본 강의에서 수업자료로 이용되는 저작물은

저작권법 제25조 수업목적 저작물 이용 보상금제도에 의거,

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 재 복제, 대중 공개·공유 및 수업 목적 외의 사용을 금지합니다.

2021. . .

부천대학교·한국복제전송저작권협회

교육 과정 계획

• 교육 과정 계획

- 01 4차 산업혁명의 개요
- 02 빅데이터 개요
- 03 인공지능 개요
- 04 사물인터넷 개요
- 05 자율주행차 개요
- 06 가상·증강·혼합·확장현실 개요
- 07 드론 개요
- 08 중간고사
- 09 3D프린팅과 헬스케어 개요
- 10 블록체인 개요
- 11 클라우드 컴퓨팅 개요
- 12 신재생에너지와 산업 변화 (또는 산업체직무전문가 특강)
- 13 플랫폼 비즈니스 개요 (또는 산업체직무전문가 특강)
- 14 스마트 생태계 개요
- 15 기말고사

정보처리산업기사 실기 신기술 토픽들

학습 목표

• 학습 목표

- 인공지능 개념 익히기
- 인공지능 특징과 활용 알아보기
- 신기술 용어 익히기

• 목차

- 01 인공지능의 이해
- 02 인공지능 서비스 개요 및 분류
- 03 머신러닝과 학습
- 04 인공지능의 활용
- 05 신기술 용어

인공지능의 이해

- 인공지능(AI)의 개념
 - 인공지능 정의
 - 기계가 인간의 지적인 행동을 흉내 낼 수 있도록 컴퓨터 프로그램으로 실현한 기술 (기계로 인간의 지적 능력을 구현하는 기술)
 - 컴퓨터가 인간과 같이 사고하고 학습하고 판단하고 자기 개발할 수 있게 하는 일종의 소프트웨어, 컴퓨팅, 시스템, 기술요소를 의미
 - 인공지능 발전 과정
 - 1956년 다트머스 컨퍼런스에서 존 매카시가 인공지능 용어 처음 사용
 - 1970년대 인공지능 연구 성과 부족으로 비관적 견해 생김
 - 1980년대 신경망 이론이 복귀하면서 인공지능 추론개념, 퍼지이론, 뉴럴 네트워크 등 이론적 근거가 확립됨
 - 1990년대 고도화 시작, 1997년 IBM이 개발할 딥블루는 체스 챔피언 가리 카스파로프를 이김, 1999년 SONY는 애완용 로봇 강아지 아이보(AIBO)를 판매 성공함
 - 현재 인공지능 기반을 둔 자율주행차 개발 중
 - 인공지능은 단순히 기술만 의미하지 않고 4차 산업혁명을 견인하는 핵심 동력이며 기반 기술 (다른 분야로 급속히 확산하고 있음)

인공지능의 이해

- 인공지능 기술의 발전 4단계
 - 1 단계
 - 1960-1980년, 규칙 기반 자동판정 프로그램을 이용해 사실을 탐색하는 추론 엔진이 등장 한 시대
 - 1차 인공지능 붐 시작, 실제 문제를 처리하는데 한계가 있음
 - 2 단계
 - 1980-1999년, 전문가를 대체할 전문가 시스템(expert system) 등장, 반도체 비용이 낮아 지면서 중앙처리장치, 메모리 용량이 크게 늘어나고 연산 속도가 급격히 빨라 짐
 - 2차 인공지능 붐을 가져왔으나 사고 범위 문제를 해결하기 어렵다는 한계 직면함
 - 3 단계
 - 2000-2010년, 통계 기반 머신러닝 연구가 활발하게 진행됨, 분류와 예측을 프로그램화한 것으로 주어진 데이터를 자동으로 계산하여 특징을 추출함
 - 4 단계
 - 2010년 이후, 심층 신경망 기반 이미지 인식의 정확도가 향상됨
 - 3차 인공지능 붐 조성됨, 딥러닝, 알파고

인공지능의 이해

• 인공지능 발전 방향

〈자료〉이승훈, "최근 인공지능 개발 트렌드와 미래의 진화방향", LG경제연구원, 2017. 12.

- 인공지능 서비스 개요
 - 인공지능 서비스는 모바일 등을 통해 텍스트, 이미지 등의 데이터를 획득하고 이를 처리 및 가공한 후 반복 학습 과정을 거치면서 AI 모델(알고리즘)이 생성되고 최종적으로 서비스로 제공되는 절차를 거침

〈자료〉과학기술정보통신부, "I-Korea 4.0 실현을 위한 인공지능(AI) R&D 전략", 2018. 5.

- 인공지능 기술 분류
 - 시각·언어·청각지능: 인공지능이 데이터를 통해 인간처럼 보고, 읽고, 듣는 기능
 - 상황·감정이해: 센서 데이터(온도, 위치, 속도 등)와 사용자 데이터(제스처, 표정, 의사 결정 패턴 등)에 기반을 둔 기술
 - 추론·지식표현: 입력과 학습 데이터에 기초하여 더 많은 정보와 새로운 정보에 대한 답을 찾아내는 지능
 - 머신러닝: 데이터에 기반을 둔 인지적 이해 모델을 만들거나 가장 알맞은 해답을 찾기 위한 학습지능
 - 지능형 에이전트: 학습하거나 판단한 결과를 실행하는 단계로 로봇의 움직임과 인간의 행동 및 판단을 보조하는 데 활용하는 지능

• 인공지능 기술 분류

[AI의 기술별 분류]

기술	내용
추론 및 기계학습	• 인간의 사고능력을 모방하는 기술
지식표현 및 언어지능	•사람이 사용하는 자연어 이해를 기반으로 사람과 상호작용하는 기술
청각지능	•음성/음향/음악을 분석, 인식, 합성, 검색하는 기술
시각지능	• 사물의 위치, 종류, 움직임, 주변과의 관계 등 시각 이해를 기반으로 지능화된 기능을 제공하는 기술
복합지능	•시공간, 촉각, 후각 등 주변의 상황을 인지, 예측하고, 상황에 적합한 대응을 제공하는 기술
지능형 에이전트	•개인비서, 챗봇 등 가상공간 환경에 위치하여 특별한 응용 프로그램을 다루는 사용자를 도울 목적으로 반복적인 작업을 자동화시켜 주는 기술
인간-기계 협업	•인간의 감성이나 의도를 이해하고 인간의 뇌 활동에 기계가 연동되어 작동하게 해주는 기술
AI 기반 HW	• 초고속 지능정보처리를 구현하게 지원해주는 HW

^{*} 출처: 4차 산업혁명을 선도하는 주요 기술 대상 기술수준평가 및 기술수준 향상방안, 정보통신기술진흥센터

- 인공지능 분류
 - 버클리대 '존 설' 교수
 - : 인간의 일을 얼마나 수행 가능한지 ->강한 인공지능, 약한 인공지능
 - 약한 인공지능 : 특정 부문의 전문가
 - 컴퓨터 기반의 인공적인 지능을 만들어 내는 것
 - 미리 정의된 규칙이나 알고리즘을 이용하여 인간의 지능을 모방하는 것
 - 자율성이 없어 인간처럼 스스로 문제를 사고하거나 해결할 수 없음
 - 특정한 조건에서 컴퓨팅 도구를 사용하여 사전에 정해진 규칙에 따라 주어진 과제 수행
 - IBM의 딥블루, 스팸메일 필터링, 이미지 분류, 기계번역 기술, 구글 포토 서비스, 알파고(이길수 있는 확률 게산하여 착수를 결정), 자율주행차, 로봇청소기, 인공지능 서비 스 등

- 인공지능 분류
 - 강한 인공지능 : 인간 수준의 지성
 - 스스로 학습능력을 가지고 스스로 판단을 내리는 인간 수준의 지성을 구현
 - 인간만이 가지고 있는 학습·추리·논증 기능 등을 갖추고 어떠한 상황에서 주어지는 문제를 실제로 생각하고 해결할 수 있는 컴퓨터에 기반을 두는 인공적인 지능
 - 자율성을 가짐
 - 시스템 자체적으로 의식구조를 갖고 있는지에 따라 세분화
 - 인공 일반지능
 - : 일반지능은 모든 상황에서 적용 가능, 약한 인공지능이 진화한 형태로 산업계나 학계에서 활발 히 연구중임
 - 인공의식
 - : 인공 일반지능이 진화한 형태로 기술로 만들어진 인공물에 의식을 갖도록 하는 것
 - -> 인간과 유사하게 작동하는 의식 구조를 가지는 지성이 있음
 - -> 감성이나 자아를 가지고 있으며 스스로 환경에 적응하고 판단함
 - -> 현실적으로 인공의식의 출현은 상당기간 큰 어려움을 겪을 것임 (뇌과학 분야에서 의식의 형성 메커니즘을 밝히고 인간의 뇌 구조를 규명하려고 노력중임)

약한 인공지능 -> 인공 일반지능 -> 인공의식 -> 초인공지능

- 인공지능 분류
 - 강한 인공지능 vs 약한 인공지능
 - (참고) 초인공지능(super AI) : 강한 인공지능이 진화하여 인간보다 뛰어난 지능을 가짐, (터미네이터, 어벤져스 등)

← 강한 인공지능 약한 인공지능 인간과 같은 사고 (Thinking Humanly) 논리적 사고 (Thinking Rationally) · 인간과 유사한 사고 및 의사결정을 · 계산 모델을 통해 지각, 추론, 행동 생각 내릴 수 있는 시스템 같은 정신적 능력을 갖춘 시스템 · 인지 모델링 접근 방식 · 사고의 법칙 접근 방식 인간과 같은 행동 (Acting Humanly) 논리적 행동 (Acting Rationally) · 인간의 지능을 필요로 하는 어떤 행동을 · 계산 모델을 통해 지능적 행동을 하는 행동 기계가 따라 할 수 있는 시스템 에이전트 시스템 · 튜링 테스트 접근 방식 · 합리적인 에이전트 접근 방식

[표 1] 인공지능의 분류, 출처: Stuart Russell, Artificial Intelligence: A Modern Approach

* 튜링테스트 : 인간과 얼마나 비슷하게 기계가 대화할 수 있는지를 기준으로 기계의 지능을 판별 하는 시험 [출처] 지재원, 인공지능의 장점과 한계, IGLOO SECURITY, http://www.igloosec.co.kr/ig/BLOG_%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EC%9D%98%2 0%EC%9E%A5%EC%A0%90%EA%B3%BC%20%ED%95%9C%EA%B3%84?searchItem=&searchWord=&bbs CateId=1&gotoPage=1

- 머신러닝(machine learning, 기계학습)
 - IBM 인공지능 연구원이었던 아서 사무엘이 처음 사용
 - 머신이란 프로그래밍이 가능한 컴퓨터를 말하며 학습이란 몰랐던 지식을 습득한다는 뜻
 - 머신러닝: 인공지능 프로그램 자신이 학습하는 구조를 말함, 사람이 학습하듯이 컴퓨터에게 자료를 주고 학습하게 함으로써 새로 들어올 데이터의 결과를 예측하는 일을 스스로 해낼 수 있도록 학습시키는 알고리즘
 - 학습의 근간은 분류 과정
 - 올바르게 분류할 수 있다는 것은 사물 이해->판단->적절한 행동이 가능함을 의미
 - 학습이란 '예', '아니오' 문제의 정확도, 정밀도를 향상시키는 일
 - 기계학습은 컴퓨터가 데이터를 처리하면서 '분류방법'을 스스로 습득함 -> 습득한 방법으로 새로운 데이터를 스스로 분류할 수 있음
 - 머신러닝은 학습에 사용한 자료의 양이 많을 수록 더 정확한 결과를 보임

- 머신러닝 종류 지도학습, 비지도학습
 - 학습 데이터에 레이블(label)이 있는지 없는지에 따라 지도 학습, 비지도 학습으로 구분함
- 레이블(label) : 학습 데이터의 속성을 사물을 분석하고자 하는 관점에 따라 '고양이', '개', '모자' 등으로 미리 정의해 놓은 것을 말함
- 지도 학습 : 특정 '입력'과 '올바른 출력'을 함께 구성한 훈련 데이터를 사전에 준비하고 어떤 입력이 발생할 때 해당 분류 결과가 나오도록 학습
- 비지도 학습: 입력 데이터에 레이블 없음, 입력 데이터만 주고 일정한 패턴이나 규칙을 추출하는 것이 목적, 비지도 학습의 대표적 학습 방법은 군집으로 나누는 것
- 강화학습(Reinforcement Learning) : 자신의 행동에 대한 보상을 통해 스스로 학습 (딥마인의 알파고)

- 머신러닝 3가지 접근법
 - 신경 모형 패러다임
 - 퍼셉트론(perceptron): 다수의 입력 신호를 받을 때 각각 고유 가중치를 곱한 결과를 고 유한 방식으로 처리하는 등 뇌의 인지기능을 모방한 패턴인식 정보처리 모형
 - 딥러닝 (바로 뒤 페이지에서...)
 - 심볼 개념의 학습 패러다임
 - 숫자나 통계이론 대신 논리학이나 그래프 구조를 사용
 - 현대지식의 집약적 패러다임
 - 백지상태에서 학습을 시작하는 신경 모형을 지양하고 학습된 지식은 재활용해야 한다는 이론
- 머신러닝을 위한 주요 구성 요소
 - 알고리즘, 데이터, 하드웨어 인프라

- 딥러닝(Deep Learning)
 - 뉴런 네트워크(neural network, 신경망) 기술 중 하나
 - 신경망: 뇌신경을 모방한 단위 뉴런을 연결하여 만든 네트워크 형태의 그 래프

인공 신경의 구조

- 딥러닝(Deep Learning)
 - 딥(Deep)은 신경망의 층(layer)이 많고 각 층마다 고려되는 변수가 많다는
 의미
 - 섈로러닝(Shallow Learning)는 2-3개 신경망 층, 이상인 것은 딥러닝
 - 신경망 계층 수와 노드 수가 적으면 적용범위가 제한적임
 - -> 계층 수와 노드 수를 늘리면 복잡해지고 계산량이 많아져 많은 시간 소요
 - 신경망의 깊이를 늘리는 이유
 - 머신러닝이나 섈로러닝으로 풀지 못하는 어려운 문제 해결 가능
 - 딥러닝이 모방하는 뇌의 구조가 딥 아키텍처임 시각 관련 입력된 빛의 신호가 엄청나게 많은 뉴런을 거쳐 형상화된다고 함
 - 사람이 인지하는 처리 절차가 여러 계층으로 체계화되어 있음 간단한 개념을 다양하게 조합하여 더 복잡하고 고차원적인 개념을 추상화함
 - 딥러닝은 특정 정답을 정의하는 사전지식을 사용하지 않음
 - 학습 데이터가 충분히 많으면 신경망 스스로 데이터의 특징을 찾음

• 딥러닝(Deep Learning)

- Recurrent Neural Network (RNN)은 시간적으로 연속성이 있는 데이터를 처리하기 위해 고안된 인공신경망
- Convolutional Neural Network (CNN)은 합성곱(Convolutional) 을 인공신경망에 도입하여 이미지 처리 분야 적용

• Al Hub

https://www.aihub.or.kr/

[표 2] 한국 주요 인공지능 추진 현황

분야	구축 내용	활용 서비스
번역말뭉치	한국어 인공지능 번역 기술개발 및 성능강화를 위한 한국어-영어 병렬 말뭉치 데이터 80만 문장 구축	한국어-영어 AI번역시스템 등
사물이미지	국내 장소, 객체, 상황인지 기술개발 및 성능강화를 위한 한국형 시물, 거리, 간판, 심볼 이미지 데이터 360만 장 구축	국내 사물인식 및 안내 AI서비스 등
글자체이미지	한글 광학글자인식(Optical Character Recognition: OCR) 성능 개선을 위한 한글 글자체(손글씨 및 인쇄체) 이미지 500만 장 구축	자동 한글인식 AI 서비스 등
인도보행영상	시각장애인, 전동휠체어 등의 보행지원기술 개발을 위한 국내 인도·횡단보도 보행 영상 및 인도위 객체 라벨링 데이터 500시간 구축	장애인 길안내, 자율전동 휠체어 등
안면이미지	다양한 각도, 조도 등의 환경 하에서 안면인식·식별, 성능 강화를 위한 한국 인 얼굴 이미지 데이터 1,800만 장 구축	한국인 얼굴 인식 AI시스템, 범죄자탐지
융합영상	감성인식 개발을 위해 동영상에서 인물의 표정, 음성, 대화 내용, 상황 등의 감정이 포함된 멀티모달 영상 데이터 50시간 구축	인간의 감정, 상황 이해 로봇
위험물이미지	위험물·도구 자동판별 기술개발 및 성능개선을 위한 위험물, 범죄도구, 반입금 지물품 등의 X-ray 이미지 42만 장 구축	공항, 항만, 철도, 주요 시설 AI보안 시스템
동작영상	사람의 동작·자세·행동 인식기술 개발을 위해 다양한 조건에서 사람 동작 영 상 데이터 50만 클립 구축	서비스 AI로봇 등 (공장, 가정, 공공장소 등)
질병진단 이미지	국내에서 발병률, 중증도 등이 높은 주요 질환관련 진단 이미지(X-ray, CT, 초음파, MRI 영상 등) 및 진단결과 데이터 1만장 구축	AI 보조 질병 자동검진
이상행동영상	주야간 적용 가능한 이상행동 지능형 탐지기술개발 및 성능 강화를 위한 이기 종(가시광선, 적외선) 영상 데이터 300시간 구축	지능형 AI CCTV, AI안전감시 시스템 등

주) 2018년 1월부터 운영된 AI 허브는 국내 기업 및 대학, 연구기관, 개인 등이 AI 기술 및 서비스 개발에 필요한 HW/SW를 자유롭게 활용할 수 있는 포털로 310억 원을 투자하여 벤처·중소기업의 경쟁력을 높일 수 있도록 하고 있음 〈자료〉http://www.aihub.kr, "AI 오픈 이노베이션 허브"

[표 4] 국방 분야 국가별 추진현황

구분	주요 내용	비고
미국	2019년 초 무인잠수함 '씨 헌터'(Sea Hunter) 시제품을 인도한 데 이어 Al 무인잠수함을 2020년까지 개발한다는 목표 아래 록히드마틴, 보잉 등에 제작을 의뢰	
중국	무인 인공지능 잠수함을 2021년까지 실전 배치하여 정찰과 매복, 기뢰 매설, 자살 공격 등 다양한 작전을 스스로 수행할 수 있도록 추진예정	
스위스	실종자 수색용 쿼드콥터 드론을 개발하여 이미지 분석을 토대로 딮(Deep) 신경망이 산책로 주변 환경에서 실종자의 흔적을 발견하여 차별화된 흔적 찾기를 토대로 손쉽게 실종자 존재 파악가능	

〈자료〉 정보통신기획평가원(IITP), ICT Brief(2018-29), 2018. 8.

[표 5] 의료 및 헬스케어 분야 추진 현황

구분	주요 내용	비고
IBM	손이 물체를 만졌을 때 강도, 손의 떨림, 손톱 변형을 감지할 수 있는 손톱센 서를 개발, 파킨스병 징후 감시 가능	Sind Will
	인공지능 종양학 의사 "왓슨 포 온콜로지"(Watson for Oncology)를 개발, 전 세계 대형병원 13곳에서 의사로 활약	
루닛	루닛 인사이트(Lunit INSIGHT for Mammography)는 유방암 진단 보조 소 프트웨어로 영상 이미지를 입력하면 정확도 97%로 종양 악성 정도는 점수로, 종양 위치는 히트맵으로 표기 가능	
텐센트	의료영상 분석 인공지능 '미잉(Mying)'을 개발, 수 백 여개 병원에 보급, 미잉 은 당뇨병, 유방암, 식도암, 대장암 등을 진단할 수 있는 6개의 인공지능 시스 템으로 구성	22 UV
구글	알파벳의 생명과학 자회사인 베릴리(Verily)는 4년간 1만 명에 달하는 개인의 건강 상태를 면밀하게 추적하여 데이터를 축척하는 "프로젝트 베이스라인 (Project Baseline)" 개시	AT COTTO

〈자료〉http://www.zdnet.co.kr, http://www.yoonsupchoi.com

[표 6] 생활. 교육 및 게임분야 추진 현황

구분	주요 내용	비고
레노버	중국 PC업체 레노버가 인공지능 무인 매장 "레노버 러쿠 언맨드 스토어(LENOVO LECOO UNMANNED STORE)"를 개장, 스마트폰이 필요 없이 얼굴인식 만으로 구매부터 결제까지 모든 과정이 가능	
삼성전자	Al비서 '빅스비'를 향후 스마트폰뿐 아니라 로봇, 냉장고, 스마트TV, 세탁기, 에어컨 등으로 적용 범위를 확대할 예정, 빅스비 비전(Vision) API를 추가로 공개, 서드파 티 개발자가 더 자유롭게 많은 기능을 활용하게 될 전망	
아마존	Al비서 '알렉사'가 자사 뉴스 소식을 전하는 블로그를 통해 머신러닝(기계학습)으로 수많은 뉴스 오디오 클립으로부터 낭독 기술을 배운 뒤 자체적으로 뉴스를 읽어줌 뉴스 진행자가 읽어주는 것 같은 뉴스 낭독 품질을 구현하기 위해 문자를 음성으로 바꿔주는 기술인 TTS(Text-to-speech) 기술에 머신러닝을 결합	
구글	구글 딥마인드가 개발 중인 스타크래프트2 AI '알파스타'가 프로게이머에게 10대1로 압승	
IBM	인간과 토론을 나눌 수 있는 클라우드 기반 AI 플랫폼 "스피치 바이 크라우드 (Speech by Crowd)"를 개발, 파킨슨병 관련 데이터를 활용하여 효과적인 치료법 을 추천할 수 있는 인공지능 모델을 개발할 예정	
마이크로 크프소	마이크로소프트(MS)는 인공지능 및 클라우드 기술로 미래 자동차 기술 개발을 지원, AI 플랫폼과 클라우드로 BMW, 닛산, 볼보, 폭스바겐 등 세계 자동차 제조사들의 디지털 트랜스포메이션을 지원	

〈자료〉http://www.zdnet.co.kr

- 인공지능 관련 우려(이슈)
 - 엘론 머스트 : 인공지능을 악마에 비유하며 핵무기 보다 더 위험한 존재
 - 스트븐 호킹 : 인공지능 로봇의 탄생은 인류 최악의 사건이 될 것이라 예상
 - → 위험성 인지와 대책 마련 필요
 - 현실적인 위협은 대체되는 일자리 문제-> 전문직(의사, 바둑 등) 일자리도 위험

[함께 생각해 봅시다] 인공지능 발전의 부정적 면을 최소화할 수 있는 방안

• 참고

〈표 1〉 국가별 인공지능 영향에 대한 주요 연구 및 대응 현황〉

ユル	국가별 주요 대응 현황	
국가	시기	추진 내용
유럽 위원	2005	2005년부터 공동연구개발 프로그램(Framework Program)인 FP6을 통해 '윤리로봇 프로젝트'를 시행하고 로봇윤리 로드맵을 발표
	2012	2012년부터 'RoboLaw 프로젝트'를 통해 로봇 관련한 법적·윤리적 이슈를 연구하고, 연구 결과물을 바탕으로 '로봇규제 가이드라인(Guidelines on Regulating Robotics)'을 제정
회	2016	2016년에는 개인 정보의 범위를 확대시키고, 정보의 처리와 이동과 관련하여 정보주체의 권리와 정보 취급자들의 의무를 강화시킨 일반개인정보보호법, GDPR(General Data Protection Regulation)을
	2018	통과시키고 2018년 5월 25일 발효
미국	2016	미국 NSTC에서는 '인공지능 미래 준비 보고서3'를 발간하고 NSTC 산하 네트워킹 및 정보기술 R&D소위원회에서는 '인공지능 국가개발전략계획4'을 발표. 백악관에서는 인공지능이 생산성과 노동 시장에 끼치는 영향을 분석하고 대응방안을 제시한 '인공지능, 자동화, 그리고 경제5' 보고서를 발간
	2017	미국 정부는 자율주행 차량 제조 업체와 규제 당국을 대상으로 자율주행 안전 설계를 위해 필요한 시스템의 안전성 및 사이버 보안, 충돌 대비, 데이터 기록 등 12가지에 관한 가이드라인 ⁶⁾ 을 발표
	2015	2015년 총무성을 중심으로 '인공지능화가 가속화되는 ICT 미래상에 관한 연구회'를 통해 인공지능 기술 발전이 사회나 산업 등 국가 전반에 끼치는 영향에 대한 연구를 진행
일본	2016	2016년도 말에는 총무성 산하 AI 네트워크 사회추진회의 사무국에서 인공지능 기술 개발 및 활용과 관련한 개인 정보 보호, 윤리, 책임, 보안 등의 다양한 이슈들에 대한 전문가 의견을 중심으로 정부 차원의 본격적인 인공지능 개발 윤리 가이드라인을 마련하여 발표

³⁾ NSTC, 'Preparing for the future of Artificial Intelligence_(2016)

⁴⁾ Networking and Information Technology Research and Development Subcommittee, NSTC, The National Artificial Intelligence Research and Development Strategic Plan (2016)

⁵⁾ Executive Office of the President, 「AI, Automation, and Economy」(2016)

⁶⁾ A Vision for Safety 2.0 - AUTOMATED DRIVING SYSTEMS(2017.9)

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - 디지털 우편소인(DPM; Digital PostMark), EPCM(Electronic Postal Certification Mark)
 - 만국 우편 연합(UPU)에서 표준화한 온라인 자료에 대한 전자적인 우편 배달 서비스
 - 최근에는 EPCM(Electronic Postal Certification Mark)이라고 부름
 - HSDPA(High Speed Downlink Packet Access, 고속 하향 패킷 접속)
 - 비동기식 3세대 이동 통신의 하향 링크에서 10Mbps 수준의 고속 패킷 데이터 서비스를 제공하는 전송 규격
 - u-Health(ubiquitous-Health, 유헬스)
 - 정보 기술(IT)을 활용하여 언제 어디서나 건강 관리를 받을 수 있는 원격 의료 서비스
 - 물리적 공간과 네트워크로 연결된 첨단 보건의료 기술의 전자적 공간을 연결하여 보건 의료 대상자의 삶과 진료가 중심이 되도록 하는 것을 의미

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Digerati(디저라티)
 - 디지털(digital)과 리터라티(literati)의 합성어로 컴퓨터, 정보 통신 등 디지털 분야의 지식이 많은 사람을 지칭하는 용어
 - 디지털 사회에서 정보 통신 산업을 이끌어 가는 사람
 - WBAN(Wireless Body Area Network, 무선인체통신망)
 - 사람이 착용(wearable)하는 또는 사람의 몸에 심는(implant) 형태의 센서나 기기를 무선으로 연결하는 개인 영역 네트워킹 기술
 - 무선 센서나 기기로부터 수집한 정보를 휴대 전화 또는 간이형 기지국(base station)을 통하여 병원이나 기타 필요한 곳에 실시간으로 전송함으로써 u-Health 등의 서비스를 받는데 응용
 - WBAN에 대한 국제 표준은 IEEE 802.15.6 표준
 - ZigBee(지그비)
 - 저속 전송 속도를 갖는 홈오토메이션 및 데이터 네트워크를 위한 표준 기술
 - 지그비 얼라이언스(zigbee alliance)에서 IEEE 802.15.4 물리 계층(PHY, MAC) 표준 기술을 기반으로 상위 프로토콜 및 응용 프로파일을 표준화 함

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - 디지털 접근 지수(Digital Access Index)
 - 정보통신기술(ICT)의 접근성과 서비스 이용에 관한 전 세계적 비교 지수
 - 각국의 정보통신 통신망 및 기기의 보급, 그리고 서비스 이용에 관한 각종 자료를 바탕으로 결정
 - VMC(Vehicle Multihop Communication, 차량 멀티홉 통신)
 - 자동차에 정보 기술(IT)을 접목해 차량 충돌을 예방하는 기술
 - 자동차와 노면 간 라디오 주파수(RF) 통신을 주고받아 제한 속도를 넘으면 자동으로 차량 속도가 감속되는 것은 물론 차량 간 통신으로 충돌을 예방하는 기술
 - LAN(Local Area Network, 근거리 통신망)
 - 자원 공유를 목적으로 회사, 학교, 연구소 등의 구내에서 사용하는 통신망
 - GIS(Geographic Information System, 지리 정보 시스템)
 - 지리적으로 자료를 수집 · 저장 · 분석 · 출력할 수 있는 컴퓨터 응용 시스템
 - 위성을 이용해 모든 사물의 위치 정보를 제공해 주는 것
 - 예를 들어 자동차에서 자신의 위치와 목적지를 지정하여 최단 거리를 찾을 수 있음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - IT839(u-IT839) 전략
 - 8대 신규서비스(WiBro, DMB, 홈 네트워크, 텔레매틱스, RFID 활용, W-CDMA, 지상파 DTV, 인터넷전화(VoIP))
 - 3대 첨단인프라(광대역통합망(BcN), u-센서네트워크(USN), 차세대 인터넷 프로토콜(IPv6))
 - 9대 신성장동력 (차세대 이동통신 기기, 디지털TV/방송 기기, 홈네트워크 기기, IT SoC, 차세대 PC, 임베디드 S/W, 디지털 콘텐츠(DC) & S/W 솔루션, 텔레매틱스 기기, 지능형 서비스 로봇)
 - USN(Ubiquitous Sensor Network, 유비쿼터스 센서 네트워크)
 - 각종 센서에서 감지한 정보를 무선으로 수집할 수 있도록 구성한 네트워크
 - 필요한 모든 것에 RFID(radio frequency identification) 태그(tag)를 부착하고 사물의 인식 정보는 물론 주변의 환경정보까지 탐지하여 이를 네트워크에 연결하여 정보를 관리하는 것을 의미

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - RadSec(레드섹) 프로토콜
 - 레이디어스(RADIUS: Remote Authentication Dial In User Service) 데이터를 전송 제어 프로토콜(TCP: Transmission Control Protocol)과 전송 계층 보안(TLS: Transport Layer Security)을을 이용하여 전송하기 위한 프로토콜
 - 레드섹(RadSec)은 'RADIUS over TLS(Transport Layer Security)'의 준말
 - RADIUS는 원격지 이용자의 접속 요구 시 이용자 아이디(ID)나 패스워드, IP 주소 등의 정보를 인증 서버에 보내어 인증, 권한 부여, 과금 등을 수행
 - RADIUS는 신뢰성이 담보되지 않은 사용자 데이터그램 프로토콜(UDP: User Datagram Protocol) 전송으로 보안에 취약
 - RADIUS 문제점을 보완한 프로토콜이 레드섹(RadSec)
 - SAN(Storage Area Network, 스토리지 전용 네트워크)
 - 장비에 스토리지를 직접 연결하여 데이터를 저장하는 것으로 대용량의 데이터를 저장하기 위해 등장한 저장 장치
 - 서로 다른 종류의 데이터 저장 장치를 하나의 데이터 서버에 연결하여 관리하는 네트워크

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - NAS(Network Attached Storage, 망부착 저장장치)
 - 네트워크 상의 다른 기기들에게 파일 기반 데이터 저장 서비스를 제공
 - 일반 서버와는 다르게 완전한 형태의 운영체제는 사용하지 않고 최소한의 기능만을 탑재 한 운영체제를 사용
 - 설치와 관리가 용이하고 구축이 저렴하기 때문에 소규모 파일 공유 환경에서 인기
 - SON(Self Organizing Network, 자동 구성 네트워크)
 - 주변 상황에 맞추어 스스로 망을 구성하는 네트워크
 - 통신망 커버리지 및 전송 용량 확장의 경제성 문제를 해결하고, 망의 운영과 관리의 효율 성을 높이는 것을 목적함
 - 갑작스러운 사용자의 증가나 감소 시에는 자동으로 주변 셀과의 협력을 통해 셀 용량을 변화시키며, 장애가 발생했을 때 자체적인 치유도 가능

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - MVNO(Mobile Virtual Network Operators)
 - 이동 통신망이 없는 사업자가 기존 통신 사업자로부터 망의 일부를 구입해 각종 부가 이동 통신 서비스를 제공하는 사업자
 - 알뜰폰
 - 공공 와이파이 2.0(Public WiFi 2.0)
 - 전 국민이 이용하는 공공·편의 시설에 무료 와이파이를 설치함으로써 서민들의 통신비를 절감하겠다는 계획
 - KOREN(Korea advanced Research Network, 미래네트워크 선도 시험망
 - 한국정보화진흥원(NIA)에서 운영하는 연구 개발망
 - 미래네트워크 관련 기술의 시험 검증을 지원함으로써 연구개발촉진 및 국제공동연구 협력 기반을 조성하기 위한 비영리 선도 시험망
 - 2019년 초에는 서울과 판교 41km 구간의 KOREN에 양자암호통신망을 구축하여 시범 운 영함

- 인공지능(AI)의 개념
 - 인공지능 정의
 - 기계가 인간의 지적인 행동을 흉내 낼 수 있도록 컴퓨터 프로그램으로 실현한 기술(기계로 인간의 지적 능력을 구현하는 기술)
 - 컴퓨터가 인간과 같이 사고하고 학습하고 판단하고 자기 개발할 수 있게 하는 일종의 소 프트웨어, 컴퓨팅, 시스템, 기술요소를 의미
 - 인공지능 발전 과정
 - 1956년 다트머스 컨퍼런스에서 존 매카시가 인공지능 용어 처음 사용
 - 1970년대 인공지능 연구 성과 부족으로 비관적 견해 생김
 - 1980년대 신경망 이론이 복귀하면서 인공지능 추론개념, 퍼지이론, 뉴럴 네트워크 등 이론적 근거가 확립됨
 - 1990년대 고도화 시작, 1997년 IBM이 개발할 딥블루는 체스 챔피언 가리 카스파로프 이 김, 1999년 SONY는 애완용 로봇 강아지 AIBO를 판매 성공함
 - 현재 인공지능 기반을 둔 자율주행차 개발 중
 - 인공지능은 단순히 기술만 의미하지 않고 4차 산업혁명을 견인하는 핵심
 동력이며 기반 기술(다른 분야로 급속히 확산하고 있음)

• 인공지능 발전 방향

〈자료〉이승훈, "최근 인공지능 개발 트렌드와 미래의 진화방향", LG경제연구원, 2017. 12.

- 인공지능 서비스 개요
 - 인공지능 서비스는 모바일 등을 통해 텍스트, 이미지 등의 데이터를 획득하고 이를 처리 및 가공한 후 반복 학습 과정을 거치면서 AI 모델(알고리즘)이 생성되고 최종적으로 서비스로 제공되는 절차를 거침

〈자료〉 과학기술정보통신부, "I-Korea 4.0 실현을 위한 인공지능(AI) R&D 전략", 2018. 5.

- 인공지능 분류
 - 강한 인공지능 vs 약한 인공지능
 - (참고) 초인공지능(super AI) : 강한 인공지능이 진화하여 인간보다 뛰어난 지능을 가짐, (터미네이터, 어벤져스 등)

← 강한 인공지능 약한 인공지능 인간과 같은 사고 (Thinking Humanly) 논리적 사고 (Thinking Rationally) · 인간과 유사한 사고 및 의사결정을 · 계산 모델을 통해 지각, 추론, 행동 생각 내릴 수 있는 시스템 같은 정신적 능력을 갖춘 시스템 · 인지 모델링 접근 방식 · 사고의 법칙 접근 방식 인간과 같은 행동 (Acting Humanly) 논리적 행동 (Acting Rationally) · 인간의 지능을 필요로 하는 어떤 행동을 · 계산 모델을 통해 지능적 행동을 하는 행동 기계가 따라 할 수 있는 시스템 에이전트 시스템 · 튜링 테스트 접근 방식 · 합리적인 에이전트 접근 방식

[표 1] 인공지능의 분류, 출처: Stuart Russell, Artificial Intelligence: A Modern Approach

- 머신러닝 종류 지도학습, 비지도학습
 - 학습 데이터에 레이블(label)이 있는지 없는지에 따라 지도, 비지도 학습으로 구분함
- 레이블(label): 학습 데이터의 속성을 사물을 분석하고자 하는 관점에 따라 '고양이', '개', '모자' 등으로 미리 정의해 놓은 것을 말함
- 지도 학습 : 특정 '입력'과 '올바른 출력'을 함께 구성한 훈련 데이터를 사전에 준비하고 어떤 입력이 발생할 때 해 당 분류 결과가 나오도록 학습
- 비지도 학습: 입력 데이터에 레이블 없음, 입력 데이터만 주고 일정한 패턴이나 규칙을 추출하는 것이 목적, 비지도 학습의 대표적 학습 방법은 군집으로 나누는 것 강화학습(Reinforcement Learning): 자신의 행동에 대한

보상을 통해 스스로 학습 (딥마인의 알파고)

- 딥러닝(Deep Learning)
 - 딥(Deep)은 신경망의 층(layer)이 많고 각 층마다 고려되는 변수가 많다는 의미
 - 섈로러닝(Shallow Learning)는 2-3개 신경망 층, 이상인 것은 딥러닝
 - 신경망 계층 수와 노드 수가 적으면 적용범위가 제한적임
 - -> 계층 수와 노드 수를 늘리면 복잡해지고 계산량이 많아져 많은 시간 소요
 - 신경망의 깊이를 늘리는 이유
 - 머신러닝이나 섈로러닝으로 풀지 못하는 어려운 문제 해결 가능
 - 딥러닝이 모방하는 뇌의 구조가 딥 아키텍처, 시각 관련 입력된 빛의 신호가 엄청나게 많은 뉴런을 거쳐 형상화된다고 함
 - 사람이 인지하는 처리 절차가 여러 계층으로 체계화되어 있음, 간단한 개념을 다양하게 조합하여 더 복잡하고 고차원적인 개념을 추상화함
 - 딥러닝은 특정 정답을 정의하는 사전지식을 사용하지 않음
 - 학습 데이터가 충분히 많으면 신경망 스스로 데이터의 특징을 찾음

참고 및 자료 출처

- [1] 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020
- [3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do