Yapay Zeka

Rekabet Ortamında Arama ve Oyun Ağaçları

Prof. Sevinç İlhan Omurca / Dr. Öğretim Üyesi Fidan Kaya Gülağız Kocaeli Üniversitesi

Bugün

Arama

- Rekabet Ortamında Arama
- Oyunlarda Arama
- Oyun Teorisi
- Sıfır Toplamlı Oyunlar
- Minimaks Yöntemi
- Alfa-Beta Budaması
- Stokastik Oyunlar

Rekabet Ortamında Arama

- Çok ajanlı ortamlarda davranış?
 - Bir ajan diğer ajanın eylemlerini ve
 - Bu eylemlerin onun refahını nasıl etkilediğini dikkate alır.
- Diğer ajanların öngörülemezliği?
 - Olası beklenmedik durumları
- Ajanların hedeflerinin çatıştığı ortamlar, rekabetçi arama gerektirir
 - İşte bu ortamlardaki problemler "oyun" olarak adlandırılır !

Oyunlarda Arama

- Oyunlar her zaman rekabetçi ortamlarda mı gerçekleşir?
 - Rekabetçi ya da iş birliğine dayalı ortamlar olabilir!
- Oyun teorisine göre oyun?
 - Herhangi bir çok ajanlı ortam (işbirliğine dayalı veya rekabetçi), her bir etmen diğeri üzerindeki etkisinin önemli olması koşuluyla bir oyundur.
- Bu derste rekabetçi ortamlardaki arama problemlerini ele alacağız.

Oyun Teorisi

- Oyun Teorisi iki temel teoreme dayanır
 - Minimum-Maksimum Teoremi
 - Denge Teoremi (Nash Dengesi)
- Doğuş:
 - 1928 Jon von Neuman ispatladığı **Minimaks Teoremi**
- Gelişim:
 - 1950 John Forbes Nash ispatladığı **Denge Teoremi**

Oyun Oynama ve Al – Tarihsel Gelişim

Dama:

- 1950: İlk bilgisayar oyuncusu
- 1994: İlk bilgisayar şampiyonu:
 - Chinook, şampiyon Marion Tinsley'nin 40 yıllık saltanatını sonlandırdı
- 2007: Checkers çözüldü!

Satranç:

- 1997: Deep Blue, Gary Kasparov'u yendi.
- Günümüzde AI temelli programlar eskiye göre daha iyidir.

Go:

- Dallanma faktörü b, b > 300
- Klasik programlar pattern knowledge tabanlı teknikleri kullanıyordu.
- Güncel programlar gelişmiş Monte Carlo (randomized) genişleme tekniğini kullanırlar.

	Satranç	GO
Tahta Boyutu	8 X8	19 X 19
Her oyunda ortalama hareket sayısı	100	300
Her dönüşteki dallanma faktörü	35	235

Oyun Oynama ve Al – Tarihsel Gelişim

Dama:

■ 1950: İlk bilgisayar oyuncusu

■ 1994: İlk bilgisayar şampiyonu:

• Chinook, şampiyon Marion Tinsley'nin 40 yıllık saltanatını sonlandırdı

2007: Checkers çözüldü!

Satranç:

■ 1997: Deep Blue, Gary Kasparov'u yendi.

Günümüzde AI temelli programlar eskiye göre daha iyidir.

Go:

2016: Alpha GO , 9 X 9 Go oyununda insan şampiyonu yendi !

Monte Carlo Ağacı Araması tekniği kullanıldı.

	Satranç	GO
Tahta Boyutu	8 X8	19 X 19
Her oyunda ortalama hareket sayısı	100	300
Her dönüşteki dallanma faktörü	35	235

Oyun Türleri

Yapay Zekada oyunlar 3 sınıf altında incelenir

- Oyunlar:
 - Rastgele Sonuçlu
 - İskambil, tavla,...
 - Ustalık Gerektiren
 - Futbol, Basketbol, Golf, ...
 - Stratejik
 - Satranç, Dama, Go, ...

- Stratejik oyunlar daha çok ilgi çekmektedir.
- Oyunlarda oyunculardan mümkün olan durumlardan en iyisini seçmesi beklenmektedir.

Oyun Türleri

- Oyunları farklı açılardan sınıflandırmak da mümkün!
- Örneğin:
 - Deterministik ya da stokastik?
 - Bir, iki, ya da daha çok oyunuculu?
 - Sıfır Toplamlı?
 - Mükemmel bilgili ya da değil ?

Oyunlar & Al

 Oyunların farklı türleri için bir durumdan diğer durma geçiş için önerilerde nacak bir politika/strateji geliştirecek algoritmalar istiyoruz.

Deterministik		Olasılıklı	
Tam Bilgili	Satranç, Go, Dama	Tavla, Monopoly	
Eksik Bilgili	Battleships, Stratego	Poker, Scrabble, Briç	

Sıfır Toplamlı Oyunlar

Sıfır Toplamlı Oyunlar

- Stratejik oyunların çözümünde oyun teorisi kullanılır.
- Bu teorinin yardımıyla taraflar kendi kazançlarını optimize etmek amacı ile bilgi edinmektedir.
- İki kişilik stratejik oyunlar
 - Taraflardan biri bilgisayar olarak düşünülebilir.
 - Bir tarafın kazanması diğer tarafın kaybetmesine eşittir.
 - Bu oyunlara sıfır toplamlı iki taraflı oyunlar denir.

Sıfır Toplamlı Oyunlar

- Sıfır toplamlı oyunları anlamak için kazanç matrisinin oluşturulması gerekir.
- Kazanç matrisi oluşturma ?
 - Önce her oyuncu için olası gidişler yazılır.
 - Birinci oyuncu m adet gidişe sahip olsun. A1,...Am
 - İkinci oyuncu n adet gidişe sahip olsun B1,...Bn
 - Bu stratejilere karşılık gelen durumlar aij olsun.
 - m x n oyun için kazanç matrisi:

Α\B	B ₁	B ₂	>, V	Bn
A ₁	a ₁₁	a ₁₂		a _{1n}
A ₂	a ₂₁	a ₂₂		a _{2n}
Am	a _{m1}	a _{m2}		a _{mn}

Kazanç Matrisi Örnek: Kartların Açılması

- Kartların Açılması Oyunu:
 - Ahmetin üzerinde 1 yazılmış beyaz ve siyah kartı var.
 - Hasanın üzerine 1 yazılmış siyah ve 0 yazılmış beyaz kartı var.
- Oyuncular kartların renklerini ve sayılarını görmeden aynı zamanda 1 tanesini açar.
 - Renkler aynı ise Ahmet sayıların farkına eşit değerini kazanır.
 - Renkler farklı ise Hasan bu değeri kazanır.
- Kazanç matrisi:

Α\H	Hs	Нв
As	0	-1
AB	0	1

Kazanç Matrisi Örnek: Para Atma Oyunu

Para Atma Oyunu:

- Ali ve Veli'nin aynı değerli iki madeni parası vardır.
- Paraları masanın üzerine atarlar ve üzerini kapatırlar.
- Paraların yüzeyleri aynı ise Ali, farklı ise Veli kazanır.

Kazanç matrisi:

A\V	VT	V _Y
Ат	2	-2
Ay	-2	2

Kazanç Matrisi

- Kesin belirlenmiş oyun:
 - Her oyuncunun kısıtlı gidişi olan oyunlardır.
 - Kazanç matrisine bakılarak önceden kimin kazanacağı söylenebilir.

- Kazanç matrisinin minimaks noktası:
 - Aynı anda satırında minimum olan eleman,
 Bu satırla kesişen sütun için maksimum degere sahip olur.

Α\H	Hs	Нв
As	0	-1
AB	0	1

- Kesin belirlenmiş oyun = Kazanç matrisinde minimax noktası olan oyun
- Minimaks 0 olan oyun = Dürüst Oyun

Kazanç Matrisi: Minimaks Mantığı

- Mantık:
 - A oyuncusu 1. stratejiyi (A_1) seçerse B 'de A'ya en küçük kazanç sağlayacak B_{1i} stratejisini seçer.
- Böylece her stratejinin garantilenmiş bir alt değeri olur.
 - α_l = min α_{li} (Tüm j değerleri için)
- Rakip bizim için her zaman en kötü stratejiyi seçeceğinden elde edilen α_l değerleri arasında en büyük olan en iyi stratejimiz olacaktır
 - α =max α_i (Tüm i değerleri için)
- Sonuçta α değeri garantilenmiş kazancı sağlayan en küçük değerdir.
 - $\alpha = \max_{i} \min_{j} \alpha_{lj}$
- Benzer şekilde bizim için karlı olan durum rakip için kötüdür ve rakibin garantilenmiş kazanç değeri:
 - $\beta = \min_{i} \beta_{j} = \min_{i} \max_{i} \alpha_{lj}$

Kazanç Matrisi: Minimaks Mantığı

- \blacksquare α :
 - Bizim en iyi stratejimizde garantilenmiş minimum kazanç
- **Β** β:
 - Rakibimizin en iyi oyununda elde edeceğimiz maksimum kazancı ifade eder.

Kazanç Matrisi:

Α\B	B ₁	B ₂	 Bn	Oί
A ₁	a ₁₁	a ₁₂	 a _{1n}	α1
A ₂	a ₂₁	a ₂₂	 a _{2n}	O.2
Am	am1	am2	 a mn	αm
B	β1	β2	 βn	

Kazanç Matrisi: Minimaks Mantığı

Örnek:

Α\B	B ₁	B ₂	Вз	<i>O</i> i
A 1	0.9	0.4	0.2	0.2
A ₂	0.3	0.6	8.0	0.3
Аз	0.5	0.7	0.2	0.2
βį	0.9	0.7	8.0	

- Alt değer α : 0.3 ve üst değer β :0.7 olur.
- Minimax stratejilerinin kararlı olduğu oyunlarda alt α ve üst β değeri birbirine eşit olmaktadır.
 - $\alpha=\beta$ ise bu değerlerin ortak değerine "oyunun değeri" denir. Ve "v" ile temsil edilir.
- Ortalama kazanç oyunun değerine eşittir.
- Taraflar bu optimal stratejiye bağlı kalmadığında kaybedebilir.
 - Von Neumann- Oyun teorisi Ana Teoreminin Temeli
 - Teoreme göre her sonlu oyunun bir bir değeri vardır:
 - $\alpha \le v \le \beta$

Rekabet Ortamında Arama (Minimaks)

- Minimaks, deterministik oyunlar için mükemmeldir.
- Deterministik Sıfır Toplamlı Oyunlar:
 - Tic-tac-toe, Satranç, Dama
 - Bir oyuncu sonucu maksimize eder!
 - Diğer oyuncu sonucu minimize eder!
- Minimaks Arama:
 - Durum uzayı bir ağaç üzerinden temsil edilir.
 - Oyuncular sırayla oynarlar.
 - Her düğümün minimaks değeri hesaplanır.

Rekürsif olarak hesaplanmış minimaks değerleri

Oyunun parçası olan terminal değerler

Tic-Tac-Toe Oyun Ağacı

Minimaks Yöntemi

Ana fikir:

■ En yüksek minimaks değerine sahip pozisyona hareket et

Adımlar:

- Oyun ağacı belirli bir derinliğe kadar araştırılır
- Her hedef ara durumu için özel sezgisel fonksiyon değerleri hesaplanır.
- Bu düğümlerin değerlerinden faydalanarak köke doğru hareketlenilir ve ağacın düğümlerinin değerleri kesinleştirilir.
- Son olarak program bu değerlere göre en iyi hamleyi yapar.
- Araştırma derinliği arttıkça kararlar daha çok akıllılık gösterecektir.

Minimaks Yöntemi

- Yöntemde oyun ağacı belirli bir derinliğe kadar genişletilir
 - Uç düğümlerin değerlendirilmesi yapılır.
- Biz sezgisel fonksiyon değerini maksimum yapmaya çalışırken
 - Rakip bizim sezgisel fonksiyon değerimizi minimum yapmaya çalışır.
- Biz:
 - Uygun seviye içinden en iyi gidişimizi uç durumların maksimumunu değerlendirerek yapacağız.
- Fonksiyon değeri büyük olduğu sürece galibiyet şansı yüksek, değer küçük olduğu sürece rakibin şansı yüksek.
- Oyunculardan biri sürekli yüksek (MAX) diğeri küçük (MIN) değerleri takip eder.

Minimaks Yöntemi: 2 Seviyeli Oyun Ağacı

 $Z = max \{ min (f1, f2, f3), min (f4, f5) \}$

Minimaks Yöntemi: 4 Seviyeli Ağaç

- MAX gidişler VEYA düğümlerine
- MIN ise VE düğümlerine uygun gelmektedir.

NegaMaks

Her seviye için minimum puanli düğümün seçilmesi

Tic-Tac-Toe Oyun Ağacı

Minimaks Tic-Tac-Toe

Minimaks Tic-Tac-Toe

Minimaks Verimliliği

- Minimaks ne kadar verimlidir?
 - Tipki DFS gibi:
 - Zaman: O(b^m)
 - Yer: O(bm)
- Örnek: Satranç için, $b \approx 35$, $m \approx 100$
 - Arama süresi b^m ≈ 35¹⁰⁰ ≈ 10¹⁵⁴
- Evren
 - Atomların sayısı ≈ 10⁷⁸
 - Yaşı ≈ 10¹⁸ saniye
 - Saniyede işlenecek durum sayısı: 10⁸ moves/sec
 - $10^8 \times 10^{78} \times 10^{18} = 10^{104}$
 - Kesin çözüm tamamen olanıksızdır!
 - Tüm ağacı keşfetmemiz gerekiyor mu?

Kaynak Sınırları

Oyun Ağacı Budama

Alpha-Beta Budaması

- Amaç: Kötü olmayan gidişin bulunması.
- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.
- MIN açısından:
 - Beta: onun için garantilenmiş değerler arasından en kötüsüdür.
 - Bu şekilde aranan fonksiyon değeri (alfa,beta) aralığında olur.
- Herhangi bir durum değeri (alfa,beta) aralığı dışında olursa:
 - Araştırılan durumun önem taşımadığı söylenir.
 - Ağacın belirli bir bölümü değerlendirilmez
- MAX açısından da durum simetriktir.

Alpha-Beta Budaması

```
α: Kök yolundaki MAX'ın en iyi seçeneği
β: Kök yolundaki Min'in en iyi seçeneği
```

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state, \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
        v = \min(v, value(successor, \alpha, \beta))
        if v \le \alpha return v
        \beta = \min(\beta, v)
    return v
```

Alpha-Beta Budaması Örnek

Alpha-Beta Budaması Örnek

Alpha-Beta Budaması Örnek

36

38

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

- Alfa: Max oyuncusu için garantilenmiş en küçük değerlendirmedir.
- Beta: MAX'ın alabileceği fonksiyon değerlerinin en büyüğüdür.

Alpha-Beta Budaması Özellikleri

- Budama işlemi nihai sonucu etkilemez.
 - Yani Alpha-Beta Budaması ile Minimaks tekniğinin sonucu aynıdır.
- İyi bir hareket sıralaması, budama işleminin etkinliğini arttırır.
- "Mükemmel sıralama" ile zaman karmaşıklığı :
 - O(b^{m/2})
- Arama derinliğini iki katına çıkarır.
- 'Hangi hesaplamaların alakalı olduğu' hakkında basit bir akıl yürütme örneği olarak düşünülebilir.
 - Bir tür üst akıl yürütme

Stokastik (Rastgele Sonuçlu) Oyunlar

Stokastik Oyunlar

- Tavla gibi şans faktörü ve stratejinin etkin olduğu oyunlar
- Başka bir ajanın eylemi hakkında olasılıklı bir inanca sahip olmak, ajanın hamleleri rastgele yaptığı anlamına gelmez!
- Bu tür oyunların ağaç temsilinde 3 tür düğümden bahsedilir:
 - max düğümleri
 - min düğümleri
 - şans düğümleri
- Çözüm:
 - Expectiminimax

Stokastik Oyunlar

Stokastik Oyunlar

Stokastik Oyunlar Analiz

- Zaman Karmaşıklığı:
 - O(b^m) yerine O(b^mn^m)
 - n: Şans faktörünün çıktılarının yani dallanmalarının sayısı
- Hem yer hem zaman karmaşıklığı fazladır.
- Karmaşıklık sebebiyle derinine arama uygunlanması zordur.
- Budama algoritmaları uygulanabilir.

Referanslar

- Artificial Intelligence A Modern Approach, Stuart Russell and Peter Norvig, Prentice Hall Series in Artificial Intelligence.
- Yapay Zeka, Vasif Vagifoğlu Nabiyev, Seçkin Yayıncılık
- http://aima.cs.berkeley.edu/instructors.html
- https://courses.cs.washington.edu/courses/csep573/11wi/lectures/05-games.pdf
- http://www.cs.bilkent.edu.tr/~duygulu/Courses/CS461/Notes/Games.pdf
- http://aytugonan.cbu.edu.tr/YZM3217/LectureNotes/YZM3217 lecture6.pdf