Lecture 10: MOSFET, transconductance

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- When $V_G < V_{TH}$,
 - No drain current!

$$I_D = 0$$

- When $V_G > V_{TH}$,
 - Triode mode $(V_{DS} < V_G V_{TH})$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- Saturation mode $(V_{DS} > V_G - V_{TH})$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{TH})^2$$

- For a short channel device, I_D increases slightly as V_{DS} increases.

Example 6.6 (Razavi)

- Assume the saturation region.
 - Then, the saturation current becomes 200 μ A.

MOS transconductance

- "conductance" of a simple resistor
 - It means $\frac{I}{V}$.
- "trans" + "conductance"
 - Between different terminals

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \tag{6.44}$$

For the saturation region,

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Channel length modulation

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate