PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Numbe	wo 96/28878
H02M 7/04	A1	(43) International Publication Date:	19 September 1996 (19.09.96)

(21) International Application Number: PCT/US96/02287

(22) International Filing Date: 28 February 1996 (28.02.96)

(30) Priority Data:

3

9504755.1 9 March 1995 (09.03.95) GB 9508288.9 24 April 1995 (24.04.95) GB 465,399 5 June 1995 (05.06.95) US

(71) Applicant: RCA THOMSON LICENSING CORPORATION [US/US]; Two Independence Way, Princeton, NJ 08540 (US).

(72) Inventor: MUCHENBERGER, Manfred; Zwischenbachen 139, CH-8048 Zurich (CH).

(74) Agents: TRIPOLI, Joseph, S. et al.; GE & RCA Licensing Management Operation Inc., CN 5312, Princeton, NJ 08540 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SWITCHED-MODE POWER SUPPLY WITH SYNCHRONOUS PRECONVERTER

(57) Abstract

A power supply (100) comprises: a rectifier (10); a power preconverter (20) coupled to the rectifier (10); a switched-mode power supply circuit (30) coupled to the power preconverter (20); and, a phase control circuit (21, 22) for synchronizing operation of the power preconverter (20) with operation of the switched-mode power supply circuit (30). An energy storage device (C1) may be coupled to the power preconverter (20) and to the switched-mode power supply circuit (30). A preconverter switch (Q2) conducts during each time interval that a power switch (Q1) in the switched-mode power supply circuit (30) conducts in order, for example, to charge the energy storage device (C1). The preconverter switch (Q2) begins conducting only after each time interval begins and always stops conducting before each time interval ends. In a portion of the time interval after the preconverter switch (Q2) has stopped conducting, a current can flow directly from the power preconverter (20) to the switched-mode power supply circuit (30) without, for example, charging the energy storage device (C1).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	
BJ	Benin	JР	Japan	PT	Poland
BR	Brazil	KE	Kenya	RO	Portugal
BY	Belanis	KG	Kyrgystan	RU	Romania
CA	Canada	KP	Democratic People's Republic		Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
СН	Switzerland	KZ	Kazakhstan	SG	Singapore
CI	Côte d'Ivoire	L	Liechtenstein	SI	Slovenia
CM	Cameroon	LK	Sri Lanka	SK	Slovakia
CN	China	LR	Liberia	SN	Senegal
CS	Czechoslovakia	LT	Lithuania	SZ	Swaziland
cz	Czech Republic	LU		TD	Chad
DE	Germany		Luxembourg	TG	Togo
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE	Estonia	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
FI	Finland	MG	Madagascar	UG	Uganda
FR		ML	Mali	US	United States of America
FK GA	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

SWITCHED-MODE POWER SUPPLY WITH SYNCHRONOUS PRECONVERTER

BACKGROUND OF THE INVENTION

This invention relates generally to the field of switchedmode power supplies, and, in particular, to switched-mode power supplies employing preconverter circuits to effect power factor correction.

An off-line switched-mode power supply may consist of a rectifier stage cascaded with a DC-DC converter stage. The rectifier stage itself consists of a rectifier section and a filter section. The rectifier section uses semiconductor power rectifiers to convert the mains voltage into a pulsating DC voltage. This DC voltage is then filtered by capacitors in the filter section to obtain a DC voltage that has relatively low ripple.

One consequence of using capacitors in the filter section is that the resulting input current waveform consists of current pulses corresponding to the peaks of the mains voltage. This happens because the rectifier diodes cannot conduct current until the mains voltage exceeds the filter capacitor's voltage. As a result, the power supply only draws power at the peaks of the mains voltage, which results in a poor power factor at the input to the power supply.

One method for improving the power factor at the input to the power supply is to place a boost-type DC-DC preconverter between the rectifier section and the filter section. The preconverter effects a power factor correction by allowing the input rectifiers to conduct sooner and conditions the input current to be sinusoidal and in phase with the mains voltage. A prior art switched-mode power supply with a boost-type DC-DC preconverter is shown in FIGURE 8. Power from the mains is rectified and fed to the preconverter. In the preconverter, a power factor controller, such as a Siemens TDA4815, controls preconverter switch Q2. Energy is stored in inductor L1 during the "on" time of preconverter switch Q2. This energy is transferred to a storage capacitor C1 by a charge current icharge

5

10

15

20

2.5

30

through a diode D1 during the "off" time of preconverter switch Q2, and is ultimately provided to the input of the switched-mode power supply as an input current i1.

A problem with the prior art arises from the fact that preconverter switch Q2 switches asynchronously with respect to power switch Q1 of the switched-mode power supply. This asynchronous switching results in a random phase relationship between charge current icharge through diode D1 and input current i1 to the switched-mode power supply.

SUMMARY OF THE INVENTION

Establishing a more optimal phase relationship between charge current icharge and input current il by synchronizing switching of preconverter switch Q2 and power switch Q1 would reduce the total rms current through storage capacitor C1, which is desirable for several reasons. The use of a synchronous preconverter eases the specifications for storage capacitor C1, thus allowing for the use of standard, low cost components. The life expectancy of a given storage capacitor C1 can be extended or a lower cost capacitor can be used instead. The voltage rating for storage capacitor C1 can also be reduced. The harmonic components of a mains current imains can be further attenuated from present levels. A ripple voltage at the output of the switched-mode power supply can be reduced. Finally, when used with a flyback-topology switched-mode power supply in a television, the synchronous preconverter switches "off" when the television is operating in "standby" mode.

Briefly stated, a power supply according to an inventive arrangement taught herein results in a reduction of the total rms current flowing through the filter section of the power supply.

The operation of a switched-mode power supply circuit is synchronized with the operation of a preconverter circuit so that an input current flows directly from the preconverter circuit to the switched-mode power supply circuit during a portion of each time interval that the switched-mode power supply circuit draws an input current.

5

10

15

20

3

Accordingly, a power supply according to an inventive arrangement taught herein comprises: rectifying means; power preconverting means coupled to the rectifying means; a switched-mode power supply circuit coupled to the power preconverting means; and, means for synchronizing operation of the power preconverting means with operation of the switched-mode power supply circuit.

A power supply according to a further inventive arrangement taught herein comprises: rectifying means; power preconverting means coupled to the rectifying means; energy storage means coupled to the power preconverting means; a switched-mode power supply circuit coupled to the power preconverting means and to the energy storage means; and, means for synchronizing operation of the power preconverting means with operation of the switched-mode power supply circuit.

A power supply according to another inventive arrangement taught herein comprises: rectifying means; power preconverting means coupled to the rectifying means; energy storage means coupled to the power preconverting means; a switched-mode power supply circuit coupled to the power preconverting means and to the energy storage means; and, means for supplying a current from the power preconverting means directly to the switched-mode power supply circuit during a portion of each time interval that the switched-mode power supply circuit draws an input current.

The switched-mode power supply circuit and the power preconverting means may comprise first and second switch means, respectively. A control circuit in the power preconverting means may compare the amplitude of a ramp signal, keyed to operation of the switched-mode power supply circuit, to lower and upper reference voltages. Conduction of the second switch means in the power preconverting means may be enabled whenever the ramp signal is between the lower and upper reference voltages. The second switch means in the power preconverting means may conduct during each time interval that the first switch means in the switched-mode power supply circuit

5

1.0

15

20

2.5

30

10

15

20

2.5

30

35

4

conducts, beginning only after each time interval begins and always stopping before each time interval ends. In a portion of the time interval after the second switch means has stopped conducting, a current may flow directly from the power preconverting means to the switched-mode power supply circuit.

The above, and other features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a diagram, in block and schematic form, of a switched-mode power supply having an inventive arrangement.

FIGURE 2 is a block diagram of a control circuit used in a switched-mode power supply having an inventive arrangement.

FIGURE 3 is a block diagram of a phase-offset circuit used in a switched-mode power supply having an inventive arrangement.

FIGURE 4 shows particular voltage and current waveforms associated with a switched-mode power supply having an inventive arrangement.

FIGURE 5 is a schematic diagram of a presently preferred embodiment of a switched-mode power supply having an inventive arrangement.

FIGURE 6 is a diagram of the mains current drawn by a presently preferred embodiment of a switched-mode power supply having an inventive arrangement.

FIGURE 7 is a diagram of the harmonic content of the mains current drawn by a presently preferred embodiment of a switched-mode power supply having an inventive arrangement.

FIGURE 8 is a diagram, in block and schematic form, of a prior art switched-mode power supply.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A power supply 100 that provides a more optimal phase relationship between a charge current icharge and an input current i1 is shown in FIGURES 1, 2 and 3. Voltage and current waveforms for power supply 100 are shown in FIGURE 4.

Power supply 100 includes a switched-mode power supply circuit 30 coupled to a full-wave rectifier 10 by a preconverter 20. for use in a television. A control IC 31 of switched-mode power supply circuit 30 provides a drive signal V1, shown in FIGURE 4(a), to turn a power switch Q1 "on" and "off". The "on" time of power switch Q1 is determined by a load coupled to an output of switched-mode power supply circuit 30. A phase-offset circuit 22 uses drive signal V₁ to synchronize switching of a preconverter switch Q2 of preconverter 20 with power switch Q1 of switched-mode power supply circuit 30. By so synchronizing 10 the switching of preconverter switch Q2 with the switching of power switch Q1, the charge current icharge supplied to storage capacitor C1 by preconverter circuit 20 is modulated in response to the load coupled to an output of switched-mode power supply 15 circuit 30.

Drive signal V₁ for power switch Q₁ determines a duration for a ramp signal V_{ramp} , which is generated by ramp generator 25 and is shown in FIGURE 4(b), and a voltage VC1 of storage capacitor C1 determines a slope for ramp signal Vramp. Ramp signal V_{ramp} is compared to two reference voltages, an upper reference voltage V_{ref2} and a lower reference voltage V_{ref1}, both shown in FIGURE 4(b), in a window comparator circuit 23. When ramp signal Vramp is between upper and lower reference voltages V_{ref2} and V_{ref1}, respectively, a drive signal V₂ for preconverter switch Q2 goes "high", as shown in FIGURE 4(c), and preconverter switch Q2 turns "on".

Upper reference voltage Vref2 is lower than ramp voltage V_{ramp} by the forward voltage drop of a diode (not shown) to achieve a phase offset between preconverter switch Q2 and power switch Q1, meaning that preconverter switch Q2 turns "off" before power switch Q1 turns "off". While power switch Q1 is "on" but preconverter switch Q2 is still "off", that part of charge current icharge that flows directly into a transformer T1 through an inductor L1 and a diode D1 of preconverter 20 without being stored in a storage capacitor C1 is represented by the shaded areas in FIGURES 4(e) and 4(f).

5

20

25

30

6

Upper and lower reference voltages Vref2 and Vref1 are modulated in response to line and load conditions, as shown in FIGURE 4(b). In order to maximize that part of charge current icharge flowing directly into transformer T1 without being stored in storage capacitor C1, upper reference voltage Vref2 is modulated proportionally to the peak of ramp voltage Vramp so that upper reference voltage V_{ref2} is lower than ramp voltage V_{ramp} by the forward voltage drop of a diode (not shown). In this way, the slope of ramp signal Vramp is modulated by storage capacitor voltage VC1 such that preconverter switch Q2 turns "off" sooner as storage capacitor voltage VC1 increases and stays "on" longer as storage capacitor voltage VC1 decreases. Thus, as the "on" time of preconverter switch Q2 varies according to variations in line and load conditions, the rms value of a storage capacitor current iC1, shown in FIGURE 4(g), is reduced, and the power factor and storage capacitor voltage VC1 become more independent of the load.

Lower reference voltage V_{ref1} is modulated proportionally to a rectified mains voltage V_{rec} so that the time during which preconverter switch Q2 is "on" is reduced as rectified mains voltage V_{rec} is increased. This is done by delaying the time at which preconverter switch Q2 turns "on" by deriving lower reference voltage V_{ref1} from rectified mains voltage V_{rec} , and it allows for a tradeoff between storage capacitor voltage V_{C1} and a desired power factor.

If storage capacitor voltage VC1 increases above a predetermined limit because of a fault in the circuit or because the television is operating in "standby" mode, an overvoltage protection circuit 24 pulls lower reference voltage V_{ref1} above upper reference voltage V_{ref2}, thus turning preconverter 20 "off".

A more detailed implementation of a synchronous preconverter 20 combined with a switched-mode power supply circuit 30 for use in a television is shown in FIGURE 5. Switched-mode power supply circuit 30 includes a pulse-width modulator U2, represented in FIGURE 5 as a Siemens TDA4605-2, coupled to power switch Q1, and transformer T1, which comprises a primary

5

10

15

20

2.5

7

winding and a plurality of secondary windings. The primary winding of transformer T1 is coupled in series with power switch Q1 and each of the plurality of secondary windings of transformer T1 is coupled in series with either one of diodes D3, D9, D10, D11, D12 or with resistor R3.

Pulse-width modulator U2 provides power switch drive signal V1 to a gate terminal of power switch Q1 through resistor R2. When power switch drive signal V1 goes "high", power switch Q1 turns "on" and input current i1 begins to flow through the primary winding of transformer T1 and through power switch Q1 to a reference voltage potential. As input current i1 flows through the primary winding of transformer T1, energy is stored therein.

When power switch drive signal V1 goes "low", power switch Q1 turns "off", so that the flow of input current i1 through the primary winding of transformer T1 is interrupted. A magnetic field that built up in the primary winding of transformer T1 while power switch Q1 was "on" now collapses, so that the polarity of the primary winding reverses. All the energy stored in the primary winding is now delivered to a plurality of secondary windings of transformer T1. Each one of diodes D3, D9, D10, D11, D12 now becomes forward biased, and the secondary windings deliver energy to their respective loads through diodes D3, D9, D10, D11, D12 and through resistor R3.

Switched-mode power supply circuit 30 is coupled to preconverter 20 through phase offset circuit 22, which includes comparator U1a, resistors R12, R13, R14, diode D5 and capacitors C8, C9. Comparator U1a might be one of a plurality of comparators found in an integrated circuit U1, such as the National Semiconductor LM339, as shown in FIGURE 5. Using storage capacitor voltage VC1 and power switch drive voltage V1, phase-offset circuit 22 determines the shape of ramp signal Vramp and, hence, the phase offset between preconverter switch Q2 and power switch Q1.

As power switch drive signal V₁ of switched-mode power supply circuit 30 goes "high", the output of comparator U₁a goes "high", allowing storage capacitor voltage V_C₁ to charge capacitor

5

10

15

20

25

10

15

20

8

C8 through resistor R14, thus generating the positively-sloped portion of ramp signal V_{ramp} . Diode D5 limits the voltage across capacitor C8, and thus the peak voltage of ramp signal V_{ramp} , to +12 volts. When the output of comparator U1a goes "low", capacitor C8 discharges through the open collector output of comparator U1a.

Phase-offset circuit 22 further includes a peak-detector circuit 26, comprising diode a D6, a capacitor C9 and a resistor R15. Peak-detector circuit 26 limits ramp signal V_{ramp} and produces upper reference voltage V_{ref2}. A forward voltage drop of diode D6 sets the level of upper reference voltage V_{ref2} to 0.7 volts below a peak of ramp signal V_{ramp}.

Window comparator circuit 23 comprises comparators U1b, U1c; resistors R17, R18, R24, R25, R26; and gate-discharge transistor Q3. A voltage divider formed by resistors R17, R18 divides rectified mains voltage V_{rec} to provide lower reference voltage V_{ref1} to an inverting input of comparator U1b. Upper reference voltage V_{ref2} is coupled from peak-detector circuit 26 to a non-inverting input of comparator U1c. Ramp signal V_{ramp} is provided by phase-offset circuit 22 to both the non-inverting input of comparator U1b and the inverting input of comparator U1c. The outputs of comparators U1b, U1c are coupled to each other.

Window comparator output voltage V4 is pulled "high" by resistor R25 if ramp signal Vramp is between lower reference 25 voltage Vref1 and upper reference voltage Vref2. Capacitor C11 suppresses small spikes in window comparator output voltage V4. When window comparator output voltage V4 is "high", gatedischarge transistor Q3 is "off", and +12 volts is coupled to the gate 30 terminal of preconverter switch Q2 through resistor R26, thereby turning "on" preconverter switch Q2. When ramp signal V_{ramp} is below lower reference voltage Vref1 or above upper reference voltage V_{ref2}, window comparator output voltage V₄ goes "low" and allows gate-discharge transistor Q3 to turn "on", thereby discharging the gate terminal of preconverter switch Q2, which 35 then turns "off". Using gate-discharge transistor Q3 to open

q

preconverter switch Q2 allows a fast turn-off time for preconverter switch Q2.

Overvoltage protection circuit 24 includes comparator U1d and resistors R19, R20, R21, R22, R23. A voltage divider formed by resistors R20. R21 provides an overvoltage threshold voltage at 5 the inverting input of comparator Uld. Storage capacitor voltage VC1 is divided by a voltage divider formed by resistors R22, R23, and the resulting voltage is provided to the non-inverting input of comparator Uld. If storage capacitor voltage VC1 exceeds an overvoltage limit as determined by the overvoltage threshold 10 voltage present at the inverting input of comparator Uld, the output of comparator U1d goes "high" and resistor R19 pulls up lower reference voltage Vref1 through diode D8. Window comparator output voltage V4 then goes "low", thereby allowing gate-discharge transistor Q3 to turn "on" and discharge the gate 15 terminal of preconverter switch Q2, thereby opening preconverter switch Q2 and turning "off" preconverter 20.

WHAT IS CLAIMED IS:

- 1 1. A power supply (100), comprising: 2 rectifying means (10); and, a switched-mode power supply circuit (30); 3 4 characterized by: power preconverting means (20) coupling said rectifying 5 means (10) to said switched-mode power supply circuit (30); and, 6 means (21,22) for synchronizing operation of said power 7 preconverting means (20) with operation of said switched-mode 8 9 power supply circuit (30).
- The power supply (100) of claim 1, characterized in that 1 2 said switched-mode power supply circuit (30) and said power preconverting means (20) have first (Q1) and second (Q2) switch 3 means, respectively, said synchronizing means (21,22) controlling 4 a phase relationship in operation of said second switch means (Q2) 5 in said power preconverting means (20) relative to operation of 6 7 said first switch means (Q1) in said switched-mode power supply 8 circuit (30).
- 3. The power supply (100) of claim 1, characterized in that said power preconverting means (20) supplies a current directly to said switched-mode power supply circuit (30) during a portion of each time interval that said switched-mode power supply circuit (30) draws an input current (i1).
- 4. A power supply (100) according to claim 1, wherein said synchronizing means (21,22) is characterized by:
 means for generating a ramp signal (Vramp); and,
 means for generating an upper reference voltage (Vref2)
 having a value below a peak amplitude of said ramp signal (Vramp).
- 5. A power supply (100) according to claim 4, wherein said synchronizing means (21,22) is further characterized by:

11

means for generating a lower reference voltage (V_{ref1}); and, a comparator circuit having inputs coupled to said lower (V_{ref1}) and upper (V_{ref2}) reference voltages.

- 6. A power supply (100) according to claim 5, characterized in that said means for generating said lower reference voltage (V_{ref1}) is coupled to said rectifying means (10).
- 1 7. A power supply (100) according to claim 6, characterized in that said comparator circuit enables conduction of a preconverter switch (Q2) while said ramp signal (V_{ramp}) is between said lower (V_{ref1}) and upper (V_{ref2}) reference voltages.
- 1 A power supply (100), comprising: 2 rectifying means (10); and, 3 a switched-mode power supply circuit (30); 4 characterized by: 5 power preconverting means (20) coupling said rectifying 6 means (10) to said switched-mode power supply circuit (30); 7 energy storage means (C1) coupled to said power 8 preconverting means (20) and to said energy storage means (C1);
- means for synchronizing (21,22) operation of said power preconverting means (20) with operation of said switched-mode power supply circuit (30).
 - 9. The power supply (100) of claim 8, characterized in that a charge current (icharge) supplied to said energy storage means (C1) from said power preconverting means (20) is responsive to a load coupled to an output of said switched-mode power supply circuit (30).
 - 1 10. The power supply (100) of claim 8, characterized in that 2 said switched-mode power supply circuit (30) and said power 3 preconverting means (20) have first (Q1) and second (Q2) switch 4 means, respectively, said synchronizing means (21,22) controlling

9

1

2

4

5

and.

2

3

4

5

12

a phase relationship in operation of said second switch means (Q2) in said power preconverting means (20) relative to operation of said first switch means (Q1) in said switched-mode power supply circuit (30).

- 11. The power supply (100) of claim 10, characterized in that said second switch means (Q2) in said power preconverting means (20) conducts during each time interval that said first switch means (Q1) in said switched-mode power supply circuit (30) conducts.
- 1 12. The power supply (100) of claim 11, characterized in 2 that said second switch means (Q2) in said power preconverting 3 means (20) conducts for a period of time shorter than said time 4 interval.
- 1 13. The power supply (100) of claim 12, characterized in 2 that said second switch means (Q2) in said power preconverting 3 means (20) begins conducting only after said time interval begins 4 and always stops conducting before said time interval ends.
- 1 14. A power supply (100) according to claim 8, wherein said synchronizing means (21,22) is characterized by:
 3 means for generating a ramp signal (V_{ramp}); and,
 4 means for generating an upper reference voltage (V_{ref2})
 5 having a value below a peak amplitude of said ramp signal (V_{ramp}).
- 1 15. A power supply (100) according to claim 14, wherein
 2 said synchronizing means (21,22) is further characterized by:
 3 means for generating a lower reference voltage (V_{ref1}); and,
 4 a comparator circuit having inputs coupled to said lower
 5 (V_{ref1}) and upper (V_{ref2}) reference voltages.

- 1 16. A power supply (100) according to claim 15, 2 characterized in that said means for generating said lower 3 reference voltage (V_{ref1}) is coupled to said rectifying means (10).
- 1 17. A power supply (100) according to claim 16, 2 characterized in that said comparator circuit initiates conduction 3 of a preconverter switch (Q2) while said ramp signal (V_{ramp}) is 4 between said lower (V_{ref1}) and upper (V_{ref2}) reference voltages.
- A power supply (100), comprising: 1 18. rectifying means (10); and, 2 a switched-mode power supply circuit (30); 3 4 characterized by: power preconverting means (20) coupling said rectifying 5 means (10) to said switched-mode power supply circuit (30); 6 energy storage means (C1) coupled to said power 7 preconverting means (20) and to said energy storage means (C1); 8 9 10
- means for supplying a current from said power
 preconverting means (20) directly to said switched-mode power
 supply circuit (30) during a portion of each time interval that said
 switched-mode power supply circuit (30) draws an input current
 (i1).
 - 1 19. The power supply (100) of claim 18, characterized in 2 that said switched-mode power supply circuit (30) and said power 3 preconverting means (20) have first (Q1) and second (Q2) switch 4 means, respectively.
 - 1 20. The power supply (100) of claim 19, characterized in 2 that said second switch means (Q2) in said power preconverting 3 means (20) begins conducting only after said time interval begins 4 and always stops conducting before said time interval ends.
 - 1 21. The power supply (100) of claim 20, characterized in 2 that said portion of said time interval comprises a remainder of

- 3 said time interval after said second switch means (Q2) in said
- 4 power preconverting means (20) stops conducting.

FIG. 3
SUBSTITUTE SHEET (RULE 26)

2/5

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 8 PRIOR ART

In _national application No.

PCT/US 96/02287 CLASSIFICATION OF SUBJECT MATTER IPC6: HO2M 7/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC6: HO2M Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US, A, 5187414 (FELLOWS ET AL), 16 February 1993 1-21 (16.02.93), figures 4-6, claim 1, abstract EP, A2, 0301386 (SIEMENS AKTIENGESELLSCHAFT BERLIN 1-21 UND MÜNCHEN), 1 February 1989 (01.02.89), figure 2 EP, A1, 0404996 (SIEMENS AKTIENGESELLSCHAFT), 1-21 2 January 1991 (02.01.91), figure 1 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand .A. document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance "E" erlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 4. 08. 96 12 June 1996 Name and mailing address of the International Searching Authority Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL-2280 HV Rijswijk Tel. (-31-70) 340-2040, Tx. 31 651 epo nl, Håkan Sandh Fax: (-31-70) 340-3016

Information on patent family members

01/07/96

International application No.

PCT/US 96/02287

	document earch report	Publication date	Patent family member(s)		Publication date
US-A- 5187414 16/02/93	CA-A- EP-A,A,A JP-A- US-A- US-A-	1337211 0351012 2068895 4952849 5111118	03/10/95 17/01/90 08/03/90 28/08/90 05/05/92		
EP-A2-	0301386	01/02/89	NONE		
EP-A1-	0404996	02/01/91	AT-T- DE-D- JP-A- JP-B- NO-B,C- US-A-	106634 58907790 3049557 6091741 176500 4985818	15/06/94 00/00/00 04/03/91 14/11/94 02/01/95 15/01/91

Form PCT/ISA/210 (patent family annex) (July 1992)