1. 构造一个 DFA, 识别所有以 1001 结尾的二进制字符串, 请给出状态转换图, 以及该 DFA 的五元组。

解. 设初始状态为 q_0 ,状态 q_1 表示已接收串 $\{0,1\}^*1$ (简记为 $q_1:\{0,1\}^*1$)。类似地, $q_2:\{0,1\}^*10$, $q_3:\{0,1\}^*100$,以及接收状态 $q_4:\{0,1\}^*1001$,于是识别 1001 后缀二进制串的 DFA M 的状态转换图如图 1 所示。

图 1: M 状态转换

定义,

- (1) 状态集 $Q \triangleq \{q_0, q_1, q_2, q_3, q_4\}$,
- (2) 字母表 $\Sigma \triangleq \{0,1\}$,
- (3) 转换函数

$$\begin{split} \delta &\triangleq \{\delta: Q \times \Sigma \to Q | \delta(q_0,0) = q_0, \delta(q_0,1) = q_1, \\ \delta(q_1,0) &= q_2, \delta(q_1,1) = q_1, \\ \delta(q_2,0) &= q_3, \delta(q_2,1) = q_1, \\ \delta(q_3,0) &= q_0, \delta(q_3,1) = q_4, \\ \delta(q_4,0) &= q_2, \delta(q_4,1) = q_1 \} \end{split}$$

(4) 接收状态集 $F = \{q_4\}$ 。

于是该 DFA $M = (Q, \Sigma, \delta, q_0, F)$ 即为所求。

注 1. 转换函数 δ 也可以用如下表格表示.

δ	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_3	q_1
q_3	q_0	q_4
q_4	q_2	q_1

也可以简单写成转换函数 δ 由状态转换图 1 描述。

2. 构造一个简单售货机的 DFA。该售货机只卖一种饮料 A,价格为 1.25 元。售货机只接受 0.25 元 (假定有这个面额硬币) 和 1 元投币,并且当收到 1.25 元或以上就不再接受新的投币。当售货机收到 1.25 元或以上,此时顾客按"出货"键可以拿到饮料。请写出该 DFA 的五元组,画出状态转换图。

解. 设状态 q_0 表示初始状态,即售货机已投入 0 元 (简记为 q_0 : 0)。类似地, q_1 : 0.25, q_2 : 0.5, q_3 : 0.75, q_4 : 1, q_5 : 1.25, q_6 : 1.5, q_7 : 1.75, q_8 : 2。将对售货机的操作抽象为 {"0.25","1", select}, 其中 "·"表示投币·元 (下面省略双引号), select表示按下"出货"键。于是定义,

- (1) 状态集 $Q \triangleq \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}$,
- (2) 字母表 $\Sigma \triangleq \{0.25, 1, select\},$
- (3) 转换函数 δ 由图 2 给出描述,
- (4) 初始状态 q_0 ,
- (5) 接收状态 $F \triangleq \emptyset$ 。

则该 DFA 五元组即为 $(Q, \Sigma, \delta, q_0, F)$, 状态转换图如图 2 所示。

图 2: 简单售货机对应 DFA 状态转换

注 2. 本题考察 DFA 的实际应用,故需仔细考虑实际意义。顾客对售货机的操作(投币和按"出货"键)被抽象为 DFA 的字母表。由于是 DFA 模型,所以需要考虑所有转换情况,例如在售货机未达出货条件时,按"出货"键不会改变售货机状态,而达到出货条件时投币操作不会改变售货机状态(事实上售货机此时会将投入硬币直接退回,而 DFA 没有输出故在此模型下无需考虑)。最后,我们希望售货机能一直工作,故不应该设置接收状态。

注 3. 可以称两个接收串集合相同的 DFA 为等价的。而在没有限定 DFA 状态个数的情况下,存在无穷个互相等价的 DFA,因此本题答案并不唯一(包括第一题)。但是,对于第二题这种抽象实际生活中"售货机"的应用题,需确保 DFA 每个状态有实际含义且满足"售货机模型"(否则,由于题中 DFA 没有终态,接收串可认为是 \emptyset , 任

意一个字母表相同且无终态的 DFA 都与之等价,可以画出很多无实际意义的 DFA)。例如,如果定义状态 $q_5:\geq 1.25$,表示售货机已投入不少于 1.25 元的硬币,可以画出和图 2 等价且具有实际意义的 DFA 状态转换图(如图 3 所示),

图 3: 与图 2 等价的 DFA 状态转换图

定义状态集 $Q riangleq \{q_0, q_1, q_2, q_3, q_4, q_5\}$,转换函数 δ 由图 3 给出描述,其余同上即可得到该 DFA 的五元组表示。

注 4. 关于 DFA 最小化的方法不在课程范围内,故不在此展开讨论,只给出参考链接(有两个方法,一是利用 Myhill-Nerode 定理,二是利用等价关系): https://www.tutorialspoint.com/automata_theory/dfa_minimization.htm,供感兴趣的同学参考。

3. 请把如下 NFA (图 4) 转换成等价的 DFA。

图 4: NFA 状态转换

解. 设图 4 对应 NFA 的转换函数 δ_N ,等价 DFA 的转化函数 δ_D 且初始状态用 $\{q_0\}$ 表示。下面分三个步骤构造该等价 DFA,

(1) 确定等价 DFA 的状态集

对 q_0 而言,由 $\delta_N^*(q_0,a) = \{q_1,q_2\}, \delta_N^*(q_0,b) = \varnothing$,知等价 DFA 需添加状态 $\{q_1,q_2\}$ 和 \varnothing ; 对 q_1 而言,由 $\delta_N^*(q_1,a) = \{q_1,q_2\}, \delta_N^*(q_1,b) = \{q_0\}$,状态 $\{q_0\}$ 和 $\{q_1,q_2\}$ 已存在知无需添加新状态;对 q_2 而言,由 $\delta_N^*(q_2,a) = \varnothing, \delta_N^*(q_2,b) = \{q_0\}$ 知同样无需添加新的状态。于是可定义等价 DFA 的状态集 $Q_D \triangleq \{\{q_0\}, \{q_1,q_2\},\varnothing\}$ 。

(2) 确定等价 DFA 的状态转换

对状态 $\{q_0\}$ 而言,由于内部只有一个 NFA 状态,故 $\delta_D(\{q_0\},\cdot)=\delta_N^*(q_0,\cdot)$; 对状态 $\{q_1,q_2\}$ 而言,由 $\delta_N^*(q_1,a)=\{q_1,q_2\},\delta_N^*(q_2,a)=\varnothing$ 可知 $\delta_D(\{q_1,q_2\},a)=\{q_1,q_2\}\cup\varnothing=\{q_1,q_2\}$,又由 $\delta_N^*(q_1,b)=\{q_0\},\delta_N^*(q_2,b)=\{q_0\}$ 知 $\delta_D(\{q_1,q_2\},b)=\{q_0\}$; \varnothing 表示 NFA 不可能进行的转换,相当于等价 DFA 的不可接收串,故 $\delta_D(\varnothing,\cdot)=\varnothing$ 。

(3) 确定等价 DFA 的接收状态

NFA 的接收状态 $q_1 \in \{q_1, q_2\}$, 故 $\{q_1, q_2\}$ 为等价 DFA 的接收状态。

综上, 等价 DFA 的状态转换图如图 5 所示。

图 5: 等价 DFA 状态转换

注 5. 课件 NFA.ppt 第 75 页例题。