

Europäisches Patentamt European Patent Office Office européen des brevets

① Veröffentlichungsnummer: 0 269 573 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

45 Veröffentlichungstag der Patentschrift: 27.03.91

(5) Int. Cl.5: C08F 2/50, G03F 7/031, G03F 7/004

21 Anmeldenummer: 87810684.8

2 Anmeldetag: 20.11.87

5 Flüssige Photoinitiatorgemische.

- (3) Priorität: 26.11.86 CH 4734/86 05.02.87 CH 416/87
- 43 Veröffentlichungstag der Anmeldung: 01.06.88 Patentblatt 88/22
- 45 Bekanntmachung des Hinweises auf die Patenterteilung: 27.03.91 Patentblatt 91/13
- (84) Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL SE
- 66 Entgegenhaltungen: EP-A- 0 122 223 EP-A- 0 242 330 US-A- 4 559 371

- 73) Patentinhaber: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)
- 2 Erfinder: Hüsler, Rinaldo, Dr. Route du Confin 52 CH-1723 Marly(CH) Erfinder: Rutsch, Werner, Dr. Avenue Weck-Reynold 1 CH-1700 Fribourg(CH) Erfinder: Rembold, Manfred, Dr. Im Aeschfeld 21 CH-4147 Aesch(CH) Erfinder: Sitek, Franciszek, Dr. **Grossmattweg 11**

CH-4106 Therwil(CH)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft flüssige Gemische von Photoinitiatoren. Es handelt sich dabei um Lösungen von Titanocenverbindungen in flüssigen Photoinitiatoren vom Type der α -Hydroxy- und α -Aminoacetophenonderivate. Die Erfindung betrifft weiterhin photohärtbare Zusammensetzungen, die solche flüssige Photoinitiatorgemische enthalten.

Titanocenverbindungen mit fluoraromatischen Resten sind aus der EP-A-122.223 als sehr wirksame Initiatoren für die Photopolymerisation ethylenisch ungesättigter Verbindungen bekannt. Die dort beschriebenen Verbindungen sind meist fest und in den üblichen photopolymerisierbaren Verbindungen bzw. Gemischen schwer löslich. Es besteht ein Bedarf an leicht löslichen oder flüssigen Photoinitiatoren mit hoher Wirksamkeit. Es wurde nun gefunden, dass eine Kombination von Titanocen-Initiatoren mit flüssigen Photoinitiatoren vom Type der α-Hydroxy- oder α-Aminoacetophenone zu flüssigen Initiatorgemischen mit ausserordentlich hoher Wirksamkeit führt.

Photoinitiatoren vom Type der α -Hydroxy- und α -Aminoacetophenonderivate sind bekannt, z.B. aus US-A-4,347,111, US-A-4,318,791, US-A-4,559,371, US-A-4,582,862 oder EP-A-138,754. Unter den dort beschriebenen Verbindungen finden sich sowohl feste wie flüssige Verbindungen. Die flüssigen Verbindungen können erfindungsgemäss allein verwendet werden, die festen Verbindungen nur in einem flüssigen Gemisch mit anderen Photoinitiatoren.

Die Erfindung betrifft daher ein flüssiges Photoinitiatorgemisch, bestehend aus

A) 70-99,9 Gew.-% mindestens eines flüssigen Photoinitiators der Formel I oder eines flüssigen Gemisches aus metallfreien Photoinitiatoren enthaltend mindestens eine Verbindung der Formel I,

$$Ar \xrightarrow{R^1} X \tag{1}$$

worin Ar eine unsubstituierte oder durch einen oder mehrere der Substituenten Halogen, C_1 - C_{18} -Alkyl, C_3 - C_{12} -Alkenyl, C_1 - C_{12} -Alkoxy, Allyloxy, Phenoxy, C_1 - C_{18} -Alkylthio, Allylthio, 2-Hydroxyethylthio, Phenylthio, Tolylthio, C_1 - C_{12} -Alkylamino, C_2 - C_2 -Dialkylamino, C_4 - C_8 -Bis(hydroxyalkyl)amino, Diallylamino, Bis(2-methoxyethyl)amino, Morpholino, Piperidino oder Pyrrolidino substituierte Phenylgruppe bedeutet,

 R^1 und R^2 unabhängig voneinander C_1 - C_1 8-Alkyl oder durch -OH, C_1 - C_4 -Alkoxy, Benzyloxy, -CN, -COO(C_1 - C_8 -Alkyl), (C_1 - C_4 -Alkyl)-COO-, C_2 - C_8 -Dialkylamino oder Morpholino substituiertes C_1 - C_4 -Alkyl bedeuten oder R^1 und R^2 zusammen C_3 - C_9 -Alkandiyl, C_3 - C_9 -Oxa- oder Azaalkandiyl oder C_5 - C_9 -Alkendiyl bedeuten, X eine Gruppe -OR 3 oder -NR 4 R 5 bedeutet, worin

 R^3 Wasserstoff, C_1 - C_8 -Alkyl, durch Halogen, -OH oder C_1' - C_4 -Alkoxy substituiertes C_2 - C_4 -Alkyl, Allyl, Benzyl, 2-Tetrahydropyranyl, Trimethylsilyl oder Phenyl-dimethylsilyl bedeutet,

 R^4 und R^5 unabhängig voneinander Wasserstoff, C_1 - C_{12} -Alkyl, durch -OH, C_1 - C_4 -Alkoxy-, -CN oder -COO-(C_1 - C_4 -Alkyl) substituiertes C_2 - C_4 -Alkyl, Allyl, Benzyl oder Cyclohexyl bedeuten oder R^4 und R^5 zusammen C_3 - C_7 -Alkylen, das durch -O- oder -N(R^6)- unterbrochen sein kann, bedeuten, worin R^6 Wasserstoff, C_1 - C_4 -Alkyl, Allyl, Benzyl oder C_2 - C_4 -Hydroxyalkyl bedeutet, und

B) 0,1-30 Gew.-% mindestens eines Titanocen-Photoinitiators, ausgewählt aus

B₁) Verbindungen der Formel II

$$R^9 \xrightarrow{\stackrel{}{\longrightarrow}} i \xrightarrow{\stackrel{}{\longrightarrow}} R^{10}$$
 (II)

worin R⁷ und R⁸ unabhängig voneinander ein unsubstituiertes oder durch C₁-C₄-Alkyl, Chlor, Phenyl oder Cyclohexyl substituiertes Cyclopentadienyl- oder Indenyl-Anion bedeuten oder R⁷ und R⁸ zusammen ein zweiwertiges Bis-cyclopentadienyl-Anion der Formel III bedeuten,

7

55

50

45

20

worin Z Methylen, Di- oder Trimethylen, C₂-C₁₂-Alkyliden, C₅-C₇-Cycloalkyliden, -Si(R¹¹)(R¹²)- oder -Sn-(R¹¹)₂- bedeutet und

R11 und R12 C1-C12-Alkyl, Phenyl oder Benzyl bedeuten,

5

30

 R^9 den einwertigen Rest eines 6-gliedrigen carbocyclischen oder 5-oder 6-gliedrigen heterocyclischen aromatischen Ringes bedeutet, der in mindestens einer ortho-Position zur Bindung an das Ti-Atom durch Fluor substituiert ist und ausserdem durch eine oder mehrere der Substituenten Halogen, C_1 - C_{12} -Alkyl, C_1 - C_{14} -Alkoxy, -O(CH_2CH_2O)_{1:20} C_1 - C_{14} -Alkyl, C_2 - C_{10} -Alkoxycarbonyl, Aminocarbonyl mit bis zu 12 C-Atomen oder durch eine primäre, sekundäre oder tertiäre Amino- oder Aminoalkylgruppe mit bis zu 20 C-Atomen oder eine quartäre Ammonium- oder Ammoniumalkylgruppe mit bis zu 30 C-Atomen substituiert sein kann, R^{10} eine der für R^9 angegebenen Bedeutungen hat oder C_2 - C_{12} -Alkinyl, unsubstituiertes oder im Phenylrest durch Halogen oder C_1 - C_{14} -Alkyl substituiertes Phenylalkinyl mit 2 - 5 C-Atomen im Alkinrest oder Halogen oder eine Gruppe -Si(R^{11})₃, -Si(R^{11})₂, (R^{12}), -Sn(R^{11})₃, OH, C_1 - C_{10} -Alkoxy, C_6 - C_{10} -Aryloxy, unsubstituiertes oder durch Halogen substituiertes C_2 - C_6 -Acyloxy, -N₃, -CN, -NCO oder NCS bedeutet, oder

R³ und R¹⁰ zusammen einen Rest der Formel -Q-Y-Q- bedeuten, worin Q ein carbocyclischer oder 5- oder 6-gliedriger heterocyclischer aromatischer Ring ist, der in 2-Stellung zur Y-Gruppe an das Titan-Atom gebunden ist und in 3-Stellung durch Fluor substituiert ist und als weitere Substituenten C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy, Di(C₁-C₄-alkyl)amino oder eine quartäre C₃-C₂₀-Ammoniumgruppe enthalten kann, Y Methylen, C₂-C₁₂-Alkyliden, C₅-C₁-Cycloalkyliden, eine direkte Bindung oder eine Gruppe -NR¹³-, -O-, -S-, -SO₂-, -CO-, -Si(R¹¹)(R¹²)- oder -Sn(R¹¹)₂- bedeutet und R¹³ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Phenyl, Tolyl oder Benzyl bedeutet, oder

B₂) Verbindungen der Formel IV,

$$R^{14} \xrightarrow{R^7} i - R^{15} \tag{IV}$$

worin R7 und R8 die oben genannte Bedeutung haben,

R¹⁴ den einwertigen Rest eines 6-gliedrigen carbocyclischen oder 5-oder 6-gliedrigen heterocyclischen aromatischen Ringes bedeutet, der in mindestens einer ortho-Position zur Bindung an das Ti-Atom durch -CF₃ substituiert ist und ausserdem durch eine oder mehrere der Gruppen Halogen, C₁-C₁₂-Alkyl, C₁-C₁₄-Alkoxy, -O(CH₂CH₂O)₁-₂₀ C₁-C₁₄-Alkyl,C₂-C₁₀-Alkoxycarbonyl oder Aminocarbonyl oder durch eine primäre, sekundäre oder tertiäre Amino- oder Aminoalkylgruppe mit bis zu 20 C-Atomen oder eine quartäre Ammonium- oder Ammoniumalkylgruppe mit bis zu 30 C-Atomen substituiert sein kann, und

 R^{15} eine der für R^{14} gegebenen Bedeutungen hat oder C_2 - C_{12} -Alkinyl, unsubstituiertes oder im Phenylrest durch Halogen oder C_1 - C_4 -Alkyl substituiertes Phenylalkinyl mit 2 - 5 C-Atomen im Alkinrest oder Halogen oder eine Gruppe -Si(R^{11})₃, -Si(R^{11})₂ (R^{12}), -Sn(R^{11})₃, -OH, C_1 - C_{10} -Alkoxy, C_6 - C_{10} -Aryloxy, unsubstituiertes oder mit Halogen substituiertes C_2 - C_6 -Acyloxy, - N_3 , -CN, -NCO oder -NCS bedeutet.

Wenn in Formel I Ar eine substituierte Phenylgruppe ist, so kann dies z.B. Fluorphenyl, Chlorphenyl, Bromphenyl, Dichlorphenyl, Tolyl, X, yl, Chlortolyl, Isopropylphenyl, tert.-Butylphenyl, 1,1,3,3-Tetramethylbutylphenyl, n-Octylphenyl, Isononylphenyl, n-Decylphenyl, n-Dodecylphenyl, n-Octadecylphenyl, Allylphenyl, Methallylphenyl, Methoxyphenyl, Ethoxyphenyl, Isopropoxyphenyl, Butoxyphenyl, Octyloxyphenyl, Phenoxyphenyl, Methylthiophenyl, Ethylthiophenyl, Butylthiophenyl, Dodecylthiophenyl, Allylthiophenyl, 2-Hydroxyethylthiophenyl, Phenylthiophenyl, Tolylthiophenyl, Methylaminophenyl, Dimethylaminophenyl, Monoder Diethylaminophenyl, Monoder Diethylaminophenyl, Monoder Didodecylaminophenyl, Monoder Didodecylaminophenyl, Bis(2-hydroxyethyl(aminophenyl, Bis(2-hydroxypropyl)aminophenyl, Diallylaminophenyl, Bis(2-methoxyethyl)aminophenyl, Morpholinophenyl, Piperazinophenyl oder Pyrrolidinophenyl sein. Bevorzugt steht ein Substituent in 4-Stellung der Phenylgruppe.

R¹ und R² können z.B. Methyl, Ethyl, Propyl, Butyl, Hexyl, Octyl, 2-Hydroxyethyl, 2-Methoxyethyl, Hydroxymethyl, Ethoxymethyl, 2-Butoxyethyl, Benzyloxymethyl, 2-Cyancethyl, 2-Methoxycarbonylethyl, Ethoxycarbonylethyl, 2-Hexyloxycarbonylethyl, 2-Acetyloxyethyl, Propionyloxymethyl, 2-Butyroyloxyethyl, 2-Dimethylaminoethyl, 2-Diethylaminopropyl, 2-Dibutylaminoethyl, Morpholinomethyl oder 2-Morpholinoethyl

sein. Wenn R¹ und R² zusammen Alkandiyl, Oxa- oder Azaalkandiyl oder Alkendiyl sind, so bilden sie zusammen mit dem C-Atom, an das sie gebunden sind, einen gesättigten oder einfach ungesättigten carbocyclischen oder heterocyclischen 5- oder 6-gliedrigen Ring, der durch Alkylgruppen substituiert sein kann.

Vorzugsweise bedeuten R1 und R2 Methyl oder beide zusammen Pentamethylen.

R³ als Alkyl oder substituiertes Alkyl kann z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Hexyl, Octyl, 2-Chorethyl, 4-Brombutyl, 2-Hydroxypropyl, 2-Hydroxyethyl, 2-Methoxyethyl, 2-Butoxyethyl oder 3-Methoxypropyl sein.

R⁴ und R⁵ als Alkyl oder substituiertes Alkyl können z.B. Methyl, Ethyl, Propyl, Butyl, Isopropyl, Hexyl, 2-Ethylhexyl, Octyl, Dodecyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Methoxyethyl, 2-Isopropoxyethyl, 2-Ethoxypropyl, 2-Cyanoethyl, 2-Methoxycarbonyl-ethyl, 2-Ethoxycarbonyl-ethyl, 2-Methoxycarbonyl-propyl oder 2-Butoxycarbonyl-ethyl sein. Wenn R⁴ und R⁵ zusammen Alkylen bedeuten, so kann das Alkylen verzweigt oder unverzweigt sein und durch -O- oder -NR⁶- unterbrochen sein. In diesem Fall bilden R⁴ und R⁵ zusammen mit dem N-Atom, an das sie gebunden sind, einen heterocyclischen Ring, beispielsweise einen Pyrrolidin-, Piperidin-, Methylpiperidin-, Morpholin-, Dimethylmorpholin-, Piperazin-, 4-Methylpiperazin-, 4-Isopropylpiperazin, 4-Allylpiperazin-, 4-Benzylpiperazin-oder 4-(2-Hydroxyethyl)-piperazinring.

In den Verbindungen der Formel II und IV ist das Titan-Atom an zwei π -Anionen vom Cyclopentadienyltyp R⁷ und R⁸ gebunden.

Die beiden Anionen können untereinander über die Brücke Z kovalent verknüpft sein, wodurch ein Ligand der Formel III entsteht.

Beispiele für solche Gruppen Z sind

5

30

45

$$-CH_2-$$
, $-CH_2CH_2-$, CH_3CH , C_3H_7CH , C_4H_9)₂Si $\left(C_6H_5 \right) \left(CH_3 \right) Si \left(C_4H_9 \right)$ ₂Sn $\left(C_8H_{17} \right)$

Bevorzuat ist Z eine Methylengruppe.

In den Verbindungen der Formel II ist das Titan ausserdem an mindestens einen aromatischen Rest R³ kovalent gebunden. Der aromatische Rest kann carbocyclisch oder heterocyclisch sein und muss in Orthostellung zur C-Ti-Bindung durch Fluor substituiert sein. Beispiele für solche aromatische Reste sind fluorierte Benzole, Naphthaline, Furane, Thiophene, Pyrrole, Pyridine, Pyrimidine, Pyrazole, Imidazole, Oxazole oder Thiazole, die ausserdem noch andere Substituenten tragen können wie Halogenatome, Alkyloder Alkoxygruppen, Alkoxycarbonyl- oder Aminocarbonylgruppen, Aminogruppen oder Aminoalkylgruppen sowie deren Quaternierungsprodukte. Beispiele für solche Substituenten am aromatischen Rest sind Fluor, Chor, Brom, Methyl, Ethyl, iso-Propyl, tert.Butyl, n-Nonyl oder n-Dodecyl, Methoxy, Ethoxy, Butoxy, Hexyloxy, Octyloxy, Decyloxy oder Dodecyloxy, Methoxycarbony, Ethoxycarbonyl, Butoxycarbonyl, 2-Ethylhexyloxycarbonyl oder n-Decyloxycarbonyl, Aminocarbonyl, Butylaminocarbonyl, Diethylaminocarbonyl oder Pyrrolidinocarbonyl, -NH2, -NHC4H3, -N(CH3)2, -N(CH3)3°Cl°, Morpholino, Piperidino, -CH2NH2, -CH2N(C2H5)3°Br° oder Pyrrolidinomethyl.

Bevorzugt ist R⁹ ein Benzolrest, der in beiden Orthostellungen durch Fluor substituiert ist.

R¹⁰ kann ebenfalls ein einwertiger fluor-aromatischer Rest sein oder ist eine Alkinyl- oder Phenylalkinylgruppe, die im Phenylrest entsprechend substituiert sein kann, oder R¹⁰ ist ein unsubstituierter oder mit Halogen substituierter Acyloxy-, Azido-, Cyano-, Triorganosilyl- oder Triorganostannyl-Rest.

Wenn R¹⁰ Alkinyl ist, so kann es z.B. Ethinyl, 1-Propinyl, 1-Butinyl, 2-Hexinyl, 1-Octinyl, 1-Decinyl oder 1-Dodecinyl sein. R¹⁰ als unsubstituiertes oder substituiertes Phenylakinyl kann z.B. 2-Phenylethinyl, 3-Phenylpropinyl, 3-Phenylpropinyl, 3-Phenylpropinyl, 2-(4-Chlorphenyl)ethinyl oder 3-(4-Tolyl)-propinyl sein.

R¹⁰ als Triorganosilyl- oder Triorganostannylrest kann z.B. Trimethylsilyl, Triphenylsilyl, Dimethylphenyl-silyl, Methyl-diphenylsilyl, Trimethylsilyl, Tributylsilyl, Trimethylstannyl, Tributylstannyl, Tributylstannyl, Trioctylstannyl oder Tri(dodecyl)stannyl sein.

R⁹ und R¹⁰ können verknüpft sein zu einem zweiwertigen aromatischen Rest der Formel -Q-Y-Q-. Darin sind Q carbocyclische oder heterocyclische Reste, die in 2-Stellung zur Verknüpfung Y an das Titanatom gebunden sind und in 3-Stellung durch Fluor substituiert sind. Beispiele für solche zweiwertige Gruppen sind die folgenden Gruppen, worin E -O-, -S- oder -NH- bedeutet:

15

20

10

Die aromatischen Reste Q können weitere Substituenten tragen, insbesondere Halogen, Methyl und Dimethylamino. Das Brückenglied Y kann eine direkte Bindung, ein zweiwertiges Atom oder eine zweiwertige Gruppe sein. Bevorzugt ist

Y -CH₂-, CH₃CH, C₂H₅CH,

-S-, -O- oder eine direkte Bindung.

Bevorzugt sind R⁹ und R¹⁰ gleich und sind ein substituierter Phenylrest, insbesondere ein 2,6-Difluorphenylrest, der noch weitere Substituenten tragen kann.

Beispiele für Verbindungen der Formel II sind:

Bis(cyclopentadienyl)-bis(pentafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(3-brom-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-brom-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,4,5,6-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(3,5-dichlor-2,4,6-trifluorphenyl-titan

Bis(cyclopentadienyl)-bis(4-morpholino-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-[4'methylpiperazino]-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-dibutylamino-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,4,6-trifluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(pentafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-morpholino-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-[4'-methylpiperazino]-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-[dimethylaminomethyl]-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,3,5,6-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,3,5,6-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,4,6-trifluorphenyl)-titan

Bis(cyclopentadienyl)bis(2,3,6-trifluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,6-difluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,6-difluor-3-methoxy-phenyl)-titan

Bis(cyclopentadienyl)-bis(2,6-difluor-3-propoxy-phenyl)-titan

Bis(cyclopentadienyl)-bis(2,6-difluor-3-hexyloxy-phenyl)-titan

Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethoxy-ethoxy)phenyl]-titan

Bis(cyclopentadienyl)-bis(2,6-difluor-3-methylphenyl)-titan

Bis(cyclopentadienyl)-bis(4-methoxy-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-butoxy-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-isopropoxy-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-[2-ethylhexyloxy]-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-decyloxy-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-dodecyloxy-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(4-octyloxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-octyloxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-decyloxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-dodecyloxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-butoxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-ethoxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-isopropoxy-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(4-dibutylamino-tetrafluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,6-difluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,4,5-trifluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,3-difluorphenyl)-titan

Bis(cyclopentadienyl)-bis(2,5-difluorphenyl)-titan

10 Bis(cyclopentadienyl)-bis(2,3,4,5-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,3,4,5-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,3,4,6-tetrafluorphenyl)-titan

Bis(methylcyclopentadienyl)-bis(2,3,6-trifluorphenyl)-titan

Bis(dimethylcyclopentadienyl)-bis(pentafluorphenyl)-titan

15 Bis(cyclopentadienyl)-3,4,5,6,3',4',5',6'-octafluordiphenylsulfid-2,2'-diyl-titan

Bis(cyclopentadienyl)-bis(4-[4,4-dimethylpiperazino]-tetrafluorphenyl)-titan-diiodid

Bis(cyclopentadienyl)-bis(4-[trimethylammonium-methyl]-tetrafluorphenyl)-titan-diiodid

In den Verbindungen der Formel IV ist das Titan ebenso wie in den Verbindungen der Formel II an zwei π -Anionen vom Cyclopentadienyltyp R^7 und R^8 gebunden. Die anderen beiden Liganden R^{14} und R^{15} unterscheiden sich jedoch von R^9 und R^{10} dadurch, dass der aromatische Rest R^{14} mindestens in einer ortho-Postion eine CF_3 -Gruppe enthält. Der Rest R^{15} kann ebenfalls ein ortho-Trifluormethyl-Aromat sein oder ist Alkinyl, Phenylalkinyl, Halogen, $-Si(R^{11})_3$, $-Si(R^{11})_2(R^{12})$, $-Sn(R^{11})_3$, -OH, Alkoxy, Aryloxy, Acyloxy, -CN, $-N_3$, -NCO oder -NCS, analog zum Rest R^{10} . R^{15} als Halogen ist insbesondere Fluor, Chlor oder Brom. Beispiele für Verbindungen der Formel IV sind:

25 Bis(cyclopentadienyl)-2-(trifluormethyl)phenyl-titan-chlorid oder -bromid oder -fluorid oder -acetat oder trifluoracetat

Bis(cyclopentadienyl)-bis-(2-trifluormethyl)phenyl-titan

Bis(methylcyclopentadienyl)-2-(trifluormethyl)phenyl-titan-chlorid oder -fluorid oder -acetat oder -trifluoracetat

Bis(cyclopentadienyl)-(2-trifluormethyl-6-fluorphenyl)-titan-fluorid

Bis(cyclopentadienyl)-2,5-bis(trifluormethyl)phenyl-titan-chlorid

Bis(indenyl)-2,5-bis(trifluormethyl)phenyl-titan-chlorid

Bis(methylcyclopentadienyl)-2-(trifluormethyl)phenyl-titan-rhodanid oder -isocyanat oder -cyanid

Bis(cyclopentadienyl)-2-(trifluormethyl)phenyl-titan-rhodanid oder -azid

35 Bis(cyclopentadienyl)-(2-trifluormethyl-4-methoxyphenyl)-titan-chlorid

Bis(cyclopentadienyl)bis(2-trifluormethyl-4-tolyl)-titan.

In den erfindungsgemässen Gemischen beträgt das prozentuale Gewichtsverhältnis von A: B = 70 - 99,9:0,1 - 30, bevorzugt ist ein Verhältnis von 80-99,5 Gew.-% A: 0,5-20 Gew.-% B. Die Komponente A stellt also mengenmässig den Hauptanteil dar.

Bevorzugt sind Gemische bestehend aus

40

A) 80-99,5 Gew.-% eines flüssigen Photoinitiators oder Photoinitiatorgemisches enthaltend mindestens eine Verbindung der Formel I, worin

Ar eine unsubstituierte oder durch einen oder zwei der Substituenten Halogen, C_1 - C_1 -Alkyl, C_1 - C_8 -Alkyl, C_1 - C_8 -Alkylhio, 2-Hydroxyethylthio, Allylhio, Phenylthio, C_1 - C_8 -Alkylamino, C_2 - C_1 -Dialkylamino, Diallylamino, C_4 - C_6 -Bis(hydroxyalkyl)amino, Bis(2-methoxyethyl)amino, Morpholino, Piperidino oder Pyrrolidino substituierte Phenylgruppe bedeutet,

 R^1 und R^2 unabhängig voneinander C_1 - C_6 -Alkyl oder durch -OH, C_1 - C_4 -Alkoxy, Benzyloxy, -COO(C_1 - C_4 -Alkyl), C_2 - C_4 -Dialkylamino oder Morpholino substituiertes C_1 - C_4 -Alkyl bedeuten oder

R1 und R2 zusammen C3-C6-Alkandiyl oder C5-C7-Alkendiyl bedeuten,

X eine Gruppe -OR3 oder -NR4R5 bedeutet, worin

R³ Wasserstoff, C₁-C₄-Alkyl, durch -OH oder C₁-C₄-Alkoxy substituiertes C₂-C₄-Alkyl, Allyl, Benzyl, 2-Tetrahydropyranyl oder Trimethylsilyl bedeutet und R⁴ und R⁵ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, durch -OH oder C₁-C₄-Alkoxy substituiertes C₂-C₄-Alkyl, Allyl, Benzyl oder Cyclohexyl bedeuten oder R⁴ und R⁵ zusammen C₃-C₇-Alkylen bedeuten, das durch -O- oder -N(R⁶)-unterbrochen sein kann, wobei R⁶ Wasserstoff, Methyl oder C₂-C₄-Hydroxyalkyl bedeutet, und

B) 0,5-20 Gew.-% einer Verbindung der Formel II, worin R⁷ und R⁸ ein unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Cyclopentadienyl-Anion sind und R⁹ und R¹⁰ eine Gruppe der Formel V bedeuten,

worin R¹⁶, R¹⁷ und R¹⁸ unabhängig voneinander Wasserstoff, F, Cl, Br, C₁-C₁₄-Alkoxy, -O-(CH₂CH₂O)₁₋₈ C₁-C₁₄-Alkyl eine tertiäre Aminogruppe oder Aminomethylgruppe mit 2 - 20 C-Atomen oder eine quartäre Ammonium- oder Ammonium-methylgruppe mit 3 - 24 C-Atomen bedeuten oder

R9 und R10 zusammen eine zweiwertige Gruppe der Formel

darstellen, worin Y die oben angegebene Bedeutung hat,

5

15

25

oder 0,5-20 Gew.-% einer Verbindung der Formel IV worin R⁷ und R⁸ ein unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Cyclopentadienyl-Anion sind und R¹⁴ eine Gruppe der Formel VI bedeutet,

$$CF_3$$
 $-R^{20}$
 R^{22}
 R^{21}
(VI)

worin R^{19} , R^{20} , R^{21} und R^{22} unabhängig voneinander Wasserstoff, F, Cl, Br oder C_1 - C_1 4-Alkoxy bedeuten und R^{15} eine der für R^{14} gegebenen Bedeutungen hat oder F, Cl, Br, CN, -O-CO-CH₃, -O-CO-CF₃, N₃, -NCO oder -NCS bedeutet.

Ist die Verbindung der Formel I eine flüssige Verbindung, so kann die Komponente A nur aus einer solchen Verbindung bestehen. Ist die Verbindung der Formel I eine feste Verbindung, so kann entweder deren flüssiges Gemisch mit einer anderen Verbindung der Formel I oder mit einem oder mehreren anderen metallfreien Photoinitiatoren als Komponente A verwendet werden. Vorzugsweise ist diese Zweitkomponente eine flüssige Verbindung oder ein flüssiges Gemisch. Die Zweitkomponente kann aber auch fest sein, wenn sie mit der ersten Komponente ein flüssiges Eutektikum bildet. Ein Beispiel für ein solches Eutektikum zweier fester Photoinitiatoren ist eine 1:1-Mischung von 1-Hydroxycyclohexyl-phenyl-keton und Benzophenon.

Beispiele für flüssige Verbindungen der Formel I sind:

- 2-Hydroxy-2-methyl-1-phenyl-propanon-1
- 2-Ethyl-2-hydroxy-1-phenyl-hexanon-1
- 2-Hydroxy-2-methyl-1-(4-tolyl)-propanon-1
- 1-(4-Ethylphenyi)-2-hydroxy-2-methyl-propanon-1
- 5 1-(4-Cumyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(4-tert.-Butylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(4-Dodecylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 2-Ethyl-2-hydroxy-1-(4-tolyl)-hexanon-1
 - 1-(4-tert.-Butylphenyl)-2-ethyl-2-hydroxy-hexanon-1
 - 1-(3,4-Dimethylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(2,4-Dimethylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(2,5-Dimethylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(3-Chlor-4-methylphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(4-Chlorphenyl)-2-hydroxy-2-methyl-propanon-1
 - 1-(4-Fluorphenyl)-2-hydroxy-2-methyl-propanon-1
 - 2-Ethyl-1-(4-fluorphenyl)-2-hydroxy-hexanon-1
 - 1-(4-Dimethylaminophenyl)-2-ethyl-2-hydroxy-hexanon-1
 - 2-Hydroxy-1-(4-methoxyphenyl)-2-methyl-propanon-1

- 2-Ethyl-2-hydroxy-1-(4-methoxyphenyl)-hexanon-1
- 2-Hydroxy-2-methyl-1-(4-phenoxyphenyl)-propanon-1
- 2-Hydroxy-2-methyl-1-(4-phenylthiophenyl)-propanon-1
- 2-Hydroxy-2-methyl-1-phenyl-butanon-1
- 5 2-Ethyl-2-hydroxy-phenyl-butanon-1
 - (2,4-Dimethylphenyl)-(1-hydroxycyclohexyl)-keton
 - (1-Hydroxycyclopentyl)-phenyl-keton
 - (1-Hydroxycyclobutyl)-phenyl-keton
 - (1-Hydroxy-3,4-dimethyl-3-cyclohexen-1-yl)-phenyl-keton
- (1-Hydroxy-4-methyl-3-cyclohexen-1-yl)-phenyl-keton
 - (1-Hydroxy-3-cyclohexen-1-yl)-phenyl-keton
 - (1-Hydroxy-2-cyclohexen-1-yl)-phenyl-keton
 - [1-(Trimethylsilyloxy)cyclohexyl]-phenyl-keton
 - [1-(Trimethylsilyloxy)cyclopentyl]-phenyl-keton
- 15 [1-(Trimethylsilyloxy)cyclobutyl]-phenyl-keton
 - 2-Methyl-1-phenyl-2-(trimethylsilyloxy)-propanon-1
 - 2-Methyl-1-phenyl-2-(phenyl-dimethyl-silyloxy)-propanon-1
 - 1-(4-Chlorphenyl)-2-methyl-2-(trimethylsilyloxy)-propanon-1
 - 2-Methyl-2-(trimethylsilyloxy)-1-(4-tolyl)-propanon-1
- 20 2-Methoxy-2-methyl-1-phenyl-propanon-1
 - 2-Butoxy-2-methyl-1-phenyl-propanon-1
 - 2-(4-Brombutyloxy)-2-methyl-1-phenyl-propanon-1
 - 2-Allyloxy-2-methyl-1-phenyl-propanon-1
 - 2-Benzyloxy-2-methyl-1-phenyl-propanon-1
- 25 2-(2-Methoxyethyloxy)-2-methyl-1-phenyl-propanon-1
 - 2-(1-Ethoxyethyloxy)-2-methyl-1-phenyl-propanon-1
 - 2-Methyl-1-phenyl-2-(tetrahydro-2H-pyran-2-yloxy)-propanon-1
 - (1-Methoxycyclohexyl)-phenyl-keton
 - (1-Methoxycyclohexyl)-(4-methoxyphenyl)-keton
- 2-Hydroxy-3-methoxy-2-methyl-1-phenyl-propanon-1
 - 3-Benzyloxy-2-hydroxy-2-methyl-1-phenyl-propanon-1
 - 3-Diethylamino-2-hydroxy-2-methyl-1-phenyl-propanon-1
 - 2-Hydroxy-2-methyl-3-morpholino-1-phenyl-propanon-1
 - (3-Methoxy-1-methyl-3-piperidyl)-phenyl-keton
- 35 4-Hydroxy-4-methyl-5-phenyl-5-oxo-pentansäuremethylester
 - 2-Dimethylamino-2-methyl-1-phenyl-propanon-1
 - 2-Diethylamino-2-methyl-1-phenyl-propanon-1
 - 2-Dipropylamino-2-methyl-1-phenyl-propanon-1
 - 2-Dibutylamino-2-methyl-1-phenyl-propanon-1
- 40 2-Ethylmethylamino-2-methyl-1-phenyl-propanon-1
- 2 Mathed 4 when d 2 areas denothed enter avenuence
 - 2-Methyl-1-phenyl-2-propylmethylamino-propanon-1
 - 2-Methyl-2-methylamino-1-phenyl-propanon-1
 - 2-Ethylamino-2-methyl-1-phenyl-propanon-1
 - 2-Butylamino-2-methyl-1-phenyl-propanon-1
- 45 2-(2-Methylpiperidino)-2-methyl-1-phenyl-propanon-1
 - 2-Methyl-2-pyrrolidino-1-phenyl-propanon-1
 - 2-Methyl-2-piperazino-1-phenyl-propanon-1
 - 2-Diallylamino-2-methyl-1-phenyl-propanon-1
 - 2-Bis-(2-methoxyethyl)amino-2-methyl-1-phenyl-propanon-1
- 2-Methyl-2-methylamino-1-phenyl-butanon-1
 - 2-Ethyl-2-methylamino-1-phenyl-butanon-1
 - 4-Dimethylamino-4-methyl-5-phenyl-5-oxo-pentansäuremethylester
 - (1-Dimethylaminocyclohexyl)-phenyl-keton
 - (1-Methylaminocyclohexyl)-phenyl-keton
- 55 (1-Methylaminocyclopentyl)-phenyl-keton
 - (1-Ethylaminocyclopentyl)-phenyl-keton
 - 1-(4-Chlorphenyl)-2-dimethylamino-2-methyl-propanon-1
 - 1-(4-Chlorphenyl)-2-dibutylamino-2-methyl-propanon-1

1-(4-Chlorphenyl)-2-ethylamino-2-methyl-propanon-1 1-(4-Chlorphenyl)-2-bis-(2-methoxyethyl)amino-2-methyl-propanon-1 1-(4-Chlorphenyl)-2-methyl-2-(4-methylpiperazino)-propanon-1 1-(4-Chlorphenyl)-2-methyl-2-piperidino-propanon-1 2-Diethylamino-1-(4-fluorphenyl)-2-methyl-propanon-1 2-Diallylamino-1-(4-fluorphenyl)-2-methyl-propanon-1 2-Dimethylamino-1-(4-fluorphenyl)-2-methyl-propanon-1 2-Bis-(2-methoxyethyl)amino-1-(4-fluorphenyl)-2-methyl-propanon-1 1-(4-Fluorphenyl)-2-methyl-2-methylamino-propanon-1 1-(4-Fluorphenyl)-2-methyl-2-(4-methylpiperazino)-propanon-1 1-(4-Fluorphenyl)-2-methyl-2-morpholino-butanon-1 1-(4-Fluorphenyl)-2-methyl-2-morpholino-pentanon-1 1-(4-Fluorphenyl)-2-ethyl-2-morpholino-hexanon-1 (1-Ethylaminocyclopentyl)-(4-tolyl)-keton (1-Ethylaminocyclopentyl)-(2-tolyl)-keton 2-Methyl-2-piperidino-1-(4-tolyl)-propanon-1 2-Dimethylamino-2-methyl-1-(4-methylthiophenyl)-propanon-1 2-Dimethylamino-2-methyl-1-(4-phenylthiophenyl)-propanon-1 2-Dimethylamino-2-methyl-1-[4-(4-tolylthio)phenyl]-propanon-1 2-Diethylamino-2-methyl-1-(4-methylthiophenyl)-propanon-1 2-Dibutylamino-2-methyl-(4-methylthiophenyl)-propanon-1 2-Dibutylamino-2-methyl-(4-phenylthiophenyl)-propanon-1 2-Bis-(2-methoxyethyl)amino-2-methyl-1-(4-methylthiophenyl)-propanon-1 2-Bis-(2-methoxyethyl)amino-2-methyl-1-(4-phenylthiophenyl)-propanon-1 25 2-Butylamino-2-methyl-1-(4-methylthiophenyl)-propanon-1 2-Methyl-1-(4-methylthiophenyl)-2-pyrrolidino-propanon-1 2-Methyl-1-(4-methylthiophenyl)-2-morpholino-butanon-1 2-Methyl-1-(4-methylthiophenyl)-2-morpholino-pentanon-1 2-Ethyl-2-(4-methylthiophenyl)-2-morpholino-hexanon-1 2-Ethyl-1-(4-methylthiophenyl)-2-piperidino-hexanon-1 2-Ethyl-1-(4-methylthiophenyl)-2-(4-methylpiperazino)-hexanon-1 2-(2,6-Dimethylmorpholin-4-yl)-2-methyl-1-(4-methylthiophenyl)-propanon-1 2-Dimethylamino-1-(4-methoxyphenyl)-2-methyl-propanon-1 2-Dibutylamino-1-(4-methoxyphenyl)-2-methyl-propanon-1 2-Diallylamino-1-(4-methoxyphenyl)-2-methyl-propanon-1 2-Bis-(2-methoxyethyl)amino-1-(4-methoxyphenyl)-2-methyl-propanon-1 2-(2-Methoxyethyl)amino-1-(4-methoxyphenyl)-2-methyl-propanon-1 1-(4-Methoxyphenyl)-2-methyl-2-(1-methyl-2-methoxy-ethyl)amino-propanon-1 1-(4-Methoxyphenyl)-2-methyl-2-piperazino-propanon-1 2-(2.4-Dimethylmorpholin-4-yl)-1-(4-methoxyphenyl)-2-methyl-propanon-1 1-(4-Methoxyphenyl)-2-methyl-2-morpholino-butanon-1 2-Ethyl-1-(4-methoxyphenyl)-2-morpholino-hexanon-1 (4-Methoxyphenyl)-(1-morpholinocyclohexyl)-keton (4-Methoxyphenyl)-(1-methylaminocyclopentyl)-keton 1-(4-Allyloxyphenyl)-2-methyl-2-morpholino-propanon-1 2-Methyl-1-(4-phenoxyphenyl)-2-piperidino-propanon-1 1-(4-Methoxyphenyl)-2-methyl-2-piperidino-propanon-1 2-Diethylamino-1-(4-diethylaminophenyl)-2-methyl-propanon-1 2-Diallylamino-1-(4-diallylaminophenyl)-2-methyl-propanon-1 2-Methylamino-2-methyl-1-(4-morpholinophenyl)-propanon-1 2-Dimethylamino-1-(4-dimethylaminophenyl)-2-methyl-pentanon-1 2-Methyl-2-morpholino-1-(4-morpholinophenyl)-pentanon-1 2-Ethyl-2-morpholino-1-(4-morpholinophenyl)-hexanon-1 2-Bis-(2-methoxyethyl)amino-1-(4-dimethylaminophenyl)-2-methyl-propanon-1 2-Bis-(2-methoxyethyl)amino-1-(4-morpholinophenyl)-2-methyl-propanon-1

1-[4(Bis-(2-methoxyethyl)amino)phenyl]-2-methyl-2-morpholino-propanon-1.

Solche flüssigen Verbindungen der Formel I können allein oder im Gemisch mit einer anderen Verbindung der Formel I oder im Gemisch mit einem andern Photoinitiator als Komponente A verwendet

werden. Die Verwendung eines Gemisches kann den Vorteil haben, dass dadurch der Erstarrungspunkt der Komponente A erniedrigt wird oder dass die Wirksamkeit erhöht wird.

Die Verwendung eines Gemisches als Komponente A ist vor allem dann von Bedeutung, wenn man eine feste Verbindung der Formel I verwenden möchte. Beispiele hierfür sind flüssige Gemische einer Verbindung der Formel I und einer Verbindung der Formel VII,

10

30

worin R²³ und R²⁴ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₂-C₄-Hydroxyalkyloxy, C₂-C₄-Hydroxyalkylthio, Halogen, C₂-C₁₀-Alkoxycarbonyl oder C₂-C₈-Dialkylamino bedeuten. Die Verbindungen der Formel VII sind für sich allein als Photoinitiatoren bekannt.

Beispiele solcher Verbindungen der Formel VII sind: Benzophenon, 2-Methylbenzophenon, 4-Methylbenzophenon, 4-Isopropylbenzophenon, 4-Chlorbenzophenon, 2,2'-Dichlorbenzophenon, 4-Methoxybenzophenon, 4-Ethoxybenzophenon, 4-(2-Hydroxyethylthio)-benzophenon, 4-(2-Hydroxypropyloxy)-benzophenon, 4-Dimethylaminobenzophenon, 4,4'-Bis-(dimethylamino)benzophenon, 4-Ethoxycarbonylbenzophenon oder 4-tert.Butoxycarbonylbenzophenon. Bevorzugt sind flüssige Gemische aus einer Verbindung der Formel I und Benzophenon.

Das Gewichtsverhältnis von Verbindung der Formel I und Verbindung von Formel VII beträgt vorzugsweise 0,8:1 bis 1:0,8.

Weitere Beispiele sind flüssige Gemische aus einer Verbindung der Formel I und einem 2,4,6-Tri(C₁-C₄-alkyl)benzophenon, beispielsweise 2,4,6-Trimethylbenzophenon, oder Gemische aus einer Verbindung der Formel I, einem 2,4,6-Tri(C₁-C₁₄-alkyl)benzophenon und Benzophenon.

Andere Beispiele für Gemische sind solche aus einer Verbindung der Formel I und einer Verbindung der Formel VIII

worin R²⁵ Halogen, C₁-C₄-Alkyl oder C₁-C₁₄-Alkoxy bedeutet, R²⁶ und R²⁷ C₁-C₆-Alkyl, C₃-C₄-Alkenyl, C₇-C₁₀-Phenylalkyl oder durch Halogen, C₁-C₄-Alkoxy, C₂-C₈-Dialkylamino, Morpholino oder Piperidino substituiertes C₂-C₄ Alkyl bedeuten oder R²⁵ und R²⁷ zusammen C₂-C₁₂-Alkandiyl oder 2-Buten-1,4-diyl bedeuten und R²⁸ Wasserstoff, C₁-C₈-Alkyl, C₅-C₈-Cycloalkyl, Phenyl oder durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl bedeutet.

Die Verbindungen der Formel VIII sind als Photoinitiatoren bekannt. Beispiele hierfür sind 2,2-Dimethoxyacetophenon, 2,2-Dimethoxyacetophenon, 2,2-Dimethoxyacetophenon, 2,2-Dimethoxy-p-chloracetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Dimethoxy-2-(4-methylphenyl)-p-methylacetophenon, 2-Benzoyl-2-phenyl-4,7-dihydro-1,3-dioxepin oder 2-Benzoyl-2-phenyl-1,3-dioxolan.

Bevorzugt sind flüssige Gemische aus einer Verbindung der Formel I und 2,2-Dirnethoxy-2-phenylacetophenon oder 2,2-Diethoxy-2-phenylacetophenon.

Das Gewichtsverhältnis von Verbindung der Formel I und Verbindung der Formel VIII beträgt vorzugsweise 2:1 bis 1:2.

Die Komponente A kann auch aus einem flüssigen Gemisch von zwei Verbindungen der Formel I bestehen. Beispiele hierfür sind 1-Hydroxycyclohexyl-phenyl-keton und 2-Hydroxy-2-methyl-1-phenyl-propanon-1 im Verhältnis 1:1 oder 2-Methyl-1-(4-methylthiophenyl)-2-morpholino-propanon-1 und 2-Hydroxy-2-methyl-1-phenyl-propanon-1 im Verhältnis 2:8 oder flüssige Isomerengemische, entstanden bei der Herstellung von Verbindungen der Formel I.

Die Komponente A kann auch aus einem flüssigen Gemisch einer Verbindung der Formel I mit zwei anderen Photoinitiatoren bestehen, beispielsweise einem Gemisch aus einer Verbindung der Formel I, einer Verbindung der Formel VII und einer Verbindung der Formel VIII.

Unter den Verbindungen der Formel I sind solche bevorzugt, worin Ar Phenyl oder durch Chlor, Fluor, C₁-C₁₂-Alkyl, Methoxy, Methylthio, Dimethylamino, Diethylamino, Bis(2-methoxyethyl)amino, Morpholino,

Piperidino oder Pyrrolidino substituiertes Phenyl bedeutet, R¹ und R² unabhängig voneinander C₁-C₄-Alkyl oder durch -OH oder C₁-C₄-Alkoxy substituiertes C₁-C₄-Alkyl bedeuten oder R¹ und R² zusammen C₄-C₆-Alkandiyl oder C₅-C႗-Alkendiyl bedeuten und X -OH oder -NR⁴R⁵ ist, wobei R⁴ und R⁵ C₁-C₄-Alkyl, Allyl oder 2-Methoxyethyl bedeuten oder R⁴ und R⁵ zusammen mit dem Stickstoffatom Pyrrolidino, Piperidino, Morpholino, Piperazino oder 4-Methylpiperazino bedeuten.

Besonders bevorzugt sind Verbindungen der Formel I, worin Ar Phenyl, p-Tolyl, p-Cumyl, 4-Dodecylphenyl, 4-Chlorphenyl oder 4-Methoxyphenyl bedeutet, R¹ und R² unabhängig voneinander C₁-C₄-Alkyl oder R¹ und R² zusammen Tetra- oder Pentamethylen bedeuten und X eine Hydroxylgruppe ist, sowie Verbindungen der Formel I, worin Ar Phenyl, p-Tolyl, p-Cumyl, 4-Chlorphenyl, 4-Methoxyphenyl, 4-Methylthiophenyl, 4-Dimethylaminophenyl, 4-Diethylaminophenyl, 4-Bis-(2-methoxyethyl)amino-phenyl, 4-Morpholinophenyl oder 4-Piperidinophenyl bedeutet, R¹ und R² unabhängig voneinander C₁-C₄-Alkyl bedeuten und X Methylamino, Dimethylamino, Ethylamino, Diethylamino, Bis(2-methoxyethyl)amino, Piperidino, Pyrrolidino, Morpholino, Piperazino oder 4-Methylpiperazino bedeutet.

Als Komponente B verwendet man bevorzugt entweder eine Verbindung der Formel II, worin R⁷ und R⁸ ein Cyclopentadienyl- oder Methylcyclopentadienyl-Anion sind und R⁹ und R¹⁰ eine Gruppe der Formel V sind, worin entweder a) R¹⁶ H, F, CI oder Br ist, R¹⁷ Fluor, C₁-C₁₄-Alkoxy oder -O(CH₂CH₂O)_{T-8} C₁-C₁₄-Alkoxy, -O(CH₂CH₂O)_{T-8} C₁-C₁₄-AlkyI, eine tertiäre Amino- oder Aminomethylgruppe oder eine quartäre Ammonium-oder Ammonium-methylgruppe sind, oder eine Verbindung der Formel IV, worin R⁷ und R⁸ ein Cyclopentadienyl- oder Methylcyclopentadienyl-Anion sind, R¹⁴ 2-(Trifluormethyl)phenyl oder 6-Fluor-2-(trifluormethyl)phenyl bedeutet und R¹⁵ die gleiche Bedeutung wie R¹⁴ hat oder F, CI, Br, CN, N₃, -O-CO-CH₃, -O-CO-CF₃, -NCO oder -NCS ist.

Beispiele für besonders bevorzugte erfindungsgemässe Initiatorgemische sind solche aus 40-50 Gew.-% 1-Hydroxycyclohexyl-phenyl-keton, 40-50 Gew.-% Benzophenon und 5-20 Gew.-% einer Verbindung der Formel II oder IV, sowie solche aus 25-30 Gew.-% 1-Hydroxycyclohexyl-phenyl-keton, 25-30 Gew.-% Benzophenon, 35-40 Gew.-% 2,2-Dimethoxy-2-phenylacetophenon und 2-15 Gew.-% einer Verbindung der Formel II oder IV.

Zur Herstellung der erfindungsgemässen Initiatorgemische verrührt man die Komponente B in der Komponente A, bis eine klare Lösung entstanden ist. Vorzugsweise geschieht das Auflösen unter schwachem Erwärmen auf etwa 40 - 60°C. Das Auflösen soll in Dunkelräumen mit Rotlicht-Beleuchtung geschehen, da die gelösten Titanocene gegen kurzwelliges Sonnenlicht (bis zu 600 nm) empfindlich sind. Die so erhaltenen Lösungen sind im Dunkeln lange Zeit haltbar.

Die erfindungsgemässen Initiatorgemische vermögen bei Bestrahlung mit kurzwelligem Licht die radikalische Polymerisation ethylenisch ungesättigter Verbindungen zu initieren. Mit ihrer Hilfe lassen sich daher photopolymerisierbare Verbindungen härten. Bei den photopolymerisierbaren Verbindungen handelt es sich um einfach oder mehrfach ethylenisch ungesättigte Verbindungen.

Beispiele von einfach ungesättigten Verbindungen sind Acrylate oder Methacrylate von einwertigen Alkoholen, Acrylamide und ähnliche Acrylsäurederivate, wie z.B. Methyl-, Ethyl-, Butyl-, Isooctyl- oder Hydroxyethylacrylat, Methyl- oder Ethylmethacrylat, Acrylnitril, Acrylamid, N-Butyl(methacrylamid); sowie Vinyl- und Allylverbindungen wie z.B. Vinylacetat, Vinylstearat, N-Vinylpyrrolidon, Vinylidenchlorid, Vinylbenzol oder Allylacetat.

Beispiele mehrfach ungesättigter Verbindungen sind Acrylate, Methacrylate oder Itaconate von Polyolen wie z.B. Ethylenglykoldiacrylat, Diethylenglykol-dimethacrylat, Triethylenglykol-diacrylat, Butandiol-1,4-diacrylat, Propandiol-1,2-diacrylat, Butandiol-1,3-dimethacrylat, Neopentylglykol-diacrylat, Trimethylolpropan-di-(meth)acrylat, Trimethylolethan-di(meth)acrylat, Glycerin-di-und -triacrylat, Pentaerythrit-di-, -tri- und - tetraacrylat oder -methacrylat, Dipentaerythrit-tetra, -penta- und -hexaacrylat oder -methacrylat oder -itaconat, Sorbit-tetraacrylat, Sorbit-hexamethacrylat, Diacrylate oder Dimethacrylate von 1,4-Cyclohexandiol, 1,4-Dimethylolcyclohexan, Bisphenol A, 2,2-Bis(4-hydroxyphenyl)propan von Polyethylenglykolen oder von Oligoestern oder Oligourethanen mit endständigen Hydroxylgruppen. Als mehrfach ungesättigte Monomere können auch Acrylamide verwendet werden wie z.B. Methylen-bisacrylamid, Hexamethylen-1,6-bisacrylamid, Diethylentriamin-tris-methacrylamid, Bis(methacrylamidopropoxy)ethan oder 2-Acrylamido-ethylacrylat. Beispiele für mehrfach ungesättigte Vinyl- und Allylverbindungen sind Divinylbenzol, Ethylenglykoldivinylether, Diallylphthalat, Allylmethacrylat, Diallylmaleat, Triallylisocyanurat oder Triallylphosphat.

Auch polymere oder oligomere mehrfach ungesättigte Verbindungen lassen sich unter Vernetzung photopolymerisieren wie z.B. ungesättigte Polyester und Copolyester der Maleinsäure und Fumarsäure, (Meth)acrylate von Polyvinylalkohol oder Homo- oder Copolymerisate von Butadien oder Isopren. Weitere verwendbare mehrfach ungesättigte Komponenten sind die Umsetzungsprodukte von Polyepoxiden mit Acryl-oder Methacrylsäuren. Als Polyepoxide werden dabei vorwiegend die im Handel erhältlichen

Epoxidharz-Vorprodukte verwendet, die in verschiedenen Molekulargewichten erhältlich sind.

Meist werden zur Photopolymerisation Gemische solcher ungesättigter Verbindungen verwendet, um die Eigenschaften der Polymerisate für den gewünschten Verwendungszweck variieren zu können. Beispiele hierfür sind Gemische von Diacrylaten mit Polyester-acrylaten oder mit Polyurethan-acrylaten, Gemische von Mono-, Di- und Triacrylaten, Gemische von ungesättigen Polyestern der Maleinsäure mit Styrol oder andere Gemische von polymer-oligomeren ungesättigten Verbinddungen mit Di-, Tri- oder Tetraacrylaten. Die Gemische können aus zwei, drei oder auch mehreren ungesättigten Komponenten bestehen.

Photohärtbare Zusammensetzungen, wie sie für die verschiedenen Zwecke verwendet werden, enthalten meist ausser den photopolymerisierbaren Verbindungen und den Photoinitiatoren eine Reihe sonstiger Zusätze. So ist es vielfach üblich, thermische Inhibitoren zususetzen, die vor allem während der Herstellung der Gemische durch Mischen der Komponenten vor einer vorzeitigen Polymerisation schützen sollen. Hierzu werden beispielsweise Hydrochinon, Hydrochinonderivate, p-Methoxyphenol, β -Naphthole oder sterisch gehinderte Phenole wie z.B. 2,6-Di(tert-butyl)-p-kresol verwendet. Weiter können geringe Mengen von UV-Absorbern zugesetzt werden wie z.B. solche vom Benztriazol-, Benzophenon- oder Oxalanilid-Typ. Ebenso lassen sich Lichtschutzmittel vom Typus sterisch gehinderter Amine (HALS) zusetzen.

Zur Erhöhung der Dunkellagerstabilität können Kupferverbindungen wie Kupfernaphthenat, -stearat, oder-octoat, Phosphorverbindungen wie Triphenylphosphin, Tributylphosphin, Triäthylphosphit, Triphenylphosphit oder Tribenzylphosphit, quaternäre Ammoniumverbindungen wie Tetramethylammoniumchlorid oder Trimethyl-benzylammoniumchlorid oder Hydroxyaminderivate, wie z.B. N-Diäthylhydroxylamin, zugesetzt werden.

Die photohärtbaren Zusammensetzungen können auch polymere Bindemittel enthalten, die keine ungesättigten Verbindungen sind. Beispiele hierfür sind Polyacrylate, Celluloseester und -ether, Polyvinylester, Vinylchlorid-polymerisate, Polyamide, Polyester, Polyether oder Styrol-Maleinsäureanhydrid-Copolymere. Weitere übliche Zusatzstoffe sind Pigmente, Farbstoffe, Füllstoffe, Haftvermittler, Netzmittel oder Verlaufsmittel. Für bestimmte Applikationen können auch Lösungsmittel zugesetzt werden. Vorzugsweise werden jedoch keine Lösungsmittel verwendet.

Weitere übliche Zusätze sind Photosensibilisatoren, welche in bestimmten Wellenlängen absorbieren und die absorbierte Energie an die Initiatoren weitergeben oder selbst als zusätzlicher Initiator fungieren. Beispiele hierfür sind vor allem Thioxanthon-, Anthracen-, Anthrachinon- und Cumarinderivate.

Weitere übliche Zusätze sind Beschleuniger vom Amin-Typ, die vor allem in pigmentierten Zubereitungen von Bedeutung sind, da sie als Kettenüberträger wirken. Beispiele hierfür sind N-Methyldiethanolamin, Triethylamin, p-Dimethylaminobenzoesäureethylester oder Michler's Keton.

Gegenstand der Erfindung sind daher auch photohärtbare Zusammensetzungen enthaltend mindestens eine ethylenisch ungesättigte Verbindung und 0,5 bis 20 Gew.-%, insbesondere 1-5 Gew.-%, eines Initiatorgemisches gemäss Anspruch 1.

Die erfindungsgemässen photohärtbaren Zusammensetzungen eignen sich als Beschichtungsmittel für Substrate aller Art, z.B. Holz, Papier, Keramik, Kunststoffe wie Polyester- und Celluloseacetatfilme und Metalle wie Kupfer und Aluminium, bei denen durch Photopolymerisation eine Schutzschicht oder eine Abbildung aufgebracht werden soll.

Grosse Bedeutung hat die Photohärtung für Druckfarben, da die Trocknungszeit des Bindemittels ein massgeblicher Faktor für die Produktionsgeschwindigkeit graphischer Erzeugnisse ist und in der Grössenordnung von Bruchteilen von Sekunden liegen soll. Insbesondere für den Siebdruck sind UV-härtbare Druckfarben von Bedeutung.

Gut geeignet sind die erfindungsgemässen photohärtbaren Gemische auch zur Herstellung von Druckplatten. Beispiele sind feste Druckplatten für den Buch- und Zeitungsdruck sowie flexible Druckplatten für
den sog. Flexodruck. Hierbei werden z.B. Gemische von löslichen linearen Polyamiden mit photopolymerisierbaren Monomeren, beispielsweise Acrylamiden, und einem Photoinitiator verwendet. Filme und Platten
aus diesen Systemen werden über das Negativ (oder Positive) der Druckvorlage belichtet und die
ungehärteten Anteile anschliessend mit einem Lösungsmittel eluiert.

Ein weiteres Einsatzgebiet der Photohärtung ist die Metallbeschichtung, beispielsweise bei der Lackierung von Blechen für Tuben, Dosen oder Flaschenverschlüssen, sowie die Photohärtung von Kunststoffbeschichtungen, beispielsweise von Fussboden- oder Wandbelägen auf PVC-Basis.

Beispiele für die Photohärtung von Papierbeschichtungen sind die farblose Lackierung von Etiketten, Schallplatten-Hüllen oder Buchumschlägen.

Wichtig ist auch die Verwendung der photohärtbaren Zusammensetzungen für Abbildungsverfahren und zur optischen Herstellung von Informationsträgern. Hierbei wird die auf dem Träger aufgebrachte Schicht durch eine Photomaske mit Licht bestrahlt und die unbelichteten Stellen der Schicht durch Behandlung mit einem Lösungsmittel (= Entwickler) entfernt. Die belichteten Stellen sind vernetztpolymer und dadurch

unlöslich und bleiben auf dem Träger stehen. Bei entsprechender Anfärbung entstehen sichtbare Bilder. Ist der Träger eine metallisierte Schicht, so kann das Metall nach dem Belichten und Entwickeln an den unbelichteten Stellen weggeätzt oder durch Galvanisieren verstärkt werden. Auf diese Weise lassen sich gedruckte Schaltungen und Photoresists herstellen.

Zur Belichtung eignen sich vor allem Lichtquellen mit hohem Anteil an kurzwelligem Licht. Hierfür stehen heute entsprechende technische Vorrichtungen und verschiedene Lampenarten zur Verfügung. Beispiele sind Kohlelichtbogenlampen, Xenonlichtbogenlampen, Quecksilberdampflampen, Metall-Halogenlampen, Fluoreszenzlampen, Argonglühlampen oder photographische Flutlichtlampen. Neuerdings werden auch Laserlichtquellen verwendet. Diese lassen sich auch ohne Photomasken einsetzen; der gesteuerte Laserstrahl schreibt dann direkt auf die photohärtbare Schicht. Bei Verwendung als Aussenanstrich ist auch eine Härtung durch Sonnenlicht möglich.

Die folgenden Beispiele erläutern die Zubereitung und die Verwendung der Initiatorgemische näher. Teile und Prozent beziehen sich darin auf das Gewicht, sofern nichts anderes angegeben wird.

Beispiel 1: Photohärtung eines Acrylatgemisches

Alle Operationen werden unter Rot- oder Gelblicht durchgeführt. Eine photohärtbare Masse wird bereitet durch Mischen von

20 50 Teilen eine

5

15

25

30

- 50 Teilen eines oligomeren Urethanacrylates (*Actilane AJ 20 von SNPE)
- 10 Teilen Trimethylolpropan-triacrylat,
- 10 Teilen Dipentaerythrit-monohydroxy-pentaacrylat,
- 15 Teilen Tripropylenglykol-diacrylat,
- 15 Teilen N-Vinylpyrrolidon und
- 0,5 Teilen eines Verlaufhilfsmittels auf Silicon-Basis
 (®Byk 300 von Byk Mallinckrodt)

Portionen dieser Mischung werden mit den in Tabelle 1 angegebenen Photoinitiatoren vermischt. Die Proben werden in einer Schichtdicke von 100 μ m auf entfettete Aluminiumbleche (200 μ m) aufgetragen. Auf die flüssige Schicht wird eine 76 μ m dicke Polyesterfolie gelegt, darauf als Photomaske ein 21 Stufen-Stouffer-Testnegativ sowie ein zweiter Polyesterfilm, der grösser als das Aluminiumblech ist. Das so erhaltene Laminat wird auf eine mit Bohrungen versehene Metallplatte gelegt und durch Vakuum darauf fixiert.

Die Proben werden 5 Sekunden mit einer 5 kW-Metallhalogenid-Lampe im Abstand von 30 cm belichtet. Nach Entfernung der Polyesterfolien und des Testnegativs wird die Probe 15 s in einem Ethanolbad entwickelt, wobei die ungehärteten Anteile gelöst werden. Dann wird die Probe 5 min bei 60 °C getrocknet.

Die Empfindlichkeit des verwendeten Initiatorsystems wird durch Angabe der höchsten klebefrei abgebildeten Stufe beurteilt. Je höher die Stufe, desto empfindlicher ist das System. Eine Erhöhung um zwei Stufen bedeutet dabei etwa eine Verdopplung der Härtungsgeschwindigkeit.

Folgende Photoinitiatoren werden verwendet:

A-1 2-Hydroxy-2-methyl-1-phenylpropanon-1
A-2 1-Hydroxycyclohexyl-phenyl-keton

A-3 Benzophenon

55

- A-4 Benzil-dimethylketal
- B-1 Bis(methylcyclopentadienyl)-bis(4-decyloxy-2,3,5,6-tetrafluorphenyl)-titan

Tabelle 1

5

10	Menge Photoinitiator *) Komponente A	Komponente B	Maximale Abbildungsstufe
	2 % A-1		5
15	1,95 % A-1	0,05 % B-1	7
	1,9 % A-1	0,1 % B-1	8
	1,8 % A-1	0,2 % B-1	10
20	1 % A-2 + 1 % A-3		3
,	0,98 % A-2 + 0,98 % A-3	0,04 % B-1	6
25	1 % A-2 + 1 % A-3		3
	2 % A-4.		7
	0,5 % A-2 + 0,5 % A-3		
	+ 0,95 % A-4	0,05 % B-1	9
30		·	

^{*)} bezogen auf die photohärtbare Zusammensetzung

Man ersieht daraus, dass die Kombination von A und B eine höhere Empfindlichkeit bewirkt als die einzelnen Komponenten oder die Kombination verschiedener A-Typ-Initiatoren.

Beispiel 2

45

50

- Es wird wie in Beispiel 1 vorgegangen, die Proben wurden jedoch 5 und 10 Sekunden belichtet. Folgende Photoinitiatoren werden verwendet:
 - A-5 2-Hydroxy-2-methyl-1-(p-chlorphenyl)-propanon-1
 - A-6 2-Hydroxy-2-methyl-1-(p-methoxyphenyl)-propanon-1
 - A-7 2-Hydroxy-2-meth, 1-1-(p-isopropylphenyl)-propanon-1
 - A-8 2-(Dimethylamino)-2-methyl-1-(p-chlorphenyl)-propanon-1
 - A-9 2-(3,5-Dimethylmorpholino)-2-methyl-1-(p-methoxyphenyl)propanon-1
 - A-10 2-(Dimethylamino)-2-methyl-1-(p-methylthiophenyl)-pentanon-1
 - B-2 Bis(cyclopentadienyl)-2-trifluormethylphenyl-titan-tri-fluoracetat

Tabelle 2

	Menge Photoinitiator *)			
5	Komponente A	Komponente B	Maximale Abbildungsstufe 5 sec 10 sec	
	2 % A-5		4	6
10	1,95 % A-5	0,05 % B-2	6	8
	2 % A-6		2	4
15	1,95 % A-6	0,05 % B-2	4	6
	2 % A-7		3	5
	1,95 % A-7	0,05 % B-2	5	7
20	2 % A-8	••	0	1
	1,95 % A-8	0,05 % B-2	3	5
25	2 % A-9		4	6
	1,95 % A-9	0,05 % B-2	5	7
	2 % A-10		3	6
	1,95 % A-10	0,05 % B-2	5	7

^{*)} bezogen auf die photohärtbare Zusammensetzung

5 Beispiel 3

30

40

45

Es wird wie in Beispiel 2 vorgegangen. Ausser den in Beispiel 1 und 2 beschriebenen Initiatoren werden folgende Photoinitiatoren verwendet:

- B-3 Bis(methylcyclopentadienyl)-bis(2,6-difluor-3-methyl-phenyl)-titan
- B-4 Bis(methylcyclopentadienyl)-bis(2,6-difluorphenyl)-titan

B-5 Bis(methylcyclopentadienyl)-2-trifluormethylphenyl-titan-trifluoracetat

- B-6 Bis(cyclopentadienyl)-bis(2,6-difluor-3-butoxyphenyl)-titan
 - B-7 Bis(cyclopentadienyl)-bis(4-decyloxy-2,3,5,6-tetrafluor-phenyl)-titan
- B-8 Bis(cyclopentadienyl)-bis[2,6-difluor-3-(2-ethoxyethoxy)-phenyl]-titan

Tabelle 3

5

10

15

20

25

35

40

45

50

55

Komponente A				Komponente B	Abbildu	Maximale Abbildungsstufe 5 sec 10 sec	
1	% A-2	+	1	% A-3		3	5
0,97	5 % A-2	+	0,975	% A-3	0,05 % B-1	6	8
0,97	5 % _. A-2	+	0,975	% A-3	0,05 % B-2	6	8
0,97	% A-2	+	0,975	% A-3	0,05 % B-3	7	10
0,97	5 % A-2	+	0,975	% A-3	0,05 % B-4	7	10
0,97	% A-2	+	0,975	% A-3	0,05 % B-5	5	7
0,97	% A-2	+	0,975	% A-3	0,05 % B-6	9	12
0,97	% A-2	+	0,975	% A-3	0,05 % B-7	8	11
0,97	5 % A-2	+	0,975	% A-3	0,05 % B-8	9	12

*) bezogen auf die photohärtbare Zusammensetzung

30 Ansprüche

Flüssiges Photoinitiatorgemisch bestehend aus
 A) 70-99,9 Gew.-% mindestens eines flüssigen Photoinitiators der Formel I oder eines flüssigen

A) 70-99,9 Gew.-% mindestens eines flussigen Photoinitiators der Former i oder eines flussiger Gemisches aus metallfreien Photoinitiatoren enthaltend mindestens eine Verbindung der Formel I,

$$Ar \xrightarrow{R^1} X \tag{I}$$

worin Ar eine unsubstituierte oder durch einen oder mehrere der Substituenten Halogen, C₁-C₁₈-Alkyl, C₃-C₁₂-Alkenyl, C₁-C₁₂-Alkoxy, Allyloxy, Phenoxy, C₁-C₁₈-Alkylthio, Allylthio, 2-Hydroxyethylthio, Phenylthio, Tolylthio, C₁-C₁₂-Alkylamino, C₂-C₁₂-Alkylamino, C₂-C₂₄-Dialkylamino, C₄-C₈-Bis(hydroxyalkyl)-amino, Diallylamino, Bis(2-methoxyethyl)amino, Morpholino, Piperidino oder Pyrrolidino substituierte Phenylgruppe bedeutet,

 R^1 und R^2 unabhängig voneinander C_1 - C_{18} -Alkyl oder durch -OH, C_1 - C_4 -Alkoxy, Benzyloxy, -CN, -COO(C_1 - C_8 -Alkyl), (C_1 - C_4 -Alkyl)-COO-, C_2 - C_8 -Dialkylamino oder Morpholino substituiertes C_1 - C_4 -Alkyl bedeuten oder R^1 und R^2 zusammen C_3 - C_9 -Alkandiyl, C_3 - C_9 -Oxa- oder Azaalkandiyl oder C_5 - C_9 -Alkendiyl bedeuten,

X eine Gruppe -OR3 oder -NR4R5 bedeutet, worin

R³ Wasserstoff, C₁-C₈-Alkyl, durch Halogen, -OH oder C₁-C₄-Alkoxy substituiertes C₂-C₄-Alkyl, Allyl, Benzyl, 2-Tetrahydropyranyl, Trimethylsilyl oder Phenyl-dimethylsilyl bedeutet,

 R^4 und R^5 unabhängig voneinander Wasserstoff, C_1 - C_{12} -Alkyl, durch -OH, C_1 - C_4 -Alkoxy-, -CN oder -COO(C_1 - C_4 -Alkyl) substituiertes C_2 - C_4 -Alkyl, Allyl, Benzyl oder Cyclohexyl bedeuten oder R^4 und R^5 zusammen C_3 - C_7 -Alkylen, das durch -O- oder -N(R^6)- unterbrochen sein kann, bedeuten, worin R^6 Wasserstoff, C_1 - C_4 -Alkyl, Allyl, Benzyl oder C_2 - C_4 -Hydroxyalkyl bedeutet, und

B) 0,1-30 Gew.-% mindestens eines Titanocen-Photoinitiators, ausgewählt aus

B₁) Verbindungen der Formel II

5

10

15

20

25

30

35

40

45

50

55

$$R^9 \xrightarrow{R^7} i \xrightarrow{R^{10}} (II)$$

worin R⁷ und R⁸ unabhängig voneinander ein unsubstituiertes oder durch C₁-C₄-Alkyl, Chlor, Phenyl oder Cyclohexyl substituiertes Cyclopentadienyl- oder Indenyl-Anion bedeuten oder R⁷ und R⁸ zusammen ein zweiwertiges Bis-cyclopentadienyl-Anion der Formel III bedeuten,

$$\begin{bmatrix} \vdots \bigcirc \vdots \\ \bigcirc \end{bmatrix}^{2\Theta}$$
 (III)

worin Z Methylen, Di- oder Trimethylen, C₂-C₁₂-Alkyliden, C₅-C₇-Cycloalkyliden, -Si(R¹¹)(R¹²)- oder -Sn(R¹¹)₂- bedeutet und

R¹¹ und R¹² C₁-C₁₂-Alkyl, Phenyl oder Benzyl bedeuten,

R³ den einwertigen Rest eines 6-gliedrigen carbocyclischen oder 5-oder 6-gliedrigen heterocyclischen aromatischen Ringes bedeutet, der in mindestens einer ortho-Position zur Bindung an das Ti-Atom durch Fluor substituiert ist und ausserdem durch eine oder mehrere der Substituenten Halogen, C₁-C₁₂-Alkyl, C₁-C₁₄-Alkoxy, -O(CH₂CH₂O)_{1:20} C₁-C₁₄-Alkyl, C₂-C₁₀-Alkoxycarbonyl, Aminocarbonyl mit bis zu 12 C-Atomen oder durch eine primäre, sekundäre oder tertiäre Amino- oder Aminoalkylgruppe mit bis zu 20 C-Atomen oder eine quartäre Ammonium- oder Ammoniumalkylgruppe mit bis zu 30 C-Atomen substituiert sein kann,

 R^{10} eine der für R^{9} angegebenen Bedeutungen hat oder C_2 - C_{12} -Alkinyl, unsubstituiertes oder im Phenylrest durch Halogen oder C_1 - C_{14} -Alkyl substituiertes Phenylalkinyl mit 2 - 5 C-Atomen im Alkinrest oder Halogen oder eine Gruppe -Si(R^{11})₃, -Si(R^{11})₂(R^{12}), -Sn(R^{11})₃, -OH, C_1 - C_{10} -Alkoxy, C_5 - C_{10} -Aryloxy, unsubstituiertes oder durch Halogen substituiertes C_2 - C_5 -Acyloxy, -N₃, -CN, -NCO oder -NCS bedeutet, oder

R³ und R¹¹ zusammen einen Rest der Formel -Q-Y-Q- bedeuten, worin Q ein carbocyclischer oder 5-oder 6-gliedriger heterocyclischer aromatischer Ring ist, der in 2-Stellung zur Y-Gruppe an das Titan-Atom gebunden ist und in 3-Stellung durch Fluor substituiert ist und als weitere Substituenten C¹-C₄-Alkyl, Halogen, C¹-C₄-Alkoxy, Di(C¹-C₄-alkyl)amino oder eine quartäre C³-C²₀-Ammoniumgruppe enthalten kann,

Y Methylen, C₂-C₁₂-Alkyliden, C₅-C₇-Cycloalkyliden, eine direkte Bindung oder eine Gruppe -NR¹³-, -O, -S-, -SO-, -SO₂-, -CO-, -Si(R¹¹)(R¹²)- oder -Sn(R¹¹)₂- bedeutet und R¹³ Wasserstoff, C₁-C₁₂-Alkyl, Cyclohexyl, Phenyl, Tolyl oder Benzyl bedeutet, oder

B₂) Verbindungen der Formel IV,

$$R^{14} \xrightarrow{R^{7}} 1 - R^{15}$$
 (IV)

worin R7 und R8 die oben genannte Bedeutung haben,

R¹⁴ den einwertigen Rest eines 6-gliedrigen carbocyclischen oder 5-oder 6-gliedrigen heterocyclischen aromatischen Ringes bedeutet, der in mindestens einer ortho-Position zur Bindung an das Ti-Atom durch -CF₃ substituiert ist und ausserdem durch eine oder mehrere der Gruppen Halogen, C₁-C₁₂-Alkyl, C₁-C₁₄-Alkoxy, -O(CH₂CH₂O)₁-₂₀ C₁-C₁₄-Alkyl,C₂-C₁₀-Alkoxycarbonyl oder Aminocarbonyl oder durch eine primäre, sekundäre oder tertiäre Amino- oder Aminoalkylgruppe mit bis zu 20 C-Atomen oder eine quartäre Ammonium- oder Ammoniumalkylgruppe mit bis zu 30 C-Atomen substituiert sein kann, und

 R^{15} eine der für R^{14} gegebenen Bedeutungen hat oder C_2 - C_{12} -Alkinyl, unsubstituiertes oder im Phenylrest durch Halogen oder C_1 - C_4 -Alkyl substituiertes Phenylalkinyl mit 2 - 5 C-Atomen im Alkinrest

oder Halogen oder eine Gruppe -Si(R¹¹)₃, -Si(R¹¹)₂ (R¹²), -Sn(R¹¹)₃, -OH, C₁-C₁₀-Alkoxy, C₆-C₁₀-Aryloxy, unsubstituiertes oder mit Halogen substituiertes C₂-C₆-Acyloxy, -N₃, -CN, -NCO oder -NCS bedeutet.

2. Flüssiges Initiatorgemisch gemäss Anspruch 1, bestehend aus

5

10

15

20

25

30

35

40

45

50

- A) 80-99,5 Gew.-% eines flüssigen Photoinitiators oder Photoinitiatorgemisches enthaltend mindestens eine Verbindung der Formet I, worin
 - Ar eine unsubstituierte oder durch einen oder zwei der Substituenten Halogen, C₁-C₁₂-Alkyl, C₁-C₈-Alkoxy, Allyloxy, Phenoxy, C₁-C₈-Alkylthio, 2-Hydroxyethylthio, Allylthio, Phenylthio, C₁-C₈-Alkylamino, C₂-C₁₅-Dialkylamino, Diallylamino, C₄-C₅-Bis(hydroxyalkyl)amino, Bis(2-methoxyethyl)amino, Morpholino, Piperidino oder Pyrrolidino substituierte Phenylgruppe bedeutet,
 - R¹ und R² unabhängig voneinander C₁-C₆-Alkyl oder durch -OH, C₁-C₆-Alkoxy, Benzyloxy, -COO(C₁-C₆-Alkyl), C₂-C₆-Dialkylamino oder Morpholino substituiertes C₁-C₆-Alkyl bedeuten oder
 - R1 und R2 zusammen C3-C6-Alkandiyl oder C5-C7-Alkendiyl bedeuten,
 - X eine Gruppe -OR3 oder -NR4R5 bedeutet, worin
 - R³ Wasserstoff, C₁-C₄-Alkyl, durch -OH oder C₁-C₄-Alkoxy substituiertes C₂-C₄-Alkyl, Allyl, Benzyl, 2-Tetrahydropyranyl oder Trimethylsilyl bedeutet und R⁴ und R⁵ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, durch -OH oder C₁-C₄-Alkoxy substituiertes C₂-C₄-Alkyl, Allyl, Benzyl oder Cyclohexyl bedeuten oder R⁴ und R⁵ zusammen C₃-C₇-Alkylen bedeuten, das durch -O- oder -N(R⁶)-unterbrochen sein kann, wobei R⁶ Wasserstoff, Methyl oder C₂-C₄-Hydroxyalkyl bedeutet, und
 - B) 0,5-20 Gew.-% einer Verbindung der Formel II, worin R⁷ und R⁸ ein unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Cyclopentadienyl-Anion sind und R⁹ und R¹⁰ eine Gruppe der Formel V bedeuten,

- worin R¹⁶, R¹⁷ und R¹⁸ unabhängig voneinander Wasserstoff, F, Cl, Br, C₁-C₁₄-Alkoxy, -O-(CH₂CH₂O)-T-R C₁-C₁₄-Alkyl eine tertiäre Aminogruppe oder Aminomethylgruppe mit 2 - 20 C-Atomen oder eine quartäre Ammonium- oder Ammonium-methylgruppe mit 3 - 24 C-Atomen bedeuten oder
 - R⁹ und R¹⁰ zusammen eine zweiwertige Gruppe der Formel

- darstellen, worin Y die in Anspruch 1 angegebene Bedeutung hat.
- oder 0,5-20 Gew.-% einer Verbindung der Formel IV worin R⁷ und R⁸ ein unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Cyclopentadienyl-Anion sind und R¹⁴ eine Gruppe der Formel VI bedeutet,

$$CF_3 \qquad R^{19}$$

$$-\cdot \qquad \cdot -R^{20} \qquad (VI)$$

$$R^{22} \qquad R^{21}$$

- worin R¹⁹, R²⁰, R²¹ und R²² unabhängig voneinander Wasserstoff, F, Cl, Br oder C₁-C₁₄-Alkoxy bedeuten und R¹⁵ eine der für R¹⁴ gegebenen Bedeutungen hat oder F, Cl, Br, CN, -O-CO-CH₃, -O-CO-CF₃, N₃, -NCO oder -NCS bedeutet.
- 3. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A ein flüssiges Gemisch ist aus einer Verbindung der Formel I und einer Verbindung der Formel VII,

worin R^{23} und R^{24} unabhängig voneinander Wasserstoff, C_1 - C_1 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_2 - C_4 -Hydroxyalkyloxy, C_2 - C_4 -Hydroxyalkylthio, Halogen, C_2 - C_{10} -Alkoxycarbonyl oder C_2 - C_8 -Dialkylamino bedeuten.

- Flüssiges Initiatorgemisch gemäss Anspruch 3, wobei die Verbindungen der Formel I und der Formel VII im Gewichtsverhältnis von 0,8:1 bis 1:0,8 vorliegen.
 - 5. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A ein flüssiges Gemisch ist aus einer Verbindung der Formel I und einem 2,4,6-Tri(C₁-C₄-alkyl)benzophenon.
 - 6. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A ein flüssiges Gemisch ist aus einer Verbindung der Formel I und einer Verbindung der Formel VIII,

5

15

20

40

45

50

55

worin R²⁵ Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy bedeutet, R²⁶ und R²⁷ C₁-C₆-Alkyl, C₃-C₄-Alkenyl, C₇-C₁₀-Phenylalkyl oder durch Halogen, C₁-C₄-Alkoxy, C₂-C₈-Dialkylamino, Morpholino oder Piperidino substituiertes C₂-C₄ Alkyl bedeuten oder R²⁶ und R²⁷ zusammen C₂-C₁₂-Alkandiyl oder 2-Buten-1,4-diyl bedeuten und R²⁸ Wasserstoff, C₁-C₈Alkyl, C₅-C₈-Cycloalkyl, Phenyl oder durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl bedeutet.

- Flüssiges Initiatorgemisch gemäss Anspruch 6, wobei die Verbindungen der Formel I und Formel VIII
 im Gewichtsverhältnis von 2:1 bis 1:2 vorliegen.
- Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A ein flüssiges Gemisch ist aus einer Verbindung der Formel I, einer Verbindung der Formel VII und einer Verbindung der Formel VIII.
 - 9. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A eine Verbindung der Formel I enthält, worin Ar Phenyl oder durch Chlor, Fluor, C₁-C₁₂-Alkyl, Methoxy, Methylthio, Dimethylamino, Diethylamino, Bis(2-methoxyethyl)amino, Morpholino, Piperidino oder Pyrrolidino substituiertes Phenyl bedeutet, R¹ und R² unabhängig voneinander C₁-C₄-Alkyl oder durch -OH oder C₁-C₄-Alkoxy substituiertes C₁-C₄-Alkyl bedeuten oder R¹ und R² zusammen C₄-C₅-Alkandiyl oder C₅-C₇-Alkendiyl bedeuten und X -OH oder -NR⁴R⁵ ist, wobei R⁴ und R⁵ C₁-C₄-Alkyl, Allyl oder 2-Methoxyethyl bedeuten oder R⁴ und R⁵ zusammen mit dem Stickstoffatom Pyrrolidino, Piperidino, Morpholino, Piperazino oder 4-Methylpiperazino bedeuten.
 - 10. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A eine Verbindung der Formel I enthält, worin Ar, Phenyl, p-Tolyl, p-Cumyl, 4-Dodecylphenyl, 4-Chlorphenyl oder 4-Methoxyphenyl bedeutet, R¹ und R² unabhängig voneinander C₁-C₄-Alkyl oder R¹ und R² zusammen Tetra-oder Pentamethylen bedeuten und X eine Hydroxylgruppe ist.
 - 11. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A eine Verbindung der Formel I enthält, worin Ar Phenyl, p-Tolyl, p-Cumyl, 4-Chlorphenyl, 4-Methoxyphenyl, 4-Methylthiophenyl, 4-Dimethylaminophenyl, 4-Diethylaminophenyl, 4-Bis(2-methoxyethyl)amino-phenyl, 4-Morpholinophenyl oder 4-Piperidinophenyl bedeutet, R¹ und R² unabhängig voneinander C¹-C⁴-Alkyl bedeuten und X Methylamino, Dimethylamino, Ethylamino, Diethylamino, Bis(2-methoxyethyl)amino, Piperidino, Pyrrolidino, Morpholino, Piperazino oder 4-Methylpiperazino bedeutet.

- 12. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente B entweder eine Verbindung der Formel II ist, worin R⁷ und R⁸ ein Cyclopentadienyl-oder Methylcyclopentadienyl-Anion sind und R⁹ und R¹⁰ eine Gruppe der Formel V sind, worin entweder a) R¹⁶ H, F, Cl oder Br ist, R¹⁷ Fluor, C₁-C₁₄-Alkoxy oder -O-(CH₂CH₂O)_{T-8} C₁-C₁₄-Alkyl ist und R¹⁸ H, Cl oder Br ist oder b) R¹⁸ H, F, Cl oder Br ist und R¹⁶ und R¹⁷ H, Cl, Br, C₁-C₁₄-Alkoxy, -O-(CH₂CH₂O)_{T-8} C₁-C₁₄-Alkyl eine tertiäare Amino- oder Aminomethylgruppe oder eine quartäre Ammonium-oder Ammonium-methylgruppe sind, oder B eine Verbindung der Formel IV ist, worin R⁷ und R⁸ ein Cyclopentadienyl- oder Methylcyclopentadienyl-Anion sind, R¹⁴ 2-(Trifluormethyl)phenyl oder 6-Fluor-2-(trifluormethyl)phenyl bedeutet und R¹⁵ die gleiche Bedeutung wie R¹⁴ hat oder F, Cl, Br, CN, N₃, -O-CO-CH₃, -O-CO-CF₃, -NCO oder -NCS ist.
- 13. Flüssiges Initiatorgemisch gemäss Anspruch 3, dadurch gekennzeichent, dass die Komponente A ein flüssiges Gemisch aus einer Verbindung der Formel I und Benzophenon ist.
- 14. Flüssiges Initiatorgemisch gemäss Anspruch 1, dadurch gekennzeichnet, dass die Komponente A ein flüssiges Gemisch aus einer Verbindung der Formel I und 2,2-Dimethoxy-2-phenylacetophenon oder 2,2-Diethoxy-2-phenylacetophenon ist.
- 15. Flüssiges Initiatorgemisch gemäss Anspruch 1, bestehend aus
 40-50 Gew.-% 1-Hydroxycyclohexyl-phenyl-keton,
 40-50 Gew.-% Benzophenon und
 2-20 Gew.-% einer Verbindung der Formel II oder IV.
- 16. Fiüssiges Initiatorgemisch gemäss Anspruch 15, bestehend aus
 40-50 Gew.-% 1-Hydroxycyclohexyl-phenyl-keton,
 40-50 Gew.-% Benzophenon und
 2-20 Gew.-% Bis(cyclopentadienyl)-bis(4-decyloxy)-tetrafluorphenyl)-titan.
 - Flüssiges Initiatorgemisch gemäss Anspruch 1, bestehend aus
 25-30 Gew.-% 1-Hydroxycyclohexyl-phenyl-keton,
 25-30 Gew.-% Benzophenon,
 35-40 Gew.-% 2,2-Dimethoxy-2-phenylacetophenon und
 2-15 Gew.-% einer Verbindung der Formel II oder IV.
- 18. Photohärtbare Zusammensetzung enthaltend mindestens eine ethylenisch ungesättigte Verbindung und 0,5 bis 20 Gew.-% eines Initiatorgemisches gemäss Anspruch 1.
 - 19. Photohärtbare Zusammensetzung gemäss Anspruch 18, dadurch gekennzeichnet, dass die Zusammensetzung ein Lack oder eine Druckfarbe ist.
 - 20. Photohärtbare Zusammensetzung gemäss Anspruch 18, dadurch gekennzeichnet, dass die Zusammensetzung ein Material zur Herstellung von Druckplatten, Resistmaterialien, Bildaufzeichnungsmaterialien oder sonstigen Informationsträgern ist.
- 21. Photohärtbare Zusammensetzung gemäss Anspruch 20, dadurch gekennzeichnet, dass die Bildaufzeichnung in einem Resist- oder Druckplattenmaterial direkt mit dem gesteuerten Laserstrahl erfolgt.

Claims

A liquid photoinitiator mixture, comprising
 A) 70-99.9% by weight of at least one liquid photoinitiator of the formula 1 or of a liquid mixture of metal-free photoinitiators containing at least one compound of the formula 1

55

50

$$Ar \xrightarrow{R^1} X$$

5

10

15

20

in which Ar is a phenyl group which is unsubstituted or is monosubstituted or polysubstituted by halogen, C_1 - C_{18} alkyl, C_3 - C_{12} alkenyl, C_1 - C_{12} alkoxy, allyloxy, phenoxy, C_1 - C_1 alkylthio, allylthio, 2-hydroxyethylthio, phenylthio, tolylthio, C_1 - C_1 alkylamino, C_2 - C_2 dialkylamino, C_4 - C_8 bis(hydroxyalkyl)-amino, diallylamino, bis(2-methoxyethyl)amino, morpholino, piperidino or pyrrolidino, R^1 and R^2 independently of one another are C_1 - C_8 alkyl or C_1 - C_4 alkyl which is substituted by -OH, C_1 - C_4 alkoxy, benzyloxy, -CN, -COO(C_1 - C_8 alkyl), (C_1 - C_4 alkyl)-C00-, C_2 - C_8 diallamino or morpholino, or R^1 and R^2 together are C_3 - C_9 alkanediyl, C_3 - C_9 oxa- or -aza-alkanediyl or 6_5 - C_9 alkenediyl, X is a group -OR³ or -NR 4 R 5 , in which R^3 is hydrogen, C_1 - C_8 alkyl, C_2 - C_4 alkyl which is substituted by halogen, -OH or C_1 - C_4 alkoxy, allyl, benzyl, 2-tetrahydropyranyl, trimethylsilyl or phenyl-dimethylsilyl, R^4 and R^5 independently of one another are hydrogen, C_1 - C_{12} -alkyl, C_2 - C_4 alkyl which is substituted by -OH, C_1 - C_4 alkoxy, -CN or -COO(C_1 - C_4 alkyl), allyl, benzyl or cyclohexyl, or R^4 and R^5 together are C_3 - C_7 alkylene which can be interrupted by -O- or -N(R^6)-, R^6 being hydrogen, C_1 - C_4 alkyl, allyl, benzyl or C_2 - C_4 hydroxy-alkyl,

and

B) 0.1-30% by weight of at least one titanocene photoinitiator, selected from B_1) compounds of the formula II

$$R^{9} \xrightarrow{\stackrel{}{\longrightarrow} \stackrel{}{\longrightarrow} \stackrel{}{\longrightarrow} R^{10}} (II)$$

25

in which R^7 and R^8 independently of one another are a cyclopentadienyl or indenyl anion which is unsubstituted or is substituted by C_1 - C_4 alkyl, chlorine, phenyl or cyclohexyl, or R^7 and R^8 together are a divalent biscyclopentadienyl anion of the formula III

35

40

45

50

55

30

in which Z is methylene, dimethylene or trimethylene, C_2 - C_{12} alkylidene, C_5 - C_7 cycloalkylidene, -Si(R^{11})- (R^{12}) - or $-Sn(R^{11})_2$ - and R^{11} and R^{12} are C_1 - C_{12} alkyl, phenyl or benzyl, R^9 is the monovalent radical of a 6-membered carbocyclic or 5-membered or 6-membered heterocyclic aromatic ring which is substituted by fluorine in at least one ortho-position relative to the bond to the Ti atom and can also be monosubstituted or polysubstituted by halogen, C1-C12alkyl, C1-C14alkoxy, -O(CH2CH2O)1-20 -C1-C1-4alkyl, C2C10alkoxycarbonyl, aminocarbonyl having up to 12 C atoms or by a primary, secondary or tertiary amino or aminoalkyl group having up to 20 C atoms or a quaternary ammonium or ammonium alkyl group having up to 30 C atoms, R10 is as defined for R9 or is C2-C12alkynyl, phenylalkynyl which has 2-5 C atoms in the alkyne radical and is unsubstituted or substituted in the phenyl radical by halogen or C_1 - C_{14} -alkyl, or is halogen or a group -Si(R^{11})₃, -Si(R^{11})₂(R^{12}) or -Sn(R^{11})₃, -OH, C_1 -C10alkoxy, C6-C10aryloxy, C2-C6acyloxy which is unsubstituted or substituted by halogen, or is -N3, -CN, -NCO or -NCS, or R9 and R10 together are a radical of the formula -Q-Y-Q, in which Q is a carbocyclic or 5-membered or 6-membered heterocyclic aromatic ring which is bonded to the titanium atom in the 2-position relative to the Y group and is substituted by fluorine in the 3-position and, as further substituents, can contain C1-C4alkyl, halogen, C1-C4alkoxy, di(C1-C4alkyl)amino or a quaternary C3-C20ammonium group, Y is methylene, C2-C12alkylidene, C5-C7cycloalkylidene, a direct bond or a group -NR¹³-, -O-, -S-, -SO-, -SO₂-, -CO, -Si(R¹¹)(R¹²)- or -Sn(R¹²)₂- and R¹³ is hydrogen, C_1 - C_{12} alkyl, cyclohexyl, phenyl, tolyl or benzyl, or B₂) compounds of the formula IV

$$R^{14} \xrightarrow{\qquad \qquad \qquad } R^{7} \qquad \qquad (IV)$$

5

10

in which R^7 and R^8 are as defined above, R^{14} is the monovalent radical of a 6-membered carbocyclic or 5-membered or 6-membered heterocyclic aromatic ring which is substituted by -CF3 in at least one ortho-position relative to the bond to the Ti atom and can also be monosubstituted or polysubstituted by halogen, C_1 - C_{12} alkyl, C_1 - C_{14} alkoxy, -O(CH_2CH_2O)_{1:20} - C_1 - C_1 4alkyl, C_2 - C_1 0alkoxycarbonyl or aminocarbonyl or by a primary, secondary or tertiary amino or aminoalkyl group having up to 20 C atoms or a quaternary ammonium or ammonium alkyl group having up to 30 C atoms, and R^{15} is as defined for R^{14} or is C_2 - C_{12} alkynyl, phenylalkynyl which has 2-5 C atoms in the alkyne radical and is unsubstituted or substituted in the phenyl radical by halogen or C_1 - C_4 alkyl, or is halogen or a group -Si(R^{11})₃, -Si(R^{11})₂(R^{12}), -Sn(R^{11})₃, -OH, C_1 - C_1 0alkoxy, C_6 - C_1 0aryloxy, unsubstituted or halogen-substituted G_2 - G_6 acyloxy, -N₃, -CN, -NCO or -NCS.

..

15

20

2. A liquid initiator mixture according to claim 1, comprising

A) 80-99.5% by weight of a liquid photoinitiator or photoinitiator mixture containing at least one compound of the formula I, in which Ar is a phenyl group which is unsubstituted or is monosubstituted or disubstituted by halogen, C₁-C₁2alkyl, C₁-C₈alkoxy, allyloxy, phenoxy, C₁-C₈alkylthio, 2-hydroxyethylthio, allylthio, phenylthio, C₁-C₈alkyl-amino, C₂-C₁₆dialkylamino, diallylamino, C₄-C₆bis-(hydroxyalkyl)amino, bis(2-methoxyethyl)amino, morpholino, piperidino or pyrrolidino, R¹ and R² independently of one another are C₁-C₆alkyl or C₁-C₄alkyl which is substituted by -OH, C₁-C₄alkoxy, benzyloxy, -COO(C₁-C₄alkyl), C₂-C₄-dialkylamino or morpholino or R¹ and R² together are C₃-C₆alkanediyl or C₅-C₇alkenediyl, X is a group -OR³ or -NR⁴R⁵, in which R³ is hydrogen, C₁-C₄alkyl, C₂-C₄alkyl, which is substituted by -OH or C₁-C₄alkoxy, allyl, benzyl, 2-tetrahydropyranyl or trimethylsilyl, and R⁴ and R⁵ independently of one another are hydrogen, C₁-C₈alkyl, C₂-C₄alkyl which is substituted by -OH or C₁-C₄alkoxy, allyl, benzyl or cyclohexyl, or R⁴ and R⁵ together are C₃-C₇alkylene which can be interrupted by -O- or -N(R⁶)-, R⁶ being hydrogen, methyl or C₂-C₄hydroxy-

30

alkyl, and

25

B) 0.5-20% by weight of a compound of the formula II, in which R^7 and R^8 are a cyclopentadienyl anion which is unsubstituted or substituted by C_1 - C_4 alkyl and R^9 and R^{10} are a group of the formula V

35

40

in which R^{16} , R^{17} and R^{18} independently of one another are hydrogen, F, Cl, Br, C_1 - C_1 4alkoxy, -O- $(CH_2CH_2O)_{T3}$ - C_1 - C_1 4alkyl, a tertiary amino group or aminomethyl group having 2-20 C atoms or a quaternary ammonium or ammonium-methyl group having 3-24 C atoms, or R^9 and R^{10} together are a divalent group of the formula

45

50

in which Y is as defined in claim 1, or 0.5-20% by weight of a compound of the formula IV, in which R^7 and R^8 are a cyclopentadienyl anion which is unsubstituted or substituted by C_1 - C_4 alkyl and R^{14} is a group of the formula VI

$$CF_1$$
 R^{19} $-R^{20}$ R^{22} R^{21} (VI)

in which R^{19} , R^{20} , R^{21} and R^{22} independently of one another are hydrogen, F, Cl, Br or C_1 - C_{14} alkoxy, and R^{15} is as defined for R^{14} or is F, Cl, Br, CN, -O-CO-CH₃, -O-CO-CF₃, N₃, -NCO or -NCS.

3. A liquid initiator mixture according to claim 1, wherein component A is a liquid mixture of a compound of the formula I and a compound of the formula VII

10

40

55

in which R²³ and R²⁴ independently of one another are hydrogen, C₁-C₁₂alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₂-C₄hydroxyalkyloxy, C₂-C₄-hŷdroxyalkylthio, hałogen, C₂-C₁₀alkoxycarbonyl or C₂-C₈dialkylamino.

- 4. A liquid initiator mixture according to claim 3, wherein the compounds of the formula I and of the formula VII are present in a weight ratio of 0.8:1 to 1:0.8.
 - 5. A liquid initiator mixture according to claim 1, wherein component A is a liquid mixture of a compound of the formula I and a 2,4,6-tri-(C₁-C₄ alkyl)-benzophenone.
- 6. A liquid initiator mixture according to claim 1, wherein component A is a liquid mixture of a compound of the formula I and a compound of the formula VIII

in which R²⁵ is halogen, C₁-C₄alkyl or C₁-C₄alkoxy, R²⁶ and R²⁷ are C₁-C₆alkyl, C₃-C₄alkenyl, C₇-C₁₀phenylalkyl or C₂-C₄alkyl which is substituted by halogen, C₁-C₄alkoxy, C₂-C₈dialkylamino, morpholino or piperidino, or R²⁶ and R²⁷ together are C₂-C₁₂alkanediyl or 2 -butene-1,4-diyl and R²⁸ is hydrogen, C₁-C₈alkyl, C₅-C₈cycloalkyl, phenyl or phenyl which is substituted by halogen, C₁-C₄alkyl or C₁-C₄alkoxy.

- 7. A liquid initiator mixture according to claim 6, wherein the compounds of the formula I and of the formula VIII are present in a weight ratio of 2:1 to 1:2.
- 8. A liquid initiator mixture according to claim 1, wherein component A is a liquid mixture of one compound of the formula I, one compound of the formula VIII.
 - 9. A liquid initiator mixture according to claim 1, wherein component A contains a compound of the formula I in which Ar is phenyl or phenyl which is substituted by chlorine, fluorine, C₁-C₁₂alkyl, methoxy, methylthio, dimethylamino, diethylamino, bis(2-methoxyethyl)-amino, morpholino, piperidino or pyrrolidino, R¹ and R² independently of one another are C₁-C₄alkyl or C₁-C₄alkyl which is substituted by -OH or C₁-C₄alkoxy, or R¹ and R² together are C₄-C₅alkanediyl or C₅-C₇alkenediyl and X is -OH or -NR⁴R⁵, R⁴ and R⁵ being C₁-C₄alkyl, allyl or 2-methoxy-ethyl or R⁴ and R⁵, together with the nitrogen atom, being pyrrolidino, piperidino, morpholino, piperazino or 4-methylpiperazino.

- 10. A liquid initiator mixture according to claim 1, wherein component A contains a compound of the formula I, in which Ar is phenyl, p-tolyl, p-cumyl, 4-dodecylphenyl, 4-chlorophenyl or 4-methoxyphenyl, R¹ and R² independently of one another are C₁-C₄alkyl or R¹ and R² together are tetramethylene or pentamethylene and X is a hydroxyl group.
- 11. A liquid initiator mixture according to claim 1, wherein component A contains a compound of the formula I, in which Ar is phenyl, p-tolyl, p-cumyl, 4-chlorophenyl, 4-methoxyphenyl, 4-methylthiophenyl, 4-dimethylaminophenyl, 4-diethylaminophenyl, 4-bis(2-methoxyethyl)-amino-phenyl, 4-morpholinophenyl or 4-piperidinophenyl, R¹ and R² independently of one another are C₁-C₄alkyl and X is methylamino, dimethylamino, ethylamino, diethylamino, bis(2-methoxyethyl)-amino, piperidino, pyrrolidino, morpholino, piperazino or 4-methylpiperazino.
- 12. A liquid initiator mixture according to claim 1, wherein component B is either a compound of the formula II, in which R⁷ and R⁸ are a cyclopentadienyl anion or methylcyclopentadienyl anion and R⁹ and R¹⁰ are a group of the formula V, in which either a) R¹⁶ is H, F, Cl or Br, R¹⁷ is fluorine, C₁-C₁4 alkoxy or -O-(CH₂CH₂O)_{T-5} C₁-C₁4 alkyl and R¹⁸ is H, Cl or Br or b) R¹⁸ is H, F, Cl or Br and R¹⁶ and R¹⁷ are H, Cl, Br, C₁-C₁4 alkoxy, -O-(CH₂CH₂O)_{T-5} -C₁-C₁4 alkyl, a tertiary amino or aminomethyl group or a quaternary ammonium or ammonium-methyl group, or B is a compound of the formula IV, in which R⁷ and R⁸ are a cyclopentadienyl anion or methylcyclopentadienyl anion, R¹⁴ is 2-(trifluoromethyl)-phenyl or 6-fluoro-2-(trifluoromethyl)-phenyl and R¹⁵ is as defined for R¹⁴ or is F, Cl, Br, CN, N₃, -O-CO-CH₃, -O-CO-CF₃, -NCO or -NCS.
- 13. A liquid initiator mixture according to claim 3, wherein component A is a liquid mixture of a compound of the formula I and benzophenone.
- 14. A liquid initiator mixture according to claim 1, wherein component A is a liquid mixture of a compound of the formula I and 2,2-dimethoxy-2-phenylacetophenone or 2,2-diethoxy-2-phenylacetophenone.
- 15. A liquid initiator mixture according to claim 1, comprising 40-50% by weight of 1-hydroxycyclohexyl phenyl ketone, 40-50% by weight of benzophenone and 2-20% by weight of a compound of the formula il or IV.
 - 16. A liquid initiator mixture according to claim 15, comprising 40-50% by weight of 1-hydroxycyclohexyl phenyl ketone, 40-50% by weight of benzophenone and 2-20% by weight of bis(cyclopentadienyl)-bis-(4-decyloxy-tetrafluorophenyl)-titanium.
 - 17. A liquid initiator mixture according to claim 1, comprising 25-30% by weight of 1-hydroxycyclohexyl phenyl ketone, 25-30% by weight of benzophenone, 35-40% by weight of 2,2-dimethoxy-2-phenylacetophenone and 2-15% by weight of a compound of the formula II or IV.
 - 18. A photocurable composition, comprising at least one ethylenically unsaturated compound and 0.5 to 20% by weight of an initiator mixture according to claim 1.
 - 19. A photocurable composition according to claim 18, which is a surface coating or a printing ink.
 - 20. A photocurable composition according to claim 18, which is a material for the production of printing plates, resist materials, image-recording materials or other information carriers.
- 21. A photocurable composition according to claim 20, for image recording in a resist or printing plate material directly by a controlled laser beam.

Revendications

10

15

20

35

1. Mélange liquide de photo-amorceurs, ce mélange consistant en :

A) 70 à 99,9 % en poids d'au moins un photoamorceur liquide de formule I, ou d'un mélange liquide de photo-amorceurs sans métaux, contenant au moins un composé de formule I :

$$Ar \longrightarrow \begin{cases} R^1 \\ Z \end{cases}$$
 (1)

5

10

15

20

25

dans laquelle Ar représente un groupe phényle non substitué ou bien substitué par un ou plusieurs des substituants formés par un atome d'halogène, un groupe alkyle en C_1 à C_{18} , alcényle en C_3 à C_{12} , alcoxy en C_1 à C_{12} allyloxy, phénoxy, allkylthio en C_1 à C_{18} , allylthio, hydroxy-2 éthylthio, phénylthio, tolylthio, alkylamino en C_1 à C_{12} , dialkylamino en C_2 à C_{24} , bis(hydroxyalkyle en C_4 à C_8)-amino, diallylamino, bis(méthoxy-2 éthyl)-amino, morpholino, pipéridino ou pyrrolidino,

 R_1 et R_2 représentent chacun, indépendamment l'un de l'autre, un groupe alkyle en C_1 à C_8 ou un groupe alkyle en C_1 à C_4 (substitué par un groupe -OH, alcoxy en C_1 à C_4 , benzyloxy, -CN, -COO (alkyle en C_1 à C_8), (alkyl en C_1 à C_4)-COO-, dialkylamino en C_2 à C_8 ou morpholino), ou bien R^1 et R^2 forment ensemble un groupe alcanediyle en C_3 à C_9 , oxa- ou aza-alcanediyle en C_3 à C_9 ou alcénediyle en C_5 à C_9 ,

X représente un groupe -OR3 ou -NR4R5,

 R^3 représente un atome d'hydrogène, un groupe allyle en C_1 à C_8 , un groupe alkyle en C_2 à C_4 (substitué par de l'halogène, par un groupe -OH ou alcoxy en C_1 à C_4), un groupe allyle, benzyle, tétrahydropyrranyle-2, triméthylsilyle ou phényl-diméthylsilyle.

 R^4 et R^5 représentent chacun, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe alkyle en C_1 à C_{12} , un groupe alkyle en C_2 à C_4 (substitué par un groupe -OH, alcoxy en C_1 à C_4 , -CN ou -COO (alkyle en C_1 à C_4), un groupe allyle, benzyle ou cyclohexyle, ou bien R^4 et R^5 forment ensemble un groupe alkylène en C_3 à C_7 , qui peut être interrompu par -O- ou -N(R^6)-, le symbole R^6 représentant un atome d'hydrogène, un groupe alkyle en C_1 à C_4 , allyle, benzyle ou hydroxyalkyle en C_2 à C_4 ; et

B) 0.1 à 30 % en poids d'au moins un titanocène photo-amorceur, choisi parmi :

B₁) des composés de formule II:

$$R^{9} \xrightarrow{\stackrel{}{\longrightarrow}} \stackrel{i}{\stackrel{}{\longrightarrow}} R^{10}$$
 (II)

30

35

dans laquelle R⁷ et R⁸ représentent chacun, indépendamment l'un de l'autre, un anion cyclopentadiényle ou indényle (non substitué ou substitué par un groupe alkyle en C₁ à C₄, chloro, phényle ou cyclohexyle, ou bien R⁷ et R⁸ forment ensemble un anion bis-cyclopentadiényle divalent de formule III

40

$$\left[\begin{array}{cccc} \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \end{array}\right]^{2\Theta}$$
 (III)

45

50

55

dans laquelle Z représente un groupe méthylène, diméthylène ou triméthylène, alkylidène en C_2 à C_{12} cycloalkylidène en C_5 à C_7 , $-Si(R^{11})(R^{12})$ - ou $-Sn(R^{11})_2$ -, et

R11 et R12 représentent chacun un groupe alkyle en C1 à C12, phényle ou benzyle,

R³ représente le reste monovalent d'un noyau aromatique carbocyclique hexagonal ou hétérocyclique pentagonal ou hexagonal, qui est substitué par du fluor au moins sur une position en ortho par rapport à la liaison avec l'atome de Ti et, en outre, peut être substitué par un ou plusieurs des substituants halogéno, alkyle en C₁ à C₁₂, alcoxy en C₁ à C₁₄, -O(CH₂CH₂O)_{T-20} alkyle en C₁ à C₁₄, alcoxy (en C₂ à C₁₀)-carbonyle, aminocarbonyle ayant jusqu'à 12 atomes de carbone, ou par un groupe amino ou aminoalkyle primaire, secondaire ou tertiaire comportant jusqu'à 20 atomes de carbone ou par un groupe ammonium ou ammoniun-alkyle quaternaire ayant jusqu'à 30 atomes de carbone.

R¹º a l'un des sens indiqués pour R³ ou représente un groupe alcynyle en C₂ à C₁₂, un groupe phénylalcynyle ayant 2 à 5 atomes de carbone dans le reste alcine, non substitué ou substitué dans le

reste phényle par de l'halogène ou par un groupe alkyle en C_1 à C_{14} , ou R^{10} représente un atome d'halogène ou un groupe -Si(R^{11})₃, -Si(R^{11})₂(R^{12}), -Sn(R^{11})₃, -OH, un groupe alcoxy en C_1 à C_{10} , aryloxy en C_6 à C_{10} , acyloxy en C_2 à C_6 (non substitué ou substitué par de l'halogène, -N 3 , -CN, -NCO ou -NCS, ou bien

 R^9 et R^{10} forment ensemble un reste de formule -Q-Y-Q-, dans laquelle Q représente un noyau aromstique carbocyclique ou hétérocyclique pentagonal ou hexagonal, qui est fixé sur l'atome de titane en position 2 par rapport au groupe Y et est substitué par du fluor en position 3 et, qui peut comporter comme autre substituant un groupe alkyle en C_1 à C_4 , halogéno, alcoxy en C_1 à C_4 , di(alkyl) en C_1 à C_4)-amino ou un groupe ammonium quaternaire en C_3 à C_{20} ,

Y représente un groupe méthylène, alkylidène en C_2 à C_{12} , cycloalkylidène en C_5 à C_7 , une liaison directe ou un groupe -NR¹³-, -O-, -S-, -SO-, -SO₂-, -CO-, -Si(R¹¹)-(R¹²)- ou -Sn(R¹¹)₂-, et R¹³ représente un atome d'hydro(R¹²)- ou -Sn(R¹¹)₂-, et R¹³ représente un atome d'hydrogène, un groupe alkyle en C_1 à C_{12} , cyclohexyle, phényle, tolyle ou benzyle, ou

B₂) des composés de formule IV :

5

10

15

20

25

30

25

40

45

50

55

$$R^{14} \xrightarrow{R^7} i \xrightarrow{R^{15}} R^{15}$$
 (IV)

dans laquelle R7 et R8 ont le sens précité,

R¹⁴ représente le reste monovalent d' un noyau aromatique carbocyclique hexagonal ou hétérocyclique pentagonal ou hexagonal qui est substitué par -CF₃ sur au moins une position en ortho par rapport à la liaison avec l'atome de Ti et qui peut être substitué en outre par un ou plusieurs substituants choisis parmi un groupe halogéno, alkyle en C₁ à C₁₂, alcoxy en C₁ à C₁₄, -O(CH₂CH₂O)_{T-20} alkyle en C₁ à C₁₄, alcoxy (en C₂ à C₁₀)-carbonyle ou aminocarbonyle ou par un groupe amino ou aminoalkyle primaire, secondaire ou tertiaire ayant jusqu'à 20 atomes de carbone ou par un groupe ammonium ou ammonium-alkyle quaternaire ayant jusqu'à 30 atomes de carbone, et

 R^{15} a l'un des sens indiqués pour R^{14} ou représente un groupe alcynyle en C_2 à C_{12} , un groupe phénylalcynyle ayant 2 à 5 atomes de carbone dans le reste alcine (non substitué ou substitué dans le reste phényle par de l'halogène ou par un groupe alkyle en C_1 à C_4), ou R^{15} représente un atome d'halogène ou un groupe -Si(R^{11})3, -Si(R^{11})2, (R^{12}), -Sn(R^{11})3, -OH, alcoxy en C_1 à C_{10} , aryloxy en C_6 à C_{10} , acyloxy en C_2 à C_6 , (non substitué ou substitué par de l'halogène), -N₃, -CN, -NCO ou -NCS.

. Mélange liquide d' amorceurs selon la revendication 1, consistant en :

A) 80 à 99,5 % en poids d'un photo-amorceur liquide ou d'un mélange liquide de photo-amorceurs contenant au moins un composé de formule I, dans laquelle :

Ar représente un groupe phényle (non substitué ou substitué par un ou deux des substituants halogéno, alkyle en C_1 à C_{12} , alcoxy en C_1 à C_8 , allyloxy, phénoxy, alkylthio en C_1 à C_8 , hydroxy-2 éthylthio, allylthio, phénylthio, alkyl (en C_1 à C_8)-amino, dialkyl (en C_2 à C_{16})-amino, dialkyl en C_4 à C_6)-amino, bis(méthoxy-2 éthyl)-amino, morpholino, pipéridino ou pyrrolidino),

 R^1 et R^2 représentent, indépendamment l'un de l'autre, chacun un groupe alkyle en C_1 à C_4 (substitué par un groupe -OH, alcoxy en C_1 à C_4 , benzyloxy, -COO (alkyle en C_1 à C_4), dialkyl (en C_2 à C_4)-amino ou morpholino), ou bien

R¹ et R² forment ensemble un groupe alcanediyle en C3 à C6 ou alcènediyle en C5 à C7,

X représente un groupe -OR3 ou -NR4R5,

 R^3 représente un atome d'hydrogène, un groupe alkyle en C_1 à C_4 , un groupe alkyle en C_2 à C_4 - (substitué par -OH ou par un groupe alcoxy en C_1 à C_4), allyle, benzyle, tétrahydropyrranyle-2 ou triméthysilyle, et

 R^4 et R^5 représentent chacun, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe alkyle en C_1 à C_8 , un groupe alkyle en C_2 à C_4 (substitué par -OH ou par un groupe alcoxy en C_1 à C_4), un groupe allyle, benzyle ou cyclohexyle, ou bien

 R^4 et R^5 forment ensemble un groupe alkylène en C_3 à C_7 , qui peut être interrompu par -O- ou -N- (R^6)-, le symbole R^6 représentant un atome d'hydrogène, un groupe méthyle ou un groupe hydroxyal-kyle en C_2 à C_4 , et

B) 0,5 à 20 % en poids d'un composé de formule II, dans laquelle

R7 et R8 représentent chacun un anion cyclopentadiényle, non substitué ou substitué par un

groupe alkyle en C1 à C4, et

R9 et R10 représentent un groupe de formule V :

$$F = R^{16}$$

$$-R^{17}$$

$$R^{18}$$
(V)

dans laquelle:

5

10

15

20

25

30

35

40

45

55

R¹⁶, R¹⁷ et R¹⁸ représentent chacun, indépendamment i' un de l' autre, un atome d' hydrogène, de F, de Cl, de Br, un groupe alcoxy en C₁ à C₁₄, -O-(CH₂CH₂O)_{T-8} alkyle en C₁ à C₁₄, un groupe amino tertiaire ou un groupe amino méthyle ayant 2 à 20 atomes de carbone ou un groupe ammonium ou anmonium-méthyle quaternaire comportant 3 à 24 atomes de carbone, ou

R9 et R10 forment ensemble un groupe divalent de formule :

dans laquelle Y a le sens indiqué à la revendication 1, ou bien 0,5 à 20 % en poids d'un composé de formule IV, dans laquelle R⁷ et R⁸ représentent un anion cyclopentadiényle (non substitué ou substitué par un groupe alkyle en C₁ à C₄) et R¹⁴ représente un groupe de formule VI:

$$\begin{array}{c}
CF_1 \\
R^{19} \\
-R^{20}
\end{array}$$

$$\begin{array}{c}
R^{21}
\end{array}$$
(VI)

dans laquelle R¹⁹, R²⁰, R²¹ et R²² représentent chacun, indépendamment l'un de l'autre, un atome d'hydrogène, de F, de Cl, de Br ou un groupe alcoxy en C₁ à C₁₄, et R¹⁵ a l'un des sens indiqués pour R¹⁴ ou représente F, Cl, -Br, CN, -O-CO-CH₃, -O-CO-CF₃, N₃, -NCO ou -NCS.

3. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I et d'un composé de formule VII :

$$\mathbb{R}^{2^{3}} \stackrel{\text{\tiny R}^{2^{4}}}{\longrightarrow} \mathbb{R}^{2^{4}}$$
 (VII)

dans laquelle R^{23} et R^{24} représentent chacun, indépendamment l'un de l'autre, un atome d,hydrogène, un groupe alkyle en C_1 à C_{12} , alcoxy en C_1 à C_4 , alkylthio en C_1 à C_4 , hydroxyalkylthio en C_2 à C_4 , halogéno, alcoxycarbonyle en C_2 à C_{10} ou dialkylamino en C_2 à C_8 .

- Mélange liquide d'amorceurs selon la revendication 3, dans lequel les composés de formule I et de formule VII sont présents selon un rapport pondéral de 0,8:1 à 1:0,8.
 - 5. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I et d'une tri(alkyl en C₁ à C₄)-2,4,6 benzophénone.
 - 6. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I et d'un composé de formule VIII :

5

10

15

30

dans laquelle R25 représente un atome d'halogène, un groupe alkyle en C1 à C4 ou alcoxy en C1 à C4

 R^{26} et R^{27} représentent chacun un groupe alkyle en C_1 à C_6 , alcényle en C_2 à C_4 , phénylalkyle en C_7 à C_{10} ou un groupe alkyle en C_2 à C_4 (substitué par de l'halogène, par un groupe alcoxy en C_1 à C_4 , dialkylamino en C_2 à C_8 , morpholino ou pipéridino), ou bien R^{26} et R^{27} forment ensemble un groupe alcanediyle en C_2 à C_{12} ou butène-2 diyle-1,4 et

 R^{28} représente un atome d'hydrogène, un groupe alkyle en C_1 à C_8 , cycloalkyle en C_5 à C_8 , phényle, ou bien un groupe phényle (substitué par de l'halogène, par un groupe alkyle en C_1 à C_4 ou alcoxy en C_1 à C_4).

- 7. Mélange liquide d'amorceurs selon la revendication 6, dans lequel les composés de formule I et de formule VIII sont présents selon un rapport pondéral de 2:1 à 1:2.
- 8. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I, d'un composé de formule VIII et d'un composé de formule VIII.
- 9. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A contient un composé de formule I, dans laquelle Ar représente un groupe phényle, ou bien un groupe phényle (substitué par du chlore, du fluor, un groupe alkyle en C₁ à C₁₂, méthoxy, méthylthio, diméthylamino, diéthylamino, bis(méthoxy-2 éthyl)-amino, morpholino, pipéridino ou pyrrolidino,

 R^1 et R^2 représentent chacun, indépendamment l'un de l'autre, un groupe alkyle en C_1 à C_4 ou un groupe alkyle en C_1 à C_4 (substitué par -CH ou par un groupe alcoxy en C_1 à C_4) ou bien

R¹ et R² forment ensemble un groupe alcanediyle en C₄ à C₆ ou alcènediyle en C₅ à C₁

et X représente -OH ou -NR⁴R⁵, formule dans laquelle R⁴ et R⁵ représentent chacun un groupe alkyle en C₁ à C₄, allyle ou méthoxy-2 éthyle, ou bien R⁴ et R⁵ forment, avec l'atome d'azote, un groupe pyrrolidino, pipéridino, morpholino, pipérazino ou méthyl-4 pipérazino.

- 10. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituent A contient un composé de formule I, dans laquelle Ar représente un groupe phényle, p-tolyle, p-cumyle, dodécyl-4 phényle, chloro-4 phényle ou méthoxy-4 phényle; R¹ et R² représentent chacun,- indépendamment l'un de l'autre, un groupe alkyle en C₁ à C₄ ou bien R¹ et R² forment ensemble un groupe tétraméthyléne ou pentaméthylène, et X représente un groupe hydroxyle.
- 11. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A contient un composé de formule I, dans laquelle Ar représente un groupe phényle, p-tolyle, p-cumyle, chloro-4 phényle, méthoxy-4 phényle, méthylthio-4 phényle, diméthylamino-4 phényle, diéthylamino-4 phényle, bis(méthoxy-2 éthyl)-amino-4 phényle, morpholino-4 phényle ou pipéridino-4 phényle; R¹ et R² représentent chacun, indépendamment l'un de l'autre, un groupe alkyle en C₁ à C₄, et X représente un groupe méthylamino, diméthylamino, éthylamino, diéthylamino, bis(méthoxy-2 éthyl)-amino, pipéridino, pyrrolidino, morpholino, pipérazino ou méthyl-4 pipérazino.
- Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant B est un composé de formule II, dans laquelle R⁷ et R⁸ représentent chacun un anion cyclopentadiényle ou méthylcyclopentadiényle, et R⁹ et R¹⁰ représentent chacun un groupe de formule V, le symbole R¹⁶ représentant H, F, Cl ou Br, R¹⁷ représentant un atome de fluor, un groupe alcoxy en C₁ à C₁₄ ou -O-(CH₂CH₂O)_{T-S} alkyle en C₁ à C₁₄, et R¹⁸ représente H, Cl ou Br, ou bien b) R¹⁸ représente H, F, Cl ou Br et R¹⁶ et R¹⁷ représentent chacun H, Cl, Br, un groupe alcoxy en C₁ à C₁₄, -O(CH₂CH₂O)_{T-S} alkyle en C₁ à C₁₄, un groupe amino ou amino-méthyle tertiaire ou un groupe ammonium ou ammonium-méthyle quaternaire, ou bien B représente un composé de formule IV, dans laquelle R⁷ et R⁸ représentent chacun un anion cyclopentadiényle ou méthylcyclopentadiényle, R¹⁴ représente un groupe (trifluorométhyl)-2 phényle ou fluoro-6 (trifluorométhyl)-2 phényle, et R¹⁵ a le même sens que

 R^{14} ou représente F, Cl, Br, CN, N_3 , -O-CO-CH $_3$, -O-CO-CF $_3$, -NCO ou -NCS.

- 13. Mélange liquide d'amorceurs selon la revendication 3, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I et de la benzophénone.
- 14. Mélange liquide d'amorceurs selon la revendication 1, caractérisé en ce que le constituant A est un mélange liquide d'un composé de formule I et de la diméthoxy-2,2 phényl-2 acétophénone ou de la diéthoxy-2,2 phényl-2 acétophénone.
- 10 15. Mélange liquide d'amorceurs selon la revendication 1, consistant en :
 - 40 à 50 % en poids de l'hydroxy-1 cyclohexylphényl cétone,
 - 40 à 50 % en poids de la benzophénone, et
 - 2 à 20 % en poids d'un composé de formule II ou IV.
- 15 16. Mélange liquide d'amorceurs selon la revendication 15, consistant en :
 - 40 à 50 % en poids de l'hydroxy-1 cyclohexylphényl cétone,
 - 40 à 50 % en poids de la benzophénone, et
 - 2 à 20 % en poids de bis(cyclopentadiényl)-bis(décyloxy-4)-tétrafluorophényl-titane.
- 20 17. Mélange liquide d'amorceurs selon la revendication 1, consistant en :
 - 25 à 30 % en poids de l'hydroxy-1 cyclohexylphényl cétone,
 - 25 à 30 % en poids de la benzophénone,
 - 35 à 40 % en poids de la diméthyloxy-2,2 phényl-2 acétophénone, et
 - 2 à 15 % en poids d'un composé répondant à la formule II ou à la formule IV.
 - 18. Composition photodurcissable, contenant au moins un composé à insaturation éthylénique et 0,5 à 20 % en poids d'un mélange d'amorceurs selon la revendication 1.
- Composition photodurcissable selon la revendication 18, caractérisée en ce que la composition est une
 laque ou un vernis ou est une encre d'impression.
 - 20. Composition photodurcissable selon la revendication 18, caractérisée en ce que la composition est une matière pour préparer des plaques d'impression, des matières pour réserve, des matières pour la formation d'images ou d'autres supports d'information.
 - 21. Composition photodurcissable selon la revendication 20, caractérisée en ce que la formation d'images a lieu dans une matière de réserve ou pour plaques d'impression directement à l'aide d'un rayon laser commandé ou programmé.

55

5

25

35

40

45

THIS PAGE BLANK (USPTO)