

Section 5: Théorie des graphes

Année Universitaire: 2021-2022

Définitions

□*Graphe orienté*

Un graphe est orienté si ses arêtes ne peuvent être parcourues que dans un sens.

L'orientation des arêtes est indiquée par des flèches sur les arêtes.

□<u>Graphe non orienté</u>

Dictionnaire des précédents (graphe orienté)

X	Prédécesseurs
Α	-
В	A,D,C
С	Α
D	A,C

Matrice d'un graphe orienté

On peut également définir la matrice d'adjacence d'un graphe orienté. Cette fois, le coefficient a_{i,j} désigne le nombre d'arcs d'origine i et d'extrémité j.

Degré d'un sommet

- ■Nombre d'arêtes reliées à ce sommet.
- □Le sommet A est de degré 3: (B,C,D)

□<u>Cycle:</u>

On peut partir d'un sommet et revenir à ce sommet en parcourant une et une seule fois les autres sommets.

Exemple: A,B,C,D,A

□Chaine

Une suite de sommets reliés par une seule arête.

□ Chaîne hamiltonienne:

Chaîne passant par tous les sommets d'un graphe ABCD, ABDC, ACBD.

□Chaîne eulérienne:

Chaîne passant par toutes les arêtes d'un graphe BACBDC.

Types de cycles

□ Cycle eulérien:

Passant une seules fois par toutes les arêtes d'un graphe et revenant au sommet de départ.

☐ Cycle Hamiltonien:

Passant une seule fois par tous les sommets d'un graphe et revenant au sommet de départ.

Exemple: Existe-t-il un cycle eulérien?

CDBCABEC

Théorème d'Euler (1766)

Graphe eulérien tous les sommets du graphe ont un degré pair.

Connexité

□<u>Graphe connexe:</u>

Tous les sommets sont reliés entre eux.

☐ Graphe non connexe

Il existe des sommets non reliés entre eux.

Retour à Königsberg

Les 7 ponts de Königsberg

Est-il possible de parcourir les ponts de la ville en passant sur chacun des 7 ponts exactement une fois?

Sous forme de graphe

- ☐ Les sommets= quartiers
- ☐ Les arcs= les ponts
- □ Le problème => le graphe est il eulérien **Non**

Coloriage des sommets d'un graphe non orienté

Nombre chromatique:

Affecter tous les sommets d'un graphe d'une couleur de telle sorte que deux sommets adjacents ne portent pas la même couleur.

Le nombre nécessaire de couleur = Nombre chromatique

Exemple1:

Couleur1: A, C

Couleur2: B, D

Nombre chromatique=2

Coloriage des sommets d'un graphe non orienté

Exemple2:

Couleur1= {a,d}
Couleur2= {b,e}
Couleur3={c,f}
Nombre chromatique=3

Application 1/3

- □Une université doit organiser les horaires des examens.
- □On suppose qu'il y a 7 épreuves à planifier, numérotées de 1 à 7:
- □ Les paires de cours suivantes ont des étudiants en commun: 1 et2, 1 et 3, 1 et 4, 1 et 7, 2 et 3, 2 et 4, 2 et 5, 2 et 7, 3 et 4, 3 et 6, 3 et 7, 4 et 5, 4 et 6, 5 et 6, 5 et 7, 6 et 7.
 - Comment organiser ces épreuves de façon qu'aucun étudiant n'ait à passer deux épreuves en même temps et cela sur une durée minimale?

Application 2/3

- 1 et2, 1 et 3, 1 et 4, 1 et 7,
- 2 et 3, 2 et 4, 2 et 5, 2 et 7,
- 3 et 4, 3 et 6, 3 et 7,
- 4 et 5, 4 et 6,
- 5 et 6,
- 5 et 7,
- 6 et 7.

Couleur2= {2}
Couleur3={3,5}
Couleur4={4,7}
Nombre chromatique=4

Couleur1= {1,6}

Application 3/3

- $\square K = 4$: les examens peuvent être répartis en 4 périodes, de la manière suivante:
 - **▶ Période 1**, épreuves des cours 1 et 6
 - **▶ Période 2**, épreuve du cours 2
 - *▶Période 3*,épreuves des cours 3 et 5
 - **▶ Période 4**, épreuves des cours 4 et 7

Application 1/2

□A, B, C, D, E, F, G et H désignent huit commerciaux; dans le tableau cidessous, une croix signifie que les commerciaux ne sont pas prêts à travailler

ensemble:

Α	В	С	D	Е	F	G	Н
	Χ	Χ	Χ			Χ	Χ
X				Χ	Χ	Χ	
X			Χ		Χ	Χ	Χ
Χ		Χ		Χ			Χ
	Χ		Χ		Χ	Χ	
	Χ	Χ		Χ			
X	Χ	Χ		X			
X		Χ	Χ				
	X X X	X X X X X X	X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Quel nombre minimum d'équipes faut-il?

Application 2/2

Couleur1= {A,E} Couleur2= {B,C}

Couleur3={D,F,G}

Couleur4={H}

Nombre chromatique=4

donc 4 équipes