Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №4

Дослідження використання Arduino в автоматизованих системах контролю та розробка програмного забезпечення для мікроконтролерів.

Керівник	(підпис)	д.т.н., проф. Черепанська І. Ю. (дата)
Виконавець	(підпис)	Осипчук О. Г. (дата)

Лабораторна робота №4

Тема роботи

Вивчення можливостей використання платформи Arduino у складі систем автоматичного контролю технологічних параметрів. Розробка алгоритмічно-програмного забезпечення роботи мікроконтролерів в системах автоматизації на прикладі платформи Arduino.

Мета роботи

Вивчити будову, принцип дії та основні характеристики мікроконтролерів на прикладі мікроконтролера ATmega328 платформи Arduino Uno, навчитися підключати до них зовнішні пристрої та засоби автоматизації, вимірювальні пристрої тощо, а також розробляти, завантажувати та налагоджувати алгоритмічно-програмне забезпечення їх роботи.

Обладнання та інструменти

- Arduino Uno R3 на базі мікроконтролера ATmega328.
- Гребінка 40 Pin 1х40, однорядна.
- Персональний комп'ютер.
- Програмне забезпечення для роботи з платформою Arduino.
- Датчики температури.
- З'єднувальні провідники.

Зм.	Лист	№ докум.	Підпис	Дата	$\Pi M1108.04.00.0$	14 J	TP		
Роз	роб.	Осипчук О. Г.				Л	iT.	Аркуш	Аркушів
Пер	рев.	Черепанська І.Ю.			Дослідження використання Arduino в			2	γ
TT T	7				автоматизованих системах контролю та розробка програмного забезпечення			ппа	
н. r Зат:	Контр. в.	Черепанська І.Ю.			та розроока програмного заоезпечення для мікроконтролерів. КПІ ім. І. Сікорського, ПІ				ого, ПБФ

Програма миготіння світлодіодом

Завдання: модифікувати скетч Blink у Blink2 та Blink3, зменшивши в 2 та збільшивши у 3 рази відповідно затримку мерехтіння користувацького світлоліода L.

```
1  void setup() {
2     pinMode(LED_BUILTIN, OUTPUT);
3     }
4
5  void loop() {
6     digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
7     delay(500*3);
8     }
```


Рис. 4.1: Діаграма миготіння Blink2

Змн.	Арк.	№ докум.	Підпис	Дата

```
void setup() {
pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
delay(500/2);
}
```


Рис. 4.2: Діаграма миготіння Blink3

Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 4.3: Схема підключення терморезистора до мікроконтроллера

Код програми

```
const int BETA = 3950;
3 void setup() {
     Serial.begin(9600);
     Serial.println("valueSensor\t°C");
    void loop() {
8
     int valueSensor = analogRead(A0);
Q
10
      float celsius = 1 / (log(1 / (1023. / valueSensor - 1))
       / BETA + 1.0 / 298.15) - 273.15;
11
      Serial.println(String(valueSensor) + "\t" + String(celsius));
12
      delay(500);
13
14
```

Алгоритм роботи програми

- 1. Ініціалізується серійний порт для обміну даними з комп'ютером через USB.
- 2. Виводиться заголовок стовпців у серійному моніторі.
- 3. У нескінченному циклі (loop()):
 - (а) Зчитується аналогове значення з датчика температури на вході А0.
 - (б) Виконується перетворення аналогового значення у температуру за допомогою формули з використанням коефіцієнта ВЕТА.

						Арк.
					$\Pi M1108.04.00.04~JIP$	
Змн.	Арк.	№ докум.	Підпис Да	ата		5

- (в) Виводиться у серійний порт значення сенсора та розрахована температура у градусах Цельсія.
- (г) Виконується затримка у 500 мс перед наступним зчитуванням значень.

Рис. 4.6: Діаграма алгоритму роботи програми вимірювання температури

Результати вимірювання

- 1. Вимірювання температури проводилися симуляьорі.
- 2. Значення, отримані з термістора, були в межах 0-1023.

Висновки

В ході виконання лабораторної роботи було вивчено принцип роботи мікроконтролера ATmega328 на платформі Arduino Uno, встановлено та налаштовано програмне середовище Arduino IDE, а також реалізовано програму для вимірювання температури за допомогою датчика.

					$\Pi M1100\ \Omega I\ \Omega \Omega\ \Pi D$	Арк.
					$\Pi M1108.04.00.04~\Pi P$	
Змн.	Арк.	№ докум.	Підпис	Дата		6

Значення АЦП	Температура (°C)
100	89.9
200	64.4
300	50.3
400	40.6
500	33.4
600	27.6
700	22.6
800	18.3
900	14.5
1000	11.0

Табл. 1: Залежність температури від значення АЦП для ВЕТА = 3950

Рис. 4.6: Графік залежності температури від значення АЦП

Відповіді на контрольні питання

- 1. Платформа Arduino це апаратно-програмний комплекс, що складається з мікроконтролерів та середовища програмування для розробки автоматизованих систем.
- 2. Основні компоненти плати Arduino: мікроконтролер, роз'єми живлення, USB-інтерфейс, цифрові та аналогові входи/виходи, світлодіоди індикації, кварцовий генератор, кнопка скидання.
- 3. Мова програмування Arduino базується на C/C++ та містить бібліотеки для роботи з апаратними компонентами.
- 4. Основні компоненти програмного забезпечення: середовище розробки Arduino IDE, бібліотеки для роботи з периферійними пристроями, компілятор та засоби завантаження коду на плату.

Змн.	Арк.	№ докум.	Підпис	Дата