CHAPTER 9

Database Structures

 (Large) integrated collections of data that can be accessed quickly

> Lecture prepared and delivered by Dr Syed Khaldoon Khurshid

9.1: Historical Perspective

• Originally: departments of large organizations stored all data separately in *flat files*

• Problems: redundancy & inconsistencies

9.1: Integrated Database System

- Better approach: integrate all data in a single system, to be accessed by all departments.
 - Schema and Subschema

Example:

University student and faculty records

b. Database-oriented information system

9.1: Disadvantages of Data Integration

- Control of access to sensitive data?
- Misinterpretation of integrated data?

– What about the **right** to hold/collect/interpret data?

File System

- Database is evolved from the File Systems.
- Understand the characteristics of the file system.
- Data management limitations by File system.
- Eliminations of the short comings of the file system by DBMS.

Basic Definitions

- Data: raw facts
 - Not processed yet to reveal their meaning
 - Constitute building blocks of information
 - For Examples:
 - Online Surveys
 - Online Data Entry Forms
 - Excel Sheets
 - Reports Forms
- Record keeping with the raw facts
 - Example: Students
 - » Pass 90%
 - » Fail 10 %
 - » Quick Answers

- Information: is produced by processing data and reveals meaning of data
 - Good, timely, relevant information key to decision making
 - Good decision making key to organizational survival
 - Example: Informed decisions to meet student grading record
 - Raw data: Storage, Processing and presentation
- Complex formatting: is required when working with complex data types such as sounds, videos 'or' images.

- Knowledge: the body of the information and facts about a specific subjects
- New Knowledge can be derived from Old Knowledge.

- Data Management is a discipline that focuses on the proper generation, storage and retrieval of data.
- Efficient Data Management requires computer DB.

- Database: shared, integrated computer structure housing:
 - End user data
 - Metadata
- Metadata provides a description of the data characteristics and set of relationships that link the data within the Database.
 - Structural metadata is data about the containers of data.
 - Descriptive metadata uses individual instances of application data or the data content.

An Example

Converting data to information

Class Roster

Course: MGT 500 Semester: Spring 200X

Business Policy

Section: 2

Name	ID	Major	GPA
Baker, Kenneth D.	324917628	MGT	2.9
Doyle, Joan E.	476193248	MKT	3.4
Finkle, Clive R.	548429344	PRM	2.8
Lewis, John C.	551742186	MGT	3.7
McFerran, Debra R.	409723145	IS	2.9
Sisneros, Michael	392416582	ACCT	3.3

An Example (Cont'd)

Metadata

Data Item		Value					
Name Type		Length	Min	Max	Description		
Course	Alphanumeric	30			Course ID and name		
Section	Integer	1	1	9	Section number		
Semester	Alphanumeric	10			Semester and year		
Name	Alphanumeric	30			Student name		
ID	Integer	9			Student ID (SSN)		
Major	Alphanumeric	4			Student major		
GPA	Decimal	3	0.0	4.0	Student grade point average		

What is a Database Management System (DBMS)

- A collection of programs that manages the database structure and controls access to the data stored in the database
 - Possible to share data among multiple applications or users
 - Example: bank and its ATM machines
 - Makes data management more efficient and effective
 - End users have better access to more and better-managed data
- DBMS hides much of the database's internal complexity from application program and End user

DBMS Manages Interaction

Advantages of the DBMS

- Improved data sharing
 - Shared among users and applications
- Better Data Integration
 - Different User's views into single data Repository
 - Repository: can be a place where multiple DBs or files are located for distribution over the network.
- Minimized Data inconsistency
 - Different versions of the same data.
 - Example: Product ID and Product Number in different departments

Advantages of the DBMS

- Improved Data access
 - Quick answers to the ad hoc queries
 - Query is a complete question: a specific request for data manipulation (read or update data)
 - DBMS sends back an Answer (Query result set) to the application
- Improved Decision Making
 - Better managed data and improved data access ->to better quality information ->better decisions
- Increased End User Productivity

Types of the Databases

- Single User Database: Runs on a personal Computer
- Multiuser Database: less than 50 workgroup DB, more than 50 Enterprise DB
- Location wise:
 - Single site: Centralized DB
 - Several sites: Distributed DB
- Function wise:
 Operational/transactional/production
 - Time Sensitive information gathered
 - Support a company 's day to day operations

9.2: Conceptual Database Layers

9.3: The Relational Model

Relational Model

shows data as being stored in rectangular tables,
 called *relations*, e.g.:

Empl Id	Name	Address	SSN
25X15 34Y70 23Y34 •	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr. •	111223333 999009999 111005555

- row in a relation is called 'tuple'
- column in a relation is called 'attribute'

9.3: Issues of Relational Design

- So, *relations* make up a relational database...
- ... but this is not so straightforward:

Empl Id	Name	Address	SSN	Job Id	JobTitle S	Skill Cod	e Dept	Start Date	Term Date
25X15	Joe E. Baker	33 Nowhere St.	111223333	F5	Floor	FM3	Sales	9-1-2001	9-30-2002
25X15	Joe E. Baker	33 Nowhere St.	111223333	D7	Dept.	K2	Sales	10-1-2002	*
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999	F5	Floor manager	FM3	Sales	10-1-2001	*
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25X	Secretary	15	Personnel	3-1-1999	4-30-2001
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25Z	Secretary	Т6	Accounting	5-1-2001	*
	•		•	•			•		•

• Problem: more than one concept combined in single relation

9.3: Redesign by extraction of 3 concepts

EMPLOYEE relation

ame Ac	ldress SSN
H. Clark 563 Dow	where St. vntown Ave. Circle Dr. 111223333 999009999 111005555
•	•
	. Baker 33 Nov H. Clark 563 Dow

JOB relation

Job ld	JobTitle	Skill Code	Dept
S25X S26Z F5	Secretary Secretary Floor manager	T5 T6 FM3	Personnel Accounting Sales
•	•	•	•
•	•	•	•
•	•	•	•

ASSIGNMENT relation

Empl ld	Job ld	Start Date	Term Date
23Y34 34Y70 25X15	S25X F5 S26Z	3-1-1999 10-1-2001 5-1-2001	4-30-2001 * *
•	•	•	•
•	•	•	•
•	•	•	•

Any information obtained

Any information information

by combining informations

from multiple relations

9.3: Example:

• Finding all departments in which employee 23Y34 has worked:

9.3: Relational Operations

- Extracting information from a relational database by way of *relational operations*
 - Most important ones:
 - (1) extract tuples (rows) : SELECT
 - (2) extract attributes (columns) : PROJECT
 - (3) combine relations : JOIN
- Such operations on relations produce other relations
 - so: they can be used in combination, to create complex database requests (or 'queries')

9.3: The SELECT operation

9.3: The JOIN operation

JOB relation **ASSIGNMENT** relation Empl Id Job Id Start Date Term Date Job Id **JobTitle** Skill Code Dept S25X 23Y34 3-1-1999 4-30-2001 S25X **T5** Personnel Secretary 34Y70 S26Z Secretary T6 F5 10-1-2001 Accounting 25X15 S26Z 5-1-2001 F5 Floor manager FM3 Sales NEW1 ← JOIN ASSIGNMENT and JOB where ASSIGNMENT. Jobid = JOB.Jobid **NEW1** relation ASSIGNMENT ASSIGNMENT ASSIGNMENT **ASSIGNMENT JOB** JOB **JOB JOB** Empl Id Job Id StartDate TermDate Job Id JobTitle SkillCode Dept 23Y34 S25X 3-1-1999 4-30-2001 S25X T5 Personnel Secretary 34Y70 F5 10-1-2001 F5 Floor manager FM3 Sales 25X15 S26Z 5-1-2001 S26Z Secretary T6 Accounting

Chapter 9 - Database Structures: Conclusions

- Database Structures:
 - (large) integrated collections of data that can be accessed quickly
- Database Management System
 - provides high-level view of actual data storage (database model)
- Relational Model most often used
 - relational operations: select, project, join, ...
 - high-level language for database access: SQL

Data Science Relation

(with Example)

Decision Tree - Classification

- Data Science > Predicting the Future > Modeling > Classification > Decision Tree
- Decision tree builds classification or regression models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes.
- A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a classification or decision. The topmost decision node in a tree which corresponds to the best predictor called **root node**. Decision trees can handle both categorical and numerical data.

	Pre	edictors		Target					
								Dec	ision Tre
Outlook	Temp.	Humidity	Windy	Play Golf			Outlook		
Rainy	Hot	High	Falce	No			\Box		
Rainy	Hot	High	True	No					Ц,
Overoacť	Hot	High	Falce	Yes		Sunny	Overcast	Ra	iny
8unny	Mild	High	Falce	Yes			Overcast		,
8unny	Cool	Normal	Falce	Yes			\top		
Sunny	Cool	Normal	True	No					
Overoast	Cool	Normal	True	Yes		Vindy	Yes	Hun	nidity
Rainy	Mild	High	Falce	No	7 5				
Rainy	Cool	Normal	Falce	Yes					
8unny	MIId	Normal	Falce	Yes	FALSE	TRUE		High	Norm
Rainy	MIId	Normal	True	Yes					4
Overoacť	MIId	High	True	Yes				\bot	\perp
Overoact	Hot	Normal	Falce	Yes	Yes	No		No	Yes
8unny	Mild	High	True	No	100			110	

Decision Tree to Decision Rules

A decision tree can easily be transformed to a set of rules by mapping from the root node to the leaf nodes one by one.

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No R₃: IF (Outlook=Overcast) THEN Play=Yes R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No. R_s: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

