GENERAL & ANALYTICAL CHEMISTRY I CHMG-141

With Dr. Bailey

Recitation
Week 7
Covalent Bonding II

a. C₂H₆

Step 1. # valence e available for bonding.

C 2X4=8 e⁻

<u>H 6X1=6</u> e

(Zpeizs)

Step 2. Start Lewis structure using only single bonds:

H-C-C-H H-H

Step 3. Distribute remaining electrons to lone pair positions on atoms that need an octet. No remaining e^- .

Step 4. Identify any atoms that do not yet have an octet. None

Step 5. Rearrange electrons from lone pairs of adjacent atoms, forming multiple bonds, so that atoms from Step 4 now have an octet. Count electrons to make sure you have the number that you started with! **No multiple bonds needed.**

Step 6. Calculate formal change on each atom.

 $C = 4-[0 + \frac{1}{2}(8)] = 0$

 $H= 1-[0+ \frac{1}{2}(2)] = 0$

Step 7. Are the bonds in the structure non polar covalent, polar covalent, or ionic? Can you draw resonance structures? If so how many? All bonds are non polar, there is not a significant difference in electronegativity.

Answer Key Week 🗣

OU CORRECTION

b. C₂H₄

Step 1. # valence e available for bonding

C 2X4=8 e H 4X1=8 e 12 e (6 paizs)

Step 2. Start Lewis structure using only single bonds:

Step 3,4,5.

$$H, C = C, H$$

$$H - H$$

Step 6. Calculate formal change on each atom.

 $C = 4-[0 + \frac{1}{2}(8)] = 0$

 $H=1-[0+\frac{1}{2}(2)]=0$

Step 7. All bonds are non polar, there is not a significant difference in electronegativity.

Answer Key Week ₹

c. C₂H₂

Step 1. # valence e available for bonding

Step 2. Start Lewis structure using only single bonds:

lone pair of e-

Step 3,4,5.

$$H \stackrel{\times}{\rightarrow} C \stackrel{\wedge}{\rightarrow} \stackrel{\wedge}{\rightarrow} C \stackrel{\times}{\rightarrow} H \qquad \mathcal{K} - C \equiv C - \mathcal{K}$$

Step 6. Calculate formal change on each atom.

$$C = 4 - [0 + \frac{1}{2}(8)] = 0$$

 $H= 1-[0+ \frac{1}{2}(2)] = 0$

Step 7. All bonds are non polar, there is not a significant difference in electronegativity.

d. NH₃

Step 1. # valence e available for bonding

(4 pai 28)

8 esp³ hybrid

Step 2. Start Lewis structure using only single bonds:

Step 3,4,5.

Step 6. Calculate formal change on each atom.

 $N=5-[2+\frac{1}{2}(6)]=0$

 $H=1-[0+ \frac{1}{2} (2)]=0$

Step 7. The bonds in the structure are polar covalent.

ELECTROPHER R

Page 3

Answer Key Week \$

OMENIODE

e. HBr

Step 1. # valence e available for bonding

8 e sp³ hybrid

Step 2-5. Start Lewis structure using only single bonds:

H- Br

Step 6. Calculate formal change on each atom.

Br=7-[6+
$$\frac{1}{2}$$
 (2)] = 0
H=1-[0+ $\frac{1}{2}$ (2)] = 0

Step 7. All bonds are polar.

The bond is palar

f. H₂O₂

Step 1. # valence e available for bonding

Step 2. Start Lewis structure using only single bonds:

Step 3,4,5. Each Oxygen has 2 lone pair of electrons. Oxygen has an octet. There are no multiple bonds

Step 6. Calculate formal change on each atom.

H=1-[0+
$$\frac{1}{2}$$
 (2)] = 0
O=6-[4+ $\frac{1}{2}$ (4)] = 0

Step 7. The bonds in the structure are polar covalent.

Memorize H₂O₂

Answer Key Week 🖫

CHECKELLOSE

g. SO₄-2

Step 1. # valence e available for bonding

Step 2. Start Lewis structure using only single bonds: -/

CANCINED ESTER BENDING SHEET LEWISH

Step 6. Calculate formal change on each atom.

S 6-1-8-0-+2

Step 7. The bonds are polar covalent forming an ionic structure.

$$S \quad 6 - \frac{1}{2} \cdot 12 - 0 = 0$$

$$0 \quad 6 - \frac{1}{2} \cdot 4 - 4 = 0$$

$$0 \quad 6 - \frac{1}{2} \cdot 2 - 6 = -1$$

Answer Key Week \$

h. N₂O [use N-N-O arrangement]

Step 1. # valence e available for bonding

N 2X5=
$$10 e^{-}$$

O 1X6= $6 e^{-}$ $(8 p \text{ mizs})$
 $16 e^{-}$ sp hybrid

Step 2. Start Lewis structure using only single bonds:

日 N日公XN2 X OO8

Both N's do not have an octet Multiple bonds

Coordinate coval entropic between central 4480. Triple bond between each N.

Double Bond between $N_1 \& N_2$, and between $N_2 \& O$. Very Messy! Texaspassas Nitrous oxide AKA laughing gas.

Step 6. First Structure:

$$N_1=5-[2+\frac{1}{2}(6)]=0$$

$$N_1=5-[4+\frac{1}{2}(4)]=-1$$

$$N_2=5-[0+\frac{1}{2}(8)]=+1$$

$$N_2=5-[0+\frac{1}{2}(8)]=+1$$

$$O = 6 - [6 + \frac{1}{2}(2)] = -1$$

$$O = 6 - [4 + \frac{1}{2} (2)] = 0$$

Step 7. The bonds in the structure are non polar covalent. There are two resonance structures.

$$: N = N = 0: \iff : N = N - 0: \iff : N - N = 0$$

Answer Key Week \$\vec{8}\$

16/2012/104

i. NO₃

Step 1. # valence e available for bonding

N 1X5=
$$5e^{-}$$

O 3X6= $18e^{-}$
Charge = $1e^{-}$
 $24e^{-}$ sp² hybrid

Step 2. Start Lewis structure using only single bonds:

$$\begin{bmatrix} 0 & 1 \\ 0 - N - 0 \end{bmatrix}$$

Nitrogen has only 6 electrons, needs 2 more → double bond

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots$$

20

Coordinate Covalent Bonding Gilbert Lewis!

Step 6. Calculate formal change on each atom.

N=5-
$$[0+ \frac{1}{2} (8)] = +1$$

O_a=6- $[4+ \frac{1}{2} (4)] = 0$
O_b=6- $[6+ \frac{1}{2} (2)] = -1$
O_c=6- $[6+ \frac{1}{2} (2)] = -1$

Step 7.

Why can't the double bond be located between O_b and Nitrogen?

Resonance structures. There are 3 resonance structures possible.

The bonds are polar covalent forming an ionic structure.

= hybeid

Answer Key Week 🕏

decenera.

j. CO₃-2

Step 1. # valence e available for bonding

Looks very similar to the last problem!

Step 2. Start Lewis structure using only single bonds:

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \times & C \times \\
0 & 0 & \times & C \times \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & \times & C \times \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & \times & C \times \\
0 & 0 & 0
\end{bmatrix}$$

Coordinate Covalent Bonding Gilbert Lewis! Step 6. Calculate formal change on each atom.

$$C = 4-[0+ \frac{1}{2} (8)] = 0$$

 $O_a = 6-[4+ \frac{1}{2} (4)] = 0$
 $O_b = 6-[6+ \frac{1}{2} (2)] = -1$
 $O_c = 6-[6+ \frac{1}{2} (2)] = -1$

$$QR \left[\overset{\circ}{0} = \overset{\circ}{C} - \overset{\circ}{0} : \overset{\circ}{J} \right]^{-2}$$

Step 7. Why can't the double bond be located between O_b and C? Resonance structures. There are 3 resonance structures possible. The bonds are polar covalent forming an ionic structure.

= hybeid.

Answer Key Week \$

16/25/2000

k. PCI₅

Step 1. # valence e available for bonding

40 e⁻ sp³d hybrid Exception to octet rule

Step 2. Start Lewis structure using only single bonds:

Step 6. Calculate formal change on each atom.

$$P=5-[0+\frac{1}{2}(10)]=0$$

$$CI=7-[6+\frac{1}{2}]=0$$

Step 7. The bonds in the structure are non polar covalent.

I. BeCl₂

Step 1. # valence e available for bonding

Step 2. Start Lewis structure using only single bonds:

Be does not have octet $: \mathcal{C}l - \mathcal{B}e - \mathcal{C}l :$

Be does not have an octet. Black and those aborder

Step 6. Calculate formal change on each atom.

Step 7. The bonds are polar covalent.

 $Be = 2 - \frac{1}{2} \cdot 4 - 0 = 0$ $- 40 \cdot 0$ $Cl = 7 - \frac{1}{2} \cdot 2 \cdot 6 = 0$

Answer Key Week

eletatato a

m. C_6H_6 [What if the two ends of the chain connect?]

Benzene

Memorize!

Step 1. # valence e available for bonding

C 6X4=24 eH 6X1= 6 e30 e

Step 2. Start Lewis structure using only single bonds:

O C₁ O C₂ D C₃ O C₄ O C₅ D A C₆ A Each C has 7 valence e ox DX AX AX Multiple bonds
H H H H H H

o C₁8号C₂ロム C₃分 C₄o D C₅ 日全 C₆ A ox ロx Ax Ox ロx Ax H H H H H H

Step 6. Calculate formal change on each atom.

 $C = 4-[0 + \frac{1}{2}(8)] = 0$ $H = 1-[0 + \frac{1}{2}(2)] = 0$

Step 7. The bonds in the structure are non polar covalent. There are two resonance structures. De-localized electrons.

2. The Structure of Molecules

Each person in the group should choose and complete a raw in the table below by

- (a) finding a n example of a molecule or an ion with the given structure
- (b) predicting the molecular or ionic geometry
- (c) estimating bond angles

"A" represents a central atom; "B" represents a terminal atom, and "E" represents an unshared electron pair on the central atom.

Example	Molecular Geometry	Bond Angles
$CO_2 0 = C = 0$	Linear	1800
502		
$: \ddot{o} = \dot{S} - \dot{o}$:	Bent	L 120°
BF3::-B-F::	TRigonal	1200
CHy K-N-H	TetRahedral	109.5
- //		0
PH3 H-P-H	# Pyzamidal	109.5 (107.5°)
,		
••	Bent	L 103.5°
PCL-CL. p-Cl	TRifonal- -bipyzamidel	2 103.5° (104.5°) 90°, 120°
SF6 ; F; F;	Octahedeal	900
	CO_{2} $\ddot{0}=C=0$ SO_{2} $\vdots \ddot{0}=\dot{S}-\dot{0}$: $BF_{3}F-B-F$: $\vdots F$: CH_{4} H NH_{4} H NH_{4} H PH_{3} H P P H P H P H H H H H H H H	CO2 $\ddot{D}=C=\ddot{D}$ Linear SO2 $\ddot{D}=\ddot{S}-\ddot{D}$: Bent $\ddot{B}F_3\ddot{F}-\ddot{B}-\ddot{F}$: Triponal planar CH4 NH_4^+ $\begin{bmatrix} H-N-H \end{bmatrix}$ Tetrahedral H PH3 $H-\ddot{P}-H$ H PCls: \ddot{C} : C