Kapitel III

Kohomologie von Garben

§ 12 Garbenkohomologie als abgeleiteter Funktor

Erinnerung 12.1 Sei \mathcal{C} eine Kategorie mit Nullobjekten, $A, B \in \mathrm{Ob}(\mathcal{C})$ und $f: A \longrightarrow B$ ein Morphismus.

(i) Der Kern von f ist das Paar $(\ker f, \iota)$ mit $\iota : \ker f \longrightarrow A$ und $f \circ \iota = 0$, sodass für jedes Paar $(C, \tilde{\iota})$ mit $C \in \mathrm{Ob}(\mathcal{C})$ und $\tilde{\iota} : C \longrightarrow A$ mit $f \circ \tilde{\iota} = 0$ der Morphismus $\tilde{\iota}$ eindeutig über $\ker f$ faktorisiert, es also einen eindeutigen Morphismus $h : C \longrightarrow \ker f$ gibt, sodass das folgende Diagramm kommutiert:

(ii) der Kokern von f ist das Paar (cokerf, π) mit $\pi: B \longrightarrow \operatorname{coker} f$ und $\pi \circ f = 0$, sodass für jedes Paar $(C, \tilde{\pi})$ mit $C \in \operatorname{Ob}(C)$ und $\tilde{\pi}: B \longrightarrow C$ mit $\tilde{\pi} \circ f = 0$ der Morphismus $\tilde{\pi}$ eindeutig über cokerf faktorisiert, es also einen eindeutigen Morphismus $h: \operatorname{coker} f \longrightarrow C$ gibt, sodass das folgende Diagramm kommutiert:

Definition 12.2 Eine Kategorie \mathcal{C} heißt *abelsch*, falls folgende Eigenschaften erfüllt sind:

- (i) Es bildet $\operatorname{Hom}_{\mathcal{C}}(A, B)$ eine abelsche Gruppe bezüglich der Addition " + " für alle $A, B \in \operatorname{Ob}(\mathcal{C})$.
- (ii) Für Homomorphismen gelten die Distributivgesetze bezüglich "+" und "∘", das heißt es

gilt

$$(f+g)\circ h=f\circ h+g\circ h, \qquad e\circ (f+g)=e\circ f+e\circ g$$

für alle $h \in \operatorname{Mor}_{\mathcal{C}}(A, B), f, g \in \operatorname{Mor}_{\mathcal{C}}(B, C), e \in \operatorname{Mor}_{\mathcal{C}}(C, D).$

- (iii) Endliche direkte Summen, Kerne, Kokerne existieren.
- (iv) Jeder Monomorphismus ist der Kern seines Kokerns.
- (v) Jeder Epimorphismus ist der Kokern seines Kerns.

Beispiel 12.3 Beispiele für abelsche Kategorien sind \underline{Ab} , \underline{k} - \underline{VR} , \underline{Ringe} , \underline{R} - \underline{Mod} , $\underline{\mathcal{O}_X}$ - \underline{Mod} . Nicht abelsch dagegen sind beispielsweise die Kategorien \underline{Grp} , $\underline{\underline{Sets}}$.

Definition 12.4 Sei \mathcal{C} eine abelsche Kategorie.

(i) Ein Komplex in C ist eine Sequenz

$$C^{\bullet} := \dots \longrightarrow C^{i-1} \xrightarrow{d^{i-1}} C^i \xrightarrow{d^i} C^{i+1} \longrightarrow \dots$$

von Morphismen in \mathcal{C} , sodass gilt $d^i \circ d^{i-1} = 0$ für alle $i \in \mathbb{Z}$.

(ii) Für einen Komplex C^{\bullet} in \mathcal{C} heißt

$$H^i(C^{\bullet}) := \operatorname{Kern} d^i / \operatorname{Bild} d^{i-1}$$

das *i*-te Kohomologieobjekt von C^{\bullet} .

Proposition 12.5 Sei C eine abelsche Kategorie.

(i) Die Komplexe in C bilden eine Kategorie C^{\bullet} mit Morphismen

- (ii) H^i ist ein kovarianter, linksexakter Funktor $C^{\bullet} \longrightarrow C$.
- (iii) Zu jeder kurzen exakten Sequenz $0 \longrightarrow C'^{\bullet} \xrightarrow{\alpha} C^{\bullet} \xrightarrow{\beta} C''^{\bullet} \longrightarrow 0$ von Komplexen in C^{\bullet} gibt es eine lange exakte Kohomologiesequenz

$$\dots \longrightarrow H^i(C'^{\bullet}) \longrightarrow H^i(C^{\bullet}) \longrightarrow H^i(C''^{\bullet}) \xrightarrow{\delta^i} H^{i+1}(C'^{\bullet}) \longrightarrow H^{i+1}(C^{\bullet}) \longrightarrow \dots$$

Beweis. (ii) Sei $\alpha: C^{\bullet} \longrightarrow D^{\bullet}$ Morphismus von Komplexen in C^{\bullet} wie in (i), wir haben also für alle $i \in \mathbb{Z}$ Morphismen $\alpha_i: C^i \longrightarrow D^i$ gegeben. Wir suchen nun

$$\tilde{\alpha}_i: H^i(C^{\bullet}) = \operatorname{Kern} d^i / \operatorname{Bild} d^{i-1} \longrightarrow \operatorname{Kern} d'^i / \operatorname{Bild} d'^{i-1} = H^i(D^{\bullet})$$

Für $x \in \text{Kern } d^i$ ist

$$0 = \alpha_{i+1} \circ d^i = d'^i \circ \alpha_i,$$

also $\alpha_i|_{\mathrm{Kern}\ d^i}\in\mathrm{Hom}\left(\mathrm{Kern}\ d^i,\mathrm{Kern}\ d'^i\right)$ und damit induziert α_i durch Restklassenbildung die Abbildung $\tilde{\alpha}_i:\mathrm{Kern}\ d^i\longrightarrow H^i(D^\bullet)$. Wir müssen noch zeigen: Bild $d^{i-1}\subseteq\mathrm{Kern}\ \tilde{\alpha}_i$. Sei also $x=d^{i-1}(y)$ für ein $y\in C^{i-1}$. Dann gilt

$$\alpha_i(x) = \alpha_i(d^{i-1}(y)) = d'^{i-1}(\alpha_{i-1}(y)) \in \text{Bild } (d'^{i-1}),$$

also $\tilde{\alpha}_i(x) = 0$ in $H^i(D^{\bullet})$.

(iii) Wir haben folgende Situation:

Wir brauchen eine Abbildung $H^i(C''^{\bullet}) \longrightarrow H^{i+1}(C'^{\bullet})$. Sei $x \in \text{Kern } d''^i \subseteq C''^i$. Da β_i surjektiv ist, können wir ein Urbild $y \in C'^i$ mit $\beta_i(y) = x$ wählen. Dann gilt

$$0 = d''^{i}(\beta_{i}(y)) = \beta_{i+1}(d^{i}(y)),$$

also $d^i(y) \in \text{Kern } \beta_{i+1} = \text{Bild } \alpha_{i+1}$. Wegen letzterem können wir schreiben $d^i(y) = \alpha_{i+1}(z)$ mit eindeutigem $z \in C'^{i+1}$, α_{i+1} Monomorphismus ist. Damit gilt in unserer Rechnung nun $x \mapsto f_y(x) := \alpha_{i+1}^{-1}(d^i(y)) \in C'^{i+1}$ mit einem $y \in \beta_i^{-1}(x)$. Es gilt sogar $f_y(x) \in \text{Kern } d'^{i+1}$, denn es ist

$$\alpha_{i+2}(d'^{i+1}(f_y(x))) = d^{i+1}(d^i(y)) = d^{i+1}(d^i(y)) = 0$$

und da α_{i+1} ein Monomorphismus ist, muss bereits gelten $d'^{i+1}(f_y(x)) = 0$, das Gewünschte. Es bleibt zu zeigen, dass für eine andere Wahl \tilde{y} von y gilt $f_y(x) - f_{\tilde{y}}(x) \in \text{Bild } d'^i$ -dann ist die Abbildung

$$\tilde{\delta}^i : \text{Kern } d''^i \longrightarrow H^i(C'^{\bullet}), \qquad x \mapsto f_y(x) \quad \text{ für ein } y \in \beta_i^{-1}(x)$$

wohldefiniert. Sei also $\tilde{y} \in \beta_i^{-1}(x)$ beliebig und sei analog $\tilde{z} = \alpha_{i+1}^{-1}(d^i(\tilde{y}))$. Es gilt $\beta_i(\tilde{y}) = \beta_i(\tilde{y})$, also $y - \tilde{y} \in \text{Kern } \beta_i = \text{Bild } \alpha_i$, etwa $y - \tilde{y} = \alpha_i(w)$. Dann ist

$$f_y(x) - f_{\tilde{y}}(x) = \alpha_{i+1}^{-1}(d^i(y-\tilde{y})) = d'^i(\alpha_i^{-1}(y-\tilde{y})) = d'^i(w) \in \text{Bild } d'^i,$$

was zu zeigen war, womit $\tilde{\delta}^i$ wohldefiniert ist. Schließlich ist noch zu zeigen, dass $\tilde{\delta}^i$ über $H^i(C''^{\bullet})$ faktorisiert. Sei also $x \in \text{Bild } d''^{i-1} \subseteq \text{Kern } d''^i$, etwa $x = d''^{i-1}(v)$ für ein $v \in C''^{i-1}$. Da β_{i-1} Epimorphismus ist, gilt $v = \beta_{i-1}(\tilde{v})$ für ein $\tilde{v} \in C^{i-1}$, also

$$d''^{i-1}(\beta_{i-1}(\tilde{v})) = d''^{i-1}(v) = x = \beta_i(y) = \beta_i(d^{-1}(\tilde{w}))$$

und wir erhalten $d^{i}(y) = d^{i}(d^{i-1}(\tilde{w})) = 0$. Schließlich folgt

$$\tilde{\delta}_i(x) = \alpha_{i+1}^{-1}(d^i(y)) = \alpha_{i+1}(0) = 0,$$

da α_{i+1} injektiv ist, was zu zeigen war.

Sei nun (X, \mathcal{O}_X) ein Schema. Ziel soll es sein, für jede Garbe \mathcal{F} von abelschen Gruppen auf X und jedes $i \geq 0$ eine abelsche Gruppe $H^i(X, \mathcal{F})$ mit folgenden Eigenschaften zu definieren:

- (i) Es gilt $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) := \mathcal{F}(X)$.
- (ii) Ist $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ eine kurze exakte Sequenz von Garben, so gibt es eine lange exakte Kohomologiesequenz

$$0 \longrightarrow H^0(X, \mathcal{F}') \longrightarrow H^0(X, \mathcal{F}) \longrightarrow H^0(X, \mathcal{F}'') \longrightarrow H^1(X, \mathcal{F}') \longrightarrow H^1(X, \mathcal{F}) \longrightarrow \dots$$

Proposition 12.6 Sei $H^i(X,\cdot)$ mit (i) und (ii) gegeben, $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G}_0 \longrightarrow \mathcal{G}_1 \longrightarrow \dots$ eine exakte Sequenz von Garben auf X (eine sogenannte Auflösung von \mathcal{F}), sodass $H^i(X,\mathcal{G}_j) = 0$ für alle $j \ge 0$ und $i \ge 1$ (ein solche Garbe \mathcal{G}_j heißt azyklisch). Dann ist

$$H^{i}(X,\mathcal{F}) = H^{i}(\Gamma(X,\mathcal{G}^{\bullet})).$$

Beweis. Durch Induktion über i.

i=0 Da der globale Schnittfunktor $\Gamma(X,\cdot)$ linksexakt ist, ist die Sequenz der globalen Schnitte

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \xrightarrow{\alpha} \Gamma(X, \mathcal{G}_0) \xrightarrow{d^0} \Gamma(X, \mathcal{G}_1) \longrightarrow \dots$$

exakt. Dann gilt aber bereits

$$H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) = \text{Kern } d^0 = \text{Bild } \alpha = H^0(\Gamma(X, \mathcal{G}^{\bullet})).$$

i=1 Die Auflösung von \mathcal{F} zerlegt sich in exakte Sequenzen

$$(1) \qquad 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G}_0 \longrightarrow \mathcal{G}_0/\mathcal{F} \longrightarrow 0$$

$$(2) \qquad 0 \longrightarrow \mathcal{G}_0/\mathcal{F} \longrightarrow \mathcal{G}_1 \longrightarrow \mathcal{G}_2 \longrightarrow \dots$$

Nach Voraussetzung gibt es zu (1) eine lange exakte Sequenz

$$0 \longrightarrow H^0(X, \mathcal{F}) \longrightarrow H^0(X, \mathcal{G}_0) \longrightarrow H^0(X, \mathcal{G}_0/\mathcal{F}) \longrightarrow H^1(X, \mathcal{F}) \longrightarrow H^1(X, \mathcal{G}_0) = 0,$$

also gilt, da $H^0(X, \mathcal{G}_0/\mathcal{F}) \longrightarrow H^1(X, \mathcal{F})$ Epimophismus ist

$$H^{1}(X,\mathcal{F}) = H^{0}(X,\mathcal{G}_{0}/\mathcal{F}) / (\operatorname{Kern} (H^{0}(X,\mathcal{G}_{0}/\mathcal{F}) \longrightarrow H^{1}(X,\mathcal{F})))$$
$$= H^{0}(X,\mathcal{G}_{0}/\mathcal{F}) / (\operatorname{Bild} (H^{0}(X,\mathcal{G}_{0}) \longrightarrow H^{0}(X,\mathcal{G}_{0}/\mathcal{F}))).$$

Aus (2) folgt, dass die Sequenz

$$0 \longrightarrow H^0(X, \mathcal{G}_0/\mathcal{F}) \longrightarrow H^0(X, \mathcal{G}_1) \longrightarrow H^0(X, \mathcal{G}_2) \longrightarrow \dots$$

exakt ist, wir erhalten also

$$H^{0}(X,\mathcal{G}_{0}/\mathcal{F}) = \text{Bild } \left(H^{0}(X,\mathcal{G}_{0}/\mathcal{F}) \longrightarrow H^{0}(X,\mathcal{G}_{1})\right) / \left(\text{Kern } \left(0 \longrightarrow H^{0}(X,\mathcal{G}_{0}/\mathcal{F})\right)\right)$$
$$= \text{Kern } \left(H^{0}(X,\mathcal{G}_{1}) \longrightarrow H^{0}(X,\mathcal{G}_{2})\right)$$

und schließlich

$$H^{1}(X,\mathcal{F}) = \operatorname{Kern} \left(H^{0}(X,\mathcal{G}_{1}) \longrightarrow H^{0}(X,\mathcal{G}_{2}) \right) / \left(\operatorname{Bild} \left(H^{0}(X,\mathcal{G}_{0}) \longrightarrow H^{0}(X,\mathcal{G}_{1}) \right) \right)$$
$$= H^{1} \left(\Gamma(X,\mathcal{G}^{\bullet}) \right).$$

$$i > 1$$
 Folgt analog.

Erinnerung 12.7 Seien \mathcal{C}, \mathcal{D} Kategorien und $0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$ eine exakte Sequenz in \mathcal{C} .

(i) Ein kovarianter Funktor $F: \mathcal{C} \longrightarrow \mathcal{D}$ heißt linksexakt (bzw. rechtsexakt), falls die Sequenzen

$$0 \longrightarrow F(C') \longrightarrow F(C) \longrightarrow F(C'') \qquad \text{bzw.} \qquad F(C') \longrightarrow F(C) \longrightarrow F(C'') \longrightarrow 0$$

in \mathcal{D} exakt sind.

(ii) Ein kontravarianter Funktor $F:\mathcal{C}\longrightarrow\mathcal{D}$ heißt $\mathit{linksexakt}$ (bzw. $\mathit{rechtsexakt}$), falls die Sequenzen

$$0 \longrightarrow F(C'') \longrightarrow F(C) \longrightarrow F(C')$$
 bzw. $F(C'') \longrightarrow F(C) \longrightarrow F(C') \longrightarrow 0$

in \mathcal{D} exakt sind.

(iii) Eine Funktor $F: \mathcal{C} \longrightarrow \mathcal{D}$ heißt exakt, falls er links- und rechtsexakt ist.

Definition + **Bemerkung 12.8** Sei \mathcal{C} eine abelsche Kategorie.

- (i) Ein Objekt I in \mathcal{C} heißt *injektiv*, falls $\operatorname{Hom}_{\mathcal{C}}(\cdot, I)$ exakt ist.
- (ii) Ein Objekt P in C heißt projektiv, falls $\operatorname{Hom}_{C}(P,\cdot)$ exakt ist.

Betrachte nun das folgende Diagramm mit Objekten in \mathcal{C} .

Dann gilt:

- (iii) I ist genau dann injektiv, falls für jedes solche linksexakte Diagramm ein $\tilde{\phi} \in \text{Hom}_{\mathcal{C}}(C, I)$ existiert, sodass gilt $\tilde{\phi} \circ \iota = \phi$.
- (iv) P ist genau dann projektiv, falls für jedes solche rechtsexakte Diegramm ein $\tilde{\psi} \in \text{Hom}_{\mathcal{C}}(P, C)$ existiert, sodass gilt $\pi \circ \tilde{\psi} = \psi$.

Beispiel 12.9 \mathbb{Q}/\mathbb{Z} ist eine injektive abelsche Gruppe.

Beweis. Sei $A' \subseteq A$ abelsche Gruppen und betrachte das Diagramm

mit einem Gruppenhomomorphismus $\phi: A' \longrightarrow \mathbb{Q}/\mathbb{Z}$. Nach Bemerkung 2.8(iii) müssen wir für die Injektivität ϕ auf A fortsetzen. Für $a \in A$ sei

$$\tilde{\phi}_a(a) := \begin{cases} 0, & \text{falls } n \cdot a \notin A' \text{ für alle } n \in \mathbb{N} \\ \frac{1}{n}\phi(na), & \text{falls } n = \min\{k \mid ka \in A'\}. \end{cases}$$

Dann ist

$$\tilde{\phi}_a : \langle A', a \rangle \longrightarrow \mathbb{Q}/\mathbb{Z}, \qquad a' + k \cdot a \mapsto \phi(a') + k \cdot \tilde{\phi}_a(na)$$

wohldefiniert und ein Homomorphismus, denn es gilt für $ka \in A'$ mit $k = k_0 n$

$$\tilde{\phi}_a(ka) = \tilde{\phi}_a(k_0na) = k_0\phi(na) = k_0n\tilde{\phi}_a(a) = k\tilde{\phi}_a(a).$$

Damit haben wir bereits eine Fortsetzung von ϕ auf $\langle A', a \rangle$ für alle $a \in A$. Für $a \in A$ sei nun

$$\Phi:=\left\{(\overline{A},\overline{\phi}\mid A\subseteq \widetilde{A}\leqslant A',\ \overline{\phi}:\overline{A}\longrightarrow \mathbb{Q}/\mathbb{Z}\ \mathrm{mit}\ \overline{\phi}|_{A'}=\phi\right\}.$$

Dann ist Φ nichtleer und durch " \leq " geordnet, enthält nach Zorns Lemma also ein maximales Element (A_{\max}, ϕ_{\max}) . Wäre $A_{\max} \neq A$, so wähle $\overline{a} \in A \setminus \overline{A}$ und verfahre wir oben und führe diesen Fall zum Widerspruch. Damit folgt die Behauptung.

Lemma 12.10 Sei C eine Kategorie, I eine beliebige Indexmenge und I_i injektive Objekte in C für alle $i \in I$. Dann ist auch das direkte Produkt $I := \prod_{i \in I} I_i$ injektiv.

Beweis. Sei ein Diagramm

gegeben. Da I_i injektiv ist für jedes $i \in I$ erhalten wir ein Diagramm

und die $\tilde{\phi}_i$ setzen sich nach der UAE des direkten Produkts zu einem Homomorphismus $\tilde{\phi}: C \longrightarrow I$ mit der gewünschten Kommutativität zusammen, was zu zeigen war.

Proposition 12.11 Jede abelsche Gruppe kann in eine injektive abelsche Gruppe eingebettet werden.

Beweis. Sei A abelsche Gruppe, $a \in A \setminus \{0\}$. Definiere

$$\phi_a:\langle a\rangle \longrightarrow \mathbb{Q}/\mathbb{Z}, \qquad a\mapsto c_a\neq 0,$$

wobei $c_a \in \mathbb{Q}/\mathbb{Z}$ beliebig gewählt ist, mit der Eigenschaft $\operatorname{ord}(c_a)|\operatorname{ord}(a)$, falls $\operatorname{ord}(a) < \infty$. Da \mathbb{Q}/\mathbb{Z} injektiv ist, lässt sich ϕ_a fortsetzen zu $\phi_a : A \longrightarrow \mathbb{Q}/\mathbb{Z}$. Die ϕ_a für $a \in A$ definieren einen Homomorphismus

$$\phi: A \longrightarrow \prod_{a \in A \setminus \{0\}} \mathbb{Q} / \mathbb{Z}, \qquad g \mapsto (\phi_a(g))_{a \in A \setminus \{0\}}.$$

 ϕ ist injektiv, denn für alle $a \in A \setminus \{0\}$ gilt $(\phi(a))_a = \phi_a(a) = c_a \neq 0$, also $\phi(a) \neq 0$. Damit ist ϕ injektiver Homomorphismus in eine nach Lemma 12.10 injektive Gruppe.

Proposition 12.12 In den Kategorien <u>R-Mod</u>, \mathcal{O}_X -Mod und in der Kategorie der Garben abelscher Gruppen $\underline{Ab}(X)$ auf einem Schema X lässt sich jedes Objekt in ein injektives Objekt einbetten. Man sagt: Es gibt in diesen Kategorieren genügend viele injektive Objekte.

Beweis. Für <u>R-Mod</u> siehe dazu in Hilton-Stammbach, I.Prop.8, für $\underline{\mathcal{A}b}(X)$ und $\underline{\mathcal{O}_X}$ -Mod siehe Hartshorne III.2.2 sowie III.2.3.

Bemerkung 12.13 Ist C eine abelsche Kategorie mit genügend vielen injektiven Objekten, so besitzt jedes Objekt eine injektive Auflösung, also eine Auflösung mit injektiven Objekten.

Beweis. Sei C ein Objekt in C. Beweise die Behauptung durch Induktion über i.

i = 0 I^0 existiert nach Voraussetzung.

 $i\geqslant 1$ Sei $0\longrightarrow C\longrightarrow I^0\longrightarrow \dots \xrightarrow{d^{i-1}}I^i$ exakt mit injektiven Objekten I^j in $\mathcal C.$ Sei I^{i+1} ein injektives Objekt mit

$$I^{i}/d^{-1}(I^{i-1}) \subseteq I^{i+1}$$

(das existiert, da es genügend viele injektive Objekte in \mathcal{C} gibt). Dann gilt für die Abbildung $d^i: I^i \longrightarrow I^{i+1}$ gerade Kern $d^i = d^{i-1}(I^{i-1}) = \operatorname{Bild} d^{i-1}$, die Sequenz

$$0 \longrightarrow C \longrightarrow I^0 \longrightarrow \dots \xrightarrow{d^{i-1}} I^i \xrightarrow{d^i} I^{i+1}$$

ist also exakt, was zu zeigen war.

Definition 12.14 Sei (X, \mathcal{O}_X) ein Schema, \mathcal{F} eine Garbe abelscher Gruppen aus X und

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{I}^1 \longrightarrow \dots$$

eine injektive Auflösung von \mathcal{F} . Dann heißt für $i \ge 0$

$$H^i(X,\mathcal{F}) := H^i(\Gamma(X,\mathcal{I}^{\bullet}))$$

die *i*-te Kohomologiegruppe von \mathcal{F} .

Bemerkung 12.15 (i) Es gilt $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$ für jedes $\mathcal{F} \in \underline{\mathcal{A}b}(X)$.

(ii) Es gilt $H^i(X, \mathcal{I}) = 0$ für jede injektive Garbe $\mathcal{I} \in \underline{Ab}(X)$ und $i \ge 1$.

Beweis. (i) Siehe 12.4.

(ii) Wähle eine Auflösung $0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{I} \longrightarrow 0$ von \mathcal{I} . Dann folgt die Behauptung.

Satz 12.16 Sei (X, \mathcal{O}_X) ein Schema.

(i) Für $\mathcal{F} \in \underline{Ab}(X)$ ist $H^i(X, \mathcal{F})$ nicht von der gewählten injektiven Auflösung abhängig.

- (ii) $H^i(X, \cdot) : \underline{Ab}(X) \longrightarrow \underline{Ab}$ ist ein Funktor.
- (iii) Ist $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ eine kurze exakte Sequenz von Garben abelscher Gruppen, so gibt es eine lange exakte Kohomologiesequenz

$$0 \longrightarrow H^0(X, \mathcal{F}') \longrightarrow H^0(X, \mathcal{F}) \longrightarrow H^0(X, \mathcal{F}'') \longrightarrow H^1(X, \mathcal{F}') \longrightarrow H^1(X, \mathcal{F}) \longrightarrow \dots$$

Beweis. (ii) Sein \mathcal{F}, \mathcal{G} Garben abelscher Gruppen mit injektiven Auflösungen

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{\bullet}, \qquad 0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{J}^{\bullet}$$

sowie $\phi: \mathcal{F} \longrightarrow \mathcal{G}$ ein Garbenmorphismus. Definiere $\phi^i: \mathcal{I}^i \longrightarrow \mathcal{J}^i$ wie folgt:

$$0 \longrightarrow \mathcal{F} \xrightarrow{\epsilon} \mathcal{I}^{0} \xrightarrow{d^{0}} \mathcal{I}^{1} \longrightarrow \dots$$

$$\downarrow \phi \downarrow \qquad \downarrow \epsilon \phi \downarrow \phi \downarrow \qquad \downarrow \phi \downarrow \downarrow \qquad \downarrow$$

 ϕ^0 sei die Fortsetzung von $\tilde{\epsilon} \circ \phi$ auf \mathcal{I}^0 (\mathcal{J}^0 ist injektiv). Zur Definition von ϕ^1 brauchen wir, dass $\tilde{d}^0 \circ \phi^0$ über \mathcal{I}^0 /Kern d^0 faktorisiert mit Kern $d^0 = \text{Bild } \epsilon = \mathcal{F}$. Es ist aber $\mathcal{F} \subseteq \text{Kern } \tilde{d}^0 \circ \phi^0$, da $\phi^0(\mathcal{F}) \subseteq \tilde{\epsilon}(\mathcal{G}) = \text{Kern } \tilde{d}^0$. Die ϕ^i induzieren einen Morphismus $\Gamma(X, \mathcal{I}^0) \longrightarrow \Gamma(X, \mathcal{J}^0)$, wir erhalten also einen Morphismus von Komplexen $\mu : \Gamma(X, \mathcal{I}^\bullet) \longrightarrow \Gamma(X, \mathcal{I}^\bullet)$. Nach 12.5 induzieren diese Homomorphismen

$$\overline{\phi}_i: H^i(X,\mathcal{F}) = H^i(\Gamma(X,\mathcal{I}^{\bullet}) \longrightarrow H^i(\Gamma(X,\mathcal{J}^{\bullet}) = H^i(X,\mathcal{G}).$$

Es bleibt noch zu zeigen, dass $\overline{\phi}_i$ nicht von der Wahl der ϕ^i abhängt. Seien also $\phi^i, \tilde{\phi}^i$ Fortsetzungen, ohne Einschränkung gelte $\phi = 0$, $\tilde{\phi}^i = 0$. Zu zeigen ist: Es gilt ebenfalls $\phi^i = 0$, das heißt, ϕ^{\bullet} induziert die Nullabbildung auf $H^{\bullet}(\Gamma(X, \mathcal{I}^{\bullet}))$.

Beh. (a) Für $i \ge 1$ gibt es Homomorphismen $h^i: \mathcal{I}^i \longrightarrow \mathcal{J}^{i-1}$ mit

$$\phi^i = \tilde{d}^{i-1} \circ h^i + h^{i+1} \circ d^i, \qquad \phi^0 = h^1 \circ d^0.$$

Wenden wir nun den Schnittfunktor $\Gamma(X,\cdot)$ auf das Diagramm

an, so erhalten wir Homomorphismen

$$h^i: \Gamma(X, \mathcal{I}^i) \longrightarrow \Gamma(X, \mathcal{J}^{i-1})$$

mit derselben Eigenschaft (wobei alle Homomorphismen ihren Namen behalten haben). Sei nun $x \in H^i(X, \mathcal{F}) = H^i(\Gamma(X, \mathcal{I}^{\bullet}))$, also $x \in \text{Kern } (d^i : \Gamma(X, \mathcal{I}^{\bullet}) \longrightarrow \Gamma(X, \mathcal{I}^{i+1}))$ Dann gilt

$$\phi^{i}(x) = \tilde{d}^{i-1}(h^{i}(x)) + h^{i+1}(d^{i}(x)) = \tilde{d}^{i-1}(h^{i}(x)) \in \text{Bild } \tilde{d}^{i-1}$$

und damit $\phi^{i}(x) = 0$ in $H^{i}(X, \mathcal{G}) = (\text{Kern } \tilde{d}^{i}) / (\text{Bild } \tilde{d}^{i-1})$, was zu zeigen war.

Bew. (a) Betrachte das Diagramm

Wegen $\phi = 0$ ist $\mathcal{F} = \text{Kern } d^0 \subseteq \text{Kern } \phi^0$, ϕ^0 faktorisiert also über $\mathcal{I}^0/\mathcal{F}$. Da \mathcal{J}^0 injektiv ist und $\mathcal{I}^0/\mathcal{F} \hookrightarrow \mathcal{I}^1$, existiert die Fortsetzung $h^1: \mathcal{I}^1 \longrightarrow \mathcal{J}^0$ von $\overline{\phi}^0$ nach \mathcal{I}^1 und es gilt $\phi^0 = h^1 \circ d^0$. Betrachte nun für $i \geqslant 1$ das Diagramm

Setze $\tilde{\phi}^{i-1} = \phi^{i-1} - \tilde{d}^{i-2} \circ h^{i-1} : \mathcal{I}^{i-1} \longrightarrow \mathcal{J}^{i-1}$. Es gilt Kern $d^{i-1} = \text{Bild } d^{i-2}$. Für $x \in \text{Kern } d^{i-1} = \text{Bild } d^{i-2}$, $x = d^{i-1}(y)$ gilt dann Kern $d^1 \subseteq \subseteq \tilde{\phi}^1$, wir erhalten also eine Fortsetzung $h^i : \mathcal{I}^i \longrightarrow \mathcal{J}^{i-1}$ von $\tilde{\phi}^1$ mit

$$h^{i} \circ d^{i-1} = \tilde{\phi}^{i-1} = \phi^{i-1} - \tilde{d}^{i-1} \circ h^{i-1},$$

was zu zeigen war.

- (i) Folgt aus (ii) mit $\mathcal{G} = \mathcal{F}$ und $\phi = id$.
- (iii) Sei $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ eine kurze exakte Sequenz in $\underline{\mathcal{A}b}(X)$. Wähle injektive

Auflösungen

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{I}'^{\bullet}, \qquad 0 \longrightarrow \mathcal{F}'' \longrightarrow \mathcal{I}''^{\bullet}$$

von \mathcal{F}' und \mathcal{F}'' . betrachte nun das folgende Diagramm:

Da \mathcal{I}'^0 injektiv ist und $\mathcal{F}' \subseteq \mathcal{F}$, gibt es $\psi : \mathcal{F} \longrightarrow \mathcal{I}'^0$. ψ und $\epsilon'' \circ \pi$ induzieren gemeinsam $\epsilon : \mathcal{F} \longrightarrow \mathcal{I}'^0 \oplus \mathcal{I}''^0$. ϵ ist injektiv, denn: Gilt $(\epsilon'' \circ \pi)(x) = 0$, so ist $\pi(x) = 0$, also $x \in \text{Kern } \pi = \text{Bild } \iota = \mathcal{F}'$, also

$$\epsilon(x) = \psi(\iota(x')) = \psi(x)$$

und damit, da ϵ' injektiv ist

$$\epsilon(x) = 0 \iff \iota^1(\psi(x)) = 0 \iff \psi(x) = \epsilon(x) = 0 \iff x = 0.$$

Per Induktion erhalten wir auf diese Weise eine "injektive Auflösung der kurzen exakten Sequenz". Wir wenden nun den globalen Schnittfunktor $\Gamma(X,\cdot)$ auf $\mathcal{I}'^{\bullet}, \mathcal{I}^{\bullet}, \mathcal{I}''^{\bullet}$ an und erhalten eine kurze exakte Sequenz von Komplexen in <u>Ab</u>(Beachte: Das geht nun wegen der geeigneten Wahl von \mathcal{I}^{\bullet} gut). Dazu gibt es nach 12.5 (iii) eine lange exakte Kohomologiesequenz.

Bemerkung 12.17 Folgende Verallgemeinerungen des Vorgehens in diesem Abschnitt sind möglich:

- (i) Es genügt, dass X ein topologischer Raum ist; die Schemastruktur ist nicht nötig.
- (ii) Alles geht genauso für Objekte in einer beliebigen abelschen Kategorie mit genüend vielen injektiven Objekten A (statt Garben abelscher Gruppen auf X) und einem kovarianten, linksexakten Funktor F: A → B (statt dem globalen Schnittfunktor). Genauer heißt dies: Für A ∈ Ob(A) wähle eine injektive Auflösung 0 → A → I[•]. Dann ist F(I[•]) ein

Komplex in \mathcal{B}^{\bullet} . Definiere

$$R^i F(A) := H^i(F(I^{\bullet})).$$

Die R^iF sind Funktoren $\mathcal{A} \longrightarrow \mathcal{B}$. Sie heißen (rechts) abgeleitete Funktoren von F. Insbesondere gilt $R^0F = F$. Eine Auswahl an Kategorien mit genügend vielen Injektiven haben wir bereits kennengelernt. Weitere linksexakte Funktoren sind beispielsweise

- (1) Die Hom-Funktoren. Die R^i Hom heißen auch Ext und Tor.
- (2) Für Schemata X, Y und einem Schemamorphismus $f: X \longrightarrow Y$ ist f_* linsexakt und kovariant. Die $R^i f_*$ heißen auch höhere direkte Bildgarben.

§ 13 Čech-Kohomologie

Definition + **Bemerkung 13.1** Sei X ein topologischer Raum, \mathcal{F} eine Garbe in $\underline{\mathcal{A}b}(X)$ sowie $\mathfrak{U} = \{U_i\}_{i \in \mathbb{N}}$ eine offene Überdeckung von X.

(i) Für $k \ge 0$ ist

$$C^{k}(\mathfrak{U}, \mathcal{F}) := \prod_{i_{0} < \ldots < i_{k}} \mathcal{F}(U_{i_{0}} \cap \ldots \cap U_{i_{k}})$$

eine abelsche Gruppe.

(ii) Für $k \ge 0$ ist

$$d^{k}: C^{k}(\mathfrak{U}, \mathcal{F}) \longrightarrow C^{k+1}(\mathfrak{U}, \mathcal{F})$$

$$(s_{i_{0}...i_{k}})_{i_{0} < ... < i_{k}} \mapsto \left(\sum_{\nu=0}^{k+1} (-1)^{\nu} s_{i_{0}...i_{\nu-1}i_{\nu+1}...i_{k+1}} \Big|_{U_{i_{0}} \cap ... \cap U_{i_{k+1}}} \right)_{i_{0} < ... < i_{k+1}}$$

ein Gruppenhomomorphismus.

- (iii) Es gilt $d^{k+1} \circ d^k = 0$ für alle $k \ge 0$, d.h. $C^{\bullet}(\mathfrak{U}, \mathcal{F})$ ist ein Komplex.
- (iv) Die Gruppe

$$\check{H}^k(\mathfrak{U},\mathcal{F}) := H^k(C^{\bullet}(\mathfrak{U},\mathcal{F}))$$

heißt k-te Čechkohomologiegruppe von \mathcal{F} bezüglich der Überdeckung \mathfrak{U} .

(v) Es gilt $\check{H}^0(\mathfrak{U}, \mathcal{F}) = \mathcal{F}(X)$.

Beweis. (iii) Durch Induktion über k:

$$k=0$$
: Sei $(s_i)_{i\in\mathbb{N}}\in\prod_{i\in\mathbb{N}}\mathcal{F}(U_i)=C^0(\mathfrak{U},\mathcal{F})$. Dann gilt

$$d^{0}((s_{i})_{i\in\mathbb{N}}) = (s_{j}|_{U_{i}\cap U_{j}} - s_{i}|_{U_{i}\cap U_{j}})_{i< j}$$

und damit mit $U_{ijl} := U_i \cap U_j \cap U_l$

$$d^{1}\left(d^{0}((s_{i})_{i\in\mathbb{N}})\right) = \left((s_{l} - s_{j})|_{U_{ijl}} - (s_{l} - s_{i})|_{U_{ijl}} + (s_{j} - s_{i})|_{U_{ijl}}\right)_{1 \le j \le l} = 0.$$

 $k \ge 1$: Sei nun $(s_{i_0...i_k})_{i_0 < ... < i_k} \in C^k(\mathfrak{U}, \mathcal{F})$. Dann gilt mit $\tilde{U}_k := U_{i_0} \cap ... \cap U_{i_k}$

$$(d^{k+1} \circ d^k) ((s_{i_0...i_k})_{i_0 < ... < i_k}) = d^{k+1} \left(\left(\sum_{\nu=0}^{k+1} (-1)^{\nu} s_{i_0...i_{\nu-1}i_{\nu+1}...i_{k+1}} \Big|_{\tilde{U}_{k+1}} \right)_{i_0 < ... < i_{k+1}} \right)$$

Die Vorzeichen kürzen sich weg und es bleibt $d^{k+1} \circ d^k = 0$.

(v) Es gilt $\check{H}^0(\mathfrak{U}, \mathcal{F}) = \text{Kern } d^0$. Weiter ist

$$C^0(\mathfrak{U},\mathcal{F}) = \prod_{i \in \mathbb{N}} \mathcal{F}(U_i).$$

Sei nun $(s_i)_{i\in\mathbb{N}}\in \text{Kern }d^0$. Dann gilt

$$d^{0}((s_{i})_{i \in \mathbb{N}}) = (s_{j} - s_{i}|_{U_{i} \cap U_{j}})_{i < j} \stackrel{!}{=} 0.$$

Da \mathcal{F} eine Garbe ist, existiert ein eindeutiger globaler Schnitt $s \in \mathcal{F}(X)$ mit $s_i = s|_{U_i}$, also $\check{H}^0(\mathfrak{U}, \mathcal{F}) = \text{Kern } d^0 \subseteq \mathcal{F}(U)$. Ist hingegen $s \in \mathcal{F}(U)$, so gilt selbstverständlich $(s|_{U_i})|_{U_i \cap U_j} - (s|_{U_j})|_{U_i \cap U_j} = 0$, also $s \in \text{Kern } d^0$.

Beispiel 13.2 Sei $X=\mathbb{S}^1$ sowie $\mathcal{F}=\mathbb{Z}$ die zur konstanten Prägarbe $\mathcal{F}(U)=\mathbb{Z}$ assoziierte Garbe auf X. Sei durch $\mathfrak{U}:=\{U_1,U_2\}$ mit

$$U_1 := \left\{ (\cos u, \sin u) \mid u \in \left[-\frac{\pi}{4}, \frac{5\pi}{4} \right] \right\}, \qquad U_2 := \left\{ (\cos u, \sin u) \mid u \in \left[\frac{3\pi}{4}, \frac{\pi}{4} \right] \right\}.$$

eine offene Überdeckung von X gegeben. Dann hat $U_1 \cap U_2 = D_1 \dot{\cup} D_2$ zwei Zusammenhangskomponenten. Für den Čechkomplex erhalten wir

$$C^0(\mathfrak{U}, \mathbb{Z}) = \mathcal{F}(U_1) \times \mathcal{F}(U_2) \cong \mathbb{Z}^2,$$

 $C^1(\mathfrak{U}, \mathbb{Z}) = \mathcal{F}(U_1 \cap U_2) \cong \mathbb{Z}^2,$
 $C^k(\mathfrak{U}, \mathbb{Z}) = 0, \quad \text{für } k \geqslant 0.$

Für d^0 gilt

$$d^0: \mathbb{Z}^2 = C^0(\mathfrak{U}, \mathbb{Z}) \longrightarrow C^1(\mathfrak{U}, \mathbb{Z}) = \mathbb{Z}^2, \qquad (a, b) \mapsto (b - a, b - a)$$

und damit Bild $(d^0) = \{(a, a) \in \mathbb{Z}^2\} = \Delta \mathbb{Z}$. Die Čechkohomologiegruppen ergeben sich dann zu

$$\check{H}^0(\mathfrak{U},\mathbb{Z}) = \mathbb{Z}(X) = \mathbb{Z},$$

$$\check{H}^1(\mathfrak{U},\mathbb{Z})=\mathrm{Kern}\ d^1/\mathrm{Bild}\ d^0=\mathbb{Z}^2/\Delta\mathbb{Z}\cong\mathbb{Z},$$

$$\check{H}^k(\mathfrak{U}, \mathbb{Z}) = 0$$
 für $k \geqslant 0$.

Definiton + **Proposition 13.3** Sei X ein topologischer Raum, $\mathcal{F} \in \underline{Ab}(X)$ sowie $\mathfrak{U} = \{U_i\}_{i \in \mathbb{N}}$ eine offene Überdeckung von X.

(i) Für $k \ge 0$ sei

$$C^{k}(\mathfrak{U}, \mathcal{F}) = \prod_{i_{0} < \dots < i_{k}} (\iota_{i_{0} \dots i_{k}})_{*} \mathcal{F}|_{U_{i_{0}} \cap \dots U_{i_{k}}},$$

wobei $\iota_{i_0...i_k}: U_{i_0} \cap ... \cap U_{i_k} \hookrightarrow X$ die Inklusion ist. Für eine offene Teilmenge $U \subseteq X$ ist also

$$\Gamma\left(U,\mathcal{C}^k(\mathfrak{U},\mathcal{F})\right) = \mathcal{C}^k(\mathfrak{U},\mathcal{F})(U) = \prod_{i_0 < \dots i_k} \mathcal{F}(U \cap U_{i_0} \cap \dots \cap U_{i_k}).$$

Insbesondere gilt für die globalen Schnitte

$$\Gamma\left(X,\mathcal{C}^k(\mathfrak{U},\mathcal{F})\right) = C^k(\mathfrak{U},\mathcal{F}).$$

(ii) Definiere für $k \ge 0$ Garbenmorphismen

$$d^k: \mathcal{C}^k(\mathfrak{U}, \mathcal{F}) \longrightarrow \mathcal{C}^{k+1}(\mathfrak{U}, \mathcal{F})$$

wie in 13.1(ii) und erhalte dadurch ebenfalls einen Komplex $\mathcal{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$.

(iii) Definiere einen weiteren Garbenmorphismus $\epsilon: \mathcal{F} \longrightarrow \mathcal{C}^0(\mathfrak{U}, \mathcal{F})$ wie folgt: Für jede offene Teilmenge $U \subseteq X$ sei ϵ_U der Gruppenhomomorphismus

$$\epsilon_U : \mathcal{F}(U) \longrightarrow \Gamma\left(U, \mathcal{C}^0(\mathfrak{U}, \mathcal{F})\right) = \prod_{i \in \mathbb{N}} \mathcal{F}(U \cap U_i)$$

$$s \mapsto (s|_{U \cap U_i})_{i \in \mathbb{N}}.$$

Dann ist ϵ wegen der Garbeneigenschaft ein Monomorphismus.

(iv) Die Sequenz

$$0 \longrightarrow \mathcal{F} \stackrel{\epsilon}{\longrightarrow} \mathcal{C}^0(\mathfrak{U}, \mathcal{F}) \stackrel{d^0}{\longrightarrow} \mathcal{C}^1(\mathfrak{U}, \mathcal{F}) \stackrel{d^1}{\longrightarrow} \mathcal{C}^2(\mathfrak{U}, \mathcal{F}) \stackrel{d^2}{\longrightarrow} \dots$$

ist exakt, also eine Auflösung von \mathcal{F} .

Beweis. (iv) Zeige zunächst die Exaktheit bei $\mathcal{C}^0(\mathfrak{U},\mathcal{F})$. Sei $U\subseteq X$ offen, $(s_i)_{i\in\mathbb{N}}\in\Gamma\left(U,\mathcal{C}^0(\mathfrak{U},\mathcal{F})\right)$.

Dann gilt $(s_i)_{i\in\mathbb{N}} \in \text{Kern } d^0$ genau dann, wenn gilt $s_i|_{U\cap U_i\cap U_j} = s_j|_{U\cap U_i\cap U_j}$ für alle $i,j\in\mathbb{N}$. Da \mathcal{F} eine Garbe ist, gibt es einen eindeutigen Schnitt $s\in\mathcal{F}(U)$ mit $s_i=s|_{U\cap U_i}$ für alle $i\in\mathbb{N}$, das heißt es gilt $(s_i)_{i\in\mathbb{N}} = \epsilon_U(s)$ und damit im Bild von ϵ , also Kern $d^0 = \text{Bild } \epsilon$, was die Exaktheit an dieser Stelle bedeutet. Sei nun $k\geqslant 1$ beliebig. Es genügt, die Exaktheit halmweise zu zeigen. Sei also $x\in X, j\in\mathbb{N}$ mit $x\in U_j$.

Beh. (a) Es gibt einen Gruppenhomomorphismus

$$h_x^k: \mathcal{C}_x^k(\mathfrak{U}, \mathcal{F}) \longrightarrow \mathcal{C}_x^{k-1}(\mathfrak{U}, \mathcal{F})$$

mit $d_x^{k-1} \circ h_x^k + h_x^{k+1} \circ d_x^k = id$.

Dann gilt für $\overline{s} \in \text{Kern } d_x^k$

$$\overline{s} = \operatorname{id}(\overline{s}) = d_x^{k-1}(h_x^k(\overline{s})) + h_x^{k+1}(d_x^k(\overline{s})) = d_x^{k-1}(h_x^k(\overline{s})) \in \operatorname{Bild} d_x^{k-1}$$

also Kern $d_x^k \subseteq \text{Bild } d_x^{k-1}$. Wegen $d_x^k \circ d_x^{k-1} = 0$ folgt dann bereits Kern $d_x^k = \text{Bild } d_x^{k-1}$, das heißt, der Komplex ist exakt. Es bleibt noch die Behauptung zu zeigen.

Bew. (a) Sei $\overline{s} \in \mathcal{C}_x^k(\mathfrak{U}, \mathcal{F})$, das heißt es ist $\overline{s} = [(V, s)]$ mit $V \subseteq U_j$ und $s = (s_{i_0...i_k})_{i_0 < ... < i_k} \in \mathcal{F}(V \cap U_{i_0} \cap ... \cap U_{i_k})$. Sei weiter

$$t_{i_0...i_{k-1}} := \begin{cases} 0, & \text{falls } j \in \{i_0, ... i_{k-1}\} \\ (-1)^{\nu} s_{i_0, ... i_{\nu-1}, j, i_{\nu}, ... i_{k-1}}, & \text{falls } i_{\nu-1} < j < i_{\nu}. \end{cases}$$

Setze nun

$$h_x^k(\overline{s}) := [(V, (t_{i_0,\dots,i_{k-1}})_{i_0 < \dots i_{k-1}}]$$

und zeige, dass der so definierte Homomorphismus h_x^k die gewünschte Eigenschaft erfüllt (Übung).

Folgerung 13.4 Sei X ein topologischer Raum, $\mathcal{F} \in \underline{\mathcal{A}b}(X)$ eine Garbe abelscher Gruppen auf X sowie $\mathfrak{U} = \{U_i\}_{i \in \mathbb{N}}$ eine offene Überdeckung von X. Dann gibt es für jedes $k \geq 0$ einen natürlichen Homomorphismus

$$\check{H}^k(\mathfrak{U},\mathcal{F}) \longrightarrow H^k(X,\mathcal{F}).$$

Beweis. Sei $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{\bullet}$ eine injektive Auflösung von \mathcal{F} .

Nach Übungsaufgabe 10.2 gibt es einen Morphismus von Komplexen $\phi^{\bullet}: \mathcal{C}^{\bullet}(\mathfrak{U}, \mathcal{F}) \longrightarrow \mathcal{I}^{\bullet}$, welcher auf \mathcal{F} die Identität induziert. Anwenden des globalen Schnittfunktors liefert die gewünschten Gruppenhomomorphismen.

§ 14 Kohomologie quasikohärenter Garben

Definition 14.1 Sei X ein topologischer Raum, \mathcal{F} eine Garbe abelscher Gruppen auf X. \mathcal{F} heißt welk, falls für alle offenen Teilmengen $U \subseteq V \subseteq X$ die Restriktionsabbildung $\rho_V^U : \mathcal{F}(U) \longrightarrow \mathcal{F}(V)$ surjektiv ist.

Beispiel 14.2 Sei X ein topologischer Raum.

(i) Sei $x \in X$ sowie A eine abelsche Gruppe. Dann ist die Wolkenkratzergarbe

$$x_*(A)(U) := \begin{cases} A, & \text{falls } x \in U \\ 0, & \text{sonst.} \end{cases}$$

welk.

(ii) Ist X irreduzibel, so ist jede Konstante Garbe auf X welk.

Proposition 14.3 Sei $0 \longrightarrow \mathcal{F}' \stackrel{\alpha}{\longrightarrow} \mathcal{F} \stackrel{\beta}{\longrightarrow} \mathcal{F}'' \longrightarrow 0$ eine kurze exakte Sequenz in $\underline{\mathcal{A}b}(X)$.

(i) Ist \mathcal{F}' welk, so ist für jede offene Teilmenge $U \subseteq X$ die Sequenz

$$0 \longrightarrow \mathcal{F}'(U) \xrightarrow{\alpha_U} \mathcal{F}(U) \xrightarrow{\beta_U} \mathcal{F}''(U) \longrightarrow 0$$

exakt, das heißt β_U ist surjektiv.

(ii) Sind \mathcal{F} und \mathcal{F}' welk, so ist auch \mathcal{F}'' welk.

Beweis. (i) Sei $s'' \in \mathcal{F}''(U)$ und zeige: Es gibt ein $s \in \mathcal{F}(U)$ mit $\beta_U(s) = s''$. Da β ein Epimorphismus ist, gibt es eine offene Überdeckung $\{U_i\}_{i\in I}$ von U und $s_i \in \mathcal{F}(U_i)$ mit $\beta_{U_i}(s_i) = s''|_{U_i}$. Definiere nun

$$\Phi := \{ (V, s) \mid V \subseteq U \text{ offen, } s \in \mathcal{F}(V) \text{ mit } (\beta_U) \mid_V = \beta_V(s) = s'' \mid_V \}$$

Wegen $(U_i, s_i) \in \Phi$ ist Φ nichtleer. Außerdem ist Φ durch

$$(V,s) \leqslant (V',s') : \iff V \subseteq V' \text{ und } s'|_V = s$$

halbgeordnet und für jede aufsteigende Kette $(V_1, s_1) \leq (V_2, s_2) \leq \ldots$ in Φ ist durch

$$V := \bigcup_{i=1}^{\infty} V_i$$

sowie der Verklebung der s_i (Garbeneigenschaft) eine obere Schranke gegeben. Zorns Lemma liefert also die Existenz eines maximalen Elements $(U_0, s_0) \in \Phi$.

Beh. (a) Es gilt $U_0 = U$.

Bew. (a) Angenommen es gelte $U_0 \subsetneq U$. Dann wähle $x \in U \setminus U_0$ sowie $(V, s_1) \in \Phi$ mit $x \in V$. Dann gilt

$$s_1|_{U_0 \cap V} - s_0|_{U_0 \cap V} \in \text{Kern } \beta_{U_0 \cap V} = \text{Bild } \alpha_{U_0 \cap V},$$

das heißt es gibt ein $s' \in \mathcal{F}(U_0 \cap V)$ mit

$$\alpha(s')|_{U_0 \cap V} = (s_1 - s_0)|_{U_0 \cap V}.$$

Da \mathcal{F}' welk ist, gilt sogar $s' \in \mathcal{F}(V)$. Damit stimmen $s_1 - \alpha(s')$ und s_0 auf $U_0 \cap V$ überein, es gibt also $s \in \mathcal{F}(U_0 \cap V)$ mit $s|_{U_0} = s_0$, $s|_V = s_1 - \alpha(s')$ und $\beta_{U_0 \cap V}(s) = s''|_{U_0 \cup V}$. Damit ist $(U_0, s_0) < (U_0 \cup V, s) \in \Phi$, ein Widerspruch zur Maximalität von (U_0, s_0) .

Damit gilt $\beta_U(s) = s''$ und β_U ist surjektiv, was zu zeigen war.

(ii) Seien $\tilde{U} \subseteq U$ offen in X und $\tilde{s}'' \in \mathcal{F}''(\tilde{U})$. Nach (i) gibt es $\tilde{s} \in \mathcal{F}(\tilde{U})$ mit $\beta_{\tilde{U}}(\tilde{s}) = \tilde{s}''$. Da \mathcal{F} welk ist, gibt es $s \in \mathcal{F}(U)$ mit $\mathcal{F}\rho_{\tilde{U}}^U(s) = \tilde{s}$. Dann gilt für $s'' := \beta_U(s) \in \mathcal{F}''(U)$:

$$_{\mathcal{F}''}\rho_{\tilde{U}}^U(s'') = \beta_{\tilde{U}}(_{\mathcal{F}}\rho_{\tilde{U}}^U(s)) = \beta_{\tilde{U}}(\tilde{s}) = \tilde{s}'',$$

das heißt $\rho_{\tilde{U}}^U$ ist surjektiv, was zu zeigen war.

Definition 14.4 Sei X ein topologischer Raum, $U \subseteq X$ offen und \mathcal{F} eine Garbe abelscher Gruppen auf U. Ist $\iota: U \hookrightarrow X$ die Inklusion, so ist die durch Null fortgesetzte Garbe $\iota_!(\mathcal{F})$ die zur Prägarbe

$$V \mapsto \begin{cases} \mathcal{F}(V), & \text{falls } V \subseteq U \\ 0 & \text{sonst} \end{cases}$$

assozierte Garbe auf X.

Proposition 14.5 Ein (X, \mathcal{O}_X) ein lokal geringter Raum, \mathcal{I} eine injektive \mathcal{O}_X -Modulgarbe auf X. Dann ist \mathcal{I} welk.

Beweis. Seien $U' \subseteq U \subseteq X$ offen in X. Zu zeigen: Die Restriktionsabbildung $\rho_{U'}^U : \mathcal{I}(U) \longrightarrow \mathcal{I}(U')$ ist surjektiv. Es gilt

$$\mathcal{I}(U) \cong \operatorname{Hom}_{\mathcal{O}_X} \left(\mathcal{O}_X|_U, \mathcal{I}|_U \right),$$

denn: Ein Garbenmorphismus $\phi: \mathcal{O}_X \longrightarrow \mathcal{I}$ wird eindeutig durch $\phi(1)$ bestimmt. Fasse nun $\mathcal{O}_X|_{U'}$ als Untergarbe von $\mathcal{O}_X|_U$ auf. Sei dazu $\mathcal{O}_U := \iota_! \mathcal{O}_X|_U$; dann gilt $\mathcal{O}_{U'} \subseteq \mathcal{O}_U$. Da \mathcal{I} injektiv ist, gilt

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_{U'}, \mathcal{I}) \cong \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_U, \mathcal{I}).$$

Insbesondere ist also

$$\rho_{U'}^U : \mathcal{I}(U) = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_U, \mathcal{I}) \longrightarrow \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_{U'}, \mathcal{I}) = \mathcal{I}(U')$$

surjektiv, was zu zeigen war.

Proposition 14.6 Sei (X, \mathcal{O}_X) ein geringter Raum, \mathcal{F} eine welke \mathcal{O}_X -Modulgarbe auf X. Dann Ist \mathcal{F} azyklisch, das heißt es gilt

$$H^i(X,\mathcal{F}) = 0$$

für alle $i \ge 1$.

Beweis. Sei \mathcal{I} eine injektive \mathcal{O}_X -Modulgarbe auf X mit $\mathcal{F} \subseteq \mathcal{I}$ und setze $\mathcal{G} := \mathcal{I}/\mathcal{F}$. Wir erhalten damit eine kurze exakte Sequenz

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I} \longrightarrow \mathcal{G} \longrightarrow 0.$$

Nach 14.5 ist \mathcal{I} welk, nach 14.3 ist also auch \mathcal{G} welk. Die lange exakte Kohomologiesequenz ist

$$0 \to \mathcal{F}(X) \xrightarrow{\alpha_0} \mathcal{I}(X) \xrightarrow{\beta_0} \mathcal{G}(X) \xrightarrow{\delta^0} H^1(X,\mathcal{F}) \xrightarrow{\alpha_1} H^1(X,\mathcal{I}) \xrightarrow{\beta_1} H^1(X,\mathcal{G}) \xrightarrow{\delta^1} H^2(X,\mathcal{F}) \xrightarrow{\alpha_2} \dots$$

Nach 14.2 (i) ist β_0 surjektiv, also Kern $\delta^0 = \text{Bild } \beta_0 = \mathcal{G}(X)$. Damit ist Kern $\alpha_1 = \text{Bild } \delta^0 = 0$, α_1 ist also injektiv. Da \mathcal{I} injektiv ist, also $H^1(X,\mathcal{I}) = 0$ für $i \geq 1$. Dann folgt aber bereits $H^1(X,\mathcal{F}) = 0$. Mit gleichem Argument gilt auch $H^1(X,\mathcal{G}) = 0$. Iterativ folgt damit die Behauptung.

Proposition 14.7 Sei $X = \operatorname{Spec} R$ ein affines noethersches Schema, I ein injektiver R-Modul. Dann ist \tilde{I} welk.

Beweis. Da aus der Surjektivität von $\rho^X_{U'}=\rho^U_{U'}\circ \rho^X_U$ für $U'\subseteq U\subseteq X$ bereits die Surjektivität von

 $\rho^U_{U'}$ folgt, genügt es zu zeigen, dass für alle offenen Teilmengen $U\subseteq X$ die Restriktionsabbildung

$$\rho_U^X : \tilde{I}(X) = I \longrightarrow \tilde{I}(U)$$

surjektiv ist. Sei dazu zunächst U = D(f) für ein $f \in R$. Dann ist

$$\tilde{I}(U) = \tilde{I}(D(f)) = I_f = I \otimes_R R_f.$$

Sei also $\frac{b}{f^n} \in I_f$ mit $b \in I$ und $n \in \mathbb{N}_0$ und zeige, dass es ein $a \in I$ gibt mit

$$\rho_{D(f)}^X(a) = \frac{a}{1} = \frac{b}{f^n}$$

in I_f , also $f^m(f^na-b)=0$ für ein $m\in\mathbb{N}_0$. Für jedes $m\in\mathbb{N}_0$ sei nun die R-lineare Abbildung

$$\phi_m: R \longrightarrow (f^{m+n}), \qquad 1 \mapsto f^{m+n}$$

gegeben. Dann gilt für den Kern

$$\operatorname{Kern} \phi_m = \operatorname{Ann}(f^{m+n}) = \{ r \in R \mid rf^{m+n} = 0 \} \subset R.$$

Außerdem gilt $\operatorname{Ann}(f^k) \subseteq \operatorname{Ann}(f^{k+1})$ für alle $k \in \mathbb{N}_0$. Da R noethersch ist, gibt es ein $m \in \mathbb{N}_0$, sodass

$$\operatorname{Ann}(f^m) = \operatorname{Ann}(f^{m+1}) = \dots = \operatorname{Ann}(f^{m+n}) = \dots,$$

das heißt es gilt Kern $\phi_m = \text{Ann}(f^m)$. Mit dem Homomorpiesatz ist

$$R/\operatorname{Ann}(f^m) \cong (f^{m+n})$$

als R-Moduln. Sei nun durch

$$\psi: R \longrightarrow I, \qquad 1 \mapsto f^m b$$

eine weitere R-lineare Abbildung definiert. Dann gilt $Ann(f^m) \subseteq Kern \psi, \psi$ induziert also

$$\overline{\psi}: R / \mathrm{Ann}(f^m) \cong (f^{m+n}) \longrightarrow I.$$

Iist injektiv, wir können $\overline{\psi}$ also fortsetzen zu $\tilde{\overline{\psi}}:R\longrightarrow I.$ Setze nun $a:=\tilde{\overline{\psi}}.$ Dann gilt

$$f^m b = \psi(1) = \overline{\psi}(f^{m+n}) = \frac{\tilde{\overline{\psi}}}{\tilde{\psi}}(f^{m+n} \cdot 1) = \frac{\tilde{\overline{\psi}}}{\tilde{\psi}}(f^{n+m})\frac{\tilde{\overline{\psi}}}{\tilde{\psi}} = f^{m+n}a,$$

woraus also die Behauptung für den fall U = D(f) folgt. Sei nun U beliebig. Sei $f \in R$ mit

 $D(f) \subseteq U$ und $t \in \tilde{I}(U)$. Dann gibt es nach dem Spezialfall ein $s \in I$ mit $s|_{D(f)} = t|_{D(f)}$. Damit gilt

$$\operatorname{Supp}(s-t) \subseteq \operatorname{Supp}(\tilde{I}) \cap \operatorname{Supp}(U \backslash D(f)).$$

Zeige nun die Behauptung durch Induktion über dim $\operatorname{Supp}(\tilde{I}) =: n$: Für n=0 ist \tilde{I} eine Wolkenkratzergarbe (bzw. eine Summe von Wolkenkratzergarben) und damit welk. Den Fall $n \geq 1$ wollen wir nicht diskutieren - allerdings sei an dieser Stelle ein algebraischer Import bemerkt: Der R-Modul $J \subseteq I$, der von den Elementen mit Träger in $\overline{\operatorname{Supp}(\tilde{I})}\backslash D(f)$ ist injektiv.

Folgerung 14.8 Sei $X = \operatorname{Spec} R$ ein noethersches, affines Schema und \mathcal{F} eine quasikohärente Garbe auf X. Dann gilt für alle $i \geq 1$

$$H^i(X,\mathcal{F})=0.$$

Beweis. Sei also $\mathcal{F} = \tilde{F}$ für den R-Modul $F = \mathcal{F}(X)$ sowie

$$0 \longrightarrow F \longrightarrow I^{\bullet}$$

eine injektive Auflösung von F in R-Mod. Dann ist die Sequenz

$$0 \longrightarrow \tilde{F} \longrightarrow \tilde{I}^{\bullet}$$

ebenfalls exakt, wir haben also eine Auflösung von \mathcal{F} durch welke, also azyklische Garben. Damit gilt nach 12.6 und wegen der Exaktheit

$$H^{i}(X, \mathcal{F}) = H^{i}(\Gamma(X, \tilde{I}^{\bullet})) = H^{i}(I^{\bullet}) = 0$$

für $i \ge 1$, was zu zeigen war.

Folgerung 14.9 Sei (X, \mathcal{O}_X) ein noethersches Schema. Dann lässt sich jede quasikohärente Garbe auf X in eine welke, quasikohärente Garbe einbetten.

Beweis. Sei \mathcal{F} quasikohärent und $X = \bigcup_{i=1}^n U_i$ eine offene Überdeckung von X durch affine, noethersche Schemata $U_i = \operatorname{Spec} R_i$. Nach Voraussetzung gibt es R_i -Moduln M_i mit $\mathcal{F}|_{U_i} = \tilde{M}_i$. Bette nun M_i in injektive R_i -Moduln I_i für jedes $1 \leq i \leq n$ ein. Nach 14.5 ist die dazu gehörige quasikohärente Garbe \tilde{I}_i welk. Man sieht leicht, dass auch das direkte Bild $\iota_{i*}(\tilde{I}_i)$ für die Inklusion $\iota_i:U_i \hookrightarrow X$ welk ist. Setze nun

$$\rho_i: \tilde{M}_i = \mathcal{F}|_{U_i} \hookrightarrow \tilde{I}_i$$

und

$$\rho: \mathcal{F} \hookrightarrow \bigoplus_{i=1}^{n} \iota_{i_{*}}(\tilde{I}_{i})$$

Dann ist ρ eine Einbettung von \mathcal{F} in eine injektive, quasikohärente Garbe, woraus die Behauptung folgt.

Proposition 14.10 Sei X ein topologischer Raum, $\mathcal{F} \in \underline{\mathcal{A}b}(X)$ welk und \mathfrak{U} eine offene Überdeckung von X. Dann gilt für alle $i \geqslant 1$

$$\check{H}^i(\mathfrak{U},\mathcal{F})=0.$$

Beweis. Wir zeigen zunächst, dass $C^k(\mathfrak{U}, \mathcal{F})$ welk ist für alle $k \geq 0$, falls \mathcal{F} welk ist. Ist \mathcal{F} welk, so ist auch die Einschränkung $\mathcal{F}|_{U_{i_0} \cap \ldots \cap U_{i_k}}$ welk für alle $i_0 < \ldots < i_k$. Weiter ist für stetige Abbildungen auch das direkte Bild $f_*\mathcal{F}$ welk, es ist also $(\iota_{i_0\ldots i_k})_*\mathcal{F}|_{U_{i_0}\cap\ldots\cap U_{i_k}}$ welk. Damit ist auch das direkte Produkt

$$C^{k}(\mathfrak{U}, \mathcal{F}) = \prod_{i_{0} < \dots < i_{k}} (\iota_{i_{0} \dots i_{k}}) * \mathcal{F}|_{U_{i_{0}} \cap \dots \cap U_{i_{k}}}$$

welk. Wählen wir nun mit

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$$

eine Auflösung von \mathcal{F} , so gilt nach 14.6

$$\check{H}^{i}(\mathfrak{U},\mathcal{F}) = H^{i}(C^{\bullet}(\mathfrak{U},\mathcal{F})) = H^{i}(\Gamma(X,\mathcal{C}^{\bullet}(\mathfrak{U},\mathcal{F}))) = H^{i}(X,\mathcal{F}) = 0$$

für alle $i \ge 1$, was zu zeigen war.

Lemma 14.11 Sei X noethersches separiertes Schema und $\mathfrak{U} = \{U_i\}_{i \in \mathbb{N}}$ eine offene, affine Überdeckung von X. Dann gibt es auch für die Čechkohomologie eine lange exakte Sequenz.

Beweis. Sei also eine kurze exakte Sequenz $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$ quasikohärenter Garben gegeben. Da X separiert ist, ist $U_{i_0} \cap \ldots \cap U_{i_k}$ affin für alle $i_0 < \ldots < i_k$. Nach 14.6 gilt also

$$H^{i}\left(U_{i_{0}}\cap\ldots\cap U_{i_{k}},\mathcal{F}|_{U_{i_{0}}\cap\ldots\cap U_{i_{k}}}\right)=0$$

für alle $i \ge 1$, das heißt die Sequenz

$$0 \longrightarrow \mathcal{F}\left(U_{i_0} \cap \ldots \cap U_{i_k}\right) \longrightarrow \mathcal{G}\left(U_{i_0} \cap \ldots \cap U_{i_k}\right) \longrightarrow \mathcal{H}\left(U_{i_0} \cap \ldots \cap U_{i_k}\right) \longrightarrow 0$$

ist exakt. Produktbildung liefert exakte Sequenzen

$$0 \longrightarrow \prod_{i \in \mathbb{N}} \mathcal{F}(U_i) \longrightarrow \prod_{i \in \mathbb{N}} \mathcal{G}(U_i) \longrightarrow \prod_{i \in \mathbb{N}} \mathcal{H}(U_i) \longrightarrow 0$$

$$0 \longrightarrow \prod_{i < j \in} \mathcal{F}(U_i \cap U_j) \longrightarrow \prod_{i < j} \mathcal{G}(U_i \cap U_j) \longrightarrow \prod_{i < j} \mathcal{H}(U_i \cap U_j) \longrightarrow 0$$

$$0 \longrightarrow \prod_{i_0 < \dots < i_k} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k}) = C^k(\mathfrak{U}, \mathcal{F}) \longrightarrow C^k(\mathfrak{U}, \mathcal{G}) \longrightarrow C^k(\mathfrak{U}, \mathcal{H}) \longrightarrow 0,$$

also eine exakte Sequenz von Komplexen. Dazu gibt es aber eine lange exakte Sequenz, woraus die Behauptung folgt. \Box

Satz 14.12 Sei (X, \mathcal{O}_X) ein noethersches, separiertes Schema, \mathcal{F} eine quasikohärente \mathcal{O}_X -Modulgarbe auf X und \mathfrak{U} eine offene, affine Überdeckung von X. Dann gilt für alle $i \geq 1$

$$H^i(X,\mathcal{F}) \cong \check{H}^i(\mathfrak{U},\mathcal{F}).$$

Beweis. Wir beweisen die Aussage durch Induktion über i.

i=0: Klar, denn es gilt $H^0(\mathcal{F},X)=\mathcal{F}(X)=\Gamma(X,\mathcal{F})=\check{H}^0(\mathfrak{U},\mathcal{F}).$

 $i \geqslant 0$: Bette \mathcal{F} in eine welke, quasikohärente Garbe \mathcal{G} ein und setze $\mathcal{H} := \mathcal{G}/\mathcal{F}$. Dann ist auch \mathcal{H} quasikohärent und die Sequenz

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

ist exakt. Damit gibt es eine lange, exakte Kohomologiesequenz

$$0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to H^1(X,\mathcal{F}) \to H^1(X,\mathcal{G}) \to H^1(X,\mathcal{H}) \to H^2(X,\mathcal{F}) \to \dots$$

und wegen $H^i(X,\mathcal{G}) = 0$ für alle $i \ge 1$ wir diese zu

$$0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to H^1(X,\mathcal{F}) \to 0 \to H^1(X,\mathcal{H}) \to H^2(X,\mathcal{F}) \to 0 \to \dots$$

da diese exakt ist, folgt daraus

$$H^i(X,\mathcal{H}) \cong H^{i+1}(X,\mathcal{F})$$

für alle $i \geq 1$. Nach Lemma 14.11 gibt es für die Čechkohomologie ebenfalls eine lange exakte Sequenz

$$0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to \check{H}^1(\mathfrak{U},\mathcal{F}) \to \check{H}^1(\mathfrak{U},\mathcal{G}) \to \check{H}^1(\mathfrak{U},\mathcal{H}) \to \check{H}^2(\mathfrak{U},\mathcal{F}) \to \dots$$

welche zu

$$0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to \check{H}^1(\mathfrak{U},\mathcal{F}) \to 0 \to \check{H}^1(\mathfrak{U},\mathcal{H}) \to \check{H}^2(\mathfrak{U},\mathcal{F}) \to 0 \to \dots$$

wird. Auf gleiche Weise erhalten wir $\check{H}^i(\mathfrak{U},\mathcal{H})\cong \check{H}^{i+1}(\mathfrak{U},\mathcal{F})$. Damit gilt

$$\check{H}^{1}(\mathfrak{U},\mathcal{F}) = \check{H}^{0}(\mathfrak{U},\mathcal{H}) / \check{H}^{0}(\mathfrak{U},\mathcal{G}) \cong H^{0}(X,\mathcal{H}) / H^{0}(X,\mathcal{G}) \cong H^{1}(X,\mathcal{F})$$

und

$$\check{H}^2(\mathfrak{U},\mathcal{F}) \cong \check{H}^1(\mathfrak{U},\mathcal{H}) \cong H^1(X,\mathcal{H}) \cong H^2(X,\mathcal{F}).$$

Iterativ folgt damit die Behauptung.

Beispiel 14.13 Sei $X = \mathbb{A}_k^2 \setminus \{(0,0)\}$ und $\mathfrak{U} = \{U_1, U_2\}$ mit $U_1 = D(x), U_2 = D(y)$ eine offene Überdeckung von X sowie $\mathcal{F} = \mathcal{O}_X = \mathcal{O}_{\mathbb{A}_k^2 \setminus \{(0,0)\}}$ die Strukturgarbe. Dann ist

$$\check{C}^0(\mathfrak{U},\mathcal{O}_X) = \mathcal{O}_X(U_1) \oplus \mathcal{O}_X(U_2) = k[X,Y]_X \oplus k[X,Y]_Y$$

$$\check{C}^1(\mathfrak{U},\mathcal{O}_X) = \mathcal{O}_X(U_1 \cap U_2) = \mathcal{O}_X(D(XY)) = k[X,Y]_{XY}.$$

Weiter ist

$$d^0: \check{C}^0(\mathfrak{U}, \mathcal{O}_X) \longrightarrow \check{C}^1(\mathfrak{U}, \mathcal{O}_X), \qquad \left(\frac{f}{X^i}, \frac{g}{Y^j}\right) \mapsto \frac{g}{Y^j} - \frac{f}{X^i}$$

Damit ist

$$H^1(X, \mathcal{O}_X) = \check{H}^1(\mathfrak{U}, \mathcal{O}_X) = \check{C}^1(\mathfrak{U}, \mathcal{O}_X) / d^0(\check{C}^1(\mathfrak{U}, \mathcal{O}_X))$$

der von den $\frac{1}{X^iY^j}$ für $i,j\geqslant 1$ erzeugte unendlichdimensionale k-Vektorraum.

§ 15 Kohomologie auf projektiven Schemata

Erinnerung + **Bemerkung 15.1** Sei $S = \bigoplus_{d=0}^{\infty} S_d$ ein graduierter, kommutativer Ring mit Eins. Definiere

$$\operatorname{Proj} S := \{ \mathfrak{p} \in \operatorname{Spec} S \mid \mathfrak{p} \text{ ist homogen mit } S_+ \not\subset \mathfrak{p} \},$$

wobei $S_+ := \bigoplus_{d=1}^{\infty} S_d$ das irrelevante Ideal von S ist. Die Menge Proj S wird homogenes Spektrum von S genannt. Für ein homogenes Ideal $I \subset S$ setzen wir

$$V(I) := \{ \mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supseteq I \}.$$

Wir erhalten damit auf Proj S eine Topologie, die Zariski-Topologie, indem wir V(I) als abgeschlossen definieren. Für homogenes Elemente $f \in S$ bilden die Mengen

$$D_+(f) := \{ \mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p} \}$$

eine Basis der Topologie. Die Strukturgarbe auf ProjS erhalten wir durch Fortsetzen von

$$\mathcal{O}_{\operatorname{Proj} S}\left(D_{+}(f)\right) := S_{(f)} := \left\{ \frac{s}{f^{n}} \mid s \in S, \ n \in \mathbb{N}, \ \deg s = n \deg f \right\}$$

zu einer Garbe auf Proj S, wobei $f \in S$ homogen ist. Damit wird (Proj S, $\mathcal{O}_{\text{Proj }S}$) zu einem lokal geringten Raum und wir schreiben Proj S statt (Proj S, $\mathcal{O}_{\text{Proj }S}$). Mit

$$(D_+(f), \mathcal{O}_{\operatorname{Proj} S}|_{D_+(f)}) \cong (\operatorname{Spec} S_{(f)}, \mathcal{O}_{\operatorname{Spec} S_{(f)}})$$

erhalten wir eine affine Überdeckung von ProjS, wodurch ProjS also zum Schema wird. Ist $\mathfrak{p} \in \operatorname{Proj} S$, so ist der lokale Ring in \mathfrak{p} gegeben durch

$$\mathcal{O}_{\operatorname{Proj} S, \mathfrak{p}} = S_{(\mathfrak{p})} = \left\{ \frac{s}{r} \mid s, r \in S \text{ homogen, } r \notin \mathfrak{p}, \text{ deg } r = \deg s \right\}.$$

Sei nun $M = \bigoplus_{d \in \mathbb{Z}} M_d$ ein graduierter S-Modul.

(i) M bestimmt eine Garbe \tilde{M} auf Proj S durch

$$\tilde{M}(D_{+}(f)) = M_{(f)} = \left\{ \frac{m}{f^n} \mid m \in M \text{ homogen }, \deg m = n \deg f \right\}.$$

Für jedes homogene $f \in S$. Insbesondere ist

$$\Gamma(X, \tilde{M}) = \tilde{M}(X) = M_0.$$

(ii) Für die Halme gilt $\tilde{M}_x = M_{(\mathfrak{p})}$ für $x = \mathfrak{p} \in \operatorname{Proj} S$.

Bemerkung 15.2 Sei R ein noetherscher Ring, $S = R[X_0, ..., X_n]$, $S = \text{Proj } S =: \mathbb{P}_R^n$. Ist \mathcal{F} eine kohärente \mathcal{O}_X Modulgarbe auf X, so gibt es einen graduierten, endlich erzeugten S-Modul M, sodass gilt $\mathcal{F} = \tilde{M}$.

Beweis. Siehe Übungsaufgabe 9.3.

Definition + **Bemerkung 15.3** Sei $S = \bigoplus_{d=0}^{\infty}$ ein graduierter, kommutativer Ring mit Eins und $X = \operatorname{Proj} S$.

(i) Es gilt $\tilde{S} = \mathcal{O}_X$.

(ii) Für $n \in \mathbb{Z}$ sei $S(n) = \bigoplus_{d=0}^{\infty} S(n)_d$ der graduierte S-Modul mit getwisteter Graduierung

$$S(n)_d = S_{d+n}$$
.

- (iii) $\mathcal{O}_X(n) := \widetilde{S(n)}$ heißt die n-fach getwistete Strukturgarbe.
- (iv) Ist $S = R[X_0, \dots, X_n]$, so ist

$$H^0(X, \mathcal{O}_X(1)) = \Gamma(X, \mathcal{O}_X(1)) = S(1)_0 = S_1$$

der freie R-Modul mit Basis X_0, \ldots, X_n . Allgemeiner ist

$$H^0(X, \mathcal{O}_X(d)) = \Gamma(X, \mathcal{O}_X(d)) = S(d)_0 = S_d$$

der freie R-Modul erzeugt von den Monomen von Grad d, das heißt die

$$\left\{ X_0^{d_0} \cdots X_n^{d_n} \mid \sum_{i=0}^n d_i = d \right\}$$

bilden eines Basis. Insbesondere gilt damit für alle d < 0

$$H^0(X, \mathcal{O}_X(d)) = 0.$$

Bemerkung 15.4 Sei R ein noetherscher Ring und $X \subseteq \mathbb{P}^n_R$ ein abgeschlossenes Unterschema sowie $j: X \hookrightarrow \mathbb{P}^n_R$ die Einbettung. Ist \mathcal{F} eine Garbe abelscher Gruppen auf X, so gilt

$$H^i(X,\mathcal{F}) \cong H^i(\mathbb{P}^n_R,j_*\mathcal{F})$$

für alle $i \ge 0$.

Beweis. Ist $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{J}^{\bullet}$ eine welke Auflösung. Dann ist $0 \longrightarrow j_*\mathcal{F} \longrightarrow j_*\mathcal{J}^{\bullet}$ eine welke Auflösung von $j_*\mathcal{F}$. Aus $\Gamma(X,\mathcal{J}^k) = \Gamma(\mathbb{P}^n_R,j_*\mathcal{J}^k)$ folgt dann $H^i(X,\mathcal{F}) = H^i(\mathbb{P}^n_R,j_*\mathcal{F})$, was zu zeigen war.

Satz 15.5 Sei R ein noetherscher Ring, $n \ge 1$, $S = R[X_0, \ldots, X_n]$ und $(X, \mathcal{O}_X) := (\mathbb{P}^n_R, \mathcal{O}_{\mathbb{P}^n_R})$.

(i) Es gilt für die n-te Kohomologiegruppe der Garbe $\mathcal{O}_X(-n-1)$

$$H^n(X, \mathcal{O}_X(-n-1)) \cong R.$$

(ii) Für jedes $d \in \mathbb{Z}$ qibt es eine natürliche, bilineare Abbildung

$$\beta: H^0(X, \mathcal{O}_X(d)) \times H^n(X, \mathcal{O}_X(-d-n-1)) \longrightarrow R.$$

Diese ist eine nicht ausgeartete Paarung zwischen freien R-Moduln von endlichem Rang. (iii) Für alle $i \notin \{0, n\}$ und alle $d \in \mathbb{Z}$ ist

$$H^i(X, \mathcal{O}_X(d)) = 0.$$

Beweis. (i) Sei $U_i = D(X_i)$ und $\mathfrak{U} = \{U_0, \dots, U_n\}$ die kanonische Überdeckung von X durch affine, offene Teilmengen. Nach 14.9 gilt dann

$$H^{i}(X, \mathcal{O}_{X}(d)) = \check{H}^{i}(\mathfrak{U}, \mathcal{O}_{X}(d))$$

für alle $i \in \mathbb{N}_0$ und $d \in \mathbb{Z}$. Damit folgt sofort

$$H^i(X, \mathcal{O}_X(d)) = 0$$

für alle $i \ge n+1$ und $d \in \mathbb{Z}$. Wir betrachten nun den Čech-Komplex an der n-ten Stelle:

$$\dots \stackrel{d^{n-2}}{\to} \bigoplus_{i=0}^{n} \mathcal{O}_X(d)(U_0 \cap \dots \cap U_{i-1} \cap U_{i+1} \cap \dots \cap U_n) \stackrel{d^{n-1}}{\to} \mathcal{O}_X(d)(U_0 \cap \dots \cap U_n) \stackrel{d^n}{\to} 0 \to \dots$$

Es gilt

$$\check{H}^n(\mathfrak{U}, \mathcal{O}_X(d)) = \operatorname{Kern} d^n / \operatorname{Bild} d^{n-1}.$$

Es ist zum einen

$$\operatorname{Kern} d^{n} = \mathcal{O}_{X}(d)(U_{0} \cap \ldots \cap U_{n})$$

$$= \mathcal{O}_{X}(d)(D(X_{0} \cdots X_{n}))$$

$$= R[X_{0}, \ldots, X_{n}]_{(X_{0} \cdots X_{n})}$$

$$= \left\{ \frac{f}{X_{0}^{d_{0}} \cdots X_{n}^{d_{n}}} \middle| f \in S] \text{ homogen, } \operatorname{deg} f = d + \sum_{i=0}^{n} d_{i} \right\}$$

der freie R-Modul mit Basis

$$\left\{ X_0^{d_0} \cdots X_n^{d_n} \mid d_i \in \mathbb{Z}, \sum_{i=0}^n d_i = d \right\}$$

sowie

$$\begin{split} \left(\check{C}^{n-1}(\mathfrak{U},\mathcal{O}_{X}(d))\right)_{i} &= \mathcal{O}_{X}(d)(U_{0} \cap \ldots \cap U_{i-1} \cap U_{i+1} \cap \ldots \cap U_{n}) \\ &= \mathcal{O}_{X}(d)(D(X_{0} \cdots X_{i-1} X_{i+1} \cdots X_{n})) \\ &= \left\{\frac{f}{X_{0}^{d_{0}} \cdots X_{i-1}^{d_{i-1}} X_{i+1}^{d_{i+1}} \cdots X_{n}^{d_{n}}} \,\middle|\, f \in S \text{ homogen, } \deg f = d + \sum_{i=0}^{n} d_{i}\right\} \end{split}$$

der freie R-Modul mit Basis

$$\left\{ X_0^{d_0} \cdots X_n^{d_n} \mid d_j \in \mathbb{Z}, \ \sum_{j=0}^n d_j = d, \ d_j \ge 0 \right\}.$$

Damit sehen wir ein:

$$X_0^{d_0} \cdots X_n^{d_n} \in \text{Bild } d^{n-1} \iff d_i \geqslant 0 \text{ für ein } 0 \leqslant i \leqslant n.$$

Daraus folgt: Ist $d \ge -n$, so ist d^{n-1} surjektiv, es gilt also

$$H^n(X, \mathcal{O}_X(d)) = 0.$$

Ist d = -n - 1, so folgt $d_i = -1$ für alle $0 \le i \le n$, es ist also

$$H^n(X, \mathcal{O}_X(-n-1)) = \left\langle \frac{1}{X_0 \cdots X_n} \right\rangle_{R-\text{Mod}}$$

ein freier R-Modul von Rang 1, woraus die Behauptung folgt.

(ii) Ist d < 0, so haben wir oben gesehen, dass d^{n-1} surjektiv ist, denn aus

$$\sum_{j=0}^{n} d_j = -d - n - 1 > -n - 1$$

folgt $d_j \ge 0$ für ein $0 \le j \le n$ und damit $X_0^{d_0} \cdots X_n^{d_n} \in \text{Bild } d^{n-1}$. Damit ergibt sich

$$H^n(X, \mathcal{O}_X(-d-n-1)) = 0.$$

Sei nun also $d \ge 0$. Dann wird $H^0(X, \mathcal{O}_X(d))$ als R-Modul frei erzeugt von den $X_0^{\nu_0} \cdots X_n^{\nu_n}$ mit $\sum_{j=0}^n \nu_j = d$ und $\nu_j \ge 0$ für alle $0 \le \nu \le n$ (das sind die gewöhnlichen Monome von Grad d). Wie oben bereits gesehen, wird $H^n(X, \mathcal{O}_X(-d-n-1))$ als R-Modul frei erzeugt von den $X_0^{\mu_0} \cdots X_n^{\mu_n}$ mit $\sum_{j=0}^n \mu_j = -d-n-1$ und $\mu_j < 0$ für alle $0 \le j \le n$. Definiere nun die Abbildung

$$\beta: H^{0}(X, \mathcal{O}_{X}(d)) \times H^{n}(X, \mathcal{O}_{X}(-d-n-1)) \longrightarrow H^{n}(X, \mathcal{O}_{X}(-n-1)) \cong R$$
$$(X_{0}^{\nu_{0}} \cdots X_{n}^{\nu_{n}}, X_{0}^{\mu_{0}} \cdots X_{n}^{\nu_{n}}) \mapsto X_{0}^{\mu_{0}+\nu_{0}} \cdots X_{n}^{\mu_{n}+\nu_{n}}$$

 β ist wohldefiniert, denn die Summe der Exponenten ist gerade -n-1. Sicherlich ist β bilinear. Es bleibt noch zu zeigen, dass β nicht ausgeartet ist, für jede Wahl von (ν_0, \dots, ν_n) und $(\mu_0, \dots, \mu_n) \in \mathbb{Z}^n$ mit $\sum_{j=0}^n \nu_j = d$ und $\nu_j \geqslant 0$ für alle $0 \leqslant j \leqslant n$ bzw. $\sum_{j=0}^n \mu_j = -d-n-1$ und $\mu_j < 0$ für alle $0 \leqslant j \leqslant n$ also die Abbildungen

$$\beta_1: H^0(X, \mathcal{O}_X(d)) \longrightarrow H^n(X, \mathcal{O}_X(-n-1)), \qquad s \mapsto \beta\left(s, X_0^{\mu_0} \cdots X_n^{\mu_n}\right)$$
$$\beta_2: H^n(X, \mathcal{O}_X(-d-n-1)) \longrightarrow H^n(X, \mathcal{O}_X(-n-1)), \qquad s \mapsto \beta\left(X_0^{\nu_0} \cdots X_n^{\nu_n}, s\right)$$

nicht die Nullabbildungen sind. Das folgt aus

$$\beta_1 \left(X_0^{-\mu_0 - 1} \cdots X^{-\mu_n - 1} \right) = \beta \left(X_0^{-\mu_0 - 1} \cdots X^{-\mu_n - 1}, \ X_0^{\mu_0} \cdots X^{\mu_n} \right) = \frac{1}{X_0 \cdots X_n} \neq 0,$$

$$\beta_2 \left(X_0^{-\nu_0 - 1} \cdots X^{-\nu_n - 1} \right) = \beta \left(X_0^{\nu_0} \cdots X^{\nu_n}, \ X_0^{-\nu_0 - 1} \cdots X^{-\nu_n - 1} \right) = \frac{1}{X_0 \cdots X_n} \neq 0.$$

(iii) Aus den Überlegungen in (i) wissen wir, dass $H^i(X, \mathcal{O}_X(d)) = 0$ für alle $i \ge n+1$, wir nehmen also $0 < i \le n-1$ an. Man überlegt sich leicht, dass jedes Element in $H^i(X, \mathcal{O}_X(d))$ von einem Tupel von Linearkombinationen von Monomen der Form $X_{j_0}^{\nu_0} \cdots X_{j_i}^{\nu_i}$ mit $\sum_{l=0}^i \nu_l = d$ und $\nu_l < 0$ für alle $0 \le l \le i$ repräsentiert wird.

Beh. (a) Für jedes $k \in \{0, ..., n\}$ ist die Multiplikation mit X_k

$$\mu_i: H^i(X, \mathcal{O}_X(d)) \longrightarrow H^i(X, \mathcal{O}_X(d+1)), \qquad s \mapsto X_k s$$

ein Isomorphismus.

Dann folgt: Ist $X_{j_0}^{\nu_0} \cdots X_{j_i}^{\nu_i} \in H^i(X, \mathcal{O}_X(d))$, so multiplizieren wir mit $X_{j_0}^{-\nu_0}$ und erhalten

$$X_{j_0}^{-\nu_0} \left(X_{j_0}^{\nu_0} \cdots X_{j_i}^{\nu_i} \right) = X_{j_1}^{\nu_1} \cdots X_{j_i}^{\nu_i} = 0$$

in $H^i(X, \mathcal{O}_X(d-\nu_0))$. Mit Behauptung (a) folgt dann, dass bereits $X_{j_0}^{\nu_0} \cdots X_{j_i}^{\nu_i} = 0$ in $H^i(X, \mathcal{O}_X(d))$ gilt, also $H^i(X, \mathcal{O}_X(d)) = 0$, was zu zeigen war. Wir müssen nun noch die Behauptung (a) zeigen.

Bew. (a) Sei ohne Einschränkung k = n. Wir haben eine exakte Sequenz von graduierten S-Moduln

$$0 \longrightarrow S(d) \xrightarrow{\cdot X_n} S(d+1) \longrightarrow S(d+1) / X_n S(d) \longrightarrow 0 \quad (*)$$

mit

$$S(d+1)/X_nS(d) \cong (S/X_nS)(d+1) \cong R[X_0,\ldots,X_{n-1}](d+1).$$

Diese liefert eine exakte Sequenz

$$0 \longrightarrow \mathcal{O}_X(d) \longrightarrow \mathcal{O}_X(d+1) \longrightarrow \mathcal{O}_X(d+1) / X_n \mathcal{O}_X(d) \longrightarrow 0 \quad (**)$$

von Garben. Ist $j:Z:=V(X_n)\cong\mathbb{P}_R^{n-1}\hookrightarrow\mathbb{P}_R^n=X$ die Einbettung, so erhalten wir

$$\mathcal{O}_X(d+1)/X_n\mathcal{O}_X(d) \cong j_*\mathcal{O}_Z(d+1).$$

ge exakte Kohomologiesequenz zu (**):

$$\dots \to H^{i-1}(Z, \mathcal{O}_Z(d+1)) \to H^i(X, \mathcal{O}_X(d)) \xrightarrow{\mu_i} H^i(X, \mathcal{O}_X(d+1))$$
$$\to H^i(Z, \mathcal{O}_Z(d+1)) \to \dots \quad (***)$$

Nach Induktionsvoraussetzung ist $H^i(Z, \mathcal{O}_Z(d+1)) = 0$ für $0 \le i \le n-2$, also

$$H^{i-1}(Z, \mathcal{O}_Z(d+1)) = 0 = H^i(Z, \mathcal{O}_Z(d+1))$$

für $1 \le i \le n$. Dann wird die Sequenz zu

$$\dots \to 0 \to H^i(X, \mathcal{O}_X(d)) \xrightarrow{\mu_i} H^i(X, \mathcal{O}_X(d+1)) \to 0 \to \dots$$

und da sie noch exakt ist folgt

$$H^i(X, \mathcal{O}_X(d)) \stackrel{\mu_i}{\cong} H^i(X, \mathcal{O}_X(d+1))$$

für alle $1 \le i \le n-2$. Es bleiben noch die Fälle $i \in \{1, n-1\}$ zu betrachten. i = 1: Wir betrachten (***) an der richtigen Stelle:

$$\dots \to H^0(Z, \mathcal{O}_Z(d+1)) \stackrel{\alpha}{\to} H^1(X, \mathcal{O}_X(d)) \stackrel{\mu_1}{\to} H^1(X, \mathcal{O}_X(d+1))$$
$$\to H^1(Z, \mathcal{O}_Z(d+1)) \to \dots$$

dies entspricht aber gerade der Sequenz (*), also ist α die Nullabbildung und μ_1 somit injektiv. Für $n \geq 3$ ist außerdem $H^i(Z, \mathcal{O}_Z(d+1)) = 0$, woraus die Surjektivität von μ_1 für $n \geq 3$ folgt. Für n = 2 betrachte den Fall i = n - 1.

i = n - 1: Wir betrachten nun also

$$\dots \to H^{n-2}(Z, \mathcal{O}_Z(d+1)) \stackrel{\alpha}{\to} H^{n-1}(X, \mathcal{O}_X(d)) \stackrel{\mu_{n-1}}{\to} H^{n-1}(X, \mathcal{O}_X(d+1))$$
$$\to H^{n-1}(Z, \mathcal{O}_Z(d+1)) \to \dots$$

Für $n \ge 3$ ist $H^{n-2}(Z, \mathcal{O}_Z(d+1)) = 0$, also μ_{n-1} injektiv. Für n=2 betrachte den Fall i=1. Zeige nun noch die Surjektivität von μ_{n-1} .

Wir haben die Sequenz

$$\dots \to H^{n-1}(X, \mathcal{O}_X(d)) \stackrel{\mu_{n-1}}{\longrightarrow} H^{n-1}(X, \mathcal{O}_X(d+1))$$

$$\stackrel{\alpha_{n-1}}{\longrightarrow} H^{n-1}(Z, \mathcal{O}_Z(d+1))$$

$$\stackrel{\delta^{n-1}}{\longrightarrow} H^n(X, \mathcal{O}_X(d))$$

$$\stackrel{\mu_n}{\longrightarrow} H^n(X, \mathcal{O}_X(d+1)) \longrightarrow \dots$$

 μ_{n-1} ist surjektiv genau dann, wenn α_{n-1} die Nullabbildung ist, was wiederum äquivalent dazu ist, dass δ^{n-1} injektiv ist. Dies wiederum ist genau dann der Fall,

wenn

Rang (Bild
$$\delta^{n-1}$$
) = Rang $(H^{n-1}(Z, \mathcal{O}_Z(d+1)))$

(als freie R-Moduln). Dies können wir zeigen: Es ist $H^{n-1}(Z, \mathcal{O}_Z(d+1))$ der freie R-Modul mit Basis

$$\left\{ X_0^{\nu_0} \cdots X_{n-1}^{\nu_{n-1}} \mid \sum_{j=0}^{n-1} \nu_j = d+1, \ \nu_j < 0 \text{ für alle } 0 \leqslant j \leqslant n-1 \right\}.$$

Weiter gilt wegen der Exaktheit der Sequenz Bild $\delta^{n-1} = \text{Kern } \mu_n$ und Kern μ_n ist der frei erzeugte R-Modul mit Basis

$$\left\{ X_0^{\mu_0} \cdots X_{n-1}^{\mu_{n-1}} X_n^{-1} \mid \left(\sum_{j=0}^{n-1} \mu_j \right) - 1 = d, \ \mu_j < 0 \text{ für alle } 0 \le j \le n-1 \right\}.$$

Damit folgt offenbar Kern $\mu_n = H^{n-1}(Z, \mathcal{O}_Z(d+1))$, und rückwärts lesen liefert die Surjkektivität von μ_{n-1} , was zu zeigen war.

Proposition 15.6 Sei R ein noetherscher Ring, $X \subseteq \mathbb{P}_R^n$ ein projektives Schema und \mathcal{F} eine kohärente \mathcal{O}_X -Modulgarbe auf X. Dann gibt es ein $d_0 \in \mathbb{Z}$, sodass für alle $d \geqslant d_0$ die getwistete $Garbe \mathcal{F}(d) := \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(d)$ von globalen Schnitten erzeugt wird, es also $s_1, \ldots, s_r \in \Gamma(X, \mathcal{F}(d))$ gibt, sodass für alle $x \in X$ die Keime $(s_1)_x, \ldots, (s_r)_x$ den Halm $\mathcal{F}(d)_x$ als $\mathcal{O}_{X,x}$ -Modul erzeugen.

Beweis. Ohne Einschränkung sei $X = \mathbb{P}^n_R$. Überdecke \mathbb{P}^n_R durch $D(X_i)$ für $0 \le i \le n$. Nach Voraussetzung gibt es endlich erzeugte Moduln $M_i = \mathcal{F}(U_i)$ über $\mathcal{O}_X(U_i) \cong R\left[\frac{X_0}{X_i}, \ldots, \frac{X_n}{X_i}\right]$, sodass gilt $\mathcal{F}|_{U_i} = \tilde{M}_i$. Sei nun i fest und $s_{i_1}, \ldots, s_{i_{k_i}}$ Erzeuger von M_i als $R\left[\frac{X_0}{X_i}, \ldots, \frac{X_n}{X_i}\right]$ -Modul. Dann wird für jedes $x \in \mathbb{P}^n_R$ mit $x \in U_i$ der Halm $\mathcal{F}_x = (\tilde{M}_i)_x$ erzeugt von den Keimen $(s_{i_1})_x, \ldots, (s_{i_{k_i}})_x$. Ziel soll es sein, die s_{i_j} auf geeignete Weise zu globalen Schnitten fortzusetzen. Dazu zeigen wir, dass sich $t_{i_j} := s_{i_j} X_i^{d_i} \in \tilde{M}_i \otimes_{\mathcal{O}_X} \mathcal{O}_X(d)$ zu einem globalen Schnitt in $\mathcal{F}(d_i)$ fortsetzt. Sei $0 \le j \le n$ mit $j \ne i$ und $\nu \in \{1, \ldots, k_i\}$. Dann ist

$$s_{i_{\nu}}|_{U_i \cap U_j} \in \mathcal{F}(U_i \cap U_j) = (M_j)_{\frac{X_j}{X_i}} = \left\{ \left(\frac{X_i}{X_j}\right)^p \cdot m_j \mid m_j \in M_j, \ p \in \mathbb{N}_0 \right\}.$$

Dann gibt es ein $d_{j_{\nu}} \in \mathbb{N}_0$ mit $s_{i_{\nu}} X_i^{d_{j_{\nu}}} \in M_j$, also $s_{i_{\nu}} X_i^{d_{j_{\nu}}} \in \mathcal{F}(d_{j_{\nu}})(U_i \cap U_j)$ und damit aber bereits $s_{i_{\nu}} X_i^{d_{j_{\nu}}} \in \mathcal{F}(d_{j_{\nu}})(U_i \cup U_j)$. Für

$$d_i := \max_{j \in \{0,\dots,n\}} \max_{\nu \in \{1,\dots k_i\}} d_{j_{\nu}}$$

sind alle $s_{i_{\nu}}X_{i}^{d_{i}}$ globale Schnitte. Verfahren so für alle $0 \le i \le n$, es folgt dann also die Behauptung.

Satz 15.7 Sei R ein noetherscher Ring, $X \subseteq \mathbb{P}^n_R$ ein abgeschlossenes Unterschema. Dann ist $H^i(X,\mathcal{F})$ für jede kohärente Garbe \mathcal{F} auf X ein endlich erzeugter R-Modul für alle $i \geqslant 0$.

Beweis. Ohne Einschränkung gelte $X = \mathbb{P}_R^n$, denn für die abgeschlossene Einbettung $j: X \hookrightarrow \mathbb{P}_R^n$ ist $j_*\mathcal{F}$ eine kohärente \mathcal{O}_X -Modulgarbe auf \mathbb{P}_R^n und nach Bemerkung 15.4 $H^i(X,\mathcal{F}) = H^i(\mathbb{P}_R^n,j_*\mathcal{F})$ für alle $i \geqslant 0$.

Beh. (a) Es gibt einen Epimorphismus von Garben

$$\Phi: \bigoplus_{i=1}^r \mathcal{O}_X(d_i) \longrightarrow \mathcal{F}.$$

Dann gibt es mit $K = \text{Kern } \Phi$ eine kurze Exakte Sequenz

$$0 \longrightarrow \mathcal{K} \longrightarrow \bigoplus_{i=1}^r \mathcal{O}_X(d_i) \longrightarrow \mathcal{F} \longrightarrow 0.$$

Beachte hierbei, dass K ebenfalls kohärent ist, denn der Kern eines Homomorphismus von RModuln ist ein R-Untermodul, womit K quasikohärent ist. Da R noethersch ist, ist jeder RUntermodul eines endlich erzeugten R-Moduls endlich erzeugt, K ist also kohärent. Weiter sieht
man (ähnlich wie im Beweis von Satz 12.16 (iii)), dass

$$H^i\left(X, \bigoplus_{j=1}^r \mathcal{O}_X(d_j)\right) = \bigoplus_{j=1}^r H^i(X, \mathcal{O}_X(d_j)).$$

Aus der langen exakten Kohomologiesequenz

$$0 \to \mathcal{K}(X) \to \bigoplus_{j=1}^r \Gamma(X, \mathcal{O}_X(d_j)) \to \mathcal{F}(X) \to H^1(X, \mathcal{K}) \to \bigoplus_{j=1}^r H^1(X, \mathcal{O}_X(d_j)) \to H^1(X, \mathcal{F}) \to \dots$$

folgt nun die Behauptung, denn für alle $i \ge 0$ ist $\bigoplus_{j=1}^r H^i(X, \mathcal{O}_X(d_j))$ nach Satz 15.5 endlich erzeugt, damit auch $H^1(X, \mathcal{K})$ und also auch $H^1(X, \mathcal{F})$. Iterativ folgt der Satz. Es bleibt noch die Behauptung zu zeigen.

Bew. (a) Nach Proposition 15.6 gibt es einen Epimorphismus

$$\Psi: \bigoplus_{i=1}^r \mathcal{O}_X \longrightarrow \mathcal{F}(d) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(d), \qquad e_i \mapsto s_i.$$

Tensorieren mit $\mathcal{O}_X(-d)$ liefert (wegen der Rechtsexaktheit des Tensorprodukts) einen Epimorphismus

$$\Phi: \bigoplus_{i=1}^r \mathcal{O}_X(-d) = \left(\bigoplus_{i=1}^r \mathcal{O}_X\right) \otimes_{\mathcal{O}_X} \mathcal{O}_X(-d) \longrightarrow \mathcal{F}(d) \otimes_{\mathcal{O}_X} \mathcal{O}_X(-d) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong \mathcal{F},$$

was zu zeigen war.

§ 16 Der Satz von Riemann-Roch für Kurven

Sei X eine nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k. Dann haben wir bereits gesehen, dass jeder Divisor $D = \sum_{P \in X} n_p P$ auf X eine invertierbare Garbe $\mathcal{L}(D)$ via

$$\mathcal{L}(D)(U) = \{ f \in k(X)^{\times} \mid (\operatorname{div} f + D) |_{U} \ge 0 \} \cup \{ 0 \}.$$

Für die globalen Schnitte gilt mit der Notation aus der algebraischen Geometrie

$$L(D) := \Gamma(X, \mathcal{L}(D)) = H^0(X, \mathcal{L}(D))$$

sowie

$$l(D) := \dim_k L(D) = \dim_k H^0(X, \mathcal{L}(D)).$$

Sei weiter Ω_X die Garbe der regulären Differentiale auf X

$$\Omega_X(U) = \left\{ \omega \in \Omega_{k(X)/k} \mid \operatorname{div} \omega|_U \geqslant 0 \right\},\,$$

wobei $\operatorname{ord}_P \omega = \operatorname{ord}_P f$, falls $\omega = f \operatorname{d} t_P$ für ein uniformisierendes Element $t_P \in \mathcal{O}_{X,P}$ und damit $\operatorname{div} \omega|_U := \sum_{P \in U} \operatorname{ord}_P \omega_P$. Für $\omega_0 \in \Omega_{k(X)/k} \setminus \{0\}$ heißt $K := K_{\omega_0} = \operatorname{div} \omega_0$ kanonischer Divisor. Dass K dabei unabhängig von der Wahl von ω_0 ist, sieht man leicht ein: Ist $0 \neq \omega_1 \in \Omega_{k(X)/k}$ ein weiteres Differential, so ist $\omega_1 = f \omega_0$ für ein $f \in k(X)^{\times}$, also $\operatorname{div} \omega_1 = \operatorname{div} \omega_0 + \operatorname{div} f$, also $\mathcal{L}(\operatorname{div} \omega_1) \cong \mathcal{L}(K) = \Omega_X \cong \mathcal{L}(\operatorname{div} \omega_0)$.

Satz 16.1 (Satz von Riemann-Roch aus der algebraischen Geometrie) Sei X eine nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k von Geschlecht g.

Dann gilt für jeden Divisor D auf X

$$l(D) - l(K - D) = \deg D + 1 - g,$$

also

$$\dim_k H^0(X, \mathcal{L}(D)) - \dim_k H^0(X, \Omega_X \otimes_{\mathcal{O}_X} \mathcal{L}(D)^{-1}) = \deg D + 1 - g.$$

Beweis. Siehe zum Beispiel Hartshorne IV.1.3.

Definition 16.2 Sei (X, \mathcal{O}_X) ein noethersches Schema und \mathcal{F} eine kohärente Garbe auf X.

Dann definieren wir die Eulercharakteristik von \mathcal{F} auf X als

$$\chi(\mathcal{F}) := \sum_{k=0}^{\infty} (-1)^k \dim_k H^k(X, \mathcal{F}).$$

Satz 16.3 Sei X eine nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k und $g = \dim_k H^1(X, \mathcal{O}_X)$. Für jeden Divisor D auf X gilt

$$\dim_k H^0(X, \mathcal{L}(D)) - \dim_k H^1(X, \mathcal{L}(D)) = \deg D + 1 - g.$$

Beweis. Mit D=0 erhalten wir mit 16.1 und $\mathcal{L}(0)=\mathcal{O}_X$ die Behauptung sofort. Ein beliebiger Divisor D ist nun eine endliche Summe und geht damit aus endlich viele Additionen von Punkten zum Divisor D=0 hervor. Wir zeigen die Behauptung also durch Induktion über $n=\sum_{P\in X}|n_P|$, wobei der Induktionsanfang bereits geleistet ist. Sei nun D ein Divisor und $P\in X$ beliebige. Wir zeigen, dass

$$\dim_k H^0(X, \mathcal{L}(D)) - \dim_k H^1(X, \mathcal{L}(D)) = \deg D + 1 - g$$

genau dann gilt, wenn

$$\dim_k H^0(X, \mathcal{L}(D+P)) - \dim_k H^1(C, \mathcal{L}(D+P)) = \deg(D+P) + 1 - g$$

erfüllt ist. Nach Definition gilt $\mathcal{L}(D) \subseteq \mathcal{L}(D+P)$. Wir erhalten damit eine kurze exakte Sequenz

$$0 \longrightarrow \mathcal{L}(D) \longrightarrow \mathcal{L}(D+P) \longrightarrow \mathcal{L}(D+P)/\mathcal{L}(D) \longrightarrow 0.$$

Betrachte die Halme der Faktorgarbe. Wegen $\left(\mathcal{L}(D+P)/\mathcal{L}(D)\right)_Q = \mathcal{L}(D+P)_Q/\mathcal{L}(D)_Q$ erhalten wir für $Q \neq P$

$$\left(\mathcal{L}(D+P)/\mathcal{L}(D)\right)_{Q}=0,$$

 $\mathcal{L}(D+P)/\mathcal{L}(D)$ ist also eine Wolkenkratzergarbe. Ist nun $f \in k(X)$, so gilt $f_P \in \mathcal{L}(D+P)$ genau dann, wenn $\operatorname{ord}_P f \geqslant -n_P - 1$ und $f_P \in \mathcal{L}(D)$ genau dann, wenn $\operatorname{ord}_P f \geqslant -n_P$. Insgesamt erhalten wir dadurch

$$H^{0}\left(X,\mathcal{L}(D+P)/\mathcal{L}(D)\right) \cong k, \qquad H^{i}\left(X,\mathcal{L}(D+P)/\mathcal{L}(D)\right) = 0 \text{ für } i \geqslant 0$$

Übungsaufgabe 13.3 liefert

$$\chi(\mathcal{L}(D+P)) = \chi(\mathcal{L}(D)) + \chi\left(\mathcal{L}(D+P)/\mathcal{L}(D)\right) = \chi(\mathcal{L}(D)) + 1,$$

woraus zusammen mit deg $D + P = \deg D + 1$ die Behauptung folgt.

Folgerung 16.4 Vergleicht man die Sätze 16.1 und 16.2, so folgt

$$\dim_k H^1(X, \mathcal{L}(D)) = \dim_k H^0(X, \Omega_X \otimes_{\mathcal{O}_X} \mathcal{L}(D)^{-1}).$$

Dieser Zusammenhang wird als Serre-Dualität bezeichnet. Wir werden später noch sehen, dass $H^1(X, \mathcal{L}(D))$ kanonisch isomorph zu $H^0(X, \Omega_X \otimes_{\mathcal{O}_X} \mathcal{L}(D)^{-1})$ ist.

Bemerkung 16.5 Mit $P \neq Q$ erhalten wir durch $\{X \setminus \{P\}, X \setminus \{Q\}\}$ eine affine Überdeckung durch zwei offene Mengen. Da $\mathcal{L}(D)$ quasikohärent ist, gilt also $H^k(X, \mathcal{L}(D)) = 0$ für $k \geq 2$. Der linke Term von Satz 16.2 ist also gerade die Eulercharakteristik

$$\chi(\mathcal{L}(D)) := \sum_{k=0}^{\infty} (-1)^k \dim_k H^k(X, \mathcal{L}(D))$$

 $von \mathcal{L}(D)$.

Beispiel 16.6 Nach 16.4 folgt für D = K

$$\dim_k H^1(X,\mathcal{L}(K)) = \dim_k H^1(X,\Omega_X) = \dim_k H^0(X,\Omega_X \otimes_{\mathcal{O}_X} \Omega_X^{-1}) = \dim_k H^0(X,\mathcal{O}_X) = 1.$$

Was genau aber ist $H^1(X, \mathcal{L}(K))$? Wir berechnen die Dimension im Folgenden per Hand: Seien $P_1 \neq P_2 \in X$ Punkte und wähle eine affine Überdeckung $\mathfrak{U} = \{U_1, U_2\}$ von X, wobei $U_i = X \setminus \{P_i\}$ für $i \in \{1, 2\}$. Dann gilt

$$H^1(X,\Omega_X) = \check{H}^1(\mathfrak{U},\Omega_X) = \check{C}^1(\mathfrak{U},\Omega_X) / \text{Bild } d^0 = \Omega_X(U_1 \cap U_2) / (\Omega_X(U_1) - \Omega_X(U_2)).$$

Wir behaupten nun:

- (i) Es gibt kein $\omega \in \Omega_{k(X)/k}$ mit $\operatorname{ord}_{P_1}\omega = -1$ und $\operatorname{ord}_{P}\omega = 0$ für alle $P \in X \setminus \{P_1\}$.
- (ii) Es gibt für alle $n \ge 2$ ein $\omega_n \in \Omega_{k(X)/k}$ mit $\operatorname{ord}_{P_1}\omega_n = -n$ und $\operatorname{ord}_P\omega_n = 0$ für alle $P \in X \setminus \{P_1\}$.
- (iii) Es gibt ein $\omega_0 \in \Omega_{k(X)/k}$ mit $\operatorname{ord}_{P_1}\omega_0 = \operatorname{ord}_{P_2}\omega_0 = -1$ und $\operatorname{ord}_{P}\omega_0 = 0$ für alle $P \in X \setminus \{P_1, P_2\}$.

Dann folgt aus den Behauptungen: $\dim_k \left(\Omega_X(U_1 \cap U_2) / \Omega_X(U_1) - \Omega_X(U_2)\right) = 1$, denn: (folgt). Wir zeigen noch die Behauptungen.

Beweis. (i) Ein solches ω wäre in $H^0(X, \Omega_X(P_1))$, wobei wir $\Omega_X(P_1) := \Omega_X \otimes_{\mathcal{O}_X} \mathcal{L}(P_1)$ setzen. Nach Riemann-Roch ist

$$\dim_k H^0(X, \Omega_X(P_1)) = \dim_k H^0(X, \mathcal{L}(P_1)) - \deg(-P_1) - 1 + g = g,$$

denn es gibt keine Funktionen auf X mit mindestens einer Nullstelle und ohne Polstellen. Wegen $\dim_k H^0(X, \mathcal{O}_X) = g$ folgt

$$\omega \in H^0(X, \Omega_X(P_1)) \iff \omega \in H^0(X; \mathcal{O}_X),$$

also $\omega \notin H^0(X, \Omega_X(P_1))$, ein Widerspruch.

(ii) Wir verfahren völlig analog. Riemann-Roch liefert

$$\dim_k H^0(X, \Omega_X(nP_1)) = \dim_k H^0(X, \mathcal{L}(-nP_1)) - \deg nP_1 - 1 + g = n - 1 + g.$$

Für $n \ge 2$ ist also

$$\dim_k H^0(X, \Omega_X(nP_1)) = \dim_k H^0(X, \Omega_X((n-1)P_1)) + 1,$$

woraus die Existenz des gewünschten Differentials folgt.

(iii) Ebenso erhalten wir

$$\dim_k H^0(X, \Omega_X(P_1 + P_2)) = \dim_k H^0(X, \mathcal{L}(-P_1 - P_2)) - \deg(-P_1 - P_2) - 1 + g = 1 + g.$$

Damit existiert ein $\omega_0 \in H^0(X; \Omega_X(P_1 + P_2)) \backslash H^0(X, \mathcal{O}_X)$ und wegen (i) gilt bereits $\operatorname{ord}_{P_1} \omega_0 + \operatorname{ord}_{P_2} \omega_0 = -1$.

Beispiel 16.7 Werden wir nun konkreter und betrachten $X = \mathbb{P}^1_k$. Wir wollen nun zu gegebenen Punkte Differentiale finden, welche den Behauptungen aus Beispiel 13.6 nach existieren. Betrachte $\frac{\mathrm{d}z}{z} \in \Omega_{k(X)(k)}$. Dann gilt

$$\operatorname{ord}_0\left(\frac{\mathrm{d}z}{z}\right) = -1, \qquad \operatorname{ord}_\infty\left(\frac{\mathrm{d}z}{z}\right) = -1.$$

Um zweiteres einzusehen, müssen wir das Differential eins uniformiserendes Elements des zugehörigen maximalen Ideals nehmen. Beachte an dieser Stelle, dass dz uniformisierend in jedem Punkt außer ∞ ist. Es gilt

$$\frac{\mathrm{d}z}{z} = -\frac{z^2}{z}\mathrm{d}\left(\frac{1}{z}\right) = -z\mathrm{d}\left(\frac{1}{z}\right) = -\frac{1}{z}\mathrm{d}\left(\frac{1}{z}\right),$$

also gerade

$$\operatorname{ord}_{\infty}\left(\frac{\mathrm{d}z}{z}\right) = -1.$$

Wählen wir nun allgemeine Punkte $a, b \in \mathbb{P}^1_k \setminus \{\infty\}$, so ist für

$$\omega_{a,b} = \frac{\mathrm{d}z}{(z-a)(z-b)}$$

offensichtlich $\operatorname{ord}_a \omega_{a,b} = -1 = \operatorname{ord}_b \omega_{a,b}$ und $\operatorname{ord}_P \omega_{a,b} = 0$ für alle $P \in \mathbb{P}^1_k \setminus \{a,b,\infty\}$. Was ist mit dem Punkt ∞ ? Wir schreiben wieder

$$\omega_{a,b} = \frac{\mathrm{d}z}{(z-a)(z-b)} = -\frac{z^2}{(z-a)(z-b)} \mathrm{d}\left(\frac{1}{z}\right),\,$$

also auch $\operatorname{ord}_{\infty}\omega_{a,b}=0$.

Definition + **Bemerkung 16.8** Sei X eine nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k, $\omega \in \Omega_{k(X)/k} \setminus \{0\}$ ein Differential sowie $P \in X$. Sei weiter t_P ein uniformisierendes Element in P und $f \in k(X)^{\times}$, sodass $\omega = f dt_P$ und es gelte $ord_P \omega = -n$ für ein $n \in \mathbb{N}$.

- (i) f besitzt eine eindeutige Darstellung $f = a_{-n}t_P^{-n} + a_{-n-1}t_P^{-n-1} + \ldots + a_{-1}t_P^{-1} + f_0$ mit $f_0 \in \mathcal{O}_{X,P}$ und Körperelementen $a_i \in k$.
- (ii) Wir definieren das Residuum von ω in P als

$$\operatorname{res}_P \omega := a_{-1}.$$

Gilt $\operatorname{ord}_P \omega \geqslant 0$, so setzen wir $\operatorname{res}_P \omega := 0$.

(iii) Das Residuum hängt nicht von der Wahl von t_P ab.

Beweis. (i) Klar.

- (iii) Wir zeigen die Aussage lediglich für char $k \neq 2$.
 - Fall (a) Es gilt $\omega = \frac{\mathrm{d}t_P}{t_P}$, also $f = \frac{1}{t_P}$ und damit $\mathrm{res}_P \omega = 1$. Sei nun z eine weitere Uniformisierende in P, es gelte also $z = t_P u$ mit einer Einheit $u \in \mathcal{O}_{X,P}^{\times}$. Dann gilt $u = 1 + t_P h$ mit $h \in \mathcal{O}_{X,P}$ und damit $z = t_P (1 + t_P h)$. Dann gilt

$$dz = dt_P + d(t_P^2 h) = dt_P + t_P^2 dh + 2t_P dh = dt_P + t_P^2 h' dt_P + 2t_P h' dt_P' = dt(1 + 2h't_P + t_P^2 h).$$

Wir erhalten damit

$$\frac{\mathrm{d}t_P}{t_P} = \frac{\mathrm{d}z}{1 + 2h't_P + t_P^2h'} \frac{1 + t_Ph'}{z} = \frac{\mathrm{d}z}{z} \frac{1 + t_Ph}{1 + 2h't_P + t_P^2h'}.$$

Wegen $t_P(P) = 0$ gilt

$$\frac{1 + t_P h'}{1 + 2h't_P + t_P^2 h'} \in \mathcal{O}_{X,P}^{\times}$$

und damit

$$\operatorname{res}_{P} \frac{\mathrm{d}z}{z} = 1 = \operatorname{res}_{P} \frac{\mathrm{d}t_{P}}{t_{P}},$$

was zu zeigen war.

Fall (b) Man kann leicht die Identität

$$\frac{\mathrm{d}t_P}{t_P^n} = -\frac{1}{n-1}\mathrm{d}\left(\frac{1}{t_P^{n-1}}\right)$$

für beliebiges $n \in \mathbb{N}$ verifizieren. Ist z nun ein beliebiges uniformisierendes Element in P, so schreibe

$$\frac{1}{t_P^{n-1}} = \frac{1}{z^{n-1}} + b_{n-2} \frac{1}{z^{n-2}} + \dots + b_1 \frac{1}{z} + c_0$$

mit $c_0 \in \mathcal{O}_{X,P}^{\times}$. Dann gilt

$$d\left(\frac{1}{t_P^{n-1}}\right) = \sum_{i=1}^{n-1} b_i d\left(\frac{1}{z^i}\right) + dc_0 = -\sum_{i=1}^{n-1} b_i i \frac{dz}{z^{i+1}} + c_0' dz.$$

In dieser Darstellung fehlt der $\frac{1}{z}$ -Term, das heißt das Residuum bleibt unverändert. \square

Bemerkung 16.9 Ist $X = \mathbb{P}^1_k$ und $\omega = \frac{dz}{z}$, so gilt $\operatorname{ord}_0 \omega = 1$ und $\operatorname{ord}_\infty \omega = 1$. Allgemeiner haben wir gesehen:

$$\operatorname{res}_a\left(\frac{\mathrm{d}z}{z-a}-\frac{\mathrm{d}z}{z-b}\right)=1, \qquad \operatorname{res}_b\left(\frac{\mathrm{d}z}{z-a}-\frac{\mathrm{d}z}{z-b}\right)=-1.$$

Folgerung 16.10 Die Konstruktion aus 16.8 liefert einen wohldefinierten Isomorphismus

$$\operatorname{Res}: H^1(X,\Omega_X) \longrightarrow k$$

wie folgt: Für $\omega \in H^1(X, \Omega_X)$ wähle $P_1, P_2 \in X$ und $\omega_0 \in \Omega_X(X \setminus \{P_1, P_2\})$ mit $\operatorname{ord}_{P_i} \omega_0 = -1$ für i = 1, 2. Setze dann $\operatorname{Res}(\omega) := \operatorname{res}_{P_1} \omega_0$.

Beweisskizze. Sei zunächst $X = \mathbb{P}^1_k$. Dann ist $\operatorname{res}_{P_2}\omega_0 = -\operatorname{res}_{P_1}\omega_0$ nach der vorangegangenen Bemerkung. Vertauschen von P_1 und P_2 liefert $-\omega_0$. Weiter zeigt das Beispiel, dass $\operatorname{res}_{P_1}\omega_0$ unabhängig von der Wahl von $P_1 \neq P_2$ ist. Diese Beobachtungen liefern die Wohldefiniertheit von Res im Fall $X = \mathbb{P}^1_k$. Ist nun X beliebig, wähle $f \in k(X)$ mit $\operatorname{ord}_{P_i} \mathrm{d} f = 0$ für i = 1, 2, es soll also $f: X \longrightarrow \mathbb{P}^1_k$ unverzeigt in den P_i sein. Dann induziert f eine $\operatorname{Spurabbildung} \operatorname{tr}: f_*\Omega_X \longrightarrow \Omega_{\mathbb{P}^1_k}$ mit $\operatorname{res}_{P_1}\omega_0 = \operatorname{res}_{f(P_1)}(\operatorname{tr}(\omega_0))$. Damit lässt sich dieser Fall auf $X = \mathbb{P}^1_k$ zurückführen.

Proposition 16.11 (Serre-Dualität) Sei X eine nichtsinguläre, projektive Kurve über einem

algebraisch abgeschlossenen Körper k. Dann ist für jeden Divisor D auf X die Abbildung

$$\Phi: H^0(X, \mathcal{L}(D)) \times H^1(X, \Omega_X \otimes_{\mathcal{O}_X} \mathcal{L}(D)^{-1}) \longrightarrow H^1(X, \Omega_X) \stackrel{\mathrm{Res}}{\cong} k, \qquad (f, \omega) \mapsto f\omega$$

 $eine\ nichtausgeartete\ Bilinear form.$