EEL7052-Sistemas Lineares

Prova de Recuperação - Semestre 2015/2 - 10/12/2015 Departamento de Engenharia Elétrica e Eletrônica – UFSC Profs. Bartolomeu Uchôa Filho e Márcio Holsbach Costa

1 –Seja h(t) a resposta ao impulso de um determinado sistema linear e invariante no tempo:

- a) O sistema é causal ? (justifique)
- b) O sistema possui memória ? (justifique)
- c) O sistema é BIBO estável ? (justifique)
- d) Determine h(-2t+3) (apresente os cálculos)
- e) Determine a saída do sistema para x(t)=u(t)-u(t-2)
- 2 Seja um sistema causal linear e invariante no tempo descrito por

$$H(s) = \frac{900(s+30)e^{-10s}}{(s^2+600s+90000)(s+3000)}$$

- a) O Sistema é BIBO estável ? (justifique)
- b) Determine a resposta ao impulso
- c) Determine as equações de módulo e fase para o cálculo da resposta em frequência
- d) Apresente as assíntotas do módulo do diagrama de Bode
- 3 Seja o sistema linear e invariante no tempo descrito por:

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 2y(t) = x(t)$$

 a) Determine a equação de diferenças associada para sua implementação na forma discreta, assumindo um período de amostragem T_{amos}=1s.

Obs.: Caso não consiga resolver este item utilize y[n]=(1/8)y[n-1]+y[n-2]+x[n] para as demais questões.

- b) Determine a função de transferência do sistema discreto.
- c) O sistema discreto é BIBO estável?

Transformadas

Transformada de Laplace	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$	$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s)e^{st} ds$
Série de Fourier em tempo contínuo	$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t)$ $+ \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$	$a_0 = \frac{1}{T_o} \int_{T_o} x(t)dt$ $a_n = \frac{2}{T_o} \int_{T_o} x(t) \cos(n\omega_o t)dt$ $b_n = \frac{2}{T_o} \int_{T_o} x(t) \sin(n\omega_o t)dt$
	$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{jn\omega_o t}$	$D_n = \frac{1}{T_o} \int_{T_o} x(t) e^{-jn\omega_o t} dt$
Transformada de Fourier em tempo contínuo	$x_{T_o}(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_o t}$	$D_{n} = \frac{1}{T_{o}} \int_{-T_{o}/2}^{T_{o}/2} x_{T_{o}}(t) e^{-jn\omega_{o}t} dt$
Série de Fourier em tempo discreto (Ω _o =2π/N _o)	$x[n] = \sum_{r=0}^{N-1} D_r e^{jr\Omega_o n}$	$D_{r} = \frac{1}{N_{o}} \sum_{n=0}^{N_{o}-1} x[n] e^{-jr\Omega_{o}n}$
Transformada de Fourier em tempo discreto	$x_{N_o}[n] = \sum_{r=\langle N_o \rangle} D_r e^{jr\Omega_o n}$	$D_r = \frac{1}{N_o} \sum_{n = -\infty}^{\infty} x[n] e^{-jr\Omega_o n}$
Transformada z	$X[z] = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$	$x[n] = \frac{1}{2\pi j} \oint X[z] z^{n-1} dz$

$$\int e^{ax} dx = \frac{e^{ax}}{a}$$

$$\int xe^{ax} dx = \frac{e^{ax}}{a} \left(x - \frac{1}{a}\right)$$

$$\int sen(ax) dx = -\frac{1}{a} cos(ax)$$

$$\int cos(ax) dx = \frac{1}{a} sen(ax)$$

$$\int x \cdot sen(ax) dx = \frac{1}{a^2} [sen(ax) - ax cos(ax)]$$

$$\int x \cdot cos(ax) dx = \frac{1}{a^2} [cos(ax) + ax sen(ax)]$$

$$\int e^{ax} \cdot sen(bx) dx = \frac{e^{ax} [a sen(bx) - b cos(bx)]}{a^2 + b^2}$$

$$\int e^{ax} \cdot cos(bx) dx = \frac{e^{ax} [a cos(bx) + b sen(bx)]}{a^2 + b^2}$$

$$\int sen(ax) dx = \frac{a^u}{1n(u)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int sen(ax) dx = \frac{-cos([p - q]x)}{2(p - q)}$$

$$\int$$

$$\frac{dy(t)}{dt} = \lim_{\Delta t \to 0} \frac{y(t) - y(t - \Delta t)}{\Delta t}$$

FORMULÁRIO

Transformada z e propr<u>iedades</u>

	1 i diajoi i
X(n)	X(z)
δ(n-m)	z ^{-m}
u(n)	z/(z-1)
- ' '	
n.u(n)	z/(z-1) ²
n².u(n)	z(z+1)/(z-1) ³
$\gamma^n u(n)$	z/z-γ
$\gamma^{n-1}u(n-1)$	1/z-γ
n.γ ⁿ u(n)	γ z/(z-γ) ²
$ \gamma ^n \cos(\beta n).u(n)$	$z(z- \gamma \cos(\beta))$.
	z^2 -(2 γ cos(β))z+ γ ²
$ \gamma ^n$ sen(β n).u(n)	$z y sen(\beta)$.
	$z^2-(2 \gamma \cos(\beta))z+ \gamma ^2$

Domínio do tempo	Domínio de z
x(n)	∞
	$X(z)=\sum x(n) z^{-n}$
	n=-∞
x(n-m)	z ^{-m} X(z)
∞	
$x_1(n) * x_2(n) = \sum x_1(m)x_2(n-m)$	$X_1(z).X_2(z)$
m=-∞	
Transf. z unilateral:	
x(n)	∞
	$X(z)=\sum x(n) z^{-n}$
	n=0
x(n-1)	$z^{-1} X(z) + x(-1)$
x(n-2)	$z^{-2} X(z) + z^{-1}x(-1) + x(-2)$

Pares de transformadas de Fourier

x(t)	Χ(jω)
$\delta(t)$	1
1	2πδ(ω)
u(t)	$\pi\delta(\omega)$ + 1/(j ω)
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$sen(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
ret(t/τ)	τ.sinc(ωτ/2)
(W/π) .sinc(Wt)	ret(ω/2W)
e ^{-at} u(t), a>0	1/(a+jω)
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0), \omega_0 = \frac{1}{2}$

Propriedades da transformada de Fourier

x(t)	Χ(jω)
y(t)	Υ(jω)
a.x(t)+b.y(t)	a.X(jω)+ b.Y(jω)
x(t-τ)	e- ^{jωτ} .X(jω)
e ^{jWt} .x(t)	X(j(ω-W))
x*(t)	X*(-jω)
x(at)	$\frac{1}{ a } X \left(\frac{\boldsymbol{\omega}}{a} \right)$
x(t)*y(t)	Χ(jω).Υ(jω)
x(t).y(t)	$(1/2\pi).X(j\omega)*Y(j\omega)$
$\frac{d}{dt}x(t)$	jω.X(jω)
$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$

Transformada de Laplace

f(t)	F(s)
$\delta(t)$	1
u(t)	1/s
t.u(t)	1/s ²
e ^{-at} u(t)	1/s+a, RC: Re{s} ≥ -a
-e ^{-at} u(-t)	1/s+a, RC: Re{s} ≤ -a
sen(bt)u(t)	b/s ² +b ²
cos(bt)u(t)	s/s ² +b ²
$r.e^{-at}\cos(bt+\theta).u(t)$	$0,5re^{j\theta}$
	s + a - jb
	$0.5re^{-j\theta}$
	$+\frac{1}{s+a+jb}$
$t^n e^{-\alpha t} u(t)$	$n!/(s+\alpha)^{n+1}$

Domínio do tempo	Domínio de s
f(t)	F(s)
df(t)	sF(s) - f(0 ⁻)
dt	
<u>d²f(t)</u>	$s^2F(s) - sf(0^-) - df(0^-)$
dt ²	dt
e ^{-at} f(t)	F(s+a)
$f_1(t)*f_2(t)$	$F_1(s).F_2(s)$
f(t-a)u(t-a), a≥0	e ^{-as} F(s)
f(at)	1/a. F(s/a)
t.f(t)	<u>-dF(s)</u>
	ds