Finite elements for curvature

Kaibo Hu

joint work with Snorre H. Christiansen (Oslo)

University of Minnesota

Chinese Academy of Sciences, Beijing, June 10, 2019

Outline

• Elasticity complex and motivation

2 Finite element sequences

Elasticity complex and motivation

2 Finite element sequences

De Rham complexes

De Rham complex in 3D:

$$0 \longrightarrow L^{2}(\Omega) \xrightarrow{\mathsf{grad}} L^{2}(\Omega) \otimes \mathbb{V} \xrightarrow{\mathsf{curl}} L^{2}(\Omega) \otimes \mathbb{V} \xrightarrow{\mathsf{div}} L^{2}(\Omega) \longrightarrow 0,$$

with the domain complex:

$$0 \longrightarrow H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}, \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \longrightarrow 0.$$

- ullet \mathbb{V} : vectors, \mathbb{M} : matrices, \mathbb{S} : symmetric matrices,
- $H(\mathcal{D},\Omega) := \{u \in L^2 : \mathcal{D}u \in L^2\},$
- complex: curl grad = 0, div curl = 0,
- cohomology: $\mathcal{N}(\text{curl})/\mathcal{R}(\text{grad})$, $\mathcal{N}(\text{div})/\mathcal{R}(\text{curl})$.

The de Rham complex, as an example of more general Hilbert complexes, plays a vital role in the Finite Element Exterior Calculus (FEEC).

Elasticity complex (linearized Calabi complex)

$$0 \longrightarrow C^{\infty} \otimes \mathbb{V} \xrightarrow{\text{def}} C^{\infty} \otimes \mathbb{S} \xrightarrow{\text{inc}} C^{\infty} \otimes \mathbb{S} \xrightarrow{\text{div}} C^{\infty} \otimes \mathbb{V} \longrightarrow 0$$

$$\text{displacement} \qquad \text{strain (metric)} \qquad \text{stress (curvature)} \qquad \text{force}$$

- $\bullet \ \, \mathbb{V} \colon \, \mathsf{vectors}, \, \mathbb{S} \colon \, \mathsf{symmetric} \, \, \mathsf{matrices}, \\$
- linearized deformation $\operatorname{def} u := 1/2(\nabla u + u\nabla)$,
- linearized curvature inc $v := \nabla \times v \times \nabla$, Saint-Venant compatibility condition: $e = \operatorname{def} u \Rightarrow \operatorname{inc} e = 0$
- $inc \circ def = 0$, $div \circ inc = 0$,
- classical elasticity
 - displacement formulation: displacement,
 - Hellinger-Reissner principle: stress+force,
 - intrinsic formulation: strain,
 Ciarlet, Gratie, Mardare, 2009; Ciarlet, Ciarlet, 2008 etc.
- continuum description of defects (incompatibility theory)
 - elasto-plastic decomposition: $e = e^e + e^p$, inc $e^e = 0$,
 - Beltrami decomposition: e = def w + inc v.

(A little bit) more on the continuous level

Continuous level has not been clarified yet...

Basically, we have all the analogous properties as the de Rham version. (Arnold, H., *Construction of Hilbert complexes*, in preparation.)

$$RM \xrightarrow{\subset} H^1(\mathbb{V}) \xrightarrow{\text{def}} H(\text{inc}; \mathbb{S}) \xrightarrow{\text{inc}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2(\mathbb{V}) \longrightarrow 0.$$

- cohomology is isomorphic to the de Rham cohomology $\mathscr{H}^{\bullet}_{dR}\otimes(\mathbb{V}\otimes\mathbb{V}),$
- operators have closed range,
- Poincaré type inequalities (-> Korn's inequality),
- Hodge decomposition and well-posed Hodge Laplacian boundary value problems, (-> Beltrami type decomposition)
- regular decomposition,
- compactness property,
- Poincaré/Koszul operators (-> Cesàro-Volterra path integral),

Elasticity-electromagnetism analogue

Seeger, 1961, Recent Advances in the Theory of Defects in Crystals.

KRÖNER [13] has developed a most useful analogy between the theory of internal stresses and strains as described in sections 2 to 6 and the theory of the magnetic field of distributions of stationary electric currents. Table 1 contains a list of the corresponding physical quantities, differential operators, and equations. We hope that this table is understandable without any further comments (see also the review article by DE Wir [10]).

 ${\bf Table~1}$ Correspondences in elasticity and magnetism

Elasticity	Magnetism
vector quantity	scalar quantity
tensor rank two	vector
tensor rank four	tensor rank two
Div	div
Ink	curl
Div Ink $\equiv 0$	$\operatorname{div}\operatorname{curl}\equiv 0$
Def	grad
$Ink Def \equiv 0$	$\operatorname{curl}\operatorname{grad}\equiv 0$
Burgers vector b	current I
incompatibility tensor n	current density J
strain tensor e	magnetic intensity H
stress tensor σ	magnetic induction B
stress function tensor x, x'	vector potential A
elastic constants C (or G, K)	permeability µ
displacement s	scalar potential ψ
equation (3)	$H = \operatorname{grad} \psi$
equation (5)	$\operatorname{curl} \vec{H} = \vec{J}$
equation (17)	$\operatorname{div} \boldsymbol{B} = 0$
equation (18)	$B = \operatorname{curl} A$
equations (19), (19a)	$\nabla^2 A = -\mu J$
equation (20)	$\operatorname{div} A = 0$
equation (22)	$A = \frac{\mu}{4\pi} \iiint \frac{J(r')}{ r-r' } d\tau_{r'}$

 a concrete model describing dislocation and defects (Amstutz, Van Goethem 2016):

inc inc
$$e = f$$
,
div $e = 0$,

elasticity analogue of the Maxwell equations

$$\operatorname{curl}\operatorname{curl} E = g,$$
$$\operatorname{div} E = 0.$$

Question: how to discretize, even in 2D?
 3D elasticity complex:

$$\operatorname{RM} \stackrel{\subset}{\longrightarrow} H^1 \otimes \mathbb{V} \stackrel{\mathsf{def}}{\longrightarrow} H(\operatorname{inc}; \mathbb{S}) \stackrel{\mathsf{inc}}{\longrightarrow} H(\operatorname{div}; \mathbb{S}) \stackrel{\mathsf{div}}{\longrightarrow} L^2 \otimes \mathbb{V} \longrightarrow 0,$$

2D stress complex:

$$\mathscr{P}_1 \xrightarrow{\subset} H^2 \xrightarrow{\text{airy}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^2 \otimes \mathbb{V} \longrightarrow 0,$$

2D strain complex:

$$RM \xrightarrow{\subset} H^1 \otimes \mathbb{V} \xrightarrow{\text{def}} H(\text{rot rot}; \mathbb{S}) \xrightarrow{\text{rot rot}} L^2 \longrightarrow 0.$$

Existing work

$H(\operatorname{div}, \mathbb{S})$ - $L^2(\mathbb{V})$ pair:

- 2D macroelements: Johnson, Mercier 1978; Arnold, Douglas, Gupta 1984
- 2D and 3D : Arnold, Winther 2002; Arnold, Awanou, Winther 2008
- nD canonical construction: Hu, Zhang 2015
- other nonconforming methods, e.g., Pechstein, Schöberl 2012, TDNNS, $H(\text{div}\,\text{div};\mathbb{S})$ -H(curl)

H(inc) element fitting into a sequence:

- Regge calculus from the finite element point of view (Christiansen 2011) piecewise $\mathcal{P}^0(\mathbb{S})$, tangential-tangential continuity, highly nonconforming,
- Li 2018 thesis: higher order Regge.

Goal of this work: first conforming 2D H(inc) element fitting in a sequence (conforming Regge type element)

Elasticity complex and motivation

2 Finite element sequences

Discrete stress complex: BGG approach

Bernstein-Gelfand-Gelfand construction: Eastwood 1999; Arnold, Falk, Winther 2006.

$$\mathcal{P}_{1} \xrightarrow{\subset} H^{2} \xrightarrow{\text{airy}} H(\text{div}; \mathbb{S}) \xrightarrow{\text{div}} L^{2} \otimes \mathbb{V} \longrightarrow 0,$$

$$\mathbb{R} \xrightarrow{\subset} H^{2} \xrightarrow{\text{curl}} H^{1} \otimes \mathbb{V} \xrightarrow{\text{skw}} L^{2} \longrightarrow 0$$

$$\mathbb{V} \xrightarrow{\subset} H^{1} \otimes \mathbb{V} \xrightarrow{\text{curl}} H(\text{div}) \otimes \mathbb{V} \xrightarrow{\text{div}} L^{2} \otimes \mathbb{V} \longrightarrow 0$$

(anti-)commuting diagram, dS = -Sd, bijectivity, surjectivity

Output: Johnson-Mercier type elements.

Applying this BGG type diagram chase to other Stokes type complexes:

- Arnold-Winther pair: Arnold, Falk, Winther 2006
 - Hu-Zhang pair: Christiansen, Hu, H. 2016
 - other macroelements

Discrete stress complex: Poincaré operator approach

- Poincaré operators:
 - explicit potential, Poincaré lemma, canonical construction of FEs,
 - null-homotopy identity: $\mathcal{D}^{i-1}\mathcal{P}^i + \mathcal{P}^{i+1}\mathcal{D}^i = \mathrm{id}$,
 - complex property: $\mathscr{P}^{i-1}\mathscr{P}^i=0$,
 - polynomial-preserving property.
- Koszul operators: Poincaré acting on homogeneous polynomials, similar properties.
- for the stress complex (Christiansen, Hu, Sande 2019):

$$\mathscr{K}_r^1 u = x^{\perp} \cdot \underline{u} \cdot x^{\perp},$$

$$(\mathscr{K}_r^2 u)(x) = \operatorname{sym}\left(\frac{1}{r+2} \underline{u} \otimes x + \frac{1}{(r+2)(r+3)} \operatorname{curl}\left(x^{\perp} \cdot ux\right)\right).$$

Discrete strain complex: BGG approach

Output:

Equivalent edge DOFs: $\int_e \operatorname{rot} u \cdot \tau \iff \int_e \partial_n (\tau \cdot u \cdot \tau)$ for $u \in C^0 \mathcal{P}^2$.

Discrete strain complex: lower regularity

• Koszul operators for the strain complex:

$$\mathscr{K}_{1}^{r}(E) = \frac{1}{r+1} \underbrace{E \cdot x}_{} + \frac{1}{(r+1)(r+2)} x \wedge (\operatorname{rot} E) \cdot x : C^{\infty}(\mathbb{S}) \mapsto C^{\infty}(\mathbb{V}),$$
$$\mathscr{K}_{2}^{r}(V) = \frac{1}{(r+2)(r+3)} x^{\perp} \otimes V \otimes x^{\perp} : C^{\infty}(\mathbb{S}) \mapsto C^{\infty}(\mathbb{S}).$$

• stain complexes with lower regularity and fewer DOFs are possible:

$$\mathbb{V} \stackrel{\subset}{\longrightarrow} H^1(\mathrm{rot}) \stackrel{\mathsf{def}}{\longrightarrow} H(\mathrm{rot};\mathbb{S}) \cap H(\mathrm{rot}\,\mathrm{rot};\mathbb{S}) \stackrel{\mathsf{rot}\,\mathrm{rot}}{\longrightarrow} L^2 \longrightarrow 0$$

• can also be obtained by a diagram chase.

Conclusions

- Reference:
 - Finite element systems for vector bundles: elasticity and curvature; Christiansen, H., arXiv:1906.09128.
 - Poincaré path integrals for elasticity; Christiansen, H., Sande, Journal de Mathématiques Pures et Appliquées, accepted, 2019
 - Construction of Hilbert complexes; Arnold, H., in preparation.
- discrete BGG diagram chase is based on several Stokes type complexes with various regularity, which is an important topic by itself,
- 3D is ongoing,
- comparison to discrete differential geometry and potential applications in defect theory, geometric problems (Ricci flows, Einstein equations etc.).