

Bài giảng

PHÂN TÍCH ECG BÌNH THƯỜNG

BS CKI Trần Thanh Tuấn thanhtuanphd@gmail.com 07/2018 Đại học Y Dược Tp.HCM

Giới thiệu

- ECG giúp phát hiện nhiều bệnh lý tim mạch như rối loạn nhịp, lớn nhĩ thất, thiếu máu cơ tim, rối loạn điện giải v...v
- Mỗi bệnh lý đều có những thay đổi riêng.
- Để nhận biết các bất thường điều đầu tiên ta cần phải nhận biết các dấu hiệu bình thường

Mục tiêu

- 1. Nắm được các bước đọc ECG
- 2. Nhận biết các dấu hiệu bình thường trên ECG
- 3. Khi nào gọi là tim xoay trái, khi nào gọi là tim xoay phải

Các bước đọc ECG

Các bước đọc ECG

- 1. Chú ý về biên độ và vận tốc đo
- 2. Nhịp gì?
- 3. Đều hay không đều ? Tần số tim bao nhiêu ?
- 4. Trục điện tim?
- 5. Sóng P: thời gian, biên độ
- 6. Thời gian khoảng PR
- 7. Phức bộ QRS: thời gian, biên độ
- 8. Thời gian Khoảng QT
- 9. Sóng Q có không ? Thời gian biên độ
- 10. Đoạn ST
- 11. Sóng T biên độ
- 12. Các bất thường khác

Phân tích

Biên độ và vận tốc

Nhịp gì?

Nhịp xoang

- Sóng P dương ở DI, DII, aVF
- Sóng P âm ở avR
- Sau mỗi sóng P là phức bộ QRS (tỉ lệ 1:1)

Nhip xoang

Nhịp đều hay không?

Nhịp đều hay không đều

Nhịp đều

Tần số bao nhiêu?

Xác định tần số - nhịp đều

Nhịp đều:

Luật 300 : 300 / Số ô lớn

Counting large boxes for heart rate. The rate is 60 bpm.

Xác định tần số - nhịp đều

Nhịp đều:

• 1500/ số ô nhỏ

Ví dụ: 1500 / 27 = 55 lần/ phút

Tần số bao nhiêu ? 1500/17

Trục gì?

Trục điện tim

Copyright @2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Axis	Net QRS Voltage		
	Lead I	aVF	Lead II
Normal axis (0° to 90°)	+	+	
Normal variant (0° to -30°)	+	-	+
Left axis deviation (-30° to -90°)	+	-	-
Right axis deviation (> 100°)	-	+	
Right superior axis (-90° to +180°)	-	-	

[&]quot;+" represents positive (> 0) net QRS voltage

[&]quot;-" represents negative (< 0) net QRS voltage

DI (+), aVF (+) \rightarrow trung gian

Thời gian, biên độ sóng P (DII)

Khảo sát sóng P

Phản ánh hoạt động khử cực của nhĩ

Bình thường ở DII

• Thời gian : 0,08 – 0,12 giây

• Biên độ : 0,5 – 2mm

Ở V1 : sóng P có hai pha, pha dương và pha âm

Thời gian khoảng PR (DII)

Khoảng PR

Thời gian dẫn truyền từ nút xoang đến nút nhĩ thất

Tính từ đầu sóng P đến đầu phức bộ QRS

DII:

• Thời gian: 0,12 – 0,20 giây

Thời gian QRS (DII)

Phức bộ QRS

- Khử cực của thất
- Ở DII thời gian 0,08 0,12 giây

Biên độ QRS ở ngoại vi

Biên độ QRS ở ngoại vi

R/S = 1 ở chuyển đạo nào?

Phức bộ QRS

- Biên độ V1 V6 tăng dần rồi giảm dần
- Chuyển đạo chuyển tiếp V3, V4

R/S = 1 ở chuyển đạo nào?

Khoảng QT bao nhiêu?

Khoảng QT

Phản ảnh hoạt động điện của thất : khử cực và tái cực

Bắt đầu từ sóng Q đến hết sóng T

Khoảng QT

Khoảng QT

Cách tính

- $QT_c = QT + 1.75(RR - 60)$

$$- QTc = \frac{QT}{\sqrt{RR}}$$

- Tần số tim < 100 lần/ phút QT bình thường khi < 50% RR tương ứng
- Nam < 0.44s
- Nữ < 0.46s

Khoảng QT =

Sóng Q có không?

Sóng Q: thời gian, chiều sâu?

Đoạn ST chênh?

Đoạn ST

Phản ánh hoạt động tái cực của thất

Bắt đầu từ sóng S đến đầu sóng T

Đoạn ST

Xác định độ chênh đoạn ST:

- Điểm J, điểm kết thúc hoặc chuyển tiếp phức bộ QRS sang đoạn ST
- Đường đẳng điện là đường T P

Đoạn ST

Bình thường ST đẳng điện Bình thường ST chênh lên

Các chuyển đạo khác V2, V3 ≤ 1mm

Nam ≥ 40 tuổi, V2,V3 < 2mm

Nam < 40 tuổi V2, V3 < 2,5 mm

Nữ V2, V3 < 1,5 mm

ST chênh xuống

Bình thường ST chênh xuống Ở các chuyển đạo < 1mm tại vị trí cách điểm J: 0,08s

Đoạn ST chênh?

Sóng T biên độ?

Sóng T

Bình thường

- + Dương DI, DII, V3, V4, V5, V6
- + Âm aVR
- + Thay đổi DIII, aVL, aVF, V1, V2

Sóng T bình thường

Sóng T bình thường biên độ không quá 5mm ở chuyển đạo ngoại vi và không quá 10mm ở chuyển đạo trước tim

Hoặc

Sóng T cao < 3/4 sóng R tương ứng.

Sóng T thấp > 1/10 sóng R tương ứng

Sóng T biên độ?

Kết luận

 Phân tích đầy đủ các bước giúp nhận biết một điện tâm đồ bình thường và không bỏ xót tổn thương

