Decoding IMDb Ratings

A Data-Driven Approach to Understanding
Audience Sentiment

Understanding the Streaming Wars Through IMDb Ratings

- Predicting IMDb Ratings: Gain real-time insights into audience sentiment crucial for industry success.
- Streaming Wars: Rapidly understand viewer preferences across genres for a competitive edge.
- Data Science Edge: Our model uses machine learning to forecast IMDb ratings, providing key insights for content success.
- **Beyond Traditional Methods:** Leveraging user-generated content, our model combines text from reviews with quantifiable data for a nuanced view of audience sentiment.

Final Dataset Overview

- Combined 3 separate datasets, leveraging the unique IMDb ID for each movie
- Final Dataset contains:
 - 49,378 unique movies
 - with 13 different metadata features
 - 3,146,437 rows of user review text data

Columns	Dtype
imdb_id	object
title	object
actors	object
directors	object
genres	int64
language_en	int64
year	int64
runtime	int64
budget	float64
box_office_gross	float64
production_companies	object
votes	int64
rating	int64
rating_category	object
decade	object
review_count	int64

Distributions of Numeric Features

Rating Binning

Target variable (star rating) was binned using quantiles to ensure balanced classes

Rating Category	Count	Range
Excellent	11,059	7.1 – 9.4
Good	13,054	6.4 – 7.0
Average	12,640	5.6 – 6.3
Poor	12,626	1.2 – 5.5

EDA Findings

- 1. **High Cardinality:** Too many unique values in actors, directors, and production companies for straightforward one-hot encoding.
- 2. **Limited Actor-Director Influence:** No overwhelmingly frequent actor-director or director-production combinations that significantly influence movie ratings or earnings.
- 3. **Correlation**: Limited linear relationships or strong correlations, implying that film success is nuanced.
- 4. **Frequent Production Companies:** Higher frequencies observed for production companies; possible feature for predictive modeling.
- 5. **Feature Engineering Strategy:** Use a "Top-N" approach for actors, directors, and production companies in top rated movies.

Frequent Actors & Production Companies

Wordcloud: Good & Excellent

Wordcloud: Poor & Average

Data Pre-Processing

- 1. **New Features:** Created one-hot encoded columns for the top 10 most frequent actors, directors, and production companies. Created review count column.
- 2. Genres: Exploded and one hot encoded all genres
- 3. Decades: Binned movies into decades to capture general patterns across the years
- 4. Scaling: Scaled data using StandardScaler
- 5. **Imputation:** Imputed missing budget and box office gross information using KNN Imputer
- 6. **Text Pre-processing:** Used lemmatization and TF-IDF to clean and vectorize text data, limiting it to the top 5000 features

Baseline Model: Logistic Regression

• C = 0.5

• Training Accuracy: 0.67900109

• Test Accuracy: 0.61152755

		precision	recall	f1-score	support
	Average	0.522	0.488	0.504	2601.000
	Excellent	0.708	0.686	0.697	2207.000
	Good	0.509	0.529	0.519	2599.000
	Poor	0.722	0.762	0.741	2465.000
	accuracy	0.612	0.612	0.612	0.612
I	macro avg	0.615	0.616	0.615	9872.000
wei	ghted avg	0.610	0.612	0.610	9872.000

Next Steps

- Refine feature selection and try to understand feature importance based on coefficients from logistic regression model
- Further refine text vectorization, potentially with Word2Vec
- Try more advanced algorithms to improve accuracy, potentially Random Forest and/or XGBoost
- Ensure model's technical performance translates to business value