計算機演算法

Computer Algorithm

資訊工程學系 丁德榮

Course Information

- Email: deron@cc.ncue.edu.tw or deron@ms45.hinet.net
- 研究室:工學院大樓 237室
- 電話:04-7232105-8445
- Course Web Site:
 - 雲端學院 http://dlearn.ncue.edu.tw
- 助教:
 - 分機 8410
 - ■實驗室:資工系1樓109室

Office Hours

教師OFFICE HOUR登錄(可點選 空白處 新增教師OFFICE HOUR資訊)							
		_		Ξ	四	五	
1	8:10 9:00						
2	9:05 9:55			資工三 33404			
3	10:15 11:05	1	Office Hour 237研究室 分機:8445	資工三 33404	專題生開會		
4	11:10 12:00		Office Hour 237研究室 分機:8445	資工三 33404	專題生開會		
14	12:05 12:55						
5	13:10 14:00				Office Hour 237研究室 分機:8445		
6	14:05 14:55		資工碩一 34103資工三 34103		Office Hour 237研究室 分機:8445		
7	15:15 16:05		資工碩一 34103資工三 34103	研究生開會			
8	16:10 17:00		資工碩一 34103資工三 34103				

學習目標

- 演算法的定義。
- ■演算法的應用。
- 如何學習與為何學習演算法。
- 演算法問題介紹。

什麼是 Algorithm?

- A number of rules, which are to be followed in a prescribed order, for solving a specific type of problems.
- Computer Algorithm 的要求:
 - Finiteness (有限個steps)
 - Definiteness (每一個step做的事確定)
 - Effectiveness (不只確定還要足夠的快能做完)
 - Input/Output (O.S.永不terminate只能稱是 computational procedure)

Algorithm is everywhere!

- Application of Algorithm:
 - Operating Systems
 - System Programming
 - Numerical Applications
 - Non-numerical Applications

•

- 任何一領域都要用Algorithm去解決該領域所發生 的問題。
- Algorithm Implement的方式:
 - Software
 - Hardware
 - Firmware

Textbook and References

■ 教科書:

- Introduction to the Design and Analysis of Algorithms- A Strategic Approach,
 - 李家同 R.C.T. Lee, 張瑞川 R.C. Chang, 曾憲雄 S.S. Tseng, 蔡英德 Y.T. Tsai
 - McGraw-Hill, 2008,
 - 旗標 02-23963257

■ 參考書:

- Introduction to Algorithms by T. H. Cormen,
 C. E. Leiserson, R. L. Rivest and C. Stein,
 2022 (4rd), MIT
- Computer Algorithms C++ by E. Horowitz, S. Sahni and S. Rajasekaran, 2008 (2nd) 東華(新月)圖書 04-23265507

評估方式

- 期中考: 35% (closed book)。
- 期末考: 35% (closed book)。
- 程式設計:5% 5題,抄襲者0分。
- 出席點名:5% 五次。

Course Schedule (Part 1)

$\overline{}$		
10	11/13	Chapter 5 Searching Method
11	11/20	Chapter 5 Searching Method
12	11/27	Chapter 6 Pruning and Search
13	12/04	Chapter 6 Pruning and Search
14	12/11	Chapter 7 Dynamic Programming
		Strategy
15	12/18	Chapter 7 Dynamic Programming Strategy
16	12/25	Chapter 8 NP-complete
17	01/01	元旦放假
18	01/08	期末考

Course Schedule (Part 2)

	11,00	[m + 2	
10	11/13	Chapter 4 Divide—&—Conquer Strategy	
11	11/20	Chapter 5 Searching Method	
12	11/27	Chapter 5 Searching Method	
13	12/04	Chapter 6 Pruning and Search	
14	12/11	Chapter 6 Pruning and Search	
15	12/18	Chapter 7 Dynamic Programming Strategy	
16	12/25	Chapter 7 Dynamic Programming Strategy	
17	01/01	Chapter 8 NP-complete	
18	01/08	期末考	

Background for learning

- Background for learning
 - 1. 一個清楚的頭腦
 - 2. Data Structures
 - 3. Discrete Mathematics
 - 4. 用功
 - 5. Coding 能力訓練
- Requirements for researching :
 - 1. 勤讀papers
 - 2. 一個叛逆的個性
 - 3. 藝術家似的創造慾望
 - ★均可培養

為什麼要學Algorithm?

·如果不學,你可能用一個很花錢(Time, Space)的Algorithm去解決問題

- Algorithm 的學習是Life-time Job:
 - ■永遠知道解某一問題最佳的Algorithm是什麼
 - 知道問題的難度、解法
 - ■對於自己的領域隨時要查paper, update最佳的 algorithms或至少知道可以問誰。

為什麼要學Algorithm?

- 如果不學,你可能去對 NP-Complete 的問題去找 efficient的解
- Life-time Job:
 - 去知道那些問題是NP-Complete 問題
 - Real Application
 - Average Performance 好的
 - 找Approximating的解
- Examples:
 - TSP: NP-complete problem
 - ■n=20 執行時間 771世紀
 - $O(n^3 \log n)$ in average (Branch & Bound algorithm)
 - Planar Graph Coloring *P* problem
 - (Maximum # = 4 已被證明)

旅行推銷員問題

Traveling Salesman Problem (TSP) 尋找一個從(1)出發,回到(1)的最短走法

TSP Example

TSP是一個公認的難題 NP-Complete

- NP-Complete 之意義:
 - 我們現在無法對所有輸入找到一個有效率的解法
 - 當輸入個數夠多時,需要的解答時間以指數次方成長, 至少 O(2ⁿ)。
 - 目前只有exponential algorithm, 還沒有人找到polynomial algorithm (你也不妨放棄!)
- 避免浪費時間尋求更佳的解法

	10	30	50
N	0.00001 s	0.00003 s	0.00005 s
N^2	0.0001 s	0.0009 s	0.0025 s
2 ⁿ	0.001 s	17.9 min	35.7 year

- · 你可知道一幅地圖 (平面圖) 最少可以用多少種顏色來製作呢?
- 限制條件(constraint):
 - 在相鄰國家的顏色必不相同。
 - 於海洋、冰山及文字等的顏色是不計在內的。

四色定理證明

- 1970年,數學家才證明出所有少於三十九個區域的地圖,『四色猜想』是對的。
- 但是,如果有一千個區域,要等到哪一年才能證明出來呢? 於是,有人從不同的方向著手,並成功地將無限多的地圖簡 化成1482種基本圖。
- 問題是:每種基本圖的顏色組合,就幾乎已經等於無限多了,想要以人工來驗證這一千多種基本圖,根本是不可能的!
- 還好,電腦的出現,解決了這個難題!在1975年,數學家利用三台當時最先進的大型電腦,總共花了一千兩百小時的計算,分析驗證了1482種基本圖之後,終於證明成功,而使『四色猜想』正式成為『四色定理』!

N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, <u>A new proof of the four colour theorem</u>, <u>Electron. Res. Announc.</u> Amer. Math. Soc. 2 (1996), 17-25 (electronic).

Course Outline

- 1. Introduction
- 2. Lower Bounds (Complexity)
- 3. Greedy Method
- 4. Divide-&-Conquer Strategy
- 5. Tree Searching Strategy (Branch-&-Bound Strategy)
- 6. Prune-&-Search Strategy
- 7. Dynamic Programming Strategy
- 8. NP-Completeness
- 9. Approximate Algorithms
- 10. Amortized Analysis
- 11. Randomized Algorithms
- 12. On-line Algorithms

Some Books

- [Cormen, Leiserson and Rivest 2009] Cormen, T. H., Leiserson, C. E. and Rivest, R. L.: *Introduction to Algorithms*, McGraw-Hill, New York. (2009 3rd)
- [Garey and Johnson 1979] Garey, M. R. and Johnson, D. S. (1979): Computers and Intractability: A Guide to the Theory of NP Completeness, W. H. Freeman and Co., San Francisco, California.
- Horowitz, Sahni and Rajasekaran 2008] Horowitz, E., Sahni, S. and Rajasekaran, S.: *Computer Algorithms, W.* H. Freeman, New York.
- **[Knuth 1968]** Knuth, D. E. (1968): *The Art of Programming, Vol.* 1: *Fundamental Algorithms*, Addison-Wesley, Reading, Mass.
- [Knuth 1973] Knuth, D. E. (1973): *The Art of Computer Programming, Vol. 3: Sorting and Searching,* Addison-Wesley, Reading, Mass.