Next week: Jenningo 155.

trying to estimate

Rocall:
$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta) = \frac{1}{2} (1+\theta x) \qquad (x, \theta) \in (-1, 1)^2$$

is
$$X = \frac{x_1 + \dots + x_n}{n}$$
 an ubiased extrustor of 07 .

$$E(\overline{X}) = E(x) = \frac{1}{2} \int_{X} (1 + \Theta X) dx = \frac{\theta}{3}$$
 So No, bixs = $-\frac{2\theta}{3}$.

So ô=3x is an unbiased estimator of 0.

Ex: for a population w/ mean in and variance or, what is an unbiased estimator for 12? IS X 2 one? In general, no.

$$\mathbb{E}(\bar{X}^2) = \mathbb{E}(\bar{X})^2 + Var(\bar{X}), \text{ so unless } Var(\bar{X}) = 0 \quad \bar{X}^2 \text{ is bixsed.}$$

$$\frac{11}{M^2 + \frac{\sigma^2}{N} \neq \mu^2.} \quad \text{Bras} = \frac{\sigma^2}{N}$$

So
$$\frac{1}{X^2} - \frac{s^2}{n}$$
 is an unbiased asthmeter for m^2 .

Remarks:

1:
$$\hat{\theta}$$
 uble of $\theta \not\Rightarrow f(\hat{\theta})$ u.b.e. of $f(\theta)$.

3: for any distribution wy finite variance
$$\sigma^2$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ is u.s.e. for σ^2 . (see than 10.1 & Proof is analogous to poisson example).

10.3 Efficiency (another dosirable property of an estimator). We might also care about Variance of estimator. find unbiased estimator w/ minimum variance.

A Crawer-Rao luggentity (a lower bound on variance of an unbiased estimator).

$$E_X$$
: (Poisson dist. $f(x) = f(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$

F.W Cramer-Rao bound.

$$\log (f(x)) = \log \left(\frac{\lambda^{\times} e^{-\lambda}}{x!}\right) = \log (\lambda^{\times}) + \log (e^{-\lambda}) - \log (x!)$$

$$= \chi \log (\lambda) - \lambda - \log (x!)$$

$$\left(\frac{\partial \log(f(x))}{\partial x}\right)^{2} = \left(\frac{\chi}{\lambda} - 1\right)^{2} = \frac{\chi^{2}}{\lambda^{2}} - \frac{2\chi}{\lambda} + 1$$

$$= \left(\frac{\chi^{2}}{\lambda^{2}}\right) - 2 E\left(\frac{\chi}{\lambda}\right) + 1$$

$$= \frac{1}{\lambda^{2}} \left(Vw(x) + E(x)^{2}\right) - 1$$

$$= \frac{1}{\lambda^{2}} (\lambda + \lambda^{2}) - 1$$

$$= \frac{1}{\lambda^{2}} (\lambda + \lambda^{2}) - 1$$

$$= \frac{1}{\lambda^{2}} (\lambda + \lambda^{2}) - 1$$

So C-R bound is $\frac{\lambda}{n}$.

last time, showed that X & S2 are unbiased for I.

 $V_{ar}(\hat{x}) = \frac{\lambda}{h}$ (sest possible).

Not easy to compute $Var(S^2)$, but can show that it is $\frac{1}{n}$. So the estimator X is preferred.

Definition: If $\hat{\theta}$ is an unbiased estimator of θ and $Var(\hat{\theta}) = CR$ Lower bouns, then $\hat{\theta}$ is a minimum variance unbiased estimator of θ . (MVVE)

If there is no MVUE, we can compare variances of proposed estimators. Definition Relative efficiency - efficiency of $\hat{\theta}_2$ relative to $\hat{\theta}_1 = \frac{\text{Var}(\hat{\theta}_1)}{\text{Var}(\hat{\theta}_2)}$ if RE>1, $\hat{\theta}_2$ is better.