Information design for scientific figures

Part 1 Introduction

Design of scientific figures

Graphic design

Design for reading

Information design

Design for learning

Design is not optional

Many readers will

scan your abstract and browse your figures

to determine if your paper is relevant to them.

Types of visual representations we will discuss

Data figures

Data figures published in peer-reviewed papers.
Can include charts, graphs, imaging, and computer generated scientific models.

Figurative illustrations

Illustrated process or phenomenon. Can appear as summary figures in news and analysis pieces, press releases, grant applications, websites and posters.

Part 2 Best practice for data figures

Compare length of bars

Relative magnitude estimation [Mackinlay 86]

What is encoded must be decoded

Salience

Setting an object apart from its surroundings to create contrast

Color name	RGB (1-255)		
Black	0, 0, 0		
Orange	230, 159, 0		
Sky blue	86, 180, 233		
Bluish green	0, 158, 115		
Blue	0, 114, 178		
Vermillion	213, 94, 0		

Simplify and edit

Like good writing, figures are better when clear and concise

resist decoration

remove redundant elements

is subjective

can misrepresent data

Avoid the rainbow

Shifts shown in circles do not match change in value

Gradation from 10-90% black produces even transitions

Color scales with sharp transitions can exaggerate data ranges.

When colors have uneven saturation, data can be underrepresented

choosing a color palette

When mapping color to quantitative data: seek help

Experts have done the work for you

colorbrewer2.org colorusage.arc.nasa.gov/ColorTool.php

For categorical data: do it yourself

Spiral technique: use a color picker to select a palette that varies in hue, saturation and brightness.

blindness

Avoid red and green combinations

Color	Color name	RGB (1-255)	CMYK (%)	Р	D
	Black	0, 0, 0	0, 0, 0, 100		
	Orange	230, 159, 0	0, 50, 100, 0		
	Sky blue	86, 180, 233	80, 0, 0, 0		
	Bluish green	0, 158, 115	97, 0, 75, 0		
	Yellow	240, 228, 66	10, 5, 90, 0		
	Blue	0, 114, 178	100, 50, 0, 0		
	Vermillion	213, 94, 0	0, 80, 100, 0		
	Reddish purple	204, 121, 167	10, 70, 0, 0		

Colorblind friendly color palette

Data density

Avoid overlapping data. Use small multiples.

Avoid symbol overload. Use multiple views of the same data for clarity.

Resolution

Resolution is measured by calculating the number of pixels within a linear unit rather than area.

Adding pixels after an image is created is called **artificial enlargement.**Software will insert pixels with estimated data, not real data.

Capture images in the highest resolution possible from the beginning.

Plan for it in your experimental set-up.

Resolution

High resolution images are needed to properly communicate your research.

- journal covers
- press releases
- journalistic outputs
- websites

Labels and arrows

Use consistent line lengths and angles with uniform spacing. A grid is helpful.

Use arrows when the relationship is directional, not simply as a pointer.

Ideal proportions for arrow heads

Typography

Helvetica Arial

Times New Roman

Recommended fonts for legibility

Ensure good contrast

contrast

contrast

Size

7pt is ideal for print figures

Part 3

Tips for creating figurative illustrations

Figurative illustration: case study

Chronic effects of acute infections

Acute infection of mice with an intestinal pathogen leads to long-lasting inflammation that is maintained by intestinal microorganisms.

Figurative illustration

Purpose | show immune response to intestinal antigens

Key elements | animal, intestines, lymphatics

Useful context *intact vs. leaky lymphatics*

Details | dendritic cell, inflamed node, leaky vessel

1. Establish information hierarchy

Figurative illustration

2. Sketch and refine

Figurative illustration

3. Artist creates in illustration software

Further reading

The collected Points of View

available here:

bit.ly/21kH6pO

\$7.99

Many figures in this presentation are from the *Points of View* column in *Nature Methods*. Special thanks to Bang Wong and Martin Krzywinski.

Thank you

naturegraphics.tumblr.com @kellybkrause