. If the cotton is raw it must first be boiled for an hour in a 0.5 per cent. caustic soda solution, and then thoroughly rinsed with water. If light colours are used, the cotton is also bleached in calcium hypochlorite solution (less than 1° Bé) at 25° to 35° for an hour, washed with water, immersed in a 1 per cent sodium bisulphite bath

(antichlor), and well rinsed in water Wool, if impure, is heated at 60° for 10 minutes with a solution containing 0.5 per cent. of soap and 0.1 per cent of sodium car bonate, and then well rinsed with water Also silk, if not already discharged, is washed with hot soap solution.

The comparative dyoing tests should be made on equal quantities of textile fibre wetted uniformly before introduction into the dyeing bath. Silk is dyed like wool, but

the bath is made less and and the temperature rather lower Wool is dyod in an aqueous bath containing 10 to 15 per cent of sodium sulphate and 5 per cent. of sulphuric acid (or 6 to 7 per cent of sodium bisulphate—the German Weinsteinpreparat—in place of the sulphuric acid) calculated on the weight of fibre, the bath is stirred continually with a glass rod and heated gently to boiling, being kept slowly boiling for 20 to 30 minutes, the wool is then rinsed and dried either in the air or in a water oven. The above procedure is followed more especially for acid dyes, with basic dyes, one quarter of the amount of sulphure acid is sufficient. When wool is dyed with acid dyes, it is not increly necessary to add to the dye bath the quantity of sulphure acid required to liberate the acid residue of the dyo so that this can be fixed on the wool, but in order that the latter may be dyed intensely and well, 20 to 30 times the theoretical amount of sulphure acid must be added (E. Knecht, 1888) With mordant dyes, the wool is mordanted with 3 per cont. of potassium dichromate and 2.5 per cent of cream of tartar (on the weight of wool) and about 100 times the weight of water, heating gradually to boiling and maintaining this for nearly an hour, the water evaporated being gradually replaced, the wool is then rinsed and dyed in the dye bath, which contains a little acetic acid (1 per cent on the fibre), and is mixed continuously and brought slowly to the boil, boiling being maintained for about an hour

Knecht and Hibbert (1903-1905) determine the concentration of the colouring-matters in the different solutions by reduction with standard titanium trichloride solution, orystal violet, for example, fixes 2H, giving the colourless leuco derivative.

Cotton is dyed with substantive dyes in more concentrated baths (50 of water to 1 of cotton) containing 30 to 50 per cent. of sodium chloride or sulphate and 1 to 2 per cent of sodium carbonate (on the weight of fibre), this is heated slowly and kept boiling for 30 to 40 minutes, in general the bath is not exhausted and can be used for a second portion of cotton. In the case of sulphur colours, 20 to 30 per cent. of sodium sulphide are added to the bath and in some cases 2 to 3 per cent. of glucose, and during the dyeing the cotton is kept immersed and out of contact with the air. When basic colouring-matters are used the

cotton is previously mordanted with 2 to 4 per cent of tannin dissolved in water, being left in contact with this solution for 6 to 7 hours (overnight) at 50° to 60° (the tannin is fixed more slowly in the cold), the cotton is then wring, immersed for 10 minutes in a bath containing 2 per cent of tartar emetic (antimony potassium tartrate) at 40° , rinsed with water and dyed in the topid (30° to 40°) dye bath for 20 to 30 minutes

Dyong on a large scale is carried on under the same conditions, but the calculations are made on a longer time, and great precautions are taken in the moving of the fibre and in raising the temperature, so as to obtain uniformity. For dark colours, the tannin is fixed with ferric intrate instead of with tartal emotio. Industrial dyeing apparatus is shown more in detail later (p. 841)

PRINTING TESTS The object of printing is to colour the fabric or yarn in a definite pattern or with different colours, part of the fibre being possibly left unaltered. In the first rudimentary printing processes, the fabric was printed with resin or a kind of cement, the uncovered parts being dyed as usual and the preserving substance subsequently removed. It is now usually regarded as preferable to stamp, s.e., to print, on the fabric or yarn the colour mixed with thickening (gum, dextrin, gum tragacanth, etc.) by means of metal rolls on which the desired pattern is engraved. The engraved roll is coated with the pasty colour by rotating against a rubber or cloth roller (furnisher), one-half of which dips in a vessel containing the thickened colour, a knife (doctor) is arranged so as to scrape the excess of colour from the metal roll, and the yarn or fabric then passes over the latter under pressure. In order to fix the colour and prevent it from spreading, the fibre is subjected for 30 to 60 minutes to the action of steam at about 105° (see Fig 552, p 855) means the colour is fixed without unmersing the printed fibre. The latter is subsequently washed with an abundance of cold water (or with tepid soap and water), which removes all excess of colour and thickening agent In other cases similar effects are obtained by dyeing uniformly in the ordinary way and then printing on the dyed fabric reagents which decolorise (corrode) the dye at the points of contact. Sometimes other colours are introduced with the corroding agent, so that the white parts are dyed a lighter or darker shade or a different colour from the foundation.

A kilo of thickened colour for printing wool black—the wool having been previously subjected to slight chlorination to make it take up the colouring matter better (by immersion in a cold calcium hypochlorite bath at 0.5° BG, and then in very dilute HCl, washing, and drying)—may be obtained as follows 750 ord of water, 100 grms of gum, and 100 grms of British gum (dextrin) are heated in a jacketed vessel by means of indirect steam and kept well mixed, 60 grms of anthracite black E G and 10 grms of milling yellow O (and, in some cases, 8 grms, of acid authracene brown R) being added. When the paste is boiled uniform, it is allowed to cool, and before it is used a solution containing 80 c c of water, 120 c c of acotic acid (6° Bé), and 40 grms of sodium phlorate is well mixed in.

For printing cotton textiles, colours are used which form insoluble lakes with tannin or metallic exides, such are basic and mordant colouring matters (alizarin, etc.) The former are dissolved in sectic acid and tannin (or a solution of 50 parts of tannin, 50 of water, and 5 of tartaric acid) and the latter (alizarin, etc.) in chromium (or iron, aluminium, etc.) accetate, dextrin, gum, etc., being added in either case. Fabrics treated with tannin, after being steamed at the ordinary pressure and before being washed, are passed into a bath containing 5 to 10 grms. of tartar emetic per litre at 60°

FASTNESS TESTS The fastness of a colour is only relative and must be considered with reference to the purposes for which the dyed fibre is required, for example, it would be superfluous to require fastness against light in dyed fibres or fabrics to be used for undecelothing, linings, etc. The dyed specimen is mixed with similar undyed fibre and subjected to the following tests, as required. Mordanted colours answer all these tests fairly well, but in other cases more or less of the colour is given up

Fastness against Water The sample is immersed in 50 times its weight of cold water for 12 hours or for 1 hour in water at 60° to 70° (and is left to cool in the bath) and is then dried in the even. Note is taken of the colour assumed by the water and by the white fibre, especially where the latter comes into contact with the dyed fibre.

Fastness against Soap, Alkall, and Washing The skein of white and dyed fibre is immersed in 50 times its weight of an aqueous solution containing 10 grms of Marseilles soap and 10 grms of soda per litre. The bath is heated at 60° for 30 minutes and allowed to cool, the skein being then removed, well rinsed, and dried. The changes in colour of the bath and the white and dyed fibres are observed.

Fastness against Milling This test is carried out with a soap and soda solution, of double the above concentration, at 40°, the skein being continually rubbed between the hands for 30 minutes, and then well washed and dried in the oven Colours fast to milling should not soil the white portion of the skein and should give up only a minimal amount of colour to the bath

Fastness against Bleach If the colour is on wool or silk it is immersed in a 2 per cent sodium bisulphite bath and filed at the moment of using with a few drops of hydrochloric acid, and, after 30 minutes, washed and dried When the colour is on cotton, the test is made with a calcium hypochloric bath at 0.5° Bé for half an hour

Fastness against Scouring Indigo, Turkey red, and all basic dyes on cotton mordanted with tannin, even when dry, give up a little colour to a white handkerchief with which they are scoured. Other dyes should not soil the white.

Fastness against Acid The test is carried out for an hour with I per cent sulphuric acid at 60° to 70°

Fastness against Perspiration. In some cases this test is made with a 1 per cent accide acid solution for 30 immutes at 40°, the skein being dried at 60° under slight pressure, without runsing and after thorough rubbing. In others, an alkaline test is made—as in testing fastness against washing—but the unrinsed skein is subsequently sorubbed and dried at 60° under slight pressure.

Fastness against Ironing The dyed fabric or yarn is ironed with a very hot iron (130° to 140°), note being taken whether, after cooling and exposure to the air for 15 minutes the fabric resumes its original colour Many colours are changed by ironing hot, but return to their initial state in the cold

Fastness against Steaming The yarn is placed in a glass tube, through which steam at 110° is passed for two or three minutes.

Fastness against Light. One half of a skein of yarn or of a strip of fabric is tightly enclosed between two pieces of card, while the other half is left free, the whole is then hung in the open air exposed to the sun and weather. For pale colours, an exposure of at least two days, and for dark colours, one of at least four days, is necessary in summer, while in winter or in cloudy or rainy weather (the skein must be sheltered from rain), at least double or even treble these exposures are necessary. The covered and uncovered portions are subsequently compared.

Fastness of the Dressing against Rain A few drops of water are sprinkled on the fabric, especially finer woollen ones, and after exposure to the an it is noted whether the drops have left faint spots. In some cases the fabric is scratched with the thumb nail, a paler streak should not result. This test is not applied to cotton fabrics strongly dressed, since the nail will sometimes detach the dressing itself.

THEORY OF DYEING The phenomenon of dyoing was at one time thought to be due to the porosity and capillarity of fibres which were thus enabled to absorb and become impregnated with dyes. The possibility of chemical combination between the dye and the fibre was regarded as excluded, it being asserted that in such case the fibre would undergo marked change. The different colourng powers of substances were explained as due to different molecular magnitudes. Even at the beginning of last century, in Chevreul's time, these ideas prevailed, and only in the case of mordant dyeing was any chemical fixation of the dyestuff assumed Later on, Bergman, J Persoz, etc., arrived at a purely chemical conception of the phenomenon of dyeing, but when in 1885 substantive cotton dyestuffs of almost neutral character made their appearance, the chemical theory, which was based mainly on the basic or acidic nature of the dyestuffs, was in some degree shaken Many then accepted a new theory in harmony with the osmotic phenomena of solutions, the more readily because no definite and constant relation between the amount of fibre and that of dyestuff combined had been established. The chemical theory was and is still, however, upheld by many authorities on the subject, more particularly by Noelting, by Knecht, and by Vignon, who have pointed out that alloys form well characterised compounds which exhibit no definite chemical relations between the components and may be regarded as true solid solutions of one substance in excess of the other - Further, they were able to show that silk and wool, in combining with colouring matters, set free the acid united with the base of the dyestuff, this acid being found in the dye-bath. Also, with certain acid dyestuffs (s g , naphthol yellow), Knecht and Appleyard found a constant relation between fibre and dyestuff

Jacquemin asserts that if there were no question of chemical combination, the dry

dyed tissue should have the colour of the dry colouring matter, whereas it has the same colour as the dissolved colouring matter. Nietzki finds that with certain highly basic colours ($e\,g$, methyl green), wool cannot of itself displace the mineral acid of the colouring base, the addition of ammonia being necessary, while, with the same colouring matters the more markedly acidic silk is dyed without any addition.

An interesting fact, which supports the chemical theory, is that the base of resamline is colourless and becomes red (magenta) only when converted into a salt with HCl, a similar change is produced if wool is immersed in a colourless resamiline (base) bath, the wool being dyed red owing to the formation of a salt. If the dyeing is effected directly by resamline hydrochloride, the bath ultimately contains the hydrochloric acid which is displaced by the acid of the wool fibre (Jacqueinn and Knecht, 1888)

Moreover Richard (1888), Vignon (1890), and Nietzki (1890) showed that silk and also wool are active both towards acids and towards bases, so that in chemical characters they are comparable with the ammo acids. The fibre may even be replaced by albumin, which is dyed by the same dyestnifs as wool, etc.

According to W. Suida (1997) the dyeing of wool is accompanied by liberation of the base of the dyestuff which combines (or forms salts) with the textile fibre, the latter functioning as a polybasic acid in virtue of its guantidyl and immazole groups. Also Vignon showed that when wool and silk are dyed with basic or acid colouring matters heat is developed, so that the dyeing may be regarded as a true, exothermic chemical reaction. According to Vignon cotton is not dyed directly by basic or acid dyestuffs (which are usually salts) since it has not the reactive force to decompose them, but if it is previously exidised or aminated, it fixes these dyestuffs partially with development of heat. Further, the difference in fastness against light of the same colouring matter (e.g., methylene blue) fixed on cotton (with tannin) and on wool or silk would appear to favour the chemical hypothesis of the phenomenon of dyeing

In 1889 O N Witt advanced a new theory, which explains also the dyong of cotton with substantive and mordant dyes. According to Witt, dyong consists merely of a solution of the colouring-matter in the fibre, analogous to that of solution of coloured metallic oxides in glass, so that the colouring matter passes from a liquid solvent (dyobath) to a solid one—the fibre itself—just as occurs with alloys or in the extraction with ether of a substance dissolved in another solvent in which it is less soluble than in other—assuming that the two solvents are mutually insoluble.

Dyeing on mordants is similarly explained as due to the solvent properties of the fibres for the metallic salts, these then fixing the colouring matter from the dye bath. The dyeing of cotton with substantive dyestuffs is regarded as the result of the marked solvent power of cotton (cellulose) for these dyes. In support of his theory, Witt cites the fact that silk dyed with magenta gives up its colour to alcohol, which is a better solvent for magenta than is silk, while if the alcohol is then diluted with water, the colour is again fixed by the silk

To this observation Knecht (1902) made the reply that, with substantive colouring matters lanuguio and serioine acids form insoluble lakes, $i\,c$, true compounds, while with magenta they form lakes soluble in alcohol, it is therefore to be supposed that the magenta extracted by Witt with alcohol is in reality the soluble lake formed by the magenta with the components of the fibre—Rosenstiell (1804), Reisso (1806), and Gillet (1808), after various quantitative dyeing tests, decided in favour of the chemical hypothesis.

In 1894-1805 Georgievies advanced a number of arguments in favour of a purely mechanical theory of dyeing (his predecessors of a century earlier being Hellot and Le Pilein d'Apligny, and those of more recent times Walter Crum, Spohn, and Hwass). Comparing the latter with occlusion of gases by solids or with the mechanical fixation of dyes on sand or on powdered charcoal, etc., he maintained that colouring matters fixed on fibres have the same properties as those not so fixed, and that there can hence be no question of a chemical reaction (but see above, Knecht's experiment), since some dyestuffs fixed on fibres can be separated by mere sublimation, while in other cases (with methylone blue and indigo carmine) the coefficient of distribution of the colouring-matter in the fibre and in the solution is constant. According to Krafft (1899), dyeing generally consists in a deposition, on or in the fibre, of adhesive and resistant colouring salts in the colloidal state.

Biltz (1905) has succeeded in producing true dyeing phenomena by replacing the textile fibre (cotton) by aluminium hydroxide or other hydroxides which behave as hydrogels

(see Vol I, p 106) towards the colouring matter, which is regarded as a colloid (hence purpurine and sulphur dyes). Freundlich and Losev (1907) have shown that carbon not only fixes colouring matters but decomposes basic colouring matters, fixing the coloured base in the colloidal state and leaving the acid in solution, in the same way as happens with wool or silk. Knecht has recently (1909) found that the amount of colouring matter fixed by charcoal is related to the quantity of introgenous matter remaining in the charcoal even after ignition, so that here a true chemical reaction occurs, this investigator has also shown that colouring matters cannot be regarded as colloids, since they are electrolytes and diffuse through membranes

In 1909 Dreaper and Davis demonstrated that basic colouring matters are fixed in constant quantity on calcined sand, and in increased quantity if the dye solution contains sodium chloride. Rosenstiehl assumes that the phenomenon of dyeing is explainable by the cohesive force between the colouring-matter and the textile fibre, this force varying with the liquid or gaseous medium in which the dyeing takes place and depending on or being produced by the esmetic pressure of this medium.

According to Miller (1909) dyeing may be regarded as a phenomenon of *cultur pison* of the colouring matter by the colloid, se, the textile fibre. There is honce not chemical combination, but fixation under definite conditions (of moisture and temperature)

Merocrised cotton fixes colouring matters better on account of its more marked colloidal character. The process of fixation or adsorption may also be reversible and all the phonomena of direct dyoing depend on the relative coefficient of adsorption of the colloid (fibre) for the colouring-matter. Freundlich and Losev and Pelet Johnet attribute dyoing to adsorption, because the fixation of the colouring matter from solution by any textile fibre obeys the formula, $\frac{x}{m} = K$. C $\frac{1}{n}$ (where $\frac{x}{m}$ denotes the ratio between the quantity of colour

absorbed and the weight of the textile fibre, K and $\frac{1}{n}$ are constants, and C indicates the final concentration of the colouring matter), which also regulates the adsorption of gases by solid substances and that of various dissolved substances by animal charcoal. It cannot, however, be denied that certain limited chemical processes also correspond with this formula, and that many phenomena accompanying dyeing are most simply explained chemically

Indeed, W J Müller and Slassarski (1910), by means of experiments on the dyeing of artificial silk, show that the absorbed colour varies in quantity with the chemical properties of the cellulose (raw, exycellulose, hydrocellulose)

Every hypothesis is supported by some experimental fact, and it would seem that, seconding to the nature of the fibre, of the colouring matter, and of the dyoning process, the phenomenon is explainable either on purely physical or on purely chemical grounds, but more generally on both

O Weber (1891, 1899) and Gnehm (1898) explain the various phenomena of dycing in the following way (1) Dyeing on mordanted cotton is due to the formation of lakes between the colouring matter and the mordant promputated mechanically on the cotton. (2) Azo-colouring matters formed directly on the fibre (see p 781) or pigments held by it (ultramarine, cinnabar, ochre, Guinea green, etc.) are merely precipitates deposited mechan cally in the pores of the fibre. (3) The direct dyeing of cotton with substantive dyes consists in dissolution of the colouring salt in the cell juice, and the marked fastness against washing of these colours on cotton is due to their slow diffusion with the juice (Müller-Jacobs and Weber) (4) Dycing of tannin-mordanted cotton with basic or indigo colours is a true mechanical occlusion (5) Direct dyeing of wool and silk and other animal fibres with basic or acid colouring matters is due partly to mechanical absorption, and partly to chemical combination, of the colouring matter by the fibre. (6) The dyeing of mordanted animal fibres is explained by the formation of insoluble lakes, partly by the mordant fixed chemically by the fibre, and partly by that fixed mechanically within the fibre, but is never caused by combination of the unchanged fibre with the colouring matter

Pelet-Jolivet's colloidal theory of electric contact, based on Perrin's law of contact electricity also finds support. According to this theory the fibre in an alkaline bath is negatively charged and the basic colouring matter positively, neutralisation of the charges resulting in precipitation (adsorption) of one colloid on the other (the colouring matter being assumed to be colloidal). In dyeing with acid dyestuffs, the fibre becomes positively charged by addition of acid to the bath and adsorbs the negative acid colouring matter.

dyed tissue should have the colour of the dry colouring matter, whereas it has the same colour as the dissolved colouring matter. Nietzki finds that with certain highly basic colours (eg, methyl green), wool cannot of itself displace the nineral acid of the colouring base, the addition of ammonia being necessary, while, with the same colouring matters the more markedly acids silk is dyed without any addition.

An interesting fact, which supports the chemical theory, is that the base of resaniline is colourless and becomes red (magenta) only when converted into a salt with HCl, a similar change is produced if wool is immersed in a colourless resamble (base) bath, the wool being dyed red owing to the formation of a salt. If the dyeing is effected directly by resamiline hydrochloride, the bath ultimately contains the hydrochloric acid which is displaced by the acid of the wool fibre (Jacquemin and Knecht, 1888)

Moreover Richard (1888), Vignon (1890), and Nietzki (1890) showed that alk and also wool are active both towards and towards bases, so that in chemical characters they are comparable with the amino acids. The fibre may even be replaced by albumin, which is dyed by the same dyestuffs as wool, etc.

According to W Suida (1907) the dyeing of wool is accompanied by liberation of the base of the dyestuff which combines (or forms salts) with the textile fibre, the latter functioning as a polybasic acid in virtue of its guanidyl and immazole groups. Also Vignou showed that when wool and silk are dyed with basic or acid colouring matters heat is developed, so that the dyeing may be regarded as a true, exothermic chemical reaction. According to Vignou cotton is not dyed directly by basic or acid dyestuffs (which are usually salts) since it has not the reactive force to decompose them, but if it is previously exidused or aminated, it fixes these dyestuffs partially with development of heat. Further, the difference in fastness against light of the same colouring matter (e.g., methylene blue) fixed on cotton (with tanuin) and on wool or silk would appear to favour the chemical hypothesis of the phenomenon of dyeing

In 1880 O N Witt advanced a new theory, which explains also the dyeing of cotton with substantive and mordant dyes. According to Witt, dyeing consists merely of a solution of the colouring matter in the fibre, analogous to that of solution of coloured metallic oxides in glass, so that the colouring matter passes from a liquid solvent (dye bath) to a solutione—the fibre itself—just as occurs with alloys or in the extraction with other of a substance dissolved in another solvent in which it is less soluble than in other—assuming that the two solvents are mutually insoluble

Dyeing on mordants is similarly explained as due to the solvent properties of the fibres for the metallic salts, these then fixing the colouring matter from the dye bath. The dyeing of cotton with substantive dyestuffs is regarded as the result of the marked solvent power of cotton (ceilulose) for these dyes. In support of his theory, Witt cites the fact that silk dyed with magenta gives up its colour to alcohol, which is a better solvent for magenta than is silk, while if the alcohol is then diluted with water, the colour is again fixed by the silk

To this observation Kneolit (1902) made the reply that, with substantive colouring-matters languing and serioinic acids form insoluble lakes, i.e., true compounds, while with magenta they form lakes soluble in alcohol, it is therefore to be supposed that the magenta extracted by Witt with alcohol is in reality the soluble lake formed by the magenta with the components of the fibre—Rosenstichl (1894), Reisse (1896), and Gillet (1898), after various quantitative dyeing tests, decided in favour of the chemical hypothesis

In 1894–1895 Georgievies advanced a number of arguments in favour of a purely mechanical theory of dyeing (his preducessors of a century earlier being Hollot and Le Pileur d'Apligny, and those of more recent times Walter Crum, Spohn, and Hwass). Comparing the latter with occlusion of gases by solids or with the mechanical fixation of dyes on sand or on powdered charcoal, etc., he maintained that colouring matters fixed on fibres have the same properties as those not so fixed, and that there can hence be no question of a chemical reaction (but see above, Knecht's experiment), since some dyestuffs fixed on fibres can be separated by mere sublimation, while in other cases (with methylene blue and indigo carmine) the coefficient of distribution of the colouring-matter in the fibre and in the solution is constant. According to Krafft (1899), dyeing generally consists in a deposition, on or in the fibre, of adhesive and resistant colouring salts in the colloidal state.

Biltz (1005) has succeeded in producing true dyeing phenomena by replacing the textile fibre (cotton) by aluminium hydroxide or other hydroxides which behave as hydrogels

(see Vol I, p 106) towards the colouring matter, which is regarded as a colloid (benzo purpurine and sulphur dyes). Freundheh and Losev (1907) have shown that carbon not only fixes colouring matters but decomposes basic colouring matters, fixing the coloured base in the colloidal state and leaving the acid in solution, in the same way as happens with wool or silk. Knecht has recently (1909) found that the amount of colouring matter fixed by charcoal is related to the quantity of nitrogenous matter remaining in the charcoal even after ignition, so that here a true chemical reaction occurs, this investigator has also shown that colouring matters cannot be regarded as colloids, since they are electrolytes and diffuse through membranes

In 1909 Dreaper and Davis demonstrated that basic colouring-matters are fixed in constant quantity on calcined sand, and in increased quantity if the dye solution contains sodium chloride. Rosenstiehl assumes that the phenomenon of dyeing is explainable by the cohesive force between the colouring matter and the textile fibre, this force varying with the liquid or gaseous medium in which the dyeing takes place and depending on or being produced by the osmotic pressure of this medium

According to Müller (1909) dyoing may be regarded as a phenomenon of *ideorption* of the colouring matter by the colloid, i.e., the textile fibre. There is hence not chemical combination, but fixation under definite conditions (of moisture and temperature)

Mercerised cotton fixes colouring matters better on account of its more marked colloidal character. The process of fixation or adsorption may also be reversible and all the phenomena of direct dyeing depend on the relative coefficient of adsorption of the colloid (fibre) for the colouring matter. Freundlich and Losev and Pelet Johnet attribute dyeing to adsorption, because the fixation of the colouring matter from solution by any textile fibre obeys the formula, $\frac{x}{m} = K$. C $\frac{1}{n}$ (where $\frac{x}{m}$ denotes the ratio between the quantity of colour

absorbed and the weight of the textile fibre, K and $\frac{1}{n}$ are constants, and C indicates the final concentration of the colouring matter), which also regulates the adsorption of gases by solid substances and that of various dissolved substances by animal charcoal. It cannot, however, be denied that certain limited chemical processes also correspond with this formula, and that many phenomena accompanying dycing are most simply explained chemically

Indeed, W J Müller and Slassarski (1910), by means of experiments on the dyeing of artificial silk, show that the absorbed colour varies in quantity with the chemical properties of the cellulose (raw, oxycellulose, hydrocellulose)

Every hypothesis is supported by some experimental fact, and it would seem that, according to the nature of the fibre, of the colouring matter, and of the dyeing process, the phenomenon is explainable either on purely physical or on purely chemical grounds, but more generally on both

O Weber (1891, 1899) and Guehm (1898) explain the various phenomena of dyeing (1) Dyeing on mordanted cotton is due to the formation of lakes in the following way between the colouring matter and the mordant precipitated mechanically on the cotton. (2) Azo-colouring matters formed directly on the fibre (see p 781) or pigments held by it (ultramarine, cunnabar, ochre, Guinea green, etc.) are merely precipitates deposited mechancally in the pores of the fibre. (3) The direct dyeing of cotton with substantive dyes consists in dissolution of the colouring salt in the cell juice, and the marked fastness against washing of these colours on cotton is due to their slow diffusion with the juice (Müller Jacobs and Weber) (4) Dyeing of tannin mordanted cotton with basic or indigo colours is a true mechanical occlusion. (5) Direct dyeing of wool and silk and other animal fibres with basic or acid colouring-matters is due partly to mechanical absorption, and partly to chemical combination, of the colouring matter by the fibre. (6) The dyeing of mordanted animal fibres is explained by the formation of insoluble lakes, partly by the mordant fixed chemically by the fibre, and partly by that fixed mechanically within the fibre, but is never caused by combination of the unchanged fibre with the colouring matter.

Pelet-Johvet's colloidal theory of electric contact, based on Perrin's law of contact electricity also finds support. According to this theory the fibre in an alkaline bath is negatively charged and the basic colouring matter positively, neutralisation of the charges resulting in precipitation (adsorption) of one colloid on the other (the colouring matter being assumed to be colloidal). In dyeing with acid dyestuffs, the fibre becomes positively charged by addition of acid to the bath and adsorbs the negative acid colouring matter.

. . .

As regards the *mordanting* of wool, it has been shown that when this is boiled with motallic salts, it fixes not only the basic part but also the acid part of the salt (only of unstable salts, eg, sulphate of Al, Cr, Cu, or Fe, and not sodium sulphate or chloride), the latter part is eliminated to some extent by water, but the basic part is fixed more stably

MACHINERY USED IN DYEING AND FINISHING TEXTILES

The limits of this treatise do not allow of the inclusion of a complete description of all the machinery used in works where textile fibres are dyed and finished. We shall hence

confine ourselves to illustrating some of the principal

washing, dyoing, and dressing machines

WASHING AND PREPARATION At the dye house, textile fibres arrive oither raw (cotton and wool in flock) or combed (wool in skeins or tops) or spin in skeins or on hobbins (wool, cotton, silk), or more commonly woven in pieces 30 to 100 metres long and 00 to 140 cm wide (woollen, cotton, silk, or mixed fabrics)

Wool is sometimes supplied free from its natural fat (see p 805) but, whether as fabric or as yarn, contains the fat or dressing used in weaving or spinning

Cotton is still in the raw state, and, in order that the colouring matter may be fixed well it is subjected to energetic boiling under slight pressure with water and with soda. With either flook or skein cotton, this treatment is carried out in large, closed, iron or copper boilers (Fig 495), provided with pumps or steam-injectors for circulating the liquid, the textile material not being moved as it might be damaged. As a rule the boiler is either evacuated or freed

from air by a current of steam, since air damages the fibre owing to formation of oxycellulose, and also gives dark lye, along with the caustic soda, vigorously frothing soap (from castor oil, for example) is intro-

duced.

The washing of cotton goods to rid them of the starch with which the woft was charged for weaving purposes was at one time carried out by heating them with milk of lime, but better results are obtained by heating with dilute caustic soda solution in an autoclave under steam pressure. Nowadays the goods are often passed through a lukewarm bath of diamalt or diastofor (malt extracts rich in diastase) and left in heaps overnight, the starch being thus transformed into soluble dextrin and maltose. The latter products are removed by thorough rinsing in water the material passes between the two rollers A and B (Fig. 496) into the water, round the roller C, up between A and B, down again and so on until it reaches the middle, where it is removed, together with a similar piece introduced at the other end of the machine, the pieces of material are tied end to end and passed

F10 496

through this washer in a continuous length, an abundant supply of water enters the vessel at D and is drawn off through another pipe.

When washed the goods are soured with a solution of sulphurle and (0.5° Bé.), either cold or tepid (with the latter the action is very rapid, even with more dilute acid), the pieces may be tied together in cords and passed through this solution (see Fig. 496) Bleaching is then effected in a clear chloride of lime bath (0.5 to 0.75° Bé), this occupies some hours in the cold, or, if the liquid is lukewarm, the material may be passed continuously

through it as before Then follows runsing and treatment with antichlor (sodium bisulphite)

Skeins of cotton yarn may also be bleached with chlorido of lime in an apparatus with automatic orioulation of the liquid, as is shown in Fig. 495, while the rinsing may be effected in rotating machines (Fig. 497), where each skein rotates on a wheel and all the reels i otate

horizontally in a circulation vessel, a water spray being used mean while.

According to Pick and Erban

Fm 497

108

cotton may be bleached in the cold, without preliminary boiling with alkali, by means of sodium hypochlorite solution mixed with sulphoriemate, in this way, the strength of the fibre is retained better, while time is saved (Ger Pat 176,609) of 1906) Cotton or cotton and wool fabrics may be bleached by passing them repeatedly into a sodium permanganate bath (0 6 to 0 7 per cent. of the permanganate on the weight of fibre) until

the bath is almost decolorised and the fibre turned brown, then into a sodium sulphite or

F10 500

sodium nutrate bath (0 6 to 0 7 per cent. on the fibre) and finally into sulphuric acid (4 per cent. on the fibre)

The Washing of skeins of wool yarn in a tepid bath (50° to 60°) is carried out by passing the skein for a minute between two rolls (Fig 498), then twisting the skein and again squeezing it Subsequent thorough washing with water-in the vessel shown in Fig 497, for example—renders the skein of wool ready for dyeing. In all these operations and in those which follow, woollen yarns are treated with greater care than cotton ones, it being necessary to manipulate, press, and sub them as little as possible and only-very slowly, in order to avoid felting

Bleaching of washed woollen yarns or fabrass (wrung out uniformly by means of centri-

fuges see p 560) by sulphuring is effected by stretching them out on rods in tightly closed chambers in which sulphur has been previously burnt in a cup situate in an angle heated

by a furnace outside. Here the wool is left overnight, and in the morning the windows are opened and the wool dried and deodorised in the air. The amount of sulphur burnt is 2 to 3 per cent on the weight of the wool, or less if the chamber is a small one, and deficiency of air is maintained in order to avoid sublimation of the sulphur and its deposition as a yellow powder in the wool.

Bleaching with Hydrogen Peroxide, is carried out in the cold or at a gentle heat, and for wootlen yarn, paraffin waxed wooden vessels, or, better, coment troughs, are used. Wootlen or silk fabries are wound into a vessel similar to that used for dyeing (see later), or, better, on a ligger (see later). The bath is prepared by diluting commercial 10 to 12 vol.

Fig 501

 $H_a^iO_a$ with 8 to 10 times its volume of water, and rendering it slightly alkaline with ammona (see Vol. I, p. 267). After use the bath is preserved by additioation with sulphure acid.

Fra 502

More commical bleaching is obtained with sodium peroxide, which, however, must be used with great caution (see Vol 1, p 553), better results are obtained with sodium perborate (see Vol 1, p 605) in a bath containing, say, 200 litres of water, 600 grms of sulphurle sold of 66° B6, and 1 8 kilo of sodium siliente at 40′ Bc

Fra. 503

Washing of Woollen Fabrics is carried out in various ways. A number of the pieces, the two ends of each being tied together, are wound round in a trough fitted with a pair of pressure rollers, A and B (Figs. 490, 500), and containing hot soap and sode solution Beneath the rolls is a wooden channel, C, to collect the expressed liquid, which for some time is allowed to run back through r, but when dirty is run off outside. Thorough runsing with water is carried out in the same vessel. It must be noted that almost all washing

and dyeing machinery is fitted with arrangements for obtaining different velocities of the moving parts, with pipes for water and steam, etc

Very heavy woollen fabries are more easily washed at their full width in vessels (Fig. 501) similar to the preceding, but the lighter ones are most conveniently dealt with by joining the pieces end to end so as to form a single piece, which is treated in the machine shown in Fig. 502, and, in diagrammatic section, in Fig. 503. This is furnished with three pairs

of rolls, A, B, and C, which press the pieces in their passage from one vessel to the next, while a slow current of water enters at R and takes a zigzag course through the succeeding vessels, a little scap and soda solution is gradually added in vessels 1, 2, and 3, which are heated by steam pipes, while the dirty water is discharged continuously from S

For making certain articles, woollens must be subjected to Milling, which transforms them into more or less close cloth.

When the pieces are rolled up, moistened with soap solution, and then continually

Fra 506

compressed and rubbed together, the wool is felted and cloth formed in the course of a few hours. The milling machine in which this is effected is shown in Figs. 504 and 505 material is taught between the three wooden rollers, A, B, and C, which compress them and force them into the wooden channel, R S, where the pressure of the plate, R, may be increased by the spring, A, the expressed liquid collects in the channel, E, and is at first returned but later discharged If any knots were formed they would stick at P and raise a spring, T, thus stopping the driving belt. With certain heavy fabrics already soaked with oleine,

miling is carried out with addition of a little soda solution, which saponifies the oleic acid. In some cases dilute sulphuric acid is used, but better results are apparently obtained with 1 per cent lactic soid solution, the wool then retaining greater lustre and elasticity (G Ita, Ger Pat 236,153 of 1910)

Some fabrics which are required to take bright designs and a very smooth and shiny surface (tain, etc.) are freed from the down always accompanying textile fibres—especially after washing, etc.—by passing them, quite taut, quickly over a row of gas-jets (or over a sheet of heated copper or a strip of metal heated electrically) which burn the hair on the

face and sometimes on the reverse of the fabric too (see Fig. 506, where the gas jets run horizontally from A and B)

The removal of cotton fibres or bits of vegetable matter (which would become more

noticeable after dyeing) from weollens may be effected by hand, but is more commonly attained by Carbonisation. In this the fabric is impregnated uniformly with sulphure acid of about 4° Bé. (or aluminium chloride solution), centrifuged and heated at 125° to 135°

—being passed at width either over a series of tinned sheet iron or copper rollers (similar to those used for drying woven goods after dyeing) through which steam at 2 to 3 atmos is passed (see Fig 531, p 848) or else slowly through a large oven heated with hot air or with branched pipes fed with steam under pressure (see Fig 507). In this way all the

vegetable fibres are momerated or carbonised and are eliminated in the subsequent souring, which occupies an hour and is effected by means of a large quantity of water in the washing vessels already described (Figs. 499, 500)

As has been mentioned, woollen fabrics exhibit a tendency to felt and shrink, and these

Fig 500

actions may become very pronounced during dyeing, when the material is kept moving in boiling baths for two or three hours. In order to avoid these changes, which likewise often spoil the design, the fabric is subjected to fixing, which consists in heating it in a stretched condition in vigorously boiling water, i.e., at a temperature rather higher than any it will experience in subsequent operations, scalding of the fibres in this way causes

partial loss of their elasticity and power of contraction, and the fabric shrinks less during dyeing. Light fabrics are fixed in the so called revolver machine (Fig. 508), in which the material is wound in compact rolls on reels dipping into a vessel of water kept briskly boiling, each reel may have six rolls and one reel is arranged in each of two adjacent vessels. The axis of each reel revolves during the winding, and when the first reel has received the first six rolls, the first roll begins to unwind to form another on the second reel, so that the part of the fabric which was peripheral on the first roll becomes central in the roll of the second reel. This procedure prevents any subsequent irregularity of colouring

owing to the more ready and more intense fixation of the dye on the parts subjected to the most prolonged action of the boiling water — Each roll may contain from 100 to 300 metres of fabric, which is fixed in about an hour

Certain heavy woollens with a satin surface (and also mixed wool and cotton goods—unions—or cotton goods with a satin foundation) are fixed, and at the same time furnished

Fia 511

with a lustre which persists even after dyeing, by so called crabbing machine in which this is carried out consists essentially of two or three pairs of superposed heavy rolls of solid iron (Figs 500, 510) One half of the lower roll of each pair dips into a long narrow vessel of water kept boiling by direct steam The stretched, smooth cloth is wound in compact rolls on the lower roll, and is then allowed to revolve for 30 to 40 minutes in the boiling water, being pressed by the upper roll, which revolves freely and can be weighted by means of levers The fabric then passes to the lower roller of the adjacent vessel and so on

DYEING Cotton and wool in flook were at one time dyed by immersing

them—in cloth or net—in open wooden vessels containing the hot dye-bath. Use was afterwards made of mechanical apparatus similar to that shown in Fig. 495, where the material remains stationary on a false bottom, below which the liquid is drawn off and pumped to the top

It was, however, often found that the liquid did not pass uniformly through the whole of the fibre but went more easily through that which was least compressed and which contained channels, thus producing irregular dyong Almost universal use is now made of

mechanical apparatus similar to the above, but with the fibre highly compressed (see Fig 511) In this case the pump, which must be more powerful, causes complete penetration of the liquid, and much better results are obtained Skeins of yarn can also be dyed in this apparatus when they are well compressed. After the discharge of the dye bath (kept, if required, for a subsequent operation), the dyed fibre may be washed in the same vessel.

To dye combed wool (tops) wound on to bobbins by suitable machines (Fig 512), very general use is made of Obermaier mechanical apparatus of the revolver type in which the public are arranged in as many horizontal, cylindrical cases fitting into a vertical cylinder closed at the top and communicating below with the pipe of a pump, which it fits exactly (Fig 513), the mode of action is shown clearly

F10 512

by the figure. A more simple apparatus which carries larger charges and is largely used also for yarn on hobbins with crossed thread, is that of Halle shown in Fig. 514, where may be seen the false bottom supporting the bobbins, the pump for circulating the dye solution and the perforated cover pressed down by vertical screws. In these mechanical apparatus it is always possible to reverse the sense in which the liquid circulates, homogeneous dyeing being thus more easily obtained.

With skeins of spun fibre, various methods of dyeing are in use in the old method, still largely used, the skeins are threaded on smooth round sticks so that one half of the skein is immersed in the dye-bath, the skeins being turned or inverted on the stick from time to time by hand (see Fig. 515). The form of the wooden vessel is now simpler, as is seen

from Figs 516 and 517, showing the perforated false bottom below which are the direct or indirect steam pipes for heating the bath, and the perforated wall, P, outside of which the colour is gradually added so that it may not come into immediate contact with the neighbouring skeins.

A mechanical apparatus for dyoing skems is shown in Fig. 518. The skems are threaded

Frg 513

on rods which are rotated by toothed wheels, while the whole frame can be raised from or lowered into the bath by a toothed rack. Still better is the Klauder-Weldon revolving apparatus shown in Figs 519 and 520 on a large bronze wheel, one half of which dips into a trough while the other half is covered, are fixed axial and peripheral rods, which keep the skeins taut The wheel revolves slowly in the dye bath, and the pegs, b, at the ends

Frg 514

of the peripheral rods knock against an iron striker inside the trough, so that the rods revolve slightly each time, hence the skeins threaded on them are moved a few centimetres. Two workmen suffice for the charging and discharging of 100 to 200 kilos of wool or cotton, while during the dyeing one man can look after three or four of these machines, adding the necessary colour now and then by means of the copper funnel Δ

The steam for heating the bath reaches the bottom of the trough by the tube d At s is an automatic indicator which shows when any particular peripheral rod does not turn

owing to the skem being caught. The rapidity of revolution may be altered, but, as a rule, the movement is slow in order that the wool may not be felted

In recent years a happy solution has been found to the problem of dyeing cotton or woollen yarn while still wound on the tubes of the

of which the air or liquid was pumped, the bath being hence circulated from the interior to the exterior of every bobbin and vice versa (Figs. 521, 522). There are various other arrangements, but recently a good reception has been everywhere accorded to an apparatus devised by De Keukelaeres of Brussels. This compresses the skeins or bobbins in a square iron or copper case on to a perforated false bottom, while, before the case is covered with a perforated metal plate, the yarn is covered with sea sand, which is forced into all the pores of the mass

spinning machine as spools or *cops*, thus avoiding the winding into skeins and preserving the fibre better. At first the perforated tubes of the bobbins were inserted in drums which rotated in the bath and from the interior

not occupied by fibre by means of a water jet. The cover is then fitted and sorewed tight, and the bath circulated through the mass of yarn by means of a pump capable of developing considerable pressure, the liquid may circulate from bottom to top and vice

versa and, finding no channels open, is obliged to traverse the fibre uniformly When the dyeing is finished, it suffices to place the bobbins in a perforated basket and to shake this in a vessel of water to separate the whole of the sand, which collects at the bottom of the vessel and can be used again.

For dyoing skeins of cotton with Turkey red, which is the fastest red for cotton, the latter must be prepared and mordanted. It is not bleached with chlorine but is boiled with a caustic soda solution (0.75° Bé.) under pressure (2 atmos) for 4 to 5 hours. When washed, the skeins of cotton are passed repeatedly into a bath of neutralised ammonium sulphoridinate (20 kilos of 50 per cent. strength per 100 litres of water,

Frg 517

see p 390), this operation is readily done with a suitable machine (Fig 523), which is fitted with ingenious contrivances for pressing, wringing, untwisting, and immersing the skeins in the sulphoricinate bath repeatedly and automatically When thoroughly soaked, the skeins are dried at 50° to 60°, then steamed under an excess pressure of 0 5 atmos. In an autoclave for an hour, and afterwards passed into the mordanting bath, consisting of a

base alumnium sulphate solution (7° Bé) at 45° (with an iron mordant, a violet colour is obtained instead of red, with one of tin an orange colour, and with one of chromium a reddish brown colour, but these mordants are rarely used in practice), they are subsequently dried at 45°

Use is often made next of a tepid bath consisting either of a little chalk suspended in

Fig 518

water or of sodium arsenate, to remove any sulphoneimate not stably fixed, and hence to give subsequently a brighter colour. After this preparation, the skeins are passed into the dye bath (10 to 15 per cent of alizarin paste, calculated on the weight of cotton) contained in wooden vats and heated by tinned copper steam coils, the temperature is first kept at 25° for an hour and is then raised in 30 minutes to 65° to 70°, the goods being manipulated for an hour. The dyed skeins are dried and are often introduced, without washing, into a

Fig 510

second sulphoriemate bath, being then steamed for an hour in an autoclave at 1 atmos., the colour is not very bright but is made so by immersing the material for helf an hour in a 0.5 per cent scap solution heated under slight pressure (0.5 to 0.25 atmos.) Thorough washing with water is followed by drying at a gentle heat. Although Turkoy red is removed to a small extent if the material is secured with a white fabric, yet it is the fastest red against washing and light now prepared on cotton. Kornfeld (1910) regards the fastness of Turkey red as due, not to the constitution of alizarin, but rather to the formation of a highly resistant double salt of aluminum cleate and the calcium salt of alizarin, and still more to the polymerisation of the fatty and molecules under the action of steam

According to a patent by Kornfeld, Turkey red dyeing may be carried out in the usual

mechanical apparatus with circulation of the bath, the alizarin being rendered soluble by means of sucrate of line.

Cotton Fabrics are sometimes dyed in ropes with vessels similar to those used for wool (see later), but more usually in the so called jujger (Fig 524), which is a rather shallow wooden trough provided with two outside rollers worked alternately by gearing so as to wind or unwind the pieces (3-4), the latter are sewn end to end and are kept quite taut,

Fro 520

and pass below two small rollers close to the bottom of the trough. The dye solution in the bath may be heated at will by direct or indirect steam

The jugger is often used also for dyeing unions, i.e., fabrics composed of cotton warp and wool weft, since these do not cookle or wrinkle, as all-wool goods would do, when passed under tension from one roll to another

Woollens are usually dyed in wooden vessels provided with one or two reels which raise the goods in ropes from the front part of the vessel and drop them into the bath,

Fra 522

the inclined wall at the back forcing them in folds on to the bottom of the vessel itself (Figs 525, 526)

In some cases the velocity of rotation of the reels can be varied at will, being accelerated at the moment when the colour is introduced into the perforated compartment which admits of its gradual passage into the whole of the bath. The perforated steam pipe also passes into the bottom of this compartment and is so arranged that the steam does not strike against the pieces, as this would result in irregular dycing. The velocity of the reel must not be too high (20 to 50 cm per second), as otherwise the wool would felt and the bath cool too rapidly. When the pieces are introduced into the vessel, one end is thrown over the reel and then stitched with twine to the other end (see Fig. 526). In some cases the materials (e.g., cashmeres) are twisted, by the movement in the trough, into very thin

cords, into which penetration of the colouring matter is difficult and irregular, in order to avoid these disadvantages, such fabrics are first folded in two lengthwise and the solvedges then statched together

During the dyeing operation, the dyer outs off small samples of the fabric from time to time, washes them, dries them in a warm towel and compares them with a specimen, so that fresh addition of colour may be made where necessary. Such fresh colour is dissolved

Fra 523

apart in a wooden bucket in a few litres of the hot dye bath, the solution being always passed through a very fine han sieve to ramove granules of undissolved dye, which would spot the material, the steam cook is closed while the new dye is being gradually added

The dyeing of woollen fabrics is commenced with a bath of topid water (40° to 50°) with the addition of 10 to 15 per cent of crystallised sodium sulphate and 2.3 per cent. of concentrated H_2SO_4 (or 5 to 6 per cent. of sodium bisulphate) (these proportions referring to the weight of the fibre) The colouring matter (a few grams for pale colours and as much

Fig 524

as 5 kilos of black per 100 kilos of material) is added in several portions at the beginning of the operation, the goods being slowly moved meanwhile. In the course of an hour the bath is brought to boiling and this may last one or two hours before the dyeing is complete. Finally the steam tap is shut and the goods discharged into a vessel of cold water

After being rinsed and folded roughly by hand they are left to drip on beams for some time, a further part of their water being removed by two or three minutes' centrifuging (see p 565) The goods are then ready to be dried in the apparatus described later

When very delicate wool or wool and silk fabrics (with gathers and embroidery) are to be dyed, they are sometimes would concentrically on hooks fitted to a frame such as that shown in Fig 527. In this case the frame is only moved now and then, so that the fabric may not be injured.

Textile Fibres in Flock are dried in a series of superposed chambers with perforated bases on which the moist, centrifuged fibre is spread (Fig. 528, I). At II is seen a counterpoised elevator on which is placed the charged chamber ready to be introduced into its position in the series in place of one containing fibre already dried. The air used for the

Fra 525

F10 528

drying is forced in by the fan, .1, and is heated in the tubular steam heater, B—The lower chambers are dried first, and when these are discharged, the remaining ones are lowered automatically and fresh ones introduced at the top—Yarn or bobbins or spindles can also be dried in these chambers

Skeins of yarn may be dried by threading them, after centrifuging, on rods and fixing these horizontally in frames in a chamber heated by transhed steam pipes on its base, the moist air issues from vent holes fitted to the ceiling. In some cases the yarn is dried

Fro 527

Fra 528

m hot chamlers, the skeins being stretched over revolving reels furnished with eant al steam pipes, as is shown in Fig 529

Good results are also obtained with the continuous drying machine, in which the skeins are placed on rods, etc., carried by chains moving in a drying chamber (Fig. 530) supplied at A with hot, dry air. The dry yarn issues continuously at Z, while the moist air finds an outlet at B

Fabrics as they come from the centrifuge are usually dried by passing them, well stretched, over a battery of seven or nine copper drums, F (Fig 531) These are all moved regularly by gearing, the rate being regulated by means of the large disc, B, which is actuated at a point more or less distant from its centre by the friction roller, C, the latter is turned by the pulley A, joined by belting to the general system of power transmission.

The dried fabrics are then examined throughout their entire length and breadth before

a well lighted window in order to ascertain if there are any defects in dyeling or otherwise, so that these may be remedied before dressing

Dressing of Fabrics is effected by impregnating them with solution of guin, bone glue,

moreases the strength and weight of the tissue, which is next dried and at the same time pulled out both lengthwise and breadthwise in order to bring it back as nearly as possible to the dimensions it possessed before dying. This is effected by means of the so-called tentering frame, into which the tissue passes, fixed laterally by the solvedges on two

Pro 531

chains carrying clips or needle points, the distance between the two chains is gradually increased to the desired width, which is shown on a graduated iron bar, A (Fig. 534) Fig. 535 shows a complete frame with the gumming machine, B, and two operatives fixing the selvedges on the points of the chains. The widened cloth is dried throughout its whole length by a current of hot air blown into a long chamber beneath, and finally by a heated drum, C. These frames are 8 to 12 metres long, but are sometimes constructed

on several stories in order to save length. Fig. 536 gives a better view of the frame in outline—the gummed, centrifuged, and folded cloth lies ready on the two benches, B, the air is heated at T and the fan, V, forces the hot air into the long chamber, R, the cloth enters at B and issues at C

Milled fabrics and certain others which are required to present a hairy surface are

Fra 533

passed to the so called raising gigs (Fig. 537), consisting of one or more large drums carrying numbers of metallic points or strings of the spiny capsular heads of Dipsacus fullonum (10 to 20 cm in length, Fig. 538) on spindles. The drums or spindles revolve so that the points just touch the stretched surface of the cloth and draw from it fairly long hairs, which are then rendered uniform by passing the dry cloth to the cutting and brushing machines furnished with cylindrical brushes and with drums fitted with outting edges arranged helically (see Fig. 530), the first brush, A, raises the hair, the cutter, B, cuts or crops it off uniformly, and the second brush, C, sets it regularly all in the same direction.

F10 534

A similar operation is carried out with velvets, which are, however, weven specially, and often in two superposed pieces attached by a large number of fibres, which are then out exactly in two so as to give two separate pieces each with a hairy face.

When the fabrics are required to have a very smooth, shiny surface, they are passed after gumming to the so called *calenders*. A common type of the latter for wool and unions, which require but little pressure, is that shown in Fig. 540 the cloth is seized by the selvedges by two discs fitted with bands, A (called a palmer), which enlarge the cloth to the required size and then pass it on to a continuous felt, C, which transfers it in a well-stretched and compressed condition on to a copper drum, B, heated by steam under slight pressure. For cotton or cotton and silk fabrics, use is made of calenders with several superposed and heated cylinders to which pressure may be imparted by means of suitable levers (Fig. 541) in such a way as to exert a kind of friction on the cloth passing from one

cylinder to the other When a very high finish is required on certain satin fabrics of cotton, they are passed between two massive steel cylinders which are under very high pressure (hydraulic) and one of which is fluted with very fine structions (as many as 10 to 25 per

Fig 535

millimetre, as suggested by Sohremer), those leave their stable imprint on the fabric like so many minute, shining cylinders like silk fibres, which reflect light under any angle, this finish is known as silk finish (or Schremer finish). Similar calenders are used for obtaining special watered effects (moré)

Fra 536

On woollen fabrics calenders generally produce a so called false finish like that of a bright sheet of metal. This is not regarded as desirable by the merchants, and, further, such a finish will show rain-drops, even after drying. In order to avoid this inconvenience and the better to fix the material in both directions, so that it will not shrink when worn,

it is subjected to so called *steaming*, i.e., to the action of steam under a pressure of 2 to 3 atmos (some colours will not withstand this operation). The fabric is well stretched and wound, together with a cloth, round a perforated cylinder, the roll of two or three pieces thus obtained is wrapped in cloth fastened by strings, the cylinder being then fixed vertically on a steam-cock (Fig. 542). The steam, under pressure, is obliged to traverse the

whole of the roll of fabric, and when it issues in a dense cloud (after a few minutes) the operation is at an end, the roll is then removed, but is allowed to cool without unrolling, since in that way it acquires a better and more resistant hister. The latter is also found to

be improved by carrying out the steaming in a vacuum, the rolls G H (Fig. 543) being introduced into a kind of horizontal jacketed autoclave, X, previously heated by passing steam through the jacket, when the cover L has been tightly closed, the autoclave is evacuated by passing steam into it and condensing the steam by a water-spray in the cylindrical chamber, W, which communicates with the autoclave by means of the tap, R. After this

he steam is passed through the roll of fabric, either from the inside to the outside or vice ersa, by fixing the roll in a suitable manner to the steam-cook.

Of the various other operations comprised in the finishing of fabrics, only that of pressng between hot card need be referred to, this gives lustre to cloths which are not subjected
o steaming and in general imparts a very soft, pleasant feel, more particularly to the finer
recollers

In this operation, which is the last of importance, the best effect is obtained when

وند چواید دیا 10 to 15 per cent of moisture is present, so that fabrics which are too dry are treated first with a slight steam jet, being meanwhile wrapped on drums in large rolls, after some

hours these rolls are unwound and the fabric arranged in regular folds, between each adjacent pair of which is inserted a piece of hot, smooth eard. The whole is then left under pressure in a hydraulic press (Fig. 544) for 10 to 12 hours. In order to obtain uniform

Frg 543

heating while the pressure is being exerted, presses are now used with double pillars in which steam circulates (Fig. 545), also the pillars are sometimes heated electrically

For the folding or rolling of fabrics, and also for measuring, simple and rapid machines have been devised.

For the Mercerisation of cotton yarn in hanks (see p 808) a machine such as that shown

'RESSING AND MERCERISING MACHINES 858

Fig 544.

F10 545

Frg 540

in Fig 546 is used. The uniformly moist skeins, as they come from the centrifuge, are stretched in a thin layer between the two cylinders, A and B, the distance between which

can be increased so that the skems are considerably stretched. Then, when the rollers are revolving, a lever is operated to raise the iron vessel, C, containing cold caustic soda solution of 25° to 30° Bé., one half of each cylinder dipping into the soda. At the end of a few minutes the imbibition is complete, the soda solution is drawn off into a tank provided with a pump, while a copious supply of water is sprayed on to the skeins, which are pressed by the roller, R When washing is complete, the tension is relieved and the skein removed.

There are also other machines for mercerising fabrics, those being kept stretched by contrivances similar to those used in the tentering frame (see Fig 534), while the caustic soda is removed from the fabrics by means of suction pumps. The fabric is then washed with a little hot water so as to give a moderately strong solution of caustic soda, which may be used to dissolve solid caustic soda or may with advantage be concentrated in multiple

effet evaporators (see Vol. I, p. 567) The caustic soda is removed completely from the fabric by thorough washing in cold water, then in a slightly and bath and finally in water

Fra 548

The Printing of textiles, as indicated on p 831, is carried out by pressing, with a rubber roller, A (Fig 547), the fabric or yarn against a copper cylinder, B, on which the design is engraved. The copper cylinder receives the pasty

Fig 549

design is engraved. The copper cylinder receives the pasty colour from a roller, I, dipping into the vessel, C, containing the thickened colour solution, a blade, D, then scraping away the excess of colour so that only the hollows of the design remained filled. Between the rubber cylinder and the fabrio, T, to be printed runs a continuous band, E, which is kept taut by the contrivance, V. The arrangement used, with the adjacent drying chamber, o, is shown in Fig. 548—the vessel of colouring matter is at cd, and the fabric is unwound from g together with the accompanying cloth h, and the continuous pressure cloth s, the dyed and dry fabric is collected in folds at l, while the cloth h is rewound at r, and s returns constantly to the printing cylinder. When several colours are to be printed on one and the same fabric, a number of rolls and colour vessels are required, as is shown diagrammatically in Fig. 549

Fig 550 shows a complex machine for the printing of textiles in twelve colours at once, highly skilled workmen are required to regulate its working with accuracy.

A simple arrangement for printing yarn in skeins by hand is shown in Fig. 551. The instance kept taut between the rods A and B, and the printing rollers, which are not very in the figure, are below A. The printed skeins are hung on rods fitted to a framework, seeing introduced into an autoclave to be treated with steam under pressure (Fig. 552).

Fra 550

Printing colours are boiled with the thickening agents in suitable double bettomed lers, heated by means of steam and furnished with stirrers. Fig 553 shows a battery such colour pans.

When mention was made of aniline black (p. 708), it was stated that the complete

relopment of this colour is obtained in an oxidation chamber (Fig. 554). In the case of n, the method of continuous drying illustrated in Fig. 530 gives good results, but with rice use is generally made of a chamber with revolving rollers, where the fabric traverses why a very long path and issues completely black, a hood is arranged to carry off acid nours. Of great importance in this operation is the regulation of the temperature of

1 3 4 4 1 5 5

Fra 553

Fig 554

Fig 555

the draught and of the velocity with which the fabric passes through the chamber. Unexpected stoppages are dangerous, as they may lead to corromon of the fabric or alteration of the colour

To polish and soften silk, the skeins are stretched, twisted, and rubbed repeatedly on a smooth rod fixed in the wall. But newadays this is done by machines (Fig. 555), which act automatically and give a large output

DD. PROTEINS OR ALBUMINOIDS

These are fundamental products in the formation and constitution of animal and vegetable organisms. The protoplasm of vegetable and animal cells, which is the origin of the nietabolic processes and hence of the life of the organism, consists of protein substances, which are also indispensable components of foodstuffs

From a physiological point of view they are therefore of the utmost significance, but their chemical nature is very complex and is still little understood, although the investigations of Emil Fischer and a number of able collaborators during the past thirty years have to some extent pierced the veil surrounding this most important group of organic compounds, which had been previously studied, as regards some of their more superficial characters, by Ritthausen, Hoppe-Seyler, Hammaisten, Neumeister, Pflüger, Hedin, Küster, Nencki and Sieber, etc

The numerous substances comprised in this group are all composed of C, H, O, N, and S, with, in a few cases, P, their percentage compositions vary between the following limits C, 50 to 55, H, 69 to 73, O, 19 to 24, N, 15 to 19, S, 03 to 24 The heat of combustion of 1 grm of protein substances varies from about 5000 to 6000 calories

The proteins have high refractive indices. Their solutions are leavo-iotatory, the specific iotation varying with the concentration and with the salt content, protein ions have higher rotations than the neutral proteins

The molecular magnitudes of these substances cannot be established with certainty, since it is not easy to isolate single individuals, only very few of them crystallise, none are transformable into vapour, and in no case are true solutions obtainable capable of cryoscopic or ebullioscopic measurement, their solutions are colloidal. Direct or indirect attempts to determine their molecular weights have given numbers varying from 10,000 to 30,000

Both the sulphur and the introgen occur in two groupings, being partly

removed by hot potash and partly more stably combined

Absolute alcohol coagulates proteins and precipitates them to some legree unchanged from their aqueous solutions. They are also precipitated unaltered by solutions of sodium chloride, magnesium sulphate or ammionium sulphate of different concentrations, which are characteristic of the various proteins.

Proteins are coagulated and precipitated from their aqueous solutions by small quantities of mineral acids (nitric acid may be in excess). They have a feeble acid character and form salts as insoluble precipitates with metallic salts, $e\,g$, ferric chloride, acidified mercuric chloride, copper sulphate, etc., and they dissolve small amounts of freshly precipitated ferric hydroxide. From hose metallic precipitates proteins are liberated in a changed form

Less pronounced is their basic character (like the amino-acids, they behave is both acids and bases at the same time), although egg-albumin is completely recipitated by weak acids, such as tannin, phosphotungstic acid, and pieric

Aqueous solutions of the proteins are coagulated on heating to different characteristic temperatures, and the coagulated proteins dissolve only in an excess of acid or alkali in the hot, their constitution being modified thereby vol. ii.

and H₂S and NH₃ sometimes evolved with alkalis they form albuminates, and with acids Aicd-Albumins (syndonins, see p 862), both insoluble in water and reprecipitable by neutralisation By the protracted action of these two reagents (Hydrolysis, see below) or by the action of pancreatic juice, which contains Tryptase (see p 134), they yield various amino- or diamino-acids glycocoll, alanine, phenylalanine, aspartic acid, glutaminic acid, leucine (in abundance), pyrrolidinecarboxylic acids, tyrosine, serine, triaminotrihydioxydodecanoic acid, B-indoleacetic acid, arginine, lysine, ornithine, tryptophane, cystine (sulphur compound), etc., all of them optically active with the exception of glycocoll When a piece of boiled egg-albumin is heated at 37° with gastric juice, it rapidly dissolves with formation of Peptones and Albumoses. The peptones, passing into the intestines, undergo further hydrolysis, and as final products yield amino-acids The complete hydrolysis of the albumin may be effected more rapidly by means of a concentrated acid (eg, HCl), which gives amino-acids By putrefaction various other substances are formed and also ammonia Ptomaines, such as cadaverine (see p 257), putrescine or tetramethylenediamine, eto , glucosamine, methylamine, ammonia, β -indoleacetic acid, phenylacetic acid, carbonic acid, hydrogen sulphide, formic to caproic acids, partly of normal structure and partly optically active (valeric and caproic) etc , indole, skatole, phenol, cresol, mercaptan, methane, etc., all of these being oxidation or reduction products of the original compounds obtained The action of pathogenic bacteria on proteins yields poisonous substances, the Toxalbumins, which are similar in composition to the proteins and lose their toxicity when their aqueous solutions are heated

The following reactions are characteristic of the proteins

Protein solutions give a violet coloration (like bluret) with alkali and a few drops of 2 per cent copper sulphate solution (biuret reaction)

With nitric acid in the hot and even in excess a yellow precipitate is formed

(xanthoprotein reaction)

With Millon's reagent (see p 828) a red coagulum is formed on boiling

The degradation or hydrolysis of proteins, when it is complete and takes account of all the more or less complex groups composing the protein molecule, will permit of an attempt, with probability of success, to synthesise these substances completely. Such more or less gradual decompositions are attained by protracted heating (for different times with different proteins and in some cases for 200 hours) in an autoclave, or by means of soda or baryta (Schützenberger), or, better, 25 per cent solutions of hydrochloric or sulphuric acid Even under these conditions, however, some of the intermediate compounds cannot be detected, the hydrolysis being in many cases too rapid. Hugounenq and Morel (International Congress of Applied Chemistry, London, 1909) have obtained a somewhat more gradual hydrolysis by using 15 to 25 per cent. hydrofluoric acid solutions and heating for 100 to 150 hours. Interesting results were obtained by N. Zelinsky (1912) with formic acid (1 to 30 per cent.), best at a high temperature and pressure

The separation of the numerous amino-acids resulting from the hydrolysis of the proteins constitutes a difficult problem, which has recently been solved by E Fischer for the amino-acids and by Kossel for the diamino-acids Fischer subjects the esters of the amino-acids to fractional distillation in vacuo and

thus determines their separate amounts

It is thought that the amino-acids occur in the proteins in a condensed form similar to Glycylgiycine, NH₂ CH₂ CO NH CH₃ CO₂H Indeed, Fischer was able to synthesise the so-called Polypeptides, which contain such groups and in many respects resemble the natural peptones derived from proteins (see later), the esters of the amino-acids readily give up alcohol and undergo ketonic condensation to polyanhydrides, and these, under the influence of alkah, take up a molecule of water, giving the peptides:

$$2NH_3$$
 CH_2 $CO_2C_2H_5 = 2C_2H_5$ $OII + NH < \frac{CO}{CH_2} \frac{CH_2}{CO} > NH$ (and this $+ H_2O$)

$$\begin{array}{cccc} & & & & & & & & & \\ \text{Ethylgiyeocoll} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\$$

By chlorinating the carboxyl of the dipeptide with PCl₅ in acetyl chloride solution, a second molecule of ethylglycocoll may be caused to react with formation of a tripeptide, and so on, higher polypeptides similar to the natural ones being ultimately obtained,

X CO
$$Cl + NII_2$$
 CH_2 CO_2 $C_2II_5 = IICl + X$ CO NH CII_2 CO_3 C_2H_5 ,

these polypeptides are completely hydrolysed by hot concentrated HCl, are digested by tryptase, withstand cold alkali, are soluble in water and insoluble m alcohol, and give the reactions of the proteins (see below) These syntheses, which represent the first small step towards the synthesis of the proteins, give an idea of the enormous difficulties to be overcome before the natural proteins can be reconstructed Indeed, since the dipeptides have molecular weights of about 100, while with the proteins the molecular weight certainly exceeds 10,000, at least 100 of these groups must be present. Also, as several of the amino-acids contain one or more asymmetric carbon atoms, stereoisomerism is possible, and so likewise is tautomerism, eg,

The investigations of Fischer have resulted in the synthetical preparation of more than a hundred of the simpler polypeptides, and of a tetradecapeptide, but on ascending the series the complications and difficulties merease disproportionately This problem could occupy a whole generation of chemists, and its solution would be a glorious triumph for the twentieth century, as it would banish for ever the Malthusian threat that one day humanity will be starved owing to the disproportion between the population and the productive capacity of the earth Indeed, while it is not possible to replace the proteins in human nutriment by fats or carbohydrates—these alone leading to rapid decay of the organism and to death-proteins of thomselves are able to supply all the needs of the organism. So that the insufficient production of proteins in nature at some future time would of a certainty be accompanied by famine, unless a method of synthesising proteins by chemical means had previously been discovered Berthelot imagined that one day the air would supply the oxygen and nitrogen, and water the hydrogen for this synthesis, and it is not for us to deny that the dream of yesterday may become the reality of to-morrow, if chemistry learns how to imitate the simplicity and economy of the natural synthetical processes best exemplified in plants, which from carbon dioxide, water, and nitrates are able to effect continuous production of carbohydrates, fats, and proteins. Our laboratory synthetical methods are still too cumbersome, too inducet, and generally too costly Only when the action of catalysts and light and the laws of colloids have been more closely studied can any hope be entertained of a more rapid progress in the synthesis of such complex organic substances

The numerous different proteins are usually classified in the following groups and sub groups:

I. NATURAL PROTEINS

 ALBUMINS (of eggs or Egg-albumin, of blood serum or serum-albumin, of milk or lacialbumin, of muscles, of plants, etc.)

. These are the most common and also the best known of the proteins, since they can

· far,

be isolated as definite, orystalline, chemical individuals. They are soluble in water, dilute acid or alkali, or neutral solutions of NaCl, MgSO4, or (NH4),SO4 (the globulins being insoluble), but in soid solution these salts precipitate the albumins. In the hot they are coagulated.

The products of the putrefaction of albumin contain also p Hydroxyphenylacetic Acid, OH C.H. CH. CO.H, which occurs likewise in urine (accoular crystals coloured greenish

by ferric chloride)

There exists nowadays a considerable trade in dry albumin obtained from the egg and from blood. In various countries, eggs and yolks are preserved in sait and employed in different industries (for tanning, making lecithin, culinary purposes, etc.), and the fresh white separated is diluted with a little water, beaten until it forms a froth, allowed to stand until the latter is destroyed, filtered through woollen bags, and evaporated in a stream of air at 30° to 40° in large shallow pans, after 40 to 60 hours there remains a thin, yellowish, transparent pellicle, which is completely soluble in water and keeps without developing any unpleasant odour *

¹ Lecithm, $C_{43}H_{86}O_{\bullet}NP$ (see p 462), is an ester of choline (p 257) and of glyccrophosphoric acid, combined as a glyceride of paintite or stearce acid. When boiled with water or barium hydroxide it decomposes into choline, glycerophosphoric acid (p 258), paintite and stearce acids Its constitution, first studied by Strecker (1868), would therefore be

It is dextro rotatory, but when heated with 95 per cent alcohol is recomised to the mactive form, which is converted into *l lecition* by the action of hipase (p. 134). Disterio and dioleic legithms

are also known.

Leothin occurs in the animal kingdom [nerves, brain, blood corpuscles, egg-yolk (0 4 per cent.)] and in the cils and seeds (0 5 to 2 per cent.) of cereals and legiminous plants. It forms an orange-yellow, waxy, crystalline mass, and is soluble in alcohol, ether, chloroform or glycerine, and slightly so in acctone or ethyl acetate. It is hygroscopic and with water swells and forms an opalescent solution, from which it is separated by various salts (including PtCl₄), it combines with both acids and bases, forming salts. Leothin is decomposed by the pancreatic juice, the resulting products being completely resorbed by the intestine.

It is largely employed as a tonic, either as such or in the form of various salts.

It intensifies

It is largely employed as a tonic, either as such or in the form of various salts. It intensifies metabolic processes, causes assimilation of phosphorus and nitrogen, reinvigorates the blood, and

results in increase of weight.

Industrially leathin is extracted from egg-yolk, in which it occurs partly combined with albumin as leathalbumin, which may be isolated unchanged and then decomposed into its components by heating with alcohol To obtain lecithin, 10 kilos of egg yolk is shaken with 10 kilos of cold methyl alcohol (this dissolves less fat than ethyl alcohol) for three hours, left overnight and filtered, the residue being washed with 10 kilos of methyl alcohol in several portions. The alcohol is then distilled off under diminished pressure and the lecithin thus obtained dissolved in other cather and representated with seatons.

in ether and reprecipitated with acetons.

According to Fr Pat 390,683, the fat and cholesterol are dissolved and the lecithalbumin left undissolved when egg yolk is treated with ethyl acetate. Separation of lecithin as its salt with cadmium chloride is more complicated. Many other processes have been patented

Before the war egg lecithin was sold at £3 to £4 per kilo, but during and after the war the

Before the war egg lecithin was sold at £3 to £4 per kilo, but during and after the war the price increased greatly

* The eggs produced by hens of different breeds are of varying size and weight (from £5 to £5 grms., duok, goose, and turkey eggs weigh from twice to four times as much) and are composed of about 60 per cent. of white, 30 per cent. of yolk, and 10 per cent. of shell (mainly calcium carbonate), the white contains 86 per cent of water and 13 per cent. of albumin, and the yolk about 51 5 per cent. of water, 28 5 per cent. of fats, 15 8 per cent. of proteins (principally vitellin), 2 per cent. of salts, 0 45 per cent of cholesterol, 1 2 per cent. of phosphoglycoric acid, and 0.4 per cent. of extraotive substances. As regards its nutritive value, an egg weighing 60 grms is equivalent to 50 grms. of meat, while its heat value is about 80 ('alories' Continuous evaporation of water takes place through the shell of the egg, and the volume of the contents diminishes, leaving a free air-space—varying in size in different eggs—which may be observed by looking through the egg at a candle flame in a dark chamber. Fresh eggs are also distinguishable from stale ones by the specific gravity fresh eggs sink in a salt solution of sp gr 1 078, those 2 to 3 weeks old in one of sp gr 1 060, those 3 to 5 weeks old in one of 1050, and rotten eggs in one of sp gr 1 015. It has also been observed that fresh eggs float horizontally on a denser liquid, those 4 to 6 days old at an angle of 20°, those 8 to 10 days old at an angle of about 45°, and those 15 to 20 days old at an angle of 60°.

The preservation of eggs is of considerable importance, since in summer eggs are abundant and cheap, while in winter they are soarce and cost double as much. A common means of preservation formerly employed consisted in immersing the eggs in water saturated with lime (which partially filled up the pores of the shell with calcium carbonate), but in this way they

From fresh blood (from the butcher's) pure albumin is separated with greater difficulty The blood is first allowed to undergo spontaneous coagulation, the blood globules and other impurities thus collecting in a compact mass so as to allow of the ready decantation of the faintly coloured liquid serum containing the albumin, or, after coagulation, the blood may be introduced immediately into a centrifugal separator (see p 476). The centrifuged or decanted liquid is beaten (without dilution), filtered, decolorised with charcoal, and dried as above. In many cases decolorisation is difficult, and the albumin has to be precipitated with lead acctate, the decanted precipitate is washed and suspended in water, which is then saturated with carbon dioxide, the lead carbonate being allowed to settle The clear albumin solution is treated with a little hydrogen sulphide, which removes traces of lead, and filtered, and the pure solution evaporated as with egg albumin.

According to Ger Pat 143,042, the serum albumm is coagulated by means of salt, dissolved in ammonia and treated at the bolling-point with hydrogen peroxide, the excess of ammonia being subsequently driven off The method described in Eng Pat 10,227 (1905) consists in treating the serum successively with hydrosulphito, acetic acid, and sodium acetate, the liquid being then neutralised with ammonia and evaporated as usual.

Albumin is used in various industries for photographic papers, in textile printing, in printing titles in gold leaf on books, as a clarifying agent in wine-making (see p 260), etc

Egg albumin cost, before the war, according to its degree of purity, £24 to £28 per quintal Blackish blood albumin was sold at 48s to 00s per quintal, the dark at 88s, the pale at £5 to £8, and the pale powdered at 128s to 208s

- (2) GLOBULINS (of plants or Phytoglobulins, Serum-globulin, Lactoglobulin, etc.) are msoluble in water but soluble in dilute acid or alkall. At 30° they are precipitated unchanged completely by solutions of ammonium or magnesium sulphate and partly by sodium chloride solution. Their solutions are coagulated by heat
- (3) NUCLEO-ALBUMINS (Vitellin, Casein, etc.) are sold in character and decompose carbonates, they are slightly soluble in water, but desolve with formation of salts in caustic soda or ammonia and are then congulated neither by heat not by alcohol. They contain phosphorus (0 85 per cent. in casein) but are distinct from the nucleo proteins, which give xanthune bases among their decomposition products Casein is found in milk (see p 043) and is coagulated by rennet or by dilute acids at 50° , it is soluble in borax or potassium carbonate and is rendered insoluble by formaldeligide. Converted into salts in various ways, it is placed on the market as a concentrated and readily directible food (plasmon, nutrose, tropon, etc.), it is mixed with mineral colouring matters to make varnishes. The hydrolysis of casein yields various amino-acids and complex tribasic acids Vegetable casesna are also known,

To obtain pure casein in the laboratory, diluted skim milk to which 0 5 per cent of acetic acid has been added is heated to 55° to 60° and the precipitated casein collected on cloth, washed well with water, redissolved in very dilute animonia, decented or filtered to remove the undissolved fat and nuclein and then reprecipitated with acetic acid as at first. It is again collected on cloth, washed with alcohol and then with other, and dried in a vacuum Prepared in this way, it is free from fat, leaves less than 0.5 per cent of ash and contains 15 5 to 18 per cent of nitrogen From ordinary casem a modification known as paracasem, containing 14 8 to 15 per cent. of introgen, may apparently be separated. Commercial casein (see p 643) contains less than 3 per cent of ash and less than 0 1 per cent. of fat, and costs 64s to 80s per quintal. Riegel (Ger Pat. 117,979 of 1900) proupttates it in a highly pure state from milk by means of othylsulphuric acid. Casein is detected on textiles or paper by Adamkiewice's reaction, a drop of a mixture of glyoxylle and sulphure acids

acquire an unpleasant taste, an improvement is affected by adding 5 per cent of sodium chloride to the lime water Others preserve them in pounded salt or in salt and bran, pointed end down, while others again smear them with wax, vaseline, and oil or tallow Large quantities of eggs are now preserved for some months (May to November) by placing them in thin layers on wooden lattices in cold chambers, which are kept at a temperature of 1° to 2° and a lumidity of 70° to 80°, and are well ventilated, preferably by means of an apparatus producing exemised air. In certain cases good results are obtained by preserving the eggs in 10 per cent, sodium silicate solution, although such eggs often burst during subsequent boiling. A mere coating of the silicate or of collection is of little avail. For transport eggs are arranged in layers, with alternate layers of old straw, in wooden boxes

The value of the eggs imported into England was £80,000 in 1864, £8,000,000 in 1906, and £6,800,000 in 1910 (about £3,800,000 from Rusais, £1,750,000 from Denmark, £560,000 from Austria Hungary, £420,000 from France, £360,000 from Italy, £200,000 from Germany), in addition to £3,800,000 from Ireland.

being placed on the surface, which is then gently heated over a flame in presence of casein, the drop of liquid assumes a transitory violet red colour

- (4) PROTEINS WHICH COAGULATE (Fibrinogen, Myosin, etc.) are distinguished by exhibiting a first coagulation under the influence of certain enzymes and a further coagulation by heat or absolute alcohol
- (5) HISTONES (Globin, Nucleo-histone, etc.) contain sulphur and are markedly basic in character, they are precipitated by alkalis, and in acid solution give insoluble compounds with the albumins. *Nucleo histones* are obtained from the leucocytes of the thymus gland and from the testes of certain fish. The protein part of the hamoglobin molecule of the red blood corpuscles consists of a histone, *globin*. The histones have certain properties in common with the peptones and albumoses
- (6) PROTAMINES (Salmin, Clupein, Sturin, etc.) do not contain sulphur but contain up to 25 per cent of nitrogen and are composed mainly of diamino acids (arginine), they are obtained from the spermatazoa of many fishes (salmon, herring, sturgeon, etc.) They and the histones are the least complex proteins

They are still more basic in character than the histones and readily form platimolilorides, sulphates, and piorates, which are all crystalline. They are precipitated by dilute alkalis.

II MODIFIED PROTEINS

- (1) ALBUMOSES and PEPTONES are derived from true proteins by various transformations. The albumoses are soluble and cannot be coagulated, but are precipitable by ammonium sulphate and other salts. The peptones are regarded as the last decomposition products of the proteins which give protein reactions (the biuret reaction), on decomposition they give amino acids without intermediate products.
- (2) SALTS OF PROTEINS (Syntonins or Acid-albumins, Albuminates) are markedly acid in character

III CONJUGATED PROTEINS (PROTEIDS)

These represent combinations of proteins with other complex substances, and are coagulable by alcohol

(1) HÆMOGLOBIN is the colouring-matter of red blood corpuscles and is regarded as a protein combined with a colouring-matter containing iron, since, when defibrinated blood is heated on a water bath with sodium chloride and acctic acid, the homoglobin is decomposed into albumin and Hæmatin, C₃₈H₃₈O₄N₄Fe OH The latter is a brown substance containing 8 per cent. of iron, and by treatment with sodium chloride is transformed into Hæmin, C₃₈H₃₂O₄N₄Fe OI, which forms characteristic, reddish brown, acicular crystals The constitution of hæmatin has been elucidated by the work of Nencki and Zaleski (1901), Küster (1901, 1906, 1914), Willstätter, Knorr, Piloty, and H Fischer (1911, 1912), and that of the hæmatinic or hæmatiniminic acid obtained on exidation renders

certain the presence of the pyrrole complex, NH
$$\subset$$
 CO \subset CH₂ \subset CO₂H, this yielding \subset CO \subset CH₃

succinic and when exidesed with bichromate or permanganate. The hemoglobin of venous blood is of considerable importance in respiration, as it combines very readily with atmospheric oxygen (when the blood traverses the lungs) forming Oxyhemoglobin, which is found in arterial blood and carries the oxygen to the tissues, afterwards returning to the veins—Blood-spots (even old ones) may be detected by Teichmann's test—to a solution of the spot in a little glacial acetic acid are added a trace of sodium chloride and then a small quantity of pure concentrated acetic acid, the liquid being heated to boiling on a watch glass and one or two drops of the hot solution placed on a microscope slide and allowed to evaporate slowly in the cold, a drop of water is added, a cover glass applied, and the slide observed under the microscope. The brown hemin crystals resemble barley corns, but are sometimes rhombohedral and generally crossed in groups (Fig 556); viewed in polarised light between crossed nicols, they appear luminous and golden on a dark ground. They are insoluble in water or cold acetic acid, but dissolve in alkali

Blood-stams may also be identified by means of the catalytic action of the hemoglobin,

which colours alcoholic guareool tineture or alkaline phenolphthalem previously decolorised by zine dust or, better, the leuco base of malachite green (F Michel, 1911) 1

T Gigli (1910) states that a very sensitive reaction is given by a fresh mixture of 3 drops of beuzidine (5 per cent solution in acetic acid) and 2 drops of 3 per cent. hydrogen peroxide solution, a blue coloration is given immediately by a trace of blood Bardach and Silberstem (1910) propose the use of guameum resin and sodium perborate

Oxyhemoglobin has a composition differing little from that of the proteins, but it contains 0 4 per cent. of iron combined in the ferric state, as with hæmin and hæmatin, whilst the reduction product of the latter, i.e., homoglobin, is a ferrous compound (W Küster, 1910) In a vacuum (or under the action of ammonium sulphide) it loses oxygen giving hæmoglobin

Homoglobin forms a red crystalline powder soluble in water and reprecipitable in the orystalline state by alcohol Both hamoglobin and oxyhomoglobin give characteristic

absorption spectra.

Hamoglobin and also its ash exert a catalytic action in certain combination phenomena; $s\,g$, sugar moistoned with a little human blood burns with great energy

When a current of earbonic oxide is passed into a solution of red oxyhamoglobin (defibrinated blood) the oxygen is displaced and the liquid assumes a violet-red colour,

carboxylæmoglobm-which can be obtained in bluish crystals -being formed An aqueous solution of this compound (blood poisoned with carbonic oxide) gives two characteristic absorption bands between the D and E lines of the spectrum, and these bands do not unite or disappear—as happens in the case of oxylamoglobin-when a few drops of ammonium sulphide are added to the solution. Hamoglobin itself gives a single absorption band between the D and E lines.

550 —Homin orystals at different magnifications

- (2) NUCLEOPROTEINS or Nucleins have a pronounced acid character and are insoluble in water and acids, but soluble in alkali. They represent compounds of protoins with a Nucleic Acid, which is phosphoric acid neutralised partially by basic organic groups, such as xanthine, guanine, etc The nucleins contain 5 7 per cent P, 41 per cent C, and 31 per cont. O, and are hence sharply distinguished from true proteins although they give the same colour reactions. They form the fundamental constituents of cell nuclei
- (8) GLUCOPROTEINS are acid in character and are formed of a protein combined with a sugar derivative. They are insoluble in water and with a little lime-water give neutral, frothy, and ropy solutions which are not congulated by heat or by intric acid. When hydrolysed with alkali or soid they yield sugar, peptones, and Syntonias

These compounds, which are poor in nitrogen (11 7 to 12.3 per cent.), include the Mucins

IV. ALBUMINOIDS

These constitute the fundamental parts of the cartilaginous tissues and epidermis of animals and comprise.

¹ Blood-spots may also be detected by means of hydrogen peruxide it is sometimes sufficient to press a piece of moistened filter paper on the dry blood spot and then to immerse it in hydrogen peruxide solution, to obtain a copious evolution of exygen.

To ascertain from what animal the blood comes, and in general to discover if it is human than the blood comes, and in general to discover if it is human to be a sufficient to the sufficient to be a sufficient to the sufficien

to ascertain from what similar the mood comes, that in general to discover it is full that blood, Uhlenbuth's test (1909), based on the formation of different antitoxins in different animals (see p 198), serves Tristovitch and Bordeb (1899) showed, indeed, that if an extraneous serum (s.g., human) is injected in several doses into the blood of an animal (s.g., a guinen-pig), the serum of this animal (anisserum) ultimately acquires the property of precipitating (or rendering turbid in the case of dilute serum or dilute blood) the blood of the animal which furnished the injected serum (e.g., man) If even a very dilute solution of blood (obtained, for instance, by extracting a dried blood spot with a little water) is cleared by filtration and treated separately with different clear antisers to ascertain with which of them a turbidity is produced, it can be stated with certainty that the blood-spot was derived from the animal whose serum, when injected into the guines-pig, produced the antiserum rendering the blood solution turbid. The test must be applied very carefully and with parallel control experiments, it does not distinguish between the bloods of similar animals, e.g., hens and pigeons, sheep and goats, apes and men. The difference between various species becomes more evident when dilute solutions or, better dilute blood and a little concentrated antiserum are employed. All these phenomens, studied by Uhlenhuth, and subsequently by others, are based on the precipitation of the albuminoid substances of the different sera (precipitus), and they allow of the determination of the character of blood spots 60 years old. Clear solutions and sterilised vessels are always used for the test.

> <u>a</u> • •

- (1) ELASTIN, which forms the elastic part of the tendons and ligaments, is insoluble in dilute acid or alkali, but with the latter loses the whole of its sulphur
- (2) KERATIN is the principal constituent of the nails, horns, feathers, epidermis, hair, etc. It is insoluble in water, but when heated under pressure, best in presence of alkali, it dissolves with partial decomposition. It contains 4 5 per cent. of sulphur, which is eliminated to some extent by boiling water.

With nitric acid it gives the yellow xanthoprotein reaction (see above, yellow spots on skin treated with nitric acid)

- (3) The COLLAGENS are abundant in bones, hair, tendons, and cartilage. combine with water at the boiling-point and dissolve, forming ordinary ulue or gelutine. which is precipitated by tannin or by moreuric chloride acidified with HCl but not by mineral soids. They contain stably combined sulphur They consist, to the extent of 85 per cent, of amino soids (Skraup, Biehler and Böttcher, 1909-1910), and, like the protamines, are true proteins containing methoxy and azomethyl groups Unlike casein, they give little glutamic acid on hydrolysus On hydrolysung them with caustle baryta, E Fischer and R. Boehner (1910) obtained Proline (pyrrolidine a curbacylic word) as primary product, a Amino 8 hydroxyvaleric Acid, which is also obtained from golutino, does not give proline with baryta. By digesting golatine with trypsin, Levene (1910) obtained The absorptive power of the collagens for carbon mainly Prolylglycocoll Anhydride disulplude, which in presence of alkali leads to thiohydration, allows of their differentiation from agglutinating substances (Sadıkow, 1910), the agglutination of gelatine is not only a disgregation of the collagen molecule, but also a condensation of the side-chains. Gelatine which has undergone prolonged exposure to light loses some of its absorptive power for water owing to the formation of formaldehyde, which hardens the glue (Meisling, 1000) On hydrolytic decomposition, the collagens give glycocoll (while the albumins give tyrosine, leucine, glutamic acid, and asparagine. 1 Very dilute solutions of glue give, with boiling
- leuome, glutamic acid, and asparagine. Very dilute solutions of glue give, with boiling

 1 Manufacture of Glue and Gelatine

 The prime materials are bones and hide waste, generally untanned and preserved with lime

 From bones the fat is first extracted (see p. 186)

 and also Vol I, p. 647), and the crushed bones then heated for a couple of hours in a large autoclave with water and steam under pressure, so as to convert the ossen into soluble golatine, this treatment is repeated two or three times, the final more dulute solutions being used for a subsequent operation. Batteries of autoclaves are generally used The solution obtained shows 12° to 14° on the glue densimeter and is concentrated in a vacuum (e.g., in a Kestner apparatus, Vol. I., p. 503) to 45° to 40°, and then discharged into zine moulds surrounded by cold water to solidify. In some cases, however, the bones and hence also the glue are freed from calcium phosphate by treatment with four times their weight of 0 to 7 per cent hydrochloric soid (sp. gr. 105) until complete softening occurs. The calcium phosphate is precipitated from the solution by means of lime and calcium carbonate, while the ossein, placed in a double bottomed vessel heated by steam, is rapidly converted into a solution of glue. An ording to Ger Pat. 144,398, the calcium phosphate may be dissolved by aqueous SO, under pressure (only the treatment under pressure is patented). The solid blocks of glue are then cut into suitable sizes and dried on wide meshed nots arranged on trolleys, which are placed in disminers through which air at 25° to 30° is circulated by means of fans. If the air is above this temperature the glue will melt, while if it is too dry the calces are deformed. On this account, and also because it would readily putrefly, glue is not made in summer. Dry bone glue contains 15 to 20 per cent of water, the drying cocupying 10 to 12 days. When the mineral part of the bones is dissolved by SO, or a mineral soid, gelutine remains

Skin glue (leather glue) is prepared from hide waste and also other waste (nerves, cartilage, etc.) by defating with carbon disulphide and softening or swelling in water, which likewise removes impurities. It is then macerated for three weeks in a series of vessels containing milk of lime, which is frequently renowed to eliminate any remaining fat, blood, etc. It is then theoroughly washed in water and the last traces of lime (which would make the glue turbid) removed by means of dilute hydrochloric acid, or, better, of sulplur dioxide or phosphoric acid. The waste prepared in this way is treated with hot water and steam in wooden vessels with false bottoms and the first solutions, showing densities of 16° to 20° on the glue-densimeter, are solidified in moulds as above. The two or three succeeding extracts, which are more dilute, are concentrated to 20° to 22° in a single or multiple-affect vacuum apparatus (see p. 560), surmounted by a column with perforated dises to break up the froth, and are then allowed to set. Good results are now obtained with Kestner concentrators (see above) The waste used gives about one-third of its weight of dry glue. The finer qualities, filtered, decolorised, and prepared from pure, fresh, ray materials, bear the name of gelatine and cost almost double.

are concentrated to 20° to 22° in a single or multiple-effet vacuum apparatus (see p 500), surmounted by a column with perforated dises to break up the froth, and are then allowed to set. Good results are now obtained with Kestner concentrators (see alove) The waste used gives about one-third of its weight of dry glue. The finer qualities, filtered, decolorised, and prepared from pure, fresh, raw materials, bear the name of gelatine and cost almost double. In order to utilise tanned hides in the manufacture of glue it is necessary to untan them by successive treatments with dilute alkali solution, water, and lime, if chrome tanned, they are treated first with dilute sulphuric acid, then with an abundant supply of water and finally with lime In either case, the remaining traces of lime are removed by means of dilute HCl, the latter being eliminated by treatment with alkali and washing with water (Eng Pat. 22,738 of 1902)

Fish-glue is obtained from the well purified swimming bladders of various species of Acspenser,

1

ammonium molybdate solutions, a characteristic precipitate and coloured solution, which may be applied to quantitative estimations (E. Schmidt, 1910)

V VARIOUS PROTEINS

Spongin enters into the formation of sponges, its hydrolytic products approximate more to those of the collagens than to those of the albumins, but they are more resistant to the action of soda and baryta than collagens. Cornein constitutes coral and gives leucine on hydrolysis. Fibroin and Sericin are obtained from silk (see p. 813), fibroin dissolves in energetic alkalis with elimination of ammonia and formation of Sericin, and when completely hydrolysed it yields tyrosine and glycocoll but not leucine

The Enzymes (see p 134) belong to the group of complex albumius

GLUCOSIDES AND OTHER SUBSTANCES OF UNCERTAIN OR UNKNOWN COMPOSITION

Glucosides have been defined and the synthesis of artificial glucosides described on pp 530 and 531 They are compounds of aromatic or aliphatic compounds with carbohydrates In vegetable organisms these glucosides form, according to Pfeffer, difficultly chalysable substances which serve the plants as reserve material, gradually becoming utilisable as they are decomposed by the various enzymes occurring in other cells was well shown by T Weevers (1903 and 1908) for Salicin, which is decomposed (by emulsin) nuto glucose and saligenin (hydroxybenzyl alcohol), the latter being probably further transformed into a final product known as Catechol The latter is a phenol found throughout the whole plant (e.g., Salue purpurea), and its quantity is inversely proportional to that of the saliein present, it is possible that it reacts with fresh quantities of glucose, regenerating salion. Whilst the sugars are gradually utilised in the growth of the plant, the aromatic group (which serves as a reserve of carbon for bacteria but not for yeasts) is used in the continuous reconstruction of the glucoside. Thus plants are able to prepare reserve materials in different wave when the earbohydrates are not utilised, they are transformed into insoluble starch, or into glycogen, or into glucosides.

AMYGDALIN, already mentioned on p 136, has a composition corresponding with $C_{80}H_{87}O_{11}N$ and forms colourless crystals which are soluble in water and melt at 200°. It is found in the stones of various fruits (cherries, peaches, bitter almonds, etc.) and in the leaves of the cherry laurel. When hydrolysed by acids or enzymes (see p 134) it yields dextrose, prussic acid, and benzaldehyde.

SAPONIN, $C_{82}H_{88}O_{17}$, is obtained from Saponaria root, quilaya bark, and the Indian chestnut. It is used for washing garmonts in place of soap, and is also employed to produce a persistent froth (e.g., to give a head to beer). It is soluble in water, has an irritating taste and smell, and dissolves red blood corpuscles (is hence poisonous). It is extracted

aspecially of Acipenser sturio (sturgeon), by treatment with acid, lime, steam, water, etc. According to Ger Pat 131,315, the blubber of whales may also be used. Fish glue costs double

or treble as much as the best qualities of other glue

Liquid glue is obtained by the protracted heating of glue with its own weight of water and
me-fourth or one third of its weight of hydrochlorio, acetac, or mixic acid (the last at 35° B6,
he nitrous fumes must be carried away by a good draught) F Sunf (Ger Pat. 212,346 of 1908)
btains liquid glue by treating, say, 450 kilos of glue with 120 kilos of sodium naphthalonesulphomate

allphonate

Glue is analysed by determining the ash (2 to 3 per cent.) and the increase in weight caused by immorsion for 12 hours in cold water (in which it should not dissolve), the best qualities absorbing most water and swelling. The ash of bone-glue has an almost neutral reaction, and shlorides and phosphates are found in its nitrio acid solution. The ash of hide glue does not nelt, has an alkaline reaction, and contains little or no phosphoric acid. The aqueous solution if pure glue has a neutral or very faintly acid reaction, while those of the more impure kinds are cometimes alkaline. Glue should be completely soluble in hot water, any undissolved part epresenting impurity. The moisture content of dry glue should not exceed 15 to 18 per cent lost at 105°). The best qualities melt at the highest temperatures and the dropping point may be determined by Ubbelohde's apparatus (see p. 6), using a larger vessel. The relative otherwise powers of different glues may be estimated by preparing tepid solutions of equal oncentrations, immersing pieces of cotton or woollen fabric (of equal weights and areas) in them or 2 or 3 minutes, centrifuging the fabrics at the same time in the same centrifuge, ironing hem slightly with a hot iron, drying completely in an oven at 100° and then noting which of the abrics adheres best and longest to the fingers.

3 * + L

in various ways according to Ger Pats 116,591, 144,760, and 156,954. The crude product cost, before the war, 9s. 6d. per kilo, the purified, 20s, and the puriss, 40s.

DIGITALIN, $C_{35}H_{56}O_{14}$ (?), DIGITONIN, $C_{27}H_{46}O_{14}$, and DIGITOXIN, $C_{31}H_{54}O_{11}$, are the most important constituents of the foxglove (*Digitalis purpurea*) and are used in medicine, especially for diseases of the heart. Pure digitalin cost, before the war, 10d per gram, and crystallised digitoxin 20s per gram.

SALICIN, $C_{18}H_{18}O_7$ (see pp 535, 677), is contained in several varieties of Salix, and on hydrolysis gives glucose and saligenin (see pp 641, 677), with nitrous acid it forms Helicin, $C_{18}H_{18}O_7 + H_2O$, which can also be obtained synthetically from glucose and salicylic aldehyde.

ÆSCULIN, C15H16O9, is obtained from horse chestnut bark, and is the glucoside

of ÆSCULETIN (a Dihydroxycoumarin),
$$C_6H_9(OH)_8$$
 CH CH which is isomeric with

daphnetin.

POPULIN, $C_{10}H_{22}O_8 + 2H_2O$, is a Benzoylsalicin, and is obtained synthetically from salicin and benzoyl obloride, it occurs naturally in *Populus*

HESPERIDIN, C₂₈H₂₀O₁₉, occurs abundantly in the bitter orange, and on decom position gives phlorogluonol, glucose, and Ferulic Acid, which is the monomethyl other of

PHLORETIN, $C_{15}H_{14}O_{5}$, and its glucoside, PHLORIDZIN, $C_{21}H_{24}O_{10}$, are found in plants, and in cases of glycosuria in animals

IRIDIN, $C_{24}H_{26}O_{18}$, is found in the roots of the Florentine is and yields Irigenin and glucose on hydrolysis

ARBUTIN, $C_{18}H_{16}O_7$, occurs in the leaves of the bear berry and gives glucose and hydroquinone on hydrolysis Methylarbutin gives glucose and methylhydroquinone

CONIFERIN, $C_{16}H_{24}O_8 + 2H_2O$ (see p 678) SINIGRIN (Myronic Acid), $C_{16}H_{17}O_8NS_2$, hydrolysis of its potassium salt, which occurs in black mustard seed, gives glucose, potassium bisulphate, and allyl mustard oil

SANTONIN, $C_{18}H_{18}O_3$, its constitution has been studied more especially by Cannizzaro and his pupils. It is a naphthalene derivative and is found in worm seed (santonica)

ALOIN, C₁₇H₁₈O₇, an anthracene derivative, occurs in aloes and is a strong purgative. LECITHIN (composition, see pp 462, 860) is a characteristic component of egg-yolk and of brain and nerve matter and is a crystalline waxy substance, which dissolves in alcohol or ether and with water forms an opalescent liquid. When hydrolysed it yields glycerophosphoric, cleic, and palmitic acids, together with choline, and it may therefore be regarded as a glyceride (see pp 218, 460).

Considerable use has been made of it (and also of bromo and iodo leoithin) in recent years as a medicine. Leoithin is extracted on the large scale from egg-yolk, and new processes are described in Fr. Pats. 371,391 and 406,634 of 1908. Pure leoithin costs up to £8 per kilo.

CEREBRIN, C17H33O3N, occurs in the nerves.

IODOTHYRIN (see Vol I, p 162) is the rodine compound of the thyroid gland

Bile Compounds molude TAUROCHOLIC ACID, $C_{28}H_{48}O_{7}NS$, and GLYCOCHOLIC ACID, $C_{28}H_{48}O_{5}N$, as sodium salts. When decomposed by alkali, both acids yield Choice Acid, OH $C_{21}H_{32}(CH_{2} OH)_{1}(CO_{2}H)$, glyone and taurine Bile also contains colouring-matters such as BILIVERDIN, BILIFUCHSIN, and BILIRUBIN, $C_{10}H_{18}O_{4}N_{8}$

CANTHARIDIN, C₁₀H₁₂O₄, occurring in canthardes, causes blistering of the skin, and sublimes in thin scales

CHITIN forms the skeletal matter of crustaceans. It is insoluble in alkali (unlike keratin) and when hydrolysed by acid gives a glucosamine. Fusion with potash at 184° yields acetic acid and Chitosan, which also forms the glucosamine with acid.

CHOLESTEROL, $C_{27}H_{44}O$, occurs in many plants and animals (that of plants is called Phytosterol), generally together with fats and oils, certain physical differences but virtually no differences in chemical behaviour are observable in products of different origin. Its constitution has not been definitely established, but, owing more especially to the investigations of A. Windaus, many of its component groups have been ascertained. A doubt

whether the complex contained one or two double linkings formerly existed, but the addition of ozone (Molinari and Fenaroli, 1908) shows the presence of two such linkings in both phytosterols and other cholesterols

It forms shining scales melting at 147°, and in constitution it resembles the terpenes more than the substances of any other group, but in all probability it does not contain benzene groups Minimal quantities of cholesterol may be detected by Tschugajew's reaction, which consists in the formation of a more or less intense red coloration when a small quantity of a substance containing cholesterol is poured into fused anhydrous trichloroacetic acid In alcoholic solution, cholesterol and phytosterol (but not their ethers) form an insoluble compound with Digitonin, this reaction serves for the estimation of these substances and for their separation from other animal and vegetable organic compounds, such as hydrocarbons, etc

VITAMINS 1 The constitution of these compounds has not yet been determined, but they appear to be alkaloidal in character and to contain heterocyclic closed chain groupings They are obtained from various animal glands, from seeds and bran and from beer yeast (which derives it from the malt) by extraction with alcohol slightly sordified with hydro chloric soid, the extract being concentrated in a vacuum, taken up with hot water and precipitated with phosphotungstic acid The precipitate is treated with barium hydroxide, and the filtrate concentrated, dissolved in alcohol and precipitated by means of moreuric chloride. Precipitation of the filtrate with silver nitrate then yields a crystallised base melting at 233°, which may be resolved by repeated orystallisation into three other bases of different melting points The mixture of the three bases is the most active, and in two or three hours cures pigeons affected with polyneuritis. This mixture, analysis of which indicates the formula, $C_{20}H_{20}O_{2}N_{40}$ is soluble in alcohol or water, resists the action of dilute sulphuric acid (even 10 per cent.), dialyses casily, as sensitive to heat (90° or, rarely, 120°) or alkalı, is absorbed by charcoal and by certam precipitated alumina (in preparing vitamins, these are separated from the liquids by contrifugation and not by filtration) With phosphotungstic or phosphomolyhdic acid, crude vitamins give the reactions of uric acid. They do not usually occur free in nature, but are liberated on hydrolysis (even with 10 per cent sulphume sold) in an active condition. Gaglio found that human urine contains a vitamin which rapidly cures polynouritis in pigeons.

When hydrolysed, both Funk's vitamin and the oryzanin separated from rice husks by Suzuki, Shimamura and Odake yield choline, glucose and mootinic acid Also Drummond and Funk showed that vitamins are pyridine derivatives. In some cases, e g, with hydrogen

peroxide, they act as catalysts

Mammals are incapable of producing vitamins and those present in the milk are derived from the food Vitamins in excess are harmless to the human organism Bottomley and Mockeridge gave the name auximones or aximones to species of vitamin which are produced during the fermentation of peat and facilitate the development of the nitrogen bacteria of the soil.

The study of vitamins is still in its infancy and many points connected with them remain controversial.

1 C Funk gave the name vitamin to a substance which may be extracted from rice brain and beer yeast and is capable of curing the disease known as beri beri. In Java in 1896 Eijkman found that 28 per cent of the prisoners fed on decorticated (polished) rice suffered from this disease, whereas the proportion was only 0.01 per cent among those fed with whole rice (see p. 595). A similar phenomenon occurs with fowls, pigeons and rats, which are cured by simple administration of oither whole rice on its bran. In 1910 Bréaudat and also Stopp confirmed Eijkman's results and showed that vitamins and lippids (see p. 746) are not identical. McCollum and Davis (1915) maintained that, for regular and equilibrated growth of the animal organism, the food must contain two special substances which they term factor A, or antiscrophthalmic vitamin (soluble in fats, but hydrolysable only with difficulty), and factor B (insoluble in fats, but soluble in fats, but hydrolysable only with difficulty), and factor B (insoluble in fats, but soluble in alcohol or water). The latter corresponds with Irink's vitamin and occurs more or less abundantly in animal and vegetable foodstuffs; it abounds in milk and its products, egg yolk, wheat, beans and soja beans, being localised especially in the cuticle or husk of seeds and in the embryo, but lacking in the starch.

Want of factor A (normally found in the lipoids of the glandular tissues, e.g., the testicles, ovary, liver, etc., and in the leaves of cauliflower, clover, etc.) produces in adults xerophthalmia, and in the young rockets. ¹ C Funk gave the name vitamin to a substance which may be extracted from rice bran

Scury is due to lack or deficiency of a specific vitamin occurring largely in fresh or germinating vegetables and in lemon or orange juice (it decomposes on drying at 90° to 100°). Funk obtained an anii-scorbuic vitamin which protects man from the vitamin, the latter is possibly formed by solution of the librater (latestable), and abounds in cats, wheat and yeast and protects the organism from herebert, but not from sourcy, which is, indeed, the more common Moist oats (wheat, peas) are anti-beri berid, and, on germination become anti-scorbutic.

The relation of vitamins to pellagra is still very uncertain.

INDEX

NG AACID Alfocrosomo, 386 Allomento, 433 Allomento, 435 Abriu, 138 Abrus precatorius, 138 Acacia, 690 γ Allylbutyrio, 357 Allylauccinic, 373 Acemuphthene, 730 Acer saccharinum nigrum, 540 Acetaldehyde, 250, 670 Ammo G, 729 Ammo R, 729 Estimation, 251 Acotals, 245, 534 Acotamide, 421 Aminoacetic, 370, 385, 423 Acotamido, 421
Acotamido, 426
Acotamido-ohloride, 425
Acotamido-ohloride, 425
Acotamido-ohloride, 425
Acotamido-ohloride, 425
Acotamido-ohloride, 426
Acotates, 341, 500
Ethyl, 450
Acotates, 345—348
Acota anhydrade, 380
Acotiners, 342
Acotimino ohloride, 425
Acotimino ohloride, 425
Acotiminothomethyl hydrodide, 425
Acotoacotaldehyde, 390
Acotoacotaldehyde, 390
Acotoacotaldehyde, 390
Acotoacotaldehyde, 320
Acotoacotaldehyde, 320
Acotoacotaldehyde, 330
Acotometers, 344 o Aminobenzoio, 082 Aminoethylsulphonic, 257 a Ammoglutarie, 424 a Amino 8 hydroxypropionie, 424 a Amino & hydroxynalerio, 804 a Aminosocaproio, 424 Aminonaphthalonetrisulphonic, 729 Aminonaphtholdisulphonic, 729 Aminonaphtholsulphonic, 720 a Aminopropionic, 423 Aminosucomic, 424 z Amino A thiolactic, 396 Amylacetylenecarboxylic, 360 Amylanlouic, 369 Angelio, 356
Angelio, 356
Anilidonoetic, 661
Anieio, 681, 687
Anthraflavinio, 733
Anthranilio, 682, 702
Arabonio, 302, 527
Arabonio, 302, 527 Auctone constant and the constant and th Arachidio, 320, 493 Aspartus, 424 Atropio, 681 Azelaio, 305, 372 Azelaio, 1082 Acetonic dinorderin, 119
Acetonylacetone, 399
Acetophenone, 675
Acetophenonecetone, 676 Azosalicylic, 682
Azulnic, 427
Barbituric, 435, 487
Behenic, 320
Behenolic, 360, 362
Benzonehexacarboxylic, 678, 685
Benzonesulphonic, 621, 637, 640
Benzillo, 720
Benzole, 680
Benzoylacetic, 681
Benzoylacetic, 360
Brassylic, 360
Brassylic, 365
Bromosuccinic, 374 Acotoxino, 253 Acotyl chloride, 379 oyanide, 305 ioclide, 380 number, 224 sulplude, 419 Acctylectore, 398 Acctylearbinel, 307 Acctylcellulose, 381
Acctylcne, 111
hydrocarbons, 110
Acctylcthylanunc, 420
Acctylcthylanunc, 420
Acctylrydrazides, 420
Acctylrydrazides, 420
Acctylrydrazides, 420
Acctylrydrazides, 630
Acctylrydrazides, 630 Acctyloellulose, 381 Bramsud, 300, 505 Bromosucoinio, 374 Butylacetylenecarboxylio, 360 Butylfumaric, 373 Butylmaleic, 373 Butylmalonic, 369 Butylauccinic, 371 Butyric, 348 Cacodylic, 242 Acetoscetic, 390 Acetonociacetic, 411 Caffeic, 689, 866 Caffetannie, 438 Camphorie, 716 Acetonechearboxylic, 411
Acetonetricarboxylic, 410
Acetonic, 389
Aceturic, 385, 424
Acetylanearboxylic, 361 Camphoronic, 376, 716 Capric, 350 Caproic, 349 Caprylic, 349 Acetylenedicarboxylic, 301
Acetylenedicarboxylic, 376
Acetylesalicylic, 687
Aconitic, 370, 411
Acridic, 784
Acrylic, 364
Adipid, 357, 362, 730
All-laborahonic, 242 Carbamic, 431 Carbaminic, 431 Carbolic, 638 o Carboxyonnamic, 728 Carboxyomianic, 730 Carboxyhydrodnuamic, 730 Carmino, 798 Carotic, 351, 482 Catylmalonic, 869 Alleylphosphonic, 242 Allanturic, 435 Chaulmoogric, 473 Allocinnamic, 683

868

	111211
Aold, Chalidonio, 743	Acid, Dinicotinic, 743
Chloroscetic, 379	Dinitrobonzoio, 652, 701
Chlorobenzole, 082	Dinitronaphthalenesulphonic, 778
	Dioctylinalonio, 300
a (β, γ) Chlorobutyrie, 378	
Ohlorocarbonie, 431	Diphenie, 710, 730
a, (8) Chloropropionio, 378	Diphonylacetic, 720
Cholio, 806	Diphonyloarboxylio, 076
Chromotrope, 720	Diploclimo, 743
Cinchomeronie, 743, 755	Dipropylmulonic, 309
	Dipropylauccinic, 371
Curchonic, 754	
Chmamio, 078, 681, 083	Dithogui bamie, 434
Citracomo, 22, 375	Dithucarbonic, 433
Citramalic, 400	Dithiocarbonylic, 433
Citrio, 412	Dodecamethylenedicarboxylic, 305
Citronellie, 357	Durencearboxylle, 081
Citrylidonescotic, 304	Durylio, 681 -
Clove's, 729	Eleostorio, 304
Olupanodonie, 478	Elaidio, 350
Comaine, 743	• Eruoio, 3(9)
Coumalinie, 743	Erythrio, 302
Coumario, 681, 688	Ethanotricarboxylio, 411
Coumarinie, 688	Ethanthiolic, 419
	lethanthrolthiole, 410
Crotonio, 22, 354	
Cuminio, 681, 683	Ethylacetylenecarboxylic, 360
Супше, 427	Ethylcarbonic, 431
Cyanoscetic, 377	Ethylonosminosulphonic, 424
Cyanuric, 428, 431	Ethylenolootic, 380
Cyclogeranic, 363	Ethylonosucoinio, 370
	Ethylfunario, 378
Dahl's, 720	
Decamethylonedicarboxylic, 905	lithylhydroxamic, 427
Decoro, 350	Ethylidenencetic, 355
Dohydroundecenoic, 361	Ethylidenolactic, 380
Desexalie, 410	Ethylldonopromonio, 850
Directosnocinic, 411	Ethylidenesucomic, 371
	Ethylisopropylmalonie, 300
Diacotylonedicarboxylic, 376	
Dincetylgluteric, 411	α (γ) Ethylitaconic, 373
Dudkylphosphonic, 242	Ethylmoloic, 373
Diallylacetic, 303	Ethylmalome, 369
Dialurio, 435	Ethylmothylacotic, 340
Diaminocaproic, 392	lithylnitrio, 230
	Ethylaucomic, 371
Diammostilbenedisulphonic, 722	
8 Diaminovalerie, 302	Ethylaulphonic, 235
Diatorobinio, 400	Ethylsulphuric, 108, 235
Diazobenzenesulphonic, 671	Ethyleulphurous, 235
Dibasic quinolinic, 753	Euxanthinio, 703
Dibonzhydroxamie, 654	Fernile, 680, 806
	Flavoanhydric, 427
βy Dibromobutyrie, 355	
AS Dibromopropionic, 378 Dicetylmalonic, 360	Formic, 324
Dicetylmalonic, 300	Formothiohydroxamic, 420
Dichloracetic, 378	Formylacotic, 393
aa (aß)Dichloroproponic, J78	Fulminio, 428
Diethylba bituro, 740	Fumeric, 22, 374
Diethylmaloic, 373	G, 729
Diothylmalonic, 369	Galactonic, 302, 534
Diothylaucemic, 371	Callely 081, 088
Digallie, 689	Gallolylgallic, 680
Diglycollic, 384	Gallotounio, 089
aß Dihydroxybutyrie, 355	Geranic, 358, 363
Dihydroxymalonie, 410	Gluochoptomo, 303
as Dihydroxypropione, 302	Ginconic, 302, 531
Tyle adversaria out 200 200 200	
Dihydroxystearic, 359, 390, 392	Glutaconic, 375
Dihydroxytartane, 411	Glutamic, 424
Discamylmalonic, 309	Glutario, 306, 372
Dilsobutylmalonic, 309	Glyceric, 220, 392
Dusobutylauccinic, 371	Glycerophosphorio, 258
Dimethylacotic, 349	Glycocholic, 800
	Glycolglycollic, 384
as Dimethylaerylie, 350	Glynollia 270 284
Dimethylarsenic, 242	Glycollic, 379, 384
Dimethylfumario, 378	Glycolaulphuric, 250
aa- (αγ-, γγ) Dimethylitaconic, 373	Glycoluric, 483
Dimethylmaleic, 375	Glycuronic, 393
Dimethylmalonic, 869	Glyoxylic, 393
Dimethyloxamino, 240	a 1 000
	(4nionio, 892
	Gulonio, 392 Fr. 790
Dimethylparabanic, 430	H, 729
Dimethylparabanic, 430 Dimethylpseudouric, 436	H, 729 Humatinic, 862
Dimethylparabanio, 430 Dimethylpseudourio, 436 Dimethylsuccinio, 371	H, 729 Hœmatinic, 862 Hemellitic, 681
Dimethylparabanic, 430 Dimethylpseudouric, 436	H, 729 Humatinic, 862

Acid, Heptolo, 349
Heptylseetylencearboxylic 360
Heptylsuccinic, 371
Hexahydroxystearic, 364
Hexamethylencearboxylic, 702
Hexantetroloic, 392 Hozantetroloic, 392
Hexylacetylenecarboxylic, 360
Hexylacetylenecarboxylic, 360
Hexylacetylenecarboxylic, 360
Hexylacetylenecarboxylic, 360
Hypariot, 423, 680, 682
Homocamphoric, 716
Hydantoic, 433, 435
Hydracylic, 389
Hydratropic, 681
Hydracylic, 681
Hydracylic, 426, 434, 671
Hydrochelidonic, 411
Hydrochelidonic, 411
Hydrochelidonic, 427
Hydromulitio, 686
Hydromulic, 373
Hydromulic, 375
Hydroparacoumaric, 681 Hydromuconic, 376
Hydroxyacetic, 379, 384
\$\beta\text{Hydroxyacetic, 379, 384}\$
\$\beta\text{Hydroxyacryln, 390, 393}\$
Hydroxybenzoic, 881, 686
\$a (\beta\) Hydroxybutync, 389
\$\alpha\text{Hydroxyopproic, 389}\$
\$\alpha\text{Hydroxyopproic, 389}\$ a-Hydroxyosproio, 389 o Hydroxyosmamio, 688 Hydroxyostrie, 419 Hydroxyoshylsulphonic, 257 Hydroxygallolylgallio, 689 a (β) Hydroxyglutario, 400 a Hydroxyisobutyrie, 389 a Hydroxyisovalerio, 389 Hydroxymalonic, 399 Hydroxymethyleulphonic, 257 a Hydroxymyristic, 389 Hydroxyoleic, 390 a Hydroxypalmitic, 389 a Hydroxypalmitic, 389
ß Hydroxyphenylacetic, 687, 860
g Hydroxyphenylacetic, 687, 860
a Hydroxyphenylacetic, 687, 860
a Hydroxyphenylacetic, 380
a Hydroxyptonic, 380
a Hydroxystearic, 389, 506, 507
Hydroxystoluic, 681
a Hydroxyvaleric, 389
Hypogasic, 358
Iohthyolsulphonic, 103
Idonic, 392
Immodithiocarbamic, 433
Iminodithiocarbamic, 433
Iminothiocarbamic, 433
Iminothiocarbamic, 378
Isatic, 756
Isatine, 756
Isatine, 756
Isatine, 756
Isatine, 756
Isatine, 756
Isoamylmalonic, 369
Isoanthraflavinic, 373
Isobutylmalonic, 375
Isobutylmalonic, 373
Isobutylmalonic, 373
Isobutylmalonic, 369
Isocinchomeronic, 743
Isocinchomeronic, 743
Isocinchomeronic, 743
Isocinchomeronic, 22, 355
Isocyanic, 427
Isodurenecarboxylic, 681
Isocrucic, 360 8 Hydroxypelargonic, 300 Isodureneoarioxynic, 68 Isodurylic, 681 Isoerucio, 360 a-(-8)Isofulminuric, 429 Isolinolenic, 364 Isonicotinic, 742 Iso oleio, 359

Acid, Isophthalic, 021, 685 Isopropylacetylenecarboxylic, 360 Isopropylfumaric, 373 γ Isopropylitacome, 973 Isopropylmalew, 373 Isopropylmalonie, 360 Isopurpurio, 665 Isosacolarmio, 302 Leosuccinic, 371 Isotrachylolic, 495 Isovaleric, 349 Itaconic, 374 Itamalio, 400 J, 720 Jecorinic, 364 8 Ketobutyrio, 196 Lactic, 383, 386 Lactobiome, 536 Lanugie, 807 Laurie, 320, 350, 362 Lendinic, 380 Levulinic, 390, 397, 530 Lignio, 002 Lignocerio, 320, 493 Linolenio, 304 Linolic, 363 Lupulnio, 194 Lupulnio, 194 Lutidinio, 743 Lyxonio, 392 Malamu, 421 Maleic, 374 Malic, 399, 421 Malonio, 368, 437 Maltobionic, 536 Mandelio, 081, 688 d-Mannonie, 302, 534 d-Mannosacoharie, 534 Margario, 350 Meconio, 743, 750 Melissio, 351 Mellitio, 634, 685 Mellophanic, 685 Mesaconic, 22, 374 Mesitylenecarboxylic, 681 Mesitylenio, 681 Mesotartaric, 401 Mesoxalic, 399, 410 Metaorylic, J56 Metasaccharinic, 392 Methionic, 228, 257 Methylacetylencearboxylic, 360
a Methylacrylic, 366
B Methylacrylic, 365
Methylacrylic, 372
Mothylatylmalonic, 369
1 Methyloyolohoxylidene-4 acctic, 20
Methylanedisulphonic, 267
Methylanedisulphonic, 267 Methylonedisulphonic, 267

y Methylone-y methylpyrotartaric, 373

Methylonesuccinic, 374

Methylothylplycollid, 389

Methylethylitaconic, 373

Methylothylmaleic, 373

Methylothylmaleic, 373

Methylothylmalonic, 369

Methylisopropylmaleic, 373

Methylisopropylmaleic, 373

Methylisopropylmaleic, 373

Methylisopropylmaleic, 373

Methylmaleic, 374

Methylmaleic, 374

Methylmaleic, 374

Methylmaleic, 374

Methylmaleic, 374

Methylmaleic, 374

Methylpropylmaleic, 373

Methylpropylmaleic, 378

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 378

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 378

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 379

Methylpropylmaleic, 378

Methylpropylmaleic, 378

Methylpropylmaleic, 379

Methylpropylmaleic, 378

Methylpropylmaleic, 378 Monothiocarbamic, 483;

INDEX

111	D 11 11
Aud, Monothiocarbonic, 433	Acid, Prehnitylic, 681
Monothicearhouylanue, 433	as Proponetricarboxylic, 411
Monothnocarbonylic, 133	" Propanetmenrboxylie, 370, 411
Muoro, 410, 527, 534	Propargylle, 301
Muconic, 376	Propincie, 301
Myristic, 350	Propiolio, 361
Myronic, 800	Propionio, 348
Naphthalenesulphonic, 728	Propylacetyleneonrboxylic, 360
Naphthalio, 730	Propylfumaric, 373
Naphthionic, 720	Propylitaconic, 873
Naphthologroxylic, 728	Propylmaleic, 373
Naphtholdisulphonic, 720	Propylmalonic, 369
Naphtholtrisulphonic, 720	Propylancoune, 371
Naphthylammedisulphonu, 729	Protalbime, 750
Naphthylaminesulphonic, 727, 720	Protocatechuic, 681, 687
Naphthylenediaminodisulphonic, 727	Pseudourie, 437
Naphthylonediaminetrisulphonic, 727	Purpurio, 435
	8 Pyridinesulphonic, 742
Noville-Winther, 728	Pyroemehonic, 375
Nicotic, 742 Nicotinic, 742	Pyrogallic, 645
m Nitrobenzoia, 682, 701	Pyroligneous, 335
o Nitrocinnamie, 761	Pyromoconic, 743
Nitrohydroxylaminic, 240	Pyromellitae, 685
	Pyromuoio, 737
o Nitrophenylacetic, 700 o Nitrophenylpropiolic, 084, 701	Pyrotartario, 372
Nonole, 340, 360	Pyroteroble, 357
Nonylacotylenecarboxylic, 300	Pyrroglutamic, 739
	a-Pyrrolidinecarboxylio, 789, 804
Nucleic, 863	a' Pyrrolidone-a-on boxylie, 789
Chianthio, 349 Oleic, 358	Pyruvio, 383, 396
	Quinio, 702, 752, 754
Δαβ Oloio, 350 Orsellinio, 681	Quinolinecarboxylic, 754
	Quinoline-a 8 diearboxylic, 754
Oxalacetro, 410 Oxalio, 360	Quinolinio, 743
Oxalurio, 435	R, 720
Oxonio, 421	Racemic, 21, 400
o Oxygodlobenzoje, 080	Rhannohoxonio, 393
Palmitio, 350, 500	Rhodanie, 429
Parabanic, 485, 436	Rhodinio, 358
Paralactic, 389	Ribonio, 302
Parasaccharinic, 392	Riomolaidimo, 390
Paratartario, 401	Ricinisoleic, 494
Peotic, 555	Ricinololo, 390, 494
Pootosinio, 555	Ricinoloinaulphonic, 800
Polargonio, 340	Roscallie, 365
Pentadecoic, 320	Rosolie, 721, 705, 784
Pentamethylbenzolo, 681	Rubeanhydric, 427
Pentamethyldigallic, 690	Ruberythrie, 784
Pontamethylenoacetic, 702	Rufigallio, 788
Pontamethyleneoarboxylic, 702	Sacohario, 410, 531
Pontylmalonic, 309	Saccharinic, 392 Salicylic, 212, 680, 681, 686
Perinaphthalenedicarboxylic, 725	Santalio, 703
Perthiocyanic, 429	Sarcolactic, 389
Phellonic, 015	Satavic, 804
8-Phenanthrenecarboxylle, 735	Schäffer's, 729
Phenylacetic, 670, 681, 683	Sobacio, 358, 865, 372
Phenylaminoacetic, 001	Sinapic, 700
α Phenyl-β hydroxypropionic, 749	Sorbio, 363
a Phenyl o nitrocinnamic, 785	Sozollo, 607
Phenylene-o-dicarboxylic, 084	Stearle, 350
Phenylglycine o carboxylic, 761	Stearolic, 358, 362
Phenylpropulio, 634, 678, 681, 684 Phenylsulphaminio, 661	Suberio, 305, 372, 617
	Succinamic, 421
Phenylsulphurio, 643 Phloroglucinoltricarboxylic, 646	Succinic, 370
Phthalic, 684	Sulphanilio, 637
Picolinic, 742	Sulpho-olaio, 505
Picramio, 665	Talonio, 892
Piorio, 303, 664, 778	Tannio, 689
Pimario, 707	Taririo, 862
Pimelio, 365, 617	Tartario, 21, 400
Pinonic, 707	Artificial, 410
Piperio (piperinio), 678, 689, 748	Manufacture, 407
Piperonylio, 687	Tartronio, 220, 399
Pivalio, 349	Taurocholic, 257, 424, 860
Prehnitic, 685	Telfairio, 364
Prehnitinecarboxylic, 681	Teraconic, 373
	· ·

872 I N I	DEX
Acid, Teracrylic, 357	Acids, Hydroxamic, 246, 427
Terebic, 357, 715	Hydroximio, 427
Terebinio, 400, 707	Hydroxy, 383
Terephthalio, 685, 707	Hydroxybeuzole, 087 Hydroxynaphthalenecarboxylie, 726
Terpenylio, 357 Tetrabromosteario, 304	Hydroxynaphthoio, 780
Tetracetylenedicarboxylic, 376	Hydroxyolefinecarboxylic, 380
Tetrahydroxyhexahydrobenzoic, 702	Hydroxypyridunecarboxylue, 743
Tetrahydroxysteario, 304	Insoluble fatty, 461
Tetrolic, 356, 361 Thioscetic, 419	a Ketonio, 495 8 Ketonio, 395
Thiogyanic, 429	γ Ketonic, 396
Thiocyanuric, 429	Ketonic dibasic, 410
Tiglio, 367	Lactio, 20, 385
Tolnie, 681 Trachylohe, 495	Liquid fatty, 492 Monobasic, 234, 680
Tricarballylic, 363, 376, 411	Monobasio aldohydic, 393
Trichloroscetic, 378	Monobasio ketonie, 304
Trihydroxybenzole, 688	Naphthalonesulphonic, 728
Trihydroxyglutaric, 410, 528 Trihydroxyisobutyric, 525	Naphthenic, 702 Naphthoic, 780
Trimallitio, 685	Naphtholsulphonic, 729, 780
Trimesic, 393, 685	Nitrated benyote, 701
Trimethylacetle, 349	Olefineoarboxylie, 351
Trimethylenedicarboxylic, 616 aas Trimethyltricarballylic, 376	Olefinedicarboxylic, 378 Pentacarboxylic, 743
Trinitrobenzoic, 682, 701	Pontoic, 524
Trithicearbonic, 433	Phenolic, 070
Tropio, 681, 749	Phenolsulphonia, 643, 667
Umbellio, 689 Undecenojo, 358	Phthalic, 678, 684 Polybasic aromatic, 684
Undecom, 350	Polybasic fatty, 304
Undecolic, 361	Pyridmecarboxylic, 742, 743
Urio, 435; 740	Pyrotartario, 872
Valerio, 349 Vanillio, 687	Quinoluebenzocarboxylic, 754 Quinolineoarboxylic, 754
Veratric, 687	Saturated dibasic, 304
Vinylacetic, 354	Saturated monobame fatty, 310
β Vinylaerylie, 363 Violume, 487	Succinic, 370 Sulphobenzoic, 082
Xanthio, 434	Sulphonio, 235, 636
Xanthone, 434	Tartario, 21, 400
Xylio, 681 Yylonia 309 K97	Tetrabasio, 376
Xylonic, 392, 527 Acid-albumins, 858, 802	Tetrahydroxypentanecarboxylic, 302 Tolue, 683
Acid halides, 379	Tribasic, 234, 376
Acido Affinity constants 991	Trihydroxycinnamic, (186)
Acids, Affinity constants, 321 Heat of neutralisation of organic, 26	Unsaturated dibasic, 373 Unsaturated monobasic fatty, 351
Alkylaulphomo, 233	Unsaturated monobasic, of the series
Alkylsulphuric, 235	$O_nH_{g_N}-O_g$, 300
Amino, 422 Aminobenzoio, 682	Volatile fatty, 400
Anthraceneoarboxylic, 733	with two double bonds, 302 with three double bonds, 304
Anthracenesulphonic, 733	with triple linking, 300
Anthraquinonesulphonic, 793 Aromatic, 671, 678	with unsaturated side chain, 079
Azobenzoic, 682	Xylic, 683 Acoine, 751
Benzenedicarboxylic, 678	Acontino, 745
Benzenetotracerboxylic, 085	Aconitum napellus, 376, 411
Benzenetricarboxylic, 678, 685 Benzoylbenzoic, 720	Aoraldehyde, 251 Aoradine, 765
Diazobenzoic, 082	Acridmes, 796
Dibasic, 234, 684	Acrolein, 251
Dihydroxybonzoic, 687	Acroleinammona, 252
Dihydroxyginnamio, 689 Dihydroxysteario, 889	Acroleinaniline, 753 Acrose, 393, 526
Diolefinedicarboxylic, 376	Activators, 607
Diphenylcarboxylio, 719	Adamsite, 060
Diphenylsulphonic, 719 Halogenated, 377	Adenne, 436, 441
Heptonic, 393	Adonitol, 529 Adrenaline, 745, 746, 751
Hexabromosteane, 364	Adrenalone, 747
Hexahydroxystearic, 364	Aesculetin, 689, 866
Hexonic, 392, 524 Homosspartic, 425	Aesoulin, 689, 866
Hydrophthalic, 701	Affinity constants, 321 Agglutanns, 139
• •	

	1 N D E A 875
Agro cotto, 414, 415	Alcohol, Rectification, 104
Airol, 688 #	Solid, 131
Alanino, 380, 423	Statistics, 179
Albanan, 711	Synthetic, 171
Albumin, Living, 187	Бунономо, 171 Тоска 170 174
Albuminatos, 802	Tosts, 172, 174
	Windusch's Table, 175
Albuninokis, 857, 863	Yield, 153
Albumius, 859	Alcohols, 123
Albumosos, 858, 802	Aldehydio, 393
Alcohol, Absolute, 130, 172	Aromatic ketonic, 674, 677
Acctobopropyl, 308	Constitution, 124
Acetone, 307	Derivatives of monohydric, 220
Allyl, 216, 327	
Amyl, 120, 165, 215	of polyhydric, 250
	Dihydric, 216
Anisio, 077	Higher monohydno, 214
Bonzyl, 074	Ketonia, 894, 397
Butyl, 125, 126, 214	Nomenolature, 125
Caproyl, 215	Polyhydric, 217, 224
Capryl, 215	aldehydie, or ketonie, 523
Carnaubyl, 470	Primary, 124, 125
Caryl, 126, 216, 479	Saturated monohydric, 124, 126
Cotyl, 215, 402	Secondary, 124, 125
Coniforyl, (K)1, 678	
	Tertiary, 124, 125
Cumyl, 074	Tetrahydrio, 224
Dooyl, 126	Tolylene, 674
Donatured, 176	Trihydric, 217
Dodcoyl, 126	Unsaturated, 216
Ethyl, 130	Alcoholene, 178
Fluorono, 676	Alcoholism, 130, 184
Furfuryl, 737	Alcoholometer, Gay Lussac, 174
Glucovanillyl, 678	
	Tralles, 174
Glycide, 258	Alcoholometry, 174
Heptyl, 120, 216	Aldehyde ammonias, 245
Hexadecyl, 126, 215	Aldehydes, 116, 124, 243, 244
Hexyl, 215	Aromatic, 674
Hydroxybenzyl, 677	Determination by Strache's method, 255
Isobutyl, 126, 215	Phenolic, 677
Isohoxyl, 715	Sohiff's reagent, 240
Isopropyl, 126, 214	with unsaturated radicals, 251
Lanolyl, 479	Aldehydine, 741
Melusyl, 216	
Mashad 107 179 704	Aldehydo catalase, 134
Methyl, 127, 173, 794	Aldims, 677
Monochloroothyl, 250	Aldine, 743
Myrloyl, 126, 216	Aldines, 675
Nonyl, 120	Aldohexoses, 524, 529
Octodecyl, 126	Aldoketenes, 256
Ootyl, 126, 215	Aldol, 303
Oenanthyl, 215	Aldols, 245
of orystallisation, 126	Aldoses, 524
Pentadecyl, 120	Aldoximes, 246
Phthalio, 674	Alembios, 158
Dunnance 010	Alfalfa, 607
Propargyl, 210	
Propyl, 120, 214	Alge, 68
Styryl, 674	Algarovilla, 690
Tetradecyl, 126	Aliphatic compounds, 29
Tolylene, 674	Alizarin, 733, 778, 783, 787
Tridecyl, 126	nstrol, 800
Undecyl, 126	oyanine, 787
Vanillio, 677	irisol, 800
Vinyl, 216	saphirol, 800
Xylylene, 674	Alkaloids, 743
Alashal Amyrla process 166	
Alcohol, Amylo process, 155	Synthesis, 744
Denaturation of, 176	Table, 745
Effront process, 107	Tests, 744
Fiscal regulations, 179	Alkines, 742
from beet, 166	Alkoxides, 124
from calcium carbide, 171	Alkoxy groups, Estimation, 042
from fruit, 167	Alkyl halides, 114
from lees, 169	Estamation, 120
from molasses, 166	Alkylanthrahydrides, 733
from sulphite liquors, 169	Alkylenes, 106
from winage 140	Alkylhydrazines, 241
from vinasse, 169	
from wine, 169	Alkylhydroanthranols, 733
from wood, 167	Alkylhydroxylamines, 241
Industrial preparation, 140	Alkylisourees, 432
meters, 179	Alkyla, 30
motors, 178	Allantoin, 486
•	K D
YOL, II.	56

874 1.1	ADEY
Allene 100 974	Anhrdvida Butuna 201
Allene, 109, 374	Anhydride, Butyrig, 381
Alloisomerism, 21, 22	Caprole, 381
Alloxan, 435, 740	Caprylio, 381
Alloxanthine, 436	Diglycollic, 384
Allyl bromide, 123	Double (diketopiperazine), 859
chloride, 123	Glutario, 365
10dide, 123	Isobutyrio, 381
isothicoyanate, 430	Isovalorio, 381
mustard oil, 430	Laurio, 381
thiocyanate, 430	Myristio, 381
Allylandine, 753	Cenanthio, 381
Allylene, 110, 375	Palmitao, 381
Almonds, composition of sweet, 482	Pelargonio, 381
Alom, 866	Phthalio, 684
Alypine, 119, 746, 751	Prolylglycocoll, 864
Amaranth, 780	Propionic, 381
Amber, 370	
	Pyrocinchonic, 373, 875
Amidases, 183	Pyromellitic, 085
Amides, 258, 419	Salicylic (internal), 087
of carbonic acid, 431	Steario, 381
of hydroxy acids, 421	Succinio, 365, 371
Amidines, 238, 425, 426	
	Trimethylacotic, 381
Amido chlorides, 425	Anhydrides, 380
Amidol, 664, 666	Internal, 380
Amidoximes, 427	Mixed, 380
Amimides, 425	Amilides, 661
Amines, 239	Andine, 657, 660
Aromatic, 654	Homologues of, 661
Amino-aoida, 419	hydrochloride, 050, 670
Derivatives of, 422	nitrate, 670
Aminoanisoles, 666	oll, 659
Aminoazobenzene, 672	platinichloride, 060
Ammoazobenzenes, 668	solt, 659
Aminoazo derivatives, 071	sulphate, 600
Aminoazonaphthalene, 727	Anisaldshydo, 677
Aminoazotoluones, 668	Amendanes, 605, 600
Ammocetylbenzene, 655	Anisole, 642
	Amolio, Oza
Amino-derivatives of aromatic hydrocarbon	
654	Anterea mylitta, 818
Aminoguanidine, 434	Anthracene, 731
Ammonaphthols, 728	derivatives, 733
Ammo oxindole, 760	Anthrachrysone, 733
Aminophenola, 665	Anthraliavone, 789
Aminothiazole, 740	Anthragallol, 733
Ammothiophenols, 607	Anthrahydroquinones, 733
Ammelide, 431	Anthramine, 733
Ammeline, 431	Anthranil, 682
Ammonium scetate, 345	Anthranol, 733, 784
carbamate, 431	Anthropurparin, 733
oyanate, 428	Anthraquinones, 733, 765
ichthyolsulphonate, 108	Anthraquinonimide derivativos, 789
piorate, 065	Anthrarufin, 788
thiocyanate, 429	Anthrols, 733
Amygdalın, 130, 865	
Amyl acetate, 459	Anthrone, 788
	Antialdoximes, 253
Amylacetylene, 309	Anta bodies, 138
Amylese, 133, 134	Antichlor, 830
Amylbenzene, 623	Antidiazo p chlorbenzene cyanide, 609
Amylene, 109	Antidiazotates, 669
hydrate, 215	Antifebrin, 661
Amylodextrin, 141	Antiketoximes, 253
Amyloid, 599, 600	Antilactose, 138
Amylomyces Rouxii, 155, 156	Antimorphine, 138
Amylo process, 155	Antinonnin, 773
Ansethesia, 114, 118, 746	Antipepsin, 138
Angethed 751	
Anesthesin, 751	Antipyrine, 673, 739, 745
Ancesthemophore, 751	Antique purple, 788
Annesthetics, 118, 746	Antirennet, 138
Mild local, 751	Antarioln, 188
Analgen, 754	Antiseptics, 151, 640
Analysis, Elementary, 8	Antiserum, 863
Qualitative, 7	
	Antitoxina, 138
Quantitative, 8	Apigenin, 755
Anethole, 644	Araban, 527
Anethum fæniculum, 706	Arabinose, 525, 529
Anhydride, Acetic, 380	benzylphenylhydrazone, 527
Benzoio, 680	Arabitol, 225, 525, 528

, 5 , 6 , 5 , 5 ,

IND	15 25
Arachis nuts, 400, 500	Balata, 711
Arbutin, 806	Balling's Table, 200
Archil, 645, 792	Ballistite, 300
Arguine, 392	Baphia nitida, 794
Aristochin, 753	Barley, 192
Aristol, 643	Malting of, 195
Aromatic compounds, 20, 618	Barwood, 794
Arrack, 190	Bases, Aldehydo-, 057
Arsines, 242	Aminio, 230
Artificial hair, 820	Ammonium, 230
ivory, 351	Arsonium, 242
parthenogonosis, 138	Iminio, 230
Asnfortida, 044	Nitrilio, 239
Ascomycetce, 133	
	Primary, 230
Aseptol, 607	Quatornary, 239, 657
Asparagine, 20, 424	Secondary, 230
Aspartamido, 425	Tertlary, 239
Aspergillus gallomyces, 688	Vogotoblo, 743
oryzm, 155	Bathoohromes, 764
Asphalto, 90	
	Bookmann roarrangement, 253, 676
Artifloial, 99	Boer, 101
mastic, 99	Alcohol free, 211
Asphaltito, 100	Analysis, 211
Aspirin, 687	Attenuation, 207
Astatki, 77, 86	Cask pitching, 200
Asymmetric syntheses, 137	
	Composition, 211
Asymmetry, Absolute, 22	Detection of antisoptics, 212
Relative, 22	Fermentation, 204
Atole, 190	Mashing, 201
Atractylin, 248	Pasteurisation, 210
Atropa belladonna, 749	Racking, 200
Atropine, 745, 749	
	Statistics, 212
Attenuation of fermented liquids, 153, 154, 207	Boot, 543
Auramine, 720, 784	Cultivation, 544
Aurantia, 060	sugar, History of, 539
Aurino, 721, 784	Beet-pulp pross, 551
Australone, 707	Bonzal chloride, 036
Auximones, 867	Bongalacetone, 676
Auxochromes, 706	Benzalacetophenone, 070
Axite, 302	Benzalozine, 677
Arides, 426	Benzaldahydo, 674, 680
Aziminobenzene, 657	homologues, 675
Azimino compounds, 657	phenylhydrazone, 677
Azines, 785	
	Benzaldoxime, 676
Azobenzene, 607	Benzamide, 081
Azo carmine, Acid, 800	Bonzanilide, 001, 681
Azouoghineal, 665	Benzanthrone, 789
Azo derivatives, 667	Benvazide, 682
Azodicarbonamide, 434	Benzono, 622, 630
Azoeosin, 665	Artificial, 631
Azollavine, 799	Bromo derivativos, 635
Azofuchsines, 781	Ohloro derivativos, 685
Azolmide, 241, 426, 484, 671	Cyclic formulæ, 618
Azolitmin, 792	derivatives, 618, 635
Azorubin 8, 780	
	Unaracters of 621
	Obstructors of, 621 Formation of, 622
Azotoluene, 667	Formation of, 622
Azotoluene, 667 Azoxazole, 740	Formation of, 022 Isomerism of, 620
Azotoluene, 667 Azoxazole, 740 Azoxybenzene, 667	Formation of, 622 Isomerism of, 620 from naphtha, 87
Azotoluene, 667 Azozazole, 740 Azoxybenzene, 667 Azoxy-dorivatives, 667	l'ormation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635
Azotoluene, 667 Azozazole, 740 Azoxybenzene, 667 Azoxy-dorivatives, 667	l'ormation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635
Azotoluene, 667 Azozazole, 740 Azoxybenzene, 667 Azoxy-dorivatives, 667 BAQILUS acetlous, 145, 340	Formation of, 022 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648
Azotoluene, 667 Azoxazole, 740 Azoxy-benzene, 667 Azoxy-derivativas, 667 BAQILIUS aceticus, 145, 340 acidi lavolactici, 389	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 636 Nitration of, 648 Pure, 633
Azotoluene, 667 Azoxazole, 740 Azoxybenzene, 667 Azoxybenzene, 667 BAQILUS aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637
Azotoluene, 667 Azozzole, 740 Azozybenzene, 667 Azozy-dorivatives, 667 BACILUS coeticus, 145, 340 coidi lavolactici, 389 coidificans longissimus, 152 butylicus, 214	Formation of, 622 Leomerism of, 620 from naphtha, 87 Lodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 Azozy-dorivativez, 667 BAQILLUS aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzansazimide, 671
Azotoluene, 667 Azoxazole, 740 Azoxazole, 740 Azoxazole, 740 Azoxy-benzene, 667 Azoxy-derivatives, 667 BACILUE aceticus, 145, 340 acidi lævelactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückti, 149 ethaceticus, 392	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 Azozy-dorivativez, 667 BAQILLUS aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzeneaulphonamides, 637
Azotoluene, 667 Azoxazole, 740 Azoxazole, 740 Azoxy-benzene, 667 Azoxy-derivatives, 667 BACILUE aceticus, 145, 340 acidi lævolactici, 389 acidifeans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzeneaulphonamides, 637
Azotoluene, 667 Azozzole, 740 Azozybenzene, 667 Azozy-dorivatives, 667 BACILUS coetious, 145, 340 coidi lavolactici, 389 coidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetio, 145, 340	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derlyatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzenesulphonamides, 637 Benzhydrazide, 682
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 Azozy-dorivativez, 667 BAQILLUS aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bactaria, Acetic, 145, 340 Butyric, 145	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzenesulphonamides, 637 Benzhydrazide, 682 Benzhydrazide, 685 Benzhydrazide, 685
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 Azozy-dorivativez, 667 BAQILUS acetlous, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylious, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyric, 145 Chromogenio, 133, 775	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazimide, 671 Benzenesulphonamides, 637 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldiamino-derivative, 710
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozazole, 740 Azozy-dorivatives, 667 BACILUE aceticus, 145, 340 acidi lævolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bactaria, Acetic, 145, 340 Butyrio, 145 Chromogenio, 138, 775 Lactic, 145	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneszimide, 671 Benzeneszulphonamides, 637 Benzenesulphonamides, 637 Benzhydroide, 662 Benzhydroid, 675 Tetramethyldiamino-derivative, 710 Benzidam, 657
Azotoluene, 667 Azotzacle, 740 Azotzybenzene, 667 Azotybenzene, 667 BACILUS aceticus, 145, 340 acid ilavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyrio, 145 Chromogenio, 138, 775 Lactic, 145 Pathogenio, 138	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphoehloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazimide, 671 Benzenezuphonamides, 637 Benzhydrazide, 682 Benzhydrazide, 682 Benzhydrazide, 675 Tetramethyldamino-derivative, 710 Benzidam, 667 Benzidam, 667 Benzidine, 668, 718, 770, 781
Azotoluene, 667 Azozazole, 740 Azotaybenzene, 667 Azotybenzene, 667 Baqillus aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyric, 145 Chromogenic, 138, 775 Lactic, 145 Pathogenic, 188 Reproduction, 138	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzeneulphonamides, 637 Benzeneulphonamides, 637 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldamino-derivative, 710 Benzidine, 668, 718, 770, 781 Benzidine, 668, 718, 770, 781 Benzidine, 668, 718, 770, 781
Azotoluene, 667 Azozazole, 740 Azotaybenzene, 667 Azotybenzene, 667 Baqillus aceticus, 145, 340 acidi lavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyric, 145 Chromogenic, 138, 775 Lactic, 145 Pathogenic, 188 Reproduction, 138	Formation of, 622 Isomorism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzeneulphonamides, 637 Benzeneulphonamides, 637 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldamino-derivative, 710 Benzidine, 668, 718, 770, 781 Benzidine, 668, 718, 770, 781 Benzidine, 668, 718, 770, 781
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 Azozy-dorivativez, 667 BAQILUS aceticus, 145, 340 acidi izavolactici, 389 acidificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyric, 145 Ohromogenic, 145 Pathogenic, 145 Pathogenic, 183 Reproduction, 183 Saprophytic, 183	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzaneazimide, 671 Benzaneazimide, 671 Benzaneazibhonamides, 637 Benzhydrazide, 682 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldnamino-derivative, 710 Benzidam, 667 Benzidine, 668, 718, 770, 781 Benzil, 723 dioxamine, 723
Azotoluene, 667 Azozazole, 740 Azozazole, 740 Azozazole, 740 Azozybenzene, 667 BAQILUS aceticus, 145, 340 acidi levolactici, 389 acudificans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 892 saprogenes vini, 404 Bactaria, Acetic, 145, 340 Butyric, 145 Chromogenic, 145 Pathogenic, 188 Reproduction, 188 Saprophytic, 183 Zymogenic, 183	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazimide, 671 Benzeneazibhonamides, 637 Benzhydrazide, 682 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldnamino-derivative, 710 Benzidam, 667 Benzidine, 668, 718, 770, 781 Benzid, 723 dioxamine, 723 Benziminasoles, 657
Azotoluene, 667 Azotzacle, 740 Azotzybenzene, 667 Azotybenzene, 667 BACILUS aceticus, 145, 340 acidi lavolactici, 389 acidicans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyrio, 145 Chromogenio, 138, 775 Lectic, 145 Pathogenic, 188 Reproduction, 188 Saprophytic, 188 Zymogènic, 188 Bacteriology, 132	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphoebloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazimide, 671 Benzeneazibenzene, 667 Benzenesulphonamides, 637 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldnamino-derivative, 710 Benzidam, 667 Benzidine, 668, 718, 770, 781 Benzid, 723 diozamine, 723 Benziminazoles, 657 Benzine, Orude, 84
Azotoluene, 667 Azotzacle, 740 Azotzacle, 740 Azotybenzene, 667 Azotybenzene, 667 Baqillus aceticus, 145, 340 acidi lavolactici, 389 acidicans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bactaria, Acetic, 145, 340 Butyrio, 145 Chromogenio, 133, 775 Lactic, 145 Pathogenic, 188 Reproduction, 188 Saprophytic, 188 Zymogenic, 188 Bacteriology, 182 Backelite, 370, 641	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphochloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazobenzene, 667 Benzenesulphonamides, 637 Benzenesulphonamides, 637 Benzhydrazide, 682 Benzhydrazide, 675 Tetramethyldiamino-derivative, 710 Benzidam, 657 Benzidine, 668, 718, 770, 781 Benzil, 723 dlozamine, 723 Benziminazoles, 657 Benzime, Crude, 84 Benze-azurin, 719, 784
Azotoluene, 667 Azotzacle, 740 Azotzybenzene, 667 Azotybenzene, 667 BACILUS aceticus, 145, 340 acidi lavolactici, 389 acidicans longissimus, 152 butylicus, 214 Delbrückii, 149 ethaceticus, 392 saprogenes vini, 404 Bacteria, Acetic, 145, 340 Butyrio, 145 Chromogenio, 138, 775 Lectic, 145 Pathogenic, 188 Reproduction, 188 Saprophytic, 188 Zymogènic, 188 Bacteriology, 132	Formation of, 622 Isomerism of, 620 from naphtha, 87 Iodo-derivatives, 635 Nitration of, 648 Pure, 633 sulphoebloride, 637 Testing of, 632 Benzeneazimide, 671 Benzeneazimide, 671 Benzeneazibenzene, 667 Benzenesulphonamides, 637 Benzhydrazide, 682 Benzhydrol, 675 Tetramethyldnamino-derivative, 710 Benzidam, 667 Benzidine, 668, 718, 770, 781 Benzid, 723 diozamine, 723 Benziminazoles, 657 Benzine, Orude, 84

56--∹

876	INDEX
Benzo blue-black, 801	Bloodstains, Identification, 862, 863
browns, 802	Blue, Acid, 666
flavine, 781 furfuran, 755	Algol, 789 Alizarin, 787
orange, 801	Alkali, 800
purpurin, 719	Anthraceno, 787, 798
o Benzoicsulphimide, 682	Capri, 785
Benzoin, 722 Benzonitrile, 671, 670	Carmine, 784 Chrome, 728
Benzophenone, 675, 719	Ciba, 788
oxime, 670	Diamine, 728, 729, 801
Benzopinacone, 675	Diaminogen, 729, 801 Diamond, 729 •
Benzopyrrole, 755 Benzoquinone, 647	Diphonyl, 060
Benzothiophen, 755, 756	Fine, 787
Benzotrichloride, 636	Immedial, 801
Benzoyi, 15	Indonthrone, 780 Indrone, 790
chloride, 681 Benzoylacetons, 676	Janos, 800
Benzoylazoimide, 082	Jet, 727
Benzoylcarbinol, 678	Lancoyl, 800
Benzoylsalıcın, 866 Benzoyltropine, 740	Moldola's, 790 Methylenc, 772, 785, 706
Benzyl bromide, 635	Naphthazarin, 720
chloride, 635, 653	Naphthol, 727, 785
iodide, 035	Naphthylamine, 781
Benzylamine, 662 Benzylaniline, 660	Night, 727 Nile, 800
Benzylglucoside, 535	Oxamine, 801
Benzylhydrazine, 673	Oxidation, 787
Benzylphenylamine, 660	Patent, 784
Benzylphenylhydrazine, 678 Berberine, 745	Pluto, 801 Sulphur, 801
Borgamot, 413	Victoria, 727
Beri-beri, 867	Vidal, 667
Beta maritima, 543	Wool, 727, 800 Zamben, 801
vulgaris, 540, 543 Betaine, 385, 423	Boghead coal, 100
hydrochloride, 423	Bolling-point, 2, 25
Betol, 728	Bombya mori, 813
Bile compounds, 860	Boot-polish, 572, U24 Bordeaux, Ciba, 788
Bilifuchsin, 866 Bilineurine, 257	Indanthrene, 789
Bilırubin, 866	Borneol, 714, 710
Biliverdin, 868	Bornentol, 647
Biogen theory, 137 Bisazo compounds, 668	Boudineuse, 284, 300 Bradolytes, 721
Bismuth tribromophenoxide, 122	Brandy, 190
Bunlphite aldehyde compounds, 244	Brazilein, 793
Bitumen, 99, 630	Brazilin, 793
Biuret, 433 Bixa orellana, 477	British gum, 597 Bromosestylene, 123
Black, Add azo, 798	Bromobenzenos, 686
Alizarin, 787	4-Bromomethylfurfural, 528
Anliine, 786, 855 Animal, 508	Bronze, Diamine, 802
Anthracene, 798	Brown, Alizarin, 783
Bubrich, 729	Anthracene, 088, 783
Bone, 568	Bismarck, 057, 082, 780, 700
Cibanone, 790 Columbia, 801	Cibanone, 790 Diamme, 802
Cyanide, 104	Indanthrene, 790
Diamine, 801	Janos, 802
Diamond, 728, 729, 781 Fine, 787	Pluto, 802
Immedial, 801	Pyrogen, 802 Sulphur, 802
Naphthazarin, 726	Thiazine, 802
Naphthol, 729, 781	Bruche, 745
Naphthylamine, 781 Oxidataon, 787	Brussels Sugar Convention, 575 Bulgarian ferment, 587
Pluto, 801	Butandiene, 113
Sulphur, 664, 791	Butandline, 114
Vidal, 801 Zambori 801	Butandione, 398
Zambesi, 801 Blankite, 542	Butanes, 37 Butanolone, 398
Blastomycetes, 133	Butanola, 214
Blood, 137, 795	Butanone, 256
	4 th 1 t
	, , , , , , , , , , , , , , , , , , ,

	INDEX
Butantetrol, 225	Curbohydrazide, 433
Butenes, 109	Carbolineum, 630
Butter, 474	Carbon, Asymmetric, 19
Analysis, 476	chains, 16
Artificial, 470	Estimation, 8
Cacao, 437	sulphochloride, 483
Coconut, 408	totrachlonde, 122
Degree of ranoidity, 464	Valency, 15
Renovated, 477	Carbon oxychloride, see Phosgone
Butyl 10dides, 117, 118	Carbonio acid esters, 431
Butylbonzone, 623	Carbonisation of textiles, 805, 830
Butylones, 109	Carbonite, 284, 307
Butyramido, 421	Carbonites, 300
Butyroflavine, 471	Carbonylquinmo, 753
Butyrolaetone, 884	Carbostyrii, 754
Butyrometer, Gerber, 476	Carboxylimnoglobin, 803
Butyrorefractometer, Zoiss, 463	Carboxyl, 124
Butyryl chlorides, 380	Carbyl sulphate, 257
Byssus, 820	Carbylamines, 238, 050
CAGAO buttor, 437	Carono, 700, 714
Cachou de Laval, 790	Carotin, 815
Immedial, 802	Cort gresso, 98
Sulphur, 802	Oarvaerel, 644
Cacodyl, 15, 242	Carvaorylamino, 655 Carvono, 703, 705
oldorido, 242	
oxido, 242	Carvol, 714
Cadaverine, 257	Carvomenthol, 714 Carvomenthone, 714
Cadmum bromoxylonate, 527	Carvone, 714
Caffeine, 438, 745	Caryophyllene, 708
Ualonnin acetate, 337	Cascin, 474, 827, 861
benzoate, 622 butyrate, 348	Vegetable, 801
carbide, 111	Castor oil, 390, 493
ottrate, 415, 417	seeds, 482, 507
oyanamido, 430	Catalases, 135
dilactate, 388	Catalysts, Dry, 458
othoxide, 214	Inorganic, 130
formate, 828	Moist, 457
lactate, 388	Organie, 136
oxalate, 308	Ontoohol, 690, 865
tartrate, 401	Catochu, 601, 794
Calendars, 849	Oedrono, 708
Calorimeter, Junker's gas, 01	Collage, 184
Camponchy, 701	Callite films, 599
Camphage, 708	Collobiose, 600
Camphene, 708	Cellophone, 827
Campholide, 710	Collose, 600
Camphor, 716	Colluloid, 717
Artifloial, 707, 717	Calluloso, 598, 824
Camphors, 714	acetate, 509
Cantwood, 794	Hetimation of, 005
Candelite, 482	formate, 600
Candles, 510	hydrate, 601
Paraffin, 513	Wood, 003
Stearine, 511	Contrifuges, 505
Tallow, 510	Corasin, 09, 105, 707
Cannabis sativa, 812	Coroals, Starch content, 141
Cannel coal, 100	Cerebria, 866
powder, 305	Cerotene, 109
Cantharidin, 800	Corotin, 215 Coryl cerotate, 210, 460
Caoutohoue, 708	Chiral nalmitate 460
Capillarimeter, 170	Cetyl palmitate, 460
Caprylene, 100	Corodina 750
Caps, 300	Cevadins, 750 Chalkone, 678
Caramel, 531, 533	Chamberland flasks, 147
Carane, 706	Chamolsing, 698
Carbamide, 432 Carbamidyl ohloride, 432	Champy drums, 272
Carbarida 488	Chappe (slik), 815
Carbazide, 433	Oharcoal, Animal, 568
Carbazole, 680, 719	Vinasse, 571
Carbenes, 99 Carbinol, 125, 127	Wood, 208
Carbooyalia compounds, 29	Chartreuse, 190
Carbodimide, 18, 480	Cheddite, 305
Carbodiphenylimide, 480	Cheese, 474
Carbodynamite, 284	Filled, 474
Carbohydrates, 523	Margarine, 471
	•

e :

INDEX

878	INDEA
Chastant 600 (01	Coca leaves, 751
Chestnut, 690, 691,	Cocaine, 119, 745, 750
Chica, 190	
Chinovose, 529	Coori, 138
Chitan, 866	Cocus osota, 792
Ohitosan, 806	Cochineal, 792
Chlamydomucor oryzm, 155	Cocoa, 437
Ohloracetanilide, 661	Cocount, Composition, 482
Chloral, 251, 746	oil (or butter), 498
hydrate, 251, 748	Coccons, 813
Ohloralamide, 421	Codamine, 750
Chloramides, 238	Codemo, 745, 750
Ohloranhydrides, 379	Co-enzymes, 140
Chloranil, 648	Ccarulein, 771, 772
Chloretone, 119	Cœrulignone, 719
Chlorhydrins, 107, 217, 257	Coffee, 438
	substatutes, 480
Chlorimides, 238	Cognac, 190, 191
Chlorobenzenes, 035	Colchiane, 745
Chlorocruorin, 137	
Chloroethane, 117	Collagens, 864
Chloroform, 118	Collidines, 742
Piotet, 119	Collodion, 821
Tests, 120	ootton, 285, 294, 821
Chloromethane, 116	Colophane, 708
a Chloronaphthalene, 726	Colophony, 518, 707
Ohloronitrobenzenes, 053	Colorimoters, 830
Chlorophyll, 133, 794	Colour theory, Ostwald's, 773
Chlorophyllase, 794	Rosanstiehl's, 774
Chloropigrin, 236	Colouring matters, 704
a Chloropropylene, 123	Acı aminoanthraquinone, 780
Chocolate, 487	Acid, 768, 778
	Agridine, 787
Cholesterol, 860	
Cholestrophane, 436	Adjective, 772
Choline, 257	Aminoszo, 770
Chromatic circle, 774	Azo, 778, 779, 780, 700
Ohromogens, 704	Вале, 768, 778, 706
Chromone, 755	Benzidine, 781
Chromophores, 705, 704, 769	Benzo, 781
Chromotrop, 781	Chromotrop, 781
Chronograph, le Boulengé's, 317	Classification of, 778
Chrysamine R, 718	Coumarin, 787
Chrysezin, 733	Diamine, 781
Chrysazol, 788	Diamil, 781
Chrysene, 736	Diphenylmethane, 783
Chrysin, 755	Fastmess of, 831
Ohrysoidin, 657, 779	Flavone, 787
	Helindone, 789
Chrysoidines, 668	
Ohrysoin, 780	Hydrszone, 782
Chrysophenin, 891	Hydroxyazo, 780
Cider, 190	Immedial, 790
Cinchona alkaloida, 751	Indanthrene, 780
Cinchonidine, 752	Indigoid, 788
Cinchonine, 745, 751, 752	Ingram, 781
Cineno, 704	Insoluble, 778
Cineol, 715	Janos, 781
Cinnamaldehyde, 675	Katigenio, 790
Cinnamyleoceine, 750	Kriogenio, 700
Christian Vleogonine, 750	Manufacture of, 770
Ostral, 216, 252, 416	Monoozo, 779
Citrates, 418	Mordant, 778, 783
Citrene, 703, 705	Natural, 772, 788, 701
Citromyoes citrious, 412	
	Neutral, 778
Pfefferianus and Glaber, 412	Nitro, 778
Citronellal, 252, 358	Oxyketone, 787
Oitronellol, 216	Phenolic, 796
Citrus bergamia, 418	Physiological action of, 772
industry, 413	Polyazo, 779, 781
limetta, 418	Pyrazolone, 782
limonium, 418	Quinoline, 787
Classification of organic substances, 29	Quinone, 783
Clovene, 708	Quinonmide, 785
Olupein, 862	Quinonoxime, 783
Congulation, Enzymic, 134	Recognition on fibres, 708-802
Coal, Cannel, 100	Substantive, 770, 778
dust in mines, 34	
	Sulphur, 687, 790
for gas, 39	Tests, 795
Coal gas, 38	Theory of, 764, 773
Coal-tar, 99	Thuzole, 787

	Li A.
Colouring-matters, Triphenylmethane, 783	Cyano-acids, 377
Vat, 788	Cyanogen, 427
Water soluble, 795	ohloride, 427
Xanthone, 787	compounds, 427
Colza scode, 482	of coal gas, 50
Concentrators, Multiple effet, 500	aulphido, 429
Condensation, Aldehyde, 245	trichloride, 427
Aldol, 245	Cyanohydrins, 238
Condonsor, Liobig's, 2	Cyanole, 800
Conditioning of textiles, 828	Cyanoquinolines, 754
	Cyanurtriamide, 431
Conductivity, Electrical, 20	
Conida, 133	Cyclic compounds, 100, 616
Coniforin, 534, 078, 800	Cyclohoptano, 017
Conune, 20, 110, 742, 745, 747	Cycloheptanone, 357
Conylene, 110	Oydolioptatriene, 617
Coolers, Wort, 204	Cyclohexane, 71, 617
Copal, 405	Hexahydroxy, 047
Copollidine, 743	Pentahydroxy, 646
Copper aceto arsenite, 348	Cyclohexanol, 641
Copra, 498	Oyolohexanone, 617, 641
Cops, 843	Oyolo-ootano, 618
Coralline, 784	Oyolo-cotatetrone, 618
Corohorus capsularis, 812	Cyclo-cleffnes, 20, 616
Cordito, 287, 302	Cycloparaffins, 29, 616
Corlum, 603	Cyclopontadiene, 617
Cork, 615	Cyclopentane, 71
Cornoln, 805	Cyclopentanone, 617
Cotarnine, 751	Cyclopropane, 106
Cotton, 807	Cymone, 252, 623, 624
Bleaching, 836	Cymogen, 37
Dyoing, 830, 841	Cynarose, 139
Moreorisation, 002, 808	Oysteino, 396, 424
secd, 482	Ovetine, 390, 424
Statistnes, 800	Cytose, 134
Coumain, 743	DAMBONITOL, 647
Coumarin, 680, 688	Dammar, 707
Coumarone, 755, 756	Daphnetin, 080, 866
Count of yarn, 800	Daplinin, 689
Crabbing, 841	Datura stramonium, 740
Crooking of oils, 87	Decahydroquinoline, 754
Oream of tartar, 401, 402	Decane, 32
Creatine, 495	Dégragène, 478
Creatmine, 435	Degras, 478, 090
Oremonite, 305	Artificial, 479
Creoline, 043	Degree of dissociation, 322
Creusol, 045	fermentation, 153
Oreosote oil, 90	moroerisation, 808
oils, 028	rancidity, 462, 464
Oresols, 043	viscosity, 90
Crocoine, 008, 780	Degrees Brix, 163, 577
Crotonaldohyde, 252	Dehusker, 145
Crotonylene, 110	Delphinine, 744
Orushors, 202, 315	Denaturante, 177
Cruteolin, 482	Donatured alcohol, 176
	Densimeter, Brix, 577
Cryptopine, 750	T1 000
Crystalline, 057	Legal, 207
form, 24	Dephlegmators, 77, 158, 162
Crystallisation, 2	Departes, 600
Orystals, Hemihedral, 10	Derma, 698
	Dermatol, 688
Liquid, 139	
Mixed, 28	Darrioks, 66, 74
Oudbear, 792	Desighthyol, 108
Cumone, 634	Desmobacteria, 133
Oumidino, 655	Desmotropy, 18
Cuminaldehyde, 676	Desoxybenzoin, 723
Ouminol, 675	Detonation, 258
Cunerol, 474	Detonators, 809
Curação, 191	Developers, Photographic, 666
Ourarine, 751	Dextrase, 147
Outoh, 691, 794	Dextrin, 596
Cutin, 598	in glucose, 581
Cynmelide, 427	Dextrinose, 134, 204
Cyanamide, 18, 430	Dextrose, 581
Oyanamines, 785	Diacetamide, 421
Oyanates, 427	Diacetanilide, 661
Oyanides, Alkyl, 237	
	Diacethydraside, 426
Cyanine, 787	Disnetyl, 398
Cyanine, 787	

880	INDEX
Diadetylene, 114	Dihydrocymene, 703, 706
Diacetylglycol, 217	Dihydropyridines, 742, 743
Discetylpropane, 711	Dihydropyrrole, 789
Dialdehydes, 303	Dihydroxyacetonase, 147
Diallyl, 110	Dihydroxyscetone, 147, 398
Diamelt, 140, 596, 835	Dihydroxyanthraquinone, 734
Diammes, Aromatic, 057	o Dihydroxybenzophenone, 720
Diamino acids, 424	Dihydroxycoumarin, 680, 806
Diaminoazobenzenes, 608	Dihydroxydiaminoarsenobenzone, 600
Diaminobenzenes, 055	Dlhydroxydiethylomino, 257
p_p Diaminodiphenyl, 718	Dihydroxydiphenyls, 719
p-Diaminodiphenylmethane, 719	p Dihydroxyhexamethylone, 702
Diaminogen, 801	Dihydroxynaphthalones, 728
Diaminophenol, 000	Dihydroxynaphthaquinone, 783
p Diaminostilbene, 722	Dihydroxytoluene, 045
Diamol, 666	Di isobutyramide, 421
Dianisidine, 719	Diketobutane, 398 p-Diketohexamethylone, 702
Dianthraquinonedihydroazine, 789	Diketohoxane, 399
Diastase, 133, 134, 141	Diketonamines, 252
Diastofor, 140, 596, 835 m Diazine, 743	Diketones, 394, 398
Diazoaminobenzene, 672	Diketopiperazine, 859
Diszoamino compounds, 656, 671, 672	Dimethylacetamide, 420
Diazoanisole cyanide, 609	Dimethylacotol, 398
Diazobenzene bromide, 671	Dimethylamino, 241
ohloride, 671, 673	Dimethylaminobenzene, 008
imide, 071	Directlyl p aminobenzoyl chloride, 720
nitrate, 671	Dimethylaniline, 660
perbromide, 671	Dimethylanthracene, 733
sulphate, 671	Dimethylarsenic acid, 242
Diazo black, 801	chloride, 242
blue, 801	Dimethylaraine, 242
brown, 802	Dimethylbenzenes, 623, 683
compounds, 241, 669	Dimethylbutadiene, 712
scarlet, 605	Dimethylcarbinol, 214
Diazoguanidine, 484	Dimethyloyolo octodiene, 711
Diazomethane, 242	Dimethylethylcarbinol, 120, 215
Diazonaphthalene, 727	Dimethylfulvene, 017, 760
Diazonium platinichloride, 670	Dimethylglyoxime, 398
solts, 669	Dimethylmethane, 36
Diazotisation, 781	Dimethyloxamide, 240
Dibenzamide, 681	Dimethylphenylpyrazolone, 789 Dimethylpyridines, 742
Dibenzopyrrole, 755 Dibenzothiophen, 755	Dimethylthiophen, 737
Dibenzyl, 722	Dimorphism, 24
Dibiphenylenethene, 765	Dinaphthol, 727
Dibromopyranthrene, 789	Dinaphthyl, 730
Dibutyramide, 421	Dinaphthylamine, 727
Dicetyl, 32	Dinitroacetylglycerine, 274
Dichlorethane, 118	Dinitroandine, 603, 729
Dichlorhydrin, 257	Dinitroanthracenes, 783
Dichlorisopentane, 712	Dinitronzoxybenzene, 049
Dichlorobenzones, 636	Dinitrobenzenes, 049
Dichloromethane, 118	Dinitrochlorobenzene, 653, 664
Dichloronaphthalene, 780	Dinitrodiphenylamine, 601
Dichroic substances, 764	Dinitrodurene, 650
Dickel, 405	Dinitroothane, 237
Dicrucin, 460	Dinitroformylglycerine, 274
Dioyanodiamide, 431	Dinitroglycerine, 278
Diethylacetylurea, 746	Dinitroleodurene, 650 Dinitromesitylene, 650
Diethylamine, 241	Dinitromethane, 237
Diethylcarbinol, 126, 243	Dinitromonochlorhydrin, 274
Diethyloyanamide, 431	Dinitronaphthalene, 726
Diethylenediamine, 257	Dinitrophenols, 664
Diethylmalonylurea, 746	Dinitroprehnitene, 650
Diethylsulphone, 233	Dinitrotoluenes, 651
Diethylthioures, 484	
Diffusors, 551	β Dinitrotoluidine, 658 Dinitroxylanes, 650
Digitalip, 745, 866	Diolefines, 109
Digitonin, 866, 867	Dionine, 745
Digitoxin, 800	Dioxyindole, 756
Diglycerol, 218	Dioxynaphthaquinones, 730
Diglycollamides, 421	Dipentene, 704
Diglycollimide, 421	dihydrochlarides, 705
Dihydrazides, 426	Dipeptides, 859
Dihydroanthracene, 732	Diphenyl, 671, 718

	INDEA
Diphenyl derivatives, 718	Lgg albumin, 850
ketone, 675	Eggs, 800
Diphenylacetamide, 661	Preservation, 860
Diphenylacetylene, 722	Ehrlich's aide chain theory, 138
Diphonylamino, 660	France 20
sulphate, 828	Eiconage 720
Diphonylbutadione, 709	Eikonogen, 729
	Elame, 517
Diphonylearburol, 719	Elestin, 864
Diphonylchloroarane, 600	Electrical conductivity, 20
Diphonylono immo, 755	Emeraldine, 786
kotone, 676	Emulsin, 134, 535
methane, 720	Emulsions, Stable, 480
oxide, 755	Emulsor, Kuhlmaan, 278
sulphido, 755	Emulsor contrifuge, 189
as Diphenylothano, 720	Enantionorphism, 20
as Diphonylothane, 722	Enantiotropy, 130
Diphonylhoxatrione, 700	Encaustic, 465
Diphenylhydrazine, 673	Engenhos, 542
Diphenylmothano, 719	
Diphonylnitrosamme, 673	Enzymes, 23, 133, 134, 865
	Equilibrated action, 136
ay Diphenylpropano, 000	Glycolytic, 520
Diplococci, 133	Synthetic action, 136
Dipropargyl, 114	Eomn, 685
Dipropionamide, 421	Eosius, 784
Diparcus fullonum, 849	Epichlorhydrin, 268
Dipyridine, 742	Equilibrium in saponification, 457
γ Dipyridyl, 742	Erloa B, 802
Diquinoline, 751	Erochromoflavme, 682
Diquinolyl, 754	Eriocyanine, 800
Disinfoctants, 640, 643	Eriodendrum anfractucsum, 810
Distillation, Fractional, 2, 75	Erythrene, 109, 712
of formented liquids, 158	
Theory, 3	Erythritol, 100, 225
Vacuum, 4	Erythrodextrin, 141
	Erythrolein, 702
Wood, 330	Erythrolitmin, 702
Distillory residues, Utilisation, 182	Erythrose, 525
Disulphides, 233	Erythroxylon cocs, 750
Disulphoxides, 233	Esterification, Lows, 457
Ditotralyl, 731	Estors, 124, 234, 457
Dithioglycol chloride, 257	Ethonol, 250
Dithionrothano, 434	lithananudo, 421
Diureidos, 435	Ethonamidine, 426
Divi divi, 600	Ethandial, 303
Documente, 32	Ethandiol, 217
Dodeonie, 32	
Donnar, 806	Ethano, 24, 30
	Polychloro-dorivatives, 122
Dormiol, 119, 740	lithanol, 130
Dotrincontane, 32	19thone, 108
Dropping point of fats, 0	Ethonol, 210
Dryers for oils, 400	Ethonylethylenediamine, 740
Drying ovens for explosives, 271, 204	Ethor, 228
textiles, 847	Industrial preparation, 230
Drying power of oils, 404	Potroloum, 37, 70
Dalein, 600, 683	Propertice, 228
Dulcitol, 228	Rocovery from air, 231
Duotal, 644	T'ests, 232
Durone, 623, 634	Uses, 231
1)urra, 141, 182	ICthors, 220
Dyelng, Theory, 832	Ethine, 30, 111
Dyestuffe, see Colouring matters	
	Ethyl, 30
Dyewoods, 701	acetate, 305, 459
Dynamites, 273, 282	ncetate, 305, 459 acetosoctate, 396, 460
Dynamites, 273, 282 Analysis, 313	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681
Dynamites, 273, 282 Analysis, 313 Gelatine, 208	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 209	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681
Dynamites, 273, 282 Analysis, 313 Gelatine, 208	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 209	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 369
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 209 Gum, 208 Manufacture, 283	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 208 Manufacture, 283 Properties, 284	acetate, 395, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatiniaed, 200 Gum, 208 Manufacture, 283 Properties, 284 Safety, 284	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Propertiee, 284 Safety, 284 with notive bases, 285 with inert bases, 283	acetate, 395, 459 acetoacetate, 396, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chloroarbonate, 431 obloroformate, 431
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 208 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285 with inert bases, 283 Ebonte, 711, 826	acetate, 398, 459 acetoacotate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 chloroformate, 431 chloroformate, 431 cyanurate, 427
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285 with inert bases, 283 BRONITE, 711, 826 Ebullioscope, 176	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 chloracetoacetate, 431 chloracetoacetate, 397
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285 with inert bases, 283 EBONITE, 711, 826 Ebullioscope, 176 Ecgonine, 761	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 oblaroformate, 431 cyanurate, 427 diacetylsuodnate, 397 dlazoacetate, 385, 424
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285 with inert bases, 283 IDBORTES, 711, 826 Ebullioscope, 176 Regonine, 761 Echinochrom, 137	acetate, 395, 459 acetoacetate, 396, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 chloracetoacetate, 431 chloroformate, 431 cyanurate, 427 diacetylsuccinate, 397 diazoacetate, 385, 424 dichlorocetoacetate, 397
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Propertiee, 284 Safety, 284 with notive bases, 285 with inert bases, 283 Brontes, 711, 826 Ebullioscope, 176 Ecgenine, 761 Echinochrom, 137 Egrasite, 665	acetate, 398, 459 acetoacetate, 390, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 chloracormate, 431 cyanurate, 427 diacetylsuodinate, 397 diacetylsuodinate, 397 diacoacetate, 385, 424 dichlorocaetoacetate, 397 dihydrocollidinedicarboxylate, 741
Dynamites, 273, 282 Analysis, 313 Gelatine, 208 Gelatinised, 200 Gum, 298 Manufacture, 283 Properties, 284 Safety, 284 with active bases, 285 with inert bases, 283 IDBORTES, 711, 826 Ebullioscope, 176 Regonine, 761 Echinochrom, 137	acetate, 395, 459 acetoacetate, 396, 460 benzoate, 681 bromide, 115 bromopropionate, 360 butyrate, 460 carbonate, 431 chloracetoacetate, 397 chloride, 115, 117 chlorocarbonate, 431 chloracetoacetate, 431 chloroformate, 431 cyanurate, 427 diacetylsuccinate, 397 diazoacetate, 385, 424 dichlorocetoacetate, 397

882 I N	DEX
Ethyl diketocamphorate, 716	Explosion, Volocity of combustion, projectiles,
β β-dunethylglutarate, 710	317
dimethylmalonate, 460	reaction, 263
fluoride, 115, 117	wave, 202
formate, 328, 395, 459	Volume of gases, 201
hydrosulphide, 233	Explosive, Favier's, 203, 304
hydroxycrotonate, 394 hydroxystearonaphthalenesulphonate, 508	Explosives, 258 Abel's test for, 314
iodide, 115, 117	Analysis of, 313
1800yanate, 428	Charging density of, 202
isocyanurate, 428	Classification of, 200
malonate, 368	Destruction of waste, 312
methyl ketone, 256	Non-congenting, 274, 270
mustard oil, 430	Progressive, 203
nitrato, 235 nitrite, 235	Safety, 35, 305 Sonsitiveness of, 315
oxalste, 240, 716	Shattering, 263, 303
peroxide, 232	Sprengel's, 304
hydrate, 232	Stabilisation of, 292
phosphate, 234	Statistics of, 319
sodiosostonostate, 396, 397	Storage of, 312
sodiomalonato, 369 sodiomethylmalonate, 360	Theory of, 259 Uses of, 318
sulphate, 235	Extractor, Mery universal, 480
sulphide, 234	Pallonberg, 480
sulphite, 235	Soxhlet, 402
sulphoxide, 234	Wegelin and Hubner, 486
thiosoctate, 419	FAOTIS, 711
thiocyanate, 419	Farin, 570 Frt. Pope, 466, 477
Ethylacetamide, 420 Ethylacetamido-chlorido, 426	Fat, Bone, 466, 477 Goose, 466
Ethylacetammo chloride, 425	Hog's, 478
Ethylacetylene, 110	Horse, 466
Ethylamine, 241	Marotti, 473
ethyldithiocarbamate, 434	Ox, 466
hydrochloride, 420	Wool, 470
Ethylbenzone, 628, 038	Pats, 467
Ethylcarbinol, 214 Ethylcyanamide, 431	Acid number of, 464 Anmal, 468
Ethylene, 106, 108	Chemical and physical constants of, 400
bromide, 118, 217	Consistent, 90
chloride, 118	Dropping point of, 6, 403
cyanide, 256	Estimation of, 462
iodide, 118 monothiohydrate, 257	Industrial treatment of, 503 et seq
oxide, 256	Rangdity of, 404 Saponification of, 407
Polychloro-derivatives, 122	Fechner's law, 773
Ethylenecyanohydrin, 250	Fehling's solution, 255, 400, 582
Ethylenediamino, 257	Felt, 804
Ethylglycocoll, 859	Fonchene, 708, 715
Ethylhydrazine, 246 Ethylideneacetone, 398	Fernentation, Alcoholic, 132, 145, 152, 204
Ethylidene chloride, 118	Lactic, 151, 387
Ethylidene compounds, 118	Ferrugine, 817
Ethylidenecyanohydrin, 238, 250	Fibres, see Textile fibres
Ethylmagnesiun bromide, 243	Fibrinogen, 137, 862
Ethylmercaptan, 238	Fibroin, 805
Ethyl-a-naphthylamme, 727 Ethylsulphone, 234	Films for cinematographs, 590, 827 Filter presses, 556
Ethyltoluene, 621	Filters, Charcoal, 508
Ethylurethane, 432	Mechanical, 558
Etaline, 122	Firedamp, 34, 305
Eucame, 119, 745, 751	Fishery statistics, 69
Eugenol, 645	Flavanthrene, 789
Euquinine, 745, 752 Eurodines, 785	Flavin, 755, 793
Euxanthine, 798	Flavol, 793 Flavone, 690, 755
Euxanthone, 793	Flavopurpurin, 733, 787
Exalgin, 601	Flax, 810
Excelsior mill, 200, 269	Autumn, 810
Exhausters, 58	March, 810
Explosion, 258 by influence, 265	Flower the recover 490
Determination of, 264	Florentine receiver, 486 Floricin, 494
Heat of, 259	Floes (silk), 815
Pressure of gases, 261	Flour, Wheat, 594
Velocity of combustion, 263	Flowers, Essences of, 704

	INDEA
Fluavil, 711	Geranial, 252
Fluoranthrono, 736	Geranno, 802
Fluorone, 720	
Theorem 004 400 404	Geraniol, 216, 252, 715
Fluorescen, 085, 722, 784	Gin, 190
Fluorindines, 786	Glass, Hardened, 94
Fodder, Molassic, 100	Globin, 862
Nutritivo value of, 182	Globulins, 861
Foreite, 208	Glonom, 275
Forests, 614	
	Glucoproteins, 863
Formaldehyde, 247	Glucosamino, 525, 540
Formalin (Formol), Analysis of, 247	Glucoso, 531, 534, 686
Formamide, 421	Detection of, 532
Formanilide, 661	Estimation of, 531, 581
Formates, 327	
	Granulated, 532
Formhydrazide, 420	Hydrated, 532
Formins, 267	Manufacture of, 532
Formolite reaction, 71, 91	Glucosidos, 530, 534, 805
Formoso, 525	Glucosone, 533
Formula, Constitutional, 15, 17	Glucosoximo, 530
Empirical, 13	
	Glucovanillin, 078
Floisolimenn's, 476	Glue, 804
Structural, 15	Analysis of, 865
Formulæ, Rational, 18	Glutarimide, 422
Unitary, 15	Gluton, 594
Formyl oldoride, 379	
	Glyceraldehyde, 303
Formyloxime chloride, 427	Glycerides, 218, 460 Glycerol (Glycerine), 36, 140, 217
Francolite, 104	Glycerol (Glycerine), 30, 140, 217
Fruotose, 533	Industrial preparation, 220
Specific Rotation of, 581	Qualities of, 223
Fruit essences, Artificial, 349, 459	Refractive index, 210
Fuchsine, 721, 784	Statistics, 223
Fuoose, 520	Testa for, 223
Fulgurite, 284, 304	Uses, 220
Fuller's-oath, 80, 89, 400	
	Glycorose, 398
Fulminate of moreury, 308	Glycoryl trinitrate, 258
_ Analysis of, 308	Glycine (Glycocoll), 379, 385, 423
Fulvone, 617, 760	Glycocynmidine, 435
derivatives, 700, 770	Glycocyamine, 434
Fumaria officinalis, 374	
	Glycogen, 137, 598
Faran, 730	Glycol, 217
Furazan, 740	nostates, 250
Furazole, 740	chlorohydrin, 250
Furfuraldeliyde (Furfural), 173, 527, 737	
Furfuran, 786	
	Ethyl ethers of, 256
Furfuroids, 528, 508	mercaptan, 257
Furnace, Combustion, 8	Glycollamide, 421
Gos, 45	Glycollic aldehydo, 303, 525
Fusel oil, 109, 146, 105, 172	Glycollido, 384
Fuses, 300	Glycols, 107, 216
	D.,, 107, 210
Blokford, 310	Propylene, 217
Electric, 311	Glycolaulphuric acid, 256
Galactose, 534	Glycosine, 898
Galazin, 191	Glycylglycine, 858
Galbanum, 644	Glyoxal, 393
Gallalith, 250, 475	Glyoxaline, 393, 740
Gall nuts, 690, 691	Glyoxiline, 284
Gallocyanino, 088, 785, 707	Gnoscopine, 750
Galloflavin, 088	Gommeline, 597
Gambier, 794	Goudron, 99
	" Grains," 203
Gas, Air, 60	
Blue, 58	Grape must, 180
Illuminating, 38 et seg	Greek fire, 260
mantles, 826	Green naphtha, 102
Marsh, 88	oil, 103
meters, 56	starch, 592
OII, 65, 98	Green, Algol, 789
producer, 45, 60	Alizarın, 787, 799
Riché, 60	Brilliant, 799
Water, 58, 98	Diamine, 802
	Diamond, 728, 709
Gases, Permanent, 84	
Gasolene, 87, 76	Fast, for cotton, 788
Gasometers, 54	, Indanthrene, 789
Gaultheria procumbens, 127, 686	Italian, 802
Gelatine, 864	Janos, 799
Blasting, 285	Malachite, 720, 784, 799
	Mathriana 72K
dynamites, 285, 298	Methylene, 786
Gelignite, 298	Naphthalene, 726

884 1 N I	DEX
Green, Naphthal, 729, 783	Hesperidin, 866
	Hesperidine, 703, 705
Pyrogen, 802	
Schweinfurth's, 348	Heterocyclic compounds, 29, 610, 786
Sulphur, 802	Hexabenzylethane, 723
Wool, 720	Hexabioses, 535
Grey, Olba, 788	Hexabromobenzene, 630
Grisounite, 307	Haxacetylmannitol, 224
Gualecol, 644	Hexachlorobenzene, 636
Guanamines, 434	Hexachlorohexahydrobonzone, 030
Guanidine, 434	Hexacontane, 32, 87
Ammo derivative of, 434	Нехасовале, 32
Diazo , 434	Hexadeonne, 32
nitrate, 434	Hexadione, 399
Nitro-derivative of, 434	Hexaethylbenzenc, 623
Guanine, 436, 440	Hexahydrobanzene, 617, 702
Gum, 598	Hexahydrocymone, 703, 706
arabio, 598	Hexahydrophonol, 702
Artificial, 597	Hexahydropyridine, 743
British, 597	Hexaliydroxyanthraquinone, 783
dynamites, 298	Hexahydroxybenzene, 040
Kauri, 707	Hexahydroxybenzophenone, 080
Starch, 597	Hexaliydroxycyclohexane, 047
tragacanth, 598	Hexahydroxydiphenyl, 719
Vegetable, 597	Hexamethylbenzene, 111, 623, 634
Gancotton, 285	Hexamothylene, 106, 617, 702
Compression of, 203	Hexamethylenetetramine, 187, 248
Manufacture of, 288	Hexandune, 114
Properties of, 287	Hexanes, 32, 37
Pulping of, 292	Hexanhexol, 225
Stabilization of, 292	Hexanitrodiphenylamine, 060
Thomson and Nathan's process for, 290	Hexanitroethane, 237
Uses of, 293	Hexanol, 215
Gunpowder, 266	Hexaphonylethane, 722
Manufacture, 267	Hexapropylbenzene, 623
Gutta, 710	Hexatrioses, 524
Guttapercha, 710	Hexine, 110
HAMATEIN, 791	Hexitols, 524, 531
Hæmatin, 862	Hexosocolarino, 530
Hamatoxylin, 701	Неховея, 529
Hamin, 862	Constitution of, 530
Hamooyanm, 137	Hides, Dyeing of, 700
Hæmoerythrin, 137	Finishing of, 690
Hæmoglobin, 135, 802	Graining of, 700
Hair, Artificial, 826	Tanning of, 002
Half-stuff, 605	Histones, 862
Halides, Acid, 377, 379	Hollanders, 291, 604, 610
Halogens, Detection of, 7	Holomine, 119, 740, 751
Estimation of, 12	Homoasparagines, 425
Hansena fermentation vessels, 208	Homoosmphoris nitrile, 710
Hardened glass, 94	Homologues of anilino, 001
Heat of combustion, 25	benzaldehyde, 675
explosion, 259	phenol, 043
formation, 25	succinio acid, 371
of explosives, 250	terpenes, 708
neutralisation, 26	Homology, 24
Hedonal, 119, 746	Homophthalimide, 755
Helianite, 328	Homopyrocatechol, 045
Heliom, 866	Honey, 528
Heliotrope, Artificial, 678	Hops, 198
Ciba, 788	Decortion of, 203
Heliotropin, 678	Humio substances, 530
Hemicelfulose, 598	Humulus lupulus, 193
Hemimellithene, 623	Hydantoin, 433, 435
Hemitorpene, 708	Hydracellulose, 601
Hemp, 812	Hydramine, 257
seeds, 482	Hydrastine, 745, 750
Henelcosane, 32	Hydrastinine, 750
Hentriacontane, 32, 37	Hydraulic accumulators, 484
Henze autoclaves, 148	gas main, 45
Heptachloropropane, 128	press, 270, 483
Heptacosane, 32, 37	Hydrazides, 426, 673
Heptadecane, 32	Hydrazines, 240, 241, 672
Heptaldahyda, 251	Hydrazobenzene, 667, 668
Heptane, 32, 37	Hydrazo-derivatives, 668, 765
Heptoses, 526, 534	Hydrazodicarbonamide, 434
Heraoleum giganteum, 127, 130, 215	Hwdrogonog 946 K94
spondylium, 215	Hydroenthracene, 732
	111
	1 1 1 1
	•
	1

•	T 14 .	v	LA
[ydroanthranols, 732			Illuminating gas, Proportios of, 40
(ydrobenzamide, 074			Purification of, 45 et seg
ydrobenzoln, 722			Separation of naphthalene from, 40
ydrogarbons, 20, 31			Statistics of, 59
Aromatic, 622 of petroloum, 71			Yield of, 58
of the O. Hanna series, 100			Imulos, 421
of the CaH _{in-i} and CaH _{in-6} series, 11	4		Immazole, 740 Iminocarbamide, 434
Saturated, 20, 31			Iminocarbanideazide, 434
Unsaturated, 29, 106, 116			Iminochlorides, 425
with triple linkings, 110			Immosthers, 420, 422
with unsaturated side chains, 634			Immotheothers, 425
Lydrocellulose, 509, 601, 602			Immouron, 434
Lydroolnohondmo, 752 Lydroootarnino, 750			Indomine, 705, 785
Lydrocyanocarbodiphenylunide, 762			Indarthrene, 705, 780 Indazu, 800
Lydrogen, Estimation of, 8			Indazole, 757
Nascent, 33			Indone, 731
Typical alcoholic, 124			Index of refraction, 27, 403
Lydrogenated benzene compounds, 701			Indican, 758
Iydrofysis, 125, 442, 535			of urino, 750
Enzymio, 134 Lydronaphthalones, 730			Indigo, 757, 758
Iydropyridines, 743			Analysis of, 758 blue, 758
Lydroquinine, 752			carmino, 700
Tydroquinone, 645			Colloidal, 759
Lydroxy acids, Aromatic, 080			extract, 800
Higher, 380			Properties of, 759
polybasic, 410			Statistics of, 763
Polyvalent dibasio, 300 monobasio, 391			Syntheses of, 760 Indigefera erecta, 758
tribasio, 411			leptostachya, 758
Saturated monobasic, 383			tinotoria, 757
Unsaturated monobasic, 389			Indigoids, 788
Iydroxy algohols, 677			Indigolignoids, 700
fydroxy aldehydos, Aromatic, 677 fydroxyanthranol, 783			Indigotin, 758 Indirubin, 788
Lydroxyanthraquinones, 733			Indoin, 780
dydroxynzo compounds, 008			Indole, 755, 750
Lydroxybenzaldohydes, 077			Indolignone, 790
3 Hydroxybutyraldehyde, 245			Indonaphthaleno, 790
Hydroxyothylamine, 257 Hydroxyothyltrimethylammonium hydrox	dda		Indophenin, 737 Indophenol, 727, 705, 785
257	ciuo,		Indophore, 750
Hydroxyhydroquinone, 646			Indoxyl, 756, 758, 762
Hydroxylamine, 235			Indrane, 781
Hydroxylamine derivatives of acids, 427			Indulines, 780
liydroxylinolein, 495 Hydroxymethylenosectone, 396, 399			Infusorial carth, 283 Injectors, Kürting, 53
flydroxymethylonokotones, 390			Ink, 088
Hydroxymethylfurfural, 528			Inositol, 040, 647
Hydroxynitriles, 238			Intermediates, 777
Hydroxypyridines, 742			Inulin, 588
2 Hydroxyquinoline, 754 Hydroxytoluenes, 643			Invelite, 042 Inversion, 531, 538
Hygrine, 760			Invort sugar, 531, 538, 581
Hyosoyamine, 740			Invertase (Invertin), 134, 538
Hyphomycetes, 133, 155			rodopenzone, 086
Hypnone, 075			Iodobutone, 117
Hypnotics, 118, 746			Iodoform, 121
Hypoxanthine, 436 Hypsochromes, 704			reaction, Lieben's, 131 Tests for, 122
IATROCHEMISTRY, 744			Iodol, 788
Ichthyoform, 104			Iodopropane, 117
Ichthyol, 103			Indosobenzene, 685
Tehthyolaulphonates, 103			chloride, 685
Iditol, 226 Illicium verum, 644			Iodothyrin, 866 Iodourethane, 432
Illuminating gas, 38		- 3	Iodylbenzene, 085
Analysis of, 60		- 3	Ionone, 718
Calcrific value of, 39, 61			Ionic concentration, 588
Composition of, 40		:	Ionone, 713
History of, 38			Irene, 713 Iridin, 866
Lighting power of, 62 , meters, 56			Irigenin, 866
Physical and chemical testing of, 60			Ironac, 328
Price of, 58			Irone, 713

886	INDEX
Isatin, 756, 757, 760	Kneading machine, Werner Pfleiderer, 472
chloride, 700	Koji, 155
a-Isatinonilide, 702	Koumis, 191
Isatis tinotoria, 758	Kratites, 305
Isatoxime, 760	Kubierschky column, 77, 631
Isonmyl isovalerate, 460	Kummel, 191
Isonmylbenzene, 023	Kunerol, 474
Isobutane, 37	Kyanol, 657
Isobutyl iodide, 118	LACCASS, 184
Isobutylbenzene, 023	Lacs, 495
Isobutylearbinel, 126, 215	Laotalbumin, 859
Isobutyramide, 421	Laotams, 423, 750
Isocyanates, 427	Lactases, 134
Isocyanides, 238	Lactates, 388
Isocyclic compounds, 29	Lactic acid bacillus, 145, 387
Isocymene, 634	Laotides, 384
Isoduloite, 520	Lactite, 475
Isoduloitol, 798	Lootoglobulin, 861
Isodunenes, 623, 034	Lactone, Bromobutyne, 355
Isoduridine, 665	Isocaproio, 257
Isoengenol, 645, 678	Lactores, 805, 377, 384, 520
Isolactose, 535	Lactose, 536
Isoleucine, 424	Testing of, 537
Isology, 24	Lactyl chloride, 380
Isomaltose, 130, 530	Lagar beer, 203, 205
Isomelamine, 431	Lakes, 769, 770, 771
Isomerides, 17	Lamp, Caroel, 62
Bolling points of, 25	Hefner, Alteneok, 02
Melting points of, 25	Lamphlack, 624
Metameric, 18	Lord, 478
Optical, 20	Latex, 708
Racemio, 21	Laudamine, 750
Isomerism, 15, 17	Loudanidine, 750
Can and main , 22	Laudanoane, 750
Space, 19	Laurene, 706
Isonitriles, 237, 238, 240, 427	Laurus camphora, 704, 710
Isonitrosoketones, 255, 398 Iso oxazole, 740	Lautopine, 750 Law of Dalton, 5
	esterification, 457
Isopentane, 37, 712 Isoprene, 109, 113, 705, 708, 712	Hess-Berthelot, 25
Isopropyl iodide, 116, 117	refraction, 27
Isopropylacetylene, 110	Lead plaster, 351
Isopropylbenzaldehyde, 675	Sugar of, 847
Isopropylbenzene, 623, 634	Leather, 693
Isoquinoline, 754	Artificial, 717
Isorhamnose, 529	Hardened, 700
Isosafrole, 678	Leben, 191
Isovaleryl chloride, 380	Lecanora tartarea, 792
Isoviolanthrene, 789	Lecithalbumin, 860
Isuret, 427	Leolthur, 462
Ivory, Artificial, 851	Lecithins, 258
JIGGERS, 845	Lees, Wine, 170, 402, 408
Jute, 812	Lemons, Cultivation of, 413
KAMPTULICON, 710	Treatment of, 414
Kapok, 499	Loucine, 20, 424, 858
oil, 810	Leuco bases, 721, 765
Kephir, 139, 191, 475	Lencocytes, 139
Keratin, 806, 864	Leucotannin, 689
Kerosene, 72	Levulinaldehyde, 300
Ketenes, 250	Levulose, 583, 581
Keto-aldehydes, 394, 399	Lichens, 792
Keto-arabinose, 525	Life, Origin of, 137
Ketoheptamethylene, 617	Light, Polarised, 27, 395
Ketohexamethylene, 617, 701	Sources of, 64
Ketohexoses, 524]	Standards of, 62
Ketoketenes, 256	Lignin, 598, 601, 605, 608
Ketones, 116, 124, 243, 252	Estimation of, 605
Aromatio, 673, 675	Ligron, 37, 76
Strache's estimation of, 255	Limonene, 416, 703, 704, 705, 706
Ketonimdes, 243	Lincrusta, 496
Ketopentamethylene, 617	Linoleum, 495, 615
Ketoses, 524	Linseed, Composition of, 482
Ketoximes, 253, 676	оц, 679
Beokmann's transposition of, 253, 67	6 Linum usitatissimum, 494, 810
Khaki, 794	Lipase, 184, 507
Kieselguhr, 275, 283	Lipoids, 748
Kırsohwasser, 190	Lippich polariser, 580

	INDEX 887	
Liqueurs, 190	Menthol, 714	
Liquids, Specific gravity of, 7	Menthone, 714	
Lithoplastite, 284	Mercaptan, 233	
Lithographers' varnish, 405	Mercaptons, 238 Mercaptido, Mercuric, 243	
Latinus, 792 Logwood, 791	Sodium, 283	
Lupetadine, 743	Moroaptides, 233	
Lupulin, 193, 203	Moroaptole, 252	
Lateolin, 755	Morcerisation, 808	
Lutidines, 742	Mercury fulminate, 308	
Lyddite, 303, 605	Mendine, 055	
Lysine, 740 Lysine, 302, 424	Mesitol, 030 Mesityl oxide, 253	
Lysins, 130	Mesitylone, 111, 023, 033	
Lysochlor, 043	Metaldohyde, 250	
Lysoform, 250	Metaloрну, 15	
Lysol, 643	Motameriam, 18, 228	
Lyxose, 529	Metastyrene, 634	
Maglura tingtoria, 793 Macluru, 793	Meters, Alcohol, 173	
Maddor, 734	Automatic gas, 58 Dry gas, 56	
Magnesia, Effervescent, 413	Gas, 50	
Magnetic rotation, 28	Methanal, 247	
Malzo, 142, 103, 596	Methanamide, 421	
Composition of, 482	Methanamidoxime, 427	
oil, 499	Methane, 24, 33	
Malamide, 421 Malaria, 752	Derivatives of, 31 Industrial uses of, 35	
Malt, 141, 196	Preparation of, 35	
Oleaning of, 200	Properties of, 34	
Diastatic power of, 199	Metlunol, 127	
Evaluation of, 190	Methanthiol, 233	
Groon, 100	Mothero, 108	
Grinding of, 200	Metherylamidoxime, 427	
Kilning of, 198 Mashing of, 201	Methoxymothane, 228 Methoxypyridine, 742	
Multaso, 134, 141, 535, 581	Methoxyquinolino, 755	
Malting, 106	Mothyl, 80	
Maltodextrinase, 134, 204	acetate, 459	
Maltol, 600, 687	ahloride, 116	
Maltose, 134, 530, 581	cyunicio, 238	
Manmoth pump, 278	ethor, 228 iodide, 117	
Manlianite, 305 Manna, 225	180thiocyanate, 430	
Manuide, 226	mustard oil, 430	
Maunitan, 226	nonyl ketone, 897	
Manuitol, 225, 530, 534	succinate, 460	
Hoxacetyl, 224	sulphide, 283	
Hexanitro, 285	Mothylacetanilide, 001	
Mannose, 534 Mannotetrose, 585	Mothylacotylurea, 420 Mothylal, 261	
Mannotriose, 225	Mothylamine, 240	
Marasohino, 190	hydrochlorido, 117, 241	
Margarine, 470, 080	Methylaniline, 660	
checнe, 471	Methylanthracenes, 733	
Margol, 471	Methylarbutin, 806	
Marmito, 149 Marsala, 190	Methylbenzene, 023, 033 Methylbutanol, 215	
Mashing apparatus, 201	Methyloyanamide, 431	
Marreculte, 504, 565	Methyldihydroiminazole, 740	
Manut, 77, 86	Mothylene, 108	
Matricaria parthemum, 716	bromide, 115, 118	
Meconidine, 750	ahloride, 115, 118	
Medziankite, 305 Melany 421	9 glycol, 525	
Melam, 431 Melamine, 431	fodide, 115, 118 Methylethylacetylene, 110	
Molene, 109	Methylethylearbinol, 214	
Melibiase, 134	Methylglyoxal, 899	
Melibiose, 585	Methylgranatonine, 618	
Melinite, 803, 665	Methylheptenone, 363	
Melissyl palmitate, 460 Mellite, 685	p-Methylicopropylbenzene, 028, 634 Methylicopropylogybinol, 126	
Mallithene, 634	Methylisopropylosrbinol, 126 Methylnaphthalenes, 780	
Melting point, 5, 25	Methylperitoses, 529	
Menta pulegium, 714	Methylpropane, 80, 87	
Menthane, 708	Methylpropanci, 215	
Menthens, 706	Methylpseudoisatin, 756	
₩	4	١.
1		
; £ ' = 1	at the transfer to the transfer	• [

000	INDEA
Methylpyridine, 742	Naphthindigo, 788
Methylpyridone, 742	Naphthols, 727, 728
a Methylquinoline, 754	Naphthosaloi, 728
Methylsulphonal, 746	α- (and β) Naphthylamine, 727
Methyluracil, 436	Narceine, 745, 750
Methylurethane, 726	Narcotine, 745, 750, 751
Watal aga	
Metol, 666	Natron, 513
Michler's ketone, 719	Neosalvarsan, 660
Microbes, 132	Neradol, 250, 692, 697
Micrococca, 133	Neroline, 728
	Neurine, 257
Micron, 133	
Milk, 134, 474	Nicol prism, 579
Analysis of, 475	Nicotine, 745, 747
Coconut, 498	Nicotyrine, 747
Condensed, 474	Nusser powder, 305
Fermented, 191	Nitracetanilides, 001
Skim, 474	Nitriles, 287, 427, 670
Milling of woollens, 838	Nitroscetins, 274
Mimosa, 690, 691	Nitroanilines, 663
catechu, 644	Nitrobenzaldehyde, 675, 701
Mirbane, Essence of, 049	Nitrobenzene, 649, 650, 669
Moëllon, 478	Nitrocellulose, 285
Molasses, 166, 567, 570	constitution of, 280
Beet-sugar, 166, 570	Nitrochlorliydrin, 274
Lactose, 537	Nitrochlorobenzenes, 053
Recovery of sugar from, 571	Nitrocymene, 650
Spent wash from, 571	Nitro derivatives, Aromatic, 648
Utilisation of, 570	Electrolytic reduction of, 600
Molecular volume, 25	Nitrodimethylaniline, 000
Monoscetin, 257	Nitroethane, 230, 237
Monoscylhydrazides, 426	Nitroform, 237
Monoszo compounds, 779	Nitroformina, 274
Monochlorhydrin, 257	Nitrogen, Detection of, 7
Monontroglycerine, 274	Estimation by Dumas' method, 10
Managanaharidan 502	Wieldelde method 11
Monosaccharides, 523	Kjeldahl's method, 11
Monoses, 523, 524	Will and Varrentrapp's mothod,
Formation of, 525	12
Mordanting, 830, 834, 835	Stereosomerism, of, 22
Mordants, 770	Nitroglycerine, 275
Morin, 755	Filtration of, 282
Morphine, 138, 745, 750	Manufacture of, 277
Morpholine, 743	Stabilisation of, 281
Morphotropy, 24	Uses of, 282
Morus alba, 813	
	Nitroguanidme, 434
tinotoma, 798	Nitrohexane, 230
Motochemistry, 020	Nitromesitylene, 650
Moulds, 132	Nitromethane, 237
Mucins, 803	Nitron, 665
Mucors, 133, 155, 156, 412	
	Nitronaphthalenes, 726
Multiple effet apparatus, 500	Nitrophanols, 603
Murexide, 430, 437	Nitrophenoxides, 663
Musoarine, 257	p-Nitrophenylhydrazine, 678
Muscone, 713	Nutroprehnitone, 650
Musk, Artaficial, 705, 713	Nitropromana 997
	Nitropropane, 237
Natural, 718	Nitrosamines, 240, 056, 000, 000
Mustard, Black, 430	Nitrositas, 703
oils, 430	Nitrosochloridea, 703
seed, 482	p-Nitrosodimethylaniline, 060
Mutarotation, 28, 581	Nitrosodipentene, 705
Mycoderma aceti, 340, 341	
	Nitrosophenol, 648, 660
vini, 341	Nitrosopyrrole, 739
Myosm, 862	Nitrostarch, 285
Myristan, 850	Nitrostyrene, 634
Myrobolans, 690, 691	Nitratalyanan CK1
Myrosin, 216, 502	
Nаритна, 65	Nitrourea, 432
Molmont NV9	Nitrourethane, 432
Solvent, 632	Nitrourethane, 432 Nitroxylenes, 650
Naphthalene, 628, 723, 702	Nitrourethane, 432 Nitroxylenes, 650
Naphthalene, 628, 723, 702	Nitrourethane, 492 Nitroxylenes, 650 Nomenclature, Official, 29
Naphthalene, 628, 723, 702 derivatives, 723, 728	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nomane, 32
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nomane, 32 Nonodecane, 32
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46	Nitrourethane, 432 Nitroxylenes, 650 Nomenclature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoses, 534
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nomane, 32 Nonodecane, 32
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730	Nitrourethane, 432 Nitroxylenes, 650 Nomendature, Offloial, 29 Nonane, 32 Nonodecane, 32 Nonodess, 534 Nonyl aldehyde, 251
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoese, 524 Nonyl aldehyde, 251 Nubepine, 643
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727 a-Naphthaquinone, 729	Nitrourethane, 432 Nitroxylenes, 650 Nomenclature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoces, 534 Nonyl aldehyde, 251 Nubepine, 643 Nubepine, 643 Nuclai, Condensed benzene, 718
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727 a.Naphthaquinone, 729 g-Naphthaquinone, 730	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoses, 534 Nonyl aldahyde, 251 Nubepine, 643 Nulei, Condensed benzene, 718 Nuclains, 863
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727 a-Naphthaquinone, 729 b-Naphthaquinone, 730 Naphthazarin, 783	Nitrourethane, 432 Nitroxylenes, 650 Nomenclature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoces, 534 Nonyl aldehyde, 251 Nubepine, 643 Nubepine, 643 Nuclai, Condensed benzene, 718
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727 a.Naphthaquinone, 729 g-Naphthaquinone, 730	Nitrourethane, 432 Nitroxylenes, 650 Nomendature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoses, 534 Nonyl aldehyde, 251 Nubepine, 643 Nuclei, Condensed benzene, 718 Nucleins, 663 Nucleo albumins, 861
Naphthalene, 628, 723, 702 derivatives, 723, 728 Estimation in coal gas, 61 from coal gas, 46 tetrachloride, 730 Naphthamine, 727 a-Naphthaquinone, 729 b-Naphthaquinone, 730 Naphthazarin, 783	Nitrourethane, 432 Nitroxylenes, 650 Nomenolature, Official, 29 Nonane, 32 Nonodecane, 32 Nonoses, 534 Nonyl aldahyde, 251 Nubepine, 643 Nulei, Condensed benzene, 718 Nuclains, 863

		008
Nucleoproteins, 803	Oil, Sanso, 402	
Number, Acetyl, 224, 225, 463	Sesamó, 492, 500	
Acetyl sold, 225	Shale, 102	
Acetyl saponification, 225		
	Soja-bean, 400, 502	
Acid, 105, 464	Solar, 72, 08	
Butter, 477	Sporm, 478	
Ester, 465	Stillingia, 409	
Hehner, 461	Sulphocarbon, 401	
Iodino, 403	Toal, 500	
Köttstorf, 468	Tomatoseed, 502	
Maumené, 404	Turkoy red, 390, 400	
Polonske, 177		
	Turpontine, 703, 700, 707	
Reluliert-Moissl Wolliny, 401, 477	Walnut, 406	
Saponification, 468	Washed olive, 401	
Nutrose, 475, 861	Whale, 400, 478	
Nux vonuea, 751	Wood, 503	
Octadecyldunyene, 023	Wool, 470	
Ootadione, 110	Oll oake, 483, 403, 500	
Octahydroanthracene, 731	Oil gas, 04	
Octahydrophonanthrone, 731	Olls, Animal, 408	
Outano, 32	Blooching of, 400	
Outanthrone, 731		
	Blown, 404	
Onthrough, 731	Oronsuto, 028	
Ontonosano, 32	Doodorination of, 400	
Ootodoonno, 32	Drying, 363, 462, 404	
Octores, 534	Engmo, 92	
Octylbonzone, 623	for gas, 98	
Octylone, 100	Flash point of, 83, 91	
(Enanthaldehyde, 251	Hardoning of, 480	
Œnoxydaso, 134	Heavy, 76	
	Tubelontine 007	
Oil, Acotono, 255	Lubricating, 027	
Allyl mustard, 466	Minoral lubricating, 86	
Almond, 406	Mustard, 430	
Aniline, 059	Oxidised, 464	
Апио, (/ [4]	Refluing of, 488	
Anthracene, (128, 030)	Spindle, 02	
Araohis, 492, 500	Tar, 028	
Bitter almond, 674	Thickonod, 405	
Bolled linseed, 404		
	Vascline, 80	
Bono, 737	Vegetable, 482	
Cardamon, 473	Viscosity of, 83, 00	
Castor, 300, 403	Orly seeds, Composition, 482	
Chinese bean, 502	Olonso, 400	
('hı yaalis, 480	Olofinos, 106	
('love, 045	Constitution of, 108	
Coconut, 406, 498	Nomenclature of, 100	
Cod liver, 460, 478	Preparation of, 107	
Colza, 400, 501	Table of, 106	
Cottonsoed, 400, 400		
	Oloino, 358, 517	
Dipped animal, 737	Catalytic, 518	
Ethyl mustard, 430	Distilled, 506, 518	
1 ^г інь, 478	Haponification, 518	
for gas, 08	Transformation into stearine, 506	
(faulthoria, 087	Wool, 479	
Golatinised vasolino, 03	Oloomargarine, 470	
Clingelly, 500	Oloum olnm, 704	
Graposcod, 502	Olive, Composition of, 482	
Hempsood, 400	Oplum, 750	
Kapok, 400		
	Opsonins, 130	
Lemon, 415	Optical activity, 19, 69	
Idnseed, 400, 404	antipodes, 28	
Maize, 460, 490	properties, 26	
Mandarin, 682	Orange, Alizarin, 709	
Methyl mustard, 480	Oroceine, 780	
Oleo, 423	Dimethylnitraniline, 663	
Olive, 460, 490	G, 780	
Orange, 705	Indanthrene golden, 789	
Palm, 466, 496		
	Methyl, 668	
Palm nut (Palm kernel), 466, 497	П, 780	1
Paraffin, 76	<u></u> , 668	
wax, 94	IV, 660	
Pennyroyal, 714	Orocine, 645	
Peppermint, 714	Orainol, 645	
Poppyseed, 466, 494	Organo metallio compounds, 242	
Propyl mustard, 430	Origanum hirtum, 644	
Ravison, 502	Ornithine, 892, 424	
Regin 09 707	Orthobromobenzyl bromide, 732	
-		,
VOL. II.	57	ı

ي ۽ ا

890	INDEX
Ortho ethers, 324	Pentadecatetrone, 711
Orthoform, 119, 746	Pentaerythritol, 225
Osamines, 530	Pentaethylbenzone, 623
Oamophores, 705	Pentahydroxycyclohexane, 640
Osones, 533	Pentahydroxypentane, 225 Pentaline, 122
Osotriazole, 740	Pentamethylbenzene, 623
Ossein, 864 Oxalates, 868	Pentamethylene, 017
Oxamide, 421	Pentamethylenediamine, 257
Oxamines, 785	Pentamethylpararosaniline, 721
Oxazole, 740	Pentanediene, 110
Oxidation, Enzymic, 135	Pentanes, 37
Oxidation chamber, 885	Pentanol, 215
Oximes, Aromatic, 676	Pentaphenylethane, 722
Oximide, 422	Pentatricontano, 32
Oxindole, 756 Synthesis of, 760	Pentenes, 110 Pentitols, 524
Oxy-acetylene blowpipe, 113	Pentosans, 527
Oxycellulose, 601, 602, 808	Estimation of, 528
Oxydeses, 134	Pentoses, 526
Oxygenases, 135	Estimation of, 528
Oxyhemoglobin, 802, 803	Pentosuria, 520
Oxynarcotine, 750	Peptase, 134
Oxyterpenes, 713	Pertumes, 858
Ozoform, 250	Perfumes, 703 Pergamin, 002
Ozokerite, 31, 69, 94, 104 Ozonides, 359	Peroxydases, 135
PALM fruit, 482	Peroxyozonides, 350
oil, 496	Perseo, 792
Palmer, 849	Perylene, 760
Palm kernel, 482	Pétrinage, 299
od, 49 7	Petrolene, 99
Palmitates, 350	Potroleum, 05
Palmitin, 350	Composition of 70
Panelastite, 304	Composition of, 70 Crude, 70
Papaver somniferum, 750 Papaveramine, 750	Desulphurising of, 80
Papaverine, 745, 750	Distillation of, 75, 70
Paper, 002	ether, 76, 86
Bisulphite process, 608	Extraction of, 73
Boiling, 604	Flash point of, 84
Chlorine process, 610	fountains, 73
Colouring, 012	History, 65
Electric process, 610	Illuminating power of, 84 Optical activity of, 60
Loading, 012 Microscopical testing, 013	Origin of, 67
Paraffined, 602	Pipe lines for, 75
Parchment, 002	Properties of, 70
Sizing, 611, 613	Purification of, 78
Soda process, 607	Refining of, 78
Statistics, 614	residues, 86
Testing, 612	Specific gravity of, 70, 72
Para-anthracene, 732 Paracasem, 861	Statistics of, 81 tanks, 80
Paracyanogen, 427	Tests for lighting, 83
Paraffin wax, 94	Transport of, 75
Analyms, 105	Uses of, 81
Statistics, 106	Viscosity of, 83
Paraffins, 29, 31	Petroline, 76
Paraformaldehyde, 248	Phoophytin, 794
Paraglobuhn, 137 Paraldehyde, 246	Pharach's serpents, 420 Phellandrene, 703, 706
Paraleucaniline, 721	Phenacetin, 666
Pararosaniline, 721	Phenacyl bromide, 678
Parchment, Artificial, 600, 602	Phenanthraquinone, 736
Parthenogenesis, Artificial, 138	Phenanthrene, 630, 735
Partial pressures, 5	Phenazane, 765
Pasteur flasks, 147	Phenetidines, 666
Pasteurisation, 186, 210	Phenetole, 042, 666
Pastinaca sativa, 130 Peramoid 717	Phenol, 638 Acid derivatives of, 643
Pegamoid, 717 Pellagra, 867	Homologues of, 643
Penicillium glaucum, 28	Pure synthetic, 640
Pentabromotoluene, 617	Testing of, 640
Pentachloroanisole, 643	Phenolphthalein, 685, 784
Pentacosane, 32	Phenols, 637
Pentadecane, 32	Dihydric, 644

i

	111 2 2 2 2
Phenols, Monohydrio, 638	Pinacones, 217
Polyhydrio, 046	Pmane, 700
Table of, 039	Dinava 700
	Pinene, 700
Trihydric, 045	hydrochloride, 707
Phonoxazine, 765	Pinitol, 647
Phenoxides, 638, 641, 642, 679	Pink salt, 810
Phenyl disulphide, 667	Pinnoglobin, 137
hydrosulphide, 666	Pinus maritima, 707
salicylate, 087	Pipecoline, 743
styryl kotone, 090	Piporazine, 257, 743
sulphide, 007	Piperidme, 110, 741, 743
Phonylacetanilide, 661	Piperidines, 743
Phonylacetylene, 634	Piperme, 743, 745
Phenylamine, 057	Piparonal, 678
Phonylanthracene, 733	Piperylene, 110
Phonylanthranol, 733	Pitch, 90, 080
Phenylbenzamide, 601	Coal, 99
Phonylbonzofulveno, 700	Mineral, 00
Phonylchioracetamide, 661	Stearme, 506
Phonyldiazonium chloride, 670, 671	Pittacal, 784
hydroxide, 072	Plasmon, 475, 801
nitrate, 670, 671	Plastering of wines, 187
sulphato, 671	Plastrotyl, 653
Phonyldunethylaminopyrazolone, 740	Platmichlorides, 14
Phonylonediamines, 049, 055, 062	Pluszucker, 585
Phonylglycerol, 674	Polarimeters, 28, 570
Phenylglycocoll, 061	Polarimetry, 579
Phenylglyoxal, 678	Polarisation of light, 27
Phonylhydrozine, 678	Polyamines, 061
hydrochloride, 072	Polyozo compounds, 770
Phonylhydroxyanthranol, 733	Polyglycerins, 218
Phonylhydroxylamine, 607, 669, 673	Polymorism, 14
as Phenylmothylliydrazine, 673	Polymethylanca, 20, 616
Phenyl a naphthylamino, 727	Polymorphism, 24
Phonylnitromethane, 653, 669	Polynitrobenzones, 649
Phenylosozones, 524, 673	Polyoses, 523, 585
Phonylsuccinimide, 422	Polypeptides, 858
Phlogm, 158	Polysacoharides, 523
Philobaphenes, 693	Ponoeau, 720
Phloretin, 806	Poppy, Composition of, 482
Phloridzin, 800	Populin, 534, 866
Phloroglucinol, 646, 690	Potatoes, Dry matter in, 588
Phorono, 256	Starch-content of, 141, 588
Phoagene, 118, 431	Powder B, 290
Phosphine, 787	Black, 200
Phosphines, 242	Powders, Brown prismatic, 273
Phosphorus, Detection of, 8	Chlorate, 804
Estimation of, 13	Chocolate, 273
Photogen, 98	Mining, 207
Photographic developers, 666	Perchlorate, 304
Photomotor, Bunson's, 63	Prismatio, 272
Lummer and Brodhun's, 63	Prometheus, 304
Phtholeins, 685, 722, 784	Smokoless, 295, 298, 300, 302, 303
Phthalic anhydride, 684	Smokeless sporting, 267
Phthalide, 084	Sporting, 267
Phthalidoino, 733	Various, 311
Phthalidine, 733	Produitins, 139, 803
Phthalimide, 685, 761	Prehuidine, 655
Phthalophenone, 084, 722	Prehnitone, 623
Phtholyl chloride, 684	Pressed yeast, 149
Phylloxora, 188	Primuline, 667, 787
Physostigmine, 745	Printing of fibres, textiles, yarns, 831, 854
Phytochlorin, 794	Proline, 804
Phytoglobulins, 801	Propaldehyde, 251
Phytol, 794	Propane, 36
Phytorodin, 794	Propanol, 214
Phytosterol, 866	Propanone, 254
Piazthiol, 790	Propontriol, 217
Picene, 736	Propargyl aldehyde, 252
Picoline, 252, 742	Propene, 109
a Picolylalkine, 742	Propend, 216
Picramide, 003	Propine, 110
Plorotoxin, 744	Propionamide, 421
Pierrite, 305	Propionyl chloride, 880
Pigmenta, 778	Propyl iodide, 115
Pimpinella anisum, 644	mustard oil, 480
Pinacoline, 217	Propylacetylene, 110
·	

, ,

892	INDEX
Propylbenzene, 623, 634	Quinine ethyl carbonate, 752
	hydrochlorido, 752
Propylearbinol, 214	
Propylene, 109	sulphate, 752
a Propylpiporidine, 742	Quinitol, 702
Propylpseudonitrole, 236	Quinizarin, 733
Protamines, 862	Quinol, 645
Proteins, 857	Quinolmo, 753
Coagulable, 802	Sulpho acids of, 754
Conjugated, 862	Quinonedimides, 048
Hydrolyms of, 858	Quinonedioxime, 047
Modified, 862	Quinoneumides, 648, 785
Natural, 859	Quinonemonoxime, 048
Various, 865	Quinones, 647
Proteolytic action, 134	Quinoxaline, 657, 786
Protocatechnic aldehyde, 677, 678	RACEMINATION, 23
	Rackarock, 304
Protococous vulgaris, 226	Radicals and types, Theory of, 15
Protol, 218	
Protopine, 750	Raffinose, 581, 584
Protopleam, 187, 857	Rage, 608
Pseudo aoids, 663, 669	Reising ggs, 849
Pseudocumene, 623, 634	Rancidity of fats and oils, 403
Pseudocumidine, 655	Rapeseed, Composition of, 482
Pseudoindoxyl, 756	Rasp for beet, 545
Pseudousatin, 750	potatoes, 589
Pseudoisomerism, 18, 394	Ravison seed, Composition of, 482
Pseudomorphine, 750	Reaction, Adamkiewicz's, 861
Pseudo tanning, 693	Amphoteme, 474
Ptomaines, 257, 858	Baeyer's, 107
Ptyalin, 134	Baudoum's, 472
Pulegone, 714	Beochi's, 492
Pulp, Chemical wood, 603, 607	Belliez's, 492
Machanian wood, 600, 607	Buret, 858
Mechanical wood, 603, 605	Blank and Finkonbeiner's, 247
Purgatol, 701	
Purification by physical methods, 2	Déniges', 413
Purine, 486	Formolite, 71
Purple, Antique, 788	Gentel's, 408
Purpurm, 733	Grignard's, 33, 248
Purpuroxentlun, 733	Halphen's, 470, 491
Putrescine, 257	Kamarowsky's, 172
Pyramidone, 740	Körner and Menozzi's, 375, 423
Pyranthrens, 789	Lieben's, 121, 129, 131
Pyrazine, 743	Liebermann's, 638, 060
Pyrazole, 739	Liebermann-Storch Morawsky, 408
Pyrazoline, 739	Melsen's, 339
Pyrazolone, 739	Perkin's, 352, 679
Pyrene, 736	Riche Halphen, 83
Pyridme, 740, 742	Rimini's, 181, 172
Pyridones, 742	Romijn's, 524
Pyridylpyrroles, 747	Sabatler and Senderens', 35, 67, 124
Pyrimidine, 743	Sandmeyer's, 070
	Schiff's, 246
Pyrocatechol, 044	
Pyrocoll, 739	Schmidt, 784
Pyrocomane, 743	Soudder and Riggs', 129
Pyrogallol, 645	Teichmann's, 862
Pyrolignite of iron, 346	Tortelli and Ruggeri's, 402
Pyrone, 743	Tschugajew's, 807
Pyronine, 784	Uffalman's, 886
Pyropissite, 95	Uhlenhuth's, 863
Pyroxylin, 285, 600	Varrentrapp's, 350
Pyrrodiazole, 740	Wallach's, 357
Pyrrole, 422, 787	Xanthoprotein, 858
Hydrogenated derivatives of, 739	Reactions, Reversible, 136 •
Pyrrolidine, 422, 739	enzymic, 186
Pyrrolilene, 109	Reagent, Barfoed's, 532
Pyrroline, 789	Déniges', 413
Pyruvic aldehyde, 399	Erdmann's, 744
QUEBRACHITOL, 647	Fahling's, 582
Quercetin, 755, 793	Frehdo's 744
Cuamital 646	Fröhde's, 744 Lefou's, 744
Quercitol, 646 Quercitrin, 755, 793	Lefou's, 744
	Löwe's, 828 Mandalla's, 744
Quercitron, 798	Mandelin's, 744
Quinaldine, 754	Marquis's, 744
Quinalizarin, 793	Millon's, 828, 858
Quinhydrone, 647, 767	Molisoh's, 828
Quinidine, 745, 752	Schardinger's, 134
Quinine, 744, 745, 751	Schuff's, 172
bisulphate, 752	Schweltzer's, 599, 828
	, a
	4
	\$ 1

INDEX

Reagent, Soldami's, 583	Saccharono, 410
l'witchell's, 508	Saccharoso, 538
Rectification, 3, 158	Saccharum officinal um, 539, 549
of alcohol, 158 Rectifier, Hempel, 3	Safrannes, 786 Safrole, 678
Petrier, 100	Saliein, 534, 077, 080
Savalle, 159	Salicylaldehyde, 677
Red, Algol, 780 Algarin, 783	Saligenin, 641, 677, 686 Salin, 183
Authracene, 720	Salicotm, 641
Clbs, 788	Salmin, 802
Congo, 781	Salol, 087
Diamine, 802 Indanthrone, 780	Salt, Anilino, 659 Kalle s, 761
Janos, 802	of sorrel, 308
p Nitramiline, 603, 782, 804	Rochello, 401
Permujont, 603	Salvaran, 660
Pyrrole, 748 Qumoline, 787	Sanatogen, 475 Sandalwood, 793
Thuzme, 802	Sanguomolassa, 166
Tholadgo, 788	Sanso, 401
Turkov, 301, 843	Santalin, 703 Santaline, 750
Wurster's, 768 Reductases, 134	Santouri, 800
Refraction constant, 27	Suponification, 234
Refusetometer, 83	Saponia, 138, 805
Zeiss, 155 Refrigerator for wort, 204	Sarcosine, 385, 423, 435 Saydust, Utilisation of, 333
Hentschel's, 144	Scarlet, Biobrich's, 608, 781
Rennet, 134, 138, 474	Ciba, 788
Rosons, 405	('ochmenl, 729, 780
Resins, Artificial, 641, 707 Resit, 642	Indenthrono, 780 Palathie, 780
Resoremel, 644	Thioindigo, 788
Resortiln, 706, 785	Scheelisation, 220
Rotono, 730	Schists, Bituminous, 100
Rhamnose, 529 Rhigoleno, 37	Schizomycotes, 132 Schizosaccharomyces Pombe, 204
Rhizoporus oligosporus, 155	Sohnapps, 190
Rhodammes, 665, 784	Sulmoiderite, 304
Rhodinol, 358	Solution of Huish, 850
Ribow, 529 Rice, 103, 595	Souty, 807
Composition of, 580	Soaling-wax, 707
storch, 505	Substitutes for, (HI
Rich, 138	Scourte, 307 Scots, Composition of oily, 482
Richard 867	Samlearlacide, 240, 433
Robin, 138	Semicarbazones, 246, 433
Roburk pseudrords, 138	Separators, Contrifugal, 475, 489
Roburito, 300, 307	Naphthalone, 46
Roccolli tinctoria, 702 Roccolline, 780	Spray, 561 Tai, 46
Rochelle sult, 401	Sortoln, 815, 805
Rodfind, 666	Solicon, 805
Rope, 812 Rosanine, 783	Sories, Aliphatic, 20 Ethylene, 100
Rosaulline, 721, 765, 768	Fatty, 20
Rosanthreno, 802	Потоюроня, 24
Rose, Diamine, 802	Inologous, 24
Rosin, 707 (Inllipet, 707	Paruffin, 31 Sorine, 424
Rubber, 708	Sero therapy, 138, 746
Artificial, 711	Serum, Physiological, 130
Methyl, 711, 712	Sorum-albumin, 137, 859
mitetitutes, 711 Synthetic, 109, 113, 711, 712	Sorum-globulin, 801 Serum lipase, 462
Rufanthrene, 790	Sesamé seeds, Composition of, 482
Ruflopin, 738	Sesamin, 500
Rufol, 739	Sesamol, 500
Rum, 100, 643 Rusma, 694	Shale, 100 Shalonka, 75
Sacchardefers, 25, 579	Shimose, 308
Saccharin, 682	Shoddy, 805
Saccharometer, Balling, 153	Silk, 813 Artificial, 821
Brix, 13, 577 Saccharomyces cerevisim, 134, 137, 145	Composition of, 815
Saccharomycetes, 183	Crackle (Scroop) of, 815
•	

894	INDEX
Silk, Dycing of, 815, 830	Starch, Maize, 500
Sea, 820	Manufacture, 588
Statistics of, 818	Microscopy of, 587
artificial, 827 Stripping, 814	Potato, 588 Rice, 595
Tussah, 814, 818	Sacharification of, 143
waste, 814, 820	Soluble, 590
Weighting of, 810, 817	Wheat, 593
Wild, 818	Steam, Superheated, 4, 77
Silk finish, 850 Silkworn culture, 813	Stearne, 350, 505 Distilled, 500
Sinapine, 750	pitch, 507
Singrin, 502, 800	Wool, 480
Siporite, 304	Stearolactone, 507
Sitosterol, 500	Stenolytes, 721
Skatole, 750 Smokeless powders, 295, 298, 302, 303	Stereoisomerides, Separation of, 23 Stereoisomerism, 10
Soap, 350, 358, 513	of nitrogen, 22, 253
Alkaline, 702	Stibines, 242
Analysis of, 522	Stilbene, 722
Antiseptic, 79	Stallingia sobifera, 400
barring machine, 521 bolling, 517	Stovalne, 740, 751 Stroptococci, 133
Eschweg, 520	String, 812
Figging, 521	Stryohnme, 745, 751
Finishing of, 515	Sturm, 802
Marseilles, 517	Styracin, 074
Mottled, 519 Oleine, 517	Styrene, 634 Suberane, 677
Resin, 518	Suberin, 598, 615
Seasoning of, 522	Suberone, 617
Soft, 520	Sublimation, 2
Transparent, 520 Sodiocellulose, 823	Substitution, Theory of, 15
Sodium acetonebisulphite, 253	Succinamide, 421 Succinanil, 422
ethoxide, 131, 214	Successates, 360, 371
Soja beans, 502	Suomndialdehydo, 730
Solanine, 138, 745	Succindialdoxine, 738
Solubly of overno compounds 25	Succinimide, 306, 421, 422, 436
Solubility of organic compounds, 25 Solvents, Non inflammable, 122	Sucrase, 134, 538 Sucrates, 530
Sometose, 475	Sucrol, 606
Sorbitol, 226, 531	Sucrose, 538
Sorbose bacterium, 220	Sugar, Acorn, 040
Sorghum, 540 Sorrel, Salt of, 368	Boet, 639, 545
Spaniolitmu, 792	Cane, 538, 540 Fruit, 533
Sparteine, 750	, Grape, 531
Specific gravity, 25	Invert, 531, 538, 581
refraction, 27	Maple, 540
rotation, 28 Spent wash, 157, 182	Milk, 536 Musole, 647
Spermaceti, 478	of lead, 340
Spherobacteria, 133	Starch, 531
Spires ulmeria, 677	Wood, 529
Spirilla, 133 Spirit, Crude wood, 128	Sugar (sucrose), Alkalimity, 584
Denatured, 173, 176	Ash, 584 Beet-pulp, 551
of sweet wine, 117	boiling, 564
of wine, 180	Centrifugation of massecuite, 505
Purification of, 172	Chemical determination, 577, 581
Wood, 128 Spiritus ætheris nitrosi, 117	Clearing (covering), 566, 569
Spirobacteria, 133	colouring, 538 Concentration, 559
Spitzenzueker, 585	Crushed, 570
Spongm, 865	Defection, 555
Spores, 132 Stachyose, 225	Diffusion process, 548
Standard scrubber, 48	Estimation, 577
Standol, 495	Fiscal regulations, 574, 576 from molasses, 590
Staphylococcus, 133, 151	History, 546
Starch, 133, 585	Output, 575
Adhesive power of, 596	Pilé, 570
Animal, 598 Bleaching of, 592	Prices 575
Estimation of, 141	Prices, 575 Quotient of purity, 582
Green, 592	Refining, 567
gum, 597	Rendement, 588
	1, 14,11,1

T 41 -	D 12 42. 09
Sugar (sucrose), Saccharlmetry, 579	Terpanol, 714
Specific gravity and degrees Brix, 577, 578	Torpanone, 714
Statistics of production, 575	Terpenos, 702
Steffen process, 553, 572	Complex, 708
bugars, Analysis of mixed, 582	Homologous, 708
Sulphamdes, 037	Terpenol, 715
Sulphobenzide, 037	Terpui, 715
Sulphocyanine, 800	
	hydrate, 715
Sulphonal, 110, 233, 252	Torpmene, 703 706
Sulphone, 637	Torpineol, 715
Sulphones, 233	Torpinolenc, 708
Sulphomum compounds, 233	Test, see Reaction
Sulphoridinate, 300, 404	Tetanolyam, 130
Analysis of, 191	Tetrabromoethanc, 123
Sulphur Detection of, 8	Tetrabromofluorescein, 085
Fatimation of, 13	Tetrabromondirubm, 788
Sumao, 600	Totrachloroumsole, 643
Superheated steam, 4, 77	Cotract blocoutherne 139
	Totrachloroethane, 122
Suprarenine 747	Tetrachloromethane, 122
Sylvestrene, 700	Tetracosano, 32
Syn diazobouzeno hydroxide, \$72	Tetradronio, 32
Syn diazo compounds, 669	Tetrahydronaphthalone, 730
Syntans, U92	Tetrahydronaphthylamme, 730
Syntheses, Asymmetric, 137	Tetrahydropyridines, 743
Syntonius, 858, 802	Tetrahydropyrrole, 730
Syphilis, 606	Totrahydrogumolme, 754
Talghin, 482	
	Tetrahydroxyanthraqumones, 73 i
Talgol, 482	Tetrahydroxybenzene, 646
Talitol, 226	Tetralis droxyllavonol, 703
Tallow, 635	Tetrahydroxymfenol, 701
Chineso, 400	Tetra fodopyrrole, 738
tree, 400	Tetralmo, 122, 731
Vegetable, 190	Tetralkylphosphonium hydroxide, 242
Tamping 204	Tetramethyl base, 719
Tanks, Macdonald, 69	Tetramethylarsonium compounds, 242
Weiss, Ut	Tetramethylbenzenes, 634
Taurin, 680	Totramethyldiaminotriphenylearhinel, 720
Tanning, 002	Tetramethyldiaminotriphonylmethane, 720
Chrome, 608	Totromothylene, 617
extracts, 000, 001	Tetramethylenediamue, 267
in layers, 600	Tetramethylmethane, 37
Infusion, 696	Totrammes, Aromatic, 657
Mineral, 697	Tetranitrodiglycerine, 218, 274
Oil, 698	Tetranitroothane, 237
Rapid, 697	Tetrantromethane, 237
Theory of, 602	Tetrazo-compounds, 608
Tantiron, 928	Tetraxole, 740
Tar, (12.)	Tetrones, 520
Benzene from, 630	Tetryl, 663
Coal, 00	Textile fibres, 804
Distillation of, 88, 97, 625	Analysis of mixed, 828
Lignite, 00, 024	Bleaching of, 840, 836, 837
Mineral, 67	Chemical identification of, 827
oils, 028 Statistics of 100	Commercial weight of, 828
Statistics of, 100	Conditioning of, 828
Statistics of lignite, 105	Drying of, 847
Wood, 00, 024	Dyeing of, 841
Tartar, 402	Dyeing tests on, 830
Analysis of, 402	Printing of, 854
Cantoni's process, 405	Printing tests on, 831
Cream of, 401, 407	Tenseity of, 825
emetic, 401	Textiles, Carbonisation of, 839
Goldenberg's process, 403	
	Dressing of, 848
industry, 402	Dycing of, 841, 845
Statistics of, 400	Fixing of, 840
Tarulli's method, 404	Morcerisation of, 852
Tartrates, 401	Silk finish of, 850
Tartrazine, 411, 782	Thalline, 754
Tartrazmos, 782	Thebaine, 745, 750
Taurine, 257, 424	Theine, 438
Tautomerian, 18, 304, 766	Theobromine, 437, 745
Tawing, 097	Theophylline, 436
Tes, 439	Thermo-oleometer, Tortelli's, 464
Tension theory of valency, 107	Thiazimes, 785
Tentering frame, 848	Thiazine, 701
Terebonthene, 700	Thiazole, 740
Terpadienes, 703, 704	Thiazones, 785
Terpane, 703, 714	Thioscetamide, 238, 425

INDEX

896	INDEX
Throacids, 419	Tra rodomethano, 121
Throalcohols, 233	Triketohoxamothylone, 646
Throaldchydes, 246	Triketonamines, 252
Thioamides, 425, 702	Traditional England
	Trilinolein, 501
Throanhydrides, 410	Trimethylacotyl chloride, 380
Thiobenzaniide, (3(3)	Trinothylamine, 117, 241
Thiocarbamide, 434	hydrochloride, 117
Thiocarmine, 790	Trimethylbenzene, 111
Thiocyanates, 429	Trimethylbenzenes, (33)
Throdiphenylamme, 705, 783	Trimethylcarbinol, 215
Thioethers, 233	Trimethyloetylbenzene, 02.3
Tluoflavino, 787	Trancthylens, 100, 010
Throundigo, 788	Trimothylmothane, 37
Thicketones, 253	Trancthylphenylammonian hydroxide, 657
Thiols, 233	Truncthylpyridines, 742
Thionine, 766, 785	Trunethylsulphonium rodide, 214
Thiophen, 737	Trinitroanilino, 003
Throphenol, 637, 606	Trinitrobenzones, (141)
Throphosgene, 433	Trinitrocellulose, 286
Thiosorine, 424	Trantroglycenne, 258, 275
Thiourea, 434, 050	
Thlourethane, 434	Trinitrohomollithene, (150)
	Truntroniesityleno, (150)
Thioxene, 737	Trinitromethane, 237
Thymensmine, 055	Irmitrophonol, 30%, UG4
Thymene, 703	Truntropseudocumene, (150)
Tliymol, 643	Truntroresoromol, 665
Thymoquinone, 643	Trinitrotert butyltoluone, (550)
Thyocoll, 045	Trinitrotert butylxylene, (6)
Thyol, 104	Trintrotoluene, 304
Thyroidm, 746	Trimtrotoluenes, (152
Tintarron, 763	Truntroxylenes, (350)
Tobacco, 748	Trioloin, 358, 400
Tolane, 722	Trional, 119, 748
o-Tolidine, 718	Troses, 584
Toluene, 623, 633	Trioxymothylene, 248
Toluidines, 661	
Toluquinone, 648	Triphenyleyene (197)
Tolylanediamines, 055, 062	Triphenylamine, 6(8)
	Friphonylmothane, 721
Tolyl phenyl ketones, 720	Triphenylmethyl, 722
p Tolyl-a naphthylamine, 727	Tristoarin, 220, 400
Tolylphenylmethane, 720	Trithucketones, 253
Tomato preserve, 502	Tritopine, 750
Tomatoss, 502	Тторасосыно, 740
Tomatoseod oll, 502	Tropaolina, 608, 780
Tonsile, 104	Tropanol, 740
Tops, 800	Tropens, 750
Tournesol, 702	Tropidine, 750
Tow, 811	Trojune, 740
Toxalbumına, 858	Tropmone, 740
Toxins, 137	Tropon, 475, 801
Velocity of reaction of, 139	Truxilline, 750
Transposition, Theory of, 767	Tryptase, 134, 858
Trauzl's lead blook, 310	Tumelma, 166
Tracetanilide, 601	
Trialkylphosphine oxide, 242	Turkey red, 391
Trialkylphosphonium hydroxide, 242	oil, 390
Triamines, Aromatic, 057	Turpentine, 700
Triaminoazobenzene, 608, 770	Tussah silk, 814, 818
Traininoazobenzene, 006, 770	Tyndall phenomonon, (ii)
Traminotriphonylearbinol, 721	Types, Multiple, 16
	Theory of, 15
Triazole, 740	Tyrodnase, 138
Tribromophonol, 043	UMBELLIEBRONE, (14)
Tribromoresorginol, 044	Undecano, 32
Trichloromethane, 118	Uranil, 437
Trichlorophenol, 643	Uranine, 784
Trichloropurine, 436	Urea, 1, 481, 432
Tricosane, 32	Alkyl-derivatives of, 432
Tridecane, 32	nitrate, 482
Trieline, 122	Nitro-derivative of, 432
Triethylamine, 241	Urease, 139
Triethylenediamine, 257	Ureldes, 433, 435
Triethylsulphonium hydroxide, 238	Unathona 499
iodide, 233	Urothane, 432
Triformin, 373	Uroacida, 435
	Urotropine, 187, 248
Triformol, 248	Uninas, 542
Trihydroxybenzenes, 645	VALENCY, 16
Trihydroxybenzophenone, 720	Partial, 620
Trihydroxytriethylamine, 257	Tension theory of, 107, 360, 017

```
Valeraldehyde, 251
Valenda, 600
                                                                                                                             Wine, Analysis of, 188
Statistics of, 188
                                                                                                                             Woad, 768
Wood, Bai, 704
Brazil, 703
Cam, 704
Vanilla, 677
Vanillin, 677
Vaporimoter, Goissler, 174
Varnish, 462, 465
                                                                                                                                         charcoal, 268
            Cold, 495
Lithographers', 495
Vaseline, 93
                                                                                                                                         Oubs, 703
Distribution of, 330
            Artaflomi, 93
                                                                                                                                         Log, 791
            Golatinised, 93
                                                                                                                                         Preservation of 620
                                                                                                                                                                                                                                                        ŧ
            oll, 89
                                                                                                                                          Quebracho, 690, 691
                                                                                                                                                                                                                                        1
 Velocity of esterification, 23
                                                                                                                                         Red, 791
Validity of estartic
inversion, 5.48
Veratrine, 745, 750
Veratrole, 644
Verdigris, 347, 348
Vernouth, 100
Veronal, 110, 740
Vernyine, 780
                                                                                                                             Kod, 791
Sandal, 793
Yellow, 793
Wood pulp, Chemical, 603, 607
Mechanical, 604, 605
Wood spirit, 127, 128
Poisoning with, 128
                                                                                                                                                                                                                        ã
                                                                                                                                                                                                                                                   ł i
                                                                                                                             Wool, 804
Bleaching of, 837
Carbonisation of, 805, 839
Carded, 804
Vesuvine, 780
Vigorite, 307
Vinasse, 158, 188, 404
Vinasse, 340
                                                                                                                                                                                                                        נן
                                                                                                                               Chemical proporties of, 806
Combing, 804
Dyeing of, 830, 841
from different sheep, 804
XANTHINE, 436, 441
            Adulteration of, 344
Analysis of, 344
Artificial, 344
German process, 341
             Luxemburg process, 342
            Malt, 344
Michaelis process, 342
                                                                                                                               Xouthogonamide, 434
                                                                                                                               Xanthone, 720
Xaroform, 122
Xerophthalmia, 867
             mite, 341
             Wino, 344
 worms, 341
Violamine, 708
                                                                                                                                Xylans, 527
                                                                                                                             Xylons, 023, 033
Xylohnes, 062
Xylitol, 225, 525, 528
Xyloidin, 286
Xyloguinone, 648
Xylose, 527, 520
YARN, Count of, 806
Yeast, 134, 137, 140, 145, 149, 204
Acalimatesed, 151
Frohberg, 204
industry, 149
Logos, 204
Pressed, 149
Pure, 147
Saaz, 204
Wild, 204
Yellow, Aoid, 770
Acridine, 787
Alcohol, 668
Alizarin, 663, 666, 720, 787, 70
Violantine, 708
Violanthrene, 780
Violet, Acid, 708
Alkali, 708
Chrome, 784
Ciba, 788
Ethyl, 720
for wool, 603
Formyl, 784
Indanthrene, 780
Lanceyl, 727
Lauth's, 602, 785
Methyl, 721, 773, 784
Violets, Essence of, 713
                                                                                                                                Aylones, 023, 033
  Violets, Essence of, 713
Viscometer, Engler's, 00
Viscose, 822
  Vital force, 1
Vitamins, 867
Vitallin, 801
                                                                                                                                           Alcohol, 668
Alizarin, 663, 666, 720, 787, 796
Anthracene, 787
Carbazole, 796
Chrome, 665
Ciba, 789
Cibanone, 790
Cuba, 798
Diamine, 807
   Vulcan fibre, 602
  WAGGON STILL, 76
Waterproof fabrics, 346
  Wax, Algo, 68
Carnauba, 350, 405
Chinese, 210, 351
Japanese vegetable, 350, 465
                                                                                                                                             Diamine, 801
Diamond, 797
Fast, 668, 779
               Mineral, 94
              Montan, 96
Paraffin, 94
Sealing, 707
Substitutes for, 641
                                                                                                                                 Helindone, 789
Indanthrene, 789
Indian, 770, 788, 703
Indigo, 780
Metanil, 790
Milling, 799
Naphthal, 778
Quincline, 754, 787
Sulphur extra, 801
Thiszole, 801
Victoria, 778
Zino alkyls, 33, 243
lactate, 388
Zymase, 184, 189, 147
Zymogen, 205
                                                                                                                                             Helindone, 789
  Waxes, 465
Hydrolysis of, 467
Weinsteinpreparat, 830
Westphalite, 306, 807
    Wetterdinamit, 284, 807
   Wheat, 193
               Composition of, 595
    Wheat flour, 594
              starch, 593
   Whey, 475
Wine, 184
Alcohol free, 185, 186
```

A MINE OF INFORMATION

GENERAL AND INDUSTRIAL CHEMISTRY

By DR. ETTORE MOLINARI,

Professor of Industrial Chemistry at the Royal Milan Polytechnic and at the Lugi Bosconi Commercial University at Milan

SECOND ENGLISH EDITION

Translated by T H. POPE, B.Sc., FLC, A.C.G.I.

INORGANIC 328 Text-figures and 2 Plates **42s.** net (Postage 9d)

CONTENTS—Matter, Space, Substance and Mass—Physical and Chemical Phonomena, History—Fundamental Laws of Modern Chemistry—Laws of Matter in the Gaseous State—Chemical Equations—Matter in the Liquid State—Study of Dilute Solutions—Matter in the Solid State—Classification of the Elements—New Metals—Hydrogen and Oxygen Compounds of the Halogens—Oxygen Group—Hydrogen Compounds of Oxygen, Sulphur, Selenium and Tellurium—Oxygen Group—Vanadium,—Oxygen Compounds of Sulphur, Selenium and Tellurium—Nitrogen Group—Vanadium, Columbium, Tantalum—Carbon Group—Metals, Electrochemistry, Magnosium Sub Group—Group of Copper, Silver and Gold—Trivalent Metals—Tetravalent Metals—Motals of Groups V—VIII—Platinum Group

ORGANIC PART I 254 Illustrations 30s. net (Postage 9d)

Contents —Purification of Organic Compounds—Analysis of Organic Compounds—Calculation of Empirical Formulæ—Determination of Molecular Weight by Chemical Means—Polymerism—Valency of Carbon, Constitutional Formulæ, Isomerism, Metamerism, Pseudoisomerism, Tautomerism, Desmotropy—Stereoisomerism and Space Isomerism—Homology and Isology—Physical Properties of Organic Compounds in relation to Chemical Composition and Constitution— Classification of Organic Compounds—Official Nomenclature—Derivatives of Methane, Hydrocarbons, Halogen Derivatives of Hydrocarbons—Alcohols, Saturated and Unsaturated Mono-hydric Alcohols, Polyhydric Alcohols — Derivatives of Alcohols, Aldehydes and Ketones dods — Saturated and Unsaturated Monobasic Fatty Acids, Polyhydric Patty Acids, Unsaturated Monobasic Fatty Acids, Polyhydric Alcohols, Aldehydes and Ketones Acids — Bellevin Acids — Derivatives of Alcohols, Polyhydric Alberta Monobasic Fatty Acids, Polyhydric Alcohol — Derivatives of Alcohol — Derivatives Alberta Monobasic Fatty Acids — Derivatives of Alcohols — Derivatives of Alcohols — Derivatives of Alcohols — Derivatives of Alcohols — Derivatives — Derivativ Dibasic Acids, Tribasic Acids Dervatives of Acids —Halogen Derivatives, Anhydrides, Hydroxy Acids—Thic Acids and Thic Anhydrides—Amido Acids — Amino Acids — Imidos, Amidines, Thioamides, Imino-Ethers and Analogous Compounds—Cyanogen Compounds—Derivatives of Carbonic Acid

QUALITATIVE CHEMICAL ANALYSIS

By TH. W FRESENIUS 57 Illustrations

17th EDITION

36s. net (Postage 9d.)

Translated by C A. MITCHELL, M.A., F.I.C., Editor of "The Analyst."

CONTENTS —General Chemical Principles and Methods of Analytical Chemistry—Behaviour of Substances to Reagents—Reactions of Cations—Reactions of Anions—Systematic Course of Qualitative Chemical Analysis—Practical Methods of the General Course—Practical Methods for Special Cases—Explanatory Notes and Additions to the Practical Process, Appendix

COMMERCIAL ORGANIC ANALYSIS

A Treatise on the Properties, Modes of Assaying, Proximate Analytical Examination, etc., of Organic Chemicals and Products

> By A. H. ALLEN, F.I.C. Fourth Edition, in 9 vols

Edited by W A DAVIS, B Sc., H. LEFFMANN, M.D., and S. S SADTLER, S.B.

Vols 1-8, 30s. net each volume Vol. 9, 36s. net (Postage per vol , 9d.)

7 Great Marlborough Street, W 1 London

The Ideal Reference Book for all Libraries.

NEW Eleventh Edition

310 Illustrations

36s. net (Postage 9d)

Revised Throughout. Carefully brought up to date. Gives in One Single Volume the Practical Application of Chemistry in all its Branches.

CHEMIST

Inorganic and Organic, with Experiments.

Revised by A. G. BLOXAM, FLC, and S JUDD LEWIS, D.Sc., FI.C

CONTENTS -Introduction-Water-Air-Acids-Bases, Salts-Hydrogen-Halogen Group Contents—Introduction—Watol—Air—Addin—Bases, Salts—Hydrogen—Halogen Group—Sulphur Group—Phosphorous Group—Carbon and Boron Groups—Argon Group—General Principles and Physical Chemistry—Chemistry of the Metals—Alkali Metal Group—Alkaline Earth Metal Group—Magnesium Group—Aluminium Group—Iron Group—Chromium Group—Antimony Group—Tin Group—Copper, Silver, Gold—Eighth Group—Organic Chemistry—Hydrocarbons—Alcohols, Aldehydos, Acids—Storeochemistry—Ketones, Ethers, Halogen Derivatives, Esters—Metal and Metalloid Derivatives—Ammonia Derivatives—Cyanogen and its Compounds—Phonols, Quinones—Carbohydrates—Glucosides—Proteins—Heterocyclic Compounds

ANALYTICAL CHEMISTRY APPLIED

Methods and Standards for the Chemical Analysis of the Principal Industrial and Food Products

Edited by Professor VITTORIO VILLAVECCHIA, Director of the Chemical Laboratories of the Italian Customs

Translated by T. H. POPE, B.Sc., A.C.G.I.

58 Illustrations VOL I 21s net (Postage 9d)

CONTENTS —Waters—Chemical Products—Fortilisers—Coment Materials—Metals and Alloys — Fuels — Coal Tar and its Products — Mineral Oils and their Derivatives — Fatty Substances—Industrial Products from the Treatment of Fatty Matters

105 Illustrations 25s. net (Postage 9d)

CONTENTS -Most and its Proparations-Milk and its Products-Flour, Starch, and derived Products containing them—Bor, Wine, Spirits and Laquors—Essential Oils—Turportine and its Products—Rubber and Gutta percha—Tanning Products—Inks—Losther—Colouring Matters-Toxtile Fibres-Yarns and Fabrics

"Contains information which is indispensable for the analyst, and for this reason should find a place on every laboratory bookshelf."—Analyst

" We can confidently recommend the book "-NATURE

Text-Books of Chemical Research & Engineering Edited by W. P. DREAPER, O.B.E., F.I.C.

CLOUDS AND SMOKES The Properties of Disperse Systems in Gases By W 14 Grans, D Sc 30 Illustrations 10s. 6d. net (Postago 6d.)

CATALYTIC HYDROGENATION AND REDUCTION
By E B Maxred, Ph.D., B Sc., F C S 42 Illustrations. 54. not (Postago 3d.)

SURFACE TENSION AND SURFACE ENERGY AND THEIR INFLUENCE ON CHEMICAL PHENOMENA.

By R S WILLOWS, M A, D So, and B HATSCHER Third Edition. 25 Illustrations

6s. 6d. net (Postage 3d.)

MOLECULAR PHYSICS

By J A CROWTHER, M A , D Sc Third Edition. 32 Illustrations 7s. 6d. net (Postage 4d)

NOTES ON CHEMICAL RESEARCH
By W P DREAPER, O B E, F LO Second Edition 7s. 6d. net (Postage 4d.)
AN INTRODUCTION TO THE PHYSICS AND CHEMISTRY OF COLLOIDS.
By E HATSCHEE. Fourth Edition 20 Illustrations 7s. 6d. net (Postage 3d.)

CATALYSIS AND ITS INDUSTRIAL APPLICATIONS.

By E JORLING, ARCSe, BSo., FOS Second Edition. 12 Illustrations 7s. 6d. net.

(Postage 3d.)

THE THEORY OF EMULSIONS AND EMULSIFICATION
By W CLATTON, D Sc, With Foreword by Prof. F. G. Donnan, F. R. S. With 22 Illustrations
90 6d. net (Postage 4d)

CHURCHILL J. & A.

THE FUNDAMENTAL PROCESSES OF DYE CHEMISTRY

By Dr H E FIERZ DAVID, Professor of Chemistry, Zurich Translated by F A Mason,
MA, Ph D, Research Chemist, British Dyestuffs Corporation. 45 Illustrations, including 19 Plates 21s not (Postage 6d.)

COCOA AND CHOCOLATE Their Chemistry and Manufacture
By R WHYMPER Second Edition. 16 Plates and 38 Text-figures 42s. not (Postago 9d.)

THE CHEMISTRY OF CYANOGEN COMPOUNDS, AND THEIR MANU-FACTURE AND ESTIMATION By H E WILLIAMS 12. 6d. net (Postago 6d.)

INDUSTRIAL ORGANIC ANALYSIS
By PAUL S ABUP, B So , A C G I Second Edition 25 Illustrations 12s 6d. net

VOLUMETRIC ANALYSIS FOR STUDENTS OF PHARMAGEUTICAL AND GENERAL CHEMISTRY
By C H. Hampshers, B So , F I O Third Edition 78 6d net (Postago 3d.)

CHEMICAL COMBINATIONS AMONG METALS By Dr M GIUA Trans by G W ROBINSON 207 Illust 207 Illustrations 21s. not (Postago 6d.)

REAGENTS AND REACTIONS
By E TOUNOIL Translated by C A MITCHELL, FIC 7s. 6d. not (Postuge 3d.)

ELEMENTARY PRACTICAL METALLURGY By J H Stansbie, B So , F I O 25 Illustrations 5. net (Postage 4d.)

PLOSIVES Their Manufacture, Properties, Tests, and History
By Arreur Masshall, A.O.G.I., F.I.O., F.O.S. Second Edition. 2 vols 158 Illustrations
43 3s not (Postage 1s.) A Short Account of Explosives 7s 6d. not (Postage 4d)
A Dictionary of Explosives 15s not (Postage 4d) EXPLOSIVES

THE PLANT ALKALOIDS By T A. HENRY, D Sc , F C S Superintendent of Laboratories, Imperial Instituto, London. 21s. net (Postage 9d.)

BRICKS AND ARTIFICIAL STONES OF NON-PLASTIC MATERIALS, Their Manufacture and Uses
By A. B Smarle 65 Illustrations 10s 6d. not (Postago 9d.)

THE ANALYST'S LABORATORY COMPANION.

By A E JOHNSON, B Sc , FIO Fifth Edition. 10s 6d net (Postage 4d.)

AMMONIA AND THE NITRIDES With Special Reference to Their Synthesis By E B MAXTED, Ph D 16 Illustrations 7s. 6d. net (Postage 3d)

AN INTRODUCTION TO BIOPHYSICS

By D Burns, M.D., D Sc., Prof of Physiology, Univ of Durham Foreword by Prof D

NOEL PATON, FRS 80 Illustrations 21s net (Postage 9d.)

By E DE BARRY BARNETT, B So

THE PREPARATION OF ORGANIC COMPOUNDS Second Edition. 54 Illustrations 10s. 6d. net (Postege 6d.)

A TEXT-BOOK OF ORGANIC CHEMISTRY 15 Illustrations 15. net (Postage 6d.)

COLLOID CHEMISTRY OF THE PROTEINS
By Prof Dr Wolfgang Pauli Translated by P C L Thorns, M A , A I C , Sir John
Cass Technical Institute. 27 Diagrams 8s. 6d. net (Postage 4d.)

"With extraordinary ingenisty and surchess of treatment, the most important quantitative methods of physical Ohemistry have been applied to the exceptionally difficult and clusive materials, indepensable to serious students" — Journal of Society of Chemical INDUSTRY

LABORATORY MANUAL OF ELEMENTARY COLLOID CHEMISTRY By EMIL HATSOILEK 20 Illustrations 7. 6d, net (Postage 4d.)

"Will prove undespensable to all unterested un the study of this umportant subject"-THE Analyst

"All teachers will be grateful for the help they will derive from this pioneer work" -- JOURNAL OF SOCIETY OF CHEMICAL INDUSTRY

THE FORMATION OF COLLOIDS

By The Svedberg, Professor of Physical Chemistry, University of Upsala. 22 Illustrations 7. 6d. net (Postage 3d.)

> London 7 Great Marlborough Street, W 1

NATURA	T
SCIENC	
SCIENC	E
Published by	
& A. CHURCHILL	LTI
INDEX TO SUBJECTS	
Analysis 2—7 Microscopy .	PAGE 15
Bacteriology 12 Pharmacognosy	
Blochemistry . 13 Medica	10.11
Botany 9 Pharmacy	10, 11
Chemistry 2—7 Physics	. 8
Hygiene 14, 15 Miscellaneous	I 5
BOOKS ON NATURA SCIENC Published by A. CHURCHILL INDEX TO SUBJECTS Analysis 2—7 Microscopy Bacterlology 12 Pharmacognosy and Materia Medica Pharmacy Chemistry 2—7 Physics Hyglene 14, 15 Miscellaneous London: O Gloucester Place, Portman S W.1	Squar

COLLOID ASPECTS OF FOOD CHEMISTRY AND TECHNOLOGY

By WILLIAM CLAYTON, D Sc. FIC, Chief Chemist and Bacteriologist to Messrs Crosse & Blackwell Ltd (London) 64 Illustrations 580 pp Royal 8vo 368 (1932)

ALLEN'S COMMERCIAL ORGANIC ANALYSIS

Written by specialists on each subject

Fifth Edition Edited by C AINSWORTH MITCHELL, D Sc, MA, FIC, Editor of The Analyst Consulting Chemist, London,

S S SADTLER, SB, and E C LATHROP, AB, Ph D

Introduction Alcohols. Yeast, Vol. I Malt and Malt Liquors. Wines and Potable Spirits, Neutral Alcohol Darivatives, Sugars, Starch and its Isomerides, Paper and Pulp-Testing Aliphatic Acids 804 pp 8vo 103 Figures, 328.

Vol II Fixed Olis, Fats and Waxes, Special Characters and Methods, Butter Pat, Lard, Linseed Oil, Higher Patty Acids, Soaps, Glycarin, Wool Fat, Wool Grease, Suint, Degras, Sterol Alcohols, \$20 pp 8vo 24 Figures, 325

Vol. III Hydrocarbons, Bitumens, Naphthalene and its Derivatives, Anthracene and its Associates, Phenois, Aromatic Acids, Gallic Acid. and its Allies, Phthalic Anid and the Phthalcins, Modern Explosives 742 pp 8vo 36 Figures. (1025)

Vol. IV Special Characters of Essential Oils, Resins, India Rubber, Guttapercha, Balata and Allied Substances, Constituents of Essential Oils and Allied Substances, General Characters and Analysis of Resential Oils. 658 pp 8vo 321 (1926)

Vol. V Tannins, Writing, Stamping, Typing, Marking and Printing Inks, Amines and Ammonium Bases, Analysis of Leather, Colouring Matters of Natural Origin, Colouring Substances in Foods, Benzine and its homologues, Aniline and its Allies, Naphthylamines, Pyridine, Quinoline and Anndine Bases. 712 pp 8vo 8 Figures 328. (1927)

Vol. VI Colorimetry, Dyes and Colouring Matters, The Synthetic Dye-Stulls, Analysis of Colouring Mattern. 667 pp 8vo 5 Figures 326. (1048)

Vol VII. General Introduction to the Alkaloids, Vegetable Alkaloids, Aconite, Berberine, Caffeine, Tea and Coffee, Cinchona Alkaloids, Cocaine, Cocoa and Chocolate, Oplum Alkaloids, Strychnes Alkaloids, Tobacco and Nicotine, Tropine Alkaloida, 682 pp 12 Figures. (1929)

Vol. VIII Glucosides and Non-Glucosidal Bitter Principles, Enzymes, Putrefaction Bases, Animal Bases, Animal Acids, Cyanogen Com pounds, Proteins, Digestion Products of Proteins. 772 pp 35 Figures. 328.

Vol. IX. Proteins of Plants, Proteins of Milk, Milk and Milk Products, Meat and Meat Products 626 pp 25 Figures 328

Vol. X. Hamoglobin and its Derivatives, Albuminoids or Scieroproteins, Structural Proteins, Examination of Poolstuffs for Vitamins, The Hormones, The Identification of Woods, The Pectic Substances, General Index to Ten Volumes 8:8 pp 72 Figures

(1933)

A Chemical Dictionary. taining the words generally used in Chemistry, and many of the Terms used in related sciences

By INGO W D HACKH, Professor of Chemistry, College of Physicians and Surgeons, San Francisco Large 8vo, 790 pp 232 Illustrations Over 100 Tables 458 (1930) The Chemistry, Flavouring and Manufacture of Chocolate Confectionery and Cocoa.

By H R JENSEN, M So, FIC, Formerly Chairman of Consultative Panel, British Research Association for Cocoa, etc 23 Illustrations 422 pp Royal 8vo 278 (1931)

CLOWES AND COLEMAN'S QUANTITATIVE CHEMICAL ANALYSIS

Thirteenth Edition Revised by D STOCKDALE, Ph D, A I C, University Demonstrator in Chemistry, Cambridge, and J DEXTER, B Sc, A I C 133 Illustrations 619 pp 8vo 18s (1931)

ELEMENTARY PRACTICAL CHEMISTRY AND QUALITATIVE ANALYSIS

By FRANK CLOWES, D Sc Lond, and J BERNARD COLEMAN, Assoc R C Sci Dublin

Seventh Edition Part I General Chemistry. 258 pp Post 8vo 6s Illustrations (1920)

ELEMENTARY ANALYTICAL CHEMISTRY

(F CLOWES and J B COLEMAN)

12th Edition revised by C G LYONS, M A, Ph D, Lecturer in Chemistry, Bradford Technical College, and F N APPLEYARD, B Sc, FIC, Ph C, Head of the Pharmacy Dopt, Bradford Technical College 256 pp Crown 8vo 6s (1934)

Oils, Fats and Fatty Foods. Their Practical Examination A Handbook for Analytical and Technical Chemists

By E RICHARDS BOLTON, FIC, FCS, Consulting Technical Chemist With Chapter on Vitamins by Professor J C DRUMMOND, DSc Second Edition 12 Plates and 34 Text-figures. 432 pp Royal 8vo 3os (1928)

Theoretical Organic Chemistry.

By FRANCIS ARNALL, Ph D, and FRANCIS W HODGES, M Sc, Senior Science Master at Coopers' Company School, London

Part I 30 Illustrations and 115 Experiments 384 pp 8vo 108 6d (1926)

Part II 338 pp 8vo 128, 6d (1927)

The Chemistry of the Proteins and its Economic Applications.

By DOROTHY JORDAN
LLOYD, D Sc, F I C, Biochemist,
British Leather Manufacturers' Research Association Introduction
by Sir F G HOPKINS, F R S.
292 pp 8vo 50 Illustrations
108 6d (1926)

The Chemical Analysis of Foods.

A Practical Treatise on the Examination of Foodstuffs and Detection of Adulterants

By H E COX, MSc, PhD, FIC, Analytical and Consulting Chemist 38 Illustrations 332 pp 8vo 18s (1926)

THE NATURAL ORGANIC TANNINS

History Chemistry Distribution

By M NIERENSTEIN, DSc, Reader in Biochemistry, University of Bristol With a chapter on the Botany of Tannus by MACGREGOR SKENE, DSc 326 pp Demy 8vo 21s. (1934)

J & A. OHURCHILL LTD

PARRY'S CYCLOPÆDIA OF PERFUMERY

Describing the Raw Materials used by the Perfumer, their Origin, Properties, Characters and Analysis

By E J PARRY, B Sc, F I C, F C S, Analytical and Consulting Chemist 2 Vols 846 pp Royal 8vo 36s (1925)

TREATISE ON GENERAL AND INDUSTRIAL CHEMISTRY

By Dr ETTORE MOLINARI, Professor of Industrial Chemistry, Royal Milan Polytechnic, Translated by T H POPE, B Sc, FIC, ACGI

Vol. I Inorganic. Second Edition Translated from the fourth revised and amphified Italian edition 328 Illustrations and 2 Plates 896 pp 8vo 42s (1920)

Vol II Organic Second Edition Translated from the third enlarged and revised Italian edition. Part I 254 Illustrations 472 pp 8vo 30s (1921) Part II 303 Illustrations 450 pp 8vo 30s (1923)

TREATISE ON APPLIED ANALYTICAL CHEMISTRY

Edited by Professor VITTORIO VILLAVECCHIA, assisted by Nine Specialists Translated by T H POPE, B Sc, FIC, ACGI

Vol I 58 Illustrations 492 pp 8vo 218 (1918) Vol II 105 Illustrations 552 pp 8vo 25s (1918)

Laboratory Manual for the Detection of Poisons and Powerful Drugs.

By Dr W AUTENRIETH,
Professor in the University of
Freiburg I B Authorised Translation by WILLIAM H WARREN,
Ph D Sixth Edition, translated
from Fifth German Edition 60
Illustrations 724 pp 8vo 32s
(1928)

Practical Chemistry

By WILLIAM G VALENTIN, FCS Tenth Edition By Dr W R HODGKINSON, FRSE 95 Engravings and Map of Spectra 496 pp 8vo 12s 6d (1908)

A Text-book of Organic Chemistry

By E DE BARRY BARNETT, B Sc., A I C 15 Illustrations 392 pp 8vo 108 6d. (1920) Industrial Organic Analysis, for the Use of Technical and Analytical Chemists and Students

By PAUL S ARUP, B Sc , F I C Second Edition 25 Illustrations 484 pp Crown 8vo 128 6d

(1920)

Manual of Chemical Technology.

By RUDOLF WAGNER, Ph D Second English Edition Translated and Edited by Sir WM CROOKES, FRS 596 Engravings. 992 pp Royal 8vo 36s (Reprinted 1904)

A Text-Book of Practical Chemistry

By G F HOOD, MA, BSc, and J A CARPENTER, MA 162
Illustrations 540 pp Royal 8vo.
218 (1921)

J & A. CHURCHILL LTD

CATALYSIS AND ITS INDUSTRIAL APPLICATIONS

By E B MAXTED, D Sc (Lond), Ph D (Berlin), FIC, Special Lecturer in Catalysis in the University of Bristol 225 Tables and 66 Illustrations 538 pp Royal 8vo 368

TEXT-BOOKS OF CHEMICAL | RESEARCH ENGINEERING

Edited by OBE, FIC W P DREAPER,

Clouds and Smokes The Properties of Disperse Systems in Gases

By W E GIBBS, D Sc, Professor of Chemical Engineering, University College, London 31 Illustrations 254 pp 8vo 108 6d (1924)

The Theory of Emulsions and their Technical Treatment

By W CLAYTON, DSc, FIC Foreword by Professor F G DONNAN, CBE, DSc, FRS Third Edition In preparation

Molecular Physics and the

Electrical Theory of Matter.
By J A CROWTHER, Sc D,
F Inst P, Professor of Physics, University College, Reading Fourth
Edition 34 Illustrations 212 pp
Crown 8vo 7s 6d (1927)

Notes on Chemical Research.

By W P DREAPER, OBE,
FIC Second Edition 212 pp
78 6d (1920)

An Introduction to the Physics and Chemistry of Colloids.

By EMIL HATSCHEK Edition 22 Illustrations Fifth 198 pp (1925) Crown 8vo 7s 6d

Catalysis and its Industrial Applications.

By E JOBLING, MC, ARCSc, BSc, AIC Second Edition 12 Illustrations 152 pp. Crown 8vo (1920)

Catalytic Hydrogenation and Reduction.

By E B MAXTED, D Sc, Ph D, FCS 12 Illustrations Crown 8vo 5s 112 pp (1919)

The Atmospheric Nitrogen Industry

By Dr BRUNO WAESER. Translated by E FYLEMAN, BSc, Ph D in 2 Volumes 72 Illustra-tions 772 pp 8vo 428 (1926)

Colloid Chemistry of the **Proteins**

By Professor Dr WOLFGANG PAULI, Director for Physico-Chemical Biology, University of Vienna Translated by P C L THORNE, MA, AIC 27 Diagrams and numerous Tables 152 pp 8vo 8s 6d

Laboratory Manual of

Elementary Colloid Chemistry
By EMIL HATSCHEK Second
Edition 21 Illustrations 154 pp Crown 8vo 7s 6d

The Formation of Colloids.

By THE SVEDBERG, Professor of Physical Chemistry, University of Upsala 22 Illustrations 132 pp. Crown 8vo 7s 6d

Ammonia and the Nitrides, with special reference to their Synthesis |

By E B MAXTED, D So, Ph D, F C S 16 Illustrations 124 pp Crown 8vo 7s 6d (1921)

Reagents and Reactions.

By EDGARDO TOGNOLI, Professor in the University of Modena Translated from the Italian by C AINSWORTH MITCHELL, D So, FIC. 236 pp F'cap 8vo 7s 6d (1918)

The Chemistry of Cyanogen Compounds and their Manufacture and Estimation.

By HERBERT E WILLIAMS 432 pp 8vo. 128 6d (1915)

J & A. CHURCHILL LTD.

RECENT ADVANCES IN ANALYTICAL CHEMISTRY

Edited by C A MITCHELL, D Sc, MA, FIC

Vol I Organic. Sugar Analysis—Oils and Fats—Essential Oils—The Proteins (with Biological Analysis of Proteins)—Tannus—Cereals—Milk and Milk Products—Paper—Petroleum and its Hydrocarbons—Coal—Gas 432 pp 25 Illustrations 158 (1930)

Vol II Inorganic Hydrogen-1on Concentration—Common Metals—Rare Earth Metals—Platinum Metals—Microchemical Analysis—Water 450 pp 26 Illustrations 15s (1931)

Elementary Qualitative and Volumetric Analysis—Inorganic and Organic For Medical, First Year University Science Students and Students of Technical and Pharmaceutical Schools

By WILLIAM CALDWELL, MA, Sc.D With an Introduction by CS GIBSON, OBE, MA, MSc 436 pp 8vo 108 6d (1924)

Bloxam's Chemistry—Inorganic and Organic, with Experiments.

By ARTHURG BLOXAM, FIC, Consulting Chemist and Chartered Patent Agent, and S JUDD LEWIS, D Sc, FIC, Consulting and Analytical Chemist Eleventh Edition 310 Illustrations 842 pp Royal 8vo 368 (1923)

Quantitative Organic Microanalysis.

By F PREGL, D Sc, Ph D Second Edition Translated from third German Edition by E FYLE-MAN, B Sc, Ph D 51 Illustrations 252 pp 158 (1930)

Introduction to Chemical Analysis

By HUGH C H CANDY, B A, B Sc 126 pp Crown 8vo 3s 6d (1905)

The Fundamental Processes of Dye Chemistry

By Dr H E FIERZ-DAVID,
Professor of Chemistry, Federal
Technical High School, Zurich
Translated by F A MASON, MA,
Ph D, Research Chemist, British
Dyestuffs Corporation 45 Illustrations, including 19 Plates 254 pp
8vo 21s (1921)

Organic Medicaments and their Preparation

By Professor E FOURNEAU Translated by W A SILVESTER, M Sc. With an Introduction by Professor G BARGER, FRS 24 Illustrations 272 pp 8vo 158 (1925)

A Systematic Handbook of Volumetric Analysis.

By FRANCIS SUTTON, FIC, FCS Eleventh Edition, revised by W LINCOLNE SUTTON, FIC, and A E: JOHNSON, B Sc, FIC 120 Illustrations 640 pp 8vo 35s. (1924)

Practical Physiological Chemistry

By PHILIP B HAWK, MS, PhD, and OLAF BERGEIM, MS, PhD Tenth Edition 288 Illustrations, 20 in colour 948 pp Royal 8vo 328 (1931)

A Manual for Masons, Bricklayers, Concrete Workers and Plasterers

By J A VAN DER KLOES, Professor in the University at Delft Revised and Adapted by ALFRED B. SEARLE 81 Illustrations 85 6d (1914)

Chemistry of Carbon Compounds.

By HENRY WATTS, BA, FRS Second Edition By Sir W A TILDEN Crown 8vo 108 (1886)

Cocoa and Chocolate. Their Chemistry and Manufacture.

By R. WHYMPER Second Edition 16 Plates and 38 Textfigures 584 pp Royal 8vo 42s, (1921)

J & A CHURCHILL LTD

EXPLOSIVES

By ARTHUR MARSHALL, ACGI, FIC, FCS, formerly Chemical Inspector, Indian Ordnance Department Second Edition With 157 Illustrations and Frontispiece to each Volume 822 pp Crown 4to 638

Vol I History and Manufacture Vol II Properties and Tests

Vol III Supplementary and Revisionary Volume 14 Illustrations 300 pp Crown 4to 428 (1932)

By the same Author

A SHORT ACCOUNT OF EXPLOSIVES

29 Illustrations 104 pp Crown 4to 78 6d (1917) and

A DICTIONARY OF EXPLOSIVES

174 pp 8vo (1920) 158

Chemical Combination among | Metals

By Dr M GIUA and Dr C GIUA-LOLLINI, Professor of General Chemistry in the Royal University of Translated by ROBINSON, University Bangor 207 Illustrations College, 356 pp (8191)

The Plant Alkaloids

By T A HENRY, D Sc Lond, Director, Wellcome Chemical Re-search Laboratories Second Edition 464 pp 8 plates 8vo 28s (1924)

The Analyst's Laboratory Companion. A Collection of Tables for Chemists Data

and and Students, together with numerous examples of Chemical Calculations and concise Descriptions of several Analytical Processes

By ALFRED E JOHNSON, B Sc Lond, F I C, Assoc R C Sc I Fifth Edition 186 pp Crown 8vo JOHNSON, (1920) ros 6d

Qualitative Introduction to Chemical Analysis.

By C REMIGIUS FRESENIUS Seventsenth Edition By Th W FRESENIUS. Translated by C. AINSWORTH MITCHELL, DSc, M.A., FIC 57 Illustrations 974 pp 8vo 36s (1921)

Quantitative.

By C REMIGIUS FRESENIUS Seventh Edition Vol I Translated by ARTHUR VACHER 106 Engravings 524 pp 8vo 18s (1876)

Vol II Translated by CHARLES E GROVES, FRS 143 Engravings 712 pp 8vo 248 (1900)

Modern Methods of Cocoa and Chocolate Manufacture.

By H W BYWATERS, D Sc, Ph D, F I C, Director, Slade and Bullock (1929) Ltd, Dewsbury. 108 Illustrations Royal 8vo 326 pp 218 (1930)

Gas Works Laboratory Handbook.

By W I INESON, Chief Chemist, Bradford Corporation Gas Dept 55 Illustrations 184 pp 8vo 9s 6d (1926)

A Junior Inorganic Chemistry.

By R H SPEAR, B.A., Senior Chemistry Master, Swansea Grammar School. Second Edition 97 Illustrations 400 pp Crown 8vo 6s 6d. (1927)

Also, separately,

Part I Up to Atomic Theory.

46 Illustrations 154 pp Crown 8vo, 3s 6d

J. & A. CHURCHILL LTD,

RECENT ADVANCES IN ATOMIC PHYSICS

By GAETANO CASTELFRANCHI, Professor in the High School for Engineers in Milan Approved Translation by W S STILES, Ph D , Scientific Assistant, National Physical Laboratory, Teddington, and J W T WALSH, M.A , D Sc , Principal Assistant, National Physical Laboratory, Teddington Vol I Atoms, Molecules and Electrons III Illustrations, 384 pp 8vo 15s

Vol II The Quantum Theory 79 Illustrations 422 pp 8vo 15s (1932)

RECENT ADVANCES IN PHYSICS (NON-ATOMIC)

By F H NEWMAN, DSc, AR.CS, Finst P, Professor of Physics, University College of the South-West of England, Exeter 51 Illustrations 388 pp 8vo 15s (1932)

RECENT ADVANCES IN PHYSICAL CHEMISTRY

By S GLASSTONE, D Sc, Ph D Lond, FIC, Locturer in Physical Chemistry, University of Sheffield Second Edition 33 Illustrations 506 pp 8vo 15s (1933)

ELEMENTARY PHYSICS

For Medical, First Year University Science Students and General Use in Schools By G STEAD, MA, Finst.P, Reader in Physics, University of London Fourth Edition. 294 Illustrations 470 pp 8vo 10s 6d (1933)

A Handbook of Physics and | Chemistry

By H E CORBIN, B Sc Lond, M R C S, L R C P, D P.H, and A M, STEWART, M A, B S Lond Fifth Edition 200 Illustrations 504 pp Crown 8vo 128 6d (1920)

Physics for Students of Science and Engineering.

By A WILMER DUFF, D.Sc., Professor of Physics, Polytechnic Institute, Worcester, Mass Seventh Edition 630 Figures 698 pp 8vo 18s (1932)

A Treatise on Physics

By ANDREW GRAY, LLD, FRS

Vol. I Dynamics and Properties of Matter 350 Illustrations 712 pp 8vo 18s (1901)

The Physics of X-ray Therapy.

By W V MAYNEORD, M Sc, Physicist to the Radio-Therapeutic Department of the Cancer Hospital, London 106 Illustrations 185 pp 8vo 103 6d (1929)

Molecular Physics and the Electrical Theory of Matter.

By J A CROWTHER, Sc D, F Inst P, Professor of Physics, University College, Reading Fourth Edition 34 Illustrations 212 pp Crown 8vo 7s 6d (1927)

By the same Author

The Principles of Radiography.

55 Illustrations 146 pp 8vo 78 6d (1922)

J & A. CHURCHILL LTD

RECENT ADVANCES IN CYTOLOGY

By C D DARLINGTON, DSc, Ph D, Cytologist, John Innes Horticultural Institution Foreword by J B S HALDANE, MA, FRS 8 Plates, 109 Text-figures and 66 Tables 578 pp 8vo 18s (1932)

RECENT ADVANCES IN PLANT GENETICS

By F W SANSOME, Ph D, F L S, F R S E, and J PHILP, B Sc, F L S, Research Workers, the John Innes Horticultural Institution, Merton With a Foreword by Sir DANIEL HALL, K C B, LL D, D Sc, F R S 424 pp 8vo 55 Illustrations 15s (1932)

RECENT ADVANCES IN AGRICULTURAL PLANT BREEDING

By H HUNTER, Hon MA (Cantab), DSc (Leeds), Plant Breeding Institute, School of Agriculture, Cambridge, and H MARTIN LEAKE, MA, Sc D (Cantab), Formerly Director of Agriculture, United Provinces, India With a Foreword by SIR ROWLAND H BIFFEN, MA, FRS With 16 Plates 372 pp 8vo 15s (1933)

RECENT ADVANCES IN BOTANY

By E C BARTON-WRIGHT, M Sc (Lond), F R S E, Chief Assistant at the Scottish Society for Research, in Plant Breeding, Corstorphine 60 Illustrations 396 pp 8vo 12s 6d (1932)

By the same Author

RECENT ADVANCES IN PLANT PHYSIOLOGY

Second Edition 54 Illustrations 352 pp 8vo 12s 6d (1933)

A Text-book of Botany.

For Medical, Pharmacoutical and other Students

By JAMES SMALL, DSc, Ph C, FLS, F,RS (Edin), Professor of Botany, Queen's University, Belfast. Third Edition Over 1,350 Illustrations 728 pp 8vo 21s (1933)

By the same Author

Practical Botany.

For Medical, Pharmaceutical and other Students

35 Illustrations 328 pp 8vo ros 6d (1931)

Pocket Lens Plant Lore, Month by Month.

Over 700 Original Drawings 232 pp Crown 8vo 58 (1931)

A Text-book of Mycology and Plant Pathology.

By J W HARSHBERGER, Ph D 271 Illustrations 794 pp 8vo 248 (1918)

The Story of Plant Life in the British Isles.

By A R HORWOOD 3 Vols Illustrated Crown 8vo 6s 6d each (1914), (1915)

An Introduction to Vegetable Physiology.

By J REYNOLDS GREEN, Sc D, FRS Third Edition. 182 Illustrations, 492 pp 8vo, 128 6d (1911)

RECENT ADVANCES IN THE STUDY OF PLANT VIRUSES

By KENNETH M SMITH, D Sc (Manch), Ph D (Cantab), Potato Virus Research Station, School of Agriculture, Cambridge I Coloured Plate and 67 Text-figures 436 pp 8vo 158 (1933)

J. & A. CHURCHILL LTD.

THE SCIENCE AND PRACTICE OF PHARMACY

By R R BENNETT, BSc, FIC, and T T COCKING, FIC

Vol I Pharmaceutical Operations and the Manufacture of Pharmacopocial Substances 166 Illustrations 394 pp Royal 8vo 18s (1933)

Vol. II The Physical and Chemical Examination of Pharmacopoelal Substances 72 Illustrations 348 pp Royal 8vo 18s (1933)

RECENT ADVANCES IN MATERIA MEDICA

Being a description of the methods of preparing and testing Sera and Vaccines, Hormones and Vitamins, with an account of their Properties and Medicinal Uses

By J H BURN, MA, MD (Cantab), Dean of the College of the Pharmaceutical Society of Great Britain 25 Illustrations 234 pp 8vo 128 6d (1932)

RECENT ADVANCES IN CHEMOTHERAPY

By G M FINDLAY, OBE, DSc, MD, Wellcome Bureau of Scientific Research, London 4 Plates and 11 Text-figures 532 pp 8vo 15s (1930)

By E W LUCAS, CBE, FIC, FCS, Late Examiner to the Pharmaceutical Society, and H B STEVENS, OBE, FIC, FCS, Late Lecturer on Pharmacy, South Western Polytechnic Institute

THE BOOK OF PRESCRIPTIONS

With Notes on the Pharmacology and Therapeutics of the more important Drugs and an Index of Diseases and Remedies

Eleventh Edition 392 pp F'cap 8vo 10s 6d. (1926)

THE BOOK OF RECEIPTS

Containing a Veterinary Materia Medica, comprising also a Pharmaceutical Formulary, a Photographic Formulary, etc

Twelfth Edition 480 pp Crown 8vo ros 6d (1924)

PRACTICAL PHARMACY

Third Edition With 224 Illustrations 432 pp Royal 8vo. 278 (1921)

THE BOOK OF PHARMACOPCEIAS AND UNOFFICIAL FORMULARIES

Containing the Formulas of the British, United States, French, German and Italian Pharmacopæias, together with Formulas from Unofficial Sources, comprising about 5,000 Formulas

532 pp Crown 8vo 7s 6d (1915)

J & A. OHURCHILL LTD

PRINCIPLES OF PHARMACY

By HENRY B MACKIE, B Pharm, Ph C, Member of Board of Examiners for England and Wales of the Pharmaceutical Society, Head of the Pharmacy Department, Brighton Technical College 67 Illustrations 296 pp 8vo 10s 6d (1932)

A TEXT-BOOK OF PHARMACOGNOSY

Being an Account of the more important Crude Drugs of Vegetable and Animal Origin Designed for Students of Pharmacy and of Medicine

By HENRY G GREENISH, D ès Sc, FIC, FLS, Late Professor of Pharmaceutics to the Pharmaceutical Society of Great Britain, and Director of the Pharmacy Research Laboratory Sixth Edition 297 Illustrations 578 pp Roy 8vo. 25s (1933)

FIRST LINES IN DISPENSING

By H B STEVENS, OBE, FIC, FCS, and C E L LUCAS, AIC, FCS Third Edition 95 Illustrations 198 pp 8vo 7s 6d (1930)

The Cyclopædia of Practical Receipts, and Collateral Information in the Arts, Manufactures, Professions, and Trades, including Medicine, Pharmacy, Hygiene, and Domestic Economy.

By ARNOLD J COOLEY
Seventh Edition By WILLIAM
NORTH, MA, FCS 371 Engravings. 2 Vols 1,827 pp 8vo
£2 10s (1892)

The Pharmaceutical Formulary

By HENRY BEASLEY Twelfth
Edition Edited by J OLDHAM
BRAITHWAITE 470 pp 18 mo
6s. 6d (1899)

An Anatomical Atlas of Vegetable Powders

By Professor H G GREENISH and EUGÈNE COLLIN, 138 Illustrations 288 pp 4to 128 6d. (1904)

Practical Pharmacognosy.

By T E WALLIS, B Sc, F I C, Ph C, Reader in Pharmacognosy, University of London Foreword by Professor H G GREENISH, D ès Sc, F I C, F C S Second Edition 105 Illustrations 208 pp. 8vo 128 6d (1931)

Volumetric Analysis for Pharmaceutical Students

By C H HAMPSHIRE, MB, BS,BSc Lond, FIC, PhC Fifth Edition 204 pp Crown 8vo, 8s 6d. (1933)

J & A. QHURQHILL L'TD.

ADULTERATION AND ANALYSIS OF FOODS AND DRUGS

Birmingham Methods and Analyses of Samples Review of British Prosecutions during Half a Century

By J F LIVERSEEGE, FIC, PhC, Formerly Public Analyst to the City of Birmingham Foreword by The Rt Hon NEVILLE CHAMBER-LAIN, MP, Formerly Minister of Health 616 pp Roy 8vo 36s (1932)

Synopsis of Hygiene.

By W WILSON JAMESON, MD, FRCP, DPH, of the Middle Temple, Barrister-at-Law, Professor of Public Health, London University, and G S PARKINSON, DSO, MRCS, LRCP, DPH, Lt-Col RAMC (Ret), Assistant Director of Public Health Division, London School of Hygiene and Tropical Medicine Fourth Edition 17 Illustrations 620 pp 8vo 218 (1934)

The Principles of Preventive Medicine

By R TANNER HEWLETT, MD, FRCP, DPH, and A T NANKIVELL, MD, DPH 12 Charts and 5 Diagrams 544 pp 8vo 18s (1921)

Preservatives in Food, and Food Examination

By J C THRESH, MD, and A E PORTER, MD 8 Plates 499 pp Royal 8vo 16s (1906)

The Health of the Industrial Worker.

By E L COLLIS, BCh, M.D, and M GREENWOOD, FRCP, FRS Introduction by Sir GEORGE NEWMAN, KCB, DCL, MD 38 Illustrations 464 pp Royal 8vo 3os (1921)

Malay Poisons and Charm Cures

By JOHN D GIMLETTE, MRCS, LRCP Third Edition 3 Illustrations 316 pp 8vo 10s 6d (1929)

Sanitation in War.

By Lt -Col P S LELEAN, CB, CMG, FRCS, DPH, RAMC Third Edition 68 Illustrations 376 pp F'cap 8vo 7s 6d (1919)

Elementary Hygiene for Nurses.

By H C R DARLING, M D, FRCS, Surgeon, Coast Hospital, Sydney Fifth Edition 58 Illustrations 326 pp 8vo 5s (1932)

Recent Advances in Preventive Medicine

By J F C HASLAM, M C, M D, M R C P (Edin), D P H, formerly Government M O H, British Gulana 30 Illustrations 325 pp 8vo 12s 6d (1930)

Beverages and their Adulteration. Origin, Composition, Manufacture, Natural, Artificial, Fer-

ture, Natural, Artificial, Fermented, Distilled, Alkaloidal and Fruit Juices

By HARVEY W WILEY, MD, PhD 42 Illustrations 438 pp 8vo 218 (1919)

PUBLIC HEALTH PRACTICE IN THE TROPICS

By J BALFOUR KIRK, MB, DPH, DTM & H, Director, Medical and Health Department, Mauritius 80 Illustrations 510 pp Demy 8vo 158 (1930)

RECENT ADVANCES IN MICROSCOPY

(Biological Applications)

Edited by A PINEY, MD, MRCP
SECTIONS The Medical Sciences, by Dr A PINEY, Microscopy of the
Living Eye, by BASIL GRAVES, MC, MRCS, DOMS (Eng.), Zoology,
by E W MACBRIDE, LLD, DSc, FRS, and HR HEWER, ARCS,
DIC, MSc, Botany, by E C BARTON-WRIGHT, MSc
83 Illustrations 270 pp 8vo 128 6d (1931)

ELEMENTARY HISTOLOGICAL TECHNIQUE FOR ANIMAL AND PLANT TISSUES

By J T HOLDER, FRMS 23 Illustrations 112 pp 8vo 7s 6d (1931)

BOLLES LEE'S MICROTOMIST'S VADE-MECUM

A handbook of the Methods of Microscopic Anatomy

Edited by J BRONTE GATENBY, D Sc (Lond), FRMS, and E V

COWDRY, MA, Ph D Ninth Edition 720 pp 8vo 3os (1928)

RECENT ADVANCES IN TOWN PLANNING

By THOMAS ADAMS, FSI, FILA, Past President, Town Planning Institute, Member of the Board of Governors, American City Planning Institute, In collaboration with F LONGSTRETH THOMPSON, BSc, VPTPI, FSI, E MAXWELL FRY, BArch, ARIBA, and JAMES WR ADAMS, AMTPI 2 Coloured Maps and 87 Illustrations 416 pp Crown 4to 258 (1932)

RECENT ADVANCES IN ENTOMOLOGY

By A D IMMS, M A, DSc, FRS, Reader in Entomology, University of Cambridge 84 Illustrations 382 pp 8vo 128 6d (1930)

THE NEMATODE PARASITES OF VERTEBRATES

By WARRINGTON YORKE, M D, FRS, and P A MAPLESTONE, M B, D S O Foreword by C W STILES, Professor of Zoology, United States Public Health Service 307 Illustrations 548 pp Royal 8vo 36s (1926)

TEXT-BOOK OF MEAT HYGIENE

With Special Consideration of Ante-mortem and Post-mortem Inspection of Food-producing Animals

By RICHARD EDELMANN, Ph D, Professor at the Royal Veterinary High School, Dresden Authorised Translation by J. R MOHLER, A M, V M D, and A EICHHORN, D V S Sixth Edition 5 Coloured Plates and 162 Illustrations 480 pp 8vo 28s (1934)

THE COMPARATIVE ANATOMY OF THE DOMESTICATED ANIMALS

By A CHAUVEAU, MD, LLD, and S ARLOING Translated and Edited by GEORGE FLEMING Second Edition 585 Engravings 1,084 pp. 8vo 358. (1891)

J. & A. CHURCHILL LTD.

Adams, T .	15	Gilmour, C R	13	Mitchell, C A 2, 5	. 6. 7
	2	Giltner, W	12	Mohler, J R	15
Allen, A H				Molinari, E	
Appleyard, F N		Gimlette, J D	14	Monnail, E	4
Arloing, S	15	Giua, M	7	M	
Arnall, F	3	Glasstone, S	8	NANKIVELL, A T	14
Amin D S		Graves, B	15 8	Newman, F H	8
Arup, P S	, 12		-31	Nierenstein M	3
Autenreith, W	4	Gray, A	۰,		
	1	Green, J R	9	North, W	11
Dansman F da B	!	Greenish, H G	II		
BARNETT, E de B	4	Greenwood, M.	14	Orla-Jensen	12
Barton-Wright, E	9,		- 1	-	
	15	Groves, C. E	7	Parkinson, G S	14
Beale, J F .	12		1	Parry F I	-
Deceler II		HACKH, I	2	Parry, E J	4
Beasley, H	II			Parry, E J Pauli, W	5
Bennett, R R	10	Hampshire, C H	11	Philp, J	9
Bergeim, O	i, I3	Harris, D T	13	Piney, A	15
Bloxam, A G	´ - 6	Harrison, G A	12	Piney, A Pope, T H	
Dioxam, A G		Harshberger, J W	9	Fobe, I II	4
Bloxam, C L	6	Trales I F C		Porter, A E	14
Bolton, ER	3	Haslam, J F C Hatschek, E	14	Pregl, F	6
Braithwaite, J O	II	Hatschek, E	5 Ì	Pryde, J	13
Duen T	10	Hawk, P B	6, 13	2 - J (40) J	-3
Burn, J		Hanry T A	7 7	Population C W	_
Burns, D	13	Henry, T A Hewer, H R		ROBINSON, G W	. 7
Bywaters, H W	7	Hewer, n K	15	Robson, J M	13
•	• 1	Hewlett, R T 1	2, 14		
		Hodges, F W	3	Sadtler, S S	2
CALDWELL, W	6	Wadalanaan W 12	4	Sansome, F W	٥
Cameron, A 1	13 6	Troughnson, W IC	- 4	Searle, A B	9 6
Conder II	ň	Holder, J_T	15		
Carpenter, J A		HOUG, G I	4	Silvestor, W A	6
	4 8	Horwood A R	9 (Simpson, R H	12
Castelfranchi, G	8	Hunter, H	[وَ	Small, J	9
Chauveau, A	15	IIumesi, II	ا د	Smuth, K M	
Clayton, W	2, 5			Similit, IX IX	9
Clares R		LMMS, AD	15	Spear, R. H	7 8
Clowes, F	3	Ineson, W I	7	Stead, G	8
Cocking, T T	10		- 1		10, 11
Coleman, J B	3	Turneou W W			8
Collin, E	11	JAMESON, W W	14		
	14	Jensen, H R	2		8
Collis, E L		Jobling, E	5	Stockdale, D	3
Cooley, A	II	Johnson, A E	6, 7	Suckling, E	12
Corbin, H E	8	Teheston T W		Sutton, F	6
Cowdry, E V Cox, H E	15	Johnston, J H	12	C	
Cov H F				Sutton, W L	6
Cox, II E	3	Wing I B			
Crookes, Sir W		Truck' I m	14	Sveaperg, 1	5
	Ţ	Kirk, J B	14 er 6	Svedberg, 1	5
Crowtner, A	5, 8	Kloes, J A van de			
Crowther, J A	5, 8	Kloes, J A van de	er 6	THORNE, P C L	5
		LATHROP, E C	er 6 2	THORNE, P C L	5 12, 14
DARLING, H_C_R	5, 8 14	LATHROP, E C	er 6	THORNE, P C L	
DARLING, H_C_R		LATHROP, E C Leake, H M	er 6 2 9	THORNE, P C L Thresh, J C Tilden, Sir A W	5 12, 14 6
DARLING, H C R Darlington, C D Dexter. I	14 9	LATHROP, E C Leake, H M Lee, A B	er 6 2 9 15	THORNE, P C L	5 12, 14
DARLING, H C R Darlington, C D Dexter. I	14 9 3	Lathrop, E C Leake, H M Lee, A B Lelean, P S	er 6 2 9 15 14	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E	5 12, 14 6 5
DARLING, H C R Darlington, C D Dexter. I	14 9 3 12	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd	2 9 15 14 6	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A	12, 14 6 5
DARLING, H C R Darlington, C D Dexter. I	14 9 3 12	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd	er 6 2 9 15 14	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E	12, 14 6 5
DARLING, H C R Darlington, C D Dexter. I	14 9 3	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F	2 9 15 14 6	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G	5 12, 14 6 5 7 4
DARLING, H C R Darlington, C D	14 9 3 12	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F	2 9 15 14 6 14 3	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A	12, 14 6 5
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W	14 9 3 12 5	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L	2 9 15 14 6 14 3	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V	5 12, 14 6 5 7 4 4
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W Edelmann, R	14 9 3 12 5 8	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W	2 9 15 14 6 14 3 11	THORNE, P C L Thresh, J C Tlden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B	5 12, 14 6 5 7 4 4
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W	14 9 3 12 5	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W	2 9 15 14 6 14 3	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R	5 12, 14 6 5 7 4 4 5 4
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W Edelmann, R	14 9 3 12 5 8	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W	2 9 15 14 6 14 3 11	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R	5 12, 14 6 5 7 4 4
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W Edblmann, R Eichhorn, A	14 9 3 12 5 8	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G	2 9 15 14 6 14 9 11 10 3	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R	5 12, 14 6 5 7 4 4 4 11
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Eichhorn, A FIERZ-DAVID, H E	14 9 3 12 5 8 15 15	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W	2 9 15 14 6 14 9 11 10 3 15	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R	5 12, 14 6 5 7 4 4 4 11 8
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDELMANN, R Eichhorn, A FIERZ-DAVID, H E Findlay, G M	14 9 3 12 5 8 15 15	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A.	2 9 15 14 6 14 9 11 10 3 3 15 13	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R	5 12, 14 6 5 7 4 4 11 8
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDELMANN, R Eichhorn, A FIERZ-DAVID, H E Findley, G M Fleming, G	14 9 3 12 5 8 15 15	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A.	2 9 15 14 6 14 9 11 10 3 11 13 11	THORNE, P C L Thresh, J C Tulden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H	5 12, 14 6 5 7 4 4 11 8 4 6 6
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Enchhorn, A Fierz-david, H E Findlay, G M Fleming, G Fourneau, E	14 9 3 12 5 8 15 15 15	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A. Mackie, H B Maplestone, P A	2 9 15 14 6 14 9 11 10 3 3 15 13	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H	5 12, 14 6 5 7 4 4 11 8
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Enchhorn, A Fierz-david, H E Findlay, G M Fleming, G Fourneau, E	14 9 3 12 5 8 15 15 15	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MAcBride, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A	2 9 15 14 6 14 9 11 10 3 11 15	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H	5 12, 14 6 5 7 4 4 11 8 4 6 12
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Eichhorn, A Fierz-David, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S	14 9 3 12 5 8 15 15 15 10 10 12	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MAcBride, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A	2 9 15 14 6 14 3 11 10 3 15 13 11 15 7	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D	5
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Eichhorn, A FIERZ-DAVID, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S Fresenius, R	14 9 3 12 5 8 15 15 15 10 10 12 7	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MAcBride, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A	2 9 15 14 6 14 9 11 10 3 11 15 17 12	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D	5 12, 14 6 5 7 4 4 5 4 11 8 4 6 12 13 6
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Eichhorn, A Fierz-David, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S	14 9 3 12 5 8 15 15 15 10 10 12	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A Marshall, C E Mason, F A	2 9 15 14 6 14 31 10 3 11 15 7 12 6	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D Whymper, R Wiley, H W	5 12, 14 6 5 7 4 4 5 4 6 12 13 6 14
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Exchhorn, A FIERZ-DAVID, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S Fresenius, R Fyleman, E	14 9 3 12 5 8 15 15 15 10 10 12 7	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A Marshall, C E Mascon, F A Maxted, E B	2 9 15 14 6 14 31 10 3 11 15 7 12 6	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D Whymper, R Wiley, H W	5 12, 14 6 5 7 4 4 5 4 11 8 4 6 12 13 6
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Exchhorn, A FIERZ-DAVID, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S Fresenius, R Fyleman, E	14 9 3 12 5 8 15 15 16 10 15 6 17 5, 6	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A Marshall, C E Mason, F A Maxted, E B	2 9 15 14 6 14 31 10 3 11 15 7 12 6	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D Whymper, R Wiley, H W	5 12, 14 6 5 7 4 4 5 4 6 12 13 6 14
DARLING, H C R Darlington, C D Dexter, J Dible, J H Dreaper, W P Duff, A W EDBLMANN, R Eichhorn, A FIERZ-DAVID, H E Findlay, G M Fleming, G Fourneau, E Fowweather, F S Fresenius, R	14 9 3 12 5 8 15 15 15 6 10 15 6 12 7 5, 6	LATHROP, E C Leake, H M Lee, A B Lelean, P S Lewis, S Judd Liverseege, J F Lloyd, D J Lucas, C E L Lucas, E W Lyons, C G MACBRIDE, E W Macfadyen, A. Mackie, H B Maplestone, P A Marshall, A Marshall, C E Mason, F A Maxted, E B	er 6 2 9 15 14 6 14 3 11 10 3 15 13 11 15 7 12 6 5 8	THORNE, P C L Thresh, J C Tilden, Sir A W Tognoli, E VACHER, A Valentin, W G Villavecchia, V WAESER, B Wagner, R Wallis, T E Walsh, J W T Warren, W H Watts, H Whitby, L E H White, F D Whymper, R Wiley, H W	5

a, 35

1 1