Lecture 6

Muna Naik

February 6, 2025

Canonical co-ordinate neighbourhoods

We have shown in proposition 4 of the previous lecture that exp map is a local diffeomorphism from the lie algebra to the lie group. Suppose G is the lie group and $\mathfrak g$ its lie algebra(as always!) and let U_0, V_e be neighbourhoods of $0 \in \mathfrak g$, $e \in G$ respectively such that $exp|_{U_0}: U_0 \to V_e$ is a diffeomorphism. Then it is clear that the inverse map $\xi: V_e \to U_0$ given by $exp(\vec x) \mapsto \vec x$ is a co-ordinate system on V_e . Such co-ordinate systems are called canonical co-ordinate systems.

Matrix exponentials

Suppose $G = GL_{n \times n}(\mathbb{C})$ and $\mathfrak{g} = \setminus$. It has been shown in the presentations that the map given by the power series

$$\theta(A) = \sum_{k>0} \frac{A^k}{k!}$$

is smooth and satisfies $exp(X) = \theta(X)$. We will see a different approach to some of the results.

Proposition 1

The map θ has the following properties.

- 1. θ is continuous.
- 2. $AB = BA \implies \theta(A+B) = \theta(A)\theta(B)$.
- 3. $\theta((s+t)A) = \theta(sA)\theta(tA)$
- 4. $\theta(-A) = \theta(A)^{-1}$.

Proof. Note that $A \mapsto A^k/k!$ is continuous with $||A^k/k!|| \le ||A||^k/k!$. Thus

$$\|\theta(A)\| \le \sum_{k>0} \frac{\|A\|^k}{k!} \le e^{\|A\|}$$

So for all A such that $||A|| \le R$ we can use the wierstrass M-test to show that θ is continuous. As R goes to infinity we see that θ is continuous everywhere. Note that since the series are absolutely convergent we can use an argument identical to that of Theorem 3.50 in Rudin's Principles of Mathematical Analysis to argue that

$$\theta(A)\theta(B) = \left(\sum_{k\geq 0} \frac{A^k}{k!}\right) \left(\sum_{l\geq 0} \frac{B^l}{l!}\right) = \sum_{n\geq 0} \sum_{k+l=n} \frac{A^k B^l}{k! l!}$$

Given that AB = BA. Now we can further manipulate the series using binomial theorem to arrive at the following.

$$\theta(A)\theta(B) = \sum_{n>0} \frac{(A+B)^n}{n!} = \theta(A+B)$$

The 3rd property follows from the second by setting A = sA, B = tA. The fourth property follows from the second by setting B = -A.

The 3rd property shows that $\alpha(t) := \theta(tH)$ is a group homomorphism from \mathbb{R} to $GL_{n\times n}(\mathbb{C})$. Now we will show that it is differentiable.

Proposition 2

Let $A \in M_n(\mathbb{C})$. Let $\alpha : \mathbb{C} \to \backslash$ given by

$$\alpha(t) = e^{tA}$$

is once differentiable and $\alpha'(t) = \alpha(t)A$.

Proof. Observe that

$$\alpha(t+s) - \alpha(t) = \theta(tA + sA) - \theta(tA) = \theta(tA)(\theta(sA) - I) = \theta(tA)\left(sA + \sum_{k \ge 2} \frac{s^k A^k}{k!}\right)$$

Note that $k! \ge 2^{k-1}$ for all $k \ge 2$. Thus

$$\|\alpha(t+s) - \alpha(t) - s\theta(tA)A\| \le \sum_{k \ge 2} \frac{\|sA\|^k}{k!} \le \theta(tA) \sum_{k \ge 2} \frac{\|sA\|^k}{2^{k-1}} = \theta(tA)|s|^2 \|A\|^2 \frac{\|sA\|^k}{2^k}$$

For s sufficiently small ||sA|| is sufficiently small so that the series in the end is a convergent geometric series. Thus

$$\frac{\|\alpha(t+s) - \alpha(t) - s\theta(A)A\|}{|s|} \le |s|M$$

for some M and sufficiently small s. Thus α is differentiable at t and $\alpha'(t) = \alpha(t)A$.

Note that this shows that $\alpha'(t) = \alpha(t)A$. But the map $X \mapsto \alpha(t)X$ is a linear map and thus its own derivative. So we have $\alpha'(t) = dI_{\alpha(t)}A$. Thus α is an integral curve of the left invariant vector field corresponding to the tangent vector A at I of the lie group $GL_{n\times n}(\mathbb{C})$. But by uniqueness of integral curves and definition of exponentials we have $\alpha(t) = \gamma_{\tilde{A}}(t) = exptA$. (The notation \tilde{A} is used to denote the left invariant vector field corresponding to A). The following is an exersice regarding a mistake in one of the presentations.

Exercise. Show that the set of positive definite matrices is open in the space of all Hermitian matrices.

Proof. Let $A \in Herm_n(\mathbb{C})$ be positive definite. Set $v \in \mathbb{C}^n - 0$. Let H be a Hermitian matrix. Since A is positive definite the quantity $\langle v, Av \rangle$ has a positive minimum C on the unit sphere in \mathbb{C}^n . Thus

$$\langle v, Av \rangle = \|v^2\| \langle \frac{v}{\|v\|}, A \frac{v}{\|v\|} \rangle > C \|v\|^2$$

Also observe that $|\langle v, Hv \rangle| \le ||v|| ||Hv|| \le ||v||^2 ||H||_{op}$. So for $||H||_{op} \le C/2$ we have

$$\langle v, (A+H)v \rangle = \langle v, Av \rangle + \langle v, Hv \rangle$$

$$\implies \langle v, (A+H)v \rangle \ge C ||v||^2 - \frac{C}{2} ||v||^2 > 0$$

Since v was arbitrary we have that A + H is positive definite. So we have found an open ball around A in the space of Hermitian matrices that is contained in the set of positive definite matrices and thus the set of positive definite matrices is open.

Topological groups

We continue with the digression onto topological groups started in the previous lecture. With the notation from the previous lecture we observe the following.

Exercise. G/G_0 with quotient topology is a topological group

Proof. Let $\mu: G \times G \to G$ be given by $\mu(x,y) = xy^{-1}$. And $\tilde{m}u: G/G_0 \times G/G_0 \to G/G_0$ given by $(xG_0) \cdot (yG_0) \to xy^{-1}G_0$. Then we have the following diagram.

$$G \times G \xrightarrow{\mu} G$$

$$\pi \times \pi \downarrow \qquad \qquad \downarrow \pi$$

$$G/G_0 \times G/G_0 \xrightarrow{\tilde{\mu}} G/G_0$$

The maps μ , π , π × π are all continuous. The diagram is commutatuive simply by definition of quotient groups. We will be done once we show that $\tilde{\mu}$ is continuous. Set $p=(p_1G_0,p_2G_0)\in G/G_0\times G/G_0$ and U an open neighbourhood of $\tilde{\mu}(p)$. Since $\mu':=\pi\circ\mu$ is continuous and $\mu'(p_1,p_2)=\tilde{mu}(p)$ we have V_1,V_2 open neighbourhoods of p_1,p_2 respectively such that $\mu'(V_1\times V_2)\subseteq U$. Note that this means $\mu'(V_1G_0\times V_2G_0)\subseteq U$ and by definition of quotient map π , $N_1=\pi(V_1G_0)$ is open and so is $N_2=\pi(V_2G_0)$. So

$$\tilde{mu}(N_1 \times N_2) = \tilde{mu} \circ (\pi \times \pi)(V_1 \times V_2) = \mu'(V_1 \times V_2) \subseteq U$$

And clearly $p \in N_1 \times N_2$. This shows that \tilde{mu} is continuous at p and since p was arbitrary we have that \tilde{mu} is continuous.

Exercise. *G* is hausdorff \implies G/G_0 is hausdorff.

Proof. G_0 is closed since it is a connected component. Hence $G - G_0$ is open. Note that $G - G_0 = \pi^{-1}(G/G_0 - eG_0)$. By definition of quotient topology we get $G/G_0 - eG_0$ is open. This shows that the identity is closed in G/G_0 . Since left multiplications are homeomorphisms this argument easily shows that all points are closed in G/G_0 . We show that following claim.

Claim. In any topological group G if all points are closed then G is hausdorff.

Proof. Suppose $e \neq y \in G$. Then there must be U a neighbourhood of e such that $y \notin U$ since y is closed. By a result in the previous lecture we have a symmetric neighbourhood V of e such that $V^2 \subseteq U$. Note that if $z \in V \cap yV$ then we have $z = x_1y = x_2$ for some $x_1, x_2 \in V$. Thus $y = x_1^{-1}x_2 \in V^2 \subseteq U$ which is a contradiction. Thus $V \cap yV = \emptyset$. So V and V are disjoint neighbourhoods of E and E and E are the homeomorphism E and then apply the homeomorphism E to get the desired.

Exercise. If H is an open subgroup of a connected topological group G then G = H.

Proof. We have shown that open subgroups are automatically closed. Since G is connected and H is non-empty we have that G = H.

Now consider the exp map from $\mathfrak{g} \to G$ for a lie group G. Since \mathfrak{g} is connected we have that $exp(\mathfrak{g}) \subseteq G_0$. Now consider a canonical neighbourhood U_0 of 0 which is connected in \mathfrak{g} . Then it is clear that $exp(U_0)$ is open in G and is contained in G_0 . By the definition of subspace topology we have that $exp(U_0)$ is an open neighbourhood of identity in G_0 . Then we have that $\langle U_0 \rangle$ is open in G_0 by the last exercise in lecture 5 and thus $G_0 = \langle exp(U_0) \rangle$ by the exercise above. As a corollary(again of the last exercise in the previous lecture) we have

$$g \in G_0 \implies \exists X_1, ..., X_k \in U_0 : g = exp(X_1)exp(X_2)...exp(X_k)$$

We have the following proposition as a corollary of the above discussion.

Proposition 3

Let G be a lie group with lie algebra \mathfrak{g} . Then

- 1. G_0 is open in G.
- 2. Any $g \in G_0$ can be written as $exp(X_1)exp(X_2)...exp(X_n)$ for some $\{X_k\} \subseteq \mathfrak{g}$.
- 3. The group G/G_0 has a discrete structure.

Proof. Since G is a manifold it is locally connected and this means that connected components are open $\implies G_0$ is open. The second point follows from the discussion above. For the third point note that for a point $xG_0 \in G/G_0$ we have $\pi^{-1}(xG_0) = xG_0 = I_x(G_0)$. Since G_0 is open and G_0 is a homeomorphism we have $\pi^{-1}(xG_0)$ is open. Which means G_0 is open in G_0 . Thus G_0 has the discrete topology.

We have seen that given any homomorphism of lie groups we get a corresponding homomorphism of lie algebras. We now show that this association is unique for connected lie groups.

Proposition 4

Let G be a connected lie group with lie algebra $\mathfrak g$ and H be a lie group with lie algebra $\mathfrak h$. Let $\phi, \psi: G \to H$ be homomorphisms of lie groups. Then if $d\phi_0 = d\psi_0$ then $\phi = \psi$.

Proof. Since $G = G_0$ we use the previous proposition to write $g = exp(X_1)exp(X_2)...exp(X_n)$. Then

$$\phi(g) = \phi(exp(X_1)exp(X_2)...exp(X_n))
= \phi(exp(X_1))\phi(exp(X_2))...\phi(exp(X_n))
= exp(d\phi_0(X_1))exp(d\phi_0(X_2))...exp(d\phi_0(X_n))
= exp(d\psi_0(X_1))exp(d\psi_0(X_2))...exp(d\psi_0(X_n))
= \psi(exp(X_1))\psi(exp(X_2))...\psi(exp(X_n))
= \psi(exp(X_1))exp(X_2)...exp(X_n))
= \psi(exp(X_1))exp(Exp(X_2)...exp(X_n))
= \psi(exp(X_1))exp(Exp(X_1)...exp(X_n))
= \psi(exp(X_1))exp(Exp(X_1)...exp(X_n)
= \psi(exp(X_1))exp(Exp(X_1)...exp(X_n)$$

In steps 2,4 we have used Theorem 6 from lecture 5.