

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

Plan lekcji - Fizyka

Temat: Pole magnetyczne. Jego rozmiary i prawa.

Grupa docelowa: 10

Cele:

Cel.1. Modernizacja nauczania fizyki w szkole średniej.

Cel.2. Zwiększenie efektywności nauczania fizyki.

Cel.3. Rozwijanie zainteresowań uczniów fizyką.

Cel.4. Uzasadnienie potrzeby badania zjawiska indukcji elektromagnetycznej. Zastosowania tego zjawiska.

Cel.5. Połączenie obserwacji praktyczno-eksperymentalnych z pokazaniem i zdefiniowaniem pojęć charakterystycznych dla tego zjawiska.

Cel.6. Prawidłowe posługiwanie się sprzętem, za pomocą którego można doświadczalnie przedstawić zjawisko indukcji elektromagnetycznej.

Zastosowane podejście/metodologia:

Uczniowie podchodzą do czujnika Halla z różnymi magnesami i namagnesowanymi ciałami. Czujnik przekazuje dane do Arduino, które wyświetla je w komputerze, tworząc wykres w czasie rzeczywistym. Następnie uczniowie będą zmieniać natężenie prądu elektrycznego w obwodzie typu przewodnik liniowy / cewka kołowa / solenoid znajdującym się w pobliżu czujnika Halla.

Środki/narzędzia/technologia edukacyjna

magnesy trwałe, ciała metalowe, zmienne źródło napięcia, obwody, komputer z systemem Windows, Arduino UNO, płytka drukowana, kable, czujnik Hall 49E Na przykład. Kalkulatory, komputery, Internet, arkusz kalkulacyjny (np. Excel)

Plan pracy

Czas	Działania	Metody/środki
10 min	Teoretyczne podejście do tematu	Projektor / tablica
5 min	Opis konfiguracji eksperymentu.	Magnesy, przedmioty metalowe,

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

		Arduino, źródło, czujnik Halla
10 min	Wyznaczanie indukcji pola magnetycznego dla magnesów stałych i ciał namagnesowanych w funkcji odległości od czujnika Halla oraz w funkcji czasu dla ciał namagnesowanych.	Excel
10 min	Wyznaczanie zmian pola magnetycznego w zależności od natężenia prądu w obwodzie.	Analiza oprogramowania
5 min	Porównanie danych doświadczalnych z wartościami teoretycznymi.	Boardwork
5 min	Wyjaśnianie różnic.	Dyskusje z uczniami
5 min	Praca domowa - identyfikacja badanego zjawiska w życiu codziennym	

Ocena/informacje zwrotne:

Nauczyciele i uczniowie, którzy uczestniczyli w programie, rozwinęli swoje osobowości i zdobyli nową wiedzę. Uczniowie odnowili swoje zainteresowanie fizyką, głównie dzięki ćwiczeniom laboratoryjnym, a w drugiej kolejności dzięki pracom syntetycznym. Dzięki praktycznemu szkoleniu w zakresie laboratoryjnych technik STEM uczniowie nabrali pewności siebie, zwiększając współpracę między sobą i wzmacniając umiejętność pracy w zespole oraz poprawiając komunikację między nauczycielem a uczniami.

Bibliografia:

Hugh D. Young , Roger A. Freedman. Fizyka uniwersytecka z podręcznikiem Fizyka współczesna z podręcznikiem Mastering Physics