NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER II EXAMINATION 2022-2023

MH1820 Introduction to Probability and Statistical Methods

April/May 2023	Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FOUR (4) questions and comprises SEVEN (7) printed pages, including the Appendix.
- 2. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 3. Answer each question beginning on a FRESH page of the answer book.
- 4. This is a RESTRICTED OPEN BOOK exam. Each candidate is only allowed to bring in ONE DOUBLE-SIDED A4-SIZE REFERENCE SHEET WITH TEXTS HANDWRITTEN ON THE A4 PAPER (no sticky notes/post-it notes on the reference sheet). No printed material is allowed.
- 5. Tables of some probability distributions are provided in the Appendix on Page 4-7.
- 6. Candidates may use calculators. However, they should write down systematically the steps in the workings.

QUESTION 1. (30 Marks)

(a) Let X be a continuous random variable with PDF given by

$$f(x) = \begin{cases} C(1-x^2), & \text{for } -1 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (i) What is the value of C?
- (ii) Compute $\mathbb{E}[X]$ and Var[X].
- (iii) Find the PDF of $Y = e^X$.
- (b) If X has a normal distribution with mean $\mu = 3$ and variance $\sigma^2 = 9$, find $\mathbb{P}(|X-3| > 6)$ in terms of $\Phi(z)$, the CDF of the standard normal random variable Z.
- (c) Suppose X has the uniform distribution U(1,3) on the interval [1,3]. Using the definition of moment generating function (MGF), find the MGF $M_X(t)$ of X.
- (d) Each game you play is a win with probability 0.6. You plan to play 5 games, but if you win the fifth game, then you will keep on playing until you lose. Find the expected number of games that you will play.

QUESTION 2. (20 Marks)

- (a) The weight X (in grams) of a randomly selected chocolate bar produced by a company is normally distributed with mean μ and variance σ^2 which is unknown. Due to a potential fault in a machine, the company suspects that the mean weight is less than 300 grams. We shall test the null hypothesis H_0 : $\mu = 300$ against the alternative hypothesis H_1 : $\mu < 300$, with a significance level of $\alpha = 0.05$. A random sample of n = 30 yielded a mean of $\overline{x} = 280$ and standard deviation s = 60.
 - (i) What is the *p*-value of the test?
 - (ii) What is the conclusion of the test?
- (b) Let $X_1, X_2, ..., X_{12}$ be a random sample of size n = 12 from the normal distribution $N(\mu, \sigma^2)$. We shall test the null hypothesis H_0 : $\sigma^2 = 10$ against the alternative hypothesis H_1 : $\sigma^2 = 35$.
 - (i) Find a rejection criteria for the test, where the size of the test is $\alpha = 0.05$.
 - (ii) Estimate the probability of a Type II Error with the rejection criteria in (i).

QUESTION 3. (25 Marks)

(a) The joint PDF of two random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, \ 0 < y < 1; \\ 0, & \text{elsewhere.} \end{cases}$$

- (i) Find the marginal PDFs of X and Y.
- (ii) Are X and Y independent? Justify your answer.
- (iii) Compute $\mathbb{P}\left(\frac{1}{4} < X < \frac{1}{2} \mid Y = \frac{1}{3}\right)$.
- (iv) Compute $\mathbb{P}(X > Y)$.
- (b) In a number game, two participants make guesses of X and Y respectively. The joint PDF of X and Y is **uniform** (i.e. constant) on the region $1 \le x \le 10$, $1 \le y \le 9$. If |X-Y| < 1, then the two participants will be asked to guess again. What is the probability that they will be asked to guess again?

QUESTION 4. (25 Marks)

- (a) Let X_1, \ldots, X_n be i.i.d from $Poisson(\lambda)$, where λ is unknown. Find the maximum likelihood estimator for λ based on the observations $x_1 = 13$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$ (here n = 4). (Recall that if $X \sim Poisson(\lambda)$, then $\mathbb{P}(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$.)
- (b) Let D_{θ} , $0 < \theta < 1$, be the discrete distribution with the following PMF:

$$\begin{array}{c|c|c|c|c} x & 1 & 2 & 3 \\ \hline p(x) & \theta/3 & 2\theta/3 & 1-\theta \end{array}$$

Let X_1, \ldots, X_n be i.i.d drawn from D_{θ} and let \overline{X} be the sample mean. Consider an estimator for θ given by $\widehat{\theta} = \frac{1}{3}\overline{X}$.

- (i) Compute the bias and standard error for $\widehat{\theta}$.
- (ii) Find $\widehat{\theta}$ using the observations $x_1 = 2$, $x_2 = 2$, $x_3 = 1$, $x_4 = 3$ (here n = 4).
- (iii) Find an estimator of θ which is unbiased, i.e. it has zero bias.

END OF PAPER

Appendix

This table is abridged and adapted from Table III in Biometrika Tables for Statisticians, edited by E.S.Pearson and H.O.Hartley.

Table Va The Standard Normal Distribution Function f(z)0.4 0.3 $\Phi(z_0)$ 0.2 0.1 $1z_0$ $P(Z \le z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} dw$ $\Phi(-z) = 1 - \Phi(z)$ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Z 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6985 0.7019 0.7088 0.7123 0.7224 0.6950 0.7054 0.7157 0.7190 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.81060.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9875 0.9884 0.9890 0.9861 0.9864 0.9868 0.9871 0.9878 0.9881 0.9887 0.9904 2.3 0.9893 0.9896 0.9898 0.9901 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9941 0.9943 0.9945 0.9948 0.9949 0.9952 0.9938 0.9940 0.9946 0.9951 2.6 0.9955 0.9956 0.9957 0.9959 0.9961 0.9962 0.9953 0.9960 0.9963 0.9964 2.7 0.9967 0.9969 0.9971 0.9972 0.9973 0.9965 0.9966 0.9968 0.9970 0.9974 2.8 0.9979 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0.9987 0.9988 0.9989 0.9990 3.0 0.9987 0.9987 0.9988 0.9989 0.9989 0.9990 0.400 0.300 0.200 0.100 0.050 0.025 0.020 0.010 0.005 0.001 α 0.253 0.524 0.842 1.282 1.645 1.960 2.054 2.326 2.576 3.090 z_{α}

1.960

2.240

2.326

2.576

2.807

3.291

0.842

 $z_{\alpha/2}$

1.036

1.282

1.645

$$P(Z>z_{\alpha})=\alpha$$

$$P(Z > z) = 1 - \Phi(z) = \Phi(-z)$$

z_{α}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901 0.0749	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764		0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6 1.7	0.0548 0.0446	0.0537 0.0436	0.0526 0.0427	0.0516 0.0418	0.0505 0.0409	0.0495 0.0401	0.0485 0.0392	0.0475 0.0384	0.0465 0.0375	0.0455 0.0367
1.7	0.0440	0.0450	0.0427	0.0418	0.0409	0.0401	0.0392	0.0307	0.0373	0.0307
1.9	0.0337	0.0331	0.0274	0.0268	0.0323	0.0322	0.0250	0.0244	0.0301	0.0234
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0163
2.1	0.0179	0.0174	0.0170	0.0100	0.0102	0.0138	0.0134	0.0136	0.0140	0.0143
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002

				$P(T \le t)$			
	0.60	0.75	0.90	0.95	0.975	0.99	0.995
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841
4 5	0.277 0.271 0.267	0.741 0.727	1.533 1.476	2.132 2.015	2.776 2.571	3.747 3.365	4.604 4.032
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012
14	0.258	0.692	1.345	1.761	2.145	2.624	2.997
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576

This table is taken from Table III of Fisher and Yates: Statistical Tables for Biological, Agricultrual, and Medical Research, published by Longman Group Ltd., London (previously published by Oliver and Boyd, Edinburgh).