# Data Mining

### Lecture 7

Ananya Jana CS360

Fall 2024



# **Data Preprocessing**

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

#### Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
  - A potentially infinite number of values are mapped into a small number of categories
  - Discretization is commonly used in classification
  - Many classification algorithms work best if both the independent and dependent variables have only a few values

### **Binarization**

- Binarization maps a continuous or categorical attribute into one or more binary variables
- Typically used for association analysis
- Often convert a continuous attribute to a categorical attribute and then convert a categorical attribute to a set of binary attributes
  - Association analysis needs asymmetric binary attributes
  - Examples: eye color and height measured as {low, medium, high}

#### **Binarization**

Conversion of a categorical attribute to three binary attributes

| Categorical Value | Integer Value | $x_1$ | $x_2$ | $x_3$ |
|-------------------|---------------|-------|-------|-------|
| awful             | 0             | 0     | 0     | 0     |
| poor              | 1             | 0     | 0     | 1     |
| OK                | 2             | 0     | 1     | 0     |
| good              | 3             | 0     | 1     | 1     |
| great             | 4             | 1     | 0     | 0     |

### **Attribute Transformation**

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
  - Simple functions: x<sup>k</sup>, log(x), e<sup>x</sup>, |x|
  - Normalization
    - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
    - Take out unwanted, common signal, e.g., seasonality
  - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

#### Correlation

Correlation between variables: Correlation measure the linear relation between objects.

$$corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard\_deviation(\mathbf{x}) * standard\_deviation(\mathbf{y})}$$

X and Y are a set of n observations  $(x_i, y_i)$  where i = 1, 2,...nSimply put, you can calculate correlation using three different sums of squares - sum of squares for variable X (denoted by  $SS_{XX}$ ), sum of squares for variable Y (denoted by  $SS_{YY}$ ) and the sum of the cross-products XY (denoted by  $SS_{XY}$ ).

$$SS_{XX} = \sum (x_i - \overline{x})^2$$

$$SS_{YY} = \sum (y_i - \overline{y})^2$$

$$SS_{XY} = \sum (x_i - \overline{x})(y_i - \overline{y})$$

Where  $\bar{x}$  and  $\bar{y}$  are the the sample means of X and Y.

#### **Correlation**

Then correlation is

$$r = rac{SS_{XY}}{\sqrt{(SS_{XX})(SS_{YY})}}$$

The value of a correlation coefficient ranges between -1 and +1. The rough guidelines for correlation

| 0 <  r  < .3  | weak correlation     |
|---------------|----------------------|
| .3 <  r  < .7 | moderate correlation |
| r  > 0.7      | strong correlation   |

# **Visually Evaluating correlation**



**Scatter plots** showing the similarity from

-1 to 1.

# **Drawbacks of correlation**

$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

$$\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$$

$$y_i = x_i^2$$

= ()

$$(\mathbf{v}) = 0$$
 n

$$\mathbf{x}$$
) = 0, n

• 
$$mean(\mathbf{x}) = 0$$
,  $mean(\mathbf{y}) = 4$ 

 $\bullet$  std(x) = 2.16, std(y) = 3.74

• corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6 \* 2.16 \* 3.74)

### **Basic Classification**

class labels y

x :attribute, predictor, independent variable, input

y: class, response, dependent variable, output.

Classification: Given a collection of records (training set) each record is characterized by a tuple (x, y) where x is the attribute set and y is the class label

Task: Learn a model that maps each attribute set x into one of the predefined

### **Examples of Classification Task**

| Task                        | Attribute set, x                                         | Class label, y                                   |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------|
| Categorizing email messages | Features extracted from email message header and content | spam or non-spam                                 |
| Identifying<br>tumor cells  | Features extracted from MRI scans                        | malignant or benign cells                        |
| Cataloging galaxies         | Features extracted from telescope images                 | Elliptical, spiral, or irregular-shaped galaxies |

### General Approach for building classification model



Test Set

Large

15

No

67K

## **Classification Techniques**

Base Classifiers

- Decision Tree based Methods
- Rule-based Methods
- Nearest-neighbor
- Neural Networks
- Deep Learning
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

**Ensemble Classifiers** 

- Boosting, Bagging, Random Forests

### **Example of a Decision Tree**



**Training Data** 

Model: Decision Tree

#### **Another Example of a Decision Tree**

| · č     | cal   | rical  |        | ous   |
|---------|-------|--------|--------|-------|
| categor | cated | orical | ontinu | class |

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|----|---------------|-------------------|------------------|-----------------------|
| 1  | Yes           | Single            | 125K             | No                    |
| 2  | No            | Married           | 100K             | No                    |
| 3  | No            | Single            | 70K              | No                    |
| 4  | Yes           | Married           | 120K             | No                    |
| 5  | No            | Divorced          | 95K              | Yes                   |
| 6  | No            | Married           | 60K              | No                    |
| 7  | Yes           | Divorced          | 220K             | No                    |
| 8  | No            | Single            | 85K              | Yes                   |
| 9  | No            | Married           | 75K              | No                    |
| 10 | No            | Single            | 90K              | Yes                   |



There could be more than one tree that fits the same data!













#### **Decision Tree Classification Task**



#### **Decision Tree Induction**

- Many Algorithms:
  - Hunt's Algorithm (one of the earliest)
  - CART
  - ID3, C4.5
  - SLIQ, SPRINT

### **Task**

| Area         | % of people below poverty line | % of bike riders wearing helmet |
|--------------|--------------------------------|---------------------------------|
| Fair Oaks    | 50                             | 22.1                            |
| Strandwood   | 11                             | 35.9                            |
| Walnut Acres | 2                              | 57.9                            |
| Discov. Bay  | 19                             | 22.2                            |

Calculate the correlation between the two columns.

### **Curse of Dimensionality**

Python code for showing curse of dimensionality (ipynb file on Blackboard)

```
import numpy as np
import matplotlib.pyplot as plt
import os
import math
values = []
for N in range(2,50):
    # Generate 1000 random points in N dimensions.
    P = [np.random.randint(-100, 100, N) for in range(1000)]
    # Generate 1 random point P2 in N dimensions.
    P2 = np.random.randint(-100, 100, N)
    # calculate the difference between the set of points P and the random point P2
    diffs = [np.linalg.norm(p-P2) for p in P]
    \max d = \max(diffs)
    min d = min(diffs)
    value = math.log10(max d-min d)/min d
    values.append( value )
```

```
plt.plot(range(2,50),values)
plt.xlabel('Number of dimensions')
plt.ylabel('Values')
plt.show()
```