Quantum Mechanics A (Physics 212A) Fall 2018 Worksheet 8 – Solutions

Problems

1. Conformal Quantum Mechanics

Let's think about transformations of the form $\hat{x}(t) \to x'(t') = e^{\frac{\lambda}{2}}x(t)$ where λ is real. ¹ This is known as a *scale* transformation.

Quantum mechanically we should be able to realize this transformation with a unitary operator: $U = e^{i\lambda \hat{D}}$ where \hat{D} is hermitian.

This is known as the *dilatation* generator. Let's look at the time independent version of the above first.

- (a) The above implies that $U^{\dagger}\hat{x}U = e^{\frac{\lambda}{2}}\hat{x}$. Use the BCH expansion to derive $[\mathbf{i}D,x]$ The LHS of the equation gives $U^{\dagger}xU = x \lambda[\mathbf{i}D,x] + \frac{\lambda^2}{2}[\mathbf{i}D,[\mathbf{i}D,x]] + \cdots$ The RHS gives $e^{\frac{\lambda}{2}}x = (1 + \frac{\lambda}{2} + \frac{1}{2}\frac{\lambda^2}{4} + \cdots)x$ We can equate the expressions term by term to give that $[\mathbf{i}D,x] = -\frac{1}{2}x$
- (b) Use the Jacobi identity [[A,B],C]+[[B,C],A]+[[C,A],B]=0 to derive $[\mathbf{i}\hat{D},\hat{p}]$ $[[\mathbf{i}\hat{D},\hat{p}],\hat{x}]+[[\hat{p},\hat{x}],\mathbf{i}\hat{D}]+[[\hat{x},\mathbf{i}\hat{D}],\hat{p}]=0$ $=[[\mathbf{i}D,p],x]+0+\frac{1}{2}[x,p]$ so $[x,[\mathbf{i}D,p]]=\frac{1}{2}\mathbf{i}$ This is the canonical conjugate relation! Therefore $[\mathbf{i}D,p]=\frac{1}{2}p$
- (c) Check that $\hat{D} = -\frac{1}{4}(\hat{x}\hat{p} + \hat{p}\hat{x})$ satisfies these relations This is just direct calculation.

Now consider a Hamiltonian of the form $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$ for which $\hat{\mathbf{i}}\hat{D}V = V$ Such a potential would be scale invariant

(d) Calculate $[\hat{H}, \hat{D}]$ explicitly using the above form $[H, D] = -[D, \hat{H}] = -[D, \frac{p^2}{2m}] - [D, V]. \text{ Let's go term by term.}$ $-[D, V] = \frac{1}{4}([xp, V] + [px, V]) = \frac{1}{4}(x[p, V] + [p, V]x) = \frac{1}{4\mathbf{i}}(x\partial_x V + \partial_x V x) = -\hat{D}V$ But by assumption $DV = -\mathbf{i}V$ so $-[D, V] = \mathbf{i}V$ $-[D, \frac{p^2}{2m}] = \frac{1}{8m}([xp, p^2] + [px, p^2]) = \frac{1}{8m}([x, p^2]p + p[x, p^2]) = \mathbf{i}(\frac{p^2}{2m})$ Where in the last line I used $[x, p^2] = 2\mathbf{i}p$ Together $[H, D] = \mathbf{i}H$

¹The factor of $\frac{1}{2}$ here is because \hat{x} is a primary operator with dimension $\Delta = -\frac{1}{2}$. This is energy dimension.

(e) Show that $V(x) = \frac{g}{x^2}$ is an example of such a potential $\mathbf{i}DV = -\frac{g}{4}(x\partial_x V + \partial_x V x)$ but $\partial_x(\frac{1}{x^2}) = -\frac{2}{x^3}$ so $DV = \frac{g}{4}(\frac{4}{x^2}) = V$

2. Building Bloch's Theorem

Consider a 1D Hamiltonian with a periodic potential V(x) = V(x + na) for $n \in \mathbb{Z}$ and a the lattice spacing.

- (a) Define the operator T^n by $T^n|x\rangle = |x+na\rangle$. Show this is a symmetry. We would need that [H,T]=0 or equivalently $H'=T^\dagger H T=H$. Computing $H'\psi(x)=\langle x|H'|\psi\rangle$. Writing H' in the position basis: $H'=-\frac{1}{2}\partial_{x'}^2+V(x')$. V(x')=V(x+a)=V(x) by assumption. One computes the Jacobian: $\frac{\partial x'}{\partial x}=\frac{\partial x+a}{\partial x}=\frac{\partial x}{\partial x}=1$ to see the kinetic part is also unchanged. Thus H' is invariant and the result is shown!
- (b) Assuming H has no shared degeneracy with T, show that any eigenfunctions of this system can be chosen to obey

$$\psi_k(x-a) = e^{-\mathbf{i}ka}\psi_k(x) \tag{1}$$

Recall that $T|k\rangle = e^{-ika}|k\rangle$ and $\langle x|k\rangle \equiv \psi_k(x)$.

Since T is a symmetry, and there is no degeneracy, I can diagonalize H in the basis of T: $|k\rangle$. The above implies that $T|k\rangle = e^{-ika}|k\rangle$ and that $H|k\rangle = E_k|k\rangle$.

If there were degeneracy then not every eigenvector of H need be an eigenvector of T. This is called *spontaneous symmetry breaking*

The proof then is very easy: $\langle x - a | k \rangle = \langle x | T | k \rangle = e^{-ika} \psi_k(x)$

(c) Infer from (1) that one can then write $\psi_k(x) = e^{\mathbf{i}kx}u_k(x)$ where $u_k(x) = u_k(x+a)$ This amounts to showing the claimed form for ψ_k satisfies (1) $\psi_k(x-a) = e^{\mathbf{i}k(x-a)}u_k(x-a) = e^{-\mathbf{i}ka}e^{\mathbf{i}kx}u_k(x)$ done. Note that because not every a is a valid symmetry transformation the function

Note that because not every a is a valid symmetry transformation the function u_k is not generically a constant.

Note that k is different from our usual momentum. It's a *crystal momentum*!

- (d) Show explicitly that for $P = -\mathbf{i}\partial_x$ that $P\psi_k(x) \neq k\psi_k(x)$ $-\mathbf{i}\partial_x(\psi_k(x)) = ke^{\mathbf{i}kx}u_k(x) - \mathbf{i}e^{\mathbf{i}kx}u_k'(x)$
- (e) Show that $\frac{-\pi}{a} \leq k \leq \frac{\pi}{a}$. What is $k + \frac{2\pi}{a}$?

 Consider $\psi_{k+\frac{2\pi}{a}}(x) = e^{\mathbf{i}kx}e^{\mathbf{i}\frac{2\pi}{a}x}u_{k+\frac{2\pi}{a}}(x)$ and notice that the product $e^{\mathbf{i}\frac{2\pi}{a}x}u_{k+\frac{2\pi}{a}}(x)$ is still a periodic function of x with period a.

Therefore this is just a relabelling of the function u_k . Call $v_k(x) \equiv e^{i\frac{2\pi}{a}x}u_{k+\frac{2\pi}{a}}(x)$

Then $\psi_{k+\frac{2\pi}{a}}=e^{\mathbf{i}kx}v_k(x)$; this transformation on k did nothing! Therefore $k+\frac{2\pi}{a}\equiv k$ and that's why we only need the finite region.