GTI Übungsblatt 6

Tutor: Marko Schmellenkamp

ID: MS1

Übung: Mi16-18

Max Springenberg, 177792

6.1

6.1.1

gegeben:

$$S \rightarrow A$$

aAB |bA |cA $|\epsilon$ Grammatik G mit: A

gesucht:

Kellerautomat, der die Sprache

$$L(G) = \{u(av_i a)^k | miti \in \{1, \dots, n\}, v_i, u \in \{b, c\}^*, k \in \mathbb{N}_0\}$$

entscheidet

Eine mögliche Lösung ist der PDA A mit:

 ϵ , S:A ϵ , A:aAB ϵ , A:bA ϵ , A:cA ϵ , A: ϵ ϵ , B:a

a, a: ϵ

b, b: ϵ

c, c: ϵ

A wurde nach dem Vorgehen der Vorlesung konstruiert.

A Kann über seine ϵ -Regeln die alle Regeln zu den jeweiligen Variablen aufbauen und damit auch sämtliche Ableitungen von G.

Die jeweilige gewählte rechte Regelseite wird auf den Keller gelegt.

Nach einlesen eines Terminalsymbols $\sigma \in \Sigma$ wird dieses vom Keller gelöscht, wenn nun eine Variable oben auf dem Keller liegt kann diese wieder abgeleitet werden.

Insbesondere werden hierbei solange Terminalsymbole aus $\{b,c\}$ auf den Keller gelegt und nach Einlesen gelöscht, bis ein a auf den Keller gelegt und nach Einlesen gelöscht wird. Dann können wieder Terminalsymbole aus $\{b, c\}$ auf den Keller gelegt werden und nach Einlsen gelöscht werden, aber es wird insbesondere ein a am Ende auf den Keller gelegt und nach Einlsen gelöscht. Damit gilt, dass A Wörter der Form $L(G) = \{u(av_ia)^k | miti \in \{1, \dots n\}, v_i, u \in \{b, c\}^*, k \in \mathbb{N}_0 \text{ mit leerem Keller}\}$ akzeptiert und ferner L(G) entscheidet.

6.1.2

gegeben:

 $w_1 = ab, w_2 = abaa, w_3 = abaaaa$

 w_1 :

A akzeptiert w_1 nicht, da nach dem Einlsen des letzten Zeichen b ein b oben auf dem Keller liegt und eine Transition zum Keller-leerenden Zustand 2 nicht mehr möglich ist.

```
w_2:
A akzeptiert w_2 mit leerem Keller:
 (1, abaa, \#)
                           (1, baa, a\#)
                           (1, aa, ba\#)
                           (1, a, aba\#)
                           (1, \epsilon, aaba\#)
                           (2, \epsilon, aaba\#)
                           (2, \epsilon, aba\#)
                          (2, \epsilon, ba\#)
                           (2, \epsilon, a\#)
                           (2, \epsilon, \#)
                          (2, \epsilon, \epsilon)
w_3:
A akzeptiert w_3 mit leerem Keller:
                              (1, baaaa, a\#)
 (1, abaaaa, \#)
                              (1, aaaa, ba\#)
                              (1, aaa, aba\#)
                              (1, aa, aaba\#)
                              (1, a, aaaba\#)
                              (1, \epsilon, aaaaba\#)
                              (2, \epsilon, aaaaba\#)
                              (2, \epsilon, aaaba\#)
                              (2, \epsilon, aaba\#)
                              (2, \epsilon, aba\#)
                              (2, \epsilon, ba\#)
                              (2, \epsilon, a\#)
                              (2, \epsilon, \#)
                              (2, \epsilon, \epsilon)
```

6.1.3

Regeln für die Variablen $X_{1,\tau,1}$ und $X_{1,\tau,2}$, mit $\tau \in \Gamma$ waren bereits gegeben.

Für die Variablen $X_{2,\tau,1}$, mit $\tau \in \Gamma$ gilt, dass sie nicht erzeugend sind, da von 2 aus keine Transition zu 1 existiert.

Es würden sich ausschließlich Regeln, der Form: $X_{2,\tau,1} \to X_{2,\tau',2} X_{2,\tau,1}$, mit $\tau, \tau' \in \Gamma$ ergeben, die keine endliche Ableitung besitzen.

Deshalb können diese nicht erzeugenden Variablen und Regeln, die sie enthalten gestrichen werden.

Die Regeln der Form $X_{2,\tau,2}$, mit $\tau \in \Gamma$ ergeben sich zu:

```
\begin{array}{ccc} X_{2,\#,2} & \rightarrow & \epsilon \\ X_{2,a,2} & \rightarrow & a \\ X_{2,b,2} & \rightarrow & a \end{array}
```

Nachdem wir nun alle notwendigen Regeln aufgestellt haben wählen wir das Startsymbol gemäß

der Vorlesung mit:

$$S \rightarrow X_{1,\#,1} \mid X_{1,\#,2}$$

6.2

gegeben:

$$\Sigma = \{N_1, N_2, S_1, S_2\}$$

wir wählen:

$$\tau_0 = \#, \Gamma = \{\#, n, s\}$$

Eine mögliche Lösung unter dem gewählten Kelleralphabet ist:

6.3

6.3.1
$$L = \{a^l b^m c^p d^q | l, m, p, q \in \mathbb{N}_0, l$$

wir wählen:

$$z \stackrel{\text{def}}{=} a^n b^{n+1} c^{n+1} dn$$

wir betrachten Zerlegungen der Form z = uvwxy, mit:

 $vx \neq \epsilon$

 $|vwx| \le n$

Fortan werden 4 Fälle betrachtet:

- (i) mind. 1 a in vx, aber kein c, da zwischen a und c n+1 b's liegen.
 - (ii) mind. 1 b in vx, aber kein d, da zwischen b und d n+1 c's liegen.
 - (iii) mind. 1 c in vx, aber kein a, da zwischen a und c n+1 b's liegen.
 - (iv) mind. 1 d in vx, aber kein b, da zwischen a und c n+1 b's liegen.

(i)

(ii)

(iv)

6.3.2
$$L = \{ww^R w | w \in \{a, b\}^*\}$$

wir wählen:

$$z \stackrel{\text{def}}{=} ba^nbba^nbba^nb$$

Wir betrachten Zerlegungen der Form z=uvwxy, mit:

 $vx \neq \epsilon$

 $|vwx| \le n$

Fortan werden 2 Fälle betrachtet:

(i) mind. 1 b in vx

(ii) nur a's in vx

(i)

(ii)