15

20

25

30

35

• 1/P2X'S

09/646880 428 cd PCT/PTO 05 OCT 2000

METHOD RAW GIASS MAKING PROCESS FOR PREPARING BATCH, MATERIALS FOR THE MANUFACTURE OF GLASS

The invention relates to a process for some preparing certain materials that can be used for manufacturing glass.

In the context of the present invention, "batch materials" should be understood to mean all materials, vitrifiable materials, natural ores or synthesized products, materials coming from recycling of the cullet type, etc. which can be used in the composition for feeding a glass furnace. Likewise, "glass" should be understood to mean glass in the widest sense, that is say any glassy-matrix, glass-ceramic or ceramic material. The term "manufacture" should be understood to mean the indispensable step of melting the batch materials and possibly all the subsequent/complementary steps aimed at refining/conditioning the molten glass for the purpose of giving it a final shape, especially in the form of flat glass (glazing), hollowware (flasks and bottles), glass in the form of mineral wool, (glass wool or rock wool) used for its thermal or acoustic insulation properties, or possibly even glass in the form of so-called textile yarns used in reinforcement.

The invention relates most particularly to the batch materials needed for manufacturing glass having a significant content of alkali metals, especially for example glasses of the silica-soda-lime type used for the manufacture of flat glass. The batch material most frequently used at the present time for providing sodium is sodium carbonate Na₂CO₃, a choice which is not without drawbacks. This is because, on the hand, this compound provides only sodium constituent element of the glass, all the carboncontaining part decomposing and given off in the form of CO₂ during melting. On the other hand, it is an expensive batch material compared with others since it is a synthetic product obtained by the Solvay process from sodium chloride and lime, which process involves a

15

20

25

30

35

number of manufacturing steps and is not very energy-saving.

This is the reason why various solutions have already been proposed for using, as a sodium source, not a carbonate but a silicate, possibly in the form of a mixed silicate of alkali metals (Na) and alkalineearth metals (Ca) which is prepared beforehand. The use of this type of intermediate product has the advantage of providing jointly several of the constituents of the glass and of eliminating the decarbonization phase. It also makes it possible to speed up the melting of the materials as a whole and to favour homogenization during melting, as indicated, Patents FR-1,211,098 and in FR-1,469,109. example, the However, this approach poses problem manufacturing this silicate and does not propose a completely satisfactory method of synthesis.

The object of the invention is therefore to develop a novel process for manufacturing this type of silicate, which is especially suitable for providing industrial production with a reliability, an efficiency and a cost which are all acceptable.

subject of the invention is firstly The process for manufacturing compounds based on silicates of alkali metals such as Na, K and/or based on alkaline earth metals such as Mg or Ca and/or based on rare earths such as cerium Ce, optionally in the form of mixed silicates which combine at least two elements among alkali metals, alkaline-earth metals and rare earths, notably silicates which combine alkali metals with the alkaline-earth metals and/or the rare earths. This process consists in synthesizing these compounds by the conversion of silica and of one or more halides (especially chlorides), of the said alkali and/or of the said alkaline-earth metals and/or the said rare earths, of the NaCl, KCl or CeCl4 type, (and optionally halides, especially alkaline-earth metal chlorides, in the case of mixed silicates comprising some), the heat needed for this conversion

15

20

25

30

supplied, at least partly, by one or more submerged burners.

In the framework of the invention, part or all of the halide may be substituted by sulfates or even by nitrate, as a source of alkaline/alkaline-earth or earth metals. It may be notably sodium sulfate Na_2SO_4 . So, those different starting materials (solides, nitrates, sulfates) are, in the invention, to be considered as equivalent.

The term "silica" should be understood here to mean any compound containing mostly silica (silicon oxide) SiO_2 , even if it may also contain other elements or other minor compounds, this being most particularly the case when natural materials of the sand type are used.

The expression "submerged burners" should be understood here to mean burners configured so that the "flames" that they generate or the combustion gases resulting from these flames develop within the reactor where the conversion takes place, within the actual mass of the materials undergoing conversion. Generally, they are placed so as to be flush with or project slightly from the side walls or from the sole of the reactor used (we refer here to flames, even if they are not strictly speaking the same "flames" as those produced by overhead burners, for greater simplicity).

The invention thus results in a particularly judicious technological solution in order to be able to exploit on an industrial scale a chemical transformation already proposed by Gay-Lussac and Thénard, namely the direct conversion of NaCl into soda, involving the reaction of NaCl with silica at high temperature in the presence of water according to the following reaction:

2 NaCl + SiO₂ + H₂O \rightarrow Na₂SiO₃ + 2 HCl the principle consisting in extracting the soda by forming the silicate, the equilibrium being always shifted in the direction of NaCl decomposition because the two phases are immiscible.

10

15

20

25

30

35

When sodium sulfate is used instead of NaCl, the reaction is the following one:

 $Na_2SO_4 + SiO_2 + H_2O \rightarrow Na_2SiO_3 + H_2SO_4$

In fact, SO_3 is firstly formed, and it is then transformed into sulfuric acid because of the heat and of the water produced by the combustion with the submerged burners.

Hitherto, this reaction has caused considerable processing problems associated with difficulties in producing an intimate mixture of the reactants and in ensuring that these are replenished during manufacture, also associated with difficulties in discharging HCl (or H_2SO_4) without it reacting again with the silicate formed, in extracting the silicate and in being able to supply sufficient thermal energy.

The use of submerged burners for supplying this thermal energy solves at the same time most of these difficulties.

In fact, it has already been proposed to use heating by submerged burners for melting vitrifiable materials for making glass. For example, reference may be made to Patents US-3,627,504,US-3,260,587 or US-4,539,034. However, the use of such burners in the specific context of the invention, namely the synthesis of silicates from salts, is extremely advantageous:

- this is because this mode of combustion generates water, which water, as was seen above, is indispensable the desired conversion. By virtue of submerged burners, it is thus possible to manufacture in situ the water needed for the conversion, at least partly (even if, in some cases, it may be necessary to additional water). It is also certain that the water is introduced within the other starting substances, namely the silica and the salt(s) (for the sake of brevity, the term "salts" will be used to mean the chloride-type halides of alkali metals, rare earths and, optionally, alkaline-earth metals, used as the starting reactants), this being, of course, propitious to promoting the reaction;

15

20

25

30

35

moreover, the combustion produced by submerged burners causes, within the materials undergoing the reaction, strong turbulence and strong convection movements around each "flame" or "flames" and/or each of the jets of gas coming from each of the burners. Consequently, it will therefore ensure, at partly, vigorous stirring between the reactants, which stirring is needed in order to quarantee intimate mixing between the various reactants, most particularly those introduced in solid (pulverulent) form such as the silica and the salt(s);

rom the strictly thermal standpoint, since they supply heat directly to the point where it is needed, namely in the mass of the products undergoing the reaction, therefore minimizing any loss of energy, and because they are sufficiently powerful and effective for the reactants to be able to reach the relatively high temperatures needed for their melting/conversion, namely temperatures of at least 1000°C, especially about 1200°C;

— furthermore, they are a mode of heating that is particularly environmentally friendly, by especially reducing as far as possible any emission of NO_x -type gases.

It may therefore be concluded that the effectiveness of these burners at every level (quality of the mix, excellent heat transfer and one of the reactants being generated in situ) means that the conversion is highly favoured, this being so without there necessarily being a requirement to achieve extremely high temperatures.

The oxidizer chosen for feeding the submerged burner(s) may simply be air. However, an oxidizer in the form of oxygen-enriched air, and even substantially in the form of oxygen alone, is preferred. A high oxygen concentration is advantageous for various reasons: the volume of flue gases is reduced, this being favourable from an energy standpoint and avoids

any risk of excessive fluidization of the materials undergoing the reaction that might cause them to be projected against the superstructures or the roof of reactor where the the conversion takes Furthermore, the "flames" obtained are shorter and of higher emissivity, thereby allowing more rapid transfer their the materials energy to undergoing melting/conversion.

With regard to the choice of fuel for the submerged burner(s), two approaches are possible, which are alternatives or can be combined:

- it is possible to choose a liquid fuel, of the fuel oil type, or a gaseous fuel, of the natural gas type (mostly methane), propane or hydrogen;
- it is also possible to use a fuel in solid form, containing carbon, for example coal, or any material containing hydrocarbon, optionally chlorinated, polymers.

for the submerged burners influence the nature of the products obtained, apart from the silicates. Thus, when the burners are fed with oxygen and with natural gas, schematically the following two reactions occur: (starting from the simplest situation in which it is desired to make the Na silicate from NaCl, but it is possible to transpose it to all other cases, whether of making K silicate, Ce silicate or silicates containing Ca or Mg, etc.):

- (a) 2 NaCl + SiO₂ + H₂O \rightarrow Na₂SiO₃ + 2 HCl
- 30 (b) $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$

These two reactions may be combined into a single reaction:

- (c) 4 NaCl + 2 SiO₂ + CH₄ + 2 O₂ \rightarrow 2 Na₂SiO₃ + 4 HCl + CO₂
- When hydrogen is used as fuel rather than natural gas, there is no longer any emission of CO_2 and the overall reaction may be written as:
 - (d) 4 NaCl + 2 SiO₂ + 2 H₂ + O₂ \rightarrow 2 Na₂SiO₃ + 4 HCl

10

20

25

30

35

When a carbon-containing solid-type fuel is used, always with an oxygen-type oxidizer, the following reaction may be written:

(e) 2 NaCl + 3/2 O₂ + C + SiO₂ \rightarrow Na₂SiO₃ + Cl₂ + CO₂.

This time, what is produced is therefore no longer HCl but chlorine Cl_2 as by-products of the conversion.

It is therefore clear from these various reactions-balances that the conversion envisaged by the invention also generates halogen-containing derivatives most particularly utilizable chlorine-containing derivatives such as HCl or Cl_2 (or H_2SO_4), which are found in the flue gases. Two ways of operation are possible:

15 — one consists in retreating them as effluents. Thus, it is possible to neutralize HCl with calcium carbonate $CaCO_2$, which amounts to manufacturing $CaCl_2$, which is possibly utilizable (for example, for removing snow from roads);

- the other way consists in considering the conversion according to the invention as a means of manufacturing HCl or Cl_2 on an industrial scale, these being base chemicals widely used in the chemical industry. (It is especially, for the chlorine obtained possible, which is necessary electrolytically, for manufacture of chlorinated polymers of the PVC polyvinyl chloride type to be substituted with the HCl or the Cl_2 manufactured according to the invention). In this case, it would then be necessary to extract them from the flue gases and thus establish an industrial line for HCl or Cl_2 , production for example the apparatus for carrying out the incorporating process according to the invention directly in industry site needing these chemical types chlorinated product. Thus, utilizing the chlorinated

derivatives formed makes it possible to further lower the cost of the batch materials containing alkali metals necessary for the manufacture of glass.

15

20

25

30

35

A first outlet for the silicates manufactured according to the invention relates to the glassmaking industry: they may replace, at least partly, conventional batch materials which provide alkali metals or rare earths, most particularly with regard to sodium by at least partially substituting CaCO3 with Na₂SiO₃. The silicates of the invention may therefore be to feed a glass furnace, this being especially in two different ways:

the first way consists in treating the silicates formed in order to make them compatible with use as vitrifiable batch materials for glass furnaces: this therefore involves extracting them from the reactor and generally converting them "cold" into a pulverulent solid phase, especially through a granulation using techniques known in the glassmaking industry. There is therefore a complete separation between the silicate manufacturing process and the with suitable manufacturing process, forming, storage/transportation, possible of the silicate formed, before it is fed into the glass furnace;

the second way consists in using the silicate(s) formed according to the invention "hot", that is to say in using a glass manufacturing process which incorporates a prior step of manufacturing the silicate which is to be fed, while still molten, into the glass furnace. Thus, the silicate can be manufactured in a reactor connected to the glass furnace, constituting one of its "upstream" compartments, as opposed to its possible "downstream" compartments intended for the refining/conditioning of the glass once melted.

In both these situations, the glass furnace may be of conventional design (for example, an electric melting furnace using submerged electrodes, a crownfired furnace operating with lateral regenerators, an end-fired furnace, or any type of furnace known in the glassmaking industry, thus including furnaces with submerged burners), optionally with a design and a mode of operation which are slightly modified so as to be

15

20

25

30

suitable for a melting process involving no carbonate or with less carbonate than in the case of standard melting processes.

It should be noted that certain silicates other than sodium silicate are also highly advantageous to manufacture according to the invention. Thus, the invention makes it possible to manufacture potassium silicate from KCl, this being, at least economically, highly advantageous as a batch material containing Si and K for manufacturing glasses called "mixed alkali" glasses, that is to say those containing both Na and K. These glasses are especially used for making touch screens, glasses for television screens, lead glasses, and glasses for plasma display panels.

Likewise, the invention allows more economical manufacture of special glasses containing additives for which chlorides are less expensive than oxides. This is the case of rare earths such as cerium, the presence of cerium oxide giving the glasses UV screening properties, and rare earths of this type included in the composition of special glasses having a high elastic modulus for hard disks. The invention thus makes it possible to have a batch material containing Si and Ce - cerium silicate -, for a moderate cost.

Another additional advantage of the invention is that the silica introduced at the start undergoes, during conversion into silicate, a certain de-ironing, since iron chloride is volatile: the glass produced from this silicate, by using at least a certain amount of this silicate, will therefore tend to be clearer than a glass using none of this type of silicate at all. This is advantageous from an aesthetic standpoint and tends to increase the solar factor of the glass (in a "flat glass" application).

A second outlet for the silicates manufactured according to the invention, (apart from those used as batch materials for glass furnaces), more particularly sodium silicate, is in the detergents industry, sodium

10

15

20

25

30

35

silicate Na_2SiO_3 frequently being used in the washing powder/detergent compositions.

third outlet for the silicates (and optionally the chlorinated derivatives) formed according to the invention is in the preparation of special silicas, commonly called "precipitated silicas" used, for example, in the composition of concretes. The silicates formed according to the invention may in fact attack, advantageously subjected to acid be hydrochloric acid HCl which has also been formed by the according to the invention, conversion precipitate silica in the form of particles having a particular particle size: the intended particle size is generally of the order of a nanometre (1 to 100 nm, for example).

The sodium chloride also formed during the precipitation of the silica may advantageously be most particularly recycled, again serving material for the silicate manufacture according to the invention. This is an extension of the invention in which, starting from a particulate silica of "coarse" particle size (of about 1 micron or coarser, example), a particulate silica is again obtained, but the particle size is much less, this control and this particle size opening the way to a very wide variety of uses in materials used in industry.

For this third outlet more particularly, it is interesting to choose an alkaline sulfate rather than a chloride: we obtains H_2SO_4 , rather than HCl, which serves to the acid attack of the sodium silicate formed. It is this kind of acid which is used in the chemical industry to prepare precipitated silicas. It is more advantageous than HCl in this particular cas, because it avoids any presence of residual chlorides in the silica, which are potentially a source of corrosion for this product.

A process for producing precipitated silicas according to the invention can present the following steps, schematically:

25

3.0

35

reaction in a furnace equipped with submerged burners oxy-hydrogen ones), (notably oxy-gas or between silica sand of appropriate purity the and sulfate, with an amount of water to add in a controlled way depending on the amount of water generated by the combustion. Sodium silicate is thus formed according to above-mentioned reaction. Ιt is continuously, the SO₃ formed is transformed into H₂SO₄, which is recuperated downstream,

10 \rightarrow sodium sulfate produced with the appropriate SiO_2/Na_2O modulus is then attached by the recuperated H_2SO_4 . Silica precipitates, and is treated so as to confer to it the appropriate properties according to its uses 'additives for rubber, ...),

Ιt can be seen that this process continuously, in a "closed loop" as far as the acid and source of sodium are concerned. Ιt makes possible to modify the granulometry of the silica, consuming only sand and energy. Heat from the exhaust the condensation of SO₃ and from recuperated so as to produce, for example, the vapor necessary to concentrate the aqueous solutions.

This kind of process applies in a very similar way when using another alkaline than sodium or another ... like a sulfate, or any other element the sulfate of which is thermally stable and can indigo the same kind of reaction.

Another advantageous application of the process relates to the treatment of chlorine-containing waste, most particularly chlorine-containing and carbon-containing waste such as chlorinated polymers (PVC, etc.); the melting by submerged burners, according to the invention, can pyrolyse this waste with, as ultimate combustion products, CO_2 and HCl, the HCl possibly being, as seen previously, neutralized or utilized as it is. It may also be noted that such waste

15

20

25

30

35

can therefore also serve as carbon-containing solid fuel, which in fact can allow the amount of fuel to be injected into the burners to be decreased. (Other types of waste, such a foundry sand, may be involved). The pyrolysis of these various types of waste is here again advantageous from an economic standpoint since their treatment, which is moreover necessary, deducted from the cost of producing the silicates the invention. Rather than according to actually pyrolysing the waste, it may also be vitrified.

Those waste containing both chlorine and organic materials can be rendered inert in a chemical point of view according to the process of the invention. To the sand and the chloride (or its equivalent) can be added solid or liquid wastes. Same additives can also be added, like CaO, alumina, or other oxides. So, it is a real vitrification, the vitrified material obtained are capable of stabilizing the possible mineral materials contained in those waste. The acid produced can be recuperated in an absorption tome which filters the can be recycled. This and process is advantageous in an economical point of view. In the one hand, the major fusing component used is brought by the salt, and at least part of the energy necessary for the vitrification is brought by the wastes themselves. the other hand, it makes it possible to recycle the acid which is formed.

Different kinds of combustible wastes can be mixed. For this application, it is more appropriate to make a silicate rich in alkaline-eart metals, or even only made of alkaline-earth silicate : the aim being to render waste inert, and not to make a high quality glass, it is advantageous to use mostly alkaline-earth material carrying these silicates because the raw alkaline-earth metals is less expansive than the one carrying alkali metals.

The subject of the invention is also the apparatus for carrying out the process according to the invention, which apparatus preferably comprises a

15

20

25

30

35

reactor equipped with one or more submerged burners and with at least one means for introducing silica and/or halides (or equivalents like sulfates or nitrates) below the level of the molten materials, especially in the form of one or more feed-screw batch chargers. Preferentially, the solid or liquid combustibles like the above-mentioned wastes can be introduced in the furnace the same way. It is thus possible to introduce directly into the of mass products undergoing melting/reaction at least those of the starting reactants capable of vapourizing before having the time to react: one thinks here most particularly of sodium chloride NaCl.One ensures this way a sufficient time of sejourn of the liquid or solid combustibles so as to achieve their complete combustion.

Preferably, the walls of the especially those intended for being in contact with the various reactants/reaction products involved in the conversion, are provided with refractory materials lined with a metal lining. The metal must be able to the various types of corrosive withstand attack, especially here that caused by HCl. Titanium, a metal from the same family, or an alloy containing titanium are preferred. Advantageously, provision may be made for all the elements inside the reactor, emerging in the latter, to be based on this type of metal or to be protected on the surface by a coating of this metal (the batch chargers and submerged burners). preferable for the walls of the reactor, and also especially all the metal parts inside the latter, to be associated with a fluid-circulation cooling system of the water-box type. The walls may also be entirely made of metal, with no or very few standard refractories used for the construction of glass furnaces.

The walls of the reactor define, for example, an approximately cubic, parallelepipedal or cylindrical cavity (having a square, rectangular or round base). Advantageously, several points of introducing the starting reactants may be provided, for example

15

20

25

30

35

distributed in a regular manner in the side walls of the reactor, especially in the form of a certain number of batch chargers. This multiplicity of supply points allows the amount of reactants in each of them to be limited and a more homogeneous mixture in the reactor to be obtained.

The reactor according to the invention may also be equipped with various means for treating the chlorinated effluents, especially for recovering or neutralizing effluents of the Cl_2 or HCl, or H_2SO_4 type, and/or with means for separating the solid particles, especially those based on metal chlorides, from the gaseous effluents. These means are advantageously placed in the flue(s) which extract the flue gases from the reactor.

Finally, the subject of the invention is also a producing glass containing silica alkali-metal oxides of the Na₂O or K₂O type, or rareearth oxides of the CeO2 type, by melting vitrifiable materials in which the heat needed for the said melting comes at least partly from submerged burners. In this case, the invention resides in the fact that the batch materials containing alkali metals of the Na or K type, or rare earths of the Ce type, are at least partly in the form of halides, especially chlorides, of the said elements, such as NaCl, KCl or CeCl4. This is the second major aspect of the invention in which, as it everything takes place as if the silicate, described previously as "in situ", were manufactured during the actual process of melting the vitrifiable materials in order to produce glass. The economic advantage of replacing all or part, especially, of the sodium carbonate with NaCl is clear. In this case, there are the same advantages as those mentioned above, relating to silicate manufacture independently of glass manufacture, namely especially the lesser iron content in the glass, possible utilization of the chlorinated (halogenated) derivatives produced, pyrolysis

10

15

20

vitrification of waste, the latter being, moreover, possibly suitable to act as solid fuel, etc.

The invention will be explained in detail with the aid of an embodiment illustrated by the following figure:

☐ **Figure 1:** a schematic plant for manufacturing sodium silicate according to the invention.

This figure is not necessarily to scale and has been extremely simplified for the sake of clarity.

It shows a reactor 1 comprising a sole 2 of rectangular shape which is pierced regularly so as to be equipped with rows of burners 3 which pass through it and penetrate slightly into the reactor. The burners are preferably covered with titanium and are cooled with water. The side walls are also cooled with water and comprise a coating of electrocast refractories 5 or are made entirely of titanium-based metal. The level 5 of materials undergoing reaction/melting is such that the feed-screw batch chargers 6 introduce the reactants through the side wall below this level.

The sole comprising the burners may have a greater thickness of electrocast refractories than the side walls. It is also pierced with a tap hole 10 for extracting the silicate.

The roof 8 may be a suspended flat roof made of 25 refractory materials of the mullite or zirconia-mullite (aluminium-zirconia-silica) type or of ceramic material resistant to HCl and/or NaCl. It is designed to be impermeable to the flue gases containing 30 a non-limiting solution for guaranteeing impermeability consists in using a honeycomb ceramic structure consisting of hollow hexagonal pieces which an insulation is placed. Impermeability therefore achieved between the pieces on the back surface by an HCl-resistant low-temperature mastic. It 35 protects the metal supporting structure. flue 9 is also constructed from HCl- and NaCl-resistant materials (oxide refractories, silicon graphite). It is provided with a system for separating

15

20

25

30

the solid particles which are liable to condense (metal chlorides) and with an HCl recovery tower, these not being illustrated.

Once the silicate has been extracted from the reactor via the tap hole 10, it is conveyed to a granulator (not illustrated) of the type used in the glassmaking industry or in the sodium silicate detergents industry.

The object of the process is to manufacture a silicate which is highly concentrated in terms of sodium, this being quantified in a known manner by a molar ratio of Na_2O with respect to the total (SiO_2 + Na_2O) in the region of 50%, by introducing into the reactor, via the batch chargers, a mixture of sand (silica) and NaCl. These two reactants may also be introduced separately and may have been optionally preheated before they are introduced into the reactor.

Preferably, the burners 3 are fed with oxygen and with natural gas or hydrogen.

The viscosity of the batch during melting/reaction and the high reaction rate obtained by virtue of submerged-burner technology make it possible to achieve high specific draws - to give an order of magnitude of, for example, at least 10 tonnes/day.

In conclusion, the process of the invention opens up a new way of manufacturing silicates, most particularly sodium, potassium and cerium silicates, for a moderate cost. It also falls within the context of the present invention of using mutadis mutandi the same process for manufacturing not only alkali-metal silicates or rare-earth silicates but also titanates, zirconates and aluminates of these elements (optionally mixed with silicates).

Thus, a metal may at least partially substitute for silicon, especially a metal belonging to the transition metals and more particularly to those of column IVB of the Periodic Table, such as Ti or Zr, or to the metals of column IIIA of the Periodic Table, such as Al. The advantage of such a substitution is

15

20

25

30

that the product obtained is soluble in water. The selective attack of these products in aqueous solution, especially by using hydrochloric acid formed during the conversion, results in the precipitation of particles no longer of silica, as mentioned earlier in the text, but of corresponding metal oxide particles such as TiO₂, ZrO₂ and Al₂O₃, which particles are generally nanometric in size, as when starting with silica, and which may have numerous applications in industry. It is thus possible to use them as fillers in polymers and concretes, and to incorporate them into ceramic or glass-ceramic materials. It is also possible to exploit their photocatalytic properties: particularly intended are TiO2 particles (which may be incorporated into photocatalytic coatings having antisoiling properties for any architectural material, glazing, etc.).

In order to manufacture these titanates, zirconates, or aluminates according to the invention, the process described earlier for obtaining silicates is transposed, starting from halides of the NaCl type and from metal oxides of the metals involved (TiO_2 , ZrO_2 , Al_2O_3 , etc.).

Alternatively, it is possible to use directly, as metal-containing starting product for the conversion, the halide of the said metal and no longer its oxide. This may especially be a chloride, such as TiCl₄, ZrCl₄ or AlCl₃ (it is also possible to choose as metal-containing starting products a mixture of an oxide and a chloride of the said metal). In this case, the material containing alkali metals may be the same NaCl-type halide used for making silicate, this salt possibly being supplemented with or replaced by soda when it is sodium alkali metal which is involved.

Just as in the case of "precipitated silica",

35 this extension of the process according to the invention may thus be seen as a means of modifying, especially reducing, the size of the particles of a metal oxide so as to provide it with other applications in industrial materials.

It is to be noted also that the invention makes it possible to recycle wastes. It can be used, notably, to clean/treat sans polluted by oil-spills collecting this polluted sand as a starting material for the silica in the framework of this invention brings two major advantages:

→ first, the sand comes along with the organic, combustible waste (fuel, hydrocarbonate compounds),

→ second, it is a simple way out to clear coasts and beaches of this polluted sand when any other method to 10 clean it is too long or too expansive. The process according to the invention thus allows to totally eliminate fuel. It is advantageous, for this type of alkaline-earth application, to make silicates 15 silicates mostly comprising alkaline-earth metals: like for the application for rendering chlorine/organic waste inert mentionned above, it is economically more interesting to use materials carrying raw alkaline-earth metals than raw materials carrying alkali metals. 20