

Sustainability Analysis

Symbiosis Institute Of Technology, Nagpur

Prakriti Kumari

Pritam Morey

Taniksha Upadhyay

Problem Statement

Analyze IKEA's sustainability initiatives to understand the relationships between environmental, social, and economic impacts, and identify key factors driving effective outcomes. Use data-driven insights to recommend strategies for improving sustainability performance.

Objectives

- •Evaluate the effectiveness of sustainability initiatives of IKEA.
- •Recognizing the essential factors for expected results.
- •Find correlations among cost, CO2 emission reduction, and revenue.
- •Recommendations for Improvements.

Dataset Overview(Optional)

The dataset contains sustainability initiatives at IKEA, focusing on both environmental and financial aspects. It provides insights into the performance and impact of various sustainability programs.

Key Columns:

- **1.Initiative_ID**: Unique identifier for each sustainability initiative (e.g., 'IKEA_40').
- **2.Category**: The type or category of sustainability initiative (e.g., 'Energy Efficiency', 'Waste Management').
- **3.Cost**: The cost associated with each initiative (numeric).
- **4.Revenue_Impact**: The financial revenue generated or saved due to the initiative (numeric).
- **5.CO2_Reduction**: The amount of CO2 emissions reduced as a result of the initiative (numeric).
- **6.Waste_Reduction**: The amount of waste reduced through the initiative (numeric).
- **7.Renewable_Energy_Usage**: Percentage of energy used from renewable sources in the initiative (numeric).
- **8.Customer_Engagement**: The level of customer engagement or awareness raised by the initiative (numeric).
- **9.Employee_Engagement**: The level of employee involvement in sustainability initiatives (numeric).

Methodology

Data-Driven Decision Process:

```
[Data Collection & Preparation]
[Exploratory Data Analysis (EDA)] ---> [Visualize Trends & Patterns]
[Data Insights] → ---> [Statistical Analysis] → Refinement]
   [Correlation & t-tests] [Linear Regression]
[Segmentation & Clustering] →→→ [K-means Clustering]
[Evaluate Impact] ---> [Environmental & Financial Outcomes]
```


4	А	В	С	D	Е	F	G	н	1
1	ID	2_Reducti	Cost	/enue_lmp	te_Reduct	ble_Energy	ner_Engag	Category	
2	IKEA_01	50.5	124.8	89.7	1.3	112	45.9	Circular Ec	onomy
3	IKEA_02	51.8	122.5	89.2	2.6	109.2	46.7	Sustainable	e Materials
4	IKEA_03	53.1	120.2	88.7	3.9	106.4	47.5	Energy Effi	ciency
5	IKEA_04	54.4	117.9	88.2	5.2	103.6	48.3	Circular Ec	onomy
6	IKEA_05	55.7	115.6	87.7	6.5	100.8	49.1	Sustainable	e Materials
7	IKEA_06	57	113.3	87.2	7.8	98	49.9	Energy Effi	ciency
8	IKEA_07	58.3	111	86.7	9.1	95.2	50.7	Circular Ec	onomy
9	IKEA_08	59.6	108.7	86.2	10.4	92.4	51.5	Sustainable	e Materials
10	IKEA_09	60.9	106.4	85.7	11.7	89.6	52.3	Energy Effi	ciency
11	IKEA_10	62.2	104.1	85.2	13	86.8	53.1	Circular Ec	onomy
12	IKEA_11	63.5	101.8	84.7	14.3	84	53.9	Sustainable	e Materials
13	IKEA_12	64.8	99.5	84.2	15.6	81.2	54.7	Energy Effi	ciency
14	IKEA_13	66.1	97.2	83.7	16.9	78.4	55.5	Circular Ec	onomy
15	IKEA_14	67.4	94.9	83.2	18.2	75.6	56.3	Sustainable	e Materials
16	IKEA_15	68.7	92.6	82.7	19.5	72.8	57.1	Energy Effi	ciency
17	IKEA_16	70	90.3	82.2	20.8	70	57.9	Circular Ec	onomy
18	IKEA_17	71.3	88	81.7	22.1	67.2	58.7	Sustainable	e Materials
19	IKEA_18	72.6	85.7	81.2	23.4	64.4	59.5	Energy Effi	ciency
20	IKEA_19	73.9	83.4	80.7	24.7	61.6	60.3	Circular Ec	onomy
21	IKEA_20	75.2	81.1	80.2	26	58.8	61.1	Sustainable	e Materials
22	IKEA_21	76.5	78.8	79.7	27.3	56	61.9	Energy Effi	ciency
23	IKEA_22	77.8	76.5	79.2	28.6	53.2	62.7	Circular Ec	onomy
24	IKEA_23	79.1	74.2	78.7	29.9	50.4	63.5	Sustainable	e Materials
25	IKEA_24	80.4	71.9	78.2	31.2	47.6	64.3	Energy Effi	ciency
26	IKEA_25	81.7	69.6	77.7	32.5	44.8	65.1	Circular Ec	onomy

- •Type: Data on sustainability initiatives.
- •Key Columns:
- •Renewable Energy Usage: Percentage from renewable sources.
- •Revenue Impact: Financial impact of initiatives.
- •Waste Reduction: Measure of waste reduction.
- •Purpose: Analyzing relationships between energy usage, waste reduction, and financial outcomes.
- •Data: Mix of numeric and categorical for visual analysis.

The uploaded image shows a pair plot generated using sns.pairplot() from the Seaborn library, visualizing relationships among numerical variables in a dataset.Each diagonal represents histograms (or kernel density plots) of individual variables, while the off-diagonal subplots show scatter plots representing pairwise relationships between the variables.

Scatter Plot of Renewable Energy Usage vs. Waste Reduction (Colored by Revenue Impact)

Key Features:

- Position: Each point represents a dataset entry.
- •Color: Bright yellow-green indicates higher revenue impact, while darker shades indicate lower impact.
- •Insights: Patterns or clusters may reveal how revenue impact varies with energy usage and waste reduction.

This plot highlights potential trends or correlations among the variables.

- Key Features:Xaxis: Categories in the column.
- Y-axis: Count of occurrences for each category.
- Insights: Highlights the most and least frequent categories in the dataset.
- Rotated x-axis labels improve readability for longer category names.

3D Spiral Dataset

Key Features of the Graph:

- X-axis and Y-axis: The dataset forms a spiral on the XY-plane, with the radius gradually increasing as the spiral completes multiple turns.
- Z-axis: The points rise vertically along the Zaxis, creating a helical structure that spirals upward.
- Color Gradient: The points are colored based on their angular position (theta), with the Viridis colormap applied to visually distinguish different parts of the spiral.
- Points Distribution: The points are uniformly distributed along the spiral, with a smooth transition between the X, Y, and Z coordinates, providing a clear 3D representation.

3D Box Plot

Funnel Chart

Sunburst Chart

Sunburst Chart: A radial chart used to visualize hierarchical data, with each level represented by a ring, and inner rings showing broader categories while outer rings break down into subcategories.

Density Plot: A smooth, continuous version of a histogram, showing the distribution of a dataset and its probability density, often used to understand the underlying distribution of data.

Radar Chart: A graphical representation of multivariate data with multiple axes, where each axis represents a variable, and the data points are plotted along these axes to form a polygon.

Choropleth MAP

Conclusion

Summary

- •IKEA's sustainability initiatives demonstrate strong correlations between environmental, economic, and social impacts.
- •Key drivers include cost efficiency, renewable energy usage, and customer engagement.
- •Linear regression and clustering revealed actionable insights to prioritize high-impact initiatives.
- •Recommendations were made to optimize sustainability strategies and enhance outcomes.

Future Work

- •Broader Analysis: Expand the dataset to include more initiatives and global operations.
- •Real-Time Monitoring: Integrate IoT and real-time data tracking for continuous evaluation.
- •Emerging Technologies: Explore AI and machine learning to predict long-term sustainability impacts.
- •Comparative Studies: Benchmark IKEA's sustainability performance against industry peers.
- •Stakeholder Engagement: Assess the role of customer and community participation in driving impact.

References

- IKEA Sustainability Report: https://www.ikea.com/ms/en_US/this-is-ikea/sustainable-everyday/sustainability-report
- IKEA and Sustainability Practices (World Economic Forum): https://www.weforum.org/agenda/2021/01/how-ikea-is-becoming-more-sustainable/
- Sustainability and Corporate Responsibility at IKEA: https://about.ikea.com/en/sustainability
- Case Studies on IKEA's Circular Economy (Ellen MacArthur Foundation): https://ellenmacarthurfoundation.org/case-studies/ikea-designs-for-circularity
- IKEA Carbon Footprint Reduction: https://www.climateaction.org/news/ikea-reduces-carbon-footprint-while-increasing-sales
- Sustainable Energy Goals at IKEA: https://www.reuters.com/business/sustainable-energy-ikea-2022

Result


```
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# Exclude non-numeric columns like 'Initiative_ID' and 'Category'
X_for_clustering = df.drop(['CO2_Reduction', 'Category', 'Initiative_ID'], axis=1)

kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_for_clustering)

sns.scatterplot(data=df, x='Cost', y='CO2_Reduction', hue='Cluster', palette='viridis')
plt.title("Clustering of IKEA Sustainability Initiatives")
plt.show()
```


Thank You!