Multivariate Statistics

Lecture 03

Fudan University

- 1 Multivariate Normal Distribution (Linear Combination)
- Multivariate Normal Distribution (Independence)
- 3 Multivariate Normal Distribution (Marginal Distribution)
- Singular Normal Distributions

- 1 Multivariate Normal Distribution (Linear Combination)
- 2 Multivariate Normal Distribution (Independence)
- Multivariate Normal Distribution (Marginal Distribution)
- 4 Singular Normal Distributions

Normally Distributed Variables

Some properties of normally distributed variables:

- The marginal distributions derived from multivariate normal distributions are also normal distributions.
- The conditional distributions derived from multivariate normal distributions are also normal distributions.
- The linear combinations of multivariate normal variates are normally distributed.

Multivariate Normal Distribution (Linear Combination)

Theorem 1

Let $\mathbf{x} \sim \mathcal{N}_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\mu,\mathbf{C}\mathbf{\Sigma}\mathbf{C}^{\top})$ for non-singular $\mathbf{C}\in\mathbb{R}^{p imes p}$.

Sketch of the proof:

- **1** Let $f(\mathbf{x})$ be the density function of \mathbf{x} .
- 2 Let g(y) be the density function of y.
- **3** The relation $\mathbf{x} = \mathbf{C}^{-1}\mathbf{y}$ implies

$$g(\mathbf{y}) = f(\mathbf{u}^{-1}(\mathbf{y}))|\det(\mathbf{J}^{-1}(\mathbf{y}))|$$

with
$$\mathbf{u}(\mathbf{x}) = \mathbf{C}\mathbf{x}$$
, $\mathbf{u}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}\mathbf{y}$ and $\mathbf{J}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}$.

- 1 Multivariate Normal Distribution (Linear Combination)
- 2 Multivariate Normal Distribution (Independence)
- Multivariate Normal Distribution (Marginal Distribution)
- 4 Singular Normal Distributions

Multivariate Normal Distribution (Independence)

Theorem 2

If
$$\mathbf{x} = [x_1, \dots, x_p]^{\top} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Let
$$\mathbf{x}^{(1)} = [x_1, \dots, x_q]^{\top} \quad \text{and} \quad \mathbf{x}^{(2)} = [x_{q+1}, \dots, x_p]^{\top}$$

for q < p. A necessary and sufficient condition for $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ to be independent is that each covariance of a variable from $\mathbf{x}^{(1)}$ and a variable from $\mathbf{x}^{(2)}$ is 0.

- The random vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ in can be replaced by any subset of \mathbf{x} the subset consisting of the remaining variables respectively.
- The necessity does not depend on the assumption of normality.

- 1 Multivariate Normal Distribution (Linear Combination)
- 2 Multivariate Normal Distribution (Independence)
- 3 Multivariate Normal Distribution (Marginal Distribution)
- 4 Singular Normal Distributions

Multivariate Normal Distribution (Marginal Distribution)

Corollary 2.1

We use the notation in the proof as follows

$$\mathbf{x} = egin{bmatrix} \mathbf{x}^{(1)} \ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N}\left(egin{bmatrix} oldsymbol{\mu}^{(1)} \ oldsymbol{\mu}^{(2)} \end{bmatrix}, egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}
ight)$$

It shows that if $\mathbf{x}^{(1)}$ is uncorrelated with $\mathbf{x}^{(2)}$, the marginal distribution of $\mathbf{x}^{(1)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}_{11})$ and the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$.

In fact, this result holds even if the two sets are NOT uncorrelated.

Multivariate Normal Distribution (Marginal Distribution)

We make a non-singular linear transformation ${f B}=-{f \Sigma}_{12}{f \Sigma}_{22}^{-1}$ to subvectors

$$\mathbf{y}^{(1)} = \mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}$$
 and $\mathbf{y}^{(2)} = \mathbf{x}^{(2)}$

leading to the components of $\mathbf{y}^{(1)}$ are uncorrelated with the ones of $\mathbf{y}^{(2)}$.

The vector

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}$$

is a non-singular transform of \boldsymbol{x} , and therefore it is normally distributed

$$\mathbf{y} \sim \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}^{(2)}\\ \boldsymbol{\mu}^{(2)}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{\Sigma}_{22}\end{bmatrix}\right)$$

Thus $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are independent, which implies the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$.

Multivariate Normal Distribution (Marginal Distribution)

Because the numbering of the components of \mathbf{x} is arbitrary, we can state the following theorem:

Theorem 3

If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$, the marginal distribution of any set of components of \mathbf{x} is multivariate normal with means, variances, and covariances obtained by taking the corresponding components of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively.

- 1 Multivariate Normal Distribution (Linear Combination)
- 2 Multivariate Normal Distribution (Independence)
- Multivariate Normal Distribution (Marginal Distribution)
- Singular Normal Distributions

Singular Normal Distributions

In previous section, we focus on non-singular normal normally distributed variate $\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ with $\mathbf{\Sigma} \succ \mathbf{0}$ whose density function is

$$n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right).$$

What about the case of singular Σ ?

We can extend Theorem 1 to Theorem 4

Theorem 1

Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\mu,\mathbf{C}\mathbf{\Sigma}\mathbf{C}^{\top})$ for non-singular $\mathbf{C}\in\mathbb{R}^{p imes p}$.

Theorem 4

Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top})$ for $\mathbf{D}\in\mathbb{R}^{q imes p}$ of rank $q\leq p$.

For any transformation $\mathbf{z} = \mathbf{D}\mathbf{x}$, for $\mathbf{D} \in \mathbb{R}^{q \times p}$ and p-dimensional random vector \mathbf{x} , we have

$$\mathbb{E}[\mathbf{z}] = \mathbf{D}\boldsymbol{\mu}$$
 and $\mathrm{Cov}[\mathbf{z}] = \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top}$.

If $q \leq p$ and **D** is of rank q, we can find a $(p-q) \times p$ matrix **E** such that

$$\begin{bmatrix} \mathbf{z} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{D} \\ \mathbf{E} \end{bmatrix} \mathbf{x}$$

is a non-singular transformation.

Then z and w have a joint normal distribution, and z has a marginal normal distribution by Theorem 3.

Theorem 4

Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top})$ for $\mathbf{D}\in\mathbb{R}^{q imes p}$ of rank $q\leq p$.

Can we extend **D** to any real matrix?

In the case of the singular normal, distribution the mass is concentrated on a given linear set. The probability associated with any set not intersecting the given linear set is 0.

For example, consider that

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}
ight)$$

Such \mathbf{x} cannot have a density at all, because the probability of any set not intersecting the x_2 -axis is 0 would imply that the density is 0 almost everywhere.

Singular Normal Distributions

Suppose that $\mathbf{y} \sim \mathcal{N}_q(\nu, \mathbf{T})$, $\mathbf{A} \in \mathbb{R}^{p \times q}$ with p > q and $\lambda \in \mathbb{R}^p$; then we say that

$$\mathsf{x} = \mathsf{A}\mathsf{y} + \lambda$$

has a singular (degenerate) normal distribution in p-space.

We have $oldsymbol{\mu} = \mathbb{E}[\mathbf{x}] = \mathbf{A}oldsymbol{
u} + oldsymbol{\lambda}$ and

$$\mu = \mathbb{E}[\mathbf{x}] = \mathbf{A} \nu + \boldsymbol{\lambda} \quad \text{and} \quad \mathbf{\Sigma} = \mathrm{Cov}(\mathbf{x}) = \mathbf{A} \mathbf{T} \mathbf{A}^{ op}.$$

The matrix Σ is singular and we cannot write the normal density for x.

In fact, \mathbf{x} cannot have a density at all.

Singular Normal Distributions

Now we give a formal definition of a normal distribution that includes the singular distribution.

Definition

A p-dimensional random vector \mathbf{x} with $\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$ and $\mathrm{Cov}(\mathbf{x}) = \boldsymbol{\Sigma}$ is said to be normally distributed [or is said to be distributed according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$] if there is a transformation

$$x = Ay + \lambda$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}$, r is the rank of Σ and $\mathbf{y} \sim \mathcal{N}_r(\nu, \mathbf{T})$ with $\mathbf{T} \succ \mathbf{0}$.

If Σ has rank p, then we can take A = I and $\lambda = 0$.

Theorem 5

Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top})$ for any $\mathbf{D} \in \mathbb{R}^{q \times p}$.

We do not require additional assumptions on $\bf D$ or $\bf \Sigma$.