This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, nlease do not report the images to the

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-102002

(43) Date of publication of application: 18.04.1995

(51) Int. CI.

C08B 37/08 A61K 47/36 // A61K 9/00

(21) Application number: 05-245072

(71) Applicant: GUNZE LTD

KAKEN PHARMACEUT CO LTD

(22) Date of filing:

30. 09. 1993

(72) Inventor: IKADA YOSHITO

TABATA YASUHIKO OKA TAKASHIGE

TOMIHATA KENJI

(54) CROSS-LINKED HYALURONIC ACID AND COMPOUND MATERIAL THEREOF

(57) Abstract:

PURPOSE: To obtain a cross-linked hyaluronic acid material improved in respect of toxicity and gel strength and having a high strength and a variety of decomposition and absorption rates, by mixing an aq. soln. of hyaluronic acid with a carbodimide and drying the aq. soln. to introduce thereinto cross-linkages.

CONSTITUTION: An aq. soln. of hyaluronic acid is mixed with a carbodiimide, and then dried to introduce thereinto cross-linkages to thereby obtain the desired cross-linked hyaluronic acid material. The mol.wt. of hyaluronic acid to the used is usually about 106 to 2×106 . Hyaluronic acid may be used either in the form of a free acid or in the form of a salt of an alkali metal such as sodium or potassium, or an alkaline earth metal such as calcium or magnesium. The carbodiimide is desirably a water-soluble carbodiimide from the viewpoint of removal treatment thereof during and after the cross-linking reaction, though a carbodiimicle soluble only in an org. solvent, such as dicyclohexylcarbodiimicle, may instead be used.

LEGAL STATUS

[Date of request for examination]

12.05.2000

[Date of sending the examiner's decision

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-102002

(43)公開日 平成7年(1995)4月18日

(51) Int.Cl.6	識別記号	庁内整理番号	FI.	技術表示箇所
C 0 8 B 37/08	Z	7433-4C		
A61K 47/36	С			
	В			
// A 6 1 K 9/00	G			
	H			
			審査請求	未請求 請求項の数18 OL (全 6 頁)
(21)出願番号	特願平5-245072		(71)出願人	000001339
				グンゼ株式会社
(22)出顧日	平成5年(1993)9月	₹30日		京都府綾部市青野町膳所1番地
			(71)出願人	000124269
特許法第30条第1項適用申請有り 平成5年5月12日				科研製薬株式会社
社団法人高分子学会多	発行の「高分子学会)	予稿集 42巻		東京都文京区本駒込2丁目28番8号
(1993) 」に発表			(72)発明者	筏 義人
				京都府宇治市五ヶ庄広岡谷2-182
			(72)発明者	田畑 泰彦
				京都府宇治市琵琶台3-8-16
			(74)代理人	弁理士 三枝 英二 (外4名)
				最終頁に続く

(54) 【発明の名称】 架橋ヒアルロン酸及びこれらの複合材料

(57)【要約】

【構成】架橋処理されたヒアルロン酸と生体分解性補強 材または高分子量生物活性薬物を複合化してなる架橋ヒ アルロン酸複合材料、架橋処理されたヒアルロン酸およ びその製造方法。

[効果] 有用な架橋ヒアルロン酸およびその複合材料を 提供できるようになった。 1

【特許請求の範囲】

【請求項1】ヒアルロン酸水溶液にカルボジイミドを混 合し、その水溶液を乾燥させて架橋を導入することによ る架橋ヒアルロン酸材料の製造方法。

【請求項2】ヒアルロン酸水溶液にカルポジイミドとと もに、ジアミノ基をもつアミノ酸またはそのメチルエス テルあるいはエチルエステルを加え、水溶液を乾燥させ る架橋ヒアルロン酸材料の製造方法。

【請求項3】ヒアルロン酸水溶液のpHが4~8である 請求項1または2に記載の架橋ヒアルロン酸材料の製造 10

【請求項4】未架楯の水溶性ヒアルロン酸材料を、カル ポジイミドを含有する有機溶媒に加える架橋ヒアルロン 酸材料の製造方法。

【請求項5】未架橋の水溶性ヒアルロン酸材料および塩 基性アミノ酸、塩基性アミノ酸メチルエステルまたは塩 基性アミノ酸エチルエステルを、カルポジイミドを含有 する有機溶媒に加える架橋ヒアルロン酸材料の製造方

【請求項6】有機溶媒が、ヒアルロン酸が殆んどあるい 20 は全く溶解しない水溶性有機溶媒であり、これが60~ 100%と水40~0%からなる請求項4または5に記 載の架橋ヒアルロン酸材料の製造方法。

【請求項7】反応温度が、4~45℃である請求項4~ 6のいずれかに記載の架橋ヒアルロン酸材料の製造方

【請求項8】請求項1~7のいずれかの方法を行った 後、架橋ヒアルロン酸材料を酸性水溶液に浸渍させるこ とにより、残存するカルポジイミドを尿素誘導体に変換 する架橋ヒアルロン酸材料の製造方法。

【請求項9】請求項1~7のいずれかの方法を行った 後、架橋ヒアルロン酸材料を酸性水溶液に浸漬させるこ とにより、残存するカルポジイミドを尿素誘導体に変換 し、次いで架橋ヒアルロン酸材料を水洗する架橋ヒアル ロン酸材料の製造方法。

【請求項10】カルポジイミドが水溶性カルポジイミド である請求項1~9のいずれかに記載の架橋ヒアルロン 酸材料の製造方法。

【請求項11】ヒアルロン酸水溶液に、ジまたはポリ官 能性エポキシ化合物を混合し、その水溶液を乾燥させて 40 架橋を導入する架橋ヒアルロン酸材料の製造方法。

【請求項12】ヒアルロン酸水溶液のpHが4~8であ る請求項11に記載の架橋ヒアルロン酸材料の製造方 法。

【請求項13】架橋ヒアルロン酸材料と生体分解吸収性 補強材料複合化してなる架橋ヒアルロン酸複合材料。

【請求項14】架橋ヒアルロン酸材料に、生理活性物質 を含有させてなる生理活性物質の徐放化剤。

【請求項15】フィルム状のヒアルロン酸材料を請求項

ヒアルロン酸材料。

【請求項16】37℃のリン酸緩衝生理食塩水 (PB S) 中で、2~30日後に可溶性になる架橋ヒアルロン

2

【請求項17】生体内で5日以上不溶性である請求項1 5または16に記載の架橋ヒアルロン酸材料。

【請求項18】重量含水率が50~95%である架橋ヒ アルロン酸材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、医療用素材として適用 される架橋されたヒアルロン酸、および架橋ヒアルロン 酸を含有する複合材料とその製造方法に関する。

[0002]

【従来の技術およびその問題点】ヒアルロン酸は、生体 の疎水性結合組織のグルコサミノグリカン(ムコ多額) の1つとして極めて重要な素材である。このヒアルロン 酸は、現在眼科用粘弾性材料および関節炎治療薬として 臨床応用されているが、さらにその高含水性や潤滑性か ら外科手術の際の癒着防止材料としての利用も試みられ ている。しかしながら、ヒアルロン酸は水溶性高分子で あるため、一定の形態を保てない。また、生体材料とし て用いるには分解吸収速度が速すぎる。そのため、その ままの形態で用いることは困難であり、架橋の導入が必 要となる。

【0003】従来より、ヒアルロン酸の架橋に関して は、いくつかの報告がなされている。例えば、USP 4, 605, 691 (1986) で、E.A. Baizs らはジ ピニルスルホン(DVS)を用いた架橋方法を示してい る。また、PCT W086/00079(1986)でMalson T. は、プタ ンジオールジグリシジルエーテル (BDDE) を用いて 架橋を行っている。さらに、N. Yuiらは、J. Controlle d Release, 25, 133-143 (1993) などで、ポリグリシジ ルエーテルで架橋反応が行えることを示している。しか しながら、いずれの方法も高濃度のアルカリ溶液中にて 反応を行っており、反応終了後のアルカリの除去が問題 となる。さらに、DVSはそれ自体の毒性が高く、医療 用素材として用いるには好ましくない。また、いずれも 高含水率で強度が低く、そのため分解の速いゲルしか得 られていない。従って、癒着防止材料などとして実際に 利用可能な架橋ヒアルロン酸材料は得られていないのが 現状である。

[0004]

【発明が解決しようとする課題】上記の従来法において は、架橋ヒアルロン酸材料を得ることは可能であって も、生体材料として用いるためには、その毒性やゲル強 度についての課題は解決しておらず、その点の改善が特 に望まれるところであった。

【0005】本発明は、かかる毒性の課題はもとより、 $f 1 \sim 1 \ 2$ のいずれかの方法により架橋処理してなる架橋 f 50 強度が高く、加えて多様な分解吸収速度を有する新規な

架橋ヒアルロン酸材料およびその製造方法、並びにこれ らの複合材料を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は、架橋反応条件 を選択することにより、様々な特性をもつことを特徴と する架橋ヒアルロン酸材料を提供するものである。

【0007】本発明において、ヒアルロン酸の架橋反応 に用いる架橋試薬はカルポジイミドであり、その中でも 最も好ましい1-エチル-3-(3-ジメチルアミノブ ロピル) カルポジイミド塩酸塩 (EDC) は、従来タン 10 バク質の架橋の際、カルボキシル基とアミノ基の間のペ プチド結合を形成させる架橋試薬として用いられてき た。ところが、ヒアルロン酸にはカルポキシル基はある もののアミノ基は存在しない。しかしながら、本発明に おいては、ヒアルロン酸のカルポキシル基どうしによる 酸無水物の形成、あるいはカルポキシル基と水酸基間の エステル結合形成による架橋ヒアルロン酸の作製が、E DCを用いて可能であることを明らかにした。 EDC は、従来用いられてきた架橋試薬に比べて毒性がはるか に低く、反応終了後は毒性の低い尿素誘導体に変換さ れ、架橋材料中には残留しない。また、残留した活性の あるEDCも酸性下、特にpH2~4の水と接触させる ことにより、毒性の低い尿素誘導体に変換させることが できる。さらに、EDCも尿素誘導体ともに水溶性であ ることから、水洗により容易に除去できる。その洗浄度 は、材料中の窒素量を定量することにより確認できる。 このことから、EDCを生体材料に利用するとき、安全 であるという大きな特徴をもつ。

【0008】ヒアルロン酸水溶液にEDCなどの水溶性 カルポジイミドを加えて架橋反応を行うとき、その水溶 30 液のpHを4~8、好ましくはpH4.5~6にするこ とにより、架橋ヒアルロン酸材料が得られる。また、加 えるEDCなどの水溶性カルボジイミドの量あるいは乾 燥時間を変化させることにより、50~95%と広い範 囲の含水率をもつ架橋ヒアルロン酸材料が得られる。

【0009】水溶性高分子であるヒアルロン酸の架橋反 応は、従来まで上述のように、ヒアルロン酸に直接架橋 試薬を混合することにより行っていたが、カルポジイミ ド、特に水溶性カルポジイミド (WSC) 、最も好まし くはEDCを含有する水と有機溶媒、最も好ましくはエ 40 チルアルコールと水との混合溶媒中で架橋反応を行うこ とにより、未架橋のヒアルロン酸のフィルム、ゲルなど を出発材料として架橋反応を行えることを明らかにし た。この有機溶媒としては、アセトンなどのケトン類、 メタノール、エタノールなどのアルコール類などのヒア ルロン酸がほとんどあるいは全く溶解しない水溶性有機 溶媒が挙げられる。この際の水と有機溶媒の混合比率 は、通常、水:有機溶媒=0~50重量%:100~5 0重量%、好ましくは25~20重量%:75~80重 量%である。また、反応温度は4~45℃、好ましくは 50 用いてもよい。これらの補強材料は、編物、織物あるい

20~30℃であり、反応時間は15~30時間であ る。未架橋のヒアルロン酸フィルムを用いる場合には、 **該フィルムを例えば溶媒に浸漬することにより行うこと** ができる。この反応を行う際に、EDCとともに、ジア ミノ基を有するアミノ酸、すなわちリジンまたはアルギ ニン、またはそれらのメチルあるいはエチルエステルを 加えることにより、ヒアルロン酸のカルポキシル基との 間にペプチド結合による架橋が形成される。この場合、 架橋剤としてのリジンまたはアルギニン、またはそれら のメチルあるいはエチルエステルが架橋ヒアルロン酸材 料に結合して存在することになるが、これらは生体由来 の物質であり、生体にとって無害である。この反応を行 う際に、水と有機溶媒との混合比率、EDCや架橋剤と してのリジンまたはアルギニンまたはそれらのメチルあ るいはエチルエステルの濃度、反応温度、反応時間を変 化させることにより、従来方法では得られなかったよう な低含水率の架橋ヒアルロン酸材料が本発明によって得 られるようになった。

【0010】架横反応におけるヒアルロン酸水溶液のp Hを4~8、好ましくは4.5~6に調整する。このヒ アルロン酸水溶液に、種々の濃度のジもしくはポリ官能 性エポキシ化合物を加え、乾燥させることによっても架 橋ヒアルロン酸材料の得られることを本発明は明らかに した。エポキシ化合物の使用量は、特に限定されるもの ではないが、通常ヒアルロン酸1gに対し、5μmo1 ~5mmol程度の量を用いる。水溶液の乾燥工程は: 温度4~50℃、好ましくは20~30℃;湿度30~ 60%、好ましくは35~50%の条件下で、1~72 時間乾燥させる。乾燥は、攪拌が困難になるまで行う。 従来は、アルカリ性下でジもしくはポリ官能性エポキシ 化合物を加えることにより架橋ゲルを作製していたが、 本発明の方法では反応時間を長くすることにより弱酸性 から中性領域、即ち、pHを4~8、好ましくは4.5 ~6において、架橋反応がより高度に進行することを明 らかにした。また、ヒアルロン酸水溶液のpH、乾燥時 間、また、加えるジもしくはポリ官能性エポキシ化合物 の濃度を変化させることにより、含水率が50~95% の低くかつ広い範囲の架橋ヒアルロン酸材料が得られ る。これは、従来法では96~99%という狭くかつ高 い範囲の架橋ヒアルロン酸材料しか得られなかったのと 比較して、大きな特徴である。

【0011】本発明はさらに、架橋ヒアルロン酸と生体 内分解吸収性補強材料を複合化することを特徴とする架 橋ヒアルロン酸複合材料を提供する。この補強材料とな る生体内分解吸収性材料としては、ポリグリコール酸 (PGA)、ポリ乳酸(PLA)、ポリカプロラクトン (PCL)、pーポリジオキサン、キチン、キトサンな どの単一重合体、あるいはこれらの共重合体が挙げられ る。これらは、単独で、または2種以上を組み合わせて

5

は不織布の形態で架橋ヒアルロン酸中に埋入するか、ま たはこれらの形態の補強材料を架橋ヒアルロン酸と貼り 合わせることにより複合化し、架橋ヒアルロン酸複合材 料を得ることができる。架橋ヒアルロン酸と生体内分解 吸収性補強材料の配合比率は、架橋ヒアルロン酸1重量 部に対して生体内分解吸収性補強材料 0. 1~10重量 部である。

【0012】本発明の架橋ヒアルロン酸に、生理活性物 質を含有させることもできる。ここで、「生理活性物 質」としては、高分子量生理活性物質および医薬品が挙 10 げられる。生理活性物質を含有させる方法としては、ヒ アルロン酸の架橋反応を行う際に、生理活性物質を共存 させることにより、架橋ヒアルロン酸内部に閉じ込め る、または架橋ヒアルロン酸に生理活性物質を含浸させ ることにより、複合化架橋ヒアルロン酸材料を得ること ができる。架橋ヒアルロン酸材料に複合させることので きる高分子量生理活性物質として、ヘパリン、細胞増殖 因子、また医薬品として種々の抗生物質や抗菌剤を例示 することができる。これらの物質を複合化させることに より抗血栓性の付与、癒着防止能の増加、創傷治癒の促 20 なるよう溶解させ、架橋浴を調製した。 進、感染症の予防などの機能が付与される。架橋ヒアル ロン酸と生理活性物質の配合比率は、架橋ヒアルロン酸 10~100重量部に対して生理活性物質0.05~5 重量部である。

【0013】本発明の製造方法で用いるヒアルロン酸の 分子量は、特に限定されるものではないが、通常10% ~2×10⁶ 程度である。ヒアルロン酸は、遊離の酸の 形態で用いてもよく、また、ナトリウム、カリウムなど のアルカリ金属塩、またはカルシウム、マグネシウムな どのアルカリ土類金属塩であってもよい。

【0014】本発明で用いるカルポジイミドは、通常用 いられるカルポジイミドを用いることができる。ジシク ロヘキシルカルポジイミド (DCC) のような有機溶媒 にしか溶解しないものでも利用できるが、架橋反応時及 び反応後の除去処理の点から水溶性カルポジイミド (W SC)を用いることが望ましい。このようなWSCとし て、1-エチル-3-(3-ジメチルアミノプロビル) カルポジイミド塩酸塩(EDC)、1-シクロヘキシル -3-(2-モルホリノエチル)カルボジイミドーメト -p-トルエン硫酸塩 (CMC) などを例示することが 40 できる。WSCは、水溶液中でも含水有機溶媒中でも使 用でき、一方DCCは、含水アルコール中で使用するの が好ましい。WSCによるヒアルロン酸の架橋反応時に 共存させることのできる架橋物質として、ジアミノ基を もつアミノ酸およびそのメチルまたはエチルエステルが 挙げられ、具体的にはL-リジン、L-アルギニン、L -リジンメチルエステル、L-アルギニンメチルエステ ル、L-リジンエチルエステル、L-アルギニンエチル エステルなどである。

溶性の点からジエチレングリコールジグリシジルエーテ ル、ポリエチレングリコールジグリシジルエーテルが挙 げられる。

6

【0016】本発明において、pHの調節は塩酸、硫酸 などの酸及び水酸化ナトリウム、水酸化カリウムなどの 塩基を用いて行ってもよく、適当な緩衝液中で反応を行 ってもよい。

[0017]

【実施例】以下本発明を、実施例を用いてより詳細に説 明するが、本発明がこれら実施例に限定されないことは いうまでもない。

[0018]

【実施例1】分子量1. 6×10° のヒアルロン酸ナト リウム塩粉末を、1重量%濃度となるように蒸留水中に 溶解させ、該溶液をガラス板上に流延して風乾し、未架 橋のヒアルロン酸フィルムを得た。

【0019】一方、これとは別に、エタノール濃度が各 々70、80、90重量%であるエタノールー水混合溶 液を作製し、この中にEDCをその濃度が100mMと

【0020】かかる架橋浴に、前記の未架橋ヒアルロン 酸フィルムを浸漬し、25℃で24時間反応させ、次い でそれを蒸留水で十分洗浄して架橋されたヒアルロン酸 フィルムを得た。

【0021】これらの3種類の架橋ヒアルロン酸フィル ムの架橋度をリン酸緩衝生理食塩水(PBS;pH7.

4) に37℃にて1晩浸漬し、その膨潤度から推定し た。ここでいう膨潤度は湿重量/乾重量であり、その値 が小さいほど、架橋度が高く、また、逆に大きいほど架 橋度の低いことを意味する。また、架橋度が高いほどそ の分解が遅く、初期強度も強度保持性も高く、物質透過 性は低い。

【0022】エタノール濃度90%水溶液中で架橋した ヒアルロン酸架橋体はPBS水溶液中に溶解したが、そ れ以外のものは溶解せず、エタノール濃度が80%では 2. 42、70%では11. 9の膨潤度を示した。

[0023]

【実施例2】実施例1で調製したエタノール濃度が7 0、80、90重量%であるエタノールー水混合溶液 に、EDCをその濃度が100mMとなるよう溶解さ せ、さらにL-リジンメチルエステルをその濃度が25 mMになるように添加して架橋浴を調製した。

【0024】かかる架橋浴に実施例1で用いた未架橋と アルロン酸フィルムを浸漬し、25℃で24時間反応さ せ、次いでこれをPBS (рН7. 4) で十分洗浄して 架橋ヒアルロン酸フィルムを得た。

【0025】このようにして得られた3種類の架橋ヒア ルロン酸フィルムをPBS (pH7.4) に37℃にて 1 晩浸漬し、その膨潤度を測定したところ、エタノール 【0015】ジまたはポリエポキシ化合物としては、水 50 濃度が90%のものは110.28;80%のものは

2. 31;70%のものは2.98と実施例1に比べて 低い膨潤度を示した。

[0026]

【実施例3】 濃度が1 重量%である30gのヒアルロン 酸ナトリウム塩水溶液の p Hを 4. 75 に調整し、これ にEDCを1. 23mol 加えた試料を2つ準備し、その 一方にはL-リジンを、また他方にはL-リジンメチル エステルを各々 O. 2 mM 濃度になるように添加し、反 応液を十分に撹拌してゲルを得た。

【0027】これをガラス板上に置き、風乾して架橋フ 10 ィルムを得、PBS (рН7. 4) によって洗浄した 後、その膨潤度を測定した。その結果、L-リジンを添 加した架橋体の膨潤度は26.3、L-リジンメチルエ ステルを添加した架橋体の膨潤度は98.0であった。 なお、L-リジンメチルエステルを用いた場合は、反応 開始後12時間でゲルが生成し、これを乾燥してフィル ムを得た。

[0028]

.ئ

【実施例4】pH9. 0の1重量%ヒアルロン酸水溶液 1 g 当たりのエポキシ濃度が 0. 0 6 2 5 mmol, 0. 1 25mmolになるように、1重量%ヒアルロン酸水溶液8 0g(含有ヒアルロン酸: 0.8g)にデナコールEX -810 (ナガセ化成株式会社製:商品名)を各々加 え、良く撹拌した後、ガラス板上に流延し、風乾して架 橋フィルムを得た。 該架橋フィルムを蒸留水で十分洗浄 し、その膨稠度を測定した。その結果、膨稠度はエポキ シ濃度が0.0625mmolのものは5.24、0.12 5 mmol のものは4. 04 であった。

[0029]

【実施例5】1重量%のヒアルロン酸水溶液のpHを、 0. 1規定の塩酸を加えることによって4.75に調整 した。これにヒアルロン酸ナトリウム塩1g当たりエポ キシ濃度が0.02mmol、0.04mmol、0.06mmo 1、0.08 mmolになるように1重量%ヒアルロン酸水 溶液80g(含有ヒアルロン酸: 0.8g)にデナコー ルEX-810を加えた。この水溶液を撹拌した後、ガ ラス板上に流延し、風乾して架橋フィルムを得た。該架 構フィルムを蒸留水で十分洗浄し、その膨潤度を測定し た。

【0030】その結果、膨潤度はエポキシ濃度が0.0 40 2 mmolでは11.8;0.04 mmolでは4.43;0. 06mmolでは3、29:および0、08mmolでは3、1 4であった。

[0031]

【実施例6】 浪度が1 重量%である200gのヒアルロ ン酸ナトリウム塩水溶液のpHを4.75に調整し、こ れにEDCを1.23mmol、L-リジンメチルエステル を 0. 3 9 5 mmol 添加し、撹拌してゲルを得た。このゲ ルの約60gをタテ10cm、ヨコ20cm、高さ1. 5 cmのプラスチック容器に入れた後、その上より生体 50 率を測定した。pH8のヒアルロン酸水溶液より得られ

内分解性補強剤であるポリグリコール酸(PGA)で編 成したタテ×ヨコが10×20cmの編生地(メリヤス 平編生地)を置き、上部より残りのゲルを流し込み、4 ℃にて24時間架橋反応を行った。反応終了後、約37 ℃のpH2.5の塩酸水溶液中に1時間浸漬し、さらに 蒸留水にて洗浄した後風乾した。風乾後架橋ヒアルロン 酸層の間にPGA糸による編生地がサンドイッチ状に挟 持された架橋ヒアルロン酸ポリグリコール酸複合化フィ

[0032]

ルムを得た。

【実施例7】実施例4と同様の方法で架橋ヒアルロン酸 フィルムを得た。50μgの塩基性繊維芽細胞増殖因子 (bFGF) を含むPBS水溶液 (pH6.0) をフィ ルム10mgへ含浸させ、bFGFを包含した架橋ヒア ルロン酸ハイドロゲルフィルムを得た。このハイドロゲ ルフィルムをマウスの背部皮下に埋入した。コントロー ルとして50μgのbFGFを含む水溶液を皮下投与、 並びにbFGFを包含していない架橋ヒアルロン酸ハイ ドロゲルフィルムの皮下埋入を行った。1週間後、ゲル 20 埋入または水溶液投与部位を調べたところ、bFGF含 有ハイドロゲルの場合にのみ埋入部位での血管新生が見 られた。これは、bFGFをハイドロゲルに包含して除 放化することにより、bFGFの生理活性が有効に発現 されたためであると考えられる。

[0033]

【実施例8】上記の実施例2に準じ、エタノール80% -水20%の混合水溶液中に、EDCの濃度が10mmo 1、L-リジンメチルエステルの濃度が3 mmol となるよ うに混合し、未架橋ヒアルロン酸フィルムを、25℃に て24時間浸漬させることにより架橋ヒアルロン酸フィ ルムを作製した。このフィルムをPBS水溶液(pH 7. 4) 中に37℃にて浸漬させたところ、8日間で加 水分解された。

[0034]

【実施例9】上記の実施例8に示した架橋ヒアルロン酸 フィルムを、エチレンオキサイドガスにて滅菌した後 に、10週齡のウィスター系の雄のラットの背部皮下に 埋入した。埋入した架橋ヒアルロン酸材料の重量残存率 は、5日後で87.4%、9日後で58.2%、14日 後で7.2%であった。また、炎症反応は観察されなか った。

[0035]

【実施例10】上記実施例4及び5に準じ、1重量%の ヒアルロン酸水溶液のpHを4、7あるいは8に調整 し、ヒアルロン酸1gあたりエポキシ基濃度が10およ び100μmo1となるようにデナコールEX-810 を加え、十分攪拌した後に乾燥させることにより架橋ヒ アルロン酸フィルムを得た。このフィルムをPBS中に 37℃にて浸漬させ、一定期間後に取り出して重量残存

た架橋フィルムは、10μmol/gの濃度で架橋した 場合5日後で完全に溶解し、そのとき100μmol/ gの濃度で架橋した場合では、その残存重量率は20% であった。10日後で100 μmol/gの濃度で架橋 したフィルムの残存重量率は5%であった。一方、pH 4. 7のヒアルロン酸水溶液より得られた架橋フィルム は、10μmol/gの濃度で架橋した場合、5日後で 完全に溶解し、100μmol/gの濃度で架構したフ ィルムの残存重量率は90%であった。10日後で10 0 μmol/gの濃度で架橋したフィルムの残存重量率 10 を得ることができ、これにより、その用途に対応した分 は60%であった。

[0036]

【実施例11】上記実施例10に準じ、1重量%のヒア ルロン酸水溶液のpHを5に調整し、エポキシ基濃度が ヒアルロン酸1gあたり10および100μmolのデ ナコールEX-810を加え、十分混合した後に乾燥さ せることにより架橋ヒアルロン酸フィルムを得た。これ をエチレンオキサイドガスにて滅菌した後に、10週齢 のウィスター系の雄のラットの背部皮下に埋入した。1 0 μmol/gの濃度で架橋したフィルムの残存重量率 20 は2日後で86.6%、100 μmol/gの濃度で架 橘したフィルムの残存重量率は2日後で89.2%であ った。10µmol/gの濃度で架橋したフィルムの残 存重量率は5日後で44.6%、100μmol/gの 過度で架橋したフィルムの残存重量率は5日後で74.

70

1%であった。また、10μmo1/gの濃度で架橋し た場合7日後で完全に分解吸収され、100μmol/ gの濃度で架橋したフィルムの残存重量率は7日後で7 0. 8%であった。いずれも強い炎症反応は観察されな かった。

[0037]

【発明の効果】本発明によれば、架橋剤の種類、濃度、 処理温度、時間等その条件の選択によって従来よりも有 意に強度の大きい、且つ、任意の架橋度のヒアルロン酸 解速度、初期強度、強度保持性、物質透過性等を有する ヒアルロン酸架橋物が得られる。また、特に、毒性の面 においては、水溶性カルポジイミド自体水溶性で、且 つ、酸処理によって毒性のない尿素誘導体になること、 アミノ酸、ジエポキシ化合物自体にも問題となる毒性を 有しないことから、特に、これをフィルム状物としたと きは癒着防止膜、やけど等の被覆材として有用である。 さらに、これをゲル状物としたときは人工晶子体、関節 の潤滑材等の医療用途に好適に用いることができる。

【0038】さらに、ヒアルロン酸架橋物と生体分解吸 収性補強材料または生理活性物質を複合化すれば、かか るヒアルロン酸架橋物の機能をさらに改善することがで

[0039]

フロントページの続き

(72)発明者 岡 高茂

京都府綾部市井倉新町石風呂1番地 グン ゼ株式会社京都研究所内

(72)発明者 富畑 賢司

京都府綾部市井倉新町石風呂1番地 グン ゼ株式会社京都研究所内