Properties of new lens: Target Depth (Z) of each CCD segment

Segment 1	Segment 2	Segment 3
(Z = -5.75)	(Z = -5.85)	(Z = -5.95)
Segment 6	Segment 5	Segment 4
(Z = -6.25)	(Z = -6.15)	(Z = -6.05)

Properties of new lens: Target Range (X/Y) of each CCD segment

-0.83	37	-0.279	0.2	79	0.837
0.558	Centre (-0.558, 0.279)		Centre (0.000, 0.279)	Centre (0.558, 0.279)	
-0.558	Centre (-0.559, -0.279)		Centre (0.000, -0.279)	Centre (0.559, -0.279)	

PROBLEM: Even so the object is placed at (X=0,Y=0), it is centered only for the brightest peak! (i.e. the peak and green cross are at same location)

Illumination produced by object point placed at (0,0,-5.75)

PROBLEM: When searching for peaks belonging to the same group, the peaks are quickly out of the search range.

Illumination produced by object point placed at (0,0,-5.75)

SOLUTION: After selecting a bright peak, it is necessary to offset the search zone when looking for the other peaks

Illumination produced by object point placed at (0,0,-6.25)

SOLUTION: After selecting a bright peak, it is necessary to offset the search zone when looking for the other peaks

Tasks for next week:

- 1. Using the 6 images in the archive called "calibration.zip":
 - Read each calibration image then perform the Gaussian blurring.
 - Detect the position of all 6 peaks (WITHOUT threshholding)
 - For each peak, save the offset between the peak position and center of segment in a table, as follows:

	Calib 1	Calib 2	Calib 3	Calib 4	Calib 5	Calib 6
Object	(0,0,-5.75)	(0,0,-5.85)	(0,0,-5.95)	(0,0,-5.75)	(0,0,-5.75)	(0,0,-5.75)
Segment 1	0.000, 0.000	?	?	?	?	Ş
Segment 2	?	0.000, 0.000	?	?	?	;
Segment 3	?	?	0.000, 0.000	?	?	Ş
Segment 4	?	?	?	0.000, 0.000	?	Ş
Segment 5	?	?	?	?	0.000, 0.000	Ş
Segment 6	?	?	?	?	?	0.000, 0.000

Tasks for next week:

- 2. Analyse the images in the archive scanXYZ.zip:
 - Read each image then perform the Gaussian blurring.
 - Detect the peaks positions (WITH 10% threshholding)
 - Select the brightest peak and record it coordinates (x_p, y_p) and segment number as Calib_p.
 - Search for associated peaks in another segment "n" at the coordinates: $(x_p + x_{offset}, y_p + y_{offset})$. Where (x_{offset}, y_{offset}) corresponds the value Calib_p/Segment_n in previous table.

