Tutorial-3

Natural convection, Boiling and Condensation 5th-6th Feb 2020

Exercise 1. The outer surface of a vertical tube, which is 1 m long and has an outer diameter of 80 mm is exposed to saturated steam at 1 atm and is maintained at 50 O C by flow of cooling water through the tube (inside fluid is CW). What is the rate of heat transfer to the coolant and what is the rate at which steam is condensed at the surface?

Table 1: Heat Transfer Correlations for Condensation. $Re_{\delta} \equiv 4\Gamma/\mu_l$. For laminar flow $Re_{\delta} < 30$. For turbulent $Re_{\delta} > 1800$. In between, transition region. Properties are evaluated at T_f except ρ_v and λ which are evaluated at T_{sat} . The condensate film is always considered to be fully developed.

Condition	Correlation
Vertical flat plate, Laminar	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = 1.47 Re_{\delta}^{-1/3}$
Vertical flat plate, Transition region	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = \frac{Re_{\delta}}{1.08Re_{\delta}^{1.22} - 5.2}$
Vertical flat plate, Turbulent	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = \frac{Re_{\delta}}{8750 + 58Pr_l^{-0.5}(Re_{\delta}^{0.75} - 253)}$
Horizontal tube	$\overline{h_D} = 0.729 \left(\frac{g\rho_l(\rho_l - \rho_v)k_l^3 \lambda}{\mu_l(T_{sat} - T_s)D} \right)^{1/4}$

Table A.6 Thermophysical Properties of Saturated Water^a

Temper-	₹ (Σ	15																			
	ature, T (K)	273.15	275	280	285	290	295	300	305	310	315	320	325	330	335	340	345	350	355	360	365
Expansion Coef- cient, $\beta \cdot 10^6$ (\mathbf{K}^{-1})		-68.05	-32.74	46.04	114.1	174.0	227.5	276.1	320.6	361.9	400.4	436.7	471.2	504.0	535.5	566.0	595.4	624.2	652.3	6.769	707.1
Surface Tension, $\sigma \cdot 10^3$ (N/m)		75.5	75.3	74.8	74.3	73.7	72.7	71.7	70.9	70.0	69.2	68.3	67.5	9.99	65.8	64.9	64.1	63.2	62.3	61.4	60.5
	Pr_g	0.815	0.817	0.825	0.833	0.841	0.849	0.857	0.865	0.873	0.883	0.894	0.901	0.908	0.916	0.925	0.933	0.942	0.951	0.960	0.969
	Pr	12.99	12.22	10.26	8.81	7.56	6.62	5.83	5.20	4.62	4.16	3.77	3.42	3.15	2.88	2.66	2.45	2.29	2.14	2.02	1.91
	$k_g \cdot 10^3$	18.2	18.3	18.6	18.9	19.3	19.5	19.6	20.1	20.4	20.7	21.0	21.3	21.7	22.0	22.3	22.6	23.0	23.3	23.7	24.1
	$k \cdot 10^3$	695	574	582	590	869	909	613	620	628	634	640	645	650	959	099	664	899	671	674	<i>LL</i> 9
	$\mu_g \cdot 10^6$	8.02	8.09	8.29	8.49	8.69	8.89	60.6	9.29	9.49	69.6	68.6	10.09	10.29	10.49	10.69	10.89	11.09	11.29	11.49	11.69
	$\mu \cdot 10^6$	1750	1652	1422	1225	1080	959	855	692	695	631	577	528	489	453	420	389	365	343	324	306
Specic Heat (kJ/kg·K)	$c_{p,g}$	1.854	1.855	1.858	1.861	1.864	1.868	1.872	1.877	1.882	1.888	1.895	1.903	1.911	1.920	1.930	1.941	1.954	1.968	1.983	1.999
	c_{p} ,	4.217	4.211	4.198	4.189	4.184	4.181	4.179	4.178	4.178	4.179	4.180	4.182	4.184	4.186	4.188	4.191	4.195	4.199	4.203	4.209
Heat of Vapor-ization,	$(\mathbf{kJ/kg})$	2502	2497	2485	2473	2461	2449	2438	2426	2414	2402	2390	2378	2366	2354	2342	2329	2317	2304	2291	2278
Specic Volume (m³/kg)	v_g	206.3	181.7	130.4	99.4	2.69	51.94	39.13	29.74	22.93	17.82	13.98	11.06	8.82	7.09	5.74	4.683	3.846	3.180	2.645	2.212
	$v \cdot 10^3$	1.000	1.000	1.000	1.000	1.001	1.002	1.003	1.005	1.007	1.009	1.011	1.013	1.016	1.018	1.021	1.024	1.027	1.030	1.034	1.038
Pressure, p (bars) ^{b}		0.00611	0.00697	0.00990	0.01387	0.01917	0.02617	0.03531	0.04712	0.06221	0.08132	0.1053	0.1351	0.1719	0.2167	0.2713	0.3372	0.4163	0.5100	0.6209	0.7514
Tempera-	ture, I	273.15	275	280	285	290	295	300	3055	310	315	320	325	330	335	340	345	350	355	360	365