[현재 계획 중인 심화스터디 목록]

아래의 내용은 모두 스터디 진행 예시입니다. 구체적인 스터디 진행은 팀 내에서 자율적으로 구성 가능합니다. (* 표시는 저번 학기에는 진행되지 않았던 심화스터디를 의미합니다.)

스터디	내 용	총 담당자	
데이터마이닝 (머신러닝 알고리즘)	데이터마이닝 방법론과 더불어 세션 내용 중 머신러닝의 전 반적인 내용에 대해 더욱더 깊게 공부합니다. (신입 기수 추천) - 인프런 〈파이썬 머신러닝 완벽 가이드〉 학습 / 단국대 〈2020년 가을학기 캐글 뽀개기 강좌〉 학습 - SVM, Decision Tree 등 머신러닝의 대표적인 기법 실		
	습과 수학적인 작동 원리 학습 - Dacon 공모전 참여를 통한 프로젝트 진행		
추천시스템	추천시스템에 대한 기초적 이론을 학습하고, 이를 바탕으로 CF, MF, Neural CF 등의 모델을 구현합니다. - Stanford <mining datasets="" massive=""> 추천시스템 부분 강의 학습 / Coursera <추천시스템 특화 과정> 학습 - Content-based, Collaborative, Latent Factor Based, Hybrid Method 방법론 등 추천시스템에 관한 개념 학습 - 인프런 <python을 개인화="" 이용한="" 추천시스템=""> 강의 학습을 통한 모델 구현</python을></mining>	부회장 전재현	
베이즈 통계	베이즈 통계에 대한 기초를 다지고 베이즈 분석 기법을 학습합니다. - Coursera 〈Bayesian Statistics: From Concept to Data Analysis〉 〈Bayesian Statistics: Techniques and Models〉 강의 학습 - 기존의 빈도주의적인 접근과는 다른 베이지안 접근의 원리이해 - 〈프로그래머를 위한 베이지안 with 파이썬〉 교재 학습		

	및 PyMC 패키지를 통한 프로젝트 진행
	Computer Vision에 관한 기초적인 이론과 다양한 모델링
	기법을 학습합니다.
	- Stanford <cs231n: convolutional="" networks<="" neural="" td=""></cs231n:>
컴퓨터비전	for Visual Recognition> 학습
	- RNN, GoogleNet, EfficientNet 등 다양한 CV 모델 논
	문 리뷰
	- 최신 기법 중 하나인 NeRF를 활용한 프로젝트 진행
	Natural Language Processing에 관한 기초적인 이론과
	다양한 모델링 기법을 학습합니다.
	- WikiDocs <딥러닝을 이용한 자연어 처리 입문> 학습
	- 텍스트 전처리, Word Embedding, RNN, seq2seq 등
자연어처리	다양한 NLP 내용 학습
	- Transformer, GPT-1, GPT-2 Albert 등 최신 NLP
	모델 리뷰
	- 워드 임베딩, HMC 등을 사용한 맞춤법 자동완성 모델
	구현
	Reinforcement Learning에 관한 기초적인 이론과 다양한
	모델링 기법을 학습합니다.
-1 -1 -1 k	- 유튜브 <팡요랩 - 강화학습의 기초이론> / <david< td=""></david<>
강화학습*	Silver - Reinforcement Learning> 학습
	- Policy Gradient, DQN 알고리즘 구현
	- DQN, 알파고 제로, A3C 등 관련 논문 리뷰
	대표적인 프로그래밍 패러다임인 객체지향 프로그래밍의
	핵심이 되는 구성요소에 대해 학습합니다.
객체지향 프로그래밍	- Java와 같은 프로그래밍 언어를 활용하여 객체지향의 3
	요소인 캡슐화, 상속, 다형성의 원리와 구현하는 방법 학습
	- 간단한 객체 모델링 구현 프로젝트을 통한 실습
	관계형, 비관계형 데이터베이스의 구성 원리에 대해 이론
데이터베이스	적으로 공부하며 실제 DB를 구현합니다.
	- 유튜브 <이것이 MySQL이다> / Datacamp <sql< td=""></sql<>

	Course> 학습			
	- SELECT, JOIN 등 기본적인 SQL 쿼리문 학습 및 데이			
	터베이스를 보다 효율적으로 다루는 view, index, trigger			
	등의 요소 학습			
	- 대표적인 NoSQL인 MongoDB 학습			
	- ERD Diagram 작성을 통한 관계형 데이터베이스 구현			
	- 데이터베이스와 연동되는 웹사이트 구현			
	비지도 학습 방법 중 Factor analysis에 대해 학습하고, 이			
팩터 분석	를 활용하는 프로젝트를 진행합니다.			
	- 책 <핸즈온 비지도 학습> 학습			
	- 차원 축소, 이상치 탐지, 클러스터링, 그룹 세분화 등의			
	비지도 머신러닝 학습법 이론 공부			
	- 주가 데이터를 활용한 팩터 모델링 팀 프로젝트 진행 및			
	기타 캐글 대회 참여 (Ubiquant Market Prediction 대회			
	등)			

[심화스터디 진행 일정]

날 짜	내용
~ 2022.07.12	심화 스터디 팀 편성
2022.07.13 ~ 2022.07.18	심화스터디 활동 계획서 작성 팀별로 수료 요건을 포함한 활동 계획서를 작성합니다.

2022.07.13 ~ 2022.10.13	팀별 심화스터디 진행 팀별로 각 주제에 대하여 심화 스터디를 진행합니다. 매주 노션을 통해 스터디 일지를 작성하며 학습 및 실습 내용에 관하여 정리하는 시간을 주기적으로 갖습니다.
2022.10.27 ~	팀별 심화스터디 추가 진행 희망하는 경우, 팀별로 각자 주제에 대한 심화 스터디를 이어서 진행합니다. 추가적인 보고서 작성 계획은 없으나, 노션을 통해 스터디 진행 과정을 지속적으로 인증합니다.
2022.11.20 ~ 2022.11.25	심화스터디 활동 요약 보고서 작성 각 팀이 공부한 내용을 바탕으로 활동 요약 보고서를 작성합니다. 학습한 내용 및 그 내용이 어떻게 활용될 수 있는 지에 초점을 맞춰 보고서를 작성합니다. 프로젝트를 통해 활동을 완료한 팀은 자신들의 프로젝트 진행 배경과 과정 및 결과물을 공유합니다. 교수님께 활동 요약 보고서를 제출하여 심화스터디 참여를 인증받습니다.