Туннелирование в СВЧ диапазоне.

Батарин Егор

7 апреля 2021 г.

Аннотация

Цель работы: исследование эффекта туннелирования радиоволн миллиметрового диапазона, проведение измерений в хеме Майкельсона.

1 Теория

Проникновение электромагнитных волн в менее плотную среду при полном внутреннем отражении - явление той же природы, что и проникновение частиц в область, где их полная энергия оказывается меньше потенциальной энергии. Это явление изучается в квантовой физике и носит название туннельного эффекта.

Рис. 1: Схема установки

Исследуем этот эффект - проникновение ЭМВ через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении на границе диэлектрик-воздух. Моделирование интерферометра Майкельсона с использованием этого эффекта и измерение длины волны излучения и показателя преломления фторопласта для радиоволн миллиметрового диапазона.

Для измерения показателя преломления матриала призм мы установим пластину толщины h из того же матриала, что и призмы - фторопласта. Имеем тогда приращение длины "оптического пути"

$$\Delta = 2h(n-1).$$

Данное приращение можно скомпенсировать, передвинув подвижное зеркало на необходимое расстояние δx :

$$\delta x = h(n-1)$$
.

Для толстых пластин, когда $\Delta > \lambda$, необходимо учесть изменение порядка интерференции. Это можно сделать, зная приближенное значение показателя преломления флоропласта ($n \approx 1.5$)

2 Выполнение

1. Исследование туннелирования СВЧ волн.

Рабочая частота клистрона - от $35.93~\Gamma\Gamma$ Ц до $35.99~\Gamma\Gamma$ ц, мы использовали $35.96~\Gamma\Gamma$ ц.Ей соответствует длина волны $\lambda=\frac{c}{\nu}=8.34\pm0.01~\text{мм}$. Мощность на 38~Bt. 100~Дел=10~мкA, значит 1~Дел=100~нA. Затем мы дереставим приемник для измерения отраженного света. Получится зависимость для преломленного и отраженного света:

Рис. 2: Зависимость T и R от l

Отсюда видно, что $T+R\approx 1$. Далее строим график $\ln(T)=f(z)$:

Рис. 3: ln(T) = f(z)

Далее вычисляем показатель преломления n с учетом того, что $\Lambda=0.46\pm0.01$ и $\varphi\approx\frac{\pi}{4}$:

$$n = \frac{1}{\sin\varphi}\sqrt{1 + \frac{1}{(4\pi\Lambda)^2}} = 1.4 \pm 0.1 \mathrm{mm}$$

Это хорошо соотносится с табличным значением 1.46.х

2. Интерферометр Майкельсона

Установим зазор такой, что $T=R\approx 0.5$. Собираем схему Майкельсона. Снимаем зависимость силы тока I=f(x) от координаты x подвижного зеркала. Получаем зависимость: Далее вставим пластину

Рис. 4: Подвижное зеркало

фторопласта с $h\approx 6.2$ мм. Получаем расстояние $\delta x=\frac{1.5+2+1.82}{3}=1.77$ мм. Теперь можно вычислить показатель преломления:

$$n=1+\frac{\delta x}{h}=1.3\pm0.1{\rm mm}$$

Это уже дальше от правды, но мы старались :-)

3 Вывод

В работе получена зависимость T и R от l и $\ln(T)=f(z)$. По первому графику подтвердилось соотношение $T+R\approx 1$, по второму получилось значение $n=1.4\pm 0.1$ мм, совпадающее с табличным в пределах погрешностей. Тем не менее, значение $n=1.3\pm 0.1$ мм, измеренное интерферометром Майкельсона, оказалось далеким от правды.