02 - Experiemental Design

HCI/PSYCH 522 Iowa State University

January 20, 2022

Workday Course Registration Case Study

Hypothesis

Scientific question: Does the type of registration system (A vs B) affect mean registration time?

Null hypothesis: No

Alternative hypothesis: Yes

Recruitment

Randomization

```
registration <- data.frame(subjectID = 1:30,
                             system = sample(rep(c("A","B"), times = 15)))
registration
      subjectID system
##
## 1
                      В
## 2
## 3
## 4
## 5
## 6
## 7
## 8
                      В
## 9
                      Α
```

Balanced experiment

```
table(registration$system)
##
## A B
## 15 15
```

Data Collection

Mean :2.8362

3rd Qu.:3.5307

Max. :4.2267

NA's :1

Exploratory statistics

summary(registration)

Mean :15.50

3rd Qu.:22.75

Max. :30.00

##

##

##

##

```
##
     subjectID
                     system
                                         time
                 Length:30
                                    Min. :0.8155
##
   Min. : 1.00
                 Class :character
                                    1st Qu.:2.0621
##
   1st Qu.: 8.25
##
   Median :15.50
                 Mode :character
                                    Median :2.7388
```

Exploratory statistics

```
registration %>%
 group_by(system) %>%
 summarize(n = sum(!is.na(time)),
           mean = mean(time, na.rm = TRUE),
           sd = sd(time, na.rm = TRUE))
## # A tibble: 2 \times 4
##
    system n mean sd
##
  <chr> <int> <dbl> <dbl>
## 1 A 15 2.57 1.13
## 2 B 14 3.13 0.661
```

Visualization

Two-sample t-test

```
t.test(time ~ system, data = registration)
##
   Welch Two Sample t-test
##
##
## data: time by system
## t = -1.6405, df = 22.796, p-value = 0.1146
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.2695283 0.1468389
## sample estimates:
## mean in group A mean in group B
         2.565219 3.126563
##
```

January 20, 2022

Regression

```
summary(lm(time ~ system, data = registration))
##
## Call:
## lm(formula = time ~ system, data = registration)
##
## Residuals:
##
       Min
                10 Median
                                          Max
## -1.74973 -0.60921 -0.07862 0.53688 1.66149
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5652
                          0.2420 10.602 4e-11 ***
## systemB 0.5613 0.3482 1.612
                                           0.119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9371 on 27 degrees of freedom
   (1 observation deleted due to missingness)
## Multiple R-squared: 0.08778, Adjusted R-squared: 0.054
```

Conclusion and Decision

Conclusion: Since p-value > 0.05, there is insufficient evidence to indicate any difference in mean registration time between the two systems.

Decision: The decision of which system to use may depend on many factors including cost.

What was done well in this study?

(HCI522@ISU) 02 - Experiemental Design January 20, 2022

What was done poorly in this study?

What else could have been done?

(HCI522@ISU) 02 - Experiemental Design January 20, 2022 16 / 24

Data Collection Methods

(HCI522@ISU) 02 - Experiemental Design January 20, 2022

Population vs Sample

from https://www.scribbr.com/methodology/population-vs-sample/

A population is the entire group that you want to draw conclusions about.

A sample is the specific group that you will collect data from.

(HCI522@ISU) 02 - Experiemental Design January 20, 2022

Sample

(HCI522@ISU)

Data vs Information

DIFFERENCE BETWEEN DATA AND INFORMATION

January 20, 2022

20 / 24

DATA

Data is raw, unorganized facts that need to be processed. Data can be something simple and seemingly random and useless until it is organized.

INFORMATION

When data is processed, organized, structured or presented in a given context so as to make it useful, it is called information.

Information spectrum

Data quality (least informative to most informative)

- Survey
- Observational study
- Randomized experiment
 - paired/blocked

Sample (least informative to most informative)

- You
- Select students
- Randomly selected students
- All students

Data Types

- Qualitative: categorical or non-numeric
 - Binary: only two options
 - Nominal: order doesn't matter
 - Ordinal: order matters
- Quantitative: numerical
 - Discrete: count
 - upper maximum does not exist
 - upper maximum exists
 - Continuous

Data Types Graphic

Statistical Methods for Continuous Dependent Variables

(HCI522@ISU) 02 - Experiemental Design