Exercise 13. Let V be a Banach space, and let v and v_1, v_2, \ldots belong to V. The series $\sum_{k=1}^{+\infty} v_k$ is said to converge unconditionally to v if for each positive ε there is a finite subset F_{ε} of $\mathbb N$ such that $\|\sum_{k\in F} v_k - v\| < \varepsilon$ holds whenever F is a finite subset of $\mathbb N$ that includes F_{ε} .

- (a) Show that if $\sum_{k=0}^{+\infty} v_k$ converges absolutely, then it converges unconditionally to some point in V.
- (b) Show that the converse of part (a) holds if $V = \mathbb{R}$.
- (c) Show that the converse of part (a) is not true in general. (Hint: let V be c_0 , l^2 , or l^{∞} .)

Proof.

(a) Suppose that $\sum_k v_k$ converges uniformly and note $v = \sum_{k=0}^{+\infty} v_k$. Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\forall n \geq N, \quad m \geq N, \quad \left\| \sum_{k=n}^{m} v_k \right\| < \sum_{k=n}^{m} \|v_k\| < \varepsilon$$

Let $F_{\varepsilon} = \{0, 1, \dots, N\}$, and let $F_{\varepsilon} \subset F \subset \mathbb{N}$ for some finite F.

$$\left\| \sum_{k \in F} v_k - v \right\| = \left\| \left(\sum_{k \in F_{\varepsilon}} v_k - v \right) + \sum_{k \in F - F_{\varepsilon}} v_k \right\|$$

$$\leq \left\| \sum_{k=0}^{N} v_k - v \right\| + \left\| \sum_{k=N+1}^{+\infty} v_k \right\|$$

$$\leq \left\| \sum_{k=0}^{N} v_k - v \right\| + \sum_{k=N+1}^{+\infty} \|v_k\|$$

$$\leq 2\varepsilon$$

so that if $\sum_k v_k$ converges uniformly, then it converges unconditionally.

(b) Let $\sum_k v_k$ be a series of real numbers that converges unconditionally to $v \in \mathbb{R}$. Let $\varepsilon > 0$ and F_{ε} a finite subset of \mathbb{N} such that

$$\left| \sum_{k \in F_{\varepsilon}} v_k - v \right| < \varepsilon$$

Let $n = \max F_{\varepsilon}$ if $F_{\varepsilon} \neq \emptyset$ and n = 1 otherwise, let $m \geq n$, and let $F^- \subset \{n+1, n+2, \ldots, m\}$ such that for all $i, n < i \leq m, v_i < 0$

implies $v_i \in F^-$. Then

$$\sum_{k \in F^{-}} |v_{k}| = \left| \sum_{k \in F^{-}} v_{k} \right|$$

$$= \left| \sum_{k \in F_{\varepsilon} \cup F^{-}} v_{k} - \sum_{k \in F_{\varepsilon}} v_{k} \right|$$

$$\leq \left| \sum_{k \in F_{\varepsilon} \cup F^{-}} v_{k} - v \right| + \left| \sum_{k \in F_{\varepsilon}} v_{k} - v \right|$$

$$\leq 2\varepsilon \tag{1}$$

Defining similarly F^+ to be the nonnegative terms of $\sum_k v_k$ with k between n+1 and m, we get

$$\sum_{k \in F^+} |v_k| \le 2\varepsilon \tag{2}$$

Combining (1) and (2) we get:

$$\sum_{n < k \le m} |v_k| \le 4\varepsilon$$

The above inequality is valid for any value of m, as soon as $n \ge \max F_{\varepsilon}$, so that $\sum_{k} |v_{k}|$ is a Cauchy series of real numbers. Since \mathbb{R} is complete, we deduce that $\sum_{k} |v_{k}|$ converges in \mathbb{R} , so that $\sum_{k} v_{k}$ is absolutely convergent.

(c) Let $V = c_0$, the \mathbb{R} -vector space of real number sequences $\{x_n\}$ such that $\lim_n x_n = 0$, equipped with the norm $\|\cdot\|_{\infty}$. Define a sequence $\{v_n\}$ of elements of c_0 , noted $v_n = (v_{n,0}, v_{n,0}, \cdots)$ such that

$$\forall k \in \mathbb{N}, \ v_{n,k} = \begin{cases} \frac{1}{n+1} & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$$

Then, for all $n \in \mathbb{N}$, $||v_n|| = 1/(n+1)$, so that $\sum_n v_n$ is not absolutely convergent. Let

$$v = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right)$$

For all $N \in \mathbb{N}$,

$$\left\| \sum_{k=0}^{N} v_k - v \right\| = \left\| \left(0, 0, \dots, \frac{1}{N+2}, \frac{1}{N+3}, \dots \right) \right\| = \frac{1}{N+2}$$

Let $\varepsilon>0$ and choose N such that $1/(N+2)<\varepsilon$. Let $F_{\varepsilon}=\{0,1,2,\ldots,N\}$, and let F be any subset of $\mathbb N$ that contains F_{ε} . Then

$$\left\| \sum_{k \in F} v_k - v \right\| \le \frac{1}{N+2} < \varepsilon$$

so $\sum_k v_k$ converges unconditionally to v.