Lecture 2 – Smoothing (Continued)

- 1. Methods for smoothing
 - a. Add α (see lecture 2)
 - b. Linear Interpolation (see lecture 2)
 - c. Discounting (Kneser-Ney Smoothing)
 - i. Very successful in NLP
 - ii. Idea: Take some probability mass from all existing bigrams, and redistribute (in some way, the probability among unseen bigrams)
 - 1. Create a new distribution $c^*(w_{i-1}, w_i)$

2.
$$c^*(w_{i-1}, w_i) = \max(count(w_{i-1}, w_i) - d, 0), d > 0$$

3. $p(w_i, w_{i-1}) = \begin{cases} \frac{c^*(w_{i-1}, w_i)}{count(w_{i-1})}; & \text{if } count(w_{i-1}, w_i) > 0\\ \alpha(w_{i-1}) \frac{p(w_i)}{\sum_{w \in \{w \mid count(w_i, w) = 0\}} p(w)}; & \text{otherwise} \end{cases}$

- iii. Promiscuity
 - 1. Redistributing based on unigram probability not always good
 - 2. Instead, let $P_C(w)\alpha |\{w_{i-1}|count(w_{i-1}, w_i) > 0\}|$

Lecture 3 – Topic Models and EM

- 1. Syntax trees shown to help statistical NLP, but not neural NLP
- 2. Higher level models semantics trees? Not convincingly helpful as well
- 3. How to model whole documents of text?
 - a. Hierarchical Segmentation?
 - b. Centering?
 - c. RST?
- 4. Topic Models
 - a. Choose topics in a document, and generate text from those topics
 - i. Learned in an unsupervised manner
 - b. Blend = topic distribution (specific to individual documents)

i.
$$\theta_z \geq 0$$
, $\sum_z \theta_z = 1$

- c. Topic = distribution over words (shared across the collection of documents)
 - i. $\beta_{w|z,w\in V} \ge 0, \sum_{w\in V} B_{w|z} = 1$
- d. Generally, some topics found make sense...but many (most?) do not
- e. Example

i.
$$V = \{r, g, b\}$$

ii. Topic 1:
$$\beta_{r|1} = \beta_{g|1} = .5$$
, $\beta_{b|1} = 0$

iii. Topic 2:
$$\beta_{r|2} = \beta_{g|2} = 0$$
, $\beta_{b|1} = 0$

iv.
$$\theta_1 = \theta_2 = \frac{1}{2}$$

- f. How to generate documents, given θ , β , n?
 - i. Model 1 (Not a topic model)

1.
$$z \sim Categ(\theta_1, \theta_2)$$

2. For
$$i = 1 ... n$$
, $w_i \sim Categ(\beta_{w|z})$

ii. Model 2 (word order oblivious)

1. For
$$i=1\dots n, z_i \sim Categ(\theta_1, \theta_2) \wedge w_i \sim Categ(\beta_{w|z_i})$$

- g. How can we compute $p(w_1, ..., w_n)$?
 - i. Model 1

1.
$$\sum_{z} \theta_{z} \prod_{w} \beta_{w|z}$$

ii. Model 2

1.
$$\prod_{w} \sum_{z} \theta_{z} \beta_{w|z}$$

- h. How to estimate θ and β ?
 - i. Observed case

1. Given
$$z_1, ..., z_k \wedge w_1, ..., w_n$$

$$\widehat{o} \quad count(z)$$

1. Given
$$z_1, ..., z_k \wedge w_1, ..., w_n$$
a. $\hat{\theta}_z = \frac{count(z)}{n}$
b. $\hat{\beta}_{w|z} = \frac{count(w,z)}{count(z)} = \frac{count(w,z)}{\sum_{w'} count(w',z)}$

- ii. Unobserved case
 - 1. Use stochastic gradient descent
 - 2. Use EM algorithm (will discuss next time)