HR EMPLOYEE ATTRITION ANALYSIS

25 RelationshipSatisfaction 1470 non-null

26

StandardHours

```
# import libraries
In [1]:
        import pandas as pd
        import numpy as np
        df = pd.read csv('HR-Employee-Attrition.csv')
In [2]:
        df.head()
In [3]:
Out[3]:
           Age
              Attrition
                         BusinessTravel DailyRate
                                               Department DistanceFromHome Education EducationField Emplo
        0
            41
                                         1102
                                                     Sales
                                                                        1
                                                                                 2
                                                                                      Life Sciences
                    Yes
                           Travel_Rarely
                                                Research &
        1
            49
                                          279
                                                                                 1
                                                                                      Life Sciences
                       Travel_Frequently
                    No
                                               Development
                                                Research &
        2
                                                                        2
                                                                                 2
                                                                                           Other
            37
                    Yes
                           Travel Rarely
                                         1373
                                               Development
                                                Research &
            33
                                         1392
                                                                        3
                                                                                      Life Sciences
        3
                    No Travel_Frequently
                                               Development
                                                Research &
            27
                    No
                           Travel_Rarely
                                          591
                                                                        2
                                                                                 1
                                                                                         Medical
                                               Development
       5 rows × 35 columns
        df.info()
In [4]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1470 entries, 0 to 1469
        Data columns (total 35 columns):
         #
             Column
                                        Non-Null Count Dtype
             -----
         0
            Age
                                        1470 non-null
                                                         int64
                                        1470 non-null object
         1
            Attrition
         2
            BusinessTravel
                                        1470 non-null object
         3
           DailyRate
                                        1470 non-null int64
            Department
                                        1470 non-null object
                                        1470 non-null int64
         5
             DistanceFromHome
             Education
                                        1470 non-null int64
         7
             EducationField
                                        1470 non-null object
         8
             EmployeeCount
                                        1470 non-null int64
                                        1470 non-null int64
         9
             EmployeeNumber
         10 EnvironmentSatisfaction
                                        1470 non-null int64
         11 Gender
                                        1470 non-null object
            HourlyRate
                                        1470 non-null
                                                       int64
         12
                                                       int64
         13
            JobInvolvement
                                        1470 non-null
         14 JobLevel
                                        1470 non-null int64
         15 JobRole
                                        1470 non-null object
                                        1470 non-null
         16 JobSatisfaction
                                                       int64
         17
             MaritalStatus
                                        1470 non-null object
         18 MonthlyIncome
                                        1470 non-null int64
                                        1470 non-null int64
         19 MonthlyRate
                                                       int64
         20 NumCompaniesWorked
                                        1470 non-null
         21 Over18
                                        1470 non-null object
         22 OverTime
                                        1470 non-null object
         23 PercentSalaryHike
                                        1470 non-null
                                                       int64
             PerformanceRating
                                        1470 non-null
                                                         int64
```

int64

int64

1470 non-null

```
27 StockOptionLevel
                             1470 non-null
                                            int64
28 TotalWorkingYears
                            1470 non-null int64
29 TrainingTimesLastYear
                           1470 non-null int64
30 WorkLifeBalance
                            1470 non-null int64
31 YearsAtCompany
                            1470 non-null int64
32 YearsInCurrentRole
                            1470 non-null int64
33 YearsSinceLastPromotion 1470 non-null int64
34 YearsWithCurrManager
                            1470 non-null int64
dtypes: int64(26), object(9)
memory usage: 402.1+ KB
```

In [5]: # checking for duplicate values
df.duplicated().sum()

Out[5]:

In [6]: # summary statistics
 df.describe()

DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber Environmer Out[6]: Age count 1470.000000 1470.000000 1470.000000 1470.000000 1470.0 1470.000000 36.923810 mean 802.485714 9.192517 2.912925 1.0 1024.865306 403.509100 0.0 602.024335 9.135373 8.106864 1.024165 std 18.000000 102.000000 1.000000 1.000000 1.0 1.000000 min 25% 30.000000 465.000000 2.000000 2.000000 1.0 491.250000 50% 36.000000 802.000000 7.000000 3.000000 1.0 1020.500000 75% 43.000000 1157.000000 14.000000 4.000000 1.0 1555.750000

29.000000

5.000000

1.0

2068.000000

8 rows × 26 columns

max

60.000000 1499.000000

Gender unique values are : ['Female' 'Male']

'Manufacturing Director' 'Healthcare Representative' 'Manager'

JobRole unique values are : ['Sales Executive' 'Research Scientist' 'Laboratory Technici

```
'Sales Representative' 'Research Director' 'Human Resources']

MaritalStatus unique values are : ['Single' 'Married' 'Divorced']

Over18 unique values are : ['Y']

OverTime unique values are : ['Yes' 'No']
```

OBSERVATION:

• Over18 has only one unique value (Y) which makes it irrelevant for our analysis

DATA CLEANING

```
# drop redundant columns
 In [8]:
         df.drop(['Over18', 'EmployeeCount', 'EmployeeNumber', 'StandardHours'],
                 axis=1, inplace=True)
In [9]: df.shape
         (1470, 31)
Out[9]:
In [10]: # descretization of the Age column
        bins = [17, 29, 39, 49, 60]
         group names = ['Youth', 'YoungAdult', 'MiddleAged', 'OldAdults']
         df['AgeCategory'] = pd.cut(df['Age'], bins, labels=group names)
In [11]: df['AgeCategory'].value counts()
        YoungAdult 622
Out[11]:
        MiddleAged
                      349
                       326
        Youth
        OldAdults
                     173
        Name: AgeCategory, dtype: int64
In [12]: # Encodes the Attrition column
         from sklearn.preprocessing import LabelEncoder
         label encoder = LabelEncoder()
         df['AttritionEncoded'] = label encoder.fit transform(df['Attrition'])
```

Exploratory Data Analysis(EDA)

```
In [13]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set_style('darkgrid')
```

1. UNIVARIATE

PIE CHART

```
In [14]: fig, axs = plt.subplots(2,3, figsize=(15, 8))
```

```
#Pie chart for Business Travel
df['BusinessTravel'].value_counts().plot(kind='pie',cmap='viridis',ax=axs[0][0])
#Pie chart for Attrition
df['Attrition'].value_counts().plot(kind='pie',ax=axs[0][1])
#Pie chart for Department
df['Department'].value_counts().plot(kind='pie',cmap='autumn',ax=axs[0][2])
#Pie chart for Gender
df['Gender'].value_counts().plot(kind='pie',cmap='coolwarm',ax=axs[1][0])
#Pie chart for Marital Status
df['MaritalStatus'].value_counts().plot(kind='pie',cmap='cividis',ax=axs[1][1])
#Pie chart for Overtime
df['OverTime'].value_counts().plot(kind='pie',cmap='inferno',ax=axs[1][2])
```

Out[14]: <AxesSubplot:ylabel='OverTime'>

OBSERVATIONS:

- Most of employee rarely travel and most of them dont travel
- Most of the employee have No Attrition
- Most of the employee are from the Research and Development department followed by Sales then Human Resources
- There are more Male than Female
- Most of the employee are married
- Most of the employee dont work overtime

Out[15]: Text(0.5, 1.0, 'Distribution of Age of Yes Attrition')

OBSERVATION:

The Age Distribution looks the same for both category of Attrition

```
In [16]: fig, axs = plt.subplots(3,2, figsize=(15, 15))
    sns.countplot(x=df['JobLevel'], hue=df['Attrition'], ax=axs[0][0])
    sns.countplot(x=df['JobSatisfaction'], ax=axs[0][1])
    sns.countplot(x=df['RelationshipSatisfaction'], hue=df['AgeCategory'], ax=axs[1][0])
    sns.countplot(x=df['WorkLifeBalance'], ax=axs[1][1])
    sns.countplot(x=df['StockOptionLevel'], hue=df['AgeCategory'], ax=axs[2][0])
    sns.countplot(x=df['WorkLifeBalance'], ax=axs[2][1])
```



```
In [17]: fig, axs = plt.subplots(2,2, figsize=(15, 9))
sns.histplot(df['Age'], bins=30, kde=True, ax=axs[0][0])
sns.histplot(df['MonthlyIncome'], bins=30, kde=True, ax=axs[0][1], color='brown')
sns.histplot(df['HourlyRate'], bins=30, kde=True, ax=axs[1][0],color='orange')
sns.histplot(df['MonthlyRate'], bins=30, kde=True, ax=axs[1][1],color='green')
axs[0][0].set_title('Distribution of Age')
axs[0][1].set_title('Distribution of Monthly Income')
axs[1][0].set_title('Distribution of Hourly rate')
axs[1][1].set_title('Distribution of Monthly Rate')
```


2. Bivariate

```
In [18]: fig, axs = plt.subplots(2,2, figsize=(15, 9))

sns.countplot(x=df['BusinessTravel'], hue=df['Gender'], ax=axs[0][0])
sns.countplot(x=df['JobSatisfaction'], hue=df['Gender'], ax=axs[0][1])
sns.countplot(x=df['BusinessTravel'], hue=df['MaritalStatus'], ax=axs[1][0])
sns.countplot(x=df['JobSatisfaction'], hue=df['MaritalStatus'], ax=axs[1][1])

axs[0][0].set_title('Distribution of Business Travel')
axs[0][1].set_title('Distribution of Job Satisfaction')
```

Out[18]: Text(0.5, 1.0, 'Distribution of Job Satisfaction')

In [19]: fig, axs = plt.subplots(2,2, figsize=(15, 9))
sns.barplot(x=df['Education'], y=df['MonthlyIncome'],estimator=np.mean, ax=axs[0][0])
sns.barplot(x=df['YearsWithCurrManager'], y=df['MonthlyIncome'],estimator=np.mean,ax=axs
sns.barplot(x=df['AgeCategory'], y=df['MonthlyIncome'],estimator=np.mean, ax=axs[1][0])
sns.barplot(x=df['Department'], y=df['MonthlyIncome'],estimator=np.mean, ax=axs[1][1])

Out[19]: <AxesSubplot:xlabel='Department', ylabel='MonthlyIncome'>

OBSERVATION:

- The mean Monthly income increases with Education, Age and Years with current manager
- The sales department has the mean highest monthly income followed by Human resources then Research and development

```
In [20]: fig, axs = plt.subplots(2,1, figsize=(15, 9))
sns.barplot(x=df['YearsAtCompany'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])
sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs

Cut[20]: fig, axs = plt.subplots(2,1, figsize=(15, 9))

sns.barplot(x=df['YearsAtCompany'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs

cut[20]: fig, axs = plt.subplots(2,1, figsize=(15, 9))

sns.barplot(x=df['YearsAtCompany'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs

cut[20]: fig, axs = plt.subplots(2,1, figsize=(15, 9))

sns.barplot(x=df['YearsAtCompany'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])
sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs[0])

sns.barplot(x=df['YearsInCurrentRole'], y=df['MonthlyIncome'], estimator=np.mean, ax=axs['MonthlyIncome'], estimator=np.mean, ax=a
```

Out[20]:

OBSERVATION:

- The mean monthly income increases as the number of years in the company increases
- The mean monthly income increases as the number of years in the current role increases

STATISTICAL ANALYSIS

```
In [21]: import scipy.stats as stats
In [22]: alpha = 0.05
```

CHI-SQUARE TEST OF INDEPENDENCE

1. Attrition vs Gender

- H0: There is no association between Attrition and Gender
- H1: There is an association between Attrition and Gender

```
In [23]: # Create a contingency table of Attrition and Gender
    crosstab = pd.crosstab(df['Attrition'], df['Gender'])
```

crosstab

Out[23]: Gender Female Male

Attrition

```
        No
        501
        732

        Yes
        87
        150
```

```
Chi-Square: 1.116967124197097
p-value: 0.29057244902890855
Reject H0?:
False
```

CONCLUSION:

Since we do not reject the null hypothesis, the conclusion is that there is enough evidence to support the claim that Attrition does not depend on gender

2.Attrition vs Business Travel

- H0: There is no association between Attrition and Business Travel
- H1: There is an association between Attrition and Business Travel

```
In [25]: # Create a contingency table of Attrition and Business Travel
    crosstab = pd.crosstab(df['Attrition'], df['BusinessTravel'])
    crosstab
```

Out[25]: BusinessTravel Non-Travel Travel_Frequently Travel_Rarely

Attrition

No	138	208	887
Yes	12	69	156

```
In [26]: # Perform a chi-square test for association between Attrition and Business Travel
    chi2, p_value, _, _ = stats.chi2_contingency(crosstab)

print("Chi-Square Test Results:")
print("Chi-Square:", chi2)
print("p-value:", p_value)

#reject H0?
```

```
print('\nReject H0?: ')
if p_value < alpha:
    print('True')
else:
    print('False')

Chi-Square Test Results:
Chi-Square: 24.182413685655174
p-value: 5.608614476449931e-06

Reject H0?:
True</pre>
```

CONCLUSION:

The conclusion is that there is enough evidence to support the claim that Attrition is related to how frequent an employee travels

3. ATTRITION vs DEPARTMENT

- H0: There is no association between Attrition and Department
- H1: There is an association between Attrition and Department

```
In [27]: # Create a contingency table of Attrition and Department
    crosstab = pd.crosstab(df['Attrition'], df['Department'])
    crosstab
```

Out[27]: Department Human Resources Research & Development Sales

Attrition

No	51	828	354
Yes	12	133	92

```
In [28]: # Perform a chi-square test for association between Attrition and Department
    chi2, p_value, _, _ = stats.chi2_contingency(crosstab)

print("Chi-Square Test Results:")
    print("Chi-Square:", chi2)
    print("p-value:", p_value)

#reject H0?
print('\nReject H0?: ')

if p_value < alpha:
    print('True')
else:
    print('False')

Chi-Square Test Results:
Chi-Square: 10.79600732241067</pre>
```

```
Chi-Square: 10.79600732241067
p-value: 0.004525606574479633
Reject H0?:
```

CONCLUSION:

The conclusion is that there is enough evidence to support the claim that Attrition is related to the department where the employee works

ATTRITION VS MARITAL STATUS

- H0: There is no association between Attrition and Marital Status
- H1: There is an association between Attrition and Marital Status

```
In [29]: # Create a contingency table of Attrition and Marital Status
  crosstab = pd.crosstab(df['Attrition'], df['MaritalStatus'])
  crosstab
```

Out[29]: MaritalStatus Divorced Married Single

Attrition

No	294	589	350
Yes	33	84	120

```
In [30]: # Perform a chi-square test for association between Attrition and Marital Status
    chi2, p_value, _, _ = stats.chi2_contingency(crosstab)

print("Chi-Square Test Results:")
    print("Chi-Square:", chi2)
    print("p-value:", p_value)

#reject H0?
print('\nReject H0?: ')

if p_value < alpha:
    print('True')

else:
    print('False')</pre>
```

```
Chi-Square Test Results:
Chi-Square: 46.163676540848705
p-value: 9.45551106034083e-11
Reject H0?:
True
```

CONCLUSION:

The conclusion is that there is enough evidence to support the claim that Attrition is related to the Martital Status of the employee

ATTRITION VS OVERTIME

- H0: There is no association between Attrition and Overtime
- H1: There is an association between Attrition and Overtime

```
In [31]: # Create a contingency table of Attrition and Overtime
    crosstab = pd.crosstab(df['Attrition'], df['OverTime'])
    crosstab
```

Out[31]: OverTime No Yes

Attrition

```
No 944 289
```

Yes 110 127

```
In [32]: # Perform a chi-square test for association between Attrition and Overtime
    chi2, p_value, _, _ = stats.chi2_contingency(crosstab)

print("Chi-Square Test Results:")
    print("Chi-Square:", chi2)
    print("p-value:", p_value)

#reject HO?
print('\nReject HO?: ')

if p_value < alpha:
    print('True')
else:
    print('False')</pre>
```

```
Chi-Square Test Results:
Chi-Square: 87.56429365828768
p-value: 8.15842372153832e-21
Reject H0?:
True
```

CONCLUSION:

The conclusion is that there is enough evidence to support the claim that Attrition is related to whether the employee works overtime or not