Section 3

Formalizing Theories with Difference Equations

Theories explain phenomena

Phenomenon: My coffee cools faster in the winter than it does in the summer

Theories explain phenomena

Verbal theory: My coffee's temperature will change proportional to the difference between its own temperature and the ambient temperature

Theories explain and predict

Verbal theory: My coffee's temperature will change proportional to the difference between its own temperature and the ambient temperature

What does the theory predict?

Coffee ? Time

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

Difference equations tell us where a variable will go next, based on where it is now

Allows us to simulate the behavior of the variable as it evolves over time given a set of initial conditions

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

T = Coffee Temperature

t = Discrete Time Step

 T_A = Ambient Temperature

r = Constant = -.20

Formal theory: $T_{t+1} = T_t \pm .20(T_t - 40)$

What does the theory predict?

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_0 = 80.0$$

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

$$T_0 = 80.0$$

t	T_t
0	80.0
1	72.0
2	65.6
3	

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

$$T_2 = 72.0 - .20(72.0 - 40) = 65.6$$

Formal theory:
$$T_{t+1} = T_t + r(T_t - T_A)$$

t	T_t
0	80.0
1	72.0
2	65.6
3	60.5

$$T_0 = 80.0$$

$$T_1 = 80.0 - .20(80.0 - 40) = 72.0$$

$$T_2 = 72.0 - .20(72.0 - 40) = 65.6$$

$$T_3 = 65.6 - .20(65.6 - 40) = 60.5$$

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

t	T_t
0	80.0
1	72.0
2	65.6
3	60.5

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

Formal theories allows us to **deduce** precisely what a theory predicts

Accurate deduction is a prerequisite for explanation

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

t	T_t
0	80.0
1	72.0
2	65.6
3	60.5

t	T_t
0	80.0
1	64.0
2	51.2
3	41.1

Phenomenon: My coffee cools faster in the winter than it does in the summer

Mathematical Models and Computational Models

Formal theory: $T_{t+1} = T_t + r(T_t - T_A)$

Formal theory:

```
temp<-vector()
temp[1]<-80
time_steps<-30

for (t in 1:time_steps) {
temp[t+1]<-temp[t]-.2*(temp[t]-20) }</pre>
```

A Computational Model of Coffee Temperature!

```
temp<-vector()
temp[1]<-80
time_steps<-30

for (t in 1:time_steps) {
temp[t+1]<-temp[t]-.2*(temp[t]-20) }</pre>
```


A Computational Model of Coffee Temperature!

Problem: Coffee doesn't change in discrete time

Difference **Equations**

Discrete Time

$$T_{t+1} = T_t - .2(T_t - 20)$$

Differential Equations

Continuous Time

$$\frac{dT}{dt} = -.2(T - 20)$$

Differential **Equations**

Problem: No analytic solution for many differential equations

Continuous Time

$$\frac{dT}{dt} = -.2(T - 20)$$

Solution: Back to Difference Equations (Euler's Method)

```
simTemp <- function(stepsize, subsample, temp_initial, temp_room)
{
    ...
    for (t in 1:nlter){
        temp[t+1]<-temp[t]-.2*(temp[t]-temp_room)*stepsize
    }
    temp <- temp[round(seq(1, nlter, by=subsample))]
    return(temp)
}</pre>
```

Euler's Method

```
out full<-simTemp(time steps=30,
                   stepsize=1,
                   subsample=1/1,
                  temp initial=80,
                  temp room=20)
out half<-simTemp(time steps=30,
                  stepsize=.5,
                   subsample=1/.5,
                  temp initial=80,
                  temp room=20)
```

• • •

Modeling Panic Attacks with Difference Equations

Phenomenon: Panic attacks and Panic Disorder

A verbal theory: If a stimulus "is perceived as a threat, a state of mild apprehension results. This state is accompanied by a wide range of bodily sensations. If these anxietyproduced sensations are interpreted in a catastrophic fashion, a further increase in apprehension occurs. This produces a further increase in body sensations and so on around in a vicious circle which culminates in a panic attack."

Formal theory: $A_{t+1} = A_t + T_t$

Formal theory:
$$\frac{dA}{dt} = (T)$$

Perceived Threat (T)

Formal theory: $\frac{dA}{dt} = (T - A)$

Formal theory:
$$\frac{dA}{dt} = (T - A)$$

Formal theory:
$$\frac{dA}{dt} = (T - A)$$

Formal theory:
$$\frac{dA}{dt} = (T - A) = (.25 - .50) = -.25$$

Formal theory: $\frac{dA}{dt} = (T - A) = (.25 - .50)$

$$\frac{dA}{dt} = (T - A)$$

$$= (.25 - .50)$$

$$= -.25$$

$$= (.25 - .25)$$

$$= 0$$

Formal theory:
$$\frac{dA}{dt} = (T - A)$$

Formal theory:
$$\frac{dA}{dt} = (T - A) = (.60 - .50) = .10$$

Formal theory:
$$\frac{dA}{dt} = (T - A) = (.60 - .50)$$

= (.60 - .60)

= .10

= 0

Formal theory:
$$\frac{dA}{dt} = (\beta T - A)$$
 $\beta = 2$

Formal theory:
$$\frac{dA}{dt} = (\beta T - A)$$
 $\beta = .5$

Formal theory:
$$\frac{dA}{dt} = (\beta T - A)$$
 $\beta = 1$

$$\frac{dT}{dt} = (\beta A - T)$$

$$\frac{dT}{dt} = \gamma \left(\frac{A^{\mu}}{A^{\mu} + \lambda^{\mu}} - T \right)$$

Arousal Schema (S) = 0.00

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

Robinaugh et al., 2019, Advancing the network theory of mental disorders: A computational model of panic disorder

A Computational Model of Panic Disorder

```
simPanic <- function(time steps, stepsize)</pre>
  for(i in 1:(nIter)) {
      A eq <- s PT A*PT[i]
      A eq2 < --s H A*H[i]
      A[i+1] < - A[i] + r A*((A eq - A[i]) + A eq2)*stepsize
outlist <- list("A" = A, "PT" = PT, "H" = H, "E" = E)
return (outlist)
```

What does this earn us?

A tool to evaluate our theory!

Theory Evaluation

Simulation 1: Biological Challenge

Simulation 2: 3-Month Simulation

Simulation 3: Treatment Study

Panic Phenomenology

Some people experience surges of intense fear and somatic symptoms that come on "out of the blue."

Individual Differences

Individual Differences

Individual Differences

Panic Disorder

Panic Disorder

Non-clinical Panic Attacks

CBT Efficacy

CBT Efficacy

Group 4: Cognitive Behavioral

Phenomenon 5
CBT Efficacy

0.0

20

Group 2: Cognitive

Group 3: Behavioral

60

100

80

120

Can the theory explain core panic disorder-related phenomena? Yes!

AND, there is still lots of room for it to explain more.