Esercizi sui numeri finiti con Matlab Prof. V. Ruggiero

1. Realizzare una funzione Matlab che calcola il valore del seno iperbolico sinh x tramite la relazione:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Si confronti con la funzione Matlab $\sinh(x)$ (che assumiamo essere il valore esatto del seno iperbolico) e si realizzi il grafico dell'errore assoluto e relativo per $x = 10^p$ con $p = -6, \dots, 3$. Quale è la causa di errore per valori piccoli di x? Cosa succede per valori grandi di x?

2. La costante "e" di Eulero è definita come

$$\lim_{n \to \infty} \gamma_n \quad \text{con} \quad \gamma_n = \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} - \log(n) \right].$$

Realizzare uno script Matlab che esegue il calcolo della successione γ_n , per $n=10^p$ con p=0:2:8. Discutere i risultati ottenuti dopo averli visualizzati graficamente.

3. Si calcoli la funzione di Bessel J_{20} in x=1 usando la formula di ricorrenza:

$$J_{m+1} = 2mJ_m - J_{m-1}$$

dove J_0 e J_1 sono ottenuti con le funzioni di Matlab besselj(0,1) e besselj(1,1), rispettivamente. Valutare se i risultati ottenuti sono attendibili (confrontarli con i valori ottenuti usando la funzione di Matlab besselj(m,1)).

4. Valutare l'integrale della funzione $f(x) = \frac{x^n}{4x+1}$ nell'intervallo (0,1) mediante la formula di ricorrenza

$$y_n = \frac{1}{4} \left(\frac{1}{n} - y_{n-1} \right)$$

con $y_0 = (1/4) \log(5)$, oppure mediante la formula

$$y_n = \frac{1}{n+1} - 4y_{n+1}$$

partendo da un valore di y_{n+1} nullo e con n abbastanza grande. Confrontare le due formule per effettuare il calcolo di y_{20} e dire quale delle due è più stabile.

5. Valutare $e^x \operatorname{con} x = [x] + f \operatorname{dove} f = x - [x]$ (parte decimale), calcolando con lo sviluppo in serie di Taylor

(a)
$$\left(e^{(f/[x])+1}\right)^{[x]}$$
, (b) $e^{[x]}e^f$, (c) $\underbrace{\left(e\cdot e\cdots e\right)}_{[x] \text{ volte}}e^f$.

6. Calcolare le soluzioni di un'equazione di secondo grado in modo stabile (evitando formule con cancellazione).

7. Valutare l'espressione $y = \frac{(x+1)^2 - 1}{x}$ per valori di $x = 10^{-i}$, $i = 1, 2, 3, \dots$ Commentare i risultati ottenuti, tenendo conto che l'espressione precedente può essere semplificata a y = x + 2.

8. Calcolare la sequenza di Fibonacci fino al termine F_{100} nei due seguenti modi:

• usare $F_0 = F_1 = 1$ e $F_{n+1} = F_n + F_{n-1}$;

• usare
$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

9. Realizzare un M-function file per la valutazione della seguente funzione:

$$f(x) = 1.01e^{4x} - 4.62e^{3x} - 3.11e^{2x} + 12.2e^x - 1.99.$$

Calcolare e^x usando uno sviluppo in serie accuratamente implementato in modo da ridurre la propagazione degli errori. Posto $y = e^x$, implementare la valutazione della funzione usando lo schema di Horner. Confrontare la stabilità dei due algoritmi.

1

10. Si calcoli $y_{15} = \int_0^1 \frac{x^{15}}{4x+1} dx$, usando la formula di ricorrenza:

$$y_0 = \frac{1}{4}\ln(5)$$
, $y_n = \frac{1}{n+1} - 4y_{n+1}$.

11. Considerare le relazioni di ricorrenza

$$p_0 = 1, \ p_1 = \frac{1}{3}, \ p_n = \frac{5}{6}p_{n-1} - \frac{1}{6}p_{n-2}; \qquad q_0 = 1, \ q_1 = \frac{1}{3}, \ q_n = \frac{5}{3}q_{n-1} - \frac{4}{9}q_{n-2}.$$

Calcolare in modo stabile le sequenze generate dalle relazioni per $n=2,\ldots,8$.

- 12. Realizzare un M-function file che calcoli in modo stabile la somma $\sum_{k=1}^{10} \frac{1}{k^2}$.
- 13. Per il calcolo di π si possono usare differenti metodi:
 - sviluppo in serie di $\arctan(1) = \pi/4$:

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots\right)$$

• sviluppo in serie di $\arcsin(1/2) = \pi/6$:

$$\pi = 6 \left(0.5 + \frac{(0.5)^3}{2 \cdot 3} + \frac{(1 \cdot 3)(0.5)^5}{2 \cdot 4 \cdot 5} + \frac{(1 \cdot 3 \cdot 5)(0.5)^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots \right)$$

• metodo di Wallis:

$$p_0 = 2$$
, $p_k = p_{k-1} \frac{4k^2}{4k^2 - 1}$ $k = 2, 3, 4, \dots$

 $\operatorname{con } \lim_{k \to \infty} p_k = \pi;$

• metodo di Archimede: nella circonferenza di raggio 1 vengono inscritti successivamente dei poligoni regolari di 2^p lati, per $p=2,3,4,\ldots$; l'area di ciascun poligono è data dal prodotto di 2^p per l'area di ciascun triangolo che lo costituisce. Se indichiamo con θ l'angolo al centro, l'area di ogni triangolo è data da $(1/2)\sin(\theta)$. I valori di $\sin(\theta)$ sono calcolati con la formula:

$$\sin(\theta) = \sqrt{\frac{1 - \cos(2\theta)}{2}}$$
 $\cos(\theta) = \sqrt{1 - \sin^2(\theta)}$

Partendo da $\sin(\pi/2) = 1$, $\cos(\pi/2) = 0$, si itera il procedimento;

- regola dei trapezi: si approssima $\pi/4$ con la somma delle aree dei trapezi di altezza 1/n inscritti in un quarto di cerchio di raggio unitario;
- metodo di Montecarlo: il valore di π è approssimato nel seguente modo. Si generano n coppie di numeri casuali compresi tra 0 e 1. Siano i_n e t_n , rispettivamente, il numero di punti di coordinate (x,y) interni al quarto di cerchio inscritto nel quadrato di lato 1 e il numero totale di punti considerato. Si approssima π mediante $p_n = 4i_n/t_n$.

Studiare sperimentalmente la stabilità e l'efficienza di almeno tre di questi metodi (tempo necessario, precisione ottenuta, tipo di errori generati,...).

2