The road to dependent types

Outline

- Untyped lambda calculus
- Simply typed lambda calculus
- Polymorphic lambda calculus (System F)
- Higher-order polymorphic lambda calculus (System Fω)
- First-order dependent types
- The lambda cube

Untyped λ calculus

$$E \stackrel{\text{def}}{=} \lambda x.E \mid E_1 E_2 \mid x$$
$$x \in Var$$

Untyped λ calculus with boolean constants

$$E \stackrel{\text{\tiny def}}{=} \lambda x.E \mid E_1 E_2 \mid x \mid \text{true} \mid \text{false}$$

$$x \in Var$$

Untyped λ calculus with boolean constants

Example:

 $(\lambda x.x)$ true

Untyped λ calculus with boolean constants

A troublesome example:

true ($\lambda x.x$)

Introduce a type system to rule out such "meaningless" terms.

Simply typed λ calculus (λ_{\rightarrow})

$$E \stackrel{\text{def}}{=} \lambda x: T.E \quad | \quad E_1 E_2 \quad | \quad x$$

$$T \stackrel{\text{def}}{=} \quad T \rightarrow T$$

$$x \in Var$$

Simply typed λ calculus

Simply typed λ calculus with boolean constants

$$E \stackrel{\text{def}}{=} \lambda x : T.E \quad | \quad E_1 E_2 \quad | \quad x \quad | \quad true \quad | \quad false$$

$$T \stackrel{\text{def}}{=} \quad T \rightarrow T \quad | \quad Bool$$

$$x \in Var$$

Simply typed λ calculus with boolean constants

Example:

 $(\lambda x:Bool.x)$ true

Simply typed λ calculus with boolean constants

Example:

(λx:Bool.x) true

Where:

λx:Bool.x : Bool → Bool

true: Bool

Simply typed λ calculus with boolean constants

Example:

 $(\lambda x:Bool.x)$ true

Problem: We have to define a new version of the identity function for each type of value we want to apply it to. Poor code reuse. Need polymorphism.

System F (polymorphic λ calculus)

$$E \stackrel{\text{def}}{=} \lambda x : T.E \quad | \quad E_1 E_2 \quad | \quad x \quad | \quad \Lambda \alpha . E \quad | \quad E[T]$$

$$T \stackrel{\text{def}}{=} \quad T \rightarrow T \quad | \quad \alpha \quad | \quad \forall \alpha . T$$

$$x \in Var$$

System F (polymorphic λ calculus)

System F (assuming boolean constants)

Example:

 $(\Lambda \alpha.\lambda x:\alpha.x)$ [Bool] true

System F (assuming boolean constants)

Example:

 $(\Lambda \alpha.\lambda x:\alpha.x)$ [Bool] true

Where:

 $\Lambda \alpha . \lambda x : \alpha . x : \forall \alpha . \alpha \rightarrow \alpha$

 $(\Lambda \alpha.\lambda x:\alpha.x)$ [Bool] : Bool \rightarrow Bool

System F (assuming boolean constants)

Example:

 $(\Lambda \alpha. \lambda x: \alpha. x)$ [Bool] true

Problem: No way to express parametric data types (eg. List[T]). Need type functions.

System F_{ω} (higher-order polymorphic λ calculus)

System F_{ω} (higher-order polymorphic λ calculus)

System F_w (assuming list constants)

Example:

list_type = $\lambda \alpha$: *.List α

we can deduce:

list_type: $\star \rightarrow \star$

First-order dependent types (LF)

$$E \stackrel{\text{def}}{=} \lambda x:T.E \quad \mid \quad E_1 E_2 \quad \mid \quad x$$

$$T \stackrel{\text{def}}{=} \quad T \rightarrow T \quad \mid \quad \Pi x:T.T \quad \mid \quad T E$$

$$x \in Var$$

First-order dependent types

First-order dependent types (with Vec and Nat)

Example:

append : Пm:Nat.Пn:Nat. Vec m → Vec n → Vec (m+n)

First-order dependent types (with Vec and Nat)

Test for type equality may require term evaluation:

$$Vec (3+2) = Vec (1+4)$$

(parts of) programs evaluated at type-checking time. How to handle non-termination?

The Lambda Cube

Terms indexed by types

The Lambda Cube

Terms indexed by types

