

(1,500円)

実用新案登録願

昭和 50年 6 月 20 日

考案の名称

2. 案 者

> 福岡県北九州市八幅市区大学藤由2346番地 **唐** 所 株式会社 安 川 電 機 製 作 所 内 氏 名 糟(ほか3名)

実用新案登録出願人

福岡県北九州市八幅区大字藤田2346番地 住 所

(662) 株式会社 安 川 名称 機 **Y**F 電

代表者

50. 6. 23

代 理

> 居 所 福岡県北九州市八幡 346番地

株式会社 安

(6212)氏 名

50-086059

公開実用 昭和51 € 63501

5. 添附書類の目録

 (1) 明 細 書
 1 通

 (2) 図 面
 1 通

 (8) 委 任 状
 1 通

ム 前記以外の考集者

居 所 福岡県北九州市八幅市区大学藤山2346番地 株式会社 安 川 館 機 製 作 所 內

氏名 石 田 弘 明

同所

氏名 都 筑 干 秋

商 所

氏名 河 野 哲 雄

明 細 著

- 1/ 考案の名称
- 3 ポンプ給水袋慣
- ・2 実用新案登録請求の範囲
- s 吐出側にタンクを散けることなく。ポンプから
- 。 直接給水するものにおいて,可変速ポンプと,こ
- の可変速ポンプと並列に設けた小容量の定速ポン
- ごと、この定速ポンプの吐出側から吸込み觸へ小
- 身の水を返送するパイパスとをそなえ、前配定速
- 10 ポンプは常時運転し、可変速ポンプは給水量に応
- □ じて速度制御するよう構成したポンプ給水装置。
- 23 考案の詳細な説明
- 3 本考案は吐水側にタンクを設けないでポンプか
- и ら直接ピル等の配管に接続するいわゆるタンクレ
- 13 ス給水装置に関するものである。
- 16 ピル、アパートなどの給水は、塔または電上に
- □ 圧力タンクを設けて一定量の貯水をするようにし
- 18 ていたが、タンクの建設のために場所と費用を要
- B するのと、ポンプの可変速制御が比較的簡単に行
- 2 なえるようになったため、タンクレス方式が採用

(2)

- 1 されるようになった。ところが、給水負荷は給水
- : 対象によって一日のパターンがほぼ決っており。
- 。 とくに夜間は小水量の状態が長く続く。このため
- 、 ポンプはほとんど締切り運転となるので,ポンプ
- s ケージング内の温度上昇が起こる。
- 。 これを防ぐため電磁または電動パルプを開閉す
- っ るなどの手段が考えられるが。この種のパルプは
- 6 信頼性が低くかつ高価であるため、好ましくない。
- 一方この小水量の間の運転損失はできるだけ小さ
- 10 くおさえなければならない。
- n 本考案は上記の点を考慮してなされたもので,
- 2 以下に図面に示す実施例について説明する。
- 13 / は受水槽で上水道から給水を受け、図示しな
- u いフロートスイッチなどによりほぼ一定水位に制
- 15 御される。
- 16 2は大容量の可変速ポンプ。3・ダはその吸込
- " 弁および吐出弁,5は小容量の定速ポンプ,6・
- 10 クは同じく吸込弁および吐出弁。とれら両ポンプ
- " ふらは並列に給水管とに接続されている。9は給
- ∞ 水管&の圧力検出器。/ 0は速度制御器で、圧力

・ 検出器9の検出圧力が所定値になるように,可変

2 速ポンプノの速度を制御する。ノノはパイパスで

3 定速ポンプケの吐出傷から吸込側に一定量の水を

4 返送する。/ 2はパイパス// の途中に設け返送

5 水の量を加減する絞りである。

。 第2図において可変速ポンプ!のQ — H 曲線は

7 最大速度 N₁ で (a-b-c)。速度の低下につれて

a 速度 N2 で (d-e-f), N3で(g-h-i), N4 で

9 (t-u)であり,定速ポンプケのQ-H曲線は

□ (j-k-ℓ)で表わされる。ポンプケの締め切り圧

" は設定圧力 Hoより高くなるようにとる。ポンプ

2 2・5の2台並列特性はポンプケの締め切り正以

11 下の領域では両方のポンプの流量が加わり、ポン

и プ2の速度 N₁ で(a-b-m) N₂ で(d-e-n),

is No で(g-h-o) N4で(j-k-p)となる。 設

16 定圧力がHoであれば、速度制御につれて流量は

11 91-92-93-94 とかわる。

ョ したがって圧力検出器タの検出圧力が設定圧力

B になるように、流量に応じて速度制御器/0によ

» って可変速ポンプ2が自動制御される。ポンプ2

(44)

- 1 の速度に N4 という下限を設けておくと。流量が
- 2 Qaよりさらに減少すれば動作点はg-Z-K とあ
- s がっていく。IAではポンプ2の流量は0で締め
- 切り運転となるから温度上昇の関係でとの点にお
- s ける連続運転はできないことになる。そこでたと
- · えば2点の圧力且(または流量)を検出してポンプ
- 1 2の停止指令をだし、ポンプ2を停止させる。動
- 作点はポンプケの特性曲線のす点に移る。さらに
- 流量が低下すればァーヒー1と変化するが。点1
- № に到ったとしても、第/図のようにパイパス//
- n があるので、締め切り運転とはならず、温度上昇
- 2 はある値以下に抑制される。流量が増加すれば
- □ J-k-y-sと圧力が下降するが。下限圧力
- " H₂ を検出してポンプスの運転指令を出し、この
- ъ よりな選転をくりかえす。
- ы 渦巻きポンプにおいて、ポンプ回転速度が一定
- " のとき、Q-H特性は,近似的に
- $H = a bQ^2 - - (/)$
- " で表わされる。 a · D は定数 , H は褐程 (m) ,
- 20 Qは流量(e/min)である。これより締め切り圧は

- 1 a , 楊程 O の点は Q = 1 a/o となる。
- z ポンプ効率 n は一般に次式で表わされる。
- $\eta = k_1 \eta QH/P$
- ・ k1は定数, rは水の比重(kg/ℓ), Pは軸動力
- s (LW)である。
- 6 したがって、流量Q=Oおよび√√√0 ではいず
- 7 れもカニのとなる。
- * ポンプ効率りをQの2次式で近似すれば
- $\eta = \mathbb{E}_2 \mathbb{Q} \left(\mathbb{Q} \sqrt{\mathbb{A}/\mathbb{D}} \right)$
- で表わされる。ポンプ効率は普通50%程度である。
- " るので、前式の最大値を0.5とおくと K2=-2b/a
- " となり、一般式としてつぎのように表わすことが
- **" できる。**

$$\eta = -\frac{2}{3} Q (Q - \sqrt{3} D) ---- (2)$$

- " ポンプの定格点(流量QN、場程UN)を効率ッが
- * 最大となるように選べば

$$Q_{N} = \frac{1}{2} \sqrt{6/p} \qquad ---- \qquad (3)$$

- 18 締め切り運転時は、ポンプ軸動力はすべて熱とな
- n って、この熱がすべて水の温度上昇に寄与すると
- 20 すれば、つぎのように表わすととができる。

 K_5 tQo = P

: kg は定数, o は水の比熱 (al /ºc·ℓ 中 000),

s Qは定常流量。tは流量Qのときの定常温度上昇

· (°0) である。次元を考えると k3= 40×2389

 $k_1 = \frac{1}{40 \times 102} \text{ Table Letter 1, 000 L}$

6 りに書きかえることができる。

$$60 \times / 02 P_{\eta} = rQH \qquad -----(4)$$

, (4)式・(5)式より

$$1000t = 238.9rH/102\eta -- (6)$$

n 締め切り状態に近いときは且主なであるから。(2)

12 式・16)式より

$$\frac{-2b}{a} Q(Q - \sqrt{a/b}) = 238.9 ra / 102000t$$

* となる。r ÷/kg/1 を入れて。Q について解き

5 (3)式の QN との比をとると、次式で表わされる。

$$Q/QN = I - \sqrt{I - 0.00468} e/t - - (7)$$

" aはポンプ固有の定数。Qn も定数であるから

18 この式はある流量9とそのときの定常上昇水温と

» の関係を表わしていることになる。たとえば・締

m め切り圧43m・許容温度上昇 $t=10^{\circ}0$ とすると

1 Q/QN + QO/

- 3 すなわち。必要パイパス水量はQN のノダで済む
- 3 ととになる。ポンプスに対するポンプケの容量は
- 1 /日の給水パターンから見て,低い給水量とその
- 5 継続時間等から決めるが,一般にはQ₁/Q₀ = / 0
- 6 ぐらいが適当であろう。
- 1 このときは最大流量のQ/タがパイパス損失と
- * なるだけで、ほとんど問題にならない。またポン
- プケは・設定圧 Ho で効率が最大となるよりに過
- 🏨 んでおけば,ポンプタの単独運転中も効率は高い
- n から,総合効率を高くすることができる。ポンプ
- 』 るは圧力変動 H₁~ H₂ を伴って間欠運転するが。
- n 夜間等少水量の間はポンプタのみの運転であるか
- " ら騒音は小さい。ポンプタのみを水中ポンプとす
- "れば、騒音はほとんど吸収される。
- 16 本考案は、以上のように圧力タンクも電磁パル
- " プも不要であり、簡単な絞りパイパスを設けるだ
- " けで上述のとおりの特長を有し、圧力制御系も従
- 19 来のものをそのまま使用することができる。
- 2 なか、末端圧制御系として構成することができ

公開実用 昭和第二163501

(B)

'る。

- 24 図面の簡単な説明
- 3 第/図は本案実施例の配置図,第2図は第/図
- 4 実施例のHー9、特性曲線図である。
- 。 / は受水槽, 2は可変速ポンプ, 3・4はその
- 。 吸込弁かよび吐出弁,5は定速ポンプ,6・7は
- · その吸込弁および吐出弁・9は圧力検出器・10
- 。 は速度制御器・ノノはバイパスである。

代理人弁理士 今 井 義

代理人 弁理士 今井義博

163501

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
D OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.