

SCHOOL OF MATHEMATICS

MULTIVARIABLE CALCULUS

MATH2007

STUDENT NO.	Date
ID/PASSPORT NO.	Venue
SIGNATURE	Row & Seat

Internal examiner: Prof. E. G. Mphako-Banda (x76255)

External examiner: Prof. R. Brits

Instructions to Candidates:

- Complete the information above.
- Check that this paper has a cover page and 7 pages.
- Please do not write in red ink.
- Work done in pencil or altered will not be remarked.
- Show all working, which must be legible.
- Answer ALL questions.
- Approximate marks are indicated.

Markers only	
Question	Mark
1	/ 12
2	/ 8
3	/ 15
4	/ 25
Total	/60

The following identities may be useful in the examination.

$$\cos^2 \theta + \sin^2 \theta = 1$$
$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$
$$\sin 2\theta = 2\sin \theta \cos \theta$$

Question 1

[12 marks]

(2)

(a) Let S be a hypersurface in \mathbb{R}^n . Define what is meant by a regular point of S.

(b) Define what is meant by the set of tangent vectors of the hypersurface S at \underline{x}_0 . (2)

(c) Let
$$f(\underline{x}) = x^2y - 6z^3$$
 where $\underline{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, and $S = \{ \underline{x} \in \mathbb{R}^3 \mid f(\underline{x}) = -3 \}$ and let $\underline{x}_0 = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix}$.

i. Show that \underline{x}_0 lies on the surface S .

ii. Find a normal vector to S at \underline{x}_0 .

(2)

iii. Find $T_{\underline{x}_0},$ the set of tangent vectors to S at $\underline{x}_0.$

(3)

iv. Find the tangent plane to S at \underline{x}_0 .

(1)

Question 2 [8 marks]

Show that if $f: \mathbb{R}^n \to \mathbb{R}$ has a local maximum at \underline{x}_0 , then \underline{x}_0 is a critical point of f.

Question 3

[15 marks]

(a) Consider the integral $\int_{-1}^{1} \int_{|y|}^{1} (1+y^2)e^{x^3} dx dy$. i. Sketch the region of integration, D.

(3)

ii. Give two mathematical expressions for the region D.

(2)

iii. Write the integral as a repeated integral in which we first integrate with respect to y (2) and then with respect to x, stating your limits. Do not integrate.

(b) Evaluate $\iint_D 3(1-x^2-y^2) dA$, where D is the interior of the unit circle, using the transformation $x=r\cos\theta$ and $y=r\sin\theta$.

Question 4

[25 marks]

(a) State Green's Theorem.

(3)

⁽b) Verify Green's Theorem for $F_1(x,y) = xy$ and $F_2(x,y) = x+y$, where D is the interior of (22) the unit circle.

Extra space for question 4(b).