

SEQUENCE LISTING

YUAN, Chong-Sheng

<120> DETERMINATION OF IONS USING ION-SENSITIVE ENZYMES

<130> 466992001100

<140> US 10/665,883

<141> 2003-09-19

<160> 18

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Chimeric protein

<400> 1

Met Gly Gly Ser Gly Asp Asp Asp Asp Leu Ala Leu
1 5 10

<210> 2

<211> 356

<212> PRT

<213> Artificial Sequence

<220>

<223> Chimeric protein

<400> 2

Ala Leu Glu Arg Glu Leu Leu Val Ala Thr Gln Ala Val Arg Lys Ala
1 5 10 15Ser Leu Leu Thr Lys Arg Ile Gln Ser Glu Val Ile Ser His Lys Asp
20 25 30Ser Thr Thr Ile Thr Lys Asn Asp Asn Ser Pro Val Thr Thr Gly Asp
35 40 45Tyr Ala Ala Gln Thr Ile Ile Asn Ala Ile Lys Ser Asn Phe Pro
50 55 60Asp Asp Lys Val Val Gly Glu Ser Ser Gly Leu Ser Asp Ala
65 70 75 80Phe Val Ser Gly Ile Leu Asn Glu Ile Lys Ala Asn Asp Glu Val Tyr
85 90 95Asn Lys Asn Tyr Lys Asp Asp Phe Leu Phe Thr Asn Asp Gln Phe
100 105 110Pro Leu Lys Ser Leu Glu Asp Val Arg Gln Ile Ile Asp Phe Gly Asn
115 120 125Tyr Glu Gly Gly Arg Lys Gly Arg Phe Trp Cys Leu Asp Pro Ile Asp
130 135 140Gly Thr Lys Gly Phe Leu Arg Gly Glu Gln Phe Ala Val Cys Leu Ala
145 150 155 160Leu Ile Val Asp Gly Val Val Gln Leu Gly Cys Ile Gly Cys Pro Asn
165 170 175

Leu Val Leu Ser Ser Tyr Gly Ala Gln Asp Leu Lys Gly His Glu Ser

180	185	190
Phe Gly Tyr Ile Phe Arg Ala Val Arg	Gly Leu Gly Ala	Phe Tyr Ser
195	200	205
Pro Ser Ser Asp Ala Glu Ser Trp	Thr Lys Ile His	Val Arg His Leu
210	215	220
Lys Asp Thr Lys Asp Met Ile	Thr Leu Glu	Gly Val Glu Lys Gly His
225	230	235
Ser Ser His Asp Glu Gln Thr Ala Ile	Lys Asn Lys	Leu Asn Ile Ser
245	250	255
Lys Ser Leu His Leu Asp Ser Gln Ala	Lys Tyr Cys	Leu Leu Ala Leu
260	265	270
Gly Leu Ala Asp Val Tyr Leu Arg	Leu Pro Ile Lys	Leu Ser Tyr Gln
275	280	285
Glu Lys Ile Trp Asp His Ala Ala	Gly Asn Val	Ile Val His Glu Ala
290	295	300
Gly Gly Ile His Thr Asp Ala Met	Glu Asp Val	Pro Leu Asp Phe Gly
305	310	315
Asn Gly Arg Thr Leu Ala Thr Lys	Gly Val Ile Ala Ser	Ser Gly Pro
325	330	335
Arg Glu Leu His Asp Leu Val Val	Ser Thr Ser Cys Asp	Val Ile Gln
340	345	350
Ser Arg Asn Ala		
355		

<210> 3
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Chimeric protein

<400> 3
Lys Gly Glu Leu Glu Gly Leu Pro Ile Pro Asn Pro Leu Leu Arg Thr
1 5 10 15
Gly

<210> 4
<211> 392
<212> PRT
<213> Artificial Sequence

<220>
<223> Chimeric protein

<400> 4
Met Gly Gly Ser Gly Asp Asp Asp Asp Leu Ala Leu Ala Leu Glu Arg
1 5 10 15
Glu Leu Leu Val Ala Thr Gln Ala Val Arg Lys Ala Ser Leu Leu Thr
20 25 30
Lys Arg Ile Gln Ser Glu Val Ile Ser His Lys Asp Ser Thr Thr Ile
35 40 45
Thr Lys Asn Asp Asn Ser Pro Val Thr Thr Gly Asp Tyr Ala Ala Gln
50 55 60
Thr Ile Ile Ile Asn Ala Ile Lys Ser Asn Phe Pro Asp Asp Lys Val
65 70 75 80
Val Gly Glu Glu Ser Ser Ser Gly Leu Ser Asp Ala Phe Val Ser Gly
85 90 95

Ile	Leu	Asn	Glu	Ile	Lys	Ala	Asn	Asp	Glu	Val	Tyr	Asn	Lys	Asn	Tyr
100									105				110		
Lys	Lys	Asp	Asp	Phe	Leu	Phe	Thr	Asn	Asp	Gln	Phe	Pro	Leu	Lys	Ser
115									120				125		
Leu	Glu	Asp	Val	Arg	Gln	Ile	Ile	Asp	Phe	Gly	Asn	Tyr	Glu	Gly	Gly
130									135				140		
Arg	Lys	Gly	Arg	Phe	Trp	Cys	Leu	Asp	Pro	Ile	Asp	Gly	Thr	Lys	Gly
145									150				155		
Phe	Leu	Arg	Gly	Glu	Gln	Phe	Ala	Val	Cys	Leu	Ala	Leu	Ile	Val	Asp
									165				170		
Gly	Val	Val	Gln	Leu	Gly	Cys	Ile	Gly	Cys	Pro	Asn	Leu	Val	Leu	Ser
									180				185		
Ser	Tyr	Gly	Ala	Gln	Asp	Leu	Lys	Gly	His	Glu	Ser	Phe	Gly	Tyr	Ile
									195				200		
Phe	Arg	Ala	Val	Arg	Gly	Leu	Gly	Ala	Phe	Tyr	Ser	Pro	Ser	Ser	Asp
									210				215		
Ala	Glu	Ser	Trp	Thr	Lys	Ile	His	Val	Arg	His	Leu	Lys	Asp	Thr	Lys
									225				230		
Asp	Met	Ile	Thr	Leu	Glu	Gly	Val	Glu	Lys	Gly	His	Ser	Ser	His	Asp
									245				250		
Glu	Gln	Thr	Ala	Ile	Lys	Asn	Lys	Leu	Asn	Ile	Ser	Lys	Ser	Leu	His
									260				265		
Leu	Asp	Ser	Gln	Ala	Lys	Tyr	Cys	Leu	Leu	Ala	Leu	Gly	Leu	Ala	Asp
									275				280		
Val	Tyr	Leu	Arg	Leu	Pro	Ile	Lys	Leu	Ser	Tyr	Gln	Glu	Lys	Ile	Trp
									290				295		
Asp	His	Ala	Ala	Gly	Asn	Val	Ile	Val	His	Glu	Ala	Gly	Gly	Ile	His
									305				310		
Thr	Asp	Ala	Met	Glu	Asp	Val	Pro	Leu	Asp	Phe	Gly	Asn	Gly	Arg	Thr
									325				330		
Leu	Ala	Thr	Lys	Gly	Val	Ile	Ala	Ser	Ser	Gly	Pro	Arg	Glu	Leu	His
									340				345		
Asp	Leu	Val	Val	Ser	Thr	Ser	Cys	Asp	Val	Ile	Gln	Ser	Arg	Asn	Ala
									355				360		
Lys	Gly	Glu	Leu	Glu	Gly	Leu	Pro	Ile	Pro	Asn	Pro	Leu	Leu	Arg	Thr
									370				375		
Gly	His														
									385				390		

<210> 5
<211> 1176
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence encoding a chimeric protein

<400> 5
atgggcggat ccgggtatga cgatgacctc gcccttgcat tggaaagaga attattggtt 60
gcaactcaag ctgtacgaaa ggcgtcttta ttgactaaga gaattcaatc tgaagtgatt 120
tctcacaagg actccactac tattaccaag aatgataatt ctccagtaac cacaggtat 180
tatgctgcac aaacgatcat cataaatgct atcaagagca attttcctga tgataaggt 240
gttggtaag aatcctcatc aggattgagc gacgcattcg tctcaggaaat tttaaacgaa 300
ataaaaagcca atgacgaat ttataacaag aattataaaa aggtatgtt tctgtttaca 360
aacgatcagt ttccgctaaa atctttggag gacgtcaggc aaatcatcga ttccggcaat 420
tacgaagggt gtagaaaaagg aagattttgg tggatggatc ctattgacgg aaccaagggg 480
tttttaagag gtgaacagtt tgcagtatgt ctggccttaa ttgtggacgg tggatgttcag 540
cttgggttta ttggatgccc caacttagtt ttaagttctt atggggccca agatttgaaa 600
ggccatgagt catttggta tatcttcgt gctgttagag gtttaggtgc cttctattct 660
ccatcttcag atgcagatgc atggaccaaa atccacgatc gacacttaaa agacactaaa 720

gacatgatta cttagaggg agttaaaaag ggacactcct ctcatgatga acaaactgct 780
atcaaaaaca aactaaatat atccaaatct ttgcacttgg attctcaagc caagtactgt 840
ttgttagcat tgggcttagc agacgtatat ttacgtctgc ctatcaaact ttcttaccaa 900
gaaaagatct gggaccatgc tgcaggcaac gttattgtcc atgaagctgg aggtatccat 960
acagatgcc a tggaaatgt tcctctagac ttccgttaacg gtagaacgct agctacgaag 1020
ggagttatacg cgtcaagtgg cccacgcgag ttacatgact tggtggtgtc tacatcatgc 1080
gatgtcattc agtcaagaaa cgccaaggc gagcttgaag gtttgccat ccctaaccct 1140
ctcctccgta ccggcatca tcaccatcac cattga 1176

<210> 6
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 6
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 7
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 8
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 8
Cys Gln Asp Leu Pro Gly Asn Asp Asn Ser Thr
1 5 10

<210> 9
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 9
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
1 5 10

<210> 10
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 10
His His His His His His
1 5

<210> 11
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 11
Asp Thr Tyr Arg Tyr Ile
1 5

<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 12
Glu Tyr Met Pro Met Glu
1 5

<210> 13
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 13
Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg
1 5 10

<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 14

Ser Phe Pro Gln Phe Lys Pro Gln Glu Ile
1 5 10

<210> 15
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 15
Lys Gly Phe Ser Tyr Phe Gly Glu Asp Leu Met Pro
1 5 10

<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 16
Gln Tyr Pro Ala Leu Thr
1 5

<210> 17
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 17
Gln Arg Gln Tyr Gly Asp Val Phe Lys Gly Asp
1 5 10

<210> 18
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 18
Glu Val His Thr Asn Gln Asp Pro Leu Asp
1 5 10