Cooperative Multicast Scheduling with Random Network Coding in WiMAX

Department of Electrical Computer Engineering
University of Toronto

WIMAX MBS

WIMAX MBS

WIMAX MBS

next generation infrastructure to broadcast data

WIMAX MBS

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

Problem with current multicast scheduling

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

Problem with current multicast scheduling

no ARQ & HARQ

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

Problem with current multicast scheduling

no ARQ & HARQ single channel, single path

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

Problem with current multicast scheduling

no ARQ & HARQ single channel, single path under-utilize spectrum due to user/channel diversity

WIMAX MBS

next generation infrastructure to broadcast data IEEE 802.11j/802.11m

Problem with current multicast scheduling

no ARQ & HARQ single channel, single path under-utilize spectrum due to user/channel diversity

How to properly select a multicast rate?

Observation

Users can help each other (cooperation)

aim to exploit diversity and cooperative gain cooperative communication is not well studies in MBS

Observation

Users can help each other (cooperation)

aim to exploit diversity and cooperative gain cooperative communication is not well studies in MBS

Adoption of OFDMA in WiMAX

concurrent transmissions without interference channel diversity gain multi-path, multi-hop transmission

Observation

Users can help each other (cooperation)

aim to exploit diversity and cooperative gain cooperative communication is not well studies in MBS

Adoption of OFDMA in WiMAX

concurrent transmissions without interference channel diversity gain multi-path, multi-hop transmission

Can we take advantage of all potential benefits and design a multicast scheduling protocol to tightly integate to WiMAX MBS?

Multicast Scheduling

Study from a new perspective

Multiple hops, multiple paths, multiple channels Network Coding to mitigate the overhead

Conventional Multicast Scheme

Cooperative Multicast Scheme

How to dynamically assign relays?

How to dynamically assign relays?

How to apply random network coding?

How to dynamically assign relays?

How to apply random network coding?

How to allocate channels?

How to dynamically assign relays?

How to apply random network coding?

How to allocate channels?

How to allocate power?

How to dynamically assign relays?

How to apply random network coding?

How to allocate channels?

How to allocate power?

How to tightly integrate with WiMAX protocol?

Our Contribution:

Cooperative Multicast Scheduling with Random Network Coding

Optimization

Greedy Optimization Frame Work

time-slotted WiMAX MBS optimal multicast rate efficient cooperative communication schedule proportional fairness criteria

$$\max_{R(t)} \sum_{i \in \zeta} \frac{U_i(t)}{\overline{r}_i(t)}$$

Subject to:

to:
$$U_i(t) = S_{m,i}(t)R_m(t) + \sum_{g \in \zeta} R_{gi}(t)$$

 $0 \le R_{gi}(t) \le C_{gi}(t)$
 $R_{gi}(t) \le \max\{0, \frac{B_g(t) - B_i(t)}{T}\}$
 $\sum_{g \in \zeta} R_{gi}(t) \le \sum_{h=1}^{t-1} R(h) - \frac{B_i(t)}{T} + (1 - S_{m,i}(t))R_m(t)$

BS: encode, broadcast ratelessly, use optimal rate

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode Is it helpful?

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode

Is it helpful?

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode

Is it helpful?

Throughput vs. Number of MSs

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode

Is it helpful?

Throughput vs. Number of MSs

BS: encode, broadcast ratelessly, use optimal rate RS: recode in the middle, random push Receiver: collect coded blocks, decode

Is it helpful?

Throughput vs. Number of MSs

Multicast Rate vs. Number of MSs

Limited Bandwidth Resources

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

Limited Bandwidth Resources

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \leq 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Limited Bandwidth Resources

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching Exploit spectrum reuse

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$
$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{i \in \zeta, i \neq k} I_{ki} \sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall k \in \zeta$$

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{i \in \zeta, i \neq k} I_{ki} \sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall k \in \zeta$$

$$\sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall i \in \zeta$$

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{i \in \zeta, i \neq k} I_{ki} \sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall k \in \zeta$$

$$\sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall i \in \zeta$$

$$(1-(1-\frac{1}{G})^G)$$

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

Exploit spectrum reuse

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{i \in \zeta, i \neq k} I_{ki} \sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall k \in \zeta$$

$$\sum_{q \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall i \in \zeta$$

Solve it by randomized rounding, $(1-(1-\frac{1}{G})^G)$ approximation guarantee

$$\sum_{g \in \zeta} \sum_{i \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi$$

$$U_i = S_{m,i} R_m + \sum_{g \in \zeta} \sum_{n \in \chi} K_{gi}^{(n)} R_{gi}^{(n)}$$

Solve it by maximum weighted bipartite matching

Exploit spectrum reuse

$$I_{ki} = \begin{cases} 1 & \text{If node } i \text{ is in interference zone of node } k \\ 0 & \text{Otherwise} \end{cases}$$

$$\sum_{i \in \zeta, i \neq k} I_{ki} \sum_{g \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall k \in \zeta$$

$$\sum_{q \in \zeta} K_{gi}^{(n)} \le 1 \quad \forall n \in \chi, \forall i \in \zeta$$

Solve it by randomized rounding, $(1-(1-\frac{1}{G})^G)$ approximation guarantee

How Efficient are the channel allocated?

Throughput vs. Number of MSs

Throughput vs. Number of Subchannels

Power Allocation

When power on relays are high constrained

$$\sum_{n \in \chi} \sum_{i \in \zeta} S_{gi}^{(n)} \le P_g \quad \forall g \in \zeta$$

$$0 \le \omega_{gi}^{(n)} \le C_{gi}^{(n)} = \frac{BW}{\overline{r}_i} \cdot \log_2(1 + \frac{S_{gi}^{(n)}}{\sigma_{gi}^{(n)}})$$

Solve the problem by solving the dual problem

Throughput vs. Power

Throughput vs. Number of Subchannels

Our framework offers salient improvement

Our framework offers salient improvement

Our framework offers salient improvement

Cooperative Communication
Diversity gain

Our framework offers salient improvement

Cooperative Communication

Diversity gain

Rateless Properties

Our framework offers salient improvement

Cooperative Communication

Diversity gain

Rateless Properties

Tightly Integrate with WiMAX

Our framework offers salient improvement

Cooperative Communication

Diversity gain

Rateless Properties

Tightly Integrate with WiMAX

Lead to the future design in WiMAX

Thank you!

more information:

http://iqua.ece.toronto.edu/~jinjin