

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEMA	ATICS		9231/22
Paper 2			May/June 2018
			3 hours
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s^{-2} .

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

ock offers						
			•••••			
••••••		,	•••••	•	•••••••	••••
			•••••	••••••	•••••	•••••
	•••••		•••••	•••••••	•••••	•••••
•••••			•••••	••••••	•••••	•••••
ints A and speed of		line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (
ints A and speed of	B are on the P at A to its s	line, on oppose peed at <i>B</i> is 3	ite sides of (

The maximum speed of P during its motion is $\frac{1}{3}\pi$ m s⁻¹.

Find the period	d of the motion.	[2
Find the time t	taken for P to travel directly from A to B .	
Find the time t		[3
	taken for P to travel directly from A to B .	[3
	taken for P to travel directly from A to B .	[3
	taken for P to travel directly from A to B .	[3
	taken for P to travel directly from A to B .	[3
	taken for P to travel directly from A to B .	[3
	taken for P to travel directly from A to B .	
	taken for P to travel directly from A to B.	
	taken for P to travel directly from A to B.	
	taken for P to travel directly from A to B.	
	taken for P to travel directly from A to B.	[3

3

colli	ctly. The coefficient of restitution between the spheres is e . Sphere B is broughtiston.	and they collight to rest by t
(i)	Show that $e = \frac{k-1}{k+1}$.	
		••••••
(ii)	Given that 60% of the total initial kinetic energy is lost in the collision, find the	values of k and

	•••••		 •••••	•••••
••••••	•••••	••••••	 	••••••
••••••	••••••	••••••	 	••••••
•••••			 	
	•••••		 	
	•••••		 	
•••••	•••••	•••••	 •••••	•••••
			 •••••	

ļ	A uniform rod AB has length $2a$ and weight W . The end A rests on rough horizontal ground and the end B rests against a smooth vertical wall. The rod is in a vertical plane that is perpendicular to the wall. The angle between the rod and the horizontal is θ . A particle of weight $5W$ hangs from the rod at the point C , with $AC = xa$, where $0 < x < 1$.
	(i) By taking moments about A, show that the magnitude of the normal reaction at B is $\frac{W(5x+1)}{2\tan\theta}$. [3]
	The particle of weight $5W$ is now moved a distance a up the rod, so that $AC = (x + 1)a$. This results α the magnitude of the normal reaction at α being double its previous value. The system remains in equilibrium with the rod at angle α with the horizontal.
	(ii) Show that $x = \frac{4}{5}$. [3]

The coefficient of friction between the rod and the ground is $\frac{2}{3}$.

Given that the rod in the value of tan θ .	•	•		·	[:
			 	•••••	
		••••••	 	•••••	
			 	•••••	
			 	•••••	
			 		••••••
			 		••••••
			 		••••••
		•••••••	 	•••••	
			 	•••••	
			 	•••••	
			 		•••••
			 		•••••
		••••••	 	•••••	•
			 	•••••	••••••

Three thin uniform rings A, B and C are joined together, so that each ring is in contact with each of the other two rings. Ring A has radius 2a and mass 3M; rings B and C each have radius 3a and mass 2M. The rings lie in the same plane and the centres of the rings are at the vertices of an isosceles triangle. The object consisting of the three rings is free to rotate about the horizontal axis l which is tangential to ring A, in the plane of the object and perpendicular to the line of symmetry of the object (see diagram).

(i)	Show that the moment of inertia of the object about the axis l is $180Ma^2$.	[7]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

(ii)	Show that small oscillations of the object about the axis l are approximately simple harmonic and state the period. [5]

6	The continuous	random	variable X	has	distribution	function	given	by

ble
$$X$$
 has distribution function given
$$F(x) = \begin{cases} 1 - e^{-0.4x} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find $P(X > 2)$.	[2]
(ii)	Find the interquartile range of X .	[4]

	98.1	105.0	92.2	89.8	99.9	95.4	101.2	
Assuming that mass of athlese						% signific	cance level	, whether the mea [
	•••••				•••••			
	•••••				•••••	•••••	•••••	
	•••••				•••••			
	•				•			
••••••	•••••	•	•	••••••	•••••	••••••	•••••	
	••••••		•••••••	••••••	•••••	••••••	•••••	
•••••	•••••		••••••	••••••	•••••	••••••	•••••	
	• • • • • • • • • • • • • • • • • • • •				•••••	••••••	•••••	

A manufacturer produces three types of car: hatchbacks, saloons and estates. Each type of car is available in one of three colours: silver, blue and red. The manufacturer wants to know whether the popularity of the colour of the car is related to the type of car. A random sample of 300 cars chosen by customers gives the information summarised in the following table.

		Colour of car				
		Silver	Blue	Red		
	Hatchback	53	36	41		
Type of car	Saloon	29	40	31		
	Estate	28	24	18		

Test at the 10% significance level whether the colour of car chosen by customers is independent of the type of car. [8]

9

the f	on begins on 1 November. The random variable X denotes the day of the skiing security snowfall occurs. (For example, if the first snowfall is on 5 November, therefore of X is $\frac{4}{9}$.	
(i)	Show that $4p^2 + 9p - 9 = 0$ and hence find the value of p .	
		•••••
		••••••
(ii)	Find the probability that the first snowfall will be on 3 November.	
		•••••
		•••••
		•••••

•••••							
••••••	••••••	••••••	••••••	••••••		••••••	•
	•••••	•••••	•••••	••••••		•••••	
•••••	•••••	•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				bility of the f	rst snowfall be	ing on or l	pefore the
day of	November is	s more than	0.999.				

10	The times taken to run 400 metres by students at two large colleges P and Q are being compared.
	There is no evidence that the population variances are equal. The time taken by a student at college P
	and the time taken by a student at college Q are denoted by x seconds and y seconds respectively. A
	random sample of 50 students from college P and a random sample of 60 students from college Q
	give the following summarised data.

$\Sigma x = 2620$	$\Sigma x^2 = 138200$	$\Sigma v = 3060$	$\Sigma v^2 = 157000$
$\Delta x - 2020$	$\Delta x = 130200$	$\Delta y - 3000$	$\Delta y = 137000$

uii 400	metres tha	n students	from co	nege Q.				
•••••				•••••	 	•••••	 •••••	••••
•••••					 		 	••••
•••••					 	•••••	 	••••
•••••					 		 	••••
•••••					 		 	••••
		•••••			 	•••••	 	••••
•••••					 		 	••••
					 		 	•••
					 		 	•••
					 	•••••	 •••••	••••
					 		 •••••	••••
•••••					 		 •••••	•••
					 		 	•••
					 		 	•••
					 		 	•••
					 		 	•••
••••					 		 	•••
					 		 	•••

••	
••	
••	
••	
••	
••	
F	and a 90% confidence interval for the difference in the mean times taken to run 400 metres adents from colleges P and Q .
••	
••	
••	
••	
••	
••	

11 Answer only **one** of the following two alternatives.

EITHER

A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is held so that the string is taut, with OP horizontal. The particle is projected downwards with speed $\sqrt{\left(\frac{2}{5}ag\right)}$ and begins to move in a vertical circle. The string breaks when its tension is equal to $\frac{11}{5}mg$.

(i)	Show that the string breaks when OP makes an angle θ with the downward vertical through OP where $\cos \theta = \frac{3}{5}$. Find the speed of P at this instant.

vertically below ([0
			 		•••••
			 		•••••
	,		 		
			 		•••••
		•••••	 		
			 		•••••
•••••		••••••		••••••	•
		•••••			•••••
•••••		•••••	 	•••••••	•••••
•••••		•••••	 	•••••	•••••
			 	•••••	•••••
•••••		•••••	 	••••••	
			 		•••••
•••••			 	•••••	•••••

OR

The regression line of y on x, obtained from a random sample of 6 pairs of values of x and y, has equation

$$y = 0.25x + k,$$

where k is a constant. The values from the sample are shown in the following table.

x	4	5	7	8	10	14
у	5	8	p	7	p	9

(i)	Find the value of p and the value of k .	[6]
		•••••
		· • • • • •
		· • • • • •
		· • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •
		· • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· · · · · · ·
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •

(11)	Find the product moment correlation coefficient for the data.	[2]
		•••••••
		•••••••
		••••••••
		• • • • • • • • • • • • • • • • • • • •
(iii)	Test, at the 5% significance level, whether there is evidence of positive correlation variables.	between the [4]
(iii)		
(iii)		
(iii)		[4]
(iii)	variables.	[4]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.