Polygon Triangulation

Geometric Algorithms

https://kbuchin.github.io/ruler/art/

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon ${\cal P}$ with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Goal: Use as few cameras as possible!

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Goal: Use as few cameras as possible!

 \Rightarrow Number depends on complexity n and shape of P

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Goal: Use as few cameras as possible!

NP-hard!

 \Rightarrow Number depends on complexity n and shape of P

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Goal: Use as few cameras as possible!

Simple upper and lower bounds?

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon P with n vertices (no holes)

Definition:

Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Observation:

Every camera sees a star-shaped region

Goal: Use as few cameras as possible!

Simple upper and lower bounds? between 1 and n

Problem: Install 360° -cameras for the surveillance of an art gallery such that the

whole gallery is seen.

Assumption:

Gallery is a simple polygon ${\cal P}$ with n vertices (no holes)

Definition

Try to find bounds.

Upper bound: prove, for any polygon that

Observati that many cameras suffices.

Every Lower bound: construct family of

Goal: Use polygons that needs many cameras.

Simple upper and lower bounds? between 1 and n

Observation: Triangles are easy to guard.

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

Does a triangulation always exist?

Is it unique?

How many triangles does a triangulation have?

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

$$n = 3$$
:

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

Cases: (i) $\overline{u}\overline{w}$ is a diagonal

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

Cases: (i) $\overline{u}\overline{w}$ is a diagonal

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

In both cases: partition into polygons of size m and n-m+2,

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

In both cases: partition into polygons of size m and n-m+2, and apply induction hypothesis to get n-2 triangles.

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

Cases: (i) $\overline{u}\overline{w}$ is a diagonal

(ii) otherwise let $t \in \triangle uvw$ be furthest from \overline{uw} , then \overline{vt} is a diagonal

In both cases: partition into polygons of size m and n-m+2, and apply induction hypothesis to get n-2 triangles.

Does the proof provide an algorithm? Running time?

Theorem 1: Every simple polygon with n vertices has a triangulation; every such triangulation consists of n-2 triangles.

Proof: Induction on n

n>3 : Let v be the left-most vertex, and u,w its neighbors

Cases: (i) $\overline{u}\overline{w}$ is a diagonal

(ii) otherwise let $t \in \triangle uvw$ be furthest from \overline{uw} , then \overline{vt} is a diagonal

In both cases: partition into polygons of size m and n-m+2, and apply induction hypothesis to get n-2 triangles.

Proof results in recursive $O(n^2)$ -algorithm!

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

• P can be guarded with n-2 cameras

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

- P can be guarded with n-2 cameras
- P can be guarded with $\approx n/2$ cameras

Observation: Triangles are easy to guard.

Idea: Partition P into triangles and guard every triangle.

- P can be guarded with n-2 cameras
- P can be guarded with pprox n/2 cameras
- ullet P can be guarded with even fewer vertex-guards (guards on vertices)

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

• For arbitrary large n find a simple polygon which needs pprox n/3 cameras

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

• For arbitrary large n find a simple polygon which needs pprox n/3 cameras

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

• P can be triangulated

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

• P can be triangulated

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

- P can be triangulated
- Triangulation can be 3-colored (induction or consider dual graph)

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Proof:

- P can be triangulated
- Triangulation can be 3-colored (induction or consider dual graph)
- Smallest color class has $\lfloor \frac{n}{3} \rfloor$ vertices (pigeon-hole principle)

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Algorithm:

- compute triangulation
- compute dual graph
- color triangulation
- select smallest color class

Theorem 2: $\lfloor n/3 \rfloor$ guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Algorithm:

- compute triangulation
- compute dual graph
- color triangulation
- select smallest color class

Running time?

Theorem 2: |n/3| guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Algorithm:

- compute triangulation
- compute dual graph
- color triangulation
- select smallest color class

 $O(n^2)$ O(n)

 $O(n^2)$ Running time?

Theorem 2: |n/3| guards are sometimes necessary and always sufficient to guard a simple polygon with n vertices.

Algorithm:

- compute triangulation
- $O(n^2)$ O(n)

compute dual graph

- color triangulation
- select smallest color class

Now: faster triangulation algorithm

Idea: Partition into simpler parts and triangulate those.

Idea: Partition into simpler parts and triangulate those.

Which polygons are easy to triangulate?

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

boundary from top to bottom never goes up

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

• step 2: triangulate y-monotone subpolyons

Idea: Distinguish 5 types of vertices

Idea: Distinguish 5 types of vertices

- turn vertices:

Idea: Distinguish 5 types of vertices

turn vertices: vertical direction switches

Idea: Distinguish 5 types of vertices

turn vertices: vertical direction switches

start vertex

if $\alpha < 180^{\circ}$

Idea: Distinguish 5 types of vertices

turn vertices: vertical direction switches

start vertex

split vertex

 α

if $\alpha < 180^{\circ}$

if
$$\beta > 180^{\circ}$$

Idea: Distinguish 5 types of vertices

- turn vertices: vertical direction switches

start vertex

split vertex

if $\alpha < 180^\circ$

if
$$\beta > 180^{\circ}$$

Idea: Distinguish 5 types of vertices

turn vertices: vertical direction switches

start vertex

split vertex

end vertex

merge vertex

if $\alpha < 180^{\circ}$

if
$$\beta > 180^{\circ}$$

if
$$\delta > 180^\circ$$

Idea: Distinguish 5 types of vertices

turn vertices: vertical direction switches

start vertex

split vertex

end vertex

merge vertex

if $\alpha < 180^{\circ}$

if
$$\beta > 180^{\circ}$$

if
$$\delta > 180^{\circ}$$

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

Proof: Suppose P is not y-monotone.

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

Proof: Suppose P is not y-monotone.

Let ℓ be a horizonal line intersecting several components of P.

Cases:

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

Proof: Suppose P is not y-monotone.

Let ℓ be a horizonal line intersecting several components of P.

Cases:

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

Proof: Suppose P is not y-monotone.

Let ℓ be a horizonal line intersecting several components of P.

Cases:

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

 \Rightarrow We need to remove all split and merge vertices by adding diagonals

Lemma 1: If a polygon does not contain split and merge vertices then it is y-monotone.

 \Rightarrow We need to remove all split and merge vertices by adding diagonals

Careful: Diagonals shouldn't intersect edges of P or other diagonals

1) Diagonals for split vertices

• for every vertex v: compute left edge left(v)

1) Diagonals for split vertices

• for every vertex v: compute left edge left(v)

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\mathrm{left}(w) = \mathrm{left}(v)$

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\mathrm{left}(w) = \mathrm{left}(v)$

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\mathrm{left}(w) = \mathrm{left}(v)$

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\operatorname{left}(w) = \operatorname{left}(v)$
- store for every edge e the lowest vertex w as $\mathtt{helper}(e)$

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\operatorname{left}(w) = \operatorname{left}(v)$
- store for every edge e the lowest vertex w as $\mathtt{helper}(e)$

1) Diagonals for split vertices

- for every vertex v: compute left edge left(v)
- connect split vertex v to lowest vertex w above v with $\mathrm{left}(w) = \mathrm{left}(v)$
- store for every edge e the lowest vertex w as $\mathtt{helper}(e)$
- when ℓ reaches split node v: connect v to helper(left(v))

2) Diagonals for merge vertices

• merge vertex v reached: update $\operatorname{helper}(\operatorname{left}(v)) = v$

2) Diagonals for merge vertices

• merge vertex v reached: update $\operatorname{helper}(\operatorname{left}(v)) = v$

• if split vertex v' with $\mathtt{left}(v') = \mathtt{left}(v)$ reached next: add diagonal (v,v')

2) Diagonals for merge vertices

- merge vertex v reached: update $\operatorname{helper}(\operatorname{left}(v)) = v$
- if split vertex v' with ${\tt left}(v') = {\tt left}(v)$ reached next: add diagonal (v,v')
- if $\operatorname{helper}(\operatorname{left}(v))$ is updated to v': add diagonal (v,v')

2) Diagonals for merge vertices

- merge vertex v reached: update $\operatorname{helper}(\operatorname{left}(v)) = v$
- if split vertex v' with ${\tt left}(v') = {\tt left}(v)$ reached next: add diagonal (v,v')
- if $\operatorname{helper}(\operatorname{left}(v))$ is updated to v': add diagonal (v,v')
- if end v' of $\mathrm{left}(v)$ is reached: add diagonal (v,v')

2) Diagonals for merge vertices

- merge ver update he update he Handle merge vertices in separate sweep.
 if colit vertices in separate sweep.
- if split vertage = upside-down split add diagonar (v, v)
- if helper(left(v)) is updated to v': add diagonal (v,v')
- if end v' of $\mathrm{left}(v)$ is reached: add diagonal (v,v')

Events:

Status:

Events: Vertices of P in lexicographical order

Status:

Events: Vertices of P in lexicographical order

Status: Components of P intersected by ℓ : for each component store left

edge e and vertex v = helper(e)

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow \mathcal{Q}$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow Q$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

HANDLESTARTVERTEX(vertex v)

- 1: $\mathcal{T} \leftarrow$ insert left edge e
- 2: $helper(e) \leftarrow v$

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow Q$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

HANDLESTARTVERTEX(vertex v)

- 1: $\mathcal{T} \leftarrow$ insert left edge e
- 2: $helper(e) \leftarrow v$

HANDLEENDVERTEX(vertex v)

- 1: $e \leftarrow \text{left edge}$
- 2: **if** isMergeVertex(helper(e)) **then**
- 3: $\mathcal{D} \leftarrow \mathsf{insert}\left(\mathsf{helper}(e),v\right)$
- 4: delete e from ${\mathcal T}$

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow Q$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

HANDLESPLITVERTEX(vertex v)

- 1: $e \leftarrow \text{edge left of } v \text{ in } \mathcal{T}$
- 2: $\mathcal{D} \leftarrow \mathsf{insert}\left(\mathsf{helper}(e), v\right)$
- 3: $helper(e) \leftarrow v$
- 4: $\mathcal{T} \leftarrow$ insert right edge e' of v
- 5: $helper(e') \leftarrow v$

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow Q$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

HANDLEMERGEVERTEX(vertex v)

- 1: $e \leftarrow \text{right edge}$
- 2: **if** isMergeVertex(helper(e)) **then**
- 3: $\mathcal{D} \leftarrow \mathsf{insert}\left(\mathsf{helper}(e), v\right)$
- 4: delete e from \mathcal{T}
- 5: $e' \leftarrow \text{edge left of } v \text{ in } \mathcal{T}$
- 6: **if** isMergeVertex(helper(e')) **then**
- 7: $\mathcal{D} \leftarrow \text{insert } (\text{helper}(e'), v)$
- 8: $helper(e') \leftarrow v$

Algorithm MakeMonotone(polygon P)

- 1: $\mathcal{D} \leftarrow$ doubly-connected edge list for E(P)
- 2: $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically
- 3: $\mathcal{T} \leftarrow \emptyset$ (binary search tree for status of sweepline)
- 4: while $Q \neq \emptyset$ do
- 5: $v \leftarrow \mathcal{Q}$.popVertex()
- 6: HANDLEVERTEX(v)
- 7: return \mathcal{D}

HANDLEREGULARVERTEX(vertex v)

- 1: **if** P lies locally right of v **then**
- 2: $e, e' \leftarrow$ upper, lower edge
- 3: **if** isMergeVertex(helper(e)) **then**
- 4: $\mathcal{D} \leftarrow \text{insert (helper}(e), v)$
- 5: delete e from \mathcal{T}
- 6: $\mathcal{T} \leftarrow \text{insert } e'; \text{helper}(e') \leftarrow v$
- 7: else
- 8: $e \leftarrow \text{edge left of } v \text{ in } \mathcal{T}$
- 9: **if** isMergeVertex(helper(e)) **then**
- 10: $\mathcal{D} \leftarrow \text{insert (helper}(e), v)$
- 11: $helper(e) \leftarrow v$

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Proof:

all split and merge vertices are removed

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Proof:

- all split and merge vertices are removed
- diagonals are crossing free

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Proof:

- all split and merge vertices are removed
- diagonals are crossing free
 - no edges and diagonals cross $Q \Rightarrow$ safe to add (v,v')

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Proof:

- all split and merge vertices are removed
- diagonals are crossing free
 - no edges and diagonals cross $Q \Rightarrow$ safe to add (v,v')

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

- create priority queue ${\cal Q}$
- initialize status ${\mathcal T}$
- time per event
 - Q.deleteMax
 - search, delete, insert elements of ${\mathcal T}$
 - add ≤ 2 diagonals to $\mathcal D$
- space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

• create priority queue ${\cal Q}$

O(n) time

- initialize status ${\mathcal T}$
- time per event
 - Q.deleteMax
 - search, delete, insert elements of ${\mathcal T}$
 - add ≤ 2 diagonals to $\mathcal D$
- space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

- create priority queue ${\cal Q}$
- initialize status ${\mathcal T}$
- time per event
 - Q.deleteMax
 - search, delete, insert elements of ${\mathcal T}$
 - add ≤ 2 diagonals to $\mathcal D$
- space:

- O(n) time
- O(1) time

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

• create priority queue ${\cal Q}$

O(n) time

• initialize status ${\mathcal T}$

O(1) time

time per event

- Q.deleteMax

 $O(\log n)$ time

- search, delete, insert elements of ${\mathcal T}$
- add ≤ 2 diagonals to $\mathcal D$
- space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

create priority queue \mathcal{Q}

O(n) time O(1) time

• initialize status ${\mathcal T}$

time per event

- Q.deleteMax

 $O(\log n)$ time

– search, delete, insert elements of $\mathcal{T} = O(\log n)$ time

– add ≤ 2 diagonals to $\mathcal D$

space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(\ ?)$ time using O(?) space into y-monotone polygons.

• create priority queue $\mathcal Q$ O(n) time

- initialize status \mathcal{T} O(1) time

time per event

– \mathcal{Q} .deleteMax $O(\log n)$ time

– search, delete, insert elements of $\mathcal{T} = O(\log n)$ time

– add ≤ 2 diagonals to \mathcal{D} $\hspace{1cm} O(1)$ time

space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(\ ?)$ time using $O(\ ?)$ space into y-monotone polygons.

• create priority queue ${\cal Q}$

• initialize status ${\mathcal T}$

• time per event

- Q.deleteMax

– search, delete, insert elements of ${\mathcal T}$

– add ≤ 2 diagonals to $\mathcal D$

O(n) time

O(1) time

 $O(\log n)$ time

 $O(\log n)$ time

 $O(\log n)$ time

O(1) time

• space:

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

• create priority queue ${\cal Q}$

• initialize status ${\mathcal T}$

time per event

- Q.deleteMax

– search, delete, insert elements of ${\mathcal T}$

– add ≤ 2 diagonals to $\mathcal D$

space:

O(n) time

O(1) time

 $O(\log n)$ time

 $O(\log n)$ time

 $O(\log n)$ time

O(1) time

O(n)

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in O(?) time using O(?) space into y-monotone polygons.

• create priority queue $\mathcal Q$ O(n) time

• initialize status \mathcal{T} O(1) time

• time per event $O(\log n)$ time

- \mathcal{Q} .deleteMax $O(\log n)$ time

– search, delete, insert elements of $\mathcal{T} = O(\log n)$ time

– add ≤ 2 diagonals to \mathcal{D} $\hspace{1cm} O(1)$ time

• space: obviously? O(n)

Lemma 2: Algorithm MakeMonotone inserts a set of crossing-free diagonals in P that partition P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(n \log n)$ time using O(n) space into y-monotone polygons.

• create priority queue ${\cal Q}$

• initialize status ${\mathcal T}$

time per event

- Q.deleteMax

– search, delete, insert elements of ${\mathcal T}$

– add ≤ 2 diagonals to $\mathcal D$

space:

O(n) time

O(1) time

 $O(\log n)$ time

 $O(\log n)$ time

 $O(\log n)$ time

O(1) time

O(n)

Triangulation: Overview

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

Triangulation: Overview

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

• step 2: triangulate y-monotone subpolyons

Triangulating a y-monotone Polygon

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

Triangulating a y-monotone Polygon

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

Triangulating a y-monotone Polygon

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

more precisely:

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

reminder: boundary chains from top to bottom only go down

approach: greedy, on both sides top-down

invariant?

untriangulated part above current vertex is an upside-down funnel

more precisely:
only 1 chain!

- 1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
- 2: stack $S \leftarrow \emptyset$; $S.push(u_1)$; $S.push(u_2)$

```
TriangulateMonotonePolygon(polygon P as DCEL)
```

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: \operatorname{add}(u_j, v)

9: S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\mathsf{push}(u_1); S.\mathsf{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\mathsf{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\mathsf{pop}()

7: if S is not empty then

8: \mathsf{add}(u_j, v)

9: S.\mathsf{push}(u_{j-1}); S.\mathsf{push}(u_j)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

 $S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)$

9:

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)

9: S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

 $S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)$

9:

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

 $S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)$

9:

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

 $S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)$

9:

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

 $S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)$

9:

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\operatorname{push}(u_1); S.\operatorname{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\operatorname{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\operatorname{pop}()

7: if S is not empty then

8: add (u_j, v)
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

10:

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n

2: stack S \leftarrow \varnothing; S.\mathsf{push}(u_1); S.\mathsf{push}(u_2)

3: for j \leftarrow 3 to n-1 do

4: if u_j and S.\mathsf{top}() on different boundaries then

5: while S is not empty do

6: v \leftarrow S.\mathsf{pop}()

7: if S is not empty then

8: \mathsf{add}(u_j, v)

9: S.\mathsf{push}(u_{j-1}); S.\mathsf{push}(u_j)
```

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_j and S.top() on different boundaries then
          while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                 \mathsf{add}\left(u_{i},v\right)
8:
          S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
              v \leftarrow S.pop()
13:
              add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_j and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                  \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
11:
           v \leftarrow S.pop()
           while S is not empty and u_i sees S.top() do
12:
               v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
```



```
TriangulateMonotonePolygon(polygon P as DCEL)
```

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_j and S.top() on different boundaries then
           while S is not empty do
5:
              v \leftarrow S.pop()
6:
              if S is not empty then
                 \operatorname{\mathsf{add}}\left(u_{i},v\right)
8:
           S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
        else
           v \leftarrow S.pop()
11:
           while S is not empty and u_j sees S.top() do
12:
              v \leftarrow S.pop()
13:
               add diagonal (u_j, v)
14:
           S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
16: connect u_n to all vertices in S (except first and last)
```


TriangulateMonotonePolygon(polygon P as DCEL)

```
1: merge vertices of left/right boundary \rightarrow decreasing seq. u_1, \ldots, u_n
2: stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
3: for j \leftarrow 3 to n-1 do
       if u_i and S.top() on different boundaries then
5:
          while S is not empty do
             v \leftarrow S.pop()
6:
             if S is not empty then
                add (u_i, v)
          S.\mathsf{push}(u_{i-1}); S.\mathsf{push}(u_i)
9:
10:
       else
        v \leftarrow S.pop()
11:
          while S is not empty and u_j sees S.top() do
12:
             v \leftarrow S.pop()
13:
              add diagonal (u_i, v)
14:
          S.\mathsf{push}(v); S.\mathsf{push}(u_i)
15:
16: connect u_n to all vertices in S (except first and last)
```

Question:

running time?

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(n \log n)$ time using O(n) space into y-monotone polygons.

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(n \log n)$ time using O(n) space into y-monotone polygons.

Theorem 5: A simple polygon with n vertices can be triangulated in $O(n \log n)$ time using O(n) space.

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(n \log n)$ time using O(n) space into y-monotone polygons.

↓ Does this follow immediately?

Theorem 5: A simple polygon with n vertices can be triangulated in $O(n \log n)$ time using O(n) space.

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned in $O(n \log n)$ time using O(n) space into y-monotone polygons.

at most n-3 diagonals added, \Downarrow each is part of 2 y-monotone polygons \Rightarrow summed complexity of y-monotone polygons is O(n)

Theorem 5: A simple polygon with n vertices can be triangulated in $O(n \log n)$ time using O(n) space.

Summary (Art Gallery Problem)

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

• step 2: triangulate y-monotone subpolyons

Summary (Art Gallery Problem)

2-step procedure:

• step 1: partition P into y-monotone subpolygons

Definition: A polygon P is y-monotone if, for every horizontal line ℓ , the intersection $\ell \cap P$ is connected.

- step 2: triangulate y-monotone subpolyons
- step 3: use DFS on dual graph to 3-color vertices

Does the triangulation algorithm generalize to polygons with holes?

Does the triangulation algorithm generalize to polygons with holes?

- triangulation: yes
- but are $\lfloor n/3 \rfloor$ cameras sufficient? No, generalization of the art gallery theorem gives: sometimes $\lfloor (n+h)/3 \rfloor$ cameras are needed [Hoffmann et al. '91]

Does the triangulation algorithm generalize to polygons with holes?

- triangulation: yes
- but are $\lfloor n/3 \rfloor$ cameras sufficient? No, generalization of the art gallery theorem gives: sometimes $\lfloor (n+h)/3 \rfloor$ cameras are needed [Hoffmann et al. '91]

Can we triangulate general simple polygons faster?

Does the triangulation algorithm generalize to polygons with holes?

- triangulation: yes
- but are $\lfloor n/3 \rfloor$ cameras sufficient? No, generalization of the art gallery theorem gives: sometimes $\lfloor (n+h)/3 \rfloor$ cameras are needed [Hoffmann et al. '91]

Can we triangulate general simple polygons faster?

- Yes. This was an open problem for a long time, until increasingly faster (randomized) algorithms were developed by the end of 1980s
- O(n)-time algorithm by Chazelle [1990] (complicated)
- There is an elegant $O(n \log^* n)$ expected-time algorithm [Seidel 1991] (simple)