Lógica de predicados

Lógica de Predicados

LENGUAJE

- Sintaxis: fbfs del lenguaje, más rico que PROP
- Semántica: Cómo probar la veracidad de las fórmulas ??

RAZONAMIENTOS

-Justificación sintáctica (pruebas formales)

Lógica de predicados

Semántica

✓ Hasta aquí hemos definido un lenguaje formal (conjunto FORM), para estudiar razonamientos y definir la noción de consecuencia semántica, necesitamos definir en primer lugar que significan los símbolos del lenguaje (alfabeto)

NOCIÓN DE VERDAD ???

Pregunta:

¿Cuando es válido un razonamiento? ¿Cuándo se cumple $\Gamma \models \varphi$?

depende de quiénes sean P₁¹, P₁², f₁², c₁, c₂

- Debemos <u>interpretar</u> los elementos del alfabeto en algún universo.
- Primero debemos saber qué objetos representan los términos.
- después, cuales son las funciones y qué propiedades representan los predicados,

 y finalmente podremos saber el valor de verdad de las fórmulas (por ahora, cerradas).

Def Interpretación

Una interpretación I para L de alfabeto $(A_1^1,..,A_n^1,f_1^2,..,f_i^j,c_1,c_2)$ consiste en:

- D' (III) Dominio de I
- $\underline{c_1}, \underline{c_2} \in D^1$ elementos distinguidos
- $\underline{f}_{i}^{j} D^{l} x...x D^{l} \rightarrow D^{l}$ funciones sobre D^{l}
- $A_n^l \subset D^l \times X \to D^l$ relaciones sobre D^l

Ejemplo 1:

Sea el lenguaje L*, aritmética de los N con alfabeto

$$A_1^2$$
, f_1^1 , f_1^2 , f_2^2 , C_1

Interpretación N:

$$D^{N}$$
 es N_{0}
 A_{1}^{2} es =
 f_{1}^{1} es S
 f_{1}^{2} es +
 f_{2}^{2} es *
 c_{1} es 0

Luego α : $(\forall x_1)((\forall x_2)(\exists x_3) A_1^2 (f_1^2 (x_1 x_3), c_1)$

Ejemplo 1:

Luego α : $(\forall x_1)((\forall x_2)(\exists x_3) A_1^2 (f_1^2 (x_1 x_3), x_2))$ se interpreta en N como:

$$\forall x_1, x_2 \in N, \exists x_3 \in N / x_1 + x_3 = x_2$$

Tiene valor de verdad? Si, pues α es cerrada

$$v^{N}(\alpha) = F$$
 (si $x_1 = 7$ y $x_2 = 5$ $\exists x_3 \in N/$
7 + $x_3 = 5$)

Ejemplo 2:

Otra interpretación del lenguaje L*

Interpretación I:

```
DI es Q+
\underline{\mathbf{A}}_{1}^{2} es =
\underline{\mathbf{f}}_1^1 es ^{-1}
\underline{f_1}^2 es *
f_2^2 es/
c<sub>1</sub> es 1
```

Ejemplo 2:

Luego $\alpha : (\forall x_1)((\forall x_2)(\exists x_3) A_1^2 (f_1^2 (x_1 x_3), x_2))$ se interpreta en I como:

$$\forall x_1, x_2 \in Q^+ \exists x_3 \in Q^+ / x_1 * x_3 = x_2$$

Tiene valor de verdad? Si, pues α es cerrada

$$v'(\alpha) = V$$
 (pues si $x_1, x_2 \in Q^+ \exists x_3 \in Q^+$
 $x_3 = x_2 / x_1$)

$$V^{N}(\alpha) = F y V^{I}(\alpha) = V$$

 \checkmark El valor de verdad de α depende de la Interpretación

Ejemplo 3:

Sea un lenguaje con alfabeto:

• $A_1^1 A_1^2 f_1^1 f_1^2 C_1, C_2$

Podemos interpretar a los términos y fórmulas de este lenguaje en la interpretación M tal:

D^M es Z

$$\underline{A}_{1}^{1}$$
 es "ser primo", \underline{A}_{1}^{2} es = \underline{f}_{1}^{1} es - $(\underline{f}_{1}^{1}(t) = -t)$
 \underline{f}_{1}^{2} es + $(\underline{f}_{1}^{2}(t_{1},t_{2}) = \underline{t}_{1} + \underline{t}_{2})$
 \underline{c}_{1} es 0, \underline{c}_{2} es 1

$$\alpha : (\exists x_1) A_1^2 (f_1^1 (x_1), x_1)$$

Se interpreta en M como: $\exists x_1 \in Z / -x_1 = x_1$ $V^{I}(\alpha) = V \text{ (pues } \exists \ 0 \in Z / - 0 = 0 \text{)}$

Def Interpretación

Formalizaremos la interpretación de términos cerrados:

- Términos cerrados
- Fórmulas atómicas cerradas
- Fórmulas cerradas

Primero lo vemos en el ejemplo de M:

Interpretamos los <u>términos cerrados</u> de L(M): <u>t</u>^M∈ Z

$$-\underline{c}_{1} = 0 , \underline{c}_{2} = 1$$

$$-\underline{f}_{1}^{2}(t_{1}, t_{2}) = \underline{t}_{1} + \underline{t}_{2}$$

$$-\underline{f}_{1}^{1}(t) = -(\underline{t})$$

2. Interpretamos en M las <u>fórmulas atómicas</u> cerradas de L ($VL(\alpha)=\phi$) $v^{M}(\alpha) \in \{V,F\}$

$$- v^{M}(\underline{A}_{1}^{2}(t_{1}, t_{2}) = \begin{cases} V \operatorname{si} \underline{t}_{1}^{M} = \underline{t}_{2}^{M} \\ F \operatorname{si} \underline{t}_{1}^{M} \neq \underline{t}_{2}^{M} \end{cases}$$

$$v^{M}(\underline{A}_{1}^{2}(t)) = \begin{cases} V \text{ si } t^{M} \text{ es primo} \\ F \text{ si } t^{M} \text{ no es primo} \end{cases}$$

3. Interpretamos el resto de las fórmulas cerradas

$$\checkmark$$
 v^M(α_1 α_2) --- como en PROP ---
 \checkmark - v^M($\neg \alpha_1$) --- como en PROP ---

$$\checkmark$$
v^M((∀x_i)α) = V
si v^M(α[m/x_i]) = V para toda m∈ Z
 \checkmark v^M((∃x_i)α) = V
si v^M(α[m/x_i]) = V para algún m∈ Z

En general...

Sea un lenguaje con alfabeto:

$$A_1^{1} - A_m^n f_1^{1} - f_1^k C_1, C_k$$

Sea M una interpretación del tipo adecuado.

Def [interpretación de términos cerrados de Len M]

La interpretación de los términos cerrados de L en M es una función $_^{M}$: $TERM_{C} \rightarrow |M|$ que satisface:

- $-(c_i)^M = \underline{c}_i$ para todo $i \in I$
- (a)^M=a para todo a∈ |M|
- $-\mathbf{f}_{l}^{k}(t_{1},...,t_{k})^{M} = \underline{\mathbf{f}_{\underline{l}}^{k}}(\underline{t}_{1}^{M},...,\underline{t}_{\underline{k}}^{M})$ para i = 1,...m

Def [interpretación de sentencias de L en M]

La interpretación de las fórmulas cerradas de L en M es una función v^{M} : FORM_C \rightarrow {V,F} que satisface:

$$- v^{\mathsf{M}}(\mathbf{A_m}^{\mathsf{n}} (t_1,...,t_n)) = \begin{cases} V \ \text{si} < \underline{t_1}^{\mathsf{M}},...,\underline{t_n}^{\mathsf{M}} > \in \underline{\mathbf{A}_m}^{\mathsf{n}} \\ F \ \text{si} < t_1^{\mathsf{M}},...,t_n^{\mathsf{M}} > \notin \underline{\mathbf{A}_m}^{\mathsf{n}} \end{cases}$$

- --- como en PROP ---- $V^{M}(\alpha_1 \quad \alpha_2)$, $V^{M}(\neg \alpha_1)$
- $v^{M}((\forall x)\alpha) = V \text{ si } v^{M}(\alpha[m/x_{i}]) = V \text{ para toda } m \in Z$
- $v^{M}((∃x_i)α) = V si v^{M}(α[m/x_i])= V para algún m∈ Z$

Notación: M |= α significa $v^{M}(\alpha) = V$

Hasta aqui tratamos las fórmulas cerradas

Dada una interpretación M para L

✓ Respectivamente α es falsa en M sii v^{M} (α) = F

Hasta aqui tratamos las fórmulas cerradas

Sólo cuando se ha dado una Interpretación a los símbolos del alfabeto de L tiene sentido hablar del « significado de las fórmulas »

Que pasa con los otros elementos de FORM?

Semántica: Lógica de predicados Consideramos:

$$\alpha \in \text{FORM} - \text{FORM}_{C}$$
, $VL(\alpha) = \{x_1 \ x_2,..., x_K \}$ y sea M interpretación de L

$$M = \alpha ???$$

Para poder dar la semántica de todos los elementos de FORM planteamos las siguientes definiciones

Def [clausura universal de una fórmula]

Sea $\alpha \in FORM$, y sea $FV(\alpha) = \{z_1,...,z_k\}$. Entonces $cl(\alpha)$ es la fórmula $(\forall z_1)..., (\forall z_k)\alpha$.

<u>Def</u>

Sea α∈ FORM no cerrada.

Entonces M $= \alpha$ (α es verdadera en M) sii M $= cl(\alpha)$ (v^M ($cl(\alpha)$) = V)

Respectivamente α es falsa en M sii v^{M} (cl(α)) = F

Semántica: Lógica de predicados Consideramos:

α ∈ FORM, sea M interpretación de L

→ M es un modelo para α

Mas definiciones:

✓ Si FV(α) = {x₁,...,x_k} con k>0, decimos que v es una valoración de α si v: {x₁,...,x_k} \rightarrow |M|^k

- ✓ α es satisfecha por una valoración v si M |= $\alpha[v(x_1)...,v(x_k)/x_1,...,x_k]$.
- ✓ En este caso, decimos que α es satisfactible en M.

α es satisfactible si existe alguna interpretación M tal
 que α es satisfactible en M

Sólo cuando se ha dado una Interpretación a los símbolos de L tiene sentido hablar del « significado de las fórmulas »

✓ Luego, sólo podremos considerar su valor de verdad (V, F) en el contexto de una interpretación.

Log. Proposicional $\alpha \in \mathsf{PROP}$ dada $\mathsf{v}, \mathsf{v}(\alpha) \in \{\mathsf{V},\mathsf{F}\}$ depende de $\mathsf{v}(\mathsf{pi})$ TAUTOLOGIAS

Log de Predicados $\alpha \in FORM$ dada M, v^M (α) $\in \{V,F\}$ depende de M

Mas definiciones:

✓ Sea $\alpha \in$ FORM, entonces $|= \alpha$ (lógicamente válida - verdadera) sii para toda interpretación M, M $|= \alpha$.

✓ Sea α∈ FORM, entonces α es contradictoria si α es falsa en toda interpretación M

✓ Sea $\alpha \in \mathsf{FORM}_{\mathbf{C}}$, $\Gamma \subseteq \mathsf{FORM}_{\mathbf{C}}$. Entonces $\Gamma \models \alpha$ sii para toda interpretación M, si M |= φ para todo $\varphi \in \Gamma$, entonces M |= α

Nomenclatura

- si M |= α decimos que M es modelo de α

- si M \mid = ϕ para todo $\phi \in \Gamma$ decimos que M es modelo de Γ

- si Γ |= α decimos que α es consecuencia semántica de Γ

RAZONAMIENTOS

Relación: Tautologías – Lógicamente válidas

Formas tautológicas de PROP — Tautologías FORM

(
$$\alpha \vee \neg \alpha$$
 \longrightarrow $\mathbf{A_m}^n (t_1,...,t_n) \vee \neg \mathbf{A_m}^n (t_1,...,t_n))$

≠ ?? Si

Ejemplo:

Sea el lenguaje L*, aritmética de los N con alfabeto

$$A_1^2$$
, f_1^1 , f_1^2 , f_2^2 , C_1

Interpretación N:

$$D^{N}$$
 es $N_0 < =, S, +, *, 0 >$

Dada
$$\alpha$$
: $(\forall x_1) A_1^2 (f_1^2 (x_1 x_2), c_1)$
 $N = \alpha$?

$$cl(\alpha) = (\forall x_2) (\forall x_1) A_1^2 (f_1^2 (x_1 x_2), c_1)$$

$$N = cl(\alpha)?$$

En N:
$$\forall x_2, x_1 \in \mathbb{N}, x_1 + x_2 = 0$$
 $v^{N}(cl(\alpha)) = F$

Luego N $\neq \alpha$ y por lo tanto $\neq \alpha$,

será contradicción ? Será satisfactible ?