डकार्ड 🏻

अध्याय 5

खनिज तथा ऊर्जा संसाधन

भारत, अपनी विविधतापूर्ण भूगिर्भिक संरचना के कारण विविध प्रकार के खिनज संसाधनों से संपन्न है। भारी मात्रा में बहुमूल्य खिनज पूर्व-पुराजीवी काल या प्रीपैलाइजोइक ऐज में उद्भीत हैं। (संदर्भ—अध्याय-2 कक्षा 11 पाठ्य पुस्तक— 'भौतिक भूगोल के मूल सिद्धांत') और मुख्यत: प्रायद्वीपीय भारत की आग्नेय तथा कायांतिरत चट्टानों से संबद्ध हैं। उत्तर भारत के विशाल जलोढ़ मैदानी भूभाग आर्थिक उपयोग के खिनजों से विहीन हैं। किसी भी देश के खिनज संसाधन औद्योगिक विकास के लिए आवश्यक आधार प्रदान करते हैं। इस अध्याय में, हम देश में विभिन्न प्रकार के खिनजों एवं ऊर्जा के संसाधनों की उपलब्धता के बारे में चर्चा करेंगे।

एक खनिज निश्चित रासायनिक एवं भौतिक गुणधर्मों (विशिष्टताओं) के साथ कार्बिनिक या अकार्बिनिक उत्पत्ति का एक प्राकृतिक पदार्थ है।

खनिज संसाधनों के प्रकार

रासायनिक एवं भौतिक गुणधर्मों के आधार पर खनिजों को दो प्रमुख श्रेणियों— धात्विक (धातु) और अधात्विक (अधातु) में समूहित किया जा सकता है; जोकि निम्न प्रकार से भी वर्गीकृत किए जा सकते हैं—

चित्र 5.1 : खनिजों का वर्गीकरण

जैसा कि उपर्युक्त आरेख से स्पष्ट है, धातु के स्रोत धात्विक खनिज हैं। लौह अयस्क, ताँबा एवं सोना (स्वर्ण) आदि से धातु उपलब्ध होते हैं और इन्हें धात्विक खिनज श्रेणी में रखा गया है। धात्विक खिनजों को लौह एवं अलौह धात्विक श्रेणी में भी बाँटा गया है। लौह, जैसा कि आप जानते हैं, लोहा है। वे सभी प्रकार के खिनज, जिनमें लौह अंश समाहित होता है जैसे कि लौह अयस्क वे लौह धात्विक होते हैं और जिन्हें लौह अंश नहीं होता है, वे अलौह धात्विक खिनज में आते हैं जैसे कि ताँबा, बॉक्साइट आदि।

अधात्विक खनिज या तो कार्बनिक उत्पत्ति के होते हैं जैसे कि जीवाश्म ईंधन, जिन्हें खनिज ईंधन के नाम से जानते हैं या वे पृथ्वी में दबे प्राणी एवं पादप जीवों से प्राप्त होते हैं जैसे कि कोयला और पेट्रोलियम आदि। अन्य प्रकार के अधात्विक खनिज अकार्बनिक उत्पत्ति के होते हैं जैसे अभ्रक, चुना-पत्थर तथा ग्रेफाइट आदि।

खिनजों की कुछ निश्चित विशेषताएँ होती हैं। यह क्षेत्र में असमान रूप से वितरित होते हैं। खिनजों की गुणवत्ता और मात्रा के बीच प्रतिलोमी संबंध पाया जाता है अर्थात् अधिक गुणवत्ता वाले खिनज, कम गुणवत्ता वाले खिनजों की तुलना में कम मात्रा में पाए जाते हैं। तीसरी प्रमुख विशेषता यह है कि ये सभी खिनज समय के साथ समाप्त हो जाते हैं। भूगिर्भिक दृष्टि से इन्हें बनने में लंबा समय लगता है और आवश्यकता के समय इनका तुरंत पुनर्भरण नहीं किया जा सकता। अत: इन्हें संरक्षित किया जाना चाहिए और इनका दुरुपयोग नहीं होना चाहिए क्योंकि इन्हें दुबारा उत्पन्न नहीं किया जा सकता।

भारत में खनिजों का वितरण

भारत में अधिकांश धात्विक खनिज प्रायद्वीपीय पठारी क्षेत्र की प्राचीन क्रिस्टलीय शैलों में पाए जाते हैं। कोयले का लगभग 97 प्रतिशत भाग दामोदर, सोन, महानदी और गोदावरी निदयों की घाटियों में पाया जाता है। पेट्रोलियम के आरक्षित भंडार असम, गुजरात तथा मुंबई हाई अर्थात् अरब सागर के अपतटीय क्षेत्र में पाए जाते हैं। नए आरक्षित क्षेत्र कृष्णा-गोदावरी तथा कावेरी बेसिनों में पाए गए हैं। अधिकांश प्रमुख खनिज मंगलोर से कानपुर को जोड़ने वाली (किल्पत) रेखा के पूर्व में पाए जाते हैं। भारत की प्रमुख खनिज पट्टियाँ हैं—

भारत में खनिज मुख्यत: तीन विस्तृत पट्टियों में सांद्रित हैं। कुछ कदाचनिक भंडार यत्र-तत्र एकाकी खंडों में भी पाए जाते हैं। ये पट्टियाँ हैं—

उत्तर-पूर्वी पठारी प्रदेश

इस पट्टी के अंतर्गत छोटानागपुर (झारखंड), ओडिशा के पठार, पं. बंगाल तथा छत्तीसगढ़ के कुछ भाग आते हैं। क्या आपने कभी सोचा है कि प्रमुख लौह एवं इस्पात उद्योग इस क्षेत्र में क्यों अवस्थित हैं? यहाँ पर विभिन्न प्रकार के खनिज उपलब्ध हैं जैसे कि लौह अयस्क, कोयला, मैंगनीज, बॉक्साइट व अभ्रक आदि।

> उन विशिष्ट प्रदेशों का पता करें, जहाँ इन खनिजों का दोहन हो रहा है।

दक्षिण-पश्चिमी पठार प्रदेश

यह पट्टी कर्नाटक, गोआ तथा संस्पर्शी तिमलनाडु उच्च भूमि और केरल पर विस्तृत है। यह पट्टी लौह धातुओं तथा बॉक्साइट में समृद्ध है। इसमें उच्च कोटि का लौह अयस्क, मैंगनीज़ तथा चूना-पत्थर भी पाया जाता है। निवेली लिगनाइट को छोड़कर इस क्षेत्र में कोयला निक्षेपों का अभाव है।

इस पट्टी के खनिज निक्षेप उत्तर-पूर्वी पट्टी की भाँति विविधता पूर्ण नहीं है। केरल में मोनाजाइट तथा थोरियम, और बॉक्साइट क्ले के निक्षेप हैं। गोआ में लौह अयस्क निक्षेप पाए जाते हैं।

उत्तर-पश्चिमी प्रदेश

यह पट्टी राजस्थान में अरावली और गुजरात के कुछ भाग पर विस्तृत है और यहाँ के खनिज धारवाड़ क्रम की शैलों से संबद्ध हैं। ताँबा, जिंक आदि प्रमुख खनिज है। राजस्थान बलुआ पत्थर, ग्रेनाइट, संगमरमर, जिप्सम जैसे भवन निर्माण के पत्थरों में समृद्ध हैं और यहाँ मुल्तानी मिट्टी के भी विस्तृत निक्षेप पाए जाते हैं। डोलोमाइट तथा चूना-पत्थर सीमेंट उद्योग के लिए कच्चा माल उपलब्ध कराते हैं। गुजरात अपने पेट्रोलियम निक्षेपों के लिए जाना जाता है। आप जानते होंगे कि गुजरात व राजस्थान दोनों में नमक के समृद्ध स्रोत हैं।

महात्मा गांधी द्वारा कब और क्यों दांडी मार्च आयोजित किया गया था?

.

हिमालयी पट्टी एक अन्य खनिज पट्टी है जहाँ ताँबा, सीसा, जस्ता, कोबाल्ट तथा रंगरत्न पाया जाता है। ये पूर्वी और

पश्चिमी दोनों भागों में पाए जाते हैं। असम घाटी में खनिज तेलों के निक्षेप हैं। इनके अतिरिक्त खनिज तेल संसाधन मुंबई के निकट अपतटीय क्षेत्र (मुंबई हाई) में भी पाए जाते है। आगे के पृष्ठों में, आप कुछ महत्वपूर्ण खनिजों के स्थानिक प्रारूपों के बारे में जानेंगे।

लौह खनिज

लौह अयस्क. मैंगनीज़ तथा क्रोमाइट आदि जैसे लौह खनिज धातु आधारित उद्योगों के विकास के लिए एक सुदृढ आधार प्रदान करते हैं। लौह खनिजों के संचय एवं उत्पादन दोनों में ही हमारे देश की स्थिति अच्छी है।

लौह अयस्क

भारत में लौह अयस्क के प्रचुर संसाधन हैं। यहाँ एशिया के विशालतम लौह अयस्क आरक्षित हैं। हमारे देश में इस अयस्क के दो प्रमुख प्रकार- हेमेटाइट तथा मैग्नेटाइट पाए जाते हैं। इसकी सर्वोत्तम गुणवत्ता के कारण इसकी विश्व-भर में भारी माँग है। लौह-अयस्क की खदानें देश के उत्तर-पूर्वी पठार प्रदेश में कोयला क्षेत्रों के निकट स्थित हैं जो इसके लिए लाभप्रद है।

लौह अयस्क के कुल आरक्षित भंडारों का लगभग 95 प्रतिशत भाग ओडिशा, झारखंड, छत्तीसगढ़, कर्नाटक, गोआ, आंध्र प्रदेश तथा तमिलनाडु राज्यों में स्थित हैं। ओडिशा में लौह अयस्क सुंदरगढ, मयूरभंज, झार स्थित पहाडी शृंखलाओं में पाया जाता है। यहाँ की महत्वपूर्ण खदानें- गुरुमहिसानी, सुलाएपत, बादामपहाड (मयुरभंज) किरुबुरू (केंदुझार) तथा बोनाई (सुंदरगढ) हैं। झारखंड की ऐसी ही पहाडी शृंखलाओं में कुछ सबसे पुरानी लौह अयस्क की खदानें हैं तथा अधिकतर लौह एवं इस्पात संयंत्र इनके आसपास ही स्थित हैं। नोआमंडी और गुआ जैसी अधिकतर महत्वपूर्ण खदानें पूर्वी और पश्चिमी सिंहभूम जिलों में स्थित हैं। यह पट्टी और आगे दुर्ग, दांतेवाड़ा और बैलाडीला तक विस्तृत हैं। डल्ली तथा दुर्ग में राजहरा की खदानें देश की लौह अयस्क की महत्वपूर्ण खदानें हैं। कर्नाटक में. लौह अयस्क के निक्षेप बल्लारि ज़िले के संदर-होसपेटे क्षेत्र में तथा चिकमगलूरु ज़िले की बाबा बूदन पहाड़ियों और

Iron ore mining gets a boost

The iron ore mining industry in India is attracting several new blayers, both large and small

have their own captive mines. The other or

sponge iron in India - it is also the second largest in the world - with a capacity of £50,000 TPA. KIOCI. Seas Gon and Usha Ispat are the major producers of pig from. Integrated steel plants like SAIL and RINL also produce a sig-

umuseur steel productive from the steel pro

कुद्रेमुख तथा शिवमोगा, चित्रदुर्ग और तुमकुरु जिलों के कुछ हिस्सों में पाए जाते हैं। महाराष्ट्र के चंद्रपुर भंडारा और रत्नागिरि ज़िले, तेलंगाना के करीम नगर, वारांगल जिले, आंध्र प्रदेश के कुरूनुल, कडप्पा तथा अनंतपुर ज़िले और तिमलनाडु राज्य के सेलम तथा नीलगिरी ज़िले लौह अयस्क खनन के अन्य प्रदेश हैं। गोआ भी लौह अयस्क के महत्वपूर्ण उत्पादक के रूप में उभरा है।

मैंगनीज

लौह अयस्क के प्रगलन के लिए मैंगनीज एक महत्वपूर्ण कच्चा माल है और इसका उपयोग लौह-मिश्रातु, विनिर्माण में भी किया जाता है। मैंगनीज़ निक्षेप लगभग सभी भुगर्भिक संरचनाओं में पाया जाता है हालाँकि; मुख्य रूप से यह धारवाड क्रम से संबद्ध है।

चित्र 5.2 : भारत – धात्विक खनिज (लौह धातु)

मध्य प्रदेश एवं ओडिशा मैंगनीज़ के अग्रणी उत्पादक है। ओडिशा की मुख्य खदानें भारत की लौह अयस्क पट्टी के मध्य भाग में विशेष रूप से बोनाई, केन्दुझर, सुंदरगढ़, गंगपुर, कोरापुट, कालाहांडी तथा बोलनगीर स्थित हैं। मध्य प्रदेश में मैंगनीज़ की पट्टी बालाघाट, छिंदवाड़ा, निमाड़, मांडला और झाबुआ जिलों तक विस्तृत है। कर्नाटक एक अन्य प्रमुख उत्पादक है तथा यहाँ की खदानें धारवाड़, बल्लारी, बेलगावी, उत्तरी कनारा, चिकमगलूरु, शिवमोगा, चित्रदुर्ग तथा तुमकुरु में स्थित हैं। महाराष्ट्र भी मैंगनीज़ का एक महत्वपूर्ण उत्पादक हैं। यहाँ मैंगनीज़ का खनन नागपुर, भंडारा तथा रत्नागिरी जिलों में होता है। इन खदानों के अलाभ ये हैं कि ये इस्पात संयंत्रों से दूर स्थित हैं।

तेलंगाना, गोआ तथा झारखंड मैंगनीज़ के अन्य गौण उत्पादक हैं।

अलौह-खनिज

बॉक्साइट को छोड़कर अन्य सभी अलौह-खनिजों के संबंध में भारत एक स्थिति निम्न है।

बॉक्साइट

बॉक्साइट एक अयस्क है जिसका प्रयोग एल्यूमिनियम के विनिर्माण में किया जाता है। बॉक्साइट मुख्यत: टरश्यरी निक्षेपों में पाया जाता है और लैटराइट चट्टानों से संबद्ध है। यह विस्तृत रूप से प्रायद्वीपीय भारत के पठारी क्षेत्रों अथवा पर्वत श्रेणियों के साथ-साथ देश के तटीय भागों में भी पाया जाता है।

ओडिशा बॉक्साइट का सबसे बड़ा उत्पादक है। कालाहांडी तथा संभलपुर अग्रणी उत्पादक हैं। दो अन्य क्षेत्र जो अपने उत्पादन को बढ़ा रहे हैं वे बोलनगीर तथा कोरापुट हैं। झारखंड में लोहारडागा जिले की पैटलैंडस में इसके समृद्ध निक्षेप हैं। गुजरात, छत्तीसगढ़, मध्य प्रदेश एवं महाराष्ट्र अन्य प्रमुख उत्पादक राज्य हैं। गुजरात के भावनगर और जामनगर में इसके प्रमुख निक्षेप हैं। छत्तीसगढ़ में बॉक्साइट निक्षेप अमरकंटक के पठार में पाए जाते हैं जबिक मध्य प्रदेश में कटनी, जबलपुर तथा बालाघाट में बॉक्साइट के महत्वपूर्ण निक्षेप हैं। महाराष्ट्र में कोलाबा, थाणे, रत्नागिरी, सतारा, पुणे तथा कोल्हापुर महत्वपूर्ण उत्पादक हैं। कर्नाटक, तिमलनाडु, तथा गोआ बॉक्साइट के गौण उत्पादक हैं।

ताँबा

बिजली की मोटरें, ट्रांसफार्मर तथा जेनेरेटर्स आदि बनाने तथा विद्युत उद्योग के लिए ताँबा एक अपरिहार्य धातु है। यह एक मिश्रातु योग्य, आघातवर्ध्य तथा तन्य धातु हैं। आभूषणों को सुदृढ़ता प्रदान करने के इसे स्वर्ण के साथ भी मिलाया जाता है।

ताँबा निक्षेप मुख्यत: झारखंड के सिंहभूमि ज़िले में, मध्य प्रदेश के बालाघाट तथा राजस्थान के झुंझुनु एवं अलवर ज़िलों में पाए जाते हैं।

ताँबा के गौण उत्पादक आंध्र प्रदेश गुंटूर जिले का अग्निगुंडाला, कर्नाटक के चित्रदुर्ग तथा हासन जिले और तिमलनाडु का दक्षिण आरकाट जिला हैं।

अधात्विक खनिज

भारत में उत्पादित अधात्विक खनिजों में अभ्रक महत्वपूर्ण है। स्थानीय खपत के लिए उत्पन्न किए जा रहे अन्य खनिज चूनापत्थर, डोलोमाइट तथा फोस्फेट हैं।

अभ्रक

अभ्रक का उपयोग मुख्यत: विद्युत एवं इलेक्ट्रोनिक्स उद्योगों में किया जाता है। इसे पतली चादरों में विघटित किया जा सकता है जो काफ़ी सख्त और सुनम्य होती है। भारत में अभ्रक मुख्यत: झारखंड, आंध्र प्रदेश, तेलंगाना व राजस्थान में पाया जाता है। इसके पश्चात् तिमलनाडु, पं. बंगाल और मध्य प्रदेश आते हैं। झारखंड में उच्च गुणवत्ता वाला अभ्रक निचले हजारीबाग पठार की 150 कि.मी. लंबी व 22 कि.मी. चौड़ी पट्टी में पाया जाता है। आंध्र प्रदेश में, नेल्लोर जिले में सर्वोत्तम प्रकार के अभ्रक का उत्पादन किया जाता है। राजस्थान में अभ्रक की पट्टी लगभग 320 कि.मी. लंबाई में जयपुर से भीलवाड़ा और उदयपुर के आसपास विस्तृत है। कर्नाटक के मैसूर व हासन जिले, तिमलनाडु के कोयम्बटूर, तिरुचिरापल्ली, मदुरई तथा कन्याकुमारी जिले; महाराष्ट्र के रत्नागिरी तथा पश्चिम बंगाल के पुरुलिया एवं बाँकरा जिलों भी अभ्रक के निक्षेप पाए जाते हैं।

ऊर्जा संसाधन

ऊर्जा उत्पादन के लिए खनिज ईंधन अनिवार्य हैं। ऊर्जा की आवश्यकता कृषि, उद्योग, परिवहन तथा अर्थव्यवस्था के अन्य खंडों में होती है। कोयला, पेट्रोलियम तथा प्राकृतिक गैस जैसे खिनज ईंधन (जो जीवाश्म ईंधन के रूप में जाने जाते हैं), परमाणु ऊर्जा, ऊर्जा के परंपरागत स्रोत हैं। ये परंपरागत स्रोत समाप्य संसाधन हैं।

खनिज तथा ऊर्जा संसाधन

चित्र 5.3 : भारत – धात्विक खनिज (अलौह धातुएँ)

कोयला

कोयला महत्वपूर्ण खनिजों में से एक है जिसका मुख्य प्रयोग ताप विद्युत उत्पादन तथा लौह अयस्क के प्रगलन के लिए किया जाता है। कोयला मुख्य रूप से दो भूगर्भिक कालों की शैल क्रमों में पाया जाता है जिनके नाम हैं गोंडवाना और टर्शियरी निक्षेप।

भारत में कोयला निक्षेपों का लगभग 80 प्रतिशत भाग बिटुमिनियस प्रकार का तथा गैर कोककारी श्रेणी का है। गोंडवाना कोयले के प्रमुख संसाधन पं. बंगाल, झारखंड, उड़ीसा, छत्तीसगढ़, मध्य प्रदेश, महाराष्ट्र और आंध्र प्रदेश में अवस्थित कोयला क्षेत्रों में है।

भारत में सर्वाधिक महत्वपूर्ण गोंडवाना कोयला क्षेत्र दामोदर घाटी में स्थित है। ये झारखंड-बंगाल कोयला पट्टी में स्थित हैं और इस प्रदेश के महत्वपूर्ण कोयला क्षेत्र रानीगंज, झिरया, बोकारो गिरीडीह तथा करनपुरा (झारखंड) हैं। झिरया सबसे बड़ा कोयला क्षेत्र है जिसके बाद रानीगंज आता है। कोयले से संबद्ध अन्य नदी घाटियाँ गोदावरी, महानदी तथा सोन हैं। सर्वाधिक महत्वपूर्ण कोयला खनन केंद्र मध्य प्रदेश में सिंगरौली (सिंगरौली कोयला क्षेत्र का कुछ भाग उत्तर प्रदेश में भी आता है) छत्तीसगढ़ में कोरबा, ओडिशा में तलचर तथा रामपुर; महाराष्ट्र में चाँदा-वर्धा, काम्पटी और बांदेर, तेलंगाना मे सिंगरेनी व आंध्र प्रदेश में पांड्र हैं।

टर्शियरी कोयला असम, अरुणाचल प्रदेश, मेघालय तथा नागालैंड में पाया जाता है। यह दरानिगरी, चेरापूँजी, मेवलांग तथा लैंग्रिन (मेघालय); माकुम, जयपुर तथा ऊपरी असम में नज़ीरा नामचिक-नाम्फुक (अरुणाचल प्रदेश) तथा कालाकोट (जम्मू-कश्मीर) में निष्कर्षित किया जाता है।

इसके अतिरिक्त भूरा कोयला या लिगनाइट तिमलनाडु के तटीय भागों पांडिचेरी, गुजरात और जम्मू एवं कश्मीर में भी पाया जाता है।

पेट्रोलियम

कच्चा पेट्रोलियम द्रव और गैसीय अवस्था के हाइड्रोकार्बन से युक्त होता है तथा इसकी रासायनिक संरचना, रंगों और विशिष्ट घनत्व में भिन्नता पाई जाती है। यह मोटर-वाहनों, रेलवे तथा वायुयानों के अंतर-दहन ईंधन के लिए ऊर्जा का एक अनिवार्य स्रोत है। इसके अनेक सह-उत्पाद पेट्रो-रसायन उद्योगों, जैसे कि उर्वरक, कृत्रिम रबर, कृत्रिम रेशे, दवाइयाँ, वैसलीन,

स्नेहकों, मोम, साबुन तथा अन्य सौंदर्य सामग्री में प्रक्रमित किए जाते हैं।

क्या आप जानते हैं 🕏

अपनी दुर्लभता और विविध उपयोगों के लिए पेट्रोलियम को तरल सोना कहा जाता है।

अपरिष्कृत पेट्रोलियम टरश्यरी युग की अवसादी शैलों में पाया जाता है। व्यवस्थित ढंग से तेल अन्वेषण और उत्पादन 1956 में तेल एवं प्राकृतिक गैस आयोग की स्थापना के बाद प्रारंभ हुआ। तब तक असम में डिगबोई एकमात्र तेल उत्पादक क्षेत्र था, लेकिन 1956 के बाद परिदृश्य बदल गया। हाल ही के वर्षों में देश के दूरतम पश्चिमी एवं पूर्वी तटों पर नए तेल निक्षेप पाए गए हैं। असम में डिगबोई, नहारकटिया तथा मोरान महत्वपूर्ण तेल उत्पादक क्षेत्र हैं। गुजरात में प्रमुख तेल क्षेत्र अंकलेश्वर, कालोल, मेहसाणा, नवागाम, कोसांबा तथा लुनेज हैं। मुंबई हाई, जो मुंबई नगर से 160 कि.मी. दूर अपतटीय क्षेत्र में पड़ता है, को 1973 में खोजा गया था और वहाँ 1976 में उत्पादन प्रारंभ हो गया। तेल एवं प्राकृतिक गैस को पूर्वी तट पर कृष्णा–गोदावरी तथा कावेरी के बेसिनों में अन्वेषणात्मक कृपों में पाया गया है।

कूपों से निकाला गया तेल अपरिष्कृत तथा अनेक अशुद्धियों से परिपूर्ण होता है। इसे सीधे प्रयोग में नहीं लाया जा सकता। इसे शोधित किए जाने की आवश्यकता होती है। भारत में दो प्रकार के तेल शोधन कारखाने हैं: (क) क्षेत्र आधारित (ख) बाजार आधारित। डिगबोई तेल शोधन कारखान क्षेत्र आधारित तथा बरौनी बाजार आधारित तेल शोधन कारखाने के उदाहरण हैं।

प्राकृतिक गैस

प्राकृतिक गैस पेट्रोलियम के भंडार के साथ पाई जाती है और जब कच्चे तेल को सतह पर लाया जाता है तो यह मुक्त हो जाती है। इसका उपयोग औद्योगिक ईधन के रूप में किया जा सकता है। इसका उपयोग बिजली क्षेत्र में ईधन के रूप में बिजली पैदा करने के लिए, उद्योगों में हीटिंग के उद्देश्य के लिए, रासायनिक, पेट्रोकैमिकल और उर्वरक उद्योगों में कच्चे माल के रूप में किया जाता है। गैस के बुनियादी ढाँचे में विस्तार और स्थानीय शहर गैस वितरण (सीओडी) नेटवर्क के विस्तार के साथ प्राकृतिक गैस पंसदीदा परिवहन ईंधन (सीएनजी) और घरों में खाना पकाने के ईंधन (पीएनजी) के रूप में भी

चित्र 5.4 : भारत – परंपरागत ऊर्जा स्रोत

क्रियाकलाप: गेल (इंडिया) द्वारा 'एक राष्ट्र एक ग्रिड' के अंतर्गत-बिछाई गई क्रॉस कंट्री प्राकृतिक गैस पाइप लाइन के बारे में जानकारी एकत्रित करें।

उभर रहा है। भारत के प्रमुख गैस भंडार मुम्बई हाई और अन्य संबद्ध क्षेत्र पश्चिमी तट पर पाए जाते हैं जिनको खंभात बेसिन में पाए जाने वाले क्षेत्र संपूरित करते हैं। पूर्वी तट पर कृष्णा-गोदावरी बेसिन में प्राकृतिक गैस के नए भंडार की खोज की गई है।

अपरंपरागत ऊर्जा स्रोत

कोयला, पेट्रोलियम, प्राकृतिक गैस तथा नाभिकीय ऊर्जा जैसे जीवाश्म ईंधन के स्रोत समाप्य कच्चे माल का प्रयोग करते हैं। सतत पोषणीय ऊर्जा के स्रोत के ही नवीकरण योग्य स्रोत हैं जैसे— सौर, पवन, जल, भूतापीय ऊर्जा तथा जैवभार (बायोमास)। यह ऊर्जा स्रोत अधिक समान रूप से वितरित तथा पर्यावरण-अनुकूल हैं। अपरंपरागत स्रोत अधिक आरंभिक लागत के बावजूद अधिक टिकाऊ, पारिस्थितिक-अनुकूल तथा सस्ती ऊर्जा उपलब्ध कराते हैं।

नाभिकीय ऊर्जा

हाल के वर्षों में नाभिकीय ऊर्जा एक व्यवहार्य स्रोत के रूप में उभरा है। नाभिकीय ऊर्जा के उत्पादन में प्रयुक्त होने वाले महत्वपूर्ण खनिज यूरेनियम और थोरियम हैं। यूरेनियम निक्षेप धारवाड़ शैलों में पाए जाते हैं। भौगोलिक रूप से यूरेनियम अयस्क सिंहभूम ताँबा पट्टी के साथ अनेक स्थानों पर मिलते हैं। यह राजस्थान के उदयपुर, अलवर, झुंझुनू जिलों, मध्य प्रदेश के दुर्ग जिले, महाराष्ट्र के भंडारा जिले तथा हिमाचल प्रदेश के कुल्लू जिले में भी पाया जाता है। थोरियम मुख्यत: केरल के तटीय क्षेत्र की पुलिन बीच (beach) की बालू में मोनाजाइट एवं इल्मेनाइट से प्राप्त किया जाता है। विश्व के सबसे समृद्ध मोनाजाइट निक्षेप केरल के पालाक्काड तथा कोलाम जिलों, आंध्र प्रदेश के विशाखापट्नम तथा ओडिशा में महानदी के नदी डेल्टा में पाए जाते हैं।

परमाणु ऊर्जा आयोग की स्थापना 1948 में की गई थी और इस दिशा में प्रगति 1954 में ट्रांबे परमाणु ऊर्जा संस्थान की स्थापना के बाद हुई जिसे बाद में, 1967 में, भाभा परमाणु अनुसंधान केंद्र के रूप में पुन: नामित किया गया। महत्वपूर्ण नाभिकीय ऊर्जा परियोजनाएँ— तारापुर (महाराष्ट्र), कोटा के पास रावतभाटा (राजस्थान), कलपक्कम (तिमलनाडु), नरोरा (उत्तर प्रदेश), कैगा (कर्नाटक) तथा काकरापाड़ा (गुजरात) हैं।

सौर ऊर्जा

फोटोवोल्टाइक सेलों में विपाशित सूर्य की किरणों को ऊर्जा में परिवर्तित किया जा सकता है जिसे सौर ऊर्जा के नाम से जाना जाता है। सौर ऊर्जा को काम में लाने के लिए जिन दो प्रक्रमों को बहुत ही प्रभावी माना जाता है वे हैं फोटोवोल्टाइक और सौर-तापीय प्रौद्योगिकी। अन्य सभी अनवीकरणीय ऊर्जा स्रोतों की अपेक्षा सौर-तापीय प्रौद्योगिकी अधिक लाभप्रद है। यह लागत प्रतिस्पर्धी, पर्यावरण अनुकूल तथा निर्माण में आसान है। सौर ऊर्जा कोयला अथवा तेल आधारित संयंत्रों की अपेक्षा 7 प्रतिशत अधिक और नाभिकीय ऊर्जा से 10 प्रतिशत अधिक प्रभावी है। यह सामान्यत: हीटरों, फ़सल शुष्ककों (Crop dryer), कुकर्स (Cookers) आदि जैसे उपकरणों में अधिक प्रयोग की जाती है। भारत के पश्चिमी भागों गुजरात व राजस्थान में सौर ऊर्जा के विकास की अधिक संभावनाएँ हैं।

पवन ऊर्जा

पवन ऊर्जा पूर्णरूपेण प्रदूषण मुक्त और ऊर्जा का असमाप्य स्रोत है। प्रवाहित पवन से ऊर्जा को परिवर्तित करने की अभियांत्रिकी बिल्कुल सरल है। पवन की गतिज ऊर्जा को टरबाइन के माध्यम से विद्युत-ऊर्जा में बदला जाता है। सम्मार्गी पवनों व पछुवा पवनों जैसी स्थायी पवन प्रणालियाँ और मानसून पवनों को ऊर्जा के स्रोत के रूप में प्रयोग किया गया है। इनके अलावा स्थानीय हवाओं, स्थलीय और जलीय पवनों को भी विद्युत पैदा करने के लिए प्रयुक्त किया जा सकता है।

भारत ने पहले से ही पवन ऊर्जा का उत्पादन आरंभ कर दिया है। पवन ऊर्जा के लिए राजस्थान, गुजरात, महाराष्ट्र तथा कर्नाटक में अनुकूल परिस्थितियाँ विद्यमान हैं।

ज्वारीय तथा तरंग ऊर्जा

महासागरीय धाराएँ ऊर्जा का अपरिमित भंडार-गृह है। सत्रहवीं एवं अठारहवीं शताब्दी के प्रारंभ से ही अविरल ज्वारीय तरंगों और महासागरीय धाराओं से अधिक ऊर्जा तंत्र बनाने के निरंतर प्रयास जारी हैं। भारत के पश्चिमी तट पर वृहत ज्वारीय तरंगें उत्पन्न होती हैं। यद्यपि भारत के पास तटों के साथ ज्वारीय ऊर्जा विकसित करने की व्यापक संभावनाएँ हैं, परंतु अभी तक इनका उपयोग नहीं किया गया है।

खनिज तथा ऊर्जा संसाधन

चित्र 5.5 : भारत - तेल शोधन कारखाने

India's next agriculture revolution can happen under solar panels

How Agrivoltaics presents us a rare opportunity to decarbonize the agriculture sector and achieve Transition

In September 2023, India crossed 70,000 MW solar installed capacity making it one of the 5 countries in the world to reach this milestone. But we have a long way to go. It is now crystal clear that solar will be India's energy future for day time electricity, peak time with storage, for powering electric mobility and for producing green hydrogen. We could be looking at 1500 GW by 2050 and studies even project solar capacity at 5600 GW by 2070 to achieve our Net Zero target. The deployment strategy, therefore, is of critical importance.

The focus so far has been primarily on large utility scale solar in western India and parts of the southern peninsula with better solar radiation and ostensibly barren land. The advantages of large plants have been lower generation costs, easier implementation by large companies drawing large foreign investments. Land is, however, becoming increasingly a constraint and a developing problem is the country being divided into producers and consumers which will become a crucial factor in a just transition away from coal.

India's soaring solar growth proves renewables are the future

Nichard Scorns
Social commerciator
otho is otherales a
poursellor and oceanis
sommunication
perfectional som of councie
sommunication
perfectional som of councie
sommunication
perfectional sommunication
in media duptieroria
mediatataria aperioria
mediatataria aperioria
mediatataria aperioria
mediatataria aperioria
mediatataria duptieroria
mediatataria
mediatat

In a world where climate change looms as an existential threat, the importance of renewable energy cannot be overstated. A recent study by energy links tank Ember sheds light on India's remarkable to the control of the land of 2023, revokal solar energy generation. The report, which analyzes electricity data from the first half of 2023, revokal solar energy generation. The report, which analyzes electricity data from the first half of 2023, revokal solar energy generation.

In a landscape where every percentage point matters in the fight against climate change. India's substantial contribution is cause for celebration. The study considered data from 78 countries represent ing 925% of global electricity demand, providing a comprehensive overview of the state of renewable

Globally, solar energy accounted for 5.5% of electricity generation in the first half of 2023, marking a significant 16% increase compared to the same period last year, equivalent to an additional 10 tersavant-hours. India's solar growth was even more impressive, with a 25% increase contributing an additional 12 terwant-hours, outpacing the global sevrage. This substantial growth powered half of the country's increased electricity demand over the same period, demonstrating the immense potential or solar energy in meeting India's energy needs

ONGC begins 'first oil production' from deepwater block in Krishna-Godavari basin

The block will help increase ONGC's total production of oil and natural gas by 11% and 15% respectively; peak production of the field is expected to be around 45,000 barrels of oil per day and over 10 MMSCMD of gas

अप्टर Commencing 155 (Administration 2015) भारत में गैर-परंपरागत ऊर्जा संसाधनों का उपयोग कैसे करते हैं? परिचर्चा कीजिए।

भूतापीय ऊर्जा

जब पृथ्वी के गर्भ से मैग्मा निकलता है तो अत्यधिक ऊष्मा निर्मुक्त होती है। इस ताप ऊर्जा को सफलतापूर्वक काम में लाया जा सकता है और इसे विद्युत ऊर्जा में परिवर्तित किया जा सकता है। इसके अलावा, गीजर कूपों से निकलते गर्म पानी से ताप ऊर्जा पैदा की जा सकती है। इसे लोकप्रिय रूप में भूतापी ऊर्जा के नाम से जानते हैं। इस ऊर्जा को अब एक प्रमुख ऊर्जा स्रोत के रूप में माना जा रहा है जिसे एक वैकल्पिक स्रोत के रूप में विकसित किया जा सकता है। मध्यकाल से ही गर्म

भूमिगत ताप के उपयोग का पहला सफल प्रयास (1890 में) बोयजे शहर, इडाहो (यू.एस.ए.) में हुआ था जहाँ आसपास के भवनों को ताप देने के लिए गरम जल के पाइपों का जाल तंत्र (नेटवर्क) बनाया गया था। यह संयंत्र अभी भी काम कर रहा है।

स्रोतों (झरनों) एवं गीजरों का उपयोग होता आ रहा है। भारत में, भूतापीय ऊर्जा संयंत्र हिमाचल प्रदेश के मनीकरण में अधिकृत किया जा चुका है।

जैव-ऊर्जा

जैव-ऊर्जा उस ऊर्जा को कहा जाता है जिसे जैविक उत्पादों से प्राप्त किया जाता है जिसमें कृषि अवशेष, नगरपालिका औद्योगिक तथा अन्य अपिशष्ट शामिल होते हैं। जैव-ऊर्जा, ऊर्जा परिवर्तन का एक संभावित स्रोत है। इसे विद्युत-ऊर्जा, ताप-ऊर्जा अथवा खाना पकाने के लिए गैस में परिवर्तित किया जा सकता है। यह अपिशष्ट एवं कूड़ा-कचरा प्रक्रमित करेगा एवं ऊर्जा भी पैदा करेगा। यह विकासशील देशों के ग्रामीण क्षेत्रों के आर्थिक जीवन को भी बेहतर बनाएगा तथा पर्यावरण प्रदूषण घटाएगा, उनकी आत्मिनर्भरता बढ़ाएगा तथा जलाऊ लकड़ी पर दबाव कम करेगा। नगरपालिका कचरे को ऊर्जा में बदलने वाली ऐसी ही एक परियोजना नई दिल्ली के ओखला में स्थित है।

खनिज तथा ऊर्जा संसाधन

खनिज संसाधनों का संरक्षण

सतत पोषणीय विकास की चुनौती के लिए आर्थिक विकास की चाह का पर्यावरणीय मुद्दों से समन्वय आवश्यक है। संसाधन उपयोग के परंपरागत तरीकों के परिणामस्वरूप बड़ी मात्रा में अपिशष्ट के साथ-साथ अन्य पर्यावरणीय समस्याएँ भी पैदा होती हैं। अतएव, सतत पोषणीय विकास भावी पीढ़ियों के लिए संसाधनों के संरक्षण का आह्वान करता है। संसाधनों का संरक्षण अत्यंत आवश्यक है। इसके लिए ऊर्जा के वैकल्पिक स्रोतों, जैसे— सौर ऊर्जा, पवन, तरंग, भृतापीय आदि

ऊर्जा के असमाप्य स्रोत हैं। धात्विक खिनजों के मामले में, छाजन धातुओं का उपयोग, धातुओं का पुनर्चक्रण संभव करेगा। ताँबा, सीसा और जस्ते जैसी धातुओं में जिनमें भारत के भंडार अपर्याप्त हैं, छाजन (स्क्रैप) का प्रयोग विशेष रूप से सार्थक है। अत्यल्प धातुओं के लिए प्रतिस्थापनों का उपयोग भी उनकी खपत को घटा सकता है। सामरिक और अत्यल्प खिनजों के निर्यात को भी घटाना चाहिए तािक वर्तमान आरिक्षत भंडारों का लंबे समय तक प्रयोग किया जा सके।

अभ्यास

- 1. नीचे दिए गए चार विकल्पों में से सही उत्तर को चुनिए।
 - (i) निम्नलिखित में से किस राज्य में प्रमुख तेल क्षेत्र स्थित हैं?
 - (क) असम

(ग) राजस्थान

(ख) बिहार

- (घ) तमिलनाडु
- (ii) निम्नलिखित में से किस स्थान पर पहला परमाणु ऊर्जा स्टेशन स्थापित किया गया था?
 - (क) कलपक्कम

(ग) राणाप्रताप सागर

(ख) नरोरा

- (घ) तारापुर
- (iii) निम्नलिखित में कौन-सा ऊर्जा का अनवीकरणीय स्रोत है?
 - (क) जल

(ग) ताप

(ख) सौर

- (घ) पवन
- निम्नलिखित प्रश्नों का उत्तर लगभग 30 शब्दों में दें।
 - (i) भारत में अभ्रक के वितरण का विवरण दें।
 - (ii) नाभिकीय ऊर्जा क्या है? भारत के प्रमुख नाभिकीय ऊर्जा केंद्रों के नाम लिखें।
 - (iii) अलौह धातुओं के नाम बताएँ। उनके स्थानिक वितरण की विवेचना करें।
 - (iv) ऊर्जा के अपारंपरिक स्रोत कौन-से हैं?
- 3. निम्नलिखित प्रश्नों के उत्तर लगभग 150 शब्दों में दें।
 - (i) भारत के पेट्रोलियम संसाधनों पर विस्तृत टिप्पणी लिखें।
 - (ii) भारत में जल विद्युत पर एक निबंध लिखें।

