Marking Schemes

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

General Marking Instructions

It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates may have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits the unswer mark allocated to that part, unless a particular method has been specified in the

In the marking scheme, alternative answers and marking guidelines are in rectangles

- In the marking scheme, answer marks or 'A' marks are awarded for a correct numerical answer with a unit. If the answer should be in km, then cm and m are considered to be wrong units. 5
- In a question consisting of several parts each depending on the previous parts, method marks or 'M' marks are awarded to steps/methods or substitutions correctly deduced from previous 3
- In cases where a candidate answers more questions than required, the answers to all questions should be marked. However, the excess answer(s) receiving the lowest score(s) will be disregarded in the calculation of the final mark.

Paper 1 Section A

		Secondary 100	fami
1.	٠	26.	C (75)
2.	A (55)	27.	C (62)
3.	D (64)	28.	D (36)
4.	A(11)	29.	D (87)
.5	A (38)	30.	B (46)
.9	C(21)	31.	D (74)
. 7.	B (71)	32.	B (40)
%	A(37)	* 33.	A (62)
.6	A (58)		
10.	D (58)		
n.	B (51)		
12.	A (70)		
13.	C (65)		
14.	D (72)		
15.	C (32)		
16.	B (51)	No. of Persons and	
17.	D(81)		
18.	C (73)		
19.	B (62)		
20.	D (87)		
21.	C(39)		
22.	A(55)		
23.	C (69)		
24.	B (51)		
25.	A(51)		

This item was deleted.

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

General note on item deletion

It is normal for the HKEAA to delete a small number of items from its multiple-choice question papers if they prove unsatisfactory. In practice, there are a number of reasons why this is considered necessary. By far the most common reason for deleting an item is that the item fails to discriminate between weak and able candidates—in other words, the majority of the candidates involved had to rely on guesswork in answering that question. It such an item is retained, the measurement process is rendered less effective. Where items have been deleted in the live papers, they are still included in this series of publications. They are indicated as deleted items. Such items may be discussed in the corresponding examination reports.

57

99

¢	1	٩	
	5		
	C	٥	
٥	2	3	
	č	ī	
	9	ì	
ζ	,	2	
•		4	
	£		
	Ġ	ï	
		2	è
	a	1	

n Marks Remarks	$= mc\Delta T$ = 6 × 4200 × (50 – 15) 1M	= 882000 J (or 882 KJ)	IA	Secretary of terms from both species	$\frac{1}{1} \frac{m}{t} \frac{m}{\Delta T}$	$^{-1}$ or kg) 1A $\therefore \frac{m}{c} =$	2 0 40-13	N.	California Company	THE PERSON NAMED OF TAXABLE PARTY.	IA II	Σ		IA	2		IM IA	.8) <i>RT</i>	ALL MANAGEMENT AND	WI .
Solution	(a) Amount of energy required $E = mc\Delta T$ = 6×42	= 882000	= 14700 W (or 14.7 kW)	(h) Tot m ka nor minuta ha the motor flour motor		$m(4200)(40-15) = 14700 \times 60$ m = 8.4 (kg min		$n = \frac{pV}{RT} \propto pV$ (for constant T)	11	$n_{\rm B} = (2p)(2V)$	$^{AA} = 0.5 \times 0.8 \text{ mol}$ = 0.6 (mol)	$\underline{Or} \ (2p)(2V) = 0.8RT$	pV = 0.2RT $n(3V) - nPT$	$n = 3 \times 0.2 = 0.6 \text{ (mol)}$	101-2 to 101-141-141	(b) (i) $n = n_A + n_B$	p (3r + 2r) - p(3r) + (2p)(2r) p' = 1.4 p	Or $p'(3V + 2V) = (0.6 + 0.8)RT$	p'(5V) = 1.4RT p' = 1.4P	dire-d

			Solution	Marks	Remarks
m'	(a)	If the incre Vehice (thus	If the maximum load is exceeded, the braking distance will increase if the friction provided remains the same. Vehicles would not be able to stop in time in case of emergency (flux dangerous).	41 A1	miles design tyries to minute (3)
		A large same d accider forces.	A larger friction is required in braking the vehicle within the same distance, accident may occur if the brakes cannot provide such frictional forces.	1A 1A	Children Chi
	9	€	If the brakes are applied continuously, thermal energy generated will heat up the brake pads / brakes to too high a temperature that the brakes may fail.	1A 1	A self set enables to got in the Fig. (d). No. Thomas (1) and (2) and (3) and
		(E)	Let <i>D</i> be the distance travelled along the ramp. Kinetic energy of vehicle becomes its gravitational 1M potential energy: $\frac{1}{2}m(25)^2 = m(9.81)(D\sin 30^\circ)$ $D = 63.710499 \text{ m}$	MI S	Or work done against vehicle's weight component along the ramp by its kinetic energy: $\frac{1}{2}mv^2 = mg \sin \theta \times D$
			$\approx 63.7 \text{ m} (62.5 \text{ m for } g = 10 \text{ m s}^{-2})$	¥	(SERVE) A
			$\frac{Q_{\rm F}}{v^2} = u^2 + 2\alpha s$ $0^2 = 25^2 + 2(-9.81 \sin 30^\circ) D$ $D \approx 63.7 \text{ m}$	IM IA	mass of vehicle = m Note: $D \sin 30^{\circ} = 31.8552 \text{ m}$ (or 31.25 m for $g = 10 \text{ m} \text{ s}^{-2}$) Accept $D = 62.0 \text{ m}$ to 64.0 m
4	(a)	8	K.E. + P.E. = $\frac{1}{2}$ (0.3)(4) ² + (0.3)(9.81)(0.2) = 2.4 + 0.5586 = 2.9886 J \approx 2.99 J (3.0 J for $g = 10 \text{ m s}^{-2}$)	1M+1M 1A 3	$= 2.4 + 0.6 = 3.0 \text{ J for } g = 10 \text{ m s}^{-2}$
		€	As the spring gun is fixed, there is external force acting on the system / the gun, total momentum (of the spring gun and cannon ball) is not conserved.	IM IA	415 - 3 Add 112 a Christoff Mathematical
	9	Verti	Vertical: $s = ut + \frac{1}{2}at^2$	IM	$\frac{\Omega_f}{2} = \frac{u\sin\theta}{g} = \frac{4\sin 50^*}{9.81}$
			$0 = (4 \sin 50^\circ) t_f - \frac{1}{2} (9.81) t_f^2$ $t_f = 0.624705 \text{ s } (0.612836 \text{ for } g = 10 \text{ m s}^{-2})$ $\approx 0.625 \text{ s } (0.613 \text{ s for } g = 10 \text{ m s}^{-2})$	IA	Accept $t_f = 0.61 \text{ s to } 0.63 \text{ s}$
		Horiz	Horizontal : $R = 4 \cos 50^{\circ} \times t_f = 4 \cos 50^{\circ} \times 0.625$ = 1.606210 m $\approx 1.61 \text{ m (1.57 m for } g = 10 \text{ m s}^{-2})$	IM IA	$\frac{Or}{R} R = u \cos \theta \times \frac{2(u \sin \theta)}{g}$ Accept $R = 1.56 \text{ m to } 1.62 \text{ m}$
	3	t _r inci	t increases since the initial vertical velocity / component is greater.	V 44	medicinely record 1 principal industrial to the may be destroned to the

Remarks

Marks

M

m (5.0 cm) = 50 g (10.0 cm) m = 100 g or 0.1 kg

Ξ

(a)

Solution

M

Counter-weight position: 10.0 cm \pm 0.1 cm Percentage error = $100\% \times (\frac{0.1}{10.0}) = 1\%$

(11)

i.e. maximum error = ± 1 g

.. m = 101 g to 99 g

1M/1A

spring balance reading

counter-weight position on beam balance

Ξ

(0)

Spring balance reading = $mg = (0.1 \text{ kg}) (9.81 \text{ N kg}^{-1})$ = 0.981 N (1.0 N for $g = 10 \text{ N kg}^{-1}$)

(P)

1A+1A

reading increases

the same

The beam balance would fail to work / to measure the 1A as the apparent weight is zero (or weightless), the counter- IA weight can take any position.

mass of the load,

(ii)

19

Remarks	A Selection of (0) (t)	The second of th			ON THE PARTY OF TH	Accept $\lambda = (6.06 \text{ to } 6.10) \times 10^{-7} \text{ m}$	Note : the order of magnitude of the wavelength of sound is about 10^{-1} m	And the second s	Market Commence of the Commenc	Accept $v = 328 \text{ m s}^{-1} \text{ to } 330 \text{ m s}^{-1}$
Marks	IA I	1.0	M	IM		1A 3	41	AI I	M M	41
Solution	Increase the separation between the double slit and the screen, D .	The separation of the bright dots on the screen becomes larger, thus the percentage error in its measurement is smaller.	The angular position of the 2 nd order bright dot $\theta = \tan^{-1} \left(\frac{1.56/2}{1.40} \right) = 29.124053^{\circ}$	Grating spacing $d = \frac{10^{-3}}{400} = 2.5 \times 10^{-6} \mathrm{m}$	Applying $d \sin \theta = n\lambda$, Wavelength $\lambda = \frac{2.5 \times 10^{-6} \times \sin 29.12^{\circ}}{2}$	= 6.08378×10^{-7} m $\approx 6.08 \times 10^{-7}$ m (= 608 nm)	The equation can only be applied for $-\lambda < a$ (i.e. wavelength $<$ separation of the two sources), OR λ is much smaller than α $\alpha < D$ (i.e. separation of the two sources $<$ separation of the sources and detector), \overline{OR} α is much smaller than D	Or Using the fringe separation equation to find the wavelength Using the fringe separate for $-\lambda$ is comparable to/ NOT much smaller than $a \mid Any - a$ is NOT much smaller than D ONE	For the 1 st order maximum, wavelength $\lambda = \text{path difference } PB - PA$ = $\sqrt{(1+0.5)^2 + 2^2} - \sqrt{(1-0.5)^2 + 2^2}$ = 2.5 - 2.06155281 = 0.43844719 m ≈ 0.438 m	speed of sound: $v = /2 = 750 \times 0.4384$ = 328.835 m s ⁻¹ ≈ 329 m s ⁻¹
	0	•	(iii)				€		(E	
15.0	(a)						(9)			

Marks	resistor	he rod such Accept: Work done by an external force is needed to transfer mechanical energy. A mine electrical energy.	IA	NI SI	IM 2	Al Al	1M by (a)(iii) using the horizontal component of B	1A 3	n the same
	uniform magnetic field B	 (ii) By Lenz's law, a magnetic force F_B acts on the rod such that it opposes the rod's motion, an external force F is needed to balance F_B so as to maintain uniform motion (or constant v) 	$F = F_{\rm B} = ILB \text{ (in magnitude)}$ Or $E_{\rm Mag} = 7E_{\rm B} = -1\xi$	r in	power input = power output (electrical) $ILB \ \nu = I \ \xi \\ = BL\nu$	(b) (f) Horizontal (component) is perpendicular to the mast. Vertical (component) is parallel to the mast.	(ii) $\xi = (B \cos 30^{\circ}) L v$ = $(50 \times 10^{-6} \cos 30^{\circ}) (20) (6)$ = $5.196152 \times 10^{-3} V$ $\approx 5.20 \text{ mV}$	more electrons at end X	(iii) No current. Both the cable and the mast cut the field lines in the same way, the e.m.f.'s produced are equal and thus oppose each 1A

Section B : Atomic World

	CANTON S. C. LEGISCO.	rks Remarks	2	$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{10.8 \times 10^{14}} \approx 277.8 \text{nr}$	40 PYN 21 P	SESTIONS S	Accept 2.20 eV to 2.40 eV	2 Table Strategister Co.	at the Thomas candidates	$\frac{1}{\ln n} = 1.035$ $\frac{1}{\ln n} = 1.035$ $\frac{1}{\ln n} = 1.035$
		Marks	4 4	ΑI	IM A	1A	IA IA	M AI	1A	4 4
8. B (26%)	THE PERSON	194391	current passing the circuit), inetic energy of	0				Cooperight 985		adiation.
7. C (62%)	of canal a	uc	ust until there is no c electrons to complete ives the maximum k	tion (light) (~278 nm	$= \frac{3.3 - 0}{(13.4 - 5.4) \times 10^{14}}$ = 4.125×10 ⁻¹³ eV s (= 6.6 × 10 ⁻³⁴ J s)	nck constant h.	$S.4 \times 10^{14} \text{ Hz}$ $m = 4f_0$ $= (6.6 \times 10^{-3}) \times (5.4 \times 10^{16})$ $= 3.564 \times 10^{-19}$ $= 2.2275 \text{ (eV)}$	× (5.4×10 ¹⁴) 2.23 (eV)	·н	y depends on the ene to the frequency of r
6. B (62%)		Solution	Increase / adjust the voltage just until there is no current passing through the circuit (no photoelectrons to complete the circuit), record the voltage V_s which gives the maximum kinetic energy of the photoelectrons = eV_s	Ultra-violet (UV) radiation (light) (–278 nm)	slope of the graph =(1.)	The slope gives the Planck constant h.	Threshold frequency $f_0 = 5.4 \times 10^{14} \text{ Hz}$ Work function of sodium = $4f_0$ = $(6.6 \times 10^{-3}$ = 3.564×10^{-3} = 2.2275 (e)	Or $hf_0 = (4.125 \times 10^{-15}) \times (5.4 \times 10^{14})$ = 2.2275 (eV) ≈ 2.23 (eV)	Unchanged, i.e. the same graph.	The (maximum) kinetic energy depends on the energy of each photon, which is proportional to the frequency of radiation. Or Or Maximum kinetic energy of the photoelectrons / energy of photon 1A
C (57%)			Increas through record t	n (6)	(ii)	Т	(II)	O	Unchan	The (ma photon, Or Maximu
5. C (57%)			(a)	@					(0)	
			7							

Section C: Energy and Use of Energy

3. C (37%) 4. D (38%) 7. C (60%) 8. B (62%)

2. B (58%) 6. D (52%)

1. A (52%) 5. A (79%)

Remarks	Polestant of the A	Andrews of the control of the contro	Sm	$\int_{0}^{r} d = 10 \text{ m}$	A final ET est A A to appendix to the control of t	STANTANTANTANTANTANTANTANTANTANTANTANTANT	Tamiltonialia apugamo arti tig
Marks	1A 1A 2	IA 🔊		M M 4	1A	- Y	IA
Solution	Incandescent lamps: by heating a (tungsten) filament to a ling high temperature / red hot via joule heating (of a current), most of the energy becomes thermal energy / heat or only a ling small portion is converted to light output.	As the eye is most sensitive to green light, a green light source (having the same light output power) would appear brighter compared to a white one (comprises of different colours).	Luminous flux of each lamp: $E = 10000$ lumens	tan $\theta = \frac{2.5}{10}$ (or $\cos \theta = \frac{10}{\sqrt{10^2 + 2.5^2}}$) $\theta = 14.036243^{\circ} \approx 14.0^{\circ}$ $I = \frac{E \times \cos^2 \theta \times 2}{4\pi d^2}$ = 14.532045 lux ≈ 14.5 lux or lx	Efficacy $(A) = \frac{11000}{150} = 73.33333 \text{ Im W}^{-1}$ Efficacy $(B) = \frac{10000}{135} = 74.074074 \text{ Im W}^{-1}$ Lamp B is recommended.	Advantages: Variation of illuminance smaller PEffect of individual lamp failure smaller ONE	Disadvantages: More frequent change / replacement of lamps More expensive as installation cost increases More wiring involved More installation time
202	€	(E)	€		(E)	(E)	
	(a)		(P)				
W	e,						

19