Stochastic Modelling

isakhammer

2020

Contents

1	Lec	ure 1	3							
	1.1	Practical Information								
	1.2	hematical description								
	1.3	Recall from Statistics Course								
		1.3.1 Combining Event	. 3							
		1.3.2 Probability	. 4							
		1.3.3 Law of total probability	. 4							
		1.3.4 Independence	4							
		1.3.5 Random Variables	. 5							
		1.3.6 Notation for random variables	. 5							
		1.3.7 Discrete random variables	. 5							
		1.3.8 CFD	6							
		1.3.9 Continious random vairbales	6							
		1.3.10 Important properties	6							
		1.3.11 Expectation	6							
		1.3.12 Variance								
		1.3.13 Joint CDF								
		1.3.14 Joint distribution for discrete random variables	. 7							
		1.3.15 Joint distribution for continous random variables	. 7							
		1.3.16 Independence	. 8							
2	Lecture 3 9									
	2.1	Randoms sum	9							
	2.2	Self Study	9							
	2.3	Stochastic process in descrete time	9							
	2.4	Markov chain	. 10							
	2.5	Doing n transitions	12							
3	Lecture 4									
	3.1	Introduction to first step analysis	14							
4	Lec	Lecture 5 19								
	4.1	Markov Chain in infinitive time	21							

5	Lecture 2020-09-14					
	5.1	Section 4.5	22			
	5.2	Why do we care so much about markov chains?	23			
	5.3	Continuous Time Markov Chain	23			
		5.3.1 Section 5.1.2	23			
6	Lecture 08/09/20 2					
7	Lecture 2020-09-18					
	7.1	Little oh-notation	29			
8	Lecture 2020-09-21					
	8.1	Properties of the Poission process	34			
9	Lecture 2020-09-23					
	9.1	Continous Markov Chains	39			
		9.1.1 Transition probability function	40			
10	Ref	erences	40			

1 Lecture 1

1.1 Practical Information

Two projects

- The projects count 20% and exam 80%.
- Must be done with two people.
- If you want to do statistics is it worth learning R.

Course Overview

- Markov chains for discret time and discrete outcome.
 - Set of states and discrete time points.
 - Transition between states
 - Future depends on the present, but not the past.
- Continious time Markoc chains. (continious time and discrete toutcome.
- Brownian motion and Gaussian processes (continionus time and continious outcome.)

1.2 Mathematical description

Definition 1.1. A stochastic process $\{x(t), t \in T\}$ is a family of random variables, where T is a set of indicies, and X(t) is a random variable for each value of t.

1.3 Recall from Statistics Course

A random experiment is performed the outcome of the experiment is random.

- THe set of possible outcomes is the sample space ω
 - An **event** $A \subset \omega$ if the outcome is contained in A
 - The **complement** of an event A is $A^c = \omega \setminus A$
 - The **null event** \emptyset is the empty set $\emptyset = \omega \setminus \omega$

1.3.1 Combining Event

Let A and B be events

- The union $A \cup B$ is the event that at least one of A and B occur.
- the intersection $A \cap B$ is the event that both A and B occur.

The events A_1,A_2,\ldots are called disjoint (or **mutually exclusive**) if $A_i\cap A_j=\emptyset$ for $i\neq j$

1.3.2 Probability

Pr is called a probability on ω if

- Pr $\{\omega\} = 1$
- $0 \le P\{A\} \le 1$ for all events A
- For A_1, A_2, \ldots that are mutually exclusive

$$P\left\{\bigcup_{i=1}^{\infty} A_i\right\} = \sum_{i=1}^{\infty} P\left\{A_i\right\}$$

We call $P\{A\}$ the probability of A.

1.3.3 Law of total probability

Let A_1, A_2, \ldots be a partition of ω ie

- $\omega = \bigcup_{i=1}^{\infty} A_i$
- A_1, A_2, A_3, \ldots are mutually exclusive.

Then for any event B

$$P\{B\} = \sum_{i=1}^{\infty} P\{B \cap A_i\}$$

This concept is very important.

1.3.4 Independence

Event A and B are independent of

$$P\{A \cap B\} = P\{A\}P\{B\}$$

Events A_1, \ldots, A_n are independent if for any subset

$$P\left\{\bigcap_{j=1}^{k} A_{i_j}\right\} = \prod_{j=1}^{k} P\left\{A_{i_j}\right\}$$

In this case $P\left\{\bigcap_{i=1}^{n} A_1\right\} = \prod_{i=1}^{n} P\left\{A_i\right\}$

1.3.5 Random Variables

Definition 1.2. A random variable is a real-vaued function on the sample space. Informally: A random variable is a real valued variable that takes on its value by chance.

Example.

- Throw two dice. X = sum of the two dice
- Throw a coin. X is 1 for heads and X is 0 for tails.

1.3.6 Notation for random variables

We use

- \bullet upper case letters such at X, Y and Z to represent random variables.
- ullet lower case letters as x, y, z to denote the real-valued realized value of a the random variable.

Expression such as $\{X \leq x\}$ denators the event that X assumes a valye less than or earl to the real number x.

1.3.7 Discrete random variables

The random variable X is **discrete** if it has a finite or countable number of possible outcomes x_1, x_2, \ldots

• The **probability mass function** $p_x(x)$ is given by

$$p_x\left(x\right) = P\left\{X = x\right\}$$

and satisfies

$$\sum_{i=1}^{\infty} p_x(x_i) = 1 \quad \text{and} \quad 0 \le p_x(x_i) \le 1$$

• The cumulative distribution function (CDF) a of X can be written

$$F_{x}\left(x\right) = P\left\{X \leq x\right\} = \sum_{i: x_{i} \leq x} p_{x}\left(x_{i}\right)$$

1.3.8 CFD

The CDF of X may also be called the **distribution function** of X Let $F_x(x)$ be the CDF of X, then

- $F_x(x)$ is monetonaly increasing.
- F_x is a stepfunction, which is a pieace-wise constant with jumps at x_i .
- $\lim_{x\to\infty} F_x(x) = 1$
- $\lim_{x\to-\infty} F_x(x) = 0$

1.3.9 Continious random vairbales

A continious random variables takes value o a continious scale.

- The CDF, $F_x(x) = P(X \le x)$ is continious.
- The **probability density function** (PDF) $f_x(x) = F'_x(x)$ can be used to calculate probabilities

$$\begin{split} \Pr\left\{a < X < b\right\} &= \Pr\left\{a \leq X < b\right\} = \Pr\left\{a < X \leq b\right\} \\ &= \Pr\left\{a \leq X \leq b\right\} = \int_{a}^{b} f_{x}\left(x\right) dx \end{split}$$

1.3.10 Important properties

- CDF:
 - Monotonely increaing
 - continious
 - $-\lim_{x\to\infty} F_x = 1$ and $\lim_{x\to-\infty} F_x(x) = 0$
- PDF

$$- f_x(x) \ge 0 \text{ for } x \in \mathbb{R}$$
$$- \int_{-\infty}^{\infty} f_x(x) dx = 1$$

1.3.11 Expectation

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable.

• If X is discrete, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \sum_{x:p_{x}\left(x\right)>0} g\left(x\right) p_{x}\left(x\right)$$

• If X is continous, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \int_{-\infty}^{\infty} g\left(x\right) f_x\left(x\right) dx$$

1.3.12 Variance

The variance of the random variable X is

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

Important properties of expectation and variance.

• Expectations is linear

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

• Variance scales quadratically and is invaraient to the addition of constants

$$Var\left[aX + b\right] = a^2 Var\left[X\right]$$

• fir independent stochastic variables.

$$Var[X + Y] = Var[X] + Var[Y]$$

1.3.13 Joint CDF

If (X, Y) is a pair for random variables, their **joint comulative distribution** function is given by

$$F_{X,Y} = F(x, y) = Pr\{X \le x \cap Y \le y\}$$

.

1.3.14 Joint distrubution for discrete random variables

If X and Y are discrete, the **joint probability mass function** $p_{x,y} = Pr\{X = x, Y = y\}$. can be used to compute probabilities

$$Pr\left\{ a < X < b, c < Y \le d \right\} = \sum_{a < x \le b} \sum_{c < y \le d} p_{X,Y}\left(x,y\right)$$

1.3.15 Joint distrubution for continous random variables

If X and Y are continious the **joint probability density function**

$$.f_{X,Y}(x,y) = f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

can be used to compute probabilities

$$Pr\left\{a < X \leq b, \quad c < Y \leq d\right\} = \int_{a}^{b} \int_{a}^{d} f\left(x, y\right) dx dy$$

1.3.16 Independence

The random variables X and Y are independent if

$$Pr\{X \le a, Y \le b\} = Pr\{X \le a\} \cdot Pr\{Y \le b\}, \quad \forall a, b \in \mathbb{R}$$

In terms of CDFs: $F_{X,Y}(a,b) = F_X(a) \cdot F_Y(b) \quad \forall a,b \in \mathbb{R}$ Thus we have

- $p_{X,Y}\left(x,y\right)=p_{X}\left(x\right)\cdot p_{Y}\left(Y\right)$ for discrete random variables
- $f_{X,Y}\left(x,y\right)=f_{X}\left(x\right)\cdot f_{Y}\left(Y\right)$ for continuous random variables.

2 Lecture 3

2.1 Randoms sum

Building on the hunter example from last week. we can more generally consider random sums

$$X = \begin{cases} 0, & N = 0 \\ \zeta_1 + \zeta_2 + \dots + \zeta_N, & N > 0 \end{cases}$$

where

• N is a discrete random variable with values $0, 1, \ldots$

• ζ_1, ζ_2, \ldots are independent random variables

• N is independent of $\zeta_1, \zeta_2 + \ldots + \zeta_N$

• Notation $X = \sum_{i=1}^{N} \zeta_i = \zeta_1 + \zeta_2 + \ldots + \zeta_N$

Example.

1. Insurance company

N: Number of claims.

 ζ_1, ζ_2, \dots : Sizes of the claims

Total liability:

$$X = \zeta_1 + \zeta_2 + \ldots + \zeta_N$$

2. Be careful!

$$\underbrace{E\left[\sum_{i=1}^{N} E[\zeta_{i}]\right]}_{E\left[\sum_{i=1}^{N} \zeta_{i}\right]} = E\left[E\left[\sum_{i=1}^{N} \zeta_{i} \mid N\right]\right]$$

$$= E\left[\sum_{i=1}^{N} E\left[\zeta_{i} \mid N\right]\right]$$

2.2 Self Study

Section 2.2, 2.3, 2.4

2.3 Stochastic process in descrete time

Definition 2.1. A discrete-time stochastic process is a family of random variables $[X_t : t \in T]$ where T is discrete.

- We use $T = \{0, 1, 2, ...\}$ and write X_n instead of X_t
- we call X_n the **state** at time n = 0, 1, 2, 3, ...
- We call the set of all possible states the **state space**

Table 1: Table for example

Day	n=0	n = 1	n=2	
Random Variable	X_0	X_1	X_2	
Realization 1	$x_0 = 0$	$x_1 = 1$	$x_2 = 1$	
Realization 2	$x_0 = 1$	$x_1 = 1$	$x_2 = 1$	

Example.

$$X_n = \begin{cases} 1, & \text{if it rains on day } n \\ 0, & \text{no rain on day } n \end{cases}$$

State space = $\{0, 1\}$

We have a problem. Need

$$Pr\{X_n = x_n \mid X_{n-1} = x_n, X_{n-2} = x_{n-2}, \dots, X_0 = x_0\}.$$

for all n = 0, 1, 2, ...

2.4 Markov chain

Definition 2.2 (Discrete time Markov Chain). A **Discrete time markoc** chain is a discrete time stochastic process $\{X_n : n = 0, 1, \ldots\}$ that statisfied the **markov property** such that

$$Pr \{X_{n-1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0\}$$

= $Pr \{X_{n+1} = j \mid X_n = i\}$

for $n = 0, 1, 2, 3, \ldots$ and for all states i and j

Definition 2.3 (One-step transition probabilities). We can define it as

• For a discrete Markov chain $\{X_n : n = 0, 1, 2, ...\}$ we call $P_{ij}^{n,n+1} = Pr\{X_{n+1} = j, X_n = i\}$ the one step trainsition probabilities.

• We will assume stationary transition probabilities , i.e that

$$P_{ij}^{n,n+1} = P_{ij}$$

for $n = 0, 1, 2, \dots$ and all states i and j.

Some of the properties

1. "You will always go somewhere"

$$\sum_{j} P_{ij} = 1 \quad \forall i$$

2. The markov chain can be described as follows.

$$\begin{split} & Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1} \ldots X_{0}=i_{0}\right\} \\ & \vdots \quad \text{Markov step} \\ & = Pr\left\{X_{0}=i_{0}\right\} \cdot Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} P_{i_{0},i_{1}} \cdot P_{i_{1},i_{2}} \ldots P_{i_{n-1},i_{n}} \end{split}$$

Which is a major simplification.

Definition 2.4 (Transition Probability Matrix). For a discrete time markov-chain with state space $\{0, 1, ..., N\}$ we call

$$\mathbf{P} = \begin{bmatrix} P_{00} & \dots & P_{0N} \\ P_{10} & \dots & & \\ \vdots & & \ddots \\ P_{N0} & \dots & P_{NN} \end{bmatrix}$$

Is the transition matrix. For statespace $\{0,1,2,\ldots\}$ we envision an infinitely sized matrix.

Example.

- Markoc chain : $\{X_n : n = 0, 1, 2, \ldots\}$
- State space = $\{0, 1\}$
- Transition Matrix

$$\mathbf{P} = \begin{bmatrix} 0.9 & 0.1 \\ 0.6 & 0.4 \end{bmatrix}$$

We can compute

$$Pr \{X_3 = 1 \mid X_2 = 0\} = p_{01}$$

= 0.1
 $Pr \{X_{10} = 0 \mid X_9 = 1\} = P_{10}$
= 0.6

Definition 2.5 (Transition Diagram). Let $\{X_n : n = 0, 1, ...\}$ be a discrete time Markov chain. A **state transition diagram** visualizes the transition probabilities as a weighted directed graph where the nodes are the states and the edges are the possible transitions marked with the transistion probabilities.

Example. State space $= \{0, 1, 2\}$ and

$$P = \begin{bmatrix} 0.95 & 0.05 & 9\\ 0 & 0.9 & 0.1\\ 0.01 & 0 & 0.99 \end{bmatrix}$$

Transisition diagram

Nice figure of the diagram

2.5 Doing n transitions.

Theorem 2.1. For a Markoc chain $\{X_n : n = 0, 1, ...\}$ and any $m \ge 0$ we have

$$Pr\{X_{m-n} = j \mid X_m = i\} = P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}, \quad n > 0$$

where we define

$$P_{ij}^{(0)} = \begin{cases} 1, & i = j \\ 0, i \neq j \end{cases}$$

Proof. Set m = 0 then is

$$\begin{split} P_{ij}^{(n+1)} &= \Pr\left\{X_{n+1} = j \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j, X_1 = k \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j \mid X_1 = k, X_0 = i\right\} \cdot \Pr\left\{X_1 = k \mid X_0 = i\right\} \\ &= \sum_k P_{kj}^{(h)} \cdot P_{ik} = \sum_k P_{ik} P_{kj}^{(h)} \end{split}$$

Example. $\{X_n : n = 0, 1, 2, ...\}$ is a markoc chain and

$$P = \begin{bmatrix} 0.1 & 0.9 \\ 0.6 & 0.4 \end{bmatrix}$$

Find $P_{01}^{(4)}$. Solution.

$$P^2 = \begin{bmatrix} 0.55 & 0.45 \\ 0.30 & 0.70 \end{bmatrix}$$

So by doing matrix multiplication and we end up with

$$P^4 = P^2 \cdot P^2 = \begin{bmatrix} 0.4375 & 0.5625 \\ 0.3750 & 0.6250 \end{bmatrix}$$

Which therefore ends up with the answer

$$P_{01}^{(4)} = 0.5625$$

3 Lecture 4

3.1 Introduction to first step analysis

Input

- i_0 : starting state
- \bullet P: transition probability matrix
- T: number of time steps

Algorithm

- 1. Set $x_0 = i_0$
- 2. for $n = 1 \dots T$
- 3. Simulate x_n from $X_n \mid X_{n-1} = x_{n-1}$
- 4. end

output : One realization x_0, x_1, \dots, x_T

Example.

$$P = \begin{pmatrix} 0.95 & 0.05 & 0\\ 0 & 0.90 & 0.10\\ 0.01 & 0 & 0.99 \end{pmatrix}$$

Let $x_0 = 0$

1.
$$x_0 = 0$$

2.

$$Pr \{X_1 = 0 | X_0 = 0\} = P_{00} = 0.95$$

$$Pr \{X_1 | X_0\} = P_{01} = 0.05$$

$$Pr \{X_1 | X_0 = 0\} = P_{02} = 0$$

.

Assume we get $x_1 = 1$

3. States

•

$$0: P_{10} = 0$$
$$1: P_{11} = 0.90$$
$$2: P_{12} = 0.10$$

General notes on simulation

- $Pr\{A\} \approx \frac{\text{times A occure}}{\text{Simulations}}$
- $E[X] \approx \frac{1}{N} \sum_{i=1}^{B} x_i$

Example. We have N=100 divided into two containers labelled A and b. At each time n, one ball is selected at random and moved to the container. Let Y_n denote the number of balls in container A at time n, and define $X_n=Y_n-50$. Find the transition probabilities and simulate and plot one realization of

$${X_n : n = 0, 1, \dots, 500}$$

Answer

Figure 1: balls

- Only move One ball
- Can move only from i to j = i 1 or ji + 1

$$P_{ij} = \begin{cases} \frac{50-i}{100} & , & j=i+1\\ \frac{50+i}{100} & , j=i-1\\ 0 & , \text{otherwise.} \end{cases}$$

Motivation

Definition 3.1. For a markov chain, a state i such that $P_{ij} = 0 \forall j \neq i$ is called **absorbing**.

Example. Let $\{X_n\}$ be a Markov chain woth transition probability matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$

where $\alpha, \beta, \gamma > 0$ and $\beta = 1 - \alpha - \gamma$. Assume $x_0 = 1$

- 1. What is the expected time until absortion?
- 2. What is the probability to be absorbed in state 0?

 ${\bf Realization}$.

4 steps to absorption
$$\overbrace{1,1,1,1,1,1,2}^{4 \text{ steps to absorption}},2,2\ldots$$

Mathematically

Let $T = \min \{n \ge 0 : X_n = 0 \text{ or } X_n = 2\}$. Then is

$$Q1: \quad E[T \mid X_0 = 1] \\ Q2: \quad Pr\{X_T = 0 \mid X_0 = 1\}$$

The idea of first step analysis is to define

- $T^{(n)} = \min \{ n \ge :: X_{m \times n} = 0 \text{ or } X_{m+b} = 2 \}$
- $T = T^{(0)}$
- $v_i^{(m)} = E\left[T^{(m)} \mid X_m = i\right]$
- $\bullet \ v_i = v_i^{(0)}$

Table 2: Let m be timesteps

First step analysis for Q1

$$v_{i} = \sum_{k=0}^{2} Pr \{X_{1} = k \mid X_{0} = i\} (1 + v_{k})$$

$$= \sum_{k=0}^{2} P_{ik} (1 + v_{k}) = \sum_{k=0}^{2} P_{ik} v_{k} + 1 \text{ which is true for } i = 0, 1, 2$$

Which is reduced to linear algebra. Solving it by

$$v_0 = v_2 = 0$$

$$\Rightarrow v_1 = \alpha v_0 + \beta v_1 + \gamma v_2 + 1$$

$$\Rightarrow v_1 = \frac{1}{1 - \beta} \quad [Q1]$$

$$P_{ij} \implies i = \text{row}, \quad j = \text{column}$$

First step analyis and let

$$u_i = Pr \{X_T = 0 \mid X_0 = i\}$$

$$\downarrow$$

$$u_i = \sum_{k=0}^{2} P_{ik} u_k, \quad i = 0, 1, 2$$

- Easy: $u_0 = 1, u_2 = 0$
- Harder: $u_1 = \alpha u_0 + \beta u_1 + \gamma u_2$ such that

$$u_1 = \alpha \frac{1}{1-\beta} = \frac{\alpha}{\alpha-\beta}$$
 [Q2]

Example. let $[X_n]$ be a markov chain with transition matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The starting state is $x_0 = 1$. Calculate the probability to be absorbed in the state D.

- 1. Define $u_i = \Pr \{ \text{absorbed in state } 0 \mid X_0 = i \} \text{ for } i = 0, 1, 2, 3$
- 2. Get the easy ones out of the way. In this case $u_0 = 1$ and $u_3 = 0$
- 3

$$u_1 = P_{10}u_0 + P_{11}u_1 + P_{12}u_2 + P_{13}u_3$$

= 0.4 + 0.3 u_1 + 0.2 u_2
$$u_2 = P_{20}u_0 + P_{21}u_1 + P_{22}u_2 + P_{23}u_3$$

= 0.1 + 0.3 u_1 + 0.3 u_2

4. Solve for u_1 and u_2

4 Lecture 5

Example. Let P be the matrix

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

With starting state $x_0 = 1$

1. Define $T = \min_{n \geq 0: X_n = 0} X_n = 3$ and $v_i = E[T \mid X_0 = i]$ for i = 0, 1, 2, 3

2. Set
$$v_0 = v_3 = 0$$

3.

$$v_1 = P_{10}v_0 + P_{11}v_1 + P_{12}v_2 + P_{13}v_3 = 0.3v_1 + 0.2v_2 + 1$$

and

$$v_2 = P_{20}v_0 + P_{21}v_1 + P_{22}v_2 + P_{23}v_3 + 1 = 0.3v_1 + 0.3v_2 + 1$$

4. Solve the equations and end up with

$$v_1 = \frac{90}{43}$$
 and $v_2 \frac{100}{43}$

Theorem 4.1. Let $\{X_n\}$ be a discrete time Markov chain with state space $S = \{0, 1, ..., N\}$ and transition probability matrix \mathbf{P} . Let $A \subset S$ be the set of absorbing state. Then

1. If v_i is the expected time to absorption conditional on $X_0 = i$ then

$$v_i = 0, \quad i \in A$$

$$v_i = 1 + \sum_{i \in \mathbb{R}} P_{ik} v_k \quad i \in A^c$$

Example. A gambler has 10\$ and bets 1\$ If he wins the round, his fortune increases 1\$. The probability of winning each round is 0 and the probability of losing each round is <math>q = 1-p. The gambler will continue gambling until his fortine is \$ N or 0\$ where N > 10. What is the probability the gambler will be ruined.

1. Extract the essential stuff.

$$X_n = \text{Fortune at time} \quad n, \quad n = 0, 1, 2, \dots$$

State space $= \{0, 1, \dots, N\}$

Target: $u_k = Pr \{ \text{Absorption in state } 0 \mid X_0 = k \}, \quad k = 0, 1, \dots, N \}$

- 2. Visualize the transitions. Insert figure of transitions.
- 3. Make the eprobability matrix. The rows are "to" and the columns are "1" $\,$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ q & 0 & p & 0 & \dots & 0 \\ 0 & q & 0 & p & \dots & \\ \vdots & & \ddots & & & \\ & & q & 0 & p \\ 0 & 0 & \dots & & 1 \end{bmatrix}$$

4. Set up the iteration

$$u_0 = 1, \quad u_N = 0, \quad \text{Easy}$$

 $u_i = P_{i,i,1}u_{i-1} + P_{i,i+1}u_{i+1}$
 $= qu_{i-1} + pu_{i+1}, \quad i = 1, 2, \dots, N-1$

5. (a)

$$\overbrace{(p+q)}^{=1} u_i = qu_{i-1} + pu_{i+1}$$

$$q [u_i - u_{i-1}] = p [u_{i+1} - u_i]$$

$$\downarrow \quad \text{Trick} \quad \chi_i = u_i - u_{i-1}$$

$$q\chi_1 = p\chi_{i+1}, \quad \Longrightarrow \quad \chi_{i+1} = \frac{q}{p}\chi_i \quad i = 1, 2, \dots, N$$

(b)

$$\chi_1 + \chi_2 + \dots + \chi_k = [u - u_0] + [u_2 - u_1] + \dots + [u_k - u_{k-1}]$$

$$\downarrow \quad \text{Telescoping sum}$$

$$\chi_1 \left[1 + \frac{q}{p} + \left(\frac{q}{p} \right)^2 + \dots + \left(\frac{q}{p} \right)^{k-1} \right] = u_k - 1,$$

$$k = 1, \dots, N$$

For k = N:

$$\chi_1 = \frac{u_N - 1}{\sum_{k=0}^{N-1} \left(\frac{q}{p}\right)^k} = \frac{-1}{\sum_{k=0}^{N-1} \left(\frac{q}{p}\right)^k}$$
$$= \begin{cases} -\frac{1}{N} & , q = p = \frac{1}{2} \\ \frac{-(1 - \frac{q}{p})}{(1 - (\frac{q}{p}))} & q \neq p \end{cases}$$

(c) From the telescoping sum

$$\begin{split} u_k &= 1 + \chi_1 \sum_{i=0}^{k-1} \left(\frac{q}{p}\right)^i \\ &= \begin{cases} 1 - \frac{1}{N} \cdot k = \frac{N-k}{N}, & p = q = \frac{1}{2} \\ 1 - \frac{1 - \left(\frac{q}{p}\right)^k}{1 - \left(\frac{q}{p}\right)^N} = \frac{\left(\frac{q}{p}\right)^k - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^N}, & p \neq q \end{cases}. \end{split}$$

where k = 1, 2, ...

6. The final step

$$u_{10} = \begin{cases} \frac{N-10}{N}, & p = q = \frac{1}{2} \\ \frac{\left(\frac{g}{p}\right)^{10} - \left(\frac{g}{p}\right)^{N}}{1 - \left(\frac{g}{p}\right)^{N}}, & q \neq p \end{cases}$$

Remark. • When $N \to \infty$

 $q \ge p \implies$ Almost certain you will loose.

$$q$$

4.1 Markov Chain in infinitive time

Definition 4.1. Regular Markov Chain . Consider a Markov chain $\{X_n: n=0,1,\ldots\}$ with finite state space $\{0,1,2,\ldots\}$ and transition matrix **P**. IF there exists an integer k>0 so that all regular elements \mathbf{P}^k are strictly positive, we call **P** and $\{X_n\}$ regular.

Remark. 1. P is regular means that it exists an k > 0 so that $P_{ij}^{(k)} > 0 \quad \forall i, j$

2. If $P_{ij}^{(k)} \quad \forall i, j$, then is $P_{ij}^{(k)} > 0 \quad \forall i, j$ and $K \geq k$

5 Lecture 2020-09-14

Find Stationary distributions

(i)
$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- Positive recurrent, aperiodic and irreducible.
- ullet \Longrightarrow Limiting distribution:

$$\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$

(ii)
$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- $\bullet\,$ Positive recurrent and irreducible.
- unique stationary distribution.

•
$$\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$

(iii)
$$\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Reducible!
- Part 1:

$$\pi_0 = 1\pi_0 = 0\pi_1 = \pi_0$$

$$\pi_1 = 0\pi_0 + 1\pi_1 = \pi_1$$

$$\implies \pi = 1 - \pi_1$$

$$\implies \pi = (\pi_1, 1 - \pi_1)$$

• Part 2:

Must have

$$\pi_0 \ge 0$$

$$\pi_1 \ge 0$$

$$\implies \pi = (\pi_0, 1 - \pi_0), \quad 0 \le \pi_0 \le 1$$

5.1 Section 4.5

Read it yourself .

5.2 Why do we care so much about markov chains?

- (i) Importance goes far beyond statistical modelling of physical phenomena.
- (ii) In the end of the 80s and start of 90s the computationally power was growing stronger.
- (iii) We realized that we could sample from difficult distribution by constructing Makov chains whose stationionary matched desired target distribution.
- (iv) The theory we have descussed of the theory developed to show that these methods worked.

5.3 Continuous Time Markov Chain

Definition 5.1. The stochastic variable X has a **Poission distribution** with (mean) parameter $\mu > 0$ if

$$p\left(x\right) = \frac{\mu^x}{x!}e^{-\mu}$$

We write $X \sim Possion(\mu)$

Remark. $X \sim Poission(10)$

- (i) $E[X] = \mu$
- (ii) $Var[X] = \mu$
- (iii) $SD[X]\sqrt{\mu}$

Theorem 5.1. If $X \sim Possion(\mu)$, $Y \sim (\chi)$ and Y are independent.

Theorem 5.2. If $N \sim Possion(\mu)$ and $M \mid N \sim Binomial(N, p)$ then $M \sim Poission(\mu P)$

Remark. (i) $M = \sum_{k=1}^{N} I_k$, where $I_1, I_2, \ldots \sim Bernoulli(p)$ and I_1, I_2, \ldots and N are independent.

(ii) This is called **thinning**.

5.3.1 Section 5.1.2

Definition 5.2. A **Possion process** with rate **inensity** $\lambda > 0$ is an integet-valued stochastic process $\{X(t) : t \geq 0\}$ 0 for which.

• For any n > 0 and any time point $0 < t_0 < t_1 < \ldots < t_n$ the increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots, X(t_n) - X(t_{n-1})$$

 $are\ independent$

• For $s \ge 0$ and t > 0

$$X(s+t) - X(s) \sim Poission(\lambda t)$$

• X(0) = 0

Remark. • 1. is called independent increments

• In 2, we have

$$X\left(s + \Delta t\right) - X\left(s\right) \sim Possion(\lambda \Delta t)$$

ullet Illustration

Figure 2: iillustration

• $X(t) = X(t) - X(0) \sim Possion(\lambda t)$

Example. We assume the arrival of customers to a store follows a Poission process with rate $\lambda = 4$ customers per hours. The stor opens a 09:00. What is the probability that exactly one customer has arrived by 09:30 and exactly five customers have arrived bu 11:30.

Answer. Let $X\left(t\right)=$ arrivals by time t For $t\geq0$ (measured in hours). Then is the question

$$Pr\left\{X\left(\frac{1}{2}\right) = 1, X\left(\frac{5}{2}\right) = 5\right\}$$

$$\downarrow = \text{Rephrase as incements}$$

$$= Pr\left\{X\left(\frac{1}{2}\right) - X\left(0\right) = 1, X\left(\frac{5}{2}\right) - X\left(\frac{1}{2}\right) = 4\right\}$$

$$\downarrow \text{Independent increments}$$

$$= Pr\left\{X\left(\frac{1}{2}\right) - X\left(0\right) = 1\right\}.$$

$$Poission(\frac{1}{2}\lambda)$$

$$Pr\left\{X\left(\frac{5}{2}\right) - X\left(\frac{1}{2}\right) = 4\right\}$$

$$= \frac{2^1}{1!}e^{-2} \cdot \frac{8^4}{4!}e^{-8}$$

$$= 0.0155$$

Example. Assume the arrical of customers to follows an inhomogenous Poission process with rate $\lambda(t) = t$, $t \ge 0$. Assume the store opens at 09:00. What is the probability that no-one has arrived at 10:00.

Answer.

$$X(1) - X(0) \sim Poission \left(\int_{0}^{1} t dt \right)$$

6 Lecture 08/09/20

Equivalent classes and classifications of states in Markov chains.

Things to check

- Understand why regularity fails.
- Extend regularity to infinite spaces.

Example Let $\{X_n:0,1,\ldots,N\}$ be a markov chain.

(a) It can go from $0 \to 0$ and $1 \to$ with probabilities $p_{00} = p_{11} = 1$, two seperate markov chains. Realizations :

$$0, 0, 0, 0, 0, 0, \dots$$

$$1, 1, 1, 1, 1, 1, \dots$$

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies P^n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definition 6.1. Let $\{X_n:0,1,\ldots\}$ be a Markov chain with state space $\{0,1,\ldots\}$ then is

- (i) State j is accessible from state i if $\exists n \geq 0$ so that $P^{(n)} > 0$
- (ii) If states i and j are accessable from each other they are said to **communcate** we write $i \sim j$. If states i and j do not communcate we write $i \not\sim j$

Remark. If $i \not\sim j$, then either (or both)

(a) (i)
$$P_{ij}^{(n)} = 0, \quad \forall n \ge 0$$

(ii)
$$P_{ii} = 0, \quad \forall n \ge 0$$

(b) Only the graph matters, not the values of the edges.

(c)
$$P_{ij}^{(0)} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Theorem 6.1. Communication is an equicalence relation

- (i) reflexive, i j
- (ii) symmentric $i \sim j \implies j \sim i$
- (iii) Transitive $i \sim j$ and $j \sim k$ implies $i \sim k$

A equivalence relation induces **equivalence classes** of sets of states that communicate.

Proof. (i) $P_{ii}^{(0)} = 1 \implies i \sim i$

(ii) By definition is this true.

(iii) (a)
$$i \sim j \implies \exists n \geq 0 : P_{ij}^{(n)} > 0$$

$$j \sim k \implies \exists m \ge 0 : P_{jk}^{(m)} > 0$$

(b) Chapman-kilogram

$$P_{ik}^{(n+m)} = \sum_{r=0}^{\infty} P_{ir}^{(n)} P_{rj}^{(m)} \ge P_{ij}^{(n)} P_{jk}^{(m)}$$

 $\implies k$ is accessible from i.

(c) Show yourself

i is accessible from k

Definition 6.2. A Markov chain is **irreducible** if \sim (communication) induces exactly one equivalent class. If not, it is called reducible.

Definition 6.3. The **period** of state i, written as d(i) is

$$d\left(i\right) = \gcd\left\{n \ge 1 : P_{ii}^{(n)} > 0\right\}$$

If $P_{ii}^{(n)}=0$ for all $n\geq 1$, we define $d\left(i\right)=0$. If $d\left(i\right)=1$, we call the state i is **aperiodic.**

Theorem 6.2. if $i \sim j$, then d(i) = d(j)

Remark. The period is a property of the equivalence class.

Notation THe state space may be infinite: $\{0, 1, \ldots\}$. We introduce

(i) The probability the first return happend after exactly n steps

$$f_{ii}^{(n)} = Pr\{X_n = i, X_{\mu} \neq i, i = 1, 2, \dots, n-1 \mid X_0 = i\} \quad n > 0$$

We will define $f_{ii}^{(0)} = 0$

(ii) The probability of returning at some time

$$f_{ii} = \sum_{k=0}^{\infty} f_{ii}^{(k)} = \lim_{n \to \infty} \sum_{k=0}^{n} f_{ii}^{(k)}.$$

Remark. $f_{ii} < i \leftrightarrow \text{Positive probability of never returning to } i$

Definition 6.4. State i is **recurrent** if the probability of retunging to sate i in a finite number of timesteps is one $f_{ii} = 1$. A state that is not recurrent $f_{ii} < 1$ is called **transient**.

Theorem 6.3. A state i is recurrent if and only if

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$$

Equivalently, state i is transient if and only if

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$$

Proof. (i)

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} = \sum_{n=1}^{\infty} E\left[\mathbb{I}\left\{X_n = j\right\} \mid X_0 = j\right]$$
$$= E\left[\sum_{n=1}^{\infty} \mathbb{I}\left\{X_n = i \mid X_0 = i\right\}\right]$$
$$= E\left[M \mid X_0 = i\right]$$
$$M \to \text{Returns to state.}$$

(ii)
$$E[M \mid X_0 = i] = \begin{cases} f_{ii} \frac{1}{1 - f_{ii}}, & f_{ii} < 1 \\ \infty, & f_{ii} = 1 \end{cases}$$

7 Lecture 2020-09-18

Read Section 5.1.4 by yourself.

Section 5.2 Motivation

(a) $\{X(t): t \ge 0\}$ with rate $\lambda_1 = 5$, $0 \le t \le 10$

$$E\left[X\left(t\right)\right] = \lambda t = 5t,$$

(b) $\{Y(t): t \geq 0\}$ with rate $\lambda_2 = t$, $0 \geq t \leq 10$

$$E[Y(t)] = \frac{t^2}{2}$$

Do scatterplot on the project when working on poission distribution.

Theorem 7.1. Let $p_1, p_2, \ldots \in [0, 1]$ be a sequence such that $\lim_{n\to\infty} np_n = \lambda < \infty$, then

$$\lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \lambda^n \frac{1}{k!} e^{-\lambda}, \quad k = 0, 1, \dots$$

Remark. In TMA4295 Statistical Inference we will say that Binomial (n, p_n) converges in $Possion(\lambda)$ is $n \to \infty$.

Remark. .

- (i) $p_n \to 0$, but $n \to \infty$. $np_n \to \lambda$ when $n \to \lambda$
- (ii) Many trials $(n\gg 1)$ and success is rare $(p\ll 1)$ \implies Nr of Successes Poission distribution.

Typical examples

- Customers arrivals.
- Car accident.
- Telephone calls.

7.1 Little oh-notation

(i) You may be familiar with the expessions such as

$$n = o(n^2)$$
, as $n \to \infty$

May be thought as "n is much smallet than n^2 as $n \to \infty$ "

(ii) We are going to mostly work with expressions of the form

$$h^2 = o(h), \quad h \to 0^+$$

May be thought as " h^2 is much smaller than h as $h \to 0^+$ "

Definition 7.1. Let f and g be real functions. We use **little-oh-notation** in the two following ways

- (i) $f(n) = o(g(n)), \quad n \to \infty \implies \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- (ii) f(h) = o(g(h)) $h \to 0^+ \implies \lim_{n \to \infty} \frac{f(h)}{g(h)} = 0$

Example. Are the following statements false or true?

(i) $h^2 = o(h)$ $h \to 0+$

$$\lim_{n \to 0^+} \frac{h^2}{h} = 0$$

True

(ii) $h^2 = o(h)$ $h \to \infty$

$$\lim_{h \to \infty} \frac{h^2}{h} = \lim_{n \to \infty} h = \infty$$

False

(iii) $\sqrt{h} = o(h) \quad h \to 0^+$

$$\lim_{h \to 0^+} \frac{\sqrt{h}}{h} = \infty$$

False

(iv) $h \to o(1)$ $h \to 0^+$

$$\lim_{h \to 0^+} \frac{h}{1} = 0$$

True

Remark.

$$h^p = o(h) \quad h \to 0^+ \implies p > 1$$

Definition 7.2. A C process is a stochastic process $\{N\left(t\right):t\geq0\}$ so that

- (i) N(t) is a integer for $t \geq 0$
- (ii) $N(t) \geq 0$, for $t \geq 0$
- (iii) If $s \ge t$, then $N(s) \le N(t)$

We sometimes write

$$N(a,b) = N(b) - N(a) = Number \text{ or events in } (a,b], \quad 0 \le a \le a$$

However, the notation will not be used in the lecture.

Definition 7.3. Let $\{N(t): t \geq 0\}$ be a counting process. Then

$$\{N\left(t\right):t\geq0\}$$

is a **Poission process** with rate (intensity) $\lambda > 0$ if

(i) For every integer m > 1 for any timepoints

$$0 = t_0 < t_1 < \dots < t_m$$

$$N(t_1) - N(t_0), N(t_2) - N(t_1), \dots N(t_m) - N(t_{m-1})$$

"independent increments"

- (ii) For $t \geq 0$ and h > 0, the distribution of N(t+h) N(t) only depends on h and t. "Stationary Increnements"
- (iii) $Pr\{N(t+h) N(t) = 1\} = \lambda h + o(h), \quad h \to 0^+ \quad \forall t \ge 0$
- (iv) $Pr\{N(t+h) N(t) = 0\} = 1 \lambda h + o(h), \quad h \to 0^+ \quad \forall t \ge 0$
- (v) N(0) = 0

For def iii and iv can be described as

$$\implies Pr\left\{N\left(t+h\right)-N\left(t\right)\geq 2\right\} = 1 - \overbrace{\left[\lambda h + o\left(h\right)\right]}^{1 \text{ event}} - \overbrace{\left[1-\lambda h + o\left(h\right)\right]}^{0 \text{ events}}$$
$$= o\left(h\right)$$

 \implies Events cannout occur at the same time

 \implies Jumps are of size 1

Recall

Definition 7.4. (Simplified version.) A **Poission process** with rate **rate** $\lambda > 0$ is an integer valued stochastic process $\{N(t) : t \geq 0\}$ for which

- (i) Increments are independent,
- (ii) For $s \ge 0$ and t > 0

$$N(s+t) - N(s) \sim Possion(\lambda t)$$

(iii)
$$N(0) = 0$$

Theorem 7.2. Definition of simplified and genreal of a Poission process are equivalent.

Proof. Lets call the simplified version P1 and the general version P2, then we need to prove

• Prove that $P1 \implies P2$: i),ii) and v) is proved by definition.

$$Pr\left\{N\left(t+h\right)+N\left(t\right)=1\right\} = \frac{\left(\lambda h\right)^{1}}{1}e^{\lambda h}$$

$$= \lambda h\left(1-\lambda ho\left(h\right)\right), \quad \text{as } h \to 0^{+}$$

$$= \lambda h - \lambda^{2}h^{2} + \lambda ho\left(h\right)$$

$$= \lambda h + o\left(h\right)$$

This type of manipulations are importan on the exam. For iv):

$$Pr\left\{N\left(t+h\right)-N\left(t\right)=0\right\} = \frac{\left(\lambda h\right)^{0}}{0!}e^{-\lambda h}$$
$$= 1 \cdot \left(1\lambda h + o\left(h\right)\right)$$
$$= 1 - \lambda h + o\left(h\right), \quad \forall t \ge 0$$

• Prove that $P2 \implies P1$: i) and iii) are proved by definition.

For ii): Set s = 0 Ned to show that

$$N(h) - N(0) \sim Poission(\lambda h)$$

(i) Divide (0, h] into equal size sub-intervals.

$$\implies t_i = \frac{i}{m}, \quad i = 0, 1, \dots, m.$$

$$\varepsilon = \begin{cases} 1, & \text{at least one event in } (t_{i-1}, t_i] \\ 0, & \text{Otherwise} \end{cases}, \quad i = 1, 2, \dots, m$$

Then we can let $S_m = \sum_{i=1}^m \varepsilon_i$.

(iii)
$$\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m \sim Bernoulli(p_m)$$
 where $p_m = \frac{\lambda h}{m} + o(\frac{h}{m})$ as $m \to \infty$.

Let $S = \lim_{m \to \infty} S_m a$ we get

$$\lim_{m \to \infty} m o_m = \lim_{m \to \infty} (\lambda h + o(1)) = \lambda h$$

This is calles the "Law of rare events" $S \sim Possion(\lambda h)$.

(iv)
$$Pr\{N(h) - N(0) \neq S_m\} \leq \sum_{i=1}^{m} Pr\{N(t_i) - N(t_{i-1}) \geq 2\}$$

$$\leq \sum_{i=1}^{m} o\left(\frac{h}{m}\right)$$
$$= m \cdot o\left(\frac{h}{m}\right)$$
$$= ho(1)$$

$$\rightarrow_{m\rightarrow\infty} 0$$

$$N(h) - N(0) = S \sim Poission(\lambda h)$$

8 Lecture 2020-09-21

Example. Is it reasonable to model the following phenomena as Poission processes ?

- (a) Cases of a non-infectious rare disease.
 - Independent incremens: Yes, people are independent.
 - Stationary increments: Yes. Few people get sick.
 - Many trials, "success" is rare: Yes. many people get sick.
- (b) Calls going through a phone central.
 - Yes. For specific time intervals.
- (c) Goals in football.
 - No. Number of goals are not independent.

8.1 Properties of the Poission process

Definition 8.1. Let $\{N(t): t \geq 0\}$ be a Poisson process. Tee waiting time W_n is the time of occurance of the n-th event. We define $W_0 = 0$

Definition 8.2. The difference $S_n = W_{n+1} - W_n$ are called the **sojurn** times (interarrival times.)

Remark. .

- (i) $S_n = \text{Time spent in stationary.}$
- (ii) Two viewpoints.
 - (a) Possion process $\{N(t): t \geq 0\}$
 - (b) Poission point process. (W_1, W_2, W_3, \ldots)

Definition 8.3. The stocastic variable Y has an **exponantial distrobution** with the rate parameter $\lambda > 0$

$$f(y) = \lambda e^{-\lambda y}, \quad y > 0$$

We write $Y \sim Exp(\lambda)$.

Remark. • We will always use this parameterization.

• Other: Scale paremter $\beta > 0$:

$$f(y) = \frac{1}{\beta}, \quad y > 0$$

Theorem 8.1. Let $\{N(t): t \geq 0\}$ be a Poission process with rate λ . Then $S_0, S_1, \ldots, S_{n-1} \sim Exp(\lambda)$

Proof. For n = 1

(i)
$$Pr\{S_0 > s_0\} = Pr\{N(s_0) - N(0) = 0\}$$

- (ii) n=2
 - (a) $S_0 \sim Exp(\lambda)$

(b)
$$Pr\{S_1 > s_1 \mid S_0 = s_0\} = Pr\{N(s_0 + s_1) - N(s_0) = 0 \mid S_0 = s_0\}$$
 $\downarrow \text{ Independent increments } \Longrightarrow \text{ Markov}$
 $= Pr\{N(s_0 + s_1) - N(s_0) = 0\}$
 $\downarrow \text{ Stationary increments}$
 $= Pr\{N(s_1) - N(0) = 0\}$
 $= e^{-\lambda s_1}, \quad s_1 > 0$

- (c) $S \sim Exp(\lambda)$ and S_0 and S_1 are independent.
- (iii) For n = 3, 4, ...

 ${\it Markoc property} \quad \Longrightarrow \quad {\it independence.}.$

 $Exp(\lambda)$ as for S_0 and S_1 .

Remark. Alternatice definition of the possion process:

- (i) Start in 0
- (ii) Spend a time $Exp(\lambda)$ in each state.

Definition 8.4. The stochastic variable Y has a **gamma distribution** with **shape parameter** $\alpha > 0$ and **rate parameter** $\lambda > 0$ if

$$f\left(y\right)=\frac{\lambda^{\lambda}}{\Gamma\left(\alpha\right)}y^{n-1}e^{-\lambda y},\quad y>0$$

We write $Y \sim Gamma(\alpha, \lambda)$

Remark. (i) Check which parametrization which is used.

- (ii) Scale parameter: $\beta = \frac{1}{\lambda}$ is very common.
- (iii) We will use shape and rate.
- (iv) $Gamma(1, \lambda) = Exp(\lambda)$

Theorem 8.2. For a Possion process with rate $\lambda > 0$ $W_n \sim Gamma(n, \lambda)$ for all integers n > 0.

Proof. (i) $S_0, S_1, \ldots, S_{n-1} \sim Exp(\lambda)$

(ii)
$$W_n = S_0 + S_1 + \ldots + S_{n-1}$$

$$\downarrow \qquad \qquad \sim Gamma\left(\sum_{i=1}^n 1, \lambda\right)$$

$$= Gamma\left(n, \lambda\right)$$

Poission

Example. Assume the occurance of a rare disease follows a Poission process with rate $\lambda=2$

- (a) What is the probability that the first case accurs after 1 month?
 - (i) Let $S_0 \sim Exp(2)$

$$Pr\{S_0 > 1\} = \int_1^\infty 2e^{-2t} dt = e^{-2} \approx 0.135$$

Where $Pr\{N(1) - N(0)\}$

- (b) What is the expected time until the 10th case occurs?
 - (i) Let $W_{10} \sim Gamma(10, 2)$

$$E[W_{10}] = \frac{10}{2} = 5$$
, months.

Example. Let $\{X\left(t\right):t\geq0\}$ is a Poisson process with rate $\lambda>0.$ Determine the distribution of $W_{1}\mid X\left(t\right)=1$

9 Lecture 2020-09-23

Theorem 9.1. Let W_1, W_2, \ldots be occurance in a Poisson process

$$\{(t): t \ge 0\}$$

with rate $\lambda > 0$. Then is

$$(W_1, W_2, \dots, W_n) \mid X(t) = n \sim f(w_1, w_2, \dots, | X(t) = n)$$

= $\frac{n!}{t^n}$, $0, w_1 < w_2 < \dots < w_n < t$

Disscusion

- (i) X(t) = n, then exactly n events occur in (0,t]. Let V_1,V_2,\ldots,V_n be the locations of the events not necessarily ordered.
- (ii) $\{X(t)\}$ can be approximated by a collection of Bernoulli trials on intervals $(\frac{(i-1)}{m}t,\frac{i}{m}t]$, $i=1,2,\ldots,m$.
- (iii) The m trials are independent. That means any selection of n unique intervals

$$\{i_1, i_2, \dots, i_n\} \le \{1, 2, \dots, m\}$$

locations follow a uniform distribution as $m \to \infty$, which indicated that

$$V_1, V_2, \dots, V_n \mid X(t) = n \stackrel{iid}{\sim} u(0, t)$$

(iv) Let sort such that

$$(w_1, w_2, \dots, 2_n) = sort(V_1, V_2, \dots).$$

$$\implies f(w_1, w_2, \dots, w_n \mid X(t) = n) = \left(\frac{1}{t}\right)^n n!$$
for $0 < w_1 < w_2 < \dots < w_n \le t$

Remark.

• Conditional on n events occurring in (0,t], the locations of the events are idd uniform distribution on (0,t]

Example. Customers arrive according to a Poission process with rate $\lambda > 0$ per hours. The store opens at 09:00. If 10 people have arrived at 11:00. What is the probability that texactly 5 of the 10 poeple arrived before 10:00.

Conditional on X(2) = 10, arrival time are iid u(0, 2). This implies that

$$Pr \{X (1) = 5 \mid X (2) = 10\}$$

= $Pr \{5 \text{ arrive in } (0, 1] \text{ and } 5 \text{ in } (1, 2]\}$
= $\binom{10}{5}$

Joint simulation

Input

- Time interval (0, t]
- Rate, $\lambda > 0$

Algorithm

- (i) Simulate $n \sim Poission(\lambda t)$
- (ii) Simulate $v_1, v_2, \ldots, v_n \sim U(0, t)$
- (iii) Let $(w_1, w_2, ..., w_n) = sort(v_1, v_2, ..., v_n)$

Output

$$x(s) = \begin{cases} 0, & 0 < s \le w_1 \\ 1, & w_1 < s < w_2 \\ \vdots & \\ n, & w_n \le s < t \end{cases}$$

9.1 Continous Markov Chains

We call the stochastic process $\{X(t): t \geq 0\}$ a contionious-time markov chain with state space $\{0, 1, \ldots\}$ if it satisfies the Markov property

$$Pr\{X(t+s) = j \mid X(s) = i, X(u), 0 \le u \le s\}$$

= $Pr\{X(t+s) = j \mid X(s) = i\}$

For $i, j = 0, 1, \ldots$ for all $s \leq 0$ and t > 0.

Remark. • We are only interested in stationary transition probabilities .

$$Pr\{X(s+t) = j \mid X(s) = i\} = Pr\{X(t) = j \mid X(0) = i\}$$

For all $s \ge 0, t > 0$ and states i, j.

• Continuous time Markov chain is "random sojourn time + random jumps."

Definition 9.1. Let $\{X(t): t \geq 0\}$ be a continious time Markov Chain with state space $\{0,1,\ldots\}$ and stationary probabilities. we call

$$P_{ij}(t) = Pr\{X(t) = j \mid X(0) = i\}, \quad ij, = 0, 1, \dots$$

The transition probability function .

9.1.1 Transition probability function

Given

$$\begin{split} P_{ij}\left(t\right) &= Pr\left\{X\left(t\right) = j \mid X\left(0\right) = i\right\} \\ &= Pr\left\{\underbrace{X\left(t\right).X\left(0\right)}_{Poission(\lambda t)} = i - j\right\} \\ &= \begin{cases} \frac{(\lambda t)^{i-j}}{(j-i)!}e^{-\lambda t}, & j \geq 0\\ 0, & \text{otherwise} \end{cases} \end{split}$$

10 References