#### L3 HAX606X

# OPTIMISATION CONVEXE

#### **TP** 1

#### Méthodes d'optimisation en 1D

Soit f une fonction définie sur un intervalle  $I = [a_0; b_0] \subset \mathbb{R}$ . On veut trouver le minimum de f numériquement à l'aide de plusieurs méthodes.

**Définition :** f est unimodale sur I si :

- f admet un minimum unique sur I, atteint en un point  $t^*$
- f est strictement décroissante sur  $[a_0; t^*]$  et strictement croissante sur  $[t^*; b_0]$ .

**Propriété :** Si f est strictement convexe sur I et atteint son minimum en un point  $t^* \in \mathring{I}$ , alors f est unimodale sur I.

Vous avez vu en L2 plusieurs méthodes pour calculer la solution approchée de l'équation f(x) = 0.

### 1 Méthode de la dichotomie

- 1. Quelle équation souhaite t'on résoudre pour notre problème d'optimisation? Quelles conditions doit on vérifier pour f pour appliquer la méthode de dichotomie?
- **2.** Ecrire l'algorithme de dichotomie et l'appliquer pour trouver le minimum de la fonction  $f(x) = x^2 2\sin(x)$  sur [0;2] avec une précision de  $10^{-5}$ . Comment obtient-on le nombre d'itérations à partir de la précision?
- 3. Comparer votre code avec l'implémentation de scipy.optimize.bisect.

## 2 Méthode de Newton

- 4. Quelle condition doit vérifier f pour appliquer la méthode de Newton pour le problème d'optimisation? Comment va être formulé l'itéré de Newton dans ce cas?
- **5.** Ecrire l'algorithme de Newton dans ce cas et l'appliquer à la fonction  $f(x) = x^2 2\sin(x)$  avec  $x_0 = 1$ .

Dans les 2 cas, il nous faut de la régularité pour la fonction f, voici une autre méthode qui demande moins de régularité pour notre fonction.

## 3 Méthode de la section dorée

La méthode de la section dorée permet de trouver le minimum d'une fonction f continue et unimodale sur l'intervalle  $[a,b] \subset \mathbb{R}$ . On note par la suite le nombre d'or  $\rho = \frac{1+\sqrt{5}}{2}$ .

L'algorithme est le suivant : Initialisation : Calculer  $x_1=\frac{1}{\rho}a+(1-\frac{1}{\rho})b,\ x_2=\frac{1}{\rho}b+(1-\frac{1}{\rho})a$  Tant que b-a>precision faire : si  $f(x_1)< f(x_2)$  alors  $b=x_2, x_2=x_1, x_1=\frac{1}{\rho}a+(1-\frac{1}{\rho})b$  sinon  $a=x_1, x_1=x_2, x_2=\frac{1}{\rho}b+(1-\frac{1}{\rho})a$  fin de tant que afficher  $\frac{a+b}{2}$ 



- **6.** Ecrire l'algorithme et l'appliquer à la fonction  $f(x) = x^2 2\sin(x)$ .
- 7. Comparer votre code avec l'implémentation de scipy.optimize.golden.
- **8.** Comparer les 3 méthodes pour  $f(x) = -\frac{1}{x} + \cos(x)$  sur [a, b] = [2; 4] ou pour  $x_0 = 2.5$  au niveau du nombre d'itérations et du temps de calcul. Représenter le graphique de la fonction en plaçant les résultats des itérations successives de Newton.

| Opérateur    | Description                                                                        |
|--------------|------------------------------------------------------------------------------------|
| scatter(x,y) | permet de modifier la couleur de certains points comme les minimums de la fonction |
|              | avec marker= ou color =                                                            |