NAIL062 V&P Logika: 2. sada příkladů – Sémantika, vlastnosti teorií

Výukové cíle: Po absolvování cvičení student

- rozumí pojmům sémantiky výrokové logiky (pravdivostní hodnota, pravdivostní funkce, model, platnost, tautologie, spornost, nezávislost, splnitelnost, ekvivalence), umí je formálně definovat a uvést příklady
- umí rozhodnout, zda je množina logických spojek univerzální
- zná terminologii pro výroky v CNF a DNF
- umí převést daný výrok resp. konečnou teorii do CNF a do DNF, a to pomocí množiny modelů i pomocí ekvivalentních úprav
- rozumí terminologii týkající se vlastností teorií (sporná, bezesporná/splnitelná, kompletní, důsledky, T-ekvivalence), umí pojmy formálně definovat a uvést příklady
- rozumí pojmu [jednoduchá, konzervativní] extenze, umí je formálně definovat, uvést příklady
- umí v konkrétním případě rozhodnout, zda jde o [jednoduchou, konzervativní] extenzi, a zdůvodnit jak z definice, tak i pomocí sémantického kritéria

Příklady na cvičení

Příklad 1. Uveďte příklad výroku v jazyce $\mathbb{P} = \{p, q, r\}$, který je (a) pravdivý, (b) sporný, (c) nezávislý, (d) ekvivalentní s $(p \land q) \rightarrow \neg r$, (e) má za modely právě $\{(1, 0, 0), (1, 0, 1), (0, 0, 1)\}$.

Řešení. Například: (a) $p \vee \neg p$, (b) $p \wedge \neg p$, (c) p, (d) $\neg p \vee \neg q \vee \neg r$ (e) $(p \vee r) \wedge \neg q$

Příklad 2. Jsou tyto množiny logických spojek univerzální? (a) $\{\lor, \to, \leftrightarrow\}$, (b) $\{\downarrow\}$ kde \downarrow je Peirce arrow (NOR)

Řešení. (a) Ne, dokažte strukturální indukcí, že každá formule má za model (1, ..., 1). (b) Ano, využijeme faktu, že $\{\neg, \lor, \land\}$ je univerzální, a vyjádříme:

- $\bullet \neg x \sim x \downarrow x$
- $\bullet \ x \vee y \sim \neg(x \downarrow y) \sim (x \downarrow y) \downarrow (x \downarrow y)$
- $x \land y \sim \neg(\neg x \lor \neg y) \sim \neg x \downarrow \neg y \sim (x \downarrow x) \downarrow (y \downarrow y)$

Příklad 3. Převeďte následující výrok do CNF a DNF. Proveďte to (a) sémanticky (pomocí pravdivostní tabulky), (b) ekvivalentními úpravami:

$$(\neg p \lor q) \to (\neg q \land r)$$

Řešení. (a) Nejprve najdeme modely výroku: $\{(0,0,1),(1,0,0),(1,0,1)\}$, každý model popíšeme jednou elementární konjunkcí:

$$(\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)$$

CNF získáme z množiny nemodelů, každá klauzule zakazuje jeden nemodel:

$$\{(0,0,0),(0,1,0),(0,1,1),(1,1,0),(1,1,1)\}$$

$$(p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

(b) $(\neg p \lor q) \to (\neg q \land r) \sim \neg(\neg p \lor q) \lor (\neg q \land r) \sim (p \land \neg q) \lor (\neg q \land r)$ je DNF, CNF získáme distribucí, a dále zjednodušíme: $(p \lor \neg q) \land (p \lor r) \land (\neg q \lor \neg q) \land (\neg q \lor r) \sim (p \lor r) \land \neg q$

Příklad 4. Mějme teorii $T = \{p \leftrightarrow q, \neg p \rightarrow \neg q, q \lor r\}$ v jazyce $\mathbb{P} = \{p, q, r\}$.

(a) Rozhodněte, zda je teorie T [sporná/splnitelná/kompletní].

- (b) Uveďte příklad výroku φ , který je [pravdivý/lživý/nezávislý] v T
- (c) Uveďte příklad extenze T' teorie T (pokud existuje, a pokud možno neekvivalentní s T), která je [jednoduchá / konzervativní / konzervativní jednoduchá / kompletní jednoduchá / konzervativní].
- (d) Na vašich příkladech extenzí ukažte, že platí sémantické kritérium (tj. tvrzení definující pojem [konzervativní] extenze pomocí expanzí/reduktů modelů).

Řešení. Budeme potřebovat znát modely: $M(T) = \{(0,0,1), (1,1,0), (1,1,1)\}$

- (a) Není sporná, je splnitelná, není kompletní.
- (b) V teorii T je pravdivý je např. $p \vee r$, lživý $\neg q \wedge \neg r$, nezávislý $p \vee q$.
- (c) Uvedme příklady nebo zdůvodnění neexistence:
 - 1. Jednoduchá: $\{p \land q\}$
 - 2. Konzervativní: $T_2 = \{(p \land q) \lor (\neg p \land \neg q), p \lor q \lor r, p \lor s\} \ v \ jazyce \ \mathbb{P}' = \{p, q, r, s\}$
 - 3. Kompletní: $\{\neg p, \neg q, r, \neg s\}$ v jazyce $\mathbb{P}' = \{p, q, r, s\}$
 - 4. Konzervativní jednoduchá: musí být ekvivalentní T, např. $\{(p \wedge q) \vee (\neg p \wedge \neg q), p \vee q \vee r\}$
 - 5. Kompletní jednoduchá: $\{p, q, \neg r\}$
 - 6. Kompletní konzervativní: neexistuje, nekompletní teorie nemůže mít kompletní konzervativní extenzi (dokažte si).
- (d) Zkonstruujte příslušné množiny modelů a ověřte podmínku, ukážeme jen pro 2.:

$$M_{\mathbb{P}'}(T_2) = \{(0,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1)\}$$

Vidíme, že zúžením modelů T_2 na jazyk \mathbb{P} získáme jen modely T, tedy jde o extenzi, a každý model T lze rozšířit na nějaký model T_2 , tedy je extenze konzervativní.

Příklad 5. Dokažte nebo vyvraťte (nebo uveďte správný vztah), že pro každou teorii T a výroky φ , ψ v jazyce $\mathbb P$ platí:

- (a) $T \models \varphi$, právě když $T \not\models \neg \varphi$
- (b) $T \models \varphi$ a $T \models \psi$, právě když $T \models \varphi \land \psi$
- (c) $T \models \varphi$ nebo $T \models \psi$, právě když $T \models \varphi \lor \psi$
- (d) $T \models \varphi \rightarrow \psi$ a $T \models \psi \rightarrow \chi$, právě když $T \models \varphi \rightarrow \chi$

Řešení. Uvedeme jen správné odpovědi a protipříklady, dokažte si sami (z definic).

- (a) Neplatí, např. pro $T=p\vee q, \varphi=p$. (Je-li T bezesporná, platí \Rightarrow .)
- (b) Platí.
- (c) Neplatí, např. pro $T = p \lor q, \varphi = p, \psi = q$. Platí \Rightarrow .
- (d) Neplatí, např. pro $T = \{p \to r\}, \varphi = p, \psi = q, \chi = r.$ Platí \Rightarrow .

Další příklady k procvičení

Příklad 6. Mějme teorii $T = \{ \neg q \to (\neg p \lor q), \ \neg p \to q, \ r \to q \}$ v jazyce $\{p, q, r\}$.

- (a) Uveďte příklad následujícího: výrok pravdivý v T, lživý v T, nezávislý v T, splnitelný v T, a dvojice T-ekvivalentních výroků.
- (b) Které z následujících výroků jsou pravdivé, lživé, nezávislé, splnitelné v T? T-ekvivalentní?

$$p, \neg q, \neg p \lor q, p \to r, \neg q \to r, p \lor q \lor r$$

Příklad 7. Jsou následující množiny logických spojek univerzální? Zdůvodněte.

- (a) $\{\vee, \wedge, \rightarrow\}$,
- (b) $\{\uparrow\}$ kde \uparrow je Sheffer stroke (NAND),

Příklad 8. Určete množinu modelů dané formule. Využijte toho, že je v DNF resp. v CNF.

- (a) $(\neg p_1 \land \neg p_2) \lor (\neg p_1 \land p_2) \lor (p_1 \land \neg p_2) \lor (p_2 \land \neg p_3)$
- (b) $(\neg p_1 \lor \neg p_2) \land (\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3)$

Příklad 9. Převedte do CNF a DNF oběma metodami: $(\neg p \rightarrow (\neg q \rightarrow r)) \rightarrow p$

Příklad 10. Najděte (co nejkratší) CNF a DNF reprezentace Booleovské funkce maj: $\{0,1\}^3 \rightarrow \{0,1\}$, která vrací převládající hodnotu mezi 3 vstupy.

Příklad 11. Stejné zadání, jako Příklad 4, ale pro teorii $T = \{(p \land q) \to r, \neg r \lor (p \land q)\}$ v jazyce $\mathbb{P} = \{p, q, r\}$.

Příklad 12. Dokažte nebo vyvratte (nebo uveďte správný vztah), že pro libovolné teorie T, S nad \mathbb{P} platí:

- (a) $S \subseteq T \Rightarrow \operatorname{Csq}(T) \subseteq \operatorname{Csq}(S)$
- (b) $\operatorname{Csq}(S \cup T) = \operatorname{Csq}(S) \cup \operatorname{Csq}(T)$
- (c) $\operatorname{Csq}(S \cap T) = \operatorname{Csq}(S) \cap \operatorname{Csq}(T)$

K zamyšlení

Příklad 13. Ukažte, že \land a \lor nestačí k definování všech Booleovských operátorů, tj. že $\{\land, \lor\}$ není *univerzální* množina logických spojek.

Příklad 14. Uvažte Booleovský operátor IFTE(p,q,r) definovaný jako 'if p then q else r'.

- (a) Zkonstruujte pravdivostní tabulku.
- (b) Ukažte, že všechny základní Booleovské operátory $(\neg, \rightarrow, \land, \lor, \dots)$ lze vyjádřit pomocí IFTE a konstant TRUE a FALSE.

Příklad 15. Buď ℙ spočetně nekonečná množina prvovýroků.

- (a) Ukažte, že již neplatí, že každou $K\subseteq M_{\mathbb{P}}$ lze axiomatizovat výrokem v CNF i výrokem v DNF.
- (b) Uveďte příklad množiny modelů K, kterou nelze axiomatizovat ani výrokem v CNF, ani výrokem v DNF.

Příklad 16. Najděte CNF a DNF reprezentaci n-ární parity, tj. Booleovské funkce par: $\{0,1\}^n \to \{0,1\}$, která vrací XOR všech vstupních hodnot:

$$par(x_1, \dots, x_n) = (x_1 + \dots + x_n) \bmod 2$$

Zkuste to pro malé hodnoty n.

Příklad 17. Uvažme nekonečnou výrokovou teorii $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$ nad var(T).

- (a) Najděte všechny modely T.
- (b) Které výroky ve tvaru $p_i \to p_j$ jsou důsledky T?