Riphah International University Lahore, Pakistan

Riphah School of Computing & Innovation

Semester Project Complete Document

Clean Lahore Smart Waste Management System

Project Team

Student Name	Student ID	Program	Contact Number	Email Address
HAFIZ AHSAN ARSHAD	48698	BSSE	03078995505	48698@students.riphah.edu.pk
MAHNOOR QURESHI	48038	BSSE	03254020380	48038@students.riphah.edu.pk

{Project Supervisor}

Mam Aroon Arshad

1.1. System Features

1.1.1. Smart Dustbin Management

- REQ-SF1-1: The system shall detect when a smart dustbin is 90% full using ultrasonic sensors.
- REQ-SF1-2: The system shall send bin-full alerts to waste collection teams in real time.
- REQ-SF1-3: The system shall display bin status to citizens via the mobile application.

1.1.2. Vehicle Tracking and Route Optimization

- **REQ-SF2-1:** The system shall track waste collection vehicles using GPS.
- REQ-SF2-2: The system shall calculate and assign optimized collection routes using AI.
- REQ-SF2-3: The system shall display vehicle locations to citizens in the mobile app.

1.1.3. Citizen Engagement App

- **REQ-SF3-1:** The system shall allow citizens to submit complaints with images and GPS location.
- REQ-SF3-2: The system shall update complaint statuses in realtime within the app.
- REQ-SF3-3: The system shall assign reward points to users based on engagement activities.

1.1.4. Surveillance and Detection

- REQ-SF4-1: The system shall detect garbage accumulation using Al-powered CCTV and drone footage.
- REQ-SF4-2: The system shall send alerts to the control center

upon detecting illegal dumping.

1.1.5. Workforce Management

- REQ-SF5-1: The system shall verify worker attendance using facial recognition.
- **REQ-SF5-2:** The system shall assign daily tasks and track completion via QR code scans.

1.1.6. Command & Control Center

- REQ-SF6-1: The system shall provide a centralized dashboard for monitoring bins, staff, vehicles, and complaints.
- REQ-SF6-2: The system shall use AI to optimize resource scheduling and task allocation.

1.1.7. Robotic & Electric Cleaning Devices

- REQ-SF7-1: The system shall operate robotic cleaning devices in narrow streets based on AI-generated schedules.
- REQ-SF7-2: The system shall allow manual overrides for electric mini sweepers.

1.1.8. Auto Fine System

- REQ-SF8-1: The system shall detect littering incidents using AI from surveillance feeds.
- REQ-SF8-2: The system shall send fine notifications to violators via SMS or app.

1.1.9. Virtual Assistant

- REQ-SF9-1: The system shall respond to citizen queries using an in-app AI chatbot.
- REQ-SF9-2: The system shall support Urdu and English for voice and text input.

1.1.10. Predictive Maintenance

- REQ-SF10-1: The system shall monitor equipment health and usage patterns.
- **REQ-SF10-2:** The system shall alert maintenance teams about potential breakdowns in advance.

1.1.11. Community Dashboard

- **REQ-SF11-1:** The system shall display neighborhood cleanliness scores based on waste data.
- REQ-SF11-2: The system shall update and publish the scores weekly on a public leaderboard.

1.1.12. Government Integration

- REQ-SF12-1: The system shall verify user identity using NADRA's citizen database.
- **REQ-SF12-2:** The system shall integrate with Punjab Government's e-payment system for fines and services.

1.2. Other Nonfunctional Requirements

1.2.1. Performance

- REQ-NF1-1: The system shall display bin status, vehicle location, and complaint updates in under 5 seconds.
- REQ-NF1-2: The system shall support at least 5,000 concurrent users without performance degradation.
- **REQ-NF1-3:** The system shall send Al-based alerts (e.g., litter detection) within 10 seconds of event detection.

1.2.2. Reliability

• **REQ-NF2-1:** The system shall maintain 99.9% uptime availability throughout the year.

- **REQ-NF2-2:** The system shall perform automatic daily backups of critical data (e.g., complaints, bin levels).
- REQ-NF2-3: The system shall ensure core functionalities remain operational during partial system failures.

1.2.3. Security

- REQ-NF3-1: The system shall encrypt all data transmissions between the mobile app, dashboard, and devices using HTTPS/TLS.
- REQ-NF3-2: The system shall protect user data, including names, images, and complaint logs, from unauthorized access.
- REQ-NF3-3: The system shall enforce secure access through two-factor authentication and role-based access control (RBAC).

1.2.4. Usability

- REQ-NF4-1: The system shall provide a user-friendly interface with clearly labeled icons and large buttons.
- **REQ-NF4-2:** The system shall allow users to submit a complaint or recycle item in no more than 3 steps.
- REQ-NF4-3: The virtual assistant shall support voice interaction in both Urdu and English.

1.2.5. Scalability

- **REQ-NF5-1:** The system shall scale to support up to 1 million users, 20,000 smart bins, and 100 collection trucks.
- REQ-NF5-2: The system shall allow expansion to new cities or districts without significant re-engineering.

1.2.6. Maintainability

- **REQ-NF6-1:** The system shall modularize features (e.g., chatbot, Al surveillance, QR verification) to enable independent updates.
- REQ-NF6-2: The system shall update AI models monthly using new datasets.
- REQ-NF6-3: The system shall log all errors and exceptions for future debugging and maintenance purposes.

1.2.7. Interoperability

- **REQ-NF7-1:** The system shall interoperate with NADRA APIs for citizen verification.
- **REQ-NF7-2:** The system shall integrate with Punjab Government's e-payment platform for fine collection and reward distribution.
- **REQ-NF7-3:** The system shall enable data sharing with other authorized government applications as needed.

1.2.8. Accessibility

- REQ-NF8-1: The system shall comply with accessibility standards to support users with visual or mobility impairments.
- REQ-NF8-2: The system shall support screen readers and voice commands for navigation.
- REQ-NF8-3: The virtual assistant shall support multiple languages for inclusive communication.

2.1 Competitive Analysis/ Existing Application

Feature / Functionality	Bigbelly (USA)	Smart Bin (Ireland)	Eco Trash (Canada)	Evreka (Global)	Clean Lahore (LWMC)
Smart Dustbins with Sensors & RFID	√	✓	×	✓	✓
GPS-Tracked Vehicles & Al Route Optimization	×	×	✓	✓	✓
Citizen Mobile App with Complaint + Reward System	×	×	×	×	✓
Al Surveillance via Drones & CCTV	×	×	×	×	✓
AI-Based Workforce Management	×	×	×	×	√
Command & Control Center	✓	✓	✓	✓	✓
Electric Mini Sweepers & Robotic Cleaning Devices	×	×	×	×	✓
Automated Fine System	×	X	×	×	✓
Virtual AI Assistant (Chatbot + Voice)	×	×	×	×	✓
Predictive Maintenance (Al for Fleet/Devices)	×	×	×	×	✓
Neighborhood Cleanliness Score Dashboard	×	×	×	×	✓
Integration with Government Systems (NADRA, e-Payment)	×	×	×	×	✓
Simple & Fast User Interface	×	×	×	✓	✓
Voice & Urdu Support for Accessibility	×	×	×	×	✓
Scalable to Large Cities and Users	×	√	✓	✓	✓
Data Security (Encryption + 2FA)	✓	✓	×	✓	√

2.2 Current Technology Stack & Architecture Diagram

2.2.1. Current Technology Stack

Layer	Technology Used
Frontend (User Interface)	Flutter (for cross-platform mobile app), React (for admin web dashboard)
Backend (APIs & Logic)	Node.js / Express or Django / Flask (REST APIs), Firebase Cloud Functions
Database	Firebase Realtime DB / Fire store (for mobile app), PostgreSQL / MongoDB (admin)
IoT & Devices	Ultrasonic Sensors, RFID Modules, GPS Modules, Air Quality Sensors
AI & Machine Learning	TensorFlow / OpenCV (for object detection, drone surveillance, predictions)
Cloud Services	Google Cloud Platform / AWS / Azure (hosting, storage, analytics)
Authentication	Firebase Auth / OAuth 2.0 / NADRA API Integration
Notifications	Firebase Cloud Messaging (FCM), SMS Gateway
Payments Integration	Punjab Government e-Payment APIs
Data Analytics	Google Big Query / Power BI / custom dashboards
Security	HTTPS, TLS, JWT, Role-Based Access Control (RBAC), 2-Factor Authentication

2.2.2. Architecture Diagram

3.1. SOFTWARE DEVELOPMENT LIFE CYCLE

Given the complexity, molecularity, and evolving nature of your Waste Management System, the best-suited Software Development Life Cycle (SDLC) model is the Agile SDLC Model.

Why Agile is Best for Your System?

Reason	Explanation
Modular design	Each module (Smart Bins, App, AI Surveillance, etc.) can be built and tested independently
Rapid Iteration	Features like AI and routing can be continuously improved
User Feed Back	Citizens and municipal staff can give real-world feedback during sprints
Scalability	New cities, bins, or drone units can be added easily
Collaboration	Hardware, AI, App, and Backend teams work in parallel

Why Not Other Models?

- Waterfall: Too sequential; cannot adapt to dynamic real-world inputs
- Spiral: Too complex for a citizen utility app
- V-Model: Best for strict validation systems, not adaptable for smart city

 Modules

3.2 Gantt Chart

Agile Gantt Chart for Clean Lahore Smart Waste Management System

3.3 Prototype

3.4 Business Plan

3.4.1. The Business Opportunity

Problem Statement:

Lahore suffers from outdated waste management practices leading to overflowing bins, inefficient collection routes, low citizen participation, and environmental hazards. There is no existing smart platform integrating IoT, AI, and citizen reporting into a single system.

Pain Points Solved:

- Overflowing public bins
- Poor garbage collection scheduling
- Minimal citizen engagement
- Illegal dumping detection
- Inefficient route optimization
- Low accountability of waste collection staff

3.4.2. Company Description

What We Do:

Clean Lahore is a comprehensive AI & IoT-powered solution that provides:

- Smart Dustbins with real-time fill-level sensing and alerts
- GPS-tracked vehicles with AI route optimization
- Mobile App (Flutter) for citizen complaints, rewards & information
- Al-enabled drones & CCTV surveillance to monitor illegal waste dumping
- Workforce management through facial recognition & QR-code

verification

Core Solutions:

- Smart bins + sensor integration
- Real-time control dashboard
- Citizen mobile app (complaints, rewards)
- Al surveillance (drones, CCTV)
- Predictive maintenance & automated fine system

3.4.3. Industry Analysis

Industry: Gov Tech / Civic Tech — Smart Urban Waste Management

Competitors:

- Local: LWMC (manual system)
- International: Bigbelly, Ecube Labs, SmartBin

Success Factors:

- Seamless public-private tech integration
- Gamified citizen participation
- Scalable & cost-effective IoT-AI deployment
- Reliable real-time data and AI predictions
- Government partnership potential

3.4.4. Implementation Timeline

Phase	Timeline	Key Activities
Planning & Design	Month 1	Feature definition, UI/UX design, system architecture
MVP Development	Month 2–3	Smart bin prototype, citizen app, control dashboard
Pilot Testing	Month 4–5	Deployment of 20+ smart bins, mobile app release
Evaluation	Month 6	Performance analysis, public feedback collection
City-Wide Rollout	Month 7+	Large-scale deployment, commercial partnerships

3.4.5. Team

Role	Responsibilities
Project Lead	Overall system integration and execution
IoT Engineer	Hardware design (bins, sensors, drones)
Al Developer	Model training (image recognition, routing AI)
App Developer	Flutter-based citizen & admin apps
UI/UX Designer	User-centered design for apps & dashboards
Marketing Lead	Awareness campaigns, citizen onboarding

Why Us?

A multi-disciplinary team of Computer Science graduates skilled in Flutter, Node.js, AI, IoT, and system design — committed to making Lahore cleaner and smarter.

3.4.7. Target Market

Primary Targets:

- Lahore Waste Management Company (LWMC)
- City Municipal Corporations
- Hospitals, Commercial Markets
- NGOs focused on environment & sustainability

Buyer Personas:

- City Planners: Urban development & smart city projects
- Environmentally Aware Citizens: Clean neighborhood advocates
- Event Organizers: Waste management for public events
- NGOs: Data for environmental studies

3.4.8. Marketing Plan

Channels:

- Social Media (Instagram, TikTok, Facebook)
- University & School Awareness Drives
- Government Collaboration (LWMC, Punjab Govt)
- Referal & Gamification within App

Conversion Strategy:

- Reward points for app downloads
- Cleanliness leaderboard for communities
- QR scanning challenges for citizens

3.5. Financial Summary Plan

1. Objective

To deploy a smart waste management system in Lahore using IoT, AI, and real-time tracking. This includes smart bins, GPS-tracked waste collection vehicles, drones, and citizen engagement via a mobile app and web dashboard.

2. Start-Up Capital Requirements

A. Facilities & Equipment (Fixed Assets)

Sr.	Description	Qty	Unit Cost (PKR)	Total (PKR)
1	Smart Bins (IoT, RFID, sensors)	1000	25,000	25,000,000
2	GPS Devices for Vehicles	100	10,000	1,000,000
3	Drones (Al-integrated)	10	200,000	2,000,000
4	Electric Mini Sweepers	10	1,200,000	12,000,000
5	QR Code Scanners	1000	2,000	2,000,000
6	Office Setup & Command Center	-	-	2,500,000
7	Branding & Legal	-	-	500,000

8	IT Equipment	-	-	1,000,000
	Total Fixed Assets			46,000,000

B. Working Capital (3 Months)

Description	Monthly (PKR)	3 Months Total
Salaries	600,000	1,800,000
Rent, Utilities, Internet	200,000	600,000
Marketing	300,000	900,000
Maintenance	100,000	300,000
		3,600,000

C. Software and Cloud Infrastructure

Description	Cost (PKR)
Mobile App	3,000,000
Admin Dashboard	2,000,000
Al Detection/Prediction	4,000,000
Cloud Tools	2,000,000
	11,000,000

D. Total Start-up Capital Required

Component	Amount (PKR)
Fixed Assets	46,000,000
Working Capital	3,600,000
Software & Cloud	11,000,000
Total	60,600,000

3. Sources of Finance

Source	%	Amount (PKR)
Equity (Govt. Grants)	65%	39,390,000
Debt (Loan)	35%	21,210,000
Total	100%	60,600,000

4. Revenue Forecast – Year 1

Metric	Value
Monthly Subscription per Zone	8,000 PKR

Target Zones	2,500	
Annual Revenue	240,000,000 PKR	

5. Cost of Goods Sold (COGS) – Year 1

Expense	Estimated (PKR)
Maintenance & Fuel	5,000,000
Employee Salaries	6,000,000
Repairs & Service	2,000,000
Cloud Hosting	1,500,000
Total COGS	14,500,000

6. Projected Income Statement – Year 1

Item	Amount (PKR)
Total Revenue	240,000,000
Cost of Goods Sold	14,500,000
Gross Profit	225,500,000

Operating Expenses	(6,000,000)
Net Profit Before Tax	219,500,000
Tax (15%)	(32,925,000)
Net Profit After Tax	186,575,000

7. Financial Ratios – Year 1

Ratio	Formula	Value
Gross Profit Margin	225.5M / 240M × 100	93.96%
Net Profit Margin	186.57M / 240M × 100	77.74%
Return on Equity	186.57M / 39.39M × 100	473.6%

8. Break-even Analysis

- Fixed Costs = 6,000,000 PKR
- Revenue per Unit = 8,000 PKR
- Variable Cost per Unit = 2,000 PKR
- Contribution Margin = 6,000 PKR
- Break-even Units = 6,000,000 / 6,000 = 1,000 zones
- Break-even achievable within 5 months (target: 2,500 zones/year)

9. Payback Period

■ Investment: 60,600,000 PKR

■ Annual Net Profit: 186,575,000 PKR

■ Payback Period = 60.6M / 186.57M = ~0.32 years (~4 months)

Assets and Liabilities

Assets

Category	Details	
Tangible	Smart bins, GPS devices, drones, sweepers, office setup	
Software	Mobile app, admin panel, AI models	
Infrastructure	Command center, IT hardware	
Data	Cleanliness metrics, issue reports, insights	
Human Resource	Technical & operations staff	

Liabilities

Category	Details	
Financial	Long-term loan repayment	
Operational	Salaries, fuel, software	
Regulatory	Tax compliance, legal obligations	

Technical	AI model risk, hardware failure
Cybersecurity	Data breaches, server attacks

3.6. Risk Analysis

Risk Identification

A. Project Risks

Risk	Category	Summary
Scope creep	Project	Feature-rich system with AI, IoT, and citizen interfaces can lead to uncontrolled scope changes.
Schedule delays	Project	Multiple subsystems (AI, mobile app, hardware integration) increase complexity and development time.
Budget overruns	Project	High cost of AI models, smart bins, GPS tracking, CCTV analysis, and e-payment integration.

B. Technical Risks

Risk	Category	Summary
Integration failure	Technical	Interfacing AI, IoT, GPS, NADRA, e-payment, etc., may lead to incompatibility or unreliable performance.
Sensor inaccuracy	Technical	Ultrasonic sensors and drones may provide incorrect or inconsistent data.
Al misclassification	Technical	Al may incorrectly detect littering or bin fullness, reducing trust and efficiency.
Data overload	Technical	Managing large real-time data (from bins, GPS, CCTV) may overwhelm servers.

C. Business Risks

Risk	Category	Summary
User adoption risk	Business	Citizens may not use the app or report issues if the UX is poor or trust is low.
Government policy change	Business	Change in municipal policies may reduce support for integration or funding.
Vendor risk	Business	Sensor/device vendors or third-party APIs (e.g., NADRA) may become unavailable.

D. People Risks

Risk	Category	Summary
Staff turnover	People	Loss of Al/IoT experts may delay progress.
Skill mismatch	People	The team may lack expertise in real-time AI, drone footage, Urdu NLP, or e-payment APIs.

2. Risk Projection (Estimation)

Risk	Probability	Impact	Category	Overall Risk	
Integration failure	High	Critical	Technical	High	
Sensor inaccuracy	Medium	Marginal	Technical	Medium	
Al misclassification	High	Critical	Technical	High	
Schedule delay	Medium	Critical	Project	High	
Budget overrun	Medium	Critical	Project	High	
Government policy change	Low	Critical	Business	Medium	
User adoption failure	Medium	Marginal	Business	Medium	
Staff turnover	Medium	Marginal	People	Medium	

3. Risk Mitigation, Monitoring & Management

Proactive Strategies

Risk	Mitigation Strategy				
Integration failure	Define integration standards early. Use middleware/APIs and test interoperability in small increments.				
Sensor inaccuracy	Calibrate and test sensors in real environments before deployment. Use redundancy or fallback mechanisms.				
Al misclassification	Train models on local datasets. Regularly update them with new data. Allow manual override for alerts.				
Schedule delay	Use agile sprints with strict milestones. Track progress weekly and apply buffer time.				
Budget overrun	Allocate contingency budget. Monitor high-cost components (AI, drones) closely.				
User adoption	Conduct user testing and engagement campaigns. Make app UX simple and provide incentives.				
Government API changes	Establish MoUs with government bodies and prepare for local caching/fallback systems.				

Staff turnover	Document	all	components.	Cross-train	team
	members. Maintain a knowledge base.				

LOGO

Flyer Design

