Figure 1

MAMSSGGSGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIA
SIDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESE
NSRSPGNKSDNIKPKSAPWNSFLPPPPPPPPPPPPGRKPGLKFNGPPPPPPPPPPPHL
LSCWLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQK
EGRCSHSLN

Figure 2A

CGGGGCCCCACGCTGCGCACCCGCGGGTTTGCTATGGCGATGAGCAGCGGCGGCAGT AGCGATGATTCTGACATTTGGGATGATACAGCACTGATAAAAGCATATGATAAAGCT GTGGCTTCATTTAAGCATGCTCTAAAGAATGGTGACATTTGTGAAACTTCGGGTAAA CCAAAAACCACCTAAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGAAGAAT ACTGCAGCTTCCTTACAACAGTGGAAAGTTGGGGACAAATGTTCTGCCATTTGGTCA GAAGACGGTTGCATTTACCCAGCTACCATTGCTTCAATTGATTTTAAGAGAGAAACC TGTGTTGTGGTTTACACTGGATATGGAAATAGAGAGGAGCAAAATCTGTCCGATCTA CTTTCCCCAATCTGTGAAGTAGCTAATAATATAGAACAGAATGCTCAAGAGAATGAA AATGAAAGCCAAGTTTCAACAGATGAAAGTGAGAACTCCAGGTCTCCTGGAAATAAA CCCATGCCAGGGCCAAGACTGGGACCAGGAAAGCCAGGTCTAAAATTCAATGGCCCA CCTTCTGGACCACCAATAATTCCCCCCACCACCACCATATGTCCAGATTCTCTTGAT GATGCTGATGCTTTGGGAAGTATGTTAATTTCATGGTACATGAGTGGCTATCATACT **AATTAAGGAGAAATGCTGGCATAGAGCACCACTAAATGACACCACTAAAGAAACGAT** CAGACAGATCTGGAATGTGAAGCGTTATAGAAGATAACTGGCCTCATTTCTTCAAAA TATCAAGTGTTGGGAAAGAAAAAGGAAGTGGAATGGGTAACTCTTCTTGATTAAAA GTTATGTAATAACCAAATGCAATGTGAAATATTTTACTGGACTCTTTTGAAAAACCA TCTGTAAAAGACTGAGGTGGGGGGGGGGGCCAGCCACGGTGGTGAGGCAGTTGAGAA CCTGTGAGAAGGGTGTTGTAGTTTATAAAAGACTGTCTTAATTTGCATACTTAAGCA TTTAGGAATGAAGTGTTAGAGTGTCTTAAAATGTTTCAAATGGTTTAACAAAATGTA TGTGAGGCGTATGTGGCAAAATGTTACAGAATCTAACTGGTGGACATGGCTGTTCAT TGTACTGTTTTTTTCTATCTTCTATATGTTTAAAAGTATATAATAAAAATATTTAAT

REPLACEMENT SHEET

Figure 2B

AATTTTTAAATTTTTTGTAGAGACAGGGTCTCATTATGTTGCCCAGGGTGGTGTCAA GCTCCAGGTCTCAAGTGATCCCCCTACCTCCGCCTCCCAAAGTTGTGGGATTGTAGG CATGAGCCACTGCAAGAAAACCTTAACTGCAGCCTAATAATTGTTTTCTTTGGGATA ACTTTTAAAGTACATTAAAAGACTATCAACTTAATTTCTGATCATATTTTGTTGAAT AAAATAAGTAAAATGTCTTGTGAACAAAATGCTTTTTAACATCCATATAAAGCTATC TATATATAGCTATCTATATCTATATAGCTATTTTTTTTAACTTCCTTTTATTTTCCT TACAG*GGTTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATTCCTTAAATTAA GGA*GTAAGTCTGCCAGCATTATGAAAGTGAATCTTACTTTTGTAAAACTTTATGGT TTGTGGAAAACAAATGTTTTTGAACAGTTAAAAAGTTCAGATGTTAGAAAGTTGAAA GGTTAATGTAAAACAATCAATATTAAAGAATTTTGATGCCAAAACTATTAGATAAAA AACATACTTTCACAATAAAGAGCTTTAGGATATGATGCCATTTTATATCACTAGTAG GCAGACCAGCAGACTTTTTTTTTTTTTTGTGATATGGGATAACCTAGGCATACTGCACTG TACACTCTGACATATGAAGTGCTCTAGTCAAGTTTAACTGGTGTCCACAGAGGACAT GGTTTAACTGGAATTCGTCAAGCCTCTGGTTCTAATTTCTCATTTGCAG*GAAATGC GTGAAGCGTTATAGAAGATAACTGGCCTCATTTCTTCAAAATATCAAGTGTTGGGAA AGAAAAAAGGAAGTGGAATGGGTAACTCTTCTTGATTAAAAGTTATGTAATAACCAA ATGCAATGTGAAATATTTTACTGGACTCTTTTGAAAAACCATCTGTAAAAGACTGAG GTGGGGGTGGGAGCCAGCACGGTGGTGAGGCAGTTGAGAAAATTTGAATGTGGATT ${f AGATTTTGAATGATATTGGATAATTATTGGTAATTTTATGGCCTGTGAGAAGGGTGT}$ TGTAGTTTATAAAAGACTGTCTTAATTTGCATACTTAAGCATTTAGGAATGAAGTGT CAAAATGTTACAGAATCTAACTGGTGGACATGGCTGTTCATTGTACTGTTTTTTTCT ATCTTCTATATGTTTAAAAGTATATAATAAAAATATTTAATTT

Figure 3A

T
CGGGGCCCCACGCTGCGCATCCGCGGGTTTGCTATGGCGATGAGCAGCGGCGGCAG
GGTGGCGGCGTCCCGGAGCAGGAGGATTCCGTGCTGTTCCGGCGCGCGC
2

*AGCGATGATTCTGACATTTGGGATGATACAGCACTGATAAAAGCATATGATAAAGC TGTGGCTTCATTTAAGCATGCTCTAAAGAATGGTGACATTTGTGAAACTTCGGGTAA ACCAAAAACCACACCTAAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGAAGAA

3

1

5

6

ATTTCCTTCTGGACCACA*ATAATTCCCCCACCACCTCCCATATGTCCAGATTCTC
TTGATGATGCTGATGCTTTGGGAAGTATGTTAATTTCATGGTACATGAGTGGCTATC

7

ATACTGGCTATTATATG*GGTTTCAGACAAAATCAAAAAGAAGGAAGGTGCTCACAT

8

Figure 3B

AATTTTTAAATTTTTTGTAGAGACAGGGTCTCATTATGTTGCCCAGGGTGGTGTCAA GCTCCAGGTCTCAAGTGATCCCCCTACCTCCGCCTCCCAAAGTTGTGGGATTGTAGG CATGAGCCACTGCAAGAAAACCTTAACTGCAGCCTAATAATTGTTTTCTTTGGGATA ACTTTTAAAGTACATTAAAAGACTATCAACTTAATTTCTGATCATATTTTGTTGAAT AAAATAAGTAAAATGTCTTGTGAACAAAATGCTTTTTAACATCCATATAAAGCTATC TATATATAGCTATCTATGTCTATATAGCTATTTTTTTTAACTTCCTTTTATTTTCCT TACAG*GGTTTCAGACAAAATCAAAAAGAAGGAAGGTGCTCACATTCCTTAAATTAA GGA*GTAAGTCTGCCAGCATTATGAAAGTGAATCTTACTTTTGTAAAACTTTATGGT TTGTGGAAAACAAATGTTTTTGAACAGTTAAAAAGTTCAGATGTTAAAAAGTTGAAA GGTTAATGTAAAACAATCAATATTAAAGAATTTTGATGCCAAAACTATTAGATAAAA AACATACTTTCACAATAAAGAGCTTTAGGATATGATGCCATTTTATATCACTAGTAG GCAGACCAGCAGACTTTTTTTTTTTTTGTGATATGGGATAACCTAGGCATACTGCACTG TACACTCTGACATATGAAGTGCTCTAGTCAAGTTTAACTGGTGTCCACAGAGGACAT GGTTTAACTGGAATTCGTCAAGCCTCTGGTTCTAATTTCTCATTTGCAG*GAAATGC GTGAAGCGTTATAGAAGATAACTGGCCTCATTTCTTCAAAATATCAAGTGTTGGGAA AGAAAAAAGGAAGTGGAATGGGTAACTCTTCTTGATTAAAAGTTATGTAATAACCAA ATGCAATGTGAAATATTTTACTGGACTCTTTTGAAAAACCATCTGTAAAAGACTGGG GTGGGGGTGGGAGGCCAGCACGGTGGTGAGGCAGTTGAGAAAATTTGAATGTGGATT AGATTTTGAATGATATTGGATAATTATTGGTAATTTTATGGCCTGTGAGAAGGGTGT TGTAGTTTATAAAAGACTGTCTTAATTTGCATACTTAAGCATTTAGGAATGAAGTGT CAAAATGTTACAGAATCTAACTGGTGGACATGGCTGTTCATTGTACTGTTTTTTTCT ATCTTCTATATGTTTAAAAGTATATAATAAAAATATTTAATTT

Figure 4

C212

C272

AFM157xd10

C161

C171

Restriction map of the 5q13 region for Eagl(Ea),SacII(SacII),SfiI(Sfi).Numbers under parenthesis indicate Centromer(Cent.), Telomere(Tel.). Probes are indicated above the restriction map. YACS are below the the restriction fragment detected by He3; Telomeric element (ETel),centromeric element (Ecen), restriction map.

motor-neuron markers C2 assembling direction The position)Ipq shows polymorphic containing the survival SMA patients ocation gene; phage clones used tion map for EcoRI(E), are shown. gene). Genetic map snows C171. Physical map shows map. Restriction map for), BgⅢ(B), SacⅡ(S) are genomic rearrangements ranscription of SMN centromere gene (SMN C272 and (Hind田(H), elomeric ndicate physical

GENE DOSAGE ANALYSIS OF THE 5q13 REGION WITH THE 132SE11 PLASMID CONE IN SMA TYPE I PATIENT. TOTAL HUMAN DNA FROM SMA FAMILY WAS DIGESTED WITH HINDIII FOR SOUTHERN BLOTTING. FILTER WAS CONSECUTIVELY HYBRIDIZED WITH 132SE11 (A) AND JK53 PROBES (B). A SIGNIFICANT DECREASE IN 132SE11 BAND INTENSITY, WHICH INDICATED THE DELETION, COMPARED WITH THEIR PARENTS. F/FATHER, M/MOTHER, A /AFFECTED

F M A

В

Figure 8

MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIA SIDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESE NSRSPGNKSDNIKPKSAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPHL LSCWLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYM

JAN 3 1 2005 W

REPLACEMENT SHEET

Figure 10A

1 cctcccgggcaccgtactgttccgctcccagaagccccggggcgccggaagtcgtcac tcttaagaagggacggggcccacgctgcgcacccgcgggtttgct ATG GCG ATG AGC AGC GGC AGT GGT GGC GGC GTC CCG GAG CAG GAG М S G G S G G G V P GAT TCC GTG CTG TTC CGG CGC GGC ACA GGC CAG gtgaggtcgcagc D V \mathbf{L} F R R G \mathbf{T} G caqtqcaqtctccctattagcgctctcagcacccttcttccggcccaactctccttc cgca 2a attaaacctatctgnacatgagttgtttttatttcttaccctttccag AGC GAT GAT TCT GAC ATT TGG GAT GAT ACA GCA CTG ATA AAA GCA TAT Ι W D D T Α \mathbf{L} Ι GAT AAA GCT GTG GCT TCA TTT AAG gtatgaaatgcttgnttagtcgttt Α Α S F K tcttattttctcgttattcatttggaaaggaattgataacatacgataaagtgttaa 2b aggtgctttctgaggtgacggagccttgagactagcttatagtagtaactgggttat gtcgtgacttttattctgtgcaccaccctgtaacatgtacatttttattcctatttt cgtag CAT GCT CTA AAG AAT GGT GAC ATT TGT GAA ACT TCG GGT Η L K Ν G D I C Ε AAA CCA AAA ACC ACA CCT AAA AGA AAA CCT GCT AAG AAG K K Т T Ρ K R K Ρ А K K AAA AGC CAA AAG AAG AAT ACT GCA GCT TCC TTA CAA CAG gttat K K K Ν \mathbf{T} Α Α S L. Q tttaaaatgttgaggatttaacttcaaaggatgtctcattagtccttatttaatagt gtaaaatgtctttaact 3 gcctgcaggtcgatcaaaacgagatgatagtttgccctcttcaaaagaaatgtgtgc atgtatatatctttgatttcttttgtag TGG AAA GTT GGG GAC AAA TGT W K V G. D K TCT GCC ATT TGG TCA GAA GAC GGT TGC ATT TAC CCA GCT ACC Ι W E G C D Ι Y. Ρ Α ATT GCT TCA ATT GAT TTT AAG AGA GAA ACC TGT GTT GTG GTT Ι S Ι D F K R Ε T . C V. TAC ACT GGA TAT GGA AAT AGA GAG GAG CAA AAT CTG TCC GAT Y G. Y G Ν R Ε Ε Q N CTA CTT TCC CCA ATC TGT GAA GTA GCT AAT AAT ATA GAA S I. C E Α . N N.

Figure 10B

AAT GCT CAA GAG gtaaggatacaaaaaaaaaaaaaattcaatttctggaagcag Ν Α O agactagatgagaaactgttaaacagtatacaca ccaccgaggcattaatttttttttaatcacacccttataacaaaaacctgcatattt tttctttttaaag AAT GAA AAT GAA AGC CAA GTT TCA ACA GAT GAA N Ε N Ε S Q V S AGT GAG AAC TCC AGG TCT CCT GGA AAT AAA TCA GAT AAC ATC S E N S Ρ G N K. S R N Ι AAG CCC AAA TCT GCT CCA TGG AAC TCT TTT CTC CCT CCA CCA K S Α Р W N S F \mathbf{L} CCC CCC ATG CCA GGG CCA AGA CTG GGA CCA GGA AAG gtaaacctt G Ρ R \mathbf{L} G Ρ G ctatgaaagttttccagaaaatagttaatgtcgggacatttaacctctctgttaact aatttgtagctctccca 5 caaatattctgggtaattatttttatccttttggttttgagtcctttttattcctat catattgaaattggtaagttaattttcctttgaaatattccttatag CCA GGT G CTA AAA TTC AAT GGC CCA CCA CCG CCA CCG CCA CCA CCA G Ρ Ρ Ρ Ρ CCC CAC TTA CTA TCA TGC TGG CTG CCT CCA TTT CCT TCT GGA Н S C W L Ρ Р CCA CCA qtaaqtaaaaaqaqtataqqttaqattttqctttcacatacaatttga taatta ccagactttastttttgtttactggatataaacaatatctttttctgtctccag ATA ATT CCC CCA CCA CCT CCC ATA TGT CCA GAT TCT CTT GAT Ι Ι Ρ Р Ρ Ρ C Ρ Ρ Ι D . S^{-} L GAT GCT GAT GCT TTG GGA AGT ATG TTA ATT TCA TGG TAC ATG Α D Α G L Ι S L S M W Y AGT GGC TAT CAT ACT GGC TAT TAT ATG gtaagtaatcactcagcatct T G Y Y Μ tttcctgacaatttttttgtagttatgtgactttgtttggtaaatttataaaatact acttq aactgcagcctaataattgttttctttgggataacttttaaagtacattaaaagact atcaacttaatttctgatcatattttgttgaataaaataagtaaaatgtcttgtgaa

JAN 3 1 2005 AND TRADEMARKS

REPLACEMENT SHEET

Figure 10C

 \rightarrow a

 \rightarrow T

atagctattttttttaacttccttttattttccttacag GGT TTC AGA CAA

G F R Q

AAT CAA AAA GAA GGA AGG TGC TCA CAT TCC TTA AAT taaggagta N Q K E G R C S H S L N *

aagtctgccagcattatgaaagtgaatcttacttttgtaaaactttatggtttgtgg

 \rightarrow Q

aaaacaatgtttttgaacagttaaaaagttcagatgttaaaaagttgaaaggttaa tgtaaaacaatcaatattaaagaattttgatgccaaaactattagataaaaggttaa

→ g

 \rightarrow a

JAN 3 1 2005 BY

REPLACEMENT SHEET

Figure 11

gatctgccttccttcctgccccatgtttgtctttccttgttttgtcttta	50
tatagatcaagcaggttttaaattcctagtaggagcttacatttactttt	100
ccaagggggggggggaataaatatctacacacacacacac	150
cactggagttcgagacgaggcctaagcaacatgccgaaaccccgtctcta DTF-1	200
ctaaatacaaaaatagctgagcttggtggcgcacgcctatagtcctagc	250
tactggggaggctgaggtggggggatcgcttgagcccaagaagtcgaggc	300
tgcagtgagccgagatcgcgccgctgcactccagcctgagcgacagggcg	350
aggctctgtctcaaaacaaacaaacaaaaaaaaaaaaggaaaggaaatata eta -IFN	400
acacagtgaaatgaaaggattgag <u>agaaatg</u> aaaaatatacacgccacaa HiNF-A	450
atgtgggagggcgataaccactcgtagaaagcgtgagaagttactacaag	500
cggtcctcccgggcaccgtactgttccgctcccagaag <u>ccccgggc</u> gccg AP-2	550
gaagtcgtcactcttaagaagggacggggccccacgctgcgcacccgcgg	600
gtttgct ATG GCG ATG AGC AGC GGC AGT GGT GGC M A M S S G G S G	637

JAN 3 1 2005 W

REPLACEMENT SHEET

Figure 12A

C	ggcg.	tggt	agca	ggcc			GGC Gly		41
				GAA Glu					80
				GAT Asp					119
				GCT Ala					158
				AAG Lys				CCA Pro	197
				GGC Gly					236
				CAA Gln					275
				GTT Val					314
				TGC Cys					353
				AGA Arg					392
				AGA Arg					431
				TGT Cys					470
				AAT Asn					509
				TCC Ser				CAC His	548

REPLACEMENT SHEET

Figure 12B

		GCT Ala						587
		ATG Met						626
		AAA Lys						665
		CCC Pro						704
		GGA Gly						743
		GAC Asp						782
		ATC Ile				•	CAC His	821
 	_		- '	_			GAA Glu	860
		CAT His				÷ *		885

JAN 3 1 2005 JAN 3 1 2005 JAN 3 1 2005

REPLACEMENT SHEET

Figure 13

					70 ALKNGDICETS
				•	======= ALKNGDICETP 60
80 GKPKTTPK	90 KRKPAKKNKS	100 GOKKNTAASLO		120 AIWSEDGCIY	130 PATIASIDFKR
DKPKGTAR 70	RRKPAKKNKS	SQKKNATTPLI 90	KQWKVGDKCSZ 100	AVWSEDGCIY 110	PATITSIDFKR 120
	_	ILSDLLSPICE			180 1 IDESENSRSPG
		LSDLLSPTC	EVANSTEQNT(rddsehssrsl 170 1
90 NKSDNIKP				NGPPPPPPP	PPPHLLSCWLP
RSKAHSKS 80					=== = ==-= PPPPFLPCWMP 230
250 PFPSGPPI	260 IPPPPPICF	270 DSLDDADALG	GSMLISWYMSO	SYHTGYYMGÉI	300 RQNQKEGRCSH
PFPSGPPI 240	IPPPPPISP 250	DCLDDTDALG		======== SYHTGYYMGFI 280	RONKKEGKCSH 290

SL -

TN

FIG. 14(A) FIG. 14(B) FIG. 14(C)

SSCP ANALYSIS

121B8 YAC
595CII YAC
HUMAN 1 CONTROL
HUMAN 2 CONTROL
HUMAN 3 CONTROL
HUMAN 4 SMA

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.