ID3 und C4.5

Carsten Gips (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Wie Attribute wählen?

Erinnerung: CAL2/CAL3

- Zyklische Iteration durch die Trainingsmenge
- Ausschließlich aktuelles Objekt betrachtet
- Reihenfolge der "richtigen" Attributwahl bei Verzweigung unklar

=> Betrachte stattdessen die **komplette** Trainingsmenge!

Erinnerung Entropie: Maß für die Unsicherheit

- Entropie H(S) der Trainingsmenge S: Häufigkeit der Klassen zählen
- Mittlere Entropie nach Betrachtung von Attribut A

$$R(S,A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Informationsgewinn durch Betrachtung von Attribut A

$$Gain(S, A) = H(S) - R(S, A)$$

$$= H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

=> Je kleiner R(S,A), um so größer der Informationsgewinn

Informationsgewinn: Kriterium zur Auswahl von Attributen

- 1) Informationsgewinn für alle Attribute berechnen
- 2) Nehme Attribut mit größtem Informationsgewinn als nächsten Test

Nr.	x_1	<i>x</i> ₂	<i>X</i> ₃	k
1	0	0	0	Α
2	1	0	2	Λ
		-		
3	0	1	1	Α
4	1	1	0	В
			-	
5	U	1	1	R
6	0	1	0	Α

Informationsgewinn für x_2 am höchsten => wähle x_2 als nächsten Test

Entscheidungsbaumlerner ID3 (Quinlan, 1986)

```
def ID3(examples, attr, default):
    # Abbruchbedingungen
    if examples.isEmpty(): return default
    if examples.each(class == A): return A # all examples have same class
    if attr.isEmpty(): return examples.MajorityValue()
    # Baum mit neuem Test erweitern
    test = MaxInformationGain(examples, attr)
    tree = new DecisionTree(test)
    m = examples.MajorityValue()
    for v i in test:
        ex_i = examples.select(test == v_i)
        st = ID3(ex_i, attr - test, m)
        tree.addBranch(label=v_i, subtree=st)
   return tree
```

Beobachtung: Gain ist bei mehrwertigen Attributen höher

- Faire Münze:
 - Entropie = $H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 Bit$
- 4-seitiger Würfel:
 - Entropie = $H(Dice) = -4 \cdot (0.25 \log_2 0.25) = 2 Bit$

=> Gain ist bei mehrwertigen Attributen höher

C4.5 als Verbesserung zu ID3

Normierter Informationsgewinn: $Gain(S, A) \cdot Normalisation(A)$

$$\mathsf{Normalisation}(A) = \frac{1}{\sum_{v \in \mathsf{Values}(A)} p_v \log_2 \frac{1}{p_v}}$$

Beispiele zur Normierung bei C4.5

- Faire Münze:
 - Entropie = $H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 Bit$
 - Normierung: $1/(0.5 \log_2(1/0.5) + 0.5 \log_2(1/0.5)) = 1/(0.5 \cdot 1 + 0.5 \cdot 1) = 1$
 - Normierter Informationsgewinn: $Gain(S, A) \cdot Normalisation(A) = 1 Bit \cdot 1 = 1 Bit$
- 4-seitiger Würfel:
 - Entropie = $H(Dice) = -4 \cdot (0.25 \log_2 0.25) = 2 Bit$
 - Normierung: $1/(4 \cdot 0.25 \log_2(1/0.25)) = 1/(4 \cdot 0.25 \cdot 2) = 0.5$
 - Normierter Informationsgewinn: $Gain(S, A) \cdot Normalisation(A) = 2 Bit \cdot 0.5 = 1 Bit$

=> Normierung sorgt für fairen Vergleich der Attribute

Wrap-Up

- Entscheidungsbaumlerner ID3
 - Nutze Information Gain zur Auswahl des nächsten Attributs
 - Teile die Trainingsmenge entsprechend auf ("nach unten hin")
- Verbesserung durch Normierung des Information Gain: C4.5

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.