- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - 1. Data type of all columns in the "customers" table.
- 2. SELECT column_name, data_type
- 3. FROM peaceful-tome-406306.Business_Case.INFORMATION_SCHEMA.COLUMNS
- 4. WHERE table_name = 'customers'

query recurre

2. Get the time range between which the orders were placed.

3. Count the Cities & States of customers who ordered during the given period.

2. In-depth Exploration:

1. Is there a growing trend in the no. of orders placed over the past years?

Yes, there is growing trend in past year.

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Query results				
JOB IN	IFORMATION	RESULTS	CHART PREVIEW	
Row	monthly 🔻	//	orders ▼	
1	2016-09		4	
2	2016-10		324	
3	2016-12		1	
4	2017-01		800	
5	2017-02		1780	
6	2017-03		2682	
7	2017-04		2404	
8	2017-05		3700	
9	2017-06		3245	
10	2017-07		4026	
11	2017-08		4331	
12	2017-09		4285	
13	2017-10		4631	

- Yes, In July, August, September & October orders are increased.
 - 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn
7-12 hrs: Mornings
13-18 hrs: Afternoon
19-23 hrs: Night

> During Afternoon, Brazillian placed order mostly.

2. Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

```
⊕ *Untitled 2 ▼ X
① Untitled 2
                   C RUN
                            SAVE ▼
                                       ▼ DOWNLOAD
                                                    + SHAR
  1 select
  2 format_datetime('%Y-%m', order_purchase_timestamp) as months,
  3 c.customer_state as state,
  4 count(order_id) as orders,
  5 from
  6 Business_Case.orders as o
  7 join Business_Case.customers as c
  8 on o.customer_id = c.customer_id
  9 group by 1,2
 10 order by 1,2
```

JOB IN	FORMATION	RESULTS	CHART PREVIEW	JS0	N EXECUTION
Row	months ▼	6	state ▼	11	orders ▼
1	2016-09		RR		1
2	2016-09		RS		1
3	2016-09		SP		2
4	2016-10		AL		2
5	2016-10		BA		4
6	2016-10		CE		8
7	2016-10		DF		6
8	2016-10		ES		4
9	2016-10		GO		9
10	2016-10		MA		4
11	2016-10		MG		40
12	2016-10		MT		3
13	2016-10		PA		4

2. How are the customers distributed across all the states?

JOB IN	IFORMATION	RESULTS	CHART PREVIEW
Row	state ▼	6	% of customers ▼
1	AC		0.08
2	AL		0.42
3	AM		0.15
4	AP		0.07
5	BA		3.4
6	CE		1.34
7	DF		2.15
8	ES		2.04
9	GO		2.03
10	MA		0.75
11	MG		11.7
12	MS		0.72
13	MT		0.91

Load more

- 3. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).
 You can use the "payment_value" column in the payments table to get the cost of orders.

```
With CTE as (
select Extract(YEAR from o.order_purchase_timestamp) as Year
,sum(payment_value) as payment
from Business_Case.payments as p
inner join Business_Case.orders as o on p.order_id = o.order_id
where Extract(MONTH from o.order_purchase_timestamp) between 1 and 8
group by 1),
CTE2 as (
select Year, round(100*((payment/lead(payment) over (order by YEAR desc))-1),2) as
increase
from CTE
order by Year Desc)
Select * from CTE2 where Year = 2018
```

JOB INFORI	MATION	RESULTS	CH	CHART	
Row Yea	r 🔻	increase	▼		
1	2018		136.98		

2. Calculate the Total & Average value of order price for each state.

3. Calculate the Total & Average value of order freight for each state.

Query results					
JOB INFORMATION		RESULTS	CHART PREVIEW	JSON	E)
Row	customer_state	~	Total_freight ▼	Avg_freight ▼	
1	MT		29715.43	28.17	
2	MA		31523.77	38.26	
3	AL		15914.59	35.84	
4	SP		718723.07	15.15	
5	MG		270853.46	20.63	
6	PE		59449.66	32.92	
7	RJ		305589.31	20.96	
8	DF		50625.5	21.04	
9	RS		135522.74	21.74	
10	SE		14111.47	36.65	

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_delivered_customer_date order_estimated_delivery_date


```
date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as
time_for_delivery,
date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as
diff_estimated_delivery
from Business_Case.orders
where order_status = "delivered"
```

JOB IN	IFORMATION RI	ESULTS	CHART PREVIEW	JSON	EXE
Row	order_id ▼	le	time_for_delivery	diff_estimated_delive	
1	635c894d068ac37e6e0	3dc54e	30	1	
2	3b97562c3aee8bdedcb	5c2e45	32	0	
3	68f47f50f04c4cb67745	70cfde	29	1	
4	276e9ec344d3bf029ff8	3a161c	43	-4	
5	54e1a3c2b97fb0809da	548a59	40	-4	
6	fd04fa4105ee8045f6a0	139ca5	37	-1	
7	302bb8109d097a9fc6e	9cefc5	33	-5	
8	66057d37308e787052a	32828	38	-6	
9	19135c945c554eebfd7	576c73	36	-2	
10	4493e45e7ca1084efcd	38ddeb	34	0	

2. Find out the top 5 states with the highest & lowest average freight value.

```
With Avg_frieght as (
select c.customer_state,
avg(oi.freight_value) as Avg_freight
from Business_Case.order_items as oi
inner join Business_Case.orders as o on oi.order_id = o.order_id
inner join Business_Case.customers as c on o.customer_id = c.customer_id
group by c.customer_state),
Frieght_Rank as (
select customer_state,
dense_rank() over (order by Avg_freight) as lh_rank,
dense_rank() over (order by Avg_freight desc) as hl_rank
from Avg_frieght)
select customer_state, "Bottom 5 States" as top_bottom
from Frieght_Rank where lh_rank <= 5</pre>
union all
select customer_state, "Top 5 States" as top_bottom
from Frieght_Rank where hl_rank <= 5</pre>
```

Query results CHART PREVIEW JOB INFORMATION RESULTS JSON top_bottom ▼ Row customer_state ▼ 10 1 AC Top 5 States 2 RO Top 5 States 3 PB Top 5 States Ы Top 5 States 4 Top 5 States 5 RR RJ Bottom 5 States 6 7 Bottom 5 States MG Bottom 5 States 8 PR 9 DF Bottom 5 States SP Bottom 5 States 10

- 3. Find out the top 5 states with the highest & lowest average delivery time.
- 4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state

```
with del_time as (
select c.customer_id,
c.customer_state,
o.order_id,
date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp,day) as
delivery_time
from Business_Case.orders as o
inner join Business_Case.customers as c on o.customer_id = c.customer_id
where order_status = "delivered"),
avg_del_time as (
select customer_state
,round(avg(delivery_time),2) as avg_time
from del_time
group by customer_state),
rank_del_time as (
select customer_state,
dense_rank() over(order by avg_time) as lh_del_time,
dense_rank() over(order by avg_time desc) as hl_del_time
from avg_del_time)
select customer_state,
```

```
"Top 5 States" as top_bottom
from rank_del_time where hl_del_time<=5
union all
select customer_state,
"Bottom 5 States" as top_bottom
from rank_del_time where lh_del_time<=5
```

JOB IN	NFORMATION	RESULTS	CHART PREVIEW
Row	customer_state	,	top_bottom ▼
1	SC		Bottom 5 States
2	PR		Bottom 5 States
3	SP		Bottom 5 States
4	MG		Bottom 5 States
5	DF		Bottom 5 States
6	AL		Top 5 States
7	AP		Top 5 States
8	AM		Top 5 States
9	PA		Top 5 States
10	RR		Top 5 States

6. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

```
select format_datetime("%Y-%m",order_purchase_timestamp) as Year_Month,
    c.payment_type as state,
    count(o.order_id) as order_count
from Business_Case.orders as o
    inner join Business_Case.payments as c on o.order_id = c.order_id
group by 1,2
    order by 1,2
```

JOB IN	FORMATION	RESULTS	CHART PREVIEW JSON EXECUTION		
Row	Year_Month ▼	h	state ▼	orde	r_count ▼
1	2016-09		credit_card		3
2	2016-10		UPI		63
3	2016-10		credit_card		254
4	2016-10		debit_card		2
5	2016-10		voucher		23
6	2016-12		credit_card		1
7	2017-01		UPI		197
8	2017-01		credit_card		583
9	2017-01		debit_card		9
10	2017-01		voucher		61

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select count(distinct order_id)
from Business_Case.payments
where payment_installments > 1
```

