Cálculo 1

Concentração de medicamento no sangue

Suponha que a concentração de medicamento no sangue de um paciente seja dada pela função

$$C(t) = \frac{3t}{2t^2 + 8}, \qquad t \ge 0,$$

após $t \geq 0$ horas de aplicação da medicação. Estamos interessados em saber o que acontece com esta concentração para valores grandes de t. Como não estamos supondo que ocorre nova aplicação, é natural imaginar que, com o passar do tempo, a concentração deve diminuir, se aproximando cada vez mais de zero. Isto pode ser melhor compreendido a partir da igualdade abaixo

$$C(t) = \frac{3t}{2t^2 + 8} = \frac{t^2 \cdot \frac{3}{t}}{t^2 \left(2 + \frac{8}{t^2}\right)} = \frac{\frac{3}{t}}{2 + \frac{8}{t^2}}.$$

Note que, quando t vai ficando muito grande, o termo 3/t vai se aproximando de zero, o mesmo ocorrendo com $8/t^2$. Deste modo, a fração se aproxima de 0/(2+0) = 0. Escrevemos então

$$\lim_{t \to +\infty} C(t) = 0.$$

De uma maneira geral, suponha que uma função f está definida em um intervalo do tipo $(b, +\infty)$ e considere $L \in \mathbb{R}$. Escrevemos

$$\lim_{x \to +\infty} f(x) = L,$$

para representar o fato de que, à medida que x se torna arbitrariamente grande, os valores f(x) tornam-se cada vez mais próximos de L. A expressão acima deve ser lida da seguinte maneira: o limite de f(x), quando x tende para infinito, é igual a L. De maneira análoga, podemos definir

$$\lim_{x \to -\infty} f(x) = L.$$

Quando ocorre qualquer uma das situações acima dizemos que a reta y = L é uma **assíntota** horizontal da função f.

Exemplo 1. Para a função

$$V(p) = \begin{cases} 200/p, & \text{se } 0$$

temos que

$$\lim_{p \to +\infty} V(p) = \lim_{p \to +\infty} (1/2) = 1/2.$$

Logo, a reta y=1/2 é uma assíntota horizontal de V. Isto significa que o gráfico de V se aproxima desta reta quando p cresce. Neste caso, de fato, a assíntota se confunde com o gráfico para p>150.

Observe que, no cálculo do limite, usamos somente a expressão de V(p) que vale para p>150. Isto porque estamos interessados em saber o que ocorre com V(p) quando p é grande. Note ainda que, para esta função, não faz sentido tentar calcular $\lim_{p\to-\infty}V(p)$, pois o domínio da função é $(0,+\infty)$. \square

Exemplo 2. Sejam f e g as funções cujos gráficos estão indicados pelas Figuras 1 e 2 abaixo, respectivamente.

Observe que $\lim_{x\to -\infty} f(x) = -1$ e $\lim_{x\to +\infty} f(x) = 0$, de modo que as retas y=-1 e y=0 são assíntotas horizontais da função f. Para a função g, temos as assíntotas horizontais y=-1 e y=1, conforme pode-se notar pelo gráfico. Novamente, perceba que o gráfico se aproxima de suas assíntotas. \square

Vale a pena olhar para os gráficos acima e identificar também as assíntotas verticais das funções f e g. Para a primeira, temos x=0, que é exatamente o eixo $\mathcal{O}y$, enquanto que a segunda possui duas assíntotas verticais $x=-\pi/2$ e $x=\pi/2$.

Evidentemente, uma função pode ter no máximo duas assíntotas horizontais, ao passo que pode ter muitas assíntotas verticais. Por exemplo, a função $\tan(x)$ possui assíntotas verticais em qualquer reta do tipo $x = \frac{\pi}{2} + k\pi$, com $k \in \mathbb{Z}$, mas não possui nenhuma assíntota horizontal, por ser periódica e não constante.

O exemplo abaixo nos permite calcular uma classe bem variada de limites no infinito.

Exemplo 3. Vamos verificar que, se $n \in \mathbb{N}$, então

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0.$$

De fato, a expressão acima nos diz que, quando x > 0 cresce muito, o número x^{-n} fica próximo de zero. Para verificar isso, suponha que queiramos que $|x^{-n}| < 10^{-5}$. Considerando x > 0, uma conta simples mostra que

$$|x^{-n}| = \frac{1}{x^n} < 10^{-5}$$
 \iff $x^n > 10^5$ \iff $x > \sqrt[n]{10^5}$.

Não existe nada de especial no número 10^{-5} . Na verdade, dado qualquer $\varepsilon > 0$, temos que $|x^{-n}| < \varepsilon$, desde que $|x| > \sqrt[n]{1/\varepsilon}$. Assim, podemos facilmente concluir que

$$\lim_{x \to +\infty} \frac{a}{x^n} = 0 = \lim_{x \to -\infty} \frac{a}{x^n},$$

para todo $a \in \mathbb{R}$. O mesmo vale, quando $x \to +\infty$, se substituirmos n por um número racional r>0. \square

Exemplo 4. Temos que

$$\lim_{x \to \pm \infty} \frac{4x^3 - 3x + 1}{2x^3 + x^2} = \lim_{x \to \pm \infty} \frac{x^3 \left(4 - \frac{3}{x^2} + \frac{1}{x^3}\right)}{x^3 \left(2 + \frac{1}{x}\right)} = \lim_{x \to \pm \infty} \frac{\left(4 - \frac{3}{x^2} + \frac{1}{x^3}\right)}{\left(2 + \frac{1}{x}\right)} = \frac{4 - 0 + 0}{2 + 0} = 2.$$

O que ocorre neste exemplo é que, quando |x| é grande, o termo $4x^3$ do numerador fica muito maior (em módulo), do que os outros termos. Da mesma forma, no demoninador, o termo dominante é $2x^3$. Logo, quando |x| cresce, a fração se comporta como $\frac{4x^3}{2x^3} = 2$. \square

Exemplo 5. Temos que

$$\lim_{x \to +\infty} \frac{x + \sqrt{x}}{x^2 - 9} = \lim_{x \to +\infty} \frac{x^2 \left(\frac{1}{x} + \frac{1}{x^{3/2}}\right)}{x^2 \left(1 - \frac{9}{x^2}\right)} = \lim_{x \to +\infty} \frac{\left(\frac{1}{x} + \frac{1}{x^{3/2}}\right)}{\left(1 - \frac{9}{x^2}\right)} = \frac{0 + 0}{1 - 0} = 0.$$

Como no exemplo anterior, podemos identificar aqui o termo dominante do numerador e denominador. Quando x é grande, a fração se comporta como $\frac{x}{x^2} = \frac{1}{x} \to 0$, quando $x \to +\infty$. Por isso o limite é igual a zero. \square

A estratégia de observar o termo dominante nos permite calcular muitos limites no infinito. Contudo, é preciso ter o cuidado de verificar se a intuição está mesmo correta. O exemplo a seguir ilustra bem o que queremos dizer.

Exemplo 6. Vamos calcular o limite

$$\lim_{x \to +\infty} (\sqrt{x^2 + x} - x).$$

Veja que o termo que envolve o radical fica muito grande, o mesmo ocorrendo com o termo x que está sendo subtraído. Dizemos então que temos uma indeterminação do tipo $\infty - \infty$.

Poderíamos pensar que, quando x é grande, o termo $\sqrt{x^2 + x}$ se comporta como $\sqrt{x^2} = x$, de modo que o limite deve ser igual a zero. Porém, observe que

$$(\sqrt{x^2 + x} - x) = (\sqrt{x^2 + x} - x) \frac{(\sqrt{x^2 + x} + x)}{(\sqrt{x^2 + x} + x)} = \frac{x}{\sqrt{x^2 \left(1 + \frac{1}{x}\right) + x}}.$$

Como $x \to \infty$, podemos supor que x > 0, de modo que $\sqrt{x^2} = |x| = x$. Assim,

$$\lim_{x \to +\infty} (\sqrt{x^2 + x} - x) = \lim_{x \to +\infty} \frac{x}{x\sqrt{1 + \frac{1}{x}} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2}.$$

Outros tipos de indeterminações podem aparecer, não só no cálculo de limites no infinito, mas também de limites em um ponto. Esteja atento! \Box

Em algumas situações, teremos de considerar limites infinitos no infinito. Como a exposição teórica é longa e não apresenta dificuldades extras, achamos que o exemplo abaixo ilustra bem o que isso significa.

Exemplo 7. Temos que

$$\lim_{x \to +\infty} \frac{x^2 - x - 2}{x + 1} = \lim_{x \to +\infty} \frac{x(x - \frac{1}{x} - \frac{2}{x^2})}{x(1 + \frac{1}{x})} = \lim_{x \to +\infty} \frac{x - \frac{1}{x} - \frac{2}{x^2}}{1 + \frac{1}{x}} = +\infty,$$

pois o numerador fica grande (e positivo) e o denominador se aproxima de 1. De maneira análoga, temos que

$$\lim_{x \to -\infty} \frac{x^2 - x - 2}{x + 1} = \lim_{x \to -\infty} \frac{x - \frac{1}{x} - \frac{2}{x^2}}{1 + \frac{1}{x}} = -\infty.$$

Note que aqui, como x fica negativo, a fração também fica negativa (e grande em módulo). Por isso o limite é $-\infty$. Vale lembrar que, nos dois casos acima, o limite não existe. \square

Tarefa

Determine as assíntotas horizontais e verticais da função

$$f(x) = \frac{\sqrt{4x^2 + 1}}{2x - 4}.$$

Em seguida, use essas informações para fazer um esboço do gráfico da função.