Prova N2 - Ronaldo

Observações

- A prova foi um formulário do Google Forms feita presencialmente nos PCs do laboratório mas que pôde ser feita pelo celular na sala por não ter 1 PC para cada aluno
- Respostas no final do arquivo
- 01) Qual é a estrutura de dados básica que pode ser simulada e que é de fato representada ao se utilizar o algoritmo heapsort?
 - a) Lista
 - b) Árvore binária de busca
 - c) Fila de prioridade
 - d) Pilha
- 02) O que caracteriza um heap como um "max heap"?
 - a) O pai é sempre menor que os filhos
 - b) O pai é sempre maior que os filhos
 - c) A raiz é sempre o menor elemento
 - d) Os filhos são sempre iguais ao pai
- 03) Qual a definição correta de uma árvore binária?
 - a) Uma árvore onde cada nó tem no máximo três filhos
 - b) Uma estrutura de dados composta por nós que podem ter até dois filhos
 - c) Uma lista encadeada onde cada nó tem exatamente dois filhos
 - d) Uma estrutura de dados em forma de grafo acíclico
- 04) Em uma árvore binária de busca, qual é a propriedade que garante que cada nó à esquerda é menor que seu pai, e cada nó à direita é maior?
 - a) Propriedade de equilíbrio
 - b) Propriedade de simetria
 - c) Propriedade de ordenação
 - d) Propriedade de balanço
- 05) Qual é a altura de uma árvore binária com N nós no pior caso?
 - a) O(log N)
 - b) O(N)
 - c) O(N log N)
 - d) O(N²)
- 06) O que é a travessia em ordem (inorder) em uma árvore binária?
 - a) Visitar a raiz, em seguida a subárvore esquerda e, por fim, a subárvore direita
 - b) Visitar a subárvore esquerda, em seguida a raiz e, por fim, a subárvore direita
 - c) Visitar a subárvore esquerda, em seguida a subárvore direita e, por fim, a raiz
 - d) Visitar a subárvore direita, em seguida a raiz e, por fim, a subárvore esquerda

- 07) O que caracteriza uma árvore AVL?
 - a) Uma árvore onde cada nó tem exatamente dois filhos
 - b) Uma árvore onde a altura de cada subárvore é no máximo 1 maior que a da outra subárvore
 - c) Uma árvore onde a altura de cada subárvore é no máximo 2 maior que a da outra subárvore
 - d) Uma árvore onde todos os nós têm a mesma altura
- 08) Como as árvores AVL mantêm seu equilíbrio durante as operações de inserção e remoção?
 - a) Através da propriedade de ordenação
 - b) Utilizando rotações simples e duplas para reequilibrar a árvore
 - c) Ignorando operações que podem desbalancear a árvore
 - d) Ajustando aleatoriamente a altura dos nós
- 09) O que é o fator de balanceamento em uma árvore AVL?
 - a) A diferença entre as alturas das subárvores esquerda e direita de um nó
 - b) O número de nós em uma árvore
 - c) A distância entre a raiz e as folhas
 - d) A soma das alturas das subárvores esquerda e direita de um nó
- 10) Qual é a vantagem principal das árvores AVL em comparação com árvores binárias não balanceadas?
 - a) Menor uso de memória
 - b) Maior simplicidade na implementação
 - c) Garantia de tempo constante para todas as operações
 - d) Garantia de tempo logarítmico para operações mesmo em casos desfavoráveis
- 11) Como as árvores 2-3 lidam com a inserção de novas chaves?
 - a) Apenas adicionam novos nós no final da árvore
 - b) Dividem os nós conforme necessário para manter a propriedade da árvore 2-3
 - c) Removem chaves existentes para dar lugar às novas
 - d) Ignoram a inserção de novas chaves
- 12) O que caracteriza uma árvore B?
 - a) Uma árvore onde cada nó tem exatamente dois filhos
 - b) Uma árvore onde cada nó tem um número variável de chaves e filhos
 - c) Uma árvore onde todos os nós têm a mesma altura
 - d) Uma árvore onde todos os nós têm exatamente três chaves
- 13) Como as árvores B lidam com a inserção de novas chaves?
 - a) Sempre adicionam uma nova folha à árvore
 - b) Redistribuem as chaves existentes para acomodar a nova chave
 - c) Dividem e reorganizam os nós conforme necessário
 - d) Ignoram a inserção de novas chaves
- 14) Qual é a principal diferença entre árvores B e árvores B*?

- a) Número fixo de chaves por nó
- b) Maior quantidade de filhos por nó
- c) Os nós devem permanecer pelo menos ¾ preenchidos
- d) Apenas árvores B* permitem operações de remoção
- 15) O que caracteriza uma árvore B+?
 - a) Uma árvore onde cada nó tem exatamente dois filhos
 - b) Uma árvore onde cada nó tem um número variável de chaves e filhos
 - c) Uma árvore onde todos os nós têm a mesma altura
 - d) Uma árvore onde todos os registros estão nos nós folha
- 16) Qual é a principal característica das árvores B+ em termos de busca eficiente?
 - a) Cada nó contém apenas uma chave
 - b) Há apenas um nó folha que contém todas as chaves
 - c) Os nós folha formam uma lista encadeada
 - d) A altura da árvore é minimizada
- 17) Como as árvores B+ lidam com a inserção de novas chaves?
 - a) Sempre adicionam uma nova folha à árvore
 - b) Redistribuem as chaves existentes para acomodar a nova chave
 - c) Dividem e reorganizam os nós conforme necessário
 - d) Ignoram a inserção de novas chaves
- 18) Qual é a complexidade de tempo, no pior caso, para operações de busca em uma árvore B+?
 - a) O(1)
 - b) O(log N)
 - c) O(N)
 - d) O(N²)
- 19) Em uma árvore B+, onde as chaves são armazenadas principalmente?
 - a) Apenas nos nós internos
 - b) Apenas nos nós folhas
 - c) Nos nós internos e nos nós folhas
 - d) Em uma estrutura interna à árvore
- 20) Em que itens abaixo há diferenças entre as árvores B e B*?
 - a) Apenas nas regras de inserção
 - b) Nas regras de divisão dos nós e nada mais
 - c) Só nas propriedades de balanceamento
 - d) Em todos os itens acima

Respostas

- 01. C
- 02. B
- 03. B

- 04. C
- 05. B
- 06. B
- 07. B
- 08. B
- 09. A
- 10. D
- 11. B
- 12. B
- 13. C
- 14. C
- 15. D
- 16. C
- 17. C
- 18. B
- 19. B
- 20. D