```
import kagglehub
# Download latest version
path = kagglehub.dataset_download("saurabh00007/diabetescsv")
print("Path to dataset files:", path)
Path to dataset files: /root/.cache/kagglehub/datasets/saurabh00007/diabetescsv/versions/1
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
# create a data frame
data = {
    'Name': ['Alice', 'Bob', 'Charile', 'David'],
    'Age': [25,30,17,28],
    'City': ['New york', 'San Francisco', 'Los Anglos', 'Alexandria'],
    'Salary': [100,150,200,300]
}
df = pd.DataFrame(data)
df
<del>_</del>__
                          City Salary
         Name Age
     0
         Alice
                25
                       New york
                                   100
                   San Francisco
                                   150
     1
          Bob
                30
     2 Charile
                17
                      Los Anglos
                                   200
         David
                28
                      Alexandria
                                   300
df[['Name','Salary']]
₹
         Name Salary
     0
         Alice
                  100
     1
          Bob
                  150
     2 Charile
                  200
         David
                  300
df.iloc[2]
<del>_</del>__
                   2
               Charile
     Name
                  17
      Age
      City
           Los Anglos
     Salary
                 200
# calculate some statistics on each column
df['Age'].mean()
→ 25.0
print("The minimum salary is",df['Age'].min())
print("The maximum salary is",df['Age'].max())
print("The mean salary is",df['Age'].mean())
```

The minimum salary is 17
The maximum salary is 30
The mean salary is 25.0

ndata = [10,20,30,40,50]
s = pd.Series(ndata)

print(s.min())
print(s.max())
print(s.mean())

10
50

df

30.0

df.head(2)

df.tail()

df.info()

<pr RangeIndex: 4 entries, 0 to 3 Data columns (total 4 columns): # Column Non-Null Count Dtype ---Name 4 non-null object 4 non-null int64 1 Age City 4 non-null object Salary 4 non-null int64 dtypes: int64(2), object(2) memory usage: 260.0+ bytes

df.describe().T

___ 50% 75% count mean std min 25% max Age 4.0 25.0 5.715476 17.0 23.0 26.5 28.5 30.0 Salary 4.0 187.5 85.391256 100.0 137.5 175.0 225.0 300.0

	Name	Age	City	Salary
0	Alice	25	New york	100
1	Bob	30	San Francisco	150
2	Charile	17	Los Anglos	200
3	David	28	Alexandria	300

merged_df = pd.merge(df,df, on='Name')
merged_df

	Name	Age_x	City_x	Salary_x	Age_y	City_y	Salary_y
0	Alice	25	New york	100	25	New york	100
1	Bob	30	San Francisco	150	30	San Francisco	150
2	Charile	17	Los Anglos	200	17	Los Anglos	200
3	David	28	Alexandria	300	28	Alexandria	300

Apply a function on a column
df['New_Salary']= df['Salary'].apply(lambda x: x + 30)

	Name	Age	City	Salary	New_Salary
0	Alice	25	New york	100	130
1	Bob	30	San Francisco	150	180
2	Charile	17	Los Anglos	200	230
3	David	28	Alexandria	300	330

sorting the data based on a column

sorted_df = df.sort_values(by='Age')
sorted_df

	Name	Age	City	Salary	New_Salary
2	Charile	17	Los Anglos	200	230
0	Alice	25	New york	100	130
3	David	28	Alexandria	300	330
1	Bob	30	San Francisco	150	180

create a new column based on certian conditions $df['is_adult'] = df['Age'].apply(lambda x: True if x>=18 else False) df$

	Name	Age	City	Salary	New_Salary	is_adult
0	Alice	25	New york	100	130	True
1	Bob	30	San Francisco	150	180	True
2	Charile	17	Los Anglos	200	230	False
3	David	28	Alexandria	300	330	True

df1 = pd.read_csv('/root/.cache/kagglehub/datasets/saurabh00007/diabetescsv/versions/1/diabetes.csv')

df1

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
	763	10	101	76	48	180	32.9	0.171	63	0
	764	2	122	70	27	0	36.8	0.340	27	0
	765	5	121	72	23	112	26.2	0.245	30	0
	766	1	126	60	0	0	30.1	0.349	47	1
	767	1	93	70	31	0	30.4	0.315	23	0
	768 ra	ws x 9 columns	1							

df1['Outcome'].unique()

 \rightarrow array([1, 0])

develop correlation matrix

correlation_matrix = df1.corr()
correlation_matrix

→▼										
<i>-</i>		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outo
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.46€
	BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.065
	SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130
	ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.292
	DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.238
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.000

df1 = df1.rename(columns={"DiabetesPedigreeFunction": "DPF"})
df1

-	_	_
-	4	-
	•	- 7

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DPF	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0
768 rd	ows x 9 columns	1							