

Computer Vision

Exercise Session 7 – Structure from Motion

Structure from Motion

- Arc3D www.arc3d.be
 - http://www.youtube.com/watch?v=0tzW8dm71ec
- Acute3D (123D Catch www.123dapp.com/catch)
 - http://www.youtube.com/watch?v=UwBd1RbKljk
- 2D3 boujou
 - http://www.youtube.com/watch?v=qrszsSbStoQ
- etc...

Exercise 7

- 5 Images of a house on a turn table
- Background is static = at infinity

Exercise 7

- 4 Tasks:
 - Initialization with epipolar geometry
 - Do 8-point RANSAC and triangulate
 - Add more views
 - Do 6-point RANSAC and triangulate
 - Plot everything
 - Dense Reconstruction
 - Stereo matching and depth map plot

Initialization

Compute essential matrix, decompose into R and t, compute projection matrices

Adding more views

Feature matches define 3D-2D point correspondences

6-Point Algorithm

The 6-point algorithm that was used for the camera calibration can be used to compute the projection matrix relative to the scene

Do RANSAC to filter out wrong matches

■ It does not work well on planar scenes — make sure you have 3D points distributed all around

Plotting

Hand-in

- Report should include:
 - Images with visualized inlier and outlier matches
 - Epipolar geometry of the initialization images
 - Sparse reconstruction with inlier 3D-points and cameras
- Source code

Bonus: Dense Reconstruction

Hand-in

By 12:00am on Saturday 28th November 2020 denys.rozumnyi@inf.ethz.ch

