VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

ARTIFICIAL INTELLIGENCE

Submitted by

VRISHANK J VASIST(1BM21CS246)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Nov -2023 to Feb-2024

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Artificial Intelligence" carried out by VRISHANK J VASIST(1BM21CS246), who is bonafide student of B.M.S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belgaum during the academic semester Nov -2023 to Feb-2024. The Lab report has been approved as it satisfies the academic requirements in respect of a Artificial Intelligence (22CS5PCAIN) work prescribed for the said degree.

Dr Kayarvizhy N Associate Professor Department of CSE BMSCE, Bengaluru Dr. Jyothi S Nayak Professor and Head Department of CSE BMSCE, Bengaluru

Index Sheet

Lab Program No.	PROGRAM	Page No.
1	Implement Tic –Tac –Toe Game	5
2	Implement vaccum cleaner agent	10
3	Analyse 8 Puzzle problem and implement the same using Breadth First Search Algorithm	14
4	Analyse Iterative Deepening Search Algorithm. Demonstrate how 8 Puzzle problem could be solved using this algorithm	18
5	Implement A* search algorithm	21
6	Create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not	26
7	Create a knowledge base using prepositional logic and prove the given query using resolution	30
8	Implement unification in first order logic	34
9	Convert a given first order logic statement into Conjunctive Normal Form (CNF)	39
10	Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning	44

Course Outcome

CO1	Apply knowledge of agent architecture, searching and reasoning techniques for different applications.
CO2	Analyse Searching and Inferencing Techniques.
CO3	Design a reasoning system for a given requirement.
CO4	Conduct practical experiments for demonstrating agents, searching and inferencing.

1. Implement Tic -Tac -Toe Game

```
import math
def print board(board):
    for i in range(len(board)):
        for j in range(len(board[i])):
            print(board[i][j], end='')
            if j < len(board[i]) - 1:</pre>
                print('|', end='')
        print()
        if i < len(board) - 1:</pre>
           print('-'*5)
    print()
def check winner(board):
    # Check rows, columns, and diagonals for a winner
    for i in range(3):
        if board[i][0] == board[i][1] == board[i][2] != ' ':
            return board[i][0]
        if board[0][i] == board[1][i] == board[2][i] != ' ':
            return board[0][i]
    if board[0][0] == board[1][1] == board[2][2] != ' ':
        return board[0][0]
    if board[0][2] == board[1][1] == board[2][0] != ' ':
        return board[0][2]
    return None
def get empty cells(board):
    # Returns a list of empty cells in the board
    return [(i, j) for i in range(3) for j in range(3) if board[i][j] == '
' ]
def minimax(board, depth, is maximizing):
    winner = check winner(board)
    if winner:
        return 10 - depth if winner == 'X' else -10 + depth
    elif not get empty cells(board):
        return 0
    if is maximizing:
        best score = -math.inf
        for i, j in get empty cells(board):
            board[i][j] = 'X'
```

```
score = minimax(board, depth + 1, False)
            board[i][j] = ' '
            best score = max(score, best score)
        return best score
    else:
        best score = math.inf
        for i, j in get_empty_cells(board):
            board[i][j] = '0'
            score = minimax(board, depth + 1, True)
            board[i][j] = ' '
            best_score = min(score, best_score)
        return best score
def best move(board):
   best score = -math.inf
   move = None
    for i, j in get empty cells(board):
       board[i][j] = 'X'
        score = minimax(board, 0, False)
       board[i][j] = ' '
       if score > best score:
            best score = score
            move = (i, j)
    return move
def play game():
   board = [[' ' for _ in range(3)] for _ in range(3)]
    print("Welcome to Tic Tac Toe!")
   print board(board)
    while not check winner (board) and get empty cells (board):
        user move = input("Enter your move (row and column separated by a
space): ")
       x, y = map(int, user move.split())
       if board[x][y] == ' ':
            board[x][y] = 'O'
            print board(board)
            print("Invalid move. Try again.")
            continue
        if not get empty cells(board):
            break
       computer_move = best_move(board)
```

```
board[computer_move[0]][computer_move[1]] = 'X'
    print("Computer's move:")
    print_board(board)

winner = check_winner(board)
    if winner:
        print(f"Player {winner} wins!")
    else:
        print("It's a tie!")

if __name__ == "__main__":
    play_game()
```

```
Computer's move:
Welcome to Tic Tac Toe!
                                                          | |X
|X|0
| |0
Enter your move (row and column separated by a space): 2 0
                                                          | |x
Enter your move (row and column separated by a space): 2 2
|x|o
0 0
| |0
                                                          Computer's move:
                                                          | |X
Computer's move:
|x|o
|X|
                                                          0|x|0
                                                          Enter your move (row and column separated by a space): 1 1
| |0
                                                          Invalid move. Try again.
                                                          Enter your move (row and column separated by a space): 0 1 \,
Enter your move (row and column separated by a space): 1 2
|x|o
|X|0
                                                          olxlo
| |0
```


2. Implement vaccum cleaner agent

```
def printInformation(location):
    print("Location " + location + " is Dirty.")
    print("Cost for CLEANING " + location + ": 1")
    print("Location " + location + " has been Cleaned.")
def vacuumCleaner(goalState, currentState, location):
    # printing necessary data
    print("Goal State Required:", goalState)
    print("Vacuum is placed in Location " + location)
    # cleaning locations
    totalCost = 0
    while (currentState != goalState):
        if (location == "A"):
            # cleaning
            if (currentState["A"] == 1):
                currentState["A"] = 0
                totalCost += 1
                printInformation("A")
            # moving
            elif (currentState["B"] == 1 ):
                print("Moving right to the location B.\nCost for moving
RIGHT: 1")
                location = "B"
                totalCost += 1
        elif (location == "B"):
            # cleaning
            if (currentState["B"] == 1):
                currentState["B"] = 0
                totalCost += 1
                printInformation("B")
            # moving
            elif (currentState["A"] == 1):
                print("Moving left to the location A.\nCost for moving LEFT:
1")
                location = "A"
                totalCost += 1
```

```
print("GOAL STATE:", currentState)
    return totalCost

# declaring dictionaries
goalState = {"A": 0, "B": 0}
currentState = {"A": -1, "B": -1}

# taking input from user
location = input("Enter Location of Vacuum (A/B): ");
currentState["A"] = int(input("Enter status of A (0/1): "))
currentState["B"] = int(input("Enter status of B (0/1): "))

# calling function
totalCost = vacuumCleaner(goalState, currentState, location)
print("Performance Measurement:", totalCost)
```

Enter Location of Vacuum (A/B): B
Enter status of A (0/1): 1
Enter status of B (0/1): 1
Goal State Required: {'A': 0, 'B': 0}
Vacuum is placed in Location B
Location B is Dirty.
Cost for CLEANING B: 1
Location B has been Cleaned.
Moving left to the location A.
Cost for moving LEFT: 1
Location A is Dirty.
Cost for CLEANING A: 1
Location A has been Cleaned.
GOAL STATE: {'A': 0, 'B': 0}
Performance Measurement: 3

22/11/23 Vaccin World Program: > Takes IIP of initial location of the stay of locations A & B is in location A & it is dist it 'CLEANS' if B is then disty the to B & then 'CLEANS' until SAO is achieved. > Cost is I each. Performance measure is total cost. Algorithm: def Phint Info (location): * phint the location, whother its diety & change the cost of chaning. def vaccum Chance (goal State, current State, loca): tot-cost =0 while currentState! = goalState: if custent state [A] == 1: aurent State = 0 tot_cost +=1 enelif asserble a loc = 'B' tot-cost+=1 Print Pufo (B') Hend while

3	Date 8 14/1/19
Paint (Great Sto	ate: ", cussent State)
return total	ost.
I in hidde all states	Little si, susual de
goalstate = { A : O, aventstate = } A:	B:0}
assent State = & A:	-1, B: -1}
2 (oc = input (" Enter	loc AlB
current State ['A'] = 1	int (input (" State of A"))
current State (B) =	Loc A/B") int (input (" State of A")) int (input (" State of B"))
1 8 N 1 3 20 P	Stit & That Tople
Output?	h 15
	Begining State
Enter loc A/B: >B State of A: >1	2 0 0
State of B: >1	7 15 1-15
Many we will be by in	distry Chamins B
Cret = 1 Marine	disty Chaning B, left to A, Cost = 2.
Local in Digty	Cost of chaning A = 1,
Tot Cost = 3.	
	eved. Paformance Measure
= 8.	3
ALCON IN COLUMN	1812 1
3 77	6.45
800	840
1221	2 0 1 1 1 1
070	
8 1 9	8 1 9
- Succession -	806
	The state of the s

3. Analyse 8 Puzzle problem and implement the same using Breadth First Search Algorithm

```
def bfs(src, target):
    queue = []
    queue.append(src)
    visited = set()
    while queue:
        source = queue.pop(0)
        visited.add(tuple(source)) # Store visited states as tuples for
faster lookup
        print(source[0], '|', source[1], '|', source[2])
        print(source[3], '|', source[4], '|', source[5])
        print(source[6], '|', source[7], '|', source[8])
        print("----")
        if source == target:
            print("Success")
            return
        poss moves to do = possible moves(source, visited)
        for move in poss moves to do:
            queue.append(move)
def possible moves(state, visited states):
   b = state.index(0)
    d = []
    # Add possible directions to move based on the position of the empty
cell
    if b not in [0, 1, 2]:
        d.append('u')
    if b not in [6, 7, 8]:
        d.append('d')
    if b not in [0, 3, 6]:
        d.append('l')
    if b not in [2, 5, 8]:
        d.append('r')
    pos moves it can = []
   for i in d:
```

```
pos moves it can.append(gen(state, i, b))
    # Return possible moves that have not been visited yet
    return [move it can for move it can in pos moves it can if
tuple(move it can) not in visited states]
def gen(state, move, b):
    temp = state.copy()
    if move == 'd':
        temp[b + 3], temp[b] = temp[b], temp[b + 3]
    if move == 'u':
        temp[b - 3], temp[b] = temp[b], temp[b - 3]
    if move == 'l':
        temp[b - 1], temp[b] = temp[b], temp[b - 1]
   if move == 'r':
        temp[b + 1], temp[b] = temp[b], temp[b + 1]
    return temp
# Taking input for initial and goal states
print("Enter the initial state of the puzzle (use numbers 0-8 separated by
spaces):")
src = list(map(int, input().split()))
print("Enter the goal state of the puzzle (use numbers 0-8 separated by
spaces):")
target = list(map(int, input().split()))
bfs(src, target)
```

29/11/23	8-Rozzle Problim Using BFS	
	> Queue is used to hold all status + hat have to be visited + when visited, popped into a list called inp - Moves are: down, up, right, lift # Goal State is usually 1 2 3 4 5 6 7 8	7
	Begining state can be anything. D 2 B 1 D B 1 D B 1 D B 1 D B 1 T O 8	F
	#1 2 3 0 84 5 6 7 8 1 2 3 6 7 8 1 2 3 6 7 8 1 2 3 6 9 8 1 2 3 1 3 4 1 4 5 1 5 5 1 6 7 8 1 7 8 1 7 8 1 7 8 1 8 7 8 1 8 7 8 1 9 7 8	800a -1 2 1 4 6 7

4. Analyse Iterative Deepening Search Algorithm. Demonstrate how 8 Puzzle problem could be solved using this algorithm

```
def dfs(src, target, limit, visited states):
    if src == target:
        return True
    if limit <= 0:</pre>
        return False
    visited states.append(src)
    moves = possible moves(src, visited states)
    for move in moves:
        if dfs(move, target, limit-1, visited states):
            return True
    return False
def possible moves(state, visited states):
    b = state.index(-1)
    d = []
    if b not in [0,1,2]:
        d += 'u'
    if b not in [6,7,8]:
        d += 'd'
    if b not in [2,5,8]:
        d += 'r'
    if b not in [0,3,6]:
        d += '1'
    pos moves = []
    for move in d:
        pos moves.append(gen(state, move, b))
    return [move for move in pos moves if move not in visited states]
def gen(state, move, blank):
    temp = state.copy()
    if move == 'u':
        temp[blank-3], temp[blank] = temp[blank], temp[blank-3]
    if move == 'd':
        temp[blank+3], temp[blank] = temp[blank], temp[blank+3]
    if move == 'r':
        temp[blank+1], temp[blank] = temp[blank], temp[blank+1]
    if move == '1':
        temp[blank-1], temp[blank] = temp[blank], temp[blank-1]
    return temp
def iddfs(src, target, depth):
```

```
for i in range(depth):
        visited states = []
        if dfs(src,target,i+1,visited_states):
            return True, i+1
    return False
print("Enter the initial state of the puzzle (use numbers 0-8 separated by
spaces):")
src = list(map(int, input().split()))
print("Enter the goal state of the puzzle (use numbers 0-8 separated by
spaces):")
target = list(map(int, input().split()))
depth = 8
iddfs(src, target, depth)
OUTPUT
Enter the initial state of the puzzle (use numbers 0-8 separated by spaces):
1 2 3 -1 4 5 6 7 8
Enter the goal state of the puzzle (use numbers 0-8 separated by spaces):
1 2 3 6 4 5 7 8 -1
(True, 3)
```

8-Pwzzle Problem Uring TDS	
→ Grives a True & False depending on whether goal state can be reached with alepth = 1. → IDS method is a mix of BFS & DFS by using the depth & incrementing it by 1 tratal & calling DFS until Goal State is achieved.	
Fapul: Target: 1 2 3 46 4 8 7 8 -1	
Puput: 123 -145 678	
swapping d=d d=l	
-123 123 145 645 4-15 678 -178 678 Traget.	

5. Implement A* search algorithm

```
class Node:
    def init (self, data, level, fval):
        self.data = data
        self.level = level
        self.fval = fval
    def generate child(self):
        x,y = self.find(self.data,' ')
        val list = [[x,y-1],[x,y+1],[x-1,y],[x+1,y]]
        children = []
        for i in val list:
            child = self.shuffle(self.data,x,y,i[0],i[1])
            if child is not None:
                child node = Node(child, self.level+1, 0)
                children.append(child node)
        return children
    def shuffle(self,puz,x1,y1,x2,y2):
        if x2 >= 0 and x2 < len(self.data) and y2 >= 0 and y2 <
len(self.data):
            temp puz = []
            temp puz = self.copy(puz)
            temp = temp puz[x2][y2]
            temp puz[x2][y2] = temp puz[x1][y1]
            temp puz[x1][y1] = temp
            return temp puz
        else:
            return None
    def copy(self,root):
        temp = []
        for i in root:
            t = []
            for j in i:
                t.append(j)
            temp.append(t)
```

```
return temp
    def find(self,puz,x):
        for i in range(0,len(self.data)):
            for j in range(0,len(self.data)):
                if puz[i][j] == x:
                    return i,j
class Puzzle:
    def __init__ (self, size):
        self.n = size
        self.open = []
        self.closed = []
    def accept(self):
        puz = []
        for i in range(0, self.n):
            temp = input().split(" ")
            puz.append(temp)
        return puz
    def f(self, start, goal):
        return self.h(start.data,goal)+start.level
    def h(self, start, goal):
        temp = 0
        for i in range(0, self.n):
            for j in range(0, self.n):
                if start[i][j] != goal[i][j] and start[i][j] != ' ':
                    temp += 1
        return temp
    def process(self):
        print("Enter the start state matrix \n")
        start = self.accept()
        print("Enter the goal state matrix \n")
        goal = self.accept()
```

```
start = Node(start,0,0)
        start.fval = self.f(start,goal)
        self.open.append(start)
        print("\n\n")
        while True:
            cur = self.open[0]
            print("")
            print(" | ")
            print(" | ")
            print(" \\\'/ \n")
            for i in cur.data:
                for j in i:
                    print(j,end=" ")
                print("")
            if(self.h(cur.data,goal) == 0):
                break
            for i in cur.generate child():
                i.fval = self.f(i,goal)
                self.open.append(i)
            self.closed.append(cur)
            del self.open[0]
            self.open.sort(key = lambda x:x.fval,reverse=False)
puz = Puzzle(3)
puz.process()
```

8- Puzzle with A* march: 13/15/0 Initial State 1 2 3 4+0 -> Start Node Ineuted to a neighbours @ DOWN 96-1:() 4 16 7/ 9/=1 N: C: 0 3 XUP 12 0 21.3= 5 4 · By 9=04: 3 1 2 3 7 3 13 8 2 6 9:1,13 C=2 (4) RIGHT > Not Pruble as it is not a Herristic Cost:

goal-i, goal-j =

cost: divined (state [][]]

6. Create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not

```
def tell(kb, rule):
    kb.append(rule)
combinations = [(True, True, True), (True, True, False),
                 (True, False, True), (True, False, False),
                 (False, True, True), (False, True, False),
                 (False, False, True), (False, False, False)]
def ask(kb, q):
    for c in combinations:
        s = r1(c)
        f = q(c)
        print(s, f)
        if s != f and s != False:
            return 'Does not entail'
    return 'Entails'
kb = []
rule str = input ("Enter Rule 1 as a lambda function (e.g., lambda x: x[0] or
x[1] and (x[0] and x[1]): ")
r1 = eval(rule str)
tell(kb, r1)
query str = input("Enter Query as a lambda function (e.g., lambda x: x[0]
and x[1] and (x[0] or x[1]): ")
q = eval(query str)
result = ask(kb, q)
print(result)
```

OUTPUT 1

```
Enter Rule 1 as a lambda function (e.g., lambda x: x[0] or x[1] and (x[0] and x[1]): lambda x: (not x[1] or not x[0] or x[2]) and (not x[1] and Enter Query as a lambda function (e.g., lambda x: x[0] and x[1] and (x[0] or x[1]): lambda x: x[2]

False True

False False

False False

False True

False False

False True

False False

Entails
```

Enter Rule 1 as a lambda function (e.g., lambda x: x[0] or x[1] and (x[0] and x[1]): lambda x: (x[0] or x[1]) and (not x[2] or x[0]) Enter Query as a lambda function (e.g., lambda x: x[0] and x[1] and (x[0] or x[1]): lambda x: x[0] and x[2] True True True False Does not entail

7. Create a knowledge base using prepositional logic and prove the given query using resolution

```
import re
def main():
    rules = input("Enter the rules (space-separated): ")
    goal = input("Enter the goal: ")
    rules = rules.split(' ')
    steps = resolve(rules, goal)
    print('\nStep\t|Clause\t|Derivation\t')
   print('-' * 30)
   i = 1
    for step in steps:
        print(f' {i}.\t| {step}\t| {steps[step]}\t')
def negate(term):
    return f'~{term}' if term[0] != '~' else term[1]
def split terms(rule):
    exp = '(\sim *[PQRS])'
    terms = re.findall(exp, rule)
    return terms
def contradiction(goal, clause):
    contradictions = [ f'{goal}v{negate(goal)}',
f'{negate(goal)}v{goal}']
    return clause in contradictions
def resolve(rules, goal):
    temp = rules.copy()
    temp += [negate(goal)]
    steps = dict()
    for rule in temp:
        steps[rule] = 'Given.'
    steps[negate(goal)] = 'Negated conclusion.'
    while i < len(temp):</pre>
        n = len(temp)
        j = (i + 1) % n
        clauses = []
        while j != i:
            terms1 = split terms(temp[i])
            terms2 = split terms(temp[j])
            for c in terms1:
                if negate(c) in terms2:
                    t1 = [t for t in terms1 if t != c]
```

```
t2 = [t for t in terms2 if t != negate(c)]
                    gen = t1 + t2
                    if len(gen) == 2:
                        if gen[0] != negate(gen[1]):
                            clauses += [f'\{gen[0]\}v\{gen[1]\}']
contradiction(goal, f'{gen[0]}v{gen[1]}'):
                                temp.append(f'{gen[0]}v{gen[1]}')
                                steps[''] = f"Resolved {temp[i]} and
{temp[j]} to {temp[-1]}, which is in turn null. \
                                \nA contradiction is found when
{negate(goal)} is assumed as true. Hence, {goal} is true."
                                return steps
                    elif len(gen) == 1:
                        clauses += [f'{gen[0]}']
                    else:
                        i f
contradiction(goal, f'{terms1[0]}v{terms2[0]}'):
                            temp.append(f'{terms1[0]}v{terms2[0]}')
                            steps[''] = f"Resolved {temp[i]} and
{temp[j]} to {temp[-1]}, which is in turn null. \
                            \nA contradiction is found when
{negate(goal)} is assumed as true. Hence, {goal} is true."
                            return steps
            for clause in clauses:
                if clause not in temp :
                    temp.append(clause)
                    steps[clause] = f'Resolved from {temp[i]} and
{temp[j]}.'
            j = (j + 1) % n
        i += 1
   return steps
if __name__ == "__main__":
main()
```

```
Enter the rules (space-separated): Rv~P Rv~Q ~RvP ~RvQ
Enter the goal: R
Step
        |Clause |Derivation
1.
         Rv~P
                  Given.
2.
         R∨~Q
                  Given.
3.
         ~RvP
                  Given.
4.
          ~Rv0
                  Given.
                  Negated conclusion.
5.
         ~R
                  Resolved Rv~P and ~RvP to Rv~R, which is in turn null.
A contradiction is found when \sim\!R is assumed as true. Hence, R is true.
```

29/12/23 Date __/_ Page __U 0 Solving Prepositional Logic Pules 2(P=>Q Digat: w) (P>P) => R iii) (R=> S) => ~ (S=> Q) Implies can be, represented as note x[o] or x[j] mot mot P & Q mot (mot P or iii) mot (kmot R or 8) or mot not S & Q) quely: x [0] =>P Q (= []) x Desolve: temp > rules. & not rules then every rule is first empty not gule "Negated" as we split the terms > Suments of termi that are not the negation of a combined > This is then -> If t1 &!t2 are

8. Implement unification in first order logic

```
import re
def getAttributes(expression):
    expression = expression.split("(")[1:]
    expression = "(".join(expression)
    expression = expression[:-1]
    expression = re.split("(?<!\setminus(.),(?!.\setminus))", expression)
    return expression
def getInitialPredicate(expression):
    return expression.split("(")[0]
def isConstant(char):
    return char.isupper() and len(char) == 1
def isVariable(char):
    return char.islower() and len(char) == 1
def replaceAttributes(exp, old, new):
    attributes = getAttributes(exp)
    for index, val in enumerate (attributes):
        if val == old:
            attributes[index] = new
    predicate = getInitialPredicate(exp)
    return predicate + "(" + ",".join(attributes) + ")"
def apply(exp, substitutions):
    for substitution in substitutions:
        new, old = substitution
        exp = replaceAttributes(exp, old, new)
    return exp
def checkOccurs(var, exp):
    if exp.find(var) == -1:
        return False
    return True
def getFirstPart(expression):
    attributes = getAttributes(expression)
    return attributes[0]
def getRemainingPart(expression):
   predicate = getInitialPredicate(expression)
    attributes = getAttributes(expression)
  newExpression = predicate + "(" + ",".join(attributes[1:]) + ")"
```

```
return newExpression
def unify(exp1, exp2):
   if exp1 == exp2:
        return []
    if isConstant(exp1) and isConstant(exp2):
        if exp1 != exp2:
            return False
    if isConstant(exp1):
       return [(exp1, exp2)]
    if isConstant(exp2):
        return [(exp2, exp1)]
    if isVariable(exp1):
       if checkOccurs(exp1, exp2):
            return False
        else:
            return [(exp2, exp1)]
    if isVariable(exp2):
        if checkOccurs(exp2, exp1):
            return False
       else:
            return [(exp1, exp2)]
    if getInitialPredicate(exp1) != getInitialPredicate(exp2):
        print("Predicates do not match. Cannot be unified")
        return False
    attributeCount1 = len(getAttributes(exp1))
    attributeCount2 = len(getAttributes(exp2))
    if attributeCount1 != attributeCount2:
        return False
   head1 = getFirstPart(exp1)
   head2 = getFirstPart(exp2)
    initialSubstitution = unify(head1, head2)
    if not initialSubstitution:
       return False
    if attributeCount1 == 1:
        return initial Substitution
    tail1 = getRemainingPart(exp1)
    tail2 = getRemainingPart(exp2)
```

```
if initialSubstitution != []:
    tail1 = apply(tail1, initialSubstitution)
    tail2 = apply(tail2, initialSubstitution)

remainingSubstitution = unify(tail1, tail2)
if not remainingSubstitution:
    return False

initialSubstitution.extend(remainingSubstitution)
return initialSubstitution

expl = input("Enter the first expression: ")
exp2 = input("Enter the second expression: ")

substitutions = unify(expl, exp2)

print("Substitutions:")
print(substitutions)

OUTPUT
Enter the first expression: knows(f(x),y)
```

```
Enter the first expression: knows(f(x),y)
Enter the second expression: knows(J,John)
Substitutions:
[('J', 'f(x)'), ('John', 'y')]
```

Unification Logic & Past doll Logic >Unification is when the agent tries to unify the knowledge information it has and come to conclusions. First Call of the function unify down has all expressions be stripped of their 'knows' & become just the variables of constants. -> got Attributes counts the number of > If the number of expressions attributes don't match, then the a sol is not possible. At 48, it checks it I ignore first time At 78, it checks if till line 8278 Predicate is same. At the check for no. of expes in attrs. Ret false if not equal. Next Gret first Part of both ea: (JAh, Ri f(x) ox Do call runify again So now we now & f(a) & J suspectively. Tax takes geniaining past to their unify the remaining expressions.

9. Convert a given first order logic statement into Conjunctive Normal Form (CNF)

```
import re
def getAttributes(string):
    expr = ' ([^{)} + )'
    matches = re.findall(expr, string)
    return [m for m in str(matches) if m.isalpha()]
def getPredicates(string):
    expr = '[a-z^-] + \langle ([A-Za-z,]+ \rangle)'
    return re.findall(expr, string)
def DeMorgan(sentence):
    string = ''.join(list(sentence).copy())
    string = string.replace('~~','')
    flag = '[' in string
    string = string.replace('~[','')
    string = string.strip(']')
    for predicate in getPredicates(string):
        string = string.replace(predicate, f'~{predicate}')
    s = list(string)
    for i, c in enumerate(string):
        if c == '|':
            s[i] = '&'
        elif c == '&':
            s[i] = '|'
    string = ''.join(s)
    string = string.replace('~~','')
    return f'[{string}]' if flag else string
def Skolemization(sentence):
    SKOLEM CONSTANTS = [f'{chr(c)}' for c in range(ord('A'),
ord('Z')+1)]
    statement = ''.join(list(sentence).copy())
    matches = re.findall('[∀∃].', statement)
    for match in matches[::-1]:
        statement = statement.replace(match, '')
        statements = re.findall('\[\[[^]]+\]]', statement)
        for s in statements:
            statement = statement.replace(s, s[1:-1])
        for predicate in getPredicates(statement):
            attributes = getAttributes(predicate)
            if ''.join(attributes).islower():
                statement =
statement.replace(match[1],SKOLEM CONSTANTS.pop(0))
            else:
                aL = [a for a in attributes if a.islower()]
```

```
aU = [a for a in attributes if not a.islower()][0]
                statement = statement.replace(aU,
f'{SKOLEM CONSTANTS.pop(0)}({aL[0] if len(aL) else match[1]})')
    return statement
def fol to cnf(fol):
    statement = fol.replace("<=>", " ")
    while ' ' in statement:
        i = statement.index(' ')
        new statement = '[' + statement[:i] + '=>' + statement[i+1:] +
']&['+ statement[i+1:] + '=>' + statement[:i] + ']'
        statement = new statement
    statement = statement.replace("=>", "-")
    expr = ' ([([^]]+))'
    statements = re.findall(expr, statement)
    for i, s in enumerate(statements):
        if '[' in s and ']' not in s:
            statements[i] += ']'
    for s in statements:
        statement = statement.replace(s, fol to cnf(s))
    while '-' in statement:
        i = statement.index('-')
        br = statement.index('[') if '[' in statement else 0
        new statement = '~' + statement[br:i] + '|' + statement[i+1:]
        statement = statement[:br] + new statement if br > 0 else
new_statement
    while '~∀' in statement:
        i = statement.index('~∀')
        statement = list(statement)
        statement[i], statement[i+1], statement[i+2] = '\exists',
statement[i+2], '~'
        statement = ''.join(statement)
    while '~∃' in statement:
        i = statement.index('~\frac{1}{3}')
        s = list(statement)
        s[i], s[i+1], s[i+2] = '\forall', s[i+2], '~'
        statement = ''.join(s)
    statement = statement.replace('~[∀','[~∀')
    statement = statement.replace('~[∃','[~∃')
    expr = '(\sim [\forall |\exists].)'
    statements = re.findall(expr, statement)
    for s in statements:
        statement = statement.replace(s, fol to cnf(s))
    expr = ' \sim ([ ^ ] ] + (] '
    statements = re.findall(expr, statement)
    for s in statements:
        statement = statement.replace(s, DeMorgan(s))
   return statement
```

OUTPUT

80		
	Allau Page	
	Ci O la davis to	
1	First Ordie Logic to CNF conversion.	
1	PATRICK TO CITY	16
-	For CNF	
rus	> No implication	
-	LAC LA'- M. GOINHHANNI	
	No variable separation. Nove negation, & that, brackets are not considered. Eg: 7(A&B) = 7 A and 7B.	
		- 1776
	Ethen with a function. I > Existential	
	Eq: Fay Rich (ay) => Rich (Gal)	
	Eg: Fly Rich (g) => Rich (G1) > Drop Universal Guantifier . Eg: to Person(ox) > And * Keep V'as is * Change a sentence with 'N' into	1/45/10
	* And * Keep V as is * Change a sentence with 'N' into	ALC: Y
7	* Change a structure de pending on	
	the number of literals.	A No.
5	* Basically distribute it.	
	- Edwards the statument accepted	
	Eg:	
	Amelican (a) A Weapon (y) A Sells (x,y,z) A Hostile (2)] > chiminal (x)	
	THOSE OF THE PROPERTY OF THE P	
	Step1: Remove Purplication.	
_	-60 . () 4 12 . (a) 1 0 11 (00 0)	- No. of the second
	American (n) 1 Weapon (n) 1 Cells (n, y, 2) 1 Hostile (2) Ob V Criminal (n)	1
		I CAN !
	Step 2: Remove - & Parenthesis.	
-	() () () () () () () () () ()	1
1	7 American(a) Villeaprons (y) Visells (a, y, g) Ville (a) V Criminal (a))
	monte (%) Cumirai (h)	
1		

10. Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning

```
import re
def isVariable(x):
    return len(x) == 1 and x.islower() and x.isalpha()
def getAttributes(string):
    expr = ' \setminus ([^{\wedge})] + \setminus )'
    matches = re.findall(expr, string)
    return matches
def getPredicates(string):
    expr = '([a-z^-]+) \setminus ([^&|]+)'
    return re.findall(expr, string)
class Fact:
    def init (self, expression):
        self.expression = expression
        predicate, params = self.splitExpression(expression)
        self.predicate = predicate
        self.params = params
        self.result = any(self.getConstants())
    def splitExpression(self, expression):
        predicate = getPredicates(expression)[0]
        params = getAttributes(expression)[0].strip('()').split(',')
        return [predicate, params]
    def getResult(self):
        return self.result
    def getConstants(self):
        return [None if isVariable(c) else c for c in self.params]
    def getVariables(self):
        return [v if isVariable(v) else None for v in self.params]
class Implication:
    def init (self, expression):
        self.expression = expression
        l = expression.split('=>')
        self.lhs = [Fact(f) for f in 1[0].split('&')]
        self.rhs = Fact(l[1])
    def evaluate(self, facts):
        constants = {}
        new lhs = []
```

```
for fact in facts:
            for val in self.lhs:
                if val.predicate == fact.predicate:
                    for i, v in enumerate(val.getVariables()):
                            constants[v] = fact.getConstants()[i]
                    new lhs.append(fact)
        predicate, attributes = getPredicates(self.rhs.expression)[0],
str(getAttributes(self.rhs.expression)[0])
        for key in constants:
            if constants[key]:
                attributes = attributes.replace(key, constants[key])
        expr = f'{predicate}{attributes}'
        return Fact(expr) if len(new lhs) and all([f.getResult() for f
in new lhs]) else None
class KB:
    def init (self):
        self.facts = set()
        self.implications = set()
    def tell(self, e):
        if '=>' in e:
            self.implications.add(Implication(e))
        else:
            self.facts.add(Fact(e))
        for i in self.implications:
            res = i.evaluate(self.facts)
            if res:
                self.facts.add(res)
    def query(self, e):
        facts = set([f.expression for f in self.facts])
        i = 1
        print(f'Querying {e}:')
        for f in facts:
            if Fact(f).predicate == Fact(e).predicate:
                print(f'\t{i}. {f}')
                i += 1
    def display(self):
        print("All facts: ")
        for i, f in enumerate(set([f.expression for f in self.facts])):
            print(f'\t{i+1}. {f}')
kb = KB()
kb.tell('missile(x)=>weapon(x)')
kb.tell('missile(M1)')
kb.tell('enemy(x,America)=>hostile(x)')
```

```
kb.tell('american(West)')
kb.tell('enemy(Nono, America)')
kb.tell('owns(Nono, M1)')
kb.tell('missile(x) &owns(Nono, x) => sells(West, x, Nono)')
kb.tell('american(x) &weapon(y) & sells(x, y, z) & hostile(z) => criminal(x)')
kb.query('criminal(x)')
kb.display()
```

OUTPUT

Querying criminal(x):

criminal(West)

All facts:

- enemy(Nono,America)
- weapon(M1)
- owns(Nono,M1)
- 4. missile(M1)
- 5. criminal(West)
- 6. hostile(Nono)
- 7. sells(West,M1,Nono)
- 8. american(West)

Cuatia KB consisting of FOL statuments query using Poward & prove the given Reasoning First we create a knowledge base. > To do that here we have created class called KB -> Here, we have 3 main functions & constructor initializes two facts & implications. an Purplication the implications set it is added to If not, it is added to facts facts is another class. converts our expressions form, while removing Variables & replains with constants. returns true from get Constant is tru splits the expression De Duplication two places: > Proplication then evaluates by diction ary of Constants & replacing the lhs. add constants Dictionary with Vasiable the Finally new the is not O in length new LUS has a constant in Constant list. Else we

Donstants returns a list of Constants.

-) get Variables does the opposite.