- Two equations always apply to this circuit:
 - $\bullet \ I_D(R_D + R_S) = V_{DD} V_{DS}$
 - $\bullet \ \overline{\frac{R_2}{R_1 + R_2}} V_{DD} = V_{GS} + I_D R_S$
- While changing the resistors, V_{GS} should stay from 1.8 to 2.4; $V_{DD}=5V$. Also, according to the available resistors, we have $R_1=0.67M\Omega$, $R_2=1M\Omega$ and $R_D=168\Omega$.
- Ideally, V_{DS} should be larger than 1V so it's guaranteed to stay in the "safe zone".

- After simplifying things further, we have:
 - $2 + I_D R_S = 2.994$
 - $I_D(168 + R_S) = 5 V_{DS}$
- One solution would be letting $R_S=68\Omega$. Then we have
 - $| \cdot | I_D | = 14.62 mA$
 - $V_{DS} = 1.550V$

- Operating Point:
 - $V_{DS} = 2.09894V$
 - $I_D = 12.2926mA$

Exercise E13: Revision Acceptable

 At time of submission, the circuit was unable to be built due to lack of equipment (ZVN3310 MOS FET)