Теорема 1. Бэра: Пусть F - не пустое, замкнутое подмножество \mathbb{R} и $F = \bigcup_n F_n$ - не более, чем счетное объединение замкнутых множеств F_n , тогда $\exists \, N \,$ и $(\alpha, \beta) \colon F \cap (\alpha, \beta) \neq \emptyset \land F \cap (\alpha, \beta) \subset F_N$.

В частности, если $\mathbb{R} = \bigcup_{n} F_n$, то хотя бы одно из F_n содержит интервал.

Пример: [a, b], a < b - не является счетным.

□ <u>От противного</u>: пусть он является счетным \Rightarrow $[a,b] = \bigcup_n \{x_n\}$, точка - замкнута \Rightarrow получили счетное объединение замкнутых множеств. По теореме $\exists (\alpha,\beta) \colon [a,b] \cap (\alpha,\beta) \neq \emptyset \land [a,b] \cap (\alpha,\beta) \subset \{x_n\}$, но пересечение интервала с отрезком - всегда не одноточечное множество.

Пример: С помощью теоремы Бэра также можно показать, что \mathbb{R} - не является счетным.

Пример: Множество иррациональных чисел нельзя представить в виде не более, чем счетного набора замкнутых множеств. Иначе, множество рациональных чисел - счетно, множество иррациональных чисел - счетно $\Rightarrow \mathbb{R}$ - объединение счетного набора замкнутых множеств (точки - замкнуты).

□ Доказательство теоремы Бэра

От противного: Ни для какого N не найдется требуемого интервала (α, β) .

І-ый шаг:

Возьмем $F \cap (\mathbb{R} \setminus F_1) \neq \emptyset$, иначе $F = F_1 \Rightarrow a \in F \Rightarrow (a - \varepsilon, a + \varepsilon) \cap F \subset F_1$.

Рис. 1: Точка $a_1 \in F \cap (\mathbb{R} \setminus F_1)$.

Возьмем точку $a_1 \in F \cap (\mathbb{R} \setminus F_1)$, тогда $\exists (\alpha_1, \beta_1) : a_1 \in (\alpha_1, \beta_1) \wedge (\alpha_1, \beta_1) \subset (\mathbb{R} \setminus F_1)$. Более того, можно взять отрезок $[\alpha_1, \beta_1]$ внутри заданного интервала: ужать интервал, взять отрезок и переименовать его, как $[\alpha_1, \beta_1]$:

Рис. 2: Ужатие интервала до отрезка.

Можно его ужать так, что $\beta_1-\alpha_1<1$. Итог І-го шага - построен отрезок $[\alpha_1,\beta_1]$:

- 1) $\beta_1 \alpha_1 < 1$;
- 2) $(\alpha_1, \beta_1) \cap F \neq \emptyset$ (там точно есть a_1);
- 3) $[\alpha_1, \beta_1] \subset \mathbb{R} \setminus F_1$ (значит у этого отрезка нет точек из F_1);

ІІ-ый шаг:

Посмотрим на интервал: $(\alpha_1, \beta_1) \cap F \neq \emptyset \Rightarrow (\alpha_1, \beta_1) \cap F \not\subset F_2$, иначе предположение от противного было бы не верно и требуемое N = 2. Тогда $\exists a_2 \in (\alpha_1, \beta_1) \cap F \land a_2 \notin F_2$.

Рис. 3: Построение второго интервала на II-ом шаге.

Дополнение к F_2 - открытое множество $\Rightarrow a_2$ в него входит с некоторым интервалом $((\alpha_1, \beta_1)$ не обязательно полностью лежит в $F) \Rightarrow$ аналогично І-му шагу, \exists интервал (α_2, β_2) :

- 1) $\beta_2 \alpha_2 < \frac{1}{2}$;
- 2) $(\alpha_2, \beta_2) \cap F \neq \emptyset$ (там точно есть a_2);
- 3) $[\alpha_2, \beta_2] \subset \mathbb{R} \setminus F_2$ (значит у этого отрезка нет точек из F_2);
- 4) $[\alpha_2, \beta_2] \subset [\alpha_1, \beta_1];$

III-ий шаг:

Рассмотрим интервал: $(\alpha_2, \beta_2) \cap F \neq \emptyset \Rightarrow (\alpha_2, \beta_2) \cap F \not\subset F_3$, иначе предположение от противного было бы не верно и требуемое N=3. Тогда $\exists a_3 \in (\alpha_2, \beta_2) \cap F \wedge a_3 \notin F_3$.

Рис. 4: Построение второго интервала на III-ем шаге.

Дополнение к F_3 - открытое множество $\Rightarrow a_3$ в него входит с некоторым интервалом $((\alpha_2, \beta_2)$ не обязательно полностью лежит в $F) \Rightarrow$ аналогично II-му шагу, \exists интервал (α_3, β_3) :

- 1) $\beta_3 \alpha_3 < \frac{1}{3}$;
- 2) $(\alpha_3, \beta_3) \cap F \neq \emptyset$ (там точно есть a_3);
- 3) $[\alpha_3,\beta_3]\subset \mathbb{R}\setminus F_3$ (значит у этого отрезка нет точек из F_3);
- 4) $[\alpha_3, \beta_3] \subset [\alpha_2, \beta_2] \subset [\alpha_1, \beta_1];$

И так далее, пока не получим систему вложенных отрезков $[\alpha_1,\beta_1]\supset [\alpha_2,\beta_2]\supset\dots$ таких, что $[\alpha_n,\beta_n]\cap F\neq\varnothing,\ \beta_n-\alpha_n<\frac{1}{n}$ и $[\alpha_n,\beta_n]\cap F_n=\varnothing.$ По теореме о вложенных отрезках $\exists\ c\in\bigcap_n[\alpha_n,\beta_n].$ Очевидно, что $c\notin F_n,\ \forall n$ по построению. Если $c\notin F\Rightarrow c\in\mathbb{R}\setminus F\Rightarrow \exists\ (\alpha,\beta)\colon c\in(\alpha,\beta)\wedge(\alpha,\beta)\cap F=\varnothing.$

Рис. 5: Точка c, принадлежащая пересечению всех вложенных отрезков.

Отрезки стягиваются к точке c: как только $\beta_n - \alpha_n < \min\{\beta - c, c - \alpha\}$, то этот отрезок целиком будет лежать в (α, β) , то есть $[\alpha_n, \beta_n] \subset (\alpha, \beta)$, что невозможно, так как в (α, β) нет точек из F. Тогда $c \in F = \bigcup_n F_n \land c \notin F_n$, $\forall n \Rightarrow$ противоречие.

Компакты

Опр: 1. Множество $K \subset \mathbb{R}$ называется компактом, если для всякого набора открытых множеств $\{\mathcal{U}_{\alpha}\}$ такого, что $K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$, найдется конечный поднабор $\mathcal{U}_{\alpha_1}, \dots, \mathcal{U}_{\alpha_N} \colon K \subset \bigcup_{k=1}^N \mathcal{U}_{\alpha_k}$. То есть, из всякого покрытия K открытыми множествами можно выбрать конечное подпокрытие.

Пример (не компакт): рассмотрим интервал (0,1) и возьмем другой интервал $(\frac{1}{n},1)$ очевидно, что $(0,1)=\bigcup_{n=0}^{\infty}(\frac{1}{n},1)\Rightarrow$ нет конечного набора, который покрыл бы $(0,1)\Rightarrow$ не компакт.

Рис. 6: Пример не компакта.

Пример (компакт): точка является компактом. $a \in \bigcup_{\alpha} \mathcal{U}_{\alpha} \Leftrightarrow \exists \mathcal{U}_{\alpha} \colon a \in \mathcal{U}_{\alpha}$.

Рис. 7: Точка а - пример компакта.

Лемма 1. (**Бореля-Гейне-Лебега**): Отрезок - это компакт.

 \square <u>От противного:</u> Пусть у отрезка [a,b], a < b, \exists покрытие $\{\mathcal{U}_{\alpha}\}$ из которого нельзя выбрать конечное подпокрытие. Делим отрезок [a,b] пополам и выбираем в качестве отрезка $[a_1,b_1]$ ту половину у которой нет конечного подпокрытия в покрытии $\{\mathcal{U}_{\alpha}\}$.

Такая половина есть, так как иначе у исходного отрезка было бы конечное подпокрытие.

Повторяем то же самое с $[a_1, b_1]$: делим $[a_1, b_1]$ пополам и выбираем в качестве отрезка $[a_2, b_2]$ ту половину у которой нет конечного подпокрытия в покрытии $\{\mathcal{U}_{\alpha}\}$.

И так далее, по аналогии получаем систему вложенных отрезков, которые нельзя покрыть конечным набором подпокрытий:

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$$

причем $b_n - a_n = \frac{b-a}{2^n} \to 0$ (длины стремятся к нулю).

По теореме о вложенных отрезках $\exists c : c \in \bigcap_n [a_n, b_n]$. Кроме того, $c \in [a, b] \subset \bigcup_\alpha \mathcal{U}_\alpha \Rightarrow \exists \alpha : c \in \mathcal{U}_\alpha$. Так как \mathcal{U}_α - открыто, то \exists интервал $\mathcal{U}(c) = (s, t) \subset \mathcal{U}_\alpha$. В этом случае

$$\exists n : b_n - a_n < \min\{c - s, t - c\} \Rightarrow [a_n, b_n] \subset \mathcal{U}(c) \subset \mathcal{U}_{\alpha}$$

To есть отрезок $[a_n,b_n]$ покрыт одним множеством \mathcal{U}_{α} - это противоречит построению.

Свойства компактов

(1) Компакт - ограниченное множество, то есть лежит в некотором отрезке;

$$-\frac{((nnnnnnnn))}{-n}$$

Рис. 8: Ограниченность компакта.

- \square Пусть K компакт, тогда $K \subset \bigcup_n (-n,n)$ (потому, что там лежит все \mathbb{R}). Но по определению компакта $\exists n_1,\ldots,n_N \colon K \subset \bigcup_{s=1}^N (-n_s,n_s)$. Предположим, что $C = \max_{1 \leq s \leq N} n_s$, тогда $K \subset (-C,C)$.
- (2) Компат замкнутое множество;

Как доказать, что дополнение открыто? Надо доказать, что всякая такая точка a входит в дополнение с некоторым интервалом. Возьмем отрезок $\left[a-\frac{1}{n},a+\frac{1}{n}\right]$

Рис. 9: Точка из дополнения компакта в отрезке: $a \in \mathbb{R} \setminus K$.

и будем брать дополнение к этому отрезку: $U_n = \mathbb{R} \setminus [a - \frac{1}{n}, a + \frac{1}{n}].$

$$\begin{array}{c|c}
 & a - \frac{1}{n} & a + \frac{1}{n} \\
\hline
 & K & a
\end{array}$$

Рис. 10: Стягивание множества \mathcal{U}_n к точке a.

Если взять объединение всех таких множеств, то получим всю прямую без точки $a:\bigcup_n \mathcal{U}_n = \mathbb{R} \setminus \{a\}$. Но это содержит компакт $K:K\subset \mathbb{R} \setminus \{a\} \Rightarrow$ объединение лучей (откр. множеств) содержит K.

По определению \exists конечное подпокрытие $\mathcal{U}_{n_1}, \dots, \mathcal{U}_{n_N} \Rightarrow$ возьмем $M = \max_{1 \leq s \leq N} \{n_s\}.$

Тогда $\mathbb{R}\setminus [a-\frac{1}{M},a+\frac{1}{M}]\supset K\Rightarrow$ взяли из этого набора лучей тот, который наиболее близко подошел к точке $a\Rightarrow (a-\frac{1}{M},a+\frac{1}{M})\subset \mathbb{R}\setminus K$, то есть $\mathbb{R}\setminus K$ - открыто.

(3) Если замкнутое множество F является подмножеством компакта K, то F - компакт;

 \square Пусть $F \subset \bigcup_{\alpha} \mathcal{U}_{\alpha} \Rightarrow K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha} \cup (\mathbb{R} \setminus F)$. По определению существует конечное подпокрытие: $\mathcal{U}_{\alpha_{1}}, \dots, \mathcal{U}_{\alpha_{N}}$ и может быть $(\mathbb{R} \setminus F)$ - они будут покрывать $K \Rightarrow$

$$F \subset \mathcal{U}_{\alpha_1} \cup \ldots \cup \mathcal{U}_{\alpha_N} \cup (\mathbb{R} \setminus F) = \mathcal{U}_{\alpha_1} \cup \ldots \cup \mathcal{U}_{\alpha_N}$$

 \Rightarrow у F есть конечное подпокрытие.

Следствие 1. (**Критерий компактности**): $K \subset \mathbb{R}$ - компакт $\Leftrightarrow K$ - ограничено и замкнуто.

(⇒) очевидно по свойствам компакта.

 (\Leftarrow) K - ограниченно $\Rightarrow \exists [a,b] \colon K \subset [a,b]$. Отрезок [a,b] - компакт, K - замкнуто, тогда по свойству $(3) \Rightarrow K$ - компакт.