L08MatrixofLinearTranformation

September 23, 2015

1 The Matrix of a Linear Transformation

Not all linear transformations are matrix-vector multiplications. But, every linear transformation from vectors to vectors is a matrix multiplication.

"I don't always linearly transform vectors into vectors. But when I do, I use a matrix."

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There there is a unique matrix A such that:

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e_j})$, where $\mathbf{e_j}$ is the jthe column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e_1}) \dots T(\mathbf{e_n})].$$

A is called the standard matrix of T.

Proof. Write

$$\mathbf{x} = I\mathbf{x} = [\mathbf{e}_1 \dots \mathbf{e}_n] \mathbf{x}$$

$$= x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n}.$$

Because T is linear, we have:

$$T(\mathbf{x}) = T(x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n})$$

$$= x_1 T(\mathbf{e_1}) + \dots + x_n T(\mathbf{e_n})$$

$$= [T(\mathbf{e_1}) \dots T(\mathbf{e_n})] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = A\mathbf{x}.$$

Hence we see that every linear transformation from vectors to vectors can be implemented as a matrix multiplication, and vice versa.

The term *linear transformation* focuses on a **property** of the mapping, while the term *matrix multiplication* focuses on how such a mapping is **implemented**.

For example, we find the standard matrix of a linear tranformation of \mathbb{R}^2 by asking what the transformation does to two particular points:

This is a **hugely** powerful tool.

Let's say we start from some given linear transformation; we can use this idea to find the matrix that implements that linear transformation.

For example, let's see how to compute the linear transformation that is a rotation.

(By the way, can you see that a rotation is a linear transformation?)

Example. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. Find the standard matrix A of this transformation.

Solution. The columns of I are $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Referring to the diagram below, we can see that $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ rotates into $\begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ rotates into

 $\begin{bmatrix} -\sin\varphi \\ \cos\varphi \end{bmatrix}$.

So by the Theorem above,

$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}.$$

To demonstrate the use of a rotation matrix, let's rotate the following shape:

The variable note is a array of 26 vectors in \mathbb{R}^2 that define its shape.

In other words, it is a 2×26 matrix.

To rotate note we need to multiply each column of note by the rotation matrix A.

In numpy, every matrix has a .dot() method. This method multiplies the matrix by every column of its argument, returing the results as a matrix. That is:

A.dot(B)

where A and B are matrices, will multiply A by every column of B, and the resulting vectors will be formed into a matrix.

```
In [27]: dm.plotSetup()
    angle = 180.0
    phi = (angle/180) * np.pi
    A = np.array(
        [[np.cos(phi), -np.sin(phi)],
        [np.sin(phi), np.cos(phi)]])
    rnote = A.dot(note)
    dm.plotShape(rnote)
```


1.1 Question Time! Q8.1

1.2 Geometric Linear Transformations of \mathbb{R}^2

Let's use our understanding of how to constuct linear transformations to look at some specific linear transformations of \mathbb{R}^2 to \mathbb{R}^2 .

First, let's recall the linear transformation

$$T(\mathbf{x}) = r\mathbf{x}.$$

With r > 1, this is a dilation. It moves every vector further from the origin.

Let's say the dilation is by a factor of 2.5.

To construct the matrix A that implements this transformation, we ask: where do $\mathbf{e_1}$ and $\mathbf{e_2}$ go?


```
Under the action of A, \mathbf{e}_1 goes to \begin{bmatrix} 2.5 \\ 0 \end{bmatrix} and \mathbf{e}_2 goes to \begin{bmatrix} 0 \\ 2.5 \end{bmatrix}.
So the matrix A must be \begin{bmatrix} 2.5 & 0 \\ 0 & 2.5 \end{bmatrix}.
```


OK, now let's reflect through the x_1 axis. Where do $\mathbf{e_1}$ and $\mathbf{e_2}$ go?

Reflection through the x_1 axis

What about reflection through the x_2 axis?

What about reflection through the line $x_1 = x_2$?

Reflection through the line $x_1 = x_2$

What about reflection through the line $x_1 = -x_2$?

Reflection through the line $x_1 = -x_2$

```
In [48]: A = np.array(
             [[0,-1],
              [-1, 0]])
         dm.plotSetup()
         dm.plotSquare(square)
        dm.plotSquare(A.dot(square),'r')
        plt.plot([-2,2],[2,-2],'b--')
        Latex(r'Reflection through the line x_1 = -x_2)
Out[48]:
```


What about reflection through the origin?

Reflection through the origin

Out[52]:

Horizontal Contraction

Projection onto the x_1 axis

Out [59]:

Projection onto the x_2 axis

1.3 Existence and Uniqueness

Notice that some of these transformations map multiple inputs to the same output. We need some terminology to understand related properties of linear transformations.

Definition. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

Informally, T is onto if any element of its codomain is in its range.

Another (important) way of thinking about this is that T is onto if there is a solution \mathbf{x} of

$$T(\mathbf{x}) = \mathbf{b}$$

for all possible **b**.

This is asking an **existence** question about a solution of the equation $T(\mathbf{x}) = \mathbf{b}$ for all \mathbf{b} .

1.4 Question Time! Q8.X

Definition. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

If T is one-to-one, then for each **b**, the equation $T(\mathbf{x}) = \mathbf{b}$ has either a unique solution, or none at all. This is asking an **existence** question about a solution of the equation $T(\mathbf{x}) = \mathbf{b}$ for all **b**.

Let's examine the relationship between these ideas and some previous definitions.

If $A\mathbf{x} = \mathbf{b}$ is consistent for all \mathbf{b} , is $T(\mathbf{x}) = A\mathbf{x}$ onto? one-to-one?

If $A\mathbf{x} = \mathbf{b}$ is consistent and has a unique solution for all \mathbf{b} , is $T(\mathbf{x}) = A\mathbf{x}$ onto? one-to-one?

If $A\mathbf{x} = \mathbf{b}$ is not consistent for all \mathbf{b} , is $T(\mathbf{x}) = A\mathbf{x}$ onto? one-to-one?

If $T(\mathbf{x}) = A\mathbf{x}$ is onto, is $A\mathbf{x} = \mathbf{b}$ consistent for all \mathbf{b} ? is the solution unique for all \mathbf{b} ?

If $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one, is $A\mathbf{x} = \mathbf{b}$ consistent for all \mathbf{b} ? is the solution unique for all \mathbf{b} ?