Заметки курса «Гармонический анализ»

Источник: an_explanations.pdf

Лектор: Карасёв Р.Н.

Восторженные читатели: Хоружий Кирилл

Примак Евгений

От: 10 июня 2021 г.

Содержание

1	Банаховы пространства	•
	1.1 Эпсилон-сети, предкомпактность и вполне ограниченность	2
	1.2 Теорема Арцела-Асколи	2
2	Гильбертовы пространства	2
	2.1 Полнота и замкнутость ортонормированной системы в гильбертовом пр-ве	6

1 Банаховы пространства

1.1 Эпсилон-сети, предкомпактность и вполне ограниченность

Def 1.1. Для топологического пространства M, его $X\subseteq M$ — **предкомпактным**, если \overline{X} — компактно.

Def 1.2. $X \subseteq M$ называется **вполне ограниченным**, если $\forall \varepsilon > 0 \, \exists N \subseteq X$ – конечная ε -сеть. (равносильно и утверждение с $N \subset X$) Или $\forall \varepsilon > 0$, X покрывается конченым набором шаров с центрами в X и радиусами ε .

Thr 1.3. Для полного метрического пространства M, его $X \subseteq M$ – компактно $\iff X$ – вполне ограничено.

1.2 Теорема Арцела-Асколи

Def 1.4. Множество функций $X \subset C(K)$ (над метрическим компактом) **равностепенно непрерывно** , если

$$\forall \varepsilon > 0 \, \exists \delta > 0 \colon \forall f \in X \, \forall x,y \in K, \, \rho(x,y) < \delta \Leftrightarrow |f(x) - f(y)| < \varepsilon.$$

Если все функции ещё и L-липшецивы, то $|f(x) - f(y)| = L\rho(x,y)$.

Def 1.5. Модуль непрерывности липшецивых функций:

$$\omega_X(\delta) = \sup \left\{ |f(x) - f(y)| \mid f \in X, \, \rho(x, y) < \delta \right\}.$$

И тогда, X – равностепенно непрерывно $\iff \omega_X(\delta) \to 0$ при $\delta \to +0$.

Thr 1.6 (Арцела-Асколи). *Множество* $X \subset C(K)$ предкомпактно $\iff X$ равномерно ограниченно и равностепенно непрерывно.

2 Гильбертовы пространства

Def 2.1. Если норма в банаховом E порождается +определённым $||x|| = \sqrt{(x,x)}$, то E — **гильбертово**.

Thr 2.2 (Неравнество Коши-Буняковского). $|(x,y)| \le ||x|| \cdot ||y||$

$$(ax + by, ax + by) \geqslant 0 \quad \Leftrightarrow \quad |a|^2 ||x||^2 + a\bar{b}(x, y) + b\bar{a}(x, y) + |b|^2 ||y||^2 \geqslant 0 \quad \Leftrightarrow \quad |a|^2 ||x||^2 + 2\operatorname{Re} a\bar{b}(x, y) + |b|^2 ||y||^2 \geqslant 0$$

Thr 2.3. Вещественное банахаво E – гильбертово **тогда** и **только тогда**, когда $\forall x,y \in E$:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

2.1 Полнота и замкнутость ортонормированной системы в гильбертовом пр-ве

Def 2.4. Последовательность векторов (φ_k) — **полная система векторов** в банаховом E, если $\overline{\langle \varphi_k \rangle} = E$. Другими словами $\forall x \in E$ и $\forall > 0$ найдется конечная $a_1\varphi_1 + \ldots + a_n\varphi_n$ такая, что $||x - a_1\varphi_1 - \cdots - a_n\varphi_n|| < \varepsilon$.