SEPROSO. Plan de medidas.

Francisco Javier Delgado del Hoyo Yuri Torres de la Sierra Rubén Martínez García Abel Lozoya de Diego

Diciembre, 2008

Revisiones del documento

Historial de revisiones del documento

VERSIÓN	FECHA	DESCRIPCIÓN	AUTOR
0.1	16/11/08	Recopilación de Información Inicial.	Francisco
0.5	18/11/08	Asociación del documento al Plan de Proyecto.	Rubén

Indice

Re	evisiones del documento	i
1	Introducción.	1
	1.1 Propósito	1
	1.2 Ámbito	1
	1.3 Definiciones	1
	1.4 Referencias	1
	1.5 Visión general	2
2	Gestión de objetivos y subobjetivos.	3
3	Métricas.	4
	3.1 Métricas	5
4	Métricas primitivas.	7
A	Plantilla de registro de esfuerzo por actividad	9
В	Herramientas	10

Indice de tablas

3.1	Métricas WMC	5
3.2	Métricas Duración	6
3.3	Métricas DIT	6
4.1	Métricas SLOC	7
4.2	Métricas SLOCc	8
4.3	Métricas Número de Casos de Uso	8

Introducción.

1.1 Propósito.

El propósito de este Plan de Medición de Software es detallar cuales son las métricas (formas de medir el software) primitivas que serán recogidas, así como las métricas asociadas a la revisión de calidad del proyecto. Además se especifica una colección de objetivos del proyecto que permite monitorizar el progreso del mismo.

1.2 Ámbito.

Este plan define un programa simple de métricas, incluyendo los objetivos de la medición, las métricas utilizadas, y las métricas primitivas necesarias para realizar el seguimiento del progreso.

El plan está basado en los requisitos software especificados en el documento SRS.

1.3 Definiciones.

Véase el Glosario.

1.4 Referencias.

- 1. Artefactos: SRS, SSS, Plan de Desarrollo Software, Glosario. Grupo III.
- 2. UPEDU Measurement Plan: http://www.upedu.org/upedu/

1.5 Visión general.

A lo largo del resto de este documento especificaremos todos los detalles del Plan de Medición de Software, divido en las siguientes partes o temas:

- Objetivos de la medición: objetivos del programa de medición en este proyecto, en cuanto a logros, mejoras y calidad.
- **Métricas**: medidas a obtener a intervalos regulares de tiempo del proyecto para lograr los objetivos.
- **Métricas primitivas**: medidas recogidas automáticamente o manualmente para calcular las métricas anteriores.

Gestión de objetivos y subobjetivos.

Hay dos aproximaciones para garantizar buena calidad en el producto final. La primera consiste en garantizar el proceso de desarrollo (secuencia de actividades) y segunda en garantizar la calidad del producto obtenido (artefactos del proceso, incluyendo software, documentos y modelos). Mediante la medición pretendemos asegurar en ambos casos una calidad suficiente.

Más concretamente, los objetivos del programa de medición para este proyecto son los siguientes:

- Evaluar la calidad del producto (en todos los artefactos).
- Asegurar un seguimiento pormenorizado del proyecto (progreso de las fases según lo estimado y estado de las actividades realizadas)
- Evaluar aspectos de los requisitos: impacto de los cambios, tareas implicadas y nivel de realización.
- Facilitar la planificación y estimación para los nuevos proyectos: comparar relativamente las distintas fases realizadas y la importancia de cada actividad en ellas.

Métricas.

A continuación se enumeran las métricas que serán recogidas del proyecto a intervalos regulares para conseguir los objetivos de la sección anterior. Como también vimos, las métricas se pueden dividir entre las que permiten evaluar el producto o el proyecto, para conseguir calidad en el desarrollo.

PRODUCTO

Estableceremos algunas métricas para evaluar diferentes atributos de los tres elementos fundamentales del producto: el código, los documentos y los modelos.

- Código: tamaño (SLOC), tamaño para control de configuraciones (SLOCc), profundidad del árbol de herencia (DIT)
- Documento: tamaño (número de páginas), esfuerzo (horas de tiempo del equipo para producir y cambiar), volatilidad (número de páginas cambiadas), trazabilidad (checklist en revisión)
- Modelo: tamaño (número de casos de uso, casos de prueba, actores, clases o paquetes, WMC)

PROCESO

Para asegurar la calidad del proceso necesitamos realizar las mediciones sobre las actividades de más bajo nivel. Mantendremos un registro de cada actividad con los valores del esfuerzo empleado y las estimaciones iniciales planificadas, lo que nos permite medir la calidad de la planificación inicial.

• Esfuerzo: horas de esfuerzo del equipo.

Tabla 3.1: Métricas WMC.

Nombre	WMC (Weighted Methods for Class)	
Definición	Número de métodos implementados en una	
	clase.	
Objetivo	Indica el esfuerzo y tiempo necesario para de-	
	sarrollar y mantener la clase. Aquella clase con	
	más métodos es la que presenta un mayor im-	
	pacto potencial en sus hijos, ya que heredan to-	
	dos los métodos. Al mismo tiempo limitan su	
	reutilización ya que son más específicas de la	
	aplicación. Por lo tanto con esta métrica medi-	
	mos la usabilidad y la reutilización de las clases.	
Proceso de	Se debe recoger cuando una actividad produzca	
análisis	un Modelo de Clases de Diseño. Se calculará con	
	la herramienta CASE de modelado utilizada.	
	Será añadida a la Base de Datos de Medidas	
	del proyecto.	
Responsabilidad	abilidad Equipo de desarrollo.	

- Duración: tiempo transcurrido desde el inicio.
- Salida: cantidad y tamaño de los artefactos (incluidos los defectos detectados)

3.1 Métricas.

Las principales métricas son las siguientes:

- WMC **3.1**.
- Duración 3.2.
- DIT 3.3.

Tabla 3.2: Métricas Duración.

Nombre	Duración.	
Definición	Diferencia entre la fecha de finalización y la de	
	comienzo de una actividad. Se expresa en min-	
	utos y las fechas se utilizan con una resolución	
	de 15 minutos.	
Objetivo	Nos indica el esfuerzo y coste empleado en la	
	realización de una actividad. El esfuerzo se uti-	
	liza tanto en la medición del proceso como del	
	producto.	
Proceso de	Cada trabajador rellena la misma plantilla de es-	
análisis	timación de esfuerzo (incluida en la sección 5.1)	
	cada vez que termina una actividad. Además es	
	una de las entidades fundamentales del proyecto.	
	Se creará rellenando la plantilla manualmente y	
	será entregada al Gestor de Proyecto, que las	
	recogerá una vez por semana y que posterior-	
	mente las añadirá a la Base de Datos de Medidas	
	del proyecto.	
Responsabilidad	Cada trabajador encargado de una actividad.	

Tabla 3.3: Métricas DIT.

Nombre	DIT (Deep Inheritance Tree).	
Definición	Máxima longitud del camino desde una clase	
	hasta su clase raíz en el sistema.	
Objetivo	Nos indica el número de super-clases que afectan	
	a la clase, midiendo el nivel de dependencia y	
	con ello la reusabilidad, mantenimiento, porta-	
	bilidad, etc	
Proceso de	Se calcula manualmente estudiando los diagra-	
análisis	mas de clases de la herramienta, comenzando	
	por la clase base y ascendiendo por el árbol hasta	
	la clase raíz. Se hace cada vez que una activi-	
	dad actualice el Diagrama de Clases. Se recoge	
	para cada clase con herencia y posteriormente	
	se añade a la Base de Datos de Medidas del	
	proyecto.	
Responsabilidad	Equipo de desarrollo.	

Métricas primitivas.

Las siguientes métricas son básicas o primitivas porque se recogen y calcular manual o automáticamente para calcular otras métricas de la sección 3.3.

Tabla 4.1: Métricas SLOC.

Nombre	SLOC (Source Line of Code).	
Definición	Número de líneas de código desarrolladas.	
Proceso de	Se recogen mediante la herramienta de desar-	
análisis	rollo utilizada, justo al final de cada iteración,	
	detallando el módulo o fichero específico al que	
	pertenecen. Es un número entero que se alma-	
	cena en la Base de Datos de Medidas.	
Responsabilidad	Equipo de desarrollo.	

Tabla 4 2: Métricas SLOCc

Nombre	SLOCc (Source Line of Code).	
Definición	Número de líneas de código desarrolladas para	
	la línea base actual.	
Proceso de	Se calculan con la herramienta de desarrollo	
análisis	utilizada. Se recogen cada vez que la línea	
	base de desarrollo cambia, detallando el módulo	
	o fichero específico al que pertenecen. Es un	
	número entero que se almacena en la Base de	
	Datos de Medidas.	
Responsabilidad	Equipo de desarrollo.	

Tabla 4.3: Métricas Número de Casos de Uso.

Nombre	Número de Casos de Uso.	
Definición	Número de casos de uso identificados en el mod-	
	elo.	
Proceso de	Son recogidos manualmente por simple in-	
análisis	spección visual del Diagrama de Casos de Uso.	
	Se hace una vez por cada actividad que actual-	
	ice el Modelo de Casos de Uso del proyecto. Es	
	un número entero que se almacena en la Base de	
	Datos de Medidas.	
Responsabilidad	Equipo de desarrollo.	

Apéndice A

Plantilla de registro de esfuerzo por actividad

Para evaluar la calidad del proceso de desarrollo utilizamos como métrica el esfuerzo dedicado realmente a cada una de las actividades planificadas. Para obtener esta métrica los miembros del equipo de desarrollo deben completar manualmente y con una breve descripción los siguientes conceptos:

- Nombre: persona que desarrolló la actividad.
- Trabajador: rol que desempeñaba en el proceso.
- Actividad: nombre o ID de la actividad que ha finalizado.
- Artefacto: salidas producidas de la actividad (código, documento o modelo).
- Fecha: fecha del informe.
- Fecha de inicio: día y hora de comienzo de la actividad (resolución de 15 min)
- Fecha de finalización: día y hora de terminación de la actividad (resolución de 15 min)
- Duración: horas empleadas en total.

Apéndice B

Herramientas

Para el cálculo de las métricas nos apoyaremos en herramientas de desarrollo software ya existentes y Open Source. Más concretamente utilizaremos:

- Eclipse PHP (PDT) como entorno de desarrollo para el lenguaje PHP que permite medir líneas de código automáticamente.
- StarUML como herramienta de modelado UML para crear diagramas UML que permiten realizar manualmente algunas mediciones por simple inspección visual.