SECTION 07 05 23

PRESSURE TESTING AN AIR BARRIER SYSTEM FOR AIR TIGHTNESS 08/19

PART 1 GENERAL

1.1 SUMMARY

Employ an independent agency to conduct the pressure test on the building envelope in accordance with this specification section and ASTM E779 or JIS A 2201.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referenced within the text by the basic designation only.

AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING (ASNT)

ANSI/ASNT CP-105	(2020) ASNT Standard Topical Outlines for Qualification of Nondestructive Testing Personnel
ANSI/ASNT CP-189	(2020) ASNT Standard for Qualification and Certification of Nondestructive Testing Personnel
ASNT SNT-TC-1A	(2020) Recommended Practice for Personnel Qualification and Certification in Nondestructive Testing

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE RP-935	(1998) Protocol for Field Testing of Tall
	Buildings to Determine Envelope Air
	Leakage Rate

ASTM INTERNATIONAL (ASTM)

ASTM D3464	(1996; R 2014) Standard Test Method for Average Velocity in a Duct Using a Thermal Anemometer
ASTM E779	(2019) Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
ASTM E1186	(2017) Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems
ASTM E1258	(1988; R 2018) Standard Test Method for Airflow Calibration of Fan Pressurization Devices

ASTM E1827 (2011; R 2017) Standard Test Methods for

Determining Airtightness of Buildings

Using an Orifice Blower Door

ASTM E2029 (2011) Standard Test Method for Volumetric

and Mass Flow Rate Measurement in a Duct

Using Tracer Gas Dilution

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

ISO 6781	(1983) Thermal Insulation - Qualitative
	Detection of Thermal Irregularities in
	Building Envelopes - Infrared Method

ISO 6781-2 (2010) Performance of Buildings Detection of Heat, Air, and Moisture
Irregularities in Buildings by Infrared
Methods - Part2: Equipment Requirements

ISO 6781-3 (2015) Performance of Buildings Detection of Heat, Air, and Moisture
Irregularities in Buildings by Infrared
Methods - Part 3: Qualifications of
Equipment Operators, Data Analysts, and

Report Writers

JAPANESE STANDARDS ASSOCIATION (JSA)

JIS A 2201 (2017) Test Method for Performance of Building Air Tightness by Fan

Pressurization

1.3 DEFINITIONS

The following terms as they apply to this section:

1.3.1 Air Barrier Envelope

The surface that separates the inside air from the outside air. The combination of air barrier assemblies and air barrier components, connected by air barrier accessories are designed to provide a continuous barrier to the movement of air through an environmental separator. A single building may have more than one air barrier envelope. The air barrier surface includes the top, bottom, and sides of the envelope. The term "air barrier envelope" is also known as "air barrier system" or simply "air barrier".

1.3.2 Air Leakage Rate

How leaky, or conversely how air tight a building envelope is. The air leakage is normally described in terms of air flow rate for the surface area of the envelope at a defined differential pressure.

1.3.3 Bias Pressure

Also known as zero flow pressure, baseline pressure, offset pressure or background pressure. With the envelope not artificially pressurized, bias is the differential pressure that always exists between the envelope that has been prepared (sealed) for the pressure test and the outdoors. Bias

pressure is made up of two components, fixed static offset (usually due to stack effect or the HVAC system) and fluctuating pressure (usually due to wind or a moving elevator). Because of pressure fluctuations many bias pressure readings are recorded and averaged for use in the calculations.

1.3.4 Blower Door

Commonly used term for an apparatus used to pressurize and depressurize the space within the building envelope and quantify air leakage through the envelope. The blower door typically includes a door fan and an air resistant fabric or a series of hard panels that extends to cover and seal the door opening between the fan shroud and door frame. The door fan is a calibrated fan capable of measuring air flow and is usually placed in the opening of an exterior door. With the air barrier otherwise sealed, air produced by the door fan pressurizes or de-pressurizes the envelope, depending on the fan's orientation.

1.3.5 Environmental Separator

The parts of a building that separate the controlled interior environment from the uncontrolled exterior environment, or that separate spaces within a building that have dissimilar environments. The term "environmental separator" is also known as the "control layer".

1.3.6 Pressure Test

A generic term for a test in which the envelope is either pressurized or de-pressurized with respect to the outdoors.

1.3.6.1 Negative Pressure Test (Depressurization Test)

A test wherein air inside the envelope is drawn to the outdoors. This places the envelope at a lower (negative) pressure with respect to the outdoors.

1.3.6.2 Positive Pressure Test (Pressurization Test)

A test wherein outdoor air is pushed into the envelope. This air movement places the envelope at a higher (positive) pressure with respect to the outdoors.

1.4 WORK PLAN

Submit the following not later than [120] [____] calendar days [after contract award, but] before start of pressure testing work, steps to be taken by the lead pressure test technician to accomplish the required testing.

- a. Memorandum of test procedure.
 - (1) Proposed dates for conducting the pressure, thermographic and fog tests.
 - (2) Submit detailed pressure test procedures prior to the test. Provide a plan view showing proposed locations (personnel doors or other similar openings) to install blower doors or flexible ducts (for trailer-mounted fans), if used.
- b. Test equipment to be used.

- c. Scaffolding, scissor lifts, power, electrical extension cords, duct tape, plastic sheeting and other Contractor's support equipment required to perform all tests.
- d. Other Contractor's support personnel who will be on site for testing.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals	
Work Plan; G[, []]	
SD-03 Product Data	
Thermal Imaging Camera; G[, []]	
SD-05 Design Data	
Envelope Surface Area Calculations; G[, []]	
SD-07 Certificates	
Pressure Test Agency	
Thermographer Qualifications	
Test Instruments	
Date Of Last Calibration	
SD-06 Test Reports	
Pressure Test Procedures; G[, []]	
Air Leakage Test Report; G[, []]	
Diagnostic Test Report; G[, []]	

1.6 QUALITY ASSURANCE

1.6.1 Modification of References

Perform all pressure and diagnostic tests according to the referenced publications listed in paragraph REFERENCES and as modified by this section. Consider the advisory or recommended provisions, of the referred references, as mandatory.

1.6.2 Qualifications

1.6.2.1 Pressure Test Agency

Submit, no later than [15] [____] calendar days after contract award, information certifying that the pressure test agency is not affiliated with any other company participating in work on this contract. The work of the test agency is limited to pressure testing the building envelope, performing a thermography test and fog test, and investigating, through various methods, the location of air leaks through the air barrier. See paragraph PRESSURE TEST AGENCY for additional requirements. For thermographer qualifications, see paragraph THERMOGRAPHER QUALIFICATIONS.

Use the sample TEST AGENCY QUALIFICATIONS SHEET form (Appendix C), to submit the following information.

- a. Verification of [2][____] years of experience as an agency in pressure testing commercial and/or industrial buildings.
- b. List of at least ten commercial/industrial facilities with building envelopes that the agency has tested within the past 2 years. Include building name, address, and name of prime construction contractor and contractor's point-of-contact information.
- c. Confirmation of 2 years of commercial and or industrial building pressure test experience for the lead pressure test technician and the thermographer in using the specified ASTM E779 or JIS A 2201 testing standard. References from five Contracting Officers for facilities where the lead test technician has supervised commercial and or industrial building pressure tests in the last 2 years.
- d. Verification that the lead pressure test technician has been employed by a building pressure testing agency in the capacity of a lead pressure test technician for not less than 1 year.

1.6.2.2 Thermographer Qualifications

To perform an infrared diagnostic evaluation, use a lead thermographer who has at least an active Level II Certification that is based on the requirements in ANSI/ASNT CP-105 or ANSI/ASNT CP-189 and is in accordance with ASNT SNT-TC-1A. The course of study is to be specifically focused on infrared thermography for building science. The thermographer must have at least two years of building science thermography experience in IR testing commercial or industrial buildings. The thermographer must also have experience in building envelopes and building science in order to make effective recommendations to the contractor should the envelope require additional sealing. Thermographic equipment operators, data analysists and report writers must comply with the requirements of ISO 6781-3. Submit the thermographer's certificate for approval. Submit a list of at least ten commercial/industrial buildings on which the thermographer has performed IR thermography in the past two years. thermographer is to have a current active certification. Submit certification at least 60 days prior to thermography testing.

1.6.3 Test Instruments and Date of Last Calibration

Submit a signed and dated list of test instruments, their application, manufacturer, model, serial number, range of operation, accuracy and date of most recent calibration. Calibration data applicable to fan systems

must be in accordance with ASTM E1258.

1.6.4 Test Reports

No later than 14 days after completion of the pressure test, submit electronic copies of an organized report[and [_____] bound paper copies in a durable 3-ring binder]. The report is to contain a table of contents, an executive summary, an introduction, a results section and a discussion of the results. Submit the air leakage test report as described in paragraph AIR LEAKAGE TEST REPORT. Submit a diagnostic test report as described in paragraph LOCATING LEAKS BY DIAGNOSTIC TESTING. The diagnostic test report is to include the Thermographic Investigation Report and the Fog Test Report (if performed).

Submit field data and completed report forms found in the appendices. Use the sample forms, Test Agency Qualification Sheet, Air Leakage Test Form and Air Leakage Test Results Form to summarize the tests for the appropriate building envelope. Submit both electronically populated and field hand filled-in forms.

Report Data. Include in the report the following information for all tests:

- a. Date of issue
- b. Project title and number
- c. Name, address, and telephone number of testing agency
- d. Dates and locations of samples and tests or inspections
- e. Names of individuals making the inspection or test
- f. Designation of the work and test method
- g. Identification of product and specification section
- h. Complete inspection or test data
- i. Test results and an interpretation of test results
- j. Comments or professional opinion on whether inspected or tested work complies with contract document requirements
- k. Recommendations on retesting

1.7 CLIMATE CONDITIONS SUITABLE FOR A PRESSURE TEST

As the test date approaches, monitor the weather forecast for the test site. Avoid testing on days forecast to experience high winds, rain, or snow. Monitor weather forecasts prior to shipping pressure test equipment to the site. Based on current and forecast weather conditions, the Contracting Officer's representative is to grant final approval for testing to occur.

1.7.1 Rain

For safety reasons, avoid testing during rain or if rain is anticipated during testing. If pneumatic hoses are installed and exposed to rain

inspect the hose to insure rainwater has not migrated into the hose ends. Orient all exposed hose ends to keep them out of water puddles. Success in temporarily sealing outdoor ventilation components such as louvers and exhaust fans may also be compromised by rain. Don't seal roof-mounted ventilation components during times of potential lightning.

1.7.2 Wind

Because wind can skew pressure test results, test only on days and at times when winds are anticipated to be the calmest. Avoid pressure testing during gusty or high wind conditions. Avoid installing test fans on the windward side of the building if wind gusts during the test are anticipated to be greater than 16.1 kilometers/hour.

PART 2 PRODUCTS

2.1 PRESSURE TEST EQUIPMENT

Depending on site conditions and size of the envelope, the test may be conducted using [blower door equipment] [and/or] [trailer-mounted fans] [or the building's own supply air system]. The testing agency is to supply sufficient quantity of blower equipment that will produce a minimum of 75 Pa differential pressure between the envelope and outdoors using the test methods described herein. Supplying additional blower test equipment to provide additional airflow capacity or to act as a backup is highly recommended.

2.1.1 Blower Door Fans and Trailer Mounted Fans

Each air flow measuring system including blower door fans and trailer mounted fans are to be calibrated within the last 5 years. Calibrated blower door fans and trailer mounted fans must measure accurately to within plus or minus 5 percent of the flow reading. Blower door equipment and trailer mounted fans are to be specifically designed to pressurize building envelopes. Each set of blower door equipment is to include fan(s), digital gage(s), door frame, door fabric or hard panels.

2.1.2 Digital Gages as Test Instruments

Use only digital gages as measuring instruments in the pressure test; analog gages are not acceptable. The gauges must be accurate to within 1.0 percent of the pressure reading or 0.15 Pa, whichever is greater. Each gage is to have been calibrated within two years of the test. The calibration is to be checked against a National Institute of Standards and Technology (NIST, formerly National Bureau of Standards) traceable standard.

2.2 THERMAL IMAGING CAMERA REQUIREMENTS

The thermal imaging camera used in the thermography test must have a thermal sensitivity (Noise Equivalent Temperature Difference.) of +/- 0.1 degree C at 30 degrees C or less. Ensure the camera's operating spectral range falls between 2 and 15 micrometers. Ensure the camera's IR image viewing screen resolution measures at least 320×240 pixels. Ensure the camera has a means of recording thermal images seen on the camera viewing screen. The camera is to display output as individual still frame images that also can be downloaded and inserted into an electronic Thermographic Investigation Report. All thermographic equipment must comply with the requirements of ISO 6781-2. Submit camera make and model, and catalog

information that defines the camera thermal sensitivity for approval.

PART 3 EXECUTION

3.1 PRESSURE TEST AGENCY

The test agency is to be an independent third party subcontractor, not an affiliated or subsidiary of the prime contractor, subcontractors or A/E firm. The agency is to be regularly engaged in pressure testing of commercial/industrial building envelopes. If using blower door or trailer-mounted fans, the lead test technician must have at least two years of experience in using such equipment in building envelope pressurization tests. Formal training using pressure test equipment is highly recommended. Technicians using the building's air handling system for pressure testing are to have tested at least five commercial/industrial buildings within the past two years with each building having over 4645 square meters of floor area. Submit the name, address and floor areas of each of these five buildings for approval.

3.1.1 Field Work

The lead pressure test technician and thermographer are to be present at the project site while testing is performed and is to be responsible for conducting, supervising, and managing of their respective test work. Management includes health and safety of test agency employees.

3.1.2 Reporting Work

The lead pressure test technician is to prepare, sign, and date the test agenda, equipment list, and submit a certified Air Leakage Test Report. The thermographer is to prepare, sign, and date the test agenda, equipment list, and submit a certified Thermographic Investigation Report. The contractor is to prepare a final report that identifies improvements that were made to the envelope to reduce air leaks [, mitigate thermal bridging][, eliminate moisture migration,][, repair insulation voids] discovered during diagnostic tests. Jointly submit all reports.

3.2 ENVELOPE SURFACE AREA CALCULATION

The architectural air barrier boundary includes the floor, walls, and ceiling. After construction of the air barrier envelope is complete, field measure the envelope to ensure the physical measurements match the design drawings and the air barrier envelope surface area calculations are generated. If the calculation result is not within 10 percent of the defined air barrier boundary calculation result as indicated, submit the envelope surface area calculation and results for review. [If the air barrier was defined during design but the air barrier envelope surface area was not calculated, calculate it during construction and submit the envelope surface area calculations and result for review.]

3.3 PREPARING THE BUILDING ENVELOPE FOR THE PRESSURE TEST

3.3.1 Testing During Construction

The pressure test cannot be conducted until all components of the air barrier system have been installed. After all sealing as described herein has been completed, inspect the envelope to ensure it has been adequately prepared. During the pressure test, stop all ongoing construction within and neighboring the envelope which may impact the test or the air barrier

integrity. The pressure test may be conducted before finishes that are not part of the air barrier envelope have been installed. For example, if suspended ceiling tile, interior gypsum board or cladding systems are not part of the air barrier the test can be conducted before they are installed. Recommend testing prior to installing the finished ceilings within the envelope and immediately surrounding it. The absence of finished ceilings allows for inspection and diagnostic testing of the roof/wall interface and for implementation of repairs to the air barrier, if necessary to comply with the maximum allowed leakage.

3.3.2 Sealing the Air Barrier Envelope

Seal all penetrations through the air barrier. Unavoidable penetrations due to electrical boxes or conduit, plumbing, and other assemblies that are not air tight are to be made so by sealing the assembly and the interface between the assembly and the air barrier or by extending the air barrier over the assembly. Support the air barrier so as to withstand the maximum positive and negative air pressure to be placed on the building without displacement or damage, and transfer the load to the structure. Durably construct the air barrier to last the anticipated service life of the assembly and to withstand the maximum positive and negative pressures placed on it during pressure testing. Do not install lighting fixtures that are equipped with ventilation holes through the air barrier.

3.3.3 Sealing Plumbing

Prime all plumbing traps located within the envelope full of water.

3.3.4 Close and Lock Doors

Close and lock all doors and windows in the envelope perimeter. For doors not equipped with latching hardware, temporarily secure them in the closed position. Secure the doors in such a way that they remain fully closed even when the maximum anticipated differential air pressure produced during the test acts on them.

3.3.5 Hold Excluded Building Areas at the Outdoor Pressure Level

Keep building areas immediately surrounding but excluded from the test envelope at the outdoor pressure level during the pressure test. Maintain these areas at the outdoor pressure level by propping exterior doors open, opening windows and de-energizing all air moving devices in or serving these areas.

3.3.6 Maintain an Even Pressure within the Envelope

Ensure the pressure differences within the envelope are minimized by opening all internal air pathways including propping open all interior doors. Distribute test fans throughout the envelope as necessary to ensure the internal pressures are uniform (within 10 percent of the average differential pressure). Ideally, do not install suspended ceilings until after all pressure tests have been completed. If, however the envelope includes finished suspended ceiling spaces, temporarily remove approximately 5 percent of all ceiling tiles or a minimum of 1 tile from each isolated suspended ceiling space, whichever comprises the greatest surface area. Temporarily remove additional ceiling tiles during testing to allow for inspection and diagnostic testing of the ceiling/wall interface. An alternative to removing ceiling tiles is to measure the differential pressure between each isolated suspended ceiling space and

the outdoors when the area below the suspended ceiling is maintained at a differential pressure of 75 Pa with respect to the outdoors. If the suspended ceiling differential pressure measurement is within ten percent of the 75 Pa pressure below the suspended ceiling no ceiling tiles need to be removed.

3.3.7 Maintain Access to Mechanical and Electrical Rooms

Maintain access to mechanical rooms and electrical rooms associated with the envelope to allow for de-energizing ventilation equipment and resetting circuit breakers tripped by blower door equipment, if used.

3.3.8 Minimize Potential for Blowing Dust and Debris

Because high velocity air will be blown into and out of the envelope during the test, debris, including dust and litter, may become airborne. Airborne debris may become trapped or entangled in test equipment, thereby skewing test results. Ensure areas within and surrounding the envelope are free of dust, litter and construction materials that are easily airborne. If pressurizing existing, occupied areas, provide adequate notice to building occupants of blowing dust and debris, and general disruption of normal activities during the test.

3.3.9 De-energize Air Moving Devices

De-energize all air moving devices serving the envelope to keep air within the envelope as still as reasonably achievable. De-energize all fans that deliver air to, exhaust air from, or recirculate air within the envelope. Also de-energize all fans serving areas adjacent to but excluded from the envelope.

[3.3.10 Installing Blower Door Equipment in a Door Opening

Where blower door fans are used, before installing blower door equipment, select a door opening that does not restrict air flow into and out of the envelope and has at least 1.5 m clear distance in front of and behind the door opening. Disconnect the door actuator and secure the door open to prevent it from being drawn into the fan by fan pressure. Avoid installing blower door equipment on the windward side of the building.

3.4 BUILDING ENVELOPE AIR TIGHTNESS REQUIREMENT

For each building envelope, perform the Architectural Only test and if noted below, the Architectural Plus HVAC System test. The purpose of the pressure (air leakage) test is to determine final compliance with the airtightness requirement by demonstrating the performance of the continuous air barrier. An effective air barrier envelope minimizes infiltration and exfiltration through unintended air paths (leaks). The tests may be performed in any desired order.

3.4.1 Architectural Only Test

The test envelope is the architectural air barrier boundary as defined on the contract drawings. This boundary includes connecting walls, roof and floor which comprise a complete, whole, and continuous three dimensional envelope. Perform both a positive pressure test and a negative pressure test on this envelope, unless otherwise directed.

3.4.1.1 Test Goal

Input data from the test into the Air Leakage Rate by Fan Pressurization spreadsheet as described in paragraph CALCULATION PROGRAM via the Air Leakage Test Form. Compare output from the spreadsheet against the maximum allowable leakage defined in Section 07 27 10.00 10 BUILDING AIR BARRIER SYSTEM. The envelope passes the test if the leakage rate, as calculated using the spreadsheet, is equal to or lower than the Architectural Only leakage rate goal.

3.4.1.2 Preparing the Envelope for the Pressure Test - Seal All Openings through the Air Barrier

Temporarily close all perimeter windows, roof hatches and doors in the envelope perimeter except for those doors that are to remain open to accommodate blower door or trailer mounted fan test equipment installation. Seal, or isolate all other intentional openings, pathways and fenestrations through the architectural envelope prior to pressure testing. Follow the Recommended Test Envelope Conditions identified in ASTM E1827, Table 1, for the Closed Envelope condition. These openings may include boiler flues, fuel-burning water heater flues, fuel-burning kitchen equipment, clothes dryer vents, fireplaces, wall or ceiling grilles, diffusers etc. Before sealing flues, close their associated fuel valves and verify the associated pilot lights are extinguished. Prime all plumbing traps located within the envelope full of water. In lieu of applying tape and/or plastic, typical temporary sealing materials include tape and sheet plastic or a self-adhesive grille wrap. Use and apply tape and plastic in a manner that does not deface or remove paint or mar the finish of permanent surfaces. Be especially aware of residue that remains from tape applied to stainless steel surfaces such as kitchen hoods or rollup doors. For painted surfaces, use tape types that do not remove finish paint when the tape is removed. If paint is removed from the finished surface, repaint to match existing surfaces. Secure dampers closed either manually or by using the building's HVAC system controls. Use the table below for further guidance in building preparation.

Building Component	Envelope Condition
Air handling units, duct fans	As found (open) or temporarily sealed as necessary
Clothes dryer	Off
Clothes dryer vents	Temporarily sealed
Dampers - intake, exhaust	Physically closed or closed using control power or temporarily sealed
Diffusers, registers, grilles within the envelope	Temporarily sealed
Doors, personnel type, at the envelope perimeter	Secured closed
Doors, personnel type, within the envelope	Secured (propped) open
Doors, roll-up type, at the envelope perimeter	Closed (no additional sealing)

Building Component	Envelope Condition
Exhaust hoods	Closed* and temporarily sealed
Fireplace hearth	Temporarily sealed *
Kitchen hoods	Temporarily sealed *
Pilot light and associated fuel valve	Extinguished and closed, respectively
Vented combustion appliance	Temporarily sealed *
Vented combustion appliance exhaust flue	Off
Windows	Secured closed

 $^{^{\}star}$ If the building component has an associated manual or automatic damper, consider securing the damper closed in lieu of temporarily sealing.

[3.4.2 Architectural Plus HVAC System Test

This test envelope includes the architectural air barrier boundary as defined on the contract drawings plus all HVAC supply, return and exhaust systems that penetrate and terminate within said architectural air barrier boundary and that extends outward from said boundary. All associated ductwork, intake and exhaust dampers, and air moving devices, including air handling units and fans, are included in this test envelope even if they are physically located outside of the architectural air barrier boundary. The boundary extends to and includes the low leakage intake and exhaust dampers. Perform both a positive pressure test and a negative pressure test on this envelope, unless otherwise indicated.

3.4.2.1 Test Goal

Data from the test is to be input into the Air Leakage Rate by Fan Pressurization spreadsheet as described in paragraph CALCULATION PROGRAM via the Air Leakage Test Form. If both a positive and negative pressure tests were performed, both data sets are together to be input in the spreadsheet. Compare output from the spreadsheet against the leakage rate goal. The envelope passes the test if the leakage rate, as calculated using the spreadsheet, is equal to or lower than the Architectural Plus HVAC System leakage rate goal.

3.4.2.2 Preparing the Building for the Pressure Test

In preparation of this test, de-energize all air moving devices within this envelope by putting their controls in the Unoccupied mode. This allows the building's HVAC controls to close all associated motorized intake, exhaust, and relief dampers. Make no other changes to the HVAC systems. Temporarily sealing diffusers, grilles, registers, kitchen hoods, exhaust hoods, fans, air handling units and all other HVAC system elements with tape and/or plastic sheeting or any other means is not allowed. If the envelope includes a fireplace hearth do not seal it with tape and plastic. Use the table below for further guidance in building preparation.

Envelope Condition
As found (open)
Off
As found (no preparation)
As found (no preparation)
As found (open)
Secured closed
Secured (propped) open
Closed (no preparation)
Closed
As found (open)
As found (open)
Extinguished and closed, respectively
Off
As found (open)
Secured closed

]3.5 CONDUCTING THE PRESSURE TEST

Notify the Contracting Officer at least 10 working days before conducting the pressure tests to provide the Government the opportunity to witness the tests and to monitor weather forecasts for conditions favorable for testing. Do not pressure test until verifying that the continuous air barrier is in place and installed without failures in accordance with installation instructions. During the pressure test periodically inspect temporarily sealed items to ensure they are still sealed. Seals on temporarily sealed items tend to release more readily at higher pressures. Test data obtained after temporarily sealed items become unsealed cannot be used as input into the calculation program. Follow the Envelope Pressure Test Procedures in the paragraphs below. Submit detailed pressure test procedures indicating the test apparatus, the test methods and procedures, and the analysis methods to be employed for the building envelope pressure (air tightness) test. Submit these procedures not later than 60 days after Notice to Proceed.

3.5.1 Extend Pneumatic Tubes and Establish a Reference Differential Pressure

Confirm the various zones within the envelope have a relatively uniform

interior pressure distribution by establishing a representative differential pressure between the envelope and the outdoors with blower door or trailer-mounted fans operating. The number of indoor pressure difference measurements (pneumatic hoses) required depends on the number of interior zones separated by bottle necks that could create significant pressure drops (e.g. doorways and stairwells). Extend at least four pneumatic hoses (differential pressure monitoring ports) to locations within the envelope that are physically opposite of each other. In multiple story buildings, especially those over three stories, extend hoses to multiple floors. Locate the hose ends away from the effects of air discharge from blower test equipment. Select one of the four (or more) interior hoses, one judged by the test agency to be the most unaffected by air velocity produced by blower test equipment, to serve as the interior reference pressure port. Extend at least one additional pneumatic hose to the outdoors (outdoor pressure port). To the end of this hose manifold at least four hoses together and terminate each hose on a different side of the building. With the envelope sealed and the blowers energized, measure the differential pressure using the interior reference pressure port and the four outdoor pressure ports. Then measure and record the differential pressure by individually using each of the remaining three interior hoses. Ensure each reading is within plus or minus 10 percent of the reference reading. Thus at an average 75 Pa maximum pressure difference across the envelope, the difference between the highest and lowest interior pressure difference measurements should be 15 Pa or less. If this condition cannot be met, attempt to create additional air pathways within the envelope to minimize pressure differences within the envelope. If necessary, move the interior hose ends. See step 2.13 of the Air Leakage Test Form in Appendix A.

3.5.2 Bias Pressure Readings

With the fan pressurization equipment de-energized and the envelope sealed, obtain the differential pressure between the outdoors and the envelope. Record 12 bias pressure readings before the pressure test and 12 bias pressure readings after the pressure test. Each reading is the average of ten or more 1-second measurements. Include positive and negative signs for each reading. To help dampen bias pressures that significantly contribute to test pressure, reduce temperature differences between indoor and outdoor air. Temperature differences can be reduced by operating test fan equipment for a few minutes to replace most of the indoor air with outdoor air.

3.5.3 Testing in Both Positive and Negative Directions

The preferred method for testing a building envelope is to test in both the pressurized and depressurized directions. Testing in one direction is only allowed if opposite direction testing cannot logistically be performed due to test equipment limitations or restrictions. After obtaining the pre-test bias differential pressure readings, conduct the pressure test. Record the envelope pressures (in units of Pascals) from one interior pneumatic hose (monitoring port) and the outdoor pneumatic hose(s), averaged or manifolded, with corresponding flows (in units of L/s Record the flow rates at at least 10 to 12 positive and) for each fan. 10 to 12 negative building pressure readings. If conducting both positive and negative pressure tests the lowest allowable test pressure is 40 Pa and the highest test pressure is 85 Pa. Keep at least 25 Pa difference between the lowest and highest test pressure readings. Include the 75 Pa pressure value between the lowest and highest readings. The 10 to 12 readings in each direction are to be roughly evenly spaced along the range of pressures and flows. After testing is complete de-energize the equipment used to provide pressurization and obtain an additional 10 to 12 post-test bias pressure readings. None of the bias pressure readings are allowed to exceed 30 percent of the minimum test pressure. If these limits are exceeded the test fails and must be repeated.

[3.5.4 Single Direction Testing

After obtaining the 12 aforementioned bias pressure readings, conduct the [positive][negative] pressure test. Obtain flow rates at 10 to 12 roughly evenly spaced pressure readings over a pressure range of [50 to 85][25 to 50] Pa. After the data is recorded, de-energize the blower equipment and obtain an additional 10 to 12 bias pressure readings. None of the bias pressure readings may exceed 10 percent of the minimum test pressure. If these limits are exceeded the test fails.

]3.5.5 Using a Building's Own Air Handling System to Pressure Test an Envelope

3.5.5.1 Test Setup

Temporarily seal the envelope in a manner similar to that for testing with blower door or trailer-mounted fans. To positively pressurize the envelope, de-energize all ventilation equipment and close all associated dampers, except those outside air intake dampers associated with supply fans that will be used to pressurize the building envelope. Fully open these dampers. For the negative pressure test, de-energize all ventilation equipment except for those fans that will be used to de-pressurize the envelope. All dampers associated with de-energized fans are to be closed and all exhaust dampers associated with fans used to de-pressurize the envelope will be fully opened.

3.5.5.2 Measuring Airflows

When using the building's own air handling system to pressure test the envelope, air flows can generally be measured using one of the following methods:

- a. [When testing using the building's own air handling system, ensure flow readings obtained by anemometer comply with ASTM D3464.]Pitot tube or hot wire anemometer traverse in accordance with ASTM D3464.
- Pressure compensated shrouds (especially recommended for rooftop exhaust fans)
- c. Tracer gas methods for measuring airflows in ducts in accordance with ASTM E2029. Do not use tracer gas decay, constant injection and constant concentration methods for estimating the total ventilation rate of the envelope.

3.5.5.3 Outdoor Air Flow Measuring Stations

Air flow stations may be used to measure outdoor airflows if one of the above methods is used to check accuracy of at least one air flow reading for each station or if the design of the HVAC system specifically placed outdoor air flow stations in locations that will yield accurate results. Field verify the accuracy of readings at the air flow measuring stations before obtaining pressure test readings.

3.5.6 Pressure Testing - Special Cases

[3.5.6.1 Pressure Testing a Tall or Large Building Envelope

Pressure testing the envelope of a tall or large building may be unworkable and unrealistic using blower door or trailer-mounted equipment. In this case, the test agency may define and pressure test separate zones or floors within the envelope and sum the leakage of all of the zones to create an overall envelope leakage rate. Using this method, the test agency is to comply with the requirements of ASHRAE RP-935.

3.5.6.2 Pressure Testing a Multiple Isolated Zoned Building

Pressure test each exterior corner zone plus at least an additional 20 percent (as measured by floor area) of remaining zones. The Contracting Officer is responsible for selecting which of these additional zones to test. If all zones pass the pressure test it is assumed that all untested zones also pass and no further testing is required. If, however, any zone fails to pass the test's leakage requirements, re-seal and re-test until it passes in accordance with paragraph FAILED PRESSURE TEST. Test an additional 20 percent of previously untested zones. If all tested zones pass, no further testing is needed. If any zone in this group fails the test re-seal and re-test the zone until it passes. Continue this process until all the tested zones pass. When testing a zone, the doors to all adjacent zones that share a common surface with the tested zone are to have their doors opened to the outdoors. The resulting leakage from the test zoned is that through all 6 sufaces (4 walls, roof and floor, for a rectangular shaped zone).

3.5.6.3 Pressure Testing a Building Addition

If the existing building is occupied, coordinate the pressure test with building representatives. In preparation of the test, de-energize the air handling system serving that portion of the existing building that shares surfaces with the new building addition. Pressure testing a new building addition may also require pressurizing that part of the existing building that shares surfaces in common with the new building addition. If an air barrier is applied to the common surfaces separating the existing building from the new addition, prior to the test prop open a sufficient quantity of doors and/or windows to keep the existing building at the same pressure as the outdoors. If an air barrier is not applied to the common surfaces separating the existing building from the new addition, pressurize that part of the existing building that shares surfaces in common with the building addition to the same level as the as the addition using separate test pressurization equipment.

3.5.7 Failed Pressure Test

If the pressure test fails to meet the established criteria, use diagnostic test methods described in paragraph LOCATING LEAKS BY DIAGNOSTIC TESTING to discover the leak locations. Provide additional permanent sealing measures to reduce or eliminate leak sources discovered during diagnostic testing. Retest (perform another pressure test) after sealing has been completed. Repeat this sequence of documenting test results in the test report, performing diagnostic tests, documenting recommendations for additional sealing measures in the test report, sealing leak locations per recommendations, and re-testing as necessary until the building envelope passes the pressure test and is in compliance with the performance requirements.

3.5.8 Air Leakage Test Report

Report volumetric flow rates and corresponding differential pressures in liters per second (L/s) and Pascals (Pa), respectively, on the Air Leakage Test Form sample form found in Appendix A. Populate the accompanying spreadsheet file entitled Pressure Test Data Analysis with information obtained during the test. The spreadsheet uses equations found in ASTM E779 or JIS A 2201 as a basis for calculating the envelope leakage rate. Other similar leakage rate calculation programs cannot be used or submitted for review. Submit a printout of the data input and output in the report. Should any air tightness (pressure) test fail, the pressure test report is to include data and results from all previous failed tests along with the final successful test data and results. Indicate if the resulting leakage rate did or did not meet the goal leakage requirement. Identify and document deficiencies in the building construction upon failure of a test to meet the specified maximum leakage rate.

Include the Test Agency Qualification Sheet, Air Leakage Test Form and Air Leakage Test Results Form in the written report. Document every test set-up condition with diagrams and photos to ensure the tests can be made repeatable. Document all pneumatic hose termination locations. Record in detail how the building envelope was prepared for the tests. Also describe in detail which building items were temporarily sealed. Include photos of test equipment and sealing measures in the report. Include an electronic (pdf) version of all test reports on a CD. If the building envelope fails to meet the leakage rate goal, provide recommendations to further seal the envelope and document these recommendations in the test report.

3.6 LOCATING LEAKS BY DIAGNOSTIC TESTING

Use diagnostic test methods described herein to discover obvious leaks through the envelope. Perform diagnostic tests on the building envelope regardless of the envelope meeting or failing to meet the designated leakage rate goal. Use diagnostic test methods in accordance with ASTM E1186 and in conjunction with pressurization equipment as necessary. Use the thermography diagnostic test to establish a baseline for envelope leakage. Apply additional diagnostic tests (find, feel, fog or other tests) as necessary to further define leak locations and pathways discovered using thermography or to find additional leaks not readily detected by thermography. Using a variety of diagnostic tests may help locate leaks that would otherwise go undetected if only a single diagnostic test were used. Pay special attention to locating leaks at interfaces where there is a change in materials or a change in direction of like materials. These interfaces, at a minimum, include roof/wall, wall/wall, floor/wall, wall/window, wall/door, wall/louver, roof mounted equipment/roof curb interfaces and all utility penetrations (ducts, pipes, conduit, etc) through the envelope's architecture. Also use diagnostic tests to check for leakage between the air duct and duct damper, when the damper, under normal control power, is placed in the closed position. Should leaks be discovered during diagnostic tests, thoroughly document their exact locations on a floor plan so that sealing can be later applied, if required or as directed. If the envelope passes the leakage test, use the diagnostic test procedure described above to identify obvious leakage locations. Seal the leaks at the discretion of the COR based on the magnitude, location, potential for liquid moisture penetration or retention, potential for condensation, presence of daylight through an architectural surface or if the leakage location could

potentially cause rapid deterioration or mold growth of, or in the building envelope materials and assemblies. Apply sealing measures after diagnostic testing is complete and all pressurization blowers are off. To verify that the applied sealing measures that are effective, re-test for leaks using the same diagnostic methods that discovered the leak. Reseal and retest until the envelope meets the leakage rate goal and all obvious leaks through the envelope are sealed.

3.6.1 Find Test

Use visual observation to locate daylight and/or artificial light streaming from the opposite side of the envelope. Observe all interfaces identified above.

3.6.2 Feel Test

Use the building's air handling system or blower door equipment to negatively pressurize the building envelope, to at least 25 Pa but no greater than 85 Pa, with respect to the outdoors. The larger the pressure difference, the easier discovering leaks by feeling them becomes. While inside the envelope, hand feel roof/wall, wall/wall, and floor/wall interfaces and utility penetrations (ducts, pipes, conduit, etc) for leaks and note the leak locations on a floor plan. The "Feel" test may also be used to check for leaks between the ductwork and ductwork damper. To do this, positively pressurize the envelope and check for air movement from the envelope exterior.

3.6.3 Infrared Thermography Test

Avoid performing thermography tests just after pressure testing the building envelope (pressurizing and/or depressurizing the building envelope) as thermography readings may be inaccurate due to excessive air-wash. Perform thermography either before the pressure test or wait an appropriate amount of time after pressure test completion for the temperatures within the building envelope to stabilize before starting the thermography tests. Coordinate thermography examination with the pressure test agency and the test agency's pressurization equipment. The pressure test agency is to allow adequate time for the thermographer to perform a complete thermographic examination, as described hereinafter, of the envelope interior and exterior.

3.6.3.1 Thermography Test Methods

Before thermographic testing, remove furniture, construction equipment, and all other obstructions both inside and outside the building as necessary to gain a clear field of view. In the Thermographic Investigation Report, document all areas where obstructions remain. For exterior thermal examination of the envelope, verify that no direct solar radiation has heated the envelope surfaces to be examined for a period of approximately 3 hours for frame construction and for approximately 8 hours for masonry veneer construction. Conduct exterior investigations after sunset, before sunrise, or on an overcast day when the influence of solar radiation can be determined to be minimal. Limit exterior examinations to times when the influence of solar radiation is minimal, such as after sunset or before sunrise or during an overcast day. Conduct thermal imaging tests only when wind speeds are less than 8 mph at the time of analysis and at the end of analysis. Document any variations in wind during the test. Document all variations of test conditions in the Thermographic Investigation Report. Test only when exterior surfaces are

dry. Monitor and document ongoing test parameters, such as the temperatures inside and outside the air barrier envelope, wind speed, and differential pressure.

3.6.3.1.1 Thermography Testing of the Air Barrier

Test the building envelope in accordance with ISO 6781, and ASTM E1186. Perform a complete thermographic inspection consisting of the full inspection of the interior and exterior of the complete air barrier envelope. Document envelope areas that are inaccessible for testing. Use infrared thermography technology in concert with standard pressurization methods (blower doors, trailer mounted fans and/or the building's own air handling systems) to locate leaks through the air barrier. Because thermography works best with at least a 10 degree C temperature difference between the envelope interior and the exterior, adjust the HVAC system, if possible, to create or enhance this temperature difference. The minimum allowable temperature difference is 1.7 degree C. Maintain this temperature difference for at least 3 hours prior to the test. Use pressurization methods to establish a minimum of +20 Pa pressure difference with respect to the outdoors while using an infrared camera to view the envelope from outdoors. When viewing with the camera from inside the envelope, keep the envelope at a pressure differential of -20 Pa with respect to the outdoors using pressure testing equipment or the building's own air handling system.

3.6.3.2 Thermography Test Results

Document the location of all leaks, anomalies, and unusual thermal features on a floor plan and/or elevation view and catalog them with a visible light picture for locating the defect for correction. The thermographer is to recommend corrective actions to eliminate the leaks, anomalies and unusual thermal features. Where leaks are found perform corrective sealing as necessary to achieve the whole envelope air leakage rate specified. After sealing, again use thermography in concert with standard pressurization methods to verify that the air leakage has been reduced. After these leaks have been permanently sealed note all actions taken on the drawings or in the Thermographic Investigation Report. Submit the drawings for approval as part of the Thermographic Investigation Report. Also include thermographic photos that show where leaks were discovered. Include thermograms using an imaging palette that clearly shows the observed thermal patterns indicating air leakage. The Contracting Officer's Representative is to witness all testing.

3.6.4 Fog Test

Before using a theatrical fog generator, disable all building smoke detectors as they may alarm when fog is issued. Coordinate fog tests and the disabling of all smoke detectors with the Contracting Officer's representative and the local fire department as necessary. Use pressure test equipment or the buildings own air handling system to positively pressurize the building envelope to at least 25 Pa but not greater than 85 Pa over the outdoors. Using a theatrical fog generator within the envelope, direct fog at suspected leakage points such as at building interfaces. Test the following interfaces: roof/wall, wall/wall, floor/wall, wall/window, roof/mounted mechanical equipment. From the vantage point immediately outside the envelope and opposite that of the interface being tested, observe the effect as the fog is issued. Detection may also be further enhanced by using a scented fog liquid or a fog liquid that produces a colored fog. Look for fog and smell for

associated odor percolating through the interface. Also use smoke puffers and smoke sticks as necessary to locate leaks at these and other interface locations. If the Architectural Plus HVAC System pressure test will be/was performed introduce fog into ductwork to check for leakage between ductwork and associated dampers. After fog testing has ended, reactivate the building smoke detectors and notify the Contracting Officer and local fire department that the test has ended. After sealing has been completed retest these areas using fog. Seal additional leaks that are found.

3.6.5 Diagnostic Test Report

Once the diagnostic tests have been completed and the leakage locations identified and sealed, document these procedures, locations and recommendations in the diagnostic test report. Submit plan and/or profile drawings that thoroughly identify leak locations. Describe in detail all leak locations so that the seal-up crew knows where to apply sealing measures. After sealing measures have been applied, describe the methods used along with applicable photos of the final sealed condition.

3.6.5.1 Thermographic Investigation Report

Submit a report of each thermographic investigation identifying the thermal discontinuities in the thermal control layer. Indicate in the final report locations to which improvements for both the air control layer and the thermal control layer were made to reduce air leaks and correct discontinuities in the thermal control layer. Include in the report some selected radiometric images of suspected failure points in the air barrier envelope that indicate before and after conditions.[Devote a chapter(s) of the Thermographic Investigation Report to identifying suspected points of thermal bridging, moisture migration through roofs and walls, and insulation voids.] Indicate in the final report improvements that were made to the envelope to reduce air leaks. Include the following items in the report:

- a. Brief description of the building construction
- b. Types of interior and exterior surface materials used in the building.
- c. Geographical orientation of the building with a description of the exterior surroundings including other buildings, vegetation, landscaping, and surface water drainage.
- d. Camera brand, model and serial number, and date of most recent calibration date; optional lenses with serial numbers (if applicable)
- e. Thermographer's and Government Inspector's names
- f. Date and time of tests
- g. Air temperature and humidity inside the air barrier envelope
- h. Outdoor air temperature and humidity
- i. General information for the last 12 hours on the solar radiation conditions in the geographic area where the test is being performed.
- j. Ambient conditions such as precipitation and wind direction and speed occurring with the last 24 hours, as applicable. Refer to specific requirements in each section of each thermographic inspection type for

requirements in each specific area.

- k. Documentation of those portions of the building envelop which were not within test conditions when the scan was performed and which portions were obstructed by adjacent structures, interior furnishings, intervening cavities or reflective surfaces.
- 1. Other relevant information, which may have influenced test results.
- m. Drawings, sketches, floor plans and/or photographs detailing the locations in the buildings where thermograms were taken detailing possible irregularities in the components being tested.
- n. Thermal images taken during the inspection with their relative locations and written or voiced recorded explanations of the anomaly listed along with visual and reference images.
- o. An identification of the aspects or components of the building being examined.
- p. Explanations for the type and the extent of each construction defect observed during the inspection.
- q. Any results from additional measurements and investigations. Identify additional equipment used and support with type, model number, serial number and date of most recent calibrated.

3.6.5.2 Fog Test Report

Document all turbulent air flow and dead air spaces within the envelope. Report fog behavior as it exits from and/or is entrained within the building. Include a floor plan in the report that documents the locations where fog passed through the envelope.

3.7 CALCULATION PROGRAM

To calculate the envelope leakage rate and other required outputs, input the data obtained during the pressure tests as documented in the Air Leakage Test Form (Appendix A) into the Air Leakage Rate by Fan Pressurization Excel spreadsheet. This spreadsheet can be found at the following web site:

http://www.wbdg.org/ffc/dod/unified-facilities-guide-specifications-ufgs/forms-graphic

3.8 AFTER COMPLETION OF THE PRESSURE AND/OR DIAGNOSTIC TEST

After all pressure and/or diagnostic testing has been completed unseal all temporarily sealed items. Unless otherwise directed by the Contracting Officer, return all dampers, doors, and windows to their pre-test condition. Remove tape and plastic from all temporarily sealed openings, being careful not to deface painted surfaces. If paint is removed from finished surfaces, repaint to match existing surfaces. Unless otherwise directed by the Contracting Officer's representative, return fuel (gas) valves to their pre-test position and relight pilot lights. Return all fans and air handling units to pre-test conditions.

3.9 REPAIR AND PROTECTION

Repair and protection is the Contractor's responsibility, regardless of the assignment of responsibility for testing, inspection, and similar services. Upon completion of inspection, testing, or sample taking and similar services, repair damaged construction and restore substrates and finishes, protect construction exposed by or for quality control service activities, and protect repaired construction.

3.10 APPENDICES

The following forms are available for download as a MS Word file at http://www.wbdg.org/ffc/dod/unified-facilities-guide-specifications-ufgs/forms-graphic

Appendix A - Air Leakage Test Form

Appendix B - Air Leakage Test Results Form

Appendix C - Test Agency Qualifications Sheet

-- End of Section --