Engineering Observations Sequences and Hidden Statesof a

Hidden Markov Model (HMM)

Author: Ben Darby

Class: BINF6250 Spring 2025 Professor: Marcus Sherman

- 1. Observable Sequences
- 2. Hidden States: S₁, S₂, S₃
- 3. Model Parameters λ (π , A, B)

1. Observable Sequences

- Sequential data where order matters
- Data that is identifiable (visible / measurable)
- Must have predictive relationship to hidden states
- Conditional probability critical for state inference

2. Hidden States: S₁, S₂, S₃

- Underlying, unobservable conditions of a system.
- Inferred from observable data.
- The system exists in exactly one state per time step.
- The system transitions between them via probabilities.

2. Hidden States: S₁, S₂, S₃

- S₁ Price Volatility: Low
- S₂ Price Volatility: Normal
- S₃ Price Volatility: High

Price Volatility Range

"Compared to the average time period, is the range of prices as measured by the high price minus the low price for this time period...Low,

Normal or High."

3. Model Parameters λ (π, A, B)

• π: Initial Probabilities

 a vector of probabilities showing how likely the system is to start in each hidden state.

A: Transition Probabilities

 Shows probability of moving between states

• B: Emission Probabilities

 Shows how likely each state is to generate each observation.

Applying HMM's to Unrelated Domains

Model Attributes	Bioinformatics	Financial Volatility
Hidden States S	"H" (high GC) and "L" (low GC)	"High Volatility", "Medium Volatility", "Low Volatility"
Observations O	DNA sequences (A,C,G,T)	Volume Regime, (I, S, C) Price Range Class (E, S, D)
Initial Probabilities π	Starting in H or L state Biohazaard	Starting in each Volatility State
Transition Probabilities A	Moving between GC states	Moving between Price Volatility States
Emissions B	Nucleotide probabilities in each state	Volume & Range Regime Probabilities in each State

Building a Working HMM

or really any ML Model

Get the Data	Source, Collection Interval, Method
Prepare the Data	Cleaning, Organizing, Feature Engineering
Engineer Hidden States from Data	Transform the rows of data into measurable observations
Engineer Observation Sequences from Data	Transform the rows of data into measurable observations

Sequences of Observations are calculated from market data which looks like this

Get the Data

OHLC Bars

Open - Edge of colored rectangle High - Top wick

Low - Bottom wick

Close - Edge of colored rectangle

Can we engineer these bars into observation sequences?

Do they meet the criteria?

Market Data Sample

Get the Data

QQQ 1 Minute data

Prices

Raw Data

This is the import format which all features, aka. observation sequences are engineered from.

```
timestamp
                                     , high
                                               , low
                           , open
                                                        , close
                                                                  volume
112405
         2023-04-11 15:20:00, 317.09 , 317.1 , 317.02 , 317.07 ,
                                                                      57863
         2023-04-11 15:21:00, 317.07 , 317.11 , 317.05 , 317.0998,
                                                                      25850
112406
112407
         2023-04-11 15:22:00, 317.095 , 317.19 , 317.09 , 317.1299,
                                                                      47240
         2023-04-11 15:23:00, 317.12 , 317.21 , 317.1 , 317.16 ,
                                                                      72582
112408
112409
         2023-04-11 15:24:00, 317.16 , 317.17 , 317.03 , 317.0404,
                                                                      70439
112410
         2023-04-11 15:25:00, 317.05 , 317.07 , 316.91 , 316.914 ,
                                                                      70723
         2023-04-11 15:26:00, 316.9199, 316.9616, 316.91 , 316.96 ,
112411
                                                                      27630
112412
         2023-04-11 15:27:00, 316.96 , 316.965 , 316.87 , 316.886 ,
                                                                      58381
         2023-04-11 15:28:00, 316.89 , 316.985 , 316.87 , 316.93 ,
112413
                                                                      47827
112414
         2023-04-11 15:29:00, 316.94 , 317.0299, 316.93 , 316.98 ,
                                                                      23636
```

Price range, the *hidden state*, is an engineered feature created by discretizing the results of ten 1-minute price observation into classes.

10 Min Price Bar from

15:30:01 - 15:40:00

Each bar is actually made from ...

Prepare Data Engineering Hidden States

How do we transform these bars into hidden states?

Do they meet the criteria?

Calculating Volatility Class (HS) from QQQ 1-Minute data

Prepare Data Engineering Hidden States

Prices

Open High Low Close

Engineered Feature: 10 Min Price Ranges

Created by taking the high minus the low price across ten 1-minute price observations.

```
timestamp
                                    , high
                                                       , close
                                                                 , volume
                                              , low
                           , open
        2023-04-11 15:30:00, 316.99 , 317.04
                                                       , 317.01 ,
112415
                                             , 316.9
                                                                     36309
        2023-04-11 15:31:00, 317.004 , 317.03
                                             , 316.96 , 316.99 ,
112416
                                                                     23679
        2023-04-11 15:32:00, 316.99 , 316.895 , 316.8501,
112417
                                                                     34407
        2023-04-11 15:33:00, 316.86 , 316.93 , 316.85 , 316.8749,
                                                                     51073
112418
112419
        2023-04-11 15:34:00, 316.8885, 316.8885, 316.75 , 316.77 ,
                                                                     68194
        2023-04-11 15:35:00, 316.77 , 316.79 , 316.68 , 316.69 ,
112420
                                                                     54281
112421
        2023-04-11 15:36:00, 316.69 , 316.74 , 316.58 , 316.64 ,
                                                                     72531
112422
        2023-04-11 15:37:00, 316.63 , 316.67 , 316.55 , 316.61 ,
                                                                     65585
112423
        2023-04-11 15:38:00, 316.61 , 316.61 , 316.27 , 316.33 ,
                                                                    108482
112424
        2023-04-11 15:39:00, 316.335 , 316.335 , 316.12
                                                         316.24 ,
                                                                    163811
```

Calculating Volatility Class (HS) from QQQ 1-Minute data

Prepare Data Engineering Hidden States

Extract HS from: 10 Min Price Ranges

Create the Hidden State by fitting the observed price range in a precalculated class range, representing the boundaries of Low, Normal or High Volatility.

+ High Price: 317.04

- Low: Price: 316.12

10 Min Price Range: 0.92

Hidden State - Classification

 S_1 - Low: 0.00 - 0.28

 S_2 - Normal: 0.28 - 0.65

S₃ - High: 0.66 - INF

The Hidden State for the

period 15:30:01 - 15:40:00

is classified as: High - H

1st type of **observation Volume Expansion Regime**

Observing the pattern of volume distributed across a group between time intervals

Prepare Data Engineering Observations

Which Volume Pattern?

- Increasing I
- Steady S
- Contracting C

1st type of **observation**Volume Expansion Regime

Data Sample

Engineering an *observation* from QQQ 1-Minute data

Prepare Data Engineering Observations

1st type of **observation**Volume Expansion Regime

Prepare Data Engineering Observations

Euclidean

Engineering a Volume Regime Observation from QQQ 1-Minute data

Engineered Feature: Volume Expansion Regime

Created by identifying the minimum sum of squares from the ideal shape using high and low volume across the time periods.

Lowest Variance from Expected Value:

27, 104

<u>Observation-</u> <u>Distance to</u> <u>Classification</u> <u>Expected Value</u>

◆Increasing: 27, 104.67

Steady: 44,819.76

Contracting: 77,542.30

The 5 Min Volume

Expansion Regime from

15:21:01 - 15:26:00 is

classified as: Increasing - I

2nd type of *observation Range Class*

Data Sample

Engineering an *observation* from QQQ 1-Minute data

Prepare DataEngineering Observations

2nd type of *observation* Range Class Nasdaq QQQ Invesco ETF (QQQ) 317.10 317.00 Contracting 316.90 Range? 316.80 0.10M 0.08M Observing the change in price 0.05M range between time periods

0.00M

Prepare Data Engineering Observations

Which Volume Pattern?

- Increasing I
- Steady S
- Contracting C

2nd type of **observation**Range Class

Prepare Data Engineering Observations

Change Threshold:

Engineering a Volume Regime Observation from QQQ 1-Minute data

Observation- 0.04

Classification

Increasing: > 0.04

Steady: Between -0.04 & 0.04

→Contracting: < -0.04

The 1 Min Volume Expansion Regime Between 15:25 and - 15:26 is

classified as: Contracting - C

Engineered Feature:Range Class

Created by setting a threshold for change between classes across a single time period.

Observed Change in Price Range:

-0.084

Using Multiple Securities to Inform the Hidden State

Model Structure Overview

Observations Types:

Range Expansion Class: 1-min obs (E)xpanding, (C)ontracting, (S)teady)

Volume Regime: 5-min obs
(I)ncreasing, (D)ecreasing, (S)teady

The model uses 2 observations types from 6 securities to infer hidden volatility state of NDX

Get data

Go to the Github Repo Run the Code Examine the Output

darbyatNE/BIN6250-HMM_Feature_Engineering

Contribute to darbyatNE/BIN6250-HMM_Feature_Engineering development by creatin...

GitHub

Prepare Data
Model Parameters λ
(π, A, B)

- To get the optimal model parameters we will start with a "best guess"
- Based on domain expertise and intuition

- 1. Observation Sequence: [02, 03, 01,....0n]
- 2. Hidden States: S₁, S₂, S₃
- 3. Model Parameters λ : (π , A, B)

Initial (π):	$\pi_1 = 0.6$ (% start in S ₁)	$\pi_2 = 0.3$ (% start in S_2)	$\pi_3 = 0.1$ (% start in S ₃)	
Transition (A):	$a_{11} = 0.6 (S_1 \rightarrow S_1)$ $a_{12} = 0.3 (S_1 \rightarrow S_2)$ $a_{13} = 0.1 (S_1 \rightarrow S_3)$	$a_{21} = 0.3 (S_2 \rightarrow S_1)$ $a_{22} = 0.5 (S_2 \rightarrow S_2)$ $a_{23} = 0.2 (S_2 \rightarrow S_3)$	$a_{31} = 0.1 (S_3 \rightarrow S_1)$ $a_{32} = 0.6 (S_3 \rightarrow S_2)$ $a_{33} = 0.3 (S_3 \rightarrow S_3)$	
Emission (B):	$b_1(o_1) = 0.1$ $b_1(o_2) = 0.4$ $b_1(o_3) = 0.5$	$b_2(o_1) = 0.7$ $b_2(o_2) = 0.2$ $b_2(o_3) = 0.1$	$b_3(o_1) = 0.3$ $b_3(o_2) = 0.3$ $b_3(o_3) = 0.4$	

3. Model Parameters: A

Hidden State Transition Probabilities

What is the probability of transition?

"What is the independent chance for each hidden state that between time step, t, and the next step, t+1, the state will either transition to itself or to a new state?"

3. Model Parameters: A

Hidden State Transition Probabilities

What is the total probability of transitioning?

"What are the chances that between time interval, t, and the next ,t+1, the hidden state will either transition to itself or new state?" Next Hidden State at time step - t+1

Original Hidden State at Time Step

_

Price Volatility

Normal Price

Price Volatility

Low

High Price Volatility

3. Model Parameters: B Probability of Emission

How likely are we to see each 5-Min volume regime?

3. Model Parameters: B

Probability of Emission

How likely are we to see each 1-Min price range class?

Next Steps

Understanding Temporal Alignment

Training vs. Inference

- Complete Historical Data
- Baum Welch for Parameter Estimation
- Training Optimizes Likelihood Using Chosen "Like Days"

Deployment Phase Using Adjusted Probabilities

- Apply Learned Parameters to observable data
- Use Forward Algorithm
- Make Prediction in Real Time
- No Look Ahead Bias

Training Phase

Baum Welch Algorithm

The learning algo for HMM's

• Initialization:

- Start with a "best guess" of HMM parameters
- Each of: Transition probabilities, Emission probabilities, and initial state distribution

• Purpose:

- \circ Estimating the model parameters $\lambda = (A, B, \pi)$
- Maximize the probability of observing the given sequences, locally.

• Process:

- E-step: Using Forward & Backward algorithm to compute expected state occupancies
- M-step: Re-estimating model parameters to maximize likelihood
 - Like finding your way up a hill in fog

Training Phase

Baum Welch Algorithm

Defining the Steps

Forward Pass:

• Calculate the probability of reaching each state at each time step from the beginning of the sequence

Backward Pass:

Calculate the probability of completing the sequence from each state at each time step

Calculate Expected Counts:

 Combine forward and backward probabilities to determine state occupancy and transition probabilities

• Update Parameters:

o Re-estimate transition and emission probabilities based on the expected counts

• Evaluate Improvement:

• Check if the model likelihood has increased, in not the model has converged

Deployment Phase

Inference

Defining the Steps

- Apply Learned Parameters to Observable Data
 - Use Forward Algorithm to make Hidden State Predictions
- Proper Observation Alignment
 - Rolling windows for multi minute observations
 - All observations are aligned to end at the current time point, creating a coherent view of the market state
- No Look Ahead Bias
 - The model should use only data available up to the current minute
 - Observations are strictly from completed time windows

Model Elements

History

Future

Range Class Observation

Volume Regime Observation

Hidden State

Project Takeaways

Innovative Approach: Encourage creativity in model design and training.

Feature Identification / Creation: Imagine features and hyperparameters to enhance model flexibility.

Hyperparameter Tuner: Showcase flexibility in observations rather than doing things "the old way".

Goal: Understanding and be able to explain why your model is useful. Not one "right way" to do things

Appendix I

Name of Resource	<u>Purpose</u>	<u>Link</u>
Claude	Answer debugging questions in HMM.ipynb	https://claude.ai/
NVIDIA RAPIDS cuDF Pandas	Researching processing 10min blocks efficiency	https://youtu.be/Ocql-0B4o5c? si=ZvtEM1W6RP1hpsgk
Baum Welch Reestimation	Processing steps of BW algo	https://youtu.be/9Igh_OKECxA?si=M-pp1iAIQ1LCM-Q1
Hidden Markov Models 12: the Baum-Welch algorithm	Explaining expectation step of SW algo	https://www.youtube.com/watch? v=JRsdt05pMol&t=572s
MPLFinance Library	Creating and coloring a candlestick plot	https://github.com/matplotlib/mplfinan ce
Hidden Markov Model Clearly Explained	Explaining the flow of HMM transitions and emissions	https://www.youtube.com/watch? v=RWkHJnFj5rY&t=102s

Appendix II

Name of Resource	<u>Purpose</u>	<u>Link</u>
BarChart	Generating sample images of a NDX candlestick charts	https://www.barchart.com/etfs- funds/quotes/QQQ/interactive-chart
Yahoo Finance	Retrieving historical Quotes of market securities from an API	https://developer.yahoo.com/api/
Canva	Image Generation	<u>canva.com/design</u>