On the Applicability of Zero-Shot Cross-Lingual Transfer Learning for Sentiment Classification in Distant Language Pairs

ゼロショット転移学習を用いた多言語における感情分類の応用性

Andre Rusli, Makoto Shishido

言語処理学会第28回年次大会(NLP2022) Hamamatsu, Japan – Online

TDU 東京電機大学

Agenda

- Backgrounds
 - Research objective
- Related works
- Experiments
 - Dataset
 - Scenarios
- Results
 - Fine-tuned supervised learning
 - Zero-shot transfer learning
- Conclusion and future works

Backgrounds

- Gap of resources for building a language model (LM) between languages
- Even though there is enough data, pre-training a language model from scratch requires a lot of computational resources
- Fine-tuning and cross-lingual transfer learning from a pre-trained LM
 - Some languages transfer better than the others
- XLM-R: massively multilingual Transformers pre-trained model (Conneau et al., 2020)

Research Objective

⇒ Experiment with and evaluate the performance of XLM-R for sentiment classification with zero-shot cross-lingual transfer learning between three languages; English, Japanese, and Indonesian.

Related Works

- XLM-R: a massively multi-lingual Transformers (MMT) model; a robustly trained RoBERTa; (Conneau et al., 2020)
 - CommonCrawl-100 data of 100 languages
 - o 88/100 languages intersects with mBERT, but some of them are several orders of magnitude larger than mBERT
- SentencePiece: an unsupervised text tokenizer that does not depend on language-specific pre/postprocessing (Kudo & Richardson, 2018)
 - To handle multilingual texts in all three languages in our experiments. Also used inside of XLM-R.
- XLM-R for dependency parsing (Lauscher et al., 2020) and named entity recognition (Pfeiffer et al., 2020) in Japanese
- Cross-lingual transfer learning from English to Japanese using mBERT (Keung et al., 2020)
- Massive monolingual models for Indonesian based on BERT and XLM-R (Koto et al., 2020)
 (Willie et al., 2020)

Experiments: Datasets

AmazonEN: English Amazon product review sentiment dataset

• 160,000 data for fine- tuning. 4,000 data for evaluation.

AmazonJA: Japanese Amazon product review sentiment dataset

• 160,000 data for fine-tuning. 4,000 data for evaluation.

RakutenJA: Japanese Rakuten product review binary sentiment dataset

• 400,000 data for evaluation.

IndolemID: Indonesian Twitter and hotel review sentiment dataset

• 5,048 data for evaluation.

SmsaID: Indonesian multi-platform review sentiment dataset

• 1,129 data for evaluation.

Multilingual Amazon Reviews Corpus – Keung et al., 2020

Glyph – Zhang & LeCun, 2017

IndoLEM – Koto et al., 2020

SMSA – Purwarianti & Crisdayanti, 2019

Experiments: Datasets (examples)

English

- Positive ⇒ "The best suspenders I've had so far. Sometimes the left side does not hold properly, but in general, they are still the best.'
- Negative ⇒ "I bought 4 and NONE of them worked. Yes I used new batteries!"

Japanese

- Positive ⇒ '画像より色が暗く感じましたが、かわいいです。'
- Negative ⇒ 'やわらかいのはいいのですがしわがすごい。。'

Indonesian

- Positive ⇒ 'Cukup baik, pelayanan ramah. ruangan dan kamar mandi cukup bersih hanya saja tercium bau yg menggangu, sarapannya mantap over all memuaskan'
- Negative ⇒ 'Kamar bersih. Jadwal breakfast biasanya 07.00, ini belum ada apa2. Shower mati. Handuk tidak ada. Dan wifi ngadat. Kecewa.'

Experiments: Scenarios

Our experiments are divided into two main scenarios as follows.

1. Fine-tuned supervised learning

Fine-tune the XLM-RoBERTa_{BASE} pre-trained model using English-only, Japanese-only, and English+Japanese.

2. Zero-shot transfer learning

Use the fine-tuned model using AmazonEN to evaluate zero-shot cross-lingual transfer learning capability in AmazonJA, RakutenJA, SmsaID, and IndolemID datasets.

Results: Fine-tuned supervised learning

Table 1. Fine-tuning specifications and elapsed time					
Fine-tuning	GPU	Ep-	Average		
Source Data		<u>och</u>	elapsed time		
		(s)	per epoch		
<u>AmazonEN</u>	Tesla T4	4	33 minutes 5		
			seconds		
AmazonJA	Tesla P100-	4	17 minutes 31		
	PCIE-16GB		seconds		
<u>AmazonENJA</u>	Tesla P100-	2	35 minutes 57		
	PCIE-16GB		seconds		

Table 2. Error percentage of the fully-supervised evaluation on the Multi-lingual Amazon Review Corpus. Results using mBERT are obtained from [15].

Model	EN-only	JA-only	EN&JA
mBERT	8.8	11.1	-
XLM-R _{BASE}	7.35	7.25	7.19

Results: Zero-shot transfer learning

Table 3. Error percentage of zero-shot cross-lingual transfer learning using XLM-R_{BASE} in comparison to a zero-shot mBERT from English data [15] and Japanese data [19]

Model	AmazonJA	RakutenJA		
Zero-shot mBERT	19.04	-		
Fully-supervised ULMFiT	-	4.45		
XLM-R _{BASE} w/ AmazonEN	11.12	13.09		
XLM-R _{BASE} w/ AmazonENJA	7.05	8.51		

Table 4. Macro-averaged F1-score of zero-shot cross-lingual transfer learning using XLM-R_{BASE} for Indonesian (IndoLEM [17], and SmSA [16]).

Model	IndolemID	SmsaID
Fully-supervised BERT	84.13	92.72
Fully-supervised mBERT	76.58	84.14
XLM-R _{BASE} w/ AmazonEN	72.19	86.77
XLM-R _{BASE} w/ AmazonENJA	73.31	87.99

Conclusion & Future Work

- This paper reports the results of experiments focusing on evaluating the applicability of cross-lingual transfer learning using the XLM-R pre-trained model.
 - Based on the results, zero-shot cross-lingual transfer learning between English, Japanese, and Indonesian yields promising results using XLM-R, considering that the models have not seen languages in the target dataset,
- All experiments are performed using the free version of Google Colab (<u>codes</u>)
- Some future works include experimenting with more types of dataset and hyperparameters, evaluating other potential methods such as few-shot transfer learning, which has been proven to be useful to improve performance by adding just a few annotated data (Lauscher et al., 2020)