Last time: Logarithms

natural logarithm: inverse

denoted ratilog. by

of y=ex y=lu(x), x>0

e~ 2.718>1

1 - x = lu(x)

Today: Inverse function of $y = b^{\times}, \times \in \mathbb{R}$ 6>1 Find inverse of y=6x $lu(y) = lu(b^{x})$ lu(y) = xlub => x= (4) Swap role of x,y $y = \frac{\ln(x)}{\ln(b)}, \text{ makes senk for } x > 0$ Invene of $y = b^x$. Give it special name $y = log_b(x)$ So e.g $ln(x) = log_e(x)$ Bad notation: log usually In more advanced books, might mean la. If b < 1, $y = log_b(x) = lu(x)$ and lu(b) < 0 y= le(4) _

log_b(x) =
$$\frac{\ln(x)}{\ln(b)}$$
 = $\frac{\ln(x)}{\ln(b)}$ = $\frac{\ln(x)}{\ln(b)}$ = $\frac{\ln(x)}{\ln(x)}$ = $\frac{\ln(x)}{\ln(x)}$ = $\frac{\ln(x)}{\ln(b)}$ =

Properties:
$$b \neq 1$$
, $b > 0$,

either $0 < b < 1$ or

 $b > 1$
 $-\log_b(b^x) = p^{-1}(f(x)) = x$,

 $-\log_b^x = f(f^{-1}(x)) = x$
 $-\log_b(r^t) = \log_b(r)$, $r > 0$

Fun exercise. Use logarithmic table.

Want: $2362 \cdot 1768$ $log_{10}(2362 \cdot 1768)$ = $log_{10}(2362) + log_{10}(1768)$ = $log_{10}(2.362 \cdot 10^3) + log_{10}(1.768 \cdot 10^3)$

$$= \log_{10}(2.362) + \log_{10}(0^{3} + \log_{10}(1.768) + \log_{10}(10^{3})$$

$$= \log_{10}(2.362) + 3 + \log_{10}(1.768) + 3$$

$$= 0.373 + 3 + 0.247 + 3$$

$$= 0.620 + 6$$

$$= 0.620 + 6$$

$$= \log_{10}(0.2362 \cdot 1768)$$

$$= \log_{10}(0.2362 \cdot 1768)$$

$$= \log_{10}(0.62 \cdot 1768)$$

$$= \log_{10}(4.18)$$

Charpter 13

Manipulating graphs, relating them to composition.

$$f(x) = 4 - x^{2}, \quad 0 \le x \le 2$$
Range: $0 \le y \le 4$

3 main techniques: - reflect

- swift

- dilute

$$f(-x) = 4 - (-x)^2 = 4 - x^2$$

Domain: $0 \le (-x) \le 2 \Rightarrow 0 \le -x \le 2$

when multiplying by negative, change direction of inequality. Graph f(-x): $f(-x) = 4 - x^2$ graph of f(-x)

1. For a function y = f(x), replacing "x" with "-x" reflects graph about y axis.

Domain: If fix has $a \le x \le b$ then $f(-x): -a \ge x \ge -b$ Rouge: same.

Replace y = y - y = y = f(x) $-y = 4 - x^2 \Rightarrow y = x^2 - 4$ Domain: $0 \le x \le 2$

$$-y = f(x), flips graph of y = f(x) over x axis
Range:
$$0 \le (-y) \le 4$$

$$\Rightarrow -4 \le y \le 0$$$$

2. For y = f(x), replace y = w/-y, the aproph of y = -f(x) (or -y = f(x)) is the graph of y = f(x) reflected about the x axis.

Ex: $y = \left(\frac{1}{2}\right)^x$

$$y = \left(\frac{1}{2}\right)^{-(-x)} = \left(\left(\frac{1}{2}\right)^{-1}\right)^{-x} = 2^{-x}$$

Graph of $y = 2^{-x}$ is reflection about y axis of $y = 2^{x}$

Shifting $y = 4 - x^2$, $0 \le x \le 2$ range $0 \le y \le 4$

Replace
$$x \rightarrow x-2$$

 $y = 4 - (x-2)^2$
 $y = 4 - (x-2)^2$
Domain:
 $0 \le x-2 \le 2$
 $\Rightarrow 2 \le x \le 4$
 $y = 4 - (x-2)^2$
Range: $0 \le y \le 4$

3.y=f(x), replace x by x-h, shift grouph by h to the right If h < 0: eg., h = -2 Shift graph by -2 to the right or, shift by 2 to the left Pomain: If f has domain $a \le x \le b$ f(x-h): a < x-h < b >) a+h & x & b+h Rouge of f(x-h); some as range of f. Vertical shift: $y = 4 - x^2$, $0 \le x \le 2$ Replace $y \rightarrow y+2=y-(-2)$ 4+2=4-x2 => y=2-x2

0 4 × 52

4: Replace $y \rightarrow y - k$ in y = f(x) arraph of y - k = f(x) is a graph of y = f(x) shifted up by k.