Chapitre 15

Angles et polygones

I. Angle inscrit, angle au centre

1) Arc de cercle

Sur un cercle, deux points A et B qui ne sont pas sur un même diamètre définissent **deux arcs** de longueurs différentes.

Les points A et B définissent donc deux arcs : le petit arc (de longueur inférieure au demi cercle) et le grand arc (de longueur supérieure au demi cercle).

Sur la figure ci-contre l'arc rouge est le grand arc $\stackrel{\smile}{AB}$ et l'arc vert est le petit arc $\stackrel{\smile}{AB}$.

2) Angle inscrit dans un cercle

Définition:

Un angle dont le **sommet** est **sur un cercle et** dont **les côtés coupent ce cercle** est appelé **angle inscrit** dans ce cercle.

Exemple:

L'angle inscrit \widehat{BAC} intercepte l'arc \widehat{BC} .

3) Angle au centre

Définition:

Un angle dont le sommet est le centre d'un cercle est appelé angle au centre de ce cercle.

Exemple:

O est le centre du cercle.

L'angle au centre \widehat{AOB} intercepte l'arc \widehat{AB} .

4) Propriétés

Propriété:

Si dans un cercle, un **angle au centre** et un **angle inscrit** interceptent le **même arc** alors la mesure de l'angle au centre est le **double** de la mesure de l'angle inscrit.

Exemple:

L'angle inscrit \widehat{BAC} et l'angle au centre \widehat{BOC} interceptent le même arc \widehat{BC} . Donc $\widehat{BOC} = 2 \times \widehat{BAC}$

Propriété :

Si deux angles inscrits dans un cercle interceptent le même arc alors ils ont la même mesure.

Exemple:

 \widehat{CAD} et \widehat{CBD} sont deux angles inscrits qui interceptent le même arc \widehat{CD} . Donc $\widehat{CAD} = \widehat{CBD}$

II. Polygones réguliers

Définition:

Un **polygone** est **régulier** lorsque tous ses côtés ont la **même longueur** et ses angles ont la **même mesure**.

Exemple:

Le triangle équilatéral ABC est un polygone régulier.

Propriété:

Un **polygone** est **régulier** lorsque tous **ses côtés** ont la **même longueur** et qu'il est **inscriptible** dans un cercle.

Définition:

Le centre du cercle est aussi le centre du polygone régulier.

Exemple:

L'hexagone ABCDEF est un polygone régulier de centre O.

Propriété:

Si un polygone, à n côtés, est régulier, alors la mesure de chaque angle au centre interceptant un côté du polygone est égale à $\frac{360^{\circ}}{n}$.

Exemple:

ABCDEFGH est un octogone régulier de centre O.

Donc
$$\widehat{AOB} = \frac{360}{8} = 45^{\circ}$$

Polygones réguliers

Polygones réguliers	
3 côtés : triangle équilatéral	9 côtés : ennéagone régulier
4 côtés : carré	10 côtés : décagone régulier
5 côtés : pentagone régulier	11 côtés : hendécagone régulier
6 côtés : hexagone régulier	12 côtés : dodécagone régulier
7 côtés : heptagone régulier	14 côtés : tétra-décagone régulier
8 côtés : octogone régulier	20 côtés : icosagone régulier