- **Definition 1.** A category C, consists of the following data:
- 1. A collection of *objects* ob \mathcal{C} ,
- 2. For every two objects $x, y \in \text{ob } C$ a collection of morphisms $\text{Hom}_{\mathcal{C}}(x, y)$.
- 3. For every $x \in \mathcal{C}$, the identity morphism $\mathrm{id}_x \in \mathrm{Hom}_{\mathcal{C}}(x,x)$.
- 5 4. A composition map $\circ: \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(x,z)$
- Such that, for all $x, y \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(x, y)$:

$$f \circ \mathrm{id}_x = f \ \mathrm{id}_y \circ f = f$$

And for all x, y, z, v with $f \in \text{Hom}_{\mathcal{C}}(x, y), g \in \text{Hom}_{\mathcal{C}}(y, z), h \in Homzv$:

$$h\circ (g\circ f)=(h\circ g)\circ f$$

- **Definition 2.** A functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a map $ob\mathcal{C} \rightarrow ob\mathcal{D}$ and a map of morphisms $Hom_{\mathcal{C}}(x,y) \rightarrow ob\mathcal{D}$
- Hom_D(F(x), F(y)). Such that $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$ and $F(g \circ f) = F(g) \circ F(f)$.
- Definition 3. $F: \mathcal{C} \to \mathcal{D}$ is faithful if for all $x, y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ is injective. It
- is *full* if every such map is surjective.
- Definition 4. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for all $d \in \mathcal{D}$ there is $c \in \mathcal{C}$ such that $F(x) \cong d$.
- **Definition 5.** For two functors $F,G:\mathcal{C}\to\mathcal{D}$, a natural transformation $\eta\colon F\Rightarrow D$ is a collection of
- morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ such that for every $x \xrightarrow{f} y$, $\eta_y \circ F(f) = G(f) \circ \eta_x$.
- 16 It is a natural isomorphism if all morphisms η_x are isomorphisms.
- Definition 6. Equivalence of categories: $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $e: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$, $\epsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$. An adjoint equivalence is an equivalence where $F \dashv G$.
- Proposition 7. The following are equivalent: \mathcal{C} and \mathcal{D} are equivalent, \mathcal{C} and \mathcal{D} are adjoint equivalent and there is $F: \mathcal{C} \to \mathcal{D}$ that is fully faithful and essentially surjective.
- Definition 8. Two functors $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ are adjoint if there exist natural transformations $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$ and $\epsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$ with $F \xrightarrow{\mathrm{id}_{F} \circ \eta} FGF \xrightarrow{\epsilon \circ \mathrm{id}_{F}} F$ and $G \xrightarrow{\eta \circ \mathrm{id}_{G}} GFG \xrightarrow{\mathrm{id}_{G} \circ \epsilon} G$.
- The forgetful functor $Forget: * \rightarrow Set$ has a left adjoint $Free \dashv Forget$ for * being Grp, Ab, Vect.
- Forget: Ab \rightarrow Grp has a left adjoint, the abelinisation of G. For topologies Forget: Top \longrightarrow Set, we have
- 25 $D \dashv Forget \dashv I$, where D is the discrete topology and I the indiscrete topology. The forgetful functor
 - from fields has no left adjoint. Such a left adjoint should map \varnothing to an initial object in Field, but fields
- 27 have no initial object.

26

- Definition 9. For a locally small category \mathcal{C} , the Yoneda Embedding is given by a functor $Y:\mathcal{C}\longrightarrow$
- Fun($\mathcal{C}^{\mathrm{op}}$, Set), where $Y(x) = \mathrm{Hom}_{\mathcal{C}}(-, x)$ and $Y(x \xrightarrow{f} y) = (g \mapsto f \circ g)$.
- Definition 10. A functor is representable if it is in the essential image of the Yoneda functor.
- Lemma 11. The Yoneda lemma states that for any presheaf $F: \mathcal{C}^{op} \to \operatorname{Set}$, the map $\operatorname{Fun}(Y(x), F) \to \operatorname{Comp}(Y(x), F)$
- F(x) given by $\eta \mapsto \eta_x(\mathrm{id}_x)$, is an isomorphism.
- Proof. To construct the inverse, let $f \in F(x)$, then define natural transformation $\epsilon \colon Y(x) \Rightarrow F$ given by
- $\epsilon_y: Y(x)(y) \to F(y)$ and $g \mapsto F(g)(f)$. Show this is natural by F preserving composition. One inverse is
- easy, for the other take η arbitrary, make diagram with $x \xrightarrow{g} y$ and claim $\eta_y(g) = F(g)(\eta_x(\mathrm{id}_x))$.
- ³⁶ Corollary 12. The Yoneda functor is full and faithful.
- 27 Proof. For x_1, x_2 , we have that $\operatorname{Hom}(Y(x_1), Y(x_2)) \longrightarrow Y(x_1)(x_2)$ is an isomorphism by Yoneda. \square
- Definition 13 (Representable). A presheaf is representable if it is in the essential image of the Yoneda functor.

- **Proposition 14.** A formal right adjoint to $F: \mathcal{C} \to \mathcal{D}$ is a functor $G^{formal}: \mathcal{D} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ with
- $y \mapsto (x \mapsto \operatorname{Hom}_{\mathcal{D}}(F(x), y))$. A right adjoint G to F exists if and only if $G^{formal}(y)$ is representable for
- all y.
- **Definition 15.** Let $D: I \to \mathcal{C}$. A limit of D is an object $\lim_I D \in \mathcal{C}$ along with maps $f_i: \lim_I D \to D(i)$,
- such that for every $g: i \to j$, $D(g) \circ f_i = f_j$. It is universal as for any other object W with compatible
- maps $W \to D(i)$, there is a unique morphism $W \to \lim_I F$.
- Proposition 16. The diagonal functor $\Delta \colon \mathcal{C} \to \operatorname{Fun}(I,\mathcal{C})$ is $\Delta(x)(i) = x$. Then $\operatorname{Hom}_{\operatorname{Fun}(\mathcal{I},\mathcal{C})}(\Delta(W),F) \cong$
- 8 $\operatorname{Hom}_{\mathcal{C}}(W, \lim_I F)$, so $\Delta \dashv \lim_I$.
- Proposition 17. Suppose C has limits for diagrams of shape I and J. Then it has limits of diagrams of shape $I \times J$ and

$$\lim_{I \times I} F \cong \lim_{I} \lim_{I} F \cong \lim_{I} \lim_{I} F$$

- For the proof use Δ as an adjoint.
- Theorem 18. C has limits iff it has products and equalisers. C has finite limits if it has binary products, final object and equalisers.
- Proof. For $F: I \to \mathcal{C}$, for every morphism $f: i \to j$, let $\prod_{k \in I} F(k) \to F(j)$ the projection map and the
- composite map $\prod_{k\in I} F(k) \to F(i) \xrightarrow{F(f)} F(j)$. Then, by the universal property of the product we get
- 16 unique maps:

$$\prod_{k \in I} F(k) \rightrightarrows \prod_{(i \to j) \in \operatorname{Fun}([1], J)} F(j)$$

By the equalisers, we get E the limit of F.

Limits		Colimits	
Final	Set : $\{1\}$, Grp : $\{e\}$	Initial	$\operatorname{Set}: \varnothing, \operatorname{Grp}: \{e\}$ Fields: None
Products	\times in Grp, Set, Vect	Co-products	Set: \sqcup , Grp: free product, Ab: \times
Equal	Set: x with $f(x) = g(x)$,	Coeq	Set: $Y/f(x) \sim g(x)$, Grp: Y/S $f(x)g(x)^{-1}$
Pullback	$\{(x,y) \mid f(x) = g(y)\}$	Pushout	

- Theorem 19. Let $F \dashv G$ then F preserves colimits and G preserves limits.
- Definition 20 (Monads). A monad $T: \mathcal{C} \to \mathcal{C}$ is a functor with unit $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow T$ and multiplication
- $\mu \colon T^2 \Rightarrow T$, satisfying: $T^3 \xrightarrow{id_T \circ \mu} T^2 \xrightarrow{\mu} T$ is equal to $T^3 \xrightarrow{\mu \circ \mathrm{id}_T} T^2 \xrightarrow{\mu} T$ and $T \xrightarrow{\mathrm{id}_T \circ \eta} T^2 \xrightarrow{\mu} T$ and
- $T \xrightarrow{\eta \circ \operatorname{id}_T} T^2 \xrightarrow{\mu} T$ are both equal to the identity.
- Proposition 21. Let $F \dashv G$ with $F : \mathcal{C} \to \mathcal{D}$, then GF is a monad in \mathcal{C} and FG is a comonad in \mathcal{D} . For
- the proof, let $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$ and $\mu: GFGF \xrightarrow{\mathrm{id}_{G} \circ \epsilon \circ \mathrm{id}_{F}} GF$. Write the diagrams for T^{2} and then append G
- and F.
- Definition 22. For a monad T an algebra $Alg_T(\mathcal{C})$ is the category with objects $(x, T(x) \xrightarrow{\alpha_x} x)$ for $x \in \mathcal{C}$
- with α_x such that $T^2(x) \xrightarrow{\mu_x} T(x) \xrightarrow{\alpha_x} x$ is equal to $T^2(x) \xrightarrow{T(\alpha_x)} T(x) \xrightarrow{\alpha_x} x$ and $x \xrightarrow{\eta_x} T(x) \xrightarrow{\alpha_x} x$ is
- the identity. The morphisms $(x, \alpha_x) \to (y, \alpha_y)$ are given by $f: x \to y$ such that $T(x) \xrightarrow{\alpha_x} x \xrightarrow{f} y$ and
- 29 $T(x) \xrightarrow{T(f)} T(y) \xrightarrow{\alpha_y} y$ commutes.
- Proposition 23. The forgetful functor $F: Alg_T(\mathcal{C}) \to \mathcal{C}$ has a left adjoint L and FL = T. We have
- $L(x) = (T(x), \mu_x)$. Write down the commutative square for a morphism $T(x) \xrightarrow{f} A$ and then $T(x) \xrightarrow{T(\eta_x)} A$
- $T^2(x) \xrightarrow{\mu_x} T(x)$ commutes. So f is uniquely determined by $T^2(x) \xrightarrow{\eta_x} T(x) \xrightarrow{f} A$ giving an isomorphism of
- 33 Homs.
- **Definition 24.** For $F \dashv G$ let $G_{enh} : \mathcal{D} \to \mathrm{Alg}_T(\mathcal{C})$ with $G_{enh}(x) = (G(x), GFG(x) \xrightarrow{G(\epsilon_x)} G(x))$. G is
- monadic if there is $F \dashv G$ and for T = GF, $G_{enh} : \mathcal{D} \to \mathrm{Alg}_T(\mathcal{C})$ is an equivalence.
- Definition 25. A functor $G: \mathcal{C} \to \mathcal{D}$ is *conservative* if when G(f) is an isomorphism so is f.
- The forgetful functors from Ab, Grp, Vect are conservative, the one from Top is not.

- Definition 26. A fork is a cocone $x \rightrightarrows y \xrightarrow{e} z$ so that $e \circ g = e \circ f$. It is split if there are $s \colon z \to y$, $t \colon y \to x$ such that $es = \mathrm{id}_z$, $ft = \mathrm{id}_y$ and gt = se. Split forks are coequalisers.
- Definition 27. Morphisms $f, g: x \to y$ are a split pair if their coequaliser exists and is split. They are G split if G(f), G(g) is split.
- ⁵ **Theorem 28.** A functor $G: \mathcal{D} \to \mathcal{C}$ is *monadic* if and only if: it has a left adjoint, it is conservative and
- 6 every G-split pair admits a coequaliser in $\mathcal D$ and is preserved by G.