MATH 644

PROBLEM SETS

Contents

Chapter 1	2
Chapter 2	4
Chapter 3	7
Chapter 4	9
Chapter 5	12
Chapter 6	13

Created by: Pierre-Olivier Parisé Spring 2023

Chapter 1

PROBLEM 1. Prove the parallelogram equality:

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

PROBLEM 2. Let w be a non-zero complex number and let $n \ge 1$ be a positive integer. Using the polar coordinates, find n solutions to $z^n = w$.

PROBLEM 3. Let z be a non-zero complex number. Show that 0, z, iz, and iz + z are the vertices of a square.

PROBLEM 4. Prove that there is no complex number z so that

$$|z| - z = i.$$

PROBLEM 5. Find all complex numbers z satisfying the equation

$$4z - 3\overline{z} = \frac{1 - 18i}{2 - i}.$$

PROBLEM 6. Suppose that f is a continuous complex-valued function on a real interval [a, b]. Let

$$A = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

- a) Show that if $|f(x)| \leq |A|$ for all $x \in [a, b]$, then $f \equiv A$.
- **b)** Show that if $|A| = \frac{1}{b-a} \int_a^b |f(x)| dx$, then arg f is constant modulo 2π on $\{z : f(z) \neq 0\}$.

PROBLEM 7. Describe geometrically the following subsets:

a) Re $z = \operatorname{Im} z$.

c) Im z > 0.

b) Re z > 0.

d) $\frac{\pi}{6} < \arg z < \frac{\pi}{4}$.

PROBLEM 8. Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$. Prove that \mathbb{T} equipped with the complex multiplication is a commutative group.

PROBLEM 9. Suppose that $\lim_{n\to\infty} w_n = w$. Is it true then that also

$$\lim_{n\to\infty}\arg w_n=\arg w?$$

PROBLEM 10. Let $\{z_n\}$ be a sequence of complex numbers such that $\sum_{n=0}^{\infty} z_n$ converges and there is a ϕ such that $|\arg z_n| \le \phi < \frac{\pi}{2}$ for any $n \ge 0$. Show that the series $\sum_{n=0}^{\infty} z_n$ is absolutely convergent.

PROBLEM 11. Let \mathbb{C}^* be the extended plane, let \mathbb{S}^2 be the sphere $\{(X,Y,Z): X^2+Y^2+Z^2=1\}$ and let $\pi:\mathbb{C}^*\to\mathbb{S}^2$ be the stereographic projection with $\pi(\infty)=(0,0,1)$.

- a) Show that straight lines in \mathbb{C} correspond exactly to circles on \mathbb{S}^2 passing through (0,0,1).
- **b)** Show that if $z \neq \infty$, then

$$\chi(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}.$$

c) Using the explicit formula of χ in terms of z and w, show that, for any $z, w \in \mathbb{C}^*$,

$$0 \le \chi(z, w) \le 2.$$

PROBLEM 12. For what values of z is

$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z} \right)^n$$

convergent? Draw a picture of the region.

PROBLEM 13. Suppose that $\sum_{n\geq 0} a_n (z-z_0)^n$ is a formal power series. Suppose that

$$R := \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|}$$

exists and is finite.

a) Show that the power series converges in $\{z : |z - z_0| < R\}$.

b) Show that the power series diverges in $\{z : |z - z_0| > R\}$.

PROBLEM 14. Define $e^z = \exp(z) := \sum_{n \ge 0} \frac{z^n}{n!}$.

a) Show that $e^z e^w = e^{z+w}$ (using the power series definition).

b) Show that $|e^z| = e^{\operatorname{Re} z}$ and $\arg e^z = \operatorname{Im} z$.

c) Show that $\frac{d}{dz}e^z = e^z$.

d) Show that, for any non-zero integer n,

$$\int_0^{2\pi} e^{int} \, dt = 0.$$

[Hint: Use Foundamental Theorem of Calculus.]

e) Compute the integral

$$\int e^{nt} \cos(mt) \, dt.$$

[Hint: Rewrite cos(mt) as a complex exponential.]

PROBLEM 15. Prove the following assertions.

- a) If f and g are analytic at z_0 , then $(f+g)'(z_0) = f'(z_0) + g'(z_0)$ (Sum rule of differentiation for analytic functions).
- **b)** If f and g are analytic at z_0 , then $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$ (Product Rule of differentiation for analytic functions).
- c) If f and g are analytic at z_0 with $g(z_0) \neq 0$, then $(fg)'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{(g(z_0))^2}$ (Quotient rule of differentiation for analytic functions).

d) If f is analytic at z_0 and g is analytic at $f(z_0)$, then $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$ (Chain Rule of differentiation for analytic functions).

Find the derivative of $(z-a)^{-n}$, where n is a positive integer and $a \in \mathbb{C}$.

PROBLEM 16. Let $\Omega \subset \mathbb{C}$. Show that Ω is connected if and only if Ω and \emptyset are the only open and closed subsets of Ω .

PROBLEM 17. Suppose that f and g are two analytic functions on a region (open and connected) Ω . Suppose there is a sequence $(z_n)_{n=1}^{\infty}$ with $z_n \in \Omega$ ($\forall n \geq 1$) such that $f(z_n) = g(z_n)$ ($\forall n \geq 1$). If (z_n) has an accumulation point $z_0 \in \Omega$, then show that $f \equiv g$ on Ω .

PROBLEM 18. Show that $\cos^2(z) + \sin^2(z) = 1$ for every $z \in \mathbb{C}$.

PROBLEM 19. Suppose f is analytic in a connected open set Ω such that, for each $z \in \Omega$, there exists an n (depending on z) such that $f^{(n)}(z) = 0$. Prove that f is a polynomial. [Hint: Use Baire's Theorem.]

PROBLEM 20. Let f be analytic in a region Ω containing the point z = 0. Suppose $|f(1/n)| < e^{-n}$ for $n \ge n_0$, for some integer $n_0 \ge 0$. Prove $f \equiv 0$ in Ω .

PROBLEM 21. Let f and g be analytic functions in a region Ω .

- a) Show that if f'(z) = 0 for all z in a neighborhood of some $z_0 \in \Omega$, then f is constant in Ω , meaning there is a constant $c \in \mathbb{C}$ such that f(z) = c for any $z \in \Omega$.
- **b)** Show that if f and g are analytic in a region Ω with f'(z) = g'(z) for every $z \in \Omega$, then f g is constant.

PROBLEM 22. Suppose that $f(z) = az^3 + bz^2 + cz + d$. In addition, suppose that for each $z, w \in \mathbb{C}$ there exists a point ζ on the line segment between z and w with

$$\frac{f(z) - f(w)}{z - w} = f'(\zeta).$$

Show that a = 0.

PROBLEM 23. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges in $B = \{z : |z - z_0| < r\}$. Show that the power series

$$F(z) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}$$

converges in B and satisfies F'(z) = f(z) for all $z \in B$. Moreover, show that the radius of convergence of F is the same as the radius of convergence of f.

PROBLEM 24. Suppose $\sum_{j=0}^{\infty} |a_j|^2 < \infty$.

a) Show that $f(z) = \sum_{j=0}^{\infty} a_j z^j$ is analytic in $\{z : |z| < 1\}$.

b) Compute (with a proof) the following quantity:

$$\lim_{r\to 1^-} \int_0^{2\pi} |f(re^{i\theta})|^2 \, \frac{d\theta}{2\pi}.$$

PROBLEM 25. Suppose f has a power series expansion at 0 which converges in all of \mathbb{C} . Suppose also that $\int_{\mathbb{C}} |f(x+iy)| \, dx dy < \infty$. Prove that $f \equiv 0$.

PROBLEM 26. [Hard] Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence 1 and suppose that $a_n \geq 0$ for all n. Prove that z = 1 is a singular point of f. That is, there is no function g analytic in a ball B containing z = 1 such that f = g on $B \cap D$.

Chapter 3

PROBLEM 27. If f is analytic in a region Ω and if there is a $z_0 \in \Omega$ such that

$$|f(z_0)| = \inf_{z \in \Omega} |f(z)|,$$

and if $f(z_0) \neq 0$, then f is constant in Ω .

PROBLEM 28. Let Ω be a region in \mathbb{C} . Show that if $f:\Omega\to\mathbb{C}$ is an open map, then f satisfies the maximum modulus principle.

Problem 29.

- a) Show geometrically why the maximum principle holds using a "walking the dog" argument. Make it rigorous by following the steps of the proof of the Fundamental Theorem of Algebra.
- b) Use the maximum modulus principle to prove the Fundamental Theorem of Algebra.

PROBLEM 30. Let f be an analytic function defined on some bounded region $\Omega \subset \mathbb{C}$. Show that

$$\limsup_{z\to\partial\mathbb{D}}|f(z)|=\lim_{\delta\to 0}\sup\{|f(z)|\,:\,z\in\Omega,\mathrm{dist}(z,\partial\Omega)=\delta\}.$$

PROBLEM 31. Let $\Omega \subset \mathbb{C}$ be a region. Show that $z_n \to \partial \Omega$ as $n \to \infty$ if and only if $(z_n)_{n \ge 1}$ has no subsequence converging to a point $z_0 \in \Omega$.

PROBLEM 32. Suppose that f is analytic in a connected open (region) set Ω .

- a) Prove that if |f(z)| is constant on Ω , then f is contant on Ω .
- b) Prove that if Re f is constant on Ω , then f is constant on Ω .

Problem 33.

- a) Prove that if f is analytic in \mathbb{C} , then $f(z) = \sum_{n\geq 0} a_n z^n$ for any $z \in \mathbb{C}$. In other words, the radius of convergence of the power series $\sum_{n\geq 0} a_n z^n$ representing f at z=0 is $R=\infty$.
- **b)** Suppose that f is analytic in \mathbb{C} and $|f(z)| \leq C|z|^n$, for some |z| > M and $n \geq 0$. Show that f must be a polynomial.
- c) Suppose that f and g are analytic in \mathbb{C} with $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Prove that there exists a constant $c \in \mathbb{C}$ such that f(z) = cg(z) for all $z \in \mathbb{C}$.

PROBLEM 34. Prove that if f is non-constant and analytic on all of \mathbb{C} , then $f(\mathbb{C})$ is dense in \mathbb{C} .

PROBLEM 35. Let f be analytic in \mathbb{D} and suppose |f(z)| < 1 on \mathbb{D} . Let a = f(0). Show that f does not vanish in $\{z : |z| < |a|\}$.

Problem 36.

a) Prove that φ is a one-to-one analytic map of $\mathbb D$ onto $\mathbb D$ if and only if

$$\varphi(z) = c \left(\frac{z - a}{1 - \overline{a}z} \right) \quad (z \in \mathbb{D}),$$

for some constants c and a, with |c| = 1 and |a| < 1.

b) Let f be analytic in \mathbb{D} and satisfy $|f(z)| \to 1$ as $|z| \to 1$. Prove that f is rational.

PROBLEM 37.

- a) Suppose p is a non-constant polynomial with all its zeros in the upper half-plane $\mathbb{H} := \{z : \text{Im } z > 0\}$. Prove that all the zeros of p' are contained in \mathbb{H} . [Hint: Look at the partial fraction expansion of p'/p.]
- **b)** Use **a)** to prove that if p is a polynomial, then the zeros of p' are contained in the (closed) convex hull of the zeros of p. (The closed convex hull is the intersection of all half-planes containing the zeros.)

PROBLEM 38. Suppose f is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D} and f(0) = 1/2. Prove that $|f(1/3)| \geq 1/5$.

PROBLEM 39. Suppose f is analytic and non-constant in \mathbb{D} and $|f(z)| \leq M$ on \mathbb{D} . Prove that the number of zeros of f in a disk of radius 1/4, centered at 0, does not exceed

$$\frac{1}{\ln 4} \ln \left| \frac{M}{f(0)} \right|.$$

PROBLEM 40. Find a parametrization for each set.

- (a) A square of height h and length l.
- (b) The arc of the unit circle starting at 1 and ending at $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.
- (c) The parabola starting at (0,0) and ending at (1,1).
- (d) An ellipse centered at $z_0 \in \mathbb{C}$ with minor axis m and major axis M.

PROBLEM 41. Which of the curves in the previous problem are (i) an arc (ii) closed (ii) simple?

PROBLEM 42. Find the value of

$$\int_{\gamma} x - y + ix^2 \, dz$$

if γ is

- (a) the straight line joining 0 to 1 + i;
- (b) the imaginary axis from 0 to i;
- (c) the line parallel to the real axis from i to 1+i.

PROBLEM 43. Compute $\int_{\gamma} \frac{1}{z^3} dz$, where γ is the circle of radius 1/2 centered at the origin. Compare with Example 9 from Section 4.1.

PROBLEM 44. Let γ denote a circular path with center 1 and radius 1, described once counter-clockwise and starting at the point 2.

- (a) Find a parametrization of γ .
- **(b)** Find the value of $\int_{\gamma} |z|^2 dz$.

PROBLEM 45. Suppose that f and g are two holomorphic function on a region Ω containing a piecewise continuously differentiable curve $\gamma:[a,b]\to\mathbb{C}$. Prove the complex analogue of the integration by parts formula:

$$\int_{\gamma} f(z)g'(z) dz = f(z_1)g(z_1) - f(z_0)g(z_0) - \int_{\gamma} f'(z)g(z) dz$$

where $z_1 = \gamma(b)$ and $z_0 = \gamma(a)$.

PROBLEM 46. Let γ be a piecewise continuously differentiable curve. Prove that

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz.$$

PROBLEM 47. Let $\alpha, \beta : [0,1] \to \mathbb{C}$ be two curves. Show that $\alpha + \beta = \beta + \alpha$ (in the sense of Definition 12 in Section 4.1).

PROBLEM 48. Prove Corollary 16 in Section 4.1.

PROBLEM 49. Prove all of the properties on page 9 in section 4.1.

PROBLEM 50. Let $B := \{z : |z - 1| < 1\}.$

- (a) Let n be a positive integer. Define a function $g(z) = \sqrt[n]{z}$ on B.
- (b) Show that $g(z) = \sqrt[n]{z}$ is analytic on B.

PROBLEM 51. Let f be analytic in a neighborhood of the closure of a bounded convex set S with piecewise continuously differentiable boundary ∂S . Show that for any $z \in S$,

$$f(z) = \frac{1}{2\pi} \int_{\partial S} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

where ∂S is parameterized in the counter-clockwise direction.

PROBLEM 52. Let f be analytic in a neighborhood of the closure of a bounded convex set S with piecewise continuously differentiable boundary ∂S . Show that

$$\frac{1}{2\pi i} \int_{\partial S} f(\zeta) \, d\zeta = 0.$$

PROBLEM 53. Show that there is no function f analytic in a neighborhood Ω of $\partial \mathbb{D}$ such that f'(z) = 1/z for any $z \in \Omega$.

Problem 54.

- (a) Use Cauchy's estimate to prove Liouiville's Theorem.
- (b) Use Cauchy's estimate to compute a lower bounded on the radius of convergence of the power series representation of a bounded holomorphic function.

PROBLEM 55. Suppose Ω is a region which is symmetric with respect to \mathbb{R} , meaning that $z \in \Omega$ if and only if $\overline{z} \in \Omega$. Set $\Omega := \Omega \cap \mathbb{H}$ and $\Omega^- := \Omega \cap (\mathbb{C} \setminus \overline{\mathbb{H}})$, where $\mathbb{H} := \{z : \operatorname{Im} z > 0\}$. If f is continuous on Ω^+ , continuous on $\Omega^+ \cup (\Omega \cup \mathbb{R})$, and $\operatorname{Im} f = 0$ on $\Omega \cap \mathbb{R}$, then show that the function defined by

$$F(z) := \begin{cases} f(z) & \text{if } z \in \Omega \backslash \Omega^- \\ \\ \overline{f(\overline{z})} & \text{if } z \in \Omega^- \end{cases}$$

is analytic on Ω .

PROBLEM 56. Let $\gamma:[a,b]\to\Omega$ be a curve, where Ω is a region in \mathbb{C} . Assume that f is analytic in Ω . The goal of this problem is to generalized the integral of f along a curve (not necessarily piecewise continuously differentiable).

- (a) Given $0 < \varepsilon < \operatorname{dist}(\gamma, \partial\Omega)$, show that there is a finite partition $0 = t_0 < t_1 < \cdots < t_n = 1$ so that $\gamma([t_{j-1}, t_j]) \subset B_j := \{z : |z \gamma(t_j)| < \varepsilon\} \subset \Omega$ for any $j = 1, 2, \ldots, n$.
- (b) For a given $0 < \varepsilon < \operatorname{dist}(\gamma, \partial\Omega)$, take a partition from (a). Let $\sigma := \sum_{j=1}^{n} \sigma_j$ be the polygonal curve, where σ_j is the line segment joining $\gamma(t_{j-1})$ to $\gamma(t_j)$. Define

$$\int_{\gamma} f(\zeta) d\zeta := \int_{\sigma} f(\zeta) d\zeta.$$

Show that this definition does not depend on the choice of the polygonal curve σ .

(c) Show that the previous definition agrees for a piecewise continuously differentiable curve γ .

Problem 57.

(a) For x > 0, define $x^{-z} := e^{-z \ln(x)}$. Prove that the Riemann Zeta Function

$$\zeta(z) := \sum_{n=1}^{\infty} n^{-z}$$

converges and is analytic in $\{z : \operatorname{Re} z > 1\}$.

(b) Show that, for $\operatorname{Re} z > 1$,

$$\zeta(z) - \int_1^\infty x^{-z} dx = \sum_{n=1}^\infty \int_n^{n+1} \int_n^x z t^{-z-1} dt dx.$$

- (c) Use (b) to prove that $(z-1)\zeta(z)$ has a unique analytic extension to $\{z: \operatorname{Re} z > 0\}$.
- (d) Use the fundamental theorem of calculus to give a series for $\zeta(z) 1/(z-1)$, valid in Re z > 0, which does not involve an integral.

PROBLEM 58. Show that there is a constant $C < \infty$ so that if f is analytic on \mathbb{D} , then

$$|f'(z)| \le C \int_{\mathbb{D}} |f(x+iy)| \, dx dy$$

for all $|z| \le 1/2$. [Hint: Use Cauchy's integral formula.]

PROBLEM 59. Prove that there exists a sequence of polynomials p_k such that

$$\lim_{k \to \infty} p_k(z) = \begin{cases} 1 & \text{if } \operatorname{Re} z > 0 \\ 0 & \text{if } \operatorname{Re} z = 0 \\ -1 & \text{if } \operatorname{Re} z < 0. \end{cases}$$

PROBLEM 60. Suppose f has a complex derivative at each point of a region Ω . Prove that f is analytic in Ω .

Chapter 5

PROBLEM 61. Prove that homology is an equivalence relation on curves in Ω .

PROBLEM 62. If $\sum_{n=-\infty}^{\infty} a_n z^n = \sum_{n=-\infty}^{\infty} b_n z^n$ for r < |z| < R (the series converges in the annulus), then prove that $a_n = b_n$ for any $n \in \mathbb{Z}$.

PROBLEM 63. Find the singularity at ∞ of the following functions. If the singularity is removable, give the value; if the singularity is a zero or pole, give the order.

a)
$$\frac{z^2}{e^z}$$
;

c)
$$e^{z/(1-z)}$$
;

b)
$$\frac{1}{e^{1/z}-1}-z;$$

d)
$$z^2 - z$$
.

PROBLEM 64. Find the expansion in powers of z for

- a) $\frac{z^3}{(z^2+z+1)(z-1)}$, which converges in |z|<1.
- b) $\frac{z}{(z^2+4)(z-3)(z-4)}$, which converges in 3 < |z| < 4 [Hint: Use the partial fraction decomposition of the rational function.]

PROBLEM 65. Let n be an even natural number and α , β be two non-zero real numbers. Prove that the number of roots of the equation

$$z^{2n} + \alpha z^{2n-1} + \beta^2 = 0$$

which have positive real part is equal to n.

PROBLEM 66. How many zeros does $p(z) = 3z^5 + 21z^4 + 5z^3 + 6z + 7$ have in $\overline{\mathbb{D}}$? How many zeros in $\{z: 1 < |z| < 2\}$?

PROBLEM 67. Prove that all of the zeros of the polynomial

$$p(z) = z^{n} + c_{n-1}z^{n-1} + \dots + c_{1}z + c_{0}$$

lie in the disk centered at 0 with radius

$$R = \sqrt{1 + |c_{n-1}|^2 + \dots + |c_1|^2 + |c_0|^2}.$$

PROBLEM 68. Let Ω be a region, with $\Omega = \bigcup_{j=1}^{\infty} \Delta_j$, where $\overline{\Delta}_j \subset \Omega$ and Δ_j are open disks. Denote by $C(\Omega)$, the space of continuous functions on Ω and by ρ the function defined in section 6.2, page 4 (or page 6 of the annotated lecture notes).

- a) Show that $(C(\Omega), \rho)$ is a metric space.
- **b)** Show that $(C(\Omega), \rho)$ is complete.

PROBLEM 69. Prove that a family of continuous functions on $\Omega \subset \mathbb{C}^*$ with values in \mathbb{C}^* is normal in the chordal metric if and only if it is equicontinuous in the chordal metric.

PROBLEM 70. Prove that if (f_n) is a sequence of analytic functions which converges uniformly in the chordal metric on compact subsets of a region $\Omega \subset \mathbb{C}$, then the limit function is either analytic or identically ∞ .

PROBLEM 71. Let (f_n) be a sequence of analytic functions on a region Ω with $|f_n| \leq 1$ on Ω . Let K be a compact subset of Ω . Suppose (f_n) converges at infinitely many points in K. Then is it true or false that (f_n) necessarily converges at every point of Ω ?

PROBLEM 72. Let \mathcal{F}_M be the set of functions analytic on the unit disk \mathbb{D} and continuous on the closed unit disk which satisfy

$$\int_0^{2\pi} |f(e^{i\theta})| \, d\theta \le M < \infty.$$

Show that \mathcal{F}_M is a normal family on \mathbb{D} (according to the euclidean metric).

PROBLEM 73. Let \mathcal{F} be the family of analytic functions on the unit disk \mathbb{D} which satisfy

$$\int_{\mathbb{D}} |f(x+iy)| \, dx dy \le 1.$$

Is this a normal family (according to the euclidean metric)?

PROBLEM 74. Suppose f is a conformal map of \mathbb{D} onto a square with center at 0. Assume further that f(0) = 0. Prove that f(iz) = if(z), for all $z \in \mathbb{D}$.

PROBLEM 75. Suppose Ω is a bounded region, $a \in \Omega$, f is an analytic function on Ω , $f(\Omega) \subset \Omega$, and f(a) = a.

- a) Put $f_1 := f$ and $f_n := f \circ f_{n-1}$. Compute $f'_n(a)$, and prove that $|f'(a)| \le 1$.
- **b)** If f'(a) = 1, show that f(z) = z for all $z \in \Omega$. [Hint: Use the power series of f and see what happens after composition.]
- c) If |f'(a)| = 1, prove that f is one-to-one and that $f(\Omega) = \Omega$.

PROBLEM 76. Let w_1, w_2, w_3, w_4 be complex numbers in \mathbb{C} . Assume $\operatorname{Im} w_i \neq \operatorname{Im} w_j$, for $i \neq j$. Show that there is an LFT mapping w_1, w_2 in the unit disk \mathbb{D} and mapping w_3 and w_4 in the complement of the closed unit disk $\overline{\mathbb{D}}$.