Определение 1. (Предел функции по Гейне) Пусть функция f определена в некоторой окрестности $\mathcal U$ точки a кроме, быть может, самой точки a. Число b называется пределом f в точке a, если для каждой сходящейся к a последовательности (x_n) , элементы которой отличны от a и принадлежат \mathcal{U} , верно равенство $\lim f(x_n) = b$.

Обозначения: $b = \lim_{n \to \infty} f(x)$ или $f(x) \to b$ при $x \to a$ («f(x) стремится к b при x, стремящемся к a»).

Задача 1. а) Зависит ли определение 1 от выбора окрестности \mathcal{U} ? **б)** Влияет ли значение f в точке a на существование предела f в a и его значение? **в)** Может ли функция иметь два предела в точке?

Задача 2 $^{\varnothing}$. Дайте определение того, что функция f не имеет предела в точке a.

Определение 2. (Предел функции по Коши́.) Пусть функция f определена в некоторой окрестности $\mathcal U$ точки a кроме, быть может, самой точки a. Число b называется пределом f в точке a, если для любой окрестности \mathcal{V} точки b найдется такая окрестность \mathcal{W} точки a, что при всех $x \neq a$ из \mathcal{W} число f(x) лежит в \mathcal{V} .

Задача 3. Докажите эквивалентность определений 1 и 2.

Задача
$$4^{\varnothing}$$
. Найдите следующие пределы (если они существуют):
a) $\lim_{x\to 1} \{x\}$; 6) $\lim_{x\to 1} [x]$; в) $\lim_{x\to 3} \frac{x^3-6x^2+9x}{x-3}$; г) $\lim_{x\to -1} \frac{x^2+4x+1}{x^2+2x+1}$; д) $\lim_{x\to 0} x \sin \frac{1}{x}$; e) $\lim_{x\to +\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$.

Задача 5°. Дайте определение **a)** предела функции при $x \to +\infty$;

б) того, что f(x) стремится к $+\infty$, при $x \to a$ (где $a \in \mathbb{R}$ или $a = +\infty$).

Задача 6. Найдите пределы (если они существуют) при $x \to +\infty$ функций из задачи 4, а)-г).

Задача 7. Сформулируйте и докажите а) теоремы о пределе суммы, разности, произведения и отношения двух функций; б) «принцип двух милиционеров» для функций

Задача 8. Найдите пределы при $x \to \pm \infty$ функции $f(x) = \frac{P(x)}{Q(x)}$, где P(x), Q(x) — многочлены.

Задача 9. а) Пусть функции f и g определены на \mathbb{R} , причём $\lim_{x \to a} f(x) = A$ и $\lim_{x \to A} g(x) = B$. Обязательно ли тогда $\lim_{x\to a} g(f(x)) = B$? **б)** А если g(A) = B?

Задача 10. Докажите неравенства: **a)** $\sin x < x$ при x > 0; **б)** $x < \operatorname{tg} x$ при $0 < x < \pi/2$.

Задача 11 $^{\varnothing}$. (Первый «замечательный» предел) Докажите, что $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

 $\mathbf{3}$ адача $\mathbf{12}^{\varnothing}$. Найдите: \mathbf{a}) $\lim_{x \to 0} \frac{\sin \alpha x}{x}$; $\mathbf{6}$) $\lim_{x \to 0} \frac{1-\cos x}{x}$; \mathbf{B}) $\lim_{x \to a} \frac{\sin x - \sin a}{x-a}$; \mathbf{r}) $\lim_{x \to a} \frac{\cos x - \cos a}{x-a}$; \mathbf{g}) $\lim_{x \to +\infty} \frac{\log_2 x}{x}$.

Задача 13[©]. Найдите: а) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$; б) $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$ $(n\in\mathbb{N})$; в) $\lim_{x\to 1} \frac{\sqrt[n]{x}-1}{\sqrt[n]{x}-1}$ $(m,n\in\mathbb{N})$. Задача 14. Докажите, что: а) $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$; б) $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e$;

Задача 15 $^{\varnothing}$. (Второй «замечательный» предел) Докажите, что $\lim_{x\to 0} (1+x)^{1/x} = e$.

Задача 16°. Определите предел слева $\lim_{x\to a-0} f(x)$ и предел справа $\lim_{x\to a+0} f(x)$ функции f в точке a.

Задача 17. Приведите пример функции, которая в точке a **a**) имеет разные пределы слева и справа; б) имеет предел слева, но не имеет предела справа; в) не имеет предела ни справа, ни слева.

Задача 18. Докажите, что функция, монотонная на некотором интервале, имеет предел как слева, так и справа в каждой точке этого интервала.

Задача 19. Докажите, что монотонная функция, определённая на отрезке,

а) непрерывна хотя бы в одной его точке (может, в конце — тогда непрерывна «слева» или «справа»);

б)* непрерывна во всех его точках, за исключением не более чем счётного числа точек.

Задача 20*. Приведите пример функции, определенной на \mathbb{R} , не равной тождественно нулю ни на каком интервале, но имеющей в каждой точке нулевой предел.

Задача 21^* . Может ли функция, определенная на \mathbb{R} , иметь в каждой точке бесконечный предел?

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{smallmatrix} 4 & 4 & 5 & 5 & 6 & 7 & 7 & 8 & 9 & 9 & 1010 & 11 & 1212121212 & 131313 & 1414 & 15 & 16 & 171717 & 18 & 1919 & 20 \\ a & e & a & 6 & a & a$	21