Lecture Module - Eigenvalues and Eigenvectors

ME3001 - Mechanical Engineering Analysis

Mechanical Engineering
Tennessee Technological University

Module 3 - Eigenvalues and Eigenvectors

Module 3 - Eigenvalues and Eigenvectors

- Topic 1 Definition of Eigenvalue and Eigenvector
- Topic 2 Engineering Applications
- Topic 3 -

Topic 1 - Definition of Eigenvalue and Eigenvector

- Mathematical Definition of Eigenvalue and Eigenvector
- Standard Eigenvalue Problem
- The Geometrical Explanation
- A Simple Example by Hand

Mathematical Definition of Eigenvalue and Eigenvector

Did you study this in calculus? Differential Equations?

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector whose direction does not change when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

$$T(v) = \lambda v$$

Mathematical Definition of Eigenvalue and Eigenvector

where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.

If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation.

$$[A]v = \lambda v$$

Standard Eigenvalue Problem

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \cdot & & \\ & \cdot & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

$$\left(\begin{bmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
& \cdot & & \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{bmatrix} - \lambda \begin{bmatrix}
1 & 0 & \dots & 0 \\
0 & 1 & \dots & 0 \\
0 & 0 & 1 & 0 \\
& \cdot & & \\
0 & 0 & \dots & 1
\end{bmatrix} \right) \times \begin{bmatrix}
x_1 \\
x_2 \\
\cdot \\
\cdot \\
x_n
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{bmatrix}$$

Standard Eigenvalue Problem

The Equations

$$(a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0$$
...
...

 $a_{n1}x_1 + a_{n2}x_2 + ... + (a_{nn} - \lambda)x_n = 0$

The Matrix Form

$$\begin{pmatrix} (a_{11} - \lambda) & a_{12} & \dots & a_{1n} \\ a_{21} & (a_{22} - \lambda) & \dots & a_{2n} \\ & \dots & & & \\ & \dots & & & \\ a_{n1} & a_{n2} & \dots & (a_{nn} - \lambda) \end{pmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

The Geometrical Explanation

Look at the second matrix form closely

$$([A] - \lambda[I])\{x\} = \{0\}$$

First we need to realize that this matrix system is *Homogeneous*. This follows a different rule regarding the existence of a solution.

A *Homogeneous* system has a non-trivial solution if and only if the determinant of the coefficient matrix is zero.

$$|[A]| = 0$$

Therefore the following must be true

$$|[A] - \lambda[I]| = 0$$

This leads to a long n^{th} order polynomial in terms of λ . This will have n roots which may be real or complex.

The Geometrical Explanation

3x3 example

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= aei + bfg + cdh - ceg - bdi - afh.$$

Mathematical Definition of Eigenvalue and Eigenvector Standard Eigenvalue Problem The Geometrical Explanation A Simple Example by Hand

The Geometrical Explanation

Mathematical Definition of Eigenvalue and Eigenvector Standard Eigenvalue Problem The Geometrical Explanation A Simple Example by Hand

The Geometrical Explanation

Mathematical Definition of Eigenvalue and Eigenvector Standard Eigenvalue Problem The Geometrical Explanation A Simple Example by Hand

A Simple Example by Hand

Topic 2 - Engineering Applications

- Forms of Standard Eigenvalue Problem
- Solvability of Eigenvalue Problem
- Application 1 Forging Hammer
- Application 2 Principal Stress

This section was written by Mike Renfro and/or others.

Forms of Standard Eigenvalue Problem

Consider a system of equations in algebraic form

$$(a_{11} - \lambda)x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + (a_{22} - \lambda)x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + (a_{nn} - \lambda)x_n = 0$$

This is not a normal system of linear algebraic equations we're used to. For one, there are n equations, but n+1 unknowns (the x_i values, and also λ). This particular system of equations is known as the standard eigenvalue problem.

Forms of Standard Eigenvalue Problem

The three forms shown are all algebraically equivalent. Any system of equations that can be expressed in these forms is a standard eigenvalue problem.

$$\begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

orms of Standard Eigenvalue Problem

Solvability of Eigenvalue Problem Application 1 - Forging Hammer Application 2 - Principal Stress Examples

Form 2

$$\left(\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \right) \begin{Bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{Bmatrix}$$

$$([A] - \lambda [I]) \{x\} = \{0\}$$

Form 3

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$[A] \{x\} = \lambda \{x\}$$

Solvability of the Standard Eigenvalue Problem

Recall form 2 of the standard eigenvalue problem:

$$([A] - \lambda [I]) \{x\} = \{0\}$$

This system of equations has a solution for values of λ that cause the determinant of the coefficient matrix to equal 0, that is:

$$|[A] - \lambda [I]| = 0$$

Characteristic Equation

Expanding out all the terms of the previous determinant

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$

yields a long polynomial in terms of λ . This polynomial will be nth order, and will therefore have n roots, each of which may be real or complex.

General Eigenvalue Problem: Introduction

Many physical systems do not automatically present themselves as a standard eigenvalue problem, even though they can be reformatted as a standard eigenvalue problem. The form of a *general eigenvalue problem* is

$$[A] \{x\} = \lambda [B] \{x\}$$

where [A] and [B] are symmetric matrices of size $n \times n$.

General Eigenvalue Problem Example

A forging hammer of mass m_2 is mounted on a concrete foundation block of mass m_1 . The stiffnesses of the springs underneath the forging hammer and the foundation block are given by k_2 and k_1 , respectively.

General Eigenvalue Problem Example

The system undergoes simple harmonic motion at one of its natural frequencies ω . That is:

$$x_1(t) = \cos(\omega t + \phi_1)$$

$$x_2(t) = \cos(\omega t + \phi_2)$$

$$a_1(t) = -\omega^2 x_1(t)$$

$$a_2(t) = -\omega^2 x_2(t)$$

General Eigenvalue Problem Example

Each mass in the system obeys Newton's second law of motion, that is:

$$\Sigma F = ma$$

Forces on the foundation block:

- forces from the lower springs, which counteracts motion in the x direction at an amount $-k_1x_1$
- forces from the upper springs, which act according to the amount of relative displacement of the masses m_1 and m_2 : $-k_2(x_1-x_2)$

General Eigenvalue Problem Example

The equilibrium equation for the foundation mass is then

$$\Sigma F = ma$$
 $-k_1x_1 - k_2(x_1 - x_2) = m_1a$
 $(-k_2 - k_1)x_1 + k_2x_2 = m_1a$
 $(-k_2 - k_1)x_1 + k_2x_2 = -m_1\omega^2x_1$
 $(k_1 + k_2)x_1 - k_2x_2 = m_1\omega^2x_1$

General Eigenvalue Problem Example

Similarly, the equilibrium equation for the forging hammer mass is

$$-k_2x_1 + k_2x_2 = m_2\omega^2x_2$$

General Eigenvalue Problem Example

So the two equations of motion are

$$(k_1 + k_2)x_1 - k_2x_2 = m_1\omega^2 x_1$$
$$-k_2x_1 + k_2x_2 = m_2\omega^2 x_2$$

or in matrix form

$$\begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \omega^2 \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix}$$

This is a general eigenvalue problem

$$[A]\{x\} = \lambda[B]\{x\}$$

where [A] is the spring matrix, $\{x\}$ is the vector of x values, λ is ω^2 , and [B] is the mass matrix.

Eigenvalue Solutions in MATLAB: Standard Problems

The design of a mechanical component requires that the maximum principal stress to be less than the material strength. For a component subjected to arbitrary loads, the principal stresses σ are given by the solution of the equation

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{bmatrix} \begin{Bmatrix} l_x \\ l_y \\ l_z \end{Bmatrix} = \sigma \begin{Bmatrix} l_x \\ l_y \\ l_z \end{Bmatrix}$$

where the σ values represent normal stresses in the x, y, and z directions, and the τ values represent shear stresses in the xy, xz, and yz planes. The l values represent direction cosines that define the principal planes on which the principal stress occurs.

Eigenvalue Solutions in MATLAB: Standard Problems

Determine the principal stresses and principal planes in a machine component for the following stress condition

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} 10 & 4 & -6 \\ 4 & -6 & 8 \\ -6 & 8 & 14 \end{bmatrix} MP$$

MATLAB Solution

MATLAB Solution

```
>> rao_p431
principalStressList =
    -10.4828
    9.3181
    19.1647
principalDirs =
    -0.2792    0.8343    -0.4754
    0.8905    0.4102    0.1970
    -0.3594    0.3683    0.8574
```

Eigenvalue Solutions in MATLAB: General Problems

Solve the forging hammer problem for the following values:

- $m_1 = 20000 \text{ kg}$
- $m_2 = 5000 \text{ kg}$
- $k_1 = 1 \times 10^7 \text{ N/m}$
- $k_2 = 5 \times 10^6 \text{ N/m}$

Solving Eigenvalue Problems in MATLAB

Solving this eigenvalue problem will yield 2 eigenvalues equal to the square of the system's natural frequencies, and 2 corresponding x vector values that show the relative displacements of the m_1 and m_2 masses at those frequencies.

MATLAB Solution (Part 1)

```
clear all:
% Define spring constants and masses
% for hammer and foundation block
k1=1e7:
k2=5e6;
m1=20000;
m2=5000:
% Define system stiffness matrix
K = [k1 + k2 - k2]
    -k2 k2;
% Define system mass matrix
M = [m1 \ O]
    0 m2];
```

《□》《□》《意》《意》 意

MATLAB Solution (Part 2)

```
% Solve general eigenvalue problem
[X,Omega2] = eig(K,M);
% diag(A) extracts the elements of the
% [A] matrix along the diagonal
Omega=diag(sqrt(Omega2));
% Scale column 1 of the [X] matrix by
% the row 1, column 1 X value
X(:,1)=X(:,1)/X(1,1);
% Scale column 2 of the [X] matrix by
% the row 1, column 2 X value
X(:,2)=X(:,2)/X(1,2);
Omega
```

X

MATLAB Solution (Part 2)

```
% Solve general eigenvalue problem
[X,Omega2] = eig(K,M);
% diag(A) extracts the elements of the
% [A] matrix along the diagonal
Omega=diag(sqrt(Omega2));
% Scale column 1 of the [X] matrix by
% the row 1, column 1 X value
X(:,1)=X(:,1)/X(1,1);
% Scale column 2 of the [X] matrix by
% the row 1, column 2 X value
X(:,2)=X(:,2)/X(1,2);
Omega
```

X

MATLAB Solution (Results)

```
>> rao_ex42
Omega =
    18.9634
    37.2879
X =
    1.0000    1.0000
    1.5616    -2.5616
```