EE1001 4 bit add theory

By Dr. K. F. Tsang

Binary Addition

- Review of Binary addition
- Use binary addition to compute 5+7

Write 5 in binary as: 101

Write 7 in binary as: 111

We have:

Therefore, the answer is 1100(12)

In other words 1 + 1 creates a carry.

Recall the Truth Tables in Engineering

Convert **Truth/False** (**T/F**) to **binary number** (**1/0**)

In	Input	
А	АВ	
1	1	1
1	0	0
0	1	0
0	0	0

Input

111	pui	Output	
А	В	~(A ∧ B)	
1	1	0	
1	0	1	
0	1	1	
0	0	1	

Output

Innut

А	В	$A \oplus B$	
1	1	0	
1	0	1	
0	1	1	
0	0	0	

Output

logic circuits

- This problem can be solved with *the logic circuits*
- Consider we have two terms A and B, and compute A+B. Both of A and B can only take the value 1 or 0.

Add One more value C which equals to 1

- SUM = A XOR B = A \oplus B
- \blacksquare CARRY = A AND B = A.B.

0

0

0

Half Adder Circuit

■ A **half adder** is a logical circuit that performs an addition operation on two binary digits. The half adder produces a **sum** and a **carry** value which are both binary digits.

Symbol Truth Table				
	В	Α	SUM	CARRY
A =1 Sum	0	0	0	0
& Carry	0	1	1	0
	1	0	1	0
	1	1	0	1

Full Adder Circuit

- Apart from A and B, let consider another C which equals to 1.
- lacktriangle Calso can be regarded a carrier from the previous stage.

C	Α	В	A + B + C	A +	В
1	0	0		0	0
1	0	1	1 0	0	1
1	1	0	1 0	0	1
1	1	1	1 1 1	1	0
			<u>ii</u>		

Carry-in Input Carry-out Sum

Output

- Compared with the result of A+B+C with A+B, it can be found:
 - SUM = (A XOR B) XOR C= (A \oplus B) \oplus C= A \oplus B \oplus C
 - CARRY-OUT = A AND B OR $C_{in}(A XOR B) = A.B + C_{in}(A \oplus B)$

Full Adder Circuit

■ The Full Adder is an adder has three inputs. The same two single bit data inputs A and B as before plus an additional Carry-in (C_{in}) input to receive the carry from a previous stage.

4-bit Adder Implementation

■ Let's consider two 4-bit binary numbers A and B as inputs to the Digital Circuit for the operation with digits:

A0, A1, A2, A3 B0, B1, B2, B3

- n-bit binary adder requires n full adders.
- The sum of each stage will be the output of the stage;
- The carry-out in this stage will be the carry-in in the next stage;
- The carry-out of the final stage will also be the output;

Implementation

■ Components provided:

Breadboard		1
2-input AND gate	74LS08	2
3-input AND gate	74LS11	1
2-input OR gate	74LS32	1
2-input XOR gate	74LS86	2
LEDs (Red x 4, white x4)		
4-ways DIP switch		
470Ω resistor (color ring: yellow, purple, black, black)		
1kΩ resistor (color ring: brown, black, black, brown)		
5V USB wire (option: lab at home)		
Breadboard red wire (option: lab at home)		
Breadboard black wire (option: lab at home)		0.5M
Breadboard yellow wire (option: lab at home)		2M
Breadboard green wire (option: lab at home)		

Introduction to bread board

■ Equipment provided:

Introduction to Chipset

■ Each Chipset contains 4 Gates

Before implementing on the bread board, please read carefully the Laboratory Manual to make sure you are safe and hopefully also avoid damaging equipments.

•- END -

