

→ Variants of 9.D SGD Mini Bakh G.D Butch G.D -> Dim. Reduction

-> PCA

$$W = W - \eta \cdot \frac{\partial L}{\partial \omega}$$

n=1M

$$\frac{\partial L}{\partial \omega} = -\frac{1}{\lambda} \sum_{i=1}^{\infty} y^{i} \cdot x^{i} + \frac{\lambda \omega}{\|\omega\|}$$

$$\Rightarrow \text{Slow updates : n' } \omega'$$

-> Calculate
$$\nabla_{\omega}L$$
 on subset of data β $m = 500$

$$m = 500$$
 mini-Bath

Diabetes prediction

weight.	Age	Diobetic
3		Y
:		y
:	-	y
		-

more spreadness = more info.

linear combination of existing features 100% varionie/info ti tr New Jeatures original feature (less) (d=10) (d=784)

Principal Component Analysis [DCA]

Por o ci pal Components Goal: "95.1. into/variance should be preserved"

$$784 \rightarrow 1 \begin{bmatrix} 201 \end{bmatrix}$$

$$784 \rightarrow 32 \begin{bmatrix} 921 \end{bmatrix} \times$$

$$784 \rightarrow 45 \begin{bmatrix} 95.81 \end{bmatrix}$$

In Principal Component Analysis (PCA), when rotating the axis to create new axis, which criterion is typically used to select the axis?

Maths

Conghainst opt. Problem.

argmose
$$\pm \sum_{i=1}^{n} (x_i \cdot \bar{u})^2 + \lambda (||u|_{i-1}^2)$$

$$\frac{(\chi.u)^{T}.(\chi.u)}{\eta} + \chi(uu^{2}-1)$$

mp. cov (x)

 $(X.u)^2 + \lambda(||u||^2-1)$

A=ATA = MAIL2

Scalar derivative
$$f(x) \rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$$
 Vector derivative $f(x) \rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$ $f(\mathbf{x}) \rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$ $bx \rightarrow b$ $x^T\mathbf{B} \rightarrow \mathbf{B}$ $bx \rightarrow b$ $x^T\mathbf{b} \rightarrow \mathbf{b}$ $x^2 \rightarrow 2x$ $x^T\mathbf{x} \rightarrow 2x$ $bx^2 \rightarrow 2bx$ $x^T\mathbf{B}x \rightarrow 2\mathbf{B}x$

$$2Vu + 2u\lambda = 0$$

$$\begin{array}{cccc}
\mu^{T} \mu - 1 &= 0 \\
\mu^{T} \mu = 1
\end{array}$$

rchit scalat eigenvelve

"Eigen de composition

https://online.stat.psu.edu/statprogram/reviews/matrix-algebra/eigendecomposition

eignec, eignal = mp.linalg.eig (V)

Higher eigenvelve > Better Rigenvector / Principal Component

$$P(\gamma^{c};\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot e^{\left(-(\chi-\mu)^{2}\right)}$$