HoneyComb A Parallel Worst-Case Optimal Join on Multicores

Jiacheng Wu, Dan Suciu

June 2025

SIGMOD Conference

Introduction

What is Worst-Case Optimal Join

• Triangle Query: $Q(X, Y, Z) \leftarrow R(X, Y), S(Y, Z), T(X, Z)$

- Binary Join Plan
 - Large Intermediate Results

- Worst Case Optimal Joins
 - NO large intermediate results
 - Theoretical Guarantees

WCOJ - Generic Join Implementation

- Triangle Query:
 - |R|=|S|=|T|=N

- Generic Join (WCOJ)
 - Complexity: $O(N^{1.5})$
 - = worst size of results

```
For x \in \mathbb{R}.X \cap T.X

For y \in \mathbb{R}[x].Y \cap S.Y

For z \in S[y].Z \cap T[x].Z

Q += (x, y, z)
```

But how can GJ be parallelized?

Traditional Parallelization

- Partition on Top Level
 - $X = X_1 \cup X_2 \dots$
 - $R_i = \{(x, y) \in R \mid x \in X_i\}$
 - $T_i = \{(x, z) \in T \mid x \in X_i\}$

- Umbra, LogicBlox
 - Lazy Hash Trie Building
 - Build subtries when needed
 - Skip not used subtries
 - Work Stealing Framework

```
// Parititon R.X and T.X on X
// In parallel, Thread i:
For x \in R_i.X \cap T_i.X
For y \in R_i[x].Y \cap S.Y
For z \in S[y].Z \cap T_i[x].Z
Q += (x, y, z)
```

Traditional Parallelization: Issues

- On Sparse Data
 - Sensitive to Skew...
 - ...in Input and Output

- On Dense Data
 - Lazy index: increased cost
 - Read or Write Conflicts
 - Not Hardware Friendly

Our Methods

- Partition the Domains
 - $X = X_1 \cup X_2 \cup ... \cup X_1$ • $Y = Y_1 \cup Y_2 \cup ... \cup Y_n$
 - $Z = Z_1 \cup Z_2 \cup \ldots \cup Z_K$
- Partition the Relations
 - $R_{ij} = R \cap (X_i \times Y_j)$ = $\{(x,y) \in R \mid a \in X_i \& b \in Y_j\}$
 - $S_{jk} = S \cap (Y_j \times Z_k)$
 - $T_{ik} = T \cap (X_i \times Z_k)$
- Task (i, j, k)
 - Access split relations (R0)
 - Join Independently

```
// Partition R, S and T (see text)
// In parallel, Thread (i, j, k)
For x \in Rij.X \cap Tik.X
For y \in Rij[x].Y \cap Sjk.Y
For z \in Sjk[y].Z \cap Tik[x].Z
Q += (x, y, z)
```

Skew of the Wall-clock Time per Task

- Triangle on Orkut
- 4096x1x1
 - 4096 parts on X
 - Traditional Para WCOJ
- 16x16x16
 - 16 parts on X, Y, Z
 - Hypercube Optimal
- 64x64x1
 - 64 parts on X, Y
 - Our WCOJ

Background

HyperCube: Distributed

- Partition attributes
 - Split X|Y|Z into I|J|K slices
- Node is assigned label
 - (i,j,k) i∈[I], j∈[J], k∈[K]
- R(X, Y) is split to I*J parts
 - (x,y) is **sent** to $R_{ij}(X, Y)$ when $h_X(x)$ %I=i and $h_Y(y)$ %J=j
 - R_{ij}(X, Y) is broadcast to nodes (i,j,*) for any *∈[K]
- S(Y, Z), T(X, Z): similarly

HyperCube: Shared memory (Ours)

- Partition attributed
 - Split X|Y|Z into I|J|K slices
- Task is assigned label
 - (i,j,k) i∈[I], j∈[J], k∈[K]
- Partition R into I*J parts
 - (x,y) belongs to $R_{ij}(X, Y)$ when $h_X(x)$ %I=i and $h_Y(y)$ %J=j
 - R_{ij}(X, Y) is accessed by tasks (i,j,*) with any *∈[K]
- S(Y, Z), T(X, Z): similarly

HoneyComb

Architecture

- Four Components
 - Allocator
 - Optimizer
 - Preprocessor
 - Executor

- Two Stages
 - Preprocessing Stage
 - Join Stage

Preprocessor: Partition

- Partitioned Relation
 - Multi-Dim Array
 - R_{ij}(X, Y); S_{jk}(Y, Z);
 T_{ik}(X, Z)
 - Partition is sorted
- Sorting Cheaper
 - # part is small
 - Ips4o Sort Parallel
 - Partition Sequential
 - # part is large
 - Std Sort Sequential
 - Partition Parallel

• $R_{ij}(X, Y) = \{(x, y) \in R \mid h_X(x) = i, h_Y(y) = j\}$ • $S_{jk}(Y, Z) = \{(y, z) \in S \mid h_Y(y) = j, h_Z(z) = k\}$ • $T_{ik}(X, Z) = \{(x, z) \in T \mid h_X(x) = i, h_Z(z) = k\}$

PartID B

0

pref

R hx hy hz 5 0 0 4 4 3 2 2 0 0

Preprocessor: Coco Index

- Compressed Column
 - Trie-like
 - Flatten sorted array
 - For each partition
 - Parallel construction

- Benefits
 - Reduce construction
 - Allow compute eagerly
 - Avoid contention

• $R_{ij}(X, Y) = \{(x, y) \in R \mid h_X(x) = i, h_Y(y) = j\}$ • $S_{jk}(Y, Z) = \{(y, z) \in S \mid h_Y(y) = j, h_Z(z) = k\}$ • $T_{ik}(X, Z) = \{(x, z) \in T \mid h_X(x) = i, h_Z(z) = k\}$ CoCo Index $V_X \quad 0 \quad 2 \quad 5$ $O_X \quad 0 \quad 2 \quad 4 \quad 5$

Executor: Join over CoCo

- Compute GJ in parallel
 - Assign partition to thread with id mapping
 - Thread (i,j,k) access R_{ij} , S_{jk} , T_{ik} partition
- Intersect over Coco
 - Merge Intersection
 - Search next larger values iteratively
 - Exp, Quad, Lin
 - With Restriction
 - In next level (trie)
 - By offset vector

R(X,Y,Z)

R.X = 2
index(2,
$$V_x$$
) = 1
 $O_x[1]=2 O_x[2]=4$
 $V_y[2,4) = \{4,5\}$

S(X,Y,U)

• $R_{ij}(X, Y) = \{(x, y) \in R \mid h_X(x) = i, h_Y(y) = j\}$ • $S_{jk}(Y, Z) = \{(y, z) \in S \mid h_Y(y) = j, h_Z(z) = k\}$ • $T_{ik}(X, Z) = \{(x, z) \in T \mid h_X(x) = i, h_Z(z) = k\}$

S.X = 2
index(2,
$$V_x$$
) = 0
 $O_x[0]=0$ $O_x[1]=3$
 $V_y[0,3) = \{0,2,4\}$

Optimizer: Cost Model

- Robust to Datasets
 - Dense or Sparse
 - Skew or Uniform
- Key Ideas
 - measure the complexity of intersections based on the size of relations
 - Sum up the complexity with specific constants
 - Estimate the summation by calculating worst case projected join size

Table 1. Basic Notations for Cost Model

Notations	Definition
x / X	tuple of constants / variables
x_σ / X_σ	permuted tuple of constants / variables
$oldsymbol{x}_{i:j}$ / $oldsymbol{X}_{i:j}$	projected tuple of constants / variables ⁴
$\pmb{x} \oplus \pmb{X}$	concatenation of constants or variables
${\mathcal S}$	set of relations, e.g. $\{R_{j_1}, \dots, R_{j_k}\}$
$ \mathcal{S} $	the size of S , e.g. k above
\mathcal{N}	cardinalities of relations in S , e.g. $\{ R_{j_1} , \ldots, R_{j_k} \}$

$$C[x_{\sigma(1:i-1)} \oplus X_{\sigma(i)}] = |S[X_{\sigma(i)}]| \cdot \min \mathcal{N}[x_{\sigma(1:i-1)} \oplus X_{\sigma(i)}] \cdot \log_2 \left(1 + \frac{\max \mathcal{N}[x_{\sigma(1:i-1)} \oplus X_{\sigma(i)}]}{\min \mathcal{N}[x_{\sigma(1:i-1)} \oplus X_{\sigma(i)}]}\right)$$

$$C[X_{\sigma(1:i)}] = \sum_{x_{\sigma(1:i-1)} \in \mathcal{Q}(X_{\sigma(1:i-1)})} C[x_{\sigma(1:i-1)} \oplus X_{\sigma(i)}]$$

$$C[X_{\sigma(1:i)}] \le |S(X_{\sigma(i)}| \cdot (\sum \min \mathcal{N}) \cdot \log_2 \left(1 + \frac{\sum \max \mathcal{N}}{\sum \min \mathcal{N}}\right)$$

Optimizer: Ordering Partitioning

- Ordering Based on Cost Model
 - Choose a variable order with min cost
 - Use DP $O(2^{n-1})$ for small #attr and Greedy O(N*N) for large #attr
- Partitioning Based on viable variable ordering
 - Notice value will be discovered redundantly

$$\mathbb{C}[X_{\sigma}, P_{\sigma}] = \sum_{i \in [n]} \left(\left(\prod_{j>i} P_{\sigma(j)} \right) \mathcal{C}[X_{\sigma(1:i)}] \right)$$

- Prune Heuristically by avoiding large costs and small parts
- Measure Evenness to favor evenly distributed partition numbers
 - But with a bias having more shares on last variables in the ordering

Duplicated Intersection

 Illustration using the 4-clique query

- Colored Intersection is duplicated
 - Independent to previous attributes
 - Redundant to compute inside the loop


```
Q(X,Y,Z,U) := R1(X,Y),R2(X,Z),R3(X,U),
 R4(Y,Z),R5(Y,U),R6(Z,U).
```

BEFORE REWRITING

For $x \in R1.X \cap R2.X \cap R3.X$ For $y \in R1[x].Y \cap R4.Y \cap R5.Y$ For $z \in R2[x].Z \cap R4[y].Z \cap R6.Z$ For $u \in R3[x].U \cap R5[y].U \cap R6[z].U$ Q += (x, y, z, u)

Query Rewriting

• Procedure:

- Identify and Lift up duplicated intersections
- Treat as independent computational entities
- Compute them only once
- Cache/Reuse the results
- Keeping WCOJ
 - May be not optimal
 - Use cost model to avoid


```
# AFTER REWRITING

tmp_Y = R4.Y \cap R5.Y # Lift Up Y

For x \in R1.X \cap R2.X \cap R3.X

tmp_Z = R2[x].Z \cap R6.Z # Lift Up Z

For y \in R1[x].Y \cap tmp_Y

tmp_U = R3[x].U \cap R5[y].U # Lift Up U

For z \in R4[y].Z \cap tmp_Z

For u \in R6[z].U \cap tmp_U

Q += (x, y, z, u)
```

Experiments

Setup

• Baselines	Name	# Node	# Edge	Feature
• Umbra (DB with WCOJ)	WGPB [1, 28]	54.0M	81.4M	sparse, skew
 Diamond (Umbra Variants) 	Orkut [41]	3.07M	117M	partial dense, uniform
·	GPlus [39]	107K	13.6M	dense, skew
 Kuzu (Graph with WCOJ) 	USPatent [38]	3.77M	16.5M	sparse, uniform
 DuckDB (DB no WCOJ) 	Skitter [38]	1.69M	11.1M	sparse, partial skew
 Souffle (Datalog no WCOJ) 	Topcats [50]	1.79M	28.5M	partial dense, skew

Name	Queries
Q1 (Triangle)	Q(X, Y, Z) := R(X, Y), S(Y, Z), T(X, Z).
Q2 (4-Loop)	Q(X, Y, Z, U) := R1(X, Y), R2(X, Z), R3(Y, U), R4(Z, U).
Q4 (4-Diamond)	Q(X, Y, Z, U) := R1(X, Y), R2(X, Z), R3(Y, U), R4(Z, U), R5(Y, Z).
Q6 (4-Clique)	Q(X, Y, Z, U) := R1(X, Y), R2(X, Z), R3(Y, U), R4(Z, U), R5(Y, Z), R6(X, U).
Q8 (2-Triangle)	Q(X, Y, Z, U, V) := R1(X, Y), R2(X, Z), R3(Y, Z), R4(Z, U), R5(Z, V), R6(U, V).
LW (Loomis-Whitney)	Q(X, Y, Z, U) := R1(X, Y, Z), R2(X, Y, U), R3(X, Z, U), R4(Y, Z, U).
CT (Clover-Triangle)	Q(U, X, Y, Z) := R5(U, X, Y), R6(U, X, Z), R7(U, Y, Z).

Performance (Graph)

- Our approach beats baseline in most queries and datasets
 - On dense data, Umbra is slowed down by the lazy index
 - On sparse data, rewriting and index opt are most useful

Scalability

- Linear Scale
 - <=60 threads
 - physical
- In Detail
 - Perfect Scale on Join Stage
 - Good Scale on Preprocessing Stage

Variable Order

- Runtime (4-clique on WGPB)
- x-label (Variable order)
 - 4!=24 combinations

- Variable Order
 - Heavily effect performance
 - Influence # intermediate
 - No need to be the best

$$Q(X, Y, Z, U) = R1(X, Y) \land R2(X, Z) \land R3(X, U) \land$$
$$R4(Y, Z) \land R5(Y, U) \land R6(Z, U)$$

Partition

- Dot size
 - Relative Runtime
 - smaller is better
- More Partitions on C cause performance slow
 - Due to duplicated intersection on B
- Even Partitions on A,B cause performance fast
 - Due to non skewness of output tuples in join

```
// Partition R, S and T (see text)
// In parallel, Thread (i, j, k)
For x \in R_{ij}.X \cap T_{ik}.X
For y \in R_{ij}[x].Y \cap S_{jk}.Y
For z \in S_{jk}[y].Z \cap T_{ik}[x].Z
Q += (x, y, z)
```


Rewriting and Indexing

- Rewriting
 - Optimize execution plans
 - Efficient query processing
 - No rewrite on Query LW
 - No duplicated intersections
- Coco Index
 - Significant Improvement
 - Index Size: 1GB-5GB
 - Comparable to data sizes
 - Preprocess Time: 0.2s~5s
 - Acceptable Overhead

Conclusion

- Shared Memory ManyCore WCOJ Architecture
 - Sorting based Two Stage WCOJ
 - No Costly Index and No R/W Conflicts
 - Robust to Variety of Dataset
 - Fully Parallelization and Scalable
- With Comprehensive Complexity Cost Model
 - For Variable Ordering and Partitioning
- With Novel Optimization Technique
 - Cache Mechanisms to remove duplication

Future Work

- A Faster Estimation Way
 - reduce to polynomial
 - maybe even linear with precomputed stats
- A Wider Rewriting Mechanism
 - explore/reduce more potential duplication
 - take over the hypertree decomposition
 - integrate with ordering decision

Q & A Thanks!!