第六次习题课 含参积分

一. 含参积分

例.1 设
$$f(x) = \int_0^x \left[\int_t^x e^{-s^2} ds \right] dt$$
,求 $f'(x)$ 与 $f(x)$.

例.2 求
$$f'(x)$$
, 其中 $f(x) = \int_{\sin x}^{\cos x} e^{x\sqrt{1-y^2}} dy$.

例.3 求
$$\lim_{a\to 0} \int_a^{1+a} \frac{dx}{1+x^2+a^2}$$

例.4 能否交换顺序?
$$\lim_{y\to 0} \int_0^1 \frac{x}{y^2} e^{-\frac{x^2}{y^2}} dx$$

例.5 求两个 Laplace 积分:
$$I(\beta) = \int_0^{+\infty} \frac{\cos \beta x}{x^2 + \alpha^2} dx$$
, $J(\beta) = \int_0^{+\infty} \frac{x \sin \beta x}{x^2 + \alpha^2} dx$, $\alpha > 0$.

例.6

计算积分
$$\int_0^{+\infty} e^{-x^2} \cos 2\beta x dx$$
 。

例.7 设
$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
, $(x,y) \in D = \{(x,y) | 0 \le x \le 1, 0 < y \le 1\}$, $\int_0^1 dx \int_0^1 f(x,y) dy$ 与 $\int_0^1 dy \int_0^1 f(x,y) dx$ 是否相等?

例.8 计算积分
$$I = \int_0^{\frac{\pi}{2}} \ln \frac{1 + a \cos x}{1 - a \cos x} \frac{dx}{\cos x}$$
, (|a|<1)

例.9 设
$$f(t) = \int_0^1 \ln \sqrt{x^2 + t^2} dx$$
, $(0 \le t \le 1)$, 求 $f_+'(0)$.

例.10 证明积分
$$I(t) = \int_0^{+\infty} \frac{\sin(tx)}{x} dx$$
 在区间 $[-a,a]$ 上非一致连续,其中 $a > 0$ 。(注:这是习题 2.1 第 8 题,第 104 页)(提示:利用 Dirichlet 积分公式 $\int_0^{+\infty} \frac{\sin u}{u} du = \frac{\pi}{2}$)。

- **例.11** 利用积分号下求导方法,计算积分 $I(a) = \int_0^{\pi/2} \frac{\arctan(a \tan x)}{\tan x} dx$ 。(课本第二章总复习题第 4 题(2), page 115).
- **例.12** 设 f(x,t) 在区域 $[a,+\infty) \times [\alpha,\beta]$ 上连续。 假设积分 $I(t) = \int_a^{+\infty} f(x,t) dx$ 对任意 $t \in [\alpha,\beta)$ 均收敛,但积分 $\int_a^{+\infty} f(x,\beta) dx$ 发散。 证明积分 I(t) 关于 $t \in [\alpha,\beta)$ 非一致收敛。(课本习题 2.1 题 6, page 103-104).