(Noelia)

GALOIS ACTION ON THE PRINCIPAL BLOCK

[j.w M. Schoeffer Fry & C. Vallejo]

1- Introduction

G finite group, p prime $p \mid |G|$ $P \in Sul_{P}(G)$, $|G|_{P} = p^{\alpha} = |P|$ IrG irred. characters (complex valued) X(G): character table of G

Problem 12 [Brawer] Does X(G) determine if Pis abelian?

A) 1995 [Kimmele-Sawdling] $X(G) = X(H) \quad Q \in Syl_p(G)$ Hhen Pabelian $\iff Q$ abelian and in that case $P \circ Q$

Problem 23 (BHZ) Brower's height zero conjecture

In B = In, B (=> D is abelian

- · (=) Kessor-Malle 113
- · (=>) Reduced, Navarro-Spoth 14

Then
$$\min_{x \in I_{r}} \{x \in I_{r}\} = p^{a-d(B)}$$

$$B_o(G)$$
 principal black (s.t $G \in Ir B_o(G)$)
 $1 = 1_G(I)_p = p$ => $a = d(B_o)$
=> $D \in Syl_p(G)$

2- Global-local conjecture

$$\underline{\text{Conj}}$$
 [Nckay] $|\underline{\text{Im}}_{P'}(G)| = |\underline{\text{Im}}_{P'}(N_G(P))|$

- . Reduced '07 by Isaacs-Malle-Novamo . '16 Malle-Späth for p=2

*
$$Blocks$$
 $BI(GID)$ blocks of G with defect D B $1:1$ Bower's correspondence G $BI(N_G(D)|D)$

- . reduced, Sporth 13 us inductive A.M condition
- * Galois action |G|=n, 3 primitive nth not of 1

$$X \in IrG$$
 then $\forall g \in G \ \chi(g) \in \mathbb{Q}(3)$

$$\sigma \in Gal(\mathbb{Q}(\S)/\mathbb{Q}) = : \mathcal{G} \text{ acts on } Ir(G) \text{ by}$$

$$\chi^{\sigma}(g) := (\chi(g))^{\sigma}$$

$$\mathcal{H}:=\{\sigma\in\mathcal{G}\mid\exists\,r\geqslant0\;\forall\,\eta\,p'\,\text{ root of }1\text{ then }\sigma(\eta)=\eta^{p'}\}$$

Galois-McKay conj [Navaro] for all
$$\sigma \in 2H$$

$$|(\text{Irp}, G)^{\sigma}| = |(\text{Irp}, N_{G}(P))^{\sigma}|$$

- . cyclic Sylow [Navamo]
- . alternating groups [Brinat Nath]
- . Lie type in defining char. [Ruhstorfer]
 . reduced [Navarro-Späth-Vallejo]

* Blocks and Galois

- . p-solvable [Turull] . cyclic defect [Navarro]

e
$$\geqslant 1$$
 Te fixes p'roots of 1
sends η p-power root of 1 to η^{p^e+1}
 $\sim s \in \mathcal{H}$

$$Coij[N-T]$$
 $Im_{P'}(G) = Im_{P'}(G)^{\sigma_e} \Leftrightarrow \exp(P/[P,P]) \in P^e$

• Malle p=2

4- Our work

$$\frac{\text{Thm A}}{||\mathbf{Trp'}(B_{\bullet}(G))^{\circ}||} = p \iff \text{Payelic}$$

• p > 3 $G = D_{2p}$ (\rightleftharpoons) doesn't hold • p = 5, 7, 11 (\rightleftharpoons) consequence of blockwise Galois-McKay

Lemma
$$Lin(P)^{C_1} = Ir(P)\Phi(P)$$

L Fattini group

$$\lambda(\pi)$$
 hence $\lambda^{P} = 1$

$$">": \lambda(x)^{\sigma_1} = \lambda(x)^P \lambda(x)$$

$$= \lambda(x \oplus (P))^P \lambda(x \oplus (P)) = \lambda(x) \quad \square$$

* P cyclic iff
$$|P/\Phi(P)| = P$$

iff $|(\text{Lin }P)^{\sigma_i}| = P$
iff $|\text{Im}_{P'}(B_o(P))^{\sigma_i}| = P$

Thm [Navaro, RSV] If
$$P \triangleleft G$$

$$= Irr(G/\Phi(P)O_{p'}(G))$$

$$\overline{G} = G/\Phi(P)O_{P}(G)$$
, $\overline{P} = P/\Phi(P)$
if $Irr(\overline{G}) = P \in \{2,3\}$ $P=2$ $\overline{G} = C_2 = \overline{P}$

if
$$Ir(\overline{G}) = p \in \{2,3\}$$
 $p=2$ $G = \mathbb{Z} = F$

$$P=3$$
 $\overline{G}=C_3=\overline{P}$
 $\overline{G}=C_3=\overline{P}=C_3$

Ihm B S non-abelian simple • p=2 l_s , θ_1 , $\theta_2 \in Ir_{2'}(B_s(s))'$ P, P, are not Aut(s)-conjugate X/S ∈ Syl₂ (Aut(S)/S) P, is X-invariant * Paydic | Ir, (B(S)) = 3 $1_s \neq \gamma, \gamma_2 \in Irr_3$, $(B_o(s))^{\sigma_1}$ not Aut(s)-conj. and 4, X-invariant

* P non-cyclic l_s , l_1 , l_2 , $l_3 \in Irr_3$, $(B_6(S))^9$ l_1 , l_2 , l_3 not Aut (S)—conj. and l_1 , l_2 —inveriant

$$\frac{\text{Conj}}{|\text{Im}_{\bullet}(B)^{\sigma_{1}}|} = p \iff D \text{ is cyclic}$$