

Service
Service
Service

7929B

Service Manual

DIMENSIONS 391 x 288 x 216 mm

LOW	40W
HIGH	20W

7791 C

GB

What draws one's attention is the unusual place of the treble speaker. This requires some explanation:

A speaker must radiate all signals from one point. However, this became impossible as, in the course of time, bass speakers, mid-range speakers and treble speakers were developed. Nevertheless, this drawback could be overcome by means of the speaker configuration in the enclosure.

In order to achieve the desired one-point source of radiation, designers had to pay special attention to the mid-range tones and the treble tones which are most directional.

Therefor, the three speakers were mounted on the centre line of the baffle board. (see Fig. 1) Consequently, a higher enclosure had to be made. So that the compactness of the enclosure could be maintained, the arrangement of the speakers was changed. They were also placed on the centre line of the baffle board but the treble speaker was placed before the bass speaker. For the bass tones, this had no consequences because only a small part of the radiation area (cone) is covered and because bass tones are not very much directional because of their great wave lengths.

To prevent any side effects, the treble speaker was situated not exactly in the middle of the bass speaker but just above the centre of this speaker (however, on the centre line of the baffle board).

NL

Wat in deze box opvalt is de ongewone plaats van de hoge tonenluidspreker. De reden hiervoor is als volgt:

Een luidspreker dient als een puntbron weer te geven. Dit houdt in dat alle signalen vanuit een punt moeten worden weergegeven. Door de splitsing echter in lage tonen, midden tonen en hoge tonenluidspreker is dit niet meer mogelijk. Door het kiezen van een juiste luidsprekeropstelling in de box kan men wel weer een puntbron benaderen.

Het meest richtingsgevoelig zijn de midden en hoge tonen. D.w.z. dat men hieraan ook de meeste aandacht m.b.t. de puntbron moet schenken.

Een oplossing is de lage, de midden en de hoge tonenluidspreker op de hartlijn van de box te plaatsen (zie Fig. 1). Het nadeel van deze oplossing is dat de luidsprekerbox hoger wordt.

Een tweede oplossing zoals bij deze box is uitgevoerd, is de 3 luidsprekers ook op de hartlijn te plaatsen, maar omwille van de compactheid echter de hoge tonenluidspreker vóór de lage tonenluidspreker te situeren. Voor de lage tonen heeft dit geen consequenties omdat slechts een klein gedeelte van het straalvlak (conus) bedekt is en omdat lage tonen zeer buigzaam zijn (weinig richtingsgevoelig) door hun grote golf-lengte.

Om eventuele neveneffecten te voorkomen is de hoge tonenluidspreker niet precies in het midden van de lage tonenluidspreker geplaatst maar iets boven het middelpunt echter wel op de hartlijn.

F

Ce qui frappe dans cette enceinte, c'est la place inhabituelle du haut-parleur des aigus. En voici les raisons:

Un haut-parleur doit faire rayonner tous les signaux à partir d'un point. Ce qui suppose que tous les signaux doivent être reproduits à partir d'un point.

Du fait de la division haut-parleurs basses, aigus et intermédiaires, ce n'est plus possible. Du fait de la configuration du haut-parleur telle qu'elle est donnée ci-dessous, on se rapproche cependant de l'objectif visé.

Les intermédiaires et les aigus sont les tons les plus directionnels.

Une des solutions consiste à placer le haut-parleur des intermédiaires et des aigus sur une ligne, au coeur du boîtier (voir Fig. 1). Le désavantage de cette solution est que ce boîtier devra être plus haut.

Pour plus de compacité, la seconde solution consiste à placer les 3 haut-parleurs au coeur du boîtier, mais de placer celui des aigus devant celui des basses.

Pour les basses cela n'a pas de conséquences parce que seulement une petite partie de la surface de rayonnement (cône) est couverte et parce que les basses sont peu directionnelles du fait de leur grande longueur d'onde.

Afin d'éviter des effets secondaires, le haut-parleur des aigus n'a pas été précisément monté au centre du haut-parleur des basses, mais bien un peu plus haut mais toujours au coeur du boîtier.

D

Was in dieser Lautsprecherbox auffällt, ist die Anordnung des Hochtonlautsprechers.

Ein Lautsprecher muss alle Signale aus einem Punkt ausstrahlen. Da jedoch Tieftonlautsprecher, Mitteltonlautsprecher und Hochtonlautsprecher entwickelt wurden, konnte von einer Punkt - Schallquelle nicht länger die Rede sein. Um trotzdem gute Resultate zu erzielen, hat man die Lautsprecher auf besondere Weise in der Box angeordnet.

Die Lautsprecher für die Wiedergabe von Mitteltönen und Hochtönen sind die richtungsempfindlichsten.

Darum kann man die Lautsprecher auf der Mittellinie der Box anbringen (siehe Abb. 1). Der Nachteil dieser Methode ist, dass man eine höhere Box braucht. Um diesen Nachteil zu vermeiden, hat man im 22RH544 den Hochtonlautsprecher vor dem Tieftonlautsprecher angeordnet.

Für die Tief töne hat diese Anordnung keine Konsequenzen, weil nur ein kleiner Teil der Strahlungsfläche (Konus) bedeckt ist und weil Tief töne infolge ihrer grossen Wellenlänge wenig richtungsempfindlich sind.

Damit Nebeneffekte vermieden werden, befindet sich der Tieftonlautsprecher nicht genau in der Mitte des Hochtonlautsprechers, sondern etwas über dem Mittelpunkt (jedoch auf der Mittellinie der Box).

(GB)

Circuit protecting the woofer and the tweeter from being overloaded

In this circuit the bass speaker (woofer) and the treble speaker (tweeter) are protected from overloads which might occur when the speaker combination must produce a maximum output for a rather long period of time. Besides, experience has shown that the tweeter can withstand less overload than the woofer. The squawker however can withstand some overload.

The safety circuit operates as follows:

The AC voltage across the woofer is attenuated by the voltage divider R731 - R732. The attenuation is required to achieve about the same voltage levels on the anodes of D464 and D465.

The following circuit is a rectifier circuit consisting of D464, R733 and C571. R733 and C571 form a time constant of about 7.2 seconds. Thus, across C571 a positive voltage is being built up, which controls the emitter follower TS445. Consequently, there is also a positive voltage on the emitter; this voltage increases slowly.

For the tweeter a similar circuit has been provided; however, the time constant R735 - C572 is about 2.2 seconds so that TS446 is driven into conduction more rapidly than TS445. The result is that the safety

circuit becomes operative sooner when the tweeter is overloaded than when the woofer is overloaded. D468 and D469 serve to prevent that TS445 - TS446 will influence each other; besides, they form an "OR" gate for the tweeter and the woofer. The output obtained at the "OR" gate is applied to the Schmitt trigger TS439 - TS440. As soon as a certain level is reached, the Schmitt trigger changes over; subsequently, TS426 is driven into conduction. The input signal to the amplifier is then attenuated because at point R608, C502 a voltage divider is formed by R608, TS426 and C508.

As a result, the output power will be reduced. This is an indication for the listener that the volume control should be slightly turned counterclockwise. From this moment, C571 and C572 discharge via TS445 and TS446 until the emitter voltages have reached such low values that the Schmitt trigger TS439 - TS440 changes over again.

Then, the music signal is passed on without attenuation. R756 serves to adjust the collector of TS426 so as to obtain a DC voltage level at which C508 smooths the ripple.

(NL)

Beveiligingsschakeling tegen overbelasting van woofer en tweeter

In deze schakeling worden de lagetonenluidspreker (woofer) en de hogetonenluidspreker (tweeter) beveiligd tegen overbelasting. Dit kan b.v. gebeuren wanneer gedurende langere tijd het maximum vermogen van de luidsprekercombinatie gevraagd wordt. Verder is door ondervinding vastgesteld dat de tweeter minder bestand is tegen overbelasting dan de woofer. De middentonenluidspreker daarentegen is beter bestand tegen overbelasting.

De werking van het beveiligingscircuit is als volgt. De wisselspanning die over de woofer staat, wordt verzwakt door spanningsdeler R731-732. Deze verzwakking is aangebracht om de gelijkspanningsniveaus op de anodes van D464 en D465 op ongeveer gelijk niveau te brengen. Nadien volgt een gelijkricht-circuit bestaande uit D464, R733 en C571. R733 en C571 vormen een tijdsconstante van ca. 7.2 seconden. Over C571 wordt dus langzaam een positieve spanning opgebouwd die emittorvolger TS445 stuurt. Aan de emittor is dus eveneens een positieve spanning aanwezig die langzaam stijgt.

Voor de tweeter is er een gelijksoortige schakeling voorzien, met dit verschil echter dat de tijdsconstante R735-C572 ca. 2.2 seconden bedraagt, zodat TS446 sneller opengestuurd wordt dan TS445. Een en ander resulteert hierin, dat de beveiligingsschakeling

sneller in werking treedt wanneer de tweeter overbelast wordt, dan wanneer de woofer overbelast wordt. D468 en D469 zijn aangebracht om onderlinge beïnvloeding van TS445 - TS446 te voorkomen. Terzelfdertijd vormen ze een "OR" poort voor tweeter en woofer. Het verkregen uitgangsniveau aan de "OR" poort wordt toegevoerd aan trigger TS439 - TS440. Boven een bepaald niveau klapt deze om, zodat TS426 opengestuurd wordt. Het ingangssignaal van de versterker wordt nu verzwakt daar voor wisselspanning op knooppunt R608, C502 spanningsdeling is verkregen, gevormd door R608, TS426 en C508. Het uitgangsvermogen zal dientengevolge worden gereduceerd. Dit is voor de luisteraar een indicatie dat het volume iets meer dichtgedraaid moet worden. Vanaf dit ogenblik gaan C571 en C572 zich ontladen via TS445 en TS446, totdat uiteindelijk de emitterspanningen een zo lage waarde bereikt hebben, dat de trigger TS439 - TS440 weer omklapt. Het muzieksignaal wordt nu weer onverzwakt doorgegeven.

R756 dient om de kollektor van TS426 in te stellen op een bepaald gelijkspanningsniveau, waarbij C508 de rimpel afvlakt.

(F)

Circuit de protection contre surcharge des woofer et tweeter

Dans ce circuit, les haut-parleurs des basses (woofer) et celui des aigus (tweeter) sont protégés contre la surcharge. Cette surcharge pourra par exemple avoir lieu lorsque la combinaison des haut-parleurs est soumise pendant trop longtemps à une puissance maximum. Il a en outre été constaté que le tweeter était moins résistant à la surcharge que le woofer. Le haut-parleur des intermédiaires est au contraire plus résistant à la surcharge.

Le circuit de protection fonctionne comme suit:

La tension alternative présente sur le woofer est atténuee par le diviseur de tension R731-732. Cette

atténuation a lieu pour égaliser le niveau de tension continu sur les anodes des diodes D464 et D465. Le circuit suivant est le circuit de redressement composé de D464, R733 et C571. R733 et C571 forment une constante de temps d'env. 7.2 sec. Sur C571 se crée donc lentement une tension positive qui commande l'émetteur suiveur TS445. Sur l'émetteur, une tension positive est donc également présente et celle-ci augmente lentement.

Le même genre de circuit existe aussi pour le tweeter à la différence que la constante de temps R735 - C572 est d'env. 2.2 sec., ce qui commande TS446 plus rapi-

dément que TS445. En bref, le circuit de sécurité entre plus rapidement en action lorsque le tweeter est surchargé que lorsque le woofer l'est. D468 et D469 sont montés afin d'éviter l'influence réciproque de TS445 et TS446; simultanément ils forment une porte "OU" pour le tweeter et le woofer. Le niveau de sortie obtenu à la porte "OU" est appliquée à la bascule de Schmitt TS439 - TS440. Au-delà d'un niveau déterminé, celle-ci bascule de sorte que TS426 est rendu conducteur. Le signal d'entrée de l'amplificateur est désormais atténué du fait de la division de tension de la tension alternative sur le nœud R608/C502. Le circuit de diviseur de tension

est constitué de R608, TS426 et C508.

La puissance de sortie sera par conséquent réduite. Il s'agit d'une indication pour l'auditeur, qui baissera légèrement le volume sonore. Dès cet instant, C571 et C572 se déchargeront à travers TS445 et TS446 jusqu'à ce que les tensions d'émetteur aient atteint une valeur tellement basse que la bascule de Schmitt TS439 - TS440 bascule à nouveau. Le signal musical est alors transmis de façon non atténuee.

R756 sert à régler le collecteur de TS426 à un niveau déterminé de tension continue, C508 aplaniissant l'ondulation.

D

Schaltung zur Sicherung des Tieftonlautsprechers und des Hochtonlautsprechers gegen Überbelastung

In dieser Schaltung werden Tieftonlautsprecher und Hochtonlautsprecher gegen Überbelastung gesichert. Überbelastung kann stattfinden wenn während längerer Zeit die Höchstleistung von der Lautsprecherkombination verlangt wird. Auch hat die Erfahrung bewiesen, dass der Hochtonlautsprecher eine Überbelastung weniger gut besteht als der Tieftonlautsprecher. Der Mitteltonlautsprecher besteht dahingegen eine Überbelastung besser.

Die Sicherungsschaltung arbeitet wie folgt:

Die Wechselspannung am Tieftonlautsprecher, wird durch den Spannungsteiler R731- R732 abgeschwächt. Das Abschwächen geschieht, um die Gleichspannungsniveaus an den Anoden von D464 und D465 auf ungefähr das gleiche Niveau zu bringen. Die nächste Schaltung ist eine Gleichrichtschaltung, die aus D464, R733 und C571 besteht. R733 und C571 bilden eine Zeitkonstante von ca. 7.2 Sekunden. An C571 entsteht also allmählich eine positive Spannung, die den Emitterfolger TS445 steuert. Am Emitter liegt also gleichfalls eine positive Spannung, die langsam steigt. Für den Hochtonlautsprecher ist eine ähnliche Schaltung vorgesehen, deren Zeitkonstante R735 - C572 jedoch ca. 2.2 Sekunden beträgt; TS446 wird demzufolge schneller als TS445 aufgesteuert. Dadurch kommt die Sicherungsschaltung schneller in Betrieb,

wenn der Hochtonlautsprecher überbelastet wird als wenn der Tieftonlautsprecher überbelastet wird. D468 und D469 sollen um die gegenseitige Beeinflussung von TS445 und TS446 zu verhindern; gleichzeitig bilden genannte Diode ein "OR" - Glied für Tiefton- und Hochtonlautsprecher.

Das am "OR"- Glied erhaltene Ausgangsniveau wird dem Schmitt-Trigger TS439 - TS440 zugeführt. Sobald ein bestimmtes Niveau überschritten wird, kippt der Schmitt-Trigger um, so dass TS426 aufgesteuert wird. Das Eingangssignal des Verstärkers wird dann abgeschwächt, weil an Knotenpunkt R608, C502 ein Spannungsteiler entsteht, der durch R608, TS426 und C508 gebildet wird.

Die Ausgangsleistung wird demzufolge verringert. Dies ist ein Zeichen, dass Lautstärkeregler etwas zugedreht werden muss. Ab diesem Augenblick werden C571 und C572 sich über TS445 und TS446 entladen bis schliesslich die Emitterspannungen einen so niedrigen Wert erreicht haben, dass der Schmitt-Trigger TS439 - TS440 wieder umkippt. Das Musiksignal wird dann wieder unabgeschwächt durchgelassen.

R756 soll den Kollektor von TS426 auf ein bestimmtes Gleichspannungsniveau einstellen; C508 wird die Brummspannung glätten.

I

Circuito di protezione contro sovraccarico del woofer e del tweeter

In questo circuito gli altoparlanti dei bassi (woofer) e quello degli alti (tweeter) sono protetti contro il sovraccarico.

Questo sovraccarico potrà per esempio aver luogo quando la combinazione degli altoparlanti è sottoposta per un lungo periodo ad una potenza massima. Si è constatato inoltre che il tweeter è meno resistente al sovraccarico che il woofer. L'altoparlante dei medi è invece più resistente al sovraccarico. Il circuito funziona nel modo seguente:

La tensione alternata presente sul woofer è attenuata da un divisore di tensione R731-732. Questa attenuazione ha lo scopo di uguagliare il livello della tensione continua sugli anodi dei diodi D464 e D465. Il circuito seguente è il circuito di raddrizzamento composto da D464, R733 e C571. R733 e C571 formano una costante di tempo di circa 7,2 sec.

Su C571 si crea dunque lentamente una tensione positiva che comanda l'emettitore di TS445. Sull'emettitore, una tensione positiva è dunque presente e questa aumenta lentamente. Lo stesso tipo di circuito è utilizzato per il tweeter con la differenza che la costante di tempo R735-C572 è di circa 2,2 sec. e comanda TS446 più rapidamente di TS445. In breve il circuito di sicurezza entra più rapidamente in azione perché il tweeter è sovraccaricato più velocemente del

woofer. D468 e D469 sono montati al fine di evitare l'influenza reciproca di TS445 e TS446: contemporaneamente essi formano una porta "OU" per il tweeter e il woofer.

Il livello d'uscita ottenuto dalla porta "OU" è applicato all'oscillatore di Schmitt TS439-TS440. Al di là di un determinato livello, TS426 è mandato in conduzione.

Il segnale d'entrata dell'amplificatore è ormai ottenuto dal divisore della tensione alternata sul nodo R608/C502.

Il circuito divisore di tensione consiste in R608, TS426 e C508.

La potenza d'uscita sarà per conseguenza ridotta. Si tratta di una indicazione per l'ascoltatore, che abbasserà leggermente il volume sonoro. Fin da questo istante C571 e C572 si scaricano attraverso TS445 e TS446 fino a che le tensioni d'emettitore hanno raggiunto un valore talmente basso che l'oscillatore di Schmitt TS439-TS440 oscilla di nuovo.

Il segnale musicale è ora trasmesso senza attenuazione.

R756 porta ad un livello determinato di tensione continua la regolazione del collettore di TS426, C508 appiana la variazione.

I

Ciò che colpisce in questa cassa, è la posizione inabituale dell'altoparlante degli alti. Ed ecco le ragioni:

Un altoparlante deve irradiare tutti i segnali a partire da un punto.

Ciò lascia presupporre che tutti i segnali devono essere riprodotti a partire dal punto. Per effetto della divisione altoparlanti dei bassi, alti e medi, ciò non è più possibile. A causa della configurazione dell'altoparlante quella che è stata data qui sotto, si avvicina all'obiettivo mirato.

I medi e gli alti sono i toni più direzionali.

Una delle soluzioni consiste nel mettere l'altoparlante dei medi e degli alti su una linea, al centro del mobile (vedere Fig. 1).

Lo svantaggio di questa soluzione è che questo mobile dovrà essere più alto.

Per maggior compattezza, la seconda soluzione consiste nel mettere i tre altoparlanti al centro del mobile, ponendo quello degli alti davanti a quello dei bassi.

Per quest ultimo non ci sono conseguenze riguardo alla resa perché soltanto una piccola parte della superficie di irradiazione (cono) è coperta e perchè i bassi sono poco direzionali a causa della loro grande lunghezza d'onda.

Al fine di evitare effetti secondari, l'altoparlante degli alti non è montato precisamente al centro dell'altoparlante dei bassi, ma bensì un po' più in alto ma sempre al centro del mobile.

Fig. 1

REPLACEMENT OF LED VERVANGING VAN DE LED REMPLACEMENT DE LA LED ERSATZ DER LED (light emitting diode) SOSTITUZIONE DELLA LED

7692B

GB

Adjusting the DC current of the output stage

- Disconnect R762 from point **1**
- a. Adjust TS432, TS433 for 75 mA with R665
- b. Adjust TS444a, TS444b for 210 mA with R722

Adjusting the acoustical feedback

1. Interrupt the print track at point **2** next to C552.
2. Apply with a low ohmic generator ($\leq 100 \Omega$) a signal of 10 mV - 125 Hz to the input.
3. Adjust the output across S404 (points 1-2 of the plug) to 125 ± 5 mV with R692.

F

Réglage du courant continu de l'étage de sortie

Détacher R762 du point **1**

- a. Réglter TS432, TS433 sur 75 mA au moyen de R665
- b. Réglter TS444a, TS444b sur 210 mA au moyen de R722

Ajustage de la contre-réaction acoustique

1. Interrompre la platine au point **2** près de C552
2. Grâce à un générateur à faible puissance ohmique ($\leq 100 \Omega$) appliquer un signal de 10 mV - 125 Hz sur la douille d'entrée
3. Au moyen de R692, régler la sortie sur S404 (points 1 et 2 de la fiche) sur 125 ± 5 mV

NL

Instellen gelijkstroom eindtrap

- Vooraf R762 losnemen op punt **1**
- a. TS432, TS433 instellen op 75 mA d.m.v. R665
 - b. TS444a, TS444b instellen op 210 mA d.m.v. R722

Instellen akoestische terugkoppeling

1. Onderbreek de print op punt **2** bij C552
2. M.b.v. een laagohmige generator ($\leq 100 \Omega$) een signaal van 10 mV - 125 Hz op de ingangsbus toevoeren.
3. M.b.v. R692 de output over S404 (punten 1-2 van de plug) instellen op 125 ± 5 mV

D

Einstellen des Gleichstromers der Endstufe

Zuerst R762 an Punkt **1** lösen

- a. TS432, TS433 mit R665 auf 75 mA einstellen
- b. TS444a, TS444b mit R722 auf 210 mA einstellen

Einstellen der akustischen Rückkupplung

1. Die Printspur an Punkt **2** bei C552 unterbrechen
2. Mit einem niederohmigen Generator ($\leq 100 \Omega$) ein Signal von 10 mV - 125 Hz an die Eingangsbuchse führen
3. Mit R692 die Leistung über S404 (Punkte 1-2 des Steckers) auf 125 ± 5 mV einstellen

I

Regolazione della corrente continua dello stadio d'uscita

Staccare R762 dal punto **1**

- a. Regolare TS432, TS433 su 75 mA per mezzo di R665.
- b. Regolare TS444a, TS444b su 210 mA per mezzo di R722.

Regolazione della contoreazione acustica

1. Interrompere il circuito stampato al punto **2** vicino a C552.
2. Grazie ad un generatore a bassa impedenza ($\leq 100 \Omega$) applicare un segnale di 10 mV- 125 Hz sulla presa d'ingresso.
3. Per mezzo di R692 regolare l'uscita su S404 (punto 1 e 2 della presa) su 125 ± 5 mV.

MISC	TS421	TS426	S490	TS439	TS440	TS422	TS423	TS424	TS425	TS428	TS429-431	TS432	TS433	S403	D464,465,TS436	TS445,466,D462	D468,469	TS437,438	MISC														
MISC	TS447	D471-473	TS448	TS449	D474-476	TS450	TS451	D476,477	TS441-443	TS444	S492,493	S405	406	TS455,456	D470	D481	D482,480	0483	VL408-410	S401	VL411												
C	500	501	508	502	504	506	503	505	511	512	513	514	515	516	518	517	514	522	523	534	535												
C	575	576	577	578	579	580	581		552	553	555	563	562	561	560	564	565	568	566	567	568	571											
R	600	416	602	601	603	608		417	613	609-612	614	615	621	622	623	624	625	626	634	627-629	605	588	550	523	551	528	559	527	572,589	590			
R	756							757	758	760	759	761		631	632	633	630	712	713	714	643	644	645	668	651	649	700	701	733,776	682-688	689-693		
R	738	739	740,741		742-744	745	747	748	749	752	754	753	751	755	702-706	699	718-725	709	711	710	727	728	726	729	730	763-766	767	637	750	647	762		R

5613A

5617A

5622A

5609A

7691 E12

1	5322 255 40072
2	4822 267 50206
3	4822 255 40127
4	4822 264 50081
5	4822 276 10615
6	4822 255 40112
7	4822 276 10616
8	4822 255 40111
9	4822 492 60063
10	4822 413 30623
11	4822 265 20113
12	4822 268 40089
13	4822 267 30247
14	4822 264 40023
15	4822 267 40209
16	4822 276 10616
17	4822 459 10424
18	4822 417 50072
19	4822 459 10423
20	4822 426 50171
21	4822 426 50169

MISC	TS442	TS 423	438	TS437	TS425	TS436	TS424	TS429	D462	TS428	TS 426,	439,	440,	445	D468	L69	TS446	D465,	464	S490	TS 422	D472	TS421,	448,	451,	D476	TS 452	450																		
MISC	TS444a,b,	D466		S491		TS443	TS441	TS431			TS430,	433,	432				SK-D	S401	SK-B	TS 447	D473,	471,	470,	TS449	D474	475	MISC																			
MISC	S493			TS455,	456,	S492		S402	RE402	D461,	477	VL410,	409,	408	D483,	482,	481	SK-A							S405,	406,	404,	D480	MISC																	
C	512	518	542	541	517	543	514	540	539	515	544	516	551	522	538	524	545	523	537	526	508	571	572	588	506	501	503	504	502	505	581	C														
C	559	511	552	561	513	560	554	553	555	563	550	564	534		532	529	525	531	530	533		535	565	575	500	576	578	557	579	580	C															
C	567	568	566	562	587		586		528		590	589		527																C																
R	692	631	693	691	627	690	682...	689	629	635	630	634	628	648	633	626	680	678	679	636	756...	759			417	602	607	609	612	615	613	614	610	604	611	R										
R	621622	623	721	714	701...	707	624	632	710	699	700	724	625	709	724	708	649	650	667	658	643...	647	651	656	658	660	673	672	642	662	416	603	601	746	751	6	05	606	608	742	755	R				
R	719	723	728	718	720	727	713	722	711	712	726	729	681	725	676	671	665	666	665	665	669	670	663	664											600	740	738	741	743	742	739	750	745	747	748	R
R	730					764	763	765	677	766	767				637	760	762	761	731	734	732	736	735	733											746	744	751	753	754	749	R					

* not to be used for /15R

- TS -		- R -	
TS421	BC558B	5322 130 44197	R416 220 kΩ potm.vol.
TS422	BC558	4822 130 40941	R417 20 kΩ potm.tone
TS423, 424	BC558A	4822 130 40962	R636 22,1 kΩ met.film
TS425	BC548	4822 130 40938	R637 18,2 kΩ met.film
TS426	BC548A	4822 130 40948	R642 4750 Ω met.film
TS428, 429	BC558B	5322 130 44197	R643 5110 Ω met.film
TS430	BC548	4822 130 40938	R644, 645 saf.res. 10 Ω
TS431	BD137	5322 130 40664	R647 10 kΩ met.film
TS432	MJ3001	4822 130 41036	R651 13 kΩ met.film
TS433	MJ2501	5322 130 44164	R659 39 Ω saf.res.
TS436	BC549	4822 130 40964	R660 47,5 kΩ met.film
TS437	BC559A	4822 130 41052	R662 NTC 1500 Ω
TS438	BC547	5322 130 44257	R664 saf.res. 18 Ω
TS439, 440	BC548B	4822 130 40937	R665 trim.potm. 470 Ω
TS441	BC558A	4822 130 40962	R668 saf.res. 4,7 Ω
TS442	BC548	4822 130 40938	R669, 670 1 Ω
TS443	BC546	4822 130 41001	R672, 673 1 Ω
TS444	BD267A-BD266A	4822 130 41045	R681 6800 Ω met.film
TS445, 446	BC550C		R682 18 kΩ met.film
TS447	BF245B	4822 130 41024	R684 100 kΩ met.film
TS448	BC548C	5322 130 44196	R692 trim.potm. 47 kΩ
TS449	BC548B	4822 130 40937	R700, 701 24,3 kΩ met.film
TS451	BC548	4822 130 40938	R702 47,5 kΩ met.film
TS452	BC639	4822 130 41053	R705 33,2 kΩ met.film
TS455	BC546	4822 130 41001	R707 3320 Ω met.film
TS456	BSS68	5322 130 44247	R710 2210 Ω met.film
<hr/>			
- D -			
D461	BAW62	5322 130 30613	R714 saf.res. 56 Ω
D462	BZY88/C18V	5322 130 30304	R719 NTC 1500 Ω
D464, 465	BAW62	5322 130 30613	R721 saf.res. 39 Ω
D466	BAW62	5322 130 30613	R722 trim.potm. 470 Ω
D468, 469	BAW62	5322 130 30613	R723 saf.res. 470 Ω
D470	BZX79/C18V	5322 130 34076	R724 saf.res. 680 Ω
D471 ÷ 473	BAW62	5322 130 30613	R725 saf.res. 4,7 Ω
D474	BZX79/C4V7	5322 130 30264	R727, 728 1 Ω
D475 ÷ 477	BAW62	5322 130 30613	R762 1800Ω wire wound
D480	CQY24	4822 130 30885	
D481 ÷ 483	Bridge rectifier	5322 130 30414	
<hr/>			
- C -			
C500	1 nF - 10 %	4822 122 30027	- Miscellaneous -
C502, 505	470 nF - 10 %	4822 121 40438	S401 Mains transformer
C503, 504	1 nF - 10 %	4822 122 30027	S404 Loudspeaker
C506, 513	6800 nF - 10 %	4822 121 40347	AD 8067/MFB4 4822 240 60067
C512	120 nF - 10 %	4822 121 40183	S405 Loudspeaker
C514, 515	150 nF - 10 %	4822 121 40104	AD 0210/SQ8 4822 240 50095
C522	4700 pF - 10 %	4822 122 30128	S406 Loudspeaker
C531	560 pF - 10 %	5322 122 30115	AD 0160/T8 4822 240 70004
C532	390 pF - 10 %	4822 122 31176	S482, 483 Coil
C535	4700 μF - 40 V	4822 124 70173	S490 Coil 0,06 mH
C538	2200 pF - 10 %	4822 122 30114	S491 Coil 0,06 mH
C541	1,5 μF - 10 %	4822 121 40452	S492, 493 Coil 3,6 μH
C545	820 nF - 10 %	4822 121 40445	RE402 Relais
C552, 553	8200 pF - 10 %	4822 121 40404	VL408 Fuse 3,15 A
C561	5600 pF - 10 %	4822 121 40402	VL409 Fuse 1,6 A
C565	680 μF - 63 V	5322 124 74017	VL410 Fuse 6,3 A
C566, 568, 571	3,3 μF - 10 %	4822 121 40458	VL411 Fuse thermal
C567	6,8 μF - 10 %	4822 121 40463	mains cord
C572	1 μF - 10 %	4822 121 40447	
C575	4700 pF - 10 %	4822 121 40337	
C588	2 x 2350 μF - 63V	4822 124 70198	

GB

Safety regulations require that the set be restored to its original condition and that parts which are identical with those specified, be used.

F

Les normes de sécurité exigent que l'appareil soit remis à l'état d'origine et que soient utilisées les pièces de rechange identiques à celles spécifiées.

NL

Veiligheidsbepalingen vereisen, dat het apparaat bij reparatie in zijn oorspronkelijke toestand wordt teruggebracht en dat onderdelen, identiek aan de gespecificeerde, worden toegepast.

D

Die Sicherheitsvorschriften erfordern, dass das Gerät sich nach der Reparatur in seinem originalen Zustand befindet und dass die benutzten Einzelteile den aufgeführten Teilen identisch sind.

I

Le norme di sicurezza esigono che l'apparecchio venga rimesso nelle condizioni originali e che siano utilizzati i pezzi di ricambio identici a quelli specificati.

CS54828