Příklad 1: Na vstupu máme obdélníkovou matici desetinných čísel. Navrhněte algoritmus, který všechny prvky zaokrouhlí (každý buď nahoru nebo dolu) tak, aby celočíselné součty všech sloupců s řádků zůstaly stejné (nebo byly zaokrouhleny na nejbližší celočíselnou hodnotu).

Příklad 2: Mějme tokový problém přepravy více typů komodit. Máme k komodit a pro každou jiný zdroj a stok s daným požadavkem. Ukažte, že převedením na jednokomoditní tok neumíme rozlišit případ kdy lze splnit nejvýše jeden požadavek od případu kdy lze splnit všechny. A to ani v případě kdy všechny kapacity a požadavky jsou 1 a $k = \omega(\sqrt{n})$.

Hint: Uvažme jako graf čtvercovou mřížku. Rozmyslete, že tvrzení platí když se toky nesmí křížit. Pak upravte graf aby se skutečně křížit nemohly.

Příklad 3: Mějme dvoukomoditní tokový problém se zdroji s_1, s_2 a stoky t_1, t_2 , kde od každé komodity chceme přepravit a_1, a_2 jednotek. Najdeme dva maximální toky, f_1 z s_1, s_2 do t_1, t_2 a f_2 z s_1, t_2 do s_2, t_1 . Ukažte že pokud půdovní úloha má řešení, potom $(f_1+f_2)/2$ a $(f_1-f_2)/2$ jsou validní 2-komoditní tokový pár, který je řešením.

Příklad 4: Zkusme si pokročilé odhady na počet iterací Dinicijova algoritmu. Jako myšlenkový experiment zastavíme Dinicije po nějaké fázi a vyjdeme ze dvou základních myšlenek:

- Počet zbývajících fází je nejvýše rozdíl aktuálního a maximálního toku.
- Řez ve vrstevnaté síti (třeba mezi dvěma vrstvami, tzv. rozhraní) dává omezení na to o kolik lze ještě aktuální tok zlepšit.
- Po k fázích máme alespoň k+1 vrstev (a tedy k rozhraní)

Uvažme různé způsoby jak odhadnout velikost nejmenšího rozhraní

- Odhad 1: najdeme rozhraní s nejmenším počtem hran
- Odhad 2: najdeme rozhraní mezi vrstavmi s nejmenším součtem počtu vrcholů

Pomocí vhodné volby k ukažte, že se složitost Dinicijova algoritmu dá odhadnout jako $O(m^{3/2})$ resp. $O(n^{2/3}m)$

Příklad 1: Na vstupu máme obdélníkovou matici desetinných čísel. Navrhněte algoritmus, který všechny prvky zaokrouhlí (každý buď nahoru nebo dolu) tak, aby celočíselné součty všech sloupců s řádků zůstaly stejné (nebo byly zaokrouhleny na nejbližší celočíselnou hodnotu).

Příklad 2: Mějme tokový problém přepravy více typů komodit. Máme k komodit a pro každou jiný zdroj a stok s daným požadavkem. Ukažte, že převedením na jednokomoditní tok neumíme rozlišit případ kdy lze splnit nejvýše jeden požadavek od případu kdy lze splnit všechny. A to ani v případě kdy všechny kapacity a požadavky jsou 1 a $k = \omega(\sqrt{n})$.

Hint: Uvažme jako graf čtvercovou mřížku. Rozmyslete, že tvrzení platí když se toky nesmí křížit. Pak upravte graf aby se skutečně křížit nemohly.

Příklad 3: Mějme dvoukomoditní tokový problém se zdroji s_1, s_2 a stoky t_1, t_2 , kde od každé komodity chceme přepravit a_1, a_2 jednotek. Najdeme dva maximální toky, f_1 z s_1, s_2 do t_1, t_2 a f_2 z s_1, t_2 do s_2, t_1 . Ukažte že pokud půdovní úloha má řešení, potom $(f_1+f_2)/2$ a $(f_1-f_2)/2$ jsou validní 2-komoditní tokový pár, který je řešením.

Příklad 4: Zkusme si pokročilé odhady na počet iterací Dinicijova algoritmu. Jako myšlenkový experiment zastavíme Dinicije po nějaké fázi a vyjdeme ze dvou základních myšlenek:

- Počet zbývajících fází je nejvýše rozdíl aktuálního a maximálního toku.
- Řez ve vrstevnaté síti (třeba mezi dvěma vrstvami, tzv. rozhraní) dává omezení na to o kolik lze ještě aktuální tok zlepšit.
- Po k fázích máme alespoň k+1 vrstev (a tedy k rozhraní)

Uvažme různé způsoby jak odhadnout velikost nejmenšího rozhraní

- Odhad 1: najdeme rozhraní s nejmenším počtem hran
- Odhad 2: najdeme rozhraní mezi vrstavmi s nejmenším součtem počtu vrcholů

Pomocí vhodné volby k ukažte, že se složitost Dinicijova algoritmu dá odhadnout jako $O(m^{3/2})$ resp. $O(n^{2/3}m)$