Homework 3 solutions

(1)

(a)

This can be done by drawing the diagram with the line going from the x-axis to (0,1), touching the circle. There is a small right-angled triangle with catheti 1-y and x, and a larger one with catheti 1 and t, the latter being the x-value of the point we want to find. Setting up the equation for similar triangles, we have $\frac{1}{1-y} = \frac{t}{x} \implies t = \frac{x}{1-y}$, which gives the point on the x-axis $\left(\frac{x}{1-y},0\right)$.

(b)

Once again set up the same diagram. We have the equation from before $t=\frac{x}{1-y} \implies x=t(1-y)$. This time we have two unknowns so we need two equations, the second one given by the circle: $x^2+y^2=1 \implies x^2=1-y^2 \implies t^2(1-y)^2=1-y^2$, using the first equation. This equation will have two roots, but one is the root y=1, which simply describes the topmost point of the circle and thus is useless to us. We can therefore divide through by y-1, giving $t^2(1-y)=1+y \implies t+t^2y=t^2-1 \implies y(t^2+1)=t^2-1 \implies y=\frac{t^2-1}{t^2+1}$. This is the value of y in the point (x,y). To find x, use $x^2=1-y^2 \implies \frac{x^2}{1-y^2}=1$. Using this and the fact that $t=\frac{x}{1-y}$, divide both sides by t: $\frac{1}{t}=\frac{x^2}{1-y^2}\cdot\frac{1-y}{x}=\frac{x}{1+y} \implies t=\frac{1+y}{x} \implies x=\frac{1+y}{t}$. Using the previous solution for $y=\frac{t^2-1}{t^2+1} \implies 1+y=\frac{t^2+1+t^2-1}{t^2+1}=\frac{2t^2}{t^2+1}$, we have $x=\frac{1+y}{t}=\frac{2t}{t^2+1}$.

(c)

For every point on the unit circle about the origin other than (0,1), we have the function $(x,y)\mapsto \left(\frac{x}{1-y},0\right)$ that maps the point to a point on the x-axis (this function does not work for (0,1) since $y=1\implies 1-y=0$. Also, for every point (t,0) we have the function $t\mapsto \left(\frac{2t}{t^2+1},\frac{t^2-1}{t^2+1}\right)$ that maps the point to a point on the unit circle about the origin. Thus, excluding (0,1), we have a bijection between the x-axis and the points on the unit circle about the origin. The points on the x-axis inside the semicircle map to the southern hemisphere, since inside the semicircle we have $1\geq t\geq -1\implies t^2\leq 1$ and therefore $y=\frac{t^2-1}{t^2+1}\leq 0$. All other points on the x-axis map to points in the northern hemisphere, since for them, y>0.

(d)

We have the equation $x^2+y^2=1$; using $x=\frac{2t}{t^2+1}$ and $y=\frac{t^2-1}{t^2+1}$ we have $\left(\frac{2t}{t^2+1}\right)^2+\left(\frac{t^2-1}{t^2+1}\right)=1 \implies (2t)^2+(t^2-1)^2=(t^2+1)^2$. This gives us a method of generating Pythagorean triples: sets of integers a,b and c such that $a^2+b^2=c^2$: for any $t\in\mathbb{Z},\ a=2t,\ b=t^2-1$ and $c=t^2+1$.

(2)

(a)

Proof. We are given that $g(\vec{x})$ is continuous on all values of \vec{x} , including $\vec{f}(\vec{x})$, that is, for any $\epsilon > 0$ there exists $\delta > 0$ such that $\left\| \vec{f}(\vec{x}) - \vec{f}(\vec{y}) \right\| < \delta \implies |g(\vec{f}(\vec{x})) - g(\vec{f}(\vec{y}))| < \epsilon$. We also know that \vec{f} is continuous, that is, for all $\delta > 0$ there exists η such that $\|\vec{x} - \vec{y}\| < \eta \implies \|\vec{f}(\vec{x}) - \vec{f}(\vec{x})\| < \delta$. Therefore, for all $\epsilon > 0$ there exists $\eta > 0$ such that $\|\vec{x} - \vec{y}\| < \eta \implies \|\vec{f}(\vec{x}) - \vec{f}(\vec{x})\| < \delta \implies |g(\vec{f}(\vec{x})) - g(\vec{f}(\vec{y}))| < \epsilon$. This shows that $g \circ \vec{f}$ is continuous on all values.

(b)

Proof. Let $f(\vec{x}) = x_1 + x_2$. Assume $\|\vec{y} - \vec{x}\| < \delta$. $\|\vec{y} - \vec{x}\| = \sqrt{(y_1 - x_1)^2 - (y_2 - x_2)^2} < y_1 - x_1, y_2 - x_2$. Therefore, $y_1 - x_1 < \delta, y_2 - x_2 < \delta$. $\|f(\vec{y}) - f(\vec{x})\| = |y_1 + y_2 - x_1 - x_2| \le |y_1 - x_1| + |y_2 - x_2| < 2\delta$. Therefore, stting $\epsilon > 2\delta$, for example $\epsilon = 3\delta$ would satisfy the continuity property, therefore $f(\vec{x})$ is continuous.

(c)

Proof. Let $f(\overrightarrow{x}) = x_1 \cdot x_2$. Fix $\epsilon > 0$. We need to find a δ such that $\|\overrightarrow{x} - \overrightarrow{y}\| < \delta$ implies that $\|f(\overrightarrow{x}) - f(\overrightarrow{y})\| > \epsilon$. $\|f(\overrightarrow{x}) - f(\overrightarrow{y})\| = |x_1x_2 - y_1y_2| = |(x_1x_2 - x_1y_2) + (x_1y_2 - y_1y_2)| \le |x_1||x_2 - y_2| + |y_2||x_1 - y_1|$, using the triangle inequality. We also know that this is $\le |x_1|\delta + |y_2|\delta$, since $\|\overrightarrow{x} - \overrightarrow{y}\| < \delta$, and $\|\overrightarrow{x} - \overrightarrow{y}\| \ge |x_1 - y_1|$, $|x_2 - y_2|$, using the definition of the norm. Applying another algebraic trick, $|y_2| = |x_2 + y_2 - x_2| \le |x_2| + |y_2 - x_2| < |x_2| + \delta$. Apply the inequality for δ : $|x_1|\delta + |y_2|\delta < |x_1|\delta + |x_2|\delta + \delta^2$. If $\delta \le 1$, $\delta^2 \le \delta$. So $|x_1|\delta + |y_2|\delta < |x_1|\delta + |y_2|\delta + \delta^2 \le \delta(|x_1| + |x_2| + 1) \le \epsilon$. So $\delta = \min(\frac{\epsilon}{|x_1| + |x_2| + 1}, 1)$.

(d)

Proof. We know that if \overrightarrow{f} and g are both continuous then so is $g \circ \overrightarrow{f}$. If g(x,y) = x + y (a continuous function) then $g \circ \overrightarrow{f} = f_1 + f_2$, which we know to be continuous. If g(x,y) = xy (another continuous function), then, again, $g \circ \overrightarrow{f} = f_1 \cdot f_2$ is also continuous.

(e)

You would need to show that $g(x,y)=\frac{x}{y}$ is continuous on all points, which it is not, since it is undefined whenever y=0. To show that $\frac{f_1}{f_2}$ is continuous in the same way as above, we would need to know that $f_2(x)>0 \ \forall \ x\in \mathbb{R}$.

(3)

First, we must show that sin(x) is continuous. For this, we can express $|sin(x) - sin(y)| = \left|2\cos\frac{x+y}{2}\sin\frac{x-y}{2}\right| \leq 2\left|\sin\frac{x-y}{2}\right|$, since $-1 \leq cos(x) \leq 1$. If we have $|x-y| < \delta$, it is clear that $\left|\frac{x-y}{2}\right| < \delta$. $2\left|\sin\frac{x-y}{2}\right| \leq 2\left|\frac{x-y}{2}\right| < 2\delta$, since $|sin(x)| \leq |x| \ \forall \ x \in \mathbb{R}$. Therefore, the continuity property is satisfied if, for example, $\delta = \frac{\epsilon}{2}$.

Proof. We know that f(x) = sin(x), $f(x) = e^x$, f(x) = x are continuous on all values of x, and $f(x) = \frac{1}{x}$ is continuous on all values of x other than x = 0. We also know, from question (2), that the composition of two continuous functions is also continuous. $f(x) = x^2$ is therefore continuous since it is the composition $g \circ \vec{h}$ where g(x,y) = xy and $\vec{h}(x) = (x,x)$, both continuous functions (\vec{h}) is continuous since its component functions are continuous). By the same reasoning, $f(x,y,z) = x^2 + y^2 + z^2$ is continuous, since it is the composition g(h(x),h(y),h(z)) where g(x,y,z) = x + y + z, and $h(x) = x^2$, two continuous functions. The exact same reasoning gives us that $f(x,y,z) = e^{z-x+y}$ is continuous for all values. $f(x,y,z) = \frac{1}{e^{z-x+y}}$ is also continuous, since it is a composition of the former function and $g(x) = \frac{1}{x}$. g(x) is not continuous on x = 0, but $e^x > 0 \ \forall \ x \in \mathbb{R}$, so we can still compose these two functions. $f(x,y,z) = sin(x^2 + y^2 + z^2)$ is continuous, as once again it is the composition of two continuous functions, $x \mapsto sin(x)$ and $(x,y,z) \mapsto x^2 + y^2 + z^2$. Finally, $f(x,y,z) = \frac{sin(x^2+y^2+z^2)}{e^{z-x+y}}$, since it is the product of the continuous functions $sin(x^2 + y^2 + z^2)$ and $\frac{1}{e^{z-x+y}}$; the product of two continuous functions is continuous, per (2), so f(x,y,z) is continuous.

(4)

(a)

Any function $f(x) = \frac{k}{x}$ where k is a finite constant will satisfy this, since its values will become arbitrarily large as x tends to 0.

(b)

An example of this is $f(x) = tan^{-1}(x)$, since $\frac{-\pi}{2} < tan^{-1}(x) < \frac{\pi}{2} \ \forall \ x \in \mathbb{R}$.

(c)

An example of this is the sequence $f_n(x)=x^n$. For any finite n, f_n is a product of several functions g(x)=x, and therefore continuous. However, $h(x)=\lim_{n\to\infty}f_n(x)=\begin{cases} 0 & 0\leq x<1\\ \infty & x=1 \end{cases}$. This function does not take any continuous function that takes values a and b must also take all values between a and b.

(5)

For any point $\overrightarrow{a}=(a,b)\in S$, let $\epsilon<1-\sqrt{a^2+b^2}<0$. Then, the greatest norm of any point in $B_{\epsilon}(\overrightarrow{x})$ is strictly less than $\|a\|+\epsilon=\sqrt{a^2+b^2}+1-\sqrt{a^2+b^2}=1$, which means any point in $B_{\epsilon}(\overrightarrow{x})$ is also in S, that is, S is open. Let C be the set of all points on the unit circle about the origin. The norm of any point in C is exactly 1; but the open ball around any point in C, with radius ϵ , will contain a point with norm $1-\epsilon$, which is inside S, and a point with norm $1+\epsilon$, which is outside S. Therefore, the points in C are the boundary points of S.

(6)

Such an example is the set $S = \left\{\frac{1}{n} | n \in \mathbb{Z}^+, n \geq 1\right\} \subseteq \mathbb{R}$. Any interval between two distinct rational numbers is of the form $\{n | a < n < b\}$, for some $a, b \in \mathbb{Q}$, which is clearly open. The union of infinitely many of these sets is also open, and is the complement to S, which is therefore closed. Any single point in \mathbb{R} , which is what S consists of, is also closed.