Solution for Problem Set 3

Zihao Wang*

October 12, 2015

Problem 1

I would like to set some functions on it.

- Intersec (W_i, W_j) returns TRUE if W_i and W_j have same element, otherwise it returns FALSE.
- In(x, W) returns TRUE if W contains x, otherwise it returns FALSE.

Then we have two constraints.

- 1. $\forall_{i \neq j} \operatorname{Intersec}(W_i, W_j) \Rightarrow \neg W_i \vee \neg W_j$
- 2. $\bigwedge_{x \in U} \bigvee_{W: \operatorname{In}(x,W)} W$

Supposed there is a simple example: $U = \{a, b, c, d, e, f\}$ and

 $W_1 = \{a, b\}$

 $W_2 = \{b, c\}$

 $W_3 = \{c, d\}$

 $W_4 = \{d, e\}$

 $W_5 = \{e, f\}$

 $W_6 = \{f, a\}$

Then we can have the following constraints:

- 1. $\forall_{i \neq j} \text{Intersec}(W_i, W_j) \Rightarrow \neg W_i \vee \neg W_j$
- 2. $W_1 \vee W_6$
- 3. $W_1 \vee W_2$
- 4. $W_2 \vee W_3$
- 5. $W_3 \vee W_4$
- 6. $W_4 \vee W_5$
- 7. $W_5 \vee W_6$

^{*}N-number: N11385738, NetID: zw1074

Problem 2

a.
$$\forall_{p,u} W(p,u) \Rightarrow S(p,u)$$

b.
$$\forall_u A(u, H) \land S(B, u) \Rightarrow L(B, u)$$

c.
$$\forall_{p,u} F(B,p) \land W(p,u) \Rightarrow S(B,u)$$

d.
$$\forall_p(F(T,p) \Rightarrow \exists_u A(u,H) \land W(p,u))$$

e.
$$\exists_p F(T,p) \land F(B,p)$$

f.
$$\exists_{p,u} F(T,p) \wedge W(p,u) \wedge L(B,u)$$

g.
$$\forall_u W(G, u) \Rightarrow A(u, H)$$

h.
$$\forall_p(F(B,p) \Rightarrow \exists_u W(p,u))$$

i.
$$\forall_u W(G, u) \Rightarrow \neg L(B, u)$$

j.
$$\neg F(B,G)$$

Problem 3

Use counter example. Let (f) become (f*): $\neg(\exists_{p,u}F(T,p) \land W(p,u) \land L(B,u))$. Then we change b, c, d, e and f* to CNF:

1.
$$\neg A(u, H) \lor \neg S(B, u) \lor L(B, u)$$

$$2. \ \, \neg F(B,p) \lor \neg W(p,u) \lor S(B,u)$$

3.
$$\neg F(T, p) \lor A(sk1(p), H)$$

4.
$$\neg F(T, p) \lor W(p, sk1(p))$$

5.
$$F(T, sk2)$$

6.
$$F(B, sk2)$$

7.
$$\neg F(T, p) \lor \neg W(p, u) \lor \neg L(B, u)$$

Then we have the following steps.

Step 1.
$$5+3, p \leftarrow sk2$$
 we have 8. $A(sk1(sk2), H)$

Step 2.
$$5+4$$
, $p \leftarrow sk2$ we have 9. $W(sk2, sk1(sk2))$

Step 3.
$$5+7$$
, $p \leftarrow sk2$ we have 10. $\neg W(sk2, u) \lor \neg L(B, u)$

Step 4.
$$6+2$$
, $p \leftarrow sk2$ we have 11. $\neg W(sk2, u) \lor S(B, u)$

Step 5.
$$9+10, u \leftarrow sk1(sk2)$$
 we have 12. $\neg L(B, sk1(sk2))$

Step 6.
$$9 + 11$$
, $u \leftarrow sk1(sk2)$ we have 13. $S(B, sk1(sk2))$

Step 7.
$$8+1$$
, $u \leftarrow sk1(sk2)$ we have 14. $\neg S(B, sk1(sk2)) \lor L(B, sk1(sk2))$

Step 8. 14 + 12, we have 15. $\neg S(B, sk1(sk2))$

Step 9. 15 + 13, we have 16. NULL

Then we finish the proof.

Problem 4

Use counter example. Let (j) become (j*): F(B,G). Then change (b), (c), (g), (h), (i) and (j*) to CNF:

- 1. $\neg A(u, H) \lor \neg S(B, u) \lor L(B, u)$
- 2. $\neg F(B, p) \lor \neg W(p, u) \lor S(B, u)$
- 3. $\neg W(G, u) \lor A(u, H)$
- 4. $\neg F(B, p) \lor W(p, sk1(p))$
- 5. $\neg W(G, u) \lor \neg L(B, u)$
- 6. F(B,G)

Follow the resolution step:

Step 1. 4+6, $p \leftarrow G$ we have 7. W(G, sk1(G))

Step 2. 2+6, $p \leftarrow G$ we have 8. $\neg W(G, u) \lor S(B, u)$

Step 3. 7 + 5, $u \leftarrow sk1(G)$ we have 9. $\neg L(B, sk1(G))$

Step 4. 7+3, $u \leftarrow sk1(G)$ we have 10. A(sk1(G), H)

Step 5. 7+8, $u \leftarrow sk1(G)$ we have 11. S(B, sk1(G))

Step 6. 9+1, $u \leftarrow sk1(G)$ we have 12. $\neg A(sk1(G), H) \lor \neg S(B, sk1(G))$

Step 7. 12 + 10, we have 13. $\neg S(B, sk1(G))$

Step 8. 13 + 11, we have 14. NULL

Then we finish the proof.