CS 215- Data Interpretation and Analysis (Post Midsem)

Pushpak Bhattacharyya
Computer Science and Engineering Department
IIT Bombay
Lecture-5
Hypothesis Testing cntd
19oct23

Recap

Terminology for Test of hypothesis

Terminology

Null and Alternative Hypothesis

 H₀: Null Hypothesis → the hypothesis we want to reject

H_A or H₁: Alternative Hypothesis → opposite of H₀

 We use the sample statistics, trying to reject H₀

H₀ and H_A for manufacturing-part problem

Dimensions

5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5

Variance: 4 (somehow known)

Sample mean: 9

Company "claims" av. dimension as 15

 H_0 : Dim>=15, H_A : Dim < 15 (one sided)

Type I and Type II error

 Type I: incorrectly reject H₀, when it should have been accepted.

 Type II: incorrectly accept H₀ when it should have been rejected.

More on H₀

 The data would be unlikely to occur if the null hypothesis were true.

In logical form:

$$N_H \mid - \sim D$$

 Where N_H is the proposition "null hypothesis true" and D is the proposition "Data occurs"

Digression: Hypothesis Testing in Logic

Using Predicate Calculus

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
 - Facts
 - Rules

Example contd.

- Let mc denote mountain climber and sk denotes skier. Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - member(B)
 - 3. member(C)
 - 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - 5. $\forall x[mc(x) \rightarrow \sim like(x,rain)]$
 - 6. $\forall x[sk(x) \rightarrow like(x, snow)]$
 - 7. $\forall x[like(B, x) \rightarrow \sim like(A, x)]$
 - 8. $\forall x [\sim like(B, x) \rightarrow like(A, x)]$
 - 9. like(A, rain)
 - 10. like(A, snow)
 - 11. Question: $\exists x [member(x) \land mc(x) \land \neg sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

- 1. member(A)
- $_{2.}$ member(B)
- member(C)
- 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - Can be written as
 - $member(x) [member(x) \rightarrow (mc(x) \lor sk(x))]$
- 5. $\forall x[sk(x) \rightarrow lk(x, snow)]$
 - $\sim sk(x) \vee lk(x, snow)$
- 6. $\forall x [mc(x) \rightarrow \sim lk(x, rain)]$
 - $\sim mc(x) \lor \sim lk(x, rain)$
- $\forall x[like(A,x) \rightarrow \sim lk(B,x)]$
 - $\sim like(A, x) \lor \sim lk(B, x)$

8. $\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$ $- lk(A, x) \lor lk(B, x)$

- 9. lk(A, rain)
- 10. lk(A, snow)
- 11 $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
 - Negate- $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

- Now standardize the variables apart which results in the following
- 1. member(A)
- 2. member(B)
- member(C)
- 4. $\sim member(x_1) \vee mc(x_1) \vee sk(x_1)$
- 5. $\sim sk(x_2) \vee lk(x_2, snow)$
- 6. $\sim mc(x_3) \vee \sim lk(x_3, rain)$
- 7. $\sim like(A, x_4) \vee \sim lk(B, x_4)$
- 8. $lk(A, x_5) \vee lk(B, x_5)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\sim member(x_6) \vee \sim mc(x_6) \vee sk(x_6)$

Null Hypothesis: H₀

 H₀: The club does NOT have any member that is a mountain climber (MC) and not a skier (SK)

Key question: Under H₀, is the observation valid?

 In other words: is the hypothesis consistent with the data?

Methodology

 If Hypothesis not consistent with data, hypothesis must be rejected

Data cannot be rejected

Data is GOLD!

Data for Himalayan Club Example

- (1) A, B and C belong to the Himalayan club.
- (2) Every member in the club is either a mountain climber or a skier or both.
- (3) A likes whatever B dislikes and
- (4) dislikes whatever B likes.
- (5) A likes rain and snow.
- (6) No mountain climber likes rain.
- (7) Every skier likes snow

Null Hypothesis for Himalayan Club Example

- H₀: There is NOT a single member who is a mountain climber and not a skier
- H₀ inconsistent with data

- So must be rejected
- Methodology: Logical Inferencing-Resolution-Refutation

More on H₀

Maximum Likelihood in action

Move the ball to the "court" of observations

 Formulate H₀ in such a way that high probability of H₀ makes the data probability low

End Recap

Useful concepts for hypothesis testing

A useful table

test-type (col)			
vs.	Two-Tail	1 sided to +inf	1 sided from -inf
Confidence Interval (significance level)			
90% (0.10)	(- and +) 1.65	-1.28 to +inf	-inf to +1.28
95% (0.05)	(- and +) 1.96	-1.65 to +inf	-inf to +1.65
99% (0.01)	(- and +) 2.58	-2.33 to +inf	-inf to 2.33

2 sided 95% confidence interval

1-sided confidence interval (upper/right)

1-sided confidence interval (lower/left)

Illustration

Problem Statement: bottling of fluid

 A factory has a machine that- the factory claims- dispenses 80mL of fluid in a bottle. This needs to be tested. A sample of 40 bottles is taken. The average amount of fluid is 78mL with standard deviation of 2.5. Verify the factory's claim.

https://www.youtube.com/watch?v=zJ8e_wAWUzE

Essential elements (1/n)

- Examine the problem carefully, read the problem statement again and again, discuss the issue threadbare
- 1. Formulate H₀
- 2. Formulate H_A
- 3. Decide confidence interval (usually 90, 95 or 99%)→ this automatically fixes the significance level (0.10, 0.05 or 0.01)

This sets the rule of the game, cannot change going forward!!

Essential elements (2/n)

- From H₀ and H_A, decide 2-sided or 1 sided test
 - -2 sided for '=' or '≠'
 - -1 sided for '>=' or '=<'

Essential elements (3/n)

- Decide Z-test/T-test/F-test/ChiSquare test
- If Z-test, Z_c (critical value)=

```
+- 1.65 for 90% confidence interval,
-inf to +1.28, -1.28 to +inf
```

+- 1.96 for 95% confidence interval, -inf to +1.65, -1.65 to +inf

+-2.58 for 99% confidence interval, -inf to +2.33, -2.33 to +inf

2 sided 95% confidence interval

1-sided confidence interval

1-sided confidence interval

Essential elements (4/n)

 Under H0, determine test statistic from the data called OBSERVED

- For Z-test, Z_o (observed)
- If Zo is inside the "REJECT" region, reject H₀
- Else cannot reject H₀

Back to Illustration: bottling of fluid

- Claimed population mean, µ=80
- n=40, sample mean, μ_{obs} =78, sample standard deviation, σ_{obs} =2.5
- H_0 : $\mu = 80$
- H_A: 3 options
 - $-\mu \neq 80$ (2-sided test)
 - $-\mu >= 80 (1-sided)$
 - $-\mu <= 80 (1-sided)$

2 sided 95% confidence interval

2-tailed analysis

•
$$Z_c = +-1.96$$

•
$$\frac{Z_{\text{obs}}}{X} = \frac{X - \mu}{\sigma} = \frac{78 - 80}{2.5}$$

$$= -5 (approx.)$$

Falls in rejection region

2 sided 95% confidence interval

Z-test based observation (2-tailed)

- -5<-1.96
- We reject the null hypothesis
- The claim that the machine fills bottles with 80mL fluid is rejected based on the evidence

99% confidence interval

-5 still in rejection region

• -5.0 < -2.58

 So for 99% confidence interval also the hypothesis is rejected

90% confidence interval

-5 still in rejection region

-5.0 < -1.28

 So for 90% confidence interval also the hypothesis is rejected

What about '>' test?

- H_A: The factory fills bottles with more than 80mL fluid
- $Z_c = +1.65$ or -1.65
- what can we conclude?

What about '<' test?

- H_A: The factory fills bottles with less than 80mL fluid
- Will have to perform lower half Z-tests
- $Z_c = +1.65$ or -1.65
- what can we conclude?

1-sided confidence interval (upper/right)

1-sided confidence interval (lower/left)

Nicotine Problem

Problem statement (Sheldon M. Ross, PSES, 2004)

All cigarettes presently on the market have an average nicotine content of at least 1.6mg per cigarette. A firm that produces cigarettes claims that it has discovered a new way to cure tobacco leaves that will result in the average nicotine content of a cigarette being less than 1.6 mg. To test this claim, a sample of 20 of the firms cigarettes were analysed. If it is known that the standard deviation of a cigarette's nicotine content is 0.8 mg., what conclusions can be drawn at the 5% level of significance if the average nicotine content of the 20 cigarettes is 1.54?

Solution to the Nicotine problem

- First decide H₀
- Requirement: the probability of rejecting H₀ when it is true will never exceed α
- We should test
- H_0 : $\mu > = 1.6$ versus H_1 : $\mu < 1.6$

Nicotine problem μ =1.6

Value of test statistic is

$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} = \frac{\sqrt{20}(1.54 - 1.6)}{0.8}$$

$$=-0.3$$

$$Z=-0.3 > -1.96$$

Nicotine problem $\mu=1.7$

Value of test statistic is

$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} = \frac{\sqrt{20}(1.54 - 1.7)}{0.8}$$

=-0.8

Z=-0.8 > -1.96

Nicotine problem μ =1.8

Value of test statistic is

$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} = \frac{\sqrt{20}(1.54 - 1.8)}{0.8}$$

=-1.3

Z=-1.3 > -1.96

Conclusion from the nicotine problem

- 0.4 > 0.05; 0.2 > 0.05; 0.1 > 0.05
- Foregoing data do not enable us to reject at the 0.05 percent level of significance the hypothesis that "mean nicotine content exceeds 1.6"
- In other words, the evidence though supporting the cigarette producer's claim is not strong enough to prove the claim

Coin toss problem

Problem Statement and Solution

Q: Find the probability of getting between 40 and 60 heads both inclusive in 100 tosses of a fair coin

A: According binomial distribution, the required probability is

$${}^{100}C_{40}(1/2)^{40}(1/2)^{60} + {}^{100}C_{41}(1/2)^{41}(1/2)^{59} + ... {}^{100}C_{60}(1/2)^{60}(1/2)^{40}$$

Cumbersome to compute

Normal Approximation to Binomial

```
Mean=\mu=np=100.(1/2)=50
Standard deviation=\sigma=sqrt(npq)=sqrt[100.(1/2).(1/2)]=5
```

Since both np and nq are greater than 5, normal approx. to the binomial can be used to evaluate the sum.

On a continuous scale, 40 and 60 heads inclusive is same as between 39.5 to 60.5 heads

Z values for 39.5 and 60.5

$$(39.5-50)/5=-2.10$$

$$(60.5-50)/5=+2.10$$

The area under the normal curve between -2.10 to +2.10 = 0.96

A Hypothesis wrt coin toss

H₀: The coin is fair when the number of heads is between 40 and 60, both inclusive in a sample of tosses of 100

What is the probability of Type I error?

Ans: 1-0.96= 4%

Important Terminology

The probability of Type I error is called the LEVEL OF SIGNIFICANCE