```
clear
close all;
clc
%Variables
color = ["Red" "Orange" "Yellow" "Green" "Blue" "Purple" "Black" "Noise"];
mult = 1.3;
fprintf('Results from Analysis with +/- %.2f SD\n', mult);
fprintf('
                                                                                                                                                                    \n');
fprintf('Color\tR low\tR high\tG low\tG high\tB low\tB high\n');
for i = 1:length(color)
        %Variables
         clear R Total G Total B Total
        R Total = zeros(1,256);
         G Total = zeros(1,256);
         B_{\text{Total}} = zeros(1,256);
         for j = 1:5
                    %Variables
                    chr = convertStringsToChars(color(i));
                    str = strcat(chr,int2str(j),'.jpg');
                    Data = imread(str);
                    R = Data(:,:,1);
                    G = Data(:,:,2);
                    B = Data(:,:,3);
                    line = [0 \ 0.1];
                    %Totalling
                    R Total = [R Total R(:)'];
                    G Total = [G Total G(:)'];
                    B_Total = [B_Total B(:)'];
          end
          %Total Mean & SD
          r mean = mean(R Total);
          g mean = mean(G Total);
         b_mean = mean(B_Total);
         r sd = std2(R Total);
          g sd = std2(G Total);
          b_sd = std2(B_Total);
         %RGB High & Low Values
         % (based on 2 SD)
         r high = r mean + mult*r sd;
         r low = r mean - mult*r sd;
          g high = g mean + mult*g sd;
          g low = g mean - mult*g sd;
          b high = b mean + mult*b sd;
          b_low = b_mean - mult*b_sd;
          fprintf('%s \t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.
low,b high);
```

```
%Display Results
    %Plot RGB Histogram
    figure(i);
    hold on;
    histogram (R Total, 0:1:256, 'FaceColor', 'r', 'Normalization', 'probability');
    histogram (G Total, 0:1:256, 'FaceColor', 'g', 'Normalization', 'probability');
    histogram (B Total, 0:1:256, 'FaceColor', 'b', 'Normalization', 'probability');
    plot(r low*ones(2,1),line,'color','k','linewidth',2); % r low line
    plot(r high*ones(2,1),line,'color','k','linewidth',2); % r high line
    plot(g low*ones(2,1),line,'color','k','linewidth',2); % g low line
    plot(g high*ones(2,1),line,'color','k','linewidth',2); % g high line
    plot(b low*ones(2,1),line,'color','k','linewidth',2); % b low line
    plot(b high*ones(2,1),line,'color','k','linewidth',2); % b high line
   tit = strcat(color(i),' RGB Histogram');
   title(tit);
    xlabel('RGB Value');
    ylabel('Frequency (Normalized)');
    legend('r','g','b');
   %3D Plot Points
   x = [r_low r_high r_low r_low; r_low r_high r_high r_low r_low];
    y = [g_low g_low g_high g_high g_low; g_low g_low g_high g_high g_low];
    z = [b low*ones(1, size(x, 2)); b high*ones(1, size(x, 2))];
   r trip = r mean/255;
    g_{trip} = g_{mean}/255;
   b trip = b mean/255;
   trip = [r trip g trip b trip];
    %3D Plot
    figure (length (color) +1);
    Temp = surf(x, y, z, 'FaceColor', trip);
    hold on
    grid on
   patch(x', y', z', trip)
   xlabel('Red');
   ylabel('Green');
    zlabel('Blue');
   axis([-10 265 -10 265 -10 265]);
   view(-25, 30)
   figure (length (color) +2);
   hold on
    grid on
    plot3(R Total, G Total, B Total, '.', 'Color', trip, 'MarkerSize', 2);
   xlabel('Red');
   ylabel('Green');
    zlabel('Blue');
    axis([-10 265 -10 265 -10 265]);
    view(-25, 30)
end
```

Color	R_low	R_high	G_low	G_high	B_low	B_high
Red	112.15	161.09	12.77	25.21	8.50	31.32
Orange	136.16	182.80	39.73	94.25	6.52	38.81
Yellow	134.08	176.05	99.51	141.46	9.55	35.89
Green	29.18	98.64	99.78	170.94	63.92	125.29
Blue	9.62	42.41	50.09	95.98	95.27	150.34
Purple	55.32	118.33	35.47	74.37	87.97	142.41
Black	16.97	72.27	18.96	81.11	24.20	86.29
Noise	-0.72	90.71	93.36	205.75	120.05	217.33

Published with MATLAB® R2018a