MATH 5301 Elementary Analysis - Homework 7

Jonas Wagner

2021, October 22nd

Problem 1 Provide examples of the sets $A, B \subset \mathbb{R}^2$ so that:

Definition 1. Set A is connected if it is not disconnected.

Definition 2. Set A is disconnected if $\forall U, V$ - open:

- a. $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$
- b. $(U \cap V) \cap A \neq \emptyset$ Note: this implies $U \neq \emptyset$ and $V \neq \emptyset$
- $c. \ A \subset U \cup V \neq \emptyset$

a) A and B are connected but $A \cup B$ is not.

Sets A and B are individually connected but that just aren't near each other. An example are these open balls:

$$A = \mathcal{B}_r((0,0)) := \{(x,y) \in \mathbb{R} : x^2 + y^2 < r^2\}$$

$$B = \mathcal{B}_r((-5r,5r)) := \{(x,y) \in \mathbb{R} : (x+5r)^2 + (y-5r)^2 < r^2\}$$

b) A and B are connected but $A \cap B$ is not.

Sets A and B are individually connected, but they intersect in two areas resulting in a disjoint intersection... Such as this donut and square sets:

$$A = \mathcal{B}_R^{(2)}((0,0)) \setminus \mathcal{B}_r^{(2)}((0,0)) = \{(x,y) \in \mathbb{R} : r^2 < x^2 + y^2 < R^2\}$$
$$B = \mathcal{B}_r^{(\infty)}((0,0)) = \{(x,y) \in \mathbb{R} : x < r \land y < r\}$$

c) A and B are not connected but $A \cup B$ is connected.

A and B individually are disjoint shapes but each individual disjointed part intersects with one from the other set. An example would be a couple of disjoint (then connected when a union) regions.

$$\begin{split} A := \left\{ (x,y) \in \mathbb{R} \ : \ x \in [-1,0] \cup [1,2] \land y \in [-2,2] \right\} \\ B := \left\{ (x,y) \in \mathbb{R} \ : \ x \in [-2,1.25] \cup [1.75,4] \land y \in [-1,3] \right\} \end{split}$$

d) A and B are not connected but $A \cap B$ is connected.

A and B individually are disjoint shapes, there is then only one connected region where they intersect. An example is two overlapping regions, each with random other disjoint parts.

$$A := \{(x,y) \in \mathbb{R} : x \in [0,1] \cup [15,30], y \in [0,1]\}$$

$$B := \{(x,y) \in \mathbb{R} : x \in [-1,1] \cup [-15,-20], y \in [0,1]\}$$

e) A and B are not connected but $A \setminus B$ is connected.

A and B individually are disjoint shapes, with a part of B covering all but one disjoint region of A. An example is a two overlapping regions with disjoint parts and A having one (only one) disjoint part not fully covered by B.

$$\begin{split} A := \{(x,y) \in \mathbb{R} \ : \ x \in [0,1] \cup [15,30], y \in [0,1] \} \\ B := \{(x,y) \in \mathbb{R} \ : \ x \in [-1,0.5] \cup [15,30], y \in [0,1] \} \end{split}$$

a) Prove that every monotone bounded sequence in \mathbb{R} converge.

Definition 3. The function $f : \mathbb{R} \to \mathbb{R}$ is called monotone if and only if it is either entirely non-increasing or non-decreasing.

- a. f is non-decreasing if $\forall_{x,y\in\mathbb{R}} x \leq y \implies f(x) \leq f(y)$.
- b. f is non-increasing if $\forall_{x,y\in\mathbb{R}} x \leq y \implies f(x) \geq f(y)$.

Definition 4. The function $f: \mathbb{R} \to \mathbb{R}$ is called bounded if

$$\exists_{N \in \mathbb{R}} : \forall_{x \in \mathbb{R}} |f(x)| \leq N$$

Definition 5. A sequence $\{a_n\}$ is said to converge to limit a if

$$\forall_{\epsilon>0} \exists_{N(\epsilon)} : \forall_{n>N} |a_n - a| < \epsilon$$

Theorem 1. Every monotone bounded sequence in \mathbb{R} converges.

Proof. Define sequence $\{a_n\}$ bounded and monotone. (i.e)

$$((\forall_{n,m\in\mathbb{N}:m>n}a_n\geq a_m)\vee(\forall_{n,m\in\mathbb{N}:m>n}a_n\leq a_m))\wedge(\exists_{N\in\mathbb{R}}\forall_{n\in\mathbb{N}}|a_n|\leq N)$$

Taking only the positive case (non-decreasing and bounded from above), a proof can be made without loss of generality (as that how $|\cdot|$ works...).

$$(\forall_{n,m\in\mathbb{N}:n>m}a_n\leq a_m)\wedge(\exists_{a\in\mathbb{R}}\forall_{n\in\mathbb{N}}|a_n|\leq a)\implies\forall_{\epsilon>0}\exists_{N(\epsilon)}:\forall_{n>N}|a_n-a|<\epsilon$$
$$\exists_{a\in\mathbb{R}}\forall_{n,m\in\mathbb{N},n>m}a_n\leq a_m\leq a\implies\forall_{\epsilon>0}\exists_{N(\epsilon)}\forall_{n>N}a-a_n<\epsilon$$
$$\forall_{\epsilon>0}\exists_{N(\epsilon)}\exists_{a\in\mathbb{R}}\forall_{n,m\in\mathbb{N},n>m>N}a_n\leq a_m\leq a\implies a-a_n<\epsilon$$

Clearly since the sequence is non-decreasing and bounded from above it will converge to the upper boundary. This can then be applied again for below to fully prove this. \Box

b) Provide an example of the set $A \in \mathbb{R}$ having exactly four limit points.

Definition 6. For a set $A \subseteq S$ in metric space (S,d), $x \in S$ is called a limit point of A if

$$\forall_{\epsilon > 0} \exists_{y \in A} : 0 < d(x, y) < \epsilon$$

Define A as a simple union of simple single limit point sets:

$$A := \{\frac{1}{n}, n \in \mathbb{N}\} \cup \{\sqrt{2} + \frac{1}{n}, n \in \mathbb{N}\} \cup \{\pi + \frac{1}{n}, n \in \mathbb{N}\} \cup \{e + \frac{1}{n}, n \in \mathbb{N}\}$$

In this case the limit points are: $0, \sqrt{2}, \pi$, and e.

c) Provide an example of a sequence $\{a_n\}$, so that every point in the interval [2019, 2021] is a limit point of it.

Because sinusoidal functions are fun, lets use:

$${a_n} := {a_n = 2000 + \sin(n), \ n = 1, 2, \dots}$$

a)

Provide an example of a sequence $\{a_n\}$ so that a_n diverges, but $\lim_{n\to\infty}(a_n-a_{2n})=0$. This is perhaps going too fun with it, but how about:

$$\{a_n\} := \{a_n = \begin{cases} a_{n/2} + \frac{1}{n} & n \vdots 2 \\ n^2 & \text{else} \end{cases}$$

b)

Provide an example of two sequences $\{a_n\}$ and $\{b_n\}$ so that

$$\left(\liminf_{n\to\infty}a_n+\liminf_{n\to\infty}b_n\right)<\liminf_{n\to\infty}(a_n+b_n)<\left(\liminf_{n\to\infty}a_n+\limsup_{n\to\infty}b_n\right)<\limsup_{n\to\infty}(a_n+b_n)<\left(\limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n\right)$$

Definition 7. A Limit Superior, denoted as $\limsup_{n\to\infty}$, is the limit of an superior function on the extremes of a sequence. This is defined by

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right)$$

Definition 8. A Limit Inferior, denoted as $\liminf_{n\to\infty}$, is the limit of an inferior function on the extremes of a sequence. This is defined by

$$\liminf_{n \to \infty} x_n := \lim_{n \to \infty} \left(\inf_{m \ge n} x_m \right)$$

Defining two sinusoidal functions with the same frequency but with a phase shift to incur the strictness requirements.

$${a_n} := {a_n = \cos(\omega_1 n + \theta_1)}_{n \in \mathbb{N}}$$

 ${b_n} := {b_n = \cos(\omega_2 n + \theta_2)}_{n \in \mathbb{N}}$

with $\omega_1 = \omega_2 = \frac{\pi}{25}$, $\theta_1 = 0$, and $\theta_2 = \frac{\pi}{8}$.

Show the equivalence of the norms $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_p, p > 1$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^n .

Definition 9. A norm is a function $\|\cdot\|: S \to \mathbb{R}_+$ satisfying:

- a. $\|\vec{\mathbf{x}}\| > 0, \ \vec{\mathbf{x}} \neq 0$
- $b. \|\lambda \vec{\mathbf{x}}\| = |\lambda| \|\vec{\mathbf{x}}\|$
- $c. \|\vec{\mathbf{x}} + \vec{\mathbf{y}}\| \le \|\vec{\mathbf{x}}\| + \|\vec{\mathbf{y}}\|$

Definition 10. For $\|\cdot\|_a, \|\cdot\|_b$ on S, $\|\cdot\|_a$ is said to be stronger then $\|\cdot\|_b$ if

$$\forall \{x_n\} \subset S : x_n \xrightarrow[d_a]{} x \implies x_n \xrightarrow[d_b]{} x$$

Which is equivalent to

Definition 11. $\|\cdot\|_a$ and $\|\cdot\|_b$ are said to be equivalent, $\|\cdot\|_a \sim \|\cdot\|_b$, if $\|\cdot\|_a$ is stronger then $\|\cdot\|_b$ and $\|\cdot\|_b$ is stronger then $\|\cdot\|_a$. This means that

$$\left\|\cdot\right\|_a \sim \left\|\cdot\right\|_b \iff \exists \alpha, \beta \in \mathbb{R}_{>0} : \forall_{x \in S} \alpha \left\|\cdot\right\|_b \leq \left\|\cdot\right\|_a \leq \beta \|x\|_b$$

Definition 12. The standard norms are defined as

a.
$$\|\cdot\|_1 := \|x\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

b.
$$\|\cdot\|_2 := \|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \left(|x_1|^2 + |x_2|^2 + \dots + |x_n|^2\right)^{1/2}$$

c.
$$\|\cdot\|_p := \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = \left(|x_1|^p + |x_2|^p + \dots + |x_n|^p\right)^{1/p}, \ p > 1$$

$$d. \|\cdot\|_{\infty} := \|x\|_{\infty} = \max_{i=1}^{n} |x_i| = \max(|x_1|, |x_2|, \dots, |x_n|)$$

Theorem 2. The norms $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_p$, and $\|\cdot\|_{\infty}$ are all equivalent on \mathbb{R}^n .

Proof.

Lemma 1. $\lVert \cdot \rVert_1 \sim \lVert \cdot \rVert_2$

Proof. $\left\| \cdot \right\|_1 \sim \left\| \cdot \right\|_2$ is true iff

 $\forall_{x \in \mathbb{R}^n} \exists_{\alpha,\beta \in \mathbb{R}_+} :$

$$\alpha \|x\|_{2} \leq \|x\|_{1} \leq \|x\|_{2}$$

$$\alpha \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} \leq \sum_{i=1}^{n} |x_{i}| \leq \beta \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2}$$

From the Holder's inequality we have

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |x_{i}|(1)$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} |1|^{2}\right)^{1/2}$$

$$\leq n^{1/2} \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2}$$

So for $0 < \alpha \le n^{1/2}$ and $\beta \ge n^{1/2}$,

$$\alpha \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2} \leq \sum_{i=1}^{n} |x_i| \leq \beta \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2}$$

$$\left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2} \leq n^{1/2} \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2}$$

$$\leq n^{1/2} \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2}$$

Therefore,

$$||x||_2 \le ||x||_1 \le n^{\frac{1}{1-p}} ||x||_2$$

which proves $\left\|\cdot\right\|_1 \sim \left\|\cdot\right\|_2.$

Lemma 2. $\left\|\cdot\right\|_1 \sim \left\|\cdot\right\|_p$

Proof. $\|\cdot\|_1 \sim \|\cdot\|_p$ is true iff

 $\forall_{x \in \mathbb{R}^n} \exists_{\alpha,\beta \in \mathbb{R}_+} :$

$$\alpha \|x\|_{p} \le \|x\|_{1} \le \|x\|_{p}$$

$$\alpha \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \le \sum_{i=1}^{n} |x_{i}| \le \beta \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

From the Holder's inequality we have

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |x_{i}|(1)$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} |1|^{(1-p)}\right)^{1/(1-p)}$$

$$\leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

So for $0 < \alpha \le n^{1/(1-p)}$ and $\beta \ge n^{1/(1-p)}$,

$$\alpha \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \leq \sum_{i=1}^{n} |x_i| \leq \beta \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

$$\left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

$$\leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

Therefore,

$$||x||_p \le ||x||_1 \le n^{\frac{1}{1-p}} ||x||_p$$

which proves $\|\cdot\|_1 \sim \|\cdot\|_p$.

Lemma 3. $\left\| \cdot \right\|_1 \sim \left\| \cdot \right\|_\infty$

Proof. $\|\cdot\|_1 \sim \|\cdot\|_{\infty}$ is true iff

 $\forall_{x \in \mathbb{R}^n} \exists_{\alpha,\beta \in \mathbb{R}_+}$:

$$\alpha \|x\|_{\infty} \le \|x\|_{1} \le \beta \|x\|_{\infty}$$
 $\alpha \max_{i=1}^{n} |x_{i}| \le \sum_{i=1}^{n} |x_{i}| \le \beta \max_{i=1}^{n} |x_{i}|$

Clearly, this is true for when $\alpha \in (0,1]$. Similarly, when $\beta \geq n$ then $\sum_{i=1}^n \max_{i=1}^n |x_i|$ and then clearly greater then the $\|x\|_1$; therefore $\|\cdot\|_1 \sim \|\cdot\|_{\infty}$.

From, Lemma 1, Lemma 2, and Lemma 3, it is clear that $\forall_{p>1}$ (which implies $||x||_2$ as well):

$$\|x\|_{\infty} \leq \|x\|_p \leq \|x\|_1 \leq n^{1/1-p} \|x\|_p \leq n \|x\|_{\infty}$$

Therefore, $\|\cdot\|_1 \sim \|\cdot\|_2 \sim \|\cdot\|_p \sim \|\cdot\|_\infty$ on \mathbb{R}^n $(\forall_{p>1})$.

Are there any open sets A and B in \mathbb{R}^4 so that dist(A,B)=0 but $A\cap B=\emptyset$?

Definition 13. For sets $A, B \subset S$ in metric space (S, d),

$$dist(A, B) := \inf\{d(x, y) : x \in A, y \in B\}$$

Proposition 1. There exists open sets A and B in \mathbb{R}^2 so that d(A, B) = 0 but $A \cap B = \emptyset$.

Proof. $A, B \in \mathbb{R}^4$ open means

$$\forall_{x \in A} \exists_{\epsilon > 0} \forall_{y \in \mathbb{R}^4} d(x, y) < \epsilon \implies y \in A$$

and

$$\forall_{x \in B} \exists_{\epsilon > 0} \forall_{y \in \mathbb{R}^4} d(x, y) < \epsilon \implies y \in B$$

dist(A, B) = 0 means that

$$dist(A, B) = \inf\{d(x, y) : x \in A, y \in B\} = 0$$

Additionally, $A \cap B = \emptyset$ implies that $\forall_{x \in A} \forall_{y \in B} x \neq y$. In order for dist(A, B) = 0 and $A \cap B = \emptyset$,

$$\exists_{x \in A} : \inf_{y \in B} \{d(x, y)\} = 0 \land x \notin B$$

One solution to this is that

$$\exists_{x \in \partial A, y \in \partial B} : d(x, y) = 0$$

Therefore, it is possible for open sets A and B in \mathbb{R}^4 so that dist(A, B) = 0 and $A \cap B = \emptyset$. Essentially, $\partial A \cap \partial B \neq \emptyset$.

An example would be:

$$A := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r_1^2\}$$

and

$$B := \{(x,y) \in \mathbb{R}^2 : (x+2r_2)^2 + y^2 < r_2^2\}$$

with $r_1 = r_2 = r \in \mathbb{R}$.

Let $\mathcal{B}([0,1])$ denote the set of all bounded functions from [0,1] to \mathbb{R} . Define the metric on $\mathcal{B}([0,1])$ as $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$.

Definition 14. For ordered field S and A bounded from above, $c \in S$ is a supremum of A, $c = \sup A$, if:

$$c = \sup A \iff (\forall_{a \in A} a \le c) \land (\forall_{\epsilon > 0} \exists_{a \in A} : c - \epsilon < a)$$

a) Show that this is indeed a metric.

Theorem 3. The metric $d: \mathcal{B}([0,1]) \to \mathbb{R}$

$$d(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|$$

is a metric on $\mathcal{B}([0,1])$.

Proof. A metric must satisfy (i) non-negativity, (ii) Symmetry, and (iii) Triangle Inequality.

i) Non-negativy

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| \ge 0$$

Since $|f(x) - g(x)| \ge 0$, $\sup_{x \in [0,1]} |f(x) - g(x)| \ge 0$ and therefore $d(f,g) \ge 0$.

ii) Symmetry

$$d(f, q) = d(q, f)$$

$$\begin{split} d(f,g) &= \sup_{x \in [0,1]} |f(x) - g(x)| = d(g,f) = \sup_{x \in [0,1]} |g(x) - f(x)| \\ &\sup_{x \in [0,1]} |f(x) - g(x)| = \sup_{x \in [0,1]} |(-1)(f(x) - g(x))| \\ &\sup_{x \in [0,1]} |f(x) - g(x)| = \sup_{x \in [0,1]} |(f(x) - g(x))| \end{split}$$

Therefore it is symmetric.

iii) Triangle Inequality

$$d(f,h) \le d(f,g) + d(g,h)$$

$$\begin{split} d(f,h) & \leq d(f,g) + d(g,h) \\ \sup_{x \in [0,1]} |f(x) - h(x)| & \leq = \sup_{x \in [0,1]} |f(x) - g(x)| + \sup_{x \in [0,1]} |g(x) - h(x)| \\ \forall_{x \in [0,1]} (|f(x) - h(x)| < d(f,h)) & \leq \forall_{x \in [0,1]} (|f(x) - g(x)| < d(f,g)) + \forall_{x \in [0,1]} (|g(x) - h(x)| < d(g,h)) \\ \forall_{x_1,x_2,x_3 \in [0,1]} (|f(x_1) - h(x_1)| & \leq |f(x_2) - g(x_2)| + |g(x_3) - h(x_3)|) \end{split}$$

Suppose this is false

$$\exists_{x_1, x_2, x_3 \in [0,1]} (|f(x_1) - h(x_1)| > |f(x_2) - g(x_2)| + |g(x_3) - h(x_3)|)$$

$$\exists_{x_1, x_2, x_3 \in [0,1]} : \left(|f(x_1) - h(x_1)| > |f(x_1)| + |h(x_1)| > |f(x_2) - h(x_2)| + |h(x_3) - g(x_3)| \right)$$

$$> |f(x_2)| - |g(x_2)| + |g(x_3)| - |g(x_3)|)$$

Which due to the triangular inequality property of $|\cdot|$, is clearly not possible and therefore the metric satisfies the Triangular inequality.

b) Prove that the space $(\mathcal{B}([0,1]),d)$ is a complete metric space.

Definition 15. Metric space (S,d) is called a complete metric space if every cauchy sequence $\{a_n\} \subset S$ converges in S.

$$\forall \{a_n\} \subset S : \{a_n\} \text{ cauchy } \Longrightarrow \exists_{a \in S} : \lim_{n \to \infty} a_n = a$$

Theorem 4. $(\mathcal{B}([0,1]),d)$ is a complete metric space.

Proof. Let $\{a_n\}$ be a cauchy sequence (i.e.)

$$\{a_n\}: \forall_{\epsilon>0} \exists_N: \forall_{n,m>N} \implies d(a_n, a_m) < \epsilon$$

Consider set $D_N = \{x \in S : \forall_{n < N} a_n < x\}$

- a. D is bounded (i.e $x \in D < a_N + \epsilon$)
- b. D is nonempty (i.e $a_N \epsilon \in D$)

For a fixed ϵ ,

$$\exists_N : \forall_{n>N+1} \implies d(a_n, a_{N+1}) < \epsilon$$

We then take $a = \sup\{D\}$.

Claim $a = \lim_{n \to \infty} a_n$,

$$\forall_{\epsilon>0}\exists_N : \forall_{n>N} \implies d(a,a_n) < \epsilon$$

Claim $y < a \implies y \in D$,

$$y \in D \land z < y \implies z \in D$$

$$\forall_{\epsilon>0} \exists_{N(\epsilon)} : \forall_{n>N} a_n > a - \frac{\epsilon}{2}$$

However, it is also true by definition of cauchy sequence:

$$d(a_m, a_n) < \frac{\epsilon}{2} \ \forall_{m, n > \hat{N}}$$

Also,

$$n > \max[N, \hat{N}] : d(a_n, a) \le d(a_n, a_m) + d(a_m, a) \le \epsilon$$

Since $\epsilon > 0$ is arbitrarily selected and $d(a_n, a) < \epsilon$ whenever $n \ge N$, this implies $\{a_n\}$ converges to a.

c) Is the unit ball $\mathcal{B}_1(0) = \{f(x) : d(f,0) \leq 1\}$ compact?

Definition 16. Let (S,d) be a metric space with $A \subset S$,

a. For $\{U_{\alpha}\}_{{\alpha}\in A}$, $U_{\alpha}\subset S$, is a <u>cover</u> of the set A if

$$A \subset \bigcup_{\alpha \in A} U_{\alpha}$$

- b. A cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of A is an **open cover** if $\forall_{{\alpha}\in A}\ U_{\alpha}$ is an open set.
- c. $\{V_{\beta}\}_{\beta \in B}$ is called a <u>subcover</u> of $\{U_{\alpha}\}_{\alpha \in A}$ if
 - (a) $\{V_{\beta}\}_{{\beta}\in B}$ is a cover of A
 - (b) $\forall_{\beta \in B} \exists_{\alpha \in A} V_{\beta} = U_{\alpha}$
- d. A cover with a finite number of sets is called a finite cover.

Definition 17. For $A \subset (S,d)$, A is **compact** if for every open cover of A there exists a finite sub cover.

Proposition 2. $\mathcal{B}_1(0) = \{ f(x) : d(f,0) \leq 1 \}$ is compact.

Proof.

$$\begin{split} \mathcal{B}_1(0) &= \{ f(x) \ : \ d(f,0) \leq 1 \} \\ &= \left\{ f(x) \ : \ \sup_{x \in [0,1]} |f(x) - 0| \leq 1 \right\} \\ &= \left\{ f(x) \ : \ \sup_{x \in [0,1]} |f(x)| \leq 1 \right\} \\ &= \left\{ f(x) \ : \ \forall_{x \in [0,1]} |f(x)| \leq 1 \right\} \\ &= \left\{ f(x) \ : \ \forall_{x \in [0,1]} - 1 \leq f(x) \leq 1 \right\} \end{split}$$

In other words, the ball is totally bounded. Since it is also known that this bounded subset of $\mathcal{B}([0,1])$ is complete, it is therefore also compact.