Instituto Superior Técnico

Análise e Síntese de Algoritmos

Ano Lectivo 2020/2021

Repescagem do 2º Teste - versão A

RESOLUÇÃO

I. (2.5 + 2.5 + 2.5 + 2.5 = 10 val.)

I.a) Considere o algoritmo de Knuth-Morris-Pratt com o seguinte texto T=aababbabaabe o padrão P=ababaa. Calcule a função de prefixo para o padrão P:

P =	a	b	a	b	a	a
q	1	2	3	4	5	6
$\pi[q]$	0	0	1	2	3	1

Indique ainda todas as posições da sequência de índices q que percorre o padrão P, no final de cada iteração do ciclo principal.

q	0	1	1	2		4	0	1	2	3	1	2
---	---	---	---	---	--	---	---	---	---	---	---	---

I.b) Considere a maior sub-sequência comum entre as duas strings ACABCAB e BAACBCBC e calcule a respectiva matriz de programação dinâmica c[i,j] para este problema, em que o índice i está associado à string ACABCAB. Indique os seguintes valores: c[1,3], c[2,6], c[3,3], c[4,4], c[5,6], c[6,3], c[7,8]. Indique ainda o número de maior sub-sequências comuns.

2

c[1,3]	c[2,6]	c[3,3]	c[4,4]	c[5,6]	c[6,3]	c[7,8]
1	2	2	2	4	2	5

Número de maior sub-sequências comuns:

I.c) Considere o problema de compressão de dados de um ficheiro usando a codificação de Huffman. Indique o código livre de prefixo óptimo para cada carácter num ficheiro com 10 000 caracteres com a seguinte frequência de ocorrências:

$$f(a) = 9, f(b) = 13, f(c) = 24, \overline{f(d)} = 11, \overline{f(e)} = 37, f(f) = 6.$$

Quando constrói a árvore, atribue o bit 0 para o nó com menor frequência. Em caso de empate, atribua o bit 0 ao nó que inclui o caracter que aparece primeiro por ordem alfabética. Analogamente, em caso de empate na *min-priority queue*, considera-se primeiro o nó que inclui o caracter que aparece primeiro por ordem alfabética.

Indique também o total de bits no ficheiro codificado.

	a	b	c	d	e	f
Codificação	001	011	10	010	11	000
Total Bits	23900	•	•			

I.d) Considere o seguinte programa linear:

$$\begin{array}{lllll} \min & -3x_1 - 7x_2 \ + & 1 \\ \mathrm{s.a} & x_1 + 2x_2 \ \leq & 3 \\ & -2x_1 - 4x_2 \ \geq & -6 \\ & x_1, x_2 \ \geq & 0 \end{array}$$

Aplique o algoritmo Simplex para calcular o valor da função objectivo e o respectivo valor das variáveis básicas e não-básicas na solução óptima. Em caso de empate na escolha da variável de entrada ou da variável de saída, aplique a regra de Bland (ou seja, escolha a variável de menor índice).

Z	x_1	x_2	x_3	x_4
$-\frac{19}{2}$	0	$\frac{3}{2}$	0	0

II.
$$(3 + 2 + 2 + 3 = 10 \text{ val.})$$

- II.a) Dada uma sequência de inteiros positivos $\langle x_1, ..., x_n \rangle$, pretende desenvolver-se um algoritmo que determina o maior valor suceptível de ser obtido a partir da expressão $x_1/x_2/x_3/.../x_n$, determinando a ordem pela qual as divisões devem ser efectuadas. Por exemplo, dada a sequência $\langle 16, 8, 4, 2 \rangle$, a parentização que resulta no maior valor final é: (16/((8/4)/2)) = 16.
 - 1. Seja M[i,j] o maior valor que é possível obter a partir da expressão $x_i/x_{i+1}/.../x_j$ e m[i,j] o menor valor. Por exemplo, dada a sequência $\langle 16,8,4,2 \rangle$, M[1,4] = 16 e m[1,4] = 0.25. Admitindo que a sequência dada como input é $\langle x_1,...,x_n \rangle$, defina M[i,j] e m[i,j] recursivamente completando os campos em baixo:

2. Complete o template de código em baixo que, dada uma sequência de inteiros $\langle x_1,...,x_n \rangle$, calcula m[1,n] e M[1,n].

3. Determine a complexidade assimptótica do algoritmo proposto na alínea anterior.

Solução:

```
1.
                M(i,j) = \left\{ \begin{array}{ll} x[i] & \text{se } i = j \\ \mathbf{max}\{M[i,k]/m[k+1,j] \mid i \leq k < j\} & \text{se } j > i \end{array} \right.
                 m(i,j) = \begin{cases} x[i] & \text{se } j = i\\ \min\{m[i,k]/M[k+1,j] \mid i \le k < j\} & \text{se } j > i \end{cases}
2.
                       GreatestValue(x[1..n])
                          let M[1..n, 1..n] be a new matrix of size n \times n
                          let m[1..n, 1..n] be a new matrix of size n \times n
                          for i = 1 to n do
                             M[i,i] := x[i]
                             m[i,i] := x[i]
                          endfor
                          for s = 1 to n-1 do
                             for i = 1 to n-s do
                                let j = i + s
                                let M[i,j] = -\infty
                                let m[i,j] = +\infty
                                for k = i to j-1 do
                                   M[i,j] := \max(M[i,j], M[i,k]/m[k+1,j])
                                  m[i,j] := \min(m[i,j], m[i,k]/M[k+1,j])
                                endfor
                             endfor
                          endfor
```

return M[1, n]

3. Complexidade: $O(n^3)$. O algoritmo tem de preencher a metade diagonal superior das matrizes M[1..n, 1..n] e m[1..n, 1..n], sendo que para cada posição da matriz o algoritmo pode percorrer s posições. Formalmente:

$$\begin{split} \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} \sum_{k=i}^{j-1} O(1) \\ &= \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} \sum_{k=i}^{i+s-1} O(1) \\ &= \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} O(1).(i+s-1-i+1) \\ &= \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} O(s) \\ &= \sum_{s=1}^{n-1} O(s).(n-s) \\ &= O(\sum_{s=1}^{n-1} n.s - s^3) \\ &\leq O(n. \sum_{s=1}^{n-1} s) \\ &\leq O(n^3) \end{split}$$

II.b) Uma fábrica de barras de cereais produz e vende dois tipos de barras: premium e standard. O preço de venda das barras premium é 5 euros por embalagem, enquanto o preço de venda das barras standard é 3 euros por embalagem. Dada a elevada procura de barras por parte dos distribuidores, a fábrica tem sempre conseguido escoar a totalidade da produção. Assim sendo, a produção está apenas limitada pela capacidade dos fornos usados para torrar a mistura de cereais e pelo capital disponível para a compra de matérias primas.

As barras premium requerem 3 horas de tempo de forno por embalagem, enquanto as barras standard requerem 4 horas, sendo que existem 20.000 horas de tempo de forno disponível por embalagem durante o período de um mês.

Os custos directos decorrentes da produção de uma embalagem de barras são: 2 euros por cada embalagem de barras premium e 1 euro por cada embalagem de barras standard. A fábrica dispõe de 4000 euros por mês para investir em produção. Contudo, 45% do rendimento obtido da venda de barras premium e 30% do rendimento obtido das venda de barras standard estará disponível para ser re-investido na produção de mais barras durante o próprio mês.

Finalmente, obrigações contratuais da fábrica com a autarquia onde está instalada exigem que a produção mensal seja superior a 2000 embalagens.

O director de operações da fábrica pretende agora determinar o número de embalagens de cada um dos tipos de barras a produzir mensalmente por forma a maximizar a facturação.

- 1. Formule o programa linear que permite resolver este problema.
- 2. A solução básica inicial do programa linear é exequível? Caso não seja, formule o programa linear auxiliar.
- 3. Formule o programa linear dual.

Solução:

- 1. Começamos por identificar as variáveis do problema:
 - x_1 número de embalagens premium produzidas;
 - \bullet x_2 número de embalagens standard produzidas.

Programa linear primal:

2. A solução básica inicial não é exequível (a terceira restrição não é satisfeita). Programa linear auxiliar:

3. Programa linear dual:

II.c) Considere o algoritmo de Knuth-Morris-Pratt para o emparelhamento de cadeias de caracteres. Seja $n \in \mathbb{N}$ e P o padrão $\underline{aba} \ \underline{ab^2a} \ \underline{ab^3a} \ \dots \underline{ab^{n-1}a} \ \underline{ab^na}$ tal que $a \neq b$, $a,b \in \Sigma$ e $n \geq 2$. Considere o cálculo da função de prefixo $\pi[i]$ para o padrão P. Indique em função de n para quantos valores diferentes de i é que temos que:

1.
$$\pi[i] = 0$$

2.
$$\pi[i] = 1$$

3.
$$\pi[i] = 2$$

4.
$$\pi[i] > 2$$

Deve apresentar os cálculos.

Solução:

1.
$$\pi[i] = 0$$
. Number: $2 + \sum_{i=1}^{n-1} i = 2 + \frac{(n-1) \cdot n}{2} = \frac{n^2 - n + 4}{2}$

2.
$$\pi[i] = 1$$
. Number: $2 * (n-1) + 1 = 2n - 2 + 1 = 2n - 1$

3.
$$\pi[i] = 2$$
. Number: $n - 1$

4.
$$\pi[i] > 2$$
. Number: 0

II.d) Recorde o problema da mochila não fraccionária sem repetição estudado nas aulas. Dada uma mochila com capacidade K e n items com pesos $p_1, ..., p_n$ e valores $v_1, ..., v_n$, o problema consiste em determinar o valor máximo que podemos transportar na mochila respeitando a sua restrição de capacidade. Este problema pode ser modelado como o seguinte problema de decisão:

$$\mathbf{Knapsack} = \{ \langle K, \vec{p}, \vec{v}, v^* \rangle \mid \exists I \subseteq \{1, ..., n\}. \sum_{i \in I} v_i = v^* \land \sum_{i \in I} p_i \leq K \}$$

- 1. Mostre que o problema **Knapsack** está em **NP**.
- 2. Mostre que o problema **Knapsack** é **NP**-difícil por redução a partir do problema **Subset-Sum** que se recorda em baixo.

Problema Subset-Sum: Seja $\mathcal{X} = \{v_1, ..., v_n\}$ e k um inteiro arbitrário; o problema Subset-Sum, define-se formalmente da seguinte maneira:

$$\mathbf{Subset\text{-}Sum} = \{\langle \mathcal{X}, k \rangle \mid \exists I \subseteq \{1, ..., n\}. \sum_{i \in I} v_i = k\}$$

Solução:

- 1. O algoritmo de verificação recebe como input uma possível instância $\langle K, \vec{p}, \vec{v}, v^* \rangle$ e um certificado na forma de um conjunto de índices I tal que: $\sum_{i \in I} v_i = v^*$ e $\sum_{i \in I} p_i \leq K$. Em primeiro lugar, observamos que o certificado tem tamanho O(n). O algoritmo de verificação tem de verificar $\sum_{i \in I} v_i = v^*$ e $\sum_{i \in I} p_i \leq K$, o que pode ser feito em tempo O(n).
- 2. Dada uma instância $\langle \mathcal{X}, k \rangle$ do problema **Subset-Sum** temos de construir uma instância $\langle K, \vec{p}, \vec{v}, v^* \rangle$ do problema **Knapsack** tal que:

$$\langle \mathcal{X}, k \rangle \in \mathbf{Subset\text{-}Sum} \iff \langle K, \vec{p}, \vec{v}, v^* \rangle \in \mathbf{Knapsack}$$

Admitindo que os elementos de X se encontram numerados: $X = \{x_1, ..., x_n\}$, definimos formalmente a instância $\langle K, \vec{p}, \vec{v}, v^* \rangle$ como se segue:

- \bullet K = k
- $\vec{p} = \langle x_1, ..., x_n \rangle$
- $\vec{v} = \langle x_1, ..., x_n \rangle$
- $v^* = k$

A redução proposta tem complexidade: O(n).

Número:	Nome:	10/10