Vectors MATH 3512, BCIT

Matrix Methods and Statistics for Geomatics

October 8, 2018

The projection u_H of a vector u onto a hyperplane H is the vector in the hyperplane that is "most similar" to u. The formal definition for u_H requires that

- $\mathbf{0}$ u is in H
- $(u u_H)$ is orthogonal to all basis vectors of H

Example 1: Finding a Projection. Let H be the line spanned by $\vec{v} = (-1, 1)^{\mathsf{T}}$ in \mathbb{R}^2 . What is the projection \vec{w} of $\vec{u} = (3, -2)^{\mathsf{T}}$?

Let $\vec{w} = (w_1, w_2)^{\mathsf{T}}$. Then (1) $\vec{u} - \vec{w}$ is orthogonal to \vec{v} and (2) $\vec{w} = \alpha \vec{v}$ for some $\alpha \in \mathbb{R}$.

$$\begin{array}{rcl}
 w_1 & - & w_2 & = & 5 \\
 w_1 & + & w_2 & = & 0
 \end{array}$$
 (1)

Cramer's rule tells us that $\vec{w} = (2.5, -2.5)^{\mathsf{T}}$.

Let $u = (u_1, ..., u_n)^{\mathsf{T}}$ be a vector and H be a k-dimensional hyperplane in the vector space \mathbb{R}^n . Let $x_1, ..., x_k$ be a basis for H. Then it is true for all vectors v in the hyperplane that

$$||u - v|| \ge ||u - u_H||$$
 (2)

Proof: use the theorem of Pythagoras for

$$||u - v||^2 = ||u - u_H||^2 + ||u_H - v||^2 \ge ||u - u_H||^2$$
 (3)

The claim follows. It illustrates what I mean when I say that u_H is the vector in H that is most similar to u.

Example 2: Finding Another Projection. What is the projection of $\vec{u} = (5, 2, 10)^{\mathsf{T}}$ onto the plane T characterized by 2x + y + 3z = 0?

First we find two linearly independent vectors in H to form a basis of H, for example $\vec{v_1} = (1,1,-1)^{\mathsf{T}}$ and $\vec{v_2} = (0,-3,1)^{\mathsf{T}}$. The conditions

- $\mathbf{0}$ $u_H \in T$
- ② $(u u_H) \perp v_1$
- **③** $(u u_H) ⊥ v_2$

give us the system of linear equations

$$\begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & 1 \\ 0 & 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -4 \end{bmatrix} \tag{4}$$

for which the solution is $u_H = (\hat{x}, \hat{y}, \hat{z})^{\mathsf{T}} = (-1, -1, 1)^{\mathsf{T}}$.

Least Squares Method

Least Squares Method

Least Squares Method

End of Lesson

Next Lesson: TBA