

MEASURING THE CAUSAL EFFECT OF DATA CAPTURE ON RETAIL SALES

Group 3

Michael Brucek, Kevin Grady, Anthony Meyers, Danny Moncada, Jack Quick

Data Generating Process

- Sales data from 45 WalMart stores
- Stores located in different regions
- 1,000 days of data (2010/02/05 to 2012/11/01)
- Promotional data captured starting day 651
- Data also consists of economic and geographic variables:

\$ Sales Temperature

Unemployment Gasoline Price

Consumer Price Index

Problem Statement

Did WalMart effectively leverage data assets to generate an accretive ROI in the post-treatment period (after day 651)? Data is cheap

Information is expensive

Importance of the Causal Question

- Data analytics platforms are expensive and need to drive ROI
- When inventory level is miscalculated, it's costly to the bottom line
- Customers become conditioned to always expect discounts when they are used too frequently
 - 2017 NRF Study: 1 in 3 shoppers only purchased sale items during holidays
- Effective markdown strategies are hard to master even small casual gains can help

Threats to Causal Inference

- Data generating process may change due to strategy shifts
- Omitted variable bias and mismeasurement are clearly present, as economic forecasting requires extreme number of features
- Selection bias may be present due to:
 - The data was collected during the financial crisis
 - Only 45 stores were included
- Simultaneity bias also present because high performing stores do not need strategic actions applied to them

Data Summary

- Promotion data capture began in October 2011
- Store type clearly driving differentiated sales.

- Power testing indicates the data is slightly underpowered, only achieving significance at the 61.5% CI.
 - Would need an additional 407 weeks to achieve 85% CI

Fixed Effects Model

 Fixed Effect model on the impact of the post treatment period shows positive increase in sales during the treatment period at a significant level.

 However, model displays serial correlation meaning the coefficient results should **not** be used.

Feature	Coefficient
Treatment	\$56,749.90
Temperature	-\$825.312
Fuel Price	-\$28,924.70
CPI	-\$3,632.31
Unemployment	-\$9,505.96

All significant at the 0.05 level

Test	p-value
Endogeneity (Hausman)	0.9353
Serial Correlation (<i>Breusch-Godfrey</i>)	2.2e-16
Heteroskedasticity (<i>Breusch-Pagan</i>)	2.2e-16

Synthetic Control Method

- Synthetic Control Method was utilized as well
- Predictions generated using store level promotional data in addition to economic and regional data
- In order to generate more accurate predictors, stores were clustered using K-Means algorithm to control for unobserved confounders such as:
 - Regional shopping habits
 - Regional cost levels
 - Regional distribution of WalMart stores
 - Microeconomic considerations

Synthetic Control Method: Clustering Methods

- To control for a number of regional differences, stores were clustered together
- K-Means algorithm clustered stores based on normalization of the average of the feature variables.

 Four distinct clusters identified

Synthetic Control Method: Results

- Synthetic Control Method generated good fit to actual data (mean prediction error around 4%)
- Synthetic model showing no increase post-treatment

Conclusions

No causal relationship found between capturing promotional data and increasing sales.

Actions:

Cost of acquiring, retaining, and analyzing store level promotion data should be considered.

Data science teams to investigate further promotional level opportunities.