Universidad Galileo Maestría en Data Science Statistical Learning II – U Recurrent Neural Network

Galileo UNIVERSIDAD

Autor: Henry G. Barrientos G. Email: henry.barrientos@galileo.edu

INTRODUCCIÓN

En una una red neuronal recurrente almacenamos las activaciones de salida de una o más de las capas de la red.

Generalmente, estas son activaciones posteriores ocultas. Luego, la próxima vez que alimentemos un ejemplo de entrada a la red, incluiremos las salidas almacenadas previamente como entradas adicionales y es por esto que se llaman recurrentes, de estas existen varios tipos, para nuestro modelo utilizaremos la variante con mejor desempeño, LSTM.

DATASET

El conjunto de datos propuesto tiene un listado de los precios de compra y venta de acciones para varias empresas que son públicas en las bolsas de valores más grandes de Estados Unidos (NYSE, NASDAQ, y NYSE MKT). Se tomará una para entrenar una red neuronal recurente para determinar un modelo de predicción de precios.

RESULTADOS

Luego de varios experimentos, de cambiar los epochs, los tamaños de batch y las funciones de activación para mejorar los resultados y obtener un buen ajuste de predicción, encontramos los siguientes observaciones

ARQUITECTURA

LSTM (Long short-term Memory) son una unidad de construcción para capas de una red neuronal recurrente (RNN). Un RNN compuesto por unidades LSTM a menudo se denomina red LSTM.

Para el desarrollo de nuestro modelo, definimos una arquitectura utilizamos varias capas de tipo LSTM, el optimizador Adam (se hicieron pruebas con adagrad también) y dropout como regularizador, para alcanzar los resultados obtenidos.

CONCLUSIONES

Aunque un poco mas tardado para el entrenamiento, las redes neuronales, recurrentes ofrecen mejores resultados en cuanto a capacidad de predicción. Para este caso en particular, utilizamos la mejor versión de las RNN, LSTM. Que tiene la capacidad de guardar en memoria los valores que utiliza y a la vez, la salida de una neurona es (o puede ser) la entrada de sí misma.