# Detección de anomalías basada en técnicas de ensembles

Ignacio Aguilera Martos 6 de septiembre de 2019

Trabajo Fin de Grado Código disponible en GitHub

## **Contenidos**

- 1. Concepto de anomalía basado en distancias
- 2. Machine Learning

# Concepto de anomalía basado en distancias

Pensado para el caso uno-dimensional.

Pensado para el caso uno-dimensional.

#### Tukey's Fences

Valores fuera del rango  $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$  con k=1,5

Pensado para el caso uno-dimensional.

#### Tukey's Fences

Valores fuera del rango  $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$  con k=1,5

La propuesta de k = 1,5 es arbitraria.



#### Criterio

Aplicar el criterio de Tukey a cada una de las características.

#### Criterio

Aplicar el criterio de Tukey a cada una de las características. <u>Trivial</u>.

#### Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

#### Criterio de clusters

1. Agrupamos los datos por clusters.

#### Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

#### Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.

#### Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

#### Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.
- 3. Si la distancia del objeto al centroide del cluster es mayor que 1,5 veces la mayor distancia intercluster entonces es una anomalía.





**Machine Learning** 

## Problema que abordamos

## Problema que abordamos

#### Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

## Problema que abordamos

#### Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

#### Partes teóricas del problema

- 1. Generador.
- 2. Sistema.
- 3. Máquina de aprendizaje.

### Propiedades de conjuntos de alta dimensionalidad

1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.

### Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.

#### Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

#### Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

#### Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

#### Maldición de la alta dimensionalidad

A mayor dimensionalidad mayor número de puntos necesitamos para obtener una aproximación con funciones de igual regularidad.

#### Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

#### Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

#### **Teoremas útiles**

• Teorema de Aproximación de Weierstrass

#### Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

#### **Teoremas útiles**

- Teorema de Aproximación de Weierstrass
- Serie de Fourier

#### Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

#### Teoremas útiles

- Teorema de Aproximación de Weierstrass
- Serie de Fourier
- Teorema de Kolmogorov-Arnold

## Teorema de Aproximación de Weierstrass

## Teorema de Aproximación de Weierstrass

#### Teorema de Aproximación de Weierstrass

Supongamos que tenemos una función  $f:[a,b] \to \mathbb{R}$  continua.

Entonces  $\forall \epsilon > 0$  existe un polinomio p tal que  $\forall x \in [a, b]$  tenemos que

$$|f(x)-p(x)|<\epsilon.$$

## Teorema de Aproximación de Weierstrass

## Teorema de Aproximación de Weierstrass

Supongamos que tenemos una función  $f:[a,b]\to\mathbb{R}$  continua. Entonces  $\forall \epsilon>0$  existe un polinomio p tal que  $\forall x\in[a,b]$  tenemos que  $|f(x)-p(x)|<\epsilon$ .

## Aproximación por polinomios

El Teorema de Aproximación de Weierstrass nos da una forma de aproximar funciones por polinomios.

# Serie de Fourier

## Serie de Fourier

## Serie de Fourier

Si tenemos una función  $f:\mathbb{R}\to\mathbb{R}$  integrable en el intervalo  $[t_0-\frac{T}{2},t_0+\frac{T}{2}]$  entonces se puede obtener el desarrollo de Fourier de f en dicho intervalo. Si f es periódica en toda la recta real la aproximación es válida en todos los valores en los que esté definida.

$$f(t) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(\frac{2n\pi}{T}t) + b_n \sin(\frac{2n\pi}{T}t) \right]$$

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt, \ a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(\frac{2n\pi}{T}t) dt,$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(\frac{2n\pi}{T}t) dt$$

# Teorema de Kolmogorov-Arnold

## Teorema de Kolmogorov-Arnold

## Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables  $f: X_1 \times ... \times X_n \to \mathbb{R}$ , entonces existen funciones  $\Phi_q: \mathbb{R} \to \mathbb{R}$  y  $\phi_{q,p}: X_p \to [0,1]$  tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

## Teorema de Kolmogorov-Arnold

## Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables  $f: X_1 \times ... \times X_n \to \mathbb{R}$ , entonces existen funciones  $\Phi_q: \mathbb{R} \to \mathbb{R}$  y  $\phi_{q,p}: X_p \to [0,1]$  tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

## Dimensionalidad en datos y funciones

La maldición de la dimensionalidad es intrínseca a los datos. Este Teorema nos dice que la capacidad expresiva o complejidad de las funciones de una sola variable es la misma que las de varias variables.

# **Equilibrio Sesgo-Varianza**

# **Equilibrio Sesgo-Varianza**

#### Notación

$$MSE = \frac{1}{n} \sum_{i=1}^{n} y_i - g(X_i, D)^2$$

$$E[MSE] = \frac{1}{n} \sum_{i=1}^{n} E[y_i - g(X_i, \mathcal{D})^2] = \cdots$$

$$=\frac{1}{n}\sum_{i=1}^{n}\{f(X_{i})-E[g(X_{i},\mathcal{D})]\}^{2}+\frac{1}{n}\sum_{i=1}^{n}E[\{E[g(X_{i},\mathcal{D})]-g(X_{i},\mathcal{D})\}^{2}]$$

$$= sesgo^2 + varianza$$

# Teoría del Aprendizaje

## Teoría del Aprendizaje

## Teorema clave de la Teoría del Aprendizaje

Para funciones de pérdida acotadas el principio inductivo de minimización del error empírico es consistente sí y sólo si el error empírico converge uniformemente al valor real del error en el siguiente sentido:

$$\lim_{n\to\infty} P[\sup_{\omega} |R(\omega) - R_{emp}(\omega)| > \epsilon] = 0 \ , \ \forall \epsilon > 0$$

### Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

### Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

### Cota ERM

Con probabilidad  $1-\eta$ 

$$R(\omega) \leq R_{emp}(\omega) + \frac{\epsilon}{2} \left( 1 + \sqrt{1 + \frac{4 \cdot R_{emp}(\omega)}{\epsilon}} \right)$$

## Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

## Cota ERM

Con probabilidad  $1-\eta$ 

$$R(\omega) \le R_{emp}(\omega) + \frac{\epsilon}{2} \left( 1 + \sqrt{1 + \frac{4 \cdot R_{emp}(\omega)}{\epsilon}} \right)$$

$$\epsilon = a_1 \cdot \frac{h(\ln(\frac{a_2 n}{h}) + 1) - \ln(\frac{\eta}{4})}{n}$$

# ¿Preguntas?