West Nile Virus Prediction

Audrey, Akhila, Shaun

Table of Contents

- 1) Problem Statement
- 2) Data Cleaning and EDA
- 3) Preprocessing
- 4) Modelling
- 5) Limitations & Recommendations
- 6) Cost-Benefit Analysis
- 7) Conclusion & Recommendations

The West Nile Virus

• Leading cause of mosquito-borne disease

Potentially fatal

No Vaccine

Problem
Statement

Problem Statement

Project Aim

Predicting West Nile Virus
 (WNV) in Chicago

Utilising weather features

Purpose

 Assist CDC and CPHD in combating WNV

Data Cleaning

1) Incorrect dtype

Train Test 2) Drop (Redundant)

3) Drop (Duplicates)

4) Drop (Not in Test)

1) Incorrect dtype

2) Drop (Redundant)

3) Drop (Duplicates)

Spray

1) Incorrect dtype

Weather

2) Drop (Station 2)

3) Drop (Missing Info)

4) Impute ("M", "T")

EDA

of virus present by species over the years

Preprocessing

Preprocessing

Features Engineered

- 1. Dummy variables for species created in both train and test set
- 2. Parsed dates into year, month, week of year, month of year
- 3. Coded hot and wet conditions based on dew point and average temperature
- 4. Merged weather dataset to train set for modeling on Date

Dropped

- 1. Spray set is omitted for now due to the lack of information over the years.
- 2. Temperature related & Dewpoint features

Modelling

Models Tried

- 1. Logistic Regression
- 2. Gradient Boost Classifier
- 3. Gradient Boost Classifier with GridSearchcv
- 4. Random Forest Classifier
- 5. XGBoost Classifier
- 6. Decision Trees

Modeling Results

Model	Hyper-parameters	Train Set AUC Score	Test Set AUC Score	Kaggle Score
Logistic Regression	-	0.74	0.78	0.50
Gradient Boost Classifier	-	0.90	0.87	0.56
	'learning_rate': 0.08, 'max_depth': 2, 'n_estimators': 100	0.87	0.87	0.49
Random Forest Classifier	-	0.99	0.78	0.52
XGBoost Classifier	n_estimators = 500	0.96	0.87	0.53
Decision Trees	-	0.99	0.58	0.52

Model Evaluation

Baseline score vs. Chosen model score

Important Features

Model	Train Set	Test Set
Logistic Regression	0.74	0.78
Gradient Boost Classifier	0.90	0.87

Heavily imbalanced dataset

Insights & Conclusions

- 1) Least variance between test and training scores >> not overfit
- Feature importance suggests the prevalence of WN virus in certain locations for specific species
- 3) Time of the year with longer days influences virus presence
- 4) Features highlighted to be used to determine where and when to focus for spraying efforts

Limitations & Recommendations

Limitations & Recommendations

	T A	\wedge	Г
IVI	A V		V
	TA	WI	ľ

Model scored significantly lower on out of sample Kaggle set >> probably due method of creating internal validation set vs. Kaggle's approach

RECOMMENDATIONS

Elaborate feature engineering with time series functions on weather dataset

Include dummified variable for top traps

NumMosquito feature even with its high correlation to virus presence had to ignored

Availability of spray information for more years would help the model score better

	Spraying	Not Spraying
Costs	 Chemical spray (Zenivex) Labour work Approx. \$0.75 per acre of spray 	 Medical cost \$33,143 per inpatient \$6,317 per outpatient \$18,097 per patient spent time in a nursing home Productivity loss \$58,935 per personal income

Source:

	COST	BENEFIT
Spraying	 Vector control cost Total = ~ \$144K per person 	Human Life Saved
Not Spraying	Human Life Loss	 Medical bills (~\$46,530 per person) Productivity loss ~\$58,935 per person) Total = ~\$108K per person

Total \$ Cost > Benefits ?

	Spraying	Not Spraying
Benefits	 Human Life Saved Improved quality of life Increased workplace productivity Savings in hospital bills Attract visitors → economic benefits 	 Human Life Loss Long term/Wider mental health issues Lower quality of workforce and reduce output productivity Negative impact on tourism and entertainment sectors

Human Benefits of spraying outweighs the Costs!

Year	Acre coverage*	Projected Annual Costs @ \$0.75 per Acre
2020	~16m	~\$12m
2021	~14.4m	~\$10.8m
2022	~13m	~\$9.75m

*Source:

https://www.cdc.gov/westnile/statsmaps/cumMapsData.html https://www.cdc.gov/westnile/vectorcontrol/aerial-spraying.html

(assumption: 10% decrease in levels of pesticide coverage annually)

Conclusion and Recommendations

Conclusion & Recommendations

Since humans are gregarious and following CDC's mission statement, we must think of a regional approach to WNV vector control..... Spray!

- Consider strategically spraying at locations with highest infections
- Conduct spraying during hotter months i.e. August and September
- Educate and promote the public to:
 - Use insect repellent
 - Wear long-sleeved shirts and pants
 - Take steps to control mosquitoes indoors and outdoors
 - I.e. Remove standing water where mosquitoes could lay eggs

Questions?