TALLER DE INTRODUCCIÓN A ARDUINO

1 - Resistencias y Diodos LED
Octubre 2019

• Presenta una "resistencia" al paso de la corriente eléctrica.

- Presenta una "resistencia" al paso de la corriente eléctrica.
- Influye en gran medida en la intensidad de corriente que circula por ella.

- Presenta una "resistencia" al paso de la corriente eléctrica.
- Influye en gran medida en la intensidad de corriente que circula por ella.
 - A mayor resistencia menor intensidad a través de ella.

- Presenta una "resistencia" al paso de la corriente eléctrica.
- Influye en gran medida en la intensidad de corriente que circula por ella.
 - A mayor resistencia menor intensidad a través de ella.
- Produce una "caída de tensión" entre sus terminales.

- Presenta una "resistencia" al paso de la corriente eléctrica.
- Influye en gran medida en la intensidad de corriente que circula por ella.
 - A mayor resistencia menor intensidad a través de ella.
- Produce una "caída de tensión" entre sus terminales.
 - A mayor resistencia mayor tensión entre sus terminales.

RESISTENCIA - ASOCIACIÓN EN SERIE Y PARALELO

RESISTENCIA - ASOCIACIÓN EN SERIE Y PARALELO

RESISTENCIA - ASOCIACIÓN EN SERIE Y PARALELO

• Permite la circulación de la corriente <u>en un</u> <u>único sentido</u>.

- Permite la circulación de la corriente <u>en un</u> <u>único sentido</u>.
- Tiene polaridad:
 - Ánodo: terminal positivo
 - o Cátodo: terminal negativo

- Permite la circulación de la corriente en un único sentido.
- Tiene polaridad:
 - Ánodo: terminal positivo
 - Cátodo: terminal negativo
- Ánodo + y cátodo : La corriente circula.

- Permite la circulación de la corriente en un único sentido.
- Tiene polaridad:
 - Ánodo: terminal positivo
 - Cátodo: terminal negativo
- Ánodo + y cátodo : La corriente circula.
- Ánodo y cátodo + : La corriente no circula.

- Permite la circulación de la corriente en un único sentido.
- Tiene polaridad:
 - Ánodo: terminal positivo
 - o Cátodo: terminal negativo
- Ánodo + y cátodo : La corriente circula.
- Ánodo y cátodo + : La corriente no circula.
- Cuando conduce, entre sus terminales hay una caída de tensión: ~0.65 V

• Como el diodo anterior, tiene polaridad.

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.
- Emite más luz cuanto mayor es la corriente que lo atraviesa.

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.
- Emite más luz cuanto mayor es la corriente que lo atraviesa.
- ¡Corrientes elevadas lo destruyen!

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.
- Emite más luz cuanto mayor es la corriente que lo atraviesa.
- ¡Corrientes elevadas lo destruyen!
- Una corriente de 10-15 mA (0.01-0.015 A) es suficiente para obtener buen brillo.

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.
- Emite más luz cuanto mayor es la corriente que lo atraviesa.
- ¡Corrientes elevadas lo destruyen!
- Una corriente de 10-15 mA (0.01-0.015 A) es suficiente para obtener buen brillo.
- Es necesario <u>limitar la corriente</u> que lo atraviesa.

- Como el diodo anterior, tiene polaridad.
- Cuando se polariza directamente emite luz.
- Emite más luz cuanto mayor es la corriente que lo atraviesa.
- ¡Corrientes elevadas lo destruyen!
- Una corriente de 10-15 mA (0.01-0.015 A) es suficiente para obtener buen brillo.
- Es necesario <u>limitar la corriente</u> que lo atraviesa.
- Cuando conduce, entre sus terminales hay una caída de tensión: ~2.2 V

- Relación entre:
 - Tensión
 - Resistencia
 - Intensidad

- Relación entre:
 - Tensión
 - Resistencia
 - Intensidad

- Relación entre:
 - Tensión
 - Resistencia
 - Intensidad

- Relación entre:
 - Tensión
 - Resistencia
 - Intensidad

V = I R

R = V / I

I = V / R

$$I = V1 / R1$$

- Relación entre:
 - ⊃ Tensión
 - Resistencia
 - Intensidad

Corriente por R1:

$$I = V1 / R1$$

$$I = 12 V / 100 Ohm$$

- Relación entre:
 - ⊃ Tensión
 - Resistencia
 - Intensidad

Corriente por R1:

$$I = V1 / R1$$

$$I = 12 V / 100 Ohm$$

$$I = 0.12 A$$

- Relación entre:
 - ⊃ Tensión
 - Resistencia
 - Intensidad

Corriente por R1:

$$I = 12 V / 100 Ohm$$

$$I = 0.12 A$$

<u>Tensión en R1</u>

$$V = I \times R1$$

- Relación entre:
 - ⊃ Tensión
 - Resistencia
 - Intensidad

I = 0.12 A

V = I R

- Relación entre:
 - Tensión
 - Resistencia
 - Intensidad

LEY DE OHM (2)

LEY DE OHM (2)

LEY DE OHM (2)

<u> 1 - Corriente por R:</u>

$$I_R = V / R$$

 $I = 12V / 300 \text{ Ohm}$
 $I = 0.04A$

LEY DE OHM (2)

<u>2 - Tensión en R1</u> V1 = I x R1 V1 = 0.04A x 100 Ohm **V1 = 4V**

<u>1 - Corriente por R:</u> I_R = V / R

$$I = 12V / 300 \text{ Ohm}$$

LEY DE OHM (2)

Pin:

• Entrega una tensión de 5V cuando se activa.

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

Tiene una tensión entre sus extremos:

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

• Tiene una tensión entre sus extremos:

$$V_{p} = 5V - 2.2V = 2.8V$$

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

Tiene una tensión entre sus extremos:

$$V_p = 5V - 2.2V = 2.8V$$

 Conocemos la tensión entre sus extremos y la corriente que circula por ella --> R

$$R = V_R / I_R$$

 $R = 2.8V / 0.015A$
 $R = 187 Ohm$

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

Tiene una tensión entre sus extremos:

$$V_p = 5V - 2.2V = 2.8V$$

 Conocemos su tensión y la corriente que circula por ella (15mA) --> R

$$R = V_R / I_R$$

 $R = 2.8V / 0.015A$

R = 187 Ohm

Valor normalizado: 200 Ohm

Pin:

• Entrega una tensión de 5V cuando se activa.

LED:

- Tiene una caída de tensión de 2.2V
- Queremos que por él circulen 15 mA (0.015 A)

Resistencia: ¿Qué valor necesito?

• Tiene una tensión entre sus extremos:

$$V_p = 5V - 2.2V = 2.8V$$

 Conocemos su tensión y la corriente que circula por ella (15mA) --> R

$$R = V_R / I_R$$

 $R = 2.8V / 0.015A$

$$R = 187 \text{ Ohm}$$

- Valor normalizado: 200 Ohm
- Corriente real (200 Ohm): 14 mA

AHORA... ¡A QUEMAR COMPONENTES!

MUCHAS GRACIAS!

RESISTANCE IS FUTILE

(ANTIGUO PROVERBIO BORG)

