Bayesian Statistics

Normal Linear Model

Nan Lin

Department of Mathematics

Washington University in St. Louis

Multiple linear regression

- Response: *y*
- Explanatory variables: $\mathbf{x} = (x_1, ..., x_k)$
- Goal: find y = f(x)
- ▶ Data: (x_i, y_i) , i = 1, ..., n
- $Model: y_i = f(x_i) + \epsilon_i,$
 - Linear regression: $f(x_i) = x_{1i}\beta_1 + x_{2i}\beta_2 + \dots + x_{ki}\beta_k$
- > Typical assumptions for normal linear regression
 - $\epsilon_i \sim N(0, \sigma^2)$ i.i.d.
- $E(y|\mathbf{x}) = f(x)$
 - For linear regression, using matrix notations, we have $Y|X\sim N_n(X\boldsymbol{\beta},\sigma^2I)$

Frequentist inference

Ordinary least square

$$\widehat{\beta} = (X^T X)^{-1} X^T y$$

$$\hat{\sigma}^2 = s^2 = \frac{1}{n-k} (y - X\hat{\beta})^T (y - X\hat{\beta})$$

Bayesian inference

Noninformative Prior

$$f(\boldsymbol{\beta}, \sigma^2 | X) \propto \sigma^{-2}$$

Posterior

- $\beta | \sigma^2, y \sim N(\widehat{\beta}, V_{\beta} \sigma^2)$
 - $\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$
 - $V_{\beta} = (X^T X)^{-1}$
- $\frac{(n-k)s^2}{\sigma^2}|y \sim \chi_{n-k}^2$, i.e. $\sigma^2|y \sim Inv \chi^2 (n-k, s^2)$
- Marginal posterior of $\beta|y$ is the multivariate t-distribution with n-k degrees of freedom

Sampling from the posterior

- Calculate $\widehat{\pmb{\beta}}$ and $V_{\pmb{\beta}}$ from standard linear regression software
 - ▶ The following is a relatively efficient algorithm
 - ▶ Compute the QR factorization, X = QR, where Q is an $n \times k$ matrix of orthonormal columns and R is a $k \times k$ upper triangular matrix
 - Compute R^{-1} , which is an easy task since R is upper triangular. Then we obtain $V_{\beta} = (X^T X)^{-1} = R^{-1} (R^{-1})^T$.
 - ▶ Compute $\hat{\beta}$ by solving the linear system $R\hat{\beta} = Q^T y$.
- Simulate from $\sigma^2 | y$
- Simulate from $\beta | \sigma^2$, y

Predictive distribution

- Given a new design matrix \tilde{X} , predict \tilde{y}
- Simulate from the predictive distribution
 - Draw from β , $\sigma^2 | y$
 - Simulate from $N(\tilde{X}\beta, \sigma^2 I)$
- Analytical results
 - $E(\tilde{y}|\sigma^2, y) = \tilde{X}\hat{\beta}$
 - $Var(\tilde{y}|\sigma^2, y) = (I + \tilde{X}V_{\beta}\tilde{X}^T)\sigma^2$
 - $\tilde{y}|y$ is multivariate t with center $\tilde{X}\hat{\beta}$, squared scale matrix $(I + \tilde{X}V_{\beta}\tilde{X}^{T})s^{2}$, and n k degrees of freedom