Viva Questions

General

1. What is SmartCart?

SmartCart is an e-commerce purchase prediction project designed to forecast whether a customer will make a purchase during a session.

2. What is the main goal of this project?

The goal is to analyze customer behavior data, train ML models, and deploy an application that predicts purchase likelihood, enabling data-driven business decisions.

3. Who can benefit from this system?

E-commerce platforms, digital marketers, product managers, and analysts can use it to optimize conversions and improve customer engagement.

Dataset & Features

1. What dataset was used?

The dataset contains session-level customer interaction data, including demographics, browsing behavior, and purchase outcomes.

2. What are the key features in the dataset?

Features include age, gender, location, membership status, returning customer flag, device type, time spent, pages viewed, cart items, wishlist items, and more.

3. What is the target variable?

The target variable is **purchase**, where **1** indicates a purchase and **0** indicates no purchase.

4. How was missing data handled?

Missing data was addressed during preprocessing by appropriate cleaning techniques to ensure reliable model performance.

Exploratory Data Analysis (EDA)

1. What were the key insights from EDA?

Insights included the impact of age, device type, membership, time spent, and cart/wishlist items on purchase probability.

2. Why is EDA important in this project?

EDA helps uncover trends, validate assumptions, and identify influential features before model training.

3. Which features showed the strongest correlation with purchase behavior?

Cart items, session value, and membership status showed high predictive importance.

Preprocessing & Feature Engineering

1. How were categorical variables encoded?

Categorical variables were encoded using LabelEncoder to keep dimensionality low for Random Forest models.

2. Why was StandardScaler used?

StandardScaler was applied to normalize numerical features, stabilizing model performance.

3. What feature engineering steps were applied?

Feature selection, encoding, scaling, and transformation were used to enhance model quality.

Model & Training

1. Which model was chosen?

RandomForestClassifier was selected due to its robustness and ability to handle categorical + numerical data.

2. Why Random Forest over other models?

It handles non-linear relationships, requires minimal preprocessing, and avoids overfitting compared to simpler models.

3. What evaluation metrics were used?

Metrics included precision, recall, F1-score, accuracy, confusion matrix, and ROC curve.

4. What were the classification results?

The model achieved an accuracy of ~73.8%, with good balance between precision and recall.

Results & Interpretation

1. What does the confusion matrix indicate?

It shows how well the model distinguishes between purchase vs. nonpurchase sessions, identifying both correct and incorrect predictions.

2. What does the ROC curve tell us?

The ROC curve demonstrates the model's discriminative power, with an AUC indicating strong predictive performance.

3. Which features were most important in predictions?

Cart items, session value, time spent, and membership were top contributors.

Business Impact

1. How can businesses use this model?

They can target high-potential customers with personalized offers, optimize marketing spend, and improve conversion rates.

2. What business problems does it solve?

It reduces wasted ad spend, enhances personalization, and improves customer retention strategies.

3. How reliable are the predictions in real-world settings?

The model performs reliably on test data, but real-world deployment requires continuous monitoring and retraining.

Deployment

1. How was the model deployed?

The model was deployed using **Streamlit**, allowing interactive visualization and predictions via a web interface.

2. Why Streamlit for deployment?

It's lightweight, easy to use, and ideal for rapid prototyping and cloud deployment.

3. Can this system scale to production?

Yes, with enhancements like Dockerization, CI/CD pipelines, and API integration for real-time predictions.

Tools & Technologies

1. Which technologies were used?

Python, Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn, Joblib, and Streamlit.

2. Why was Joblib used?

Joblib was used to save and load trained models and scalers efficiently.

Future Improvements

1. What are the limitations of this project?

The dataset is limited in size; class imbalance and unseen customer behavior may affect generalization.

2. What future improvements are suggested?

Future work includes hyperparameter tuning, gradient boosting models, SHAP explainability, and production-grade deployment with Docker and CI/CD.