Devoir surveillé n°2

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice déjà vu.

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

- 1) Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 .
- 2) En déduire que A est inversible et déterminer son inverse.

II. La série harmonique.

Pour tout entier naturel n non nul, on définit

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}.$$

On étudie dans ce problème diverses propriétés de la suite $(H_n)_{n\in\mathbb{N}^*}$, nommée aussi série harmonique.

I – Limite de la série harmonique.

- 1) Exprimer, pour tout $n \in \mathbb{N}^*$, H_{n+1} en fonction de H_n . En déduire le sens de variation de la suite $(H_n)_{n \in \mathbb{N}^*}$.
- 2) Soit $n \in \mathbb{N}^*$. Simplifier la quantité $H_{2n} H_n$, en l'écrivant à l'aide d'un seul symbole Σ .
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, $H_{2n} H_n \geqslant \frac{1}{2}$.
- **4)** En déduire que, pour tout $n \in \mathbb{N}$, $H_{2^n} \geqslant \frac{n}{2} + 1$.
- 5) La suite $(H_n)_{n\in\mathbb{N}^*}$ admet-elle une limite? Laquelle?

II – Une propriété arithmétique : si $n \ge 2$, H_n n'est pas entier.

Pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, posons la propriété

$$P_n$$
: « il existe $p, q \in \mathbb{N}$ tels que $H_n = \frac{2p+1}{2q}$ ».

- **6)** Montrer que, si $n \ge 2$ est pair, alors $P_n \Rightarrow P_{n+1}$.
- 7) Montrer que si p,q sont deux entiers naturels impairs, et k,ℓ deux entiers naturels quelconques $\frac{k}{p} + \frac{\ell}{q}$ peut s'écrire comme un quotient dont le dénominateur est impair.

8) En déduire que, si n est impair (que l'on écrit donc n=2m+1), il existe un nombre rationnel r de dénominateur impair tel que

$$H_{n+1} = \frac{H_{m+1}}{2} + r.$$

Indication: on pourra décomposer une somme écrite en fonction de la parité de ses indices.

9) Montrer finalement par un raisonnement par récurrence que, pour tout $n \ge 2$, P_n est vraie.

III – Comportement asymptotique de la série harmonique.

- 10) Montrer que, pour tout x > 0, $\ln(1+x) < x$.
- 11) Montrer de même que, pour tout x > 0, $\frac{x}{x+1} < \ln(1+x)$.
- 12) Déduire des questions précédentes que, pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

- 13) En déduire, pour tout entier naturel n supérieur ou égal à 2, un encadrement de $\frac{1}{n}$ faisant intervenir des logarithmes.
- **14)** En déduire un encadrement de H_n , pour tout $n \in \mathbb{N}^*$.
- **15)** Montrer que $\frac{H_n}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$.

On pose, pour tout $n \in \mathbb{N}^*$, $u_n = H_n - \ln(n)$.

- **16)** Montrer que la suite (u_n) est décroissante.
- 17) Montrer que la suite (u_n) est minorée. Que peut-on donc en déduire?

IV – Quelques relations.

18) Soit n un entier naturel supérieur ou égal à 2. Montrer que :

$$\sum_{1\leqslant i< j\leqslant n}\frac{1}{j-i}=\sum_{k=1}^{n-1}H_k.$$

19) Déterminer deux nombres a, b vérifiant, pour tout $k \in \mathbb{N}$,

$$\frac{1}{(k+1)(k+2)} = \frac{a}{k+1} + \frac{b}{k+2},$$

et en déduire, pour tout $n \in \mathbb{N}^*$, une expression simplifiée de

$$\sum_{k=1}^{n} \frac{1}{(k+1)(k+2)}.$$

20) Soit $n \in \mathbb{N}^*$, déterminer une forme simple de $\sum_{k=1}^n \frac{H_k}{(k+1)(k+2)}$.

Indication : on pourra effectuer une opération similaire à celle effectuée précédemment.

V – Quelques autres relations.

21) Montrer par récurrence que, pour tout $m, n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}.$$

22) Montrer que, pour tout $m, n \in \mathbb{N}$,

$$\sum_{k=1}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$$

23) Montrer que, pour tout $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n.$$

24) Déduire des questions précédentes que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} H_k^2 = (n+1)H_n^2 - (2n+1)H_n + 2n.$$