MachineLearningAlgorithms

December 21, 2023

1 Machine Learning Algorithms

A simple script that analyses a data frame using fundamental statistical learning algorithms and a feed forward neural network. Written by: Da'Vel Reed Johnson

```
[1]: #Load Required Modules
   import os
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline

#Ignore Unnecessary Warnings
   import warnings
   warnings.simplefilter(action='ignore', category=FutureWarning)

#Set path
   main_path = os.path.dirname(os.path.abspath("__file__"))
```

```
[2]: #Opening the data file
filename = main_path + '/data/Employee.csv'

df = pd.read_csv(filename)
```

1.1 Gathering information about the dataframe

JoiningYear

City

```
[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4653 entries, 0 to 4652

Data columns (total 9 columns):

# Column Non-Null Count Dtype
--- ------

0 Education 4653 non-null object
```

4653 non-null

4653 non-null

int64

object

3	PaymentTier	4653 non-null	int64
4	Age	4653 non-null	int64
5	Gender	4653 non-null	object
6	EverBenched	4653 non-null	object
7	${\tt ExperienceInCurrentDomain}$	4653 non-null	int64
8	LeaveOrNot	4653 non-null	int64

dtypes: int64(5), object(4)
memory usage: 327.3+ KB

[4]: df.describe()

[4]:		${ t Joining Year}$	PaymentTier	Age	ExperienceInCurrentDomain
	count	4653.000000	4653.000000	4653.000000	4653.000000
	mean	2015.062970	2.698259	29.393295	2.905652
	std	1.863377	0.561435	4.826087	1.558240
	min	2012.000000	1.000000	22.000000	0.000000
	25%	2013.000000	3.000000	26.000000	2.000000
	50%	2015.000000	3.000000	28.000000	3.000000
	75%	2017.000000	3.000000	32.000000	4.000000
	max	2018.000000	3.000000	41.000000	7.000000

LeaveOrNot 4653.000000 count 0.343864 mean 0.475047 std 0.000000 ${\tt min}$ 25% 0.000000 50% 0.000000 75% 1.000000 max 1.000000

[5]: df.head()

[5]:	Education	${ t Joining Year}$	City	PaymentTier	Age	Gender	EverBenched	١
0	Bachelors	2017	Bangalore	3	34	Male	No	
1	Bachelors	2013	Pune	1	28	Female	No	
2	Bachelors	2014	New Delhi	3	38	Female	No	
3	Masters	2016	Bangalore	3	27	Male	No	
4	Masters	2017	Pune	3	24	Male	Yes	

	ExperienceInCurrentDomain	LeaveOrNot
0	0	0
1	3	1
2	2	0
3	5	1
4	2	1

1.2 Base plots and graphics

```
[6]: p = sns.countplot(data=df, x = 'City')
```



```
[7]: df.hist(column='Age')
```

[7]: array([[<AxesSubplot:title={'center':'Age'}>]], dtype=object)


```
[8]: from scipy.stats import gaussian_kde
     # Create histogram data
     hist_counts, bin_edges = np.histogram(df['Age'], bins=10, density=True)
     bin_centers = 0.5 * (bin_edges[1:] + bin_edges[:-1])
     # Adjust the bandwidth
     bandwidth_factor = 0.1 # Adjust this factor as needed (less than 1 for smaller_
      \hookrightarrow bandwidth)
     # Estimate KDE
     kde = gaussian_kde(df['Age'], bw_method=bandwidth_factor)
     kde_values = kde(bin_centers)
     # Plot histogram and KDE
     plt.figure(figsize=(8, 4))
     plt.hist(df['Age'], bins=10, density=True, alpha=0.5, label='Histogram')
     plt.plot(bin_centers, kde_values, label='KDE')
     plt.legend()
     plt.show()
```



```
[9]: df['Education'].value_counts().plot(kind='pie',figsize=(8, 7), autopct='%1.

-1f\%',pctdistance=1.1,labeldistance=1.2)
```

[9]: <AxesSubplot:ylabel='Education'>

[10]: #Check to see if there are any empty entries df.isnull().sum()

[10]:	Education	0
	JoiningYear	0
	City	0
	PaymentTier	0
	Age	0
	Gender	0
	EverBenched	0
	${\tt ExperienceInCurrentDomain}$	0
	LeaveOrNot	0
	dtype: int64	

2 Preparing Data for model training

```
[11]: #Assigning features and classes to training variables
       odf[['Education','JoiningYear','PaymentTier','Gender','EverBenched','Age','ExperienceInCurre
      y = df['LeaveOrNot']
[12]: #Creating dummy variables from categorical variables for numerical analysis
      df_dummies = pd.get_dummies(X)
[13]: df_dummies.head()
[13]:
         JoiningYear PaymentTier
                                   Age ExperienceInCurrentDomain \
                2017
                                3
                                    34
                                                                 3
      1
                2013
                                    28
                                1
      2
                2014
                                3
                                    38
                                                                 2
                                                                 5
      3
                2016
                                3
                                    27
                                3
                                    24
                                                                 2
                2017
         Education_Bachelors Education_Masters Education_PHD
                                                                 Gender_Female
      0
      1
                           1
                                               0
                                                              0
                                                                              1
      2
                           1
                                               0
                                                              0
                                                                              1
      3
                           0
                                               1
                                                              0
                                                                              0
      4
                           0
                                                                              0
                                               1
         Gender_Male EverBenched_No EverBenched_Yes
      0
                   1
                                   1
                   0
                                                     0
      1
      2
                   0
                                   1
                                                     0
      3
                                                     0
                   1
                                   1
[14]: # Removing Gender and EverBenched for duplication
      print(f"Number of columns before deleting: {df_dummies.shape[1]}")
      del_cols = ['Gender_Male', 'EverBenched_No']
      df_dummies.drop(labels = del_cols,axis = 1,inplace = True)
      print(f"Number of columns after deleting: {df_dummies.shape[1]}")
     Number of columns before deleting: 11
     Number of columns after deleting: 9
[15]: #Normalizing data for processing
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      df_normalized = pd.DataFrame(scaler.fit_transform(df_dummies),__

¬columns=df_dummies.columns)
```

```
[16]: df_normalized.head()
「16]:
         JoiningYear PaymentTier
                                         Age ExperienceInCurrentDomain \
            1.039638
                         0.537503 0.954645
                                                               -1.864901
                                                                0.060554
      1
           -1.107233
                        -3.025177 -0.288732
      2
           -0.570515
                         0.537503 1.783563
                                                               -0.581264
      3
            0.502921
                         0.537503 -0.495961
                                                                1.344191
      4
            1.039638
                         0.537503 -1.117650
                                                               -0.581264
         Education_Bachelors Education_Masters Education_PHD
                                                                  Gender_Female \
      0
                    0.540501
                                       -0.480575
                                                      -0.200022
                                                                      -0.821551
                    0.540501
                                       -0.480575
      1
                                                      -0.200022
                                                                       1.217210
      2
                    0.540501
                                       -0.480575
                                                      -0.200022
                                                                       1.217210
      3
                   -1.850136
                                        2.080840
                                                      -0.200022
                                                                      -0.821551
      4
                   -1.850136
                                        2.080840
                                                      -0.200022
                                                                      -0.821551
         EverBenched_Yes
      0
               -0.338365
      1
               -0.338365
      2
               -0.338365
      3
               -0.338365
      4
                2.955387
[17]: #Converting the dependent variable to binary
      dy = pd.get_dummies(y)
[18]: dy.head()
[18]:
         0
            1
      0
         1
            0
         0 1
      1
      2
        1 0
      3
         0
           1
         0 1
[19]: dy.columns
[19]: Int64Index([0, 1], dtype='int64')
      dummyy = dy[1]
[20]:
[21]: dummyy.head()
[21]: 0
           0
           1
      1
           0
      2
      3
           1
      4
           1
```

Name: 1, dtype: uint8

2.1 Training and Running Fundamental Models

```
[22]: from sklearn.model_selection import train_test_split
```

```
[23]: X_train, X_test, y_train, y_test = train_test_split(df_normalized, dummyy,_u_test_size=0.3, stratify=y)
```

2.1.1 Gaussian Naive Bayes

```
[24]: from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import classification_report
```

```
[25]: # Fit train set for Gaussian Naive Bayes
GNB = GaussianNB()
GNB.fit(X_train,y_train)
```

[25]: GaussianNB()

```
[26]: # Predict for test set
GNBy_pred = GNB.predict(X_test)
print(classification_report(y_test,GNBy_pred))
```

	precision	recall	f1-score	support
0	0.72	0.79	0.75	916
1	0.51	0.41	0.45	480
accuracy			0.66	1396
macro avg	0.61	0.60	0.60	1396
weighted avg	0.65	0.66	0.65	1396

2.1.2 Random Forest Classifier

```
[27]: from sklearn.ensemble import RandomForestClassifier
```

```
[28]: rfc = RandomForestClassifier(n_estimators=600, max_features='sqrt', u oob_score=True, random_state=None, n_jobs=-1)
rfc.fit(X_train,y_train)
```

[28]: RandomForestClassifier(max_features='sqrt', n_estimators=600, n_jobs=-1, oob score=True)

```
[29]: predictions = rfc.predict(X_test)
```

```
[30]: from sklearn.metrics import classification_report,confusion_matrix
      print(classification_report(y_test,predictions))
                                recall f1-score
                   precision
                                                    support
                0
                        0.82
                                   0.90
                                             0.86
                                                        916
                1
                        0.76
                                   0.61
                                             0.68
                                                        480
                                                       1396
         accuracy
                                             0.80
                                  0.75
                                             0.77
                                                       1396
                        0.79
        macro avg
     weighted avg
                        0.80
                                   0.80
                                             0.79
                                                       1396
[31]: print(confusion_matrix(y_test,predictions))
     [[824 92]
      [187 293]]
     Plotting feature importance
[32]: rfc.feature_importances_
[32]: array([0.3742656 , 0.14600569, 0.2022091 , 0.10267877, 0.03230088,
             0.03739665, 0.00821783, 0.07468165, 0.02224382])
[33]: def plot_feature_importance(importance,names,model_type):
      #Create arrays from feature importance and feature names
          feature_importance = np.array(importance)
          feature_names = np.array(names)
      #Create a DataFrame using a Dictionary
          data={'feature_names':feature_names,'feature_importance':feature_importance}
          fi_df = pd.DataFrame(data)
      #Sort the DataFrame in order decreasing feature importance
          fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)
      #Define size of bar plot
          plt.figure(figsize=(100,80))
      #Plot Searborn bar chart
          sns.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
      #Add chart labels
          plt.title(model_type + 'FEATURE IMPORTANCE')
          plt.xlabel('FEATURE IMPORTANCE')
          plt.ylabel('FEATURE NAMES')
[34]: plot_feature_importance(rfc.feature_importances_, X_train.columns, 'RANDOM_

¬FOREST')
```

```
plt.title('Random Forest Feature Importance', fontsize=15)
plt.xlabel('Feature Importance', fontsize=12)
plt.ylabel('Feature Names', fontsize=12)
fig = plt.gcf()
fig.set_size_inches(5, 4)
plt.show()
```


2.1.3 Gradient Boosting Classifier

Finding optimal hyperparameters

```
'max_depth':[1, 2]}
      from sklearn.model_selection import RandomizedSearchCV
      rs = RandomizedSearchCV(GradientBoostingClassifier(),
                              param_distributions=hyperparameter_space,
                              n_iter=10, scoring="neg_root_mean_squared_error",
                              random_state=None, n_jobs=-1, cv=5)
      rs.fit(X_train, y_train)
      print("Optimal hyperparameter combination:", rs.best_params_)
     Optimal hyperparameter combination: {'n_estimators': 450, 'max_depth': 2,
     'learning_rate': 0.3}
[37]: print(classification_report(y_test,gby_pred))
                   precision
                                recall f1-score
                                                    support
                0
                        0.81
                                   0.93
                                             0.87
                                                        916
                1
                        0.83
                                   0.59
                                             0.69
                                                        480
                                             0.82
                                                       1396
         accuracy
                                   0.76
                                             0.78
        macro avg
                        0.82
                                                       1396
     weighted avg
                        0.82
                                   0.82
                                             0.81
                                                       1396
[38]: print(confusion_matrix(y_test,gby_pred))
     [[856 60]
      [197 283]]
     2.1.4 Extreme Gradient Boosting Classifier
[39]: from xgboost import XGBClassifier
      from sklearn.metrics import accuracy_score
[40]: xgb = XGBClassifier()
      #XGB
      xgb.fit(X_train,y_train)
      y_pred_xgb = xgb.predict(X_test)
[41]: print(classification_report(y_test,y_pred_xgb))
      print(confusion_matrix(y_test,y_pred_xgb))
                   precision
                                recall f1-score
                                                    support
                0
                                  0.93
                        0.82
                                             0.87
                                                        916
```

```
1
                        0.81
                                   0.60
                                             0.69
                                                        480
                                             0.81
                                                       1396
         accuracy
                        0.81
                                   0.76
                                             0.78
                                                       1396
        macro avg
     weighted avg
                        0.81
                                   0.81
                                             0.81
                                                       1396
     [[848 68]
      [192 288]]
[42]: param_dist = {
          'n_estimators': [50, 100, 200],
          'max_depth': [3, 4, 5, 6, 7, 8],
          'gamma': [0, 0.1, 0.2, 0.3, 0.4],
          'reg_lambda': [1, 1.5, 2, 2.5, 3]
      }
      xgb = XGBClassifier()
      rs = RandomizedSearchCV(xgb, param_dist, n_iter=25, scoring='accuracy', cv=3,__
       ⇔verbose=1, random_state=42)
      rs.fit(X_train, y_train)
      rs.fit(X_train, y_train)
      print("Optimal hyperparameter combination:", rs.best_params_)
     Fitting 3 folds for each of 25 candidates, totalling 75 fits
     Fitting 3 folds for each of 25 candidates, totalling 75 fits
     Optimal hyperparameter combination: {'reg_lambda': 3, 'n_estimators': 100,
     'max_depth': 3, 'gamma': 0}
[75]: xgb = XGBClassifier(
          n_estimators=200,
          reg_lambda=2,
          gamma=0.3,
          max_depth=4
      )
[76]: xgb.fit(X_train,y_train)
      y_pred_xgb = xgb.predict(X_test)
[77]: print(classification_report(y_test,y_pred_xgb))
      print(confusion_matrix(y_test,y_pred_xgb))
      # Calculate the accuracy
      accuracy = accuracy_score(y_test, y_pred_xgb)
      # Print the accuracy
      print("Accuracy:", accuracy)
```

precision recall f1-score support

```
0
                   0.84
                              0.95
                                        0.89
                                                    775
                   0.86
                             0.64
           1
                                        0.73
                                                    389
                                        0.84
                                                  1164
   accuracy
  macro avg
                   0.85
                             0.79
                                        0.81
                                                   1164
weighted avg
                   0.85
                             0.84
                                        0.84
                                                   1164
[[734 41]
```

[140 249]]

Accuracy: 0.8445017182130584

2.1.5 Feed Forward Neural Network

```
[46]: import torch
      import torch.nn as nn
      import torch.nn.functional as F
      import torch.optim as optim
      from torch.utils.data import DataLoader, TensorDataset
```

```
[47]: class BasicNeuralNetwork(nn.Module):
          def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
              super(BasicNeuralNetwork, self).__init__()
              # Define the first hidden layer
              self.hidden1 = nn.Linear(input_size, hidden_size1)
              # Define the second hidden layer
              self.hidden2 = nn.Linear(hidden_size1, hidden_size2)
              # Define the output layer
              self.output = nn.Linear(hidden_size2, output_size)
          def forward(self, x):
              # Apply a non-linear activation function / ReLU after each hidden layer
              x = F.relu(self.hidden1(x))
              x = F.relu(self.hidden2(x))
              # The output layer
              x = self.output(x)
              return x #Use F.softmax(x, dim=1) to apply a softmax for multi-class
       \hookrightarrow problems
```

Designing a Neural Network through rules of thumb

```
[48]: num_features = df_normalized.shape[1]
      num_output = 1
      hidden_size = int((num_features * num_output)**0.5)
      print(f'Number of features: {num_features}')
```

```
print(f'Output Size: {num_output}')
      print(f'Number of neurons: {hidden_size}')
     Number of features: 9
     Output Size: 1
     Number of neurons: 3
[49]: # Example usage
      input_size = num_features # Size of input (number of input features)
      hidden_size1 = hidden_size #Size of first hidden layer
      hidden_size2 = hidden_size #Size of second hidden layer
      output_size = num_output # Size of output (number of classes for_
       \hookrightarrow classification)
      model = BasicNeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
[50]: X_train, X_test, y_train, y_test = train_test_split(df_normalized, dummyy,__
       →test_size=0.3, stratify=y)
[51]: # Convert data to PyTorch tensors
      X_train_tensor = torch.tensor(X_train.values, dtype=torch.float32)
      y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32)
      X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32)
      y_test_tensor = torch.tensor(y_test.values, dtype=torch.float32)
      # Create datasets
      train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
      test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
      # Data Loaders
      batch size = 64 # Define your batch size
      train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,_u
       ⇔shuffle=True)
      test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,_u
       ⇒shuffle=False)
      # Initialize the model, loss function, and optimizer
      model = BasicNeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
      criterion = nn.BCEWithLogitsLoss()
      #For binary classification, use nn.BCEWithLogitsLoss and for multi-class, use
       \hookrightarrow nn. CrossEntropyLoss.
      optimizer = optim.Adam(model.parameters(), lr=0.001)
      # Lists to store metrics
      epoch losses = []
      epoch_accuracies = []
```

```
val_epoch_losses = []
val_epoch_accuracies = []
# Training Loop
num_iterations = 100  # Define the number of epochs
for epoch in range(num_iterations):
    model.train()
    total loss = 0
    for inputs, targets in train_loader:
        # Zero the parameter gradients
        optimizer.zero_grad()
        # Forward pass
        outputs = model(inputs)
        outputs = outputs.squeeze()
        # Compute the loss
        loss = criterion(outputs, targets)
        # Backward pass and optimize
        loss.backward()
        optimizer.step()
        total loss += loss.item()
    avg_loss = total_loss / len(train_loader)
    epoch_losses.append(avg_loss)
# Testing Loop Adjustment for Binary Classification
    model.eval()
    val_total_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():
        correct = 0
        total = 0
        for inputs, targets in test_loader:
            outputs = model(inputs)
            outputs = outputs.squeeze()
            val_loss = criterion(outputs, targets)
            val_total_loss += val_loss.item()
        # Threshold the outputs to get binary predictions
            predicted = outputs > 0  # or use a different threshold like 0.5
            total += targets.size(0)
            correct += (predicted == targets).sum().item()
    accuracy = 100 * correct / total
    epoch_accuracies.append(accuracy)
```

```
avg_val_loss = val_total_loss / len(test_loader)
    val_epoch_losses.append(avg_val_loss)
    val_accuracy = 100 * correct / total
    val_epoch_accuracies.append(val_accuracy)
    print(f'Epoch [{epoch+1}/{num_iterations}], Loss: {avg_loss:.4f}, Val Loss:__

¬{avg_val_loss:.4f}, Val Accuracy: {val_accuracy:.2f}%')

print(f'Accuracy of the model on the test set: {accuracy:.2f}%')
Epoch [1/100], Loss: 0.7126, Val Loss: 0.7062, Val Accuracy: 34.38%
Epoch [2/100], Loss: 0.7018, Val Loss: 0.6974, Val Accuracy: 36.39%
Epoch [3/100], Loss: 0.6933, Val Loss: 0.6894, Val Accuracy: 65.62%
Epoch [4/100], Loss: 0.6805, Val Loss: 0.6705, Val Accuracy: 65.62%
Epoch [5/100], Loss: 0.6534, Val Loss: 0.6401, Val Accuracy: 65.62%
Epoch [6/100], Loss: 0.6240, Val Loss: 0.6136, Val Accuracy: 65.62%
Epoch [7/100], Loss: 0.6023, Val Loss: 0.5966, Val Accuracy: 65.62%
Epoch [8/100], Loss: 0.5896, Val Loss: 0.5876, Val Accuracy: 65.62%
Epoch [9/100], Loss: 0.5825, Val Loss: 0.5826, Val Accuracy: 65.62%
Epoch [10/100], Loss: 0.5784, Val Loss: 0.5789, Val Accuracy: 65.62%
Epoch [11/100], Loss: 0.5747, Val Loss: 0.5751, Val Accuracy: 65.62%
Epoch [12/100], Loss: 0.5715, Val Loss: 0.5723, Val Accuracy: 65.62%
Epoch [13/100], Loss: 0.5683, Val Loss: 0.5703, Val Accuracy: 65.54%
Epoch [14/100], Loss: 0.5651, Val Loss: 0.5677, Val Accuracy: 65.90%
Epoch [15/100], Loss: 0.5629, Val Loss: 0.5661, Val Accuracy: 65.83%
Epoch [16/100], Loss: 0.5611, Val Loss: 0.5649, Val Accuracy: 66.69%
Epoch [17/100], Loss: 0.5589, Val Loss: 0.5633, Val Accuracy: 66.33%
Epoch [18/100], Loss: 0.5572, Val Loss: 0.5620, Val Accuracy: 65.97%
Epoch [19/100], Loss: 0.5557, Val Loss: 0.5608, Val Accuracy: 65.83%
Epoch [20/100], Loss: 0.5540, Val Loss: 0.5589, Val Accuracy: 71.56%
Epoch [21/100], Loss: 0.5521, Val Loss: 0.5567, Val Accuracy: 71.63%
Epoch [22/100], Loss: 0.5503, Val Loss: 0.5548, Val Accuracy: 71.78%
Epoch [23/100], Loss: 0.5479, Val Loss: 0.5529, Val Accuracy: 71.92%
Epoch [24/100], Loss: 0.5459, Val Loss: 0.5508, Val Accuracy: 72.06%
Epoch [25/100], Loss: 0.5442, Val Loss: 0.5487, Val Accuracy: 72.21%
Epoch [26/100], Loss: 0.5420, Val Loss: 0.5463, Val Accuracy: 72.49%
Epoch [27/100], Loss: 0.5394, Val Loss: 0.5437, Val Accuracy: 73.28%
Epoch [28/100], Loss: 0.5374, Val Loss: 0.5415, Val Accuracy: 74.36%
Epoch [29/100], Loss: 0.5352, Val Loss: 0.5394, Val Accuracy: 74.64%
Epoch [30/100], Loss: 0.5330, Val Loss: 0.5372, Val Accuracy: 75.29%
Epoch [31/100], Loss: 0.5312, Val Loss: 0.5355, Val Accuracy: 75.29%
Epoch [32/100], Loss: 0.5293, Val Loss: 0.5336, Val Accuracy: 75.36%
Epoch [33/100], Loss: 0.5275, Val Loss: 0.5317, Val Accuracy: 75.57%
Epoch [34/100], Loss: 0.5256, Val Loss: 0.5301, Val Accuracy: 76.07%
Epoch [35/100], Loss: 0.5239, Val Loss: 0.5283, Val Accuracy: 76.00%
Epoch [36/100], Loss: 0.5222, Val Loss: 0.5267, Val Accuracy: 76.22%
Epoch [37/100], Loss: 0.5204, Val Loss: 0.5251, Val Accuracy: 76.43%
Epoch [38/100], Loss: 0.5188, Val Loss: 0.5241, Val Accuracy: 76.36%
```

```
Epoch [39/100], Loss: 0.5173, Val Loss: 0.5223, Val Accuracy: 76.65%
Epoch [40/100], Loss: 0.5162, Val Loss: 0.5211, Val Accuracy: 76.79%
Epoch [41/100], Loss: 0.5144, Val Loss: 0.5200, Val Accuracy: 76.79%
Epoch [42/100], Loss: 0.5129, Val Loss: 0.5186, Val Accuracy: 76.65%
Epoch [43/100], Loss: 0.5117, Val Loss: 0.5172, Val Accuracy: 76.65%
Epoch [44/100], Loss: 0.5100, Val Loss: 0.5160, Val Accuracy: 76.65%
Epoch [45/100], Loss: 0.5086, Val Loss: 0.5150, Val Accuracy: 76.58%
Epoch [46/100], Loss: 0.5068, Val Loss: 0.5143, Val Accuracy: 76.79%
Epoch [47/100], Loss: 0.5052, Val Loss: 0.5124, Val Accuracy: 76.79%
Epoch [48/100], Loss: 0.5035, Val Loss: 0.5113, Val Accuracy: 76.65%
Epoch [49/100], Loss: 0.5025, Val Loss: 0.5101, Val Accuracy: 76.72%
Epoch [50/100], Loss: 0.5010, Val Loss: 0.5091, Val Accuracy: 76.72%
Epoch [51/100], Loss: 0.4996, Val Loss: 0.5083, Val Accuracy: 76.65%
Epoch [52/100], Loss: 0.4981, Val Loss: 0.5072, Val Accuracy: 76.58%
Epoch [53/100], Loss: 0.4972, Val Loss: 0.5059, Val Accuracy: 76.58%
Epoch [54/100], Loss: 0.4957, Val Loss: 0.5047, Val Accuracy: 76.50%
Epoch [55/100], Loss: 0.4942, Val Loss: 0.5035, Val Accuracy: 76.79%
Epoch [56/100], Loss: 0.4930, Val Loss: 0.5030, Val Accuracy: 76.72%
Epoch [57/100], Loss: 0.4920, Val Loss: 0.5019, Val Accuracy: 76.72%
Epoch [58/100], Loss: 0.4905, Val Loss: 0.5017, Val Accuracy: 76.93%
Epoch [59/100], Loss: 0.4898, Val Loss: 0.5003, Val Accuracy: 76.93%
Epoch [60/100], Loss: 0.4884, Val Loss: 0.4995, Val Accuracy: 76.93%
Epoch [61/100], Loss: 0.4879, Val Loss: 0.4988, Val Accuracy: 76.93%
Epoch [62/100], Loss: 0.4868, Val Loss: 0.4982, Val Accuracy: 77.01%
Epoch [63/100], Loss: 0.4856, Val Loss: 0.4970, Val Accuracy: 76.93%
Epoch [64/100], Loss: 0.4847, Val Loss: 0.4962, Val Accuracy: 77.01%
Epoch [65/100], Loss: 0.4842, Val Loss: 0.4952, Val Accuracy: 77.08%
Epoch [66/100], Loss: 0.4830, Val Loss: 0.4942, Val Accuracy: 76.93%
Epoch [67/100], Loss: 0.4824, Val Loss: 0.4937, Val Accuracy: 76.93%
Epoch [68/100], Loss: 0.4813, Val Loss: 0.4924, Val Accuracy: 76.93%
Epoch [69/100], Loss: 0.4803, Val Loss: 0.4901, Val Accuracy: 77.01%
Epoch [70/100], Loss: 0.4788, Val Loss: 0.4884, Val Accuracy: 77.01%
Epoch [71/100], Loss: 0.4769, Val Loss: 0.4871, Val Accuracy: 77.01%
Epoch [72/100], Loss: 0.4764, Val Loss: 0.4864, Val Accuracy: 76.93%
Epoch [73/100], Loss: 0.4753, Val Loss: 0.4855, Val Accuracy: 76.93%
Epoch [74/100], Loss: 0.4748, Val Loss: 0.4846, Val Accuracy: 77.08%
Epoch [75/100], Loss: 0.4737, Val Loss: 0.4841, Val Accuracy: 77.15%
Epoch [76/100], Loss: 0.4731, Val Loss: 0.4836, Val Accuracy: 77.08%
Epoch [77/100], Loss: 0.4728, Val Loss: 0.4826, Val Accuracy: 77.15%
Epoch [78/100], Loss: 0.4718, Val Loss: 0.4825, Val Accuracy: 77.29%
Epoch [79/100], Loss: 0.4717, Val Loss: 0.4816, Val Accuracy: 77.51%
Epoch [80/100], Loss: 0.4711, Val Loss: 0.4817, Val Accuracy: 77.58%
Epoch [81/100], Loss: 0.4706, Val Loss: 0.4806, Val Accuracy: 77.65%
Epoch [82/100], Loss: 0.4699, Val Loss: 0.4799, Val Accuracy: 77.79%
Epoch [83/100], Loss: 0.4685, Val Loss: 0.4795, Val Accuracy: 78.08%
Epoch [84/100], Loss: 0.4678, Val Loss: 0.4783, Val Accuracy: 77.87%
Epoch [85/100], Loss: 0.4669, Val Loss: 0.4777, Val Accuracy: 78.37%
Epoch [86/100], Loss: 0.4662, Val Loss: 0.4780, Val Accuracy: 78.15%
```

```
Epoch [87/100], Loss: 0.4653, Val Loss: 0.4784, Val Accuracy: 78.30% Epoch [88/100], Loss: 0.4649, Val Loss: 0.4778, Val Accuracy: 78.30% Epoch [89/100], Loss: 0.4643, Val Loss: 0.4779, Val Accuracy: 78.30% Epoch [90/100], Loss: 0.4644, Val Loss: 0.4780, Val Accuracy: 78.30% Epoch [91/100], Loss: 0.4638, Val Loss: 0.4772, Val Accuracy: 78.51% Epoch [92/100], Loss: 0.4635, Val Loss: 0.4775, Val Accuracy: 78.51% Epoch [93/100], Loss: 0.4628, Val Loss: 0.4770, Val Accuracy: 78.65% Epoch [94/100], Loss: 0.4627, Val Loss: 0.4770, Val Accuracy: 78.58% Epoch [95/100], Loss: 0.4628, Val Loss: 0.4765, Val Accuracy: 78.72% Epoch [96/100], Loss: 0.4624, Val Loss: 0.4766, Val Accuracy: 78.72% Epoch [97/100], Loss: 0.4620, Val Loss: 0.4760, Val Accuracy: 78.72% Epoch [98/100], Loss: 0.4621, Val Loss: 0.4765, Val Accuracy: 78.72% Epoch [99/100], Loss: 0.4620, Val Loss: 0.4765, Val Accuracy: 78.72% Epoch [99/100], Loss: 0.4620, Val Loss: 0.4761, Val Accuracy: 78.80% Epoch [100/100], Loss: 0.4617, Val Loss: 0.4757, Val Accuracy: 78.80% Accuracy of the model on the test set: 78.80%
```

```
[52]: # Plotting Loss and Accuracy
      plt.figure(figsize=(12, 5))
      # Plotting training loss
      plt.subplot(1, 2, 1)
      plt.plot(range(1, num_iterations + 1), epoch_losses, label='Training Loss', ___
       ⇔color="blue")
      plt.plot(range(1, num_iterations + 1), val_epoch_losses, label="Validation_"
       ⇔Loss", color="orange")
      plt.xlabel('Epoch')
      plt.ylabel('Loss')
      plt.title('Training Loss Per Epoch')
      plt.legend()
      # Plotting accuracy
      plt.subplot(1, 2, 2)
      plt.plot(range(1, num_iterations + 1), val_epoch_accuracies, label='Testing_

→Accuracy')
      plt.xlabel('Epoch')
      plt.ylabel('Accuracy')
      plt.title('Testing Accuracy Per Epoch')
      plt.legend()
      plt.tight_layout()
      plt.show()
```


Designing a Neural Network through trial and error

```
[53]: class TE_NeuralNetwork(nn.Module):
          def __init__(self, input_size, hidden_size1, hidden_size2, hidden_size3,__
       →output_size):
              super(TE_NeuralNetwork, self).__init__()
              self.hidden1 = nn.Linear(input_size, hidden_size1)
              self.hidden2 = nn.Linear(hidden_size1, hidden_size2)
              self.hidden3 = nn.Linear(hidden_size2, hidden_size3)
              # Define the output layer
              self.output = nn.Linear(hidden_size3, output_size)
          def forward(self, x):
              # Apply a non-linear activation function / ReLU after each hidden layer
              x = F.relu(self.hidden1(x))
              x = F.relu(self.hidden2(x))
              x = F.relu(self.hidden3(x))
              # The output layer
              x = self.output(x)
              return x
```

```
[54]: num_features = df_normalized.shape[1]
hidden_size = 45
hidden_step = 9
num_output = 1
print(f'Number of features: {num_features}')
print(f'Output Size: {num_output}')
print(f'Number of neurons: {hidden_size}')
print(f'Number of neurons layer 3: {hidden_step}')
```

```
Number of features: 9
     Output Size: 1
     Number of neurons: 45
     Number of neurons layer 3: 9
[55]: # Example usage
      input_size = num_features # Size of input (number of input features)
      hidden_size1 = hidden_size #Size of first hidden layer
      hidden size2 = hidden size #Size of second hidden layer
      hidden_size3 = hidden_step #Size of third hidden layer
      output_size = num_output # Size of output (number of classes for_
       \hookrightarrow classification)
      model = TE_NeuralNetwork(input_size, hidden_size1, hidden_size2, hidden_size3,__
       →output_size)
[56]: # Data Loaders
      batch_size = 64  # Define your batch size
      train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,_
       ⇒shuffle=True)
      test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,_
       ⇒shuffle=False)
      # Initialize the model, loss function, and optimizer
      model = TE_NeuralNetwork(input_size, hidden_size1, hidden_size2, hidden_size3,_
       →output_size)
      criterion = nn.BCEWithLogitsLoss()
      #For binary classification, use nn.BCEWithLogitsLoss and for multi-class, use_
       \hookrightarrow nn. CrossEntropyLoss.
      optimizer = optim.Adam(model.parameters(), lr=0.001)
      # Training Loop
      num_iterations = 128  # Define the number of epochs
      def train_and_evaluate_model(model, train_loader, test_loader, optimizer, u
       ⇔criterion, num_iterations):
          epoch_losses = []
          epoch accuracies = []
          val_epoch_losses = []
          val_epoch_accuracies = []
          for epoch in range(num_iterations):
              # Training Loop
              model.train()
              total_loss = 0
              for inputs, targets in train_loader:
```

```
optimizer.zero_grad()
            outputs = model(inputs)
            outputs = outputs.squeeze()
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            total loss += loss.item()
        avg_loss = total_loss / len(train_loader)
        epoch_losses.append(avg_loss)
        # Testing Loop
        model.eval()
        val total loss = 0
        correct = 0
        total = 0
        with torch.no_grad():
            for inputs, targets in test_loader:
                outputs = model(inputs)
                outputs = outputs.squeeze()
                val_loss = criterion(outputs, targets)
                val_total_loss += val_loss.item()
                predicted = outputs > 0  # Adjust the threshold as needed
                total += targets.size(0)
                correct += (predicted == targets).sum().item()
        accuracy = 100 * correct / total
        epoch accuracies.append(accuracy)
        avg_val_loss = val_total_loss / len(test_loader)
        val_epoch_losses.append(avg_val_loss)
        val_accuracy = 100 * correct / total
        val_epoch_accuracies.append(val_accuracy)
    return epoch_losses, epoch_accuracies, val_epoch_losses,_
 →val_epoch_accuracies
epoch losses, epoch accuracies, val epoch losses, val epoch accuracies = 11
 →train_and_evaluate_model(model, train_loader, test_loader, optimizer, ___
 ⇔criterion, num_iterations)
# Print the final accuracy
print(f'Accuracy of the model on the test set: {epoch_accuracies[-1]:.2f}%')
```

Accuracy of the model on the test set: 80.95%

```
[57]: # Plotting Loss and Accuracy
plt.figure(figsize=(12, 5))

# Plotting training loss
plt.subplot(1, 2, 1)
```

```
plt.plot(range(1, num_iterations + 1), epoch_losses, label='Training Loss',__

color="blue")

plt.plot(range(1, num_iterations + 1), val_epoch_losses, label="Validationumber 1)
 ⇔Loss", color="orange")
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss Per Epoch')
plt.legend()
# Plotting accuracy
plt.subplot(1, 2, 2)
plt.plot(range(1, num_iterations + 1), val_epoch_accuracies, label='Testing_
 ⇔Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Testing Accuracy Per Epoch')
plt.legend()
plt.tight_layout()
plt.show()
```


We appear to reach maximum accuracy at around 40 to 60 Epochs. This is also where the Validation loss begins to level off or increase indicating model overfit.

2.1.6 Training and Testing Additional Machine Learning Algorithms

Adapted from Pooja Joshi

```
[59]: from sklearn.model_selection import_
      from sklearn.linear model import LogisticRegression
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.svm import SVC
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.ensemble import
       -RandomForestClassifier, AdaBoostClassifier, BaggingClassifier, ExtraTreesClassifier
     from sklearn.naive_bayes import GaussianNB
     from sklearn.metrics import
       accuracy_score,confusion_matrix,classification_report,roc_curve, auc
     from datetime import datetime
     from sklearn.feature selection import RFE
[60]: X_train, X_test, y_train, y_test = train_test_split(df_normalized,__
       dummyy,test_size =0.25,random_state = 42)
[61]: #Instantiate the classifiers
     clf_logreg = LogisticRegression()
     clf_tree = DecisionTreeClassifier()
     clf_knn = KNeighborsClassifier()
     clf svc = SVC()
     clf_forest = RandomForestClassifier()
     clf ada = AdaBoostClassifier()
     clf_bagging = BaggingClassifier()
     clf_extratrees = ExtraTreesClassifier()
     clf_gnb = GaussianNB()
[62]: classifiers = ['LogisticRegression', 'DecisionTree', 'KNN', 'SVC', L
       → 'RandomForest', 'Adaboost', 'Bagging', 'Extratrees', 'Naive']
[63]: models = {clf_logreg: 'LogisticRegression',
               clf_tree:'DecisionTree',
               clf_knn: 'KNN',
               clf svc: 'SVC',
               clf_forest: 'RandomForest',
               clf ada: 'Adaboost',
               clf_bagging: 'Bagging',
               clf extratrees: 'Extratrees',
               clf_gnb: 'Naive'}
```

```
[64]: # train function fits the model and returns accuracy score
     def train(algo,name,X_train,y_train,X_test,y_test):
        algo.fit(X_train,y_train)
        y_pred = algo.predict(X_test)
        score = accuracy_score(y_test,y_pred)
      ⇔print(f"-----{name}--
        print(f"Accuracy Score for {name}: {score*100:.4f}%")
        return y_test,y_pred,score
     # acc_res function calculates confusion matrix
     def acc_res(y_test,y_pred):
        null_accuracy = y_test.value_counts()[0]/len(y_test)
        print(f"Null Accuracy: {null_accuracy*100:.4f}%")
        print("Confusion Matrix")
        matrix = confusion_matrix(y_test,y_pred)
        print(matrix)
      TN = matrix[0,0]
        FP = matrix[0,1]
        FN = matrix[1,0]
        TP = matrix[1,1]
        accuracy_score=(TN+TP) / float(TP+TN+FP+FN)
        recall_score = (TP)/ float(TP+FN)
        specificity = TN / float(TN+FP)
        FPR = FP / float(FP+TN)
        precision score = TP / float(TP+FP)
        print(f"Accuracy Score: {accuracy_score*100:.4f}%")
        print(f"Recall Score: {recall score*100:.4f}%")
        print(f"Specificity Score: {specificity*100:.4f}%")
        print(f"False Positive Rate: {FPR*100:.4f}%")
        print(f"Precision Score: {precision_score*100:.4f}%")
      print("Classification Report")
        print(classification_report(y_test,y_pred))
     def main(models):
        accuracy scores = []
        for algo,name in models.items():
            y_test_train,y_pred,acc_score =

¬train(algo,name,X_train,y_train,X_test,y_test)
            acc_res(y_test_train,y_pred)
            accuracy_scores.append(acc_score)
        return accuracy_scores
```

accuracy_scores = main(models)

-----LogisticRegression------

Accuracy Score for LogisticRegression: 70.6186%

Null Accuracy: 66.5808%

Confusion Matrix

[[694 81] [261 128]]

Accuracy Score: 70.6186% Recall Score: 32.9049% Specificity Score: 89.5484% False Positive Rate: 10.4516% Precision Score: 61.2440%

Classification Report

	precision	recall	f1-score	support	
0	0.73	0.90	0.80	775	
1	0.61	0.33	0.43	389	
accuracy			0.71	1164	
macro avg	0.67	0.61	0.62	1164	
weighted avg	0.69	0.71	0.68	1164	

-----DecisionTree------

Accuracy Score for DecisionTree: 81.1856%

Null Accuracy: 66.5808%

Confusion Matrix

[[691 84] [135 254]]

Accuracy Score: 81.1856% Recall Score: 65.2956% Specificity Score: 89.1613% False Positive Rate: 10.8387% Precision Score: 75.1479%

	precision	recall	il-score	support
	_			
0	0.84	0.89	0.86	775
1	0.75	0.65	0.70	389
accuracy			0.81	1164
macro avg	0.79	0.77	0.78	1164

weighted avg 0.81 0.81 0.81 1164

-----KNN------KNN------

Accuracy Score for KNN: 80.0687%

Null Accuracy: 66.5808%

Confusion Matrix

[[693 82] [150 239]]

Accuracy Score: 80.0687% Recall Score: 61.4396% Specificity Score: 89.4194% False Positive Rate: 10.5806% Precision Score: 74.4548%

Classification Report

	precision	recall	f1-score	support	
0	0.82	0.89	0.86	775	
1	0.74	0.61	0.67	389	
accuracy			0.80	1164	
macro avg	0.78	0.75	0.76	1164	
weighted avg	0.80	0.80	0.80	1164	

-----SVC------

Accuracy Score for SVC: 82.0447%

Null Accuracy: 66.5808%

Confusion Matrix

[[728 47] [162 227]]

Accuracy Score: 82.0447% Recall Score: 58.3548% Specificity Score: 93.9355% False Positive Rate: 6.0645% Precision Score: 82.8467%

	precision	recall	f1-score	support
0	0.82	0.94	0.87	775
1	0.83	0.51	0.68	389
1	0.00	0.00	0.00	000
accuracy			0.82	1164
macro avg	0.82	0.76	0.78	1164

weighted avg 0.82 0.82 0.81 1164

-----RandomForest-----

Accuracy Score for RandomForest: 82.6460%

Null Accuracy: 66.5808%

Confusion Matrix

[[701 74] [128 261]]

Accuracy Score: 82.6460% Recall Score: 67.0951% Specificity Score: 90.4516% False Positive Rate: 9.5484% Precision Score: 77.9104%

Classification Report

	precision	recall	f1-score	support	
0	0.85	0.90	0.87	775	
1	0.78	0.67	0.72	389	
accuracy			0.83	1164	
macro avg	0.81	0.79	0.80	1164	
weighted avg	0.82	0.83	0.82	1164	

-----Adaboost-----

Accuracy Score for Adaboost: 81.6151%

Null Accuracy: 66.5808%

Confusion Matrix

[[731 44] [170 219]]

Accuracy Score: 81.6151% Recall Score: 56.2982% Specificity Score: 94.3226% False Positive Rate: 5.6774% Precision Score: 83.2700%

	precision	recall	f1-score	support
0	0.81	0.94	0.87	775
1	0.83	0.56	0.67	389
accuracy			0.82	1164
macro avg	0.82	0.75	0.77	1164

weighted avg 0.82 0.82 0.81 1164

-----Bagging------

Accuracy Score for Bagging: 81.2715%

Null Accuracy: 66.5808%

Confusion Matrix

[[688 87] [131 258]]

Accuracy Score: 81.2715% Recall Score: 66.3239% Specificity Score: 88.7742% False Positive Rate: 11.2258% Precision Score: 74.7826%

Classification Report

	precision	recall	f1-score	support	
0	0.84	0.89	0.86	775	
1	0.75	0.66	0.70	389	
accuracy			0.81	1164	
macro avg	0.79	0.78	0.78	1164	
weighted avg	0.81	0.81	0.81	1164	

-----Extratrees-----

Accuracy Score for Extratrees: 82.3024%

Null Accuracy: 66.5808%

Confusion Matrix

[[700 75] [131 258]]

Accuracy Score: 82.3024% Recall Score: 66.3239% Specificity Score: 90.3226% False Positive Rate: 9.6774% Precision Score: 77.4775%

	precision	recall	f1-score	support
0	0.84	0.90	0.87	775
1	0.77	0.66	0.71	389
accuracy			0.82	1164
macro avg	0.81	0.78	0.79	1164

```
0.82 0.82 0.82 1164
    weighted avg
    -----Naive-----
    Accuracy Score for Naive: 64.9485%
    Null Accuracy: 66.5808%
    Confusion Matrix
    [[580 195]
    [213 176]]
    Accuracy Score: 64.9485%
    Recall Score: 45.2442%
    Specificity Score: 74.8387%
    False Positive Rate: 25.1613%
    Precision Score: 47.4394%
    Classification Report
              precision recall f1-score
                                      support
            0
                  0.73
                          0.75
                                  0.74
                                          775
            1
                  0.47
                          0.45
                                  0.46
                                          389
       accuracy
                                  0.65
                                          1164
                  0.60
                          0.60
                                  0.60
                                          1164
      macro avg
    weighted avg
                  0.65
                          0.65
                                  0.65
                                          1164
[65]: pd.DataFrame(accuracy_scores,columns = ['Accuracy_Scores'],index = classifiers).
     →sort_values(by = 'Accuracy Scores',
                                                                 Ш
              ascending = False)
[65]:
                   Accuracy Scores
                         0.826460
    RandomForest
    Extratrees
                         0.823024
    SVC
                         0.820447
    Adaboost
                         0.816151
    Bagging
                         0.812715
    DecisionTree
                         0.811856
    KNN
                         0.800687
    LogisticRegression
                         0.706186
    Naive
                         0.649485
```

Running the models without normalization or dropping features

XGBoost.

A Random Forest appears to perform the best of the common models but still under perform

```
[66]: | X_train, X_test, y_train, y_test = train_test_split(pd.get_dummies(X), __
      dummyy,test_size =0.25,random_state = 42)
[67]: # train function fits the model and returns accuracy score
     def train(algo,name,X_train,y_train,X_test,y_test):
        algo.fit(X_train,y_train)
        y pred = algo.predict(X test)
        score = accuracy_score(y_test,y_pred)
      -print(f"-----{name}--
        print(f"Accuracy Score for {name}: {score*100:.4f}%")
        return y_test,y_pred,score
     # acc_res function calculates confusion matrix
     def acc_res(y_test,y_pred):
        null_accuracy = y_test.value_counts()[0]/len(y_test)
        print(f"Null Accuracy: {null_accuracy*100:.4f}%")
        print("Confusion Matrix")
        matrix = confusion_matrix(y_test,y_pred)
        print(matrix)
      TN = matrix[0,0]
        FP = matrix[0,1]
        FN = matrix[1,0]
        TP = matrix[1,1]
        accuracy_score=(TN+TP) / float(TP+TN+FP+FN)
        recall score = (TP)/ float(TP+FN)
        specificity = TN / float(TN+FP)
        FPR = FP / float(FP+TN)
        precision score = TP / float(TP+FP)
        print(f"Accuracy Score: {accuracy score*100:.4f}%")
        print(f"Recall Score: {recall_score*100:.4f}%")
        print(f"Specificity Score: {specificity*100:.4f}%")
        print(f"False Positive Rate: {FPR*100:.4f}%")
        print(f"Precision Score: {precision_score*100:.4f}%")
      print("Classification Report")
        print(classification_report(y_test,y_pred))
     def main(models):
        accuracy_scores = []
        for algo,name in models.items():
            y_test_train,y_pred,acc_score =
      →train(algo,name,X_train,y_train,X_test,y_test)
            acc res(y test train,y pred)
```

accuracy_scores.append(acc_score) return accuracy_scores

accuracy_scores = main(models)

-----LogisticRegression-----

Accuracy Score for LogisticRegression: 69.7595%

Null Accuracy: 66.5808%

Confusion Matrix

[[697 78] [274 115]]

Accuracy Score: 69.7595% Recall Score: 29.5630% Specificity Score: 89.9355% False Positive Rate: 10.0645% Precision Score: 59.5855%

Classification Report

	precision	recall	f1-score	support	
	_				
0	0.72	0.90	0.80	775	
1	0.60	0.30	0.40	389	
accuracy			0.70	1164	
macro avg	0.66	0.60	0.60	1164	
weighted avg	0.68	0.70	0.66	1164	

-----DecisionTree------

Accuracy Score for DecisionTree: 80.4124%

Null Accuracy: 66.5808%

Confusion Matrix

[[681 94] [134 255]]

Accuracy Score: 80.4124% Recall Score: 65.5527% Specificity Score: 87.8710% False Positive Rate: 12.1290% Precision Score: 73.0659%

F	orecision	recall	f1-score	support
0	0.84	0.88	0.86	775
1	0.73	0.66	0.69	389

	racy avg	0.78	0.77	0.80 0.77	1164 1164	
weighted	l avg	0.80	0.80	0.80	1164	
					T/NINI	
					KININ	
Null Acc Confusio [[687 8 [173 21	curacy: 6 on Matrix 88] .6]]					++++++
		77.5773%				
Recall S						
		e: 88.645	2%			
-	•	Rate: 11.3				
Precisio	n Score:	71.0526%				
++++++	++++++	-++++++	++++++	++++++++	+++++++++	+++++++++++++++
Classifi	cation F	Report				
	pr	recision	recall	f1-score	support	
	0			0.84	775	
	1	0.71	0.56	0.62	389	
2.661	mo err			0.78	1164	
	racy avg	0.75	0.72	0.78	1164	
weighted	_			0.73		
wcignoco	. avg	0.11	0.70	0.77	1101	
					SVC	
Accuracy	Score f	for SVC: 6	6.5808%			
Null Acc	curacy: 6	6.5808%				
Confusio	on Matrix					
	0]					
	0]]					
			+++++++	++++++++	++++++++++	+++++++++++++++
•		66.5808%				
Recall S			0.01/			
-	•	re: 100.00				
		Rate: 0.00	00%			
Precisio						
			+++++++	++++++++	+++++++++	++++++++++++++++
Classifi		-	recoll	f1-score	support	
	þΙ	recision	recall	TT_2COT6	support	
	0	0.67	1.00	0.80	775	
	4	0.00	2.00	0.00	200	

0.00

389

1

0.00

0.00

accurac	<i>I</i>		0.67	1164
macro av	g 0.33	0.50	0.40	1164
weighted av	g 0.44	0.67	0.53	1164

C:\Users\u2rac\anaconda3\envs\tensorflow\lib\site-

packages\ipykernel_launcher.py:26: RuntimeWarning: invalid value encountered in true divide

C:\Users\u2rac\anaconda3\envs\tensorflow\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\u2rac\anaconda3\envs\tensorflow\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\u2rac\anaconda3\envs\tensorflow\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

------RandomForest------

Accuracy Score for RandomForest: 81.9588%

Null Accuracy: 66.5808%

Confusion Matrix

[[693 82] [128 261]]

Accuracy Score: 81.9588% Recall Score: 67.0951% Specificity Score: 89.4194% False Positive Rate: 10.5806% Precision Score: 76.0933%

support	f1-score	recall	precision	
775	0.87	0.89	0.84	0
389	0.71	0.67	0.76	1
1164	0.82			
1164	0.62	0.78	0.80	accuracy macro avg
1164	0.82	0.82	0.82	weighted avg

-----Adaboost------_____ Accuracy Score for Adaboost: 81.6151% Null Accuracy: 66.5808% Confusion Matrix [[731 44] [170 219]] Accuracy Score: 81.6151% Recall Score: 56.2982% Specificity Score: 94.3226% False Positive Rate: 5.6774% Precision Score: 83.2700% Classification Report precision recall f1-score support 0.94 775 0 0.81 0.87 1 0.83 0.56 0.67 389 accuracy 0.82 1164 0.75 0.77 macro avg 0.82 1164 weighted avg 0.82 0.82 0.81 1164 -----Bagging------_____ Accuracy Score for Bagging: 81.0997% Null Accuracy: 66.5808% Confusion Matrix [[684 91] [129 260]] Accuracy Score: 81.0997% Recall Score: 66.8380% Specificity Score: 88.2581% False Positive Rate: 11.7419% Precision Score: 74.0741% Classification Report precision recall f1-score support 0 0.84 0.88 0.86 775 1 0.74 0.67 0.70 389 0.81 1164 accuracy macro avg 0.79 0.78 0.78 1164

0.81

1164

weighted avg

0.81

0.81

------Extratrees-------

Accuracy Score for Extratrees: 81.9588%

Null Accuracy: 66.5808%

 ${\tt Confusion}\ {\tt Matrix}$

[[695 80] [130 259]]

Accuracy Score: 81.9588% Recall Score: 66.5810% Specificity Score: 89.6774% False Positive Rate: 10.3226% Precision Score: 76.4012%

Classification Report

	precision	recall	f1-score	support	
0	0.84	0.90	0.87	775	
1	0.76	0.67	0.71	389	
accuracy			0.82	1164	
macro avg	0.80	0.78	0.79	1164	
weighted avg	0.82	0.82	0.82	1164	

-----Naive-----

Accuracy Score for Naive: 70.2749%

Null Accuracy: 66.5808%

Confusion Matrix

[[605 170] [176 213]]

Accuracy Score: 70.2749% Recall Score: 54.7558% Specificity Score: 78.0645% False Positive Rate: 21.9355% Precision Score: 55.6136%

	precision	recall	f1-score	support
0 1	0.77 0.56	0.78 0.55	0.78 0.55	775 389
accuracy macro avg weighted avg	0.67 0.70	0.66 0.70	0.70 0.66 0.70	1164 1164 1164

```
[68]: pd.DataFrame(accuracy_scores,columns = ['Accuracy Scores'],index = classifiers).

sort_values(by = 'Accuracy Scores',

ascending = False)
```

	Accuracy Scores
RandomForest	0.819588
Extratrees	0.819588
Adaboost	0.816151
Bagging	0.810997
DecisionTree	0.804124
KNN	0.775773
Naive	0.702749
LogisticRegression	0.697595
SVC	0.665808
	Extratrees Adaboost Bagging DecisionTree KNN Naive LogisticRegression

Improvements can be noted in the Naive Bayes and Bagging models, but there's a big drop in the Support Vector Classifier performance. Overall the models seem have greater accuracy with normalization.