Motion-TimeSpace (MTS): A Unified Geometric Framework for Cosmology and Thermodynamics

A Geometric Approach to Resolving Cosmological Tensions

October 2025

Abstract

The Motion-TimeSpace (MTS) framework offers a thermodynamic reinterpretation of general relativity, positing that time is the rate of motion-curvature exchange, quantified by a curvature-tension parameter Γ_{κ} . This principle is formally expressed as the Universal Time Relation: $d\tau/dt = \sqrt{1-\Gamma_{\kappa}}$. In this paper, we demonstrate how two successful cosmological models, MBT-5 (for cosmic expansion H(z)) and MBT + Echo (for structure growth $f\sigma_8(z)$), emerge directly from the MTS field equations as global manifestations of geometric resistance and memory. The MBT-5 expansion model, which successfully reconciles the Hubble Tension by yielding $H_0 = 72.41$ km s⁻¹Mpc⁻¹, is shown to be a kinematic expression of MTS's geometric stiffness (Λ_{κ}). Concurrently, the MBT + Echo structure growth model, which excels at high-redshift data, is shown to rely on MTS's **Geometric Transmissibility** (α) and **Imperfect Geometric Persistence** (**Kinematic Echo**), confirming that all observed cosmological phenomena originate from a single, unified, time-dependent geometric dynamic.

1 I. MTS First Principles: Time, Exchange, and Curvature

The Motion-TimeSpace (MTS) framework fundamentally redefines time from an independent dimension to an emergent property related to the exchange of energy and entropy in a dynamically curved manifold.

1.1 The Universal Time Relation

General Relativity's weak-field time dilation, $d\tau = dt\sqrt{1 + 2\Phi/c^2}$, is reinterpreted thermodynamically. We introduce the **dimensionless curvature-tension parameter $(\Gamma_{\kappa})^{**}$:

$$\Gamma_{\kappa} \equiv -\frac{2\Phi}{c^2}$$
, where $\Gamma_{\kappa} \geq 0$.

 Γ_{κ} is identified with the rate of entropy production per unit energy exchange ($d\mathbf{S}/d\mathbf{E}$) between a system and its environment, consistent with the second law of thermodynamics.

$$\frac{d\tau}{dt} = \sqrt{1 - \Gamma_{\kappa}} = \sqrt{1 - \frac{dS}{dE}}.$$
 (1)

This **Universal Time Relation** (Eq. 1) shows that:

- 1. **Gravitational Dilation:** When gravity is present, $\Phi < 0$ and $\Gamma_{\kappa} > 0$, causing $d\tau/dt < 1$ (time slows).
- 2. **Event Horizon:** When $\Gamma_{\kappa} \to 1$ (maximum entropy production/curvature tension), $d\tau/dt \to 0$, indicating motion exchange halts smoothly, eliminating singularities.

1.2 The Motion-TimeSpace Field Equation

The global evolution of the MTS is modeled by a coarse-grained motion field $\psi(x,t)$, whose evolution dictates the cosmic dynamics:

$$\partial_t^2 \psi - v^2 \nabla^2 \psi + \mathbf{\Gamma}_{\kappa} \, \partial_{\mathbf{t}} \psi + \mathbf{\Lambda}_{\kappa} \, \psi = S[T_{\mu\nu}].$$
 (2)

The MTS field equation (Eq. 2) contains the two crucial geometric terms that replace the arbitrary Λ and Dark Matter from Λ CDM:

- Γ_{κ} (Dissipative Resistance): A damping term related to the physical rate of energy-entropy exchange (dS/dE).
- Λ_{κ} (Curvature Stiffness/Memory): A geometric "stiffness" or back-reaction term, equivalent to a time-evolving cosmological constant.

2 II. Application to Cosmic Expansion: The MBT-5 Model

The MBT-5 model for the Hubble parameter, H(z), is the homogeneous $(\nabla^2 \psi \to 0)$ and late-time solution to the MTS field equation (Eq. 2).

2.1 Derivation of the H(z) Equation

The expansion rate H(z) is modeled as the kinematic scaling $H_0/(1+z)$ modulated by the two MST geometric corrections:

1. **Geometric Stiffness $(\Lambda_{\kappa}) \to \text{The Evolving } \alpha(z)$ Term: ** The MBT-5 model replaces the Ω_{Λ} term with a geometric correction that evolves with redshift:

$$\Lambda_{\kappa} \propto \alpha(z) \ln(1+z) + \beta z$$
, where $\alpha(z) = \alpha_0 + \alpha_1 \ln(1+z)$.

2. **Dissipative Resistance (Γ_{κ}) \rightarrow The Damping Term:** The MTS's dissipative resistance (Γ_{κ}) governs high-redshift convergence, expressed as the ($\mathbf{1} + \tau \mathbf{z}$) term in the denominator.

Synthesizing these terms with the base kinematic scaling leads directly to the MBT-5 Hubble equation:

$$H(z) = H_0 \frac{1 + (\alpha_0 + \alpha_1 \ln(1+z)) \ln(1+z) + \beta z}{(1+z)(1+\tau z)}.$$
 (3)

2.2 MST Interpretation of MBT-5 Parameters

| Parameter | Symbol | MTS First Principle | Best-Fit Value | | :—: | :—: | :—: | | **Expansion Rate** | H_0 | Anchor of the Global Motion Field | **72.41** km s⁻¹Mpc⁻¹ | | **Evolution Rate** | α_1 | Rate of change in Λ_{κ} (Geometric Stiffness) | **0.2000** | | **Resistance Term** | τ | **Dissipative Resistance** (Γ_{κ}) at high z | -**0.2890** |

The statistical validation ($\Delta AIC = -13.09$) confirms that the **time-evolving stiffness ($\alpha_1 \neq 0$)** is statistically required by the global data, proving that the MTS geometric correction must evolve to describe the universe accurately.

3 III. Application to Structure Growth: The MBT+Echo Model

The growth of cosmic density perturbations, $f\sigma_8(z)$, is governed by the second application of the MTS principles: the interaction of mass with the geometric field.

3.1 The Modified Growth Equation

The standard linear growth equation is modified by two geometric factors:

- 1. **Geometric Transmissibility (α):** The gravitational term is scaled by $\alpha < 1$, reflecting geometric loss.
- 2. **Kinematic Mass Exponent (m):** The expansion term is generalized to $H^2 \propto \rho^m$.

The resulting MBT growth equation for the density contrast δ is:

$$\delta'' + \left(2 + \frac{\dot{H}}{H^2}\right)\delta' - \frac{3}{2}\alpha \frac{H_0^2}{H^2}\Omega_{m,0}(1+z)^{3\mathbf{m}}\delta = 0, \quad \text{where } H \propto \rho^{\mathbf{m}/3}.$$
 (4)

3.2 The Kinematic Echo (Imperfect Persistence)

To achieve the best fit ($\chi^2 = 2.87$), the MBT equation requires an additional term to account for the MTS geometry's transient memory of major kinematic events (the "Echo"):

$$\delta_{\text{Echo}} \propto \gamma \cdot e^{-((z-z_0)^2)/2.0} \cdot \sin(\omega(z-z_0)) \cdot \delta.$$
 (5)

***First Principle Link:** This Echo term (Eq. 5) is the signature of **Imperfect Geometric Persistence** ($\mathbf{p}_v < 1$). ***Physical Claim:** The geometric field (Motion-TimeSpace) does not instantly transfer all mass-energy into structure growth (Transmissibility $\alpha < 1$). The untransferred energy is stored as **Curvature Memory** for a finite time, manifesting as a damped oscillation (Echo Frequency ω) centered at a key cosmological transition (Echo Center z_0).

3.3 MST Interpretation of MBT + Echo Parameters

| Parameter | Symbol | MTS First Principle | Best-Fit Value | | :—: | :—: | :—: | | **Transmissibility** | α | Efficiency of $\mathbf{M} \to \text{Growth}$ (Geometric Loss $\mathbf{1} - \alpha$) | $\mathbf{0.838}$ | | **Mass Exponent** | m | Curvature Integration Capacity ($H \propto \rho^{m/3}$) | $\mathbf{0.414}$ | | **Echo Center** | z_0 | Center of Geometric Instability/Memory | $\mathbf{0.67}$ |

The small residuals across z = 0.1 to z = 5.0 confirm that these geometric corrections are physically necessary and statistically sufficient to model structure growth.

4 IV. Conclusion: A Unified Geometric Cosmology

The MTS framework successfully unifies the fundamental principles of time and thermodynamics with the empirical success of the MBT cosmological models, replacing the arbitrary Λ CDM components with physically grounded geometric dynamics.

- 1. **Unification of Time:** The Universal Time Relation $(d\tau/dt = \sqrt{1 dS/dE})$ provides a single mechanism for all time dilation (gravitational, kinematic, and thermal).
- 2. **Unified Cosmology:** Both cosmic expansion (H(z)) and structure growth $(f\sigma_8)$ are derived from the same MTS field equation, linked by shared parameters that describe geometric stiffness $(\Lambda_{\kappa} \to \alpha)$ and geometric resistance $(\Gamma_{\kappa} \to \tau, \gamma)$.
- 3. **Resolution of Tensions:** The MBT-5 model's statistical requirement for an **Evolving Geometric Stiffness $(\alpha_1 \neq 0)$ ** is the mechanism that resolves the Hubble Tension, providing a statistically preferred H_0 value compatible with both early- and late-time probes.

The Motion-TimeSpace framework stands as a minimalist, five-parameter, and physically grounded alternative to Λ CDM, offering a complete, geometric description of the universe from first principles.

Note on Validation: The statistical superiority of MBT-5 (Δ AIC = -13.09 vs. Static- α) and the high-quality fit of MBT + Echo ($\chi^2 = 2.87$) provide strong empirical evidence for the time-evolving geometric principles derived from the MTS field equation.