

Une école de l'IMT

Lecture 5 - Opinion Analysis

Chloé Clavel

Introduction

Introduction

Différentes dénominations

• Opinion extraction, opinion mining, sentiment analysis, subjectivity analysis, affect sensing, emotion detection

Les applications

- L'analyse des réseaux sociaux
- L'interaction humain-agent : ex: chatbot

Données Sociales et analyse d'opinions

Les données sociales:

Expressions des citoyens et des médias sur le web

Contexte :

 Renouvellement des possibilités de critique et d'action via Internet

Lecture : « La démocratie Internet »

Dominique Cardon

Dominique Cardon
La démocratie Internet

Données Sociales et analyse d'opinions

Enjeux :

- Analyse des tendances sociétales
- Analyse des opinions des citoyens sur les candidats lors des élections
- Analyse des critiques de films (movie reviews)
- Analyse des opinions des internautes sur un produit/Analyse de l'e-reputation d'une marque, d'un produit
- Identifier les clients cibles/systèmes de recommandation
- Évaluer le succès de campagne de communication

Données Sociales et analyse d'opinions

Disciplines impliquées :

- La sociologie :
 - analyse qualitative/manuelle/sociologique sur des corpus de taille réduite sélectionnés pour former un panel d'études
- L'informatique :
 - développement de méthodes d'analyse automatique de gros corpus

L'interaction humain-agent/robot

Agents artificiels & Robotique

- Analyser et reproduire les comportements humains pour interagir socialement avec l'homme.
- · Agents conversationnels animés,
- Robots & « affective avatar »

Robots AIBO & KISMET [Breazeal et Aryananda, 2002]

Nao (Aldebaran Robotics)

L'interaction humain-agent

Les assistants virtuels

https://www.youtube.com/watch?v=TaY9zt_qx_c

Interaction humain-machine

■ Kirobo : le robot japonais qui est parti 18 mois dans l'espace pour tenir compagnie à un astronaute

Interaction humain-agent: LiveChat et relation client

Langue: Français

Client: EDF Particuliers

Langue: Français

Client: Voyages SNCF

L'interaction humain-robot

Le robot Berenson au quai Branly

 « Les visiteurs ont été invités à observer le comportement de Berenson et à interagir avec lui, contribuant ainsi à définir les critères d'appréciations esthétiques de ce robot amateur d'art. »

Outline of the lecture

- Terminology and theoretical models
- Knowledge-based methods for opinion analysis
- ML methods for opinion analysis
 - How to obtain labelled data?
 - Opinion features

Terminology and theoretical models

Terminology issue

- Sentiment/opinion-related phenomena
 - Emotion, opinion, sentiment, mood, attitude, interpersonal stance, personality traits, affect, judgment, appreciation, argumentation, engagement
- Modalities of expression
 - Verbal content, prosody, Gesture, Posture, Facial expressions, physiological signal

Terminology issue

- Scherer's definitions [Scherer, 2005]
 - Emotion: short phenomenon, physiological reaction, appraisal of a major event (stimulus)
 - Mood: diffuse non-caused low-intensity long-duration change in subjective feeling
 - Interpersonal stances: affective stance toward another person in a specific interaction
 - Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons
 - Personality traits: stable personality dispositions and typical behavior tendencies
- PRACTICE : link the following terms to the most relevant phenomenon
 - liking, gloomy, contemptuous, jealous, sad

Terminology and applications

Challenges:

 choose the relevant phenomenon according to the application and the data [Clavel and Callejas, 2016]

Examples

- Detect when the student is frustrated or bored in elearning system => emotion
- Detect depressed persons at home in robot companion systems => mood
- Detect extrovert personality in job interview data => personality traits

Terminologie et applications

Exemples d'application et terminologie associée selon la typologie de Scherer :

Détecter lorsque l'utilisateur est énervé dans un système de dialogue

humain-machine

-> émotion

-> émotion

Terminologie et applications

- Détecter des personnes déprimées pour des robots dans le cadre de l'assistance aux personnes âgées
 - --> humeur

- Détecter des comportements amicaux ou hostiles dans des conversations
 - --> positionnement interpersonnel
- Détecter des personalités plutôt extraverties ou introverties pour des Serious games d'entrainement aux entretiens d'embauche
 - -> traits de personalité

Theoretical models

- Use theoretical models to delimit the linguistic phenomenon of opinion
 - Example : Appraisal theory from systemic functional linguistics [Martin and White, 2005]
 - An appraisal expression is a source that evaluates a target -> 3 components.

Theoretical models

- Properties of the model
 - Identify the opinion target
 - Distinguish the evaluative stances :
 - Affect (personal reaction referring to an emotional state)
 - Judgment (assigning qualities e.g. tenacity to individuals according to normative principles)
 - Appreciation (Evaluation of an object e.g. a product or a process)

Standardization

- Bien définie pour les émotions
 - Emotion : Emotion Markup Language
 - http://www.w3.org/TR/2014/REC-emotionml-20140522/
- Encore peu de choses sur les opinions et les sentiments
 - Opinion and sentiments
 http://www.w3.org/community/sentiment/ : Linked Data
 - Models for Emotion and Sentiment Analysis Community Group

Opinion detection methods - Challenges

Challenges:

EXO : La critique est elle positive ou négative? souligner les expressions correspondant à l'expression d'une opinion. Paraissent-elles plutôt positives ou négatives de manière générale?

- "This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."
- Well as usual Keanu Reeves is nothing special, but surprisingly, the very talented Laurence Fishbourne is not so good either, I was surprised. »

Challenges

- "This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."
- Well as usual Keanu Reeves is nothing special, but surprisingly, the very talented Laurence Fishbourne is not so good either, I was surprised.

Challenges

- more complex than a simple positive vs. negative word counts.
 - conditional tense
 - discourse markers
 - negation processing (I don't like this movie)
 - modifiers and intensifiers (the plot is not very good)
 - dealing with metaphors (global warming vs. climate change [Ahmad et al., 2011])

Détection d'opinions : enjeux et difficultés

Identification de la cible de l'opinion

- « Je <u>suis satisfait</u> des <u>contacts</u> que j'ai eus avec le service client mais pas des <u>tarifs</u> pratiqués »
- Concepts détectés
 - Opinion : satisfaction
 - Thématiques: contact et prix
- Enjeu : pouvoir détecter automatiquement ce sur quoi porte l'opinion
- Résolution d'anaphore : "il les adore"

Knowledge-based methods for opinion detection

1^e type de méthode : Détection de mots clés

- Keyword spotting: l'approche la plus naïve mais aussi la plus accessible et économe
- Principe :
 - Le texte est classé dans la catégorie d'opinions correspondant à la présence de mots clairement associés à une opinion ou une émotion
 - « je suis content » => positif

Limites:

- Ne traite pas la négation
 - « je ne suis pas content » => positif
- Ignore les mots qui sont implicitement positifs ou négatifs
 - « le réchauffement climatique »

2^e type de méthode : Affinité lexicale

Principe :

- Assigner aux différents mots une probabilité d'appartenance à une catégorie d'opinion ou d'émotion
 - Ex : « réchauffement » est assigné à la classe négative avec une probabilité de 75%
- Ces probabilités sont apprises sur des corpus annotés

Limites:

- Opère au niveau du mot et non au niveau de la phrase (ne traite pas la négation, ni le contexte sémantique)
 - Ex tiré de [Moilanen 2007] « The senators supporting(+) the leader(+) failed(-) to praise(+) his hopeless(-) HIV(-) prevention program."
- Les probabilités apprises dépendent fortement du corpus d'apprentissage et donc du domaine du corpus

- SentiWordNet http://sentiwordnet.isti.cnr.it/
 - Repose sur Wordnet : base de données lexicales
 - Principe : ensemble de synonymes les *synsets*
 - Version anglaise : http://wordnetweb.princeton.edu/perl/webwn
 - Version française: Wordnet Libre du Français (WOLF): http://alpage.inria.fr/~sagot/wolf.html

- SentiWordNet http://sentiwordnet.isti.cnr.it/
 - Principe : ajouter à chaque synset un score positif, un score négatif
 ET un score d'objectivité compris entre 0 et 1
 - [estimable(J,3)] "may be computed or estimated"
 Pos 0 Neg 0 Obj 1
 - [estimable(J,1)] "deserving of respect or high regard"
 Pos .75 Neg 0 Obj .25

SentiWordNet

main page

(c) Andrea Esuli 2005 - andrea.esuli@isti.cnr.it

Wordnet affect

- Sélection d'un sous-ensemble de wordnet
- Étiquette affective + valence

Etiquette affective	Exemples de synsets associés		
Emotion	nom ANGER#1, verbe FEAR#1		
Mood	nom ANIMOSITY#1, adjectif AMIABLE#1		
Trait	nom AGGRESSIVENESS#1, adjectif COMPETITIVE#1		
Cognitive State	nom CONFUSION#2, adjectif DAZED#2		
Physical State	nom ILLNESS#1, adjectif ALL IN#1		
Edonic Signal	nom HURT#3, nom SUFFERING#4		
Emotion-Eliciting Situation	nom AWKWARDNESS#3, adjectif OUT OF DANGER#1		
Emotional Response	nom COLD SWEAT#1, verbe TREMBLE#2		
Behaviour	nom OFFENSE#1, adjectif INHIBITED#1		
Attitude	nom INTOLERANCE#1, nom DEFENSIVE#1		
Sensation	nom COLDNESS#1, verbe FEEL#3		

Tiré de https://www.proxem.com/Download/Research/BDL-CA07-WordNet_et_son_ecosysteme-Francois_Chaumartin.pdf

- LIWC (Linguistic Inquiry and Word Count) Pennebaker, J.W., Booth, R.J., & Francis, M.E. (2007). Linguistic Inquiry and Word Count: LIWC 2007. Austin, TX
- Home page: http://www.liwc.net/
- 2300 mots, >70 classes
- Version française : http://sites.univ-provence.fr/wpsycle/outils_recherche/liwc/FrenchLIWC
 Dictionary_V1_1.dic

Lexique d'opinions en français

Emotaix en français

 http://sites.univprovence.fr/~wpsycle/outils_recherche/outils_recherch
 e.html#emotaix

LIWC français

Tableau 1Les 80 descripteurs analysés par le LIWC 2007 version anglaise (extrait de Pennebaker et al., 2007; NB: entre parenthèses l'effectif de radicaux présents dans le dictionnaire anglais).

Processus linguistiques	Processus psychologiques	Préoccupations personnelles	Dimensions du langage oral	Ponctuation
Total de mots	Processus sociaux (465)	Travail (327)	Consentement (30)	Total
Mots par phrase	Famille (64)	Accomplissement (186)	Phatiques (8)	Points
Mots du diction naire	Amis (37)	Loisirs (229)	Remplisseurs (9)	Virgules
Mots de plus de 6 lettres	Humains (61)	Maison (93)		Doubles points
Total de mots fonctionnels (464)	Processus affectifs (915)	Argent (173)		Points virgules
Total des pronoms (116)	Émotions positives (406)	Religion (159)		Points d'interrogation
Pronoms per sonnels (70)	Émotions négatives (499)	Mort (62)		Points d'exclamation
1 ^{er} person ne du sin gulier (12)	Anxiété (91)	,		Tirets
1er personne du pluriel (12)	Colère (184)			Guillemets
2e person ne (20)	Tristesse (101)			Apostrophes
3° personne du singulier (17)	Processus cognitifs (730)			Pa ren thèses
3e personne du pluriel (10)	Perspicadté (195)			Autres ponctuations
Pronoms impersonnels (46)	Causation (108)			
Articles (3)	Divergence (76)			
Verbes (383)	Tentative (155)			
Verbes auxiliaires (144)	Certitude (83)			
Verbes au passé (145)	Inhibition (111)			
Verbes au présent (169)	Inclusion (18)			
Verbes au futur (48)	Exdusion (17)			
Adverbes (69)	Processus perceptiis (273)			
Prépositions (60)	Vue (72)			
Conjonctions (28)	Audition (51)			
Négations (57)	Toucher (75)			
Quantifieurs (89)	Processus biologiques (567)			
Nombres (34)	Corps (180)			
Jurons (53)	Santé (236)			
	Sexualité (96)			
	Alimentation (111)			
	Relativité (638)			
	Mouvement (168)			
	Espace (220)			
	Temps (239)			

3^e type de méthodes : règles sémantiques

(manque|~negation-patt|(il/#NEG/y/avoir/~negation-patt))/(#PREP_DE)?/ (conseil|contact|~services-lex)

« manque de qualité de service »

Concept INSATISFACTION

« il n'y a vraiment pas eu de contact », ...

- × Principe:
 - Lexique de sentiment (ex : SentiWordNet)
 - Règles d'extraction [Moilanen 2007] [Taboaba et al.] [SenticPatterns]

3^e type de méthodes : règles sémantiques

Approche compositionnelle [Moilanen 2007] :

Représentation de la phrase sous forme de constituants

« The senators supporting the leader failed to praise his hopeless HIV prevention program »

 Calcule la polarité globale d'un constituant de sortie à partir des constituants d'entrée

Approche compositionnelle [Moilanen 2007] :

- Règles de propagation : la polarité d'un constituant neutre est "effacée" par celle d'un constituant non neutre
 - $\{(+)(N)\} \rightarrow (+)$
 - $\{(-)(N)\} \to (-)$
- Règles d'inversion : (+) \rightarrow (-) ; (-) \rightarrow (+) pour gérer par exemple la négation
- Règles de résolution de conflits de polarité : lorsque les deux polarités sont conflictuelles à différents niveaux de la structure syntaxique

3^e type de méthodes : règles sémantiques

Approche compositionnelle

- Utilisée pour distinguer affect/judgment/appreciation
 - Recognition of affect, judgment and appreciation in Text –
 Neviarouskaya et al., COLING 2010
 - 'I feel highly unfriendly attitude towards me' -> Affect
 - 'The shop assistant's behavior was really unfriendly' -> Judgment
 - 'Plastic bags are environment unfriendly' -> Appreciation

Affect : réaction personnelle, référence à un état émotionnel (bonheur, etc)

Jugement : attributions de qualités (capacité, ténacité) à des personnes en fonction de principes normatifs

Appréciation : évaluation de choses (produit, processus)

3^e type de méthodes : règles sémantiques

- Taboaba et al.: Lexicon-Based methods for sentiment analysis
- Principe:
 - Attribue une SO (Semantic Orientation) entre -5 et 5 aux adjectifs, noms, verbes et adverbes

Word

monstrosity hate (noun and verb) disgust sham fabricate delay (noun and verb) determination inspire inspiration endear relish (verb) masterpiece

Table 1 Examples of words in the noun and verb dictionaries.

Word	SO Value	
monstrosity	-5	
hate (noun and verb)	-4	
disgust	-3	
sham	-3	
fabricate	-2	
delay (noun and verb)	-1	
determination	1	
inspire	2	
inspiration	2	
endear	3	
relish (verb)	4	
masterpiece	5	

- Taboaba et al. : Lexicon-Based methods for sentiment analysis
- Principe:
 - Gestion des intensifieurs : modification de la SO

Table 3 Percentages for some intensifiers.

Intensifier	Modifier (%)
slightly	-50
somewhat	-30
pretty	-10
really	+15
very	+25
extraordinarily	+50
(the) most	+100

EXO:

Si *sleazy* a une SO de 3, quelle est la SO de *somewhat sleazy*?
Si excellent a une SO de 5, quelle est la SO de *most excellent*?

- Taboaba et al.: Lexicon-Based methods for sentiment analysis
- Principe:
 - Gestion de la négation :
 - switch negation pour les cas simples (good(+3), not good(-3))
 - Recherche de la négation dans les cas plus compliqués
 - Ex: « Nobody gives a good performance in this movie »
 - Gestion des « Irrealis blocking »: ex: « would »
 - « This should have been a great movie »(SO = 3 -> SO =0)

Knowledge-based methods for opinion analysis in human-agent interaction

La problématique

Knowledge-based methods for opinion analysis in human-agent interactions

Example : bottom-up rule-based approach based on three levels of the utterance

C. Langlet and C. Clavel, Improving social relationships in face-to-face humanagent interactions: when the agent wants to know users likes and dislikes, in ACL 2015

Knowledge-based methods for opinion analysis in human-agent interactions

- Extraction patterns and semantic rules in order to integrate the human-agent interaction context
 - rules at the adjacency pair level (agent utterance, user utterance)

Machine learning for opinion analysis

Introduction and specific challenges

Machine learning for opinion analysis

Two tasks:

- classication of documents in opinion categories (ex: positive/negative) using
 - supervised machine learning approaches: SVM (Support Vector Machine), Naïve bayes classier (see Lab), deep learning approaches
- sequential annotation of opinion, source and target using sequential approaches
 - (ex: Conditional Random Fields, recurrent neural networks)

```
The
      committee
                       as
                             usual
                                       has
                  O B ESE I ESE O
                                      B DSE
refused
          to make
                       any
                             statements
 I DSE
         I DSE
               I DSE
                      I DSE
                               I DSE
```

Figure 2: from (Irsoi and Cardie)

ML vs. Knowledge-based

ML advantages

- few linguistic expertise is required to build the model from the annotated data,
- a higher interoperability of the models
- ML drawback
 - require a labelled dataset (big dataset for deep learning approaches) while
 - annotating data in opinions is a difficult task
 - difficult interpretation of trained models
 - difficult to transfer model on different data (the model is corpus-dependent)

How to build a labelled database?

Importance des données

- Qualité des modèles acoustiques appris <= quantité suffisante et qualité des données
- Collecter des données proches de l'application visée
 - Parfois difficile, ex : la peur

3 types de corpus

- Corpus actés : manifestations peu réalistes
 - Émotions/opinions simulées par des acteurs ou non +/- hors contexte
- Corpus élicités : le locuteur est mis dans des situations propices au ressenti d'une émotion
 - ex: corpus magicien d'Oz où le locuteur croit que c'est l'ordinateur qui provoque ces situations alors qu'un humain se cache derrière le (dys)fonctionnement de l'ordinateur
- Corpus spontanés « real-life »
 - Corpus enregistrés dans des interactions quotidiennes ex: les centres d'appels

Annotation des opinions : difficultés

Phénomène subjectif

 Nous n 'avons pas tous la même perception d'une émotion exprimée par l'autre

Phénomène complexe :

 Opinions et émotions et autres phénomènes mélangés dans les interactions naturelles (ex: la peur et la colère)

Their First Murder, 1941 © Weegee

 pour un même événement : variantes des réactions émotionnelles suivant les personnalités:

L'annotation des émotions/opinions

Objectif

- Définir parmi la grande variété d'émotions existantes les classes d'émotions qui seront reconnues par le système (colère vs. Mécontentement)
- Accéder au contenu du corpus pour une meilleure compréhension des comportements du système

Cône des émotions de Plutchik tiré de [Plutchik, 1984].

Outils d'annotation

- Annotation multimodale :
 - Elan
- Annotation audio
 - Praat
 - Transcriber
- **Texte**:
 - Gate
 - Glose

Mesure de la fiabilité des annotations

■ Phénomène émotionnel = phénomène subjectif

- Faire annoter plusieurs annotateurs
- Évaluer le degré de fiabilité des annotations

Exemple de mesure

- Kappa 's Cohen [Carletta, 1996]:
 - accord corrigé de ce qu'il serait sous le simple fait du hasard

$$\kappa = \frac{\bar{p_o} - \bar{p_e}}{1 - \bar{p_e}}$$

 Po est la proportion d'accord observé et Pe la probabilité que les annotateurs s'accordent par chance

Mesure de la fiabilité des annotations

EXO

Valeurs du kappa ?

- $\kappa = \frac{\bar{p_o} \bar{p_e}}{1 \bar{p_e}}$
- Quand les annotateurs s'accordent autant que le hasard
- Quand les annotateurs s'accordent totalement

Exercice

 50 séquences audio annotées par 2 personnes (Ann1/Ann2) en 2 catégories positif/négatif

Ann1\Ann2	Positif	Négatif
Positif	20	5
Négatif	10	15

Calcul du kappa entre les deux annotateurs

Mesure du degré de fiabilité

$$\kappa = \frac{\bar{p_o} - \bar{p_e}}{1 - \bar{p_e}}$$

- Po = (20+15)/50 = 0.7 accord interannotateur
- Calcul de Pe:
 - Ann1 annote positif 50% des fois
 - Ann2 annote positif 60% des fois
 - Probabilité pour que les 2 annotent positif : 0.5*0.6=0.3
 - Probabilité que les 2 annotent négatif : 0.5*0.4 = 0.2
 - Probabilité de s'accorder par hasard : 0.2+0.3 = 0.5

Calcul du Kappa:

• Kappa = 0.2/0.5 = 0.4

Mesure de la fiabilité des annotations

Accord modéré = standard pour les émotions [Landis et Koch, 1977]

Accord	Kappa	
Excellent	$\geq 0,81$	
Bon	0,80-0,61	
Modéré	0,60-0,41	
Médiocre	0,40-0,21	
Mauvais	0,20-0	
Très mauvais	< 0	

Tab. 4.4 – Degré d'accord en fonction des valeurs de Kappa

Autre mesure : Alpha de Cronbach [Cronbach, 1951] pour les dimensions

ML and opinion analysis

ML methods

Text representation learning and sentiment analysis

Word2Vec and Sentiment analysis

- Maas, Andrew L., et al. "Learning word vectors for sentiment analysis." *Proceedings of the 49th* Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.
 - Technique inspirée de la LDA: Latent Dirichlet Allocation (modèle de topic probabilistique)

Word2Vec sentiment analysis SSWE

Tang, Duyu, et al. "Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification." ACL (1). 2014.

	romance	romance	romance
	love	charming	screwball
romantic	sweet	delightful	grant
	beautiful	sweet	comedies
	relationship	chemistry	comedy

deep learning et sentiment analysis

■ Remise au goût du jour des réseaux de neurones avec l'émergence du deep learning

o REF: R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, October 2013, pp. 1631? 1642.

Réseaux de neurones et deep learning

- Utilisation des réseaux récursifs tensoriels
 - Représentation de la phrase par un arbre (utilisation du parseur de Stanford)

:

Méthodes statistiques et machine learning

- Base de données : Sentiment treebank
 - phrases de critiques de films parsées avec le parseur de Stanford
 - Annotation des nœuds de l'arbre en (-, +,0) pour fournir la structure nécessaire à l'application d'un modèle récursif

Réseaux de neurones et deep learning

 Décision on applique les récursivement les fonctions d'activation:

 Apprentissage : apprentissage de la fonction g du passage au parent dans l'arbre binaire de représentation la phrase

Remaining challenges

First challenge: noisy data

- How to deal with in-the-wild data?
 - in real applications, corpora are wild [Schuller et al., 2016] and contain spontaneous conversational data
 - Example : transcripts of call-centre data and disfluencies

Disfluences combinées Vous regardez les 5 derniers **chiffres** des **chi** des numéros gravés, pas les chiffres qui défilent **hein**

- Linguistic modelling of spontaneous opinion expressions including
 - oral and interactional features (ex: disuencies)
 - —written features (ex : typos, chat features: lol, A+, mouhahaha)

Second challenge: opinion dynamics

Illustration From Valentin Barriere

