اختبار في مادة: الرياضيات الشعبة: تقني رياضي المدة: 04 ساعات ونصف

(الموضوع الأول) عناصر الإجابة المتحرين الأول: (10 نقاط) مجاوع الأول (الموضوع الأول) المتحرين الأول: (10 نقاط) مجاوع الأول (المحرين الأول: (10 نقاط) مجاوع المتحرين الأول: (1.1 مناطق المتحرين المتحري المتحرين المتحري المتحرين المتحري المتحرين المتحرين المتحرين المتحري المتحرين المتحري المتحرين المتحري المتحرين المتحري	العلامة مجزأة مجموع		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c} 0.5 & \arg(z) = -\frac{\pi}{6} \;\; _{g} z = 4\sqrt{2} \;\; _{g} \text{ arg} \;\; _{g} z = z_{_{A}} \times 4e^{\frac{\pi}{12}} = 4\sqrt{2}e^{-\frac{\pi}{6}} \;\; _{g} \text{ with} \;\; _{g} z = z_{_{A}} \times 4e^{\frac{\pi}{12}} = 4\sqrt{2}e^{-\frac{\pi}{6}} \;\; _{g} \text{ with} \;\; _{g} z = -2e^{-\frac{\pi}{6}} \;\; _{g} z = -2e^{-$		0,5	$z_{B} = 3\sqrt{2}e^{i\left(\frac{\pi}{4}\right)}$, $z_{A} = \sqrt{2}e^{i\left(-\frac{\pi}{4}\right)} = \sqrt{2}e^{i\left(\frac{\pi}{4}\right)}$ -1.1
$\frac{z}{z_A} = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2})$ $\frac{z}{z_A} = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2})$ $\frac{z}{z_A} = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2})$ $\frac{z}{z_A} = \frac{z}{4} = \frac{z}{2} = \frac{z}{4}$ $\frac{z}{4} = \frac{z}{2} = \frac{z}{4} = \frac{z}{4}$ $\frac{z}{4} = \frac{z}{2} = \frac{z}{4} = \frac{z}{4}$ $\frac{z}{4} = \frac{z}{2} = \frac{z}{4} = \frac{z}{4}$ $\frac{z}{4} = \frac{z}{4} = \frac{z}{4}$ $\frac{z}{2} = \frac{z}{2}$ $\frac{z}{$		0,5	/ N #
المناف العالمي و مناف العالمي و $\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$ و $\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$ و $\frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12}$ و $\frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12}$ و $\frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12}$ و $\frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12} = \frac{\pi}{12}$ و $\frac{\pi}{12} = \frac{\pi}{12} = \frac$		0,5	$\arg(z) = -\frac{\pi}{6}$ و منه $ z = 4\sqrt{2}$ و منه $z = z_A \times 4e^{i\frac{\pi}{12}} = 4\sqrt{2}e^{-i\frac{\pi}{6}}$ دينا:
$\frac{1}{12} = \frac{1}{4}$ و $\frac{1}{2} = \frac{1}{4}$	04	0,5	$\frac{z}{z_A} = \left(\sqrt{6} + \sqrt{2}\right) + i\left(\sqrt{6} - \sqrt{2}\right)$
المثلث ABC متساوي الساقين وقائم في ABC $Z_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A + Z_B + Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A - Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A - Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_A - Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_C - Z_C}{-1 + 1 + 1} = -1 + 5i - \Psi$ $D_D = \frac{-Z_C - Z_C}{-1 + 1 + 1} = -1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	نقاط	0,5	$\sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} \text{sos} \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \text{-} $
$z_D = \frac{-z_A + z_B + z_C}{-1 + 1 + 1} = -1 + 5i \cdot \mathbf{v}$ ABC $0,5$ ABC $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ ABC $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ 0		0,5	$z_{C}=-3+i$ ومنه $z_{C}-z_{A}=e^{irac{\pi}{2}}ig(z_{B}-z_{A}ig)$ - 1 .2
$z_D = \frac{-z_A + z_B + z_C}{-1 + 1 + 1} = -1 + 5i \cdot \mathbf{v}$ ABC $0,5$ ABC $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ $ABDC$ $0,5$ ABC $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ 0		0,25	المثلث ABC متساوي الساقين وقائم في A ،
متساوي الساقين وقائم في A إذاً فهو مربع . A التعرين الثاني: (\$\frac{10}{40}\$ is 6) (\$\frac{10}{40}\$ is 6] (0,25	$z_D = \frac{-z_A + z_B + z_C}{-1 + 1 + 1} = -1 + 5i - 4$
متساوي الساقين وقائم في A إذا فهو مربع . التمرين الثاني: (50 نقاط) $0,5$ 0.5 $\overline{AB}(1;-2;0) \wedge \overline{AC}(-3;1;5)$ $\overline{AC}(-3;1;5)$ $\overline{AB}(1;-2;0) \wedge \overline{AC}(-3;1;5)$ $\overline{AB}(1;-2;0) \wedge \overline{AC}(-3;1;5)$ $\overline{AB}(1;-2;0) \wedge \overline{AC}(-3;1;5)$ $\overline{AB}(1;-2;0) \wedge \overline{AB}(1;0;0)$ $\overline{AB}(1;0;0)$ $\overline{AB}(1;0;0)$ $\overline{AB}(1;0;0)$ $\overline{AB}(1;0;0)$ $\overline{AB}(1;0)$ $$		0,5	ABC ومنه $\overrightarrow{CD}=\overline{AB}$ وبالتالي $\overline{CD}=\overline{AB}$ مثوازي أضلاع و $z_D-z_C=z_B-z_A$
0,5 . 0			متساوي الساقين وقائم في A إذاً فهو مربع .
0.5 0.5 0.6 0.5 0.7 0.25	į		التمرين الثاني: (05 نقاط)
0,25 $0,25$ $0,25$ $0,25$ $0,5$ $0,5$ $0,7$ $0,12$ $0,5$ $0,7$		0,5	ومنه النقط A و B و A ومنه النقط A و A و A تعين مستويا.
$0,5$. $x+y-3z-1=0$: هي (\mathcal{P}) هي (\mathcal{P}) معادلة المستوي (\mathcal{P}) هي $(n,n')=0$ و منه $(n,n')=0$ و منه $(n,n')=0$ و		0,5	$\vec{n}(ABC)$ ومنه $\vec{n}(2;1;1)$ ناظمي للمستوي $\vec{n}.\overrightarrow{AC}=0$ ومنه $\vec{n}.\overrightarrow{AB}=0$.
04,25 $\vec{n}.\vec{n'} = 0$ و منه $\vec{n'}(1;1;-3)$ و $\vec{n} \perp \vec{n'}$		0,25	$.2x+y+z-6=0:$ معادلة $\left(ABC ight)$ هي:
0.5 $(\Delta) \subset (ABC)$ و $(\Delta) \subset (\mathcal{P})$ نقطة 0.5 0.5 $(\Delta) \subset (\mathcal{P})$ و $(\Delta) \subset (\mathcal{P})$ نقطة 0.5 $0.$		0,5	$x+y-3z-1=0$. أ معادلة المستوي (\mathscr{P}) هي: 0
نقطة 0.5 $(\Delta) \subset (ABC)$ و $(\Delta) \subset (\mathfrak{P})$ نقطة \mathfrak{P} - بالتعویض نجد $(\mathfrak{P}) \subset (\mathfrak{P})$ و $(\Delta) \subset (\mathfrak{P})$ و $(\Delta) \subset (\mathfrak{P})$ انقطة $(\Delta) \subset (\mathfrak{P})$ و $(\Delta) \subset (\mathfrak{P})$		0,25	$\overrightarrow{n}.\overrightarrow{n'}=0$ و (ABC) متعامدان لأن $\overrightarrow{n}\perp\overrightarrow{n'}$ حيث $(n,n'=0)$. ومنه (ABC)
$d\left(H;(\Delta)\right)=d\left(H;(\mathcal{G})\right)=\frac{12\sqrt{11}}{11}$ ب حادث منه $\overline{MH}.$ $u=0$ نكافئ $\overline{MH}.$ $u=0$ نكافئ $\overline{MH}.$ ومنه $u=0$ هو $\overline{MH}.$ ومنه $u=0$ هو المستوي الذي يشمل النقطة $u=0$ شعاع ناظمي له .		0,5	(Δ) \subset (ABC) و (Δ)
$\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ هو $\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ ومنه $\overline{MH}.\overline{u}=0$ المستوي الذي يشمل النقطة \overline{u} و \overline{u} شعاع ناظمي له .		0,5	H(5;-1;-3) - 1.3
المستوي الذي يشمل النقطة H و u شعاع ناظمي له .		0,5	$d(H;(\Delta)) = d(H;(\mathcal{G})) = \frac{12\sqrt{11}}{11} - 1$
المستوي الذي يشمل النقطة H و u شعاع ناظمي له .		0,5	ومنه (\mathscr{G}') هو $\overline{MH}. u=0$ نکافی $(\overline{MA}+\overline{MB}-\overline{MC})$ ومنه (\mathscr{G}') هو
			` _ '
		0,25	

		لوضوع امتحان البكالوريا دورة: 2015	_		
	اختبار في مادة: الرياضيات الشعبة: تقني رياضي المدة: 40 ساعات ونصف				
العلامة		اصر الإجابة	تابع للموضوع الأول عن		
مجموع	مجزأة				
0,75 نقطة	0,5	$E\left(\frac{43}{11}; -\frac{23}{11}; \frac{3}{11}\right)$ ومنه $(\mathfrak{G}) \cap (A)$	$BC) \cap (\mathfrak{P}') = (\Delta) \cap (\mathfrak{P}') = \{E\} \cdot \mathbf{\Psi}$		
	0,25	$d(H;(\Delta)) = EH = \frac{12\sqrt{11}}{11} - \Rightarrow$			
	رين الثالث: (03,5 نقطة)				
	01	ومنه $8^4 \equiv 1[13]$ ، $8^3 \equiv 5[13]$ ، $8^2 \equiv 12$	$[13]$, $8^1 \equiv 8[13]$, $8^0 \equiv 1[13]$ - 1.1		
		$\cdot \alpha \in \{0;1\}$	$\{2;3\}$ مع $8^{4k+a}\equiv 8^a \begin{bmatrix} 13 \end{bmatrix}$ مع		
03, 5	0,75	$42 \times 138^{2015} + 2014^{2037} - 3 = 3 \times 5 - 1 - 3[13]$ ومنه الباقي 11.			
نقطة			$^{3} \equiv (5n+1)8^{2n} - (-8)^{2n+3} [13] - 1.2$		
	01	•	$-5^{2n+3} \equiv (5n+1)8^{2n} + 8^{2n} \times 5[13]$ أي		
	j		$64^{n} - 5^{2n+3} \equiv (5n+6)8^{2n} [13]$		
	0,75		$9 = \frac{1}{2} = \frac{1}{2}$ لأن 8^{2n} أولي مع $n + 6 = 0$		
	·	3[-1] , 1	التمرين الرابع: (07,5 نقطة)		
	0,5	· lim x→-∞	$h(x) = +\infty$: $\lim_{x \to -2} h(x) = +\infty$.1 (1		
	0,25	$h'(x) = \frac{2(x^2 + 4x + 3)}{x + 2}$:]-2;+ ∞ [من أجل كل x من أجل كل x من أجل كا			
	0,25	$[-1;+\infty]$ الدالة h متناقصة تماما على $[-2;-1]$ ومنز ايدة تماما على			
	0,25	جدول تغيرات الدالة h.			
	0,25	$h(x)>0$ ومنه $h(x)\geq 3$ ، $]-2;+\infty[$ ومنه 3.			
	0,25	$\lim_{x \to -2} f(x) = -\infty .1 (II)$			
04 نقطة	0,25	$\cdot (C_r)$	معادلة المستقيم المقارب المنحنى $x=-2$		
تقظه	0,25		$\lim_{x \to +\infty} f(x) = +\infty$		
	0,5	$f'(x) = \frac{h(x)}{(x+2)}$	$\frac{1}{2}:]-2;+\infty[$ من المجال x من المجال 2.1 و المحال x		
	0,25]-2;+0	ب - الدالة f منزايدة تماما على المجال]٥		
	0,25		جدول تغير ات الدالة f .		
	0,25	$\cdot(C_f$) المستقيم المقارب المائل لــ (Δ) المستقيم			
	0.5		x >+\$0=		

 $igl[-1;+\inftyigl[$ علی (Δ) علی (C_f) ؛]-2;-1 علی علی (Δ) علی (C_f) وق

0,5

	ونصف		. لموضوع امتحال البكالوريا دور. الشعبة: <u>تقنى رياضي</u>	اختبار في مادة: الرياضيات
العلامة			ناصر الإجابة	تابع للموضوع الأول ع
مجموع	مجزأة			
	0,25		$f''(x) = \frac{-6 + 4\ln(x + 1)}{(x + 2)^3}$	(2) :]-2;+ ∞ [من المجال x من x من المجال
	0,25		Ĺ	تنعدم عند $e^{\frac{3}{2}}-2$ وتغيّر إشارته $f''(x)$
	0,25	$A\left(c_{f} ight)$ نقطة انعطاف للمنحنى $A\left(e^{rac{3}{2}}-2;e^{rac{3}{2}}+3e^{-rac{3}{2}}-1 ight)$		
	0,75	MI ARE PER SENSE OF SPECIAL PROPERTY OF SERVICE AND AREA OF SERVIC	. (C,	ب - رسم المستقيمين المقاربين والمنحنى (
03,5	0,5	s = 1	$\int_{-1}^{1} f(x) dx = \left[\frac{1}{2} x^2 + x \right]$	$+ \ln^2(x+2) \Big]_{-1}^{1} = \left(2 + \ln^2 3\right) cm^2 - \Rightarrow$
نقطة	0,75	lim x→→	$\frac{g(x)-g(-1)}{x+1}=3$ 9	$\lim_{x \to -1} \frac{g(x) - g(-1)}{x+1} = -3$. 1 (III) الدالة g غير قابلة للاشتقاق عند العدد g
	0,25	.(-1;0	. النقطة ذات الإحداثيتين ((المنحنى $\left(C_{g} ight)$ يقبل نصفي مماسين عند 2
	0,5	بالنسبة إلى (C_r)	$\left(C_{g} ight)$ و $\left(C_{g} ight)$ نظیر $\left(C_{g} ight)$	[على المجال (C_g) على المجال] ينطبق على المجال
				محور الفواصل على المجال [1-;2-[.

العلامة		عناصر الإجابة	(الموضوع الثاني)
مجموع	مجزاة	التمرين الأوّل: (04 نقاط)	
		ASSAMILIAN AND AND AND AND AND AND AND AND AND A	
ļ.	0,5	$x=2+$ هي تمثيل وسيطي للمستقيم (Δ). $z=3+$	2λ ; $(\lambda \in \mathbb{R})$: الجملة
	0,5	\cdot النقطة C نقطة نقاطع المستقيمين D و Δ هي C هي . C	
04 ئقاط	0,5	ومنه $n \perp v_{(D)}$ شعاع ناظمي للمستوي $n \perp v_{(D)}$.	
	0,5	$2x-2y-z+3=0$. هي: (\mathcal{P}) هي: $2x-2y-z+3=0$	
	0,5	x + 2y - 2z - 9 = 0 . $x + 2y - 2z - 9 = 0$	3. ا - المعادلة الديكارئية للمس
	0,5	$E\left(\frac{7}{3};\frac{11}{3};\frac{1}{3}\right)$ ومنه $E\in(\Delta)\cap(0)$ ومنه	
	0,5	$d(B;(\Delta)) = BE = \sqrt{10} - \Rightarrow$	
	0,5	$S_{BEC} = -$	$\frac{1}{2}BE \times CE = 2\sqrt{10} ua$

اختبار في مادة: الرياضيات الشعبة: تقني رياضي المدة: 40 ساعات ونصف

العلامة		The Mark of the Control of the Contr	
مجموع	مجزأة	عناصر الإجابة	(تابع للموضوع الثاني)
			التمرين الثاني: (05 نقاط)
	0,75	,	$\sin^2\theta - 1 = (4i\cos\theta)^2 \cdot 1$
	· 	$z'' = 2\sin\theta - 2i\cos\theta .$	
	0,5	$z_2 = \sqrt{3} - i = 2e^{\left(-\frac{\pi}{6}\right)}$	$z_1 = \sqrt{3} + i = 2e^{i\frac{\pi}{6}}$.2
	0,5		$\frac{z_C - z_A}{z_B - z_A} = i\sqrt{3} - 1.3$
05 نقاط	0,5	ABC قَائَم في ABC	المثلث ، $\frac{z_C - z_A}{z_B - z_A} = \sqrt{3}e^{i\frac{\pi}{2}}$
	0.75	ومنه C هي صورة B بالتشابه المباشر S الذي z_c	
	0,75	<u></u>	مرکزه A ، نسبته $\sqrt{3}$ وزاویته
	0,5	$z_D = 3\sqrt{3} - i$ ومنه $z_D = z_D$	$z + z_{\overline{AC}}$ تعني $t(B) = D - + z_{\overline{AC}}$
	0,5	ئم ومنه الرباعي ABDC مستطيل	والمثلث $\overrightarrow{BD} = \overline{AC}$ فا
	0,5	BC باستثناء B السرتاء B	هي الدائرة ذات الق (Γ_1) . أ
	0,5	باستثناء B.	(BC) هي المستقيم (Γ_2)
!			التمرين الثالث: (04 نقاط)
	0,5	الحدود u_0 ، u_1 ، u_2 و u_3 على حامل محور الفواصل	- ,
	0,25	تزايدة ومتقاربة	(u_n) - التخمين : المتتالية
!	0,75	$0 \le u_n < 8 : n$ کل عدد طبیعي	
04	0,5	$u_{n+1} - u_n = \sqrt{6u_n + 16} - u_n = \frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16} + u_n}$	$n \in \mathbb{N}$ ب - لكل عدد طبيعي $n \in \mathbb{N}$
نقاط	0,5	. N.	منز ايدة على منز ايدة على $oldsymbol{+}$
	0,75	$0 < 8 - u_{n+1} \le \frac{1}{2} (8 - u_{n+1})$	$(n\in\mathbb{N}$. أ - نبيّن أنه لكل $n\in\mathbb{N}$
	0,5	$0 < 8 - u_n \le 8 \left(-\frac{1}{2} \right)$	$\left(\frac{1}{2}\right)^n:n\in\mathbb{N}$ نبین أنه لكل $n\in\mathbb{N}$
	0,25	· Miller of the second of the	$\lim_{n\to+\infty}u_n=8$

تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 . اختبار في مادة: الرياضيات الشعبة: تقني رياضي المدة: 04 ساعات ونصف

العلامة		Adable also Title as a set also	
مجموع	مجزأة	عناصر الإجابة	تابع للموضوع الثاني
! i			التمرين الرابع: (07 نقاط)
	0,5	$\lim_{x\to +\infty} g(x) = +\infty .$	$\lim_{x\to\infty} g(x) = -2 \cdot 1 \cdot (\mathbf{I})$
	0,25	g'(x) = (x+3)e	$^{ imes}$ لکل x من $\mathbb R$ لدینا: $^{ imes}$
	0,25	$x \in [-3; +\infty[$ من أجل $g'(x) \ge 0$ و $x \in]-\infty;$	-3] من أجل $g'(x) \le 0$
ļ !	0,25	$[-3;+\infty[$ ومتزايدة تماما على المجال $-3;+\infty[$	الدالة g متناقصة تماما عل
! !	0,25		جدول تغيّرات الدالة g .
: : : :	0,5	. $x \in [0;+\infty[$ لكل $g(x) \ge 0$ و $x \in]-\infty;0]$ لكل g	$(x) \le 0 \cdot g(0) = 0 \cdot 3$
	0,5	$\lim_{x \to -\infty} f(x) = -\infty : \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} (x+1) \left[\frac{2x-1}{x+1} \right]$	$\left[\frac{+3}{1} - e^x\right] = -\infty .1 \text{ (II)}$
	0,5	f'(x) = -g(x)	 ا - لكل عدد حقيقي
07 نقاط	0,25	;	. f'(x) بـ إشارة
	0,25		جدول تغيرات الدالة f .
	0,25	(C_f) مستقیم مقارب مائل له $\lim_{x \to -\infty} (f(x) - y) = \lim_{x \to -\infty} (f(x) - y)$	$\sum_{\infty} \left[-xe^x - e^x \right] = 0 - \Rightarrow$
	0,5	أجل $-1[-\infty;-1]$ يقع تحت (Δ) من أجل أجل $A(-1;1)$ عند النقطة $A(-1;1)$	
	0,5		3. أ - بتطبيق مبرهنة القيم ا
	0,5	$f(-1,55) \approx 0.01 + f(-1,56) \approx -0.002 + f(0.93) \approx -0.002$	
ļ	0,75		ب - رسم المستقيم (A) والم
	0,25		$u(x) = xe^x - 1.4$
	0,5	$A = \int_0^\alpha \left[2x + 3 - f \left(x \right) \right]$	
	0,25		,31 < A < 2,36 - →