Department of Applied Mechanics, IIT Delhi AML-702 Applied Computational Methods (2019-2020 II Sem) Minor Test #1

06 Feb 20, 2:30 pm to 3:30 pm, Room LH-604 Maximum marks: 15

1. The upward velocity of a rocket is given at three different times in the following table:

Time, / (s)	Velocity, v (m/s)
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as

$$v(t) = a_1 t^2 + a_2 t + a_3$$
, $5 \le t \le 12$

The coefficients a_1 , a_2 , and a_3 for the above expression are given by

$$25a_1 + 5a_2 + a_3 = 106.8$$

$$64a_1 + 8a_2 + a_3 = 177.2$$

$$144a_1 + 12a_2 + a_3 = 279.2$$

- (a) Find the values of a_1 , a_2 , and a_3 using the Naïve Gauss elimination method.
- (b) Find the velocity at t = 6,11 seconds.

2. Find third order accurate Taylor series for (a) $f(x) = \frac{1}{(1+x)^2}$ and (b) $f(x) = \sin x$

- 3. (a) Using suitable sketches and mathematical expressions briefly describe key features
- (b) Use the Newton Raphson method to find the only real root of the equation $x^3 - x - 1 = 0$. Use the interval x = 1 and x = 2 and perform three iterations.

[2+2=4]

