

WOODEN FLOOR

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The invention concerns a wood floor, comprising a hardenable or curable adhesive which is coated as a continuous layer onto a floor base, and covering elements of wood or a wood material that are bonded to the adhesive over their entire surface to be glued.

Description of the Related Art

[0002] For adhering covering elements used to make parquet or inlay floors, adhesives are conventionally employed which are comprised of natural and/or synthetic resins and include suitable solvents and additives. According to applicable DIN (German Industrial Standard) 281, the parquet adhesives exhibit a shear strength of at least 3 to 3.5 N/mm2, which results in a hard and brittle junction of the covering elements to the base floor. adhesive is applied using a toothed trowel. When laying the parquet floor, attention must be paid to the fact that the parquet wood expands when absorbing moisture and shrinks when The parquet wood conventionally contains 9% water The moisture content can change due during the laying process. to water uptake in a new construction through the sub-floor, or from the environment, or as a result of the variable humidity The expansion and shrinking caused depending upon the season. thereby must be absorbed or accepted by the adhesive material. Thereby, substantial shear forces result. These shear forces can in certain cases result in a bowing out of the parquet wood or result in gaps or formation of splits. In the case of breakage it frequently occurs that not only the adhesive joint but rather also the sub-floor comprised of cement is damaged. This is due to the fact that the shear strength of the cement floor is relatively low in comparison to the parquet adhesive according to

TEXPRESS MAIL* LABEL NO: EUROS 133/05US

I HEREBY CERTIFY THAT THIS PAPER IS BEING DEPOSITED WITH THE
UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO
ADERESSEE" SERVICE UNDER 37 CFR. 1.10 IN AN ENVELOPE ADDRESSED
TO: THE COMMISSIONER OF PATENTS AND TRADEMARKS, WASHINGTON,
D.G. SEEN, ON THIS DATE. THE COMMISSIONER IS HEREBY AUTHORIZED
TO CHARGE ANY FEES ARISING HEREFROM AT ANY TIME TO DEPOSIT
ACCOUNT 16-0877.

DATE DATE

SIGNATURE John

DIN 281. On the other hand, during drying the parquet pieces shrink. Since the parquet adhesive does not permit a shrinking at the point of adhesion, frequently large gaps occur between the parquet pieces.

SUMMARY OF THE INVENTION

[0003] Beginning therewith, it is the task of the invention to develop a floor which can transmit the shear forces, resulting from expansion due to absorption of moisture and contraction due to drying back again, from the wood parquet elements to the subfloor without separation of the adhesive bond and bowing out of the floor covering.

[0004] For the solution of this task, there is proposed a floor, comprised of a sub-floor continuously covered with a layer of hardened adhesive, and covering elements of wood or wood materials completely covered on their surface to be adhered with the adhesive, wherein the adhesive layer has a layer thickness of 0.5 to 5 mm, and wherein the adhesive has a shear strength in the hardened condition which is less than that of the sub-floor. Advantageous embodiments and further developments of the invention can be found in the dependent claims.

[0005] The inventive solution is based upon the idea, that the forces occurring during expansion and shrinking of the parquet elements can only be transmitted to the sub-floor without an impermissible localized accumulation of forces when they are distributed and evenly diffused, within the adhesive layer, over the entire adhesive surface. In order to achieve this, it is proposed in accordance with the invention that the adhesive layer has a thickness of 0.5 to 5 N/mm² and that the adhesive in the hardened condition exhibits a shear strength which is less than that of the sub-floor. The shear strength of cement floors is an

average of approximately 1.2 N/mm². In accordance therewith an adhesive is selected, of which the shear strength is less than 1.2 N/mm^2 , preferably 0.6 to 1.0 N/mm^2 . Preferably, a reaction adhesive is selected which hardens with a Shore Hardness (A) of Thereby it is achieved that, in the case of expansion or shrinking, the forces occurring at the adhesive layer are evenly distributed over the entire adhesive surface. no force or tension peaks, which can lead to a release or to a break in the adhesive connection. The distribution of the forces ensures that the floor covering elements deform less in the case of excessive moisture or in the case of drying out. The covering elements are supported and held over large surface areas, without occurrence of breakage areas in the adhesive. Thereby, a bowingout of the floor covering wood is avoided. On the other hand, in the case of drying out, the formation of gaps is reduced. Research has shown that the covering elements, in the case of absorbing excessive moisture, becomes somewhat compressed along their contact flanks. As a result of the pressing of wood, minor deformations occur within the wood in the edge area, which however are barely discernable from the outside. In the case of the inventive elastic adhesion, one obtains a substantially even surface loading or force distribution over the surface area. This means that the greater the adhered surface is, the greater is the force transmission or distribution. Besides this, bonding is achieved in a way that protects the sub-floor. substantially elastic joining also results in a substantial reduction in foot-step noise in comparison to the hard adhesives. The surprising benefit of the inventive floor covering adhesion is comprised therein, that despite low shear strength of the employed adhesive, the avoidance of tension peaks makes possible to achieve a substantially higher force transmission than with the convention rigid DIN adhesives.

[0006] A preferred embodiment of the invention envisions that the adhesive is comprised of a reaction adhesive, preferably a polyurethane or polyurethane hybrid, which hardens upon exposure to water. Alternatively, the adhesive can be comprised of MS-polymers (modified silicones).

[0007] The invention is further concerned with the use of elastic adhesives with a higher breaking elongation, which hardens with a shear strength of less than 1.2 N/mm², preferably from 0.6 to 1.0 N/mm², for adhering wood floors onto a sub-floor preferably comprised of cement or concrete. The inventive adhesive is preferably applied to the sub-floor using a toothed trowel to a thickness of 0.5 to 5 N/mm².

BRIEF DESCRIPTION OF THE DRAWING

[0008] In the following the invention will be explained in greater detail on the basis of the illustrated embodiment represented schematically in the figures. There is shown:

Fig. 1 a section through a wood floor;

Fig. 2 a shearing stress - elongation diagram for DIN-parquet adhesives and an inventive adhesive.

DETAILED DESCRIPTION OF THE INVENTION

[0009] The parquet floor shown in sectional representation in Fig. 1 is comprised of an adhesive 12 applied in a continuous layer onto a sub-floor 10 comprised of cement, and covering elements 16 which are covered over their entire surface to be adhered 14 with the adhesive 12. The adhesive is preferably comprised of a one component polyurethane which hardens upon exposure to water, which in the hardened condition exhibits a

shearing strength τ of less than 1.2 N/mm². The shear strength τ is a quotient of the highest force F_{max} and the adhesive surface A of the floor-covering adhesive bond:

$$\tau = F_{max}/A$$

In the stress-elongation diagram according to Fig. 2, the stress-elongation curve $\sigma=f(\epsilon)$ of various adhesives 1 and 2 is shown. The end of the respective curve defines the pull shear strength of the employed adhesive, which in the case of DIN-adhesive 1 is approximately 3.5 N/mm² and in the case of the inventive adhesive 2 is approximately 0.7 N/mm². As reference value there is shown with dashed line 3 in the diagram the average shear strength value of cement flooring. The inventive adhesive 2 belongs to the elastic adhesives while the floor covering adhesive 1 according to DIN 281 is non-elastic.

[00010] Experiments have shown that the elastic floor covering adhesive prevents bowing-out of the wood despite the lower shear strength of the adhesive, and this due to the even distribution of tension. The adhesion is shear resistant. Besides this, a material joining of the floor covering to the cement is produced: the shear strength of the proposed elastic adhesives 2 of 0.7 N/mm2 is significantly lower than the surface rigidity of cement The hardness of the hardened adhesive N/mm^2). approximately 20 to 30 Shore (A). Thus, no damage to the cement For this reason, a pre-coating for sealing or floor can occur. strengthening the cement surface is not necessary. In contrast, the rigid DIN-adhesives with their shear strength of 3.5 N/mm² are significantly above that of cement. When adhering therewith, tension peaks occur at the edges of the floor covering elements. from the movement of wood forces resulting Even an enlargening of the distributed over the surface.

adhesive surface does not result in any improvement. In the case of the elastic adhesion, in comparison, the forces are transmitted or distributed over the entire adhesion surface: no tension peaks are produced. Thereby substantially higher forces can be transmitted with, at the same time, a lower tension exposure of the sub-floor. With the elastic adhesive no displacement occurs between the parquet elements. Besides this, a bowing out of the parquet elements is avoided.

Example

[00011] The general characteristics of the employed parquet adhesives are as follows:

Shore (A)	25-35	
Break Elongation	300 - 1000%	DIN 53 504
Shear Strength	< 1,2 N/mm ²	with reference to DIN 281
Recovery Value	> 70%	

[00012] In summary, the following can be concluded: The invention relates to a wooden floor, comprising of a hardenable adhesive 12 which is painted onto a floor base 10 in a continuous layer, and covering elements 16 of wood or a wood material of which the entire surface (14) to be bonded is adhered to the adhesive layer. According to the invention, the adhesive layer 12 has a thickness of 0.5 to 5 mm and the adhesive 12 has a shear strength, in its hardened state, which is less than that of the sub-floor 10 and is at most 1.2 N/mm², in order to obtain a floor covering with excellent dimensional stability.

What is Claimed is:

- 1. Floor, comprised of a sub-floor (10) continuously covered with a layer (12) of hardened adhesive and covering elements (16) of wood or wood materials completely covered on their surface to be adhered with the adhesive, thereby characterized, that the adhesive layer (12) has a layer thickness of 0.5 to 5 mm and that the adhesive has a shear strength in the hardened condition which is less than that of the sub-floor (10).
- 2. Sub-floor according to Claim 1, thereby characterized, that the shear strength of the adhesive is less than 1.2 N/mm^2 , preferably 0.6 to 1.0 N/mm^2 .
- 3. Floor according to Claim 1 or 2, thereby characterized, that the adhesive is comprised of a reaction resin which hardens upon exposure to water, preferably a polyurethane or polyurethane hybrid resin.
- 4. Floor according to one of Claims 1 through 3, thereby characterized, that the adhesive is comprised of MS-polymers.
- 5. Floor according to one of Claims 1 through 4, thereby characterized, that the adhesive in the hardened condition has a hardness of 20 to 35 Shore (A).
- 6. Floor according to one of Claims 1 through 5, thereby characterized, that the adhesive in the hardened condition has a break elongation of 300 to 1000%.

- 7. Use of adhesives for adhesion of floor covering elements (16) of wood or wood materials to a sub-floor (10), which adhesives have a shear strength of less than 1.2 N/mm², preferably 0.6 to 1.0 N/mm².
- 8. Use of adhesives, which harden with a Shore Hardness (A) of 20 to 35, for adhesion of floor covering elements (16) of wood or wood materials to a sub-floor (10).
- 9. Use of adhesives, which harden with a break elongation of 30 to 1000%, for adhering floor covering elements (16) of wood or wood materials to a sub-floor (10).
- 10. Use according to one of Claims 7 through 9, for laying floor covering elements (16) to a sub-floor (10) of cement, concrete or pre-fabricated plates.
- 11. Use according to one of Claims 7 through 10, wherein the adhesive (12) is applied with a layer thickness of 0.5 to 5 mm.
- 12. Use according to one of Claims 7 through 11, wherein the adhesive is comprised of a polyurethane or polyurethane hybrid which hardens upon exposure to water.
- 13. Use according to one of Claims 7 through 11, wherein the adhesive is comprised of one component MS-polymers.