Exercício programa - Reconhecimento de dígitos Computação III - CCM0218

Carlo Bellinati NUSP: 11258360 Rafael Badain NUSP:10277102

28/11/2020

1 Primeira tarefa

Na primeira tarefa, o objetivo era implementar um programa que resolvesse múltiplos sistemas lineares através de fatoração QR, realizada por sucessivas rotações de Givens.

A rotação de Givens está implementada em **rot_givens.py**, e a resolução de sistemas lineares com fatoração QR está implementado em **systems_qr.py**. Fizemos os testes pedidos para a resolução dos sistemas únicos Wx = b (testes A e B) e os sistemas múltiplos WH = A (testes C e D):

- Teste A (Sistema único e determinado): $n=m=64, W_{i,i}=2, i=1,...,n, W_{ij}=1$ se |i-j|=1 e $W_{ij}=0$ se |i-j|>1 e b(i)=1, i=1,...,n
- Teste B (Sistema único e sobredeterminado): $n = 20 \ m = 17$, $W_{ij} = 1/(i + j 1)$ se |i j| < 4 e $W_{ij} = 0$ se |i j| > 4 e b(i) = i, i = 1, ..., n
- Teste C (Sistema múltiplo e determinado): $n=m=64, W_{i,i}=2, i=1,...,n, W_{ij}=1$ se |i-j|=1 e $W_{ij}=0$ se |i-j|>1 e A(i,1)=1, A(i,2)=i, A(i,3)=2i-1, i=1,...,n
- Teste D (Sistema múltiplo e sobredeterminado): $n = 20 \ m = 17$, $W_{ij} = 1/(i+j-1) \ se \ |i-j| < 4 \ e \ W_{ij} = 0 \ se \ |i-j| > 4 \ e \ A(i,1) = 1$, A(i,2) = i, A(i,3) = 2i-1, i = 1, ..., n

As matrizes com as soluções do sistemas dos testes A a D podem ser encontradas em **testes_primeira_tarefa.txt**. Foi calculado em cada caso o erro quadrático da resolução desses sistemas, isto é, a norma euclidiana da matriz B = A - WH, dada por

$$E = ||B|| = \sqrt{\sum_{i=0}^{n} \sum_{j=0}^{m} B(i,j)^2}$$

Nos testes A e C, que resolviam sistemas determinados (n = m) temos um erro igual a zero, como era esperado. Para os testes B e D, que resolvem sistemas sobredeterminados (n > m), o resultado já mostra um erro significativo de, respectivamente, 11.153786357262028 e 24.466302973737676.

2 Segunda tarefa

Na segunda tarefa tinhamos que implementar um código que realizasse uma fatoração não negativa de uma matriz A n x m em matrizes W n x p e H p x m. Essa fatoração não é necessariamente exata e apresenta um erro quadrático que o algoritmo busca minimizar. O resultado também pode não convergir, por isso estabelecemos um número máximo de iterações e um limite de erro para declarar convergência do resultado da fatoração. O código com essa implementação está em nnmf.py. Usamos o exemplo do roteiro para decompor a seguinte matriz:

$$A = \begin{pmatrix} 3/10 & 3/5 & 0 \\ 1/2 & 0 & 1 \\ 4/10 & 4/5 & 0 \end{pmatrix}$$

Os resultados obtidos estão em **testes_segunda_tarefa.txt**. Para cada vez que rodamos o programa duas diferentes decomposições, WH e W'H', eram possíveis de ser obtidas:

$$W = \begin{pmatrix} 3/5 & 0 \\ 0 & 1 \\ 4/5 & 0 \end{pmatrix} \quad H = \begin{pmatrix} 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

$$W' = \begin{pmatrix} 0 & 3/5 \\ 1 & 0 \\ 0 & 4/5 \end{pmatrix} \quad H' = \begin{pmatrix} 1/2 & 0 & 1 \\ 1/2 & 1 & 0 \end{pmatrix}$$

Podemos observar que WH = W'H' = A, ou seja, ambas as decomposições são exatas e portanto tem erro zero. Esse problema não tem solução única, pois ao resolver o problema de mínimos quadrados, que minimiza o erro, se há mais de uma solução exata, há mais de uma solução possível, e dependendo dos valores iniciais de W (que são aleatórios) podemos obter resultados diferentes.

Testamos também a frequência de cada uma dessas decomposições e verificamos que ambas decomposições acontecem na mesma proporção (50% cada). Todos os testes foram realizados com os mesmos parâmetros de convergência: itmax = 100 e $\epsilon = 10^{-5}$.

3 Tarefa principal

3.1 Fase de treinamento

Nessa fase do projeto realizamos o aprendizado de cada dígito d, que é armazenado em uma matriz W_d 784 x p. W_d é uma matriz que contém p imagens de tamanho 28 x 28. Essas imagens são como um "resumo" das $ndig_treino$ imagens do dígito d analisadas de um banco de dados. A estratégia para se obter esse "resumo" de muitas imagens feito de poucas é utilizar a fatoração não negativa. Seja A uma matriz 784 x $ndig_treino$ que contém as imagens do banco de dados usadas para o treinamento, obtemos W_d fazendo a fatoração não negativa $W_dH = A$. Esse código está no arquivo training_MNIST.py.

Para os dígitos de 0 a 9 usamos os valores de referência $ndig_treino = 100, 1000, 4000$ e p = 5, 10, 15. Cada matriz classificadora está salva na pasta **output** com o nome $\mathbf{W}_\mathbf{d}_\mathbf{ndigtreino}_\mathbf{p.txt}$. Uma análise importante é a do tempo gasto para treinar

cada matriz W_d . A tabela 1 mostra a média, em segundos, do tempo de execução dos dígitos em cada caso de $ndig_treino$ (ndt) e p.

ndt/p	5	10	15
100	8,896	20,872	31,816
1000	25,761	50,892	77,337
4000	75,706	154,249	232,301

Tabela 1: Médias dos tempos de execução dos dígitos

Analisando o comportamento de p, vemos que para todos $ndig_t reinos$ o tempo, aproximadamente, sempre é somado um mesmo valor ao se adicionar 5 unidades ao valor de p. O tempo dobra de p = 5 para p = 10 e é multiplicado por 1.5 de p = 10 para p = 15.

Já em relação ao comportamento do tempo de execução em função de $ndig_treino$, temos que o tempo médio de execução, aproximadamente, duplica de ndt = 100 para ndt = 1000 e triplica de ndt = 1000 para ndt = 4000.

Podemos também analisar o tempo de execução de cada dígito individualmente. A tabela 2 mostra os tempos de execução $t(d, ndig_treino, p)$ para treinar cada dígito d para cada par $(ndig_treino, p)$. A última coluna mostra uma média normalizada do tempo de execução de todos os casos \bar{t}_d , calculada por

$$\bar{t_d} = \frac{S_d}{\sum\limits_{D=0}^{9} S_D} , S_d = \sum\limits_{(n,p)} \frac{t(d,n,p)}{\sum\limits_{D=0}^{9} t(D,n,p)}$$

O valor dessas médias também é representado pelo gráfico da figura 1. Podemos perceber que para cada caso, os dígitos mais demorados e mais rápidos mudam, e a diferença entre eles é baixa (desvio padrão pequeno). No gráfico vemos que, numa média geral, o dígito mais rápido é o 5 enquanto os mais demorados são o 0, 3 e 9.

3.2 Classificação dos dígitos

A última etapa do projeto era a de classificação dos dígitos. Temos um banco de imagens que devem ser testadas e classificadas entre os dígitos de 0 a 9, usando as matrizes que representam o aprendizado de máquina W_d . Existe um gabarito para esse teste, e com ele calculamos a porcentagem de acerto geral ($P = n_acertos/n_teste$) e a porcentagem de acerto para cada dígito ($P_d = n_acertos_d/n_teste_d$).

O programa faz isso resolvendo um problema de mínimos quadrados, que é um sistema simultâneo sobreterminado $W_dH=A$, onde A é uma matriz 784 x n_teste que contém as imagens a serem testadas. Verificamos para cada um desses sistemas, com qual matriz W_d ocorreu o menor erro, e então classificamos esse dígito como d. O código está presente no arquivo classify_MNIST.py e todas as classificações foram feitas usando $n_teste=10000$. Os resultados descritos a seguir estão na pasta outputs no arquivo classify_index_10000.txt.

Vamos analisar primeiro o valor da porcentagem de acerto em função de $ndig_treino$ e p. A tabela 3 mostra a porcentagem geral de acerto para cada $ndig_treino$ e p. Como esperado, quando aumentamos p e $ndig_treino$, a precisão cresce. Os efeitos de aumento de p e $ndig_treino$, para os valores dados, parecem ter uma contribuição semelhante.

d/(n	,p) (100,5)	(100,10)	(100,15)	(1000,5)	(1000,10)
0	9,83	22,97	30,39	26,4	51,41
1	9,93	$22,\!14$	29,77	$25,\!01$	$49,\!57$
2	9,19	21,68	$30,\!25$	24,73	40,71
3	$9,\!26$	20,67	32,48	28,98	50,98
4	9,51	19,32	33,31	$25,\!51$	50,56
5	$5,\!44$	19,64	$30,\!54$	24,98	49,8
6	9,72	19,13	31,79	25,01	48,3
7	6,64	20,72	34,24	$25,\!62$	53,46
8	$9,\!22$	21,28	32,09	24,79	50,81
9	10,12	21,1	31,3	26,13	$54,\!21$
d/(n,p)	(1000,15)	(4000,5)	(4000,10)	(4000,15)	Valor médio
$^{\mathrm{d/(n,p)}}_{\mathrm{0}}$	(1000,15) 76,72	(4000,5) 75,25	(4000,10) 156,57	(4000,15) 226,91	Valor médio 0,102242341
	. ,	, ,	, ,	, ,	
0	76,72	75,25	156,57	226,91	0,102242341
0 1	76,72 77,05	75,25 76,36	156,57 156,12	226,91 231,34	$0,102242341 \\ 0,1010877126$
0 1 2	76,72 77,05 76,17	75,25 76,36 75,26	156,57 156,12 160,82	226,91 231,34 241,14	0,102242341 0,1010877126 0,09851495129
0 1 2 3	76,72 77,05 76,17 77,05	75,25 76,36 75,26 75,13	156,57 156,12 160,82 152,8	226,91 231,34 241,14 234,04	0,102242341 $0,1010877126$ $0,09851495129$ $0,1021577418$
0 1 2 3 4	76,72 77,05 76,17 77,05 76,6	75,25 76,36 75,26 75,13 75,12	156,57 156,12 160,82 152,8 158,84	226,91 231,34 241,14 234,04 229,93	0,102242341 $0,1010877126$ $0,09851495129$ $0,1021577418$ $0,1006228557$
0 1 2 3 4 5	76,72 77,05 76,17 77,05 76,6 79,31	75,25 76,36 75,26 75,13 75,12 75,63	156,57 156,12 160,82 152,8 158,84 154,77	226,91 231,34 241,14 234,04 229,93 233,76	$\begin{array}{c} 0,102242341 \\ 0,1010877126 \\ 0,09851495129 \\ 0,1021577418 \\ 0,1006228557 \\ 0,09468696881 \end{array}$
0 1 2 3 4 5 6	76,72 77,05 76,17 77,05 76,6 79,31 75,82	75,25 76,36 75,26 75,13 75,12 75,63 74,71	156,57 156,12 160,82 152,8 158,84 154,77 146,98	226,91 231,34 241,14 234,04 229,93 233,76 226,81	$\begin{array}{c} 0,102242341 \\ 0,1010877126 \\ 0,09851495129 \\ 0,1021577418 \\ 0,1006228557 \\ 0,09468696881 \\ 0,09835575354 \end{array}$

Tabela 2: Tempos de execução para cada dígito

Figura 1: Valores médios normalizados para cada dígito

ndt/p	5	10	15
100	88,01	90,06	90,95
1000	90,75	92,91	93,59
4000	91,69	93,49	93,92

Tabela 3: Porcentagens gerais de acerto

Podemos comparar as tabelas 1 e 3. As tabelas 4 e 5 mostra a ordem crescente dos termos das tabelas 1 e 3, respectivamente. De modo geral, o crescimento do tempo de treinamento é acompanhado de um aumento na porcentagem de acertos. Porém foi possível notar alguns casos que a precisão era maior e o tempo de treinamento menor. São os casos das células em verde nas tabelas, que se mostram mais vantajosas que as células vermelhas. Por exemplo, é mais rápido e mais preciso usar $(ndig_treino, p) = (1000, 10)$ do que (4000, 5). Da mesma forma, é mais vantajoso usar (1000, 15) do que (4000, 10). Teríamos que realizar mais testes para conferir esse padrão, mas ele parece favorecer o aumento de p em relação ao aumento de $ndig_treino$.

ndt/p	5	10	15
100	1	2	4
1000	3	5	7
4000	6	8	9

Tabela 4: Ordem crescente da tabela 1

$\mathrm{ndt/p}$	5	10	15
100	1	2	4
1000	3	6	8
4000	5	7	9

Tabela 5: Ordem crescente da tabela 3

Podemos agora, analisar os dígitos separadamente, avaliando os valores de P_d para cada par $(ndig_treino, p)$ com d = 0, ..., 9. A tabela 6 possui esses valores. O gráfico da figura 2 mostra valores médios normalizados para a precisão de cada dígito para cada par $(ndig_treino, p) = (n, p)$ e d = 0, ..., 9

$$\bar{P}_d = \sum_{(n,p)} \frac{P_d(n,p)}{\sum_{D=0}^{9} P_D(n,p)}$$

A tabela 6 mostra que existe uma clara disparidade entre a precisão de cada dígito. Existem dígitos com precisão consideravelmente mais alta que outros, como por exemplo, o dígito 1 e o dígito 8. Essas diferenças se mantém para todos (ndig_treino, p), isto é, a ordem dos dígitos em termos da precisão é razoavelmente constante. Os dígitos cuja classificação é mais precisa são 0 e 1, o os dígitos das mais imprecisas são o 5 e 8. Aparentemente, não há muita semelhança com o padrão de tempo de treinamento exibido no gráfico da figura ??.Isso nos leva a supor que um dígito pode ser mais "simples" quanto a sua classificação, mas mais "complexo" quanto ao seu treinamento.

d/(n,p)	(100,5)	(100,10)	(100,15)	(1000,5)	(1000,10)
0	$97,\!55$	$97,\!65$	97,85	97,55	98,67
1	99,21	$99,\!47$	99,47	99,20	$99,\!55$
2	84,78	90,11	90,01	86,91	90,79
3	85,04	86,13	87,82	90,49	91,98
4	80,24	84,41	87,16	86,55	92,97
5	83,07	$86,\!54$	84,30	86,32	89,57
6	93,00	$96,\!34$	$95,\!51$	90,03	95,92
7	88,42	$91,\!34$	94,26	89,49	90,85
8	$79,\!87$	$79,\!26$	82,23	86,96	87,78
9	86,81	87,71	88,99	87,11	89,99
d/(n,	p) (1000	(40)	00,5) (4	$000,\!10)$	(4000,15)
0	98,	77 9'	7,65	98,87	98,77
1	99,	55 99	9,38	99,38	99,38
2	92,	34 89	9,92	91,66	92,63
3	92,	07 99	2,47	93,76	93,06
4	93,	27 88	8,48	92,56	93,48
5	90,	02 88	8,00	90,02	$90,\!35$
6	94,	45 90	6,76	96,13	97,18
7	93,	09 88	8,81	91,34	90,66
8	87,	37 88	8,80	89,52	91,06
9	91,	87 8	5,53	90,68	91,77

Tabela 6: Porcentagens de acerto de cada dígito

Figura 2: Valores médios normalizados da precisão para cada dígito