

Agenda

- Shopify Business Model
 - Platform Overview
 - Customer Lifecycle
- Customer Conversion Project
 - Overview and Business Value
 - Dataset
 - Methodology
 - Modeling
 - Applications

Factoids

- Based out of Ottawa, Canada
- E-commerce Platform
- Software for a "DIY Online Store"

Birth of a Fictitious Store

"I have an Idea"

Fill in some Information

Store is Created

Sample Store: Product Analysis

Add Products

View Product Reports

Customer Lifecycle

Customer Conversion

Goal

- Predict lead to customer conversion
- Discover key variables used to predict conversion

Approach

 Develop 14 different models for each day in the free trial (Day 1, Day 2, ...)

Benefits

- Reduce customer acquisition cost
- Effectively target customers

P(customer on day 14 | shop is N days old)

Deliverables

	1) Predictive Model	2) Exploratory Web App
Details & Purpose	 Input: Merchant information from free trial Output: Probability of conversion to customer 	 Demonstrate how important variables influence conversion Visualize model efficacy for each day of the free trial
Who Benefits	Marketing, Engineering	Marketing

Dataset

- Shop information
- User information
- Web traffic data
- Sales data
- Marketing
- Support

Obstacles

Obstacle	Approach
Size of data	Random sampling
Additional data	Python data pipeline
Feature transformation	Binning, log transformation
Data Leakage	Time-boxing

Data Leakage

Using data generated after the response variable (after lead period) to predict response variable (lead-to-customer conversion rate)

Examples

- Use sales data after customer as predictor
- Email domain changes

Methodology

Data Extraction	Train	Modeling	Measure Accuracy	Web App
- 14 data sets, one for each day	- 14 models, one for each day	LogisticRegressionBoosted TreeRandomForest	ClassificationaccuracyRecallF1 score	- Visualize importance measures and model performance

Goal: P(customer on day 14 | shop is N days old)

Model Selection

- Random Forest
 - Feature importance interpretability
 - Account for imbalanced dataset
 - Speed in iteration
- Results
 - Accuracy, F1, Recall per day
 - Very good!

Day	Accuracy	F1 Score	Recall
1	a ₁	f_1	r_1
2	a ₂	f_2	r ₂
3	a ₃	f_3	r ₃
14	a ₁₄	f ₁₄	r ₁₄

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Business Model Project Overview Dataset Methodology Modeling Applications

Web App

Technology

- Built in Python
- Flask app
- Interactive Plotly visuals
- Bootstrap framework

Variable Importance

 Trace how merchant behavior becomes more or less important during the 14 day free trial

Variable Importance Certain characteristics can make a listed more or less likely to become a customer at the end of the 14 Objective. We devided the data into 14 different churins to learn how different behavior become more or less involved to the service of the service of

Model Performance

Visualize how model performance changes throughout the trial

Applications

1) Identify at-risk merchants

2) Leverage impact variables

Support queue optimization

Decrease CAC (Customer Acquisition Cost)

Merchant segmentation

Nudge merchants in free trial

Questions?

