i.MX23 Reference Schematics

Rev. C

Revision History

- Original Release

REV. B - 8/12/2009

- Added 128QFP Package
- Added external speaker amplifier option.

REV. C - 2/12/2010

- Added i.MX23 5V Only, No Li-Ion Battery Configuration
- Clarified operation and limitations of RESET circuitry when powered from 5V or from li-ion battery.
- Added guidance on selection of mDDR or DDR1 device.

NOTE: These schematics are subject to change.

-	•	Multimedia		
freescale™ semiconductor		Applications Division		
				not be u without t Drawing
i.MX23 REFERENCE SCHEMATICS				
Page Title:				
BLOCK DIAGRAM				
Size B	Document Number N/A		Rev C	
B-4	Manday Faharray 45, 0040	Oh 4 4 40		

i.MX23 EXAMPLE COMPONENTS

DCDC Inductor

For best battery life, the DCDC inductor should have a low DC resistance. The current rating of the inductor should be higher than the measured peak current through the inductor, which will be application-specific. The inductor value is recommended to be between 4.7uH and 15uH.

Note that inductors with a higher DC resistance may be used, but may impact battery life

Reference Designator	Description	Manufacturer	Manufacturer Part Number
L1	15uH, 900mA, 213mOhm RDC	Sumida	CDRH3D28NP-150N
L1	10uH, 690mA, 18mOhm RDC	Panasonic	ELL4LM100M
L1	15uH, 500mA, 520mOhm RDC	Nantong Meda (MEDAFA)	MAH 32-150

DCDC Output Capacitors

The C1, C8, and C14 output capacitors should have an ESR less than 400mOhms. Ceramic capacitors are recommended (Y5V capacitors should not be used for C1, C8, or C14).

Reference Designator	Description	Manufacturer	Manufacturer Part Number
C1,C8,C14	33uF, X5R, 6.3V , Ceramic Capacitor	Murata	GRM32DR60J336ME19L

32kHz Crystal

Reference Designator	Description	Manufacturer	Manufacturer Part Number
Y2	32kHz 20ppm Crystal	Seiko	VT200FA-6PF20PPM
Y2	32kHz 20ppm Crystal	Seiko	SSPT7FA-7PF20PPM

24MHz Crystal

Reference Designator	Description	Manufacturer	Manufacturer Part Number
Y1	24MHz 30ppm Crystal	Jing Feng	24.000MHz Jing Feng Crystal 2x6mm cylinder, +/- 30ppm, CL = 10pF

USB Ferrites and ESD Protection

Reference Designator	Description	Recommended Manufacturer	Manufacturer Part Number
L22	Ferrite, DCR < 100mOhm, 68 ohms @ 100MHz, 1A	Steward	MI0603J680R-10
L50	Ferrite, DCR < 400mOhm, 1500 ohms @ 100MHz, 400mA	Steward	HZ0805D152R-10
D2	ESD Protection Diode	ON Semi.	NZL6V8AXV3T1

Audio Input / Output Ferrites

Reference	Description	Recommended	Manufacturer
Designator		Manufacturer	Part Number
L4, L5, L6, L7, L8, L9, L19, L20, L21	Ferrite, DCR < 400mOhm, 1500 ohms @ 100MHz	Steward	HZ0805D152R-10

Multimedia Applications Division

This document contains information proprietary to Freescale Semiconductor and shall not be used for engineering design, procurement or manufacture in whole or in part without the express written permission of Freescale Semiconductor.

i.MX23 REFERENCE SCHEMATICS

RECOMMENDED COMPONENTS

Size B	Document Number N/A					F
Date:	Monday February 15, 2010	Sheet	2	of	12	

DDR1 Recommendations

- Maximum Capacity: 64MB per chip enable. This limitation is because most (if not all) of DRAMs > 64MB require 14 row bits and the i.MX23 supports 13 row bits maximum.
- The 128QFP has 1 chip enable for a maximum capacity of 64MB and the 169BGA has 2 chip enables for a maximum capacity of 128MB (requires use of 2 x 64MB DDR devices).
- x16 data bus
- For best performance, the DDR1 should support the maximum i.MX23 DRAM clock frequency (\sim 150MHz) with CAS Latency = 2.5

Reference Designator	Description	Manufacturer	Manufacturer Part Number
U3	2.5V, 64MB, x16, 166MHz DDR1	Micron	MT46V32M16P-6T

NAND FLASH **GPMI CE3n Pin Assignment Options** Important Design Notes i.MX23 Pin 1) The WP# pull-down resistor is required to protect the flash memory from inadvertent writes during On Page Net Name power transitions. Option 1: BSP Default 2) All CE# and R/B# pins require pull up resistors. Note that the i.MX23 has integrated CE# and R/B# pull-up resistors that must be enabled by OTP. Option 2 3) The circuits below show dual-CE NAND flash. If using a single-CE NAND flash, change pins 6 and GPMI_CE3n ≪——≪LCD_RESET Option 3 10 to NO CONNECT. GPMI_CE3n ≪ SSP1_DETECT Option 4 8-Bit NAND Flash Optional Second 8-Bit NAND Flash VDDIO_P (3.3V)

SD/MMC/MMCPlus

Important Design Notes

The SD/MMC socket should have an integrated, normally-open, mechanical CARD DETECT switch.
 The i.MX23 has integrated pull up resistors for the SD/MMC DATA and CMD signals that must be enabled by setting a register.

Required Power Switch for Removable SD/MMC Media

This circuitry gates power to the SD/MMC/MMCPlus socket. This ensures reliable operation with some SD/MMC/MMCPlus cards that require large amounts of current at insertion.

at insertion.

At start-up, SD_POWER_GATE is high and VDDIO_SD is unpowered. When CARD_DETECT goes low due to card insertion, firmware will drive SD_POWER_GATE low to connect VDDIO_P to VDDIO_SD. After waiting 30 msec to allow the VDDIO_SD supply to stabilize, the firmware will enable the internal SSP_DATA and SSP_CMD pull-up resistors and begin communicating with the SD/MMC card. When the card is removed and CARD_DETECT goes high, SD_POWER_GATE will be driven high again.

If the application does not need to boot from the SSP port, the SD_POWER_GATE function can be assigned to any free GPIO pin (not just PWM3). However, if the SD/MMC/MMCPlus device is the boot device, SD_POWER_GATE must be driven by the ROM, which supports only 3 OTP-selectable options: PWM0, LCD_DOTCLK, or PWM3.

Applications
Division

This document contains information proprietary to Freescale Semiconductor and shall not be used for engineering design, procurement or manufacture in whole or in part without the express written permission of Freescale Semiconductor.

i.MX23 REFERENCE SCHEMATICS

i.MX23 VIDEO OUT

i.MX23 AUDIO-IN OPTIONS

500 ohms @ 100MHz DCR < 400mOhm

LINE-IN JACK

NOTE: The LRADC2 and LRADC3 pins can be configured as an additional LINE IN.

NOTE: For lowest low-frequency distortion, use of X7R 1uF capacitors instead of X5R.

R21 100

100

MICROPHONE OPTION 1: LRADC1 bias

R21 100

100

Using the LRADC MIC_Bias improves power consumption, since the MIC_Bias can be disabled when not being used.

500 ohms @ 100MHz DCR < 400mOhm

MICROPHONE OPTION 2: VDDIO bias

For lowest background noise, the VDDIO_P connection to R25 should be routed as a star connection to the 33uF VDDIO_P capacitor. In particular, the VDDIO_P supply for mic bias should be isolated from the VDDIO_P supply for the SD/MMC socket, as SD/MMC card accesses can create supply noise that can show up on the microphone input.

i.MX23 SPEAKER OPTIONS

OPTION 1: Integrated Speaker Amplifier

For maximum output power, all speaker power and output pins (VDDS, VSSA5, SPKR+, and SPKR-) should be routed with very wide trace widths to minimize resistive loss.

Recommended speaker impedance is 4 ohms or greater.

IMPORTANT: Because speaker usage causes a large amount of on-chip power dissipation, it is important to understand and follow the guidelines in the "Thermal Conditions" section of the "Characteristics and Specifications" chapter of i.MX23 Reference Manual. If thermal conditions cannot be met, an external speaker amplifier should be used.

Monday, February 15, 2010

Sheet 11

MISC. CIRCUITS

OPTIONAL: Wall Power + USB Power Switch

This circuit allows the i.MX23 to power from an external wall power supply. In the case where wall power and USB power are both connected, power will come from the wall power supply. Note that a GPIO and some firmware support may be required to help the i.MX23 differentiate between USB5V and wall power.

To implement this circuit, remove the direct USB_5V connection on the i.MX23 VDD5V pin, and connect the USB_5V line through a FET as shown.

Note that the 5V wall power supply may need to be slightly higher than 5.0V to ensure that it is always higher than the USB_5V supply and thus always supplying power. Use of 5.2V or 5.3V for the wall power supply is ideal.

OPTIONAL SERIAL JTAG PORT CONNECTIONS

In order to allow debugging on a i.MX23-based device, it is recommended to add 3 testpoints as shown below. In addition, there are other changes that may be required to support debugging:

- to support oeougging:

 1) It may also be necessary to add a 10pF capacitor to GND on the SERIAL_JTAG line to reliably debug.
- The C42 0.1uF capacitor on PSWITCH may need to be moved to the other side of the R3, 1K resistor.

