Printed Pages: 03

Paper Id: 199103

Sub Code: KAS103

Roll No.

B.Tech. (SEM-I) THEORY EXAMINATION 2018-19 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions.

1.	ritempt un questions.		
Q no.	Question	Marks	CO
a.	Find the rank of the matrix $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$.	2	1
b.	Find the stationary point of $f(x, y) = x^3 + y^3 + 3axy, a > 0$	2	3
C.	If $x = r\cos\theta$, $y = r\sin\theta$, $z = z$ then find $\frac{\partial(r, \theta, z)}{\partial(x, y, z)}$.	2	3
d.	Define del ∇ operator and gradient.	2	5
e.	If $\phi = 3x^2y - y^3z^2$, find grad ϕ at point (2, 0, -2).	2	5
f.	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{y}{x}} dxdy.$	2	4
g.	If the eigen values of matrix A are 1, 1, 1, then find the eigen values of $A^2 + 2A + 3I$.	2	1
h.	Define Rolle's Theorem	2	2
i.	If $u = x^3 y^2 \sin^{-1}(y/x)$, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2	3
j.	In RI = E and possible error in E and I are 20 % and 10 % respectively, then find the error in R.	2	3
k.	State the Taylor's Theorem for two variables.	2	3

SECTION B

2. Attempt any three of the following:

Q no. Question Marks CO
a. Using Cayley- Hamilton theorem find the inverse of the matrix $A=\begin{bmatrix}1&2&3\\2&4&5\\3&5&6\end{bmatrix}$.

Also express the polynomial $B = A^8-11A^7-4A^6+A^5+A^4-11A^3-3A^2+2A+I$ as a quadratic polynomial in A and hence find B.

b. If
$$y = Sin(m sin^{-1}x)$$
, prove that : $(1 - x^2) y_{n+2} - (2n + 1)x y_{n+1} - (n^2 - 10)$ 2 $m^2)y_n = 0$ and find y_n at $x = 0$.

c. If
$$u$$
, v , w are the roots of the equation $(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$, 10 3 then find $\frac{\partial(u,v,w)}{\partial(a,b,c)}$.

d. Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy$$
 by changing to polar coordinates.

Hence show that
$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

e. Verify the divergence theorem for 10 5
$$\vec{F} = (x^3 - yz)\hat{i} + (y^3 - zx)j + (z^3 - xy)\hat{k}$$
, taken over the cube bounded by planes $x = 0$, $y = 0$, $z = 0$, $x = 1$, $y = 1$, $z = 1$.

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	$\begin{bmatrix} 3 & -3 & 4 \end{bmatrix}$	10	1
	Find inverse employing elementary transformation $A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$		
	$\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$		

b. Reduce the matrix A to its normal form when A =
$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$
. 10 1

Hence find the rank of A.

4. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	If $\sin^{-1} y = 2\log(x+1)$ show that	10	2
b.	$(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$ Verify Lagrange's Mean value Theorem for the function $f(x) = x^3$ in $[-2,2]$	10	2

5. Attempt any *one* part of the following:

Q no. Question Marks CO
a. Find the maximum or minimum distance of the point
$$(1, 2, -1)$$
 from the 10 3 sphere $x^2 + y^2 + z^2 = 24$.
b. If $u = \cos^{-1}(\frac{x+y}{\sqrt{x}+\sqrt{y}})$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$

6. Attempt any *one* part of the following:

a.

Q no. Question Marks CO

- b. Calculate the volume of the solid bounded by the surface x=0, y=0, 10 4 x+y+z=1 & z=0.

7. Attempt any *one* part of the following:

Q no. Question Marks CO

- a. Prove that $(y^2 z^2 + 3yz 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy 2xz + 2z)\hat{k}$ is both 10 5 Solenoidal and Irrotational.
- b. Find the directional derivative of $\Phi = 5x^2y 5y^2z + \frac{5}{2}z^2x$ at the point 5

P(1, 1, 1) in the direction of the line

$$\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}.$$

KAS103 CORRECTION M 11.12.18

Q NO 1 : DO ANY TEN QUESTIONS

