Ideals

Definition

Let R be a ring and I an additive subgroup of R:

• To say that I is a *left ideal* in R means:

$$\forall r \in R, \forall i \in I, ri \in I$$

• To say that I is a *right ideal* in R means:

$$\forall r \in R, \forall i \in I, ir \in I$$

• To say that I is a (two-sided) *ideal* in R, denoted $I \subseteq R$, means that I is both a left ideal and a right ideal in R.

Definition

 $I = \{0\}$ is called the zero ideal.

Theorem

Let $\phi: R \to S$ be a homomorphism of rings:

$$\ker(\phi) \leq R$$

Proof

 $\ker(\phi)$ is an additive subgroup of R

Assume $r \in R$

Assume $k \in \ker(\phi)$

$$\phi(rk) = \phi(r)\phi(k) = \phi(r) \cdot 0 = 0$$

 $rk \in \ker(\phi)$, so $\ker(\phi)$ is a left ideal in R

$$\phi(kr) = \phi(k)\phi(r) = 0 \cdot \phi(r) = 0$$

 $kr \in \ker(\phi)$, so $\ker(\phi)$ is a right ideal in R

$$\therefore \ker(\phi) \leq R.$$

Theorem

Let R be a ring and I be an ideal in R:

$$I \leq R$$

Proof

By definition, I is an additive subgroup of R

Assume $r, s \in I$

By definition, $rs \in I$

Therefore, by the subring test, $I \leq R$.

Theorem: Ideal Test

Let R be a ring and I a non-empty subset of R. $I \subseteq R$ iff

- 1). $\forall x, y \in I, x y \in I$
- 2). $\forall x \in I, \forall z \in R, zx \in I \text{ and } xz \in I$

Proof

Assume $x, y \in I$

 \implies Assume $I \triangleleft R$

I is an additive subgroup of R, so $(-y) \in I$ By closure, $x - y \in I$

Assume $z \in R$

I is a left ideal, so $zx \in I$

I is a right ideal, so $xz \in I$

Therefore, the two conditions hold.

Assume the two conditions hold

 $x, y \in R$

Thus $xy \in I$

So by the subring test, $I \leq R$

But I is both a right and left ideal

$$\therefore I \trianglelefteq R$$

Theorem

Let R be a ring and $\{I_a \mid a \in A\}$ be a family of ideals in R:

$$I = \bigcap_{a \in A} I_a \le R$$

<u>Proof</u>

 $I \leq R$

Assume $x \in I$ and $z \in R$

Assume $a \in A$

 $x \in I_a$

But $I_a \subseteq R$, so $zx \in I_a$ and $xz \in I_a$

 $zx \in I \text{ and } xz \in I$

Therefore, by the ideal test, $I \leq R$.

Theorem

$$\forall n \in \mathbb{Z}, n\mathbb{Z} \leq Z$$

Proof

Assume $n \in \mathbb{Z}$

Case 1:
$$n = 0$$

$$0\mathbb{Z} = \{0\} \le \mathbb{Z}$$

Case 2: n > 0

Assume $m \in n\mathbb{Z}$

$$\exists k \in \mathbb{Z}, m = kn$$

Assume
$$h \in= Z$$

$$hm=h(kn)=(hk)n\in n\mathbb{Z},$$
 so nZ is a left ideal in \mathbb{Z}

$$mh=(kn)h=(kh)n\in n\mathbb{Z}$$
, so nZ is a right ideal in \mathbb{Z}

$$\therefore n\mathbb{Z} \trianglelefteq \mathbb{Z}$$

Case 3: n < 0

$$(-n) > 0$$

Assume $m \in n\mathbb{Z}$

$$\exists \, k \in \mathbb{Z}, m = kn$$

$$m = kn = (-k)(-n)$$

$$m \in (-n)\mathbb{Z}$$

Assume $m \in (-n)\mathbb{Z}$

$$\exists k \in \mathbb{Z}, m = k(-n)$$

$$m = k(-n) = (-k)n$$

$$m\in n\mathbb{Z}$$

Thus
$$n\mathbb{Z} = (-n)\mathbb{Z}$$

$$\therefore n\mathbb{Z} \leq Z$$

Theorem

$$I \leq \mathbb{Z} \implies \exists n \in \mathbb{Z}, I = n\mathbb{Z}$$

Proof

Case 1:
$$I = \{0\}$$

$$I = 0Z$$

Case 2:
$$\exists i \in I, i \neq 0$$

I is an additive group, so $(-i) \in I$

Thus I contains a least positive element

Let the least positive element be n Assume $m \in I$ By the DA, m = qn + r, where $0 \le r < n$ r = m - qn But I is an ideal, so $qn \in I$ So by closure, $r \in I$ But by the minimality of n, r = 0 m = qn $\therefore I = n\mathbb{Z}$