Topics

- 1. Introduction
- 2. Facility location
- 3. Freight transport
 - Exam 1 (take home)
- 4. Network models
- 5. Routing
 - Exam 2 (take home)
- 6. Warehousing
 - Final exam (in class)

Routing Alternatives

TSP

- Problem: find connected sequence through all nodes of a graph that minimizes total arc cost
 - Subroutine in most vehicle routing problems
 - Node sequence can represent a route only if all pickups and/or deliveries occur at a single node (depot)

Node sequence = permutation + start node

1 2 3 4 5 6 1

$$n = 6 \Rightarrow (n-1)! = 120$$
 possible solutions

TSP

- TSP can be solved by a mix of construction and improvement procedures
 - BIP formulation has an exponential number of constraints to eliminate subtours (⇒ column generation techniques)
- Asymmetric: only best-known solutions for large n

$$(n-1)!$$
 $n=13 \Rightarrow \approx \frac{1}{2}$ billion solutions

Symmetric: solved to optimal using BIP

$$c_{ij} = c_{ji} \Rightarrow \frac{(n-1)!}{2}$$
 solutions

• Euclidean: arcs costs = distance between nodes

TSP Construction

 Construction easy since any permutation is feasible and can then be improved

Spacefilling Curve

Sequence determined by sorting position along 1-D line covering 2-D space

2: 0.021 3: 0.154 1: 0.471 4: 0.783

Two-Opt Improvement

Sequences considered at end to verify local optimum: n nodes $\Rightarrow \sum_{j=3}^{n-1} (1) + \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} (1) = \frac{n(n-3)}{2} = 9$ for n = 6

Example: Two-Opt Improvement

Order in which twoopt considers each sequence:

```
38
                    39
 3:
   1 4 3 2 5 6 1 32
   1 3 4 2 5 6 1 31
   1 4 3 2 5 6 1 32
 6: 1 2 4 3 5 6 1 31
   1 5 2 4 3 6 1 21
7:
      2 5 4 3 6 1 21
8:
 9:
      4 2 5 3 6 1
                   32
   1 3 4 2 5 6 1
10:
                   31
   1 5 4 2 3 6 1 12
11:
12:
                    34
      2 4 5 3 6 1 40
13:
14:
      3 2 4 5 6 1 39
15:
             3 6 1 21
16:
      5 3 2 4 6 1 30
17:
      5 6 3 2 4 1 31
18:
      5 4 3 2 6 1 13
19:
   1 5 4 6 3 2 1 18
                   20
20:
```

D:	1	2	3	4	5	6	
-:- 1.		 8	 6	 9	 1	 5	
2:	3	0	1	5	4	2	
3:	9	2	0	3	1	1	
4:	8	2	1	0	10	6	
5:	6	7	10	1	0	10	
6:	6	2	5	2	1	0	
Note: Not symmetric							

Local optimal sequence

Sequences considered at end to verify

local optimum: n nodes \Rightarrow

$$\sum_{j=3}^{n-1} (1) + \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} (1) = \frac{n(n-3)}{2} = 9 \text{ for } n = 6$$

TSP Comparison

	TSP Procedure	Total Cost
1	Spacefilling curve	482.7110
2	1 + 2-opt	456
3	Convex hull insert + 2-opt	452
4	Nearest neighbor + 2-opt	439.6
5	Random construction + 2-opt	450, 456
6	Eil51 in TSPLIB	426* optimal