회문 문자열 검사

N개의 문자열 데이터를 입력받아 앞에서 읽을 때나 뒤에서 읽을 때나 같은 경우(회문 문자열) 이면 YES를 출력하고 회문 문자열이 아니면 NO를 출력하는 프로그램을 작성한다. 단 회문을 검사할 때 대소문자를 구분하지 않습니다.

□ 입력설명

첫 줄에 정수 N(1<=N<=20)이 주어지고, 그 다음 줄부터 N개의 단어가 입력된다. 각 단어의 길이는 100을 넘지 않는다.

■ 출력설명

각 줄에 해당 문자열의 결과를 YES 또는 NO로 출력한다.

■ 입력예제 1

5

level

moon

abcba

soon

gooG

■ 출력예제 1

#1 YES

#2 NO

#3 YES

#4 NO

#5 YES

숫자만 추출

문자와 숫자가 섞여있는 문자열이 주어지면 그 중 숫자만 추출하여 그 순서대로 자연수를 만듭니다. 만들어진 자연수와 그 자연수의 약수 개수를 출력합니다.

만약 "t0e0a1c2h0er"에서 숫자만 추출하면 0, 0, 1, 2, 0이고 이것을 자연수를 만들면 120이됩니다. 즉 첫 자리 0은 자연수화 할 때 무시합니다. 출력은 120를 출력하고, 다음 줄에 120의 약수의 개수를 출력하면 됩니다.

추출하여 만들어지는 자연수는 100,000,000을 넘지 않습니다.

□ 입력설명

첫 줄에 숫자가 썩인 문자열이 주어집니다. 문자열의 길이는 50을 넘지 않습니다.

■ 출력설명

첫 줄에 자연수를 출력하고, 두 번째 줄에 약수의 개수를 출력합니다.

□ 입력예제 1

g0en2Ts8eSoft

■ 출력예제 1

28

카드 역배치(정올 기출)

1부터 20까지 숫자가 하나씩 쓰인 20장의 카드가 아래 그림과 같이 오름차순으로 한 줄로 놓여있다. 각 카드의 위치는 카드 위에 적힌 숫자와 같이 1부터 20까지로 나타낸다.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
카드	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

이제 여러분은 다음과 같은 규칙으로 카드의 위치를 바꾼다: 구간 [a, b] (단, 1 ≤ a ≤ b ≤ 20)가 주어지면 위치 a부터 위치 b까지의 카드를 현재의 역순으로 놓는다.

예를 들어, 현재 카드가 놓인 순서가 위의 그림과 같고 구간이 [5, 10]으로 주어진다면, 위치 5부터 위치 10까지의 카드 5, 6, 7, 8, 9, 10을 역순으로 하여 10, 9, 8, 7, 6, 5로 놓는다. 이제 전체 카드가 놓인 순서는 아래 그림과 같다.

					5			_		1000				11000	y man my	15210			7	
카드	1	2	3	4	10	9	8	7	6	5	11	12	13	14	15	16	17	18	19	20

이 상태에서 구간 [9, 13]이 다시 주어진다면, 위치 9부터 위치 13까지의 카드 6, 5, 11, 12, 13을 역순으로 하여 13, 12, 11, 5, 6으로 놓는다. 이제 전체 카드가 놓인 순서는 아래 그림과 같다.

					5	-			100		-				75	-		-	-	-
카드	1	2	3	4	10	9	8	7	13	12	11	5	6	14	15	16	17	18	19	20

오름차순으로 한 줄로 놓여있는 20장의 카드에 대해 10개의 구간이 주어지면, 주어진 구간의 순서대로 위의 규칙에 따라 순서를 뒤집는 작업을 연속해서 처리한 뒤 마지막 카드들의 배치를 구하는 프로그램을 작성하시오.

□ 입력설명

총 10개의 줄에 걸쳐 한 줄에 하나씩 10개의 구간이 주어진다. i번째 줄에는 i번째 구간의 시작 위치 ai와 끝 위치 bi가 차례대로 주어진다. 이때 두 값의 범위는 1 ≤ ai ≤ bi ≤ 20이다.

■ 출력설명

1부터 20까지 오름차순으로 놓인 카드들에 대해, 입력으로 주어진 10개의 구간 순서대로 뒤집는 작업을 했을 때 마지막 카드들의 배치를 한 줄에 출력한다.

■ 입력예제 1

- 5 10
- 9 13
- 1 2
- 3 4
- 5 6
- 1 2
- 3 4
- 5 6
- 1 20
- 1 20

■ 출력예제 1

1 2 3 4 10 9 8 7 13 12 11 5 6 14 15 16 17 18 19 20

두 리스트 합치기

오름차순으로 정렬이 된 두 리스트가 주어지면 두 리스트를 오름차순으로 합쳐 출력하는 프로 그램을 작성하세요.

□ 입력설명

첫 번째 줄에 첫 번째 리스트의 크기 N(1<=N<=100)이 주어집니다.

두 번째 줄에 N개의 리스트 원소가 오름차순으로 주어집니다.

세 번째 줄에 두 번째 리스트의 크기 M(1<=M<=100)이 주어집니다.

네 번째 줄에 M개의 리스트 원소가 오름차순으로 주어집니다.

각 리스트의 원소는 int형 변수의 크기를 넘지 않습니다.

■ 출력설명

오름차순으로 정렬된 리스트를 출력합니다.

□ 입력예제 1

3

1 3 5

5

2 3 6 7 9

■ 출력예제 1

수들의 합

N개의 수로 된 수열 A[1], A[2], …, A[N] 이 있다. 이 수열의 i번째 수부터 j번째 수까지의합 A[i]+A[i+1]+…+A[j-1]+A[i]가 M이 되는 경우의 수를 구하는 프로그램을 작성하시오.

□ 입력설명

첫째 줄에 N(1≤N≤10,000), M(1≤M≤300,000,000)이 주어진다. 다음 줄에는 A[1], A[2], ···, A[N]이 공백으로 분리되어 주어진다. 각각의 A[x]는 30,000을 넘지 않는 자연수이다.

■ 출력설명

첫째 줄에 경우의 수를 출력한다.

■ 입력예제 1

8 3

12131112

■ 출력예제 1

격자판 최대합

5*5 격자판에 아래롸 같이 숫자가 적혀있습니다.

N*N의 격자판이 주어지면 각 행의 합, 각 열의 합, 두 대각선의 합 중 가 장 큰 합을 출력합니다.

□ 입력설명

첫 줄에 자연수 N이 주어진다.(1<=N<=50)

두 번째 줄부터 N줄에 걸쳐 각 줄에 N개의 자연수가 주어진다. 각 자연수는 100을 넘지 않는다.

■ 출력설명

최대합을 출력합니다.

■ 입력예제 1

5

10 13 10 12 15

12 39 30 23 11

11 25 50 53 15

19 27 29 37 27

19 13 30 13 19

■ 출력예제 1

사과나무(다이아몬드)

현수의 농장은 N*N 격자판으로 이루어져 있으며, 각 격자안에는 한 그루의 사과나무가 심어저 있다. N의 크기는 항상 홀수이다. 가을이 되어 사과를 수확해야 하는데 현수는 격자판안의 사과를 수확할 때 다이아몬드 모양의 격자판만 수확하고 나머지 격자안의 사과는 새들을 위해서 남겨놓는다.

만약 NOI 5이면 아래 그림과 같이 진한 부분의 사과를 수확한다.

10	13	10	12	15
12	39	30	23	11
11	25	50	53	15
19	27	29	37	27
19	13	30	13	19

현수과 수확하는 사과의 총 개수를 출력하세요.

□ 입력설명

첫 줄에 자연수 N(홀수)이 주어진다.(3<=N<=20)

두 번째 줄부터 N줄에 걸쳐 각 줄에 N개의 자연수가 주어진다.

이 자연수는 각 격자안에 있는 사과나무에 열린 사과의 개수이다.

각 격자안의 사과의 개수는 100을 넘지 않는다.

■ 출력설명

수확한 사과의 총 개수를 출력합니다.

□ 입력예제 1

5

10 13 10 12 15

12 39 30 23 11

11 25 50 53 15

19 27 29 37 27

19 13 30 13 19

■ 출력예제 1

곳감(모래시계)

현수는 곳감을 만들기 위해 감을 깍아 마당에 말리고 있습니다. 현수의 마당은 N*N 격자판으로 이루어져 있으며, 현수는 각 격자단위로 말리는 감의 수를 정합니다.

그런데 해의 위치에 따라 특정위치의 감은 잘 마르지 않습니다. 그래서 현수는 격자의 행을 기준으로 왼쪽, 또는 오른쪽으로 회전시켜 위치를 변경해 모든 감이 잘 마르게 합니다.

만약 회전명령 정보가 2 0 3이면 2번째 행을 왼쪽으로 3만큼 아래 그림처럼 회전시키는 명령입니다.

1행	10	13	10	12	15		10	13	10	12	15
2행	12	39	30	23	11		23	11	12	39	30
3행	11	25	50	53	15	──	11	25	50	53	15
4행	19	27	29	37	27		19	27	29	37	27
5행	19	13	30	13	19		19	13	30	13	19

첫 번째 수는 행번호, 두 번째 수는 방향인데 0이면 왼쪽, 1이면 오른쪽이고, 세 번째 수는 회전하는 격자의 수입니다.

M개의 회전명령을 실행하고 난 후 아래와 같이 마당의 모래시계 모양의 영역에는 감 이 총 몇 개가 있는지 출력하는 프로그램을 작성하세요.

10	13	10	12	15
23	11	12	39	30
11	25	50	53	15
19	27	29	37	27
19	13	30	13	19

□ 입력설명

첫 줄에 자연수 N(3<=N<=20) 이 주어며, N은 홀수입니다.

두 번째 줄부터 N줄에 걸쳐 각 줄에 N개의 자연수가 주어진다.

이 자연수는 각 격자안에 있는 감의 개수이며, 각 격자안의 감의 개수는 100을 넘지 않는다.

그 다음 줄에 회전명령의 개수인 M(1<=M<=10)이 주어지고, 그 다음 줄부터 M개의 회전명령 정보가 M줄에 걸쳐 주어집니다.

■ 출력설명

총 감의 개수를 출력합니다.

■ 입력예제 1

5

10 13 10 12 15

12 39 30 23 11

11 25 50 53 15

19 27 29 37 27

19 13 30 13 19

3

2 0 3

5 1 2

3 1 4

■ 출력예제 1

봉우리

지도 정보가 N*N 격자판에 주어집니다. 각 격자에는 그 지역의 높이가 쓰여있습니다. 각 격자판의 숫자 중 자신의 상하좌우 숫자보다 큰 숫자는 봉우리 지역입니다. 봉우리 지역이 몇 개있는 지 알아내는 프로그램을 작성하세요.

격자의 가장자리는 0으로 초기화 되었다고 가정한다.

만약 N=5 이고, 격자판의 숫자가 다음과 같다면 봉우리의 개수는 10개입니다.

0	0	0	0	0	0	0
0	5	3	7	2	3	0
0	3	7	1	6	1	0
0	7	2	5	3	4	0
0	4	3	6	4	1	0
0	8	7	3	15	2	0
0	0	0	0	0	0	0

□ 입력설명

첫 줄에 자연수 N이 주어진다.(1<=N<=50)

두 번째 줄부터 N줄에 걸쳐 각 줄에 N개의 자연수가 주어진다. 각 자연수는 100을 넘지 않는다.

■ 출력설명

봉우리의 개수를 출력하세요.

□ 입력예제 1

5

5 3 7 2 3

37161

7 2 5 3 4

4 3 6 4 1

8 7 3 5 2

■ 출력예제 1

스토쿠 검사

스도쿠는 매우 간단한 숫자 퍼즐이다. 9×9 크기의 보드가 있을 때, 각 행과 각 열, 그리고 9 개의 3×3 크기의 보드에 1부터 9까지의 숫자가 중복 없이 나타나도록 보드를 채우면 된다. 예를 들어 다음을 보자.

1	4	3	6	2	8	5	7	9
5	7	2	1	3	9	4	6	8
9	8	6	7	5	4	2	3	1
3	9	1	5	4	2	7	8	6
4	6	8	9	1	7	3	5	2
7	2	5	8	6	3	9	1	4
2	3	7	4	8	1	6	9	5
6	1	9	2	7	5	8	4	3
8	5	4	3	9	6	1	2	7

위 그림은 스도쿠를 정확하게 푼 경우이다. 각 행에 1부터 9까지의 숫자가 중복 없이 나오고, 각 열에 1부터 9까지의 숫자가 중복 없이 나오고, 각 3×3짜리 사각형(9개이며, 위에서 색깔로 표시되었다)에 1부터 9까지의 숫자가 중복 없이 나오기 때문이다.

완성된 9×9 크기의 수도쿠가 주어지면 정확하게 풀었으면 "YES", 잘 못 풀었으면 "NO"를 출력하는 프로그램을 작성하세요.

□ 입력설명

첫 번째 줄에 완성된 9×9 스도쿠가 주어집니다.

■ 출력설명

첫째 줄에 "YES" 또는 "NO"를 출력하세요.

□ 입력예제 1

1 4 3 6 2 8 5 7 9

572139468

9 8 6 7 5 4 2 3 1

3 9 1 5 4 2 7 8 6

 $4\ 6\ 8\ 9\ 1\ 7\ 3\ 5\ 2$

7 2 5 8 6 3 9 1 4

2 3 7 4 8 1 6 9 5

 $6\ 1\ 9\ 2\ 7\ 5\ 8\ 4\ 3$

8 5 4 3 9 6 1 2 7

■ 출력예제 1

YES

격자판 회문수

1부터 9까지의 자연수로 채워진 7*7 격자판이 주어지면 격자판 위에서 가로방향 또는 세로방향으로 길이 5자리 회문수가 몇 개 있는지 구하는 프로그램을 작성하세요. 회문수란 121과 같이 앞에서부터 읽으나 뒤에서부터 읽으나 같은 수를 말합니다.

2	4	1	5	3	2	6
3	5	1	8	7	1	7
8	3	2	7	1	3	8
6	1	2	3	2	1	1
1	3	1	3	5	3	2
1	1	2	5	6	5	2
1	2	2	2	2	1	5

빨간색처럼 구부러진 경우(87178)는 회문수로 간주하지 않습니다.

□ 입력설명

1부터 9까지의 자연수로 채워진 7*7격자판이 주어집니다.

■ 출력설명

5자리 회문수의 개수를 출력합니다.

□ 입력예제 1

2415326

3518717

8 3 2 7 1 3 8

6 1 2 3 2 1 1

1 3 1 3 5 3 2

1 1 2 5 6 5 2

1 2 2 2 2 1 5

■ 출력예제 1