Resistors, Inductors, and Capacitors in Circuits

Raymond Langehennig

December 13, 2024

1 Introduction

1.1 Background

In DC circuits, resistance is the only form of opposition the current faces. In AC circuits, however, the oscillating nature of the current induces a second form of opposition called *reactance*. This occurs mostly in inductors & capacitors, though the exact mechanism by which the alternating current causes this is different in the two components.

Inductors

Inductors are components used for a variety of reasons (energy storage, magnetic field manipulation, filters), but at their simplest they consist of a conductive material coiled around a "core" of some material that serves to confine the magnetic field induced by the current running through the conductor better. Current gives rise to a magnetic field as illustrated by Ampère's Law. It stands to reason, then, that a changing current (such as AC) gives rise to a changing magnetic field. A changing magnetic field, however, is opposed due to Lenz's Law, resulting finally in a "back-emf" that diminishes the original current through the inductor. This is the inductive reactance, symbolized by X_C .

Capacitors

Capacitors, like inductors, also store energy, but they store it in the form of electric potential energy. This is generally accomplished through the separation of two conductors by a dielectric, between which an electric field arises when an electromotive force is supplied due to the accumulation of opposing charge on either conductor (electrons leaving one end/gathering on the other). The voltage across the two conductors approaches that of the supplied electromotive force, while the current in the circuit approaches 0. In a DC circuit,

1.2 Objective

The object of this lab is to gain an understanding of and familiarity with and reactance in resistor-capacitor (RC), resistor-inductor (RL), and resistor-inductor-

capacitor (RLC) circuits. This will be achieved mainly through the use of a breadboard, function generator, and oscilloscope.

1.3 Theory

dwadawd

2 Procedure

For all experiments, a Global Specialties PB-505 breadboard was used in conjunction with a RIGOL DS1104Z oscilloscope & DG1022Z function generator. A multitude of electrical components were also used to construct the circuits, the specifications of which will be laid out below.

Table 1: Components

Component	Nominal value	Actual value
Resistors	220 Ω	$218.9 \pm awawawaw\Omega$
multirow	$1~\mathrm{k}\Omega$	$1 \pm awawa$ k Ω
Capacitor	$0.1 \mu \mathrm{F}$	$0.1023 \pm \mu { m F}$
Inductor	À	\mathbf{A}

2.1 RC Circuit

An RC circuit was constructed with the 220 Ω resistor & 0.1μ

3 Data

3.1 RL

Table 2: Phase Shift					
A	Α	Α	Α	Α	
A	Α	Α	Α	Α	
A	A	Α	A	A	
A	A	A	A	A	

5 Questions