Lay 7.2

 $Math\ 2210Q$

Question 1 Compute the quadratic form $Q(\vec{x}) = \vec{x}^T A \vec{x}$ given $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 6 \\ 6 & 1 \end{bmatrix}$.

$$Q(\vec{x}) = 2x_1^2 + 1x_2^2 + 12x_1x_2$$

Question 2 Compute the matrix of the quadratic form: $Q(\vec{x}) = 7x_1^2 + 3x_2^2 + 8x_1x_2$. Assume $\vec{x} \in \mathbf{R}^2$.

$$A = \begin{bmatrix} 7 & \boxed{4} \\ \boxed{4} & \boxed{3} \end{bmatrix}$$

Question 3 Compute the matrix of the quadratic form: $Q(\vec{x}) = x_1^2 - x_2^2 + 6x_3^2 + 4x_1x_2 - 10x_1x_3$. Assume $\vec{x} \in \mathbb{R}^3$.

$$A = \begin{bmatrix} 1 & 2 & -5 \\ 2 & -1 & 0 \\ -5 & 0 & 6 \end{bmatrix}$$

Question 4 Suppose P orthogonally diagonalizes A. Then $A = PDP^{-1}$ for some diagonal matrix D. Which of the following is equivalent to P^TAP ?

Multiple Choice:

- (a) D ✓
- (b) PDP^{-1}
- (c) $P^T DP$
- (d) cannot be simplified

Hint: If P orthogonally diagonalizes A, then P is an orthogonal matrix which means $P^T = P^{-1}$.

Lay 7.2 Math 2210Q

Question 5 Suppose P orthogonally diagonalizes A. Substitute $\vec{x} = P\vec{y}$ into the Qudratic form $Q(\vec{x}) = \vec{x}^T A \vec{x}$ and simplify as much as possible. This substitution is called a change of variable.

Multiple Choice:

- (a) $P\vec{y}^T A P\vec{y}$
- (b) $\vec{y}^T D \vec{y} \checkmark$
- (c) $P^T \vec{y}^T A P \vec{y}$
- (d) $A\vec{y}$
- (e) $D\vec{y}$

Hint: The previous question might be helpful.

Question 6 The orthogonal diagonalization of A is given below. Substitute the change of variable $\vec{x} = P\vec{y}$ into the Quadratic form $Q(\vec{x}) = \vec{x}^T A \vec{x}$ and give the new quadratic form.

$$A = PDP^{-1} \text{ where } P = \begin{bmatrix} -2/3 & -1/3 & 2/3 \\ -2/3 & 2/3 & -1/3 \\ 1/3 & 2/3 & 2/3 \end{bmatrix} \text{ and } D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 15 \end{bmatrix}$$

Hint: The previous question might be helpful.

The new quadratic form is $3y_1^2 + 9y_2^2 + 15y_3^2$. Notice that it has no cross product terms. i.e. no y_iy_j where $i \neq j$.

2