Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

MA1116. Matemáticas III. GUIA 11: Transformación lineal

- 1. Determinar cuáles de las siguientes aplicaciones son lineales:
 - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (y + z, x y + 3z)
 - (b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4, T(x,y) = (-x+y, x-3y, 3x+y, 0)$
 - (c) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (2xy + 3z, 2xz 2y)
 - (d) $T: \mathbf{P}_3 \longrightarrow \mathbf{P}_2, T(p(x)) = p'(x)$
 - (e) $T: \mathbf{P}_3 \longrightarrow \mathbf{P}_3, T(p(x)) = p(0)$
 - (f) $T: \mathbf{P}_2 \longrightarrow \mathbb{R}, T(a+bx+cx^2) = a+b+c$
 - (g) $T: \mathbf{P}_3 \longrightarrow \mathbf{P}_2, T(p(x)) = p(0) p'(x)$
 - (h) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathcal{M}_{3\times 3}, T(A) = A + 2I$
 - (i) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathbb{R}, T(A) = \operatorname{tr} A$
 - (j) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathbb{R}, T(A) = \det A$
 - (k) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathbf{P}_2, T(A) = a_{11} + a_{12} + a_{13}$
- 2. Encontrar, si es posible, en cada caso una transformación lineal con las propiedades siguientes:
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(1, -1) = (1, -1, 0), T(-1, 2) = (0, 1, -1).
 - (b) $T: \mathbf{P}_2 \longrightarrow \mathbf{P}_2, T(x^2) = x + 1, T(x) = x^2 + 1, T(1) = 0.$
 - (c) $T: \mathbf{P}_1 \longrightarrow \mathbf{P}_2, T(x) = x^2 + 1, T(x+1) = 0.$
- 3. Calcular la imagen y el núcleo de las siguientes transformaciones lineales:
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T(x,y) = (2x + y, 3y, x + y)$
 - (b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (x y, y z).
 - (c) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x + 2y, x + z, 2y + z)
 - (d) $T: \mathbf{P}_3 \longrightarrow \mathbf{P}_2, T(p(x)) = p'(x).$
 - (e) $T: \mathbf{P}_2 \longrightarrow \mathbf{P}_2, T(p(x)) = xp'(x).$
 - (f) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathbb{R}, T(A) = \operatorname{tr}(A).$
- 4. Se sabe que dim Nu(T) = 2. Hallar la dimensión de Im(T), cuando la transformación lineal T está definida en cada uno de los siguientes espacios vectoriales:
 - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$.

(c) $T: \mathbf{P}_3 \longrightarrow \mathbb{R}^2$.

(b) $T: \mathbf{P}_4 \longrightarrow \mathbf{P}_4$.

(d) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathbb{R}^8$.

5. Se sabe que dim Im(T) = 2. Hallar la dimensión del núcleo de T, cuando la transformación lineal T está definida en cad uno de los siguientes espacios vectoriales:

(a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$.

(c) $T: \mathbf{P}_3 \longrightarrow \mathbb{R}^5$.

(b) $T: \mathbf{P}_1 \longrightarrow \mathbf{P}_1$.

(d) $T: \mathcal{M}_{3\times 3} \longrightarrow \mathcal{M}_{3\times 1}$.