

Data

Anomaly Detection

Beatriz Sousa Santos, University of Aveiro, 2025

Data is a proxy to the phenomena to analyse and understand

Measured data:

CAT, MR, sensors, ultra sound, laser digitizers, satellites,

Simulated data:

Finite Element Analysis, Numeric methods,

Data Preparation
Transform

Visual encoding Map Image production Display

Phenomenon

Data

World/simulation

Adequate data pre-processing is vital!

•	Data may have a lot of different forms and there are many techniques and
	systems to visualize them

- A data classification is important to:
 - predict what visualization techniques are adequate
 - make easier the communication about the data
 - allow a more systematic approach to Visualization

. . . .

Data Abstraction

name	rank	gender	year
Jacob	1	boy	2010
Isabella	1	girl	2010
Ethan	2	boy	2010
Sophia	2	girl	2010
Michael	3	boy	2010

- Four basic dataset types:
 - Tables
 - Networks
 - Fields
 - Geometry

- Five basic datatypes
 - Items

Categorical

- Attributes

- Positions
- Grids

Population by age group 8000000 7000000 6000000 4000000 1000000 1960 1970 1981 1991 2001 2011 2021 Group 1 Group 2 Group 3

Attribute/variable

	Population by age group		
Census Year	Group 1: 0-14 years	Groups 2: 15-64 years	Group 3: 65 + years
1960	2591955	5588868	708569
1970	2451850	5326515	832760
1981	2508673	cell 6198883	1125458
1991	1972403	6552000	1342744
2001	1656602	7006022	1693493
2011	1572329	6979785	2010064
2021	1331188	6588239	2423639

Tabular Data -> InfoVis

3D/4D Spatial Data -> SciVis

Item/ object

https://www.paraview.org/

Data representation level:

- Qualitative (or categorical)
- Quantitative (or numeric)

Data nature:

- Continuous
- Discrete

Computer data are discrete but the phenomena may be continuous

Measuring scale:

- Nominal
- Ordinal > categorical
- Interval
- Ratio quantitative

What data are obtained from a survey using a Likert-type scale?

- Qualitative?
- Ordinal?
- Quantitative (or numeric)?

[&]quot;How do you rate this product?"

[&]quot;How satisfied are you with our service?"

[&]quot;How do you grade this presentation?"

- Examples of measuring scales and types of data:
 - nominal --> car brands, gender, animal species...
 - ordinal --> week days, preferences, levels measured in a Likert-type scale
 - Interval --> date, IQ, temperatures in °C
 - Ratio --> temperatures in ^oK, weight, height

- The ratio scale represents the highest level of representation, has a nonarbitrary zero (unlike the interval scale)
- This is a general classification and might be used to select the statistical methods to use with the data

• In what scale are the following variables measured?

1 2 3 4 5 6 7 8 9 Length (m) Weight (kg) Latitude (° W/E) Longitude (° S/N) Altitude (m) Height (m) Temperature (° F) Pressure (Pa)

Example: beyond the structure of the data to Visualize: look at the phenomenon

Consider a data set with three columns:

latitude longitude d

Which is the most adequate way to visualize these data?

Iso-contours

If d is depth or altitude?

the selected visualization technique may involve interpolation

(e.g. isocontours, isosurfaces, 3D surface)

latitude longitude

What if data represent location and the number of "deer crash" accidents?

- Interpolation and contours don't make sense!
 - Know the data structure is not enough

It is necessary to know the phenomenon behind the data as well as knowing the tasks (questions) of the users!

A partir de 26 de Fevereiro

- Segunda-feira -> DETI 4.1.19
- Quinta-feira -> Anf. 12.2.1

Data preparation

- Data preparation is very important and very time consuming
- Several phases and terms:

Data pre-processing

Data wrangling

Data cleaning, Data tiding ...

Data transformation

Data integrity becomes more essential when the volume of data increases

"Brilliant visualizations cannot redeem bad data!"

Or

"Garbage in garbage out ..."

Cleansing Data

 Data is dirty: it contains typos, inconsistencies, fails in some way to meet a standard...

Transforming Data

(at the variable level)

- Encoding
- Aggregation
- Derived data
- Removal
- Standardization

Revisiting previous examples:

Max and Min temperatures along the month of February (in °C):

day	Max T	Min. T
1	15	7
2	14	8
3	13	6
4	13	6
5	12	6
6	13	7
7	13	7
8	14	8
9	15	5
10	12	5
11	13	6
12	12	7
13	11	8
14	11	8
15	12	8
16	12	9
17	13	9
18	14	9
19	14	8
20	13	8
21	13	8
22	12	7
23	12	7
24	11	7
25	11	6
26	11	7
27	13	6
28	14	6

Q4- How were the daily temperature ranges?

Q5 – What was the maximum temperature range?

- Should we use a derived variable to answer Q4 and Q5?

- What if we are addressing an audience in the USA? Should we use some other temperature unit?

	Population by age group			
Census Year	Group 1: 0-14 years	Groups 2: 15-64 years	Group 3: 65 + years	
1960	2591955	5588868	708569	
1970	2451850	5326515	832760	
1981	2508673	6198883	1125458	
1991	1972403	6552000	1342744	
2001	1656602	7006022	1693493	
2011	1572329	6979785	2010064	
2021	1331188	6588239	2423639	

- What if we are studying the senior population?
- Or only children?
- Or everyone?

More examples:

Cleaning Data

Birth date: Feb/30/2000

Temperature: -300 °K

City: Lixboa

Transforming Data

- Encoding answers to an open question need to be parsed and coded
- Aggregation detail may be excessive (age: <18; 18-40; 41-65; >65)
- Derived data add new relevant variables (Trange= Tmax-Tmin)
- Removal remove data that are not needed
- Standardization M/F; °C or °F

Main bibliography

- Camões, J., Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel, Pearson Education, 2016 https://learning.oreilly.com/library/view/data-at-work/9780134268798/title.html
- Spence, R., Information Visualization, Design for Interaction, 2nd ed., Prentice Hall,
 2007
- Munzner, T., Visualization Analysis and Design, A K Peters, 2014
 https://learning.oreilly.com/library/view/visualization-analysis-and/9781466508910/cover.xhtml

Kirk, A., Data Visualization: a successful design process. Packt Publishing, 2012
 https://learning.oreilly.com/library/view/data-visualization-a/9781849693462/cover.html