SPRINT DELIVERY PLAN

Team ID	PNT2022TMID1350		
Project	Smart Farmer-IoT Enabled Smart		
	Farming Application		

Product Backlog, Sprint Schedule and Estimation: (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement(Epic)	User Story Number	User Story/Task	Story Points	Priority	Team Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Mala Dhanalakshmi K, Jeyashree N, Jeya Jothi M, Kokila P
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT platform, workflow for IoT scenarios using Node-Red	2	High	Mala Dhanalakshmi K, Jeyashree N, Jeya Jothi M, Kokila P
Sprint-3	MIR App Inventor	USN-3	Develop an application for the smart farmer project using MIT	2	High	Mala Dhanalakshmi K, Jeyashree N, Jeya Jothi M, Kokila P

			App Inventor			
Sprint-3	Dashboard	USN-3	Design the modules and test the app	2	High	Mala Dhanalakshmi K, Jeyashree N, Jeya Jothi M, Kokila P
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Mala Dhanalakshmi K, Jeyashree N, Jeya Jothi M, Kokila P

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(actual)
Sprint-1	20	7Days	30 Oct 2022	06 Nov 2022	20	29 Oct 2022
Sprint-2	20	9Days	31 Oct 2022	09 Nov 2022		05 Oct 2022
Sprint-3	20	6Days	06 Nov 2022	13 Nov 2022		12 Oct 2022
Sprint-4	20	6Days	11 Nov 2022	17 Nov 2022		15 Oct 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20(points per sprint). Let's calculate the team's average velocity(AV) per iteration unit(story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$