ML HW02

Author	陳懷安		
Student ID	0753736		
Sequential Bay	resian Learnir		
Preview			
Data Proce	ssing		
Bayesian L	earning		
1-(1)			
1-(2)			
1-(3)			
Classification -	– Logistic Re		
Preview			
Data Proce	ssing		
Modeling — Gradient Descent			
Training			
Predict			
Modeling -	- Iterative Re		
PCA			
Training			
Predict			
Discussion			
Bonus			
k-Nearest I	Veighbors		
Data Pr	ocessing		
Predict	ion Steps		
PCA + KNN	J		
Data Pr	ocessing		
Result			

Sequential Bayesian Learning

Preview

題目所提供的資料集中含有 100 個 以及 100 個 。 。 並要求透過貝氏估計法更新估計權重,逼近真實分配參數。

ML HW02

下面我先將給定之資料集以散布圖的形式繪製出來,發現呈現一凹向原點(Concave) 的趨勢。

Given Dataset

Data Processing

題目給定Design Matrix的形式:

$$egin{align} \phi_j(x) &= \sigma(rac{x-\mu_j}{s}), \ j = 0, 1, 2, ..., (M-1) \ \sigma(x) &= rac{1}{1+\exp(-x)} \ \Phi &= [\phi_0 \ \phi_1 \ ... \ \phi_{M-1}]^T \ \end{pmatrix}$$

Bayesian Learning

以下將逐次分別放入[5, 5, 20, 50]筆數據,進行模型的訓練。

1-(1)

我們有Predictive distribution:

2

$$p(t|x,\mathbf{x},\mathbf{t}) = N(t|y(x,\mathbf{w}),eta^{-1})$$

其中,

$$egin{aligned} m(x) &= eta \phi(x)^T \mathbf{S} \sum_{n=1}^N \phi(x_n) t_n \ s^2(x) &= eta^{-1} + \phi(x)^T \mathbf{S} \phi(x) \ \mathbf{S}^{-1} &= lpha \mathbf{I} + eta \sum_{n=1}^N \phi(x_n) \phi(x)^T \end{aligned}$$

依次放入訓練資料後,算得的 t 的一個變異數的區間分布。 這邊我們設定 alpha = 10E-6, beta = 1 繪製出的圖形如下。

1-(2)

接著我們利用 Conjugate:

$$p(w)=N(w|0,10^0\mathbf{I})$$

Posterior Distribution:

$$p(w|\mathbf{t}) = \mathbf{N}(\mathbf{w}|\mathbf{m}_{\mathbf{N}}, \mathbf{S}_{\mathbf{N}})$$

其中,

$$S_N^{-1} = S_0^{-1} + eta \Phi^T \Phi \ m_N = S_N eta \Phi^T \mathbf{t}$$

第二小題當中,我們設定 alpha = 1, beta = 1 ,計算出 posterior distribution 。 接著從該分配中隨機抽了 5 組樣本,並繪製出估計的分配,如粉紅色線所示。

1-(3)

這邊我選擇了 w0, w1 兩個系數的分配來繪製等高線圖。

我們都知道,多元常態分配的子集合所成的分配也會是多元常態分配。因此直接調用 三元常態當中的平均及共變異矩陣即可得到 wo, w1 之二元常態分配參數。

以此我將二元常態的pdf直接作用在座標點上,以等高線圖的方式呈現。

Classification — Logistic Regression

Preview

從題目得知,這次拿到的是5個人各10張照片。同樣先來檢視一下資料型態。

0 b'P5\n'

1 b'92 112\n'

2 b'255\n'

3 b'sqqvsusurtvrrststsssturp}|~\x82\x86\x7f\x8f\x7flfd\\W`XUU_aESTNIBKB?G9B?B=< OcqkSUjonoponmdtolnrmmloqkqmronnrurwsnustuuquuqsrqvssuoqlupsqtnYga\\bf^c`\\MHSMDLMA 5:=>=8:7>08<TqhQUdslqokgholmropqloormmmqlpmttusstttpwsusttpttqstqshhca\\fbOT]dfhb]X LMT@=B;EG>7/,/7:)-3006<l`QW`pllqfjlsnkppntkmoppkppjqpvqsttvqtotrvquoxqtsrruokaXUFIX aeqmfTOKI9:3>=9)7.?...\' 5*+-(.1.^UPMV]Z]afkpnqmoqnpjonoommqnnourrrvuotqpvpusousrus qseQIDLIQZYb\\RSDI@782/2*;%)\$5\')+"\x171"-)),(/CNFHTTQMTY_omokmqnnopqnrmnmmnlurtpuq uvqvouvuutqvtnsXE<JVhwrnhm[SE>@8/,+"4)"\x1c\'\x1e#\'\x1c#\x1f\x15!\x1f/ (%%(;FETPQS LIQJ[nlpikqomrmmnoqlsjqwttvurrtqurqwqrstrpYM=?AZhtx`aZVIF>A?=7)%\$!!\x1f\x16\x1e\x1f\x1d"\x1e\x16\x1e\x1f\x1d"\x1e\x16\x1e\x1e*) ##\$4GCMTTWVXZKHYonpppqlqjponlqqnoutvsutqstuovsxtswj

可看到圖檔內容如上

照片為.pgm p5 格式,尺寸為92*112 的為灰度圖。

前五張照片如下所示:

Data Processing

將每個人的照片隨機挑出 5 張作為訓練資料,剩餘 5 張作為測試資料,並將十進位數據存入矩陣中。

Modeling — Gradient Descent

本次將實作 Logistic Regression ,並用以分類人臉歸屬。由於本次為一多類別的分類問題,顧會先將**類別標籤**透過 one-hot encoding 的方式處理,並且會在 feature 中加入 bias 項。

權重更新的方式則會採用 gradient descent 進行。

$$egin{aligned} p(C_1|\phi) &= \sigma(\mathbf{w}^T\phi) \
abla E(\mathbf{w}) &= \sum_{n=1}^N (y_n - t_n) \phi_n \end{aligned}$$

更新如下:

$$\mathbf{w}^{(new)} = \mathbf{w}^{(old)} -
abla E(\mathbf{w})$$

Training

實際進入訓練階段,這邊我以 0.001 作為權重更新的學習率;並迭代 50 次。 每次迭代都會計算當次的 cross entropy ,並繪製線圖如下。

Predict

並且實際放入測試資料集後,預測出的結果如下:

```
[35]: print(np.argmax(y_p, axis=1))
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4]
```

完全預測正確。

Modeling — Iterative Reweighted Least Squares

這階段的建模,將加入 PCA 作為 features 的縮減,接著權重更新的方式採用 Newton-Raphson algorithm 。

更新如下:

$$egin{align} \mathbf{w}^{(new)} &= \mathbf{w}^{(old)} - \mathrm{H}^{-1}
abla E(\mathbf{w}) \ &= \mathbf{w}^{(old)} - (\Phi^T \mathbf{R} \Phi)^{-1} \Phi^T (\mathbf{y} - \mathbf{t}) \ &\mathbf{R}_{nn} &= y_n (1 - y_n) \end{aligned}$$

PCA

首先我先計算出共變異矩陣(Covariance Matrix),

$$Cov(\mathbf{X}) = \mathrm{E}\left[\left(\mathbf{X} - \mathrm{E}[\mathbf{X}] \right) \left(\mathbf{X} - \mathrm{E}[\mathbf{X}] \right)^{\mathrm{T}}
ight]$$

接著計算出特徵值及特徵向量,再依照特徵值大小作排序,以此為引,取出前幾特徵向量,乘上原本的資料達到構面縮減的效果。

Training

將縮減過的資料(2,5,10 個主成分)分別放入模型中,迭代次數設定為200次,並同樣繪製出crossentropy的走勢圖。

Predict

• ② 個主成分

圖中可看出,loss 優化曲線平滑,但預測結果多不正確。

• 5 個主成分

```
y5 = predict(w_IRLS_5, pca_test_5,
print(np.argmax(y5, 1)
plt.plot(CE_IRLS_5)
[<matplotlib.lines.Line2D at 0x1f11ad11088>]
50
40
30
20
10
 0
                   100
                       125
                           150
                                175
                                    200
```

約莫在25次左右收斂,但最終無法分辨第四類及第五類的差別。

• 10 個主成分

約在前10次就已收斂至最終樣貌,且預估結果也非常精準。

Discussion

以上兩種演算法,可以發現到在迭代過程中, cross entropy 的走勢在採用 Newton-Raphson 明顯平滑許多,雖然收斂速度在這無從比較(放入的 features 數量不同)。可以看出在 w 的更新過程,這個方法是更細緻的,也比較不會有「走過頭」的情形。而單在第二段的演算法當中,置入不同數量的主成分— 2, 5, 10 ,也顯示了不同的收斂結果。其中 2 個主成分的建模過程,收斂速度慢,最後的 loss 也維持在相對較高點的位置,預測出的結果有許多錯誤歸類; 10 個主成分的那個模型,不僅收斂速度快,且 loss 也最終趨近於0(分類完全正確); 5 個主成分的模型在各方面均居中。

Bonus

k-Nearest Neighbors

透過 KNN 算法將pokemon type做分類,原始資料如下:

	Name	Type 1	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	Porygon-Z	Normal	0.922711	0.317304	0.290731	0.171038	1.806401	0.176067	0.628458	0.610715	False
1	MeowsticFemale	Psychic	0.349722	0.007835	-0.734330	0.407399	0.307119	0.391714	1.094794	1.863870	False
2	Aipom	Normal	-0.530522	-0.526704	-0.029600	-0.419865	-0.932672	-0.542758	0.461909	-0.642440	False
3	Froakie	Water	-0.912515	-0.920574	-0.478064	-1.010768	-0.298360	-0.938112	-0.004427	1.863870	False
4	Slaking	Normal	2.043777	2.145988	2.853384	1.352844	0.653107	-0.183346	0.961555	-0.015863	False
											•••
153	Oshawott	Water	-0.962340	-0.526704	-0.510098	-0.813801	-0.269528	-0.902171	-0.870481	1.237292	False
154	Horsea	Water	-1.070295	-1.230044	-0.990595	0.171038	-0.067701	-1.620996	-0.370834	-1.269018	False
155	Alomomola	Water	0.382939	2.567992	0.130566	0.564973	-0.932672	-0.902171	-0.204286	1.237292	False
156	Prinplup	Water	-0.156834	-0.273501	-0.157733	0.092251	0.249455	0.212008	-0.703932	0.610715	False
157	Solosis	Psychic	-1.111815	-0.808040	-1.310926	-1.010768	0.941431	-0.722464	-1.703224	1.237292	False
158 rows × 11 columns											

Data Processing

先將資料區分為 training data (前 120 筆)、 testing data (後 38 筆),接著一除非數值 欄位,以利距離計算。

Prediction Steps

1. 計算testing data 與前120筆資料的 Euclidean Distance 。

- 2. 依序將各欄做距離遠近的排序,並取前 上近的資料作為參照。
- 3. 將前 k 筆資料中出現次數最多的 type 作為預測結果。 這邊的作法是將 list 元素作為 dictionary 的 key ,元素出現的次數作為 value 。

如果遇到元素出現次數相當的情形,將參照 R 語言 caret 套件內 KNN 演算法的應對方式,隨機抽取平票元素的其中一種。

結果如下:

index	values
0	0.6052631579
1	0.5
2	0.5789473684
3	0.5789473684
4	0.6315789474
5	0.6052631579
6	0.6578947368
7	0.6315789474
8	0.6842105263
9	0.6052631579

PCA + KNN

Data Processing

PCA 的部分沿用前面所用的方式,將數值變數所成矩陣套入後,求取主成分。接著同樣計算後 38 筆資料與前 120 筆資料的距離。

Result

• Dimension 7

• Dimension 6


```
[0.5263157894736842, 0.5789473684210527, 0.5, 0.5526315789473685, 0.5789473684210527, 0.6578947368421053, 0.55263157894736842, 0.6052631578947368, 0.5789473684210527]
```

• Dimension 5

- [0.5789473684210527, 0.5526315789473685, 0.5, 0.6578947368421053, 0.5789473684210527, 0.5789473684210527,
 - 0.5789473684210527,
 - 9.3/034/300421032/,
 - 0.6578947368421053,
 - 0.5789473684210527,
 - 0.6578947368421053]