

Guía Relaciones

Tema II: Propiedades de Relaciones

Universidad de San Buenaventura Cali

Relaciones

Propiedades de las Relaciones.

Las relaciones binarias, es decir definidas sobre un único conjunto A, satisfacen ciertas propiedades que expondremos en este apartado.

Reflexividad.

Una relación binaria A sobre un conjunto A se dice que es reflexiva, cuando cada elemento de A está relacionado consigo mismo. Es decir,

$$\mathscr{R}$$
 es reflexiva $\iff \forall a (a \in A \Longrightarrow a\mathscr{R}a)$

Nota.

La equivalencia anterior,

$$\mathscr{R}$$
 es reflexiva $\iff \forall a (a \in A \Longrightarrow a\mathscr{R}a)$

puede escribirse también, en la forma:

$$\mathscr{R}$$
 es reflexiva $\iff \forall a \, [\neg \, (a \in A) \, \lor \, a \mathscr{R} a]$

y si ahora negamos ambos miembros, tendremos

$$\neg (\mathcal{R} \text{ es reflexiva}) \iff \neg \forall a [\neg (a \in A) \lor a\mathcal{R}a]$$

es decir,

$$\mathcal{R}$$
 no es reflexiva $\iff \exists a : \neg [(\neg (a \in A) \lor a\mathcal{R}a)]$

luego,

$$\mathscr{R}$$
 no es reflexiva $\iff \exists a : (a \in A \land a \mathscr{R} a)$

Consecuentemente, si podemos encontrar, al menos, un elemento a en el conjunto A que no esté relacionado consigo mismo, la relación \mathcal{R} no es reflexiva.

Ejemplo:

Sea A = $\{1, 2, 3, 4\}$ y R = $\{(1,1),(1,2),(2,2),(3,3),(3,2),(4,4)\}$ una relación definida en A.

¿Es reflexiva? Dibujar el dígrafo y escribir la matriz de la relación

Universidad de San Buenaventura Cali

Relaciones

Solución:

$$M_{\mathscr{R}} = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Relación Reflexiva

En efecto, \mathscr{R} es reflexiva ya que para cada $a \in A$, el par (a,a) está en la relación. La figura anterior nos muestra el digrafo y la matriz de \mathscr{R} .

Nota:

Observe que,

- El digrafo de una relación reflexiva se caracteriza por tener un bucle (ciclo de longitud uno) en cada uno de los vértices.
- La matriz de una relación reflexiva se caracteriza por tener todos los elementos de su diagonal principal iguales a uno. Es decir, si M_ℋ = (r_{ij}), entonces

$$\mathscr{R}$$
 es reflexiva $\iff r_{ii} = 1, \forall i$

y

 \mathcal{R} no es reflexiva $\iff \exists i: r_{ii} = 0$

Ejemplo:

Consideremos en el conjunto Z de los números enteros las relaciones "menor o igual que" y "menor que". Estudiar la reflexividad de ambas relaciones.

Solución:

(a) "Menor o igual que". $a\mathcal{R}b \iff a \leqslant b$

Sea a cualquier número entero, entonces

$$a = a$$

luego,

$$a = a \lor a < a$$

es decir,

$$a \leq a$$

por tanto,

$$\forall a (a \in \mathbb{Z} \Longrightarrow a \mathcal{R} a)$$

Consecuentemente, la relación propuesta es reflexiva.

(b) "Menor que". $a\mathcal{R}b \iff a < b$.

Sea a cualquier número entero, entonces

$$a = a$$

es decir, a no es menor que a, de aquí que

por tanto,

$$\exists a : (a \in \mathbb{Z} \land a \mathscr{R} a)$$

luego R no es una relación reflexiva.

Simetría.

Una relación binaria R sobre un conjunto A es simétrica si cada vez que a está relacionado con b se sigue que b está relacionado con a. Es decir,

$$\mathscr{R}$$
 es simétrica $\iff \forall a, b \in A (a\mathscr{R}b \Longrightarrow b\mathscr{R}a)$

La equivalencia.

$$\mathscr{R}$$
 es simétrica $\iff \forall a, b \in A (a\mathscr{R}b \Longrightarrow b\mathscr{R}a)$

puede escribirse en la forma

$$\mathscr{R}$$
 es simétrica $\iff \forall a, b \in A [\neg (a\mathscr{R}b) \lor b\mathscr{R}a]$

y si ahora negamos ambos miembros, tendremos

$$\neg (\mathscr{R} \text{ es simétrica}) \Longleftrightarrow \neg \forall a,b \in A [\neg (a\mathscr{R}b) \lor b\mathscr{R}a]$$

es decir,

$$\neg (\mathscr{R} \text{ es simétrica}) \Longleftrightarrow \exists a, b \in A : \neg [\neg (a\mathscr{R}b) \lor b\mathscr{R}a]$$

de aquí que

$$\mathscr{R}$$
 es no simétrica $\iff \exists a,b \in A: (a\mathscr{R}b \ \land \ b\mathscr{R}a)$

O sea, si podemos encontrar dos elementos a y b en A tales que a esté relacionado con b y b no lo esté con a, entonces \mathscr{R} es no simétrica.

Ejemplo:

Sea A = $\{1,2,3,4\}$ y R = $\{(1,1),(1,2),(2,1),(2,3),(3,2),(3,3)\}$ una relación definida en A.

¿Es simétrica? Dibujar el digrafo y escribir la matriz de la relación.

Solución:

$$M_{\mathcal{R}} = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Relación Simétrica

En efecto, R es simétrica ya que para cada par (a, b)∈ R, el par (b, a) también pertenece a R. El dígrafo y la matriz de R se muestran en la figura anterior.

Nota.

Observe lo siguiente.

- Si D es el digrafo de una relación simétrica, entonces entre cada dos vértices distintos de D existen dos aristas o no existe ninguna.
- − La matriz $M_{\mathscr{R}} = (m_{ij})$ de una relación simétrica, satisface la propiedad de que todo par de elementos colocados simétricamente respecto de la diagonal principal son iguales. Luego si $M_{\mathscr{R}} = (r_{ij})$ es la matriz de \mathscr{R} , entonces

$$\mathscr{R}$$
 es simétrica $\iff r_{ij} = r_{ji}, \forall i, j$

у

$$\mathscr{R}$$
es no simétrica $\Longleftrightarrow \exists i,j: r_{ij} \neq r_{ji}$

Asimetría.

Una relación binaria A definida en un conjunto A se dice que es asimétrica si cada vez que aAb se sigue que bA a. Es decir,

$$\mathscr{R}$$
 es asimétrica $\iff \forall a, b \in A (a\mathscr{R}b \Longrightarrow b\mathscr{R}a)$

Nota.

$$\mathscr{R}$$
 es asimétrica $\iff \forall a, b \in A (a\mathscr{R}b \Longrightarrow b\mathscr{R}a)$

puede escribirse en la forma

$$\mathscr{R}$$
 es asimétrica $\iff \forall a, b \in A (a \mathscr{R} b \lor b \mathscr{R} a)$

de donde negando ambos miembros, resulta

$$\mathscr{R}$$
 no es asimétrica $\iff \exists a,b \in A (a\mathscr{R}b \wedge b\mathscr{R}a)$

Ejemplo.

Sea A = $\{1,2,3,4\}$ y R = $\{(1,2),(1,4),(2,3),(2,4),(3,1),(4,3)\}$ una relación definida en A.

¿Es asimétrica? Dibujar el dígrafo y escribir la matriz de la relación.

Solución:

 ${\mathscr R}$ es, en efecto, asimétrica ya que para cada par (a,b) que pertenece a ${\mathscr R}$, el par (b,a) no pertenece.

$$M_{\mathscr{R}} = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Relación Asimétrica

El digrafo y la matriz se muestran en la figura anterior.

Nota.

- Si D es el digrafo de una relación asimétrica, entonces entre cada dos vértices distintos del mismo, existe un arco o no existe ninguno.
- La matriz $M_{\mathscr{R}}=(r_{ij})$ de una relación asimétrica, satisface la propiedad de que si $i\neq j$, entonces $r_{ij}=0$ ó $r_{ji}=0$.

Antisimetria.

Una relación binaria \mathscr{R} sobre un conjunto A se dice antisimétrica si cuando $(a,b) \in \mathscr{R}$ y $(b,a) \in \mathscr{R}$, entonces a=b. Es decir,

$$\mathscr{R}$$
 es antisimétrica $\iff \forall a, b \in A(a\mathscr{R}b \land b\mathscr{R}a \Longrightarrow a = b)$

Obsérvese que en virtud de la equivalencia lógica entre una proposición condicional y su contrarrecíproca, otra forma de expresar esta definición es

$$\mathscr{R}$$
 es antisimétrica $\iff \forall a,b \in A \ (a \neq b \Longrightarrow a \mathscr{R} \ b \lor b \mathscr{R} \ a)$
 $\iff \forall a,b \in A \ [a \neq b \Longrightarrow (a \mathscr{R} \ b \land b \mathscr{R} \ a) \lor (a \mathscr{R} \ b \land b \mathscr{R} \ a) \lor (a \mathscr{R} \ b \land b \mathscr{R} \ a)]$

Nota. La equivalencia.

$$\mathscr{R}$$
 es antisimétrica $\iff \forall a,b \in A(a\mathscr{R}b \ \land \ b\mathscr{R}a \Longrightarrow a=b)$

la podemos escribir en la forma

$$\mathscr{R}$$
 es antisimétrica $\Longleftrightarrow \forall a,b \in A \left[\neg \left(a \mathscr{R} b \ \land \ b \mathscr{R} a \right) \ \lor \ \left(a = b \right) \right]$

de donde, negando ambos miembros, resulta

$$\mathscr{R}$$
 es no antisimétrica $\iff \exists a, b \in A : (a\mathscr{R}b \land b\mathscr{R}a \land a \neq b)$

O sea, si podemos encontrar dos elementos a y b en A tales que a esté relacionado con b y b relacionado con a, siendo ambos distintos, entonces la relación es no antisimétrica.

Ejemplo: Sea A = $\{1, 2, 3, 4\}$ y sea R = $\{(1,2),(2,2),(3,4),(4,1)\}$ una relación definida en A. ¿Es antisimétrica? Dibujar el dígrafo y escribir la matriz de R.

$$M_{\mathscr{R}} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Relación Antisimétrica

Observemos lo siguiente:

$$1 \neq 2$$
 y $(1,2) \in \mathcal{R}$, pero $(2,1) \notin \mathcal{R}$, es decir $1\mathcal{R}2 \land 2\mathcal{R}1$.
 $1 \neq 3$ y $(1,3) \notin \mathcal{R}$ y $(3,1) \notin \mathcal{R}$, es decir $1\mathcal{R}3 \land 3\mathcal{R}1$.

$$1 \neq 4$$
 y $(4,1) \in \mathcal{R}$, pero $(1,4) \notin \mathcal{R}$, es decir $4\mathcal{R}1 \wedge 1\mathcal{R}4$.

$$2 \neq 3$$
 y $(2,3) \notin \mathcal{R}$, $(3,2) \notin \mathcal{R}$, es decir $2 \Re 3 \wedge 3 \Re 2$.

$$2 \neq 4$$
 y $(2,4) \notin \mathcal{R}$, $(4,2) \notin \mathcal{R}$, es decir $2\mathcal{R}4 \wedge 4\mathcal{R}2$.

$$3 \neq 4$$
 y $(3,4) \in \mathcal{R}$, pero $(4,3) \notin \mathcal{R}$, es decir $3\mathcal{R}4$ ∧ $4\mathcal{R}3$.

luego,

si
$$a \neq b$$
, entonces $(a,b) \notin \mathcal{R}$ ó $(b,a) \notin \mathcal{R}$

de aquí que R sea antisimétrica.

El digrafo y la matriz de ${\mathcal R}$ se muestran en la figura anterior.

Universidad de San Buenaventura Cali

Relaciones

Ejemplo 2:

En el conjunto Z de los números enteros, consideramos la relación R ={(a,b)∈Z×Z : a 6 b}, es decir, la relación "menor o igual que". ¿Es simétrica?, ¿Es antisimetrica?

Solución:

Simetría.

Considerando los enteros 1 y 2, tendremos que

1 es menor que 2 y 2 no es menor que 1

es decir,

luego,

$$\exists a, b \in \mathbb{Z} : (a \mathcal{R} b \wedge b \mathcal{R} a)$$

de aquí que por 4, la relación propuesta sea no simétrica.

Antisimetría.

Sean a y b dos enteros cualesquiera. Entonces,

$$a \neq b \implies a < b \lor b < a$$

$$\implies \neg (b \leqslant a) \lor \neg (a \leqslant b)$$

$$\implies a \mathscr{R} b \lor b \mathscr{R} a$$

Consecuentemente, tendremos que

$$\forall a, b \in A (a \neq b \Longrightarrow a \mathscr{R} b \lor b \mathscr{R} a)$$

de aquí que la relación propuesta sea antisimétrica.

Veamos otra forma de probar la antisimetría.

$$\left. \begin{array}{l} a\mathscr{R}b \Longleftrightarrow a \leqslant b \Longrightarrow \exists p \in \mathbb{Z}_0^+ : b = a + p \\ y \\ b\mathscr{R}a \Longleftrightarrow b \leqslant a \Longrightarrow \exists q \in \mathbb{Z}_0^+ : a = b + q \end{array} \right\} \Longrightarrow a = a + p + q \Longrightarrow p + q = 0 \Longrightarrow p = q = 0 \Longrightarrow a = b$$

Transitividad.

Se dice que una relación \mathscr{R} definida en un conjunto A es transitiva si cuando $(a,b) \in \mathscr{R}$ y $(b,c) \in \mathscr{R}$, entonces $(a,c) \in \mathscr{R}$. Es decir,

$$\mathscr{R}$$
 es transitiva $\iff \forall a, b, c \in A (a\mathscr{R}b \land b\mathscr{R}c \Longrightarrow a\mathscr{R}c)$

Nota. Negando los dos miembros de la equivalencia anterior, tendremos.

$$\mathscr{R}$$
es no transitiva $\Longleftrightarrow \exists a,b,c \in A: a\mathscr{R}b \ \land \ b\mathscr{R}c \ \land \ a\mathscr{R} \ c$

es decir, la relación \mathcal{R} no es transitiva, si podemos encontrar elementos a,b,c en A tales que $a\mathcal{R}b$ y $b\mathcal{R}c$, pero $a\mathcal{R}$ c.

Ejemplo: Sea $A = \{1,2,3,4\}$ y $R = \{(1,2),(1,3),(1,4),(2,3)\}$ una relación definida sobre A. ¿Es transitiva? Dibujar el diágrafo y escribir la matriz de la relación.

Solución.

$$M_{\mathcal{R}} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Relación Transitiva

En efecto, \mathscr{R} es transitiva porque si $(a,b) \in \mathscr{R}$ y $(b,c) \in \mathscr{R}$, también está en \mathscr{R} el par (a,c).

El digrafo y la matriz de R se muestran en la figura.

Nota.

- Si D es el digrafo de una relación transitiva y existen arcos desde a hasta b y desde b hasta c, entonces existirá un arco desde a hasta c. Por lo tanto, y existe un camino de longitud mayor que cero desde a hasta b, entonces existe un arco (camino de longitud uno) desde a hasta b.
- Es posible caracterizar la relación transitiva por su matriz $M_{\mathscr{R}}=(r_{ij}),$

$$\mathscr{R}$$
es transitiva $\iff (r_{ij}=1 \ \land \ r_{jk}=1 \Longrightarrow r_{ik}=1)$

y

$${\mathscr R}$$
es no transitiva $\Longleftrightarrow r_{ij}=1 \ \wedge \ r_{jk}=1 \ \wedge r_{ik}=0$