命題と述語

離散数学・オートマトン 2020年後期 佐賀大学理工学部 只木進一

命題

- ■言明:ある事実を述べたもの
 - ■真(true, 正しい)、偽(false, 正しくない)
- ■命題 (proposition): 真偽が定まる言明
- ■真理値/論理値
 - ■T (true) またはF (false)

命題の例

- 1. 7は素数である:T
- 2. 整数の積は整数である: T $\forall x \in Z, \forall y \in Z, \exists z \in Z[xy = z]$
- 3. 2 + 3 = 6:F
- 4. 任意の自然数は、1を除いて、一つまたはそれ以上の素数の積として一意に表すことができる(算術の基本定理):T

論理積と論理和

- ●二つの命題pとq
- 論理積:p∧q
 - ■二つの命題がいずれも成り立つとき真
- 論理和:p ∨ q
 - ■二つの命題のいずれか一方が成り立つとき真
- 排他的論理和: $p \oplus q$
 - ■二つの命題のいずれか一方だけが成り立つとき 真

真理値表

p	\boldsymbol{q}	$p \wedge q$	$p \lor q$	$p \oplus q$
F	F	F	F	F
F	T	F	T	T
T	F	F	T	T
T	T	T	T	F

pはqを含意する

- ■pが成り立つならば、qが成り立つ
 - $ightharpoonup p \Rightarrow q$:
 - **p**を前提(仮定)、qを結論という。
 - ■「pはqを含意する」(p implies q)

pとqは論理的に等しい

- pが成り立つとき、かつその時に限って、 qが成り立つ
 - $p \Leftrightarrow q$
 - **p**とqは同値
 - ▶pとqは論理的に等しい

命題の「逆(opposite)」と「対偶 (contrapositive)」

- 命題 $p \Rightarrow q$ の逆: $q \Rightarrow p$
- 命題 $p \Rightarrow q$ の対偶: $\neg q \Rightarrow \neg p$

$oldsymbol{p}$	q	$p \Rightarrow q$	$q \Rightarrow p$	$\neg q \Rightarrow \neg p$
F	F	T	T	T
F	T	T	F	T
T	F	F	T	F
T	T	T	T	T

©Shin-ichi TADAKI

$$(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$$

$oldsymbol{p}$	q	$\neg p$	$\neg p \lor q$	$p \Rightarrow q$
F	F	T	T	T
F	T	T	T	T
T	F	F	F	F
T	T	F	T	T

背理法 (proof by contradiction)

- 命題 $p \Rightarrow q$ をその対偶 $\neg q \Rightarrow \neg p$ を証明 することで示す
- ●例:合成数(1より大きい素数でない自然数)nは、 \sqrt{n} 以下の素因子を持つ。
 - ▶背理法で証明

合成数(1より大きい素数でない自然数)nは、 \sqrt{n} 以下の素因子を持つ。

- ■例:nが \sqrt{n} 以下の素因子を持たないと仮定。
 - = n = pq(1 と分解
 - $n = pq \ge p^2 \Rightarrow \sqrt{n} \ge p$
 - ■pが素数ならば、仮定と矛盾
 - $\mathbf{p} = rs(r$ は素数) $\Rightarrow \sqrt{n} \ge p \ge r$ 、仮定と矛盾

以下のいずれも論理的に等しい

$$\neg (\neg p) \succeq p$$

$$p \Rightarrow q \geq \neg p \vee q$$

$$(p \land (\neg q)) \Rightarrow F \succeq p \Rightarrow q$$

\boldsymbol{p}	q	$p \Rightarrow q$	$\neg p \lor q$	$p \wedge (\neg q)$
F	F	T	T	F
F	T	T	T	F
T	F	F	F	T
T	T	T	T	F

de Morganの法則

- ■以下はそれぞれ論理的に等しい
 - $-\neg (p \lor q) \succeq (\neg p) \land (\neg q)$
 - $\neg \neg (p \land q) \succeq (\neg p) \lor (\neg q)$

- ■TまたはFを値とする関数を述語という
- →大文字のP、Qなどで表記
- $ightharpoonup P: X_0 \times X_1 \times \cdots \times X_{n-1} \to \{T, F\}$
 - $X_0 \times X_1 \times \cdots \times X_{n-1}$ 上の述語
- $ightharpoonup Q: X^n \to \{T, F\}$
 - ■X上のn変数述語
- ●命題:変数の無い述語

$$P(x) = \begin{cases} T & \text{if } x \ge 0 \\ F & \text{otherwise} \end{cases}$$

$$P(x): x \ge 0$$

$$P(x, y, z) = \begin{cases} T & \text{if } x^2 + y^2 = z^2 \\ F & \text{otherwise} \end{cases}$$

$$P(x, y, z): x^2 + y^2 = z^2$$