Optimal Video Encoding @ Scale: Dynamic Optimizer

Ioannis Katsavounidis Video Algorithms, Netflix

R: 2000kbps

R: 1Mbps	R: 1Mbps	 R: 1Mbps	
		 15	

R: 100kbps

R: 500kbps

Motivation

- 1. Why use same encoding parameters throughout a long and diverse video sequence?
- 2. Why impose a fixed Intra-frame interval?
- 3. Why consider (only) compression artifacts in video quality?
- 4. Why use MSE (PSNR)?
- 5. How to choose optimal combination of encoding parameters for a long and diverse video sequence?
- 6. How can we obtain the entire convex hull of optimal encodes?

Framework: Single shot processing

Framework: Convex hull of optimal shot encodes

Framework: Trellis

Number of pre-encodes = number of QPs (n) x number of shots (m)

VP9, 63 QPs

Framework: Trellis optimal path

Fixed QP encode

Highest (average) quality encode, with bitrate x kbps

Lowest (average) bitrate encode, with quality y

Framework: Resolutions

Number of pre-encodes = number of QPs (n) x number of shots (m) x number of resolutions (r)

VP9, 63 QPs, 7 resolutions

Results: Video Content

10 titles

- 8 representative titles from NETFLIX catalog
- 2 publicly available ("El Fuente" and "Meridian")

NETFLIX

Results: DO VP9 vs. Per-Title Optimal QP

Results: DO vs. Fixed Q BD-rate

Title	VMAF	PSNR
Bloodline	-18.88%	-31.26%
BoJack	-48.39%	-60.18%
BreakingBad	-22.81%	-38.10%
Daredevil	-20.07%	-34.42%
ElFuente	-25.93%	-45.58%
НоС	-25.85%	-34.52%
Meridian	-38.82%	-70.11%
OINB	-19.22%	-31.92%
TheAvengers	-25.61%	-37.32%
WHAS	-14.45%	-38.13%
AVERAGE	-25.72%	-41.96%

Results: Applied to AVC-High, VP9 and HEVC

- Run at scale (production pipeline)
- Multiple titles (30)
- About 10 min. each
- Reasonably slow speed settings

Codec	VMAF	PSNR
AVC-High (x264)	-28.04%	-27.99%
VP9 (libvpx)	-37.61%	-36.97%
HEVC (x265)	-33.51%	-30.52%

Parallel Encoding

Implementation challenges

VP9, 63 Q	Ps, 7	resolutions
-----------	-------	-------------

	~3 min chunks	Encodes	Tasks
Avengers	48	10	480
El Fuente	2	10	20

	Shots	Encodes	Tasks
Avengers	2915	441	1,285,515
El Fuente	96	441	42,336

Number of actual encodes Number of tasks

Number of encodes

	Shots	Encodes	Tasks
Avengers	2915	441	1,285,515
El Fuente	96	441	42,336

	Shots	Encodes	Tasks
Avengers	2915	35	102,025
El Fuente	96	35	3,360

The point of diminishing returns

Find subset of operating points that produce "equivalent" performance to the "full" optimizer Constrained dynamic optimizer

Number of tasks

	Shots	Encodes	Tasks
Avengers	2915	35	102,025
EI Fuente	96	35	3,360

	Chunks	Encodes	Tasks
Avengers	46	35	1610
El Fuente	2	35	70
1 1 1	√		

Collation

Combine multiple shots into chunks
Checkpoints after every shots

Internal Spot market

- Borrow unused instances
- Daily peak of ~12,000 instances

115 movies, runtime between 2 - 3 hrs, numshots range from 725 to 3973, total shots 235,017

Codec	Total CPU time	Avg CPU time	Avg wall clock time
H264 AVC	15,281 days	132 days	7 days
VP9	38,284 days	332 days	9 days

So far...

Shots	CPU time
18,436,049	1,466,311 days

"Compute complexity is the currency we use to buy video quality"

David Ronca, Director of Encoding Technologies, VQEG meeting @NETFLIX, May 2017

Demo

Summary

- Joint optimization of shots
- Codec agnostic and object metric agnostic framework
- Orthogonal to I/P/B quality optimization by codecs
- Upper bound to compare rate control mechanisms within and between codecs
- Provides ~25% bitrate savings at same quality
- Streams are 100% compliant; ready to be consumed by existing clients

Video Algorithms Team @100M party

Academic research partners

University of Texas Austin

Prof. Al Bovik

Todd Goodall

Christos Bampis

Zeina Sinno

Université de Nantes

Prof. Patrick Le Callet Lukáš Krasula

University of Southern California

Prof. C.-C. Jay Kuo

Joe Yuchieh Lin

Haiqiang Wang

University of Bristol

Prof. David Bull

Felix Mercer Moss

Mariana Afonso

Special session: "System-level perceptual video coding optimization"