Отчёт по лабораторной работе №6

Дисциплина: Администрирование локальных сетей

Исаев Булат Абубакарович НПИбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Вывод	11
	3.1. Контрольные вопросы	11

Список иллюстраций

2.1	Открытие проекта lab_P1-06.pkt	6
2.2	Размещение маршрутизатора Cisco 2811 в логической области	
	проекта и подключение его к порту 24 коммутатора msk-donskaya-	
	baisaev-sw-1	6
2.3	Конфигурация маршрутизатора: имя, пароль для доступа к консоли	
	и настройка удалённого подключение к нему по ssh	7
2.4	Настройка порта 24 коммутатора msk-donskaya-baisaev-sw-1 как	
	trunk-порт	8
2.5	Изменение на схеме наименование маршрутизатора Cisco 2811	8
2.6	Настройка на интерфейсе f0/0 маршрутизатора msk-donskaya-	
	baisaev-gw-1 виртуальных интерфейсов, соответствующих номерам	
	VLAN. Настройка соответствующих IP-адресов на виртуальных	
	интерфейсах согласно таблице ІР-адресов	9
2.7	Проверка доступности оконечных устройств из разных VLAN	10

Список таблиц

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Выполнение лабораторной работы

Откроем проект с названием lab_PT-05.pkt и сохраним под названием lab_PT-06.pkt. После чего откроем его для дальнейшего редактирования (рис. 2.1)

Рис. 2.1: Открытие проекта lab PT-06.pkt.

В логической области проекта разместим маршрутизатор Cisco 2811, подключим его к порту 24 коммутатора msk-donskaya-baisaev-sw-1 в соответствии с таблицей портов (рис. 2.2)

Рис. 2.2: Размещение маршрутизатора Cisco 2811 в логической области проекта и подключение его к порту 24 коммутатора msk-donskaya-baisaev-sw-1.

Используя приведённую последовательность команд в лабораторной работе по первоначальной настройке маршрутизатора, сконфигурируем маршрутизатор, задав на нём имя, пароль для доступа к консоли и настроим удалённое подключение к нему по ssh (рис. 2.3)

Рис. 2.3: Конфигурация маршрутизатора: имя, пароль для доступа к консоли и настройка удалённого подключение к нему по ssh.

Теперь настроим порт 24 коммутатора msk-donskaya-baisaev-sw-1 как trunk-порт (рис. 2.4)

Рис. 2.4: Настройка порта 24 коммутатора msk-donskaya-baisaev-sw-1 как trunkпорт.

Рис. 2.5: Изменение на схеме наименование маршрутизатора Cisco 2811.

На интерфейсе f0/0 маршрутизатора msk-donskaya-baisaev-gw-1 настроим виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов зададим соответствующие IP-адреса на виртуальных интерфейсах (рис. 2.6)

Рис. 2.6: Настройка на интерфейсе f0/0 маршрутизатора msk-donskaya- baisaevgw-1 виртуальных интерфейсов, соответствующих номерам VLAN. Настройка соответствующих IP-адресов на виртуальных интерфейсах согласно таблице IP-адресов.

После всех настроек проверим доступность оконечных устройств из разных VLAN (рис. 2.7)

Рис. 2.7: Проверка доступности оконечных устройств из разных VLAN.

Используя режим симуляции в Packet Tracer, изучим процесс передвижения пакета ICMP по сети (У меня ICMP не появляется к сожалению):

3 Вывод

В ходе выполнения лабораторной работы мы научились настраивать статическую маршрутизацию VLAN в сети.

3.1 Контрольные вопросы

- 1. Охарактеризуйте стандарт IEEE 802.1Q открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN по сетям стандарта IEEE 802.3 Ethernet.
- 2. Опишите формат кадра IEEE 802.1Q добавляет 32-битное поле между MAC-адресом источника и полями EtherType исходного кадра. В соответствии с 802.1Q минимальный размер кадра остается 64 байта, но мост может увеличить минимальный размер кадра с 64 до 68 байтов при передаче IEEE 802.1Q.