

Name: Karappagari Alekya

Batch: 2

ID: cometfwc024 Date: 9th July 2025

GATE CS 2010 – Question Number 9

Question

The Boolean expression for the output f of the multiplexer shown below is:

Q.9 The Boolean expression for the output f of the multiplexer shown below is

Figure: 4x1 Multiplexer with inputs and select lines

Solution

Given a 4x1 multiplexer:

- Select lines: $S_1 = P$, $S_0 = Q$
- Inputs:

$$I_0 = R$$

$$I_1 = \overline{R}$$

$$I_2 = \overline{R}$$

$$I_3 = R$$

Using MUX expression:

$$f = I_0 \overline{PQ} + I_1 \overline{PQ} + I_2 P \overline{Q} + I_3 P Q$$

Substitute inputs:

$$f = R \cdot \overline{P} \cdot \overline{Q} + \overline{R} \cdot \overline{P} \cdot Q + \overline{R} \cdot P \cdot \overline{Q} + R \cdot P \cdot Q$$
$$= \overline{P} \cdot \overline{Q} \cdot R + \overline{P} \cdot Q \cdot \overline{R} + P \cdot \overline{Q} \cdot \overline{R} + P \cdot Q \cdot R$$

This matches the expression:

$$f=P\oplus Q\oplus R$$

Correct Option: (B) $P \oplus Q \oplus R$

Truth Table

P	Q	R	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table of the MUX Output

Hardware Implementation: Pico2W

Components Required

Component	Qty
Raspberry Pi Pico2W	1
Push Buttons (P, Q, R)	3
LED (Output f)	1
Resistors (220 ohm)	4
Breadboard + Jumper Wires	-

Pico2W Components

GPIO Pin Connections (Pico2W)

Component	GPIO Pin	Function
Button P	GP14	Input
Button Q	GP15	Input
Button R	GP16	Input
LED f	GP13	Output
Resistors	10k	Stable Low
LED Ressitor	220Ω	Protects LED
Common Ground	GND	Ground
Power Supply	3.3V	Logic high supply

Table: Raspberry Pi Pico2W Pin Configuration

Uploading Code to Pico2W

- 1. Connect the Raspberry Pi Pico2W to your computer using a USB cable while holding the **BOOTSEL** button.
- 2. The board appears as a USB drive on your computer.
- 3. Download and drag the MicroPython .uf2 firmware file to the Pico's USB drive.
- 4. Open the **Thonny IDE** on your computer.
- In Thonny, go to Tools → Interpreter and select MicroPython (Raspberry Pi Pico).
- 6. Write or paste your Python code (logic implementation).
- 7. Click \mathbf{Run} or press F5 to upload and execute the code on Pico2W.
- 8. Observe the output on the LED based on button inputs.

Hardware Implementation:Arduino Uno

GPIO Pin Connections: Arduino Uno

Component	Arduino Pin	Direction
Push Button P	D2	Input
Push Button Q	D3	Input
Push Button R	D4	Input
LED (Output f)	D5	Output
GND (Common Ground)	GND	Power
VCC (5V)	5V	Power

Table: Arduino Uno Pin Configuration for MUX Logic

Uploading Code to Arduino Uno

- Connect the Arduino Uno to your computer using a USB cable.
- 2. Open the **Arduino IDE** (download from arduino.cc if not installed).
- 3. Select the correct board and port:
 - ullet Go to Tools o Board o Arduino Uno
 - Then Tools \rightarrow Port \rightarrow Select your device port

- 4. Write or paste your logic code (e.g., for NOR gate or expression implementation).
- Click the **Upload** button (right arrow icon) or press Ctrl+U.
- 6. Wait for "Done uploading" message.
- 7. Test using push buttons and observe output on the LED.

GitHub Repository

https://github.com/Alekyakuruba/fwc/tree/main/hardware

Figure: 4x1 Multiplexer implementation

Conclusion

This problem involved a 4x1 MUX with binary select inputs P and Q. Substituting MUX inputs and evaluating the expression gives:

$$f = P \oplus Q \oplus R$$

The expression is confirmed by constructing the truth table and verifying with all options. Hardware implementation is feasible using both Pico2W and Arduino Uno.

Final Answer: (B) $P \oplus Q \oplus R$