## Introduction Definitions, Sampling, Measures, Plots

**Statistics** 

Mehmet Güray Güler, PhD

Last updated: 23.02.2021

- Population: The collection of all individuals or observations of a particular type.
  - All students taking freshman courses at a university.
  - All chips manufactured on a certain day, in a given production process of a factory.
- Population Size: The number of all elements in a population.
  - Typically denoted by *N*.

- In practice we will be studying large populations.
- That is, we want to infer or extract information regarding the two important properties:
  - The mean of the population
  - The variance of the population
- It is either not <u>possible</u> or not economical to observe <u>all elements</u> of such a population, recall:
  - The heights of students in the university
  - The diameter of all produced steel valves
- So how to do it?

- Take a sample!!!
- The sample will (hopefully) have the characteristics of the population
- Their properties will reflect the properties of the population



- Sample: A subset of the population of size n
  - Should reflect the population characteristics properly.
  - Students taking this course can be a sample for this university.

#### • 1. Biased Sample:

- The elements in the sample are <u>not</u> selected at random,
- therefore the sample may not represent the population accurately.
- Example?
- 2. Random Sampling.

### Random Sampling

• The important thing in sampling is whether the sample represents the population in terms of the variables subject to research if the population is correctly and clearly defined.

 A good, representative sampling is only a small sample in terms of the number of units of the population, similar in terms of features and

model.



- A statistic
  - any function of the sample data that does not contain unknown parameters
- For the sample we can calculate the following statistics:
  - The sample mean

$$\bar{X} = \frac{\sum_{i}^{n} X_{i}}{n}$$

• The sample variance

$$S^{2} = \frac{\sum_{i}^{n} (X_{i} - \bar{X})^{2}}{n - 1}$$

## Sample Data

#### Data Series

- Dispersion Series
  - Array
  - Quantitative
    - Frequency
    - Grouped

| 53 | 53 | 59 | 60 | 60 | 60 | 66 | 66 | 74 | 74 |
|----|----|----|----|----|----|----|----|----|----|
| 77 | 77 | 77 | 81 | 81 | 81 | 81 | 84 | 84 | 89 |
| 89 | 90 | 90 | 90 | 90 | 94 | 94 | 94 | 95 | 95 |

#### Data Series

- Dispersion Series
  - Array
  - Quantitative
    - Frequency
    - Grouped

| Weight    | Frequency | Ratios     |
|-----------|-----------|------------|
| 53        | 2         | 2/30=0,067 |
| 59        | 1         | 1/30=0,033 |
| 60        | 3         | 3/30=0,100 |
| 66        | 2         | 2/30=0,067 |
| 74        | 2         | 2/30=0,067 |
| 77        | 3         | 3/30=0,100 |
| 81        | 4         | 4/30=0,133 |
| 84        | 2         | 2/30=0,067 |
| 89        | 2         | 2/30=0,067 |
| 90        | 4         | 4/30=0,133 |
| 94        | 3         | 3/30=0,100 |
| 95        | 2         | 2/30=0,067 |
| Frequency | 30        |            |

#### Data Series

- Dispersion Series
  - Array
  - Quantitative
    - Frequency
    - Grouped

| Weight   | Frequency | Ratios     |
|----------|-----------|------------|
| 50 - 60  | 3         | 3/30=0,10  |
| 60 - 80  | 10        | 10/30=0,33 |
| 80 - 90  | 8         | 8/30=0,27  |
| 90 - 100 | 9         | 9/30=0,30  |
| Toplam   | 30        |            |

## Measures of Centrality and Dispersion

Centrality

### Measures for Centrality and Dispersion

- Two very very important measures for data:
  - Where is the center?
    - Averages
  - How does the data scatter around the center?
    - Deviations

#### Averages

#### • Definition:

• Categories or scores that describe what is average or characteristics of the distribution.

#### Types

- Arithmetic average
- Geometric average
- Harmonic average
- Median
- Mode

Frequency series

$$\bar{X} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_k f_k}{f_1 + f_2 + \dots + f_k} = \frac{\sum_{i=1}^{k} x_i f_i}{\sum_{i=1}^{k} f_i}$$

Sample

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Weighted Average

$$\overline{X}_t = \frac{\sum X_i t_i}{\sum t_i}$$

- The average income of 8 workers are given in the following.
- Find the average income.

$$X_{1} = \frac{X_{i}}{640}$$

$$X_{2} = 800$$

$$X_{3} = 860$$

$$X_{4} = 980$$

$$X_{5} = 1120$$

$$X_{6} = 1160$$

$$X_{7} = 1560$$

$$X_{8} = 1680$$

- The average income of 8 workers are given in the following.
- Find the average income.

• 
$$\bar{X} = \frac{8800}{8} = 1100$$

$$X_{1} = 640$$

$$X_{1} = 800$$

$$X_{2} = 800$$

$$X_{3} = 860$$

$$X_{4} = 980$$

$$X_{5} = 1120$$

$$X_{6} = 1160$$

$$X_{7} = 1560$$

$$X_{8} = 1680$$

$$X_{8} = 1680$$

• *Frequency Series:* Parcels of a company have the following frequency table. Find the mean parcel weight.

$$\begin{array}{c|c} X_i & n_i \\ \hline 10 & 1 \\ 20 & 2 \\ 30 & 4 \\ 40 & 2 \\ 50 & \underline{1} \\ 10 \\ \end{array}$$

| $X_i$ | n <sub>i</sub> | $X_i$ . $n_i$           |
|-------|----------------|-------------------------|
| 10    | 1              | 10.1 = 10               |
| 20    | 2              | 20.2 = 40               |
| 30    | 4              | 30.4 = 120              |
| 40    | 2              | 40.2 = 80               |
| 50    | 1              | $50.1 = \underline{50}$ |
|       | 10             | 300                     |
|       |                |                         |

$$\begin{array}{c|cccc} X_i & n_i \\ \hline 10 & 1 & 10.1 = 10 \\ 20 & 2 & 20.2 = 40 \\ 30 & 4 & 30.4 = 120 \\ 40 & 2 & 40.2 = 80 \\ 50 & \underline{1} & 50.1 = \underline{50} \\ 10 & 300 \end{array}$$

$$\overline{X} = \frac{\sum_{i=1}^{10} X_i n_i}{\sum_{i=1}^{10} n_i} = \frac{300}{10} = 30 \text{ Kg}$$

• Grouped Series: What is the average tax paid by 100 companies?

| Groups(Thousand TL) | n <sub>i</sub> |
|---------------------|----------------|
| 100-200             | 7              |
| 200-300             | 18             |
| 300-400             | 25             |
| 400-500             | 30             |
| 500-600             | <u>20</u>      |
|                     | 100            |

| Groups(Thousand TL) | n <sub>i</sub> | $X_{i}$ | X <sub>i</sub> . n <sub>i</sub> |
|---------------------|----------------|---------|---------------------------------|
| 100-200             | 7              | 150     | 1050                            |
| 200-300             | 18             | 250     | 4500                            |
| 300-400             | 25             | 350     | 8750                            |
| 400-500             | 30             | 450     | 13500                           |
| 500-600             | <u>20</u>      | 550     | <u>11000</u>                    |
|                     | 100            |         | 38800                           |

$$\overline{X} = \frac{38800}{100} =$$
\$\frac{1}{5} 388

#### • (Sample) Median:

- the ordered statistics (from smallest to
- defined by:

• the ordered statistics (from smallest to largest) by: 
$$X_{(1)}, X_{(2)}, ..., X_{(n)}$$
• Then the sample median is also a statistic, defined by: 
$$\tilde{X} = \begin{cases} X_{(\frac{n+1}{2})} & \text{if } n \text{ is odd,} \\ \frac{1}{2} \left( X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)} \right) & \text{if } n \text{ is even.} \end{cases}$$

#### • Definition:

- Order the values.
  - If n is odd, then the middle value is the median
  - If n is even, then the average of two middle values is the median.
- : 1,6,3,5,2,8,5
- : 1,35,22,54,3
- : 1,35,22,5400,3

| $X_{i}$ | n <sub>i</sub> | Less than |
|---------|----------------|-----------|
| 100     | 7              | 7         |
| 200     | 18             | 25        |
| 300     | 25             | 50        |
| 400     | 30             | 80        |
| 500     | 12             | 92        |
| 600     | 8              | 100       |

| $X_{i}$ | $n_i$ | Less than |
|---------|-------|-----------|
| 100     | 7     | 7         |
| 200     | 18    | 25        |
| 300     | 25    | 50        |
| 400     | 30    | 80        |
| 500     | 12    | 92        |
| 600     | 8     | 100       |

The values are sorted from smallest to largest. The number of observations is 100. Then the median is:

$$Med = \frac{X50 + X51}{2} = \frac{300 + 400}{2} = 350 \text{ Ton}$$

### (Sample) Mode

- Definition:
  - The most frequent observation in a series
  - Can be found by converting to a frequency series
- Example: 3, 2, 0, 0, 2, 3, 3, 1, 0, 4
- Two modes here: bi modal

| ζ.       | $\frac{X}{0}$    |
|----------|------------------|
| <u>(</u> |                  |
| )        | 1<br>2<br>3<br>4 |
| )        | 2                |
|          | 3                |
|          | 4                |
|          |                  |
|          |                  |
|          |                  |
|          |                  |
|          |                  |

#### Averages – Summary

- The most used average is
  - Arithmetic mean
  - Median
- Median and mode are insensitive averages, i.e., they are insensitive to observations.
- Arithmetic mean is sensitive to the observations.
- https://www.mathsisfun.com/data/frequency-grouped-meanmedian-mode.html

# Measures of Centrality and Dispersion

**Dispersion** 

### Variability (Dispersion) Measures

- DEFINITION. Let  $X_1, X_2, ..., X_n$  be a random sample from a population.
- Let  $X_{\max} = X_{(n)}$  be the largest of these sample values and  $X_{\min} = X_{(1)}$  be the smallest of them.
- The sample range is a simple measure of the spread (variability) of the data, defined by:

- $R = X_{\max} X_{\min}$  or  $R = X_{(n)} X_{(1)}$
- 180, 192, 175, 167, 188 → 167, 175, 180, 188, 192 → 192-167 = 25

#### Variability (Dispersion) Measures

• The sample variance is a statistic, defined by:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= \frac{1}{n(n-1)} \left[ n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2} \right]$$

- The first form is the common definition, the second form is easier to use for hand calculations.
- Sample standard deviation

- Frequency Series
- Ex: Daily consumption of flour in a breakery is given in the following as a frequency series. Find its standard deviation.

| $X_{i}$ | $n_i$ |
|---------|-------|
| 10      | 1     |
| 20      | 2     |
| 50      | 3     |
| 70      | 2     |
| 80      | 1     |
| 100     | 1     |
|         | 10    |

$$\begin{array}{c|cccc} X_i & n_i & (X_i n_i) \\ \hline 10 & 1 & 10 \\ 20 & 2 & 40 \\ 50 & 3 & 150 \\ 70 & 2 & 140 \\ 80 & 1 & 80 \\ 100 & 1 & 100 \\ \hline 10 & 520 \\ \end{array}$$

$$\bar{X} = \frac{520}{10} = 52$$

| $X_i$ | $n_i$ | $(X_i n_i)$ | $(X_i - X)$ | $(X_i - X^-)^2$ |
|-------|-------|-------------|-------------|-----------------|
| 10    | 1     | 10          | -42         | 1764            |
| 20    | 2     | 40          | -32         | 1024            |
| 50    | 3     | 150         | -2          | 4               |
| 70    | 2     | 140         | 18          | 324             |
| 80    | 1     | 80          | 28          | 784             |
| 100   | 1     | 100         | 48          | 2304            |
|       | 10    | 520         |             | •               |

| $X_i$ | $n_{i}$ | $(X_i n_i)$ | $(X_i - X^-)$ | $(X_i - X^-)^2$ | $(X_i - X^-)^2 n_i$ |
|-------|---------|-------------|---------------|-----------------|---------------------|
| 10    | 1       | 10          | -42           | 1764            | 1764                |
| 20    | 2       | 40          | -32           | 1024            | 2048                |
| 50    | 3       | 150         | -2            | 4               | 12                  |
| 70    | 2       | 140         | 18            | 324             | 648                 |
| 80    | 1       | 80          | 28            | 784             | 784                 |
| 100   | _1_     | 100         | 48            | 2304            | 2304                |
|       | 10      | 520         |               | •               | 7560                |

## High Variance



#### Low Variance



Find the sample mean, the sample median, the quartiles, and the sample standard deviation for the data set:

The sample mean is simply average of these 15 numbers:

TOTAL = 
$$3+5+3+...+7 = 85 \rightarrow MEAN = 85/15 \approx 5.67$$

For the sample median and the quartiles we first order the sample values from smallest to largest:

#### The sample median and the quartiles:

Ordered data: 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9

Since n=15 is odd, the median is the middle observation, this is the  $8^{\rm th}$  observation in the ordered set

Hence **MEDIAN** = 6.

**Lower quartile**  $Q_1$  is the median of the lower half of data:

LOWER HALF: 3, 3, 4, 4, 5, 5, 5  $\rightarrow$   $Q_1 = 4$ .

Upper quartile  $Q_3$  is the median of the upper half of data:

UPPER HALF:  $6, 6, 7, 7, 7, 8, 9 \rightarrow Q_3 = 7$ .

To find the sample standard deviation for this data set, we first calculate the two important statistics, namely

$$\overset{n}{\underset{i=1}{\circ}} X_i$$
 and  $\overset{n}{\underset{i=1}{\circ}} X_i^2$ 

For 3, 5, 3, 7, 6, 6, 8, 5, 7, 4, 4, 6, 9, 5, 7 we have

$$array{1}{12} x_i = 85$$
 and  $array{1}{12} x_i^2 = 525$ 

Hence the **sample variance** is

$$S^{2} = \frac{1}{n(n-1)} \left[ n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2} \right]$$
$$= \frac{1}{(15)(14)} \left[ 15 \cdot 525 - (85)^{2} \right] = > s^{2} = 3.095.$$

and the sample standard deviation = s = 1.76.

Note that the sample range is R = 9 - 3 = 6.

We can also find the **interquartile range** as  $Q_3 - Q_1 = 7 - 4 = 3$ .

## Numerical Summary of Data

|           | Sample1 | Sample2 | Sample3 |  |
|-----------|---------|---------|---------|--|
|           | 3       | 1       | 103     |  |
|           | 5       | 5       | 105     |  |
|           | 7       | 9       | 107     |  |
| $\bar{X}$ | 5       | 5       | 105     |  |
| S         |         |         |         |  |

## Numerical Summary of Data

|           | Sample1 | Sample2 | Sample3 |  |
|-----------|---------|---------|---------|--|
|           | 3       | 1       | 103     |  |
|           | 5       | 5       | 105     |  |
|           | 7       | 9       | 107     |  |
| $\bar{X}$ | 5       | 5       | 105     |  |
| S         | 2       | 4       |         |  |

#### Numerical Summary of Data

|           | Sample1 | Sample2 | Sample3 |  |
|-----------|---------|---------|---------|--|
|           | 3       | 1       | 103     |  |
|           | 5       | 5       | 105     |  |
|           | 7       | 9       | 107     |  |
| $\bar{X}$ | 5       | 5       | 105     |  |
| S         | 2       | 4       | 2       |  |

The standard deviation does not reflect the magnitude of the sample data, only the scatter about the average

#### Coefficient of variation (CV)

- deviation per unit average
- $DK = \frac{s}{\bar{X}}$
- $DK = \frac{\sigma}{\mu}$
- Sometimes multiplied by 100.

#### Coefficient of variation (CV)

- Ex:
- Stock A and Stock B's yearly return has the following average and standard deviation values. What can you say about their deviation?
- A: 20% average, 5% SD
- B: 40% average, 20% SD
- CV(A) = 0.25 = 25%
- CV(B) = 0.50 = 50%
- Stock B has a higher relative risk.

#### Shape of a distribution

- We have covered two important measures of a data set:
  - Average
  - Dispersion
- Shape is another important measure.





 $\overline{X}$ =172cm = Med=172cm= Mod=172cm





## Data Plots

#### Example 2

- The interior temperature of a drying oven has been measured every 15 minutes for the duration of one production cycle and the following data are obtained:
- 56 46 48 50 42 43 49 48 56 50 52 47 48 56 41 37 47 49 45 44 40 55 45 44 50 45 44 64 48 48 32 40 52 43 51 59 63 59 47 38 50 49 40 54 46 51 48 54 49 45 50 56 44 52 37 61
- As such, the data set is a confusing list of numbers.

Table 1. Frequency Distribution of Oven Temperature Data

Frequency distribution of temperature data

| Interval    | Frequency | Cumulative Count | Percent |
|-------------|-----------|------------------|---------|
| 30 up to 35 | 1         | 1                | 1.8     |
| 35 up to 40 | 3         | 4                | 5.5     |
| 40 up to 45 | 11        | 15               | 20.0    |
| 45 up to 50 | 18        | 33               | 32.7    |
| 50 up to 55 | 12        | 45               | 21.8    |
| 55 up to 60 | 7         | 52               | 12.7    |
| 60 up to 65 | 3         | 55               | 5.5     |

NOTE: Lower interval limit is included and the upper limit is excluded.

**Figure 2. Histogram of Temperature Data** 



## Figure 3. Stem-and-Leaf Diagram for the Oven Temperature Data

```
3 2
3+ 778
4 00012334444
4+ 5556667778888889999
5 000001122244
5+ 5666699
6 134
```

This looks like a horizontal histogram, but it shows more details than the histogram.

Stem-and-leaf diagram is suitable for data sets that are not very large.

#### **Figure 4. Box-Plot for the Oven Temperature Data**



Box-plot uses five important summary statistics:

Maximum

Upper Quartile,

Median,

Lower Quartile,

Minimum,

$$\bar{x} = 48.3$$
 and  $s = 6.6$ .





#### **Definitions**

#### Random sample of size n:

- Observations:  $x_1, x_2, ... x_n$ 
  - For ex, the height of each student.
- They carry the properties of the population, i.e.
- Each of the observation comes from the same distribution, that is:
  - The distribution that they belong to has a mean of  $\mu$
  - The distribution that they belong to has a variance of  $\sigma$
- In another words, they are distributed
  - independently
  - identically

#### **Definitions**

- Recall examples for a RV:
  - Number of customers
  - The income
- Again, two important properties for a random variable.
- Where is the center? Generally we use the following measure:
  - $\mu = E[X]$  =Mean or expected value
- How the data is scattered around center? Generally we use the following measure
  - $\sigma^2 = E[(X \mu)^2] = \text{Variance}$
- We will cover both of them in details...

#### Oops! What about the integrals?

• 
$$E[X] = \int x f(x) dx$$
  $E[X] = \sum x f(x)$ 

• 
$$Var(X) = \int (x - \mu)^2 f(x) dx$$
 
$$Var(X) = \sum (x - \mu)^2 f(x)$$

- Note that, if you have infinitely many data, instead of taking integrals, use the above formula to find the average and the integral!
- Try it in R!
- The probability function gives you the percentage of that particular value to ocur→ Check histograms
  - No need for infinitely many data!

#### Arithmetic Mean

$$\begin{array}{c|cccc} X_i & n_i \\ \hline 10 & 1 & 10.1 = 10 \\ 20 & 2 & 20.2 = 40 \\ 30 & 4 & 30.4 = 120 \\ 40 & 2 & 40.2 = 80 \\ 50 & \underline{1} & 50.1 = \underline{50} \\ 10 & 300 \end{array}$$

$$\overline{X} = \frac{\sum_{i=1}^{10} X_i n_i}{\sum_{i=1}^{10} n_i} = \frac{300}{10} = 30 \text{ Kg}$$

#### Standard Deviation

| $X_i$ | $n_i$ | $(X_i n_i)$ | $(X_i - X^-)$ | $(X_i - X^-)^2$ | $(X_i - X^-)^2 n_i$ |
|-------|-------|-------------|---------------|-----------------|---------------------|
| 10    | 1     | 10          | -42           | 1764            | 1764                |
| 20    | 2     | 40          | -32           | 1024            | 2048                |
| 50    | 3     | 150         | -2            | 4               | 12                  |
| 70    | 2     | 140         | 18            | 324             | 648                 |
| 80    | 1     | 80          | 28            | 784             | 784                 |
| 100   | _1_   | 100         | 48            | 2304            | 2304                |
|       | 10    | 520         |               | •               | 7560                |

# Distribution Function and Histogram

## Histogram – 50 data



#### Histogram – 250 Data



#### Histogram – 1000 Data



#### Histogram – 1000 data, thinner bins



#### Histogram – 10.000 data



#### Histogram – 100.000 data



#### $Histogram-100.000\ data-\%$



#### Histogram –∞ data - %



#### Distribution function



#### Definitions

• The whole story is this...

|            | Mean    | Variance   |
|------------|---------|------------|
| Population | μ       | $\sigma^2$ |
| Sample     | $ar{X}$ | $S^2$      |

## Central Limit Theorem

## Sample mean $\bar{X}$

• Note that  $\overline{X}$  is a RV:

$$\bar{X} = \frac{\sum_{i}^{n} X_{i}}{n}$$

- Hence it has
  - a mean
  - a variance
  - a distribution
- In order to infer (extract) information for the unknown  $\mu$ , we will need all of them.

## Sample mean $\bar{X}$

- First find  $E[\bar{X}] = \mu_{\bar{X}}$
- Recall:
- If  $X_1, X_2, \dots and X_n$  are independent RVs with  $\mu_i$  and  $\sigma_i^2$  as their expected values and variances, then

$$E[a_1X_1 + a_2X_2 + \dots + a_nX_n] = a_1\mu_1 + a_2\mu_2 + \dots + a_n\mu_n$$

Hence

$$E[\bar{X}] = \mu$$

What does this mean? Think of a student just coming into the class...

## Sample mean $\bar{X}$

- Then find  $var(\bar{X})$
- Recall:
- If  $X_1, X_2, ... and X_n$  are independent RVs with  $\mu_i$  and  $\sigma_i^2$  as their expected values and variances, then

$$\sigma_{a_1X_1 + a_2X_2 + \dots + a_nX_n}^2 = a_1^2 \sigma_1^2 + a_1^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$$

Hence

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

## Sample mean X

- Finally, what is the distribution of *X*?
- We have a great result

**Theorem 8.2:** Central Limit Theorem: If  $\bar{X}$  is the mean of a random sample of size n taken from a population with mean  $\mu$  and finite variance  $\sigma^2$ , then the limiting form of the distribution of

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}},$$

as  $n \to \infty$ , is the standard normal distribution n(z; 0, 1).

#### A Wrap Up Question

- Sampling Distribution of Means and the CLT
- Example: Assume that height of a student in this university is normally distributed with  $\mu=170$  and  $\sigma=10$
- (a) What is the probability that a student coming from the door is shorter that 165?
- (b) What is the probability that the average height of a class with 25 students is shorter than 165?

#### Probability Review (Normal Distribution)\*

• If X is normal with  $\mu = 10$  and  $\sigma = 2$ ?

$$P(X \le 7) = \int_0^7 \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{\frac{1}{2}(x-\mu)^2}{\sigma^2}}$$

- Hard to find the integral!!!
- How to deal with it?
  - Standardize
  - Use tables

<sup>\*</sup>an extended version is in another slide set.

#### Probability Review

- Z:
  - Standard normal RV
  - Normal RV with  $\mu=0$  and  $\sigma=1$

$$P(X \le 7) = P\left(\frac{X - \mu}{\sigma} \le \frac{7 - \mu}{\sigma}\right) = P\left(Z \le \frac{7 - 10}{2}\right) = P(Z \le -1.5)$$

- You can plot this!
- We can check the table to find the answer.

#### Probability Reminder

- Random variables:
  - Die toss
  - Coin Toss
  - Number of customers in bank
- Discrete
  - Binomial
  - Poission

- Random variables
  - The height of a person
  - The income of a worker
  - The lifetime of a lamp
- Continuous
  - Exponential
  - Normal
    - extremely important
    - Statistics is based on normality.

#### Probability Reminder

- RVs are denoted by capital letters, X
- Small letters show a value of RV. For example x=7.
- $P(X \ge 7)$ 
  - Probability that the RV X is greater than or equal to the scalar 7
- How to calculate the probabilities?
  - We are lucky, scientists have developed the probability functions for different types of random variables.

#### Probability Review

- A different notation
- *Z*<sub>0.05</sub>:
  - The z value that leaves an area of 0.05 (5% the right.
  - 1.645



| z   | .00    | .01    | .02    | .03    | .04    | .05    | .06    | .07    |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 |

How did we find the probability functions?

