Transcriptominc divergence of a parasite-populations: two common garden experients in two hosts

 ${\sf Emanuel} \,\, {\sf G} \,\, {\sf Heitlinger}^{*1,2} {\sf Horst} \,\, {\sf Taraschewski}^1 {\sf and} \,\, {\sf Mark} \,\, {\sf Blaxter}^2$

¹Department of Ecology and Parasitology, Zoological Institute 1, University of Karlsruhe, Kornblumenstrasse 13, Karlsruhe, Germany ²Institute of Evolutionary Biology, The Ashworth laboratories, The University of Edinburgh, King's Buildings Campus, Edinburgh, UK

Email: Emanuel G Heitlinger*- emanuelheitlinger@gmail.com; Horst Taraschewski- dc20@rz.uni-karlsruhe.de; Mark Blaxter - mark.blaxter@ed.ac.uk;

*Corresponding author

Abstract

Background:

Results:

Conclusions: Yeh!

Background Results

The populations differ

We sampled worms The gene expression does too

null device

1

Worm Sex

scvPlot(cds.mf)

residualsEcdfPlot(cds.mf, "male") residualsEcdfPlot(cds.mf, "female")

label	sex	host	population	intensity	worms in prep	conc in prep
AA/T20F	female	AA	T	1	1	5.60
AA/T12F	female	AA	${ m T}$	14	1	6.80
AA/T45F	female	AA	${ m T}$	5	1	8.00
AA/T24M	$_{\mathrm{male}}$	AA	${ m T}$	6	3	4.80
AA/T42M	male	AA	${ m T}$	11	1	5.60
AA/T3M	male	AA	${ m T}$	5	4	4.88
AA/R18F	female	AA	R	4	1	4.80
AA/R28F	female	AA	R	10	1	5.20
AA/R8F	female	AA	R	27	1	5.20
AA/R16M	male	AA	R	10	4	5.20
AA/R11M	$_{\mathrm{male}}$	AA	R	25	14	6.40
AA/R2M	$_{\mathrm{male}}$	AA	R	10	4	6.60
AJ/T8F	female	AJ	${ m T}$	10	1	5.91
AJ/T5F	female	AJ	${ m T}$	2	1	4.80
AJ/T26F	female	AJ	${ m T}$	2	1	2.40
AJ/T25M	$_{\mathrm{male}}$	AJ	${ m T}$	24	5	4.05
AJ/T19M	$_{\mathrm{male}}$	AJ	${ m T}$	24	7	3.50
AJ/T20M	male	AJ	${ m T}$	20	8	3.80
AJ/R1F	female	AJ	R	3	1	5.92
AJ/R3F	female	AJ	R	3	1	6.90
AJ/R5F	female	AJ	R	10	1	4.04
AJ/R1M	male	AJ	R	3	1	2.50
AJ/R3M	male	AJ	R	3	2	2.60
AJ/R5M	male	AJ	R	10	1	2.23

```
\label{eq:policy} $\operatorname{plot}(\ \operatorname{res.mf} baseMean, res.mf \log 2 \operatorname{FoldChange}, \ \log = "x", \ \operatorname{pch} = 20, \ \operatorname{cex} = .4, \ \operatorname{col} = \operatorname{ifelse}(\ \operatorname{res.mf} padj < .01, "red", "black"), main = "Mydata")$$ Eel species $\operatorname{scvPlot}(\operatorname{cds.eel})$$ residualsEcdfPlot( cds.eel, "Aa") residualsEcdfPlot( cds.eel, "Aj")$$ plot( res.eelbaseMean, res.eellog2FoldChange, log="x", pch=20, cex=.4, col = ifelse( res.eelpadj < .01, "red", "black"), main = "Mydata")$$ Populations $\operatorname{scvPlot}(\operatorname{cds.pop})$$ residualsEcdfPlot( cds.pop, "EU") residualsEcdfPlot( cds.pop, "TW") $$ plot( res.popbaseMean, res.poplog2FoldChange, log="x", pch=20, cex=.4, col = ifelse( res.poppadj < .01, "red", "black"), main = "Differencesbetweenpopulations")$$
```

1

null device

library	raw.reads	raw.mapped	tax.mapped	screened
AA_R11M	11986442	8628520	7868814	6889551
AA_R16M	10810349	6858585	6217540	5276284
AA_R18F	9227615	6552527	5933235	5200958
AA_R28F	10135670	6665381	6005399	5171806
AA_R2M	12469746	7628428	6929651	5906422
AA_R8F	15270570	11527867	10758535	9453468
AA_T12F	11299438	7842479	7195621	6332396
AA_T20F	11740839	7744179	7114349	6323422
$AA_{-}T24M$	8552723	5254194	4662053	3969305
$AA_{-}T3M$	11031751	6460836	5800042	4993726
AA_T42M	11573501	7567845	6787375	5694801
AA_T45F	10646847	7714472	7173709	6283585
AJ_R1F	9855005	6400558	5890748	5167912
AJ_R1M	10211903	5851063	5313544	4506254
AJ_R3F	9897937	6425201	5948079	5124077
AJ_R3M	8775211	4562324	4073621	3422526
AJ_R5F	11949105	8442537	7830247	6882280
AJ_R5M	11231532	7504494	6772010	5913016
AJ_T19M	9195576	4798404	4293123	3635843
AJ_T20M	10862591	6880937	6251674	5280529
${ m AJ_T25M}$	11195315	7162880	6480185	5645097
AJ_T26F	11195335	7439917	6641973	6031374
$AJ_{-}T5F$	10357569	7413685	6794507	6007930
$AJ_{-}T8F$	14196382	10275074	9496489	8364594

null device

1

Discussion Conclusions

Methods

General coding methods

The bulk of analysis (unless otherwise cited) presented in this paper was carried out in R [1] using custom scripts. We used a method provided in the R-packages Sweave [2] and Weaver [3] for "reproducible research" combining R and TEXcode in a single file. All intermediate data files needed to compile the present manuscript from data-sources are provided upon request. For visualistation we used the R-packages lattice [4] and ggplot2 [5].

Competing interests

The authors declare no competing interests.

Authors contributions Acknowledgments

The work of EGH is funded by Volkswagen Foundation, "Förderinitiative Evolutionsbiologie".

References

1. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2009, [http://www.R-project.org].

- 2. Leisch F: Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis. In Compstat 2002 Proceedings in Computational Statistics. Edited by Härdle W, Rönz B, Physica Verlag, Heidelberg 2002:575–580, [http://www.stat.uni-muenchen.de/~leisch/Sweave]. [ISBN 3-7908-1517-9].
- 3. Falcon S: Caching code chunks in dynamic documents. Computational Statistics 2009, **24**(2):255–261, [http://www.springerlink.com/content/55411257n1473414].
- 4. Sarkar D: Lattice: Multivariate Data Visualization with R. New York: Springer 2008, [http://lmdvr.r-forge.r-project.org]. [ISBN 978-0-387-75968-5].
- 5. Wickham H: ggplot2: elegant graphics for data analysis. Springer New York 2009, [http://had.co.nz/ggplot2/book].

- Figures
 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 -

Tables

Table 1 -

Table 7 -

Additional Files