IN THE CLAIMS

The status of each claim in the application is provided below.

Claims 1-124: Canceled.

125. (Currently Amended) A compound represented by formula (I):

$$X = \begin{pmatrix} 1 & O & N \\ N & 2 & N \\ N & 1 & N$$

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R^2 is, independently, $-R^7$, $-(CH_2)_m$ -OR⁸, $-(CH_2)_m$ -NR⁷R¹⁰,

 $\hbox{-(CH$_2$)}_n\hbox{(CHOR8)}(\hbox{CHOR8})_n\hbox{-CH$_2$OR8, -(CH$_2$CH$_2$O)}_m\hbox{-R8,}\\$

 $-(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10}, -(CH_{2})_{n}-C(=O)NR^{7}R^{10}, -(CH_{2})_{n}-Z_{g}-R^{7}, -(CH_{2})_{m}-NR^{10}-CH_{2}(CHOR^{8})(CHOR^{8})_{n}-CH_{2}OR^{8}, -(CH_{2})_{n}-CO_{2}R^{7}, or$

$$--(CH_2)_{\overline{n}}$$
 Q
 R^7
 R^7
 R^7

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

wherein

each
$$R^L$$
 is, independently, $-R^7$, $-(CH_2)_n$ -OR⁸, $-O$ - $(CH_2)_m$ -OR⁸, $-(CH_2)_n$ -NR⁷R¹⁰, $-O$ - $(CH_2)_m$ -NR⁷R¹⁰, $-(CH_2)_n$ (CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, $-O$ - $(CH_2)_m$ (CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, $-(CH_2CH_2O)_m$ -R⁸, $-O$ - $(CH_2CH_2O)_m$ -R⁸, $-(CH_2CH_2O)_m$ -CH₂CH₂NR⁷R¹⁰, $-O$ - $(CH_2CH_2O)_m$ -CH₂CH₂NR⁷R¹⁰, $-(CH_2)_n$ -C(=O)NR⁷R¹⁰, $-O$ - $(CH_2)_m$ -C(=O)NR⁷R¹⁰, $-(CH_2)_n$ -C(=O)NR⁷R⁷, $-O$ - $(CH_2)_m$ -C(=O)NR⁷R⁷,

$$-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$$

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$R^7 \qquad -(CH_2)_n - CH_2 + CH$$

each o is, independently, an integer from 0 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 1 to 10;

each x is, independently, O, NR¹⁰, C(=O), CHOH, C(=N-R¹⁰),

CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O-(CH₂)_m-OR⁸,

$$-(CH_2)_n-NR^7R^{10}$$
, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

$$-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$$
, $-(CH_2CH_2O)_m-R^8$,

$$-O-(CH_{2}CH_{2}O)_{m}-R^{8},\ -(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10},\\$$

$$-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$$
, $-(CH_2)_n-C(=O)NR^7R^{10}$,

$$-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$$

$$\hbox{-(CH$_2$)}_n\hbox{-NR$^{10}-CH$_2$(CHOR8)(CHOR8)}_n\hbox{-CH$_2$OR8,}$$

$$-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$$
,

each R^6 is, independently, $-R^7$, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m$ - OR^8 ,

-O- $(CH_2)_m$ -OR⁸, - $(CH_2)_n$ -NR⁷R¹⁰, -O- $(CH_2)_m$ -NR⁷R¹⁰,

 $-(CH_2)_n(CHOR^8)(CHOR^8)n-CH_2OR^8$, $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-(CH₂CH₂O)_m-R⁸, -O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)m-CH₂CH₂NR⁷R¹⁰,

-O- $(CH_2CH_2O)_m$ - $CH_2CH_2NR^7R^{10}$, - $(CH_2)_n$ - $C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 \longrightarrow O \longrightarrow R^7$$

$$R^7 \longrightarrow O \longrightarrow R^7$$

$$R^7 \longrightarrow O \longrightarrow R^7$$

$$R^7 \longrightarrow O \longrightarrow R^7$$

wherein when two R^6 are -OR¹¹ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R^7 is, independently, hydrogen or lower alkyl; each R^8 is, independently, hydrogen, lower alkyl, -C(=O)- R^{11} , glucuronide, 2-tetrahydropyranyl, or

each R^9 is, independently, $-CO_2R^7$, $-CON(R^7)_2$, $-SO_2CH_3$, or $-C(=O)R^7$; each R^{10} is, independently, -H, $-SO_2CH_3$, $-CO_2R^7$, $-C(=O)NR^7R^9$,

 $-C(=O)R^7$, or $-CH_2-(CHOH)_n-CH_2OH$;

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰; each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, C-R⁵, C-R⁶, or a nitrogen atom, wherein two Q in a ring are nitrogen atoms;

or a pharmaceutically acceptable salt thereof, and inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

126. (Original) The compound of Claim 125, wherein Y is -NH₂.

- 127. (Original) The compound of Claim 126, wherein R² is hydrogen.
- 128. (Original) The compound of Claim 127, wherein R¹ is hydrogen.
- 129. (Original) The compound of Claim 128, wherein X is chlorine.
- 130. (Original) The compound of Claim 129, wherein R³ is hydrogen.
- 131. (Original) The compound of Claim 130, wherein each R^L is hydrogen.
- 132. (Original) The compound of Claim 131, wherein o is 4.
- 133. (Original) The compound of Claim 132, wherein p is 0.
- 134. (Original) The compound of Claim 133, wherein x represents a single bond.
- 135. (Original) The compound of Claim 134, wherein each R⁶ is hydrogen.
- 136. (Original) The compound of Claim 135, wherein R⁵ is -(CH₂)_m-OR⁸.
- 137. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-OR⁸.
- 138. (Original) The compound of Claim 135, wherein R^5 is $-(CH_2)_n-NR^7R^{10}$.
- 139. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-NR⁷R¹⁰.

- 140. (Original) The compound of Claim 135, wherein R^5 is $(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 141. (Original) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m(CHOR⁸)_n-CH₂OR⁸.
 - 142. (Original) The compound of Claim 135, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.
 - 143. (Original) The compound of Claim 135, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.
- 144. (Original) The compound of Claim 135, wherein R^5 is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 145. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
 - 146. (Original) The compound of Claim 135, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.
- 147. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
 - 148. (Original) The compound of Claim 135, wherein R^5 is $-(CH_2)_n (Z)_g R^7$.
 - 149. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-(Z)_g- R^7 .

- 150. (Original) The compound of Claim 135, wherein R^5 is- $(CH_2)_n$ - NR^{10} - $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 .
- 151. (Original) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
 - 152. (Original) The compound of Claim 135, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.
 - 153. (Original) The compound of Claim 135, wherein R⁵ is -OSO₃H.
 - 154. (Original) The compound of Claim 135, wherein R⁵ is -O-glucuronide.
 - 155. (Original) The compound of Claim 135, wherein R⁵ is -O-glucose.
 - 156. (Original) The compound of Claim 135, wherein R⁵ is

$$-$$
O $+$ CH₂ $+$ $+$ O $+$ CH₂ $+$ $+$ O $+$ R⁷ $-$ R⁷ $-$ O $+$ CH₂ $+$ O $+O+CH2 $+$ O $+$ CH₂ $+$ O $+O+CH2 $+$ O $+$ O $+$ CH₂ $+$ O $+$ O $+O+CH2 $+$ O $+$ O $+$ O $+O+CH2 $+$ O $+$ O $+O+CH2 $+$ O $+$ O $+O+CH2 $+$ O $+O+CH2 $+$ O $+O+CH2 $+$ O $+$ O $+O+CH2 $+$ O+CH₂ $+$ O $+O+CH2 $+$ O+CH₂ $+$ O+CH₂$$$$$$$$$$

157. (Original) The compound of Claim 135, wherein R⁵ is

$$-(CH_2)_n$$
 R^7
 R^7

158. (Original) The compound of Claim 135, wherein R⁵ is

- 159. (Original) The compound of Claim 135, wherein R^5 is $-(CH_2)_n-CO_2R^7$.
- 160. (Original) The compound of Claim 125, wherein

X is halogen;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

 R^2 is $-R^7$, $-(CH_2)_m$ -OR⁸, or $-(CH_2)_n$ -CO₂R⁷;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

161. (Original) The compound of Claim 160, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

- 162. (Original) The compound of Claim 161, wherein Y is -NH₂.
- 163. (Original) The compound of Claim 162, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.
- 164. (Original) The compound of Claim 125, wherein R⁵ is -(CH₂)_m-OR⁸.
- 165. (Original) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-OR⁸.
- 166. (Original) The compound of Claim 125, wherein R^5 is $-(CH_2)_n NR^7 R^{10}$.
- 167. (Original) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-NR⁷R¹⁰.
- 168. (Original) The compound of Claim 125, wherein R⁵ is (CH₂)_n(CHOR⁸)_{(CHOR⁸)</sup>_n-CH₂OR⁸.}
- 169. (Original) The compound of Claim 125, wherein R^5 is $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8.$
 - 170. (Original) The compound of Claim 125, wherein R⁵ is -(CH₂CH₂O)_m-R⁸.
 - 171. (Original) The compound of Claim 125, wherein R⁵ is -O-(CH₂CH₂O)_m-R⁸.

- 172. (Original) The compound of Claim 125, wherein R^5 is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 173. (Original) The compound of Claim 125, wherein R^5 is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
 - 174. (Original) The compound of Claim 125, wherein R⁵ is -(CH₂)_n-C(=O)NR⁷R¹⁰.
- 175. (Original) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
 - 176. (Original) The compound of Claim 125, wherein R^5 is $-(CH_2)_n-(Z)_g-R^7$.
 - 177. (Original) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-(Z)_g-R⁷.
- 178. (Original) The compound of Claim 125, wherein R⁵ is -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)_n-CH₂OR⁸.
- 179. (Original) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
 - 180. (Original) The compound of Claim 125, wherein R⁵ is -O-(CH₂)_m-CO₂R⁷.
 - 181. (Original) The compound of Claim 125, wherein R⁵ is -OSO₃H.

182. (Original) The compound of Claim 125, wherein R⁵ is -O-glucuronide.

183. (Original) The compound of Claim 125, wherein R⁵ is -O-glucose.

184. (Original) The compound of Claim 125, wherein R⁵ is

$$-O\left(CH_2\right)_m$$
 O
 R^7

185. (Original) The compound of Claim 125, wherein R⁵ is

$$-(CH_2)_n - R^7$$

186. (Original) The compound of Claim 125, wherein R⁵ is

187. (Original) The compound of Claim 125, wherein R^5 is $-(CH_2)_n-CO_2R^7$.

188. (Original) The compound of Claim 125, wherein x is a single bond.

189. (Original) The compound of Claim 125, which is in the form of a pharmaceutically acceptable salt.

- 190. (Original) The compound of Claim 125, which is in the form of a hydrochloride salt.
 - 191. (Original) The compound of Claim 125, which is in the form of a mesylate salt.
- 192. (Original) The compound of Claim 125, wherein R⁵ is selected from the group consisting of

-O-(CH₂)₃-OH, -NH₂, -O-CH₂-(CHOH)₂-CH₂OH, -O-CH₂-CHOH-CH₂OH,

-O-CH₂CH₂-O-tetrahydropyran-2-yl, -O-CH₂CHOH-CH₂-O-glucuronide,

-O-CH₂CH₂OH, -O-(CH₂CH₂O)₄-CH₃, -O-CH₂CH₂OCH₃,

-O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, -O-(CH₂CH₂O)₂-CH₃,

-OCH₂-CHOH-CHOH-CH₂OH, -CH₂OH, -CO₂CH₃,

$$-O\left(CH_2\right)_m$$
 O
 R^7

and

193. (Original) The compound of Claim 125, wherein R⁵ is selected from the group consisting of para -O-(CH₂)₃-OH, para -NH₂, para -O-CH₂-(CHOH)₂-CH₂OH, ortho -O-CH₂-CHOH-CH₂OH, meta -O-CH₂-CHOH-CH₂OH, para -O-CH₂CH₂-O-tetrahydropyran-2-yl, para -O-CH₂CHOH-CH₂-O-glucuronide, para -O-CH₂CH₂OH, para -O-(CH₂CH₂O)₄-CH₃, para -O-CH₂CH₂OCH₃, para -O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, para -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, para -CH₂OH, para -CO₂CH₃, para -SO₃H, para -O-glucuronide, para

$$-O\left(CH_2\right)_m$$
 O
 R^7
 R^7

and

para

```
194. (Original) The compound of Claim 193, wherein
 X is chloro or bromo;
 Y is -N(R^7)_2;
 R^1 is hydrogen or C_1-C_3 alkyl;
 R^2 is hydrogen or C_1-C_3 alkyl;
 R<sup>3</sup> is a group represented by formula (A);
 R<sup>4</sup> is hydrogen, a group represented by formula (A), or lower alkyl;
 at most three R<sup>6</sup> are other than hydrogen as defined above; and
 at most three R<sup>L</sup> are other than hydrogen as defined above.
 195. (Original) The compound of Claim 194, wherein
R<sup>4</sup> is hydrogen;
at most one R<sup>L</sup> is other than hydrogen as defined above; and
at most two R<sup>6</sup> are other than hydrogen as defined above.
196. (Original) The compound of Claim 195, wherein
X is chloro or bromo;
Y is -N(R^7)_2;
R^1 is hydrogen or C_1-C_3 alkyl;
R<sup>2</sup> is hydrogen or C<sub>1</sub>-C<sub>3</sub> alkyl;
R<sup>3</sup> is a group represented by formula (A);
R<sup>4</sup> is hydrogen, a group represented by formula (A), or lower alkyl;
at most three R<sup>6</sup> are other than hydrogen as defined above; and
```

at most three R^L are other than hydrogen as defined above.

197. (Original) The compound of Claim 196, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

198. (Original) A pharmaceutical composition, comprising the compound of Claim 125 and a pharmaceutically acceptable carrier.

199. (Currently Amended) A composition, comprising: the compound of Claim 125; and a P2Y2 receptor agonist inhibitor.

200. (Original) A composition, comprising: the compound of Claim 125; and a bronchodilator.

201. (Original) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 125.