Homework 5 Stat 603

- **3.43** You take a standard deck of playing cards, and remove one card at random. You then draw a single card. Write S for the event that the card you remove is a six. Write N for the event that the card you remove is not a six. Write R for the event that the card you remove is red. Write B for the event the card you remove is black.
- (a) Write A for the event you draw a 6. What is P(A|S)?

Solution:
$$P(A|S) = P(A|S)/P(S)$$
, $P(S) = 1 - 48/52 = 4/52$, $P(A) = 4/51$
 $P(A|S) = (4/51*4/52)/(4/52) = 4/51$

(b) Write A for the event you draw a 6. What is P (A|N)?

Solution:
$$P(A|N) = P(A|N)/P(N)$$
, so $P(N) = 48/52$, $P(A) = 4/51$
 $P(A|N) = (4/51 * 48/52)/48/52 = 4/51$

(c) Write A for the event you draw a 6. What is P(A)?

Solution: P(A) = 4/51

(d) Write D for the event you draw a red six. Are D and an independent? why?

Solution: For events to be independent, $P(A) = P(A \mid B) = 1/2$, $P(D) = P(D \mid A)$.

$$P(D) = 2/51$$
, $P(A) = 4/51$, $P(D|A) = P(D|A) / P(A) = (2/51 * 4/51) / (4/51) = 2/51 == P(D)$, Hence they are independent events.

(e) Write D for the event you draw a red six. What is P(D)?

Solution: P(D) = 2/51.

3.44 A student takes a multiple-choice test. Each question has N answers. If the student knows the answer to a question, the student gives the right answer, and otherwise guesses uniformly and at random. The student knows the answer to 70% of the questions. Write K for the event a student knows the answer to a question and R for the event the student answers the question correctly. (a) What is P(K)?

Solution: P(K) = 70/100 = 0.7

(b) What is P(R|K)?

Solution: P(R|K) = P(R|K) / P(K) = 1 (c) What is P(K|R), as a function of N?

Solution: Using Bayes' probability function,

$$P(K/R) = P(K) + P(R|K) / (P(K) * P(R|K) + P(K') P(R|K')$$

$$= 0.7*1 / (0.7*1 + (1-0.7)*1/N)$$

$$= 0.7/(0.7 + 0.3/N)$$

(d) What values of N will ensure that P(K|R) > 99%?

Solution: 99/100 < 0.7/(0.7 + 0.3/N)

$$= 0.99 < 0.7/(1/N)$$

3.Pollution of the rivers in the United States has been a problem for many years.

Consider

the following events:

A: the river is polluted

B: a sample of water tested detects pollution

C: fishing is permitted

Assume that P (A) = 0.3, P (B|A) = 0.75, P (B|A') = 0.20, P (C|(A \cap B)) = 0.20

 $P(C|(Ac \cap B)) = 0.15, P(C|(A \cap B')) = 0.80, and P(C|(Ac \cap B')) = 0.90.$

(a) Find P (A \cap B \cap C).

Solution:
$$P(A \cap B \cap C) = P(C|A \text{ and } B) * P(A \text{ and } B)$$

$$= P (C|A \text{ and } B) * P(A)*(B|A)$$

(b) Find P (B' \cap C).

Solution: Since $B' \cap C = (A \cap B' \cap C) \cup (A' \cap B' \cap C)$

$$P(B' \cap C) = P(A \cap B' \cap C) + P(A' \cap B' \cap C)$$

But P (A
$$\cap$$
B' \cap C) = P(C|A \cap B') * P(A \cap B')

$$=0.8*(1-0.75)*0.3=0.06$$

And P (A'
$$\cap$$
 B' \cap C) = 0.9 *(1 - 0.2) *(1 - 0.3) = 0.504

$$P(B' \cap C) = 0.06 + 0.504 = 0.564$$

(c) Find P (C).

Solution: $C = (A \cap B' \cap C) \cup (A' \cap B' \cap C) \cup (A \cap B \cap C) \cup (A' \cap B \cap C)$

$$P(C) = (A \cap B' \cap C) + (A' \cap B' \cap C) + (A \cap B \cap C) + (A' \cap B \cap C)$$

But
$$P(A' \cap B \cap C) = P(C \mid A' \cap B) * P(A' \cap B)$$

$$= 0.15 * P(B|A') * P(A')$$

Hence P (C) = 0.06+0.504+0.045+0.021 = 0.63

(d) Find the probability that the river is polluted given that fishing is permitted and the sample tested did not detect pollution

Solution: The required probability = $P(A | C \cap B') = P(A \cap B' \cap C)/P(C \cap B') = 0.06/0.546$ = 0.106