### Apunte Único: Álgebra Lineal Computacional - Práctica ${\bf 5}$

# Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 01/06/25 @ 17:45

### Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

| 1.         | 4.        | <b>7.</b> | 10.        | 13.        | <b>16.</b> | 19.        | <b>22</b> . |
|------------|-----------|-----------|------------|------------|------------|------------|-------------|
| <b>2</b> . | <b>5.</b> | 8.        | 11.        | 14.        | <b>17.</b> | <b>20.</b> | ??.         |
| <b>3.</b>  | <b>6.</b> | 9.        | <b>12.</b> | <b>15.</b> | 18.        | 21.        |             |

Ejercicios de Parciales

**1**.

## Esta Guía 5 que tenés se actualizó por última vez: $\frac{01/06/25 @ 17.45}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

Guía 5

El resto de las guías repo en github para descargar las guías con los últimos updates.



Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.</a>



Notas teóricas:

18

#### Ejercicios de la guía:

Ejercicio 1. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ .

**Ejercicio 2.** Probar que si  $A \in K^{n \times n}$  es hermitiana, entonces los elementos de la diagonal  $a_{ii} \in \mathbb{R}$ .

 $\overline{\text{Si }} A$  es hermitiana, entonces:

$$A \cdot A^* = A^* \cdot A$$

Para probar que los elementos diagonales pertenecen a  $\mathbb{R}$  se puede usar la definición:

$$A \cdot A^* \in K^{n \times n}$$

la matriz transpuesta y conjugada va a tener la misma diagonal:

$$a_{ii} \xrightarrow{\text{trasponer y}} \overline{(a_{ii})^t} = \overline{a_{ii}} \stackrel{!}{=} a_{ii}$$

Por lo tanto si  $a_{ii}$  es igual a su conjugado debe ser un número real.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

**Ejercicio 3.** Dada  $A \in K^{n \times n}$  hermitiana, probar que existen matrices  $B, C \in \mathbb{R}^{n \times n}$  con B simétrica y C antisimétrica ( $C^t = -C$ ) tales que A = B + iC.

A apartir de una matriz hermitiana me puedo construir las matrices B y C como:

$$B = \frac{A + A^*}{2}$$
 y  $C = \frac{A - A^*}{2}$ ,

Donde las matrices B y  $C \in \mathbb{R}$  y además son simétrica y antisimétrica respectivamente. Ahora quiero ver la cuenta:

$$B + iC = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + iA}{2} + \frac{A^* - iA^*}{2}$$

$$\stackrel{!}{=} \frac{A + iA}{2} + \frac{A - iA}{2}$$

$$\stackrel{!}{=} A$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. O... hay que hacerlo! 🙃

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATeX $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IAT $_{\rm P}$ X $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ 

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. Ejercicio 7. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram  $rac{1}{2}$ , o mejor aún si querés subirlo en IATEXo una pull request al  $rac{1}{2}$ 

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 9. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en  $\LaTeX$  una pull request al  $\bigcirc$ .

Ejercicio 10. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 11. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram  $rac{ extstyle d}{ extstyle d}$ , o mejor aún si querés subirlo en IATEXo una pull request al  $rac{ extstyle d}{ extstyle d}$ .

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram  $rac{ extstyle d}{ extstyle d}$ , o mejor aún si querés subirlo en IATEXo una pull request al  $rac{ extstyle d}{ extstyle d}$ .

Ejercicio 13. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🥑, o mejor aún si querés subirlo en IATEX→ una pull request al 😱

Ejercicio 15. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram  $rac{ extstyle d}{ extstyle d}$ , o mejor aún si querés subirlo en IAT $_{ extstyle EX}$  o una pull request al  $rac{ extstyle Q}{ extstyle d}$ .

Ejercicio 17. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IAT<sub>P</sub>X→ una *pull request* al

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en LATEX $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en LAT $_{\rm E}$ X $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX  $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IAT $_{\rm E}$ X $\rightarrow$  una pull request al  $\bigcirc$ .



Ligercicios de parciales:



Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX  $\rightarrow$  una pull request al  $\bigcirc$ .