An analysis of the relationship between structural and logical dependencies in software systems

Stana Adelina Diana

Computer Science and Engineering Department "Politehnica" University of Timisoara

June, 2018

Dependencies

Figure 1: Dependencies in a project

A dependency is a relationship that shows that an element, or set of elements, requires other elements for their specification or implementation. [UML Specification]

Structural dependencies

Definition

Structural dependencies are the result of source code analysis and can be extracted from : members, call parameters, local variables.

Figure 2: Example of structural dependency between two classes

Logical dependencies

Definition

Logical dependencies are the result of *software history analysis and* can reveal relationships that are not present in the source code code (structural dependencies).

Figure 3: Example of logical and structural dependencies

Logical dependencies

Research questions

We build logical dependencies based on three questions :

Question 1: How the number of files changed in a commit can influence the logical dependencies of the system?

Question 2: Considering comment changes as valid changes can lead to additional logical dependencies?

Question 3: One occurrence of a logical dependency is enough to consider it as valid?

Tool for measuring software dependencies

In order to answer these research questions, we have built a tool that extracts structural and logical dependencies.

Tool for measuring software dependencies

Figure 5: Workflow diagram of the tool

The workflow can be delimited by three major steps as it follows:

- Extracting structural dependencies.
- Extracting logical dependencies.
- Processing the information extracted.

Open source projects studied

ID	Project	Nr. of classes	Nr. of commits	
1	urSQL	41	89	
_	•			java
2	JavaCoder	5	11	java
3	jbandwidthlog	14	54	java
4	sjava-logging	18	62	java
5	daedalum	66	29	java
6	prettyfaces	236	207	java
7	jbal	102	113	java
8	guavatools	237	85	java
9	monome-pages	240	280	java
10	kryo	309	743	java
11	bitlyj	21	81	java
12	slema	276	368	java
13	bluecove	435	1679	java
14	gp-net-radius	25	28	java
15	aima-java	833	1181	java
16	powermock	966	1512	java
17	restfb	757	1545	java
18	Tensorflow	1104	2386	срр
19	mangnum	143	1728	срр

Experimental results I

Figure 6: Venn diagrams of the overlapping rates with comments taken into consideration as change.

With comments	Without comments
19,7%	18,9%
31,19%	28,7%
31,47%	29,43%
60,4%	57,28%
	19,7% 31,19% 31,47%

Experimental results II

Conclusions

- ► Large number of structural dependencies are not doubled by logical → systems partially stable
- ightharpoonup + -3% for comments as a change
- ➤ The number of changed files taken into consideration influence the results
 - ▶ big threshold → not so relevant logical dependencies
 - ► small threshold (5 10) → more accurate results
- ► Filtering the logical dependencies after occurrences is good only for projects with a significant number of commits.

Future work

Investigate the cause for the large number of logical dependencies which are not overlapping with structural dependencies.