Основные понятия теории множеств: 2/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Аксиома выбора

Аксиома выбора

Особое место в нашей системе занимает аксиома выбора:

$$\forall X (\varnothing \not\in X \to \exists f (f : X \to \bigcup X \land \forall u \in X (f (u) \in u))).$$
 (C)

Несмотря на довольно неоднозначную историю этой аксиомы, ныне она считается стандартной.

Натуральные числа и индукция

Важным следствием Inf является

$$\exists X \, (\mathsf{Ind} \, (X) \land \forall Y \, (\mathsf{Ind} \, (Y) \to X \subseteq Y)). \tag{Nat}$$

Ясно, что Nat гарантирует существование наименьшего по включению индуктивного множества, которое обозначают через $\mathbb N$, или \aleph_0 , или ω . Элементы $\mathbb N$ называют натуральными числами, разумеется.

Вывести Nat из Inf можно с помощью Sep. Действительно, зафиксируем какое-нибудь индуктивное множество X_0 . Возьмём

$$\mathbb{N} := \{x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X)\}.$$

По построению $\forall X \, (\operatorname{Ind}(X) \to \mathbb{N} \subseteq X)$. Кроме того, легко проверить, что $\operatorname{Ind}(\mathbb{N})$.

Определим функцию последователя из $\mathbb N$ в $\mathbb N$ как

$$s := \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = n \cup \{n\}\}.$$

Для $n\in\mathbb{N}$ вместо $\mathsf{s}\,(n)$ нередко пишут n+1. Итак, с неформальной точки зрения \mathbb{N} содержит в точности

$$\begin{array}{lll} \mathbf{0} \; := \; \varnothing, \\ \\ \mathbf{1} \; := \; 0+1 \; = \; \{0\}, \\ \\ \mathbf{2} \; := \; 1+1 \; = \; \{0,1\}, \\ \\ \vdots \end{array}$$

Под (естественным) порядком на $\mathbb N$ мы будем понимать

$$<:=\{(n,m)\in\mathbb{N}^2\mid n\in m\}.$$

Разумеется, для всех $n,m\in\mathbb{N}$ верно следующее:

i.
$$\neg n < 0$$
;

ii.
$$n < m + 1 \leftrightarrow (n < m \lor n = m)$$
.

При выводе более сложных утверждений используется:

Теорема (принцип индукции)

Пусть Х удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \rightarrow n+1 \in X).$$

Тогда $\forall n \in \mathbb{N}$ $n \in X$, т.е. $\mathbb{N} \subseteq X$.

Замечание: в роли X могут выступать, например, множества вида $\{n \in \mathbb{N} \mid \Phi(n)\}$, а значит, в формулировке теоремы « $n \in X$ » можно заменить на « $\Phi(n)$ ».

Следствие

Для любого $n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$, т.е. $n = \{m \in \mathbb{N} \mid m < n\}$.

Доказательство.

Рассмотрим условие

$$\Phi(x) := x \subseteq \mathbb{N}.$$

Установим по индукции, что $\forall n \in \mathbb{N} \Phi(n)$.

База индукции: Разумеется, $0 \subseteq \mathbb{N}$.

extstyle ex

 $n+1\subseteq\mathbb{N}$.

Следствие

Для всех $n,m,k\in\mathbb{N}$ верно следующее:

- i. $(m < k \land k < n) \rightarrow m < n$;
- ii. $\neg n < n$.

%без применения Reg

Доказательство.

- i. Простая индукция по *n*.
- ii. Простая индукция по n.

Подробности см. на доске.

Следствие

Для всех $n, m \in \mathbb{N}$ верно следующее:

i.
$$0 < n \lor 0 = n$$
;

ii.
$$m < n \leftrightarrow (m+1 < n \lor m+1 = n)$$
;

iii.
$$n < m \lor n = m \lor m < n$$
.

(При этом в (ііі) дизъюнкты взаимно исключают друг друга.)

Доказательство.

- і. Простая индукция по *п*.
- іі. Простая индукция по *п*.
- ііі. Простая индукция по *п*.

Подробности см. на доске.

Возвратная индукция

Теорема (принцип возвратной индукции)

Пусть Х удовлетворяет условию

$$\forall n \in \mathbb{N} (\forall m < n \, m \in X \to n \in X).$$

Тогда \forall n ∈ \mathbb{N} n ∈ X, т.е. $\mathbb{N} \subseteq X$.

Доказательство.

Рассмотрим условие

$$\Phi(x) := x \subseteq X$$
.

База индукции: Очевидно, $\varnothing \subseteq X$.

<u>Шаг индукции:</u> Предположим, что $n\subseteq X$. Согласно условию, $n\subseteq X$ влечёт $n\in X$. Стало быть, $n+1\subseteq X$.

В итоге мы установили, что $\forall n \in \mathbb{N} \ n \subseteq X$. В частности, для всякого $n \in \mathbb{N}$ имеет место $n+1 \subseteq X$, а потому $n \in X$.

Для произвольного X обозначим

$$\mathsf{Min}(X) := \{ x \in X \mid \neg \exists u \in X \ u \in x \}.$$

Элементы $\operatorname{Min}(X)$ мы будем называть \in -минимальными в X.

Теорема (принцип минимального элемента)

Если $X \subseteq \mathbb{N}$ и $X \neq \emptyset$, то $Min(X) \neq \emptyset$.

Доказательство.

Пусть $X\subseteq \mathbb{N}$ и $\mathsf{Min}\,(X)=\varnothing$. Возьмём $Y:=\mathbb{N}\setminus X$. Заметим, что

$$\forall n \in \mathbb{N} (\forall m < n m \in Y \rightarrow n \in Y).$$

Действительно, если $\forall m < n \ m \in Y$, что равносильно $\forall m < n \ m \notin X$, то $n \in Y$ (поскольку иначе n окажется \in -минимальным в X). Стало быть, $Y = \mathbb{N}$ по принципу возвратной индукции, откуда $X = \emptyset$.

Рекурсия на натуральных числах

Корректность простейших рекурсивных определений функций из $\mathbb N$ в Y гарантирует:

Теорема (о рекурсии)

Пусть $y_0 \in Y$ и $h: \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f: \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$,

$$f\left(n
ight) = egin{array}{ll} y_0 & \textit{если} & n=0, \\ h\left(m,f\left(m
ight)
ight) & \textit{если} & n=m+1. \end{array}$$

Доказательство.

Пусть $k \in \mathbb{N}$. Будем называть функцию f из k+1 в Y правильной, если (\star) верно для всех $n \in k+1$. Рассмотрим

 ${oldsymbol S} \;:=\; \{k\in\mathbb{N}\;|\;$ сущ-ет единственная правильная $f:k+1 o Y\}.$

Для каждого $k \in S$ через f_k мы будем обозначать соответствующую (единственную) правильную функцию из k+1 в Y.

Давайте установим по индукции, что $S=\mathbb{N}.$

<u>База индукции:</u> Очевидно, $\{(0,y_0)\}$ — это единственная правильная функция из 0+1 в Y. Стало быть, $0\in S$.

. . .

Доказательство (продолжение).

Шаг индукции: Предположим, что $k \in S$. Определим

$$f'_{k} := f_{k} \cup \{(k+1, h(k, f_{k}(k)))\}.$$

Как можно легко видеть, f_k' — правильная функция из (k+1)+1 в Y. Проверим её единственность. Пусть g — правильная функция из (k+1)+1 в Y. Тогда:

- а. ограничение g на k+1 является правильным, а потому совпадает с f_k , т.е. с ограничением f_k' на k+1;
- b. $g(k+1) = h(k, g(k)) = h(k, f_k(k)) = h(k, f'_k(k)) = f'_k(k+1)$.

Следовательно, g совпадает с f_k' . Таким образом, $k+1 \in S$.

Теперь уже нетрудно убедиться, что

$$f := \bigcup \{f_k \mid k \in \mathbb{N}\}$$

является искомой функцией из $\mathbb N$ в Y.

Теорема (о рекурсии, параметризованная)

Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f: X \times \mathbb{N} \to Y$ такая, что для любых $x \in X$ и $n \in \mathbb{N}$,

$$f(x,n) = \begin{cases} g_0(x) & \text{если } n = 0, \\ h(x,m,f(x,m)) & \text{если } n = m+1. \end{cases}$$

Доказательство.

Это утверждение можно свести к обычной теореме о рекурсии. Для каждой $(n,g)\in \mathbb{N}\times Y^X$ определим $h_{(n,g)}:X\to Y$ по правилу

$$h_{(n,g)}(x) := h(x, n, g(x)).$$

Рассмотрим $h': \mathbb{N} \times Y^X \to Y^X$, действующую следующим образом:

$$h'(n,g) := h_{(n,g)}.$$

Доказательство (продолжение).

По теореме о рекурсии существует единственная $f': \mathbb{N} \to Y^X$ такая, что для всех $n \in \mathbb{N}$,

$$f'(n) = egin{cases} g_0 & ext{если } n = 0, \ h'(m, f'(m)) & ext{если } n = m+1. \end{cases}$$

В свою очередь, от f' можно перейти к $f: X \times \mathbb{N} \to Y$ по правилу

$$f(x,n) := f'(n)(x).$$

Нетрудно проверить, что f является искомой.

