

Introdução

LoRa é uma tecnologia sem fios de longo alcance e baixo consumo de energia, ideal para ser usada em aplicações da *Internet of Things* (IoT).

Tivemos a oportunidade de testar LoRa em diferentes cenários, fazendo variar diferentes distâncias, largura de banda, spread factor, potências de transmissão e condições de teste entre as antenas. Através destas experiências, adquirimos valiosos insights sobre as capacidades e limitações das comunicações LoRa e aprendemos como otimizar o seu desempenho em diferentes ambientes.

Metodologia

- Testes desenvolvidos nas seguintes condições:
 - Com campo de visão
 - Sem campo de visão
 - Com usufruto de condutores elétricos (Betão, panelas)
 - Variação de configurações
 - Spread factor
 - Bandwidth
 - Transmission Power
 - Diferentes distâncias
 - Antenas em movimento
- Como usamos LoRa Raw o grupo teve que se certificar que ambas as placas estavam no mesmo modo durante a transmissão/recepção

Testes desenvolvidos

• Na tabela seguinte podemos ver as configurações em que foram desenvolvidos os testes.

Modo	Power	Bandwidth(KHz)	Spreading Factor	Time on air(ms)
0	14	125	12	828
1	14	500	12	207
2	14	125	10	207
3	14	125	8	62
4	14	500	11	104
5	14	250	9	62
6	14	250	7	16


```
while True:
t = ticks_us()
s.setblocking(True)
s.send('PING')
s.setblocking(False)
delta = ticks_diff(ticks_us(), t)
print("Sent. TX Time =", delta/1000)
# get any data received (if any...)
data = s.recv(64)
#if data == b'ACK':
     #break
print("Received:", data)
 # print stats of last packet
 print("Stats:", lora.stats())
print("\n")
 # wait
sleep(5)
```

```
while True:
 if s.recv(64) == b'PING':
     s.send('ACK')
     print('ACK')
     time.sleep(5)
```


Conclusões

- Tal como vimos ao longo dos últimos slides podemos concluir que o signal strength não é proporcional ao SNR, no entanto, é proporcional à distância.
- Seria de esperar que os valores de SNR medidos tivessem grandes variações com os diferentes testes, mas isto não se verificou. Uma possível razão que encontramos para explicar este fenómeno é a ausência de ruído durante as transmissões.
- Apesar do protocolo ter um grande range de comunicação concluímos que em meios urbanos este range torna-se bastante limitado.
- Alguns dos testes que queríamos ter desenvolvido não foram realizados devido à impossibilidade de cobrir grandes distâncias sem interferências.