DataVizA Tutorial: Data Munging

Department of Econometrics and Business Statistics, Monash University

Tutorial 5

Swiss Exports: Full Data

The file SwissExportsFull.csv contains the full export data for Switzerland. Each row represents a different date. The first column is the date variable, the second column is the year only and each remaining column measures exports to a different country.

- 1. Read the data into R.
- 2. Get the data into long form using the pivot_longer function.
- 3. Using group_by and summarise create a new dataset of yearly aggregate exports to each country.
- 4. Now produce a scatterplot on a log-log scale of 1988 exports against 2018 exports.
- 5. Produce the same plot but remove all countries for which exports are zero in either 1988 or 2018.

Options data

The following example uses Options data from Yahoo Finance. The owner of an put option has the right (but not the obligation) to sell stocks at a predetermined price (the Strike Price) on some fixed date (the Expiry date). A call option is the same but gives the owner the right to buy stocks.

The objective of this exercise is to produce the well-known *volatility smile* result from finance. This result states that for a given Expiry date, a plot of Implied Volatilty against Strike Price is U-shaped. Implied Volatilty is the volatilty of a stock that is computed from stock option data assuming a specific pricing model. The exercise uses the data apple_options.csv which can be found on Moodle.

- 1. Read the data from this csv file into R.
- 2. The Implied Volatility has been imported as a character variable. To plot this it must be converted to a numeric variable. Create this using the mutate function.

Hint: The following code removes the percentage sign, converts to numeric and divides by 100.

```
gsub('%','','25%')%>%as.numeric()/100

## [1] 0.25

gsub('%','','1.32%')%>%as.numeric()/100
```

[1] 0.0132

- 3. The volatility smile is best observed when options with a single expiry date are used. To use as much data as possible, find the expiry date that has the most put options.
- 4. Options that are very far *out of the money* (very low strike price for a put option) should be excluded from the analysis. Building on previous answers, construct a data frame that only keeps put options from the expiry date in your answer to Question 3, and that have a strike price above 250.

- 5. Using the data constructed in Q4, find the median value of Implied Volatility for each Strike Price.
- 6. Plot Implied Volatility against Strike Price using a line plot.

Web scraping

The options data were obtained using web scraping, the following exercise helps you to scrape data for a single strike price. Go to this link and then click on the first strike price. Scrape the data that you find after clicking on a strike price.

First Normal Form

Discuss whether the following databases satisfy first normal form.

Database A:

Name	Social Media Username
Jane Smith	Facebook: jsChampion
Kamal Usman	Twitter: kusman, LinkedIn: ku87
Li Xiao	WeChat: lx99

Database B:

Name	Social Media Username
Jane Smith	Facebook: jsChampion
Kamal Usman	Twitter: kusman
Kamal Usman	LinkedIn: ku87
Li Xiao	WeChat: lx99