Planche 1.

Question de cours. Trouver les solutions complexes de l'équation suivante :

$$iz^2 - z = -1$$

Exercice 1. Soit $a \in \mathbb{C}$. On définit l'ensemble suivant :

$$C_a = \{b \in \mathbb{C} : \exists (z, \lambda) \in \mathbb{C} \times [0, 1] : |z - a| \le \lambda \text{ et } |z - b| \le 1 - \lambda\}$$

Montrer que $C_a = \{b \in \mathbb{C}/|a-b| \le 1\}.$

Planche 2.

Question de cours. Démontrer l'inégalité triangulaire :

$$|a+b| \le |a| + |b|$$

pour tout $a, b \in \mathbb{C}$.

Exercice 1. Soit $u \in \mathbb{C}$ tel que |u| = 1. On pose $z = u^2 + u + 1$. Montrer que :

$$|z|^2 u^2 = z^2$$

Planche 3.

Question de cours. Développer :

$$\sin^3(x)$$

Exercice 1.

- a) Soit $z \in \mathbb{C}$ tel que $|1 + iz^2| \le 3$. Montrer que $|z| \le 2$.
- **b)** Soit $z \in \mathbb{C}$ tel que $1 + iz^2 \in \mathbb{R}$. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que :

$$z = \lambda(i+1)$$
 ou $z = \lambda(i-1)$

Solutions - Planche 1.

Question de cours. Il s'agit d'une équation du second degré à coefficients complexes. On calcule le discriminant : $\Delta = 1 - 4i$. On cherche une racine carrée δ de Δ (de sorte que $\delta^2 = \Delta$) en posant $\delta = a + ib$. On obtient les équations suivantes :

$$\begin{cases} |\delta|^2 = |\Delta| = a^2 + b^2 = \sqrt{17} \\ a^2 - b^2 = 1 \\ 2ab = -4 \end{cases}$$

La première provenant de l'égalité des modules, les suivantes en identifiant partie réelle et imaginaire en développant l'équation $\delta^2 = \Delta$. On obtient donc $2a^2 = 1 + \sqrt{17}$. D'où une racine carrée possible (car on peut prendre l'opposé) :

$$a = \sqrt{\frac{1+\sqrt{17}}{2}}, b = -2\sqrt{\frac{2}{1+\sqrt{17}}}$$

Finalement les solutions de l'équation sont :

$$z_1 = \frac{1-\delta}{2i} = \frac{i(a-1)-b}{2}$$
 et $z_1 = \frac{1+\delta}{2i} = \frac{-i(1+a)+b}{2}$

Exercice 1. Comme on veut montrer l'égalité de deux ensembles, on procède par double inclusion. Géométriquement, $\{z \in \mathbb{C} : |z-a| \leq 1\}$ est le disque centré en a de rayon 1.

• Commencons par montrer que C_a est inclus dans $\{z \in \mathbb{C} : |z-a| \leq 1\}$. Soit $b \in C_a$. Il existe donc $z \in \mathbb{C}$ et $\lambda \in [0,1]$ tels que :

$$\begin{cases} |z - a| \le \lambda \\ |z - b| \le 1 - \lambda \end{cases}$$

Comme on cherche à montrer que $|a-b| \le 1$, on part de |a-b| et on va utiliser les inégalités précedentes. Le seul moyen de faire cela est d'utiliser l'inégalité triangulaire : la difficulté est d'insérer z avec le "trick" du a-b=(a-z)+(z-b) qui revient très souvent dans ce genre d'inégalité.

$$|a-b| < |a-z+z-b| = |a-z| + |z-b| < \lambda + 1 - \lambda < 1$$

Donc C_a est inclus dans le disque unité de centre a.

• Montrons maintenant l'autre inclusion. Soit $b \in \mathbb{C}$ tel que $|a-b| \leq 1$. On cherche $z \in \mathbb{C}$ et $\lambda \in [0,1]$ tels que $|a-z| \le \lambda$ et $|b-z| \le \lambda$. Le mieux est de se représenter géométriquement ce qu'il se passe : on a un point a dans le plan et un autre point b dans le disque unité centré en a. On cherche un point z qui s'il est proche de a alors il peut être assez loin de b. Ainsi si on prend simplement z = a et $\lambda = |b - a|$, ça marche. En effet :

$$\begin{cases} |a-a| = 0 \le |b-a| \\ |a-b| \le |b-a| \end{cases}$$

Donc on a montré l'égalité

$$C_a = \{ b \in \mathbb{C}/|a-b| \le 1 \}$$

Solutions - Planche 2.

Question de cours. Soit $a, b \in \mathbb{C}$. Cela revient à montrer que $|a+b|^2 \le (|a|+|b|)^2$. On préfère les carrés en complexes car $|z|^2 = z\overline{z}$. Développons donc $(|a|+|b|)^2 - |a+b|^2$. On a

$$(|a| + |b|)^{2} - |a + b|^{2} = |a|^{2} + |b|^{2} + 2|a||b| - (a + b)\overline{(a + b)}$$
$$= 2|a||b| - a\overline{b} - b\overline{a}$$
$$= 2(|a||b| - Re(a\overline{b})) \ge 0$$

Exercice 1. On part de ce qu'on veut montrer.

$$z^2 = |z|^2 u^2$$

Le plus problèmatique dans cette égalité est le $|z|^2$ car on est incapable de le calculer en fonction de u. Il faut donc l'écrire autrement. Par exemple avec $|z|^2=z\bar{z}$. On cherche donc maintenant à montrer que :

$$z^2 = z\bar{z}u^2$$

Pour simplifier il faut vérifier que z est non nul. Si ce n'était pas le cas alors l'égalité serait vraie. On peut donc supposer que $z \neq 0$.

On cherche donc à montrer que :

$$z = \bar{z}u^2$$

Or maintenant on peut facilement exprimer \bar{z} et z en fonction de u. En effet :

$$\bar{z} = \bar{u}^2 + \bar{u} + 1$$

Or comme |u|=1,alors $\bar{u}=\frac{1}{u}.$ Donc $\bar{z}=\frac{1}{u^2}+\frac{1}{u}+1.$ D'où :

$$\bar{z}u^2 = 1 + u + u^2 = z$$

Solutions - Planche 3.

Question de cours. On utilise la formule d'Euler :

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

D'où:

$$\sin^3(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 = \frac{e^{i3x} - 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} - e^{-3ix}}{-8i}$$
$$= \frac{1}{-8i}(e^{i3x} - 3e^{ix} + 3e^{-ix} - e^{-3ix}) = \frac{1}{4}(3\sin(3x) - \sin(3x))$$

Exercice 1.

a) Pour montrer cela, on va utiliser une inégalité triangulaire en choisissant bien ce à quoi on l'applique. On utilise alors l'astuce du |a| = |a + b - b| en remarquant que |i| = 1:

$$|z^2| = |iz^2| = |1 + iz^2 - 1| < |1 + iz^2| + 1 < 4$$

Donc $|z| \leq 2$.

Bonus : de plus on peut montrer qu'on ne peut pas trouver une meilleure borne. C'est à dire qu'il n'existe pas une constante C < 2 tel que :

$$|1 + iz^2| \le 3 \Rightarrow |z| \le C$$

En effet il existe un complexe de module 2 qui vérifie $|1+iz^2| \le 3$. Pour le trouver on cherche un complexe z tel que $1+iz^2=-3$. On obtient alors $z^2=-4i$. Donc on trouve par exemple $z=2\frac{(1+i)}{\sqrt{2}}$ qui est bien de module 2

b) Comme $1+iz^2\in\mathbb{R}$ alors $z^2\in i\mathbb{R}$. Donc il existe $x\in\mathbb{R}$ tel que $z^2=ix$. On pose z=a+ib. D'abord considérons le cas où $x\geq 0$. L'égalité et $|z|^2=|x|$ et l'équation $z^2=ix$ nous donne les 3 équations suivantes :

$$\begin{cases} a^2 + b^2 = x \\ a^2 - b^2 = 0 \\ 2ab = x \end{cases}$$

D'où $2a^2 = x$. On en déduit que $a = \pm \sqrt{x/2}$. On a donc deux solutions : $z = \sqrt{x/2}(1+i)$ et $z = -\sqrt{x/2}(1+i)$. Dans les deux cas il existe $\lambda \in \mathbb{R}$ tel que $z = \lambda(1+i)$.

Dans le cas où $x \leq 0$, on obtient presque les mêmes équations :

$$\begin{cases} a^2 + b^2 = -x \\ a^2 - b^2 = 0 \\ 2ab = x \end{cases}$$

D'où $2a^2=-x$. On en déduit que $a=\pm\sqrt{-x/2}$. On a donc deux solutions : $z=\sqrt{-x/2}(1-i)$ et $z=-\sqrt{-x/2}(1-i)$. Dans les deux cas il existe $\lambda\in\mathbb{R}$ tel que $z=\lambda(1-i)$.