

Learning from Examples

- Linear Regression
- Feature Extraction
- Classification
- Discriminant functions
- Performance Measures

Polynomial curve fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

Machine Learning and Pattern Recognition (C. Bishop 2006)

Sum of Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Machine Learning and Pattern Recognition (C. Bishop 2006)

Oth Order

1st Order

3rd Order

9th Order

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Character recognition example

■ We wish to distinguish the hand written characters "a" and "b" as reliably as possible.

Hand written letters by Emily Mahar [https://emilymahar.com/The-Handwritten-A]

Character recognition example

- Images are captured by a scanner or camera and fed into the computer.
- Each character is represented by an array of pixels, each of a value x_i where i labels the individual pixels. x can be 0 for white and 1 for black.
- Our goal is to develop an algorithm that will assign an image to one of the classes.

Feature extraction

- We may only have a few thousand examples in our training set. The classifier must therefore be able to correctly classify an unseen image vector. This property is often referred to as generalization.
- A large number of input variables can create some problems for pattern recognition systems.
- Input variables can be combined together to make a smaller number of new variables called *features* (attributes)
- An example for our problem might be to use the ratio of the height of the characters to the width.

Feature extraction

- No classification can succeed if features are poorly chosen.
 - Can attributes/features be chosen that give unique descriptions of the patterns?
 - How easy are the attributes to measure?

THE HAND-WRITTEN "A" by Emily Mahar [https://emilymahar.com/The-Handwritten-A]

Classification based on a single feature

■ Typically examples are higher for "b" rather than "a", but there is overlap and therefore it is not a perfect classifier.

Multiple Features

- Further features can be added but eventually this could make things worse.
- It is inevitable that some overlap will exist highlighting the intrinsically probabilistic nature of pattern classification problems.

Have a look here to experiment with different decision boundaries:

https://playground.tensorflow.org/

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or FROM_FRIEND : 0 cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

Discriminant Analysis

■ In some cases we are able to separate clusters of data with some function x₁

$$f(x) = \sum w_i x_i + \theta$$

- f(x) < 0 for one cluster &
- f(x) > 0 for another
- f(x) is known as a discriminant function

Determining Discriminant Functions

- Discriminant functions are often determined through error minimisation
- Given a training set and desired output values. The error is measured as the difference between the actual and desired output
- Minimising the error to zero produces the best decision function.

Determining Discriminant functions

Multiple Discriminators

- You can have multiple discriminant functions
- Enables you to classify into multiple classes

$$f_1(x) < 0$$
 and $f_2(x) < 0$ for one cluster

$$f_1(x) > 0$$
 and $f_2(x) < 0$ for another

Have a look here to experiment with different machine learning models for a 2D classification task:

https://ml-playground.com/

Performance measures

- Recall = of those that exist, how many did you find (Sensitivity)
- Precision = of those you found, how many are correct, also known as positive predictive value
- F-Score (harmonic mean)
- = 2P*R/R+P

Performance Measures for binary classifier

Confusion matrix or contingency table

Expected output

		1	0
Predicted output —	1	TP	FP
	0	FN	TN

$$Specificity = \frac{TN}{FP + TN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

False Pos rate
$$=\frac{FP}{TP+FN}$$

False Neg rate (type II error rate) =
$$\frac{FN}{FP + TN}$$

Performance Measures for binary classifier

From: https://manisha-sirsat.blogspot.com/

Be Careful!

	A	Expected output		B output				С	Expected output		
		1	0			1	0			1	0
Predicted	1	0.9	0.1	Predicted	1	0.8	0.0	Predicted	1	0.78	0
output –	0	0	0	output -	0	0.1	0.1	output -	0	0.12	0.1

Metric	A	В	С
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

Which Model is Better?

Summary

- Linear Regression
- **■** Error minimisation
- **■** Feature Vectors
- **■** Classification
- **■** Discriminant functions
- Performance measures