Online HW 5: Transformations

Bart Snapp and Brad Findell

January 11, 2019

Contents

Set Theory Problems

Short-answer problems about sets.

Problem 1 Given two sets X and Y, $X \cup Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 2 Given two sets X and Y, $X \cap Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 3 Given two sets X and Y, X - Y is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).

Author(s): Bart Snapp and Brad Findell

- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 4 Explain the difference between the symbols \in and \subset .

Problem 5 How is $\{\emptyset\}$ different from \emptyset ?

Problem 6 Draw a Venn diagram for the set of elements that are in X or Y but not both. How does it differ from the Venn diagram for $X \cup Y$?

Problem 7 If we let X be the set of "right triangles" and we let Y be the set of "equilateral triangles" does the picture below show the relationship between these two sets?

Multiple Choice:

- (a) Yes.
- (b) *No.*
- (c) Not enough information.

Explain your reasoning.

Problem 8 If $X = \{1, 2, 3, 4, 5\}$ and $Y = \{3, 4, 5, 6\}$ find the following: (List elements in ascending order, separated by commas, with no spaces.)

(a)
$$X \cup Y = \{ ? \}$$

(b)
$$X \cap Y = \{ ? \}$$

(c)
$$X - Y = \{ ? \}$$

(d)
$$Y - X = \{ ? \}$$

Problem 9 Let $n\mathbb{Z}$ represent the integer multiples of n. So for example:

$$3\mathbb{Z} = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\}$$

Compute the following (use capital Z for \mathbb{Z}):

- (a) $3\mathbb{Z} \cap 4\mathbb{Z} = \boxed{?}$
- (b) $2\mathbb{Z} \cap 5\mathbb{Z} = \boxed{?}$
- (c) $3\mathbb{Z} \cap 6\mathbb{Z} = \boxed{?}$
- (d) $4\mathbb{Z} \cap 6\mathbb{Z} = \boxed{?}$
- (e) $4\mathbb{Z} \cap 10\mathbb{Z} = \boxed{?}$

Problem 10 Make a general rule for intersecting sets of the form $n\mathbb{Z}$ and $m\mathbb{Z}$. Explain why your rule works.

Problem 11 If $X \cup Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X\subset Y/X=Y/Y\subset X/X=\emptyset)$ because every element of (X/Y) must be in (X/Y).

Problem 12 If $X \cap Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X\subset Y\,/\,X=Y\,/\,Y\subset X\,/\,X=\emptyset)$ because every element of $(X\,/\,Y)$ must be in $(X\,/\,Y)$.

Problem 13 If $X - Y = \emptyset$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X\subset Y\,/\,X=Y\,/\,Y\subset X\,/\,X=\emptyset)$ because every element of $(X\,/\,Y\,)$ must be in $(X\,/\,Y\,).$

Vocabulary Review

 $Short-answer,\ multiple-choice,\ and\ select-all\ questions\ about\ key\ vocabulary.$

Question	14	An equilateral quadrilateral is called a ?.
Question	15	An equiangular quadrilateral is called a ?.
Question	16	An regular quadrilateral is called a $\boxed{?}$.
Question	17	A $\boxed{?}$ measures 180°. (Hint: Answer with two words.)
Question	18	Two angles whose measures sum to 180° are said to be $\boxed{?}$.
Question	19	Two angles whose measures sum to 90° are said to be $\boxed{?}$.
Question ?.	20	Three (or more) points that lie on the same line are said to be
Question ?	21	Three (or more) lines that lie on the same point are said to be

Author(s): Bart Snapp and Brad Findell