## تمرین دوم درس مبانی بینایی کامپیوتر

## اميررضا حسيني ٩٨٢٠٣٦٣

سوال ١)

$$MSE = \frac{1}{H.W} \sum_{i=1}^{H} \sum_{j=1}^{W} (I(i,j) - J(i,j))^{2}$$

باتوجه به فرمول داده شده میتوان گفت:برای حالتی که تصاویر از جنس uint8 باشند، حداقل مقدار MSE زمانی رخ میدهد که دو تصویر عینا شبیه یکدیگر باشند و پیکسلهای نظیر به نظیر بایکدیگر برابر باشد. در اینصورت مقدار آن برابر با صفر خواهد بود و برعکس زمانی که پیکسلهای نظیر به نظیر دو تصویر درحال مقایسه بیشترین اختلاف ممکن (یکی بیشترین سطح روشنایی یعنی سفید و دیگری کمترین سطح روشنایی یعنی سیاه) را داشته باشند میتوان به بیشینه MSE رسید. این مقدار برابر است با 65025 = 2552

$$MAE = \frac{1}{H.W} \sum_{i=1}^{H} \sum_{j=1}^{W} |I(i,j) - J(i,j)|$$

این حالت هم مثل قبل بیشترین مقدار برای دو عکس با بیشترین اختلاف و کمترین مقدار هم برای دو عکس کاملا یکسان رخ میدهد. کمترین مقدار خروجی این تابع برابر با صفر و بیشرین مقدار هم برابر است با 255

$$egin{aligned} PSNR &= 10 \cdot \log_{10} \left( rac{MAX_I^2}{MSE} 
ight) \ &= 20 \cdot \log_{10} \left( rac{MAX_I}{\sqrt{MSE}} 
ight) \ &= 20 \cdot \log_{10} (MAX_I) - 10 \cdot \log_{10} (MSE) \end{aligned}$$

در این حالت به دلیل خاصیت لگرایتمی، اگر فرض کنیم جنس تصویر از نوع double است و بیشترین سطح روشنایی ممکن برابر با یک است، کمترین حالت زمانی رخ میدهد که دو عکس کاملا متفاوت باشند.



و بیشترین حالت زمانی رخ میدهد که دو تصویر پیکسل به پیکسل بایکدیگر برابر باشند و چون در این حالت MSE برابر صفر شده و باتوجه به اینکه آرگومان جلوی لگاریتم هم هست، خروجی برابر با مثبت بینهایت میشود.

```
PSNR=Inf

clc;clear;clear All;

I=zeros(440,440);

J=zeros(440,440);

imshow([I,J],[]);

psnr=MY_PSNR(I,J);

title(['PSNR=' num2str(psnr)]);
```

سوال ۴)

در رویکرد جدید ترکیبی خطی از ۳ روش قبلی را در نظر میگیریم و پارامترهای آلفا، بتا و گاما را بهینه میکنیم. در این روش خروجی نسبتا خوبی میگیریم که در ادامه آورده شده است.

علاوه بر روشهای موجود یادگیری ماشین برای tune کردن پارامترهای آلفا، بتا و گاما، ایدهای که به نظر بنده برای این وزندهی مناسب است، استفاده از اختلاف سطوح روشنایی در هر یک از تصاویر ایجاد شده بوسیله الگوریتمهای Nearest neighbor ،bilinear و ممچنین وزن دهی نهایی بر اساس اینکه هر پیکسل از چند همسایه خود برای درونیابی استفاده میکند (مثلا برای الگوریتم bicubic مقدار آن ۱۶ است) و در نهایت مجموع گرفتن همه اختلاف پیکسلهای تصاویر محاسبه شده میباشد.

| نام تصوير  | مقدار PSNRبه از ای Resizing_Factorبر ابر با 2 |                     |                |         |                |              |
|------------|-----------------------------------------------|---------------------|----------------|---------|----------------|--------------|
|            | روش                                           | روش                 | روش استفاده از | روش     | روش میانگین    | زمان اجرا بر |
|            | Bilinear                                      | Nearest<br>Neighbor | فاصله اقليدسي  | Bicubic | اختلاف وزن دار | حسب ثانيه    |
| Boat       | 27.11                                         | 25.51               | 23.36          | 26.93   | 26.99          | 0.005890     |
| Peppers    | 29.95                                         | 28.11               | 25.39          | 29.72   | 29.79          | 0.006063     |
| Cameraman  | 30.35                                         | 28.03               | 24.12          | 30.49   | 30.53          | 0.005992     |
| House      | 29.38                                         | 27.54               | 24.77          | 29.27   | 29.33          | 0.002940     |
| متوسط PSNR | 29.1975                                       | 27.2975             | 24.41          | 29.1025 | 29.1625        |              |

تکه کد مربوط به این رویکرد در زیر آورده شده است:

```
bilinear_img_suggest = imresize(I,Resizing_factor,'bilinear');
bicubic_img_suggest = imresize(I,Resizing_factor,'bicubic');
nearest_img_suggest = imresize(I,Resizing_factor,"nearest");

%calculate value of alpha,beta and gamma depend on I
denominator=16*(sum(sum(abs(bilinear_img_suggest-nearest_img_suggest))))+...
4*(sum(sum(abs(bicubic_img_suggest-
nearest_img_suggest))))+1*(sum(sum(abs(bicubic_img_suggest-bilinear_img_suggest))));
alpha = 16*((sum(sum(abs(bilinear_img_suggest-nearest_img_suggest))))/denominator);
beta = 4*((sum(sum(abs(bicubic_img_suggest-nearest_img_suggest))))/denominator);
gamma = 1*((sum(sum(abs(bicubic_img_suggest-bilinear_img_suggest))))/denominator);
```

%summation of alpha, beta and gamma should be 1 %alpha,beta and gamma could be tunned

suggestion\_img = alpha \* bicubic\_img\_suggest + beta \* bilinear\_img\_suggest+ gamma
\*nearest\_img\_suggest;

همانطور که از مقادیر PSNR مشاهده میشود، این رویکرد حداقل در یکی از تصاویر بهتر است و از بقیه بدتر عمل نکرده است.