字符	串处理	3
1、	kmp 算法	3
2、	扩展 kmp	4
3、	字符串最小表示法	6
4、	Manacher	7
5、	字典树	9
6、	最小包含子串	11
7、	Aho-Corasick automaton	14
8、	字符串 Hash,找区间不同子串个数	17
9、	Suffix Array	20
杂	项	22
数据	结构	22
1、	并查集	22
2、	线段树	26
3、	树状数组	27
4、	RMQ	30
	RMQ 单调队列 & 单调栈	
5、		30
5、 6、	单调队列 & 单调栈	30 31
5、 6、 杂	单调队列 & 单调栈	30 31 32
5、 6、 杂 动态	单调队列 & 单调栈	30 31 32 33
5、 6、 杂 动态 1、	单调队列 & 单调栈	30 31 32 33
5、 6、 杂 动态 1、 2、	单调队列 & 单调栈	30 31 32 33 34
5、 6、杂 动 1、 2、 3、	单调队列 & 单调栈	30 31 32 33 34 34
5、6、杂态1、2、3、4、	单调队列 & 单调栈	30 31 32 33 34 34 36
5、6、杂态1、2、3、4、杂	单调队列 & 单调栈	30 31 32 33 34 34 36 37
5、6、杂态1、2、3、4、杂论	单调队列 & 单调栈	30 31 32 33 34 34 36 37
5、6、杂态1、2、3、4、杂论1、	单调队列 & 单调栈	30 31 32 33 34 34 36 37 37
5、6、杂态1、2、3、4、杂论1、2、	单调队列 & 单调栈 分块 项 规划 区间 DP 数位 DP 状压 DP 项	30 31 32 33 34 34 36 37 37 39 42

	5、	二分图匹配	47
	6、	欧拉回路 && 哈密顿回路	51
	杂	项	52
计	算	几何	53
	1,	基本公式	53
	2,	正 N 边形公式	56
	3、	平面最近对	57
	4、	欧拉公式,分割平面	59
数	学.		60
	1、	组合数 C _n ^m 防溢出公式	60
	2、	各种素数筛法	64
	3、	快速幂、矩阵	65
	4、	数字特征、约数个数	68
	5、	扩展欧几里德算法和求逆元	69
	6、	各种数列(卡特兰数、 递推式组合数)	73
	7、	米勒测试和大数分解	73
	8、	欧拉函数 eular	75
	9、	AntiPrime	77
	10	、万能积分公式simpson	79
	11、	、高斯消元	79
	杂〕	项	81
其	他.		85
	1、	STL	85
	2、	常量定义 & 手动开栈 & C++取消同步 & int 范围	87
	3、	三分答案	88
	4、	最长下降子序列	. 88
		高精度、输入挂、java 大数	
		基本思考方式	
	九口		02

字符串处理

1、kmp 算法

主串: 匹配串。 子串: 模式串。

子串先自己匹配,得到 next[],然后再和主串进行匹配,匹配时主串的 i 值不回溯,所以使得整个算法的复杂度压缩为 O(lenstr+lensub),关于 next[]数组的意义:next[i]的意思是,匹配到当前第 i 个字符,如果那个字符和主串当前的匹配字符不搭配,那么就跳转到 sub[]中的第 next[i]个字符匹配。为什么能这样做呢?那是因为子串中,前缀(1--next[i]-1)和后缀(begin--i-1)是完全相等的,begin 的值各不相同,例如 abcabc 中,next[len]=3(不包括最后那个 c 的),那么就是[1--2]和[4,5]是完全相等的,next[len+1]=4,也就是[1--3]和[3--6]是完全相等的。那么这样的话,next[i]的意思就是在长度为 i-1 中的子串中,最长的前缀-后缀的长度为next[i]-1。因为 next[i]是告诉我们应该跳去哪里匹配,是"越界"的。

返回主串 str[]中子串 sub[]的出现次数,(允许重叠的部分),这里的重叠部分就是说:例如"aaa",则"aa"出现的次数为 2 次。 pos 为在主串的第 pos 个位置开始匹配,默认为 1

```
if (j == lensub + 1) { //有一个了
ans++;
j = tonext[j]; //回溯匹配
//i 值不用回溯的
}
return ans;
}
```

KMP 求循环节: 1 <= cir < lenstr

当 next[lenstr + 1] = 1 时,**求出来的并不是循环节!** 此时 cir = lenstr cir=lenstr-(next[lenstr+1]-1); // 最小循环节的长度,什么时候都成立,不够可以补 ab***ab(***) anstime = len / cir; (只有 len % cir == 0 时成立,只有能整除,才能写成 cir ^ k) 如果是这样的: [abcabcab]cab,这样求出的 cir 还是 3 的,然后出现次数是 floor(lenstr / cir)

求 cir = 3 是否这个串的最小循环节,可以删除一个字符。例如:a@bcabcabc 要判断是否每三个循环,只需 str[1] == str[4] && str[2] == srt[5] && str[3] == str[6] 如果某一个不满足,则重新开始。然后找到了 lenstr 个满足,那么这个 cir 就是满足的,然而这里还是得不到答案,那么我们把这个串连续写两次。a@bcabcabc a@bcabcabc 就能把中间那段扫出来,因为循环节旋转后,还是循环的。

2、扩展 kmp

扩展 kmp (下标从 1 开始)

求解主串 str[i--n]中,和给定的子串 sub[]的最长公共前缀,要求在线性时间内找出所有的 extend[i]表示:主串的第 i 位开始到 n(主串长度),和子串 sub[]的最长公共前缀。(一定要从头开始,前缀嘛)

解法:设 a 为已经求解出来的 extend[i]中,使得匹配距离最大(i+extend[i]-1)的 i(是一个下标),这样的匹配数是最优的,我们去判断有没更好的匹配时,如果比这个 max 值(记作 p)还小,那么就不用匹配啦!!!那么根据 extend[i]的定义:和 sub[]有相同前缀嘛!!就有 str[a...p]=sub[1...p-a+1](区间长度要相等)

对于现在每一个待求的值 k(易得 k>a,但是不一定大于 p),

有 str[k...p]=sub[k-a+1...p-a+1](区间长度要相等,利用区间长度相等,能反解出 k-a+1)但是我求的是前缀,你这样给我和后面的相等没用,这样设函数 next[i]表示 sub[]中,i—m(子串长度)和 sub[]整个串的最大公共前缀(和上面那个意义一样).则有设 L=next[k-a+1];

有 sub[k-a+1....??]=sub[1...L](这个区间长度是 L);这样可以分类讨论

①、如果(k-1)+L<p,就是这个区间从 k 开始覆盖,若不能覆盖到 p,说明后面的不用比较了,不等。

这个时候 extend[k]=L;(注意这里的<不能相等,等于 p 表明区间大小一样,但是后面的能不能匹配,我们还不知道,<math>next[k-a+1]告诉我们的只是它自身的匹配,现在我的是 str 和 sub 的匹配,概念不同)

②、else 则要比较 str[p+1]和 sub[L+1]位,一直比较下去,更新 a 值即可

```
//数组的下标从1开始
void get pre next(char sub[], int lensub, int next[]) {
   next[1] = lensub; //固定的大小
   int a = 1;
   while ((a + 1) \le lensub \&\& sub[a] == sub[a + 1]) {
   }
   next[2] = a - 1; //算多了一个, 一开始 a 本来自定义有一个
              //开始时,能得到最大值 p 的就是 2 啦。
   for (int k = 3; k <= lensub; k++) { //现在求解的是 k
       int p = a + next[a] - 1; //p 是能达到的最远距离那个字母的下标,
       //易得 sub[a...p] = sub[1...p-a+1],又因为 sub[k...p]是 sub[a...p]的子串
       //所以 sub[k...p] = sub[k-a+1...p-a+1]。加粗的部分可以用区间长度相等得到
       int L = next[k - a + 1]; //next[]的是加粗的部分,这样的话,sub[k...??] = sub[1..L]
       //现在求解的是 K,不是 k+1
       if ((k - 1) + L < p) { //不能取等,这个覆盖是根据 sub[k...??] = sub[1..L]来覆盖的。
           next[k] = L; //如果这都覆盖不到去 p,那么最多只能是 L
//因为我们是用了 next[]来得到 L 的。如果还能继续匹配,那么就违背了 next[]的定义了
//如果 sub[??+1]==sub[L+1]的话,因为 sub[k..p]=sub[k-a+1,p-a+1],而 sub[??+1]在 sub[k..p]中,
//那么就会有对应的字母在 sub[k-a+1,p-a+1]中,那么你 next[k-a+1]得到的会是 L+1 而不是 L
       } else { //如果是相等的话,我还能暴力看看 sub[p+1]和 sub[L+1]是不是相等的。
             //现在的: 目的是比较 sub[p+1]和 sub[L+1]
           int j = max(0, p - k + 1); //区间长度
           //用了个区间长度变量,方便用来和后面的比较
//区间起点是 k,那么 k+j 就是 p+1 (这个代入去 max 那里得到) ,或者是 sub[k]本身,p 的值
//不一定比 k 大的, 例如"abcabcabc"中的第四个 a 的时候。p-k+1=-1, 所以要用 max 来修正。
//而 1+j, 由 if 的条件, L>p-k+1, 那么这是和 sub[p+1]匹配的下一个 sub[p-k+2], 或者是 sub[1]
           while ((k + j) \le lensub \&\& sub[k + j] == sub[1 + j]) {
              //这一个 1+是相对于起始位置 1
              j++;
           }
           next[k] = j;
           a = k; //改变最优值,这个值必须变大 k 变大了, p 也变大了
       }
   }
   return;
}
//求 next[]和上面的差不多,但是上面的解释只是用来求 extend[]的。
void extend_kmp(char str[], char sub[], int extend[]) {
   int lenstr = strlen(str + 1);
   int lensub = strlen(sub + 1);
   int next[maxn] = {0};
   get_pre_next(sub, lensub, next);
   int a = 1;
```

```
while (a <= lenstr && a <= lensub && str[a] == sub[a]) {
        a++:
    }
    extend[1] = a - 1; //同样开始的时候认为它是 1 所以多了一个
    a = 1; //假设 1 是现在达到的最大的 p
    for (int k = 2; k <= lenstr; k++) { //现在求解的是 k
        int p = a + extend[a] - 1; //能匹配到的最远值的[下标]
        //注意这里是用 extend[]的,其实求 next[]和 extend[]一个意思
        //extend[]是 str[]和 sub[]的 next[]是 sub[]和 sub[]的
        int L = next[k - a + 1];
        if ((k - 1) + L < p) { //不能取等
             extend[k] = L;
        } else {
             int j = MAX(p - k + 1, 0); //区间长度
             while((k + j) \le lenstr & (1 + j) \le lensub & str[k + j] = sub[1 + j]) {
                 j++;
             }
             extend[k] = j;
             a = k;
        }
    }
    return;
}
```

char str[100]="aaaabcdaab"; char sub[100]="aaabcd"; 说明不能取等的数据

3、字符串最小表示法

给定一个字符串,是首尾相接的,要求找到一个位置 pos,使得遍历这个字符串,其字典序是最小的。例如"1100" anspos=3

- **数据量巨大(N <= 1000000),显然只能用 O(n)的算法。
- 1、朴素的比较算法,设一个指针为 ans,一个为比较指针 cmp,找到 $str[(ans+k)\% lenstr]!= str[(cmp+k)\% lenstr],如果前者较大,则 ans = cmp,表明在 cmp 开始的字符串字典序更小,一路下去。复杂度为 <math>O(n^2)$ 。这里的缺陷就是,每次比较完后,ans 指针的移动量太小了,才移动到去 cmp 那里,最坏情况下,只是一格一格移动的而已,而每次移动都要比较整个串的长度。例如:bbbbbbba
- 2、较优秀的匹配算法,主要解决了 ans 指针的移动距离问题,其实可以看到,如果 str[(ans+k)%lenstr]>str[(cmp+k)%lenstr],那么,在 <math>str[ans-ans+k]中,是不会存在答案的,也就是不会存在最小表示法在那些位置中,证明如下:假如存在,设那个位置为 x(ans<=x<=ans+k),那么很明显,因为有 str[(ans+k)%lenstr]>str[(cmp+k)%lenstr],所以我能找到一个串,位置为 Y,在它匹配的时候,又匹配 ans+k 那个位置,使得它又失配了。 ans 指针:那个小了,就跳去哪一个,比如 66664,第一步会跳去 4

cmp 指针: 那个大了,就跳去大了的下一个。比如 222262, cmp 跳去最后一个 2

ans x ans+k jumpHere

所以,当 ans 失配的时候,直接跳到 ans+k+1 的地方,继续开始比较,同理当 cmp 比较大的时候,直接跳就可以了,然后,取 min(ans,cmp),就是答案,比较指针也是有保存答案值的。(但是我现在也没找到这样的例子,看到网上是这样说,我做题的时候直接放回 ans 也 ac 了)**另外一个要注意的地方是,可能,ans 移动的时候,直接移动到 cmp 的那个地方了,这个时候,cmp 就要+1,因为要找下一个地方比较嘛。

```
int get min pos(char str[], int lenstr) {
    int ans = 1, cmp = 2;
    while (ans <= lenstr && cmp <= lenstr) {
        int k, t1, t2;
        for (k = 0; k <= lenstr - 1; k++) { //匹配整个串的长度就够
             t1 = ans + k;
             t2 = cmp + k;
             if (t1 > lenstr) t1 %= lenstr; //下标从 1 开始要这样%
             if (t2 > lenstr) t2 %= lenstr;
             if (str[t1] != str[t2]) break;
        }
        //如果匹配了整个串的长度了,证明找不到更小的了
        if (k == lenstr) break;
        if (str[t1] > str[t2]) { //最大表示直接改符号就可以
             ans += k + 1;
        } else {
             cmp += k + 1;
        if (ans == cmp) cmp++; //找下一个比较的地方
    return min(ans, cmp); //这个好像不返回 min 也可以 AC?
}
```

4. Manacher

给定一个字符串,要求出里面最长的回文子串。***abcba***

思路: 记 p[i]为以 i 为原点,半径为 p[i]的最长回文子串。记 id 为当前已算出的 p[i]中,能去到的最远距离的下标。就是 max(p[i]+i)。那么,如果当我们求解 i 的时候,如果被以前求出的 id 包围了,那么,根据回文串的对称性,点 i 关于点 id 对称的点是 2*id-i,(这个能根据 i-id+1 == id-x+1)区间相等,求出。因为 p[2*id-i]是已经求出来的了,①、如果 p[2*id-i]超越了 p[id] 的范围,则只能去到 p[id]+id-i,如果还能继续匹配,就跟 p[id]矛盾。(左边匹配比较大,不代表右边也能匹配那么多,就是 p[2*id-i]和 p[i]的大小没必然联系),如果右边也还能匹配,那么 p[id]应该变大,矛盾。

②、如果没超越,那么就是 p[2*id-i]的值了。 如果端点重合了,则可能继续判断,右边可能匹配更多。所以,就需要暴力判断了。 **解决"aa"这样的偶数回文串中心不知道是那个,我们用'#'隔开每个字符,同时注意 str[0]和 str[2*lenstr+2]不能相同。一共插入了 lenstr+1 个'#',使得长度变成 2*lenstr+1 数组记得要开 2*maxn 字母所在位置: 都是偶数的。 '#'所在的位置:都是奇数的。一般要分类讨论。 int manacher(char str[], int lenstr) { str[0] = '*'; //表示一个不可能的值 //目标要插入 lenstr+1 个'#', 所以长度变成 2*lenstr+1 for (int i = lenstr; i >= 0; i--) { //str[lenstr+1]是'\0' //i=lenstr 时, i+i+2 那个值要赋为'\0'; //总长度只能是 lenstr+lenstr+2,所以 i 从 lenstr 开始枚举 str[i + i + 2] = str[i + 1];str[i + i + 1] = '#';} int id = 0, maxlen = 0; //现在开始在 str[2]了 for (int i = 2; i <= 2 * lenstr + 1; i++) { //2*lenstr+1 是'#'没用 if (p[id] + id > i) { //没取等号的, 只能去到 p[id]+id-1 //p[id]+id 是越界的,减去 i 即为区间长度 //p[id]+id-i,这个是所有可能中的最大值了 p[i] = min(p[id] + id - i, p[2 * id - i]);} else p[i] = 1; //记得修改的是 p[i] while (str[i + p[i]] == str[i - p[i]]) ++ p[i];if (p[id] + id < p[i] + i) id = i;maxlen = max(maxlen, p[i]); //为什么 maxlen 是 p[i]而不是 2*p[i]-1 呢?? //因为*#a#b#a#在 b 中,开始时候 p[i]是 1(有效值),扩展 p[i]=2 //但是这个增加是无效值,又 p[i]=3(有效值),....每次扩展一个有效值,必能扩展一个无效值, //而且一定是无效值结尾,所以 ans=maxlen-1 减去 1 是为了减去最后一个无效值。 //p[i]是包括#号字符串的回文串的半径(包括自己),扩展一个有效值后,又扩展一个无效 //值(相当于数量增加的是左边的有效值), 所以 p[i]就是回文串长度 } return maxlen - 1; } 小变形题目 ---- 吉哥系列故事--完美队形Ⅱ 题目: 在一个主串 maxn=100000 中, 求回文子串, 但是, 那个回文子串是要递增的。就是 1234321 这样才行,h[1]<=h[2]<=h[3]<=h[mid] 思路: 其实可以直接更改 p[i]的意义即可。记 p[i]为以 i 为原点, p[i]为半径的"回文串"长 度,这个回文串是满足题目条件的回文串。你可能会认为这样的 plil值可能会很小,回文串 长度是多,但是满足这个条件的回文串长度很少啊。答案是:少也没问题的,你的意思是

SCAU

并不影响答案的最优性。

p[id]+id 覆盖不了你的 i 是吧?那么就 p[i]=1啊,暴力判断啊。我们用 p[i]就是为了加快而已,

while (str[i+p[i]]==str[i-p[i]] && num[i-p[i]]<=num[i-p[i]+2]) ++p[i];

每增加一个数,和它的隔壁的隔壁比较,因为我们用 inf 隔开了嘛!! 0 inf 1 inf 2 inf 3 inf 2 inf 1 inf -1

5、字典树

- **如果字符串从 1 开始,判断和字符串"END"是否相等,是: strcmp(str+1,"END")==0
- **用字典树时记得看清楚那些字母是数字还是字母,因为压缩下标时减去的数是不同的

字典树解决的是多模式匹配问题,给定一个串,要求在单词本里问有没出现这个串,或者有没出现以这个串为前缀的串等等。明显的,如果我要找"abc",那么以 b 开头的串我肯定是不必找的了,所以每次只需匹配每个字母,查找的复杂度为 O (lenstr),插入的复杂度也是 O (lenstr)。每个节点都包含 26 枚指针(小写字母个数,如果包含大写字母,则 52 即可,int id 的时候判断一下大小写,小写的话减去'a'+偏移位置 26)。空间换时间~~

```
根节点
                               "c"
"a"
     0
        2
                "b"
                         2
                                    1
                                        1
                                             "d"
                                                 1 1
                                                            ch, flag, count
              指向 c
                      指向 d
        NULL
指向 b
//注意这里字符串的开始位置是从1开始
const int maxn = 1e5;
const int N = 26; //26 个小写字母
struct node {
              //标记以这个字母结尾为一个单词
   int flag;
              //标记以这个字母结尾为一个前缀
   int count;
   struct node *pNext[N]; //26 枚字符指针
} tree[maxn * N]; //大小通常设为 单词个数*单词长度
int t;//表明现在用到了那个节点
struct node *create() {
   //需要新开一个字符节点,就是有 abc 这样,插入 abd,则 d 需要新开节点
   struct node *p = &tree[t++];
   p->flag = 0; //初始值为 0, 不是整个单词
   p->count = 1; //前缀是必须的,本身就是一个了
   for (int i = 0; i < N; i++) {
       p->pNext[i] = NULL; //初始化指针
   }
   return p;
void insert(struct node **T, char str[]) {
   struct node *p = *T;
   if (!p) { //空树
       p = *T = create();
```

```
}
   int lenstr = strlen(str + 1);
   for (int i = 1; i <= lenstr; i++) {//把单词拆开放进树
                         //压缩下标
       int id = str[i] - 'a';
       if (p->pNext[id]) { //存在过,则前缀++
           p->pNext[id]->count++;
                               //p->pNext[id]表明是 id 这个字母
       } else {
           p->pNext[id] = create();
       p = p->pNext[id];
   }
                  //表明这字母为结尾是一个单词,上一次已经是 p=p->pNext[id]了
   p->flag = 1;
                  //就是现在已经去到了单词的最后一个字母的那个节点了!!
   return;
}
int find(struct node *T, char str[]) {
   struct node *p = T;
   if (!p) { //空树
       return 0;
   }
   int lenstr = strlen(str + 1);
   for (int i = 1; i <= lenstr; i++) {
       int id = str[i] - 'a';
       if (!p->pNext[id]) {
                     //单词中断,找不到
           return 0;
       p = p->pNext[id];
   }
   return p->flag;
                 //看看是不是一个单词的结尾。也可以返回是否前缀
字典树解决异或的题目的时候。
1、一般可能会用到前缀异或和,然后转化为数组中两个数异或最大值。
2、插入数字的时候,判断第 i 位是否为 1,记得判断是否大于 0,((1 << i) & val) > 0
3、删除某一个数字,可以把这条路的 cnt 都减去 1,然后查找的时候判断下 cnt 即可。
```

例题: HDU 5687 (百度之星)

删除前缀为 str[]的**所有单词**

这个 cut 可以直接用 find(T,str)来找到以 str 为前缀出现了多少个单词。就是: return p->count; 例如插入了 hello 和 helloliu。然后要删除 hello 为前缀的单词。那么: 因为每个 h 节点,数量是为 2 的,如果又插入了 haha 这样的话,h 数量为 3。那么,要删除 hello 为前缀的单词,每个 h 应该减去以它为前缀出现的次数,也就是减去 2 了。减去 1 的话,search h 会是 Yes。(这是没有插入 haha 的前提下,search h 还是 Yes)

```
void did(struct node **T, char str[], int cut) {
    if (cut == 0) {
```

```
return; //不存以这个为前缀的单词。
   }
   struct node *p = *T;
   if (!p) return;
   int lenstr = strlen(str + 1);
   for (int i = 1; str[i]; i++) { //新姿势,直接用 str[i]结束符判断,不用测量长度了!
       int id = str[i] - 'a';
       p = p->pNext[id]; //现在跳去这个字母的节点
       p->count -= cut;//删除无非就是把以这个字符串为前缀开头的数目减掉。
   }
   for (int i = 0; i < N; i++) {
       p->pNext[i] = NULL; //把它的孩子统统杀死
   }
   p->flag = 0;
   return;
}
```

6、最小包含子串

给定一个主串 str[]和一个子串 sub[],要求得在主串 str[]中的一个子串,包含了 sub[]的所有字符,顺序可以不同,但是数目必须是>=sub[]中的。

思路:直接 two pointer 模拟,判断是否出现可以直接 hash,然后有些注意的地方就是,开头的有些字符串可以省略,然后移动 start 的时候也有些技巧,就是直接用 start 移动,因为一头一尾必然是那个 sub[]串中的字母(根据贪心策略得到),所以用 start++,就是把第一个有效字母删除,继续找后面的字母代替这个字母。

- 1、如果找到,那么可能结果更优。因为我可能又省去了前面的一些部分。
- 2、如果找不到,那么就说明只有那个部分能组合成答案。因为这里字母才足够。

```
int min_window_sub(char str[], char sub[], char ans[]) { //51NOD 1127
    int lenstr = strlen(str + 1);
    int lensub = strlen(sub + 1);
    int bookstr[256] = {0}; //字母 ASCII 最多也就去到 128
    int booksub[256] = {0};
    for (int i = 1; i <= lensub; i++) {
        booksub[sub[i]]++; //先预处理出所有的 sub 的 hash
    }
    int begin = -inf, end = -inf; //用来赋值给 ans[]的,就是答案区间,只是记录答案的而已
    int found = 0; //表明现在找到了多少个
    int minlength = lenstr; //最小的长度是整个【主串】
    int start = 1; //记录从[start,i]中是一个可能性答案
    for (int i = 1; i <= lenstr; i++) { //扫描整个主串
        bookstr[str[i]]++;
        if (bookstr[str[i]] <= booksub[str[i]]) {</pre>
       //如果这个字符加入后,数目小于这个在子串的次数,那么就是找到了一个字符了
```

//就是,str="aaaabc" sub="abc",那么,第一 a,说明找到了一个 a,第二个 a,

```
//不能说明又找到了一个字符了, 只是重复而已。不然就是说又找到了一个字符, wa
          found++;
       }
       if (found == lensub) { //找到了足够的字符了
          //将开头有些多余的可以去掉 str="aaaaabc" sub="abc"
          while (start <= i && bookstr[str[start]] > booksub[str[start]]) { //严格大于
              bookstr[str[start]]--;
              start++;
          }
          if (minlength > i - start + 1) {
              minlength = i - start + 1;
              begin = start;
              end = i;
          }
          //把开头的这个字符删掉,去找其他可能的情况
          //str="a****bc" + "a" sub="abc" 这样的话,***可以去掉
          bookstr[str[start]]--;
          found--;//匹配数减 1
          start++;
       }
   }
   if (begin == -inf) return -1; //不存在
   int t = 1;
   for (int i = begin; i <= end; i++) {
       ans[t++] = str[i];
   }
   return end - begin + 1;
}
变形例题: codeforce Educational Codeforces Round 5
                                           D: Longest k-Good Segment
题目:给出一个包含 n (n<=5e5)的数组,要你找出其中最长的,连续的一段数字,使得其
中包含的不同数字的个数不多于k个。
思路: 这是一题 two pointer 的思想,设置两个指针模拟即可,按照最小包含子串这样的来
模拟,注意的是判断一个数字有没出现过,用 int book[]来保存有没出现过,因为他可能出
现很多次,不能用简单的 0 和 1 来表示有没出现,因为删除这个数字的时候,如果你
book[val]=0 就不行了,因为可能这个区间[begin,end]中还包含这个 val 呢。
#include <cstdio>
#include <cstdlib>
#include <cstring>
```

SCAU

const int maxn=5e5+20;

int book[1000200];//1e6

int a[maxn];

void work ()

```
{
   int n,k;
   scanf ("%d%d",&n,&k);
   for (int i=1; i<=n; i++)
   {
      scanf ("%d",&a[i]);
   int head=1,maxlen=0,found=0;
   int begin, end;
   a[n+1]=1e6+20;//取一个不可能的值,防止边界都成立的情况
   for (int i=1; i<=n+1; i++)
   {
      if (!book[a[i]]) //如果这个值没出现过,那么说明是不同数字
         found++;
      if (found>k) //如果出现次数大于 k 了。
//等于 k 是没用的, 因为后面如果有相同的数字, 等于 k 这样的话后面的是统计不进去的。
//例如 k=4。123444,第一个4的时候,就已经跳进来了。
         //i 是越界的
         if (i-head>maxlen)
         {
            maxlen=i-head;
            begin=head;
            end=i-1;
   //把开头的【重复的数字去掉】, 只去掉一个是没用的, 这个求的是最长, 不是求最短
   //求最短的时候,开头相同的优先砍掉了,所以开头的第一个字符就是有效字符。
   //而现在求最长,开头的有重复,不全部砍掉的话,那个元素还是存在的。
   //所以对于这样的数据 111234 head 由 1-->4
         int num=a[head];
         while (head<=i && num==a[head])
            book[num]--;//减去这些元素出现的次数
            head++;
         if (book[num]) //如果那个元素还是存在呢? 就 好像 111 【2134】k=3 这样
         {
            //因为现在 i 是越界的。found==k+1
            i--;//从 4 那个数字开始,再去匹配这个越界的元素
            found--;//这个减去的是越界的那个元素
            continue; //跳过后面那个东西的而已。
            //注意不要再去 book[a[i]]++了,这样的话越界的上一个元素统计多一次了
```

```
}
          else found--://如果不存在就最好了,直接减去那个元素
       else //如果不同的元素<=k 个的话,那么绝对是可行的解
          //例子 k=2 11111
          if (i!=n+1&&i-head+1>maxlen) //i==n+1 这个不是
             //更新 maxlen 必须要这个区间长度大于现在的 maxlen 才行...
              //不然的话有 wa 数据,前一段区间 5 1 1 1 1 (k==2),然后中间什么都行,
              //后一段区间 511 found==k 时,进来了,错误地更新了最大值
              begin=head;
              end=i;
              maxlen=i-head+1;
          }
       book[a[i]]++; //这个元素出现次数+1
   }
   printf ("%d %d\n",begin,end);
   return;
}
int main ()
{
   work ();
   return 0;
}
```

7. Aho-Corasick automaton

这玩意其实就是 trie + kmp,只不过是多串匹配的 kmp 罢了。next[]把它称为失败指针,当在这个位置匹配失败的时候,就要跳去最大的前后缀那里继续匹配,看看有没和它相同的。以前说的 next[]是越界的(指向下一个的),但是这里不能这样,因为下一个是那里?不知道,有 26 种可能,所以这个不是越界的。所以构造失败指针的时候方法也一样。不断地回溯,例如要求 p->next[id]->Fail。那么,先找到 p->Fail 是哪里,就是爸爸的失败指针,然后再看看哪里有没有字符 id,有的话,就是跳去那里了,这样是最优的。就是先找爸爸的兄弟有没这个字符 id,爸爸的失败指针表明那里有它的那个字符,再加上是否有我。就继承了下来。ac 自动机上的等价态:

等价态即用 fail 指针连接的点,在行走 fail 指针时匹配的字符数量并没有发生变化,因此这些点可以看成是相同的匹配状态。通常有两种方法处理等价态:

第一是互为等价态的点各自记录各自的信息。匹配的时候需要遍历所有等价态以判断是否匹配成功。next 指针可能为空,需要匹配时进行判断是否需要走 fail 指针。

第二是所有等价态中的点记录本身以及所有比它浅的点的信息总和(匹配成功的单词总数), 匹配时不需要走等价态以判断匹配成功与否。next 指针不为空,直接指向本应通过 fail 指针

寻找到的那个状态。

```
入门题必须 A 掉: HDU 2222 复杂度 O(len*单词平均长度)
题目: 给定 n(n<=10000)个单词,和一篇文章 len<=1000000。要求在其中找到有多少个单词
是出现过的。一个单词出现多次只算一次。
思路:模板题不解释,AC自动机本来就是解决这类问题的
trick: 如果给出两个单词一模一样的,那么应该按照不同串来处理。坑死了~~
存在的点,建立 Fail 指针。不存在的点,修改 p->pNext[id]建立虚拟边。
#include <cstdio>
#include <cstdlib>
#include <cstring>
const int maxn = 10000000 + 20;
const int N = 26;
struct node {
   int flag;
    struct node *Fail; //失败指针, 匹配失败, 跳去最大前后缀
    struct node *pNext[N];
} tree[maxn];
int t; //字典树的节点
struct node *create() { //其实也只是清空数据而已,多 case 有用
    struct node *p = &tree[t++];
    p->flag = 0;
    p->Fail = NULL;
    for (int i = 0; i < N; i++) {
       p->pNext[i] = NULL;
    }
    return p;
}
void insert(struct node **T, char str[]) {
    struct node *p = *T;
    if (p == NULL) {
       p = *T = create();
    for (int i = 1; str[i]; i++) {
       int id = str[i] - 'a';
       if (p->pNext[id] == NULL) {
           p->pNext[id] = create();
       }
       p = p->pNext[id];
               //相同的单词算两次
    p->flag++;
    return;
void BuiltFail(struct node **T) {
```

```
//根节点没有失败指针,所以都是需要特判的
    //思路就是去到爸爸的失败指针那里,找东西匹配,这样是最优的
    struct node *p = *T; //用个 p 去代替修改
   struct node *root = *T;
    if (p == NULL) return ;
    //树上 bfs,要更改的是 p->pNext[i]->Fail
    struct node *que[t + 20]; //这里的 t 是节点总数,字典树那里统计的,要用 G++编译
    int head = 0, tail = 0;
    que[tail++] = root;
    while (head < tail) {
        p = que[head]; //p 取出第一个元素 ★
        for (int i = 0; i < N; i++) { //看看存不存在这个节点
            if (p->pNext[i] != NULL) { //存在的才需要管失败指针。
                if (p == root) { //如果爸爸是根节点的话
                    p->pNext[i]->Fail = root; //指向根节点
                } else {
                    struct node *FailNode = p->Fail; //首先找到爸爸的失败指针
                    while (FailNode != NULL) {
                        if (FailNode->pNext[i]!= NULL) { //存在
                            p->pNext[i]->Fail = FailNode->pNext[i];
                            break:
                        }
                        FailNode = FailNode->Fail; //回溯
                    }
                    if (FailNode == NULL) { //如果还是空,那么就指向根算了
                        p->pNext[i]->Fail = root;
                    }
                }
                que[tail++] = p->pNext[i]; //这个 id 是存在的,入队 bfs
            else\ if\ (p == root) { //变化问题, 使得不存在的边也建立起来。
                p->pNext[i] = root;
            } else {
                p->pNext[i] = p->Fail->pNext[i]; //变化到 LCP。可以快速匹配到病毒。
            }
        }
        head++;
    }
    return;
int searchAC(struct node *T, char str[]) {
    int ans = 0;
   struct node *p = T;
    struct node *root = T;
   if (p == NULL) return 0;
```

```
for (int i = 1; str[i]; i++) { //遍历主串中的每一个字符
        int id = str[i] - 'a';
        p=p->pNext[id]; //去到这个节点,虚拟边也建立起来了,所以一定存在。
        struct node *temp = p; //p 不用动,下次 for 就是指向这里就 OK,temp 去找后缀串
 //什么叫找后缀串?就是,有单词 she,he 串***she,那么匹配到 e 的时候, she 统计成功
 //这个时候,就要转移去到 he 那里,也把 he 统计进去。也就是找等价态
        while (temp != root && temp->flag != -1) { //root 没失败指针
            ans += temp->flag;//是单词就加上作为答案
           temp->flag = -1; //每个单词只用一次
           temp = temp->Fail;
       }
    }
    return ans;
}
char str[maxn];
void work () {
    t = 0; //清空字典树,下面的 T = NULL 也是一样,然后 create 也清空了。
    struct node *T = NULL;
    int n;
    scanf("%d", &n);
    while (n--) {
        scanf("%s", str + 1);
        insert(&T, str);
    }
    scanf("%s", str + 1);
    BuiltFail(&T);
    printf("%d\n", searchAC(T, str));
    return;
}
int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        work ();
    }
    return 0;
}
```

8、字符串 Hash, 找区间不同子串个数

首先介绍一个字符串 Hash 的优秀映射函数: **BKDRHash**,这里 hash 一开始是等于 0 的 for(i=1 to lenstr) hash = seed * hash + str[i]; 这是求解 hash 值的公式。多数情况下能唯一确定字符串,seed 是一个参数,一般取 31 、131、 13131、 13131、 131313、冲突比较小

```
经典题目: HDU 4622 Reincarnation
题意:给定一个长为 2000 个字符串,给出 Q(Q<=10000)个询问。每个询问包含[L,R],要求
算出这个区间内不同的子串的个数。
思路:暴力枚举区间长度 L,从 1 开始枚举到 lenstr,再枚举起点 i 即可。能在 O(n^2)的时间
枚举完。但仅仅是枚举完,但这里并没有去重,这部分时间,我们用 hash 来完成,复杂度
压到 O(1)。什么叫去重呢?例如 baba,当我们枚举第二个 ba 的时候,就要告诉我们"ba"在[1,4]
中重复出现了一次,所以 ans[1][4]--; //ans[L][R]就是表示区间内不同子串的个数了。
要枚举那么多子串,我们希望,对于任意给定的区间[L,R],都能快速地算出它的 hash 值是
多少。例如求[3,4]的 hash 值,明显有 ans = seed * str[3] + str[4];(这是根据公式得到的。)
那么我们先预处理一个前缀 hash 总和,记为 sumHash[i]表示 1~i 的 hash 值。则有
sumHash[1] = str[1];
                             sunHash[2] = seed * str[1] + str[2];
sunHash[3] = seed * sumHash[2] + str[3]; sumHash[4] = seed * sumHash[3] + str[4];
把他们拆出来,即可得到[3,4] ans = sumHash[4] - seed<sup>(R-L+1)</sup> * sumHash[2];
所以预处理两个数组,powseed[i]表示 seed 的 i 次方, sumHash[i]定义如上
然后就是怎么判断重复出现的问题了。我们知道那个 hash 值是唯一的,我们只能靠这个来
判断是否重复出现,但是这个 hash 值很大,用 map<ULL,int>来模拟又超时。怎么办呢?我们
可以用图, 先把 hash 值%MOD 压缩下, 把他们加入到一幅图中, 再开一个数组保存边的权
值,用边的权值来和 hash 值判断相不相同,即可确定是否重复出现。
#include <cstdio>
#include <cstdlib>
#include <cstring>
typedef unsigned long long int ULL;
const int seed = 13131; // 31 131 1313 13131 131313 etc..
const int maxn = 2000 + 20;
char str[maxn];
ULL powseed[maxn]; // seed 的 i 次方 爆了也没所谓, sumHash 的也爆。用了 ULL, 爆了也没
             //所谓,也能唯一确定它,因为是无符号的
ULL sumHash[maxn]; //前缀 hash 值
int ans[maxn][maxn]; //ans[L][R]就代表 ans,就是区间[L,R]内不同子串的个数
const int MOD = 10007;
struct StringHash {
   int first[MOD + 2], num; // 这里因为是%MOD ,所以数组大小注意,不是 maxn
   ULL EdgeNum[maxn]; // 表明第 i 条边放的数字(就是 sumHash 那个数字)
   int next[maxn], close[maxn]; //close[i]表示与第 i 条边所放权值相同的开始的最大位置
//就比如 baba, 现在枚举长度是 2, 开始的时候 ba, close[1] = 1;表明"ba"开始最大位置
//是从 1 开始,然后枚举到下一个 ba 的时候,close[1]要变成 3,开始位置从 3 开始了
   void init () {
      num = 0;
```

int u = val % MOD;

return;

}

SCAU

for (int i = first[u]; i ; i = next[i])

int insert(ULL val, int id) { //id 是用来改变 close[]的

memset (first, 0, sizeof first);

//这里压缩了下标, val 是一个很大的数字,

```
//存在边不代表出现过,出现过要用 val 判断, val 才是唯一的,边还是压缩后(%MOD)的呢
        {
             if (val == EdgeNum[i]) { //出现过了
                 int t = close[i];
                 close[i] = id;//更新最大位置
                 return t;
             }
        }
        ++num; //没出现过的话, 就加入图吧
        EdgeNum[num] = val; // 这个才是精确的,只能用这个判断
        close[num] = id;
        next[num] = first[u];
        first[u] = num;
        return 0;//没出现过
    }
} H;
void work () {
    scanf("%s", str + 1);
    int lenstr = strlen(str + 1);
    for (int i = 1; i <= lenstr; ++i)
        sumHash[i] = sumHash[i - 1] * seed + str[i];
    memset(ans, 0, sizeof(ans));
    for (int L = 1; L <= lenstr; ++L) { //暴力枚举子串长度
        H.init();
        for (int i = 1; i + L - 1 <= lenstr; ++i) {
             int pos = H.insert(sumHash[i + L - 1] - powseed[L] * sumHash[i - 1], i);
             ans[i][i + L - 1] ++; //ans[L][R]++, 自己永远是一个
             ans[pos][i + L - 1]--; //pos 放回 0 是没用的
         //就像 bababa,第二个 ba 的时候,会 ans[1][4]--;表明[1,4]重复了一个
        //然后第三个 ba 的时候, ans[2][6]--,同理, 表明[2,6]也是重复了
       //那么 ans[1][6]重复了两个怎么算? 就是在递推的时候,将 ans[2][6]的值覆盖上来的
             //ans[1][6] += ans[2][6] + ans[1][5] - ans[2][5];
        }
    }
    for (int i = lenstr; i >= 1; i--) {
        for (int j = i; j <= lenstr; j++) {
             ans[i][j] += ans[i + 1][j] + ans[i][j - 1] - ans[i + 1][j - 1];
        }
    }
    int m;
    scanf("%d", &m);
    while (m--) {
        int L, R;
        scanf("%d%d", &L, &R);
```

```
printf("%d\n", ans[L][R]);
     }
     return;
}
int main() {
     powseed[0] = 1;
     for (int i = 1; i \le maxn - 20; ++i)
          powseed[i] = powseed[i - 1] * seed;
     int t;
     scanf ("%d", &t);
     while (t--) work();
     return 0;
}
```

9. Suffix Array

sa[i]表示排名第 i 为的后缀的起始位置是什么, rank[i]表示第 i 个字符为起始点的后缀, 它的 排名是什么。可以知道 sa[rank[i]] = i; rank[sa[i]] = i; ★、多 case 是不需要清空的。

```
DA 算法, 倍增算法, 复杂度 O(nlogn)
//调用函数的时候,在字符串结尾加上一个0,然后参数传递要长度+1
da (str, sa, lenstr + 1, mx + 2); // mx 的话,如果全是字母,则 128 够了,注意是 lenstr + 1
CalcHight (str, sa, lenstr + 1); //也是 lenstr + 1。就是传到那个 0 即可
str[] = "aabaaaab" + '$'; lenstr = 8。下面的长度都是 lenstr + 1, 去到那个 0
rank[] = \{5, 7, 9, 2, 3, 4, 6, 8, 1\}
                                      rank[lenstr + 1]必定是 1 为无效值
sa[] = \{9, 4, 5, 6, 1, 7, 2, 8, 3\}
                                      sa[1] 必定是 lenstr + 1 为无效值
height[] = \{0, 0, 3, 2, 3, 1, 2, 0, 1\}
                                       前 2 个是无效值,height[lenstr + 1]是有效值
int sa[maxn], x[maxn], y[maxn], book[maxn]; //book[]大小起码是 lenstr,book[rank[]]
bool cmp(int r[], int a, int b, int len) { //这个必须是 int r[],
    return r[a] == r[b] \&\& r[a + len] == r[b + len];
}
void da(char str[], int sa[], int lenstr, int mx) {
    int *fir = x, *sec = y, *ToChange;
    for (int i = 0; i <= mx; ++i) book[i] = 0; //清 0
    for (int i = 1; i <= lenstr; ++i) {
        fir[i] = str[i]; //开始的 rank 数组,只保留相对大小即可,开始就是 str[]
        book[str[i]]++; //统计不同字母的个数
    }
    for (int i = 1; i <= mx; ++i) book[i] += book[i - 1]; //统计 <= 这个字母的有多少个元素
```

```
for (int i = lenstr; i >= 1; --i) sa[book[fir[i]]--] = i;
   // <= str[i] 这个字母的有 x 个,那么,排第 x 的就应该是这个 i 的位置了。
   //倒过来排序,是为了确保相同字符的时候,前面的就先在前面出现。
   //p 是第二个关键字 0 的个数
   for (int j = 1, p = 1; p <= lenstr; j <<= 1, mx = p) { //字符串长度为 j 的比较
       //现在求第二个关键字,然后合并(合并的时候按第一关键字优先合并)
       for (int i = lenstr - j + 1; i <= lenstr; ++i) sec[++p] = i;
       //这些位置,再跳 i 格就是越界了的,所以第二关键字是 0,排在前面
       for (int i = 1; i <= lenstr; ++i)
           if (sa[i] > j) //如果排名第 i 的起始位置在长度 j 之后
               sec[++p] = sa[i] - j;
       //减去这个长度 j, 表明第 sa[i] - j 这个位置的第二个是从 sa[i]处拿的, 排名靠前也
       //正常,因为 sa[i]排名是递增的
       //sec[]保存的是下标,现在对第一个关键字排序
       for (int i = 0; i <= mx; ++i) book[i] = 0; //清 0
       for (int i = 1; i <= lenstr; ++i) book[fir[sec[i]]]++;</pre>
       for (int i = 1; i \le mx; ++i) book[i] += book[i - 1];
       for (int i = lenstr; i >= 1; --i) sa[book[fir[sec[i]]]--] = sec[i];
       //因为 sec[i]才是对应 str[]的下标
       //现在要把第二关键字的结果,合并到第一关键字那里。同时我需要用到第一关键
       //字保存的记录,所以用指针交换的方式达到快速交换数组中的值
       ToChange = fir, fir = sec, sec = ToChange;
       fir[sa[1]] = 0; //固定的是 0 因为 sa[1]固定是 lenstr 那个 0
       p = 2;
       for (int i = 2; i <= lenstr; ++i) //fir 是当前的 rank 值, sec 是前一次的 rank 值
           fir[sa[i]] = cmp(sec, sa[i-1], sa[i], j) ? p-1 : p++;
   }
   return;
}
height[i]表示 suffix(sa[i])和 suffix(sa[i - 1])的 LCP, 就是两个排名紧挨着的 LCP。可知道, sa[1]
是最后末尾那个 0 (因为字典序总是最小的),而它没有前一个后缀,所以 height[1] = 0 是一
定的。同理,sa[2]和 sa[1],也是没有交集的,因为 sa[1]的开头就是那个 0,所以 height[2] =
0 也是一定的。而相反,height[lenstr + 1]是有定义的,因为被 0 占据了 sa[1],所以其他的后
移一位。
int height[maxn], RANK[maxn];
void calcHight(char str[], int sa[], int lenstr) {
   for (int i = 1; i <= lenstr; ++i) RANK[sa[i]] = i; //O(n)处理出 rank[]
   int k = 0;
   for (int i = 1; i <= lenstr - 1; ++i) {
       //最后一位不用算,最后一位排名一定是 1,然后 sa[0]就尴尬了
       int j = sa[RANK[i] - 1]; //排名在 i 前一位的那个串, 相似度最高
```

```
while (str[j + k] == str[i + k]) ++k;
height[RANK[i]] = k;
}
return;
}
```

求任意两个后缀的 LCP:

LCP(suffix(i), suffix(j)) = min(height[rank[i] + 1] height[rank[j]]).

求解 sa[7] 和 sa[3]的 LCP 等于中间的 sa[4]和 sa[3]的 LCP、sa[5]和 sa[4]、sa[6]和 sa[5]、sa[7] 和 sa[6]的 LCP 的**最小值**,也就是取公共部分。然后一路传递上去。

RMQ_MIN(rank[i], rank[j]); //这里相对大小不固定,可能要转换一下。 然后 begin++;

杂项

- 1、回文串的等价定义是:出现奇数次的字母的种类最多只有一种。
- 2、主串: 匹配串。 子串: 模式串。

数据结构

1、并查集

所谓种类并查集,题型一般如下:给定一些基本信息给你,然后又给出一些信息,要求你判断是真是假。例如给出 a 和 b 支持不同的队伍,而且 b 和 c 也是支持不同的队伍,由于队伍只有两支(就是说只有两种),所以可以推出 a 和 c 是支持同一个队伍。

你可能会想用两个并查集,一个并查集存放一个队伍。但是这样是不行的,十分麻烦。因为你想想,如果给出[a,b]不同,然后[c,d]不同,如果我按照左边的放在同一个集合,那么我接着[a,c]不同,这样就会是(a,d)相同,这样的话,你要更改那个并查集,是十分麻烦的。

正解:只用一个并查集,而且再维护一个数组 rank[i]表示 i 与 father 的关系,0 表示支持同一个球队,1 表示不同,这样的话,就可以根据 rank[x]==rank[y]来判断是不是支持相同的了。爸爸支持谁没所谓啊,我们不关心支持哪个球队,我们只关心支持的是否一样罢了。rank[]数组压缩路径和并查集一样的,只不过其中要列些数据,推些公式出来。

例题: POJ 1733 Parity game

题意:给定一个 n(n<=1e10)表示一个长度为 n 的串,满足如下 m(m<=5000)个关系。[a,b]中 1 的数目为偶数,或者 1 的数目为奇数。要你判断最多能满足前多少个条件。(条件和以前的相反就直接 break)

思路: 已知[a,b]中 1 的数目可以用 sum[b]-sum[a-1]表示。由于我们只关心奇偶。如果它说[a,b] 是偶数的话,证明 sum[b]和 sum[a-1]的奇偶性相同。那么这就好办了,如果他说[1,4]是偶数, [3,4]是奇数,那么[1,2]就是偶数了,给出关系[1,2]的时候就可以判断能不能成立了。

这题区间过大(n<=1e10),但是关系数才 5000,所以需要离散化一下就好了。那么问题来了, 离散化需要保存相对大小吗?就是如果他说[1,1e10]是偶,那么 1e10 应该离散一个很大的值,

可能是 5000 了(最多离散也就 5000)。这样其实也能做到,把每次输入的排序,再离散。但是真的要保存相对大小吗?我们想想并查集的时候,我们能决定哪个做大佬的吗?你可能说能啊,我用 f[fx]=fy 的,就是 fy 做大佬啊。但是你还要看输入数据的吧。[a,b]和[b,a],就能把你这个假设搞乱,虽然他这里的区间不能是[10,1]这样,但是意思一样。所以我们不需要保持相对大小,直接离散即可。这里只有一组样例,找到不合适,直接 break 即可。

```
#include <cstdio>
#include <cstdlib>
const int maxn = 5000 + 20;
int f[maxn];
int rank[maxn];
void init () {
    for (int i = 0; i < maxn; i++) {
        f[i] = i;
        rank[i] = 0; //=0 表示奇偶性相同
    }
    return:
}
int find (int u) {
    if (u == f[u]) {
        return u;
    } else {
        int temp = f[u]; //记录成只有三个点连成一条线。要记录当前的爸爸是谁,
        f[u] = find(f[u]); //不然这里就压缩完了。找不到本来的爸爸了。
        rank[u] = (rank[temp] + rank[u]) % 2; //u 本来爸爸和它爸爸的关系+我和爸爸的关系
                                         //决定了我和新爸爸的关系
        return f[u];
    }
}
int merge (int x, int y, int flag) {
    int fx = find(x);
    int fy = find(y);
    if (fx == fy) { //有关系了的
        if ((rank[x] + rank[y]) % 2 != flag) {
             //比如 1-->4 是奇(rank[1]=1), 2-->4 是奇(rank[2]=1)。
             //那么你再说 1-->2 是奇,就 GG 了 (rank[1]+rank[2])=2,然后%2=0 不是 1(奇)
             return 0;
        } else return 1; //成立
    } else {
        f[fx] = fy;
        rank[fx] = (rank[x] + rank[y] + flag) % 2; //这个公式有点难推
        return 1;
    }
}
void work () {
    init();//must be init();
```

```
map<int, int>book; //离散化,不需要安排区间相对大小
    int n, m, i, liu = 0; //liu 是离散化的值
    scanf ("%d%d", &n, &m);
    for (i = 1; i \le m; i++) {
        int a, b, flag = 0; //flag=0 表示奇偶性相同
        char str[10];
        scanf ("%d%d%s", &a, &b, str);
        if (str[0] == 'o') flag = 1; //奇偶性不同咯
        if (!book[a - 1]) book[a - 1] = ++liu; //如果还没离散的话。记得是 a-1
                     book[b] = ++liu; //就给一个离散值他
        if (!book[b])
        if (!merge(book[a - 1], book[b], flag)) {
            break;
        }
    }
    printf ("%d\n", i - 1);
    return;
}
int main () {
    work ();
    return 0;
}
关于我说那个难推的公式,可以看着样例推:
10
            给出[1,2],那么我们就,然后[3,4],[5,6]如此,判定[1,6]就 GG 了。
5
12 even
3 4 odd
5 6 even
16 even
7 10 odd
            这个是顺向思维,看看逆向的,如果已知[2,4]是奇,那么我再[0,2]是偶,这个
```

时候, 0 那个点是压缩去 4 那里的(因为 2 的父亲是 4) 那么应该是什么值呢?是 1,表明 [0,4]这个区间是奇数个1的。这样一路下去,就能推出公式。

变形题目: TOJ3413 How Many Answers Are Wrong

题意: 给定一个长为 n(n<= 200000)的串,有 m(m<= 40000)个关系,告诉你区间[a,b]的和是 c, 要你找出有多少个关系是和前面的矛盾的。

思路:一样的,注意到[a,b]的和为 c 可以转化为 sum[b]-sum[a-1],所以目标转化为两个点之 差为 c。设 rank[i]表示其与根节点的差。

```
#include <cstdio>
#include <cstdlib>
#include <cstring>
const int maxn = 500000 + 20;
int f[maxn];
int rank[maxn];
```

SCAU

```
void init () {
    for (int i = 0; i < maxn; i++) {
         f[i] = i;
         rank[i] = 0;
    }
    return;
int find (int u) {
    if (f[u] == u) {
         return u;
    } else {
         int temp = f[u];
         f[u] = find(f[u]);
         rank[u] = (rank[temp] + rank[u]);
         return f[u];
    }
}
int merge (int a, int b, int c) {
    int fa = find(a);
    int fb = find(b);
    if (fa == fb) { //rank[a]必须会比 rank[b]大 因为 a<=b
         if (rank[a] - rank[b] != c) {
             return 0;
        } else return 1;
    } else {
         f[fa] = fb;
         rank[fa] = (rank[b] - rank[a] + c); //爸爸到新根节点的距离
         //就例如有了[5,9]的和为 10,,也知道[2,3]的和为 1,现在新加入[2,4]的和为 7
         //这个时候, 更改的是[2]的爸爸 fa(3)到根节点 9 的距离, 所以, 要这样计算
       //rank[4]:4 到根节点的距离: 10, 一定要减去 rank[2], 2 到根节点 3 的距离 1, 再+7
         //这样得到的才是 rank[fa], 就是 3 到根结点 9 的距离, 是 16
         return 1;
    }
}
int n, m;
void work () {
    init ();
    int ans = 0;
    while (m--) {
         int a, b, c;
        scanf ("%d%d%d", &a, &b, &c);
         if (!merge(a - 1, b, c)) {
             ans++;
        }
```

```
}
    printf ("%d\n", ans);
    return;
}
int main () {
    while (scanf ("%d%d", &n, &m) != EOF)
        work ();
    return 0;
}
```

并查集的点删除: HDU 2473 Junk-Mail Filter

关键是怎么分离,可以考虑把它变成一个其它值。HASH[i] = other_val,然后用新值去做并查集即可、需要注意的一点就是假如现在根是 1,fa[1] = 1, fa[2] = 1, fa[3] = 1 那么如果你删除了 1,这应该输出 2.但是现在是 fa[2] = 1,是一个不存在的根了,这个时候 ans 应该+1,但是按照并查集的思路 if (find(HASH[i]) == HASH[i]) ans++;是不行的,因为这个根已经不存在了。解决方法就是标记是否为虚根,del[i] = true 表示删除了,但是枚举 fa[3]的时候就要避免重新加,需要取消标记。如果这时再有 M 4 2,那么就把 fa[4] = 1,用虚根表示即可。

并查集的边删除: uva 6910 - Cutting Tree

逆序操作,先把残缺的图弄出来,然后把删除操作变成了加边操作。Hack 点是如果多次删除了某一条边,那么只能在第一次删除这条边的地方添加这条边进来。

2、线段树

多次使用 sum 不用清 0,add 要。build 的时候就会初始化 sum 数据。但其他用法就可能要 #define lson L, mid, cur << 1

```
#define rson mid + 1, R, cur << 1 | 1
void pushUp(int cur) {
    sum[cur] = sum[cur << 1] + sum[cur << 1 | 1];
}
void pushDown(int cur, int total) { //修改的都是儿子的东西,因为自己的已经加过了。
    if (add[cur]) {
         add[cur << 1] += add[cur]; //传递去左右孩子
         add[cur << 1 | 1] += add[cur]; // val >> 1 相当于 val / 2
         sum[cur << 1] += add[cur] * (total - (total >> 1)); //左孩子有多少个节点
         sum[cur << 1 | 1] += add[cur] * (total >> 1); //一共控制 11 个,则右孩子有 5 个
         add[cur] = 0;
    }
}
void build(int L, int R, int cur) {
    if (L == R) {
         sum[cur] = a[L];
         return;
    }
    int mid = (L + R) \gg 1;
```

SCAU

```
build(lson);
    build(rson);
    pushUp(cur);
}
void upDate(int begin, int end, int val, int L, int R, int cur) {
    if (L >= begin && R <= end) {
        add[cur] += val;
        sum[cur] += val * (R - L + 1); //这里加了一次,后面 pushDown 就只能用 add[cur]的
        return:
    }
    pushDown(cur, R - L + 1); //这个是必须的,因为下面的 pushUp 是直接等于的
    //所以要先把加的,传递去右孩子,然后父亲又调用 pushUp,才能保证正确性。
    int mid = (L + R) >> 1; //一直分解的是大区间,开始时是[1, n]这个区间。
    if (begin <= mid) upDate(begin, end, val, lson); //只要区间涉及,就必须更新
    if (end > mid) upDate(begin, end, val, rson);
    pushUp(cur);
}
int query(int begin, int end, int L, int R, int cur) {
    if (L >= begin && R <= end) {
        return sum[cur];
    }
    pushDown(cur, R - L + 1);
    int ans = 0, mid = (L + R) >> 1;
    if (begin <= mid) ans += query(begin, end, lson); //只要区间涉及,就必须查询
    if (end > mid) ans += query(begin, end, rson);
    return ans;
}
```

3、树状数组

```
int c[maxn];//树状数组,多 case 的记得要清空
int lowbit(int x) { //得到 x 二进制末尾 0 的个数的 2 次方 2^num
    return x & (-x);
}
void add(int pos, int val) { //在第 pos 位加上 val 这个值 pos 不能是 0
    while (pos <= n) { //n 是元素的个数
        c[pos] += val;
        pos += lowbit(pos);
    }
    return;
}
int get_sum(int pos) { //求解: 1--pos 的总和
    int ans = 0;</pre>
```

```
while (pos) {
      ans += c[pos];
      pos -= lowbit(pos);
    }
    return ans;
}
```

3.1、求逆序对:首先先把数据离散化,因为树状数组覆盖的区间是 1—max 这样的,不离散的话开不到那么大的数组。例如离散后是: 5、2、1、4、3、思路是:插入5,add(5,1),把pos 为 5 的地方设置为 1,然后 ans += i - get_sum(5); i 的意思是当前插入了i 个数,然后get_sum()是当前有多少个数比 5 少,其实就是问 1—5 之间存在多少个数,那当然是比 5 小的啦。一减,就是关于 5 逆序对个数。eg:关于 2 的逆序对个数是 1 对。

LL get inversion(int a[], int lena) { //求逆序对个数

```
LL ans = 0;//逆序对一般都很多,需要用 LL for (int i = 1; i <= lena; ++i) { // a[]={5,2,1,4,3} ans=6; // a[]={5,5,5,5,5} ans=0; 逆序对严格大于 add(a[i], 1); ans += i - get_sum(a[i]); } return ans; }
```

关于数据离散化,可以开一个结构体,保存 val 和 pos,**然后根据 val 排序一下**,根据 pos 从小到大赋值即可。for (int i=1;i<=n;++i) a[book[i].pos]=i; //从小到大离散。a[3]=1,a[1]=2 等等 {9,1,0,5,4} 离散化后 {5,2,1,4,3}

3.2、求解区间不同元素个数,离线算法。复杂度 O(q + nlog(n))

设树状数组的意义是: 1--pos 这个段区间的不同元素的种类数。怎么做?就是 add(pos,1);在这个位置中+1,就是说这个位置上元素种类+1。然后先把询问按 R 递增的顺序排序。因为这里是最优的,我每次尽量往 R 靠,使得查询不重不漏。什么意思呢?就是假如有: 2、1、3、5、1、7的话。一开始的[1,4]这段数字全部压进树状数组,用个数组 book[val],表示 val 这个元素出现的最右的位置,因为我们需要删除重复的,也是要尽量往右靠。到达 pos=5 这个位置的时候,注意了,因为 1 是出现过的 book[1] = 2,所以我们要做的是把 2 这个位置出现元素的种类数-1,就是 add(book[1], -1)。然后把第五个位置出现的元素种类数+1,就是add(5,1)。为什么呢?因为你尽量把种类往右靠,因为我们的 R 是递增的,这样,你使得查询[4,6]成为可能,因为我那个 1 加入来了,而不是一直用 pos=2 那个位置的 1,再者,查询[4,6]成为可能,因为我那个 1 加入来了,而不是一直用 pos=2 那个位置的 1,再者,查询[4,7]的话,一样的意思,因为中间的 1 进来了。所以我们因为尽量往右靠,毕竟我们都把query 按 R 排序了。还有这个只能离线,一直预处理 ans[i]表示第 i 个询问的 ans。更新到[4,7]后,查询[1,2]已经不可能了,因为很明显,pos=2 这个位置已经被删除了。

离散化只是为了 book[val]成为可能

```
void work() {
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
    int q;
    scanf("%d", &q);</pre>
```

```
for (int i = 1; i \le q; ++i) {
        scanf("%d%d", &query[i].L, &query[i].R);
        query[i].id = i; //记录 ans
    }
    sort(query + 1, query + 1 + q);
    int cur = 1;
    for (int i = 1; i \le q; ++i) {
        for (int j = cur; j <= query[i].R; ++j) {</pre>
             if (book[a[j]])
                 add(book[a[j]], -1); //del 这个位置
             book[a[j]] = j; //更新这个位置的最右值
             add(j, 1); //这个位置出现了新元素
        }
        cur = query[i].R + 1; //表示现在预处理到这个位置了。不能往回查, 而且也不会往回
        ans[query[i].id] = get_sum(query[i].R) - get_sum(query[i].L - 1); //区间减法
    }
    for (int i = 1; i <= q; ++i)
        printf ("%d\n", ans[i]);
}
二维树状数组: 就是 n 个一维树状数组, 然后, 在这些一维树状数组里面, 再套一个一维树
状数组。也就是一维树状数组的树状数组。
所以 c[1][1]维护的是第一行的树状数组的前 1 个, c[1][2]是第一行树状数组的前 2 个, 也就
是 a[1][1] + a[1][2]。这个和一维 bit 的定义是一样的。
然后 c[2][1]维护的是第一行的 bit + 第二行的 bit 的前 1 个、也就是 a[1][1] + a[2][1],
c[2][2]维护的是 a[1][1] + a[1][2] + a[2][1] + a[2][2]。
void add(int x, int y, int val) {
    for (int i = x; i <= n; i += lowbit(i)) {
        for (int j = y; j <= n; j += lowbit(j)) {
             c[i][j] += val;
        }
    }
}
int sum(int x, int y) {
    int ans = 0;
    for (int i = x; i >= 1; i -= lowbit(i)) {
        for (int j = y; j >= 1; j = lowbit(j)) {
             ans += c[i][j];
        }
    }
    return ans;
}
```

4、RMQ

dp_min[i][j] 表示区间[i,i+2^j-1]的最小值。因为这个区间长度是偶数,易得转移方程是把区间分成两半再合并。然后查询的时候应为要精确覆盖到区间[begin,end],不能多,也不能少。那么最好的办法就是考虑区间重叠了。例如: [2,7]可以考虑[2,5]和[4,7]的最小值。假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取 i,右边界取 j)的最小幂预处理复杂度 O(nlogn),然后可以 O(1)查询 。 NYOJ 119

```
void init_RMQ(int n, int a[]) { //预处理->O(nlogn)
     for (int i = 1; i \le n; ++i) {
          dp max[i][0] = a[i]; //自己
          dp_min[i][0] = a[i]; //dp 的初始化
     }
     for (int j = 1; j < 20; ++j) { //先循环 j,不取等号,2<sup>20</sup> 是 1e6 了
          for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
               dp_max[i][j] = max(dp_max[i][j-1], dp_max[i+(1 << (j-1))][j-1]);
               dp_min[i][j] = min(dp_min[i][j-1], dp_min[i+(1 << (j-1))][j-1]);
          }
     }
     return;
}
int RMQ MAX(int begin, int end) {
     int k = (int)log2(end - begin + 1.0);
     return max(dp_max[begin][k], dp_max[end - (1 << k) + 1][k]);
}
int RMQ MIN(int begin, int end) {
     int k = (int)log2(end - begin + 1.0);
     return min(dp_min[begin][k], dp_min[end - (1 << k) + 1][k]);</pre>
}
```

5、单调队列 & 单调栈

单调队列:给定数组 a,n <= 1e5。多次任取其中连续的 k 个数字,求区间元素的最大值。思路就是保存一个单调递减的队列,因为其元素可能会失效,所以也要保存一个 id 记录的是队列元素在 a[]中的位置,如果它是 <= i - k 的,那么就是已经失效的了,应该 head++ que[1].val = a[1]; que[1].id = 1;

```
int head = 1, tail = 1;
for (int i = 2; i <= k; ++i) { //开始先预处理前 k 个。
    while (tail >= head && a[i] >= que[tail].val) --tail;
    ++tail;
    que[tail].val = a[i]; que[tail].id = i;
}
ans max[++lenmax] = que[head].val;
```

SCAU

```
for (int i = k + 1; i \le n; ++i) {
   while (tail >= head && a[i] >= que[tail].val) --tail; //这里等于也进来,因为是最新的。
   ++tail;
   que[tail].val = a[i]; que[tail].id = i;
   while (head <= tail && que[head].id <= i - k) ++head; //把废弃了的排除掉
   ans_max[++lenmax] = que[head].val; //每次出队就是最大值了。
}
单调栈:给定数组 a,区间 a[L...R]的价值是最小元素乘上区间总和。求出最大价值。
首先用个单调递增的栈,同时维护一个 leffil表示当前栈中第 i 个元素的最左区间,就是再左
一点就不是它最小了。那么可以知道 stack[i]在区间[left[i], 栈顶元素位置],这个区间是最小
的。因为本来栈顶元素就是最大的了,栈内元素绝对不够它大。然后每次弹出一个元素,就
能知道它在区间内最小,就能计算了。每弹出一个元素,都计算一次。
for (int i = 1; i <= n + 1; ++i) { // 加个 a[n + 1] = -1 防止全部单调递增。
   int TT = stack[top];
                     // 栈内元素到栈顶元素,这个区间最小值
              //保存插入后上一个元素的最左值
   int toleft = i;
   while (top >= 1 && a[i] < a[stack[top]]) { //等于的话,不如让它扩大
       LL t = (sum[TT] - sum[lef[stack[top]] - 1]) * a[stack[top]];
       if (t > ans) {
           ans = t; L = lef[stack[top]]; R = TT;
       toleft = lef[stack[top]]; //保留栈内元素最左值,更新这个元素的最左值
       --top;
   }
   ++top;
           stack[top] = i;
                        lef[stack[top]] = toleft;
}
6、分块
动态 RMQ 问题。其实分块后自己想块内维护什么就慢慢想吧。Note:数组必须从 0 开始
void init() { // O(n)预处理
   for (int i = 0; i < n; ++i) {
       if (i % Magic == 0 | | a[i] > mx[i / Magic]) {
           mx[i / Magic] = a[i];
       }
   }
   return;
}
void update(int pos, int val) { // O(sqrt(n)) 修改
   a[pos] = val; //更改
   int L = pos / Magic * Magic; //算出在第几个块的左值
```

SCAU

int R = L + Magic - 1; //右 for (int i = L; i <= R; ++i) {

if (i % Magic == 0 | | a[i] > mx[i / Magic]) {

```
mx[i / Magic] = a[i];
          }
     }
     return;
}
int query(int begin, int end) { //O(sqrt(n)) 查询
     int ans = -inf;
     for (int i = begin; i <= end;) {</pre>
          if (i % Magic == 0 && i + Magic - 1 <= end) { //前后两段要暴力
               ans = max (mx[i / Magic], ans);
               i += Magic;
          } else {
               ans = max (a[i], ans);
               ++i;
          }
     }
     return ans;
}
```

杂项

1、区间等差数列更新和单点查询

就是根据打标记的思想来做,但是公差可能会重叠,所以另开一个数组保存,原数组就一个关键的地方,计算出末尾项是什么,这样才能结束更新,不影响后面的值。

```
void addL(int begin, int end, int val, int d) { //在区间上加上首项为 val, 公差为 d 的数列
    cntL[begin] += val;
    cntL[end + 1] -= d * (end - begin) + val; //计算出末尾值, 否则影响后面的值。
                                    //首项不用减去公差,所以在 begin+1 上开始
    subL[begin + 1] += d;
                                    //结束公差
    subL[end + 1] -= d;
    return;
}
void init arr(int end) { //更新即可。
    for (int i = 1; i <= end; ++i) {
                                   //把公差传递下去,先计算公差,后算值。
        subL[i] += subL[i - 1];
        cntL[i] += cntL[i - 1] + subL[i];
                                   //a[i] = a[i-1] + d 等差数列公式。
    }
    return;
}
```

动态规划

1、整数划分

4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + 1 + 1; 4 = 1 + 1 + 1 + 1;

方法一: dp[i][j]表示拆分数为 i 的时候,最小拆分数是 j 的时候的解。(前缀和,包括最小拆分数是其他数字的解。所以 dp[val][1]就是答案。) dp[i][j] = dp[i][j+1] + dp[i-j][j]; 如果需要不重复数字,则是 dp[i-j][j+1]; 因为这样限定了最小拆分数一定是唯一的一个 j。如果要输出最小拆分数固定是 k 时的解,dp[val][k] - dp[val][k+1]; 边界: dp[i][i] = 1;

方法二:设 dp[i][j]表示拆分数为 j 的时候,拆分成 i 项时的解。边界: dp[0][0] = 1;

允许重复数字: dp[i][j] = dp[i][j - i] + dp[i - 1][j - 1]; 此时 dp[i][i] = 1; 不允许重复: dp[i][j] = dp[i][j - i] + dp[i - 1][j - i]; 此时 dp[i][i] = 0;

dp[i][j]表示 j 这个数字,当前的拆分拥有 i 个拆分数时的方案数。至于为什么要在第二维中放 j 这个数字,而不是像上面那个用第一维放数字,那是因为它需要先解出 dp[1][1---n]然后再解出 dp[2][1---n],转换维度比较方便。

先考虑允许重复数字: dp[i][j] = dp[i][j - i] + dp[i - 1][j - 1]; 考虑分成两类,

1、dp[i][j - i]: 这种拆分方案(拥有 i 个数字的拆分方案),如果没有 1,就比如 7 = 3 + 4 这样,然后每个数字都加上一,

就变成了 9 = 5 + 4。所以 dp[2][9]可以由 dp[2][7]转化过来。当然 7 = 1 + 6 也是合法解。

2、dp[i-1][j-1]: 这种拆分方案有 1,比如 4 = 3 + 1,那么我可以截去那个 1,变成 3 = 3,然后加上最后那个 1,就变成了 4 = 3 + 1,所以 dp[2][4]可以由 dp[1][3]转化过来。

但是题目需要不重复,(这也使得题目不会超时)

第一类,如果 dp[2][7]本来就是不重复的,就是 dp[2][6]即是 6=3+3 不能发生,那么我同时全部加上一个数,肯定不会产生重复的。

第二类,如果本来也是不重复的,但是生成的可能会重复,比如5=4+1和5=3+2是 dp[2][5]的解(本来没有重复),然后在后面加上一个1,是 dp[3][6]的解,但是6=4+1+1是非法的。我们也不可能检查其拆分方案有没1,因为我们只会统计数量。

改进: dp[i][j] = dp[i][j - i] + dp[i - 1][j - i];

dp[i-1][j-i]: 意思就是每个元素减去 1 后,分成 i-1 组,为什么不是分成 i 组呢。?因为其存在 1,然后每个数字减去 1,那么这个 1 就是变成 0 了,所以只能分成 i-1 组。

例如: 6=3+2+1 是由 3=2+1 弄过来的,dp[3][6]=dp[2][3] 所以就能解决这题。

- 1、i > j, 不用管 dp[i][i] = 0
- 2、i == j, 只能够是 i 个 1,然而不符合题目, dp[i][j] = 0;
- $3 \le i < j$, dp[i][j] = dp[i][j i] + dp[i 1][j i];

由于之和上一维有关,可以滚动数组,就能解决空间问题。

然后因为要产生 k 个不同的数字,最小值是 1+2+3+.....+k,就是(1+k)*k/2 开始。就是 dp[2][2]这些不用枚举了,k=2 的话,最小值是 3

SCAU

2、区间 DP

dp[i][j]表示把第[i, j]这个区间的石子合并到一堆时所需的最小费用。无论在哪里合并,这一步的操作的费用总是[i, j]这个区间式子的数字总和。暴力枚举切点,然后记忆化搜索。

```
int dfs(int be, int en) { //开始的时候 dp 的所有值都是 inf
    if (be >= en) return 0;
    if (vis[be][en] == DFN) return dp[be][en];
    vis[be][en] = DFN;
    for (int i = be; i <= en; ++i) {
        dp[be][i] = dfs(be, i);
        dp[i + 1][en] = dfs(i + 1, en);
        dp[be][en] = min(dp[be][i] + dp[i + 1][en] + sum[en] - sum[be - 1], dp[be][en]);
    }
    return dp[be][en];
}</pre>
```

3、数位 DP

```
HDU 2089 不要 62
int dp[10][20]; // dp[i][j]表示长度是 i 的数字中,以 j 开头的合法情况
void init() {
    dp[0][0] = 1;
    for (int i = 1; i <= 7; ++i) { // 枚举数字的长度是多少位
        for (int j = 0; j <= 9; ++j) { // 枚举长度是 i 的开头数字
        if (j == 4) continue; // 4 是不合法情况,跳过了,所以 dp[i][4] = 0;
        for (int k = 0; k <= 9; ++k) { // 枚举长度是 i - 1 的开头数字
            if (k == 4 | | j == 6 && k == 2) continue; // 其实这个 k = 4 不跳过也一样,= 0 dp[i][j] += dp[i - 1][k];
        }
    }
}
// dp[i][0] += dp[i - 1][0] + dp[i - 1][1] ... + dp[i - 1][9];
}
```

注意的是 dp[i][0]的意义,dp[i][0]表示长度是 i 的,以 0 开头的合法数字。也就是 0XX 的形式,所以是包含了 000---099,也就是所有合法的 1 位数和 2 位数之和。那 000 是什么?不管了,这个是多余的,也可以看作是合法的一位数,虽然题目的区间不包含 000,但是 R-L 的时候会同时抵消这个多余的计数。

比如我统计的是数字: 456

那么,从高到低枚举。先枚举第一位,4、再枚举 5、……那么,<4 的,长度是 3 位的合法数字,都应该算做贡献。就是 ans += dp[3][0…3],dp[3][1]好理解,就是 $100 \times 110 \times 1$

SCAU

围了。而后来的枚举下一位的 5,dp[2][0...4]是同理的,但是其是和第一位的 4 结合的,也就是 dp[2][0]包括了所有 1 位数的合法情况,然后组合成 40X。所以后面的枚举其实这是为了和上一位组合成合法情况。所以当其中某些数字破坏了条件,例如出现了 4,或者已经出现了 62,就要提前 break。还有需要注意的是处理不到 n 这个数字的,因为都是枚举每一位的-1 那个大小,所以只需要把他们 +1 即可。

```
int calc(int val) \{ //calc(R + 1) - calc(L + 1 - 1) \}
    int lenstr = 0;
    while (val / 10 > 0) {
         str[++lenstr] = val \% 10 + '0';
         val /= 10;
    }
    str[++lenstr] = val + '0';
    str[lenstr + 1] = '\0';
    int ans = 0;
    for (int i = lenstr; i >= 1; --i) {
         for (int j = 0; j \le str[i] - {0 \choose i} - 1; ++j) {
             if (j == 2 && str[i + 1] == '6') continue; //62X 是不合法的,要跳过
             //那么 j = 4 呢?不跳过?其实是一样的,因为预处理的时候 dp[i][4] = 0 的。
             ans += dp[i][j];
         //后来枚举的,都是和前面的哪一位结合,比如 456,就是 4XX,然后 45X
         if (str[i] == '4') break; //4XX, 下一次枚举就不合法了
         if (str[i] == '2' \&\& str[i + 1] == '6') break;
    }
    return ans;
}
2、求区间包含"13"这个子串 && 能整除 13 的个数
设 dp[i][j][state][r]表示位数是 i, 以 j 开头, state 是 0 或 1 表示是否已经出现了"13"这个子串,
并且,整个数字 mod 13 = r 的时候的合法个数。统计方法和不要 62 是一样的
void init() {
    base[0] = 1;
    for (int i = 1; i \le 10; ++i) {
         base[i] = base[i - 1] * 10; // 10^{1}
    }
    for (int i = 0; i \le 9; ++i) { //dp[1][0][0][0] = 1
         dp[1][i][0][i] = 1;
    }
    for (int i = 2; i <= 10; ++i) { //枚举位数 i
         for (int j = 0; j <= 9; ++j) { //枚举第 i 位的开头数字 j
              for (int x = 0; x <= 9; ++x) { //第 i - 1 位的开头数字 x
                  int t = base[i - 1] * j % 13; //2X 中的 20 % 13 是几
                  for (int r = 0; r <= 12; ++r) { //枚举 i - 1 位的余数
                       dp[i][j][1][(r + t) \% 13] += dp[i - 1][x][1][r];
```

```
if (j == 1 && x == 3) { //出现了 13 这个子串。
                               dp[i][j][1][(r + t) \% 13] += dp[i - 1][x][0][r];
                          } else {
                               dp[i][j][0][(r + t) \% 13] += dp[i - 1][x][0][r];
                          }
                    }
               }
          }
     }
}
int calc(int n) {
     n++;
     int digit[15] = {0};
     int lenstr = 0;
     while (n / 10 > 0) \{
          digit[++lenstr] = n \% 10;
          n = 10;
     }
     digit[++lenstr] = n \% 10;
     int ans = 0;
     int mod = 0;
     bool flag = false;
     for (int i = lenstr; i >= 1; --i) {
          for (int j = 0; j \le digit[i] - 1; ++j) {
               ans += dp[i][j][1][(13 - mod) \% 13];
               if (flag | | j == 3 && digit[i + 1] == 1) {
                     ans += dp[i][j][0][(13 - mod) \% 13];
               }
          }
          if (digit[i] == 3 \&\& digit[i + 1] == 1) {
               flag = true; //前面位的数字已经包含了 13、
          }
          mod = (mod + digit[i] * base[i - 1]) % 13; //更新 5XX 中 500 % 13 的余数,54X 中 540%13
     }
     return ans;
}
```

4、状压 DP

- 1、合法括号序列的状压,不需要 dp[lef][rig]表示左括号 lef 个,右括号 rig 个,可以用他们的差值来表示,dp[dis]表示左括号减去右括号的差值。差值小于 0 是没可能的,因为合法的括号序列不可能出现 rig > lef 的情况。
- 2、判断一个数二进制是否存在相邻两位同时为 1, 只需: (x & (x << 1)) > 0

杂项

- 2、bitset 优化的背包,dp[0]表示能否产生这个数字,然后 $dp = dp \mid (dp << x)$,就比如是 0001的时候,枚举了一个 3 进来,那么就是 0001 | 1000 = newState : 1001
- 3、背包记录路径 (vijos P1071 新年趣事之打牌 && POJ 1015) 很多时候是不行的,因为更新了 12 的最优解,如果它依赖于 6 这个背包,然后你后面改变了 6 这个背包,就 GG。如果能使得你更新过了的背包,不更新的话,那就可以。就是只看背包能否成立,而不看其他权值总和最大化的最优解的情况下,是可以的。
- 一个优秀的背包记录路径的方法就是,转移的时候判断是否存在于路径之中即可。但是求解 dp 的时候枚举顺序要发生变化,比如选出 m 个数的话,要先枚举 m,然后枚举 n 个数,也就是先解出选出 1 个数的时候(在 n 个数里面挑)的最优解,然后解选两个数的最优解,但是在解选两个数的时候的最优解的时候,要判断是否存在于路径之中。判断上一个的路径。
- 4、LICS、O (lena * lenb)

设 dp[i][j]表示匹配到 a[]的前 i 项,以 b[]的第 j 项结尾时,能匹配的最大值。dp[all][all] = 0; ①、不匹配 a[i]这个数,则是 dp[i][j] = dp[i – 1][j]; //一定要以 b[j]结尾。

②、匹配 a[i]这个数,则需要 a[i] == b[j] && b[j] > b[k] \rightarrow dp[i][j] = max(dp[i - 1][k]) + 1,这样复杂度需要 O(n³),注意到,求解 dp 的时候,是从 dp[i][1....lenb]这样的顺序求解,而且,需要 a[i] == b[j]才能算做贡献,因为要 LCS 嘛! 那么可以记录 dp[i][1...j - 1]的信息,以 a[i]作为基准(因为 a[i] == b[j]才能算出贡献,以那个作为基准没所谓),找出前 j - 1 个数中,满足 LIS 并且最大的那个,O(1)更新即可。

```
for (int i = 1; i <= lena; ++i) {
    for (int j = 1, cnt = 0; j <= lenb; ++j) {
        dp[i][j] = dp[i - 1][j]; //不要当前这个 a[i]
        if (a[i] > b[j]) { //形成 LIS
            cnt = max(cnt, dp[i - 1][j]);
        }
        if (a[i] == b[j]) { //形成 LCS
            dp[i][j] = cnt + 1;
        }
    }
}
ans = max(ans, dp[lena][1...lenb]);
```

图论

设: 顶点数为: n 边数为: m

SCAU

```
无向完全图有: \frac{n(n-1)}{2} 条边。 有向完全图,有 n(n-1)条边。
```

```
存储方式:
```

1、邻接矩阵: e[maxn][maxn]。对于遍历每一条边,复杂度是 $O(n^2)$,适合用于稠密图

```
2、邻接链表:
```

用 first[u]表示第 u 个顶点的第一条边是谁。然后用个 next[i]表示,第 i 条边的下一条边是谁,就能完成图的遍历。插入 first[u]的时候,用头插法即可。

```
next[i]=first[u];
             first[u]=i;//头插法
C语言写法:
struct edge {
   int u, v, w;
   int id://区分无向图的时候用的, id 相同就是同一条边
   int tonext;
} e[maxn * 2]; //这个存的是边,要插入两次,所以要 * 2
int first[maxn]; //这个表示什么【顶点】的第一条边,所以只用 maxn 大小即可
int num = 0; //从 1 开始,这样就是没 0 号这条边。方便判断。所以每次先++num 再放边!!
void add(int u, int v, int w) {
   ++num; //这个 num 是边的编号
   e[num].u = u, e[num].v = v, e[num].w = w;
   e[num].tonext = first[u]; //下一条边是这个顶点的第一条边
   first[u] = num; //这个顶点的第一条边是编号为 num 的这条
}
遍历的时候,如果想对 u 顶点的所有边进行遍历,就只需这样
for (int i = first[u]; i != 0; i = e[i].next) 现在的 i 就是边的编号,这条边就是 e[i].u -→ e[i].v 的边
```

C++写法:

```
struct edge {
    int u, v, w;
};
vector<struct edge>e[maxn];
```

加边的时候,例如 5-→6 有一条权值为 20 的边,那么,开个变量 struct edge t; //用于插入 t.u=5; t.v=6; t.w=20; e[t.u].push_back(t); 如果是无向图,同样还需再 add 一次。 如果对顶点 u 遍历: for (int i=0;i<e[u].size();i++) 这样: 就是 e[u][i].u \rightarrow e[u][i].v 这条边了

如果对顶点 u 遍历: for (int i=0;i<e[u].size();i++) 这样: 就是 e[u][i].u → e[u][i].v 这条边了 void add(int u, int v, int w) {

```
struct edge t;
t.u = u, t.v = v, t.w = w;
e[u].push_back(t);
return;
}
```

多叉树转二叉树,开始的时候,memset为0或者-1都可以。

Lchild[cur] 表示 cur 这个节点的儿子。

Rchild[cur] 表示 cur 这个节点的兄弟。

```
void addEdge(int u, int v) {
     Rchild[v] = Lchild[u];
     Lchild[u] = v;
}
```

1、最短路径

★: 最短路的算法都可以用于---**有向图 & 无向图**

★: 最短路肯定是一个只包含(n-1)条边的简单路径。

(1)、Dijkstra 单源最短路

传入邻接矩阵 e[][MAXN], 节点个数 n(编号从 1--n),最短路径数组 dis,和出发点 cur,返回 inf 代表原图不连通, else 返回 0。复杂度 O(n²)。注意路径必须都是非负的。

一开始的 e[][]需要全部设置为 inf,pre[i]表示到达 i 顶点的上一个顶点,记录路径

```
int dij(int e[][maxn], int n, int dis[], int cur, int pre[]) {
                                 //记得初始化为0
    bool book[maxn]= {0};
    for (int i = 1; i <= n; ++i) dis[i] = inf; //只能这样初始化,传参的话,不然 sizeof (dis) = 4
    dis[cur] = 0;
    pre[cur] = -inf;
    for (int i = 1; i <= n; i++) { //最多使用 n 个点来中转,
         int mi = inf; //每次找出最小值
         int u = inf; //下标
         for (int j = 1; j \le n; j++) {
             if (!book[j] && mi > dis[j]) {
                  mi = dis[j];
                  u = j;
             }
         }
         if (u == inf) return inf; //原图不连通
         book[u] = true;
         for (int j = 1; j \le n; j++) {
             if (!book[j] \&\& dis[j] > dis[u] + e[u][j]) {
                  dis[j] = dis[u] + e[u][j]; //进行松弛操作
                  pre[j] = u;
             }
         }
    }
    return 0;
优先队列优化的 dij,复杂度 O(M+N)logN,传入起点 bx,即可求出 dis[]
```

注意: M 最大是 N2, 这个时候比 O(n2)算法还要慢。

struct HeapNode {

}

```
int u,dis; //dis 是到起始点 bx 的距离
    HeapNode(int from, int cost): u(from), dis(cost) {}
    bool operator < (const HeapNode &rhs) const {
        return dis > rhs.dis; //注意, 这里的 dis 小的在前。
    }
};
void dij(int bx) {
                                  // 这些数组只能放在外面,
    memset (book, 0, sizeof book);
                                  //不然如果是函数传参的话: sizeof (dis) = 4
    memset (dis, 0x3f, sizeof (dis));
    dis[bx] = 0;
    priority queue<HeapNode> que;
    que.push(HeapNode(bx, dis[bx]));
    while(!que.empty()) {
        HeapNode t = que.top();
        que.pop();
                      //现在选出的这个 u, 是 dis[]中最小的那个值
        int u = t.u;
        if (book[u]) continue;
        book[u] = true;
        for (int i = first[u]; i; i = e[i].next) {
             int v = e[i].v;
             if (!book[v] && dis[v] > dis[u] + e[i].w) { //找过的点再用也不行的
                                                //松弛
                 dis[v] = dis[u] + e[i].w;
                                                //记录路径
                 pre[v] = u;
                 que.push(HeapNode(v, dis[v]));
             }
        }
    }
    return;
}
(2)、Bellman Ford 解决负权边 + 判负环,复杂度 O(n*m)
int Bellman_Ford(int bx, int n, int m) { //从 bx 开始,有 n 个点,m 条边
    dis[bx] = 0;
    for (int i = 1; i <= n - 1; ++i) { //n 个点的话,只需 n-1 条边来松弛,因为是最短路径。
        bool flag = 0;
        for (int j = 1; j \le m; ++j) {
             if (dis[e[j].v] > dis[e[j].u] + e[j].w) {
                 flag = 1;
                 dis[e[j].v] = dis[e[j].u] + e[j].w;
             }
        }
        if (!flag) break; //不改变了,就可以提前出来
    for (int j = 1; j <= m; ++j) { /*判负环的话,只需再进行一次*/
```

```
if (dis[e[j].v] > dis[e[j].u] + e[j].w) return 1; //继续松弛,错误。出现了负环。
    }
    return 0;
}
(3)、SPFA Bellman_Ford 的队列优化,复杂度 O(2 * m),最坏 O(n * m)
如果一个节点进队 n 次,那么就是出现了负环。不是被更新 n 次,因为有可能是 1→2 有 10
条边,这些边权值重大到小,更新了10次,但是这不是负环。
bool spfa(int bx, int n) { //从 bx 开始,有 n 个顶点
    for (int i = 1; i \le n; ++i) {
        dis[i] = inf;
        tim[i] = 0; //入队次数清 0
        in[i] = false; //当前这个节点不在队列里
    }
    queue<int> que;
    while (!que.empty()) que.pop();
    que.push(bx), in[bx] = true, dis[bx] = 0, tim[bx]++;
    while (!que.empty()) {
        int u = que.front();
        if (tim[u] > n) return true; //入队次数超过 n 次,出现负环
        que.pop();
        for (int i = first[u]; i; i = e[i].tonext) {
            if (dis[e[i].v] > dis[e[i].u] + e[i].w) {
                dis[e[i].v] = dis[e[i].u] + e[i].w;
                if (!in[e[i].v]) { //不在队列
                    que.push(e[i].v);
                    in[e[i].v] = true;
                    tim[e[i].v]++;
                }
            }
        }
        in[u] = false;
    }
    return false;
}
(4)、floyd 的 bitset 优化,只能用于判断是否到达,复杂度 O(n³ / sizeof bitset)
如果是 1000 位的 bool[], 你算 a ^ b 需要的时间是 O(n), 但是如果用 bitset 直接做, 复杂度
是 O(n / sizeof bitset)。bitset 内存是,8bit 是一字节,那么长度 / 8 就是字节数。
for (int k = 1; k <= n; ++k) { //枚举点 k 来中转
    for (int i = 1; i <= n; ++i) { //每次都更新这 n 个点。
        if (e[i][k]) { //有点 dp 的思想,
            e[i] |= e[k]; //i 能到 k 的话,就能到达 k 能到达的所有点。
        }
```

```
}

Floyd 算最短路。

for (int i = 1; i <= n; ++i) { //枚举点 i 来中转,记得设置 e[i][i] = 0

for (int j = 1; j <= n; ++j) {

    for (int k = 1; k <= n; ++k) {

        if (e[k][j] > e[k][i] + e[i][j]) e[k][j] = e[k][i] + e[i][j];

    }

}
```

2、最小生成树 (MST)

Minimum Spanning Tree

1、kruskal 算法(克鲁斯卡尔算法)

把边从小到大排序,每次选取可行的最小的边,判断可行性用并查集维护,防止连通成图。然后选够了 n-1 条边后可以直接 break 了。复杂度 O(ElogE),主要时间用在了快排那里。 int kruskal(int n, int m) { //n 个顶点,m 条边

```
sort(e + 1, e + 1 + m); //最大生成树的话,从大到小排即可
for (int i = 1; i <= n; ++i) fa[i] = i; //并查集初始化
int cnt = 0, ans = 0;
for (int i = 1; i <= m; ++i) {
    if (tofind(e[i].u) == tofind(e[i].v)) continue; //防止连通成图
    tomerge(e[i].u, e[i].v);
    cnt++;
    ans += e[i].w;
    if (cnt == n - 1) return ans;
}
return -1; //原图不联通
```

2、Prim 算法(普里姆算法)

记 dis[i]表示 i 号顶点到生成树的距离。一开始,dis[1] = 0 表示 1 号顶点作为生成树的根。然后枚举 1 号顶点连接到的边,更新其他顶点到现有生成树顶点的距离。所以就是分为生成树顶点和非生成树顶点两类。每一次找出生成树顶点中所有边最小的,去更新非生成树顶点。普通的复杂度需要 $O(n^2)$

堆优化的复杂度 MlogN

```
int Prim(int n, int m) { //n 个顶点, m 条边
    while (!que.empty()) que.pop(); //清空优先队列
++DFN;
for (int i = first[1]; i; i = e[i].tonext) {
        que.push(HeapNode(e[i].v, e[i].w));
}
```

}

```
}
     book[1] = DFN; //表明这个点已经加入 MST
    int cnt = 1, ans = 0;
     while (cnt < n) { //选出 n 个点出来
         bool flag = false;
         struct HeapNode t(0, 0);
         while (!que.empty()) {
              t = que.top(); que.pop();
              if (book[t.v] == DFN) continue;
              flag = true;
              break;
         }
         if (!flag) break; //原图不连通
         book[t.v] = DFN, cnt++, ans += t.val;
         for (int i = first[t.v]; i; i = e[i].tonext) {
              if (book[e[i].v] == DFN) continue; //已经在生成树顶点中了。
              que.push(HeapNode(e[i].v, e[i].w));
         }
    }
    if (cnt != n) return -1;
    else return ans;
}
```

3、LCA、树的重心、树的直径

LCA 是用在树中的,**图的不行**。★、无向树也是树。

LCA[u][v]表示节点 u 和 v 的最近公共祖先,也是深度最大祖先,深度越大的话,证明离 u 和 v 越近嘛。这个算法基于 dfs 的回溯和并查集实现。dfs 的时候,搜索到叶子节点(没有儿子)的时候,得到 LCA[u][u]=u 和 LCA[u][fa]=fa,然后,返回到他爸爸那里,并查集合并,f[u]=fa; 表明 u 的爸爸是 fa,所以这个时候并查集是**向左看齐的**,merge(u,v),u 只能是爸爸。复杂度 $O(n^2)$ 的算法,能求出整棵树的所有 $O(n^2)$ 值。

★并查集那里有点奇葩,它也用作了标记数组的作用,所以一开始的并查集,全部是 0。

```
void dfs(int u) {
    f[u] = u; //首先自己是一个集合
    for (int i = first[u]; i; i = e[i].next) {
        int v = e[i].v;
        if (f[v] == 0) {
            dfs(v);
            merge(u, v);
        }
    }
    for (int i = 1; i <= n; i++) { //遍历每一个点
        if (f[i]) { //已经确定过的,就更新 LCA</pre>
```

```
LCA[u][i] = LCA[i][u] = find(i);
        }
    }
    return;
}
O(n+Q)算法,用邻接表存取所有询问,要询问的再处理即可,注意去重操作。
void dfs(int u) {
    f[u] = u; //首先自己是一个集合
    for (int i = first[u]; i; i = e[i].next) {
        int v = e[i].v;
        if (f[v] == 0) {
            dfs(v);
            merge(u, v);
       }
    }
    for (int i = first_query[u]; i; i = query[i].next) {
        int v = query[i].v;
        if (f[v]) { //确定过的话,并且有要求查询
            //要求查询的话这个 query 保存着, first_query[u]就证明有没了
            //因为插边插了两次,这里要去重。用 id 保存答案即可
            ans[query[i].id] = find(v);
        }
    }
    return;
}
LCA 倍增算法。
设 ansc[cur][i]表示从 cur 这个节点跳 2<sup>i</sup>步到达的祖先是谁。记录深度数组 deep[cur]。深度从
0开始,然后算 LCA 的时候就先把他们弄到同一深度,然后一起倍增。
Hint: ans[root][3]是自己,都是 root。开始的时候 fa[root] = root。deep[root] = 0;
一般这课树是双向的,因为可能结合 bfs 来做题,所以需要判断不能走到爸爸那里。
1 << 20 就有 1048576(1e6)了。
int ansc[maxn][25], deep[maxn], fa[maxn];
void init_LCA(int cur) {
    ansc[cur][0] = fa[cur]; //跳 1 步, 那么祖先就是爸爸
    for (int i = 1; i <= 24; ++i) { //倍增思路,递归处理
        ansc[cur][i] = ansc[ansc[cur][i-1]][i-1];
    }
    for (int i = first[cur]; i; i = e[i].tonext) {
        int v = e[i].v;
        if (v == fa[cur]) continue;
        fa[v] = cur;
        deep[v] = deep[cur] + 1;
        init_LCA(v);
```

```
}
}
int LCA(int x, int y) {
    if (deep[x] < deep[y]) swap(x, y); //需要 x 是最深的
    for (int i = 24; i >= 0; --i) { //从大到小枚举,因为小的更灵活
        if (deep[ansc[x][i]] >= deep[y]) { //深度相同,走进去就对了。就是要去到相等。
             x = ansc[x][i];
         }
    }
    if (x == y) return x;
    for (int i = 24; i >= 0; --i) {
         if (ansc[x][i] != ansc[y][i]) { //走到第一个不等的地方,
             x = ansc[x][i];
             y = ansc[y][i];
         }
    }
    return ansc[x][0]; //再跳一步就是答案
}
```

树的重心: 求以 cur 为根的子树的重心,就是要找一个点,使得删除这个点后,分开来的零散的子树中,节点数的最大值最小。并且最大值最多也只是 son[cur] / 2,因为最坏情况(最难分)也就是一条直线,选中间点就可以了。

算法思路:

直观来说,应该是删除那个儿子数最多的那个节点的。因为,没理由再分一些节点给最大的那颗子树把,这样只会更坏。但是却可以把最大的那颗子树分一些节点去另一边,所以优先删除最大的那颗子树的重心,然后判断是否符合要求,不符合就只能暴力往上找了。判定条件是 son[cur] > 2 * son[重心]就不行。因为这表明 son[cur] - son[重心]的值还大于 son[cur] / 2。代进去就知道了 son[cur] - son[重心] > son[重心],假设 son[cur] = 2 * son[重心]。那么 son[重心]的最大值是 son[cur] / 2,这是不行的。

回溯处理: 先找当前这个子树中, 节点数最大的那个儿子的"重心", 然后暴力判断向上爬就行了。处理到 root 的时候, 后面的已经处理好的了, 这就是回溯。

```
}
    ans[cur] = ans[pos]; //ans[pos]已经算出来了, ans[pos]表明是 pos 节点的重心
    while (son[cur] > 2 * son[ans[cur]]) { // 放缩: son[cur] = 2 * son[重心],就不行了
       ans[cur] = fa[ans[cur]]; //暴力往上找
   }
(一)、树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么
他们的距离和一样。
(二)、把两个树通过一条边相连得到一个新的树,那么新的树的重心在连接原来两个树的重
心的路径上。
(三)、把一个树添加或删除一个叶子,那么它的重心最多只移动一条边的距离。
树的直径。
从任何一个点出发, bfs 走到最远的路, 然后从终点再 bfs 走一次, 那就是直径。
int tree diameter(int begin, bool flag) {
    memset(vis, 0, sizeof vis);
    queue<struct bfsnode> que;
    que.push(bfsnode(begin, 0));
    vis[begin] = true;
    int to = begin, mx = 0;
    while (!que.empty()) {
       struct bfsnode t = que.front();
       que.pop();
       for (int i = first[t.cur]; i; i = e[i].tonext) {
           int v = e[i].v;
           if (vis[v]) continue;
           vis[v] = true;
           que.push(bfsnode(v, t.cnt + e[i].w));
           if (mx < t.cnt + e[i].w) {
               to = v;
               mx = t.cnt + e[i].w;
           }
       }
    }
    if (flag) return mx;
    else return to;
}
```

4、图的割点、割边

}

DFN[i] 其实就是一个标记,表示 i 号顶点第几个被访问的

SCAU

low[i] 表示 i 号顶点在不经过它枚举过来的那个爸爸的情况下,能访问到的最远祖先。

割点算法,**注意根结点起码要有两个孩子,才算是一个割点。**算法中,如果 cur 能访问一个已经被访问的点,而且这个点又不是 cur 的 father,那么只能是 cur 的祖先。例如 $1\rightarrow 2\rightarrow 3\rightarrow 4$ 然后 4 反问了 2,不是爸爸 3,所以只能是 4 的祖先了。

```
void dfs (int cur,int father) {
   int child=0;//代表 cur 有多少个儿子
   when++;//这个我们称为时间戳
   DFN[cur] = when;//刚开始的辈分
   low[cur] = when;//刚开始能访问到的,只能是自己
   for (int I = 1; i <= n; i++) { //循环一个图
       if (e[cur][i] == 1) { //如果 cur 去 i 是有路的
           if (DFN[i] == 0) { //就是 i 还没被访问过。先跳去看 else
               child++;//儿子数+1
               dfs (i,cur);//分清楚谁是爸爸,谁是儿子,此时很明显 cur 是 i 的爸爸
               low [cur] = min(low[cur],low[i]);//更新我和儿子能访问到的人
               if (cur != root && low[i] >= DFN[cur]) { //此时儿子是 i 父亲是 cur
                   flag[cur] = 1;//我是割点
               }
               if (cur == root && child == 2) { //如果我是第一辈,首先回溯到有两个儿子
                                             ★、就已经标记了,不用再标记
                   flag[cur]=1;
               }
           } else if (i != father) {
               low[cur] = min(low[cur],DFN[i]);//拜师中
           }
       }
   }
}
割边算法
```

5、二分图匹配

二分图最大匹配: 匈牙利算法,复杂度 O(nm)。n 是顶点数, m 是边数

当我们 low[i]>DFN[cur]的时候,表明我们连爸爸都去不到,这个就是割边。

有一种很特别的图,就做二分图,那什么是二分图呢?就是能分成两组,S,T。其中,S上的点不能相互连通,只能连去 T 中的点,同理,T 中的点不能相互连通,只能连去 S 中的点。这样,就叫做二分图。但是他们能否相连是有条件的,不是每个 S 都能连去 T 的,所以我们一般要用个 isok(S,T),或者用邻接矩阵 e[S][T]==1 来判断他们能否相连。现在我们要求的是这个图的最大匹配数量。

FZU 2232 炉石传说

给出自己队伍 n<=100 个人,每个人两个数据,第一个是生命值,第二个是攻击力。敌方也是 n 个人,也是一样给出。现在要求是否存在这样的一种情况,自己的人去选人打,要求打到的对方必死,但是自己不能死(对方攻击力不能大于我的)。当攻击力>=生命的时候,就能打死。(选人打,一个只能选一个).对于每个敌人,都要选一个自己人来打。这里有点小

技巧就是,不需要用邻接矩阵来存图了,直接用个函数来判断能否连通就可以了。

```
多 case 记得 memset (match)
#include <cstdio>
#include <cstdlib>
#include <cstring>
int n;
const int maxn = 1e2 + 20;
struct data {
    int live;
    int att;
} a[maxn], b[maxn];
bool book[maxn];
int match[maxn];
int isok(int i, int u) {
    if (a[i].att >= b[u].live && a[i].live > b[u].att) { //这样才能连通
        return 1;
    }
    return 0;
}
int dfs(int u) { //u 是敌人
    for (int i = 1; i \le n; i++) {
        if (book[i] == 0 && isok(i, u)) { //isok(i,u) 代表那里能连一条边
             book[i] = 1; //标记后,下一次的 dfs 不会访问自己
             //为什么会进入 dfs?因为 match[i]有人了,然后叫那个人去找其他人
             if (match[i] == 0 | | dfs(match[i])) {
                 match[i] = u; //搭配 u。第 i 个自己人,选了打 u 这个敌人。
                 return 1;
             }
        }
    }
    return 0;
}
int hungary() { //匈牙利算法
    int ans = 0;
    for (int i = 1; i \le n; ++i) {
        memset(book, 0, sizeof book);
        if (dfs(i)) ans++;
    }
    return ans;//看看最大能匹配多少个, n 个自己, n 个敌人。返回(n+n)/2 就证明够打了
}
void work() {
    memset (match, 0, sizeof(match)); //多 case 这个记得 memset
    memset (book, 0, sizeof(book));
    memset (a, 0, sizeof(a));
```

```
memset (b, 0, sizeof(b));
     scanf ("%d", &n);
     for (int i = 1; i <= n; i++)
          scanf ("%d%d", &a[i].live, &a[i].att);
     for (int i = 1; i <= n; i++)
          scanf ("%d%d", &b[i].live, &b[i].att);
     if (hungary() == n) //匹配数目刚好是 n,每个人都匹配了
          printf ("Yes\n");
     else printf ("No\n");
     return;
}
int main() {
     int t;
     scanf("%d", &t);
     while (t--) work ();
     return 0;
}
```

二分图最佳匹配: KM 算法。带权图的最大匹配。得到最大权值

给定一个 n*n(n<=16)矩阵,e[i][j]代表驾驶员 i 和导航员 j 的默契值,要求输出最大默契值 如果不是完美匹配的话,就是两边人的个数不一样,就会 TLE。所以我们增加一些点,使得 它成为完美匹配,这些增加的点的权值应该为 0,表示他们对答案是没有贡献的。就是相当 于没匹配了,因为本来就会有一些人是不能匹配的。

- ★、图中原本不连通的点,要用 0 来表示,不能用 inf 来表示,理由也是一样的。
- ★、如果想输出最小搭配,则大于号那些对应改变, inf 也改成-inf 即可

```
例题: 玲珑杯 ACM 1047 Best couple
```

```
int match[maxn];//match[col] = row
int vx[maxn], vy[maxn];
int fx[maxn], fy[maxn];
int n, m;
int dfs (int u) {
    vx[u] = 1;
    int i;
    for (i = 1; i <= m; i++) { //筛选 n 个 导航员 col 的值
         if (vy[i] == 0 \&\& fx[u] + fy[i] == e[u][i]) {
              vy[i] = 1;
              if (match[i] == 0 || dfs(match[i])) {
                   match[i] = u; // match[col]=row;
                   return 1;//搭配成功
              }
         }
    }
    return 0;//我找不到啊,后面,就会执行 km
}
```

SCAU

```
void do_km() { //
    int i, j;
    int d = inf; //改成-inf
    for (i = 1; i <= n; i++) { //遍历每一个驾驶员 row 的值
         if (vx[i] == 1) {
              for (j = 1; j <= m; j++) { //对他进行遍历导航员 col 的值
                   if (!vy[j]) {
                       if (d > (fx[i] + fy[j] - e[i][j])) { //改成小于号
                            d = fx[i] + fy[j] - e[i][j];
                       }
                   }
              }
         }
    }
    for (i = 1; i <= n; i++) {
         if(vx[i] == 1) {
              fx[i] = d;
              vx[i] = 0; //请 0
         }
         if (vy[i] == 1) { //
              fy[i] += d;
              vy[i] = 0; //情 0
         }
    }
    return;
}
int anskm() {
    memset(vx, 0, sizeof(vx));
    memset(vy, 0, sizeof(vy));
    memset(fx, 0, sizeof(fx));
    memset(fy, 0, sizeof(fy));
    memset(match, 0, sizeof(match));
    //km 算法的一部分,先初始化 fx, fy
    for (int i = 1; i <= n; i++) { //遍历每一个驾驶员 row 的值
         fy[i] = 0;
         fx[i] = -inf; //无穷小, 改成 inf
         for (int j = 1; j <= m; j++) { //遍历每一个导航员 col 的值
              if (fx[i] < e[i][j]) { //默契值,改成大于
                   fx[i] = e[i][j];
              }
         }
    }
    for (int i = 1; i <= n; i++) { //遍历每一个驾驶员 row 的值
         memset(vx, 0, sizeof(vx));
```

总结:上面两个算法,如果你枚举敌人,得到的 match[i]=u 就是自己人 i 去打 u 这个敌人。如果你枚举驾驶员 row,得到的就是导航员 col 去搭配驾驶员 row。因为 dfs 谁,就是为谁找搭配。而这个搭配,用 match[i]表示的话。i 是它对面的图。没枚举的图。match[x]=枚举值

6、欧拉回路 && 哈密顿回路

欧拉图:一定要访问这个图的每条边,而且每条边只能访问一次,能回到起点的图。 判断的时候需要先用并查集来判断图是否联通。也可以用 Degree[i] = 0 来判断不联通 无向图:

欧拉回路: 所有顶点的度数应该都是偶数。(必须是一进一出, 所以必定是偶数)

欧拉通路:有且仅有两个顶点的度数是奇数,其他的都是偶数。

有向图:

欧拉回路:每个顶点的入度等于出度。

欧拉通路:起点的入度比出度少一,终点的出度比入度少一。其他点的入度和出度相同。

哈密顿图: 要求的是经过所有顶点且只能经过一次,能回到起点的图。

求解哈密顿**通路**,需要用上拓扑排序。(用在**有向、无环**图中,也就是 DAG)

拓扑排序其实就是选课安排的排序,要修 C 这门课,要求先修 A 和 B 这两门课,那么把整个图线性化后(也就是拓扑排序后),先修的课程需要出现在后修的课程的前面。可知 A 和 B 没有先修课程,所以这时候拓扑排序的结果不唯一。如果这个图有环,就不存在解。

bool DAG sort() { //in[u]表示点 u 的入度

```
}
if (ans.size() < n) return false; //有环
return true;
```

那么如果这个 DAG 上的任意两个顶点都是全序关系,也就是任意两个顶点都能确定一个关系,也就是单向连通,也就是事件发生的先后关系。那么拓扑排序后的结果是唯一的。比如上面的,A 和 B 是不能确定关系的,也称偏序关系。如果是全序关系,那么他的拓扑排序结果是唯一的。也是对应的哈密顿路径。(注意非 DAG 图也有哈密顿路径,这里只讨论 DAG 图的)。

方法就是,先拓扑排序后,然后对于这个序列,任意两个相邻的点都应该存在边,否则就不 是哈密顿通路。

杂项

}

1、图的邻接表去重

ACdream 1236

给定一个可能有重边的无向图,要求找出所有割边,注意重复的边不能算割边。看看时候重复的时候,可以直接在插入的时候,再遍历所有 first[u]。有重复的话把 id 去掉或者先建完图,O(m)去重,用个 used[v] = u 标记项点 v 有项点 u 去过,不用清空,因为 u 一定是不同的,删除全部边的话,用个 pre[v] = j 表示上一条边是谁就行了。44ms bool isok (int u,int v) { //可以在 add 边的时候询问一下是否重复,重复就不加上去了

```
for (int i=first[u]; i; i=e[i].next) { //问一下 u 顶点所有边能不能去这个点
        if (e[i].v==v) {
             e[i].id=inf;
             return false;
        }
    }
    return true;
}
或者O(m)去重
for (int i = 1; i <= n; ++i) { //枚举每一个顶点
    for (int j = first[i]; j; j = e[j].next) {
        if (book[e[j].v] == i) { //int book[],被当前号顶点访问过
             e[j].id = inf;
             e[pre[e[j].v]].id = inf;
        }
        pre[e[i].v] = i; //这个顶点的上一条边是 i 这条边。
        book[e[j].v] = i; //这个顶点被 i 号顶点访问过
    }
}
```

这里的 pre[]和 book[]都要 memset,因为多 case 可能有相同的边。 如果要保留最短的边,只需要比较当前这条和 pre[]那条的大小,然后更新 pre[]要注意。

SCAU

计算几何

①、给定 n 条边长,问能否构成 n 变形。类比三角形的思路,任意 n-1 边之和大于第 n 边,这个能在 O(n)时间内算出来,预处理所有的和 sum,枚举删除的边 a[i]即可。

- ②、const double PI = acos(-1.0); 定义 PI 要用这个
- ③、对于坐标的 hash, (x, y), 可以变成 x * max(n, m) + y。大小只有 n * m + y 这个级别。

1、基本公式

```
二维坐标的定义
struct coor {
    double x, y;
    coor() {}
    coor(double xx, double yy): x(xx), y(yy) {}
    double operator ^ (coor rhs) const { //计算叉积(向量积),返回数值即可
        return x * rhs.y - y * rhs.x;
    }
    coor operator - (coor rhs) const { //坐标相减,a-b 得到向量 ba,
                               //返回一个向量(坐标形式)
        return coor(x - rhs.x, y - rhs.y);
    }
    double operator * (coor rhs) const { //数量积,返回数值即可
        return x * rhs.x + y * rhs.y;
    }
    bool operator == (coor rhs) const {
        return same(x, rhs.x) && same(y, rhs.y); //same 的定义其实就是和 eps 比较
    }
   //记得这里有个分号
二维直线的定义
struct Line {
    coor point1, point2;
    Line() {}
    Line(coor xx, coor yy): point1(xx), point2(yy) {}
    bool operator & (Line rhs) const { //判断直线和 rhs 线段是否相交
        //自己表示一条直线,然而 rhs 表示的是线段
        //判断 rhs 线段上两个端点是否在 this 直线的同一侧即可,用一侧,就不相交
        coor ff1 = point2 - point1; //直线的方向向量
        return ( ((rhs.point1 - point1)^ff1) * ((rhs.point2 - point1)^ff1) ) <= 0;</pre>
        //符号不同或者有 0, 有 0 代表有点落在直线上,证明相交
    }
};
```

```
三维坐标的定义
struct coor {
    int x, y, z; //坐标, 也可以表示成向量, 向量也是一个坐标表示嘛
    coor() {}
    coor(int xx, int yy, int zz) : x(xx), y(yy), z(zz) {}
    bool operator & (coor a) const { //判断两个向量是否共线,共线返回 true
        //思路: 判断叉积,是否各项系数都是0,叉积是0的话,就是共线的了
        return (y * a.z - z * a.y) == 0 && (z * a.x - x * a.z) == 0 && (x * a.y - y * a.x) == 0;
    }
    coor operator ^ (coor a) const {
        //得到两个向量的叉积(就是向量积),返回的是一个向量
        //如果是二维的话,就是只有 y*a.z - z*a.y, 其他的没有的。
        return coor(y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x);
    }
    coor operator - (coor a) const { //如果是 c-d 的话,得到向量 dc,
        return coor(x - a.x, y - a.y, z - a.z);
    }
    int operator * (coor a) const { //得到两个向量的 数量积,返回整数即可
        return x * a.x + y * a.y + z * a.z;
    }
};
1.1、判断线段是否相交,判断点是否在线段上
bool OnSegment(coor a, coor b, coor cmp) { //判断点 cmp 是否在线段 ab 上
    double min_x = min(a.x, b.x), min_y = min(a.y, b.y);
    double max x = max(a.x, b.x), max y = max(a.y, b.y);
    if (cmp.x >= min_x && cmp.x <= max_x && cmp.y >= min_y && cmp.y <= max_y)</pre>
        return true;
    else return false;
}
bool SegmentIntersect(coor a, coor b, coor c, coor d) {
    double d1 = (b - a) ^ (d - a); //direction(a,b,d);以 a 为起点,计算 ab 和 ab 的叉积
    double d2 = (b - a) \wedge (c - a);
    double d3 = (d - c) ^ (a - c);
    double d4 = (d - c) \wedge (b - c);
    if (d1 * d2 < 0 && d3 * d4 < 0) return true;
    else if (same(d1, 0) && OnSegment(a, b, d)) return true; //如果端点在线段上不算相交的
    else if (same(d2, 0) && OnSegment(a, b, c)) return true; //就是要严格相交的话,就把这四
    else if (same(d3, 0) && OnSegment(c, d, a)) return true; //行去掉
    else if (same(d4, 0) && OnSegment(c, d, b)) return true;
    else return false;
}
1.2 判断直线是否相交、平行、求交点
struct data LineIntersect(Line L1, Line L2) { //判断这两条直线是否平行、重合、相交
```

```
//随便开个结构体保存就行,double x,y; int flag;flag 表明是否平行或重合
    struct data ans:
    ans.flag = 0;//0 表示相交
    ans.x = L1.point1.x;
    ans.y = L1.point1.y;
    if (((L1.point2 - L1.point1) ^ (L2.point2 - L2.point1)) == 0) { //这样就起码平行
        ans.flag = 1; // 1 表示平行吧
        //然后在直线 1 找一点连去直线 2,如果还是 0,说明重合
        if (((L2.point2 - L1.point1) ^ (L2.point2 - L2.point1)) == 0)
            ans.flag = 2; //2 表示重合了
        return ans;
    }
    double t = ((L1.point1 - L2.point1) ^ (L2.point1 - L2.point2)) /
             ((L1.point1 - L1.point2) ^ (L2.point1 - L2.point2));
    ans.x += (L1.point2.x - L1.point1.x) * t;
    ans.y += (L1.point2.y - L1.point1.y) * t;
    return ans;
}
1.3 判断能否构成三角形 只需要枚举任意两边相减<第三边即可
bool check (int a, int b, int c) {
    if (abs(a - b) >= c) return false;
    if (abs(a - c) >= b) return false;
   if (abs(b - c) >= a) return false;
    return true;
}
1.4 坐标绕坐标旋转角 θ 后的值,可以配合矩阵快速幂
任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转 a 角度后的新的坐标设为(x0,y0),有公式:
x0 = (x - rx0) * cos(a) - (y - ry0) * sin(a) + rx0;
y0 = (x - rx0) * sin(a) + (y - ry0) * cos(a) + ry0;
1.5 判断点是否在任意多变形上。(顶点必须按顺序输入,顺时针,逆时针等)
思路:求解 y=cmp.y 与多边形一侧有多少个交点,奇数就在里面,偶数就在外面,cmp 在边
上是不行的。需要增加判断点是否在边上的特判。2代表在边上,1代表在里面,0代表外
int PointInPolygon (coor p[], int n, coor cmp) {
    int cnt = 0; //记录单侧有多少个交点, 这里的 p[], 必须有顺序
    for (int i = 1; i \le n; ++i) {
        int t = (i + 1) > n?1: (i + 1); //下标为1要这样 MOD
        coor p1 = p[i], p2 = p[t];
        if (OnSegment(p1, p2, cmp)) {
            coor t1 = p1 - cmp, t2 = p2 - cmp; //同时要叉积等于 0, 这是在线段上的前提
            if ((t1 ^ t2) == 0) return 2; // 2 表明在多边形上,可以适当省略
        }
```

一些题目:

POJ 2318 TOYS 利用叉积判断点在线段的那一侧

题意: 给定 n(<=5000)条线段,把一个矩阵分成了 n+1 分了,有 m 个玩具,放在为位置是(x,y)。现在要问第几个位置上有多少个玩具。

思路: 叉积,线段 p1p2,记玩具为 p0,那么如果(p1p2 ^ p1p0) (记得不能搞反顺序,不同的),如果他们的叉积是小于 0,就是在线段的左边,(注意这里的 p1 一定是上端点)。所以,可以用二分找,如果在 mid 的左边,end=mid-1 否则 begin=mid+1。结束的 begin,就是第一条在点右边的线段

POJ 3304 Segments

题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点。

思路:对于投影在所求直线上面的相交阴影,我们可以在那里作一条线,那么这条线就和所有线段都至少有一个交点,所以如果有一条直线和所有线段都有交点的话,那么就一定有解。怎么确定有没直线和所有线段都相交?怎么枚举这样的直线?思路就是固定两个点,这两个点在所有线段上任意取就可以,然后以这两个点作为直线,去判断其他线段即可。为什么呢?因为如果有直线和所有线段都相交,那么我绝对可以平移到某个极限的端点位置,再旋转到某个极限的端点位置,也不会失去正解。Bug点就是枚举的两个点是重点的话,这个直线的方向向量是0向量,这样会判断到与所有线段都相交。~~

POJ 1556 The Doors

题意: 给定 n 堵墙在一个矩形里, 现在要你从(0,5)走去(10,5)的最短距离

思路: 刚开始还想模拟,就是从(0,5)走,每次 x 向右一格,然后判断有没和线段相交就可以。但是它的们有可能是小数形式给出的,这样就 GG 了(x--x+1 中可能存在很多门)。正确的方法应该是建图,对于所有门,他们都有端点的,先把他们加入到图中,包括起点的话,一共有 num 个点吧。然后暴力判断 e[i][j]是否能到达就可以,这里用线段相交就可以判断。然后floyd 一下就好。bug 点:门的端点不应该加进来,就是(x,0)、(x,10)这样的点不应该加入图中,因为那个是死角,不能出去了。

2、正 N 边形公式

①、在正多边形中,只有三种能用来铺满一个平面而中间没有空隙,这就是正三角形、正方形、正六边形。

∠AOP, 是中心角, 值为 ao=2*PI/n (360/n/360*2*PI) AO 是外接圆的半径, 也称为正 N 边形的半径

把正 N 边形分成 N 个小三角形, 计算出对应的高即可

double acreage(int n, double len) { //顶点数是 n,每条边长是 len

```
面积公式:
```

```
//n>=3
    double ao = PI / n; //中心角的一半(中心角是 PI/n,弧度制)
    double h = len / 2 / tan(ao);
    return 1.0 / 2 * len * h * n;
   }
内角:
   正 n 边形的内角和度数为: (n-2)×180°;
   正 n 边形的一个内角是(n-2)×180°÷ n.
外角:
   正 n 边形外角和等于 n*180° - (n-2)*180°=360°
   所以正 n 边形的一个外角为: 360°÷ n。
   所以正 n 边形的一个内角也可以用这个公式: 180°-360°÷ n.。
中心角:
   外接圆,每条边所对的圆周角,360/n。这个角和内角是互补的
对角线:
   对角线数目: n*(n-3)/2;
   最长对角线长度
   double diagonal(int n, double len) {
      //求出正 N 边形的最长对角线长度,每条边长度是 len
      //目标: 求出正 N 边形外接圆直径, **所有正 N 边形都有外接圆**
      //中心角:360/n..就是每条边对应的圆心角是相等的,有 n 条边平分
      //360/n 转化成弧度制再取一半, ao=PI/n; ans=len/2/sin(ao)*2
      return len / sin(PI / n);
   }
```

3、平面最近对

分治算法,分开两部分,算出 DL 表示左边的最近点对, DR 是右边,但是可能是从左边选一

个点,右边选一个点会更小,这个时候可以暴力。记 d=min(DL,DR)。在[L,R]中选出离中间那个分割点 a[mid]的 x 距离小于 d 的先,大于 d 的明显不是最优。假设有 k 个,然后暴力 n^2 枚举每个 k,看看能不能更新答案,这个时候明显也是两个点的 y 距离小于 d 才能更新,这样一来,每个 k,最多不会超过 6 个点去匹配。

К

这里两个正方形, 边长为 d 的, 不会存在那个点 Q, 因为破坏了最短距离 是 d 这样的前提。那么枚举 k 的话, 只会枚举与他 y 距离<d 的。就是那正方形的 6 个顶点了。

struct coor {

double x, y; //这里可以加上一个 int id;表明是第几个,防止排序后乱,这样找最近点对 a[maxn], t[maxn], mi_a , mi_b ; //t 是用来修改的临时的。

double mi;//这个用来记录最小值,更新后,每个 case 需要重新变为 inf。不然 wa void update(double now, struct coor a, struct coor b) {

```
if (mi > now) {
         mi = now;
         mi_a = a;
         mi b = b;
    }
    return;
}
bool cmpxy(struct coor a, struct coor b) {
    if (a.x!= b.x) return a.x < b.x; //先排好序,不影响位置的,
    else return a.y < b.y; //只会改变它是第几号点
}
bool cmpy(struct coor a, struct coor b) {
    return a.y < b.y;
}
double dis(struct coor a, struct coor b) { //根据什么规则来选取,可以变换
    return ((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double closepoint(int begin, int end, bool flag) {
    double d = inf; //选出最小值的
    if (begin == end) return inf; //只有一个点的话,不行
    if (begin + 1 == end) {
         double ff = dis(a[begin], a[end]);
         if (flag) update(ff, a[begin], a[end]); //更新最近对
         return dis(a[begin], a[end]); //两个点直接算
    }
    int mid = (begin + end) / 2;
    double DL = closepoint(begin, mid, flag); //选出左右最小 p1,p2
    double DR = closepoint(mid + 1, end, flag); //后面回溯算中间
    d = min(DL, DR);
    int k = 0;
```

```
for (int i = begin; i <= end; i++) { //虽然扫描整个区间,但只有左右些小才有戏
       if (fabs(a[mid].x - a[i].x) < d) { //选出离中线小于 d 的。才有戏
           t[++k] = a[i];
       }
   }
   sort(t + 1, t + 1 + k, cmpy); //根据 y 排序下, 刚才那个是优先排 x 的
   for (int i = 1; i <= k - 1; ++i) { //现在暴力枚举这些点的距离
       int f = 0;
       for (int j = i + 1; j <= k && (t[j].y - t[i].y < d); ++j) { //y 相差大于 d 也没戏
           //对于每一个 k,满足的点最多也只是 6 个。上下两个 d 的正方形, 6 个点
           if (d > dis(t[i], t[i])) {
               d = dis(t[i], t[j]);
               if (flag) update(d, t[i], t[j]); //更新最近点对
           }
       }
   }
   return d;
}
closepoint(1, n, 0); //0 代表不需要找到那两个点
```

上面那个 dis 是可以变换的,有一道题目就是平面上有 n 个点,以每个点为中心作一个正方形,设边长为 k,任意两个正方形不得重叠。要你求出最短的 k。

注意到任意两个点(x1,y1)、(x2,y2)。他们能作的正方形边长最大是 max(abs(x1-x2),abs(y1-y2)); 因为可以以最长距离各分一半边长过去即可。现在就是要使得这个值满足所有条件。(要使这个值最大,在上面已经 max 过了。)直接修改 dis 函数即可。按照这个规则来找。

```
double dis (struct coor a, struct coor b) { //根据什么来选取,可以变换 return (max(fabs(a.x - b.x), fabs(a.y - b.y))); //return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); }
```

4、欧拉公式,分割平面

V: 项点数 E: 边数 F: 面的数目 在二维的**平面图**中(不能有相交的边),有**…… V-E+F=2**

V=6 E=8 F=4。 F的时候算上一个外面的无限平面

这里的话, 就是 12 - 20 + 11 - 2 = 1 , T=2, 两个正方体

数学

1、组合数 C.m 防溢出公式

```
1、如果, (n&m)==m 那么 C(n,m)为奇数, 否则为偶数
```

- 2、求解 C(n,0)、C(n,1)……C(n,n)有多少个奇数: ans=1<<(n 二进制中 1 的个数)
- $3 \cdot C_{n-1}^{m-1} + C_{n-1}^{m} = C_{n}^{m}$
- 4、求组合数的时候可能会溢出,这个时候我们可以边乘边除,来防止溢出。

因为
$$C_n^m = \frac{n!}{(n-m)!*m!} = \frac{n(n-1)(n-2)...(n-m+1)}{m(m-1)(m-2)...1}$$

那么把上面的 1 用 i 来循环,从右到左计算即可组合数是很大的,C(100,50)也会爆 ULL,这个只能求些小的数,例如 C(1e8,4)也不会爆。LL C(LL n, LL m) {

```
if (n < m) return 0; //防止 sb 地在循环
if (n == m) return 1; //C(0,0) 也是 1 的
LL ans = 1;
LL mx = max(n - m, m); //这个也是必要的。能约就约最大
LL mi = n - mx;
for (int i = 1; i <= mi; ++i) {
    ans = ans * (mx + i) / i;
}
return ans;
}
```

Lucas 定理 解决很大的组合数问题 时间 O(log_p(n)*p)用**在%很小的数比较有用**。 求解 C(n,m)%p 其中: n, m, p (1 <= m <= n <= 10^9, p 是质数且 p <= 1e5) 当 MOD 的数真的很小,MOD = 110119 的话,可以预处理阶乘,**这样快很多。** LL C(LL n, LL m, LL MOD) {

```
if (n < m) return 0; //防止 sb 地在循环,在 lucas 的时候 if (n == m) return 1 % MOD; LL ans1 = 1; LL ans2 = 1; LL mx = max(n - m, m); //这个也是必要的。能约就约最大的那个
```

```
LL mi = n - mx;
    for (int i = 1; i \le mi; ++i) {
        ans1 = ans1 * (mx + i) %MOD;
        ans2 = ans2 * i % MOD;
    }
    return (ans1 * quick_pow(ans2, MOD - 2, MOD) % MOD); //这里放到最后进行,不然会很慢
}
LL Lucas(LL n, LL m, LL MOD) {
    LL ans = 1;
    while (n && m && ans) {
        ans = ans * C(n % MOD, m % MOD, MOD) % MOD;
        n = MOD;
        m = MOD;
    }
    return ans;
}
NEFU 628
求解: C(n,m)%p 的值。n, m and p (1 <= n, m, p <= 10^5)。 ★ 并且 p 有可能是合数
思路:设 X = C(n, m) \% p,那么 X 肯定可以分解成 p_1^a * p_2^b .... * p_z^z 这样的东西,那么把最后
每个质因子剩下的个数算出来,进行快速幂对 p 取模即可。这里只进行了乘法,无须判断是
否有逆元。 快速幂那里没有进行求逆元操作。
LL calc(LL n, int p) {
    LL ans = 0;
    while (n) {
        ans += n/p; // 2 的倍数贡献一个 2, 然后 4 的倍数继续贡献一个。
        n = p;
    }
    return ans;
}
LL solve(LL n, LL m, LL p) {
    LL ans = 1;
    for (int i = 1; i <= total && prime[i] <= n; i++) {
        LLt = calc(n, prime[i]); //calc 是算出 n!中有多少个 prime[i]这个因子。
        t -= calc(n - m, prime[i]);
        t -= calc(m, prime[i]); // t 最小也是 0
        if(t){// 就是当 t 不是 0 的时候
            ans *= quick_pow(prime[i], t, p);
            ans %= p;
        }
    }
    return ans;
}
```

有时候,对于 p 很少的情况 p<=1e4,然后我们数据大 T<=10000,这样,我们可以预处理出 fac[i][j]表示 (j 的阶乘)%prime[i]的值。inv[i][j]表示 (j!)关于 prime[i]的逆元。然后 O(1)处理。注意的是这个公式的话,fac[1][2]以及后面那些 fac[1][3].....都是 0 的,因为很简单,你如果 阶乘中有数字>=prime[i],那么%prime[i]后结果都是 0。但是这样的后果就是 C(6,2)%2 等于 0 了。所以这里的组合数要用 Lucas 辅助来求得。(只能用 Lucas,Lucas 能避免这个情况) int fac[maxn][maxn]; // fac[i][j]表示(j!)%prime[i]的值 j<prime[i],如果 j==prime[i],后面的都是 0 int inv[maxn][maxn]; // inv[i][j]表示 (j!)对 prime[i]求逆元

```
void init() {
  for (int
```

```
for (int i = 1; i <= total; i++) {
         fac[i][0] = 1;
         inv[i][0] = 1; // (0!)=1
         for (int j = 1; j < prime[i]; j++) { //等于 prime[i]的话,%后是 0 了,没用
              fac[i][j] = (j * fac[i][j - 1]) \% prime[i];
              inv[i][j] = quick_pow(fac[i][j], prime[i] - 2, prime[i]);
         }
    }
    return;
}
int C(int n, int m, int MOD) {
    if (m > n) return 0;
    if (m == n) return 1;
    int pos = book[MOD]; //book[prime[i]]=i;表明这个素数下标是几多
     return (fac[pos][n] * (inv[pos][n - m] * inv[pos][m] % MOD)) % MOD;
这里想得到 C(6, 2)%2 的话。要调用 Lucas(6, 2, 2);
```

求解 C(n, m) % p,其中 n, m <= 1e18 && p <= 1e6 并且 p 可能是合数。 扩展 Lucas 定理 + 中国剩余定理合并。

要求解 C(n, m) % p,可以把 p 拆分成 $p_1^a * p_2^b * p_k^z$ 这样的形式,然后分别求解 C(n, m) % p_i^x 后,得到了模数是 p_i^x ,余数是 C(n, m) % p_i^x 的同余方程组。由于每个 p_i^x 是互质的,所以用 CRT 求得的最小的整数解就是答案。

比如: C(10, 3) % 14。C(10, 3) = 120, 14 有两个质因数 2 和 7,120 % 2 = 0, 120 % 7 = 1,这样用 (2, 0)和(7, 1)找到最小的正整数 8 即是答案,即 C(10, 3) % 14 = 8。

但是如果 p_i^x 中的 x >= 2,那模数也不是质数,怎么办?但是这个模数却是质数的 x 次方,是有方法解的。回顾组合数的阶乘公式,如果能算出某个数 n! % p_i^x 的值,那么用求逆元的方法就可以求得整个 C(n, m) % p 的值。**注意这里不是直接求** n! % p_i^x 的值,是会把 p_i 因子提取出来另外计算,从而使得必定存在逆元。因为必定互质。

过程是这样的: 假设是求 $19!\%3^2$,虽然这里答案是 0,但是实际会把因子 3 都跳过不算等价于($1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19)% <math>3^2$ 等价于($1*2*4*5*7*8*10*11*13*14*16*17*19)*<math>3^6*(1*2*3*4*5*6)\%3^2$ 然后注意到后面的,是 n/p_i 的阶乘,所以这里可以递归求解。前面的,是有循环节的。每 p_i *为一段,一个循环。比如 1*2*4*5*7*8 是一个循环,10*11*13*14*16*17 也是一个循环。注意到,它们% p_i *的值是相等的。所以这里也可以快速算出。那么可能最后面

不够 p_i^x 个,剩下的就暴力可以了,复杂度不大。不会超过 p_i^x 个。最后,就是 3^6 怎么解决的问题,也是问题的关键。如果不断递归求解下去,那么最终会是 3^8 。做法是把 n!中的 p_i 因 子全部提取出来另外算,这样也使得 n! % p_i^x 后,和 p_i^x 是互质的,逆元存在。最后用 CRT 合并一下,到此问题完美解决。注意中间过程爆 LL,要及时取模。

LL factorialMod(LL n, LL pi, LL cnt) { //求解 n! % pi^cnt if (!n) return 1; LL piPow = quick pow(pi, cnt, 7e18), temp = 1; LL y = n / piPow; //分成 y 段,不要写在上面,piPow 变量还没定义出来。 for (LL i = 1; i <= piPow; ++i) { //每 piPow 为一段, 然后每段都同余 piPow if (i % pi == 0) continue; //pi 的倍数早已算出 temp = temp * i % piPow; } //1 * 2 * 4 * 5 * 7 * 8 和 10 * 11 * 13 * 14 * 16 * 17 模 9 的结果是一样的 LL ans = quick pow(temp, y, piPow); //分成了 y 段然后同余 piPow for (LL i = y * piPow + 1; i <= n; ++i) { //剩下的数字要暴力,例如 19! if (i % pi == 0) continue; //pi 的倍数早已算出 ans = ans * (i % piPow) % piPow; //取模两次, i 会爆 LL } return ans * factorialMod(n / pi, pi, cnt) % piPow; //递归求解 LL exLucas(LL n, LL m, LL p) { //扩展 lucas 定理 if (n <= m) return 1 % p;</pre> int lenMod = 0; for (LL i = 2; i * i <= p; ++i) { if (p % i == 0) { //i 是 p 的质因子 int cnt = 0;while $(p \% i == 0) \{$ cnt++; p /= i;++lenMod; MOD[lenMod] = quick_pow(i, cnt, 7e18); r[lenMod] = calc(n, m, i, cnt); } } if (p > 1) { ++lenMod; MOD[lenMod] = p; r[lenMod] = calc(n, m, p, 1);return CRT(r, MOD, lenMod); }

2、各种素数筛法

- ①、【1】即不是质数,也不是合数
- ②、1e5 内有 9592 个质数。1e6 内有 78498 个质数。
- ③、在一个大于 1 的数 a 和它的 2 倍之间(即区间(a, 2a)中)必存在至少一个素数。
- 1、Eratosthen 筛法 (埃垃托斯特尼筛法)

思路,用 check[]标记不可能是质数的数,那么质数的 N 倍绝对不是质数。

const int maxn=1e6+20;

bool prime[maxn];//这个用 bool 就够了,

bool check[maxn];

```
void init_prime() { //有可能需要 book[1] = 1, 1 的最大质因数的 1
```

```
for (int j = i; j <= maxn - 20; j += i) { //筛掉 i 的倍数,其实可以从 2*i 开始。 check[j] = true; //那么 j 就没可能是质数了 //book[j] = i; //表示 j 的最大质因数是 i,不断更新。后面的质因数更大 //用这个的时候,需要把 2*i 变成 i,否则 book[2]不行。(改成 i 了) }
```

}

复杂度: 大概是 O(3*n) maxn=1e6+20 时。

执行次数: 2853708

题目:给定 n (n<=1e6)个数,要求找出所有数字中质因数最大的那个数 (num<=1e6)。 思路:注意到第二层循环,每次都约掉了某些合数 = 质数*k 这样的倍数,那么就说明那个合数是这个质数的倍数啦,质数是不能再拆的了,所以他分解质因数就必定有这个质数因子了,所以用个数组 book[i]表示数字 i 的最大质因数是谁,即可。

2、Euler 筛法 (欧拉筛法)

上面的方法中,质数是 2 的时候,排除了 6 等数字,然后质数是 3 的时候,又再次排除了 6 这个数字,不合理。优化使得每个合数只会被它最小的质因数筛去。但是记录质数的时候只能是 prime[1]=2,prime[2]=3 prime[total]= 这样记录了。因为后面要用。

```
const int maxn = 1e6 + 20;
```

int prime[maxn];//这个记得用 int,他保存的是质数,可以不用开 maxn 那么大 bool check[maxn];

int total;

```
void initprime() {
```

```
for (int i = 2; i <= maxn - 20; i++) {
    if (!check[i]) { //是质数了
        prime[++total] = i; //只能这样记录,因为后面要用
    }
    for (int j = 1; j <= total; j++) { //质数或者合数都进行的
```

SCAU

质因数分解:

给定一个数,写成唯一分解形式,90=2*3*3*5

短除法: 枚举每一个质数 i, 如果当前的 n 能整除 i, 就把 i 的质数因子统统约去,然后剩下的 n 也是一个质数,是最大的质因子。

关于剩下的 n 为什么是质数: 如果一个数 n 是合数,那么它必定有一个因子在[1, \sqrt{n}]中,因为假设 n=a*b,取 i=min(a,b); 那么,n>=i*i,所以必有一个因子 i 在 \sqrt{n} 中,如果没有的话,则说明这个数是质数了。所以下面约剩的数也是一个质数,由于约质数因子的时候是从 2、3、5 从小到大约,所以剩下的是最大的质数因子。

加速: 预处理所有质数, 然后试着去约的时候, 就不需试 4、8、16 那些不可能的啦。

3、快速幂、矩阵

求解两个大数相乘,中间结果爆 long long 的算法,例如 a,b<=1e18,求解 a*b%MOD 后的值,不要以为相乘没爆 unsigned long long 那个范围只有 1e19,其实就是 10 倍 long long 啦.这个的速度其实并不快,只是把他拆分相乘,这样就能取模防止溢出了。

```
b %= MOD; // a*b%MOD 等价于 (a%MOD * b%MOD) % MOD;
LL ans = 0; //记住是 0 因为中间过程是加
while (b) {
    if (b & 1) {
        ans = (ans + base) % MOD;
    }
    base = (base << 1) % MOD; //notice
    b >>= 1;
    }
    return ans;
}
例题: HDU 5666
ans = (q - 1) * (q - 2) / 2 直接上模板即可,注意分开 q-1, q-2 的奇偶, 因为 mod 后不能再除。
```

快速幂取模

求解 a^b%MOD 后的值,思路就是把 b 看成二进制数相加 2^19=2^(1+2+16)。为什么这样能达到 logn 的速度呢?因为如果 base=2^4,下一次就直接是 2^16 次方,跳跃的增幅。注意和快速乘法取模不同的地方是:

- ①、快速乘法取模那里的 base 值,是每次只乘 2 的,因为 2*19 = 2*(1+2+16),此时每次将 ans 加上 base 值,我们只需加他的 base 倍,2*base 倍,16*base 即可。
- ②、快速幂取模那里的 base 值,是每次乘以 base 自己的,因为 2^19=2^(1+2+16),它每次 是 ans 乘 base 的,要使指数增加,则 base=base^k,这样乘的时候才能加上 k(例如 k=16)。 LL quick pow(LL a, LL b, LL MOD) { //求解 a^b%MOD 的值

```
LL base = a % MOD;
LL ans = 1; //相乘,所以这里是 1
while (b) {
    if (b & 1) {
        ans = (ans * base) % MOD; //如果这里是很大的数据,就要用 quick_mul
    }
    base = (base * base) % MOD; //notice。注意这里,每次的 base 是自己 base 倍
    b >>= 1;
}
return ans;
```

矩阵快速幂

}

$$C = AB = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 \times 1 + 2 \times 2 + 3 \times 3 & 1 \times 4 + 2 \times 5 + 3 \times 6 \\ 4 \times 1 + 5 \times 2 + 6 \times 3 & 4 \times 4 + 5 \times 5 + 6 \times 6 \end{pmatrix} = \begin{pmatrix} 14 & 32 \\ 32 & 77 \end{pmatrix}$$

矩阵乘法是满足结合律的,但不满足交换律。就是 A*B*B*B 等价于 $A*(B)^3$ 。但是,A*B 不 等于 B*A,这样可以对 B^3 进行快速幂取模,从而得到答案。

```
struct Matrix {
```

LL a[maxn][maxn];

```
int row;
   int col;
};
//应对稀疏矩阵,更快。
struct Matrix matrix mul(struct Matrix a, struct Matrix b, int MOD) {//求解矩阵 a*b%MOD
   struct Matrix c = {0}; //这个要多次用到,栈分配问题,maxn 不能开太大,
   //LL 的时候更加是,空间是 maxn*maxn 的,这样时间用得很多,4 和 5 相差 300ms
   c.row = a.row; //行等于第一个矩阵的行
   c.col = b.col: //列等于第二个矩阵的列
   for (int i = 1; i \le a.row; ++i) {
       for (int k = 1; k \le a.col; ++k) {
           if (a.a[i][k]) { //应付稀疏矩阵, 0 就不用枚举下面了
               for (int j = 1; j \le b.col; ++j) {
                  c.a[i][j] += a.a[i][k] * b.a[k][j];
                  c.a[i][j] = (c.a[i][j] + MOD) % MOD; //负数取模
               }
           }
       }
   }
   return c;
}
但是这样话,因为枚举变量的先后次序问题,取模次数又多了,被卡了。下面这个不能应对
稀疏矩阵的,但是应对稠密矩阵,这个取模次数比较小,所以比较快。快 420ms
struct Matrix matrix_mul (struct Matrix a, struct Matrix b, int MOD) { //求解矩阵 a*b%MOD
   struct Matrix c = {0}; //这个要多次用到,栈分配问题,maxn 不能开太大,
   //LL 的时候更加是,空间是 maxn*maxn 的,这样时间用得很多,4 和 5 相差 300ms
   c.row = a.row; //行等于第一个矩阵的行
   c.col = b.col; //列等于第二个矩阵的列
   for (int i = 1; i <= a.row; i++) { //枚举第一个矩阵的行
       for (int j = 1; j <= b.col; j++) { //枚举第二个矩阵的列, 其实和上面数值一样
           for (int k = 1; k <= b.row; k++) { //b 中的一列中,有"行"个元素 notice
               c.a[i][j] += a.a[i][k] * b.a[k][j]; //这里不及时取模,又有可能错! HDU 4565
           c.a[i][j] = (c.a[i][j] + MOD) % MOD; //如果怕出现了负数取模的话。可以这样做
       }
   }
   return c;
}
struct Matrix quick_matrix_pow(struct Matrix ans, struct Matrix base, int n, int MOD) {
   //求解 a*b^n%MOD
   while (n) {
       if (n & 1) {
           ans = matrix mul(ans, base, MOD);//传数组不能乱传,不满足交换律
```

```
}
n >>= 1;
base = matrix_mul(base, base, MOD);
}
return ans;
}
```

经典题目:中南大学 OJ 1752: 童话故事生成器

 X_i = (a * X_{i-1} + b) % c + 1,其中 X1(1<=X1<=1000000),a(1<=a<=1000000),b(1<=b<=1000000),c(1<=c<=1000000),n(2<=n<=1e18);

对于这样的话,我们可以把那个 1 放进去,变成 $X_i = (a * X_{i-1} + b + 1) % c$ 这样求出递推矩阵,然后再求出结果的时候,判断下,如果结果是 0 的话,那么明显是没可能的,结果起码>=1 的,这个时候,其实就是(c-1)%c+1=c,因为我们+1 了,使得变成了 c % c=0,所以这个时候应该输出 c。然后,其他的,直接输出即可。C % C + 1 = 1 (C + 1) % C = 1。两者是相等的。

4、数字特征、约数个数

数字特征:

1: 如果数 a、b 都能被 c 整除,那么它们的和(a+b)或差(a-b)也能被 c 整除。

2: 几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被 2 整除的数, 个位上的数能被 2 整除 (偶数都能被 2 整除), 那么这个数能被 2 整除

能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除

能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除

能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除

能被 6 整除的数,各数位上的数字和能被 3 整除的偶数,如果一个数既能被 2 整除又能被 3 整除,那么这个数能被 6 整除

能被 7 整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的 2 倍,如果 差是 7 的倍数,则原数能被 7 整除。例如,判断 133 是否 7 的倍数的过程如下:13 -3×2 =7,所以 133 是 7 的倍数;又例如判断 6139 是否 7 的倍数的过程如下:613 $-9\times2=595$,59 $-5\times2=49$,所以 6139 是 7 的倍数,余类推。

能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。

能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除

能被 10 整除的数,如果一个数既能被 2 整除又能被 5 整除,那么这个数能被 10 整除(即个位数为零)

能被 11 整除的数, 奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被 11 整除,则该数就能被 11 整除。11 的倍数检验法也可用上述检查 7 的「割尾法」处理!过程唯一不同的是:倍数不是 2 而是 1!

能被 12 整除的数, 若一个整数能被 3 和 4 整除, 则这个数能被 12 整除

能被 13 整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的 4 倍,如果差是 13 的倍数,则原数能被 13 整除。如果差太大或心算不易看出是否 13 的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

能被 17 整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的 5 倍,如果差是 17 的倍数,则原数能被 17 整除。如果差太大或心算不易看出是否 17 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

另一种方法: 若一个整数的末三位与 3 倍的前面的隔出数的差能被 17 整除,则这个数能被 17 整除

能被 19 整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的 2 倍,如果差是 19 的倍数,则原数能被 19 整除。如果差太大或心算不易看出是否 19 的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

另一种方法: 若一个整数的末三位与 7 倍的前面的隔出数的差能被 19 整除,则这个数能被 19 整除

能被 23 整除的数, 若一个整数的末四位与前面 5 倍的隔出数的差能被 23(或 29)整除,则这个数能被 23 整除

能被 25 整除的数,十位和个位所组成的两位数能被 25 整除。

能被 125 整除的数,百位、十位和个位所组成的三位数能被 125 整除。

相邻的两个数的平方差一定是奇数。 $X^2 - (x-1)^2 = 2 * x + 1$ 相隔的两个数的平方差一定是偶数。 $(x+1)^2 - (x-1)^2 = 4 * x$ 可以应用在给定一个直角三角形的一条边,要求确定直角三角形。

约数个数:(思考下枚举约数个数的时候,复杂度会是多少)直接 for, continue 不是约数的

[1, 1e5]。 那个数字是: 7560 约数个数是: 64 [1, 1e6]。 那个数字是: 720720 约数个数是: 240 [1, 1e9]。 那个数字是: 735134400 约数个数是: 1344 [1, 1e18]。那个数字是: 897612484786617600 约数个数是: 103680

完美数:

因子数加起来是自己本身的数,例如 6=1+2+3。计算完美数的公式:如果 2^n-1 是一个质数,那么,由公式 $N(n)=2^{(n-1)}*(2^n-1)$ 算出的数一定是一个完美数。目前还没发现奇完美数。这里不需要 n 是质数的,需要 2^n-1 是一个质数。

5、扩展欧几里德算法和求逆元

乘法逆元: 满足 $b*k\equiv 1 \pmod{MOD}$ 的 k 值就是 b 关于 MOD 的乘法逆元, k 的值可能是 b^n 。就是如果我们 求得这样的 k,那么,在运算(a/b)%MOD 的时候(**前提保证 a 能整除 b,不然会截断的话就没意义**),写成(a*b^(-1)*1)%MOD,等价于([a*b^(-1)%MOD]*[1%MOD])%MOD,然后把那个 1%MOD,用 b*k%MOD 整体带入,就可以约去 b。

现在主要的问题就是知道 b 和 MOD,怎么去求解逆元 k 的问题了。(扩展欧几里德算法) 首先扩展欧几里德主要是用来与求解线性方程相关的问题,所以我们从一个线性方程开始分析。现在假设这个线性方程为 a*x+b*y=m,如果这个线性方程有解,那么一定有 gcd(a,b) | m,即 a, b 的 最 大 公 约 数 能 够 整 除 m(m%gcd(a,b)==0)。 证 明 很 简 单 , 由 于 a%gcd(a,b)==b%gcd(a,b)==0,所以 a*x+b*y 肯定能够整除 gcd(a,b),如果线性方程成立,那么就可以用 m 代替 a*x+b*y,从而得到上面的结论,利用上面的结论就可以用来判断一个线性方程是否有解。任何时候: a*x+by=gcd(a,b)都是有解的。并且这个算法解出的 |x|+|y|是最小的。那么,如果我们能求得 ax+by=1 中的(x,y),所求得的 x 就是 a 关于 b 的逆元,y 就是 b 关于 a 的逆元,为什么?两边同时%a 或者%b 试试?

扩展欧几里德算法:

```
a*x + b*y = gcd(a, b) = gcd(b, a % b) = b*x + (a % b) *y
那么把后面的拆分开来,a*x1 + b*y1 = b*x2 + (a - [a/b]*b)y2;
根据同等 --->
                                y1 = x2 - [a/b]y2;
                      x1 = y2;
注意前提是 a,mod 互质, mod 相当于 ax+by=1 的 b
int exgcd(int a, int mod, int &x, int &y) {
   //求解 a 关于 mod 的逆元
                          ★: 当且仅当 a 和 mod 互质才有用
   if (mod == 0) {
       x = 1;
       \mathbf{v} = 0;
       return a;//保留基本功能,返回最大公约数
   }
   int g = exgcd(mod, a % mod, x, y);
   int t = x; //这里根据 mod==0 return 回来后,
   x = y; //x,y 是最新的值 x2,y2,改变一下,这样赋值就是为了 x1=y2
   y = t - (a / mod) * y;// y1=x2(变成了 t)-[a/mod]y2;
                   //保留基本功能,返回最大公约数
   return g;
}
int get inv(int a, int MOD) { //求逆元。记得要 a 和 MOD 互质才有逆元的
    int x, y; //求 a 关于 MOD 的逆元, 就是得到的 k 值是 a*k%MOD==1
   int GCD = exgcd(a, MOD, x, y);
   if (GCD == 1) //互质才有逆元可说
       return (x % MOD + MOD) % MOD; //防止是负数
   else return -1;//不存在
}
```

求 ans1 / ans2 % MOD 的解。

这个得到的逆元比较小,不需要用快速幂。所以 ans=(ans1*get_inv(ans2,MOD)%MOD); 这里得到的 get_inv 那个返回值,就是有 ans2*get_inv%MOD=1 的功能。然后整体代入即可。

费马小定理,求 b%Mod 的逆元 k 还有另外一种方法,即 k=b^(Mod-2)%Mod,因为 b^(Mod-1)%Mod=1(**这里需要 Mod 为素数**)。这样的话 b*k%MOD 就等于 1 了。这个在用的时

★、CRT (中国剩余定理)

条件:要求 mod[]任意两个元素要互质。

定理: ans 在% lcm(mod[1]...mod[n])下的解是唯一的。

怎么做呢?可以先把除以3余数是2的数字先写出来:258....再把除以5余数是3的写出来3、8、....那么共同的数字是8,所以8就是除以3余2且除以5余3的最小数字。。

中国剩余定理也是类似的思想

对于每条等式,都找出一个 val,使得 val % mod[i] = r[i]且 val % 其他数字是等于 0 的第一条式子,这个 val = 140

关于怎么找每条式子的 val,可以想到用逆元,先解出 t % mod[i] = 1,再把 r[i] * t 即是 val。 因为这个时候余数就是 r[il了, (r[il是余数, 肯定小于 mod[il)

```
r[i] * t % mod[i] = ((r[i] % mod[i]) * (t % mod[i])) % mod[i] = r[i]
```

下面来讨论下为什么要 val % 其他数字是等于 0 的。这里是根据余数的性质,上面的式子, val 分别是 140、63、30。把他们加起来 % (mod[1] * mod[2] * *mod[n])是答案。先求解 前两个的答案, 就是先满足除以 3 余 2, 除以 5 余 3 的数。ans = (140 + 63) % 15。这里的 140 满足%3 = 2 而且%其他数字 = 0。这样的好处是不会相互影响。满足一个等式,而不会影 响另一个等式

```
LL CRT(LL r[], LL mod[], int n) { // X \% mod[i] = r[i]}
    LL M = 1;
    LL ans = 0;
    for (int i = 1; i <= n; ++i) M *= mod[i];
    for (int i = 1; i \le n; ++i) {
         LL MI = M / mod[i]; //排除这个数
         ans += r[i] * (MI * get_inv(MI, mod[i])); //使得 MI * get_inv(MI, mod[i]) % mod[i] = 1
         ans %= M;
    }
    if (ans < 0) ans += M;
    return ans;
}
当 MOD[]不是两两互质时:可以用扩展欧几里德算法合并。
假如那个数字是 x, 那么有:
```

 $x = k_1 * MOD[1] + r[1]$

 $x = k_2 * MOD[2] + r[2]$

合并起来,就是: k₁ * MOD[1] - k₂ * MOD[2] = r[2] - r[1]

可以用扩展欧几里德算法求出 k_1 ,那么这时候。 $x = k_1 * MOD[1] + r[1]$,同时拥有满足上面两 条等式的作用。然后把上面两条等式合并成一条,再和第三条求解。怎么合并成一条?引用 定理, ans 在 % lcm 的情况下解是唯一的,那么我们只要更新模数为 LCM(mod[1], mod[2]), 余数就是 x%LCM(MOD[1], MOD[2]),再和第三条合并即可。

然后最后的余数就是答案。

```
void work() {
     for (int i = 1; i \le n; ++i) {
          cin >> MOD[i] >> r[i];
     }
     LL ans, tMod = MOD[1], tR = r[1];
     for (int i = 2; i \le n; ++i) {
          LL x, y;
          if (!get_min_number(tMod, -MOD[i], r[i] - tR, x, y)) {
               cout << "-1" << endl;
               return;
          }
//
            cout << x << " " << y << endl; 当 get min number 取正数
          ans = x * tMod + tR;
```

SCAU

```
tMod = LCM(tMod, MOD[i]);  //更新 mod 数 tR = ans % tMod;  //更新余数 } cout << tR << endl; // % lcm 下的解是唯一的,并且最小 }
```

不能以为 ans 是最小的答案。当 MOD[] = {4, 3},r[] = {3, 1}的时候,如果在 get_min_number 里取了正数,就是对于这条方程: $4k_1 - 2k_2 = -2$ 解出的解是(1,3),这个时候 ans 就是 7,需要% lcm(4),才是最小的答案。

★、求解方程 ax+by=c 的最小(正)整数解 (a 或者 b 是负数的话,直接放进去也没问题)

首先就是如果要求解 ax+by=c 的话,用 exgcd 可以求到 ax+by=1 的 x1,y1。那么我们首先把 a 和 b 约成互质的(除以 gcd(a,b)即可),求到 Ax+By=1 的 x1 和 y1 后,但是我们要的是 Ax+By=C 的解,所以同时乘上 C,这里的大写的字母是代表约去 gcd(a,b)后的方程。然后这个方程的解就是 x0 = x1 + (b / abgcd) * k。y0 = y1 - (a / abgcd) * k。k 是{-1,-2,0,1,2}等。

bool getMinNumber (LL a, LL b, LL c, LL &x, LL &y) { //得到 a*x+b*y=c 的最小整数解

```
LL abGCD = gcd(a, b);
if (c % abGCD != 0) return false; //不能整除 GCD 的话,此方程无解
a /= abGCD;
b /= abGCD;
c /= abGCD;
LL tx, ty;
exgcd(a, b, tx, ty); //先得到 a*x+b*y=1 的解,注意这个时候 gcd(a,b)=1
x = tx * c;
y = ty * c; //同时乘上 c, c 是约简了的。得到了一组 a*x + b*y = c 的解。
LL haveSignB = b;
                //避免 mod 负数啊,模负数没问题,模了负数后+负数就 GG
if (b < 0) b = -b;
x = (x % b + b) % b; //最小解
if (x == 0) x = b; //避免 x = 0 不是"正"整数,没要求取正数就不要用这个,可能会溢出
y = (c - a * x); // haveSignB;
return true; //true 代表可以
```

POJ 1061 青蛙的约会。求解(x+mT)%L=(y+nT)%L 的最小步数 T。

因为是同余,所以就是(x+mT)%L-(y+nT)%L=0。可以写成(x-y+(m-n)T)%L=0。就是这个数是 L 的倍数啦。那么我可以这样 x-y+(m-n)T+Ls=0。就可以了,s 可正可负,就能满足条件。

题目: CodeChef GIVCANDY

题意: 甲 a 个苹果,乙有 b 个雪梨。现在能给甲 c 个苹果,或者给乙 d 个雪梨,使得他们的 差值的绝对值尽量小。

题解:设给甲 x 个苹果,乙 y 个雪梨。分析后得到方程就是要使得 x*c-y*d=(b-a)+K 有解,并且要使得 k 最小。明显 abs(b-a)%GCD(c,d)==0 的话,k 是 0,否则(b-a)有两种选择。要么减一个数使得它能整除 GCD,要么增加一个数。取最小值即可。就是 10 MOD 6,可以减去 4,也可以增加 2。(1 \leq A, B, C, D \leq 10^14)

}

LL dis=abs(a-b); LL ans1=dis%GCD; LL ans2=GCD-dis%GCD; printf ("%lld\n",min(ans1,ans2));

老大,我不想求逆元。可以: (这个不是逆元的概念,且要注意前提,mod 后不能重复使用)。 这个黑科技不要求 b 和 mod 互质哦!!! 。

若 b|a (这个是前提), 则
$$\binom{a}{b}$$
%p <--> $\frac{a\%(b*p)}{b}$

证明: 设 ans=
$$(\frac{a}{b})$$
%p --> $(\frac{a}{b})$ = k*p+ans(余数) --> a=kbp+b*ans;同时

mod(bp)-->amod(bp)=b*ans.这里 kbp 相当于 k*(bp),b*ans 是余数。所以有, ans= $\frac{a\%(b*p)}{b}$

6、各种数列(卡特兰数、 递推式组合数)

1、卡特兰数

从第 0 项开始,依为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862。

递推公式: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)

组合数公式: $h(n) = \frac{c(2*n,n)}{n+1}$ //如果 MOD 的数不是质数,就用递推公式。 $O(n^2)$

组合数公式: h(n)= C(2n,n)-C(2n,n+1)

这样就可以解决 MOD 的数不是质数的问题了。用约质因子,然后快速幂。那个方法。值得注意的是,因为你前后都 MOD 了,所以可能造成前面的比后面的小,相减会小于 0,所以要+MOD 来修正一下。(solve(2*n,n,MOD) - solve(2*n,n+1,MOD) + MOD) % MOD

2、递推式,组合数求解 (开始的下标是 1,如果不是从 1 开始,则直接减去偏移量) 题目:玲珑杯 1049

1 1 最后一项是直接卡特兰数

1 2 2 然后其他的就是 C(n+m-1, m-1) - C(n+m-1, m-2)

1 3 5 5 注意特判 m 大于等于 2

1 4 9 14 14

题目: FZUOJ 2238 Daxia & Wzc's problem (d的开始位置不同,然后偏移)

a + d + 2d + 3d + 4d

a 2a + d 3a + 3d 4a + 6d 5a + 10d

a 3a + d 6a + 4d 10a + 10d 15a + 20d

a 4a + d 10a + 5d 20a + 15d 35a + 35d

计算 a 的系数的公式是: C(n+m-2,n-1) 计算 d 的系数的公式是: C(n+m-2,m-2) 因为 d 是从第 2 列才开始出现,从第 1 行就有出现了,那么按照计算 a 的公式,就是把 n 和 m 都偏移去 0 那里再计算,那么,要把 d 偏移到第 1 列开始,所以要 m-2。

7、米勒测试和大数分解

米勒测试:根据费马小定理,有一个质数 p,那么所有的(1<=a<=p-1),都有 a^(p-1) \equiv 1(mod p)成立。那么根据逆否命题,我们列举出一个这样的数 a,使得 a^(p-1)%p 不等于 1 的话,即可说明 p 不是质数。Miller-rabin 算法就是多次用不同的 a 来尝试 p 是否为素数。它是根据一个定理来进行的:如果对于一个素数 p(p 已经假定是素数),那么(1<=X<=p-1)中,若 X^2%p=1,

那么 X 只能是 1 或者是 p-1。所以如果此时的 X 不是 1 或者 p-1 的话,则说明 p 是合数。那个 X 不断平方,平方到指数是(p-1)即可停止,所以思路就是,先把需要判定的那个数 n,把 (n-1)拆分成 2^t * k 这种形式。然后随机生成一个数 a=rand()%(n-1)+1;写成 a^k 次方,把底数看成的 X,平方 t 次,即可到达(n-1)。米勒测试 check_time 次,失败率就是 1/(2^check_time) /*Miller-rabin 算法,判断大数字是否为素数*/

```
const int check_time = 20;
bool check(LL a, LL n, LL x, LL t) { //以 a 为基。n-1 写成了 2^t * k,判断 n 是否为合数
    LL ret = quick_pow (a, x, n); // 先算 a^k%n 后来一直平方.平方 t 次
    LL last = ret; //last 就是 a^k 次方这个值,看成整体。符合 X^2 这个公式
    for (int i = 1; i \le t; ++i) {
        ret = quick mul(ret, ret, n); //平方他,last 就是一个大 X,ret 是 X^2
        if (ret == 1 && last != 1 && last != n - 1) return true; //合数
        last = ret;
    }
    if (ret != 1) return true; //费马小定理,如果 a^(n-1)%n != 1 就绝逼不是素数
    return false:
bool Miller Rabin(LL n) { //判断 n 是否质数
    if (n < 2) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false; //偶数不是质数
    LL k = n - 1;
    LL t = 0; //把 n-1 拆成 2^*t * k 这种形式,那么从 k 开始验证, a^*k,不断平方即可
    while ((k \& 1) == 0) \{ // \text{如果 x 还是偶数的话, 就是还有 2 的因子}
        k >>= 1;
        t++;
    }
    for (int i = 1; i <= check time; i++) {
        LL a = rand() % (n - 1) + 1; //最大去到 n-1,[1,n-1]
        if (check (a, n, k, t)) //n-1 写成了 2^t * k.米勒测试
             return false; //合数
    }
    return true; //质数
}
```

pollard_rho 算法进行质因数分解。大数质因数分解 复杂度 sqrt(p)。p 为 n 约数的个数用的时候要带上米勒测试一起用(快速判断是否素数)。然后 fac[]是 100 = 2*2*5*5 这样的。LL factor[500];//质因数分解结果(刚返回时是无序的)

int tol;//质因数的个数。数组下标从1开始

```
LL gcd(LL a, LL b) {
    if(a == 0)return 1;
    if(a < 0) return gcd(-a, b);
    while(b) {
        LL t = a % b;
```

```
a = b;
          b = t;
     }
     return a;
}
LL Pollard_rho(LL x, LL c) { //
     LL i = 1, k = 2;
     LL x0 = rand() \% x;
     LL y = x0;
     while(1) {
          i++;
          x0 = (quick_mul(x0, x0, x) + c) \% x;
          LL d = gcd(y - x0, x);
          if(d != 1 && d != x) return d;
          if(y == x0) return x;
          if(i == k) {
               y = x0;
                k += k;
          }
     }
}
//对 n 进行素因子分解
void findfac(LL n) {
     if(Miller_Rabin(n)) { //素数
          factor[++tol] = n;
          return;
     }
     LL p = n;
     while(p \ge n) p = Pollard_rho(p, rand() % <math>(n - 1) + 1);
     findfac(p);
     findfac(n / p);
     return;
}
```

8、欧拉函数 eular

phi[n]表示[1, n]中与 n 互质的个数。

公式: phi[x] = x * (1 - 1/p[1]) * (1 - 1/p[2])(1 - 1/p[n]) 其中 <math>p[i]是 x 的质因子,x 是不为 0 的整数。 Φ (1)=1 (唯一和 1 互质的数(小于等于 1)就是 1 本身)。 (注意: 每种质因数只一个。比如 12=2*2*3 那么 Φ (12)=12* (1 - 1/2)*(1 - 1/3)=4

- **1**、欧拉函数是积性函数——若 m,n 互质, phi(n*m) = phi(n) * phi(m);
- 2、特殊性质: 当 n 为奇数时, phi(2*n) = phi(n);
- 3、当 n > 1 时, 1...n 中与 n 互质的整数和为 n*phi(n) / 2

4、对于一个数 n,在(1,n)中与它 gcd 等于 k 的个数,就是: eular(n / k) 个; 前提是: k | n 证明:考虑当 n 约去最大公约数 k 后,与它互质的数再乘以 k,得到的数与 n 的 gcd 只能是 k

```
5 \sum_{d \mid n} phi(d) = n
```

```
int eular(int n) {
   int ans = 1, q = (int)sqrt(n + 0.5); //ans 从 1 开始
   for (int i = 2; i \le q; ++i) {
       if (n \% i == 0) {
           n = i; //约去了一个,约本来 x 上的,有剩的 while 补上,因为 eular 只算一次
           ans *= (i - 1); //这个是本来分子的
           while (n \% i == 0) {
               n = i;
               ans *= i; //补上这些遗漏的质因子
           }
           q = (int) sqrt(n + 0.5);
       }
   }
   if (n > 1) ans *= n - 1; // 不用除了,这个质因子只有一个,可以在 x 中约去了
   return ans;
用 nlognlogn 的算法预处理所有 phi[1-n]的值
void init_phi() {
   phi[1] = 1;
   for (int i = 2; i \le maxn - 20; i++) {
       if (!phi[i]) {
           for (int j = i; j \le maxn - 20; j += i) {
               if (!phi[j]) phi[j] = j;
               phi[j] = phi[j] / i * (i - 1);
           }
       }
   }
   return;
求解元素 X 在区间[1, up]中,有多少个数和 X 互质。(容斥)
思路:把X质因数分解,多了的不要。12=2*3。然后有个明显的道理就是如果是2的倍数
的话,那么就一定不会与12互质,所以需要减去2的倍数,减去3的倍数,再加上6的倍
数。容斥的思路好想,但是不怎么好写。所以结果是总数量 up - 不互质的个数。
预处理; his[val][]表示元素 val 拥有的质因子, Size[val]表示有多少个。记得 1 是不做任何处
理的。就是 Size[1] = 0。 Dfs 的 cur 表示下一次从哪里开始,不往回枚举,就是任意 k 个值。
int calc(int up, int cur, int number, int tobuild, int flag) { //一开始 flag 是 0。0 表示加,1 减
   int ans = 0;
   for (int i = cur; i <= Size[number]; ++i) {</pre>
       if (flag == 0) {
           ans += up / (his[number][i] * tobuild);
```

```
} else ans -= up / (his[number][i] * tobuild);
    ans += calc(up, i + 1, number, his[number][i] * tobuild, !flag);
    }
    return ans;
}
计算 12 在[1, 24]就是 24 - calc(24, 1, 12, 1, 0)。 tobuild 是选择 k 个质因数后生成的数字。
复杂度分析: Cn¹ + Cn² + .... + Cn² = 2n - Cn²。所以最多是 2 * 3 * 5 * 7 * 11 * 13 = 30030
此时复杂度只是: 64 次。
```

9. AntiPrime

AntiPrime(反素数),求出区间内约数最多且最小的那个数

首先,数据范围是 n<=1e9,数据太大,如何快速算出来呢?我们注意到,如果是暴力算的话,最快的方法就是分解质因子,然后组合式计算啦。但是在算 18 和 30 的约数的时候,他们的gcd(18,30)=6,其实是被重复算了的,那么我们思维反过来一下,把分解质因数变成用质因数去组合,使得变成区间内的数,这样一来,我们在 2*3 的时候,*3 就得到了 18,*5 就得到了 30,能省掉一定的时间。但是还是会 TLE。假如我们现在枚举到的数是 now,会不会它的约数根本就没可能存在于区间里呢?也就是[begin,end]根本就没这些约数。[7,11]内是不会存在 6 的倍数的。如果[1,begin-1]中 6 的约数和[1,end]中 6 的约数相同,说明什么?新加进去的区间[begin,end]根本就没 6 的约数,这里可以剪枝。还是 TLE!!可行性剪枝,如果一个数是 now,现在枚举一个新的质数去乘以它,去结合成新的数字,那么如果它无论组成什么其他数字,因子个数都不会超过当前最优值 mx 呢?怎么判断呢?放缩咯,假如现在是 2*3,重新去匹配一个新的素数 5,那么,我就要看,当前 2*3 还能再乘多少个 3 呢?我记作 q,那么这个新的匹配,最理想的情况下因子个数会多 2^q倍,为什么呢?把那些 3,全部替换成5*7*11*13 这样来算的话,就是有 2^q个了。别以为这样没用,当你搜[1,1e9]的时候,你枚举到 8000w,再去枚举 5 那些是没用的,根本就不可能,这里能剪很多。

其实我们还有一个根本的问题没解决,那就是预处理素数到多大,还有万一它是大素数呢?想着预处理多少,要看数据,预处理出来的最大质数,primeMax²是要大过 1e9 才行的。为什么呢?因为你只有这样,才能防止它数据是两个大质数相乘的形式[primeMax²,primeMax²]。这里的因子个数是 3,你枚举不到这个 primeMax 的话,就只能得到 2。

还有那个大素数,没什么怕的,如果当前那个数 now,幻想它乘以一个大质数,还是在 end 的范围的话,就看看*2 和 mx 谁大咯。乘以一个大素数也才加一倍因子数。其实乘以一个小的质因子的话,因子数会更多,这里主要是判断只有一个大素数的特殊情况。枚举不到那个大素数那里的。

```
NOJ 1203 //多 case 的话,记得把 mx 设置回 0, pr = 0;
```

//cur: 当前枚举质数的下标,不用返回来枚举了。

//cnt:分解质因式时:拥有(当前下标那个)素数多少个

//now:当前枚举的那个数字,就是所有质因子相乘得到的数子

//from: 假如:2*2*3*5*7.然后枚举 3, 记录的是 2*2, 枚举 5, 记录的是 2*2*3,

//如果是枚举相同的数,则不用变,因为它记录的是上一个不同的质因子一共拥有的因子数。 //所以乘上(cnt+1),就是包括上现在这个质因子一共拥有的因子数了。

```
void dfs(int cur, int cnt, LL now, LL from) {
```

LL t = from * (cnt + 1); //现在一共拥有的因子数

if (now >= BEGIN && t > mx | | t == mx && pr > now && now >= BEGIN) { //有得换了

```
mx = t;
        pr = now;
    }
    for (int i = cur; i <= total; ++i) { //枚举每一个素数
        LL temp = now * prime[i];
        if (END / now < prime[i]) return; //这个数超出范围了
        if (i == cur) { //没有变, 一直都是用这个数.2^k
            dfs(cur, cnt + 1, temp, from);
           //唯一就是 from 没变, 一直都是用着 2, 不是新质数
        } else { //枚举新质数了。
           LL k = (cnt + 1) * from; //现在有 K 个因子
            LL q = (LL)(log(END / now) / log(prime[cur])); //2*3 插入 5 时,用的是 3 来放缩
           LL add = k * mypow(2, q);
           if (add < mx) return; //这里等于 mx 不 return,可以输出 minpr
           if ((BEGIN - 1) / now == END / now) return; //不存在 now 的倍数
           if (END / now > prime[total]) { //试着给他乘上一个大素数 [999991,999991]
               if(k*2>mx){//乘以一个大素数,因子数*2
                   pr = END;//如果只有一个大素数[1e9+7,le9+7]那么,就是端点值
                   //否则,是 2*3*5*bigprime 的话,结果不是最优的,
                   mx = k * 2;
               }
           }
            dfs(i, 1, temp, k);
        }
    }
    return;
}
scanf ("%lld%lld", &begin, &end);
                                //然后这个 now=1,拥有的约数个数就是 1 个
dfs(1, 0, 1, 1); //刚开始的时候,下标从1开始,拥有这个素数0个,当前数字最少也是1吧
★、出现 pr 和 mx 都是 1 的情况就是你没 initprime();
★、求解[1, n]中最小的反素数的高效方法,较小质因子个数永远是较多的
void dfs(LL curnum, int cnt, int depth, int up) {
    if (depth > total) return; // 越界了,用不到那么多素数
    if (cnt > mx \mid | cnt == mx \&\& pr > curnum) {
        pr = curnum;
        mx = cnt;
    }
    for (int i = 1; i <= up; ++i) { //枚举有多少个 prime[depth]
        if (END / curnum < prime[depth]) return;</pre>
        if ((BEGIN - 1) / curnum == END / curnum) return; //区间不存在这个数的倍数
        curnum *= prime[depth]; //一路连乘上去
        dfs(curnum, cnt * (i + 1), depth + 1, i); // 2^2 * 3, 3 最多 2 个
```

```
} dfs(1, 1, 1, 64); //64 表示最大是 2^64 次方, 一般只用前 16 个素数就够了。
```

10、万能积分公式---simpson

求解任何积分问题,都可以用 simpson 公式来拟合这段区间内积分的值,只要你设定精度,即可判断是否拟合成功,否则递归分小区间继续拟合。精度太高,则很慢,精度太小,则wa。例题:求半径为r和R的两个圆柱相交的体积。

```
double f(double x) {
     double a = sqrt(r * r - (r - x) * (r - x));
     double ao = asin(a / R);
     return 2 * a * sqrt(R * R - a * a) + 2 * ao * R * R;
}
double simpson(double begin, double end) {
     return (f(begin) + f(end) + 4 * f((begin + end) / 2)) * (end - begin) / 6;
}
double calc(double begin, double end) {
     double mid = (begin + end) / 2;
     double ans = simpson(begin, end); //用 simpson 积分拟合这个值
     double cmp = simpson(begin, mid) + simpson(mid, end);
     if (fabs(ans - cmp) < eps) return ans; // 拟合成功
     return calc(begin, mid) + calc(mid, end);
}
void work() {
    if (r > R) swap(r, R);
     printf ("%0.4lf\n", calc(0, r) * 2);
     return;
}
```

11、高斯消元

求解线性方程组,整一个过程,其实就是把**系数矩阵**化成**单位矩阵**,然后对应的增广矩阵那一列,就是对应着整个方程的解。

- ①、如果是唯一的解,那么增广矩阵那一列就是
- ②、如果无解,则肯定是存在矛盾式,也就是 $0*X_1+0*X_2+....+0*X_n$ = val(val!= 0)
- ③、如果有自由变量,则慢慢讨论。Guass 返回的就是自由变量个个数。
- ★、如果题目要求%8.2lf 输出,则不需要添加额外的空格。

```
class GaussMatrix { //复杂度 O(n³) public:
```

double a[maxn][maxn];

int equ, val; //方程(行)个数,和变量(列)个数,其中第 val 个是 b 值,不能取

```
void swapRow(int rowOne, int rowTwo) {
         for (int i = 1; i <= val; ++i) {
             swap(a[rowOne][i], a[rowTwo][i]);
         }
    }
    void swapCol(int colOne, int colTwo) {
         for (int i = 1; i \le equ; ++i) {
             swap(a[i][colOne], a[i][colTwo]);
         }
    }
    bool same(double x, double y) {
         return fabs(x - y) < eps;</pre>
    }
    int guass() {
         int k, col; // col, 当前要处理的列, k 当前处理的行
         for (k = 1, col = 1; k <= equ && col < val; ++k, ++col) { //col 不能取到第 val 个
             int maxRow = k; //选出列最大值所在的行,这样使得误差最小。(没懂)
             for (int i = k + 1; i \le equ; ++i) {
                  if (fabs(a[i][col]) > fabs(a[maxRow][col])) {
                      maxRow = i;
                  }
             }
             if (same(a[maxRow][col], 0)) { //如果在第 k 行以后,整一列都是 0
                  --k;//则这个变量就一个自由变量。
                  continue;
             if (maxRow != k) swapRow(k, maxRow); // k 是当前的最大行了
             for (int i = col + 1; i <= val; ++i) { //整一列约去系数
                  a[k][i] /= a[k][col];
             a[k][col] = 1.0; //第一个就要变成 1 了,然后它下面和上面的变成 0
             for (int i = 1; i <= equ; ++i) {
                  if (i == k) continue; //当前这行,不操作
                  for (int j = col + 1; j \le val; ++j) {
                      a[i][j] -= a[i][col] * a[k][j];
                  }
                  a[i][col] = 0.0;
             }
//
               debug();
         }
         for (k; k <= equ; ++k) {
             if (!same(a[k][val], 0)) return -1; //方程无解
         return val - k; //自由变量个数
```

```
}
   void debug() {
       for (int i = 1; i <= equ; ++i) {
          for (int j = 1; j <= val; ++j) {
              printf("%6.2lf ", a[i][j]);
          }
           printf("\n");
       }
       }
}arr;
杂项
Polya 定理↓
 设 G 是 p 个对象的一个置换群, 用 k 种颜色去染这 p 个对象, 若一种染色方案在群 G 的作用
 下(旋转、翻转等)是同一种方案,则这两种方案算一种的话,这样的不同染色方案数为:
Ans = \frac{1}{|G|} * \Sigma(k^{c(f)})。其中 f 是操作方案(不动置换,旋转 90^{\circ}等),c(f)为其循环节。经
过若干次操作,最终是他们几个变来变去的,算一个循环。。
对于 n 个位置的项链,有 n 中旋转置换和 n 中翻转置换
对于旋转置换:
C(f_i) = gcd(n,i), i 表示选择 i 颗宝石以后。有 n 种,for(i=1 to n) ans += k^{gcd(i,n)}
对于翻转置换:
如果 n 是奇数, 有 n 个置换, 而且 C(f) = (n + 1) / 2
如果 n 是偶数, 有 n 个置换, 有 n / 2 个 C(f) = n / 2 + 1, 有 n / 2 个 C(f) = n / 2
下面标程:通过旋转、翻转达到同一种状态的被认为是相同的项链
LL polya(int k, int n) {
   LL ans = 0;
   for (int i = 1; i \le n; i + i) ans i = mypow(k, gcd(i, n));
   //这些都是只有一种置换,旋转一个位置,两个位置等等
   if (n & 1) ans += mypow(k, (n + 1) / 2) * n; //乘上 n 代表有 n 种这样的置换
   else ans += (mypow(k, n / 2) * (n / 2) + mypow(k, (n / 2) + 1) * n / 2);
   return ans / (2 * n); //一共有 2n 种置换
}
附上一个枚举 gcd 得到的 polya, n<=1e9, 有 n 种颜色
void dfs(int cur, LL gcd, LL phi) {
   if (cur == lena + 1) {
       ans = (ans + (quick_pow(n, gcd, p) * phi) % p) % p;
       return:
   }
```

SCAU

dfs(cur + 1, gcd, phi); //要这个

phi *= a[cur].pr - 1;

```
for (int i = 1; i <= a[cur].num; ++i) {
       gcd /= a[cur].pr;
       dfs (cur + 1, gcd, phi);
       phi *= a[cur].pr; //继续不要了这个
   }
}
2、康托展开
求出 1...n 的全排列的第 k 小。(k 从 1 开始)
假如要对一个排列进行 hash, 比如是排列是 D、B、A、C, 那么可以 hash 成 20, 因为其
在全排列中按字典序排名 20。
编码: HashKeyValue = a<sub>1</sub> * 3! + a<sub>2</sub> * 2! + a<sub>3</sub> * 1! + a<sub>4</sub> * 0!。这样 hash 不会重复。其中系数 a[1..n]
分别代表字母 a[1] (就是"D") 在当前子集里面是第几大,D 在{A、B、C、D}中第 3 大,所
以 a[1] = 3, B 在{A、B、C}中第 1 大, 所以 a[2] = 1, 以此类推.......得到的值就是该排列在全
排列中的字典序排名。
解释: 比 D 小的,有 3 个,以这三个字母开头的排列有 3!个,所以是 3*3!
     比 B 小的,有 1 个(D 已经确定在开头了),这样的排列有 1 * 2!个。
解码:辗转相除,得到 HashKeyValue 是第 20 个排列,怎么确定是 D、B、A、C、?
20 / (3!) = 3, 余数是 2
                    (然后用余数继续除)
2/(2!)=1, 余数是0
0/(1!)=0,余数是0
0/(0!)=0,余数0
也就是,第一位,有3个数比他小,那就是D了,然后第二位,有一个数比他小,那就是B
了。第三位,0个,就是A,然后剩下的,就是C。
class cantor { //求 1...n 的排列的第 k 大 && hash 排列,
public: //class 默认是 private, 所以要加上 public
   int fac[12];
   cantor() { //预处理阶乘, LL 的话可以处理到 20! = 2.4329020081766 * 10<sup>18</sup>
       fac[0] = 1;
       for (int i = 1; i \le 11; ++i) {
           fac[i] = fac[i - 1] * i;
       }
   }
   int decode(char str[], int lenstr) { //O(n * n)的 hash
       int ans = 0;
       for (int i = 1; i < lenstr; ++i) {
           int cnt = 0;
           for (int j = i + 1; j <= lenstr; ++j) {
               if (str[i] > str[j]) {
                  cnt++;
               }
```

SCAU

}

ans += cnt * fac[lenstr - i];

```
}
         return ans + 1;
    }
    vector<int> encode(int lenstr, int k) { //字典序排第 k 的是那个, k 从 1 开始
         vector<int>ans;
         int toans;
         bool vis[12] = \{0\};
         for (int i = 1; i <= lenstr; ++i) {
             int t = k / fac[lenstr - i];
             k %= fac[lenstr - i];
             for (toans = 1; toans <= lenstr; ++toans) {</pre>
                  if (vis[toans]) continue;
                  if (t == 0) break;
                  t--;
             }
             ans.push back(toans);
             vis[toans] = true;
         }
         return ans;
} cantor;
3、位运算:
①、判断一个数二进制相邻两位是否同时是 1, 需(x & (x << 1)) > 0, 成立, 就是。
②、判断一个数是否是 2<sup>n</sup>, 只需(x & (x - 1)) == 0。
③、算出一个数二进制中,1的个数:复杂度是 val 二进制中1的个数
int calc(int val) {
    int ans = 0;
    while (val) { //遇到 2<sup>n</sup>就停止
         val &= val - 1;
         ans++;
    }
    return ans;
}
4、求解 a^b 的最高 k 位,n!的最高 k 位。
设 x = a^b,则有 log_{10} x = b * log_{10} a,所以 x = 10^{b * log}_{10}^{a}
那么可以把 b*log<sub>10</sub> a 等价于两个数字 A+B, 一个是整数部分, 一个是小数部分。
所有 x = 10^A * 10^B,那么其实我们只关心 10^B,整数部分 10^A 相当于是 a^D 的位数,而真正有效
的是 10<sup>B</sup>, 需要 k 位,则 10<sup>k-1</sup> * 10<sup>B</sup> 取整即可。
int calc(LL a, LL b, int k) { //a^b 的前 k + 1 位
    double res = b * log10(a * 1.0) - (LL)(b * log10(a * 1.0)); //获得小数部分
    return (int)pow(10.0, k + res);
}
```

其实还可以取前 15 位左右来乘,这样精度也是足够的。

比如我算最高位,那么 1234 我转化成 1.234 * 1.234 的话,和 1234 * 1234 最高位的结果是一样的,用的是 double 能存 15 位左右的小数的技巧。而不至于 10^{15} * 10^{15} 爆 long long

```
int calc(double a, LL b, int k) {
    double ans = 1, base = a;
    while (b) {
        if (b & 1) ans = ans * base;
        b >>= 1;
        base = base * base;
        while (ans >= 1000) ans /= 10; //保留前 3 位
        while (base >= 1000) base /= 10;
    }
    return (int)ans;
}
```

求 n!的最高位也是一样,不过这里可能需要用到 n! 的斯特林公式 设 log₁₀x = log₁₀(n!),则 x = $10^{log}_{10}(n!)$,那么也是等价定义成 10^A*10^B ,其中我们只关心 10^B ,也就是小数部分。那么怎么求 log₁₀(n!)的小数部分呢? 如果 n 比较小,则 log₁₀(n!) = log₁₀(1) + log₁₀(2) + + log₁₀(n),这是很精确的公式。 如果 n 比较大,则有 n! \approx nⁿ / eⁿ * sqrt(2 * PI * n),这个公式在 n 很大的时候,才精确。

5、广义的斐波那契数列

$$F_0 = a$$

 $F_1 = b$
 $F_n = uF_{n-1} + vF_{n-2} \quad (n \ge 2)$

$$F_n = \frac{1}{\sqrt{u^2+4v}} \left(\frac{u+\sqrt{u^2+4v}}{2} \right)^n \left[\left(b - \frac{u-\sqrt{u^2+4v}}{2} a \right) - \left(\frac{u-\sqrt{u^2+4v}}{u+\sqrt{u^2+4v}} \right)^n \left(b - \frac{u+\sqrt{u^2+4v}}{2} a \right) \right]$$

注意当 n 很大的时候,比如大于 200,有些部分会趋向于 0。这部分。

- ①、不能用系统自带的 pow 函数,因为它的定义是 double 类型的,不能保证精度。如果要算小数的 pow,那么用这个刚好(精度比较好)。否则,请自己写一个 pow 函数。
- ②、解方程 $a*k^3 <= n$ 这样有多少组解,可以先放缩成 $k^3 <= n$,然后枚举 k,然后 k 的上限是 n 开 3 次方。现在我们已经得到了 k,所求的就是 a 满足的个数了, $a=(n/k^3$ 向下取整)
- ③、求有 n!的或者 a^n 之类的函数,可以取 ln 来做。取 ln,是 log(val),其他的是 log10(val),和 log2(val)。求阶乘有一条公式: ln(n!) \approx (n*ln(n)) n + (1/2*ln(2*PI*n));
- ④、所有大于等于 6 的质数,都可以表达成 6*n-1 或者是 6*n+1 的形式。
- ⑤、函数 $\exp(1.0)$ 就表示自然底数 e^1 。

其他

1, STL

```
1、set 和 multiset
一、set:
元素集合,里面的元素自动去重,只会出现一次。而且默认保持升序排列。
插入: set.insert(12)
①、得到集合元素个数:
                               book.size();
②、判断集合是否有这个元素:
                               book.find(val) != book.end();
③、清空一个集合:
                                          //清空后可以继续使用
                               book.clear();
④、判断集合是否为空:
                               book.empty();
⑤、删除一个元素
                               book.erase(val); //删除迭代器比较好
⑥、在 set 中放结构体,写个比较函数,可以按照规定顺序排列,不写不行。
struct data
{
   int num;
   char name[maxn];
};
struct cmp
{
   bool operator () (struct data a, struct data b)
       return strcmp(a.name,b.name)<0;//字典序
}; //这个分号不能少。如果想 set 不去错重,则每个成员都应该出现在比较函数中
void work ()
{
   set<struct data,cmp>book;//按照比较函数排列,整数要降序,也要学这样写。
                 a.num=13;
                            strcpy(a.name,"aa");
   struct data a:
                                             book.insert(a);
   a.num=1314;
                 strcpy(a.name,"a");
                                             book.insert(a);
   for (set<struct data>::iterator it=book.begin();it!=book.end();it++) //iterator 不用比较函数
       printf ("%d %s\n",it->num,it->name); //这里值就是用他们的成员名字即可
   return;
}
输出:
1314
       а
13
⑦、关于 set 中的 lower bound 和 book.begin()和 book.end()
Set 中自带的 lower bound,返回的是>=val 中的第一个元素的位置,但是我们又不能像普通
的 lower bound(a+1,a+1+n,val)-a;这样,能通过指针得到偏移地址,从而得到那个位置。这里
的 set 中的,只能够得到值。
set<int>::iterator it=book.lower_bound(val); 然后只能*it,得到那个元素的值。
```

注意一些细节,关于越界的问题。就是,如果找不到那个元素的话,我们可以分成两类:

1、所找的元素是所有数中最小的,例如元素是{2、4},那么你找的是 1 的话,返回的是 book.begin();同时,如果你将 book.begin();减减了,去到的是 book.end(); !! 不要以为 book.end();是最后一个元素,非也非也,输出它,你会得到它是有多少个元素,就是元素的个数。

- 2、然后如果所找元素是所有数最大的话,返回的是 book.end();然而这是不存在的元素
- 3、可以用 it == book.begin()这样判断是否第一个, 适当 it++ 和 it--
- 二、multiset: 元素能重复,其他的和 set 一样用法。**但是删除 2 的话,会把所有 2 都删除** 所以需要用迭代器指向它,然后 ss.erase(it); 就能删除一个 2 的。

2 priority_queue

```
1、que.size(); //得到堆中有多少个元素
```

2、que.top(); //取得堆中的第一个元素,对应的普通队列,是 que.front(); 注意~

3、que.pop(); //弹出堆中的第一个元素。也就是上面那个是没删除功能的。

如果堆中的元素是自己定义的结构体的话,就要写一个 cmp **结构体**,放进去,进行优先级排序。

注意在 STL 中,要排序,除了 sort 是写一个 cmp **函数的,**其他都是写一个 cmp **结构体。** priority_queue<int>que; //默认是一个最大堆 priority_queue<int,vector<int>,greater<int>>que; //最小堆,记得最后那个>>中间有个空格

return a.depend<b.depend;//优先级大的在前 //优先队列就是这样相反的 }; //分号不能忘记

priority queue<struct data,vector<struct data>,cmp>que; //这样就是自己定义的一个堆了。

3 lower_bound & upper_bound

lower bound:返回数组里第一个 元素值 >= val 的 pos

upper_bound: 返回数组里第一个 元素值 > val 的 pos。 **找不到返回最后一个元素的下一个** int pos = lower_bound(a+1,a+1+n,val) – a;

4、vector<int>a

插入: a.push_back(4); 取最后一个: printf ("%d\n",a.back()); 删除最后一个: a.pop_back();

5、倒置: reverse(a.begin(),a.end()); //这个倒置函数那里都可以用,甚至可以倒置 char[]。

6、merge 函数: 把两个有序数组结合

```
int a[] = \{0, 1, 2, 3, 4\}; int b[] = \{0, -1, 0, 3, 66\}; int lena = 4, lenb = 4, c[222]; merge(a + 1, a + 1 + lena, b + 1, b + 1 + lenb, c + 1);
```

```
for (int i = 1; i <= lena + lenb; ++i) {
    cout << c[i] << " ";
}</pre>
```

如果用在 vector<int>里面,那么第三个 vector 需要先 V.resize(SIZE),先分配好空间。

2、常量定义 & 手动开栈 & C++取消同步 & int 范围

常量定义:

- 1, #define inf (0x3f3f3f3f)
- 2、const double PI = acos(-1.0); 定义 PI 要用这个,记得是 double
- 3、memset 设置 inf : memset(dp, **0x3f**, sizeof dp); //只有一个 f 且不能用于 double
- 4、memset 设置负 inf: memset(dp, -0x3f, sizeof dp); //其值是: -1044266559
- 5、ASCII 可见字符包括从 33~126 的字符,0~32 和 127 均为不可见字符(控制字符和换行,空格之类的)

手动开栈: #pragma comment(linker,"/STACK:1024000000,1024000000") 取消同步: 后不能混用 scanf 和 cin 之类的 ios::sync_with_stdio(false); 各种类型的范围:

unsigned int 0~4294967295 (10 位数, 4e9)

int -2147483648~2147483647 (10 位数,2e9 2^31 - 1) **2⁶³ - 1**

long long: -9223372036854775808~9223372036854775807 (19 位数, 9e18)

unsigned long long: $0\sim18446744073709551615$ (20 位数,1e19) **2**⁶⁴ - **1**

用 unsigned long long int 定义时,自然溢出相当于对 2⁶⁴ 取模了。

用 unsigned int 的话,就相当于对 2^{32} 次方取模了,因为 2^{32} 有 33 位。所以是保留了最低 32 位。**保留最低 31 位的话,可以 MOD = 1LL << 31,最低 31 位是:2^0 + 2^1 + ... + 2^{30} = 2^{31} - 1** 而 $2^{32} - 1$ 是有 32 位,也就是所有位全部是 1。

1T B = 1024GB

1GB = 1024MB

1MB = 1024KB

1KB=1024字节

那么, 10^6 的数组就需要 $4*10^6$ 个字节,就是 $4*10^3$ 个 KB,就是 4MB 而已。 直接除以 10^6 ,如果 int 就有常数 4,就能知道占用多少 MB。

3、三分答案

但当函数是凸形函数时,二分法就无法适用,这时就需要用到三分法。从三分法的名字中我们可以猜到,三分法是对于需要逼近的区间做三等分:我们发现 Im 这个点比 rm 要低,那么我们要找的最小点一定在[left,rm]之间。如果最低点在[rm,right]之间,就会出现在 rm 左右都有比他低的点,这显然是不可能的。 同理,当 rm 比 Im 低时,最低点一定在[lm,right]的区间内。利用这个性质,我们就可以在缩小区间的同时向目标点逼近,从而得到极值。

```
例题: hihocoder 1142
```

```
题意:给定一条抛物线和一个点 p,要求找到点 p 到抛物线的最短距离。p(x,y) double eps = 1e-12; while (begin + eps < end) { //注意这里的区间,要和题目的一样[-200,200] double Lmid = begin + (end - begin) / 3; double Rmid = end - (end - begin) / 3; double ret1 = dis(Lmid, f(Lmid), x, y); //计算这两个点的距离 double ret2 = dis(Rmid, f(Rmid), x, y); //f(x) = a*x*x + b*x + c if (ret1 < ret2)
```

} 因为 begin 和 end 无限逼近了,所以这两个是一样的。

4、最长下降子序列

end = Rmid;
else begin = Lmid;

```
int get_pos(int b[], int lenb, int val) {
    int begin = 1, end = lenb;
    while (begin <= end) {
        int mid = (begin + end) / 2;
        if (b[mid] > val) begin = mid + 1;
        else end = mid - 1;
    }
    return begin;
}
int dp_down(int a[], int lena) {
    int lenb = 0;
    b[++lenb] = a[1];
```

```
for (int i = 2; i <= lena; ++i) {
            if (a[i] < b[lenb]) b[++lenb] = a[i]; //不降子序列,这里要取等
            else {
                int pos = get_pos(b, lenb, a[i]);
                 b[pos] = a[i];
            }
        }
        return lenb;
}
```

5、高精度、输入挂、java 大数

1、高精度, C语言版

```
void bigadd(char str1[], char str2[], char str3[]) { //str1 + str2 = str3
     int len1 = strlen(str1 + 1), len2 = strlen(str2 + 1);
     char b[maxn] = {0}; //maxn 关键, 栈分配, 系统帮你释放, 要时间, 不乱开
     int i = len1, j = len2;
     int h = 1;
     while (i >= 1 && j >= 1) b[h++] = str1[i--] - '0' + str2[j--] - '0';
     while (i >= 1)
                             b[h++] = str1[i--] - '0';
     while (j >= 1)
                             b[h++] = str2[j--] - '0';
     for (int i = 1; i < h; i++) { //h 是理论越界的
          if (b[i] >= 10) {
               b[i + 1]++;
               b[i] -= 10;
         }
     }
     if (!b[h]) --h;//没有进位到越界位。
     int t = h;
     for (int i = 1; i <= h; i++) str3[t--] = b[i] + '0';
     str3[h+1] = '\0'; //一定要手动添加结束符,不然会 GG
     return;
}
bigadd(str1, str2, ans);
void bigplus(char str1[], char str2[], char str3[]) {
     int len1 = strlen(str1 + 1);
     int len2 = strlen(str2 + 1);
     int i = 1, j = len1;
                        //倒叙
     while (i <= j) {
          char ch = str1[i];
          str1[i] = str1[j];
          str1[j] = ch;
          i++;
```

```
j--;
     }
    i = 1;
    j = len2;
     while (i <= j) {
         char ch = str2[i];
         str2[i] = str2[j];
         str2[j] = ch;
         i++;
         j--;
     }
     int b[maxn] = {0}; //maxn 关键, 栈分配, 系统帮你释放, 要时间
     int lsum = 0;
     for (i = 1; i <= len1; i++) {
         for (j = 1, lsum = i; j <= len2; j++, lsum++) {
              b[lsum] += (str1[i] - '0') * (str2[j] - '0');
         }
     }
     if(b[i] >= 10) {
              b[i + 1] += b[i] / 10;
              b[i] %= 10;
         }
     }
     if (!b[lsum]) {
         Isum--;
     }
     int h = Isum;
     for (int i = 1; i <= lsum; i++) {
         str3[h--] = b[i] + '0';
     }
     str3[lsum + 1] = '\0';
}
2、输入挂
template <class T>
inline bool fast in(T &ret) { //适用于正负整数 (int, long long, float, double)
     char c;
     int sgn;
     if (c = getchar(), c == EOF) return 0; //EOF
     while (c != '-' \&\& (c < '0' | | c > '9')) c = getchar();
     sgn = (c == '-') ? -1 : 1;
     ret = (c == '-')? 0 : (c - '0');
     while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
```

```
ret *= sgn;
    return 1;
}
3、Java 大数 && Java 如何做题
求解: x_1 + x_2 + x_3 + .... + x_n = m, 其中 x_i 属于[Li, Ri]的不同解的个数。n <= 8
import java.util.*; //180ms
import java.math.*; //大数头文件
public class Main {
    static final int maxn = 15; //这个也要 static, 不然下面无法引用类属成员。
    static int[] be = new int[maxn];
    static int[] en = new int[maxn];
    static int n, m;
    static BigInteger ans;
     public static void main(String[] args) {
         Scanner input = new Scanner(System.in);
         int t = input.nextInt();
         while ((t--) > 0) { //返回值必须 bool
              n = input.nextInt();
              m = input.nextInt();
              int sum = 0;
              for (int i = 1; i <= n; ++i) {
                   be[i] = input.nextInt();
                   en[i] = input.nextInt();
                   sum += be[i];
              ans = BigInteger.ZERO; //清 0
              dfs(1, sum, 0);
              System.out.println(ans);
         }
    }
     public static BigInteger C(int n, int m) { //这个数字很大,爆 LL
         if (n < m) return BigInteger.ZERO; //大数的常数定义,有 0,1,和 10
         if (n == m) return BigInteger.ONE;
         BigInteger ans = BigInteger.ONE;
         int mx = Math.max(n - m, m); //调用最大值函数
         int mi = n - mx;
         for (int i = 1; i \le mi; ++i) {
              ans = ans.multiply(BigInteger.valueOf(mx + i)); //转换成大数的方法
              ans = ans.divide(BigInteger.valueOf(i)); //记得接收返回值
         return ans;
     public static void dfs(int cur, int tot, int has) {
```

```
if (cur == n + 1) {
        if (has % 2 == 1) {
            ans = ans.subtract(C(m - tot + n - 1, n - 1));
        } else ans = ans.add(C(m - tot + n - 1, n - 1));
        return;
    }
    dfs(cur + 1, tot - be[cur] + en[cur] + 1, has + 1);    //他自己能包括 en[cur],是闭区间    dfs(cur + 1, tot, has);
}
```

6、基本思考方式

- 1、逆向思维,从结论开始递推上去。
- ①、缩小等边三角形(cf 712C)。可以从最终结果开始贪心模拟上去。
- ②、切割开销(POJ 3253),可以从最后最小的两个,进行 huffman 算法的合并。
- ③、每个 i, 向右边找一个符合的数。其实相当于每个 i, 向左边找一个符合的数。
- ④、循环数组最大字段,可以用总和 sum 最小字段,就解决了循环的问题。
- 2、有关两个变量同时限制的题目。基本思路就是排除一个变量的影响
- ①、HDU 4366,被权值和忠诚限制,那么可以查找时**确保权值肯定成立**。就没影响了。具体做法是对权值排序,然后从权值大的开始预处理,然后把这个人更新到线段树中。
- ②、GYM 101064 求数组两两相加,排序后的第 n 小。容易想到二分答案 + 判定。判定的时候,可以枚举每一个数,**然后固定它**,去数组中([i + 1, n])找有多少个数相加小于等于二分值 val a[i]。其实就是固定了一个点,使得不会重复计数。
- 3、多列公式,进行化简。
- ①、POJ 2002。有多少个正方形,根据垂直和边长相等,即可枚举另外两个点。
- ②、CF 740D。列到的公式**同一变量放在一起**。dis[v] dis[u] <= a[v]即是 dis[v] a[v] <= dis[u]
- ③、 10^9 的推公式题目,尝试下 O($sqrt(10^9)$)的暴力。分类下什么情况可以这样暴力。

4、转换题目意义

①、CF 602D。区间中最大值作为这个区间的贡献值,那么所有子区间的贡献值之和是多少?如果每个区间都扫一次,虽然可以 O (1) 算出最大值,但是也徒劳。把问题转化为,枚举整个数组,看看最大值是 a[i]的时候有多少个区间。这个就可以用单调栈预处理出来。注意两个数值相等的情况。不能重复计数。

5、分类讨论的思想

HUST 1698,分类成 奇数 + 奇数 + 奇数 + 奇数 ,等的所有情况。然后还有,将奇数表达成 2*n-1,是一个很好的选择。

6、映射 hash

HDU 1430,将起点映射到"12345678",起点若变化,终点也跟着起点的变化来变。比如起点

的 6 变成了 3, 那么应该在终点找到 6, 变成 3。这样就把起点固定了。可以打表。然后 Cantor 展开。

杂项

- 1、在 DFS 和 BFS 的时候,要注意起点和终点相同,我会提前 vis[]了,然后返回不了。
- 2、多 case 的题目,最好加个 init();先,清空的东西都放在那里。
- 3、C++提交,时间比较快,内存比较大。而 G++提交则相反。还有 register int 这样更快。

double f;	G++提交	C++提交	本机gcc测试	最安全的方法
输入	scanf("%lf", &f);	scanf("%lf", &f);	scanf("%lf", &f);	cin >> f;
輸出	printf("%f", f);	printf("%lf", f);	printf("%lf", f);	cout << f;