Second-order Probabilism: Expressive Power and Accuracy

Rafal Urbaniak and Marcello Di Bello

2023-08-31

Contents

1	Introduction	2
2	Precise vs. imprecise probabilisms 2.1 Precise probabilism	3
3	A more concrete example	7
4	Objections4.1 The Taroni-Sjerps debate	13
5	Legal Applications5.1 False Positives in DNA Identification5.2 Higher-order Bayesian Networks5.3 Relationship with Bayesian hierarchical models	20
Re	ferences	25

DISCLAIMER: This is a draft of work in progress, please do not cite or distribute without permission.

1 Introduction

Precise probabilism (PP) has it that a rational agent's (RA) uncertainty is to be represented as a single probability measure. The view has been criticized on the ground that RA's degrees of belief are not appropriately evidence-responsive, especially when evidence is scant. Accordingly, an alternative view—imprecise probabilism (IP)—has been proposed, on which RA's uncertainty is to be represented by a set of probability measures, rather than a unique one.

Unfortunately, this view runs into problems as well. (1) It still does not seem to be sufficiently evidence-responsive, (2) it is claimed to get certain comparative probability judgments wrong, (3) it seems to be unable to model learning when the starting point is complete lack of information, and (4) notoriously there exist no inaccuracy measure of an imprecise credal stance if the measure is to satisfy certain straightforward formal conditions.

The main claim of this paper is that the way forward is to use higher-order probabilities to represen't RA's uncertainty in the relevant cases. The key idea is that uncertainty is not a single-dimensional thing to be mapped on a single one-dimensional scale like a real line and that it's the whole shape of the whole distribution over parameter values that should be taken under consideration. This guiding idea can be used to resolve many problems and philosophical puzzles raised in the debate between PP and IP. Moreover, Bayesian probabilistic programming already provides a fairly reliable implementation framework of this approach.

Think about including synergy

add structure description

2 Precise vs. imprecise probabilisms

2.1 Precise probabilism

Precise probabilism (PP) holds that a rational agent's uncertainty about a hypothesis is to be represented as a single, precise probability measure. This is an elegant and simple theory. But representing our uncertainty about a proposition in terms of a single, precise probability runs into a number of difficulties. Precise probabilism—arguably—fails to capture an important dimension of how our fallible beliefs reflect the evidence we have (or have not) obtained. A couple of stylized examples should make the point clear. For the sake of simplicity, we will use examples featuring coins.

No evidence v. fair coin You are about to toss a coin, but have no evidence whatsoever about its bias. You are completely ignorant. Compare this to the situation in which you know, based on overwhelming evidence, that the coin is fair.

On precise probabilism, both scenarios are represented by assigning a probability of .5 to the outcome *heads*. If you are completely ignorant, the principle of insufficient evidence suggests that you assign .5 to both outcomes. Similarly, if you know for sure the coin is fair, assigning .5 seems the best way to quantify the uncertainty about the outcome. The agent's evidence in the two scenario is quite different, but precise probabilities fail to capture this difference.

Learning from ignorance You toss a coin with unknown bias. You toss it 10 times and observe *heads* 5 times. Suppose you toss it further and observe 50 *heads* in 100 tosses.

Since the coin initially had unknown bias, you should presumably assign a probability of .5 to both outcomes if you stick with PP. After the 10 tosses, you end up again with an estimate of .5. You must have learned something, but whatever that is, it is not modeled by precise probabilities. When you toss the coin 100 times and observe 50 heads, you learn something new as well. But your precise probability assessment will again be .5.

These examples suggest that precise probabilism is not appropriately responsive to evidence when it comes to representing what RA justifiedly believes of has learned. It ends up assigning the same probability in situations in which one's evidence is quite different: when no evidence is available about the coin's bias; when there is little evidence that the coin is fair (say, after only 10 tosses); and when there is strong evidence that the coin is fair (say, after 100 tosses). The general problem is, precise probability captures the value around which your uncertainty should be centered, but fails to capture

how centered it should be given the evidence.1

Precise probabilism, it has been argued, fails also to account for cases in which an agent remains undecided even after some additional evidence has been obtained. Imagine RA doesn't know what the bias of the coin is, which PP represents as P(()H) = .5. Then she learns that the bias towards heads has been slightly increased by .001 (in the philosophical literature, this is called *sweetening*. Intuitively, this might still leave RA equally undecided when it comes to betting on H. that would've been fair even if the actual chance of H was .5 and not .001. The same sweetening, however, should make RA bet on H if their original lack of information was in fact correctly captured as a precise credence.

2.2 Imprecise probabilism

What if we give up the assumption that probability assignments should be precise? Imprecise probabilism (IP) holds that an agent's credal stance towards a hypothesis is to be represented by means of a *set of probability measures*, typically called a representor \mathbb{P} , rather than a single measure P. The representor should include all and only those probability measures which are compatible with the evidence. For instance, if an agent knows that the coin is fair, their credal state would be represented by the singleton set $\{P\}$, where P is a probability measure which assigns .5 to *heads*. If, on the other hand, the agent knows nothing about the coin's bias, their credal state would be represented by the set of all probabilistic measures, since none of them is excluded by the available evidence. Note that the set of probability measures does not represent admissible options that the agent could legitimately pick from. Rather, the agent's credal state is essentially imprecise and should be represented by means of the entire set of probability measures.²

Imprecise probabilism, at least *prima facie*, offers a straightforward picture of learning from evidence, that is a natural extension of the classical Bayesian approach. When faced with new evidence E between time t_0 and t_1 , the representor set should be updated point-wise, running the standard Bayesian updating on each probability measure in the representor:

$$\mathbb{P}_{t_1} = \{\mathsf{P}_{t_1} | \exists \, \mathsf{P}_{t_0} \in \mathbb{P}_{t_0} \,\, \forall \, H \ \, [\mathsf{P}_{t_1}(H) = \mathsf{P}_{t_0}(H|E)] \}.$$

The hope is that, if we start with a range of probabilities that is not extremely wide, point-wise learning will behave appropriately. For instance, if we start with a prior probability of *heads* equal to .4 or .6, then those measure should be updated to something closer to .5 once we learn that a given coin has already been tossed ten times with the observed number of heads equal 5 (call this evidence E). This would mean that if the initial range of values was [.4, .6] the posterior range of values should be more narrow.

But even this seemingly straightforward piece of reasoning is hard to model without using densities. For to calculate P(bias = k|E) we need to calculate P(E|bias = k)P(bias = k) and divide it by $P(E) = P(E|bias = k)P(bias = k) + P(E|bias \neq k)P(bias \neq k)$. The tricky part is obtaining P(bias = k) or $P(bias \neq k)$ in a principled manner without explicitly going second-order, without estimating the parameter value and without using beta distributions.

The situation is even more difficult if we start with complete lack of knowledge, as imprecise probabilism runs into the problem of **belief inertia** (Levi, 1980). Say you start tossing a coin knowing nothing about its bias. The range of possibilities is [0, 1]. After a few tosses, if you observed at least one tail and one heads, you can exclude the measures assigning 0 or 1 to *heads*. But what else have you learned? If you are to update your representor set point-wise, you will end up with the same representor set. Consequently, the edges of your resulting interval will remain the same. In the end, it is not clear how you are supposed to learn anything if you start from complete ignorance.

¹In fact, analogous problems arise even if we do not start with complete lack of evidence; if RA initially weakly believes that the coin is .6 biased towards heads, as she might still learn more, by confirming her belief by tossing the coin repeatedly and observing, say, 60 heads in 100 tosses—but this improvement is not mirrored in the precise probability she will assign to heads.

²For the development of imprecise probabilism, see Keynes (1921); Levi (1974); Gärdenfors & Sahlin (1982); Kaplan (1968); Joyce (2005); Fraassen (2006); Sturgeon (2008); Walley (1991). S. Bradley (2019) is a good source of further references. Imprecise probabilism shares some similarities with what we might call **interval probabilism** (Kyburg, 1961; Kyburg Jr & Teng, 2001). On interval probabilism, precise probabilities are replaced by intervals of probabilities. On imprecise probabilism, instead, precise probabilities are replaced by sets of probabilities. This makes imprecise probabilism more general, since the probabilities of a proposition in the representor set do not have to form a closed interval. In what follows, we will ignore interval probabilism, as intervals do not contain probabilistic information sufficient to guide reasoning with multiple items of evidence.

Here's another example from Rinard (2013). Either all the marbles in the urn are green (H_1) , or exactly one tenth of the marbles are green (H_2) . Your initial credence is complete uncertainty with interval [0,1] associated with each hypothesis. Then you learn that a marble drawn at random from the urn is green (E). After conditionalizing each function in your representor on this evidence, you end up with the same spread of values for H_1 that you had before learning E, and no matter how many marbles are sampled from the urn and found to be green.

Some downplay the problem of belief inertia. They insist that vacuous priors should not be used and that imprecise probabilism gives the right results when the priors are non-vacuous. After all, if you started with knowing truly nothing, then perhaps it is right to conclude that you will never learn anything. Another strategy is to say that, in a state of complete ignorance, a special updating rule should be deployed.³ But no matter what we think about belief inertia, other problems plague imprecise probabilism. Three problems are particularly pressing.

One problem is that imprecise probabilism fails to capture intuitions we have about evidence and uncertainty in a number of scenarios. Consider this example:

Even v. uneven bias: You have two coins and you know, for sure, that the probability of getting heads is .4, if you toss one coin, and .6, if you toss the other coin. But you do not know which is which. You pick one of the two at random and toss it. Contrast this with an uneven case. You have four coins and you know that three of them have bias .4 and one of them has bias .6. You pick a coin at random and plan to toss it. You should be three times more confident that the probability of getting heads is .4. rather than .6.

The first situation can be easily represented by imprecise probabilism. The representor would contain two probability measures, one that assigns .4. and the other that assigns .6 to the hypothesis 'this coin lands heads'. But imprecise probabilism cannot represent the second situation, at least not without moving to higher-order probabilities or assigning probabilities to chance hypotheses, in which case it is no longer clear whether the object-level imprecision does any heavy lifting.⁴

Second, besides descriptive inadequacy, imprecise probabilism fases a foundational problem. It arises when we attempt to measure the accuracy of a representor set of probability measures. Workable scoring rules exist for measuring the accuracy of a single, precise credence function, such as the Brier score. These rules measure the distance between one's credence function (or probability measure) and the actual value. A requirement of scoring rules is that they be proper: any agent will score their own credence function to be more accurate than every other credence function. After all, if an agent thought a different credence was more accurate, they should switch to it. Proper scoring rules are then used to formulate accuracy-based arguments for precise probabilism. These arguments show (roughly) that, if your precise credence follows the axioms of probability theory, no other credence is going to be more accurate than yours whatever the facts are. Can the same be done for imprecise probabilism? It seems not. Impossibility theorems demonstrate that no proper scoring rules are available for representor sets. So, as many have noted, the prospects for an accuracy-based argument for imprecise probabilism look dim (Campbell-Moore, 2020; Mayo-Wilson & Wheeler, 2016; Schoenfield, 2017; Seidenfeld, Schervish, & Kadane, 2012). Moreover, as shown by Schoenfield (2017), if an accuracy measure satisfies certain plausible formal constraints, it will never strictly recommend an imprecise stance, as for any imprecise stance there will be a precise one with at least the same accuracy.

The third problem with imprecise probabilism is that, degenerate cases aside, it is hard to make sense of the notion of an IP agent learning that a probabilistic measure is incompatible with the evidence. Recall that the probability measures allowed in a representor set are supposed to be only those compatible with the agent's evidence. The idea is that thanks to this feature, imprecise credal stances are evidence-responsive in a way precise probabilistic stances are not. But how, exactly, does

³Elkin (2017) suggests the rule of *credal set replacement* that recommends that upon receiving evidence the agent should drop measures rendered implausible, and add all non-extreme plausible probability measures. This, however, is tricky. One needs a separate account of what makes a distribution plausible or not, as well as a principled account of why one should use a separate special update rule when starting with complete ignorance.

⁴Other scenarios can be constructed in which imprecise probabilism fails to capture distinctive intuitions about evidence and uncertainty; see, for example, (Rinard, 2013). Suppose you know of two urns, GREEN and MYSTERY. You are certain GREEN contains only green marbles, but have no information about MYSTERY. A marble will be drawn at random from each. You should be certain that the marble drawn from GREEN will be green (G), and you should be more confident about this than about the proposition that the marble from MYSTERY will be green (M). In line with how lack of information is to be represented on IP, for each $r \in [0, 1]$ your representor contains a P with P(M) = r. But then, it also contains one with P(M) = 1. This means that it is not the case that for any probability measure P in your representor, P(G) > P(M), that is, it is not the case that RA is more confident of G than of M. This is highly counter-intuitive.

the evidence exclude probability measures?

This is not a mathematical question: mathematically (S. Bradley, 2012), evidential constraints are easy to model. They can take the form, for example, of the *evidence of chances* $\{P(X) = x\}$ or $P(X) \in [x,y]$, or *structural constraints* such as "X and Y are independent" or "X is more likely than Y." While it is clear that these constraints are something that an agent can come to accept if offered such information by an expert to which the agent completely defers, it is not trivial to explain how non-testimonial evidence can result in such constraints for an epistemic agent that functions as IP proposes.

Most of the examples in the literature start with the assumption that the agent is told by a believable source that the chances are such-and-such, or that the experimental set-up is such that the agent knows that such and such structural constraint is satisfied. But, besides ideal circumstances, it is unclear how an agent could come to accept such structural constraints upon observation. The chain of testimonial evidence has to end somewhere.

Admittedly, there are straightforward degenerate cases: if you see the outcome of a coin toss to be heads, you reject the measure with P(H) = 0, and similarly for tails. Another class of cases might arise if you are randomly drawing objects from a finite set where the real frequencies are already known, because this finite set has been inspected. But such extreme cases aside, what else? Mere consistency constraint wouldn't get the agent very far in the game of excluding probability measures, as way too many probability measures are strictly speaking still consistent with the observations for evidence to result in epistemic progress. [Bradley suggests that "statistical evidence might inform [evidential] constraints [... and that evidence] of causes might inform structural constraints" [125-126]. This, however, is not a clear account of how exactly this should proceed. One suggestion might be that once a statistical significance threshold is selected, a given set of observations with a selection of background modeling assumptions yields a credible interval. But this is to admit that to reach such constraints, we already have to start with a second-order approach, and drop information about the densities, focusing only on the intervals obtained with fixed margins of errors. But as we will be insisting, if you have the information about densities to start with, there is no clear advantage to going imprecise instead, and there are multiple problems associated with this move. Moreover, such moves require a choice of an error margin, which is extra-epistemic, and it is not clear what advantage there is to use extra-epistemic considerations of this sort to drop information contained in densities.⁵

2.3 Higher-order probabilism

There is, however, a view in the neighborhood that fares better: a higher-order perspective. In fact, some of the comments by the proponents of imprecise probabilism tend to go in this direction. For instance, Bradley compares the measures in a representor to committee members, each voting on a particular issue, say the true bias of a coin. As they acquire more evidence, the committee members will often converge on a specific chance hypothesis. He writes (S. Bradley, 2012, p. 157):

... the committee members are "bunching up". Whatever measure you put over the set of probability functions—whatever "second order probability" you use—the "mass" of this measure gets more and more concentrated around the true chance hypothesis'.

Note, however, that such bunching up cannot be modeled by imprecise probabilism alone.⁶

In a similar vein, Joyce (2005), in a paper defending imprecise probabilism, attempts to explicate something that imprecise probabilism was advertised to handle better than precise probabilism: weight of evidence. But in fact, the explication uses a density over chance hypotheses to account for the notion of evidential weight and conceptualizes the weight of evidence as an increase of concentration of smaller subsets of chance hypotheses, without any reference to representors in the explication of the notion of weight.

#(we will get back to his explication when we discuss weight of evidence).

The idea that one should use higher-order probabilities has also been suggested by critics of imprecise probabilism. For example, Carr (2020) argues that sometimes evidence requires uncertainty about what

⁵Relatedly, in forensic evidence evaluation even scholars who disagree about the value of going higher-order agree that interval reporting is problematic, as the choice of a limit or uncertainty level is rather arbitrary (Sjerps et al., 2015; Taroni, Bozza, Biedermann, & Aitken, 2015).

⁶Bradley seems to be aware of that, which would explain the use of scare quotes: when he talks about the option of using second-order probabilities in decision theory, he insists that 'there is no justification for saying that there is more of your representor here or there.' ~[p.~195]

credences to have. Carr, however, does not articulate this suggestion more fully, does not develop it formally, and does not explain how her approach would fare against the difficulties affecting precise ad imprecise probabilism. This is the key goal of this paper.

The underlying idea of the higher-order approach we propose is that uncertainty is not a single-dimensional thing to be mapped on a single one-dimensional scale such as a real line. It is the whole shape of the whole distribution over parameter values that should be taken under consideration. From this perspective, when an agent is asked about their credal stance towards X, they can refuse to summarize it in terms of a point value P(X). They can instead express their credal stance in terms of a probability (density) distribution f_x treating P(X) as a random variable. To be sure, an agent's credal state toward X could sometimes be usefully represented by the expectation, especially when the agent is quite confident about the probability of a given proposition.

Generally, expectation is defined as $\int_0^1 x f(x) dx$ —in the context of our approach here, we can think of x as the objectively appropriate/justified degree of belief in a given proposition, and of f as the density representing the agent's uncertainty about x. Perhaps, such an expectation can be used as the precise, object-level credence in the proposition itself, where f is the probability density over possible object-level probability values. But this need not always be the case. If the probability density f is not sufficiently concentrated around a single value, a one-point summary might fail to do justice to the nuances of the agent's credal state. This approach lines up with common practice in Bayesian statistics, where the primary role of uncertainty representation is assigned to the whole distribution. Summaries such as the mean, mode standard deviation, mean absolute deviation, or highest posterior density intervals are only succinct ways for representing the uncertainty of a given scenario.

For example, consider again the scenario in which the agent knows that the bias of the coin is either .4 or .6 but the former is three times more likely. Representing the agent's credal state with the expectation $P(X) = .75 \times .4 + .25 \times .6 = .45$ would fail to capture an important feature of RA's belief—that she believes the two biases to be of hugely different plausibilities, and that she in fact is certain that the bias is *not* .75.

This higher-order approach as a technical devise is not very surprising. Bayesian probabilistic programming languages embrace the well-known idea that parameters can be stacked and depend on each other in more or less complicated manners. What is however surprising is that while the technical devise has been available, it hasn't been implemented to model agent's uncertainty, and by the same token to address all the challenging scenarios we discussed so far.

Once we allow more expressive power in this fashion, we obtain rather straightforwardly obtain more honest representations of RA's credal states, illustrated in Figure 1. In particular, the scenario in which the two biases of the coin are not equally likely—which imprecise probabilism cannot model—can be easily modeled within high-order probabilism by assigning different probabilities to the two biases.

Besides its flexibility in modelling uncertainty, higher-order probabilism does not fall prey to belief inertia. Consider a situation in which you have no idea about the bias of a coin. So you start with a uniform density over [0,1] as your prior. By using binomial probabilities as likelihoods, observing any non-zero number of heads will exclude 0 and observing any non-zero number of tails will exclude 1 from the basis of the posterior. The posterior distribution will become more centered around the parameter estimate as the observations come in.

Figure 2 shows—starting with a uniform prior distribution—how the posterior distribution changes after successive observations of heads, heads again, and then tails.⁸

A further advantage of high-order probabilism over imprecise probabilism is that the prospects for

$$\begin{split} p(\theta|D) &= \frac{p(D|\theta)p(\theta)}{p(D)} \\ &= \frac{\theta^s(1-\theta)^{(n-s)}p(\theta)}{\int (\theta')^s(1-\theta')^{(n-s)}p(\theta')\ d\theta'}. \end{split}$$

Cite PP without tears here

⁷Bradley admits this much (S. Bradley, 2012, p. 90), and so does Konek (Konek, 2013, p. 59). For instance, Konek disagrees with: (1) X is more probable than Y just in case p(X) > p(Y), (2) D positively supports H if $p_D(H) > p(H)$, or (3) A is preferable to B just in case the expected utility of A w.r.t. p is larger than that of B.

⁸More generally, learning about frequencies, assuming independence and constant probability for all the observations, is modeled the Bayes way. You start with some prior density p over the parameter values. If you start with complete lack of information, p should be uniform. Then, you observe the data D which is the number of successes s in a certain number of observations n. For each particular possible value θ of the parameter, the probability of D conditional on θ follows the binomial distribution. The probability of D is obtained by integration. That is:

Figure 1: Examples of higher-order distributions for a few scenarios problematic for both precise and imprecise probabilism.

accuracy-based arguments are not foreclosed. This is a significant shortcoming of imprecise probabilism, especially because such arguments exist for precise probabilism. One can show that there exist proper scoring rules for higher-order probabilism. These rules can then be used to formulate accuracy-based arguments. Another interesting feature of the framework is that the point made by Schoenfield against imprecise probabilism does not apply: there are cases in which accuracy considerations recommend an imprecise stance (that is, a multi-modal distribution) over a precise one. We will get back to these issues when we talk about accuracy.

All in all, higher-order probabilism outperforms both precise and imprecise probabilism, at the descriptive as well as the normative level. From a descriptive standpoint, higher-order probabilism can easily model a variety of scenarios that cannot be adequately modeled by the other versions of probabilism. From a normative standpoint, accuracy maximization may sometimes recommend that a rational agent represent their credal state with a distribution over probability values rather than a precise probability measure (more on this soon).⁹

3 A more concrete example

A defendant in a criminal case may face multiple items of incriminating evidence whose strength can at least sometimes be assessed using probabilities. For example, consider a murder case in which the police recover trace evidence that matches the defendant. Hair found at the crime scene matches the defendant's hair (call this evidence hair). In addition, the defendant owns a dog whose fur matches the dog fur found in a carpet wrapped around one of the bodies (call this evidence dog). The two matches suggest that the defendant (and the defendant's dog) must be the source of the crime traces (call this hypothesis source). But how strong is this evidence, really? What are the fact-finders to make of it?

The standard story among legal probabilists goes something like this. To evaluate the strength of the two items of match evidence, we must find the value of the likelihood ratio:

$$\frac{\mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\mathsf{source})}{\mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\neg\mathsf{source})}$$

Ref to section

add ref to vFraasen in fn; perhaps extend the discussion a bit

⁹Having read van Fraasen's "Laws and Symmetry", you might also worry that going higher order somehow leads to a contradiction; we will address this concern later on.

¹⁰The hair evidence and the dog fur evidence are stylized after two items of evidence in the notorious 1981 Wayne Williams case (Deadman, 1984b, 1984a).

Figure 2: As observations of heads, heads and tails come in, extreme parameter values drop out of the picture and the posterior is shaped by the evidence.

For simplicity, the numerator can be equated to one. To fill in the denominator, an expert provides the relevant random match probabilities. Suppose the expert testifies that the probability of a random person's hair matching the reference sample is about 0.0253, and the probability of a random dog's hair matching the reference sample happens to be about the same, 0.0256. Presumably, the two matches are independent lines of evidence. In other words, their random match probabilities must be independent of each other conditional on the source hypothesis. Then, to evaluate the overall impact of the evidence on the source hypothesis, you calculate:

$$\begin{aligned} \mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\neg\mathsf{source}) &= \mathsf{P}(\mathsf{dog}|\neg\mathsf{source}) \times \mathsf{P}(\mathsf{hair}|\neg\mathsf{source}) \\ &= 0.0252613 \times 0.025641 = 6.4772626 \times 10^{-4} \end{aligned}$$

This is a very low number. Two such random matches would be quite a coincidence. Following our advice from Chapter 5, the expert facilitates your understanding of how this low number should be interpreted. They show you how the items of match evidence change the probability of the source hypothesis given a range of possible priors (Figure 3). The posterior of .99 is reached as soon as the prior is higher than $0.061.^{12}$ While perhaps not sufficient for outright belief in the source hypothesis, the evidence seems extremely strong: a minor additional piece of evidence could make the case against the defendant overwhelming.

¹¹Probabilities have been slightly but not unrealistically modified to be closer to each other in order to make a conceptual point. The original probabilities were 1/100 for the dog fur, and 29/1148 for Wayne Williams' hair. We modified the actual reported probabilities slightly to emphasize the point that we will elaborate further on: the same first-order probabilities, even when they sound precise, may come with different degrees of second-order uncertainty.

¹²These calculations assume that the probability of a match if the suspect and the suspect's dog are the sources is one.

Figure 3: Impact of dog fur and human hair evidence on the prior, point estimates.

Unfortunately, this analysis leaves out something crucial. You reflect on what you have been told and ask the expert: how can you know the random match probabilities with such precision? Shouldn't we also be mindful of the uncertainty that may affect these numbers? The expert agrees, and tells you that in fact the random match probability for the hair evidence is based on 29 matches found in a database of size 1148, while the random match probability for the dog evidence is based on finding two matches in a reference database of size 78.

The expert's answer makes apparent that the precise random match probabilities do not tell the whole story. Perhaps, the information about sample sizes is good enough and now you know how to use the evidence properly.¹³ But if you are like most human beings, you can't. What to do, then?

You ask the expert for guidance: what are reasonable ranges of the random match probabilities? What are the worst-case and best-case scenarios? The expert responds with 99% credible intervals—specifically, starting with uniform priors, the ranges of the random match probabilities are (.015,.037) for hair evidence and (.002, .103) for fur evidence. With this information, you redo your calculations using the upper bounds of the two intervals: .037 and .103. The rationale for choosing the upper bounds is that these numbers result in random match probabilities that are most favorable to the defendant. Your new calculation yields the following:

$$P(dog \land hair | \neg source) = .037 \times .103 = .003811.$$

This number is around 5.88 times greater than the original estimate. Now the prior probability of the source hypothesis needs to be higher than 0.274 for the posterior probability to be above .99 (Figure 4). So you are no longer convinced that the two items of match evidence are strongly incriminating.

added this bit to draw attention to this aspect of the Taroni debate, to come back to this

¹³This is what, effectively, CITE TARONI seem to suggest when they insist the fact-finders should be simply given point estimates and information about the study set-up, such as sample size. As will transpire, we disagree.

¹⁴Roughly, the 99% credible interval is the narrowest interval to which the expert thinks the true parameter belongs with probability .99. For a discussion of what credible intervals are, how they differ from confidence intervals, and why confidence intervals should not be used, see Chapter 3.

Figure 4: Impact of dog fur and human hair evidence on the prior, charitable reading.

This result is puzzling. Are the two items of match evidence strongly incriminating evidence (as you initially thought) or somewhat weaker (as the new calculation suggests)? For one thing, using precise random match probabilities might be too unfavorable toward the defendant. On the other hand, your new assessment of the evidence based on the upper bounds might be too *favorable* toward them. Is there a middle way that avoids overestimating and underestimating the strength of the evidence?

To see what this middle path looks like, we should reconsider the calculations you just did. You made an important blunder: you assumed that because the worst-case probability for one event is x and the worst-case probability for another independent event is y, the worst-case probability for their conjunction is xy. But this conclusion does not follow if the margin of error (credible interval) is fixed. The intuitive reason is simple: just because the probability of an extreme (or larger absolute) value x for one variable X is .01, and so it is for the value y of another independent variable Y, it does not follow that the probability that those two independent variables take values x and y simultaneously is the same. This probability is actually much smaller. The interval presentation instead of doing us good led us into error.

In general, it is impossible to calculate the credible interval for the joint distribution based solely on the individual credible intervals corresponding to the individual events. We need additional information: the distributions that were used to calculate the intervals for the probabilities of the individual events. In our example, if you additionally knew, for instance, that the expert used beta distributions (as, arguably, they should in this context), you could in principle calculate the 99% credible interval for the joint distribution. It usually will not be the same as whatever the results of multiplication of individual interval edges, and it is unlikely that a human fact-finder would be able to correctly run such calculations in their head even if they knew the functional form of the distributions used. ¹⁵ So providing the fact-finder with individual intervals, even if further information about the distributions is provided, might easily mislead. ¹⁶

As it turns out, given the reported sample sizes, the 99% credible interval for the probability $P(dog \land hair | \neg source)$ is (0.000023, 0.002760).

The upper bound of this interval would then require the prior probability of the source hypothesis to be above .215 for the posterior to be above .99. On this interpretation, the two items of match evidence are still not quite as strong as you initially thought, but stronger than what your second calculation indicated.

Still, the interval approach—even the corrected version just outlined—suffers from a more general problem. Working with intervals might be useful if the underlying distributions are fairly symmetrical. But in our case, they might not be. For instance, Figure 5 depicts beta densities for dog fur and human hair, together with sampling-approximated density for the joint evidence. The distribution for the joint evidence is not symmetric. If you were only informed about the edges of the interval, you would be

Can you google to see if there is any such study?

the fn was repetitive, compare to fn 5

¹⁵Also, in principle, in more complex contexts, we need further information about how the items of evidence are related if we cannot take them to be independent.

¹⁶Investigation of the extent to which the individual interval presentation is misleading would be an interesting psychological study.

oblivious to the fact that the most likely value (and the bulk of the distribution, really) does not simply lie in the middle between the edges. Just because the parameter lies in an interval with some posterior probability, it does not mean that the ranges near the edges of the interval are equally likely—the bulk of the density might very well be closer to one of the edges. Therefore, only relying on the edges can lead one to either overestimate or underestimate the probabilities at play. This also means that—following our advice on how to illustrate the impact of evidence on prior probabilities—a better representation of the dependence of the posterior on the prior should comprise multiple possible sampled lines whose density mirrors the density around the probability of the evidence (Figure 6).

Conditional densities for individual items of evidence if the source hypothesis is false

Figure 5: Beta densities for individual items of evidence and the resulting joint density with .99 and .9 highest posterior density intervals, assuming the sample sizes as discussed and independence, with uniform priors.

Figure 6: 300 lines illustrating the uncertainty about the dependence of the posterior on the prior given aleatory uncertainty about the evidence, with the distribution of the minimal priors required for the posterior to be above .99.

This, then, is the main claim of this chapter: whenever density estimates for the probabilities of interest are available (and they should be available for match evidence and many other items of scientific

evidence if the reliability of a given type of evidence has been properly studied), those densities should be reported for assessing the strength of the evidence. This approach avoids hiding actual aleatory uncertainties under the carpet. It also allows for a balanced assessment of the evidence, whereas using point estimates or intervals may exaggerate or underestimate the value of the evidence.

In what follows, we expand on this idea in different directions. Section 2 engages with the philosophical debate about precise and imprecise probabilism. We argue that both options are problematic and should be superseded by a higher-order approach to probability whenever possible. Section 4 revisits a recent discussion in the forensic science literature. A prominent view has it that trial experts, even when they use densities, should present only first-order probabilities. We disagree and show that reasons of accuracy maximization sometimes recommend relying on higher-order probabilities. Section 5 turns to some legal applications of higher-order probabilism. We focus on two topics: first, the role of higher-order probabilities and false positive rates in the evaluation of DNA evidence; second, how complex bodies of evidence can be represented by what we call higher-order Bayesian networks.

Before we dive in, one more remark: ost of the time, mathematically, we do not propose anything radically new—we just put together some of the items from the standard Bayesian toolkit. The novelty is rather in our arguing that that these tools are under-appreciated in the legal scholarship and should be properly used to incorporate second-order uncertainties in evidence evaluation and incorporation. Perhaps a minor exception is our explication of the notion of weight, but even here many related notions are available in information theory, and the novelty here is not technical, but rather in the argument that they also are under-appreciated in legal scholarship.

added this par to preemt Kadane's style pickiness

4 Objections

This section addresses a number of conceptual difficulties that may arise in using higher-order probabilities, with focus on those brought up by prominent legal evidence scholars. In discussing these conceptual issues, we will formulate an accuracy-based argument that higher-order probabilities are preferable to precise probabilities.

4.1 The Taroni-Sjerps debate

Our treatment will be centered around a discussion initiated by Taroni et al. (2015), who argue extensively that trial experts should avoid report higher-order densities, and should only report point estimates. Their point of departure is a reflection on match evidence.

Say an expert reports at trial that the sample from the crime scene matches the defendant. The significance of this match should be evaluated in light of the population frequency θ of the matching profile. This frequency, however, cannot be known for sure and must instead be estimated.

The expert will estimate the true parameter θ by means of a probability distribution $p(\theta)$ over its possible values. For example, if the observations are realizations of independent and identically distributed Bernoulli trails given θ , the expert's uncertainty about θ can be modeled as $\text{beta}(\alpha+s+1,\beta+n-s)$, where s is the number of observed successes, n the number of observations in the database (1 is added to the first shape parameter to include the match with the suspect), and α and β reflect the expert's priors.

Nothing so far should be controversial. However, the question arises of how the expert should report their own uncertainty about θ , especially in the light of the usual practice of reporting likelihood ratios.

To fix the notation, let the prosecution hypothesis H_p be that the suspect is the source of the trace, and the defense hypothesis H_d that another person, unrelated to the suspect, is the source. For simplicity, assume that if H_p holds, the laboratory will surely report a match M, so that $\mathsf{P}(M|H_p)=1$. The likelihood ratio, then, reduces to $1/\mathsf{P}(M|H_d)$ —but given that θ was estimated using density over its possible values, it is not obvious how a single value $\mathsf{P}(M|H_d)$ is to be obtained and whether its use in the reporting does not hide the uncertainty involved in the estimation of θ under the carpet.

Taroni et al. (2015) claim that the point estimate for the match evidence given the defense hypothesis

should be calculated as follows:

$$P(M|H_d) = \int_{\theta} P(M|\theta)P(\theta) \ d\theta$$
$$= \int_{\theta} \theta P(\theta) \ d\theta$$

In case of a DNA match, they recommend that the expert report the expected value of the beta distribution, which reduces to $\alpha+s+1/\alpha+\beta+n+1$. They claim that this number satisfactorily expresses the posterior uncertainty about θ . For them, it is this probability alone that should be used in the denominator in the calculation and reporting of the likelihood ratio.

Sjerps et al. (2015) disagree. In reporting a single value, the expert would refrain from providing the fact-finders with relevant information that can make a difference in the proper evaluation of the evidence. There is a difference between (a) an expert who is certain θ is .1; (b) an expert whose best estimate of θ is .1 based on thousands of observations; and (c) an expert whose best estimate of θ is again .1 but based on only ten observations.

These three scenarios mirror scenarios we discussed earlier: (a) the bias of a coin is known for sure; (b) the bias is estimated on the basis of a large number of tosses; and (c) the bias is estimated using a small set of observations. As our critique of precise probabilism makes clear, a simple point estimate (or precise probability) would fail to capture the differences among the three scenarios. This concern might be slightly mitigated by the fact that Taroni et al. (2015) admits that the expert, besides providing a point estimate, should also informally explain how the estimate was arrived at. They grant that this additional information can be helpful so long as the recipients are instructed on "the nature of probability, the importance of an understanding of it and its proper use in dealing with uncertainty" [p. 16]. But why stop at an informal presentation? It is unclear why the fact-finders should be deprived of quantifiable information about the aleatory uncertainty of the parameter of interest and only be given an informal description of what the expert did, along with some remarks about the nature of probability. It is wildly optimistic to assume that an informal description of how the point estimate has been arrived at is enough to secure a proper assessment of the evidence. We hope to have convinced the reader already in the introduction that informal treatment and bare intuitions are not good enough even when it comes to the evaluation of the impact of a rather simple combination of two items of evidence if all the fact-finder has to go by is point estimates and and informal description of how the estimates have been obtained.

Somewhat surprisingly, most of the concerns raised by Taroni et al. (2015) are philosophical. They argue that if probabilities express an agent's epistemic attitude towards a proposition probabilities are not states of nature, but states of mind associated with individuals. They think this claim has two consequences. First, it makes no sense sense to talk about second-order uncertainty about subjective probabilities, as there is no "underlying state of the nature" to estimate. Second, if these subjective probabilities can be elicited by examining an agent's betting preferences, a proper elicitation will lead to a single number.¹⁷

In response to the philosophical argument, Dahlman & Nordgaard (2022) have also emphasized that the distinction is not so clear-cut. They argue that, if a probability assessment is a subjective attitude that is elicited via a betting preference, a probability assessment is itself a state of nature, "the formation of a betting preference by a certain person at a certain time" [p. 15]. While we will have something to say about the philosophical dimension of this debate, let us first develop a less philosophically involved argument for the position taken by Sjerps et al. (2015).

4.2 An accuracy-based argument

M's comment: This accuracy-based argument is evocative and intriguing, but what does it show really? What is the significance of using PMF based on a point estimate versus a posterior predictive PMF? Does this correspond to something that is done in court? How? The more interesting question is whether using higher-order probabilities reduces errors, say the rate of false convictions or false acquittals. Does it? If so, how?

see M'scomment in boldface

¹⁷They write: "Clearly, one can adjust the measure of belief of success in the reference gamble in such a way that one will be indifferent with respect to the truth of the event about which one needs to give one's probability. This understanding is fundamental, as it implies that probability is given by a single number. It may be hard to define, but that does not mean that probability does not exist in an individual's mind. One cannot logically have two different numbers because they would reflect different measures of belief." (Taroni et al., 2015, p. 7)

With this argument, we hope to break the stalemate in the debate by proving an argument to which both parties should be receptive. It is an accuracy-based argument in favor of using higher-order probabilities—roughly, it says, if you discard relevant information that you already have contained in the densities resulting from the estimation and rely on point estimates only, your predictions about the world will be less accurate in a very precise and quantifiable sense.

First, let us go over a particular example. Suppose we randomly draw a true population frequency from the uniform distribution. In our particular case, we obtained 0.632. Then, we randomly draw a sample size as a natural number between 10 and 20. In our particular case, it is 16. Next, we simulate an experiment in which we draw that number of observations from the true distribution. We observe 8 successes and use this number to calculate the point estimate of the parameter, which is 0.5.

What is the probability mass function (PMF) for all possible outcomes of an observation of the same size? Two PMF are initially relevant: first, the true probability mass based on the true parameter; second, the probability mass function based on the point estimate which is binomial around the point estimate. This latter PMF, however, does not take into account the uncertainty about the point estimate. To take this uncertainty seriously, continuing our example, we take a sample distribution of size 16 of possible parameter values from the posterior beta(1 + successes, 1 + samplesize - successes) distribution (we assume uniform prior for the sake of an example). Then, we use this sample of parameter values to simulate observations, one simulation for each parameter value in the sample. This simulation yields the so-called *posterior predictive distribution* (or posterior predictive PMF), which instead of a point estimate, propagates the uncertainty about the parameter value into the predictions about the outcomes of possible observations. Finally, we take simulated frequencies as our estimates of probabilities. This distribution is more honest about uncertainty and wider than the one obtained using the point estimate. The three PMFs are displayed in Figure 7.

Figure 7: Real probability mass, probability mass calculated using a point estimate, sampling distribution from the posterior, and the posterior predictive distribution based on this sampling distribution.

The PMF based on a point estimate is further off from the real PMF than the posterior predictive distribution. For instance, if we ask about the probability of the outcome being at least 9 successes, the true answer is 0.7984, the point estimate PMF tells us it is 0.4056, while the posterior predictive distribution gives a somewhat better guess at 0.4277. A similar thing happens when we ask about the probability of the outcome being at most 9 successes. The true answer is 0.3681, the point-estimate-based answer is 0.778, while the posterior predictive distribution yields 0.7051. More generally, we can use an information-theoretic measure, Kullback-Leibler divergence, to quantify how far the point-estimate

PMF and the posterior predictive PMF are from the true PMF.¹⁸

In our particular case, the former distance is 0.7905638 and the latter is 0.5681121. The posterior predictive distribution is information-theoretically closer to the true distribution.

This was just one example, but the phenomenon generalizes. We repeat the simulation 1000 times, each time with a new true parameter, a new sample size, and a new sample. Every time the three PMFs are constructed using the methods we described and their KL divergence from the true distribution is calculated. Figure 8 displays the empirical distribution of the results of such a simulation. A positive value indicates that the distribution based on the point-estimate was further from the true PMF than the posterior predictive distribution based on the same observed sample. Notably, the mean difference is 0.865, the median difference is 0.044, and the distribution is asymmetrical, as there are multiple cases of large differences favoring posterior predictive distributions over point-based predictions. All in all, accuracy-wise, point-estimate-based PMFs are systematically worse than the posterior predictive distribution.

Point-estimates vs. posterior predictive distributions Differences in Kullback-Leibler divergencies from true PMFs

Figure 8: Differences in Kullback-Leibler divergencies from the true distributions, comparing the distributions obtained using point estimates and posterior predictive distributions. Positive values indicate the point-estimate-based PMF was further from the true distribution than the posterior predictive distribution.

4.3 Conceptual issues

M's comment in boldface

$$\begin{aligned} \mathsf{DKL}(p,q) &= H(p,q) - H(p) \\ &= -\sum p_i \log q_i - \left(-\sum p_i \log p_i \right) \\ &= -\sum p_i \left(\log q_i - \log p_i \right) \\ &= \sum p_i \left(\log p_i - \log q_i \right) \\ &= \sum p_i \log \left(\frac{p_i}{q_i} \right) \end{aligned}$$

As it turns out, KL divergence is also the expected difference in log probabilities. In particular, if p = q we get $DKL(p, p) = \sum_i p_i (\log p_i - \log p_i) = 0$, which works out as it intuitively should be.

¹⁸A bit of explanation of this divergence measure. Suppose we are dealing with a variable X with n distinct possible discrete states x_1,\ldots,x_n and consider two probability mass functions p and q which express uncertainty about the true value of X so that, say, on p, $P(X=x_i)=p_i$. First, the uncertainty of a given distribution p, its entropy, is given by the sum of the logarithms of surprise $1/p_i$ for all the possible values, $H(p)=\sum x_i\log\frac{1}{p_i}=-\sum p_i\log p_i$. Next, suppose events arise according to p, but we predict them using q. The cross-entropy is then $H(p,q)=\sum p_i\log(q_i)$. This value is going to be higher than the entropy of p if q is different from it. Think of it as the uncertainty involved in using q to predict events that arise according to p. Third, Kullback-Leibler divergence is the additional entropy introduced by using q instead of p itself, that is, the difference between cross-entropy and entropy:

M's comments: this subsection looks muddled to me. It goes around in circles. I cannot follow the argument. What is the key point made in this subection? The key point seems to be this: just like we compare the plausibility/probability of propositions like "defendant was at crime scene" and "defedant was not at crime scenbe", we compare the plausibility/probability of propositions like "random match probability is .0001" and "random match probability of .0002". The second comparison requires higher-order probabilities. Is this the point? But Taroni is saying that we can average over all possible random match probabilities and get a point estimate. What do we say in response to that?

Accuracy considerations aside, we will now engage with the more conceptual points. Taroni et al. (2015) argue that since first-order probabilities capture your uncertainty about a proposition of interest, second-order probabilities are supposed to capture your uncertainty about how uncertain you are, and that "estimating" your first-order uncertainties is unnecessary. They think that you can simply figure out your fair odds in a suitable bet on the proposition in question, and the fair odds track your unique, first-order uncertainty without any uncertainty about it. But this point can be questioned. For one thing, the betting interpretation of probability is not uncontroversial. Even assuming the betting interpretation, there seems to be nothing wrong in saying that sometimes we are uncertain about what we think the fair bets are. But admittedly, this answer while undermines the betting argument for the sufficiency of point estimates, does not cast much light on what the appropriate relatively uncontroversial interpretation of higher-order uncertainty should be.

Think again about an expert who gathers information about the allelic frequency f of DNA matches in an available database, and starts with a defensible beta prior with parameters α, β . Say the expert observes s matches in a database of size n. So the population relative frequency the experts is estimating should follow the beta($\alpha + s + 1, \beta + n - s$) distribution. So far, nothing controversial happens—the expert is estimating the relevant population frequency.

But subjective uncertainty that is to be reported by the expert, Taroni et al. (2015) complain, is not about the frequency, but about their attitude towards a proposition (supposedly expressing a "state of nature")—and, they insist, it makes no sense for an agent to attach uncertainty to their own uncertainty about a proposition.

Assuming the conditions are pristine (the expert has no modeling uncertainty, rules out laboratory errors, and so on), the beta distribution can be used to pretty directly inform the expert's subjective uncertainty. But uncertainty about what? The (estimated) population frequency, for instance, can underlie a probability assignment to the proposition a match is observed if another person, unrelated to the suspect, is the source of the trace. Admittedly, if only this proposition is being considered, it is yet not clear what second-order uncertainties would be uncertainties about. But the expert also considers a continuum of propositions, each of the form the true population frequency is θ for each $\theta \in [0, 1]$. A density over θ models the comparative plausibility that the expert assigns to such propositions in light of the evidence. So if one were worried that there were no propositions that the expert could be "second-order" uncertain about, there actually are plenty. In particular, if θ is a population frequency, gauging which density captures the extent to which the evidence justifies various estimates of that frequency is the same as gauging the comparative plausibility of the corresponding propositions about possible population frequencies.²²

More generally, in many contexts, evidence justifies first-order probability assignments (population frequency estimates) to various degrees. Suppose there is no evidence about the bias of a coin. Then, each first-order uncertainty about it would be equally (un)-justified. (If you like to think in terms of bets, the evidence would give no reason to prefer any particular odds as fair.) If, instead, we know the coin is fair, the evidence clearly selects one preferred value, .5. (Again, if you like the betting metaphor, 1:1 would be the unique recommended betting odds.) But often the evidence is stronger than the former case and weaker than the latter case. Consider, for example, propositions about population frequencies in light of the results of observations. In such circumstances, the evidence justifies different values of

add ref to Williamson

M's: I don't understand the argument here. What is a "relatively uncontroversial interpretation"?

M: who was worried that there were no second-order propositions? What argument in the literature is this a response to? I cannot follow.

¹⁹See textbooks in formal epistemology (D. Bradley, 2015; Titelbaum, 2020).

²⁰On a related note, the introspective axioms in epistemic logic—that is, if an agent knows (or doesn't know) p, they also know that they (don't) know p—are by no means uncontroversial. See, for example, Williamson 2000 (chapter 5)'s argument against the KK principle of positive introspection.

²¹Moreover, and normalization allows them to calculate their subjective probabilities for θ belonging to various sub-intervals of [0,1].

²²Perhaps, this should no longer be called "estimation", but the the connection with estimation is strong enough to justify this terminology. In the end, this is a verbal discussion that we will not get into.

first-order uncertainty to various degrees, and densities simply capture the extent to which different first-order uncertainties are supported by the evidence.

We conclude this section by examining two additional points raised by Taroni et al. (2015). The first—which we already alluded to earlier—is that first-order probabilities are not "states of nature" and so cannot be estimated. It is unclear why the authors insist that only states of nature can be estimated. Mathematicians use approximate methods to estimate answers to fairly abstract questions, not obviously related to "states of nature", whatever these are. So, estimation should make sense whenever there are some objective answers that we can approximate to a greater or lesser extent. If there is some objectivity to what the ideal evidence would support, or to the extent to which the actual evidence supports various competing hypotheses, we can be more or less wrong about such things, and so it is not implausible to say that there is a clear sense in which we can estimate them.²³

Second, Taroni et al. (2015) argue that once we allow second-order probability, we run into the threat of infinite regress. But do we? Surely, they would agree that one can be uncertain about a statistical model. But this can be the case even if this model spits out a point estimate rather than a density. If you think the possibility of putting uncertainty on top of propositions about possible values of a first-order parameter leaves us in an epistemically hopeless situation, you might have hard time explaining why your point estimation is in a better situation. After all, if asking further questions about probabilities up the hierarchy is always justified, we can keep asking about the probability of a point-estimate-spitting model, the probability of that probability, and so on.

Perhaps the problem at issue is just one of complexity. Admittedly, second-order estimation is more complex than relying on point estimates. But we hope to have convinced the reader this complexity is worth the effort. What about more complex models going third-order? If a workable approach can accomplish that—and the additional complexity pays off—we are all for going third-order. The fact that more complex models can always be built hardly lead us into a vicious infinite regress. Rather, it is an indication that our models of uncertainty can—in principle—always be improved.

added back the claim about not worrying about BMI, as some readers might be sensitive to anyone bringing BMI up

5 Legal Applications

Our discussion so far has been mostly theoretical. We made a case that higher-order probabilism outperforms precise probabilism on both descriptive and normative grounds. We also staved off a number of conceptual difficulties with going higher-order. It is time to extend our discussion from the introduction to a further illustration of how higher-order probabilism can be of service in evaluating evidence at trial. We present here two examples.

Add carpet evidence in the Wayne Williams case

5.1 False Positives in DNA Identification

One important topic is that of errors in the process of DNA match evidence evaluation. As already known, the probability of a false positive caused by contamination, laboratory or evidence collection or storage error has serious impact on the value of DNA match evidence. As Thompson, Taroni, & Aitken (2003) have shown, the probability of false positives, even when seemingly low, has a non-negligible impact:

If, as commentators have suggested, the rate of false positives is between 1 in 100 and 1 in 1000, or even less, then one might argue that the jury can safely rule out the prospect that the reported match in their case is due to error and can proceed to consider the probability of a coincidental match ... this argument is fallacious and profoundly misleading ... the probability that a reported match occurred due to error in a particular case can be much higher, or lower, than the false positive probability.

We are particularly interested in the passing remark that the rate of false positives is between 1 in 100 and 1 in 1000. This difference is not negligible. The simplest option would be to use the upper bound of

²³Taroni et al. (2015) make the same point for likelihood ratios. They argue that there is no "meaningful state of nature equivalent for the likelihood ratio in its entirety, as it is given by a ratio of two conditional probabilities?" But if it is meaningful to estimate two conditional probabilities (that is, frequencies in the population), or to compare the relative plausibility of various propositions about them in terms of density, it is equally meaningful to estimate any function of the numbers involved. Otherwise it would also be meaningless to try to estimate the body mass index (BMI) of an average 21 years old male student in the USA just because BMI is a ratio of other quantities. There are reasons not to care about BMI, but it not being a state of nature because it is a function of other values is not one of them.

the [0.001, 0.01] interval. This choice would be the most favorable toward the defendant. But, as already noted in the introduction, doing so would lead to an overly conservative evaluation of the evidence. It is much preferable to have a sensible distribution to work with.

To fix ideas, the posterior probability of the source hypothesis (S) conditional on the match evidence (E) is, with some idealization, as follows:

$$P(S|E) = \frac{P(E|S)P(S)}{P(E)}$$

$$= \underbrace{\frac{P(E|S)P(S)}{P(E|S)P(S) + \underbrace{P(E|RM)P(RM) + \underbrace{P(E|FP)P(FP)}_{1}}_{1}}_{P(S) + P(RM) + P(FP)}$$

For simplicity, the false negative rate is assumed to be zero, or in other words, P(E|S) = 1. The other assumption is that the evidence could come about if: (1) the source hypothesis is true; (2) a random match (RM) occurred; or (3) a false positive match occurred (FP).

Suppose the random match probability for the DNA match evidence is rather low, say 10^{-9} , and there is no uncertainty associated with this number. Consider now two ways of assessing the DNA match. First, disregarding the possibility of a false positive—setting FP to 0—makes the match evidence appear extremely strong. In this case, the minimal prior sufficient for the posterior to be above .99 is only 0.001, where the relation between the prior probabilities and the posterior probabilities of the source hypothesis is given by the dashed orange line in Figure 11. What happens after taking into account the possibility of a false positive match? This depends on how this possibility of error is quantified. Assume the false positive rate corresponds to the upper bound of the [0.001, 0.01] interval. This assumption completely changes the assessment of the match evidence. Now the posterior of .99 is reached only if the prior is above .99. The match evidence appears to be extremely weak. So which is it? As already seen in the introduction, the point estimate exaggerates the value of the match evidence, while using the upper bound of the false positive rate has the opposite effect. What happens within the [0.001, 0.01] interval cannot be ignored.

To take into consideration the values within the edges, it would be best to have a good density estimate of the false positive errors frequency, as we should, if the issue had been properly studied. But we do not. For now, we will illustrate the consequences of taking two different approaches. On one approach, any value between the edges is considered equally likely (and we add a little leeway on top). On another approach, not all values are equally likely—for example, suppose you think it is 50% likely that the false positive rate is below .0033. In addition, suppose the distribution, while being centered closer to zero, is long-tailed (we used a truncated normal distribution here). These two distributions are displayed in Figure 9. On both approaches, we assume that the false positive rate is between 0.001 and 0.01 with 99% certainty. The uniform distribution—which regards all false positive rates in the interval as equally likely—leads to a rather conservative evaluation of the match evidence, much more so than the truncated normal distribution. This is apparent from Figure 10 and 11, which show the prior probabilities of the source hypothesis needed to secure a posterior probability above .99. Working with a distribution—more so if it is not a uniform distribution—affords a more balanced assessment of the evidence than simply relying on the edges of an interval.

The lingering question, however, is how these distributions can be obtained. Admittedly, studies on false positives are limited and only give an incomplete picture. More studies are needed. This does not mean, however, that until then using point estimates and interval edges is preferable. After deciding on the functional form of a distribution—such as truncated normal or beta—only a few numbers need to be elicited from experts for constructing a density.²⁴ Having to rely on such elicitation is not without problems, but it is better than asking experts for single point estimates and relying on these (O'Hagan et al., 2006).

²⁴For instance, assuming the distribution is a truncated normal, it is enough for the expert to assert that both the 99% interval is as the one we used, and that they believe with more than 50% confidence the false positive rates to be below .033 for the curve to be determined.

Examples of FP densities with the same interval Uniform (0, .01015) Truncated normal (.0005, .004) Approximated with 10e5 sampled values Approximated with 10e5 sampled values 100 -150 -75 density 100 density 50 -50 -25 -0 -0 -0.015 0.020 0.000 0.010 0.015 0.020 0.000 0.010

Figure 9: Two examples of assumptions about the false positive rates, both having pretty much the same 99% highest density intervals. Left: all error rates are equally likely. Right: the most likely values are closer to 0, but also some high values while unlikely are possible.

false positive rate

false positive rate

Figure 10: The distribution of minimal priors sufficient for obtaining a posterior above .99 on the two distributions of false positive rates. The truncated normal distribution has its bulk towards the left, but at the same time has higher ratio of evens in which this posterior is never reached.

Figure 11: Impact of prior on the posterior assumign two different densitites for false positive rates. Note how both the "pristine" error-free point estimate (orange) and the charitable version (blue) are quite far from where the bulks of the distributions in fact are. Note also how the trnormal density allows for even more charitable cases, which results from it being long-tailed.

5.2 Higher-order Bayesian Networks

The higher-order framework we are advocating is not only applicable to the evaluation of individual pieces of evidence. Complex bodies of evidence—for example, those represented by Bayesian networks—can also be assessed using higher-order probabilities. One fairly straightforward way to go about this is to stochastically generate Bayesian networks using our uncertainty about the parameter values, update with the evidence, and propagate uncertainty to approximate the marginal posterior for nodes of interest.

As an illustration, let us start with a simplified Bayesian network developed by Fenton & Neil (2018). The network is reproduced in Figure 12 and represents the key items of evidence in the infamous British case R. v. Clark (EWCA Crim 54, 2000).²⁵

In a Bayesian network the arrows depict direct relationships of influence between variables, and nodes—conditional on their parents—are taken to be independent of their non-descendants. Amurder and Bmurder are binary nodes corresponding to whether Sally Clark's sons, call them A and B, were murdered. These nodes influence whether signs of disease (Adisease and Bdisease) and bruising (Abruising and Bbruising) were present. Also, since A's death preceded in time B's death, whether A was murdered casts some light on the probability that B was also murdered.

The choice of the probabilities in the network is quite specific, and it is not clear where such precise values come from. The standard response invokes *sensitivity analysis*: a range of plausible values is tested. As already discussed, this approach ignores the shape of the underlying distributions. Sensitivity analysis does not make any difference between probability measures (or point estimates) in terms of their plausibility, but some will be more plausible than others. Moreover, if the sensitivity analysis is guided by extreme values, these might play an undeservedly strong role. These concerns can be addressed, at least in part, by recourse to higher-order probabilities. In a precise Bayesian network, each node is associated with a probability table determined by a finite list of numbers (precise probabilities). But suppose that, instead of precise numbers, we have densities over parameter values for the numbers

²⁵Sally Clark's first son died in 1996 soon after birth, and her second son died in similar circumstances a few years later in 1998. At trial, the pediatrician Roy Meadow testified that the probability that a child from such a family would die of Sudden Infant Death Syndrome (SIDS) was 1 in 8,543. Meadow calculated that therefore the probability of both children dying of SIDS was approximately 1 in 73 million. Sally Clark was convicted of murdering her infant sons. The conviction was reversed on appeal. The case of appeal was based on new evidence: signs of a potentially lethal disease were found in one of the bodies.

in the probability tables.²⁶ An example of a higher-order Bayesian network for the Sally Clark case is given in Figure 13.

Figure 12: Bayesian network for the Sally Clark case, with marginal prior probabilities.

_

²⁶The densities of interests can then be approximated by (1) sampling parameter values from the specified distributions, (2) plugging them into the construction of the BN, and (3) evaluating the probability of interest in that precise BN. The list of the probabilities thus obtained will approximate the density of interest. In what follows we will work with sample sizes of 10k.

Figure 13: Example of a higher-order Bayesian network for the Sally Clark Case.

With the help of the higher-order Bayesian network, we can investigate the impact of different items of evidence on Sally Clark's probability of guilt (Figure 14). The starting point is the prior density for the Guilt node (first graph). Next, the network is updated with evidence showing signs of bruising on both children (second graph). Next, the assumption that both children lack signs of potentially lethal disease is added (third graph). Finally, we consider the state of the evidence at the time of the appellate case: signs of bruising existed on both children, but signs of lethal disease were discovered only on the first child. Interestingly, in the strongest scenario against Sally Clark (third graph), the median of the posterior distribution is above .95, but the uncertainty around that median is still too wide to warrant a conviction.²⁷ This underscores the fact that relying on point estimates can lead to overconfidence. Paying attention to the higher-order uncertainty about the first-order probability can make a difference to trial decisions.

 $^{^{27}}$ The lower limit of the 89% Highest Posterior Density Intervals (HPDI) is at .83.

Figure 14: Impact of incoming evidence in the Sally Clark case.

One question that arises is how this approach relates to the standard method of using likelihood ratios to report the value of the evidence. On this approach, the conditional probabilities that are used in the likelihood ratio calculations are estimated and come in a package with an uncertainty about them. Accordingly, these uncertainties propagate: to estimate the likelihood ratio while keeping track of the uncertainty involved, we can sample probabilities from the selected distributions appropriate for the conditional probabilities needed for the calculations, then divide the corresponding samples, obtaining a sample of likelihood ratios, thus approximating the density capturing the recommended uncertainty about the likelihood ratio. Uncertainty about likelihood ratio is just propagated uncertainty about the involved conditional probabilities. For instance, we can use this tool to gauge our uncertainty about the likelihood ratios corresponding to the signs of bruising in son A and the presence of the symptoms of a potentially lethal disease in son A (Figure 15).

Figure 15: Likelihood ratios forbruising and signs of disease in child A in the Sally Clark case.

5.3 Relationship with Bayesian hierarchical models

Our approach does involve multiple parameters, uncertainty about them, and some dependency structure between random variables. So it is only natural to ask whether what we propose is not just an old wolf in a new sheep's clothing, as one might think that what looks like a DAG and quacks like a DAG is always a hierarchical model. In this section we briefly clarify what the answer to this question is.

First, we need some clarity on what a Bayesian hierarchical model is. In the widest sense of the word, these are mathematical descriptions involving multiple parameters such that credible values for some of them meaningfully depend on the values of other parameters, and that dependencies can be re-factored into a chain of dependencies. For instance, think about a joint parameter space for two parameters θ and ω , where $p(\theta,\omega|D) \propto p(D|\theta,\omega)p(\theta,\omega)$. If, further, some independence-motivated re-factoring of the right-hand side—for instance as $p(D|\theta)p(\theta\omega))p(\omega)$ —is possible, we are dealing with a hierarchical model in the wide sense of the word.

Such models usually come useful when we are dealing with clustered data, such as a cohort study with repeated measures, or some natural groupings at different levels of analysis. Then, lower-level parameters are treated as i.i.d. and share the same parameter distribution characterized by some hyperparameters in turn characterized by a prior distribution. As a simple example consider a scenario in which we are dealing with multiple coins created by one mint—each coin has its own bias θ_i , but also there is some commonality as to what these biases are in this mint, represented by a higher-level parameter θ . Continuing the example, assume $\theta_i \sim \text{Beta}(a,b)$ and $y_{i|s} \sim \text{Bern}(\theta_s)$, where the former distribution can be re-parametrized as $\text{Beta}(\omega(k-2)+1,(1-\omega)(k-2)+1)$. Let's keep k fixed, ω is our expected value of the θ_i parameters, with some dispersion around it determined by k. Now, if we also are uncertain about ω and express our uncertainty about it in terms a density $p(\omega)$, we got ourselves a hierarchical model with joint prior distribution over parameters $\prod p(\theta_i|\omega)p(\omega)$.

As another example, one can develop a multilevel regression model of the distributions of the radom levels in various counties, where both the intercept and the slope vary with counties by taking $y_i \sim \text{Norm}(\alpha_{j[i]} + \beta_{j[i]}x_i, \sigma_y^2)$, where j is a county index, $\alpha_j \sim \text{Norm}(\mu_\alpha, \sigma_\alpha^2)$, and $\beta_j \sim \text{Norm}(\mu_\beta, \sigma_\beta^2)$. Then, running the regression one estimates both the county-level coefficients, and the higher-level parameters.

Our approach is similar to the standard hierarchical models in the most general sense: there is a meaningful independence structure and distributions over parameter values that we are working with. However, our approach is unlike such models in a few respects. For one, we are not dealing with clustered data, and the random variables are mostly propositions and their truth values. Given a hypothesis H and an item of evidence E for it, there seems to be no interesting conceptualization on which the underlying data would be clustered. After all, for instance, it is not that stains at a crime scene are a subgroup of crimes being committed—this does not even make sense. Yes, there is dependency between these phenomena, but describing it as clustering would be at least misleading. Second, the dependencies proceed through the values of the random variables which are **not** parameters, but rather truth-values, and require also conditional uncertainties regarding the dependencies between these truth-values.

Again, continuing the hypothesis-evidence example, we have $H \sim \text{Bern}(p_h), p_h \sim \text{Beta}(a_h, b_h)$, and $E \sim \text{Bern}(p_e)$. But then we also have the beta distributions for the probability of the evidence conditional on the actual values of the random variables—the truth-values—thus $p_e|H=1 \sim beta(a_+,b_+)$ and $p_e|H=0 \sim \text{Beta}(a_-,b_-)$. But the re-factoring in terms of the actual values of the random variables (which just happen to resemble probabilities because they are truth values) makes it quite specific, at the same time allowing for the computational use of Bayesian networks. Finally, the reasoning we describe is not a regression the way it is normally performed: the learning task is delegated to the bottom level of whatever happens to the Bayesian networks once updated with evidence.

References

Bradley, D. (2015). A critical introduction to formal epistemology. Bloomsbury Publishing.

Bradley, S. (2012). *Scientific uncertainty and decision making* (PhD thesis). London School of Economics; Political Science (University of London).

Bradley, S. (2019). Imprecise Probabilities. In E. N. Zalta (Ed.), *The Stanford encyclopedia of philosophy* (Spring 2019). https://plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities/; Metaphysics Research Lab, Stanford University.

Campbell-Moore, C. (2020). Accuracy and imprecise probabilities.

Carr, J. R. (2020). Imprecise evidence without imprecise credences. *Philosophical Studies*, 177(9), 2735–2758. https://doi.org/10.1007/s11098-019-01336-7

Dahlman, C., & Nordgaard, A. (2022). Information economics in the criminal standard of proof.

Deadman, H. A. (1984a). Fiber evidence and the wayne williams trial (conclusion). *FBI L. Enforcement Bull.*, 53, 10–19.

Deadman, H. A. (1984b). Fiber evidence and the wayne williams trial (part i). *FBI L. Enforcement Bull.*, 53, 12–20.

Elkin, L. (2017). *Imprecise probability in epistemology* (PhD thesis). Ludwig-Maximilians-Universität; Ludwig-Maximilians-Universität München.

Fenton, N., & Neil, M. (2018). Risk assessment and decision analysis with bayesian networks. Chapman; Hall.

Fraassen, B. C. V. (2006). Vague expectation value loss. *Philosophical Studies*, *127*(3), 483–491. https://doi.org/10.1007/s11098-004-7821-2

Gärdenfors, P., & Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and decision making. *Synthese*, 53(3), 361–386. https://doi.org/10.1007/bf00486156

Joyce, J. M. (2005). How probabilities reflect evidence. *Philosophical Perspectives*, 19(1), 153–178.

Kaplan, J. (1968). Decision theory and the fact-finding process. *Stanford Law Review*, 20(6), 1065–1092.

Keynes, J. M. (1921). A treatise on probability, 1921. London: Macmillan.

Konek, J. (2013). New foundations for imprecise bayesianism (PhD thesis). University of Michigan.

Kyburg, H. E. (1961). Probability and the logic of rational belief. Wesleyan University Press.

Kyburg Jr, H. E., & Teng, C. M. (2001). Uncertain inference. Cambridge University Press.

Levi, I. (1974). On indeterminate probabilities. *The Journal of Philosophy*, 71(13), 391. https://doi.org/10.2307/2025161

Levi, I. (1980). The enterprise of knowledge: An essay on knowledge, credal probability, and chance. MIT Press.

Mayo-Wilson, C., & Wheeler, G. (2016). Scoring imprecise credences: A mildly immodest proposal. *Philosophy and Phenomenological Research*, 92(1), 55–78. https://doi.org/10.1111/phpr.12256

O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., ... Rakow, T. (2006). *Uncertain judgements: Eliciting experts' probabilities*.

- Rinard, S. (2013). Against radical credal imprecision. *Thought: A Journal of Philosophy*, 2(1), 157–165. https://doi.org/10.1002/tht3.84
- Schoenfield, M. (2017). The accuracy and rationality of imprecise credences. *Noûs*, *51*(4), 667–685. https://doi.org/10.1111/nous.12105
- Seidenfeld, T., Schervish, M., & Kadane, J. (2012). Forecasting with imprecise probabilities. *International Journal of Approximate Reasoning*, 53, 1248–1261. https://doi.org/10.1016/j.ijar.2012.06.018
- Sjerps, M. J., Alberink, I., Bolck, A., Stoel, R. D., Vergeer, P., & Zanten, J. H. van. (2015). Uncertainty and LR: to integrate or not to integrate, that's the question. *Law, Probability and Risk*, *15*(1), 23–29. https://doi.org/10.1093/lpr/mgv005
- Sturgeon, S. (2008). Reason and the grain of belief. *Noûs*, 42(1), 139–165. Retrieved from http://www.jstor.org/stable/25177157
- Taroni, F., Bozza, S., Biedermann, A., & Aitken, C. (2015). Dismissal of the illusion of uncertainty in the assessment of a likelihood ratio. *Law, Probability and Risk*, *15*(1), 1–16. https://doi.org/10.1093/lpr/mgv008
- Thompson, W. C., Taroni, F., & Aitken, C. G. G. (2003). How the probability of a false positive affects the value of DNA evidence. *Journal of Forensic Science*, 48(1), 47–54.
- Titelbaum, M. G. (2020). Fundamentals of bayesian epistemology.
- Walley, P. (1991). Statistical reasoning with imprecise probabilities. Chapman; Hall London.