Reading Comprehension System using Natural Language Processing

Chinnu Pittapally Mayuri Kadam Shorabh Dhandharia

Objective

- To answer questions based on a context paragraph
- Paragraphs are either stories or fact based sentence collection
- Focus: To predict the sentence containing right answer

Significance:

- Extension to the Information Retrieval
- Grading System

Dataset

Training Set:

Total Paragraphs: 18896

Total Question-Answer pairs: 87599

Sample Data:

{'context': "Paragraph goes here...",

'qas': [{'answers': [{'answer_start': 248, 'text':

'September 1876'}]

'ld':'5733bf84d058e614000b61be',

'question': 'When did the Scholastic Magazine of Notre dame begin publishing?'}]

Questions Counts by Category

What	48705	Whom	230
Where	3766	Why	1246
Which	6458	How	9509
Who	9034	When	6667

Approach - N-gram Rule Based

- Read paragraph and each question; pre-process (remove stopwords, lower text, word_tokenize)
- Collect sentences for which the n-gram match is >= threshold

```
QuestToTag = {"when":'CD',
    "who":['B-PERSON','I-PERSON'],
    "whom":['B-PERSON','I-PERSON'],
    "where":['B-GPE','I-GPE','B-ORG','I-ORG'],
    "what":['B-PERSON','I-PERSON','B-ORG','I-ORG'],
    "what place":['B-GPE','I-GPE','B-ORG','I-ORG'],
    "how many":"CD"}
```

Approach - WMD Similarity

Word Mover's Distance

Dissimilarity between two documents as minimum amount of distance needed to travel from words in one document to the other

• How we use WMD?

We built two corpuses:

$$\min_{\mathbf{T} \geq 0} \sum_{i,j=1}^{n} \mathbf{T}_{ij} c(i,j)$$

- 1. All paragraphs in a topic to create a WMD model
- 2. Paragraph against which the questions are asked

We selected 4 sentences with highest WMD score with the question

Models

Logistic Regression

• {'C': 0.1, 'class_weight': 'balanced', 'penalty': 'l1', 'random_state': 2}

MLP Classifier

Hidden Layer, Hidden Layer units => (10, 4)

Keras Sequential

Hidden Layer, Hidden Layer units => (1, 10)

Results

Model Approach	Accuracy on Training	Precision on Test	Recall on Test	F1 on Test
N-gram rule based - Logistic Regression	0.75411	0.7447	0.7447	0.5091
N-gram rule based - MLP Classifier	0.5626	0.4790	0.6374	0.5470
N-gram rule based - Keras Sequential	0.7216	0.59	0.55	0.57
Word2Vec WMD - Logistic Regression	0.5673	0.2919	0.5442	0.3800
Word2Vec WMD - MLP Classifier	0.5626	0.4790	0.6374	0.5470
Word2Vec WMD - Keras Sequential	0.7693	0.60	0.77	0.67(avg)

Results Contd.

Comparison of Different Models

Model Errors

Q3: Who was the game's top receiver?

A1: Sanders was his top receiver with six receptions for 83 yards.

Predicted: True

A2: Anderson was the game's leading rusher with 90 yards and a touchdown, along with four receptions for 10 yards.

Predicted: True

A3: Manning finished the game 13 of 23 for 141 yards with one interception and zero touchdowns.

Predicted: True

Conclusion

- N-gram approach performed qualitatively better compared to all other models but it could rarely predict the 'What' category questions.
- WMD similarity enabled us to find the possible answers for 'What' categories
- N-gram approach shows a high performance using the Keras Sequential model
- 'Which', 'What' and 'When' categories performed better in the word2vec approach
- 'Where', 'Who', 'When' categories performed better using n-gram approach

Future Work

Following implementation could improve our performance:

- Coreference between entities
- Deep Learning
- Ensemble Learning and classification

Thank You!

Questions??