§5.1 二次型与对称矩阵

数学系 梁卓滨

2018 - 2019 学年上学期

本节内容

- ◇ 二次型,二次型与对称矩阵——对应
- ♣ 二次型的标准型、规范型
- ♡ 矩阵的合同关系

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$
$$= (x_1, x_2) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$
$$= (x_1, x_2) \begin{pmatrix} a_{11} \\ a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$
$$= (x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x}$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = x^T A x$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

一般地,

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = x^T A x$$

$$f(x_1, x_2) = -3x_1^2 + 2x_1x_2 + 5x_2^2 =$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

一般地,

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = x^T A x$$

$$f(x_1, x_2) = -3x_1^2 + 2x_1x_2 + 5x_2^2 = (x_1, x_2)$$

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

一般地,

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = x^T A x$$

$$f(x_1, x_2) = -3x_1^2 + 2x_1x_2 + 5x_2^2 = (x_1, x_2) \begin{pmatrix} -3 \\ 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

二元二次齐次多项式

$$f(x_1, x_2) = 6x_1^2 + 4x_1x_2 - 2x_2^2 = (x_1, x_2) \begin{pmatrix} 6 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

一般地,

$$f(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

$$= \underbrace{(x_1, x_2)}_{x^T} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x} = x^T A x$$

$$f(x_1, x_2) = -3x_1^2 + 2x_1x_2 + 5x_2^2 = (x_1, x_2)\begin{pmatrix} -3 & 1 \\ 1 & 5 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$= (x_1, x_2, x_3) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} a_{11} & & \\ & a_{22} & \\ & & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (x_1, x_2, x_3) \begin{pmatrix} a_{11} & a_{12} \\ & a_{22} \\ & & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

$$+ 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

$$\left(a_{11} \ a_{12} \ a_{13} \right) \left(x_1 \right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ & a_{22} & \\ & & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

$$+ 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

$$\int a_{11} a_{12} a_{13} \setminus \int x_1^2 dx_1^2 dx_2^2 + a_{23}x_2x_3^2 + a_{23}x_2^2 + a_{23}x_2^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ & a_{22} & a_{23} \\ & & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$
$$= (x_1, x_2, x_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \bigcirc \frac{x_1}{x_2}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \bigcirc x_1$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 & \frac{1}{2} & & \\ & 0 & & \\ & & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ & 0 & \\ & & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{X} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ & 0 & -1 \\ & & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

+ $2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

$$=\underbrace{(x_1, x_2, x_3)}_{x^T}\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = x^T A x$$

例
$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + 2x_3^2 - 2x_2x_3$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & -1 \\ \frac{1}{2} & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

例 1 给定二次型,写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1x_2 + 3x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1x_2 + 3x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

M 2 给定对称矩阵 A ,写出相应二次型:

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

=

 M_1 给定二次型,写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

M 2 给定对称矩阵 A,写出相应二次型:

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 \\ x_2 \\ x_3 \end{pmatrix}$$

例 2 给定对称矩阵 A,写出相应二次型:

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 2 & 2 \\ 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 M_1 给定二次型,写出对称矩阵 A_1

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$\left(\begin{array}{cc} 1 & \frac{1}{2} & \frac{3}{2} \end{array}\right) \left(\begin{array}{c} x_1 \end{array}\right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= \underline{\qquad} x_1^2 + \underline{\qquad} x_2^2 + \underline{\qquad} x_3^2 + 2\underline{\qquad} x_1 x_2 + 2 \qquad x_1 x_3 + 2\underline{\qquad} x_2 x_3$$

M 1 给定二次型、写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= -1x_1^2 + x_2^2 + x_3^2 + 2 x_1x_2 + 2 x_1x_3 + 2 x_2x_3$$

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$\left(\begin{array}{cc} 1 & \frac{1}{2} & \frac{3}{2} \end{array}\right) \left(\begin{array}{c} x_1 \end{array}\right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= -1x_1^2 + 2x_2^2 + x_3^2 + 2 x_1x_2 + 2 x_1x_3 + 2 x_2x_3$$

M1给定二次型、写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

M 2给定对称矩阵A,写出相应二次型:

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= \underline{-1}x_1^2 + \underline{2}x_2^2 + \underline{0}x_3^2 + 2\underline{\qquad} x_1x_2 + 2 \qquad x_1x_3 + 2\underline{\qquad} x_2x_3$$

M1给定二次型、写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= -1x_1^2 + 2x_2^2 + 0x_3^2 + 2 \cdot 1 \cdot x_1 x_2 + 2 \qquad x_1 x_3 + 2 \underline{\qquad} x_2 x_3$$

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$\left(\begin{array}{cc} 1 & \frac{1}{2} & \frac{3}{2} \end{array}\right) \left(\begin{array}{c} x_1 \end{array}\right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= -1x_1^2 + 2x_2^2 + 0x_2^2 + 2 \cdot 1 \cdot x_1 x_2 + 2 \cdot \frac{1}{2} \cdot x_1 x_3 + 2 \qquad x_2 x_3$$

M 1 给定二次型、写出对称矩阵 A:

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{3}{2} \\ 1 & 2 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ \end{array}\right)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= -1x_1^2 + 2x_2^2 + 0x_3^2 + 2 \cdot 1 \cdot x_1 x_2 + 2 \cdot \frac{1}{2} \cdot x_1 x_3 + 2 \cdot 0 \cdot x_2 x_3$$

$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + 3x_1 x_3 + 2x_2^2 + 4x_2 x_3 + x_3^2$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 2 \\ \frac{3}{2} & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 $= -1x_1^2 + 2x_2^2 + 0x_3^2 + 2 \cdot 1 \cdot x_1x_2 + 2 \cdot \frac{1}{2} \cdot x_1x_3 + 2 \cdot 0 \cdot x_2x_3$

例
$$2$$
 给定对称矩阵 A ,写出相应二次型

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & \frac{1}{2} \\ 1 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= -x_1^2 + 2x_2^2 + 2x_1x_3 + x_1x_3$$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n + a_{22}x_2^2 + ... + 2a_{2n}x_2x_n + ... + a_{nn}x_n^2$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n}$$

$$+$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n}$$

$$+$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} a_{11} & \\ & a_{22} & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n}$$

$$+$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} a_{11} & a_{12} & \\ & a_{22} & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} & \\ x_{2} & \\ \vdots & \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n}$$

$$+$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{22} & & & \vdots \\ x_{n} & & & \vdots \\ x_{n} & & & & \vdots \\ x_{n} & & & & & \vdots \\ x_{n} & & & & & & & & & \\ \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + \cdots + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + \cdots + 2a_{2n}x_{2}x_{n}$$

$$+ \cdots \cdots$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + \cdots + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + \cdots + 2a_{2n}x_{2}x_{n}$$

$$+ \cdots \cdots$$

$$+ a_{nn}x_{n}^{2}$$

$$= (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n}$$

$$+$$

$$+ a_{nn}x_{n}^{2}$$

$$= \underbrace{(x_{1}, x_{2}, ..., x_{n})}_{x^{T}} \underbrace{\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{12} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & ... & a_{nn} \end{pmatrix}}_{x} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}}_{x}$$

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + \cdots + 2a_{1n}x_{1}x_{n}$$

$$+ a_{22}x_{2}^{2} + \cdots + 2a_{2n}x_{2}x_{n}$$

$$+ \cdots \cdots$$

$$+ a_{nn}x_{n}^{2}$$

$$= \underbrace{(x_{1}, x_{2}, ..., x_{n})}_{x^{T}} \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}}_{x}$$

$$= x^{T}Ax$$

定义 n 元二次型

$$f(x_{1}, x_{2}, ..., x_{n}) = a_{11}x_{1}^{2} + 2a_{12}x_{1}x_{2} + ... + 2a_{1n}x_{1}x_{n} + a_{22}x_{2}^{2} + ... + 2a_{2n}x_{2}x_{n} + + a_{nn}x_{n}^{2} = \underbrace{(x_{1}, x_{2}, ..., x_{n})}_{x^{T}} \underbrace{\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{12} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & ... & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}}_{x}$$

注 n 元二次型与对称矩阵,是一一对应

 $= x^T A x$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

作线性变量代换:

$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases}$$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

作线性变量代换:

$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases}$$

代入二次型 $f(x_1, x_2, \ldots, x_n)$ 得

「大人二人至」(
$$x_1, x_2, \ldots, x_n$$
)は
$$f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots \qquad (美于y_1, \cdots, y_n 的二次型)$$

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

作线性变量代换:

$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases}$$

代入二次型 $f(x_1, x_2, ..., x_n)$ 得

 $f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots$ (关于 y_1, \dots, y_n 的二次型)

§5.1 二次型与对称矩阵

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

 $\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases}$

作线性变量代换: (要求 $C = (c_{ii})$ 可逆矩阵, 这样可以反解出 y

代入二次型 $f(x_1, x_2, \ldots, x_n)$ 得

$$f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots$$
 (关于 y_1, \dots, y_n 的二次型)

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

作线性变量代换: (要求 $C = (c_{ij})$ 可逆矩阵,这样可以反解出 y

$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases} \Leftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

代入二次型 $f(x_1, x_2, \ldots, x_n)$ 得

$$f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots$$
 (关于 y_1, \dots, y_n 的二次型)

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n + a_{22}x_2^2 + ... + 2a_{2n}x_2x_n + ...$$

作线性变量代换: (要求 $C = (c_{ii})$ 可逆矩阵, 这样可以反解出 y

作线性变量代换: (要求
$$C = (c_{ij})$$
 可逆矩阵,这样可以反解出 y)
$$\begin{cases}
x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\
\vdots \\
x_n = c_{n1}y_1 + \dots + c_{nn}y_n
\end{cases}
\Leftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\Leftrightarrow x = Cy$$

代入二次型 $f(x_1, x_2, \ldots, x_n)$ 得

 $f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots$ (关于 y_1, \dots, y_n 的二次型)

$$f(x_1, x_2, ..., x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + ... + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + ... + 2a_{2n}x_2x_n$$

$$+$$

$$+ a_{nn}x_n^2$$

作线性变量代换: (要求
$$C = (c_{ij})$$
 可逆矩阵,这样可以反解出 $y = C^{-1}x$)
$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n \\ \vdots \\ x_n = c_{n1}y_1 + \dots + c_{nn}y_n \end{cases} \Leftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\Leftrightarrow x = Cy$$
代入二次型 $f(x_1, x_2, \dots, x_n)$ 得

$$f = b_{11}y_1^2 + 2b_{12}y_1y_2 + \cdots$$
 (关于 y_1, \dots, y_n 的二次型)

注意到:

$$f = x^T A x \xrightarrow{x = Cy}$$

注意到:

$$f = x^{T} A x \xrightarrow{x = Cy} (Cy)^{T} A (Cy)$$

注意到:

$$f = x^T A x \xrightarrow{x = Cy} (Cy)^T A (Cy) = y^T C^T$$

注意到:

$$f = x^T A x \xrightarrow{x = Cy} (Cy)^T A (Cy) = y^T C^T A Cy$$

注意到:

$$f = x^T A x \xrightarrow{x = Cy} (Cy)^T A (Cy) = y^T C^T A Cy$$

所以上述问题等价于以下问题:

问题':给定对称矩阵A,尝试找出可逆矩阵C使得

 C^TAC

尽可能简单?

注意到:

$$f = x^T A x \xrightarrow{x = Cy} (Cy)^T A (Cy) = y^T C^T A Cy$$

所以上述问题等价于以下问题:

问题 $^{\prime}$: 给定对称矩阵 A,尝试找出可逆矩阵 C 使得

 C^TAC

尽可能简单?

定理 任意对称矩阵
$$A$$
, 都存在可逆矩阵 C , 使得 $C^TAC = \begin{pmatrix} a_1 & d_2 & \\ & \ddots & \\ & & d_2 \end{pmatrix}$.

注意到:

$$f = x^{T}Ax \xrightarrow{x=Cy} (Cy)^{T}A(Cy) = y^{T}C^{T}ACy$$

所以上述问题等价于以下问题:

问题 $^{\prime}$: 给定对称矩阵 A,尝试找出可逆矩阵 C 使得

$$C^TAC$$

尽可能简单?

定理 任意对称矩阵
$$A$$
,都存在可逆矩阵 C ,使得 $C^TAC = \begin{pmatrix} d_1 & d_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1,x_2,\cdots,x_n)$,都存在可逆线性变换x=Cy,使得

注意到:

$$f = x^{T} A x \xrightarrow{x = Cy} (Cy)^{T} A (Cy) = y^{T} C^{T} A Cy$$

所以上述问题等价于以下问题:

问题 $^{\prime}$: 给定对称矩阵 A, 尝试找出可逆矩阵 C 使得

$$C^TAC$$

尽可能简单?

定理 任意对称矩阵
$$A$$
, 都存在可逆矩阵 C , 使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1,x_2,\cdots,x_n)$,都存在可逆线性变换x=Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

定理 任意对称矩阵 A, 都存在可逆矩阵 C, 使得 $C^TAC = \begin{pmatrix} a_1 & d_2 & \\ & \ddots & \\ & & \ddots & d \end{pmatrix}$.

所以,任意二次型 $f(x_1,x_2,\cdots,x_n)$,都存在可逆线性变换x=Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

定理 任意对称矩阵 A, 都存在可逆矩阵 C, 使得 $C^TAC = \begin{pmatrix} a_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_2 \end{pmatrix}$.

所以,任意二次型 $f(x_1, x_2, \dots, x_n)$,都存在可逆线性变换x = Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

定理 任意对称矩阵 A, 都存在可逆矩阵 C, 使得 $C^TAC = \begin{pmatrix} a_1 & d_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1, x_2, \dots, x_n)$,都存在可逆线性变换x = Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

定理 任意对称矩阵
$$A$$
,都存在可逆矩阵 C ,使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & & \\ & \ddots & & \\ & & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1, x_2, \dots, x_n)$,都存在可逆线性变换x = Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

• 非零数的个数r, 称为二次型的秩

定理 任意对称矩阵
$$A$$
,都存在可逆矩阵 C ,使得 $C^TAC = \begin{pmatrix} a_1 & & \\ & d_2 & \\ & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1, x_2, \dots, x_n)$,都存在可逆线性变换x = Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数r, 称为二次型的秩
- 正数的个数 p, 称为正惯性指标; 负数的个数 q, 称为负惯性指标

定理 任意对称矩阵
$$A$$
,都存在可逆矩阵 C ,使得 $C^TAC = \begin{pmatrix} a_1 & & \\ & d_2 & \\ & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数 r. 称为二次型的秩
- 正数的个数 p,称为正惯性指标;负数的个数 q,称为负惯性指标

性质 1. r = p + q; 2. r = r(A).

定理 任意对称矩阵
$$A$$
,都存在可逆矩阵 C ,使得 $C^TAC = \begin{pmatrix} a_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数 r, 称为二次型的秩
- ullet 正数的个数 p,称为正惯性指标,负数的个数 q,称为负惯性指标

性质 1. r = p + q; 2. r = r(A).

证明 r = p + q 是显然的。

定理 任意对称矩阵
$$A$$
, 都存在可逆矩阵 C , 使得 $C^TAC = \begin{pmatrix} d_1 & d_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数 r. 称为二次型的秩
- ullet 正数的个数 p,称为正惯性指标;负数的个数 q,称为负惯性指标

性质 1. r = p + q; 2. r = r(A).

证明
$$r = p + q$$
 是显然的。 $r = r \begin{pmatrix} d_1 & d_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$

定理 任意对称矩阵
$$A$$
, 都存在可逆矩阵 C , 使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$
 标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数 r,称为二次型的秩
- 正数的个数 p,称为正惯性指标;负数的个数 q,称为负惯性指标

性质 1. r = p + q; 2. r = r(A).

证明
$$r = p + q$$
 是显然的。 $r = r \begin{pmatrix} d_1 & d_2 & \dots & d_n \end{pmatrix} = r(C^T A C)$

定理 任意对称矩阵
$$A$$
, 都存在可逆矩阵 C , 使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & & \\ & \ddots & & \\ & & \ddots & & \\ & & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$
 标准型

在标准型的系数 d_1, d_2, \cdots, d_n 中

- 非零数的个数 r. 称为二次型的秩
- 正数的个数 p, 称为正惯性指标; 负数的个数 q, 称为负惯性指标

性质 1. r = p + q; 2. r = r(A).

性质
$$1. r = p + q$$
; $2. r = r(A)$.

证明 r = p + q 是显然的。 $r = r \begin{pmatrix} d_1 & d_2 & \\ & & \\ & & d_n \end{pmatrix} = r(C^T A C) = r(A)$ 。

定理 任意对称矩阵 A,都存在可逆矩阵 C,使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & & \\ & \ddots & & \\ & & d_n \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

问题 如何找出可逆矩阵 C,以及标准型 $d_1y_1^2 + d_2y_2^2 + \cdots + d_ny_n^2$?

定理 任意对称矩阵 A,都存在可逆矩阵 C,使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & & \\ & \ddots & & \\ & & & d_n \end{pmatrix}$.

所以,任意二次型 $f(x_1, x_2, \dots, x_n)$,都存在可逆线性变换 x = Cy,使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

问题 如何找出可逆矩阵 C,以及标准型 $d_1y_1^2 + d_2y_2^2 + \cdots + d_ny_n^2$?

三种方法 正交变换法 配方法 初等变换法

定理 任意对称矩阵 A, 都存在可逆矩阵 C, 使得 $C^TAC = \begin{pmatrix} a_1 & a_2 & \\ & \ddots & \\ & & \ddots & \end{pmatrix}$.

所以, 任意二次型 $f(x_1, x_2, \dots, x_n)$, 都存在可逆线性变换 x = Cy, 使得

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$

标准型

问题 如何找出可逆矩阵 C,以及标准型 $d_1y_1^2 + d_2y_2^2 + \cdots + d_ny_n^2$?

三种方法 正交变换法 配方法 初等变换法

注

- 用不同的方法.可能得到不同的标准型。
- 但是可以证明、二次型的秩、正、负惯性指标是恒定不变的。

由上一章, 我们知道

定理 任意对称矩阵 A, 都存在正交矩阵 Q, 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & & \lambda_n \end{pmatrix}$.

由上一章, 我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$.

设二次型 $f(x) = x^T A x$,作可逆线性变换 x = Q y,则

由上一章, 我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则
$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

由上一章、我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则

$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

特别地,

- 二次型的秩 =
- 正惯性指标 =

;负惯性指标 =

由上一章、我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则

$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

特别地,

- 二次型的秩 = 非零特征值的个数;
- 正惯性指标 = ; 负惯性指标 =

由上一章、我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则
$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

特别地,

- 二次型的秩 = 非零特征值的个数;
- 正惯性指标 = 正特征值的个数; 负惯性指标 =

由上一章、我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则

$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

特别地,

- 二次型的秩 = 非零特征值的个数;
- 正惯性指标 = 正特征值的个数; 负惯性指标 = 负特征值的个数

§5.1 二次型与对称矩阵

由上一章,我们知道

定理 任意对称矩阵
$$A$$
, 都存在正交矩阵 Q , 使得 $Q^TAQ = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$.

设二次型
$$f(x) = x^T A x$$
,作可逆线性变换 $x = Q y$,则
$$f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

特别地,

- 二次型的秩 = 非零特征值的个数;
- 正惯性指标 = 正特征值的个数; 负惯性指标 = 负特征值的个数

 $\geq Q$ 为正交矩阵,称线性变换 x = Qy 为正交变换

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$\mathbf{H} \bullet f$$
 系数矩阵 $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$\mathbf{M} \bullet f$$
 系数矩阵 $\mathbf{A} = \begin{pmatrix} 12\\1\\1 \end{pmatrix}$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$\mathbf{H} \bullet f$$
 系数矩阵 $\mathbf{A} = \begin{pmatrix} 122\\1\\1 \end{pmatrix}$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解 ● *f* 系数矩阵 *A* =
$$\begin{pmatrix} 122\\12\\1 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解 ● *f* 系数矩阵 *A* =
$$\begin{pmatrix} 122\\212\\221 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

$$\mathbf{H} \bullet f$$
 系数矩阵 $A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A|$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

- $\lambda_1 = 5$
- $\lambda_2 = -1$ (二重)

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

- $\lambda_1 = 5$
- $\lambda_2 = -1$ (二重)

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

- $\lambda_1 = 5$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- $\lambda_2 = -1$ (二重),特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

$$\mathbf{H} \bullet f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

•
$$\lambda_1 = 5$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

• $\lambda_2 = -1$ (二重),特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

•
$$\lambda_1 = 5$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

• $\lambda_2 = -1$ (二重),特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \xrightarrow{\text{mix}} \begin{cases} \beta_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \end{cases}$$
$$\beta_3 = \begin{pmatrix} -1/2\\-1/2\\1 \end{cases}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

•
$$\lambda_1 = 5$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 1/\sqrt{3}\\1/\sqrt{3}\\1/\sqrt{3} \end{pmatrix}$

• $\lambda_2 = -1$ (二重),特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\frac{1}{2}}(k)} \begin{cases} \beta_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \xrightarrow{\frac{4}{2}(k)} \begin{cases} \gamma_2 = \begin{pmatrix} -1/\sqrt{2}\\1/\sqrt{2}\\0 \end{pmatrix} \end{cases} \\ \alpha_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \xrightarrow{\beta_3 = \begin{pmatrix} -1/2\\-1/2\\1 \end{pmatrix}} \end{cases} \begin{cases} \beta_3 = \begin{pmatrix} -1/\sqrt{6}\\-1/\sqrt{6}\\2/\sqrt{6} \end{pmatrix} \end{cases}$$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换x = Ov

$$\mathbf{H} \bullet f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

•
$$\lambda_1 = 5$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

λ₂ = −1 (二重). 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \xrightarrow{\text{EXM}} \begin{cases} \beta_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \xrightarrow{\frac{\phi}{1}} \begin{cases} \gamma_2 = \begin{pmatrix} -1/\sqrt{2}\\1/\sqrt{2}\\0 \end{pmatrix} \end{cases} \\ \alpha_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \xrightarrow{\text{EXM}} \begin{cases} \beta_3 = \begin{pmatrix} -1/2\\-1/2 \end{pmatrix} \xrightarrow{\frac{\phi}{1}} \begin{cases} \gamma_3 = \begin{pmatrix} -1/\sqrt{6}\\-1/\sqrt{6}\\2/\sqrt{6} \end{pmatrix} \end{cases} \\ \Rightarrow Q = \begin{pmatrix} 1/\sqrt{3} - 1/\sqrt{2} - 1/\sqrt{6}\\1/\sqrt{3} & 1/\sqrt{2} - 1/\sqrt{6} \end{cases}, \qquad f = 5y_1^2 - y_2^2 - y_3^2 \end{cases}$$

• $\Rightarrow Q = \begin{pmatrix} 1/\sqrt{3} - 1/\sqrt{2} - 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} - 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix},$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准型,写出所用的正交变换x = Ov

$$\mathbf{H} \bullet f$$
 系数矩阵 $A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 5)(\lambda + 1)^2$

•
$$\lambda_1 = 5$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

• $\lambda_2 = -1$ (二重). 特征向量

$$\begin{cases} \alpha_{1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{EXM}} \begin{cases} \beta_{2} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{$\frac{\phi}{\Omega}$}} \begin{cases} \gamma_{2} = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \end{cases} \\ \alpha_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{$\frac{\phi}{\Omega}$}} \begin{cases} \beta_{3} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} \xrightarrow{\text{$\frac{\phi}{\Omega}$}} \begin{cases} \gamma_{3} = \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix} \end{cases} \\ \bullet \Leftrightarrow Q = \begin{pmatrix} 1/\sqrt{3} - 1/\sqrt{2} - 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} - 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{cases}, \quad x = Qy, \quad \text{If } f = 5y_{1}^{2} - y_{2}^{2} - y_{3}^{2}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 5 & \\ & 5 & \\ & & 5 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 \\ & 5 \\ & & 5 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ & 5 & \\ & & 5 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ & 5 & -4 \\ & & 5 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{M} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A|$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$\mathbf{M} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重)

•
$$\lambda_3 = 10$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

• $\lambda_1 = 1$ (二重)

•
$$\lambda_3 = 10$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

$$\mathbf{H} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

$$\mathbf{M} \bullet A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{EXM}} \begin{cases} \beta_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix} \end{cases}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{IEXM}} \begin{cases} \beta_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{indiv}} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix} \end{cases} & \beta_2 = \begin{pmatrix} 2/5\\4/5\\1 \end{pmatrix} \end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{EXM}} \begin{cases} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{$\frac{1}{4}$}} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\ \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases} \end{cases}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\frac{1}{\sqrt{5}}}} \begin{cases}
\beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\frac{1}{\sqrt{5}}} \begin{cases}
\gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases}
\end{cases}$$

$$\begin{cases}
\gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

•
$$\Leftrightarrow Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

为标准型,写出所用的正交变换 x = Qy

解 ●
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\frac{1}{\sqrt{5}}}} \begin{cases}
\beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\frac{1}{\sqrt{5}}} \begin{cases} -2 \\ 1 \\ 0 \end{cases} \\
\beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases}
\end{cases}$$

$$\begin{cases}
\gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases}
\end{cases}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

•
$$\Leftrightarrow Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3 \\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3 \\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}, x = Qy, \emptyset f = y_1^2 + y_2^2 + 10y_3^2$$

$$f(x_1, x_2) = 2x_1^2 + 2x_2^2 + 2x_1x_2$$

为标准型,写出所用的正交变换x = Qy

例 4 用正交变换化二次型

$$f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1x_2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

例 1 配方法化二次型为标准型
$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$
§5.1 二次型与对称矩阵

• 想法:
$$a^2 + 2ab =$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^2 + 2ab = a^2 + 2ab + b^2 - b^2 =$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^2 + 2ab = a^2 + 2ab + b^2 - b^2 = (a+b)^2 - b^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^2 + 2ab = a^2 + 2ab + b^2 - b^2 = (a+b)^2 - b^2$$

 $a^2 + 2ab + 2ac =$

例 1 配方法化二次型为标准型 $f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$

• 想法:
$$a^2 + 2ab = a^2 + 2ab + b^2 - b^2 = (a+b)^2 - b^2$$

 $a^2 + 2ab + 2ac = a^2 + 2a(b+c)$
=

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^2 + 2ab = a^2 + 2ab + b^2 - b^2 = (a+b)^2 - b^2$$

 $a^2 + 2ab + 2ac = a^2 + 2a(b+c)$
 $= a^2 + 2a(b+c) + (b+c)^2 - (b+c)^2$
 $=$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

= $x_1^2 + 2x_1(x_2 + x_3)$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

= $x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

= $x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

= $x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$
= $(x_1 + x_2 + x_3)^2 +$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

例1配方法化二次型为标准型

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

= $x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$
= $(x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

例1配方法化二次型为标准型

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

• 想法:
$$a^{2} + 2ab = a^{2} + 2ab + b^{2} - b^{2} = (a+b)^{2} - b^{2}$$
$$a^{2} + 2ab + 2ac = a^{2} + 2a(b+c)$$
$$= a^{2} + 2a(b+c) + (b+c)^{2} - (b+c)^{2}$$
$$= (a+b+c)^{2} - (b+c)^{2}$$

例 1 配方法化二次型为标准型

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

 $=(x_1+x_2+x_3)^2+x_2^2+2x_2x_3+x_2^2-x_3^2$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \\ y_3 = x_3 \end{cases}$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \\ y_3 = x_3 \end{cases}$$

$$f = y_1^2 + y_2^2 - y_3^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = x_2 = x_3 \\ x_3 = x_3 \end{cases} \end{cases}$$

 $f = y_1^2 + y_2^2 - y_3^2$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = x_2 = x_3 \\ x_3 = x_3 \end{cases}$$

$$f = y_1^2 + y_2^2 - y_3^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = \\ x_2 = y_2 - y_3 \\ x_3 = y_3 \end{cases}$$

$$\emptyset \qquad f = y_1^2 + y_2^2 - y_2^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \\ x_3 = y_3 \end{cases}$$

$$\emptyset \qquad f = y_1^2 + y_2^2 - y_2^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = (x_3 = y_3 \end{cases} \\ x_3 = x_3 \end{cases}$$

$$f = y_1^2 + y_2^2 - y_3^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = \begin{pmatrix} 1 - 1 & 0 \\ x_3 = y_3 & y_3 \end{cases} \end{cases}$$

$$\emptyset \qquad \qquad f = y_1^2 + y_2^2 - y_3^2$$

 $f = y_1^2 + y_2^2 - y_2^2$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = \begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} y$$

$$\begin{cases} f = y_1^2 + y_2^2 - y_3^2 \end{cases}$$

 $f = y_1^2 + y_2^2 - y_2^2$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = \begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} y$$

则 $f = y_1^2 + y_2^2 - y_3^2$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = \underbrace{\begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}}_{C: \exists \not \sqsubseteq} y$$

$$f = y_1^2 + y_2^2 - y_3^2$$

$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= x_1^2 + 2x_1(x_2 + x_3) + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 4x_2x_3 + x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 2x_2x_3 + x_3^2 - x_3^2$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + x_3)^2 - x_3^2$$

作线性变量代换 $\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + x_3 \Rightarrow \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 - y_3 \Rightarrow x = \underbrace{\begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}}_{== x_1 + x_2 + x_3} y_3$ 则 $f = y_1^2 + y_2^2 - y_2^2$

例 2 配方法化 $f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$ 为标准型

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

= $x_1^2 + 2x_1 \cdot (2x_2 + 2x_3)$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

= $x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

= $x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$
+ $2x_2^2 + 8x_2x_3 + 4x_3^2$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \end{cases}$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} \begin{cases} x_1 = x_1 + 2x_2 + 2x_3 \\ x_2 = x_3 \end{cases} \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_3 = y_3 \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_2 = y_2 \\ x_3 = y_3 \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - 2y_2 - 2y_3 \\ x_2 = y_2 \\ x_3 = y_3 \end{cases}$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - 2y_2 - 2y_3 \\ x_2 = y_2 \\ x_3 = y_3 \end{cases} \Rightarrow x = \underbrace{\begin{pmatrix} 1 - 2 - 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{C: \ \vec{\eta} \not\sqsubseteq} y$$

$$f = y_1^2 - 2y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= x_1^2 + 2x_1 \cdot (2x_2 + 2x_3) + (2x_2 + 2x_3)^2 - (2x_2 + 2x_3)^2$$

$$+ 2x_2^2 + 8x_2x_3 + 4x_3^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

作线性变量代换

情報性受量代決

$$\begin{cases} y_1 = x_1 + 2x_2 + 2x_3 \\ y_2 = x_2 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - 2y_2 - 2y_3 \\ x_2 = y_2 \\ x_3 = y_3 \end{cases} \Rightarrow x = \underbrace{\begin{pmatrix} 1 - 2 - 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{C: \text{ 可逆}} y$$

则

$$f = y_1^2 - 2y_2^2$$

例 3 配方法化 $f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 为标准

$$f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$f = \underbrace{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3}_{=} - 8x_2x_3$$

$$f = \underbrace{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3}_{=2[x_1^2 + 2x_1 \cdot (x_2 - x_3)]} - 8x_2x_3$$

$$f = \underbrace{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3}_{=2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2]}$$

$$f = \underbrace{2x_1^2 + 5x_2^2 + 5x_3^2 + \underbrace{4x_1x_2 - 4x_1x_3}_{} - 8x_2x_3}_{=2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2}$$

$$f = \underbrace{2x_1^2 + 5x_2^2 + 5x_3^2 + \underbrace{4x_1x_2 - 4x_1x_3}_{} - 8x_2x_3$$

$$= 2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2$$

$$+ 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2}$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

$$f = \frac{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3}{2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2}$$

$$+ 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$+ 3[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3]$$

$$f = \frac{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3}{2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2}$$

$$+ 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$+ 3[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2]$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

$$+ 3[x_{2}^{2} - 2x_{2} \cdot \frac{2}{3}x_{3} + (\frac{2}{3}x_{3})^{2}] - 3(\frac{2}{3}x_{3})^{2}$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

 $+3[x_2^2-2x_2\cdot\frac{2}{3}x_3+(\frac{2}{3}x_3)^2]-3(\frac{2}{3}x_3)^2+3x_3^2$

$$f = \frac{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3}{2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2}$$

$$+ 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3[x_{2}^{2} - 2x_{2} \cdot \frac{2}{3}x_{3} + (\frac{2}{3}x_{3})^{2}] - 3(\frac{2}{3}x_{3})^{2} + 3x_{3}^{2}$$

$$=2(x_1+x_2-x_3)^2$$

● 暨南大學

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3[x_{2}^{2} - 2x_{2} \cdot \frac{2}{3}x_{3} + (\frac{2}{3}x_{3})^{2}] - 3(\frac{2}{3}x_{3})^{2} + 3x_{3}^{2}$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2$$

$$f = 2x_{1}^{2} + 5x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 4x_{1}x_{3} - 8x_{2}x_{3}$$

$$= 2[x_{1}^{2} + 2x_{1} \cdot (x_{2} - x_{3}) + (x_{2} - x_{3})^{2}] - 2(x_{2} - x_{3})^{2}$$

$$+ 5x_{2}^{2} + 5x_{3}^{2} - 8x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3x_{2}^{2} + 3x_{3}^{2} - 4x_{2}x_{3}$$

$$= 2(x_{1} + x_{2} - x_{3})^{2} + 3[x_{2}^{2} - 2x_{2} \cdot \frac{2}{3}x_{3} + (\frac{2}{3}x_{3})^{2}] - 3(\frac{2}{3}x_{3})^{2} + 3x_{3}^{2}$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

$$f = \frac{2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3}{2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2}$$

$$+ 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

作线性变量代换 $\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 - \frac{2}{3}x_3 \\ y_3 = x_3 \end{cases}$

 $f = 2x_1^2 + 5x_2^2 + 5x_2^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$

$$=2[x_1^2+2x_1\cdot(x_2-x_3)+(x_2-x_3)^2]-2(x_2-x_3)^2$$

$$+5x_2^2 + 5x_3^2 - 8x_2x_3$$

= $2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - x_3)^2 + 3(x_3 - x_3)^$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$
作线性变量代换

作线性变量代换
$$\begin{cases} y_1 = X_1 + X_2 - X_3 \\ y_2 = X_2 - \frac{2}{3}X_3 \\ y_3 = X_3 \end{cases}$$

 $f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$

$$=2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2 + 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

例 3 配方法化二次型为标准型

= $2(x_1 + x_2 - x_3)^2 + 3[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - x_3)^2$$

作线性变量代换

 $\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 - \frac{2}{3}x_3 \Rightarrow \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_3 = x_3 \end{cases}$

则 $f = 2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$

= $2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$

 $f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$

$$= 2\left[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2\right] - 2(x_2 - x_3)^2$$

$$+5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

$$-2(x_1 + x_2 - x_3) + 3(x_2 - 3)$$

作线性变量代换
 $-y_1 = x_1 + x_2 - x_3$

作线性受重代换
$$\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 - \frac{2}{3}x_3 \Rightarrow \begin{cases} x_2 = y_2 + \frac{2}{3}y_3 \\ x_3 = y_3 \end{cases}$$

 $f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$

例 3 配方法化二次型为标准型

 $+5x_2^2+5x_3^2-8x_2x_3$

$$= 2[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2] - 2(x_2 - x_3)^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_3^2 - 4x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

作线性变量代换 $\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 - \frac{2}{3}x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - y_2 + \frac{1}{3}y_3 \\ x_2 = y_2 + \frac{2}{3}y_3 \\ x_3 = y_3 \end{cases}$

例 3 配方法化二次型为标准型 $f = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$

$$= 2\left[x_1^2 + 2x_1 \cdot (x_2 - x_3) + (x_2 - x_3)^2\right] - 2(x_2 - x_3)^2$$

 $+5x_2^2+5x_3^2-8x_2x_3$ $= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 + 3x_2^2 - 4x_2x_3$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left[x_2^2 - 2x_2 \cdot \frac{2}{3}x_3 + (\frac{2}{3}x_3)^2\right] - 3(\frac{2}{3}x_3)^2 + 3x_3^2$$

则 $f = 2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$

= $2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$

 $\begin{cases} y_1 = x_1 + x_2 - x_3 \\ y_2 = x_2 - \frac{2}{3}x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - y_2 + \frac{1}{3}y_3 \\ x_2 = y_2 + \frac{2}{3}y_3 \\ x_3 = y_3 \end{cases} \Rightarrow x = \underbrace{\begin{pmatrix} 1 - 1 & 1/3 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}}_{1} y$

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解 C:

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解 C:

$$\left(\frac{A}{I}\right)$$

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解C:

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解 C:

$$\left(rac{A}{I}
ight) \xrightarrow{1.$$$
整体做列变换 \cdots 重复直至 $\left(rac{D}{C}
ight)$

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解C:

$$\left(rac{A}{I}
ight) \xrightarrow{1.$$$
整体做列变换 \cdots 重复直至 $\left(rac{D}{C}
ight)$

例 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,求可逆矩阵 C ,使得 C^TAC 为对角阵。

§5.1 二次型与对称矩阵

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解 C:

$$\left(rac{A}{I}
ight) \xrightarrow{1.$$$
整体做列变换 \cdots 重复直至 $\left(rac{D}{C}
ight)$

例 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,求可逆矩阵 C ,使得 C^TAC 为对角阵。

解

$$\left(\frac{A}{I}\right) =$$

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} =: D$$

初等变换法求解 C:

$$\left(\frac{A}{I}\right) \xrightarrow{1.$$
整体做列变换 \cdots 重复直至 $\left(\frac{D}{C}\right)$

例 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,求可逆矩阵 C ,使得 C^TAC 为对角阵。

$$\begin{pmatrix}
A \\
I
\end{pmatrix} = \begin{pmatrix}
122 \\
212 \\
221 \\
100 \\
010 \\
001
\end{pmatrix}$$

设A是对称矩阵,则存在可逆矩阵C,满足

$$C^{T}AC = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \vdots & \\ & & d_n \end{pmatrix} =: D$$

初等变换法求解C:

$$\left(\frac{A}{I}\right) \xrightarrow{1.$$
整体做列变换 \cdots 重复直至 $\left(\frac{D}{C}\right)$

例 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,求可逆矩阵 C ,使得 C^TAC 为对角阵。

 $\begin{pmatrix}
A \\
I
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{c_2 - 2c_1} \begin{pmatrix}
1 & 0 & 2 \\
2 - 3 & 2 \\
2 - 2 & 1 \\
1 - 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$

设 A 是对称矩阵,则存在可逆矩阵 C,满足

$$C^{T}AC = \begin{pmatrix} a_1 & & \\ & d_2 & \\ & & \vdots & \\ & & d_n \end{pmatrix} =: D$$

初等变换法求解C:

$$\left(\frac{A}{I}\right) \xrightarrow{1.$$
整体做列变换 $\longrightarrow \underbrace{1. }$ 整体做列变换 $\longrightarrow \underbrace{1. }$ 查复直至 $\underbrace{\left(\frac{D}{C}\right)}$

例 设 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 3 & 2 \end{pmatrix}$,求可逆矩阵 C,使得 C^TAC 为对角阵。

$$\begin{pmatrix}
\frac{A}{I}
\end{pmatrix} = \begin{pmatrix}
122 \\
212 \\
221 \\
100 \\
010 \\
001
\end{pmatrix}
\xrightarrow{c_2-2c_1} \begin{pmatrix}
1 & 0 & 2 \\
2-32 \\
2-21 \\
1-20 \\
0 & 1 & 0
\end{pmatrix}
\xrightarrow{r_2-2r_1} \begin{pmatrix}
1 & 0 & 2 \\
0-3-2 \\
2-2 & 1 \\
1-2 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 2 \\
0-3-2 & 2 \\
2-2 & 1 \\
1-2 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 2 \\
0-3-2 & 2 \\
2-2 & 1 \\
1-2 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} \frac{A}{I} \end{pmatrix} = \begin{pmatrix} 122\\212\\221\\100\\010\\001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1&0&2\\2-3&2\\2-2&1\\1-2&0\\0&1&0\\0&0&1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1&0&2\\0-3-2\\2-2&1\\1-2&0\\0&1&0\\0&0&1 \end{pmatrix}$$

$$\begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 221 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1 & 0 & 2 \\ 2 - 32 \\ 2 - 21 \\ 1 - 20 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 - 3 - 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_3-2c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 2-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 221 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1 & 0 & 2 \\ 2 - 32 \\ 2 - 21 \\ 1 - 20 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 - 3 - 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_3-2c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 2-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 0-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1 & 0 & 2 \\ 2 - 32 \\ 2 - 21 \\ 1 - 20 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 - 3 - 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_3-2c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 2-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 0-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_3 - \frac{2}{3}c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 - 3 & 0 \\ 0 - 2 - \frac{5}{3} \\ 1 - 2 - \frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A \\ \overline{I} \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 221 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1 & 0 & 2 \\ 2 - 3 & 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 - 3 - 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{c_{3}-2c_{1}}{\longrightarrow} \begin{pmatrix}
1 & 0 & 0 \\
0-3-2 \\
2-2-3 \\
1-2-2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 0 \\
0-3-2 \\
0-2-3 \\
1-2-2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\frac{c_{3}-\frac{2}{3}c_{2}}{\longrightarrow} \begin{pmatrix}
1 & 0 & 0 \\
0-3 & 0 \\
0-2-\frac{5}{3} \\
1-2-\frac{2}{3} \\
0 & 1-\frac{2}{3}
\end{pmatrix}
\xrightarrow{r_{3}-\frac{2}{3}r_{2}} \begin{pmatrix}
1 & 0 & 0 \\
0-3 & 0 \\
0 & 0-5 \\
1-2-\frac{2}{3} \\
0 & 1-\frac{2}{3}
\end{pmatrix}$$

$$\begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 221 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 1 & 0 & 2 \\ 2 - 3 & 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 - 3 - 2 \\ 2 - 2 & 1 \\ 1 - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_3-2c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 2-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 0-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_{3}-\frac{2}{3}c_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0-3 & 0 \\ 0-2-\frac{5}{3} \\ 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}-\frac{2}{3}r_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0-3 & 0 \\ 0 & 0 & -\frac{5}{3} \\ 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \quad \therefore C = \begin{pmatrix} 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 - \frac{2}{3} \\ -\frac{2}{3} \\ 0 & 1 \end{pmatrix}$$

§5.1 二次型与对称矩阵

$$\begin{pmatrix} \frac{A}{I} \end{pmatrix} = \begin{pmatrix} 122 \\ 212 \\ 221 \\ 100 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{c_2 - 2c_1} \begin{pmatrix} 102 \\ 2-32 \\ 2-21 \\ 1-20 \\ 010 \\ 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 102 \\ 0-3-2 \\ 2-21 \\ 1-20 \\ 010 \\ 001 \end{pmatrix}$$

$$\xrightarrow{c_3-2c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 2-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_1} \begin{pmatrix} 1 & 0 & 0 \\ 0-3-2 \\ 0-2-3 \\ 1-2-2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{c_{3}-\frac{2}{3}c_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0-3 & 0 \\ 0-2-\frac{5}{3} \\ 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}-\frac{2}{3}r_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0-3 & 0 \\ 0 & 0 & -\frac{5}{3} \\ 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \quad \therefore C = \begin{pmatrix} 1-2-\frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

注 A 对应的二次型,其标准型为 $y_1^2 - 3y_2^2 - \frac{5}{3}y_3^2$,

$$\begin{pmatrix} \frac{A}{I} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{2} & \frac{1}{2} & \frac{2}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{1}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{1} & \frac{2}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{1} & \frac{2}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{1} & \frac{2}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{2}{2} & \frac{2}{2} \\ \frac{2}{2} & \frac{2}{2} & \frac{2}{2}$$

$$\xrightarrow{c_3 - \frac{2}{3}c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 - 3 & 0 \\ 0 - 2 - \frac{5}{3} \\ 1 - 2 - \frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 - \frac{2}{3}r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 - 3 & 0 \\ 0 & 0 & -\frac{5}{3} \\ 1 - 2 - \frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix} \therefore C = \begin{pmatrix} 1 - 2 - \frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

注 A 对应的二次型,其标准型为 $y_1^2 - 3y_2^2 - \frac{5}{3}y_3^2$,秩为 3,正惯性指标为

1,负惯性指标为2

例 设
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -2 & 0 \end{pmatrix}$$
,求可逆矩阵 C ,使得 C^TAC 为对角阵。

• 方法一: 求系数矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
 的特征值 $(\lambda = 1, 1, 10)$

特征向量

• 方法一: 求系数矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
 的特征值 $(\lambda = 1, 1, 10)$

特征向量 单位正交化

• 方法一: 求系数矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
 的特征值 $(\lambda = 1, 1, 10)$.

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$.

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

令 x = Qy,则

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$.

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

 $\Leftrightarrow x = Qy$,则

$$f = y_1^2 + y_2^2 + 10y_3^2$$

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$.

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

$$f = y_1^2 + y_2^2 + 10y_3^2$$

• 方法二: 配方法

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

$$f = y_1^2 + y_2^2 + 10y_3^2$$

● 方法二: 配方法

$$f = 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2$$

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$.

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3\\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3\\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

 $\diamondsuit x = Qy$,则

$$f = y_1^2 + y_2^2 + 10y_3^2$$

● 方法二: 配方法

$$f = 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2 = 2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$$

• 方法一: 求系数矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值 $(\lambda = 1, 1, 10)$ 、

特征向量 ^{单位正交化} 得到正交矩阵

$$Q = \begin{pmatrix} -2/\sqrt{5}2/3\sqrt{5} & 1/3 \\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3 \\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$$

 $\diamondsuit x = Qy$,则

$$f = y_1^2 + y_2^2 + 10y_3^2$$

方法二:配方法

$$f = 2(x_1 + x_2 - x_3)^2 + 3(x_2 - \frac{2}{3}x_3)^2 + \frac{5}{3}x_3^2 = 2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$$

注 标准型不唯一

定理 任意二次型 $f(x_1, \ldots, x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_r y_r^2$$

定理 任意二次型 $f(x_1, \ldots, x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$

定理任意二次型 $f(x_1,\ldots,x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (规范型)

定理任意二次型 $f(x_1,\ldots,x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (规范型)

$$\left(\begin{array}{ccc}I_{p}&&&\\&-I_{r-p}&\\&&O\end{array}\right)$$

定理任意二次型 $f(x_1,\ldots,x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (规范型)

$$A \qquad \left(\begin{array}{cc} I_p & & \\ & -I_{r-p} & \\ & & O \end{array}\right)$$

定理 任意二次型 $f(x_1, \ldots, x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

化为

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (规范型)

也就是,任意对称矩阵 A,都存在可逆矩阵 C,使得

$$C^{\mathsf{T}}AC = \left(\begin{array}{cc} I_{p} & & \\ & -I_{r-p} & \\ & & O \end{array}\right)$$

定理 任意二次型 $f(x_1, \ldots, x_n)$ 都可以通过非退化线性变换

$$x = Cy$$

化为

$$f = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (规范型)

也就是,任意对称矩阵 A,都存在可逆矩阵 C,使得

$$C^{\mathsf{T}}AC = \left(\begin{array}{cc} I_{p} & & \\ & -I_{r-p} & \\ & & O \end{array}\right)$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$

配方法
 $= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$(\sqrt{2}x_2)^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - (\sqrt{2}x_2)^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - (\sqrt{2}x_2)^2$$

$$=y_1^2-y_2^2$$

 $=y_1^2-y_2^2$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - (\sqrt{2}x_2)^2$$
变量代换 $y = \begin{pmatrix} 1 & 2 & 2 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} x$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - (\sqrt{2}x_2)^2$$
变量代换 $y = \begin{pmatrix} 1 & 2 & 2 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} x \Rightarrow x = \begin{pmatrix} 1 & -\sqrt{2} & -2 \\ 0 & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} y$

$$= y_1^2 - y_2^2$$

$$f = x_1^2 + 4x_1x_2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 4x_3^2$$
配方法
$$= (x_1 + 2x_2 + 2x_3)^2 - 2x_2^2$$

$$= (x_1 + 2x_2 + 2x_3)^2 - (\sqrt{2}x_2)^2$$
变量代换 $y = \begin{pmatrix} 1 & 2 & 2 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} x \Rightarrow x = \begin{pmatrix} 1 & -\sqrt{2} & -2 \\ 0 & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} y$

$$= y_1^2 - y_2^2$$

$$f = x_1x_2 - x_1x_3 + 2x_2x_3 + x_3^2$$

配方法
$$= \frac{3}{4}x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2$$

$$f = x_1 x_2 - x_1 x_3 + 2x_2 x_3 + x_3^2$$
配方法
$$= \frac{3}{4} x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2} x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2} x_1)^2$$

$$f = x_1 x_2 - x_1 x_3 + 2x_2 x_3 + x_3^2$$
配方法
$$= \frac{3}{4} x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2} x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2} x_1)^2 + (-\frac{1}{2} x_1 + x_2 + x_3)^2$$

f = x₁x₂ - x₁x₃ + 2x₂x₃ + x₃²

配方法
$$= \frac{3}{4}x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2}x_1)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2 - (x_1 - x_2)^2$$

$$f = x_1x_2 - x_1x_3 + 2x_2x_3 + x_3^2$$
配方法
$$= \frac{3}{4}x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2}x_1)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2 - (x_1 - x_2)^2 = y_1^2 + y_2^2 - y_3^2$$

$$f = x_1x_2 - x_1x_3 + 2x_2x_3 + x_3^2$$
配方法
$$= \frac{3}{4}x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2}x_1)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2 - (x_1 - x_2)^2 = y_1^2 + y_2^2 - y_3^2$$
变量代换 $y = \begin{pmatrix} \sqrt{3}/2 & 0 & 0 \\ -1/2 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} x$

$$f = x_1 x_2 - x_1 x_3 + 2x_2 x_3 + x_3^2$$
配方法
$$= \frac{3}{4} x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2} x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2} x_1)^2 + (-\frac{1}{2} x_1 + x_2 + x_3)^2 - (x_1 - x_2)^2 = y_1^2 + y_2^2 - y_3^2$$
变量代换 $y = \begin{pmatrix} \sqrt{3}/2 & 0 & 0 \\ -1/2 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} x \Rightarrow x = \begin{pmatrix} 2/\sqrt{3} & 0 & 0 \\ 2/\sqrt{3} & 0 & -1 \\ -1/\sqrt{3} & 1 & 1 \end{pmatrix} y$

$$f = x_1x_2 - x_1x_3 + 2x_2x_3 + x_3^2$$
配方法
$$= \frac{3}{4}x_1^2 - (x_1 - x_2)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2$$

$$= (\frac{\sqrt{3}}{2}x_1)^2 + (-\frac{1}{2}x_1 + x_2 + x_3)^2 - (x_1 - x_2)^2 = y_1^2 + y_2^2 - y_3^2$$
变量代换 $y = \begin{pmatrix} \sqrt{3}/2 & 0 & 0 \\ -1/2 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} x \Rightarrow x = \begin{pmatrix} 2/\sqrt{3} & 0 & 0 \\ 2/\sqrt{3} & 0 & -1 \\ -1/\sqrt{3} & 1 & 1 \end{pmatrix} y$

合同,合同的等价条件

定义设A, B 为两个n 阶方阵,若存在可逆n 阶方阵C,使得

$$C^TAC = B$$

则称 A合同于B, 记为 $A \simeq B$

合同, 合同的等价条件

定义设A, B 为两个n 阶方阵,若存在可逆n 阶方阵C,使得

$$C^TAC = B$$

则称 A合同于B, 记为 $A \simeq B$

定理 任意对称矩阵 A,都成立

$$A \simeq \left(\begin{array}{cc} I_p & & \\ & -I_{r-p} & \\ & & O \end{array} \right)$$

合同, 合同的等价条件

定义 设 A, B 为两个 n 阶方阵, 若存在可逆 n 阶方阵 C, 使得

$$C^TAC = B$$

则称 A合同于B,记为 $A \simeq B$

定理 任意对称矩阵 A,都成立

$$A \simeq \left(\begin{array}{cc} I_{\rho} & & \\ & -I_{r-\rho} & \\ & & O \end{array} \right)$$

定理 设 A, B 为对称矩阵,则 $A \simeq B$ 的充分必要条件是 A, B 具有相同的规范形(也就是,秩、正惯性指标都相等)

