Random Variable Reference

Discrete Random Variables

Bernoulli Random Variable

Notation: $X \sim \mathrm{Bern}(p)$

Description: A boolean variable that is 1 with probability p

Parameters: p, the probability that X = 1.

Support: x is either 0 or 1

PMF equation: $P(X=x) = egin{cases} p & \text{if } x=1 \\ 1-p & \text{if } x=0 \end{cases}$

PMF (smooth): $P(X = x) = p^x (1 - p)^{1-x}$

Expectation: E[X] = p

Variance: Var(X) = p(1-p)

PMF graph:

Parameter p: 0.80

Binomial Random Variable

Notation: $X \sim \text{Bin}(n, p)$

Description: Number of "successes" in *n* identical, independent experiments each with

probability of success p.

Parameters: $n \in \{0, 1, ...\}$, the number of experiments.

 $p \in [0, 1]$, the probability that a single experiment gives a "success".

Support: $x \in \{0, 1, \dots, n\}$

PMF equation: $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$

Expectation: $E[X] = n \cdot p$

Variance: $\operatorname{Var}(X) = n \cdot p \cdot (1 - p)$

PMF graph:

Parameter n: 20 Parameter p: 0.60

Poisson Random Variable

Notation: $X \sim \operatorname{Poi}(\lambda)$

Description: Number of events in a fixed time frame if (a) the events occur with a constant mean

rate and (b) they occur independently of time since last event.

Parameters: $\lambda \in \{0, 1, \ldots\}$, the constant average rate.

Support: $x \in \{0, 1, \ldots\}$

PMF equation: $P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$

Expectation: $\mathrm{E}[X] = \lambda$ Variance: $\mathrm{Var}(X) = \lambda$

PMF graph:

Parameter λ : 5

Geometric Random Variable

Notation: $X \sim \text{Geo}(p)$

Description: Number of experiments until a success. Assumes independent experiments each

with probability of success p.

Parameters: $p \in [0, 1]$, the probability that a single experiment gives a "success".

Support: $x \in \{1, \dots, \infty\}$

PMF equation: $P(X = x) = (1 - p)^{x-1}p$

Expectation: $E[X] = \frac{1}{p}$ Variance: $Var(X) = \frac{1-p}{p^2}$

PMF graph:

Negative Binomial Random Variable

Notation: $X \sim \mathrm{NegBin}(r,p)$

Number of experiments until r successes. Assumes each experiment is independent **Description:**

with probability of success p.

r > 0, the number of success we are waiting for. **Parameters:**

 $p \in [0, 1]$, the probability that a single experiment gives a "success".

 $x \in \{r, \dots, \infty\}$ **Support:**

 $\mathrm{P}(X=x) = inom{x-1}{r-1} p^r (1-p)^{x-r}$ **PMF** equation:

 $\mathrm{E}[X] = rac{r}{p}$ **Expectation:**

 $\mathrm{Var}(X) = rac{r\cdot (1-p)}{p^2}$ Variance:

Continuous Random Variables

Uniform Random Variable

 $X \sim \mathrm{Uni}(lpha,eta)$ **Notation:**

A continuous random variable that takes on values, with equal likelihood, between **Description:**

 α and β

 $lpha \in \mathbb{R}$, the minimum value of the variable. **Parameters:**

 $\beta \in \mathbb{R}$, $\beta > \alpha$, the maximum value of the variable.

 $x \in [lpha, eta]$ **Support:**

PDF equation:

CDF equation:

 $f(x) = egin{cases} rac{1}{eta-lpha} & ext{for } x \in [lpha,eta] \ 0 & ext{else} \ F(x) = egin{cases} rac{x-lpha}{eta-lpha} & ext{for } x \in [lpha,eta] \ 0 & ext{for } x < lpha \ 1 & ext{for } x > eta \end{cases}$

Expectation:

 $\mathrm{E}[X] = \frac{1}{2}(\alpha + \beta)$

Variance:

 $\operatorname{Var}(X) = \frac{1}{12}(\beta - \alpha)^2$

PDF graph:

Parameter α : 0

Parameter β : 1

Exponential Random Variable

 $X \sim \mathrm{Exp}(\lambda)$ **Notation:**

Description: Time until next events if (a) the events occur with a constant mean rate and (b) they

occur independently of time since last event.

 $\lambda \in \{0, 1, \ldots\}$, the constant average rate. **Parameters:**

 $x \in \mathbb{R}^+$ **Support:**

 $f(x) = \lambda e^{-\lambda x}$ **PDF** equation:

 $F(x) = 1 - e^{-\lambda x}$ **CDF** equation:

 $\mathrm{E}[X]=1/\lambda$ **Expectation:**

 $\mathrm{Var}(X)=1/\lambda^2$ Variance:

PDF graph:

Parameter λ : 5

Normal (aka Gaussian) Random Variable

Notation: $X \sim \mathrm{N}(\mu, \sigma^2)$

Description: A common, naturally occurring distribution.

Parameters: $\mu \in \mathbb{R}$, the mean.

 $\sigma^2 \in \mathbb{R}$, the variance.

Support: $x \in \mathbb{R}$

PDF equation: $f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$

CDF equation: $F(x) = \phi(\frac{x-\mu}{\sigma})$ Where ϕ is the CDF of the standard normal

Expectation: $\mathrm{E}[X] = \mu$

Variance: $Var(X) = \sigma^2$

PDF graph:

Parameter μ : 5 Parameter σ : 5

Beta Random Variable

Notation: $X \sim \text{Beta}(a, b)$

Description: A belief distribution over the value of a probability p from a Binomial distribution

after observing a-1 successes and b-1 fails.

Parameters: a > 0, the number successes + 1

b > 0, the number of fails + 1

Support: $x \in [0,1]$

PDF equation: $f(x) = B \cdot x^{a-1} \cdot (1-x)^{b-1}$

CDF equation: No closed form

