Mennyire fontos az atletikusság az NFL Draft-on és az NFL-ben?

Kovarik Bálint

Budapesti Corvinus Egyetem Adatelemzés a tudományos gyakorlatban

Tartalom

Bevezetés	2
NFL – adatok ismertetése	2
Adattisztítás – üres adatok kezelése	2
Combine	3
BMI	4
Kor	5
Mennyit számít az atletikusság az NFL-ben?	6
Összes játékos alapján	6
Pozíciók szerinti bontás alapján	6
WR	7
OL	7
Összegzés	8
A draft pozíció és a jövőbeli teljesítmény viszonya	8
Konklúzió	10
Melléklet	11
Táblázatok	11
Grafikonok	17

Bevezetés

Az elemzésemben arra keresem a választ, hogy mennyit számít az NFL Scouting Combine-on nyújtott teljesítmény egy jó NFL Draft (NFL játékoskiválasztója) pozíció megszerzéséhez, illetve pusztán egy játékos atlétikai képessége mennyire fontos a későbbi karrierjük szempontjából.

Ezen kérdések megválaszolásához az általam választott adatbázisban a főiskolai játékosok combine-on nyújtott teljesítménye, pozíciója, főiskolája, a drafton elért helye, az őt kiválasztó csapat, illetve a játékosok későbbi NFL-es karrierjének eredményességéről, az adatbázis készítője által meghatározott közelítő érték szerepel. Az adatbázis a 2014-es combine-ig visszamenőleg tartalmaz adatokat, hogy minden pozícióhoz és feladathoz legyen elegendő adat. A combine feladatokon elért eredményeket veszem egy játékos atlétikai képességének.

NFL – adatok ismertetése

Az NFL-ben, vagyis az amerikai profi amerikai futball ligában évente megrendezésre kerül az NFL Scouting Combine nevű esemény, ami a főiskolás játékosok felmérője. Ez egy meghívásos esemény, általában azokat a játékosokat hívják meg, akik a főiskolai eredményeik alapján esélyesek a profi ligába való bejutásra. Az itt részt vevő játékosoknak különböző felmérőkön kell részt venniük. Megmérettetik magukat a 40 yard-os sprint futás, magasugrás, távolugrás, 100kg-os fekvenyomás, 3 cone drill (L alakban futás) és a shuttle (oldalirányú futás) számokban. Az itt nyújtott teljesítményüket lemérik és feljegyzik. A Combine után a főiskolás játékosokat a Draft-on, vagyis az NFL játékosválogatóján választják ki a profi csapatok. Az NFL-es csapatok az előző évi szezonokban elért helyezésük alapján kapnak draft pozíciókat. Minél előrébb végzett egy csapat a rangsorban, annál hátrébb kerülnek a választási listában, ezzel kompenzálva a rosszabbul teljesítő csapatokat.

Adattisztítás – üres adatok kezelése

Az adatokat egy amerikai portálról, https://stathead.com/ -ról szedtem, ezért az adatokat az Amerikában használt mértékegységeken adták meg (yard, inch, láb, font). Annak érdekében, hogy ezek az adatok számunkra is érthetőek legyenek, átváltottam az Európában használt mértékegységekre.

Az adattáblában néhány azonos pozíciónak más nevet adtak, vagy az elemzésemhez túl részletezték őket. Például a támadó fal esetében némelyik támadó fal játékost offensive guard vagy offensive tackle pozícióba soroltak, ezeket OL néven egységesítettem.

Az adataim 2014-től szerepelnek az adattáblában, viszont ez idő alatt néhány NFL csapat nevet változtatott, ezeket is egységesítettem, a jelenlegi 2022-es nevükre.

Az adattáblában sajnos sok üres érték volt, ugyanis bizonyos játékosok nem minden feladatot végeznek el a Combine-on, mert egy későbbi felmérőre, a Pro Day-re tartogatják magukat. Amikor az atlétikai képességet felmérő feladatokat vizsgálom, akkor csak azokat a játékosokat veszem figyelembe, akik minden felmérőt elvégeztek.

A meglévő adattáblába a magasság és testtömeg alapján bevezettem egy újabb ismérvet a testtömeg indexet, vagyis BMI-t, ami a súly és a magasság (méterben) négyzetének a hányadosa.

Combine

A combine-on minden játékosnak azonos feladatokat kell elvégeznie, pozíciótól függetlenül. Azonban minden pozícióhoz más és más felépítésű játékos az ideális, ezért a bizonyos feladatokban elért eredményeket érdemes pozíciókként külön kezelni.

Hiszen egy futónak (RB), akinek egy mérkőzés során gyorsan kell irányt változtatnia és jól kell gyorsulnia jobb eredményei lesznek az ehhez tartozó feladatok elvégzése során, mint egy centernek (C), akinek a mérkőzéseken az ellenfelek feltartóztatása a feladata.

Az alábbi futó (RB) és center (C)

összehasonlításból is látszik, hogy a futók alacsonyabb BMI értékkel és jobb 40 yardos idővel bírnak, mint a centerek, akik testesebbek és lassabbak is.

Ha ugyanezt az összehasonlítást nézzük, tehát a BMI értéket és a 40 yardos sprintet az összes játékos esetén, akkor is látszik, hogy a BMI növekedésével a játékosok egyre lassabban futják le a 40 yardot. A többi gyakorlat kivitelezése során is észrevehetjük, hogy a BMI erősen befolyásolja, hogy milyen eredményt ér el

egy játékos egy adott felmérőn. Ennek pontosabb vizsgálatát egy korrelációs mátrix segítségével folytatom.

A combine-on elvégzett feladatok erősen korrelálnak egymással. A korrelációs mátrixban javarészt a 0,7-es érték korrelációkat látunk. A fentebbi pontdiagrammon is vizsgált BMI és 40 yard-os sprint között nagyon erős, 0.8539-es korreláció van. Egyedül a fekvenyomás az, ahol csak közepesen erős a korreláció. De mindenképp kijelenthető, hogy a gyakorlatok nem különülnek el nagyon egymástól, általánosságban az atlétikusabb játékosok minden számba jobban fognak szerepelni, mint a kevésbé atletikus társaik. Vagyis újabb feladatok elvégzésével nem kapunk szignifikánsabb képet arról, hogy milyen képességei vannak egy játékosnak, az újabb gyakorlatok elvégzésével kevés többlet információhoz jutunk.

	BMI	yd	vertical	benchr~s	broadj~p	cone	shuttle
BMI	1.0000						
yd	0.8539	1.0000					
vertical	-0.6545	-0.7616	1.0000				
benchreps	0.7175	0.5187	-0.3289	1.0000			
broadjump	-0.7411	-0.8357	0.8285	-0.3979	1.0000		
cone	0.7921	0.8179	-0.6768	0.5023	-0.7214	1.0000	
shuttle	0.7432	0.7989	-0.7002	0.4374	-0.7146	0.8716	1.0000

BMI

A BMI érték, ami azt nézi, hogy mennyire testes egy játékos, erősen korrigál a (magasugráson kívül) az összes felmérő gyakorlat eredményével. Így felmerül a kérdés van-e értelme megtartani a combine-t, ha a BMI értékek a felmérők nélkül is elérhetőek a játékos megfigyelőknek.

Ha a combine felmérők eredményeit és a BMI mutatót egy regresszióban egyesével lefuttatjuk, akkor az R2 mutatók 0,35 és 0,7 között vannak. A BMI érték önmagában a 40 yardos sprintet 67%-ban, a magasugrást 37%-ban, a fekvenyomást 52%-ban, a távolugrást 49%-ban, a 3 cone drill-t 60%-ban, a shuttle-t 53%-ban magyarázza.

Ugyanezt a kérdéskört megfordítva, egy játékos BMI értékét a felmérőkön elért eredmény 84,9%-ban magyarázza. Ha szűkítjük a felmérők körét, akkor már a 40 yard-os sprint, a fekvenyomás, a távolugrás és a 3 cone drill is 84,8%-ban magyarázza egy játékos BMI értékét.

Ezek alapján ugyan közepesen erős magyarázó ereje van a gyakorlatokon elért eredményekre a BMI-nek és jelentős befolyással bír a gyakorlatokra, de attól távol áll, hogy a combine-on elvégzett feladatokat felválthassa. Egyfajta általános képet ad arról, hogy mennyire atletikus egy játékos.

Kor

A combine-ra és ezáltal a draftra különböző korban kerülnek a játékosok, attól függően otthagyják-e az egyetemet, vagy esetleg később kezdték azt. Az átlagot nézve a fiatalabb játékosok korábban kelnek el a drafton. Emellett kicsit alacsonyabb BMI értékkel rendelkeznek. Az adatbázisomban csak 1 darab olyan 25 éves volt, akit draftoltak, ez torzítja a 25 évesek átlagos draft pozícióját és emiatt tapasztalható a diagrammon a 25 éveseknél nagy kiugrás.

Mennyit számít az atletikusság az NFL-ben?

Ha feltételezzük, hogy a draft-on elért helyezés a játékosok valós értékét jelenti és a csapatok az elérhető információk alapján mindig a legjobb játékost választják, akkor megnézhetjük a combine-on nyújtott teljesítmény segítségével, hogy mennyire értékelik egy játékos atlétikai képességét. Ezt egyrészről megnézem a teljes combine-ra vonatkozóan, majd külön 2 pozíció szerint is.

Összes játékos alapján

A teljes combine vonatkozásában egy lineáris regresszió lefuttatása után, ahol a drafton elért helyezés az eredményváltozó és a játékosról elérhető fizikai mutatók a magyarázó változók első körben 17,93%-os magyarázó erőt kaptam. A modell optimalizálásával ez a magyarázó erő 18,21%-ra javítható, a magasság és a távolugrás elhagyásával.

Source	SS	df	MS		per of obs	=	827 26.05
Model Residual	711778.958 3197124.86	7 819	101682.708 3903.69335	Prok	819) > F quared	=	0.0000 0.1821
					R-squared	=	0.1751
Total	3908903.81	826	4732.32907	Root	MSE	=	62.48
drafted_pick	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age	19.61906	2.423451	8.10	0.000	14.8621	5	24.37596
weight	-2.831427	.3037012	-9.32	0.000	-3.42755	2	-2.235303
vertical	-1.397714	.8333164	-1.68	0.094	-3.03340	2	.2379731
yd	111.9223	19.75497	5.67	0.000	73.14	6	150.6987
benchreps	.6135661	.502325	1.22	0.222	372429	8	1.599562
cone	19.65675	12.60531	1.56	0.119	-5.08576	5	44.39927
shuttle	32.33081	19.46639	1.66	0.097	-5.87907	9	70.5407
_cons	-773.8159	115.1558	-6.72	0.000	-999.851	2	-547.7806

Tehát, ha az összes játékost, pozíciótól függetlenül figyelembe vesszük, akkor egy játékos értékének 18,21%-át pusztán a fizikai képességgel magyarázni lehet.

Pozíciók szerinti bontás alapján

Ahogy arra fentebb részletesebben kitértem, az amerikai futballban minden pozícióhoz más és más képesség és testi felépítés kell, ezért tehát a következőkben a játékosok drafton elért helyezését pozíciókként fogom elemezni. Az adatbázisomban 20 különféle pozíció van felsorolva, azonban én részletesen csak 2 pozícióra fogok koncentrálni, ezek az OL és WR pozíciók lesznek. Ez a 2 pozíció egymástól eléggé eltérő, ahol más-más tulajdonságok az előnyösek.

WR

Az elkapók esetében a drafton elért helyezés közepesen korrelál (0.3258) a 40 yardos sprinten elért teljesítménnyel, a többi mutatóval csak gyengén.

	drafte~k
drafted_pick age weight height vertical yd benchreps	1.0000 0.1971 -0.0875 0.0010 -0.1304 0.3258 -0.1161
broadjump cone shuttle	-0.1316 0.0558 -0.0027

A lineáris regresszió lefuttatása után, ahol a drafton elért helyezés

az eredményváltozó és a játékosról elérhető fizikai mutatók a

magyarázó változók, az R2 értéke 0.1604, a korrigált R2 értéke pedig 0.0863. Ha

regresszióból kiejtjük a 40 yardos sprint kivételével az összes combine gyakorlatot, akkor az

így kapott R2 értéke 0.1490, a korrigált R2 értéke pedig 0.1172.

Source	SS	df	MS		OI ODS	= 112
Model Residual	87697.9654 500722.526	4 107	21924.4913 4679.64977	R-squa	F red	= 4.69 = 0.0016 = 0.1490 = 0.1172
Total	588420.491	111	5301.08551	_	bquarca	= 0.1172
drafted_pick	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age weight height yd _cons	10.6433 -2.687378 1.824141 266.8864 -1390.95	6.938434 1.713677 1.76156 77.6428 406.5879	-1.57 1.04 3.44	0.120 0.303 0.001	-3.111333 -6.084544 -1.667946 112.9686 -2196.963	24.39794 .7097875 5.316228 420.8042 -584.9373

Tehát a 40 yard-os sprint kivételével az összes gyakorlat kiejthető és az R2 értéke 0.1604-ről 0.1490-ra csökken, ami csak 1.104%-pontnyi magyarázó erő csökkenést jelent.

\cap	1
\cup	L

A támadó fal (OL) esetében a drafton elért helyezés a közepesen korrelál (0.3498) a 40 yardos sprinten és (0.3069) a shuttle-ön elért teljesítménnyel.

drafte~k
1.0000
0.1842
-0.0252
0.0228
-0.2866
0.3498
-0.1760
-0.2458
0.1989
0.3069

A lineáris regresszió lefuttatása után, ahol a drafton elért helyezés az eredményváltozó és a combine feladatokon elért eredmények a

magyarázó változók, az R2 értéke 0.2444, a korrigált R2 értéke pedig 0.1968. A regresszióból kiejthetjük a magasságot, illetve a fekvenyomás, a távolugrás és a 3 cone drill gyakorlatokat, az így kapott R2 értéke 0.2396, a korrigált R2 értéke pedig 0.2137.

Source	SS	df	MS		er of obs	=	153
Model Residual	174961.092 555376.673	5 147	34992.2184 3778.0726	S R-sq	> F uared	= = =	9.26 0.0000 0.2396 0.2137
Total	730337.765	152	4804.85372	_	R-squared MSE	=	61.466
drafted_pick	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
age weight vertical yd shuttle _cons	12.90671 -3.772005 -3.76234 111.6691 77.8156 -481.5669	5.770971 1.193393 2.089425 38.45406 34.67706 287.7165	2.24 -3.16 -1.80 2.90 2.24 -1.67	0.027 0.002 0.074 0.004 0.026 0.096	1.5019. -6.1304. -7.8915. 35.674. 9.2856.	28 31 89 41	24.31149 -1.413583 .3668516 187.6633 146.3456 87.02798

Tehát a támadó falaknál a kor, a súly és a magasugrás, 40 yardos sprint, shuttle gyakorlatok megtartásával a R2 értéke 0.2444-ről 0.2396-ra csökken, ami csak 0,48%-pontnyi magyarázó erő csökkenést jelent.

Összegzés

Összegezve, az elkapók esetében az összes combine gyakorlat eredményének figyelembevételével a drafton elért helyezés 16,04%-át tudjuk magyarázni. A kor, a súly, a magasság és 40 yard-os sprint idejével pedig a drafton elért helyezés 14,9%-a magyarázható.

A támadó falak esetében az összes combine gyakorlat eredménye 24,44%-ban magyarázza a drafton elért helyezést, míg a kor, a súly és a magasugrás, 40 yardos sprint, shuttle gyakorlatok 23,86%-ban.

Látszik, hogy a drafton elért helyezés tekintetében mindkét pozíció esetében csökkenthető az elvégzett gyakorlatok száma, hiszen némely gyakorlat kiejtésével egyik esetben sem csökken számottevően a magyarázó erő. Tehát bizonyos gyakorlatok feleslegesek a draft pozíció megbecsülése szempontjából.

Az összes játékos figyelembevételével kapott 18,21%-hoz képest az elkapóknál kisebb szerepe (16,04%) van az atlétikai képességeknek, míg a támadó fal játékosokénál nagyobb (24,44%). Ezen különbségek fakadhatnak abból, hogy melyik pozícióban mennyire fontos a technika és egyéb más képességek.

A draft pozíció és a jövőbeli teljesítmény viszonya

A következőkben a játékosok drafton elért helyezésének és jövőbeli teljesítményének viszonyát fogom vizsgálni.

A jövőbeli teljesítmény vizsgálatánál fontos külön kezelni az éveket, mert aki több ideje van az NFL-ben annak több ideje volt jó teljesítményt nyújtani, ezért magasabb pontszámot kapott ebben a mutatóban, mint aki később került az NFL-be, de hasonló képességekkel rendelkezik. Ezért a játékosok későbbi eredményességének vizsgálatához csak a 2014-es combine-t fogom figyelembe venni.

Játékos oldalról a drafton elért helyezés és a jövőbeli teljesítmény között 2014-ben -0.506-es korreláció van. Tehát minél előrébb végez valaki a drafton annál jobb eredményt fog elérni az NFL-ben. Egy 2014-ben draftolt játékos későbbi eredményességet 25,6%--ban magyarázza a drafton elért helyezés. Azt tudjuk megállapítani, hogy az NFL-es játékosmegfigyelők nem tökéletesek és vannak olyan játékosok, akiket hátrébb draftoltak, tehát nem értékeltek olyan jónak, de később mégis jó eredményt értek el, illetve olyan játékosok is, akiket jóra értékeltek, de később mégse tudtak jó eredményeket elérni.

A pontdiagrammon a 2014-es combine-on szereplő játékosok NFL-es eredményességének változása látszik a drafton elért helyezés függvényében.

A csapatok szemszögéből, ha megnézzük, a csapatok átlagos draft pozícióját és a csapatok által draftolt játékosok eredményességét egy pontdiagrammon, akkor látszik, hogy van egy kis összefüggés a kettő között. Az átlagok számításához minden évet figyelembe vettem. A kettő közötti korreláció -0.2342, ami gyenge korreláció. Az előrébb draftoló csapatok általánosságban valamivel eredményesebb játékosokat fognak tudni választani. Azonban csapat szinten sok más tényező is szerepet játszik egy draft során, mint például a hiánypozíciók betöltése, ezért nem biztos, hogy egy csapat minden esetben az aktuálisan elérhető legtehetségesebb játékost fogja választani. Ennek is köszönhető a gyengébb korreláció. Általánosságban elmondható, hogy azok a csapatok, akik az illesztett érték felett helyezkednek el, azok 2014 óta az átlagnál eredményesebb játékosokat tudtak kiválasztani. Minél nagyobb az eltérés a vonaltól lefele vagy felfele, annál rosszabban vagy jobban teljesít egy csapat a drafton a kiválasztott játékosok eredményességét tekintve.

Konklúzió

Az elemzés alapján megállapítható, hogy a drafton egy játékos értékének nagyjából egy ötödéért az felel, hogy mennyire atlétikus az adott játékos. Azonban az elemzésem során kiderült, hogy a draft során értékesnek és ügyesnek tartott játékosok nem minden esetben hozzák a tőlük elvártat az NFL-ben, ezért nem lehet azt mondani, hogy az NFL-es teljesítményt is ilyen nagy mértékben befolyásolja az atletikusság.

A draft szempontjából viszont a combine, ami az atletikusság felmérése szolgál, egy igen jelentős esemény, hiszen az a felmérőkkel megpróbálja számszerűsíteni és jobban bemutatni a játékosmegfigyelőknek a játékosok atlétikai képességét. Azonban a combine-on elvégzett

gyakorlatok nagyon egységesek és látszik, hogy adott pozícióknál más-más felmérők azok, amik jelentősen befolyásolják, hogy egy játékos mennyire értékes a saját pozícióján belül.

Melléklet Táblázatok

Table: List of Variables

Table: List of va	riables
drafted_team	
	mean_drafted
	_pick
1	123.491
2	100.642
3	112.218
4	126.086
5	113.712
6	114.453
7	121.164
8	107.960
9	125.344
10	113.639
11	111.983
12	124.167
13	110
14	113.466
15	99.426
16	110.423
17	110.917
18	113.096
19	130.500
20	109.717
21	137.925
22	122.594
23	102.213
24	102.355
25	107.460
26	120.100
27	128.085
28	123.634
29	117.646
30	104.561
31	109.518
32	125.075

Descriptive Statistics Variable

Variable	Obs	Mean	Std. Dev.	Min	Max
mean drafted pick	32	115.424	9.43	99.426	137.925
<u>,</u>					

Matrix of correlations

Variables	(1)	(2)
(1) av	1.000	
(2) drafted_pick	-0.506	1.000

Linear regression

av	Coel.	St.E11.	t-value	p-value	[9370 COIII	mervarj	31g
drafted_pick	163	.019	-8.72	0	2	126	***

Constant	38.163	2.533	15.07	0	33.171	43.154	***
Mean dependent var		19.265	SD depende	nt var	22.649		
R-squared		0.256 Number of obs				223	
F-test		76.058	Prob > F		0.000		
Akaike crit. (AIC)		1961.453	Bayesian crit	:. (BIC)		1968.267	

^{***} p<.01, ** p<.05, * p<.1

Matrix of correlations

Variables	(1)	(2)
(1) mean_av_team	1.000	
(2) mean_drafted_p~k	-0.234	1.000

Matrix of correlations

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1) BMI	1.000						
(2) yd	0.854	1.000					
(3) vertical	-0.655	-0.762	1.000				
(4) benchreps	0.718	0.519	-0.329	1.000			
(5) broadjump	-0.741	-0.836	0.828	-0.398	1.000		
(6) cone	0.792	0.818	-0.677	0.502	-0.721	1.000	
(7) shuttle	0.743	0.799	-0.700	0.437	-0.715	0.872	1.000

Matrix of correlations

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
(1) av	1.000							
(2) BMI	0.162	1.000						
(3) yd	0.059	0.860	1.000					
(4) vertical	-0.036	-0.712	-0.807	1.000				
(5) benchreps	0.130	0.746	0.565	-0.428	1.000			
(6) broadjump	-0.007	-0.770	-0.862	0.860	-0.442	1.000		
(7) cone	0.046	0.810	0.795	-0.710	0.599	-0.725	1.000	
(8) shuttle	0.021	0.740	0.781	-0.694	0.465	-0.690	0.876	1.0

Skewness/Kurtosis tests for Normality

----- joint -----

Variable	Obs	Pr(Skewness	Pr(Kurtosis)	adj_chi2(2)	Prob>chi2
yd	1,236	0.000	0.000		0.000
BMI	1,236	0.000	0.000		0.000
age	1,091	0.866	0.010	6.600	0.037
vertical	1,236	0.091	0.042	6.960	0.031
benchreps	1,236	0.000	0.547	15.190	0.001
broadjump	1,236	0.000	0.874	28.360	0.000
cone	1,236	0.000	0.306		0.000
shuttle	1,236	0.000	0.502	58.500	0.000

yd	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig	
BMI	.057	.001	57.63	0	.055	.059	***	
Constant	2.968	.032	93.99	0	2.906	3.03	***	
Mean dependent var		4.770	SD depen	dent var		0.301		
R-squared		0.729	Number (of obs		1236		
F-test		3321.469	Prob > F			0.000		
Akaike crit. (AIC)		-1073.803	Bayesian	crit. (BIC)	-1063.563			

^{***} p<.01, ** p<.05, * p<.1

Linear regression

vertical	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig	
BMI	614	.02	-30.41	0	653	574	***	
Constant	52.228	.642	81.41	0	50.969	53.486	***	
Mean dependent var		32.915	SD deper	ident var	4.205			
R-squared		0.428	Number (of obs		1236		
F-test		924.749	Prob > F		0.000			
Akaike crit. (AIC)		6369.997	Bayesian	crit. (BIC)		6380.237		

^{***} p<.01, ** p<.05, * p<.1

Linear regression

benchreps	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig	
BMI	1.018	.028	36.18	0	.963	1.073	***	
Constant	-12.319	.894	-13.78	0	-14.073	-10.565	***	
Mean dependent var		19.706	SD depen	ident var		6.361		
R-squared		0.515	Number (of obs		1236		
F-test		1309.337	Prob > F			0.000		
Akaike crit. (AIC)		7190.276	Bayesian	crit. (BIC)		7200.516		

^{***} p<.01, ** p<.05, * p<.1

Linear regression

broadjump	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
BMI	-1.519	.039	-38.78	0	-1.595	-1.442	***
Constant	163.721	1.245	131.55	0	161.28	166.163	***
Mean dependent var		115.941	SD dependent var 9.1			9.188	
R-squared		0.549	Number o	of obs		1236	
F-test		1503.793	Prob > F		0.000		
Akaike crit. (AIC)		8008.217	Bayesian	crit. (BIC)		8018.457	

^{***} p<.01, ** p<.05, * p<.1

Linear regression

cone	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
BMI	.071	.002	45.58	0	.068	.074	***
Constant	5.034	.049	102.04	0	4.938	5.131	***
Mean dependent var		7.261	SD depen	dent var			
R-squared		0.627	Number of	of obs		1236	
F-test		2077.746	Prob > F			0.000	
Akaike crit. (AIC)		28.888	Bayesian o	crit. (BIC)		39.127	

^{***} p<.01, ** p<.05, * p<.1

Linear regression

shuttle	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
BMI	.042	.001	39.01	0	.04	.044	***
Constant	3.093	.034	90.89	0	3.026	3.16	***
Mean dependent var		4.408	SD depen	ident var		0.252	
R-squared		0.552	Number o	of obs	1236		
F-test		1522.163	Prob > F		0.000		
Akaike crit. (AIC)		-888.969	Bayesian (crit. (BIC)		-878.730	

^{***} p<.01, ** p<.05, * p<.1

Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
.017	.022	0.75	.451	027	.06	
6.228	.386	16.14	0	5.471	6.986	***
.255	.009	27.19	0	.236	.273	***
058	.012	-4.91	0	08	035	***
1.828	.282	6.47	0	1.274	2.381	***
.637	.431	1.48	.139	207	1.482	
-13.232	2.717	-4.87	0	-18.562	-7.901	***
	31.464	SD deper	ndent var		4.484	
	0.849	Number	of obs		1236	
	1151.852	Prob > F			0.000	
	4893.096	Bayesian	crit. (BIC)		4928.934	
	.017 6.228 .255 058 1.828 .637	.017 .022 6.228 .386 .255 .009 058 .012 1.828 .282 .637 .431 -13.232 2.717 31.464 0.849 1151.852	.017 .022 0.75 6.228 .386 16.14 .255 .009 27.19058 .012 -4.91 1.828 .282 6.47 .637 .431 1.48 -13.232 2.717 -4.87 31.464 SD deper 0.849 Number 6 1151.852 Prob > F	.017 .022 0.75 .451 6.228 .386 16.14 0 .255 .009 27.19 0058 .012 -4.91 0 1.828 .282 6.47 0 .637 .431 1.48 .139 -13.232 2.717 -4.87 0 31.464 SD dependent var 0.849 Number of obs 1151.852 Prob > F	.017 .022 0.75 .451027 6.228 .386 16.14 0 5.471 .255 .009 27.19 0 .236058 .012 -4.91 008 1.828 .282 6.47 0 1.274 .637 .431 1.48 .139207 -13.232 2.717 -4.87 0 -18.562 31.464 SD dependent var 0.849 Number of obs 1151.852 Prob > F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{***} p<.01, ** p<.05, * p<.1

Linear regression

BMI	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
yd	6.192	.383	16.17	0	5.441	6.943	***
benchreps	.256	.009	27.42	0	.237	.274	***
broadjump	053	.01	-5.29	0	073	033	***
cone	1.83	.282	6.49	0	1.277	2.384	***
shuttle	.585	.425	1.38	.169	249	1.418	
Constant	-12.843	2.667	-4.82	0	-18.076	-7.61	***
Mean dependent var		31.464	SD deper	ndent var		4.484	
R-squared		0.849	Number	of obs		1236	
F-test		1382.592	Prob > F			0.000	
Akaike crit. (AIC)		4891.669	Bayesian	crit. (BIC)		4922.387	

^{***} p<.01, ** p<.05, * p<.1

Linear regression

BMI	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig	
yd	6.3	.375	16.81	0	5.565	7.036	***	
benchreps	.255	.009	27.38	0	.236	.273	***	
broadjump	054	.01	-5.42	0	074	034	***	
cone	2.073	.22	9.40	0	1.641	2.505	***	
Constant	-12.4	2.649	-4.68	0	-17.597	-7.204	***	
Mean dependent var		31.464	SD deper	ndent var		4.484		
R-squared		0.849	Number	of obs		1236		
F-test		1726.510	Prob > F			0.000		
Akaike crit. (AIC)		4891.572	Bayesian	crit. (BIC)		4917.170		
*** * 01 ** * 05 * * *	- 1							

^{***} p<.01, ** p<.05, * p<.1

Descriptive Statistics

|--|

mean BMI	1236	31.464	4.206	26.624	38.803
mean vertical	1236	32.915	2.897	27.188	36.232
mean yd	1236	4.77	.27	4.494	5.244
mean benchreps	1236	19.706	4.581	13.561	26.473
mean broadjump	1236	115.941	6.902	103.344	123.878
mean cone	1236	7.261	.322	6.949	7.817
mean shuttle	1236	4.408	.196	4.184	4.752

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	19.663	2.466	7.97	0	14.823	24.503	***
weight	-2.694	.39	-6.91	0	-3.46	-1.929	***
height	177	.542	-0.33	.743	-1.241	.886	
vertical	98	.982	-1.00	.319	-2.907	.948	
yd	102.397	21.683	4.72	0	59.835	144.959	***
benchreps	.548	.536	1.02	.307	504	1.601	
broadjump	391	.523	-0.75	.455	-1.418	.636	
cone	17.122	12.957	1.32	.187	-8.311	42.556	
shuttle	32.952	19.751	1.67	.096	-5.817	71.721	*
Constant	-662.786	165.762	-4.00	0	-988.161	-337.411	***
Mean dependent var		117.960	SD deper	ident var		68.756	
R-squared		0.179	Number of obs			818	
F-test		19.614	Prob > F			0.000	
Akaike crit. (AIC)		9099.958	Bayesian crit. (BIC) 9147.026				

^{***} p<.01, ** p<.05, * p<.1

Linear regression

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	19.682	2.453	8.02	0	14.867	24.497	***
weight	-2.797	.306	-9.14	0	-3.398	-2.197	***
vertical	-1.388	.842	-1.65	.1	-3.04	.265	*
yd	110.166	19.852	5.55	0	71.199	149.133	***
benchreps	.615	.507	1.21	.225	38	1.609	
cone	18.662	12.74	1.46	.143	-6.345	43.669	
shuttle	32.403	19.709	1.64	.101	-6.284	71.089	
Constant	-764.115	115.863	-6.59	0	-991.542	-536.688	***
Mean dependent var		117.960	SD deper	ndent var		68.756	
R-squared		0.178	Number	of obs	818		
F-test		25.135	Prob > F			0.000	
Akaike crit. (AIC)		9096.801	Bayesian crit. (BIC) 9134			9134.456	

^{***} p<.01, ** p<.05, * p<.1

Matrix of correlations

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(
(1) drafted_pick	1.000									
(2) age	0.197	1.000								
(3) weight	-0.087	-0.022	1.000							
(4) height	0.001	0.041	0.791	1.000						
(5) vertical	-0.130	-0.070	0.173	0.092	1.000					
(6) yd	0.326	0.150	0.081	0.081	-0.332	1.000				
(7) benchreps	-0.116	-0.082	0.354	0.104	0.268	-0.160	1.000			
(8) broadjump	-0.132	-0.140	0.275	0.298	0.640	-0.291	0.176	1.000		
(9) cone	0.056	-0.263	0.276	0.156	-0.064	0.179	0.261	0.041	1.000	
(10) shuttle	-0.003	-0.168	0.221	0.202	-0.141	0.177	0.088	0.036	0.529	1.0

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	12.276	7.452	1.65	.103	-2.504	27.057	
weight	-3.093	1.988	-1.56	.123	-7.037	.85	
height	2.133	1.942	1.10	.275	-1.719	5.986	
vertical	.548	3.189	0.17	.864	-5.777	6.874	
yd	255.575	88.104	2.90	.005	80.823	430.328	***
benchreps	189	1.819	-0.10	.917	-3.797	3.418	
broadjump	208	1.529	-0.14	.892	-3.24	2.824	
cone	49.512	43.217	1.15	.255	-36.207	135.232	
shuttle	-37.246	57.303	-0.65	.517	-150.906	76.414	
Constant	-1573.058	538.193	-2.92	.004	-2640.562	-505.554	***
Mean dependent var		127.241	SD depen	ident var		72.809	
R-squared		0.160	Number of obs			112	
F-test		2.165	Prob > F			0.031	
Akaike crit. (AIC)		1277.735	Bayesian	crit. (BIC)		1304.920	

^{***} p<.01, ** p<.05, * p<.1

Linear regression

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	10.643	6.938	1.53	.128	-3.111	24.398	
weight	-2.687	1.714	-1.57	.12	-6.085	.71	
height	1.824	1.762	1.04	.303	-1.668	5.316	
yd	266.886	77.643	3.44	.001	112.969	420.804	***
Constant	-1390.95	406.588	-3.42	.001	-2196.963	-584.937	***
Mean dependent var		127.241	SD deper	ndent var		72.809	
R-squared		0.149	Number	of obs	112		
F-test		4.685	Prob > F			0.002	
Akaike crit. (AIC)		1269.237	Bayesian	crit. (BIC)		1282.829	

^{***} p<.01, ** p<.05, * p<.1

Matrix of correlations

(2)	(3)	(4)	(5)	(1)				
	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(1
0								
4 1.000								
5 -0.119	1.000							
3 0.041	0.235	1.000						
7 0.018	-0.349	-0.124	1.000					
0 -0.035	0.411	0.138	-0.504	1.000				
6 0.055	-0.093	-0.346	0.234	-0.359	1.000			
6 0.001	-0.325	0.001	0.617	-0.617	0.233	1.000		
9 -0.070	0.358	-0.009	-0.242	0.410	-0.177	-0.390	1.000	
7 0.012	0.454	0.120	-0.436	0.555	-0.234	-0.505	0.663	1.0
3	1.000 25 -0.119 23 0.041 37 0.018 50 -0.035 76 0.005 60 0.001 90 -0.070	1.000 25 -0.119 1.000 25 -0.119 1.000 23 0.041 0.235 37 0.018 -0.349 50 -0.035 0.411 76 0.055 -0.093 46 0.001 -0.325 69 -0.070 0.358	1.000 34 1.000 25 -0.119 1.000 23 0.041 0.235 1.000 37 0.018 -0.349 -0.124 50 -0.035 0.411 0.138 76 0.055 -0.093 -0.346 60 0.001 -0.325 0.001 69 -0.070 0.358 -0.009	00 34	00 01 025 -0.119 1.000 025 -0.119 1.000 027 0.018 -0.349 -0.124 1.000 037 0.018 -0.349 -0.124 1.000 050 -0.035 0.411 0.138 -0.504 1.000 050 -0.055 -0.093 -0.346 0.234 -0.359 050 0.001 -0.325 0.001 0.617 -0.617 050 -0.070 0.358 -0.009 -0.242 0.410	34 1.000 25 -0.119 1.000 23 0.041 0.235 1.000 37 0.018 -0.349 -0.124 1.000 50 -0.035 0.411 0.138 -0.504 1.000 76 0.055 -0.093 -0.346 0.234 -0.359 1.000 46 0.001 -0.325 0.001 0.617 -0.617 0.233 29 -0.070 0.358 -0.009 -0.242 0.410 -0.177	34 1.000 25 -0.119 1.000 23 0.041 0.235 1.000 37 0.018 -0.349 -0.124 1.000 50 -0.035 0.411 0.138 -0.504 1.000 76 0.055 -0.093 -0.346 0.234 -0.359 1.000 46 0.001 -0.325 0.001 0.617 -0.617 0.233 1.000 99 -0.070 0.358 -0.009 -0.242 0.410 -0.177 -0.390	34 1.000 25 -0.119 1.000 23 0.041 0.235 1.000 37 0.018 -0.349 -0.124 1.000 50 -0.035 0.411 0.138 -0.504 1.000 76 0.055 -0.093 -0.346 0.234 -0.359 1.000 46 0.001 -0.325 0.001 0.617 -0.617 0.233 1.000 99 -0.070 0.358 -0.009 -0.242 0.410 -0.177 -0.390 1.000

Linear regression

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	13.5	5.893	2.29	.023	1.851	25.149	**
weight	-3.706	1.255	-2.95	.004	-6.188	-1.225	***
height	433	1.642	-0.26	.792	-3.678	2.811	
vertical	-4.574	2.362	-1.94	.055	-9.243	.096	*
yd	117.588	43.053	2.73	.007	32.485	202.692	***
benchreps	523	1.165	-0.45	.654	-2.826	1.781	
broadjump	.851	1.099	0.77	.44	-1.321	3.023	
cone	9.696	24.503	0.40	.693	-38.739	58.131	
shuttle	72.059	42.42	1.70	.092	-11.792	155.909	*
Constant	-551.64	453.844	-1.22	.226	-1448.749	345.47	

Mean dependent var	106.706	SD dependent var	69.317
R-squared	0.244	Number of obs	153
F-test	5.138	Prob > F	0.000
Akaike crit. (AIC)	1707.362	Bayesian crit. (BIC)	1737.666

^{***} p<.01, ** p<.05, * p<.1

drafted_pick	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
age	12.907	5.771	2.24	.027	1.502	24.311	**
weight	-3.772	1.193	-3.16	.002	-6.13	-1.414	***
vertical	-3.762	2.089	-1.80	.074	-7.892	.367	*
yd	111.669	38.454	2.90	.004	35.675	187.663	***
shuttle	77.816	34.677	2.24	.026	9.286	146.346	**
Constant	-481.567	287.716	-1.67	.096	-1050.162	87.028	*
Mean dependent var		106.706	SD dependent var			69.317	
R-squared		0.240	Number of obs			153	
F-test		9.262	Prob > F			0.000	
Akaike crit. (AIC)		1700.331	Bayesian crit. (BIC)			1718.513	

^{***} p<.01, ** p<.05, * p<.1

Grafikonok

