Работа 5.1.2 Исследование эффекта Комптона

Богданов Александр Б05-003

27 октября 2022 г.

Цель работы: исследовать энергетический спектр γ -квантов, рассеянных на графите, определить энергию рассеяных γ -квантов в зависимости от угла рассеяния, определить энергию покоя частиц, на которых происходит комптоновское рассеяние.

В работе используются: источник излучения, графитовая мишень, лимб, сцинтилляционный счётчик, фотоэлектронный умножитель (ФЭУ), ЭВМ.

Теоретические положения:

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим. Он интерпретируется как результат упругого соударения двух частиц - γ -кванта и свободного электрона.

Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 , где $\gamma=(1-\beta^2)^{-1/2}$, $\beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соотвественно равными $\hbar\omega_0$ и $\hbar\omega_0/c$. Тогда для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1$$

$$\frac{\hbar\omega_0}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_1}{c}\cos\theta$$

$$\gamma mv\sin\varphi = \frac{\hbar\omega_1}{c}\sin\theta$$

Решая совместно эти уравнения, получаем изменение длины рассеянного излучения:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta),$$

где $\Lambda_k = \frac{h}{mc} = 2.42 \cdot 10^{-10}$ см - комптоновская длина волны электрона.

Преобразуем выражение от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta,$$

где $\varepsilon_0 = E_0/(mc^2)$ - энергия γ -квантов, падающих на рассеиватель (в единицах mc^2), $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяния

Экспериментальная установка:

Источником излучения служит $^{137}\mathrm{Cs}$ (1), испускающий γ -кванты с энергией 662 кэВ. Узкий пучок после коллиматора попадает на графитовую мишень (2). Кванты, испытавшие комптоновское рассеяния в мишени, регистрируются сцинтилляционным счетчиком и проходят на ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Штанга с измерительным блоком может вращаться относительно мишени.

Ход работы:

- 1. Настроим установку.
- 2. Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета γ -квантов, снимем амплитудные спектры и определим положения фотопиков для каждого значения угла:

θ,°	σ θ ,°	N	σ N
0	1	951	10
10	1	913	9
20	1	840	8
30	1	738	7
40	1	665	7
50	1	612	6
60	1	531	5
70	1	455	5
80	1	412	4
90	1	371	4
100	1	332	3
110	1	316	3
120	1	306	3

3. Построим графики зависимости $1/N = f(1 - \cos \theta)$:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$$

2

4. Посчитаем наилучшие значения N(0) и N(90) для углов $\theta=0^\circ$ и $\theta=90^\circ$:

$$N(0) = 909 \pm 19$$

$$N(90) = 384 \pm 9$$

5. Определим энергию покоя электрона:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)},$$

где $E_{\gamma}=662$ кэВ

Получаем:

$$mc^2 = 519 \pm 19$$
 кэВ

Вывод:

В ходе работы был измерен энергетический спектр γ -квантов, рассеянных на графите. Экспериментально был проверен эффект Комптона и правильность теоретических соотношений зависимости энергии рассеяния от угла наблюдения. Также в ходе работы была определена с хорошей точностью энергия покоя электрона:

Эксперимент: 519 ± 19 кэВ

Теоретическое значение: 511 кэВ