TP2 MRR

Noah KWA MOUTOME - Victor TAN

2023-10-31

IV. Cookies Study

```
cookies_data <- read.csv("cookies.csv")
dim(cookies_data)
## [1] 32 701</pre>
```

We see that there are 700 co-variables. We can assume that some of them are less important than the others. To see this, let's do a Ridge regression and look at the coefficient of each co-variables.

```
library(glmnet)

## Le chargement a nécessité le package : Matrix

## Loaded glmnet 4.1-8

y <- cookies_data[, 1]

X <- cookies_data[, -1]

cv_ridge_model <- cv.glmnet(as.matrix(X), y, alpha=0, standardize = TRUE)

plot(cv_ridge_model, main="Ridge_Regression")</pre>
```

700 700 700 700 **Ridge Regression** 700 700 700 700 700 700 700

print(cv_ridge_model)

```
##
## Call: cv.glmnet(x = as.matrix(X), y = y, alpha = 0, standardize = TRUE)
##
## Measure: Mean-Squared Error
##
##
       Lambda Index Measure
                                 SE Nonzero
## min 11.42
                100 0.5151 0.0876
                                        700
                                        700
## 1se
       19.06
                 89
                     0.5999 0.1045
best_lambda <- cv_ridge_model$lambda.min</pre>
best_lambda_ridge_model <- best_lambda</pre>
print(paste("Best lambda :", best_lambda))
```

[1] "Best lambda : 11.4243191334971"

We can also plot the Regularization Path.

Now let's take a look at the coefficients of the best model we've managed to get.

```
final_ridge_model <- glmnet(as.matrix(X), y, alpha=0, lambda=best_lambda)
abs_coef <- abs(coef(final_ridge_model)[-1])</pre>
```

[1] 2.232542e-05

[1] "Number of value higher than 10^-1: 178"

[1] "Number of value higher than 10^-2: 629"

[1] "Number of value higher than 10^-3 : 693"

[1] "Number of value higher than 10^-4 : 699"

We can see that the majority of the coefficients are lower than 10^{-1} . Then, we could think that a lot of our co-variables are useless to predict the target variable. (We scaled the data when doing the Ridge regression)

Let's do a Lasso regression to see if there are less co-variables that are actually useful to predict the fat :

27 23 12 13 11 10 6 2 Regression 1 1 1 1 1 1

```
Mean-Squared Error

Mean-Squared Error

1.0 0.0 0.2 1.0 1.5 2.0

-4 -3 -2 -1 0

Log(λ)
```

```
##
## Call: cv.glmnet(x = as.matrix(X), y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 0.01142 100 0.08637 0.02358 27
## 1se 0.01582 93 0.10752 0.03138 23
```

Again, here's the regularization path:

```
plot(cv_lasso_model$glmnet.fit, xvar = "lambda", main="Lasso Regression", xlim=c(-5.5, 0))
abline(h = 0, col = 6, lty = 3)
abline(v = log(best_lambda_lasso), col = 7, lty = 3)
legend("bottomleft", legend = c(colnames(X), "Zero", "Best Lambda"), col = 1:7, lty = 1)
```


print(log(best_lambda_lasso))

[1] -4.472011

Now, let's see how many co-variables we have left :

##		${\tt non_zero_spectra}$	non_zero_coefficients
##	1	X1406	7.037482e-01
##	2	X1408	2.940229e-01
##	3	X1410	1.336872e+00
##	4	X1720	-9.926792e+00
##	5	X1722	-1.355581e+01
##	6	X1882	1.061205e+01
##	7	X1884	7.755343e+00
##	8	X1886	3.492588e+00
##	9	X1888	5.762739e+00
##	10	X1890	5.224832e+00
##	11	X1892	5.554246e-01
##	12	X1894	4.179640e-01
##	13	X1966	7.299027e+00
##	14	X1968	6.783323e-04
##	15	X1970	1.990190e-03
##	16	X1972	6.091168e-04
##	17	X1974	1.477502e-03
##	18	X1976	2.118964e-03

```
## 19
                 X1978
                                1.855211e-03
## 20
                 X1980
                                 2.782265e-03
                                2.921429e-04
## 21
                 X1982
## 22
                                1.729233e-04
                 X1984
## 23
                 X1986
                                2.473668e-04
                                8.019437e-04
## 24
                 X1988
                                4.819718e-05
## 25
                 X1990
## 26
                 X2068
                               -2.840478e-03
## 27
                 X2070
                               -5.620257e-03
## 28
                 X2072
                               -5.550826e+00
## 29
                 X2074
                               -9.807742e+00
                 X2076
                               -9.603172e-04
## 30
## 31
                 X2302
                               -2.810737e+00
##
## Call: glmnet(x = as.matrix(X), y = y, alpha = 1, lambda = best_lambda_lasso)
##
##
    Df %Dev Lambda
## 1 31 98.09 0.01142
```

We can see that our model is pretty accurate (deviance of 98.09%) with only 31 co-variables used among the 700 existant.

Actually, we've shown that even less co-variables are useless than what we thought.

Now let's try to split our dataset into train and test dataset:

Ridge:

```
# We split into 2 dataframe randomly
indice_train <- sample(1:nrow(cookies_data), 0.8 * nrow(cookies_data))</pre>
train_data <- cookies_data[indice_train, ]</pre>
test_data <- cookies_data[-indice_train, ]</pre>
# We define X & y for both dataframe
y_train <- train_data[, 1]</pre>
X_train <- train_data[, -1]</pre>
y_test <- test_data[, 1]</pre>
X_test <- test_data[, -1]</pre>
# We train the model with the best value for lambda
cv_ridge_model <- cv.glmnet(as.matrix(X_train), y_train, alpha = 0, grouped = FALSE)</pre>
best_lambda_ridge <- cv_ridge_model$lambda.min</pre>
ridge_model <- glmnet(as.matrix(X_train), y_train, lambda = best_lambda_ridge, alpha = 0)
predictions_ridge <- predict(ridge_model, s = best_lambda_ridge, newx = as.matrix(X_test))</pre>
error_ridge <- sqrt(mean((predictions_ridge - y_test)^2))</pre>
print(paste("RMSE Ridge :", round(error_ridge, 2)))
```

```
## [1] "RMSE Ridge : 0.83"
```

Lasso:

```
# We split into 2 dataframe randomly
indice_train <- sample(1:nrow(cookies_data), 0.8 * nrow(cookies_data))</pre>
train_data <- cookies_data[indice_train, ]</pre>
test_data <- cookies_data[-indice_train, ]</pre>
# We define X & y for both dataframe
y_train <- train_data[, 1]</pre>
X_train <- train_data[, -1]</pre>
y_test <- test_data[, 1]</pre>
X_test <- test_data[, -1]</pre>
# We train the model with the best value for lambda
cv_lasso_model <- cv.glmnet(as.matrix(X_train), y_train, alpha = 1, grouped = FALSE)</pre>
best_lambda <- cv_lasso_model$lambda.min</pre>
lasso_model <- glmnet(as.matrix(X_train), y_train, lambda = best_lambda, alpha = 1)</pre>
# We make prediction on the X_{-}test
predictions_lasso <- predict(lasso_model, s = best_lambda, newx = as.matrix(X_test))</pre>
# We compute the RMSE
error_lasso <- sqrt(mean((predictions_lasso - y_test)^2))</pre>
print(paste("RMSE Lasso :", round(error_lasso, 2)))
```

We see that the RMSE for the Lasso regression is way better than for the Ridge one.

[1] "RMSE Lasso : 0.25"

Finally, let's verify if only 31 co-variables are useful for our prediction by using a Step forward selection:

```
##
## Call: glm(formula = fat ~ X1980 + X2128 + X1416 + X1716 + X2200 + X1428 +
       X1976 + X2224 + X1978 + X2202 + X1468 + X2252 + X2018 + X2242 +
##
##
       X2192 + X1564 + X2164 + X1718 + X2176 + X2216 + X1878 + X1144 +
##
       X1566 + X2186 + X2244 + X2196 + X2346 + X1502 + X2246 + X1346 +
##
       X2398, family = gaussian, data = cookies_data)
##
## Coefficients:
## (Intercept)
                      X1980
                                    X2128
                                                 X1416
                                                              X1716
                                                                            X2200
     1.554e+01
                 -1.658e+02
                                                         -4.707e+02
                                                                        5.583e+02
##
                               2.891e+01
                                             8.449e+01
##
         X1428
                      X1976
                                   X2224
                                                 X1978
                                                              X2202
                                                                            X1468
##
                 -3.285e+02
                              -9.854e+01
   -8.572e+01
                                             4.724e+02
                                                         -3.391e+02
                                                                        3.288e+00
##
         X2252
                      X2018
                                   X2242
                                                 X2192
                                                              X1564
                                                                            X2164
##
     1.213e+02
                  4.101e+01
                              -1.714e+02
                                             4.322e+01
                                                          1.270e+02
                                                                       -1.991e+02
##
                                                 X1878
         X1718
                      X2176
                                   X2216
                                                              X1144
                                                                            X1566
                  1.244e+02
##
                                                         -5.264e+00
     4.175e+02
                              -6.102e+01
                                             4.573e+01
                                                                       -9.188e+01
##
         X2186
                      X2244
                                   X2196
                                                 X2346
                                                              X1502
                                                                            X2246
##
                  1.672e+01
                              -4.137e+01
                                             4.972e-01
                                                          2.369e-01
                                                                        2.554e-01
   -2.245e+01
##
         X1346
                      X2398
##
   -5.883e-03
                  3.412e-06
## Degrees of Freedom: 31 Total (i.e. Null); O Residual
## Null Deviance:
                        56.37
## Residual Deviance: 1.382e-23
                                    AIC: -1638
```

We see that we also get only 31 degrees of freedom, the same as the lasso regression.

Conclusion

Because we had 700 covariables, which is way greater than the number of observation (32), the matrix X^TX is not invertible and the covariables might be correlated. Therefore, we can't use the OLS method to find the best coefficients. We had to use a Ridge regression or a Lasso regression to find the best coefficients and a correct number of covariables. We've seen that the Lasso regression was way better than the Ridge one. This is because the Lasso regression is a method that is used to get a sparse solution, which is what we wanted. We've also seen that only 31 co-variables were useful to predict the fat. We've also seen that the RMSE of the Lasso regression was very low comapred to the ridge one, which is really good: the model is really accurate and predictive.