

Übungsblatt 9: Instationäre Wärmeleitung

Aufgabe 1: Herleitung der Element-Speichermatrix

- **1.1** Skizzieren Sie die Graphen der drei Funktionen \hat{N}_i über dem Einheitsdreieck $\hat{\Omega}$.
- 1.2 Stellen Sie die Element-Speichermatrix \mathbf{M}^e auf.

Aufgabe 2: Programmierung

2.1 Element-Speichermatrix: Implementieren Sie die Matlab-Funktion

```
function meFunc = heatMe(rho, c)
```

2.2 Globale Speichermatrix: Erstellen Sie die Matlab-Funktion

```
function [K, M, r] = assembleKMr(m)
```

2.3 Verifizieren Sie Ihren Code mit dem auf Moodle bereitgestellten Testproblem.

Aufgabe 3: Anwendungsbeispiele

3.1 Thermischer Ausgleich

Simulieren Sie für die unten dargestellte Situation den Temperaturverlauf über eine Stunde. Über den Rand findet keine Wärmeübertragung statt.

3.2 Raumecke mit wechselnder Außentemperatur

Simulieren Sie für die dargestellte Situation die Temperaturverteilung über einen Zeitraum von 48 Stunden.

Die Funktion der DGL lautet für dieses Beispiel

$$\mathbf{F}(t, \boldsymbol{\theta}) = \mathbf{M}^{-1} \left(-\mathbf{K} \boldsymbol{\theta} + \mathbf{r}^{i} + (1 + \sin(\omega t)) \cdot \mathbf{r}^{a} \right)$$

wobei \mathbf{r}^i und \mathbf{r}^a die rechten Seiten zum inneren bzw. äußeren Rand sind. Es bietet sich für die Programmierung daher an, eine weitere Funktion

zu verwenden, mit der die rechte Seite für die Gruppe n berechnet wird.

Tipps:

- In Matlab benötigt man die Inverse der Massenmatrix nicht
- Verwenden Sie die auf Moodle bereitgestellten Dateien als Ausgangspunkt