Al Assignment Report

Part 1: Short Answer Questions (30 points)

1. Problem Definition (6 points)
Problem: Predicting Student Dropout Rates in Universities.
Objectives:
Identify at-risk students early using historical academic and behavioral data.
Enable timely intervention through academic support systems.
Reduce institutional dropout rates by 20% over two academic years.
Stakeholders:
University Administration
Academic Counselors
Key Performance Indicator (KPI):
Dropout Prediction Accuracy (Target ≥ 85%)
2. Data Collection & Preprocessing (8 points)
Data Sources:
1. Student Information System (SIS):
Grades
Attendance
Disciplinary records

2. <u>Learning Management System (LMS):</u>
Logins
Assignment submissions
Discussion participation
Potential Bias:
Socioeconomic bias: Students from underprivileged backgrounds may have less access to LMS, leading to skewed data.
Preprocessing Steps:
Handle missing values (e.g., imputation for attendance).
Normalize numerical features (e.g., grades, time online).
One-hot encodes categorical variables (e.g., program type, department).
3. Model Development (8 points)
Model Choice:
Random Forest Classifier
lucatification.
Justification:
Robust to overfitting
Handles missing data
Provides feature importance
Data Split:

Deployment Challenge:
Scalability: The model must handle thousands of predictions during peak admission cycles.
Part 2: Case Study Application – Predicting 30-Day Hospital Readmission Risk (40 points)
1. Problem Scope (5 points)
Problem: Predict patients at risk of being readmitted within 30 days post-discharge.
Objectives:
Reduce unnecessary hospital readmissions.
Optimize post-discharge patient care.
Stakeholders:
Hospital Administration
Healthcare Providers (Doctors, Nurses)
2. Data Strategy (10 points)
Data Sources:
1. Electronic Health Records (EHR):
Diagnoses
Medications
Previous admissions
2. <u>Demographic Data:</u>
Age

Gender
Insurance type
Ethical Concerns:
1. Patient Privacy: Risk of exposing sensitive health data.
2. Algorithmic Discrimination: Potential bias against elderly or minority patients.
Preprocessing Pipeline:
Handle missing vitals via mean/mode imputation.
Encode categorical variables (e.g., diagnosis codes via label encoding).
Feature Engineering:
Average length of stay
Number of past visits in the last 6 months
Discharge-to-follow-up duration
3. Model Development (10 points)
Model:
XGBoost
Justification:
Performs well on structured/tabular data.
Effectively handles class imbalance.

Hypothetical Confusion Matrix:

Predicted: Yes Predicted: No

Actual: Yes 45 10 Actual: No 15 130

Metrics:

Precision =
$$45 / (45 + 15) = 0.75$$

Recall =
$$45 / (45 + 10) = 0.82$$

4. Deployment (10 points)

Integration Steps:

- 1. Package model as a REST API using Flask or FastAPI.
- 2. Securely connect API to hospital EHR system.
- 3. Build a prediction dashboard showing patient risk scores to doctors.

Compliance Measures:

Use HTTPS & AES for data encryption.

Follow HIPAA protocols:

Role-based access control

Data logging

Retention policies

5. <u>Optimization (5 points</u>)
Method:
Apply dropout regularization or early stopping during training to prevent overfitting.
Part 3: Critical Thinking (20 points)
1. Ethics & Bias (10 points)
Impact of Bias:
Biased models may underpredict risk for marginalized patients.
Leads to inadequate post-care and higher complication rates.
Mitigation Strategy:
Perform fairness audits (e.g., demographic parity testing).
Retrain using a stratified and demographically balanced dataset.
2. Trade-offs (10 points)
Interpretability vs. Accuracy:
High-performing models (e.g., XGBoost) lack transparency.
Clinician trust and legal compliance demand explainability.
Solution:
Use SHAP values to explain individual predictions.

Computational Trade-off:

With limited resources, choose simpler models like Logistic Regression or LightGBM over deep learning.

Part 4: Reflection & Workflow Diagram (10 points)

Reflection (5 points)

Most Challenging Part:

Balancing model complexity with interpretability in healthcare scenarios.

Improvements if Given More Time:

Collect more longitudinal data.

Use AutoML for hyperparameter optimization.

Workflow Diagram (5 points)

References

scikit-learn documentation: https://scikit-learn.org

Azure Machine Learning: https://azure.microsoft.com/en-us/services/machine-learning/

SHAP library: https://github.com/slundberg/shap

HIPAA Guidelines: https://www.hhs.gov/hipaa