635 FALL 2024 PROBLEM SET #1

Problem 1. Describe the fan Σ for \mathbb{CP}^n explicitly by describing all of its cones. Explain carefully why X_{Σ} is isomorphic to \mathbb{CP}^n by identifying each open subset $V_{\sigma} \subset X_{\Sigma}$ associated to a cone $\sigma \in \Sigma$ with an open subset of \mathbb{CP}^n , and that the gluing maps for X_{Σ} match those of \mathbb{CP}^n .

Problem 2. Consider the curve $C := \{y^2 = x^3\} \subset \mathbb{C}^2$.

- (a) Explain how C is a toric variety.
- (b) Consider the subset $S := \{0, 2, 3, 4, \dots\} = \mathbb{Z}_{\geq 0} \setminus \{1\}$ of $\mathbb{Z}_{\geq 0}$. Prove that C is isomorphic to Spec $\mathbb{C}[S]$.
- (c) A submonoid $T \subset \mathbb{Z}^n$ is said to be *saturated* if $km \in T$ implies $m \in T$ for any $k \in \mathbb{Z}_{\geq 1}$ and $m \in \mathbb{Z}^n$. Prove that $\sigma^{\vee} \cap \mathbb{Z}^n$ is saturated for any rational polyhedral cone $\sigma \subset \mathbb{R}^n$.
- (d) Show that S is not saturated.
- (e) For any finitely generated submonoid $T \subset \mathbb{Z}^n$, consider the following statements.
 - (i) Spec $\mathbb{C}[T]$ is a normal variety
 - (ii) T is saturated
 - (iii) $T = \sigma^{\vee} \cap \mathbb{Z}^n$ for some strongly convex rational polyhedral cone $\sigma \subset \mathbb{R}^n$.
 - Prove that (i) implies (ii), and that (ii) implies (iii).¹
- (f) Use the above to conclude C is not normal.

¹In fact (iii) also implies (i), but you don't have to prove that here.