Contents

Ĺ	\mathbf{Ma}	rkgildi og samfelldni 2
		1.0.1 Nauðsynleg undirstaða
	1.1	Markgildi
		1.1.1 Óformleg skilgreining á markgildi
		1.1.2 Skilgreining: Markgildi
		1.1.3 Athugasemd
	1.2	Markgildi frá hægri
		1.2.1 Óformleg skilgreining
		1.2.2 Skilgreining (Markgildi frá hægri)
	1.3	Markgildi frá vinstri
		1.3.1 Óformleg skilgreining
		1.3.2 Skilgreining – Markgildi frá vinstri
	1.4	Reiknireglur fyrir markgildi
		1.4.1 Setning
		1.4.2 Setning
		1.4.3 Athugasemd – Varúð
		1.4.4 Setning – Klemmureglan
	1.5	Algeng markgildi
		1.5.1 Dæmi
		1.5.2 Sýnidæmi – Markgildi með sin
		1.5.3 Sýnidæmi – Markgildi með $ x $
	1.6	Markgildi þegar x stefnir á ∞ og $-\infty$
		1.6.1 Óformleg skilgreining
		1.6.2 Skilgreining
		1.6.3 Óformlega skilgreining
		1.6.4 Skilgreining
	1.7	∞ og $-\infty$ sem markgildi
		1.7.1 ∞ sem markgildi – Óformleg skilgreining 6
		1.7.2 Skilgreining
		1.7.3 Athugasemd – Málvenja
		1.7.4 $-\infty$ sem markgildi – Öformleg skilgreining 6
		1.7.5 Skilgreining
		1.7.6 Athugasemd – Málvenja
	1.8	Samfelldni
		1.8.1 Skilgreining
		1.8.2 Skilgreining
		1.8.3 Setning
		1.8.4 Setning – Samskeyting samfelldra falla
		1.8.5 Athugasemd – Hefð
		1.8.6 Skilgreining
		1.8.7 Dæmi
		1.8.8 Athugasemd – Að búa til samfelld föll
	1.9	Hægri/vinstri samfelldni
		1.9.1 Skilgreining
		1.9.2 Athugasemd
		1.9.3 Skilgreining
		1.9.4 Skilgreining (uppfærð)
		(3

	1.9.5	Athugasemd	8
1.10	Setnin	gar um samfelld föll	8
	1.10.1	Setning – Há- og lággildislögmálið	8
	1.10.2	Athugasemd	8
	1.10.3	Setning – Milligildissetningin	9
	1.10.4	Fylgisetning	9
	1.10.5	Sönnun	O

1 Markgildi og samfelldni

1.0.1 Nauðsynleg undirstaða

- Jafna línu, P.2
- Jafna hrings, P.3
- Hliðrun og skölun grafs, P.3
- (Stranglega) minnkandi og (stranglega) vaxandi föll, 2.8
- Jafnstæð og oddstæð föll, P.4
- Margliður; deiling, þáttun og rætur, P.6
- Tölugildisfallið, P.1
- Príhyrningsójafnan, P.1
- Formerkjafallið, sgn(x), P.5

1.1 Markgildi

1.1.1 Óformleg skilgreining á markgildi

Segjum að f(x) stefni á tölu L þegar x stefnir á a, og ritum $\lim_{x\to a} f(x) = L$, ef við getum tryggt að f(x) sé eins nálægt L og við viljum bara með því að velja x nógu nálægt a.

1.1.2 Skilgreining: Markgildi

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Við segjum að f(x) stefni á tölu L þegar x stefnir á a, og ritum $\lim_{x\to a} f(x) = L$, ef eftirfarandi skilyrði er uppfyllt:

Fyrir sérhverja tölu $\varepsilon > 0$ er til tala $\delta > 0$ þannig að um öll x þannig að

$$0 < |x - a| < \delta$$
, þá er $|f(x) - L| < \varepsilon$.

Við segjum að talan L sé $markgildi \ f(x)$ begar x stefnir á a.

1.1.3 Athugasemd

Pegar athugað er hvort markgildið $\lim_{x\to a} f(x)$ er til og hvert gildi þess er þá skiptir ekki máli hvort f(a) er skilgreint eða ekki.

1.2 Markgildi frá hægri

Óformleg skilgreining 1.2.1

Gerum ráð fyrir að fall f sé skilgreint á opnu bili (a,b). Segjum að f(x) stefni á tölu L $pegar\ x\ stefnir\ \acute{a}\ a\ fr\acute{a}\ hægri,\ og\ ritum\ \lim_{x\to a^+}f(x)=L,\ ef\ við\ getum\ tryggt\ að\ f(x)$ sé eins nálægt L og við viljum bara með því að velja x>a nógu nálægt a.

Skilgreining (Markgildi frá hægri) 1.2.2

Gerum ráð fyrir að fall f sé skilgreint á opnu bili (a,b). Við segjum að f(x) stefni á $t\ddot{o}lu\ L\ begar\ x\ stefnir\ \acute{a}\ a\ fr\'{a}\ hægri, og ritum \lim_{x\to a^+} f(x) = L$, ef eftirfarandi skilyrði er uppfyllt.

Fyrir sérhverja tölu $\varepsilon > 0$ er til tala $\delta > 0$ þannig að um öll x þannig að

$$a < x < a + \delta$$
, bá er $|f(x) - L| < \varepsilon$.

Markgildi frá vinstri 1.3

Óformleg skilgreining 1.3.1

Gerum ráð fyrir að fall f sé skilgreint á opnu bili (b,a). Segjum að f(x) stefni á tölu L þegar x stefnir á a frá vinstri, og ritum $\lim_{x\to a^-} f(x) = L$, ef við getum tryggt að f(x) sé eins nálægt L og við viljum bara með því að velja x < a nógu nálægt a.

Skilgreining – Markgildi frá vinstri 1.3.2

Gerum ráð fyrir að fall f sé skilgreint á opnu bili (b,a). Við segjum að f(x) stefni á $t\ddot{o}lu\ L\ begar\ x\ stefnir\ \acute{a}\ a\ fr\acute{a}\ vinstri,\ og\ ritum\ \lim_{x\to a^-}f(x)=L,\ ef\ eftirfarandi skilyrði$ er uppfyllt.

Fyrir sérhverja tölu $\varepsilon > 0$ er til tala $\delta > 0$ þannig að um öll x þannig að

$$a - \delta < x < a$$
, bá er $|f(x) - L| < \varepsilon$.

1.4 Reiknireglur fyrir markgildi

141 Setning

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Þá er

$$\lim_{x \to a} f(x) = L$$

ef og aðeins ef

$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x).$$

1.4.2 Setning

Gerum ráð fyrir að $\lim_{x\to a} f(x) = L$ og að $\lim_{x\to a} g(x) = M$. Þá gildir

- $$\begin{split} \text{(i)} & \lim_{x\to a} \Big(f(x)+g(x)\Big) = L+M; \\ \text{(ii)} & \lim_{x\to a} \Big(f(x)-g(x)\Big) = L-M; \end{split}$$
- (iii) $\lim_{x\to a} f(x)g(x) = LM$;
- (iv) $\lim_{x\to a} kf(x) = kL$, bar sem k fasti;

- (v) $\lim_{x\to a} f(x)/g(x) = L/M$, að því gefnu að $M\neq 0$;
- (vi) Gerum ráð fyrir að m og n séu heiltölur þannig að $f(x)^{m/n}$ sé skilgreint fyrir öll x á bili (b,c) umhverfis a (en ekki endilega fyrir x=a) og að $L^{m/n}$ sé skilgreint. Pá er $\lim_{x\to a} f(x)^{m/n} = L^{m/n}$.
- (vii) Ef til er bil (b,c) sem inniheldur a þannig að $f(x) \leq g(x)$ fyrir öll $x \in (b,c)$, nema kannski x=a, þá er $\lim_{x\to a} f(x)=L\leq M=\lim_{x\to a} g(x)$.

Athugasemd – Varúð

Liður (i) í setningunni á undan segir að ef markgildin $\lim_{x\to a} f(x)$ og $\lim_{x\to a} g(x)$ eru til þá sé markgildið $\lim_{x\to a} (f(x) + g(x))$ einnig til.

En hún segir **ekki** að ef f og g eru föll þannig að markgildið $\lim_{x\to a} (f(x) + g(x))$ er til, að þá séu markgildin $\lim_{x\to a} f(x)$ og $\lim_{x\to a} g(x)$ einnig til.

1.4.4 Setning – Klemmureglan

Gerum ráð fyrir að $f(x) \leq g(x) \leq h(x)$ fyrir öll x á bili (b,c) sem inniheldur a, nema kannski x = a. Gerum enn fremur ráð fyrir að

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.$$

Pá er $\lim_{x\to a} g(x) = L$.

1.5 Algeng markgildi

1.5.1 Dæmi

- (i) $\lim_{x\to a} c = c$, c fasti
- (ii) $\lim_{x\to a} x = a$
- (iii) $\lim_{x\to a} |x| = |a|$
- (iv) $\lim_{x\to 0} \frac{|x|}{x} = |a|$ (iv) $\lim_{x\to 0} \frac{|x|}{x}$ er ekki til (v) $\lim_{x\to 0^-} \frac{|x|}{x} = -1$ (vi) $\lim_{x\to 0^+} \frac{|x|}{x} = 1$

1.5.2 Sýnidæmi – Markgildi með sin

(i)

$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right) \quad \text{er ekki til}$$

(ii)

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

(iii)

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

1.5.3 Sýnidæmi – Markgildi með |x|

$$\lim_{x \to 0^+} \frac{x}{|x|} = 1$$

$$\lim_{x \to 0^-} \frac{x}{|x|} = -1$$

(iii)
$$\lim_{x\to 0} \frac{x}{|x|} \quad \text{er ekki til}$$

1.6 Markgildi þegar x stefnir á ∞ og $-\infty$

1.6.1 Óformleg skilgreining

Gerum ráð fyrir að fall f sé skilgreint á bili (a, ∞) . Segjum að f(x) stefni á tölu L begar x stefnir á ∞ , og ritum $\lim_{x\to\infty} f(x) = L$, ef við getum tryggt að f(x) sé eins nálægt L og við viljum bara með því að velja x nógu stórt.

1.6.2 Skilgreining

Gerum ráð fyrir að fall f sé skilgreint á bili (a, ∞) . Við segjum að f(x) stefni á tölu L begar x stefnir á ∞ , og ritum $\lim_{x\to\infty} f(x) = L$, ef eftirfarandi skilyrði er uppfyllt:

Fyrir sérhverja tölu $\varepsilon > 0$ er til tala R þannig að um öll x > R gildir að $|f(x) - L| < \varepsilon$.

Fyrir $-\infty$ er þetta gert með sama sniði.

1.6.3 Óformlega skilgreining

Gerum ráð fyrir að fall f sé skilgreint á bili $(-\infty, a)$. Segjum að f(x) stefni á tölu L begar x stefnir á $-\infty$, og ritum $\lim_{x\to-\infty} f(x) = L$, ef við getum tryggt að f(x) sé eins nálægt L og við viljum bara með því að velja x sem nógu stóra mínus tölu.

1.6.4 Skilgreining

Gerum ráð fyrir að fall f sé skilgreint á bili $(-\infty, a)$. Við segjum að f(x) stefni á tölu L begar x stefnir á $-\infty$, og ritum $\lim_{x\to-\infty} f(x) = L$, ef eftirfarandi skilyrði er uppfyllt: Fyrir sérhverja tölu $\varepsilon > 0$ er til tala R bannig að um öll x < R gildir að $|f(x)-L| < \varepsilon$.

1.7 ∞ og $-\infty$ sem markgildi

1.7.1 ∞ sem markgildi – Óformleg skilgreining

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Segjum að f(x) stefni á ∞ begar x stefnir á a, og ritum $\lim_{x\to a} f(x) = \infty$, ef við getum tryggt að f(x) sé hversu stórt sem við viljum bara með því að velja x nógu nálægt a.

1.7.2 Skilgreining

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Við segjum að f(x) stefni á ∞ þegar x stefnir á a, og ritum $\lim_{x\to a} f(x) = \infty$, ef eftirfarandi skilyrði er uppfyllt

fyrir sérhverja tölu B er til tala $\delta > 0$ þannig að um öll x þannig að $0 < |x-a| < \delta$ gildir að f(x) > B.

1.7.3 Athugasemd – Málvenja

Athugið að ∞ er **ekki** tala. Þó að $\lim_{x\to a} f(x) = \infty$ þá er samt sagt að markgildið $\lim_{x\to a} f(x)$ sé ekki til.

1.7.4 $-\infty$ sem markgildi – Óformleg skilgreining

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Segjum að f(x) stefni á $-\infty$ þegar x stefnir á a, og ritum $\lim_{x\to a} f(x) = -\infty$, ef við getum tryggt að f(x) sé hversu lítið sem við viljum bara með því að velja x nógu nálægt a.

1.7.5 Skilgreining

Gerum ráð fyrir að fall f sé skilgreint á opnu bili umhverfis punktinn a, nema hvað hugsanlega er f(a) ekki skilgreint. Við segjum að f(x) stefni á $-\infty$ þegar x stefnir á a, og ritum $\lim_{x\to a} f(x) = -\infty$, ef eftirfarandi skilyrði er uppfyllt

fyrir sérhverja tölu B er til tala $\delta > 0$ þannig að um öll x þannig að $0 < |x - a| < \delta$ gildir að f(x) < B.

1.7.6 Athugasemd – Málvenja

Athugið að $-\infty$ er **ekki** tala. Þó að $\lim_{x\to a} f(x) = -\infty$ þá er samt sagt að markgildið $\lim_{x\to a} f(x)$ sé ekki til.

1.8 Samfelldni

1.8.1 Skilgreining

Látum $A \subseteq \mathbb{R}$ og $x \in A$. Við segjum að x sé $innri\ punktur\ A$ ef A inniheldur opið bil umhverfis x, það er að segja til er tala $\delta > 0$ þannig að $(x - \delta, x + \delta) \subseteq A$.

Ef x er ekki innri punktur A og $x \in A$ þá segjum við að x sé jaðarpunktur A.

1.8.2 Skilgreining

Látum f vera fall og c innri punkt skilgreiningarsvæðis f. Sagt er að f sé samfellt i punktinum c ef

$$\lim_{x \to c} f(x) = f(c).$$

1.8.3 Setning

Látum f og g vera föll. Gerum ráð fyrir að c sé innri punktur skilgreiningarsvæðis beggja fallanna og að bæði föllin séu samfelld í punktinum c. Pá eru eftirfarandi föll samfelld í c:

- (i) f+g
- (ii) f-g
- (iii) fg
- (iv) kf, þar sem k er fasti
- (v) f/g, ef $g(c) \neq 0$
- (vi) $(f(x))^{1/n}$, að því gefnu að f(c) > 0 ef n er slétt tala og $f(c) \neq 0$ ef n < 0.

1.8.4 Setning – Samskeyting samfelldra falla

Látum g vera fall sem er skilgreint á opnu bili umhverfis c og samfellt í c og látum f vera fall sem er skilgreint á opnu bili umhverfis g(c) og samfellt í g(c). Þá er fallið $f \circ g$ skilgreint á opnu bili umhverfis c og er samfellt í c.

1.8.5 Athugasemd – Hefð

Ef fall er skilgreint með formúlu og skilgreingamengið er ekki tilgreint sérstaklega, þá er venjan að líta alla þá punkta þar sem formúlan gildir sem skilgreingarmengi fallsins

1.8.6 Skilgreining

Við segjum að fall f sé samfellt ef það er samfellt í sérhverjum punkti skilgreingarmengisins.

1.8.7 Dæmi

Eftirfarandi föll eru samfelld

- (i) margliður
- (ii) ræð föll
- (iii) ræð veldi
- (iv) hornaföll; sin, cos, tan
- (v) tölugildisfallið |x|

1.8.8 Athugasemd – Að búa til samfelld föll

Með því að nota föllin úr dæminu á undan sem efnivið þá getum við búið til fjölda samfelldra fall með því að beita aðgerðunum úr Setningu 3.14 og Setningu 3.15.

1.9 Hægri/vinstri samfelldni

Rifjum upp skilgreininguna á samfelldni.

1.9.1 Skilgreining

Látum f vera fall og c innri punkt skilgreiningarsvæðis f. Sagt er að f sé samfellt i punktinum c ef

$$\lim_{x \to c} f(x) = f(c).$$

1.9.2 Athugasemd

Þessi skilgreining virkar aðeins fyrir innri punkta skilgreiningarsvæðisins. Þannig að ef ætlunin er að rannsaka samfelldni í jaðarpunktum þá gengur þessi skilgreining ekki. Hins vegar getum við útvíkkað skilgreininguna á samfelldni fyrir hægri og vinstri endapunkta bila með því að einskorða okkur við markgildi frá vinstri og hægri.

1.9.3 Skilgreining

- (i) Fall f er samfellt frá hægri í punkti c ef $\lim_{x\to c^+} f(x) = f(c)$. Hér er gert ráð fyrir að fallið f sé amk. skilgreint á bilinu [c,a).
- (ii) Fall f er samfellt frá vinstri í punkti c ef $\lim_{x\to c^-} f(x) = f(c)$. Hér er gert ráð fyrir að fallið f sé amk. skilgreint á bilinu (a, c].

Uppfærum nú skilgreiningu 1.8.6.

1.9.4 Skilgreining (uppfærð)

Gerum ráð fyrir að f sé fall sem er skilgreint á mengi A, þar sem A er sammengi endanlega margra bila. Við segjum að fallið f sé samfellt ef það er samfellt í öllum innri punktum skilgreingarmengisins, og ef það er samfellt frá hægri/vinstri í jaðarpunktum skilgreingarmengisins, eftir því sem við á.

1.9.5 Athugasemd

Ef fall er samfellt á opnu bili (a, b), og ef a < c < d < b, þá er fallið einnig samfellt á bilinu [c, d].

1.10 Setningar um samfelld föll

1.10.1 Setning – Há- og lággildislögmálið

Látum f vera samfellt fall skilgreint á lokuðu takmörkuðu bili [a, b]. Þá eru til tölur x_1 og x_2 í [a, b] þannig að fyrir allar tölur x í [a, b] er

$$f(x_1) < f(x) < f(x_2)$$
.

Petta þýðir að samfellt fall f á lokuðu og takmörkuðu bili [a, b] tekur bæði hæsta og lægsta gildi á bilinu. Hæsta gildið er þá $f(x_2)$ og lægsta gildið er $f(x_1)$.

1.10.2 Athugasemd

Pað er mögulegt að fallið taki há/lággildi sitt í fleiri en einum punkti.

1.10.3 Setning – Milligildissetningin

Látum f vera samfellt fall skilgreint á lokuðu takmörkuðu bili [a, b]. Gerum ráð fyrir að s sé tala sem liggur á milli f(a) og f(b). Þá er til tala c sem liggur á milli a og b þannig að f(c) = s.

1.10.4 Fylgisetning

Ef $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ er margliða af oddatölu stigi, þá er til rauntala c þannig að P(c) = 0.

1.10.5 Sönnun

Gerum ráð fyrir að $a_n > 0$. Þá er $\lim_{x \to -\infty} P(x) = -\infty$ og $\lim_{x \to \infty} P(x) = \infty$. Það þýðir að til eru tölur a og b þannig að P(a) < 0 og P(b) > 0. Með því að beita Milligildissetningunni á fallið P á bilinu [a,b] og með s=0 þá fæst að til er núllstöð á bilinu [a,b].

Ef $a_n < 0$ þá víxlast markgildin að ofan en röksemdafærslan er að öðru leyti eins.