$\frac{1}{2} = \frac{1}{2} = \frac{1}$

$$\mathcal{L} = \sum_{i=1}^{n} \mathbf{L}(U_i) - \mathbf{p}$$

O generale iid Beroullis until the first success. ... XIIY21.1142 L be the index of the success. ... Success When Y is 1 stop generaltry bernowllis, and the index L

$$S = \{(-1,-1),(-1,0),(-1,1),(1,-1),(1,0),(1,1)\}$$

$$S = S_{X,Y}$$

$$(-1,-1)$$
 $(\frac{1}{4})(P-P-Pe)$
 $(-1,0)$ $(\frac{1}{4})(Pe)$
 $(-1,1)$ $(\frac{1}{4})(P)$
 $(+,-1)$ $(\frac{3}{4})(P)$
 $(1,0)$ $(\frac{3}{4})(Pe)$
 $(1,1)$ $(\frac{3}{4})(P-P-Pe)$

(a)
$$f_{X}(x) = f_{X,Y}(x, \infty) = (1 - \frac{1}{2})$$
 for $x > 1$
 $f_{Y}(y) = f_{X,Y}(x, \infty) = (1 - \frac{1}{2})$ for $y > 1$

$$F_{XY}(3,5) = (1-\frac{1}{q})(1-\frac{1}{25}) = \left(\frac{8}{q}\right)\left(\frac{24}{25}\right) = \left(\frac{8}{9}\right)\left(\frac{24}{25}\right) = \left(\frac{8}$$

3)
a.
$$\int_{0}^{\infty} \int_{0}^{x} ce^{x} e^{y} dx = \int_{0}^{\infty} ce^{x} (1-e^{-x}) dx = \frac{1}{2} = 1$$

(c=2)
b. $f_{x}(x) = 2 \int_{0}^{x} e^{-x} e^{y} dy = 2e^{x} [-e^{-x}] dx = \frac{1}{2} = 1$

(z=2)
$$f_{y}(y) = 2 \int_{0}^{\infty} e^{-x} e^{y} dy = 2e^{x} [-e^{-x}] dx = 2e^{-2} f_{y}(1-e^{-x}) dx$$