

Coastal hydrodynamics – part I

Chapter 5 of lecture notes

- A. Introduction
- **B.** Wave height transformation
- C. Bed friction
- D. Wave asymmetry and skewness
- E. Momentum and wave forces
- F. Set-up and set down (and undertow)
- G. Longshore current
- H. 3D effects
- I. Wind-induced set-up and currents

5. Coastal hydrodynamics - part I

c

5-B Wave height transformation Refraction as a result of depth-changes (changes in θ and associated changes in H) Example of refraction TuDelft 5. Coastal hydrodynamics - part | 11

5-B Wave height transformation
Interaction with variable bathymetry

outside surf zone

outside surf zone

steady alongshore uniform

$$Ec_g \cos \theta = \text{constant}$$

$$E_A c_{g,A} \cos \theta_A = E_B c_{g,B} \cos \theta_B$$

$$E_B = E_A \frac{c_{g,A} \cos \theta_A}{c_{g,B} \cos \theta_B}$$

$$H_B = H_A \sqrt{\frac{c_{g,A}}{c_{g,B}} \sqrt{\cos \theta_A}}$$
5. Coastal hydrodynamics - part 1

A. Introduction B. Wave height transformation C. Bed friction D. Wave skewness and asymmetry

- E. Momentum and wave forces
- F. Set-up and set down (and undertow)

Coastal hydrodynamics - part I

- G. Longshore current
- H. 3D effects
- Wind-induced set-up and currents

5. Coastal hydrodynamics - part I

5-C Bed friction

Shear stresses in wave boundary layer

Viscous stresses (in absence of turbulence):

$$\tau_{viscous}(z) = \rho v \frac{\partial u}{\partial z}$$

$$v \sim 10^{-6} m^2 / s$$

Turbulence stresses analogous:

$$\tau_{turbulence}(z) = \rho \overline{u'w'} = \rho v_T \frac{\partial u}{\partial z}$$

$$v_T \sim 10^{-1} - 10^{-2} \, m^2 \, / \, s$$
 in nearshore zone

 v_T from various sources

- wave boundary layer
- wave breaking
- slope or wind driven current

5. Coastal hydrodynamics - part I

36

5-C Bed friction

Practical aspects of wave boundary layer

- 1. Orbital motion incurs bed shear stress
 - => can set sediment into motion
- 2. Friction in the boundary layer=> dissipation of energy from the flow above (D_f)
- 3. Wave force pushing the flow forward (Longuet-Higgins streaming: $U_{\delta} = \frac{3}{4} \frac{\hat{u}_{0}^{2}}{c}$)
 - => net onshore directed sediment transport

Practical approach: relate all relevant quantities to free stream velocity

the thinner the boundary layer, the larger the velocity gradients and hence the stresses

5. Coastal hydrodynamics - part I

5-C Bed friction

Quadratic friction law (instead of detailed modelling of wave boundary layer)

Uniform depth-averaged current \overrightarrow{U}

$$\tau_b = \rho c_f \left| \overrightarrow{U} \right| \overrightarrow{U}$$

 c_f depends on bed material and bed forms for slope driven current: $c_f = \frac{g}{C^2}$

Quadratic friction law for waves? What would that look like for f.i. a single harmonic wave with $u_0 = \hat{u}_0 \cos \omega t$?

TUDelft

5. Coastal hydrodynamics - part I

38

Wave friction factor as a function of particle excursion amplitude over bed roughness: $\frac{\xi_0}{r} = \frac{\hat{u}_0}{\omega r}$

Magnitude wave versus current friction factor?

often $\frac{1}{2}f_w >> c_{f, current}$

See example 5-1

TUDelft

5. Coastal hydrodynamics - part I

5-C Bed friction Bed shear stress in combined wave-current flow $\tau_{\text{max}} \stackrel{?}{=} \max \left(\tau_c + \tau_w\right) = \tau_c + \hat{\tau}_w$ $\tau_{\text{m}} \stackrel{?}{=} \left\langle \tau_c + \tau_w \right\rangle = \tau_c$ Do you agree? 1. Yes 2. No 3. Abstain Response Counter 3. Oceanic wind waves and tide 42

5-C Bed friction

Relevance to sediment transport

- Shear stress sets sediment grains in motion and associated turbulence keeps them suspended in the water column
- High shear stresses under waves (or wave-current motion) in the nearshore
- But: a sinusoidal wave will just move the sand back and forth
- Hence the popular saying: waves stir up sediment, currents transport it
- or....transport due to wave skewness

5. Coastal hydrodynamics - part I

44

Coastal hydrodynamics – part I

Chapter 5 of lecture notes

- A. Introduction
- B. Wave height transformation
- C. Bed friction
- D. Wave skewness and asymmetry
- E. Momentum and wave forces
- F. Set-up and set down (and undertow)
- G. Longshore current
- H. 3D effects
- I. Wind-induced set-up and currents

5. Coastal hydrodynamics - part I

5-D Wave skewness and asymmetry

Which of the following statements is true? The skewness of a irregular deep water wave field is:

- 2. $\langle \eta^3 \rangle = 0$ 3. $\langle \eta^3 \rangle > 0$

TUDelft

3. Oceanic wind waves and tide

10

5-D Wave skewness and asymmetry

Sediment transport due to wave skewness

- Wave skewness in shoaling waves
 - · higher on-shore velocities at the crest
 - lower off-shore velocities at the trough
- Near-bed sediment concentration

$$c_s(t) \approx A |\tau_b(t)|$$

 $c_s(t) \approx Bu_0^2$

 $\tau_b(t) \approx \rho c_{f,w} |u_0(t)|$

• Sediment transport $S(t) \approx u_0 c_s \approx B u_0^3$ $\langle S \rangle = B \langle u_0^3 \rangle$

 $\langle S \rangle = 0$ for a sine wave:

for a positively skewed signal: $\langle S \rangle > 0$

TuDelft

5. Coastal hydrodynamics - part I

5-D Wave skewness and asymmetry

Waves break when depth is the order of the wave height

Regular waves

- Breaker index $\gamma = \frac{H_b}{h_b} \approx 0.8$
 - Solitary wave theory: $\gamma = 0.78$ Miche: $\gamma = 0.88$

Irregular waves

• $\frac{H_{s,b}}{h_b}$ for which largest waves are breaking is half the value of breaker indices

Simple dissipation model

• $\gamma = \frac{H}{h}$

is constant throughout the breaker zone

5. Coastal hydrodynamics - part I

51

5-A & 5-B

Which of the following statements is wrong?

- Due to refraction, wave crests tend to become parallel to the shallow water depth contours
- 2. At the Dutch coast we would expect spilling breakers most of the time
- For the same free stream velocity shorter waves result in larger bed shear stresses
- 4. For waves propagating into intermediate water the phase velocity first slightly increases and then decreases
- Diffraction implies along-crest transfer of energy

TUDelft

5. Coastal hydrodynamics - part I

Coastal hydrodynamics – part I

Chapter 5 of lecture notes

- A. Introduction
- B. Wave height transformation
- C. Bed friction
- D. Wave skewness and asymmetry
- E. Momentum and wave forces
- F. Set-up and set down (and undertow)
- G. Longshore current
- H. 3D effects
- I. Wind-induced set-up and currents

5. Coastal hydrodynamics - part I

5

5-E Momentum and wave forces

Waves carry mass and momentum

• Momentum = mass transport or mass flux:

$$\rho \bar{u} = (\rho u, \rho v, \rho w)$$

Vector quantity

• Net flux of mass associated with wave propagation:

$$q = \int_{-h_0}^{\eta} \rho u dz$$

Horizontal orbital velocity in wave propagation direction

TUDelft

5. Coastal hydrodynamics - part I

5-E Momentum and wave forces Consider waves approaching the coast at an arbitrary angle. Which of the following statements is **not valid**? 1. In wave propagation direction, there is a time-averaged flow above wave trough level. 46% 2. The mass flux is larger at the breaking point than at deeper 28% water. 22% 3. In the surf zone, the undertow compensates for the onshore mass flux above wave trough 4% level. Continuity requires a net flow under wave trough level against wave propagation direction. **T**UDelft 5. Coastal hydrodynamics - part I

5-E Momentum and wave forces

Effect of waves on the mean water motion and levels

• 2D momentum balance in x-direction (overbar denotes depth-averaging):

$$\boxed{\frac{\partial \left(\rho \overline{u}h\right)}{\partial t} + \frac{\partial \left(\rho \overline{u}h\right)\overline{u}}{\partial x} + \frac{\partial \left(\rho \overline{u}h\right)\overline{v}}{\partial y} = -\int_{-h_0}^{\eta} \frac{\partial p}{\partial x} dz - \tau_b}$$

• Velocity and pressure consist of mean and oscillatory component:

$$\overline{u} = U + \tilde{u}$$

$$\overline{v} = V + \tilde{v}$$

$$p = p_o + p_{wave}$$

Now we average over the wave motion:

Residual terms: wave forces

 Neglect LHS (the mean flow is considered to be steady and slowly varying in space).

TUDelft

5. Coastal hydrodynamics - part I

6

5-E Momentum and wave forces

Gradients in wave momentum flux impact the mean water motion and levels

Wave forces F_x (gradients in

wave momentum flux)

$$\frac{\partial \left(\rho U \overline{h}\right)}{\partial t} + \frac{\partial \left(\rho U \overline{h}\right) U}{\partial x} + \frac{\partial \left(\rho U \overline{h}\right) V}{\partial y} = -\rho g \overline{h} \frac{\partial \overline{\eta}}{\partial x} - \overline{\tau}_b - \frac{\overline{\partial \left(\rho \widetilde{u} h\right) \widetilde{u}}}{\partial x} - \frac{\overline{\eta}}{-h_0} \frac{\partial p_{wave}}{\partial x} dz - \frac{\overline{\partial \left(\rho \widetilde{u} h\right) \widetilde{v}}}{\partial y}$$

$$F_{x} = -\frac{\partial}{\partial x} \left[\overline{\left(\rho \tilde{u}h\right)} \tilde{u} + \overline{\int_{-h_{0}}^{\eta} p_{wave} dz} \right] - \frac{\partial}{\partial y} \overline{\left(\rho \tilde{u}h\right)} \tilde{v}$$

 $(u_{xr}\ u_{y})$: depth- and time-dependent orbital motion in x- resp. y-direction

However: orbital motion generally depth-dependent

- \bullet The excess momentum flux (wave-averaged and depth-integrated) due to the presence of waves is called radiation stress $S_{\rm ii}$
- Wave forces are due to wave-induced horizontal changes in momentum flux

TUDelft

5. Coastal hydrodynamics - part I

5-E Momentum and wave forces

For which of the following combinations is Syx \neq 0?

- A. Normally incident waves
- B. Obliquely incident waves
- C. x-axis in wave propagation direction, y-axis along wave crests
- x-axis perpendicular to the coast, y-axis along the coast
- 1. AC only
- 2. AD only
- 3. BC only
- ✓ 4. BD only
 - 5. BC and BD

5. Coastal hydrodynamics - part I

79

5-E Momentum and wave forces

General expressions for S_{xx} , S_{xy} , S_{yx} , S_{yy}

General	$\theta = 0$	heta=0 shallow water (n=1)
$(n-\frac{1}{2}+n\cos^2\theta)E$	$(2n-\frac{1}{2})E$	$\frac{3}{2}E$
$(n-\frac{1}{2}+n\sin^2\theta)E$	$(n-\frac{1}{2})E$	$\frac{1}{2}E$
$n\cos\theta\sin\theta E$	0	0

 $S_{xy} = S_{yx}$

5. Coastal hydrodynamics - part I

5-F Set-up and set-down

Changes in the shore-normal transfer of x-momentum are equivalent to a force in cross-shore direction

$$F_{x} = -\frac{dS_{xx}}{dx} = -\frac{d}{dx} \left[\left(n - \frac{1}{2} + n \cos^{2} \theta \right) E \right]$$

Alongshore uniform coast

In nearshore for normally incident waves:

- Increase in radiation stress in shoaling zone: $\frac{dS_{xx}}{dx} > 0$ (offshore directed wave force)
- Decrease in radiation stress in the surf zone: $\frac{dS_{xx}}{dx} < 0$ (onshore directed wave force)

TUDelft

5. Coastal hydrodynamics - part I

8!

Exam question june 2010 (1)

3. Momentum balance equations [17 points - 41 minutes]

17(75)

Consider the following balance equation for an alongshore uniform coast:

$$-\frac{dS_{xx}}{dx} = \rho g h \frac{d\overline{\eta}}{dx}$$
(3)

The x-direction is in cross-shore direction (positive onshore). In this equation the term $\bar{\eta}$ is the mean water level, h is the water depth and $S_{xx} = \left(2n - \frac{1}{2}\right)E$ is a radiation stress (with E is the wave energy and n is the ratio between group and phase velocity). Assume normally incident regular waves.

- a. [3] Make a sketch of the cross-shore distribution of S_{xx} from deep water to the water line, in which you indicate the width of the surf zone. Explain your reasoning.
- [4] Discuss the physical meaning of the left-hand-side (LHS) and right-hand-side (RHS) of Equation (3).
- c. [3] Explain and sketch the cross-shore mean water level variation from deep water to the water line corresponding to your answer to a). Use the same horizontal scale as in answer a).

TUDelft

5. Coastal hydrodynamics - part I

Exam question june 2010 (continued)

So far we have only discussed depth-averaged quantities.

d. [4] Indicate how the depth-variation of the terms in Equation (3) results in a secondary current pattern in the surf zone. <u>Also</u> sketch a cross-shore profile and indicate the circulation pattern by means of arrows.

Now consider a geostrophic balance equation. An example of such an equation is the cross-shore momentum equation for a Kelvin wave.

e. [3] Explain the main correspondence and the main difference between Equation (3) and a geostrophic balance equation.

5. Coastal hydrodynamics - part I

Coastal hydrodynamics - part I

Chapter 5 of lecture notes

- A. Introduction
- B. Wave height transformation
- C. Bed friction
- D. Wave skewness and asymmetry
- E. Momentum and wave forces
- F. Set-up and set down (and undertow)
- **G**. Longshore current
- H. 3D effects
- I. Wind-induced set-up and currents

5. Coastal hydrodynamics - part I

99

5-G Longshore current

Alongshore wave force non-zero only in surf zone

$$F_{y} = -\frac{dS_{yx}}{dx} = -\frac{d}{dx} \left[Enc \cos \theta \frac{\sin \theta}{c} \right]$$

- Cross-shore energy flux U_{s}
- Follows from energy balance:

$$\frac{dU_x}{dx} + D = 0$$

$$F_{y} = -\frac{\sin \theta_{0}}{c_{0}} \frac{d}{dx} U_{x} = \frac{\sin \theta_{0}}{c_{0}} D$$

Wave force is **non-zero only in surf zone** where
the wave energy flux is no
longer conserved

Snell's law: constant

5. Coastal hydrodynamics - part I

Coastal hydrodynamics – part I Chapter 5 of lecture notes A. Introduction B. Wave height transformation C. Bed friction D. Wave skewness and asymmetry E. Momentum and wave forces F. Set-up and set down (and undertow) G. Longshore current H. 3D effects I. Wind-induced set-up and currents

5-H 3D effects

Alongshore variations in wave forces drive 3D current patterns

- Eddy formation in the lee side of structures
- 3D current patterns around shoals
- Creation of rip currents

alongshore variations in wave height (or angle)=>
variations in (alongshore and) cross-shore wave forces =>
alongshore variations in set-up =>
3D current patterns

5. Coastal hydrodynamics - part I

