Grundzüge der Theoretischen Informatik 10. November 2021

Markus Bläser Universität des Saarlandes Kapitel 5: Das Myhill-Nerode-Theorem

Die Myhill-Nerode-Relation

Definition (5.4, Myhill-Nerode-Relation)

Sei $L\subseteq \Sigma^*.$ Die Myhill-Nerode-Relation \sim_L ist auf Σ^* definiert durch

$$x\sim_L y:\iff \text{ [f\"{u}r alle }z\in\Sigma^*\text{: }xz\in L\iff yz\in L\text{]}.$$

Lemma (5.6)

Für jedes $L \subseteq \Sigma^*$ ist \sim_L eine rechtsinvariante Äquivalenzrelation.

Beispiel

Das Myhill-Nerode-Theorem

Theorem (5.8, Myhill-Nerode)

Sei $L \subseteq \Sigma^*$. Die folgenden drei Aussagen sind äquivalent:

- 1. L ist regulär.
- 2. L ist die Vereinigung einiger Äquivalenzklassen einer rechtsinvarianten Äquivalenzrelation mit endlichem Index.
- 3. \sim_L hat endlichen Index

Jude Relation die 2. enfaillt, ist ever Verleinung de Myhill-Neode-Relation. Jede dutoralennelation = nerfillet 2 (L=L(A))

Der Myhill-Nerode-Automat

- $ightharpoonup Q = ext{die Menge der Äquivalenzklassen von } \sim_{ ext{L}},$

- $Q_{\rm acc} = \{ [x]_{\sim_L} \mid x \in L \}.$

Beispiel

$A=\{0^n1^n\mid n\in\mathbb{N}\}$

Alle Myrill-Nerode Illarer en bestimer kann nitualer schwig sevi. other was zu reiger, dans videre(nA) urrendhih vit, reicht es unerdliche viele Vorler WAIVZIW31un finder, so dans With Wi hir alle it; O+ 60, da O1 EA, alar O01 &A. für ütji La O'riGA, alber O'13 & A vidence (~ a) woundlish => A & REG

Isomorphismen von Automaten

- Seien $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ und $M'=(Q',\Sigma,\delta',q_0',Q_{\rm acc}')$ DEAs.
- \triangleright δ und δ' seien total.

Definition

M und M' sind isomorph falls es eine Bijektion $\underline{b:Q\to Q'}$ gibt mit:

- 1. Für alle $q \in Q$ und $\sigma \in \Sigma$ gilt $b(\delta(q, \sigma)) = \delta'(b(q), \sigma)$.
- 2. $b(q_0) = q'_0$.
- 3. $b(Q_{acc}) = Q'_{acc}$ $b(Q_{acc}) = \{ b(q) | q \in Q_{ccc} \}$

Solch ein b heißt Isomorphismus.

$$\begin{array}{ccc} \mathcal{M} & & Q \times \Sigma \stackrel{\delta}{\longrightarrow} Q \\ & \downarrow \downarrow & \downarrow \mathrm{id} & \downarrow \flat & \uparrow \flat \\ \mathcal{M}^{\prime} & & Q^{\prime} \times \Sigma \stackrel{\delta^{\prime}}{\longrightarrow} Q^{\prime} \end{array}$$

Der Minimalautomat

Theorem (5.9)

Sei $L \subseteq \Sigma^*$ regulär.

- 1. Jeder DEA $M' = (Q', \Sigma, \delta', q'_0, Q'_{acc})$ mit δ' total und L(M') = L hat mindestens $index(\sim_L)$ Zustände.
- 2. Jeder DEA mit totaler Übergangsfunktion, der L erkennt und $\operatorname{index}(\sim_L)$ Zustände hat, ist isomorph zum Myhill-Nerode-Automaten $M=(Q,\Sigma,\delta,q_0,Q_{\operatorname{acc}})$ (aus dem Beweis von "3. \Longrightarrow 1." im Myhill-Nerode-Theorem).

mylill- Nerode-Antonat Reight and der Minimal antorrut

Bereis 5.9.
1. Vir kordinaris den "1=>2" und "2=>3"
1. Vir korbinuer den "1=2" und "2=3" Tellever aus der Mylill-Nerode-Thm.
"1 => 2". Die dutoralemelation ist ene
Relation, du die Bedrigung aus 2.
afillt
in the second se
"2=>3" Relation aux 2 surid evre Verfeinering
vor ~
=> $ Q \ge \text{widese}(=_{m}) \ge \text{widese}(r_{l})$
mil 2000 C

b sot well def.

Der gilt
$$S^*(q_0',y) = q'$$
, darn

ist $X \equiv_{n_1} Y$ and darit $X \equiv_{n_2} Y$ and $\mathbb{E}[X] = \mathbb{E}[Y]$

b sot total, down able Easteride or

M' suid eneighbor weigh der Minimalität

'. $S(q_1\sigma) = b(S'(b^{-1}(q), \sigma))$
 $q = \mathbb{E}[X]$ and $b^{-1}(q) = q'$
 $b(S'(q',\sigma)) = \mathbb{E}[X\sigma]$
 $S(q_1\sigma) = \mathbb{E}[X\sigma]$

Es kann nur einen Minimalautomat geben.

Bis auf Isomorphie.

Sona 5.M. Falls es evi z gilt nit S*(q,z) & Oacc and 8+ (q12) & Qace down gilt on er: voit 2' 12' (2) nit \$(q, 2') = Qace und 8*(q1, 2') & Qace ode wagonest Benein Sei So. S. S. die Benedrung von M gestarlet is q=50 auf des Vort 2.

Sei 50151,-150 die Barechung vor M agranted is g'=sol and dar Wart &

Veri
$$|z| = (|a| \choose 2)$$
, down suid zir ferling.

Veri $|z| > (|a| \choose 2)$, down gulft es Indizers

i wid j vit $\{s_i, s_i'\} = \{s_j, s_j'\}$

Falls $s_i = s_j$ wid $s_i' = s_j'$ down have

beide Beredrunger sirulter versioner

 $\{s_i, s_i'\} = \{s_j, s_j'\}$
 $\{s_i, s_j'\} = \{s_j, s_j'\}$

