Weak Law of Large Numbers

- Consider I.I.D. random variables X₁, X₂, ...
 - X_i have distribution F with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$
 - Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - For any $\varepsilon > 0$:

$$P(|\overline{X} - \mu| \ge \varepsilon) \xrightarrow{n \to \infty} 0$$

$$E[\overline{X}] = E\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right] = \mu \quad \text{Var}(\overline{X}) = \text{Var}\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{\sigma^2}{n}$$

By Chebyshev's inequality:

$$P(|\overline{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \xrightarrow{n \to \infty} 0$$

Strong Law of Large Numbers

- Consider I.I.D. random variables X₁, X₂, ...
 - X_i have distribution F with E[X_i] = μ
 - Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$P\left(\lim_{n\to\infty}\left(\frac{X_1+X_2+\ldots+X_n}{n}\right)=\mu\right)=1$$

- Strong Law ⇒ Weak Law, but not vice versa
- Strong Law implies that for any $\varepsilon > 0$, there are only a finite number of values of n such that condition of Weak Law: $|\overline{X} - \mu| \ge \varepsilon$ holds.

Intuitions and Misconceptions of LLN

- · Say we have repeated trials of an experiment
 - Let event E = some outcome of experiment
 - Let X_i = 1 if E occurs on trial i, 0 otherwise
 - Strong Law of Large Numbers (Strong LLN) yields: $\frac{X_1 + X_2 + \dots + X_n}{X_1 + X_2 + \dots + X_n} \to E[X] = P(E)$

 - Strong LLN justifies "frequency" notion of probability
 - · Misconception arising from LLN:
 - o Gambler's fallacy: "I'm due for a win"
 - o Consider being "due for a win" with repeated coin flips...

La Loi des Grands Nombres

- 1713: Weak LLN described by Jacob Bernoulli 1835: Poisson calls it "La Loi des Grands Nombres"
 - That would be "Law of Large Numbers" in French
- 1909: Émile Borel develops Strong LLN for Bernoulli random variables

- 1928: Andrei Nikolaevich Kolmogorov proves Strong LLN in general case
 - 2011: Another year passes in which Charlie Sheen does not make use of LLN

o I'm still holding out hope for 2012...

And now a moment of silence...

...before we present...

...the greatest result of probability theory!

The Central Limit Theorem (CLT)

- Consider I.I.D. random variables X₁, X₂, ...
 - X_i have distribution F with E[X_i] = μ and Var(X_i) = σ²

$$\frac{X_1 + X_2 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \rightarrow N(0,1) \text{ as } n \rightarrow \infty$$

More intuitively:

Demo

- ∘ Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ ∘ Central Limit Theorem: $\overline{X} \sim N(\mu, \frac{\sigma^{2}}{n})$ as $n \to \infty$ ∘ Now let $Z = \frac{\overline{X} \mu}{\sqrt{\sigma^{2}/n}}$, noting that $Z \sim N(0, 1)$:

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Leftrightarrow Z = \frac{\frac{1}{n} \left(\sum_{i=1}^n X_i \right) - \mu}{\sqrt{\sigma^2/n}} = \frac{n \left[\frac{1}{n} \left(\sum_{i=1}^n X_i \right) - \mu \right]}{n \sqrt{\sigma^2/n}} = \frac{\left(\sum_{i=1}^n X_i \right) - n \mu}{\sigma \sqrt{n}}$$

No Limits for Central Limit Theorem

- · History of the Central Limit Theorem
 - 1733: CLT for X ~ Ber(1/2) postulated by Abraham de Moivre

- 1823: Pierre-Simon Laplace extends de Moivre's work to approximating Bin(n, p) with Normal
- 1901: Aleksandr Lyapunov provides precise definition and rigorous proof of CLT

- 2003: Charlie Sheen stars in television series "Two and Half Men"
 - By end of the 7th season (last year), there were 161 episodes
 - Mean quality of subsamples of episodes is Normally distributed (thanks to the Central Limit Theorem)

Central Limit Theorem in Real World

- · CLT is why many things in "real world" appear Normally distributed
 - Many quantities are sum of independent variables
 - Exams scores
 - 。Sum of individual problems
 - Election polling
 - Ask 100 people if they will vote for candidate X (p₁ = # "yes"/100)
 - 。Repeat this process with different groups to get p1, ..., pn
 - Have a normal distribution over p_i
 - Can produce a "confidence interval
 - · How likely is it that estimate for true p is correct
 - · We'll do an example like that soon

This is Your Midterm on the CLT

- Start with 180 midterm scores: X₁, X₂, ..., X₁₈₀
 - $E[X_i] = 68.9$ and $Var(X_i) = 611.37$
 - Created 18 disjoint samples of size n = 10

$$\ \, Y_1 = \{X_1, \ldots, \, X_{10}\}, \, Y_2 = \{X_{11}, \ldots, \, X_{20}\}, \, Y_i = \{X_{10i\cdot 9}, \ldots, \, X_{10i}\}$$

$$\overline{Y}_i = \frac{1}{10} \sum_{i=1}^{10i} Y_i$$

 $\overline{Y_i}=\frac{1}{10}\sum_{j=10.9}^{10}Y_j$ • Prediction by CLT: $\overline{Y_i}\sim N(68.9,~611.37/18\approx 33.965)$

$$Z_{i} = \frac{\overline{Y_{i}} - E[X_{i}]}{\sqrt{\sigma^{2}/n}} = \frac{\overline{Y_{i}} - 68.9}{\sqrt{611.37/18}} \qquad \overline{Z} = \frac{1}{18} \sum_{i=1}^{18} Z_{i} = 8.2 \times 10^{-16} \qquad \text{Var}(\overline{Z}) = 0.914$$

Estimating Clock Running Time

- · Have new algorithm to test for running time
 - Mean (clock) running time: $\mu = t \sec$.
 - Variance of running time: σ² = 4 sec².
 - Run algorithm repeatedly (I.I.D. trials), measure time
 - $_{\circ}$ How many trials so estimated time = $t\pm0.5$ with 95% certainty?
 - ∘ X_i = running time of i-th run (for $1 \le i \le n$)
 - By Central Limit Theorem, Z ~ N(0, 1), where:

$$Z_{n} = \frac{\left(\sum_{i=1}^{n} X_{i}\right) - n\mu}{\sigma \sqrt{n}} = \frac{\left(\sum_{i=1}^{n} X_{i}\right) - nt}{2\sqrt{n}}$$

$$P(-0.5 \le \frac{\sum_{i=1}^{n} X_{i}}{n} - t \le 0.5) = P(\frac{-0.5\sqrt{n}}{2} \le \frac{\sqrt{n}}{2} \left(\sum_{i=1}^{n} X_{i}\right) - nt}{2} \le \frac{0.5\sqrt{n}}{2}) = P(\frac{-0.5\sqrt{n}}{2} \le Z_{n} \le \frac{0.5\sqrt{n}}{2})$$

$$= \Phi(\frac{\sqrt{n}}{4}) - \Phi(\frac{-\sqrt{n}}{4}) = \Phi(\frac{\sqrt{n}}{4}) - (1 - \Phi(\frac{\sqrt{n}}{4})) = 2\Phi(\frac{\sqrt{n}}{4}) - 1 \approx 0.95 \implies \Phi(\frac{\sqrt{n^{*}}}{4}) = 0.975$$

$$\bullet \text{ Solve for } n^{*}: \frac{J^{n}}{n} = 1.96 \implies n^{*} = \left[(7.84)^{*}\right] = 62$$

Estimating Time With Chebyshev

- · Have new algorithm to test for running time
 - Mean (clock) running time: $\mu = t \sec$.
 - Variance of running time: $\sigma^2 = 4 \text{ sec}^2$.
 - Run algorithm repeatedly (I.I.D. trials), measure time
 - $_{\circ}$ How many trials so estimated time = $t\pm$ 0.5 with 95% certainty?
 - X_i = running time of *i*-th run (for 1 ≤ i ≤ n)
 - What would Chebyshev say? $P(|X_s \mu_s| \ge k) \le \frac{\sigma_s^2}{k^2}$

$$\mu_{S} = E\left[\sum_{i=1}^{n} \frac{X_{i}}{n}\right] = t \qquad \sigma_{S}^{2} = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right) = n \frac{\sigma^{2}}{n^{2}} = \frac{4}{n}$$

$$P(\left|\sum_{i=1}^{n} \frac{X_i}{n} - t\right| \ge 0.5) \le \frac{4/n}{(0.5)^2} = \frac{16}{n} = 0.05 \implies n \ge 320$$

o Thanks for playing Pafnuty...

Crashing Your Web Site

- Number visitors to web site/minute: X ~ Poi(100)
 - Server crashes if ≥ 120 requests/minute
 - What is P(crash in next minute)?
 - Exact solution: $P(X \ge 120) = \sum_{i=120}^{\infty} \frac{e^{-100}(100)^i}{i!} \approx 0.0282$
 - Use CLT, where $Poi(100) \sim \sum_{n=0}^{\infty} Poi(100/n)$ (all I.I.D)

$$P(X \ge 120) = P(X \ge 119.5) = P(\frac{X - 100}{\sqrt{100}} \ge \frac{119.5 - 100}{\sqrt{100}}) = 1 - \Phi(1.95) \approx 0.0256$$

- 。Note: Normal can be used to approximate Poisson
- I'll give you one more chance (one-sided) Chebyshev: $P(X \ge 120) = P(X \ge E[X] + a) \le \frac{\sigma^2}{\sigma^2 + a^2} = \frac{100}{100 + 20^2} = 0.2$

$$P(X \ge 120) = P(X \ge E[X] + a) \le \frac{\sigma^2}{\sigma^2 + a^2} = \frac{100}{100 + 20^2} = 0.2$$

It's play time!

Sum of Dice

- You will roll 10 6-sided dice (X1, X2, ..., X10)
 - X = total value of all 10 dice = X₁ + X₂ + ... + X₁₀
 - Win if: $X \le 25$ or $X \ge 45$
 - Roll!
 - And now the truth (according to the CLT): $E[X] = 10E[X_i] = 10(3.5) = 35 \qquad \text{Var}(X) = 10 \text{ Var}(X_i) = 10 \frac{35}{12} = \frac{350}{12}$ $1 P(25.5 \le X \le 44.5) = 1 P(\frac{25.5 35}{\sqrt{350/12}} \le \frac{X 35}{\sqrt{350/12}} \le \frac{44.5 35}{\sqrt{350/12}})$ $\approx 1 (2\Phi(1.76) 1) \approx 2(1 0.9608) = 0.0784$
 - If only Chebyshev were right... $P(|X \mu| \ge k) = P(|X 35| \ge 10) \le \frac{\sigma^2}{k^2} = \frac{350/12}{100} \approx 0.292$