Applied Programming

Solving Nonlinear Equations

in one variable

Part I:

Bracketing Algorithms

Example: Motor Speed

• We have an electric motor that operates in the 0 to 50V range

• We found, by data fitting, that the RPM of the motor depends on the applied voltage

$$f(v) = 52.2 v + 0.75 v^2 - 0.02 v^3$$

Want to know: What voltage must be applied to the motor to run it at 1909 RPMs?

Analytic Solution

• Re-arrange the speed equation in the "canonical form"

$$f(v) = g(v) - h(v) = 0:$$

$$h(v) = -0.02v^{3} + 0.75v^{2} + 52.2v = 0$$

$$g(v) = 1909$$

$$f(v) = 0.02 v^{3} - 0.75 v^{2} - 52.2 v + 1909 = 0$$

- We could analytically solve this equation for x to but...
 - We are only interested in one root (between 0 and 50) not all the 3 roots.
 - We would have to start from scratch to find x for a different motor speed ($\neq 1909$)

Motor Speed: Analytic Solution

• First, re-arrange the speed equation to write it in the

"canonical form"
$$f(v)=g(v)-h(v) = 0$$
:
 $h(v) = -0.02v^3 + 0.75v^2 + 52.2v = 0$

$$g(v) = 1909$$

$$f(v) = 0.02 v^3 - 0.75 v^2 - 52.2 v + 1909 = 0$$

- Solve the equation analytically, but...
 - We are only interested in one root (between 0 and 50) not in all the 3 roots.

Motor Speed: Graphical Solution

A root (zero—crossing) exists in the "bracket" [0,50]

Problems with no Analytic Solution

• In general it is *not possible* to *solve nonlinear* equations explicitly, we must solve them *numerically*

• Example:

Design a sky-diving "suit" with a *drag coefficient* "c" such that after t=10 sec a 90.7kg (~200 lb) sky-diver is traveling at v=8 m/s (~20mph)

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$
 $g = 9.8 \text{ m/s}^{2}$

c= 111,130 (a parachute). A typical car has a drag coefficient of 0.34

Root Finding Introduction

• The problem of solving (scalar) nonlinear equations of the form

$$g(x) = h(x)$$

can be *transformed* (setting f(x) = g(x) - h(x)) to the "canonical" root finding problem:

Find
$$x$$
 such that $f(x) = 0$

The Root Finding Problem

• The root finding problem is:

Given a function f(x), find the values of x for which f(x)=0

• Such values of x are called the zeros of f(x) or the roots of f(x) = 0

Note: Some "roots" are simple (have multiplicity one) and others are repeated (have multiplicity greater than one) –

* Simple example: roots of polynomials $f(x) = x^2 - 2x + 1 = 0 \Rightarrow x = 1$ of multiplicity m = 2

(for more details see background slides on multiplicity)

Root finding Approaches

Two main approaches:

- 1. Bracketing methods
 - ☐ Bisection

- 2. Open methods
 - Newton
 - ☐ Secant (quasi-Newton)

Bracketing Methods

- Preconditions:
 - An *interval* [a,b] (the bracket) where f(x)=0 (e.g. f(x) has a root) is *known a priori*
 - The function *f*(*x*) is *continuous* in the *neighborhood of the root*.
- Principle: *Reduce the size of the bracket [a,b]* that contains the root until it is "small enough"
- Root inclusion criteria:

root of f(x) is in [a,b] only if $sign(f(a)) \neq sign(f(b))$

The Bisection Method

- *Halve the size* of the bracketing interval enclosing the root (e.g., a binary search)
- Choose the new smaller bracket that includes (brackets) the root.
- Repeat until bracket size is small enough
- Root inclusion criteria: value of function has opposite signs at bracket endpoints

Bisection and Repeated Roots

 Bisection Fails when bracket cannot be determined by change of sign of function

This occurs when repeated roots have even multiplicity

Note: when root have *odd multiplicity* this issue does not arise

Figure 2.2 Multiple roots of f(x) = 0.

Poor Stopping Conditions

- Let ε denote the *desired tolerance*
- The main stopping criteria for any root finding algorithm are:
 - 1. Absolute approximation error

$$|x_n - x^*| < \varepsilon_a$$

2. Relative approximation error

$$|x_n - x^*| < \varepsilon_r |x_n|$$

X* is not normally known!

3. Value of the function

$$|f(x)| < \varepsilon_f$$

The value of the function may be small even when we are not close to the root

Bisection Stopping Condition

• At the nth iteration the following bound holds:

$$|x_n - x^*| < \left|\frac{b^n - an}{2}\right|$$

[b⁽ⁿ⁾,a⁽ⁿ⁾] is the bracket at the nth iteration

therefore we can satisfy the requirements only if

$$|x_n - x^*| < \left|\frac{b^n - an}{2}\right| < \epsilon_a$$

Stop when the bracket is small $|b^n - an| < 2\epsilon_a$

Note: Floating point absolute value in "C" is **fabs**NOT abs

Bisection Algorithm in a Nutshell

- Precondition:
 - ✓ Requires an interval that brackets the solution
- Limitations:
 - The order of *convergence is linear* and slow (asymptotic error constant is only ½)
- Advantages:
 - + Very simple
 - + Guaranteed convergence (to simple roots)
 - + Easy to control accuracy by choosing tolerance
 - + Number of iterations (N) for desired accuracy can be pre-computed (for prescribed absolute error of ε_a)

$$N = \left\lceil rac{\log_2(b-a)}{2arepsilon_a}
ight
ceil$$

Implementation: Errors & Inefficiencies

```
## module bisection
''' root = bisection(f,x1,x2,switch=0,tol=1.0e-9).
   Finds a root of f(x) = 0 by bisection.
    The root must be bracketed in (x1,x2).
    Setting switch = 1 returns root = None if
    f(x) increases upon bisection.
. . .
from math import log,ceil
import error
def bisection(f,x1,x2,switch=1,atol=1.0e-9):
    f1 = f(x1)
   if f1 == 0.0: return x1
   f2 = f(x2)
    if f2 == 0.0: return x2
    if f1*f2 > 0.0: error.err('Root is not bracketed')
    n = ceil(log(abs(x2 - x1)/atol)/log(2.0))
    for i in range(n):
        x3 = 0.5*(x1 + x2); f3 = f(x3)
        if (switch == 1) and (abs(f3) > abs(f1)) \setminus
                         and (abs(f3) > abs(f2)):
            return None
        if f3 == 0.0: return x3
        if f2*f3 < 0.0: x1 = x3; f1 = f3
                        x2 = x3; f2 = f3
        else:
    return (x1 + x2)/2.0
```

Example of a poor and erroneous implementation of bisection (in Python)

Implementation Notes

- For efficiency the algorithm should be implemented to:
 - 1. Minimize the number of function evaluations, f(x)
 - The number of iterations is determined by the size of the initial bracket
 - Efficiency is mainly affected by the *number of* function evaluations

2. Avoid unnecessary loss of precision

- Do not use $f(a^{(n)})$ $f(b^{(n)})$ as bracketing criteria (as the algorithms gets closer to a root f(a) and f(b) both may become very small and subtraction can underflow)
- > Use the sign of the function

Bisection: Matlab/Octave Implementation

```
function r = bisection(fun,bracket,tol)
                                                   function f = fmotor(v)
% Bisection method for rootfinding (Juan C. Cockbur
                                                   \% f(v) = 0.02 v3 - 0.75 v2 - 52.2 v + 1909 = 0
% Usage: r = bisection(fun,bracket,tol)
                                                   f = ((0.02*v - 0.75) * v - 52.2)*v + 1909;
% I stripped most comments and argument checking (for class use)
 if nargin==0,help bisection.m, return, end;
% Initialize algorithm parameters
                                       % 100 iteration maximum
 MaxIt = 101;
 xtol = max(2*tol, 6*eps);
                                      % set tolerance, check against machine epsilon
 a = bracket(1,1); b = bracket(1,2); % initialize bracket endpoints
 fa = feval(fun,a); fb = feval(fun,b); % find f(a) and f(b)
% Start Bisection
 k = 0; % iteration counter
 while k < MaxIt,
   k = k + 1:
                           % increment iteration counter
   dx = b - a;
                         % compute bracket interval size
                         % minimize round-off in computing the midpoint
   xm = a + 0.5*dx;
   fm = feval(fun,xm);
                          % evaluate function at midpoint (**)
   % Check stopping criterion
   if (abs(dx) < xtol) % true when root is "found"
     r = xm; return; % return root (exit here!)
    end
    % Update bracketing interval
      if sign(fm)==sign(fa) % Avoid using fa*fb<0
       a = xm; fa = fm; % Root on [xm,b]
      else
       b = xm; fb = fm; % Root on [a,xm]
      end
 end % while
 warning(sprintf('Root not within tolerance %f after %d iterations\n',xtol,k-1));
end % function
```

Example: Motor Speed

Tolerance= 0.05 RPM, Range: 0-50 Volts

Result: V=35.69

k	[a,b]			x	f(x)
1	[0,	50]	25	447.8
2	[25,	50]	37.5	-48.5
3	[25,	37.5]	31.25	155.7
4	[31.25,	37.5]	34.38	40.77
5	[34.375,	37.5]	35.94	-7.297
6	[34.375,	35.9375]	35.16	15.91
7	[35.15625,	35.9375]	35.55	4.095
8	[35.54688,	35.9375]	35.74	-1.654
9	[35.54688,	35.74219]	35.64	1.207
10	[35.64453,	35.74219]	35.69	-0.2271

Note: The "exact" roots of the cubic polynomial are:

35.685609864217469, 52.633113343145020, -50.818723207362368

Summary: Bisection

- Requires that the root be bracketed.
- Has *guaranteed linear convergence* (to roots of *odd multiplicity*) regardless of where we start.
- Works well for "arbitrary" functions (no "regularity" requirements, such as differentiability, except close to the root).
- Only requires evaluation of the sign of function.

Conclusion: Bisection is *slow but robust*.

Exercise 1

Explain the bisection algorithm in a nutshell.

- Choose any 2 points such that the sign f(x1) and f(x2) changes
- Halve the distance between the 2 points and evaluate f() again
 - Choosing the new pair of x's so the f(x) sign still changes
- Repeat until Δx is small