

Curuilinear Polygons	8. Possibly useful formulae	Exercise: Let 8 be a unit-speed curve in IR3 with nowhere wonishing
		curvature. Let n be the principal normal of 8, viewed as a curve on 62, and let 5
A curvillacur polygun is a T-periodic map,	Γ' = GEu-2FFu+FEν 2(EG-F²)	be the orc length of A. Show that the geodesic curvature of A is, up to a sign,
[anoth a a (+1) (++b)]		as tan (i) where 10 and 2 are the curvature and torsion of 7. Show also
one-sided derivatives	1 = 1 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =	that it is a simple closed curve on S2, then interior and extensor are of equal areas.
1 'J + + + + + + + + + + + + + + + + + +	$\Gamma_{12}^{1} = \frac{GE_V - FG_u}{2(EG-F^2)}$	Solution: Since the unit normal of 52 is also to, the geodesic curvature is
7-C11-11-11-11-11-11-11-11-11-11-11-11-11		kg = n" (nxn'). Let + be the ore length of ond denote at by a dut
	T2 = E6, -FE, 2 (E6-F2)	=
TABLE BUTCH OF CONDUCANCE WE DEFINE		(κ) + τ) / R and n" = 1 1 (κ) + τ) - ρ 1 (κ) + + + 1 1 (π) 6 . (κ'+ τ') ?
the angle of rotation as the	[] = 26 Fy - 6 Gy - F Gy 2 (E G - F 2)	Hence o" (axa) = - a tar (k) + a na (k) = kt-tk Shice h= Rx, cti.
■ T((A)D() AAA((1 1 1 1	$R_{g} = \pm \frac{ \underline{K}_{1}^{T} + \underline{C}_{2} }{ \underline{K}_{1}^{T} + \underline{C}_{2} } = \pm \frac{d}{dS} + \omega_{1}^{T} \left(\frac{T_{2}}{Z}\right)$
	122 = £Gv-2FFv+FGu 2(E6-F2)	
Thm: For any unit speed parametrised		Then we note that K=1 on 52 and 50 resolve to becouse kg is the derivative of an Qla)-pendin
positively oriented curvilineur polyyon with	It is a plane curve, thin	function. Thus the area inside A is 27.
n edges on a surface or,	K(+) = (7.7(3(1))	
	$= \frac{(x_{1}y_{1}) - x_{1}y_{1}}{(x_{1}y_{1})_{1}y_{2}}$	
$\iint_{\partial P} K dA + \int_{0}^{k} r_{s} ds + \sum_{i=1}^{n} \beta_{i} = 27$		Exercise: Suppose Im(T) = Ba(0) and o(to) = &Ba(0). Then Kazt
	It 8 is a smooth regular	Solution: WLOG & is unit speed. f(+):= \18(+) \12
for any geodesic triungle	spare luve,	7"(+0)=2 8(+0) 2+28(+0)8(+0)60
	K = 111611 - (7, 5)21	で(+₀)· を(+₀)٤-1
4, +4, +4; = 77 + 5 KdA (cor. 10.2.3)		(auchy-Schwuz yields -1> T(+) · +(+)> - T(+) · +(+) = -R ~(+)
	If V is frenct, then	Kr(+,) > 1/R
Euler characteristic	U= 4 -(213)311	
We define a triangulation to be a	6 = 1411 114-124) 311	
set of triangles that meets only	T = det(8,8,8)	
at a (one only) common edgelvertex,	lit×7112	
or not at all		
	Cauchy-Schwarz	
X(s)= v-eff		
	14×,4>1 < 11×11 · 11y11	
We say that a surface is compact if it		
can be covered by finitely many transples.		
ייין אייין אייי		
∫∫, KdA= 2πχ(s)		
113, 144, 271, 869		