Report for the Markov model (cohort state-transition model)

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2 strategy3	$691 \\ 654$	$\frac{233}{105}$	194 1108

Table 2: Prevent CVD events est LBUB298155 441 strategy1 strategy2374181 567 strategy3 346 154 538

Data and parameters

% latex table generated in R 3.6.3 by x table 1.8-4 package % Tue Jan 19 15:56:27 2021

Table 3: Data from Global Health Data Exchange

	index	sex	incidence	$death_CVD$	$death_nonCVD$		
1	40	$_{\mathrm{male}}$	0.003888	0.000819	0.002494		
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399		
3	50	male	0.010564	0.002302	0.004951		
4	55	male	0.015291	0.003665	0.007282		
5	60	$_{\mathrm{male}}$	0.022078	0.006404	0.011159		
6	65	$_{\mathrm{male}}$	0.030980	0.011155	0.016946		
7	70	male	0.043589	0.019978	0.026305		
8	40	female	0.004545	0.000351	0.001137		
9	45	female	0.007094	0.000643	0.001620		
10	50	female	0.010133	0.001206	0.002475		
11	55	female	0.013734	0.002014	0.003705		
12	60	female	0.018272	0.003872	0.005850		
13	65	female	0.023744	0.006996	0.009060		
14	70	female	0.033907	0.013398	0.014907		

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Tue Jan 19 15:56:27 2021

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Tue Jan 19 15:56:27 2021

Table 4: Distribution of the population

	index	sex	num
1	40	male	229
2	45	male	444
3	50	male	422
4	55	$_{\mathrm{male}}$	410
5	60	$_{\mathrm{male}}$	322
6	65	male	160
7	70	male	116
8	40	female	498
9	45	female	856
10	50	female	822
11	55	female	842
12	60	female	519
13	65	female	394
14	70	female	187

Table 5: Distribution of the population under different strategies

at	ole 5:		ution of t	he population	on und		strateg
		index	sex	strategy	low	medium	high
	1	40	$_{\mathrm{male}}$	strategy1	159	8	62
	2	45	male	strategy1	173	64	207
	3	50	$_{\mathrm{male}}$	strategy1	188	63	171
	4	55	$_{\mathrm{male}}$	strategy1	200	89	121
	5	60	male	strategy1	129	89	104
	6	65	$_{\mathrm{male}}$	strategy1	71	42	47
	7	70	male	strategy1	48	28	40
	8	40	female	strategy1	444	6	48
	9	45	female	strategy1	738	18	100
	10	50	female	strategy1	677	20	125
	11	55	female	strategy1	440	217	185
	12	60	female	strategy1	216	164	139
	13	65	female	strategy1	128	136	130
	14	70	female	strategy1	65	55	67
	15	40	$_{\mathrm{male}}$	strategy2	163	50	16
	16	45	$_{\mathrm{male}}$	strategy2	212	168	64
	17	50	$_{\mathrm{male}}$	strategy2	106	231	85
	18	55	$_{\mathrm{male}}$	strategy2	35	210	165
	19	60	$_{\mathrm{male}}$	strategy2	5	81	236
	20	65	male	strategy2	1	15	144
	21	70	male	strategy2	0	3	113
	22	40	female	strategy2	478	17	3
	23	45	female	strategy2	734	108	14
	24	50	female	strategy2	537	238	47
	25	55	female	strategy2	277	433	132
	26	60	female	strategy2	44	282	193
	27	65	female	strategy2	4	104	286
	28	70	female	strategy2	0	23	164
	29	40	male	strategy3	0	0	0
	30	45	male	strategy3	0	0	0
	31	50	male	strategy3	106	231	85
	32	55	male	strategy3	35	210	165
	33	60	male	strategy3	5	81	236
	34	65	male	strategy3	1	15	144
	35	70	male	strategy3	0	3	113
	36	40	female	strategy3	0	0	0
	37	45	female	strategy3	0	0	0
	38	50	female	strategy3	537	238	47
	39	55	female	strategy3	277	433	132
	40	60	female	strategy3	44	282	193
	41	65	female	strategy3	4	104	286
	42	70	female	strategy3	0	23	164

```
## General setup
source("../function/transform_func.R")
n t <- 10 # time horizon, number of cycles
# S1: live; S2: cvd; S3: cvdth; S4: oth_death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names</pre>
           <- length(v_names_str)</pre>
                                        # number of strategies
# Health utilities
out_cvd_free <- 1 # utility when being S1</pre>
out_cvd <- 0.9 # utility when being S2</pre>
out_dth <- 0 # utility when being S3 and S4 together
out_trans_to_cvd <- -0.038
                              # TODO
uti_values <- c(out_cvd_free, out_cvd, out_dth, out_dth)
HR cvdhistory cvd <-
                        1.37
HR_cvdhistory_cvdth <- 3.12</pre>
HR_high_live_cvdth <- 1.17</pre>
p_live_oth_death <- rate_to_prob(r=rate_data$death_nonCVD,t = 1)</pre>
p_live_cvd <- rate_to_prob(r=rate_data$incidence, t=1)</pre>
p_live_cvdth <- rate_to_prob(r=rate_data$death_CVD, t=1)</pre>
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$incidence*HR_cvdhistory_cvd, t=1)</pre>
p_ccvd_cvdth <- rate_to_prob(rate_data$death_CVD*HR_cvdhistory_cvdth,t=1)</pre>
set.seed(100)
p_acvd_cvdth <- rep(runif(1,min=0.02,max=0.1),length=length(p_live_cvd))</pre>
# half-cycle correction
\# corr_matrix \leftarrow matrix(1,nrow = 11,ncol = 4)
# corr_matrix[1,] <- rep(0.5,4)
# corr_matrix[11,] <- rep(0.5,4)
# corr matrix
```

Component 1: A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	Р3
患有心血管病		P6	P5	Р3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

Thus,

$$P4 = 1 - P1 - P2 - P3$$

$$P1 = p_live_cvd * (1 - p_acvd_cvdth)$$

$$P2 = p_live_cvdth + p_live_cvd * p_acvd_cvdth$$

$$P3 = p_live_oth_death$$

$$P6 = 1 - (p \ ccvd \ cvdth + p \ ccvd \ acvd*p \ acvd \ cvdth) - p \ live \ oth \ death$$

$$P5 = p_ccvd_cvdth + p_ccvd_acvd * p_acvd_cvdth$$

Strategy 0 (a male 40-45)

In what follows, an example for the groups of male patients, aging from 40 to 45 is illustrated.

```
#### Create transition arrays ####
a_P <- array(0, dim
                        = c(n_states, n_states, 10),
               dimnames = list(v names states, v names states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd[1]*(1-p_acvd_cvdth[1]) +
                              p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1] +
                              p_live_oth_death[1])
a_P["S1", "S2", 1:5]
                    <- p_live_cvd[1]*(1-p_acvd_cvdth[1])</pre>
a_P["S1", "S3", 1:5]
                     <- p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]</pre>
a_P["S1", "S4", 1:5]
                      <- p_live_oth_death[1]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
  (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])+
                              p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1] +
                              p_live_oth_death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]
a P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-
  (p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[1+1] + p_ccvd_acvd[1+1] * p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] \leftarrow p_live_oth_death[1+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
# is the constructed transition matrix in 10 cycles
# depends on the specific population (age and gender)
a_P
## , , 1
##
##
                        S2
                                     S3
                                                 S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 2
##
            S1
                        S2
                                                 S4
##
```

```
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 3
##
##
             S1
                         S2
                                      S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
  , , 4
##
##
##
                         S2
             S1
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 5
##
##
                         S2
             S1
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 6
##
##
                         S2
                                                  S4
             S1
                                      S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 7
##
##
             S1
                         S2
                                      S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 8
##
##
                         S2
                                      S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 9
```

```
##
##
             S1
                         S2
                                       S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 10
##
##
             S1
                         S2
                                       S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
```

Component 2: The cohort trace matrix M

```
## S1 S2 S3 S4
## 0 1.000000 0.00000000 0.000000e+00 0.00000000
## 1 0.9938017 0.003707301 1.417524e-07 0.002490893
## 2 0.9876417 0.007372048 1.062253e-05 0.004975580
## 3 0.9815200 0.010994609 3.132364e-05 0.007454053
## 4 0.9754362 0.014575348 6.212744e-05 0.009926300
## 5 0.9693901 0.018114626 1.029173e-04 0.012392312
## 6 0.9598894 0.024181206 1.862985e-04 0.015743143
## 7 0.9504817 0.030138534 2.974702e-04 0.019082321
## 8 0.9411662 0.035988076 4.359318e-04 0.022409791
## 9 0.9319420 0.041731284 6.011895e-04 0.025725500
## 10 0.9228083 0.047369591 7.927563e-04 0.029029397
```

This matrix is the trace matrix of the specific population (male, 40-45) during these 10 cycles. The whole cohort starts in S1 state and transitions to the rest of the states over time.

```
CVD_per_person <- sum(m_M[,1]* p_live_cvd[1])
CVD_per_person</pre>
```

```
## [1] 0.04118741
```

```
# calculation of the per CVD prevented events
CVD_prevented <- matrix(NA,nrow=14,ncol=1)</pre>
for(i in 1:14){
 CVD_prevented[i] <- sum(m_M[,1]*p_live_cvd[i])</pre>
CVD_prevented
##
               [,1]
## [1,] 0.04118741
## [2,] 0.07118236
## [3,] 0.11153694
## [4,] 0.16106529
## [5,] 0.23176968
## [6,] 0.32378282
## [7,] 0.45271856
## [8,] 0.04813152
## [9,] 0.07502982
## [10,] 0.10700937
## [11,] 0.14477728
## [12,] 0.19217932
## [13,] 0.24905220
## [14,] 0.35385848
# we need to consider the following group of patients aged 40-45 if we use strategy3
strategy3_noscren_CVD <- matrix(CVD_prevented[c(1,2,8,9)],ncol=2,nrow=2)
colnames(strategy3_noscren_CVD) <- c("male", "female")</pre>
rownames(strategy3_noscren_CVD) <- c("40","45")</pre>
strategy3_noscren_CVD
##
            male
                      female
## 40 0.04118741 0.04813152
## 45 0.07118236 0.07502982
result_strategy0 <- matrix(NA,nrow=1,ncol=1)</pre>
colnames(result_strategy0) <- c("strategy0")</pre>
result_strategy0 <- sum(noStrategy_data$num * as.numeric(CVD_prevented))</pre>
result_strategy0
## [1] 895.191
```

Under strategy0 (no screening), 895.1910471 is the number of patients transitioned from S1 to S2.