ELSEVIER

Contents lists available at ScienceDirect

Measurement: Sensors

journal homepage: www.sciencedirect.com/journal/measurement-sensors

Workflow scheduling in cloud environment – Challenges, tools, limitations & methodologies: A review

M. Menaka*, K.S. Sendhil Kumar

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India

ARTICLE INFO

Keywords: Cloud computing Cloud migration Workflow scheduling QoS(Quality of service) Virtualization Cloud service providers(CSP) Machine learning Task automation

ABSTRACT

Workflow scheduling is a framework that simulates major domain applications like gaming, Natural language processing, data science etc., for which the task order automation and demand consistency to be maintained. This increases the complexities for CSPs based on various QoS parameters like cloud deployment models, service types, VM templates, migration process, energy dissipation etc., The recent research survey analysis and marketing perspective parameters include unknown demands, task requirements failure, cost incurs access delay, feasible deadlines, system capability, cache latency, scheduler types and policies, VMs, platform support, faulttolerant and virtualization types and their limitations. The various survey papers considered were supporting QoS parameters of cloud environment towards industry task automation wherein the researchers will find their way to identify problem definitions with measured approaches and solutions. The analysis would pave way to incorporate machine learning approaches to derive workflows for business, healthcare, Speech recognition, Text recognition; drowsiness detection, road sign detection, metal part identification etc., The analysis done in this paper leads to various challenges and issues found in workflow scheduling approaches. The survey paper is summarized with introduction in chapter 1 followed by comparative conclusions of various research papers and concluded with summary of the findings based on the survey. This survey work can be extended considering each task in workflow and data migration types & issues which incurs budget, legal issues & policies and technical methodologies to find feasible solution for task automation.

1. Introduction

Cloud Computing [24] along with virtualization technology provide a large research scope towards all major domain and applications. The platforms support given by various vendors maintains the consistency towards the growth of the demand with feasible cost that maps directly the end user requirements with the process of automation. The survey analysis done from various research focus includes scheduling types, comparison between methodologies, execution environment, objectives and the conclusions derived, QoS parameters considered etc.,

1.1. Benefits & applications

The workflow is applicable to any domain in order to align the sequence of tasks and enhance process automation considering energy dissipation, VM types, workflow types, number of tasks enforced, deadline constraints, cloud billing cost, acquisition and termination delays etc. Any workflow systems [22] includes the processing sequence

from problem identification, collection of datasets, load & summarize datasets, data segregation, model evaluation, feature scaling, algorithm or technique to be applied for the model, training the model, model validation and prediction. The benefits and applications [19] of workflow scheduling are listed below.

- ➤ Face detection workflow process
- ➤ Natural Language Processing
- > Sheet Metal Part Identification systems
- ➤ Scientific workflows
- ➤ Object detection systems
- ➤ Leaf disease detection system
- ➤ License plate recognitions
- ➤ Fake news detection systems
- ➤ Gaming
- ➤ Speech Emotion Analysis
- ➤ Recommendation Systems
- ➤ Title formation for paragraphs

E-mail addresses: menaka.muniswamy2017@vitstudent.ac.in (M. Menaka), sendhilkumar.ks@vit.ac.in (K.S. Sendhil Kumar).

^{*} Corresponding author.

Fig. 1. Cloud scheduling levels.

- ➤ Traffic prediction systems
- ➤ Data intensive workflows
- ➤ Data science applications

1.2. Automation of workflow scheduling

The process or task automation in workflow scheduling is similar to resource allocation graph to one or multiple jobs [12] that depends on the domain and execution requirements in the cloud environment. To automate applications the static and dynamic scheduling [45] support by the cloud vendor that maps the continuous modifications in the VM instance given by service providers. This VM should meet all the objectives and challenges of tasks. The cloud scheduling levels [22] is shown below in Fig. 1 and research analysis with input and output mapping parameters, tools are shown in Table 1 below. The input and output representation decides the workflow scheduling levels [38] as depicted in Fig. 1 below. The scheduler type either static or dynamic will have an impact over the categorization of subsequent levels of cloud

Table 1Comparative analysis of workflow scheduling strategies.

Ref. No.	Algorithm	Strategies	Results	Future Scope	Tools	Params
[1] Qin-zhe Xiao, 2022	Co-operative co evolution genetic programming	Task and Resource selection rule	High performance & Prediction of Heterogeneous earliest finish time	Optimize accuracy and heuristic interpretability	Montage, Epigenomics, Guassian Elimination, Fast Fourier Transform	Scheduling length ratio, speedup and efficiency
[2] Xiaoyong Tang, 2022	Cost-efficient task scheduling strategy	Task initialization, greedy workflow scheduling, task adjusting method	Minimum execution financial costs, save total workflow execution cost	VM Types and I/O capacity to be increased	Epigenomics, Cybershake, LIGO	Schedule length, deadline constrained tasks, cloud billing period
[3] Ya Zhou, 2022	Knowledge driven multi objective evolutionary workflow scheduling algorithm	Mined workflow structural knowledge, objective space normalization	Population diversity (15/20)	To increase number of workflow instances	Montage, Epigenomics, Cybershake, Sipht, Inspiral	Makespan, Monetary cost
[4] Huifang Li, 2022	Multi swarm co- evolution based hybrid intelligent optimization	Multi swarm co- evolutionary mechanism, update process of particle swarm optimizer, Genetic Algorithm	Minimize total makespan and cost	To consider hybrid clouds with various resource provisioning models	Montage, Epigenomics, Cybershake, LIGO	Application scheduling with different QoS
[5] Sebastian Braun, 2022	Multi agent systems	Skill based production based on real time demand	Flexible to correct errors, reconfiguration of the material flow	To introduce more agent types to improve prediction accuracy	Python 3.8	production cost & time
[6] Amelie Chi Zhou, 2022	Probabilistic approach	Pruning techniques to reduce computation overhead	Performance improved 65%	To improve reliability	Montage, Cybershake	Optimization, time, reliability
[7] Haihua Gu, 2021	Spark task scheduling	Stage sequencing, task scheduling, scheduling adjustment	Minimize rental cost,	To analyze heuristic algorithm with more practical characteristics	Montage, Epigenomics, Cybershake, LIGO	Data skew, deadline constraints
[8] Fuguang Yao, 2021	Task duplication based scheduling algorithm	Dynamic sub-budget allocation system & duplication based task scheduling mechanism	Optimize make span, improved resource utilization	To deal with uncertainties in workflows	Montage, Inspiral, Cybershake, Sipht, Epigenomics	Number of tasks, execution time, ratio of transmission to computing time, task out-degree
[9] Zulfiqar Ahmad, 2021	Workflow performance evaluation platforms	Resource scheduling, fault-tolerant, energy efficient approaches	Online workflow management	To consider big data management in fog and edge computing	Cloudsim, Workfloesim, Grounsim, IFogsim, IoTsim	Scheduling policies
[10] Yun Wang, 2021	Hybrid Particle swarm optimization	PSO and repair method for idle slots	Reduce execution cost, increased success rate	To implement prototype to test HPSO and predict execution times	Montage, Inspiral, Cybershake, Sipht, Epigenomics	VM types with deadline constraint
[11] Maria Carla Calzarossa, 2021	Multi objective constrained optimization	Scheduling plan with Monte Carlo and Genetic Algorithm	Efficient cloud resource provisioning	To consider edge technologies in uncertain cloud environment	Montage Cybershake, Epigenomics	Cloud infrastructure, VMs and processing capacity
[12] Jiagang Liu, 2021	Online Multi Workflow Scheduling Framework & Heuristic algorithm	Schedule workflows with random arrival time and uncertain/ unknown execution time	Reduce cost of VM rent and deadline violation probability	To consider optimization for VM rental costs in IaaS cloud	Montage, LIGO, Cybershake, Sipht, Epigenomics	Resource utilization
[13] Junlong Zhou, 2021	Dependable Scheduling	Lifetime reliability model	Lower PoF, Higher soft error reliability	To extend model to heterogeneous servers in	Montage, Inspiral, Cybershake, Sipht	Reliability, Security & real time constraints (continued on next page)

Table 1 (continued)

	Algorithm	Strategies	Results	Future Scope	Tools	Params
				cyber physical cloud systems		
14] Xiaojin	Real time multiple	Model for workflow	Reduce cost under	To optimize algorithm	Montage, LIGO,	Rental cost, resource
Ma, 2021	workflow scheduling	initialization, task allocation and feedback	deadline constraints	performance when task fails due to hardware faults	Cybershake, Sipht	utilization, success rate, deadline deviation
15] Hongda Wang, 2020	Slicing algorithm	Prioritization method for regression test cases	Improved error detection	To consider large scale service oriented workflow applications	BPEL workflow applications in SOA	Error rate, Fault tolerance
16] Ruey-Kai Sheu, 2020	Identification System for Process automation using Deep Learning Algorithm	Multi filtering approach	High performance	To apply in different types of production industries	CAD model database	Performance and accuracy
17] Zheyi Chen, 2020	Online workflow scheduling algorithm	Adaptive resource allocation & consolidation	Reduce total cost of executing multiple scientific workflows	Data transmission between tasks	Cybershake, Epigenomic	High Resource utilization, Lower execution costs
18] Omed Hassan Ahmed, 2020	Particle swarm optimization & Salp swarm algorithm	Markov models in fog environment	Reduce deadline missed workflows	Dynamic fog environments	Montage	Network bandwidths VMs
19] Wei Hu, 2020	Spark application framework with privacy protection	Task sequencing rules	High Performance, Shorter execution time	Spark scheduling with data affinity	Cybershake, Montage, Genome, SIPHT, LIGO	Deadline and privacy constraints
20] Longxin Zhang, 2020	Reducing energy consumption using remapping of critical tasks	Task allocated to VMs with low energy consumption	Lower energy consumption without compromising budget constraints	Failed task recovery on edge computing	Epigenomic	Critical task path, budget factor
21] Jie Zhu, 2020	Fuzzy task scheduling	Tight and relaxed deadline setting	Robust and Effective	Processing time and data size are uncertain	Java with simulated clusters	Minimize rental cost and maximize user satisfaction
22] J. Angela Jennifa Sujana, 2019	Smart Particle swarm optimization bases secure scheduling	Assign task to best VMs	Make span with security	Efficient load balancing methods	Workflowsim	Minimum make spar and cost
23] Shahbaz Afzal, 2019	Load balancing techniques	Load balancing	Proactive & reactive algorithms	Efficient load balancing with QoS metrics & complexity evaluation	CloudSim, VMWare, Eucalyptus, Cloud Analyst, Matlab	Taxonomy based classification
24] Yehia Kotb, 2019	Workflow net based framework	Convert workflow net to algebraic representations	Increase number of achieved tasks	Different fog computing sites to cooperate	Raspberry Pi	Performance 7 times faster
25] Xin Ye, 2019	Fragmentation based genetic algorithm	Task priority dispatching rules	Minimize execution time for all workflow instances	To consider large number of VMs, workflow model, different objectives and constraints	Matlab R2010b	Execution time
26] Somayeh Mohammadi, 2019	Multi objective model	Weighted-sum, Benson's scalarization, weighted min-max	Performs well than method wrt hypervolume	Heuristic approach	Montage, Epigenomic, Cybershake, Ligo	Minimization of cost makespan
27] Naqin Zhou, 2018	Multi workflow heterogeneous budget and deadline constrained scheduling	Uniform ranking, task priority	Performs in both consistent and inconsistent environments	Consider reliability and energy	SimGrid	Adaptability
28] Khawar Hasham, 2018	Cloud aware provenance	Workflow structure, execution infrastructure, workflow outputs	Trace changes in provenance and workflow outputs	To consider different graph nodes or edges and weights prioritized by critical nature	Montage, Condor, Pegasus	Workflow reproducibility
29] Huangke Chen, 2018	Cost effective reactive scheduling algorithm	Mltiple workflows in hybrid way	Monetary cost, resource efficiency	To improve resource utilization stability >78%	Montage, SIPHT, Cybershake, Ligo	Idle time slots & resource efficiency
30] Guangshun Yao [2017]	Imbalance characteristic fault- tolerant workflow scheduling(ICFWS)	Resubmission & replication of tasks	Resource utilization, Task completion time	VM performance fluctuation, Elastic resource provisioning not done	WorkflowSim toolkit, Montage, CyberShake, Epigenomics, Inspiral	Fault – tolerance & Performance evaluation
31] Bin Xiang [2017]	Greedy ANT	Task priority, Forward/ Backward dependency	Reduce total execution time	More QoS constraints, hybrid heuristic	Matlab R2013a platform	Computation Cost
32] Quanwang Wu [2017]	L-ACO and ProLis	Rank tasks & service allocation to task with deadline	Minimize execution cost, Improved performance	Clustering & replication techniques to improve performance	Montage, CyberShake, Epigenomics, LIGO	Computation Cost & Performance evaluation
33] Huangke Chen [2017]	SOLID (Scheduling apprOach with seLectIve tasks Duplication)	Task duplication and intermediate data encryption	Reduced cost & makespan with resource efficiency	Robust task scheduling & resource management	Montage, CyberShake, Epigenomics, Inspiral & SIPHT	Security & Performance evaluation
34] Shuibing He [2017]	MinMax Memory Claim (MMC)	Banker's algorithm, Improved Banker's algorithm, Deadlock	maximize the concurrency with minimum memory	Constrained in-memory caching	-	Performance evaluation, Deadlock resolution
			resources			(continued on next page

Table 1 (continued)

Ref. No.	Algorithm	Strategies	Results	Future Scope	Tools	Params
		detection-based				
		scheduling(DDS)				
[35] Bhaskar	Cloud-based workflow	Performance metrics &	minimize workflow	Not considered resource	SIPHT and	Performance, Resource
Prasad Rimal	scheduling (CWSA)	policies	completion time,	failures & complex	CyberShake, CloudSim	utilization
[2017]	policy		tardiness, execution	reservation scenarios for	framework	
			cost & resource	scaling multi-tier		
			utilization	applications.		
[36]	Cost adaptive resource	Division policy &	Minimize resource	Not considered the	OpenStack,	Cost, Performance
Seong-Hwan	management scheme	science gateway, VM	management cost with	resource unavailability	CloudStack	
Kim [2017]		types	performance	failures		
[37] Xiaoping	Multirule-based	deadline division and	improvement Improved performance	Different pricing interval	Montage, CyberShake,	Cost, Performance
Li [2017]	heuristic	task scheduling	improved performance	lengths on resource	Epigenomics, SIPHT	cost, i ciroimance
In [2017]	neuristic	tusk scheduling		provisioning	Epigenomies, on 111	
[38] Mateusz	Minimum	Dynamic task allocation	Energy efficient	Consider multiple data	GreenCloud simulator,	SaaS scheduling in
[2016]	Dependencies Energy-	to servers which are less	approach & satisfiable	centers or mobile app	Montage, Epigenomics	data center
	efficient DAG (MinD	dependant	level of tardiness	scenarios	& Layer-by-Layer	
	+ ED)	1			, , ,	
[39] Alexander	Cloud Deadline	Various compute	High efficiency	Improved heuristic	Montage, CyberShake,	Computational
A. Visheratin	Coevolutional Genetic	services with time	compared to heuristic	algorithm	Epigenomics, Inspiral	services
[2016]	Algorithm (CDCGA)	periods of charge	algorithm		& SIPHT	
[40]	Analysis of heuristic,	pros and cons of	Analysis of various	Secure scheduling	Cloudsim, IBM RC2,	Cost, Type, Makespan,
Mohammad	metaheuristic and	scheduling approaches	security attacks		Amazon EC2, MATLAB	Load balancing
Masdari [2016]	hybrid algorithms					
[41] Bing Lin	Multi-Clouds with	Partial Critical Path	Minimize execution	Consider execution time	Montage, CyberShake,	Cost, Deadline
[2016]	Partial Critical Paths		cost & satisfy deadline	& data transfer time in	Epigenomics, SIPHT	
	Pretreatment		constraint	multicloud & private &		
	(MCPCPP)			hybrid cloud types.		
[42] Xiaomin	FASTER algorithm	Backward shifting.	resource utilization	Communication faults &	CloudSim toolkit	Fault – tolerance
Zhu [2016]		Horizontal/vertical	and schedulability	improve scheduling		
		scaling up and vertical	even in the presence of	accuracy		
[40] Theomes	Evolutionary Multi-	scaling down IaaS platform	node failures Minimize cost	Monotony cost & time	Amonon ECO	Cost
[43] Zhaomeng Zhu [2016]	objective	scheduling	Willimize Cost	Monetary cost & time overheads of	Amazon EC2, Montage, CyberShake,	Cost
Ziiu [2010]	Optimization (EMO)	scheduling		communication and	Epigenomics, Inspiral	
	Optimization (EMO)			storage to be considered	& SIPHT	
[44] Xiaolong	EnReal Method	Dynamic deployment of	VM allocation to	Consider real cloud	CloudSim toolkit	Energy consumption,
Xu [2016]	Eliteti Method	VMs	support scientific	platform & scheduling	Glottdoini toonut	Performance
Au [2010]		V 1113	workflow executions	issues		refrontinge
[45] Amelie Chi	Dyna scheduling	A* based instance	minimize the expected	Improved scheduling	Amazon EC2,	Cost, Performance
Zhou [2016]	system	configuration method	monetary cost with	approach	Montage, LIGO,	
			deadlines met		Epigenomics	
[46] Zhicheng	List based heuristic	Task mode mapping,	Minimize service	software setup times	Montage, CyberShake,	Services
Cai [2016]	(LHCM) concerning	critical path generation	renting cost	should be explicitly	Epigenomics, LIGO,	
	the task processing	methods		considered	SIPHT	
	cost and task-slot					
	matching		4			
[47] Yang Wang	Workflow-Aware File	Dependency solver	High performance,	Centralized architecture	Master host - AMD	Performance, Resource
[2015]	System(WaFS)	algorithm, Inserting	storage utilization	 single point of failure, 	Athlon XP 2.2 GHz, 1	utilization
		dependencies to		load balancing	GB/512K Execution	
		JobSpace			host - AMD Athlon 2.4	
[49] Podrico M	Enhanced IC DCD with	Tack cohoduling date	Paduca total avanution	Tack replication serves	GHz, 1 GB/512K	Time coalability
[48] Rodrigo N.	Enhanced IC-PCP with Replication(EIPR)	Task scheduling, data	Reduce total execution	Task replication across	Montage, CyberShake,	Time, scalability,
Calheiros	algorithm	transfer & task replication	time and deadlines met	multiple clouds	LIGO, SIPHT	availability
[2014]	Particle Swarm	•	Reduce total execution	Ignore performance	CloudSim Montogo	Cost, Performance
[49] Maria A.		Schedule generation & performance evaluation		Ignore performance	CyberShake, LICO	cost, remonifiance
Rodriguez [2014]	Optimization (PSO)	beriormance evaluation	cost and deadlines met	variation, VM start up	CyberShake, LIGO, SIPHT	
120141				time and delay	3171711	

scheduling. The cloud architecture design for any application development should incorporate greater availability, scalability, security, optimized cost, migration types and issues etc., The approaches discussed in this work considers a wide variety of input/output parameters that proves results to be QoS centric. The schedulers are of different types listed as short, medium, long which helps in achieving task priority and reduced turnaround time. The cloud vendors provide strong interfacing and open source support for the end users in various packages considering requirements mapped with application size, count of VM instances, VM migration strategy, cost etc,.

2. Summary & future scope

The approaches used in the research articles were supporting static as well as dynamic cloud environment considering execution time, delays and cost as the major research factors. The implementation environments considered were simulators, scientific workflows like Montage, Cybershake, SIPHT, LIGO, Epigenomics, Inspiral, Amazon EC2 etc., The results of various papers compared above in Table I illustrate the inputs are of evolutionary algorithms or improved type which includes any of the QoS factors for deriving the conclusions. Based on the analysis done in this review paper, it is found that the challenge relies on

workflows to be executed in some sequence and its priority and the identification of dependency between them. This complexity could be drastically reduced, when we consider the workflows in a graphical representation like DAGs (Directed Acyclic Graphs) and find a feasible cloud service and type in order to improve the QoS parameters. The future research scope can be analyzed for data size migration issues and a standard methodology could be implemented for enhanced task process flow execution. Further, we can focus on automating execution platform of VM efficiently with parameters like VM types, delays, cost along with parameters like cloud characteristics, cloud vendors, services support duration, maintenance, architecture, system capability, open source environment provision.

CRediT authorship contribution statement

M. Menaka: Conceptualization, Methodology, Validation. **K.S. Sendhil Kumar:** Comments evaluated, Training and testing, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] Qin-zhe Xiao, Jinghui Zhong, Feng Liang, Linbo Luo, Jianming Lv, A cooperative coevolution hyper-heuristic framework for workflow scheduling problem, IEEE Transactions on Services Computing (2022) 150–163.
- [2] Xiaoyong Tang, Wenbiao Cao, Huiya Tang, Deng Tan, Jing Mei, Yi Liu, Cheng Shi, Meng Xia, Zeng Zeng, Cost-Efficient Workflow Scheduling Algorithm for Applications with Deadline Constraint on Heterogeneous Clouds, 2022, pp. 2079–2092.
- [3] Ya Zhou, Xiaobo Jiao, "Knowledge-Driven Multi-Objective Evolutionary Scheduling Algorithm for Cloud Workflows", 2022, pp. 2952–2962.
- [4] Huifang Li, Danjing Wang, MengChu Zhou, Yushun Fan, Yuanqing Xia, Multi-Swarm Co-evolution Based Hybrid Intelligent Optimization for Bi-objective Multi-Workflow Scheduling in the Cloud, 2022, pp. 2183–2197.
- [5] Sebastian Braun, Chi-Tsun Cheng, Steve Dowey, Jörg Wollert, Performance Evaluation of Skill-Based Order Assignment in Production Environments with Multiagent Systems, 2022, pp. 23–30.
- [6] Amelie Chi Zhou, Weilin Xue, Yao Xiao, Bingsheng He, Shadi Ibrahim, Reynold Cheng, "Taming System Dynamics on Resource Optimization for Data Processing Workflows: A Probabilistic Approach", 2022, pp. 231–248.
- [7] Haihua Gu, Xiaoping Li, Zhipeng Lu, Scheduling Spark Tasks with Data Skew and Deadline Constraints, 2021, pp. 2793–2804.
- [8] Fuguang Yao, Changjiu Pu, Zongyin Zhang, Task Duplication-Based Scheduling Algorithm for Budget-Constrained Workflows in Cloud Computing, 2021, pp. 37262–37272.
- [9] Zulfiqar Ahmad, Ali Imran Jehangiri, Mohammed Alaa Ala'anzy, Othman Mohamed, Rohaya Latip, Sardar Khaliq Uz Zaman, Arif Iqbal Umar, Scientific Workflows Management and Scheduling in Cloud Computing: Taxonomy, Prospects, and Challenges, 2021, pp. 53491–53508.
- [10] Yun Wang, Xingquan Zuo, An Effective Cloud Workflow Scheduling Approach Combining PSO and Idle Time Slot-Aware Rules, 2021, pp. 1079–1094.
- [11] Marco L. Maria Carla Calzarossa, Della Vedova, Luisa Massari, Giuseppe Nebbione, Daniele Tessera, Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds, 2021, pp. 89891–89905.
- [12] Jiagang Liu, Ju Ren, Wei Dai, Deyu Zhang, Pude Zhou, Yaoxue Zhang, Geyong Min, Noushin Najjari, Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds, 2021, pp. 1180–1194.
- [13] Junlong Zhou, Jin Sun, Mingyue Zhang, Ma Yue, Dependable Scheduling for Real-Time Workflows on Cyber–Physical Cloud Systems, 2021, pp. 7820–7829.
- [14] Xiaojin Ma, Huahu Xu, Honghao Gao, Minjie Bian, Real-Time Multiple-Workflow Scheduling in Cloud Environments, 2021, pp. 4002–4018.
- [15] Hongda Wang, Man Yang, Lihua Jiang, Jianchun Xing, Qiliang Yang, Fuyong Yan, Test Case Prioritization for Service-Oriented Workflow Applications: A Perspective of Modification Impact Analysis, 2020, pp. 101260–101273.

- [16] Ruey-Kai Sheu, Yuan-Cheng Lin, Chin-Yin Huang, Lun-Chi Chen, Mayuresh Sunil Pardeshi, Hsi-Hsien Tseng, IDS-DLA: Sheet Metal Part Identification System for Process Automation Using Deep Learning Algorithms, 2020, pp. 127329–127342.
- [17] Zheyi Chen, Kai Lin, Bing Lin, Xing Chen, Xianghan Zheng, Chunming Rong, Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in Multi-Cloud Environments, 2020, pp. 190173–190183.
- [18] Omed Hassan Ahmed, Joan Lu, Aram Mahmood Ahmed, Amir Masoud Rahmani, Mehdi Hosseinzadeh, Mohammad Masdari, Scheduling of Scientific Workflows in Multi-Fog Environments Using Markov Models and a Hybrid Salp Swarm Algorithm, 2020, pp. 189404–189422.
- [19] Wei Hu, Xiaoping Li, Li Xue, Hybrid Cloud Workflow Scheduling Method with Privacy Data, 2020, pp. 211540–211552.
- [20] Longxin Zhang, Lan Wang, Zhicheng Wen, Mansheng Xiao, Junfeng Man, Minimizing Energy Consumption Scheduling Algorithm of Workflows with Cost Budget Constraint on Heterogeneous Cloud Computing Systems, 2020, pp. 205099–205110.
- [21] Jie Zhu, Xiaoping Li, Ruben Ruiz, Wei Li, Haiping Huang, Albert Y. Zomaya, Scheduling Periodical Multi-Stage Jobs with Fuzziness to Elastic Cloud Resource, 2020, pp. 2820–2833.
- [22] J. Angela Jennifa Sujana, T. Revathi, T.S. Siva Priya, K. Muneeswaran, Smart PSO-Based Secured Scheduling Approaches for Scientific Workflows in Cloud Computing, 2019, pp. 1745–1765.
- [23] Shahbaz Afzal, G. Kavitha, Load Balancing in Cloud Computing A Hierarchical Taxonomical Classification, 2019, pp. 1–24.
- [24] Yehia Kotb, Ismaeel Al Ridhawi, Moayad Aloqaily, Thar Baker, Yaser Jararweh, Hissam Tawfik, Cloud-Based Multi-Agent Cooperation for IoT Devices Using Workflow-Nets, 2019, pp. 625–650.
- [25] Xin Ye, Li Jia, Sihao Liu, Jiwei Liang, Yaochu Jin, A Hybrid Instance-Intensive Workflow Scheduling Method in Private Cloud Environment, 2019, pp. 1–18.
- [26] Somayeh Mohammadi, Latif PourKarimi, Hossein Pedram, Integer Linear Programming-Based Multi-Objective Scheduling for Scientific Workflows in Multi-Cloud Environments, 2019, pp. 6683–6709.
- [27] Naqin Zhou, FuFang Li, Kefu Xu, Deyu Qi, Concurrent Workflow Budget- and Deadline-Constrained Scheduling in Heterogeneous Distributed Environments, 2018, pp. 7705–7718.
- [28] Khawar Hasham, Kamran Munir, Reproducibility of Scientific Workflows Execution Using Cloud-Aware Provenance, 2018, pp. 1299–1333.
- [29] Huangke Chen, Jianghan Zhu, Guohua Wu, Lisu Huo, Cost-efficient Reactive Scheduling for Real-Time Workflows in Clouds, 2018, pp. 6291–6309.
- [30] Guangshun Yao, Yongsheng Ding, Kuangrong Hao, "Using imbalance characteristic for fault-tolerant workflow scheduling in cloud systems", IEEE Trans. Parallel Distr. Syst. (2017) 3671–3683.
- [31] Bin Xiang, Bibo Zhang, Lin Zhang, Greedy-Ant: Ant Colony System-Inspired Workflow Scheduling for Heterogeneous Computing, IEEE Access, 2017, pp. 11404–11412.
- [32] Quanwang Wu, Fuyuki Ishikawa, Qingsheng Zhu, Yunni Xia, Junhao Wen, "Deadline-constrained cost optimization approaches for workflow scheduling in clouds", IEEE Trans. Parallel Distr. Syst. (2017) 3401–3412.
- [33] Huangke Chen, Xiaomin Zhu, Dishan Qiu, Ling Liu, Zhihui Du, "Scheduling for workflows with security-sensitive intermediate data by selective tasks duplication in clouds", IEEE Trans. Parallel Distr. Syst. (2017) 2674–2688.
- [34] Shuibing He, Yang Wang, Xian-He Sun, Chengzhong Xu, Using MinMax-memory claims to improve in-memory workflow computations in the cloud, IEEE Trans. Parallel Distr. Syst. (2017) 1202–1214.
- [35] Bhaskar Prasad Rimal, Martin Maier, "Workflow scheduling in multi-tenant cloud computing environments", IEEE Trans. Parallel Distr. Syst. (2017) 290–304.
- [36] Seong-Hwan Kim, Dong-Ki Kang, Woo-Joong Kim, Min Chen, Chan-Hyun Youn, "A Science Gateway Cloud with Cost-Adaptive VM Management for Computational Science and Applications", IEEE Systems, 2017, pp. 173–185.
- [37] Xiaoping Li, Zhicheng Cai, "Elastic resource provisioning for cloud workflow applications", IEEE Trans. Autom. Sci. Eng. (2017) 1195–1210.
- [38] Mateusz Zotkiewicz, Mateusz Guzek, Dzmitry Kliazovich, Pascal Bouvry, "Minimum dependencies energy-efficient scheduling in data centers", IEEE Trans. Parallel Distr. Syst. (2016) 3561–3574.
- [39] A. Alexander, Visheratin, Mikhail Melnik, Denis Nasonov, "Workflow Scheduling Algorithms for Hard-Deadline Constrained Cloud Environments", Elseveir, 2016, pp. 2098–2106.
- [40] Mohammad Masdari, Sima ValiKardan, Zahra Shahi, Sonay Imani Azar, "Towards workflow scheduling in cloud computing: a comprehensive analysis", Elseveir, J. Netw. Comput. Appl. (2016) 64–82.
- [41] Bing Lin, Wenzhong Guo, Naixue Xiong, Guolong Chen, Athanasios V. Vasilakos, Hong Zhang, "A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multi-Cloud Environments", IEEE Transactions on Network and Service Management, 2016, pp. 581–594.
- [42] Xiaomin Zhu, Ji Wang, Hui Guo, Dakai Zhu, T. Laurence, Yang, Ling Liu, "fault-tolerant scheduling for real-time scientific workflows with elastic resource provisioning in virtualized clouds", IEEE Trans. Parallel Distr. Syst. (2016) 3501–3517.

- [43] Zhaomeng Zhu, Gongxuan Zhang, Miqing Li, Xiaohui Liu, "Evolutionary multiobjective workflow scheduling in cloud", IEEE Trans. Parallel Distr. Syst. (2016) 1244, 1257.
- [44] Xiaolong Xu, Wanchun Dou, Xuyun Zhang, Jinjun chun, EnReal: an energy aware resource allocation method for scientific workflow executions in cloud environment, IEEE Transactions on Cloud Computing (2016) 166–179.
- [45] Amelie Chi Zhou, Bingsheng He, Cheng Liu, "Monetary cost optimizations for hosting workflow-as-a-service in IaaS clouds", IEEE Transactions on Cloud Computing (2016) 34–48.
- [46] Zhicheng Cai, Xiaoping Li, N.D. Jatinder, Gupta, "Heuristics for provisioning services to workflows in XaaS Clouds", IEEE Transactions on Services Computing (2016) 250–263.
- [47] Yang Wang, Paul Lu, B. Kenneth, Kent, WaFS: a workflow-aware file system for effective storage utilization in the cloud, IEEE Trans. Comput. (2015) 2716–2729.
- [48] N. Rodrigo, Calheiros, Rajkumar Buyya, "Meeting deadlines of scientific workflows in public clouds with tasks replication", IEEE Trans. Parallel Distr. Syst. 25 (7) (2014) 1787–1796.
- [49] A. Maria, Rodriguez, Rajkumar Buyya, "Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds", IEEE Transactions on Cloud Computing (2014) 222–235.