Package 'blendR'

September 3, 2025

Title Blended Survival Curves

Version 1.0.0

Description Create a blended curve from two survival curves, which is particularly useful for survival extrapolation in health technology assessment. The main idea is to mix a flexible model that fits the observed data well with a parametric model that encodes assumptions about long-term survival. The two curves are blended into a single survival curve that is identical to the first model over the range of observed times and gradually approaches the parametric model over the extrapolation period based on a given weight function. This approach allows for the inclusion of external information, such as data from registries or expert opinion, to guide long-term extrapolations, especially when dealing with immature trial data. See Che et al. (2022) <doi:10.1177/0272989X221134545>.

```
License GPL (>= 3)
Additional_repositories https://giabaio.r-universe.dev,
      https://inla.r-inla-download.org/R/stable
Encoding UTF-8
RoxygenNote 7.3.2.9000
Imports dplyr, flexsury, ggplot2, manipulate, sn, survHE, tibble
Depends R (>= 4.4.0)
Suggests INLA, knitr, remotes, rlang, rmarkdown, survHEhmc, survival,
      testthat (>= 3.0.0)
URL https://github.com/StatisticsHealthEconomics/blendR/,
      https://StatisticsHealthEconomics.github.io/blendR/
BugReports https://github.com/StatisticsHealthEconomics/blendR/issues/
Config/testthat/edition 3
NeedsCompilation no
Author Nathan Green [aut] (ORCID: <a href="https://orcid.org/0000-0003-2745-1736">https://orcid.org/0000-0003-2745-1736</a>,
       ROR: <https://ror.org/02jx3x895>),
      Zhaojing Che [aut, cph, cre] (ORCID:
       <a href="https://orcid.org/0000-0003-2245-1606">https://orcid.org/0000-0003-2245-1606</a>, ROR:
       <https://ror.org/052gg0110>)
```

2 blendsurv

Maintainer Zhaojing Che <ble> <ble> <ble> de of the contract o

Repository CRAN

Date/Publication 2025-09-03 20:50:02 UTC

Contents

lendsurv	2
at_FCR	
xt_surv_sim	
t_inla_pw	
nake_surv_methods	
nanip_plot	
lot.blended	
eightplot	8
1	0

blendsurv

Index

Blended survival object

Description

This is the main function in the blendR package. Two survival curves are supplied and blended according to the blending distribution characterised by the blending interval and the beta distribution parameters.

Usage

```
blendsurv(
  obs_Surv,
  ext_Surv,
  blend_interv,
  beta_params = list(alpha = 3, beta = 3),
  times = NULL,
  nsim = 100
)
```

Arguments

obs_Surv, ext_Surv

Observed and external data survival curves. These can come from survHE,

INLA or flexsurv fits.

Maximum and minimum values for the blending interval. blend_interv

coefficients of a beta distribution beta_params

times A vector of times for which the survival curves are to be computed; optional nsim

The number of simulations from the distribution of the survival curves; default

100

dat_FCR 3

Value

List of S for observed, external and blended curves.

Examples

```
library(survHE)
## trial data
data("TA174_FCR", package = "blendR")
## externally estimated data
data_sim <- ext_surv_sim(t_info = 144,</pre>
                           S_{info} = 0.05,
                          T_{max} = 180
obs_Surv <- fit.models(formula = Surv(death_t, death) ~ 1,</pre>
                        data = dat_FCR,
                        distr = "exponential",
                        method = "hmc")
ext_Surv <- fit.models(formula = Surv(time, event) ~ 1,</pre>
                        data = data_sim,
                         distr = "exponential",
                        method = "hmc")
blend_interv <- list(min = 48, max = 150)</pre>
beta_params <- list(alpha = 3, beta = 3)</pre>
ble_Surv <- blendsurv(obs_Surv, ext_Surv, blend_interv, beta_params)</pre>
plot(ble_Surv)
```

 ${\sf dat_FCR}$

Survival data

Description

Survival data

ext_surv_sim

ext_surv_sim

Create an external survival data based on expert opinion

Description

Generally, the sampling is done is two steps

$$p(T) = p(T|intervali)p(intervali)$$

Usage

```
ext_surv_sim(t_info, S_info, T_max, n = 100)
```

Arguments

t_info	A vector of times for which expert opinion is elicited
S_info	A vector of mean survival probabilities estimated by experts corresponding to time points in t_info
T_max	The maximum survival time to be used
n	The number of patients to construct the artificial external data set; default 100

Details

```
In particular T U(x_i, x_{i+1}) i \ multinomial(\hat{\pi})
```

Value

Dataframe of times and censoring status

Examples

fit_inla_pw 5

,	Generate survival estimates with a piecewise exponential Cox model (using INLA)
---	---

Description

Generate survival estimates with a piecewise exponential Cox model (using INLA)

Usage

```
fit_inla_pw(
  inla.formula = inla.surv(death_t, death) ~ -1,
  data,
  cutpoints,
  nsim = 100,
  ...
)
```

Arguments

```
inla. formula

The formula for PEM which must be an inla. surv object

A dataframe for survival data with time (death_t) and event (death)

Cutpoints

A sequence of cut points for intervals in the baseline hazard

The number of simulations from posteriors; default 100

Additional arguments
```

Value

INLA object

Examples

```
if (requireNamespace("INLA", quietly = TRUE)) {
  data("TA174_FCR", package = "blendR")
  head(dat_FCR)
  obs_Surv <- fit_inla_pw(data = dat_FCR, cutpoints = seq(0, 180, by = 5))
}</pre>
```

6 make_surv_methods

make_surv_methods

Create survival probabilities

Description

These function are version of the survHE::make.surv() function from **survHE**. These are needed prior to blending.

Usage

```
make_surv(Surv, ...)
## S3 method for class 'survHE'
make_surv(Surv, t, nsim = 100, ...)
## S3 method for class 'flexsurvreg'
make_surv(Surv, t = NULL, nsim = 100, ...)
## S3 method for class 'inla'
make_surv(Surv, t = NULL, nsim = 100, ...)
## Default S3 method:
make_surv(Surv, t = NULL, nsim = 100, ...)
```

Arguments

Surv survival analysis object
... Additional arguments
t Time points; vector
nsim Number of simulations; integer

Value

Matrix of survival probabilities

Examples

manip_plot 7

manip_plot

Blended survival plot with manipulate

Description

RStudio bug need to run base R first manipulate(plot(1:x), x = slider(5, 10))

Usage

```
manip_plot(obs_Surv, ext_Surv, blend_interv)
```

Arguments

obs_Surv Observed survival
ext_Surv External survival
blend_interv Blending interval

Value

Blended survival plot

plot.blended

Blended survival curve based on short-term data and external information

Description

Blended survival curve based on short-term data and external information

Usage

```
## S3 method for class 'blended' plot(x, alpha = c(0.1, 0.05), ...)
```

Arguments

x A blended survival curve object obtain from blendsurv()

alpha A vector specifying the opacity of ribbon for the blended curve and other curves

... Additional arguments

8 weightplot

Value

```
A ggplot2 object
```

See Also

```
blendsurv()
```

Examples

```
library(survHE)
## trial data
data("TA174_FCR", package = "blendR")
## externally estimated data
data_sim <- ext_surv_sim(t_info = 144,</pre>
                          S_{info} = 0.05,
                          T_{max} = 180
obs_Surv <- fit.models(formula = Surv(death_t, death) ~ 1,</pre>
                         data = dat_FCR,
                         distr = "exponential",
                        method = "hmc")
ext_Surv <- fit.models(formula = Surv(time, event) ~ 1,</pre>
                        data = data_sim,
                         distr = "exponential",
                        method = "hmc")
blend_interv <- list(min = 48, max = 150)</pre>
beta_params <- list(alpha = 3, beta = 3)</pre>
ble_Surv <- blendsurv(obs_Surv, ext_Surv, blend_interv, beta_params)</pre>
plot(ble_Surv)
```

weightplot

Plots the weights for the blending procedure

Description

Plots the weights for the blending procedure

Usage

```
weightplot(x, ...)
```

weightplot 9

Arguments

x A blended survival curve object obtained from blendsurv()

... Additional arguments

Value

ggplot2 object

See Also

blendsurv()

Index