

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prof. Ryan Cotterell

## Yannick Wattenberg: Assignment 03

ywattenberg@inf.ethz.ch, 19-947-464.

14/12/2022 - 14:57h

## Question 1: Exploring the Kleene Star

**a**)

To prove:

$$a^* \stackrel{!}{=} 1 \oplus a \otimes a^*$$

$$a^* = \bigoplus_{n=0}^{\infty} a^{\otimes n} \qquad (\text{def.*}) \qquad (1)$$

$$= 1 \oplus \bigoplus_{n=1}^{\infty} a^{\otimes n} \qquad (\text{def.}\oplus) \qquad (2)$$

$$= 1 \oplus a \otimes \bigoplus_{n=0}^{\infty} a^{\otimes n} \qquad (\text{diss. of } \otimes \text{over } \oplus) \qquad (3)$$

$$= 1 \oplus \bigoplus_{n=1}^{\infty} a^{\otimes n} \tag{def.} \oplus) \tag{2}$$

$$= 1 \oplus a \otimes \bigoplus_{n=1}^{\infty} a^{\otimes n}$$
 (diss. of  $\otimes$  over  $\oplus$ ) (3)

(4)

b)

We want to find a Kleene Star for  $W_{log}$ . Using the definition of Kleene Star, we have:

$$a^* = \bigoplus_{n=0}^{\infty} a^{\otimes n} \tag{5}$$

$$= 0 \oplus_{log} a \oplus_{log} a \otimes a \oplus_{log} \dots \tag{6}$$

$$= \ln(\exp(0) + \exp(a)) \oplus_{\log} a + a \oplus_{\log} \dots$$
 (def. $\oplus$ ,  $\otimes$ ) (7)

$$= \ln(\exp(\ln(\exp(0) + \exp(a))) + \exp(2a)) \oplus_{log} \dots$$
(8)

$$= \ln(\exp(0) + \exp(a) + \exp(2a)) \oplus_{\log \dots}$$
(9)

$$= \ln(\sum_{n=0}^{\infty} \exp(a \cdot n)) \tag{10}$$

(11)

For  $a \ge 0$  this series will diverge as  $n \to \infty$ , because  $\lim_{n \to \inf} \exp(a \cdot n) \ge 1$  in that case.

Thus we assume that a < 0 for the rest of the proof. We can then rewrite the series as a geometric series as follows:

$$\sum_{n=0}^{\infty} \exp(a \cdot n) = \sum_{n=0}^{\infty} g^n \qquad \text{(where } g = \exp(a)\text{)}$$

$$= \frac{1}{1-g}$$
 (limit of the geometric series) (13)  
$$= \frac{1}{1-\exp(a)}$$
 (def.g)

$$=\frac{1}{1-\exp(a)}\tag{14}$$

For the Kleene Star expression we then get:

$$a^* = \ln\left(\frac{1}{1 - \exp(a)}\right)$$

 $\mathbf{c}$ 

We want to find a Kleene Star for the expectation semiring. Following the same pattern as in the previous part, the definition gives us:

$$let a = \langle x, y \rangle \in \mathcal{R} \times \mathcal{R} \tag{15}$$

$$a^* = \bigoplus_{n=0}^{\infty} a^{\otimes n} \tag{16}$$

$$= \bigoplus_{n=0}^{\infty} \langle x, y \rangle^{\otimes n} \tag{17}$$

$$= \langle 1, 0 \rangle \oplus \langle x, y \rangle \oplus \langle x^2, 2xy \rangle \oplus \langle x^3, 3x^2y \rangle \oplus \dots$$
 (18)

$$= \bigoplus_{n=0}^{\infty} \left\langle x^n, nx^{n-1}y \right\rangle \tag{19}$$

$$= \left\langle \sum_{n=0}^{\infty} x^n, \sum_{n=0}^{\infty} n x^{n-1} y \right\rangle \tag{20}$$

We can now explore the limit of both of the series individually. For the first one we have:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 (limit of the geometric series) (21)

(22)

Assuming that |x| < 1, as otherwise the series would diverge. For the second one we have:

$$\sum_{n=0}^{\infty} nx^{n-1}y = y \cdot (\sum_{n=0}^{\infty} nx^{n-1})$$
 (23)

$$= y \cdot \left(\sum_{n=0}^{\infty} (n+1)x^n\right) \tag{24}$$

$$= \frac{y}{(x-1)^2}$$
 (limit of the power series) (25)

With the same assumption as before, we can now combine the two limits to get:

$$\langle x, y \rangle^* = \left\langle \frac{1}{1-x}, \frac{y}{(x-1)^2} \right\rangle$$

for |x| < 1.

d)

Now we want to find a Kleene Star for  $W_{lang}$ . Using the definition of Kleene Star, we have:

$$A* = \bigoplus_{n=0}^{\infty} A^{\otimes n} \tag{def.*}$$

$$= \epsilon \cup A \cup A \otimes A \cup \dots \tag{27}$$

$$= \epsilon \cup A \cup A \circ A \cup \dots \tag{28}$$

(29)