SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 05 – Métodos de Minimização e Mapas de Karnaugh

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Mapas de Karnaugh
- EXEMPLO: Mapa de Karnaugh a partir da Tabela Verdade
- Simplificação de Funções Boolenas
- EXEMPLO: Incrementador BCD
- EXERCÍCIO: Comparador de 2 bits (Aula 03)
- Referências

Mapas de Karnaugh

- Mapa de Karnaugh
 - Permite representar de forma conveniente uma função booleana.
 - Número pequeno de variáveis. Até 4 ou 6.
 - Ferramenta de auxilio à simplificação (minimização) de funções boolenas.
 - O mapa consiste em uma matriz de posições:
 - Posição -> As possíveis combinações de valores de n variáveis binárias.
 - As posições deve ser listas na ordem: **00, 01, 11, 10**.
- EXEMPLO:
 - Mapa de Karnaugh para representar uma função booleana de 3 variáveis:
 - F(A,B,C) = A'BC' + A'BC + ABC'

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Mapas de Karnaugh

Funções booleanas:

$$F = A'$$
 $F = AB' + A'B$

$$F = A'BC' + A'BC + ABC'$$

4 variáveis

$$F = A'B'CD + AB'C'D + ABC'D'$$

Mapas de Karnaugh:

A0 1

Mapas de Karnaugh

Funções booleanas:

2 variáveis

$$F = A'$$

$$F = AB' + A'B$$

3 variáveis

$$F = A'BC' + A'BC + ABC'$$

4 variáveis

$$F = A'B'CD + AB'C'D + ABC'D'$$

Mapas de Karnaugh:

Α

AB

BC

CD

JFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Mapas de Karnaugh

- Como o mapa de Karnaugh pode representar uma função booleana?
 - Cada posição corresponde a um produto da expressão na forma de soma de produtos (mintermos).
 - 1 corresponde ao valor da variável
 - 0 corresponde ao valor da variável negada (NOT)

$$F = A'$$

$$F = AB' + A'B$$

$$F = A'BC' + A'BC + ABC'$$

$$F = A'B'CD + AB'C'D + ABC'D'$$

Α

0 1

AB

BC

CD

EXEMPLO: Mapa de Karnaugh a partir da Tabela Verdade

- Converter uma expressão booleana para um mapa:
 - Escrever a expressão em uma forma canônica:
 - Mintermos (soma de produtos) ou Maxitermos (produto de somas).
 - Escolheremos Mintermos .

T	abel	a Vei			
L	Α	B C F		F	Mintermos
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	0	
6	1	1	0	1	
7	1	1	1	0	

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

EXEMPLO: Mapa de Karnaugh a partir da Tabela Verdade

- Converter uma expressão booleana para um mapa:
 - Escrever a expressão em uma forma canônica:
 - Mintermos (soma de produtos) ou Maxitermos (produto de somas).
 - Escolheremos Mintermos .

T	abel	a Ve			
L	Α	В	С	Mintermos	
0	0	0	0	0	A'B'C'
1	0	0	1	0	A'B'C
2	0	1	0	1	A'BC'
3	0	1	1	1	A'BC
4	1	0	0	0	AB'C'
5	1	0	1	0	AB'C
6	1	1	0	1	ABC'
7	1	1	1	0	ABC

$$F(A,B,C) = A'BC' + A'BC + ABC'$$

Simplificação de Funções Boolenas

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.
 - Toróide.
 - Se duas posições adjacentes possuem valor 1:
 - Podemos combinar os dois termos, eliminando a variável que difere.

$$F = A'BC' + A'BC + ABC' = A'B + BC'$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Simplificação de Funções Boolenas

2 posições adjacentes em um Mapa de Karnaugh

$$F = A'B'C'D + AB'C'D$$

F = A'BC'D' + A'BCD'

Mapa de Karnaugh – Simplificação de Funções Boolenas

• 4 posições adjacentes em um Mapa de Karnaugh

$$F = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD'$$

$$F = A'BC'D' + A'BC'D + ABC'D' + ABC'D$$

$$F = A'BC'D' + A'BC'D + ABC'D' + ABCD'$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

11

Simplificação de Funções Boolenas

• 8 posições adjacentes em um Mapa de Karnaugh

Simplificação de Funções Boolenas

- As regras para a simplificação:
 - Selecione o maior bloco possível (com 1, 2, 4 ou 8 posições) composto exclusivamente por posições marcadas (valor 1).
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - · Contorne os blocos.
 - Até que todos as posições marcadas estejam incluídas em pelo menos 1 contorno.
 - O número de blocos contornados deve ser o menor possível.
 - Uma posição pode pertencer a mais de 1 contorno diferente.

Exemplos:

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

4.5

Simplificação de Funções Boolenas

- Em alguns casos certas combinações de valores de variáveis nunca ocorrem.
 - Portanto nunca ocorre uma saída correspondente.
 - São denominados casos "negligenciáveis"
 - Don't care.
 - Utilizamos a letra "d" na posição correspondente.
 - Para a simplificação, cada "d" pode ser tratado como 1 ou como 0.
 - Escolhemos o valor que resulta na expressão mais simples.

EXEMPLO: Incrementador BCD

- Gerar uma função booleana para um circuito que soma 1 a um número BCD. A operação é modulo 10 (9+1 = 0).
- Note que das possíveis entradas, 6 produzem resultado "negligenciáveis"
 - Não correspondem a dígito BCD valido. São marcados com "d".

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

15

EXEMPLO: Incrementador BCD

	Entrada				BCD(A,B,C,D)				F(A,B,C,D) = BCD(A,B,C,D) + 1							
L	Α	В	С	D	Decimal	W	Х	Υ	Z	Decimal	W	Х	Υ	Z	Decimal	CD
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	00 01 11 10
1	0	0	0	1	1	0	0	0	1	1	0	0	1	0	2	00
2	0	0	1	0	2	0	0	1	0	2	0	0	1	1	3	01
3	0	0	1	1	3	0	0	1	1	3	0	1	0	0	4	AB 11 d d d d
4	0	1	0	0	4	0	1	0	0	4	0	1	0	1	5	10 1 d d
5	0	1	0	1	5	0	1	0	1	5	0	1	1	0	6	(a) $W = A\overline{D} + \overline{A}BCD$
6	0	1	1	0	6	0	1	1	0	6	0	1	1	1	7	
7	0	1	1	1	7	0	1	1	1	7	1	0	0	0	8	CD
8	1	0	0	0	8	1	0	0	0	8	1	0	0	1	9	00 01 11 10
9	1	0	0	1	9	1	0	0	1	9	0	0	0	0	0	00 1 1
10	1	0	1	0		d	d	d	d		d	d	d	d		AB 01 1 1
11	1	0	1	1	Casos Negligenciáveis	d	d	d	d	Casos Negligenciáveis	d	d	d	d	Casos Negligenciáveis	11 d d d d
12	1	1	0	0		d	d	d	d		d	d	d	d		u a
13	1	1	0	1		d	d	d	d		d	d	d	d		(c) $Y = \overline{A} \overline{C}D + \overline{A}C\overline{D}$
14	1	1	1	0	legi	d	d	d	d	leg	d	d	d	d	legl	
15	1	1	1	1	2	d	d	d	d		d	d	d	d	2	

EXEMPLO: Incrementador BCD (Mapas de Karnaugh)

- Os blocos em vermelho mostram grupos que poderiam ser expandidos ainda mais escolhendo valores adequados para as posições com "d".
 - Resultando é uma simplificação maior das expressões.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

17

EXEMPLO: Incrementador BCD

 $UFV-Campus\ Rio\ Paranaíba-Prof.\ João\ Fernando\ Mari-joaof.mari@ufv.br-SIN\ 251\ (PER\ 3-2021-1)$

18

EXERCÍCIO: Comparador de 2 bits (Aula 03)

- Coloque as funções F1, F2 e F3 na forma padrão de mintermos (soma de produtos).
- Represente as funções F1, F2 e F3 utilizando Mapas de karnaugh.
- Simplifique a funções boolenas.
- Represente graficamente o circuito resultante.

L	Α	В	С	D	F1	F2	F3	Mintermos
0	0	0	0	0	1	0	0	A'B'C'D'
1	0	0	0	1	0	1	0	A'B'C'D
2	0	0	1	0	0	1	0	A'B'CD'
3	0	0	1	1	0	1	0	A'B'CD
4	0	1	0	0	0	0	1	A'BC'D'
5	0	1	0	1	1	0	0	A'BC'D
6	0	1	1	0	0	1	0	A'BCD'
7	0	1	1	1	0	1	0	A'BCD
8	1	0	0	0	0	0	1	AB'C'D'
9	1	0	0	1	0	0	1	AB'C'D
10	1	0	1	0	1	0	0	AB'CD'
11	1	0	1	1	0	1	0	AB'CD
12	1	1	0	0	0	0	1	ABC'D'
13	1	1	0	1	0	0	1	ABC'D
14	1	1	1	0	0	0	1	ABCD'
15	1	1	1	1	1	0	0	ABCD

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

19

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A

FIM — Aula 05 UEV—Campus Rio Paranaiba—Prof. João Fernando Mari — josof.mari@ufv.br — SIN 251 (PER 3 – 2021-1)