Análisis Numérico Para Ingeniería

TEC Tecnológico de Costa Rica

Interpolación de funciones con Series de Fourier

Profesor: Juan Pablo Soto Juan P Alvarado Kevin Cordero Emanuel Esquivel Luis Lopez

Índice

Conocimientos previos

Función periódica

Condiciones de Dirichlet

Serie de Fourier

Formulación matemática

Implementación

Parámetros iniciales

Pseudocódigo

Aplicación

Problema

Solución

Referencias

Periocidad

La función a realizar la interpolación debe ser una función periódica es decir

$$f(t) = f(t + nT), \quad n \in \mathbb{Z}$$

donde T es su periodo fundamental, ademas $\omega_0 = \frac{2\pi}{T}$

Dirichlet

Estas condiciones no son necesarias pero si suficientes para que una función f pueda desarrollarse en una serie de Fourier.

- ightharpoonup f(t) tiene un solo valor en cualquier punto
- La función f(t) tiene un numero finito de discontinuidades en un periodo.
- La función f(t) tiene un numero finito de máximos y mínimos en un periodo.
- La integral del valor absoluto de f(t) en un periodo es finita, es decir:

$$\int_0^T |f(t)| \, dt = L < \infty$$

Formulación matemática

Nota

Considerando que se cumplen las condiciones suficientes para su desarrollo

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(\omega_0 nt) + b_n \sin(\omega_0 nt) \right]$$

Considerando los coeficientes a_0 , a_n y b_n :

$$a_0 = \frac{1}{T} \int_0^T f(t)dt$$

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(\omega_0 nt) dt$$
 $b_n = \frac{2}{T} \int_0^T f(t) \sin(\omega_0 nt) dt$

Valores iniciales

Para realizar una aproximación a la serie de Fourier a una función f es necesario:

- Función f(t) periódica.
- Periodo fundamental T de la función f(t).
- \triangleright Cantidad de iteraciones k.

<u>Pseudocódigo</u>

Algorithm 1: Serie de Fourier

```
Input: f(t), T, k
```

Output: Serie, Gráfica

$$1 n=1, a_n=[] b_n=[];$$

- **2** Calcular primer termino $a_0 = Ca0(f, T)$;
- 3 while $n \leq k$ do
- 4 Calculo de a_n , $a_n + = Can(f, T, n)$;
- 5 Calculo de b_n , $b_n + = Cbn(f, T, n)$;
- 6 n = n + 1;
- 7 Calcula serie: $SerieF = fourier(a_0, a_n, b_n, k);$
- 8 Graficar puntos de SerieF, retorna a_0, a_n, b_n ;

Problema numérico

Considere el siguiente circuito eléctrico cuya señal de entrada v es una señal cuadrada

Determine la serie de Fourier asociada a la señal de voltaje v para poder determinar el voltaje de salida v_o

Datos iniciales:

- Periodo: $2\pi \to \omega_0 = 1$
- ► Función:

$$v(t) = \begin{cases} 2 & \text{si} \quad 0 < t < \pi \\ -4 & \text{si} \quad \pi < t < 2\pi \end{cases}$$

Calculamos los coeficientes.

Calculamos a_0

$$a_0 = \frac{1}{T} \int_0^T v(t)dt = \frac{1}{2\pi} \left[\int_0^{\pi} 2dt + \int_{\pi}^{2\pi} -4dt \right]$$

$$a_0 = -1$$

Calculamos a_n

$$a_n = \frac{2}{T} \int_0^T v(t) \cos(n\omega_0) dt = \frac{1}{\pi} \left[\int_0^{\pi} 2 \cos(nt) dt + \int_{\pi}^{2\pi} -4 \cos(nt) dt \right]$$

$$a_n = \frac{2}{n\pi} \operatorname{sen}(nt) \Big|_0^{\pi} - \frac{4}{n\pi} \operatorname{sen}(nt) \Big|_{\pi}^{2\pi}$$

$$a_n = 0$$

Calculamos b_n

$$b_n = \frac{2}{T} \int_0^T v(t) \sin(n\omega_0) dt = \frac{1}{\pi} \left[\int_0^{\pi} 2 \sin(nt) dt + \int_{\pi}^{2\pi} -4 \sin(nt) dt \right]$$

$$b_n = -\frac{2}{n\pi} \cos(nt) \Big|_0^{\pi} + \frac{4}{n\pi} \cos(nt) \Big|_{\pi}^{2\pi}$$
$$b_n = \begin{cases} \frac{12}{n\pi} & \text{si } n \to \text{impar} \\ 0 & \text{si } n \to \text{par} \end{cases}$$

Resultado final:

$$v(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(\omega_0 n t) + b_n \sin(\omega_0 n t) \right]$$
$$v(t) = -1 + \sum_{n=1}^{\infty} \frac{12}{n\pi} \sin(nt), \quad n \to \text{impar}$$

Gráfica

Referencias (1)

- C. K. Alexander and M. N. O. Sadiku. Fundamentos de Circuitos Eléctricos. New York, 2013.
- C. K. Chapra, S. C., Canale, R. P. Métodos numéricos para ingenieros. Mexico, 2006.
- Claude Gasquet, Patrick Witomski.
 Fourier Analysis and Applications
 Part of the Texts in Applied Mathematics book series, (TAM, volume 30)