# Rotman Research Node (RRN)

Jay / TDMDAL

## Plan for Today

- Agenda
  - What is RRN?
  - When will you choose to use it?
  - How to use it depending on your use cases (demo)?

- We will focus on big pictures so
  - You get a good general understanding of the system
  - You know where to look for the details and what details
    - user manuals, Internet, TDMDAL support, etc.

## What is RNN (1)

- A shared research server
  - Hardware: 32 Xeon CPUs; 800G Memory
  - Storage: Home directories; 50T shared project directory
  - Software: Linux OS; Python, R, Matlab, Stata, Julia, C, C++, Fortran, etc.
  - Dedicated to Rotman researchers
  - Hosted at Centre for Advanced Computing (CAC) at Queens U
- A gateway to a pool of computing resources
  - Zoom out (next slides)

















**High Performance Computing System (HPC)** 

## Why using RRN

- My code takes too long to run
  - it need more CPUs (i.e. computing intensive work)
  - it need more memory (i.e. memory intensive work)
- I want to use XYZ (ex. Matlab), but the license cost is too high

- I want a stable environment for a long running code
  - ex. collecting data through web scraping

## Questions to ask before considering RRN

- One big misunderstanding
  - my (unmodified) code will run faster on the server (NO in most cases)
- I need more CPUs
  - have I optimized my code (vectorization; better algorithm)?
  - have I tried parallel computing on my desktop?
    - modern desktop has 2-4 CPUs (4-8 with hyperthreading)
    - no license cost if you use open source language (R, Python, Julia, etc.)
- I need more memory
  - do I really need to load all those data
  - have I optimized my code (delete big variables/objects after use; better algorithm)

#### How to Use RRN — User Manuals

- Our RRN <u>User Manual</u>
  - Focus on RRN
  - Good for getting started

- CAC <u>User manual</u>
  - Including HPC usage (Compute Nodes)
  - For users with highly compute-intensive jobs

### How to Use RRN – Account & Logon

• Email tdmdal@rotman.utoronto.ca for an account

- SSH (Secure Shell) client
  - Windows (ex. <u>Mobaxterm</u>)
  - Mac (terminal + <u>Xquartz</u>)

ssh -X yourUserName@rrlogin.cac.queensu.ca

#### Folder Structure & Disk Quota

| Folder  | Path                                                      | Quota         | Usage              |
|---------|-----------------------------------------------------------|---------------|--------------------|
| Home    | /global/home/yourUserName/                                | 3T            | Main storage       |
| Project | <pre>/global/project/rotman_research/you rUserName/</pre> | 50T<br>shared | Additional storage |
| Scratch | /global/scratch/yourUserName/                             | 5T            | Temporary storage  |

Note: 1) Only you have access to those 3 folders

- 2) Your project folder shares the 50T quota with other Rotman project folders
- 3) project and scratch folders can also be accessed via two shortcuts in the home folder:

rotman\_research and scratch

#### How to Use RRN — Transfer Files

- a SFTP client (transfer files between local PC and RRN)
  - Windows (ex. WinSCP, Cyberduck, FileZilla)
  - Mac (Cyberduck, FileZilla)
- Other methods available too
  - scp, rsync, etc.
  - globus
  - •

## Using Software – Module System

A software Environment Module system

module avail

module load <module\_name>

module list

|                            | Interactive Mode | Batch Mode |
|----------------------------|------------------|------------|
| RRN (1 node)               |                  |            |
| Compute Nodes (Many nodes) |                  |            |

|                                                                                                                                                                                                    | Interactive Mode | Batch Mode |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul> |                  |            |
| Compute Nodes (Many nodes)                                                                                                                                                                         |                  |            |

|                                                                                                                                                                                                                                                                                                                                                                                            | Interactive Mode | Batch Mode |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul>                                                                                                                                                                                         |                  |            |
| <ul> <li>Compute Nodes (Many nodes)</li> <li>CPU: 24- up to 128-core node</li> <li>Memory: mostly 256G nodes; a few large ones (512G, 1T &amp; 2T)</li> <li>Exclusive use once allocated to you</li> <li>Slightly harder to use <ul> <li>Need to write a script to talk to the schedular/resource manager</li> <li>Need to wait in a queue to compete for resources</li> </ul> </li> </ul> |                  |            |

|                                                                                                                                                                                                                                                                                                                                                                                            | Interactive Mode                                      | Batch Mode |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul>                                                                                                                                                                                         | Debug code  Run small jobs  • < 6 cores  • < 0.5 hrs. |            |
| <ul> <li>Compute Nodes (Many nodes)</li> <li>CPU: 24- up to 128-core node</li> <li>Memory: mostly 256G nodes; a few large ones (512G, 1T &amp; 2T)</li> <li>Exclusive use once allocated to you</li> <li>Slightly harder to use <ul> <li>Need to write a script to talk to the schedular/resource manager</li> <li>Need to wait in a queue to compete for resources</li> </ul> </li> </ul> |                                                       |            |

#### Ex.1 Matlab - RNN Interactive Mode

Load matlab module

module load matlab/R2018b

Run matlab with GUI

matlab

Run matlab without GUI

matlab -nodesktop -nosplash -nodisplay

|                                                                                                                                                                                                                                                                                                                                                                                | Interactive Mode                                      | Batch Mode                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul>                                                                                                                                                                             | Debug code  Run small jobs  • < 6 cores  • < 0.5 hrs. | Run intermediate compute & memory intensive jobs  • ~12 cores • 1-2 hrs. or |
| <ul> <li>Compute Nodes (Many nodes)</li> <li>CPU: 24- up to 128-core node</li> <li>Memory: mostly 256G nodes; a few large ones (512G, 1T &amp; 2T)</li> <li>Exclusive use once allocated to you</li> <li>Slightly harder to use</li> <li>Need to write a script to talk to the schedular/resource manager</li> <li>Need to wait in a queue to compete for resources</li> </ul> |                                                       |                                                                             |

#### Ex.2 Matlab - RNN Batch Mode

Load matlab module

module load matlab/R2018b

- Run in foreground
  - prompt taken; need to wait for result; not recommend

```
matlab -nodesktop -nosplash -nodisplay <matlab_test.m
&>matlab_test.log
```

Run in background and no hang up after logout (recommend)

```
nohup matlab -nodesktop -nosplash -nodisplay
<matlab_test.m &>matlab_test.log &
```

|                                                                                                                                                                                                                                                                                                                                                                                            | Interactive Mode                                                                                       | Batch Mode                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul>                                                                                                                                                                                         | Debug code  Run small jobs  • < 6 cores  • < 0.5 hrs.                                                  | Run intermediate compute & memory intensive jobs  • ~12 cores • 1-2 hrs. or |
| <ul> <li>Compute Nodes (Many nodes)</li> <li>CPU: 24- up to 128-core node</li> <li>Memory: mostly 256G nodes; a few large ones (512G, 1T &amp; 2T)</li> <li>Exclusive use once allocated to you</li> <li>Slightly harder to use <ul> <li>Need to write a script to talk to the schedular/resource manager</li> <li>Need to wait in a queue to compete for resources</li> </ul> </li> </ul> | Get a interactive node to:  Debug code  Run small jobs  CPUs: as many as you request on a node  1 hrs. |                                                                             |

## Ex.3 Matlab – Interactive Compute Node

Allocate an interactive node

Load matlab module

- Run matlab in interactive mode with or without GUI
- Run matlab in batch mode. However, don't exit the interactive node!

|                                                                                                                                                                                                                                                                                                                                                                                            | Interactive Mode                                                                                       | Batch Mode                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <ul> <li>RRN (1 node)</li> <li>CPU: 32 cores</li> <li>Memory: 800G; quite large</li> <li>Shared (among Rotman researchers)</li> <li>Easy to use: Code runs as soon as you ask it to run</li> </ul>                                                                                                                                                                                         | Debug code  Run small jobs  • < 6 cores  • < 0.5 hrs.                                                  | Run intermediate compute & memory intensive jobs  • ~12 cores • 1-2 hrs. or |
| <ul> <li>Compute Nodes (Many nodes)</li> <li>CPU: 24- up to 128-core node</li> <li>Memory: mostly 256G nodes; a few large ones (512G, 1T &amp; 2T)</li> <li>Exclusive use once allocated to you</li> <li>Slightly harder to use <ul> <li>Need to write a script to talk to the schedular/resource manager</li> <li>Need to wait in a queue to compete for resources</li> </ul> </li> </ul> | Get a interactive node to:  Debug code  Run small jobs  CPUs: as many as you request on a node  1 hrs. | Run highly compute & memory intensive jobs                                  |

Write a job submission script (an example, job.sh)

```
use bash shell to
                  #!/bin/bash
execute this script
                  #SBATCH --job-name=MATLAB_test
                  #SBATCH --partition=standard
                  #SBATCH --mail-type=ALL
                  #SBATCH --mail-user=jay.cao@rotman.utoronto.ca
request resources
                  #SBATCH --output=STD.out
(Slurm command)
                  #SBATCH --error=STD.err
                  #SBATCH -c 4
                  #SBATCH --time=30:00
                  #SBATCH --mem=5000
                  module load matlab/R2018b
  load matlab &
                  matlab -nodesktop -nosplash -nodisplay <matlab_test.m</pre>
  run my code
```

```
#!/bin/bash
#SBATCH --job-name=MATLAB test # set job name
#SBATCH --partition=standard
                                # set job partition (group of nodes)
#SBATCH --mail-type=ALL
                                # email me when job start, stop, etc.
#SBATCH --mail-user=jay.cao@rotman.utoronto.ca
#SBATCH --output=STD.out # save standard output to STD.out
                                # save std. error output to STD.out
#SBATCH --error=STD.err
                                # ask for 4 CPUs
#SBATCH -c 4
#SBATCH --time=30:00
                                # set wall time to be 30mins
#SBATCH --mem=5000
                                # ask for 5G memory
module load matlab/R2018b
matlab -nodesktop -nosplash -nodisplay <matlab test.m</pre>
```

```
#!/bin/bash
#SBATCH --job-name=MATLAB test # set job name
#SBATCH --partition=standard
                                # set job partition (group of nodes)
#SBATCH --mail-type=ALL
                                # email me when job start, stop, etc.
#SBATCH --mail-user=jay.cao@rotman.utoronto.ca # set my email address
#SBATCH --output=STD.out
                        # save standard output to STD.out
                                # save std. error output to STD.out
#SBATCH --error=STD.err
                                # ask for 4 CPUs
#SBATCH -c 4
#SBATCH --time=30:00
                                # set wall time to be 30mins
#SBATCH --mem=5000
                                # ask for 5G memory
module load matlab/R2018b
matlab -nodesktop -nosplash -nodisplay <matlab test.m</pre>
```

```
#!/bin/bash
#SBATCH --job-name=MATLAB test # set job name
#SBATCH --partition=standard
                                # set job partition (group of nodes)
#SBATCH --mail-type=ALL
                                # email me when job start, stop, etc.
#SBATCH --mail-user=jay.cao@rotman.utoronto.ca # set my email address
#SBATCH --output=STD.out
                                # save standard output to STD.out
                                 # save std. error output to STD.out
#SBATCH --error=STD.err
                                # ask for 4 CPUs
#SBATCH -c 4
#SBATCH --time=30:00
                                # set wall time to be 30mins
#SBATCH --mem=5000
                                # ask for 5G memory
module load matlab/R2018b
matlab -nodesktop -nosplash -nodisplay <matlab test.m</pre>
```

```
#!/bin/bash
#SBATCH --job-name=MATLAB test # set job name
#SBATCH --partition=standard
                                # set job partition (group of nodes)
#SBATCH --mail-type=ALL
                                # email me when job start, stop, etc.
#SBATCH --mail-user=jay.cao@rotman.utoronto.ca # set my email address
#SBATCH --output=STD.out
                        # save standard output to STD.out
                                # save std. error output to STD.out
#SBATCH --error=STD.err
                                # ask for 4 CPUs
#SBATCH -c 4
#SBATCH --time=30:00
                                # set wall time to be 30mins
#SBATCH --mem=5000
                                # ask for 5G memory
module load matlab/R2018b
matlab -nodesktop -nosplash -nodisplay <matlab test.m</pre>
```

- run job script to submit your code to a compute node
  - currently CAC doesn't enable inter-node jobs

• Show status of jobs

Cancel jobs

# Extra Stuff

### Persist Your Sessions: tmux & x2go

- What does it mean
  - after you log out the system, you can still log in back to where you left off
- Why is it useful
  - long running code on RRN in foreground
- Tools to achieve it
  - persist a non-GUI session: tmux (recommended; demo) or screen
  - persist a GUI session: x2go (recommended; demo), VNC or xpra

## tmux: minimum to get started

```
launch: tmux
split current pane vertically: ctrl-b %
split current pane horizontally: ctrl-b "
moving between panes: ctrl-b \uparrow, \downarrow, \rightarrow, \leftarrow
close a pane (close the last pane to exit tmux): exit
detach from a session: ctrl-b d
re-attach to a session (assuming you only have 1 session): tmux attach
```

more on getting started with tmux: <a href="https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/">https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/</a>

## Processes: ps, top, htop, kill, pkill

check all the process you are running

#### ps -u yourUserName

- display system info (CPU & memory usage, process, etc)
   top or htop (type q to exit)
- terminate a process

#### kill processID

terminate all processes you have (this will log you out too)

#### pkill -u yourUserName