VE203 Mid 1 Logic and Sets

Tianyi Ge

Fall 2018

Outline

Proof by Truth Table

Example

" \oplus " is called **exclusive or** (xor). $A \oplus B$ is True if and only if A differs from B. Prove that $A \oplus B \equiv (\neg A \land B) \lor (A \land \neg B)$

Proof.

L	Α	В	$\neg A \wedge B$	$A \wedge \neg B$	$(\neg A \wedge B) \vee (A \wedge \neg B)$	$A \oplus B$
	Т	Т	F	F	F	F
	Т	F	F	Т	Т	T
	F	Т	T	F	Т	T
	F	F	F	F	F	F

Reminders for your exam

- If you want to use truth table, make sure your steps are clear. **Do** not only list two columns of LHS and RHS. Do not make your truth table look like two copied columns.
- Do not use 01 in truth table; do not use Set Notation in truth table. Make sure the first row consists of propositional logics.

Question 4 in Assignment I

Example

Suppose that a truth table in n propositional variables is specified. Write the *disjunctive normal form*.

- In the assignment, as long as you correctly and completely describe the process to get a disjunctive normal form, you get full marks.
- But it would be better if you could explain why it's a correct transformation.

Solution

- Pick the rows with true values.
- Por each row, take the conjunction of true variables and the negation of false variables.
- Take the disjunction of these conjunctions.

Disjunctive Normal Form

 First you should know why we need DNF: to transform a truth table to a logical expression. Thus you could use the logical expression for further calculation.

Example

Solution

$$(A \wedge B) \vee (A \wedge \neg B) \vee (\neg A \wedge \neg B)$$

Some Important Logical Equivalences

Properties

Implication
$$A\Rightarrow B\equiv \neg A\vee B\equiv \neg B\Rightarrow \neg A$$
 Important!

Distributivity $A\vee (B\wedge C)\equiv (A\vee B)\wedge (A\vee C)$
 $A\wedge (B\vee C)\equiv (A\wedge B)\vee (A\wedge C)$

Absorption $A\vee (A\wedge B)\equiv A$
 $A\wedge (A\vee B)\equiv A$

De Morgan's $\neg (A\vee B)\Leftrightarrow (\neg A)\wedge (\neg B)$
 $\neg (A\wedge B)\Leftrightarrow (\neg A)\vee (\neg B)$

Contraposition $(A\Rightarrow B)\Leftrightarrow (\neg B\Rightarrow \neg A)$

Rules of Inference

- These rules have fancy latin names, but they are not hard to understand.
- You don't need to remember the names of these rules.

Rule of Inference	Name		
$A \Rightarrow B$ A B	Modus (Ponendo) Ponens Mode that affirms (by affirming)		
$A \Rightarrow B$ $\neg B$ $\neg A$	Modus (Tollendo) Tollens Mode that denies (by denying)		
$A \Rightarrow B \\ B \Rightarrow C$ $\therefore A \Rightarrow C$	Transitive Hypothetical Syllogism		

Rule of Inference	Name	
.∴ B	Modus Tollendo Ponens Mode that affirms by denying	
-(A∧B) A ∴ ¬B	Modus Ponendo Tollens Mode that denies by affirming	
A∨B ¬A∨C ∴ B∨C	Resolution	

and others...

Arguments in propositional logic

Definition

An argument is a finite sequence of propositions. All propositions except for the final statement are called **premises** while the final statement is called the **conclusion**. We say that an argument is **valid** if the truth of all premises implies the truth of the conclusion.

$$\begin{array}{c} P_1 \\ \vdots \\ P_n \\ \hline \vdots \\ C \end{array}$$

- i.e. $(P_1 \wedge P_2 \cdots \wedge P_n) \Rightarrow C$ is a tautology. Note that it does not mean that C is always true!
- In addition, the only possible situation where an argument wrong is that all of the premises are true but the conclusion is wrong.
- To disprove the validness, providing a counterexample is a wiser strategy than long proofs.

Arguments in propositional logic

Definition

If, in addition to being valid, an argument has only true premises, we say that the argument is **sound**. In that case, its conclusion is **true**.

- Hence, to disprove the soundness, you only need to find a false premise.
- To make a valid argument sound, make all the premises true by assigning the variables properly.

Predicate Logic

- When using quantifiers \forall and \exists , pay attention to the order.
- $\forall x \exists y P(x, y)$ is different from $\exists y \forall x P(x, y)$
- $\forall x P(x) \lor \forall x Q(x)$ is different from $\forall x (P(x) \lor Q(x))$
- If you are creating a counterexample, do not involve other variables than A in P(A). For example, do not define P(x) as x > 1 and y < 1.
- You cannot change the **domain of disclosure** after you define it.

Some mistakes:

Example

Let the domain of Q(x) be $x \in \mathbb{N}$. Q(x) is true if $x \geq 0$. Thus $\exists x Q(x)$ is true (so far everything is fine).

 \cdots Then on the right hand side, let w < 0. Thus $\exists w Q(w)$ is false (no!).

Vacous Truth

Vacuous Truth

If the domain of the universal quantifier \forall is the empty set $M=\emptyset$, then the statement $(\forall x \in M)A(x)$ is defined to be true.

- Remind the definition of **Chain Complete**. Why a chain complete poset has the least element?
- Empty chain, due to vacuous truth, is also a chain.

Tips for your exam

- If you replace symbols like \Leftrightarrow and \Rightarrow with \lor , \land or \neg , the expression might be terribly longer.
- So before you do terrible calculations, try proving by rules of inference. "Maybe" you can avoid tedious calculations.

Outline

Subsets

• X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$.

Definition

We say that X is a proper subset of Y if $X \subseteq Y$ but $X \neq Y$. In that case we write $X \subset Y$.

• Pease use \subset to denote proper subset in your assignments and exams rather than \subseteq .

Powerset and Cardinality

Definition

If a set has a finite number of elements, we define the **cardinality** of X to be this number, denoted by |X|.

Definition

If X is a set, then the **power set** of X, denoted $\mathcal{P}(X)$, is the set of all subsets of X. I.e.

$$\mathscr{P}(X) = \{A | A \subseteq X\}$$

This means the expressions $A \in \mathcal{P}(X)$ and $A \subseteq X$ are equivalent.

Operations on Sets

- Proof by Venn Diagram will earn 0 point.
- If you want to use \overline{A} to denote A^c , define this notation and denote the M at first.
- Do not misuse \land and \cap ; \lor and \cup .
- Before you replace \ with \ and ^c, try using the properties below.
 Make your calculations as simple as possible.

Properties

- $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
- $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- $A \backslash B = B^c \cap A$
- $(A \backslash B)^c = A^c \cup B$

Operations on Sets

Definition

$$\bigcup_{k=0}^{n} A_{k} := A_{0} \cup \cdots \cup A_{n}, \quad \bigcap_{k=0}^{n} A_{k} := A_{0} \cap \cdots \cap A_{n}$$

More generally, if A is a set and $X \subseteq \mathcal{P}(A)$,

$$\bigcup X = \{x \in A | (\exists y \in X)(x \in y)\}, \quad \bigcap X = \{x \in A | (\forall y \in X)(x \in y)\}$$

- I.e., X is a set of some subsets of A.
- | | X is the union of all the sets in X.
- $\bigcap X$ is the intersection of all the sets in X.
- $\bigcup X$ and $\bigcap X$ are both subsets of A.

Cartesian Product of Sets

Definition

$$A \times B := \{(a,b)|a \in A \land b \in B\}$$

 $A \times B$ is called the cartesian product of A and B.

- It's easy to define ordered n-tuples $A_1 \times A_2 \times \cdots \times A_n$
- A^n is short for $A \times \cdots \times A$
- The cartesian product of some sets is still a set

Cartesian Product of Sets

Some mistakes:

• Any subset of $\mathbb{N} \times \mathbb{N}$ can be written as $A \times B$ (no!)

Russell's Paradox

Theorem

The set of all sets that are not members of themselves is not a set. I.e.

$$R := \{x | x \notin x\}$$
 is not a set

Proof.

If $R \in R$, then R should satisfy $R \notin R$ by definition. If $R \notin R$, then it should be put in R by definition. Both of the assumptions lead to contradiction.

- Similar proof is useful in other questions (*Cantor's Theorem*)
- To prove something related to sets, proof by contradiction is useful. You may construct a "set" with particular constraints, and substitute this "set" back to our hypothesis.

