

GEOMETRÍA

2do
SECONDARY

Asesoría

1.En la siguiente figura, AC + BD = 45 cm. Halle el valor de x.

2.Se tiene los ángulos consecutivos POQ, QOR y ROS, tal que los rayos \overrightarrow{OP} y \overrightarrow{OS} son rayos opuestos, m \angle QOR = 90°. Se traza la bisectriz \overrightarrow{OM} del ángulo POQ. Si m \angle POM = 20°, calcule m \angle ROS.

3.Si la suma del complemento y el suplemento de un ángulo es 130°, calcule el complemento de dicho ángulo.

SOLUCIÓ

N

Un ángulo = x

DEL DATO:

Complemento (C)
$$C_{\alpha} = 90^{\circ} - \alpha$$

Suplemento (S)
$$S_{\alpha} = 180^{\circ} - \alpha$$

$$C(x) + S(x) = 130^{\circ}$$

$$90^{\circ} - x + 180^{\circ} - x = 130^{\circ}$$

$$270^{\circ} - 2x = 130^{\circ}$$

$$140^{\circ} = 2x$$

$$70^{\circ} = x$$

Luego:

$$C(x) = 90^{\circ} - x$$

$$C(70^{\circ})=90^{\circ}-70^{\circ}$$

$$\Gamma(70^{\circ}) = 20^{\circ}$$

4. $\overrightarrow{L_1}$ y $\overleftarrow{L_2}$ son rectas paralelas, se traza una recta transversal $\overleftarrow{L_3}$ donde $\overleftarrow{L_1}$ se interseca con dicha recta en P y $\overleftarrow{L_2}$ en Q. $\overleftarrow{L_1}$ forma con PQ un ángulo de 80° - 2x y $\overleftarrow{L_2}$ forma 3x + 30° con PQ en el lado opuesto. Halle el valor de x.

$$80^{\circ} - 2x = 3x + 30^{\circ}$$

 $50^{\circ} = 5x$

5.En el gráfico, halle el valor de x

En el △ ABC

$$3\theta + 3\beta + 75^{\circ} = 180^{\circ}$$

 $3\theta + 3\beta = 105^{\circ}$
 $\theta + \beta = 35^{\circ}$

$$2\theta + 2\beta + X = 180^{\circ}$$

$$2(35^{\circ}) + X = 180^{\circ}$$

$$70^{\circ} + X = 180^{\circ}$$

 $x = 110^{\circ}$

6. Halle el valor de x si \vec{L} es mediatriz del \overline{AC} .

En el A PHC

$$54^{\circ} + m < C = 90^{\circ}$$

$$x + 3x + 36^{\circ} = 180^{\circ}$$

$$4.x = 144^{\circ}$$

$$x = 36^{\circ}$$

7. Halle el valor de x

∆ ABC:

$$3\theta + 2\theta + 55^{\circ} = 180^{\circ}$$

 $5\theta = 125^{\circ}$
 $\theta = 25^{\circ}$

<u>Δ PQC</u>:

$$4\theta + x + 55^{\circ} = 180^{\circ}$$

$$4(25^{\circ}) + x + 55^{\circ} = 180^{\circ}$$

$$100^{\circ} + x + 55^{\circ} = 180^{\circ}$$

$$155^{\circ} + x = 180^{\circ}$$

$$x = 25^{\circ}$$

01

8. Halle el valor de x

- \triangleright Se prolonga \overline{AC}
- $\Rightarrow m \not \in C \text{ (externo)} = 126^{\circ}$

ΔABC:

$$\Rightarrow$$
 10x + 8x + 126° = 360° 18x = 234°

$$x = 13^{\circ}$$

9.Las longitudes de los lados de un triángulos son 6, 15 y 3x. Calcule la suma valores enteros que puede tomar x.

Por teorema de la existencia:

$$15-6 < 3 \times < 15+6$$
 $9 < 3 \times < 21$
 $3 < \times < 7$
Valores enteros [4, 5, 6] de x

donde: c < b < a

Suma = 15

10. Halle el valor de x, si \overline{BH} es altura.

A CHB:
$$2\alpha + x = 90^{\circ}$$

2 (22°) + x = 90°
 $44^{\circ} + x = 90^{\circ}$

$$x = 46^{\circ}$$