Bottom-Up Parsing

What is Bottom-Up Parsing?

- Idea: Apply productions **in reverse** to convert the user's program to the start symbol.
- As with top-down, could be done with a DFS or BFS, though this is rarely done in practice.
- We'll be exploring four directional, predictive bottom-up parsing techniques:
 - **Directional**: Scan the input from left-to-right.
 - **Predictive**: Guess which production should be inverted.

Bottoms Up!

One View of a Bottom-Up Parse

A Second View of a Bottom-Up Parse

```
\mathbf{E} \to \mathbf{T}
                           int + (int + int + int)
\mathbf{E} \to \mathbf{E} + \mathbf{T}
                       \Rightarrow T + (int + int + int)
T \rightarrow int
                       \Rightarrow E + (int + int + int)
T \rightarrow (E)
                       \Rightarrow E + (T + int + int)
                       \Rightarrow E + (E + int + int)
                       \Rightarrow E + (E + T + int)
                       \Rightarrow E + (E + int)
                       \Rightarrow E + (E + T)
                       \Rightarrow \mathbf{E} + (\mathbf{E})
                       \Rightarrow E + T
                       \Rightarrow F.
```

A Second View of a Bottom-Up Parse

```
\mathbf{E} \to \mathbf{T}
                           int + (int + int + int)
\mathbf{E} \to \mathbf{E} + \mathbf{T}
                       \Rightarrow T + (int + int + int)
T \rightarrow int
                       \Rightarrow E + (int + int + int)
T \rightarrow (E)
                       \Rightarrow E + (T + int + int)
                       \Rightarrow E + (E + int + int)
                       \Rightarrow E + (E + T + int)
                       \Rightarrow E + (E + int)
                       \Rightarrow E + (E + T)
                       \Rightarrow \mathbf{E} + (\mathbf{E})
                       \Rightarrow E + T
                       \Rightarrow F.
```

A left-to-right, bottom-up parse is a rightmost derivation traced in reverse.

```
int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow \mathbf{E} + (\mathbf{E})
\Rightarrow E + T
\Rightarrow \mathbf{F}
```

Each step in this bottom-up parse is called a reduction.

We reduce a substring of the sentential form back to a nonterminal.

```
Ε
  int + (int + int + int)
                                         Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                        int
                                                             Е
                                                                        +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                        Ε
                                                                           int
\Rightarrow E + (E + T)
                                                                 int
\Rightarrow E + (E)
\Rightarrow E + T
                                                       int
\Rightarrow \mathbf{F}
                                                       int +
                                        int
                                                                int +
                                                                           int
```

```
Ε
  int + (int + int + int)
                                         Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                        int
                                                             Е
                                                                        +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                        Ε
                                                                           int
\Rightarrow E + (E + T)
                                                                 int
\Rightarrow E + (E)
\Rightarrow E + T
                                                       int
\Rightarrow \mathbf{F}
                                                       int +
                                        int
                                                                int +
                                                                           int
```

```
Ε
  int + (int + int + int)
                                         Ε
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                        int
                                                             Е
                                                                        +
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
                                                        Ε
                                                                           int
\Rightarrow E + (E + T)
                                                                 int
\Rightarrow E + (E)
\Rightarrow E + T
                                                       int
\Rightarrow \mathbf{F}
                                                       int +
                                                                int +
                                        int
                                                                           int
```

```
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow \mathbf{F}
```



```
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```



```
⇒ E + (int + int + int)

⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```



```
⇒ E + (int + int + int)

⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```


int

$$\Rightarrow E + (T + int + int)$$

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

int +

int +

int

```
⇒ E + (T + int + int)

⇒ E + (E + int + int)

⇒ E + (E + T + int)

⇒ E + (E + int)

⇒ E + (E + T)

⇒ E + (E)

⇒ E + T

⇒ E
```


int

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

int +

int +

int

$$\Rightarrow E + (E + int + int)$$

$$\Rightarrow E + (E + T + int)$$

$$\Rightarrow E + (E + int)$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow E + (E + T)$$

$$\Rightarrow E + (E)$$

$$\Rightarrow E + T$$

$$\Rightarrow E$$

$$\Rightarrow \mathbf{E} + (\mathbf{E} + \mathbf{T})$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + (\mathbf{E})$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$

$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$
$$\Rightarrow \mathbf{E}$$

$$\Rightarrow \mathbf{E} + \mathbf{T}$$
$$\Rightarrow \mathbf{E}$$

Ε

```
\Rightarrow \mathbf{F}
```

```
int + ( int + int + int )
```

Handles

- The **handle** of a parse tree *T* is the leftmost complete cluster of leaf nodes.
- A left-to-right, bottom-up parse works by iteratively searching for a handle, then reducing the handle.

Summarizing Our Intuition

- Our first intuition (reconstructing the parse tree bottom-up) motivates how the parsing should work.
- Our second intuition (rightmost derivation in reverse) describes the order in which we should build the parse tree.
- Our third intuition (handle pruning) is the basis for the bottom-up parsing algorithms we will explore.

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

The leftmost reduction isn't always the handle.

Finding Handles

- Where do we look for handles?
 - Where in the string might the handle be?
- How do we search for possible handles?
 - Once we know where to search, how do we identify candidate handles?
- How do we recognize handles?
 - Once we've found a candidate handle, how do we check that it really is the handle?

Question One:

Where are handles?

Where are Handles?

- Recall: A left-to-right, bottom-up parse traces a rightmost derivation in reverse.
- Each time we do a reduction, we are reversing a production applied to the *rightmost* nonterminal symbol.
- Suppose that our current sentential form is $\alpha \gamma \omega$, where γ is the handle and $A \rightarrow \gamma$ is a production rule.
- After reducing γ back to A, we have the string $\alpha A\omega$.
- Thus ω must consist purely of terminals, since otherwise the reduction we just did was not for the rightmost terminal.

Why This Matters

- Suppose we want to parse the string y.
- We will break γ into two parts, α and ω , where
 - α consists of both terminals and nonterminals, and
 - ω consists purely of terminals.
- Our search for handles will concentrate purely in α .
- As necessary, we will start moving terminals from ω over into α .

Shift/Reduce Parsing

- The bottom-up parsers we will consider are called shift/reduce parsers.
 - Contrast with the LL(1) **predict/match** parser.
- Idea: Split the input into two parts:
 - Left substring is our work area; all handles must be here.
 - Right substring is input we have not yet processed; consists purely of terminals.
- At each point, decide whether to:
 - Move a terminal across the split (shift)
 - Reduce a handle (**reduce**)

```
\mathbf{E} \rightarrow \mathbf{F}
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}
\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}
\mathbf{F} \rightarrow \mathbf{T}
\mathbf{T} \rightarrow \mathbf{int}
\mathbf{T} \rightarrow (\mathbf{E})
```

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int * int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

* int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int + int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

Е

+ int

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

An Important Observation

- All of the reductions we applied were to the far right end of the left area.
- This is not a coincidence; all reductions are always applied all the way to the end of the left area.
- Inductive proof sketch:
 - After no reduces, the first reduction can be done at the right end of the left area.
 - After at least one reduce, the very right of the left area is a nonterminal. This nonterminal must be part of the next reduction, since we're tracing a rightmost derivation backwards.

An Important Corollary

- Since reductions are always at the right side of the left area, we never need to shift from the left to the right.
- No need to "uncover" something to do a reduction.
- Consequently, shift/reduce parsing means
 - **Shift**: Move a terminal from the right to the left area.
 - **Reduce**: Replace some number of symbols at the right side of the left area.

Simplifying our Terminology

- All activity in a shift/reduce parser is at the far right end of the left area.
- Idea: Represent the left area as a stack.
- Shift: Push the next terminal onto the stack.
- Reduce: Pop some number of symbols from the stack, then push the appropriate nonterminal.

Finding Handles

- Where do we look for handles?
 - At the top of the stack.
- How do we search for handles?
 - What algorithm do we use to try to discover a handle?
- How do we recognize handles?
 - Once we've found a possible handle, how do we confirm that it's correct?

Question Two:

How do we search for handles?

Searching for Handles

- When using a shift/reduce parser, we must decide whether to shift or reduce at each point.
- We only want to reduce when we know we have a handle.
- **Question:** How can we tell that we might be looking at a handle?

Exploring the Left Side

- The handle will always appear at the end of string in the left side of the parser.
- Can *any* string appear on the left side of the parser, or are there restrictions on what sorts of strings can appear there?
- If we can find a pattern to the strings that can appear on the left side, we might be able to exploit it to detect handles.

F

+ i	nt *	int	+	int
-------	------	-----	---	-----

$$\mathbf{E}
ightarrow \mathbf{F}$$
 $\mathbf{E}
ightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F}
ightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F}
ightarrow \mathbf{T}$
 $\mathbf{T}
ightarrow \mathbf{int}$
 $\mathbf{T}
ightarrow (\mathbf{E})$

Ε

$$\mathbf{E} \rightarrow \mathbf{F}$$
 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}$
 $\mathbf{F} \rightarrow \mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

```
\mathbf{E} \rightarrow \mathbf{F}
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{F}
\mathbf{F} \rightarrow \mathbf{F} \star \mathbf{T}
\mathbf{F} \rightarrow \mathbf{T}
\mathbf{T} \rightarrow \mathbf{int}
\mathbf{T} \rightarrow (\mathbf{E})
```

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

```
int + int * int + int
```

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot E + F$
 $E \rightarrow \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$F \rightarrow T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow F \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E \cdot + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot F * T$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot F * T$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$F \rightarrow T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F \cdot \star T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow \cdot int$

int + int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * T \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + F \cdot$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + F$

Е

+ int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E \cdot + F$$

Е

+ int

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot T$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow \cdot int$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$
 $E \rightarrow E + \cdot F$
 $F \rightarrow \cdot T$
 $T \rightarrow int \cdot$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot T$$

E + T

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow T \cdot$$

E + T

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + \cdot F$$

E + F

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow E + F \cdot$$

E + F

 $S \rightarrow E$ $E \rightarrow F$ $E \rightarrow E + F$ $F \rightarrow F * T$ $F \rightarrow T$ $T \rightarrow int$ $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

Ε

 $S \rightarrow E$ $E \rightarrow F$ $E \rightarrow E + F$ $F \rightarrow F * T$ $F \rightarrow T$ $T \rightarrow int$ $T \rightarrow (E)$

$$S \rightarrow E$$
.

Е

Generating Left-Hand Sides

- At any instant in time, the contents of the left side of the parser can be described using the following process:
 - Trace out, from the start symbol, the series of productions that have not yet been completed and where we are in each production.
 - For each production, in order, output all of the symbols up to the point where we change from one production to the next.

- Given that we have a procedure for *generating* left-hand sides, can we build a procedure for *recognizing* those left-hand sides?
- Idea: At each point, track
 - Which production we are in, and
 - Where we are in that production.
- At each point, we can do one of two things:
 - Match the next symbol of the candidate left-hand side with the next symbol in the current production, or
 - If the next symbol of the candidate left-hand side is a nonterminal, nondeterministically guess which production to try next.

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$


```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$


```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow \cdot E + F$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E \cdot + F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$S \rightarrow E$$
 $E \rightarrow F$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow \cdot F * T$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```



```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + F$$

$$E \rightarrow E + \cdot F$$

$$F \rightarrow F * \cdot T$$

```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```



```
S \rightarrow E
E \rightarrow F
E \rightarrow E + F
F \rightarrow F * T
F \rightarrow T
T \rightarrow int
T \rightarrow (E)
```

$$S \rightarrow \cdot E$$
 $E \rightarrow \cdot E + F$
 $E \rightarrow E + \cdot F$
 $F \rightarrow F * \cdot T$
 $T \rightarrow int \cdot$

An Important Result

- There are only finitely many productions, and within those productions only finitely many positions.
- At any point in time, we only need to track where we are in one production.
- There are only finitely many options we can take at any one point.
- We can use a finite automaton as our recognizer.

An Automaton for Left Areas

Constructing the Automaton

- Create a state for each nonterminal.
- For each production $\mathbf{A} \rightarrow \mathbf{y}$:
 - Construct states $\mathbf{A} \to \boldsymbol{\alpha} \cdot \boldsymbol{\omega}$ for each possible way of splitting $\boldsymbol{\gamma}$ into two substrings $\boldsymbol{\alpha}$ and $\boldsymbol{\omega}$.
 - Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ and $A \rightarrow \alpha x \cdot \omega$.
- For each state $A \rightarrow \alpha \cdot B\omega$ for nonterminal B, add an ϵ -transition from $A \rightarrow \alpha \cdot B\omega$ to B.

Why This Matters

- Our initial goal was to find handles.
- When running this automaton, if we ever end up in a state with a rule of the form

$\mathbf{A} \rightarrow \boldsymbol{\omega}$.

- Then we might be looking at a handle.
- This automaton can be used to discover possible handle locations!

Adding Determinism

- Typically, this handle-finding automaton is implemented deterministically.
- We could construct a deterministic parsing automaton by constructing the nondeterministic automaton and applying the subset construction, but there is a more direct approach.

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \rightarrow \mathbf{T};
E \rightarrow T + E
\boldsymbol{T} \to \mathtt{int}
T \rightarrow (E)
                                    S \rightarrow \cdot E
                  start
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \rightarrow \mathbf{T};
\mathbf{E} \to \mathbf{T} + \mathbf{E}
T \rightarrow \text{int}
T \rightarrow (E)
                                        S \rightarrow \cdot E
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T};
\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E}
\boldsymbol{T} \to \texttt{int}
T \rightarrow (E)
                                            S \rightarrow \cdot E
                                          \mathsf{T} \to \cdot \, \mathtt{int}
                                           \mathsf{T} \to \cdot (\mathsf{E})
```


Constructing the Automaton II

- Begin in a state containing $S \rightarrow \cdot A$, where S is the augmented start symbol.
- Compute the **closure** of the state:
 - If $\mathbf{A} \to \boldsymbol{\alpha} \cdot \mathbf{B} \boldsymbol{\omega}$ is in the state, add $\mathbf{B} \to \boldsymbol{\gamma}$ to the state for each production $\mathbf{B} \to \boldsymbol{\gamma}$.
 - Yet another fixed-point iteration!
- Repeat until no new states are added:
 - If a state contains a production $\mathbf{A} \to \alpha \cdot \mathbf{x} \omega$ for symbol \mathbf{x} , add a transition on \mathbf{x} from that state to the state containing the closure of $\mathbf{A} \to \alpha \mathbf{x} \cdot \omega$
- This is equivalent to a subset construction on the NFA.

Handle-Finding Automata

- Handling-finding automata can be very large.
- NFA has states proportional to the size of the grammar, so DFA can have size exponential in the size of the grammar.
 - There are grammars that can exhibit this worst-case.
- Automata are almost always generated by tools like bison.

Finding Handles

- Where do we look for handles?
 - At the top of the stack.
- How do we search for handles?
 - Build a handle-finding automaton.
- How do we recognize handles?
 - Once we've found a possible handle, how do we confirm that it's correct?

Question Three:

How do we recognize handles?

Handle Recognition

- Our automaton will tell us all places where a handle might be.
- However, if the automaton says that there might be a handle at a given point, we need a way to confirm this.
- We'll thus use predictive bottom-up parsing:
 - Have a deterministic procedure for guessing where handles are.
- There are many predictive algorithms, each of which recognize different grammars.

Our First Algorithm: LR(0)

- Bottom-up predictive parsing with:
 - L: Left-to-right scan of the input.
 - **R**: **R**ightmost derivation.
 - (0): Zero tokens of lookahead.
- Use the handle-finding automaton, without any lookahead, to predict where handles are.

```
S \rightarrow E
E \rightarrow T;
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

int	+	(int	+	int	ř)	, ,
-----	---	---	-----	---	-----	---	---	--------

An Optimization

- Rather than restart the automaton on each reduction, remember what state we were in for each symbol.
- When applying a reduction, restart the automaton from the last known good state.

Representing the Automaton

- LR(0) parsers are usually represented via two tables: an **action** table and a **goto** table.
- The **action** table maps each state to an action:
 - shift, which shifts the next terminal, and
 - reduce $A \to \omega$, which performs reduction $A \to \omega$.
 - Any state of the form A → ω · does that reduction; everything else shifts.
- The **goto** table maps state/symbol pairs to a next state.
 - This is just the transition table for the automaton.

Building LR(0) Tables

LR(0) Tables

	int	+	;	()	Е	Т	Action
0	9			8		1	3	Shift
1								Accept
2								Reduce $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
3		5	4					Shift
4								Reduce $\mathbf{E} \to \mathbf{T}$;
5	9			8		2	3	Shift
6								Reduce $T \rightarrow (E)$
7					6			Shift
8	9			8		7	3	Shift
9								Reduce $T \rightarrow int$

The LR(0) Algorithm

- Maintain a stack of (symbol, state) pairs, which is initially (?, 1) for some dummy symbol ?.
- While the stack is not empty:
 - Let **state** be the top state.
 - If action[state] is shift:
 - Let **t** be the next symbol in the input.
 - Push (t, goto[state, t]) atop the stack.
 - If action[state] is reduce $A \rightarrow \omega$:
 - Remove $|\omega|$ symbols from the top of the stack.
 - Let **top-state** be the state on top of the stack.
 - Push (A, goto[top-state, A]) atop the stack.
 - Otherwise, report an error.

The Limits of LR(0)

LR Conflicts

- A **shift/reduce conflict** is an error where a shift/reduce parser cannot tell whether to shift a token or perform a reduction.
 - Often happens when two productions overlap.
- A reduce/reduce conflict is an error where a shift/reduce parser cannot tell which of many reductions to perform.
 - Often the result of ambiguous grammars.
- A grammar whose handle-finding automaton contains a shift/reduce conflict or a reduce/reduce conflict is not LR(0).
- Can you have a shift/shift conflict?

What error is this?

What error is this?

What about this?

What about this?

And what about this?

And what about this?

What do these conflicts mean?

- Recall: our automaton was constructed by looking for viable prefixes.
- Each accepting state represents a point where the handle might occur.
- A **shift/reduce** conflict is a state where the handle might occur, but we might actually need to keep searching.
- A **reduce/reduce** conflict is a state where we know we have found the handle, but can't tell which reduction to apply.

Why LR(0) is Weak

- LR(0) only accepts languages where the handle can be found with no **right context**.
- Our shift/reduce parser only looks to the left of the handle, not to the right.
- How do we exploit the tokens after a possible handle to determine what to do?

A Powerful Parser: LR(1)

- Bottom-up predictive parsing with
 - L: Left-to-right scan
 - **R**: **R**ightmost derivation
 - (1): One token lookahead
- *Substantially* more powerful than the other methods we've covered so far (more on that later).
- Tries to more intelligently find handles by using a lookahead token at each step.

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```


+ (int + int + int) \$

The Intuition behind LR(1)

- Guess which series of productions we are reversing.
- Use this information to maintain information about what lookahead to expect.
- When deciding whether to shift or reduce, use lookahead to disambiguate.

Tracking Lookaheads

- How do we know what lookahead to expect at each state?
- Observation:
 - There are only finitely many productions we can be in at any point.
 - There are only finitely many positions we can be in each production.
 - There are only finitely many lookahead sets at each point.
- Construct an automaton to track lookaheads!

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```


- Begin with a state **S** [\$].
- For each state A [t], for each production
 A → y:
 - Construct states $\mathbf{A} \to \boldsymbol{\alpha} \cdot \boldsymbol{\omega}$ [t] for all possible ways of splitting $\boldsymbol{\gamma} = \boldsymbol{\alpha} \boldsymbol{\omega}$.
 - Add an ε-transition from **A** [t] to each of these states.
 - Add transitions on x between $A \rightarrow \alpha \cdot x\omega$ [t] and $A \rightarrow \alpha x \cdot \omega$ [t]
- For each state $A \to \alpha \cdot B\omega$ [t], add an ϵ -transition from $A \to \alpha \cdot B\omega$ [t] to B[r] for each terminal $r \in FIRST^*(\omega t)$.


```
S \rightarrow . E $ $ E \rightarrow . T $ E \rightarrow . E + T $
```

```
S \rightarrow . E $
E \rightarrow . T $
E \rightarrow . E + T $
E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . E + T + E \rightarrow . E + E + E \rightarrow . E + E + E \rightarrow . E \rightarrow . E + E \rightarrow . E \rightarrow .
```


Constructing LR(1) Automata II

- Begin in a state containing $S \to \cdot E$ [\$], where S is the start symbol.
- Compute the **closure** of the state:
 - If $A \to \alpha \cdot B\omega$ [t] is in the state, add $B \to \cdot \gamma$ [t] to the state for each production $B \to \gamma$ and for each terminal $t \in FIRST^*(\omega t)$
- Repeat until no new states are added:
 - If a state contains a production $A \to \alpha \cdot x\omega$ [t], add a transition on x from that state to the state containing the closure of $A \to \alpha x \cdot \omega$ [t].

Structure of LR(1) Automata

- Every LR(1) automaton simulates two processes simultaneously:
 - An LR(0) automaton for finding handles.
 - A **lookahead tracker** for determining what the lookahead is.
- Removing the lookaheads from an LR(1) automaton results in a (much larger) LR(0) automaton for the same grammar.

Representing LR(1) Automata

- As with LR(0), use **action** and **goto** tables.
- **goto** table defined as before; encodes transition table as map from (state, token) to states.
- action table maps pairs (state, lookahead) to actions.
- Commonly combined into a single action/goto table.

The LR(1) Parsing Algorithm

- Begin with an empty stack and the input set to ω \$, where ω is the string to parse. Set **state** to the initial state.
- Repeat the following:
 - Let the next symbol of input be t.
 - If action[state, t] is shift, then shift the input and set state = goto[state, t].
 - If action[state, t] is reduce $A \rightarrow \omega$:
 - Pop $|\omega|$ symbols off the stack; replace them with **A**.
 - Let the state atop the stack be **top-state**.
 - Set state = goto[top-state, A]
 - If action[state, t] is accept, then the parse is done.
 - If action[state, t] is error, report an error.

Constructing LR(1) Parse Tables

- For each state *X*:
 - If there is a production $A \to \omega \cdot [t]$, set action $[X, t] = \text{reduce } A \to \omega$.
 - If there is the special production $S \to E \cdot [\$]$, where S is the start symbol, set action[X, t] = accept.
 - If there is a transition out of s on symbol t, set
 action[X, t] = shift.
- Set all other actions to error.
- If any table entry contains two or more actions, the grammar is not LR(1).

	int	()	+	\$	T	Ε
1	s5					s4	s2
2				s6	ACCEPT		
3				r3	r3		
4				r2	r2		
5				r5	r5		
6	s5	s7				s3	
7	s10	s14				s10	s8
8			s9	s12			
9				r5	r5		
10			r2	r2			
11			r4	r4			
12	s11					s13	
13			r3	r3			
14	s11		s14			s10	s15
15			s16	s12			
16			r5	r5			

 $\mathbf{S} \to \mathbf{E}$

 $\mathbf{E} \to \mathbf{T}$

 $\mathbf{E} \to \mathbf{E} + \mathbf{T}$

 $\bm{T} \to \texttt{int}$

 $T \rightarrow (E)$

(1)

(2)

(3)

(4)

(5)

The Power of LR(1)

- Any LR(0) grammar is LR(1).
- Any LL(1) grammar is LR(1).
- Any deterministic CFL (a CFL parseable by a *deterministic pushdown automaton*) has an LR(1) grammar.
- Any LL(*k*) *language* is LR(1), though individual LL(*k*) *grammars* might not be.
- Any LR(k) language is LR(1), though individual LR(k) grammars might not be.

LR(1) Automata are **Huge**

- In a grammar with n terminals, could in theory be $O(2^n)$ times as large as the LR(0) automaton.
 - Replicate each state with all O(2ⁿ) possible lookaheads.
- LR(1) tables for practical programming languages can have hundreds of thousands or even *millions* of states.
- Consequently, LR(1) parsers are rarely used in practice.

Is there a way to get the power of LR(1) without the huge table size?

Why is LR(1) so powerful?

- Intuitively, for two reasons:
- Lookahead makes handle-finding easier.
 - The LR(0) automaton says whether there could be a handle later on based on no right context.
 - The LR(1) automaton can predict whether it needs to reduce based on more information.
- More states encode more information.
 - LR(1) lookaheads are very good because there's a greater number of states to be in.
- **Goal**: Incorporate lookahead without increasing the number of states.

Revisiting Shift/Reduce Conflicts

• A shift/reduce conflict is a state that looks like this:

$$\mathbf{A} \rightarrow \boldsymbol{\omega} \cdot \mathbf{B}$$
 $\mathbf{B} \rightarrow \boldsymbol{\alpha} \cdot \boldsymbol{\beta}$

- In LR(0), this is simply not allowed.
- In LR(1), this can be avoided by using lookahead to determine whether to shift or reduce.
- Can we get some of the lookahead power of LR(1) without the huge tables?

SLR(1)

- Simple LR(1)
- Minor modification to LR(0) automaton that uses lookahead to avoid shift/reduce conflicts.
- Idea: Only reduce $A \rightarrow \omega$ if the next token t is in FOLLOW(A).
- Automaton identical to LR(0) automaton; only change is when we choose to reduce.

```
S \rightarrow E
E \rightarrow T
E \rightarrow E + T
T \rightarrow int
T \rightarrow (E)
```

SLR(1) Parsing

$\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{T}$ SLR(1) Parsing $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}$ $T \rightarrow int$ $E \rightarrow E + T$. \$+) $T \rightarrow (E)$. \$+) $T \rightarrow (E)$ $S \rightarrow E$. \$+) $E \rightarrow E \cdot + T$ **P**E int \$+) int $T \to \texttt{int} \cdot$ \$+) $start \rightarrow E \rightarrow E + T$ $E \rightarrow \cdot E + T$ \$+) $T \rightarrow \cdot$ int $T \rightarrow T \cdot$ \$+) $T \rightarrow \cdot (E)$ \$+)

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                    SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                       E \rightarrow E + T.
                                                                             $+)
                                                                                               T \rightarrow (E)
                                                                                                                       $+)
T \rightarrow (E)
                                              E \rightarrow E \cdot + T
                              PE
                                                               int
                                                                                                                       $+)
                                              \operatorname{int}_{lacksquare} T 	o \operatorname{int} .
     \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                     $+)
                                                                                                E \rightarrow \cdot E + T
                                                                                                                       $+)
               T \rightarrow \cdot int
                                              T - E \rightarrow T
                                                                                                                       $+)
               T \rightarrow \cdot (E)
                                                                                                                       $+)
                          int
                                                                                                           $
                                     +
                                                    int
                                                                     int
                                                                                       int
                                                               +
                                                                                 +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                 SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                  E \rightarrow E + T.
                                                                      $+)
                                                                                       T \rightarrow (E)
                                                                                                             $+)
T \rightarrow (E)
                                         E \rightarrow E \cdot + T
                           PE
                                                         int
    S \rightarrow \cdot E
E \rightarrow \cdot T
E \rightarrow \cdot E + T
                                   $
$+)
$+)
$+)
                                                                                                            $+)
                                                                                                           $+)
                                                                                       E \rightarrow \cdot E + T
                                                                                                             $+)
              T \rightarrow \cdot \text{ int} \$+) T \rightarrow E \rightarrow T \cdot
                                                                                                             $+)
              T \rightarrow \cdot (E)
                                                                                                             $+)
                        int
                                                                                                 $
                                  +
                                               int
                                                               int
                                                                               int
                                                          +
                                                                          +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                               SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                E \rightarrow E + T.
                                                                   $+)
                                                                                   T \to (E).
                                                                                                        $+)
T \rightarrow (E)
                                        S \to E \cdot E \to E \cdot + T
                          PE
                                                       int
    S \rightarrow \cdot E
E \rightarrow \cdot T
E \rightarrow \cdot E + T
                                                                                                        $+)
                                        int T 	o int.
                                                                                                      $+)
                                                                                   E \rightarrow \cdot E + T
                                                                                                        $+)
                                        T 
ightharpoonup E 	o T \cdot
                                                                                                        $+)
                                                                                                        $+)
                 int
                                                                                             $
                                +
                                             int
                                                       +
                                                            int
                                                                            int
                                                                      +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                  SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                    E \rightarrow E + T
                                                                        $+)
                                                                                         T \rightarrow (E).
                                                                                                               $+)
T \rightarrow (E)
                                           E \rightarrow E \cdot + T
                            PE
                                                           int
                                                                                                               $+)
    \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                              $+)
                                                                                         E \rightarrow \cdot E + T
                                                                                                               $+)
              T \rightarrow \cdot int
                                            T - E \rightarrow T
                                                                                                               $+)
              T \rightarrow \cdot (E)
                                                                                                               $+)
                   int
                                                                                                    $
                                   +
                                                int
                                                           +
                                                                 int
                                                                                 int
                                                                           +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                   SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                      E \rightarrow E + T
                                                                           $+)
                                                                                            T \rightarrow (E).
                                                                                                                   $+)
T \rightarrow (E)
                                            E \rightarrow E \cdot + T
                             PE
                                                             int
                                                                                                                   $+)
     \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                  $+)
                                                                                            E \rightarrow \cdot E + T
                                                                                                                   $+)
               T \rightarrow \cdot int
                                             T \longrightarrow E \rightarrow T.
                                                                                                                   $+)
               T \rightarrow \cdot (E)
                                                                                                                   $+)
                   int
                                                                                                       $
                                                  int
                                                             +
                                                                   int
                                                                                    int
                                                                              +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                   SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                      E \rightarrow E + T
                                                                            $+)
                                                                                              T \rightarrow (E)
                                                                                                                     $+)
T \rightarrow (E)
                                             E \to E \cdot + T
                              PE
                                                              int
     S \rightarrow \cdot E
E \rightarrow \cdot T
E \rightarrow \cdot E + T
                                                                                                                     $+)
                                             \operatorname{int}_{lackbox{\hspace{1pt}\checkmark}} T 	o \operatorname{int} .
                                                                                                                   $+)
                                                                                              E \rightarrow \cdot E + T
                                                                                                                     $+)
                                              T \longrightarrow T
                                                                                                                     $+)
                                                                                                                     $+)
                                                                    int
                                                                                                         $
                                    +
                                                   int
                                                              +
                                                                                     int
                                                                               +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                                SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                                         E \rightarrow E + T
                                                                                                      $+)
                                                                                                                              T \rightarrow (E).
                                                                                                                                                              $+)
T \rightarrow (E)
                                                                                                                             T \rightarrow (E \cdot ) \qquad \$+)
E \rightarrow E \cdot + T \qquad \$+)
                    E \rightarrow E \cdot + T
                                        PE
                                                                                   int
                                                                                                                                                              $+)
                                                                        T \rightarrow \mathtt{int}
       \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                                                             $+)
                                                                                                                              E \rightarrow \cdot E + T
                                                                                                                                                              $+)
                    T \rightarrow \cdot int
                                                              T \stackrel{\blacktriangle}{=} E \rightarrow T \cdot
                                                                                                                                                              $+)
                    T \rightarrow \cdot (E)
                                                                                                                                                              $+)
                                                                                                                                              $
                                                                                            int
                                                 +
                                                                     int
                                                                                    +
                                                                                                                   int
                                                                                                           +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                             SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                                     E \rightarrow E + T
                                                                                                $+)
                                                                                                                       T \rightarrow (E).
                                                                                                                                                     $+)
T \rightarrow (E)
                                                                                                                     T \rightarrow (E \cdot) $+)

E \rightarrow E \cdot + T $+)
                   E \rightarrow E \cdot + T
                                      PE
                                                                               int
                                                                                                                                                    $+)
                                                                    T \rightarrow \mathtt{int}
      \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                                                    $+)
                                                                                                                       E \rightarrow \cdot E + T
                                                                                                                                                     $+)
                                                          T \longrightarrow E \rightarrow T
                   T \rightarrow \cdot int
                                                                                                                                                    $+)
                   T \rightarrow \cdot (E)
                                                                                                                                                     $+)
                                                                                      int
                                                                                                                                     $
                                                                 int
                                                                               +
                                                                                                            int
                                                                                                     +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                    SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                       E \rightarrow E + T.
                                                                             $+)
                                                                                               T \rightarrow (E)
                                                                                                                       $+)
T \rightarrow (E)
                                              E \rightarrow E \cdot + T
                              PE
                                                               int
                                                                                                                       $+)

\begin{array}{c}
E \rightarrow \cdot T \\
E \rightarrow \cdot E + T
\end{array}

                                              \operatorname{int}_{lacksquare} T 	o \operatorname{int} .
                                                                                                                     $+)
                                                                                               E \rightarrow \cdot E + T
                                                                                                                       $+)
                                              T \longrightarrow T.
                                                                                                                       $+)
                T \rightarrow \cdot (E)
                                                                                                                       $+)
                                                                                                           $
                      Ε
                                     +
                                                    int
                                                               +
                                                                     int
                                                                                       int
                                                                                 +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                     SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                         E \rightarrow E + T.
                                                                               $+)
                                                                                                  T \rightarrow (E).
                                                                                                                          $+)
T \rightarrow (E)
                                               E
                                                                int
                                                                                                                          $+)
                                               \operatorname{int}_{lacksquare} T 	o \operatorname{int} .
     \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                        $+)
                                                                                                  E \rightarrow \cdot E + T
                                                                                                                          $+)
                                                T \longrightarrow E \rightarrow T
                T \rightarrow \cdot int
                                                                                                                          $+)
               T \rightarrow \cdot (E)
                                                                                                                          $+)
                       Ε
                                                                                                             $
                                      +
                                                     int
                                                                +
                                                                       int
                                                                                         int
                                                                                   +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                     SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                         E \rightarrow E + T.
                                                                               $+)
                                                                                                  T \rightarrow (E).
                                                                                                                          $+)
T \rightarrow (E)
                                               E
                                                                 int
                                                                                                                          $+)
                                               \operatorname{int}_{lacksquare} T 	o \operatorname{int} .
     \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                         $+)
                                                                                                  E \rightarrow \cdot E + T
                                                                                                                          $+)
                                                T \longrightarrow E \rightarrow T
                T \rightarrow \cdot int
                                                                                                                          $+)
                T \rightarrow \cdot (E)
                                                                                                                          $+)
                       Ε
                                                                       int
                                                                                                              $
                                                     int
                                                                 +
                                                                                   +
                                                                                         int
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                   SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                      E \rightarrow E + T
                                                                            $+)
                                                                                              T \rightarrow (E).
                                                                                                                     $+)
T \rightarrow (E)
                                             E
                                                              int
                                                                                                                     $+)
                                                      T \rightarrow \mathtt{int}
     \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                     $+)
                                                                                              E \rightarrow \cdot E + T
                                                                                                                     $+)
               T \rightarrow \cdot int
                                              T \longrightarrow E \rightarrow T.
                                                                                                                     $+)
               T \rightarrow \cdot (E)
                                                                                                                     $+)
                      Ε
                                                   int
                                                                    int
                                                                                                         $
                                                              +
                                                                               +
                                                                                     int
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                      SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                           E \rightarrow E + T
                                                                                   $+)
                                                                                                     T \rightarrow (E).
                                                                                                                               $+)
T \rightarrow (E)
                                                                                                                             $+)
                E \rightarrow E \cdot + T
                                PE
                                                                   int
                                                                                                                              $+)
                                                 int
                                                          T \to \texttt{int} \cdot
                                                                                                                               $+)
     start \rightarrow E \rightarrow E + T
                                                                                                      E \rightarrow \cdot E + T
                                                                                                                               $+)
                T \rightarrow \cdot int
                                                  T \longrightarrow T \cdot
                                                                                                                               $+)
                T \rightarrow \cdot (E)
                                                                                                                               $+)
                                                                                                                  $
                        Ε
                                                       int
                                                                          int
                                                                   +
                                                                                            int
                                                                                      +
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                       SLR(1) Parsing
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                           E \rightarrow E + T
                                                                                    $+)
                                                                                                      T \rightarrow (E).
                                                                                                                                $+)
T \rightarrow (E)
                S \to E \cdot E \to E \cdot + T
                                                                                                                              $+)
                                PE
                                                                   int
                                                                                                                                $+)
                                                  int
                                                           T \to \texttt{int} \cdot
                                                                                                                                $+)
     start \rightarrow E \rightarrow E + T
                                                                                                       E \rightarrow \cdot E + T
                                                                                                                                $+)
                T \rightarrow \cdot int
                                                  T \longrightarrow T \cdot
                                                                                                                                $+)
                T \rightarrow \cdot (E)
                                                                                                                                $+)
                                                        int
                                                                                                                   $
                                                                    +
                                                                          int
                        Ε
                                 +
                                                                                      +
                                                                                             int
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{T}
                                                SLR(1) Parsing
\mathbf{E} \to \mathbf{E} + \mathbf{T}
T \rightarrow int
                                                                         E \rightarrow E + T
                                                                                                      $+)
                                                                                                                              T \rightarrow (E)
                                                                                                                                                              $+)
T \rightarrow (E)
                                                                                                                             T \rightarrow (E \cdot) $+)

E \rightarrow E \cdot + T $+)
                    E \rightarrow E \cdot + T
                                        PE
                                                                                   int
                                                                                                                                                           $+)
$+)
                                                                        T \rightarrow \mathtt{int}
      \begin{array}{c} E \rightarrow \cdot T \\ E \rightarrow \cdot E + T \end{array}
                                                                                                                               E \rightarrow \cdot E + T
                    T \rightarrow \cdot int
                                                              T \stackrel{\blacktriangle}{=} E \rightarrow T \cdot
                    T \rightarrow \cdot (E)
                                                                     int
                                                                                   +
                                                                                            int
                                                                                                                                             $
                              Ε
                                         +
                                                                                                           +
                                                                                                                   int
```

Analysis of SLR(1)

- Exploits lookahead in a small space.
 - Small automaton same number of states as in as LR(0).
 - Works on many more grammars than LR(0)
- Too weak for most grammars: lose context from not having extra states.

```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```


$$\mathbf{E} \to \mathbf{L} \cdot = \mathbf{R}$$
 tells us to shift on seeing = tells us to reduce on FOLLOW(\mathbf{R}).

$$\mathbf{E} \to \mathbf{L} \cdot = \mathbf{R}$$
 tells us to shift on seeing = tells us to reduce on FOLLOW(\mathbf{R}).

 $\mathbf{E} \to \mathbf{L} \cdot = \mathbf{R}$ tells us to shift on seeing = tells us to reduce on FOLLOW(\mathbf{R}).

 $= \in FOLLOW(\mathbb{R}).$

$$\mathbf{E} \to \mathbf{L} \cdot = \mathbf{R}$$
 tells us to shift on seeing = tells us to reduce on FOLLOW(\mathbf{R}).

 $= \in FOLLOW(\mathbf{R}).$

We have a conflict!

Why is SLR(1) Weak?

- With LR(1), incredible contextual information.
 - Lookaheads at each state only possible after applying the productions that could get us there.
- With SLR(1), minimal context.
 - FOLLOW(A) means "what could follow A somewhere in the grammar?," even if in a particular state A couldn't possibly have that symbol after it.

For Reference: LR(1) States

```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

For Reference: LR(1) States

LR(1) and SLR(1)

- SLR(1) is weak because it has no contextual information.
- LR(1) is impractical because its contextual information makes the automaton too big.
- Can we retain the LR(1) automaton's contextual information without all its states?

Review of LR(1)

- Each state in an LR(1) automaton is a combination of an LR(0) state and lookahead information.
- Two LR(1) items have the same **core** if they are identical except for lookahead.

```
T \rightarrow (\cdot E) $
E \rightarrow \cdot E + T )
E \rightarrow \cdot T )
T \rightarrow \cdot int )
T \rightarrow \cdot (E) )
```

```
T \rightarrow (\cdot E) )

E \rightarrow \cdot E + T )

E \rightarrow \cdot T )

T \rightarrow \cdot int )

T \rightarrow \cdot (E) )
```

A Surprisingly Powerful Idea

- In an LR(1) automaton, we have multiple states with the same core but different lookahead.
- What if we merge all these states together?
- This is called LALR(1)
 - Lookahead(1) LR(0)

```
\begin{array}{l} \overset{\textbf{S}}{\rightarrow}\overset{\textbf{E}}{\leftarrow}_{\textbf{L}=\textbf{R}} \text{ From } LR(1) \text{ to } LALR(1) \\ \overset{\textbf{E}}{\rightarrow}\overset{\textbf{R}}{\rightarrow} \overset{\textbf{L}}{\leftarrow}_{\textbf{id}} \\ \overset{\textbf{L}}{\rightarrow}\overset{\textbf{*}}{\ast}\overset{\textbf{R}}{\rightarrow} \overset{\textbf{L}}{\leftarrow} \\ \textbf{R} \rightarrow \overset{\textbf{L}}{\rightarrow} \end{array}
```

$S \rightarrow E \atop E \rightarrow L = R$ From LR(1) to LALR(1) $E \rightarrow R \atop L \rightarrow id$

$S \rightarrow E \atop E \rightarrow L = R$ From LR(1) to LALR(1) $E \rightarrow R \atop L \rightarrow id$

$\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ From LR(1) to LALR(1)

$S \to E \atop E \to L = R$ From LR(1) to LALR(1)

$\mathbf{S} \to \mathbf{E}$ $E \to L = R$ From LR(1) to LALR(1) $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ $R \rightarrow \cdot L$ **L** → * R · $L \rightarrow id$ $E \to R^{\centerdot}$ $L \rightarrow *R$ $L \rightarrow * \cdot R$ $E \rightarrow L = R \cdot \$$ $R \rightarrow L$ $L \rightarrow \cdot id$ $S \rightarrow \cdot E$ R $L \rightarrow *R$ $E \rightarrow \cdot L = R$ id $\mathsf{E} \to \mathsf{R}$ $E \rightarrow L = R$ \$ $start R \rightarrow \cdot L$ $R \rightarrow \cdot L$ $L \rightarrow \cdot id$ $L \rightarrow \cdot id$ $L \rightarrow \cdot *R$ id L L $L \rightarrow *R$ $L \rightarrow \cdot id$ id $I \rightarrow \cdot *R$ $E \rightarrow L \cdot = R \$$ $S \rightarrow E$ \$ $L \rightarrow id$ \$= $R \rightarrow L$ \$ $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ $E \to L = R$ From LR(1) to LALR(1) $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ $\mathbf{R} \to \mathbf{L}$ L → * R · [\$=] $L \rightarrow * \cdot R$ [\$=] $E \to R^{\centerdot}$ [\$] [\$=] $R \rightarrow L$ $L \rightarrow \cdot id$ [\$=] $E \rightarrow L = R \cdot [\$]$ $L \rightarrow *R$ [\$=] R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ id $E \rightarrow L = R$ start $E \rightarrow R$ [\$] $R \rightarrow L$ [\$] [\$] $R \rightarrow L$ $L \rightarrow \cdot id$ [\$] $L \rightarrow \cdot id$ [\$=] id L L [\$] $L \rightarrow *R$ $L \rightarrow *R$ [\$=] id $E \rightarrow L \cdot = R [\$]$ $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$. [\$] $R \rightarrow L$

```
\mathbf{S} \to \mathbf{E}
E \to L = R From LR(1) to LALR(1)
\mathbf{E} \to \mathbf{R}
L \to \text{id}
L \rightarrow *R
\mathbf{R} \to \mathbf{L}
                                                                                                              L \rightarrow *R
                                                                                                                                   [$=]
                                                                                 [$=]
                                                             L \rightarrow * \cdot R
                                                                                                  R
          E \to R^{\centerdot}
                              [$]
                                                             R \rightarrow L
                                                                                 [$=]
                                                             L \rightarrow \cdot id
                                                                                 [$=]
                                                                                                                  E \rightarrow L = R \cdot [\$]
                                                             L → • *R
                    R
                                                                                 [$=]
                                                                                                                                R
          S \rightarrow \cdot E
                               [$]
                                                                id
           E \rightarrow \cdot L = R [\$]
                                                                                                                  E \rightarrow L = R [\$]
start E \rightarrow R
                               [$]
                                                                                                                  R \rightarrow L
                                                                                                                                       [$]
                              [$]
           R \rightarrow L
                                                                                                                   L \rightarrow \cdot id
                                                                                                                                       [$]
          L \rightarrow \cdot id
                               [$=]
                                                                                             id
                                                                                                                                       [$]
                                                                           L
                                                                                                                  L \rightarrow *R
           L \rightarrow \cdot *R
                               [$=]
                                                id
                          E
                                                                                                                  E \rightarrow L \cdot = R [\$]
          S \rightarrow E
                              [$]
                                            L \rightarrow id
                                                                [$=]
                                                                              R \rightarrow L
                                                                                                  [$]
                                                                                                                  R \rightarrow L
```

Advantages of LALR(1)

- Maintains context.
 - Lookup sets based on the fine-grained LR(1) automaton.
 - Each state's lookup relevant only for that state.
- Keeps automaton small.
 - Resulting automaton has same size as LR(0) automaton.

LALR(1) is Powerful

- Every LR(0) grammar is LALR(1).
- Every SLR(1) grammar is LALR(1)
- *Most* (but not all) LR(1) grammars are LALR(1).

LALR(1) isn't LR(1)

• Merging LR(1) states cannot introduce a shift/reduce conflict.

• Why?

- Since the items have the same core, a shift/reduce conflict in a LALR(1) state would have to also exist in one of the LR(1) states it was merged from.
- Merging LR(1) states can introduce a reduce/reduce conflict.
- Often these conflicts appear without any good reason; this is one limitation of LALR(1).

Constructing LALR(1) Automata

- It's not a good idea to build LALR(1) automata from LR(1) automata.
- Why?
- LR(1) automata are impractically large.
- Are there more efficient methods for LALR(1) automata construction?
- Yes; we'll see two.

The "Lazy Merging" Technique

- Idea: Merge together LR(1) states as they're generated.
- Maintain a worklist of states to process; begin with the initial LR(1) state.
- When adding a new state, if it has the same core as an old state, update the old state and put it back in the worklist.

```
\begin{array}{ll} s \to E \\ E \to L = R \\ E \to R \\ L \to \text{id} \\ L \to \text{*R} \\ R \to L \end{array} \quad LALR(1) \; Construction
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```

```
S \rightarrow \cdot E [$]
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```

```
S \rightarrow \cdot E \quad [\$]
E \rightarrow \cdot L = R \quad [\$]
E \rightarrow \cdot R \quad [\$]
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```

```
start
S \rightarrow \cdot E \quad [\$]
E \rightarrow \cdot L = R \, [\$]
E \rightarrow \cdot R \quad [\$]
R \rightarrow \cdot L \quad [\$]
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```

```
start
S \rightarrow \cdot E \quad [\$]
E \rightarrow \cdot L = R \, [\$]
E \rightarrow \cdot R \quad [\$]
R \rightarrow \cdot L \quad [\$]
L \rightarrow \cdot id \quad [\$]
L \rightarrow \cdot \star R \quad [\$]
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```

```
start
S \rightarrow \cdot E \quad [\$]
E \rightarrow \cdot L = R \, [\$]
E \rightarrow \cdot R \quad [\$]
R \rightarrow \cdot L \quad [\$]
L \rightarrow \cdot id \quad [\$=]
L \rightarrow \cdot *R \quad [\$=]
```

```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```



```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```



```
\begin{array}{ll} s \rightarrow E \\ E \rightarrow L = R \\ E \rightarrow R \\ L \rightarrow \text{id} \\ L \rightarrow \text{id} \\ L \rightarrow *R \\ R \rightarrow L \end{array} \quad LALR(1) \; Construction
```



```
egin{array}{lll} \mathbf{S} 
ightarrow \mathbf{E} \ \mathbf{E} 
ightarrow \mathbf{L} = \mathbf{R} \ \mathbf{E} 
ightarrow \mathbf{R} \ \mathbf{L} 
ightarrow \mathbf{id} \ \mathbf{L} 
ightarrow \star \mathbf{R} \ \mathbf{R} 
ightarrow \mathbf{L} \end{array}
```



```
\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{L} = \textbf{R} \\ \textbf{E} \rightarrow \textbf{R} \\ \textbf{L} \rightarrow \textbf{id} \\ \textbf{L} \rightarrow \textbf{*R} \\ \textbf{R} \rightarrow \textbf{L} \end{array} \quad \begin{array}{l} \textbf{LALR(1)} \\ \textbf{L} \\ \textbf{S} \\ \textbf{L} \\ \textbf
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```



```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction


```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction


```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```

LALR(1) Construction

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ $L \rightarrow * R$ [\$] $\mathbf{R} \to \mathbf{L}$ $E \to R^{\centerdot}$ [\$] $E \rightarrow L = R \cdot [\$]$ R R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R$ start $E \rightarrow R$ $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] $L \rightarrow \cdot id$ [\$=] id [\$] $L \rightarrow *R$ L L → • *R [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$ [\$] $R \rightarrow L$

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{L} = \mathbf{R}
                        LALR(1) Construction
\mathbf{E} \to \mathbf{R}
L \rightarrow id
\mathbf{L} \rightarrow *\mathbf{R}
                                                                L \rightarrow * \cdot R
                                                                                     [$]
\mathbf{R} \to \mathbf{L}
                                                                R \rightarrow L
                                                                                     [$]
          E \to R^{\centerdot}
                                [$]
                                                                                                                       E \rightarrow L = R \cdot [\$]
                     R
                                                                                                                                      R
           S \rightarrow \cdot E
                                [$]
           E \rightarrow L = R [\$]
                                                                                                                       E \rightarrow L = R 
start E \rightarrow R
                                [$]
                                                                                                                        R \rightarrow L
                                                                                                                                             [$]
           R \rightarrow L
                            [$]
                                                                                                                        L \rightarrow \cdot id
                                                                                                                                             [$]
           L \rightarrow \cdot id
                                [$=]
                                                                                                 id
                                                                                                                                             [$]
                                                                                                                        L \rightarrow *R
                                                                              L
           L → • *R
                                [$=]
                                                   id
                           E
           S \rightarrow E
                                [$]
                                              L \rightarrow id
                                                                   [$=]
                                                                                 R \rightarrow L
                                                                                                      [$]
                                                                                                                       R \rightarrow L
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{L} = \mathbf{R}
                         LALR(1) Construction
\mathbf{E} \to \mathbf{R}
L \rightarrow id
\mathbf{L} \rightarrow *\mathbf{R}
                                                                                      [$]
                                                                 L \rightarrow * \cdot R
\mathbf{R} \to \mathbf{L}
                                                                R \rightarrow L
                                                                                      [$]
                                                                 L \rightarrow \cdot id
                                                                                      [$]
           E \to R^{\centerdot}
                                [$]
                                                                 L \rightarrow *R
                                                                                      [$]
                                                                                                                         E \rightarrow L = R \cdot [\$]
                     R
                                                                                                                                       R
           S \rightarrow \cdot E
                                [$]
           E \rightarrow L = R [\$]
                                                                                                                         E \rightarrow L = R [\$]
start E \rightarrow R
                                [$]
                                                                                                                         R \rightarrow L
                                                                                                                                               [$]
           R \rightarrow L
                            [$]
                                                                                                                                               [$]
                                                                                                                         L \rightarrow \cdot id
                                [$=]
           L \rightarrow \cdot id
                                                                                                  id
                                                                                                                         L \rightarrow *R
                                                                                                                                               [$]
                                                                               L
           L → • *R
                                [$=]
                                                   id
                            E
           S \rightarrow E
                                [$]
                                              L \rightarrow id
                                                                    [$=]
                                                                                  R \rightarrow L
                                                                                                        [$]
                                                                                                                         R \rightarrow L
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{L} = \mathbf{R}
                         LALR(1) Construction
\mathbf{E} \to \mathbf{R}
L \to \text{id}
\mathbf{L} \rightarrow *\mathbf{R}
                                                                                      [$]
                                                                L \rightarrow * \cdot R
\mathbf{R} \to \mathbf{L}
                                                                R \rightarrow L
                                                                                      [$]
                                                                L \rightarrow \cdot id
                                                                                      [$]
           E \to R^{\centerdot}
                                [$]
                                                                L \rightarrow *R
                                                                                      [$]
                                                                                                                         E \rightarrow L = R \cdot [\$]
                     R
                                                                                                                                       R
           S \rightarrow \cdot E
                                [$]
           E \rightarrow L = R [\$]
                                                                                                                         E \rightarrow L = R [\$]
start E \rightarrow R
                                [$]
                                                                                          L
                                                                                                                         R \rightarrow L
                                                                                                                                               [$]
           R \rightarrow L
                             [$]
                                                                                                                         L \rightarrow \cdot id
                                                                                                                                               [$]
           L \rightarrow \cdot id
                                 [$=]
                                                                                                  id
                                                                                                                                               [$]
                                                                                                                         L \rightarrow *R
                                                                               L
           L → • *R
                                [$=]
                                                   id
                           E
           S \rightarrow E
                                [$]
                                              L \rightarrow id
                                                                    [$=]
                                                                                  R \rightarrow L
                                                                                                        [$]
                                                                                                                         R \rightarrow L
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{L} = \mathbf{R}
                         LALR(1) Construction
\mathbf{E} \to \mathbf{R}
L \rightarrow id
\mathbf{L} \rightarrow *\mathbf{R}
                                                                                      [$]
                                                                L \rightarrow * \cdot R
\mathbf{R} \to \mathbf{L}
                                                                R \rightarrow L
                                                                                      [$]
                                                                L \rightarrow \cdot id
                                                                                      [$]
           E \to R^{\centerdot}
                                [$]
                                                                L \rightarrow *R
                                                                                      [$]
                                                                                                                        E \rightarrow L = R \cdot [\$]
                     R
                                                                    id
                                                                                                                                       R
           S \rightarrow \cdot E
                                [$]
           E \rightarrow L = R [\$]
                                                                                                                         E \rightarrow L = R [\$]
start E \rightarrow R
                                [$]
                                                                                          L
                                                                                                                         R \rightarrow L
                                                                                                                                              [$]
           R \rightarrow L
                            [$]
                                                                                                                         L \rightarrow \cdot id
                                                                                                                                              [$]
           L \rightarrow \cdot id
                                [$=]
                                                                                                  id
                                                                                                                                              [$]
                                                                                                                         L \rightarrow *R
                                                                               L
           L → • *R
                                [$=]
                                                   id
                           E
           S \rightarrow E
                                [$]
                                              L \rightarrow id
                                                                    [$=]
                                                                                  R \rightarrow L
                                                                                                       [$]
                                                                                                                        R \rightarrow L
```

```
\mathbf{S} \to \mathbf{E}
\mathbf{E} \to \mathbf{L} = \mathbf{R}
                         LALR(1) Construction
\mathbf{E} \to \mathbf{R}
L \rightarrow id
\mathbf{L} \rightarrow *\mathbf{R}
                                                                                     [$]
                                                                L \rightarrow * \cdot R
\mathbf{R} \to \mathbf{L}
                                                                R \rightarrow L
                                                                                     [$]
                                                                                                       R
                                                                                                                     L \rightarrow *R
                                                                                                                                          [$]
                                                                L \rightarrow \cdot id
                                                                                     [$]
           E \to R^{\centerdot}
                                [$]
                                                                L \rightarrow *R
                                                                                     [$]
                                                                                                                        E \rightarrow L = R \cdot [\$]
                     R
                                                                    id
                                                                                                                                       R
           S \rightarrow \cdot E
                                [$]
           E \rightarrow L = R [\$]
                                                                                                                        E \rightarrow L = R [\$]
start E \rightarrow R
                                [$]
                                                                                         L
                                                                                                                         R \rightarrow L
                                                                                                                                              [$]
           R \rightarrow L
                             [$]
                                                                                                                         L \rightarrow \cdot id
                                                                                                                                              [$]
                                [$=]
           L \rightarrow \cdot id
                                                                                                  id
                                                                                                                                              [$]
                                                                                                                         L \rightarrow *R
                                                                               L
           L → • *R
                                [$=]
                                                   id
                           E
           S \rightarrow E
                                [$]
                                              L \rightarrow id
                                                                   [$=]
                                                                                  R \rightarrow L
                                                                                                       [$]
                                                                                                                        R \rightarrow L
```

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ [\$] $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ [\$] $R \rightarrow L$ R $L \rightarrow *R$ [\$] $L \rightarrow \cdot id$ [\$] $E \to R^{\centerdot}$ [\$] $L \rightarrow *R$ [\$] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R [\$]$ start $E \rightarrow R$ [\$] L $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] [\$=] $L \rightarrow \cdot id$ id [\$] $L \rightarrow *R$ L L → • *R [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$ [\$] $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ [\$] $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ [\$] R $L \rightarrow *R$ [\$] [\$] $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ [\$] $L \rightarrow *R$ [\$] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R [\$]$ start $E \rightarrow R$ [\$] L $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] $L \rightarrow \cdot id$ [\$=] id [\$] $L \rightarrow *R$ L $L \rightarrow *R$ [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$ [\$] $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ [\$=] $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ [\$=] R $L \rightarrow *R$ [\$] [\$=] $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ [\$] $L \rightarrow *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R [\$]$ start $E \rightarrow R$ [\$] L $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] [\$=] $L \rightarrow \cdot id$ id [\$] $L \rightarrow *R$ L $L \rightarrow *R$ [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$ [\$] $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ [\$=] $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ [\$=] R L → * R · [\$=] [\$=] $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ [\$] $L \rightarrow *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R [\$]$ start $E \rightarrow R$ [\$] L $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] [\$=] $L \rightarrow \cdot id$ id [\$] $L \rightarrow *R$ L L → • *R [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$ [\$] $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ LALR(1) Construction $\mathbf{E} \to \mathbf{R}$ $L \rightarrow id$ $\mathbf{L} \rightarrow *\mathbf{R}$ [\$=] $L \rightarrow * \cdot R$ $\mathbf{R} \to \mathbf{L}$ [\$=] R L → * R · [\$=] [\$=] $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ [\$] $L \rightarrow *R$ [\$=] $E \rightarrow L = R \cdot [\$]$ R id R $S \rightarrow \cdot E$ [\$] $E \rightarrow L = R [\$]$ $E \rightarrow L = R [\$]$ start $E \rightarrow R$ [\$] L $R \rightarrow L$ [\$] $R \rightarrow L$ [\$] $L \rightarrow \cdot id$ [\$] [\$=] $L \rightarrow \cdot id$ id [\$] $L \rightarrow *R$ L L → • *R [\$=] id E $S \rightarrow E$ [\$] $L \rightarrow id$ [\$=] $R \rightarrow L$. [\$=] $R \rightarrow L$

Analysis of our Algorithm

- Since we merge as we go, size of the partial automaton never exceeds size of overall automaton.
- However, this algorithm could be very slow in practice.
 - We might still have to generate all the LR(1) states, even if they immediately get merged.
- This can be very slow.

SLR uses FOLLOW sets

• Recall: FOLLOW(A) is the set of terminals that can follow A in a derivation:

```
FOLLOW(A) = \{ t \mid S \Rightarrow * \alpha A t \omega \}
```

- SLR is LR(0), with reductions augmented using FOLLOW sets.
- This is too weak for two reasons:
 - It ignores context (what state we're in).
 - It ignores which reduction we're doing.

LALR uses LA sets

- Given an LR(0) state q and a production $\mathbf{A} \to \mathbf{y}$, the **lookahead set** LA(q, $\mathbf{A} \to \mathbf{y}$) is defined as LA(q, $\mathbf{A} \to \mathbf{y}$) = { $\mathbf{t} \mid \mathbf{S} \Rightarrow * \alpha \mathbf{A} \mathbf{t} \boldsymbol{\omega}$ and $\alpha \mathbf{y}$ reaches q }
- Here, " αy reaches q" means that the LR(0) automaton, when run on αy , reaches state q.
- Intuitively, if we're in some state q and are going to reduce \mathbf{A} to $\mathbf{\gamma}$, $\mathrm{LA}(q, \mathbf{A} \to \mathbf{\gamma})$ is the set of terminals that could actually follow \mathbf{A} at this point, given that we're reducing $\mathbf{A} \to \mathbf{\gamma}$.
- Much more precise than FOLLOW sets.

LA and FOLLOW

- The lookahead set LA(q, $A \rightarrow y$) is defined as LA(q, $A \rightarrow y$) = { $t \mid S \Rightarrow * \alpha A t \omega$ and αy reaches q }
- The follow set FOLLOW(A) is defined as $FOLLOW(A) = \{ t \mid S \Rightarrow^* \alpha A t \omega \}$
- Note that $LA(q, A \rightarrow y) \subseteq FOLLOW(A)$; that is, LA sets are "more precise" than FOLLOW sets.
- If we can compute LA from FOLLOW, we can construct a LALR(1) parser efficiently.

 $\mathbf{S} \to \mathbf{E}$ An LR(0) Automaton $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ $\mathbf{E} \to \mathbf{R}$ $\mathbf{L} o \mathtt{id}$ $L \rightarrow *R$ L → * ·R $\mathbf{R} \to \mathbf{L}$ $R \rightarrow \cdot L$ ► L → * R · $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ $L \rightarrow \cdot \star R$ $E \rightarrow L = R$ R id R $S \rightarrow \cdot E$ $E \rightarrow \cdot L = R$ $E \rightarrow L = \cdot R$ start $E \rightarrow R$ L $R \rightarrow L$ $R \rightarrow \cdot L$ $L \rightarrow \cdot id$ $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ L L → • *R id E $E \to L \cdot = R$ $L \rightarrow id$ $R \rightarrow L$ $S \rightarrow E$ $R \rightarrow L$

 $\mathbf{S} \to \mathbf{E}$ An LR(0) Automaton $\mathbf{E} \to \mathbf{L} = \mathbf{R}$ $\mathbf{E} \to \mathbf{R}$ $\mathbf{L} o \mathtt{id}$ $\mathbf{L} \rightarrow \mathbf{*R}$ L → * ·R $\mathbf{R} \to \mathbf{L}$ $R \rightarrow \cdot L$ ► L → * R · $L \rightarrow \cdot id$ $E \to R^{\centerdot}$ $L \rightarrow *R$ $E \rightarrow L = R$ R id R $S \rightarrow \cdot E$ $E \rightarrow \cdot L = R$ $E \rightarrow L = \cdot R$ start $E \rightarrow R$ L $R \rightarrow L$ $R \to ^{\boldsymbol{\cdot}} L$ $L \rightarrow \cdot id$ $L \rightarrow \cdot id$ id $L \rightarrow \cdot *R$ L L → • *R id E $L \rightarrow id$ $S \rightarrow E$ $R \rightarrow L$

What if we used the LR(0) automaton to add context to the grammar?

Prepare for one of the most beautiful constructions of the quarter...

Constructing Augmented Grammars

- For each item $\mathbf{A} \to \boldsymbol{\cdot} \boldsymbol{\omega}$ in some state q:
 - Trace out the path ω takes through the LR(0) automaton starting at q.
 - Replace each nonterminal in ω with a nonterminal annotated with the state transitioned to and from by the edge labeled with that nonterminal.
 - Replace \mathbf{A} with a nonterminal annotated with the start and end state of the transition on \mathbf{A} out of q.
- Result is a larger grammar with more precise productions.

Why is this Grammar Useful?

- At a high-level, separates out the nonterminals based on their context.
- This makes the FOLLOW sets more precise for their nonterminals.
- In fact, the FOLLOW sets are surprisingly precise.

Augmented FOLLOW Sets

$$\begin{split} \mathbf{S}_{1} &\to \mathbf{E}_{1\text{-}3} \\ \mathbf{E}_{1\text{-}3} &\to \mathbf{L}_{1\text{-}6} = \mathbf{R}_{7\text{-}8} \\ \mathbf{E}_{1\text{-}3} &\to \mathbf{R}_{1\text{-}2} \\ \mathbf{R}_{1\text{-}2} &\to \mathbf{L}_{1\text{-}6} \\ \mathbf{L}_{1\text{-}6} &\to \mathbf{id} \\ \mathbf{L}_{1\text{-}6} &\to \mathbf{*R}_{10\text{-}9} \\ \mathbf{R}_{7\text{-}8} &\to \mathbf{L}_{7\text{-}5} \\ \mathbf{L}_{7\text{-}5} &\to \mathbf{id} \\ \mathbf{L}_{7\text{-}5} &\to \mathbf{*R}_{10\text{-}9} \\ \mathbf{R}_{10\text{-}9} &\to \mathbf{L}_{10\text{-}5} \\ \mathbf{L}_{10\text{-}5} &\to \mathbf{id} \\ \mathbf{L}_{10\text{-}5} &\to \mathbf{*R}_{10\text{-}9} \end{split}$$

Augmented FOLLOW Sets

$$\begin{split} &S_{1} \to E_{1\text{-}3} \\ &E_{1\text{-}3} \to L_{1\text{-}6} = R_{7\text{-}8} \\ &E_{1\text{-}3} \to R_{1\text{-}2} \end{split}$$

$$R_{1-2} \rightarrow L_{1-6}$$

$$L_{1-6} \rightarrow id$$

$$L_{1-6} \to R_{10-9}$$

$$R_{7-8} \to L_{7-5}$$

$$L_{7-5} o id$$

$$L_{7-5} \to *R_{10-9}$$

$$R_{10-9} \to L_{10-5}$$

$$L_{10-5} o exttt{id}$$

$$L_{10-5} \to *R_{10-9}$$

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R ₁₀₋₉
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L_{1-6}	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

Using Our FOLLOW Sets

S_1	E ₁₋₃	L ₁₋₆	L ₇₋₅	L ₁₀₋₅	R_{1-2}	R ₇₋₈	R_{10-9}
\$	\$	=	\$	=	\$	\$	=

Propagating Changes

- For each item $\mathbf{A} \to \boldsymbol{\cdot} \boldsymbol{\omega}$ in a state q:
 - Let $\mathbf{A}_{q \cdot r}$ be the nonterminal corresponding to \mathbf{A} following the transition out of q into some state r.
 - Trace through the automaton along the path labeled by ω . This will lead to a state containing an item $A \to \omega$.
 - Add to the lookahead of $\mathbf{A} \to \boldsymbol{\omega}$ · the contents of FOLLOW($\mathbf{A}_{a.r}$)

LALR(1)-by-SLR(1)

- Fast and simple construction of LALR(1) lookaheads:
- Construct the LR(0) automaton for the grammar.
 - Construct the augmented grammar by replacing nonterminals with new nonterminals based on the LR(0) transitions.
 - Compute the FOLLOW sets for these nonterminals.
 - Propagate changes through the LR(0) automaton.
- **Theorem** (Bermudez and Logothetis): This correctly computes LALR(1) lookaheads.

Summary of LALR(1)

- Along with LL(k), one of the most popular parsing algorithms in use today.
- Produced by the **bison** parser generator; rarely generated by hand.
- Can handle most, but not all, LR(1) languages.

Practical Concerns

Where Theory Meets Practice

- We've just covered six powerful parsing algorithms:
 - Leftmost DFS
 - LL(1)
 - LR(0)
 - SLR(1)
 - LALR(1)
 - LR(1)
- How do we make them work in practice?

Two Practical Concerns

Ambiguity

- Real grammars are often ambiguous.
- Programmers are *terrible* at eliminating it.
- How do you build a parser to try to combat it?

Error-handling

- How do you report errors intelligently?
- How do you continue parsing after an error?

Ambiguity and Predictive Parsing

- The predictive parsers we have seen so far (LL(1), LR(0), SLR(1), LALR(1), LR(1)) only work on unambiguous grammars.
 - Intuitively: if grammar is ambiguous, cannot uniquely guess which production/reduction to use.
 - Formally proving this is somewhat involved.
- Most grammars for programming languages, unless cleverly written, are ambiguous.
- How can we handle this?

Parsing Ambiguous Grammars

• Consider this simple grammar for arithmetic expressions:

```
S \rightarrow E
E \rightarrow E + E
E \rightarrow E * E
E \rightarrow int
E \rightarrow (E)
```

- This grammar is ambiguous.
 - e.g. Two trees for int + int * int
- What happens if we try parsing it?

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$ E
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|cccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{int} & E \rightarrow \cdot \text{int} \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$ E
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; .$$

$$\mathsf{E} \to \mathsf{int}$$
 .

	int	+	*	()	\$ E
1	s10					
2						
3						
4						
5						
6						
7						
8						
9						
10						

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$ E
1	s10			s7		
2						
3						
4						
5						
6						
7						
8						
9						
10						

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|ccccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$ Е
1	s10			s7		s2
2						
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$
 .

	int	+	*	()	\$ Е
1	s10			s7		s2
2						
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|ccccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$ Е
1	s10			s7		s2
2		s3				
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|cccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$E \rightarrow int$$

	int	+	*	()	\$ E
1	s10			s7		s2
2		s3	s4			
3						
4						
5						
6						
7						
8						
9						
10						

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|cccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{l} E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3							
4							
5							
6							
7							
8							
9							
10							

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot E *$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E *$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|cccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int}$$
 .

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3							
4							
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{l} E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10						
4							
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$\begin{array}{c|cccc} E \rightarrow E + \cdot E & E \rightarrow E * \cdot E \\ E \rightarrow \cdot E + E & E \rightarrow \cdot E + E \\ E \rightarrow \cdot E * E & E \rightarrow \cdot E * E \\ E \rightarrow \cdot \text{ int } & E \rightarrow \cdot \text{ int } \\ E \rightarrow \cdot (E) & E \rightarrow \cdot (E) \end{array}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			
4							
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

10

$$\mathsf{E} \to \mathsf{int}$$

 $FOLLOW(S) = \{ \}$ $FOLLOW(E) = \{ +, *,), $ \}$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4							
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4							
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E *$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10						
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$
 .

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E *$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \in E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5							
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3					
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4				
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4				
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2				
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2		
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$,\$ }

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6							
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 :

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3					
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3	s4				
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4				
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3				
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \in E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3		
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. S → E
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int}$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$,\$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$\mathsf{E} \to \mathsf{int}$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7							
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10						
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \in E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$,\$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			
8							
9							
10							

$$S \rightarrow \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Ε
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8							
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 :

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3					
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4				
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. S → E
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9							
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E *$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$),\$	}

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4					
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 :

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4				
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \to int \; \cdot$$

$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$ }

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4		
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 :

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10							

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5					

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5				

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5		

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot ^* \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E}) \; \cdot$$

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

```
1. \mathbf{S} \rightarrow \mathbf{E}
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$E \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + E$$

$$E \rightarrow E \cdot * E$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$\mathsf{E} \to \mathsf{int} \; \cdot$$

$FOLLOW(S) = \{ \$ \}$		
$FOLLOW(\mathbf{E}) = \{ +, *, \}$, \$	}

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Resolving Ambiguity

- Although the grammar is ambiguous, there is clearly one intended parse tree because of operator precedence.
- How can we use this precedence information to avoid LR conflicts?

Precedence Declarations

- Tell the parser generator about the *associativity* and *precedence* of certain rules.
- Productions can be left-associative, right-associative, or nonassociative.
- Productions can have their priorities ranked against one another.

$$S \rightarrow \cdot E$$

 $E \rightarrow \cdot E + E$
 $E \rightarrow \cdot E * E$
 $E \rightarrow \cdot int$
 $E \rightarrow \cdot (E)$

1. $\mathbf{S} \rightarrow \mathbf{E}$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$

3.
$$\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}$$

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

3

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow E * E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

8

$$\begin{array}{c} \mathsf{E} \to (\mathsf{E} \cdot) \\ \mathsf{E} \to \mathsf{E} \cdot + \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \cdot * \mathsf{E} \end{array}$$

$$\mathsf{E} \to (\mathsf{E})$$
 .

$$E \rightarrow int$$

	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Left-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Left-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$\begin{array}{c} 5 \\ E \rightarrow E + E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

		6			
Ε	\rightarrow \rightarrow \rightarrow	Ε	*	Е	
Ε	\longrightarrow	Е	٠	+	Ε
Ε	\longrightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} & & & \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

9
∃ → (E) ·
10
∃ → int ·

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

$$\begin{array}{c} \mathbf{Z} \\ \mathbf{S} \rightarrow \mathbf{E} \cdot \\ \mathbf{E} \rightarrow \mathbf{E} \cdot + \mathbf{E} \\ \mathbf{E} \rightarrow \mathbf{E} \cdot * \mathbf{E} \end{array}$$

		5		
Ε	\longrightarrow	Ε	+	E·
Ε	\longrightarrow	Ε		Ε ·
Ε	\longrightarrow	Ε	. *	E

		6			
Ε	\rightarrow	Ε	*	Е	
Ε	\longrightarrow	Ε		+	Ε
Ε	\rightarrow	Ε		*	Е

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} E \rightarrow (E) \cdot \\ \hline 10 \\ E \rightarrow int \cdot \end{array}$$

	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4 r2		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
E \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

$$\begin{array}{c} 5 \\ E \rightarrow E + E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

		6			
Ε	\longrightarrow	Ε	*	Е	
Ε	$\overset{\longrightarrow}{\longrightarrow}$	Ε		+	Ε
Ε	\longrightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

	int	+	*	()	\$	Ε
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

		5			
Ε	\rightarrow	Ε	+		Ξ.
Ε	\rightarrow \rightarrow \rightarrow	Ε		+	Ε
Ε	\longrightarrow	Ε		*	Ε

		6			
Ε	\rightarrow \rightarrow \rightarrow	Ε	*	Е	
Ε	\longrightarrow	Ε		+	Ε
Ε	\longrightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} & & & \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

9
E o (E) .
10
$E \to int \; \cdot$

Ι)	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		s3 r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
F \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

$$\begin{array}{c} \mathbf{Z} \\ \mathbf{S} \rightarrow \mathbf{E} \cdot \\ \mathbf{E} \rightarrow \mathbf{E} \cdot + \mathbf{E} \\ \mathbf{E} \rightarrow \mathbf{E} \cdot * \mathbf{E} \end{array}$$

		5		
Ε	\longrightarrow	Ε	+	Ε·
Ε	\longrightarrow	Ε	٠ ٦	- E
Ε	\longrightarrow	Ε	. *	Ε

	6
E o	E * E ·
	$E \cdot + E$
$E \to$	E · * E

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & & & & & \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c|c} E \rightarrow (C \cdot) \\ \hline & & & \\ E \rightarrow (C \cdot) \\ \hline & & & \\ E \rightarrow (C \cdot) \\ \hline & & & \\ E \rightarrow (C \cdot) \\ \hline & & & \\ E \rightarrow (C \cdot) \\ \hline & & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline & & \\ E \rightarrow (C \cdot) \\ \hline \\ E \rightarrow (C \cdot) \\ \hline$$

5	2		s3	s4			acc	
E + E ·	3	s10			s7			s5
E · + E E · * E	4	s10			s7			s6
E. E	5		s3 r2	s4		r2	r2	
	6		s3 r3	s4 r3		r3	r3	
9	7	s10			s7			s8
(E) ·	8		s3	s4		s9		
10	9		r4	r4		r4	r4	
int ·	10		r5	r5		r5	r5	

int

s10

+

Е

s2

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

		5			
Ε	\rightarrow	Ε	+	Е	
Ε	$\begin{array}{c} \longrightarrow \\ \longrightarrow \\ \longrightarrow \end{array}$	Ε		+	Ε
Ε	\longrightarrow	Ε	•	*	Ε

		6		
	\rightarrow			
Ε	\rightarrow \rightarrow	Ε	+	Е
Ε	\longrightarrow	Ε	*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} E \rightarrow (E) \cdot \\ \hline 10 \\ \hline E \rightarrow int \cdot \end{array}$$

1	S10			S/			SZ
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	
	3 4 5 6 7 8 9	 3 s10 4 s10 5 6 7 s10 8 9 	3 s10 4 s10 5 s3 r2 6 r3 7 s10 8 s3 9 r4	3 s10	3 s10 s7 4 s10 s7 5 s3 s4 s4 6 r3 s4 r3 7 s10 s7 8 s3 s4 9 r4 r4	3 s10 s7 4 s10 s7 5 s3 s4 r2 6 r3 s4 r3 7 s10 s7 8 s3 s4 s9 9 r4 r4 r4 r4	3 s10 s7 s7 s10 s7 s7 s10 s7 s3 s4 s7 s7 s10 s7 s7 s10 s7 s7 s9

int

+

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

	5
Ε	→ E + E ·
	\rightarrow E · + E
Ε	$\rightarrow E \cdot * E$

10

	6		
E -	→ E → E → E	* E	
E -	$\rightarrow E$. +	Ε
E -	$\rightarrow E$. *	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & 9 \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\begin{array}{c|c} E \rightarrow (E) \cdot \\ \hline 10 \\ E \rightarrow int \cdot \end{array}$$

1	S10			S/			SZ
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	
	2 3 4 5 6 7 8 9	2 3 s10 4 s10 5 6 7 s10 8 9	2 s3 3 s10 4 s10 5 s3 r2 6 r3 7 s10 8 s3 9 r4	2 s3 s4 3 s10 4 s10 5 s3 s4 6 r3 s3 s4 7 s10 8 s3 s4 9 r4 r4	2 s3 s4 s7 3 s10 s7 4 s10 s7 5 s3 s4 s4 6 r3 s4 r3 7 s10 s7 8 s3 s4 s4 9 r4 r4	2 s3 s4 s7 3 s10 s7 s7 4 s10 s3 s4 r2 5 r3 s4 r3 r3 7 s10 s7 s7 8 s3 s4 s9 9 r4 r4 r4 r4	2 s3 s4 acc 3 s10 s7 s7 4 s10 s7 s2 r2 6 r3 s4 r3 r3 r3 7 s10 s7 s7 8 s3 s4 s9 s9 9 r4 r4 r4 r4

int

+

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

		5			
Ε	\rightarrow \rightarrow	Ε	+	Ε	
Ε	\longrightarrow	Ε	. 7	۴ [

		6			
Ε	\rightarrow \rightarrow \rightarrow	Ε	*	Е	
Ε	\longrightarrow	Е	٠	+	Ε
Ε	\longrightarrow	Е	٠	*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & 9 \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\begin{array}{c|c} E \rightarrow (E) \cdot \\ \hline 10 \\ E \rightarrow int \cdot \end{array}$$

				,		·	
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

		5		
Ε	\longrightarrow	Ε	+	Ε·
Ε	\longrightarrow	Ε	٠ ٦	- E
Ε	\longrightarrow	Ε	. *	Ε

6								
Ε	\longrightarrow	Ε	*	Е				
Ε	$\overset{\longrightarrow}{\longrightarrow}$	Ε		+	Ε			
Ε	\longrightarrow	Ε		*	Ε			

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} \mathbf{8} & \mathbf{9} \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} E \rightarrow (E) \cdot \\ \mathbf{10} \\ E \rightarrow \text{int} \cdot \end{array}$$

1110	Τ		()	Ф	Ľ
s10			s7			s2
	s3	s4			acc	
s10			s7			s5
s10			s7			s6
	r2	s4		r2	r2	
	r3	r3		r3	r3	
s10			s7			s8
	s3	s4		s9		
	r4	r4		r4	r4	
	r5	r5		r5	r5	
	s10 s10	s10 s3 s10 r2 r3 s10 s3 r4	s10 s3 s4 s10 s10 r2 s4 r3 r3 s10 r4 r4	s10 s7 s3 s4 s10 s7 s10 s7 r2 s4 r3 r3 s10 s7 s4 s7 r4 r4	s10 s7 s3 s4 s10 s7 s10 s7 r2 s4 r2 r3 r3 r3 s10 s7 s3 s4 s9 r4 r4 r4	s10 s7 s3 s4 s7 acc s10 s7 r2 s4 r2 r2 r3 r3 r3 r3 s10 s7 s3 s4 s9 r4 r4 r4 r4

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Left-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Left-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

5
$E \rightarrow E + E \cdot E \rightarrow E \rightarrow$

		6			
Ε	\rightarrow	Ε	*	Е	
	\longrightarrow				
Ε	\longrightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} 8 & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} E \rightarrow (E) \cdot \\ \hline 10 \\ \hline E \rightarrow int \cdot \end{array}$$

-)	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Rgt.-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Rgt.-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$\begin{array}{c} 5 \\ E \rightarrow E + E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

6							
$E \to$	E * E						
$E \rightarrow E \rightarrow$	E · +	Ε					
$E \to$	E · *	Ε					

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} 8 & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

$$\begin{array}{c|c} E \rightarrow (E) \cdot \\ \hline 10 \\ \hline E \rightarrow int \cdot \end{array}$$

1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

E

int

+

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Rgt.-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Rgt.-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

$$\begin{array}{c} 5 \\ E \rightarrow E + E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

6							
$E \to$							
$\begin{array}{c} E \to \\ E \to \end{array}$	Ε		+	Е			
$E \to$	Е		*	Ε			

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} & & & & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} & & & \\ E \rightarrow (E) \cdot \\ \hline 10 \\ \hline E \rightarrow int \cdot \end{array}$$

1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3 r2	s4		r2	r2	
6		r3	s4 r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

E

int

+

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Rgt.-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Rgt.-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

	5
Ε	→ E + E ·
	\rightarrow E · + E
Ε	$\rightarrow E \cdot * E$

	6			
E o	Ε	*	Е	
$\begin{array}{c} E \to \\ E \to \end{array}$	Ε		+	Ε
$E \to$	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} \mathbf{8} & \mathbf{9} \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c|c} E \rightarrow (E) \cdot \\ \hline \mathbf{10} \\ E \rightarrow \text{int} \cdot \end{array}$$

1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4		r2	r2	
6		r3	s4		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Ε

int

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Rgt.-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Rgt.-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

5			
_			
\rightarrow	$\rightarrow E$ $\rightarrow E$	→ E + → E ·	→ E + E → E · + → E · *

		6			
Ε	\rightarrow \rightarrow \rightarrow	Ε	*	Е	
Ε	\longrightarrow	Ε		+	Ε
Ε	\longrightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c} \textbf{8} \\ \textbf{E} \rightarrow (\textbf{E} \cdot \textbf{)} \\ \textbf{E} \rightarrow \textbf{E} \cdot \textbf{+} \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} \cdot \textbf{*} \textbf{E} \end{array}$$

	9
Ε	\rightarrow (E) ·
	10
Ε	→ int ·

1)	int	+	*	()	\$	Е
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		s3	s4		r2	r2	
6		r3	s4		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Resolving Conflicts with Precedence

- When choosing whether to reduce a rule containing t or shift the terminal r:
 - If t has higher priority, reduce.
 - If r has higher priority, shift.
 - If t and r have the same priority:
 - If t is left-associative, reduce.
 - If **t** is right-associative, **shift**.
 - If **t** is non-associative, **error**.

```
S \rightarrow \cdot E
E \rightarrow \cdot E + E
F \rightarrow \cdot E * E
\mathsf{E} \to \cdot \mathsf{int}
\mathsf{E} \to \cdot (\mathsf{E})
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

2.
$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$$
 (Left-assoc, pri. 0)

3.
$$\mathbf{E} \to \mathbf{E} \star \mathbf{E}$$
 (Left-assoc, pri. 1)

4.
$$\mathbf{E} \rightarrow (\mathbf{E})$$

5.
$$\mathbf{E} \rightarrow \mathbf{int}$$

5
$E \rightarrow E + E \cdot E \rightarrow E \cdot E \rightarrow E \cdot E \rightarrow E \cdot E \rightarrow E \cdot E \cdot$

		6			
Ε	\rightarrow	Ε	*	Е	
	\longrightarrow				
Ε	\rightarrow	Ε		*	Ε

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

$$\begin{array}{c|c} 8 & 9 \\ \hline E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array} \qquad \begin{array}{c} E \rightarrow (E) \cdot \\ \hline 10 \\ \hline E \rightarrow int \cdot \end{array}$$

-)	int	+	*	()	\$	E
1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

```
\begin{array}{c} \mathbf{1} \\ \mathbf{S} \rightarrow \cdot \, \mathbf{E} \\ \mathbf{E} \rightarrow \cdot \, \mathbf{E} + \mathbf{E} \\ \mathbf{E} \rightarrow \cdot \, \mathbf{E} * \, \mathbf{E} \\ \mathbf{E} \rightarrow \cdot \, \mathbf{int} \\ \mathbf{E} \rightarrow \cdot \, (\mathbf{E}) \end{array}
```

1.
$$\mathbf{S} \rightarrow \mathbf{E}$$

- 2. $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}$ (Left-assoc, pri. 0)
- 3. $\mathbf{E} \to \mathbf{E} \star \mathbf{E}$ (Left-assoc, pri. 1)
- 4. $\mathbf{E} \rightarrow (\mathbf{E})$
- 5. $\mathbf{E} \rightarrow \mathbf{int}$

2
\rightarrow E ·
\rightarrow E ·+ E
\rightarrow E ·* E

$$E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot int$$

$$E \rightarrow \cdot (E)$$

4
E → E * ·E
$E \rightarrow \cdot E + E$
E → · E * E
$E \rightarrow \cdot int$
$E \to \cdot (E)$

$$\begin{array}{c} 5 \\ E \rightarrow E + E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{array}$$

		6			
Ε	\longrightarrow	Ε	*	Е	
Ε	\rightarrow \rightarrow	Ε		+	Ε
Ε	\longrightarrow	Ε		*	Ε

$E \rightarrow (\cdot E)$	
$E \rightarrow \cdot E + I$	Ε
E → · E * E	Ξ
$E \to \cdot int$	
$E \to \cdot (E)$	

$$\begin{array}{c|c} & & & & & 9 \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E & & & 10 \\ \hline E \rightarrow \text{int} \cdot & & & \end{array}$$

1	s10			s7			s2
2		s3	s4			acc	
3	s10			s7			s5
4	s10			s7			s6
5		r2	s4		r2	r2	
6		r3	r3		r3	r3	
7	s10			s7			s8
8		s3	s4		s9		
9		r4	r4		r4	r4	
10		r5	r5		r5	r5	

Error Handling

- What should the parser do when it encounters an error?
- Could just say "syntax error," but we'd like more detailed messages.
- How do we resume parsing after an error?

Error Productions

- One idea: add productions to the grammar that identify common mistakes.
- For example:

```
\mathbf{E} \to \mathbf{E} + \mathbf{E}
\mathbf{E} \to \mathbf{E} \star \mathbf{E}
\mathbf{E} \to \mathbf{int}
\mathbf{E} \to (\mathbf{E})
\mathbf{E} \to \mathbf{E} \mathbf{E} (error production)
\mathbf{E} \to \mathbf{E} + (error production)
\mathbf{E} \to \mathbf{E} \star (error production)
```

Analysis of Error Productions

- Useful for diagnosing common programmer mistakes.
 - For example, using implements instead of extends in Java.
- Increases risk of parsing problems.
 - More likelihood for ambiguity.
 - More likelihood grammar won't be accepted by parser generator (i.e. not LALR(1))
- Forces parser generator to anticipate errors.

Panic Mode

- Idea: Augment grammar by adding rules for resuming parsing when Bad Things happen.
- Example:

```
\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E}
\mathbf{E} \rightarrow \mathbf{E} \star \mathbf{E}
\mathbf{E} \rightarrow (\mathbf{E})
\mathbf{E} \rightarrow \mathbf{int}
\mathbf{E} \rightarrow \mathbf{error} \mathbf{int}
\mathbf{E} \rightarrow (\mathbf{error})
```

- Tokens after errors are called synchronizing tokens.
- Technique employed by **bison** and many other parser generators.

Using Panic Mode

- When parser encounters an error in a configurating set, search for a production containing an error term.
 - Repeatedly shift tokens onto the stack until the synchronizing token is found.
 - Reduce using the error rule.
- Resume parsing as normal.