

Katedra Metrologii Elektronicznej i Fotonicznej

Nazwa kursu:

Metrologia optyczna - laboratorium

Temat projektu:

Bezdotykowy pomiar temperatury za pomocą pirometru opartym na czujniku MLX90614

Autorzy projektu:

inż. Piotr Rosiński inż. Patryk Niczke inż. Przemysław Lis

Wydział Elektroniki, Fotoniki i Mikrosystemów Kierunek: Elektronika

Miejsce i rok: Wrocław, 2024

Spis treści

1	Wst	tęp	3
	1.1	Wprowadzenie	3
	1.2	Cel projektu	9
	1.3	Zakres projektu	4
2	Założenia projektowe		
	2.1	Opis założeń funkcjonalnych	Ę
	2.2	Opis założeń konstrukcyjnych	Ę
	2.3	Opis założeń środowiskowych	6
	2.4	Opis założeń ekonomicznych	7
3	Cha	arakterystyka wykorzystanych komponentów sprzętowych	8
	3.1	Mikrokontroler Arduino Uno	8
	3.2	Czujnik temperatury MLX90614	Ĝ
	3.3	4-przyciskowa klawiatura	Ĝ
	3.4	Wyświetlacz LCD z konwerterem I2C HD44780	10
4	Ana	aliza struktury zastosowanego oprogramowania	12
	4.1	Połączenie z czujnikiem temperatury MLX90614	12
	4.2	Połączenie z wyświetlaczem LCD HD44780	12
	4.3	Synchroniczna współpraca LCD i czujnika temperatury z wykorzy-	
		staniem mikrokontrolera Arduino	13
5	Uru	ıchomienie projektu i skalibrowanie urządzenia	1 4
	5.1	Proces uruchomienia	14
	5.2	Kalibracja urządzenia	14

6	Wy	konanie testów i dokonanie odpowiednich pomiarów	15	
	6.1	Opis metodyki testowania	15	
	6.2	Przygotowanie do testów	15	
	6.3	Przebieg testów	15	
	6.4	Dokonanie pomiarów	15	
	6.5	Analiza wyników	15	
7	Inst	trukcja użytkowania	16	
	7.1	Krótki opis pirometru i jego przeznaczenia	16	
	7.2	Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z go-		
		rącymi obiektami	16	
	7.3	Podłączenie pirometru do źródła zasilania	16	
	7.4	Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania		
		pomiaru)	16	
	7.5	Czyszczenie powierzchni czujnika	16	
	7.6	Informacje o przechowywaniu	16	
	7.7	Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe		
		rozwiązania	16	
8	Pod	lsumowanie i Wnioski	17	
Bi	Bibliografia			

Wstęp

1.1 Wprowadzenie

Metrologia optyczna stanowi obecnie jeden z najważniejszych narzędzi pomiarowych w nauce i przemyśle stale zwiększając swoje znaczenie. Bezdotykowy pomiar temperatury rewolucjonizuje precyzję kontroli procesów technologicznych, badań naukowych i diagnostyki medycznej. Szczególną zaletą tych rozwiązań jest możliwość wykonywania pomiarów w warunkach, które dotychczas stanowiły wyzwanie – w przypadku obiektów szybko się poruszających, materiałów o ekstremalnych temperaturach lub gdy klasyczny kontakt pomiarowy mógłby zakłócić naturalne właściwości badanego obiektu i wprowadzić zaburzenie do pomiaru.

1.2 Cel projektu

Celem niniejszego projektu jest opracowanie i implementacja pirometru – zaawansowanego urządzenia do bezdotykowego pomiaru temperatury wykorzystującego technologię podczerwieni. Projekt został zrealizowany w oparciu o czujnik
MLX90614, który zapewnia odpowiednią precyzję i stabilność pomiarów w założonym zakresie temperatur. Sercem systemu jest popularna płytka mikrokontrolerowa,
Arduino UNO, która stanowi centrum sterujące całego urządzenia. Płytka Arduino
UNO oparta jest na 8-bitowym mikrokontrolerze ATmega328P, który zapewnia róż-

norodne funkcje, takie jak 14 cyfrowych pinów wejścia/wyjścia czy 6 analogowych wejść. Dzięki swojej prostocie i wszechstronności, Arduino UNO jest często pierwszym wyborem dla wielu, nieco mniej wymagających obliczeniowo projektów [1]. Kod źródłowy projektu został napisany w języku C/C++, z wykorzystaniem opensourcowych bibliotek ułatwiających programowanie kluczowych komponentów, w tym wyświetlacza LCD opartego na standardzie HD44780. HD44780 to standardowy kontroler wyświetlaczy LCD. Został opracowany przez firmę Hitachi w latach 80. XX wieku i jest powszechnie stosowany w alfanumerycznych wyświetlaczach dot-matrix [2]. W projektach wykorzystujących tę technologię często stosowana jest biblioteka LiquidCrystalI2C, która upraszcza interakcję z wyświetlaczami LCD podłączonymi do mikrokontrolerów takich jak Arduino poprzez interfejs I2C. Dzięki tej bibliotece możliwe jest łatwe sterowanie wyświetlaczem oraz wyświetlanie tekstu i danych w sposób efektywny i intuicyjny.

Inicjalizacja omawianego wyświetlacza LCD z wykorzystaniem biblioteki LiquidCrystalI2C zajmuje zaledwie kilka linijek kodu źródłowego:

```
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2); // Adres I2C,
liczba kolumn, liczba wierszy
```

1.3 Zakres projektu

Zakres niniejszego projektu obejmuje kompleksowe opracowanie bezdotykowego systemu pomiarowego temperatury, który łączy optymalne rozwiązania w każdym omawianym później aspekcie projektowym. Projekt podzielony jest na dwie główne części: część programową i konstrukcyjną. Pod uwagę wzięte zostaną także różne istotne czynniki, które wpływają na sposób wykorzystania zbudowanego urządzenia. Istotne dla projektu jest nie tylko samo działanie pirometru, lecz także wpływ środowiska w którym jest użytkowane i kwestia sensownej minimalizacji kosztów utworzenia w pełni funkcjonalnego systemu pomiarowego.

Założenia projektowe

2.1 Opis założeń funkcjonalnych

Funkcjonalność kompletnego urządzenia pozwala na bezproblemowy i możliwie najprostszy w realizacji bezdotykowy pomiar temperatury. Urządzenie dokonuje w czasie rzeczywistym pomiaru temperatury danej powierzchni z wykorzystaniem czujnika MLX90614, wyświetlając wynik na wspomnianym wyświetlaczu LCD.

Za pomocą dołączonej 4-przyciskowej klawiatury można:

- zwiększać wartość emisyjności
- zmniejszać wartość emisyjności
- przywrocić początkową wartość emisyjności wynoszącą 1
- zmieniać jednostkę w której wyświetlany jest wynik wciskając raz za razem przycisk: stopnie Celsjusza, stopnie Fahrenheita, stopnie Kelvina.

2.2 Opis założeń konstrukcyjnych

Urządzenie wykonane zostało na płycie ewaluacyjnej, która umożliwia korzystanie z urządzenia, minimalizując ryzyko jakiegokolwiek uszkodzenia urządzenia.

Układ opierając się konstrukcyjnie na płycie działa stabilnie i daje opcję bezpiecznego przetransportowania przyrządu.

Wykonany w ramach projektu przyrząd pomiarowy składa się z:

- bezdotykowego czujnika temperatury MLX90614, który umożliwia pomiar temperatury obiektu w zakresie -70° do 380°C. Pomiar jest podawany z dokładnością do 0,5°C w zakresie 0-50°C, lub 4°C dla skrajnych wartości zakresu. Natomiast dla temperatury czujnika zakres wynosi od -40°C do 85°C [3].
- wyświetlacza LCD HD44780 z dołączonym konwerterem I2C
- układu sterującego komponentami i przetwarzającymi dane pomiarowe uzyskiwane z czujnika tj. mikrokontrolera Arduino Uno
- 4-przyciskowej klawiatury

2.3 Opis założeń środowiskowych

Urządzenie działa w odpowiednio szerokim zakresie temperatur, od -20°C do +70°C, aby umożliwić wykorzystanie w różnych warunkach otoczenia. Zostało ono zaprojektowane tak, aby mogło funkcjonować w umiarkowanej wilgotności tj. do bezpiecznej wartości 60% przy temperaturze 25°C, tak by zminimalizować ryzyko kondensacji i uszkodzeń komponentów. Urządzenie zasilane jest napięciem 5V (możliwe także zasilanie poprzez port USB 2.0). Urządzenie nie zostało przetestowane pod kątem pracy w trudniejszych warunkach środowiskowych. Użyte materiały są odporne na korozję oraz działanie łagodnych substancji chemicznych, co może mieć znaczenie w przypadku zastosowań przemysłowych bądź laboratoryjnych. Przed wdrożeniem urządzenia do użytku przeprowadzono testy środowiskowe, upewniając się, że spełnia wszystkie założenia dotyczące warunków pracy. Omawiane założenia środowiskowe są kluczowe dla zapewnienia niezawodności i trwałości urządzenia, a także dla jego prawidłowego działania w różnych warunkach otoczenia.

2.4 Opis założeń ekonomicznych

Projekt został opracowany z uwzględnieniem minimalizacji kosztów komponentów z jednoczesnym zachowaniem optymalnej do zastosowań jakości.

Koszty projektu obejmują:

- Czujnik MLX90614 koszt jednostkowy w przedziale 50–80 zł w zależności od wybranego dostawcy.
- Wyświetlacz LCD HD44780 z konwerterem I2C koszt jednostkowy w przedziale 20–30 zł.
- Mikrokontroler Arduino Uno koszt jednostkowy około 100 zł.
- Klawiatura 4-przyciskowa koszt jednostkowy w przedziale 3–10 zł.

Całkowity koszt komponentów to około 170–220 zł, co czyni projekt relatywnie niedrogim i dość przystępnym cenowo w realizacji.

Charakterystyka wykorzystanych komponentów sprzętowych

3.1 Mikrokontroler Arduino Uno

Arduino Uno to popularny mikrokontroler wykorzystywany w projektach elektronicznych i robotyce. Jest to wszechstronna platforma programistyczna oparta na mikrokontrolerze ATmega328P. Mikrokontroler ten posiada 32KB pamięci Flash, 2KB pamięci RAM, 14 cyfrowych pinów wejścia/wyjścia, 6 pinów wejścia analogowego, zegar taktowany z częstotliwością 16MHz, interfejs USB, złącze zasilania 5V oraz złącze programowania ISP. Arduino Uno jest kompatybilny z wieloma dodatkowymi modułami, co pozwala na rozbudowę funkcjonalności. Mikrokontroler ten jest wykorzystywany w projekcie jako główny kontroler systemu.

Programowanie Arduino Uno odbywa się w dedykowanym środowisku Arduino

IDE, które wykorzystuje język bazujący na C++. Dzięki rozbudowanej bibliotece funkcji i dużej społeczności użytkowników, realizacja nawet zaawansowanych projektów jest stosunkowo prosta [4]

3.2 Czujnik temperatury MLX90614

Czujnik MLX90614 to zaawansowany, bezdotykowy termometr na podczerwień, który umożliwia pomiar temperatury obiektów w szerokim zakresie. Działa na napięciu zasilania od 3V do 3.6V i komunikuje się za pomocą interfejsu I2C, co czyni go łatwym w integracji z różnymi systemami, takimi jak Arduino czy inne mikrokontrolery. Dzięki swojej konstrukcji, MLX90614 znajduje zastosowanie w wielu dziedzinach, w tym w medycynie do pomiaru temperatury ciała, w systemach klimatyzacji oraz w automatyzacji przemysłowej [5].

3.3 4-przyciskowa klawiatura

Pokazana na zdjęciu klawiatura to membranowa klawiatura numeryczna, składająca się z czterech przycisków oznaczonych cyframi od 1 do 4. Charakteryzuje się prostą budową, elastyczną taśmą zakończoną złączem z pinami, co umożliwia łatwe podłączenie do mikrokontrolera lub innych urządzeń elektronicznych. Tego typu klawiatury są często wykorzystywane w prostych projektach elektronicznych, takich jak panele sterujące, systemy wprowadzania kodów czy interfejsy użytkownika w

urządzeniach DIY. Dzięki niskiej cenie i kompaktowym rozmiarom, są popularnym wyborem wśród hobbystów i studentów elektroniki.

3.4 Wyświetlacz LCD z konwerterem I2C HD44780

Wyświetlacz LCD z konwerterem I2C oparty na sterowniku HD44780 to popularne rozwiązanie do wyświetlania tekstu w projektach elektronicznych. Dzięki wbudowanemu konwerterowi I2C znacznie uproszczona jest komunikacja z mikrokontrolerem, ponieważ wymaga jedynie dwóch linii sygnałowych (SDA i SCL), zamiast standardowych 6-8 w przypadku klasycznego podłączenia. Wyświetlacz obsługuje różne konfiguracje, najczęściej spotykane to 16x2 (16 znaków na 2 liniach) lub 20x4 (20 znaków na 4 liniach). Sterownik HD44780 umożliwia łatwe sterowanie wyświetlanymi znakami oraz tworzenie niestandardowych symboli. Dzięki czytelnemu interfejsowi i szerokiemu wsparciu w bibliotekach do Arduino, Raspberry Pi i innych platform, wyświetlacz ten jest chętnie używany w projektach takich jak panele

kontrolne, wskaźniki statusu czy urządzenia IoT.

Analiza struktury zastosowanego oprogramowania

4.1 Połączenie z czujnikiem temperatury MLX90614

Czujnik temperatury MLX90614 został podłączony do mikrokontrolera Arduino za pomocą interfejsu I2C. W celu komunikacji z czujnikiem została wykorzystana biblioteka Wire.h. W celu sprawdzenia poprawności połączenia z czujnikiem został napisany program, który odczytuje temperaturę z czujnika i wyświetla ją na monitorze szeregowym.

4.2 Połączenie z wyświetlaczem LCD HD44780

Wyświetlacz LCD HD44780 podłączono z wykorzystaniem konwertera pracującego na interfejsie I2C. Do komunikacji z wyświetlaczem została użyta biblioteka LiquidCrystalI2C.h.

4.3 Synchroniczna współpraca LCD i czujnika temperatury z wykorzystaniem mikrokontrolera Arduino

W celu synchronicznej współpracy wyświetlacza LCD i czujnika temperatury z mikrokontrolerem Arduino, został napisany program, który cyklicznie odczytuje temperaturę z czujnika i wyświetla ją na wyświetlaczu LCD. Program został napisany w języku C/C++ z wykorzystaniem bibliotek Wire.h i LiquidCrystalI2C.h.

Uruchomienie projektu i skalibrowanie urządzenia

- 5.1 Proces uruchomienia
- 5.2 Kalibracja urządzenia

Wykonanie testów i dokonanie odpowiednich pomiarów

- 6.1 Opis metodyki testowania
- 6.2 Przygotowanie do testów
- 6.3 Przebieg testów
- 6.4 Dokonanie pomiarów
- 6.5 Analiza wyników

Instrukcja użytkowania

- 7.1 Krótki opis pirometru i jego przeznaczenia
- 7.2 Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z gorącymi obiektami
- 7.3 Podłączenie pirometru do źródła zasilania
- 7.4 Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania pomiaru)
- 7.5 Czyszczenie powierzchni czujnika
- 7.6 Informacje o przechowywaniu
- 7.7 Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe rozwiązania

Podsumowanie i Wnioski

Bibliografia

- [1] Sanchez, Julio; Canton, Maria P. (2007) "Microcontroller Programming: the Microchip PIC. CRC Press."
- [2] ElektronikaB2B "Arduino jak wybrać i kupić?"
 https://elektronikab2b.pl/technika/50150-arduino-jak-wybrac-i-kupic
- [3] Korneliusz Jarzębski "Pirometr z czujnikiem MLX90614ESF-BAA" https://www.jarzebski.pl/arduino/czujniki-i-sensory/pirometr-z-czujnikiem-mlx90614.html
- [4] Arduino "Arduino Uno Rev3"

 https://docs.arduino.cc/hardware/uno-rev3/#features
- [5] ElektroWeb "Pirometr termometr bezdotykowy MLX90614 GY-906" https://www.elektroweb.pl/pl/czujniki-temperatury/ 273-pirometr-termometr-bezdotykowy-mlx90614-gy-906.html