LISTA DE EJERCICIOS 3: ECUACIONES DIFERENCIALES PARCIALES I

UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ PRIMER SEMESTRE 2024

PROFESOR: OSCAR RIAÑO

1. Preliminares y ecuación de Laplace

Ejercicio 1. Sea U un abierto acotado de \mathbb{R}^n tal que su borde $\partial U = \overline{U} \setminus U$ es de clase C^1 . Muestre:

i) Formula de integración por partes: Sean $i=1,\ldots,n$ fijo, $u,v\in C^1(\overline{U})$. Entonces

$$\int_{U} (\partial_{x_i} u) v \, dx = \int_{\partial U} (uv) \eta_i \, dS - \int_{U} u(\partial_{x_i} v) \, dx,$$

donde η_i es la i-ésima componente del vector normal a ∂U .

- ii) Formula de Green I: $\int_U \Delta u \, dx = \int_{\partial U} \nabla u \cdot \eta \, dS$, donde η es el vector normal a la superficie ∂U .
- iii) Formula de Green II: $\int_U \nabla u \cdot \nabla v \, dx = -\int_U u \Delta v \, dx + \int_{\partial U} u (\nabla v \cdot \eta) \, dS$. iv) Formula de Green III: $\int_U \left(u \Delta v v \Delta u \right) dx = \int_{\partial U} \left(u (\nabla v \cdot \eta) v (\nabla u \cdot \eta) \right) dS$.

Sugerencia. Asuma sin demostrar que vale el teorema de la divergencia, el cual nos dice que dado $F \in C^1(\overline{U}; \mathbb{R}^n)$ un campo vectorial, se tiene

$$\int_{U} div(F) dx = \int_{\partial U} F \cdot \eta dx,$$

donde sí $F = (F_1, \dots, F_n)$, $div(F) = \frac{\partial F_1}{\partial x_1} + \dots + \frac{\partial F_n}{\partial x_n}$.

Para mostrar i) haga $F = (0, \dots, \underbrace{uv}_{\text{posición } i}, \dots, 0)$ y aplique el teorema de la

divergencia. ii) se sigue de (i) haciendo v=1 y utilizando la definición del Laplaciano. iii) también se sigue de i). Para iv) sume las dos fórmulas de iii) obtenidas de intercambiar a u por v.

Ejercicio 2. Considere la función $x \in \mathbb{R}^n \mapsto \eta(x)$ dada por

$$\eta(x) = \begin{cases} Ce^{\frac{1}{|x|^2 - 1}}, & si |x| < 1, \\ 0 & si |x| \ge 1, \end{cases}$$

donde C es tal que $\int_{\mathbb{R}^n} \eta(x) \, dx = 1$. La función anterior se llama un mollifier. Dado $\epsilon > 0$ definition $\eta_{\epsilon}(\bar{x}) = \frac{1}{\epsilon^n} \eta(\frac{x}{\epsilon}).$

i) Muestre que $\eta_{\epsilon} \in C^{\infty}(\mathbb{R}^n)$. Además muestre que $supp(\eta_{\epsilon}) = \overline{\{x \in \mathbb{R}^n : \eta_{\epsilon}(x) \neq 0\}} =$ $B(0,\epsilon)$.

ii) Sea $f \in C(\mathbb{R}^n)$. Utilizando la convolución definimos $f^{\epsilon} = \eta_{\epsilon} * f, \; \epsilon > 0^1$. Muestre que $f^{\epsilon} \in C^{\infty}(\mathbb{R}^n)$ y que $f^{\epsilon} \to f$ uniformemente en compactos $K \subset \mathbb{R}^n \ cuando \ \epsilon \to 0^+.$

Ejercicio 3. Muestre que la ecuación de Laplace $\Delta u = 0$ es invariante por rotaciones. Más precisamente, muestre que si O es una matriz ortogonal de tamaño $n \times n$ y definimos v(x) = u(Ox), entonces $\Delta v = 0$.

Ejercicio 4. Asuma que u es armónica en U. Sea $k \in \mathbb{Z}^+$, muestre que existe una constante $C_k > 0$ tal que

$$|\partial^{\alpha} u(x_0)| \le \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x_0,r))}$$

para cada bola $B(x_0,r) \subset U$ y cada multi-índice α de orden $|\alpha| = k$. Recuerde que

$$||u||_{L^1(B(x_0,r))} = \int_{B(x_0,r)} |u(x)| dx.$$

Sugerencia. Justificar la demostración hecha en el libro de Evans, Partial Differential Equations, segunda edición página 29.

Ejercicio 5. Asuma que $g \in C(\mathbb{R}^{n-1}) \cap L^{\infty}(\mathbb{R}^{n-1})^2$ y defina u como

$$u(x) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x - y|^n} \, dy,$$

 $x \in \mathbb{R}^n_+$. Muestre que

- i) $u \in C^{\infty}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$.
- $\begin{array}{ll} \text{ii)} & \Delta u = 0 \text{ en } \mathbb{R}^n_+. \\ \text{iii)} & \lim_{\substack{x \to x^0 \\ x \in \mathbb{R}^n_+}} u(x) = g(x^0) \text{ para cada punto } x^0 \in \partial \mathbb{R}^n_+. \end{array}$

Sugerencia. Justificar la demostración hecha en el libro de Evans, Partial Differential Equations, segunda edición, Teorema 14 página 37.

Ejercicio 6. En \mathbb{R}^2 , encuentre la función de Green para el primer cuadrante $U = \{(x,y) : x > 0, y > 0\}$. Verifique su respuesta.

Sugerencia. Recuerde que la función de Green viene dada por $G(x,y) = \Phi(y - y)$ $(x) - \phi^x(y) \ donde$

$$\begin{cases} -\Delta \phi^x = 0 & en \ U, \\ \phi^x = \Phi(y - x) & en \ \partial U, \end{cases}$$

Una manera de encontrar la función ϕ^x es escribirla como suma de diferentes proyecciones de $\Phi(x-y)$ sobre cada cuadrante (siga una idea similar a lo hecho para el caso \mathbb{R}^n_{\perp}).

Ejercicio 7. Sea U un abierto de \mathbb{R}^n . Decimos que una función $v \in C^2(\overline{U})$ es subarmónica si

$$-\Delta v < 0$$
, en U .

¹Recordemos que dadas funciones f y g con "apropiadas" propiedades de integración, la convolución $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y) dy$.

²Recuerde que dado $U \subset \mathbb{R}^n$, $f \in L^{\infty}(U)$ si y solo si $||f||_{L^{\infty}} = \sup_{x \in U} |f(x)| < \infty$, es decir, si f es una función acotada en casi todo punto.

i) Demuestre que si v es subarmónica, entonces

$$v(x) \le \int_{B(x,r)} v \, dy$$
, para toda $B(x,r) \subset U$.

Sugerencia. Argumente como en la demostración de la propiedad del valor medio para la ecuación de Laplace, es decir, considere $\phi(r) = \int_{\partial B(x,r)} u(y) \, dS(y)$ y calcule $\phi'(r)$.

- ii) Como consecuencia demuestre que si U es conexo $\max_{\overline{U}} v = \max_{\partial U} v$.
- iii) Sea $\phi : \mathbb{R} \to \mathbb{R}$ una función suave convexa ($\phi'' \ge 0$). Demuestre que si u es armónica, entonces la función $v = \phi(u)$ es subarmónica.
- iv) Demuestre que si u es armónica, entonces $v = |\nabla u|^2$ es subarmónica.

Ejercicio 8. Sean U un abierto acotado con borde suave y $u \in C^2(\overline{U})$ la solución del problema

(1)
$$\begin{cases} -\Delta u = f & en U, \\ u = g & en \partial U, \end{cases}$$

donde f y g son funciones continuas. Definimos el conjunto $\mathcal{A}=\{w\in C^2(\overline{U}): w=g \ en \ \partial U\}$ y el funcional de energía

$$E[w] = \int_{U} \left(\frac{1}{2} |\nabla w|^2 - wf\right) dx.$$

Muestre que

$$E[u] = \min_{w \in \mathcal{A}} E[w].$$

Es decir, soluciones de la EDP (1) minimizan el funcional de energía $E[\cdot]$.

Sugerencia. Sea $w \in A$, puesto que u soluciona (1), tenemos que $-\Delta u - f = 0$ en U y por tanto

$$0 = \int_{U} (-\Delta u - f)(u - w) dx.$$

Integre por partes la expresión anterior para obtener el resultado deseado. Recuerde que la desigualdad de Cauchy-Schwarz implica $|\nabla u \cdot \nabla v| \leq |\nabla u| |\nabla w| \leq \frac{1}{2} |\nabla u|^2 + \frac{1}{2} |\nabla v|^2$.

Universidad Nacional de Colombia, Bogotá *Email address*: ogrianoc@unal.edu.co