020889-000001_Seq_List_ST25.txt SEQUENCE LISTING

```
<110>
         de Lorenzo Prieto, Victor
         Fernandez Herrero, Luis A
        System for the Production of Dimeric Proteins Based on the
 <120>
        Transport System of Hemolysin of Escherichia Coli
 <130>
        020884-000001
 <140>
        10/566,827
 <141>
        2006-01-31
 <150>
        P200301830 (ES)
 <151>
        2003-07-31
 <150>
        PCT/ES2004/070053
 <151>
        2004-07-19
 <160>
        22
 <170>
        PatentIn version 3.4
 <210>
 <211>
        36
 <212>
        PRT
 <213>
        Artificial
 <220>
        EHlyA_polypeptide containing 23 kDa ('hlyA) secretion signal of
 <223>
        E. coli Hly transporter tagged with the E epitope.
 <400>
        1
Met Thr Met Ile Thr Asn Leu Asp Leu Asn Ser Val Ser Thr Pro Gly
                                      10
Gly Ala Pro Val Pro Tyr Pro Asp Pro Leu Glu Pro Ala Gly Glu Asn
             20
Ser Leu Ala Lys
         35
<210>
<211>
       74
<212>
       PRT
<213>
       Artificial
<220>
       ZEHlyA polypeptide containing the 23 kDa ('hlyA) secretion signal
<223>
       of E. coli Hly transporter tagged with the E epitope.
<400>
       2
Met Thr Met Ile Thr Asn Leu Asp Leu Asn Ser Val Ser Thr Ser Gly
Gly Pro Lys Pro Ser Thr Pro Pro Gly Ser Ser Arg Met Lys Leu Glu
                                        Page 1
```

Asp Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu

Val Ala Arg Leu Lys Lys Leu Val Gly Glu Arg Gly Gly His His His

His His Ser Thr Pro Gly Gly Ala Pro 65 70

<210> <211> 949 <212> DNA

Artificial <213>

<220>

Ampicillin resistant plasmid pZEHlyA (sense strand); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa C domain of HlyA $\,$ <223>

23	NDA C UUIIIA I	II OI HIYA				
<400> 3 agcggataac	aatttcacac	aggaaacagc	tatgaccatg	attacgaatt	tagatctgaa	60
ttcggtgtcg	acgtccggcg	gtccgaagcc	ttccactccg	cccgggtctt	cccgtatgaa	120
acagctggaa	gacaaagtag	aggagctcct	tagcaagaac	taccatctag	aaaacgaggt	180
agctcgtctg	aaaaagcttg	ttggtgaacg	tggtggtcac	catcaccatc	accatgcgtc	240
gacgcccggg	ggtgcgccgg	tgccgtatcc	ggatccgctg	gaaccggccg	gggaaaattc	300
tcttgctaaa	aatgtattat	ccggtggaaa	aggtaatgac	aagttgtacg	gcagtgaggg	360
agcagacctg	cttgatggcg	gagaagggaa	tgatcttctg	aaaggtggat	atggtaatga	420
tatttatcgt	tatctttcag	gatatggcca	tcatattatt	gacgatgaag	gggggaaaga	480
cgataaactc	agtttagctg	atatagattt	ccgggacgtt	gcctttaagc	gagaagggaa	540
tgacctcatt	atgtataaag	ctgaaggtaa	tgttctttct	attggccaca	aaaatggtat	600
tacatttaaa	aactggtttg	aaaaagagtc	agatgatctc	tctaatcatc	agatagagca	660
gatttttgat	aaagacggca	gggtaatcac	accagattct	cttaaaaaag	catttgaata	720
tcagcagagt	aataacaagg	taagttatgt	gtatggacat	gatgcatcaa	cttatgggag	780
ccaggacaat	cttaatccat	taattaatga	aatcagcaaa	atcatttcag	ctgcaggtaa	840
cttcgatgtt	aaggaggaaa	gatctgccgc	ttctttattg	cagttgtccg	gtaatgccag	900
tgatttttca	tatggacgga	actcaataac	tttgacagca	tcagcataa		949

<210> <211> 918 <212> DNA <213> Artificial

<220> <223> Ampicillin resistant plasmid pZEHlyA (missense strand); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA. <400> tactggtact aatgcttaaa tctagactta agccacagct gcaggccgcc aggcttcgga 60 aggtgaggcg ggcccagaag ggcatacttt gtcgaccttc tgtttcatct cctcgaggaa 120 tcgttcttga tggtagatct tttgctccat cgagcagact ttttcgaaca accacttgca 180 ccaccagtgg tagtggtagt ggtacgcagc tgcgggcccc cacgcggcca cggcataggc 240 ctaggcgacc ttggccggcc ccttttaaga gaacgatttt tacataatag gccacctttt 300 ccattactgt tcaacatgcc gtcactccct cgtctggacg aactaccgcc tcttccctta 360 ctagaagact ttccacctat accattacta taaatagcaa tagaaagtcc tataccggta 420 gtataataac tgctacttcc cccctttctg ctatttgagt caaatcgact atatctaaag 480 gccctgcaac ggaaattcgc tcttccctta ctggagtaat acatatttcg acttccatta 540 caagaaagat aaccggtgtt tttaccataa tgtaaatttt tgaccaaact ttttctcagt 600 ctactagaga gattagtagt ctatctcgtc taaaaactat ttctgccgtc ccattagtgt 660 ggtctaagag aatttttcg taaacttata gtcgtctcat tattgttcca ttcaatacac 720 atacctgtac tacgtagttg aataccctcg gtcctgttag aattaggtaa ttaattactt 780 tagtcgtttt agtaaagtcg acgtccattg aagctacaat tcctcctttc tagacggcga 840 agaaataacg tcaacaggcc attacggtca ctaaaaagta tacctgcctt gagttattga 900 aactgtcgta gtcgtatt 918 <210> 5 <211> 305 <212> **PRT** <213> Artificial <220> <223> Ampicillin resistant plasmid pZEHlyA (protein); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA. <400> 5 Met Thr Met Ile Thr Asn Leu Asp Leu Asn Ser Val Ser Thr Ser Gly

Gly Pro Lys Pro Ser Thr Pro Pro Gly Ser Ser Arg Met Lys Gln Leu

Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn

_	_						02088	89-0	0000	1 se	a Li	st s	T25	txt	
Glu	val 50	l Ala	ı Arg	J Leu	Lys	Lys 55	Leu	Val	Gly	Gli	4 60	Gly	/ Gly	/ His	His
His 65	His	His	His	: Ala	Ser 70	Thr	Pro	Gly	Gly	^ Ala 75	ı Pro	∨a]	l Pro) Tyr	Pro 80
Asp	Pro	Leu	ı Glu	Pro 85	Ala	Gly	Glu	Asn	Ser 90	Leu	ıAla	Lys	s Asr	val 95	Leu
Ser	Gly	Gly	Lys 100	Gly	Asn	Asp	Lys	Leu 105	Tyr	Gly	Ser	Glu	ı Gly 110		Asp
Leu	Leu	Asp 115	Gly	Gly	Glu	Gly	Asn 120	Asp	Leu	Leu	Lys	Gly 125	g Gly	Tyr	Gly
Asn	Asp 130	Ile	Tyr	Arg	Tyr	Leu 135	Ser	Gly	Tyr	Gly	ніs 140	His	Ile	Ile	Asp
Asp 145	Glu	Gly	Gly	Lys	Asp 150	Asp	Lys	Leu	Ser	Leu 155	Αla	Asp	Ile	Asp	Phe 160
Arg	Asp	Val	Ala	Phe 165	Lys	Arg	Glu	Gly	Asn 170	Asp	Leu	Ile	Met	Tyr 175	Lys
Ala	Glu	Gly	Asn 180	Val	Leu	Ser	Ile	Gly 185	His	Lys	Asn	Gly	Ile 190	Thr	Phe
Lys	Asn	Trp 195	Phe	Glu	Lys	Glu	Ser 200	Asp	Asp	Leu	Ser	Asn 205	His	Gln	Ile
Glu	Gln 210	Ile	Phe	Asp	Lys	Asp 215	Gly	Arg	Val	Ile	Thr 220	Pro	Asp	Ser	Leu
Lys 225	Lys	Ala	Phe	Glu	Tyr 230	Gln	G]n	Ser	Asn	Asn 235	Lys	Val	Ser	Tyr	Va1 240
Tyr	Gly	His	Asp	Ala 245	Ser	Thr	Tyr	Gly	Ser 250	Gln	Asp	Asn	Leu	Asn 255	Pro
Leu	Ile	Asn	G1u 260	Ile	Ser	Lys	Ile	Ile 265	Ser	Ala	Ala	Gly	Asn 270	Phe	Asp
Val	Lys	G1u 275	Glu	Arg	Ser	Ala	Ala 280	Ser	Leu	Leu	Gln	Leu 285	Ser	Gly	Asn
Ala	Ser 290	Asp	Phe	Ser	Tyr	G]y 295	Arg	Asn	Ser	Ile	Thr	Leu	Thr	Ala	Ser

Ala 305

<210> <211> <212> <213> 6 1979 DNA

Artificial

<220> <223> Ampicillin resistant plasmid pZEHLYA2SD (sense strand); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinkerfor cloning of scFv's in frame with E-tagged 'hlyA.

<400> 6 atgaatacga	atttagatct	gaattcgggc	ccttcgaaaa	ttaatacgac	tcactatagg	60
					gagatatatc	120
					cttccactcc	180
					ttagcaagaa	240
		tagctcgtct				300
		cgacgcccgg				360
ggaaccggcc	ggggaaaatt	ctcttgctaa	aaatgtatta	tccggtggaa	aaggtaatga	420
caagttgtac	ggcagtgagg	gagcagacct	gcttgatggc	ggagaaggga	atgatcttct	480
gaaaggtgga	tatggtaatg	atatttatcg	ttatctttca	ggatatggcc	atcatattat	540
		acgataaact				600
tgcctttaag	cgagaaggga	atgacctcat	tatgtataaa	gctgaaggta	atgttctttc	660
		ttacatttaa				720
		agatttttga				780
		atcagcagag				840
		gccaggacaa				900
		acttcgatgt				960
		gtgattttc				1020
		taaatgatag				1080
		atggattctt				1140
		cataacgtct				1200
ttgacacaga						1260
aactaaaggt						1320
cattagtctg	gagagaggat	ggacgtcatt	ttattctgac	taaagtcagt	aaagaagcaa	1380

		020889	-000001_seq	_List_ST25.	txt	
acagatatct	tatttctgat	ctggagcagc	gaaatccccg	tgttctcgaa	cagtctgagt	1440
ttgaggcgtt	atatcagggg	catattattc	ttatcgcttc	ccgttcttct	gttgccggga	1500
aactggcgaa	atttgacttt	acctggttta	ttcctgccat	tataaaatac	aggagaatat	1560
ttattgaaac	ccttgttgtg	tctgtttttt	tacaattatt	tgcattaata	acccccttt	1620
tttttcaggt	ggttatggac	aaagtattag	tgcacagggg	attttcaact	cttaatgtta	1680
ttactgtcgc	attatctgtt	gtggtggtgt	ttgagattat	actcagcggt	ttaagaactt	1740
acatttttgc	acatagtaca	agtcggattg	atgttgagtt	gggtgccaaa	ctcttccggc	1800
atttactggc	gctaccgatc	tcttattttg	agagtcgtcg	tgttggtgat	actgttgcca	1860
gggtaagaga	attagaccag	atccgtaatt	ttctgacagg	acaggcatta	acatctgttc	1920
tggacttatt	attttcattc	atatttttg	cggtaatgtg	gtattacagt	ccaaagctt	1979
.210. 7						

7 1979 <210> <211> <212> DNA

<213> Artificial

<220>

Ampicillin resistant plasmid pZEHLYA2SD (missense strand); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinkerfor cloning of scFv's in frame with E-tagged 'hlyA. <223>

	<400>	7						
	tacttat	gct	taaatctaga	cttaagcccg	ggaagctttt	aattatgctg	agtgatatcc	60
	ctctggt	gtt	gccaaaggga	gatctttatt	aaaacaaatt	gaaattcttc	ctctatatag	120
	gtaccga	tcg	tgccggagcc	cccggcgcag	ctgcaggccg	ccaggcttcg	gaaggtgagg	180
	cgggccc	aga	agggcatact	ttgtcgacct	tctgtttcat	ctcctcgagg	aatcgttctt	240
	gatggta	gat	cttttgctcc	atcgagcaga	ctttttcgaa	caaccacttg	caccaccagt	300
	ggtagtg	gta	gtggtacgca	gctgcgggcc	cccacgcggc	cacggcatag	gcctaggcga	360
	ccttggc	cgg	ccccttttaa	gagaacgatt	tttacataat	aggccacctt	ttccattact	420
	gttcaac	atg	ccgtcactcc	ctcgtctgga	cgaactaccg	cctcttccct	tactagaaga	480
	ctttcca	cct	ataccattac	tataaatagc	aatagaaagt	cctataccgg	tagtataata	540
	actgcta	ctt	ccccctttc	tgctatttga	gtcaaatcga	ctatatctaa	aggccctgca	600
	acggaaat	ttc	gctcttccct	tactggagta	atacatattt	cgacttccat	tacaagaaag	660
į	ataaccg	gtg	tttttaccat	aatgtaaatt	tttgaccaaa	ctttttctca	gtctactaga	720
(gagattaç	gta	gtctatctcg	tctaaaaact	atttctgccg	tcccattagt	gtggtctaag	780
į	agaattt	tt	cgtaaactta	tagtcgtctc	attattgttc	cattcaatac	acatacctgt	840
ä	actacgta	ıgt	tgaataccct	cggtcctgtt	agaattaggt	aattaattac	tttagtcgtt	900

ttagtaaagt cgacgtcca	020889 t tgaagctaca	0-000001_seq attcctcctt	_List_ST25. tctagacggc	txt gaagaaataa	960
cgtcaacagg ccattacgg	t cactaaaaag	tatacctgcc	ttgagttatt	gaaactgtcg	1020
tagtcgtatt atataatta	a atttactatc	gttagaatga	cccgacacgg	tgtattctaa	1080
cgataaaaaa acctcagta	t tacctaagaa	cagtatttta	actaataccc	aatatgcggg	1140
acctctaaaa tcgggttat	g gtattgcaga	gacaattggg	ccttctttaa	tttgtatcta	1200
aactgtgtct gccctgacc	a gaccctaatt	gcagtaccaa	cgaacgacgc	tttagaaatc	1260
ttgatttcca ttttgtcca	t tttttttgtt	aactggctaa	tttgaaataa	agagacgggc	1320
gtaatcagac ctctctcct	a cctgcagtaa	aataagactg	atttcagtca	tttcttcgtt	1380
tgtctataga ataaagact	a gacctcgtcg	ctttaggggc	acaagagctt	gtcagactca	1440
aactccgcaa tatagtccc	gtataataag	aatagcgaag	ggcaagaaga	caacggccct	1500
ttgaccgctt taaactgaa	a tggaccaaat	aaggacggta	atattttatg	tcctcttata	1560
aataactttg ggaacaaca	c agacaaaaaa	atgttaataa	acgtaattat	tggggggaaa	1620
aaaaagtcca ccaatacct	g tttcataatc	acgtgtcccc	taaaagttga	gaattacaat	1680
aatgacagcg taatagaca	a caccaccaca	aactctaata	tgagtcgcca	aattcttgaa	1740
tgtaaaaacg tgtatcatg	t tcagcctaac	tacaactcaa	cccacggttt	gagaaggccg	1800
taaatgaccg cgatggcta	g agaataaaac	tctcagcagc	acaaccacta	tgacaacggt	1860
cccattctct taatctggt	taggcattaa	aagactgtcc	tgtccgtaat	tgtagacaag	1920
acctgaataa taaaagtaa	g tataaaaaac	gccattacac	cataatgtca	ggtttcgaa	1979

<210> 8 <211> 302 <212> PRT

<220>

Ampicillin resistant plasmid pZEHLYA2SD (protein); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinkerfor cloning of scFv's in frame with E-tagged 'hlyA.

<400> 8

Met Ala Ser Thr Ala Ser Gly Ala Ala Ser Thr Ser Gly Gly Pro Lys $1 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Ser Thr Pro Pro Gly Ser Ser Arg Met Lys Gln Leu Glu Asp Lys 20 25 30

Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala 35 40 45

Arg Leu Lys Lys Leu Val Gly Glu Arg Gly Gly His His His His Page 7

<213> Artificial

His Ala Ser Thr Pro Gly Gly Ala Pro Val Pro Tyr Pro Asp Pro Leu 70 75 80

Glu Pro Ala Gly Glu Asn Ser Leu Ala Lys Asn Val Leu Ser Gly Gly 85 90 95

Lys Gly Asn Asp Lys Leu Tyr Gly Ser Glu Gly Ala Asp Leu Leu Asp 100 105 110

Gly Gly Glu Gly Asn Asp Leu Leu Lys Gly Gly Tyr Gly Asn Asp Ile 115 120 125

Tyr Arg Tyr Leu Ser Gly Tyr Gly His His Ile Ile Asp Asp Glu Gly 130 140

Gly Lys Asp Asp Lys Leu Ser Leu Ala Asp Ile Asp Phe Arg Asp Val 150 155 160

Ala Phe Lys Arg Glu Gly Asn Asp Leu Ile Met Tyr Lys Ala Glu Gly 165 170 175

Asn Val Leu Ser Ile Gly His Lys Asn Gly Ile Thr Phe Lys Asn Trp 180 185 190

Phe Glu Lys Glu Ser Asp Leu Ser Asn His Gln Ile Glu Gln Ile 195 200 205

Phe Asp Lys Asp Gly Arg Val Ile Thr Pro Asp Ser Leu Lys Lys Ala 210 220

Phe Glu Tyr Gln Gln Ser Asn Asn Lys Val Ser Tyr Val Tyr Gly His 230 235 240

Asp Ala Ser Thr Tyr Gly Ser Gln Asp Asn Leu Asn Pro Leu Ile Asn 245 250 255

Glu Ile Ser Lys Ile Ile Ser Ala Ala Gly Asn Phe Asp Val Lys Glu 260 265 270

Glu Arg Ser Ala Ala Ser Leu Leu Gln Leu Ser Gly Asn Ala Ser Asp 275 280 285

Phe Ser Tyr Gly Arg Asn Ser Ile Thr Leu Thr Ala Ser Ala 290 295 300

<210> 9 <211> 2792 <212> DNA <213> Artificial

<220>

<223> Ampicillin resistant plasmid pVamyHLYA (sense strand) containing amplified DNA product encoding VHH amylase (Vamy); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinker for cloning of scFv's in

<400> 9						
actataggga	gaccacaacg	gtttccctct	agaaataatt	ttgtttaact	ttaagaagga	60
gatatatcca	tggctcaggt	gcagctggtg	gagtcttggg	gaggctcggt	gcaggctggg	120
gggtctctga	gactctcctg	cacagcccct	ggattcacct	ccaatagctg	ccgcatggac	180
tggtaccgcc	aggctgcagg	gaagcagcgc	gagtgggtct	catctattag	tactgatggt	240
cgcacaagct	atgcagactc	cgtgaagggc	cgattcacca	tctccaaaga	caaagccaag	300
gacacggtgt	atctgcaaat	gaacagcctg	aaacctgagg	acacggccat	ctattactgt	360
gccgtgagga	cgaatgggta	tcgtccgcaa	tctcacgaat	ttcgctactg	gggcccgggg	420
acccaggtca	ccgtctcctc	aacggcctcg	ggggccgcgt	cgacgcccgg	gggtgcgccg	480
gtgccgtatc	cggatccgct	ggaaccggcc	ggggaaaatt	ctcttgctaa	aaatgtatta	540
tccggtggaa	aaggtaatga	caagttgtac	ggcagtgagg	gagcagacct	gcttgatggc	600
ggagaaggga	atgatcttct	gaaaggtgga	tatggtaatg	atatttatcg	ttatctttca	660
ggatatggcc	atcatattat	tgacgatgaa	ggggggaaag	acgataaact	cagtttagct	720
gatatagatt	tccgggacgt	tgcctttaag	cgagaaggga	atgacctcat	tatgtataaa	780
gctgaaggta	atgttctttc	tattggccac	aaaaatggta	ttacatttaa	aaactggttt	840
gaaaaagagt	cagatgatct	ctctaatcat	cagatagagc	agatttttga	taaagacggc	900
agggtaatca	caccagattc	tcttaaaaaa	gcatttgaat	atcagcagag	taataacaag	960
gtaagttatg	tgtatggaca	tgatgcatca	acttatggga	gccaggacaa	tcttaatcca	1020
ttaattaatg	aaatcagcaa	aatcatttca	gctgcaggta	acttcgatgt	taaggaggaa	1080
agatctgccg	cttctttatt	gcagttgtcc	ggtaatgcca	gtgattttc	atatggacgg	1140
aactcaataa	ctttgacagc	atcagcataa	tatattaatt	taaatgatag	caatcttact	1200
gggctgtgcc	acataagatt	gctattttt	tggagtcata	atggattctt	gtcataaaat	1260
tgattatggg	ttatacgccc	tggagatttt	agcccaatac	cataacgtct	ctgttaaccc	1320
ggaagaaatt	aaacatagat	ttgacacaga	cgggactggt	ctgggattaa	cgtcatggtt	1380
gcttgctgcg	aaatctttag	aactaaaggt	aaaacaggta	aaaaaaacaa	ttgaccgatt	1440
aaactttatt	tctctgcccg	cattagtctg	gagagaggat	ggacgtcatt	ttattctgac	1500

				3333		caregeree	1020
ccgtt	cttct	gttgccggga	aactggcgaa	atttgacttt	acctggttta	ttcctgccat	1680
tataa	aatac	aggagaatat	ttattgaaac	ccttgttgtg	tctgttttt	tacaattatt	1740
tgcat ⁻	taata	acccccttt	tttttcaggt	ggttatggac	aaagtattag	tgcacagggg	1800
atttt	caact	cttaatgtta	ttactgtcgc	attatctgtt	gtggtggtgt	ttgagattat	1860
actca	gcggt	ttaagaactt	acatttttgc	acatagtaca	agtcggattg	atgttgagtt	1920
gggtg	ccaaa	ctcttccggc	atttactggc	gctaccgatc	tcttattttg	agagtcgtcg	1980
tgttg	gtgat	actgttgcca	gggtaagaga	attagaccag	atccgtaatt	ttctgacagg	2040
acaggo	catta	acatctgttc	tggacttatt	attttcattc	atatttttg	cggtaatgtg	2100
gtatta	acagt	ccaaagctta	ctctggtgat	cttattttcg	ctgccttgtt	atgctgcatg	2160
gtctgt	tttt	attagcccca	ttttgcgacg	tcgccttgat	gataagtttt	cacggaatgc	2220
ggataa	tcaa	tctttcctgg	tggaatcagt	cacggcgatt	aacactataa	aagctatggc	2280
agtctc	acct	cagatgacga	acatatggga	caaacaattg	gcaggatatg	ttgctgcagg	2340
cttcaa	agtg	acagtattag	caaccattgg	tcaacaagga	atacagttaa	tacaaaagac	2400
tgttat	gatc	atcaacctgt	ggttgggagc	acacctggtt	atttccgggg	atttaagtat	2460
tggtca	gtta	attgctttta	atatgcttgc	tggtcagatt	gttgcaccgg	ttattcgcct	2520
tgcaca	aatc	tggcaggatt	tccagcaggt	tggtatatca	gttacccgcc	ttggtgatgt	2580
gcttaa	ctct	ccaactgaaa	gttatcatgg	gaaactggca	ttaccggaaa	ttaatggtga	2640
tatcac	tttt	cgtaatatcc	ggtttcgcta	taagcctgac	tctccggtta	ttttagataa	2700
tatcaa	tctc	agtattaagc	agggggaggt	tattggtatt	gtcggacgtt	ctggttcagg	2760
aaaaag	caca	ttaactaaat	taattcaacg	tt			2792
<210> <211> <212> <213>	10 2792 DNA Arti	ficial					
<220 <i>></i> <223 <i>></i>	HIVA	with E-tag	y vнн атуга enitone in	se (vamy);	23-kDa C-te	plified DNA rminal domai Da domain of th E-tagged	
<400> tgatate	10 ccct d	taatattar (casaggasas -	t <i>C</i> tttattaa	aacaaattga	7.7.t.t.c.t.t.c.t.t	60
					ctccgagcca		60
					ggttatcgac		120
g m s	,	awawaanc i	gegeegggga (yycgtacctg	180
				Page 1	-0		

020889-000001_Seq_List_ST25.txt taaagtcagt aaagaagcaa acagatatct tatttctgat ctggagcagc gaaatccccg

tgttctcgaa cagtctgagt ttgaggcgtt atatcagggg catattattc ttatcgcttc

1560

1620

accaaggcgg	tccgacgtcc	020889 cttcgtcgcg	0-000001_Sec ctcacccaga	List_ST25 gtagataatc	txt atgactacca	240
gcgtgttcga	tacgtctgag	gcacttcccg	gctaagtggt	agaggtttct	gtttcggttc	300
ctgtgccaca	tagacgttta	cttgtcggac	tttggactcc	tgtgccggta	gataatgaca	360
cggcactcct	gcttacccat	agcaggcgtt	agagtgctta	aagcgatgac	cccgggcccc	420
tgggtccagt	ggcagaggag	ttgccggagc	ccccggcgca	gctgcgggcc	cccacgcggc	480
cacggcatag	gcctaggcga	ccttggccgg	ccccttttaa	gagaacgatt	tttacataat	540
aggccacctt	ttccattact	gttcaacatg	ccgtcactcc	ctcgtctgga	cgaactaccg	600
cctcttccct	tactagaaga	ctttccacct	ataccattac	tataaatagc	aatagaaagt	660
cctataccgg	tagtataata	actgctactt	ccccctttc	tgctatttga	gtcaaatcga	720
ctatatctaa	aggccctgca	acggaaattc	gctcttccct	tactggagta	atacatattt	780
cgacttccat	tacaagaaag	ataaccggtg	tttttaccat	aatgtaaatt	tttgaccaaa	840
ctttttctca	gtctactaga	gagattagta	gtctatctcg	tctaaaaact	atttctgccg	900
tcccattagt	gtggtctaag	agaattttt	cgtaaactta	tagtcgtctc	attattgttc	960
cattcaatac	acatacctgt	actacgtagt	tgaataccct	cggtcctgtt	agaattaggt	1020
aattaattac	tttagtcgtt	ttagtaaagt	cgacgtccat	tgaagctaca	attcctcctt	1080
tctagacggc	gaagaaataa	cgtcaacagg	ccattacggt	cactaaaaag	tatacctgcc	1140
ttgagttatt	gaaactgtcg	tagtcgtatt	atataattaa	atttactatc	gttagaatga	1200
cccgacacgg	tgtattctaa	cgataaaaaa	acctcagtat	tacctaagaa	cagtattta	1260
actaataccc	aatatgcggg	acctctaaaa	tcgggttatg	gtattgcaga	gacaattggg	1320
ccttctttaa	tttgtatcta	aactgtgtct	gccctgacca	gaccctaatt	gcagtaccaa	1380
cgaacgacgc	tttagaaatc	ttgatttcca	ttttgtccat	tttttttgtt	aactggctaa	1440
tttgaaataa	agagacgggc	gtaatcagac	ctctctccta	cctgcagtaa	aataagactg	1500
atttcagtca	tttcttcgtt	tgtctataga	ataaagacta	gacctcgtcg	ctttaggggc	1560
acaagagctt	gtcagactca	aactccgcaa	tatagtcccc	gtataataag	aatagcgaag	1620
ggcaagaaga	caacggccct	ttgaccgctt	taaactgaaa	tggaccaaat	aaggacggta	1680
atattttatg	tcctcttata	aataactttg	ggaacaacac	agacaaaaaa	atgttaataa	1740
acgtaattat	tggggggaaa	aaaaagtcca	ccaatacctg	tttcataatc	acgtgtcccc	1800
taaaagttga	gaattacaat	aatgacagcg	taatagacaa	caccaccaca	aactctaata	1860
tgagtcgcca	aattcttgaa	tgtaaaaacg	tgtatcatgt	tcagcctaac	tacaactcaa	1920
cccacggttt	gagaaggccg	taaatgaccg	cgatggctag	agaataaaac	tctcagcagc	1980
acaaccacta	tgacaacggt	cccattctct	taatctggtc	taggcattaa	aagactgtcc	2040
tgtccgtaat	tgtagacaag	acctgaataa	taaaagtaag Page	tataaaaaac 11	gccattacac	2100

cataatgtca	ggtttcgaat	gagaccacta	gaataaaagc	gacggaacaa	tacgacgtac	2160
cagacaaaaa	taatcggggt	aaaacgctgc	agcggaacta	ctattcaaaa	gtgccttacg	2220
cctattagtt	agaaaggacc	accttagtca	gtgccgctaa	ttgtgatatt	ttcgataccg	2280
tcagagtgga	gtctactgct	tgtataccct	gtttgttaac	cgtcctatac	aacgacgtcc	2340
gaagtttcac	tgtcataatc	gttggtaacc	agttgttcct	tatgtcaatt	atgttttctg	2400
acaatactag	tagttggaca	ccaaccctcg	tgtggaccaa	taaaggcccc	taaattcata	2460
accagtcaat	taacgaaaat	tatacgaacg	accagtctaa	caacgtggcc	aataagcgga	2520
acgtgtttag	accgtcctaa	aggtcgtcca	accatatagt	caatgggcgg	aaccactaca	2580
cgaattgaga	ggttgacttt	caatagtacc	ctttgaccgt	aatggccttt	aattaccact	2640
atagtgaaaa	gcattatagg	ccaaagcgat	attcggactg	agaggccaat	aaaatctatt	2700
atagttagag	tcataattcg	tcccctcca	ataaccataa	cagcctgcaa	gaccaagtcc	2760
tttttcgtgt	aattgattta	attaagttgc	aa			2792

<210> 11

<220>

<223> Amp-r plasmid pvamyHLYA (protein) containing amplified DNA product encoding VHH amylase (Vamy); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinker for cloning of scFv's in frame with E-tagged 'hlyA

<400> 11

Met Ala Gln Val Gln Leu Val Glu Ser Trp Gly Gly Ser Val Gln Ala 10 15

Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Pro Gly Phe Thr Ser Asn 20 25 30

Ser Cys Arg Met Asp Trp Tyr Arg Gln Ala Ala Gly Lys Gln Arg Glu 35 40 45

Trp Val Ser Ser Ile Ser Thr Asp Gly Arg Thr Ser Tyr Ala Asp Ser 50 60

Val Lys Gly Arg Phe Thr Ile Ser Lys Asp Lys Ala Lys Asp Thr Val 80

Tyr Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr 85 90 95

<211> 366

<212> PRT

<213> Artificial

020889-000001_Seq_List_ST25.txt Cys Ala Val Arg Thr Asn Gly Tyr Arg Pro Gln Ser His Glu Phe Arg 100 105 110 Tyr Trp Gly Pro Gly Thr Gln Val Thr Val Ser Ser Thr Ala Ser Gly
115 120 125 Ala Ala Ser Thr Pro Gly Gly Ala Pro Val Pro Tyr Pro Asp Pro Leu 130 135 140 Glu Pro Ala Gly Glu Asn Ser Leu Ala Lys Asn Val Leu Ser Gly Gly 145 150 155 160 Lys Gly Asn Asp Lys Leu Tyr Gly Ser Glu Gly Ala Asp Leu Leu Asp 165 170 175 Gly Gly Glu Gly Asn Asp Leu Leu Lys Gly Gly Tyr Gly Asn Asp Ile 180 185 190 Tyr Arg Tyr Leu Ser Gly Tyr Gly His His Ile Ile Asp Asp Glu Gly 195 200 205 Gly Lys Asp Asp Lys Leu Ser Leu Ala Asp Ile Asp Phe Arg Asp Val 210 220 . Ala Phe Lys Arg Glu Gly Asn Asp Leu Ile Met Tyr Lys Ala Glu Gly 225 235 240 Asn Val Leu Ser Ile Gly His Lys Asn Gly Ile Thr Phe Lys Asn Trp 245 250 255 Phe Glu Lys Glu Ser Asp Asp Leu Ser Asn His Gln Ile Glu Gln Ile Phe Asp Lys Asp Gly Arg Val Ile Thr Pro Asp Ser Leu Lys Lys Ala 275 280 285 Phe Glu Tyr Gln Gln Ser Asn Asn Lys Val Ser Tyr Val Tyr Gly His 290 295 300 Asp Ala Ser Thr Tyr Gly Ser Gln Asp Asn Leu Asn Pro Leu Ile Asn 305 310 315 Glu Ile Ser Lys Ile Ile Ser Ala Ala Gly Asn Phe Asp Val Lys Glu 325 330 335 Glu Arg Ser Ala Ala Ser Leu Leu Gln Leu Ser Gly Asn Ala Ser Asp 340 345 350

Phe Ser Tyr Gly Arg Asn Ser Ile Thr Leu Thr Ala Ser Ala 355 360 365

<210> 12 <211> 2963 <212> DNA <213> Artificial

<220>

<223> Amp-r plasmid pVamyZHLYA (sense strand) containing amplified DNA product encoding VHH amylase; 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinker for cloning of scFv's in frame with E-tagged 'hlyA

<400> 12						
actataggga	gaccacaacg	gtttccctct	agaaataatt	ttgtttaact	ttaagaagga	60
					gcaggctggg	120
gggtctctga	gactctcctg	cacagcccct	ggattcacct	ccaatagctg	ccgcatggac	180
tggtaccgcc	aggctgcagg	gaagcagcgc	gagtgggtct	catctattag	tactgatggt	240
cgcacaagct	atgcagactc	cgtgaagggc	cgattcacca	tctccaaaga	caaagccaag	300
gacacggtgt	atctgcaaat	gaacagcctg	aaacctgagg	acacggccat	ctattactgt	360
gccgtgagga	cgaatgggta	tcgtccgcaa	tctcacgaat	ttcgctactg	gggcccgggg	420
acccaggtca	ccgtctcctc	aacggcctcg	ggggccgcgt	cgacgtccgg	cggtccgaag	480
ccttccactc	cgcccgggtc	ttcccgtatg	aaacagctgg	aagacaaagt	agaggagctc	540
cttagcaaga	actaccatct	agaaaacgag	gtagctcgtc	tgaaaaagct	tgttggtgaa	600
cgtggtggtc	accatcacca	tcaccatgcg	tcgacgcccg	ggggtgcgcc	ggtgccgtat	660
ccggatccgc	tggaaccggc	cggggaaaat	tctcttgcta	aaaatgtatt	atccggtgga	720
aaaggtaatg	acaagttgta	cggcagtgag	ggagcagacc	tgcttgatgg	cggagaaggg	780
aatgatcttc	tgaaaggtgg	atatggtaat	gatatttatc	gttatctttc	aggatatggc	840
catcatatta	ttgacgatga	aggggggaaa	gacgataaac	tcagtttagc	tgatatagat	900
ttccgggacg	ttgcctttaa	gcgagaaggg	aatgacctca	ttatgtataa	agctgaaggt	960
aatgttcttt	ctattggcca	caaaaatggt	attacattta	aaaactggtt	tgaaaaagag	1020
tcagatgatc	tctctaatca	tcagatagag	cagatttttg	ataaagacgg	cagggtaatc	1080
acaccagatt	ctcttaaaaa	agcatttgaa	tatcagcaga	gtaataacaa	ggtaagttat	1140
gtgtatggac	atgatgcatc	aacttatggg	agccaggaca	atcttaatcc	attaattaat	1200
gaaatcagca	aaatcatttc	agctgcaggt	aacttcgatg	ttaaggagga	aagatctgcc	1260
gcttctttat	tgcagttgtc	cggtaatgcc	agtgattttt	catatggacg	gaactcaata	1320
actttgacag	catcagcata	atatattaat	ttaaatgata	gcaatcttac	tgggctgtgc	1380

cacataagat	tgctatttt	020889 ttggagtcat	9-000001_sec aatggattct	List_ST25. tgtcataaaa	txt ttgattatgg	1440
gttatacgcc	ctggagattt	tagcccaata	ccataacgtc	tctgttaacc	cggaagaaat	1500
taaacataga	tttgacacag	acgggactgg	tctgggatta	acgtcatggt	tgcttgctgc	1560
gaaatcttta	gaactaaagg	taaaacaggt	aaaaaaaaca	attgaccgat	taaactttat	1620
ttctctgccc	gcattagtct	ggagagagga	tggacgtcat	tttattctga	ctaaagtcag	1680
taaagaagca	aacagatatc	ttatttctga	tctggagcag	cgaaatcccc	gtgttctcga	1740
acagtctgag	tttgaggcgt	tatatcaggg	gcatattatt	cttatcgctt	cccgttcttc	1800
tgttgccggg	aaactggcga	aatttgactt	tacctggttt	attcctgcca	ttataaaata	1860
caggagaata	tttattgaaa	cccttgttgt	gtctgttttt	ttacaattat	ttgcattaat	1920
aacccccctt	ttttttcagg	tggttatgga	caaagtatta	gtgcacaggg	gattttcaac	1980
tcttaatgtt	attactgtcg	cattatctgt	tgtggtggtg	tttgagatta	tactcagcgg	2040
tttaagaact	tacatttttg	cacatagtac	aagtcggatt	gatgttgagt	tgggtgccaa	2100
actcttccgg	catttactgg	cgctaccgat	ctcttatttt	gagagtcgtc	gtgttggtga	2160
tactgttgcc	agggtaagag	aattagacca	gatccgtaat	tttctgacag	gacaggcatt	2220
aacatctgtt	ctggacttat	tattttcatt	catatttttt	gcggtaatgt	ggtattacag	2280
tccaaagctt	actctggtga	tcttattttc	gctgccttgt	tatgctgcat	ggtctgtttt	2340
tattagcccc	attttgcgac	gtcgccttga	tgataagttt	tcacggaatg	cggataatca	2400
atctttcctg	gtggaatcag	tcacggcgat	taacactata	aaagctatgg	cagtctcacc	2460
tcagatgacg	aacatatggg	acaaacaatt	ggcaggatat	gttgctgcag	gcttcaaagt	2520
gacagtatta	gcaaccattg	gtcaacaagg	aatacagtta	atacaaaaga	ctgttatgat	2580
catcaacctg	tggttgggag	cacacctggt	tatttccggg	gatttaagta	ttggtcagtt	2640
aattgctttt	aatatgcttg	ctggtcagat	tgttgcaccg	gttattcgcc	ttgcacaaat	2700
ctggcaggat	ttccagcagg	ttggtatatc	agttacccgc	cttggtgatg	tgcttaactc	2760
tccaactgaa	agttatcatg	ggaaactggc	attaccggaa	attaatggtg	atatcacttt	2820
tcgtaatatc	cggtttcgct	ataagcctga	ctctccggtt	attttagata	atatcaatct	2880
cagtattaag	cagggggagg	ttattggtat	tgtcggacgt	tctggttcag	gaaaaagcac	2940
attaactaaa	ttaattcaac	gtt				2963

<210> 13 <211> 2963 <212> DNA <213> Artificial

<220> <223>

Amp-r plasmid pVamyZHLYA (missense strand) containing amplified DNA product encoding VHH amylase; 23-kDa C-terminal domain of Page 15

020889-000001_Seq_List_ST25.txt
HlyA with E-tag epitope incorporated at the 22 kg- at

HlyA with E-tag epitope incorporated at the 23 and polylinker for cloning of scFv's in frame	-kDa domain o with E-tagged	f Hlya 'hlya
<400> 13		-
tgatatccct ctggtgttgc caaagggaga tctttattaa aacaaattg		60
ctatataggt accgagtcca cgtcgaccac ctcagaaccc ctccgagcc		120
cccagagact ctgagaggac gtgtcgggga cctaagtgga ggttatcga		180
accaaggcgg tccgacgtcc cttcgtcgcg ctcacccaga gtagataato		240
gcgtgttcga tacgtctgag gcacttcccg gctaagtggt agaggtttc		300
ctgtgccaca tagacgttta cttgtcggac tttggactcc tgtgccggta		360
cggcactcct gcttacccat agcaggcgtt agagtgctta aagcgatgad	cccgggcccc	420
tgggtccagt ggcagaggag ttgccggagc ccccggcgca gctgcaggco	gccaggcttc	480
ggaaggtgag gcgggcccag aagggcatac tttgtcgacc ttctgtttca	ı tcttctcgag	540
gaatcgttct tgatggtaga tcttttgctc catcgagcag actttttcga	acaaccactt	600
gcaccaccag tggtagtggt agtggtacgc agctgcgggc ccccacgcgg	ccacggcata	660
ggcctaggcg accttggccg gcccctttta agagaacgat ttttacataa	taggccacct	720
tttccattac tgttcaacat gccgtcactc cctcgtctgg acgaactacc	gcctcttccc	780
ttactagaag actttccacc tataccatta ctataaatag caatagaaag	tcctataccg	840
gtagtataat aactgctact tcccccttt ctgctatttg agtcaaatcg	actatatcta	900
aaggccctgc aacggaaatt cgctcttccc ttactggagt aatacatatt		960
ttacaagaaa gataaccggt gtttttacca taatgtaaat ttttgaccaa		1020
agtctactag agagattagt agtctatctc gtctaaaaac tatttctgcc	gtcccattag	1080
tgtggtctaa gagaattttt tcgtaaactt atagtcgtct cattattgtt	ccattcaata	1140
cacatacctg tactacgtag ttgaataccc tcggtcctgt tagaattagg	taattaatta	1200
ctttagtcgt tttagtaaag tcgacgtcca ttgaagctac aattcctcct	ttctagacgg	1260
cgaagaaata acgtcaacag gccattacgg tcactaaaaa gtatacctgc		1320
tgaaactgtc gtagtcgtat tatataatta aatttactat cgttagaatg	acccgacacg	1380
gtgtattcta acgataaaaa aacctcagta ttacctaaga acagtatttt	aactaatacc	1440
caatatgcgg gacctctaaa atcgggttat ggtattgcag agacaattgg	gccttcttta	1500
atttgtatct aaactgtgtc tgccctgacc agaccctaat tgcagtacca	acgaacgacg	1560
ctttagaaat cttgatttcc attttgtcca ttttttttgt taactggcta	atttgaaata	1620
aagagacggg cgtaatcaga cctctctcct acctgcagta aaataagact	gatttcagtc	1680
atttcttcgt ttgtctatag aataaagact agacctcgtc gctttagggg		1740
tgtcagactc aaactccgca atatagtccc cgtataataa gaatagcgaa		1800
Page 16	5 5	

```
acaacggccc tttgaccgct ttaaactgaa atggaccaaa taaggacggt aatatttat
                                                                     1860
gtcctcttat aaataacttt gggaacaaca cagacaaaaa aatgttaata aacgtaatta
                                                                     1920
ttggggggaa aaaaaagtcc accaatacct gtttcataat cacgtgtccc ctaaaagttg
                                                                     1980
agaattacaa taatgacagc gtaatagaca acaccaccac aaactctaat atgagtcgcc
                                                                     2040
aaattcttga atgtaaaaac gtgtatcatg ttcagcctaa ctacaactca acccacggtt
                                                                     2100
tgagaaggcc gtaaatgacc gcgatggcta gagaataaaa ctctcagcag cacaaccact
                                                                     2160
atgacaacgg tcccattctc ttaatctggt ctaggcatta aaagactgtc ctgtccgtaa
                                                                     2220
ttgtagacaa gacctgaata ataaaagtaa gtataaaaaa cgccattaca ccataatgtc
                                                                     2280
aggtttcgaa tgagaccact agaataaaag cgacggaaca atacgacgta ccagacaaaa
                                                                     2340
ataatcgggg taaaacgctg cagcggaact actattcaaa agtgccttac gcctattagt
                                                                     2400
tagaaaggac caccttagtc agtgccgcta attgtgatat tttcgatacc gtcagagtgg
                                                                     2460
agtctactgc ttgtataccc tgtttgttaa ccgtcctata caacgacgtc cgaagtttca
                                                                     2520
ctgtcataat cgttggtaac cagttgttcc ttatgtcaat tatgttttct gacaatacta
                                                                     2580
gtagttggac accaaccctc gtgtggacca ataaaggccc ctaaattcat aaccagtcaa
                                                                     2640
ttaacgaaaa ttatacgaac gaccagtcta acaacgtggc caataagcgg aacgtgttta
                                                                     2700
gaccgtccta aaggtcgtcc aaccatatag tcaatgggcg gaaccactac acgaattgag
                                                                     2760
aggttgactt tcaatagtac cctttgaccg taatggcctt taattaccac tatagtgaaa
                                                                     2820
agcattatag gccaaagcga tattcggact gagaggccaa taaaatctat tatagttaga
                                                                     2880
gtcataattc gtcccctcc aataaccata acagcctgca agaccaagtc ctttttcgtg
                                                                     2940
taattgattt aattaagttg caa
                                                                     2963
```

<210> 14 <211> 423 <212> PRT

<213> Artificial

<220>

<223> Amp-r plasmid pVamyZHLYA (protein) containing amplified DNA product encoding VHH amylase (Vamy); 23-kDa C-terminal domain of HlyA with E-tag epitope incorporated at the 23-kDa domain of HlyA and polylinker for cloning of scFv's in frame with E-tagged 'hlyA

<400> 14

Met Ala Gln Val Gln Leu Val Glu Ser Trp Gly Gly Ser Val Gln Ala
5 10 15

Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Pro Gly Phe Thr Ser Asn 20 25 30

Ser	Cys	Arg 35	Met	Asp	Trp	(Tyr	02088 Arg	39-00 Gln	00001 Ala	L_Sec Ala	ղ_Lis Gly	st_st Lys	Γ25.t Gln	xt Arg	Glu
		33					40					45			
Trp	Va1 50	Ser	Ser	Ile	Ser	Thr 55	Asp	Gly	Arg	Thr	Ser 60	Tyr	Ala	Asp	Ser
Va1 65	Lys	Gly	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Lys 75	Ala	Lys	Asp	Thr	Va1 80
Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Lys	Pro	Glu 90	Asp	Thr	Ala	Ile	Tyr 95	Tyr
Cys	Ala	۷al	Arg 100	Thr	Asn	Gly	Tyr	Arg 105	Pro	Gln	Ser	ніѕ	G]u 110	Phe	Arg
Tyr	Trp	Gly 115	Pro	Gly	Thr	Gln	Val 120	Thr	Val	Ser	Ser	Thr 125	Ala	Ser	Gly
Ala	А]а 130	Ser	Thr	Ser	Gly	Gly 135	Pro	Lys	Pro	Ser	Thr 140	Pro	Pro	Gly	Ser
Ser 145	Arg	Met	Lys	Gln	Leu 150	Glu	Asp	Lys	Val	Glu 155	Glu	Leu	Leu	Ser	Lys 160
Asn	Tyr	His	Leu	Glu 165	Asn	Glu	Val	Ala	Arg 170	Leu	Lys	Lys	Leu	Val 175	Gly
Glu	Arg	Gly	Gly 180	His	His	His	His	His 185	His	Ala	Ser	Thr	Pro 190	Gly	Gly
Ala	Pro	Val 195	Pro	Tyr	Pro	Asp	Pro 200	Leu	Glu	Pro	Ala	G]y 205	Glu	Asn	Ser
Leu	A]a 210	Lys	Asn	Val	Leu	Ser 215	Gly	Gly	Lys	Gly	Asn 220	Asp	Lys	Leu	Tyr
G]y 225	Ser	Glu	Gly	Ala	Asp 230	Leu	Leu	Asp	Gly	G]y 235	Glu	Gly	Asn	Asp	Leu 240
Leu	Lys	Gly	Gly	Tyr 245	Gly	Asn	Asp	Ile	Tyr 250	Arg	Tyr	Leu	Ser	G]y 255	Tyr
Gly	His	His	Ile 260	Ile	Asp	Asp	Glu	Gly 265	Gly	Lys	Asp	Asp	Lys 270	Leu	Ser
Leu	Ala	Asp 275	Ile	Asp	Phe	Arg	Asp 280	Val	Ala	Phe	Lys	Arg 285	Glu	Gly	Asn

Asp Leu Ile Met Tyr Lys Ala Glu Gly Asn Val Leu Ser Ile Gly His 290 295 300

Lys Asn Gly Ile Thr Phe Lys Asn Trp Phe Glu Lys Glu Ser Asp Asp 305 310 315 320

Leu Ser Asn His Gln Ile Glu Gln Ile Phe Asp Lys Asp Gly Arg Val 325 330 335

Ile Thr Pro Asp Ser Leu Lys Lys Ala Phe Glu Tyr Gln Gln Ser Asn 340 345 350

Asn Lys Val Ser Tyr Val Tyr Gly His Asp Ala Ser Thr Tyr Gly Ser 355 360 365

Gln Asp Asn Leu Asn Pro Leu Ile Asn Glu Ile Ser Lys Ile Ile Ser 370 375 380

Ala Ala Gly Asn Phe Asp Val Lys Glu Glu Arg Ser Ala Ala Ser Leu 385 390 395 400

Leu Gln Leu Ser Gly Asn Ala Ser Asp Phe Ser Tyr Gly Arg Asn Ser 405 410 415

Ile Thr Leu Thr Ala Ser Ala 420

<210> 15

<211> 654 <212> DNA

<213> Escherichia coli

<400> 15

ggaaaattct cttgctaaaa atgtattatc cggtggaaaa ggtaatgaca agttgtacgg 60 cagtgaggga gcagacctgc ttgatggcgg agaagggaat gatcttctga aaggtggata 120 tggtaatgat atttatcgtt atctttcagg atatggccat catattattg acgatgaagg 180 ggggaaagac gataaactca gtttagctga tatagatttc cgggacgttg cctttaagcg 240 agaagggaat gacctcatta tgtataaagc tgaaggtaat gttctttcta ttggccacaa 300 aaatggtatt acatttaaaa actggtttga aaaagagtca gatgatctct ctaatcatca 360 gatagagcag atttttgata aagacggcag ggtaatcaca ccagattctc ttaaaaaagc 420 atttgaatat cagcagagta ataacaaggt aagttatgtg tatggacatg atgcatcaac 480 ttatgggagc caggacaatc ttaatccatt aattaatgaa atcagcaaaa tcatttcagc 540 tgcaggtaac ttcgatgtta aggaggaaag atctgccgct tctttattgc agttgtccgg 600

<210> 16

<211> 218

<212> PRT

<213> Escherichia coli

<400> 16

Glu Asn Ser Leu Ala Lys Asn Val Leu Ser Gly Gly Lys Gly Asn Asp $1 \hspace{1cm} 15$

Lys Leu Tyr Gly Ser Glu Gly Ala Asp Leu Leu Asp Gly Gly Glu Gly 20 25 30

Asn Asp Leu Leu Lys Gly Gly Thr Gly Asn Asp Ile Tyr Arg Tyr Leu 35 40 45

Ser Gly Tyr Gly His His Ile Ile Asp Asp Glu Gly Gly Lys Asp Asp 50 60

Lys Leu Ser Leu Ala Asp Ile Asp Phe Arg Asp Val Ala Phe Lys Arg 65 70 75 80

Glu Gly Asn Asp Leu Ile Met Tyr Lys Ala Glu Gly Asn Val Leu Ser 85 90 95

Ile Gly His Lys Asn Gly Ile Thr Phe Lys Asn Trp Phe Glu Lys Glu 100 105 110

Ser Asp Asp Leu Ser Asn His Gln Ile Glu Gln Ile Phe Asp Lys Asp 115 120 125

Gly Arg Val Ile Thr Pro Asp Ser Leu Lys Lys Ala Phe Glu Tyr Gln 130 140

Gln Ser Asn Asn Lys Val Ser Tyr Val Tyr Gly His Asp Ala Ser Thr 145 150 155 160

Tyr Gly Ser Gln Asp Asn Leu Asn Pro Leu Ile Asn Glu Ile Ser Lys 165 170 175

Ile Ile Ser Ala Ala Gly Asn Phe Asp Val Lys Glu Glu Arg Ser Ala 180 185 190

Ala Ser Leu Leu Gln Leu Ser Gly Asn Ala Ser Asp Phe Ser Tyr Gly 195 200 205

Arg Asn Ser Ile Thr Leu Thr Ala Ser Ala

```
<210>
        17
 <211>
        30
 <212>
        DNA
 <213>
        Artificial
 <220>
 <223>
        Antibody Hinge Region
 <400> 17
 cggtccgaag ccttccactc cgcccgggtc
                                                                           30
 <210>
        18
 <211>
        10
 <212>
        PRT
 <213>
        Artificial
 <220>
 <223>
        Antibody Hinge Region (Protein)
 <400>
        18
Gly Pro Lys Pro Ser Thr Pro Pro Gly Ser 10
<210>
        19
 <211>
        33
<212>
        DNA
 <213>
        Artificial
<220>
<223>
        BACKHINGE Primer
<400>
gcgtcgacgt ccggcggtcc gaagccttcc act
                                                                          33
<210>
        20
<211>
        34
<212>
       DNA
<213>
       Artificial
<220>
<223>
       FORHIS Primer
<400> 20
gcgtcgacgc atggtgatgg tgatggtgac cacc
                                                                          34
<210>
       21
<211>
       47
<212>
       DNA
<213>
       Artificial
<220>
<223>
       VHHA1 primer
<400> 21
ctatgcggcc cagccggcca tggctcaggt gcagctggtg gagtctt
                                                                          47
                                         Page 21
```

48

```
<210> 22
<211> 48
<212> DNA
<213> Artificial
<220>
<223> VHHASfil primer
<400> 22
cgtcgacgcg gcccccgagg ccgttgagga gacggtgacc tgggtccc
```