

10/11/00
JC951 U.S. PTO

10-13-00

PTO/SB/05 (08-00)

Approved for use through 10/31/2002 OMB 0651-0032

U.S. Patent and Trademark Office, U S DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Applicant claims small entity status.
See 37 CFR 1.27.
3. Specification [Total Pages 31]
(preferred arrangement set forth below)
 - Descriptive title of the invention
 - Cross Reference to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to sequence listing, a table, or a computer program listing appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (*if filed*)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
4. Drawing(s) (35 U.S.C. 113) [Total Sheets 2]
5. Oath or Declaration [Total Pages]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 CFR 1.63 (d))
(for continuation/divisional with Box 17 completed)
- i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b)
6. Application Data Sheet. See 37 CFR 1.76

17. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment, or in an Application Data Sheet under 37 CFR 1.76:

Continuation Divisional Continuation-in-part (CIP)

of prior application No. _____ / _____

Prior application information: Examiner _____

Group / Art Unit. _____

For CONTINUATION OR DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 5b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

18. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label

22863
(Insert Customer No. or Bar Code Label here)

or Correspondence address below

Name	PATENT TRADEMARK OFFICE		
Address			
City	State	Zip Code	
Country	Telephone	Fax	

Name (Print/Type)	Steven A. Swernofsky	Registration No. (Attorney/Agent)	33,040
Signature	<i>SA Swernofsky</i>	Date	October 11, 2000

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U S Patent and Trademark Office, Washington, DC 20231 DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

JC951 U.S. PTO
09/689243

10/11/00
10/11/00

164.1012.01

22883

PATENT TRADEMARK OFFICE

Certificate of Mailing (37 C.F.R. § 1.10)

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Services on the date shown below as "Express Mail" (Post Office to Addressee) in an envelope addressed to the Honorable Assistant Commissioner for Patents and Trademarks, Box Patent Application, Washington, D.C. 20231.

JCG26 US Pro
09/689243
10/11/00

Mailing Label No. EL 524 780 636 USDate of Deposit: October 11, 2000

Arlette Malhas
Printed Name

Arlette Malhas
Signature

Documents enclosed:

- Utility Patent Application Transmittal Form;
- Specification (25) pages;
- Claims (5) pages;
- Abstract (1) pages;
- Drawings (2) pages;
- Return post card; and
- Certificate of Express Mailing.

SEARCHED INDEXED
SERIALIZED FILED

22883

PATENT TRADEMARK OFFICE

164.1012.01

1 This application is submitted in the name of the following inventors:
2

3 Inventor Citizenship Residence City and State
4 Subir VARMA United States San Jose, CA
5

6 The assignee is *Aperto Networks, Inc.*, a corporation having an office at 1637
7 South Main Street, Milpitas CA 95035.
8

Title of the Invention

40 Contention Control with State Machine
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
18

1

2 *2. Description of the Related Art*

3

4 In a point-to-multipoint network, plural customer provided equipment (CPEs)
5 communicate bidirectionally with a base station controller (BSC) in a cell. Several CPEs can
6 share a single channel for communicating with the BSC. The CPEs and the BSC use time
7 division duplexing (TDD) to facilitate the bidirectional aspect of the communication. The CPEs
8 and the BSC use time division multiple access (TDMA) to facilitate sharing of a channel among
9 plural CPEs.

10

11

12 In TDMA, the BSC grants data slots to the CPEs. Because multiple CPEs share a
13 limited number of data slots, the CPEs and the BSC must negotiate data slot assignments through
14 a process called contention.

15

16

17 In contention, CPEs that have upstream data to send to the BSC first send a short
18 request (REQ) message to the BSC. The BSC responds with a grant of a data slot for use by the
19 CPE.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

1 One technique used in the prior art to reduce contention traffic is called
2 piggybacking. In piggybacking, a CPE first requests a data slot. When the data slot is granted by
3 the BSC, the CPE sends data packets upstream. The CPE attaches a size of its current data
4 backlog to a header for one of the data packets. As a result, whenever the backlog is non-zero,
5 the BSC knows to grant a data slot to the CPE without the CPE having to send a REQ message.
6 Thus, contention traffic is reduced.

7
8 Unfortunately, piggybacking is only effective if upstream traffic from the CPE is
9 of the bursty type, so that the CPE needs to make only one contention request per burst.
10 However, some important traffic sources are non-bursty. Examples of non-bursty traffic include
11 traffic generated by online games and voice sources. Even ordinary Internet traffic running over
12 TCP becomes non-bursty when a communication link is in heavy traffic. In the presence of
13 non-bursty traffic, the piggyback scheme breaks down, and an excessive number of contention
14 requests are sent upstream.

15
16 Summary of the Invention
17
18

19 In view of the foregoing, further reducing contention traffic is desirable, especially
20 for non-bursty traffic. The invention addresses this need by using a new state machine to control
21 a contention state for a communication link between a base station controller and customer
22 premises equipment in point-to-multipoint communication. According to the invention, the state
23 machine includes a grant pending absent state in which the customer premises equipment is
24 polled with a unicast request slot. During the grant pending absent state, the customer premises
25 equipment sends no upstream data to the base station controller but can use the unicast request
 slot to request a data slot for sending upstream data to the base station controller.

1

2 By virtue of the grant pending absent state, the customer premises equipment can
3 request a data slot without entering into contention and generating excess contention traffic.
4 After a suitable delay without more data being received to send upstream, the state machine can
5 exit the grant pending absent state. This delay preferably is long enough for receipt of new non-
6 bursty data for a communication, for example 50 ms.

7

8 The state machine preferably also includes an idle state in which the customer
9 premises equipment awaits arrival of data packets to send as upstream data to the base station
10 controller, a deferring state in which the customer premises equipment requests grant of a data
11 slot for sending upstream traffic to the base station controller and if necessary defers contending
12 for the data slot so as to avoid collisions with other customer premises equipment, and a grant
13 pending state in which the customer premises equipment awaits and receives grant of the data
14 slot for sending upstream data to the base station controller and sends upstream data to the base
15 station controller after grant of the data slot.

16

17

18

19

20

21

22

23

24

25

 In a preferred embodiment of the invention, the customer premises equipment uses piggybacking to request grant of a next data slot while sending upstream data to the base station controller. Use of piggybacking along with the grant pending absent state has been found to decrease drastically contention traffic.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113 The state machine preferably also includes an idle state in which the customer premises equipment awaits arrival of data packets to send as upstream data to the base station controller, a deferring state in which the customer premises equipment requests grant of a data slot for sending upstream traffic to the base station controller and if necessary defers contending for the data slot so as to avoid collisions with other customer premises equipment, and a grant pending state in which the customer premises equipment awaits and receives grant of the data slot for sending upstream data to the base station controller and sends upstream data to the base station controller after grant of the data slot.

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

1 station controller with piggybacking. The state machine preferably enters the grant pending
2 absent state after the customer premises equipment has sent upstream data to the base station
3 controller in the grant pending state.

4

5 The state machine according to the invention preferably also includes an
6 unsolicited grant pending state in which the customer premises equipment receives grant of the
7 data slot for sending upstream data to the base station controller and sends upstream data to the
8 base station controller after grant of the data slot, without having requested the data slot. The
9 state machine preferably further includes an unsolicited grant pending absent state in which the
10 customer premises equipment is polled with the unicast request slot. During the unsolicited grant
11 pending absent state, the customer premises equipment sends no upstream data to the base station
12 controller but can use the unicast request slot to request the data slot for sending upstream data to
13 the base station controller. Preferably, the state machine enters the unsolicited grant pending
14 absent state after the customer premises equipment has sent upstream data to the base station
15 controller in the unsolicited grant pending state.

16
17
18
19
20
21
22
23
24
25

26 The invention can be embodied in a method for controlling communication using
27 the state machine described above, as well as in software and/or hardware such as a base station
28 controller and/or customer premises equipment that implements the method, and in various other
29 embodiments.

30

31 This brief summary has been provided so that the nature of the invention may be
32 understood quickly. A more complete understanding of the invention may be obtained by
33 reference to the following description of the preferred embodiments thereof in connection with
34 the attached drawings.

1

2 Brief Description of the Drawings

3

4 Figure 1 is a block diagram of a wireless communication system according to the
5 invention in which a base station controller communicates with one or more customer premises
6 equipment according to the invention.

7 Figure 2 is a flow chart of a state machine according to the invention.

8

9 Description of the Preferred Embodiment

10

11 *Related Applications*

12

13

14

15 Inventions described herein can be used in conjunction with inventions described
16 in the following documents.

17

18

19

20

21 U.S. Patent Application Serial No. 09/475,642, Express Mail Mailing No.

22

23 EL524780018US, filed December 30, 1999 in the names of Reza Majidi-Ahy, Subir
24 Varma, Khuong Ngo, Jean Fuentes and Paul Trong, attorney docket number 164.1002.01,
25 titled “Adaptive Link Layer for Point to Multipoint Communication System.”

26

27

28

29 U.S. Patent Application Serial No. 09/475,716, Express Mail Mailing No.

30

31

32 EL524780021US, filed December 30, 1999 in the names of Reza Majidi-Ahy, Joseph
33 Hakim, and Subir Varma, attorney docket number 164.1003.01, titled “Integrated Self-
34 Optimizing Multi-Parameter and Multi-Variable Point to Multipoint Communication
35 System.”

1
2 U.S. Patent Application Serial No. 09/540,674, Express Mail Mailing No.
3 EL524781512US, filed March 31, 2000, in the name of Reza Majidi-Ahy, attorney docket
4 number 164.1001.01, titled "Robust Topology Wireless Communication Using
5 Broadband Access Points."

6
7 U.S. Patent Application Serial No. 09/604,784, Express Mail Mailing No.
8 EL524781225US, filed June 26, 2000 in the name of Reza Majidi-Ahy, attorney docket
9 number 164.1010.01, titled "High-Capacity Scalable Integrated Wireless Backhaul for
10 Broadband Access Networks."

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
and

U.S. Patent Application Serial No. 09/475,716, Express Mail Mailing No.
EL524780021US, filed December 30, 1999 in the names of Reza Majidi-Ahy, Joseph
Hakim, and Subir Varma, attorney docket number 164.1003.01, titled "Integrated, Self-
Optimizing, Multi-Parameter/Multi-Variable Point-to-Multipoint Communication System
[II]."

Each of these documents is hereby incorporated by reference as if fully set forth
herein. This application claims priority of each of these documents. These documents are
collectively referred to as the "Incorporated Disclosures."

Lexicography

The following terms refer or relate to aspects of the invention as described below.
The descriptions of general meanings of these terms are intended to be illustrative, not limiting.

1 **base station controller (BSC)** — in general, a device for performing coordination and
2 control for a wireless communication cell. There is no particular requirement that the base
3 station controller must be a single device; in alternative embodiments, the base station
4 controller can include a portion of a single device, a combination of multiple devices, or
5 some hybrid thereof.

6

7 **communication link** — in general, an element for sending information from a sender to a
8 recipient. Although in a preferred embodiment the communication links referred to are
9 generally wireless line of sight point to point communication links, there is no particular
10 requirement that they are so restricted.

11

12

13

14

15

16

17

18

19 **customer premises equipment (CPE)** — in general, a device for performing
20 communication processes and tasks at a customer location, and operating in conjunction
21 with the base station controller within a wireless communication cell. There is no
22 particular requirement that the customer premises equipment must be a single device; in
23 alternative embodiments, the customer premises equipment can include a portion of a
24 single device, a combination of multiple devices, or some hybrid thereof.

25

26 As noted above, these descriptions of general meanings of these terms are not
intended to be limiting, only illustrative. Other and further applications of the invention,
including extensions of these terms and concepts, would be clear to those of ordinary skill in the
art after perusing this application. These other and further applications are part of the scope and
spirit of the invention, and would be clear to those of ordinary skill in the art, without further
invention or undue experimentation.

27

28 *System Context*

1
2 The context of the invention is similar to that of the Incorporated Disclosures.
3

4 A system using point-to-multipoint communication in a wireless communication
5 system operates as part of a system in which devices coupled to a network (such as a computer
6 network) send messages, route and switch messages, and receive messages. In a preferred
7 embodiment, devices coupled to (and integrated with) the network send, route, and receive these
8 messages as sequences of packets, each of which has a header including delivery information and
9 a payload including data. In a preferred embodiment, packet format conforms to the OSI model,
10 in which an application protocol (layer 5, such as FTP) uses a transport protocol (layer 4, such as
11 TCP), which uses a network protocol (layer 3, such as IP), which uses a media access control
12 (MAC) protocol (layer 2), which uses a physical transport technique (layer 1).
13

14 *System Elements*

15
16 Fig. 1 is a block diagram of a wireless communication system according to the
17 invention in which a base station controller communicates with one or more customer premises
18 equipment according to the invention.

19 System 10 includes wireless communication cell 11 (or a portion thereof), base
20 station controller (BSC) 12, and one or more customer premises equipment (CPE) 13.
21

22 Wireless communication cell 11 preferably includes a generally hexagon-shaped
23 region of local surface area, such as might be found in a metropolitan region. Use of generally
24 hexagon-shaped regions is known in the art of wireless communication because hexagonal
25 regions are able to tile a local region with substantially no gaps. Although in a preferred
26 embodiment wireless communication cell 11 includes a generally hexagon-shaped region, no

1 particular requirement exists for using that particular shape; in alternative embodiments, another
2 shape or tiling of the local surface area may be useful.

3

4 In Fig. 1, a portion of cell 11 includes a generally triangular-shaped region of local
5 surface area, herein called a “sector.” Sectors 14 preferably are disposed so that a set of six
6 sectors 14 combine to form single cell 11. Thus, BSC 12 preferably is disposed at or near one
7 corner of one of sectors 14, while CPEs 13 are disposed within the sectors.

8

9 Although the invention is primarily described with regard to interactions that
10 occur between BSC 12 and a single CPE 13 in a single sector 14, substantial applications of the
11 invention exist for interactions across multiple sectors within a cell, and to interaction across
12 sectors in multiple cells. Substantial applications of the invention with regard to multiple
13 sectors, both within single cell and among multiple cells, would be clear to those skilled in the art
14 of wireless communication after perusal of this application, and would not require undue
15 experimentation or further invention.

16

17 BSC 12 preferably includes a processor, program and data memory, mass storage,
18 and one or more antennas for sending or receiving information using wireless communication
19 techniques.

20

21 Similar to BSC 12, each CPE 13 preferably includes a processor, program and
22 data memory, mass storage, and one or more antennas for sending or receiving information using
23 wireless communication techniques.

24

25 In system 10, plural CPEs 13 communicate bidirectionally with BSC 12. Several
26 CPEs 13 can share a single channel for communicating with BSC 12. BSC 12 and CPEs 13

1 preferably use time division duplexing (TDD) to facilitate the bidirectional aspect of the
2 communication. BSC 12 and CPEs 13 preferably use time division multiple access (TDMA) to
3 facilitate sharing of a channel among plural CPEs 13.

4

5 In TDMA, BSC 12 grants data slots to CPEs 13. Because multiple CPEs 13 share
6 a limited number of data slots, CPEs 13 and BSC 12 must negotiate data slot assignments through
7 a process called contention.

8

9 In contention, CPEs 13 that have upstream data to send to BSC 12 first send a
10 short request (REQ) message to BSC 12. The BSC responds with a grant of a data slot for use by
11 the CPE.

12

13 Problems can arise in contention. Plural CPEs 13 might simultaneously try to use
14 a single request slot to request data slots. This situation is called collision. When collisions
15 occur, none of the CPE's request messages successfully reach BSC 12. Those CPEs 13 have to
16 re-send their REQ messages. In order to try to allow REQ traffic to clear, CPEs 13 according to
17 the invention can defer re-sending REQ messages for some period of time when collisions occur.

18

19 If many request slots are defined so as to reduce a number of collisions and so as
20 to facilitate requests by a large number of CPEs 13, or if too many REQ messages have to be re-
21 sent, too much of available bandwidth can be used up by contention traffic. As a result, data
22 throughput can be unacceptably decreased.

23

24 One technique used in the prior art to reduce contention traffic is called
25 piggybacking. In piggybacking, CPE 13 first requests a data slot. When the data slot is granted
26 by BSC 12, CPE 13 sends data packets upstream. CPE 13 attaches a size of its current data

1 backlog to a header for one of the data packets. As a result, whenever the backlog is non-zero,
2 BSC 12 knows to grant a data slot to CPE 13 without CPE 13 having to send a REQ message.
3 Thus, contention traffic is reduced.

4

5 Unfortunately, piggybacking is only effective if upstream traffic from CPE 13 is
6 of the bursty type, so that CPE 13 needs to make only one contention request per burst.
7 However, some important traffic sources are non-bursty. Examples of non-bursty traffic include
8 traffic generated by online games and voice sources. Even ordinary Internet traffic running over
9 TCP becomes non-bursty when a communication link is in heavy traffic. In the presence of
10 non-bursty traffic, the piggyback scheme breaks down, and an excessive number of contention
11 requests are sent upstream.

12

13 The invention attempts to reduce contention traffic by using a new state machine
14 to control a contention state for a communication link between a base station controller and
15 customer premises equipment in point-to-multipoint communication. The state can be controlled
16 by the CPE, the BSC, or both.

17

18 Fig. 2 is a flow chart of a state machine according to the invention.

19

20 Briefly, according to the invention, the state machine includes a grant pending
21 absent state in which the customer premises equipment is polled with a unicast request slot.
22 During the grant pending absent state, the customer premises equipment sends no upstream data
23 to the base station controller but can use the unicast request slot to request a data slot for sending
24 upstream data to the base station controller.

1 By virtue of the grant pending absent state, the customer premises equipment can
2 request a data slot without entering into contention and generating excess contention traffic.
3 After a suitable delay without more data being received to send upstream, the state machine can
4 exit the grant pending absent state. This delay preferably is long enough for receipt of new non-
5 bursty data for a communication, for example 50 ms.

6
7 In more detail, Fig. 2 shows a state machine that includes idle state 20, deferring
8 state 21, grant pending state 22, grant pending absent state 23, unsolicited grant pending state 24,
9 and unsolicited grant pending absent state 25. While the particular states shown in Fig. 2 are
10 representative of a preferred embodiment of the invention, the invention also can utilize state
11 machines that do not include all of these states and/or that include additional states.

12
13 Idle state 20 is a waiting state in which the customer premises equipment awaits
14 arrival of data packets to send as upstream data to the base station controller.

15
16 Upon arrival of data to be sent as upstream data, the state machine transitions to
17 deferring state 21. The state machine also can transition to unsolicited grant pending state 24
18 upon receipt of an unsolicited grant of a data slot from BSC 24, as discussed below.

19
20 In deferring state 21, CPE 13 sends a REQ message to BSC 12. The state
21 machine then transitions to grant pending state 22. However, if no grant is received from BSC
22 12 in grant pending state 22 before a timeout, the state machine returns to deferring state 21, as
23 discussed below.

24
25 One possible reason for non-receipt of a grant is a collision with another CPE 13.
26 Thus, deferral is needed, and CPE 13 defers sending a new REQ message for a period of time.

1 The CPE then sends the new REQ message. In a preferred embodiment, if another collision
2 occurs, CPE 13 again defers sending another REQ message. This process preferably continues
3 until the REQ messages gets through to BSC 12 (as evidenced by receipt of a grant) or until an
4 error is generated (not shown).

5

6 Preferably, each time CPE 13 defers sending a REQ message, the period of
7 deferral roughly doubles, with a random factor included to try to avoid deferring in synch with
8 another CPE. Thus, in deferring state 21, CPE 13 defers contending for a data slot so as to avoid
9 collisions with other customer premises equipment.

10

11 In grant pending state 22, CPE 13 awaits and receives grant of the data slot for
12 sending upstream data to the base station controller and sends upstream data to the base station
13 controller after grant of the data slot. However, if a grant is not received before a timeout, the
14 CPE concludes that a collision or some other error has occurred, and the state machine returns to
15 deferring state 21.

16

17 Preferably, in grant pending state 22, CPE 13 uses piggybacking to request grant
18 of a next data slot while sending upstream data to BSC 12. When CPE 13 sends the last data in
19 its backlog, that data preferably is sent without piggybacking. The state machine then transitions
20 to grant pending absent state 23 according to the invention.

21

22 During grant pending absent state 23, CPE 13 sends no upstream data to BSC 12.
23 No grant is pending because piggybacking was not used in the previous transmission of data to
24 BSC 12 (hence the name of the state). Rather, CPE 13 is periodically (e.g., every 10 ms) polled
25 by BSC 12 with a unicast request slot. CPE 13 can use this unicast request slot to request a data
26 slot for sending upstream data to the base station controller. Thus, if more data is received by

1 CPE 13 to send upstream to BSC 12, CPE 13 can request a data slot without going through
2 contention, thereby reducing contention traffic.

3

4 In some circumstances, the reduction in contention traffic can be drastic, for
5 example by an order of magnitude. Of course, the invention is not limited to such circumstances
6 and is not limited to such drastic reductions in contention traffic.

7

8 Upon grant of a data slot for sending new data to BSC 12, CPE 13 returns to grant
9 pending state 22.

10

11

12 If no new data is received by CPE 13 before a timeout in grant pending absent
13 state 23, the state machine returns to idle state 20. A timeout of 50 ms has been found to work
14 well.

15

16

17 In some circumstances, BSC 12 can grant a data slot to CPE 13 without the CPE
18 having requested the data slot. For example, if the communication between BSC 12 and CPE 13
19 is a voice communication, BSC 12 can predict that CPE 13 will need data slots. BSC 12 can
20 grant those data slots to CPE 13 without CPE 13 having to request them. Such a grant is an
21 unsolicited grant.

22

23 Accordingly, the preferred embodiment of the state machine according to the
24 invention also includes unsolicited grant pending state 24 and unsolicited grant pending absent
25 state 25. These states correspond to grant pending state 22 and grant pending absent state 23,
26 respectively, with the exception that they are entered when an unsolicited grant occurs.

1 Thus, in unsolicited grant pending state 24, CPE 13 receives grant of the data slot
2 for sending upstream data to the base station controller and sends upstream data to the base
3 station controller after grant of the data slot, without having requested the data slot.

4

5 In unsolicited grant pending absent state 25, CPE 13 is polled with the unicast
6 request slot. During unsolicited grant pending absent state 25, CPE 13 sends no upstream data to
7 BSC 12 but can use the unicast request slot to request the data slot for sending upstream data to
8 BSC 12. The state machine enters unsolicited grant pending absent state 25 after CPE 12 has
9 sent upstream data to BSC 12 in unsolicited grant pending state 24.

10

11 Pseudo-code for implementing the preferred embodiment of the invention
12 substantially as discussed above is included in a technical appendix to this application.

13

14 *Alternative Embodiments*

15

16 The invention can be embodied in a method for controlling communication using
17 the state machine described above, as well as in software and/or hardware such as a BSC and/or a
18 CPE that implements the method, and in various other embodiments.

19

20 In the preceding description, a preferred embodiment of the invention is described
21 with regard to preferred process steps and data structures. However, those skilled in the art
22 would recognize, after perusal of this application, that embodiments of the invention may be
23 implemented using one or more general purpose processors or special purpose processors
24 adapted to particular process steps and data structures operating under program control, that such
25 process steps and data structures can be embodied as information stored in or transmitted to and
26 from memories (e.g., fixed memories such as DRAMs, SRAMs, hard disks, caches, etc., and

removable memories such as floppy disks, CD-ROMs, data tapes, etc.) including instructions executable by such processors (e.g., object code that is directly executable, source code that is executable after compilation, code that is executable through interpretation, etc.), and that implementation of the preferred process steps and data structures described herein using such equipment would not require undue experimentation or further invention.

6

7 Furthermore, although preferred embodiments of the invention are disclosed
8 herein, many variations are possible which remain within the content, scope and spirit of the
9 invention, and these variations would become clear to those skilled in the art after perusal of this
10 application.

1 TECHNICAL APPENDIX

2 Pseudo-code copyright 2000 Aperto Networks, Inc.

4 **4.1 State: Idle**

```

5        ContentionWindow = 0;
6        Wait for !QueueEmpty;
7        /* The CPE may get an unicast REQ slot in the idle state. */
8        /* In this case it returns the current reqWin value */
9        if (unicast REQ SID == mySID) /* Polling case */

10      {
11         Transmit REQ in reservation;
12         Tx_slot = slot;
13         PrevREQ = NonContREQ;
14      }

15      if (NormalGrantId == mySID)
16         Utilize Normal Grant();
17      else if (UnsolicitedGrantId == mySID)
18      {
19         Utilize Unsolicited Grant();
20         Go to State Unsolicited Grant Pending;
21      }

22      /* EPDU Arrives */
23      Enqueue();
24      CalculateDefer();
25      Go to State Deferring
26

```

1 **4.2 State: Deferring**

```

2     if (UnsolicitedGrantId == mySID) /* Unsolicited Grant Service */
3     {
4         Utilize Unsolicited Grant();
5         Go to State Unsolicited Grant Pending;
6     }
7     else if (NormalGrantId == mySID)
8         Utilize Normal Grant();
9     else if (unicast REQ SID == mySID) /* Polling case */
10     {
11         Transmit REQ in reservation;
12         Tx_slot = slot;
13         Go to Grant Pending;
14         PrevREQ = NonContREQ;
15     }
16     else
17     {
18         for (REQ Transmit Opportunity) /* Contention based REQ transmission */
19         {
20             if (Defer != 0)
21                 Defer = Defer - 1;
22             else /* Defer = 0 */
23             {
24                 if (Number of SIDs in CPE, with Defer = 0 is greater than 1)
25                     choose one SID at random;
26                 if (my SID chosen)

```

```

1      {
2          Transmit REQ in contention;
3          Tx_slot = slot;
4          RTxTime = time_now;
5          PrevREQ = ContREQ;
6          Go to Grant Pending;
7      }
8  }
9 }
10 }
```

4.3 State: Grant Pending

```

Wait for next MAP;
Move ACK pointer as per ACK field in MAP;
The next byte to transmit is set as per ACK/NACK flag and
Sequence Number in the ACK
if (Flush EPDU field set)
{
    Flush HOL EPDU;
    Go to Idle;
}
if (unicast REQ SID == mySID) /* Polling case */
{
    Transmit REQ in reservation;
    Tx_slot = slot;
    PrevREQ = NonContREQ;
```

```

1      }
2      if (Normal GrantId == mySID)
3          Utilize Normal Grant();
4      else if (Unsolicited GrantId == mySID)
5      {
6          Utilize Unsolicited Grant();
7          Go to State Unsolicited Grant Pending;
8      }
9      else if (implicit collision indication received)
10         Retry();
11     else /* Error Condition: BSC did not give grant that CPE is expecting */
12         Go to Idle;

```

4.4 State: Grant Pending Absent

```

13     if (First Time Entering State)
14         Count = GrantPendingWait;
15     else
16         --Count;
17     if (unicast REQ SID == mySID) /* Polling case */
18     {
19         Transmit REQ in reservation;
20         Tx_slot = slot;
21         PrevREQ = NonContREQ;
22     }
23
24
25
26 4.5 State: Unsolicited Grant Pending

```

```

1 if (unicast REQ SID == mySID) /* Polling case */
2 {
3     Transmit REQ in reservation;
4     Tx_slot = slot;
5     PrevREQ = NonContREQ;
6 }
7 if (Unsolicited GrantId == mySID)
8 {
9     Utilize Unsolicited Grant();
10    Remain in State Unsolicited Grant Pending;
11 }
12 if (Last Unsolicited Grant)
13     Go to state Idle;
14
15 4.6 State: Unsolicited Grant Absent
16 if (First Time Entering State)
17     Count = UnsolicitedGrantPendingWait;
18 else
19     --Count;
20 if (unicast REQ SID == mySID) /* Polling case */
21 {
22     Transmit REQ in reservation;
23     Tx_slot = slot;
24     PrevREQ = NonContREQ;
25 }
26

```

```

1  4.7 Function: CalculateDefer()
2  if (ContentionWindow < Start)
3      Window = Start;
4  if (ContentionWindow > End)
5      Window = End;
6  Defer = Random[2^ContentionWindow];
7
8  4.8 Function: Utilize Normal Grant()
9  if (Grant Size == 0) /* Scheduler not able to make grant during this frame */
10     Go to Grant Pending;
11 else /* Grant Size > 0 */
12 {
13     while (GrantSID == mySID) /* Multiple Grants in MAP */
14     {
15         Extract Indicated number of bytes from SID queue;
16         Confirm that these bytes fit in the tick space allocated;
17         piggyback size = RequestWindow;
18         Transmit WPDU with Sequence Number Field set as per MAP and
19         Piggyback field set as above;
20     }
21     if (piggyback size > 0)
22     {
23         Go to Grant Pending;
24         RTxTime = time_now;
25         PrevREQ = NonCOntrREQ;
26     }

```

```

1      else /* No more bytes left in SID queue */
2          Go to GrantPendingWait;
3      }
4
5  4.9 Function: Utilize Unsolicited Grant()
6  while (GrantSID == mySID) /* Multiple Grants in MAP */
7  {
8      Extract Indicated number of bytes from SID queue;
9      if (#bytes == 0)
10         Tx only WPDU header;
11     else
12     {
13         Confirm that these bytes fit in the tick space allocated;
14         piggyback size = RequestWindow;
15         Transmit WPDU with Sequence Number Field set as per MAC and
16         Piggyback field set as above;
17     }
18 }
19
20 4.10 Function: Retry()
21 Retries = Retries + 1;
22 if (Retries > 16)
23 {
24     Discard HOL EPDU;
25     Go to Idle;
26 }
```

1 ContentionWindow = ContentionWindow + 1;
2 CalcDefer();
3 Go to Deferring;

4

5 **4.11 Function: Enqueue()**

6 Enqueue EPDU to tail of queue;
7 RequestWindow = RequestWindow + Size of EPDU;

1 Claims

2

3 What is claimed is:

4

5 1. A method of controlling a contention state for a communication link between a
6 base station controller and customer premises equipment in point-to-multipoint communication,
7 comprising the step of:

8 controlling the contention state using a state machine, the state machine including
9 a grant pending absent state in which the customer premises equipment is polled with a unicast
10 request slot, wherein during the grant pending absent state, the customer premises equipment
11 sends no upstream data to the base station controller but can use the unicast request slot to
12 request a data slot for sending upstream data to the base station controller.

13

14 2. A method as in claim 1, wherein the state machine further includes an idle state
15 in which the customer premises equipment awaits arrival of data packets to send as upstream
16 data to the base station controller.

17

18 3. A method as in claim 2, wherein the state machine further includes a deferring
19 state in which the customer premises equipment requests grant of a data slot for sending
20 upstream traffic to the base station controller and if necessary defers contending for the data slot
21 so as to avoid collisions with other customer premises equipment.

22

23 4. A method as in claim 3, wherein the state machine further includes a grant
24 pending state in which the customer premises equipment awaits and receives grant of the data
25 slot for sending upstream data to the base station controller and sends upstream data to the base
26 station controller after grant of the data slot.

1
2 5. A method as in claim 4, wherein in the grant pending state, the customer
3 premises equipment uses piggybacking to request grant of a next data slot while sending
4 upstream data to the base station controller.

5
6 6. A method as in claim 5, wherein the state machine enters the deferring state
7 upon arrival of data packets to send as upstream data to the base station controller,

8 wherein the state machine enters the grant pending state after the deferring state,
9 returns to the deferring state if a collision occurs, and remains in the grant pending state when
10 sending upstream data to the base station controller with piggybacking, and

11 wherein the state machine enters the grant pending absent state after the customer
12 premises equipment has sent upstream data to the base station controller in the grant pending
13 state.

14
15 7. A method as in claim 6, wherein the state machine further includes an
16 unsolicited grant pending state in which the customer premises equipment receives grant of the
17 data slot for sending upstream data to the base station controller and sends upstream data to the
18 base station controller after grant of the data slot, without having requested the data slot.

19 8. A method as in claim 7, wherein the state machine further includes an
20 unsolicited grant pending absent state in which the customer premises equipment is polled with
21 the unicast request slot,

22 wherein during the unsolicited grant pending absent state, the customer premises
23 equipment sends no upstream data to the base station controller but can use the unicast request
24 slot to request the data slot for sending upstream data to the base station controller, and

1 wherein the state machine enters the unsolicited grant pending absent state after
2 the customer premises equipment has sent upstream data to the base station controller in the
3 unsolicited grant pending state.

4

5 9. Customer premises equipment that communicates over a communication link
6 with a base station controller in point-to-multipoint communication, comprising:

7 a transceiver, and
8 a controller that controls a contention state for communicating over the
9 communication link via the transceiver, the controller using a state machine for controlling the
10 contention state, the state machine including a grant pending absent state in which the customer
11 premises equipment is polled with a unicast request slot, wherein during the grant pending absent
12 state, the customer premises equipment sends no upstream data to the base station controller but
13 can use the unicast request slot to request a data slot for sending upstream data to the base station
14 controller.

15

16 10. Customer premises equipment as in claim 9, wherein the state machine
17 further includes an idle state in which the customer premises equipment awaits arrival of data
18 packets to send as upstream data to the base station controller.

19

20 11. Customer premises equipment as in claim 10, wherein the state machine
21 further includes a deferring state in which the customer premises equipment requests grant of a
22 data slot for sending upstream traffic to the base station controller and if necessary defers
23 contending for the data slot so as to avoid collisions with other customer premises equipment.

24

25 12. Customer premises equipment as in claim 11, wherein the state machine
26 further includes a grant pending state in which the customer premises equipment awaits and

1 receives grant of the data slot for sending upstream data to the base station controller and sends
2 upstream data to the base station controller after grant of the data slot.

3

4 13. Customer premises equipment as in claim 12, wherein in the grant pending
5 state, the customer premises equipment uses piggybacking to request grant of a next data slot
6 while sending upstream data to the base station controller.

7

8 14. Customer premises equipment as in claim 12, wherein the state machine
9 enters the deferring state upon arrival of data packets to send as upstream data to the base station
controller,

10 wherein the state machine enters the grant pending state after the deferring state,
11 returns to the deferring state if a collision occurs, and remains in the grant pending state when
12 sending upstream data to the base station controller with piggybacking, and

13 wherein the state machine enters the grant pending absent state after the customer
14 premises equipment has sent upstream data to the base station controller in the grant pending
15 state.

16 15. Customer premises equipment as in claim 14, wherein the state machine
17 further includes an unsolicited grant pending state in which the customer premises equipment
18 receives grant of the data slot for sending upstream data to the base station controller and sends
19 upstream data to the base station controller after grant of the data slot, without having requested
20 the data slot.

21

22 16. Customer premises equipment as in claim 15, wherein the state machine
23 further includes an unsolicited grant pending absent state in which the customer premises
24 equipment is polled with the unicast request slot,

1 wherein during the unsolicited grant pending absent state, the customer premises
2 equipment sends no upstream data to the base station controller but can use the unicast request
3 slot to request the data slot for sending upstream data to the base station controller, and
4 wherein the state machine enters the unsolicited grant pending absent state after
5 the customer premises equipment has sent upstream data to the base station controller in the
6 unsolicited grant pending state.

1

Abstract

2 A system for controlling a contention state for a communication link between a
3 base station controller and customer premises equipment in point-to-multipoint communication.
4 The contention state is controlled using a state machine. The state machine includes a grant
5 pending absent state in which a unicast request slot is maintained open for use by the customer
6 premises equipment. During the grant pending absent state, the customer premises equipment
7 sends no upstream data to the base station controller but can use the unicast request slot to
8 request a data slot for sending upstream data to the base station controller. Preferably, the state
9 machine further includes an idle state in which the customer premises equipment awaits arrival
10 of data packets to send as upstream data to the base station controller. The state machine
11 preferably further includes a deferring state in which the customer premises equipment defers
12 contending for the data slot so as to avoid collisions with other customer premises equipment.
13 The state machine also preferably includes a grant pending state in which the customer premises
14 equipment awaits and receives grant of the data slot for sending upstream data to the base station
15 controller and sends upstream data to the base station controller after grant of the data slot. In the
16 grant pending state, the customer premises equipment preferably uses piggybacking to request
17 grant of a next data slot while sending upstream data to the base station controller.

FIG. 1

FIG. 2