Lista nr 2

Prawdopodobieństwo geometryczne

Zad. 1. Z przedziału [0,1] wybieramy losowo dwie liczby p i q. Jakie jest prawdopodobieństwo, że równanie $x^2 + px + q = 0$ będzie miało dwa różne pierwiastki rzeczywiste?

Zad.2. Z odcinka [0,1] wybrano losowo punkt o współrzędnej x. Wyznaczyć:

a)
$$P\left(\min\left(x, \frac{1}{4}\right) < a\right)$$
 b) $P\left(\max\left(x, \frac{1}{2}\right) < a\right)$

Zad. 3. Z kwadratu jednostkowego wybrano losowo punkt o współrzędnych (x, y). Wyznaczyć:

a)
$$P(\min(x, y) < a)$$

b) $P(\max(x, y) < a)$
d) $P(\frac{1}{2}(x+y) < a)$

c) P(|x-y| < a)

Zad. 4. Na koło losowo rzucono punkt. Znaleźć prawdopodobieństwo tego, że punkt trafi do wnętrza: a) kwadratu wpisanego w koło; b) trójkąta równobocznego wpisanego w koło.

Zad.5. Obliczyć prawdopodobieństwo, że losowo wybrany punkt koła $x^2 + y^2 < 4$ leży na zewnątrz kwadratu |x| < 1, |y| < 1.

Zad. 6. Odcinek o długości 10 cm podzielono w sposób losowy na trzy części. Obliczyć prawdopodobieństwo, że z tych części można zbudować trójkąt. Czy prawdopodobieństwo to zmieni się, jeśli założymy, że długość każdej z części jest liczbą całkowitą?

Zad. 7. Płaszczyznę poliniowano prostymi równoległymi, między którymi odległość wynosi 2a. Na płaszczyznę tę losowo rzucono monetę o promieniu r < a. Znaleźć prawdopodobieństwo, że moneta nie upadnie na żadną z tych prostych.

Zad. 8. Na odcinku OA o długości L leżącym na osi liczbowej OX losowo wybrano dwa punkty B(X) i C(Y). (Współrzędna punktu C jest oznaczona przez Y w celu uproszczenia dalszych rozważań.) Znaleźć prawdopodobieństwo tego, że długość odcinka BC jest mniejsza od mniejszej z długości odcinków OC lub OB. (Punkty rzucamy niezależnie od siebie!).

Zad. 9. Sygnalizator odbiera sygnały od dwóch urządzeń, przy czym wpłynięcie każdego z sygnałów jest jednakowo możliwe w dowolnej chwili okresu czasu T. Sygnalizator działa normalnie, jeśli różnica czasu między chwilami wpłynięcia sygnałów jest mniejsza od t (t < T). Znaleźć prawdopodobieństwo tego, że sygnalizator działa normalnie w czasie T, jeśli każde z urządzeń wysłało po jednym sygnale.

Zad. 10. Losowo wybrano dwie dodatnie liczby X i Y takie, że każda z nich jest nie większa od 2. Znaleźć prawdopodobieństwo tego, że iloczyn XY będzie nie większy niż 1, a iloraz Y/X nie większy niż 2.

Zad. 11. Losowo wybrano dwie dodatnie liczby X i Y takie, że każda z nich jest nie większa niż 1. Znaleźć prawdopodobieństwo tego, że suma X + Y będzie nie większa niż 1, a iloczyn XY nie mniejszy niż 0,09.

Zad. 12. Zadanie Buffona. Płaszczyznę poliniowano prostymi równoległymi, między którymi odległość jest równa 2a. Na płaszczyznę losowo rzucono igłę o długości 2l (l < a). Znaleźć prawdopodobieństwo tego, że igła upadła na którąkolwiek prostą.

Zad. 13. Na płaszczyznę naniesiono siatkę kwadratową o boku a. Na płaszczyznę tę losowo rzucono monetę o promieniu r < a/2. Znaleźć prawdopodobieństwo tego, że moneta nie upadnie na żaden z boków kwadratu.