Student: Yves Greatti

Introduction

In Lecture 12, the polarization of the stem cell cytoskeleton as a function of the stiffness of ECM is considered. A number of characteristics of cell/ECM interaction, such as the modeling-predicted order parameter [1] (Figure 1(a)) or experiment-estimated myosin fiber intensity [1] (Figure 1(b)) demonstrate an increase–saturation pattern as functions of ECM stiffness. Use the 1-D model where the cell and ECM are presented by the active and elastic springs, respectively [1] (Figure 2) and show that the active force generated by the cell, f_a , as a function of the ECM stiffness, has the same increase saturation pattern of behavior.

Figure 1: (a) Order–parameter saturation. (b) Actomyosin-intensity saturation.

Anisotropic Polarized Actomyosin Force

$$\frac{f^a}{f^0} = \alpha \, \frac{k_m}{\tilde{k}_c + k_m}$$

- α : polarizability factor
- $\tilde{k}_c = (1 + \alpha) k_c$: effective stiffness of the cell
- k_m : matrix rigidity

Interpretation

• For very soft matrices $(k_m \ll \tilde{k}_c)$:

$$\frac{f^a}{f^0} = \alpha \, \frac{k_m}{\tilde{k}_c + k_m} \, \longrightarrow \, 0.$$

If $k_m \ll \tilde{k}_c$, then $\tilde{k}_c + k_m \approx \tilde{k}_c$ and

$$\frac{f^a}{f^0} pprox \alpha \, \frac{k_m}{\tilde{k}_c} pprox k_m \, \longrightarrow \, 0 \quad \text{as } k_m \to 0.$$

• For very stiff matrices ($k_m \gg \tilde{k}_c$):

$$\frac{f^a}{f^0} = \alpha \, \frac{k_m}{\tilde{k}_c + k_m} \approx \alpha \, \frac{k_m}{k_m} \, \longrightarrow \, \alpha$$

Thus, the active force grows with matrix stiffness and saturates at a maximum value proportional to α .

Derivation.

Here we show, using the 1-D two-spring model of cell and matrix (Figure 2), that the cell's active force f_a vs. ECM stiffness k follows the same functional form:

(Zemel et al., 2010 and Lecture 12)

Figure 2: 1D model: active cell spring (stiffness k_c) in series with ECM spring (stiffness k_m).

Illustration

Figure 3: Active Force vs. Matrix stiffness.

References

[1] Assaf Zemel, Florian Rehfeldt, Alexander E.X. Brown, Dennis E. Discher, and Samuel A. Safran. Optimal matrix rigidity for stress-fibre polarization in stem cells. *Nature Physics*, 6(6):468–473, 2010.