

# Planning, Learning and Decision Making

Lecture 5. Expected utility



# Making decisions



#### **Decision** I

- You are a participant in a contest
  - You are currently winning 50€
  - You are at the last stage of the game



#### **Decision** I

- You are offered a choice:
  - Keep your prize
  - Choose one of the cups





Which one will you choose?



#### **Decision II**

- You are a participant in a contest
  - You are currently winning a 50€-valued meal in a steak house
  - You are at the last stage of the game



#### **Decision** I

- You are offered a choice:
  - Keep your price
  - Choose one of the cups





Which one will you choose?



#### Decisions and preferences

- The prizes in both situations have the same monetary value
- In the first situation, the more valuable prize will be selected
- In the second situation, different choices are possible...



## Decisions and preferences

- If you are allergic to cheese, you may prefer to keep your current prize
- If you love pizza, you may prefer to go for the pizza house meal

Is this "irrational" in some way?



### Decisions and preferences

- Decisions often involve factors other than value:
  - Many decisions are based on personal preferences



Can we program "preferences" into a computer?



Can we treat decision making algorithmically?





#### Preferences



A strict preference is a **binary relation** between **outcomes** 

#### **Binary relation**

A binary relation R on a set of outcomes  $\mathcal{X}$  is a subset of  $\mathcal{X}$  ×  $\mathcal{X}$ . A pair (x, y) in such subset is said to verify the relation, and we write it

$$x \stackrel{R}{\to} y$$



- A strict preference is a binary relation between outcomes
  - When outcome x is **preferred** to y, we write x > y
  - If an individual prefers outcome x to y, that means that it would be willing to pay some "fair amount" to have x instead of y



- Is any binary relation a valid preference?
  - No!

#### Example 1.

Suppose that, for some decision maker, x > y and y > x.

We could charge the agent some amount a to swap x for y. And then swap some amount b to swap y for x. And then charge ato swap x for y again, and so on...



- Is any binary relation a valid preference?
  - No!

Preferences must not be symmetric

#### Example 1.

Suppose that, for some decision maker, x > y and y > x.

We could charge the agent some amount a to swap x for y. And then swap some amount b to swap y for x. And then charge ato swap x for y again, and so on...



#### **Anti-symmetric relation**

A binary relation R on a set of outcomes  $\mathcal{X}$  is **anti-symmetric** if,

whenever  $x \stackrel{R}{\rightarrow} y$  it holds that  $y \not\stackrel{R}{\rightarrow} x$ .



- Is any binary relation a valid preference?
  - No!

#### Example 2.

Suppose that, for some decision maker, x > y, y > z and z > x.

We could charge the agent some amount a to swap z for x. And then pay some amount b to swap y for z. And then charge c to swap x for y, and so on..



- Is any binary relation a valid preference?
  - No!

Preferences must be negative transitive

#### Example 2.

Suppose that, for some decision maker, x > y, y > z and z > x.

We could charge the agent some amount a to swap z for x. And then pay some amount b to swap y for z. And then charge c to swap x for y, and so on...



#### **Negative transitive relation**

A binary relation R on a set of outcomes  $\mathcal{X}$  is **negative** 

**transitive** if, whenever  $y \not\to z$  and  $x \not\to y$  it holds that  $x \not\to z$ .

Equivalently, if  $x \stackrel{R}{\to} y$ , then either  $z \stackrel{R}{\to} y$  or  $x \stackrel{R}{\to} z$ .



- A strict preference is a binary relation between outcomes such that
  - It is anti-symmetric
  - It is negative transitive



#### Related relations

- If ">" is a strict preference on some set of outcomes  $\mathcal{X}$ ...
  - ... we write "x > y" if outcome **x** is preferred to **y** ("x is better than y")
  - ... we write "x < y" if outcome **y** is preferred to **x** (or "x is worse than y'')
  - ... if  $x \neq y$  and  $x \not< y$  (x is neither better nor worse than y), we say that the two outcomes are indifferent, and write  $X \sim Y$



#### Related relations

- If ">" is a strict preference on some set of outcomes  $\mathcal{X}$ ...
  - ... if "x > y" or " $x \sim y$ " we can write " $x \ge y$ " (x is not worse than y).
  - ... if "x < y" or " $x \sim y$ ", we can write " $x \le y$ " (**x** is not better than y).



- Given any two outcomes, exactly one of the following holds:
  - *x* > *y*
  - *x* ~ *y*
  - *x* < *y*
- Why?

#### 4 possible cases:

- x > y and  $y > x \rightarrow impossible$
- x > y and  $y \not > x \rightarrow x > y$
- x > y and  $y > x \rightarrow x < y$
- $x \neq y$  and  $y \neq x \rightarrow x \sim y$



- Given any two outcomes, exactly one of the following holds:
  - *x* > *y*
  - x ~ y
  - *x* < *y*

Equivalently, given any two outcomes, either  $x \ge y$  or  $y \ge x$ 

#### The relation ≥ is complete



- Given any outcomes x, y and z, if x > y and y > z, then x > z
- Why?

- if x > y, by negative transitivity, either x > z or z > y (or both)
- if y > z, by negative transitivity, either y > x or x > z (or both)
- Then it must be that x > z



Given any outcomes x, y and z, if x > y and y > z, then x > z

The relation > is transitive



Given any outcomes x, y and z, if  $x \ge y$  and  $y \ge z$ , then  $x \ge z$ 

The relation ≥ is transitive



- Indifference is
  - Reflexive (i.e.,  $x \sim x$ )
  - Symmetric (i.e., if  $x \sim y$ , then  $y \sim x$ )
  - Transitive (i.e., if  $x \sim y$  and  $y \sim z$ , then  $x \sim z$ )

- it must hold that  $x \not> x$
- since  $x \neq y$  and  $y \neq x$
- let  $x \sim y$  and  $y \sim z$ , suppose x >z; then, either x > y or y > z, which is a contradiction



- Indifference is
  - Reflexive (i.e.,  $x \sim x$ )
  - Symmetric (i.e., if  $x \sim y$ , then  $y \sim x$ )
  - Transitive (i.e., if  $x \sim y$  and  $y \sim z$ , then  $x \sim z$ )

#### The relation ~ is an equivalence relation



- If x > y and  $x \sim z$ , then z > y
- Why?

- if x > y, then either x > z or z > y
- then, z > y



#### Summarizing:

- > is anti-symmetric, transitive and negative transitive
- is complete and transitive
- ~ is **reflexive**, **symmetric** and **transitive** (i.e., is an equivalence relation)



## Rational preference

- A relation is called a rational preference if it is complete and transitive
  - The relation > is complete and transitive and hence rational





Utility



### Computational considerations

- Computationally, preferences are cumbersome to maintain
- Preferences express an **ordering** between outcomes



Order preserving function



#### Existence

- Does an order preserving function exist?
  - Yes!
  - ... if the preference is rational

#### Why?

- When the preference is rational, we can sort all outcomes consistently
- Given N + 1 outcomes, sort them, assign a value of 0 to the first, 1 to the second, ..., N to the last one



#### Existence

#### Theorem

Let  $\mathcal{X}$  be a set of possible outcomes, and  $\geq$  a rational preference on  $\mathcal{X}$ . Then, there is a function  $u:\mathcal{X}\to\mathbb{R}$  such that  $u(x) \ge u(y)$  if and only if  $x \ge y$ , for all  $x, y \in \mathcal{X}$ .



#### u is called a utility function



## Making decisions

- We can use utility functions in computational decisionmaking
  - Given a set of alternatives/actions A
  - X(a) is the outcome associated with action  $a \in \mathcal{A}$
  - The **value** of action a is

$$Q(a) \stackrel{\text{def}}{=} u(X(a))$$

Utility of associated outcome



## Making decisions

- We can use utility functions in computational decisionmaking
  - Given a set of alternatives/actions A
  - X(a) is the outcome associated with action  $a \in \mathcal{A}$
  - The **value** of action a is

$$Q(a) = \sum_{x \in \mathcal{X}} u(x) \mathbb{I}[x = X(a)]$$

1 if condition is true 0 otherwise



# Making decisions

Select actions with maximum value:

$$\operatorname*{argmax}_{a \in \mathcal{A}} Q(a)$$





### Uncertainty



## Handling uncertainty

- What if action outcomes are uncertain?
  - $P(x \mid a)$  denotes the probability of outcome x when action a is selected
  - The **value** of an action was:

$$Q(a) = \sum_{x \in \mathcal{X}} u(x) \mathbb{I}[x = X(a)]$$



## Handling uncertainty

- What if action outcomes are uncertain?
  - $P(x \mid a)$  denotes the probability of outcome x when action a is selected
  - The **expected value** of an action is now:

$$Q(a) = \sum_{x \in \mathcal{X}} u(x) P(x \mid a)$$
$$= \mathbb{E} [u(x) \mid a]$$



## Formulating our problem

One such decision problem is described as a tuple

$$(\mathcal{X}, \mathcal{A}, P, u)$$

- $\mathcal{X}$  is the set of possible outcomes
- A is the set of available actions
- For each outcome x and action a,  $P(x \mid a)$  is the probability of outcome x when action a is selected
- For each outcome x, u(x) is the utility of x



# Examples





The weather example



### The weather example

- You must decide whether to take an umbrella before leaving home
  - Carrying an umbrella is inconvenient
  - You don't want to get soaked because of rain



### The weather example

- The weather forecast is:
  - Rain with probability 0.3
  - Sun with probability 0.7



### The weather example

- At any moment,
  - You will be outside with a probability 0.5
  - You will be indoors with a probability 0.5



#### Outcomes

- What are the possible outcomes?
  - (A) Don't carry umbrella; get home dry
  - (B) Carry umbrella; get home dry
  - (C) Don't carry umbrella; get home soaked
  - (D) Carry umbrella; get home soaked



### **Actions**

- What are the possible actions?
  - (A) Take the umbrella
  - (B) Don't take the umbrella















### Outcome probabilities

- If a ="Take the umbrella",
  - P(Carry umbrella, get home dry | a) = 1
  - $P(x \mid a) = 0$ , otherwise

- If a = "Don't take the umbrella",
  - P(Don't carry umbrella, get home dry | a) = 0.85
  - P(Don't carry umbrella, get home soaked | a) = 0.15
  - $P(x \mid a) = 0$ , otherwise



### **Expected value**

- Multiply leave probabilities by corresponding value
  - $u(No\ umbrella,\ dry) = 1$
  - u(Umbrella, dry) = 0.9
  - u(No umbrella, wet) = 0.3
  - u(Umbrella, wet) = 0

Best action: Take umbrella





### **Expected value**

- Multiply leave probabilities by corresponding value
  - $u(No\ umbrella,\ dry) = 1$
  - u(Umbrella, dry) = 0.9
  - u(No umbrella, wet) = 0.4
  - u(Umbrella, wet) = 0

Best action: Don't take umbrella







The student example



- A freshman finished the final project for a course
- On her way to submit the project report, she realizes that half the pages are missing!





### **Alternatives**

- She has two alternatives:
  - (A) Return home and print the remaining pages
  - (B) Print the remaining pages at the University



- If she returns home...
  - There is a 0.6 probability that she'll arrive late at the University, due to traffic



- If she prints in the University...
  - There is a 0.3 probability that she can't find a printer in time (she'll submit an incomplete report)
  - There is a 0.5 chance that the printer is busy (she'll submit the report late)



- If she submits the report late, she'll lose 2 points
- If she submits an incomplete report, she'll lose 3 points



#### Outcomes

- What are the possible outcomes?
  - (A) Report is complete and on time (CT, utility of 0)
  - (B) Report is complete but late (CL, utility of -2)
  - (C) Report is incomplete (IT, utility of -3)







### **Expected value**



$$Q(H) = 0.4 \times 0 + 0.6 \times (-2) = -1.2$$

$$P(CT | U) = 0.7 \times 0.5 = 0.35$$

$$P(CL | U) = 0.7 \times 0.5 = 0.35$$

$$P(IT | U) = 0.3$$



### **Expected value**



$$Q(H) = 0.4 \times 0 + 0.6 \times (-2) = -1.2$$
  $Q(U) = 0.35 \times 0 + 0.35 \times (-2) + 0.3 \times (-3) = -1.6$ 

#### She should return home!





St. Petersburg paradox



# St. Petersburg paradox

- A casino in St. Petersburg offers the following game
  - The initial prize is 2 rubles
  - A fair coin is tossed
  - If it comes out "tails", the game ends, and you get the prize
  - If it comes "heads", the prize doubles and the game continues



How much should a player pay to enter for the game to be fair?



### **Expected value**

Expected value:

 $P(T) = 1/2 \longrightarrow Game ends with prize 2$ 

 $P(HT) = 1/4 \longrightarrow Game ends with prize 4$ 

 $P(HHT) = 1/8 \longrightarrow Game ends with prize 8$ 

 $P(HH...HT) = 1/2^n \longrightarrow Game ends with prize 2^n$ 

Expected value 
$$=\frac{1}{2} \times 2 + \frac{1}{4} \times 4 + \ldots + \frac{1}{2^n} \times 2^n + \ldots = \sum_{n=1}^{\infty} 1 = \infty$$



Would you take this bet?