# Unit 7 Applications of NLP

Natural Language Processing (NLP) MDS 555



# Objective

- Text Vectorization
- TF-IDF
  - Algorithm
  - Implementation



#### **Text Vectorization**

- Text Vectorization is the process of converting text into numerical representation.
- A technique for converting text into finite length vectors
  - Bag-of-Words
  - TF-IDF
  - Word2Vec
- Code the text into the numeric values



#### **IF-IDF**

- Term Frequency Inverse Document Frequency (TF-IDF)
  - A technique for converting text into finite length vectors
  - Gives insights about the less relevant and more relevant words in a document
  - The importance of a word in the text is of great significance in information retrieval

# Term Frequency

- It is a measure of the frequency of a word (w) in a document (d).
  - TF is defined as the ratio of a word's occurrence in a document to the total number of words in a document.
  - The denominator term in the formula is to normalize since all the corpus documents are of different lengths.

$$TF(w,d) = \frac{occurences\ of\ w\ in\ document\ d}{total\ number\ of\ words\ in\ document\ d}$$

# Term Frequency (TF)

- The initial step is to make a vocabulary of unique words and calculate TF for each document.
- TF will be more for words that frequently appear in a document and less for rare words in a document.

| Documents | Text                                   | Total number of<br>words in a<br>document |  |
|-----------|----------------------------------------|-------------------------------------------|--|
| Α         | Jupiter is the largest planet          | 5                                         |  |
| В         | Mars is the fourth planet from the sun | 8                                         |  |

| Words   | TF (for A) | TF (for B) |  |
|---------|------------|------------|--|
| Jupiter | 1/5        | 0          |  |
| Is      | 1/5        | 1/8        |  |
| The     | 1/5        | 2/8        |  |
| largest | 1/5        | 0          |  |
| Planet  | 1/5        | 1/8        |  |
| Mars    | 0          | 1/8        |  |
| Fourth  | 0 1/8      |            |  |
| From    | 0 1/8      |            |  |
| Sun     | 0          | 1/8        |  |

#### Inverse Document Frequency (IDF)

- It is the measure of the importance of a word.
  - Term frequency (TF) does not consider the importance of words.
  - Some words such as' of', 'and', etc. can be most frequently present but are of little significance.
  - IDF provides weightage to each word based on its frequency in the corpus D.

#### Inverse Document Frequency (IDF)

- IDF of a word (w) is defined as
  - $ln = log_e$

$$IDF(w,D) = \ln(\frac{Total\ number\ of\ documents\ (N)\ in\ corpus\ D}{number\ of\ documents\ containing\ w})$$



#### Inverse Document Frequency (IDF)

• In our example, since we have two documents in the corpus, N=2.

| Words   | TF (for A) | TF (for B) | IDF            |
|---------|------------|------------|----------------|
| Jupiter | 1/5        | 0          | In(2/1) = 0.69 |
| Is      | 1/5        | 1/8        | In(2/2) = 0    |
| The     | 1/5        | 2/8        | In(2/2) = 0    |
| largest | 1/5        | 0          | In(2/1) = 0.69 |
| Planet  | 1/5        | 1/8        | In(2/2) = 0    |
| Mars    | 0          | 1/8        | In(2/1) = 0.69 |
| Fourth  | 0          | 1/8        | In(2/1) = 0.69 |
| From    | 0          | 1/8        | In(2/1) = 0.69 |
| Sun     | 0          | 1/8        | In(2/1) = 0.69 |



#### TF-IDF

- It is the product of TF and IDF.
  - TFIDF gives more weightage to the word that is rare in the corpus (all the documents).
  - TFIDF provides more importance to the word that is more frequent in the document.

$$TFIDF(w,d,D) = TF(w,d) * IDF(w,D)$$



#### **TF-IDF**

| Words   | TF (for A) | TF (for B) | IDF            | TFIDF (A) | TFIDF (B) |
|---------|------------|------------|----------------|-----------|-----------|
| Jupiter | 1/5        | 0          | In(2/1) = 0.69 | 0.138     | 0         |
| ls      | 1/5        | 1/8        | In(2/2) = 0    | 0         | 0         |
| The     | 1/5        | 2/8        | In(2/2) = 0    | 0         | 0         |
| largest | 1/5        | 0          | In(2/1) = 0.69 | 0.138     | 0         |
| Planet  | 1/5        | 1/8        | In(2/2) = 0    | 0.138     | 0         |
| Mars    | 0          | 1/8        | In(2/1) = 0.69 | 0         | 0.086     |
| Fourth  | 0          | 1/8        | In(2/1) = 0.69 | 0         | 0.086     |
| From    | 0          | 1/8        | In(2/1) = 0.69 | 0         | 0.086     |
| Sun     | 0          | 1/8        | ln(2/1) = 0.69 | 0         | 0.086     |



# Why Ln in the IDF?

- TFIDF is the product of TF with IDF.
- Since TF values lie between 0 and 1,
- Not using In can result in high IDF for some words, thereby dominating the TFIDF. We don't want that, and therefore
- We use In so that IDF should not completely dominate the TFIDF.

# Disadvantage of TFIDF

- It is unable to capture the semantics.
- For example, funny and humorous are synonyms, but TFIDF does not capture that.
- Moreover, TFIDF can be computationally expensive if the vocabulary is vast.



# Thank you

