Midterm Review

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Let $A, B \in {}^{n \times n}$. For each the following subset of n below, say whether it is a subspace of n and justify your answer:

- **2** $E_2 = \{x \in ^n \mid Ax = Bx\}.$
- **4** $E_4 = \{x \in A \mid Ax \in (e_1)\}.$

True or False: There exists matrices $M \in \mathbb{R}^{2 \times 3}$ such that $\dim((M)) = 1$ and (M) = 2.

Let n > m and $A \in {}^{n \times m}$. Assume that A has "full rank", meaning that $(A) = \min(n, m) = m$.

- Does Ax = b has a solution for all $b \in {}^{n}$? (Prove or give a counter example)
- ② Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Let n < m and $A \in {}^{n \times m}$. Assume that A has "full rank", meaning that $(A) = \min(n, m) = n$.

- Does Ax = b has a solution for all $b \in {}^{n}$? (Prove or give a counter example)
- ② Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

True or False: There exists a family of k non-zero orthogonal vectors of n, for some k > n.

Let $A \in {}^{n \times m}$.

- Prove that (A) and $\Im(A)$ are orthogonal to each other, i.e. that for all $x \in (A)$ and $y \in \Im(A)$ we have $x \perp y$.
- **2** Show that $(A) = \Im(A)^{\perp}$.

True or False: The matrix of an orthogonal projection is symmetric.

True or False: The matrix of an orthogonal projection is orthogonal.

Let S be a subspace of n and let P_S be the orthogonal projection onto S. Show that $\dim(S) = (P_S)$.

True or False: Let $A, B \in {}^{n \times n}$. Assume that $v \in {}^{n}$ is an eigenvector of A and B.

- Is v an eigenvector of A + B?
- ② Is v an eigenvector of AB ?

Let $A \in {}^{n \times n}$ and let $v_1, v_2 \in {}^n$ be two eigenvectors of A, associated with the same eigenvalue λ .

Show that any non-zero eigenvector in (v_1, v_2) is an eigenvector of A, associated with λ .

Let $A \in {}^{n \times n}$ be a symmetric matrix. Let (v_1, v_2, \ldots, v_n) be an orthonormal family of eigenvectors of A, associated to the eigenvalues $\lambda_1, \ldots, \lambda_n$. Give an orthonormal basis of (A) and $\Im(A)$ in terms of the v_i 's.

Let $A \in {}^{n \times n}$ be a symmetric matrix, that satisfies $A^2 =$. Show that the matrix

$$M=\frac{1}{2}(A+)$$

is the matrix of an orthogonal projection.

Let
$$\rho \in (0,1)$$
. Let $v_1, \ldots, v_k \in {}^n$ such that

$$\|v_i\|=1$$
 and $\langle v_i,v_j\rangle=
ho$ for all $i
eq j$.

Show that $k \leq n$.