申請人提出俯視圖感知融合技術,解決多傳感器輸入與複雜場景下的統一表徵問題,其作為共一的 BEVFormer 工作促進了多視角三維重建和俯視圖感知發展。下表為國內主流自動駕駛公司受到俯視圖感知研究啓發,衍生出的相關的學術文章(統計截止於 2023 年 3 月,並以論文第一署名機構確定論著歸屬)。

俯視圖感知工作相關衍生(後續)論著

機構	相關工作(題目、時間年月、(會議期刊信息,如有))				
1 NVIDIA, USA	M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with				
	Unified Bird's-Eye View Representation, 22.04				
2 Qualcomm, USA	X-Align: Cross-Modal Cross-View Alignment for Bird'				
	s-Eye-View Segmentation, 22.10, WACV				
3 Bosch, Germany	SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified				
	Bird's-Eye View Representation For 3D Object Detection, 22.1				
4 Valeo, France	LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View				
	Semantic Segmentation, 22.06, CORL				
5 Motional, USA	3M3D: Multi-view, Multi-path, Multi-representation for 3D				
	Object Detection, 23.02				
	Surround-View Vision-based 3D Detection for Autonomous				
	Driving: A Survey, 23.02				
	Vision-RADAR fusion for Robotics BEV Detections: A Survey,				
	23. 02				
6 Volvo, Sverige	F2BEV: Bird's Eye View Generation from Surround-View Fisheye				
	Camera Images for Automated Driving, 23.03				
7 華為	Towards Domain Generalization for Multi-view 3D Object				
	Detection in Bird-Eye-View, 23.03, CVPR				
8 地平線	MapTR: Structured Modeling and Learning for Online Vectorized				
	HD Map Construction, 22.08, ICLR				
	Vision-based Uneven BEV Representation Learning with Polar				
	Rasterization and Surface Estimation, 22.07, CORL				
	Multi-Camera Calibration Free BEV Representation for 3D				
	Object Detection, 22.10,				
	Sparse4D: Multi-view 3D Object Detection with Sparse				
	Spatial-Temporal Fusion, 22.11				
9 蔚來	TiG-BEV: Multi-view BEV 3D Object Detection via Target				
	Inner-Geometry Learning, 22.12				
10 大疆	UniFormer: Unified Multi-view Fusion Transformer for				
	Spatial-Temporal Representation in Bird's-Eye-View, 22.07				
11 滴滴	FusionMotion: Multi-Sensor Asynchronous Fusion for				
	Continuous Occupancy Prediction via Neural-ODE, 23.02				
	Consistency of Implicit and Explicit Features Matters for				
	Monocular 3D Object Detection, 22.07				
	Contour Context: Abstract Structural Distribution for 3D				
i	LiDAR Loop Detection and Metric Pose Estimation, 23.02				

12 毫末智行	BEV-Lanedet: Fast Lane Detection on BEV Ground, 22.10			
13 鑒智機器人	BEVDet: High-Performance Multi-Camera 3D Object Detection in			
	Bird-Eye-View, 22.06			
	BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object			
	Detection, 22.06			
	BEVerse: Unified Perception and Prediction in Birds-Eye-View			
	for Vision-Centric Autonomous Driving, 22.05			
14 Nullmax, USA	BEVSegFormer: Bird's Eye View Semantic Segmentation Fr			
	Arbitrary Camera Rigs, 22.03, WACV			
	FastPillars: A Deployment-friendly Pillar-based 3D Detector,			
	23. 02			
15 美團	AeDet: Azimuth-invariant Multi-view 3D Object Detection,			
	22. 11			
16 阿里巴巴	BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework,			
	22.05, NeurIPS			
17 京東	JPerceiver: Joint Perception Network for Depth, Pose and			
	Layout Estimation in Driving Scenes, 22.07, ECCV			
	Benchmarking the Robustness of LiDAR-Camera Fusion for 3D			
	Object Detection, 22.05			
18 曠視	PETR: Position Embedding Transformation for Multi-View 3D			
	Object Detection, 22.03, ECCV			
	PETRv2: A Unified Framework for 3D Perception from			
	Multi-Camera Images, 22.06.			
	BEVDepth: Acquisition of Reliable Depth for Multi-view 3D			
	Object Detection, 22.06, AAAI			
	BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object			
	Detection with Dynamic Temporal Stereo, 22.09			
	MatrixVT: Efficient Multi-Camera to BEV Transformation for			
	3D Perception, 22.11			
19 商湯	DETR4D: Direct Multi-View 3D Object Detection with Sparse			
	Attention, 22.12			
	Fast-BEV: Towards Real-time On-vehicle Bird's-Eye View			
	Perception, 23.01, NeurIPS			
	Fast-BEV: A Fast and Strong Bird's-Eye View Perception			
	Baseline, 23.01			
	BEVDistill: Cross-Model BEV Distillation for Multi-view 3D			
	object Detection, 22.11, ICLR			
20 輕舟智行	BEV-Locator: An End-to-end Visual Semantic Localization			
	Network Using Multi-View Images, 22.11			

引用申請人《俯視圖感知理解》工作(例如 BEVFormer、PersFormer、OpenLane、 LaneSegNet 等)的部分學者與團隊。

姓名	機構	國家/地區	榮譽稱號
Dinesh Manocha	University of Maryland	美國	AAAS/AAAI/ACM/IEEE/ANAI
	at College Park		Fellow
Anima Anandkumar	California Institute of	美國	AAAI/ACM/IEEE Fellow
	Technology		
Kilian Q.	Cornell University	美國	AAAI/ACM Fellow
Weinberger			
Mani Srivastava	University of	美國	ACM/IEEE Fellow
	California, Los Angeles		
Jensen Huang	NVIDIA	美國	美國工程院院士
Deepak Ganesan	University of	美國	ACM Fellow
	Massachusetts Amherst		
Henrik I.	University of	美國	IEEE Fellow
Christensen	California San Diego		
Jenq-Neng Hwang	University of	美國	IEEE Fellow
	Washington		
Ming C. Wu	University of	美國	IEEE/OSA Fellow
	California, Berkeley		
Fatih Porikli	Qualcomm	美國	IEEE Fellow
Ming-Hsuan Yang	University of	美國	IEEE Fellow
	California, Merced		
Roberto Cipolla	University of Cambridge	英國	英國工程院/科學院院士
			/IAPR Fellow
Gerhard Rigoll	Technical University of	德國	IEEE Fellow
	Munich		
Luc Van Gool	ETH Zurich	瑞士	ICCV 马尔奖获得者
Marc Pollefeys	ETH Zurich	瑞士	ACM/IEEE Fellow
Markus Gross	ETH Zurich	瑞士	ACM/EUROGRAPHICS Fellow
Alexander	Delft University of	荷蘭	IEEE Fellow
Yarovoy	Technology		
Max Welling	University of Amsterdam	荷蘭	CIFAR/ELLIS Fellow
Qing-Long Han	Swinburne University of	澳大利亞	IEEE Fellow
	Technology		
Dacheng Tao	Nanyang Technological	新加坡	澳大利亞科學院院士
	University		/ACM/IEEE Fellow
James Kwok	HKUST	中國香港	IEEE Fellow
Jiaya Jia	HKUST	中國香港	IEEE Fellow
Ya-Qin Zhang	Tsinghua University	中國	中國工程院院士/AAAS/IEEE
			Fellow
Tieniu Tan	Nanjing University	中國	中國科學院院士/IEEE/IAPR
			Fellow
Fei-Yue Wang	Chinese Academy of	中國	AAAS/IEEE/ASME Fellow
	Sciences		

Tao Mei	HiDream.ai	中國	IEEE/IAPR/CAAI Fellow
Jun Zhu	Tsinghua University	中國	AAAI/IEEE Fellow
Guo-Jun Qi	Westlake University	中國	IEEE/IAPR Fellow
Yunhong Wang	Beihang University	中國	IEEE/IAPR Fellow
Ce Zhu	UESTC	中國	IEEE/Optica/IET/AAIA
			Fellow
Lei Zhang	International Digital	中國	IEEE Fellow
	Economy Academy		
Zhisheng Niu	Tsinghua University	中國	IEEE Fellow