

МВ110-16Д, МВ110-16ДН

Модуль дискретного ввода

EAE

Руководство по эксплуатации

02.2022 версия 1.17

Содержание

Введение	4
Предупреждающие сообщения	5
Используемые аббревиатуры	6
1 Назначение	7
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики	
2.2 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж и демонтаж	
4.1 Установка	
4.2 Отсоединение клеммных колодок	
4.3 «Быстрая» замена	
5 Подключение	
5.1 Порядок подключения	
5.2 Рекомендации по подключению	
5.2.1 Защита энергонезависимой памяти от электромагнитных помех	
5.3 Назначение контактов клеммника	
5.4 Подключение питания	
5.4.1 Питание переменного тока 230 В	
5.4.2 Питание постоянного тока 24 В	
5.5 Подключение по интерфейсу RS-485	
5.6 Подключение датчиков	
5.6.1 Подключение датчиков к МВ110-16Д	16
5.6.2 Подключение датчиков к МВ110-16ДН	18
5.6.3 Электрические принципиальные схемы входов	21
6 Устройство и принцип работы	22
6.1 Принцип работы	
6.2 Индикация	22
7 Настройка	23
7.1 Конфигурирование	
7.2 Конфигурационные и оперативные параметры	
7.3 Восстановление заводских сетевых настроек	
8 Интерфейс RS-485	26
8.1 Базовый адрес прибора в сети RS-485	26
8.2 Протокол ОВЕН	
8.3 Протокол Modbus	27
8.4 Протокол DCON	27
8.5 Программное подавление дребезга контактов	30
8.6 Режим «Авария»	30
9 Техническое обслуживание	31
9.1 Общие указания	31
10 Маркировка	31
11 Упаковка	
12 Транспортирование и хранение	
13 Комплектность	
14 Гарантийные обязательства	32

ПРИЛОЖЕНИЕ А. Настраиваемые параметры	33
ПРИЛОЖЕНИЕ Б. Оперативные параметры протокола ОВЕНОВЕН	34
ПРИЛОЖЕНИЕ В. Регистры протокола Modbus	35

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием модулей дискретного ввода МВ110-16Д и МВ110-16ДН (в дальнейшем по тексту именуемого «прибор», «модуль»).

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Прибор изготавливается в различных модификациях, зашифрованных в коде полного условного обозначения **МВ110-224.16X**, где:

224 – универсальное напряжение питания;

X — тип входов.

Типы входов Х:

- Д дискретный однонаправленный вход со встроенным питанием для подключения датчиков типа «сухой контакт» или n-p-n ключей;
- **ДН** дискретный двунаправленный вход для подключения контактных датчиков, n-p-n или p-n-p ключей.

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ПО – программное обеспечение.

ШИМ – широтно-импульсная модуляция.

1 Назначение

Прибор предназначен для сбора данных со встроенных дискретных входов с передачей их в сеть RS-485.

Встроенные дискретные входы работают в режиме счетчиков импульсов частотой до 1 кГц.

Прибор выпускается в соответствии с ТУ 4217-016-46526536-2009.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика	Значение				
Характеристика	МВ110-16Д	МВ110-16ДН			
Питание					
Напряжение питания (универсальное):					
• переменного тока	от 90 до 264 В (номинальное 230 В), частота от 47 до 63 Гц				
• постоянного тока	от 18 до 30 В (но	минальное 24 В)			
Потребляемая мощность, не более	61	BA			
	Интерфейсы				
Интерфейс связи с Мастером сети	RS-	485			
Максимальное количество приборов, одновременно подключаемых к сети RS-485, не более	3	2			
Максимальная скорость обмена по интерфейсу RS-485	115200	0 бит/с			
Протоколы связи, используемые для передачи информации	DCON, Modbus-ASCII	I, Modbus-RTU, OBEH			
	Входы				
Количество дискретных входов	1	6			
Гальваническая развязка дискретных входов	_	Групповая			
Электрическая прочность изоляции дискретных входов	_	1500 B			
Максимальная частота сигнала, подаваемого на дискретный вход	1 кГц				
Минимальная длительность импульса, воспринимаемого дискретным входом	0,5 мс (скважность 2	2 для частоты 1 кГц)			
Напряжение питания дискретных входов	_	24 ± 3 B			
Максимальный входной ток дискретного входа	0,07 A	0,085 А (при напряжении питания входа 27 В)			
Ток «логической единицы», не менее	_	4,5 мА			
Ток «логического нуля», не более	_	1,5 мА			
Сопротивление контакта (ключа) и соединительных проводов, подключаемых к дискретному входу, не более	100 Ом	_			
		йства (контакты кнопок, оконов, реле и т. п.)			
Тип датчика дискретного входа	Датчики, имеющие на выходе транзисторный ключ выходе транзистор п-р-п типа (открытый п-р-п типа (открытый коллектор) коллектор)				
	бщие параметры				
Габаритные размеры	(63 × 110 ×	75) ± 1 мм			
Степень защиты корпуса:					
• со стороны передней панели;	IP20				
• со стороны клеммной колодки		00			
Средняя наработка на отказ	60 000 ч				
Средний срок службы	10 лет				
Масса, не более	0,5 кг				

2.2 Условия эксплуатации

Условия эксплуатации:

- температура окружающего воздуха от -10 до +55 °C;
- относительная влажность воздуха не более 80 % (при +25 °C и более низких температурах без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 ГОСТ P 52931.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 ГОСТ Р 52931.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 ГОСТ Р 52931.

По электромагнитной совместимости модули относятся к оборудованию класса А ГОСТ Р 51522.

Во время подачи импульсных помех допускается кратковременное прекращение обмена по сети RS-485. Обмен должен восстанавливаться сразу по окончании действия помехи.

3 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0.

Во время эксплуатации, технического обслуживания и поверки следует соблюдать требования следующих документов:

- FOCT 12.3.019;
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора.

ПРЕДУПРЕЖДЕНИЕ

ЗАПРЕЩАЕТСЯ использование прибора при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж и демонтаж

4.1 Установка

Прибор может быть установлен на DIN-рейке 35 мм или закреплен на внутренней стенке шкафа с помощью винтов.

Для установки прибора на DIN-рейку следует:

- 1. Подготовить место на DIN-рейке для установки прибора.
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке до фиксации защелки.

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 4.1 – Габаритные и установочные размеры

4.2 Отсоединение клеммных колодок

Для отсоединения клеммных колодок следует:

- 1. Отключить питание модуля и подключенных к нему устройств.
- 2. Поднять крышку.
- 3. Выкрутить винты.
- 4. Снять колодку, как показано на рисунке 4.2.

Рисунок 4.2 - Отделение съемных частей клемм

4.3 «Быстрая» замена

Конструкция клеммника позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Открутить крепежные винты по краям обеих клеммных колодок прибора.
- 3. Отделить съемную часть каждой колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Снять прибор с DIN-рейки или вынуть прибор из щита.
- 5. На место снятого прибора установить другой с предварительно удаленными разъемными частями клеммных колодок.
- 6. Подсоединить к установленному прибору снятые части клеммных колодок с подключенными внешними линиями связи.
- 7. Закрутить крепежные винты по краям обеих клеммных колодок.

5 Подключение

5.1 Порядок подключения

Для подключения прибора следует:

- 1. Подсоединить прибор к источнику питания.
- 2. Подсоединить датчики к входам прибора.
- 3. Подсоединить линии связи интерфейса RS-485.
- 4. Подать питание на прибор.

5.2 Рекомендации по подключению

Внешние связи следует монтировать проводом сечением не более 0,75 мм². Для многожильных проводов следует использовать наконечники.

Рисунок 5.1 – Рекомендации для проводов

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей следует подключать к контакту функционального заземления (FE) со стороны источника сигнала;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

Монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии прокладывать по схеме «звезда» с обеспечением хорошего контакта к заземляемому элементу;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой «Общая» и заземляющие линии.

5.2.1 Защита энергонезависимой памяти от электромагнитных помех

В условиях сильных электромагнитных помех или в ситуации, когда не удалось обеспечить должный уровень защиты от них, возможно стирание данных, хранящихся в энергонезависимой памяти прибора. Эти данные (в основном конфигурационные параметры) могут быть восстановлены с помощью программы «Конфигуратор М110». Но для предотвращения подобного пропадания после конфигурирования прибора можно аппаратно защитить энергонезависимую память. Для этого необходимо открыть крышку корпуса и установить перемычку **JP1** в положение «Замкнуто». Данную операцию следует проделывать при отключенном питании прибора. В случае необходимости внесения изменений в конфигурацию прибора следует удалить перемычку **JP1** (см. в разделе 5.3).

ВНИМАНИЕ

При установке перемычки **JP1** невозможно сохранение результатов, посчитанных счетчиками дискретных входов. В случае пропадания питания результаты счета будут обнуляться.

5.3 Назначение контактов клеммника

Общий чертеж прибора с указаниями номеров клемм и расположением переключателей ЈР и светодиодов представлен на рисунках ниже.

Рисунок 5.2 - Назначение контактов клеммника

Таблица 5.1 – Назначение контактов клеммной колодки прибора МВ110-16Д

Nº	Назначение		Назначение
1	Питание ~90264 В или минус питания —1830 В		RS-485 (B)
2	Питание ~90264 В или плюс питания =18 30 В	14	RS-485 (A)
3	Вход 1 (DI1)	15	Вход 9 (DI9)
4	Общий (СОМ)	16	Общий (СОМ)
5	Вход 2 (DI2)	17	Вход 10 (DI10)
6	Вход 3 (DI3)	18	Вход 11 (DI11)
7	Вход 4 (DI4)	19	Вход 12 (DI12)
8	Вход 5 (DI5)	20	Вход 13 (DI13)
9	Вход 6 (DI6)	21	Вход 14 (DI14)
10	Вход 7 (DI7)	22	Вход 15 (DI15)
11	Общий (СОМ)	23	Общий (СОМ)
12	Вход 8 (DI8)	24	Вход 16 (DI16)

Таблица 5.2 – Назначение контактов клеммной колодки прибора МВ110-16ДН

Nº	Назначение	Nº	Назначение
1	Питание ~90264 В или минус питания —1830 В	13	RS-485 (B)
2	Питание ~90264 В или плюс питания —18 30 В	14	RS-485 (A)
3	Вход 1 (DI1)	15	Вход 9 (DI9)
4	Вход 2 (DI2)	16	Вход 10 (DI10)
5	Вход 3 (DI3)	17	Вход 11 (DI11)
6	Вход 4 (DI4)	18	Вход 12 (DI12)
7	Питание входов 1–4 (SS1)	19	Питание входов 9–12 (SS3)
8	Вход 5 (DI5)	20	Вход 13 (DI13)
9	Вход 6 (DI6)	21	Вход 14 (DI14)
10	Вход 7 (DI7)	22	Вход 15 (DI15)
11	Вход 8 (DI8)	23	Вход 16 (DI16)
12	Питание входов 5–8 (SS2)	24	Питание входов 13–16 (SS4)

Таблица 5.3 - Назначение перемычек

Перемычка	Назначение
JP 1	Аппаратная защита энергонезависимой памяти прибора от записи. Заводское положение перемычки – снята (аппаратная защита отключена)
JP 2	Восстановление заводских сетевых настроек. Заводское положение перемычки – снята (заводские сетевые настройки отключены)
JP 3	Сервисная функция, перемычка должна быть разомкнута

5.4 Подключение питания

5.4.1 Питание переменного тока 230 В

Прибор следует питать напряжением 230 В переменного тока от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования.

Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

5.4.2 Питание постоянного тока 24 В

Прибор следует питать напряжением 24 В постоянного тока от локального источника питания подходящей мощности.

Источник питания следует устанавливать в том же шкафу электрооборудования, в котором устанавливается прибор.

5.5 Подключение по интерфейсу RS-485

Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме.

Длина линии связи должна быть не более 1200 метров.

Обесточенный прибор следует подключать к сети RS-485 витой парой проводов, соблюдая полярность. Провод **A** подключается к выводу **A** прибора, аналогично соединяются между собой выводы **B**.

5.6 Подключение датчиков

5.6.1 Подключение датчиков к МВ110-16Д

Рисунок 5.3 – Схема подключения дискретных датчиков с выходом типа «сухой контакт»

Рисунок 5.4 – Схема подключения трехпроводных дискретных датчиков, имеющих выходной транзистор n-p-n типа с открытым коллектором

i

ПРИМЕЧАНИЕ

- 1. Клеммы «COM» это общие клеммы (минусовые) дискретных входов, электрически соединены между собой внутри прибора, дискретные датчики можно подключать относительно любой из них.
- 2. Суммарное сопротивление выходного ключа датчика и соединительных проводов не должно превышать 100 Ом.

5.6.2 Подключение датчиков к МВ110-16ДН

Рисунок 5.5 – Схема подключения дискретных датчиков с выходом типа «сухой контакт»

Рисунок 5.6 – Схема подключения дискретных датчиков с транзисторным выходом n-p-n-типа с открытым коллектором

Рисунок 5.7 – Схема подключения дискретных датчиков с транзисторным выходом р-п-р типа

ПРИМЕЧАНИЕ

- 1. Дискретные двунаправленные входы разделены на группы. Каждая группа входов гальванически изолирована от другой и имеет свою клемму питания входов «SS». Дискретные датчики можно подключать к входам только относительно клеммы питания входов для данной группы:
 - входы DI1-DI4 имеют клемму питания «SS1»;
 - входы DI5-DI8 имеют клемму питания «SS2»;
 - входы DI9-DI12 имеют клемму питания «SS3»;
 - входы DI13-DI16 имеют клемму питания «SS4».
- 2. Напряжения питания входов U_{n1} – U_{n4} должны быть в диапазоне 24 ± 3 В.

5.6.3 Электрические принципиальные схемы входов

Рисунок 5.8 – Электрическая принципиальная схема входа МВ110-16Д (схема других входов идентична приведенной)

Рисунок 5.9 – Электрическая принципиальная схема группы дискретных входов МВ110-16ДН (схема других групп входов идентична приведенной)

6 Устройство и принцип работы

6.1 Принцип работы

Прибор работает в сети RS-485 по протоколам:

- · DCON:
- · Modbus-ASCII;
- · Modbus-RTU;
- · OBEH.

Тип протокола определяется прибором автоматически.

Для организации обмена данными в сети по интерфейсу RS-485 необходим Мастер сети.

Мастером может являться:

- □K;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

В сети RS-485 предусмотрен только один Мастер сети.

Каждый дискретный вход имеет собственный шестнадцатибитный счетчик импульсов.

Максимальная частота импульсов счета должна составлять не более 1 кГц при длительности импульса не менее 0,5 мс. Импульсы большей частоты или меньшей длительности пропускаются. Импульсы считаются по переднему фронту (по замыканию контакта).

В случае пропадания питания модуля результаты счета сохраняются в энергонезависимой памяти прибора. В случае переполнения счетчика его значение автоматически обнуляется, и счет продолжается.

Прибор конфигурируется на ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB (например, OBEH AC3-М или AC4) с помощью ПО «Конфигуратор M110».

6.2 Индикация

На лицевой панели прибора расположены светодиоды:

Рисунок 6.1 - Лицевая панель прибора

Таблица 6.1 – Назначение светодиодов

Светодиод	Состояние светодиода	Назначение	
Входы 116	Светится На дискретный вход подана «логическая є		
RS-485	Мигает	Передача данных по RS-485	
Питание	Светится	Питание подано	
Авария	Светится	Обмен по сети RS-485 отсутствует дольше времени, установленного в параметре t.out	

7 Настройка

7.1 Конфигурирование

Прибор конфигурируется с помощью ПО «Конфигуратор М110». Установочный файл располагается на сайте www.owen.ru.

Для конфигурирования прибора следует:

- 1. Подключить прибор к ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB.
- 2. Подать питание на прибор.
- 3. Установить и запустить ПО «Конфигуратор М110».
- 4. Выбрать настройки порта для установки связи с прибором.

Рисунок 7.1 – Выбор настроек порта

5. Выбрать модель прибора.

Рисунок 7.2 - Выбор модели прибора

6. В открывшемся главном окне задать конфигурационные параметры (см. приложение Настраиваемые параметры).

Рисунок 7.3 - Главное окно

 После задачи параметров записать настройки в прибор, выбрав команду в главном меню Прибор → Записать все параметры.

Подробная информация о работе с ПО «Конфигуратор М110» представлена в руководстве пользователя на сайте www.owen.ru.

7.2 Конфигурационные и оперативные параметры

Параметры в приборе разделяются на группы:

- конфигурационные;
- оперативные.

Конфигурационные параметры – это параметры, определяющие конфигурацию прибора: структуру и сетевые настройки. Значения этих параметров следует задавать с помощью ПО «Конфигуратор М110».

Значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются при выключении питания.

Оперативные параметры – это данные, которые прибор получает или передает по сети RS-485. В сеть они передаются ПК, контроллером или прибором-регулятором. Оперативные параметры отражают текущее состояние регулируемой системы.

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Фильтр дребезга контактов» **Tin.C**, где «Фильтр дребезга контактов» – название, **Tin.C** – имя.

Конфигурационные параметры имеют также индекс — цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра. Во время работы с ПО «Конфигуратор М110» индексы не отображаются.

В приборе есть несколько оперативных параметров. Для непосредственного считывания значений счетчиков дискретных входов есть оперативный параметр **r.Cou**.

7.3 Восстановление заводских сетевых настроек

Восстановление заводских сетевых настроек прибора используется во время установки связи между ПК и прибором в случае утери информации о заданных значениях сетевых параметров прибора.

Для восстановления заводских сетевых настроек прибора следует:

- 1. Отключить питание прибора.
- 2. Открыть крышку на лицевой панели прибора.
- 3. Установить перемычку. JP2 в положение «Замкнуто»; при этом прибор работает с заводскими значениями сетевых параметров, но в его памяти сохраняются установленные ранее значения сетевых параметров.
- 4. Включить питание.

ВНИМАНИЕ

Напряжение на некоторых элементах печатной платы прибора опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы!

- 5. Запустить ПО «Конфигуратор М110».
- 6. В окне установки связи задать значения заводских сетевых параметров (таблица 7.1) или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров.
- 7. Считать значения сетевых параметров прибора, выбрав команду Прибор | Прочитать все параметры или открыв папку Сетевые параметры.
- 8. Зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны.
- 9. Закрыть ПО «Конфигуратор М110».
- 10. Отключить питание прибора.
- 11. Снять перемычку JP2.
- 12. Закрыть крышку на лицевой панели прибора.
- 13. Включить питание прибора и запустить ПО «Конфигуратор М110».
- 14. Установить зафиксированные ранее значения параметров в окне **Установка связи с прибором**.
- 15. Нажать кнопку Установить связь.
- 16. Проверить наличие связи с прибором, выбрав команду Прибор | Проверка связи с прибором.

Таблица 7.1 – Заводские значения сетевых параметров прибора

Параметр	Описание	Заводская установка
bPS	Скорость обмена данными	9600 бит/с
LEn	Длина слова данных	8 бит
PrtY	Тип контроля четности слова данных	Отсутствует
Sbit	Количество стоп-битов в посылке	1
A.Len	Длина сетевого адреса	8 бит
Addr	Базовый адрес прибора	16
Rs.dl	Задержка ответа по RS-485	2 мс

8 Интерфейс RS-485

8.1 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес. Базовый адрес прибора задается в ПО «Конфигуратор М110» (параметр Addr).

Таблица 8.1 – Адресация в сети RS-485

Параметр	Значение			
Протокол ОВЕН*				
Диапазон значений базового адреса при 8-битной адресации	от 0 до 239			
Диапазон значений базового адреса при 11- битной адресации	от 0 до 2024			
Широковещательный адрес при 8-битной адресации	255			
Широковещательные адреса при 11-битной адресации	от 2040 до 2047			
Базовый адрес прибора по умолчанию	16			
Базовый адрес каждого следующего прибора	[базовый адрес предыдущего прибора] + 16			
Протокол	n Modbus			
Диапазон значений базового адреса	от 1 до 247			
Широковещательный адрес	0			
Протокол DCON				
Диапазон значений базового адреса от 0 до 255				
ПРИМЕЧАНИЕ * Длина базового адреса определяется параметром A.Len во время задания сетевых настроек. В адресе может быть 8, либо 11 бит.				

8.2 Протокол ОВЕН

По протоколу ОВЕН опрос состояния дискретных входов и счетчиков производится через оперативные параметры прибора (см. Приложение Оперативные параметры протокола ОВЕН).

№ бита	15 8	7 0
Значение	Состояние входов с 16 до 9	Состояние входов с 8 до 1

Адресация оперативных параметров протокола ОВЕН

Каждый вход прибора имеет собственный сетевой адрес. Таким образом, прибор занимает 16 адресов в адресном пространстве сети RS-485. Адреса прибора должны следовать подряд. Для удобства задания адресов задается только Базовый адрес, который соответствует адресу Входа 1. Для каждого последующего входа адрес увеличивается на 1.

Пример

Пусть Базовый адрес прибора (параметр Addr) равен 32. Тогда для считывания значения счетчика первого дискретного входа надо прочитать r. Cou с сетевым адресом 32, для считывания значения счетчика второго дискретного входа – параметр r.Cou с сетевым адресом 33 и т. д.

Таблица 8.2 - Оперативные параметры прибора

	Вход 1	Вход 2	Вход 3	Вход 4	Вход 5	•••	Вход 16
Расчет сетевого адреса	Базовый адрес (Addr)	Addr + 1	Addr + 2	Addr + 3	Addr + 4		Addr + 15
Сетевой адрес Входа	32	33	34	35	36		47

То есть шестнадцатиканальный прибор с точки зрения работы с его оперативными параметрами «распадается» на 16 одноканальных приборов.

8.3 Протокол Modbus

Работа по протоколу Modbus может идти в режимах ASCII или RTU, в зависимости от заданного значения параметра **Prot**.

По протоколу Modbus возможно считывание битовой маски состояния всех дискретных входов (регистр с номером 51 (0х33). В регистре старший бит соответствует входу с наибольшим номером. Бит, равный **0**, соответствует состоянию входа «Разомкнут», равный **1** — состоянию «Замкнут».

№ бита	15 8	7 0
Значение	Состояние входов с 16 до 9	Состояние входов с 8 до 1

Значение счетчиков дискретных входов можно считать из регистров с номерами от 64 (0х40) до 79 (0х4F). Обнуление счетчиков производится записью 0 в эти регистры.

Запись регистров осуществляется командой 16 (0х10), чтение – командами 3 (0х03) или 4 (0х04).

Полный список регистров Modbus приведен в Приложении Регистры протокола Modbus .

8.4 Протокол DCON

Для работы с дискретными входами и счетчиками по протоколу DCON в модуле реализованы 3 команды:

- считать значения дискретных входов (вариант № 1 и вариант № 2);
- считать значения счетчика дискретного входа;
- обнулить состояние счетчика дискретного входа.

Считать значения дискретных входов (вариант № 1)

Посылка:

@AA[CHK](cr),

где AA — адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ:

• в случае приема допустимой команды:

```
(данные) [CHK] (cr)
```

• при нераспознанной команде:

```
?AA[CHK](cr),
```

где (данные) – 16 бит значений, описанные в таблице 8.3.

Таблица 8.3 – Соответствие состояний дискретных входов битам данных

№ бита	15	8	7	0
Значение	Состояние входов с 16 до 9		Состояние в	кодов с 8 до 1

ВНИМАНИЕ

Для протокола DCON бит, равный 1, означает, что вход «Разомкнут», бит, равный 0, — что вход «Замкнут».

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то ответ не посылается.

Пример

Посылка:

>@10 [CHK] (cr) — запрос состояния дискретных входов с модуля с шестнадцатеричным адресом 10.

Ответ:

>FFFF [CHK] (cr) – все дискретные входы в состоянии «Разомкнут».

Считать значения дискретных входов (вариант № 2)

Посылка:

\$AA6[CHK](cr)

где AA — адрес модуля от 0x00 до 0xFF;

6 - команда чтения значения дискретных входов;

[СНК] - контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ:

• в случае приема допустимой команды:

! (данные) [CHK] (cr)

• при нераспознанной команде:

?AA[CHK](cr),

где (данные) – три байта значений, описанные в таблице 8.4.

Таблица 8.4 – Соответствие состояний дискретных входов битам данных

№ бита	23 16	15 8	7 0
Значение	Состояние входов с 16 до 9	Состояние входов с 8 до 1	Всегда равны 0

ВНИМАНИЕ

Для протокола DCON бит, равный **1**, означает, что вход «Разомкнут», бит, равный **0**, – что вход «Замкнут».

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то ответ не посылается.

Пример

Посылка:

>\$106 [CHK] (cr) — запрос состояния дискретных входов с модуля с шестнадцатеричным адресом 10.

Ответ:

>! 000300 [CHK] (сr) – дискретные входы № 1, 2 в состоянии «Разомкнут», остальные в состоянии «Замкнут».

Считать значения счетчика дискретного входа

Посылка:

#AAN[CHK](cr),

где AA — адрес модуля от 0x00 до 0xFF;

N – номер входа от 0x0 до 0xF;

[СНК] - контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ:

• в случае приема допустимой команды:

! (данные) [CHK] (cr)

• при нераспознанной команде:

```
?AA[CHK](cr),
```

где **(данные)** – результат вычисления в диапазоне от 00000 до 65535 в десятичном виде (строка 5 символов).

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то никакого ответа не требуется.

Пример

Посылка:

>#101 [CHK] (сr) — запрос состояния счетчика входа № 2 модуля с шестнадцатеричным адресом 10.

Ответ:

>!00347[СНК] (сг) — значение счетчика равно 347 (в десятичном виде).

Обнулить состояние счетчика дискретного входа

Посылка:

\$AACN[CHK](cr)

где AA — адрес модуля от 0x00 до 0xFF;

С – команда сброса значения счетчика (С – большая латинская);

N – номер дискретного входа от 0x0 до 0xF;

[СНК] - контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ:

• в случае приема допустимой команды:

```
!AA[CHK](cr)
```

• при нераспознанной команде:

```
?AA[CHK](cr),
```

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то никакого ответа не требуется.

Пример

Посылка:

> \$10C1 [CHK] (cr) — обнулить состояние счетчика входа № 2 модуля с шестнадцатеричным адресом 10.

Ответ:

>!10 [CHK] (cr) – значение счетчика обнулено.

Контрольная сумма (СНК) позволяет обнаружить ошибки в командах, отправленных из ведущего устройства, а также в ответах ведомого. Контрольная сумма (СНК) передается как коды двух ASCII символов (от 0x00 до 0xFF) и представляет собой сумму ASCII кодов всех символов посылки не включая код символа переноса строки. В случае переполнения суммы, старшие разряды отбрасываются.

ПРИМЕЧАНИЕ

Вся информация, содержащаяся в кадре, включая адрес прибора, данные, СНК и символ перевода строки, передается в ASCII кодах. Следует обратить внимание, что использование ASCII кодов строчных латинских символов недопустимо.

8.5 Программное подавление дребезга контактов

Для каждого дискретного входа может быть включено программное подавление дребезга контактов. Программное подавление включается в параметре **Tin.C** в папке «Параметры входов».

ВНИМАНИЕ

Для работы с сигналами частотой выше 90 Гц при их скважности 50 % и менее не следует включать подавление дребезга контактов, т. к. полезный сигнал будет принят за дребезг и пропущен.

8.6 Режим «Авария»

В случае отсутствия запросов от Мастера сети RS-485 в течение времени тайм-аута прибор переходит в режим «Авария». На передней панели прибора загорается светодиод «Авария». Время тайм-аута задается в параметре «Максимальный сетевой тайм-аут» (t.out).

Значение параметра **t.out** задается в секундах (в диапазоне от **0** до **600**) в ПО «Конфигуратор М110» или по протоколу Modbus.

Если задано значение $\mathbf{0}$, то параметр не функционирует, т. е. прибор не переводится в режим «Авария».

Если в режиме «Авария» на прибор приходит какой-либо запрос от Мастера сети, то прибор выходит из режима «Авария», индикатор «Авария» гаснет.

9 Техническое обслуживание

9.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

11 Упаковка

Прибор упаковывается в соответствии с ГОСТ 23088 в потребительскую тару, выполненную из коробочного картона согласно ГОСТ 7933.

Для почтовой пересылки прибор упаковывается в соответствии с ГОСТ 9181.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Комплектность

Наименование	Количество		
Прибор	1 шт.		
Паспорт и Гарантийный талон	1 экз.		
Руководство по эксплуатации	1 экз.		

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

14 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Настраиваемые параметры

Полный перечень параметров прибора с указанием типов, имен, HASH-сверток, способа индексации и диапазонов значений приведен в файле «Параметры МВ110-16Д(ДН)» на странице прибора на сайте www.owen.ru.

Таблица А.1 – Общие параметры

Имя параметра	Название параметра	Допустимые значения	Заводская установка
dev	Имя прибора	До 8 символов	MV110-16
ver	Версия прошивки	До 8 символов	-

Таблица А.2 – Конфигурационные параметры

	Параметр	Допустимые значения	Заводская установка	
Имя	Название	допустимые значения		
	Папка «Сетевые	параметры»		
bPS	Скорость обмена данными	0 — 2,4 кбод; 1 — 4,8 кбод; 2 — 9,6 кбод; 3 — 14,4 кбод; 4 — 19,2 кбод; 5 — 28,8 кбод; 6 — 38,4 кбод; 7 — 57,6 кбод; 8 — 115,2 кбод	2	
LEn	Длина слова данных	0 – 7; 1 – 8	1	
PrtY	Тип контроля четности слова данных	0 – отсутствует (no); 1 – четность (Even); 2 – нечетность (Odd)	0	
Sbit	Количество стоп-бит в посылке	0 – 1 стоп-бит; 1 – 2 стоп-бита	0	
A.LEn	Длина сетевого адреса	0 — 8 бит; 1 — 11 бит	0	
Addr	Базовый адрес прибора	Протокол ОВЕН: 0239 для A.LEn = 8; 02024 для A.LEn = 11. Протокол Modbus – 1247 Протокол DCON – 0255	16	
t.out	Максимальный сетевой тайм-аут	0600 c	0	
Prot	Протокол обмена	0 – OBEH; 1 – Modbus-RTU; 2 – Modbus-ASCII; 3 – DCON	0	
Rs.dL	Задержка ответа по RS-485	045 мс	2	
	Папка «Сетевь	ie входы»	•	
Tin.C	Фильтр дребезга контактов	0 – Выключено; 1 – Включено	0	

i

ПРИМЕЧАНИЕ

Из-за аппаратных ограничений невозможно использование в приборе следующих сочетаний сетевых параметров:

- PrtY = 0, Sbit = 0, LEn = 0 (контроль четности отсутствует, 1 стоп-бит, 7 бит);
- PrtY = 1, Sbit = 1, LEn = 1 (проверка на четность, 2 стоп-бита, 8 бит);
- PrtY = 2, Sbit = 1, LEn = 1 (проверка на нечетность, 2 стоп-бита, 8 бит).

Приложение Б. Оперативные параметры протокола ОВЕН

Таблица Б.1 – Оперативные параметры протокола ОВЕН

Имя параметра	Формат данных	Название параметра	Индексация	Допустимые значения	Комментарии
r.Cn	Int16	Текущее состояние дискретных входов	Нет	065535	Битовая маска текущего состояния всех дискретных входов прибора: 0 – разомкнут; 1 – замкнут. Параметр только на чтение
r.Cou	Int16	Значение счетчика дискретного входа	По дискретным входам	065535	Показывает количество импульсов, посчитанных дискретным входом. Счетчик обнуляется записью 0 в данный параметр

Приложение В. Регистры протокола Modbus

Таблица В.1 – Регистры протокола Modbus

Попоможн	Значение, [ед.	_	Адрес регистра	
Параметр	изм.]	Тип	(Hex)	(Dec)
Максимальный сетевой тайм-аут	1600 [c]	Uint16	0030	0048
Битовая маска значений входов	065535	Uint16	0033	0051
Значение счетчика входа № 1	065535 [имп]	Uint16	0040	0064
Значение счетчика входа № 2	065535 [имп]	Uint16	0041	0065
Значение счетчика входа № 3	065535 [имп]	Uint16	0042	0066
Значение счетчика входа № 4	065535 [имп]	Uint16	0043	0067
Значение счетчика входа № 5	065535 [имп]	Uint16	0044	0068
Значение счетчика входа № 6	065535 [имп]	Uint16	0045	0069
Значение счетчика входа № 7	065535 [имп]	Uint16	0046	0070
Значение счетчика входа № 8	065535 [имп]	Uint16	0047	0071
Значение счетчика входа № 9	065535 [имп]	Uint16	0048	0072
Значение счетчика входа № 10	065535 [имп]	Uint16	0049	0073
Значение счетчика входа № 11	065535 [имп]	Uint16	004A	0074
Значение счетчика входа № 12	065535 [имп]	Uint16	004B	0075
Значение счетчика входа № 13	065535 [имп]	Uint16	004C	0076
Значение счетчика входа № 14	065535 [имп]	Uint16	004D	0077
Значение счетчика входа № 15	065535 [имп]	Uint16	004E	0078
Значение счетчика входа № 16	065535 [имп]	Uint16	004F	0079

- 1. Запись в регистры осуществляется командой 16 (0х10), чтение командами 03 или 04 (прибор поддерживает обе команды).
- 2. Счетчики обнуляются записью 0 в регистры хранения результатов счета.
- 3. В регистрах битовых масок значений входов старший бит соответствует входу с наибольшим номером: бит, равный 1, соответствует состоянию входа «Замкнут».

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru

рег.:1-RU-34143-1.17