

- Badr SOULAIMANI

Ilias ELFRYAKH

Learning Image restoration using optimized reaction diffusion processes.

UE Complmaging 21/03/2023

Citation

This presentation is based on the work of:

Yunjin Chen, Wei Yu, Thomas Pock

Entitled

On learning optimized reaction diffusion processes for effective image restoration

PLAN

- 1. PROBLEMATIC
- 2. METHODOLOGY
- 3. IMPLEMENTATION
- 4. EXPERIMENTS
- 5. CONCLUSION

PROBLEMATIC

Image restoration

The process of estimation uncorrupted images from noisy or blurred ones.

High quality restoration vs
High computational efficiency

METHODOLOGY

Model

The architecture of the model used (RNN = CNN with feedback)

Learning

RD Equation

$$\frac{u_t - u_{t-1}}{\Delta t} = -\underbrace{\sum_{i=1}^{N_k} K_i^{t^\top} \phi_i^t(K_i^t u_{t-1})}_{\text{diffusion term}} - \underbrace{\psi(u_{t-1}, f_n)}_{\text{reaction term}} - \underbrace{Denoising}_{t} u_t = u_{t-1} - \left(\underbrace{\sum_{i=1}^{N_k} \bar{k}_i^t * \phi_i^t(k_i^t * u_{t-1}) + \lambda^t(u_{t-1} - f_n)}_{\text{reaction term}}\right)$$

Influence function

$$\phi_i^t(z) = \sum_{j=1}^{M} w_{ij}^t \varphi\left(\frac{|z - \mu_j|}{\gamma_j}\right)$$

Gaussian RBFs

$$\varphi_g(z) = \varphi\left(\frac{|z-\mu|}{\gamma}\right) = \exp\left(-\frac{(z-\mu)^2}{2\gamma^2}\right)$$

Learning

Loss functions

Joint training:

 $\Theta_t = \{\lambda^t, \phi_i^t, k_i^t\}$ With:

$$\mathcal{L}(\Theta_{1,\dots,T}) = \sum_{s=1}^{S} \ell(u_{T}^{(s)}, u_{gt}^{(s)})$$

$$\mathcal{L}(\Theta_{t}) = \sum_{s=1}^{S} \ell(u_{t}^{(s)}, u_{gt}^{(s)})$$

$$\mathcal{L}(\Theta_t) = \sum_{s=1}^{S} \ell(u_t^{(s)}, u_{gt}^{(s)})$$

MSE

$$\ell(u_t^{(s)}, u_{gt}^{(s)}) = \frac{1}{2} \|u_t^{(s)} - u_{gt}^{(s)}\|_2^2$$

Evaluation metric

$$PSNR(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{MSE(I, J)} \right)$$

IMPLEMENTATION

Model

- Pytorch implementation
- TRD model with 8 stages, 48 filters of size 7x7
- 63 Gaussian RBFs same as the author's implementation

Training

- Image dataset(same as the authors, 300 images) with additive gaussian noise(σ=25)\Poisson noise.
- Training with greedy or joint mode ⇒ Possibility of training with greedy mode then fine tune the model with joint mode.
- An Adam optimizer was used instead of the L-BFGS algorithm. During training,
 180x180 patches randomly cropped from training images are fed to the network.
- The learning phase uses backpropagation from Pytorch on the GPU (VM) whereas authors used explicit derivatives on CPU in Matlab.

EXPERIMENTS

Madad	σ		C.	$\sigma = 15$			
Method	15	25	St.	$TRD_{5\times5}$	$TRD_{7 \times 7}$		
BM3D	31.08	28.56	2	31.14	31.30		
LSSC	31.27	28.70	5	31.30	31.42		
EPLL	31.19	28.68	8	31.34	31.43		
opt-MRF	31.18	28.66		$\sigma = 25$			
RTF ₅	_	28.75		$TRD_{5\times5}$	$TRD_{7\times7}$		
WNNM	31.37	28.83	2	28.58	28.77		
$CSF_{5\times5}^5$	31.14	28.60	5	28.78	28.92		
CSF ₇	31.24	28.72	8	28.83	28.95		

Table 1. Average PSNR (dB) on 68 images from [36] for image denoising with $\sigma=15,25$.

Method	256^{2}	512^{2}	1024^{2}	2048^{2}	3072^{2}
BM3D [11]	1.1	4.0	17	76.4	176.0
$CSF_{7\times7}^{5}$ [38]	3.27	11.6	40.82	151.2	494.8
WNNM [19]	122.9	532.9	2094.6	_	
	0.51	1.53	5.48	24.97	53.3
$TRD_{5\times5}^5$	0.43	0.78	2.25	8.01	21.6
111255	0.005	0.015	0.054	0.18	0.39
	1.21	3.72	14.0	62.2	135.9
$TRD_{7\times7}^5$	0.56	1.17	3.64	13.01	30.1
	0.01	0.032	0.116	0.40	0.87

Table 2. Run time comparison for image denoising (in seconds) with different implementations. (1) The run time results with gray background are evaluated with the single-threaded implementation on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz; (2) the blue colored run times are obtained with multi-threaded computation using Matlab *parfor* on the above CPUs; (3) the run time results colored in red are executed on a NVIDIA GeForce GTX 780Ti GPU. We do not count the memory transfer time between CPU/GPU for the GPU implementation (if counted, the run time will nearly double)

2. OWN EXPERIMENTS

PSNR (dB)									
	Sigma = 15			Sigma = 25			Poisson		
Stage	TRD 7x7 (Greedy+J oint Gaussian)	TRD 7x7 (Joint Gaussian)	TRD 7x7 (Joint Poisson)	TRD 7x7 (Greedy+J oint Gaussian)	TRD 7x7 (Joint Gaussian)	TRD 7x7 (Joint Poisson)	TRD 7x7 (Greedy+J oint Gaussian)	TRD 7x7 (Joint Gaussian)	TRD 7x7 (Joint Poisson)
2	27.56	5.91	2.28	24.96	5.76	2.13	28.01	5.95	2.33
5	30.02	-9.44	-11.55	27.72	-9.45	-11.55	30.33	-9.44	-11.54
8	31.02	28.66	30.8	30.41	27.15	26.01	30.96	29.01	33.84

2. SAMPLES

Image with gaussian noise

Denoised image

CONCLUSION

- Transform an already used method (Reaction diffusion equation) to a trainable model and optimize it using a differentiable framework.
- Visualizing the learned kernels and functions provides a level of interpretability to the model.
- Wide range of applications to this kind of approach.

