

Complex Engineering Problem (CEP)

Fluid Mechanics-II

Submitted To: Dr Engr Naveed Akram

Submitted By: Noman Tayyab

Roll Number: FA20-BME-076

Section: B

Session:2020-2024

Statement:

Statement:

Design and simulate the circular pipe for analysis of standard water in different flow region.

Given Data:

L=1.2

D=10mm

Re=9100-1000

Tout=?

Solution:

We take three Reynolds number between 9100 &1000 they are 9100,9300&9800.

SOLIDWORKS Flow Simulation Project Report

April 7, 2023

Table of Contents

1	Gen	eral Information	. 1
	1.1	Analysis Environment	. 1
	1.2	Model Information	. 1
	1.3	Project Comments:	. 1
	1.4	Size of Computational Domain	. 1
	1.5	Simulation Parameters	
	1.5.	1 Mesh Settings	2
	1.5.		
	1.5.		
	1.5.	4 Boundary Conditions	3
	1.5.	5 Volumetric Heat Sources	. 4
	1.5.	6 Engineering Goals	. 4
	1.6	Analysis Time	
2	Res	ults	5
	2.1	Analysis Goals	
	2.2	Global Min-Max-Table	
	2.3	Results	
	2.4	Conclusion	
3		endix	
•	3.1		
	J. I	Material Data	. 0

1 General Information

Objective of the simulation

1.1 Analysis Environment

Software Product: Flow Simulation 2019 SP5.0. Build: 4725

CPU Type: Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz

CPU Speed: 2496 (2396) MHz

RAM: 8072 MB / 134217727 MB

Operating System: Windows 10 (or higher) (Version 10.0.19045)

1.2 Model Information

Model Name: noman group assignment.SLDPRT

Project Name: Project(1)

1.3 Project Comments:

Unit System: SI (m-kg-s)

Analysis Type: Internal

1.4 Size of Computational Domain

Size

X min	-0.005 m
X max	0.005 m
Y min	-0.005 m
Y max	0.005 m
Z min	0.004 m
Z max	0.996 m
X size	0.010 m
Y size	0.010 m
Z size	0.992 m

1.5 Simulation Parameters

1.5.1 Mesh Settings

1.5.1.1 Basic Mesh

Basic Mesh Dimensions

Number of cells in X	2
Number of cells in Y	2
Number of cells in Z	214

1.5.1.2 Analysis Mesh

Total Cell count: 39376

Fluid Cells: 39376

Solid Cells: 27432

Partial Cells: 24008

Trimmed Cells: 0

1.5.1.3 Additional Physical Calculation Options

Heat Transfer Analysis: Heat conduction in solids: Off

Flow Type: Turbulent only

Time-Dependent Analysis: Off

Gravity: Off

Radiation:

Humidity:

Default Wall Roughness: 0 micrometer

1.5.2 Material Settings

Material Settings

Fluids

Air

Water

1.5.3 Initial Conditions

Initial Conditions

Thermodynamic parameters	Static Pressure: 101325.00 Pa	
	Temperature: 303.00 K	
Velocity parameters	Velocity vector	
	Velocity in X direction: 0 m/s	
	Velocity in Y direction: 0 m/s	
	Velocity in Z direction: 0 m/s	

1.5.4 Boundary Conditions

Boundary Conditions

Inlet Velocity 1

Туре	Inlet Velocity	
Faces		
Coordinate system	Global coordinate system	
Reference axis	X	
Flow parameters	Flow vectors direction: Normal to face	
	Velocity normal to face: 0.080 m/s	
	Fully developed flow: No	
Thermodynamic parameters	Temperature type: Temperature of initial	
	components	
	Temperature: 303.00 K	
Boundary layer parameters	Boundary layer type: Turbulent	

Environment Pressure 1

Туре	Environment Pressure	
Faces		
Coordinate system	Global coordinate system	
Reference axis	X	
Thermodynamic parameters	Environment pressure: 101325.00 Pa Temperature type: Temperature of initial components	

Tomporatura, 202 00 K
Temperature: 303.00 K

1.5.5 Volumetric Heat Sources

1.5.6 Engineering Goals

Goals

Global Goals

GG Maximum Temperature (Fluid) 1

Туре	Global Goal	
Goal type	Temperature (Fluid)	
Calculate	Maximum value	
Coordinate system	Global coordinate system	
Use in convergence	On	

1.6 Analysis Time

Calculation Time: 163 s

Number of Iterations: 139

Warnings:

2 Results

2.1 Analysis Goals

Goals

Name	Unit	Value	Progress	Criteria	Delta	Use in convergence
GG Maximum Temperature (Fluid) 1	К	325.61	100	0.267627247	0.266972892	On

2.2 Global Min-Max-Table

Min/Max Table

Name	Minimum	Maximum	
Density (Fluid) [kg/m^3]	990.03	994.85	
Pressure [Pa]	101325.00	101345.91	
Temperature [K]	303.00	325.61	
Temperature (Fluid) [K]	303.00	325.61	
Velocity [m/s]	0	0.101	
Velocity (X) [m/s]	-0.001	0.001	
Velocity (Y) [m/s]	-0.001	0.001	
Velocity (Z) [m/s]	0	0.101	
Velocity RRF [m/s]	0	0.101	
Velocity RRF (X) [m/s]	-0.001	0.001	
Velocity RRF (Y) [m/s]	-0.001	0.001	
Velocity RRF (Z) [m/s]	0	0.101	
Vorticity [1/s]	0.04	39.96	
Relative Pressure [Pa]	-1.24e-03	20.91	
Shear Stress [Pa]	0.05	0.19	
Bottleneck Number []	1.4886189e-08	1.0000000	

Heat Transfer Coefficient [W/m^2/K]	442.493	6661.332
ShortCut Number []	6.2429913e-10	1.0000000
Surface Heat Flux [W/m^2]	10000.000	10000.000
Surface Heat Flux (Convective) [W/m^2]	-1.265e+08	1.017e+08
Acoustic Power [W/m^3]	0	2.385e-26
Acoustic Power Level [dB]	0	0

2.3 Results

2.4 Conclusion

3 Appendix

3.1 Material Data

Engineering Database

Gases

Air

Path: Gases Pre-Defined

Specific heat ratio (Cp/Cv): 1.399

Molecular mass: 0.0290 kg/mol

Dynamic viscosity

Specific heat (Cp)

Thermal conductivity

Liquids

Water

Path: Liquids Pre-Defined

Density

Dynamic viscosity

Specific heat (Cp)

Thermal conductivity

Cavitation effect: Yes

Temperature: 0 K

Saturation pressure: 0 Pa

•

Radiation properties: No

