COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of the University of Sydney pursuant to Part VB of the Copyright Act 1968 (the Act). The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

COMPx270: Randomised and Advanced Algorithms
Lecture 9: Streaming and Sketching II

Clément Canonne School of Computer Science

You design a streaming algorithm A to solve some problem. The stream of data arrives.

A question 🥕

You design a streaming algorithm A to solve some problem. The stream of data arrives.

628, 516, 163, 509, 15, 499, 772, 588, 737, 439, 79, 866, 186, 18, 854, 459, 146, 518, 748, 737, 685, 188, 939, 724, 27, 719, 263, 795, 120, 573, 853, 132, 522, 3, 298, 123, 932, 993, 180, 674, 1, 619, 989, 142, 496, 178, 191, 524, 716, 501, 677, 712, 452, 768, 591, 551, 439, 397, 229, 214, 43, 639, 353, 610, 737, 203, 933, 279, 877, 30, 513, 518, 616, 714, 633, 804, 422, 731, 867, 184, 124, 881, 595, 193, 254, 240, 4, 260, 303, 319, 757, 723, 309, 365, 278, 512, 658, 233, 393, 875

You design a streaming algorithm A to solve some problem. The stream of data arrives. A outputs its answer:

21.5

Oh, no! That wasn't the end. More data arrives.

Oh, no! That wasn't the end. More data arrives.

834, 992, 528, 12, 181, 274, 159, 150, 716, 71, 755, 4, 324, 398, 802, 176, 302, 941, 678, 934, 546, 753, 812, 47, 755, 721, 893, 53, 410

Oh, no! That wasn't the end. More data arrives. A outputs its answer on this:

18.1

How do you combine 21.5 and 18.1 to get the answer on the whole data stream?

Sketching

$$\epsilon' \xrightarrow{A} S(\epsilon')$$

Some way to combine (concatenation of ϵ, ϵ')

Subjective of Sydney

Even better: linear sketching

$$S(\epsilon_1) + S(\epsilon_2) = S(\epsilon_1 \circ \epsilon_2)$$

Typically, addition of vectors in \mathbb{R}^k

(and sketcher are rection: $S(\epsilon) \in \mathbb{R}^k$)

S:
$$\mathbb{R}^n \rightarrow \mathbb{R}^k$$
 from \mathbb{R}^k \mathbb{R}^n \mathbb{R}^k \mathbb{R}^n $\mathbb{$

Frequent Elements (Heavy Hitters)

Remember Misra-Gries?

Theorem 39. The MISRA-GRIES algorithm is a deterministic one-pass algorithm which, for any given parameter $\varepsilon \in (0,1]$, provides $\hat{f}_1, \ldots, \hat{f}_n$ of all element frequencies such that

$$f_j - \varepsilon m \le \hat{f}_j \le f_j, \quad j \in [n]$$

with space complexity $s = O(\log(mn)/\varepsilon)$. (In particular, it can be used to solve the MAJORITY problem in two passes.)

3 daims

- 1) MG is a sketching algorithm
- (yay!)

2 Hou will see that in tutorial

Not quite. See [AC lecture notes, p. 12, Exercise 1-3.

3 It is not a linear sketching algo

 $\|x\|_{\infty} = \max_{i \in [n]} |x_i| + 1$

outputs fe

(succinctly represented)

11 BIL = 2 1 Bil

Frequent Elements (Heavy Hitters): ℓ_1 , ℓ_2 , etc.

$$\|\beta\|_{p} = \left(\sum_{i=1}^{n} |\beta_{i}|^{p}\right)^{n}$$
 $\|\beta\|_{2} \approx measure$
of empirical
rational
of the storeon

Ellelle better guarantee than Ellell."

1 c: (< B = 0(1)

Frequent Elements (Heavy Hitters): CountSketch (1/5)

Input: Parameters $\varepsilon, \delta \in (0, 1]$

- 1: Set $k \leftarrow O(1/\epsilon^2)$, and initialize an array \mathbb{C} of size k to zero
- 2: Pick $h: [n] \to [k]$ from a strongly universal hashing family
- 3: Pick $g: [n] \rightarrow \{-1,1\}$ from a strongly universal hashing family
- 4: for all $1 \le i \le m$ do
- 5: Get item $a_i = (j, c) \in [n] \times \{-B, \dots, B\} \triangleright Assume B = O(1)$
- 6: $C[h(j)] \leftarrow C[h(j)] + c \cdot g(j)$

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow g(j) \cdot C[h(j)]$

$$a_{1} = (25,3)$$
 $h(25) = 2$ $g(25) = -1$
 $C[2] \neq 0 + 3.(-1) = -3$
 $a_{101} = (300,1)$ $h(300) = 2$ $g(300) = -1$
 $C[2] \neq -3 + 1.(-1) = -4$

Twinstyle

Frequent Elements (Heavy Hitters): CountSketch (2/5)

Input: Parameters ε , $\delta \in (0,1]$

1: Set $k \leftarrow O(1/\epsilon^2)$, and initialize an array \mathbb{C} of size k to zero 2: Pick $h: [n] \rightarrow [k]$ from a strongly universal hashing family

3: Pick $g: [n] \to \{-1,1\}$ from a strongly universal hashing family

Frequent Elements (Heavy Hitters): CountSketch (3/5)

Count Sketch is a sketching algorithm.

By Pooking at step "output".

$$\begin{cases}
g(j) & C[h(j)] = g(j) \geq 1 \\
g(j) & g(j) \\
g(j) & g(j)$$

$$\mathbb{E}\left[\hat{b}_{j}\right] = \hat{b}_{j} + \sum_{i:i\neq j} \mathbb{E}\left[\mathbb{I}_{h(i)=h(j)}\mathbb{I}_{g(j)}g(i)\right]\hat{b}_{i}$$

$$= \hat{b}_{i} \qquad = 0 \quad \text{(part)}$$

Input: Parameters ε , $\delta \in (0,1]$

- 1: Set $k \leftarrow O(1/\varepsilon^2)$, and initialize an array \mathbb{C} of size k to zero
- 2: Pick $h: [n] \to [k]$ from a strongly universal hashing family
- 3: Pick $g: [n] \to \{-1,1\}$ from a strongly universal hashing family
- 4: **for all** $1 \le i \le m$ **do**
- Get item $a_i = (j, c) \in [n] \times \{-B, \dots, B\}$ \triangleright Assume B = O(1)
- $C[h(j)] \leftarrow C[h(j)] + c \cdot g(j)$

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow g(j) \cdot C[h(j)]$

Frequent Elements (Heavy Hitters): CountSketch (3/5)

Input: Parameters ε , $\delta \in (0,1]$

- 1: Set $k \leftarrow O(1/\varepsilon^2)$, and initialize an array C of size k to zero
- 2: Pick $h: [n] \to [k]$ from a strongly universal hashing family
- 3: Pick $g: [n] \to \{-1,1\}$ from a strongly universal hashing family
- 4: for all $1 \le i \le m$ do
- Get item $a_i = (j, c) \in [n] \times \{-B, \dots, B\}$ \triangleright Assume B = O(1)
- $C[h(j)] \leftarrow C[h(j)] + c \cdot g(j)$

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow g(j) \cdot C[h(j)]$

Page 31

Frequent Elements (Heavy Hitters): CountSketch (5/5)

Theorem 44. The (median trick version of the) CountSketch algorithm is a randomised one-pass sketching algorithm which, for any given parameters ε , $\delta \in (0,1]$, provides a (succinctly represented) estimate \widehat{f} of frequency vector f of the stream such that, for every $j \in [n]$

$$\Pr\left[\left\|\widehat{f}_{j}-f_{j}\right\|\leq\varepsilon\left\|f_{-j}\right\|_{2}\right]\geq1-\delta$$

with space complexity

$$s = O\left(\frac{\log(nm)}{\varepsilon^2}\log\frac{1}{\delta}\right).$$

Frequent Elements (Heavy Hitters): CountMinSketch (1/4)

(2) Cash negister model

oach grow has its own

Input: Parameters
$$\varepsilon$$
, $\delta \in (0, 1]$

- 1: Set $k \leftarrow O(1/\varepsilon)$ and $T \leftarrow O(\log(1/\delta))$, and initialize a two-dimensional array C of size $T \times k$ to zero
- 2: Pick h_1, \ldots, h_T : $[n] \rightarrow [k]$ independently from a strongly universal hashing family
- 3: for all $1 \le i \le m$ do
- Get item $a_i = (j, c) \in [n] \times \{0, \dots, B\} \triangleright Assume B = O(1)$
- 5: for all $1 \le t \le T$ do
- 6: $C[t][h_t(j)] \leftarrow C[t][h_t(j)] + c$

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow \min_{1 \le t \le T} C[t][h_t(j)]$

Bloom Liller !

Claim. Count Min Shatch is a sketching algo. *

Input: Parameters $\varepsilon, \delta \in (0, 1]$

- 1: Set $k \leftarrow O(1/\varepsilon)$ and $T \leftarrow O(\log(1/\delta))$, and initialize a twodimensional array C of size $T \times k$ to zero
- 2: Pick h_1, \ldots, h_T : $[n] \rightarrow [k]$ independently from a strongly universal hashing family
- 3: for all $1 \le i \le m$ do
- Get item $a_i = (j, c) \in [n] \times \{0, \dots, B\} \triangleright Assume B = O(1)$
- for all $1 \le t \le T$ do
- $\mathbf{C}[t][h_t(j)] \leftarrow \mathbf{C}[t][h_t(j)] + c$

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow \min_{1 \le t \le T} C[t][h_t(j)]$

Frequent Elements (Heavy Hitters): CountMinSketch (3/4)

Daim

Vi,
$$R_{f}[\hat{b}_{i} - \hat{b}_{i}] \ge e \|\hat{b}\|_{i} \le S$$
.

Brook:

$$\hat{b}_{j} = \hat{b}_{j} + \text{move } (\hat{b}_{j})^{i}$$
From advisions

$$\hat{b}_{j} = \min_{1 \le k \le T} C[k][h_{e}(j)]$$

$$= \min_{k \in J} (\hat{b}_{j} + \sum_{j \ne j} \hat{b}_{j})$$

Parties from the second of the s

Input: Parameters ε , $\delta \in (0,1]$

- 1: Set $k \leftarrow O(1/\varepsilon)$ and $T \leftarrow O(\log(1/\delta))$, and initialize a two-dimensional array C of size $T \times k$ to zero
- 2: Pick $h_1, \ldots, h_T \colon [n] \to [k]$ independently from a strongly universal hashing family
- 3: for all $1 \le i \le m$ do
- Get item $a_i = (j, c) \in [n] \times \{0, \dots, B\} \triangleright Assume B = O(1)$
- 5: for all $1 \le t \le T$ do

Output: On query $j \in [n]$, return $\hat{f}_j \leftarrow \min_{1 \le t \le T} C[t][h_t(j)]$

Frequent Elements (Heavy Hitters): CountMinSketch (4/4)

Theorem 45. The CountMinSketch algorithm is a randomised one-pass sketching algorithm which, for any given parameters ε , $\delta \in (0,1]$, provides a (succinctly represented) estimate \hat{f} of frequency vector f of the stream such that, for every $j \in [n]$

$$\Pr\left[\left\|\widehat{f}_{j}-f_{j}\right\|\leq\varepsilon\left\|f_{-j}\right\|_{1}\right]\geq1-\delta$$

with space complexity

$$s = O\left(\frac{\log(nm)}{\varepsilon}\log\frac{1}{\delta}\right).$$

(Moreover, \hat{f}_j is always an overestimate: $\hat{f}_j \geq f_j$ for all $j \in [n]$.)

Wait a minute...

This seems strictly worse than Misra-Gries!

- Randomised instead of deterministic!
- Uses more space!
- Also in the cash register model!
- Also an ℓ_1 guarantee!

Wait a minute...

This seems strictly worse than Misra-Gries!

- Randomised instead of deterministic!
- Uses more space!
- Also in the cash register model!
- Also an ℓ_1 guarantee!

Yes, but:

- Linear sketch!
- Much faster per time step!
- Can be extended to the strict turnstile model!

Recap

```
. CS, CMS, MG
solve the same problem

Different quaranters (CS/CMS,MG)

Different types of sketches (CS,CMS/MG)

Different space usage
```