Corrigé du Partiel du lundi 18 Novembre 2013

Exercice 1. On note $A = \{1 \leq Z \leq 2\}$. La tribu engendrée par Y est la tribu engendrée par la partition $\{A, A^c\}$ donc

$$E[Z|Y] = \frac{E[Z1_A]}{P(A)} 1_A + \frac{E[Z1_{A^c}]}{P(A^c)} 1_{A^c}$$
$$= \frac{2e^{-1} - 3e^{-2}}{e^{-1} - e^{-2}} 1_A + \frac{1 - 2e^{-1} + 3e^{-2}}{1 - e^{-1} + e^{-2}} 1_{A^c}$$

On remarque ensuite que Y est Z-mesurable donc E[Z|Y] = Z.

Exercice 2. Il s'agissait d'une question de cours. Vous trouverez deux rédactions possibles dans le polycopié de cours.

Exercice 3. a) Pour $k \ge 1$, $1_{S < k \le T} = 1_{S < k} 1_{k \le T}$. Or $\{S < k\} = \{S \le k - 1\}$ est \mathcal{F}_{k-1} -mesurable car S est un temps d'arrêt et $\{k \le T\} = \{T \le k - 1\}^c$ est \mathcal{F}_{k-1} -mesurable car T est un temps d'arrêt. Finalement V_k est \mathcal{F}_{k-1} -mesurable et le processus $(V_k)_{k \ge 1}$ est prévisible.

b) On vérifie aisément que $((V \cdot X)_n)_{n>0}$ est adapté et intégrable. De plus pour $n \geq 0$,

$$E[\Delta(V \cdot X)_{n+1}|\mathcal{F}_n] = E[V_{n+1}\Delta X_{n+1}|\mathcal{F}_n]$$
$$= V_{n+1}E[\Delta X_{n+1}|\mathcal{F}_n]$$
$$> 0.$$

A la deuxième ligne on utilise que le processus est adapté donc V_{n+1} est \mathcal{F}_n —mesurable et on peut le sortir de l'espérance conditionnelle. Pour la troisième, on utilise que V_{n+1} est positif et que $(X_n)_{n\geq 1}$ est une sous-martingale.

c) Pour $n \geq 0$, on vérifie que

$$(V \cdot X)_n = \sum_{k=1}^n 1_{S < k \le T} (X_k - X_{k-1}) = \begin{cases} 0 & \text{si } n \le S \\ X_n - X_S & \text{si } S < n < T \\ X_T - X_S & \text{si } n \ge T \end{cases}$$
$$= X_{T \wedge n} - X_{S \wedge n}.$$

d) On remarque tout d'abord que T et S sont finis p.s. donc $(V \cdot X)_n = (X_{T \wedge n} - X_{S \wedge n})_n$ converge p.s. vers $X_T - X_S$ quand n tend vers $+\infty$. De plus le processus $((V \cdot X)_n)_{n \geq 0}$ est dominé par $2Z \in L^1$. Donc d'après le théorème de convergence dominée

$$E[(V \cdot X)_n] \to E[X_T - X_S]$$

Or $((V \cdot X)_n)_{n \ge 0}$ est une sous-martingale donc son espérance est croissante. On a donc pour tout n > 0

$$E[(V \cdot X)_n] \ge E[(V \cdot X)_0] \ge 0.$$

Finalement on a bien prouvé que

$$E[X_T - X_S] \ge 0.$$

Exercice 4.

- 1. On vérifie que $(S_n)_{n\geq 0}$ est une martingale et que T est un temps d'arrêt. On en déduit que $(S_{n\wedge T})_{n\geq 0}$ est une martingale. On remarque enfin que $(1-S_{n\wedge T})_{n\geq 0}$ est une martingale positive. Elle converge donc p.s et $(S_{n\wedge T})_{n\geq 0}$ aussi.
- 2. Comme $(S_{n\wedge T})_{n\geq 0}$ converge, $(S_{n+1\wedge T}-S_{n\wedge T})_{n\geq 0}=(X_{n+1}1_{T>n+1})_{n\geq 0}$ converge p.s. vers 0. En prenant la valeur absolue on obtient que $(1_{T>n+1})_{n\geq 0}$ converge vers 0. Le processus est donc constant égal à 0 à partir d'un certain rang et on en déduit que T est fini p.s.
- 3. On déduit de la question précédente que $(S_{n \wedge T})_n$ converge p.s. vers S_T . Si la convergence a lieu dans L^1 alors

$$|E[S_{n\wedge T}] - E[S_T]| \le E[|S_{n\wedge T} - S_T|] \to 0 \quad (n \to \infty).$$

Or $S_T = 1$ p.s. donc $E[S_T] = 1$ et $E[S_{n \wedge T}] = E[S_0] = 0$ car $(S_{n \wedge T})_{n \geq 0}$ est une martingale. Il n'y a donc pas convergence dans L^1 .

- 4. Pour tout $n \geq 0$, $|S_{n \wedge T}| \leq T$. Si T etait intégrable alors on pourrait appliquer le théorème de convergence dominé et on aurait convergence dans L^1 ce qui est absurde. Donc T n'est pas intégrable.
- 5. Pour toute fonction $\lambda(\cdot)$ le processus $(M_n)_{n\geq 0}$ est adapté et intégrable. Ce processus sera une martingale si et seulement si il vérifie pour tout $n\geq 1$

$$E[M_n|\mathcal{F}_{n-1}] = M_{n-1}.$$

Or

$$E[M_n | \mathcal{F}_{n-1}] = E[M_{n-1} \exp(X_n - \lambda(\theta)) | \mathcal{F}_{n-1}] = M_{n-1} E[\exp(X_n - \lambda(\theta)) | \mathcal{F}_{n-1}]$$

= $M_{n-1} E[\exp(X_n - \lambda(\theta))]$

où on a utilisé successivement que M_{n-1} est \mathcal{F}_{n-1} — mesurable puis que X_n est indépendant de \mathcal{F}_{n-1} . On en déduit que $(M_n)_{n>0}$ est une martingale si et seulement si

$$E[\exp(X_n)] = e^{\lambda(\theta)}.$$

Or $E[\exp(X_n)] = \cosh(\theta)$, on choisit donc $\lambda(\theta) = \ln(\cosh(\theta))$.

6. Comme T est un temps d'arrêt et que $(M_n)_{n\geq 0}$ est une martingale, on en déduit que $(M_{n\wedge T})_{n\geq 0}$ est une martingale. Comme une martingale est d'espérance constante, pour tout $n\geq 0$

$$E[M_{n\wedge T}] = E[M_0] = 1.$$

7. On sait que T est fini p.s. donc $(M_{n\wedge T})_{n\geq 0}$ converge p.s. vers $M_T = \exp(\theta - \lambda(\theta)T)$. De plus pour tout $n\geq 0$, $|M_{n\wedge T}|\leq \exp(\theta)$ (car λ est positif). On peut donc appliquer le théorème de convergence dominé et on obtient que $E[M_{n\wedge T}]$ converge vers $E[M_T]$. Or on vient de voir à la question précédente que pour tout $n\geq 0$, $E[M_{n\wedge T}]=1$, on a donc

$$1 = E[M_T] = E[e^{\theta - \lambda(\theta)T}].$$

Et finalement

$$E[e^{-\lambda(\theta)T}] = e^{-\theta}.$$

8. Il nous reste à remarquer que $\theta \to \ln(\cosh(\theta))$ est une bijection de \mathbb{R}^+ dans \mathbb{R}^+ et que pour tout $u \ge 0$, $\exp\{-(\ln(\cosh))^{-1}(u)\} = e^u - \sqrt{e^{2u} - 1}$. On en déduit que pour tout $s \ge 0$

$$E[e^{sT}] = e^{-s} - \sqrt{e^{-2s} - 1}.$$