第二題:拆解壓縮影像 (Decomposition)

問題敘述

DF-expression (depth-first picture expression) 是一種壓縮黑白影像的方法。假設影像大小為 $n \times n$,其中n是 2 的幂次,DF-expression 的遞迴定義如下:如果每一格像素都是白色,我們用 0 來表示 (如圖 (a));如果每一格像素都是黑色,我們用 1 來表示 (如圖 (b));如果並非每一格像素都同色,我們先將影像等分為左上、右上、左下、右下四塊後,然後表示如下:先寫下 2,之後依續接上左上、右上、左下、右下四塊的表示法。(如圖 (c) 和 (d))

(a) n=8, "0"

(b) n=8, "1"

(c) n=8, "20010"

(d) n=8, "2020020100010"

影像經過壓縮後,一些常見的演算法執行起來就會變得困難許多。在這個問題中,我們將給你一張壓縮後的影像 X。你的任務是要將黑色像素形成的連通區域分離出來(視為一張單一的影像),並且分別找出每一個連通區域長度最短的 DF-expression。請注意,如果兩個像素僅有角落接觸到,它們不算是直接連通的。為了方便起見,你只需要由小到大輸出這些 DF-expression 的長度就可以了。請注意,對於每一個連通區域你必須分別挑選最恰當的2的幂次作為影像邊長,使得他們在該影像中 DF-expression 字串長度最短。

舉例來說:圖 (b) 只有一個連通區域,可視為一 8×8 的影像,因此最佳壓縮方式就是 "1"。而圖 (c) 也只有一個連通區域,將其視為一 4×4 的影像來壓縮,壓縮後也可以得到 "1"。對於圖 (d) 來說,總共有兩個連通區域,最佳的壓縮方式各自都是"1",因此這時候需要輸出兩個 1。

輸入格式

輸入的第一列包含一個正整數 n。第二列有一個字串 S表示影像 X的 DF-expression。 其中 n 必為 2 的幂次。

輸出格式

請於第一列輸出連通區域的數量 k。接下來輸出 k 列請由小到大輸出這些連通塊壓縮後的最短 DF-expression 長度。

輸入範例 1	輸出範例 1
8	2
2020020100010	1
	1

輸入範例 2	輸出範例 2
8	1
20010	1

輸入範例 3	輸出範例 3
8	3
220011210002110020111	1
	1
	5

評分說明

本題共有5個子任務,條件限制如下所示。每一子任務含有多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	7	$1 \le n \le 2^3$, $1 \le S \le 85$,影像至多只有一個連通區域。
2	20	$1 \le n \le 2^7$, $1 \le S \le 100$,影像至多只有一個連通區域。
3	24	$1 \le n \le 2^{10} , \ 1 \le S \le 1000 $
4	30	$1 \le n \le 2^{30}$, $1 \le S \le 200$,影像至多只有一個連通區域。
5	19	$1 \le n \le 2^{30} , 1 \le S \le 2000 \circ$