

LOW NOISE 150mA LDO REGULATOR

NO. EA-057-0204

R1111N SERIES

OUTLINE

The R1111N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high Ripple Rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1111N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the package for these ICs is SOT-23-5 (Minimold) package, high density mounting of the ICs on boards is possible.

FEATURES

Ultra-Low Supply Current	. Typ. 35μA
Standby Mode	Typ. 0.1 <i>µ</i> A
Low Dropout Voltage	Typ. 0.2V(I _{OUT} =100mA)
High Ripple Rejection	Typ. $70dB(f=1kHz)$
• Low Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Excellent Line Regulation	Typ. 0.05%/V
High Output Voltage Accuracy	. ±2.0%
• Excellent Line Transient Response and Load Transient R	Response
Small Package	SOT-23-5(Mini-mold)
Output Voltage	Stepwise setting with a step of 0.1V in the range of 1.5V to
	5.0V is possible
• Built-in chip enable circuit (2 types; A: active "L", B: active	tive "H")
• Pin out	Similar to the LP2980

APPLICATIONS

- Power source for cellular phones such as GSM,CDMA and various kind of PCSs.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the active type, the packing type, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below:

R1111x
$$\underline{x}\underline{x}$$
1x-xx \leftarrow Part Number
 $\uparrow \uparrow \uparrow \uparrow$
 $a b c d$

Code	Contents
a	Designation of Package Type : N:SOT-23-5 (Mini-mold)
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible.
С	Designation of Active Type : A :"L" active type B :"H" active type
d	Designation of Taping Type : Ex. TR, TL (refer to Taping Specifications ;TR type is the standard direction.)

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	in No. Symbol Description	
1	$V_{ m DD}$	Input Pin
2	GND	Ground Pin
3	CE or CE	Chip Enable Pin
4	NC	No Connection
5	Vout	Output pin

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Input Voltage	V_{IN}	9	V
Input Voltage(CE or CE Pin)	Vce	$-0.3 \sim V_{IN} + 0.3$	V
Output Voltage	Vout	$-0.3 \sim V_{IN} + 0.3$	V
Output Current	Iout	200	mA
Power Dissipation	PD	250	mW
Operating Temperature Range	Topt	-40 ~ 85	°C
Storage Temperature Range	Tstg	-55 ~ 125	°C

ELECTRICAL CHARACTERISTICS

• R1111Nxx1A Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 30\text{mA}$	V _{OUT} ×0.98		V _{ОUТ} ×1.02	V
Iout	Output Current	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
$\Delta ext{V}$ out/ $\Delta ext{I}$ out	Load Regulation	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 80\text{mA}$		12	40	mV
$ m V_{DIF}$	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				ГРUТ
Iss	Supply Current	$V_{IN} = Set V_{OUT} + 1V$		35	70	μА
Istandby	Supply Current (Standby)	$V_{\text{IN}} = V_{\text{CE}} = \text{Set Vout} + 1V$		0.1	1.0	μА
ΔV out/ ΔV in	Line Regulation	$Set V_{OUT} + 0.5V \le V_{IN} \le 8V$ $I_{OUT} = 30mA$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1kHz, Ripple 0.5Vp-p $V_{IN} = Set\ V_{OUT} + 1V$		70		dB
Vin	Input Voltage		2		8	V
ΔV out/ ΔT	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}$ $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$		±100		ppm /°C
Ilim	Short Current Limit	$V_{OUT} = 0V$		50		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	ΜΩ
Vceh	CE Input Voltage "H"		1.5		$V_{\rm IN}$	V
Vcel	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	$BW = 10Hz \sim 100kHz$		30		μVrms

• R1111Nxx1B Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 30\text{mA}$	V _{OUT} ×0.98		V _{ОUТ} ×1.02	V
Іоит	Output Current	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
ΔV out/ ΔI out	Load Regulation	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 80\text{mA}$		12	40	mV
$V_{ m DIF}$	Dropout Voltage	Refer to the ELECTRICAL (VOLTAGE	CHARACT	TERISTIC	S by OUT	ГРUТ
Iss	Supply Current	$V_{IN} = Set V_{OUT} + 1V$		35	70	μA
Istandby	Supply Current (Standby)	V _{IN} = Set V _{OUT} +1V V _{CE} =GND		0.1	1.0	μА
ΔV out/ ΔV in	Line Regulation	$Set \ V_{OUT} + 0.5V \le V_{IN} \le 8V$ $I_{OUT} = 30mA$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1KHz, Ripple 0.5Vp-p $V_{IN} = Set\ V_{OUT} + 1V$		70		dB
$V_{\rm IN}$	Input Voltage		2		8	V
ΔV out/ ΔT	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}$ -40°C \le Topt \le 85°C		±100		ppm /°C
Ilim	Short Current Limit	$V_{OUT} = 0V$		50		mA
Rpd	CE Pull-down Resistance		2.5	5.0	10.0	ΜΩ
Vсен	CE Input Voltage "H"		1.5		$V_{\rm IN}$	V
Vcel	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	$BW = 10Hz \sim 100kHz$		30		μVrms

• ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$

	Output Current loυτ (mA)			
Output Voltage				
	Condition	Min.		
$1.5 \le V_{OUT} \le 1.7$	V_{IN} - $V_{\text{OUT}} = 1.0V$	100		
$1.8 \le V_{\text{OUT}} \le 5.0$		150		

Topt = 25° C

Out out Walter and	Dropout Voltage					
Output Voltage Vουτ (V)	V _{DIF} (V)					
1001 (1)	Condition	Min.	Тур.	Max.		
1.5		0.50				
1.6	Iout = 100mA	0.40				
1.7		0.30				
$1.8 \le V_{\text{OUT}} \le 1.9$			0.60	1.40		
$2.0 \le V_{\text{OUT}} \le 2.4$			0.35	0.70		
$2.5 \le V_{OUT} \le 2.7$			0.24	0.35		
$2.8 \le V_{OUT} \le 3.3$			0.20	0.30		
$3.4 \le V_{\text{OUT}} \le 5.0$			0.17	0.26		

OPERATION

In these ICs, fluctuation of the output voltage, Vout is detected by feed-back registers R1, R2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. A current limit circuit for protection at short mode and a chip enable circuit, are included.

TEST CIRCUITS

CE 3 V_{DD} V_{OUT} OUT Iss 5 777 0.1μF GND

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.4 Load Transient Response Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

R1111N401B

Output Voltage vs. Input Voltage

2.0

R1111N181B

Topt = $25^{\circ}C$

R1111N301B

R1111N501B

R1111N301B

R1111N401B Topt = 25° C 4.5 IOUT = 1mAOutput Voltage Vour (V) 4.0 3.5 3.0 50mA 2.5 2.0 3.0 5.0 6.0 7.0 8.0 Intput Voltage VIN (V)

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature

5) Supply Current vs. Input Voltage

6) Supply Current vs. Temperature

Dropout Voltage vs. Set Output Voltage

R1111Nxx1B

Topt = 25 ℃

Ripple Rejection vs. Frequency

R1111N181B

VIN = 2.8VDC + 0.5Vp-pCout = tantal 1.0μF

R1111N181B

VIN = 2.8VDC + 0.5Vp-p

R1121N301B

R1121N301B

 $V_{\text{IN}} = 4V_{\text{DC}} + 0.5V_{\text{p-p}}$ $C_{\text{OUT}} = tantal~2.2\mu F$

R1111N401B

 $V_{\text{IN}} = 5.0 V_{\text{DC}} + 0.5 V_{\text{p-p}}$ $C_{\text{OUT}} = tantal \ 1.0 \mu F$

R1111N401B

VIN = 5.0 VDC + 0.5 Vp-p $COUT = tantal 2.2 \mu F$

9) Ripple Rejection vs. Input Voltage (DC bias)

R1111N301B

IOUT = 1mA

R1111N301B

 $\begin{array}{l} \text{IOUT} = 10 \text{mA} \\ \text{COUT} = \ 2.2 \mu \text{F} \end{array}$

R1111N301B

IOUT = 50mA $COUT = 2.2\mu F$

10) Line Transient Response

11) Load Transient Response

R1111N301B

R1111N301B

TECHNICAL NOTES

When using these ICs, consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor Cour with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows:

Measuring Circuit for white noise;R1111N301B

The relationship between Iout (output current) and ESR of output capacitor is shown in the graphs below. The conditions when the white noise level is under $40\mu V$ (Avg.) are indicated by the hatched area in the graph. (note: When the additional ceramic capacitors are connected to the output pin with output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as the same external components as the ones to be used on the PCB.)

<measuring conditions>

(1) $V_{IN}=4V$

(2) Frequency band: 10Hz to 1MHz

(3) Temperature: 25°C

- Make VDD and GND lines sufficient. If their impedance is high, noise pick up or incorrect operation may result.
- Connect the capacitor with a capacitance of $1\mu F$ or more between V_{DD} and GND as close as possible.
- Set external components, especially the output capacitor, as close as possible to the ICs and make wiring as short as possible.

