

 $\mathbb{P}(Rain) = 0.3$ $\mathbb{P}(No\ rain) = 0.7$ $\mathbb{P}(Dark\ clouds \mid Rain) = 0.95$ $\mathbb{P}(Dark\ clouds \mid No\ rain) = 0.25$ $\mathbb{P}(Dark\ clouds \mid Rain) \cdot \mathbb{P}(Rain)$ $\mathbb{P}(Rain \mid Dark\ clouds) = \mathbb{P}(Dark\ clouds)$

A: computer flags IRS form B: IRS form contains mistakes or errors $A \mid B$: computer correctly flags the mistake $A^C \mid B$: computer incorrectly doesn't flag a mistake $A \mid B^{C}$: computer incorrectly flags the mistake $A^{C} \mid B^{C}$: computer correctly does not flag a mistake $B \mid A$: mistake found in file flagged by the computer $B^C \mid A$: no mistake but flagged by the computer $B \mid A^{C}$: mistake not flagged by the computer $B^C \mid A^C = no \text{ mistake but not flagged by the computer}$

$$posterior = \frac{likelihood \cdot prior}{constant} = \frac{0.5 \cdot 0.75}{0.3975}$$

$$prior : \mathbb{P}(A) = 0.75$$

$$likelihood : \mathbb{P}(B|A) = 0.5$$

$$constant : \mathbb{P}(B) = 0.3975$$

$$posterior : \mathbb{P}(A|B)$$

$$Bayes\ Rule:\ \mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}\ AND\ \mathbb{P}(B|A) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)} \Rightarrow \mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A)\cdot\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{likelihood\cdot prior}{constant} = posterior$$

$$Alternatively:\ \mathbb{P}(A\cap B) = \ \mathbb{P}(A|B)\cdot\mathbb{P}(B)\ OR = \ \mathbb{P}(B|A)\cdot\mathbb{P}(A)$$

$$posterior\ \propto likelihood\ \times prior$$

$$Bayes\ Factor\ :\ BF_{10} = \frac{\mathbb{P}\left(Data \mid H_{1}true\right)}{\mathbb{P}\left(Data \mid H_{0}\ true\right)}$$

$$\Rightarrow \mathbb{P}\left(Data \mid H_{1}true\right) = \frac{\mathbb{P}\left(H_{1}true \mid Data\right) \cdot \mathbb{P}\left(Data\right)}{\mathbb{P}\left(H_{1}\ true\right)}$$

$$\Rightarrow BF_{10} = \frac{\mathbb{P}\left(H_{1}true \mid Data\right) \cdot \mathbb{P}\left(Data\right)}{\mathbb{P}\left(H_{1}\ true\right)} \cdot \frac{\mathbb{P}\left(H_{0}\ true\right)}{\mathbb{P}\left(H_{0}\ true\right)} = \frac{\mathbb{P}\left(H_{1}true \mid Data\right) \cdot \mathbb{P}\left(H_{0}\ true\right)}{\mathbb{P}\left(H_{0}\ true\mid Data\right) \cdot \mathbb{P}\left(H_{0}\ true\right)}$$

Large $BF_{10} = 100 \implies$ the probability of the data under the alternative hypothesis is 100 times more likely than the null hypothesis

Small $BF_{10} = 0.0001 \Rightarrow the \ prob \ of \ the \ data \ under \ the \ alt \ is \ 0.0001 \ times \ less \ likely \ than \ the \ null, or \ the \ null \ is \ 1/0.0001 = 10000 (= BF_{01}) \ times \ more \ likely \ than \ the \ alt \ al$

$Marginal : \mathbb{P}(Dark\ clouds) = \sum \mathbb{P}(Dark\ clouds\ \ A) \cdot \mathbb{P}(A) = \sum \mathbb{P}(Dark\ clouds\ \cap\ A)$					
$A \in \Omega$ $A \in \Omega$					
$Conditional : \mathbb{P}(Dark\ clouds\ \ A)$					
$Joint: \mathbb{P}(Dark\ clouds \cap A)$					
Rain					

	Rain	No Rain	
Dark clouds	= 0.95 · 0.3	= 0.25 · 0.7	\sum
No dark clouds	= 0.05 · 0.3	= 0.75 · 0.7	Σ
	0.3	0.7	

B	

$$\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B) = \mathbb{P}(B \mid A) \cdot \mathbb{P}(A)$$

	В	B^c	Marginal
A	$\mathbb{P}(A \cap B)$ $= 0.5 \cdot 0.75$ $= 0.375$	$\mathbb{P}(A \cap B^C)$ $= 0.75 - 0.375$	$\mathbb{P}(A) = 0.75$
A^c	$\mathbb{P}(A^C \cap B)$ $= 0.09 \cdot 0.25$ $= 0.0225$	$\mathbb{P}(A^C \cap B^C)$ $= 0.25 - 0.0225$	$\mathbb{P}(A^C) = 0.25$
Marginal	$\mathbb{P}(B) = 0.3975$	$\mathbb{P}(B^C)$	