ABES Engineering College, Ghaziabad

Department of Applied Sciences & Humanities

Session: 2023-24 Semester: II Section: Common to All

Course Code: BAS201 Course Name: Engineering Physics

Determine the numerical aperture of a step index fibre when the core refractive index $n_1 = 1.5$ and cladding refractive index $n_2 = 1.48$. Find the maximum angle forentrance of light if the fibre is placed in air. (NA = 0.244, i0= 14.13°) (2009)

- **2.** Calculate the numerical aperture, acceptance angle and critical angle of the fibre from the following data: $n_1 = 1.5$ and $n_2 = 1.45$. (NA = 0.385, i0 = 22.63°, θ C = 75.3°)(2009, 2012, 2018)
- 3 Calculate the refractive indices of the core and cladding material of a fibre from the following data: NA = 0.22, Δ = 0.012. ($\mathbf{n_1}$ = 1.42 and $\mathbf{n_2}$ = 1.4)
- **4.** A step index fibre has core refractive index 1.466, cladding refractive index 1.46. If the operating wavelength of the ray is 0.85 μ m, calculate the cut-off parameter and the number of modes which the fibre will support. The diameter of core = 50 μ m. (V = **24.75**, N = **306**) (2011)
- 5. Calculate the V number for a fiber of core diameter 40 μm and RI of 1.55 and 1.50 respectively for its core and cladding when a light of wavelength 1400nm is propagating. Also calculate the number of modes that the fibre can support for the propagation. (V=34.75 and modes 611) (2023-24)
- **6.** Calculate the maximum radius allowable for $n_1 = 1.53$ and $n_2 = 1.5$ operating at wavelength 1300 nm. (radius = 1.65 μ m) (2015)
- 7. The optical power, after propagating through a fibre that is 500 m long is reduced to 25% of its original value. Calculate the fibre loss. (loss = 12.042 dB/km) (2014,2017)
- 8. Calculate the fiber loss through the optical fiber when the mean optical power launched into a 5 km length of fiber is 120 x10⁻⁶ W and the mean optical power at receiver is 4x10⁻⁶ W.(2022-23)
- **9.** A communication system uses 10 Km fibre having a loss of 2.5 dB/km. Compute the output power if the input power is 500 μ w. (**Po** = **1.58** μ **W**) (**2022**)
- **10.** In a Ruby laser, total number of Cr⁺³ ions is 2.8×10¹⁹. If the laser emits radiation of wavelength 7000 Å. Calculate the energy of the laser pulse. (**7.94 J**) (**2006**)
- **11.** Calculate the population ratio of two states in He-Ne laser that produces light of wavelength 6000A^0 at $27\,^0\text{C}$. ($N_2/N_1 = e^{-80}$) (2018)
 - **12.** Calculate the relative population of two states of the laser that produces light of wavelength 5461 Å at 300K. (Boltzmann constant $K = 8.6 \times 10$ -5 eV/K). ($N_2/N_1 = e^{-88}$) (**2019-2020**).