SBVLIFA: Linguagens Formais e Autômatos

Aula 08: Autômatos de Pilha

Linguagens Livres de Contexto

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

- Os Autômatos de Pilha (PDA) têm capacidade de reconhecer todas as linguagens livres de contexto e somente elas;
- \blacksquare Eles são essencialmente ε -NFAs com a inclusão de uma pilha;
- Essa pilha funciona exatamente como a estrutura de dados pilha, ou seja, os elementos podem ser inseridos/removidos somente no/do topo da pilha;
- Veremos duas variações de autômatos de pilha: 1) os que aceitam uma entrada ao alcançar um estado de aceitação; 2) os que aceitam uma entrada ao esvaziar a pilha;
- As CFGs podem ser convertidas em PDAs equivalentes e vice-versa.

Um Exemplo Informal:

- Em uma transição, o autômato de pilha:
 - 1. Consome da entrada o símbolo que ele utiliza na transição. Se ε for usado como entrada, nenhum símbolo de entrada será consumido;
 - 2. Vai para um novo estado, que pode ser o mesmo;
 - 3. Substitui o símbolo no topo da pilha por qualquer string:
 - $\varepsilon \rightarrow \text{pop};$
 - O mesmo símbolo do topo;
 - Substituir o topo por outro símbolo (sem push ou pop);
 - O símbolo do topo pode ser substituído e então um ou mais novos símbolos podem ser inseridos.

Um Exemplo Informal:

 \rightarrow Consideremos a linguagem w-w-reverso, que é a linguagem dos palíndromos de comprimento par sobre o alfabeto $\{0,1\}$: $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$

► CFG:
$$P \rightarrow \varepsilon$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

Como seria um PDA para essa linguagem?

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

Definição Formal:

- P: autômato de pilha, uma 7-upla, onde:
 - Q: conjunto finito de estados;
 - $\triangleright \Sigma$: conjunto finito de símbolos de entrada (alfabeto);
 - Γ: conjunto finito de símbolos que podem ser inseridos na pilha (alfabeto da pilha);
 - \bullet δ : função de transição, na forma:

$$\delta(q, a, X) \to \{(p_1, \gamma_1), (p_2, \gamma_2), \dots, (p_n, \gamma_n)\}, \text{ ou seja, } \delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$$

- ightharpoonup Se $\gamma = \varepsilon$, pop na pilha;
- ightharpoonup Se $\gamma = X$, a pilha fica inalterada;
- Se $\gamma = YZ$, X é substituído por Z e Y é inserido na pilha.
- $ightharpoonup q_0$: estado inicial, tal que $q_0 \in Q$
- $-Z_0$ (ou \$): o símbolo de início da pilha;
- \blacksquare F: conjunto de estados finais ou de aceitação, tal que $F \subseteq Q$

$$\delta(q,\alpha,X) = \beta(p,\alpha) \Rightarrow q$$
 $\alpha,X/\alpha$
 φ

Definição Formal:

- Projetando um PDA para $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$:
 - $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - $Q = \{q_0, q_1, q_2\}$
 - $\Sigma = \{0, 1\}$
 - $\Gamma = \{0, 1, Z_0\}$
 - $F = \{q_2\}$
- $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}\$ $\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$ $\delta(q_0, 0, 0) = \{(q_0, 00)\}$ $\delta(q_0, 0, 1) = \{(q_0, 01)\}\$ $\delta(q_0, 1, 0) = \{(q_0, 10)\}\$ $\delta(q_0, 1, 1) = \{(q_0, 11)\}$ $\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$ $\delta(q_0, \varepsilon, 0) = \{(q_1, 0)\}$ $\delta(q_0, \varepsilon, 1) = \{(q_1, 1)\}$ $\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$ $\delta(q_1, 1, 1) = \{(q_1, \varepsilon)\}$ $\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$

Descrição Instantânea (ID):

- A ID de um PDA representa a configuração atual do autômato;
- \blacksquare É representada pela tripla (q, w, γ) , onde:
 - q: é o estado;
 - w: é a parte restante da entrada;
 - γ: é o conteúdo da pilha.
- Notação de dedução:
 - ► Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, definimos \vdash ou \vdash como a seguir: suponha que $\delta(q, a, X)$ contém (p,α) , então para todas as strings $w \in \Sigma^* \in \beta \in \Gamma^*$, temos

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)$$

Generalizando:

- **Base:** $I \vdash I$ pra qualquer ID I
- **Indução:** $I \vdash J$ se existe alguma ID K tal que $I \vdash K \in K \vdash J$. Ou seja, $I \vdash J$ se existe uma sequência de IDs $K_1, K_2, ..., K_n$ tal que $I = K_1, I = K_n$ e, para todo i = 1, 2, n, ..., n - 1, temos $K_i \vdash K_{i+1}$

Descrição Instantânea (ID):

Exemplo: quais são as IDs que o PDA de L_{wwr} pode alcançar sobre a entrada 1111?

■ Tipos de Aceitação:

- Os PDAs podem ser projetados para aceitar uma string de duas formas:
 - Aceitação por estado final;
 - Aceitação por pilha vazia;
- \rightarrow Os dois métodos são equivalentes, pois uma linguagem L tem um PDA que a aceita pelo estado final se e somente se L tem um PDA que a aceita por pilha vazia;
- De forma inversa, dado um PDA P, geralmente as linguagens que são aceitas por estado final e por pilha vazia são diferentes.

Aceitação por Estado Final:

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, então L(P), a linguagem aceita por P pelo estado final, é:

$$L(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash}_{P} (q, \varepsilon, \alpha) \}$$

Onde $q \in F \in \alpha \in \Gamma^*$

Aceitação por Pilha Vazia:

ightharpoonup Seja $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, então N(P), o conjunto de entradas w que P pode consumir e que ao mesmo tempo esvazia sua pilha, é definido como:

$$N(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\underset{P}{\vdash}} (q, \varepsilon, \varepsilon) \}$$

- Onde $q \in Q$
- \blacksquare A letra N em N(P)significa pilha nula ou pilha vazia.

Aceitação por Pilha Vazia:

ightharpoonup Seja $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, então N(P), o conjunto de entradas w que P pode consumir pilha, é definido como:

 $q_0, w, Z_0) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon)$

O conjunto de estados de aceitação pode ser omitido na definição do PDA que aceita por pilha vazia, pois é irrelevante! Sendo assim, um PDA que aceita por pilha vazia pode ser definido como uma sêxtupla na forma:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$$

significa piina nuia ou pilha vazia.

De Pilha Vazia ao Estado Final:

ightharpoonup Se $L=N(P_N)$ para algum PDA $P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0)$, existe um PDA P_F tal que $L = L(P_F)$ e que é definido como:

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

- Onde δ_F é definida por:
 - 1. $\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$
 - 2. $\delta_F(q, a, Y) \supset \delta_N(q, a, Y), \ \forall q \in Q \land \forall a \in \Sigma_{\varepsilon} \land \forall Y \in \Gamma$

E, Xo/E

De Pilha Vazia ao Estado Final:

ightharpoonup Se $L=N(P_N)$ para algum PDA $P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0)$, existe um PDA P_F tal que $L = L(P_F)$ e que é definido como:

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

Onde δ_F é definida por:

1.
$$\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$$

2. $\delta_F(q, a, Y) \supset \delta_N(q, a, Y), \ \forall q \in Q \land \forall a \in \Sigma_{\varepsilon} \land \forall Y \in \Gamma$

3. $\delta_F(q, \varepsilon, X_0) \supset (p_f, \varepsilon), \forall q \in Q$

E, Xo/E

De Estado Final para Pilha Vazia:

ightharpoonup Se $L=L(P_F)$ para algum PDA $P_F=(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$, existe um PDA P_N tal que $L = N(P_N)$ e que é definido como:

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

- Onde δ_N é definida por:
 - 1. $\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
 - 2. $\delta_N(q, a, Y) \supset \delta_F(q, a, Y), \ \forall q \in Q \land \forall a \in \Sigma_\varepsilon \land \forall Y \in \Gamma$
 - 3. $\delta_N(q, \varepsilon, Y) \supset (p, \varepsilon), \ \forall q \in F \land \forall Y \in (\Gamma \cup \{X_0\})$
 - 4. $\delta_N(p, \varepsilon, Y) = \{(p, \varepsilon)\}, \ \forall Y \in (\Gamma \cup \{X_0\})$

De Estado Final para Pilha Vazia:

ightharpoonup Se $L=L(P_F)$ para algum PDA $P_F=(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$, existe um PDA P_N tal que $L = N(P_N)$ e que é definido como:

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

- Onde δ_N é definida por:
 - 1. $\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
 - 2. $\delta_N(q, a, Y) \supset \delta_F(q, a, Y), \ \forall q \in Q \land \forall a \in \Sigma_\varepsilon \land \forall Y \in \Gamma$
 - 3. $\delta_N(q, \varepsilon, Y) \supset (p, \varepsilon), \ \forall q \in F \land \forall Y \in (\Gamma \cup \{X_0\})$
 - **4**. $\delta_N(p, \varepsilon, Y) = \{(p, \varepsilon)\}, \ \forall Y \in (\Gamma \cup \{X_0\})$

■ Equivalência entre PDAs e CFGs:

De CFGs para PDAs:

Seja G = (V, T, Q, S), construir o PDA P que aceite L(G) por pilha vazia, da seguinte forma:

$$P = (\{q\}, T, V \cup T, \delta, q, S)$$

- ightharpoonup Onde δ é definida como:
 - Para cada variável A, $\delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ é uma produção de } G\}$
 - 2. Para cada terminal a, $\delta(q, a, a) = \{(q, \varepsilon)\}$

Seja G = (V, T, Q, S), construir o PDA P que aceite L(G) por pilha vazia, da seguinte forma: $P = (\{q\}, T, V \cup T, \delta, q, S)$

Onde δ é definida como:

- Para cada variável A, $\delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ é uma produção de } G\}$
- Para cada terminal a, $\delta(q, a, a) = \{(q, \varepsilon)\}$

Exemplo:

- Converter a gramática de expressões em um PDA:
 - O conjunto de terminais (T) para o PDA é $\{a, b, 0, 1, (,), +, *\}$. Esses oito símbolos e os símbolos I e E (V) formam o alfabeto da pilha ($V \cup T$). A função de transição para o PDA é:

a)
$$\delta(q, \varepsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$$

b)
$$\delta(q, \varepsilon, E) = \{(q, I), (q, E + E), (q, E * E), (q, (E))\}$$

c)
$$\delta(q, a, a) = \{(q, \varepsilon)\}$$

 $\delta(q, b, b) = \{(q, \varepsilon)\}$
 $\delta(q, 0, 0) = \{(q, \varepsilon)\}$
 $\delta(q, 1, 1) = \{(q, \varepsilon)\}$
 $\delta(q, (, () = \{(q, \varepsilon)\}$
 $\delta(q,),) = \{(q, \varepsilon)\}$
 $\delta(q, +, +) = \{(q, \varepsilon)\}$
 $\delta(q, *, *) = \{(q, \varepsilon)\}$

De PDAs para CFGs:

- ightharpoonup Seja $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0)$, então existe uma CFG G tal que L(G)=N(P).
- Construção de $G = (V, \Sigma, R, S)$, onde:
 - V consiste em:
 - 1. No símbolo S
 - 2. Em todos os símbolos na forma [pXq], onde $p \in q$ são estados em $Q \in X \in \Gamma$
 - As produções de G são:
 - a) Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
 - b) Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:
 - 1. $a \in \Sigma_{\varepsilon}$
 - 2. k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

- Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:
- V consiste em:
 - No símbolo S
- Em todos os símbolos na forma [pXq], onde $p \in q$ são estados em $Q \in X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:
- k pode ser qualquer número, inclusive 0, no caso do par (r, ε) Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] ... [r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q\},\{i,e\},\{Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:

Exemplo 1:

- $V = \{S, [qZq]\}$, pois S é o símbolo de início e [qZq] é a única tripla que pode formada a partir dos símbolos de pilha de P_N
- R (produções):
 - ightharpoonup Para S, S
 ightharpoonup [qZq]
 - lacktriangle Obs: se houvesse n estados, teríamos n produções desse tipo
 - Dado que $\delta_N(q,i,Z) = \{(q,ZZ)\}$, temos:
 - \blacksquare $[qZq] \rightarrow i[qZq][qZq]$
 - lacktriangle Obs: se existissem n estados, essa única regra produziria n^2 produções!
 - Dado que $\delta_N(q,e,Z) = \{(q,\varepsilon)\}$, temos:
 - \blacksquare $[qZq] \rightarrow e$
- Substituindo [qZq] por A, temos, finalmente:

$$S \rightarrow A$$

 $A \rightarrow iAA \mid e$ ou $S \rightarrow iSS \mid e$

$$\delta_N$$
:
 $\delta_N(q, i, Z) = \{(q, ZZ)\}$
 $\delta_N(q, e, Z) = \{(q, \varepsilon)\}$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- $G = (V, \Sigma, R, S)$, onde:

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
 - Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

 δ_N :

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde $p \in q$ são estados em $Q \in X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

 δ_N :

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
 - R (produções):
 - ightharpoonup S
 ightharpoonup [qZq] | [qZp]

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:
- k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

 δ_N :

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- $G = (V, \Sigma, R, S)$, onde:

Exemplo 2:

- $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
- \blacksquare R (produções):
 - $ightharpoonup S
 ightharpoonup [qZq] \mid [qZp]$
 - **1**.

 - \blacksquare $[qZq] \rightarrow 1[qXp][pZq]$

 - $\blacksquare [qZp] \rightarrow 1[qXp][pZp]$

comprimento 2

listas de estados de comprimento 2:

> qq, pq, $qp \in pp$

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}|$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}\$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- $G = (V, \Sigma, R, S)$, onde:

Exemplo 2:

- $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
- ightharpoonup R (produções):
 - $ightharpoonup S
 ightharpoonup [qZq] \mid [qZp]$
 - **2**.

 - $\blacksquare [qXq] \rightarrow 1[qXp][pXq]$

 - $\blacksquare [qXp] \rightarrow 1[qXp][pXp]$

comprimento 2

listas de estados de comprimento 2:

> qq, pq, $qp \in pp$

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$ 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:

Exemplo 2:

- $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
- \blacksquare R (produções):
 - $ightharpoonup S
 ightharpoonup [qZq] \mid [qZp]$
 - **3**.
- $\blacksquare [qXq] \rightarrow 0[pXq] \leftarrow$
- $\blacksquare [qXp] \rightarrow 0[pXp] \leftarrow$

comprimento 1

listas de estados de comprimento 1:

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:

Exemplo 2:

- $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
- \blacksquare R (produções):
 - $ightharpoonup S
 ightharpoonup [qZq] \mid [qZp]$
 - **4**.
- $ightharpoonup [pZq] o 0[qZq] ext{ } ext{$
- ightharpoonup [pZp]
 ightharpoonup 0[qZp]
 ightharpoonup

comprimento 1

listas de estados de comprimento 1:

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
 - \blacksquare R (produções):
 - ightharpoonup S
 ightharpoonup [qZq] | [qZp]
 - **5**.
 - $[qXq] \rightarrow \varepsilon$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 $\delta(q, \mathbf{a}, X) = \{(r, \varepsilon)\}\$

 $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}_{\kappa}$

comprimento 0

k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

- 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

Assim, para todas as listas de estados $r_1, r_2, ..., r_k$, G tem a produção

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:

Exemplo 2:

- $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$
- ightharpoonup R (produções):
 - ightharpoonup S
 ightharpoonup [qZq] | [qZp]
 - **6**.
 - $[pXp] \rightarrow 1$

- δ_N : 1. $\delta_N(q, 1, Z) = \{(q, XZ)\}\$
- 2. $\delta_N(q, 1, X) = \{(q, XX)\}$
- 3. $\delta_N(q,0,X) = \{(p,X)\}$
- 4. $\delta_N(p, 0, Z) = \{(q, Z)\}$
- 5. $\delta_N(q, \varepsilon, X) = \{(q, \varepsilon)\}$
- 6. $\delta_N(p, 1, X) = \{(p, \varepsilon)\}\$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, [qXq], [qZq], [qXp], [qZp], [pXq], [pZq], [pXp], [pZp]\}$

 \blacksquare $[qXq] \rightarrow 0[pXq]$

 $\blacksquare [qXp] \rightarrow 0[pXp]$

 $\blacksquare [pZq] \rightarrow 0[qZq]$

 $\blacksquare [pZp] \rightarrow 0[qZp]$

 $\blacksquare [qXq] \rightarrow \varepsilon$

 $\blacksquare [pXp] \rightarrow 1$

- R (produções):
 - ightharpoonup S
 ightharpoonup [qZq] | [qZp]
 - \blacksquare $[qZq] \rightarrow 1[qXq][qZq]$

 - \blacksquare $[qZp] \rightarrow 1[qXq][qZp]$

 - \blacksquare $[qXq] \rightarrow 1[qXq][qXq]$
 - \blacksquare $[qXq] \rightarrow 1[qXp][pXq]$
 - \blacksquare $[qXp] \rightarrow 1[qXq][qXp]$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde $p \in q$ são estados em $Q \in X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:
- k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, A, B, C, D, E, F, G, H\}$
 - R (produções):

$$\longrightarrow S \rightarrow A \mid B$$

$$\blacksquare A \rightarrow 1CA$$

- $\blacksquare A \rightarrow 1DE$
- $\blacksquare B \rightarrow 1CB$
- $\blacksquare B \rightarrow 1DF$
- $C \rightarrow 1CC$
- ightharpoonup C o 1DG
- $\rightarrow D \rightarrow 1CD$
- $D \rightarrow 1DH$

- $C \rightarrow 0G$
- $\rightarrow D \rightarrow 0H$
- $\blacksquare E \rightarrow 0A$
- ightharpoonup F o 0B
- $C \rightarrow \varepsilon$
- $\blacksquare H \rightarrow 1$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, A, B, C, D, E, F, G, H\}$
 - R (produções):
 - $\triangleright S \rightarrow A \mid B$
 - $\blacksquare A \rightarrow 1CA \mid 1DE$
 - $\blacksquare B \rightarrow 1CB \mid 1DF$
 - $ightharpoonup C
 ightharpoonup 1CC \mid 1DG \mid 0G \mid \varepsilon$
 - $\rightarrow D \rightarrow 1CD \mid 1DH \mid 0H$
 - $E \rightarrow 0A$
 - ightharpoonup F o 0B
 - **■** *H* → 1

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
- Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

Exemplo 2:

- Converter o PDA $P_N(\{q,p\},\{0,1\},\{X,Z\},\delta_N,q,Z)$ em uma CFG G:
- \blacksquare $G = (V, \Sigma, R, S)$, onde:
 - $V = \{S, A, B, C, D\}$
 - R (produções):
 - $\longrightarrow S \rightarrow A \mid B$
 - $\blacksquare A \rightarrow 1CA \mid 1D0A$
 - $\blacksquare B \rightarrow 1CB \mid 1D0B$
 - $ightharpoonup C
 ightharpoonup 1CC | 1D | 0 | \varepsilon$
 - $\rightarrow D \rightarrow 1CD \mid 1D1 \mid 01$

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, então existe uma CFG G tal que L(G) = N(P). Construção de $G = (V, \Sigma, R, S)$, onde:

V consiste em:

- No símbolo S
- Em todos os símbolos na forma [pXq], onde p e q são estados em Q e $X \in \Gamma$ As produções de G são:
- Para todos os estados p, G tem a produção $S \rightarrow [q_0 Z_0 p]$
 - Seja $\delta(q, a, X)$ contendo o par $(r, Y_1Y_2 ... Y_k)$, onde:

 - k pode ser qualquer número, inclusive 0, no caso do par (r, ε)

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_k]$$

Autômatos de Pilha Determinísticos (DPDA):

- DPDAs têm aplicação importante em analisadores sintáticos, afinal de contas, para um analisador sintático existir, ele precisa ser "executado" em um computador e, para isso, a necessidade de ser determinístico é inerente;
- Formalmente, um PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ é determinístico se e somente se:
 - $|\delta(q, a, X)| \le 1, \forall q \in Q \land \forall a \in \Sigma_{\varepsilon} \land \forall X \in \Gamma$
 - \bullet $\delta(q, a, X) \neq \emptyset, \exists a \in \Sigma \rightarrow \delta(q, \varepsilon, X) = \emptyset$
- A linguagem L_{wwr} é livre de contexto, mas não existe um DPDA que a reconheça, sendo assim, os DPDAs reconhecem linguagens que ficam "entre" os tipos 3 e 2, ou seja, uma classe de linguagens que fica entre as linguagens regulares e as CFLs. Se essa linguagem for alterada, inserindo um "marcador de centro", ou seja, a linguagem L_{wcwr} , ela passa a ser reconhecida por um DPDA;
- As linguagens aceitas por DPDAs pelo estado final incluem, propriamente as linguagens regulares, mas não estão incluídas propriamente nas CFLs;
- Além disso, todas as linguagens que os DPDAs aceitam possuem gramáticas não-ambíguas, entretanto tem-se que tomar cuidado, pois há linguagens não inerentemente ambíguas que não são aceitas por DPDAs, como o caso da L_{wwr} .

- Autômatos de Pilha Determinísticos (DPDA):
 - **Exemplo:** DPDA para a linguagem L_{wcwr} :

Exercícios Escritos

Exercício e8.1: Para o PDA $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\})$ com função de transição definida como:

```
\delta(q, 0, Z_0) = \{(q, XZ_0)\}
\delta(q, 0, X) = \{(q, XX)\}\
\delta(q, 1, X) = \{(q, X)\}
\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\
\delta(p,\varepsilon,X) = \{(p,\varepsilon)\}
\delta(p, 1, X) = \{(p, XX)\}
\delta(p, 1, Z_0) = \{(p, \varepsilon)\}
```

A partir da ID inicial $\delta(q, w, Z_0)$, mostre todas as IDs acessíveis quando a entrada w é:

- a) 01
- b) 0011
- 010

Exercício e8.2: Projete um PDA para aceitar a linguagem abaixo. Escolha se o PDA aceitará por estado final ou por pilha vazia de modo que seja mais conveniente para você.

$$L = \{0^n 1^n \mid n \ge 1\}$$

Exercício e8.3: Projete um PDA para aceitar a linguagem abaixo. Escolha se o PDA aceitará por estado final ou por pilha vazia de modo que seja mais conveniente para você.

 $L = \{w \mid w \text{ tem quantidades iguais de } 0'\text{s e } 1'\text{s }\}$

Exercício e8.4: Projete um PDA para aceitar a linguagem abaixo. Escolha se o PDA aceitará por estado final ou por pilha vazia de modo que seja mais conveniente para você.

 $L = \{w \mid \text{em } w \text{ a quantidade de } 0'\text{s \'e o dobro da quantidade de } 1'\text{s} \}$

Exercício e8.5: Projete um PDA para aceitar a linguagem abaixo. Escolha se o PDA aceitará por estado final ou por pilha vazia de modo que seja mais conveniente para você.

$$L = \{a^i b^j c^k \mid i = j \lor j = k\}$$

Exercício e8.6: Converta a gramática abaixo em um PDA que aceite a mesma linguagem por pilha vazia.

$$S \rightarrow 0S1 \mid A$$

$$A \rightarrow 1A0 \mid S \mid \varepsilon$$

Exercício e8.7: Converta a gramática abaixo em um PDA que aceite a mesma linguagem por pilha vazia.

$$S \to aAA$$

$$A \to aS \mid bS \mid \varepsilon$$

45/45 Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

