

Trabalho Prático: Busca e Ordenação Disciplina: FGA0147 - Estruturas de Dados e Algoritmos Prof. Dr. Nilton Correia da Silva Faculdade UnB Gama - FGA Universidade de Brasília - UnB

Aplicação de Algoritmos de Busca e Ordenação em Análises de Atrasos de Voos de Companhias Aéreas Norte Americanas.

Fonte de dados: Airlines Dataset to predict a delay

Gama, Distrito Federal

Sumário

1	Intr	rodução	3
2	Dat	taset	4
	2.1	Volumetria	4
	2.2	Variáveis de Interesse	4
		2.2.1 ID do Voo	4
		2.2.2 Companhia Aérea	4
		2.2.3 Voo Atrasado ou Não	4
3	Obj	jetivo	5
	3.1	Variáveis do Arquivo de Saída	5
	3.2	Escolha do Método de Ordenação	5
4	Cor	ndições de Contorno da Solução	6
5	Ent	regáveis e Notas	6
	5.1	Código-fonte da Solução - 5 pontos	6
	5.2	Gráfico conforme Figura 1 - 2 pontos	6
	5.3	Relatório Técnico - 3 pontos	6
		5.3.1 Tempo de Processamento para o Cálculo das médias da Figura 1 - 1 ponto	6
		5.3.2 Complexidade do Algoritmo de Ordenação escolhido - 2 pontos	6

Orientações

Trabalho Prático para composição da média final da disciplina de Estruturas de Dados e Algoritmos. Este trabalho foi elaborado considerando que sua resolução deve ser distribuída para um grupo de alunos.

A solução deverá ser em linguagem C ou C++. No caso do grupo adotar C++, poderá se valer de uma solução orientada a objetos, contudo sua solução não deve usar classes e contêineres já prontos da linguagem C++ - por exemplo, algoritmos de ordenação, busca, objetos vector, list, matrix, etc.

1 Introdução

Algoritmos de busca e ordenação são repetidamente demandados em diferentes tipos de análises de dados. Análises estatísticas que visam quantificar ou qualificar uma determinada característica, por vezes, requerem que o algoritmo realize ordenações e buscas em um dataset tendo como chave uma ou mais de suas variáveis - geralmente, as variáveis vêm em forma de colunas do dataset.

Neste trabalho teremos a oportunidade de exercitar algoritmos de ordenação e busca em um caso concreto representado por um dataset que foi preparado para que engenheiros de IA (Inteligência Artificial) e outros profissionais pudessem apresentar soluções para um problema envolvendo o referido dataset. Nosso objetivo aqui, contudo, não será apresentar uma solução final para o problema apresentado no link da fonte de dados (veja a referência abaixo do título do trabalho), mas sim, apresentar uma solução mais simples que será detalhada nas seções posteriores.

Caso o dataset disponibilizado tenha uma quantidade de registros maior do que os seus recursos computacionais conseguem processar, você pode excluir registros ou colunas (desnecessárias à solução), deixando apenas a quantidade máxima de dados que seus recursos computacionais conseguem processar.

2 Dataset

O dataset escolhido para este trabalho refere-se ao registro de voos de diferentes companhias aéreas norte americanas. Ademais aos detalhes do voo, o dataset informa ainda se o voo atrasou ou não (variável booleana).

Desafio para o Engenheiro de IA: Gerar um modelo de IA que seja capaz de prever se um voo irá atrasar ou não.

2.1 Volumetria

Instâncias: 539.383 linhasAtributos: 18 colunas

Tamanho: Compactado: 6,5MB, Descompactado: 18,51 MB

Formato: csv (valores separados por vírgula)

2.2 Variáveis de Interesse

Sua solução não demandará todas as variáveis do dataset. Veja abaixo o detalhamento das variáveis (colunas do dataset) que você precisará processar.

2.2.1 ID do Voo

Esta variável está na coluna id. Esta coluna apresenta um número sequencial que identifica unicamente um voo.

Trata-se de um valor inteiro.

2.2.2 Companhia Aérea

Esta variável está na coluna Airline. Esta coluna apresenta a sigla da companhia aérea.

Trata-se de uma string com 2 caracteres (letras e números).

2.2.3 Voo Atrasado ou Não

Esta variável está na coluna **Delay**. Esta coluna apresenta 0, caso voo não teve atraso ou 1, quando se tratar de voo com atraso.

Trata-se de um inteiro $[0 \mid 1]$.

3 Objetivo

A solução deste trabalho consiste em responder à seguinte questão:

Qual a quantidade média de vezes que as companhias aéreas norte americanas atrasam?

Para responder a esta pergunta, você deve apresentar um gráfico com valores médios de atraso das companhias aéreas (Figura 1).

Figura 1: Formato do Gráfico da solução encontrada.

O gráfico da Figura 1 poderá ser gerado por qualquer aplicativo (MS Excel, Google Sheet, etc) desde que o mesmo seja gerado importando um arquivo csv que a sua solução (seu programa) deverá gerar. Segue abaixo o detalhamento do arquivo de saída que sua solução deverá gerar.

3.1 Variáveis do Arquivo de Saída

Companhia: Esta coluna deve trazer a sigla das companhias aéreas encontradas no arquivo de entrada.

Media: Esta coluna deve trazer a quantidade média de vezes que uma linha aérea atrasa. É um campo que deve ser calculado dividindo-se a quantidade de vezes que a companhia aérea atrasou pela quantidade total de voos realizados por ela.

3.2 Escolha do Método de Ordenação

A ordenação é um ponto importante deste trabalho. Um dos métodos abaixo deverá ser adotado para a solução:

- 1. Insert Sort
- 2. Bubble Sort

- 3. Selection Sort
- 4. Quick Sort

Veja: Principais Algoritmos de Ordenação

4 Condições de Contorno da Solução

Sua solução deve atender às seguintes condições:

- 1. O arquivo de entrada (dataset) deve ser lido por seu programa em sua apresentação original não deve ser ordenado antes por outro programa.
- 2. As linhas do arquivo de saída devem estar em ordem crescente pela coluna Media.

5 Entregáveis e Notas

A avaliação deste trabalho se dará mediante a apresentação dos itens abaixo.

5.1 Código-fonte da Solução - 5 pontos

Mostrar execução do programa. Se for demorado executar para o dataset inteiro, prepare um dataset reduzido para esta etapa.

5.2 Gráfico conforme Figura 1 - 2 pontos

Mostrar a importação do arquivo de saída gerado em um aplicativo e gerar o gráfico.

5.3 Relatório Técnico - 3 pontos

- 5.3.1 Tempo de Processamento para o Cálculo das médias da Figura 1 1 ponto
- 5.3.2 Complexidade do Algoritmo de Ordenação escolhido 2 pontos
 - 1. O() 1 ponto
 - 2. Tempo de Processamento 1 ponto

