5.4 Heragion av funksimer

[0,1]
$$\subset$$
 \mathbb{R}
 $f:[0,1] \longrightarrow [0,1]$
 $X_1 = f(x)$
 $X_2 = f(f(x)) = f^2(x)$
 $X_{n+1} = f(x_n)$
 $X_{n+1} = f(x_n)$
 $X_{n+2} = f(x_n)$
 $X_{n+3} = f(x_n)$

Els Parameter b & [0,4]

folderfunkjen o 1/2

0 64

2 Po 1:

His xn -> y

nor n -> 00

må
f(xn) -> f(y)
Xn+1

Thin xy = him xy+ = fly)

Def this fly = 4 kalles 4 et filsponts
for f.

For
$$0 \le b \le 1$$
 er $(x \in [0,1])$

$$f(x) = b \times (1-x) \le x$$

$$b \le 1, 1-x \le 1$$

$$a = x_0 \ge x_1 \ge x_2 \ge --- \ge x_n \ge x_{n+1} \ge --$$
efor en arbiqued folks, sin $x_n \longrightarrow y$ him has

$$f(x) = b \times (1-x)$$

$$x = f(x) = b \times (1-x)$$

$$x = 0 \text{ other } 1 = b(1-x)$$

$$x = 0 \text{ other } 1 = b(1-x)$$

$$x = 1-b$$

$$\frac{b \le 1}{x_1}$$
Fineste unlight greanse = 0
$$f(x) = b \times (1-x) \quad 0 \in b \le 1$$

$$x_1 \longrightarrow 0 \text{ him } n \to \infty$$

For
$$(2b \le 3)$$
 er $x=0$ fortsoft et filographet.

 $a = x_0 > 0$ er litera en noch this $a = x_0 > 0$ er litera en noch this $a = x_0 > 0$ er litera en noch this $a = x_0 > 0$ er litera en noch this $a = x_0 > 0$ er et $a = 1 - \frac{1}{5} < (0, \frac{2}{3})$

St $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$ nor $a \to ab$
 $a = x_0 > 0$
 $a =$

b=2.0:

For b>3 er $f'(1-\frac{1}{2})=2-b<-1$ so on $x_n=1-\frac{1}{5}+h$ vil $x_{n+1}\approx 1-\frac{1}{5}+(2-b)h$ Storne ern hstorne ern hi absolutivered i absolutivered i

(absolutivered i absolutivered i

(bis the en $x_n=0$ eller $1-\frac{1}{5}$).

Xo= る、X, = る、Xc=る、Xs=多、…

Periodich borning, bane med periode ?

For b> 3.57 - oppsær hans.

Nesten alle startverdier a = xo for foller { Kn} som ilde konvergere mod noen bone med anders periode

MAT1110

LH 5.5 Bancohs filspuntsteven ASRM FIAMA (FLA)SA) Det je Rher et fikrpunkt for F his F(3) = 3 Del En kontinuerlig F kalles en kontraksjon denson det finnes en bonstant (kontrahijons-Konstanten) C E [0,1) (CC1) med | F(2) - F(3) (< C (2 - 31 for alle x, y & A. Gitt ac A danner in en folke (Xn) n=0

Sitt $\overrightarrow{a} \in A$ danner in en folke $(\overrightarrow{X}_n)_{n=0}^\infty$ med $\overrightarrow{X}_0 = \overrightarrow{a}$ of $\overrightarrow{X}_{n+1} = \overrightarrow{F}(\overrightarrow{X}_n)$ for $n \ge 0$ $\overrightarrow{X}_1 = \overrightarrow{F}^{on}(\overrightarrow{a})$.

Lemma Hvis F er en kontrakgon med kontraksjonsfalder C er

| デー(文) - デー(字) | × ででは、 マーない、デーない。 デない、デーない。 デーない。 デーな、 デーない。 デーな デーない。 デーない。 デーない。 デーない。 デーない。 デーない。 デーない

Spesialtiffelle: $\vec{X} = \vec{X}_0$ os $\vec{y} = \vec{F}(\vec{X}_0) = \vec{X}_1$ dans $\vec{F}'(\vec{X}) = \vec{X}_0$ os $\vec{F}'(\vec{y}) = \vec{X}_{n+1}$:

1 xnn - xn | < 0" [x, -x].

for alle dein > N. : {xn} } er Canchy

Siden R'm er komplet vil

der y∈ RM. Eden A er lukken no ye A. Da er

y = him xn = him xn+1 = him F(xn) F (film x) = F(y)

Kentinsitet

Så y er et fikspenkt.

Setting 5.5.7 La A = Rm rare inherton, buthet of konvelis (for hver par x176A er linjestylebet {(1-t)}+tz|oster) SA) la FIA A CR voire deviverbar på A, med = (F1) --, Fm). Jacobinatiosen er F = [PF] His

His

\[\begin{align*} & \Pri(\vec{c_i}) \Big|^2 + ... + \Big| \Drack (\vec{c_m}) \Big|^2 & \vec{c_i}^2 \\

\text{for alle m-tupler \vec{c_i}_3--> \vec{c_m} & A \text{fon en \text{lonstant} \text{C} \\

\text{lonstant C < 1} \\

\text{lonstant C \text{indexthisms} \text{med \text{lonstant} \text{lonstant} \text{lonstant} \\

\text{lonstant C \text{indexthisms} \text{lonstant} \text{lonstant} \\

\text{lonstant C \text{indexthisms} \\

\text{lonstant C \text{indexthisms} \\

\text{lonstant C \text{indexthisms} \text{lonstant} \\

\text{lonstant C \text{indexthisms} \\

\text{lonstant C \text{

Elisemph
$$M = 2$$
 $F: \mathbb{R}^2 \to \mathbb{R}^2$
 $F(\frac{1}{3}) = \begin{pmatrix} x + \omega_1 & x \\ y + \omega_2 & x \end{pmatrix}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2 : 1\} \}$
 $A = \{o_1(1) \times \{o_1(1) \in \mathbb{R}^2$

