Modèles bayésiens pour l'identification de représentations antiparcimonieuses et l'analyse en composantes principales non paramétrique

Clément Elvira

Directeurs de thèse : Pierre Chainais et Nicolas Dobigeon

10 novembre 2017

Modèles linéaires et factorisation de matrices

Modèles linéaires et factorisation de matrices

Exemple : imagerie hyperspectrale & hypothèse de linéarité

Bioucas-Dias & al (2012)

Méthodologie bayésienne

- Formulé comme un problème inverse
- Généralement mal posé \implies régularisation, lois a priori

Formule de Bayes

$$Y \simeq F W$$

$$p(F, W|Y) \propto \underbrace{p(Y|F, W)}_{\text{Vraisemblance}} \times \underbrace{p(F, W)}_{\text{a priori}}$$

- Liberté : a priori
- Algorithmes d'échantillonnage et estimateurs
- Aucun réglage de paramètres
- Aide à la décision : intervalle de confiance, ...

Plan de la présentation

Partie I : codage antiparcimonieux

- $D \ll K \longrightarrow \text{robustesse}$
- échantillonnage efficace

Partie 2 : estimation de sous-espaces

- $D \gg K \longrightarrow \text{mod\'elisation}$
- Étude des estimateurs de la dimension

Partie I

codes antiparcimonieux

et loi démocratique

Codage linéaire et antiparcimonieux

Codage linéaire et antiparcimonieux

peu de coefficients

minimum d'énergie

$$x_k \simeq \pm \frac{\|\mathbf{y}\|_2}{\sqrt{K}}$$

Applications

• Recherche approximative de plus proches voisins

Jegou & al. (2012)

$$x_k = \pm \alpha \iff \text{binarisation + vie priv\'e}$$

distance binaire = XOR $\implies \text{plus rapide}$

- Automatique : répartition des efforts moteurs Cadzow (1971)
- Réduction d'erreur de quantification Lyubarskii & Vershynin (2010)
- télecom : Réduction facteur de crête (PAPR)

Ilic & Strohmer (2009)

$$\forall \mathbf{x} \in \mathbb{R}^K$$
, $\mathsf{PAPR}(\mathbf{x}) = \frac{K \|\mathbf{x}\|_{\infty}^2}{\|\mathbf{x}\|_2^2}$

Applications

• Recherche approximative de plus proches voisins

Jegou & al. (2012)

$$\mathbf{x}_{\mathbf{k}} = \pm \alpha \iff \text{binarisation + vie priv\'e}$$
 distance binaire = XOR $\implies \text{plus rapide}$

- Automatique : répartition des efforts moteurs Cadzow (1971)
- Réduction d'erreur de quantification Lyubarskii & Vershynin (2010)
- télecom : Réduction facteur de crête (PAPR)

lic & Strohmer (2009)

$$\forall \mathbf{x} \in \mathbb{R}^K$$
, $\mathsf{PAPR}(\mathbf{x}) = \frac{K \|\mathbf{x}\|_{\infty}^2}{\|\mathbf{x}\|_2^2}$

Code antiparcimonieux & problème inverse

$$\mathbf{y} \simeq \mathbf{H} \mathbf{x}$$
 et $|x_k| \simeq \frac{\|\mathbf{y}\|_2}{\sqrt{K}}$

$$(\mathsf{P}_{\infty}^{\varepsilon}) \quad \min_{\mathbf{x} \in \mathbb{R}^K} \|\mathbf{x}\|_{\infty} \quad \text{s.c. } \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 \leq \varepsilon$$

$$\exists C_{\ell}$$
 et C_{ii} telles que

Lyubarskii & Vershynin (2010)

$$\frac{C_{\ell}(\mathsf{H},\varepsilon)}{\sqrt{K}} \left(\|\mathbf{y}\|_{2} - \varepsilon \right) \leq \|\widehat{\mathbf{x}}\|_{\infty} \leq \frac{C_{u}(\mathsf{H},\varepsilon)}{\sqrt{K}} \left(\|\mathbf{y}\|_{2} - \varepsilon \right)$$

La loi démocratique

Résoudre

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \ \frac{1}{2} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2}{\|\mathbf{x} - \mathbf{H}\mathbf{x}\|_2^2} + \underbrace{\beta \|\mathbf{x}\|_{\infty}}_{\text{p\'enalit\'e}} = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \ J(\mathbf{x}, \beta)$$

avec une méthode forward-backward FITRA Studer & Larsson (2013)

MAP de vraisemblance gaussienne + prior démocratique

Densité de la loi démocratique

$$\forall \mathbf{x} \in \mathbb{R}^K$$
 $p(\mathbf{x}) = \frac{\lambda^K}{2^K K!} \exp(-\lambda ||\mathbf{x}||_{\infty})$

La loi démocratique

Résoudre

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \ \frac{1}{2} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2}{\|\mathbf{x} - \mathbf{H}\mathbf{x}\|_2^2} + \underbrace{\beta \|\mathbf{x}\|_{\infty}}_{\text{p\'enalit\'e}} = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \ J(\mathbf{x}, \beta)$$

avec une méthode forward-backward FITRA Studer & Larsson (2013)

MAP de vraisemblance gaussienne + prior démocratique

Densité de la loi démocratique

$$\forall \mathbf{x} \in \mathbb{R}^K$$
 $p(\mathbf{x}) = \frac{\lambda^K}{2^K K!} \exp(-\lambda ||\mathbf{x}||_{\infty})$

Contributions & plan de la partie

- Formulation bayésienne du codage antiparcimonieux
- Étude de la loi démocratique

$$p(\mathbf{x}) \propto \exp(-\lambda \|\mathbf{x}\|_{\infty})$$

- 3 algorithmes de Monte Carlo : Gibbs, P-MALA et P-MYULA
- Applications numériques : réduction de PAPR

$$\forall \mathbf{x} \in \mathbb{R}^K$$
, $\mathsf{PAPR}(\mathbf{x}) = \frac{K \|\mathbf{x}\|_{\infty}^2}{\|\mathbf{x}\|_2^2}$

Valorisation: IEEE TSP, IEEE SSP & Gretsi

La loi démocratique

$$\mathsf{p}(oldsymbol{x}) = rac{\lambda^K}{2^K K!} \exp\left(-\lambda \|oldsymbol{x}\|_{\infty}
ight)$$

Distribution marginale d'une composante x_k

$$p(x_k) = \frac{\lambda}{2K} \left(\sum_{j=0}^{K-1} \frac{\lambda^j}{j!} |x_k|^j \right) \exp(-\lambda |x_k|)$$

(série de Taylor tronquée de exp) × exp

Résultat

$$\frac{\lambda}{\kappa} X_k \xrightarrow{\mathcal{L}} \mathcal{U}_{[-1,1]}$$

Distribution marginale d'une composante x_k

Distribution marginale renormalisée $\lambda=3$ et $\mathcal{K}=2$, 10, 100

Formulation bayésienne du codage antiparcimonieux

Deux estimateurs

MAP marginalisé (mMAP) - mode a posteriori

$$\begin{split} \widehat{\mathbf{x}}_{\mathsf{mMAP}} &= \underset{\mathbf{x} \in \mathbb{R}^K}{\mathsf{argmax}} \int_{\mathbb{R}_+} f\left(\mathbf{x}, \beta \middle| \mathbf{y}\right) \mathsf{p}(\beta) \mathsf{d}\beta \\ &\simeq \underset{\mathbf{x}^{(t)} \in \mathcal{X}}{\mathsf{argmax}} \, f\left(\mathbf{x}^{(t)} \middle| \mathbf{y}\right) \end{split}$$

MMSE - moyenne a posteriori

$$\widehat{\mathbf{x}}_{\mathsf{MMSE}} = \mathsf{E}\left[\mathbf{x}|\mathbf{y}\right]$$

$$\simeq \frac{1}{T_r} \sum_{t=T_{\mathsf{bi}}+1}^{T_{\mathsf{MC}}} \mathbf{x}^{(t)}$$

Algorithme MCMC générique

pour $t \leftarrow 1$ à T_{MC} faire

Tirer $\beta^{(t)} \sim \mathcal{IG}$ - conjuguée;

Tirer un code $\mathbf{x}^{(t)}$ selon

1. Composante x_k par composante : Gibbs

ou

2. Vecteur entier: P-MALA

ou

3. Vecteur entier: P-MYULA

fin

Sortie: une collection d'échantillons $\{\beta^{(t)}, \mathbf{x}^{(t)}\}$;

P-MYULA: principe

Durmus et al. (2017)

Processus de diffusion de Langevin discrétisé

$$\begin{array}{ll} \mathsf{ULA} & : & \mathbf{x}^{(t_{n+1})} = \mathbf{x}^{(t_n)} + \delta \nabla \log \mathrm{p}(\mathbf{x}^{(t_n)}|\mathbf{y},\beta) + \sqrt{2\delta} \mathbf{w}^{(t_{n+1})} \\ \mathsf{où} & & \mathrm{p}(\mathbf{x}|\mathbf{y},\beta) \propto \exp \left(-f_1(\mathbf{x}) - \lambda g_0(\mathbf{x}) \right) \not \in \mathcal{C}^1 \\ \\ \mathsf{avec} & & f_1(\mathbf{x}) = \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 \quad \mathsf{et} \quad g_0(\mathbf{x}) = \|\mathbf{x}\|_{\infty} \\ \\ & & & \mathsf{diff.} & \mathsf{non diff.} \end{array}$$

Solution : g₀ est régularisée pour améliorer le mélange

$$\implies g_{\delta}(\mathbf{x}) = \inf_{\mathbf{u}} g_{0}(\mathbf{u}) - \frac{1}{2\delta} \|\mathbf{x} - \mathbf{u}\|_{2} = \operatorname{prox}_{\lambda \delta g_{0}}(\mathbf{x})$$

MY: enveloppe de Moreau-Yoshida de g_0

P-MYULA en pratique

I. Descente de gradient généralisée

$$\begin{aligned} \mathbf{x}^{(t+1/2)} &= \left(1 - \frac{\gamma}{\delta}\right) \mathbf{x}^{(t)} - \gamma \nabla f_1 \bigg(\mathbf{x}^{(t)}\bigg) + \frac{\gamma}{\delta} \mathsf{prox}_{\delta \lambda g_0} \bigg(\mathbf{x}^{(t)}\bigg) \\ \text{où } \gamma &= L_{\epsilon}^{-1} \text{ et } \delta = \frac{\gamma}{4} \text{ et} \end{aligned}$$

$$\mathsf{prox}_{\delta\lambda\|\cdot\|_{\infty}}(\mathbf{x}) = \mathbf{x} - \delta\lambda\Pi_{\mathbf{u},\|\mathbf{u}\|_{1} \leq 1}(\mathbf{x})$$

Condat (2015)

2. Faire un pas de marche aléatoire

$$\mathbf{x}^{(t+1)} \sim \mathcal{N}\left(\mathbf{x}^{(t+\frac{1}{2})}, 2\gamma I_{N}\right)$$

Complexité d'une itération

Gibbs

- K gradients $\sim \mathcal{O}(DK^2)$
- K lois multinomiales
- K lois normales tronquées
- 1 loi uniforme sur les permutations de 1, ..., K

P-MYULA

- 1 gradient $\sim \mathcal{O}(DK^2)$
- $\operatorname{prox}_{\lambda \|.\|_{\infty}} \sim \mathcal{O}(K)$
- K lois normales
- une loi uniforme sur [0, 1]

En pratique P-MYULA est $10 \times$ plus rapide

Réglage des paramètres

Le MAP dépend de : $J(\mathbf{x}, \beta) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \beta \|\mathbf{x}\|_{\infty}$

besoin de λ , σ^2 t.q. $2\lambda\sigma^2=\beta$ \Longrightarrow 1 degré de liberté

Réduction de PAPR D = 30, K = 50

$$D = 30, K = 50$$

$$\mathsf{SNR}_{\mathsf{y}}(\widehat{\mathsf{x}}) = \frac{\|\mathsf{y}\|_2^2}{\|\mathsf{y} - \mathsf{H}\widehat{\mathsf{x}}\|_2^2}$$

$$\mathsf{PAPR}(\widehat{\mathbf{x}}) = \frac{K \|\widehat{\mathbf{x}}\|_{\infty}^{2}}{\|\widehat{\mathbf{x}}\|_{2}^{2}}$$

Conclusion partielle

- Formulation bayésienne du codage antiparcimonieux
- loi démocratique $p(\mathbf{x}) \propto \exp(-\lambda \|\mathbf{x}\|_{\infty})$
- Lois conditionnelles conjuguées ...
 - & algorithmes de Monte Carlo proximaux rapides et efficaces
- ullet Aucun réglage de paramètre \longrightarrow non supervisé

« Bayesian anti-sparse coding » IEEE TSP 2017 + SSP'16 + Gretsi'17

Toolbox Matlab / Mex disponible en ligne

 $\verb|github.com/c-elvira/bayesian_antisparse_algorithm|\\$

Perspectives

• Généralisation de la loi démocratique = nouvelle régularisation

$$f(\mathbf{x}) = \frac{\lambda^{K\gamma}\gamma^K}{2^K\Gamma(K\gamma+1)} \prod_{k=1}^K |\mathbf{x}_k|^{\gamma} e^{-\lambda \|\mathbf{x}\|_{\infty}},$$

• Nouvel estimateur? Les solutions de

$$(\mathsf{P}_\infty): \quad \mathsf{min} \ \|\mathbf{x}\|_\infty \quad \mathsf{t.q.} \quad \mathbf{y} = \mathbf{H}\mathbf{x}$$

$$\Rightarrow K - \mathsf{rang}(\mathbf{H}) + 1 \quad \mathsf{valeurs \ extrêmes} \qquad \textit{(Cadzow, 1971)}$$

signe(x)|y pour trouver la position des valeurs extrêmes?

Partie II

Bayésien non paramétrique pour l'estimation de sous-espaces

Représentation en plus petite dimension

Valeur de $K \longrightarrow \text{pertinence de la réduction de la dimension} \longrightarrow \text{impacte les performances}$

 \longrightarrow stockage

 \longrightarrow bruit capturé

Estimation de sous-espaces & dimension

- Incontournable : Analyse en Composantes Principales

Parcimonie

- ightarrow ACP parcimonieuse Zou & al. (2006)
- → SVD régularisée Dobigeon & Tourneret (2010)
- Estimation de K
 - → approximations analytiques Minka (2000), Šmídl & Quinn (2007)
 - → RJMCMC Zhang & al. (2004)

Contributions

- ACP non paramétrique parcimonieuse et flexible
 - ightarrow matrice orthonormée + processus du buffet indien
- Méthode d'échantillonnage + estimateurs
- Étude théorique de la consistance de $\widehat{K}|\mathbf{Y}$
- Étude numérique
- Application
 - ---- Couplage avec un séparateur linéaire
 - \longrightarrow Hyperspectral

Article soumis + IEEE'ICASSP

Modèle BNP-PCA

$$oldsymbol{e}_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$$
, bruit additif gaussien

$$\mathbf{P} = [\mathbf{p_1} \dots \mathbf{p_K}, \mathbf{p_{K+1}} \dots \mathbf{p_D}], \, \mathbf{P^t} \mathbf{P} = \mathbf{I_D}, \, \text{et } \mathbf{P} \sim \mathcal{U_{O_D}}$$

$$\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_N] \sim \mathsf{IBP}(\alpha)$$
 matrice binaire $\rightarrow K$

$$\mathbf{x}_n = [\mathbf{x}_{n,1} \dots \mathbf{x}_{n,K}] \ \forall k, \ \mathbf{x}_{n,k} \sim \mathcal{N}(0, \delta_k^2 \sigma^2)$$

$$\theta = \{\delta^2, \sigma^2, \alpha\}$$
 loi conjuguée vague

Modèle BNP-PCA

$$\mathbf{e}_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$$
, bruit additif gaussien
$$\mathbf{P} = [\mathbf{p}_1 \dots \mathbf{p}_K, \mathbf{p}_{K+1} \dots \mathbf{p}_D], \, \mathbf{P}^t \mathbf{P} = \mathbf{I}_D, \, \text{et } \mathbf{P} \sim \mathcal{U}_{\mathcal{O}_D}$$

$$\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_N] \sim \text{IBP}(\alpha) \, \text{matrice binaire} \rightarrow K$$

$$\mathbf{x}_n = [\mathbf{x}_{n,1} \dots \mathbf{x}_{n,K}] \, \forall k, \, \mathbf{x}_{n,k} \sim \mathcal{N}(0, \delta_k^2 \sigma^2)$$

$$\theta = \{\delta^2, \sigma^2, \alpha\} \, \text{loi conjuguée vague}$$

Le processus du Buffet Indien Grif

Griffiths and Ghahramani (2006)

- A priori sur les matrices binaires \rightarrow parcimonie cf. # coefs non nuls pour \mathbf{y}_n
- Taille : $\infty \times N$
- Effet régularisant : $\mathbb{E}[K] = \alpha \log(N)$ cf. réduction de la dimension

Modèle BNP-PCA

$$oldsymbol{e}_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$$
, bruit additif gaussien

$$\mathbf{P} = [\mathbf{p_1} \dots \mathbf{p_K}, \mathbf{p_{K+1}} \dots \mathbf{p_D}], \, \mathbf{P^t} \mathbf{P} = \mathbf{I_D}, \, \text{et } \mathbf{P} \sim \mathcal{U_{O_D}}$$

$$\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_N] \sim \mathsf{IBP}(\alpha)$$
 matrice binaire $\rightarrow K$

$$\mathbf{x}_n = [\mathbf{x}_{n,1} \dots \mathbf{x}_{n,K}] \ \forall \mathbf{k}, \ \mathbf{x}_{n,k} \sim \mathcal{N}(0, \delta_k^2 \sigma^2)$$

$$\boldsymbol{\theta} = \{ \boldsymbol{\delta^2}, \sigma^2, \alpha \}$$
 loi conjuguée vague

Exemple

N = 500 observations, D = 16, $K_{\text{true}} = 4$ selon

$$y = Px + e$$

avec $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_D)$

Estimateur MAP conditionnel de $K|\mathbf{H}$, α

Résultat théorique

$$\forall k$$
, $\limsup_{N \to +\infty} \ \mathsf{P} \big[K_N = k \mid \mathbf{y}_1 \dots \mathbf{y}_N, \frac{\alpha}{\alpha} \big] < 1$

Si
$$\mathbf{y}_n = \text{bruit blanc} \quad K_N \stackrel{\text{p.s.}}{\longrightarrow} 0$$

similaire à Miller and Harrison (2014) pour le clustering

 \Rightarrow L'estimateur MAP $\hat{K}|\alpha$ n'est pas consistant

mauvaise nouvelle

Étude numérique de la consistance de $K|\mathbf{Y}$ N D = 25 D = 36100 200 500 1000 5000 4 10 10 p(α | Y) 2 3

α

α

Le processus du Buffet Indien Griffit

Griffiths and Ghahramani (2006)

- A priori sur les matrices binaires \rightarrow parcimonie cf. # coefs non nuls pour \mathbf{y}_n
- Taille : $\infty \times N$
- Effet régularisant : $\mathbb{E}[K] = \alpha \log(N)$ cf. réduction de la dimension

Étude numérique de la consistance de $K|\mathbf{Y}$ N D = 25 D = 36100 200 500 1000 5000 4 10 10 p(α | Y) 2 3

α

α

Nouvel estimateur de K consistant

- K directions pertinentes $\Rightarrow D K$ directions non pertinentes
- \mathbf{p}_k non pertinent \Rightarrow $\mathbf{p}_k | \mathbf{Y} \simeq \text{uniforme}$

⇒ test d'uniformité

 $X p_k Y$: test vectoriel

 $\langle \mathbf{p}_k, \mathbf{u} \rangle | \mathbf{Y}$: test 1*D*, support compact

⇒ distribution théorique

Nouvel estimateur de K

Soient
$$\| \boldsymbol{u} \|_2 = 1$$
 p uniforme sur \mathcal{O}_{D-K} $W_{D-K} \triangleq |\langle \boldsymbol{u}, \mathbf{p} \rangle|$
$$\mathrm{p} \left(W_{D-K} \leq \lambda \right) = \mathrm{expression\ connue}$$
 $\Rightarrow \mathrm{test\ de\ Kolmogorov\text{-}Smirnov}$

test statistique

$$\mathcal{H}_0^K: |\langle \mathbf{u}, \mathbf{p}_{K+1} \rangle|, \dots, |\langle \mathbf{u}, \mathbf{p}_D \rangle| \sim W_{D-K}$$

nouvel estimateur

$$\widehat{K}_{KS} = \min_{K} \{ K : \mathcal{H}_{0}^{K} \text{ est vraie} \}$$

Application: sous-espace d'un cube hyperspectral

 $extbf{\emph{y}} \in \mathbb{R}^{\# ext{long. onde}}$

vérité terrain : $K \simeq 10$

Algorithme	, \hat{K}
L-PCA	25
OVPCA	23
HySime	10
\widehat{K}_{KS}	13
\widehat{K}_{MAPm}	25

HySime Bioucas-Dias & Nascimento (2008)
Estimer P Besson et al (2009)
Sharpness index Leclaire & Moisan (2015)

Conclusion partielle

• BNP-PCA : IBP + variété de Stiefel

- aucun réglage
- Étude théorique du MAP conditionnel α fixé \rightarrow inconsistant
- Étude expérimentale du MAP α échantillonné \longrightarrow empiriquement consistant
- Nouvel estimateur : test d'uniformité

→ théoriquement consistant

Preprint "Towards Bayesian non parametric PCA" + IEEE'ICASSP 2017 https://arxiv.org/pdf/1709.05667.pdf

codes et mwe Matlab disponibles en ligne

Perspectives

- Complexité numérique / implémentation
 & robustesse des estimateurs aux modèles génératifs
- Généraliser les résultats d'inconsistance
- Fréquences d'activation \rightarrow nouvel estimateur?

ACP fonctionnelle?

• $p(\mathbf{P}, \mathbf{Z}, \boldsymbol{\theta} | \mathbf{Y}) \rightarrow d\acute{e}pend d'un produit scalaire$

Conclusion

Codage antiparcimonieux

- Bayésien = meilleure compréhension du problème
- Régularisation o nouvelle loi de probabilité $p(\mathbf{x}) \propto \exp(-\lambda ||\mathbf{x}||_{\infty})$
- Échantillonnage efficace : Proximal Monte Carlo

Estimation de sous-espaces

- BNP-PCA
- Étude théorique et numérique du comportement des estimateurs de la dimension
- Applications numériques

Publications

Revues

- [A1] "Bayesian Antisparse Coding", dans IEEE Transactions on Signal Processing, 2017
- [A2] "Bayesian nonparametric principal component analysis", soumis en juillet 2017

Conférences internationales

- [C1] "Democratic prior for antisparse coding", dans Proc. IEEE Statistical Signal Processing Workshop (SSP), Juin 2016
- [C2] "Bayesian nonparametric subspace estimation", dans Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), mars 2017 student paper contest finalist

Conférence nationale

[N1] "Une formulation bayésienne du codage antiparcimonieux", dans Actes du Colloque GRETSI, septembre 2017

https://github.com/c-elvira

Modèles bayésiens pour l'identification de représentations antiparcimonieuses et l'analyse en composantes principales non paramétrique

Clément Elvira

Directeurs de thèse : Pierre Chainais et Nicolas Dobigeon

10 novembre 2017

Annexes

Codage antiparcimonieux

Construction de H

échantillonnage prior

Gibbs

P-MALA

Fom versus K

Vers un processus

Estimation de sous-espaces

Échantillonnage

Complexité

Preuve

Consistance

BNP 3 paramètres

Manip bruit blanc

Manip clustering

Construction des matrices H

Condition sur le noyau $\operatorname{Cadzow}(1971)$ les solutions de $\mathsf{P}_{\infty}^{\varepsilon}$ possèdent au moins $K-\operatorname{rang}(\mathsf{H})+1$ valeurs extrêmes

Principe d'incertitude matricielle

H vérifie le PIM ssi $\exists \nu, \gamma < 1$ t.q.

$$\|\mathbf{x}\|_{0} \leq \nu K \implies \|\mathbf{H}\mathbf{x}\|_{2} \leq \gamma \|\mathbf{x}\|_{2}$$

PIM
$$\implies$$
 $\forall y$, $\exists x$ t.q. $y = \mathbf{H}x$ et $\|x\|_{\infty} \leq \frac{1}{(1-\nu\sqrt{2})} \frac{\|x\|_2}{K}$

Lyubarskii et Vershynin (2010)

Matrices vérifiant la condition PIM

→ recourt à l'aléatoire

Lyubarskii et Vershynin (2010)

- Sous-échantillonnage de matrices orthogonales
- Sous-échantillonnage de matrices de coefficients de Fourrier
- Matrice dont les coefficients sont des v.a. sous-gaussiennes

Loi conditionnelle

 $\big\{\mathcal{C}_{\it{k}}\big\}$ ensemble de cônes

$$C_k \triangleq \left\{ \mathbf{x} = [x_1, \dots, x_K]^T \in \mathbb{R}^K : \forall j \neq k, |x_k| > |x_j| \right\}$$

- $P[x \in C_k] = \frac{1}{K}$
- $x_k \mid \mathbf{x} \in \mathcal{C}_k$ (di-gamma)
- $\mathbf{x}_{\backslash k} \mid x_k$; $\mathbf{x} \in \mathcal{C}_n$ (uniforme)
- $\mathbf{x}_{\setminus k} \mid \mathbf{x} \in \mathcal{C}_k$ (democratique...)

Échantillonneur exacte

$$p(\mathbf{x}) = \sum_{k=1}^{K} \left[\prod_{j \neq n} p(x_j | x_k, \mathbf{x} \in C_k) \right] p(x_k | \mathbf{x} \in C_k) P[\mathbf{x} \in C_k]$$

Entrées : λ , K

- % Indice de la composante dominante
- I. Tirer k_{dom} uniformément sur $\{1 ... K\}$;
- % Valeur de la composante dominante
- 2. Tirer $x_{k_{\text{dom}}}$ selon une loi Gamma symétrisée;
- % Valeurs des composantes non dominantens

pour $j \leftarrow 1$ à K $(j \neq k_{dom})$ faire

3. Tirer x_j uniformément sur $[-x_{k_{\text{dom}}}, +x_{k_{\text{dom}}}]$;

fin

Output:
$$\mathbf{x} = [x_1, ..., x_K]^T \sim \mathcal{D}_K(\lambda)$$

Composante par composante : Gibbs

 $\mathsf{Rappel}: \qquad \mathsf{p}\big(x_k \mid \mathbf{x}_{\setminus k}\big) \propto c_1 \mathbf{1}_{\mathcal{I}_{2k}}(x_k) + c_2 e^{-\lambda \big(|x_k| - \big\|\mathbf{x}_{\setminus k}\big\|_{\infty}\big)} \mathbf{1}_{\mathbb{R} \setminus \mathcal{I}_{2k}}(x_k)$

Posterior distribution in a linear inverse model

$$x_k | \mathbf{x}_{\setminus k}, \mu, \sigma^2, \mathbf{y} \sim \sum_{i=1}^{3} \omega_{ik} \mathcal{N}_{\mathcal{I}_{ik}} \left(\mu_{ik}, s_k^2 \right)$$

$$\mathcal{I}_{1n} = \left(-\infty, -\left\|\mathbf{x}_{\setminus k}\right\|_{\infty}\right)$$

$$\mathcal{I}_{2n} = \left(-\left\|\mathbf{x}_{\setminus k}\right\|_{\infty}, \left\|\mathbf{x}_{\setminus k}\right\|_{\infty}\right)$$

$$\mathcal{I}_{3n} = \left(\left\|\mathbf{x}_{\setminus k}\right\|_{\infty}, +\infty\right)$$

Nécessité d'une méthode plus efficace

Gibbs \Rightarrow mélange de la chaîne lent

- Combinatoire $\rightarrow 3^K$
- Échantillonnage

- Multimodale
- Modes étroits

P-MALA en pratique

I. Descente de gradient généralisée

$$\mathbf{x}^{(t+1/2)} = \operatorname{prox}_{\delta \lambda g_0/2} \left(\mathbf{x}^{(t)} + \delta
abla f_1(\mathbf{x}^{(t)})
ight)$$

où δ est ajusté pour atteindre 40-60% d'acceptation

$$\mathsf{prox}_{\delta\lambda\|\cdot\|_{\infty}}(\mathbf{x}) = \mathbf{x} - \delta\lambda \Pi_{\mathbf{u},\|\mathbf{u}\|_{1} \leq 1}(\mathbf{x})$$

Calcule de $\Pi_{\mathbf{u},\|\mathbf{u}\|_1 \leq 1}$:

Condat (2015)

2. Faire un pas de marche aléatoire

$$\mathbf{x}^* \sim \mathcal{N}\left(\mathbf{x}^{(t+1/2)}, \delta I_N\right)$$

3. Metropolis Hastings

 $x(t+1) = x^*$ avec proba

PAPR reduction

PAPR reduction

PAPR reduction

Vers un processus stochastique

• Processus démocratique?

$$orall oldsymbol{y} \in \mathbb{R}_+^K, \quad \mathsf{p}ig(oldsymbol{y}ig) = rac{\gamma^{K-1}}{K \left\|oldsymbol{y}
ight\|_{\infty}^{K\gamma}} \prod_{\ell=1}^K y_\ell^{\gamma-1} \,\, (oldsymbol{y}) \, \mathbb{1}_\Delta(oldsymbol{y})$$

mais pas de propriété d'additivité

$$\mathbf{x}_{\setminus k} | \mathbf{x} \in \mathcal{C}_k \sim \mathcal{D}(\lambda)$$

Processus bêta démocratique - Bernoulli?

Algorithme

fin


```
pour chaque itération t faire
    pour n \leftarrow 1 à N faire
         // K est fixé
            Échantillonner directions (z_{k,n})_k \sim \text{Bernoulli};
         // K varie
            ajouter / supprimer directions \sim von Mises Fischer;
    fin
    // K est fixé
    pour chaque direction active k faire
            Échantillonner le facteur d'échelle \delta_k \sim lois Inverse
          Gamma translatée:
           \mathbf{p}_k | \mathbf{P}_{\setminus k} \sim \text{Bingham};
    fin
       Échantillonner \sigma^2, \alpha \sim lois conjuguées;
```

Mise à jour des directions pertinentes

Échantillonnage : Hoff (2009)

Mise à jour de K & exploration de l'espace

- 1. Nouveau nombre de singletons $\kappa^* \sim \mathcal{P}(\alpha)$
- 2. Nouvelles directions $P_{\text{new}} | \kappa^* \stackrel{d}{\sim} q = \text{von Mises Fischer}$

$$\mathsf{q}\left(\mathbf{P}_{\mathsf{new}};\mathbf{A}\right) \propto \mathsf{exp}\left(-\sum_{k=1}^{\kappa^*} \mathbf{p}_{\mathsf{new},k}^{\mathsf{T}} \mathbf{a}_k\right)$$

3. Metropolis Hastings

Inconsistance avec un modèle génératif

Si
$$m{y} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$
 p $\left[K_N = 0 | m{y}_1 \dots m{y}_N, \frac{\alpha}{\alpha}, \sigma^2 \right] \overset{p.s.}{\underset{N \to +\infty}{\longrightarrow}} 0$

Échantillonnage de Z

Échantillonnage de Z

Ajouter de nouveaux atomes

Metropolis-Hastings pour les singletons

Knowles & Ghahramani (2011)

Échantillonnage de Z

Complexité

Par itération, sans optimisation

- σ^2 KND
- δ_k^2 $K \times ND$
- α $\mathcal{O}(1)$
- $P K \times D^3 + NK^2D^2$ (1 SVD + mise à jour)
- Z $\underbrace{NKD}_{actif} + \underbrace{MK^3 + N(D K)D^2}_{singletons}$ (1 SVD + mise à jour)

⇒ Le + cher : chercher l'orthogonal des composantes pertinentes

Algorithme

fin


```
pour chaque itération t faire
    pour n \leftarrow 1 à N faire
         // K est fixé
            Échantillonner directions (z_{k,n})_k \sim \text{Bernoulli};
         // K varie
            ajouter / supprimer directions \sim von Mises Fischer;
    fin
    // K est fixé
    pour chaque direction active k faire
            Échantillonner le facteur d'échelle \delta_k \sim lois Inverse
          Gamma translatée:
           \mathbf{p}_k | \mathbf{P}_{\setminus k} \sim \text{Bingham};
    fin
       Échantillonner \sigma^2, \alpha \sim lois conjuguées;
```

Résultat d'inconsistance : commentaires

$$\text{Preuve}: \begin{cases} \lim\limits_{N \to +\infty} \frac{1}{N} \max\limits_{\mathbf{Z}} \max\limits_{\mathbf{Z}' \simeq \mathbf{Z}} \frac{\Pr[\mathbf{Z}|\alpha]}{\Pr[\mathbf{Z}'|\alpha]} < +\infty & \text{(1)} \\ \\ \forall (\mathbf{Z}, \mathbf{Z}') \ \mathbf{Z}' \simeq \mathbf{Z}, \quad p\left(\mathbf{Y}|\mathbf{Z}\right) \leq \kappa p\left(\mathbf{Y}|\mathbf{Z}'\right) & \text{(2)} \end{cases}$$

où
$$\mathbf{Z} \simeq \mathbf{Z}' \implies \mathbf{Z}' = \mathbf{Z} + \text{colonne}$$
 avec un seul 1

- (I) → propriété de l'IBP à 2 paramètres
- (2) → propriété du modèle

⇒ résultat plus général

Constance de l'estimateur \widehat{K}_{KS}

A posteriori

$$p(\widetilde{\mathbf{P}}|\mathbf{H},...) \propto exp\left(\widetilde{\mathbf{P}}^T\mathbf{N}^T(parcimonie \times \mathbf{YY}^T)\mathbf{N}\widetilde{\mathbf{P}}\right)$$

et

$$\frac{1}{N} \mathbf{N}^T \mathbf{Y} \mathbf{Y}^T \mathbf{N} \xrightarrow[N \to +\infty]{} \sigma^2 \mathbb{I}_{D-K}$$

⇒ loi uniforme

Construction de l'IBP

P.P.P à valeurs dans masse × paramètres

Construction de l'IBP

Mesure intensité du processus Bêta

$$\mu_{\beta}(dw, d\theta) = \alpha w^{-1}(1 - \omega^{-1})dw G_0(d\theta)$$

⇒ calcul d'intégrales

$$\#$$
points dans $W imes O = \int_{W imes O} \mu_{eta}(\mathsf{d} w, \mathsf{d} heta)$

En particulier

total points =
$$\mu_{\beta}([0, 1], \Theta) = +\infty$$

 \implies L'IBP favorise une infinité de paramètre cf. $\alpha \log(K)$

IBP à trois paramètres

Mesure intensité

$$\widetilde{\mu}_{eta}(\mathsf{d}w,\mathsf{d} heta) = lpha rac{\Gamma(1+c)}{\Gamma(1-\sigma)\Gamma(c+\sigma)} w^{-\sigma-1} (1-\omega^{c+\sigma-1}) \mathsf{d}w \ G_0(\mathsf{d} heta)$$

• $\sigma > 0$ loi de puissance

Teh and Gorur, 2009

• $\sigma < 0$ non encore étudié et

$$\widetilde{\mu}_{\beta}$$
 ([0, 1], Θ) $< +\infty$

Good news?

Application 2 : Couplage avec un séparateur linéaire

$$oldsymbol{x}_n \sim \pi_1 \mathcal{N}(oldsymbol{\mu}_1, oldsymbol{\delta}_1^2 \sigma^2) + (1 - \pi_1) \mathcal{N}(oldsymbol{\mu}_2, oldsymbol{\delta}_2^2 \sigma^2)$$

Modèle BNP-PCA

$$e_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$$
, bruit additif gaussien

$$\mathbf{P} = [\mathbf{p_1} \dots \mathbf{p_K}, \mathbf{p_{K+1}} \dots \mathbf{p_D}], \, \mathbf{P^t} \mathbf{P} = \mathbf{I_D}, \, \text{et } \mathbf{P} \sim \mathcal{U_{O_D}}$$

$$\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_N] \sim \mathsf{IBP}(\alpha)$$
 matrice binaire $\rightarrow K$

$$\mathbf{x}_n = [\mathbf{x}_{n,1} \dots \mathbf{x}_{n,K}] \ \forall \mathbf{k}, \ \mathbf{x}_{n,k} \sim \mathcal{N}(0, \delta_k^2 \sigma^2)$$

$$\theta = \{\delta^2, \sigma^2, \alpha\}$$
 loi conjuguée vague

Application 2 : Couplage avec un séparateur linéaire

$$oldsymbol{x}_n \sim \pi_1 \mathcal{N}(oldsymbol{\mu_1}, oldsymbol{\delta_1^2} \sigma^2) + (1 - \pi_1) \mathcal{N}(oldsymbol{\mu_2}, oldsymbol{\delta_2^2} \sigma^2)$$

2 chiffres (6 et 7) de MNIST

