

Southampton Southampton

Trailing edge noise for rotating blades

Analysis and comparison of two classical approaches

Samuel Sinayoko¹ Mike Kingan² Anurag Agarwal¹

¹University of Cambridge, UK

²University of Southampton, Institute of Sound and Vibration Research, UK

Motivation

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

Review

Trailing edge for isolated airfoils

- ► Amiet 1974, 1975, 1976
- ► Roger and Moreau 2005, 2009

Review

Trailing edge for isolated airfoils

- ► Amiet 1974, 1975, 1976
- ► Roger and Moreau 2005, 2009

Trailing edge for rotating airfoils

- ► Amiet 1976
- Schlinker and Amiet 1981
- ► Kim and George 1982
- ▶ Blandeau and Joseph 2011

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

$$S_{pp} = a \quad |\Psi|^2 \quad l_y \quad S_{qq}$$

Amplitude $S_{pp} = \begin{array}{c|c} \hline a & |\Psi|^2 & l_y & S_{qq} \\ \hline \end{array}$ Acoustic lift

► Amplitude

$$S_{pp} = \alpha \qquad |\Psi|^2$$

ly

Sqq

- ► Acoustic lift
- ► Spanwise correlation length

► Amplitude ► Acoustic lift ► Spanwise correlation length ► Surface spectrum

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

Rotating airfoil

Rotating airfoil

$$S_{pp}(\omega) = \int S_{pp}(\omega, \gamma) dt$$

Change of reference frame

Change of reference frame

Change of reference frame

Moving observer in wind tunnel

```
ightharpoonup p(x,t) : no effect
```

ightharpoonup p(x, ω): Doppler shift $\omega' \to \omega$

Moving observer in wind tunnel

- \triangleright p(x, t) : no effect
- ▶ $p(x, \omega)$: Doppler shift $\omega' \to \omega$

PSD for moving observer

$$S_{pp}(\omega, \gamma) = \frac{\omega'}{\omega} S'_{pp}(\omega', \gamma)$$

Moving observer in wind tunnel

- ightharpoonup p(x,t): no effect
- ▶ $p(x, \omega)$: Doppler shift $\omega' \to \omega$

PSD for moving observer

$$S_{pp}(\omega, \gamma) = \frac{\omega'}{\omega} S'_{pp}(\omega', \gamma)$$

Time for moving observer

$$dt = \frac{\omega'}{\omega} dt'$$

Amiet's theory for rotating blade

$$S_{pp}(\omega) = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\omega'}{\omega}\right)^{2} S'_{pp}(\omega', \gamma) d\gamma$$

But... not everyone agrees

$S_{pp}(\omega) = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{\omega}{\omega} \right)^{2\pi}$	$S'_{pp}(\omega', \gamma) d\gamma$
---	------------------------------------

Source	Exponent e
Amiet (1976)	1
Rozenberg et al (2010)	1
Schlinker and Amiet (1981)	2
Blandeau and Joseph (2011)	-2

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

$$S_{pp} = \sum_{m} B |\Psi|^2 l_y S_{qq}$$

► Amplitude m ► Acoustic lift ► Spanwise correlation length

Summary

Amiet:

$$S_{pp} = \int A |\Psi|^2 l_y S_{qq} d\gamma$$

Kim-George:

$$S_{pp} = \sum_{m} B |\Psi|^2 l_y S_{qq}$$

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

Blade elements

Wind turbine kc = 5

Open propellor takeoff kc = 5

Wind turbine kc=0.5

Wind turbine kc=5

Wind turbine kc=50

Cooling fan kc=0.5

Cooling fan kc=5

Cooling fan kc=50

Open propellor take-off kc=0.5

Open propellor take-off kc=5

Open propellor take-off kc=50

Open propeller cruise kc=0.5

Open propeller cruise kc=5

Open propeller cruise kc=50

Outline

Isolated airfoil theory

Amiet's theory for rotating airfoils

Kim-George's theory for rotating airfoils

Results

Conclusions

Conclusions

1. Right exponent in Amiet's theory is 2

Conclusions

- 1. Right exponent in Amiet's theory is 2
- 2. Amiet's approach exact if $M_{ch} \leqslant 0.85$ and kc > 0.5

Conclusions

- 1. Right exponent in Amiet's theory is 2
- 2. Amiet's approach exact if $M_{ch} \leqslant 0.85$ and kc > 0.5
- 3. Applicable to a wide range of applications

