Unidade III: Fundamentos de Análise de Algoritmos

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ω e Θ

Agenda

• Potência, Logaritmo, Piso e Teto, e Função

- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ω e Θ

Resolva as equações abaixo:

a)
$$2^{10} =$$

b)
$$lg(1024) =$$

c)
$$lg(17) =$$

d)
$$|g(17)|=$$

$$e)||g(17)|=$$

Resolva as equações abaixo:

a)
$$2^{10} = 1024$$

c)
$$lg(17) = 4,08746284125034$$

d)
$$|g(17)| = 5$$

e)
$$||g(17)|| = 4$$

Piso e Teto

Plote um gráfico com todas as funções abaixo:

a)
$$f(n) = n^3$$

b)
$$f(n) = n^2$$

c)
$$f(n) = nxlg(n)$$

$$d) f(n) = n$$

$$e) f(n) = sqrt(n)$$

$$f) f(n) = Ig(n)$$

 Plote um gráfico com todas as funções abaixo: 1.25E+9 a) $f(n) = n^3$ ___ n³ 1,00E+9 Ig(n) $c/f(n) = nxlg(\hbar)$ sqrt(n) 7,50E+8 n x lg(n) e(n) = sqrt(n)2,50E+8 n

 Plote um gráfico com todas as funções abaixo: 1000000 a) f(n) = n³
 b) f(n) = n² ___ n³ Ig(n) 750000 c) f(n) = nx lg(n)sqrt(n) n x lg(n) 500000 $(n) = \operatorname{sqrt}(n)$ 250000 n

 Plote um gráfico com todas as funções abaixo: a) $f(n) = n^3$ - n³ b) $f(n) = n^2$ lg(n) 750 c) f(n) = nxlg(p)sqrt(n) n x lg(n) d) f(n) = n(L) 500 f(n) = sqrt(n)n

 Plote um gráfico com todas as funções abaixo: 100 a) $f(n) = n^3$ b) $f(n) = n^2$ Ig(n) 75 c) f(n) = nxlg(n)sqrt(n) n x lg(n) d) f(n) = n(L) 50 e) f(n) = sqrt(n)f) f(n) = Ig(n) -25 n

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações

- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ω e Θ

Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    if (rand() % 2 == 0){
        a--;
        b--;
    } else {
        c--;
    }
}
```

Calcule o número de subtrações que o código abaixo realiza:

Cenários Possíveis

 Melhor caso: menor "tempo de execução" para todas entradas possíveis de tamanho n

Pior caso: maior "tempo de execução" para todas entradas possíveis

 Caso médio (ou esperado): média dos tempos de execução para todas as entradas possíveis (abordado em FPAA)

Contagem de Operações com Condicional

Será o custo da condição mais ou o da lista de verdadeira ou o da falsa

```
if ( condição() ){
   listaVerdadeiro();
} else {
   listaFalso();
  Melhor caso: condição() + mínimo(listaVerdadeiro(), listaFalso())
  Pior caso: condição() + máximo(listaVerdadeiro(), listaFalso())
```

Calcule o número de subtrações que o código abaixo realiza:

Calcule o número de subtrações que o código abaixo realiza:

Se n = 6, temos subtrações quando i vale 3, 4, 5 (6 - 3 = 3, vezes)

$$n = 7$$

$$3, 4, 5, 6 (7 - 3 = 4 \text{ vezes})$$

....

$$n = 10$$

$$3, 4, 5, 6, 7, 8, 9 (10-3=7 \text{ vezes})$$

Contagem de Operações com Repetição

 Será o custo da condição mais o número de iterações multiplicado pela soma dos custos da condição e da lista a ser repetida

```
while ( condição() ){
    lista();
}
Custo: condição() + n * (lista() + condição()), onde n é o número de
    vezes que o laço será repetido
```

Contagem de Operações com Repetição

 Será o número n de iterações multiplicado pela soma dos custos da lista de comandos e da condição

```
do {
    lista();
} while ( condição );

Custo: n x (condição + lista()), onde n é o número de vezes que o laço será repetido
```

Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Calcule o número de multiplicações que o código abaixo realiza:

Quando n é uma potência de 2, realizamos lg(n) + 1 multiplicações

Se n = 8, efetuamos a multiplicação quando i vale 8, 4, 2, 1

Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Para um valor qualquer de n, temos $\lfloor \lg(n) \rfloor + 1$ multiplicações, logo, $O(\lg n)$, $\Omega(\lg n)$ e $\Theta(\lg n)$

Contagem de Operações com Repetição

 Quando tivermos uma estrutura de repetição em que o escopo de busca é sistematicamente dividido pela metade, temos um custo logarítmico

```
for (int i = n; i > 0; i /= 2){
    lista();
}
```

Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
     if (min > array[i]){
          min = array[i];
     }
}
```

1°) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

• Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos

- Função de complexidade
- Notações O, Ω e Θ

Restrição dos Algoritmos

Nossos algoritmos devem ser implementados em um computador

Restrições do computador: capacidade computacional e armazenamento

Logo, devemos analisar a complexidade de se implementar algoritmos

Um algoritmo que leva séculos para terminar é uma opção inadequada

Problema do Caixeiro Viajante

Problema do Caixeiro Viajante

Número de combinações:

$$\frac{1}{3}$$
 $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{2}$ $\frac{1}{1}$

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Número de cidades	Tempo de execução
5	5 s
6	5 x (5s) = 25 s
7	6 x (25s) = 150 s = 2,5 min
8	7 x (2,5 min) = 17,5 min
9	8 x (17,5 min) = 140 min = 2,34 h
10	9 x (2,34 h) = 21 h
11	10 x (21 dias) = 210 = 8,75 dias
12	11 x (8,75 dias) = 96,25 dias
13	12 x (96,25 dias) = 1155 = 3,15 anos
14	13 x (3,15 anos) = 41,02 anos
15	14 x (41,02 anos) = 5,74 séculos
16	15 x (5,74 séculos) = 8,6 milênios

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Número de cidades Tempo de execução	Número de cidades	Tempo de execução
-------------------------------------	-------------------	-------------------

Observação (1): Na verdade, a solução ótima para o PCV é duas vezes mais rápida que a apresentada, contudo, isso é "indiferente" na tendência de crescimento

9	8 x (17,5 min) = 140 min = 2,34 h
10	9 x (2,34 h) = 21 h

Observação (2): Se tivermos um computador 100 vezes mais rápido, isso também será "indiferente" na tendência de crescimento

15	14 x (41,02 anos) = 5,74 séculos	
16	15 x (5,74 séculos) = 8,6 milênios	

Métricas para a Análise de Complexidade

Tempo de execução

· Espaço de memória ocupado

Outros...

Tipos de Análise de Complexidade

 Análise de um algoritmo particular: analisamos o custo de um algoritmo específico para um problema específico

 Análise de uma classe de algoritmos: analisamos o menor custo possível para resolver um problema específico

 Limite da família de algoritmos, nível mínimo de dificuldade para ser resolvido

Como Medir o Custo de um Algoritmo

Restrições no Modelo do Cronômetro

Hardware

Arquitetura

Sistema Operacional

Linguagem

Compilador

Exemplo de Otimização do Compilador

```
for (int i = 0; i < 20 ; i++){
            array[i] = i;
}
```



```
array [0] = 0;
array [1] = 1;

array [19] = 19;
```

Ainda sobre Otimização de Compiladores

 Frequentemente, alunos fazem otimizações desnecessárias em termos de eficiência

• Por exemplo, frequentemente, o compilador gera o mesmo código objeto para if-else-if e switch-case; for e while; entre outros...

Como Medir o Custo de um Algoritmo

Como Medir o Custo de um Algoritmo

Modelo

Matemático

Modelo Matemático para Contar Operações

 Determinamos e contamos as operações relevantes. Em AEDs, quase sempre, comparações entre registros (elementos do array)

O custo total de um algoritmo é igual a soma do custo de suas operações

Desconsideramos sobrecargas de gerenciamento de memória ou E/S

- A menos que dito o contrário, consideramos o pior caso
- Precisamos definir a função de complexidade

Agenda

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade

Notações O, Ω e Θ

Algumas Funções de Complexidade

 Função de complexidade de tempo mede o tempo (número de execuções da operação relevante) de execução do algoritmo para um problema de tamanho n

 Função de complexidade de espaço mede a quantidade de memória necessária para executar um algoritmo de tamanho n

- Da mesma forma que calculamos o custo de um churrasco:
 - Carne: 400 gramas por pessoa (preço médio do kg R\$ 20,00 picanha, asinha, coraçãozinho ...)
 - Cerveja: 1,2 litros por pessoa (litro R\$ 3,80)
 - Refrigerante: 1 litro por pessoa (Garrafa 2 litros R\$ 3,50)

Exercício: Monte a função de complexidade (ou custo) do nosso churrasco.

- Da mesma forma que calculamos o custo de um churrasco:
 - Carne: 400 gramas por pessoa (preço médio do kg R\$ 20,00 picanha, asinha, coraçãozinho ...)
 - Cerveja: 1,2 litros por pessoa (litro R\$ 3,80)
 - Refrigerante: 1 litro por pessoa (Garrafa 2 litros R\$ 3,50)

Exercício: Monte a função de complexidade (ou custo) do nosso churrasco.

$$f(n) = n * \frac{400}{1000} * 20 + n * 1, 2 * 3, 8 + n * 1 * \frac{3, 5}{2}$$
$$= 14, 31 * n$$

- Da mesma forma que calculamos o custo de uma viagem:
 - Passagem:
 - Hotel:
 - · Saídas:

Cálculo de Complexidade para Condicional

Será o custo da condição mais ou o da lista de verdadeira ou o da falsa

```
if ( condição() ){
   listaVerdadeiro();
} else {
   listaFalso();
  Melhor caso: condição() + mínimo(listaVerdadeiro(), listaFalso())
  Pior caso: condição() + máximo(listaVerdadeiro(), listaFalso())
```

Cálculo de Complexidade para Repetição

 Será o custo da condição mais o número de interações multiplicado pela soma dos custos da condição e da lista a ser repetida

```
while ( condição() ){
    lista();
}

Custo: condição() + n * (lista() + condição()), onde n é o número de vezes que o laço será repetido
```

Cálculo de Complexidade

Outros laços: sempre consideramos o limite superior

Métodos: consideramos o custo do método

 Métodos recursivos: utilizamos equações de recorrência (Vocês verão em FPAA)

Algoritmo Ótimo

Algoritmo cujo custo é igual ao menor custo possível

Exercício Resolvido (8): Encontrar Mínimo

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

R: Para os três casos

4°) O nosso algoritmo é ótimo? Por que?

Exercício Resolvido (8): Encontrar Mínimo

```
int min = array[0];

for (int i = 1; i < n; i++){
     if (min > array[i]){
          min = array[i];
     }
}
```

1°) Qual é a operação relevante?

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

R: Para os três casos

4°) O nosso algoritmo é ótimo? Por que?

R: Sim porque temos que testar todos os elementos para garantir nossa resposta

Exercício Resolvido (9): Pesquisa Sequencial

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

1°) Qual é a operação relevante?

R: Comparação entre elementos do array

2°) Quantas vezes ela será executada?

```
R: Melhor caso: f(n) = 1
Pior caso: f(n) = n
Caso médio: f(n) = (n + 1) / 2
```

3°) O nosso algoritmo é ótimo? Por que?

Exercício Resolvido (9): Pesquisa Sequencial

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

- 1°) Qual é a operação relevante?
 - R: Comparação entre elementos do array
- 2º) Quantas vezes ela será executada?

```
R: Melhor caso: f(n) = 1
Pior caso: f(n) = n
Caso médio: f(n) = (n + 1) / 2
```

- 3°) O nosso algoritmo é ótimo? Por que?
 - R: Sim porque temos que testar todos os elementos para garantir nossa resposta

• Encontre o maior e menor valores em um *array* de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

Problema: encontrar o valores minimo e máximo em um vetor

```
void minmax(int *vec, int n, int *min, int *max) {
    int i;
    int *min = vec[0];
    int *max = vec[0];
    for(i = 1; i < n; i++) {
         if(vec[i] < *min) {</pre>
              *min = vec[i];
         }
                                              melhor caso: f(n) = 2(n-1)
         if(vec[i] > *max) {
                                              pior caso: f(n) = 2(n-1)
                                              caso médio: f(n) = 2(n-1)
              *max = vec[i];
```

Se vec[i] < *min, então não precisamos checar se vec[i] > *max

```
void minmax(int *vec, int n, int *min, int *max) {
       int i;
       int *min = vec[0];
       int *max = vec[0];
       for(i = 1; i < n; i++)  {
                                                 melhor caso: (decrescente)
           if(vec[i] < *min) {</pre>
                                                 f(n) = n-1
                                                 pior caso: (crescente)
                *min = vec[i];
                                                 f(n) = 2(n-1)
            }else if(vec[i] > *max) {
                                                 caso médio: (aleatório)
                                                 f(n) > 3(n-1)/2
                *max = vec[i];
```

• Dá pra melhorar?

•

Comparar elementos par-a-par Custo: n/2 comparações

Dá pra melhorar?

- Comparar elementos par-a-par
 - Custo: n/2 comparações
- Elementos vermelhos são maiores que os azuis
- Encontrar o máximo entre os elementos vermelhos
 - Custo: n/2 comparações
- Encontrar o mínimo entre os elementos azuis
 - Custo: n/2 comparações

Algoritmo Ótimo

```
void minmax3(int *vec, int n, int *min, int *max) {
    int i;
    int *min = INT MAX;
    int *max = INT MIN;
    for(i = 0; i < n; i += 2) {
        if(vec[i] < vec[i+1]) {</pre>
             a = i; v = i+1;
         } else {
             a = i+1; v = i;
        if(vec[a] < *min)</pre>
             *min = vec[a];
        if(vec[v] > *max)
             *max = vec[v];
```

```
melhor caso: f(n) = 3n/2
pior caso: f(n) = 3n/2
caso médio: f(n) = 3n/2
```

Análise

Algoritmo	f(n)		
	Melhor caso	Pior caso	Caso médio
MinMax1	2(n-1)	2(n-1)	2(n-1)
MinMax2	n-1	2(n-1)	> 3(n-1)/2
MinMax3	3n/2	3n/2	3n/2

Exercício Resolvido (10)

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

Exercício Resolvido (10)

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. A segunda opção tem custo $\Theta(n * lg n)$ para ordenar mais $\Theta(lg n)$ para a pesquisa binária

- Potência, Logaritmo, Piso e Teto, e Função
- Contagem de operações
- Aspectos da análise de algoritmos
- Função de complexidade
- Notações O, Ω e Θ

Noção sobre as Notações O, Ω e Θ

Regras gerais

Operações

Definições

Regras Gerais das Notações O, Ω e Θ

Consideramos apenas a maior potência

Ignoramos os coeficientes

Diferença entre as Notações O, Ω e Θ

· O é o limite superior

 $\cdot \Omega$ é o limite inferior

• • • o limite justo

Diferença entre as Notações O, Ω e Θ

• O é o limite superior, logo, se um algoritmo é O(f(n)), ele também será O(g(n)) para toda função g(n) tal que "g(n) é maior que f(n)"

Ω é o limite inferior, logo, se um algoritmo é Ω(f(n)), ele também será Ω
 (g(n)) para toda função g(n) tal que "g(n) é menor que f(n)"

• Θ é o limite justo, logo, g(n) é O(f(n)) and Ω (f(n)) se e somente se g(n) é Θ (f(n))

Exercício Resolvido (11)

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \neq O(n)$:
 - b) $3n^2 + 5n + 1 \neq O(n^2)$:
 - c) $3n^2 + 5n + 1 \neq O(n^3)$:
 - d) $3n^2 + 5n + 1 \in \Omega(n)$:
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$:
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$:
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

Exercício Resolvido (11)

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \neq O(n)$:
 - b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \neq O(n^3)$:
 - d) $3n^2 + 5n + 1 \in \Omega(n)$:
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \neq O(n)$:
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \in O(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \notin O(n)$: falsa
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \text{ \'e } O(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
 - g) $3n^2 + 5n + 1 \in \Theta(n)$:
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- Responda se as afirmações são verdadeiras ou falsas:
 - a) $3n^2 + 5n + 1 \neq O(n)$: falsa
 - b) $3n^2 + 5n + 1 \text{ é O}(n^2)$: verdadeira
 - c) $3n^2 + 5n + 1 \text{ \'e } O(n^3)$: verdadeira
 - d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
 - e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
 - f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
 - g) $3n^2 + 5n + 1 \in \Theta(n)$: falsa
 - h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$: falsa

Exercício (3)

Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n ²)	O(n³)	O(n⁵)	O(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (4)

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	$\Omega(n^{20})$
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (5)

Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	⊕ (lg n)	Θ (n)	⊕ (n.lg(n))	Θ (n²)	Θ (n³)	Θ (n ⁵)	Θ(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Operações com as Notações O, Ω e Θ

$$1) f(n) = O(f(n))$$

2) c
$$x O(f(n)) = O(f(n))$$

3)
$$O(f(n)) + O(f(n)) = O(f(n))$$

- 4) O(O(f(n))) = O(f(n))
- 5) O(f(n)) + O(g(n)) = O(máximo(f(n),g(n)))
- 6) $O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$
- 7) $f(n) \times O(g(n)) = O(f(n) \times g(n))$
- *) As mesmas propriedades são aplicadas para Ω e Θ

Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
seleção();
}
```

Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
seleção();
}
```

Neste caso, executamos o Seleção n vezes: $n \times \Theta(n^2) = \Theta(n^3)$

Sabendo que o limite inferior da ordenação é Θ (n.lg n) e que o custo da pesquisa binária é Θ (lg n), qual é a ordem de complexidade de uma solução em que ordenamos um *array* e efetuamos uma pesquisa binária. Justifique sua resposta

Sabendo que o limite inferior da ordenação é Θ (n.lg n) e que o custo da pesquisa binária é Θ (lg n), qual é a ordem de complexidade de uma solução em que ordenamos um *array* e efetuamos uma pesquisa binária. Justifique sua resposta

Neste caso, temos duas etapas e o custo total será a soma das mesmas, logo: $\Theta(n.\lg n) + \Theta(\lg n) = \Theta(n.\lg n)$

Dado f(n)=3n²-5n-9, g(n) = n.lg(n), l(n) = n.lg²(n) e h(n) = 99n²,
 qual é a ordem de complexidade das operações abaixo.

Mostre sua resposta usando as notações O, Ω e Θ :

- a) h(n) + g(n) f(n)
- b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n))$
- c) f(n) x g(n)
- d) g(n) x I(n) + h(n)
- e) f(n) x g(n) x l(n)
- f) $\Theta(\Theta(\Theta(\Theta(f(n)))))$

• Dado $f(n) = 3n^2 - 5n - 9$, $g(n) = n \cdot lg(n)$, $l(n) = n \cdot lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo. Mostre sua resposta usando as notações O, Ω e Θ :

- a) $h(n) + g(n) f(n) \Rightarrow [99n^8] + [n.lg(n)] [3n^2-5n-9] \Rightarrow O(n^8), \Omega(n^8) \in \Theta(n^8)$
- b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n)) \Rightarrow \Theta(n^8) + \Theta(n \cdot \lg(n)) \Theta(n^2) \Rightarrow O(n^8), \Omega(n^8) \in \Theta(n^8)$
- c) $f(n) \times g(n) \Rightarrow \Theta(n^2) \times \Theta(n.lg(n)) \Rightarrow O(n^3.lg(n)), \Omega(n^3.lg(n)) \in \Theta(n^3.lg(n))$
- d) $g(n) x l(n) + h(n) \Rightarrow \Theta(n.lg(n)) x \Theta(n.lg^2(n)) + \Theta(n^8) \Rightarrow O(n^8), \Omega(n^8) e \Theta(n^8)$
- e) $f(n) \times g(n) \times I(n) \Rightarrow \Theta(n^2) \times \Theta(n.lg(n)) \times \Theta(n.lg^2(n)) \Rightarrow O(n^4.lg^3(n)), \Omega(n^4.lg^3(n)) = \Theta(n^4.lg^3(n))$
- f) $\Theta(\Theta(\Theta(\Theta(f(n))))) \Rightarrow O(n^2), \Omega(n^2) \in \Theta(n^2)$

• g(n) é O(f(n)), se existirem as constantes positivas c e m tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

• $g(n) \notin O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

• $g(n) \notin O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

• $g(n) \notin O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

- Dada a definição da notação O:
- a) Mostre os valores de c e m tal que, para n ≥ m, |3n² + 5n +1| ≤ c x |n²|, provando que 3n² + 5n + 1 é O(n²)

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1$ é $O(n^3)$

a) Prove que $3n^2 + 5n + 1 \underline{não \acute{e}} O(n)$

- Dada a definição da notação O:
- a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1$ é $O(n^2)$

Para que tal inequação seja verdadeira, c tem que ser maior do que três (e.g., quatro)

Dada a definição da notação O:

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1$ é $O(n^2)$

Dada a definição da notação O:

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1$ é $O(n^2)$

Dada a definição da notação O:

b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1$ é $O(n^3)$

(c = 4 e m = 5,7) e (c = 5 e m = 2,7) também atendem à letra (b)

Dada a definição da notação O:

c) Prove que $3n^2 + 5n + 1 \underline{\tilde{nao} e} O(n)$

Não existe par (c, m) tal que para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n|$ seja verdadeira. Aumentando o valor de c, apenas retardamos o momento em que a curva quadrática supera a linear

Dada a definição da notação O:

c) Prove que $3n^2 + 5n + 1 \underline{não \acute{e}} O(n)$

	4	A	N
C		U	U

n	$g(n) = 3n^2 + 5n + 1$	C x f(n) = 100 x n
0	1	0
5	101	500
10	351	1000
15	751	1500
20	1301	2000
25	2001	2500
30	2851	3000
35	3851	3500
40	5001	4000
45	6301	4500

$$c = 1000$$

n	$g(n) = 3n^2 + 5n + 1$	$C \times f(n) = 1000 \times n$
0	1	0
50	7751	50000
100	30501	100000
150	68251	150000
200	121001	200000
250	188751	250000
300	271501	300000
350	369251	350000
400	482001	400000
450	609751	450000
500	752501	500000

5000

7751

50

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

Exercício (6)

Dada a definição da notação Ω:

a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n^2)$

a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n)$

a) Prove que $3n^2 + 5n + 1$ não é $\Omega(n^3)$

Exercício (7)

Dada a definição da notação Θ:

a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2)$

a) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$

a) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3)$

Classe de Algoritmos

- Constante: O(1)
- Logarítmico: O(lg n)
- Linear: O(n)
- Linear-logarítmico: O(n lg n)
- Quadrático: O(n²)
- Cúbico: O(n³)
- Exponencial: O(cⁿ)
- Fatorial: O(n!)

Algoritmos Polinomiais

Um algoritmo é polinomial se é O(n^p) para algum inteiro p

· Problemas com algoritmos polinomiais são considerados tratáveis

 Problemas para os quais não há algoritmos polinomiais são considerados intratáveis

Classes de problemas e o problema P = NP

 Apresente a função e a complexidade para os números de comparações e movimentações de registros para o pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
    int maximo, minimo:
    if (array[0] > array[1]){
         maximo = array[0];
                                 minimo = array[1];
    } else {
         maximo = array[1];
                                 minimo = array[0];
    for (int i = 2; i < n; i++){
         if (array[i] > maximo){
              maximo = array[i];
         } else if (array[i] < minimo){</pre>
              minimo = array[i];
```

Exercício Resolvido (16)

 Apresente a função e a complexidade para os números de comparações e movimentações de registros para o pior e melhor caso

Exercício Resolvido (17)

```
i = 0;

while (i < n) {
    i++;
    a--;
}

if (b > c) {
    i--;
} else {
    i--;
    a--;
}
```

Exercício Resolvido (17)

Exercício Resolvido (18)

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

Exercício Resolvido (18)

Exercício Resolvido (19)

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

Exercício Resolvido (19)

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

função

f(n) = (lg(n) + 1) * n = n * lg(n) + n

complexidade

O(n $x \lg(n)$), $\Omega(n x \lg(n)) \in \Theta(n x \lg(n))$

TODOS

Exercício (9)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    if (telefone() == true && luz() == true){
        alarme(0);
    } else {
        alarme(1);
    }
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
    } }
}</pre>
```

Exercício Resolvido (20)

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n				
1				
(3/2)n				
2n ³				
2 ⁿ				
3n ²				
1000				
(3/2) ⁿ				

Exercício Resolvido (20)

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n				
1				
(3/2)n				
2n ³				
2 ⁿ				
3n ²				
1000				
(3/2) ⁿ				

Exercício Resolvido (21)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Exercício Resolvido (21)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$f_6(n) = 1$$

$$f_2(n) = n$$

$$f_1(n) = n^2$$

$$f_5(n) = n^3$$

$$f_4(n) = (3/2)^n$$

$$f_3(n) = 2^n$$

Exercício Resolvido (22)

• Classifique as funções $f_1(n) = n.log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Exercício Resolvido (22)

• Classifique as funções $f_1(n) = n.log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$f_6(n) = 64$$
 $f_3(n) = log_8(n)$
 $f_2(n) = lg(n)$
 $f_9(n) = 4n$
 $f_1(n) = n.log_6(n)$
 $f_5(n) = n.lg(n)$
 $f_4(n) = 8n^2$
 $f_7(n) = 6n^3$
 $f_8(n) = 8^{2n}$

Exercício Resolvido (23)

• Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando $f(n) = \Theta(g(n))$ (Khan Academy, adaptado)

f(n)	g(n)	
n + 30	n ⁴	
n ² + 2n - 10	3n - 1	
n ³ . 3n	lg(2n)	
lg(n)	n ² + 3n	

Exercício Resolvido (23)

• Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando $f(n) = \Theta(g(n))$ (Khan Academy, adaptado)

Exercício (11)

• No Exercício Resolvido (10), verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n * lg(n)) + \Theta(lg(n)) = \Theta(n * lg(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente