Chapter-2 Complex Number

1

AI24BTECH11032 Shreyansh Sonkar

- 7) If $1, a_1, a_2, a_3 \cdots a_{n-1}$ are the *n* roots of unity, then show that $(1 a_1)(1 a_2)(1 a_3) \cdots (1 a_{n-1}) = n$ (1984- 2 Marks).
- 8) Show that the area of the triangle on the Argand diagram formed by the complex numbers

$$z, iz \& z + iz \text{ is } \frac{1}{2}|z|^2.$$
 (1986-2 Marks).

- 9) Let $Z_1 = 10 + 6i$ and $Z_2 = 4 + 6i$.if Z is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$ then prove that $Z-7-9i=3\sqrt{2}$. (1990-4 Marks).
- 10) if $iz^3 + z^2 z + i = 0$ then show that |z| = 1. (1995-5 Marks).
- 11) If $|Z| \le 1$, $|W| \le 1$, show that $(z w)^2 \le (|Z||W|)^2 + (\arg Z \arg W)^2$. (1995-5 Marks).
- 12) Find all non-zero complex numbers Z satisfying $\bar{Z} = iZ^2$. (1996-2 Marks).
- 13) Let z_1 and z_2 be roots of the equation $z^2 + pz + q = 0$, where the coefficients p and q may be complex numbers.Let \mathbf{A} and \mathbf{B} represent z_1 and z_2 in the complex plane.if $\angle ABC = \alpha \neq 0$ and OA = OB, where OA = OB is the origin, prove that $P^2 = 4q\cos^2\left(\frac{\alpha}{2}\right)$.
- 14) For complex number z and w, prove that $|z|^2 w |w|^2 z = z w$ if and only if z = w or $\overline{we} = 1$. (1999-10 Marks).
- 15) Let a complex number $\alpha, \alpha \neq 1$, be a root of the equation $z^{p+q} z^p z^q + 1 = 0$, where **p,q** are the distinct primes. Show that either $1 + \alpha + \alpha^2 + \cdots + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + \cdots + \alpha^{q-1} = 0$, but not both together. (2002-5 Marks)
- 16) If z_1 and z_2 are two complex number such that $|z_1| < 1 < |z_2|$ then prove that $\left|\frac{1-z_1\bar{z}_2}{z_1-z_2}\right| < 1$. (2003-2 Marks)
- 17) Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$ where $|a_r| < 2$. (2003-2 Marks)
- 18) Find the centre and radius of circle given by $\left|\frac{z-\alpha}{b}\right| = k, k \neq 1$ where, $z = x + i, \alpha = \alpha_1 + i\alpha_2, b = b_1 + ib_2$. (2004-2 Marks)

19) If one the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}i$ find the other vertices of the square. (2005-4 Marks)

PASSAGE-1

Let A,B,C be three sets of complex number as defined below

$$A = \{z: | \text{Im } z \ge 1\}$$

 $B = \{z: |z - 2 - i| = 3\}$

$$C = \{z : \text{Re}((1-i)z) = \sqrt{2}\}\$$

a) The number of element in the set $A \cap B \cap C$ is.

(2008)

(a) 0

(b) 1

(c) 2

(d) ∞

(2008)

b) Let **z** be any point in $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$ Then, $|z + 1 - i|^2 + |z - 5 - i|^2$ lies between. (2008)

i) 25 and 29

iii) 35 and 39

ii) 30 and 34

iv) 40 and 44

c) Let z be any point **A B C** and let w be any point satisfying |w-2-i| < 3. Then, |z|-|w|+3 lies between.

i) -6 and 3

iii) -6 and 6

ii) -3 and 6

iv) -3 and 9