Thing Detection

Abstract

1. Introduction

1.1 Background

Semantic classes in images can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e.g. grass, sky) [10]. Often things are also dynamic and able to move, while stuff is more stationary.

The goal of this paper is to present datasets, algorithms and implementations to detect and localize things in an image. The conclusions are made according to how well thing detection is achieved in the context of image-based awareness, Fig. 1.

Fig. 1. The role of thing detection in image-based awareness.

1.2 Terminology and Tasks

Fig. 2. Tasks related to scene understanding.

One of the primary goals of computer vision is the understanding of visual scenes. Scene understanding involves numerous tasks [1]:

Image classification requires binary labels indicating whether objects are present in an image.

Object detection includes both stating that an object belonging to a specified class is present and localizing it in the image. The location of an object is typically represented by a bounding box.

Semantic segmentation requires that each pixel of an image be labelled as belonging to a category. Individual instances of objects do not need to be segmented.

Object segmentation combines object detection and semantic segmentation. It requires stating that an object belonging to a specified class is present and localizing it in the image using mask.

Object recognition requires binary labels indicating whether specific objects are present in an image, like face recognition for individual persons.

Instance segmentation is a synonym for object segmentation.

Object localization is object detection for a specific object category.

Scene recognition is best defined in [16]. "By 'scene' we mean a place in which a human can act within, or a place to which a human being could navigate."

Video object segmentation...

1.3 Scope

The scope of this paper is thing detection which is composed of object detection and object segmentation. Object segmentation is more accurate and the preferred task. However, object segmentation also requires more computational power.

2. Problem Setup

2.1 Input

2.2 Output

3. Datasets

Selection of dataset determines which categories are available as well as off-the-shelf algorithm implementation. Following common datasets exist (object detection and instance segmentation task related datasets displayed in red):

Name	Task	Categories	Images	Year	Reference	Notes
COIL	Image classification	20	1 440	1996	[6]	Household objects
MNIST	Image classification	10	70 000	1998	[5]	Handwritten digits
Caltech 101	Image classification	101	9 146	2004	[7]	
ESP	Image classification	? (free format labels)	350 000	2004	[13]	Game driven. Only part of data publicly available (60 000 images)
PASCAL VOC (Visual Object Classes)	Object detection, Instance segmentation	20	11 000	20052012	[9]	Several generations
MSRC	Image classification	21	591	2006	[11]	
Caltech 256	Image classification	256	30 607	2007	[8]	
Lotus Hill	Image classification, Object detection, Instance segmentation	~200	>50 000	2007	[15]	Available only through purchase
The Berkeley Segmentation Data Set	(Semantic) segmentation	?	300/500	2007/2011	[21]	Only partially labelled
Tinylmage	Image classification	75 062	79 302 107	2008	[12]	32*32 colour images
LabelMe	Image classification, Object detection, Instance segmentation	~200	>30 000	2008	[14]	WordNet classification for part of objects
ImageNet	Image classification,	>20 000	14 197 122 (>1 000 000 for	2009	[2]	WordNet classification structure

	Object detection	(>1000 for bounding boxes)	bounding boxes)			(synset). No image rights.
CIFAR-10	Image classification	10	60 000	2009	[17]	32*32 colour images
CIFAR-100	Image classification	100	60 000	2009	[17]	32*32 colour images
CamToy (Cambridge- Toyota Labelled Video Database)	Semantic segmentation	32	10 minutes at 1 Hz = 6 000	2009	[20]	Video format
SUN	Scene recognition	899	130 519	2010	[16]	
Caltech Pedestrian Dataset	Object localization	1	250 000	2012	[18]	
Indoor Segmentation Dataset	Semantic segmentation	26	1 449	2012	[19]	
КІТТІ	Object detection, Instance segmentation, Semantic segmentation	Depends on task	Depends on task	2012	[24]	Includes also stereo, depth, 2 and 3d object detection and odometry
COCO	Object detection, object segmentation, semantic segmentation	80 (91)	330 000	2015	[1], [22]	COCO Stuff was added 2017
Open Images	Object detection	>6000	>9 000 000	2016	[23]	
CityScapes	Semantic segmentation, Instance segmentation	30	5 000 (fine), 20 000 (coarse)	2016	[25]	
DAVIS: Densely Annotated VIdeo Segmentation	Video instance segmentation	50 (number of different objects)	10 459	2017	[26]	Video format

4. Algorithms

Name	Task	Reference	Year	Notes
Selective Search	Object detection	[27]	2013	
Region-based	Object detection	[28]	2015	
Convolutional				
Network (R-CNN)				
Fast Region-based	Object detection	[29]	2015	
Convolutional				
Network (Fast R-				
CNN)				
ResNet-101	Object detection	[32]	2015	
Faster Region-based	Object detection	[30]	2016	
Convolutional				
Network (Faster R-				
CNN)				
Region-based Fully	Object detection	[31]	2016	
Convolutional				
Network (R-FCN)				
You Only Look Once	Object detection	[33]	2016	
(YOLO)				
Single-Shot Detector	Object detection	[34]	2016	
(SSD)				
YOLO9000	Object detection	[35]	2016	
SqueezeNet	Object detection	[38]	2016	
Inception V1				
Inception V2				
Neural Architecture	Object detection	[36]	2017	
Search Net (NASNet)				
YOLOv2				
Retinanet				
YOLOv3				
Mask RCNN	Instance	[37]	2017	
	segmentation			
Multibox				
MobileNet V1	Object detection	[39]	2017	
SEP-Net	Object detection	[40]	2017	
MobileNet v2	Object detection	[41]	2018	

5. Implementations

Following common implementations are currently available:

Name	Algorithms	Dataset	Platform	Speed	mAP	Model Zoo
ssd_mobilenet_v1_coco	SSD,	coco	Tensorflow	30	21	<u>Tensorflow</u>
	MobileNet					detection
	V1					model zoo
ssd_mobilenet_v2_coco	SSD,	coco	Tensorflow	31	22	<u>Tensorflow</u>
	MobileNet					detection
	V2					model zoo

ssd_inception_v2_coco	SSD, Inception V2	COCO	Tensorflow	42	24	Tensorflow detection model zoo

6. Conclusions

References

- [1] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick and Piotr Dollar, "Microsoft COCO: Common Objects in Context". arXiv:1405.0312.
- [2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A Large-Scale Hierarchical Image Database," in CVPR, 2009. Link
- [3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The PASCAL visual object classes (VOC) challenge," IJCV, vol. 88, no. 2, pp. 303–338, Jun. 2010. <u>Link</u>
- [4] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, "SUN database: Large-scale scene recognition from abbey to zoo," in CVPR, 2010. <u>Link</u>
- [5] Y. Lecun and C. Cortes, "The MNIST database of handwritten digits," 1998. Link
- [6] S. A. Nene, S. K. Nayar, and H. Murase, "Columbia object image library (coil-20)," Columbia University, Tech. Rep., 1996. <u>Link</u>
- [7] L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," in CVPR Workshop of Generative Model Based Vision (WGMBV), 2004. Link
- [8] G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," California Institute of Technology, Tech. Rep. 7694, 2007. <u>Link</u>
- [9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The PASCAL visual object classes (VOC) challenge," IJCV, vol. 88, no. 2, pp. 303–338, Jun. 2010. <u>Link</u>
- [10] Holger Caesar, Jasper Uijlings, Vittorio Ferrari, "COCO-Stuff: Thing and Stuff Classes in Context", arXiv:1612.03716

- [11] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV06, pages I: 1–15, 2006. <u>Link</u>
- [12] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI, 30(11):1958–1970, November 2008. <u>Link</u>
- [13] L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI04, pages 319–326, 2004. Link
- [14] B. Russell, A. Torralba, K. Murphy, and W. Freeman. Labelme: A database and web-based tool for image annotation. IJCV, 77(1-3):157–173, May 2008. <u>Link</u>
- [15] B. Yao, X. Yang, and S. Zhu. Introduction to a large-scale general purpose ground truth database: Methodology, annotation tool and benchmarks. In EMMCVPR07, pages 169–183, 2007. <u>Link</u>
- [16] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, "SUN database: Large-scale scene recognition from abbey to zoo," in CVPR, 2010. <u>Link</u>
- [17] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," Computer Science Department, University of Toronto, Tech. Rep, 2009. <u>Link</u>
- [18] P. Dollar, C. Wojek, B. Schiele, and P. Perona, "Pedestrian detection: An evaluation of the state of the art," PAMI, vol. 34, 2012. Link
- [19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from RGBD images," in ECCV, 2012. <u>Link</u>
- [20] G. Brostow, J. Fauqueur, and R. Cipolla, "Semantic object classes in video: A high-definition ground truth database," PRL, vol. 30, no. 2, pp. 88–97, 2009. Link
- [21] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," PAMI, vol. 33, no. 5, pp. 898–916, 2011. Link
- [22] Holger Caesar, Jasper Uijlings, Vittorio Ferrari," COCO-Stuff: Thing and Stuff Classes in Context" arXiv:1612.03716
- [23] I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija, S. Belongie, D. Cai, Z. Feng, V. Ferrari, V. Gomes, A. Gupta, D. Narayanan, C. Sun, G. Chechik, and K. Murphy. Openimages: A public dataset for large-scale multi-label and multi-class image classification. Dataset available from https://github.com/openimages, 2016.
- [24] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? The Kitti vision benchmark suite," in Conference on Computer Vision and Pattern Recognition (CVPR), 2012. <u>Link</u>
- [25] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset for Semantic Urban Scene Understanding," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv:1604.01685
- [26] Pont-Tuset, Jordi; Perazzi, Federico; Caelles, Sergi; Arbeláez, Pablo; Sorkine-Hornung, Alex; Luc Van Gool (2017). "The 2017 DAVIS Challenge on Video Object Segmentation". <u>arXiv:1704.00675</u>
- [27] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders, "Selective Search for Object Recognition", Journal International Journal of Computer Vision, Volume 104 Issue 2, September 2013. Pages 154-171. Link

- [28] Ross Girshick, Jeff Donahue, Trevor D, "Region-based Convolutional Networks for Accurate Object Detection and Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 38, Issue: 1, Jan. 1 2016. Link
- [29] Ross Girshick, "Fast R-CNN", arXiv:1504.08083
- [30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", arXiv:1506.01497
- [31] Jifeng Dai, Yi Li, Kaiming He, Jian Sun, "R-FCN: Object Detection via Region-based Fully Convolutional Networks", arXiv:1605.06409
- [32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Deep Residual Learning for Image Recognition", arXiv:1512.03385
- [33] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", arXiv:1506.02640
- [34] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg, "SSD: Single Shot MultiBox Detector", <u>arXiv:1512.02325</u>
- [35] Joseph Redmon, Ali Farhadi, "YOLO9000: Better, Faster, Stronger", arXiv:1612.08242
- [36] Barret Zoph, Quoc V. Le, "Neural Architecture Search with Reinforcement Learning", arXiv:1611.01578
- [37] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, "Mask R-CNN", arXiv:1703.06870
- [38] Forrest N. landola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size". arXiv:1602.07360
- [39] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications". <u>arXiv:1704.04861</u>
- [40] Zhe Li, Xiaoyu Wang, Xutao Lv, Tianbao Yang, "SEP-Nets: Small and Effective Pattern Networks". arXiv:1706.03912
- [41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", arxiv:1801.04381