The CTC saga: C3 comparison

Stelios Sfakianakis

Date: 2014-09-21

C3 comparison

This is the comparison between cancer tissue and normal blood. We are using the cancer tissue samples from the c1 comparison, i.e.:

- GSE22820: "Gene expression profiles were generated from **176** primary breast cancer patients and 12 normal breast samples", PMID: 21356353 (Agilent Whole Human Genome Microarray 4x44K G4112F): **176** cancer tissues
- GSE19783: "mRNA profiling from 115 breast cancer samples was performed", PMID: 21364938 (Agilent Whole Human Genome Microarray 4x44K G4112F): 113 cancer tissues (we don't take 2 metastatic cancers)
- GSE31364: "Seventy-two primary breast cancer tumor have been analyzed against a breast cancer reference pool.", PMID: 22384245 (Agendia_human_DiscoverPrint_v1 custom platform): 72 cancer tissues

Furthermore we are using the following datasets providing cancer samples:

- GSE15852: "Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context" (PMID: 20097481). Platform: Affymetrix genechip U133A. 43 cancer patients
- GSE12763: "In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models" (PMID: 19567590). Platform: Affymetrix Human Genome U133 Plus 2.0 Array 30 human breast cancers

For the normal blood samples we are using the ones from (my) c2 comparison, that is:

- GSE27562: "In total, we collected blood from 57 women with a diagnosis of breast cancer and 37 with a benign diagnosis" (PMID: 21781289) Platform: Affymetrix: 31 normal blood samples
- GSE16443: "Diagnostic work-up revealed that 67 of these women had breast cancer while 54 had no malignant disease. Additionally, 9 samples from 6 healthy female controls (three pregnant women, one breast-feeding woman and two healthy controls at different timepoints in their menstrual cycle) were included." (PMID: 20078854). Platform: Applied Biosystems (ABI): 54 normal blood samples

The merge of these datasets result in 6421 (common) genes and 510 samples (85 normal blood samples and 425 cancer tissue).

```
> print.xtable(xtable(table(c3.data$Origin, c3.data$Study)), comment=FALSE)
> plotMDS(c3.data, "Study", "Origin", main="Distribution of samples in the merged datasets")
Let's save the dataset for subsequent analyses:
> saveRDS(c3.data, file=file.path("intermediate", "c3.data.rds"))
```

Distribution of samples in the merged datasets

Figure 1: 2D (MDS) plot of the merged dataset

	GSE12763	GSE15852	GSE16443	GSE19783	GSE22820	GSE27562	GSE31364
Cancer Tissue	30	43	0	113	176	0	72
Normal Blood	0	0	54	0	0	31	0

Differential expression

We find 241 genes over-expressed in cancer samples. They can be found in the c3_siggenes.txt file.

> sessionInfo()

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

R version 3.1.1 (2014-07-10)

- [1] splines grDevices datasets parallel stats graphics utils
- [8] methods base

other attached packages:

[1]	plyr_1.8.1	ggplot2_1.0.0	xtable_1.7-3
[4]	<pre>inSilicoMerging_1.8.6</pre>	DWD_0.11	Matrix_1.1-4
[7]	siggenes_1.38.0	multtest_2.20.0	knitr_1.6
Γ10]	Biobase 2.24.0	BiocGenerics 0.10.0	magrittr 1.1.0

loaded via a namespace (and not attached):

```
[1] codetools_0.2-9 colorspace_1.2-4 digest_0.6.4 evaluate_0.5.5 [5] formatR_0.10 grid_3.1.1 gtable_0.1.2 lattice_0.20-29 [9] MASS_7.3-34 munsell_0.4.2 proto_0.3-10 Rcpp_0.11.2 [13] reshape2_1.4 scales_0.2.4 stats4_3.1.1 stringr_0.6.2
```

[17] survival_2.37-7 tools_3.1.1