Sales of Books Forecast

Lin Jiahong

(None)

Overview

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

Problem Definition

Sales of Books Forecast

Data Analysis

Feature Extraction

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Model Train

Synthetic Dataset NBA Dataset

Conclusion

Problem Definition

Sales of Books Forecast

Data Analysis

Feature Extraction

Model Train

Conclusion

Problem Definition

Sales of Books Forecast

Problem Definition

Sales of Books Forecast

Data Analysis

Feature Extraction

Model Train

Conclusion

Sales of Books Forecast aims to predict the sales of books in 2021 through the book sales data from 2017 to 2020.

- Data covers different countries and different stores.
- There are cyclical and seasonal changes in book sales.

Data	row_num	date	country	store	product
train	70128	1461	6	2	4
test	17520	365	6	2	4

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

Data Analysis

Overall data

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

- Country Belgium, France, Germany, Italy, Poland, Spain
- Product [Kaggle Advanced Techniques],[Kaggle Getting Started],[Kaggle Recipe Book],[Kaggle for Kids: One Smart Goose]
- Stores KaggleMart,KaggleRama
- Time line

Data	Earliest date	Latest date
train test	2017 - 01 - 01 $2021 - 01 - 01$	$oxed{ 2020 - 12 - 31 } \ 2021 - 12 - 31$

Monthly sales statistics

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ the patterns in sales of all countries and stores are identical.the magnitudes of sales are different

Figure 1: Monthly sales

Aggregating Time Series(Store)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ Store-KaggleMart appears to consistantly have 74.25% of the total number of sales

Store	ratio
KaggleMart	0.742515
KaggleRama	

Figure 2: Stores ratio

Aggregating Time Series(Store)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

To compare the trend of the two stores, multiply the sales data of the two stores by a constant.

Figure 3: Stores ratio trend

Aggregating Time Series(Country)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ Country-The ratio of total sales in different countries also fluctuates little.

Country	ratio
Belgium	0.218930
France	0.191360
Germany	0.219586
Italy	0.159383
Poland	0.071348
Spain	0.139393

Figure 4: Countries ratio

Aggregating Time Series(Country)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ Multiply all countries by a constant so they are comparable with Belgium.

Figure 5: Countries ratio trend

Aggregating Time Series(Country and Store)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ In the plots make all time series inline with the Belgium KaggleMart store by multiplying by a constant.

Figure 6: Countries and Store trend

Aggregating Time Series(Product)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ The change trend of the sales volume of the four books is cyclical.

Basic Time Series of Sales

Figure 7: Sales of Product

Aggregating Time Series(Product)

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

■ The change trend of the sales proportion of the four books has rules.

Figure 8: Product ratio trend

Aggregated Time Series

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

aggregate the sales timeline to consider how to forecast the overall sales volume.

Figure 9: Aggregated time series

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Model Train

Conclusion

Feature Extraction

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Model Train

Conclusion

Framework of GOAM algorithm:

Figure 10: Framework of GOAM Algorithm

Step One - Group Feature Extraction

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects Identification

Model Train

Conclusion

Suppose f_1 , f_2 , f_3 are three features of G_q .

$$f_1$$
: { $x_1, x_2, x_3, x_4, x_5, x_2, x_3, x_4, x_1, x_2$ }

$$f_2$$
: { $y_2, y_2, y_1, y_2, y_3, y_3, y_5, y_4, y_4, y_2$ }

$$f_3$$
: { $z_1, z_4, z_2, z_4, z_5, z_3, z_1, z_2, z_4, z_2$ }

Figure 11: Histogram of \mathcal{G}_q on three features

Step Two - Outlying Degree Scoring

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Model Train

Conclusion

- Calculate Earth Mover Distance
 - Represent one feature among different groups
 - Purpose: calculate the minimum mean distance

Figure 12: EMD of one feature

Step Two - Outlying Degree Scoring

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Model Train

Conclusion

Calculate the outlying degree

$$OD(G_q) = \sum_{1}^{n} EDM(h_{q_s}, h_{k_s})$$

- \bullet n \Leftrightarrow the number of contrast groups.
- $h_{k_s} \Leftrightarrow$ the histogram representation of G_k in the subspace s.

Step Three - Outlying Aspects Identification

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Model Train

Conclusion

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.

Pseudo code

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Model Train

Conclusion

Pseudo code of GOAM algorithm

Illustration

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Model Train

Conclusion

Table 1: Original Dataset

G_1	F_1	F_2	F_3	F_4	G_2	F_1	F_2	F_3	F_4
	10	8	9	8		7	7	6	6
	9	9	7	9		8	9	9	8
	8	10	8	8		6	7	8	9
	8	8	6	7		7	7	7	8
	9	9	9	8		8	6	6	7
G_3	F_1	F_2	F_3	F_4	$ig G_4$	F_1	F_2	F_3	F_4
	8	10	8	8		9	8	8	8
	9	9	7	9		7	7	7	9
	10	9	10	7		8	6	6	8
	9	10	8	6		9	8	8	7
	9	9	7	9		8	7	9	8

Illustration

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Model Train

Conclusion

Table 2: outlying degree of each possible subspaces

Feature	Outlying Degree	Feature	Outlying Degree
$\{\pmb{F}_1\}$	4.351	$\{\pmb{F}_2,\pmb{F}_3\}$	4.023
$\{\pmb{F}_2\}$	2.012	$\{\pmb{F}_{3}, \pmb{F}_{4}\}$	4.324
$\{\pmb{F}_3\}$	1.392	$\{\pmb{F}_2,\pmb{F}_4\}$	2.018
$\{\pmb{F_4}\}$	2.207	$\{F_2,F_3,F_4\}$	2.012

Search process:

$$OD({F_1}) > \alpha$$
, save to T_1 .

$$OD({F_2}) < \alpha$$
, save to C_1 .

$$OD({F_3}) < \alpha$$
, save to C_2 .

$$OD({F_4}) < \alpha$$
, save to C_3 .

$$OD(\{F_2, F_3\}) > \alpha$$
, save to N_1 .

$$OD(\{F_3, F_4\}) > \alpha$$
, save to N_2 .

$$OD(\{F_2, F_4\}) < \alpha$$
, remove.

$$OD(\{F_2, F_3, F_4\}) < \alpha$$
, remove.

Strengths of GOAM Algorithm

Problem Definition

Data Analysis

Feature Extraction

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Model Train

Conclusion

- Reduction of Complexity
 - ◆ Bottom-up search strategy.
 - ◆ Reduce the size of candidate subspaces.

Sales of Books Forecast

- Efficiency
 - Before: $O(2^d)$

Now: $O(d * n^2)$

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Model Train

Evaluation

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

 $Accuracy = \frac{P}{T}$

P: Identified outlying aspects

T: Real outlying aspects

Synthetic Dataset

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 3: Synthetic Dataset and Ground Truth

Query group	\mathbf{F}_1	$\mathbf{F_2}$	F_3	\mathbf{F}_4	F_5	F_6	$oldsymbol{F}_7$	F_8
i_1	10	8	9	7	7	6	6	8
i_2	9	9	7	8	9	9	8	9
i_3	8	10	8	9	6	8	7	8
i_4	8	8	6	7	8	8	6	7
i_5	9	9	9	7	7	7	8	8
i_6	8	10	8	8	6	6	8	7
i_7	9	9	7	9	8	8	8	7
i_8	10	9	10	7	7	7	7	7
i_9	9	10	8	8	7	6	7	7
i_{10}	9	9	7	7	7	8	8	8

Synthetic Dataset Results

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Table 4: The experiment result on synthetic dataset

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	$\{\pmb{F}_1\},\ \{\pmb{F}_2\pmb{F}_4\}$	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	100%
Arithmetic Mean based OAM	$\{m{F}_1\},\ \{m{F}_2m{F}_4\}$	$\{m{F}_4\},\ \{m{F}_2\}$	0%
Median based OAM	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	$\{\pmb{F}_2\},\ \{\pmb{F}_4\}$	0%

NBA Dataset

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Data Collection

Source

Yahoo Sports website (http://sports.yahoo.com.cn/nba)

Data

- Extract NBA teams' data until March 30, 2018;
- 6 divisions;
- 12 features (eg: *Point Scored*).

NBA Dataset

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

The detail features are as follows:

Table 5: Collected data of Brooklyn Nets Team

Pts	FGA	FG%	3FA	3PT%	FTA	FT%	Reb	Ass	To	Stl	Blk
18	12	42	2.00	50	7.00	100	0	4	3	0	0
15.7	14.07	41	5.45	32	3.05	75	3.98	5.1	2.98	0.69	0.36
14.5	11.1	47	0.82	26	4.87	78	6.82	2.4	1.74	0.92	0.66
13.5	10.8	42	5.37	37	3.38	77	6.66	2	1.38	0.83	0.42
12.7	10.59	39	5.36	33	3.37	82	3.24	6.6	1.56	0.89	0.31
12.6	10.93	40	6.94	37	1.70	84	4.27	1.5	1.06	0.61	0.44
12.2	10.39	44	3.42	35	2.70	72	3.79	4.1	2.15	1.12	0.32
10.6	7.85	49	4.51	41	1.35	83	3.34	1.6	1.15	0.45	0.24

NBA Dataset

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Data Preprocess

Table 6: The bins that used to discrete data of each feature

Labels	Pts	FGA	FG%	3FA	3PT%	FTA
low	[0,5]	[0,4]	[0,0.35]	[0,1.0]	[0,0.2]	[0,1.0]
medium	(5,10]	(4,7]	(0.35, 0.45]	(1.0,2.5]	(0.2, 0.3]	(1.0, 1.5]
high	(10,15]	(7,10]	(0.45, 0.5]	(2.5, 3.5]	(0.3, 0.35]	(1.5, 2.5]
very high	$(15,+\infty]$	$(10,+\infty]$	(0.5,1]	$(3.5,+\infty]$	(0.35,1]	$(2.5,+\infty]$
Labels	FT%	Reb	Ass	To	Stl	Blk
low	[0,0.6]	[0,2.0]	[0,1.0]	[0,0.6]	[0,0.2]	[0,0.25]
medium	(0.6, 0.65]	(2,5]	(1,2]	(0.6, 0.9]	(0.2, 0.5]	(0.25, 0.5]
high	(0.65, 0.75)	[5,6]	(2,4]	(0.9, 1.7]	(0.6, 0.75]	(0.5, 0.7]
very high	(0.75,1]	$(6,+\infty]$	$(4,+\infty]$	$(1.7,+\infty]$	$(0.75,+\infty]$	$[(0.7,+\infty]]$

NBA Dataset Results

Problem Definition

Data Analysis

Feature Extraction

Model Train

Synthetic Dataset

NBA Dataset

Conclusion

Table 7: The identified outlying aspects of groups

Teams	Trivial Outlying Aspects	NonTrivial Outlying Aspects
Cleveland Cavaliers	{3FA}	{FGA, FT%}, {FGA, FG%}
Orlando Magic	{Stl}	None
Milwaukee Bucks	{To}, {FTA}	{FGA, FTA}, {3FA, FTA}
Golden State Warriors	$\{FG\%\}$	{FT%, Blk}, {FGA, 3PT%, FTA}
Utah Jazz	${Blk}$	{3FA, 3PT%}
New Orleans Pelicans	{FT%}, {FTA}	{FTA, Stl}, {FTA, To}

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

Conclusion

Conclusion

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the *Group Outlying Aspects Mining* problem;
- Utilize the pruning strategies to reduce time complexity.

Questions?

Problem Definition

Data Analysis

Feature Extraction

Model Train

Conclusion

Contact Information

Associate Professor Gang Li School of Information Technology Deakin University, Australia

GANGLI@TULIP.ORG.AU

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING