Ondes - chapitre 1

TD entraînement : Ondes progressives

I | Cuve à ondes

La figure représente la surface d'une cuve à onde éclairée en éclairage stroboscopique. L'onde est engendrée par un vibreur de fréquence $f=18\,\mathrm{Hz}$. L'image est claire là où la surface de l'eau est convexe, foncée là où elle est concave.

- 1) En mesurant sur la figure, déterminer la longueur d'onde.
- 2) En déduire la célérité de l'onde.

On suppose l'onde sinusoïdale, d'amplitude A constante et de phase initiale nulle en O.

- 3) Écrire le signal s(x,t) pour x>0 et pour x<0.
- 4) Expliquer pourquoi A n'est en fait pas constante.

II | Propriétés du son et principe du sonar

Un sonar $(SOund\ NAvigation\ and\ Ranging)$ est un dispositif de détection utilisant les ondes acoustiques comme signal détectant. Il permet aux marins de naviguer correctement (mesure de la

profondeur) ou aux sous-mariniers de repérer les obstacles et les autres navires. Certains animaux (chauve-souris, dauphins...) utilisent des systèmes similaires au sonar pour repérer leurs proies ou des obstacles.

On suppose dans cette partie que la mer est un milieu homogène dans lequel le son se propage rectilignement. À 20 °C, la vitesse du son dans l'eau de mer est $c_{\text{mer}} = 1.5 \times 10^3 \,\text{m} \cdot \text{s}^{-1}$.

L'avant d'un sous-marin est équipé d'un sonar lui permettant d'éviter d'entrer en collision avec un obstacle. Le sonar est constitué d'un émetteur d'ondes sonores et d'un récepteur capable d'identifier l'écho de l'onde précédemment émise.

On note O l'avant du sous-marin équipé du sonar et (Ox) l'axe du sous-marin, correspondant à l'axe de propagation de l'onde sonore. Un second sous-marin est à la distance L du premier, dans la configuration représentée sur la figure ci-dessous.

- 1) Quelles sont les fréquences des ultrasons? Connaissez-vous un des usages autres que dans les sonars que l'être humain peut faire des ultrasons?
- 2) Expliquer le principe de fonctionnement d'un sonar. Il est conseillé de faire un schéma.
- 3) L'émetteur produit une très brève impulsion sonore. Le récepteur en reçoit l'écho au bout d'une durée $\Delta t_e = 38,8\,\mathrm{ms}$. Exprimer la distance L à laquelle se situe le second sous-marin en fonction de Δt_e et c_{mer} ; faire l'application numérique.

À partir de l'instant t=0, le sonar émet l'impulsion sonore sinusoïdale de la figure ci-dessous, pendant une durée $\Delta t_i = 80 \, \mu s$.

- 4) Déterminer, en justifiant, la valeur numérique de la fréquence f de l'onde émise par le sonar.
 - On s'intéresse à la propagation spatiale de l'impulsion sonore.
- 5) Exprimer et calculer numériquement la longueur spatiale Δx de l'impulsion.
- 6) Reproduire sur la copie le système d'axes de la figure ci-dessous et y représenter l'impulsion sonore à l'instant $t = 12.0 \,\mathrm{ms}$; calculer numériquement, en justifiant précisément, les positions du début (ou front) de l'impulsion et de sa fin.

Un détecteur d'ondes sonores est placé sur le second sous-marin, sur l'axe (Ox).

7) Représenter sur la copie l'évolution de l'amplitude enregistrée par ce détecteur au cours du temps. Calculer numériquement, en justifiant précisément, les instants auxquels le détecteur reçoit le début et la fin de l'impulsion et on repérera ces instants sur l'axe horizontal qu'on graduera.

☆ III

Télémètre ultrasonore

On place un émetteur et un récepteur à ultrasons côte à côte. Ce bloc est appelé le télémètre. À la distance D, on place un obstacle réfléchissant les ondes sonores, que nous appellerons la cible. Une onde sinusoïdale, de période T, est émise par l'émetteur du télémètre, elle se réfléchit sur la cible et est détectée par le récepteur du télémètre. Sur l'écran d'un oscilloscope, on visualise simultanément deux signaux ; celui capté (par un dispositif non décrit) en sortie de l'émetteur et celui du récepteur.

- 1) On appelle temps de vol, noté t_v , la durée du trajet aller-retour de l'onde entre le télémètre et la cible. Exprimer t_v en fonction de la distance D séparant le télémètre de la cible et de la célérité c de l'onde.
- 2) Pour illustrer le principe de la mesure, on colle la cible au télémètre, puis on l'éloigne lentement, en comptant le nombre de coïncidences, c'est-à-dire le nombre de fois où les signaux sont en phase. Pour simplifier, on suppose que lorsque D=0, les signaux sont en phase. On se place dans le cas où l'on a compté exactement un nombre n de coïncidences. Exprimer D en fonction de n et de la longueur d'onde des ondes ultrasonores.
- 3) Lors du recul de la cible, 50 coïncidences ont été comptées avant d'observer les signaux suivants sur l'écran de l'oscilloscope (voir figure). Dans les conditions de l'expérience, la longueur d'onde des ondes sonores valait 8,5 mm. En exploitant les données de l'enregistrement, calculer la distance séparant le télémètre de la cible.
- 4) Pourquoi les deux signaux de la figure sont-ils si différents? Identifier quel est, selon toute vraisemblance, le signal capté en sortie de l'émetteur et celui reçu par le récepteur.

Lycée Pothier 3/4 MPSI3 – 2024/2025

5) Le comptage des coïncidences a été réalisé en plaçant l'oscilloscope en mode XY (c'est-à-dire une représentation telle que le signal 2 soit tracé comme une fonction du signal 1). Dans le cas des signaux de la figure, représenter la figure que l'on obtiendrait en se plaçant dans ce mode.