

 Extracts observations at random from the minority class, and compounds its value with some noise.

The noise is informed by the class distribution.

Creates new examples → Avoids data duplication.

Random Over-sampling

Target
0
0
0
0
0
0
0
1
1
1

Var 1	Var 2	Var 3
1	20	1.5
2	15	2
1.4	12	1.7
1.7	10	2
2	12	2
1.5	11	1.5
1	9	1
0.5	10	0.7
1	5	0.5
0	7	0.1

Random Over-sampling

Target	Var 1	Var 2	Var 3
0	1	20	1.5
0	2	15	2
0	1.4	12	1.7
0	1.7	10	2
0	2	12	2
0	1.5	11	1.5
0	1	9	1
1	0.5	10	0.7
1	1	5	0.5
1	0	7	0.1
1	0.5	10	0.7
1	1	5	0.5
1	0	7	0.1

Extract samples at random → duplication

Target	Var 1	Var 2	Var 3
0	1	20	1.5
0	2	15	2
0	1.4	12	1.7
0	1.7	10	2
0	2	12	2
0	1.5	11	1.5
0	1	9	1
1	0.5	10	0.7
1	1	5	0.5
1	0	7	0.1
1	0.5	10	0.7
1	1	5	0.5
1	0	7	0.1

- 1. Extract samples at random
- 2. Compound their value with some "noise"
- 3. The noise contemplates the class distribution
- We can choose how disperse we want the new samples → shrinkage factor (arbitrary):

Target
1
1
1

Var 1	Var 2	Var 3
0.5	10	0.7
1	5	0.5
0	7	0.1

0.5	2 52	0.31
0.5	2.52	0.51

Standard deviation of each variable

Take the minority samples and determine their
 distribution → Standard deviation of each variable

Target
1
1
1

Var 1	Var 2	Var 3
0.5	10	0.7
1	5	0.5
0	7	0.1

0.5	2.52	0.31

Standard deviation of each variable

0.1	-0.5	0.2
J 0	0.0	

Random initial value

 Take the minority samples and determine their distribution → Standard deviation of each variable

2. Extract a value at random from N ~(0, 1)

Target
1
1
1

	Var 1	Var 2	Var 3
	0.5	10	0.7
į	1	5	0.5
	0	7	0.1

0.5	2.52	0.31

Standard deviation of each variable

Random initial value

- Take the minority samples and determine their distribution → Standard deviation of each variable
- 2. Extract a value at random from $N \sim (0, 1)$
- 3. Extract at random 1 observation

Target		
1		
1		
1		

	Var 1	Var 2	Var 3
	0.5	10	0.7
į	1	5	0.5
	0	7	0.1

0.5 2.52 0.31

Standard deviation of each variable

- Take the minority samples and determine their distribution → Standard deviation of each variable
- 2. Extract a value at random from $N \sim (0, 1)$
- 3. Extract at random 1 observation

4. Add the noise (with the shrinking factor, e.g. 10)

Target		
1		
1		
1		

Var 1	Var 2	Var 3
0.5	10	0.7
1	5	0.5
0	7	0.1

Standard deviation of each variable

New example

- Take the minority samples and determine their distribution → Standard deviation of each variable
- 2. Extract a value at random from $N \sim (0, 1)$
- Extract at random 1 observation

4. Add the noise (with the shrinking factor, e.g. 10)

Imbalanced-learn: RandomOverSampler

```
ros = RandomOverSampler(
    strategy = 'auto',
    random_state = 29,
    shrinkage = 10,
)

X_res, y_res = ros.fit_resample(X, y)
```


Imbalanced-learn: RandomOverSampler

The bigger the shrinkage factor, the greater the dispersion of the final samples

THANK YOU

www.trainindata.com