

Object localization

What are localization and detection?

Classification with localization

Defining the target label y

■ 网易云课堂

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background

2(9,y)= (9,-y,)2+(92-y2)2 +...+(98-48)2 if y=1 (9,-y,)2 If y=0 Need to output b_x , b_y , b_h , b_w , class label (1-4)

Landmark detection

如易云课堂

 b_x,b_y,b_h,b_w

lix, liy, lix, liy, lix, liy, lix, liy, lux, liy, X

164, 2644

lix, liy,

:

!
!
!
!
!
!
!
!

Object detection

Car detection example

■ 网易云课堂

0

Sliding windows detection ■ 网易云课堂 Andrew Ng

 \bigcirc

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers MAX POOL FC 2×2 5×5 softmax (4) 400 $5 \times 5 \times 16$ $14 \times 14 \times 3$ $10 \times 10 \times 16$ MAX POOL FC FC 5×5 2×2 $5 \times 5 \times 16$ $14 \times 14 \times 3$ $10 \times 10 \times 16$ \times 1 \times 400 1 \times 1 \times 400 $1 \times 1 \times 4$ 5x5x16

Convolution implementation of sliding windows

Bounding box predictions

Output accurate bounding boxes

Specify the bounding boxes

■ 网易云课堂

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Non-max suppression

Non-max suppression algorithm

19× 19

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

While there are any remaining boxes:

Output that as a prediction.

Anchor boxes

■ 网易云课堂

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

Output y

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

9 mput y:

3 x 3 x 2 x 8.

Andrew

Anchor box example

Anchor box 1: Anchor box 2:

Putting it together: YOLO algorithm

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Region proposals (Optional)

Region proposal: R-CNN

■ 网易云课堂

[Girshik et. al, 2013, Rich feature hierarchies for accurate object detection and semantic segmentation] Andrew Ng

■ 网易云课堂

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a

time. Output label + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation

of sliding windows to classify all the proposed

regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]