Problem 2.4 worth 4 points

Linear function? The function $\phi: \mathbf{R}^3 \to \mathbf{R}$ satisfies

$$\phi(1,1,0) = -1$$
 $\phi(-1,1,1) = 1$ $\phi(1,-1,-1) = 1$

Choose one of the following, and justify your choice: ϕ must be linear; ϕ could be linear; ϕ cannot be linear

Solution:

$$\alpha \cdot \phi(\vec{x}) = \phi(\alpha \cdot \vec{x})$$
 (principle of superposition)

Let
$$\alpha = -1$$
, $\vec{x}_b = (-1, 1, 1)$, and $\vec{x}_c = (1, -1, -1)$

$$\alpha \cdot \phi(\vec{x}_b) = \phi(\alpha \cdot \vec{x}_b)$$

$$-1 \cdot \phi(-1, 1, 1) = \phi(-1 \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix})$$

$$-1 \cdot (1) = \phi(\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix})$$

$$-1 = \phi(1, -1, -1)$$

$$-1 \neq 1$$

Because we are told the function $\phi(\vec{x}_c) = 1$ when $\vec{x}_c = (1, -1, -1)$, and since $\alpha \cdot \vec{x}_b = (1, -1, -1) = \vec{x}_c$, we see that superposition does not hold, therefore ϕ cannot be linear.

Problem 2.4 worth 4 points

Affine function. Suppose $\psi: \mathbf{R}^2 \to \mathbf{R}$ is an affine function, with $\psi(1,0) = 1$, $\psi(1,-2) = 2$.

- (a) What can you say about $\psi(1,-1)$? Either give the value of $\psi(1,-1)$ or state that it cannot be determined.
- (b) What can you say about $\psi(2,-2)$? Either give the value of $\psi(2,-2)$ or state that it cannot be determined.

Solution:

- (a) Since we're given $\psi(1,0) = 1$ and $\psi(1,-2) = 2$ we can conclude that the value $1 < \psi(1,-1) < 2$ because we see \vec{x}_1 remains constant as \vec{x}_2 is changing which, in turn, causes $\psi(\vec{x})$ to change. Since an affine function must be linear, if we keep a value constant and change another the result will change linearly, and since $|\Delta \vec{x}_2| = 2$ and $|\Delta \psi(\vec{x})| = 1$, if we look at the change in result with respect to \vec{x}_2 we get $\frac{1}{2}$. Add this on to our given initial value and we get $\psi(1,-1) = \frac{3}{2}$.
- (b) We are not told how the function behaves as \vec{x}_1 changes, so the value of $\psi(2,-2)$ cannot be determined.

Problem 2.9 worth 6 points

Taylor approximation. Consider the function $f: \mathbf{R}^2 \to \mathbf{R}$ given by $f(x_1, x_2) = x_1 x_2$. Find the Taylor approximation \hat{f} at the point z = (1, 1). Compare f(x) and $\hat{f}(x)$ for the following values of x.

$$x = (1,1), \quad x = (1.05, 0.95), \quad x = (0.85, 1.25), \quad x = (-1,2).$$

Make a brief comment about the accuracy of the Taylor approximation in each case.

Solution: If z = (1, 1), then we see $f(z) = (1) \cdot (1) = 1$.

$$\hat{f}(x) = f(z) + \frac{\delta f(z)}{\delta x_1} (x_1 - z_1) + \frac{\delta f(z)}{\delta x_2} (x_2 - z_2)$$

Now we take a look at our partial derivatives for x_1 and x_2 when f(z) = 1

$$\frac{\delta f(z)}{\delta x_1} = x_2(1)$$

$$= (1)(1)$$

$$= 1$$

$$\frac{\delta f(z)}{\delta x_2} = x_1(1)$$

$$= (1)(1)$$

$$= 1$$

Going back to our function \hat{f}

$$\hat{f}(x) = f(z) + \frac{\delta f(z)}{\delta x_1} (x_1 - z_1) + \frac{\delta f(z)}{\delta x_2} (x_2 - z_2)$$

$$\hat{f}(x) = (1) + (1)(x_1 - 1) + (1)(x_2 - 1)$$

$$\hat{f}(x) = (1) + (x_1 - 1) + (x_2 - 1)$$

Now let's evaluate for each of our given vectors:

$$\hat{f}(1,1) = (1) + (1-1) + (1-1)$$

$$\hat{f}(1,1) = 1 + 0 + 0$$

$$\hat{f}(1,1) = 1$$

$$\hat{f}(1.05, 0.95) = (1) + (1.05 - 1) + (.95 - 1)$$

$$\hat{f}(1.05, 0.95) = (1) + (.05) - (.05)$$

$$\hat{f}(1.05, 0.95) = 1$$

$$\hat{f}(0.85, 1.25) = (1) + (.85 - 1) + (1.25 - 1)$$

$$\hat{f}(0.85, 1.25) = (1) - (.15) + (.25)$$

$$\hat{f}(0.85, 1.25) = 1.1$$

$$\hat{f}(-1,2) = (1) + (-1 - 1) + (2 - 1)$$

$$\hat{f}(-1,2) = (1) - 2 + 1$$

$$\hat{f}(-1,2) = 0$$

Problem 2.10 worth 6 points

Regression model. Consider the regression model $\hat{y} = x^T \beta + v$, where \hat{y} is the predicted response, x is an 8-vector of features, β is an 8-vector of coefficients, and v is the offset term. Determine whether each of the following statements is true or false.

- (a) If $\beta_3 > 0$, and $x_3 > 0$, then $\hat{y} \geq 0$.
- (b) If $\beta_2 = 0$ then the prediction \hat{y} does not depend on the second feature x_2 .
- (c) If $\beta_6 = -0.8$, then increasing x_6 (keeping all other x_i s the same) will decrease \hat{y} .

Solution:

- (a) False. We can't conclude the value of \hat{y} from just a singular x_i when we have a vector of 8 features.
- (b) True. If $\beta_2 = 0$ then it "eliminates" the value at x_2 meaning the final product does not depend on that value.
- (c) True. Increasing the value of x_6 will create a larger negative value. Since $x^T\beta$ involves summing all our elements after multiplying them with each corresponding coefficient, and since we are leaving all other x_i s the same, then increasing our value x_6 will create a larger negative value in the summation, creating a smaller scalar of \hat{y} .