§10.3 - Series

After completing this section, students should be able to:

- Determine if a geometric series converges or diverges.
- Recognize a telescoping series and use its partial sums to determine if it converges or diverges.
- Determine if sums and scalar multiples of series converge or diverge based on the convergence status of their component series.

Definition. A geometric **sequence** is a sequence of the form ... $\{ar^n\}$ infinity n=0

Definition. A geometric **series** is a series of the form ... Σ (infinity, n=0) ar^n

Example. Is $\sum_{i=2}^{\infty} \frac{5(-2)^i}{3^{2i-3}}$ a geometric series? If so, what is the first term and what is the common ratio?

$$\Sigma$$
(infinity, i=2) 5(-2) $^{1/3}^{2i}$ 3 $^{-3}$

$$\Sigma$$
(infinity, i=2) 5(-2) $^{i}/(3^{2})^{i} 3^{-3}$

$$\Sigma$$
(infinity, i=2) 5*27 ((-2)/3^2)^i

$$\Sigma$$
(infinity, i=2) 135 (-2/9)^i

$$\Sigma$$
(infinity, i=0) 135 (-2/9) 1 +2

$$\Sigma$$
(infinity, i=0) 135 (-2/9) i (-2/9) 2

$$\Sigma$$
(infinity, i=0) 20/3 (-2/9)^i

Fact. A geometric **sequence** $\{ar^n\}_{n=0}^{\infty}$ converges to 0 when $\frac{|\mathbf{r}|<1}{r=-1}$, converges to when $\frac{|\mathbf{r}|<1}{r=-1}$

Question. For what values of r does the geometric **series** $\sum_{n=0}^{\infty} ar^n$ converge? |r| < 1

Stragegy:

- (a) Find a formula for the Nth partial sum $sum_{k=0}^{N}a \cdot r^{k}$.
- (b) Take the limit of the partial sums.

Conclusion: The geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a/1-r}{n}$ when $\frac{|r|<1}{n}$.

The geometric series $\sum_{n=0}^{\infty} ar^n$ diverges when |r| > = 1.

You don't need to reindex Σ but a = first term of series

Example. Does $\sum_{i=2}^{\infty} \frac{5(-2)^i}{3^{2i-3}}$ converge or diverge?

$$\Sigma$$
(i=2, infinity) 5(-2) $^{i/3}$ -3 - 3 2 i

$$\Sigma$$
(i=2, infinity) 5(-2) $^i/3^-3$ - 9 i

$$\Sigma$$
(i=2, infinity) 5/3^-3 (-2/9)^i

$$r = -2/9$$
, $a=5/3^{-3}(-2/9)^2$

sum =
$$a/1-r = 5/3^{-3} (-2/9)^2 / 1-(-2/9)$$

= $20/3 / 11/9$

Tricks for determining when series converge:

Trick 1: Recognize geometric series.

Review. A geometric series is a series of the form:

$$\Sigma$$
 (n=0, infinity) ar^n

Review. For what values of r does a geometric **series** converge? $|\mathbf{r}| < 1$

Example. For what values of x does the series $\sum_{n=2}^{\infty} \frac{3x^{n-1}}{2^n}$ converge? What does it converge to (in terms of x)?

$$\Sigma$$
(n=2, infinity) 3 * x^n * x^-1 / 2^n Σ (n=2, infinity) 1/3x * (x/2)^n

$$r = x/2$$

 $|x/2| < 1 -> |x| < 2$
 $-2 < x < 2$

$$a = 3x^{-1} (x/2)^2$$
 sum = $3x^{-1} (x/2)^2 / 1-x/2$

Trick 2: Recognize telescoping series.

Example.
$$\sum_{k=2}^{\infty} \ln \left(\frac{k}{k+1} \right)$$

Series whose partial sums eventually have a fixed number of terms after cancelling

**form: (something-something)

Step 1: Get in form Σ (n=2, infinity) lnk - ln(k+1)

Step 2: Plug in n values to get partial sums:

$$(\ln 2 - \ln 3) + (\ln 3 - \ln 4) + (\ln 4 + \ln 5) + \dots + (\ln (n-1) - \ln (n)) + (\ln (n) - \ln (n+1))$$

Step 3: Look for cancellations:

$$ln2 - ln(n+1)$$

Step 4: $\lim n > \inf \ln t \le \ln(n+1)$

Goes to -infinity, Diverges

Example.
$$\sum_{n=2}^{\infty} \frac{3}{n^2 - 1}$$

$$3\Sigma$$
(n=2, infinity) $1/(n+1)(n-1)$

$$A/n+1 + B/n-1$$

$$1 = A(n-1) + B(n+1) -> A = 1/2$$

$$1 = A(n-1) + B(n+1) -> B = -1/2$$

$$3\Sigma$$
(n=2, infinity) 1/2 / n-1 - 1/2/n+1

$$3[(DNE - 1) + (1/2 - 3/2) + (1-2) + (3/2, 5/2) + + (1/2/n-2 - 1/2/n) + (1/2/n-1) - 1/2/n+1]$$

$$-1/2 / n - 1/2 / n + 1$$

Trick 3: Use Limit Laws.

Fact. If
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$, then

$$\sum_{n=1}^{\infty} a_n + b_n =$$

$$\sum_{n=1}^{\infty} a_n - b_n =$$

$$\sum_{n=1}^{\infty} c \cdot a_n =$$

where *c* is a constant.

Example. Does the series converge or diverge? If it converges, to what?

$$\sum_{n=1}^{\infty} \frac{4 \cdot 5^n - 5 \cdot 4^n}{6^n}$$

 $\Sigma(n{=}1,\,infinity)$ 4 * 5^n / 6^n - $\Sigma(n{=}1,\,infinity)$ 5 * 4^n / 6^n

$$= 4 (5/6)^n - 5 (4/6)^n$$

$$r = 5/6, 4/6$$

$$a = 20/6, 20/6$$

$$((20/6) / 1-5/6) - ((20/6) / 1-4/6)$$

Question. True or False: If $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges.

True

$$c+c=c$$

$$c+d=d$$

$$c$$
- c = C

Question. True or False: If $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges.

Inconclusive

False

Question. True or False: If $\sum_{n=1}^{\infty} a_n$ converges, then so does $\sum_{n=5}^{\infty} a_n$. False

Question. True or False: If $\sum_{n=5}^{\infty} a_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$.

True

$$\Sigma$$
(n=1, infinity) an + Σ (n=5, infinity) an B+A

$$a1 + a2 + a3 + a4 + A$$

Question. True or False: If
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$, then $\sum_{n=1}^{\infty} a_n \cdot b_n = A \cdot B$ False **Question.** True or False: If $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$, then $\sum_{n=1}^{\infty} \frac{a_n}{b_n} = \frac{A}{B}$. False