STATS 506 Problem Set #3

Haiming Li

Vision

a. Read data and merge data

```
library(haven)
vix <- read_xpt('./VIX_D.XPT')
demo <- read_xpt('./DEMO_D.XPT')
df <- merge(vix, demo, by='SEQN')
cat('Sample size:', nrow(df))</pre>
```

Sample size: 6980

b. The max age is 85, so there will only be 9 age brackets.

Age Group	Proportion
10-19	32.09
20-29	32.66
30-39	35.87
40-49	37.00
50-59	55.01

Age Group	Proportion
60-69	62.22
70-79	66.89
80-89	66.88

c. Here are fitted models and their summary.

```
#' Create Summary Table for Logistic Regression
# '
#' @param model a fitted logistic regression model
#' @return a table with required stats
summary_table <- function(model) {</pre>
  odds_ratios <- as.data.frame(t(exp(coef(model))))</pre>
  res <- data.frame(</pre>
  'Sample Size' = nobs(model),
  'Pseudo R2' = 1 - model$deviance / model$null.deviance,
  'AIC' = AIC(model)
  res <- cbind(odds_ratios, res)</pre>
  return(t(res))
# data cleaning
df mod <- subset(df, select=c(VIQ220, RIAGENDR, RIDAGEYR, RIDRETH1, INDFMPIR))
df_mod <- na.omit(df_mod)</pre>
df_mod$VIQ220 <- as.factor(df_mod$VIQ220)</pre>
df_mod$RIAGENDR <- as.factor(df_mod$RIAGENDR)</pre>
df_mod$RIDRETH1 <- as.factor(df_mod$RIDRETH1)</pre>
# model fitting
mod1 <- glm(VIQ220 ~ RIDAGEYR, data = df_mod,</pre>
             family = binomial(link = "logit"))
knitr::kable(summary_table(mod1))
```

(Intercept)	3.4170427
RIDAGEYR	0.9760682
Sample.Size	6247.0000000
Pseudo.R2	0.0473330
AIC	8119.8714676

(Intercept)	6.0521094
RIDAGEYR	0.9779121
RIDRETH12	0.8560069
RIDRETH13	0.5277604
RIDRETH14	0.7737545
RIDRETH15	0.5310998
RIAGENDR2	0.6053170
Sample.Size	6247.00000000
Pseudo.R2	0.0685555
AIC	7949.0753329
RIAGENDR2 Sample.Size Pseudo.R2	0.6053170 6247.0000000 0.0685555

(Intercept)	7.5094311
RIDAGEYR	0.9780560
RIDRETH12	0.8904552
RIDRETH13	0.6056040
RIDRETH14	0.8127071
RIDRETH15	0.5870020
RIAGENDR2	0.5967415
INDFMPIR	0.8926169
Sample.Size	6247.0000000
Pseudo.R2	0.0733995
AIC	7909.8082208

d. From previous part, we have the odds ratio for women is 0.5967415. This can be interpreted as the value of female odds divided by male odds. From the summary of model 3, the coefficient is significant, thus implying that female odds differs from male odds for being a glass wearer is statistically significant. Since the positive class of glm is the last level of the factor, 2 in this case, the positive class for the model is actually "not a glass wearer". Thus, we need to invert our interpretation. Having a odds ratio less than 1 from the model actually should imply that the odds of females wearing glasses/contacts for distance vision is higher than male.

summary(mod3)

```
Call:
glm(formula = VIQ220 ~ RIDAGEYR + RIDRETH1 + RIAGENDR + INDFMPIR,
   family = binomial(link = "logit"), data = df_mod)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                      0.087788 22.966 < 2e-16 ***
(Intercept) 2.016160
RIDAGEYR
           -0.022188
                      0.001295 -17.135 < 2e-16 ***
RIDRETH12
           -0.116023
                     0.168265 -0.690 0.490495
           RIDRETH13
RIDRETH14
           -0.207385
                      0.079217 -2.618 0.008847 **
           -0.532727
                      0.140152 -3.801 0.000144 ***
RIDRETH15
           -0.516271
                      0.054305 -9.507 < 2e-16 ***
RIAGENDR2
INDFMPIR
           -0.113598
                      0.017707 -6.415 1.41e-10 ***
___
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 8519.1 on 6246 degrees of freedom
Residual deviance: 7893.8 on 6239 degrees of freedom
AIC: 7909.8
Number of Fisher Scoring iterations: 4
```

As shown by the two sample proportion test, the p-value is extremely small. Thus, we can reject the null hypothesis and conclude that the proportion of wearers of glasses/contact lenses for distance vision differs between men and women. We can even say that male proportion is less than female proportion. (according to the fact that the confidence interval is below 0)

```
tab <- table(df_mod$RIAGENDR, df_mod$VIQ220)
prop.test(tab[,1], rowSums(tab))</pre>
```

2-sample test for equality of proportions with continuity correction

```
data: tab[, 1] out of rowSums(tab)
X-squared = 69.683, df = 1, p-value < 2.2e-16</pre>
```

```
alternative hypothesis: two.sided
95 percent confidence interval:
-0.12945505 -0.08007986
sample estimates:
prop 1 prop 2
0.3714379 0.4762054
```

levels(df_mod\$VIQ220)

[1] "1" "2"

Sakila

US Records