Detekcija sigurnosnih atributa prometnica u snimkama

Ivan Relić

13. srpnja 2017.

Uvod

- ▶ iRAP međunarodna organizacija za inspekciju kvalitete cesta
- ocjena kvalitete ceste na temelju sigurnosnih atributa (pripajanja, ograničenja brzine, osvjetljenje, broj traka, objekti pored ceste...)
- zamjena procesa ručnog dodjeljivanja atributa strojnim
- FTTS iRAP snimke engleskih autocesta s oznakama sigurnosnih atributa

Zadatak

detektiranje atributa "pripajanje trakova"

- dva skupa podataka:
 - skup podataka s diskriminativnim oznakama
 - skup podataka s oznakama iz sustava FTTS iRAP

Skup podataka s diskriminativnim oznakama

- raspodjela po podskupovima:
 - ▶ učenje 1796 slika
 - validacija 626 slika
 - ► testiranje 594 slike
- rezolucije:
 - ▶ 700×280
 - ▶ 525×210
 - ▶ 350×140
 - 175×70

Skup podataka s oznakama iz sustava FTTS iRAP

- generiran automatiziranim postupkom georeferencirane videosnimke, geolokacije pripajanja
- svakoj slici pridružena geolokacija
- pojedinačne slike + sekvence duljine 25 slika
- pojedinačne slike rezolucije 700x280
- sekvence slika rezolucije 350x140
- raspodjela po podskupovima:
 - ▶ učenje 7554 sekvenci
 - validacija 1720 sekvenci
 - testiranje 1642 sekvenci

Korištene arhitekture

- zasnovane na prednaučenoj arhitekturi VGG-16 namijenjenoj za klasifikaciju slika
- uklonjeni posljednji potpuno povezani slojevi

Arhitektura za klasifikaciju pojedinačnih slika

- izlazi prednjeg dijela prednaučene arhitekture VGG-16 obrađuju se sljedećim slojevima:
 - potpuno povezani sloj dimenzionalnosti 200 (ReLU aktivacijska funkcija, grupna normalizacija, L2 regularizacija)
 - potpuno povezani sloj dimenzionalnosti 2 (normalizirajuća eksponencijalna aktivacijska funkcija, L2 regularizacija)
- eksperimenti na slikama s diskriminativnim oznakama i na pojedinačnim slikama s oznakama iz sustava FTTS iRAP

- za svaku sliku sekvence izračunavaju se izlazi prednjeg dijela prednaučene arhitekture VGG-16
- dobiveni izlazi pretvaraju se u tenzor dimenzija 25x20480 i obrađuju se sljedećim slojevima:
 - sloj za sažimanje maksimalnom vrijednošću 2x2 sažimanje značajki bliskih vremenski i prostorno
 - potpuno povezani sloj dimenzionalnosti 200 (ReLU aktivacijska funkcija, grupna normalizacija, L2 regularizacija)
 - potpuno povezani sloj dimenzionalnosti 2 (normalizirajuća eksponencijalna aktivacijska funkcija, L2 regularizacija)

Arhitektura za klasifikaciju sekvenci korištenjem LSTM ćelija

- za svaku sliku sekvence izračunavaju se izlazi prednjeg dijela prednaučene arhitekture VGG-16
- dobivena izlazna sekvenca se zatim obrađuje s nekoliko slojeva LSTM ćelija kako slijedi:
 - LSTM sloj sa stanjem dimenzionalnosti 128
 - LSTM sloj sa stanjem dimenzionalnosti 64
 - ► LSTM sloj sa stanjem dimenzionalnosti 32
- izlaz posljednjeg LSTM sloja u posljednjem vremenskom trenutku se dalje obrađuje sljedećim slojem:
 - potpuno povezani sloj dimenzionalnosti 2 (normalizirajuća eksponencijalna aktivacijska funkcija, L2 regularizacija)

Arhitektura za klasifikaciju sekvenci korištenjem vremenskog potpuno povezanog sloja

- za svaku sliku sekvence izračunavaju se izlazi prednjeg dijela prednaučene arhitekture VGG-16
- izlaz svake pojedine slike obrađuje se sljedećim slojem:
 - potpuno povezani sloj dimenzionalnosti 64 (ReLU aktivacijska funkcija, grupna normalizacija, L2 regularizacija)
- dobiveni izlazi pretvaraju se u tenzor dimenzija 25x64 i obrađuju se sljedećim slojevima:
 - potpuno povezani sloj dimenzionalnosti 64 (ReLU aktivacijska funkcija, grupna normalizacija, L2 regularizacija)
 - potpuno povezani sloj dimenzionalnosti 2 (normalizirajuća eksponencijalna aktivacijska funkcija, L2 regularizacija)

- različite rezolucije ulaznih slika
- eksperiment proveden za pronalaženje najniže rezolucije na kojoj su performanse zadovoljavajuće

Tablica: Rezultati na podskupu za testiranje

rezolucija slika	točnost	preciznost	odziv	prosječna preciznost
700×280	0.93	0.88	1.0	0.99
525×210	0.98	0.97	0.99	1.0
350×140	0.98	0.96	0.99	0.99
175×70	0.87	0.84	0.90	0.92

Rezultati na pojedinačnim slikama s oznakama iz sustava FTTS iRAP

rezolucija ulaznih slika 700x280

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.95	0.94	0.96	0.99
validacija	0.88	0.92	0.83	0.93
testiranje	0.83	0.87	0.77	0.91

lošiji rezultati u odnosu na slike s diskriminativnim oznakama

Rezultati na sekvencama slika s oznakama iz sustava **FTTS iRAP**

- rezolucija ulaznih slika 350x140
- arhitektura koja koristi vremensko-prostorno sažimanje

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.91	0.96	0.85	0.97
validacija	0.89	0.96	0.82	0.95
testiranje	0.80	0.93	0.65	0.91

nema poboljšanja u odnosu na pojedinačne slike

Rezultati na sekvencama slika s oznakama iz sustava **FTTS iRAP**

- rezolucija ulaznih slika 350x140
- arhitektura koja koristi LSTM slojeve

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.98	0.98	0.99	0.99
validacija	0.90	0.94	0.85	0.94
testiranje	0.86	0.88	0.82	0.93

poboljšanje u odnosu na pojedinačne slike

Rezultati na sekvencama slika s oznakama iz sustava **FTTS iRAP**

- rezolucija ulaznih slika 350x140
- arhitektura koja koristi vremenski potpuno povezani sloj

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.99	0.99	1.0	1.0
validacija	0.89	0.99	0.79	0.96
testiranje	0.86	0.96	0.74	0.94

najveće poboljšanje u odnosu na pojedinačne slike

- evaluacija koristeći model koji koristi vremenski potpuno povezani sloj
- većina krivih detekcija su lažni negativi 89%
- analiza geolokacija krivih detekcija atribut pripajanja pridružen drugom traku
- skup podataka kontaminiran krivim oznakama

Zaključak

- zadovoljavajuće performanse s obzirom na kontaminiranost skupa podataka
- koristeći geolokacije validirati oznake i generirati novi, pročišćeni skup podataka
- rjeđe uzorkovane, dulje sekvence slika
- modernije arhitekture

Hvala na pažnji!