Analyse II

Résumé: Calcul différentiel des fonctions des plusieurs variables.

Dérivées partielles et directionnelles.

1. Soit $E \subset \mathbb{R}^n$ un sous-ensemble ouvert, $f: E \to \mathbb{R}$ une fonction, $\bar{a} = (a_1, a_2, \dots a_n) \in E$. On définit la fonction $g(s) = f(a_1, \dots, a_{k-1}, s, a_{k+1}, \dots, a_n)$. Alors si g est dérivable en $a_k \in \mathbb{R}$, on dit que la k-ème dérivée partielle de f existe et est égale à $g'(a_k)$. On écrit

$$\partial_k f(\bar{a}) = \frac{\partial f}{\partial x_k}(\bar{a}) = g'(a_k) = \lim_{t \to 0} \frac{g(a_k + t) - g(a_k)}{t} = \lim_{t \to 0} \frac{f(\bar{a} + t\bar{e}_k) - f(\bar{a})}{t}.$$

Ici \bar{e}_k est le k-ème vecteur de la base orthonormale de \mathbb{R}^n .

2. Si toutes les dérivées partielles $\frac{\partial f}{\partial x_1}(\bar{a}), \frac{\partial f}{\partial x_2}(\bar{a}), \dots \frac{\partial f}{\partial x_n}(\bar{a})$ existent en \bar{a} , alors on définit le gradient de f en \bar{a} comme le vecteur

$$\nabla f(\bar{a}) = \left(\frac{\partial f}{\partial x_1}(\bar{a}), \frac{\partial f}{\partial x_2}(\bar{a}), \dots, \frac{\partial f}{\partial x_n}(\bar{a})\right).$$

3. Soit $E \subset \mathbb{R}^n$ un sous-ensemble ouvert, $f: E \to \mathbb{R}$ une fonction, $\bar{a} = (a_1, a_2, \dots a_n) \in E$, $\bar{v} \in \mathbb{R}^n$ un vecteur tel que $\bar{v} \neq \bar{0}$. On définit la fonction $g(s) = f(\bar{a} + t\bar{v})$. Alors si g est dérivable en t = 0, on dit que la dérivée directionnelle de f en \bar{a} suivant le vecteur \bar{v} existe et est égale à g'(0). On écrit

$$Df(\bar{a}, \bar{v}) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f(\bar{a} + t\bar{v}) - f(\bar{a})}{t}.$$

- 4. (Propriétés des dérivées directionnelles)
 - (a) Si $\bar{v} = \bar{e}_k$, le k-ème vecteur de la base orthonormale de \mathbb{R}^n , alors $Df(\bar{a}, \bar{e}_k) = \partial_k f(\bar{a})$.
 - (b) $Df(\bar{a}, \lambda \bar{v}) = \lambda Df(\bar{a}, \bar{v})$ pour tout $\lambda \in \mathbb{R}, \lambda \neq 0, \bar{v} \neq \bar{0}$.

Dérivabilité et la différentielle.

1. Soit $E \subset \mathbb{R}^n$ un sous-ensemble ouvert, $f: E \to \mathbb{R}$ une fonction, $\bar{a} \in E$. On dit que f est dérivable au point \bar{a} s'il existe une application linéaire $L_{\bar{a}}: \mathbb{R}^n \to \mathbb{R}^n$ et une fonction $r: E \to \mathbb{R}$ telles que pour tout $\bar{x} \in E$

$$f(\bar{x}) = f(\bar{a}) + L_{\bar{a}}(\bar{x} - \bar{a}) + r(\bar{x}), \qquad \lim_{\bar{x} \to \bar{a}} \frac{r(\bar{x})}{||\bar{x} - \bar{a}||} = 0.$$

L'application linéaire $L_{\bar{a}}$ s'appelle la différentielle de f au point $\bar{a} \in E$.

2. Si $f: E \to \mathbb{R}$ est dérivable en tout $\bar{a} \in E$, alors on dit que f est dérivable sur $E \subset \mathbb{R}^n$.

- 3. (Propriétés des fonctions dérivables). Soit $E \subset \mathbb{R}^n$, $\bar{a} \in E$ et $f : E \to \mathbb{R}$ telle que f est dérivable en \bar{a} de différentielle $L_{\bar{a}} : \mathbb{R}^n \to \mathbb{R}^n$. Alors:
 - (a) f est continue en \bar{a} .
 - (b) Pour tout $\bar{v} \neq \bar{0}, \bar{v} \in \mathbb{R}^n$, la dérivée directionnelle $Df(\bar{a}, \bar{v})$ existe et $Df(\bar{a}, \bar{v}) = L_{\bar{a}}(\bar{v})$.
 - (c) En particulier, toutes les dérivées partielles existent et $\frac{\partial f}{\partial x_k}(\bar{a}) = L_{\bar{a}}(\bar{e}_k)$.
 - (d) Le graident de f existe en \bar{a} et $\nabla f(\bar{a}) = (L_{\bar{a}}(\bar{e}_1), L_{\bar{a}}(\bar{e}_2), \dots L_{\bar{a}}(\bar{e}_n)).$
 - (e) Pour tout $\bar{v} \neq \bar{0}, \bar{v} \in \mathbb{R}^n$, on a $Df(\bar{a}, \bar{v}) = \langle \nabla f(\bar{a}), \bar{v} \rangle$.
 - (f) Pour tout $\bar{v} \in \mathbb{R}^n$, $||\bar{v}|| = 1$, on a $Df(\bar{a}, \bar{v}) \leq ||\nabla f(\bar{a})||$. Le gradient donne la direction de la plus grande pente de f en \bar{a} .
- 4. (Plan tangent). Soit $E \subset \mathbb{R}^2$, $(x_0, y_0) \in E$ et $f : E \to \mathbb{R}$ une fonction dérivable en (x_0, y_0) . Alors l'équation du plan tangent au graphique de f en point $(x_0, y_0, f(x_0, y_0))$ est

$$z = f(x_0, y_0) + \langle \nabla f(x_0, y_0), (x - x_0, y - y_0) \rangle.$$

5. Soit $f: E \to \mathbb{R}$ telle que la dérivée partielle $\frac{\partial f}{\partial x_k}(\bar{x})$ existe en tout $\bar{x} \in E$. Si la fonction $\frac{\partial f}{\partial x_k}$ admet à son tour une dérivée partielle par rapport à x_i sur E, on obtient la dérivée partielle d'ordre 2

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_k} \right) = \frac{\partial^2 f}{\partial x_i \partial x_k}.$$

On peut définir ainsi les dérivées partielles d'ordre $p \ge 1$.

- 6. Soit $E \subset \mathbb{R}^n$ sous-ensemble ouvert et $p \geq 1$ un nombre naturel. Une fonction $f: E \to \mathbb{R}$ est dite de classe C^p dans E si toutes les dérivées partielles de f d'ordre $1, 2, \ldots p$ existent et sont continues dans E.
- 7. Soit $E \subset \mathbb{R}^n$ sous-ensemble ouvert, et $p \geq 2$ un nombre naturel. Alors $f \in C^p(E)$ implique $f \in C^k(E)$ pour tout $k = 1, 2, \dots p 1$.
- 8. (Condition suffisante pour que la fonction soit dérivalbe à un point). Soit $E \subset \mathbb{R}^n$, $\bar{a} \in E$ et $f: E \to \mathbb{R}$ une fonction. Supposons qu'il existe $\delta > 0$ tel que toutes les dérivées partielles de f existent dans une boule ouverte de centre \bar{a} et de rayon δ , et qu'elles sont continues en \bar{a} . Alors f est dérivalbe en \bar{a} . En particulier, $f \in C^1(E)$ implique la dérivabilité de f dans E.
- 9. (Théorème de Schwarz). Soit $E \subset \mathbb{R}^n$, $\bar{a} \in E$, et $f : E \to \mathbb{R}$ telle que $\frac{\partial^2 f}{\partial x_i \partial x_k}$ et $\frac{\partial^2 f}{\partial x_k \partial x_i}$ existent et sont continues au point \bar{a} . Alors

$$\frac{\partial^2 f}{\partial x_i \partial x_k}(\bar{a}) = \frac{\partial^2 f}{\partial x_k \partial x_i}(\bar{a}).$$

En particulier, $f \in C^2(E)$ implique l'égalité des dérivées partielles secondes mixtes de f dans E.

2

10. Soit $f: E \to \mathbb{R}$ telle que toutes les dérivée partielle d'ordre 2 $\frac{\partial^2 f}{\partial x_k \partial x_i}(\bar{a})$ existent en $\bar{a} \in E$. Alors la matrice hessienne de f en \bar{a} est

$$\operatorname{Hess}_{f}(\bar{a}) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\bar{a}) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\bar{a}) & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\bar{a}) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\bar{a}) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\bar{a}) & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\bar{a}) \end{pmatrix}.$$

11. Soit $E \subset \mathbb{R}^n$ sous-ensemble ouvert et $f: E \to \mathbb{R}$. Alors on a:

$$f \in C^{\infty}(E) \implies f \in C^{p}(E) \ \forall p \geq 1 \implies f \in C^{1}(E) \implies f \text{ est derivable dans } E \implies$$

$$\implies \forall \bar{x} \in E, \bar{v} \in \mathbb{R}^{n}, \bar{v} \neq \bar{0} \ \exists \ Df(\bar{x}, \bar{v}) \implies \forall 1 \leq k \leq n, \bar{x} \in E \ \exists \ \frac{\partial f}{\partial x_{k}}(\bar{x}).$$

Aussi, on a

f est derivable dans $E \implies f$ est continue dans E.

Aucune implication n'est reversible.

12. Soit $E \subset \mathbb{R}^n$ sous-ensemble ouvert et $f: E \to \mathbb{R}$. L'existence des dérivées directionnelles $Df(\bar{a}, \bar{v})$ de toutes directions $\bar{v} \in \mathbb{R}^n, \bar{v} \neq \bar{0}$ n'implique ni continuité ni dérivabilité de f au point \bar{a} . L'existence de toutes les dérivées partielles $\frac{\partial f}{\partial x_k}(\bar{a}), k = 1, \ldots n$ n'implique ni continuité ni dérivabilité de f au point \bar{a} .

Fonction à valeurs dans \mathbb{R}^m et la matrice jacobienne.

- 1. Soit $E \subset \mathbb{R}^n$ un sous-ensemble ouvert. Alors on peut considerer les applications $\bar{f}(\bar{x})$: $E \to \mathbb{R}^m$, où $\bar{f}(\bar{x}) = (f_1(\bar{x}), f_2(\bar{x}), \dots f_m(\bar{x}))^T$. Si n = m, alors on dit que $\bar{f}(\bar{x})$ est un champ vectoriel.
- 2. Soit $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$ une fonction de classe C^1 . Le champ vectoriel $\nabla f(\bar{x})$ est orthogonal aux linges (hypersurfaces) de niveau de la fonction $f(\bar{x})$.
- 3. Soit $E \subset \mathbb{R}^n$ et $\bar{f}: E \to \mathbb{R}^m$ une fonction. La k-eme dérivée partielle de \bar{f} en $\bar{a} \in E$ est

$$\frac{\partial \bar{f}}{\partial x_k}(\bar{a}) = \left(\frac{\partial f_1}{\partial x_k}(\bar{a}), \frac{\partial f_2}{\partial x_k}(\bar{a}), \dots, \frac{\partial f_m}{\partial x_k}(\bar{a})\right)^T,$$

si chacune des fonctions $f_1, \dots f_m$ admet une dérivée partielle $\frac{\partial}{\partial x_k}$ au point \bar{a} .

- 4. La fonction $\bar{f}: E \to \mathbb{R}^m$, $E \subset \mathbb{R}^n$ est dérivable en $\bar{a} \in E$ si et seulement si chaque composante $f_i: E \to \mathbb{R}$ est dérivable en \bar{a} pour tout $i = 1 \dots m$.
- 5. Soit $E \subset \mathbb{R}^n$. Si la fonction $\bar{f}: E \to \mathbb{R}^m$ est dérivable en $\bar{a} \in E$, alors sa matrice Jacobienne est définie par la formule:

$$J_{\bar{f}}(\bar{a}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\bar{a}) & \frac{\partial f_1}{\partial x_2}(\bar{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\bar{a}) \\ \frac{\partial f_2}{\partial x_1}(\bar{a}) & \frac{\partial f_2}{\partial x_2}(\bar{a}) & \dots & \frac{\partial f_2}{\partial x_n}(\bar{a}) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1}(\bar{a}) & \frac{\partial f_m}{\partial x_2}(\bar{a}) & \dots & \frac{\partial f_m}{\partial x_n}(\bar{a}) \end{pmatrix} = \begin{pmatrix} \nabla f_1(\bar{a}) \\ \nabla f_2(\bar{a}) \\ \dots \\ \nabla f_m(\bar{a}) \end{pmatrix},$$

où $\nabla f_i(\bar{a})$ est le gradient de la fonction f_i en \bar{a} .

- 6. Lorsque m=n, on définit le déterminant de Jacobi (le Jacobien) de $\bar{f}:E\to\mathbb{R}^n$ en \bar{a} comme le determinant de la matrice Jacobienne.
- 7. La matrice Jacobienne du gradient d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 est égale à la matrice Hessienne de f:

$$J_{\nabla f}(\bar{a}) = \operatorname{Hess}_f(\bar{a}).$$

8. Soit $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^p$, et les fonctions $\bar{g}: A \to \mathbb{R}^p$, $\bar{f}: B \to \mathbb{R}^q$ telles que (1) $\bar{g}(A) \subset B$, (2) \bar{g} est dérivable en $\bar{a} \in A$, (3) \bar{f} est dérivable en $\bar{b} = \bar{g}(\bar{a}) \in B$. Alors $\bar{f} \circ \bar{g}$ est dérivable en \bar{a} et on a l'égalité pour les matrices Jacobiennes

$$J_{\bar{f} \circ \bar{q}}(\bar{a}) = J_{\bar{f}}(\bar{g}(\bar{a})) \cdot J_{\bar{g}}(\bar{a}),$$

où · est la multiplication matricielle. Par conséquence, on a aussi

$$\det(J_{\bar{f}\circ\bar{g}}(\bar{a})) = \det(J_{\bar{f}}(\bar{g}(\bar{a}))) \cdot \det(J_{\bar{g}}(\bar{a})).$$

9. Soit $E \subset \mathbb{R}^n$ et $f: E \to \mathbb{R}$ une fonction de classe C^2 . Alors la fonction

$$\Delta f: E \to \mathbb{R}, \qquad \Delta f(\bar{x}) = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2}$$

est appelée le Laplacien de f.

- 10. Soit $E \subset \mathbb{R}^n$ et $\bar{g}: E \to \mathbb{R}^n$ une fonction dérivable en $\bar{a} \in E$. Alors \bar{g} est bijective dans un voisinage de \bar{a} si et seulement si $\det(J_{\bar{q}}(\bar{a})) \neq 0$.
- 11. (Dérivée d'une intégrale qui dépend d'un paramètre). Soient $g,h:I\to\mathbb{R}$ fonction continûment dérivables sur un intervalle $I\subset\mathbb{R}$, et $f(x,t):J\times I\to\mathbb{R}$ une fonction telle que $\frac{\partial f}{\partial t}$ est continue sur I. Alors la fonction $F(t)=\int\limits_{h(t)}^{g(t)}f(x,t)\,dx$ est continûment dérivable sur I et on a

$$F'(t) = f(g(t), t)g'(t) - f(h(t), t)h'(t) + \int_{h(t)}^{g(t)} \frac{\partial f}{\partial t}(x, t) dx.$$

Extrema des fonctions de plusieurs variables.

- 1. On dit que $\bar{a} \in E \subset \mathbb{R}^n$ est un point stationnaire de la fonction $f: E \to \mathbb{R}$ si $\nabla f(\bar{a}) = 0$.
- 2. Soit $E \subset \mathbb{R}^n$. On dit que $f: E \to \mathbb{R}$ admet un maximum (minimum) local au point $\bar{a} \in E$ s'il existe un voisinage U de \bar{a} tel que $f(\bar{x}) \leq f(\bar{a})$ pour tout $\bar{x} \in U$ (respectivement $f(\bar{x}) \geq f(\bar{a})$ pour tout $\bar{x} \in U$.)
- 3. (Condition nécessaire) Soit $f: E \to \mathbb{R}$ une fonction admettant un extremum local au point $\bar{a} \in E$ et telle que toutes les dérivées partielles de f existent en \bar{a} . Alors \bar{a} est un point stationnaire.
- 4. (Points critiques). $\bar{a} \in E \subset \mathbb{R}^n$ est un point critique de $f: E \to \mathbb{R}$ si (1) \bar{a} est un point stationnaire de f, ou (2) au moins une des dérivées partielles de f n'existe pas en \bar{a} .

- 5. (Condition suffisante, cas général) Soit $E \subset \mathbb{R}^n$ et $f: E \to \mathbb{R}$ une fonction de classe C^2 au voisinage de point $\bar{a} \in E$, telle que $\nabla f(\bar{a}) = 0$. Alors :
 - (1) Si toutes les valeurs propres de la matrice Hessienne de f sont positives, \bar{a} est un point de minimum local de f;
 - (2) Si toutes les valeurs propres de la matrice Hessienne de f sont negatives, \bar{a} est un point de maximum local de f;
 - (3) Si la matrice Hessienne possède des valeurs propres positives et negatives, alors \bar{a} n'est pas un point d'extremum local de f.
- 6. (Condition suffisante, cas n=2). Soit $E \subset \mathbb{R}^2$ et $f: E \to \mathbb{R}$ une fonction de classe C^2 au voisinage de point $\bar{a} \in E$, telle que $\nabla f(\bar{a}) = 0$. Alors :
 - (1) Si $\det(\operatorname{Hess}_f(\bar{a})) > 0$ et $\frac{\partial^2 f}{\partial x^2}(\bar{a}) > 0$, alors \bar{a} est un point de minimum local de f; (2) Si $\det(\operatorname{Hess}_f(\bar{a})) > 0$ et $\frac{\partial^2 f}{\partial x^2}(\bar{a}) < 0$, alors \bar{a} est un point de maximum local de f;

 - (3) Si $\det(\operatorname{Hess}_f(\bar{a})) < 0$, alors \bar{a} est un point selle (n'est pas un point d'extremum local de f);
- 7. (Formule de Taylor). Soit $E \subset \mathbb{R}^n$ et $f: E \to \mathbb{R}$ de classe C^{p+1} au voisinage de $\bar{a} \in E$. Alors il existe un voisinage U de \bar{a} tel que pour tout $\bar{x} \in U$ il existe un $t \in \mathbb{R}$, 0 < t < 1tel que

$$f(\bar{x}) = F(0) + F'(0) + \frac{1}{2}F''(0) + \dots + \frac{1}{p!}f^{(p)}(0) + \frac{1}{(p+1)!}F^{(p+1)}(t),$$

où F(t) est la fonction $F(t) = f(\bar{a} + t(\bar{x} - \bar{a}))$.

8. (Formule de Taylor d'ordre 2, cas n=2). Soit $E \subset \mathbb{R}^2$ et $f: E \to \mathbb{R}$ de classe C^3 au voisinage de $(a,b) \in E$. Alors il existe un voisinage U de (a,b) tel que pour tout $(x,y) \in U$

$$f(x,y) = f(a,b) + \frac{\partial f}{\partial x}(x-a) + \frac{\partial f}{\partial y}(y-b) + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(x-a)^2 + \frac{\partial^2 f}{\partial x \partial y}(x-a)(y-b) + \frac{1}{2}\frac{\partial^2 f}{\partial y^2}(y-b)^2 + \varepsilon((x-a)^2 + (y-b)^2),$$

où
$$\varepsilon(t): \mathbb{R} \to \mathbb{R}$$
 est une fonction telle que $\lim_{t\to 0} \frac{\varepsilon(t)}{t} = 0$.

- 9. (Théorème des fonctions implicites). Soit $E \subset \mathbb{R}^n$ et $F: E \to \mathbb{R}$ une fonction de classe C^1 au voisinage de $\bar{a}=(a_1,a_2,\ldots a_n)\in E$ telle que $F(\bar{a})=0$ et $\frac{\partial F}{\partial x_n}(\bar{a})\neq 0$. Alors il existe un voisinage U de $\check{a} = (a_1, a_2, \dots a_{n-1}) \in \mathbb{R}^{n-1}$ et une fonction implicite $f: U \to \mathbb{R}$ telle que :
 - (1) $a_n = f(a_1, a_2, \dots a_{n-1});$
 - (2) $F(x_1, x_2, ..., f(x_1, x_2, ..., x_{n-1})) = 0$ pour tout $(x_1, x_2, ..., x_{n-1}) \in U$;
 - (3) De plus, f est de classe C^1 dans U et on a

$$\frac{\partial f}{\partial x_p}(x_1, x_2, \dots x_{n-1}) = -\frac{\frac{\partial F}{\partial x_p}(x_1, x_2, \dots, f(x_1, x_2, \dots x_{n-1}))}{\frac{\partial F}{\partial x_n}(x_1, x_2, \dots, f(x_1, x_2, \dots x_{n-1}))}.$$

10. (Théorème des fonctions implicites, cas n=2). Soit $E\subset\mathbb{R}^2$ et $F:E\to\mathbb{R}$ une fonction de classe C^1 au voisinage de $(a,b) \in E$ telle que F(a,b) = 0 et $\frac{\partial F}{\partial y}(a,b) \neq 0$. Alors il existe un voisinage U de $a \in \mathbb{R}$ et une fonction implicite $f: U \to \mathbb{R}$ telle que :

- (1) b = f(a);
- (2) F(x, f(x)) = 0 pour tout $x \in U$;
- (3) De plus, f est de classe C^1 dans U et on a

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

- 11. (Théorème des fonctions implicites, cas n=3). Soit $E \subset \mathbb{R}^3$ et $F: E \to \mathbb{R}$ une fonction de classe C^1 au voisinage de $(a,b,c) \in E$ telle que F(a,b,c)=0 et $\frac{\partial F}{\partial z}(a,b,c) \neq 0$. Alors il existe un voisinage U de $(a,b) \in \mathbb{R}^2$ et une fonction implicite $f: U \to \mathbb{R}$ telle que :
 - (1) c = f(a, b);
 - (2) F(x, y, f(x, y)) = 0 pour tout $(x, y) \in U$;
 - (3) De plus, f est de classe C^1 dans U et on a

$$\frac{\partial f}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,f(x,y))}{\frac{\partial F}{\partial z}(x,y,f(x,y))}; \qquad \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{\frac{\partial F}{\partial y}(x,y,f(x,y))}{\frac{\partial F}{\partial z}(x,y,f(x,y))}.$$

12. (Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous contraintes). Soit $E \subset \mathbb{R}^n$, $m \leq n-1$ et les fonctions $f, g_1, \ldots, g_m : E \to \mathbb{R}$ de classe C^1 . Supposons que $\bar{a} \in E$ est un point d'extremum de $f(\bar{x})$ sous les contraintes $g_1(\bar{x}) = g_2(\bar{x}) = \ldots = 0$. Supposons aussi que les vecteurs $\nabla g_1(\bar{a}), \nabla g_2(\bar{a}), \ldots \nabla g_m(\bar{a})$ sont linéarement indépendents. Alors il existe un vecteur $\bar{\lambda} = (\lambda_1, \lambda_2, \ldots \lambda_m) \in \mathbb{R}^m$ tel que

$$\nabla f(\bar{a}) = \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{a}).$$

13. (Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous une seule contrainte). Soit $E \subset \mathbb{R}^n$, $n \geq 2$ et les fonctions $f, g : E \to \mathbb{R}$ de classe C^1 . Supposons que $(\bar{a}) \in E$ est un point d'extremum de $f(\bar{x})$ sous la contrainte $g(\bar{x}) = 0$. Supposons aussi que $\nabla g(\bar{a}) \neq \bar{0}$. Alors il existe $\lambda \in \mathbb{R}$ tel que

$$\nabla f(\bar{a}) = \lambda \nabla g(\bar{a}).$$

- 14. (Extrema absoluts). Soit $E \subset \mathbb{R}^n$ un sous-ensemble ouvert, $D \subset E$ compact, et $f: E \to \mathbb{R}$ une fonction continue sur E. Une fonction continue sur un ensemble compact atteint son minimum et son maximum. Pour trouver le maximum et le minimum de f sur D il faut :
 - (1) Trouver les points critiques $\{c_i\}$ de f dans l'intérieur \mathring{D} et calculer les valeurs $\{f(c_i)\}$.
 - (2) Trouver les points critiques $\{d_j\}$ de f sur la frontière ∂D , soit directement, soit par le théorème des multiplicateurs de Lagrange, et calculer les valeurs $\{f(d_j)\}$.
 - (3) Choisir le minimum et le maximum de l'ensemble $\{f(c_i), f(d_j)\}$.