

C. Sopsug

Feladat neve	Sopsug
Időkorlát	5 másodperc
Memóriakorlát	1 gigabyte

Grushög egy még befejezetlen lakóövezet Lund külvárosában. Jelenleg az összes szükséges infrastruktúra kiépítése folyamatban van, beleértve legfontosabbat: a szemétszállítást. Mint Svédország számos területén, itt is egy *sopsug*-ot (automata porszívó elvű gyűjtési rendszert) használnak majd a szemét összegyűjtésére. Az elképzelés szerint a szemetet a föld alatti csöveken keresztül, levegős nyomással szállítják el.

Grushögben N épület van, 0-tól N-1-ig megszámozva, és a feladatod az, hogy összeköss néhány épületpárt csövekkel. Ha egy csövet építesz u épületből egy másik v épülethez, akkor u az összes szemetét v-be küldi (de visszafelé nem tud szemét menni). A célunk egy N-1 csőből álló hálózat létrehozása úgy, hogy az összes szemét a végén egy épületbe kerüljön. Más szóval, azt kell elérned, hogy a hálózat egyetlen gyökeret tartalmazó, irányított fát alkosson, ahol az élek a gyökér felé mutatnak.

Az épületek között már M csövet építettek. Ezeket fel kell használni a hálózatban. Ezek a csövek is irányítottak, és csak a megadott egy irányban használhatók.

Továbbá van K darab olyan épületpár, amelyek között nem lehet csövet építeni. Ezek a párok is rendezettek, tehát ha lehetetlen csövet építeni u-ból v-be, attól még lehetséges csövet építeni v-ből u-ba.

Bemenet

A bemenet első sora a három egész számot tartalmaz: N-t, M-t és K-t.

A következő M darab sor mindegyike két különböző egész számot tartalmaz: a_i -t és b_i -t, ami azt jelenti, hogy már létezik egy cső a_i és b_i között.

A következő K darab sor mindegyike két különböző egész számot tartalmaz: c_i -t és d_i -t, ami azt jelenti, hogy nem lehet csövet építeni c_i -ből d_i -be.

A bemenetben az összes M+K darab rendezett pár különböző. Megjegyzés: (u,v) és (v,u) különböző pároknak tekintendők!

Kimenet

Ha nincs megoldás, akkor írd ki a "NO" szót.

Egyébként N-1 darab sort írj ki, amelyek mindegyike két egész számot tartalmazzon: u_i -t és v_i -t, ami azt jelenti, hogy egy csőnek kell vezetnie u_i -ből v_i -be.

A csöveket tetszőleges sorrendben irathatod ki.

Ha több megoldás van, akkor bármelyiket kiírathatod. Ne feledd, hogy a már előre megépített M darab cső mindegyikét bele kell foglalnod a megoldásodba és ki is kell iratnod.

Megkötések és pontozás

- $2 \le N \le 300\,000$.
- $0 \le M \le 300\,000$.
- $0 \le K \le 300\,000$.
- $0 \le a_i, b_i \le N-1$ minden $i = 0, 1, \dots, M-1$ esetén.
- $0 \leq c_i, d_i \leq N-1$ minden $i=0,1,\ldots,K-1$ esetén.

A megoldásodat tesztesetek csoportjaira tesztelik, minden csoport előre meghatározott pontot ér. Minden csoportban különálló tesztesetek vannak. A tesztcsoportra kapható pontot akkor kapod meg, ha minden egyes tesztesetre helyes megoldást adsz.

Csoport	Pontszám	Korlátok
1	12	M=0 és $K=1$
2	10	M=0 és $K=2$
3	19	K=0
4	13	$N \leq 100$
5	17	Garantáltan létezik olyan megoldás, amelynek gyökere $0.$
6	11	M=0
7	18	Nincs további megkötés.

Példa

Az ábrák az első és a második példa gráfját mutatják. A kék élek jelölik a már megépített csöveket, a szaggatott piros élek pedig a megépíthetetleneket.

A bal oldali ábra az első példát mutatja, a fekete élekkel jelölt csövek a megoldás (a már megépített kékkel jelölt, 4-tól 1-ig tartó csövön kívül). Ebben a hálózatban az összes szemetet a 0. épületben gyűjtjük össze. Ez nem az egyetlen megoldás, és például az 1-től 3-ig tartó cső helyettesíthető a 0-tól 1-ig tartó csővel, és ez is érvényes megoldás lenne.

A második bemeneti példa esetében a jobb oldali ábrán láthatjuk, hogy nem lehet megoldást találni a (2,3,4) kör miatt.

Bemenet	Kimenet
5 1 8	4 1
4 1	3 0
3 1	1 3
3 4	2 3
3 2	
0 2	
0 4	
2 4	
1 0	
2 0	
5 4 0	NO
1 0	
2 3	
3 4	
4 2	
3 0 1	1 0
0 1	2 0
-	
4 0 2	2 0
0 1	3 0
1 0	1 3