Trabajos Prácticos de EDO con Valores Iniciales Métodos de Runge Kutta de Segundo Orden

Ejercicio 1

Las EDO de primer orden, con su valor inicial conocido, se las puede escribir en la siguiente forma

$$\frac{du(t)}{dt} = f(t, u(t)) \qquad \text{con} \quad u(0) = u_0$$

Y es posible encontrar una solución numérica aproxima mediante los Métodos de Euler o de Ruge Kutta.

El algoritmo de los Métodos de Runge Kutta de segundo orden, se puede sintetizar de la siguiente forma:

Dado
$$(t_n,u(t_n)=(t_n,u_n),$$
 para n entero mayor o igual a cero; y elegidos Δt y ω Se calcula $k_1=\Delta t$ $f(t_n,u_n)$ $u_G=u_n+k_1/(2\omega)$ $t_G=t_n+\Delta t/(2\omega)$ Se calcula $k_2=\Delta t$ $f(t_G,u_G)$ $u_{n+1}=u_n+(1-\omega)$ $k_1+\omega$ k_2 $t_{n+1}=t_n+\Delta t$

- Interpretar geométricamente el Método de Euler Modificado ($\omega = 1$)
- Interpretar geométricamente el Método de Euler Mejorado ($\omega=0.5$)
- Usando Serie de Taylor, justificar que el Error de Truncamiento Local de los Métodos de Runge Kutta es $E_{TL} = \frac{(\Delta t)^3}{2} \frac{d^3 u(t)}{dt^3} \Big|_{\xi}$; y por lo tanto es un método de segundo orden.

Ejercicio 2

Dada la siguiente EDO con su valor inicial

$$\frac{du(t)}{dt} - 2 \ u(t) = -2 \ t - 1 \qquad con \ u(0) = 2$$

se puede probar que la solución exacta es $u_{ex}(t) = e^{2t} + t + 1$

- Escribir la EDO de modo que se pueda definir la f(t,u(t)) necesaria para los métodos numéricos.
- Con Euler Mejorado, usando un $\Delta t = 0.25$ calcular el valor aproximado de u(0.5) y su error.
- Con Euler Modificado, usando un $\Delta t = 0.25$ calcular el valor aproximado de u(0.5) y su error.

Tomar como error a diferencia en valor absoluto entre solución exacta y la solución numérica aproximada según cada método e incremento en t usado.

Comprobar que no hay diferencia significativa entre los métodos de Euler Mejorado y Euler Modificado.

Comparar los errores obtenidos con los métodos de Runge Kutta de segundo orden y con el método de Euler Adelante

• Realizar un código en OCTAVE y comprobar la siguiente gráfica

Ejercicio 3

Dada la siguiente EDO con su valor inicial

$$\frac{du(t)}{dt} + \frac{1}{2}u(t) = \frac{t}{2} \qquad con \quad u(0) = 4$$

se puede probar que la solución exacta es $u_{ex}(t)=6 \ e^{-t/2}-2+t$

- Escribir la EDO de modo que se pueda definir la f(t,u(t)) necesaria para los métodos numéricos.
- Con Euler Modificado, usando un Δt =0,25 calcular el valor aproximado de u(0,5) y su error.
- Con Euler Mejorado, usando un $\Delta t = 0.25$ calcular el valor aproximado de u(0.5) y su error.
- Con Euler, usando un $\Delta t = 0.25$ calcular el valor aproximado de u(0.5) y su error.

Tomar como error a diferencia en valor absoluto entre solución exacta y la solución numérica aproximada según cada método e incremento en t usado. Comparar los errores.

• Realizar un código en OCTAVE y comprobar las siguientes gráficas obtenidas con Δt =0.01

Asociar las magnitudes de la función error con la expresión del Error de Truncamiento Local del Método de Runge Kutta de Segundo Orden, y comparar con lo obtenido con el método de Euler

Ejercicio 4

Dada la siguiente EDO con su valor inicial

$$\frac{dy}{dt} + 2 \cdot y(t) = e^{-2t}$$
 $con \quad y(0) = 1/10$

se puede probar que la solución exacta es $y_{ex}(t) = \frac{1}{10}e^{-2t} + t e^{-2t}$.

Con **método de Runge Kutta 2do orden, w=0,5** y Δt =0.20 calcular el valor de la solución aproximada en t=0,4 y(0,4)=0,218, y comparar con la solución exacta.

Realizar un código OCTAVE que, para distintos valores de Δt , permita:

• Con los datos anteriores, comprobar que es posible obtener la siguiente gráfica

• calcular la norma infinita de la función error.

Elegir un valor de Δt , tal que la norma infinita de la función error sea inferior al 1% del valor máximo de la función solución exacta.

Ejercicio 5

Dada la siguiente EDO con su valor inicial

$$\frac{du(t)}{dt} - 2t(u(t))^2 = 0 \qquad con \ u(0) = 1$$

se puede probar que la solución exacta es $u_{ex}(t) = 1/(1-t^2)$; que tiene una asíntota vertical en t=1

Realizar un código OCTAVE que, para distintos valores de Δt , permita:

- resolver la EDO con el método de Runge Kutta y graficar la solución aproximada y la exacta
- calcular la norma infinita de la función error

Ejercicio 6

Dada la siguiente EDO con su valor inicial

$$\frac{dy}{dt} + t \cdot y(t) = 0 \qquad con \qquad y(0) = 1$$

se puede probar que la solución exacta es $y_{ex}(t) = e^{-(\frac{t^2}{2})}$.

Con **método de Runge Kutta 2do orden, w=1** y Δt =0.10, calcular el valor de la solución aproximada *en* t=0,2 y(0,2)=0,98, y comparar con la solución exacta

Realizar un código OCTAVE que, para distintos valores de Δt, permita:

Con los datos anteriores, comprobar que es posible obtener la siguiente gráfica

Ejercicio 7

Dada el siguiente sistema de EDO con valores iniciales

$$\begin{cases} \dot{x}_1(t) \\ \dot{x}_2(t) \end{cases} = \begin{bmatrix} -10 & 4 \\ -4 & 0 \end{bmatrix} \begin{cases} x_1(t) \\ x_2(t) \end{cases} \quad \cos \begin{cases} x_1(0) \\ x_2(0) \end{cases} = \begin{cases} 5 \\ 3 \end{cases}$$

Aplicar el método de Euler en forma vectorial, con Δt , y comprobar los siguientes valores:

_	· · · · · · · · · · · · · · · · · · ·	_	
t	0	0,01	0,02
y1	5	4,635	4,2977
y2	3	2,8076	2,6292
k1 y1	0,01*(-10*5+4*3)=-0,38		
_y2	0,01*(-4*5+0*3)=-0,2		
tg	0 +0,01/2=0,005	1	
yg1	5 -0,38/2= 4,81		
yg2	3 -0,2/2= 2,9		20
k2 _y1	0,01*(-10* 4,81 +4* 2,9)= -0,365		
y2	0,01*(-4* 4,81 +0* 2,9)= -0,1924		
tg	0 +0,01		
y1_(n+1)	5 -0,365= 4,635		
y2 (n+1)	3 -0,1924= 2,8076		-

Elaborar un código en OCTAVE que verifique los valores anteriores

Con el código en OCTAVE elaborado, verificar con distintos valores de Δt , que la solución aproximada tiende a la solución exacta del problema dada por:

$${x_1(t) \brace x_2(t)} = \frac{1}{3} \cdot {1 \brace 2} \cdot e^{-8t} + \frac{14}{3} \cdot {1 \brace 1/2} \cdot e^{-2t}$$

En particular para $\Delta t=0.02$, se pueden obtener las siguientes gráficas:

Ejercicio 7

Dada el siguiente sistema de EDO con valores iniciales

Con Dt=0,01 comprobar que con el Método de Euler Mejorado (Runge Kutta de 2do orden con w=0,5), se obtiene las siguientes soluciones

t	x1	x2	
0	5	3	
1,00E-02	5,01E+00	-2,02E+00	
2,00E-02	4,96E+00	-7,01E+00	
3,00E-02	4,86E+00	-1,19E+01	
4,00E-02	4,72E+00	-1,67E+01	
5,00E-02	4,53E+00	-2,14E+01	
6,00E-02	4,29E+00	-2,58E+01	

En el intervalo [0; 2,91] de la variable independiente t; comprobar que en este caso, luego de aplicar el método 291 veces, la respuesta resulta:

Evolución de la variable X1 en función de t

Diagrama en Espacio de Estados

De la gráfica de X1(t) se puede aproximar el período como 4 ciclos en 2,5 segundos; ya que son las veces que se repite el valor inicial 5 en dicho intervalo. Así el periodo aproximado es 0,625, frente a 0,628=2*PI/10 que es el valor exacto.

Comparar las soluciones obtenidas con el método de Runge Kutta de Segundo Orden y con el Método de Euler, usando en ambos casos Dt=0,01.

Ejercicio 8

Dada el siguiente sistema de EDO con valores iniciales

Comprobar que con el Método de Runge Kutta de Segundo orden y Dt=5,5E-2, se obtienen las siguientes soluciones:

Diagrama en Espacio de Estados

Comparar con las soluciones obtenidas con el Método de Euler con pasos Dt=5,5E-2 y Dt=5,5E-3.

Ejercicio 9

Dada el siguiente sistema de EDO con valores iniciales

cuyas soluciones, obtenidas con el método de Runge Kutta de segundo orden y Δt =1E-2, se presentan en las siguientes gráficas.

Evolución de la variable X1 en función de t Diagrama en Espacio de Estados Buscar un valor de Dt, tal que la aproximación con el método de Euler sea similar a las figuras anteriores.