Đề tham khảo 1

De-thi-Al-ML-1.pdf 150.8KB

Exercise 1

- 1. Explain the idea of gradient descent algorithm, define the cost function and the rule of updating coefficient of linear regression.
- 2. Explain why the cost function of logistic regression can be estimated by the following formulation:

$$E(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} log \; h_{ heta}(x^{(i)}) + (1-y^i) log (1-h_{ heta}(x^{(i)}))]$$

- 3. Assuming at a certain iteration of batch-gradient descent, we reach the global maximum value of the cost function ($\frac{\partial}{\partial_0}E(\theta)$ is perfectly 0). What will happen next and why?
 - The algorithm stays at the global maximum.
 - The algorithm updates the coefficient toward the minimum value of cost function.

Is the answer remaining the same if we are using mini-batch gradient descent or stochastic-gradient descent?

Exercise 2

What characteristic of covariance matrix make it useful in PCA implementation? Why?

Exercise 3

Given the following data.

X_1	X_2
1	1
4	1
3	2
2	4
1	3
3	1

Using k-means algorithm to cluster the training data into 2 groups with the initial value of 2 group are.

Group 1: (1,1) Group 2: (4,2)

What are the centroid values of two group after 1st and 2nd iteration?

Exercise 4

Given the training data for a classification problem, to identify if a person is male/female base on his/her weight and high. Stating at $\theta_0=\theta_1=\theta_2=0$, and learning rate $\alpha=0.0001$. Calculate the coefficients after the first iteration with batch-gradient descent.

Training example	Height (cm)	Weight (kg)	Male/Female
1	172	68	Male
2	163	52	Female
3	158	50	Female
4	180	75	Male

