1. 接口模块功能介绍

1.1. 串口 UART

1.1.1. 功能介绍

串口发送接收的通用接口,接口只能在任务中调用,不能在中断中调用。

1.1.2. 接口介绍

函数原型	const uart_bus_t *uart_dev_open(const struct uart_platform_data_t *arg)
功能描述	打开一个串口设备。根据参数的引脚选择 UART0, UART1 或 UART2, 若引脚
	不与 UARTx 匹配,则自动打开一个空闲的 UARTx,并利用 output channal 匹配
	tx_pin 或 input channel 匹配 rx_pin。若要使用串口的 DMA,需要填写一个循环
	buffer 的地址和长度,还需要填写一个以 ms 为单位的超时参数。
参数说明	arg, const struct uart_platform_data_t *类型,成员说明如下:
	struct uart_platform_data_t {
	u8 tx_pin;
	///< 作为发送引脚的引脚号,可从参考 gpio.h 枚举中选,当引脚为空时,则
	填 -1
	u8 rx_pin;
	///< 作为接收引脚的引脚号,可从参考 gpio.h 枚举中选,当引脚为空时,则
	填-1
	void *rx_cbuf;
	///< 如果使用中断 DMA 接收,则写入循环 buf 的首地址,ut 中断使能;如
	果不使用,则写入 NULL,无中断; DMA 地址应该 4 字节对齐
	u32 rx_cbuf_size;
	///< 循环 buf 的大小,必须为 2 的 n 次幂,如果不用循环 buf,该值无效,可
	写 NULL
	u32 frame_length;
	///< 产生 RT 中断的字节数,如无中断,该值无效
	u32 rx_timeout;
	///< 产生 OT 中断的时间值,单位 ms,如无中断,该值无效
	ut_isr_cbfun isr_cbfun;
	///< ut 中断的回调函数句柄,不用回调函数则写入 NULL,如无中断,句柄
	无效
	void *argv;
	///< ut 中断的回调函数的一个扩展形参,可供用户设定,如无回调函数,此

版权所有,侵权必究 1

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

```
参数无效
             u32 is 9bit: 1;
             ///< ut 九位模式使能位, 0: 关闭; 1: 使能
             u32 baud: 24;
             ///< ut 的波特率
         uart bus t 类型结构体指针,成员说明如下:
输出
         typedef struct {
             ut isr cbfun isr cbfun;
             ///< ut 中断的回调函数句柄,不用回调函数则写入 NULL,如无中断,句柄
          无效
             void *argv;
             ///< ut 中断的回调函数的一个扩展形参,在此返回
             void (*putbyte)(char a);
             ///< ut 发送一个 byte
             u8(*getbyte)(u8 *buf, u32 timeout);
             ///< ut 接收一个 byte, buf: 字节存放地址; timeout: 超时时间,单位 ms;
         返回0:失败;返回1:成功
             u32(*read)(u8 *inbuf, u32 len, u32 timeout);
             ///< ut 接收一个字符串, inbuf: 字符串存放首地址; len: 预接收长度; timeout:
          超时时间,单位 ms;返回实际接收的长度
             void (*write)(const u8 *outbuf, u32 len);
             ///< ut 发送一个字符串, outbuf: 字符串首地址; len: 发送的字符串长度;
             void (*set baud)(u32 baud);
             ///< ut 设置波特率, baud: 波特率值
             u32 frame length;
             u32 rx timeout;
             KFIFO kfifo;
             ///< ut 用的循环 buf 结构体的指针
             UT Semaphore sem rx;
             UT Semaphore sem tx;
          } uart bus t;
例子
           u arg.tx pin = IO PORTA 01;
           u arg.rx pin = IO PORTA 02;
           u_arg.rx_cbuf = uart_cbuf;
           u arg.rx cbuf size = 512;
           u arg.frame length = 32;
           u_arg.rx_timeout = 100;
           u arg.isr cbfun = uart isr hook;
           u arg.baud = 9600;
           u arg.is 9bit = 0;
           uart bus = uart dev open(&u arg);
```


关联模块	无
补充说明	无

函数原型	void uart_dev_close(uart_bus_t *ut)
功能描述	关闭串口设备
参数说明	ut, uart_bus_t 类型指针变量
输出	空
例子	uart_dev_close(uart_bus);
关联模块	无
补充说明	无

云 华 居 刑	1.0.4
函数原型	typedef struct {
	void (*putbyte)(char a);
	/ / // // // // // // // // // // //
	} uart_bus_t;
功能描述	往串口发送一个字节
参数说明	a: 被发送字节
	A A A A A A A A A A A A A A A A A A A
输出	空
例子	ut_bus->putbyte('\n');
关联模块	无
补充说明	无

函数原型	typedef struct {
	u8 (*getbyte)(u8 *buf, u32 timeout); } uart_bus_t;
功能描述	从串口读取一个字节
参数说明	buf: 接收字节的变量地址
	timeout: 超时时间,单位为 ms
输出	1 成功; 0 失败
例子	ret = uart_bus->getbyte(&byte, 100);
关联模块	无
补充说明	无

函数原型	typedef struct {
	void (*write)(const void *outbuf, u32 len);

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

	} uart_bus_t;
功能描述	填充串口循环 buffer 并发送出去
参数说明	outbuf: 将要发送的数据的地址
	len: 数据 buffer 长度
输出	空
例子	uart_bus->write(ut_buf, ut_len);
关联模块	无
补充说明	只能用于任务,不能用于中断。

函数原型	typedef struct {
	(
	u32 (*read)(u8 *inbuf, u32 len, u32 timeout);
	} uart_bus_t;
功能描述	从串口的循环 buffer 里读取 len 长度字节数据
参数说明	inbuf: 存放读出数据的 buffer 地址
	len: 期望读取长度
	timeout: 超时时间,单位为 ms, 如果串口循环 buffer 里面为空, 超过 timeout
	就会退出等待并返回 0
输出	实际接收的长度
例子	len = uart_bus->read(ut_buf, ut_len, 100);
关联模块	无
补充说明	只能用于任务,不能用于中断。当串口循环 buffer 空了,就会 pend 当前任务直
	到循环 buffer 有数据或者超时。

函数原型	typedef struct { void (*set_baud)(u32 baud); } uart_bus_t;
功能描述	设置串口波特率
参数说明	baud: 串口波特率
输出	空
例子	uart_bus->set_baud(1000000);
关联模块	无
补充说明	无

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

1.2. 硬件 iic

1.2.1. 功能介绍

硬件 iic 接口

1.2.2. 接口介绍

```
硬件 iic 参数配置结构体
struct hw_iic_config {
    u8 port; //example: 'A', 'B', 'C', 'D'
    u32 baudrate;
    u8 hdrive;
    u8 io_filter;
    u8 io_pu;
    u8 role;
};
```

函数原型	int hw_iic_init(hw_iic_dev iic)
功能描述	初始化硬件 IIC,通过全局结构体变量 hw_iic_cfg 配置 SCL,SDA,波特率等参
	数
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	0 成功, < 0 失败
例子	hw_iic_init(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_uninit(hw_iic_dev iic)
功能描述	取消初始化硬件 IIC
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_uninit(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_suspend(hw_iic_dev iic)
功能描述	硬件 IIC 引脚设为高阻,不输出数据
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev

版权所有,侵权必究 5

输出	空
例子	hw_iic_suspend(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_resume(hw_iic_dev iic)
功能描述	重新占用硬件 IIC 引脚
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_resume(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_start(hw_iic_dev iic)
功能描述	发送起始位
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_start(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_stop(hw_iic_dev iic)
功能描述	发送停止位
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_stop(0);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_tx_byte(hw_iic_dev iic, u8 byte)
功能描述	发送一个字节
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	byte: 被发送字节
输出	1 IIC 从机 ACK; 0 IIC 从机 NACK
例子	isack = hw_iic_tx_byte(0, byte);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_rx_byte(hw_iic_dev iic, u8 ack)
------	---

电话: 0756-6313088 网站: www.zh-jieli.com

版权所有,侵权必究

地址:珠海市吉大石花西路 107号 9栋综合楼 邮编: 519015 传真: 0756-6313081 6

功能描述	接收一个字节,并决定是否 ack
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	ack: 是否 ack
输出	接收的字节
例子	byte = hw_iic_rx_byte(0, 1);
关联模块	无
补充说明	无

函数原型	int hw_iic_write_buf(hw_iic_dev iic, const void *buf, int len)
功能描述	发送多个字节
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	buf: 发送缓冲区基地址
	len: 缓冲区长度
输出	>=0 返回实际发送长度; <0 失败
例子	hw_iic_write_buf(0, buf, len);
关联模块	无
补充说明	无

函数原型	int hw_iic_read_buf(hw_iic_dev iic, void *buf, int len)
功能描述	接收多个字节
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	buf: 接收缓冲区基地址
	len: 缓冲区长度
输出	>=0 返回实际接收长度; <0 失败
例子	hw_iic_read(0, buf, len);
关联模块	无
补充说明	无

函数原型	int hw_iic_set_baud(hw_iic_dev iic, u32 baud)
功能描述	设置波特率
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	baud: 波特率
输出	0 成功; <0 失败
例子	hw_iic_set_baud(0, 100000);
关联模块	无
补充说明	无

函数原型	void hw_iic_set_ie(hw_iic_dev iic, u8 en)
功能描述	设置传输完成中断使能
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	en: 1 使能; 0 禁止

输出	空
例子	hw_iic_set_ie(0, 1);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_get_pnd(hw_iic_dev iic)
功能描述	获取传输完成中断状态
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	返回中断标志是否为真
例子	pending = hw_iic_get_pnd(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_clr_pnd(hw_iic_dev iic)
功能描述	清零传输完成中断标志位
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_clr_pnd(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_set_end_ie(hw_iic_dev iic, u8 en)
功能描述	设置结束位中断使能
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	en: 1 使能; 0 禁止
输出	空
例子	hw_iic_set_end_ie(0, 1);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_get_end_pnd(hw_iic_dev iic)
功能描述	获取结束位中断状态
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	返回中断标志是否为真
例子	pending = hw_iic_get_end_pnd(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_clr_end_pnd(hw_iic_dev iic)	
------	---	--

8

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

功能描述	清零结束位中断标志位
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	空
例子	hw_iic_clr_end_pnd(0);
关联模块	无
补充说明	无

函数原型	void hw_iic_slave_set_addr(hw_iic_dev iic, u8 addr, u8 addr_ack)
功能描述	设置本机 iic 从机地址
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	addr: 从机地址
	addr_ack: 收到对应从机地址后是否自动 ack
输出	空
例子	hw_iic_slave_set_addr(0, 0xa2, 1)
关联模块	无
补充说明	无

函数原型	void hw_iic_slave_rx_prepare(hw_iic_dev iic, u8 ack)
功能描述	配置寄存器,触发一次从机接收
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	ack: 这次接收是否 ack
输出	空
例子	hw_iic_slave_rx_prepare(0, 1);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_slave_rx_byte(hw_iic_dev iic, bool *is_start_addr)
功能描述	iic 从机接收一个字节
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	is_start_addr: 判断是否地址字节
输出	接收的字节
例子	byte = hw_iic_slave_rx_byte(0, &is_addr);
关联模块	无
补充说明	无

函数原型	void hw_iic_slave_tx_byte(hw_iic_dev iic, u8 byte)
功能描述	iic 从机发送一个字节
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
	byte: 被发送的字节
输出	空

例子	hw_iic_slave_tx_byte(0, byte);
关联模块	无
补充说明	无

函数原型	u8 hw_iic_slave_tx_check_ack(hw_iic_dev iic)
功能描述	iic 从机检查是否 ack
参数说明	iic: iic 句柄,类型为 typedef 的 hw_iic_dev
输出	1 主机 ACK; 主机 NACK
例子	ack = hw_iic_slave_tx_check_ack(0)
关联模块	无

1.3. 软件 iic

1.3.1. 功能介绍

软件 iic 接口

1.3.2. 接口介绍

```
软件 iic 参数配置结构体:
struct soft_iic_config {
    int scl;
    int sda;
    u32 delay;
    u8 io_pu;
};
```

函数原型	int soft_iic_init(soft_iic_dev iic)
功能描述	初始化软件 IIC,通过全局结构体变量 soft_iic_cfg 配置 SCL,SDA,波特率等
	参数
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	0 成功; 非零 失败
例子	soft_iic_init(0);
关联模块	无
补充说明	无

函数原型	void soft_iic_uninit(soft_iic_dev iic)
功能描述	取消初始化软件 iic

版权所有,侵权必究

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088

网站: www.zh-jieli.com

参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	空
例子	soft_iic_uninit(0);
关联模块	无
补充说明	无

函数原型	void soft_iic_suspend(soft_iic_dev iic)
功能描述	设置 iic 引脚为高阻状态
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
	l.
输出	空
例子	soft_iic_suspend(0);
关联模块	无
补充说明	无

函数原型	void soft_iic_resume(soft_iic_dev iic)
功能描述	恢复 iic 引脚的状态
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	空
例子	soft_iic_resume(0);
关联模块	无
补充说明	无

函数原型	void soft_iic_start(soft_iic_dev iic)
功能描述	发送起始位
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	空
例子	soft_iic_start(0);
关联模块	无
补充说明	无

函数原型	void soft_iic_stop(soft_iic_dev iic)
功能描述	发送停止位
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	空
例子	soft_iic_stop(0);
关联模块	无
补充说明	无

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

函数原型	u8 soft_iic_tx_byte(soft_iic_dev iic, u8 byte)
功能描述	发送一个字节
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
输出	1 IIC 从机 ACK; 0 IIC 从机 NACK
例子	isack = soft_iic_tx_byte(0, byte);
关联模块	无
补充说明	无

函数原型	u8 soft_iic_rx_byte(soft_iic_dev iic, u8 ack)
功能描述	接收一个字节
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
	ack: 是否 ack
输出	接收的字节
例子	byte = soft_iic_rx_byte(0, 1);
关联模块	无
补充说明	无

函数原型	int soft_iic_write_buf(soft_iic_dev iic, const void *buf, int len)
功能描述	发送多个字节
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
	buf: 发送缓冲区基地址
	len: 缓冲区长度
输出	>=0 返回实际发送长度; <0 失败
例子	soft_iic_write_buf(0, buf, len);
关联模块	无
补充说明	无

函数原型	int soft_iic_read_buf(soft_iic_dev iic, void *buf, int len)
功能描述	接收多个字节
参数说明	iic: iic 句柄,类型为 typedef 的 soft_iic_dev
	buf: 接收缓冲区基地址
	len: 缓冲区长度
输出	>=0 返回实际接收长度; <0 失败
例子	soft_iic_read_buf(0, buf, len);
关联模块	无
补充说明	无

1.4. spi

1.4.1. 功能介绍

spi 接口

1.4.2. 接口介绍

```
spi 参数配置结构体
struct spi_platform_data {
    u8 port; //端口,可选'A', 'B', 'C'
    u8 mode; //模式,选项为 enum spi_mode 中的枚举常量
    u8 role; //角色,选项为 enum spi_role 中的枚举常量
    u32 clk; //波特率
};
```

函数原型	int spi_open(spi_dev spi)
功能描述	初始化 spi
参数说明	spi: spi 句柄
	At the same of the
输出	0 成功; < 0 失败
例子	spi_open(0);
关联模块	无
补充说明	无

函数原型	int spi_dma_recv(spi_dev spi, void *buf, u32 len)
功能描述	spi dma 接收
参数说明	spi: spi 句柄
	buf: dma 基地址,需要 4 字节对齐
	len: 期望接收长度
输出	实际接收长度; < 0 表示失败
例子	spi_dma_recv(0, buf, len);
关联模块	无
补充说明	无

函数原型	int spi_dma_send(spi_dev spi, const void *buf, u32 len)
功能描述	spi dma 发送
参数说明	spi: spi 句柄
	buf: dma 基地址,需要 4 字节对齐
	len: 期望发送长度

版权所有,侵权必究

输出	实际发送长度; < 0 表示失败
例子	spi_dma_send(0, buf, len);
关联模块	无
补充说明	无

函数原型	void spi_dma_set_addr_for_isr(spi_dev spi, void *buf, u32 len, u8 rw)
功能描述	spi 配置 dma,不等待 pnd,用于中
参数说明	spi: spi 句柄
	buf: dma 基地址,需要 4 字节对齐
	len: 期望接收/发送长度
	rw: 1 接收; 0 发送
输出	空
例子	spi_dma_set_add_for_isr(0, buf, len, 1)
关联模块	无
补充说明	无

函数原型	void spi_set_ie(spi_dev spi, u8 en)
功能描述	spi 中断使能
参数说明	spi: spi 句柄
	en: 1 使能; 0 禁止
输出	空
例子	spi_set_ie(0, 1);
关联模块	无
补充说明	无

函数原型	u8 spi_get_pending(spi_dev spi)
功能描述	获取中断标志
参数说明	spi: spi 句柄
输出	是否触发了中断
例子	pend = spi_get_pending(0);
关联模块	无
补充说明	无

函数原型	void spi_clear_pending(spi_dev spi)
功能描述	清零中断标志
参数说明	spi: spi 句柄
输出	空
例子	spi_clear_pending(0);
关联模块	无
补充说明	无

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

函数原型	void spi_set_bit_mode(spi_dev spi, int mode)
功能描述	设置 spi[单向/双向,位数]模式
参数说明	spi: spi 句柄
	mode: 模式,选项有
	SPI_MODE_BIDIR_1BIT
	SPI_MODE_UNIDIR_1BIT
	SPI_MODE_UNIDIR_2BIT
	SPI_MODE_UNIDIR_4BIT
输出	空
例子	spi_set_bit_mode(0, SPI_MODE_BIDIR_1BIT);
关联模块	无
补充说明	无

函数原型	u8 spi_recv_byte(spi_dev spi, int *err)
功能描述	接收一个字节
参数说明	spi: spi 句柄
	err: 回错误信息, 若 err 为非空指针, 0 成功, < 0 失败; 若为空指针, 忽略
输出	接收的字节
例子	byte = spi_recv_byte(0, &err);
关联模块	无
补充说明	无

函数原型	u8 spi_recv_byte_for_isr(spi_dev spi)
功能描述	接收一个字节,不等待 pnd,用于中断
参数说明	spi: spi 句柄
输出	接收的字节
例子	byte = spi_recv_byte_for_isr(0);
关联模块	无
补充说明	无

函数原型	int spi_send_byte(spi_dev spi, u8 byte)
功能描述	发送一个字节
参数说明	spi: spi 句柄
	byte: 发送的字节
输出	0 成功; < 0 失败
例子	spi_send_byte(0, byte);
关联模块	无
补充说明	无

函数原型	void spi_send_byte_for_isr(spi_dev spi, u8 byte)
功能描述	发送 1 个字节,不等待 pnd,用于中断
参数说明	spi: spi 句柄
	byte: 发送的字节
输出	空
例子	spi_send_byte_for_isr(0, byte);
关联模块	无
补充说明	无

函数原型	u8 spi_send_recv_byte(spi_dev spi, u8 byte, int *err)
功能描述	在8个时钟内发送并接收1个字节,仅使用于SPI_MODE_BIDIR_1BIT
参数说明	spi: spi 句柄
	byte: 发送的字节
	err: 返回错误信息,若 err 为非空指针,0 成功,<0 失败,若为空指针,忽略
输出	接收的字节
例子	recv_byte = spi_send_recv_byte(0, send_byte, &err);
关联模块	无
补充说明	无

函数原型	int spi_set_baud(spi_dev spi, u32 baud)
功能描述	设置波特率
参数说明	spi: spi 句柄
	baud: 波特率
输出	0 成功; < 0 失败
例子	spi_set_baud(0, 10000000);
关联模块	无
补充说明	无

函数原型	void spi_close(spi_dev spi)
功能描述	关闭 spi
参数说明	spi: spi 句柄
输出	空
例子	spi_close(0);
关联模块	无
补充说明	无

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

1.5. gpio

1.5.1. 功能介绍

IO 口有耐高压的口,有超强驱动的口,有默认上/下拉的口,还有特殊的口,如 USB 口,PR 口等。而大部分都是普通 IO。

普通 IO 操作的寄存器写法,常用在写死的场合。

JL PORTx->DIR: 引脚的方向, 0: 输出, 1: 输入

如: JL PORTA->DIR |= BIT(1);//将 PA01 设为输入

JL_PORTB->DIR &= ~BIT(6);//将 PB06 设为输出

JL PORTC->DIR = -1;//将整个 C 端口的引脚全设为输入

JL PORTD->DIR = 0;//将整个 D 端口的引脚全设为输出

JL PORTx->DIE: 引脚的模拟还是数字功能(输入模式有效), 0: 模拟引脚, 1: 数字引脚

如: JL_PORTA->DIE |= BIT(1);//将 PA01 设为数字引脚

JL_PORTB->DIE &= ~BIT(6);//将 PB06 设为模拟引脚

JL_PORTC->DIE = -1;//将整个 C 端口的引脚全设为数字引脚

JL PORTD->DIE = 0;//将整个 D 端口的引脚全设为模拟引脚

JL PORTx->PU: 引脚的上拉(输入模式有效), 0: 关上拉, 1: 开上拉

如: JL PORTA->PU |= BIT(1);//PA01 开上拉

JL PORTB->PU &= ~BIT(6);//PB06 关上拉(默认状态)

JL PORTC->PU = -1;//整个 C 端口的引脚全开上拉

JL PORTD->PU=0;//整个D端口的引脚全关上拉

JL PORTx->PD : 引脚的下拉 (输入模式有效), 0: 关下拉, 1: 开下拉

如: JL PORTA->PD |= BIT(1);//PA01 开下拉

JL PORTB->PD &= ~BIT(6);//PB06 关下拉(默认状态)

JL PORTC->PD = -1://整个 C 端口的引脚全开下拉

JL PORTD->PD=0;//整个D端口的引脚全关下拉

JL PORTx->IN: 引脚的电平状态,只读。(输入模式有效),0: 低电平,1: 高电平

如: (JL PORTA->IN & BIT(1))!=0;//PA01 读到高电平

(JL PORTB->IN & BIT(6)) == 0;//PB06 读到低电平

JL PORTx->OUT: 引脚输出的电平(输出模式有效), 0: 输出低, 1: 输出高

如: JL_PORTA->OUT |= BIT(1);//PA01 输出高电平

JL_PORTB->OUT &=~BIT(6);//PB06 输出低电平

JL_PORTC->OUT=-1;//整个C端口的引脚全输出高

JL PORTD->OUT= 0;//整个 D 端口的引脚全输出低

JL PORTx->HD: 普通引脚输出时的电流(输出模式有效), 0: 8mA, 1: 24mA

如: JL PORTA->HD |= BIT(1);//PA01 开强驱

JL PORTB->HD &= ~BIT(6);//PB06 关强驱 (默认状态)

JL PORTx->HD0: 普通引脚输出时的内阻(输出模式有效), 0: 有 120Ω , 1: 无 120Ω

如: JL PORTA->HD0 |= BIT(1);//PA01 去掉内阻,驱动能力更强

JL PORTB->HD0 &= ~BIT(6);//PB06 有内阻 (默认状态)

版权所有,侵权必究 17

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088

网站: www.zh-jieli.com

1.5.2. 接口介绍

gpio 的接口是在寄存器写法的基础上,封的一层函数,可以设置任意 IO 的状态。

函数原型	int gpio_set_direction(u32 gpio, u32 dir);
功能描述	设置一个引脚的方向
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	dir: 引脚方向, 0: 输出模式, 1: 输入模式
返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_direction(IO_PORTA_01, 1);//将 PA01 设为输入
	gpio_set_direction(IO_PORTB_06, 0);//将 PB06 设为输出
关联模块	无
补充说明	无

函数原型	int gpio_set_die(u32 gpio, int value);
功能描述	设置一个引脚是模拟引脚还是数字引脚
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	value: 0: 数字, 1: 模拟
返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_die(IO_PORTA_01, 1);//将 PA01 设为数字引脚
	gpio_set_die(IO_PORTB_06, 0);//将 PB06 设为模拟引脚
关联模块	无
补充说明	无

函数原型	int gpio_set_pull_up(u32 gpio, int value);
功能描述	设置一个引脚输入时的上拉
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	value: 0: 关上拉, 1: 开上拉
返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_pull_up(IO_PORTA_01, 1);//PA01 开上拉
	gpio_set_pull_up(IO_PORTB_06, 0);//PB06 关上拉
关联模块	无
补充说明	无

函数原型	int gpio_set_pull_down(u32 gpio, int value);
功能描述	设置一个引脚输入时的上拉
参数说明	gpio: 引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等value: 0: 关下拉, 1: 开下拉

版权所有,侵权必究

返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_pull_down(IO_PORTA_01, 1);//PA01 开下拉
	gpio_set_pull_down(IO_PORTB_06, 0);//PB06 关下拉
关联模块	无
补充说明	无

函数原型	int gpio_read(u32 gpio)
功能描述	读取一个引脚输入时的电平
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
返回	0: 低电平
	1: 高电平
例子	gpio_read(IO_PORTA_01);//读 PA01 的电平
	gpio_read(IO_PORTB_06);//读 PB06 的电平
关联模块	无
补充说明	无

函数原型	u32 gpio_write(u32 gpio, u32 value)
功能描述	设置一个引脚输出时的电平
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	value: 0: 输出低, 1: 输出高
返回	0: 设置成功
	1: 设置失败
例子	gpio_write(IO_PORTA_01, 1);//PA01 输出高电平
	gpio_write(IO_PORTB_06, 0);//PB06 输出低电平
关联模块	无
补充说明	无

函数原型	int gpio_set_hd(u32 gpio, int value);
功能描述	设置一个普通引脚输出时的电流
参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	value: 0: 8mA, 1: 24mA
返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_hd(IO_PORTA_01, 1);//PA01 开强驱
	gpio_set_hd(IO_PORTB_06, 0);//PB06 关强驱
关联模块	无
补充说明	无

函数原型	int gpio_set_hd0(u32 gpio, int value);
功能描述	设置一个普通引脚输出时的内阻状态

地址: 珠海市吉大石花西路 107 号 9 栋综合楼 电话: 0756-6313088 网站: www.zh-jieli.com

参数说明	gpio:引脚序号,IO_PORTx_xx,如IO_PORTA_01,IO_PORTB_06,,,等等
	value: 0: 有 120 Ω, 1: 无 120 Ω
返回	0: 设置成功
	非 0: 设置失败
例子	gpio_set_hd0(IO_PORTA_01, 1);///PA01 去掉内阻,驱动能力更强
	gpio_set_hd0(IO_PORTB_06, 0);//PB06 有内阻
关联模块	无
补充说明	无

函数原型		AC .
函数原型	函数原型	u32 gpio_dir(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op)
対能描述 设置一整个端口的引脚是数字还是模拟 函数原型 u32 gpio_set_pu(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的上拉 函数原型 u32 gpio_set_pd(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的下拉 参数说明 gpio:端口序号,GPIOx,如 GPIOA,GPIOB,GPIOC,,,,,等等 start:端口共 32 位,从第几位开始设置 len:设置多少个位 dat:设置的值 op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或 返回 0:设置成功 非 0:设置失败 例子 设置 PA4~8 引脚的状态,那么 gpio=GPIOA, start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	功能描述	设置一整个端口的引脚的方向
函数原型 u32 gpio_set_pu(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的上拉 函数原型 u32 gpio_set_pd(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的下拉 参数说明 gpio:端口序号, GPIOx, 如 GPIOA, GPIOB, GPIOC,,,,, 等等 start:端口共 32 位, 从第几位开始设置 len:设置多少个位 dat:设置的值 op:设置的值的运算, GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或 返回 0:设置成功 非 0:设置失败 例子 设置 PA4~8 引脚的状态,那么 gpio=GPIOA, start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	函数原型	u32 gpio_die(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op)
功能描述 设置一整个端口的引脚输入时的上拉 函数原型 u32 gpio_set_pd(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的下拉 参数说明 gpio:端口序号,GPIOx,如 GPIOA,GPIOB, GPIOC,,,,等等 start:端口共 32 位,从第几位开始设置 len:设置多少个位 dat:设置的值 op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或 0:设置成功 非 0:设置失败 例子 设置 PA4~8 引脚的状态,那么 gpio=GPIOA,start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA,4,5, 0b11111,GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA,4, 5, 0b10001,GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA,4, 5, 0b00110,GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	功能描述	设置一整个端口的引脚是数字还是模拟
図数原型 u32 gpio_set_pd(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op) 功能描述 设置一整个端口的引脚输入时的下拉 参数说明 gpio:端口序号,GPIOx,如 GPIOA,GPIOB,GPIOC,,,,,等等 start:端口共 32 位,从第几位开始设置 len:设置多少个位 dat:设置的值 op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或 返回 0:设置成功 非 0:设置失败 例子 设置 PA4~8 引脚的状态,那么 gpio=GPIOA,start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	函数原型	u32 gpio_set_pu(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op)
	功能描述	设置一整个端口的引脚输入时的上拉
 参数说明 gpio:端口序号, GPIOx, 如 GPIOA, GPIOB, GPIOC,,,,,等等 start:端口共 32 位,从第几位开始设置 len:设置多少个位 dat:设置的值 op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或 0:设置成功 非 0:设置失败 例子 例子 设置失败 例子 (GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动: 	函数原型	u32 gpio_set_pd(u32 gpio, u32 start, u32 len, u32 dat, enum gpio_op_mode op)
start: 端口共 32 位,从第几位开始设置 len: 设置多少个位 dat: 设置的值 op: 设置的值的运算,GPIO_SET: 直等。GPIO_AND/OR/XOR: 与/或/异或	功能描述	设置一整个端口的引脚输入时的下拉
len:设置多少个位dat:设置的值op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或	参数说明	gpio:端口序号, GPIOx, 如 GPIOA, GPIOB, GPIOC,,,,, 等等
dat:设置的值		start: 端口共 32 位,从第几位开始设置
op:设置的值的运算, GPIO_SET: 直等。GPIO_AND/OR/XOR: 与/或/异或 0:设置成功		len:设置多少个位
返回 0: 设置庆败		dat: 设置的值
# 0: 设置失败 设置 PA4~8 引脚的状态,那么 gpio=GPIOA, start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		op:设置的值的运算,GPIO_SET:直等。GPIO_AND/OR/XOR:与/或/异或
例子 设置 PA4~8 引脚的状态,那么 gpio=GPIOA, start=4, len=5。 其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	返回	0: 设置成功
其中 PA4~8 都为输入: gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		非 0: 设置失败
gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET); PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:	例子	设置 PA4~8 引脚的状态,那么 gpio=GPIOA, start=4, len=5。
PA4/8 是数字引脚,其余是模拟引脚: gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		其中 PA4~8 都为输入:
gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET); PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		gpio_dir(GPIOA, 4, 5, 0b11111, GPIO_SET);
PA5/6/要求开上拉,其余引脚上拉状态不动: gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		PA4/8 是数字引脚,其余是模拟引脚:
gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR); PA5/7 要求关下拉,其余引脚的下拉状态不动:		gpio_die(GPIOA, 4, 5, 0b10001, GPIO_SET);
PA5/7 要求关下拉,其余引脚的下拉状态不动:		PA5/6/要求开上拉,其余引脚上拉状态不动:
		gpio_set_pu(GPIOA, 4, 5, 0b00110, GPIO_OR);
onio set pu(GPIOA 4.5 0b10101 GPIO AND):		PA5/7 要求关下拉,其余引脚的下拉状态不动:
Spin_501_54(011011, 1, 5, 0010101, 0110_1110),		gpio_set_pu(GPIOA, 4, 5, 0b10101, GPIO_AND);
美 联模块 无	关联模块	无
	补充说明	无