Appunti di Struttura della Materia

Andrea Miglietta

 $9~\mathrm{marzo}~2016$

1 Interazione Spin-Orbita

1.1 Esperimento Stern-Gerlach

Il problema consiste nella deflessione di un fascio di particelle neutre immerse in un campo magnetico disomogeneo; quello che ci si aspetterebbe è una distribuzione omogenea di particelle sullo schermo. Tuttavia quello che si osserva è che il numero di componenti in cui viene diviso il fascio può esser pari o dispari.

Supponiamo un campo magnetico \vec{B} diretto come z, e $\frac{\partial B}{\partial z} \neq 0$. La forza che agisce sull'atomo in presenza di campo magnetico disomogeneo è:

$$F_z = \mu_z \frac{\partial B}{\partial z}$$

Pensiamo all'atomo come una spira percorsa da corrente (l'elettrone che si muove su una circonferenza attorno al nucleo), in questo caso il mio atomo è dotato di un campo magnetico che posso esprimere come:

$$\vec{\mu} = \vec{I}A\hat{n}$$

dove $A=\pi r^2$ è l'area dell'orbita, $\vec{I}=\frac{q}{T}=\frac{q\vec{v}}{2\pi r}$ la corrente generata dal moto della particella di carica q e \hat{n} la normale uscente dal piano della spira.

Dato che $\vec{l}=mr\vec{v}\hat{n}$ posso riscrivere il momento magnetico in modo classico come:

$$\vec{\mu} = \frac{qr\vec{v}}{2}\hat{n} = \frac{q}{2m}\vec{l}$$

Di fatto questa proporzionalità tra $\vec{\mu}$ e \vec{l} vale anche nel caso di operatori quantistici; per un elettrone di carica $q=-|q_e$ —posso scrivere:

$$\hat{\vec{\mu_l}} = \frac{-|q_e|}{2m_e}\hat{\vec{l}}$$

Introduco la seguente costante, nota come magnetone di bohr:

$$\mu_B \stackrel{\text{def}}{\equiv} \frac{\hbar q_e}{2m_e}$$

Allora il momento magnetico orbitale di un elettrone diventa:

$$\hat{\vec{\mu_l}} = -\mu_B \frac{\hat{\vec{l}}}{\hbar}$$

Il valor medio della forza è :

$$\langle F_z \rangle = \langle \mu_z \frac{\partial B}{\partial z} \rangle = -\mu_B \frac{\langle l_z \rangle}{\hbar} = -\mu_B m_l$$

Se considero il caso l=0, dato che $-l \le m_l \le l$, si ha che $\langle l^2 \rangle = \langle l_z \rangle = 0$, per cui si ci aspetterebbe una sola deflessione, ma sperimentalmente si misurano

due valori di $F_z \neq 0$. Questo si spiega andando a considerare il contributo dato dal momento angolare intrinseco (spin), che suggerisce sia presente anche un momento magnetico intrinseco, definito come:

$$\hat{ec{\mu_s}} = -\mu_B g_s rac{\hat{ec{s}}}{\hbar}$$

dove g_s è il $\mathit{fattore}\ di\ \mathit{Land\'e}.$ Per l'elettrone vale $g_s=2$

1.2 Hamiltoniana di Spin-Orbita