Revisit to the theoretical analysis of a classical piezoelectric cantilever energy harvester

Maoying Zhou

November 21, 2019

1 Summary of the interested equations

The dynamic equations for a typical piezoelectric composite cantilever beam is

$$B_p \frac{\partial^4 w(x,t)}{\partial x^4} + m_p \frac{\partial^2 w(x,t)}{\partial t^2} = 0, \tag{1}$$

where B_p is the equivalent bending stiffness and m_p is the line mass density of the piezoelectric cantilever beam. If the piezoelectric elements attached to the cantilever beam is connected to an external electrical load R_l , we have

$$\frac{dQ_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0. (2)$$

For the underlying physics, we have the following constitutive equations

$$M_p(x,t) = B_p \frac{\partial^2 w(x,t)}{\partial x^2} - e_p V_p(t),$$

$$q_p(x,t) = e_p \frac{\partial^2 w(x,t)}{\partial x^2} + \varepsilon_p V_p(t),$$
(3)

or equivalently,

$$\begin{cases}
M_p(x,t) = B_p \frac{\partial^2 w(x,t)}{\partial x^2} - e_p V_p(t), \\
Q_p(x,t) = e_p \left[\frac{\partial w(x,t)}{\partial x} \right] \Big|_0^{l_p} + C_p V_p(t).
\end{cases} \tag{4}$$

One end of the cantilever beam is fixed while the other end is free. So the boundary conditions are

$$\begin{cases} w(0,t) = w_b(t), \\ \frac{\partial w(0,t)}{\partial x} = 0, \end{cases}$$
 (5)

and

$$\begin{cases}
M_p(l_p, t) = B_p \frac{\partial^2 w(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\
N_p(l_p, t) = \frac{\partial M_p(l_p, t)}{\partial x} = B_p \frac{\partial^3 w(l_p, t)}{\partial x^3} = 0.
\end{cases}$$
(6)

In the classical energy harvesting applications, the cantilever beam is subject to a periodical base excitation $w_b(t)$. Thus the dynamic response of the cantilever beam is decomposed as

$$w(x,t) = w_b(t) + w_{rel}(x,t), \tag{7}$$

where $w_{rel}(x,t)$ is the relative displacement function of the cantilever beam. In this way, the system is converted into

$$B_{p}\frac{\partial^{4}w_{rel}(x,t)}{\partial x^{4}} + m_{p}\frac{\partial^{2}w_{rel}(x,t)}{\partial t^{2}} = -m_{p}\frac{\partial^{2}w_{b}(t)}{\partial t^{2}},$$
(8)

$$e_p \left[\frac{\partial^2 w_{rel}(x,t)}{\partial x \partial t} \right] \Big|_0^{l_p} + C_p \frac{dV_p(t)}{dt} + \frac{V_p(t)}{R_l} = 0.$$
 (9)

$$\begin{cases} w_{rel}(0,t) = 0, \\ \frac{\partial w_{rel}(0,t)}{\partial x} = 0, \end{cases}$$
 (10)

and

$$\begin{cases}
B_p \frac{\partial^2 w_{rel}(l_p, t)}{\partial x^2} - e_p V_p(t) = 0, \\
\frac{\partial^3 w_{rel}(l_p, t)}{\partial x^3} = 0.
\end{cases}$$
(11)

Considering a sinusoidal base excitation

$$w_b(t) = \eta_b e^{j\sigma_b t} \tag{12}$$

where ξ_b is usually a real vibration amplitude, the steady state solution for the above system can be reasonably set as

$$w_{rel}(x,t) = \eta_{rel}(x)e^{j\sigma_b t}, \quad V_p(t) = \tilde{V}_p e^{j\sigma_b t}, \tag{13}$$

where $\eta_{rel}(x)$ and \tilde{V}_p are complex amplitudes. Then the above system is again simplified as

$$B_p \frac{\partial^4 \eta_{rel}(x)}{\partial x^4} - m_p \sigma_b^2 \eta_{rel}(x) = m_p \sigma_b^2 \eta_b, \tag{14}$$

$$\begin{cases} \eta_{rel}(0) = 0, \\ \frac{\partial \eta_{rel}(0)}{\partial x} = 0, \end{cases}$$
 (15)

and

$$\begin{cases}
B_p \frac{\partial^2 \eta_{rel}(l_p)}{\partial x^2} + \frac{j\sigma_b R_l}{1 + j\sigma_b C_p R_l} e_p^2 \frac{\partial \eta_{rel}(l_p)}{\partial x} = 0, \\
\frac{\partial^3 \eta_{rel}(l_p)}{\partial x^3} = 0.
\end{cases}$$
(16)

Note that here we assume a sinusoidal steady state response, which is not actually validated theoretically.

Obviously we can have the following dimensionless scheme:

$$\eta_{rel} \sim u\eta_b, \quad x \sim zl_p$$
(17)

and therefore the following dimensionless parameters

$$\sigma = \sigma_b \sqrt{\frac{m_p l_p^4}{B_p}}, \quad \beta = R_l C_p \sqrt{\frac{B_p}{m_p l_p^4}}, \quad \delta = \frac{e_p^2 l_p}{C_p B_p}. \tag{18}$$

Now, we reach the following dimensionless system of boundary value problem

$$\begin{cases}
u'''' - \sigma^2 u = \sigma^2, \\
u(0) = 0, \\
u'(0) = 0, \\
u''(1) + \frac{j\beta\sigma}{1 + j\beta\sigma} \delta u'(1) = 0, \\
u'''(1) = 0,
\end{cases}$$
(19)

where the prime denotes the derivative with respect to z. The analytical solution to this problem can be formulated as

$$u(z;\delta) = A_{\delta}\cos\sqrt{\sigma}z + B_{\delta}\sin\sqrt{\sigma}z + C_{\delta}\cosh\sqrt{\sigma}z + D_{\delta}\sinh\sqrt{\sigma}z - 1$$
 (20)

and hence

$$u'(z;\delta) = \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma}z + B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right),$$

$$u''(z;\delta) = \sigma \left(-A_{\delta} \cos \sqrt{\sigma}z - B_{\delta} \sin \sqrt{\sigma}z + C_{\delta} \cosh \sqrt{\sigma}z + D_{\delta} \sinh \sqrt{\sigma}z \right),$$

$$u'''(z;\delta) = \sigma^{3/2} \left(A_{\delta} \sin \sqrt{\sigma}z - B_{\delta} \cos \sqrt{\sigma}z + C_{\delta} \sinh \sqrt{\sigma}z + D_{\delta} \cosh \sqrt{\sigma}z \right).$$
(21)

The coefficients A_{δ} , B_{δ} , C_{δ} , and D_{δ} are then subject to the following linear system of equations:

$$A_{\delta} + C_{\delta} = 1,$$

$$B_{\delta} + D_{\delta} = 0,$$

$$(-A_{\delta}\cos\sqrt{\sigma} - B_{\delta}\sin\sqrt{\sigma} + C_{\delta}\cosh\sqrt{\sigma} + D_{\delta}\sinh\sqrt{\sigma}) +$$

$$\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1}\delta\left(-A_{\delta}\sin\sqrt{\sigma} + B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma}\right) = 0,$$

$$A_{\delta}\sin\sqrt{\sigma} - B_{\delta}\cos\sqrt{\sigma} + C_{\delta}\sinh\sqrt{\sigma} + D_{\delta}\cosh\sqrt{\sigma} = 0.$$
(22)

Analytically, we can directly obtain the solution to this problem as

$$\begin{cases}
A_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\
B_{\delta} = \frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\
C_{\delta} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \sin\sqrt{\sigma}\sinh\sqrt{\sigma} + \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}, \\
D_{\delta} = \frac{-\cos\sqrt{\sigma}\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}\cosh\sqrt{\sigma} - \frac{2j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\sin\sqrt{\sigma}\sinh\sqrt{\sigma}\right)}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\delta\left(\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}\right)\right]}.
\end{cases}$$
(23)

According to equations (20) and (23), it is seen that the dimensionless displacement amplitude function u(z) is totally determined by the three dimensionless parameters σ , β , and δ introduced before. The resulting complex amplitudes \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p for output voltage $V_p(t)$, output current $I_p(t)$, and output power $P_p(t)$, respectively, can be formulated as follows

$$\begin{cases}
\tilde{V}_{p} = -\frac{j\sigma\beta}{j\sigma\beta + 1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} u'(1), \\
= -\frac{j\sigma\beta}{j\sigma\beta + 1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \sigma^{1/2} \left(-A_{\delta} \sin \sqrt{\sigma} + B_{\delta} \cos \sqrt{\sigma} + C_{\delta} \sinh \sqrt{\sigma} + D_{\delta} \cosh \sqrt{\sigma} \right) \\
= -\frac{j\sigma\beta}{j\sigma\beta + 1} \frac{\eta_{b}}{l_{p}} \frac{e_{p}}{C_{p}} \frac{\sqrt{\sigma} \left(\sinh \sqrt{\sigma} - \sin \sqrt{\sigma} \right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma} \delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma} \right)} \\
= -\frac{j\sigma\beta}{j\sigma\beta + 1} \left(\frac{\eta_{b}}{l_{p}} \right) \left(\frac{e_{p}}{C_{p}} \right) \chi_{p}, \\
\tilde{I}_{p} = \tilde{V}_{p}/R_{l} = -\frac{j\sigma\beta}{j\sigma\beta + 1} \left(\frac{\eta_{b}}{l_{p}} \right) \left(\frac{e_{p}}{C_{p}R_{l}} \right) \chi_{p} = \frac{-j}{j\sigma\beta + 1} \left(\frac{\eta_{b}}{l_{p}} \right) (e_{p}\sigma_{b}) \chi_{p}, \\
\tilde{P}_{p} = \tilde{V}_{p}^{2}/R_{l} = \left(\frac{\eta_{b}}{l_{p}} \right)^{2} \left(\frac{e_{p}}{C_{p}} \right) \left(\frac{e_{p}}{C_{p}R_{l}} \right) \left(\frac{j\sigma\beta}{j\sigma\beta + 1} \right)^{2} \chi_{p}^{2},
\end{cases} \tag{24}$$

in which we have used the notations that

$$\chi_p = u_1'(1) = \frac{\sqrt{\sigma} \left(\sinh \sqrt{\sigma} - \sin \sqrt{\sigma}\right)}{1 + \cos \sqrt{\sigma} \cosh \sqrt{\sigma} + \frac{j\beta\sqrt{\sigma}}{1 + i\beta\sigma} \delta \left(\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}\right)}.$$
 (25)

Clearly, output performance \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p of a classical piezoelectric cantilever energy harvester is heavily dependent on another dimensionless parameter $r_d = \eta_b/l_p$. To be more explicit, both \tilde{V}_p and \tilde{I}_p are linearly dependent on r_d and as a result, \tilde{P}_p shows a quadratic dependence on r_d .

Among the four dimensionless parameters σ , β , δ , and r_d , σ is the dimensionless base excitation frequency, β is the dimensionless electromechanical coupling strength for the structure, and r_d is the dimensionless base excitation amplitude. As σ and β is determined by the base excitation and externally connected circuit respectively, only the parameter δ is fully determined by the structure itself. Hence we would like to investigate the influence of parameter δ upon the performance of a piezoelectric energy harvesting cantilever. By

Figure 1: Amplitude and phase of the displacement function u(z)

taking different values of δ and fixing the other three parameters σ , β , and r_d according to the data shown in [1, 2], we calculate the displacement amplitude function u(z) and the corresponding performance metrics \tilde{V}_p , \tilde{I}_p , and \tilde{P}_p . The results are plotted in Figure 1 and Figure 2.

In Figure 1, we depict the influence of the electromechanical coupling factor δ upon the normalized displacement response function u(z). It is shown that, the parameter δ changes the function u(z) through the change of the third boundary condition (to be inserted). When δ is zero, i.e., no electromechanical coupling is present, the system degenerate to the classical elastic cantilever beam problem, whose solution is real functions without any phase change in the z direction. The solution can be analytically expressed as

$$\begin{cases}
A_{\mathcal{O}} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma}\right]}, \\
B_{\mathcal{O}} = \frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma}\right]}, \\
C_{\mathcal{O}} = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma}\right]}, \\
D_{\mathcal{O}} = \frac{-\cos\sqrt{\sigma}\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\left[1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma}\right]}.
\end{cases} (26)$$

When the electromechanical coupling is extremely strong, and δ is extremely large and can be seen as ∞ in mathematical sense, the analytical solution for the coefficients is expressed as

$$\begin{cases} A_{\infty} = \frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}, \\ B_{\infty} = \frac{\sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}, \\ C_{\infty} = \frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}, \\ D_{\infty} = \frac{-\sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}. \end{cases}$$
(27)

In the following, we can obtain the corresponding displacement function u(z) in terms of its amplitude and phase in Figure 1.

For a typical piezoelectric cantilever energy harvester in the literature [1, 2], this parameter δ is rather small

Figure 2: Voltage, current and power output for the piezoelectric cantilever energy harvester

Using the following regular expansion:

$$\begin{cases}
A_{\epsilon} = A_0 + \epsilon A_1 + \epsilon^2 A_2 + \cdots, \\
B_{\epsilon} = B_0 + \epsilon B_1 + \epsilon^2 B_2 + \cdots, \\
C_{\epsilon} = C_0 + \epsilon C_1 + \epsilon^2 C_2 + \cdots, \\
D_{\epsilon} = D_0 + \epsilon D_1 + \epsilon^2 D_2 + \cdots,
\end{cases}$$
(28)

we obtain the successive expansion problem: $O(\epsilon^0)$:

$$\begin{cases}
A_0 + C_0 = 1, \\
B_0 + D_0 = 0, \\
-A_0 \cos \sqrt{\sigma} - B_0 \sin \sqrt{\sigma} + C_0 \cosh \sqrt{\sigma} + D_0 \sinh \sqrt{\sigma} = 0, \\
A_0 \sin \sqrt{\sigma} - B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = 0.
\end{cases} (29)$$

The solution is

$$\begin{cases}
A_0 = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} - \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
B_0 = \frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
C_0 = \frac{1 + \cos\sqrt{\sigma}\cosh\sqrt{\sigma} + \sin\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}} \\
D_0 = -\frac{\cosh\sqrt{\sigma}\sin\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{2 + 2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}}
\end{cases}$$
(30)

Hence we have

$$-A_0 \sin \sqrt{\sigma} + B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} = \frac{\sinh \sqrt{\sigma} - \sin \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}$$
(31)

$$O(\epsilon^1)$$
:

$$\begin{cases}
A_1 + C_1 = 0, \\
B_1 + D_1 = 0, \\
(-A_1 \cos \sqrt{\sigma} - B_1 \sin \sqrt{\sigma} + C_1 \cosh \sqrt{\sigma} + D_1 \sinh \sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_0 \sin \sqrt{\sigma} + B_0 \cos \sqrt{\sigma} + C_0 \sinh \sqrt{\sigma} + D_0 \cosh \sqrt{\sigma} \right) = 0, \\
A_1 \sin \sqrt{\sigma} - B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma} = 0.
\end{cases} (32)$$

The solution is

$$\begin{cases}
A_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
B_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
C_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right) \\
D_{1} = \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \right) \left(-\frac{\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2} \right)
\end{cases} (33)$$

Then we have

$$-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(34)

 $O(\epsilon^2)$:

$$\begin{cases}
A_2 + C_2 = 0, \\
B_2 + D_2 = 0, \\
(-A_2 \cos \sqrt{\sigma} - B_2 \sin \sqrt{\sigma} + C_2 \cosh \sqrt{\sigma} + D_2 \sinh \sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_1 \sin \sqrt{\sigma} + B_1 \cos \sqrt{\sigma} + C_1 \sinh \sqrt{\sigma} + D_1 \cosh \sqrt{\sigma} \right) = 0, \\
A_2 \sin \sqrt{\sigma} - B_2 \cos \sqrt{\sigma} + C_2 \sinh \sqrt{\sigma} + D_2 \cosh \sqrt{\sigma} = 0.
\end{cases}$$
is

The solution is

$$\begin{cases}
A_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\
B_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\
C_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{-\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\
D_2 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) \\
D_3 = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^2 \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{\cos\sqrt{\sigma}\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right)
\end{cases}$$

To get higher order expansions, we can use the following iteration method: $O(\epsilon^{k+1})$ $(k \ge 1)$:

$$\begin{cases}
A_{k+1} + C_{k+1} = 0, \\
B_{k+1} + D_{k+1} = 0, \\
(-A_{k+1}\cos\sqrt{\sigma} - B_{k+1}\sin\sqrt{\sigma} + C_{k+1}\cosh\sqrt{\sigma} + D_{k+1}\sinh\sqrt{\sigma}) + \\
\frac{j\beta\sqrt{\sigma}}{j\sigma\beta + 1} \left(-A_k\sin\sqrt{\sigma} + B_k\cos\sqrt{\sigma} + C_k\sinh\sqrt{\sigma} + D_k\cosh\sqrt{\sigma} \right) = 0, \\
A_{k+1}\sin\sqrt{\sigma} - B_{k+1}\cos\sqrt{\sigma} + C_{k+1}\sinh\sqrt{\sigma} + D_{k+1}\cosh\sqrt{\sigma} = 0.
\end{cases} (37)$$

The solution is

$$\begin{cases} A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\ B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sinh\sqrt{\sigma} + \sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\ C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(-\frac{\cos\sqrt{\sigma} + \cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \\ D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) \left(\frac{-\sin\sqrt{\sigma} + \sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 2}\right) (Q_k) \end{cases}$$

$$(38)$$

where for $k \geq 2$

$$Q_k = -A_k \sin \sqrt{\sigma} + B_k \cos \sqrt{\sigma} + C_k \sinh \sqrt{\sigma} + D_k \cosh \sqrt{\sigma}, \tag{39}$$

and for $k \geq 0$

$$Q_{k+1} = -A_{k+1} \sin \sqrt{\sigma} + B_{k+1} \cos \sqrt{\sigma} + C_{k+1} \sinh \sqrt{\sigma} + D_{k+1} \cosh \sqrt{\sigma}$$

$$= -\left(\frac{\sin \sqrt{\sigma} \cosh \sqrt{\sigma} + \cos \sqrt{\sigma} \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right) Q_k,$$
(40)

and

$$Q_{1} = -A_{1} \sin \sqrt{\sigma} + B_{1} \cos \sqrt{\sigma} + C_{1} \sinh \sqrt{\sigma} + D_{1} \cosh \sqrt{\sigma}$$

$$= \frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma} \left(\frac{\sin \sqrt{\sigma} - \sinh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right) \left(\frac{\cos \sqrt{\sigma} \sinh \sqrt{\sigma} + \sin \sqrt{\sigma} \cosh \sqrt{\sigma}}{\cos \sqrt{\sigma} \cosh \sqrt{\sigma} + 1} \right)$$
(41)

$$Q_0 = \frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1} \tag{42}$$

Hence it is shown that for $k \geq 0$

$$Q_{k} = -\left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right) \left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) Q_{k}$$

$$= \left[-\left(\frac{j\beta\sqrt{\sigma}}{1 + j\beta\sigma}\right) \left(\frac{\sin\sqrt{\sigma}\cosh\sqrt{\sigma} + \cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)\right]^{k} \left(\frac{\sinh\sqrt{\sigma} - \sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma} + 1}\right)$$
(43)

As a result, we obtain that for $k \geq 0$

$$\begin{cases} A_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^k \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{\cos\sqrt{\sigma}+\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ B_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^k \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sinh\sqrt{\sigma}+\sin\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ C_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^k \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\cos\sqrt{\sigma}-\cosh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \\ D_{k+1} = \left(\frac{j\beta\sqrt{\sigma}}{1+j\beta\sigma}\right)^{k+1} \left(\frac{-\sin\sqrt{\sigma}\cosh\sqrt{\sigma}-\cos\sqrt{\sigma}\sinh\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right)^k \left(\frac{\sinh\sqrt{\sigma}-\sin\sqrt{\sigma}}{\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+1}\right) \left(\frac{-\sin\sqrt{\sigma}+\sinh\sqrt{\sigma}}{2\cos\sqrt{\sigma}\cosh\sqrt{\sigma}+2}\right) \end{cases}$$

Reference

References

- [1] Erturk A, Inman DJ. A distributed parameter electromechanical model for cantilevered piezo-electric energy harvesters. Journal of vibration and acoustics. 2008;130(4):041002.
- [2] Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart materials and structures. 2009;18(2):025009.