MAT3004	Applied Linear Algebra			P	J	C	
		3	2	0	0	4	
Pre-requisite	MAT2002 Applications of Differential and Difference Equations			Syllabus Version			
						1.1	

Course Objectives

- 1. Understanding basic concepts of linear algebra to illustrate its power and utility through applications to computer science and Engineering.
- 2. Apply the concepts of vector spaces, linear transformations, matrices and inner product spaces in engineering.
- 3. Solve problems in cryptography, computer graphics and wavelet transforms

Course Outcomes

At the end of this course the students are expected to learn

- 1. the abstract concepts of matrices and system of linear equations using decomposition methods
- 2. the basic notion of vector spaces and subspaces
- 3. apply the concept of vector spaces using linear transforms which is used in computer graphics and inner product spaces
- 4. applications of inner product spaces in cryptography
- 5. Use of wavelet in image processing.

Student Learning Outcomes(SLO) 1,2

Module:1 System of Linear Equations

6 hours

Gaussian elimination and Gauss Jordan methods - Elementary matrices- permutation matrix - inverse matrices - System of linear equations - - LU factorizations.

Module:2 | Vector Spaces

6 hours

The Euclidean space R^n and vector space- subspace —linear combination-span-linearly dependent-independent- bases - dimensions-finite dimensional vector space.

Module:3 | Subspace Properties

6 hours

 $Row\ and\ column\ spaces\ \text{-}Rank\ and\ nullity-Bases\ for\ subspace-invertibility-\ Application\ in\ interpolation.$

Module:4 Linear Transformations and applications

7 hours

Linear transformations – Basic properties-invertible linear transformation - matrices of linear transformations - vector space of linear transformations – change of bases – similarity

Module:5 Inner Product Spaces

6 hours

Dot products and inner products – the lengths and angles of vectors – matrix representations of inner products- Gram-Schmidt orthogonalisation

Module:6 Applications of Inner Product Spaces:

6 hours

QR factorization- Projection - orthogonal projections - relations of fundamental subspaces - Least Square solutions in Computer Codes

Module:7 | **Applications of Linear equations :**

6 hours

An Introduction to coding - Classical Cryptosystems –Plain Text, Cipher Text, Encryption, Decryption and Introduction to Wavelets (only approx. of Wavelet from Raw data)

2 hours

Industry Expert Lecture

	Total lecture hours:	45 hours
Tutorial	 A minimum of 10 problems to be worked out by students in every Tutorial Class Another 5 problems per Tutorial Class to be given as home work. 	30 hours
Tort Dool-	-)	

Text Book(s)

- 1. Linear Algebra, Jin Ho Kwak and Sungpyo Hong, Second edition Springer(2004). (Topics in the Chapters 1,3,4 &5)
- 2. Introductory Linear Algebra- An applied first course, Bernard Kolman and David, R. Hill, 9th Edition Pearson Education, 2011.

Reference Books

- 1. Elementary Linear Algebra, Stephen Andrilli and David Hecker, 5th Edition, Academic Press(2016)
- 2. Applied Abstract Algebra, Rudolf Lidl, GuterPilz, 2nd Edition, Springer 2004.
- 3. Contemporary linear algebra, Howard Anton, Robert C Busby, Wiley 2003
- 4. Introduction to Linear Algebra, Gilbert Strang, 5th Edition, Cengage Learning (2015).

Mode of Evaluation: Digital Assignments, Continuous Assessments, Final Assessment Test

Recommended by Board of Studies	25-02-2017		
Approved by Academic Council	No. 47	Date	05-10-2017