《线性电路实验》预习报告

实验名称:		功	小率放大器		指导	教师:	王东雷	df ²	ldac@sina.co	om
姓名: _丁	毅_	学号:_	2023K800990	08031	班级/-	专业:	2308/电子位	言息_	分组序号:	_2-06_
实验日期:	20	25.04.18	实验地点:	教学标	娄 607	是否	调课/补课:	否	成绩:	

1 实验目的

- (1) 对功放及散热片有感性认识,加深对功率放大电路的理解;
- (2) 理解功放指标及测量方法;
- (3) 初步建立散热和热阻的概念;
- (4) 了解电容类别、指标及测试方法;
- (5) D 类功放波形及指标测试(选做)。

2 实验仪器

3 实验内容及步骤

- (1) 安装焊接 LM1875 电路, 暂时不焊接消振元件 C3、R4、R5。
- (2) 观察输出是否有振荡,如有则加入 Zobel 网络观察消振效果。
 - 测试输出时, 电源供电采用 ±15V, 设为串联 SER 模式。
 - 功放先空载测试, 电源电流设置为 0.1A, 两通道均需设置, 开启电源后的电流应在 10 mA ~60 mA之间;如果电流源进入恒流模式,关闭电路查找原因。
 - 一切正常后接入信号源观察波形;测试完后连接负载,设置输入电流为1A,开始测试。
- (3) 1kHz 下测量输出范围、功率及效率,在 30Ω 和 3.75Ω 两种负载条件下测试。
- (4) 按照实验二中采用的方法测量输出阻抗。
- (5) 利用扫频法测量频率响应,幅值取最高输出幅值的一半,只测量高频截止频率。
- (6) 接音频信号和扬声器,体会效果。
- (7) D 类功放:
 - 连接电路;
 - 测量上述参数;
 - 测量频响;
 - 测量波形, 在信号最高点、零点和最低点处测量芯片半桥输出点波形和占空比, 更改电源电 压观察占空比变化

下面是数据测试表:

表 1: 功率放大器数据测试表

Load	Output Amp. (V)	Effective Amp. (V)	Output Power (W)	Input Power (W)	Efficiency
$30~\Omega$					
3.75 Ω					

4 同相放大器增益计算

同相放大器的增益结果如图 1 所示;

$$\frac{V_{in,eff.}}{V_{in}} = \frac{R_1}{R_1 + \frac{1}{sC_1}}, \quad \frac{V_{out}}{V_{in,eff.}} = 1 + \frac{R_2}{R_3 + \frac{1}{sC_2}}$$
(1)

$$\implies A_v = \frac{V_{out}}{V_{in}} = \frac{R_1}{R_1 + \frac{1}{sC_1}} \cdot \left(1 + \frac{R_2}{R_3 + \frac{1}{sC_2}}\right) \tag{2}$$

图 1: 同相放大器增益计算

5 注意事项

- (1) 功放芯片先机械安装,再焊接,否则无法紧密接触散热片;先安装弹性垫片,再安装平垫片;功率 原件散热面紧贴散热片,不能有空隙,必要时涂导热硅脂
- (2) 3 针接插件应该先组装再焊接; 开口朝外, 用于接线
- (3) 功放 IC 一定要先机械安装再焊接,否则接触不良导致 IC 热关断或拉断引脚 (现象,工作一段时间,输出消失或畸变)
- (4) 效率测量出现 $\eta > 1$,说明只测量了正电源功率,本实验为双组电源;如果效率测量 $\eta < 0.1$,幅值 小,应该在最大幅值条件下测量
- (5) 直接测量效率 Pout , 不要用输出幅值计算效率
- (6) 不要随意用鳄鱼夹,用多股线处理导线端子,避免短路;导线颜色按规定:正电压用红线、负电压 用蓝线、地线用白线或黑线,其他线尽量避开这几个颜色
- (7) 线路的 GND 应接电源的串联点,而不是电源的 GND 端子,否则会只输出半波信号。

Electrical Characteristics

 V_{CC} =+25V, $-V_{EE}$ =-25V, $T_{AMBIENT}$ =25°C, R_{L} =8 Ω , A_{V} =20 (26 dB), f_{o} =1 kHz, unless otherwise specified.

Parameter	Conditions	Typical	Tested Limits	Units
Supply Current	P _{OUT} =0W	70	100	mA
Output Power ⁽¹⁾	THD=1%	25		W
THD ⁽¹⁾	P _{OUT} =20W, f _o =1 kHz	0.015		%
	P _{OUT} =20W, f _o =20 kHz	0.05	0.4	%
	P_{OUT} =20W, R_L =4 Ω , f_o =1 kHz	0.022		%
	P_{OUT} =20W, R_L =4 Ω , f_o =20 kHz	0.07	0.6	%
Offset Voltage		±1	±15	mV
Input Bias Current		±0.2	±2	μA
Input Offset Current		0	±0.5	μA
Gain-Bandwidth Product	f _o =20 kHz	5.5		MHz
Open Loop Gain	DC	90		dB
PSRR	V _{CC} , 1 kHz, 1 Vrms	95	52	dB
	V _{EE} , 1 kHz, 1 Vrms	83	52	dB
Max Slew Rate	20W, 8Ω, 70 kHz BW	8		V/µs
Current Limit	V _{OUT} = V _{SUPPLY} −10V	4	3	Α
Equivalent Input Noise Voltage	R _S =600Ω, CCIR	3		μVrms

⁽¹⁾ Assumes the use of a heat sink having a thermal resistance of 1°C/W and no insulator with an ambient temperature of 25°C. Because the output limiting circuitry has a negative temperature coefficient, the maximum output power delivered to a 4Ω load may be slightly reduced when the tab temperature exceeds 55°C.

Typical Applications For Single Supply Operation

Copyright © 2004, Texas Instruments Incorporated

Submit Documentation Feedback

Typical Performance Characteristics

Figure 7.

†φINTERFACE = 1°C/W. See Application Hints.

Figure 8.

Submit Documentation Feedback

Typical Performance Characteristics (continued)

Thermal shutdown with infinite heat sink
Thermal shutdown with 1°C/W heat sink
Figure 12.

Figure 11.

Copyright © 2004, Texas Instruments Incorporated

Submit Documentation Feedback