主存与Cache的地址映射(1)

Cache 的关键问题

• 如何判断一个数据在cache中

• 如需访问的数据在cache中,存放在什么地方

主存与cache的地址映射

地址映射: 利用某种方法或者规则

Cache: n块

Lo

将主存块定位到cache,

主存: m块

第0块 第1块 第n-1块 第m-1块

Cache的结构原理

主存与cache地址映射

- 直接 (direct mapped)
- 全相联 (fully-associated)
- 组相联 (set-associated)

■ 本节介绍前两种

直接映射

映射到的cache地址

直接映射

主存分割成若干个与 cache大小相同的区

按字编址的主存地址

直接映射的优缺点

- 优点
 - 地址变换速度快, 一对一映射
 - 替换算法简单、容易实现
- 缺点
 - 容易冲突, cache利用率低
 - 命中率低

考虑一个直接映射的cache, 总共有四块,

初始时,cache为空,所有块都被标记上无效^C(Invalid)

Tag	0 miss
00	Mem(0)

0	n Tag miss		
J	7	Mem(4)	

0	Tag	4 miss
J	.6	Mem(0)4

块号

XX

8次请求,

cache冲突导致乒乓效应:连续访问的两个内存块

8次失效。

被映射到同一cache块

全相联映射

全相联映射

全相联映射的优缺点

- 一对多映射
- cache全部装满后才会出现块冲突
- 块冲突的概率低, cache利用率高
- 相应的替换算法复杂

全相联映射地址变换

相联存储器

主存块号	Cache地址
001	00001000
021	00001010
023	00001001

- 可以用存储内容作为地址访问的存储器称为相联存储器.
- 将所存内容的一部分作为关键字去 检索存储器,并将存储器中与检索 项符合的存储单元内容进行读出或 写入。

小结

- 主存与cache的地址映射
 - ■直接映射
 - 全相联映射
- ▼一节
 - 组相联映射

谢谢!

