CCCC			FFFFFFFFFFF		TTTTTTTTTTTTT	
CCCCCC			FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	rrrr	TTTTTTTTTTTTT	LII
CCCC	CCCC		FFFF		TTTT	
CCCC	CCCC		FFFF		TTTT	
CCCC			FFFF		TTTT	
CCCC			FFFFFFFFFFF		TTTT	
CCCC			FFFFFFFFFFF		TTTT	
CCCC			FFFF		TTTT	
CCCC			FFFF		TTTT	
CCCC	CCCC		FFFF		TTTT	
CCCC	CCCC		FFFF		TTTT	
CCCCCCCCCCC XX		XXXX	FFFF	XXXX	TTTT	TTTT
CCCCCCC		XXXX	FFFF	XXXX	TTTT	TTTT

REFERENCE CARD

A 16-bit mini computer in the 1970s sense, designed and built out of 74xxx integrated circuits, and heavily influenced by the design of the DEC PDP-8. Everything from the instruction set to the operating system and documentation is home-brew. This is a bus and instruction set cheat sheet. The instruction set of the CFT cannot be quantified easily due to the PDP-8 styled instructions and extensions, but the 76 most commonly used instructions are tabulated here.

CONTROL BUS (P1)		CONTROL BUS (P2)	EXPANSION BUS (DIN 41612)				
1 CLL#	2 CPL#	1 SPTAC#	2 STPDR#	A1 GND	B1 GND	C1 GND		
3 RAGL#	4 WALU#	3 INCPC#	4 RAC#	A2 GND	B2 GND	C2 GND		
5 FL	6 FV	5 RDR#	6 RPC#	A3 +5V	B3 +5V	C3 +5V		
7 IR0	8 WEN#	7 WAC#	8 WAR#	A4 +3.3V	B4 +3.3V	C4 +3.3V		
9 IR2	10 END#	9 WDR#	10 WPC#	A5 AB0 >	B5 NC x	C5 DB0 =		
11 RUNITO	12 RUNIT1	11 FNEG	12 FZERO	A6 AB1 >	B6 SKIPEXT# *	C6 DB1 =		
13 RUNIT2	14 RUNIT3	13 PC10	14 PC11	A7 AB2 >	B7 ENDEXT# *	C7 DB2 =		
15 SKIP#	16 STI#	15 PC12	16 PC13	A8 AB3 >	B8 WS# *	C8 DB3 =		
17 CLI#	18 OPIF0	17 PC14	18 PC15	A9 AB4 >	B9 R1# >	C9 DB4 =		
19 OPIF1	20 OPIF2	19 WIR#	20 AINDEX#	A10 AB5 >	B10 R6# >	C10 DB5 =		
21 OPIF3	22 IR11	21 IBUS0	22 IBUS1	A11 AB6 >	B11 R7# >	C11 DB6 =		
23 AC0	24 AC1	23 IBUS2	24 IBUS3	A12 AB7 >	B12 W1# >	C12 DB7 =		
25 AC2	26 AC3	25 IBUS4	26 IBUS5	A13 IRQ3# *	B13 AEXTO >	C13 MEM# >		
27 AC4	28 AC5	27 IBUS6	28 IBUS7	A14 IRQ4# *	B14 AEXT1 >	C14 IO# >		
29 AC6	30 AC7	29 IBUS8	30 IBUS9	A15 IRQ5# *	B15 AEXT2 >	C15 R# >		
31 AC8	32 AC9	31 IBUS10	32 IBUS11	A16 IRQ6# *	B16 AEXT3 >	C16 W# >		
33 AC10	34 AC11	33 IBUS12	34 IBUS13	A17 TPA -	B17 AEXT4 >	C17 TPC -		
35 AC12	36 AC13	35 IBUS14	36 IBUS15	A18 IRQ7#	B18 AEXT5 >	C18 IRQ0# *		
37 AC14	38 AC15	37 IR12	38 IR13	A19 HALT# *	B19 AEXT6 >	C19 IRQ1# *		
39 ACCPL#	40 DEC#	39 IR14	40 IR15	A20 AB8 >	B20 AEXT7 >	C20 IRQ2# *		
				A21 AB9 >	B21 NC x	C21 DB8 =		
				A22 AB10 >	B22 RSTHOLD# >	C22 DB9 =		
# Active low				A23 AB11 >	B23 NC x	C23 DB10 =		
> Output				A24 AB12 >	B24 IODEV1XX# >	_		
< Input				A25 AB13 >	B25 IODEV2XX# >			
* Open Drain				A26 AB14 >	B26 IODEV3XX# >			
= Bidirection				A27 AB15 >	B27 T34# >	C27 DB14 =		
x Do not con				A28 SYSDEV#	B28 CLK4 >	C28 DB15 =		
- Card-local	signal			A29 CLK1 >	B29 CLK2 >	C29 IRQ# *		
				A30 IRQS# >	B30 CLK3 >	C30 RESET# *		
, ,		<pre><alexios@bedroomlar< pre=""></alexios@bedroomlar<></pre>	.org>	A31 GND	B31 GND	C31 GND		
http://www.be	droomlan.org/cft		A32 +5V	B32 +5V	C32 +5V			

TRAP	+				•		Description. Semantics. Notes.
!	0000 l	00000Raaaaaaaaa		 			Save PC and jump to trap. [1]=PC; PC=a
	0800	00000Raaaaaaaaaa 00001Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	3 7/9		AIX-	F	Save PC and jump to trap ind. [1]=PC; PC=[m]
IOT	1000	00010Rdddddddddd		-NZ	D	I	I/O transaction. {d}=AC; AC={d}
IOT I	1800	00011Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	3 7/9	-NZ	DIX-	<u>-</u> I	I/O transaction ind. {[m]}=AC; AC={[m]+}
LOAD	2000	00100Rdddddddddd		-NZ	D	M	Load from memory. AC=[m]
LOAD I	2800	00101Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	3 7/9	-NZ	DIX-	M	Load from memory, ind. AC=[[m]+]
STORE	3000	00110Rdddddddddd			D	M	Store to memory, AC=[m]
STORE I	3800	00111Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	7/9		DIX-	M	Store to memory, ind. AC=[[m]+]
PUSH	3C00	001111001mmmmmm	9		x-	M	Push onto stack pointer m. Macro: STORE I R m. **1,2
IN	4000	01000Rdddddddddd	4	-NZ	D	I	Input from device. AC={d}
INI	4800	01001Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	6/8	-NZ	DIX-	<u>-</u> I	Input from device, ind. AC={[m]+}
OUT	5000	01010Rdddddddddd	4		D	<u>-</u> I	Output to device. {d}=AC
OUT I	5800	01011Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	6/8		DIX-	<u>-</u> I	Output to device, ind. {[m]+}=AC
JMP	6000	01100Raaaaaaaaaa	3		A	- F	Jump. PC=a
JMP I	6800	01100Raaaaaaaaaa 01101Rmmmmmmmmmm	3		AIX-	F	Jump, ind. PC=[a]+
RET	6C00	01101100000000000	4//		a	F F-m-	Return from subroutine. M: JMP I R 0. **3
RTT	6C00	011011000000000	4		a a	F-M-	Return from trap. M: JMP I R 1. **3
RTI	6C01	0110110000000000	1 4		a a	F-M-	Return from interrupt. M: JMP I R 2. **3
JSR	7000	01110110000000010	1 5		a A	F	Save PC and jump to subroutine. [0]=PC; PC=a
JSR I	7800 7800	01111Raaaaaaaaaa 01111Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	5 6/9		A	F	Save PC and jump to subroutine, [0]=PC; PC=[a]+
ADD	8000	10000Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	6/9 5	-NZVL	D	F	Save PC and jump to subroutine, ind. [0]=PC; PC=[a]+ Add memory to AC. <l,ac>=<l,ac> + [a]</l,ac></l,ac>
ADD I	8800	10001Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	5 7/9		DIX-	A	Add memory to AC, inc. <l,ac>=<l,ac> + [a] Add memory to AC, inc. <l,ac>=<l,ac> + [[m]+]</l,ac></l,ac></l,ac></l,ac>
	9000	10010Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	1/9	-NZVL		!	Bitwise AND memory and AC. AC=AC & [m]
AND I	9800 9800		5 7/9	-NZ	D	A	:
OR	:	10011Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	1/9	-NZ	DIX-	A	Bitwise AND memory and AC, inc. AC=AC & [[m]+]
OR I	A000 A800		5 7/9	-NZ	D	A	Bitwise OR memory and AC. AC=AC [m]
		10101Rmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	7/9	-NZ	DIX-	A	Bitwise OR memory and AC, inc. AC=AC [[m]+]
XOR	A000			-NZ	D	A	Bitwise XOR memory and AC. AC=AC ^ [m]
XOR I	A800	10101Rmmmmmmmmmm	7/9	-NZ	DIX-	A	Bitwise XOR memory and AC, inc. AC=AC ^ [[m]+]
OP1	C000	11000xbbbbbbbbbbb	10	-??-?	C	?1	Combined ops 1. **4
NOP10	C000	11000x000000000	10		C	-1	No operation, ten idle cycles. M: OP1. **3
IFL	C200	11000x1	3>10		C	F1	Execute remaining instr. iff L set. !L => end.
IFV	C100	11000x-1	4>10		C	F1	Execute remaining instr. iff V set. !V => end.
CLA	C080	11000x1	10	-00	C	-1	Clear AC. AC=0
CLL	C040	11000x1	10	0	C	-1	Clear L. L=0
NOT	C020	11000x1	10	-NZ	C	A1	Complement AC. AC=!AC
INC	C010	11000x1	10	-NZ-L	C	A1	Increment. <l,ac>++</l,ac>
CPL	C008	11000x1	10	*	C	-1	Complement link. L=!L
RBL	C002	11000x010	10	-NZ-L	C	A1	Roll bit left. <l,ac>=<l,ac> <- 1. **5</l,ac></l,ac>
RBR	C001	11000x001	10	-NZ-L	C	A1	Roll bit right. <l,ac>=<l,ac> -> 1. **5</l,ac></l,ac>
RNL	COOA	11000x110	10	-NZ-L	C	A1	Roll nybble left <l,ac>=<l,ac> <- 4. **5</l,ac></l,ac>
RNR	C005	11000x101	10	-NZ-L	C	A1	Roll nybble right <l,ac>=<l,ac> -> 4. **5</l,ac></l,ac>
NEG	C030	11000x11	10	-NZ	C	Alm-	Two's complement. M: NOT INC.
ING	C020	11000x1	10	-NZ	C	Alm-	INcrement and neGate (One's complement). M: NOT.
SBL	C042	11000x1010	10	-NZ-L	C	Alm-	Shift bit left without sign extension. M: CLL RBL.
SBR	C041	11000x1001	10	-NZ-L	C	Alm-	Shift bit right without sign extension. M: CLL RBR.
SEL	C048	11000x11	10	L	C	-1m-	Set L. M: CLL CPL
OP2	D000		!	???	:	?2	·
NOP8	D000		8		C	-2	No operation, eight idle cycles. **3
SKPN	D000	11010x00000	!		C	F2	Skip never. **6
SNA	D008	11010x01	8		C	F2	Skip if negative. N => PC++. **6
SZA	D004		8		C	F2	Skip if zero. Z => PC++. **6
SSL	D002	11010x01-	8		C	F2	Skip if link. L => PC++. **6
ssv	D001	11010x1	!		C	F2	Skip if overflow. V => PC++. **6
SNP	D00C	11010x01100	8		C	F2m-	Skip if non-positive. M: SNA SZA. **6
Mnemonic	Hex	OpIROperand	Cycles	INZVL		TOme	Description. Semantics. Notes.

D014 11010x1-1- 8	
SNZ	
SCL D012 11010x1-1-1 8	**7
SCV DOL1 11010x1-10 8	
SPA D01C	•
CLA D080 11010x-1 8	7
D040	
D020	
DOID	
ISZ E800	
182	. [m]; AC=[[m]]. **2
ISZ	·1; [m]=AC; Z => PC+
LIA	
LI	,,
JMPII	
SBP	PC = [[m]+]
SBN 5410 01010100001nnnn 4	
SME	
SOR	
HALT	
LSR	,
Mnemonic	
Mnemonic	
1	
Bit must be clear	
Any value will do (don't care / OR Opcode	
-	
Op Opcode	with other bit values)
I Indirection bit OpI	
OpI R aaaaaaaaa mmmmmmmmm bbbbbbbbbbb bbbbbbbb	
R aaaaaaaaa Register bit. If R=1: zero page. R Address operand (address modes) Address operand (direct modes) bbbbbbbbbb Bitmap operand (minor operations) iiiiiiiiiii Immediate operand (LI instruction) nnnnnnnnnn Unit number (extensions) nn Runs in n clock cycles Autoindex runs in m clock cycles Runs in n cycles if false, c if tr	•
aaaaaaaaa Address operand (address modes) mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
mmmmmmmmm Address operand (direct modes) bbbbbbbbb Bitmap operand (minor operations) iiiiiiiii Immediate operand (LI instruction) nnnnnnnnnnn Runs in n clock cycles /mm Autoindex runs in m clock cycles Runs in n cycles if false, c if tr ? Flag may be affected depending on I Flag set I Flag toggled Flag unaffected Interrupt flag affected I Interrupt flag affected I Negative flag affected Z Zero flag affected	
bbbbbbbbb Bitmap operand (minor operations) iiiiiiiiii Immediate operand (LI instruction) Unit number (extensions)	
iiiiiiii Immediate operand (LI instruction) nnnnnnnnnn	
/mm Autoindex runs in m clock cycles nn>cc Runs in n cycles if false, c if tr ? Flag may be affected depending on 0 Flag cleared 1 Flag set * Flag toggled - Flag unaffected I Interrupt flag affected N Negative flag affected Z Zero flag affected	
nn>cc	
0	ıe
0	operand
1 Flag set	polana
- Flag toggred - Flag unaffected I Interrupt flag affected N Negative flag affected Z Zero flag affected	
I Interrupt flag affected N Negative flag affected Z Zero flag affected	
N Negative flag affected Z Zero flag affected	
Z Zero flag affected	
!!!!!!!!!	
Mnemonic Hex OpIROperand Cycles INZVL MIXC TOme Description. Semantics. Notes.	

Mnemonic	Hex	OpIROperand	Cycles	INZVL	MIXC	TOme	Description. Semantics. Notes.
	+ 			 	A	 	(Register) Address mode
j	İ		j	j i	D		(Register) Direct mode
	i			j i	L	i i	Literal mode
İ	j		į	j i	a	j i	Implied address
j	i	į	į į	j i	d	i	Implied direct mode address
	i			i	I	i i	Indirect
	i			i	2	i i	Double Indirect
	i			i	x	i	Autoindex if &080 <= m <= &FF.
	İ			İ	C	İ	Conditional
	+ 		 	+ 	+ 	+ F	++ Flow control
	i			i	i	м	Memory space
	i			i	i	!	I/O space
	i			i	i		Arithmetic/Logic
	i			i	i	?	Depends on operand
	i					1	OP1 Minor Operations
	i					2	OP2 Minor Operations
						l m	Instruction Macro/Alias
	İ						Extension
	+ I	}	+	+	+	+	AC Accumulator
							AC Accumulator
							!
							<l,ac> 17-bit aggregate, L is most-significant bit. + Bitwise addition. </l,ac>
							!
							X++ Shorthand for X = X + 1
							X Shorthand for X = X - 1
							PC Program Counter
							[n] memory at address n
	!				!		[[n]] indirection: memory at address [n]
	!						[n]+ autoindex: if &80<=n<=&FF, [n]=[n]+1 at end of instr.
	!						{n} I/O space at address n
	ļ						X=Y X gets the value of Y
							!X => ACTION Perform ACTION if flag X is clear.
	!						end End execution of current instruction.
							& Bitwise And
	!			ļ l	ļ	<u> </u>	Bitwise Or
	!			ļ l	ļ	<u> </u>	^ Bitwise Exclusive Or (1 if bits differ)
							!X Bitwise Not of X (toggle bit(s))
							X <- n Roll bits in X n positions to the left.
							X -> n Roll bits in X n positions to the right.
							M: Macro (actual instruction executed follows)
	 						**1 Not all 10 bits of operand are used/allowed.
j	İ			j	į	į i	**2 Works only for autoindex addresses (&80-&FF)
j	j			j i	į	į į	**3 No operand.
	j	j			j	j	**4 Combined minor operations. Executed top-to-bottom as
	j	j			j	j	listed. Operand fragments can be ORred together to
	i		i	j i	i	i	combine multiple minor operations.
	i				i		**5 Roll operation. L acts as 17th bit. Roll operations are
	i				i		mutually exclusive.
							**6 Group 1 conditionals. Mutually exclusive with group 2.
							**7 Group 2 conditionals. Mutually exclusive with group 1.
							**8 Microcode Banking Extension (UCB) must be present.
	!						**9 Memory Banking Unit (MBU) must be present.
	!						**A Programmer's Front Panel (PFP) must be present. **B May delay intrpt. handling by 1 fetch-execute cycle.