Reinforcement Learning TP1 : Dynamic Programming and Reinforcement Learning

Plassier Vincent

1 Dynamic Programming

1.1

We can guess that [1, 1, 2] is the optimal policy.

1.2

Thanks to the Puterman's theorem with $\varepsilon=\frac{1-\gamma}{200\gamma}$, once can deduce that :

$$||v^{k+1} - v^k||_{\infty} \Longrightarrow ||v^{\pi_{k+1}} - v^*||_{\infty} \le 0.01$$

FIGURE 1: $\|v^{\pi_k} - v^\star\|_\infty$ in function of **k**

1.3

Now, we display the iterations obtained by the algorithm Policy iteration (PI):

FIGURE 2: $||v^{\pi_k} - v^*||_{\infty}$ in function of k

We find that the Political Iteration (PI) algorithm converges in only 3 iterations whereas the algorithm Value iteration (VI) need more run. However, the PI algorithm solves a linear system. So PI has a complexity about $\mathcal{O}(n_states^3)$, whereas VI has a complexity about $\mathcal{O}(n_action^2 \times n_states)$. Thus, it may be advantageous to choose the method based on the ratio n_action/n_states .

2 Reinforcement Learning

2.1

In this question, we consider the quantity $\sum_{s\in S}\mu_0(s)\left[V_n(s)-V^\pi(s)\right]$ above n. We plot the first iterations :

FIGURE 3: $sum_{s \in S} \mu_0(s) [V_n(s) - V^{\pi}(s)]$ in function of n

The error this decay to 0 when n increase.

2.2

From now on, we are interested by the study of a Q-learning algorithm. In the algorithme described in the subject, we can change the exploration-exploitation's rapport by playing on the parameters ε and $\alpha_i(x,a)$. The first figure is obtained by considering $\varepsilon_t=(0.99)^t$. Thus, as the number of iterations increase, our learning rate decreases. Therefore, the algorithm will more and more privilege exploitation.

FIGURE 4: Error and reward evolutions in function of the epoch

We also represent the evolution of $\|v^\star-v_{\pi_n}\|_\infty$ during learning as well as the sum of cumulative rewards. Considering this time $\varepsilon\in\{0.01,0.1\}$. We get :

FIGURE 5: Representation des approximations obtenues

For the value $\varepsilon=0.01$, we see that the algorithm still has not converged after 150 iterations. Indeed, there has not been enough exploration.

Remark: in order to determine the optimal hyperparameters, it is possible to use the python fmin function.

2.3

Let's denote V^{\star} the unique fixed point of Gamma and pi^{\star} the optimal policy. According to the course,

$$\pi^{\star}(x) = \arg\max_{a} \left[r(x, a) + \sum_{y} p(y|x, a) V^{\star}(y) \right]$$

The previous equation is independant of the choice of the initial policy μ_0 . Thus, we conclude that π^* is independant of μ_0 .

Numerically, we can verify that the choice of another initial distribution does not affect the result. For that, we draw the curve obtained by replacing the initial distribution :

FIGURE 6: Evolution of the error with an other initial distribution

We constate that the curve obtained 6 is very similar to the previous one in 5. We deduce that μ_0 input distribution does not influence the optimal policy.