Monogamy of nonlocal quantum correlations

Ben Toner

Institute for Quantum Information and Department of Physics

Caltech

QIP 2006, Paris 19 January, 2006

Monogamy of entanglement

Bob

Charlie

$$|\psi\rangle_{\mathsf{AB}} = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

$$\rho_{ABC} = |\psi\rangle_{AB} \langle \psi|_{AB} \otimes \rho_{C}$$

- 1. Can make this quantitative [CoffmanKunduWootters00], [OsborneVerstraete04];
- 2. Related to security of quantum key distribution, e.g. Ekert scheme [Ekert91].

Classical correlations are not monogamous

Alice

Bob

Charlie

- 1. The parties share randomness λ .
- 2. Each party has 0,1 random variables:

$$\{A_i\}$$

$$\{B_j\}$$

$$\{C_k\}$$

that depend on λ and also private randomness.

Joint distribution of AB: $\Pr(A_i \wedge B_j) = \sum_{\lambda} A_i(\lambda) B_j(\lambda)$ does not restrict joint distribution of AC (except for the trivial requirement the marginals $\Pr(A_i)$ are consistent).

Classical correlations are not monogamous

Neither are the French

Monogamy of quantum correlations nonlocal

Alice

Bob

Charlie

- 1. The parties share a quantum state ρ .
- 2. Each party has ± 1 -valued observables:

$$\{\mathbf A_i\}$$

$$\{\mathbf{B}_j\}$$

 $\{\mathbf{C}_k\}$

Joint distribution of AB: $\langle \mathbf{A}_i \mathbf{B}_j \rangle = \operatorname{tr} (\rho_{\mathsf{ABC}} \mathbf{A}_i \otimes \mathbf{B}_j)$ can restrict which joint distributions of AC are allowed.

A prerequisite:

Correlations cannot have a classical description.

Example 1: CHSH correlations

Alice

Bob

Charlie

- The parties share a quantum state ρ (of arbitrary dimension).
- 2. Each party has measures one of two ± 1 -valued observables:

$$\{\mathbf A_0,\mathbf A_1\} \qquad \qquad \{\mathbf B_0,\mathbf B_1\}$$

$$\{\mathrm{B}_0,\mathrm{B}_1\}$$

$$\{C_0,C_1\}$$

$$\begin{split} \left\langle \mathcal{B}_{\text{CHSH}}^{\text{AB}} \right\rangle &= \text{tr} \left(\rho \left[\mathbf{A}_0 \left(\mathbf{B}_0 + \mathbf{B}_1 \right) + \mathbf{A}_1 \left(\mathbf{B}_0 - \mathbf{B}_1 \right) \right] \right) \\ \left\langle \mathcal{B}_{\text{CHSH}}^{\text{AC}} \right\rangle &= \text{tr} \left(\rho \left[\mathbf{A}_0 \left(\mathbf{C}_0 + \mathbf{C}_1 \right) + \mathbf{A}_1 \left(\mathbf{C}_0 - \mathbf{C}_1 \right) \right] \right) \end{split}$$

Bell Inequality violation
$$\langle \mathcal{B}_{\mathsf{CHSH}} \rangle_c \leq 2$$

$$\max \langle \mathcal{B}_{\mathsf{CHSH}} \rangle_q = 2\sqrt{2}$$

Is there a trade-off between $\langle \mathcal{B}_{CHSH}^{AB} \rangle$ and $\langle \mathcal{B}_{CHSH}^{AC} \rangle$?

Theorem: $\left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}}\right\rangle\right| + \left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AC}}\right\rangle\right| \leq 4.$

[Suggested by Michael Nielsen; see also [ScaraniGisin01].]

Corollary: Suppose N + 1 parties A, B₁, B₁,..., B_N share a quantum state and each chooses to measure one of two observables. Then A violates the CHSH inequality with at most one of the B_i.

See also [MasanesAcınGisin05].

Technique

- Generally, hard to obtain bounds on the quantum value of a nonlocal game.
- Quantum correlations are no-signalling.
- So relax to no-signalling probability distributions.
- Determining the no-signalling value of a nonlocal game can be formulated as a linear program.
- For appropriate 3 party version of CHSH game, construct solution to dual program to get bound.

Monogamy of CHSH correlations

Theorem:
$$\left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}}\right\rangle\right| + \left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AC}}\right\rangle\right| \leq 4.$$

[Suggested by Michael Nielsen; see also [ScaraniGisin01].]

Corollary: Suppose N + 1 parties A, B₁, B₁,..., B_N share a quantum state and each chooses to measure one of two observables. Then A violates the CHSH inequality with at most one of the B_i.

See also [MasanesAcınGisin05].

Theorem:
$$\left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}}\right\rangle\right|^2 + \left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AC}}\right\rangle\right|^2 \leq 8.$$

[Joint work with Frank Verstraete.]

Corollary [TsireIson]:
$$\left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}} \right\rangle\right|^2 \leq \left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}} \right\rangle\right|^2 + \left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AC}} \right\rangle\right|^2 \leq 8$$

Therefore,
$$\left|\left\langle \mathcal{B}_{\mathsf{CHSH}}^{\mathsf{AB}}\right\rangle \right| \leq 2\sqrt{2}$$
.

Odd cycle game

The odd cycle game G_{OC} is defined as follows:

- 1. We choose an integer $i \in \mathbb{Z}_n$ and send it to Alice. With probability 1/2 we send j = i to Bob, with probability 1/2 we send $j = i + 1 \mod n$.
- 2. Alice responds with a bit a and Bob a bit b.
- 3. They win if $a \oplus b = [i \neq j]$.

• Quantum value $\omega_q(G_{OC}) = \cos^2(\pi/4n) \approx 1 - O(\frac{1}{n^2})$.

[CleveHøyerT.Watrous04]

Modified odd cycle game

- Send B's question to additional prover Charlie.
- Players win if (i) A and B win original game, and (ii) B and C agree.

• Classical value $\omega_c(G'_{OC}) = 1 - \frac{1}{2n}$.

 $j \in \mathbb{Z}_n$

• Quantum value $\omega_q(G'_{OC}) = 1 - \frac{1}{2n}$.

These correlations are same as those used in cryptographic scheme [BarrettHardyKent04].

Conclusions

- Described new technique to find Tsirelson bounds on the quantum value of a nonlocal game.
- Demonstrated how to use this technique to quantify the monogamy of quantum correlations.

Further work

- What is the power of MIP_{ns} ?
- How many extra provers are required to prevent entangled provers from cheating?

Thanks to Richard Cleve, Michael Nielsen, John Preskill, Graeme Smith, Wim van Dam, Frank Verstraete, John Watrous.