Low-Power Positionierung in Sensornetzwerken

3rd Summerschool, 14.09.2004 Schloss Dagstuhl

Jan Blumenthal, Universität Rostock

Gliederung

- Einleitung
- Mathematische Methoden
- Komplexitätsbetrachtungen und Energieverbrauch
- Positionsbestimmung in Sensornetzwerken
- Aktuelle Algorithmen

Einleitung

Definition

- Sensornetzwerke:
 - Hunderte Sensorknoten
 - Zufällige Platzierung
 - Drahtlose Kommunikation
- Eigenschaften
 - Sich änderndeNetzwerktopologie
 - Fehleranfälligkeit
 - Selbstorganisierend
 - Ressourcenarm

Motivation

- Analysieren, Beobachten, Entdecken, Überwachen
- z.B. in der Umwelt durch die Überwachung von:
 - Tornados
 - waldbrandgefährdeten Gebieten

Grundlagen

- Warum Positionsbestimmung?
 - Zuordnung: Messung ↔ Ort
 - Effizientes Routing
 - Selbstkonfigurierbarkeit
- Probleme:
 - Zufällige Verteilung der Knoten
 - GPS nicht auf jedem Knoten installierbar
- Lösung:
 - Wenige Knoten mit GPS → Beacons
 - Restliche Knoten → Unbekannte
 - Positionsbestimmung

Mathematische Methoden zur Positionsbestimmung

Einordnung

Triangulation

Die Triangulation ist ein Positionsbestimmungsverfahren, bei dem die Punkte nur aus Winkelmessungen zwischen den Punkten ermittelt werden.

Gleichungen für 3 Knoten im 2D-Fall:

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(\alpha)$$

$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos(\beta)$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\gamma)$$

Fazit:

- 3 Messwerte (α, β, γ) erforderlich
- 1 Position (A, B oder C) sinnvoll
- Maßstab
- Gleichungssystem eindeutig bestimmbar

Trilateration

Die Trilateration ist ein Positionsbestimmungsverfahren, bei dem die Punkte nur durch Streckenmessungen bestimmt werden.

Gleichungen für 3 Knoten im 2D-Fall:

$$\sqrt{(x_1 - x)^2 + (y_1 - y)^2} = |\overrightarrow{r_1}|$$

$$\sqrt{(x_2-x)^2+(y_2-y)^2} = |\vec{r_2}|$$

$$\sqrt{(x_3-x)^2+(y_3-y)^2} = |\overrightarrow{r_3}|$$

Fazit:

- 3 Messwerte (r₁...r₃) erforderlich
- 3 Positionen (P₁...P₃) gegeben
- 1 absolute Position sinnvoll
- Gleichungssystem ist eindeutig bestimmbar

Besonderheiten in Sensornetzwerken

Sensornetzwerk mit vielen Knoten

- Alle Knoten erhalten Informationen über Nachbarn, z.B. durch Distanzmessungen
- Jeder Knoten benötigt lediglich eigene Position (2 Werte)
 - Anzahl Eingangsdaten>>Anzahl Ausgangsdaten
 - Überbestimmtes Gleichungssystem

Überbestimmte Trilateration (1 aus 4)

Sensornetzwerk mit 5 Knoten

Geg: • 4 bekannte Nachbarn P_k(x_k,y_k) mit k=A,B,C,D

Strecken r_{ii} zwischen P_k und P_i

Ges: • Unbekannte Position P_i(x_i,y_i)

Basisbeziehungen

$$r_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$$

$$b_{ij} = r_{ij_{measured}} - r_{ij_{determined}}$$

Lösungsansatz

Matrix aus Gleichungen aufstellen

$$A \cdot x = b$$

$$A \cdot x = b$$
 \Longrightarrow $x = (A^T A)^{-1} A^T b$

Überbestimmte Trilateration (n aus m)

Sensornetzwerk mit m+n Knoten:

- Gleichzeitige Berechnung von mehreren Positionen
- Gegenseitige Abhängigkeit zwischen unbekannten Positionen
- Redundanzausnutzung

Ansatz:

Lösungsformel erweitern

$$x = (A^T A)^{-1} A^T b$$

Problem:

- Zentrale Berechnung
- Berechnung wird noch komplexer
- Zeit- und kommunikationsaufwändig

Überbestimmte Trilateration (n aus m)

: Knoten mit bekannter Position

▲ : Knoten mit unbekannter Position

Resultierende Matrix:

- x=Verbindung (symbolisiert math. Term)
- 0=keine Verbindung
- Riesige Matrix
- Matrix symmetrisch dünn besetzt!

	X ₁	Y ₁	X ₂	Y ₂	X ₃	Y ₃	X ₄	Y ₄	X ₅	Y ₅	X ₆	Y ₆
X ₁	X	X	X	X	X	X	X	X	0	0	0	0
Y ₁		X	X	X	X	X	X	X	0	0	0	0
X ₂			X	X	X	X	0	0	X	X	0	0
y ₂				X	X	X	0	0	X	X	0	0
X ₃					X	X	X	X	X	X	X	X
Y ₃						X	X	X	X	X	X	Χ
X_4							X	Χ	0	0	X	X
y ₄								X	0	0	X	X
X ₅									X	X	X	Χ
Y ₅										X	X	Χ
X ₆											Χ	X
Y ₆												Χ

Beispiel:

Geg.:

Ges: Position von P

- 4 Messwerte (r₁...r₄)
- 4 Knotenpositionen (x₁...x₄,y₁...y₃)
- 2 Unbekannte (x,y)
- r_i=Abstand von P_i zu P
- d_{i1}=Abstand von P_i zu P₁

P _i	X _i	y _i	r _i	d _{i1}
1	1	1	2	0
2	3	4	3	$\sqrt{13}$
3	9	1	6	8
4	6	1	4	5

Herleitung des Gleichungssystems

$$\sqrt{(x-x_i)^2 + (y-y_i)^2} = |\overrightarrow{r_i}|$$

$$(x-x_i)^2 + (y-y_i)^2 = r_i^2$$

$$(x-x_j + x_j - x_i)^2 + \dots = r_i^2$$

$$((x-x_j) - (x_i - x_j))^2 + \dots = r_i^2$$

$$(x-x_j)^2 - 2(x-x_j)(x_i - x_j) + (x_j - x_i)^2 + \dots = r_i^2$$

Abstandsgleichung

 $P_j(x_j,y_j)$ =bekannter Referenzpunkt + x_j - x_j

Klammern setzen: a=x-x_j, b=x_j-x_i

Bin. Formeln: (a-b)²=a²-2ab+b²

$$(x-x_j)(x_i-x_j)+...=-\frac{r_i^2-(x-x_j)^2-(x_j-x_i)^2+...}{2}$$

$$r_j^2 = (x - x_j)^2 + (y - y_j)^2$$

$$d_{ij}^2 = (x_j - x_i)^2 + (y_j - y_i)^2$$

$$\dots = \frac{r_j^2 - r_i^2 + d_{ij}^2}{2}$$

Herleitung des Gleichungssystems II

Allgemeine Form:	$(x-x_j)(x_i-x_j)+(y-y_j)(y_i-y_j)=\frac{r_j^2-r_i^2+d_{ij}^2}{2}$
Referenzpunkt j=1:	$(x-x_1)(x_i-x_1)+(y-y_1)(y_i-y_1)=\frac{r_1^2-r_i^2+d_{i1}^2}{2}$
Gleichungssystem für Beispiel:	$(x-x_1)(x_2-x_1)+(y-y_1)(y_2-y_1) = \frac{r_1^2-r_2^2+d_{21}^2}{2}$ $(x-x_1)(x_3-x_1)+(y-y_1)(y_3-y_1) = \frac{r_1^2-r_3^2+d_{31}^2}{2}$ $(x-x_1)(x_4-x_1)+(y-y_1)(y_4-y_1) = \frac{r_1^2-r_2^2+d_{21}^2}{2}$

Herleitung des Gleichungssystems III

Allg. Gleichung für für Beispiel:	$(x-x_1)(x_i-x_1)+(y-y_1)(y_i-y_1)=\frac{r_1^2-r_i^2+d_{i1}^2}{2}$
Matrixschreibweise:	$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \\ x_4 - x_1 & y_4 - y_1 \end{vmatrix} \bullet \begin{vmatrix} x - x_1 \\ y - y_1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} r_1^2 - r_2^2 + d_{21}^2 \\ r_1^2 - r_3^2 + d_{31}^2 \\ r_1^2 - r_4^2 + d_{41}^2 \end{vmatrix}$ $\stackrel{\triangle}{\underline{\mathbf{A}}} \bullet \qquad \stackrel{\underline{\mathbf{X}}}{\underline{\mathbf{X}}} = \stackrel{\underline{\mathbf{b}}}{\underline{\mathbf{b}}}$
Zu lösendes Gleichungssystem:	$\begin{vmatrix} 2 & 3 \\ 8 & 0 \\ 5 & 0 \end{vmatrix} \cdot \begin{vmatrix} x - x_1 \\ y - y_1 \end{vmatrix} = \begin{vmatrix} 4 \\ 16 \\ 10 \end{vmatrix}$

Methode der kleinsten Quadrate (MdkQ)

$$Ax = b$$

$$Ax - b = 0$$

$$r = Ax - b$$

Allg. Lösung für quadratische Matrizen mit expliziter Lösung

<u>r</u>=Residuenvektor für überbestimmte Gleichungssysteme

<u>r</u>=Ax-b muß orthogonal auf Spaltenraum von A liegen bzw. äquivalent in Nullraum A^{T} .

Skalarprodukt aus A^T und \underline{r} gleich Null setzen, dann steht A^T senkrecht auf r.

$$A^{T} r = 0$$

$$A^{T} (Ax - b) = 0$$

$$A^{T} Ax - A^{T} b = 0$$

$$A^{T} Ax = A^{T} b$$

$$x = \left(A^T A\right)^{-1} A^T b$$

Allg. Lösungsformel für überbestimmte Gleichungssysteme

Methode der kleinsten Quadrate II

Ansatz: $x = (A^T A)^{-1} A^T b$

Rechenschritt	Bemerkung	Aufwand
Rang bestimmen	Gleichungssystem lösbar ?	Gleichungssystem (Gauss)
Berechnung von A ^T A	-	Matrix-Multiplikation
Inverse bilden (A ^T A) ⁻¹	Mehrdimensionale Determinanten	n Gleichungssysteme
$(A^TA)^{-1}A^T$	-	Matrix-Multiplikation
$(A^TA)^{-1}A^Tb$	-	Matrix-Multiplikation
Koordinaten extrahieren	-	n Gleichungen
Fehlerabstand	Residuenvektor	Matrix-Multiplikation

Methode der kleinsten Quadrate III

Bemerkungen:

- + Berechnung nach Schema
- + Genauigkeit steigt mit Anzahl der Eingangswerte
- + Rel. geringer Speicherverbrauch (dim(A^TA)=n)
- Berechnung sehr komplex
- Benötigt FPU
- Numerisch instabil (auch bei Floats)
 - Matlababweichung bei exakten Eingangswerten:
 2,0 vs. 2,004
- Komplizierte Berechnung der Inversen bei großen Matrizen

Alternativen zur MdkQ

Alternativen bzw. konvergenzverbessernde Verfahren

- Pivotisierung
- LR(LU)-Faktorisierung
- Singulärwertmethode
- Cholesky-Zerlegung
- QR-Zerlegung
- Gram-Schmidt-Verfahren
- Householder-Spiegelung
- Iterative Verfahren
 - Kalman Filter

Komplexitätsbetrachtungen und Energieverbrauch

Komplexität numerischer Algorithmen

- Geschwindigkeitsangabe von Algorithmen
- Gibt die Anzahl der Operationen eines Algorithmus in Abhängigkeit der Eingangsparameter n an
- Formelzeichen: O (dimensionslos)

Berechnung der Komplexität

- Zählen aller Gleitpunktoperationen
- Wertigkeit einer Operation: 1

Addition zweier Vektoren

```
z=zeros(n,1);

for i=1:n

z(i) = x(i) + y(i);

end
```

n Additionen

O(n)

Skalarprodukt zweier Vektoren

```
z=0;

for i=1:n

z(i) = z + x(i) + y(i);

end
```

- n Additionen
- n Multiplikationen

$$O=(2*n)=n$$

Ordnungskonstante

Komplexität einzelner Verfahren

Anwendung	Operationen	Komplexität
Vektoraddition	n Additionen	O(n)
Skalarprodukt	2*n	O(n)
Lösen eines linearen Gleichungssystems (Gauss)	$\left(\frac{1}{2}n^2 - \frac{1}{2}n\right) + \left(\frac{1}{2}n^2 - \frac{1}{2}n\right) + (n)$	O(n²)
Matrix Multiplikation	n ³ +n ²	O(n ³)
LU-Faktorisierung	$\frac{2}{3}n^3$	O(n³)

Komplexität und Leistungsverbrauch

Skalare Prozessoren

- 1 Operation pro Takt durch Pipelining
- Anzahl der Operationen bestimmt zu benötigenden Takte

Energieverbrauch

$$P = C_L \cdot V_{DD}^2 \cdot f + P_{Leak}$$

C₁ = Lastkapazität

 V_{DD} = Betriebsspannung

f = Taktfrequenz

n = Anzahl der Operationen

Günstigster Energieverbrauch (ohne Stalls)

$$P = C_L \cdot V_{DD}^2 \cdot n$$

Implikationen der Kommunikation

- Energieverfügbarkeit : ~1 J/mm³ einer Batterie
- Moorsch'es Gesetz für Batterien nicht absehbar
- Max. 2-20% Kapazitätserhöhung der Batterien pro Jahr

Rechnen ist ressourcenschonender als kommunizieren

Pentium 4	26,8 nJ/Operation	2,8 GHz@74,9 W
ARM7TDMI	0,06 nJ/Operation	133 MHz@8 mW
Chipcon CC1010	3,31 nJ/Operation	14,74 MHz@48mW
Atmel ATmega 128	4,1250 nJ/Operation	4 MHz@16.5 mW
Bluetooth (10 m)	90 nJ / Bit	brutto 1 MBit/s@90 mW
Bluetooth (100 m)	500 nJ / Bit	brutto 1 MBit/s@500 mW

Trends

Komplexität bei Mobilität

Geschwindigkeitsbestimmung:

- 2 Positionen
- 1 Zeitmessung

$$v_i = \frac{x_2 - x_1}{t}$$

$$O_{v} = (O(n^{3}) + O(n^{3})) \cdot O(n) = n^{4}$$

$$x_{2}-x_{1}$$
t

Komplexität steigt um mindestens eine Potenz!

Berechnung:

- Methode der kleinsten Quadrate
- Kalman-Filter

Komplexität in Sensornetzwerken

- ChipCon CC1010:
 - 8051 Mikrocontroller
 - − Takt: Bis zu 16MHz− → 16 MFlops
- Atmel ATmega 128 (Mica Mote)
 - − Takt: 4 MHz− → 4 MFlops

Beispiel: Prozessor mit 10 MFlops

n	O(n)	O(n²)	O(n³)	O(n ⁴)
10	10 ⁻⁶ s	10 ⁻⁵ s	10 ⁻⁴ s	10 ⁻³ s
100	10 ⁻⁵ s	10 ⁻³ s	10 ⁻¹ s	10 s
1000	10 ⁻⁴ s	10 ⁻¹ s	10 ² s	10 ⁵ s
			(≈ 1.7 min)	(≈ 1.2 Tage)
10000	10 ⁻³ s	10 ¹ s	10 ⁵ s	10 ⁹ s
			(≈ 1.2 Tage)	(≈ 31 Jahre)

Aber: Diese Prozessoren haben keine Floating Point Unit (FPU)!

Zusammenfassung

- Exakte mathematische Verfahren kaum nutzbar, weil
 - Keine FPU vorhanden
 - Komplexität der Algorithmen zu hoch
 - Hohe Kommunikation
 - Riesiger Speicherverbrauch durch Matrizen
 - Hoher Energieverbrauch

Positionierung in Sensornetzwerken

Klassifikation der Positionsbestimmung

Time of Arrival

- Synchronisation zwischen Sender und Empfänger erforderlich
- Zeitmessung erforderlich

Beispielrechnung

Abstand zwischen 2 Sensorknoten d=30cm

$$v_0 = 300000 \frac{km}{s}$$

$$v_{Luft} \approx \frac{2}{3}v_0 \approx 200000 \frac{km}{s}$$

$$\frac{200000km}{1s} = \frac{30cm}{t_d}$$

$$t_d = 1, 5^{-9} s = 1, 5 ns$$

$$f_d = 2\frac{1}{1,5^{-9}s} = 1.333 \, GHz$$

Fazit: Time of Arrival per Funk in Sensornetzwerken nicht anwendbar!

Positionsbestimmung mit RSSI (ideal)

RSSI = Received Signal Strength Indicator

Berechnung:

$$\mathbf{r} = \sqrt{\frac{r_{Max}^{2} \left(\left| E_{Max} \right| - \left| E_{Measured} \right| \right)}{\left| E_{Max} \right|}} \qquad 0 < \left| E_{Measured} \right| < \left| E_{Max} \right|$$

$$nicht definiert \qquad sonst$$

Idealer Signalfeldstärkeverlauf (Empfang):

$$|\vec{E}|$$
 = Signalfeldstärke (RSSI)

r = Entfernung zum Sender

Y_{Max} = Max. Übertragungsreichweite

Signalstärkemessungen Chipcon

Received Signal Strength Indicator unbrauchbar!

Signalfeldstärkemessungen WLAN

Received Signal Strength Indicator unbrauchbar!

Signalfeldstärkemessungen Bluetooth

Received Signal Strength Indicator unbrauchbar!

Bewertungskriterien

Eigenschaft	Bewertungskriterien	
	Wunsch	Realität
Genauigkeit der Eingangs- werte (z.B. RSSI)		
Genauigkeit der ermittelten Positionswerte		1
Energieverbrauch		1
Verhalten in Extremsituationen		1
Skalierung für große Netzwerke		1
Anzahl Knoten mit unbestimmbarer Position		1,2

- 1) Abhängig vom verwendeten Positionierungsverfahren
- 2) Abhängig von eingestellten Parametern

Hierarchie in Sensornetzwerken

Basisstation/Gateway:

- Feste Station
- Eigene Position bekannt
- Ressourcen unkritisch

Beacon:

- Drahtlose Knoten im Netzwerk
- Eigene Position bekannt
- Knappe Ressourcen

Einfache Sensorknoten:

- Drahtlose Knoten im Netzwerk
- Eigene Position nicht bekannt
- Sehr knappe Ressourcen

Aktuelle Algorithmen

Positionierungsalgorithmen

Positionsbestimmung

Approximierte: $\Delta > 5\%$

Exakte: Δ<5%

$$X_{Est} = \left(\frac{X_{i1} + ... X_{ik}}{k}\right)$$

Dreiecksbildung (APIT)

$$\Delta_i(x_0, y_0, d_i) = d_i - \sqrt{(x_i - x_0)^2 - (y_i - y_0)^2}$$
$$\underline{b} = (\underline{X}^T \underline{X})^{-1} \underline{X}^T \underline{y}$$

Mittelpunktbildung (Coarse Grained)

Überbest. Trilateration (Atomar, iterativ, kollaborativ)

 Δ : Fehler in der Berechnung der Position

: Beacon

: Einfacher Knoten

Coarse Grained: Modell

Voraussetzungen:

- Quadratische Anordnung der Beacons
- Beacon in Gitternetzanordnung (Infrastruktur-Verteilung)
- Kreisförmige Übertragungsreichweite
- Zufällig verteilte Sensorknoten

Ziele:

- Kleiner Positionierungsfehler
- Geringer Energieverbrauch
- Geringe Anzahl von Beacons
- Einfache Simulation und analytische Betrachtungen

Funktionsweise: Coarse Grained (CGL)¹

Positionsbestimmung:

- Knoten empfängt Nachrichten mit Positionen von n verschiedenen Beacons
- Positionsberechnung durch einfache Mittelpunktbildung
- Sensorknoten kann nur in Bereich liegen, der von allen Beacons erreicht wird

Vorteile:

- Keine RSSI Werte
- Keine Kommunikation durch einfache Knoten (nur Empfang)
- Einfache Berechnung

$$x_{i_{app}}, y_{i_{app}} = \left(\frac{1}{n} \sum_{k=1}^{n} x_{B_k}, \frac{1}{n} \sum_{k=1}^{n} y_{B_k}\right)$$

:

Zielgebiet, in dem Knoten liegt

: Übertragungsreichweite der Beacons

Positionierungsfehler in CGL

Positionierungsfehler:

 Distanz zwischen bestimmter Position und wahrer Position

$$f_i(x, y) = \sqrt{(x_{i_{app}} - x_{i_a})^2 + (y_{i_{app}} - y_i)^2}$$

 $\mathcal{X}_{i_{app}}$, $\mathcal{Y}_{i_{app}}$ = Bestimmte Koordinaten von Knoten i

 \mathcal{X}_{i_a} , \mathcal{Y}_{i_a} = Exakte Koordinaten von Knoten i

 f_i = Positionierungsfehler von Knoten i

 Gitteranordnung von 3x3 Beacons (Infrastrukturfall)

• Feldbreite 100x100

101x101 Sensorknoten

 Übertragungsreichweite der Beacons r=50

Grenzwertbetrachtungen

Positionierungsfehler maximal, wenn Übertragungsreichweite *r* der Beacons:

- Sensorknoten empfangen keine Beaconpositionen
- Keine Positionsbestimmung möglich (Unbekannte maximal)

- Alle Sensorknoten empfangen dieselben Beaconpositionen
- Alle Sensorknoten ermitteln gleichen Positionswert (Unbekannte = 0)

: Übertragungsreichweite

Feldbreite: 100x100

Grafische Lösung

Erster Ansatz zur Minimierung des Energieverbrauchs:

Ermittlung der kleinsten Übertragungsreichweite r_{small} bei der die Anzahl der Unbekannten null ist.

Aber: Positionierungsfehler nicht minimal!

Power-Error Produkt (PEP)

Energiebetrachtungen (ideal):

$$egin{align} E_{Send} &= E_{Init} + m E_{Dyn} \ &= E_{Dyn} &= E_{Bit} \cdot \left(rac{4 \cdot \pi \cdot r}{\lambda}
ight)^2 \ &= E_{Dyn} ig|_{E_{Bit} \cdot \left(rac{4 \cdot \pi}{\lambda}
ight)^2 = 1} &= r^2 \ &= r^2 \$$

Power-Error-Produkt:

$$PEP = E_{Dyn} \cdot f_{l_{mean}}$$

$$= r^2 \cdot \frac{\sum_{i=1}^{l} f_i}{l}$$

Performance-Indikator für Optimierungsproblem aus Übertragungsreichweite, Unbekannten und Positionierungsfehler m = Anzahl der zu übertragenden Bits
 E_{Init} = Initialisierungsenergie des Transmitters
 E_{Dyn} = Übertragungsenergie für ein Bit
 λ = Wellenlänge
 r = Übertragungsreichweite der Beacons
 PEP = Power-Error-Produkt
 Anzahl der Sensorknoten im Netzwerk

L = Anzahl der Sensorknoten im Netzwerk

r = Distanz

 f_i = Positionierungsfehler in einem Sensorknoten

 $f_{l_{mean}}$ = Durchschnittlicher Positionierungsfehler

Graphical Solution II

Bestimmung der optimalen Übertragungsreichweite:

- Ermittlung von r_{small} für Unbekannte=0
- Lokalisieren des PEP-Minimums für r_{small} ≤ r_{opt} (hier: 18≤22)

Weitere Abhängigkeiten

Erkenntnis:

Optimale Übertragungsreichweite ist ebenfalls abhängig von der Anzahl der Beacons

Optimalkriterium

 $\ddot{U}RW_{Opt} = f(\Delta, \#Beacons)$

Anwendung

Energieminimierung

Distanz zwischen Beacons

Definitionen:

d = Distanz zwischen zwei Beacons

w = Ausdehnung des Sensornetzwerkes

n = Anzahl der Beacons

Gleichung 1:

$$d = \frac{w}{\sqrt{n-1}}$$

Beispiel:

$$d = \frac{150}{\sqrt{16} - 1} = \frac{150}{3} = 50$$

Sensornetzwerk (w=150, n=16)

Granularität

Granularität:

- Verhältnis zwischen Übertragungsreichweite der Beacons r und der Distanz d
- Granularität ist unabhängig von
 - Ausdehnung des Sensornetzwerkes w
 - Anzahl der Beacons n

Gleichung 2:
$$G = \frac{r}{d}$$

d = Distanz zwischen zwei Beacons

w = Ausdehnung

r = Übertragungsreichweite

G = Granularität

= Übertragungsreichweite

= Beacon

Skalierung

Ist die Granularität G wirklich unabhängig von der Feldgröße und der Anzahl der Beacons?

$$d_1 = d_2$$

 $r = r$
 $n_1 = 4$

$$n_1 = 4$$

$$n_2 = 16$$

G ist unabhängig von der Feldgröße wund der Anzahl der Beacons *n*!

Optimale Granularität

$$G_{opt} = \frac{r_{opt}}{d} \longrightarrow \mathbf{G_{opt} \ existient!}$$

Optimale Granularität:

- Unabhängig von Feldgröße w und Anzahl der Beacons n
- G_{opt} = konstant
- Wird benutzt, um r_{opt} zu berechnen.

Optimale Übertragungsreichweite

Bereits eingeführt:

$$d = \frac{w}{\sqrt{n-1}}$$

Herleitung von ropt

$$G_{opt} = \frac{r_{opt}}{d}$$

$$r_{opt} = G_{opt} d$$

$$r_{opt}(w,n) = \frac{G_{opt} \cdot w}{\sqrt{n} - 1}$$

d = Distanz zwischen Beacons

w = Feldgröße

n = Anzahl der Beacons

r = Übertragungsreichweite

G = Granularität

Bestimmung von G_{Opt}

Bestimmung von Gopt?

- Bestimmung des Positionierungsfehlers A durch Variation von r und d
- Bestimmung von r_{opt} an Distanzen di mit kleinstem Positionierungsfehler

$$G_{opt_i} = \frac{r_{opt_i}}{d_i}$$

Ergebnis:

- G_{opt} is konstant! $G_{opt} \approx 0.86$

Stochastische Beaconverteilung

- Ähnlicher Verlauf der optimalen Übertragungsreichweite wie im Infrastrukturfall
- Min. Positionierungsfehler steigt von 3% auf 9% gegenüber Infrastruktur-Fall

APIT: Algorithmus

- Sensornetzwerk aus Knoten und n Beacons
- Hohe Sensorknotendichte
- Beacons senden Positionen aus
- Sensorknoten empfangen Beaconposition
 - Messung der Empfangsfeldstärke
- Bildung von $\binom{n}{3}$ Dreiecken aus Position aller Beacons

In welchen Dreiecken befindet sich der Sensorknoten?

APIT: PIT-Test

Point-In-Triangulation (PIT) Test:

- Austausch der Beacondaten von 4 Nachbarn-Sensorknoten (1,2,3,4) nötig
- Vergleich: Abstände von Nachbarn zu Beacons (A,B,C) mit eigenen Abständen zu Beacons (Bedingung: 2 kürzer, 1 länger)
- PIT bestanden, wenn Vergleich mit allen 4 Nachbarn erfolgreich

Sensorknoten nicht im Dreieck

APIT: Aggregation

APIT-Aggregation:

- Diskretisierung der Dreiecke (SCAN Algorithmus)
- Überlagerung aller Dreiecke
- Übereinanderliegende Flächen inkrementieren

Positionsbestimmung:

Schwerpunktbildung aus resultierender Fläche

APIT-Aggregation

Verbesserung APIT

Anzahl positionsloser Knoten verringern:

- Ansatz: Weitflächigere Verteilung der Beacons
 Bestimmung eines optimalen äußeren Bereiches
- Vorteil: < 2% unbekannte Positionen
- Nachteil: Steigender Fehler durch größere Dreiecke

Verbesserung II - APIT

Frage: Optimale Übertragungsreichweite der Beacons

Ergebnis: Kompromiss: Reichweite Beacons ⇔ # unbekannte Positionen ⇔

Positionierungsfehler Δ

Beispiel: Gegeben: Anzahl der Beacons 10%, ≤5% unbekannte Positionen

Lösung: Beacon-Reichweite_{optimal} = 35, Rel. Δ = 7.5%

Verringerung des Energieaufwands für Kommunikation und Berechnung

Literatur

Coarse Grained

- N. Bulusu, et. al.: "GPS-less Low Cost Outdoor Localization For Very Small Devices"
- J. Blumenthal, F. Reichenbach, M. Handy, D. Timmermann: "Optimal Adjustment Of The Coarse Grained Localization-Algorithm For Wireless Sensor Networks", Proceedings of 1st Intl. Workshop on Positioning, Navigation, and Communication WPNC'2004, Hanover, March 2004

<u>APIT</u>

Tian He, et. al.: "Range-Free Localization Schemes for Large Scale Sensor Networks", MobiCom 2003

Vielen Dank

