HELMET DETECTION

USING FAST AND SCALABLE VISION TECHNIQUES

RAGHAV JUNEJA, SHIVAANSHPANDE E22CSEU1207, E22CSEU1215

THE RISE OF ACCIDENTS AND NON-COMPLIANCE OF HELMET LAWS

() | PROBLEM

High accident rates are often linked to riders not wearing helmets, posing serious safety risks and legal concerns.

02 Manual Check Challenges

Enforcing helmet compliance manually is laborintensive, time-consuming, and often ineffective in real-time scenarios.

03 Deep Learning Challenges

hile deep learning can automate detection, it requires high costs, powerful hardware, and large labeled datasets to train accurate models.

OBJECTIVES

Real Time Helmet Detection

ims to instantly identify helmet usage from video feeds to support timely enforcement.

Reduce Computation Cost

Seeks lightweight models or traditional methods to run efficiently on low-resource devices.

Improve without GPU dependency

Focuses on alternatives to deep learning or optimized models that work well on CPUs.

OVERVIEW OF THE PROPOSED SYSTEM

01 INPUT MATCHING

02 YOLO FOR ROI

03 PREPROCESSING

04 FEATURE MATCHING

05 TEMPLATE MATCHING

06 OUTPUT

METHODOLOGY (STEP BY STEP)

O1 Data collection + Preprocessing

02 BRIEF based feature encoding

O3 Template Matching using Hamming Distance

94 Spatial Index Table for fast search

05 M-estimator for Robustness

PREPROCESSING TECHNIQUES

GRAYSCALE CONVERSION

Converts a color image (RGB or BGR) to shades of gray, reducing it to a single channel.

HISTOGRAM EQUALIZATION

Improves image contrast by spreading out the most frequent intensity values. Especially useful in low-contrast images to enhance detail visibility.

ADAPTIVE BINARIZATION

Converts an image to black and white using local thresholds for each region, making it effective for images with varying lighting conditions. python
CopyEdit

TEMPLATE MATCHING AND SPATIAL INDEX TABLE

01 Template Matching with Keypoints

- Detect keypoints in both template and input image using a detector (e.g., FAST).
- Extract small patches around keypoints for matching.

O2 BRIEF: Binary Feature Encoding

- Compare intensity values of point pairs in a patch.
- Each comparison outputs a bit (1 or 0), forming a compact binary string (e.g., 256 bits).
- Enables fast and memory-efficient matching.

O3 Fast Matching via Hamming Distance

- Measures the number of bit differences between two BRIEF descriptors.
- Faster than Euclidean distance since it uses bitwise XOR and bit counting.
- Perfect for binary descriptors.

04 SPATIL INDEX TABLE (SPEED UP SEARCH)

- indexes keypoints into a spatial grid (e.g., 2D cells based on position).
- Limits matching to nearby regions in space.
- Reduces unnecessary descriptor comparisons across distant areas.

WEBSITE DEMO!!

THANK AONIIIIIIIII

A PROJECT BY
RAGHAV JUNEJA
E22CSEU1207
&
SHIVAANSH PANDE
E22CSEU1215