Foglio di Esercizi 5

Metodi Matematici per l'IA

24-10-2024

Esercizio 1

Sia $f(x) = e^{i2x}$ per $x \in [-\pi, \pi]$, e estendiamo f(x) affinché sia 2π -periodica.

- 1. Dimostra che $f(x) \in L^2_{\mathbb{C}}(T)$, dove $T = 2\pi$.
- 2. Mostra che f(x) è localmente 2-integrabile su \mathbb{R} .

Esercizio 2

Determinare la serie di Fourier della funzione periodica di periodo 2π definita da $f(x) = x^2$ per $-\pi \le x \le \pi$. Dedurre la somma delle seguenti serie:

$$\sum_{n\geq 1} \frac{1}{n^2}, \quad \sum_{n\geq 1} \frac{(-1)^{n+1}}{n^2}, \quad \sum_{n\geq 1} \frac{1}{n^4}.$$

Esercizio 3

Per $x \ge 0$ e $n \ge 1$, definiamo $f_n(x) = \frac{n}{1 + n(1 + x)}$.

- 1. Dimostrare che la successione di funzioni $(f_n)_{n\geq 1}$ converge puntualmente su $[0,+\infty[$ verso una funzione f, che deve essere specificata.
- 2. Dimostrare che la convergenza è in realtà uniforme su $[0, +\infty[$.

Esercizio 4

Per $n \ge 1$ e $x \in]0,1]$, si definisce $f_n(x) = nx^n \ln(x)$ con $f_n(0) = 0$.

- 1. Dimostrare che la successione (f_n) converge puntualmente su [0,1] verso una funzione f, che deve essere specificata. Si ponga poi $g = f f_n$.
- 2. Studiare le variazioni di g.
- 3. Dedurre che la convergenza di (f_n) verso f non è uniforme su [0,1].
- 4. Sia $a \in [0,1[$. Notando che esiste $n_0 \in \mathbb{N}$ tale che $e^{-1/n} \ge a$ per ogni $n \ge n_0$, dimostrare che la successione (f_n) converge uniformemente verso f su [0,a].

Esercizio 5

Considera la funzione f(x) definita dalla serie trigonometrica

$$f(x) = \sum_{n \in \mathbb{Z}} \frac{1}{(1+|n|)^p} e^{in\omega x},$$

1

$$con \ \omega = \frac{2\pi}{T} \ e \ p > 2.$$

- 1. Analizza il comportamento dei coefficienti di Fourier $\gamma_n = \frac{1}{(1+|n|)^p}$ per $n \to \infty$. Cosa ti dice questo sul grado di regolarità della funzione f(x)?
- 2. Basandoti sulla velocità di decadimento dei coefficienti, determina la regolarità di f(x). Trova il massimo intero k tale che $f(x) \in C^k([T/2, T/2]; \mathbb{C})$.
- 3. Rappresenta graficamente la funzione f(x) per p=3 e $T=2\pi.$