is \mathbb{R}^m_+ , where

$$L(v, \mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v)$$

is the Lagrangian of our problem. Now the projection p_+ from \mathbb{R}^m to \mathbb{R}^m_+ is very simple, namely

$$(p_{+}(\lambda))_{i} = \max\{\lambda_{i}, 0\}, \quad 1 < i < m.$$

It follows that the projection-gradient method should be applicable to the $Dual\ Problem$ (D):

maximize
$$G(\mu)$$

subject to $\mu \in \mathbb{R}^m_+$.

If the hypotheses of Theorem 50.17 hold, then a solution λ of the Dual Program (D) yields a solution u_{λ} of the primal problem.

Uzawa's method is essentially the gradient method with fixed stepsize applied to the Dual Problem (D). However, it is designed to yield a solution of the primal problem.

Uzawa's method:

Given an arbitrary initial vector $\lambda^0 \in \mathbb{R}^m_+$, two sequences $(\lambda^k)_{k\geq 0}$ and $(u^k)_{k\geq 0}$ are constructed, with $\lambda^k \in \mathbb{R}^m_+$ and $u^k \in V$.

Assuming that $\lambda^0, \lambda^1, \dots, \lambda^k$ are known, u^k and λ^{k+1} are determined as follows:

 u^k is the unique solution of the minimization problem, find $u^k \in V$ such that

(UZ)
$$\begin{cases} J(u^k) + \sum_{i=1}^m \lambda_i^k \varphi_i(u^k) = \inf_{v \in V} \left(J(v) + \sum_{i=1}^m \lambda_i^k \varphi_i(v) \right); \text{ and} \\ \lambda_i^{k+1} = \max\{\lambda_i^k + \rho \varphi_i(u^k), 0\}, \quad 1 \le i \le m, \end{cases}$$

where $\rho > 0$ is a suitably chosen parameter.

Recall that in the proof of Theorem 50.17 we showed $(*_{deriv})$, namely

$$G'_{\lambda^k}(\xi) = \langle \nabla G_{\lambda^k}, \xi \rangle = \sum_{i=1}^m \xi_i \varphi_i(u^k),$$

which means that $(\nabla G_{\lambda^k})_i = \varphi_i(u^k)$. Then the second equation in (UZ) corresponds to the gradient-projection step

$$\lambda^{k+1} = p_+(\lambda^k + \rho \nabla G_{\lambda^k}).$$

Note that because the problem is a maximization problem we use a positive sign instead of a negative sign. Uzawa's method is indeed a gradient method.

Basically, Uzawa's method replaces a constrained optimization problem by a sequence of unconstrained optimization problems involving the Lagrangian of the (primal) problem.