NUAA

第1页 (共6页)

Matrix Theory, Final,						Test Date: 2019年1月5日		
矩阵论班号:		班内序号:		学号:	姓名:			
必做题(70 分)						选做题(30分)	总分	
题号	1	2	3	4	5			
得分								

Part I (必做题, 共 5 题, 70 分)

第1题(15分) 得分

Let P₃ be the vector space consisting of all real polynomials of degree less than 3.

Suppose that $\sigma: P_3 \to P_3$ is a linear transformation on P_3 defined by

$$\sigma(p(x)) = xp''(x) + p(0),$$

where p''(x) is the second derivative (二阶导数) of the polynomial p(x).

- (a) Find the range and kernel of σ .
- (b) Find the representing matrix A of σ with respect to the ordered basis 1, x, x^2 .
- (c) Is matrix A in part (b) diagonalizable? Why?

第2题(10分) 得分

Let \mathbf{R}^4 be the inner product space with the standard inner product and \mathbf{S} be a subspace of \mathbf{R}^4 spanned by vectors $\mathbf{v}_1 = (1,1,1,1)^T$ and $\mathbf{v}_2 = (-1,4,4,-1)^T$. Suppose that $\sigma(\mathbf{x}) = A\mathbf{x}$ is the orthogonal projection from \mathbf{R}^4 to \mathbf{S} .

- (a) Find the projection matrix A.
- (b) What is the vector in **S** that is closest to vector $\mathbf{b} = (1,0,0,0)^T$?

第3题(15分) 得分

Let
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. (Hint: Matrix A has an eigenvalue $\lambda = 1$.)

- (a) Find the elementary divisors and the minimal polynomial of A.
- (b) Find a Jordan canonical form J of A and a nonsingular matrix P such that $P^{-1}AP = J$.

第4题(15分) 得分

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 6 \end{pmatrix}$$
.

- (a) Show that matrix A is positive definite.
- (b) Find the LDU factorization of matrix A.
- (c) Write matrix A as a product of the form B^TB , where matrix B is an upper triangular matrix with positive diagonal elements.

第5题(15分) 得分

Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$.

- (a) Find A^+ .
- (b) Determine if $A\mathbf{x} = \mathbf{b}$ is consistent? If it is consistent, find the general solution of the system; if not, find all least-squares solutions of $A\mathbf{x} = \mathbf{b}$ and the least-squares solution with minimal norm.

Part II (选做题, 每题 10 分)

请在以下题目中(第6至第9题)选择三题解答.如果你做了四题,请在题号上画圈标明需要批改的两题.否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.

- 上et V be a vector space over the real number field \mathbf{R} , $\mathbf{\epsilon}_1, \mathbf{\epsilon}_2, \cdots, \mathbf{\epsilon}_n$ be an ordered-basis for V. Suppose that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are vectors in V with coordinate vector $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k \in \mathbf{R}^n$, respectively. Show that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent in \mathbf{V} if and only if $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k$ are linearly independent in \mathbf{R}^n .
- 第7题 A matrix S is said to be anti-Hermitian if $S^H = -S$. Let A be a Hermitian matrix. Show that A is negative definite if and only if A can be written as $A = S^2$, where S is a nonsingular anti-Hermitian matrix.
- 第8题 For $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, define $\|A\|_{l_{\infty}} = \max_{1 \le i, j \le n} \{|a_{ij}|\}$. Show that $n\|A\|_{l_{\infty}}$ is a matrix norm on $\mathbb{C}^{n \times n}$.
- 第9题 Let A^- be a generalized inverse of matrix A. Show that AA^- is diagonalizable.

选做题解答:

选做题解答:	