

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20MA101

APRIL 2021: END SEMESTER ASSESSMENT (ESA) B Tech 1 SEMESTER (Physics Cycle) UE20MA101: Engineering Mathematics - I

		Time: 3 Hrs Answer All Questions Max Marks: 100				
1	a)	Test the convergence of the series $1 + \frac{a \cdot b}{c} x + \frac{1}{2} \frac{a(a+1) \cdot b(b+1)}{c(c+1)} x^2 + \frac{1}{2 \cdot 3} \frac{a(a+1)(a+2) \cdot b(b+1)(b+2)}{c(c+1)(c+2)} x^3 + \dots \infty$	7 M			
	b)	Examine the convergence of the series $\sum \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$.	7 M			
	c)	Discuss the convergence of the series $1 + \frac{2}{3}x + \left(\frac{3}{4}\right)^2x^2 + \left(\frac{4}{5}\right)^3x^3 + \cdots \infty$ $(x > 0)$.	6 M			
2	a)	If $(\sqrt{x} + \sqrt{y})\sin^2 u - x^{\frac{1}{3}} - y^{\frac{1}{3}} = 0$, prove that $12x \frac{\partial u}{\partial x} + 12y \frac{\partial u}{\partial y} + tanu = 0$.	4 M			
	b)	If $z = sin^{-1}(x - y)$, $x = 3t$, $y = 4t^3$, prove that $\frac{dz}{dt} = \frac{3}{\sqrt{1 - t^2}}$ as a total derivative.	4 M			
	c)	Use Taylor's theorem to expand $f(x, y) = x^2 + xy + y^2$ in powers of $(x - 1) \& (y - 2)$ upto second degree terms.	6 M			
	d)	A tent on a square base of side x , has its sides vertical of height y and the top is a regular pyramid of height h . Find x and y interms of h , if the canvas required for its construction is to be minimum for the tent to have a given capacity.	6 M			
	1					
3	a)	Solve: $xe^x(dx - dy) + e^x dx + ye^y dy = 0$.	7 M			
	b)	Find the orthogonal trajectories of the family of curves $r = 4asec\theta tan\theta$.	6 M			
	c)	Solve: $y = xp^2 + p$.	7 M			
4	a)	Solve: $(D-1)^2(D^2+1)y = e^x + \sin^2\frac{x}{2}$	6 M			
	b)	Solve: $(D-1)^2(D^2+1)y = e^x + sin^2 \frac{x}{2}$ Solve the differential equation: $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^4 sinx$	7 M			

	c)	At time $t > 0$, an e.m.f of voltage $E = E_0(1 - cost)$, where E_0 is a constant is applied to an <i>LRC</i> circuit for which $L = R = C = 1$. Initially there is no charge or current in the circuit. Find the charge and current at time $t > 0$.	7 M			
5	a)	Evaluate $\int_0^\infty (x^2+4)e^{-2x^2}dx$.	5 M			
	b)	Show that $\int_0^{\pi/2} tan^p \theta d\theta = \frac{\pi}{2} sec \frac{p\pi}{2}$ and indicate the restriction on the values	5 M			
		of p .				
	c)	Prove that $J_{-n}(x) = (-1)^n J_n(x)$ where n is a positive integer.	5 M			
	d)	Evaluate $\int x^{-1} J_4(x) dx$ in terms of J_0 and J_1 .	5 M			