Einführung in Daten

Karsten Lübke

Datensatz

Wir werden jetzt den tips Datensatz aus Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing näher analysieren.

Sofern noch nicht geschehen, können Sie z.B. hier als csv-Datei direkt nach R herunterladen:

```
tips <- read.csv("https://sebastiansauer.github.io/data/tips.csv")</pre>
```

Achtung: read.csv geht vom amerikanischen Format aus. Wenn es sich um eine "deutsche CSV-Datei" handelt, verwenden Sie read.csv2.

Wenn sich die Daten auf Ihrem Computer gespeichert sind, können Sie sie auf die gleiche Art laden:

```
tips <- read.csv2("tips.csv")</pre>
```

Tipp: Wenn Sie nicht mehr wissen, wo die Daten liegen: statt "tips.csv" den Befehl file.choose() als Argument für die Funktion read.csv2 verwenden.

Inwieweit das Einlesen wie gewünscht geklappt hat, kann über

```
str(tips)
```

überprüft werden: Der Datensatz hat also 244 Zeilen (=Beobachtungen) und 8 Spalten (=Merkmale/Variablen).

Zur folgenden Analyse muss zunächst das Paket mosaic geladen werden:

library(mosaic)

Grafische Verfahren der Datenanalyse

Bevor evtl. wichtige Information in zusammenfassenden Kennzahlen verloren geht, versuchen wir einen Gesamtüberblick zu erhalten.

Balkendiagramm

Balkendiagramme eignen sich am besten um Häufigkeiten darzustellen, also für kategorielle Variablen (factor) oder für metrische Variablen (numeric) mit wenigen Merkmalsausprägungen.

Um einen Überblick über die Geschlechterverteilung sex zu bekommen kann die Funktion bargraph aus dem Paket mosaic verwendet werden:

bargraph(~ sex, data=tips)

In mosaic wird (fast) immer die Formeldarstellung y $\sim x \mid z$ verwendet: y wird modelliert durch x in Abhängigkeit der Werte von z, wobei einzelne Teile fehlen können, so wie im Beispiel y und z. Aber um z. B. die Verteilung des Geschlechts des Zahlenden je Tageszeit time darzustellen muss hier eingegeben werden:

Alternativ können Sie mit qplot arbeiten:

```
library(ggplot2)
qplot(x = sex, data = tips)
```


qplot(x = sex, data = tips, facets = ~time)

Übung:

1. Zeichnen Sie ein Balkendiagramm des Rauchverhaltens smoker je Wochentag day und interpretieren Sie das Ergebnis.

Histogramm

Histogramme werden für metrische Daten verwendet, der Befehl lautet histogram.

Übung:

2. Welche Abbildung wird über

```
histogram(~ total_bill | sex, data=tips)
qplot(x = total_bill, facets = ~sex, data = tips)
```

erzeugt?

Punktdiagramme sind eine Variante von Histogrammen, die besonders für metrische Variablen mit wenigen Merkmalsausprägungen geeignet sind.

size

Hier wurde ein zusätzliche Parameter der Funktion dotPlot übergeben: nint=6. Dieser Parameter wurde wurde verwendet, um die Abbildung schöner zu machen. Welche Optionen es gibt und was diese bedeuten, kann man in R häufig einfach über die Hilfe, hier also ?dotPlot, erfahren.

Boxplots

Boxplots zeigen nicht nur den Median (50%-Quantil) sowie das obere (75%) und untere (25%) Quartil - und damit den Interquartilsabstand -, sondern geben auch Hinweise auf potentielle Ausreißer:

und gruppiert nach Tageszeit:

bwplot(total_bill ~ sex | time, data=tips)

Mit qplot geht es ähnlich:

qplot(y = total_bill, x = sex, data = tips, geom = "boxplot")

qplot(y = total_bill, x = sex, facets = ~time, data = tips, geom = "boxplot")

 $\ddot{\mathbf{U}}\mathbf{bung}$:

3. Zeichen Sie einen Boxplot für die Trinkgeldhöhe tip in Abhängigkeit davon, ob geraucht wurde smoker. Gibt es Unterschiede in der Trinkgeldhöhe, und wenn ja in welchem Bereich?

Scatterplot (Streudiagramme)

Streudiagramme sind besonders gut geeignet, um einen Überblick auf den Zusammenhang zweier metrischer Merkmale zu erhalten; beispielsweise um den Zusammenhang von tip und total_bill zu analysieren.

total_bill

Wenig überraschend steigt die Trinkgeldhöhe mit der Rechnung. Wie sieht es relativ aus? Dazu müssen wir zunächst ein neues Merkmal im Datensatz erzeugen, z. B.:

```
tips$tip_relativ <- tips$tip / tips$total_bill</pre>
```

Im Datensatz tips wird der (neuen) Variable tip_relativ der Quotient aus Trinkgeld und Rechnungshöhe zugewiesen.

Übung:

4. Erstellen Sie eine Abbildung, mit der Sie visuell gucken können, wie der Zusammenhang zwischen der relativen Trinkgeldhöhe (abhängige Variable) und der Rechnungshöhe (uanbhängige Variable) aussieht, und ob sich dieser je nach Geschlecht des Rechnungszahlers unterscheidet.

Mosaicplot

Mosaicplots eignen sich, um den Zusammenhang zwischen kategoriellen Variablen darzustellen. Zunächst müssen wir dazu eine Kreuztabelle erstellen. Das geht in mosaic über den Befehl tally. Dieser Befehl ist recht mächtig – dazu später mehr. Wir erzeugen eine solche Kreuztabelle zwischen Tageszeit und Rauchen über

```
tab_smoke_time <- tally(smoker ~ time, data=tips)</pre>
```

Dem (neuen) R Objekt tab_smoke_time wird also das Ergebnis des tally Befehls zugewiesen. Wie das Ergebnis aussieht, und welchen Typ es hat erfahren wir über

```
print(tab_smoke_time)
```

```
## time
## smoker Dinner Lunch
## No 106 45
```

```
## Yes 70 23
str(tab_smoke_time)

## 'table' int [1:2, 1:2] 106 70 45 23
## - attr(*, "dimnames")=List of 2
## ..$ smoker: chr [1:2] "No" "Yes"
## ..$ time : chr [1:2] "Dinner" "Lunch"
```

Es handelt sich also um eine Tabelle (table) der Dimension 2, 2, also 2 Zeilen, 2 Spalten.

Der Befehl für einen Mosaicplot lautet mosaicplot:

mosaicplot(tab_smoke_time)

tab_smoke_time

smoker

Korrelationsplot

Mit Hilfe des Zusatzpakets corrplot lassen sich Korrelationen besonders einfach visualisieren. Das Paket muss wie jedes Paket einmalig über

```
install.packages("corrplot")
```

installiert werden – wiederum werden evt. weitere benötigte Pakete mit-installiert. Nach dem Laden des Pakets über

```
library(corrplot)
```

kann dies über

```
corrplot(cor(tips[,c("total_bill", "tip", "size")]))
```


gezeichnet werden. Je intensiver die Farbe, desto höher die Korrelation. Hier gibt es unzählige Einstellmöglichkeiten, siehe ?corrplot bzw. für Beispiele:

```
vignette("corrplot-intro")
```

Kennzahlen der Datenanalyse

Nachdem wir einen ersten visuellen Eindruck gewonnen haben, wollen, wir uns jetzt Kennzahlen widmen.

Lagemaße

Das Minimum und Maximum von metrischen Daten kann einfach durch min bzw. max bestimmt werden, in mosaic auch "modelliert":

```
min(~ total_bill | smoker, data=tips)
## No Yes
```

7.25 3.07

gibt also das Minimum der Rechnungshöhe, getrennt nach Raucher und Nichtrauchern an, d. h. das Minimum bei den Rauchern lag bei 3.07\$.

Übung:

5. Bestimmen Sie das Maximum der Trinkgeldhöhe je Wochentag (day)

Lagemaße sollen die zentrale Tendenz der Daten beschreiben. Gebräuchlich sind in der Regel der arithmetische Mittelwert mean

```
mean(~ total_bill, data=tips)
```

[1] 19.78594

sowie der Median median:

```
median(~ total_bill, data=tips)
```

[1] 17.795

Diese unterscheiden sich:

```
meantb <- mean(~ total_bill, data=tips) # Mittelwert
mediantb <- median(~ total_bill, data=tips) # Median
histogram(~ total_bill, v=c(meantb, mediantb), data=tips)</pre>
```


Über die Option v= werden vertikale Linien an den entsprechenden Stellen gezeichnet.

Übung:

6. Begründen Sie anhand des Histogramms, warum hier der Median kleiner als der arithmetische Mittelwert ist.

Auch Lagemaße zu berechnen in Abhängigkeit der Gruppenzugehörigkeit ist einfach. So berechnet man den arithmetischen Mittelwert in Abhängigkeit von Geschlecht und Tageszeit:

```
mean(total_bill ~ sex + time, data=tips)

## Female.Dinner Male.Dinner Female.Lunch Male.Lunch
## 19.21308 21.46145 16.33914 18.04848
```

Übung:

7. Bestimmen Sie den Median der Trinkgeldhöhe anhand der Anzahl Personen in der Tischgesellschaft.

Für kategorielle Variablen können eigentlich zunächst nur die Häufigkeiten bestimmt werden:

```
tally(~day, data=tips)
```

```
## day
## Fri Sat Sun Thur
## 19 87 76 62
```

 $Relative\ H\"{a}ufigkeiten\ werden\ bei\ \verb"mosaic"\ mit\ der\ zus\"{a}tzlichen\ Option\ \verb"format="proportion"\ angefordert:$

```
tally(~day, format="proportion", data=tips)
```

```
## day
## Fri Sat Sun Thur
## 0.07786885 0.35655738 0.31147541 0.25409836
```

Streuungsmaße

Die Variation der Daten, die wir grafisch und auch in den (bedingten) Lagemaßen gesehen haben ist eines der zentralen Themen der Statistik: Können wir die Variation vielleicht erklären? Variiert die Rechnungshöhe vielleicht mit der Anzahl Personen?

Zur Bestimmung der Streuung werden in der Regel der Interquartilsabstand IQR sowie Varianz var bzw. Standardabweichung scherangezogen:

```
IQR(-total_bill, data=tips)
## [1] 10.78
var(-total_bill, data=tips)
## [1] 79.25294
sd(-total_bill, data=tips)
## [1] 8.902412
Um die Standardabweichung in Abhängigkeit der Gruppengröße zu berechnen genügt der Befehl:
sd(-total_bill | size, data=tips)
## 1 2 3 4 5 6
## 3.010729 6.043729 9.407065 8.608603 7.340396 9.382000
Bei 4 Personen lag die Standardabweichung als bei 8.61$.
Um jetzt z. B. den Variationskoeffizienten zu berechnen wird
sd(-total_bill | size, data=tips) / mean(-total_bill | size, data=tips)
## 1 2 3 4 5 6
## 0.4157031 0.3674443 0.4041247 0.3008579 0.2441265 0.2693655
gebildet.
```

Übung:

8. Zu welcher Tageszeit ist die Standardabweichung des Trinkgelds geringer? Zum Lunch oder zum Dinner?

Die $\ddot{u}blichen$ deskriptiven Kennzahlen sind in mosaic übrigens in einer Funktion zusammengefasst: favstats:

```
favstats(tip~day, data=tips)
```

```
day min
                  Q1 median
                                Q3
                                     max
                                             mean
                                                        sd n missing
## 1 Fri 1.00 1.9600
                     3.000 3.3650 4.73 2.734737 1.019577 19
                                                                    0
                                                                    0
## 2 Sat 1.00 2.0000
                      2.750 3.3700 10.00 2.993103 1.631014 87
## 3 Sun 1.01 2.0375
                     3.150 4.0000 6.50 3.255132 1.234880 76
                                                                    0
## 4 Thur 1.25 2.0000 2.305 3.3625 6.70 2.771452 1.240223 62
```

Zusammenhangsmaße

Kennzahlen für den linearen Zusammenhang von metrischen Variablen sind Kovarianz cov und der Korrelationskoeffizient cor:

```
cov(tip ~ total_bill, data=tips)
```

```
## [1] 8.323502
```

```
cor(tip ~ total_bill, data=tips)
## [1] 0.6757341
```

Für kategorielle Variablen wird in diesen Abschnitt zunächst nur die Kreuztabelle verwendet:

```
tally(smoker~sex, format="proportion", data=tips)
```

```
## sex
## smoker Female Male
## No 0.6206897 0.6178344
## Yes 0.3793103 0.3821656
```

Übung:

9. Zu welcher Tageszeit wurde relativ häufiger von einer Frau die Rechnung bezahlt?

Übung: Teaching Rating

Dieser Datensatz analysiert u. a. den Zusammenhang zwischen Schönheit und Evaluierungsergebnis von Dozenten:

Hamermesh, D.S., and Parker, A. (2005). Beauty in the Classroom: Instructors' Pulchritude and Putative Pedagogical Productivity. Economics of Education Review, 24, 369–376.

Sie können ihn von https://goo.gl/6Y3KoK herunterladen.

- 1. Erstellen Sie ein Balkendiagramm der Variable native gruppiert nach der Variable minority.
- 2. Erstellen Sie ein Histogramm der Variable beauty gruppiert nach der Variable gender.
- 3. Vergleichen Sie das Evaluationsergebnis eval in Abhängigkeit ob es sich um einen Single-Credit Kurs credits handelt mit Hilfe eines Boxplots.
- 4. Zeichnen Sie ein Scatterplot der Variable eval in Abhängigkeit der zu definierenden Variable "Evaluierungsquote": students/allstudents.
- 5. Berechnen Sie deskriptive Kennzahlen der Variable eval in Abhängigkeit ob es sich um einen Single-Credit Kurs credits handelt.

Literatur

- David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2014): Introductory Statistics with Randomization and Simulation, https://www.openintro.org/stat/textbook.php?stat_book=isrs, Kapitel 1
- Nicholas J. Horton, Randall Pruim, Daniel T. Kaplan (2015): Project MOSAIC Little Books A Student's Guide to R, https://github.com/ProjectMOSAIC/LittleBooks/raw/master/StudentGuide/MOSAIC-StudentGuide.pdf, Kapitel 3.1, 3.2, 4.1, 5.1, 5.2, 6.1
- Maike Luhmann (2015): R für Einsteiger, Kapitel 9-11
- Andreas Quatember (2010): Statistik ohne Angst vor Formeln, Kapitel 1
- Daniel Wollschläger (2014): Grundlagen der Datenanalyse mit R, Kapitel 14

Diese Übung basiert teilweise auf Übungen zum Buch OpenIntro von Andrew Bray und Mine Çetinkaya-Rundel unter der Lizenz Creative Commons Attribution-ShareAlike 3.0 Unported.

Versionshinweise:

 \bullet Datum erstellt: 2017-02-06

• R Version: 3.3.2

• mosaic Version: 0.14.4