Tópicos em Combinatória – 2025.1 Prof. Walner Mendonça

Avaliação Substituta 2 de agosto de 2025

Aluno: ______ Nota:

Instruções:

- Justifique todas as suas respostas. É permitido usar qualquer resultado apresentado em sala.
- Entregar as soluções dos problemas para o email walner+comb@mat.ufc.br até às 20:00hs da quarta-feira dia 06/08/2025.
- A pontuação máxima é de 10 pontos.

Problema 1. (2 pontos)

Seja $\mathcal{A} \subseteq 2^{[n]}$ e seja $L \subseteq \mathbb{N}$ com |L| = s. Mostre que se \mathcal{A} é L-intersectante, então

$$|\mathcal{A}| \le \sum_{i=0}^{s} \binom{n}{i}.$$

[Dica: Considere os polinômios $f_A(x) = \prod_{\ell \in L, \ell < |A|} \left(\sum_{i \in A} x_i - \ell \right)$ para cada $A \in \mathcal{A}$.]

Problema 2. (2 pontos)

Sejam A_1, \ldots, A_m e B_1, \ldots, B_m coleções de conjuntos tais que, para todo $i \in [m]$, temos $A_i \cap B_i = \emptyset$; e para todo $i \neq j$ temos que $A_i \cap B_j \neq \emptyset$ ou $A_j \cap B_i \neq \emptyset$ (ou ambos). Mostre que, para qualquer número real 0 , vale que

$$\sum_{i \in [m]} p^{|A_i|} (1-p)^{|B_i|} \le 1.$$

Problema 3. (2 pontos)

Mostre que o Teorema de Andrásfai, Erdős e Sós é ótimo no seguinte sentido: existe um grafo K_{r+1} -livre com grau mínimo exatamente (3r-4)n/(3r-1) que não é r-partido.

Problema 4. (2 pontos)

Mostre que para todo $r \in \mathbb{N}$ e $\varepsilon > 0$, existe um grafo G com n vértices e grau mínimo $\delta(G) \ge \left(\frac{1}{3} - \varepsilon\right) n$ que é livre triângulos e $\chi(G) \ge r$.

Problema 5. (2 pontos)

Demonstre o teorema de Schur: para toda r-coloração de \mathbb{N} , existem três elementos x, y e z da mesma cor tais que x+y=z.