Hw7 key

- #1. Let X_1, \dots, X_{10} be a sample of iid N(0, θ) random variables. (θ is the variance, not the standard deviation.)
 - a) Show that $T = \frac{1}{\theta} \sum_{i=1}^{n} X_i^2$ is a pivotal quantity and find its distribution.

The random variables $X_i/\sqrt{\theta}$ are independent standard normal, so T is χ^2 with n df.

b) Determine a 99% confidence interval for θ based on T.

$$P\left(2.16 < \frac{1}{\theta} \sum_{i=1}^{n} X_i^2 < 25.19\right) = .99, \text{ so } P\left(\frac{\sum_{i=1}^{n} X_i^2}{25.19} < \theta < \frac{\sum_{i=1}^{n} X_i^2}{2.16}\right) = .99.$$

c) Suppose that $\sum_{i=1}^{10} x_i^2 = 27.3$. What is the 99% confidence interval for θ ?

Since $27.3/215.19 \approx 1.08$ and $27.3/2.16 \approx 12.66$, the interval is approximately (1.08,12.66).

d) Determine a 99% confidence interval for $SD(X) = \sqrt{\theta}$.

From (b), we have
$$P\left(\sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{25.19}} < \sqrt{\theta} < \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{2.16}}\right) = .99.$$

The required confidence interval is $(\sqrt{1.08}, \sqrt{12.66}) \approx (1.04, 3.56)$

#2. Let X_1, \dots, X_6 be a sample of iid $U[\theta, 1]$ random variables.

a) Show that $T = \frac{1 - X_{(1)}}{1 - \theta}$ is a pivotal quantity and find its cdf.

$$P\left(T = \frac{1 - X_{(1)}}{1 - \theta} \le t\right) = P\left(X_{(1)} \ge 1 - t(1 - \theta)\right) = \left[P\left(X_i \ge 1 - t(1 - \theta)\right)\right]^n$$

 $= \left\lceil \frac{t(1-\theta)}{1-\theta} \right\rceil^n = t^n \text{ (which does not depend on } \theta\text{)}.$

b) Determine a 85% confidence interval for θ based on T. Since $\sqrt[6]{.075} \approx .649$ and $\sqrt[6]{.925} \approx .987$

$$P\left(.649 < \frac{1 - X_{(1)}}{1 - \theta} < .987\right) = .85, \text{ so}$$

$$P\left(1 - \frac{1 - X_{(1)}}{.649} < \theta < 1 - \frac{1 - X_{(1)}}{.987}\right) = .85.$$

- c) Suppose $\vec{x} = \{0.527, 0.803, 0.842, 0.880, 0.474, 0.558\}$. Find the 85% confidence interval for θ .
- Since $x_{(1)} = .474$, $1 \frac{1 .474}{.649} = .190$, and $1 \frac{1 .474}{.987} = .467$, the required interval is (.190, .467).
 - #3. Let X_1, \dots, X_8 be a sample of iid Gamma $(4, \theta)$ random variables.
 - a) Show that $\frac{2}{\theta} \sum_{i=1}^{n} X_i$ is a pivotal quantity and find its distribution.

Since
$$\sum_{i=1}^{n} X_i$$
 is a Gamma $(4n, \theta)$ random variable, $P\left(\frac{2}{\theta} \sum_{i=1}^{n} X_i \leq t\right) = P\left(\sum_{i=1}^{n} X_i \leq \frac{t\theta}{2}\right)$

$$= \int_{0}^{t\theta/2} \frac{1}{\Gamma(4n)\theta^{4n}} x^{4n-1} e^{-x/\theta} dx = \int_{0}^{t} \frac{1}{\Gamma(4n)\theta^{4n}} \left(\frac{u\theta}{2}\right)^{4n-1} e^{-u/2} \cdot \frac{\theta}{2} du$$

(where $u = 2x/\theta$, $du = 2/\theta d\theta$), $= \int_0^t \frac{1}{\Gamma(4n)2^{4n}} u^{4n-1} e^{-u/2} du$, which does not depend on

- θ . Therefore $\frac{2}{\theta} \sum_{i=1}^{n} X_i$ is a pivotal quantity. Its pdf is Gamma $(4n,2) = \chi^2$ with 8n df.
 - b) Determine a 95% confidence interval for θ based on T.

Since
$$P\left(43.78 < \frac{2}{\theta} \sum_{i=1}^{n} X_i < 88.00\right) = .95, P\left(\frac{2\sum_{i=1}^{n} X_i}{88.00} < \theta < \frac{2\sum_{i=1}^{n} X_i}{43.78}\right) = .95.$$

c) Suppose that $\vec{x} = \{17.40, 15.95, 15.17, 7.92, 11.54, 10.46, 8.47, 15.54\}$. Find a 95% confidence interval for θ .

The sum is $\Sigma = 102.45$. Since $204.9/88.00 \approx 2.32$, and $204.9/43.78 \approx 4.68$, the required confidence interval for θ is (2.32,4.68).

- #4. Let X_1, \dots, X_6 be a sample of iid $N(\mu, \theta)$ random variables. (μ, θ) are both unknown. θ is the variance, not the standard deviation.)
- a) Why is $T = (n-1)S^2/\theta$ a pivotal quantity? What is the distribution of $(n-1)S^2/\theta$? $T = (n-1)S^2/\sigma^2$ is a pivotal quantity because its distribution is χ^2 with n-1 df, which does not depend on θ .
 - b) Determine a 93% confidence interval for θ based on T.

Since T is
$$\chi^2$$
 with 5 df, $P\left(.965 < \frac{5S^2}{\theta} < 11.98\right) = .93$, so $P\left(\frac{5S^2}{11.98} < \theta < \frac{5S^2}{.965}\right) = .93$.

c) Suppose that $\vec{x} = \{0.71, 0.62, 2.28, 1.01, 10.01, 7.64\}$. Find a 95% confidence interval for θ .

Since
$$T$$
 is χ^2 with 5 df, $P\left(.831 < \frac{5S^2}{\theta} < 12.83\right) = .95$, so $P\left(\frac{5S^2}{12.83} < \theta < \frac{5S^2}{.831}\right) = .95$.
Since $s^2 \approx 16.60$, $\frac{5 \cdot 16.60}{.831} \approx 99.88$ and $\frac{5 \cdot 16.60}{12.83} \approx 6.47$, a 95% confidence interval is $(6.47, 99.88)$.

#5. A pollster chooses 500 citizens at random, and asks whether each plans to vote 'yes' or 'no' on proposition X. In the sample, 375 indicate a 'yes' vote.

Find a 95% confidence interval for the proportion of the total population who plan to vote 'yes.'

Let Y be the number of yes's in the sample, and p the proportion of yes's in the population. Then Y is binomial (500,p), so approximately Normal (500p, 500p(1-p)). Therefore

$$P\left(-1.96 < \frac{Y - 500p}{\sqrt{500p(1-p)}} < 1.96\right) \approx .95$$
, so
$$P\left(\frac{Y}{500} - 1.96\sqrt{\frac{p(1-p)}{500}}$$

Finally, letting Y = 375 and replacing p(1-p) by its greatest possible value, 1/4, we obtain the confidence interval (.706, .794).