

Valstybinio brandos egzamino užduoties

PRIEDAS

PAGRINDINĖS KONSTANTOS

Elementarusis elektros krūvis	$e = 1,602 \cdot 10^{-19} $ C
Šviesos greitis vakuume	$c = 2,9979 \cdot 10^8 \text{m/s}$
Gravitacijos konstanta	$G = 6,672 \cdot 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
Elektrinė konstanta	$\varepsilon_0 = 8,854 \cdot 10^{-12} \text{F/m}$
Planko konstanta	$h = 6,626 \cdot 10^{-34} \text{J} \cdot \text{s} = 4,136 \cdot 10^{-15} \text{eV} \cdot \text{s}$
Avogadro skaičius	$N_{\rm A} = 6,022 \cdot 10^{23} \text{mol}^{-1}$
Bolcmano konstanta	$k = 1,3807 \cdot 10^{-23} \text{J/K}$
Universalioji dujų konstanta (molinė)	$R = kN_{\rm A} = 8.314 \mathrm{J/(mol \cdot K)}$
Masės ir energijos sąryšio koeficientas	931,5 MeV/a. m. v. $1 \text{ eV} = 1,6 \cdot 10^{-19} \text{ J}$

FIZIKOS BRANDOS EGZAMINO FORMULĖS

- 1. Judėjimas ir jėgos. $\vec{v} = \frac{\vec{s}}{t}$, $\vec{a} = \frac{\vec{v} \vec{v}_0}{t}$, $s_x = v_{0x}t + \frac{a_xt^2}{2}$, $v = \frac{2\pi R}{T}$, $a = \frac{v^2}{R}$, $f = \frac{1}{T}$, $\vec{F} = m\vec{a}$, F = mg, $\vec{P} = m(\vec{g} \vec{a})$, $F = \mu N$, F = kx, $F = G\frac{m_1m_2}{R^2}$, $g = G\frac{M}{(R+r)^2}$, $v_1 = \sqrt{Rg}$, $\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3$, $F = \rho_{sk}Vg$, $\vec{P} = m\vec{v}$, $\vec{F}\Delta t = m\Delta\vec{v}$, $m_1\vec{v}_{01} + m_2\vec{v}_{02} = m_1\vec{v}_1 + m_2\vec{v}_2$, $E_k = \frac{mv^2}{2}$, $E_p = mgh$, $E_p = \frac{kx^2}{2}$, $A = Fs\cos\alpha$, $N = \frac{A}{t}$, $A = E_{k2} E_{k1}$, $A = E_{p1} E_{p2}$, $\eta = \frac{A_n}{A} \cdot 100\%$.
- 2. Makrosistemų fizika. $M = m_0 N_A$, $N = \frac{m}{M} N_A$, $\rho = \frac{m}{V}$, $n = \frac{N}{V}$, $p = \frac{F}{S}$, $p = \frac{1}{3} m_0 n \overline{v^2}$, $\overline{E}_{k0} = \frac{3}{2} kT$, T = t + 273, $pV = \frac{m}{M} RT$, $\varphi = \frac{p}{p_0} \cdot 100 \% = \frac{\rho}{\rho_0} \cdot 100 \%$, $F = \sigma l$, $p = \rho g h$, $h = \frac{2\sigma}{\rho g r}$, $\sigma = E |\varepsilon_0|$, $\varepsilon_0 = \frac{\Delta l}{l_0}$, $\sigma = \frac{F}{S}$, $U = \frac{3}{2} \frac{m}{M} RT$, $Q = c m \Delta t$, $Q = \lambda m$, Q = L m, Q = q m, $A' = p \Delta V$, $\Delta U = A + Q$, $\eta_{\max} = \frac{T_1 T_2}{T_1}$, $\eta = \frac{A'}{|Q_1|}$.
- 3. Elektra ir magnetizmas. $F = k \frac{|q_1| \cdot |q_2|}{r^2}$, $\vec{E} = \frac{\vec{F}}{q}$, $E = \frac{U}{\Delta d}$, A = qEd, $C = \frac{q}{U}$, $C = \frac{\varepsilon \varepsilon_0 S}{d}$, $W = \frac{CU^2}{2}$, $C = C_1 + C_2 + \ldots + C_n$, $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$, $\varepsilon = \frac{F_0}{F}$, $\varepsilon = \frac{E_0}{E}$, $\varphi = \frac{W_p}{q}$, $I = \frac{q}{t}$, $I = \frac{U}{R}$, $R = \rho \frac{l}{S}$, $E = \frac{A_{pas}}{q}$, $I = \frac{E}{R+r}$, $I = I_1 = I_2$, $U = U_1 + U_2$, $R = R_1 + R_2$, $I = I_1 + I_2$, $U = U_1 = U_2$, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$, A = IUt, $P = \frac{A}{t}$, $M = kI\Delta t$, $F = BIl \sin \alpha$, $F = qvB\sin \alpha$, $\mu = \frac{B}{B_0}$, $\Phi = BS\cos\alpha$, $E = N \left| \frac{\Delta \Phi}{\Delta t} \right|$, $E = L \left| \frac{\Delta I}{\Delta t} \right|$, $W = \frac{LI^2}{2}$.
- 4. Svyravimai ir bangos. $x = x_m \cos \omega t$, $\varphi = \omega t$, $T = 2\pi \sqrt{\frac{l}{g}}$, $T = 2\pi \sqrt{\frac{m}{k}}$, $\omega = 2\pi f$, $q = q_m \cos \omega t$, $T = 2\pi \sqrt{LC}$, $i = I_m \sin \omega t$, $u = U_m \cos \omega t$, $I = \frac{I_m}{\sqrt{2}}$, $U = \frac{U_m}{\sqrt{2}}$, $X_C = \frac{1}{\omega C}$, $X_L = \omega L$, $K = \frac{N_1}{N_2} = \frac{U_1}{U_2}$, $V = \lambda f$, $\Delta d = k\lambda$, $\Delta d = (2k+1)\frac{\lambda}{2}$, $d \sin \varphi = k\lambda$, $\frac{n_2}{n_1} = \frac{\sin \alpha}{\sin \beta}$, $\frac{v_1}{v_2} = \frac{n_2}{n_1}$, $\pm D = \pm \frac{1}{F} = \frac{1}{d} \pm \frac{1}{f}$.
- 5. Modernioji fizika. E = hf, $hf = A_{i\bar{s}} + \frac{mv^2}{2}$, $hf_{\min} = A_{i\bar{s}}$, $eU_s = \frac{mv^2}{2}$, $E = mc^2$, A = Z + N, $f = \frac{|E_k E_n|}{h}$, $E_r = \Delta Mc^2 = (Zm_p + Nm_n M_b)c^2$, $N = N_0 2^{-t/T}$.