Example: The Overdayed Bullet RLC Crimit: $47\omega_0$ (PP326 8# Ed HRS)

Determine
$$v(t)$$
.

Quen:

 $R = \begin{cases} 1i & \text{fix} \\ 2i & \text{fix} \end{cases}$
 $(0) = 0 \text{ V}$
 $(0) = 0 \text{ V}$
 $(0) = 10 \text{ A}$
 (0)

Solution. We identify it as a parallel RLC circuit so;

$$\alpha = \frac{1}{2RC} = \frac{1}{2 \times 6 \times \frac{1}{42}} = 3.5$$

$$(\alpha = \frac{R}{2L} - Series)$$

and
$$w_0 = \frac{1}{\sqrt{1200}} = \frac{1}{\sqrt{7 \times \frac{1}{4200}}} = 2.45$$
 (resonant frequency)

and
$$S_2 = - \alpha - \sqrt{\alpha^2 - w_0^2} = -6$$

the general form of the response is:

- To determine A1 and A2;

Here
$$A_1 + A_2 = 0$$

Here $A_1 + A_2 = 0$

Also the derivative of $u(t)$
 $u(t) - A_1 e^{-t} + A_2 e^{-6t}$
 $\frac{du}{dt} = -A_1 e^{t} - 6A_2 e^{-6t}$

— We know $\hat{c}_c = C \frac{du}{dt}$

or $\frac{du}{dt} = \frac{1}{2}\hat{c}_c$

— Now KCL must hold at any instant in time,

thus $\hat{c}(0) + \hat{c}_{R}(0) = \hat{c}_{c}(0)$ Given:

 $\hat{c}(0) + \hat{c}_{R}(0) = \hat{c}_{c}(0)$

So $10 + 0 = \hat{c}_{c}(0)$
 $\hat{c}_{c}(0) = 10$

— Here $\frac{du}{dt} = \frac{\hat{c}_{c}(0)}{C} = \frac{10}{42} = 420 \text{ V/s}$

— So we get $A_1 - 6A_2 = 420$

— $\frac{cont d}{c}$