Lecture 5a: Propositional Logic Inference

CSCI 360 Introduction to Artificial Intelligence

USC

Assumption:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Conclusion:

We will be home by the sunset.

Here is where we are...

	Week	30000D	30282R	Topics	Chapters		
	1	1/7	1/8	Intelligent Agents	[Ch 1.1-1.4 and 2.1-2.4]		
		1/9	1/10	Problem Solving and Search	[Ch 3.1-3.3]		
	2	1/14	1/15	Uninformed Search	[Ch 3.3-3.4]		
		1/16	1/17	Heuristic Search (A*)	[Ch 3.5]		
	3	1/21	1/22	Heuristic Functions	[Ch 3.6]		
		1/23	1/24	Local Search	[Ch 4.1-4.2]		
		1/25		Project 1 Out			
	4	1/28	1/29	Adversarial Search	[Ch 5.1-5.3]		
\geq		1/30	1/31	Knowledge Based Agents	[Ch 7.1-7.3]		
	5	2/4	2/5	Propositional Logic Inference	[Ch 7.4-7.5]		
		2/6	2/7	First-Order Logic	[Ch 8.1-8.4]		
		2/8		Project 1 Due			
		2/8		Homework 1 Out			
	6	2/11	2/12	Rule-Based Systems	[Ch 9.3-9.4]		
		2/13	2/14	Search-Based Planning	[Ch 10.1-10.3]		
		2/15		Homework 1 Due			
	7	2/18	2/19	SAT-Based Planning	[Ch 10.4]		
		2/20	2/21	Knowledge Representation	[Ch 12.1-12.5]		
	8	2/25	2/26	Midterm Review			
		2/27	2/28	Midterm Exam			
- 1		~			1		

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)
- Knowledge-based agent
 - The Wumpus World
 - Propositional Logic
 - Propositional Logic Inference

Recap: Logic for knowledge representation

- Logic as a language for knowledge representation
 - Propositional logic (Boolean)
 - First-order logic (FOL)

Domain independent algorithms

Domain specific content

- Advantage
 - Can combine and recombine information to suit many purposes

Recap: The Wumpus World

- Illustrating unique strength of "knowledge-based" agents
 - A cave consisting of dark rooms, on a 4x4 grid
 - Beast (named Wumpus) hidden in one room
 - Pits hidden in some rooms
 - Gold hidden in one room

Recap: Tight spots

Smell in (1,1) \Rightarrow cannot move

Recap: Tight spots

Smell in (1,1)

⇒ cannot move

Can use a strategy of coercion:

shoot straight ahead

wumpus was there ⇒ dead ⇒ safe

wumpus wasn't there ⇒ safe

Recap: Can you solve it using search alone?

- No, unless you risk "being eaten" or "dying in pit" multiple times, before learning the entire transition model of the environment
- With a "Knowledge Base (KB)", you can infer facts such as
 - [2,2] cannot have Pit
 - [2,2] cannot have Wumpus
 - [1,3] must have Wumpus
 - [3,1] must have Pit
- Correctness is guaranteed
 - As long as KB is correct

Recap: Knowledge Base (KB)

A set of sentences describing aspects of the environment

Symbols:

 $P_{x,y}$ is true if there is a pit in [x, y].

 $W_{x,y}$ is true if there is a wumpus in [x,y], dead or alive.

 $B_{x,y}$ is true if the agent perceives a breeze in [x,y].

 $S_{x,y}$ is true if the agent perceives a stench in [x,y].

- Sentence#1: There is no pit in [1,1]
- Sentence#2: There is breeze in [2,1]

$$\neg P_{1,1}$$
. $B_{2,1}$.

• Sentence#3: A square is breezy IFF pit is in a neighboring square

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$
 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$
 $B_{3,1} \dots$
 $B_{4,1} \dots$

Recap: Entailment

 α_1 = "There is no pit in [1,2]."

in every model in which KB is true, α_1 is also true.

First, find all models in KB

Then, for each model, check if the sentence is true

Recap: No entailment

 α_2 = "There is no pit in [2,2]."

in some models in which KB is true, α_2 is false.

$$KB \not\models \alpha_2$$

First, find all models in KB

Then, for each model, check if the sentence is true

Recap: Checking entailment

- Two methods
 - Method#1: Based on enumeration (model checking)
 - Method#2: Based on inference rules (theorem proving)

 Enumerate all models and check if "a is true in all models in which KB is true"

$$M(KB) \subseteq M(\alpha).$$

Recap: Checking entailment (example)

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false : false	false false : true	false false : false	false false : false	false false : false	false false : false	false true : false	true true true true	$true$ $true$ \vdots $true$	true false : false	$true$ $true$ \vdots $true$	false false : true	false false false false
$false \ false$	true true true	false false false	false false false	false false false	false true true	$true \\ false \\ true$	true true true	true $true$ $true$	true true true	true true true	true true true	$\begin{array}{c} \underline{true} \\ \underline{true} \\ \underline{true} \end{array}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	$true$ \vdots $true$	false : false

Recap: Checking entailment

Two methods

- Method#1: Based on enumeration (model checking)
- Method#2: Based on inference rules (theorem proving)

Logical equivalences

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Recap: Checking entailment (theory)

Can be done by checking "validity" or "unsatisfiability"

For any sentences α *and* β *,* $\alpha \models \beta$

if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.

if and only if the sentence $(\alpha \land \neg \beta)$ *is unsatisfiable.*

Checking validity

For any sentences α *and* β *,* $\alpha \models \beta$

if and only if the sentence $(\alpha \Rightarrow \beta)$ *is valid.*

• Example: K

$$KB \models \alpha_1$$

$$R_1: \neg P_{1,1}.$$
 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}).$
 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}).$
 $R_4: \neg B_{1,1}.$
 $R_5: B_{2,1}.$

KB

 α_1 = "There is no pit in [1,2]."

• $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5) \Rightarrow (\neg P_{1,2})$

Inference rules

Modus Ponens (Latin for mode that affirms)

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$

And-Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

Inference rules (more)

$$\begin{array}{c}
\alpha \Leftrightarrow \beta \\
\hline
(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)
\end{array}$$

$$\begin{array}{ccc}
 & (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \\
\hline
 & \alpha \Leftrightarrow \beta
\end{array}$$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ \hline (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \hline
```

Applying inference rules

KB

• Example: $KB \models \alpha_1$

```
R_1: \neg P_{1,1}.
R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).
R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).
R_4: \neg B_{1,1}.
R_5: B_{2,1}.
```

 α_1 = "There is no pit in [1,2]."

- $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5) \Rightarrow (\neg P_{1,2})$
- From R_2 :
- And-Elimination:
- Contra-positive:
- From R_4 :
- *Modus Ponens:*
- De Morgan:

Applying inference rules

• Example: KB

$$KB \models \alpha_1$$

```
R_1: \neg P_{1,1}.
R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).
R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).
R_4: \neg B_{1,1}.
R_5: B_{2,1}.
```

 α_1 = "There is no pit in [1,2]."

- $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5) \Rightarrow (\neg P_{1,2})$
- From R_2 :

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

• *And-Elimination:*

$$((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

 $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})).$

• Contra-positive:

$$\neg B_{1,1}$$

• From R_4 :

$$\neg (P_{1,2} \lor P_{2,1})$$
.

Modus Ponens:

$$\neg P_{1,2} \wedge \neg P_{2,1}$$

• De Morgan:

Applying inference rules

Example:

$$KB \models \alpha_1$$

$$R_1: \neg P_{1,1}$$
.

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$$

$$R_4: \neg B_{1,1}$$
.

 $R_5: B_{2,1}$.

 $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5) \Rightarrow (\neg P_{1,2})$

KB

 α_1 = "There is no pit in [1,2]."

A sequence of actions -- Find it by hand, or by computer?

•
$$/$$
 From R_2 :

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1}))$$

$$P_{2,1}$$
 $\Rightarrow B_{1,1}$.

• From
$$R_{4}$$
:

$$((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$
.

$$(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1}))$$
.

$$\neg B_{1,1}$$

$$\neg (P_{1,2} \lor P_{2,1})$$
.

$$\neg P_{1,2} \wedge \neg P_{2,1}$$

Automation of the proof

- Problem-solving agent that searches a proof:
 - Initial State:
 - Actions:
 - Transition model:

– Goal:

Automation of the proof

Problem-solving agent that searches a proof:

– Initial State: KB

Actions: Inference rules applied to sentences in KB

Transition model: KB' ← RESULT(KB, rule), where KB' is KB plus all the inferred sentences

Goal: State (KB) containing the sentence to be proved

Automation of the proof

Problem-solving agent:

```
R_1: \neg P_{1,1}.
R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}).
R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}).
R_4: \neg B_{1,1}.
R_5: B_{2,1}.
```

- Initial State: KB
- Actions: Inference rules applied to sentences in KB
- Transition model: KB' ← RESULT(KB, rule), where KB' is KB plus all the inferred sentences
- Goal: State (KB) containing the sentence to be proved

 $KB \models \alpha_1$

Monotonicity of logical systems

 As more information is added to KB, the set of entailed sentences can only increase (and never decrease)

Deriving expressions from functions

- Given a function F(P,Q) in truth table form, find a logic expression for it that uses only V, ∧ and ¬.
- Idea: We sum up the "T" rows of the truth table.

Example: XOR function

Р	Q	RESULT
Т	Т	F
T	F	Т
F	T	Т
F	F	F

$$F(P,Q) = ???$$

Deriving expressions from functions

- Given a function F(P,Q) in truth table form, find a logic expression for it that uses only V, ^ and ¬.
- Idea: We sum up the "T" rows of the truth table.

Example: XOR function

Р	Q	RESULT
Т	Т	ŀĿ
T	F	Т
F	T	Т
F	F	F

$$F(P,Q) = (P \land (\neg Q)) \lor ((\neg P) \land Q)$$

Problem of the inference rules

- Soundness:
 - obviously sound
- Completeness:
 - if the inference rules are inadequate, proof may not be reachable

```
(\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land \\ \end{cases}
```

Outline

- What is AI?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- The Wumpus World
- Propositional Logic
- Propositional Logic Inference
 - Inference and proof
 - Resolution

What is "resolution"?

Single rule that yields a complete inference algorithm

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

Resolution can be understood as "either... or...":

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

- Resolution can be understood as "either... or...":
 - When (x = false), the formula equals (C)
 - When (x = true), the formula equals (D)
 - So, regardless, the formula is either (C) or (D)

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

Resolution can be viewed as "transitivity of implication"

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

Resolution can be viewed as "transitivity of implication"

$$(\neg C \rightarrow x) \land (x \rightarrow D) = (\neg C \rightarrow D)$$
$$= (C \lor D)$$

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

Example: simple case (unit resolution)

$$P_{1,1} \vee P_{2,2} \vee P_{3,1} \qquad \neg P_{2,2}$$

$$P_{1,1} \vee P_{3,1}$$

Resolution

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

• Example: simple case (unit resolution = modus ponens)

$$P_{1,1} \lor P_{2,2} \lor P_{3,1}$$
 $\neg P_{2,2}$ $P_{1,1} \lor P_{3,1}$

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$

Resolution

- Resolvent
- Pivot variable (x)

$$(C \lor x) \land (D \lor \neg x) \rightarrow (C \lor D)$$

Example: general case

$$\frac{P_{1,1} \vee P_{3,1}, \quad \neg P_{1,1} \vee \neg P_{2,2}}{P_{3,1} \vee \neg P_{2,2}}$$

Resolution

- Resolvent
- Pivot variable (x)

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

- Example: special cases
 - When $(D = \neg C)$, the resolvent $(C \lor \neg C)$ equals (true)
 - When $(x) \land (\neg x)$, the resolvent () equals (false)

Resolution-based inference

$$(C \vee x) \wedge (D \vee \neg x) \rightarrow (C \vee D)$$

- Applying resolution repeatedly can decide SAT/UNSAT
 - If resolution leads to an "empty clause" (false) → UNSAT
 - Else → SAT
- Both sound and complete

Conjunctive Normal Form (CNF)

- Variable (a symbol whose value is either true or false)
- Literal (either a variable or its negation)
- Clause (a disjunction of literals)
- CNF Formula (a conjunction of clauses)

Examples

CNF formula

Syntax

Converting to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

Equivalence rules...

Converting to CNF (example)

Question: Is (f) satisfiable?

Are there values of (a) and (b) such that (f) is TRUE

Equivalent formula:

$$(\neg a \rightarrow \neg f) \land$$

 $(\neg b \rightarrow \neg f) \land$
 $(a \land b \rightarrow f)$

$$(a \lor \neg f) \land (b \lor \neg f) \land (\neg a \lor \neg b \lor f)$$

Converting to CNF (example)

Question: Is (f) satisfiable?

Are there values of (a) and (b) such that (f) is TRUE

Equivalent CNF formula:

$$(a \rightarrow f) \land$$
 $(b \rightarrow f) \land$
 $(\neg a \lor f)$
 $(\neg a \lor f)$

$$(\neg a \lor f) \land (\neg b \lor f) \land (a \lor b \lor \neg f)$$

Conjunctive Normal Form (re-cap)

- Boolean Variable
- Literal
- Clause
- CNF

Examples

Checking entailment (theory)

Can be done by checking "validity" or "unsatisfiability"

For any sentences α *and* β *,* $\alpha \models \beta$

if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.

if and only if the sentence $(\alpha \land \neg \beta)$ *is unsatisfiable.*

Checking unsatisfiability

For any sentences α *and* β *,* $\alpha \models \beta$

if and only if the sentence $(\alpha \land \neg \beta)$ *is unsatisfiable.*

 $KB \models \alpha_1$ Example:

 $R_1: \neg P_{1,1}$. $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$ $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$ $R_4: \neg B_{1,1}.$ $R_5: B_{2,1}$.

 $\boxed{\alpha_1} = \text{``There is no pit in [1,2].''}$

 $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5) \wedge \neg (\neg P_{1,2})$

Applying resolution

$$\neg P_{2,1} \vee B_{1,1}$$

$$\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}$$

$$\neg P_{1,2} \vee B_{1,1}$$

$$\neg B_{1,1}$$

$$P_{1,2}$$

Applying resolution

unsatisfiable

For any sentences α *and* β *,* $\alpha \models \beta$

if and only if the sentence $(\alpha \land \neg \beta)$ *is unsatisfiable.*

$$KB \models \alpha_1$$

Resolution algorithm

```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic
  clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
  new \leftarrow \{\ \}
  loop do
      for each pair of clauses C_i, C_j in clauses do
           resolvents \leftarrow PL-RESOLVE(C_i, C_j)
           if resolvents contains the empty clause then return true
           new \leftarrow new \cup resolvents
      if new \subseteq clauses then return false
       clauses \leftarrow clauses \cup new
```

Resolution Proof (example)

$$(\neg a \lor \neg b \lor c) \land (a \lor b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$S_0' = (\neg a \lor \neg b \lor c) \land (a \lor b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$
$$S_1' = (b \lor c \lor d) \land (b \lor c \lor \neg d) \land (\neg c \lor d) \land (\neg c \lor \neg d)$$

Resolution Proof (example)

$$(\neg a \lor \neg b \lor c) \land (a \lor b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\begin{split} S_0' = & (\neg a \vee \neg b \vee c) \wedge (a \vee b \vee c) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \wedge \\ & (\neg a \vee c \vee d) \wedge (\neg a \vee b \vee \neg d) \wedge (b \vee c \vee \neg d) \wedge (a \vee b \vee d) \\ S_1' = & (b \vee c \vee d) \wedge (b \vee c \vee \neg d) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_2' = & (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_3' = & \text{true} \\ S_4' = & \text{true} \end{split}$$

Resolution Proof (compute assignment)

$$(\neg a \lor \neg b \lor c) \land (a \lor b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\begin{split} S_0' = & (\neg a \vee \neg b \vee c) \wedge (a \vee b \vee c) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \wedge \\ & (\neg a \vee c \vee d) \wedge (\neg a \vee b \vee \neg d) \wedge (b \vee c \vee \neg d) \wedge (a \vee b \vee d) \\ S_1' = & (b \vee c \vee d) \wedge (b \vee c \vee \neg d) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_2' = & (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_3' = & \text{true} \\ S_4' = & \text{true} \end{split}$$

$$\eta_0 = { \neg a, b, \neg c, d }$$

$$\eta_1 = { b, \neg c, d }$$

$$\eta_2 = { \neg c, d }$$

$$\eta_3 = { d }$$

$$\eta_4 = \emptyset$$

Resolution Proof (an alternative assignment)

$$(\neg a \lor \neg b \lor c) \land (a \lor b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$\begin{split} S_0' = & (\neg a \vee \neg b \vee c) \wedge (a \vee b \vee c) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \wedge \\ & (\neg a \vee c \vee d) \wedge (\neg a \vee b \vee \neg d) \wedge (b \vee c \vee \neg d) \wedge (a \vee b \vee d) \\ S_1' = & (b \vee c \vee d) \wedge (b \vee c \vee \neg d) \wedge (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_2' = & (\neg c \vee d) \wedge (\neg c \vee \neg d) \\ S_3' = & \text{true} \\ S_4' = & \text{true} \end{split}$$

$$\eta_0 = {\neg a, b, \neg c, d}$$

$$\eta_1 = {b, \neg c, d}$$

$$\eta_2 = {\neg c, d}$$

$$\eta_3 = {d}$$

$$\eta_4 = \emptyset$$

Resolution Proof (another example)

$$(\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

If we eliminate the variables in alphabetic order,

$$S_0' = (\neg a \lor \neg b \lor c) \land (a \lor \neg b \lor c) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (\neg a \lor c \lor d) \land (\neg a \lor b \lor \neg d) \land (b \lor c \lor \neg d) \land (a \lor b \lor d)$$

$$S_1' = (\neg b \lor c) \land (\neg b \lor c \lor d) \land (b \lor c \lor d) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (b \lor c \lor \neg d)$$

$$S_2' = (c \lor d) \land (c \lor \neg d) \land (\neg c \lor d) \land (\neg c \lor \neg d)$$

$$S_3' = d \land \neg d$$

$$S_4' = \mathsf{false} .$$

The CNF formula is therefore unsatisfiable.

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- The Wumpus World
- Propositional Logic
- Propositional Logic Inference
 - Inference and proof
 - Resolution
 - Horn clause

Horn clause

- A disjunction of literals of which "at most one" is positive
 - Exactly one literal is positive (definite clause)

$$(\neg L_{1,1} \lor \neg Breeze \lor B_{1,1})$$

$$L_{1,1} \land Breeze) \Rightarrow B_{1,1}$$

$$True \Rightarrow L_{1,1}$$

None is positive (goal clause)

Horn clause resolution

Resolution algorithm (KB and Q)

$$P \Rightarrow Q$$
 $L \wedge M \Rightarrow P$
 $B \wedge L \Rightarrow M$
 $A \wedge P \Rightarrow L$
 $A \wedge B \Rightarrow L$
 A

Horn clause resolution

Forward chaining

$$P \Rightarrow Q$$
 $L \wedge M \Rightarrow P$
 $B \wedge L \Rightarrow M$
 $A \wedge P \Rightarrow L$
 $A \wedge B \Rightarrow L$
 A

Forward chaining algorithm

```
function PL-FC-ENTAILS? (KB, q) returns true or false
  inputs: KB, the knowledge base, a set of propositional definite clauses
           q, the query, a proposition symbol
  count \leftarrow a table, where count[c] is the number of symbols in c's premise
  inferred \leftarrow a table, where inferred[s] is initially false for all symbols
  agenda \leftarrow a queue of symbols, initially symbols known to be true in KB
  while agenda is not empty do
      p \leftarrow POP(agenda)
      if p = q then return true
      if inferred[p] = false then
          inferred[p] \leftarrow true
          for each clause c in KB where p is in c.PREMISE do
              decrement count[c]
              if count[c] = 0 then add c.CONCLUSION to agenda
  return false
```

Horn clause resolution

Backward chaining

$$P \Rightarrow Q$$
 $L \wedge M \Rightarrow P$
 $B \wedge L \Rightarrow M$
 $A \wedge P \Rightarrow L$
 $A \wedge B \Rightarrow L$
 A

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- The Wumpus World
- Propositional Logic

Propositional Logic Inference

- Inference and proof
- Resolution
- Horn clause
- Examples

Assumption:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Conclusion:

We will be home by the sunset.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

Conclusion:

We will be home by the sunset. h

Where:

s: "it is sunny this afternoon"

c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \to h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis

Where:

s: "it is sunny this afternoon"

c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification

Where:

s: "it is sunny this afternoon"

c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis

Where:

s: "it is sunny this afternoon"

c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \to h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis
4 . ¬ <i>w</i>	modus tollens of 2 and 3

Where:

s: "it is sunny this afternoon"

c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \to h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis
4 . ¬ <i>w</i>	modus tollens of 2 and 3
5. $\neg w \rightarrow t$	hypothesis

Where:

s: "it is sunny this afternoon"c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis
4 . ¬ <i>w</i>	modus tollens of 2 and 3
5. $\neg w \rightarrow t$	hypothesis
6. <i>t</i>	modus ponens of 4 and 5

Where:

s: "it is sunny this afternoon"c: "it is colder than yesterday"

w: "we will go swimming"

t: "we will take a canoe trip.

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \to h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis
4 . ¬ <i>w</i>	modus tollens of 2 and 3
5. $\neg w \rightarrow t$	hypothesis
6. <i>t</i>	modus ponens of 4 and 5
7. $t \rightarrow h$	hypothesis

Where:

s: "it is sunny this afternoon"
c: "it is colder than yesterday"
w: "we will go swimming"
t: "we will take a canoe trip.
h: "we will be home by the sunset."

Assumption:

- It is not sunny this afternoon and it is colder than yesterday. $\neg s \land c$
- We will go swimming only if it is sunny. $w \rightarrow s$
- If we do not go swimming, then we will take a canoe trip. $\neg w \to t$
- If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

Conclusion:

We will be home by the sunset. h

Step	Reason
1. $\neg s \wedge c$	hypothesis
2. <i>¬s</i>	simplification
3. $w \rightarrow s$	hypothesis
4 . ¬ <i>w</i>	modus tollens of 2 and 3
5. $\neg w \rightarrow t$	hypothesis
6. <i>t</i>	modus ponens of 4 and 5
7. $t \rightarrow h$	hypothesis
8. <i>h</i>	modus ponens of 6 and 7

Where:

s: "it is sunny this afternoon"
c: "it is colder than yesterday"
w: "we will go swimming"
t: "we will take a canoe trip.
h: "we will be home by the sunset."

Wumpus world: example

- Facts: Percepts inject (TELL) facts into the KB
 - [no stench at 1,1 and 2,1] $\rightarrow \neg S_{1,1}$; $\neg S_{2,1}$

 Rules: if square has no stench then neither the square or adjacent squares contain the Wumpus

```
- R1: \neg S_{1,1} \Rightarrow \neg W1,1 \land \neg W1,2 \land \neg W_{2,1}
- R2: \neg S_{2,1} \Rightarrow \neg W1,1 \land \neg W2,1 \land \neg W2,2 \land \neg W3,1
```

Inference:

- KB contains $\neg S_{1,1}$ then using *Modus Ponens* we infer $\neg W1,1 \land \neg W1,2 \land \neg W2,1$
- Using And-Elimination we get: ¬W1,1 ¬W1,2 ¬W2,1,
- KB contains ¬S_{2,1} then ...

Limitations of Propositional Logic

- 1. It can be too weak, i.e., has limited expressiveness:
- Each rule has to be represented for each situation:
 e.g., "don't go forward if the wumpus is in front of you" takes 64 rules
- 2. It cannot keep track of changes:
- If one needs to track changes, e.g., where the agent has been before then we need a timed-version of each rule. To track 100 steps we'll then need 6400 rules for the previous example.

Its hard to write and maintain such a huge rule-base Inference becomes intractable

Outline

- What is AI?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- The Wumpus World
- Propositional Logic
- Propositional Logic Inference
 - Inference and proof
 - Resolution
 - Horn clause
 - Examples