

Algorithmical Geometry: Computation of Delaunay Triangulations Using a Divide-and-Conquer Algorithm

Markus Pawellek

January 17, 2022

Outline

Related Work

Mathematical Preliminaries

Geometric Primitives

Quad-Edge Data Structure

Algorithm

Implementation Notes

Applications

Conclusions

^{*}https://upload.wikimedia.org/wikipedia/commons/b/b8/Approx-3tori.svg, December 29, 2021

Educational Problems:

Many Resources

- Many Resources
- Duality to Voronoi Diagrams

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer
- Varying Data Structures

1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

Mathematical Preliminaries

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A, B, C \in \mathbb{R}^2$ affinely independent define vertices of a triangle.

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A,B,C\in\mathbb{R}^2$ affinely independent define vertices of a triangle.

Circumcircle

Circle that intersects with all vertices of the triangle.

Mathematical Preliminaries: Point Set

Point Set

 $\mathcal{V}\subset\mathbb{R}^2$ finite, $\#\mathcal{V}\geq 3$, affinely span \mathbb{R}^2

Mathematical Preliminaries: Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over V such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

► Existence is guaranteed

- Existence is guaranteed
- Unique if there are no four points that are cocircular

- Existence is guaranteed
- Unique if there are no four points that are cocircular
- Optimality: maximization of the minimum angle of all angles

- Existence is guaranteed
- Unique if there are no four points that are cocircular
- Optimality: maximization of the minimum angle of all angles
- Convex hull is contained

- Existence is guaranteed
- Unique if there are no four points that are cocircular
- Optimality: maximization of the minimum angle of all angles
- Convex hull is contained
- Dual of Voronoi diagram

Geometric Primitives

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix}$$

Counterclockwise Orientation
$$\iff$$
 C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix}$$

Geometric Primitives: Triangle Orientation

$$\longleftrightarrow \qquad \longleftrightarrow \qquad A$$

Counterclockwise Orientation
$$\iff$$
 C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix} = \det \left(B - A - C - A \right)$$

Geometric Primitives: Inside Circumcircle

Geometric Primitives: Inside Circumcircle

$$0 < \begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix}$$

Geometric Primitives: Inside Circumcircle

$$0 < \begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix}$$

$$= \left\langle x, \operatorname{adj} \left(u \ v \right)^{\mathrm{T}} \begin{pmatrix} \|u\|^2 \\ \|v\|^2 \end{pmatrix} \right\rangle$$

$$- \det \left(u \ v \right) \|x\|^2$$

$$u \coloneqq B - A, \quad v \coloneqq C - A, \quad x \coloneqq D - A$$

Quad-Edge Data Structure

Edge-Based List-Like Data Structure for Storing Neighbor Information:

Edge-Based List-Like Data Structure for Storing Neighbor Information:

Directed edges for vertices

Edge-Based List-Like Data Structure for Storing Neighbor Information:

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex

Edge-Based List-Like Data Structure for Storing Neighbor Information:

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces

Edge-Based List-Like Data Structure for Storing Neighbor Information:

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adiacent faces
- Pointer to ccw. next directed dual edge with same origin face

Edge-Based List-Like Data Structure for Storing Neighbor Information:

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces
- Pointer to ccw. next directed dual edge with same origin face

Quad-Edge Data Structure: Implementation


```
struct edge {
    size_t next;
    size_t data;
};

struct quad_edge {
    edge data[4];
};

vector<vertex> vertices{};
vector<quad_edge> quad_edges{};
vector<size_t> free_edges{};
```


Quad-Edge Data Structure: Implementation

Create a new edge

- Create a new edge
- ▶ Delete existing edge

- Create a new edge
- Delete existing edge
- Connect points by a new edge

Algorithm

Triangulation Algorithm

1. Sort the given point set by increasing \boldsymbol{x} coordinate.

Triangulation Algorithm

- 1. Sort the given point set by increasing \boldsymbol{x} coordinate.
- 2. Triangulate sorted point set.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

Subroutine: Triangulate

1. If point count is smaller than four, make edge or triangle and return.

Triangulation Algorithm

- 1. Sort the given point set by increasing \boldsymbol{x} coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.
- 3. Triangulate left and right half.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.
- 3. Triangulate left and right half.
- 4. Merge left and right triangulations.

Algorithm: Merge Triangulations Example 15/20

Algorithm: Merge Triangulations Example

- ▶ linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

Subroutine: Merge Triangulations

1. Compute and add lower common tangent.

- linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.

- linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:

- ▶ linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.

- ▶ linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.
 - 3.2 Insert cross edge above baseline.

- linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.
 - 3.2 Insert cross edge above baseline.
 - 3.3 Make this cross edge the new baseline.
- linear complexity by using Euler's formula for planar graphs
- computation of lower common tangent
- circle test for adjacent edges
- circle test for cross edge

Algorithm: Complexity

- Use master theorem
- Merge step is linear in point count

$$t(n) = 2t\left(\frac{n}{2}\right) + \mathcal{O}(n)$$

$$\mathcal{O}(n\log n)$$

Subroutine: Triangulate

- If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.
- 3. Triangulate left and right half.
- Merge left and right triangulations.

Algorithm: Correctness

Proof by induction:

Show that for two given Delaunay triangulations $\mathfrak{T}(\mathcal{L})$ and $\mathfrak{T}(\mathcal{R})$ separated by a vertical line the merge subroutine generates a Delaunay triangulation $\mathfrak{T}(\mathcal{L} \cup \mathcal{R})$.

- ► For two Delaunay triangulations separated by a vertical line, it is enough to remove inner edges and insert cross edges.
- Common tangents are elements of the Delaunay triangulation.
- Removed edges are indeed not Delaunay.
- Insertion of cross edges generates new Delaunay triangle.
- There are no other edges that have to be removed.
- ▶ Theorem: Algorithm is correct.

Implementation Notes

Implementation Notes

- Geometric Primitives need exact computation and therefore arbitrary precision
- still no robust split, use Dwyer instead (no sorting, parallelization)
- triangular data structure increases speed but algorithm is more complicated
- Divide-and-conquer variant seems to be most powerful and robust

Applications

Conclusions

Conclusions

Summary:

- ▶ Delaunay triangulation can be generated by given divide-and-conquer algorithm in $O(n \log n)$
- Data structure needs to store neighbor information

Future Work:

- Use triangular data structure instead of quad-edge data structure
- Use Dwyer's approach to make algorithm more robust
- Parallelization

Thank you for Your Attention!

References

nn 203_222 upi https:

(1)	D. T. Lee and B. J. Schachter. "Two Algorithms for Constructing a Delaunay Triangulation". In: <i>International</i> <i>Journal of Computer and Information Sciences</i> 9 (1980), pp. 219–242. DOI: 10.1007/BF00977785.	(7)	D. F. Watson. "Computing the <i>n</i> -Dimensional Delaunay Tessellation with Application to Voronoi Polytopes". In: <i>The Computer Journal</i> 24 (1981), pp. 167–172. DOI: 10.1093/comjnl/24.2.167.
(2)	Leonidas Guibas and Jorge Stolfi. "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams". In: ACM Transactions on Graphics 4 (April 1985), pp. 74–123. DOI:	(8)	A. Bowyer. "Computing Dirichlet Tessellations". In: The Computer Journal 24 (1981), pp. 162–166. DOI: 10.1093/comjnl/24.2.162.
	10.1145/282918.282923. urt: http://sccg.sk/~samuelcik/dgs/quad_edge.pdf (visited on 11/07/2020).	(9)	Christoph Burnikel. <i>Delaunay Graphs by Divide and Conquer</i> . 1998. URL: https://pure.mpg.de/rest/items/item_1819432_4/component/file_2599484/content
(3)	Rex A. Dwyer. "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations". In:		(visited on 11/07/2020).
	Algorithmica 2 (November 1987), pp. 137–151. doi: 10.1007/BF01840356.	(10)	P. Cignoni, C. Montani, and R. Scopigno. "DeWall: A Fast Divide-and-Conquer Delaunay Triangulation Algorithm
(4)	Jonathan Richard Shewchuk. "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator". In: Applied Computational Geometry: Towards		in <i>E^d</i> ". In: <i>Computer-Aided Design</i> 30 (1998), pp. 333–341. DOI: 10.1016/S0010-4485(97)00082-1.
	Geometric Engineering, Ed. by Ming C. Lin and Dinesh Manocha. Vol. 1148. Lecture Notes in Computer Science. From the First ACM Workshop on Applied Computational Geometry. Springer-Verlag, May 1996,	(11)	Jyrki Katajainen and Markku Koppinen. *Constructing Delaunay Triangulations by Merging Buckets in Quad-Tree Order". In: Fundamenta Informaticae 11 (April 1988), pp. 275–288: