

Linux Storage Administration

Maruthi Inukonda

Agenda

- Storage devices
- Disk partitioning
- RAID
- Logical volume management
- File systems

Storage Devices

Classification of Storage Devices

- By Media
 - Magnetic, Optical, Flash
- By Access
 - Rotational, Sequential, Direct
- By purpose
 - Secondary, Tertiary

\$ lsscsi

[0:0:1:0]	cd/dvd	TSSTcorp	CDW/DVD SH-M522C	TS04	/dev/sr0
[2:0:0:0]	disk	ATA	ST3500418AS	CC38	/dev/sda
[3:0:0:0]	disk	ATA	SEAGATE ST330006	NS00	/dev/sdb
[4:0:0:0]	disk	ATA	HITACHI HUA72202	N100	/dev/sdc
[5:0:0:0]	mediumx	EMC	DDVTL	0306	/dev/sch0
[5:0:0:1]	tape	IBM	ULTRIUM-TD4	8711	/dev/st0
[5:0:0:2]	tape	IBM	ULTRIUM-TD4	8711	/dev/st1
[5:0:0:3]	tape	IBM	ULTRIUM-TD4	8711	/dev/st2
[5:0:0:4]	tape	IBM	ULTRIUM-TD4	8711	/dev/st3

Magnetic Disk Structure

- Rotating disks have
 - > Platters, Magnetic surfaces
 - Read/Write heads
 - Tracks, Sectors
 - Cylinders

Solid State Disk Structure

- Solid state disks have
 - Pages/Sectors (4KiB)
 - Erase Blocks (256KiB/512KiB)
 - Planes
 - o Chips

Disk Device

- Secondary storage device
- Accessible in units of sectors (512B, 1KiB or 4KiB)
- List all storage devices using lsscsi.

\$ lsscsi

[0:0:1:0]	cd/dvd	TSSTcorp	CDW/DVD	SH-M522C	TS04	/dev/sr0
[2:0:0:0]	disk	ATA	ST35004	18AS	CC38	/dev/sda
[3:0:0:0]	disk	ATA	SEAGATE	ST330006	NS00	/dev/sdb
[5:0:0:0]	disk	ATA	HITACHI	HUA72202	N100	/dev/sdc

Disk Partitioning

Block devices (Recap)

- OS creates a logical block device layer on disk, its partitions
- Accessible in units of 512B, 1KiB, 4KiB.
- Main purpose is caching and ordering I/O.
- List all block devices using lsblk -p

```
$ lsblk -p
NAME
           MAJ:MIN RM
                        SIZE RO TYPE MOUNTPOINT
/dev/sda
             8:0
                    0 465.8G
                             0 disk
-/dev/sda1
           8:1
                        512M
                             0 part
-/dev/sda2
           8:2
                      14G
                             0 part
-/dev/sda3
           8:3
                    0 15G
                             0 part /
 -/dev/sda4
           8:4
                    0 1K
                             0 part
-/dev/sda5
           8:5
                   0 200G
                             0 part /home
           8:6
-/dev/sda6
                         16G
                             0 part [SWAP]
└/dev/sda7
             8:7
                    0 220.3G
                             0 part
/dev/sr0
            11:0
                    1 1024M
                             0 rom
```


NOTE: device names sda, sdb are volatile. May change across reboots.

Disk Partitioning

- Partition is a contiguous region on a hard disk for
 - file system
 - swap space
 - logical volumes
- OS manages information in each partition separately.
- Each partition of a disk is a separate file-system failure domain.
- Where as all partitions of a disk fall in single hardware failure domain.
- Two types of disk partitioning schemes
 - DOS Partition Table (aka Master Boot Record /MBR)
 - GUID Partition Table (GPT)

DOS Partition Table (1/2)

- Mostly used format for DOS PCs invented in 1987
- Does not support more than 15 partitions.
 - 4 primary
 - 3 primary + 12 logical
- Supports sector size of 512B only
- Does not support larger than 2TiB disks
- Prone to security issues (rootkit)
- This works with traditional motherboard firmware (BIOS)

DOS Partition Table (2/2)

- List all disks' partitions using parted -1 or fdisk -1
- A sample DOS partition table

```
# parted /dev/sda print
Model: ATA ST3500418AS (scsi)
```

Disk /dev/sda: 500GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Mumbon	C+ 2 22+	E ~ d	0:10	Птто	Eile gratem	Elass.
Number	Start	End	Size	Type	File system	Flags
1	1049kB	538MB	537MB	primary	ext4	boot
2	538MB	15.6GB	15.0GB	primary	ext4	
3	15.6GB	31.7GB	16.1GB	primary	xfs	
4	31.7GB	500GB	468GB	extended		
5	31.7GB	246GB	215GB	logical	xfs	
6	246GB	264GB	17.2GB	logical	linux-swap(v1)	
7	264GB	500GB	237GB	logical	ext4	

Creating DOS Partition Table (fdisk)

- Create partition table header using
 - o command of fdisk
- Reload the partition table using partprobe

```
# fdisk /dev/sdb
```

```
Welcome to fdisk (util-linux 2.27.1). Changes will remain in memory only, until you decide to write them. Be careful before using the write command.
```

Device does not contain a recognized partition table. Created a new DOS disklabel with disk identifier 0x5b4ad344.

```
Command (m for help): o
Created a new DOS disklabel with disk identifier 0xb3e8da19.
```

```
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
```


Creating DOS Partition (fdisk)

Create partition using
 n command of fdisk (parted command could also be used)

2048 20973567 20971520 10G 83 Linux

Reload the partition table using partprobe

```
# fdisk /dev/sdc
Command (m for help): n
Partition type
     primary (0 primary, 0 extended, 4 free)
   e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-2147483647, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-2147483647, default 2147483647): +10GiB
Created a new partition 1 of type 'Linux' and of size 10 GiB.
Command (m for help): p
Disk /dev/sdb: 1 TiB, 1099511627776 bytes, 2147483648 sectors
Device Boot Start End Sectors Size Id Type
```


/dev/sdb1

Deleting DOS Partition (fdisk)

- Delete a partition using
 d command of fdisk (parted command could also be used)
- Reload the partition table using partprobe

```
# fdisk /dev/sdc
Command (m for help): d
Partition number (1,2, default 2): 1
Partition 1 has been deleted.
```


GUID Partition Table (GPT) (1/2)

- New format invented in 2005
- Support upto 4 million partitions.
- Supports upto 9.4 ZiB disks
- Supports sector sizes of 512B, 1KiB, 4KiB
- Addresses security issues (rootkit) using Secure boot feature
 - Ubuntu, RHEL support
 - Windows 8.x

This requires newer motherboard firmware (UEFI)

GUID Partition Table (GPT) (2/2)

- List all disks' partitions using parted -1
- A sample GPT disk

```
# parted /dev/sdb print
Model: ATA SEAGATE ST330006 (scsi)
Disk /dev/sdb: 3001GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
```

Number	Start	End	Size	File system	Name	Flags
1	1049kB	3146kB	2097kB			bios_grub
2	3146kB	21.0GB	21.0GB	ext4	fc18	msftdata
3	21.0GB	41.9GB	21.0GB	ext3	centos	boot, esp
4	41.9GB	62.9GB	21.0GB	ext4	fc18-gold	msftdata
5	62.9GB	83.9GB	21.0GB	ext3	centos-gold	msftdata
6	83.9GB	189GB	105GB	ext3	home	msftdata
7	189GB	222GB	33.3GB	linux-swap(v1)	swap	
9	222GB	2222GB	2000GB	xfs	MyDrive	msftdata
10	2222GB	3001GB	779GB	xfs	MySpare	msftdata

Creating GUID Partition Table (parted)

- Create partition table header using mklabel command of parted
- Reload the partition table using partprobe

```
# parted /dev/sdc
(parted) mklabel msdos

(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdc: 2199GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
```


Creating GUID Partition (parted)

- Create partition using
 mkpart command of parted (fdisk command could also be used)
- Reload the partition table using partprobe

```
# parted /dev/sdc
(parted) mkpart
Partition name? []? part1
File system type? [ext2]? xfs
Start? 1
End? 10GiB
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdc: 2199GB
. . .
                       Size File system Name
Number Start
               End
                                                     Flags
       1049kB
               10.7GB 10.7GB xfs
                                             part1
```


Delete GUID Partition (parted)

- Delete a partition using
 mkpart command of parted (fdisk command could also be used)
- Reload the partition table using partprobe

```
# parted /dev/sdc
(parted) rm 1
```


Delete Partition Table

- Delete dos/guid partition table by clobbering the disk contents using dd command
- Reload the partition table using partprobe

```
# dd if=/dev/zero of=/dev/sdb bs=1M count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.017371 s, 60.4 MB/s

# parted /dev/sdc print
Error: /dev/sdc: unrecognised disk label
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdc: 2199GB
Sector size (logical/physical): 512B/512B
Partition Table: unknown
Disk Flags:
```


RAID

Redundant Array of Independent Disks (RAID)

- RAID 0 Concatenation (aka Just a Bunch Of Disks, JBOD)
- RAID 0 Striping
- RAID 1 Mirroring
- RAID 5 Striping with distributed parity

CAUTION: Hardware RAID in motherboard is single point of failure.

Logical Volume Management

Logical Volume Management (LVM)

- A subsystem in OS kernel
 - Second layer from bottom in storage stack.
 - Implements Software RAID
 - Creates logical block devices on physical block devices
- Addresses limitations of disk drives using
 - Disk concatenation
 - Redundancy
- Different volume types
 - Concatenated volume (RAID 0 concatenation)
 - Striped volume (RAID 0 striping)
 - Mirrored volume (RAID 1)
 - Distributed parity volume (RAID 5)
 - Many many more...

Logical Volume Management (LVM)

- Constructs in LVM
 - Physical volume (PV): a disk or partition
 - Physical Extent (PE): a block from physical volume. Disk space is consumed in units of PEs.
 - Volume group (VG): a group of physical volumes having similar specifications
 - Logical Extent (LE): a logical block that is mapped to one or more PEs.
 - Logical Volume : A logically contiguous group of extents that can be mapped to one or more PVs.

Physical Volume Operations

- Create physical volume using pycreate command.
- List physical volumes using pvs or pvdisplay command.
- Delete physical volume using pycreate command.

```
# pvcreate /dev/sd[qhi]
  Physical volume "/dev/sdg" successfully created
  Physical volume "/dev/sdh" successfully created
  Physical volume "/dev/sdi" successfully created
# pvs
  VV
         VG
              Fmt Attr PSize PFree
 /dev/sdg lvm2 --- 1.00t 1.00t
  /dev/sdh lvm2 --- 1.00t 1.00t
  /dev/sdi lvm2 --- 1.00t 1.00t
# pvremove /dev/sd[qhi]
  Labels on physical volume "/dev/sdq" successfully wiped
  Labels on physical volume "/dev/sdh" successfully wiped
  Labels on physical volume "/dev/sdi" successfully wiped
```


Volume Group Operations

- Create volume group using vgcreate command.
- List volume groups using vgs or vgdisplay command.
- Delete volume group using vgremove command.

Logical Volume Operations

- Create a logical volume using lycreate command.
- List logical volumes using lvs or lvdisplay or lsblk command.
- Delete a logical volume using lyremove command.

Do you really want to remove and DISCARD active logical volume mylv01? [y/n]: y Logical volume "mylv01" successfully removed

Creating a RAID 0 linear volume

Create a RAID0 linear logical volume using lycreate command.

```
# lvcreate -n myraidOlinear1 -L 1.5TB myvg3
Logical volume "myraidOlinear1" created.
# pvs
```

```
PV VG Fmt Attr PSize PFree /dev/sdg myvg3 lvm2 a-- 1024.00g 0 /dev/sdh myvg3 lvm2 a-- 1024.00g 511.99g /dev/sdi myvg3 lvm2 a-- 1024.00g 1024.00g
```


Creating a RAID 0 striped volume

Create a RAID0 striped logical volume using lycreate -i command.

```
# lvcreate -n myraid0striped1 -L 1.5TB -i 3 myvg3
Using default stripesize 64.00 KiB.
Logical volume "myraid0striped1" created.
```

pvs

```
PV VG Fmt Attr PSize PFree /dev/sdg myvg3 lvm2 a-- 1024.00g 512.00g /dev/sdh myvg3 lvm2 a-- 1024.00g 512.00g /dev/sdi myvg3 lvm2 a-- 1024.00g 512.00g
```

```
# lvdisplay -m /dev/myvg3/myraid0striped1
                         1.50 TiB
 LV Size
  --- Segments ---
 Logical extents 0 to 393215:
    Type
               striped
    Stripes
                    64.00 KiB
    Stripe size
    Stripe 0:
                         0 to 131071
     Physical extents
    Stripe 1:
                         0 to 131071
    Physical extents
    Stripe 2:
                         0 to 131071
    Physical extents
```


Creating a RAID 1 (mirrored) volume

- Create a RAID1 (mirrored) logical volume using lycreate -m command.
- -m specifies number of mirrors in addition to the original copy.
- # lvcreate -n myraid0striped1 -L 1.5TB -i 3 myvg3
 Using default stripesize 64.00 KiB.
 Logical volume "myraid0striped1" created.
- # pvs

```
PV VG Fmt Attr PSize PFree /dev/sdg myvg3 lvm2 a-- 1024.00g 512.00g /dev/sdh myvg3 lvm2 a-- 1024.00g 512.00g /dev/sdi myvg3 lvm2 a-- 1024.00g 512.00g
```

```
# lvdisplay -m /dev/myvq3/myraid0striped1
 LV Size
                        1.50 TiB
 Logical extents 0 to 393215:
               striped
    Type
    Stripes
    Stripe size 64.00 KiB
    Stripe 0:
                         0 to 131071
    Physical extents
     Stripe 1:
                         0 to 131071
    Physical extents
    Stripe 2:
                           to 131071
    Physical extents
```


Creating a RAID 5 volume

Create a RAID5 (striping, distributed parity) logical volume using lycreate
 --type raid5 command.

```
# lvcreate -n myraid5dp1 -L 1.5TB --type raid5 myvg3
Logical volume "myraid5dp1" created.
```

pvs

```
PV VG Fmt Attr PSize PFree /dev/sdg myvg3 lvm2 a-- 1024.00g 255.99g /dev/sdh myvg3 lvm2 a-- 1024.00g 255.99g /dev/sdi myvg3 lvm2 a-- 1024.00g 255.99g
```


File Systems

File system (Recap)

- A subsystem in OS kernel
- Logical organization of disk sectors/blocks into files and directories.
- Does accounting of free/used space
- Provides quotas at user/group level
- Provides security using ownership, permissions, access controls (ACL).
- Addresses limitations of disk drives using
 - Logical blocking
 - Caching
- Different file systems types
 - o xfs
 - ext4
 - o tmpfs
 - o iso9660
 - o ..

File systems hierarchy (Recap)

- Multiple file systems organized in a tree structure
- Top most directory is / (called root directory)

File system classification

- File systems could be classified into
 - Local file systems (Disk based)
 Eg. ext4, xfs, iso9660, vfat, ntfs, etc.
 - Pseudo file systems (In memory)
 Eg. procfs, sysfs, cgroupfs, encryptfs, tmpfs, etc.
 - Cluster file systems (Tightly coupled + shared storage based)
 Eg. gfs, vxfs, etc.
 - Network file systems (Loosely coupled + network based + not scalable)
 Eg. nfsv3, cifs/smb

Distributed systems (Loosely coupled + networked based + scalable)
 Eg. cephfs, hdfs, pnfs (nfsv4.1), lustrefs, glusterfs, googlefs.

File system types

List all file systems types using cat /proc/filesystems

Formatting a file system

- To format a block device with file system use, mkfs -t <fstype>
 <blk_device>
- To find file system type of a block device use, blkid <blk_device>

Mounting a file system

- The process of bringing a file-system online.
- Mount a file system using mount <blk device> <mount point>
- Command line options generic and specific to file-system type.

```
# mkdir /mnt/nvmlp4
# mount /dev/nvme0n1p4 /mnt/nvmlp4

# df -hT
Filesystem Type Size Used Avail Use% Mounted on
...
/dev/nvme0n1p4 xfs 10G 43M 10G 1% /mnt/nvmlp4
# mount -o remount,ro /dev/nvme0n1p4 /mnt/nvmlp4
```


Auto mounting a file system

To automatically mount file-systems during boot, add entry to /etc/fstab.
 Validate fstab using mount -a before rebooting.

```
# mkdir /mnt/nvm1p2
# vi /etc/fstab
...

UUID=4c19d94f-0724-4974-b5db-4f39973254d5 /mnt/nvm1p2 ext4 defaults 2 2
...

# mount -a

$ df -hT
Filesystem Type Size Used Avail Use% Mounted on
...
/dev/nvme0n1p2 ext4 25G 44M 24G 1% /mnt/nvm1p2
...
```


Listing file systems

List all file systems using df -hT or lsblk

\$ df -hT Filesystem Type Size Used Avail Use% Mounted on /dev/sda1 ext4 98G 5.4G 88G 6% / /dev/nvme0n1p2 ext4 1% /mnt/nvm1p2 25G 44M 24G /dev/nvme0n1p4 xfs 43M 1% /mnt/nvm1p4 10G 10G . . .

lsblk

NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
nvme0n1	259:0	0	100G	0	disk	
-nvme0n1p4			10G	0	part	/mnt/nvm1p4
Lnvme0n1p2	259:2	0	25G	0	part	/mnt/nvm1p2
sda	8:0	0	100G	0	disk	
-sda2	8:2	0	1K	0	part	
-sda5	8:5	0	975M	0	part	[SWAP]
L _{sda1}	8:1	0	99G	0	part	/

Unmounting a file system

- The process of taking a file system offline.
- Unmount a file system using umount <mount_point>

umount /mnt/nvm1p4

Repairing a file system

• To repair a file system use, fsck or xfs_repair

```
# fsck -t ext4 /dev/nvme0n1p2
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/nvme0n1p2: 11/1638400 files (0.0% non-contiquous), 146849/6553600 blocks
# xfs repair /dev/nvme0n1p4
Phase 1 - find and verify superblock...
Phase 2 - using internal log
Phase 3 - for each AG...
Phase 4 - check for duplicate blocks...
Phase 5 - rebuild AG headers and trees...
Phase 6 - check inode connectivity...
Phase 7 - verify and correct link counts...
```


done

References

References

- Linux manual pages
- www.wikipedia.org
- Courtesy Google images

Q & A

