## **Cross Validation**

Benoit Gaüzère

INSA Rouen Normandie - Laboratoire LITIS

October 23, 2023

### Introduction

## How to learn a "good" model ?

- ► We want good performance
- ► Simple as possible
- ► Able to predict unseen data

# **Empirical Risk**

### Error on learning set

► Empirical risk:

$$R_e m p(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i), y_i)$$

- $\triangleright$   $\mathcal{L}$  evaluates the performance of prediction  $f(\mathbf{x}_i)$
- Error is computed on the training set
- The model can be too specialized on this particular dataset

### Generalisation

#### Tentative of Definition

- ▶ Ability of the model to predict well unseen data
- Hard to evaluate
- ► Real objective of a model

## Regularisation

- Regularization term control the model
- ▶ Balances between empirical risk and generalization ability
- ▶ Need to tune the balance  $(\lambda)$

# How to evaluate to ability to generalize ?

#### Evaluate on unseen data

- ▶ Define and isolate a test set
- Evaluate on the test set

#### Bias

- Avoid to use same data in train and test
- Test set must be totally isolated

# Overfitting vs Underfitting

- ightharpoonup Overfitting: low  $R_{emp}$ , high generalization error
- ▶ Underfitting: high  $R_{emp}$ , medium generalization error



# Hyperparameters

#### Parameters outside the model

- Some parameters are not learned by the model
- They are "hyperparameters" and must be tuned
- ► ▲Tuned on data outside the test set
- ightharpoonup Example:  $\lambda$  in Ridge Regression

# How to tune the hyperparameters ?

#### Validation set

- Split train set into validation and learning set
- Learn model parameters using the learning set
- Evaluate the performance on validation set
- Validation set simulates the test set, aka unseen data

### General framework



# Validation strategies

### How to split validation/training set

- Need of a strategy to split between training and validation sets
- ► Training is used to tune the parameters of the model
- Validation is used to evaluate the model according to hyperparameters

## Train/Validation/Test

### Single split

- + An unique model to learn
- May be subject to split bias
- Only one evaluation of performance



#### Leave one out

### N splits

- N models to learn
- Validation error is evaluated on 1 data



### KFold Cross validation

### K splits

- + K models to learn
- ► Validation error is evaluated on N/K data
- Some splits may be biased



## Shuffle Split Cross validation

#### K splits

- ► Learn/Valid sets are randomly splited
- + K models to learn
- + Avoid bias
- Some data may not be evaluated



### With scikit-learn

- ▶ sklearn.model\_selection.train\_test\_split
- ▶ sklearn.model\_selection.KFold
- ▶ sklearn.model\_selection.ShuffleSplit
- sklearn.model\_selection.GridSearchCV

### Recommandation

### Size of splits

- ► How many splits ?
- How many element by split ?
- Depends on the number of data
- Tradeoff between learning and generalization

### Stratified splits

- Splitting may induce to imbalanced datasets
- ► Take care that the distribution of y is the same for all sets

## Conclusion

- ► A good protocol avoid bias
- ► Test is never used during tuning of (hyper)parameters
- Perfect protocol doesn't exists