Exercise 1 (4.1.A Vakil). Show that the natural map $A_f \to \mathcal{O}_{\text{Spec}(A)}(D(f))$ is an isomorphism. $\llbracket \text{Hint: Exercise 3.5.E Vakil.} \rrbracket$

First let us recall that Exercise 3.5.E is the following:

Lemma 1. The next statements are equivalent:

- i) $D(f) \subseteq D(q)$.
- ii) $\exists n (n \ge 1 \Rightarrow f^n \in \text{gen}(g)).$
- iii) g is an invertible element of A_f .

We have proven this in class so let us make a quick recapitulation.

The first two statements are equivalent because

$$D(f) \subseteq D(g) \iff V(g) \subseteq V(f)$$
$$\iff \{\mathfrak{p} : \operatorname{gen}(g) \subseteq \mathfrak{p}\} \subseteq \{\mathfrak{p} : \operatorname{gen}(f) \subseteq \mathfrak{p}\}$$

The last statement can be rephrased as *if a prime contains* g, *then it also contains* f. In particular this equivalent to saying

$$f \in \bigcap_{g \in \mathfrak{p}} \mathfrak{p} = \sqrt{\operatorname{gen}(g)}$$

$$\iff \exists n (n \geqslant 1 \Rightarrow f^n \in \operatorname{gen}(g)).$$

For the last two statements, we first assume g is invertible in A_f . This means that there exists an n such that

$$\left(\frac{g}{1}\right)\left(\frac{a}{f^n}\right) = \frac{1}{1}.$$

Recall that the equality condition in the localization means that there exists and element f^m with $m \ge 1$ which is invertible in A_f such that

$$f^m(ag - f^n) = 0 \Rightarrow agf^m = f^{m+n}.$$

This last equation is in A without localizing, and the term on the right, agf^m , is in gen(g). Thus the power we were searching for is m+n and $f^{m+n} \in gen(g)$. On the other direction, if $f^n \in gen(g)$ for some $n \ge 1$, then there is an $a \in A$ such that

$$f^n = ag,$$

and localizing at f turns this equation into $\frac{1}{g} = \frac{a}{f^n}$.

Answer

We begin by recalling the definition of $\mathcal{O}_{Spec(A)}(D(f))$, we have

$$\mathcal{O}_{\operatorname{Spec}(A)}(D(f)) = S^{-1}A$$
, where $S = \{g \in A : D(f) \subseteq D(g)\}.$

By the lemma we can rewrite S as

$$S = \{ g \in A : \exists n (f^n \in gen(g)) \}.$$

Now notice that when localizing at S we are able to invert f^n for some n. From this we have that f is also invertible in $S^{-1}A$ because

$$f^n g = u \Rightarrow f(f^{n-1}g) = u \Rightarrow f$$
 is invertible.

This means that localizing at S is a further localization of A at f because we have already inverted all powers of f.

Notice however that this isn't adding anything new to A_f , because of the last equivalence of the lemma. Every g such that $D(f) \subseteq D(g)$ is already invertible in A_f . We conclude that the inclusion is actually an isomorphism.

Exercise 2 (Restrictions). Do the following:

- i) Explain, using Definition 4.1.1 (and not exercise 4.1.A) what the restriction map is.
- ii) Explain, using exercise 4.1.A what the restriction map is.

Answer

i) Recall that

$$\mathcal{O}_{\mathrm{Spec}(A)}(D(f)) = (S^f)^{-1}A, \quad \text{where} \quad S^f = \{ \, h \in A : D(f) \subseteq D(h) \, \}$$

and on the same vein the set associated to D(g) is the localization at $S^g = \{ h \in A : D(g) \subseteq D(h) \}$. So if we take $D(f) \subseteq D(g)$, we can inject A into both localizations via $a \mapsto \frac{a}{1}$ as follows:

$$A \xrightarrow{\varphi_f} (S^f)^{-1}A$$

$$\downarrow^{\varphi_g}$$

$$(S^g)^{-1}A$$

Now for elements $h \in S^g$, $\varphi^f(h)$ is an invertible element in $(S^f)^{-1}A$ because $D(f) \subseteq D(g)$. So, by universality of the localization, we have that there exists a unique map

$$(S^g)^{-1}A \to (S^f)^{-1}A$$

and such map is the desired restriction map.

ii) Using the previous exercise we have the isomorphism between localizing at S^f and localizing at powers of f. So once again let us assume that $D(f) \subseteq D(g)$, then the restriction map is a function

$$\operatorname{res}_{D(g),D(f)} A_g \to A_f.$$

In this case we have an element $\frac{a}{h^n}$ with $h \in S^g$. Recall that this means that h is invertible in A_g so we may write

$$\frac{1}{h} = \frac{b}{g^m}$$
, where $b \in A$, $m \in \mathbb{N}$.

But now, as $D(f) \subseteq D(g)$, g is invertible in A_f so once again we have

$$\frac{1}{q} = \frac{c}{f^r}$$
, where $c \in A$, $r \in \mathbb{N}$.

Combining these facts we have

$$\frac{a}{h^n} = a \frac{b^n}{q^{mn}} = ab^n \frac{c^{mn}}{f^{mnr}},$$

and so this element inside A_f is where we map our original element to.

Exercise 3 (4.1.D Vakil). Suppose M is an A-module. Show that the following construction describes a sheaf \widetilde{M} on the distinguished base. Define $\widetilde{M}(D(f))$ to be the localization of M at the multiplicative set of all functions that do not vanish outside of V(f).

Define restriction maps $res_{D(f),D(g)}$ in the analogous way to $\mathcal{O}_{Spec(A)}$.

Show that this defines a sheaf on the distinguished base, and hence a sheaf on Spec(A). Then show that this is an $\mathcal{O}_{Spec(A)}$ -module.

Answer

We are now considering the following space $(\operatorname{Spec}(A), \widetilde{M})$, in other words we are endowing $\operatorname{Spec}(A)$ with sheaf of A-modules.

We first verify that \widetilde{M} is a presheaf. In the same way we defined the sheaf on the basis elements we have

$$\widetilde{M}(D(f)) = (S^f)^{-1}M$$
, where $S^f = \{ h \in A : D(f) \subseteq D(h) \}$.

The restriction maps are defined in the same fashion by universality, so if we have the diagram

$$M \xrightarrow{\varphi_f} (S^f)^{-1}M$$

$$(S^f)^{-1}M$$

then there's a restriction map from each localization to another. By universality they must be the same arrow, and as the only arrow which goes from $(S^f)^{-1}M$ to itself is the identity we have

$$\operatorname{res}_{D(f),D(f)} = \operatorname{id}_{(S^f)^{-1}M}.$$

Now, we have the composition of restriction maps is the longer restriction map. Consider the following diagram:

$$(S^f)^{-1}M$$

$$M \xrightarrow{\varphi_g} (S^g)^{-1}M$$

$$(S^h)^{-1}M$$

We have that the composition exists by universality as do the smaller arrow. Universality guarantees that they are the same arrow and thus

$$\mathop{\mathrm{res}}_{D(h),D(f)} = \mathop{\mathrm{res}}_{D(g),D(f)} \circ \mathop{\mathrm{res}}_{D(h),D(g)}$$

Let us now verify the sheaf axioms. We begin by considering an open cover of $\operatorname{Spec}(A)$ which we can reduce to a finite sub-cover by quasi-compactness, this is

$$\operatorname{Spec}(A) = \bigcup_{i \in I} D(f_i) = \bigcup_{i=1}^{n} D(f_i).$$

 \diamond Recall that our sheaf sets are modules, so injectivity is equivalent to kernels being trivial. Thus to verify the identity axiom, we consider $s \in \widetilde{M}(\operatorname{Spec}(A))$ with the assumption that $\operatorname{res}_{D(f_i)}(s) = 0$. We wish to show s = 0.

The restriction lives in one our localization, this means that

$$\operatorname{res}_{D(f_i)}(s) \in \widetilde{M}(D(f_i)) = (S^{f_i})^{-1}M \Rightarrow \operatorname{res}_{D(f_i)}(s) = \frac{m}{g}, \quad \text{where} \quad g \in S^{f_i}.$$

Now this fraction is zero, which means that there's an invertible element $u \in S^{f_i}$, which is $\frac{1}{u} = \frac{a}{f_i^s}$, that satisfies

$$u(1 \cdot m - 0.g) = 0 \Rightarrow aum = a \cdot 0 = 0 \Rightarrow f_i^s m = 0.$$

This last proposition holds for all i, and as we have $\langle f_1^s, \dots, f_n^s \rangle = A$ we have that $1 = \sum c_i f_i^s$. As M is an A-module, the next equation holds in M:

$$m = \left(\sum_{i=1}^{n} c_i f_i^s\right) m = \sum_{i=1}^{n} c_i (f_i^s m) = \sum_{i=1}^{n} 0 = 0.$$

Thus m = 0 and we have the identity axiom^a.

We proceed as in the proof of the gluing axiom for the structure sheaf. First by taking a finite set of indices and then generalizing to an infinite set of indices.

We take sections (s_i) such that

$$\mathop{\mathrm{res}}_{D(f_i),D(f_i)\cap D(f_j)}(s_i) = \mathop{\mathrm{res}}_{D(f_j),D(f_i)\cap D(f_j)}(s_j) \quad \text{for all} \quad i,j.$$

The set $\tilde{M}(D(f_i) \cap D(f_j))$ is the localization of M at $(S^{f_i} \cap S^{f_j})$. (Couldn't finish this one, wrapping my head around this localization was a bit jarring. Would it be possible to discuss later?)

Exercise 4. Let $A = \mathbb{C}[x, y]$ and let $\mathfrak{p} = \text{gen}(y)$, viewed as a point of X = Spec(A). What is $\mathfrak{O}_{X,p}$?

 $[^]a$ As 4.1.B mentions that it is possible to replace $D(f_i)$ by D(f), thus generalizing the argument, I don't see how it is possible in the proof of the theorem nor in this exercise. This is because if don't have the finite number of f_i 's then we can't say that 1 is the linear combination that we have recovered.

Recall that $\mathcal{O}_{X,p}$ is a local ring, that is, it has a unique maximal ideal, \mathfrak{m}_p . What is the residue field $\kappa_{\mathfrak{p}} = \mathcal{O}_{X,p}/\mathfrak{m}_p$?

Answer

The set $\mathcal{O}_{X,\mathfrak{p}}$ is the stalk of the structure sheaf at the point $\mathfrak{p} \in \operatorname{Spec} A$. Germs inside $\mathcal{O}_{X,\mathfrak{p}}$ are equivalence classes of pairs (f,D(g)) where $\mathfrak{p} \in D(g)$ and $f \in \mathcal{O}_X(D(g))$. Recall that in our case

$$\mathcal{O}_X(D(g)) \simeq A_g = \mathbb{C}[x,y]_g$$

so the germs are equivalence classes of rational functions with denominators g^r about gen(y) which don't vanish.

The maximal ideal of the stalk is the germs which vanish at gen(y). Recall that f vanishes at gen(y) when $f \mod gen(y) = 0$. So f musn't have any multiples of y. The only thing we are left with is rational functions on x so it must hold that $\kappa_{\mathfrak{p}} \simeq \mathbb{C}(x)$.

Exercise 5 (4.4.A Vakil). Show that you can glue an arbitrary collection of schemes together. Suppose we are given:

- \diamond schemes X_i (as i runs over some index set I, not necessarily finite),
- \diamond open subschemes $X_{ij} \subseteq X_i$ with $X_{ii} = X_i$,
- \diamond isomorphisms $f_{ij}: X_{ij} \to X_{ji}$ with f_{ii} the identity

such that

the isomorphisms "agree on triple intersections", i.e.,

$$f_{ik} \mid X_{ij} \cap X_{ik} = f_{jk} \mid X_{ji} \cap X_{jk} \circ f_{ij} \mid X_{ij} \cap X_{ik} \circ$$

(so implicitly, to make sense of the right side, $f_{ij}(X_{ik} \cap X_{ij}) \subseteq X_{jk}$).

This *cocycle condition* ensures that f_{ij} and f_{ji} are inverses. In fact, the hypothesis that f_{ii} is the identity also follows from the cocycle condition.

Show that there is a unique scheme X (up to unique isomorphism) along with open subsets isomorphic to the X_i respecting this gluing data in the obvious sense. Hint: what is X as a set? What is the topology on this set? In terms of your description of the open sets of X, what are the sections of this sheaf over each open set?