Alunos: Arthur Almeida Renan Colman

Relatório

1. Visão geral

Neste trabalho iremos abordar o tema de epidemias em timelines e disseminação de fake news em redes sociais por meio da implementação de simuladores de eventos discretos e experimentação dos diferentes fatores que influenciam na disseminação de fake news nas diferentes mídias sociais.

A temática do trabalho se relaciona com assuntos extremamente atuais por estarmos percebendo cada vez mais a influência das fake news em diversas temáticas mundiais, principalmente de cunho político, fomentadas pelo desejo de disseminar suas verdades e manipular a população a seu favor.

Abordaremos o tema demonstrando os resultados de nossas simulações desenvolvidas usando o modelo FIFO e RND para simulações endógenas. Apresentaremos também variações nas simulações utilizando de diversas situações em timelines.

Por fim, faremos comparações com a simulação via Cadeia de Markov, para chegarmos às conclusões finais de nossa implementação.

2. Simulações

- Consideramos em nossas simulações as seguintes variáveis:
 - Número de usuários: 5
 - Números de posts na timeline: 2
 - Número de rodadas de simulações: 50
 - Número de simulações: 150
 - Variações de timelines iniciais: 6
 - Todos os usuários com 1 fake news no topo da timeline (básico)
 - [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0]]
 - Todos os usuários com 1 fake news na base da timeline (básico)
 - [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]
 - Apenas 1 usuário com uma fake news na timeline
 - [[1, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
 - Apenas 1 usuário com duas fake news na timeline
 - [[1, 1], [0, 0], [0, 0], [0, 0], [0, 0]]
 - Três usuários com 2 fake news na timeline
 - [[1, 1], [1, 1], [1, 1], [0, 0], [0, 0]]
 - Quatro usuários com 2 fake news na timeline
 - [[1, 1], [1, 1], [1, 1], [1, 1], [0, 0]]

Gráficos:

Tempo x Probabilidade:

- Probabilidade média de terminar em fake news/good news no decorrer do tempo Simulação x Tempo médio
- Tempo médio das rodadas de simulações com intervalos de confiança Simulação x Probabilidade
 - Média de probabilidades de fake news/good news nas 50 rodadas de 150 simulações

a. Caso FIFO

- Neste caso, implementamos uma simulação considerando uma timeline com comportamento FIFO, ou seja, 'First In, First Out', em outras palavras, as mensagens entram no topo da timeline e "empurram" as já existentes uma posição para baixo, conforme ilustrado na imagem a seguir.

Exemplo real de uma simulação FIFO

Ordem da lista:

- 1. Usuario origem
- 2. Usuário destino
- 3. Tipo de mensagem
- Total de fake news
- Tempo total
- 6. Tempo relativo de envio

```
00 = {list: 6} [2, 0, 0, 5, 0.10628314865101049, 0.10628314865101049]
   01 = {list: 6} [2, 1, 1, 6, 0.240309064873036, 0.1340259162220255]
E 02 = (list: 6) [2, 0, 0, 5, 0.3288175125458202, 0.0885084476727842]
3 = (list 6) [2, 4, 1, 6, 0.34901449907963683, 0.020196986533816633]
= 04 = {list: 6} [2, 1, 1, 6, 0.49081327302224964, 0.1417987739426128]
1 05 = (list: 6) [0, 4, 0, 5, 0.590932519438732, 0.10011924641648244]
6 = (list: 6) [3, 4, 0, 4, 0.6894886527844578, 0.09855613334572574]
■ 07 = {list: 6} [1, 0, 1, 5, 1.1294769208881539, 0.43998826810369607]
■ 08 = {list: 6} [1, 4, 1, 6, 1.3981289255298832, 0.2686520046417292]
1 = 09 = {|ist: 6} [3, 0, 1, 7, 1.5904808268932253, 0.19235190136334204]
10 = {list: 6} [4, 2, 0, 7, 1.6928382627496261, 0.10235743585640068]
11 = {list: 6} [3, 4, 0, 7, 1.7779040840378173, 0.08506582128819112]
12 = {list: 6} [4, 1, 1, 7, 1.8107774319601342, 0.03287334792231698]
   13 = {list: 6} [4, 2, 1, 7, 1.8435349697755146, 0.03275753781538029]
14 = (list: 6) [2, 0, 0, 6, 1.8542679910907502, 0.010733021315235614]
15 = {list: 6} [1, 0, 1, 6, 2.0583190052348748, 0.20405101414412452]
i= 16 = (list: 6) [4, 3, 0, 6, 2.060862152822103, 0.0025431475872282998]
17 = (list: 6) [4, 2, 0, 6, 2.194156731458884, 0.13329457863678085]
18 = {list: 6} [3, 0, 0, 6, 2.2452193694438196, 0.05106263798493548]
19 = {list: 6} [4, 2, 1, 6, 2.2928908375216928, 0.04767146807787336]
20 = (list: 6) [0, 1, 0, 5, 2.2982992484962232, 0.005408410974530374]
= 21 = (list: 6) [2, 0, 0, 4, 2.5348579141173686, 0.23655866562114555]
   22 = {list 6} [0, 4, 0, 3, 2.5667
23 = {list: 6} [1, 3, 0, 2, 2.59]
1 24 = {list: 6} [4, 2, 0, 2, 2
   25 = {list 6} [2, 3, 0, 2,
                                   5837360802. 0.10480600876149834
   26 = {list: 6} [4, 2, 0, 1
   27 = (list: 6) [3, 1, 0, 0, 2.9608774092164616, 0.0184382679841851]
```

Finaliza em Good News

```
> | 00 = {list: 6} [2, 3, 1, 6, 0.045998793141194864, 0.045998793141194864]
> | 01 = {list: 6} [3, 0, 1, 7, 0.14702813823439706, 0.10102934509320219]
> | 02 = {list: 6} [3, 4, 1, 8, 0.2077641404370983, 0.06073600220270124]
> | 03 = {list: 6} [2, 1, 0, 8, 0.31506302847029416, 0.10729888803319587]
> | 04 = {list: 6} [1, 4, 1, 8, 0.3164769340610961, 0.0014139055908019636]
> | 05 = {list: 6} [0, 2, 1, 9, 0.5616922292696156, 0.24521529520851942]
> | 06 = {list: 6} [4, 0, 1, 9, 0.7400 03575613977, 0.17831712829178212]
> | 07 = {list: 6} [0, 3, 1, 9, 0.81 08593665141, 0.07690150180511632]
> | 08 = {list: 6} [0, 4, 1, 9, 1 382364831564564, 0.03142363675023644]
> | 09 = {list: 6} [2, 1, 1, 10, 1.3592153134684324, 0.22097883031197596]
```

Finaliza em Fake News

FIFO

Resultados das simulações nas diferentes timelines iniciais:

- Intervalo de confiança inferior de Fake News
 - 0.6559524628287493
- Média da porcentagem de ocorrer de Fake News
 - 0.666133333333333
- Intervalo de confiança superior de Fake News
 - 0.6763142038379176
- Menor porcentagem de Fake News
 - 0.586666666666666
- Maior porcentagem de Fake News
 - 0.74
- Em média, haviam 57.50079289565493 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1640.41333333333334 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 518.86 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 4.259449976861919
- Média do tempo de simulação
 - 4.333858703149235
- Intervalo de confiança superior da média do tempo de simulação
 - 0 4.408267429436551
- Menor tempo médio de simulação
 - o 3.635733752842099
- Maior tempo médio de simulação
 - 0 5.009111544745326

- Intervalo de confiança inferior de Fake News
 - 0.3146805780217592
- Média da porcentagem de ocorrer de Fake News
 - 0.3244
- Intervalo de confiança superior de Fake News
 - 0.33411942197824085
- Menor porcentagem de Fake News
 - 0.26
- Maior porcentagem de Fake News
- Em média, haviam 43.730006397952653 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 805.37333333333333 de mensagens de Fake News quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - 0 4.211317532013581
- Média do tempo de simulação
 - o 4.283862033301022
- Intervalo de confiança superior da média do tempo de simulação
 - o 4.356406534588464
- Menor tempo médio de simulação
 - o 3.7242759069571547
- Maior tempo médio de simulação
 - o 4.929207842297819

- Intervalo de confiança inferior de Fake News
 - o 0.1264265795560395
- Média porcentagem de ocorrer de Fake News
 - 0.13426666666666667
- Intervalo de confiança superior de Fake News
 - 0.14210675377729384
- Menor porcentagem de Fake News
- Maior porcentagem de Fake News
 - 0.2
- Em média, haviam 33.775663495242864 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 260.426666666667 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1031.0133333333333333 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - 0 2.5128111635289057
- Média do tempo de simulação
 - 2.5818525090329274
- Intervalo de confiança superior da média do tempo de simulação
 - o 2.650893854536949
- Menor tempo médio de simulação
 - o 2.0649748827178573
- Maior tempo médio de simulação
 - o 3.1188207304655133

- Intervalo de confiança inferior de Fake News
 - o 0.1902389095457737
- Média da porcentagem de ocorrer de Fake News
- Intervalo de confiança superior de Fake News
 - o 0.2092277571208929
- Menor porcentagem de Fake News
- Maior porcentagem de Fake News
- Em média, haviam 36.361468764902244 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 352.7866666666667 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1128.4333333333334 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 2.886923979720702
- Média do tempo de simulação
 - o 2.9549763847599944
- Intervalo de confiança superior da média do tempo de simulação
 - o 3.023028789799287
- Menor tempo médio de simulação
 - 2.3456683064204715
- Maior tempo médio de simulação
 - o 3.583711323024792

- Intervalo de confiança inferior de Fake News
 - o 0.5873211360125555
- Média da porcentagem de ocorrer de Fake News
 - 0.5990666666666667
- Intervalo de confiança superior de Fake News
 - 0.610812197320778
- Menor porcentagem de Fake News
 - 0.51333333333333333
- Maior porcentagem de Fake News
- Em média, haviam 53.50178056638969 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1298.4133333333334 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 738.56 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 4.009369957170037
- Média do tempo de simulação
 - o 4.084557441722668
- Intervalo de confiança superior da média do tempo de simulação
 - 4.1597449262753
- Menor tempo médio de simulação
 - o 3.5095015327490313
- Maior tempo médio de simulação
 - 4.795004347011878

- Intervalo de confiança inferior de Fake News
 - 0.7805884328994842
- Média da porcentagem de ocorrer de Fake News
 - o 0.7913333333333334
- Intervalo de confiança superior de Fake News
 - 0.8020782337671827
- Menor porcentagem de Fake News
 - 0.7066666666666667
- Maior porcentagem de Fake News
 - 0.8533333333333333
- Em média, haviam 63.52651599910495 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 290.95333333333333 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 2.899369613348868
- Média do tempo de simulação
 - 2.9838135311033587
- Intervalo de confiança superior da média do tempo de simulação
 - o 3.0682574488578496
- Menor tempo médio de simulação
 - 2.4423602671146334
- Maior tempo médio de simulação
 - o 4.136111887160387

Gráfico com 25 simulações e suas probabilidades de finalizar em fake news no tempo:

- Percebe-se que a tendência de todas as simulações é a mesma do crescimento e estabilização no decorrer do tempo.

Comparando com o resultado FIFO da cadeia de Markov

Em nossas simulações, notamos que a tendência se dava na mesma proporção da simulação da cadeia de Markov, como podemos notar na semelhança dos gráficos, inclusive no gráfico acima que mostra 25 rodadas de simulações e suas curvas.

b. Caso RND

 Neste caso, implementamos uma simulação considerando uma timeline com comportamento aleatório, ou seja, as mensagens, diferentemente do caso FIFO, entram em qualquer posição na timeline

Exemplo real de uma simulação RND

```
00 = \{\text{list: 6}\} [0, 4, 0, 5, 0.07280998141725892, 0.07280998141725892}]
> = 01 = {list: 6} [0, 1, 0, 5, 0.1492035317843024, 0.07639355036704347]

> = 02 = {list: 6} [0, 3, 1, 6, 0.2067312773789501, 0.057527745594647704]

> = 03 = {list: 6} [4, 3, 0, 5, 0.26306115194394875, 0.056329874564998626]
> = 04 = {list: 6} [1, 3, 0, 5, 0.3569904964536299, 0.09392934450968113]
> = 05 = (list: 6) [2, 3, 1, 5, 0.5985625764951288, 0.24157208004149888]
> = 06 = {list: 6} [3, 2, 0, 4, 0.7605216258500255, 0.16195904935489666]

> = 07 = {list: 6} [3, 2, 1, 5, 0.7837791831673637, 0.023257557317338286]

> = 08 = {list: 6} [2, 1, 0, 4, 0.8587594440140108, 0.07498026084664709]
> = 09 = (list: 6) [0, 2, 0, 4, 0.9452422837217764, 0.08648283970776562]
> = 10 = {list: 6} [3, 4, 0, 4, 0.9541810297411459, 0.00893874601936947]
> = 11 = {list: 6} [2, 1, 1, 5, 0.9855906455474766, 0.031409615806330615]
> = 12 = {list: 6} [0, 1, 1, 6, 1.052050319881354, 0.06645967433387749]
> = 13 = {list: 6} [0, 2, 1, 7, 1.2156767845364953, 0.16362646465514122]
> = 14 = {list: 6} [0, 4, 1, 8, 1.3930303837405378, 0.17735359920404248]
> = 15 = {\list: 6} [1, 2, 1, 8, 1.4330928430021765, 0.04006245926163886]
> = 16 = {list: 6} [0, 4, 1, 8, 1.4799781490348918, 0.04688530603271532]
> 17 = {list: 6} [2, 3, 1, 8, 1.6427124439988021, 0.16273429496391031]
> = 18 = {list: 6} [2, 4, 1, 8, 1.8464721167853957, 0.20375967278659354]
> = 19 = {list: 6} [1, 4, 1, 8, 1.8795049993400277, 0.03303288255463194]
> = 20 = {list: 6} [2, 4, 1, 8, 1.9457002655390625, 0.06619526619903472]
> = 21 = {list: 6} [1, 0, 1, 9, 2.064372923848245, 0.11867265830918246]
> = 22 = {list: 6} [0, 3, 1, 9, 2.2895983983879513, 0.22522547453970632]
> = 23 = {list: 6} [4, 1, 1, 9, 2.550150700718682, 0.26055230233073073]
> = 24 = {list: 6} [0, 3, 1, 10, 2.6494049939097875, 0.09925429319110532]
```

Finaliza em Fake News

```
= 00 = \{\text{list: 6}\} [4, 2, 1, 5, 0.04321036111230986, 0.04321036111230986]
 1 = {list: 6} [2, 3, 0, 4, 0.18207593787506196, 0.1388655767627521]
> = 02 = {\list: 6} [1, 2, 0, 3, 0.21916023754690683, 0.037084299671844866]
> 📜 03 = {\list: 6} [3, 4, 0, 3, 0.2334507763776313, 0.014290538830724477]
 04 = {list: 6} [1, 0, 1, 3, 0.23654207611711098, 0.003091299739479659]
> = 05 = {list: 6} [4, 1, 0, 3, 0.3017881221287295, 0.06524604601161854]
 1 06 = (list: 6) [0, 4, 0, 3, 0.3707961687966593, 0.06900804666792974]
> = 07 = {list: 6} [1, 4, 0, 2, 0.6982327967036249, 0.32743662790696565]
> = 08 = {list: 6} [0, 3, 1, 3, 0.7182567672476724, 0.02002397054404747]
> = 09 = {list: 6} [2, 3, 0, 3, 0.7964346368609116, 0.0781778696132392]
> = 10 = {list: 6} [4, 3, 0, 2, 0.8461216824429344, 0.04968704558202279]
 11 = {list: 6} [3, 4, 0, 2, 0.8732640201146942, 0.02714233767175982]
12 = {list: 6} [3, 1, 0, 2, 0.9657489456216604, 0.09248492550696616]

> = 13 = {list: 6} [0, 2, 1, 3, 0.9749071731588363, 0.009158227537176024]

14 = {list: 6} [0, 2, 0, 2, 1.2447198591520756, 0.2698126859932393]
 15 = {list: 6} [0, 1, 1, 2, 1.3339886443259, 0.08926878517382436]
> = 16 = {list: 6} [1, 4, 1, 3, 1.4001817337751137, 0.06619308944921368]
 17 = {list: 6} [4, 3, 0, 3, 1.5441353133377829, 0.14395357956266921]
> = 18 = {list: 6} [2, 4, 0, 2, 1.552770830741256, 0.008635517403473042]

> = 19 = (list: 6) [0, 1, 0, 1, 1.7130260691727872, 0.1602552384315313]

 20 = {list: 6} [3, 2, 0, 1, 1.7981734954296147, 0.08514742625682739]
 21 = {list: 6} [0, 2, 0, 1, 1,8782949355003298, 0.08012144007071514]
 22 = {list: 6} [3, 0, 0, 0, 1.9066089046694819, 0.028313969169152135]
```

Finaliza em Good News

RND

- Intervalo de confiança inferior de Fake news
 - 0.4902207332122288
- Média da porcentagem de ocorrer de Fake news
 - 0.5025333333333333
- Intervalo de confiança superior de Fake news
 - 0.5148459334544377
- Menor porcentagem de Fake news
 - 0.42
- Maior porcentagem de Fake news
 - 0.6266666666666667
- Em média, haviam 52.91942171915275 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1535.113333333333 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1391.68666666666667 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 5.756332123838721
- Média do tempo de simulação
 - 5.852015138970501
- Intervalo de confiança superior da média do tempo de simulação
 - o 5.94769815410228
- Menor tempo médio de simulação
 - o 5.047070720804018
- Maior tempo médio de simulação
 - 6.571725274971336

- Intervalo de confiança inferior de Fake news
 - 0.47901315057760874
- Média da porcentagem de ocorrer de Fake news
 - 0.4924
- Intervalo de confiança superior de Fake news
 - o 0.5057868494223913
- Menor porcentagem de Fake news
 - 0.38
- Maior porcentagem de Fake news
 - 0.5866666666666667
- Em média, haviam 53.133125325013 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1576.89333333333334 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1316.7066666666667 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - 5.68759385548567
- Média do tempo de simulação
 - o 5.786673507754
- Intervalo de confiança superior da média do tempo de simulação
 - o 5.88575316002233
- Menor tempo médio de simulação
 - o 4.967864798039667
- Maior tempo médio de simulação
 - 0 6.736079461266883

- Intervalo de confiança inferior de Fake news
 - 0.08120124209330519
- Média da porcentagem de ocorrer de Fake news
 - 0.08680000000000002
- Intervalo de confiança superior de Fake news
 - 0.09239875790669484
- Menor porcentagem de Fake news
 - 0.0466666666666666
- Maior porcentagem de Fake news
 - 0.14
- Em média, haviam 32.054054054054054 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 52.32666666666667 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1210.12 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 2.4462131431546443
- Média do tempo de simulação
 - o 2.518657688064002
- Intervalo de confiança superior da média do tempo de simulação
 - o 2.5911022329733595
- Menor tempo médio de simulação
 - o 1.9393937573785942
- Maior tempo médio de simulação
 - 3.0487820366785026

- Intervalo de confiança inferior de Fake news
 - 0.1832990390484417
- Média da porcentagem de ocorrer de Fake news
 - 0.1903999999999999
- Intervalo de confiança superior de Fake news
 - 0.19750096095155828
- Menor porcentagem de Fake news
- Maior porcentagem de Fake news
 - 0.24666666666666667
- Em média, haviam 39.337939900369595 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1613.2 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - 0 3.9449909845343587
- Média do tempo de simulação
 - 4.04585930147502
- Intervalo de confiança superior da média do tempo de simulação
 - o 4.146727618415682
- Menor tempo médio de simulação
 - 3.2074443491289304
- Maior tempo médio de simulação
 - 5.108736464958385

- Intervalo de confiança inferior de Fake news
 - o 0.5812869545811817
- Média da porcentagem de ocorrer de Fake news
 - 0.5912000000000001
- Intervalo de confiança superior de Fake news
 - o 0.6011130454188184
- Menor porcentagem de Fake news
 - o 0.5066666666666667
- Maior porcentagem de Fake news
- Em média, haviam 52.63890646753575 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1666.9933333333333 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 1104.7266666666667 de mensagens de Goodnews para terminar em Goodnews
- Intervalo de confiança inferior da média do tempo de simulação
 - o 5.456911999778853
- Média do tempo de simulação
 - o 5.553779028173244
- Intervalo de confiança superior da média do tempo de simulação
 - o 5.650646056567634
- Menor tempo médio de simulação
 - o 4.88211359314052
- Maior tempo médio de simulação
 - o 6.697936118900363

- Intervalo de confiança inferior de Fake news
 - o 0.7872929176551678
- Média da porcentagem de ocorrer de Fake news
 - 0.7964000000000001
- Intervalo de confiança superior de Fake news
 - 0.8055070823448324
- Menor porcentagem de Fake news
 - 0.706666666666666
- Maior porcentagem de Fake news
 - 0.8466666666666666
- Em média, haviam 63.34276677209921 % de Fake News quando a simulação terminou de rodar
- Em média, haviam 1457.9466666666667 de mensagens de Fake News quando a simulação terminou de rodar
- Em média, haviam 551.26 de mensagens de Goodnews quando a simulação terminou de rodar
- Intervalo de confiança inferior da média do tempo de simulação
 - o 3.9395037078960407
- Média do tempo de simulação
 - o 4.0302269928567735
- Intervalo de confiança superior da média do tempo de simulação
 - o 4.1209502778175064
- Menor tempo médio de simulação
 - o 3.4180024224874423
- Maior tempo médio de simulação
 - o 4.757910666893712

3. Desafios e decisões do projeto

- Antes da implementação do projeto, decidimos usar a linguagem Python para implementar as simulações por conta de suas extensas bibliotecas de data science, conteúdo explicativo na internet e nossa familiaridade com a linguagem. Essa decisão facilitou nossa implementação, porém como o conteúdo do livro do curso "Introduction to Stochastic Processes with R" (Robert P. Dobrow), que usamos de base para nosso aprendizado, é todo implementado na linguagem R, tivemos certa dificuldade para implementar funções e cálculos simples do R, no Python.
- Decidimos implementar as simulações utilizando o Google Colab, pois tem integração para colaboração ao vivo de mais de uma pessoa e é possível utilizar como uma IDE, importando bibliotecas e plotando gráficos.
 Além disso, foi utilizada a IDE da JetBrains, Pycharm, para facilitar as correções e debug do código.
- Estrutura da matriz de mensagens (resultados fictícios)

	Sender	Receiver	News Type	Fakenews Total	Total Time	Elapsed Time
0	0	3	1	0	0.492587	0.492587
1	1	3	1	0	2.428956	2.428956
2	2	4	1	0	0.347082	0.347082
3	3	0	1	0	1.254293	1.254293
4	4	0	1	0	0.393941	0.393941
5	0	4	0	0	2.355921	2.355921
6	1	3	0	0	3.308217	3.308217
7	2	0	0	0	2.589604	2.589604
8	3	1	0	0	0.031587	0.031587
9	4	2	0	0	0.693772	0.693772

Durante as implementações do trabalho, tivemos diversos desafios. Podemos citar exemplos como:

- Grande demora para rodar as simulações:
 - Como geramos uma grande quantidade de simulações, o tempo para rodá-las era muito custoso e precisamos repetir diversas vezes para garantir os resultados corretos.
- Dificuldade para plotar os gráficos:
 - Conseguimos chegar nos resultados esperados porém para plotar os gráficos, tivemos muita dificuldade com a implementação do python. Usamos o Matplotlib, mas como não tínhamos conhecimento prévio, foi bastante custoso e demorado entender as funções e utilizar esta biblioteca.
- Implementação da situação exógena:
 - Focamos nossas simulações na situação endógena pois acreditávamos que a situação exógena seria opcional (bônus da criatividade). Acabamos percebendo que fazia parte do escopo principal com pouco tempo para implementação e optamos por terminar o que já havíamos começado com a endógena para não atrapalhar.

4. Referências

- Arquivos de funções em R do livro do Dobrow: http://www.mat.ufrgs.br/~giacomo/Softwares/R/Dobrow%20-%20Stochastic%20 with%20R/
 - https://pt.wikipedia.org/wiki/FIFO
 - https://matplotlib.org
 - https://www.scipy.org
 - https://www.jetbrains.com/pt-br/pycharm/