

Problem Statement

- Data from Kaggle competition (15,000 30m^2 plots of land in Roosevelt Nat. Forest)
- Theorize use case scenario:
 - Land heavily logged in 1990s
 - Recent forest fires have cleared land of vegetation
 - Colorado wants to repopulate tree cover

Features and Organization

Target Variable

Elevation

- Aspect
- Slope
- Horizontal Distance To Hydrology

Quantitative Features

- Vertical Distance To Hydrology
- Horizontal Distance To Roadways
- Horizontal_Distance_To_Fire_Points
- Hillshade_9am
- Hillshade_Noon
- Hillshade_3pm

Cover Type

- 1 Spruce/Fir
- 2 Lodgepole Pine
- 3 Ponderosa Pine
- 4 Cottonwood/Willow
- 5 Aspen
- 6 Douglas-fir

7 - Krummholz

Qualitative Features

Wilderness Area (4)

- 1 Rawah Wilderness Area
- 2 Neota Wilderness Area
- 3 Comanche Peak Wilderness Area
- 4 Cache la Poudre Wilderness Area
- Soil Type (40)

Models Comparison

Model	Train Accuracy	Test Accuracy	Precision	Recall	F1
LogReg Base	0.72	0.73	0.73	0.73	0.73
LogReg Opt GS	0.72	0.73	0.72	0.73	0.73
SVC Base	0.76	0.76	0.76	0.76	0.76
KNN Base	0.80	0.82	0.72	0.73	0.73
DecTree Base	0.78	0.78	0.78	0.78	0.78
RandFor Base	0.86	0.85	0.85	0.85	0.85
RandFor Opt RS	0.86	0.85	0.85	0.85	0.85
XGB Base	0.86	0.85	0.85	0.85	0.85
XGB Opt	0.86	0.85	0.85	0.85	0.85

Optimized Scaled RandomForest:

Precision: 0.85

Recall: 0.85

Parameters: n_estimators=12,

criterion='entropy', max_features=6, max_depth=None, min_samples_split=100, min_samples_leaf=20, bootstrap=False, random_state=1)

Good Performers: Poor Performers:

3 - Ponderosa Pine 1 - Spruce/Fir

4 - Cottonwood/Willow 2 - Lodgepole Pine

3 - Ponderosa Pine

6 - Douglas-fir

5 - Aspen

7 - Krummholz

Some Insights:

- We should never classify Tree Cover in area 4 as 1 or 2 (12)
- We should never classify Tree Cover in area 1 as 3, 4 or 6 (15)
- Hesitant to make the same assumption for area 2

Conclusions and Takeaways

- Current Random Forest Model is decent, but could be improved (feature engineering)
- Account for class imbalance which would exist in real world application
- Consider breaking down by Wilderness Area/Region in larger data set

Other Use Cases Examples:

- Identifying where invasive species are located
- Logging (hopefully not)
- Reverse the logic-tree cover helps identify some features