

Clasa a IX-a

Descrierea soluției - Tg

Autor: prof. Piţ-Rada Ionel Vasile C. N. "Traian" Drobeta-Tr. Severin

Complexitate O(N*N)

Pentru fiecare **a** din mulțimea {1,2,...,N-2} și pentru fiecare **c** din mulțimea {a+2,a+3,...,N} se verifică dacă a*c este pătrat perfect și în caz afirmativ se calculează b=sqrt(a*c) și se contorizează rezultatul.

Complexitate O(N*sqrt(N))

Pentru fiecare a din mulțimea $\{1,2,...,N-2\}$ se observă că dacă ar exista tripletul (a,b,c) atunci ar trebui să avem $c=b^*b/a$, deci b^*b ar trebui să fie multiplu al lui a și în același timp ar trebui să fie pătrat perfect, iar b>a. Ne-ar ajuta astfel să știm care este cel mai mic pătrat perfect multiplu al lui a. Fie a_1 acest număr. Am avea $a_1=a^*x$, unde x este cel mai mic posibil astfel incat a_1 să fie pătrat perfect. Dacă $a=p_1^{e^1*}p_2^{e^2*}...*p_k^{e^k}$, atunci $x=p_1^{f^1*}p_2^{f^2*}...*p_k^{fk}$ unde $f_i=e_i$ mod 2, adică x este produsul factorilor primi care apar la puteri impare in descompunerea lui a. Se mai observă apoi că orice alt multiplu al lui a care este si pătrat perfect va fi de forma $a_2=a^*x^*k^2$, unde $k\ge 1$. Pentru k=1 se obtine a_1 . Deoarece trebuie să avem $b^*b>a^*a$, atunci patratele

perfecte care ne interesează pentru obținerea lui c se obțin pentru k> $\sqrt{\frac{a}{x}}$. Astfel putem determina

$$b = \sqrt{a \cdot x} \cdot k \text{ si c=b*b/a} = x \cdot k^2$$
. Deoarece c<=N vom avea $k \le \sqrt{\frac{N}{x}}$.

Cu alte cuvinte pentru fiecare a din mulțimea {1,2,...,N-2} vom parcurge k din mulțimea { $\left[\sqrt{\frac{a}{x}}\right]$ +1,

$$\left[\sqrt{\frac{a}{x}}\right]$$
 +2, ..., $\left[\sqrt{\frac{N}{x}}\right]$ } și astfel vom obține toate tripletele geometrice căutate, care sunt de forma

(a, b =
$$\sqrt{a \cdot x} \cdot k$$
, c = x·k²).

Pentru determinarea lui x putem folosi algoritmul de descompunere în factori primi O(sqrt(a)).

Complexitate O(N)

Ideea de rezolvare este asemănatoare cu cea anterioară. Se incearcă diminuarea efortului de calculare la fiecare pas a lui x prin construirea vectorului x[i]= cel mai mic numar natural care înmulțit cu i produce un pătrat perfect, adică vom avea i*x[i] cel mai mic patrat perfect multiplu al lui i.

Se procedează asemănător cu algoritmul "Ciurul lui Eratostene". Se inițializează x[i] cu 0 și se parcurge în ordinea 1,2,3,..., N. Daca avem x[i]==0 atunci vom marca x[i*j*j]=i pentru toti $1 \le i*j*j \le N$.

Președinte: Vicepreședinte subcomisie clasa a IX-a

Radu Eugen Boriga Constantin Gălățan