SY01 - Éléments de probabilités

Chapitre 5 - Convergence stochastique

Équipe de mathématiques appliquées

UTC

Automne 10

Chapitre IV Convergence stochastique

IV. I	Introduction	3
IV.2	Convergences stochastiques	7
IV.3	Théorèmes de continuité	16
IV.4	Méthode de Monte-Carlo	20
IV.5	Autres résultats	29

Sommaire Concepts

IV.1 Introduction

IV.1.1 Quelle convergence? 4

Sommaire Concepts

IV.1.1 Quelle convergence?

Exercices:

Exercice A.1.1

Exercice A.1.2

Le sens que l'on donne au mot convergence dépend étroitement de l'objet mathématique manipulé. Par exemple, on dit d'une suite numérique $(x_n)_{n\geq 1}$ qu'elle converge vers x si $\lim_{n\to +\infty} |x_n-x|=0$.

Exemple IV.1.1. $x_n = 1 + 1/n \ pour \ n \ge 1 \ et \ x = 1, \ alors \ |x_n - x| = 1/n \to 0 \ lorsque \ n \to +\infty.$

Si l'on considère maintenant $(f_n)_{n\geq 1}$ une suite de fonctions définies sur [0,1] nous allons pouvoir donner plusieurs sens à la convergence de la suite $(f_n)_{n\geq 1}$ vers une fonction f.

- Convergence simple : on dit que $(f_n)_{n\geq 1}$ converge simplement vers f si pour tout $t\in [0,1]$, la suite numérique $(f_n(t))_{n\geq 1}$ converge vers le réel f(t).
- Convergence uniforme : on dit que $(f_n)_{n\geq 1}$ converge uniformément vers f si

$$\lim_{n \to +\infty} \sup_{0 < t < 1} |f_n(t) - f(t)| = 0.$$

Sommaire Concepts

Comme pour tout $t \in [0, 1]$,

$$|f_n(t) - f(t)| \le \sup_{0 \le t \le 1} |f_n(t) - f(t)|$$

la convergence uniforme entraîne la convergence simple, la réciproque étant fausse.

Exemple IV.1.2. $f_n(t) = t(t + 1/n)$ et $f(t) = t^2$. $(f_n)_{n \ge 1}$ converge uniformément vers f sur [0,1] (donc simplement).

Exemple IV.1.3. On considère la suite de fonctions :

$$f_n(t) = \begin{cases} 0 & si & t \in [0, 1 - 1/n], \\ 2n(t-1) + 2 & si & t \in [1 - 1/n, 1 - 1/(2n)], \\ 2n(1-t) & si & t \in [1 - 1/(2n), 1], \end{cases}$$

et f(t) = 0. $(f_n)_{n>1}$ converge simplement vers f mais pas uniformément.

Pour les suites de variables aléatoires réelles il y a aussi de nombreuses façons de donner un sens à la convergence vers une autre variable aléatoire. Nous nous limiterons ici à trois types de convergence :

la convergence presque sûre;

Quelle convergence?

Sommaire Concepts

- la convergence en probabilité;
- la convergence en distribution ou en loi.

Dans la suite de ce chapitre, X est une variable aléatoire réelle et $(X_n)_{n\geq 1}$ désigne une suite de variables aléatoires réelles. On note F_n la fonction de répartition de X_n pour tout $n\geq 1$ et F celle de X. On suppose les variables X et X_n définies sur un même espace probabilisé (Ω, \mathcal{F}, P) .

Quelle convergence?

Sommaire Concepts

IV.2 Convergences stochastiques

IV.2.1	Convergence presque sûre	8
IV.2.2	Convergence en probabilité	11
IV.2.3	Convergence en loi	13

Sommaire Concepts

IV.2.1 Convergence presque sûre

Exercices:

Exercice A.1.3

Exercice A.1.4

EC-4-15

Définition IV.2.1. On dit que $(X_n)_{n\geq 1}$ converge presque sûrement vers X et on note $X_n \xrightarrow{p.s.} X$, $n \to +\infty$ si :

$$P\left(\omega \in \Omega : \lim_{n \to +\infty} X_n(\omega) = X(\omega)\right) = 1.$$

Théorème IV.2.1 (loi forte des grands nombres). On suppose que les v.a.r. X_n sont i.i.d. et qu'elles admettent une moyenne $\mu = \mathbb{E}(X)$. Soit $S_n = \sum_{i=1}^n X_i/n$, $n \ge 1$. Alors $S_n \xrightarrow{p.s.} \mu$, $n \to +\infty$.

Exemple IV.2.1. On lance indéfiniment un dé et on note X_i le résultat obtenu au i-ème lancer. Les X_i sont i.i.d. et $\mathbb{E}(X_i) = (1+2+3+4+5+6)/6 = 7/2$. D'après le théorème IV.2.1, $S_n = (X_1 + \ldots + X_n)/n \xrightarrow{p.s.} 7/2$, $n \to +\infty$.

Sommaire Concepts

Remarque. La v.a.r. S_n est appelée **moyenne empirique** et est souvent notée \bar{X}_n en statistique. L'origine de son nom est la suivante. On définit Z_n une variable aléatoire discrète uniformément distribuée sur (X_1, \ldots, X_n) . Alors $\mathbb{E}(Z_n) = \sum_{i=1}^n X_i/n = S_n$, donc S_n peut être vue comme une moyenne.

Convergence presque sûre

Exemple IV.2.2. On répète indéfiniment une expérience en s'intéressant à la survenue d'un événement A. On note X_i la variable aléatoire de Bernoulli égale à 1 si A est réalisé à la i-ème expérience et 0 sinon. $\mathbb{E}(X_i) = 0 \times P(\bar{A}) + 1 \times P(A) = P(A)$ et $S_n = \sum_{i=1}^n X_i/n$ est donc la fréquence de réalisation de l'événement A au cours des n expériences. D'après le théorème IV.2.1 on $a: S_n \xrightarrow{p.s.} P(A)$, $n \to +\infty$.

Remarque. Ce résultat est la justification d'une intuition bien naturelle : "une probabilité est une fréquence limite".

Exemple IV.2.3. X_1, X_2, \ldots sont des v.a.r. i.i.d. de loi \mathcal{L} quelconque et le moment d'ordre k ($\mu_k = \mathbb{E}(X_1^k)$) existe. Alors X_1^k, X_2^k, \ldots est une suite i.i.d. de v.a.r. admettant une moyenne μ_k donc, d'après le théorème IV.2.1, $\sum_{i=1}^n X_i^k/n \xrightarrow{p.s.} \mu_k$, $n \to +\infty$.

Proposition IV.2.1. On suppose la suite $(X_n)_{n\geq 1}$ i.i.d. Soit $g: \mathbb{R} \to \mathbb{R}$ une application telle que:

(i) $g(X_n)$ est une v.a.r.;

Sommaire Concepts

(ii) $\mathbb{E}(q(X_n))$ existe.

Alors $\sum_{i=1}^n g(X_i)/n \xrightarrow{p.s.} \mathbb{E}(g(X_1)), n \to +\infty$.

Preuve. D'après (i) $(g(X_n))_{n\geq 1}$ est une suite i.i.d. de v.a.r. D'après (ii) $g(X_n)$ admet un moment d'ordre 1. Les hypothèses du théorème IV.2.1 étant satisfaites la conclusion est immédiate.

Lemme IV.2.1 (de Borel-Cantelli). Soit (Ω, \mathcal{F}, P) un espace probabilisé et $(A_n)_{n\geq 1}$ une suite d'événements de F. On définit :

$$A = \limsup_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m,$$

alors:

- si $\sum_{n=1}^{+\infty}P(A_n)<\infty$ alors P(A)=0; - si $\sum_{n=1}^{+\infty}P(A_n)$ diverge et si les événements $(A_n)_{n\geq 1}$ sont indépendants alors P(A) = 1.

Preuve. Voir le document attaché B.1.2.

Convergence presaue sûre

Concepts

Exercices Documents

IV.2.2 Convergence en probabilité

Exercices:

Exercice A.1.5

Définition IV.2.2. On dit que la suite de v.a.r. $(X_n)_{n\geq 1}$ converge en probabilité vers la v.a.r. X et on note $X_n \stackrel{P}{\longrightarrow} X$ si :

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P(|X_n - X| \ge \varepsilon) = 0.$$

Proposition IV.2.2. La convergence presque sûre entraîne la convergence en probabilité.

Preuve (facultative). Voir le document attaché B.1.1.

Théorème IV.2.2 (loi faible des grands nombres). Si $(X_n)_{n\geq 1}$ est une suite i.i.d. de v.a.r. admettant un moment d'ordre 1 alors $S_n = (X_1 + \ldots + X_n)/n$ converge en probabilité vers $\mathbb{E}(X_1)$.

Preuve. D'après la proposition IV.2.2, le théorème IV.2.2 est une conséquence immédiate du théorème IV.2.1. Toutefois lorsque les variables X_n admettent une variance finie σ^2 il existe une démonstration simple de ce résultat. Notons tout

Concepts

d'abord que : $\mathbb{E}(S_n)=\mathbb{E}(X_1)=\mu$ et $\text{Var}(S_n)=\sigma^2/n$, donc d'après l'inégalité de Bienaymé-Tchebycheff on a :

$$P(|S_n - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \to 0, \quad n \to +\infty.$$

D'où le résultat.

Exemple IV.2.4. Les exemples IV.2.1-IV.2.3 restent vrais pour la convergence en probabilité.

Exemple IV.2.5. Soit $n \ge 1$ un entier. Il existe deux entiers p et k uniques tels $que: n = 2^k + p$ et $0 \le p < 2^k$. Soit X_n la variable aléatoire de Bernoulli égale à 1 avec probabilité $1/2^k$. Si $(X_n)_{n\ge 1}$ est une suite de v.a.r. indépendantes, elle converge vers 0 en probabilité mais elle ne converge pas vers 0 presque sûrement.

Convergence en probabilité

> Sommaire Concepts

IV.2.3 Convergence en loi

Exercices:

Exercice A.1.6

Exercice A.1.7

Définition IV.2.3. On dit que $(X_n)_{n\geq 1}$ converge en loi ou en distribution vers la v.a.r. X si pour tout x où F est continue on a:

$$\lim_{n \to +\infty} F_n(x) = \lim_{n \to +\infty} P(X_n \le x) = F(x).$$

Cette convergence est notée : $X_n \xrightarrow{\mathcal{L}} X$ ou $X_n \xrightarrow{\mathcal{D}} X$, $n \to +\infty$.

Théorème IV.2.3 (de la limite centrale). On suppose les v.a.r. $X_1, X_2, \ldots i.i.d.$ admettant une moyenne μ et une variance σ^2 . Alors si $S_n = \sum_{i=1}^n X_i/n$, on a :

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} = \sqrt{n} \left(\frac{S_n - \mu}{\sigma} \right) \xrightarrow{\mathcal{L}} X, \quad n \to +\infty,$$

où X suit une loi normale centrée réduite. Ce résultat peut encore s'écrire :

$$\lim_{n \to +\infty} P\left(\sqrt{n}\left(\frac{S_n - \mu}{\sigma}\right) \le x\right) = \Phi(x),$$

où Φ est la f.d.r. d'une loi normale centrée réduite.

Sommaire Concepts

$$P(X_1 + \ldots + X_n \le x) = P\left(\sqrt{n}\left(\frac{S_n - \mu}{\sigma}\right) \le \frac{x - n\mu}{\sqrt{n}\sigma}\right) \approx \Phi\left(\frac{x - n\mu}{\sqrt{n}\sigma}\right).$$
 (IV.2.1)

Remarque. Si les v.a.r. X_i sont i.i.d. de loi $N(\mu, \sigma^2)$ alors il y a égalité dans (IV.2.1).

Exemple IV.2.6. Approximation de la loi binomiale. Si $X \sim B(n, p)$ alors $X = X_1 + \ldots + X_n$ où les v.a.r. sont i.i.d. de loi B(p). Pour n "grand" d'après (IV.2.1) on a:

$$P(X \le x) \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right).$$

Remarque. Dans l'exemple IV.2.6 on approche une loi discrète par une loi continue. Comme $X \in \{0,\dots,n\}$ on a pour $x \in \{0,\dots,n\}: P(X \leq x) = P(X < x+1)$ mais pour le terme de droite l'approximation (IV.2.1) conduit à : $P(X < x+1) \approx \Phi\left(\frac{x+1-np}{\sqrt{np(1-p)}}\right)$. Pour compenser ce "défaut" on introduit parfois un terme correctif, appelé $correction\ de\ continuit\ e$:

$$\forall x \in \{0, 1, \dots, n\} \quad P(X \le x) \approx \Phi\left(\frac{x + 0, 5 - np}{\sqrt{np(1 - p)}}\right).$$

Convergence en loi

Sommaire Concepts

Exemple IV.2.7. Soit X_1, X_2, \ldots une suite i.i.d. de v.a.r. de même loi que la variable aléatoire X. Dans l'exemple IV.2.2 si $A = \{X \leq x\}$ alors :

 $F_n(x) = \frac{1}{n} \sum_{i=1}^n 1(X_i \le x) \xrightarrow{p.s.} F(x) = P(X \le x), \quad n \to +\infty.$

La fonction (aléatoire) F_n s'appelle fonction de répartition empirique. Par le théorème de la limite centrale on obtient de plus que pour tout $x \in \mathbb{R}$ tel que 0 < F(x) < 1:

$$\sqrt{n}(F_n(x) - F(x)) \xrightarrow{\mathcal{L}} N(0, F(x)(1 - F(x))), \quad n \to +\infty.$$

Convergence en loi

Sommaire Concepts

IV.3 Théorèmes de continuité

IV.3.1	Fonction caractéristique	17
IV.3.2	Théorèmes de continuité	19

Sommaire Concepts

IV.3.1 Fonction caractéristique

Exercices:

Exercice A.1.9

Définition IV.3.1. Soit X une v.a.r. absolument continue à valeurs dans \mathbb{R} (resp. discrète à valeurs dans $\{x_i; i \in I \subset \mathbb{N}\}$) de densité f_X (resp. de loi $\{p_i; i \in I\}$); on appelle fonction caractéristique de X la fonction $\varphi_X : \mathbb{R} \to \mathbb{C}$ définie par :

$$\varphi_X(t) = \mathbb{E}(\exp(itX)) = \int_{\mathbb{R}} \exp(itx)f(x)dx$$

$$\left(resp. \sum_{i \in I} \exp(itx_i) p_i \right).$$

Proposition IV.3.1. Si φ_X est la fonction caractéristique de la v.a.r. X, la fonction caractéristique φ_Y de Y=aX+b est donnée par :

$$\varphi_Y(t) = \exp(itb)\varphi_X(at).$$

Proposition IV.3.2. Soit φ_X la fonction caractéristique d'une v.a.r. X; on a :

(i)
$$\varphi_X(0) = 1$$
.

Sommaire Concepts

Exemple IV.3.1. Soit X de loi $E(\lambda)$. Alors φ_X est définie par :

$$\varphi_X(t) = \mathbb{E}(\exp(itX)) = \int_{\mathbb{R}} \lambda \exp(itx) \exp(-\lambda x) 1_{[0,+\infty[}(x) dx$$
$$= \int_0^{+\infty} \lambda \exp((it - \lambda)x) dx = \frac{\lambda}{\lambda - it},$$

après quelques calculs.

TAB. IV.1 – Fonctions caractéristiques des lois usuelles.

Lois	Fonction caractéristique
Bernoulli $B(p)$	$pe^{it} + (1-p)$
Binomiale $B(n, p)$	$(pe^{it} + (1-p))^n$
Poisson $P(\lambda)$	$\exp(-\lambda(1-e^{it}))$
Uniforme sur $[0,1]$	$\frac{1}{it}(\exp(it)-1)$
Normale $N(\mu, \sigma^2)$	$\exp(it\mu - \sigma^2 t^2/2)$
Exponentielle $E(\lambda)$	$rac{\lambda}{\lambda - it}$

Fonction caractéristique

Sommaire Concepts

IV.3.2 Théorèmes de continuité

Exercice A.1.10 Exercice A.1.8

Théorème IV.3.1. Soit X_1, X_2, \ldots une suite de v.a.r.; cette suite converge vers la v.a.r. X si, et seulement si, pour tout réel t, la suite $(\varphi_{X_n}(t))_{n\geq 1}$ converge vers $\varphi_X(t)$.

Exemple IV.3.2. A l'aide du théorème IV.3.1 on peut montrer que si $(X_n)_{n\geq 1}$ est une suite de v.a.r. Binomiale telle que $X_n \sim B(n, \lambda_n)$ et $\lim_{n\to +\infty} n\lambda_n = \lambda \in]0, +\infty[$ alors $(X_n)_{n\geq 1}$ converge en loi vers une variable aléatoire $X \sim P(\lambda)$.

Pour les variables aléatoires discrètes, il est aussi possible d'utiliser un théorème de continuité des fonction génératrices.

Théorème IV.3.2. Soit X_1, X_2, \ldots une suite de v.a.r. discrètes de fonctions génératrices g_n ; cette suite converge vers la v.a.r. X de fonction génératrice g si, et seulement si, pour tout réel $z \in]0,1[$, la suite $(g_n(z))_{n\geq 1}$ converge vers g(z).

Exemple IV.3.3. A l'aide du théorème IV.3.2 on peut aussi démontrer le résultat de l'exemple IV.3.2.

Sommaire Concepts

IV.4 Méthode de Monte-Carlo

IV.4.1	Simulation	21
IV.4.2	Approximation stochastique	24

Sommaire Concepts

IV.4.1 Simulation

Exercices:

Exercice A.1.11

Exercice A.1.12

Proposition IV.4.1. Soit X une variable aléatoire absolument continue de fonction de répartition F. La variable aléatoire Y = F(X) suit une loi uniforme sur [0,1].

Démonstration. F est une fonction croissante à valeurs dans [0,1] et F est continue car X est une v.a.r. absolument continue. La variable Y est donc à valeurs dans [0,1]. Soit alors $y \in]0,1[$ et évaluons $P(Y \le y)$.

L'événement $\{Y \leq y\}$ signifie que $\{F(X) \leq y\}$.

Soit $A=\{x\in\mathbb{R}; F(x)\leq y\}$, A est une partie non vide (car $\lim_{x\to-\infty}F(x)=0$) et majorée (car $\lim_{x\to+\infty}F(x)=1$) de \mathbb{R} . Notons u sa borne supérieure, comme F est continue, on a par conséquent F(u)=y. D'où :

$$P(Y \le y) = P(F(X) \le y) = P(X \le u) = F(u) = y.$$

La variable aléatoire Y suit donc une loi uniforme sur l'intervalle [0,1].

Sommaire Concepts

Remarque. La proposition IV.4.1 sert de base à la simulation de variables aléatoires. En effet, les langages de programmation courants (comme le C, le fortran, etc.) possèdent des générateurs aléatoires. Par exemple, en C, chaque appel de la fonction drand48 () renvoie un nombre aléatoire compris entre 0 et 1 et issu d'une loi uniforme sur [0,1]. De plus les appels successifs de cette fonction correspondent à des valeurs indépendantes (donc à des v.a.r. indépendantes). Il est possible d'initialiser le générateur (en utilisant la fonction srand48 ()) soit sur un nombre fixe soit sur une variable dépendant du temps. Dans le premier cas, à chaque appel du programme on génère le même échantillon alors que dans le second cas, à chaque appel du programme, on génère un échantillon différent et indépendant des échantillons obtenus lors des autres appels.

Exemple IV.4.1. Pour générer un échantillon de 100 valeurs issues d'une loi exponentielle E(1) on procède comme suit :

$$\forall x \ge 0, \quad F(x) = 1 - \exp(-x) \Leftrightarrow g(y) = F^{-1}(y) = \log(1/(1-y)), \quad \forall y \in [0, 1[.$$

Ensuite il suffit d'écrire le petit programme qui suit :

```
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
```

Simulation

Sommaire Concepts

Simulation

```
double g(double y) /* inverse de la fdr d'une E(1) */
{return -log(1-y);}

void main(int argc, char *argv[])
{
  int i;
  srand48(time(NULL)); /* initialisation al\'eatoire */
  /* ou remplacer par ''srand48(100001);'' */
  for(i=1;i<=100;i++)
  {
    printf("%d-\'eme valeur g\'en\'er\'ee %f\n",i,g(drand48()));
  }
}</pre>
```

Sommaire Concepts

IV.4.2 Approximation stochastique

Exercices:

Exercice A.1.13

Ce paragraphe est purement méthodologique. On y trouve, via des exemples, la base de l'utilisation de la méthode de Monte-Carlo.

Exemple IV.4.2. Approximation d'une intégrale $I = \int_0^1 g(x) dx$. Soit $U \sim \mathcal{U}(0,1)$ alors on a $I = \mathbb{E}(g(U))$. Soit U_1, U_2, \ldots une suite i.i.d. de v.a.r. de loi $\mathcal{U}(0,1)$, d'après le théorème IV.2.1, si I est finie on a:

$$\hat{I}_n = \sum_{i=1}^n \frac{g(U_i)}{n} \xrightarrow{p.s.} I, \quad n \to +\infty.$$

$Programme\ C:$

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>

Sommaire Concepts

```
double q(double x)
 return log(1+x);
void main(int argc, char *argv[])
  int i;
  int n = atoi(arqv[1]);
  double Estimateur = 0.0;
  for(i=1;i<=n;i++)
      Estimateur += g(drand48());
  Estimateur = Estimateur/(double)n;
 printf("Vraie valeur = %f, Estimation = %f,
          Erreur relative = f\n, \log(4)-1,
          Estimateur, (log(4)-1-Estimateur)/Estimateur);
```

Dans la procédure principale ci-dessus, les appels successifs de la fonction drand48 correspondent aux réalisations de U_1, U_2, \dots

Sommaire Concepts

Résultat : Pour $g(x) = \log(1+x)$ on a $I = [(x+1)\log(x+1) - (x+1)]_0^1 = \log(4) - 1 \approx 0,3863.$

	n	10	50	100	500	1000	100000
		0,1886					
1	$\frac{\hat{I}_n - I}{I}$	1,0486	0,1216	0,0557	0,0347	0,0176	0,0009

Exemple IV.4.3. Approximation de l'intégrale $I = \int_a^b \exp(-x^2) dx$.

Il suffit de remarquer que $\frac{1}{b-a}I=\mathbb{E}(\exp(-X^2))$ où $X\sim\mathcal{U}(a,b)$. Rappelons que si F est une f.d.r. continue alors $X=F^{-1}(U)$ a pour f.d.r. F si $U\sim\mathcal{U}(0,1)$. Or pour $x\in[a,b]$ on a $F(x)=\frac{x-a}{b-a}$, donc pour $y\in[0,1]$ on a $F^{-1}(y)=a+(b-a)y$. Soit U_1,U_2,\ldots une suite i.i.d. de v.a.r. de loi $\mathcal{U}(0,1)$, alors :

$$\hat{I}_n = \frac{b-a}{n} \sum_{i=1}^n \exp(-(a+(b-a)U_i)^2) \xrightarrow{p.s.} I, \quad n \to +\infty.$$

Exemple IV.4.4. Approximation de $I = \int_0^{+\infty} g(x) dx$.

On a par exemple : $I = \int_0^{+\infty} h(x) \exp(-x) dx$ où $h(x) = g(x) \exp(x)$, donc $I = \mathbb{E}(h(X))$ avec $X \sim E(1)$ si cette dernière espérance est bien définie. pour $x \in [0, +\infty[$ on a $F(x) = P(X \le x) = 1 - \exp(-x)$ donc pour $y \in [0, 1[$ on a $F^{-1}(y) = \log(1/(1-y))$. Par conséquent, si $U \sim \mathcal{U}(0,1)$ la v.a.r. $X = F^{-1}(U)$ a

Approximation stochastique

Sommaire Concepts

pour f.d.r. F. On en déduit, comme dans l'exemple précédent que :

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n h\left(\log\left(\frac{1}{1 - U_i}\right)\right) \xrightarrow{p.s.} I, \quad n \to +\infty,$$

 $si\ U_1, U_2, \dots est\ une\ suite\ i.i.d.\ de\ v.a.r.\ de\ loi\ \mathcal{U}(0,1).$

Remarque. Dans l'exemple précédent, pour que la qualité de la convergence soit bonne il faut que la densité de X soit élevée sur la partie de $[0, +\infty[$ où la fonction h apporte sa contribution principale à I.

Exemple IV.4.5. Dans l'exemple IV.4.2 on a :

$$\mathbb{E}(\hat{I}_n) = I \quad \text{ et } \quad \text{Var}(\hat{I}_n) = \frac{1}{n} \left(\int_0^1 g^2(x) dx - \left(\int_0^1 g(x) dx \right)^2 \right) = \frac{\sigma^2}{n}$$

et d'après le théorème de la limite centrale on a :

$$\sqrt{n}\left(\frac{\hat{I}_n-I}{\sigma}\right) \xrightarrow{\mathcal{L}} N(0,1).$$

On en déduit que :

$$\lim_{n \to +\infty} \frac{n}{\sigma^2} \mathbb{E}\left[(\hat{I}_n - I)^2 \right] = 1.$$

Approximation stochastique

Sommaire Concepts

$$\mathbb{E}\left[(\hat{I}_n - I)^2\right] \stackrel{+\infty}{\sim} \frac{1}{n} \left(\int_0^1 g^2(x) dx - \left(\int_0^1 g(x) dx \right)^2 \right).$$

Le théorème de la limite centrale nous permet donc d'évaluer la vitesse à laquelle l'erreur quadratique moyenne $\mathbb{E}\left[(\hat{I}_n-I)^2\right]$ tend vers 0 lorsque n tend vers l'infini.

Remarque. Attention dans l'exemple ci-dessus il s'agit d'une erreur en moyenne et non d'une erreur absolue.

Approximation stochastique

Sommaire Concepts

IV.5 Autres résultats

	IV.5.1	Applications																								
--	--------	---------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Sommaire Concepts

IV.5.1 Applications

Exercices:

Fxercice A.1.14

Les résultats suivants sont souvent très utiles.

Proposition IV.5.1 (Slutsky). Soient $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ et $(Z_n)_{n\geq 1}$ trois suites de v.a.r. telles que $X_n \xrightarrow{P} x$, $Y_n \xrightarrow{P} y$ et $Z_n \xrightarrow{\mathcal{L}} Z$ où x et y sont deux nombres réels et Z une v.a.r. Alors

$$X_n Z_n + Y_n \xrightarrow{\mathcal{L}} xZ + y, \quad n \to +\infty.$$

Proposition IV.5.2. Soit X_1, X_2, \ldots une suite de v.a.r. i.i.d. admettant une moyenne μ et une variance σ^2 . Soit $f \in C^1(\mathbb{R})$, alors si $S_n = (X_1 + \ldots + X_n)/n$ on a :

$$\sqrt{n}(f(S_n) - f(\mu)) \xrightarrow{\mathcal{L}} X, \quad n \to +\infty,$$

où $X \sim N(0, (f'(\mu)\sigma)^2)$.

Preuve. On a:

$$\sqrt{n}(f(S_n) - f(\mu)) = f'(S_n^*)\sqrt{n}(S_n - \mu),$$

Sommaire Concepts

or $|\mu - S_n^*| \leq |\mu - S_n|$ et d'après le théorème IV.2.2 pour tout $\varepsilon > 0$ on a $\lim_{n \to +\infty} P(|S_n - \mu| > \varepsilon) = 0$ donc $\lim_{n \to +\infty} P(|S_n^* - \mu| > \varepsilon) = 0$ soit $S_n^* \stackrel{P}{\longrightarrow} \mu$ lorsque $n \to +\infty$. Comme f' est continue, d'après la proposition IV.2.1 (valable pour la convergence en probabilité) on a $f'(S_n^*) \stackrel{P}{\longrightarrow} f'(\mu)$. D'après le théorème IV.2.3 on a $\sqrt{n}(S_n - \mu) \stackrel{\mathcal{L}}{\longrightarrow} N(0, \sigma^2)$, $n \to +\infty$. Enfin d'après la proposition de Slutsky on a :

$$f'(S_n^*)\sqrt{n}(S_n-\mu) \xrightarrow{\mathcal{L}} N(0,(\sigma f'(\mu))^2), \quad n \to +\infty,$$

d'où le résultat.

Sommaire Concepts

Applications

→ précédent

suivant ▶

Annexe A Exercices

A.1	xercices de cours	33
A.2	exercices de travaux dirigés	49

Sommaire Concepts

A.1 Exercices de cours

																34
																35
																36
																37
																38
																39
																40
																41
																42
																43
																44
																45
																46
																47
																48

Sommaire Concepts

Exercice A.1.1

Vérifier le résultat de l'exemple IV.1.2. Est-ce toujours vrai sur \mathbb{R} ? Solution

Sommaire Concepts

Exercice A.1.2

Vérifier le résultat de l'exemple IV.1.3 (aidez-vous d'un dessin). Solution

Sommaire Concepts

Exercice A.1.3

On a observé que sur 100 jours de présence à l'UTC un étudiant a mangé 75 fois au R.U. Qu'est-ce qui justifie de dire que l'étudiant, un jour donné, a une probabilité égale à 0,375 de manger au R.U.?

Solution

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de v.a.r. identiquement distribuées mais non indépendantes. Trouver des contre-exemples aux résultats des théorèmes IV.2.1, IV.2.2 et IV.2.3.

Solution

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de v.a.r. i.i.d. de loi E(1). Vers quoi et en quel sens ? converge la suite :

$$\sum_{i=1}^{n} X_i^2/n, \quad n \ge 1 ?$$

Solution

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de v.a.r. telle que $X_n \sim \delta_{1/n}$ (c'est-à-dire $P(X_n = 1/n) = 1$). Montrer que $(X_n)_{n \geq 1}$ converge en loi vers la variable aléatoire $X \sim \delta_0$.

Solution

Sommaire Concepts

Soit $X \sim B(100;0,3)$. Donner une approximation de $P(X \le 50)$. Solution

Sommaire Concepts

Soit $X \sim B(1000; 0,002)$. Donner une approximation de $P(X \le 3)$. Solution

Sommaire Concepts

Calculer la fonction caractéristique d'une loi B(p) ; d'une loi B(n;p) ; d'une loi U(0,1).

Solution

Sommaire Concepts

Démontrer le résultat de l'exemple IV.3.2.

Solution

Sommaire Concepts

Comment simuler une loi B(p)? une loi B(n,p)? Solution

Sommaire Concepts

On appelle loi de Weibull la loi d'une variable aléatoire ayant pour fonction de répartition F, la fonction définie par :

$$F(x) = \left(1 - \exp\left(-\left(\frac{x}{\sigma}\right)^{\theta}\right)\right) 1_{[0, +\infty[}(x),$$

avec $(\theta, \sigma) \in]0, +\infty[^2$. Comment simuler des variables aléatoires suivant une telle loi?

Solution

Sommaire Concepts

Donner un algorithme permettant d'approcher $I=\int_0^{+\infty} \exp(-x^2) dx$ en simulant des lois E(1).

Solution

Sommaire Concepts

Soit $X \sim B(n,p)$ où $p \in]0,1[$. Montrer que pour n assez grand on a approximativement :

$$\sqrt{n}\left(\left(\frac{X}{n}\right)^2 - p^2\right) \sim N(0; 4p^3(1-p)).$$

Solution

Sommaire Concepts

On lance indéfiniment un dé équilibré et on note X_1, X_2, \ldots les résultats obtenus. Soit $M_n = \max\{X_1, \ldots, X_n\}$, montrer que M_n converge presque surement vers 6.

Solution

Sommaire Concepts

A.2 Exercices de travaux dirigés

A.2.1													•		•		•	50
A.2.2																		51
A.2.3																		52
A.2.4																		53
A.2.5																		54
A.2.6																		55
A.2.7																		56
A.2.8																		57
A.2.9																		58
A.2.10																		59
A.2.11																		60
A.2.12																		61
A.2.13																		62
A.2.14																		63
A.2.15																		64
A.2.16																		65
A.2.17																		66
A.2.18																		67
A.2.19																		68
A.2.20																		69

Sommaire Concepts

Montrer que dans l'exemple IV.2.5 il y a bien convergence en probabilité, puis montrer, à l'aide du lemme IV.2.1, qu'il n'y a pas convergence presque sûre.

Sommaire Concepts

Soit Y une v.a. de densité : $be^{-x}1_{[2,\infty[}(x)$ où b est une constante positive.

- a- Déterminer la valeur de b.
- b- On pose X = Y [Y], où [Y] est la partie entière de Y. Calculer E(X).
- c- Soient $X_1, Y_1, X_2, Y_2, \cdots$ des v.a. indépendantes. On suppose que pour $n \geq 0$, X_n suit la loi de X, et Y_n celle de Y. Etudier la convergence presque sûre de

$$\frac{X_1 - Y_1 + X_2 - Y_2 + \ldots + X_n - Y_n}{n}$$

lorsque $n \to +\infty$.

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de variables aléatoires indépendantes, de même loi, admettant une moyenne μ et une variance $\sigma^2 < +\infty$. On note $S_n = (X_1 + \ldots + X_n)/n$.

- a- Calculer $\mathbb{E}(S_n)$ et $Var(S_n)$.
- b- Lorsque n tend vers l'infini, vers quoi converge la suite S_n et en quel sens (justifier la réponse)?
- c- Pour n "grand", par quelle loi peut-on approcher $\frac{S_n \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}$ (justifier la réponse)?
- d- En déduire une approximation de $P(S_n \leq x)$.
- e- Soit $X \sim B(n,p)$. Donner une approximation de $P(X/n \le x)$ pour n grand. Par quelle loi préfère-t-on approcher la loi de X lorsque $p \ll np \ll n$ (le symbôle \ll signifie "très inférieur à")?

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de variables aléatoires telle que :

- a- $\lim_{n\to+\infty} \mathbb{E}(X_n) = \mu \in \mathbb{R}$;
- b- $\lim_{n\to+\infty} \operatorname{Var}(X_n) = 0$.

Montrer que la suite $\{X_n; n \in \mathbb{N}^*\}$ converge en probabilité vers la variable aléatoire certaine égale à μ .

Sommaire Concepts

Soit Y_1, Y_2, \ldots une suite de variables aléatoires réelles i.i.d. telle que $\mathbb{E}(Y_1) = -1$. On pose $S_n = Y_1 + \ldots + Y_n$, pour $n \geq 1$.

- a- Soit α un réel. Etudier la convergence presque sûre de $\frac{S_n}{n^\alpha}.$
- b- Etudier la convergence presque sûre de $\frac{1}{n}\sum_{j=1}^{n}(-1)^{j}Y_{j}$.
- c- Soit $T = \sum_{j=1}^{\infty} 1_{\{S_j \ge 0\}}$. Calculer $P(T = \infty)$.

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de variables aléatoires de Bernoulli indépendantes de paramètre 1/2. On pose :

$$S_n = \frac{X_1}{2} + \frac{X_2}{2^2} + \ldots + \frac{X_n}{2^n}.$$

- a- Déterminer la loi de S_n .
- b- Montrer que la suite $\{S_n; n \in \mathbb{N}^*\}$ converge en loi vers une variable aléatoire de loi uniforme sur [0,1].

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de variables aléatoires indépendantes et identiquement distribuées de lois normales de moyennes $\mu \in \mathbb{R}$ et de variances $\sigma^2 \in]0, +\infty[$. Soit X une variable aléatoire de loi normale centrée réduite.

a- Montrer que pour tout $\varepsilon > 0$ on a :

$$P(|X| \ge \varepsilon) \le \frac{1}{\varepsilon} \sqrt{\frac{2}{\pi}} \exp(-\varepsilon^2/2).$$

- b- On note $S_n = (X_1 + \cdots + X_n)/n$. Calculer l'espérance mathématique et la variance de S_n . Quelle est la loi de la variable aléatoire $U_n = \sqrt{n}(S_n \mu)/\sigma$?
- c- Soit a > 0. Déduire des deux questions précédentes que :

$$\lim_{n \to +\infty} P\left(|S_n - \mu| > a \right) = 0.$$

- d- On suppose toujours les variables aléatoires X_1, X_2, \ldots indépendantes et identiquement distribuées, de moyennes $\mu \in \mathbb{R}$, de variances $\sigma^2 \in]0, +\infty[$ mais de loi quelconque. En utilisant l'inégalité de Bienaymé-Tchebyshev, montrer que le résultat de la question précédente reste vrai.
- e- Que se passe-t-il si $X_i = X$ pour tout $i \in \mathbb{N}^*$? Quelle hypothèse fondamentale n'est pas satisfaite dans ce cas?

Sommaire Concepts

Dans une usine on produit des résistances dont la valeur en Ohms suit une loi normale de moyenne 100 et de variance 0,26. On considère qu'une résistance est commercialisable si sa valeur est de 100 Ohms à 1% près.

- a- Quelle est la probabilité p qu'une résistance soit commercialisable?
- b- Les résistances sont fabriquées indépendamment les unes des autres par lots de taille n. On note S_n le nombre de résistances commercialisables dans un lot de taille n. Quelle est la loi de S_n ? sa moyenne? sa variance?
- c- Soit X une variable aléatoire de loi binomiale de paramètres n et p. Donner, pour n grand, une approximation de $P(X \le x)$ en fonction de n,p,x et Φ (Φ est la fonction de répartition d'une loi normale centrée réduite).
- d- Quelle est la taille minimale des lots qui assure qu'au moins 99% des lots contiennent plus de 90% de resistances commercialisables?

Calculs numériques : $\Phi(1,961) \approx 0,975$ et $\Phi(-2,232) \approx 0,01$.

Sommaire Concepts

Soit Y une v.a. réelle uniformément distribuée sur l'intervalle [3,6]. Pour tout n>0, on pose $X_n=5n^2$, si $3\leq Y\leq 3+(4/n^2)$ et $X_n=0$, sinon.

- a- Déterminer $E(X_n)$ et $E(X_n^2)$.
- b- Calculer $E(X_{n+1}X_{n+2})$.
- c- La suite $(X_n)_{n\geq 1}$ converge t-elle p.s. vers une limite?
- d- La suite $(X_n)_{n\geq 1}$ converge t-elle en probabilité vers une limite?

Sommaire Concepts

Un appareil électronique fait des mesures dont l'erreur sur la seconde décimale est supposée uniformément distribuée sur]-0,05,+0,05[. Quelle est la probabilité que la valeur absolue de l'erreur commise sur la somme de 1000 mesures soit inférieure à 2?

Solution

Sommaire Concepts

Dans une population une personne sur 1000 risque un accident d'un certain type chaque année. Une compagnie d'assurance assure 5000 personnes de cette population. Quelle est la probabilité qu'au plus deux des assurés soient victimes dudit accident?

Solution

Sommaire Concepts

Utiliser le théorème de la limite centrale pour donner une approximation de la loi Gamma $\gamma(\lambda,n)$ (loi d'Erlang) lorsque n tend vers l'infini. Avec quelles lois classiques peut-on faire un raisonnement identique?

Solution

Sommaire Concepts

Soit f la fonction définie par

$$f(x) = \alpha (1 - x)^{\beta} 1_{[0,1]}(x),$$

où $\beta > 0$.

- a- Calculer α pour que f soit une densité.
- b- Donner un algorithme permettant de simuler des v.a. de densité f.
- c- Soit $\lambda>\beta$ fixé. Donner un algorithme permettant d'approcher l'intégrale I définie par

$$I = \int_0^1 (1-u)^{\lambda} du.$$

Sommaire Concepts

Trouver un algorithme permettant d'approcher π via la loi forte de grands nombres.

Sommaire Concepts

On jette indéfiniment un dé équilibré. On note X_1, X_2, \ldots les résultats successifs obtenus et $M_n = \min\{X_1, X_2, \ldots, X_n\}$ pour $n \ge 1$.

- a- Soit $\varepsilon \in]0,1[$, exprimer l'événement $\{|M_n-1|>\varepsilon\}$ à l'aide de X_1,\ldots,X_n (traiter n=1 et n=2 puis généraliser).
- b- Montrer que $(M_n)_{n\geq 1} \stackrel{P}{\longrightarrow} 1$. Peut-on en déduire la convergence presque-sûre de $(M_n)_{n\geq 1}$ vers 1 (justifiez votre réponse sans chercher à justifier une éventuelle convergence presque-sûre)?

Sommaire Concepts

Dans un atelier on assemble 100 ordinateurs par jour. En général, 99% des ordinateurs assemblés fonctionnent lorsqu'on les teste. Soit X le nombre d'ordinateurs en état de marche parmi les ordinateurs assemblés un jour donné.

- a- Quelle est la loi de *X*?
- b- Quelle relation existe-t-il entre les événements $\{X \le 95\}$ et $\{|X 99| \ge 4\}$?
- c- Donner une majoration de $P(|X-99| \ge 4)$, puis en déduire une majoration de P(X<95).

Sommaire Concepts

Un élevage intensif produit des animaux en continu pour la filière alimentaire. Chaque animal produit a une chance sur mille d'être impropre à la consommation.

- a- Quelle est la probabilité que le premier animal impropre à la consommation apparaisse après les 100 premiers animaux produits? En donner une approximation en développant $\varepsilon \to (1-\varepsilon)^\alpha$ au voisinage de 0.
- b- Quelle est la probabilité que le premier animal soit impropre à la consommation mais qu'ensuite tous les animaux soient sains?
- c- Un lot de cent mille animaux est mis sur le marché. Soit *X* le nombre d'animaux du lot impropres à la consommation. Quelle est la loi de *X* ? Par quelle autre loi peut-on approcher la loi de *X* ? Quelle est la probabilité approchée, que le lot contienne au moins un animal impropre à la consommation ?

Sommaire Concepts

On lance n fois un dé et soit F_n la v.a.r. égale à la fréquence d'apparition du six, définie par : $F_n = \frac{X_n}{n}$, où X_n est la v.a.r. égale au nombre d'apparitions du six.

Trouver n tel que : $P(|F_n - \frac{1}{6}| < 0.99) \ge 0.99$.

Sommaire Concepts

Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de v.a.r. de Bernoulli, de même paramètre p, et indépendantes.

- 1. Soit $Y_n = X_n.X_{n+1}$ pour tout $n \in \mathbb{N}^*$; déterminer la loi de Y_n , son espérance et sa variance.
- 2. Soit $S_n = \frac{Y_1 + \dots + Y_n}{n}$: déterminer $E(S_n)$ et $Var(S_n)$.
- 3. Montrer que pour tout $\epsilon > 0$, on a $\lim_{n \to +\infty} P(|S_n p^2| \ge \epsilon) = 0$.

Sommaire Concepts

Soit X_1, X_2, \ldots une suite de variables aléatoires indépendantes et identiquement distribuées suivant une loi de Poisson de paramètre $\lambda > 0$, notée $\mathcal{P}(\lambda)$. On définit $S_n = X_1 + \ldots + X_n$ pour $n \geq 1$.

- 1. (a) Montrer que la fonction génératrice g d'une variable aléatoire X_i est définie par $g(u) = \exp(-\lambda + \lambda u)$. En déduire $\mathbb{E}(X_i)$ et $\text{Var}(X_i)$.
 - (b) Montrer que $\mathcal{P}(n\lambda)$ est la loi de S_n pour $n \geq 1$.
 - (c) A l'aide du théorème de la limite centrale, donner une approximation de la fonction de répartition de la loi de S_n pour n grand (préciser les valeurs de n qui rendent cette approximation licite).
 - (d) Le nombre de clients se présentant au guichet d'une banque un jour *j* est une variable aléatoire qui suit une loi de Poisson de paramètre 12. On admet que les variables correspondant à des jours différents sont indépendantes. Quelle est la probabilité d'avoir au moins 250 clients durant un mois de 22 jours ouvrables?

Indication. On a $\Phi(0,862)\approx 0.8$ où Φ est la f.d.r. d'une loi normale centrée réduite.

2. Calculer $\mathbb{E}[X_1|X_2=k]$, pour $k\in\mathbb{N}$ et en déduire $\mathbb{E}[X_1]$.

Sommaire Concepts

Annexe B Documents

B.1 Démonstrations 71

Sommaire Concepts

chapitre 🛦

B.1 Démonstrations

B.1.1	Démonstration de la proposition 4.2.2	72
B.1.2	Démonstration du lemme 4.2.1	73

Sommaire Concepts

Document B.1.1 Démonstration de la proposition 4.2.2

Convergence en probabilité On a :

$$P(\omega \in \Omega : \lim_{n \to +\infty} X_n(\omega) = X(\omega)) = 1$$

donc

$$P(\omega \in \Omega : \overline{\lim}_{n \to +\infty} |X_n(\omega) - X(\omega)| \ge \varepsilon) = 0.$$

Il vient donc:

$$0 = \lim_{n \to +\infty} \sum P(\bigcup_{p \ge n} \{ |X_p(\omega) - X(\omega)| \ge \varepsilon \})$$

$$\geq \limsup_{n \to +\infty} P(\omega \in \Omega : |X_n(\omega) - X(\omega)| \geq \varepsilon),$$

d'où $\lim_{n\to+\infty} P(|X_n-X|\geq \varepsilon)=0$.

Sommaire Concepts

Document B.1.2 Démonstration du lemme 4.2.1

Convergence presque-sûre Il s'agit en fait de résoudre l'exercice A.3.2 du chapitre 1.

I. a. Les événements élémentaires qui constituent A sont les $\omega \in \Omega$ réalisant une infinité d'événements A_n . Par conséquent on a $A \subset \bigcup_{m=n}^{+\infty} A_m$ pour tout $n \geq 1$.

b.

$$P(A) \le P\left(\bigcup_{m=n}^{+\infty} A_m\right) \le \sum_{m=n}^{+\infty} P(A_m).$$

Donc P(A) est majorée par le "terme reste" d'une série convergente. Ce "terme reste" tend nécessairement vers 0 lorsque $n \to +\infty$.

II. a.

$$\overline{A} = \overline{\left(\bigcap_{n=1}^{+\infty} \bigcup_{m=n}^{+\infty} A_m\right)} = \bigcup_{n=1}^{+\infty} \overline{\left(\bigcup_{m=n}^{+\infty} A_m\right)} = \bigcup_{n=1}^{+\infty} \bigcap_{m=n}^{+\infty} \overline{A}_m.$$

- **b.** Soit f la fonction C^1 définie sur \mathbb{R} par $f(x) = 1 x \exp(-x)$. On a $f'(x) = -1 + \exp(-x)$; donc f' est positive sur \mathbb{R}^- et négative sur \mathbb{R}^+ . f admet donc un maximum en 0 or f(0) = 0 ce qui démontre le résultat.
 - **c.** Pour n > 1 on a :

$$P\left(\bigcap_{m=n}^{+\infty} \overline{A}_m\right) = \prod_{m=n}^{+\infty} P(\overline{A}_m)$$
 (par l'indépendance des A_m)

Sommaire Concepts

Exemples
Exercices
Documents

$= \prod_{m=n}^{+\infty} (1 - P(A_m))$ $\leq \prod_{m=n}^{+\infty} \exp(-P(A_m)) \quad \text{(d'après b)}$ $\leq \exp\left(-\sum_{m=n}^{+\infty} P(A_m)\right),$

or, comme $\sum_{m=1}^{+\infty} P(A_m) = +\infty$, on a pour tout $n \ge 1$: $\sum_{m=n}^{+\infty} P(A_m) = +\infty$ et donc

$$\exp\left(-\sum_{m=n}^{+\infty} P(A_m)\right) = 0.$$

d. D'après a on a:

$$P(\overline{A}) = P\left(\bigcup_{n=1}^{+\infty} \left(\bigcap_{m=n}^{+\infty} \overline{A}_m\right)\right) \le \sum_{n=1}^{+\infty} P\left(\bigcap_{m=n}^{+\infty} \overline{A}_m\right) = 0$$

d'après le c. Il vient donc P(A) = 1.

Document B.1.2 Démonstration du lemme 4.2.1

Sommaire Concepts

Exemples
Exercices
Documents

Index des concepts

Sommaire Concepts

Exemples
Exercices
Documents

Non le résultat est faux car $f_n(t)-f(t)=t/n$ et donc $\sup_{t\in\mathbb{R}}|f_n(t)-f(t)|=+\infty.$ On a donc pas de convergence uniforme.

Il est facile de voir que pour tout t fixé on a $\lim_{n\to +\infty} f_n(t)=0$. En effet soit t=1 et alors $f_n(1)=0$ $\forall n$, et si t<1 il existe n_0 tel que $\forall n\geq n_0$ on a t<1-1/n et donc $f_n(t)=0$. Il résulte des considérations précédentes que $(f_n)_{n\geq 1}$ converge simplement vers la fonction nulle f. Or il est bien clair sur le graphe que $\sup_{0\leq t\leq 1}|f_n(t)-f(t)|=1$, il ne peut donc y avoir de convergence uniforme sur [0,1].

Soit X_i la v.a. binaire égale à 1 si l'étudiant à manger au R.U. au i-ème repas et 0 sinon. Le nombre de repas pris au R.U. est donc $X_1 + \ldots + X_{200}$, la loi forte des grands nombre nous dit que $(X_1 + \ldots + X_n)/n$ converge presque sûrement vers $\mathbb{E}(X_1)$ si l'on suppose les v.a. X_i i.i.d. Or $\mathbb{E}(X_1) = \Pr(\text{manger au R.U.})$ par conséquent 75/200 = 0,375 est une approximation de cette probabilité.

En prenant $X_1 = X_2 = \dots$, on a $(X_1 + \dots + X_n)/n = X_1$ et si, par exemple, $X_1 \sim B(p)$ avec 0 alors aucun des résultats des théorèmes évoqués ci-dessus n'est vrai.

 $(X_i^2)_{i>1}$ est une suite i.i.d. de v.a. d'espérance égale à :

$$\mathbb{E}(X_1^2) = \int_0^{+\infty} x^2 \exp(-x) dx = [-x^2 \exp(-x)]_0^{+\infty} + 2 \int_0^{+\infty} x \exp(-x) dx$$
$$= 2\{[-x \exp(-x)]_0^{+\infty} + \int_0^{+\infty} \exp(-x) dx\} = 2.$$

Donc d'après le théorème IV.2.1:

$$\sum_{i=1}^{n} X_i^2/n \to 2, \quad \text{p.s. lorsque } n \to +\infty.$$

On a:

$$F_{X_n}(x) = 1_{[1/n, +\infty[}(x)$$

et

$$F_X(x) = 1_{[0,+\infty[}(x)$$

Si x < 0 est fixé alors $\lim_{n \to +\infty} F_{X_n}(x) = 0 = F_X(x)$.

Si x > 0 est fixé alors $\lim_{n \to +\infty} F_{X_n}(x) = 1 = F_X(x)$.

Or \mathbb{R}^* est bien l'ensemble des points de continuité de F_X , donc $(X_n)_{n\geq 1}$ converge en loi vers la variable aléatoire $X\sim \delta_0$ (en 0, point de discontinuité de F_X , il n'y a pas convergence).

On a $X = X_1 + \cdots + X_{50}$ où les v.a. X_i sont i.i.d. de loi B(p), de moyenne p et de variance p(1-p). Puisque X est une somme de v.a.i.i.d. d'après le théorème de la limite centrale IV.2.3, on a :

$$\lim_{n \to +\infty} P\left(\frac{X - \mathbb{E}(X)}{\sqrt{\text{Var}(X)}} \le x\right) = \lim_{n \to +\infty} P\left(\frac{X - np}{\sqrt{np(1 - p)}} \le x\right) = \Phi(x),$$

où Φ est la f.d.r. de la loi normale centrée réduite. D'où l'approximation :

$$P(X \le 50) = P\left(\frac{X - 30}{\sqrt{21}} \le \frac{50 - 30}{\sqrt{21}}\right) \approx \Phi(4, 36) \approx 1.$$

Nous somme ici dans la situation où l'approximation de la loi binomiale par la loi normale n'est pas bonne car $p \ll np \ll n$, c'est-à-dire $0,002 \ll 2 \ll 1000$; on préfère alors utiliser l'approximation de Poisson, i.e. que X suit approximativement une loi de Poisson de paramètre np, ici $\mathcal{P}(2)$. D'où :

$$P(X \le 3) \approx P(Y \le 3),$$

où $Y \sim \mathcal{P}(2)$. Donc

$$P(X \le 3) \approx e^{-2}(1 + 2 + 4/2 + 8/6) \approx 0,857.$$

Si $X \sim B(p)$ alors $\varphi_X(t) = \mathbb{E}(\exp(itX)) = 1 - p + p \exp(it)$. Si $X \sim B(n; p)$ alors $X = X_1 + \dots + X_n$ où les v.a. sont i.i.d. de loi B(p), donc $\varphi_X(t) = (1 - p + p \exp(it))^n$. Si $X \sim U(0, 1)$ alors $\varphi_X(t) = \mathbb{E}(\exp(itX)) = \int_{-\infty}^{+\infty} \exp(itx) 1_{[0,1]}(x) dx = \int_0^1 \exp(itx) dx = \frac{1}{it}(\exp(it) - 1)$.

Soit g_{X_n} la fonction génératrice de X_n , on a :

$$g_{X_n}(u) = \mathbb{E}(u^{X_n}) = (1 - \lambda_n + \lambda_n u) = \exp(n \ln(1 - \lambda_n (u - 1))),$$

or $\lambda_n \sim \lambda/n$ lorsque $n \to +\infty$, donc

$$\ln(1 - \lambda_n(u - 1)) \sim -\lambda(u - 1)/n$$

soit

$$\lim_{n \to +\infty} g_{X_n}(u) = \exp(-\lambda(u-1)),$$

qui est la fonction génératrice d'une loi de Poisson de paramètre λ . D'où le résultat via le théorème IV.3.2.

Pour simuler une loi B(p) il suffit d'écrire de suivre l'algorithme suivant où RANDOM est une fonction qui renvoie une nombre de [0,1] choisi de manière uniforme et dont les appels successifs sont indépendants :

```
si(RANDOM <p) afficher 1 ;
sinon afficher 0 ;</pre>
```

alors la probabilité d'obtenir 1 est égale à $P(\mathtt{RANDOM} \in [0,p]) = p$.

Pour simuler une loi B(n;p) il suffit d'écrire de suivre l'algorithme suivant :

```
X=0 ;
pour(i=1...n) [si(RANDOM <p) X=X+1] ;
afficher X ;</pre>
```

Les appels de RANDOM étant indépendants, le résultat obtenu est bien la somme de n v.a. de loi B(p), c'est-à-dire une v.a. de loi B(n;p).

La fonction de répartition F d'une loi de Weibull étant continue, on sait d'après la proposition IV.4.1 qu'il suffit de calculer " F^{-1} " pour simuler une v.a.r. de loi F. Or, si $y \in]0,1[$ on a :

$$F(x) = y \Leftrightarrow 1 - \exp\left(-\left(\frac{x}{\sigma}\right)^{\theta}\right) = y \Leftrightarrow \ln\left(\frac{1}{1-y}\right) = \left(\frac{x}{\sigma}\right)^{\theta}$$
$$\Leftrightarrow x = G(y) = \sigma\left(\ln\left(\frac{1}{1-y}\right)\right)^{\theta}.$$

Pour simuler n v.a. de f.d.r. F on procède selon l'algorithme :

```
D^^e9finir la fonction G ;
pour(i=1...n) [afficher G(RANDOM)] ;
```

où RANDOM est une fonction qui renvoie une nombre de [0,1] choisi de manière uniforme et dont les appels successifs sont indépendants.

Remarquons tout d'abord que si $X \sim E(1)$ on a :

$$I = \mathbb{E}(\exp(-X^2 + X)),$$

en effet:

$$I = \int_0^{+\infty} \exp(-x^2) dx = \int_{-\infty}^{+\infty} \exp(-x^2 + x) \exp(-x) 1_{[0, +\infty[}(x) dx$$

D'autre part, d'après la loi forte des grands nombres, si X_1, X_2, \ldots est une suite de v.a. i.i.d. de loi E(1) on a :

$$\frac{1}{n}\sum_{i=1}^{n}\exp(-X_i^2+X_i)\to I,$$
 p.s. lorsque $n\to +\infty$.

Pour $y \in]0,1[$, on a

$$y = F(x) \Leftrightarrow x = G(y) = \ln\left(\frac{1}{1-y}\right).$$

L'algorithme à mettre en place est alors :

```
D^^e9finir la fonction G ;
   ^^ce=0
pour(i=1...n)
   [
        X=G(RANDOM) ;
        ^^ce=^^ce+exp(-X*X+X) ;
   ]
   ^^ce=^^ce/n ;
afficher ^^ce ;
```

où RANDOM est une fonction qui renvoie une nombre de [0,1] choisi de manière uniforme et dont les appels successifs sont indépendants.

Rappelons que X admet la représentation $X_1 + \ldots + X_n$ où les v.a. X_i sont i.i.d. de loi B(p). De plus on a $\mathbb{E}(X_i) = p$ et $\text{Var}(X_i) = p(1-p)$ donc d'après le théorème IV.5.2 on a, lorsque $n \to +\infty$:

$$\sqrt{n}\left(f\left(\frac{X}{n}\right) - f(p)\right) \xrightarrow{\mathcal{D}} N(O; (f'(p))^2 p(1-p)),$$

si $f \in C^1(\mathbb{R})$. Or ici f est définie par $f(x) = x^2$, d'où le résultat :

$$\sqrt{n}\left(\left(\frac{X}{n}\right)^2 - p^2\right) \xrightarrow{\mathcal{D}} N(O; 4p^3(1-p)) \quad n \to +\infty,$$

qui est celui recherché.

Soit A l'événement $\{\lim_{n\to+\infty}M_n=6\}$, alors on a :

$$\bar{A} = \{X_1 \le 5\} \cap \{X_2 \le 5\} \cap \{X_3 \le 5\} \cap \dots$$

et donc
$$P(\bar{A}) = 5/6 \times 5/6 \times 5/6 \times \ldots = 0$$
. D'où $P(A) = 1$.

On note X_1, \ldots, X_{1000} les erreurs commises sur chacune des 1000 mesures. Ces variables aléatoires sont indépendantes et identiquement distribuées, de lois U(-0,05;0,05). L'erreur E commise sur la somme est donc la somme des erreurs commises sur chacune des mesures, soit $E = X_1 + \ldots + X_{1000}$. On a donc

$$\mathbb{E}[E] = 1000 \times \mathbb{E}[X_1] = 1000 \times \int_{\mathbb{R}} 10x 1_{[-0,05;+0,05]}(x) dx$$
$$= 1000 \times 10[x^2/2]_{-0,05}^{0,05} = 10000 \times 0 = 0$$

et

$$\mathbf{Var}[E] = 1000 \times \mathbf{Var}[X_1] = 1000 \times \int_{\mathbb{R}} 10x^2 1_{[-0,05;+0,05]}(x) dx$$
$$= 1000 \times 10[x^3/3]_{-0.05}^{0.05} = 10000 \times 0,000250/3 = 5/6.$$

Or d'après le théorème de la limite centrale on a, en notant $E_n = X_1 + \ldots + X_n$:

$$\frac{E_n - \mathbb{E}[E_n]}{\sqrt{\operatorname{Var}(E_n)}} \xrightarrow{\mathcal{L}} X, \quad n \to +\infty,$$

où X est une variable aléatoire normale centrée-réduite. En considérant que n=1000 est suffisamment grand pour utiliser l'approximation :

$$P((E - \mathbb{E}[E])/\sqrt{\text{Var}(E)} \le x) = P(E \le x\sqrt{5/6}) \approx \Phi(x),$$

ou encore

$$P(E \le x) \approx \Phi(x\sqrt{6/5}),$$

on obtient:

$$P(|E| \le 2) \approx P(|X| \le 2\sqrt{6/5}) = \Phi(2\sqrt{6/5}) - \Phi(-2\sqrt{6/5}) = 2\Phi(\sqrt{24/5}) - 1$$

 $\approx 2\Phi(2, 19) - 1 \approx 2 \times 0,9857 - 1 = 0,9714..$

On estime donc que l'on a moins de 3% de chance d'avoir une erreur totale plus grande que 2 en valeur absolue.

Les personnes assurées par cette compagnie d'assurance sont indépendantes et l'on considère qu'elles ont toutes la même probabilité 1/1000 d'être victime de l'accident considéré. Par conséquent, le nombre N de personnes assurées qui auront l'accident est une variable aléatoire discrète de loi binomiale B(n,p) où n=5000 est "grand", p=0,001 est "petit" alors que le produit np=5 est "moyen". Nous sommes donc dans une situation où l'on considère comme acceptable d'approcher la loi binomiale B(n,p) par une loi de poisson $\mathcal{P}(np)$.

On suppose donc que la loi de N est bien approchée par la loi de poisson $\mathcal{P}(5)$ et donc la probabilité qu'il y ait au plus deux assurés victimes dudit accident est :

$$P(N \le 2) \approx P(X \le 2)$$

où $X \sim \mathcal{P}(5)$ soit :

$$P(N \le 2) \approx \exp(-5)(1 + \frac{5}{1!} + \frac{5^2}{2!}) \approx 0,125.$$

Soit Y_n une variable aléatoire de loi $\gamma(\lambda, n)$ où $\lambda > 0$ et $n \in \mathbb{N}^*$. D'après le cours on sait que Y_n est la somme de n variables aléatoires X_1, \ldots, X_n , indépendantes et identiquement distribuées, de lois exponentielles $E(\lambda)$. On a donc :

$$Y_n = X_1 + \ldots + X_n.$$

Or les variables aléatoires X_1, \ldots, X_n admettent une moyenne $1/\lambda$ et une variance $1/\lambda^2$. Le théorème de la limite centrale s'applique donc à Y_n , c'est-à-dire que lorsque n tend vers l'infini on a :

$$\frac{Y_n - \mathbb{E}[Y_n]}{\sqrt{\operatorname{Var}(Y_n)}} \xrightarrow{\mathcal{L}} X, \tag{B.1.1}$$

où X est normale centrée-réduite. Or il est facile de voir que :

$$\mathbb{E}[Y_n] = n/\lambda$$
 et $\operatorname{Var}[Y_n] = n/\lambda^2$.

Donc d'après (B.1.1), et par définition de la convergence en loi, puisque la fonction de répartition de X est continue en tout point $x \in \mathbb{R}$, on a :

$$\lim_{n \to +\infty} P\left(\frac{Y_n - n/\lambda}{\sqrt{n}/\lambda} \le x\right) = \Phi(x),$$

où Φ est la fonction de répartition de X. Donc lorsque n tend vers l'infini on fait l'approximation :

$$P\left(\frac{Y_n - n/\lambda}{\sqrt{n}/\lambda} \le x\right) \approx \Phi(x),$$

ou encore :

$$P\left(Y_n \le \frac{x\sqrt{n} + n}{\lambda}\right) \approx \Phi(x).$$

En posant $y = (x\sqrt{n} + n)/\lambda$ on obtient :

$$P(Y_n \le y) \approx \Phi\left(\frac{\lambda y}{\sqrt{n}} - \sqrt{n}\right).$$

Remarque. Ci-après, on approche la fonction de répartition d'une loi Gamma $\gamma(\lambda, n)$ en utilisant l'approximation normale. Pour ces figures on a $\lambda=1$ et n vaut successivement 2, 10, 100 et 1000.

Le raisonnement précédent est valable pour toutes les lois obtenues par convolution de lois

identiques (c'est-à-dire pour des sommes de variables aléatoires indépendantes et identiquement distribuées) admettant un moment d'ordre 2. Le procédé d'approximation peut donc être utilisé pour les lois Binomiale, Gamma, Chi-deux, etc.