Lecture 8

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

Readings: CC08 Chapter 5.1-5.3, 6.4, & 10; BD16 Chapter 6.1-6.2 & 6.4-6.5; SS17 Chapter 3.6-3.7, & 3.9

MATH 8090 Time Series Analysis Week 8 Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Whitney Huang Clemson University

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Autoregressive Integrated Moving Average (ARIMA) Models

Monthly Price of Oil: January 1986-January 2006

A stationary model does not seem to be reasonable. However, it is also not clear which (deterministic) trend model is appropriate ©

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Random Walks Revisited

Recall the random walk process

$$X_t = Z_1 + Z_2 + \dots + Z_t = \sum_{j=1}^t Z_j,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary process

We can obtain a stationary process by differencing

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t = Z_t$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

$$X_t = Z_1 + Z_2 + \dots + Z_t = \sum_{j=1}^t Z_j,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary process

We can obtain a stationary process by differencing

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t = Z_t$$

• $\{X_t\}$ is an example of an autoregressive integrated moving average (ARIMA) process— ARIMA(0, 1, 0) process

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

ARIMA Models

An ARIMA model is an ARMA process after differencing

• Let d be a non-negative integer. Then X_t is an ARIMA(p, d, q) process if

$$Y_t = \nabla^d X_t = (1 - B)^d X_t$$

is a causal ARMA process

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

• Let d be a non-negative integer. Then X_t is an ARIMA(p, d, q) process if

$$Y_t = \nabla^d X_t = (1 - B)^d X_t$$

is a causal ARMA process

• Let $\phi(B)$ be the AR polynomial and $\theta(B)$ be the MA polynomial. Then for $\{Z_t\} \sim \mathrm{WN}(0, \sigma^2)$

$$\phi(B)Y_t = \theta(B)Z_t,$$

and since $Y_t = (1 - B)^d X_t$, we have

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Example: ARIMA(1, 1, 0)

Let $\phi(z)=1-\phi_1z,\, \theta(z)=1$ and d=1. For a causal stationary solution (after differencing) we need to assume $|\phi_1|<1.$ Then $\{X_t\}$ is an ARIMA (1, 1, 0) process,

$$(1 - \phi_1 B)(1 - B)X_t = Z_t,$$

where
$$\{Z_t\} \sim WN(0, \sigma^2)$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Passengers

Let $\phi(z)=1-\phi_1z$, $\theta(z)=1$ and d=1. For a causal stationary solution (after differencing) we need to assume $|\phi_1|<1$. Then $\{X_t\}$ is an ARIMA (1, 1, 0) process,

$$(1-\phi_1 B)(1-B)X_t = Z_t,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

Now let $Y_t = (1 - B)X_t = X_t - X_{t-1}$, after some rearrangements we have

$$X_{t} = X_{t-1} + Y_{t}$$

$$= (X_{t-2} + Y_{t-1}) + Y_{t}$$

$$\vdots$$

$$= X_{0} + \sum_{i=1}^{t} Y_{i}$$

Thus $\{X_t\}$ is a "sort of random walk"—we cumulatively sum an AR(1) process, $\{Y_t\}$

Simulated ARIMA and Differenced ARMA Process

We simulate an ARIMA(1,1,0):

$$(1-0.5B)(1-B)X_t = Z_t, \quad \{Z_t\} \sim N(0,1)$$

20

15

10

Lag

10

15

20

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

200

Seasonal ARIMA (SARIMA) Model

Adding a Polynomial Trend

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p, d, q) process. Then $\{X_t\}$ satisfies the equation

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

• Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p,d,q) process. Then $\{X_t\}$ satisfies the equation

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

$$= \phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$$

$$= 0 + \phi(B)(1-B)^{d}X_{t}$$

$$= \theta(B)Z_{t}$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p,d,q) process. Then $\{X_t\}$ satisfies the equation

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

$$= \phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$$

$$= 0 + \phi(B)(1-B)^{d}X_{t}$$

$$= \theta(B)Z_{t}$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

(SARIMA) Model

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

$$= \phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$$

$$= 0 + \phi(B)(1-B)^{d}X_{t}$$

$$= \theta(B)Z_{t}$$

Takeaway: ARIMA(p,d,q) are useful for modeling data with polynomial trends, due to the inherent differencing that can be used to remove trends

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Steps for Modeling ARIMA Processes: Exploratory Analysis

- Plot the data, ACF, PACF and Q-Q plots
 - Check for unusual features of the data
 - Check for stationarity
 - Do we need to transform the data?
- Eliminate trend
 - Estimating the trend and removing it from the series
 - Or, differencing the series (i.e., select d in the ARIMA model)
- Plot the sample ACF/PACF for the stationary component
 - ullet Identify candidate values of p and q

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

(SARIMA) Model

ARMIA

(SARIMA) Model

- Estimate the ARMA process parameters for the candidate models
- Check the goodness of fit: Are the time series residuals, $\{r_t\}$ a sample of *i.i.d.* noise?
- Model selection:

- Using information criteria such as AIC and AICc
- Test model parameters to compare between the "full" model and the "subset" model

ARMIA

Seasonal ARIMA (SARIMA) Model

Passengers

We need more assumptions to forecast ARIMA(p, d, q) processes. Let us start with the case of d = 1, i.e.,

$$\phi(B)(1-B)X_t = \theta(B)Z_t,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

- Note: $Y_t = (1 B)X_t = X_t X_{t-1}$ is an ARMA(p, q) process
- We want to find the best linear predictor (BLP) of X_{n+1} based on X₀, X₁, ···, X_n
 - We konw that X_{n+1} = X_n + Y_{n+1} \Rightarrow only need to figure out the BLP of Y_{n+1} based on $\{X_0, Y_1, \cdots, Y_n\}$
 - We need to know $\mathbb{E}(X_0^2)$ and $\mathbb{E}(X_0Y_j)$ for $j=1,\cdots,n+1$

Forecasting ARIMA(p, 1, q) Processes (Cont'd)

Problem: What is $\mathbb{E}(X_0Y_j)$?

• We assume that X_0 is uncorrelated with Y_1, Y_2, \cdots

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Forecasting ARIMA(p, 1, q) Processes (Cont'd)

Problem: What is $\mathbb{E}(X_0Y_j)$?

- We assume that X_0 is uncorrelated with Y_1, Y_2, \cdots
- Then the BLP of X_{n+1} based on $\{X_0, X_1, \cdots, X_n\}$ is the same as the BLP of X_{n+1} based on $\{Y_1, Y_2, \cdots, Y_n\}$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Problem: What is $\mathbb{E}(X_0Y_i)$?

- We assume that X_0 is uncorrelated with Y_1, Y_2, \cdots
- Then the BLP of X_{n+1} based on $\{X_0, X_1, \dots, X_n\}$ is the same as the BLP of X_{n+1} based on $\{Y_1, Y_2, \dots, Y_n\}$
- This extends to ARIMA(p, d, q) processes:

If we assume that $\{X_{1-d}, \dots, X_0\}$ is uncorrelated with Y_1, Y_2, \cdots , then the BLP of Y_{n+1} based on $\{X_{1-d}, \dots, X_0, \dots, X_n\}$ is the same as the BLP based on $\{Y_1, Y_2, \dots, Y_n\}$

Autorearessive Integrated Moving

Percentage Changes and Logarithms

Suppose X_t tends to have relatively stable percentage changes from one time period to the next. Specifically, assume that

$$X_t = (1+Y_t)X_{t-1},$$

where $100Y_t$ is the percentage change from X_{t-1} to X_t . Then

$$\log(X_t) - \log(X_{t-1}) = \log\left(\frac{X_t}{X_{t-1}}\right) = \log(1 + Y_t).$$

If Y_t is restricted to, say, $|Y_t| < 0.2$ (ie., the percentage changes are at most $\pm 20\%$), then, to a good approximation, $\log(1+Y_t) \approx Y_t$. Consequently

$$\Delta[\log(X_t)] \approx Y_t$$

will be relatively stable and perhaps well-modeled by a stationary process.

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ALUVIIA

(SARIMA) Model

Suppose X_t tends to have relatively stable percentage changes from one time period to the next. Specifically, assume that

$$X_t = (1 + Y_t)X_{t-1},$$

where $100Y_t$ is the percentage change from X_{t-1} to X_t . Then

$$\log(X_t) - \log(X_{t-1}) = \log\left(\frac{X_t}{X_{t-1}}\right) = \log(1 + Y_t).$$

If Y_t is restricted to, say, $|Y_t| < 0.2$ (ie., the percentage changes are at most $\pm 20\%$), then, to a good approximation, $\log(1+Y_t) \approx Y_t$. Consequently

$$\Delta[\log(X_t)] \approx Y_t$$

will be relatively stable and perhaps well-modeled by a stationary process.

In the financial literature, the differences of the (natural) logarithms are usually called returns

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

AHIVIIA

SARIMA) Model

Passengers Passengers

Time Series Plots of Monthly US Electricity Production

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA SARIMA) Model

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMI.

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Seasonal ARIMA (SARIMA) Model

Recall the trend, seasonality, noise decomposition:

$$Y_t = \mu_t + s_t + \eta_t,$$

where

- μ_t : (deterministic) trend component;
- s_t : (deterministic) seasonal component with mean 0;
- η_t : random noise with $\mathbb{E}(\eta_t) = 0$

We have already described ways to estimate each component both separately and jointly (via likelihood-based method). But what about if $\{s_t\}$ is a "random" function of t?

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARIVIIA

(SARIMA) Model

$$Y_t = \mu_t + s_t + \eta_t,$$

where

- μ_t : (deterministic) trend component;
- s_t : (deterministic) seasonal component with mean 0;
- η_t : random noise with $\mathbb{E}(\eta_t) = 0$

We have already described ways to estimate each component both separately and jointly (via likelihood-based method). But what about if $\{s_t\}$ is a "random" function of t?

 \Rightarrow The seasonal ARIMA model allows us to model the case when s_t itself varies randomly from one cycle to the next

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

AHIVIIA

Seasonal ARIMA (SARIMA) Model

Digression: Using ARIMA for Stochastic Trend Modeling

For a given time series, it may be challenging to identify the exact form of a deterministic trend μ_t . However, ARIMA models can effectively capture and account for a "stochastic" trend

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

$$Y_t = \nabla^d \nabla_s^D X_t = (1 - B)^d (1 - B^s)^D X_t,$$

is a casual ARMA process define by

$$\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$.

 $\{Y_t\}$ is causal if $\phi(z) \neq 0$ and $\Phi(z) \neq 0$, for $|z| \leq 1$, where

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p;$$

$$\Phi(z) = 1 - \Phi_1 z - \dots - \Phi_P z^P.$$

All roots of the AR and SAR characteristic equations must be greater than 1 in modulus

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ANIVIIA

SARIMA) Model

An Example of a Seasonal AR Model

$$Y_t = 0.9Y_{t-12} + Z_t$$

$$\Rightarrow p = q = d = D = Q = 0, P = 1, \Phi_1 = 0.9, s = 12.$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

An Example of a Seasonal MA Model

$$Y_t = Z_t + 0.75Z_{t-4}$$

$$\Rightarrow p = q = d = D = P = 0, Q = 1, \Theta_1 = 0.75, s = 4.$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

$$(1-B)(1-B^{12})X_t = Y_t$$
$$(1+0.25B)(1-0.9B^{12})Y_t = (1+0.75B^{12})Z_t$$

$$\Rightarrow p = P = Q = d = D = 1, \ \phi = -0.25, \Phi = 0.9, \Theta_1 = 0.75, s = 12.$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

An Illustration of Seasonal Model

Consider a monthly time series $\{X_t\}$ with both a trend, and a seasonal component of period s=12.

• Suppose we know the values of d and D such that $Y_t = (1-B)^d (1-B^{12})^D X_t$ is stationary

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

- Consider a monthly time series $\{X_t\}$ with both a trend, and a seasonal component of period s=12.
 - Suppose we know the values of d and D such that $Y_t = (1-B)^d (1-B^{12})^D X_t$ is stationary
 - We can arrange the data this way:

	Month 1	Month 2	•••	Month 12
Year 1	Y_1	Y_2	•••	$\overline{Y_{12}}$
Year 2	Y_{13}	Y_{14}	•••	Y_{24}
:	:	÷	•••	÷
Year r	$Y_{1+12(r-1)}$	$Y_{2+12(r-1)}$	•••	$Y_{12+12(r-1)}$

 For each month m, we assume the same ARMA(P,Q) model. We have

$$Y_{m+12y} - \sum_{i=1}^{P} \Phi_i Y_{m+12(y-i)}$$
$$= U_{m+12y} + \sum_{j=1}^{Q} \Theta_j U_{m+12(y-j)},$$

for each $y=0,\cdots,r-1$, where $\{U_{m+12y:y=0,\cdots,r-1}\}\sim \mathrm{WN}(0,\sigma_U^2)$ for each m

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

 For each month m, we assume the same ARMA(P,Q) model. We have

$$Y_{m+12y} - \sum_{i=1}^{P} \Phi_i Y_{m+12(y-i)}$$
$$= U_{m+12y} + \sum_{j=1}^{Q} \Theta_j U_{m+12(y-j)},$$

for each $y=0,\cdots,r-1$, where $\{U_{m+12y:y=0,\cdots,r-1}\}\sim \mathrm{WN}(0,\sigma_U^2)$ for each m

We can write this as

$$\Phi(B^{12})Y_t = \Theta(B^{12})U_t,$$

and this defines the inter-annual model

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA SARIMA) Model

The Intra-Annual Model

We induce correlation between the months by letting the process $\{U_t\}$ follow an ARMA(p,q) model,

$$\phi(B)U_t = \theta(B)Z_t,$$

where
$$Z_t \sim WN(0, \sigma^2)$$

This is the intra-annual model

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Seasonal ARIMA (SARIMA) Model

Passengers

We induce correlation between the months by letting the process $\{U_t\}$ follow an ARMA(p,q) model,

$$\phi(B)U_t = \theta(B)Z_t,$$

where $Z_t \sim WN(0, \sigma^2)$

- This is the intra-annual model
- The combination of the inter-annual and intra-annual models for the differenced stationary series,

$$Y_t = (1 - B)^d (1 - B^{12})^D X_t,$$

yields a SARIMA model for $\{X_t\}$

Steps for Modeling SARIMA Processes

1. Transform data is necessary

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Steps for Modeling SARIMA Processes

- 1. Transform data is necessary
- 2. Find d and D so that

$$Y_t = (1 - B)^d (1 - B^s)^D X_t$$

is stationary

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Passengers

- Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models
- CLEMS#N UNIVERSITY

Seasonal ARIMA (SARIMA) Model

Passengers Passengers

- 1. Transform data is necessary
- 2. Find d and D so that

$$Y_t = (1 - B)^d (1 - B^s)^D X_t$$

is stationary

3. Examine the sample ACF/PACF of $\{Y_t\}$ at lags that are multiples of s for plausible values of P and Q

CLEMS N

ARMIA

Seasonal ARIMA (SARIMA) Model

Passengers

- 1. Transform data is necessary
- 2. Find d and D so that

$$Y_t = (1 - B)^d (1 - B^s)^D X_t$$

is stationary

- 3. Examine the sample ACF/PACF of $\{Y_t\}$ at lags that are multiples of s for plausible values of P and Q
- 4. Examine the sample ACF/PACF at lags $\{1,2,\cdots,s-1\}$, to identify possible values of p and q

Modeling SARIMA Processes (Cont'd)

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Passengers

5. Use maximum likelihood method to fit the models

6. Use model summaries, diagnostics, AIC (AICc) to determine the best SARIMA model

7. Conduct forecast

Airline Passengers Example

We consider the data set airpassengers, which are the monthly totals of international airline passengers from 1960 to 1971.

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Here we stabilize the variance with a log_{10} transformation

Sample ACF/PACF Plots

 The sample ACF decays slowly with a wave structure ⇒ seasonality Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA SARIMA) Model

- The sample ACF decays slowly with a wave structure ⇒ seasonality
- The lag one PACF is close to one, indicating that differencing the data would be reasonable

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA SARIMA) Model

Trying Different Orders of Differencing

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model A Case Study of Airline We choose a SARIMA $(p,1,q) \times (P,0,Q)_{12}$ model. Next we examine the sample ACF/PACF of the process $Y_t = (1-B)X_t$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Now we need to choose P, Q, p, and q

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

```
> fit1 <- arima(diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12)) > fit1
```

Call:

arima(x = diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))

Coefficients: ar1

sar1 intercept

-0.2667 0.9291 0.0039 s.e. 0.0865 0.0235 0.0096

sigma^2 estimated as 0.0003298: log likelihood = 327.27, aic = -646.54

> Box.test(fit1\$residuals, lag = 48, type = "Ljung-Box")

Box-Ljung test

data: fit1\$residuals

X-squared = 55.372, df = 48, p-value = 0.2164

2

• 95% CI for ϕ_1 and Φ_1 do not contain zero \Rightarrow no need to go with simpler model

Our estimated model is:

$$X_t = \log_{10}(\text{\#Passengers})$$

 $Y_t = (1-B)X_t = X_t - X_{t-1}$
 $(1+0.2667B)(1-0.9291B^{12})(Y_t - 0.0039) = Z_t,$

where $\{Z_t\}$ $\stackrel{i.i.d.}{\sim}$ N(0, σ^2) with $\hat{\sigma}^2$ = 0.00033

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

easonal ARIMA SARIMA) Model

Comparing with a SARIMA $(0,1,0) \times (1,0,0)$ Model

> (fit2 <- arima(diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12)))

Call:

arima(x = diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12))

Coefficients:

sar1 intercept

0.9081 0.0040

s.e. 0.0278 0.0108

sigma^2 estimated as 0.0003616: log likelihood = 322.75, aic = -639.51
> Box.test(fit2\$residuals, lag = 48, type = "Ljung-Box")

Box-Ljung test

data: fit2\$residuals

X-squared = 80.641, df = 48, p-value = 0.002209

Lag

Lag

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

CLEMS#N u n i v e r s i t y

ARMIA

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Here we drop the AR(1) term

- Residual plots are similar to before, with greater spread in 1949-1955 and heavy tails
- Both $\hat{\sigma}^2$ and AIC increase (compared with model fit1)
- The lag 1 of ACF and PACF now lies outside the IID noise bounds. The Ljung-Box p-value of 0.0022, leads us to reject the IID residual assumption

In conclusion, the SARIMA $(1,1,0)\times(1,0,0)_{12}$ model fits better than SARIMA $(0,1,0)\times(1,0,0)_{12}$

Forecasting the 1971 Data

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Evaluating Forecast Performance

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

ARMIA

Seasonal ARIMA (SARIMA) Model

Metrics	Model Fit1	Model Fit2
Root Mean Square Error	30.36	31.32
Mean Relative Error	0.057	0.060
Empirical Coverage	0.917	1.000

The SARIMA $(1,1,0) \times (1,0,0)$ Model is Equivalent To?

Our model for the log passenger series $\{X_t\}$ is

$$\phi(B)\Phi(B^{12})(1-B)X_t = Z_t,$$

where $\phi(B) = 1 - \phi_1 B$ and $\Phi(B) = 1 - \Phi_1(B)$

Note that

$$\phi(B)\Phi(B^{12}) = (1 - \phi_1 B)(1 - \Phi_1 B^{12})$$
$$= 1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}$$

Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal ARIMA Models

RMIA

Seasonal ARIMA (SARIMA) Model

Seasonal ARIMA (SARIMA) Model

A Case Study of Airline Passengers

Our model for the log passenger series $\{X_t\}$ is

 $\phi(B)\Phi(B^{12})(1-B)X_t=Z_t,$ where $\phi(B)$ = $1-\phi_1B$ and $\Phi(B)$ = $1-\Phi_1(B)$

Note that

$$\phi(B)\Phi(B^{12}) = (1 - \phi_1 B)(1 - \Phi_1 B^{12})$$
$$= 1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}$$

Question: What is this SARIMA model equivalent to?