Tema ni 1 Calculo I Aplicamos los acciomas de los numeros reales demostrar los siguientes incisos a) Si x+z+ y+z, enfonces x= y Por hipotesis X + Z = y + Z X+Z+(-Z) = y + Z+(-Z) por A4 x+[Z+(-z)] = y+[Z+(-z)] por A1 x +0 = y +0 por A4 X = Y Por A3 b) Si x-z=y·z y z≠o, entonces x = 7 Sol & Segun la hipotesis Z=0, entonces axioma My existe el numero real 2-1 tal que ZZ-1 = 1 por otro ledo XZ = YZ hipotesis $XZZ^{-2} = YZZ^{-1}$ por H4 ($Z \neq 0$) $X(ZZ^{-1}) = Y(ZZ^{-1})$ por H1 × (1) = Y (1) por M4 x = Y por M3 Demostrar que ab= 0 entonces a=0 a b=0 Solución Si ab = 0 entonces a=0 b=0 Por hipotesis como a 70 entonces por el acciorna M4 existe el numero real a-1 tal que a a-1 = 1 por otro ledo

Tagrame: Si 1x-a1< S entonces - Sta < x < Sta D: Por definición de velor absoluto 1x-a = mex {x-a, - (x-a)} mex { x-0, -x+0} Pero 1x-a1 < S asi - mex {x-0,-x1a} < S y por definición de meximo -x+a< S x-acs y x-a < 8 y -xta < s y -xtatxcstx x-414 < 5 ta y acstx x<&ta > a-2<2+x+(-8) xcsta x<Sta y a-jex x < sta Q - Sta < x y x < Sta - Stacx Por dofinición - Eta cx c Sta Ejercicio: Resolver la designaldad / = -2/ < 3 Sol Por el anterior teorems se tendra $\left|\frac{1}{x}-2\right|<3$ $- > < \frac{1}{x} - 2 < 3$ $-3+5<\frac{x}{4}-5+5<3+5$ $-1 < \frac{1}{x} < 5$

Observando el grafico anterior el conjunto es acotado
infectiormente, pues ne M entonces no, por tanto n-2 >0
es decir Oc 1 pers todo ne IN y esto significa que O
es uns cots inferior de x por tanto todo numero menor que 0
Tembien X es acotedo superiormento, pues
0: X+Y > \(\sigma\x\y\), X,Y >> 0
D?: or now qsq dno (x-x)2 ≥0
x²-2xy+y²≥0
X2-2xy+x2+4xxx 20+4x1 x+x
2 > V × Y
$(x+y)^2 \geqslant 4xy$ $(x+y)^2 \geqslant 4xy$
√(x+y)² ≥ √ 4 x y
× +y ≥ 2 √× y
De don de Parte
$\frac{x+y}{2} \ge \sqrt{xy}$ $ x^2-2xy+y^2 \ge 0$
(x+x)2 > xx (x-x)2 20
$(x+x)^2 \ge 4xy$
x2 + 2 x y + y2 z 4 x y

Eyemplo: Supongamos que la succesión (Xn) converge al panto a, es decir por definición

Corulario: Si la succesión (XI) es monotona creciente o estrictamento creciente y scotede entonces lim Xn = Sup x donde X = {Xn/ne IN} Pero si la sucesión (Xn) es monotora decreciente o es estrictamente decreciente y zeoteda entonces lin Xn = Infx dondo X= {Xn/ne 11 } Teorems (Teorems del sandiwich) Si lim Xn = a y lim Zn = a
n + + 00 si Xn ≤ Yn ≤ Zn para todo n suficientemente grando entonces lim yn = 00 h→too Si $X_n \leq Y_n \leq Z_n$ y $\lim_{n \to +\infty} X_n = \lim_{n \to +\infty} Z_n = Q$ entonces a lim $x_n \leq \lim_{n \to +\infty} x_n \leq \lim_{n \to +\infty} Z_n$ Tener cuidado con los notas de calculo 1 asi lim y = a Ejercicio Calcular el limito $\lim_{N\to+\infty} \left(\frac{0}{\sqrt{1+\frac{1}{1}}} + \frac{1}{\sqrt{1+\frac{5}{1}}} + \cdots + \frac{\nu_i}{\sqrt{1+\frac{1}{1+\frac{5}1+\frac{5}{1+\frac{5}{1+\frac{5}{1+\frac{5}{1+\frac{5}1+\frac{5}1+\frac{5}$ $\lim_{N \to +\infty} \left(\frac{oi}{4} + \frac{1i}{4} + \frac{5i}{4} + \frac{vi}{4} \right) = 6$

Si lim
$$x_n = u$$
 y lim $y = b$, entences

 $n \rightarrow t \Rightarrow 0$

A) lim $(x_n y_n) = ub$
 $n \rightarrow t \Rightarrow 0$

A) lim $(x_n y_n) = ub$
 $n \rightarrow t \Rightarrow 0$

A) lim $(x_n y_n) = 0$

B) lim $(x_n y_n) = 0$

A) lim $(x_n y_n) = 0$

B) lim $(x_n y_n) = 0$

B) lim $(x_n y_n) = 0$

B) lim $(x_n y_n) = 0$

C) lim $(x_n y_n)$

501:																
0							- 8	N2								
lim	20.773	n2)	=	lim	0			n		-	V	in			n	_
n→+~	n	+1	1	$\mu \rightarrow$	a		n	+1			n	++	B	n	+	1 n
								h						n		n
lim		U ×V		כת	exis	te										
n→+~	. 1	+ 4 =	Yn													
	Z															
Ejeccia	0 (slus	ey	limi!	to											
	lin		n													
	<i>µ</i> →		n+													
Solucia	-															
Join Cit	OH MA						h									
Lim		n		lin			n n			lin		1	1			
n → ·		7 + 1	=	nto		r	1+1	1		n →		n	+1			
***		,,,,,,,,,		, , ,		_	h				100	h	'n			
lim		1			1			1								
n→ to		1	4	2	11		=	1								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 + .	'n		V.	Ŭ										
(1)	. 5	: V	>0			1	V	75	- 11	N1	207					
Criterios	•)	(Ay	1/() 1	1915	t	000	h	E 1	M	Y					
Q.	V		17.14	100			32/00		1			9.		Υ.	n = 1	0
lim n++0		Xn -	= 0	, (no	a	<1	, «	n to	nce		D→ 1		Λ.	1 -	,
			_									M. C.				
Ejercici	0.	Simile	. હા	11 pm	31											
lim		n1 -	1				. ,	x >	0							
N→ta		p _u	h	um → ∝	,	Q.S		νη.	J							
			-			1.1										
	Pen	Xn+	1 =	0	111	nt's	- (151								
				C	111)										

$$\lim_{n \to +\infty} \frac{y_{n+2}}{y_n} = \lim_{n \to +\infty} \frac{(n+1)!}{(n+1)^{n+2}} = \lim_{n \to +\infty} \frac{n^n (n+1)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{y_{n+2}}{y_n} = \lim_{n \to +\infty} \frac{n^n (n+1)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+1)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+1)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+1)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!}$$

$$\lim_{n \to +\infty} \frac{n^n (n+2)!}{(n+2)!} = \lim_{n \to +\infty} \frac{n^n (n+2)!}{$$

Pregonts de exam	en
<i>a</i> 2i	
lim Xnt	<u>1 = I</u>
11-0+∞ X	n a
asi por el crito	crio
10.00	
llm nk n-0t∞ an	
Ejercicio : Determ	ninar al limita
	de Xn = 1+a + a2 + a3 + · · · + an pere 0 < a < 1
h→ too	
Solución : Notem	oz dne
1+0 +02+03+	+an = 1-an 1-a
lim (1+a+	$a^2 + \cdots + a^n$ = $\lim_{n \to \infty} 1 - a^{n+1}$
n -+ +00	n→+∞ 1-a
	- lim (1) (1 n+1) puede solir
	= $\lim_{n\to+\infty} \left(\frac{1}{1-\alpha}\right) \left(1-\alpha^{n+1}\right)$ builde selling
	1 lim (1-anti) ""
	1 lim (1-anti) 1-a n→+0
	0 A lim an+2 =?
	n→+∞
	No temos que ozazz entonce oza
	y a < 1
Por tento	Por tanto
0<1	< an+2 < ca3 < a2 < a < 2
۵۶ د ۵	gracias a esto se tiene que
Q3 < Q2	lim and = 0
Q4 < Q3	n→t∞
as < a4	

Le serie
$$\sum_{n=0}^{\infty} \frac{1}{n}$$
 converge o diverge, as decir

1 + $\frac{1}{2}$ + $\frac{1}{3}$ + $\frac{1}{4}$ Converge

Supongemos que le serie Converge

Si $\sum_{n=0}^{\infty} \frac{1}{2n-1} = b$ y $\sum_{n=0}^{\infty} \frac{1}{2n} = c$

pero

 $a = \sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=0}^{\infty} \frac{1}{2n-1} + \sum_{n=0}^{\infty} \frac{1}{2n}$

Por tento $a = b + c$

pero si une sucesión converge a un punto entonces todo sucesión converge al mismo punto, por tento $a = b = c$

Por otro ledo

 $\frac{1}{n} - \frac{1}{2n-1} = \frac{1}{2n}$
 $\frac{1}{n} - \frac{1}{2n} = \frac{1}{2n-1} \cdot 2n$
 $\frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{2n-1} \cdot 2n$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |a^{n}|, \text{ about see } b = |a| \text{ asi}$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |b^{n}|$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |b^{n}|$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |b^{n}| = \frac{1}{1-b}$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |b^{n}| = \frac{1}{1-b}$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |b^{n}| = \frac{1}{1-b}$$

$$\sum_{n=0}^{\infty} |a^{n}| = \sum_{n=0}^{\infty} |a^{n}$$

Por otro lado si ×n≠0	y lim Xn+1 > 1
∞	n-000 Xn
entonces \(\sum \) Xn dive	c19 0 .
Ejercicio: Ver si la serie	The para Ocial a diverge o converse
	ce d Alembert calcule el siguiente limite
lim Xn+1 = lim n++00 Xn n++00	Chr. 2
nota Xn nota	$o \left \frac{Q_n}{U_n} \right $
= lim an (n+1) k =	lim an(n+1)*
N+too duly NK	y→t∞ and Ns
$\lim_{h \to t \infty} \left \frac{1}{\alpha} \left(\frac{h+1}{h} \right)^k \right $	= lim 1 n+2 K n = +0 a n K
$= \left \frac{1}{\alpha} \right \lim_{n \to +\infty} \left 1 + \frac{1}{n} \right $	
$= \left \frac{1}{\alpha} \right (\lambda)^{k} = \left \frac{1}{\alpha} \right =$	0<101<1
Por tento lim Xn+1	<1 asi la serie \(\sum_{n=1}^{\infty} \frac{n^k}{a^n}\) converge
(Lou witenos)	

Copitulos Funciones 3.1) Concepto de Funciones: Def. (Foncion) Si f es una relación de A en B (f = AxB) entonces f es une funcion si: i) Para todo XEA existe YEB tal que xfy (O (X,Y)Ef of f(x) = y) scleef dex 11) Si (x, y) ef, (x, z) ef entonces y=Z Nota: En la materia ay que trabajar con funciones de Variable real, es decir con funciones de la Forma f = 1R × 1R, Las Funciones en general se los simbuliza de la siguiente forma : f:1 - 1 x I fcx) Def: (Dominio de una función) El dominio Dep de la función real de variable real f: D(P) ⊆ IR - TR se define O(1) = {xe IR / fox) as on numero real } Ejercicios: Determiner el dominio de las siguientes Funciones a) $f: D_{(x)} \subseteq |R| \longrightarrow |R|$ $\times \longmapsto \frac{1}{x^2-1}$ Sol: Notemos que fox = 1 asi por de Finición de dominio D(1) = Exe IR/ fcx) see un numero reel 3

=
$$\{x \in \mathbb{R} / 1 \quad \text{See on numero real} \\ x^2 - 1 \$$
= $\{x \in \mathbb{R} / x^2 - 1 \neq 0\}$
= $\{x \in \mathbb{R} / x^2 - 1 \neq 0\}$
= $\{x \in \mathbb{R} / x \in x^2 - 1 \neq 0\}$
= $\{x \in \mathbb{R} / x \in x^2 - 1 \in x^2 = 0\}$
= $\{x \in \mathbb{R} / x \in x^2 + 1 \in x^2 = 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$

D(1) = $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
D(2) = $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq -1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$
= $\{x \in \mathbb{R} / x \neq 1 \land x \neq 1\}$

donde
$$(f \cdot g)_{(g)} = f_{(g)} g_{(g)} \longrightarrow \mathbb{R}$$

iv) Division de Funciones

$$\frac{f}{g}: D_{(n)} \cap [D_{(n)} - \{g_{(n)} = o\}] \longrightarrow \mathbb{R}$$

$$\times \longmapsto \left(\frac{f}{g}\right)_{(n)}$$

$$f(x) = ln(x)$$

$$\lim_{x\to a} f(g_{xy}) = f(\lim_{x\to a} g_{xy})$$

Jii)
$$\lim_{x\to 0} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} =$$

asi lim x20-2x+2 = 14 X +1 X 20 2x 11 Recordemos : Para determinar lim fox) donde las Funciones fr 9 son polinomios x+a 900 se recomienda determinar los limites del denominador y numerador si lim 9cx = 0 (X+a) X-a Significa que el polinomio 9 tiene como Factor a (x-a)" asi 9(x) = (x-a) = 92(x) y lim fox = 0 esto significa que el polinomio f tiene como factor (x-a)t asi Polinomia trocems del resto fox = (x-a)+ q, (x) Por tanto lim fcx = lim (x-a)+ 92 00 x+a 300 x+a (x-a) x 9200 Caso 1 Si += K, entonces lim fox = lim (x a) 9, (x) x = a g (x = a) x + a (x = a) x \$ 2 (x) = lim 9100 x → a 92(x) 91 (a) 92 ca) Por ejemplo: lim x2-1 X-1 x-1 Notemos lim (x-1) = 1-2 = 0 esto significa que X+1

$$(x-1) = (x-1) 1$$

$$1 + 2mbien$$

$$\lim_{x \to 1} (x^2-1) = 1^2 - 1 = 0$$

$$x + 1$$

$$y = sho significa$$

$$x^2 - 1 = (x-1)(x+1)$$

$$3si$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{x+1}{1}$$

$$= \frac{1+1}{1} \Rightarrow 2$$

$$\lim_{x \to 0} \frac{1}{2} = \lim_{x \to 1} \frac{(x-0)^x 9_1 col}{9_2 col}$$

$$\lim_{x \to 0} \frac{1}{9} = \lim_{x \to 0} \frac{(x-0)^x 9_2 col}{9_2 col}$$

$$= \lim_{x \to 0} \frac{(x-0)^x 9_2 col}{9_2 col}$$

$$= \lim_{x \to 0} \frac{(x-0)^x 9_2 col}{9_2 col}$$

$$= \lim_{x \to 0} \frac{x^2 - 2x + 1}{x^2 - 1} = 1^2 - 1 = 0$$

$$\lim_{x \to 0} \frac{x^2 - 2x + 1}{x^2 - 1} = 1^2 - 2(1) + 1 = 0$$

$$\lim_{x \to 0} \frac{x^2 - 2x + 1}{x^2 - 1} = (x-1)^2$$

$$\lim_{x \to 0} \frac{x^2 - 2x + 1}{x^2 - 2x + 1} = (x-1)^2$$

$$\lim_{x \to 0} \frac{x^2 - 2x + 1}{x^2 - 2x + 1} = (x-1)^2$$

asi $\lim_{x \to 2x+1} = \lim_{x \to 1} (x-1)^2$ x2 - 1 X+1 (x-1) (x-1) X+1 = lim (x-1) $= \frac{1-1}{1+1} = \frac{0}{2} = 0$ (aso 3: Si 4 < K, entonces $\lim_{x \to a} \frac{1}{9} = \lim_{x \to a} \frac{(x-a)^4}{9} \frac{9}{1} = \infty$ $\lim_{x \to a} \frac{1}{9} = \lim_{x \to a} \frac{(x-a)^4}{9} \frac{9}{1} = \infty$ = lim _ 91 Cx) = ? x+a (x-a) = 92 (x) Ejercicio: Calcular el limite lim x-1 X+1 Vx-1 Sol: Notemos lim (-Tx-1)= f: [0,+∞) → R x -1 Por otro lado: lim (x-1) = 1-2=0 3 a2-b2- (a+b) (a-b) X-1 3- 03- P3 = (a-P) (a3 1 of A) 6120 $\lim_{X \to 1} \frac{X-1}{\sqrt{X}-1} = \lim_{X \to 1} \frac{X-1}{\sqrt{X}-1} \left(\frac{\sqrt{X}+1}{\sqrt{X}+1} \right)$ = lim (x-1) (-Tx+1) X+1 (-1x)2-12 $= \lim_{X \to 1} \frac{(x \to 2) (\sqrt{x} + 1)}{x \to 1}$ = lim (\tau +1) = \tau + 1 = 2 //

Recordernos Yase verifico que

(C)'=0; (x)'=1; (x²)'=2x;

(x³)'=3x²...; (xn)'=nxn-1

$$P(x) = Q_0 + Q_1 + Q_1 x^2 + ... + Q_1 x^n$$

Seria

 $P(x) = Q_0 + Q_1 + Q_1 x^2 + ... + Q_1 x^n$
 $= (Q_0)' + (Q_1 x)' + (Q_2 x^2)' + ... + (Q_1 x^n)'$
 $= Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $= Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $= Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_1 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_2 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_3 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_4 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^2)' + ... + Q_1 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^n)'$
 $Q_5 = Q_1 + Q_2 (X^n)'$
 $Q_5 = Q_1$

$$= \frac{(10x^{4} - 3x^{2})(x^{10} - 5) - (2x^{5} - x^{3} + 2)(10x^{9})}{(x^{40} - 5)^{2}}$$

$$= \frac{(10x^{4} - 3x^{2})(x^{10} - 5)^{2}}{(x^{40} - 5)^{2}}$$

$$= \frac{(10x^{4} - 3x^{2})(x^{40} - 5)^{2}}{(x^{40} - 5)^{2}}$$

$$= \frac{(10x^{4} - 3x^{4})(x^{40} - 5)^{$$

$$= \frac{1}{n} \left(\frac{1}{\sqrt{x}} \right)^{n-2}$$

$$= \left(\frac{1}{n} \right) \left(\frac{1}{\sqrt{x}} \right)^{n-2}$$

$$= \frac{1}{n} \left(\frac{1}{\sqrt{x}} \right)^{1} = \frac{1}{n} \times \frac{1}{n} - 1$$

$$= \frac{1}{n} \times \frac$$

$$\left(\frac{\log_e x}{\log_e 3}\right)^1 = \left(\frac{\ln x}{\ln 3}\right)^1 = \left(\frac{1}{\ln 3}\right)^1 = \frac{1}{2\ln 3} \left(\frac{\ln x}{\ln 3}\right)^1$$