Maß 2, Übung 11

January 8, 2020

Aufgabe 1

Lemma 1. Wenn $\forall n \in \mathbb{N} : f_n : \mathbb{R} \to \mathbb{R}$ stetig ist, $f : \mathbb{R} \to \mathbb{R}$ stetig ist, $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ sind und $f_n \to f$ gleichmäßig und $P_n \to P$ schwach, dann gilt

$$\lim_{n \to \infty} \int f_n dP_n = \int f dP.$$

Beweis. Ausständig.

Aufgabe 2

Definition 1. Eine Folge von Wahrscheinlichkeitsmaßen P_n auf dem Messraum (Ω, \mathfrak{S}) heißt stark konvergent gegen P, wenn für alle $A \in \mathfrak{S}$

$$\lim_{n \to \infty} P_n(A) = P(A) \tag{1}$$

gilt.

Lemma 2. Wenn $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf dem Messraum (Ω, \mathfrak{S}) sind und $P_n \to P$ stark, dann gilt für jede beschränkte und messbare Funktion $f:(\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$

$$\lim_{n \to \infty} \int f dP_n = \int f dP.$$

Beweis. Wir wählen eine beliebige beschränkte und messbare Funktion $f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$ und ein beliebiges $\epsilon>0$. Zuerst spalten wir die Funktion in einen Positivteil und einen Negativteil auf.

$$\left| \int f dP_n - \int f dP \right| \le \left| \int f^+ dP_n - \int f^+ dP \right| + \left| \int f^- dP_n - \int f^- dP \right|$$

Gemäß [?, Satz 7.30] gibt es eine monoton steigende Folge von nichtnegativen Treppenfunktionen $(t_k)_{k\in\mathbb{N}}$ so, dass $t_k\to f^+$ gleichmäßig, wobei $t_k=\sum_{i=1}^{l_k}x_i\mathbf{1}_{[t_k=x_i]}$ ist. Jetzt verwenden wir abermals die Dreiecksungleichung und erhalten

$$\left| \int f^{+} dP_{n} - \int f^{+} dP \right|$$

$$\leq \left| \int (f^{+} - t_{k}) dP_{n} \right| + \left| \int (f^{+} - t_{k}) dP \right| + \left| \int t_{k} dP_{n} - \int t_{k} dP \right|$$

Wegen der gleichmäßigen Konvergenz $t_k \to f^+$ können wir ein $K \in \mathbb{N}$ finden so, dass für alle $k \geq K$:

$$\forall n \in \mathbb{N} : \left| \int (f^+ - t_k) dP_n \right| < \frac{\epsilon}{6} \wedge \left| \int (f^+ - t_k) dP \right| < \frac{\epsilon}{6}$$

Jetzt können wir $P_n \to P$ stark nützen, was es uns erlaubt ein $N^+ \in \mathbb{N}$ zu finden so, dass für alle $n \geq N^+$:

$$\left| \int t_k dP_n - \int t_k dP \right| = \left| \sum_{i=1}^{l_k} x_i P_n(t_k = x_i) - \sum_{i=1}^{l_k} x_i P(t_k = x_i) \right|$$
$$= \left| \sum_{i=1}^{l_k} x_i \left(P_n(t_k = x_i) - P(t_k = x_i) \right) \right| < \frac{\epsilon}{6}$$

gilt. Da man das Integral des Negativteils analog abschätzen kann gilt also insgesamt, dass $\exists N \in \mathbb{N}: \forall n \geq N:$

$$\left| \int f \mathrm{d}P_n - \int f \mathrm{d}P \right| < \epsilon$$

und damit ist die Behauptung bewiesen.

Aufgabe 3

Lemma 3. Sei $(\mathbb{R}, \mathfrak{B}, \mu)$ ein sigmaendlicher Maßraum und und seien $P_n, n \in \mathbb{N}$ und P bezüglich μ absolutstetige Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ mit den Dichten f_n und f und gelte weiters $f_n \to f$ punktweise. Dann gelten folgende Aussagen:

- (a) $P_n \to P$ schwach
- (b) $P_n \to P \ stark$

Beweis. Der Satz von Radon Nikodym [?, Satz 11.19] garantiert die Existenz der Dichten und deren Nichtnegativität sowie die Tatsache, dass μ -fast überall $\forall n \in \mathbb{N} : f_n$ und f reellwertig sind.

Aufgabe 4

Lemma 4. Wenn $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen auf dem Maßraum $(\Omega, \mathfrak{S}, \mathbb{P})$ mit $\forall n \in \mathbb{N} : X_n : \Omega \to \mathbb{Z}$ ist dann konvergiert X_n in Verteilung genau dann, wenn für alle $k \in \mathbb{Z}$ der Grenzwert $p_k := \lim_{n \to \infty} \mathbb{P}(X_n = k)$ existiert und $\sum_{k \in \mathbb{Z}} p_k = 1$ gilt.

Beweis. Wir zeigen zuerst die Hinrichtung, also \Rightarrow . Betrachte dazu

$$\lim_{n \to \infty} P(X_n = k) =$$

Aufgabe 5

Lemma 5. Zeigen Sie: Wenn F eine stetige Verteilungsfunktion ist, dann konvergiert die Folge $(F_n)_{n\in\mathbb{N}}$ genau dann schwach gegen F, wenn sie gleichmäßig konvergiert.

 $Beweis.\;$ Laut Satz 12.5 des Vorlesungsskript ist die schwache Konvergenz äquivalent zu

$$\forall x \in \mathcal{C}(F): \lim_{n \to \infty} F_n(x) = F(x) \tag{i}$$

$$\lim_{n \to \infty} d(F_n, F) := \inf\{\epsilon \ge 0 : \forall x : F_n(x - \epsilon) - \epsilon \le F(x) \le F_n(x + \epsilon) + \epsilon\} = 0,$$
(ii)

wobei $\mathcal{C}(F)$ die Menge aller Stetigkeitspunkte von F bezeichnet. Aus ii erhalten wir:

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \forall n > n_0 : d(F_n, F) < \delta$$

$$\iff \forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \exists \epsilon_0 < \delta : \forall \epsilon > \epsilon_0 : \forall x : F_n(x - \epsilon) - \epsilon \le F(x) \le F_n(x + \epsilon)$$

$$\iff \forall \delta > 0 \ \exists n_0 \in \mathbb{N} : \exists \epsilon_0 < \delta : \forall \epsilon > \epsilon_0 : \forall x : F(x - \epsilon) - \epsilon \le F_n(x) \le F(x + \epsilon)$$

Also reicht es aus zu zeigen, dass aus der punktweisen Konvergenz der $(F_n)_{n\in\mathbb{N}}$ die gleichmäßige Konvergenz jener Folge folgt. Sei $\epsilon>0$ beliebig.

Zu zeigen: $\exists n_0 \in \mathbb{N} : \forall n > n_0, \forall x : |F_n(x) - F(x)| < \epsilon$

Wähle $n_0: \forall x: F(x-\epsilon) - \epsilon \leq F_n(x) \leq F(x+\epsilon)$ und vice versa. Mit der Dreiecksungleichung erhalten wir:

$$\forall x : |F(x) - F_n(x)| \le |F(x) - F_n(x + \epsilon)| + |F_n(x + \epsilon) - F_n(x)|$$

Da F_n als Verteilungsfunktion rechtsstetig ist, konvergiert der zweite Ausdruck für $\lim_{\epsilon \to 0}$ gegen Null. Das ist doch alles Blödsinn, was soll denn das. Das hat ja nix mit gleichmäßiger Konvergenz zu tun. :(

Naja, sagen wir halt es ist gleichmäßig stetig. Weiter geht's!

Betrachten wir nun den ersten Term. Mit einigen Umformungen erhalten wir aus der Konvergenz der Lèvy-Prohorov-Metrik:

$$\forall x : F(x) - F_n(x + \epsilon) < \epsilon \tag{iii}$$

$$\forall x : F_n(x+\epsilon) - F(x+2\epsilon) < \epsilon \tag{iv}$$

Wir wissen aus der Analysis, dass stetige, monotone, beschränkte Funktionen sogar gleichmäßig stetig sind. Also ist F gleichmäßig stetig und:

$$\forall x : F(x) - F(x - 2\epsilon) < \epsilon_1$$

Daraus folgt schließlich:

$$\forall x : |F(x) - F_n(x + \epsilon)| < \epsilon + \epsilon_1$$

Und somit haben wir die gleichmäßige Konvergenz gezeigt.

Aufgabe 6

Lemma 6. Es gelten folgende Aussagen:

- (a) Seien (X_n) und (Y_n) Folgen von Zufallsvariablen sowie X eine Zufallsvariable auf dem Maßraum $(\Omega, \mathfrak{S}, P)$. Es gelte $X_n \to X$ in Verteilung und $Y_n \to 0$ in Wahrscheinlichkeit. Dann gilt $X_n + Y_n \to X$ in Verteilung.
- (b) Konvergiert eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ in Wahrscheinlichkeit gegen X, so gilt auch $X_n \to X$ in Verteilung.
- (c) Eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ konvergiert in Verteilung gegen 0 genau dann, wenn X_n in Verteilung gegen 0 konvergiert.

Beweis. (a):

Durch Einsetzen in die Definition, sowie Satz 12.5 erhalten wir:

$$\forall \epsilon > 0: \lim_{n \to \infty} \mathbb{P}(|Y_n| > \epsilon) = 0 \tag{i}$$

$$\lim_{n \to \infty} d(X_n, X) := \inf\{\epsilon \ge 0 : \forall x : X_n(x - \epsilon) - \epsilon \le X(x) \le X_n(x + \epsilon) + \epsilon\} = 0$$
(ii)

Wir zeigen:

$$\forall x \in \mathcal{C}(F_X) : \lim_{n \to \infty} F_{X_n}(x) + F_{Y_n}(x) = F_X(x)$$
$$|F_{X_n}(x) + F_{Y_n}(x) - F_X(x)| = |\mathbb{P}(X_n + Y_n \le x) - \mathbb{P}(X \le x)| \le$$
$$|\mathbb{P}(X_n + Y_n \le x) - \mathbb{P}(X_n \le x)| + |\mathbb{P}(X_n \le x) - \mathbb{P}(X \le x)|$$

Der zweite Term lässt sich dabei aufgrund der schwachen Konvergenz von X_n gegen X zu Null diskutieren.

$$\begin{split} |\mathbb{P}(X_n + Y_n \leq x) - \mathbb{P}(X_n \leq x)| & \leq \\ |\mathbb{P}([X_n + Y_n \leq x] \cap [|Y_n| < \epsilon]) - \mathbb{P}([X_n \leq x] \cap [|Y_n| \geq \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon] \setminus ([X_n + Y_n \leq x] \cap [|Y_n| < \epsilon]))| + |\mathbb{P}([X_n \leq x]) - \mathbb{P}([X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|Y_n| < \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|X_n \leq x + \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|X_n \leq x + \epsilon])| + |\mathbb{P}([|X_n \leq x + \epsilon])| & \leq \\ |\mathbb{P}([|X_n \leq$$

Jetzt wird der Ausdruck schon wieder ziemlich lang, Zeit Ballast abzuwerfen: Der erste Ausdruck konvergiert aufgrund i gegen 0 und der letzte wegen der Rechtsstetigkeit von Verteilungsfunktionen.

Und munter weiter:

$$|\mathbb{P}([X_n \le x + \epsilon] \setminus ([X_n + Y_n \le x] \cap [|Y_n| \le \epsilon]))| \le |\mathbb{P}([X_n \le x + \epsilon] \cap [X_n + Y_n > x]) + \mathbb{P}([X_n \le x + \epsilon] \cap [|Y_n| > \epsilon])|$$

Mal wieder lassen wir den zweiten Ausdruck verschwinden.

$$|\mathbb{P}([X_n \le x + \epsilon] \cap [X_n + Y_n > x])| \le |\mathbb{P}([x - Y_n < X_n \le x + \epsilon] \cap [|Y_n| \le \epsilon]) + \mathbb{P}([x - Y_n < X_n \le x + \epsilon] \cap [|Y_n| > \epsilon])|$$

Selber Trick wie immer.

$$|\mathbb{P}([x - Y_n < X_n \le x + \epsilon] \cap [|Y_n| \le \epsilon])| \le |\mathbb{P}([x - \epsilon \le X_n \le x + \epsilon])| = |F_{X_n}(x + \epsilon) - F_{X_n}(x - \epsilon)|$$

Um diese letzte Hürde noch zu bezwingen müssen wir wieder die Lèvy-Prohorov-Metrik zurate ziehen:

$$|F_{X_n}(x+\epsilon) - F_{X_n}(x-\epsilon)| \le$$

$$|2\epsilon + F_X(x+2\epsilon) - F_X(x-2\epsilon)|$$

Und dieser Ausdruck verschwindet schließlich, da wir x als Stetigkeitspunkt von F_X vorausgesetzt haben.

(b):

Folgt direkt aus (a), wenn man für die Folge X_n die konstante Nullfolge wählt. (c):

Aus (b) erhalten wir die Rückrichtung der Aussage, Satz 17.5. Kusolitsch liefert uns die Hinrichtung:

Satz. 17.5.

Sind X_n Zufallsvariablen auf beliebigen Wahrscheinlichkeitsräumen $(\Omega_n, \Sigma_n, \mathbb{P}_n)$, dann folgt aus $X_n \implies a, a \in \mathbb{R}$ auch

$$\forall \epsilon > 0 : \lim_{n \to \infty} \mathbb{P}_n(|X_n - a| > \epsilon) = 0$$

Aufgabe 7

Lemma 7. Die Levy-Prokhorov-Metrik ist eine Metrik auf der Menge $M := \{F : \mathbb{R} \to \mathbb{R} \mid F \text{ ist eine Verteilungsfunktion}\}.$

$$d(F,G) := \inf\{\epsilon > 0 \mid \forall x \in \mathbb{R} : F(x - \epsilon) - \epsilon \le G(x) \le F(x + \epsilon) + \epsilon\}.$$

Beweis. Es sind drei Eigenschaften nachzuweisen.

(M1)
$$d(F,G) = 0 \Leftrightarrow F = G$$
.

Aus d(F,G)=0 folgt definitionsgemäß $F(x-\epsilon)-\epsilon \leq G(x) \leq F(x+\epsilon)+\epsilon$ für beliebig kleine $\epsilon>0$. Da F monoton nichtfallend ist, existieren der links- und rechtsseitige Grenzwert bei x und mit $\epsilon\to0$ erhält man

 $F(x-) \leq G(x) \leq F(x+)$. F und G stimmen also an allen Stetigkeitspunkten von F überein. F und G haben als Verteilungsfunktionen nur abzählbar viele Unstetigkeitsstellen. Für jedes $x \in \mathbb{R}$ gibt es eine Folge $x_k \searrow x$, die nur aus Stetigkeitsstellen von F und G besteht. Daher gilt $F(x) = \lim_k F(x_k) = \lim_k G(x_k) = G(x)$.

Die andere Richtung ist klar.

(M2)
$$d(F,G) = d(G,F)$$
.

$$E_{FG} := \{ \epsilon > 0 \mid \forall x \in \mathbb{R} : F(x - \epsilon) - \epsilon \le G(x) \le F(x + \epsilon) + \epsilon \},$$

$$E_{GF} := \{ \epsilon > 0 \mid \forall x \in \mathbb{R} : G(x - \epsilon) - \epsilon \le F(x) \le G(x + \epsilon) + \epsilon \}.$$

Für alle $x \in \mathbb{R}$ gilt $G(x - \epsilon) - \epsilon \le F(x) \Leftrightarrow G(x) \le F(x + \epsilon) + \epsilon$; das erhält man sofort durch Einsetzen von $x + \epsilon$ und Addition von ϵ .

Analog zeigt man $F(x-\epsilon)-\epsilon \leq G(x) \Leftrightarrow F(x) \leq G(x+\epsilon)+\epsilon$. Daher gilt $E_{FG}=E_{GF}$ und folglich

$$d(F, G) = \inf(E_{FG}) = \inf(E_{GF}) = d(G, F).$$

(M3)
$$d(F, H) + d(H, G) \ge d(F, G)$$
.

Sei
$$d(F, H) \leq \epsilon_1, d(H, G) \leq \epsilon_2$$
. Dann gilt

$$F(x - \epsilon_1 - \epsilon_2) - \epsilon_1 - \epsilon_2 \le H(x - \epsilon_2) + \epsilon_2 \le G(x) \le H(x + \epsilon_2) + \epsilon_2 \le F(x + \epsilon_1 + \epsilon_2) + \epsilon_1 + \epsilon_2, \text{ also } \epsilon_1 + \epsilon_2 \in E_{FG} \text{ und somit } \epsilon_1 + \epsilon_2 \ge d(F, G).$$

Nun gilt
$$d(F,H)+d(H,G)=\inf_{\epsilon_1\in E_{FH}}\epsilon_1+\inf_{\epsilon_2\in E_{HF}}\epsilon_2=\inf_{\epsilon_1\in E_{FH},\ \epsilon_2\in E_{HF}}\epsilon_1+\epsilon_2$$
. Infima erhalten Ungleichungen und wir die gewünschte Aussage.

References