

Document image shadow removal based on Vision Transformers

21521604 Nguyen Quoc Truong

Supervisor: Ph.D Nguyen Duy Khanh

Table of contents

- Introduction
- Methods
- Experiments
- Conclusion

Introduction

Document image shadow removal

 Document image shadow removal is the process of image processing aimed at eliminating unwanted shadow regions that appear on photographs of paper documents.

 These shadows make it difficult to read and automatically process the text on the documents.

Input - Output

Motivation

Improving Readability

Enhancing OCR Accuracy

Improving Image Quality

Challenges

High Contrast

Detail Preservation

Complexity of Images

Methods

Document image shadow removal guided by Color-aware Background

- CBENet
- BGShadowNet
 - Stage I
 - Stage II
 - BAModule
 - DEModule

BGShadowNet - Stage II

Vision Transformers

- ViTs is developed based on the Transformer architecture.
- Divide the input image into fixed-size patches then flatten each into a vector.
- Patch embedding: transform the patch vectors into fixed-size embedding vectors.
- Transformer Encoder: process and learn complex features.

CBENet based on Vision Transformers

- Idea: divide images into 16x16 patches
 → calculations and training
- Replace conv layers in U-Net with ViTs Encoder layers

Proposed methods

BGShadowNet based on Vision Transformers

Stage I

- Similar to the CBENet
- Use the background features from ViTs encoder in CBENet as additional features to train Decoder.

Proposed methods

Proposed Methods

BGShadowNet based on Vision Transformers

Stage II (BAM & DEM)

Adjustments at this stage have shown ineffective results → No changes

Loss function

Background reconstruction loss

$$\mathcal{L}_{background} = \|B - \hat{B}\|$$

Appearance consistency loss

$$\mathcal{L}_{appearance} = \lambda_1 \mathcal{L}_{coarse} + \lambda_2 \mathcal{L}_{final}$$
$$= \lambda_1 ||I_{gt} - I_{coarse}|| + \lambda_2 ||I_{gt} - I_{free}||$$

Structure consistency loss

$$\mathcal{L}_{structure} = \lambda_3 ||VGG(I_{gt}) - VGG(I_{free})||^2$$

Adversarial loss

$$\mathcal{L}_{adv} = \lambda_4 \mathbb{E}_{(I,I_{free},I_{gt})} \left[\log \left(D(I_{gt}) \right) + \log (1 - D(I)) \right]$$

Experiments

RDD dataset

 4916 pairs of shadow, background and shadow_free images

• Training set: 4371

• Test set: 545

Dataset

Setting

CBE and BGS are trained separately.

• Epochs: 200

Optimizer: Adam

• Learning rate: 0.0004

• Weight parameters: λ_1 , λ_2 , λ_3 and λ_4 set to 1, 1, 0.05 and 0.01

Metrics

RMSE

$$RMSE = \sqrt{MSE}$$

PSNR

$$PSNR = 10\log_{10}\left(\frac{MAX^2}{MSE}\right)$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (I_{pred}(i) - I_{gt}(i))^{2}$$

SSIM

$$SSIM(x,y) = [l(x,y)]^{\alpha} \cdot [c(x,y)]^{\beta} \cdot [s(x,y)]^{\gamma}$$

Evaluation

Models	RMSE	PSNR	SSIM
CBENet + BGShadowNet	2.572	36.301	0.975
CBETransformer + BGSTransformer	2.477	36.624	0.977
CBETransformer + BGShadowNet	2.583	36.263	0.972
CBENet + BGSTransformer	2.639	36.077	0.968

Evaluation

Methods	RMSE	PSNR	SSIM
My method(*)	2.477	36.624	0.977
BGShadowNet(*)	2.572	36.301	0.975
BGShadowNet	2.219	37.585	0.983
BEDSR-Net	2.937	34.928	0.973
Bako	14.648	20.741	0.894
Jung 21	30.190	14.364	0.861

Conclusion

Limitation

- High Resource Demand
- Training Time
- Data Diversity
- Language and Handwriting
- Generalization

Conclusion

- Effective Shadow Removal: Significantly improves image quality over traditional methods.
- Enhanced Image Accuracy and Clarity.
- Reduces recognition errors caused by shadows.
- Global Context Handling: Efficiently captures and processes complex shadow variations.
- Automation: Minimizes human intervention, increasing efficiency and practical application.

Thank you