

POSTURE CORRECTION ALERT SYSTEM

GROUP 9 AND 10

X X

XX

GROUP MEMBERS

- 1. Emily Korkor Tetteh- 1807822
- 2. Gyan Festus 1804722
- 3. Aboagye-Atta Nana Kwadwo Oduro 1799522
- 4. Moses Asante- 1802022
- 5. Aseda Boatemaa Tweneboah-Koduah- 1808622
- 6. Agyei David Beckham- 1800422
- 7. Koduah Roselyn Akua Ohenewaah 180522
- 8. Opoku Asare Millicent 1806522
- 9. Michelle Veronique Quainoo- 1807122
- 10. Josephkerry Edinam Kwadzokpo 1805422

TABLE OF CONTENTS

21PROBLEM
STATEMENT

Ø2METHODOLOGY

X X

 \times \times

DEMONSTRATION/SIMULATION

04CONCLUSION

PROBLEM STATEMENT

- Prolonged sitting, especially in front of computers, has become common in today's digital age.
- Poor posture can lead to chronic back pain, neck strain, and musculoskeletal disorders.
- Posture correction is essential for long-term health and well-being
- Innovative solutions are needed to help individuals maintain proper posture.

APPROACH TO SOLVE PROBLEM

 Create a posture monitoring system which uses an MPU6050 sensor to track body tilt, with an Arduino Uno processing the data.

KEY COMPONENTS

BUZZER

Emits sound to alert user when posture deviates from normal range.

OLED DISPLAY

shows real-time tilt angle values

LED

Emits light to alert user when posture deviates from normal range.

ARDUINO UNO

processes sensor data and checks posture deviation

MPU6050 OF ACCELEROMETER

monitors user posture in real-time

OVERVIEW OF SCHEMATIC

CODE OVERVIEW

LIBRARIES AND SETUP

- Libries such as :<Wire.h>, <MPU6050.h>, <Adafruit_GFX.h> and <Adafruit_SSD1306.h>
- <Wire.h> enables I2C communication
- <MPU6050.h> manages and reads data from the MPU6050 sensor
- <Adafruit_SSD1306.h> For displaying information on the OLED screen

PIN ASSIGNMENTS

- Buzzer connected to pin 9
- LED connected to pin 10

CODE OVERVIEW

SETUP FUNCTION

- Initializes serial column for debugging
- Initializes the MPU6050 sensor and checks if it's connected
- Initializes OLED display andchecks if its working
- Sets the buzzer and LED pins as outputs

LOOP FUNCTIONS

- Main loop reads real time data from MPU6050 sensor.
- It calculates the tilt angle using the accelerometer data
- Tilt angle is displayed on OLED display and printed to the serial monitor

CODE OVERVIEW

If Tilt Angle is:

Greater than 15 degrees or less than 5 degrees

- It considers it as Bad posture
- Buzzer and LED turn on
- "Bad Posture!" displayed on OLED

Within the range 5 to 15 degrees

- Buzzer and LED turn off
- "Good Posture" displayed on OLED

The loop repeats every 1 second

KEY FEATURES

21TILT ANDGLE
CALCULATION

Float angle $X = atan2(ay, az) \times \frac{180}{PI}$

×

XX

MPU6050 sensor: Measures acceleration and tilt in 3 axes (x,y,z)

03 DEMONSTRATION AND SIMULATION

WORKING PRINCIPLE

DETECT

Slouching or Incorrect posture detected by MPU6050 sensor

ALERT Audible alert via the buzzer is triggered and LED lights up

DISPLAY

OLED display shows message indicating poor posture status

CORRECTION

User corrects their posture and buzzer stops

OUTPUT

- Real-time monitoring of the user's sitting posture using the MPU6050 sensor.
- Visual display of posture data on an OLED screen.
- Audible alert via a buzzer when poor posture is detected.
- Visual indication through an LED to alert the user to correct their posture.

KEY TAKEAWAYS

 Understanding the significance of maintaining good posture to prevent health issues associated with prolonged sitting

X

X X

X

- Demonstrating the effectiveness of a reminder system in promoting posture awareness and correction
- Showcasing the integration of sensor technology and actuators to create a user friendly and effective posture correction device
- Highlighting the potential of wearable technology in enhancing user health and well being through innovative solutions

CONCLUSION

Findings

X

XX

X

- Challenges encountered:
 - Calibrating tilt angle for different range of users
 - Ensuring MPU6050 sensor provides stable readings
- Possible Improvements
 - Adding more sensors for better accuracy
 - Mobile app creation for detailed posture tracking
 - Multi-axis monitoring

REFERENCES

- Arduino Official Documentation
- MPU6050 Sensor Datasheet

X

X X

X

- Adafruit OLED Display Libraries Documentation
- Cornell University Ergonomics Web. (n.d.). Ergonomics of sitting. Ergo.human.cornell.edu. https://ergo.human.cornell.edu/DEA3250Flipbook/DEA3250notes/sitting.html
- Cambridge University Hospitals . (2024, July 10). Sitting Ergonomics. NHS choices. https://www.cuh.nhs.uk/patient-information/seating-and-ergonomics/
- Haller, M., Richter, C., Brandl, P., Gross, S., Schossleitner, G., Schrempf, A., ... & Inami, M. (2011). Finding the right way for interrupting people improving their sitting posture. In *Human-Computer Interaction—INTERACT 2011: 13th IFIP TC 13 International* Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings, Part II 13 (pp. 1-17). Springer Berlin Heidelberg.

Thank you for your Attention!

Any Questions?