Introduction to Security

- Chapter 1
- Components of computer security
- Threats Policies and mechanisms/ The role of trust Operational Issues Human Issues

10. x.x.x /24

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers' violation of security policy
- Recovery
 - Stop attack, and assess and repair damage
- Retaliation
 - Stop and capture attackers

revert

Basic Components

Confidentiality

Keeping data and resources hidden (access and encryption)

Existence of data (privacy)

Integrity

Data integrity (integrity)

Origin integrity (authentication)

• Availability + reliability

Enabling access to data and resources

• Examples : file systems, networks

No read does not mean it can't be changed

vedendancy does not always thelp

Confidentiality

- To protect classified and private data in government, business and users.
 - Secrecy of data
 - Existence and origin of data
- Mechanisms
 - Access control : controlling programs, permissions
 - Cryptography (encryption) : keys

Integrity

- Prevent improper or unauthorized change of data and provide credibility.
 - Integrity of data
 - Origin of data
- Mechanisms
 - Prevention : block unauthorized attempts
 - Detection : check if data is trustworthy

Availability

- Refer to reliability in the context of security.
 - Reliability: usable when components fail
 - Fault tolerant
 - Availability: accessible when attacks happen
 - Attack resilient
- Denial of service attacks
- Mechanisms? attack or benign?

- Components of computer security
- Threats
- Policies and mechanisms
- The role of trust
- Operational Issues
- Human Issues

- Threats : potential violation of security
- Attacks: actions that violate the security
- Classes of threats
 - Violation of confidentiality, integrity, availability
 - Disclosure: unauthorized access to information
 - Deception : provision of false data
 - Disruption: interruption of correct operation
 - Usurpation: unauthorized control of system } integrity

- Snooping
 - Unauthorized interception of information
 - Sniffing, eavesdropping
 - Wiretapping attack
- Modification
 - Unauthorized change of information
 - Alteration
 - Man-in-the-middle attack

- Spoofing
 - Impersonation of another entity
 - Masquerading
 - Phishing
- Repudiation of origin
 - Denial of sending information

- Denial of receipt
 - Denial of receiving information
- Delay
 - Temporary inhibition of service
- Denial of service
 - Long-term inhibition of service

- Components of computer security
- Threats
- Policies and mechanisms
- The role of trust
- Operational Issues
- Human Issues

Policies and Mechanisms

Policy

- Statements of what is, and is not, allowed
- If policies conflict or miss, discrepancies may create security vulnerabilities.

Mechanism

- Methods, tools, procedures that enforce policies
- If mechanisms are flawed, policies can be violated.

Example

- Policy
 - A student cannot copy another student's homework.
- Mechanism
 - Set permissions on files
- Alice fails to set permissions.
- Bob copies Alice's homework.
- Whose fault? (violation of policy)
- Is policy or mechanism flawed?
- How to improve/secure?

Types of Mechanisms

• P : reachable states defined by the system

Q : secure states defined by security policy R : restricted states defined by security mechanism

R: set of restricted states

Q: set of secure states

- Components of computer security
- Threats
- Policies and mechanisms
- The role of trust
- Operational Issues
- Human Issues

Trust

- Trust is the assumption a secure system relies on.
 - Opening a door requires a key
 - The door is sturdy enough.
 - The lock is secure against lock picking and thus is trustworthy.
 - Login requires a password
 - The login process has no flaw and thus is trustworthy.

Trust

- Trustworthy of policies
 - Unambiguously partition system states into secure and insecure
 - Correctly capture security requirements
- Trustworthy of mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Trust of Mechanism

- Each mechanism is designed to implement one or more parts of the security policy.
- The union of the mechanisms implements all aspects of the security policy.
- The mechanisms are implemented correctly.
- The mechanisms are installed and administered correctly.

- Components of computer security
- Threats
- Policies and mechanisms
- The role of trust
- Operational Issues
- Human Issues

Non-technical Issues

- Non-technical issues that affect the security
- Operational issues
 - Balance between the benefits of the protection and the cost of designing, implementing, and using the protection.
- Human issues
 - Designers, implementers, maintainers, users

Operational Issues

- Cost-Benefit Analysis
 - Is it worth to protect?
 - Is it cheaper to prevent or recover?
- Risk Analysis
 - Is an asset likely to be attacked?
- Laws and Customs
 - Are desired security measures illegal?
 - Examples: exportation of cryptographic technologies

Human Issues

- Organizational Problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering

Tying Together

24