# Stream Mining One-Hot Encoding and DGIM

Zeno Adrian Weil

Data Science 1 Goethe University Frankfurt

7th June 2022

- categorical features common
- need for numbers in algorithms
- naïve approach: number serially
  - arbitrary orders
  - meaningless arithmetic calculations
- one-hot encoding
  - · one binary feature for each possible value



## The Datar-Gionis-Indyk-Motwani Algorithm

## Objectives

- Estimate the number of ones in a bit stream!
- Be space-efficient!
- window size N
- O(log<sub>2</sub> N) buckets
  - timestamp
  - size = number of ones
    - powers of two
    - one or two of each size
  - include all ones: end with ones
- estimation: half the size of the oldest bucket + sum of sizes of all other buckets
  - error rate: 50%
- needs only  $\mathcal{O}((\log_2 N)^2)$  bits



estimation: 16

reality: 14

## The Mushroom Data Set (J.S. Schlimmer, 1987)

- 8124 samples of 23 mushroom species
  - 4208 edible
  - 3916 poisonous
- 22 attributes with 128 possible values
- saved as CSV

Are there simple rules to determine edibility? Yes!

## Implementation

- load CSV with Python
- 2D array for the one-hot encoding of the odour
- Python package dgim for the algorithm
- Streamlit for the interface
- options
  - odour type
  - window size N
  - error rate

## Topic 4: One-Hot Encoding and DGIM

One-bot encoding denotes the technique of regulating, a categorical attribute with it possible values by a binary kary tuples where the in-the element is 1 if and only if the attribute was set to the i-th value. The Datar Gionis-body-Modewai algorithm is a technique to estimate the number of ones in the last Mist of a binary string. This program demonstrates the DGRI algorithm on a data set of mushbooms. It estimates the number of self-bar or foliassons surfacements for a chose or document or to the read occur.





16

None Please select a value for N: 256

Please select a maximum absolute value for the error rate of the DGIM algorithm:

1% 100% Shuffle data

50%

## Edible Mushrooms

Real count Estimated count Error Number of buckets -2.8% 214 208 10

#### Poisonous Mushrooms

Real count Estimated count Error Number of buckets 9.09% 12 6

2048

Rerun

## Please select an odour:

None •

## Please select a value for N:

16 2048

## Please select a maximum absolute value for the error rate of the DGIM algorithm:

1% 100% ✓ Shuffle data Rerun

50%

#### Edible Mushrooms

 Real count
 Estimated count
 Error
 Number of buckets

 1675
 1872
 11.76%
 15

#### Poisonous Mushrooms

Real count Estimated count Error Number of buckets 7.46% 9

## Please select an odour:

None

## Please select a value for N:

16 2048

# Please select a maximum absolute value for the error rate of the DGIM algorithm: 1%





#### Edible Mushrooms

 Real count
 Estimated count
 Error
 Number of buckets

 1678
 1672
 -0.36%
 410

#### Poisonous Mushrooms

Real count Estimated count Error Number of buckets 68 68 0.0% 68

100%

References

## References

- Project code: https://github.com/s9770652/DS1-DGIM
- Mushroom data set: https://archive-beta.ics.uci.edu/ml/datasets/mushroom
- Streamlit: https://streamlit.io/
- Python package dgim: https://pypi.org/project/dgim/
- Description of one-hot encoding: https://sherbold.github.io/intro-to-data-science/04\_ Data-Analysis-Overview.html#Features
- Description of the DGIM algorithm (Section 4.6): http://infolab.stanford.edu/~ullman/mmds/ch4.pdf