Alignment Status and Commissioning Plans

Jim Pivarski, Alexei Safonov (Texas A&M)

Karoly Banicz (FNAL)

Alignment Needs

- Physics analysis alignment (10/100 pb⁻¹) :
 - Full procedure using large datasets
 - Necessary software tools
 - Full systematics studies
- Validation:
 - Tests with real data to validate the procedure early
 - Cosmics, beam halo
 - Comparisons with other alignment information
 - Photogrammetry, optical, and hardware alignment
- Commissioning(0-10 pb⁻¹):
 - Procedure that uses minimal collisions data
 - Quick alignment of larger structures
 - Cosmics and beam halo for internal alignment measurements
 - Integration of other sources of alignment information (PG, HW)

Baseline Procedure

- Baseline procedure for physics quality datasets has been stable for some time
 - Based on the HIP algorithm
 - I Aligns one station at a time (from the inside out)
- Hierarchical code structure matches system design
 - Fast alignment of large structures (~1000 muons)
 - Built-in support for constraints from prior knowledge
 - Photogrammetry, optical system
 - Capable of combining measurements from different sources
- Optimization of parameters is in progress for faster convergence and better accuracy
 - Track-fitting parameters (APEs) tuned for each station
 - Intelligent track selection to supress strongly scattering tracks
 - Optimized track-fitting to better use structure of the detector and material distribution (pending tests)

Improvements to Baseline Procedure

- Illustration of improvements:
 - "Intelligent track selection" (MC, 100 pb⁻¹)

- Each line is a station's resolution as a function of iteration
 - Improved alignment reaches 300 µm for inner stations (which drive momentum resolution)

Considerations for Early

• Can't accurately align all chambers with limited statistics

- But can quickly align large structures if internal alignment is known from other sources
- Track-based candidates:
 - Beam-halo or collision tracks passing through overlap regions - EMU
 - Cosmics for barrel
- Non-track based:
 - Hardware alignment and photogrammetry very useful for cross-checks and filling in gaps
 - E.g. CSC z alignment, to which beam-halo is insensitive

Although less important for momentum resolution in collision data

| Bivareld Muon Alignment Meeting, February 20, CERN. |

Large Structure Alignment

 Alignment of large structures weakly depends on internal misalignments:

- For ~1 mm chamber misalignments:
 - RMS_{x,y} \sim 0.6 mm, RMS_z \sim 3 mm, RMS_{ϕ -z} \sim 0.1 mrad
- Tracker misalignment is negligible for such large solid angles

Commissioning Plan

- CRAFT Tracker to Chamber Alignment (May):
 - Near-IP Muons: ~1M in Barrel 0, ~10k in ME1/3
 - Validation of the baseline procedure
 - Sanity checks: residuals for tracker muons
 - Comparisons with PG and HW alignment (ME1/3 & barrel)
 - Exercise use of HW and PG as constraints
- Beam halo internal ring alignment (June):
 - Re-configured baseline procedure
 - Similarly, cosmics could be used for Barrel
- Collisions (July?):
 - Ring alignment using internal alignment results
 - Similarly, we will align wheels if internal alignment available
 - Overlap tracks to cross-check internal alignment
 - Comparisons with PG and HW alignment
 - Use of PG and HW as constraints in baseline procedure

Next few slides provide details of the implementation

Internal Alignment with Beam Halo

- No collisions alignment:
 - Beam-halo through overlap regions (no ME1/3)
 - Minimal track propagation, measure x,y,ϕ_v,ϕ_z
 - Beam-halo rate hard to predict
 - With sufficient rate, good for layer alignment
 - Chambers are aligned relative to one another within each ring
- Few-collisions alignment
 - Align rings relative to tracker with ~1000 GlobalMuons
 - Complements beam-halo for a complete alignment

Chambers misaligned within ring, ring position unknown

Chambers aligned within ring, ring position unknown

Chambers aligned within ring, ring position known

track

overlap

region

Internal Alignment with

• CSC chambers in the same ring overlap

 Easy to align w.r.t. each other using tracks passing through overlap regions

Algorithm:

 Tightly refit tracks to even-numbered evens chambers

 Loosely fit to oddnumbered to get local extrapolation from even to odd

- Alternate and repeat, iterate
- Will be done in the same framework
 - Re-configured for local alignments

Beam Halo Rate

- Beam halo rate is 6600 tracks/sec (known up to a factor of 100)
- Rate of overlap tracks $6600 \times 0.02 = 130 \text{ Hz}$
 - 2 hours to collect 1

 - 8 days if we're off by ×100
 - Steeply falling function of energy and radius (better for internal rings)

Trigger proposed, HLT path is being defined now

Alignment Framework Status

Recent progress

- Parallelized 10/100 pb–1 procedure
- Added CSCRing as an alignable structure
- Tool for setting arbitrary patterns of hit weights (APEs)
- Improved track cut and alternate refitter for upcoming tests
- Mechanism for setting global coordinate system
- HLT paths and AlCa streams for beam-halo, cosmics
- Beam-halo and cosmic MC production cfg
- DB interface with human-editable files and monitoring plots ½
 done

Procedure status

- 10/100 pb–1 GlobalMuons: baseline working, can be optimized further, studied in more detail
- Cosmic ray version of high-lumi GlobalMuons: need MC
- Beam-halo: procedure designed, being implemented
- 1000 muon ring alignment: easy adaptation of GlobalMuon

Datasets and Procedures

AlCa Streams	L1	HLT	AlCa Cuts	Procedure	
"All Muons"	Single- muon	(Non-iso OR iso)	10 GeV	Baseline tracker-to-chamber (absolute chamber positions); Structure Alignment; Layer alignment procedure	
Muons in CSC overlap	Single- muon	(Non-iso OR iso) AND overlap	5 GeV in CSC and overlap on track	Even-odd procedure (relative chamber alignment within ring)	
All Beam-halo	Beam-halo	(Non-iso OR iso)	5 GeV in CSC	Layer alignment procedure	
Beam-halo in CSC overlaps	Beam-halo	(Non-iso OR iso) AND overlap	5 GeV in CSC and overlap on track	Even-odd procedure (relative chamber alignment within ring)	
Dedicated Cosmics	RBC	(Non-iso OR iso)	?	Internal barrel alignment?	

- Single Muon trigger will be evolving with time
- All Muons stream will be selecting all of these:
 - Cosmic rays during CRAFT
 - Very loose muons (single LCT) during commissioning
 - Good muons in long term
- Overlap muon samples will have to be split by station
- AlCa cuts will start loose and will evolve with time
 - Additional selections for now will be applied downstream

Pre-Requisites for PG and HW Comparisons

- Results of HW and PG have to be in the standard form to be able to do comparisons
- Specific requirements:
 - Format of measurements (HW and PG):
 - Layer positions corrected for shifts (Oleg's calculations)
 - Chamber positions must be defined as average position of layers (accounted for shifts)
 - CSCAlignmentRcd, DTAlignmentRcd delivered to Conditions DB
- We propose to make comparisons of alignment measurements during these periods:
 - CRAFT, Beam halo data taking, Collisions
 - Results of HW alignment measurements have to be uploaded to Conditions DB to make comparisons

Possible Comparisons with HW and PG

- CRAFT Period Comparisons with HW:
 - A direct comparison of chamber positions in global coordinates, as reported by HW alignment and trackbased system using DB Comparison tool
 - Effectively a test of the HW alignment in the barrel from chambers to tracker through the Link System
 - Pre-requisite: HW alignment results have to be propagated down to layer positions
 - Actually, that's what AlignmentRcd holds
- PG measurements:
 - Some sort of fitting will be needed: fit the two geometries for compatibility up to a rotation and translation
 - Accounts for PG (0,0,0) not being on tracker (0,0,0)

Possible Comparisons with HW and PG

- Beam Halo Period:
- Verification of relative chamber positions on each CSC ring
 - Beam-halo measures x and y positions
 - HW measures x (and z) with SLM lines
 - Will use the same fit method to check compatibility of x-measurements
- Comparison with PG:
 - Fit to check compatibility of x- and ymeasurements of chamber positions on the ring

Possible Comparisons with HW and PG

- Collisions Data (first ~1000 muons):
- Comparison with HW alignment:
 - Assuming completed inner alignment measured with beam halo, we have full alignment (down to chambers), so does HW
 - A direct comparison of chamber positions (defined as average layer positions) with the DB Comparison tool
- Comparison with PG:

Suggested alignment scenarios

Chamber/Ring/Disk (C/R/D)

```
0 pb-1 beam-halo plus HW measurements
                  z \phi_{_{\!\scriptscriptstyle \mathcal{X}}} \phi_{_{\!\scriptscriptstyle \mathcal{Y}}}
        700 μm 2 mm 3 mm 3 mrad 0.8 mrad 0.65 mrad
C
        200 μm 200 μm 230 μm 0.08 mrad 0.08 mrad 0.03 mrad
        200 μm 200 μm 3 mm 1 mrad 1 mrad 0.03 mrad
D
1 pb-1 beam-halo plus GlobalMuon ring
                  z \phi_{_{\!\scriptscriptstyle X}}
        700 μm 2 mm 3 mm 3 mrad 0.8 mrad 0.65 mrad
        600 μm 600 μm 3 mm 1 mrad 1 mrad 0.1 mrad
10 and 100 pb-1 track-based (without improvements)
        x y z \phi_{_{\!\scriptscriptstyle X}}
        700 μm 2 mm 3 mm 3 mrad 0.8 mrad 0.65 mrad
```

Conclusions

- Muon track based alignment system is functional:
 - Flexible to allow relative (local on structures) and global (w.r.t. tracker) alignment due to hierarchical structure reflecting design of the muon system
 - Ability to incorporate external alignment information in a consistent fashion as constraints or initial alignment
 - When recent improvements included, expected to reach design accuracy with 100 pb⁻¹, further optimization ongoing
- Updated alignment scenarios are conservative
 - Do not include recent improvements
- Presented commissioning plan makes best use of information as it becomes available

Startup Luminosities

Startup Luminosities

Each step lasts ~ 1 week

Bunches	β*	l _b	Luminosity	Pileup	Time for 1000 muons
1 x 1	18	10 ¹⁰	10 ²⁷	Low	4.1 years
43 x 43	18	3 x 10 ¹⁰	3.8 x 10 ²⁹	0.05	4.0 days
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.21	21 hours
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.76	5.9 hours
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.38	3.3 hours
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	1.9	39 minutes
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	3.9	20 minutes