Sistemi II

2017/18

1. izpit

Izpit rešujete posamičn	o. Naloge so	enakovre	dne. Pri	reševanju	ni d	ovoljena	uporah	эa
literature ali zapiskov.	Dovoljena je	uporaba	žepnega	računala.	Čas	pisanja	izpita	jε
90 minut								

Veliko uspeha!	
Ime in priimek:	
Vpisna številka:	
Padnis	

Imamo 6 procesov $\Pi_1, \Pi_2, \dots, \Pi_6$:

- (a) Procesi Π_1,Π_2 in Π_3 prispejo po vrsti ob času 3 ms. Vsak od teh procesov potrebuje 5 ms procesorskega časa.
- (b) Proces Π_4 prispe ob času 10 ms in potrebuje 3 ms procesorskega časa.
- (c) Procesa Π_5 in Π_6 prispeta ob času 19 ms. Proces Π_5 potrebuje 7 ms, proces Π_6 pa 4 ms procesorskega časa.

Razporejanje je preklopno (ang. preemptive), pri čemer za preklop potrebujemo 1 ms. Za algoritem *Round-Robin* s časovno rezino 2 ms ponazorite izvajanje procesov s pomočjo časovne premice. Nato izračunajte povprečni čas izvajanja procesa.

Imamo 5 okvirjev in 8 strani (oštevilčenih z $0, 1, \ldots, 7$). Predpostavimo, da so na začetku vsi okvirji prosti. Zaporedje referenc strani je naslednje:

$7\ 1\ 2\ 3\ 1\ 4\ 2\ 0\ 5\ 6\ 2\ 5\ 0\ 3\ 1\ 2\ 1.$

- (a) Koliko napak strani se bo zgodilo, če za zamenjavo strani uporabimo algoritem FIFO?
- (b) Kaj pa, če uporabimo algoritem "druga možnost"?

Vse odgovore je potrebno utemeljiti (pri katerih straneh pride do napake in kaj je razlog zanjo).

Sistem ima 4 procese in 5 različnih tipov naprav. Trenutno stanje sistema je sledeče:

Proces	Zaseženo	Maksimum	Na razpolago
A	$1\ 0\ 2\ 1\ 2$	$1\ 1\ 2\ 1\ 4$	$2\ 3\ \lambda\ 0\ 1$
В	$1\ 1\ 1\ 1\ 0$	$1\ 1\ 2\ 2\ 1$	
С	$1\ 1\ 0\ 1\ 0$	$2\ 1\ 3\ 1\ 0$	
D	$2\ 0\ 1\ 1\ 1$	$5\ 2\ 5\ 1\ 1$	

- (a) Kdaj pravimo, da je sistem v varnem stanju?
- (b) Kolikšna je najmanjša vrednost spremenljivke λ , za katero je sistem še v varnem stanju? Odgovor utemeljite.

Spodnja skica prikazuje i-node:

Zgornji i-node vsebuje 8 direktnih naslovov in še kazalec na blok z dodatnimi naslovi. Naslovi zavzamejo po 4 B, bloki pa so veliki po 4096 B.

- (a) Kolikšna je največja možna velikost datoteke?
- (b) Koliko prostora na disku zavzame datoteka velikosti 72.5 KiB?