Week 6

Fundamentals of Group Actions

6.1 Examples of Group Actions

10/31:

- Today: A number of interesting group actions.
- Left action (of G on X): A group action of the form $g \cdot x$ (as opposed to $x \cdot g$).
- Let G be a group, and let X = G. Take $g \cdot x = gx$.
 - Axiom confirmation.
 - 1. $e \cdot x = ex = x$.
 - $2. \ g \cdot (h \cdot x) = ghx = gh \cdot x.$
 - Let $e \in X$. Then Orb(e) = X. In particular, this means that the action is transitive.
 - Stab $(x) = \{g \in G \mid gx = x\} = \{e\}$ for $x \in X$ arbitrary, in general.
 - $\ker = \{e\}$. This also follows from the above. Thus, the action is faithful.
- Corollary: Let G be a finite group. Then G is isomorphic to a subgroup of S_n for some n. We may take n = |G|.
 - Construction: We invoke the proposition from last lecture. In particular, we know that the action $G \subset G$ implies the existence of a homomorphism $\phi: G \to S_G$ defined by $g \mapsto \psi_g$.
 - The map in the above construction has trivial kernel. By the FIT, $G/\ker\cong\operatorname{im}\phi$. Combining these results, we obtain $G\cong G/\ker\cong\operatorname{im}\phi\leq S_n$.
 - Applying this construction to S_3 , we deduce that $S_3 \leq S_6$.
- $SO(2) \cong \mathbb{R}/\mathbb{Z} \cong \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}^{\infty}$.
 - In infinite cases, you usually want to consider some other topological things that disappear in the finite case.
- Let G be a group and take X=G again. We can also consider $g\cdot x=gxg^{-1}$.
 - Axioms.
 - 1. $e \cdot x = exe^{-1} = x$.
 - 2. $g \cdot (h \cdot x) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = gh \cdot x$.
 - $Orb(e) = \{e\}$; not transitive if |G| > 1.
 - Let $x \in X$. Then Orb(x) is the conjugacy class of x.
 - Stab $(x) = C_G(x)$.
 - $-\ker = Z(G)$. Thus, the group action is faithful iff the center is trivial. Abelian implies not faithful.

- A nice thing about these constructions is that they cast other constructions we've encountered in the more general language of group actions.
- **Right actions** are even nastier than left cosets and right cosets, so Calegari will not mention them again.

```
-g \cdot x = x \cdot g^{-1} and g \cdot (h \cdot x) = (x \cdot h^{-1}) \cdot g^{-1}.
```

- Let G = G, X be the subgroups of G. $g \cdot H = gHg^{-1}$.
 - Note that $H \leq G$ does indeed imply that $gHg^{-1} \leq G$. In particular, ...
 - H is nonempty (contains at least e), so $gHg^{-1} \supset \{geg^{-1}\}$ is nonempty;

 - $\blacksquare qhq^{-1} \in qHq^{-1}$ has inverse $qh^{-1}q^{-1} \in qHq^{-1}$.
 - Axioms (entirely analogous to the last example).
 - Orb(H) is the "conjugates" of H.
 - Stab $(H) = N_G(H)$.
 - ker =?. We know that $Z(G) \subset \ker$. The conclusion is that there is not a nice definition for the kernel other than the intersections of the stabilizers/normalizers.
 - **...**
 - If any $H \triangleleft G$ is normal, and $x \in G$ had order 2, then $\langle x \rangle \triangleleft G$, meaning that $gxg^{-1} \in \langle x \rangle$, i.e., $x \in Z(G)$, so this rules out D_8 ??
- Fix G and $H \leq G$. Let X = G/H (not assuming $H \triangleleft G$, so we know that G/H is the set of left cosets but it is not a group in general). Define $g \cdot xH = gxH$.
 - We have $g \cdot xhH = gxhH$.
 - Orbit: Orb(eH) = X.
 - Stabilizer: Stab(eH) = H.
 - Stab $(qH) = qHq^{-1}$.
 - This is because $(ghg^{-1})gH = ghH = gH$.
 - Go to the more general case $G \subset X$, $\operatorname{Stab}(x) = H$. Then $gHg^{-1} \subset \operatorname{Stab}(g \cdot x)$??
 - Transitive: Yes (see orbits).
 - Faithful: If H is normal, no. If H contains a normal subgroup, no. Maybe yes.
 - Kernel: If H is normal, then ker = H. In general, ker = $\bigcap_{g \in G} gHg^{-1}$ (the largest normal subgroup of H).
- Takeaway: General constructions allow us to see things we've already done.
- Next time: The most useful theorem of the course, that provides lots of information on relations between objects.

6.2 Orbit-Stabilizer Theorem

- We will have a take-home open-book final. Should take you a couple hours or a little more to do, but we'll have more time than that. Don't Google answers or collaborate. We'll have more practice problems (and 50% of the exam will be on that sheet); if we do every problem on the sheet, we'll certainly get an A.
 - We will cover all theoretical material by Thanksgiving and then spend the rest of the time exploring applications.
 - Today: The most fundamental theorem of the class.

- Let G be a group acting on a set X.
- Theorem (Orbit-Stabilizer Theorem): Let $x \in X$ be arbitrary. Then

$$|G| = |\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)|$$

Proof. We will break up G and count it in two different ways. Let $x \in X$ be arbitrary and consider Orb(x). By definition, Orb(x) is the set of all y such that $g \cdot x = y$ for some $g \in G$. Equivalently, every $g \in G$ maps x to some $y \in Orb(x)$. Thus, we can partition G into sets of g that map x to a particular y, knowing that every g must send it to some y. Symbolically,

$$G = \bigsqcup_{y \in Orb(x)} \{g \mid g \cdot x = y\}$$

Each of the sets over which we sum above is equal to $g \cdot \text{Stab}(x)$ (the left coset of the stabilizer by g). Thus, for each $y \in \text{Orb}(x)$, we contribute $|g \cdot \text{Stab}(x)|$ to |G|. Symbolically,

$$|G| = \sum_{\operatorname{Orb}(x)} |g \cdot \operatorname{Stab}(x)| = \sum_{\operatorname{Orb}(x)} |\operatorname{Stab}(x)| = |\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)|$$

as desired. \Box

- Examples:
 - Let $H \leq G, X = G/H$. Then G acts on X by left multiplication. Taking x = H in particular, we have that

$$|G| = |G/H| \cdot |H|$$

and we recover Lagrange's theorem as a special case of the O-S theorem.

- $-G = S_n, X = [n].$
 - Then $S_n = {\sigma(1) = 1} \cup {\sigma(1) = 2} \cup \cdots \cup {\sigma(1) = n}$. This is analogous to the proof strategy decomposition.
- -G acts on G by conjugation.
 - Take $g \in G$. Then $Orb(g) = \{g\}$, i.e., the conjugacy class of g, and $Stab(g) = C_G(g)$. Therefore, we have the below corollary.
- $-G=S_n.$
 - Let g = (1, ..., k) for $2 \le k \le n$. Recall that $|\{g\}| = n!/(n-k)!k$. Thus, $|C_{S_n}(g)| = (n-k)! \cdot k$.
 - Alternatively, we can derive the order of this centralizer directly: $C_{S_n}(g) = \langle g \rangle \times S_{n-k}$, i.e., all powers of the k-cycle and everything that's disjoint. × denotes the direct product.
- $-G = S_4, g = (12)(34).$
 - \blacksquare $|\{g\}| = 3$, so $|C_G(g)| = 8$.
 - Here $C_G(g) = D_8$. Visualize a square with vertices clockwise (1,4,2,3).
- $-G = S_6, g = (16)(25)(34).$
 - We have that $|\{g\}| = 6!/2^3 \cdot 3! = 15$, so $|C_{S_6}(g)| = 48$. The centralizer is the set of all elements satisfying $\sigma(i) + \sigma(7 i) = 7$.
 - Moreover, there is an injective homomorphism from $\widetilde{Cu} \hookrightarrow S_6$ whose image is exactly the centralizer of (16)(25)(34). Moreover, it follows that $C_{S_6}(g) \cong S_4 \times S_2$.
 - Let h = (16). Then $|\{h\}| = |\{g\}| = 15$. Does there exist an automorphism of S_6 to S_6 which sends $h \to g$? No: $S_2 \times S_4 \cong C_{S_6}(h)$ and $C_{S_6}(g) \cong S_2 \times S_4$.
- Corollary: We have that

$$|G| = |\{g\}| \cdot |C_G(g)|$$

- $\widetilde{\mathbf{Cu}}$: The set of all orthogonal symmetries of the cube (i.e., including reflections).
 - There is an isomorphism between $Cu \times \mathbb{Z}/2\mathbb{Z}$ and \widetilde{Cu} defined by $(g,1) \mapsto g$ and $(g,-1) \mapsto -g$. The reverse function is $g \mapsto (g \cdot \deg g, \deg g)$.
 - $\widetilde{\text{Cu}}$ acts on 6 faces.
- The pace will be this fast through Thanksgiving.

6.3 Group Actions on the Quotient Group

- 11/4: Let $G \supset H$ and X = G/H. Consider a group action $G \subset X$ defined by $g \cdot xH = gxH$ that is transitive.
 - Recall that xH = yH iff x = yh for some $h \in H$ iff $y^{-1}x \in H$.
 - Example: Consider $G = S_4$ and $H = D_8 = \langle (1234), (13) \rangle$.
 - Let A = H, B = (123)H, $C = (123)^2H$ be the three elements of $X = G/H = S_4/D_8$.
 - We define a homomorphism $\phi: S_4 \to S_X = S_{\{A,B,C\}}$ by

$$\phi(\sigma) = \begin{cases} A & \mapsto \sigma A \\ B & \mapsto \sigma B \\ C & \mapsto \sigma C \end{cases}$$

- Example: $\phi(123) = (ABC)$.
- Example: $\phi(1234)$ is the element of $S_{\{A,B,C\}}$ that sends $A \mapsto (1234)H = H = A, B \mapsto (1234)(123)H = (1324)H = C$, and $C \mapsto (1234)(132)H = (14)H = B$. Thus, $\phi(1234) = (BC)$.
- Let x = (14) and y = (123). Then $y^{-1}x = (321)(14) = (1432) = (1234)^{-1} \in H$, so xH = yH.
- Investigating $\ker \phi$.
 - $-\phi((13)(24)) = (BC)^2 = e$. Thus, $(13)(24) \in \ker$ and it follows that everything conjugate to it is as well.
 - By the FIT, $S_4/\ker\phi\cong S_3$ so $|\ker\phi|=4$.
 - Thus, $\ker \phi = \{e, (12)(34), (13)(24), (14)(23)\}.$
- Investigating the stabilizers on X.
 - $\operatorname{Stab}(A) = H.$
 - Naturally, every $h \in H$ makes hH = H.
 - $\operatorname{Stab}(B) = \operatorname{Stab}((123)H) = (123)H(123)^{-1}.$
 - This is because any $(123)h(123)^{-1} \in (123)H(123)^{-1}$ makes

$$(123)h(123)^{-1}(123)H = (123)hH = (123)H$$

- It follows by similar logic that $Stab(C) = (132)H(132)^{-1}$.
- Is something about H special in determining this action?
 - Suppose you take $H' = (123)H(123)^{-1}$. Is $G \subset G/H'$ the same action? The cosets of H' are (123)H' and (132)H'. Let A' = (132)H', B' = H', and C' = (123)H'.
 - It follows that $A' = (132)(123)H(123)^{-1} = A(123)^{-1}$, $B' = (123)H(123)^{-1} = B(123)^{-1}$ and $C' = (123)(123)H(123)^{-1} = C(123)^{-1}$.
 - Conclusion: Take H, gHg^{-1} . Let A be a left coset of H. Then Ag^{-1} is a left coset of gHg^{-1} .

- First, a coset (like A) is the set of all elements that send x to y.
- Suppose $g \cdot x = z$. Then the coset is Ag^{-1} ??
- Take G and $H = \{e\}, G \subset G$ the left matrices??
- Another example: Let $G = S_3 = \{e, (123), (123)^2, (12), (12)(123), (12)(123)^2\}.$
- Again, we can define a homomorphism $\phi: G \to S_G$. Call the above elements of S_3 A-F, respectively, as listed above.
 - Example: $\phi(123) = (ABC)(DFE)$.
 - Example: $\phi(12) = (AD)(BE)(CF)$.
- Let |g| = k, e.g., $g^{k=1}$ is distinct.
 - -x, gx and $g^{k-1}x$ all distinct.
 - The cycle class of $\phi(g)$ is all k-cycles where k = |g| |G|.
 - The remark here is that if |g| = k, not only are e, \ldots, g^{k-1} distinct, but $x, \ldots, g^{k-1}x$ are distinct.
- Exotic automorphism of S_6 .
- Take S_5 , and let X be the set of subgroups of S_5 of order 5. We may also call this the subgroups generated by 5-cycles.
- Let S_5 act on X by conjugation.
- The action is transitive.
- |X| = 24/4 = 6.
 - There are $\binom{5}{5}(5-1)! = 24$ elements of order 5, i.e., 5-cycles in S_5 .
 - Each subgroup of S_5 of order 5 contains 4 distinct 5-cycles and e.
 - These remarks imply the above result.
- Therefore, we get a map $\phi: S_5 \to S_X$.
- Take $P = \langle (12345) \rangle$.
 - We have

$$Stab(P) = \{g \in G \mid g \cdot P = P\} = \{g \in G \mid gPg^{-1} = P\} = N_{S_{\pi}}(P)$$

- Since the action is transitive, Orb(P) = X. Thus, by the Orbit-Stabilizer theorem,

$$|N_{S_5}(P)| = \frac{|G|}{|X|} = \frac{120}{6} = 20$$

- $\ker \phi = \{\{e\}, A_5, S_5\}.$
- By the FIT, $\{S_5, \mathbb{Z}/2\mathbb{Z}, e\}$. We can't have order ?? so we eliminate e, we can't have order 5 so we eliminate $\mathbb{Z}/2\mathbb{Z}$. Thus, the only thing is S_5 . It's doing too many interesting things to have such a small image.
- We obtain an injective map from S_5 to S_6 . Why do it in such a strange way? Because it also has the property that its image acts transitively on six points.
 - Remark: You can restrict to $A_5 \to S_6$, and we've seen this before where $A_5 \cong D_0$ and S_6 is the pairs of opposite faces.
- So what we say is that we have an **exotic** subgroup S_5 inside S_6 .

- Let's call S_5 , H now. $[S_6:H]=6$. Thus, we have $S_6 \subset S_6/H$ by left multiplication. This action is transitive. Stab(H)=H.
- $\psi: S_6 \to S_{S_6/H}$.
- $\ker \psi = \{1, A_6, S_6\}$, $\operatorname{im} \psi = \{S_6, \mathbb{Z}/2\mathbb{Z}, e\}$ where we know once again that the latter two can't happen.
- So we get $\psi: S_6 \to S_{S_6/H} \cong S_6$ is exotic??
 - H under this map maps to a boring S_5 .
 - We know that we're sending a whole bunch of shit around (see picture).
- There will be a blog post on all of this nonsense.
- Future: Groups of order 5, groups of prime order, the Sylow theorems, and simple groups.