ML hw2

March 10, 2020

1 Gradescope

Author: Yibo Liu (yl6769)

2 Computing Risk

2.1 Expectations

1(a)
$$E[||\vec{x}||_2^2] = E[x_1^2 + ... + x_n^2] = nE[x_i^2] = n((-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2)/5 = 2n$$

1(b) $E[||\vec{x}||_{\infty}] = E[max_i|x_i|] = (-2)/5 + 2/5 = 4/5$
1(c) For the elements in $\Sigma_{\vec{x}}$, $\Sigma_{ii} = Var[x_i] = E[x_i^2] - E[x_i]^2 = 2$, $\Sigma_{ij} = 0$ ($i \neq j$)

2.2 Bayes risk

2(a) We have
$$E[a] = a$$
, $Var[a] = 0$
 $E[(a - y)^2] = E[a^2 + y^2 - 2ay] = E[a^2] + E[y^2] - 2E[ay] = Var(a) + E[a]^2 + Var(y) + E[y]^2 - 2aE[y] = Var[y] + (a - E[y])^2$
Therefore, $a^* = E[y]$, the Bayes risk is $Var[y]$

2.3 Bayes decision function

2(b)(i)

We have
$$E[a|x]=a$$
, $Var[a|x]=0$, because a is a deterministic function of x. $E[(a-y)^2|x]=E[a^2+y^2-2ay|x]=E[a^2|x]+E[y^2|x]-2E[ay|x]=Var(a|x)+E[a|x]^2+Var(y|x)+E[y|x]^2-2aE[y|x]=Var[y|x]+(a-E[y|x])^2$ Therefore, $a^*=E[y|x]$, the Bayes risk is $Var[y|x]$

2(b)(ii)

$$E[(f^*(x) - y)^2] = E[E[(f^*(x) - y)^2 | x]] \le E[E[(f(x) - y)^2 | x]] = E[(f(x) - y)^2]$$

The first and the second equality uses the law of iterated expectations. The inequality uses the given fact that $E[(f^*(x) - y)^2 | x] \le E[(f(x) - y)^2 | x]$, Since the expectations are scaler, so the inequality of the expectations of these expectations is also true.

3 Linear Regression

3.1 Feature normalization

1(a)

```
[5]: import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
```

```
### Feature normalization
     def feature_normalization(train, test):
         """Rescale the data so that each feature in the training set is in
        the interval [0,1], and apply the same transformations to the test
        set, using the statistics computed on the training set.
        Args:
             train - training set, a 2D numpy array of size (num_instances, \Box
      \hookrightarrow num_features)
             test - test set, a 2D numpy array of size (num_instances, num_features)
        Returns:
             train_normalized - training set after normalization
             test_normalized - test set after normalization
        train_min = np.amin(train, axis=0)
        train_max = np.amax(train, axis=0)
        train_range = train_max - train_min
        del_li = []
        for i in range(len(train_range)):
            if train_range[i] == 0:
                del_li.append(i)
        train = np.delete(train, del_li, axis=1)
        test = np.delete(test, del_li, axis=1)
        train_range = np.delete(train_range, del_li)
        train_min = np.delete(train_min, del_li)
        train_normalized = (train - train_min) / train_range
        test_normalized = (test - train_min) / train_range
        return train_normalized, test_normalized
```

loading the dataset Split into Train and Test Scaling all to [0, 1]

3.2 Objective function

2(a)
$$J = \frac{1}{m} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2 = \frac{1}{m} |X\theta - Y|^2 = \frac{1}{m} (X\theta - Y)^T (X\theta - Y)$$

3.3 Gradient of objective function

$$2(b) \nabla J = \frac{2}{m} X^T (X\theta - Y)$$

3.4 Using first order approximation

2(c)
$$J(\theta + \eta h) \simeq J(\theta) + \eta h^T \nabla J(\theta)$$

3.5 Update expression

$$2(d) \theta' = \theta - \eta \nabla I(\theta)$$

3.6 Compute square loss

2(e)

```
Args:
    X - the feature vector, 2D numpy array of size (num_instances, □ → num_features)
    y - the label vector, 1D numpy array of size (num_instances)
    theta - the parameter vector, 1D array of size (num_features)

Returns:
    loss - the average square loss, scalar
"""

loss = 0 #Initialize the average square loss
#TODO

m = X.shape[0]
diff = np.dot(X, theta) - y
loss = 1/(2*m) * np.dot(diff, diff)
return loss
```

3.7 Compute square loss gradient

2(f)

```
### The gradient of the square loss function
     def compute_square_loss_gradient(X, y, theta):
         Compute the gradient of the average square loss (as defined in_{\sqcup}
      \rightarrow compute_square_loss), at the point theta.
        Args:
            X - the feature vector, 2D numpy array of size (num_instances, _
      \rightarrow num_features)
            y - the label vector, 1D numpy array of size (num_instances)
             theta - the parameter vector, 1D numpy array of size (num_features)
        Returns:
             grad - gradient vector, 1D numpy array of size (num_features)
        #TODO
        m = X.shape[0]
        diff = np.dot(X, theta) - y
        grad = (1/m) * np.dot(diff, X)
        return grad
```

3.8 Gradient checker

3(a)

```
### Gradient checker
      #Getting the gradient calculation correct is often the trickiest part
      #of any gradient-based optimization algorithm. Fortunately, it's very
      #easy to check that the gradient calculation is correct using the
      #definition of gradient.
      #See http://ufldl.stanford.edu/wiki/index.php/
      \rightarrow Gradient_checking_and_advanced_optimization
     def grad_checker(X, y, theta, epsilon=0.01, tolerance=1e-4):
          """Implement Gradient Checker
         Check that the function compute_square_loss_gradient returns the
         correct gradient for the given X, y, and theta.
         Let d be the number of features. Here we numerically estimate the
         gradient by approximating the directional derivative in each of
         the d coordinate directions:
          (e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_d = (0, \dots, 0, 1))
         The approximation for the directional derivative of J at the point
         theta in the direction e_i is given by:
          (J(theta + epsilon * e_i) - J(theta - epsilon * e_i)) / (2*epsilon).
         We then look at the Euclidean distance between the gradient
         computed using this approximation and the gradient computed by
         compute_square_loss_gradient(X, y, theta). If the Euclidean
         distance exceeds tolerance, we say the gradient is incorrect.
         Args:
             \it X - the feature vector, 2D numpy array of size (num_instances, \it \square
       \rightarrow num_features)
             y - the label vector, 1D numpy array of size (num_instances)
              theta - the parameter vector, 1D numpy array of size (num_features)
             epsilon - the epsilon used in approximation
             tolerance - the tolerance error
         Return:
             A boolean value indicating whether the gradient is correct or not
         true_gradient = compute_square_loss_gradient(X, y, theta) #The true gradient
         num_features = theta.shape[0]
         approx_grad = np.zeros(num_features) #Initialize the gradient we approximate
         #TODO
         for i in range(num_features):
             e_i = np.zeros(num_features)
             ei[i] = 1
             approx_grad[i] = 1/(2*epsilon) *_
```

```
compute_square_loss(X,y,(theta-epsilon*e_i)))
return np.linalg.norm(true_gradient - approx_grad) < tolerance</pre>
```

```
### Generic gradient checker
     def generic_gradient_checker(X, y, theta, objective_func, gradient_func,_
       ⇒epsilon=0.01, tolerance=1e-4):
          11 11 11
          The functions takes objective_func and gradient_func as parameters.
         And check whether gradient_func(X, y, theta) returned the true
         gradient for objective_func(X, y, theta).
         Eq: In LSR, the objective_func = compute_square_loss, and qradient_func = \Box
       ⇒compute_square_loss_gradient
          11 11 11
         #T∩D∩
         true_gradient = gradient_func(X, y, theta) #The true gradient
         num_features = theta.shape[0]
         approx_grad = np.zeros(num_features) #Initialize the gradient we approximate
         #TODO
         for i in range(num_features):
             e_i = np.zeros(num_features)
             e_i[i] = 1
             approx_grad[i] = 1/(2*epsilon) *_
       →(objective_func(X,y,(theta+epsilon*e_i)) -
                                        objective_func(X,y,(theta-epsilon*e_i)))
           print(true_gradient, approx_grad)
         return np.linalg.norm(true_gradient - approx_grad) < tolerance
```

3.9 Batch gradient descent

4(a) (Taking all examples as a batch)

```
Returns:
       theta\_hist - the history of parameter vector, 2D numpy array of size_{\sqcup}
→ (num_step+1, num_features)
                    for instance, theta in step 0 should be theta_hist[0], __
\rightarrow theta in step (num_step) is theta_hist[-1]
       loss_hist - the history of average square loss on the data, 1D numpy_{\sqcup}
\rightarrow array, (num_step+1)
  num_instances, num_features = X.shape[0], X.shape[1]
  theta_hist = np.zeros((num_step+1, num_features)) #Initialize theta_hist
  loss_hist = np.zeros(num_step+1) #Initialize loss_hist
  theta = np.zeros(num_features) #Initialize theta
   #TODO
  grad_err = False
  theta_hist[0] = theta
  for i in range(num_step):
       loss = compute_square_loss(X, y, theta)
       loss_hist[i] = loss
       grad = compute_square_loss_gradient(X, y, theta)
       if grad_check and grad_checker(X,y,theta) == False:
           print("alpha=",alpha,"grad error at step", i)
           grad_err = True
           break
       theta = theta - alpha * grad
       theta_hist[i+1] = theta
  loss_hist[i+1] = compute_square_loss(X, y, theta)
  return theta_hist, loss_hist, grad_err
```

3.10 Experiment on step size

alpha= 0.4 grad error at step 7

4(b)

alpha= 0.3 grad error at step 9 alpha= 0.2 grad error at step 12

Conclusion: When alpha(step size)=0.1, 0.05, 0.01, the average square loss converges, and it converges faster when alpha is larger. However, when alpha grows larger, e.g. alpha=0.2,0.3,0.4,0.5, the average square loss does not converge.

4 Ridge Regression

4.1 Vector gradient of J

$$\nabla J(\theta) = \frac{2}{m} X^{T} (X\theta - Y) + 2\lambda \theta^{T}$$

Updating θ : $\theta' = \theta - \eta \nabla J(\theta)$

4.2 Compute regularized square loss gradient

4.3 Regularized gradient descent

```
### Regularized batch gradient descent
      def regularized_grad_descent(X, y, alpha=0.05, lambda_reg=10**-2, num_step=1000,__
       →grad_check=False):
          11 11 11
          Args:
              X - the feature vector, 2D numpy array of size (num_instances, ⊔
       \rightarrow num_features)
              y - the label vector, 1D numpy array of size (num_instances)
              alpha - step size in gradient descent
              lambda_req - the regularization coefficient
              num_step - number of steps to run
          Returns:
              theta_hist - the history of parameter vector, 2D numpy array of size_{\sqcup}
       \rightarrow (num_step+1, num_features)
                           for instance, theta in step 0 should be theta_hist[0], _
       \rightarrow theta in step (num_step+1) is theta_hist[-1]
              loss hist - the history of average square loss function without the 
       →regularization term, 1D numpy array.
          num_instances, num_features = X.shape[0], X.shape[1]
          theta = np.zeros(num_features) #Initialize theta
          theta_hist = np.zeros((num_step+1, num_features)) #Initialize theta_hist
          loss_hist = np.zeros(num_step+1) #Initialize loss_hist
          #TODO
          grad_err = False
          theta_hist[0] = theta
          for i in range(num_step):
              loss = compute_square_loss(X, y, theta)
              loss_hist[i] = loss
```

```
grad = compute_regularized_square_loss_gradient(X, y, theta, lambda_reg)
if grad_check and grad_checker(X,y,theta) == False:
    print("alpha=",alpha,"grad error at step", i)
    grad_err = True
    break
theta = theta - alpha * grad
theta_hist[i+1] = theta
loss_hist[i+1] = compute_square_loss(X, y, theta)
return theta_hist, loss_hist, grad_err
```

4.4 Explain bias in optimization

The bias term is the product of B and the last column in theta. When applying a regularization, if B is very large, the adjustment on theta would be small. Therefore, the effectiveness of regularization on bias term is decreased. We could set B approching infinity to make the regularization negligible.

4.5 Find optimal parameter

Find the lambda that minimize the average square loss (without regularization part) on the test set. First we fix B=1, set step size (alpha) to 0.1 (which is the optimal alpha from the previous experiments) and try a range of lambda.

```
[28]: plt_lambda_reg([1e-7,1e-5,1e-3,1e-1,1, 10,100])
```


When lambda=1, 10 or 100, the loss diverges.

When lambda=0.1,0.001,1e-5,1e-7, the loss converges.

In order to find the lambda with the minimal loss on test set, we compare the minimal loss among all steps for different lambda.

```
[66]: a = 0.1
      # TODO: choose alpha from backtracking line search
      li = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
      train_loss = []
      test_loss = []
      steps = []
      for l in li:
          # train loss
          theta_hist, loss_hist, grad_err = regularized_grad_descent(X_train,y_train,u
       →alpha=a, lambda_reg=1, num_step=1000)
          train_loss.append(loss_hist[-1])
          # test loss
          test_loss_hist= [compute_square_loss(X_test,y_test,theta) for theta in_
       →theta_hist]
          # find the minimum test loss with theta from all training steps
            test_loss.append(test_loss_hist[-1])
          i = np.argsort(test_loss_hist)[0]
          test_loss.append(test_loss_hist[i])
          steps.append(i)
```


We choose labmda=0.01 as the optimal lambda, since test loss reaches the minimum.

4.6 What theta to select

In practice, choose the theta when using lambda=0.01 and step=289, because it achieves the minimum loss on test set.

5 Stochastic Gradient Descent

5.1 Objective function equivalence

$$f_{i}(\theta) = (h_{\theta}(x_{i}) - y_{i})^{2} + \lambda \theta^{T} \theta$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} f_{i}(\theta) = \frac{1}{m} \sum_{i=1}^{m} ((h_{\theta}(x_{i}) - y_{i})^{2} + \lambda \theta^{T} \theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_{i}) - y_{i})^{2} + \lambda \theta^{T} \theta$$

5.2 Prove unbiased estimator

```
Left of the equation: E[\nabla f_i(\theta)] = \sum_{i=1}^m P(i) \nabla f_i(\theta) = \sum_{i=1}^m \frac{1}{m} \nabla f_i(\theta)
Right of the equation: \nabla J(\theta) = \nabla (\frac{1}{m} \sum_{i=1}^m f_i(\theta)) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\theta)
Therefore, E[\nabla f_i(\theta)] = \nabla J(\theta)
```

5.3 Update rule

 $\theta' = \theta - stepsize * \nabla f_i(\theta)$ for every sample x_i

5.4 Implement SGD

```
if alpha is a float, then the step size in every step is the
 \hookrightarrow float.
                if \ alpha == "1/sqrt(t)", \ alpha = 1/sqrt(t).
                if alpha == "1/t", alpha = 1/t.
        lambda_reg - the regularization coefficient
        num_epoch - number of epochs to go through the whole training set
    Returns:
        theta\_hist - the history of parameter vector, 3D numpy array of size_{\sqcup}
 → (num_epoch, num_instances, num_features)
                      for instance, theta in epoch 0 should be theta_hist[0], _
 \hookrightarrow theta in epoch (num_epoch) is theta_hist[-1]
        loss hist - the history of loss function vector, 2D numpy array of size\Box
 → (num_epoch, num_instances)
    num_instances, num_features = X.shape[0], X.shape[1]
    theta = np.ones(num_features) #Initialize theta
    theta_hist = np.zeros((num_epoch, num_instances, num_features)) #Initialize_
 \rightarrow theta_hist
    loss_hist = np.zeros((num_epoch, num_instances)) #Initialize loss_hist
    #TODO
    for i in range(num_epoch):
        # shuffle
        idx = np.arange(num_instances)
        random.shuffle(idx)
        X = X[idx]
        y = y[idx]
        loss = 0
        for j in range(num_instances):
            if alpha == '1/sqrt(t)':
                alpha = c/np.sqrt((i*num_epoch+j+1))
            elif alpha == '1/t':
                alpha = c/(i*num_epoch+j+1)
            theta_hist[i][j] = theta
            diff = np.dot(X[j],theta) - y[j]
            loss = np.dot(diff,diff) + lambda_reg * np.dot(theta,theta)
            loss_hist[i][j] = loss
            grad = 2*(np.dot(diff,X[j])+lambda_reg*theta)
            theta = theta - alpha * grad
          if i%100==0:
#
              print('epoch=',i,'loss=',np.mean(loss_hist[i],axis=0))
    return theta_hist, loss_hist
```

5.5 Find optimal parameters

(1) Fixed step size

```
[78]: plt_fix_sgd([0.005,0.01,0.02,0.03,0.04,0.05])
```

/opt/conda/envs/dsga-1003/lib/python3.7/site-packages/ipykernel_launcher.py:48: RuntimeWarning: overflow encountered in multiply


```
[79]: plt_fix_sgd([0.005,0.01,0.02])
```


(2) Decaying step size using different schedules

```
[29]: def plt_decay_sgd(li, alpha):
    for c in li:
        theta_hist, loss_hist = stochastic_grad_descent(X_train, y_train, u)
        alpha=alpha, c=c)
        avg_loss_hist = np.mean(loss_hist, axis=1)
        plt.plot(range(len(avg_loss_hist)),np.
        →log(avg_loss_hist),label="c="+str(c))
        plt.title('Decaying step size for SGD (c'+ alpha[1:] + ')')
        plt.xlabel("epoch")
        plt.ylabel("average square loss + reg")
        plt.legend(loc = 1)
        plt.show()
```

```
[30]: plt_decay_sgd([1e-5, 1e-4, 1e-3, 1e-2, 0.1], '1/sqrt(t)')
```

/opt/conda/envs/dsga-1003/lib/python3.7/site-packages/ipykernel_launcher.py:51: RuntimeWarning: overflow encountered in multiply

When the initial step size c=0.1, it is too aggressive that the loss function does not converge.

The when c<0.001, the loss function converges too slow. When c>0.001, it does not reach the minimum loss. So the best configuration is c=0.001 for the schema $step \ size = c/sqrt(t)$.

/opt/conda/envs/dsga-1003/lib/python3.7/site-packages/ipykernel_launcher.py:48: RuntimeWarning: overflow encountered in multiply

When the initial step size c=0.1, it is too aggressive that the loss function does not converge.

The when c<0.001, the loss function converges too slow. When c>0.001, it does not reach the minimum loss. So the best configuration is c=0.001 for the schema $step \ size = c/t$.

(3) Compare GD with SGD

```
[94]: import time
    start_time = time.time()
    theta_hist, loss_hist = stochastic_grad_descent(X_train, y_train)
    print('SGD training time for 1000 epoch',time.time()-start_time)
    avg_loss_hist = np.mean(loss_hist, axis=1)
    plt.plot(range(len(avg_loss_hist)),np.log(avg_loss_hist),label='SGD')

    start_time = time.time()
    theta_hist, loss_hist, _ = regularized_grad_descent(X_train, y_train)
    print('GD training time for 1000 epoch',time.time()-start_time)
    plt.plot(range(len(loss_hist)),np.log(loss_hist),label='GD')

    plt.title('Training loss GD vs SGD')
    plt.xlabel("epoch")
    plt.ylabel("average square loss + reg")
    plt.legend(loc = 1)
    plt.show()
```

SGD training time for 1000 epoch 1.841592788696289 GD training time for 1000 epoch 0.02275848388671875

It shows that SDG converges slower than GD once we get close to the minimizer.

5.6 Adaptive step size

(1) average theta

test loss with last step theta: 4.0259 test loss with average theta: 3.285

(2) The new stepsize rule: $stepsize = \frac{c}{1+c\lambda t}$

```
### Stochastic gradient descent
      import random
      def stochastic_grad_descent(X, y, alpha=0.01, lambda_reg=10**-2, num_epoch=1000,__
       \rightarrowc=0.1):
          In this question you will implement stochastic gradient descent with \sqcup
       \rightarrow regularization term
          Args:
              X - the feature vector, 2D numpy array of size (num_instances, \Box
       \rightarrow num_features)
              y - the label vector, 1D numpy array of size (num_instances)
              alpha - string or float, step size in gradient descent
                       NOTE: In SGD, it's not a good idea to use a fixed step size.
       \rightarrow Usually it's set to 1/sqrt(t) or 1/t
                       if alpha is a float, then the step size in every step is the \Box
       \hookrightarrow float.
                       if \ alpha == "1/sqrt(t)", \ alpha = 1/sqrt(t).
```

```
if alpha == "1/t", alpha = 1/t.
       lambda_req - the regularization coefficient
       num_epoch - number of epochs to go through the whole training set
  Returns:
       theta\_hist - the history of parameter vector, 3D numpy array of size_{\sqcup}
→ (num_epoch, num_instances, num_features)
                    for instance, theta in epoch 0 should be theta_hist[0], _
→theta in epoch (num_epoch) is theta_hist[-1]
       loss hist - the history of loss function vector, 2D numpy array of size_{\sqcup}
→ (num_epoch, num_instances)
  num_instances, num_features = X.shape[0], X.shape[1]
  theta = np.ones(num_features) #Initialize theta
  theta_hist = np.zeros((num_epoch, num_instances, num_features)) #Initialize_
\rightarrow theta_hist
  loss_hist = np.zeros((num_epoch, num_instances)) #Initialize loss_hist
  #TODO
  for i in range(num_epoch):
       # shuffle
       idx = np.arange(num_instances)
      random.shuffle(idx)
      X = X[idx]
       y = y[idx]
       loss = 0
       for j in range(num_instances):
           t = i*num_epoch+j+1
           if alpha == '1/sqrt(t)':
               alpha = c/np.sqrt(t)
           elif alpha == '1/t':
               alpha = c/t
           elif alpha == 'new':
               alpha = c/(1+c*lambda_reg*t)
           theta_hist[i][j] = theta
           diff = np.dot(X[j],theta) - y[j]
           loss = np.dot(diff,diff) + lambda_reg * np.dot(theta,theta)
           loss_hist[i][j] = loss
           grad = 2*(np.dot(diff,X[j])+lambda_reg*theta)
           theta = theta - alpha * grad
  return theta_hist, loss_hist
```

(i) Find the best parameter *c*

When $\eta_0 = 0.001$, the loss function converges with the minimum.

(ii) Compare different stepsize rules with their optimal parameters

The three stepsize rules have similar performances.