Метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей

Студент: Миронов Григорий, ИУ7-83Б Научный руководитель: Тассов Кирилл Леонидович

Москва, 2023 г.

Актуальность метода

- Осуществление автоматизированного плавания
- Отслежнивание активности судов и кораблей
- Предотвращение столкновений судов и кораблей
- Предотвращение прочих критических ситуаций

Цель и задачи

Цель — разработка метода распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. **Задачи**:

- Проанализировать нейросетевые методы распознавания объектов
- Разработать соотвествующий метод распознавания
- Разработать программное обеспечение, реализующее метод распознавания надводных объектов
- Оценить результаты работы метода в зависимости от различных параметров системы

Существующие методы

Метод	Данн	Открытость	
	Формат	Источник	метода
PHOTOMOD Radar	SAR	Спутник	_
YOLOv2 (Lee SJ.)	Фото	Спутник	+
SBD & VBD (Marzuki M.)	SAR (SAFE)	Спутник	+
SSD (Nie, G.–H.)	Фото	Спутник	+

Постановка задачи

- Входное изображение является фотоснимком в формате PNG или JPG
- Разрешение входного изображения не менее 640 × 640 пикселей
- Фотоснимок сделан в дневное время суток
- Надводные объекты имеют размер не менее 50 × 50 пикселей

Метод распознавания надводных объектов с аэрофотоснимоков

Сравнение нейронных сетей используемых для распознавания

Тип	Устойчивость к				
нейронной	искажениям	смещениям	шумам		
сети					
Сверточная	+	+	+		
Капсульная	+	+	_		

Методы распознавания объектов

CNN	mAP_{IoU}		Параметры,	FLOPs,	Кадр/сек.
	0.5	0.5 : 0.95	млн. шт.	млрд.	
Faster R-CNN	62.5	_	53	888	< 20
SSD512	28.8	48.5	24.7	$180 * 10^3$	_
YOLOv5n	45.7	28.0	1.9	4.5	934
YOLOv5x	50.7	68.9	86.7	205.7	252
YOLOv8n	37.3	50.4	3.2	8.7	1163
YOLOv8x	53.9	_	68.2	257.8	236

YOLOv8n (1/2)

YOLOv8n. Детали реализации (2/2)

Выбор данных для обучения моделей

Информация о выбранных наборах данных:

- 10631 снимок
- 27632 размеченных объекта
- Снимки надводных объектов с разных ракурсов как в портовой зоне, так и на открытой воде

Набор данных разбивается на обучающую, тестовую и валидационную выборки в соотношении 85:10:5

Ансмабль нейронных сетей. Бэггинг

Объединение обрамляющих окон

- Окно без пересечений
- Наиболее «тяжелое» окно
- Пересечение подмножества пересекающихся окон с минимальным расстоянием до геометрического центра

Полученные результаты

Точность =
$$\frac{TP}{TP+FP}$$
Полнота = $\frac{TP}{TP+FN}$

TP — число истинно положительных распознаваний;

FP — число ложноположительных распознаваний;

FN — число ложно-отрицательных распознаваний;

Структура программного обеспечения

Исследование

Технические характеристики:

- ЦП: Intel Core™ i7-4790
- ΓΠ: NVIDIA GeForce RTX 2060 6144M6
- O3У: 16 Г6
- Операционная система: Ubuntu 22.04 via WSL 2

Заключение

Был разработан метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. В ходе выполнения работы были выполнены следующие задачи:

- Проанализированы нейросетевые методы распознавания объектов
- Разработан соотвествующий метод распознавания
- Разработано программное обеспечение, реализующее метод распознавания надводных объектов
- Проведена оценка результатов работы метода в зависимости от различных параметров системы

Дальнейшее развитие

- Распознавание надводных объектов с фотоснимков в различных погодных условиях
- Классификация распознанных надводных объектов
- Исследование применимости метода для распознавания надводных объектов в видеопотоке