

Modelagem de Software

Carga Horária

160 horas

Área

Tecnologia

Cursos

Análise de Sistemas, Sistemas de Informação, Ciência da Computação

"Unidade Curricular tranforma seu currículo integrado em uma solução transformadora que eleva o processo do aprendizado a outro patamar: a abordagem em comunidades de aprendizagem multiprofissionais."

Modelagem de Software

<u>Agenda</u>

Modelagem de Software: Ementa

- Análise de Problema
- Análise de Requisitos
- Modelagem Orientada a Objetos
- Modelagem de Banco de Dados

Modelagem de Software

Metas de Compreensão

O que ^{Vamos} aprendera

- Analisar problemas avaliando as necessidades dos clientes.
- Criar a especificação de software, elicitando os requisitos funcionais e não funcionais do software em conformidade com os requisitos do usuário.
- Utilizar ferramentas de prototipagem de software e aplicar os tipos de prototipagem conforme o projeto.
- Criar modelos de sistemas de software utilizando o paradigma orientado a objetos a partir dos principais diagramas da <u>UML</u>.
- Especificar modelos conceituais de banco de dados, analisando aspectos do mundo real a serem tratados pelos sistemas de informação e representando-os corretamente de acordo com o metamodelo selecionado e integrando-os com as diretrizes de administração de dados da organização.
- Criar modelos lógicos e físicos de banco de dados de acordo com os propósitos das necessidades do sistema de informação, especificando estruturas e mecanismos de armazenamento, busca e recuperação de dados.

Avaliações

Como seremos avaliados?

Avaliação A1 – 30 pontos

Dissertativa – avalia a expressão da linguagem da área, códigos e signos

Avaliação A2 – 30 pontos

Múltipla escolha – avalia leitura, interpretação, análise e estabelecimento de relações

Produto A3 – 40 pontos

Avaliação dos desempenhos como resultado do processo

Busca ativa

Critérios de Aprovação

01

Nota final acima de 70 pontos

Somando as notas A1 + A2 + A3 o aluno deve atingir um mínimo de 70 pontos!

Frequência de mínimo 75%

O aluno precisa ter um mínimo de 75% de presença!

Segunda Chance

Avaliação Integrada (AI)

Substitutiva

Substitui a menor nota em A1 **OU** A2

Elegíveis

Alunos com mínimo de 40 pontos em A3 + A1 ou A2

Valor

Valor de 30 pontos

Vamos falar de Oportunidades?

Maiores Detalhes

Isso e muito mais você encontra no Manual do Aluno

Vamos Juntos fazer um excelente semestre!

A maior empresa de táxi, não tem carros

A maior empresa de hospedagem, não tem hotéis

airbnb

Uber

Os maiores varejistas, não têm lojas

amazon

O maior cinema, não tem salas

NETFLIX

- Vocês já pararam para pensar que, no mundo atual, a maior empresa de taxi não tem carros?
- A maior empresa de hospedagem, não possui hotéis?
- Os maiores varejistas como a Amazon, por exemplo, não tem nenhuma loja física;
- O maior cinema, a Netflix, não tem nenhuma sala de cinema física.
- O que então eles têm em comum?

- O que elas possuem em comum?
- Resposta: O principal recurso que as move como empresas, como negócio:

Ou seja: os aplicativos que essas empresas desenvolveram para atender a uma certa necessidade de negócio.

O que é um Software

Software

Conjunto de instruções que devem ser seguidas e executadas por um computador ou um aparato eletromecânico.

Outra Definição

"Software são programas de computadores com um documentação associada e que os produtos de software podem ser desenvolvidos para um determinado cliente ou para um mercado mais generalizado."

Sommervile (2011)

Atributos de um bom Software

Manutenabilidade	Deve ser escrito de forma que possa evoluir para atender às necessidades dos clientes. É um atributo crítico, pois a mudança em um software é inevitável em um ambiente de negócio em mudança.
Confiança e Proteção	Um software não deve causar prejuízos físicos ou econômicos no caso de falha; usuários maliciosos ou não autorizados não devem ser capazes de acessar e/ou prejudicar o sistema.
Eficiência	Não deve desperdiçar os recursos do sistema (memória, ciclo de processamento). Inclui capacidade de resposta, tempo de processamento, uso de memória/disco, etc.
Aceitabilidade	Deve ser aceitável para o tipo de usuário para o qual foi projetado. Deve ser compreensível, usável e compatível aos demais sistemas usados por ele.

Ciclo de Vida de Software

- O ciclo de vida de um software é uma estrutura que indica processos e atividades envolvidas no desenvolvimento, operação e manutenção de um software, abrangendo de fato toda a vida do sistema.
- Neste ciclo, existem modelos que definem como o software será desenvolvido, lançado, aprimorado e finalizado.

Modelagem de Software

- Por que modelar software?
 - Ajuda a ter uma visão geral do sistema;
 - Permite especificar a estrutura e o comportamento do sistema;
 - Proporciona um guia para a construção do software
 - Documenta as decisões tomadas

Processo de Desenvolvimento de Software

 Podemos entender o processo de software como um conglomerado de atividades, políticas, normas, padrões, processos, tecnologias, procedimentos e conhecimentos utilizados em conjunto para desenvolver um sistema computacional

SOMMERVILLE, 2011.

Processo de Desenvolvimento de Software

- Existem vários processos de desenvolvimento de software diferentes mas todos envolvem:
 - Especificação definição do quê o sistema deve fazer;
 - Projeto e implementação definição da organização do sistema e implementação do sistema;
 - Validação checagem de que o sistema faz o que o cliente deseja;
 - Evolução evolução em resposta a mudanças nas necessidades do cliente.

Processo de Desenvolvimento de Software

- Descrições de processos também podem incluir:
 - Produtos, que são os resultados de uma atividade do processo;
 - Papéis, que refletem as responsabilidades das pessoas envolvidas no processo;
 - Pré e pós-condições, que são declarações que são verdadeiras antes e depois de uma atividade do processo ser executada, ou um produto produzido.

Não existe processo de software certo ou errado

Modelos de Processos de Software

- Representação simplificada de um processo de software;
- Modelos mais comuns:
 - Cascata (sequencial, water fall, preditivo): modelo dirigido a planos.
 Fases de especificação e desenvolvimento separadas e distintas.
 - Incremental (iterativo e incremental, evolucionário:): Especificação, desenvolvimento e validação são intercaladas.
 - Orientado a reuso: o sistema é montado a partir de componentes já existentes.

DETALHANDO....

Análise e definição de requisitos: Os serviços, restrições e metas do sistema são estabelecidos por meio de consulta aos usuários.

Projeto de sistema e software: Aloca os requisitos tanto para sistemas de hardware como para sistemas de software, por meio da definição de uma arquitetura geral do sistema.

Identificação e descrição das abstrações fundamentais do sistema de software e seus relacionamentos.

Implementação e teste unitário: Desenvolvido como um conjunto de programas ou unidades de programa.

O teste unitário envolve a verificação de que cada unidade atenda a sua especificação.

Integração e teste de sistema: As unidades individuais do programa são integradas e

Realiza-se testes como um sistema completo para assegurar que os requisitos do software tenham sido atendidos.

Entrega para o cliente.

Operação e manutenção: O sistema é instalado e colocado em uso.

A manutenção envolve a correção de erros que não foram descobertos em estágios iniciais e possivelmente serão demonstrados novas necessidades.

Vantagens do Modelo Cascata

- Documentação rígida (idealmente completa) em cada atividade
- Reflete abordagens adotadas em outras engenharias
- Aderência a outros modelos de processo
 - Pode ser combinado a outros modelos

Desvantagens do Modelo Cascata

- Projetos reais raramente seguem um fluxo sequencial
- Em geral, é difícil para o cliente estabelecer todos os requisitos à priori
- Difícil se adequar a mudanças inevitáveis de requisitos
- Uma versão executável somente ficará pronta na fase final do projeto

Quando Aplicar o Modelo Cascata

- Sistemas críticos
- Quando os requisitos são bem compreendidos
- Quando há pouca probabilidade dos requisitos mudarem
- Projetos de engenharia de grandes sistemas onde o sistema é desenvolvido em vários locais.
 - Nessas circunstâncias, a natureza do modelo cascata dirigida a planos ajuda a coordenar o trabalho

Exercício de Fixação

- Julgue como Certo ou Errado:
- a. () O modelo de ciclo de vida em cascata tem como características o estabelecimento, no início do projeto, de requisitos de maneira completa, correta e clara, e a possibilidade de disponibilização de várias versões operacionais do software antes da conclusão do projeto.
- b. () O modelo de desenvolvimento em cascata é utilizado em caso de divergência nos requisitos de um software, para permitir a evolução gradual do entendimento dos requisitos durante a implementação do software.
- c. () Durante a fase de levantamento de requisitos para a construção de um software, compete aos desenvolvedores organizar as necessidades em ordem de prioridade.

Modelo Incremental

- Atividades são intercaladas
- Objetivo: dar feedback rápido ao cliente

Modelo Incremental

Iterativo x Incremental

Incremental

Iterativo

Iterativo x Incremental

- Uma diferença importante é se você especifica os requisitos de forma antecipada (incremental) ou os descobre ao construir seu produto (iterativo).
- Um processo de desenvolvimento de software é incremental quando a cada rodada é desenvolvido um pedaço inteiro do software. Já no iterativo, a cada iteração, se avança no conhecimento do projeto, novos requisitos são elicitados e a arquitetura do software é revisada.

Exercícios de Fixação

- Assinale a alternativa que traz a informação correta sobre o modelo iterativo e o modelo incremental.
 - a) O modelo iterativo sempre disponibiliza uma versão que pode ser utilizada pelo usuário final.
 - b) No modelo incremental, iterações são realizadas e, ao fim de cada uma delas, diversas partes do sistema podem ter sido desenvolvidas e não concluídas.
 - c) O modelo cascata e o modelo incremental são muito semelhantes, uma vez que, em ambos ciclos de desenvolvimento, um módulo só pode ser entregue após a conclusão dos demais que já estavam em andamento.
 - d) O modelo iterativo deixa livre que diversos módulos sejam iniciados na mesma iteração sem a devida conclusão ao fim do ciclo.

Vantagens do Modelo Incremental

- Custo de acomodar mudanças nos requisitos é reduzido
- Mais fácil obter feedback do cliente
- Permite trabalhar com o cliente o entendimento dos requisitos
- Pode-se começar o sistema pelas partes melhor entendidas

Desvantagens do Modelo Incremental

- O processo pode não ser muito claro
- A gerência do software é complicada
 - O sistema não é completamente especificado à priori
- A estrutura do produto tende a se corromper com a adição de incrementos
 - O produto final é pode se tornar mal estruturado

Reflexão

Por que os problemas de desenvolvimento incremental se tornam mais graves quando se trata de desenvolvimento de sistemas de tempo real?

- Baseada no reuso sistemático em que os sistemas são integrados com componentes existentes ou sistemas COTS (Commercial-off-the-shelf).
- Estágios do processo:
 - ✓ Análise de componentes;
 - ✓ Modificação de requisitos;
 - ✓ Projeto de sistema com reuso;
 - ✓ Desenvolvimento e integração.
- Atualmente, o reuso é a abordagem padrão para a construção de vários tipos de sistemas de negócio.

Análise de componentes: Dada a especificação de requisitos, é feita uma busca por componentes para implementar essa especificação.

Em geral, não há correspondência exata, e os componentes que podem ser usados apenas fornecem alguma funcionalidade necessária.

Modificação de requisitos: Durante esse estágio, os requisitos são analisados usando-se informações sobre os componentes que foram descobertos.

Em seguida, estes serão modificados para refletir os componentes disponíveis.

No caso de modificações impossíveis, a atividade de análise dos componentes pode ser reinserida na busca por soluções alternativas.

Projeto do sistema com reúso: Durante esse estágio, o framework do sistema é projetado ou algo existente é reusado.

Os projetistas têm em mente os componentes que serão reusados e organizam o framework para reúso.

Alguns softwares novos podem ser necessários, se componentes reusáveis não estiverem disponíveis.

Desenvolvimento e integração: Softwares que não podem ser adquiridos externamente são desenvolvidos, e os componentes e sistemas são integrados para criar o novo sistema.

A integração de sistemas, nesse modelo, pode ser parte do processo de desenvolvimento, em vez de uma atividade separada.

Tipos de Componentes

- Web services que s\u00e3o desenvolvidos de acordo com padr\u00f3es de servi\u00f3o e ficam dispon\u00edveis para chamada remota.
- Coleções de objetos que são desenvolvidas como um pacote para ser integrado com um framework como .NET ou J2EE.
- Sistemas de software stand-alone (COTS) que são configurados para uso em ambientes específicos.

Exercício de Fixação

"Não existe um modelo de processo de desenvolvimento de software que seja adequado a todo e qualquer projeto. Ao contrário, processos devem ser definidos caso a caso". Você concorda com essa afirmação? Justifique sua resposta e caso tenha concordado cite quais fatores influenciam a definição de um modelo de processo de software que será adotado no desenvolvimento de um produto de software

Exercício de Fixação

- Justificando sua resposta com base no tipo de sistema a ser desenvolvido, sugira o modelo de processo de software mais apropriado que poderia ser usado como base para gerenciar o desenvolvimento dos seguintes sistemas:
- a. um sistema para controlar um antibloqueador de freios de um automóvel;
- b. um sistema de realidade virtual para apoiar a manutenção de carros;
- c. Um sistema de contabilidade de uma universidade, que substituirá um já existente;
- d. Um sistema interativo que permite aos passageiros encontrar os horários dos trens por meio de terminais instalados nas estações;

Referência Bibliográfica

Ian Sommerville. **Engenharia de Software**, 9^a Edição. Pearson Education, 2011.