

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт Информационных технологий

Кафедра Математического обеспечения и стандартизации информационных технологий

Отчет по практическим работам №1-4

по дисциплине «Технологические основы Интернета вещей»

Выполнили:

Студенты группы ИНБО-12-23

Албахтин Илья Владиславович Полиэктов Максим Александрович Губарев Савва Алексеевич

Проверил: Воронцова Евгения Константиновна

Содержание

Практическая работа 1	3
Практическая работа 2	21
Практическая работа 3	31
Практическая работа 4	33
Вывод	36

Рисунок 1 – Работа от сети

Рисунок 2 — Работа от аккумулятора

Рисунок 3 – Работа вентилятора

Рисунок 4 – Работа вентилятора и индикаторов

Рисунок 5 – Остановка вентилятора и повышенное энергопотребление

Рисунок 6 – Автоматическая остановка вентилятора

Рисунок 7 – Контроль автоматов

Рисунок 8 – Включение автоматов

Рисунок 9 – Нормальный уровень СО2

Рисунок 10 – Повышенный уровень СО2

Рисунок 11 – Включение шарового крана

Рисунок 12 – Отработка счетчика воды

Рисунок 13 – Включение режима протечки

Рисунок 14 – Выключение режима протечки

Рисунок 15 – Выключение автоматов QF1, питание от аккумулятора

Рисунок 16 – Включение вентилятора

Рисунок 17 – Остановка вентилятора вручную

Рисунок 18 – Отключение питания вентилятора

Рисунок 19 – Включение и увеличение яркости лампы

Рисунок 20 – Уменьшение яркости лампы

Рисунок 21 – Выключение лампы

Права доступа

Применить

Рисунок 22 – Выставление прав доступа

Рисунок 23 – Питание от сети

Рисунок 24 – Питание от аккумулятора

WB-MAP12E fw2 23	•
Ch 1 Irms L1	0.1273
Ch 1 Ipeak L1	0.58
Ch 1 P L1	23.51 Вт
Ch 1 Q L1	9.84
Ch 1 S L1	28.55
Ch 1 PF L1	0.80
Ch 1 AP energy L1	10.51033 кВтч
Ch 1 AN energy L1	0.00000 кВтч
Ch 1 RP energy L1	0.65728
Ch 1 RN energy L1	6.24669
Ch 1 Phase angle L1	23.10
Ch 1 Irms L2	0.0875
Ch 1 Ipeak L2	-0.24
Ch 1 P L2	14.71 Вт
Ch 1 Q L2	14.90

Рисунок 25 — Нормальное энергопотребление при включённом вентиляторе

≜ ∨
0.1400
0.58
27.85 BT
10.81
31.41
0.88
10.51048 кВтч
0.00000 кВтч
0.65734

Рисунок 26 – Повышенное энергопотребление

Рисунок 27 – Обычное энергопотребление при выключенном вентиляторе

Рисунок 28 - Отключенные автоматы

Рисунок 29 – Включенные автоматы

Рисунок 30 – Включенный контактор

Рисунок 31 – Выключенный контактор

Рисунок 32 – Нормальный уровень СО2

Рисунок 33 – Повышенный уровень СО2

Рисунок 34 – Закрытый шаровой кран

Рисунок 35 – Открытый шаровой кран

Рисунок 36 – Режим аварии

Рисунок 37 – Включение вентилятора в режиме 33%

Рисунок 38 – Повышение мощности до 100%

Рисунок 39 – Повышенное энергопотребление

Рисунок 40 – Выключенная лампа

Рисунок 41 – Включенная лампа

Рисунок 42 – Минимальная мощность лампы

Рисунок 43 – 66% мощности лампы

Вариант №5.

Сценарии:

- 1. Включение и выключение вентилятора по датчику движения.
- 2. Изменение высоты звукового сигнала от яркости лампы.

Листинг 1 – Включение и выключение вентилятора по датчику движения

```
defineRule("fan_motion_control", {
   whenChanged: "wb-msw-v3_21/Current Motion",
   then: function(newValue, devName, cellName) {
    if (newValue > 900) {
        dev["wb-mr3_56"]["K2"] = true; // движение обнаружено -> включаем вентилятор
        log.info("Движение обнаружено, вентилятор включен");
        } else {
        dev["wb-mr3_56"]["K2"] = false; // движения нет -> выключаем вентилятор log.info("Движение отсутствует, вентилятор выключен");
        }
    }
    }
});
```

```
var xmin = 1;
var xmax = 100;
var ymin = 10;
var ymax = 500;
defineRule("buzzer_on_off", {
whenChanged: "wb-mdm3_57/K1",
then: function(newValue) {
 if (newValue) {
  dev["buzzer"]["enabled"] = true;
  log.info("Пищалка включена кнопкой");
 } else {
  dev["buzzer"]["enabled"] = false;
  log.info("Пищалка выключена кнопкой");
 }
 }
});
defineRule("lamp_brightness_to_buzzer", {
whenChanged: "wb-mdm3_57/Channel 1",
 then: function(newValue) {
 var brightness = parseFloat(newValue);
 var freq = (brightness - xmin) * ((ymax - ymin) / (xmax - xmin)) + ymin;
 if (dev["buzzer"]["enabled"]) {
  dev["buzzer"]["frequency"] = Math.round(freq);
  log.info("Яркость=" + brightness + "% \rightarrow Звук=" + Math.round(freq) + " \Gammaц");
 }
}
});
```


Рисунок 44 – Схема для листинга 1

На рисунке 44 обведены элементы, использованные в работе над листингом 1:

А2 – Контроллер

А11 – Диммер

А6 – Датчик движения.

М2 – Вентилятор

Рисунок 45 – Схема для листинга 2

На рисунке 45 обведены элементы, использованные в работе над листингом 2:

EL1 - Лампа

А11 – Диммер

А2 – Контроллер

Рисунок 46 – Диаграмма FanMotionControl

Рисунок 47 – Диаграмма BuzzerOnOff

Вывод

В ходе выполнения лабораторной работы были протестированы основные функции учебного стенда: контроль наличия сетевого напряжения, определение повышенного энергопотребления, работа автоматов и внешних силовых устройств, мониторинг качества воздуха и система защиты от протечек. Были реализованы примеры диммирования лампы и вентилятора, демонстрирующие управление нагрузкой через контроллер. Дополнительно написаны сценарии автоматизации: включение/выключение вентилятора по датчику движения и изменение высоты звукового сигнала в зависимости от яркости лампы.