Filtering and Smoothing

Jared Fisher

Lecture 3b

Announcements

- ▶ Project Checkpoint 1 was due yesterday. Let me know of any issues.
- Fifth lab section is now open.
- ▶ Homework 2 is due next week, Wednesday Feb 17
- ▶ Midterm 1 is on Thursday Feb 25

Recap

Full Model

$$Y_t = m_t + s_t + X_t$$

- $ightharpoonup m_t$ is the trend (up to now has been deterministic)
- $ightharpoonup s_t$ is the seasonal effect (up to now has been deterministic)
- \triangleright X_t is as stationary process, perhaps white noise
- ▶ **Idea:** Remove trend and seasonality, so that residuals $Y_t \hat{m}_t \hat{s}_t$ exhibit steady behavior over time, i.e. looks stationary.

Modeling with Sinusoids Example: Hare

Finding Frequencies with Periodogram (n=91)

Definition: Periodogram

For real values data x_0,\ldots,x_{n-1} with DFT b_0,\ldots,b_{n-1} the **periodogram** is defined as

$$I(j/n) = \frac{|b_j|^2}{n}$$
 for $j = 1, \dots, \lfloor n/2 \rfloor$

Definition: Discrete Fourier Transform

For data $x_0, \ldots, x_{n-1} \in C$ the discrete Fourier transform (DFT) is given by $b_0, \ldots, b_{n-1} \in C$, where

$$b_j = \sum_{t=0}^{n-1} x_t \exp\left(-\frac{2\pi i j t}{n}\right) \text{ for } j = 0, \dots, n-1.$$

(In R, the DFT is calculated by the function fft().)

Other Periodogram functions have different # of frequencies

0

0.0

0.3

Frequency

0.4

0.5

0.2

Smoothed Periodogram

astsa::mvspec(Hare)

Other Periodogram functions have different # of frequencies

```
# 80 vs. 81 shouldn't make a big difference, right?

TSA::periodogram(Hare[1:80])
```


Smoothed Periodogram, n-1 points

astsa::mvspec(Hare[1:80])

Note on Periodogram functions

- ► This Hare example shows that there may be one or two dominant frequencies depending on how we partition the frequency domain
- ▶ Is there a single frequency of importance and we're just seeing leakage? Or are there two?
- ► There's not a definitive answer in these plots that choice is up to you as the modeler/analyst.
- Perhaps fit both and see which works better! Or it may simply be that one makes more sense than the other)

Filters

Textbook Alignment

Section 4.7 (but ignore the parts on "spectrum", we'll cover that later)

Filters

- Now for something different!
- \blacktriangleright We have modeled m_t and s_t as a **deterministic** functions of time. . .
- ► We will relax that now, as our main goal is not to get functions, but to "pursue stationarity" in our residuals!
- ► The general technique of linear time invariant filters: transforming one time series into another.

Definition: Linear Time Invariant Filter

A linear time-invariant filter with coefficients $\{a_j\}$ for $j=\ldots,-2,-1,0,1,2,3,\ldots$ transforms an input time series $\{U_t\}$ into an output time series $\{V_t\}$ via

$$V_t = \sum_{j=-\infty}^{\infty} a_j U_{t-j}.$$

In the above definition, the coefficients $\{a_j\}$ are often assumed to satisfy $\sum_{j=-\infty}^{\infty}|a_j|<\infty.$

In-class Practice

Let U_t be stationary with

- $ightharpoonup E(U_t) = \mu$
- \triangleright var $(U_t) = \sigma^2$
- $ightharpoonup cov(U_t, U_{t+h}) = \gamma(h).$

For $V_t = \sum_{j=-\infty}^{\infty} a_j U_{t-j}$, evaluate the following in terms of $\mu, \sigma^2, \gamma(h)$.

- \triangleright $E(V_t)$
- $ightharpoonup cov(V_t, V_{t+h})$
- var(V_t)
- ▶ Take 5 minutes, then we'll do these on the board

Autocovariance of Linear Time Invariant Filter

- Suppose that the input time series $\{U_t\}$ is stationary with autocovariance function γ_U .
- ▶ Then for the autocovariance function (ACVF) of $\{V_t\}$ we observe

$$\gamma_{V}(h) = \operatorname{cov}(V_{t}, V_{t+h})$$

$$= \operatorname{cov}\left(\sum_{j} a_{j} U_{t-j}, \sum_{k} a_{k} U_{t+h-k}\right)$$

$$= \sum_{j,k} a_{j} a_{k} \operatorname{cov}(U_{t-j}, U_{t+h-k})$$

$$= \sum_{j,k} a_{j} a_{k} \gamma_{U}(h-k+j).$$

Note that the above calculation shows also that $\{V_t\}$ is stationary.

Examples

- ▶ Particular types of time invariant linear filters we will look at:
- ▶ q-step smoothing $\Rightarrow a_j = \frac{1}{2q+1}$ for $|j| \le q$, $a_j = 0$ otherwise.
- **Exponential smoothing** \Rightarrow $a_j \propto \alpha^j$ for j > 0, $\alpha \in (0,1)$, and $a_j = 0$ otherwise.
- ▶ First differencing $\Rightarrow a_0 = 1$ and $a_1 = -1$, $a_j = 0$ otherwise.
- ► These filters act very differently; the first two estimate trend while the other eliminates it.

Smoothing

Smoothing

Assume simple trend model $Y_t = m_t + W_t$, we estimate m_t by averaging in a neighborhood [t - q, t + q].

$$\hat{m}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} Y_{t-j}$$

$$= \underbrace{\frac{1}{2q+1} \sum_{j=-q}^{q} m_{t-j}}_{\text{for } q \text{ small}} \quad + \quad \underbrace{\frac{1}{2q+1} \sum_{j=-q}^{q} W_{t-j}}_{\text{for } q \text{ large}}$$

Bias-Variance Tradeoff!

q-step Smoothing

Advantages

▶ No specific parametric form required (non-parametric)

Disadvantages:

- \triangleright Selecting smoothing parameters such as size of neighborhood q is difficult
- No estimates for end-points
- No straight forward approach for predicting future values

Binomial Weights

- q-step smoothing uses equal weights
- ▶ But it often makes sense to have weights decrease as distance in time (j) increases.
- ▶ We can do this with Binomial weights:

$$a_j = 2^{-q} {q \choose q/2+j} ext{ for } = -q/2, -q/2+1, ..., -1, 0, 1, ..., q/2$$

Binomial Weights

Binomial Weights

Forecasting with Filters

Note that the aforementioned filters cannot forecast directly as they use present/future values ($j \le 0$), but if modified/rescaled to only use past values (j>0) they can fairly easily be used to forecast:

$$Y_t = a_1 Y_{t-1} + a_2 Y_{t-2} + \dots$$

- The next filter is built like this.

Exponential Smoothing

Exponential smoothing is designed to only use past values, and actually it uses all past observations

$$\hat{m}_t = c^* (\alpha Y_{t-1} + \alpha^2 Y_{t-2} + \alpha^3 Y_{t-3}...)$$

Note that c^* is the constant needed for the coefficients to sum to one, such that $c^* = \frac{1-\alpha}{\alpha}$ and

$$a_j = \alpha^{j-1}(1-\alpha)$$

for $\alpha \in (0,1)$ and j > 0, $a_j = 0$ otherwise.

▶ Because we only use past values, we can forecast!

Exponential Smoothing

Careful!

Preview of next time: Differencing

- ▶ Assume a linear trend $Y_t = a + bt + X_t$
- ▶ What if we set $a_0 = 1$ and $a_1 = -1$, 0 otherwise?
- ▶ Then the filtered series is $Y_t Y_{t-1}$.
- ▶ What is the trend of the filtered series?