Szelcsanyi Boris 19-606-656 Source

```
rndseed 1234:
  // Load data
file = "michelson.dat";
fh = dataopen(file, "read");
X = loadd(file);
 10 X_names = getHeaders(file);
11 X_names;
 13 // Task 1
  15
          nrows
  17 dstatmt(X):
          // Looking at the output of dstatmt(x) we can conclude that there are max. 5 with 20 run experiments which equal to 100 observations
  19
 21 // Task 2
  22 // indexing/slicing data
         sub_sample_e1 = X;
sub_sample_e1 = selif(sub_sample_e1, sub_sample_e1[., "Expt"] .== 1);
sub_sample_e1 = sub_sample_e1[., "Speed"];
speed_e1 = sub_sample_e1[., "Speed"];
  23
 25
 27
 sub_sample_e5 = X;
sub_sample_e5 = selif(sub_sample_e5, sub_sample_e5[., "Expt"] .== 5);
sub_sample_e5 = sub_sample_e5[.,"Speed"];
speed_e5 = sub_sample_e5[.,"Speed"];
       // procedure for variance
33
33 | procedure for variance

proc(1) = variance(data);

35 | local mu, sigma_2, size_n;

mu = meanc(data);

37 | size_n = rows(data);
         sigma_2 = 0;
39 = 40
41
42
            for i (1, rows(data), 1);
sigma_2 = sigma_2 + ((data[i] - mu)^2);
             endfor;
retp(sigma_2/size_n);
43 endp;
45 print "Variance for Speed in Expt 1 is " variance(speed_e1);
46 print "Variance for Speed in Expt 5 is " variance(speed_e5);
47
48
49
50
        print "____
sigma_2 = 7500;
      mu1 = meanc(speed_e1);
mu2 = meanc(speed_e5);
52
      size_el_e2 = 20;
t = ( sqrt(size_el_e2) * (mul - mu2) ) / sqrt(sigma_2 + sigma_2);
t2 = ( sqrt(size_el_e2) * (mul - mu2) ) / sqrt(variance(speed_el) + variance(speed_e5));
print "t test for both sub samples, where s1 = s2 = 7500 :" t;
print "t test for both sub samples, where s1 != s2 using results from procedure: " t2;
print "Since abs(t) > 2.05, for both approaches, it follows means are different";
54
59
61 print "___
62 // Task 4
63
       file2 = "michelson_binary.dat";
```

Output

Expt Run Speed 100.0000

Variable 	Mean 	Std Dev					Missir
Expt	3	1.421	2.02		1 5	100	Θ
Run	10.5	5.795	33.59		1 20	100	0
Speed	2.999e+05	79.01	6243	2.996e+0	05 3.001e+05	100	0
	for Speed in E						
Variance 1	for Speed in E	xpt 5 is	2792.7500)			
t test for	both sub sam both sub sam (t) > 2.05, fo	ples, where	s1 != s2 usi	ng results	s from procedu		3.6
t test for Since abs(both sub sam (t) > 2.05, fo	ples, where a	s1 != s2 usion	ng results llows mean	s from proceduns are differe	ent	3.6
t test for Since abs(Valid case	both sub sam (t) > 2.05, fo	ples, where r both appro-	s1 != s2 usinaches, it fo	ng results llows mean nt variab	s from proceduns are differe	Speed	3.6
t test for Since abs(- both sub sam (t) > 2.05, fo 	ples, where a r both approximately between the posterior between t	s1 != s2 usinaches, it fo	ng results Llows mean nt variab n method:	s from proceduns are differe	Speed None	3.6
t test for Since abs(r both sub sam (t) > 2.05, fo 	ples, where a r both approximate to the approximate	s1 != s2 usinaches, it fo	ng results llows mean nt variab method: of freedo	s from proceduns are differe	Speed None 99	3.6
t test for Since abs(Valid case Missing ca Total SS: R-squared:	r both sub sam (t) > 2.05, fo es: ases: 899114	ples, where a r both approximate to the approximate	s1 != s2 usinaches, it fo	ng results llows mean nt variab method: of freedo	s from proceduns are differe	Speed None 99 0.768	3.6
t test for Since abs(r both sub sam (t) > 2.05, fo es: ases: 899114	ples, where a probability of the	s1 != s2 using aches, it fo control of the control	ng results llows mean t variab method: of freed uared: or of est	s from proceduns are differe	Speed None 99 0.768 45065.862	3.6
t test for Since abs(Valid case Missing ca Total SS: R-squared:	r both sub sam (t) > 2.05, fo es: ases: 899114	ples, where a r both approximate to the approximate	s1 != s2 using aches, it fo control of the control	ng results llows mean nt variab method: of freedo	s from proceduns are differe	Speed None 99 0.768	3.6
t test for Since abs(r both sub sam (t) > 2.05, fo es: ases: 899114	ples, where a probability of the	s1 != s2 using aches, it fo control of the control	ng results llows mean t variab method: of freed uared: or of est	s from proceduns are differe	Speed None 99 0.768 45065.862 0.000	3.€
t test for Since abs(r both sub sam (t) > 2.05, fo es: ases: 899114	ples, where a r both approximately between the proximately between the proxima	s1 != s2 using aches, it fo control of the control	ng result: Llows mean nt variab n method: of freed uared: or of est Lity of F	s from proceduns are difference	Speed None 99 0.768 45065.862 0.000	3.6