THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH4010 Functional Analysis 2021-22 Term 1

Homework 3

Deadline: 2021-10-11 Monday

Notice:

- All the assignments must be submitted before the deadline.
- Each assignment should include your name and student ID number.
- 1. Let $p \in (0,1)$. Define

$$\ell_p := \left\{ (x_k)_{k=1}^{\infty} \in \mathbb{C} \colon \sum_{k=1}^{\infty} |x_k|^p < \infty \right\}.$$

For $x = (x_k)_{k=1}^{\infty}$ and $y = (y_k)_{k=1}^{\infty}$ in ℓ_p , define the metric d by

$$d(x,y) = \sum_{k=1}^{\infty} |x_k - y_k|^p.$$

Then (ℓ_p, d) is a metric vector space. Let $(b_k)_{k=1}^{\infty}$ be a bounded sequence in \mathbb{C} . Show that

$$f(x) = \sum_{k=1}^{\infty} b_k x_k \quad \text{for } x = (x_k)_{k=1}^{\infty} \in \ell_p$$

is a continuous linear functional on the metric vector space (ℓ_p, d) .

- 2. Let C[0,1] be the vector space of continuous functions on [0,1]. Define $\delta(x)=x(0)$ for $x\in C[0,1]$.
 - (a) Show that δ is a bounded linear functional if C[0,1] is endowed with the sup-norm. Find the norm of δ .
 - (b) Show that δ is an unbounded linear functional if C[0,1] is endowed with the norm

$$||x|| = \int_0^1 |x(t)| dt.$$