COMP 3711 – Spring 2019 Tutorial 6b

1. Give an $O(n^2)$ time dynamic programming algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers, i.e, each successive number in the subsequence is greater than or equal to its predecessor.

For example, if the input sequence is $\langle 5, 24, 8, 17, 12, 45 \rangle$, the output should be either $\langle 5, 8, 12, 45 \rangle$ or $\langle 5, 8, 17, 45 \rangle$.

2. The subset sum problem is: Given a set of n positive integers, $S = \{x_1, x_2, \ldots, x_n\}$ and an integer W determine whether there is a subset $S' \subseteq S$, such that the sum of the elements in S' is equal to W.

For example, if $S = \{4, 2, 8, 9\}$ and W = 11, then the answer is "yes" because there is a subset $S' = \{2, 9\}$ whose elements sum to 11. If W = 7. the answer is "no".

Give a dynamic programming solution to the subset sum problem that runs in O(nW) time. Justify the correctness and running time of your algorithm.

3. The (Restricted) Max-Sum Problem.

Let A be a sequence of n numbers a_1, a_2, \ldots, a_n .

Find a subset S of A that has the maximum sum, provided that, if $a_i \in S$, then $a_{i-1} \notin S$ and $a_{i+1} \notin S$.

Note that, unlike in the previous question, A is a sequence in which order matters (and not an unordered set).

As an example, if A = 1, 8, 6, 3, 7, the max possible sum is $S = \{8, 7\}$.