613 ,B8

NATIONAL TUBE WORKS CO.,

CHICAGO, ILL.

Manufacturers of

Special Lap-Welded Pipe

Fitted with

Converse Patent Lock Joint.

TRADE MARK.

This special pipe is well adapted for the conveyance of water, gas or air, under either light or heavy pressure; is tested and guaranteed to stand 300 pounds per square inch, and is thoroughly protected against corrosion or the action of any acids or alkalies found in nature.

It can be bent or roughly handled without cracks or injury and can be laid more RAPIDLY AND CHEAPLY than any other style of pipe; a great saving in FREIGHT being effected on account of its LIGHT WEIGHT. The great saving in FRICTION in this pipe enables SMALLER sizes to be used and equal results obtained, and a consequent saving in first cost.

The lengths average about 18 to 20 feet and require about one-half the quantity of lead per joint that east iron does. The joint with the pipe has successfully stood an hydraulic pressure of over 1000 pounds per square inch in tests that have been made. Kalamein alloy imparts nothing injurious to water, and Kalamein pipe may be safely used to convey drinking water without any fear of contamination. This pipe recommends itself, through its many desirable features, to the consideration of all who contemplate using pipe for water or gas works. Information and prices promptly furnished. A complete line of Fittings, Valves, Hydrants, Tools etc., etc., are manufactured by us in connection with this pipe. This pipe is used in over 400 cities and villages in the United States; nearly 2000 miles having been laid in the past eight years.

W. P. BUTLER, GIVIL & IRRIGATION ENGINEER.

City Work,
Irrigation Work

Mater & Sewage Plants

DESIGNED AND SUPERINTENDED.

Town-Site Platting a Specialty.

Reservoirs Laid Out.

Ditches & Drains Graded.

Flumes Designed & Laid Out
Estimates Made.

Designing and Drawing

Roads Laid Out, Farm Lines Run and Corners Relocated.

COPIES OF THIS BOOK FOR SALE, 25 CENTS.

W. P. BUTLER, ABERDEEN, SOUTH DAKOTA.

IRRIGATION MANUAL,

CONTAINING

Useful Information and Tables

APPERTAINING TO

BY

Artesian Znaters,

IN THE STATES OF

Porth and Bouth Dakota,

TOGETHER WITH

Many Tables, Rules, and Items of Miscellaneous Information,

OF VALUE TO

Farmers and Business Men.

BY W. P. BUTLER,

Civil and Irrigation Engineer, Aberdeen, S D.

1892.

[&]quot;Let things that have to be done be learned by doing them."

Entered, according to Act of Congress, in the year 1892, by W. P. BUTLER,

in the office of the Librarian of Congress, at Washington.

PUBLISHERS' CERTIFICATE.

Huron, S. D., June 1st, 1892

The publishers of this book hereby certify that, in accordance with the orders of the author, they have printed and bound 3500 copies of the same.

SHANNON & LONGSTAFF,
Publishers.

Outhor Oct. 17, 1932 Mar. g.

INDEX TO TABLES.

A

	BLE SUBJECT.	PAGES
		40
1 2	Dimensions of Standard wrought iron pipe	16
3	Comparative prices of different pines	18
4	Prices and sizes of x and xx strong pipes	19
	" " casing pipe	
5	Comparative weights of different pipes	. 21
0	Dimensions of pipe couplings	
678	and weights of Kalamein pipe	22
9	Relative areas of standard pipe	99
	Weights and sizes of cast iron pipe	
10	sizes and prices of spiral riveted pipe	. 24
	American and Birmingham wire gauges	. 25
12	List of Delvote enterior wells	
13	List of Dakota artesian wells	. 44
14	Water duty in Colorado	46
15	" " Dakota	
16		
17	Weir measurement table	58
19	" " inch measurements	59
10	" Second feet reduced to gallons	
20 21	Volume and Weight of water on one acre	
99	Weight of water in pipes	
22 23	weight of water in pipes	
24	Pressure of	
25	Volume and Weght of water in 900 feet of pipe	65
26	Diameters, areas. and contents of pipes in cu. ft. and gallons	66
27	Relative discharging capacities of pipes	. 67
28	Friction loss in pines, velocity to 7 feet.	68
28 29	Friction loss in pipes, velocity to 7 feet.	71
30	Tabular numbers for computation of flow of water in pipes	72
31	Horizontal and vertical distances reached by jets	63
32	Table for calculating the horse power of water	. 80
33	Table for calculating the horse power of water	
	Volume per day = to a given flow per minute	83
34	Time required to flood different areas to different depths	84
35	Volumes thrown in different times by wells of different volume	S
	per minute	86
36	Cubic feet reduced to gallons and gallons to cubic feet	. 87
37	Volumes from different sized wells in 1 and 3 months	. 88
38	Discharge of jets in gallons per minute	. 89
39	Size and capacity of wind mills Volume pumped per miunte by wind mills	90
40	Volume pumped per miunte by wind mills	90
41	Velocity and force of wind	. 90
42	Wind in Dakota, for past 9 years	. 91
43	Rain " " 10 "	. 91
44	Cross sections of reservoir banks	. 101
45	Reservoirs, areas, diameters, and circumferences	. 102
46	", loss by evaporation and filtration	. 103
47 48	", areas, diameters, circumf's and contents of banks " and volumes at different depths	104
49		
50	", cost", flow of water from	107
51	Depths, slopes, areas. perimeters. &c. of ditches	113
52	Grades per mile and per 100 feet	116
20	The state of the form comments were the state of the stat	197

Index to Tables-Continued.

NUNI	BER. SUBJECT.	PAGES.
54	Table of time	154
55	" " wages—3 tables	155
56	Sizes of a one acre field	156
57	Square feet in different areas	156
58	Hills on one acre	157
581/2	Measurement of angles by a 2 ft. rule	
59	Tables of nails and spikes	160
60	" " wrought "	160
61	" " Manilla rope	160
62	" " well digging	161
63	Capacity of cisterns for each 10 inches of depth	161
64	" " in wine barrels	161
65	Lumber table—joist	163
66	" boards	
67	Decimals of a foot for each 1-32 inch	164
68	" an inch for each 1-64 inch	165
69	Square roots of 5th powers of numbers	166
70	Lengths of circular arcs	167
71	Table of circles, areas and circmuf's, diameters in eights """ tenths " twelfths	109-171
72	tentns	172-171
73	The late of the la	178-184
74 75	Table of sq. and cu. roots 1 to 28, advancing by tenths	185
76	" " " " " 1 to 1000	104 107
77	" " Togarithms	100 000
78		149 140
10	Tangents and cotangents	140-149

INDEX TO FIGURES.

FIG.	The second secon	
1	Section of lap-weld and butt-weld pipe	14
2	" " pipe couplings	20
3	Specials and pipe fittings	21
4 5	Specials and pipe fittings. Section of a "telescope" well.	27
	Perforated pipe in well	28
6	Spill-box	52
7	Spill-box	53
8	Weir, and method of water measurement	54
.9	Miner's inch measurement	58
10	(6 (6	59
11	Method of measuring the height of a stream	93
12	Rainfall and temperature map of Dakota	94
13	View of the Yankton well	95
14	Slope diagram for reservoir banks	98
15	Section of reservoir and bank	105
16	Form of gate in reservoir bank	108
17	Section of ditches	111
18	" " ditch	112
19	Pulsometer pump view.	127
20	***************************************	128
21	Simple form of level	130
22	Leveling rods	131
23	Scales—decimal and duodecimal	135
24	Measurements between inaccessible points	147

GENERAL INDEX.

A	D
Aberdeen well	Dakota wells
sewer plant	Dakota wells
Acre, size of circular—	Datum plane129
" foot	Day, Astronomical— 154
" Hills on an —	" Siderial—
Size of one—	" Siderial— 15 " Mean Solar— 154 Decimals of a foot for each 1-32
Agreege to compute 156 157	Decimals of a foot for each 1-32
Acreage, to compute 156 157 Angle. Complement and supple-	mch
mont of an-	" " an inch for each 1-61 165
ment of an—	Diameter. To find—to discharge
2 ft rule · · · 158	Diameter. To find—to discharge given volume
Apparent level 135	Digging wells160
Apples in bin	Discharge from pipes69 70
Apples in bin	Digging wells 166 Discharge from pipes 69 70 To find volume of—of pipes 75
" " fields 156 157	pipes
" fields	Discharging power of pipes. Rel-
Arizona. Irrigation statistics of 137	Discharging power of pipes. Relative—
Artesian wells elewhere 37	Ditches
" " in Dakota38-41	Area of section112 113
R	Contents of excavations of 113
Barrel, Contents of a- 169	" Ditching machines for
Barrel. Contents of a	" Frahankarata 111 117 118
Board measure tables	Empankments and toot-
Brick	ing of
Brick	Excavation and cost of II
C	" Flow of water in
Casing pipe. Prices and Sizes of .20	" Gates in—
Cast iron pipe. Sizes and weights	" Gates in—115 116 " Grades of—115 116
Of	" Location of - 120
Center of pressure42	" Location of
Characters. Explanation of—203	" Length of wet perimeter
Center of pressure	of—113
Circles. Elements of—152 153	" Maximum velocity of water in—
" Explanation of tables of .168	water in11
Tables of—drain's in ours.	" Mean velocity of water
" Tables of—diam's in 10ths_	in—11
" Tables of—diam's in 10ths	" Small lateral— 11: " Slopes of— 11:
" Tables of—diam's in 12ths	Slopes of—
Tables of—diam's in 12ths	". Table of areas of —
Circular arcs. Table of— 167	grades of—11
Cigtorns Canacity of for each	" Widths of— 11 Division and measurement of
10 inches	water4
Cisterns. Capacity of—for each 10 inches	Divisors for water 5
barrels161	Drilling Suggestions as to— 3
Conclusion204	Drilling. Suggestions as to—3 Drive pipe1
Contents of pipes	Duty of water 43 to 4
Corn and hogs	" in Colorado4
· '' in hin 169	" " Dakota4
Cost of ditching117	Duty of water
wells34 36	-
Cost of ditching 117 " wells 34 36 Couplings Kinds of— 18	E
Tables of22	Embankments and footings118
Cubic ft. on one acre	Entry head
" "different areas84	Excavation. Cost of—11
	Excavations. Contents of 11
" "reservoir	Extra and xx strong pipes
per sec. reduced to gals60	Evaporation and nitration103
"reduced to Miners inches.59	F
of a a college is a second	Farmer This
" " gallons87 " thrown in 1 and 3 months.88	Farme Size of 45 127 14
" foot is equal to	Farmer. The—
Cubes, squares and roots185 197	Second—reduced to gallone 6
0 11 10 10 10 10 10 10 10 10 10 10 10 10	, second reduced to gamons.

General Index Continued.

Fields. Area of— 156 157	Inch, Decimals of an-for each
" Laying out—	1-64
Flow of wells per day and per	" in California 50 60
minute83	" "Colorado59 60
Flumes	measurements 59
Flow of wells per day and per minute. 83 Flumes	" reduced to gallons and
Foot. Acre—defined	cubic feet
"Cubic—see cubic feet	Statute defined51
" Decimals of a	Irrigation. Early history of—.6 76 in Dakota
"Second—defined60 51	ill Dakota
Footings for banks	reports 137
Friction head defined67 70	i oporto
loss in pipes68 to 72	. U
Frosts in Dakota92	Jets. Discharge in gallons from 89
	Distances reached by— 73 To find altitude reached by—73
Clara around of wells in Cal 20 196	" " discharge of73
Gage groupe of wells in Cal 38 136 Gallons=to	
in ninge	κ .
" reservoirs . IIIa	Kalamein pipe22
" on different areas:84	L
" " one acre	
" per minute defined51	Lap-welded pipe
uay=to given gamons	Land. Value of—137 139 141 Lath162
per minute83	Level The 190
" per minute—to given gallons per day83	Level. The
" reduced to cubic feet 87	" rod131
" second "60	" Simple form of—130
" reduced to cubic feet 87 " "second " 60 " thrown in different per-	" True and apparent—135 Leveling explained
10ds of time by wells of	Leveling explained
different volumes per min-	for a reservoir133 134
" thrown in 1 and 3 months88	"Form of—note book 132 Location of ditches120
" thrown in 1 and 3 months88	" "well 31
Gates 11 107 110	" "well
Gauges. Water	Logarithms Explanation as to
	Logariums, Explanation as to
Wire— 25	table of— 201
"thrown in 1 and 3 months. 88 "by jets	table of— 201
" Table of— 116	table of— 201
	table of— 201
" Table of—	" Table of—
" Table of—	table of— 201
" Table of—	table of—
" Table of— 116 Grain in bin 162 H Hay 162 Head defined 69 " Entry— 69	table of—
"Table of— 116 Grain in bin 162 Hay. 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69	table of—
"Table of— 116 Grain in bin 162 Hay. 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69	table of—
" Table of— 116 Grain in bin 162 Hay 162 Head defined 69 " Entry— 69 " Friction— 69 " Velocity— 69 " To find— 72 Height of a stream. To meas-	table of—
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93	## Table of —
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an agre 157	## Table of —
" Table of— 116 Grain in bin 162 Hay 162 Head defined 69 " Entry— 69 " Friction— 69 " Velocity— 69 " To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81	## Table of — 201 ## Table of — 199 200 ## Use of — 202 ## ## tables of — 201 ## Longitude, length of degree 164 ## Lumber 163 ## M Machines. Cable — 12 ## Ditching — 111 117 118 ## Hydraulic — 13 ## Jetting — 13 ## Kinds of — 11 ## Wean depth 112
" Table of— 116 Grain in bin 162 Hay 162 Head defined 69 " Entry— 69 " Friction— 69 " Velocity— 69 " To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154	## Table of —
" Table of— 116 Grain in bin 162 Hay 162 Head defined 69 " Entry— 69 " Friction— 69 " Velocity— 69 " To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154	## Table of —
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80	## Table of —
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on a acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 29	## Table of
Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre. 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydraulic mean death 119	## Table of
Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre. 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 29 Hydrants 29 Hydraulic mean depth 112 "radius 112	## Table of
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on a acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 29	## Table of
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 99 Hydraulic mean depth 112 "radius 112 "ram 124	## Table of
Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 29 Hydraulic mean depth 112 "radius 112 "radius 112 "ram 124 Idaho: Irrigation statistics of—127	## Table of
"Table of— 116 Grain in bin 162 Hay 162 Head defined 69 "Entry— 69 "Friction— 69 "Velocity— 69 "To find— 72 Height of a stream. To measure— 93 Hills on an acre 157 Hitchcock mill 81 Hogs and corn 154 Horse power defind 82 Horse power of water. To find the— 80 Hydrants 99 Hydraulic mean depth 112 "radius 112 "ram 124	## Table of

General Index—Continued.

Mills at Springfield	Precipitation map of Dakota94
Mills at Springfield	Pressure and volume. Relation between
" Yankton	between
Minor's inch	in 900 feet of pipe
" in Cal and Col 59 60	" Static— 9
" " reduced to gals and	" Static—
cu ft	Prismoidal formula157
Miner's inch measurements59	Pumps
MISCELLANEOUS INICIALITY INC. 102	" Cost and duty of—125 126
Module defined51	" Pulsometer126 to 128
Montana. Irrig'n statistics of—137 Mortar162 Multipliers. Useful—153	
Multipliana Ucoful 152	R
N	Rain making26
Nails. Tables of—and spikes160	" · in Colorado41
Nettleton. Letter from Col. E. S. 75	" in Colorado 44 " " Dakota 44 91 92 Ram. Hydraulic— 124
Nevada. Irrigation statistics of 137 New era grader and ditcher117	Ram. Hydraulic124
New era grader and ditcher117	Reaming
New Mexico. Irrigation statistics	" discharging canacity of
of137	discharging capacity of pipes
- 0	Relative weight of pipes21
Outlets and gates 41 107	Reservoirs96 to 108
P	" Areas, Diams, Circumfs
	of—
Perforated pipe	Areas, Diam's, Circumis
Perimeter. Wet—112 113 Photographs of wells143 146	and cubic capacity of banks of—104
Description for—144	" areas and capacities at
List of - and pho-	different depths105
tographers	" Banks of—
Photographs. Where to buy—146	99 100 101 104 117 119
Pipe14 to 28	Diagrams of 100
" Chaing prices and sizes 20	Sections of—101 Washing of—100
" Casing—, prices and sizes20	" Capacity of—at different
" Cast-iron—23 " Contents of—66	denths 10
" Drive	depths
" Friction loss in—68 to 72	1 102 TO 10
" Kalamein- 22	" Cost of106 11" " grading of banks of 11"
" Lap-welded—14 15 " lines. Advantage of—123 " for distribution 122 123	" grading of banks of 11
" for distribution 122 122	
" Perforated—28	Filtration 1011—10
" Prices. Comparative—of—.18	Flow "10"
" Prices. Comparative—of—.18 " Prices of standard—17	" Form of—9
" Relative areas of—23	### Evaporation from—. 100 #### Filtration ###
uischarging Dowers of 01	Laying out—98 133 13 Location of—9
" Spiral riveted—24 welded—27	Location of—9
"Standard—16	" Outlets and gates from
" Vertical opening to30	
" weight of-Comparative21	" Size of—97 102 104 10
" weight of—Comparative—21 " Weight of water in—62	
" x and xx —	" Slopes of banks of—10
Polygons Prices and sizes of—19	" Sub—and storage ditches.10
Polygons	Washing of Danks of 10
Power. Horse—	Rod. Leveling—13
" To calculate horse— 80	Rope. Manilla—
Precipitation. Distribution of 44 " in Colorado 44 " Dakota 91,92 and May 44	of—
- in Colorado41	" So & cube-1 to 28 by 10ths 18
" Dakota91,92	" 1 to 1000, .186 to 19
in April	" " 1000 to 10000.194 to 19
and May 41	" To figure-by logarithms. 200 20

General Index-Continued.

S	Velocity Mean—of streams114
Scales, decimal and duodecimal.135	of sound in air 90 " " water 90 " Theoretical 70
Second foot	water 70
Second foot	of wind90
Sower plant at Aberdeen	" " in Dakota 91
Shingles	" "wells To get the 89
Shingles	" " in Dakota 91 " " wells. To get the— \$2 Volume of wells 50
" " nine cae Pille	" nar day & nar min as
" reservoirs, see Reservoirs	" "in 1 & 3 months88
	ii in different neri-
Specials29,30	ods of time
" Illustrations of—21	" of wolls in different her-
Setting of—99, 30	iods of time60
Source and supply of water 14 Specials 29,30 " Illustrations of 21 " Setting of 99,30 Spikes and nails 160 Spill box 52 Spiral riveted pipe 21 " wolded 27	" on one acre
Spill box	" different areas84
Spiral riveted pipe2±	" Relation between - and
" welded " 27 Springfield mill 81 Square and cube roots 185 to 197 " roots of 5th powers 61 166	pressure
Source and cube roots 185 to 197	" To compute—discharged
" roots of 5th powers61 166	by pipes · · · · · · · · · · · · · · · · · · ·
Sanarac · Inuto Liz	W
" and cubes 185 to 193	Wages, Table of155
Static pressure	Water
" and cubes 185 to 193 Static pressure 9, 65 Statistics of irrig'n in 7 states 131	Wages, Table of—
Statute inch	" Annual cost of—
Stone wall	" Center of pressure of
Storage ditches 108	" Density of—
Stream. To measure height of a -93	"Distribution of—109 to 128
Subject. The	" by ditches.110 to 120 " flumes120 to 125
Sub-rervoirs	" " numes120 to 123
Sub-surface waters	" " pipes122 to 123
Stream. To measure neight of a 33 Subject. The	" " pumps & wind
Supply of water74	milla 124 to 12
Т	" Division and measurement
Tables—See index to tables page A	of
Tangents and cotangents .147 to 149 Telescope well	" Duty of
Telescope well	"—in Colorado46
Temperature in Dakota 2 94	" Duty of— 43 to 48 41 to 48 41 41 41 41 47 41 47 41 47 41 47 41 48 47 41 48 47 41 48 48 48
Theoretical velocity of water70 Threads of pipe	- Referednces to
Time. Table of—	" Evaporation of
	Flow of—in ditches113 to 11
" required for different sized wells to throw given volumes	
of water84	Head of—
" Volumes thrown in differ-	ii in regentrains
ent periods of—by wells of given	Waximum surface velocity
volumes per minute 86	of—
Ton. Weight of one—of water63	" Mean velocity of11
Ton. Weight of one—of water .63 " " ice .63 Tools .14 Triangles .172 True and apparent level .135	" Mean velocity of—
Tools14	of—
Triangles	" Measurement of by a weir .5
True and apparent level 135	" units of
U	" on one acre, vol and weight.
Units of water measurement51	" "different areas
Useful multipliers	" Phreatic—
Utah. Irrigation statistics of—137	" Phreatic— 12 " Pressure of— 42 6 " " Center of— 42
V	" Center of—
Walne of land	in Proportion of
Value of land	Properties of—
" " water	" Seepage of — 4 " Source and supply of — 12 " Sub-surface — 12
Valves	" Sub-surface—
Vegetation and water	ii linite of moneurement of-
" Maximum surface—in	" Value of— 136 to 13
streams 114	" Velocity of11

General Index-Concluded.

Water Volume of—in pipes. 66 " "—on 1 acre	Wells Location of—

INDEX TO ADVERTISEMENTS.

Abendroth & Root Mfg Co 238 239	Cove
Addyston Pipe & Steel Co216	Nye S
American Well Works252	Oil W
Austin, F. C. Manfg Co 218 219	Pech
Belknap Motor Co	Peltor
Blair Camera Co222	Pulson
Brass & Iron Works Co 225	Railw
Buff & Berger215	Wes
Butler, W. P 2	Railw
Chapman Valve Co	& St
Chicago Water Motor Co211	Railw
Clow, J. B. & Son	
Crane, G. W. & Co 213	Readi
Consolidated Land & Irrigation	Rife's
_ Co251	Robin
Dakota Irrigation Co 245	Swan
Dennis Long & Co	Swan
Engineering Magazine234	Traut
Engineering magazine254	
" News	Valley
First National Bank250	Weste
Gurley, W. & L. E220 221	Willia
Harper & Brothers240	Well
Irrigation Age	Young
Lener, James, Co229	
Ludlow Valve Manfg Co 224	See In
National Tube Works Co., Front	

Cover and1
Nye Steam Vacuum Pump Co247
Oil Well Supply Co 227
Pool Manfa Co
Pech Manfg. Co
Pelton Water Wheel Co226
Pulsometer Pump Co127 128 244
Railway — Chicago & North Western
Western
Railway - Chicago, Milwaukee
& St. Paul232 233
Railway—Great Northern235
" Northern Pacific236
Deal's Northern Facility
Reading Iron Co. (Back Cover)
Rife's Hydraulic Engine Co 214
Robinson & Cary Co242
Swan Brothers243
" & Stacey (W. E. Swan Co.).228
Trautwine, J. C
Valley I and to Invite tion Co. 950
Valley Land & Irrigation Co250
Western Wheeled Scraper Co246
Williams Brothers 207
Well Machine & Tool Co212
Young & Son
Young & Son

See Index to articles advertised on next page.

INDEX TO ARTICLES ADVERTISED.

Banks.	Motors-Electric and Water.
First National, Huron, S. D250	Belknap Motor Co
Boilers.	Chicago Water Motor Co 211
Oil Well Supply Co227	Jas. Leffel Co
Robinson & Cary Co242	Pipe-Cast Iron.
Books.	Addyston Pipe & Steel Co216
	Dennis Long & Co
This book, W. P. Butler	Dennis Long & Co
	Pipe-Wrought Iron.
Harper's Periodicals	American Well Works252
Cameras.	
Blair Camera Co222	G. W. Crane & Co
Coffee Mills and Dynamos.	Cover and
Belknap Motor Co237	Cover and 1 Qil Well Supply Co
Civil Engineer.	Reading Iron Co., Back Cover.
W.P.Butler	Robinson & Cary Co
Drillers.	Pipe-Riveted.
Swan Brothers243	Abendroth & Root238 239
Swan & Stacy228	Pumps.
Electrical Supplies. Belknap Motor Co 237	American Well Works252
Engineering Publications.	Nye Steam Vacuum Pump Co247
Engineering Fuoticutions.	Oil Well Supply Co
Engineering Magazine	Robinson & Cary242
J. C. Trautwine	Railways.
Hydraulic Ram.	Chicago & Northwestern 230 231
Rife's Hydraulic Engine Co214	"Milwaukee & St. P.232 233 Great Northern
Hudrants.	Northern Pacific
See Valves	Scrapers.
Irrigation Companies.	F. C. Austin Mfg. Co219 Western Wheeled Scraper Co246
Consoldated Land & Irrigation 251	Western Wheeled Scraper Co246
Consoldated Land & Irrigation Co	Specials—for Pipe.
Valley Land & Irrigation Co250	Addyston Pipe & Steel Co216
Levels.	
Ruff & Berge:	Robinson & Cary Co
W and L. E. Gurley 220 221	Steam Goods.
Young & Son	G. W. Crane & Co218
Machines-Ditching and Grading.	Valves.
F. C. Austin Manfg Co218 219 Western Wheeled Scraper Co246	American Well Works
	Chapman Valve Co. 210 Ludlow Valve Mfg. Co. 222 Ludlow Valve Mfg. Co. Eront
Muchines-Well Drilling.	Ludlow Valve Mfg. Co22
American Well Works252	National Tube works co., From
Austin, F. C., Mfg. Co 218 219 Brass & Iron Works Co	Cover and
Oil Well Supply Co	Water Wheels.
Pech Manfg. Co	See Motors
Well Machine & Tool Co	Well Machinery.
	: See Machines—well drilling
Machines—Road.	717: 7 74:11-
F. C. Austin Mfg. Co 218 219 Western Wheeled Scraper Co246	
Hestern wheeled beinper Co 230	T COST MARKET CO.

PREFACE.

The idea in presenting this little book to the public is to supply, in part, a demand for such tabulated and general information as is needed by many, at the present time, who are becoming interested in the matter of irrigation. Few have access to books of tables and rules and fewer still are able, without them, to figure out the problems involved, and bence, many abandon the subject because unable to cultivate an interest sufficiently satisfactory to themselves to warrant the taking of some definite step in the direction of a practical trial of that which, if properly managed, must open up the road to fortune to all who choose to enter. The idea is not to present an exhaustive treatise on irrigation, or to treat at length any of the matters presented, but simply to suggest them and, by giving many rules and tables, to supply the information needed, so that each may, for himself, make such estimates as the circumstances of his own case may require; and further, to put the investigator in the way of obtaining such desired information as circumstances would not permit of being given here.

In the selection of many rules and tables the following standard works have been freely consulted and properly

credited:

Haswell's Engineer's Pocket Book, (Harper & Bros., New York.) Trautwine's Engineer's Pocket Book, (John Wiley & Sons, New York.) Engineer's Pocket Book, 1876, (Lockwood & Co., London.) Uuseful Information, (Jones & Laughlin, Pittsburgh.) The Measurement and Division of Water, (L. G. Carpenter, Ft. Collins,

Pocket Companion, (Carnegie Phipps & Co., Pittsburgh.)
The trade cataloges of the Chapman Valve Mfg. Co., National Tube
Works, James Leffel & Co., Addyston Pipe Co., Pelton Water Wheel Co.,
Reading Iron Co., and others.

State and government reports, and all other available and reliable sources, such as the Engineering News, Irrigation Age, and Scientific

American.

Besides the matter thus compiled, many entirely new tables have been computed to answer the special require-

ments of those to whom this matter is addressed.

If the matter presented is instrumental in creating any new, or in fostering any present interest in irrigation, or in aiding any in need of such information as is presented, then will the object of the compiler have been accomplished.

In the hope that hereby a demand has been partially satisfied this little book is inscribed to the advocates of irriga-

tion in the Dakotas, by

W. P. BUTLER. Compiler.

THE SUBJECT.

Much valuable time is wasted in the preparation and printing of articles on irrigation the burden of which seems to be to remove a doubt as to whether irrigation will pay, if

practiced in the Dakotas.

The chief object accomplished by such articles is to keep alive the very doubt they aim to overcome, and at a time when, and in a place where, a doubt will do the most harm. The only good accomplished is that the subject is kept open and before the public.

THERE IS NO DOUBT

as to irrigation paying in Dakota, and this may be abundantly shown by a study of the history of irrigation in this

and other lands.

Irrigation is as old as the race and it has been both the heritage and the legacy of every tribe and nation. The dawn of history dimly reveals the practice by those ancient peoples, and history, both sacred and profane, has recorded its onward march, as it has the march of armies. In Palestine, in Egypt, in Assyria and in India it was, as it still is, the life of the people. As irrigation developed, empires arose, and with its fall they fell; and where was once the verdant homes of countless millions there is, to-day, a desert waste.

The legions of Rome may be said to have been supported by irrigation; for the Roman Empire was but a union of irrigated nations. The subject in that day having the sanction and fostering care of every monarch. As the world has developed so has irrigation—until to-day, a large percentage of the products of the world are raised by that means; and now, as in all past ages, those who till the soil under a system of irrigation are the most prosperous of their class, and their lands the most valuable of all devoted to purposes of

agriculture.

Irrigation has developed during these ages, as has everything else; now progressing, and again declining, with the progress or decline of the arts and peoples of each age and nation. The system of Spain was not that of Italy, nor is the system of to-day the same as that of a century ago.

The literature of irrigation is most interesting, and every irrigator in the Dakotas should "read up" to the fullest ex-

tent.

The system of irrigation practiced in every country has been a development, not alone in its engineering sense but in its legal sense also; for the questions of water rights and appropriations have always been most intricate and have demanded most studied treatment.

Irrigation in the United States was first practiced in the Salt Lake valley and in lower California, although very extensive systems of irrigation works, built by the aborigines

were in ruins when the earliest settler went into the country.

The ancient inhabitants of Mexico and of Peru had vast systems of canals, aqueducts and tunnels for the purpose of water supply and irrigation, so that the industry of the white man is but a revival, on this western continent, of the

older irrigation system of the ancients.

From the crude beginnings of the pioneers who lacked both capital and labor, and were forced to begin anew, without previous knowledge of the subject, and under new conditions, there has developed in our western states a system of irrigation so vast that its worth is measured by the tens of millions, and so perfect as to bear most favorable comparison with the older and highly developed systems of Spain, Italy and India. Each state has done all in its power to foster the industry, to encourage investment in plants and securities, and, by systems of law best suited to their special conditions and requirements, to surround the industry with all needed protection.

IN DAKOTA

the day was, when to have spoken of irrigation as necessary to our wellfare, would have been to have uttered heresy. That day has passed. The bitter experience of a series of dry years—when the hot wind was all we reaped—has taught the lesson that, to live in prosperity and pleanty in Dakota, we must irrigate. It is no crime; it is no disgrace; for the most fruitful lands on the earth are such as are irrigated and such as would be a barren waste were it not for irrigation. Such lands are in the deserts of Arabia, Africa and our own western states. No better soil or climate exists on this continent than that of Dakota and, with water at our bidding, none on earth will be more fruitfull.

No country in the world, so far as known, possesses what Dakota does—a soil of unmatched fertility, a climate suited alike to the best needs of plant and animal life, a topography, or surface, best suited to a system of general irrigation, and at the minimum of cost, and a supply of water as general in its distribution as it is inexhaustable in its volume and

powerful in its flow.

What a combination is this? Soil—climate—topography—water and power. Each perfect; each in accord with the other; and all to be had and controlled by him who wills it.

A Dakota farmer need not wait for a rich company to build a dam to impound the clouds and then beg life on

such terms as the company may care to fix.

He has but to prick the soil and a fountain of wealth pours forth to do his bidding. A servant as powerful as the elements, yet as subject to control as the child; more burdened with wealth than the summer shower and less burdened with disaster than the summer torrent. A servant perfectly trained to the performance not alone of one duty but of many, and a servant the like of which nature has not vouchsafed to the service of the men of any other land.

THE FARMER.

Has he had abundant crops? No! Does he need, and must he have, a well? Yes!

HOW WILL HE GET IT?

No solution is offered as to the means, but it is giving good advice to say-Adopt any means. Some will be more advantageous than others yet to most farmers it will not be a matter of choice.

ANYTHING TO GET A WELL!

The "Melville" law, providing for township wells, has not been a success for, although 115 wells were located by the State Engineer during 1891, and bonds voted for them, no market (except in two cases) has yet been found for these bonds because of the manifest injustice of the law, which provides for the assessment of property not in the least benefited, or needing any benefit, in order that other private properties may be developed. Investors look askance at securties having so strong a taint of unconstitutionality and, as a result, there are few such wells being drilled; the activity being confined almost wholly to purely private enterprises.

A more equitable law must be passed to give relief. If the present law can be made to work, well and good, take that means. If a mortgage company, or an individual, stands ready, under any one of an infinite number of plans, to put down a well for you, take it at once. Raise the mon-

ey in any way-only raise it!

If you can't own a whole well, own part of one. If you can own it all, do so by all means, for joint ownership means

joint responsibility and its attendent evils.

Part of a well is better than no well, and 40 acres "under water" is better than 640 acres under a hot wind. Loose no time in stopping to figure—as many are continually doing whether irrigation will pay or not, for it never did anything else but pay, here or elsewhere. If you want a life job take that of trying to prove that irrigation ever failed to pay and pay well. Let the first task be to get the money, figure on that and then when it is obtained there will be time to figure

The details of an irrigation plant in Dakota are very simple as compared with those in most other sections, where the sourse of water supply is at a great distance and where heavy dams, long and expensive flumes, tunnels and bridges must be built either to store or to convey it. These great engineering works entail a vast expense and preclude any individual ownership or controll. Here, however, the whole system of supply and distribution may be created upon, and limited to, ones own garden patch and at but nominal cost.

Where other systems prevail there enters in the very complex questions of water rights, which, to a great extent, cannot find a place here where the system is so different and essentially individual. If a farmer owns a well he can use it when and as he chooses, and to any extent, so long as he does not trespass upon his neighbor; and he may sell the water on such terms as he may be able to make. Nor can he prevent his neighbor seeking a supply from the same source, for whence the supply comes and what its volume may be can never be other than conjecture.

That questions of water rights as between individuals, and as between the State and individuals, will arise there can be no question, but what questions will arise and what their solutions will be, may be safely left to the future.

After the question of money supply, the first consideration

is as to the well.

THE WELL.

About 200 wells have already been put down in the two Dakotas, varying in size from 2 to 8 inches. The popular and common sizes being 4½ and 6 inch wells. On the whole, very little is yet known of our wells because of lack of systematic study and experiments. Then, too, very many erroneous ideas prevail as to the wells and, unfortunately, any amount of wilful exageraation which will, in the end, result in more harm than good.

A few facts will be stated and explained.

The volume of a well does not depend upon its size, that is, an 8 inch well will not, necessarily, discharge more water than a 6 inch well. The volume discharged by a well of any size will depend entirely on the depth of the well and the character of the rock in which the water is found. If the rock is hard and fine in texture the flow of water through it will be less than if the rock is soft and coarse and filled with pores and open channels. Again—the volume need not be great because the pressure is high, as many suppose. This is shown by a comparason of the southern with the northern wells. The southern wells having in some cases a very large flow and a low pressure while the northern wells have a lesser volume and a much higher pressure. The former are not so deep, either, as the latter.

When the well is closed the pressure is said to be a STATIC or standing pressure. This is absorbed in throwing out the water when the well is opened. If the pipe is 6 inches all the way down, more water will get into the bottom in a minute than if the opening at the bottom is but 4 inches, and that at the top 6 inches, yet the pressure of the water will be the same when closed in. So, too, the rock may be so hard as to prevent a large supply reaching the pipe per minute, so the volume will be small although the

pressure may be high.

In this case the supply fails to meet the duty of the pressure. Other wells have a very large volume and comparatively low pressure. In this case the rock is soft and open permitting of a large and free flow all, or only a part of

which, is thrown out. The condition is here reversed, *i. e.*, the duty of the pressure fails to meet the volume of the supply. In sinking a well it is wholly a matter of conjecture as to what the volume and pressure will be. The chances are in favor of getting a larger volume from a larger well, but the pressure will not (as above explained) increase in the same proportion as the volume; nor will the velocity of discharge keep up, under a given pressure, if the well is larger and the volume only proportionately greater.

The matter of *relative economy*, as between wells of different sizes, has yet to be determined, and it can only be determined by the sinking of many wells and their careful study.

In other countries a man having 160 acres figures in advance on just what water he needs. In Dakota a man figures on as big a well as he can pay for and is hankful for whatever water the well brings him—the more the better. In figuring on what kind of a well to put down do not figure too fine, that is, do not get a small well because its estimated volume (judging from others of its size in the neighborhood) will answer your purpose, because of two important reasons.

FIRST, a small well will clog or stop up more easily than a larger one and will be more costly and more difficult to clean out.

SECOND, in case of accident during the drilling or after completion, a small well, may be spoiled if recased, while a larger well could be recased and still leave a serviceable well. The smaller one might have to be abandoned under circumstances which would permit of the larger well being rendered serviceable.

The larger well has thus substantial advantages in its favor aside from the mere matter of volume, and a few dollars extra, in the matter of cost, ought not to stand in its way. The increased service of the increased volume from the larger well would, in many cases, pay not only the increased cost but for the whole well.

Stated generally, it would appear to be poor economy to put down a well of less than 5 or 6 inches diameter. What the economical limit above this size will be remains to be

demonstrated.

Having decided upon a well, of say 6 inch bore, then comes the details of getting it. Some will contract with a well-driller near at hand; others will advertise for bids, and, of course, accept the lowest, whether it be best the or not; others will seek the county rig, while still others will, either alone or by clubbing together, buy a rig and drill the well themselves. Some will favor one process and some another; while some will favor one make of rig which another person may condemn.

By reason, therefore, of this diversity of circumstances, opinion, and preferences, and the fact that, up to date, very

little systematic work has been done and no one process or rig has demonstrated its superiority over all others, no definite instructions can be given as to the *best* course to pursue or the *best* method to adopt. If a CONTRACT is entered into for the drilling it is usually as a result of bidding. In this case the chief consideration to the farmer is as to size, material, cost and time, and not as to the *method* or *system* used by the contractor. He may use poles, cables, or the hydraulic process, as he prefers so long as he gets a well in proper manner and time.

The *details* of the contract are very important and it should be drawn up by some one who understands the value and importance of these details, so that there is contained all that should be, and in proper form, so that the rights of both parties will be protected.

If all goes well the contract is a mere ornament, but if trouble arises the contract comes out and then every word has a value. The contract is to the controversy what the safe is to the fire,

From the information contained herein it is expected that any man, familiar with business forms and customs, may draw up his own contract if he prefers to run the chance of doing it properly.

In case the farmer, alone, or associated with others, desires to do his own work, and with his own rig, then the choice of *methods* and *rigs* enters into first place and the matter of *contract* is eliminated.

KINDS OF MACHINES. As previously stated, no statement of general preference will be risked. Each class of machines has its special advantages or is undoubtedly the best under certain circumstances. The conditions of drilling here, however, differ from those of most other sections. Old eastern drillers declare work here to be far harder than work in the east where the rock is more solid, where the casing may be omitted in many or most cases, and where the formations are better known and understood. Here the formations are principally shale and the drilling very difficult and heavy casing always necessary.

POLE MACHINES. The earlier wells in Dakota were all drilled by pole rigs, that is, rigs using wooden drill-rods. Aside from the matter of *time* taken up in the coupling and uncoupling of the rods in putting the tools into, and taking them from, the well, these rigs have proved most satisfactory under all circumstances and have, without doubt, performed the best, cheapest and most rapid work.

The uncoupling of the rods or their breaking are disadvantages which tend to frequent accidents but these risks are largely overcome by the use of efficient grappling tools

The special advantages of the pole rigs lie in the certainty of their drilling action. The revolution of the rods is uniformly in the direction of tightning the screw threads of the joints, thus aiding in preserving the tightness of all the connections. Again—the rods forming a rigid connection between the drill and the hand of the driller, the action and position of the drill is under perfect controll. If the rods turn it is certain that the drill turned also and that the hole is being drilled circular and not oblong. In this certainty of control over the action of the tools lies the chief great advantage, in this state, of the pole rig over all others. Again-the rigidity of the string of poles makes it possible to tell exactly where the bottom of the hole is and to better controll tne blows of the drill. This advantage tends further to an increase in the number of blows delivered per minute for the rods have greater weight than the cable ond sink more rapidly, the friction of their smooth surfaces is less than with the corrugated surface of a cable and the rigidity makes it certain that if the upper end of the string of rods sinks that the lower end has done the same—there being no kink, or bending, or looping, as with a cable.

CABLE MACHINES. Cable rigs; that is, rigs using either rope or wire cables in the place of drill rods, are very largely used now because, principally, of the facility of operation. In letting down the tools and in removing them much time is saved by having a continuous run instead of having to stop every thirty feet to couple or uncouple a rod or pole. The danger due to the uncoupling of a joint is done away with, In these features lie the chief advantages of the cable The disadvantages are many and well worth consider-The danger of breaking the cable, under strain, or if a tool becomes fast, is greater than with poles. The cable is rotated both to the right and to the left thus making it possible to readily uncouple a joint at the tools, if, perchance, the joint became loose by the jar of the drilling. There is danger that the rotation of the cable will not always cause a corresponding rotation of the drill and the hole not be drilled truly circular thus causing trouble in sinking the This is especially noticable in the important operation of reaming, which is the enlargement of the hole by scraping away its sides, an operation requiring care and a tool so worked as to cut away the full circle and not merely part of With the cable the rotation may have the effect of merely twisting the rope instead of rotating the tool. With the pole rig this cannot be. Again, when the hole is several hundred feet deep, and where the drilling is done in water which may be flowing out with considerable velocity and pressure, the velocity of the drill blows must be slow. If the motion is rapid the walking-beam returns to the lifting motion before the tools have had a chance to fall and drag down the cable against the upward motion of the water.

In this way the energy expended may be absorbed not in effective drilling but in merely churning on the cable. With poles this is otherwise, as explained. On occount of these manifest disadvantages several drillers have abandoned the use of cables in the drilling work and have constructed what are called "combination" rigs, that is, rigs using poles for drilling and the cable for operating the sand pump, and for other purposes requiring rapid action. rangement has proved most satisfactory for it combines the advantages and eliminates the disadvantages of both vs-There may, in the cable rigs, be a choice as to cables. In most cases the 2 inch rope is used because it is cheaper than wire, but the wire possesses the advantage of answering all the conditions of stength required in heavy service. and, it is said, the elasticity of the wire, when under the tension of the lift, aids materially in the important operation of twisting the drill, thus, to a great extent, neutralizing the effect of possible carelessness on the part of the driller.

HYDRAULIC OR JETTING MACHINES.

These rigs are of many patterns and workon quite dissimilar plans but all pass by the common name of "jetting" or "rotary" rigs. In one class of rig the drilling is done with a very short drill-bit having a hollow shank through which a jet of water is forced from the hollow drill rods (pipe-rods.) This creates an upward current which carries out the drillings, thus doing away with much pumping and permitting the almost continuous operation of the drill. These rigs are almost untried here but much is claimed for them.

The rotary hydraulic rigs are among the latest in the Dakota field and hence are the most untried. They have in other sections, and especialy in the shallower wells proved vastly superior to other rigs. In several cases here they have had phenmoinally successful runs, down to depths of 500 to 700 feet, but for greater depths they have not proved a uniform success, yet the *process* could not, in most cases.

be blamed for the failure.

Judging from the very flattering successes met with in a few cases, one may safely predict a very wide field of usefulness for these machines, and especially when their operation in our peculiar formation is better understood. Even these rigs—like both the pole and cable rigs—are already undergoing the ordeal of rearrangement and modification to better suit them to the conditions here met. The lastest advices are to the effect that very important modifications have but recently been made, by the American Well Works, which promise to make the rig as nearly suited to Dakota as mechanical ingenuity can at present approach.

The elements of watchfulness, mechanical ability, quick and accurate judgment, and, above all, extreme care neces-

sary to success with any rig or any system apply particular-

ly to this class of rigs.

It may be said (as the result of ten years of experience and observation in Dakota) that a very large majority of the many accidents in the well-drilling operations of this state have been due, not to any fault in the process or the rig, but to sheer ignorance or carelessness on the part of the drillers, many of whom have been without knowledge of, or experience in, the well business, hired as mere helpers yet placed, often times, in full charge of the work and with no responsibility as to its safe and proper conduct

This being undeniably true, it may be further stated that the exercise of care and judgment is of more importance to the owner of a rig than the mere mechanical details of the rig itself; for a poor tool, in the hands of an expert, will do better work than a fine tool, in the hands of a cureless

and ignorant workman.

TOOLS.

In the selection of drills, reamers, pumps, grappling-tools and other accessories of a drilling outfit select with reference to the size and style of the rig, and in matters of detail rely upon the advice of some responsible manufacturer; bearing in mind one thing—get enough tools. Do not work "short handed," for it will not pay in the well business.

If a rod or cable breaks, or a tool is dropped into the well, be prepared to handle the case AT ONCE, for any delay may cost hundreds of dollars. Have the tools to treat all cases, have them where they belong, and don't allow a meal, a circus or even cold or darkness to interfere with prompt

action and invaribly leaving the work so it is safe.

Be prepared for accidents for they are sure to come! The machinery having been selected, and the well begun, the next consideration is as to the pipe.

PIPE.

BUTT-WELD.

The selection of a suitable pipe is a matter of importance upon which depends, very largely, the success or the failure of the well. In the past, pipe of all sorts of makes and weights has been used, and with varying success.

used, and with varying success.

Wrought iron pipe is of two classes—
the BUTT-WELDED and the LAPWELDED. Fig. 1 shows the great difference between these welds, and the superior strength of the lap-weld which h s
about 4 times as much surface in contact

Fig. 1. about 4 times as mu at the weld as is had in the butt-weld.

It is clear that butt-welded pipe would not be safe to use in our wells, yet some has been used and with disastrous effect. All pipe should be lap-welded.

The thinner the pipe the shorter and weaker is the weld; the thicker the pipe the longer and stronger is the weld. Wrought iron pipe (like most other things these days,) is, in its different classes, made on standard models; that is, the thickness, area, weight, etc., per foot, for any given size will vary but little as between different makers, and certain standard brands are listed by nearly all. Thus, there is what is known as "Standard" pipe, x or extra strong, xx or double extra strong, casing pipe, line pipe, drive pipe, tubing, etc.

Most of these brands will not be used here. The standard pipe is that which is commonly used and is a brand sufficiently heavy for every use unless it be that of very heavy driving for which purpose drive-pipe is designed, it being of a better grade of iron and hence stronger. For lighter work—as for the casing used in starting a well, or the pipe used in recasing an old well—the lighter or casing pipe is

the grade used.

Table No. 1, on the next page, gives the dimensions,

weights, etc., of "Standard" pipe.

Some drillers are of the opinion that drive pipe should be used in all Dakota well work because of the liability of getting the pipe fast and being obliged then to subject it to very heavy driving, or pulling with jack-screws, in order to loosen it. There is, of course, much ground for this opinion and it goes without proof that if the stronger pipe* is used the well will be the better for it and the operation of sinking it the safer; but it were useless to use heavier pipe if

a lighter grade would answer every purpose.

The opinion is, therefore, repeated that if the drilling and reaming are properly and sufficiently done, the "standard" grade of pipe will serve every purpose, at any rate in wells of 8 inches or less in size. The wear and tear on the pipe is greatly lessened by sufficiently reaming out the hole under the pipe, by the use of expansion or other reamers. Frequently this is overlooked, or insufficiently done, and the pipe, after hard driving, becomes fast and days, or even weeks of delay are consumed in an effort to loosen it and to do over again what should have have been done well in the first place. Too great care cannot be used in this part of the work. If the reaming is well done the pipe will settle easily and rapidly, or with but light driving, and a lighter grade of pipe might safely be used; but if the reaming is insufficiently done, and heavy driving resorted to, then standard or drive pipe should be used.

It should be noted that the *external* diameters of pipe must remain the same in order to fit to standard couplings. If the pipe is made heavier the extra metal is added to the

inside and the internal diameter thereby reduced.

^{*}Drive and line pipes are of standard sizes and weights, but being of a better grade of iron they are stronger and more expensive.

TABLE NO. 1.

READING IRON COMPANY.

TABLE OF STANDARD DIMENSIONS.

WROUGHT IRON PIPE FOR STEAM, GAS, OR WATER.

Contents in Gallons* pt Teor Foot.		9000	,0026	.0057	,0102	.0230	,0408	.0638	8160°	.1632	.2550	.3673	866+•	.6528	.8263	1,020	1.469	r.999	2,611	3.300	4.08I	. 4.93	5.87
Number of Threads per Threads per Threads		27	81	18	14	14	7/11	111/2	11 1/2	111/2	∞	∞	∞	∞			∞	∞	· ·	∞	00	00	∞
Nominal Weight per Foot.	Pounds.	0.243	0.422	0.561	0.845	1.126	1.67	2.258	2.694	3.667	5.773	7.547	9.055	10.728	12.34	14.564	18.767	23.4I	28,348	34.077	40.641	45.	48.98
Length of Pipe con- taining One Loof Diduo	Feet.	2500.	1385.	751.5	472.4	270.	166.9	. 96,25	70.65	42.36	30.11	19.49	14.56	II.3I	6.03	7.20	4.98	3.72	2.88	2.26	1.80	I.50	127
External Area.	Inches.	0.129	0.220	0.358	0.554	998 0	I.357	2.164	2.835	4.430	6.491	129.6	12,566	15.904	19.635	665.42	34-471	45 663	58.426	73.715	90.762	108.43	127.67
Internal Area.	Inches.	0.0572	0.1041	91610	0.3048	0.5333	0.8627	1.496	2,038	3.355	4.783	7.388	9.887	12 730	15.939	o66 61	28.889	38.737	50.039	63.633	78.838	95.03	113.
Length of Pipe per sq ft. Outside Surface.	Feet.	9.44	7.075	5.657	4.532	3 637	2.903	2,301	2.or	1.61I	1.328	160.1	0.955	0 849	0.765	0.629	0.377	0.505	0.444	0.304	0.355	0.32	0.30
Length of Pipe per sq ft. of Inside Surface.	Feet.	14.15	10.50	2.67	6.13	4.635	3.679	2.768	2.371	1.848	1.547	1.245	1.077	6+60	0 843	0.757	0.63	0.544	0473	0.425	0.38I	0.34	0.32
External Circumfer- ence.	Inches.	1.272	1.696	2.121	2.652	3 299	4.134	5.215	696 5	7.46r	9.033	10.996	12,566	14.137	15 7c8	17.475	20.813	23.954	27.096	30.433	33.772	36.91	40.05
Internal Circumfer-	Inches.	0.848	1.1.44	I.552	1.957	2.589	3 292	4.335	1905	6.494	7.754	9.636	9+1.11	12.648	14-153	15.849	19.054	22.063	25.076	28.277	31.475	34.55	37.70
Thickness.	Inches.	0.068	0.038	160.0	0.109	0.1,13	0.134	0,140	0.145	0.T54	0.204	0.217	0.226	0.237	0.247	0.259	0.280	0,30I	0.322	0.344	0.366	0.375	0.375
Actual Out- side Diameter.	Inches.	0.405	0.54	0.675	0.84	1.05	1.315	99.1	1.9	2.375	2.875	3.5	4.0	4.5	ທໍ	5.563	6.625	7.625	8.625	6.688	10.75	11.75	12,75
Actual In- side Diameter.	Inches.	0,270	0.364	0.494	0 623	0.824	I.048	I.380	1.611	2.067	2.468	3.067	3.548	4.026	4.508	5.045	6.065	7.023	7.982	100.6	610.01	11.00	12.
Kominal Inside Diameter.		1/8	74	. 50	702	3	Н	7/1	1/2	2	212	3	3.72	4	41/2	2	9	7	30	6	15	11	12

TABLENO. 2.

READING IRON COMPANY.

-STANDARD. - --

WROUGHT IRON LAP-WELDED PIPE, FOR STEAM, GAS, AND WATER.

MANUFACTURERS' PRICE LIST.
REVISED AND ADOPTED SEPT. 18, 1889.

To take the place of all previous lists and subject to change without notice.

Nominal Inside Diameter.	Price per Foot, Plain.	Price per Foot, Galvan'z'd	Nominal Weight per Foot.	Thickness.	No. of Thread per inch of screw.
Inches.	\$ C.	\$ c.	Pounds.	Inches.	
1 1/2	.23	.26	2.68	.145	111/2
2	.30	-34	3.61	.154	11 1/2
2 1/2	-4.7	-53	5.74	.204	8
2½ 3	.62	.68	7.54	.217	8 8
3½	-74	.88	9.00	.226	
4	.88	1.03	10.66	.237	8 ·
41/2	1.06	1.31	12.34	.246	.8
5	1.28	1.60	14.50	.259	8
5	1.65	2.00	18.76	.280	. 8
7	2.10		23.27	.301	8
7 8	2.75		28.18	.322	8
9	3.75		33.70	-344	8
10 .	4.75		40.06	.366	8
II	6.00		45.02	•375	8
12	7.00		49.00	-375	. 8
13	8.00		54.00	-375	8
14	9.50		58 00	-375	8
15	11.00		62.00	-375	.8

Prices of Standard Pipe.

Discount on galvanized pipe about 55 per cent.

"" folia fol

The same prices are quoted by all makers and as the marbet price fluctuates the rate of discount changes. Current discounts can be had from the makers. Those given herein are not the latest but will fully answer the purpose of approximate estimates.

For selected pipe, or pipe cut to special length the dis-

count is usually 5 per cent. less.

TABLE NO. 3.

The following prices are also quoted:

NET PRICES.

Size of pipe.	Tubing.	Line pipe.	Drive pipe.	Stand	ard pipe.
1½ inches. 2 2½ 3 3½ 4 ½ 5 6 7 8 9 10 12	.12 .14 .19 .28		.28 .40 .76 1.20 1.95 2.53	$\begin{array}{c} .08\frac{1}{2} \\ .11\frac{1}{4} \\ .17\frac{1}{2} \\ .22\frac{1}{4} \\ .27\frac{3}{4} \\ .33 \\ .39\frac{1}{2} \\ .48 \\ .60\frac{3}{4} \\ .78\frac{3}{4} \\ .1.07 \\ 1.40\frac{1}{2} \\ 1.78 \\ 2.62 \\ \end{array}$	Discount of 62½ per cent from list prices of plain pipe stated in table 2.

This table is arranged so as to show comparative prices of different grades of pipe. The prices for standard pipe being the *net prices* resulting from the discount and list prices given in table 2, for plain pipe.

The prices here given will fully answer the purpose of estimate. Exact prices can only be had by correspondence with the manufacturers, who will quote the latest lists and

discounts.

That feature of the pipe which is of the greatest consern to the well driller is the thread and it is chiefly on account of the thread that heavier pipe is needed. If the pipe is thin and light so much of the body of the metal is cut away in the operation of threading as to leave a thin shell not sufficiently strong to withstand the driving blows without danger of stripping the thread.

If the pipe is heavy the body of metal back of the threads is stronger and the pipe therefore more able to withstand

heavy work.

COUPLINGS. (See table No. 7.)

The common form of coupling is straight threaded, that is, the line of the threads is parallel to the outer surface of the coupling. An improved form gives greater strength to both pipe and coupling and distributes the strain more evenly over the line of the thread. This is known as the patent TAPER COUPLING. From the illustrations of this form of coupling, shown in connection with the advertisements on the front and back covers and by Fig. 2 on page 20. it will be seen that the inner face, or threaded surface of the coupling, has the form of a funnel to fit a corresponding conical taper on the pipe. In drive-pipe the ends of the pipe meet at the middle of the coupling.

TABLE NO. 4.

READING IRON COMPANY.

X STRONG AND XX STRONG WROUGHT IRON LAP-WELDED PIPE.

X STRONG.

Size.	Price per Foot.	Actual Outside Diameter.	Nominal Inside Diameter.	Thickness.	Nominal Weight per Foot.
Inches.	\$ c.	Inches.	Inches.	Inches.	Pounds.
I ½	.46	1.90	I.494	.203	3.63
2	.60	2.375	1.933	.221	5.02
2 1/2	.94	2.875	2.315	.280	7.67
3	1.24	3.50	2.892	.304	10.25
31/2	1.48	4.00	3.358	.321	12.47
4	1.76	4.50	3.818	.341	14.97
41/2	2.12	5.	4.25	-35	17.60
5	2.56	5.563	4.813	-375	20.54
6	3.30	6.625	5.750	.437	28.58
7	4.20	- 7.625	6.62	.50	37.60
8	5.50	8.625	7.50	.56	47.85

XX STRONG.

Size.	Price per Foot.	Actual Outside Diameter.	Nominal Inside Diameter.	Thickness.	Nominal Weight per Foot.
Inches.	\$ c.	Inches.	Inches.	Inches.	Pounds.
I 1/2	.92	1.90	1.088	.406	6.40
2	1.20	2.375	1.491	.442	9.02
2 1/2	1.88	2.875	1.755	.560	13.68
3	2.48	3.50	2.284	.608	18.56
3½	2.96	4.00	2.716	.642	22 75
4	3.52	4.50	3.136	.682	27 <u>4</u> 8
41/2	4.24	5.	3.56	.72	32.45
5	5.12	5.563	4.063	.75	38.12
6	6.60	6.625	4.875	.875	53.11
7 .	8.40	7.625	5.98	.82	60.34
8	11.00	8.625	6.88	.87	71.52

Discount about 62½ per cent. Not the most recent quotation.

TABLE NO. 5. CASING, NET PRICES.

TABLE 80.	o. CA.5	ING, MEL	THOES.	
Nominal	1	Actual	Nominal	No. Threads
Inside	Price :	Outside	Weight	Per Inch
Inside Diameter.	Per Foot.	Diameter.	Weight Per Foot.	Per Inch of Screw.
$3\frac{1}{4}$	20	$\frac{3\frac{1}{2}}{3\frac{3}{4}}$	4.27	14
31/2	21	$3\frac{3}{4}$	4.60	14
3 3 4	24	4	5.47	14
4	25	$4\frac{1}{4}$	5.85	14
	27	41/2	6.00	14
$4\frac{1}{4}$	35	4 1/3	9.00	14
41/2	30	4 3/4	6.50	14
41/2	36	43/4	9.00	• 14
43/4	33	: 5 ⁻	7.58	14
4 ⁴ / ₄ 4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 5 5	35	5 1	8.00	14-4
5	41	$5\frac{1}{4}$. 10 00	14
1 . 5	48	$5\frac{1}{4}$	13.00	$\mathbf{I}\dot{\mathbf{I}}\frac{1}{2}$
5	58	$5\frac{1}{4}$	17.00	I I 🗓
5 3	39	$5\frac{1}{2}$	8.50	14
5 ₁₆	50	$5\frac{1}{2}$	1,3.00	$\mathbf{II}\frac{1}{2}$
55	45	6	10,00	14
55	50	6 .	12.00	II 1
5 <u>5</u>	55	6	. 14.00	$\Pi_{\overline{2}}^{\overline{1}}$
$6\frac{1}{4}$	59	650 605 605 605	11.15	14
$6\frac{1}{4}$	64	$6\frac{5}{8}$	13.00	· 14
$6\frac{1}{4}$		$6\frac{5}{8}$	17.00	$II\frac{1}{2}$
$6\frac{5}{8}$	74 68	7	13 00	14
$6\frac{5}{8}$	78	7	17.00	$II\frac{1}{2}$
75	83	7 8 8	15.00	$II_{\frac{1}{2}}$
$7\frac{5}{8}$	95	8	20.00	$\Pi_{\frac{1}{2}}$
8 4	. 95	8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	16.15	$\Pi_{\frac{1}{2}}^{\frac{7}{2}}$
$8\frac{1}{4}$	1.05	85	20.00	$\Pi_{\frac{1}{2}}^{\frac{7}{2}}$
$8\frac{1}{4}$	1.15	$8\frac{5}{8}$	24.00	$II\frac{\tilde{1}}{5}$
85/8	1.00	9°.	18.00	$\Pi_{\frac{1}{2}}^{\frac{1}{2}}$
95	1.25	10	21.00	$II_{\frac{7}{2}}$

PATENT SLEEVE COUPLING.

FLUSH JOINT.

INSERTED JOINT.

EXPLANATION OF FIG. 3.

- Main pipe of well.
- 3. Gate valve.
 - Hand wheel to valve.

 Cross, the openings of which may all be of one size or may all be different. State sizes desired. Plugs, for closing dead openings. The tops may vary as shown.
- Bushing, for reducing size of openings.
- (f. Nipples, for connecting specials, being short piece of pipe threaded part way or all the way and being of any length desired.
- H. Curved tee, just the form for top of pipe. Especially where well is used for power.
- J. Processing gauge for gauge.
 - J. Pressure gauge.
- L. Reducer.
- L. Elbow, can be had to any angle.
- M. Double elbow.
- N. Straight tee, can be had of any form or rize.
- O. Reducing tee, can be had of any form or size.

Fig. 3. Specials and fittings for pipe. (See page 29.)

TABLE NO. 6.

TABLE OF COMPARATIVE WEIGHTS OF DIFFERENT KINDS OF WROUGHT IRON PIPE.

		Standard	X	Drive pipe.
pipe.	pipe.	pipe.	Strong P.	Dive pipe.
2	2.23	3.61	3.63	
3	-3.95	5.74		
$3\frac{1}{2}$	4.27	7.54	10.25	Drive pipe is of standard
4	5.33	9.00		weight and size but more expen-
$\frac{4\frac{1}{2}}{5}$	6.00	10.66		sive, stronger and better on account of its being made of a bet-
	7.25	12.34	17.60	ter quality of iron. Then, too,
51/4	7.66			the threads are cut longer to fit a
$\begin{array}{c} 5\frac{1}{2} \\ 6 \end{array}$	8.08	14.50	20.54	longer and stronger coupling (see table 7) and of sufficient length
	9.35			to permit the ends of the pipe to
$6\frac{5}{8}$	10.06	-48.76	28.58	butt together when coupled
7	12.45			this it not the case in standard pipe—thus very greatly adding to
75/8 8	13.50	23.27	37.60	the strength of the pipe in the
8	15.10			operation of heavy driving, the
85%	16.15	28.18	47.85	pipe being practically continous and not separated at each joint.
9	17.25			This is the distinguishing fea-
95/8		33.70		ture of drive pipe.
10	20.00			
1034		40.06		
, at .		1		

TABLE NO. 7. Dimensions of Wrought Iron Couplings.

FOR STANDARD PIPE.														
Inside diam. of the pipe.	2	21/2	21/2 3 3		4	41/2	5	6	7	8.		9	10	
Outside dia. of coupling.	278	3 3 2	4	417	5_{16}^{1}	511	6^{1}_{4}	7 ₇ 6	813	93%	1	024	$11\frac{31}{32}$	
Length of coupling.	234	31/8	33			35%			1	4		616	615	
FOR LINE PIPE, DRIVE PIPE AND TUBING.														
Inside diam. of pipe.	2	21/	3	3!	1/2 4	4	1/2 5	6	3 7		8	9	10	
Outside dia. of coupling.	231	33	4	1 4	31 32 5	1/8 5	2 <u>5</u> 6	11 7 32 7	35		9 9		113½	
Length of coupling.	334	3%	ί 3	5.4 1	4	1	16 4	1.6	34		5 <u>1</u> 5		618	
				FO	R CA	SING	PIP	E.						
Inside diam. of casing.	2	21/2	3	31/2	1	11/2		55%	61	í .	65	71/4	81/4	
Ouiside dia. of coupling.	234	314	334	432	425	5%	5 78	616	71	í	739	833	933	
Length of coupling.	258	318	316	316	31	35	358	312	: 4		1 ₁₆	416	5 ₁₆	

TABLE NO. 8.

Dimensions, &c. of Special, Lap-Welded, KALAMEIN PIPE,

for water and gas works, As made by the National Tube Works Co., Chicago.

				,
Outside diam.	Weight of lock joint.	Weight of lead, one side.	Nominal weight per foot complete.	Aproximate price per foot.
Inches.	Pounds.	Pounds.	Pounds.	\$ Cts.
2	4	1	1.80	.17
3	8	13/4	3.35	.30
4	12	21/2	5.00	.42
$egin{array}{c} 4 \ 5 \end{array}$	17	35%	7.15	. 55
6	21	5	8.60	.67
7	. 30	6	11.25	.87
8	33	$6\frac{1}{8}$	12.80	1.00
9	38 -	71%	15.10	1.25
10	40	8	16.60	1.45
11	50	101/6	20.35	1.70
12	56	113/	24.50	1.87
13	65	121	27.60	2.25
14	71	131%	30.00	2.50
15	100	151/2	36.40	2.80
$\tilde{16}$	120	17	46.25	3.30
10	, 120	1 .	1 . 40.40	9.90

TABLE NO 9.

TABLE SHOWING RELATIVE AREAS OF STANDARD PIPE.

Size of Pipe.	3/4	1	1½	2	21/2	3	31/2	4	ā`.	6	7	· 8
3,1	1.00	1.77	4.00	7.11	11.10	16.00	21.70	28.10	44.4	64.00	87.10	113.70
1		1.00	2.25	4.00	6.25	9.00	12.20	16.00	25.00	36.00	49.00	64.00
112			1.00		2.77		5.44		11.10	16.00	21.70	28.40
2				1.00	1.56				6.25	9.00	12.25	16.00
$2\frac{1}{2}$					1.00		1 200	2.56		5.76	7.84	10.24
3						1.00		1.77	2.77	4.00	5.44	7.11
31/2	,						1.00			2.93	1.00	5.22
4.								1.00		2.25		4.00
5		1							1.00	1.44	1.96	2.56
6	,	,			,		,			1.00	1.81	1.77
7											1.00	1.30
8 ,				1								1.00

From Wm. J. Baldwin, M. E. in "Steam Heating for Buildings."

Explanation of table: The relative areas of any two sizes of pipes given in the table will be found at the intersection of the horizontal and vertical lines representing the given sizes. Thus, a 6-inch pipe = 1.00 6-inch pipe, 1.44 5-inch pipes and 4 3-inch pipes; an 8-inch pipe = 4 4-inch

pipes, 16 2-inch pipes, 113.7 3/4-inch pipes, etc.

Application—It is desired to supply 50 three quarter inch pipes with a constant flow, what size of supply pipe should be used? Take top horizontal line and run to the right, it will be seen that a 5 inch main will supply but 44.4....34 inch pipes; but a 6 inch main will supply 64.00....34 inch pipes, hence, a 6 inch pipe must be used. An 8 inch well is as large as 7.11 three inch wells, a 7 inch well as large as 3.06....4 inch wells.

As to Relative Dircharging Powers of Pipes, see Table

No. 27.

TABLE NO. 10.

WEIGHT OF STANDARD CAST IRON PIPE.

(Including Bowl and Spigot ends.) Cast iron weighs 450 lbs. per cubic ft. and .2604 lbs. per cubic inch.

Diam.		T (1							
Pipe.	1/8	14	3/8	1/2	5/8	34	78	1	Length Feet.
2 3 4 5 6 8 10 12	3 4 5 6.5 8 10 14 15	6 9 11 13.5 16.5 21.5 27. 32	9.3 13 17 21 25. 32.5 40.5	14 18 23.5 29 34 44 55 65	- 19 23 30 36 43 56 69 82	29 37 45 53 68 84 100	44 53 63 81 99 117	52 62 73 93 114 135	8 12 12 12 12 12 12 12 12 12 12

As made by Addyston Pipe & Steel Co. (See adv't P. 216.)

This table incudes all of the sizes and weights likely to find a place in water and gas works plants in Dakota, where the use of cast iron for water works is on the increase.

(See also the advertisement of Dennis Long & Co. P. 217.)

TABLE NO. 11.

DIMENSIONS, PRICE, ETC., OF SPIRAL RIVETED PIPE. No. 18 Wire Guage. Thickness .049 inch.

	1	Price, tar-	Price per	Approx.	Approx.
Diam. in	Price per		ft. Galvan-		bursting
inches.	ft. Black.	asphalted.	ized.	100 feet.	pressure
	NET.	NET.	NET.	lbs.	lbs per sq in.
3	\$.17	\$.19	\$.23.	185	1300
4	.21	.23	. 29	245	1000
5	.25	.28	.35	300	800
6	. 29	. 32	43	360	700
7	. 32	. 35	.45	400	600
8	.37	.40	1.52	460	500
9	.41	.45	59	525	450
10 ·	.45	.50	. 65	575	400
11	.48	.53	.70	625°	360
12	. 58	. 64	$\sim .82$	750	330
13	.62	.69	.90	800	300
14	. 67	. 75	.98	900	280
15	.75	.83	1.05	950	260
16	.80	.88	1.13	1000	250
18	.88	.96	1.28	1125	220
20	1.00	1.10	1.45	1250	200
22	1.10	1.21	1.55	1350	180
24	1.20	1.32	1.67	1460	160

In lengths of 25 feet and less, with plan or crimped ends.

As made by Abendroth & Root Mfg. Co. (See adv't P. 238.)

The weights given are for the black pipe, other grades are from 10 to 20 per cent. heavier.

This class of pipe is very extensively used in the west for conveying irrigation waters, and in many places for water works use. Its strength is very great while the weight is very light, and the cost low. On account of its strength, lightness and cheapness it will be especially adapted to use in Dakota, where water must be piped on or near the sur-

The following table will show the comparative weight of the three classes of pipes—Spiral, Standard wrought iron and Cast iron:

											11	Έ)](Ġ.	H	T	5.															
	Heaviest Spiral							Si	a	nd	la:	$\mathbf{r}d$	1	N:	ro	u	zh	t								Cast Iron						
		Pir					Iron Pipe.												Pipe, % in													
3	incl	1 2	The	_	_					_	_		-7	1/2	11	he		Ŧ			_						_				.13	lhs
1	11101	21.	5 66		· ·	• • •					•	••	10	3	<u> </u>	"					•							ii			.17	66
6	4.5	5	7.66										18	3/	1	66															. 25	6.6
Š	66	8	44										28	3		66															32	3.5
10	66	10	6 6										40)		66							٠.		٠.						40	66
12	66	13	66										49	}		66					٠.,										48	66
14	66	15	66										58	3		46															56	6.6
16	66	18	6.6																												64	6.6
18	66	20	6.6																												.72	66
20	6.6	99	66																												79	4.6
22	66	24	64																													
24		26	66						٠.						٠.																95	6.6

Pipes of this class in California have been in use since 1853 and have given great satisfaction, many having done useful service for 25 and 30 vears.

TABLE NO. 12.

READING IRON COMPANY.

English English Rumber of gauge in luch. 454 116h. 118 0.0359 0.049 455 2 2 0.0359 0.042 380 31 22 0.0319 32 0.035 380 31 22 0.0319 32 0.035 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.025 380 31 22 0.012 180 32 29 0.012 180 32 32 0.012 180 32 32 0.005 33 0.005 33 0.005 380 0.005	STANDARD	SIZES	OF AN	OF AMERICAN AND	AND I	ENGLISH WIRE	1 WIRE	GAUGES.	ES.
Inch. Inch	Ame gau frac	American gauge in fractions.	English gauge in decimals.	English gauge in fractions.	Number of gauge.	American gauge in decimals.	American gauge in fractions.	English gauge in decimals.	English gauge in fractions.
.454 315 18 .0403 .425 324 19 .0359 .042 .380 38 20 .0319 .035 .300 134 21 .0284 .032 .284 32 .22 .0253 .028 .284 32 .22 .0253 .028 .284 32 .025 .022 .025 .295 .14 24 .0179 .02 .203 154 25 .0179 .016 .180 16 26 .016 .016 .180 16 26 .016 .016 .180 16 32 .0126 .016 .180 16 32 .012 .016 .180 16 33 .012 .012 .180 16 33 .007 .007 .190 16 33 .007 .007 .095 16 .006 .006 .006 .005 .006 .006 .	Inc	ch.	Inch.	Inch.		Inch.	Inch.	Inch.	Inch.
.425 $\frac{27}{380}$ 19 .0359 .042 .380 $\frac{38}{38}$ 20 .0319 $\frac{31}{32}$.035 .300 $\frac{64}{38}$ 22 .0253 .025 .284 $\frac{32}{32}$ 23 .0253 .025 .284 $\frac{32}{32}$ 23 .0255 .025 .284 $\frac{32}{32}$ 24 .025 .025 .295 $\frac{14}{3}$ 27 .0179 $\frac{14}{6}$.016 .180 $\frac{15}{3}$ 27 .016 .016 .180 $\frac{15}{3}$ 29 .012 .016 .180 $\frac{15}{3}$ 29 .012 .012 .180 $\frac{15}{3}$ 33 .012 .012 .190 $\frac{54}{4}$ 31 .01 .007 .109 $\frac{54}{4}$ 31 .007 .007 .083 34 .0063 .005 .05 .05 .05 <td>- co</td> <td>-1</td> <td>.454</td> <td>—jco £0,03</td> <td>81</td> <td>.0403</td> <td></td> <td>.049</td> <td></td>	- co	-1	.454	—jco £0,03	81	.0403		.049	
380 388 20 0319 31 032 032	— co		.425	ozko \$~ →	61	.0359		.042	6.4 6.4
340 34 31 21 0284 22 300253 300 34 31 32 22 0253 30254 32 30 22 30 325 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 32 30 32 32 32 32 32 32 32 32 32 32 32 32 32	69 00		.380	3%	20	.0319	0 C C	.035	
300	2/9		.340	23;—	21	.0284	•	.032	(S)
259 23 0225 259 14 24 24 250 25 15 24 250 0201 250 0179 64 260 016 270 016 280 016 291 13 27 291 016 202 016 203 13 27 291 012 292 0126 293 29 0126 293 29 0079 204 29 294 33 295 29 296 297 297 207 298 29 298 298 29 298 298 298 298 298 298 208 208 208 208	1.5		.300	-ko 2: 4	22	.0253		.028	
259 14 24 .0201 238 54 25 .0179 64 .0179 .220 26 .016 203 64 25 .016 180 18 28 .0126 148 54 30 .0122 120 18 32 .0079 109 54 33 .0079 095 33 35 .0056 37 370056 37 370056 37 370056 37 370056	74		.284	(a)(a)	23	.0225		.025	
238	-ko		.259	74	24	.020	:	:022	•
220	C 12		.238	6 4 5	25	6/10.	1 9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.02	•
.203	S		.220		26	910.		810.	48
. 180 18 28 . 0126			.203	는 6:14	27	.0142	•	910.	
.165	6.69		081.	(m)	28	.0126		.or4	
. 148	7%		.165	colon)	29	.0112	•	.012	•
. 134			.148	е ^ю	30	.0102		10.	
.120 1/8 32 .0079109	64		.134	:	31	Io.		600.	•
.095	00		.120	× ×	32	6200.		800.	
.095 33 34 .0063083 35 .0056072 35 36065 37 38	•		601.	, ko 4	33	700.		200.	
.083 35 0056 005 .072 36 005 005 058 38) (c)	. let	.095	so los	34	.0063	•	.005	
.072 55 .065 37 .058 38	•		.083	•	35	.0056	•	.004	•
.065	•		.072	64	36	.005		•	
.058	•		.065	•	37	•	•	•	•
	**************************************		.058	16	38	•	•	•	•

Inadvertently the text for this page was overlooked but two suggestions may be here inserted with profit, no doubt, to some.

The first suggestion is prompted by the abundant rain-fall of the early months of 1892 which has been far greater than that of any former year within the history of the state. Some are heard to say that "irrigation will now be overlooked." Such will not and should not be the case, for, although 1892 may be a year of great productiveness without irrigation, it will still—however good it may be—fall far short of accomplishing what irrigation would accomplish.

Through any given series of years Dakota's rain-fall cannot be relied upon to be sufficient for remunerative farming; so irrigation must be resorted to by all who desire certainty of return for each season's labors. If all who can will, during this favorable season, prepare for the unfavorable seasons which are sure to come, they will exercise wise forethought by hastening to improve the opportunity so fortunately offered of preparing in advance. This promising season will no doubt aid many financially to in whole or in part prepare for irrigation in the future.

It is said of an Arkansas farmer that he refused to mend his leaky roof during fair weather because it was not necessary, and during foul weather he couldn't because it was wet. It is hoped that our farmers will not emulate such unthrift by refusing to prepare for irrigation during wet seasons, because it is then unnecessary, and being compelled to

put it off during dry seasons because too poor.

A second suggestion will be risked, although somewhat

outside of the scope of this work. It is:

Do not be deceived by so-called Rain Makers! Do not follow so intangible a will-o-the-wisp as this latest "fake" with which scheming sharpers are attempting to delude the people. The U. S. government spent several thousand dollars in a vain attempt to produce rain; an attempt which was an acknowleded failure, except that it awakened in the breasts of certain shapers an idea which they have enshrouded in mystery, and on the strength of which they seek to extort money from a too credulous public. Rain-making has not been a success as yet—we hope it may be in the future.

Water we have below us. We know it is there, and that we can get it. Seek it, therefore, and do not delay in the vain hope that the secret of rain-making has been vouchsafed to men of whom the world has never heard, men unknown in the sphere of science, men whose investigations were never heard of and whose successes are but hearsay or newspaper reports, men who want pay in advance and will not exhibit the powers which they claim thus suddenly to have acquired to the light of scientific investigation; men who work in the dark and who seek their own interests and not yours. Some wit has wisely said that, as yet, "the harness-maker is the only successful rein maker."

SPIRAL WELDED PIPE.

This pipe is very similar to the spiral riveted pipe, the joint being welded instead of riveted. The weights are about the same as the weights of riveted pipe, but, by reason of the welded joint, the pipe is claimed to be stronger, more durable, smoother internally. Both possess the same great advantages of lightness and cheapness and are equally well adapted to use in irrigation whenever a light, durable and inexpensive pipe can be used. (See distribution of water, P. 122.)

From the foregoing tables it will be possible to select a quality or kind of pipe suited to the needs of the well, the water-works plant, or the conveyance of water over the surface for irrigation. More detailed information may be had by correspondence with the manufacturers or dealers in

pipe whose advertisements appear herein.

The proper grade of pipe having been selected, the plan of the well must be decided upon, for it may be on several plans.

A large outer casing may be first used and sunk as deep as thought desirable, then a smaller size sunk inside of the

first, and, possibly, still a smaller size within the second pipe; the latter being carried to the bottom. The two outer pipes may then be pulled up, leaving a continuous pipe from top to bottom. In some cases, as where the outer casing has become fast and cannot be lifted, the outer pipe is left in the well thus making a double string of pipe. In other cases, all the outer casing is removed, but 2 or 3 lengths, the space between the two casings being then calked.

In some wells the *telescope* plan is used, In this case the well may start with an 8 inch pipe carried down say 300 feet; then a 6 inch pipe is carried down say 400 feet lower, or to a depth of 700 feet, and, by the use of a left-handed thread at the 300 foot level, the upper 300 feet of the 6 inch pipe is removed, leaving the lower 400 feet in the well as permanent casing. In like manner a 4½ inch pipe may be sunk within the six inch pipe and carried to water; the upper 700 feet being then removed. Such a well, in section, would have the appearance shown in Fig. 4.

Most of the earlier wells were of this class and many are still drilled on this plan, but the practice now appears to tend more in the direction of wells with a continuous line of pipe from top to bottom, and such wells no doubt have many marked advantages over wells of other

delasses.

PERFORATED PIPE.

Nearly all of the northern wells throw out more or less shlae mud, clean sand, or lumps of sand-rock or iron pyrites. These hard bodies have, in city water systems, caused much trouble by clogging the fire nozzles or water pipes. To prevent the throwing out of such masses many wells have been filled with lengths of perforated pipe dropped to the bottom of the well. The lengths of pipe thus inserted are per-

forated with 1/2 or 3/4 inch holes which, while admitting the water or sand, prevent the admission of the larger solid bodies. The consequence of thus shutting off free access to the well is that large quantities of loose rock accumulate about the base of the pipe, as shown in Fig. 5, thus gradually shutting off the water supply and diminishing the volume and efficiency of the well; besides which, the effective erea of the base of the well pipe is reduced by the insertion of this smaller pipe thereby still further decreasing the capacity of the well. Additional disadvantages of this

Fig. 5. inserted pipe lie in the fact that it Showing a perforated pipe is out of reach and control, it be in the bottom of a well. comes a loose and independent feature of the well, not under control or subject to needed repairs, and it is apt to become out of line with the main pipe—if not entirely disconnected from it—thus forming a possible and unmanageable obstruction at the base of the well.

If the perforated pipe is left out, the well, at the bottom, will be clean and free to receive whatever comes to it. If rock is thrown, care for it at the sruface where it may be collected and disposed of. Put in a settling reservoir to receive it, or, in case of water works, where the pressure must stand in the pipes, run the water through a large sand drum which will collect the heavy matter and permit only the water and lighter sediment to pass to the mains.

It is, indeed, safer to collect the rock at the surface, where it may be cared for, than to permit it to accumulate at the base of the pipe where it cannot be cared for and may ruin

the well.

If the well becomes stopped up by an accumulation of sand or by other causes the pipe may be more easily cleaned out if it has a uniform diameter from top to bottom and it is unobstructed by the presence of a section of loose perforated pipe. Usualiy the services of a well driller will be needed to open up a well which has become clogged. The objections urged against the use of perforated pipe in wells are not founded on theory alone but upon actual experience

in a number of the more important wells of the state. VALVES, HYDRANTS AND SPECIALS. (See Fig 3 p 21)

Every well should have at least one gate valve in order that it may be shut off in whole or in part, for otherwise no control could be exercised over the flow by the person in

charge.

The kind of valve to buy is a matter of importance, for all are not equally good, either as to pattern, workmanship, or material. Of the many makes of valves the Ludlow and the Chapman are among the best and are the most used in the Dakotas. (See adv't Chapman Valve Co., P. 210; of the Ludlow Valve Co. P. 224; of the National Tube Works Co. front cover; of the Brass & Iron Works Co. P. 225; and of

Robinson & Cary Co. P. 242.)

The greatest care is necessary in the selection of a hydrant for water works service. Almost any hydrant will work well in clear water but few, however, will prove satisfactory in case sand or gravel is held in suspension by the water. A hydrant having a rubber or leather face or cone will need frequent repairs, owing to pieces of sand or gravel becoming imbedded in the soft surface. These, too, tend to wear the surface of the metal ring, and thus leaks are caused and the hydrant frequently freezes and becomes unserviceable.

Where there is much grit in the water a metal faced hydrant should be selected. Where the water is clear the others will prove as good. A gate valve should be handled carefully. Do not close it suddenly for the "Water Hammer," due to the sudden checking of the velocity of a rapidly moving column of water, under heavy pressure, is very great and tends to injure the pipe and its connections.

The arrangement of the valve, or valves, will depend upon the circumstances surrounding the well and its uses.

Usually the main valve is placed horizontally on the main pipe and all connections are made above the valve. In this position the valve is usually put on before the main flow of water is struck, the drilling being continued through the opened gate—care being taken to protect the face plates of the valves by a thin nipple set into the top of the well. If the valve is not set until after the flow is struck much loss of time and money may result before it is finally set to the pipe against the force of the flow. (A notable instance of this was that of the first "city well," at Aberdeen, where it was found to be impossible to set the valve because of the force of the water, and hundreds of dollars were wasted, and special tools finally constructed, before the water was finally shut off and the valve set.)

This danger may not be ever present, especially in the smaller wells, but reference to it will call attention to its consideration. Sometimes a cross is set first, on top of the pipe, before the flow is struck. It is then an easy matter to set the gate to the top or the side opening, the stream finding a partial outlet, meanwhile, through the other open-

ing. After the gate is set the other openings may be plug-

ged or otherwise connected.

If the main gate—or any gate valve—is set on any line of horizontal pipe, leading from a well throwing any sand or solid matter, the valve should be set vertically, that is, with the hand-wheel at the top. This will prevent sand or stone lodging in the working parts of the valve; a danger which is ever present if the hand-wheel is at the side of, or underneath, the pipe.

Whatever may be the location of the valves, or the use to which the well may be put, one thing should be observed, which is, so arrange the specials (which is understood to mean the crosses, tees, valves and such similar features of the pipe fittings) as to leave a *vertical opening* above the main pipe, which opening may be closed by a plug if not

otherwise connected.

By so doing ready access to the well is always possible, for the purpose of cleaning out, blowing off, or other purpose, without disturbing the other connections of the well.

If the well is to be used for power, in the running of a mill or other heavy plant, much power may be saved by using long curved specials instead of the short, right-angled specials commonly used. Every well driller ought to have, as a part of his outfit, a full set of specials (crosses, tees, ys, nipples, bushing, plugs, elbows and a pressure guage) so that, on the completion of a well, a sufficient test of its power and volume could be made to be of value as a matter of public record and also as a matter of value to the driller himself, who would, through the wide publicity given to all such systematic tests, derive a direct benefit, in the way of advertising sufficient to pay him for the expense and time invested.

The more such matters are observed the more will public attention be called to our artesian wells and the more quickly will capital be attracted. Properly viewed, it would be a wise stroke of business policy for every well owner and contractor to interest himself in these features of a well and to be prepared to put them to efficient tests.

Even the well owner cannot afford to be without the few specials necessary to a proper control over his well, or to its direction in such manner as may best suit his varied needs. Supposing the well to be 6 inches, what ought to be provided?

1—6-inch cross. 1—6-inch tee.

1—6-inch elbow.

2—6-inch plugs (one plugged for attachment of gauge.)

2—6-inch nipples.

2—4-inch "
2—2-inch "

1 nest of bushing for 4-inch and 2-inch connections.

1 pressure gauge.

With these few specials the well, or any connection with

it may be reduced or directed as occasion may require. At least these specials should be obtained.

LOCATION OF WELL.

As a rule, a well for irrigation will be located on or near the highest point of land to be irrigated, but considerations of convenience or economy may, at times, suggest a location at a lower point or near one's buildings from which location

the water may be piped to the higher ground.

The reservoir will usually occupy the highest ground and the well may be placed at the most accessible point near it or at such a point as will best conserve the proper division of the fields or the location of the ditches. All of these things should be considered and mapped out before either the well or the reservoir is located; otherwise the location may, in the end, prove to have been badly chosen.

At whatever point the well is located let that point be OUTSIDE OF THE RESERVOIR. Some wells have been located within the reservoir where they are not accessible because of either water or mud, where, in case of needed repairs, it would be difficult to convey the machinery and supplies, or to erect or handle the same, where the well cannot conveniently be used for anything else but to supply irrigation waters and where its flow could not be easily regu-

lated during the winter months.

If located outside of the reservoir the well would be accessible at all times and subject to control; it could be easily repaired or opened up—if stopped up;—its volume could be first used as power to run machinery, a revenue, possibly, being derived from the rental of the power, and the water then conveyed to the reservoir by a short pipe. It could be enclosed and protected from the weather as every well should be in order to protect and preserve the pipe and valves from rust, for the well is but a piece of machinery and should be cared for as such. It will wear out in time by rust and wear and will need recasing, but in order to preserve it as long as possible, its pipes should be painted and protected. If thus cared for it will last intact for many years and pay for itself many times. The cost for repairs being almost nothing.

LOG OF WELL.

Section 35 of the "Melville" law provides that the contractor of any township well shall keep a log of the well, or, in other words, a record of the successive strata through which the drill passes. From the very nature of the case this must be a dead-letter, for it cannot be enforced.

The driller may report such a log as he chooses, and no one else be the wiser. The truth is, it is safe to say, that no properly recorded log has ever been made of a Dakota well. The author has seen many wells drilled, and has carefully noted the methods adopted, but in only one case, within his knowledge, was there any effort made to obtain an accurate log.

Dozens of records have been published in papers pamphlets and reports, but all are subject to grave doubt, as to truth or accuracy. Some drillers will make no report—prefering to keep, as a trade secret, whatever they may have discovered—but most drillers pay no attention to the drillings, and, except for the fact that at one depth the drilling is hard and slow, and at another depth it is softer and more rapid, they know little or nothing about the character of the formations in which they have worked.

The keeping of a log involves considerable extra labor, systematic watchfulness, a certain degree of knowledge of geology, and, above all, a certain amount of expense to which the contracting driller does not care to go. He agrees to drill a well, and not to instruct in geology, and, to him,

the drillings discharged are all the same.

It must be admitted that a carefully kept log, or rather series of logs, would be of much value, but how to secure them is a question each driller alone can decide. Certainly section 35, above referred to, can result in nothing more than a succession of false reports which will be worse than none at all. When the first well in the state was drilled, (the Ry. well at Aberdeen) by Mr. Swan, the author was present daily and assisted in keeping the log, preserved samples of the drillings, dried and arranged them, and finally mounted them in 3-foot glass tubes secured for the purpose.

If equal care was used with each well the logs would then approach the truth and possess some value. Each owner of

a well should look to it that this is done.

Equally important—yes, far more important—is the keeping of an accurate record of the performance of each well, and as to all its dimensions, thus—depth and log, and length of each size of easing in well. Size at top or bottom, or all the way.

Pressure-When closed, and when flowing from openings of different

volume—When open full and when throwing streams of different sizes; not guessed at but carefully measured with a weir.

Discharge—Exact height of stream thrown vertically when well is opened full, and from openings of 1, 2, 3, 4, 6 or 8 inches. Also, the exact distance these streams will be thrown horizontally.

Temperature of the water.

Whether hard or soft, clear or sandy or muddy.

The exact time occupied in drilling the well, with dates.

The quality of pipe used.

The kind of machine used in drilling.

The exact cost.

There is nothing in the above form of record that cannot be kept by any farmer or driller and nothing that is not of importance or that cannot be determined if only a few specials are at hand. The measurements of volume and height of streams are simple operations and are fully explained herein. (See measurements by weirs.) See—how to measure the height of a stream, page 93.)

A series of records kept as above suggested would have value, but the records as heretofore kept have but little. Even the published, official records, or reports, are far from accurate. A record, once carefully made, ought to be preserved for future reference, for the memory alone cannot be relied upon.

Little need be said under this head for it is assumed that an expert will be in charge of the work. If an inexperienced hand is in charge he has more to learn than a book of this size would hold. A few suggestions, however, will be in order.

Do every part of the work thoroughly and with the greatest care. Use great care in handling tools about the pipe

so as not to drop them in.

DRILLING.

Make every joint of the rod or the tools fast so they will

not loosen, and cause the loss of a rod or tool.

Keep the drills and reamers in proper cutting order, and inspect everything frequently to see that nothing is loose or defective.

Do not work the drilling tools too long before pulling out, for it is better to pull out more frequently, and make sure that everything is safe and sound, than to attempt to work longer and lose a tool by reason of a loose joint.

Above all, do the reaming well, so that the pipe will settle

easily and not stick or require heavy driving.

Keep the pipe pretty close to the bottom, in order to avoid the caving in of the walls or the inrush of quick sands and the possible sticking of the tools. Many drillers will run from 20 to 100 feet without settling the pipe, and they usually have trouble in consequence. Only room enough is needed below the pipe to work the drill and the reamer and usually the length of a single section of pipe will be ample.

Do not sink a smaller hole below the main hole, for it may endanger the latter work by causing the drill to stick or drill a sloping hole into which the pipe cannot be forced.

Never leave a tool standing in the well, for a cave-in may bury it and render its extrication difficult if not impossible

If any accident happens do not cease labor until it is reme-

died or until its remedy is seen to be impossible.

Arrange in advance for all supplies, in order that no delay may endanger the continuation of the work. A "shut down" often sets the work back more, and causes greater expense, than though no work had been done.

Always leave the work in a safe condition and protected from the depredations of the curious and thoughtless on-

lookers

Cautions might thus be indefinitely extended—each founded on some costly experience of the past—but enough has been suggested to show the necessity of an exercise of such

a degree of care and watchfulness as is required in but few other callings. If no accident happens the driller deserves much praise. If one does happen he usually has himself to blame.

COST OF WELLS.

Many thoughtless enthusiasts have raised the cry that wells ought to be drilled for from \$1,200 to \$2,000 but such persons are not authorities and do not know whereof they speak. The cost of a well depends not upon one thing, but upon many things. The size is, of course, the chief factor for the pipe for a large well will cost more than that for a small well; the rig used must, as a rule, be heavier; the tools heavier; the coal and water used will be much more; and the labor bill will be much greater because the drilling will take longer. The location of the well will effect its cost. If within the limits of a town, having a system of water works so that the water used in drilling may be readily secured (and under pressure), the otherwise large water-hauling bill will be saved. If the well is on a farm, or where no water is at hand, the hauling bill will mount to most respectable proportions.

Add to these items the cost of moving the rig to its site, setting it up and taking it down, hauling the pipe and fuel, to say nothing of the many certain yet unforseen incidental expenses and you have the well driller's bill of expense, minus the ever-present chance of an accident which may cost hundreds of dollars or result even in his financial ruin.

No man of good business judgment will assume these risks for the mere chance of earning day's wages. He claims, and is fairly entitled to receive, a generous compensation for the risk he assumes, and, in addition to that, such wages as his skill as a driller entitles him to receive.

For the purpose of illustration the following approximate

cost is given of a 6 inch farm well 1,000 feet deep:	
1000 feet of 6 inch pipe @ .62 per foot	@ 69A
1000 feet of a men pipe @ .02 per root	
Frieght—at reduced ratesabout	50
Hauling pipe to the ground "	40
" casing pipe away"	10
" and transporting rig "	50
Setting up rig" "	150
Taking down rig, and breakage "	100
Fuel, and hauling same "	250
Hauling or obtaining water "	100
Wear and tear on rig and tools"	200
One gate valve	30
Couplings	. 40
Interest on investment for 90 days "	75
Labor bills @ \$10 per day for 60 days "	600

down; that there are no accidents or unusual expenses and

no delays.

The incidental expenses could not safely be figured at less than \$300, and most of the other items given are figured too law; so that, without any allowance for incidentals, accidents or profit, and allowing but three men on the work, and but 60 days of time, the expense still exceeds \$2300 for a 6-inch well. It is not the intention to throw any unfavorable light on the matter of cost of wells, but rather to throw on the true light, and, by calling attention to the details, dispel some false light.

A well is worth all it costs,

and the driller must have some show as well as the owner. A 6-inch well costing from \$3000 to \$4000 is cheap, if properly put down, and is a grand investment, and one which is better, at that price, for the farmer than for the driller, for where the driller may make \$500 or \$1000 profit on one well he may lose it all on the next; whereas, the farmer with the well has a sure thing and a competency.

Any well will pay its cost in 5 years—whatever the cost may be—or at the rate of 20 per cent. on the investment.

Some wells have paid for themselves in one year.

If a farmer has a well which enables him to raise even 30 bushels of wheat to the acre, in a dry year when his neighbors fail to get back their seed, and he has but 140 acres under water, he receives 4,200 bushels, which, at but 50 cents per bushel, nets him \$2,100, or sufficient to pay for a well large enough to thoroughly irrigate his 160 acres. This is not overdrawn but underdrawn as based upon actual experiences. One well, in 1891, more than paid its cost by garden irrigation, and, besides this, supplied water to the town.

Many such examples could be given to show how serviceable a well is and how short a time it takes to return its cost. Nor need one seek a dry year in order to show the contrast, for even in the best years the service of a well is so great as to make the increased yield pay very largely on its

cost.

It may be asked—what do your Dakota wells cost? The answer would be difficult to frame for lack of proper information and knowledge of all the facts entering into the matter of cost. Wells 4for 4½ inches have cost from \$1,800 to \$3,000. Wells of 6 inches from \$3,000 to \$7,000; although about \$3,000 is the common price. Wells of 8 inches have cost about \$4,000 or \$5,000. The expensive wells have, in all cases, been expensive by reason of delays and accidents. As drillers have become more skilled in this field, and rigs have been adapted to its formations, the price of wells has been reduced, and a still further reduction may be expected as skill and competition increase. The cost of a Dakota well ought to be considered in connection with its volume. The mere hole has no value; it is the water which it supplies on which a value is placed.

The hole costs so much, regardless of the volume of water thrown out, so that if two wells cost \$2000 each, and one well throws out 1000 gallons per minute, while the other throws out but 500 gallons per minute, it may be fairly said that one well cost twice as much as the other, for the one supplies but half the service of the other, or has cost twice as much for a given return. So, too, as between Dakota

wells and those of other sections of the country. The Dakota artesian basin is the largest and the greatest in the world and the volumes and pressures of its wells greater than the volumes and pressures elsewhere. So it may be said that it costs far less here to get a given volume of water than it does any where else in the world. This basin is the nearest to the manufacturers of well machinery, pipe, tools, and other supplies which therefore cost less. The depths are but moderate, and the volumes enormous, so that the duty or service received for the money expended is

greater than in any other section or country.

In Australia many wells are put down by the government at a cost of from \$5,000 to \$25,000, yet their best wells do not equal the average Dakota wells. Our farmers may therefore deem themselves most highly favored by nature and ought not to grumble at the expense of obtaining water, for, by no other system, and in no other section of the world, can an equal volume be obtained for the same amount of money. No reasonable man will complain of expense when he pays far less than the balance of mankind and when all the conditions are so favorable for the speedy return of the money invested.

Nor will any wise investor hesitate to put his money into Dakota wells or farm lands when the conditions, as they are here, are shown to him in comparison with the conditions elsewhere, under which conditions tens of millions have been invested to the great profit of the investor, prosperity of the settler, and glory of the state and nation.

It must further be considered that the cost of the water is but a part of the cost of the land. The well is of no value except as it supplies the water; the water is of little value except as it feeds the ground and aids in producing a crop. The cost of land, well, ditches, reservoirs and other improvements could properly be "lumped," and the total value per acre found. In this, as in the cost of the water alone, Dakota will be shown to hold the palm as against the world. This matter will be more fully considered under the head of land and water values,

Some have asked—how can I get a well the cheapest?—by contracting with a driller, or by buying a rig (either alone or by clubbing together with my neighbors) and doing my own work. Many reasons prevent a reply. Firstly, iusfficient data as to what has been done heretofore renders a reply impossible, or, at best, purely speculative. Secondly, the outcome will depend upon who you are, what your means may be, what your general intelligence may be, and especially as to the amount of natural mechanical ability you may possess. Many farmers could not drill a well with the best of tools. Some ingenuous farmers have actually drilled good wells with rigs and tools of their own make. Safety and economy would appear to lie in the selection of a contractor who has the tools, knows the business and is prepared to assume all risks. It is to be hoped, however, that hundreds of rigs will be purchased by farmers, and that we may soon evolve a race of practical drillers from among our own people.

ARTESÎAN WELLS, ELSEWHERE.

It is within a comparatively short time that artesian well waters have been used for irrigation in this country, but their value is now being appreciated and thousands are being sunk for this purpose. As above stated, there has not yet been discovered in the world another artesian basin of such extent as the Dakota basin nor one whose wells possess

such great volume and pressure.

Artesian wells are common to nearly all of our states and to most countries and some few wells have been drilled that compare very favorably with the better Dakota wells but they are few in number and widely separated, and the artesian basins thus far discovered are of but moderate area. The Dakota sand-rock formations extend far to the south so that Nebraska and Kansas have a few good weils but most of the southern wells are shallow and the flow but weak.

A group of 5 wells at Coolidge, Kansas, cost an average of \$400 each and have an average flow of 25 gallons per minute. A like ratio between cost and volume would make a Dakota well of 1800 gallons cost \$16,000, whereas there are several throwing a greater volume the cost of which has been from \$3,000 to \$4,000. The smaller wells of the Crooked Creek Valley, numbering about 100, and costing only about \$20 each are used for irrigation and about 50 of these serve from 5 to 25 acres each.

A new artesian basin has but recently been discovered in Washington, in the Yakima valley, where there is one well flowing 650,000 per day or 452 gallons per minute. This would rank among the smaller wells of Dakota. A company has been organized to drill wells throughout this new field wherein hundreds of thousands of dollars have been expended in irrigation development by other systems and where, within a decade, a barren, sage-brush desert has been made the home of the peach and the prune, and the heart of

a vast and prosperous agricultural interest.

In Colorado several thousand wells have been drilled to depths ranging from 100 to 1800 feet, but in most cases to depths of from 300 to 700 feet. The water from many must be pumped but in most other cases the flow ranges from 10

to 75 gallons per minute.

The town well at Anamosa has a flow of 495 gallons per minute. This is the largest of over 2000 wells in the San Louis valley, Bucher's well, at the same place has a pressure of 25 pounds to the square inch. The Espinosa well, about 20 miles north of Monte Vista, according to the report of the state engineer, "throws a solid three-inch column of water nearly 40 inches above the casing, and flows between 300 and 400 gallons per minute."

Compare this pigmy, which thus deserves special notice in Colorado, with such Dakota gushers as the Aberdeen, Huron, Redfield, Doland, Columbia, Woonsocket, Springfield and Yankton wells not to mention a host of others

each of which would be a marvel in any other land.

In California there are 25 artesian basins of varying character and pressure but that of Kern county is the most remarkable and more nearly resembles the Dakota basin than any other yet found. Its area is only about 18 by 14 miles and it has an elevation of about 300 feet above the sea. The average depth of the many wells in this area is about 500 feet. Of these wells 54 range in flow from 150,000 to 4,000,000 gallons per day, or from 100 to 3,000 gallons per minute.

One wells has a volume of 3,000 gallons per minute, two wells flow 2,100 and 2,400 gallons, nine wells flow from 1,400 to 2,000 gallons. and seventeen wells flow from 700 to 1,400 gallons per minute. The diameters range from 6 to 10

inches.

The counties of Tulare, Los Angeles and San Bernardino have also remarkable artesian basins and hundreds of very fine wells from 150 to 500 feet in depth. About 4 miles south of San Bernardino is the Gage group of 29 wells, all within the radius of a mile, the average volume being about 389 gallons per minute, and the average depth but 150 feet.

In other parts of the United States there are many notable wells and artesian basins, as there are also in China, in the Sahara desert, and in nearly all of the countries of Europe, especially in Germany and in France. The scope of this little book will not, however, permit their consideration. It is sufficient to note that the artesian well is of world-wide interest to mankind but it is in Dakota that the great wells may be said to be at home.

DAKOTA WELLS.

The pioneer well of Dakota was begun in the summer of 1881, at Aberdeen, by the Chicago, Milwaukee & St. Paul Ry., for the purpose of supplying water for its engines. The well was drilled by Mr. Swan, and, by reason of changes in the size of pipe, and unavoidable delays, the cost was far greater than it would otherwise have been. The flow was struck early in the spring of 1882, at a depth of 920 feet. The pipe was 6 inches at the top and 4½ at the bottom. The volume was not accurately measured at the time but a very close approximate measurement placed the volume at

1,200 gallons per minute and this increased later on to over 2,000. The pressure ranged from 150 to 180 pounds to the square inch. The 6 inch pipe was carried to a height of 70 feet and, from a 2-inch nozzle at the top of this pipe, a stream was thrown 60 or 70 feet into the air against a gentle breeze.*

Encouraged by the success at Aberdeen, other wells soon followed throughout the length of the territory until, today, they stretch over an area of over 400 miles north and south by over a hundred miles east and west, and the limit of the

field in any direction has yet to be found.

A complete list of Dakota wells could not be given for lack of information, but a list is given below of a few typical wells which may be taken not as exceptional wells selected for the purpose of parade but as purely representative of the wells in all parts of the state—such wells as any farmer in the state can get if he will but try, and wells which, when once obtained, will be to the owners a mine of wealth such as few at present dream of.

TABLE NO. 13.

REPRESENTATIVE SOUTH DAKOTA ARTESIAN WELLS.

1	1		1		
County.	Town or Location.	$\begin{array}{c} \text{Depth} \\ \text{in} \\ \text{feet} \end{array}$	Bore in inches.	Flow in gals. per min.	Pressure in flbs per sq. in.
Aurora	Plankinton	750	6	1000	
Beadle	Huron well	862	55%	1668	120
Begane	" Day"	840	1/8	476	120
• 6	" Risdon"	960	55%	2250	175
6.6	Hitchcock	960	4 & 3	1240	155
Brown	Aberdeen, Cy	908	55%	1800	180
Drown		1000			
66 .	" Sewer		6-41/2	1215	155
66	Dearu	1050	6&5	1000	138
	Columbia	966	4½	1399	160
Bon Homme	Springfield	592	8	3293	80
~ ,	Tyndall	735	$4\frac{1}{2}$	552	45
Douglas	Armour	725	41/2	700	
Hand	Miller	1145	3½	462	100
Hughes	Harrold	1453		150	40
Marshall	Britton	1004	$4\frac{1}{2}$	601	120
Sanborn	Woonsocket	725		5000	153
66	,66	775	7	7000	150
Spink	Ashton	900	. 4	750	100
- 66	Mellette	910	41/2	1215	165
1 16	Redfield	964	41/2	1261	166
4.	Doland	897	41/2	710	112
66 .	Baker well	920	41/2	2000	165
Yankton	Yankton	610	$\frac{1}{6}$	1800	56
66	166	610	6	$\frac{1600}{2200}$.	50
1		1710		4400	1 00 1

The author compiled the above table from previously published reports and has made such corrections as were possible. The figures given, are, in the main, correct.

^{*}This is the first *accurate* account published as to this first well. The record was made by myself at the time and has been carefully preserved. The record published by State

Engineer Coffin was erroneous, having been obtained, no doubt, from parties who were not properly informed. Similar errors appeared as to other wells, as to which I am accurately posted. The official reports ought to be as accurate as possible and none but the best authorities accepted. It is difficult, however, to attain to great accuracy in this matter. Maj. Coffin deserves praise for attaining so nearly to it.

W. P. B.

The Dakota artesian basin, as stated, is of unknown extent. Wells are found throughout the length of the two Dakotas and far northward into the British possessions, as they are also to the south through Nebraska, Kansas and Texas. On the east the field appears to terminate within the borders of the state, where first appear the quartzite formations. Certain evidences are adduced by Maj. F. F. B. Coffin. ex-state engineer, to prove that even within the quartzite area wells may be found, and that the true limit on the east is in Minnesota where the true archaean formations appear. To the west is a domain as unknown as it is vast. If the supply of this basin, as supposed, comes from the mountains of Wyoming and Montana, then it would be possible to find wells at all points between the Missouri river and the mountains except within such areas as have been affected by igneous upheavals or other geologic disturbances.

It is sufficient, however, to know that on any section within this broad basin, extending for over 400 miles north and south by about 100 miles east and west, a well may certainly be had. The water bearing formation is the Dakota sandrock, a formation of unknown thickness in this field although of vast thickness in its far western out-croppings.

The southern wells of the state penetrate this formation at a depth of about 600 feet. The formation dips thence to the northward until, at Jamestown, on the Northern Pacific it is over 1400 feet below the surface. The dip appears to be comparatively uniform so that it is possible to determine, within very close limits, at what depth water will be struck

at any point.

Overlying this soft, porous, water-bearing sand-rock there is usually a thin stratum, or cap-rock, of harder sandstone or limestone. Above this the formations are principally of blue and gray shale with occasional strata of sand or limestones. It is the drilling in these shale formations that is so difficult, for, as stated by some drillers, the shale seems to pack like putty or lead and does not mix readily with the water used in drilling.

Much has yet to be learned as to Dakota wells, as to the formatioms to be penetrated, as to the relationship—if any there be—between volume and pressure and as to the source and the volume of supply, and, especially as to the best and cheapest way of drilling wells, the best machinery or process

to use and, above all, the best use to be made of the water after it is obtained. The Dakota farmer has also to learn how to use the water so as to get out of it the highest duty. when to use it on different crops and in what quantity on different soils and during different seasons. A grand work is well begun, and our farmers have but to labor and gain dollars thereby, while the scientist speculates upon the marvels of nature as they develop and gains knowledge from

his speculations. Under the head of Water, and of Reservoirs, will be found several tables relating to the duty of well waters. The volumes of wells, volumes thrown per minute and per day and volumes per minute equal to given volumes per day, volumes thrown in one and three months by wells of different volumes per minute, volumes required to cover different areas to different depths and time required by different wells to do it, equivalence of cubic feet and gallons and of gallons and cubic feet, equivalence of other units of volume or measurement, and other tables of value relating to wells.

The sequence of our subject requires that the Water foilow the completion of the well, so that "Water, its properties, measurement," &c will next be briefly considered; after which will be a brief consideration of the matters of storage by reservoirs and its distribution by ditches, flumes and pipes.

COPIES OF THIS BOOK FOR SALE BY

W.P. BUTLER.

Aberdeen, South Dakota, for 25 cents.

Also sets of detailed drawings of gates, outlets, flumes, weirs, and similar constructive details of an irrigation plant. These drawings could not be inserted in this book. Price per set 25 cents.

WATER.

Its Properties, Duty and Measurement, with tables of Weight, Pressure, Volume, Discharges, &c &c. Miscellaneous Notes.

Pure water is composed of Hydrogen and Oxygen.

88.9 Parts. 11.1 By weight, By measure,

Its greatest desity is at a temperature of from 39.2° to 39.8° from which point it expands by either heat or cold.

It boils at a temperature of 212°, and freezes at 32° Fahr.

Evaporates at all temperatures.

Is but slightly compressible.

Is not paratable when pure or distilled.

Wieght—See P. 62 & 63 Tables of weight, and notes appended.

66 Weight—See P. 61 on one acre.

Pressure—See P. 64 pressure.

of column per sq. in. = height of column \times 4.331. " circ. in. = height of column \times .3369.

Press. of 1 fb per sq. in. is exerted by column 2.311 ft. high. Volumes—See tables under head of Mensuration, and fol-

lowing tables.

A cu. ft. of saturated air at 50° contains 4.09 gr's. of water. A cu. ft. of saturated air at 55° contains 4.86 gr's of water. A cu. ft. of saturated air at 60° contains 5.79 gr's. of water.

A fall of snow of 11 inches is equal to about one inch of rain, but this varies greatly. 11 inches being for a dry snow

not drifted.

Depth of water in in's. $\times 2,323,200 = cu$. ft. per square mile.

Depth of water in inches $\times 3,630 =$ cubic ft. per acre.

The "CENTER OF PRESSURE" is % of the depth from the surface. Thus, in a reservoir or tank 12 feet deep the average pressure on the sides will be found at a point 8 feet below the surface. The amount of this pressure is equal to the depth of this point × by 621/3 (the weight of 1 cu. ft. of water). In this case 8 ft., the depth, \times 62\\[\frac{1}{3} = 499 pounds=the average pressure per sq. ft. on the entire surface. To get the total pressure on the sides multiply the total area of the sides by the average pressure, as above found. The total pressure on sides and bottom = 3 times the weight of the fluid contained in the tank or reservoir.

The pressure on a sluice gate, in the bank of a reservoir, 2x3 feet and the center 8 feet b low the surface of the water in the reservoir= $8\times62\frac{1}{3}$ =499 fbs. per foot; $2\times3=6$ sq.

ft. $\times 499 = 2994$ pounds, or nearly 1½ tons.

The daily supply of water per capita in cities having water works systems ranges from 45 to 175 gallons, and averages about 75 gallons. In nearly all cases the per capita de-

mand increases from year to year.

Water presses towards an orifice from all directions and diminishes the volocity it the proportion of about 63 to 100; or the quantity delivered through the orifice will be less in this proportion than the calculated amount.

DUTY OF WATER.

By the *duty* of water it is meant the amount of duty or service it will perform, or the extent of its usefulness in

any given field.

Considered as a *power*, it is so many horse power for a given volume under a given head. Considered as an irrigating medium its duty is the number of acres a given volume will adequately serve; or, as it is usually stated, the duty of a second foot is so many acres. That is to say, a volume of one cubic foot per second, flowing constantly during the irrigation season, will serve a given number of acres.

This element of *duty* is not, of course, a subject of exact measurement for too many variable elements enter into its determination to render this possible; yet the duty may, in any particular section, be very clearly estimated. What the duty will be will depend altogether upon the crop to be served, and the nature of the sub-soil and surface soil on which the crop is grown.

The duty in one state will differ from the duty in another state, as will the duty in one section of a state differ greatly from that in another section of the same state. One crop will require more water than another, or the same crop may

require more water on one soil than on another.

In Dakota little is known as to the duty of water for, as yet, no measurements have been made, no extended system of irrigation is in practice and little thought has yet been given to this matter; nor has any effort been made to arrive at the maximum duty of any one well. When the township well system becomes general, and the greatest service, or duty, is demanded of each well, then will carefully kept records of duty be required, and such records will form the basis of estimates which will closely approximate to the duty of the well waters in the several sections of the state, and lead to a knowledge of better methods of application and conservation of the supply.

Nor is duty a constant quality for it is constantly on the increase; that is, the duty increases from year to year—other things being equal—the ratio of increase being very rapid immediately after the installation of the system of irrigation. This is apparent on considering that when the water is first applied its volume is very largely absorbed in placing the soil in proper condition. This having been done, the same volume will, the next year, serve to supply the prepared area and still leave a surplus for the reclamation

of a further area.

So, each year, the field of duty is extended until the maximum is finally reached. As stated, the duty in any locality will depend very largely on the nature of the soil, and it will depend still more upon the mean rain fall over that section. In a locality, or during a year, where the precipitation is small and nearly the full necessary supply must be artificially supplied the duty will be low; but where the precipitation is nearly sufficient to supply the needs of agriculture,

and but a small portion need be artificially supplied, then

the duty will be high.

In considering, therfore, what the probable duty in Dakota will be, account must be taken of the character of the soil, the comparative precipitation and evaporation and the

nature of the crop.

Hon. J. S. Greene, state engineer of Colorado, in the 1888 report states, as an approximate estimate, that the precipitation on the mountain areas west of the great continental divide is 33 inches, and on the plains areas 10.7 inches; an average over the whole of that area of 25 inches. on the mountain areas east of the divide the precipitation is 30 inches, and on the plains areas 15 inches; or a total average of 18.7 inches. He states further, and, in this, is in accord with other authorities, "that the limit of remunerative farming, without irrigation is drawn at an annual precipitation of twenty-two inches," that is, if the precipitation is less than 22 inches there cannot be certainty as to a remunerative return for agricultural labor. The matter of distribution of this precipitation enters here as a matter of the greatest importance as shown by the example cited on page 92.

In this report it is further stated, with reference to the duty of water and the distribution of precipitation—"as there is a demand for *general results* in this matter, it may be stated, relative to the duty of water on the plains of Colorado, measured where distributed to the land, that one second foot, running throughout the irrigation season, in addition to about 5 inches of rain-fall during April and May, and 4.5 during June, July and August, if distributed with fair care to diversified crops, on what might be called average land, would irrigate from 60 to 70 acres. It is noticed that, to accomplish this duty, it must be measured where placed upon the land. This is not always considered when

speaking of the duty of of water." (P. 406.)

Referring to table 14, below, it will be seen that the precipitation during April and May, in Dakota, has equaled or exceeded 5 inches in past years, except during 1890 and 1891; and that, in every year the precipitation during June. July and August has exceeded 5 inches, so that the conditions of distribution above quoted are much exceeded here, and hence the duty of our well waters would exceed the duty quoted (soil, average evaporation, and average humidity be-

ing equal.)

Averages

5.70

Year	Pr. Apl. & May	Pr. June, July & Aug	Total	
1882 1883 1884 1885 1886 1887 1888 1889 1890	8.68 6.59 5.60 6.26 5.10 5.11 5.86 6.45 3.52	13.18 11.30 9.47 13.84 9.12 15.07 7.67 5.21 8.01 10.52	21.86 17.89 15.07 20.10 14.22 20.18 13.53 11.66 11.53	TABLE NO. 14. Table of precipitation in Dakota during Apand May and during June, July and August (From table No. 43.)

16.04

10.34

ıg g. Then, too, the average Colorado precipitation of 18 or 19 inches is less than the Dakota average of about 21 inches, so this operates still further to increase the probable duty of water here.

In the recently published report of State Engineer J. P. Maxwell, of Colorado, (1890 report) are certain very pertinent suggestions and estimates, relative to water duty

which I cannot do better than to quote.

"Water rights vested on the basis of the low duty assigned to water ten years ago, have, in instances, deteriorated lands and reduced their productiveness by as urfeit in application, while on adjoining lands through an enforced economy, a higher duty, better conditions of soil, and greater productiveness have resulted."

"Unskilled labor has a penalty of 25 to 50 per cent attached to it in the application of water, and unfortunately this class is too prevalent in the irrigation fields, in many cases,

no other being obtainable."

"An abundant water supply tends to carlessness in its application and consequent waste. Where liberal and old water rights are provided, it is frequently the practice to turn the water upon the land and permit it to run without change or attention throughout the night and sometimes during the day, a large volume of water soaking into the soil without benefit to the crop."

"The duplication of ditches is another fruitful source of

waste, reducing the duty of the volume of water."

"Reference to some of the maps prepared by this department, will show, in different localities several ditches paralleling each other at inconsiderable distances apart, the upper one of which could be made to answer the purposes of all with marked economy in water, as well as large saving in capital."

"Too little attention has been given to the proper preparation of the surface to facilitate the rapid spreading of the

water."

"This is principally the result of too large individual ownership of land, rendering it impracticable to give close supervision and secure careful preparation of the land."

"The best results will be obtained from small proprietary rights in land, and a consequent higher state of cultivation."

The ownerships of the cultivated lands of the state should be multiplied by ten and the population increased to that extent."

All that is here stated will apply with equal force to Dakota, and he who would meet with the greatest measure of success will heed the cautions thus held out by so high an

authority.

Become an expert in irrigation by studying up from all available sources. Profit by the past experiences of others. Beware of attempting more than your means or experience will fully warrant and conserve well the supply of liquid wealth so freely granted you.

The following table will serve to show the great range of duty in the same state, and as a very valuable basis of com-

parison with our own more favorable and less fluctuating climatic conditions.

TABLE NO. 15.

TABULATED STATEMENT OF WATER-DUTY ON STREAMS INDICATED FOR 1889 AND 1890.

STREAMS GAUGE	D.	Mean discharge from May 20 to September 20 in cubic feet per second.	Area cultivated in acres.	Equivalent in depth over area in feet.	Rainfall during period.	Total depth over area	Duty in acres per cubic foot
Cache La Poudre	1889. 1890.	735.97 770.51	139,222 139,222	$1.178 \\ 1.254$	0.682		189.168 180.687
Big Thompson	1889. 1890.	214.53 425.42	91,037 \$9,790	0.579 1.192	no data		424.35 211.06
St. Vrain	1889.	215.46	94,013	0.563	0.532	1.095	436.33
South Boulder and	1890. 1889.	284.238 461.97	94,365 77,682	0.739 1.406			$332.69 \\ 168.15$
Boulder Creek?	1890.	419.33	76,682	1.34			182.86
Bear Creek	1889. 1890.	60.40 33.98	10,173 8,112	$1.46 \\ 1.03$			168.42 239.02

From 1890 Report of State Engineer of Colorado.

It will be noted that, in all the above cited estimates, the water is that of a natural stream the volume of which is largely augmented by seepage water. The water having been used at a higher level, seeps through the soil and finds its way back into the stream at a lower level, there to be used again and again, thus raising the duty, over a given area, of a given original volume.

In the level lands of the Dakotas, and on the purely individual system of irrigation which will prevail here, no account need be taken of seepage waters as a source of secondary supply; although the presence of seepage water, and the power of the soil to retain it, will go far towards determining the ultimate duty of the original well-supply.

Quoting, again, from the Colorado report of 1888, Engineer Greene says, "it is thought that when distributed with the greatest care, and in sufficient quantities to be handled without great waste, during seasons of average rainfall and to crops and soils fairly conditioned to its economical use, that the duty of water should approach 90 acres to the second foot."

Also "Two cubic feet of water per second carried on to a field in *one body*, will, under conditions otherwise the same, irrigate more than *twice* the area that *one* cubic foot carried *alone* would irrigate.

What will be the conditions of the duty of water under the Dakota well-system, and what the duty that may be safely relied upon under average conditions? Note that the average rain-fall for 10 years has been 21.58 inches; the maximum 28.12 inches, and the minimum 14.68 inches.

In this level country a rain-fall of 24 inches is sufficient to give abundant returns, and even less than that, with proper distribution and provided the soil could be maintained, year after year, up to a proper standard of saturation. For the sake of conservatism, reduce the average annual rain-fall to 18 inches, instead of 21 inches, then but 6 inches need be artificially supplied to give the maximum of 24 inches required.

Thus 6 inches may be taken to fairly represent the unit of duty required in Dakota.

One cubic foot per second=448.83 gallons per minute. This amount is equaled, or exceeded, by most of the smaller wells of the state.

One second-foot=10,368,000 cubic feet in 4 months, (which may be said to cover the irrigation season, from April to July) or a sufficient volume to cover 238 acres a foot deep, or 476 acres 6 inches deep. 476 acres may, therefore, be said to be the duty of a second-foot in that period of time.

Allowing for deep seepage and evaporation, and call the actual duty 320 acres, instead of 476 acres (a loss of 156 acres), and it would appear that a second foot is amply sufficient to serve a half section of land during a poor year.

Account is not here taken of the fact that during the months prior to the beginning of the irrigation seas on, the land may be prepared, by flooding, to such an extent as to render further service during the irrigation season almost unnecessary; and the further fact, that, by a system of reservoirs, an enormous volume may be stored to supplement the supply of the well itself during the 4 months of irrigation service. Thus the supply of the well during eight months of the year may be utilized to swell the duty of the well during the 4 months of service, to the extent of making the duty during that period extend over fully double the area above assumed to represent the estimated duty.

The difference in the uniformity of supply of the Colorado rivers and the Dakota wells is most marked. The 1890 gauging record of the Cache La Poudre river shows that the volume discharged during March varied from 50 to 150 cubic feet per second. During April, from 75 to 500 cubic feet; increasing thence rapidly to June 2d, when the discharge was 1825 cubic feet. The decrease was then quite rapid until the first of September, when it had fallen to less than 100 cubic feet, and it so remained during the balance of the season of discharge. The same is true of all other western rivers whose waters are derived from the melting

snows of the mountains.

There is therefore little chance to use the waters for purpose of irrigation except during the season of flood, or, in exceptional cases, where the waters are impounded in storage basins of great area. In Dakota, on the contrary, the supply is constant the year around. Winter and summer the flood pours forth with unabated energy, and the irrigator may—as he actually does—work in mid winter, with a hoe in his hand and a fur coat an his back.

By reason of this periodicity the duty of the Colorado waters is limited to the actual duty during the irrigation season, and, contrariwise, the duty of the Dakota well should be measured by what might be fairly called its annu-

al duty.

I have little doubt but that the duty of the second-foot in Dakota will be found, in the end, to be nearer 640 acres than 320 acres; but if, for the present, the lesser unite be adopted abundant alowance may be claimed and the claim be entitled to fair consideration by reason of its actual conservatism.

From table No. 20, of second feet reduced to gallons per minute, the following table may be constructed on the

basis of a duty of but 320 acres per second-foot.

TABLE NO. 16: DUTY OF WATER IN DAKOTA.

(New.)

Gallons per minute from well.	Equivalent in second ft.	Duty in acres.	Gallons per minute from well.	Equivalent in second ft.	Duty in acres.
448	1	320	2692	6	1920
897	2	640	3141	7	2240
1346	3	960	3590	8	2560
1795	4	1280	4039	9	2880
2244	5	1600	4488	10	3200

THE DIVISION AND MEASUREMENT OF WATER.

It has been stated by Prof. L. G. Carpenter, in his work on the above subject, that "one of the most important, as well as one of the most difficult problems of irrigation is that of making a just distribution of water." Reference being made to the distribution of irrigation waters in Colorado and elsewhere where irrigation is carried on on a vast scale and by means of waters taken from large ditches or canals which serve a large area and are supplied from rivers or great storage reservoirs in the mountains.

Every device which the ingenuity of the centuries could devise has been used to render this division more equitable, certain and economical and to prevent waste where, as is usually the case, the economy of water is of the first im-

portance.

The literature of the subject is voluminous, but the Dakota farmer will look far, and in vain, for any information

touching upon conditions similar to his own.

We have here no vast system of canals, nor will we have in the future; no vast storage basins and no need of the many devices used in other sections for the division and measurements of water. Our system is essentially individual, but the day is at hand when certain simple devices will be required to divide the waters of our wells among the few consumers under service by each well operating under the township well law, or among those who rent water from the individual owners of a well.

With us, too, it is not wholly a matter of *device* for the mere measurement of a given volume, or a question as to the *unit* of volume; but very largely a matter of legislation based upon our peculiar conditions and needs, which legislation has yet to be evolved and put to the test of practice.

Contract, too, will enter largely into the matter of the division of water and, on the start, the terms will be more varied and uncertain than the devices necessary to carry them out. With the Dakota farmer, as with farmers elsewhere, the central idea will be to secure the greatest possible service from the water at hand; and the prevention of

waste will soon demand attention.

In the irrigation operations of the west all the elements are predetermined. The water supply is known, the ditches or canals are constructed of a certain size to perform a certain service or serve a given area. This service cannot well be exceeded and great economy must be observed in order that the actual service may equal the calculated service. Here—the main chanel or source of supply is the well, the volume of which is easily determined. The fountain head may be inexhaustible but only so much can be drawn off. The farmer may have a surplus which he may waste or

sell to his neighbor, in which case economy in his own use and in theirs will operate to increase his revenue from the

sale of the surplus.

So, too, in the operation of the township wells. The greatest service will be desired for each consumer and the well will be called upon to serve as many consumers as possible. In the latter case, as in the case of an individual owner, proper service to each consumer can only be had through the medium of a storage reservoir; for if a well will not—on the instant—serve one consumer fully it will certainly fail to serve several consumers.

EACH MUST HAVE HIS OWN RESERVOIR. .

Herein will arise questions as to the manner of service,

priority, etc.

Suppose a well serves four quarter sections (say the E. ½ of Sec. 1 and the E. ½ of Sec. 12) and that by reason of the slope of the ground it is necessary to locate the well on the center of the N. E. ¼ of section 1. If the water is carried in a ditch to the other quarters, and the amount delivered is measured at the well, the owner of the S. E. ¼ of Sec. 12 would receive far less water than the owner of the N. E. ¼ of Sec. 1 because of the far greater loss by evaporation and seepage. His loss, too, would be his neighbor's gain.

If the water be distributed in a pipe line the loss of head due to friction in the longer pipe would operate to the same

end but to a lesser extent.

Again—if each consumer measures his water at the point of delivery in his own reservoir a question will arise as to the priority of service. A may fill his reservoir first and D last, but meanwhile the water in A's reservoir has been lowered a foot or two by evaparation and seepage and, at the period when greatest service is required, A may receive 20 per cent less service than D, yet each has received and paid for the same volume of water. If the service to the several reservoirs is by pipe line and is simultaneous the inequalities will be less and more easily subject to regulation.

It is not the intention here to raise any question as to the details of distribution or the possibility of an equitable division of the water; nor the purpose to suggest remedies for anticipated controversies, but it must be known that questions of detail, such as those above suggested, will arise and demand a solution. When they do a solution will be

found on lines of equity to all interests.

Notwithstanding our conditions are so wholly different from those met elsewhere, the measurement of the volume of our wells must be treated the same, however much the

final divisions of the waters may differ.

Heretofore too little attention has been paid to the accurate determination of the volumes of our wells. Usually the volume has been guessed at or an approximate estimate has been made by timing the filling of a barrel, hogshead or

tank. In some cases the stream has been weired and an ac-

curate estimate made as to the volume.

In a few cases grossly exagerated reports have been circulated as to the volume of certain wells (notably the Risdon well at Huron, which has been advertised as having a volume of 10,000 gallons per minute, whereas its true volume is but 2,250 gallons per minute.)

Such exagerations can only result in harm and should be discouraged. The truth is sufficiently wonderful to satisfy

the most exacting.

UNITS OF MEASUREMENT.

THE STATUTE INCH, is a unit of water measurement much used in the western states and territories. It varies in different states and even in different sections of the same state. It is equal to about 45 cubic inches per second. One second foot=38.4 statute inches in Colorado. This unit is practically the same as the miner's inch it being the miner's inch in the terms of a specific statutory specification. It varies in different states.

THE MINER'S INCH Is fully explained and illustrated in tables 18 and 19 and the accompanying notes and figures. When defined by state law it is known as the statute inch.

THE ACRE FOOT is equal to 43,560 cubic feet or such an amount as will cover one acre to a depth of one foot (See table 21 and notes & P. 60). This unit is more largely one

of service than of measurement.

THE SECOND FOOT, or cubic foot per second, (See table 20 and note following.) is a unit definite as to both volume and time and is the one upon which all wier tables are constructed and is no doubt the coming unit in this and other countries.

GALLONS PER MINUTE. Like the second foot this unit is definite as to both volume and time and is the one commonly used in Dakota. (See tables, 19 20, 36 and 37.)

Two general methods have been adopted in the division

and measurement of water.

THE FIRST is known as the DIVISOR, the object of which is to divide the waters of the ditches or streams into certain proportionate parts among consumers. The idea is not to measure according to some fixed unit but simply to divide or proportion the water according to a certain ratio. 1/2 to each of two consumers; 1/3 to each of three, &c &c.

THE SECOND is known as the MODULE the purpose of which is not to divide but to measure according to some fixed unit. In Spain, Italy and India measuring devices or modules have been in use for centuries but of late years they have reached their greatest perfection in our western

states

Of all measuring devices the WEIR has proved to be the most acurate and satisfactory. (See the following table of weir measurements, table 17.)

The rectangular weir wherein the crest is horizontal and the sides vertical is the common form and the one to which the tables herein given apply. The trapezoidal weir has the crest horizontal and the sides sloping; this form possesses certain advantages which will not, however, be considered here. The triangular weir or notch is likewise claimed to possess certain advantages over other forms.

Among the most satisfactory devices for the division and measurement of water is the *excess weir* or spill-box, invented by Mr. A. D. Foote of Idaho and illustrated in Fig. 6, wherein A is the main ditch the flow in which may be checked by gate B thus forcing a portion of the water into the spill-box D which has an opening F in the side, the discharge through which into the lateral ditch G is regulated by a slide and graduated scale as shown. The inner edge E E of the box is lower than the ends and outer side so that all water not passing through the opening F spills back into the main ditch. The head or height of the water above the opening being regulated by the height of the edge E E.

By this means the head at the opening F is maintained constant at all stages of the water in the main ditch and the amoun of water discharged through an opening of any length is not subject to fluctuations due to change of head but remains constant. Not over a foot of fall need be lost to the main ditch by using this device. The spill edge E E should be beveled to give a sharp edge, on the box side, over which the water may flow without friction. This form of module will find a wide field of usefulness in Dakota as the practice of irrigotion becomes more general and its details

more closely considered.

THE SPILL BOX.

THE RECTANGULAR WEIR.

This form of module or measuring device having been the subject of the most exhaustive investigation, is cons dered to be the best suited to the accurate measurement of water.

The conditions of its proper operations are:

1st. That the crest shall be horizontal and the sides vertical.

2d. That the up-stream face be vertical.
3d. That both the crest and sides be sharp edges on the up-stream side.

That the depth of water flowing over the weir be not less than 3 nor more than 25 inches.

That the depth of water flowing over the crest be not greater than 5th. the length of the weir.

That the weir opening be not over 3 the width of the stream ap-6th. proaching it.

7th.

th. That the discharge over the weir should be free and the approach of the water without velocity sufficient to produce eddies.

th. That the distance from the crest to the bottom of the channel—and from the ends of the weir to the sides of the channel, shall be at least twice as great as the depth of the water flowing over the weir. This is to secure complete contraction.

Weirs may have either partial or complete contraction as illustrated by figures 1 to 5 of Fig. 7.

Fig. 7. Illustrating Contraction on Weirs.

In following over a weir water takes the form shown in Fig. The upward movement of the water toward the crest A of the weir A B causing the water to arch upward as shown. The true head, as shown at c, is reduced by the downward curve of the water, as shown at d e. This is called the contraction. If the weir has the form shown in Fig. 2 the contraction of the flow will be but partial; that is, there will be contraction at the crest a c but none at the sides a b and c d past which the water flows as shown in Fig. 4. If the weir has the form shown in Fig. 3 the contraction is said to be complete, for, in addition to the contraction at the crest, there is also contraction at each side, a b and c d, as shown in Fig. 5 where it is seen that the width of the outflowing stream a is less than the width of the This will illustrate not only the action opening b. flowing water but the meaning of the term "Complete Contraction." which is a requisite to the proper application of the following table of weir measurements. TO CONSTRUCT A WEIR AND MEASURE THE VOL-

UME OF A WELL. Select some convenient point where, by throwing up a low bank, a small pond may be formed by the stream from the well. Across the outlet set a board or plank out of which has been cut a rectangular piece (say 12 inches deep by 4 feet long). Support the board by nailing to stakes driven into the ground taking care that the edge of the

opening is level or horizontal. Make the bank water-tight about the bottom and ends of the weir. Drive a stake several feet back of the weir and near the edge of the pond making the top of the stake level with the crest of the weir either by using a level or by driving the stake to water level at the moment the water begins to spill over the weir.

Used by permission of James Leffel & Co., Springfield. Ohio. (See advertisement P. 229. Fig. 8. Illustrating the construction of a weir and methods of weir measurement.

Permit the water to rise to the full height at which it will stand while flowing over the weir. Then measure the depth of water over the stake.

Enter the weir table with this depth (as explained in examples given) and get the quantity for one inch. Multiply this quantity by the length of the weir in inches to get the total volume flowing from the well, in cubic feet per minute.

If possible have the up-stream edges of the weir lined with strips of tin or sheet iron to give a sharp edge for the water to flow over. If this is not at hand then bevel the crest and sides of the weir to a sharp edge on the up-stream side. See, in short, that ALL the conditions mentioned on page 52 have been complied with. The manner of constructing and using a weir is illustrated on the opposite page, where A is the weir board with the beveled notch or opening B. E is the stake driven back to the side of the weir, out of the current, and from which the true depth is taken as shown.

Application of Weir Table No. 17.

This table gives the number of cubic feet of water passing per minute over *each inch in width* of a weir, and for depths

from $\frac{1}{16}$ inch to 25 inches.

The top horizontal line of fractions are the fractions of an inch in depth, and the columns of figures at the right and left ends indicate the full inches of depth. The quantities inside the table are the cubic feet discharged.

Thus 75 inch of depth= .11 cu. ft. per inch width of weir.
$$\begin{cases} \text{See at} \\ 10 \text{ inches} \end{cases}$$
 " =12.71 " " " " " " \end{cases} $\begin{cases} \text{See at} \\ ***** \\ 1014 \end{cases}$ " " =13.19 " " " " " " " " in the table \end{cases}

These examples will render clear the use of the table

Examples of Use. How many cubic feet and gallons are discharged per minute by a well the water of which, in flowing over a weir 5 feet long, shows a depth of 7% inches? From table the quantity of water for one inch wide by 7%

From table the quantity of water for one inch wide by 7% inches deep=8.05 cubic feet per minute; 5 feet wide=60 inches; therefore 8.05 multiplied by 60=483 cubic feet per minute. Referring to table No. 36 we find that 483 cubic feet=3612.8 gallons. Therefore by this simple process the volume of our well per minute has been found to be 483 cu-

bic feet, or 3612.8 gallons per minute.

The work involved in the construction of a weir is but slight, and the calculation of the flow, as above, is a mere matter of multiplication and addition. Every well owner should see that the volume of his well is accurately determined in this way; and not once alone, but every few months, in order to know whether there is any increase or diminution in the flow. A series of such systematic tests would no doubt result in furnishing valuable information leading up to a correct determination as to the source and supply of the artesian stream.

TABLE NO. 17. HER MEASUREMENTS

								W	IB	R	М	\mathbf{E}_{I}	IS	UF	RE	MI	DIN	T	3.								
James Leffel.	Inches.	1	2	ec	+	5	9	7	∞	6.	10	11	12	FT .	#	15	16	17	18	19	07	21	22	83	77	25	
James	95	04.	1.14	2.09	3.22	4.50	5.90	7.44	9.10		12.71	14.67	16.73	18.87	21.09	23.38	25.76	28.20	30.70	33.29	35.94	38.65	41.43	44.28	47.18	50.10	
H.	100	98.	1.08	20.2	3.14	4.41	5.81	7.35	8.97	10.73	12.59	14,55	16.59	18.72	20.94	23.23	25.61	28.04	30.55	33.12	35.77	38.48	41.26	44.10	47.00	49.93	-
DEPT	7/8	88.	1.03	1.96	3.07	4.32	5.72	7.25	8.86	10.62	12.47	14.42	16,46	18.58	20.80	23.08	25.46	27.89	30.39	32.96	35.60	38.31	41.09	43-92	46.81	49.76	-
HES	643	98.	86.	1.89	2.99	4.24	5.63	7.15	8.76	10.51	12.35	14,30	16.34	18.45	20.66	22.94	25.31	27.73	30.23	32.80	35.44	38.14	40.91	43.74	46.63	49.58	1
TABLE FROM ONE-SIXTEENTH INCH DEPTH TO TWENTY-FIVE INCHES DEPTH	3/4	92.	.93	1.83	20.2	4.16	5.54	7.05	8.66	10.40	12.23	14.16	16.20	18.32	20.52	22.79	25.16	27.58	30.08	32.63	35.27	37.96	40.73	43.56	46.43	49.39	
Y-FIV	110	83.	.87	1.77	2.85	4.07	5.45	6.95	8.55	10.29	12.12	14.04	16.08	18.18	20.38	22.65	25.01	*27.43	26.62	32.47	35.10	37.79	40.56	43.38	46.26	49.20	
VENT	10,00	02.		1.71	2.78	3.99	5.36	6.85	8.45	10.18	12.00	13.93	15.96	18.05	20.24	22.51	24.86	27.27	29.76	32.31	34.94	37.62	40.39	43.20	46.08	49.02	
ro Tw	9 1	.17	.78	1.65	2.71	3.91	5.27	6.75	8.35	10.01	11.88	13.80	15.81	17.91	20.10	22.35	24.71	27.12	29.60	32.15	34.77	37.45	40.21	43.02	45.90	48.83	-
PTH 1	1/2	E	.74	1.59	2.63	3.83	5.18	6.65	8.25	96.6	11.77	13.67	15.67	17.78	19.97	22.22	24.56	26.97	29.45	31.98	34.60	37.28	40.04	42.84	45.71	48.65	1
H DE	17	Ē	.70	1:52	2.57	3.75	5.10	6.56	8.15	9.82	11.65	13.55	15.56	17.65	19.83	22.08	24.41	26.81	29.29	31.81	34.44	37.11	39.86	42.67	45.53	48.46	
INC	3%	80.	.65	1.47	2.50	3.68	5.01	6.47	8.05	9.74	11.54	13,43	15.43	17.52	19.69	21.94	24.26	26.66	29.14	31.66		36.94	39.69	42,49	45.38	48.28	
ENTE	16	.07	09:	1.41	2.43	3.60	4.92	6.37	7.94 *	9.63	11.42	13.31	15.30	17.39	19.55	21.79	24.11	26.51	86.87	31.50	34.11	37.87	39.52	42.31	45.18	48.09	1
IXTE	1 1/4	.0.	.55	1.36	2.36	3.52	4.84	6.28	7.84	9.52	11.31	*13.19	15.18	17.26	19.45	21.65	23.97	26.36	28.82	31.34	33.94	36.60	39.34	42.13	45.00	47.91	1
ONE-8	- P	6.	.51	1.30	2.29	3.44	4.75	6.18	7.74	9.42	11.19	13.07	15.05	17.12	19.28	21.48	23.82	26.21	28.66	31.18	33.78	34.46	39.17	41.96	44.82	47.72	
ROM		T 0:	.47	1.24	2.23	3.37	4.67	60.9	7.64	9.31	11.08	13.95	14.92	16.99	19.14	21.37	23.67	26.06	28.51	31.02	33.61	36.27	39:00	41.78	44.64	47.55	
LE F	- 12	900	.43	1.19	2:16	3.29	4.58	00.9	7.54	9.20	10.97	12.83	14.79	16.86	19.01	21.23	23.53	25.91	28.35	30.86	33.45	36.10	38.82	1.60	44.46 4	47.36	
R TAE	0		.40	1.14	5.09	3.22	4.50	5.90	7.44	9.10	10.86	*12.71	14.67 1	16.73	18.87	21.09 2	23.38 2	192	28.20 2	30.70	33.29	35.94	38.65	41.43 4	44.28 4	47.18	
WEIR	les.	0		22	200	4	2	9	7	∞ ∞	9	10 *1	11 1	12 1	13 1	1	1	16 2	1	1	1	20	1	{	23	24 4	
	Inches	1]							- Indiana						1									

Certain refinements of calculation enter into the matter of measurement by weirs, but they have not sufficient bearing on the ordinary practice to deserve more than mention here. Tables of weir measurements are constructed wherein these elements have been taken into account, but the table given is sufficiently accurate for our use. In view of the fact that the table given may not meet all the requirements of practice the formula upon which the most accurate weir measurements are based is here given and briefly explained. The weir formula of Francis is as follows:

 $V = C (L - .2 H) H^{\frac{3}{2}}$

Wherein V=Volume in cu ft per sec. flowing over the weir C=The coefficient of discharge (=3.33) (or 3.3333+)

L=The length of the weir in feet.

H=The head, or depth of water over the weir.

³=The square root of the cube of H.

Substituting the value of C, the formula becomes,

 $V=3.33 (L-.2H) H^{\frac{3}{2}}$

Which reads as follows:

Volume per second=3.33 multiplied by (the length of the weir less two tenths of the head) multiplied by the square root of the cube of the head.

This will be rendered plain by an illustration.

What will be the discharge per second over a weir 10 feet

long if the water is 1.5 feet deep?

The total length L of the weir is reduced, by reason of the contractions at the ends, to the calculated amount of $_{10}^{-1}$ of the depth, or head, for *each* contraction, hence the expression (L—.2H)

In the example the depth=1.5 feet, $\frac{2}{10}$ of which (there being 2 contractions) is=.3, and ten feet—the full length—

less .3=9.7 feet, or the effective length.

The cube of 1.5 (the head) =3.375 and the square root of 3.375=1.837. We now have the formula thus:

 $V = 3.33 \times 9.7 \times 1.837$.

Which multiplied through=59.39 cubic feet per second

flowing over the weir.

The cubes and roots in these calculations may be taken directly from the tables given elsewhere herein. This amount is somewhat less than that resulting from the use of the weir table, but the table is sufficiently accurate for all practical uses. The use of the formula may, in some cases, be more convenient and hence it has been given. Ordinarily the formula is given thus.

 $V=3.33 L H^{\frac{3}{2}}$

no account being taken of the loss to L resulting from the end contractions. If a weir is used wherein there are no end contractions then this last form of formula would be used. If the opening is obstructed by a central post there would be 4 contractions and the expression of the formula would be (L—.4H), and so on for any other number of contractions.

TABLE NO. 18.

TABLE OF MINER'S INCHES

Reduced to Cubic Feet and Gallons and to Cub. Ft. and Gals. per Minute.

(Corresponding with the "Colorado" inch.)

New.

	(Correspond	ing with the	Colorado inch	1000
Miner's	Equivalent in	Equiv. in cu.	Equivalent in	Equiv. in Gals.
Inches.	Cubic Feet.	ft. per minute.	Gallons.	per minute.
• 1	.0259337	1.556024	.194	11.64
2	.0518674	3.112048	.388	23.28
$\frac{2}{3}$.0778011	4.668072	582	34.92
4 5 6 7 8 9	.1037348	6.224096	.776	46.56
5	.1296685	7.780120	.970	58.20
6 1	.1556022	9.336144	1.164	69.84
7	.1815359	10.892168	1.358	81.48
8	.2074696	12.448192	1.552	93.12
	. 2334033	14.004216	1.746	104.76
10	.2593370	15.560240	1.940	116.40
20	* .52	* 31.12	* 3.88	* 232.8
30	.78	46.68	5.82	349.2
40	1.04	62.24	7.76	465.6
50	1.30	77.80	9.70	582.0
60	1.56	93.36	11.64	698.4
70	1.82 2.07	108.92	13.58	814.8
80	2.07	124.48	15.52	931.2
90	2.33	140.04	17.46	1047.6
100 .	25.93	155,60	19.40	1164.0
200	51.87	311.20	* 38.8	2328.
300	77.80	466.80	58.2	3492.
400	103.73	622.40	77.6	4656.
500	129.67	778.01	97.0	5820.
600	155.60	933.61	116.4	6984.
700	181.54	1089.21	135.8	8148.
800	207.47	1244.81	155.2	9312.
900	233.40	1400.42	174.6	10476.
1000	259.34	1556.02	194.0	11640.
10000	2593.37	15560.24	1940.0	116400.

* Note the change in location of the decimal point at *****

Fig. 9. The Miner's Miner's Inch Measurement, tity of water a

The Miner's Inch is such a quantity of water as will flow through an aperture one inch square in a board two inches thick, under a head of water of 6 inches, in one second of time and it is equal to 0.194 gallon, or 11.64 gallons per minute; and to .0259337 cubic foot, or 1.556024 cubic feet per minute. Fig. 9 shows a trough with 6 inches depth of water in it, and with a

depth of water in it, and with a bottom 2 inches thick through which is cut a hole 1 inch square. If the depth of water is maintained at 6 inches one miner's inch per second would be discharged through the hole.

This unit of water measurement has been and is very extensively used in the west in mining operations, irrigation and the guaging of streams and ditches but it is largely giving way to more definite units. By reason of the difference in the head of water over the opening, the value of the miner's inch varies in different states from 1.36 to 1.173 cubic feet per minute. The head varies from 3 to 10 inches and in some cases it is measured from the top of the opening, (in the side of the box or flume) in other cases from the bottom and in still other cases—and properly—from the center of the opening.

Then, too, the volume discharged under a given head, and from a given area of opening, varies as the form of the opening is changed—thus, 36 miner's inches will be discharged through an opening one inch high by 36 inches long, and also from an opening 6 inches high by 6 inches wide, (the area of the opening being the same) yet, as a fact, more water will flow through the latter opening because it flows with less resistance from the edges of the opening. In the first case the edges of the opening measure 74 inches, while in the second case they measure but 24 in.

opening measure 74 inches, while in the second case they measure but 24 in.

The volume discharged is further varied by the form of the edge, i. e., whether it be square, rounded, sharp or beveled; and further still by the thickness of the edge—whether it be one inch or more. It being manifestly impossible, over any extended area, to secure any uniformity in the head of water maintained, or in the form or thickness of the edges of the outlet,

Fig. 10. Miner's Inch Measurements.

or in the ratio of the area of opening to wet perimeter, it is impossible to maintain any standard of value for the miner's inch except within the limits stated. The Colorado inch most nearly corresponds with the theoretical discharge. The California inch, as usually measured, is from an aperature 2 and inches high of any desired length, though a plank 1½ inches thick as shown in Fig. 10. The bottom of the aperature being

2 inches above the bottom of the flume. This secures a complete contraction of the stream. The value of the inch will increase as the orifice is enlarged, as shown in the following table.

TABLE NO. 19.

TABLE OF MINER'S INCH MEASUREMENTS. From Pelton Water Wheel Co.

-										
Length	Openin	ng 2 inches	high.	Oper	ning 4 inches	high.				
of	Head to	Head to	Head to	Head to	Head to	Head to				
openi'g	center 5	center 6	center 7	center 5	center 6	center 7				
in	inches.	inches.	inches.	inches.	inches.	inches.				
inches.	Cubic ft.	Cubic ft.	Cubic ft.	Cubic ft.	Cubic ft.	Cubic ft.				
4	1.348	1.473	1.589	1.320	1.450	1.570				
6 8	1.355	1.480	1:596	1.336	1.470	1.595				
8	1.359	1.484	1.600	1:344	1.481	1.608				
10	1.361	1.485	1.602	1.349	1.487	1.615				
12	1.363	1.487	1.604	1.352	1.491	1.620				
14	1.364	1.488	1.604	1.354	1.494	1.623				
16	1.365	1,489	1.605	1.356	1.496	1.626				
18	1.365	1.489	1.606	1.357	1.498	1.628				
20	1.365	1.490	1.606	1.359	1.499	1.630				
22	1.366	1.490	1.607	1.359	1.500	1.631				
24	1.366	1.490	1.607	1.360	1.501	1.632				
26	1.366	1.490	1.607	1.361	1.502	1.633				
28	1.367	1.491	1.607	1.361	1.503	1.634				
30	1.367	1.491	1.608	1.362	1.503	1.635				
40	1.367	1.492	1.608	1.363	1.505	1.637				
50	1.368	1.493	1.609	1.364	1.507	1.639				
60	1.368	1.493	1.609	1.365	1.508	1.640				

This table shows the discharge in cubic feet of each miners' inch of the openings given in the table. For an opening 2 inches high by 20 inches long and 5 inch lead the total discharge per minute would be $1.365 \times 40 = 54.6$ cubic feet. (2 inches by 20 inches=40 inches=area of opening.)

The following brief table, by C. L. Stevenson, C. E., of Salt Lake City, shows at a glance the relationship between the different units of water measurement with sufficient accuracy for ordinary calculation. It will be valuable for ready reference.

> 1 cu. ft. per second equals: 7.5 gallons per second.

2 acre feet in 24 hours. 60 acre feet in 30 days. 180 acre feet in 3 months. 730 acre feet in 1 year.

38.4 Colorado inches. 100 California inches equal:

4 acre feet in 24 hours. 1 acre foot in 6 hours. 120 acre feet in 30 days. 360 acre feet in 3 months. 1460 acre feet in 1 year.

15 gallons per second. 900 gallons per minute. 77 Colorado inches. 2 cubic feet per second.

449 gallons per minute.

50 California inches,

100 Colorado inches equal:

 $5\frac{1}{6}$ acre feet in 1 hour. 1 acre foot in 4.2 hours. 155 acre feet in 1 month. 465 acre feet in 3 months. 1,886 acre feet in 1 year.

19.5 gallons per second. 1,170 gallons per minute. 2.6 cubic feet per second. 130 California inches.

The unit of the miner's inch will find no place in Dakota. Mention has been made of it here because it is so extensively used elsewhere and is so frequently referred to in the irrigation literature of the day.

TABLE NO. 20.

"SECOND FEET" REDUCED TO GALLONS.

		rew
No. of	Equivalent	Equivalent
second	in gallons	lin gallons
feet.	per second.	per min'te.
1/4	1.87	112.2
1/4 1/2 3/4	3.74	224.4
3/4	5.61	336,6
	7.48	448.8
$\tilde{2}$	14.96	897.6
$\bar{3}$	22.41	1346.4
4	29.92	1795.2
1 2 3 4 5	37.40	2244.0
6	44.88	2692.8
6 7 8	52.36	3141.6
8	59.84	3590.4
. 9	67.32	4039.2
10	74.80	44 88.
20	149.61	8976.
30	224.41	13464.
40	299.22	17952.
50	374.02	22440.
60	448.83	26928.
70	523.63	31416.
80	598.44	35904.
90	673.24	40392.
100	748.05	44883.
200	1496.1	89766.
300	2244.2	134649.
400	2992.2	179532.
500	3740.2	224412.
1000	4780.5	448330.

NOTE.

The unit of water measurement known as the SECOND FOOT is very largely used in the west where it is becoming more popular because it is a unit whose value cannot be disputed. A second foot is one cubic foot per second. This is definite as to a determinable volume discharged within a determinable time, and thus is established a unit most capable of expression in the terms of ordinary calculations.

It might be well if such a unit were used to express the volume of our wells but the unit of gallons-per-minute has, by usage, become established and it will probably be retained. Some equity, too, may be urged in the retention of the gallon unit, as applied to wells, instead of the adoption of the larger unit of the second foot which is more applicable to the greater volumes to which it is applied in the greater irrigation operations of the far west.

TABLE NO. 21.

VOLUME AND WEIGHT OF WATER ON ONE ACRE.

					New.
	Cubic feet of	Gallons.		62.425 pc cubic foc	ounds to the
inches.	water.		Tons	and	Pounds.
1	3630	27153	113		603
2	7260	54308	226		1206
3	10890	81462	339		1809
4	14520	168616	453		411
5 6	18150	135771	566		1014
6	21780	162924	679		161 8
. 7	25410	190079	793		220
8 9	29040	217234	906		822
	32670	244388	1019		1424
10	36300	271542	1133		-27
11	39930	298695	1246		630
12	43560	325850	1359		1233

Note: For amounts less than 1 inch cut off one place to the right for tenths and two places for hundredths, thus—For 1 inch Cu. ft. = 363.0 and Gals. = 2715.3.

" .01 " " = 36.3 " " = 271.53

Example: Required the volume for fall of 7.38 inches?

7. inches =
$$25410$$
 cu. ft. $190,079$ gallons.
.3 " = 1089 " $8,146.2$ " $2,172.34$ " $200,397.54$ " $200,397.54$ "

1 ACRE FOOT = 43,560 cubic feet, or sufficient water to

cover the acre to a depth of one foot.

This unit is the most recent of the units of water measurement. The element of *time* is entirely eliminated and the element of *volume* is specifically fixed in the terms of the

definite unit, the cubic foot.

The unit is largely used in representing the capacity of storage reservoirs, since it conveys a definite or comprehensible idea as to the *service* of the water stored. To say that a reservoir will hold 4,356,000 cubic feet conveys but little knowledge to the average man; but to say that the reservoir will hold 100 acre feet of water conveys at once the idea as to the *service* which will be rendered by the impounded water. The unit is, therefore, what may be properly termed a SERVICE UNIT, and it fully answers this purpose.

The last column of Section A, of Table No. 34, will give the cubic feet in the number of acre-feet represented by the acres of the first column, and Section B the corresponding number of gallons, while Section C will show the time required for wells of different volumes to throw this amount

of water.

TABLE NO. 22.

From Trantwine's "Civil Engineer's Pocket Book."

HYDRAULICS.

TABLE 2. Weight of Water (at 62½ lbs. per cubic foot) contained in one foot length of pipes of different bores. (Original.)

Bore. Ins.	Water. Lbs.	Bore. Ins.	Water. Lbs.	Bore. Ins.	Water. Lbs.	Bore. Ins.	Water. Lbs.
1/8	0.005305	4	5.43234	141/2	71.3843	40	543.234
1/8/4/8/2/8/4/8	0.021220	41/4 41/2 43/4 5	6.13260	15	76.3922	42	598.915
3/8	0.047745	$4\frac{1}{2}$	6.87530	$15\frac{1}{2}$	81.5699	44	657.313
1/2	0.084880	43/4	7.66044	16	86.9174	46	718.427
5%	0.132625	5	8.48803	161/2	92.4346	48	782.257
3/4	0.190981	$5\frac{1}{4}$ $5\frac{1}{2}$	9.35805	17	98.1216	50	848.803
7/8	0.259946	$5\frac{1}{2}$	10.27051	171/2	103.9783	52	918.065
1 "	0.339521	$5\frac{1}{2}$ $5\frac{3}{4}$	11.22542	18	110.0048	54	990.044
11/8	0.429706	6	12.22276	$18\frac{1}{2}$	116.2011	56	1064.738
11/4	0.530502	$6\frac{1}{4}$	13.26254	19	122.5671	58	1142.149
11/8 11/4 13/8 11/2 15/8 13/4 17/8	0.641907	$ \begin{array}{c} 61/4 \\ 61/2 \\ 63/4 \\ 7 \end{array} $	14.34477	191/2	129.1029	60	1222.276
11/2	0.763922	63/4	15.46943	20	135.8084	62	1305.119
15%	0.896548	7	16.63653	21	149.7288	64	1390.678
13/4	1.039783	7½ 7½	17.84608	22	164.3282	66	1478.954
17%	1.193629	$7\frac{1}{2}$	19.09806	23	179.6067	68	1569.946
2	1.358084	73/2	20.39249	24	195.5642	70	1663.653
21/8	1.533150	7 ¹ / ₂ 7 ³ / ₄ 8 8 ¹ / ₄	21.72935	25	212.2007	.72	1760.077
21/4	1.718826	81/4	23.10865	26	229.5163	74	1859.218
23%	1.915111		24.53040	27	247.5109	76	1961.074
21/2	2.122007	8 ³ / ₄	25.99458	28	266.1845	78	2065.646
21/8 21/4 23/8 21/2 25/8 23/4 27/8 3	2.339512	9	27.50121	29	285.5372	80	2172.935
23/4	2.567628	$9\frac{1}{2}$	30.64178	30	305.5690	82	2282.940
27/2	2.806354	10	33.95211	31	326.2798	84	2395.661
3	3.055690	101/2	37.43220	32	347.6696	86	2511.098
31/8	3.315636	11	41.08205	33	369.7385	88	2629.251
017	3.586191	$11\frac{1}{2}$	44.90166	34	392.4864	90	2750.121
33/8	3.867357	12	48.89104	35	415.9133	92	2873.707
31/9	4.159133	$12\frac{1}{2}$	53.05017	36	440.0193	94	3000.008
35%	4.461519	13	57.37906	37	464.8044	96	3129.026
33/4 37/8	4.774515	131/2	61.87772	38	490.2685	98	3260.761
37/8	5.098121	14	66.54613	39	516.4116	100	3395.211

The weight of water in a given length (as one foot) of any pipe or other circular cylinder is in proportion to the square of the bore, or inner diameter. Hence the weight of water in 1 foot length of any cylinder of other diameter than those in the table can be found by multiplying that for a 1 inch pipe, 0.339521, by the square of the inner diameter of the given cylinder in inches. Thus, for a cylinder 120 inches diameter: diameter $^2 = 120^2 = 14400$, and weight of water in 1 foot depth $= 0.339521 \times 14400 = 4889.10$ lbs. Similarly, $(\frac{7}{16})^2 = \frac{4.9}{2.56} = 0.191406$, and $0.339521 \times 0.191406 = 0.064986$ lb. = weight in 1 foot of $\frac{7}{16}$ inch pipe. Here, also, $\frac{7}{16} = half$ of $\frac{7}{8}$; hence, weight for $\frac{7}{16}$ inch = one-fourth of weight for $\frac{7}{8}$ inch = one-fourth of 0.259946 = 0.064986.

Weight of one square inch of water 1 foot high, at $62\frac{1}{4}$ lbs. per cubic foot = $62.25 \div 144 = 0.432292$ lb.

For further information respecting weight of water, see page £ 61 & 68

TABLE NO. 23.

TABLE OF WEIGHT OF WATER.

Maximun density is at 39:8° Fahr.

New.

Cubia fact	= Pounds.	Gallons. =	= Pounds.
0 00000			
123456789	62.425	1 2 3 4 5 6 7 8	8. 3216
2	124.850	2	16.6432
3	187.275	3	24.9648
4	249,700	. 4 .	33.2864 41.6080
5	* 312.125	9	10 0000
0 7	* 374.550 * 436.975	0	-0 0440
			00 8500
0	# 499.400 # 561.825	0	m4 0044
10	⊕ 624.250	10	83.2160
20	* 1248.50	20	* 166.432
30	1872.75	30	·= 249.648
40	2497.00	40	332.864
50	3121.25	50	416.080
60	.5 3745.50	60	£ 499.296
70	4369.75	-70	582.512
80	# 624,250 # 1248.50 1872.75 2497.00 # 3121.25 # 3745.50 9 4369.75 # 4994.00	80	665.728
90		90	748.941
100	6242.50	100	832.160
200	8 * 12485.0	200	# 1664.32
300	≇ 18727.5	300	2496.48
400	g 24970.0	400	ਕੁ 3328.64
500	31212.5	500	8 4160.80
600	37455.0	600	4992.96
700	43697.5	700	.5825.12
800	a 49940.0	800	e 6657.28
900	56182.5	900	7489.44
1 000	62425.0	1 000	9321.60
2 000	* 124850.	2 000	* 16643.2
3 000	<u>2</u> 187 275.	3 000	24964.8
4 000	= 249 700.	4 000	₹ 33 286.4
5 000	岛 312 125.	5 000	g 41 608.0
6 000	5618.25 6242.50 * 12485.0 * 12485.0 * 18727.5 * 24970.0 * 31212.5 * 43697.5 49940.0 * 124850. * 124850. * 124850. * 124850. * 124850. * 124850. * 124850. * 124850. * 124850.	6 000	44.8944 83.2160 83.2160 83.2160 8416.080 8499.296 852.512 865.728 832.160 82.4964.8 832.2160 832.4964.8 832.864 4160.80 4992.96 8657.28 7489.44 8921.66 9321.66 9321.66 9321.66 9321.66 9321.66 9321.66 9321.66 9321.66 9321.66
7 000	200 910	7 000	2 58 251.2 66 572.8
8 000	499 400.	8 000	74894.4
9 000	561 825. 624 250.	10 000	83216.0
10 000 100 000	6 242 500.	100 000	832 160.0
1 000 000	62 425 000.	1 000 000	8 321 600.0
1 000 000	02 420 000.	1 000 000	0 321 000.0

For ordinary purposes the weight of a cubic foot of water may be taken to be 62½ pounds. The weight varies with the temperature as shown in the following table.

Temperature Fahrenheit.	Lbs. per cubic ft.	Temperature Fahrenheit.	Lbs. per cubic ft.
32° freezing	62.417	70°	62.302
40°			
50°	62.409	90°	62.119
60°			

Cubic foot of ice = 57.2 lbs.

Cubic foot salt or sea water = 64.31 lbs.

35.84 cubic feet of water weighs one ton.

39.13 ice

23:11 feet of water = 1 lb. per square inch.
1 cubic inch of water = .036024 lb. approximately.
1 " " = .576384 ounce.

1 U. S. Pint = 1.0402 lb. of water. 1 U. S. Quart = 2.0804 lb. of water. 1 U. S. Gallon = 8.3216 lb. of water. (8\%) 1 U. S. Wine barrel—31\% Gal. = 262.131 lb. of water.

Trautwine and Haswell.

TABLE NO. 24.

PRESSURE OF WATER.

The pressure of water in pounds per square inch for every foot in height to goo feet; and then by intervals, to 1000 feet head. By this table, from the pounds pressure per square inch, the feet head is readily obtained; and vice versa.

Peci Esci.	Pressure per square inch.	Feet Head.	Pressure per square inch.	. Feet Head.	Pressure per square inch.	Feet Head.	Pressure per square inch.	Feet Head.	Pressure persquare inch.
1	0.43	, 65 66	28.15 28.58	129	- 55 88 .	193	83.60	257	111.32
2	0.43	66	28.58	130	56.31	194	84 03	257 258	111.76
3	1.30	67 68	29 02	131	56.74 57.18	195	84.47	259	112.19
3456 70	1.73 2.16	69	29 45 29.88	132	57.18	196	84 90 85 33	260	112.62
8	2.50	70	30.32	134	1 58 04	197	85 76	262	113.49
7	2 59 3.03	71 .	30.75	135	- 58 48	199	86,20	262	113.92
8	3.46 3.89	72	30.75 31.18	135	58.91	200	86,63	264	114.36
9	3.89	73	31.62	137	59.34	201	87.07	265	114.79
11	4.33	74	32.05 32.48	138	59.77	202	\$7.50	266	115 22
12	4.76	75 76	32.40	139	60,21 60 64	203	87.93 88.36	267 268	115.66
13	5 20 5.63 6.06	76 77	33 35	141	61.07	205	SS.So.	269	116.52
14:	6.06	70	33 35 33.78	142	61.51	205 206	89 23 89 66	270	116.96
15 16	-6.49	79 80	1 34.21 1	143	61.94	207	89 66	271	117.39
10	6.93	80 81	34.65 35.08	144	62.37 62.81	208	90 10	272	117 82
17	7.36	82		145 146		209	90.53	273	118.69
19	7.79 8 22	83	35 52 35.95	140	63.24 63.67	211	90,96 91 39	274	119 12
20	8.66	84	36.30	147 148	64.10	212	91.83	275 276	119.56
21	9.09	84 85 86	36.39 36.82	149	64.54	213	92,26	277	119.99
22	9 53 9.96	86	37.25	150	64.97	214	92.69	277 278	120 42
23	9.96	87 88		151	65 40 65 S4	215	93 13	279 2So	120.85
24	10.39	89	38 12	152	66.27	216	93.56	250	121.29
25 26	11.26	90	38.55 38.98	153 154	66.70	217 218	93 99	2S1 2S2	122.15
27 28	11.69	91	30.42	155	67.14	210	94.43 94.86	2S3	122.59
	12.12	92	39.85 40.28	156	67.57	219 220	95.30	284	123.02
29	12.55	93	40.28	157	68.00	.221	95.73	2S5	123 45
30	12.99	94	40.72	158	68.43	222	96 16	230	123.89
32	13.42	95 96	41.15	159 160	6S 87	223	96 60	2S7 2SS	124.32
33	14.29	90	42.01	161	69.31 69.74	225	97.03 97.46	289	124.75
34	14.72	97 98		162	70 17	226	97.90	290	125.62
35 36	14.72 15.16	.99	42 45 42.88	163	70.61	227 228	97.90 98.33	291	126.05
36	15.59 10.02	100	43 31 43.75 44.18	164	71.04		98 76	292	126.48
37 38	10.02	101	43.75	165 166	71.47	229	99.20	293	126 92
39	16.45	103	44.61	167	71.91 72.34	230 231	99.63	294 295	127.35
40	17.32	104	45.05	167 168	72.77	232	100.00	295	128.22
41	17.75	105 106	45.05 45.48	169	73.20	233	100 93		128 65
42	17.75 18.19	106	45 91	170	73.64	234	101 36	297 298	129.03
43	18.62	107 108	46.34	171	- 74.07	235	101.79	299	129.51
44	19.05	105	46.78	172	74.50	236	102 23	300	129.95
45 46	19.49	110	47 21	173 174	74.94	237 23S	102,66	310	133.62
	20.35	111	47.64 48 oS	175	75.37 75.80	239	103 53	330	142.95
47 48	20.79	112	48.51	176	76.23	240	103.90	340	147.25
49	21 22	113.	48.94	177 178	76.67	241	104.30	350	151.61
50	21.65	114	40 28	178	77 10	242	104.83	360	155.94
51 52	22.09	115	49 81 50 24 50 68	179	77-53	243	105.26	370 380	160, 27
53	22.52		50.24	181	78.40	244	105.69		168.94
54	23.39	117	51 11	1S2-1	77.97 78.40 78.84	245	106.56	390 400	
55	23.82	119	51.54	183	79.27		106.00	500	173 27 216 58
56	24.26	120	51.98	1S4	79 70	247	107.43 107.86 10\$.29	600	259.90
57 58	24 69	121	52.41	185 185	So. 14	249	107.86	700 800	303.22
50	-25.12	122	52.84 53.28	185	80.57	250	105.29		346.54 389.80
59	25.55 25.99	123	53.71	188 1	81.43	251 252	108.73	900	433 18
61	26 42		54.15	189	81.87	253	109.59		433 70
62	26.85	125	54.15 54.58	190	S2.30	254	110.03		
63	27.29	127	55.01	191	82 73	255	110.46		

From catalogue of Chapman Valve Mfg. Co.
To find the pressure per sq. in. of a column of water of any height multiply the height of the column by .43318 (or 434, as it is usually given.)

See note on next page.

Note, as to table on last page. Many suppose that a well having a static pressure of a certain number of pounds per sq. in. has the same service, duty and volume of delivery as would be obtained from a column of water falling through a pipe of same size and with a head corresponding to the pressure of the well. Such is not the case, however, there being no known relationship between the two so far as a well is

To illustrate—From table we see that a head of 231 feet will give a pressure of 100.06 pounds per square inch and (although not given in the table) a certain volume will be delivered per minute. If either the head, pressure or volume be known the other two may be accurately estimated. In case of a well, however, this is not true. A well having a pressure of 50 pounds per sq. in. may throw more water than another well having a pressure of 100 pounds per sq. inch and either one may throw either more or less than would be delivered from a pipe of the same size having a head of 116 feet, which corresponds nearly with a pressure of 50 pounds to the inch. In other words—the volume of a well cannot be found by knowing its pressure; nor can the pressure be found by knowing its volume. The pressure must be measured with a gauge and the volume by weiring the stream or by some other accepted method.

EVERY WELL SHOULD BE PROVIDED WITH A GAUGE

and a proper record preserved of the pressures during different seasons of the year, during different stages of the weather and directions of the wind and during the several

stages of service of the well.

Systematic records thus kept would no doubt go far toward settling the questions of source and supply. It has been claimed, and apparently on good grounds, that the standing of the barometer and the direction of the wind have a marked effect on both the volume and pressure of some wells. No systematic records having been kept of these observations it cannot be definitely stated that the fluctuations in volume and pressure of the wells were due to the changes in the weather, but the matter having been suggested is one well worthy of attention because of its scientific possibilities.

TABLE NO. 25.

Diam. of pipe in inches.	Area in square feet.	Area in square inches.	Gals. in 900 feet of pipe.	Weight of water in 900 feet.
3	.0491	7.07	330	2756 lbs.
4.5	$0.0873 \\ 0.1105$	$12.56 \\ 15.90$	587 743	4897 " 6199 "
5 6	.1364 .1963	$\frac{19.64}{28.27}$	918 1322	7656 " 11021 "
7	.2673	38.48	1799	15011 "
8	.3490	50.27	2350	19598 "

An idea may be gained from this table as to the stupendous energy necessary to throw out this volume of water at velocities ranging from 500 ft. to 2000 feet per minute as is done by Dakota's Artesian Wells.

TABLE NO. 26.

From Trautwine's "Civil Engineer's Pocket Book."

CONTENTS OF CYLINDERS, OR PIPES.

Contents for one foot in length, in Cub Ft, and in U. S. Gallons of 231 cub ins, or 7.4805 Galls to a Cub Ft. A cub ft of water weighs about 62½ lbs; and a gallon about 8½ lbs. Diams 2, 8, or 10 times as great, give 4, 9, or 100 times the content.

For the weight of water in pipes, see Table No. 22

No errors.

Diam.	Diam.	For 1	gth.	Diam.	Diam.	len			Diam.	len	ft. in gth.
in Ins.	in deci- mals of a foot.	Cub. Feet. Also area in sq. ft.	Gallons of 231 Cub, Ins.	in Ins.	in deci- mals of a foot.	Cub. Feet. Also area in sq. ft.	Gallons of 231 Cub.Ins.	Diam. in Ins.	in deci- mals of a foot.	Cub. Feet. Also area in sq. ft.	Gallons of 231 Cub.Ins.
1/4 5-16 1/2 9-16 11-16 3/4 11-16 11	.0521 .0573 .0625 .0677 .0729 .0781 .0833 .1042 .1250 .1458 .1667 .1875 .2083 .2292 .2500 .2708	.0003 .0005 .0008 .0010 .0014 .0017 .0021 .0036 .0042 .0048 .0055 .0085 .0167 .0218 .0276 .0341 .0412 .0491 .0568 .0767	.0025 .0040 .0057 .0078 .0102 .0129 .0159 .0269 .0312 .0359 .0408 .0638 .0918 .1249 .1632 .2066 .2550 .3085 .3672 .4309 .4998 .5738	13.	.9167 .9375 .9583 .9792 1 Foot. 1.042 1.083	.2485 .2673 .2867 .3068 .3276 .3491 .3712 .3941 .4176 .4418 .4667 .4922 .5185 .5454 .5730 .6003 .6000 .6903 .7213 .7530 .7854 .8522 .9218	1.859 1.999 2.145 2.295 2.450 2.611 2.777 2.948 3.125 3.305 3.491 3.682 4.286 4.715 4.937 5.164 5.396 5.633 5.875 6.875 6.895	19, 1/2 20, 1/2 21, 1/2 23, 1/2 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34, 36, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38	1.583 1.625 1.667 1.708 1.750 1.792 1.833 1.875 1.917 1.958 2.000 2.083 2.167 2.250 2.383 2.417 2.500 2.583 2.917 3.000 3.083	1.969 2.074 2.182 2.292 2.405 2.521 2.640 2.761 2.885 3.012 3.142 3.409 3.687 3.976 4.276 4.276 4.587 4.909 5.241 5.585 5.940 6.305 6.681 7.069	14.73 15.51 16.32 17.15 17.99 18.86 19.75 20.66 21.58 22.53 23.50 25.50 27.58 29.74 31.99 34.31 36.72 39.21 41.73 49.98 52.88 55.86
4. 1/4 1/2 3/4 5. 1/4 1/2 1/2	.3542 .3750 .3958 .4167	.0873 .0985 .1104 .1231 .1364 .1503 .1650 .1803 .1963 .2131 .2304	.6528 .7369 .8263 .9206 1.020 1.125 1.234 1.349 1.469 1.594 1.724	14. 15. 16. 17. 17. 18.	1.125 1.167 1.208 1.250 1.292 1.333 1.375 1.417 1.458 1.500 1.542	.9940 1.069 1.147 1.227 1.310 1.396 1.485 1.576 1.670 1.767 1.867	7.436 7.997 8.578 9.180 9.801 10.44 11.11 11.79 12.49 13.22 13.96	38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48.	3.167 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000	7.876 8.296 8.727 9.168 9.621 10.085 10.559 11.045 11.541 12.048 12.566	58.92 62.06 65.28 68.58 71.97 75.44 78.99 82.62 86.33 90.13 94.00

Table continued, but with the diams in feet.

Diam. Feet.	Cub. Feet.	U. S. Galls.	Diam. Feet.	Cub. Feet.		Dia. Feet.	Cub. Feet.	U.S. Galls.	Dia. Feet.	Cub. Feet.	U. S. Galls.
4	12.57	94.0	7	38.49	287.9	12	113.1	846.1	24	452.4	3384
1/4	14.19	106.1	1/4	41.28	308.8	13	132.7	992.8	25	490.9	3672
1/2	15.90	119.0	1/3	44.18	330.5	14	153.9	1152.	26	530.9	3971
1/4 1/2 3/4	17.72	132.5	1/4 1/2 3/4	47.17	352.9	15	176.7	1322.	27	572.6	4283
5	19.64	146.9	8	50.27	376.0	16	201.1	1504.	28	615.8	4606
1/4 1/2 3/4	21.65	161.9	1/2	56.75	424.5	17	227.0	1698.	29	660.5	4941
1/2	23.76	177.7	9'4	63.62	475.9	18	254.5	1904.	30	706.9	5288
3/4	25.97	194.3	1/2	70.88	530.2	19	283.5	2121.	31	754.8	5646
6	28.27	211.5	10	78.54	587.6	20	314.2	2350.	32	804.3	6017
1/4	30.68	229.5	1/2	86.59	647.7	21	346.4	2591.	33	855.3	6398
1/2	33.18	248.2	11	95.03	710.9	22	380.1	2844.	34	907.9	6792
1/4 1/2 3/4	35.79	267.7	1/2	103.90	777.0	23	415.5	3108.	35	962.1	7197

TABLE NO. 27.

RELATIVE DISCHARGING CAPACITIES OF FULL SMOOTH PIPES.

Dia. in Feet.	Relative Discharg'g Power.	3	4	6	8	IO	12	14	16	Drain in Inches.
3.667 3.333 3.	7.594 5.657 4.549 3.588 2.756 2.052 1.471 1. .6339 .3629 .1768 .0641	65.77 47.14 32.05 20.31 11.63 5.66	70.96 55.96 42.01 32.01 22.94 15.60 9.88 5.66	5.65 3.58 2.05	34·55 27·09 16.61 15 58 12·53 9.88 7·25 5.65 4·05 2·75 1.74	19.78 15.54 9.96 8.92 7.17 5.66 4.34 3.23 2.32	7.59 5.65 4.53 3.58 2.75 2.05	17.50 13.47 8.41 8.52 6.54 5.16 3.84 3.09 2.43 1.87	6.11 4.80 3.70 2.75 2.16 1.74 1.34	44 40 36 33 30 27 24 22 20

From J. T. FANNING'S "Water Supply Engineering."

The foregoing table shows approximately the relative discharging powers of pipes of different diameters. In the second column the diameter 1 foot is assumed as a unit, and the figures show the relative discharging value of pipes whose diameter is given in the first column; for example, a pipe four feet in diameter will discharge 32 times as much water as one which is one foot in diameter, other things being equal; a pipe 3 feet in diameter 15.588 times as much, one 2½ feet in diameter, 9.859 times as much and so on.

The numbers at the intersections of the horizontal and vertical columns from the diameters in inches give also approximate relative discharging capacities. For example, a 48-inch pipe is equal to 15.59, 16-inch pipes, or we find that a 24-inch pipe is equal to 32, 6-inch pipes or 15.58, 8-inch pipes, and that a 12-inch pipe is equal to 5.65, 6-inch pipes.

Note: The relative discharging power as given above is seen to equal the square root of the fifth power of the diameter. (d_2^5) To find, therefore, the rel. dis, power for any size not given in this table consult the table of sq. rts. of 5th powers, table No. 69, page 166.

TABLE NO. 28.

FRICTION HEADS AND DISCHARGES.

For 100 feet of pipe. By Wiesbach's Formula.

Trautwine.

						Diam. ii	n Inches.				
Vel. in Feet	Vel- head in	•	3		31/2	[4	4	1/2		5
per Sec.	Feet.	Frhead Ft per 100 ft.	Cub ft per Min	Frhead Ft per 100 ft.	Cub ft per Min	Fr head Ft per 100 ft.	Cub ft per Min	Frhead Ft per 100 ft.	Cub ft per Min	Frhead Ft per 100 ft.	Cub ft per Min
2.0	.062	.659	5.89	.565	8.02	.494	10.4	.439	13.2	.395	16.3
2.2	.075	.780	6.48	.669	8.82	.585	$ \begin{array}{c c} 11.5 \\ 12.5 \end{array} $.520	14.6 15.9	.468	18.0
2.4 2.6	.090	.911 1.05	7.07	.781	9.62 10.4	.788	13.6	.701	17.2	.547	19.6 21.3
2.8	.122	1.20	8.24	1.03	11.2	.900	14.6	.800	18.5	.720	22.9
3.0	.140	1.35	8.83	1.16	12.0	1.02	15.7	.905	19.8	.815	24.5
3.2	.160	1.52	9.42 10.0	1.31 1.46	12.8 13.6	1.1 4 1.27	16.7 17.8	1.02 1.13	21.2 22.5	.915 1.02	26.2
3.4 3.6	.180	1.70 1.89	10.6	1.62	14.4	1.41	18.8	1.13	23.8	1.13	27.8 29.4
3.8	.225	2.08	11.2	1.78	15.2	1.56	19.9	1.39	25.2	1.25	31.0
4.0	.250	2.28	11.8	1.96	16.0	1.71	20.9	1.52	26.5	1.37	32.7
4.2	.275	2.49	12.3 12.9	2.14 2.33	16.8 17.6	$\frac{1.87}{2.03}$	22.0	1.66 1.81	27.8 29.1	1.50 1.63	34.3 36.0
4.4	.302	$\frac{2.71}{2.94}$	13.5	2.52	18.4	2.21	24.0	1.96	30 4	1.76	37.6
4.8	.360	3.18	14.1	2.72	19.2	2.38	25.1	2.12	31.8	1.91	39.2
5.0	.390	3.43	14.7	2.94	20.0	2.57	26.2	2.28	33.1	2.05	40.9
5.2 5.4	.422	3 68 3,94	15.3 15.9	3.15 3.38	20.8	2.76 2.96	27.2 28.2	2.45 2.63	34.4 35.8	2.21 2.37	42.5 44.2
5.6	.490	4.22	16.5	3.61	22.4	3.16	29.3	2.81	37.1	2.53	45.8
5.8	.525	4.50	17.1	3.85	23.2	3.37	30.3	3.00	38.4	2.70	47.4
6.0	.562	4.78	17.7	4.10	24.0	3.59	31.4	3.19	39.7	2.87	49.1
6.2 6.4	.600	5.08 5.39	18.2 18.8	$\frac{4.36}{4.62}$	$\begin{vmatrix} 24.8 \\ 25.6 \end{vmatrix}$	3.81 4.04	32.4 33.5	3.39 3.59	41.0 42.4	$\frac{3.05}{3,23}$	50.7 52.3
6.6	.680	5.70	19.4	4.89	26.4	4.28	34.5	3,80	43.7	3.42	54.0
6.8	.722	6.02	20.0	5.16	27.3	4.52	35.6	4.01	45.0	3 61	55.6
7.0	.765	6.35	20.6	5.45	28.0	4:77	36.6	4:24	46.4	3.81	57.2
									1		
			,			Diam. ir	Inches.				
Vel. in	Vel-				7		Inches.		9	1	0
Vel. in Feet per Sec.	Vel- head in Feet.	Frhead Ft per 100 ft.	Cub ft	Frhead Ft per 100 ft.				Frhead Ft per 100 ft.	Cub ft per Min	1 Frhead Ft per 100 ft.	O Cub ft per Min
Feet per Sec.	head in Feet.	Frhead Ft per 100 ft.	Cub ft per Min 23.5	Frhead Ft per 100 ft.	Cub ft per Min 32.0	Frhead Ft per 100 ft.	Cub ft per Min	Frhead Ft per 100 ft.	Cub ft per Min 53.0	Frhead Ft per 100 ft.	Cub ft per Min 65.4
Feet per Sec. 2.0 2.2	.062 .075	Frhead Ft per 100 ft. .329 .390	Cub ft per Min 23.5 25.9	Fr head Ft per 100 ft. .282 .334	Cub ft per Min 32.0 35.3	Fr head Ft per 100 ft. .247 .293	Cub ft per Min 41.9 46.1	Frhead Ft per 100 ft. .220 .260	Cub ft per Min 53.0 58.3	Fr head Ft per 100 ft. .198 .234	Cub ft per Min 65.4 72.0
Feet per Sec. 2.0 2.2 2.4	.062 .075 .090	Frhead Ft per 100 ft. .329 .390 .456	Cub ft per Min 23.5 25.9 28.2	Frhead Ft per 100 ft. .282 .334 .390	Cub ft per Min 32.0 35.3 38.5	Fr head Ft per 100 ft. .247 .293 .342	Cub ft per Min 41.9 46.1 50.2	Frhead Ft per 100 ft. .220 .260 .304	Cub ft per Min 53.0 58.3 63.6	Fr head Ft per 100 ft. .198 .234 .273	Cub ft per Min 65.4 72.0 78.5
2.0 2.2 2.4 2.6	.062 .075 .090	Frhead Ft per 100 ft. .329 .390	Cub ft per Min 23.5 25.9	Fr head Ft per 100 ft. .282 .334	Cub ft per Min 32.0 35.3	Fr head Ft per 100 ft. .247 .293	Cub ft per Min 41.9 46.1	Frhead Ft per 100 ft. .220 .260 .304 .350 .400	Cub ft per Min 53.0 58.3	Fr head Ft per 100 ft. .198 .234	Cub ft per Min 65.4 72.0 78.5 85.1 91.6
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0	.062 .075 .090 .105 .122 .140	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3	Frhead Ft per 100 ft. 282 .334 .390 .450 .514 .582	Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1	Fr head Ft per 100 ft. .247 .293 .342 .394 .450 .509	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8	Frhead Ft per 100 ft. .220 .260 .304 .350 .400 .453	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2	.062 .075 .090 .105 .122 .140	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679 .763	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7	Frhead Ft per 100 ft. .282 .334 .390 .450 .514 .582 .654	Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51:3	Fr head Ft per 100 ft. 247 293 342 394 450 509 572	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0	Frhead Ft per 100 ft. 220 .260 .304 .350 .400 .453 .508	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407 .458	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4	.062 .075 .090 .105 .122 .140 .160	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679 .763 .851	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3	Frhead Ft per 100 ft. 282 .334 .390 .450 .514 .582	Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1	Fr head Ft per 100 ft. .247 .293 .342 .394 .450 .509	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8	Frhead Ft per 100 ft. .220 .260 .304 .350 .400 .453	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225	Frhead Ft per 100 ft. 329 390 .456 .526 .600 .679 .763 .851 .943 1.04	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7	Frhead ft per 100 ft. 282 .334 .390 .450 .514 .582 .654 .729 .808 .892	7 Cubft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9	Fr head Ft per 100 ft. -247 -293 -342 -394 -450 -509 -572 -638 -707 -780	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6	Frhead Ft per 100 ft. .220 .260 .304 .350 .400 .453 .508 .567 .629 .693	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 95.4 101	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407 .458 .510 .563 .624	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679 .763 .851 .943 1.04 1.14	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40 0 42.4 44.7 47.1	Fr head Ft per 100 ft. 282 334 390 450 514 582 654 729 808 892 979	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1	Fr head Ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856	S Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7	Frhead Ft per 100 ft. -220 -304 -350 -400 -453 -508 -567 -629 -693 -761	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 95.4 101 106	Fr head Ft per 100 ft. 	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2	.062 .075 .090 .105 .122 .140 .160 .202 .225 .250 .275	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679 .763 .851 .943 1.04 1.14 1.25	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5	Fr head Ft per 100 ft. 282 .334 .390 .450 .514 .582 .654 .729 .808 .892 .979 1.07	7 Cubft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51:3 54.5 57.7 60.9 64.1 67.3	Fr head Ft per 100 ft. -247 -293 -342 -394 -450 -509 -572 -638 -707 -780	S Cub ft per Min 41.9 46.1 50.2 54.4 58.6 67.0 71.2 75.4 79.6 83.7 87.9	Frhead Ft per 100 ft. .220 .260 .304 .350 .400 .453 .508 .567 .629 .693	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 95.4 101	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407 .458 .510 .563 .624	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250	Frhead Ft per 100 ft. 329 .390 .456 .526 .600 .679 .763 .851 .943 1.04 1.14	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40 0 42.4 44.7 47.1	Frhead Ft per 100 ft. 282 .334 .390 .514 .582 .654 .729 .808 .892 .979 1.07 1.16 1.26	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1	Fr head Ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856 935 1.02	S Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3	Frhead Ft per 100 ft. 220 260 304 350 400 453 508 567 629 693 761 832 905	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 101 106 111 116 122	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407 .458 .510 .566 .624 .685 .748 .814 .883	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250 .275 .302 .330 .360	Frhead Ft per 100 ft. 329 390 456 526 600 679 763 .851 .943 1.04 1.14 1.25 1.35 1.47	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5 51.8 54.1 56.5	Frhead Ft per 100 ft. 282 334 390 450 514 582 654 729 808 892 979 1.07 1.16 1.26 1.36	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9	Fr head Ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856 935 1.02 1.10	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100	Frhead Ft per 100 ft. 220 260 304 350 400 453 508 567 629 693 761 832 981 1,06	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 106 111 116 122 127	Fr head Ft per 100 ft. .198 .234 .273 .315 .360 .407 .458 .510 .665 .748 .814 .883 .954	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.1 4.6 4.8 5.0	.062 .075 .090 .105 .122 .140 .180 .202 .225 .250 .275 .302 .360 .390	Frhead Ft per 100 ft. .329 .396 .526 .600 .679 .763 .851 .943 1.04 1.14 1.25 1.35 1.47 1.59	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5 51.8 54.1 56.5 58.9	Frhead Ft per 100 ft. 282 334 390 -514 -582 -654 729 808 892 979 1.07 1.16 1.36 1.36	Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2	Fr head Ft per 100 ft. .247 .293 .342 .394 .450 .509 .572 .638 .707 .780 .856 .935 1.02 1.10 1.19	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100	Frhead Ft per 100 ft. .220 .260 .350 .400 .453 .508 .567 .629 .693 .761 .832 .905 .905 .106	Cub ft per Min 53.0 58.36 68.9 74.2 79.5 84.8 90.1 95.4 101 116 112 116 122 127	Fr head Ft per 100 ft. 198 234 273 315 360 407 458 510 566 624 685 748 814 883 954	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2	.062 .075 .090 .105 .122 .140 .160 .202 .225 .250 .275 .302 .330 .360 .390 .422	Frhead Ft per 100 ft. 329 390 456 526 600 679 763 .851 .943 1.04 1.14 1.25 1.35 1.47	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5 51.8 54.1 56.5	Frhead Ft per 100 ft. 282 334 390 450 514 582 654 729 808 892 979 1.07 1.16 1.26 1.36	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9	Fr head Ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856 935 1.02 1.10	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100	Frhead Ft per 100 ft. 220 260 304 350 400 453 508 567 629 693 761 832 981 1,06	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 106 111 116 122 127	Fr head Ft per 100 ft. 198 :234 :273 :315 :360 :407 :458 :510 :565 :748 :814 :883 :954 1.03 1.10 1.18	Cub ft per Min 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6	.062 .075 .090 .105 .122 .140 .160 .180 .202 .250 .275 .302 .330 .360 .390 .422 .455 .490	Frhead ft per 100 ft. 329 390 456 526 600 679 763 851 943 1.04 1.25 1.35 1.47 1.59 1.71 1.84 1.97 2.11	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 49.5 51.8 54.1 56.5 58.9 61.2 63.6 65.9	Frhead Ft per 100 ft. 282 334 450 514 582 654 729 808 892 979 1.07 1.16 1.26 1.36 1.47 1.58	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8	Fr head ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856 935 1.02 1.19 1.28 1.38 1.48 1.58	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100 105 109 113 117	Frhead Ft per 100 ft. .2260 .260 .3550 .400 .453 .508 .567 .629 .693 .761 .832 .905 .981 1,06 1,14 1,23 1,31	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 106 111 116 122 127 132 138 143	Fr head Ft per 100 ft. 198 234 273 315 360 407 458 510 563 624 685 748 814 883 1.10 1.18	Cub ft per Min 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177 183
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.1 4.8 5.0 5.2 5.4 5.6 5.8	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250 .275 .302 .336 .360 .390 .422 .455 .490 .525	Frhead ft per 100 ft. 329 390 456 526 600 679 .763 .851 .943 1.04 1.14 1.25 1.47 1.59 1.71 1.84 1.97 2.11	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40 0 42.4 44.7 47.1 51.8 54.1 56.5 58.9 61.2 63.6 65.9 68.3	Frhead Ft per 100 ft. 282 334 390 -450 -514 -582 -654 -729 -808 -892 -979 1.07 1.16 1.36 1.47 1.58 1.69 1.81	7 Cubft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8	Fr head Ft per 100 ft. .247 .293 .342 .394 .450 .509 .572 .638 .707 .780 .856 .935 1.02 1.10 1.19 1.28 1.38 1.48 1.68	S Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100 105 109 113 117 121	Frhead Ft per 100 ft. 220 260 304 350 490 453 508 567 629 693 761 832 905 981 1,06 1,14 1,23 1,31 1,50	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 116 122 127 132 138 143 148 154	Fr head Ft per 100 ft. 198 234 273 316 360 407 458 510 685 748 814 883 954 1.03 1.10 1.18 1.26	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177 183
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 6.0	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .275 .302 .330 .360 .390 .422 .455 .490 .525 .562	Frhead ft per 100 ft. 329 390 456 526 609 763 851 943 1.04 1.14 1.25 1.35 1.47 1.59 1.71 1.84 1.97 2.11	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40 0 42.4 44.7 47.1 49.5 51.8 54.1 56.5 58.9 61.2 63.6 65.9 68.3 70.7	Fr head ft per 100 ft. -282 .334 .390 .450 .514 .582 .654 .729 .808 .892 .979 1.07 1.16 1.26 1.36 1.47 1.58 1.69 1.81	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8 93.0 96.2	Fr head Ft per 100 ft. 293 .342 .394 .450 .509 .572 .638 .707 .780 .856 .935 1.02 1.10 1.19 1.28 1.48 1.58 1.68 1.79	S Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100 105 109 113 117 121 125	Frhead Ft per 100 ft. .220 .260 .304 .350 .403 .508 .567 .629 .693 .761 .832 .905 .981 1.06 1.14 1.23 1.31 1.40 1.59	53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 116 122 127 138 143 144 159	Fr head Ft per 100 ft. 198 2234 273 315 360 407 458 510 566 624 685 748 814 883 954 1.03 1.10 1.18 1.26	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177 183 190 196
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.1 4.8 5.0 5.2 5.4 5.6 5.8	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250 .275 .302 .336 .360 .390 .422 .455 .490 .525	Frhead ft per 100 ft. 329 390 456 526 600 679 .763 .851 .943 1.04 1.14 1.25 1.47 1.59 1.71 1.84 1.97 2.11	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40 0 42.4 44.7 47.1 51.8 54.1 56.5 58.9 61.2 63.6 65.9 68.3	Frhead Ft per 100 ft. 282 334 390 -450 -514 -582 -654 -729 -808 -892 -979 1.07 1.16 1.36 1.47 1.58 1.69 1.81	7 Cubft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8	Fr head Ft per 100 ft. .247 .293 .342 .394 .450 .509 .572 .638 .707 .780 .856 .935 1.02 1.10 1.19 1.28 1.38 1.48 1.68	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 96.3 100 105 109 113 117 121 125 130 134	Frhead Ft per 100 ft. .2260 .260 .3550 .400 .453 .508 .567 .629 .693 .761 .832 .905 .981 1.06 1.14 1.23 1.31 1.40 1.50 1.50 1.69 1.79	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 116 1122 127 132 138 143 148 154 159 164 169	Fr head Ft per 100 ft. 198 234 273 315 360 407 458 510 563 624 685 748 814 883 1.10 1.10 1.18 1.26 1.35 1.43 1.52 1.61	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177 183 190 196 203 200
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.1 4.8 5.0 5.2 5.4 5.8 6.0 6.2 6.4 6.6		Frhead ft per 100 ft. 329 3390 456 526 600 679 763 851 943 1.04 1.14 1.25 1.47 1.59 1.71 1.84 1.97 2.11 2.25 2.39 2.54 2.69 2.85	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5 51.8 54.1 56.5 58.9 61.2 63.6 65.9 68.3 70.7 73.0 75.4 77.7	Fr head ft per 100 ft. -282 .334 .390 .450 .514 .582 .654 .729 .808 .892 .979 1.07 1.16 1.26 1.36 1.47 1.58 1.69 1.81 2.05 2.18 2.31 2.44	Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8 93.0 96.2 99.4 102 106	Fr head Ft per 100 ft. 293 .342 .394 .450 .509 .572 .638 .707 .780 .856 .935 1.02 1.10 1.19 1.28 1.38 1.48 1.58 1.68 1.79 1.90 2.02	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 87.9 92.1 96.3 100 105 113 117 121 125 130 134 138	Frhead Ft per 100 ft. 220 260 304 350 400 453 508 567 629 693 761 832 905 981 1.06 1.14 1.23 1.31 1.40 1.59 1.69 1.79 1.90	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 106 111 116 122 127 132 138 143 148 159 164 169 175	Fr head Ft per 100 ft. 198 234 273 315 360 407 458 510 566 624 685 748 814 883 954 1.03 1.10 1.18 1.26 1.43 1.52 1.61	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 177 183 190 196 203 200 216
Feet per Sec. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4	.062 .075 .090 .105 .122 .140 .160 .180 .202 .225 .250 .275 .302 .330 .360 .390 .422 .455 .490 .525 .562 .600	Frhead Ft per 100 ft. 329 390 456 526 600 679 763 .851 .943 1.04 1.14 1.25 1.35 1.47 1.59 1.71 1.84 2.21 2.25 2.39 2.54 2.69	Cub ft per Min 23.5 25.9 28.2 30.6 32.9 35.3 37.7 40.0 42.4 44.7 47.1 49.5 51.8 54.1 56.5 58.9 61.2 63.6 65.9 68.3 70.7 73.0 75.4	Frhead Ft per 100 ft. 282 334 450 514 582 654 729 808 892 979 1.07 1.16 1.26 1.36 1.47 1.58 1.69 1.81 1.93 2.05 2.18	7 Cub ft per Min 32.0 35.3 38.5 41.7 44.9 48.1 51.3 54.5 57.7 60.9 64.1 67.3 70.5 73.7 76.9 80.2 83.3 86.6 89.8 93.0 96.2 99.4 102	Fr head Ft per 100 ft. 247 293 342 394 450 509 572 638 707 780 856 935 1.02 1.10 1.19 1.28 1.38 1.48 1.58 1.68 1.79 2.02	Cub ft per Min 41.9 46.1 50.2 54.4 58.6 62.8 67.0 71.2 75.4 79.6 83.7 96.3 100 105 109 113 117 121 125 130 134	Frhead Ft per 100 ft. .2260 .260 .3550 .400 .453 .508 .567 .629 .693 .761 .832 .905 .981 1.06 1.14 1.23 1.31 1.40 1.50 1.50 1.69 1.79	Cub ft per Min 53.0 58.3 63.6 68.9 74.2 79.5 84.8 90.1 106 111 116 1122 127 132 138 143 148 154 159 164 169	Fr head Ft per 100 ft. 198 234 273 315 360 407 458 510 563 624 685 748 814 883 1.10 1.10 1.18 1.26 1.35 1.43 1.52 1.61	Cub ft per Min 65.4 72.0 78.5 85.1 91.6 98.2 105 111 118 124 131 137 144 150 157 163 170 196 203 200

See exmaple of use on page 69.

Example of use of table No. 28. I have 150 lbs. pressure at well; 2000 ft. of 3 inch pipe discharging 110 gallons per minute. What is the effective pressure at point of discharge? From table 36 we find that 110° gals. = 14.7 cu, ft. ble 28, under head of 3 inch pipe, we find 14.7 cu. ft. discharge = 5 ft. velocity per sec. and a loss of 3.43 ft. head per 100 ft. $3.43 \times 20 = 68.6 = \text{ft. loss of head in 2000 ft. of pipe.}$ table 24 we find 68.6 ft. head to = 29.7 lbs. of pressure. lbs. (given pressure) -29.7 lbs. = 120.3 lbs. = effective pressure at point of discharge.

Further example of use of table 28.

To get discharge from pipe of given size and length.

From table 28—within certain limits—may be found the volume discharged by a pipe of given size and length, under

a given pressure.

Example: A well has a pressure of 78 lbs, per inch, and it is desired to convey water to a reservoir through 3000 ft. of 3 inch pipe; what will the pipe discharge per minute at the reservoir? From table 24 (P. 64.) we find that 78 lbs. = head of 180 ft. which head is to be used to force the water through 30 hundred feet of pipe, therefore $\frac{1}{30}$ of 180 = 6 ft. = the available head for 100 ft. In table 28 we find, under 3 inch pipe, the nearest corresponding friction head which is 6.02 ft. which corresponds to a velocity of 6.8 ft. per sec. and a volume of 20 cubic ft. per minute, which, from table 36 = 149.6 gallons. (No account is here taken of the velocity head which is less than 1 ft. and remains the same for any length of pipe; being dependent only upon the velocity in the pipe.)

Over column two of table No. 28 appears the heading "Vel. head in ft.", and over column three appears the heading "Fr. head ft. per 100 ft." The first is read as Velocity head and the second as Friction head. The distinction is

here explained.

By Head is meant the vertical distance in feet between the surface of the source of supply and the centre of the orifice through which the water flows. The total head is divided into 3 parts called, respectively, **Entry**

Head. Velocity Head, and Friction Head; the respective functions of which are as follows:

Entry Head is that portion of the total head used in overcoming the resistance to the entry of the water into the pipe. The entry head is less as the edges at the point of entry are rounded. It is equal to about one-half the velocity head.

Velocity Head is that portion of the total head used in maintaining.

Velocity Head is that portion of the total head used in maintaining a certain velocity within the pipe, assuming that there is no friction in the pipe. It is therefore equal to the height through which a body would fall—in a vacuum—to gain the same velocity as that of the water in the pipe.

Expressed as a formula Vel. Hd. $=\frac{1}{2g}$, in which $V^2 =$ the square of the velocity in ft. per sec. and g = the acceleration of gravity, or 32.2. The formula then becomes

Velocity Head $=\frac{1}{644}$ or, what is practically the same—

Velocity or $= \{ \text{ square of vel. } \} \times .0155.$ Theoretical Head $= \{ \text{ in ft. per sec. } \} \times .0155.$

The velocity head rarely exceeds 1 ft. and is constant for all lengths of pipe.

Friction Head is the remainder of the total head; or such an amount as is just sufficient to overcome the friction in the pipe leaving the remaining head to cause the entry and velocity of the flow. The smoother and shorter the pipe is the less the friction head will be and the greater the velocity head will become.

The Theoretical Velocity due to any given head is, if expressed in a formula—

Theor. velocity $= \sqrt{2gh} = \sqrt{64.4h}$, in which h = the given head in feet.

This is practically the same as Theor. Vel. = 8.03 times the sq. rt. of h.

Example-What is the theoretical vel. under a head of 4 ft? $\sqrt{64.4 \times 4} = \sqrt{257.6}$ which, from table of roots, = 16.05 or—by the second rule, the sq. rt. of h (4 ft.) = 2 which \times 8.03 = 16.06.

The above explanation will not only explain clearly the significance of the values in table 28 but will also be of us otherwise.

Table 29 is similar to table 28, except that the velocities in the pipe are in single feet, and extend to 20 feet, instead of in feet and decimals, as in table 28. The values in table 29 differ slightly from those due to corresponding sizes and velocities given in table 28. This difference is due to calculations having been made from different formulae, but they are too slight to be material since the variations in the pipes themselves will cause as great variations—either more or less -from the quantities given in either table.

The limits of tables 28 and 29 are too narrow to suit all the conditions of our wells and practice, so a few simple rules are given to suit all conditions, these rules, and table 30 upon which they are based, being adapted from Haswell's Pocket Book.

It may be added that by reason of varying conditions whatever rules or formulae are applied the result will be in a measure approximate,

To find the Friction Head.—Wiesbach's Formula.

$$\frac{\text{Friction head}}{\text{in feet}} = \left\{ \begin{array}{l} .0144 + \sqrt{\frac{.01716}{\text{vel in ft}}} \\ \sqrt{\frac{\text{in feet}}{\text{per sec}}} \end{array} \right\} \times \frac{\frac{\text{Length}}{\text{in feet}}}{\frac{\text{Diam}}{\text{in feet}}} \times \frac{\frac{\text{Vel}^2 \text{ in}}{\text{ft per sec}}}{64.4}$$

The use of this formula requires a knowledge of the velocity in ft. per sec. which may be found by dividing the volume in cubic ft. per second by the area of the pipe. (See page 82.)

TABLE NO. 29.

LOSS OF HEAD BY FRICTION OF WATER IN PIPES.

CALCULATED FOR PIPES 100 FEET LONG.

1		IN	SIDE	DIA	METE	ER C	OF PI	PE	IN II	NCH	ES.	
Velocity	3		4		5		6		7	(8	
of Water through Pipe in Feet per Second.	Discharge per Min. in Cubic Feet	No. of Ft. Loss of head due to friction	Discharge per Min. in Cubic Feet	No. of Ft. Loss of head due to friction	Discharge per Min. in Cubic Feet	No. of Ft. Loss of head due to friction	Discharge per Min. in Cubic Feet	No. of Ft. Loss of head due to friction	Discharge per Min. in Cubic Feet	head due to friction	Discharge per Min. in Cubic Feet	No. of Ft. Loss of head due to friction
1	2.95	.196	5.22	.147	8.17	.118	11.77	.098	16.03	.084	20.88	.074
2	5. 89	.659	10.44	-494	16.34	-395	23.54	.329	32.05	.282	41.76	.247
3	8.83	1.35	15.67	1.02	24.51	.815	35-32	.679	48.08	.581	62.64	.509
4	11.80	2.28	20.89	1.71	32.69	1.37	47.09	1.14	64.11	-977	83.52	.856
5	14.70	3-43	26 12	2.57	40.87	2.05	58.87	1.71	80.15	1.47	104.40	1.28
6	17.70	4.78	31.34	3.59	49.05	2 87	70.64	2.39	96.18	2.05	125.28	1.79
7	20.60	6.35	36.57	4.77	57.22	3.81	82.41	3.18	112.21	2.73	146.16	2.39
8	23.56	8.14	41.79	6.11	65.40	4.89	94.19	4.07	128.24	3.49	167.04	3.06
9	26.51	10.12	47.02	7.59	73.57	6.07	105 97	5.06	144.27	4-34	187.92	3.79
10	29.45	12.32	52.24	9.24	81.75	7.39	117.74	6.16	160.30	5.28	208.80	4.62
11	32.40	14.71	57-47	11.03	89.92	8.82	129 52	7.36	176.34	6.31	229.68	5.52
12	35-34	17.31	62.70	12.98	98.10	10.38	141.30	8.65	192 37	7.41	250.56	6.49
13	38.33	20.10	67.92	15.08	106.27	12 06	153.07	10.05	208.40	8.61	271.44	7-54
14	41.23	23.12	73.15	17.34	114.45	13.87	164.85	11.56	224.43	9.91	292.32	8.67
15	44.20	26.32	78.38	19.74	122.62	15.79	176 63	13.16	240.46	11.28	313.20	9.87
16	47.12	29.72	83.60	22 29	130.80	17.83	188.40	14.86	256.48	12.74	334.08	11.15
17	50.05	33-33	88.83	25.00	138.97	20.00	200.18	16.67	272.51	14.29	354 96	12.50
18	53.00	37.14	94.05	27.86	147.15	22.29	211.96	18.57	288.54	15.92	375.84	13.93
19	55-95	41.12	99.28	30.84	155.32	24.67	223.73	20 56	304.57	17.62	396.72	15.42
20	58.89	45.32	104.50	33-99	163.50	27 19	235.51	22.66	320.60	19.42	417.60	17.00

TABLE NO. 30.

	TAB.	LE AND RULE	10. I	rom Haswett.
•	Diameter inches.	Tabular No.	Diameter inches.	Tabular No.
	1	4.71	7	612.32
	11/4	8.48	8	854.99
	$1\frac{1}{2}$	13.02	9	1147.61
	$1\frac{3}{4}$	19.15	- 10	1493.5
	2	26.69	. 11	1894.9
	21	46,67	12	2356.0
	$\frac{2\frac{1}{2}}{3}$	73.5	13	2876:7
	31	108.14	°14	3463.3
	4	151.02	15	4115.9
	24	104 04	10	1996 0

APPLICATION OF THE TABLE.

263.87416.54 17 18

5628.5

6493.1

4½ 5

To Compute Volume Discharged—Length of Pipe, Diameter, and Fall or Head being given.

RULE—Divide the tabular number, opposite to the diameter of the pipe, by the square root of the rate of inclination (head), and the quotient will give the volume required in cu. ft. per min.

EXAMPLE—A pipe has a diameter of 4 inches, a length of 2982 ft. and a head of 123 pounds pressure (234 ft.) What is the discharge per min.?

$$\sqrt{\frac{2982}{284}} = \sqrt{10.5} = 3.24$$
, and tabular number for 4 in. = 151.02.

then, $\frac{151.02}{3.24}$ = 46.6 cu. ft. per min.=(from table 36) 119.68 gals

If head, as in above case, is in pounds pressure reduce it to feet by reference to table 24; but if pipe is not connected with the well, and the pressure is due to gravity alone, then the head will be the vertical distance between the upper and the lower ends of the pipe. Reduce volume in cubic feet to volume in gallons by reference to table 36.

To compute the Diameter necessary to discharge a given Volume—the Head and Length being given.

RULE-Multiply the given volume by the square root of the ratio of the inclination-head-; take the nearest corresponding number in the table,

and opposite to it is the diameter required.

EXAMPLE—A pipe has a length of 2982 feet, the head is 123 lbs., (284 ft.)

What size of pipe will it require to discharge 46.6 cubic feet (119.68 gals.) per minute?

 $\frac{2982}{284}$ = 46.6×3,24=150.98. The nearest tabular num-

ber=151.02 opposite which is 4 inches = required size. To compute the Head-the Length, Diameter and III.

Volume of discharge being given.

RULE—Divide the tabular number for the given diameter by the given discharge in cu. ft. Square the quotient, and divide the length of the pipe by it; the quotient will give the head necessary to force the given volume per minute through the pipe.

EXAMPLE—What head in ft. (or pressure in lbs) will be required to cause

a discharge of 46.6 cu. ft. (119.68 gals.) of water per minute from 2982 ft. of 4 in. pipe?

151.02=3.24; $3.24^2=10.5$; $2982 \div 10.5 = 284 = \text{required head in}$

feet which = 123 lbs. pressure.

TABLE NO. 31.

MORIZONTAL AND VERTICAL DISTANCES REACHED BY JETS.

of e.				PRE	SSUR	E AT	Noz	ZLE.		
Diam. of Nozzle.	Head in lbs. per sq. in EQUAL — Head in feet	20 46.2	30 , 69.3	40 92.4	50	60 138.6	7 0 161.7	So 1S4.S	90 207.9	231.0
in. 1	(Gallons discharged Horizontal distance of jet Vertical ""	110 .70 43	134 90 62	155 109 79	173 126 94	189 142 108	2 0 5 156 121	219 168 131	232 178 140	245 186 14\$
11/8	Gallons discharged Horizontal distance of jet Vertical	131 71 43	170 93 63	196 113 81	219 132 97	240 148 112	259 163 125	277 175 137	294 186 148	310 193 157
14	Gallons discharged Horizontal distance of jet Vertical	171 73 43	210 96 63	242 118 82	271 138 99	297 156 115	320 172 129	342 186 142	363 198 154	383 207 164
1%	Gallons discharged Horizontal distance of jet Vertical ""	207 75 44	253 100 65	293 124 85	327. 146 102	35S 166 118	387 184 133	413 200 14 6	439 213 158	462 224 169

FROM FANNING'S "WATER SUPPLY".

To calculate the altitude reached by jets.

 $A=H\left(\frac{H^2\times.0125}{8\times D}\right)\quad \{ \begin{array}{l} \text{in which } \Lambda=\text{ altitude required, } H=\text{head on jet in} \\ \text{feet, and } D=\text{ diameter of nozzle in inches.} \end{array}$

EXAMPLE—What will be the altitude of a jet discharged from a 1½ inch nozzle under a head of 80 pounds pressure?

(The head being given in lbs. reduce it to feet by multiplying by 2.311—1 pound per sq. in. equalling 2.311 ft. of head.)

 $80 \text{ lbs.} \times 2.311 = 184.88 = \text{head in feet.}$

Then A =
$$184.88 - \left(\frac{184.88^2 \times .0125}{8 \times 1.5}\right) = 149.28 \text{ ft. altitude.}$$

To calculate discharge of jets in gallons per minute.

 $G=\sqrt{H} \times (8 D)^2 \times 0.288$ {in which G=discharge in gals. per min. H = head of jet in ft. D=diam. of nozzle in inches

Using above example. What will be the discharge per min. from a 1½ inch nozzle under a head of 184.88 feet. (=80 lbs. pressure)

$$\sqrt{H} = \sqrt{184.88} = 13.597$$
 and $(8 D)^2 = (8 \times 1.5)^2 = 144$.

Then formula becomes $G=13.597\times144\times0.288$ which=563.89 gallons per minute. In this way the volume of a well may be calculated very closely. Table No. 38, page 89 gives the discharges from different nozzles, under different heads, as calculated by this formula.

SOURCE AND SUPPLY.

"Where does the artesian water come from?" has been asked a thousand times, but has, as yet, received no answer, other than a purely theoretical one. Nor can any answer be given until a careful geological survey has been made of this state and those adjoining it; and until some systematic investigations are made in the field of the wells themselves. When more wells have been drilled, so that the influence of one upon another may be ascertained, or when a series of purely experimental wells shall have been drilled by the U. S. government, we may then learn something as to the direction of the flow and its source. A carefully prepared series of analyses, too, may aid in leading the way to the true source. There is infinite room for investigation, and nothing but room as yet provided for the investigator. The past season witnessed the taking of the first step leading to the determintion of the source of these subterranean waters.

Considerable work in the way of geological study and statistical investigation was done by the several members of the committee of Artesian Underflow, and Irrigation Investigation, acting, by authority of Congress, under the De-

partment of Agriculture.

Without entering into any consideration of the many facts upon which this committee of experts based its opinion, as expressed in its reports to Congress, I state briefly the conclusion reached by them as to the probable source of this vast subterranean sea. As is well known, the water is, in all cases, found in the layers of more or less porous and soft sand-rock which underlies nearly the whole state and extends thence westward, finally to find an outcropping among the eastern foothills of the Rocky Mountains, and transverse to the courses of most of the large rivers which

find a head in that vast drainage area.

Many observed facts of great weight would tend to prove that the vast quantities of water known to be lost to the Missouri, the Yellowstone and other large rivers, · while flowing over the upturned edges of this outcropping sand-rock, is carried through these porous sponge-like formations to find a lodgement beneath the broad acres of Dakota, and an outlet, no one knows where. In the absence of any theory having the support of better evidence and a greater array of facts in its support this theory as to the source of the artesian waters will stand. There seems to be little doubt as to its correctness. Assuming it to be correct that the fountain head of our wells is in the vast water-shed of the Rockies and that the volume supplied to this great underground river is what it is calculated to be, the demonstration is complete that the supply is absolutely inexhaustible for all time and under whatever tax it may serve this or future generations.

In no case has a well failed

or shown any decrease in its volume, provided it has been kept clean and open. Some wells have become closed entirely but when cleaned out they have again flowed with their old time vigor.

What the thickness or depth of the water-bearing sandrock is, has not been determined for no drill has yet gone through it. Several wells have been sunk from 50 to 75 feet into this rock but the flow has then become so powerful as to prevent further drilling. It would be folly indeed to suppose that the feeble efforts of man to gain a little water for his use would have any effect upon the vast sea of water beneath us the area of which is measured by hundreds of miles and the depth by hundreds of feet. All the water that All the wells in dakota can throw for a hundred years would, if gathered together, equal a lesser volume than now underlies a single county—brown. Figure it out, This is no guess.

In conclusion I quote from a letter written by Col. E. S. Nettleton (The Chief Engineer of the Department of Irrigation Inquiry, of the U. S. Department of Agriculture.) to Mr. R. O. Richards of the Consolidated Land and Irrigation Co. of Huron, S. D.

Col. Nettleton says:

"In reply to your request for an expression of opinion concerning the extent and durability of the Dakota artesian water supply for irrigation purposes, I will state that after two seasons spent in examining the artesian wells in South Dakota, and their probable source of supply, we have come to the conclusion that the supply comes from the elevated and mountainous country lying to the west (principally in Montana), where the rock strata are turned up so as to come to the surface. The water is transmitted through and is retained in the sand rock, which is estimated to be several hundred feet in thickness, and is made up of layers (more or less fractured) from one to fifteen feet in thickness, and of variable degrees of hardness and porosity. Below the strata are thin layers of impervious clay, shale, soft sand and lig-This formation is exposed and is capable of imbibing a large amount of water from the unfailing supply from the mountains and the mountain streams and rivers, which have cut their way deeply into the artesian water bearing rock. I therefore conclude the supply will never fail. It is natural to suppose that the artesian supply can be found along the entire line between the source of supply and the present basin, which has an extent, north and south, of about 425 miles. I am of the opinion that the deeper the water bearing strata are penetrated the greater will be the volume ob-E. S. NETTLETON.

Artesian Water and Vegetation.

Before irrigation was thought of in Dakota, and the water used upon grains, the opinion was frequently expressed that artesian water would injure house plants and trees and would kill grass. Experience has disproved all of these statements for the most delicate house-plants now thrive on this water, the finest lawns in our towns are sprinkled with it. Of field grains and garden truck the same is true. Where, without its use the plant would die, with its use-and abundant use—there is such an abundant growth as to astonish the grower. Plant growth is a chemical process and the plant itself a chemical creation brought about in the laboratory of the earth and through the agency of the air and water; the latter being nature's great solvent and reagent. From the air the plant derives its supply of nitrogen and oxygen, and from the water its supply of hydrogen, and, through the solvent action of water, its supply of lime, soda, potash, magnesia, iron, manganese, silica, chlorine and other chemicals all of which are indispensable to plant life. Different plants require different chemical ingredients in their food and absorb, of the same ingredient, different proport ons.

Many analyses have been made of artesian waters and in no case has any showing been made of any chemical constituent of the waters that would be in any way injurious to plant life but, on the contrary, the result has shown that the artesian water was especially well adapted to the fertilization of our soil and the production of such plants and grains

as are best suited to our soil and climate.

The analyses of this water show

Silica
Sulphate of sodium

" " potassium
" " calcium
" " magnesia
" Traces of organic matter

" " lime. " " phosphates. which elements are in varying quantities according to the

location of the well.

The waters of the northern wells are very soft and this is true of some of the southern wells, but, as a rule, the southern well waters are harder and not so well adapted, on that account, to household uses. The taste varies greatly but in all cases the water is palatable when cold and it is used by thousands of families for drinking in preference to any other When warm—as when it flows from the well—it, in some cases, has a brackish, saline, unpleasant taste; but on cooling this disappears. The temperature ranges from 55° to 68°. In the winter it will run in ditches for several miles before freezing and ponds of it will remain open when the temperature ranges from 10° to 40° below zero for a week or two. This warmth imparted to the soil in the spring forms a valuable supplement to the warmth of the sun, quickens the act of germination and aids much in the early stages of growth.

THE POWER OF WELLS.

It is not alone for irrigation and domestic use that the artesian waters will be used but also for POWER. The first well at Aberdeen, in 1882, demonstrated the possibility of utilizing the pressure of the well for the purpose of forcing the water through water mains, thus furnishing a system of water supply and fire protection second to none in point of efficiency and equalled by none in economy of management and maintenance. No steam fire engine is necessary to force a stream through the mains and hose and over the highest buildings; nor is it necessary to provide for the care and maintenance of such an expensive plant as is necessary with a steam power plant. The first cost of the well was less than the cost of an engine, and it fills the double purpose of supplying the water and forcing it wherever it may be needed; and all this at no expense other than an occasional repair to pipe or valve.

Few there are, no doubt, in the many towns of Dakota, where there are systems of artesian water works, who ever pause to consider what these towns would have been had it not been for these wells; or what they would have done for public fire protection or for domestic consumption but for

these wonderful "spouters."

There is no other source adequate, other than to the Missouri river towns, except to an occassional town, where large surface wells, in sand formations, might have supplied a very limited public service. The wells have been a Godsend indeed. The application of the well's pressure to fire-pressure service, led naturally to the idea of using it for power to run water motors.

The first application of well power to the operation of machinery was by the Aberdeen Electric Light Co. They tapped the main pipe of the city's well with a ¾ inch pipe and with this stream they ran the entire plant for some time. This power was, in the end, abandoned because the

sand in the water cut out the buckets of the motor,

At this time there was a move made to build a flour mill to be operated by artesian power, but the project was abandoned upon the advice of several eastern hydraulic engineers to whom the matter was submitted by the author. Each declared it to be impracticable—impossible—to utilize the power of these wells, and such expressions of opinion are, even now, common among that class of experts; and little credence is given to what has since become a demonstrated fact.

Soon the use of small motors became quite common, and to-day scores of motors of different makers are used to run coffee mills, feed mills, printing presses, elevators and similar classes of machinery. The first application of well power to the running of a flour mill was at Hitchcock, Beadle county, S. D., where, with a small well 35% inches at the bot-

tom, they run a mill grinding from 40 to 50 barrels of flour per day. The motor is a simple, home-made wheel and the efficiency fully up to what could be desired from an expensive steam plant. The saving in this instance is not alone the cost of fuel, oil, engineer's salary, expensive repairs to boiler and engine, etc., etc., but also the decreased danger from fire and explosion and the consequent reduction in fire insurance rates. The saving in insurance alone will fully cover all the expense of operation by the well power.

This small well also supplies the domestic use and fire service of the town, and the exhaust water from the mill

serves to irrigate a large farm.

Where on earth, outside of this artesian valley, can another showing be made that will compare with this? (See

page 81.)

A larger mill at Woonsocket, using a Pelton wheel, runs at a capacity of 100 barrels per day. (See page 81.) Other mills at Springfield, Yankton and other points also use wells for their motive power. All the machinery in the "Huronite" publishing house, at Huron, S. D., is run by a Chicago Water Motor connected to the city water mains; and the electric light plant, operating both arc and incandescent lamps, is run by a 3 foot Pelton wheel connected directly to a 5½ inch well, which also supplies water to the water works.

A plant, unique in this field and having, to the engineer, a greater degree of interest than any other, because of the manner of applying the water and the results accomplished, is, the sewer plant at Aberdeen. This was the first application of a well to the performance of heavy duty and it is the only plant of its kind on the globe. The well is 4½ inches at the bottom and 6 inches at the top, and has a volume of about 1500 gallons per minute, under a pressure of from 140 to 160 pounds to the inch.

The water is supplied through 3-inch pipes to two Worthington water motors and pumps. The application of the water to the pistons in the cylinders being the same as with steam in the cylinders of a steam engine—the water operat-

ing the same as the steam.

When the two pumps are running at the rate of 60 strokes each per minute there is a reserve of pressure at the well of 40 pounds per inch. The pumps running at this rate have a capacity of 2,500,000 gallons per day of sewage pumped a vertical distance of 23 feet. When on their tour of inspection the U. S. Senate committee on irrigation investigation pronounces.

spection the U. S. Senate committee on irrigation investigation pronounced this plant to be the most wonderful adaptation of the powers of nature that had come under their observation.

Any man who believes that a well cannot be successfully harnessed to a load needs but to witness the operation of this plant to be convinced that he is in error, for when a well, through the agency of proper machinery, will lift a load of twenty millions of pounds a day through 23 feet, or 479 millions of pounds one foot high in a day, that well may be fairly said to have performed a good day's WORK.

Experts to the contrary, the artesian wells of Dakota supply the most wonderful power on the globe. The stupenduous unutilized, and to a great extent, unavailable power of mighty Niagara must pale in comparison with the power of Dakota's artesian wells.

son with the power of Dakota's artesian wells.

Here no special mill site must be chosen and then purchased of the owner at his own figures, for every inch of our broad domain is as good a mill site as there is on the earth. The ground here has but to be opened in order to pour forth the flood which will serve not one purpose alone but many.

Power, domestic use, fire protection, irrigation, and even heat are but the chief among the many duties to which a well may be called. More there are which will soon find a place in the every day economy of Dakota life; and all combined will soon be the chief factors in making this the won-

derland of America.

Every well owner who can afford it should have a motor, for with it much labor of the farm may be performed. A very small expense, added to a little ingenuity and home labor, will harness the churn, the feed mill, the fanning-mill, the feed-cutter, the threshing machine, the grindstone and other farm machines to the motor and thus save a vast amount of labor, expense and even life itself. Any farmer will appreciate the great advantage of having his threshing done by water power instead of by steam power, in which latter case there is the constant danger from fire and explosion.

All these things will come, in time, for Dakota's farmers are too enterprising to long delay the utilization of the forces thus gratuitously laid at their feet. Lack of means is the only obstacle to the proper utilization of that which, ere long, will transform Dakota into the most productive, prosperous, wealthy, and wonderful agricultural region in

this or any other land.

Nor will capital long hold back when it has been fully assured of the successes already achieved by the pioneers in the field of irrigation and the development of artesian power. No more profitable investment can be found to-day than such as is made in Dakota lands on which wells are placed, or in the development of this inexhaustable power that flows not to wreck and to ruin but to fructify and enrich. It becomes, then, the duty of every lover of Dakota to herald the great truths (unembellished by any exaggerations) as to the wonderful possibilities that we ourselves have but just begun to appreciate.

The ear of capital will be reached if we but call long and loudly, and when reached the *means* will cease to be the ob-

stacle to success which now awaits us.

On page 81 will be seen the reports of some of the millers of the state as to the service rendered them by artesian wells. In the face of such facts no argument need be given to prove the great value to Dakota of this great source of power. The reports are from points widely separated which shows the extent of the field.

TABLE FOR CALCULATING THE HORSE POWER OF WATER.

The following table gives the horse power of one cubic foot of water per minute under different heads.

TABLE NO. 32:

Adapted from Pelton Water Wheel Co.

Heads in	Pressure per	Horse		Pressure per	Horse
feet.	Sq. inch, lbs.	Power.	feet.	sq. inch, lbs.	Power.
1	.43	.0016098	. 310	• 134+	.499038
20	8.66	. 032196	320	138	.515136
30	12.99	.048294	< 330	143	.531234
40	17.32	064392	340	147	.547332
50	21.65	.080490	- 350	152	.563430
60	25.99	.096588	360	156	.579528
70	30.32	.112686	370	160	. 595626
80	34.65	.128784	380	164	.611724
90	38.98	.144892	390	169	.627822
1 00 .	43.31	.160980	400	173	.643920
110	47.64	.177078	410	178	.660018
120	51.98	.193176	420	182	.676116
130	56.31	.209274	430	186	.692214
140	60.64	.225372	440	191	.708312
150	64.97	.241470	450	195	.724410
160	69 31	.257568	460	199	.740508
170	73.64	.273666	. 470	204	. 756606
180	77.97	.289764	480	208	.772704
190	82.30	.305862	490	212	.788802
200	86.63	.321960	500	216	.804900
210	90.96	-338058	520	225	.837096
220	95.30	.354156	540	234	.869292
230	99.63	.370254	560	243	.901488
240	103.90	.386352	580	251	.933684
250	108.29	.402450	600	260	.965880
260	112.62	.418548	650 ·	282	$egin{array}{c} 1.046370 \ 1.126860 \end{array}$
270	116.96	.434646	$\frac{700}{200}$.	303	1.120500
280 290	$121.29 \ 125.62$	$.450744 \\ .466842$	750 800	325 346	1.287840
300	129.95		900	390	1.448820
300	129.90	.482940	- 900	390	1.410040

When the Exact Head is found in the Table.

EXAMPLE—Have 100 foot head and 300 cubic feet of wa-

ter. How many horse power have I?

From table—H. P. for 100 ft. head=.160980 for 1 cu. ft. of water, hence $.160980 \times 300 = 48.294$ the H. P. for 300 cu. ft. per minute.

From table 36 we find that 300 cu. ft.=2244 gallons.

If a well having a flow of 2244 gallons per minute will, while throwing that amount, show a pressure of 43 lbs. per inch (=100 ft. head) then it will develop 48.29 effective horse power.

When Exact Head is not found in the Table.

Take the H. P. of 1 cu. ft. under 1 foot head and multiply by the number of ft. head given, then by the number of cu. ft given. The product will be the required H. P.

Note—The table is based upon an efficiency of 85 per cent.

Note the fact that a well shows no pressure, or head, when discharging its full volume. Turn it off a little so as to get some pressure, then measure volume and proceed according to above table to calculate the power.

See page 82.

WOONSOCKET MILL.

Northy and Duncan of the Woonsocket mill report as follows: Our well is 775 feet deep; 7 inches in diameter all the way; pressure 135 lbs. when closed; 62 lbs. with a 4-inch opening, 75 lbs. with a 3-inch opening. We use a 3 foot Pelton wheel, running at 275 revolutions per minute, the nozzle throwing a 1% inch stream. We have made 88 barrels of flour and 36 tons of good feed per day of 24 hours, and we figure on a saving of from \$14 to \$17 per day as compared with steam power of equal service. The element of safety being worth much that cannot be expressed in figures.

SPRINGFIELD MILL.

Mr. J. J. Kattleman of the Springfield mill reports as follows: Our well is 593 feet deep; and 8 inches all the way. The pressure, when closed, is 80 lbs., and when mill is running it is 40 lbs. We use a 16-inch turbine wheel, making about 800 revolutions per minute. The well cost \$3,000, but could be drilled for less now. We put out about 60 barrels of flour per day, and figure on a saving of from \$12 to \$15 per day as against steam power. This item alone being a handsome profit or interest on the cost of the well. Repairs are very light and insurance much less than with steam. We get over 42 horse power from the well.

YANKTON-"FOUNTAIN" AND "EXCELSIOR" MILLS.

Mr. E. Miner of the Fountain Roller Mills of Yankton says: Well is 600 feet deep, 6 inches in diameter, pressure from 48 to 56 pounds per inch, and flows from 1600 to 2000 gallons per minute. We use a Dubuque turbine wheel 12 inches in diameter and of guaranteed 27 horse power. The cost of the power plant, complete to run, was about \$4,000. We pay 3 per cent insurance and would pay 4½ or 5 if running by steam. I think we are saving over \$8 per day as compared with an engine. Our mill is one of 40 bears of the proposity.

barrel capacity.

barrel capacity.

F. L. Van Tassell of the Excelsior Mill Co., says: Our well is 500 ft. deep, pipe 8 inches to the bottom; pressure when closed 52 lbs., with 1 inch opening 48 lbs., with 2 inch opening 42 lbs., with 4 inch opening 20 lbs.; water clear and hard. We use a PELTON wheel 6 feet diameter with 234 inch nozzle, revolutions, 125 per minute. Power about 30 horse. We run our elevator and raise about 500 bushels of wheat per hour, shell 100 bushels of corn and grind 4000 lbs. of feed per hour. Will soon attach all the mill machinery to the well. The well flows 3000 gallons per minute, and, with wheel, power house, etc., cost about \$4,000. ('ost of running it practically nothing, so saving per year as compared with steam power is very great. great.

HITCHCOCK MILL.

Mr. M. B. Potter of the Hitchcock Milling Co., says: Size of well 4 inches at top, 3 inches at the bottom. Depth 960 feet. Volume 1240 gallons per minute. Pressure when closed 155 pounds. With 1 inch opening 140 pounds. With 2 inch opening 82 pounds. We get about 30 horse power from a wheel of our own design, it being 50 inches in diameter and runs at about 300 revolutions per minute. The well cost the town \$4,500. We have had no expense for repairs since putting in the wheel in June, 1890—nearly 3 years. The mill has a capacity of 50 barrels in 24 hours. Besides running the mill the well supplies water to the town, maintains water in an artificial lake, and waters an irrigated farm. The well has been running since 1886 and the volume is invariable and apparently inexhaustible and the pressure is uniform.

HORSE POWER.

A horse power issuch a power as will raise 33,000 pounds one foot high in one minute of time. The term is one of mechanics and does not fairly represent the power of the average horse which is only about two-thirds as much.

To calculate the horse power of falling water multiply together the number of cubic feet of water falling per minute, the vertical distance (head) through which it falls, and the number 62.3 (approximate weight of 1 cubic foot of water) and divide the product by 33000.

EXAMPLE—A well discharges 800 cubic feet per minute from a pipe 16 feet above the surface, what is the horse

power of the well?

Here,
$$\frac{800 \text{ cu. ft.} \times 16 \text{ ft.} \times 62.3 \text{ lbs.}}{33,000} = \frac{797440}{33000} = 24.17 \text{ H.P.}$$

This is the *theoretical* H. P. The actual H. P. as realized from machinery will be less because the wheel or motor does not realize the full efficiency of the water. The percentage of efficiency realized will depend on the form of the wheel and the skill of the makers. It will range from 25 to 90 per cent. of the full power. Turbine wheels realize from 75 to 85 per cent. of the power and impact wheels about the same amount.

The table on the next page will prove of value in this con-

nection.

TO GET THE VELOCITY OF THE FLOW OF A WELL.

If the volume has been accurately measured.

Divide the volume of the flow, in gallons, by the volume in gallons contained in one foot of the pipe of the well (=the area of the cross section of the pipe). The answer will be the velocity in feet per minute.

Thus—Suppose a 6-inch well throws 1836 gallons per minute, what is its velocity of discharge in feet per minute?

From table No. 26 we see that 1 foot of 6-inch pipe contains 1.469 gallons. How many feet, therefore, will it take to hold 1836 gallons? $1836 \div 1.469 = 1250 =$ the number of feet necessary to hold 1836 gallons, or the length of the column of water thrown out each minute, or the velocity in feet per minute. $1250 \div 60 = 20.8$, the velocity in feet per second.

This is the same as the rule for finding the velocity of any stream, viz: Divide volume per minute by area of section to get velocity per minute, and divide this quotient by 60 to get

velocity per second.

To Compute the Volume of Discharge per Minute.

RULE—Multiply the area of the wet section in sq. ft. by the velocity in feet per second to get volume in cubic ft. per sec. Multiply this product by 60 to get the volume per min. To Compute the Height of the Head in Feet.

RULE—Divide the volume in cu. ft. per second by the area, and the square of this quotient, divided by 64.33, will

give the height of the head in feet.

TABLE NO. 33.

TABLE SHOWING FLOW PER MINUTE EQUAL TO A GIVEN FLOW PER DAY AND TOTAL FLOW PER DAY FROM A GIVEN FLOW PER MINUTE.

Venn

			wew.
Total gallons per	Equal gallons	Gallons per	Equal gallons per
day.	per minute.	minute.	day.
100	.07	.1	144
200	.14	.2	288
300	.21	.3	432
400	.28	.4	576
500	.35	.5	720
600	.42	.6	864
700	.49	.7	1 008
800	.56	8	1 152
900	.63	9	1 296
1 000	.7	1.9	1 440
2 000	1.4	2.	2 880
3 000	2.1	2. 3.	4 320
4 000	$\begin{array}{c} 2.1 \\ 2.8 \end{array}$	4.	5 760
5 000	3.5	5.	7 200
6 000	4.2	6.	8 640
7 000	4.9	7.	10 080
8 000	5.6	8.	11 520
9 000	6.3	9.	12 960
10 000	6.9	10	14 400
25 000	17.4	25	36 000
50 000	34.8	50	72 000
75 000	52.2	75	108 000
100 000	69.5	100	144 000
200 000	138.9	200	288 000
300 000	208.3.	300	432 000
400 000	277.8	400	576 000
500 000	347.2	500	720 000
600 000	416.7	600	864 000
700 000	486.1	700	1 008 000
800 000	555.6	800	1 152 000
900 000	625.0	900	1 296 000
1 000 000	694.5	1000	1 440 000
2 000 000	1388.9	2000	2 880 000
3 000 000	2083.3	3000	4 320 000
4 000 000	2777.8	4000	5 760 000
5 000 000	4372.2	5000	7 200 000
6 000 000	4166.7	6000	8 640 000
7 000 000	4861.1	7000	10 080 000
8 000 000	5555.6	8000	11 520 000
9 000 000	6250.0	9000	12 960 000
10 000 000	6944.5	10000	14 400 000
	Il he most son	coniont in mal	

This table will be most convenient in making quick comparisons as between different wells in Dakota and those elsewhere where, as a rule, the flow is reported as so much per day while in Dakota the flow is always so much per minute. The greatest wells outside of Dakota are those of Kern Co., California, which flow from 150,000 to 4,000,000 gallons per day or (see table) from 104.3 (69.5 + 34.8) to 2,777.8 gallons per minute. Of their 54 wells only 10 flow over 1,200,000 gallons per day or 833.4 gallons per minute. This table shows at a glance the superiority of the Dakota wells.

Example of use of table. How many gallons per minute flow from a well throwing 5,359,800 gals. per day?—Add the quantities in 2d. column 3,472.2+208.3+34.8+6.3+.56

= 3.722.16 gallons per minute.

TABLE NO. 34.

-	-	The state of the s	-		-		New.
		SEC	SECTION A.			SECTION B.	SECTION C.
Acres to be	Cubic feet	Area in Acres to be Cubic feet of water needed to flood the land to a depth	ded to flood	the land to	o a depth of	One Cu. Ft. = 7.4805 Gals. Volume in	Approximate time required for Wells of different volumes per minute to throw the amount of water shown in Sec. B.
rlooded.	1 inch	1 podoni 6 1	1 9 thouse	C track of		covered to a	500 gall. well. 1000 gall. 2000 gall.
4	T INCH.	TOTT 7	IIICII	Inch	1 100t,	depth of 1 ft.	yr. mo. ds. hr. mo. ds. hr. mo. ds. hr
10	36 300	72 600	108 900 108 900	217 800	43 560	3 258 500	-
02.8	72 600	145	217 800		871 200	000 LTG 9	9 13 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
9	145 200	230	326 700 435 600		1 306 800	9 775 500	9
09	217 800	435	653 400		2 613 600	19 551 000	
35	290 400	580	871 200		3 484 800	56 068 000	2≪
160-4 Sec.	580 800	1 161	742	3 484 800	4 356 000 6 969 600	32 585 000 52 136 000	1 15 6 122 18
320-3	1 161 600	2 323	484	696	939	104 272 000	2 12 0
480-4 640-1	9 293 900	3 484	227	454	908	156 408 000	31 18
800-14 "	2 904 000	5 808 5 808	8 712 000		34 848 000	208 544 000	- # 0
960-13	3 484 800	696 9	454	806	817	272 816 000	200
1980 9 6	4 065 600	∞ 13T	12 196 800	393		364 952 000	8 13 10 t 6
1400-2	7 040 400	2626	939	27 878 400	156	1 417 090 742	9 10 4 4 20

* For further figures as to volume on one acre, see table 21.

This table will, at a glance, give one an idea as to the duty of a well of most any volume; that is, as to what area it will cover to a given depth in a given time. The amounts here given forming a basis for ready calculations for amounts not here given.

By interpolation other quantities may be readily taken from the foregoing table; thus—

To cover 10 acres 8½ inches deep, Multiply 36,300 (amount for 1 inch) by 8 23 33 33 and add 1/2 of 36,300 " 18,150

Total 308.550 cu. ft.

Where the required acres and the required depth are neither one in the table as—Required the cu. ft. to cover 17. acres 7 inches,—proceed thus—

Take out quantity for 1 acre and multiply by the given number of acres.

21,780 Thus — To cover 1 acre 6 inches 1 " 66 3,630 7 inches 25.410

 $25,410 \times 17$, the given number of acres = 431,970 cubic feet, OR if the inches cannot be taken from the table as in above case multiply the amount for one inch by the given number of inches, Thus, amount for 11 inches = 3630 (amount for one inch) \times 11 = 39,930 cu. ft.

The volume in gallons may be found by multiplying the total cu. ft. by 7.48052, the number of gallons in one cu. ft.

by interpolation from Section B. How many gallons in 308,550 cu. ft. (amount to cover 10 acres 8½ inches deep)? From Section B. we find 3,258,500 as gals, to cover 10 acres 1 foot or 24 half inches; 8½ inches = 17 half inches, therefore, divide 3,258,500 by 24, to get amount for one half inch, and multiply this quotient by 17 to get gals. for 17 half inches.

OR see table No. 36
The time required for a well of given volume per minute to throw any given quantity of water is found by dividing the total volume by the volume of the well per minute and then reduce the number of minutes thus found to hours,

days, weeks, &c.

If the quantity is given in the foregoing table take out the time from Section C. or, if the quantity is not given in the table proceed as in the following. Example: 9 inches deep on 100 acres from a 500 gal. well will take—

 $\begin{array}{l} \textbf{2,178,000 cu. ft.} = \textbf{6 inches.} \\ \textbf{1,089,000 ````} = \textbf{3} \\ \textbf{3.267,000 cu. ft.} = \textbf{9 inches.} \end{array} \right\} \\ \begin{array}{l} \textbf{Sec'n} \\ \textbf{A.} \end{array} \bigg| \begin{array}{l} 32,585,000 = \textbf{gals. on 100 Ac. 1 ft. deep} \\ (\textbf{Sec. B.) divided by 12} = 2.715,417 \\ = 24,438,753 = \textbf{gals. at 9 inches.} \end{array}$ 3,267,000 cu. ft. = 9 inches.

From Section C we find it takes a 500 gal. well 1 mo., 15 ds., 6 hrs., to cover 100 acres 12 inches deep, or 1,086 hours. Since 9=% of 12 take % of 1,086 hours = 813 hours or 33 days and 21 hours. Ans. From table 35 (next page) an approximation may be quickly taken. Thus, under head of 500 gal. well we see 21,600,000 = gals. thrown in 1 mo. and 720,000 = gals. in 1 day. 720,000 \times 4 = 2,880,000 gals. which added to 21,600,000 gals. = 24,480,000 gals. in 34 days, or a little more than our estimated amount of 24,438,753 gals. From this it is shown that the amount will be thrown in a little less than 34 days (33 ds. 21 hours as above.)

For exact amounts and times one should figure exactly which may be done from the tables by using a few more figures.

done from the tables by using a few more figures.

TABLE SHOWING VOLUME OF WATER THROWN IN DIFFERENT PERIODS OF TIME BY WELLS OF DIFFERENT VOLUMES PER MINUTE. TABLE NO. 35.

Day 144 000 432 000 720 000 1 44 Week 1008 000 3 024 000 5 040 000 10 08 Two Months 8 640 000 25 920 000 43 200 000 84 3 20 Three 12 960 000 38 880 000 64 800 000 129 60 Four 43 200 000 172 80 172 80 Four 52 800 000 18 840 000 131 400 000 172 80 Gir Year 52 800 000 157 800 000 172 80 Jone Year 52 800 000 157 800 000 157 800 000 158 80		60 000 60 000	2 000 2 88 000 20 160 000 36 400 000 275 800 000 345 600 000 554 600 000 554 600 000
--	--	--	---

From this table may be taken the approximate volume for a well with any flow not given in the table. Thus—What will a well with a volume of 1250 gallons per minute throw in 3 months?

લં લં		
\times $+$	tal.	
100 × 2.	To	
11 11	162,000,000 = Total.	
9 8 9	1 8	
0,0	0,0	,
92,66	2,00	00
27.20	16	,
11 = 129,600,000. = 25,920,000. = 6,480,000.	, II	
ਰ ਹ		
A 5 5	3.	
gal	99	,
1000 gal, well 200 " " 50 " "	1250 "	
10	12	5

Take from table for 100 gals. for three months 12,960,000 and multiply by 12.50 and get the same result. Had the given flow been 763 gals. per minute multiply by 7.63 to get answer.

From table on opposite page any amount here given or estimated may be quickly converted into cubic feet, or multiply the gallons by .133679, the number of cubic feet in one gallon.

TABLE NO. 36.

TABLE SHOWING EQUIVALENCE OF CUBIC FEET AND GALLONS—AND GALLONS AND

CUBIC FEET.

New.

Cubic feet	to gallons.	Gallons to	cubic feet.
Cubic feet.	Gallons.	Gallons.	Cubic feet.
1 2 3 4 4 5 6 6 7 8 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 1 0	7.48 14.96 22.44 29.92 37.40 44.88 52.36 59.84 67.32 74.80 149.61 224.41 299.22 374.02 448.83 523.63 598.44 673.24 748.05 * 1 496 2 244 2 2992 3 740 4 488 5 286 5 984 6 732 7 480 14 961 22 441 29 922 37 402 44 883 59 844 67 324 74 805 74 805 74 805 74 805 74 805 74 805 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805 700 74 805	1 2 3 4 4 5 6 6 7 7 8 8 9 9 10 20 30 40 40 50 60 700 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000	.133679 .267358 .401037 .534716 .668395 .802074 .935753 1.069432 1.203111 1.336790 2.673580 4.010370 5.347160 6.683950 8.020740 9.357580 10.694320 12.031110 * 13.367 26.735 40.103 53.471 66.839 80.207 93.575 106.943 120.311 * 133 267 401 534 668 802 935 1069 1 203 1 336 13 367 133 679 1 336 790 1 3367 900

Note change in location of decimal point at * * *

This table will be of great use in quickly converting cubic feet to gal-

lons or vice versa.

Example, How many gallons in a reservoir containing 6,450,620 cu. ft.?

Example, How many gallons in a reservoir containing 6,450,620 cu. ft.? Take from the table the gallons for 1,000,000 cu. ft. and \times it by 6, also the gallons for 100,000 cu. ft. and \times it by 4, &c., as shown below.

$7,480,520 \times 6 = 44,883,12$	20. = .0	gals	for	6 000 000	cu	ft	OR
$748,052 \times 4 = 2,992,20$)8. =	"	77	400 000	77	77	Multiply the total
$74,805 \times 5 = 374.02$		7.7	2.7	50 000	77	7.7	cubic feet by
600 = 4.48	38. =	77	2.7	600	7.7	77	7.48052, the gallons
		2.2	"	20	77	7.7	in one cubic foot
_					_		This requires.
Total yards $= 48,253,99$	90.61. =	77	2.7	6 450 620	9.7	"	more figures.

TABLE NO. 37.

Table showing volume in gallons and in cubic feet thrown by wells of different volumes per minute, in periods of one month (30 days) and three months (90 days).

New.

and three III	onthis (90 days)•		IVew.
	NE MONT	н.	THREE "	MONTHS.
Gallons per MINUTE thrown by well.	Total gallons thrown in 1 month. (30 ds.)	Equivalent volume in ucbic feet.	Total gallons thrown in 3 months. (90 ds.)	Equivalent volume in cubic feet.
1 5 10 20 25 30 40 50 60 70	43 200 216 000 432 000 864 000 1 080 000 1 296 000 1 728 000 2 160 000 2 592 000	5 775 28 873 57 748 115 497 144 373 173 247 230 996 288 745 346 495	129 600 648 00) 1 296 000 2 592 000 3 240 000 3 888 000 5 184 000 6 480 000 7 776 000	17 325 86 619 173 244 346 491 433 119 519 741 692 988 866 235 1 039 485
80 90 100 200 300 400 500 600 700.	3 024 000 3 456 000 3 888 000 4 320 000 8 640 000 12 960 000 17 280 000 21 600 000 25 920 000 30 240 000	288 745 346 495 404 244 461 993 519 743 577 492 1 154 986 1 732 479 2 309 972 2 887 464 959 4 042 452	3 240 000 3 888 000 5 184 000 6 480 000 7 776 000 9 072 000 10 368 000 12 960 000 25 920 000 38 880 000 51 840 000 77 760 000 90 720 000 103 680 000	1 212 732 1 385 979 1 559 229 1 732 476 3 464 958 5 197 437 6 929 916 8 662 398 10 394 877 12 127 356
\$00 900. 1 000 1 100 1 200 1 300 1 400 1 500 1 600 1 700	34 560 000 38 880 000 43 200 000 47 520 000 51 840 000 60 480 000 64 800 000 69 120 000	4 619 945 5 197 439 5 774 982 6 352 425 6 929 919 7 507 411 8 084 905 8 662 399 9 239 891	103 680 000 116 640 000 129 600 000 142 560 000 155 520 000 168 480 000 181 440 000 194 400 000 207 360 000	18 859 835 15 559 317 17 324 796 19 057 275 20 789 757 22 522 233 24 254 715 25 987 197 27 719 673
1 700 1 800 1 900 2 000 2 100 2 200 2 300 2 400 2 500 3 000	73 440 000 77 760 000 82 080 000 86 400 000 90 720 000 95 040 000 103 680 000 108 000 000	9 817 385 10 394 878 10 972 372 11 549 865 12 127 358 12 704 852 13 282 344 13 859 838 14 437 332	230 320 000 233 280 000 246 240 000 259 200 000 272 160 000 285 120 000 298 080 600 311 040 000 324 000 000	29 452 155 31 184 634 32 917 116 34 649 595 36 382 074 38 114 556 39 847 032 41 579 514 43 311 996
3 500 4 000 4 500 5 000 5 500 6 000 7 000 8 000 9 000	151 200 000 151 200 000 172 800 000 194 400 000 216 000 000 237 600 000 259 200 000 302 400 000 345 600 000 388 800 000 432 000 000	519 743 577 493 577 492 1 154 986 1 732 479 2 309 972 2 887 466 3 464 959 4 042 452 4 619 945 5 197 439 5 774 932 6 352 425 6 939 91 7 507 411 8 084 905 8 662 399 9 239 891 9 817 385 10 394 878 10 972 372 11 549 865 12 127 358 12 704 852 13 282 344 13 859 838 14 437 332 17 324 798 20 212 264 23 099 731 25 987 197 28 874 660 31 762 130 34 649 596 40 424 529 46 199 562 51 974 395 57 749 328	77 760 000 90 720 000 103 680 000 129 600 000 129 600 000 142 560 000 155 5'0 000 168 480 000 181 440 000 207 360 000 220 320 000 233 280 000 246 240 000 259 200 000 272 160 000 285 120 000 285 120 000 285 120 000 288 800 000 311 040 000 324 000 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000 518 400 000	60 636 792 69 299 193 77 961 591 86 623 992 95 286 390 103 948 788 121 273 587 138 598 686 155 923 185 173 247 984

See explanation on opposite page.

The table on opposite page is an extension of table on page 86, but changed to give two periods of time and wells of a greater range of volume per minute; and giving the volumes in both gallons and cubic feet. The irrigation season lasts about three months and is preceded in the spring and followed in the f ll by about equal periods of time, so that one month and three months are the periods assumed to be those upon which the greater number will desire to base estimates as to the volumes they can count on during these periods. By simple addition the volume of any well may be taken from the table.

EXAMPLE—What volume will a well with a volume of 3572 gals, per minute throw in 3 months?

Having the amount for 3 months, the amount for any lesser or greater time may be found by division or addition. Thus: In above example the well, in 40 days, would throw $\frac{1}{2} + \frac{1}{3} = (30 \text{ ds.} + 10 \text{ ds.})$ of the total amount or volume shown; or in $\frac{41}{2}$ months a well would throw, total $+\frac{1}{3} + \frac{1}{6} = (3 \text{ Mo.} + 1 \text{ Mo.} + \frac{1}{2} \text{ Mo.})$ of the total volume shown.

The table will be found useful for taking out rapid approximations as to volumes and in this will answer the purpose of the preceeding table—table 37—thus, by inspection it is shown that a reservoir holding about 36,000,000 cu. ft. holds about 272 000,000 gals. and that a 2100 gal. well would be required in order to fill it in about 3 months.

TABLE NO. 38.

DISCHARGE OF JETS IN GALLONS PER MINUTE.

Head on	Head on	Disc	charge fr	om Jets	of follov	ving dia	meters.
in Pounds.	$egin{array}{c} egin{array}{c} egin{array}$	3/4	1 inch.	11/8 -	11/4	1%	1½
20	46.16	70.4	125.2	158	196	237	282
25 30	$\begin{array}{c} 57.70 \\ 69.24 \end{array}$. 78.7 86.3	$140.0 \\ 153.4$	$\frac{177}{194}$	$\frac{219}{240}$	265 290	315 345
40 50	$92.32 \\ 115.40$	99.6 111.4	177.1 198.0	$\frac{224}{251}$	277 309	335 374	398 445
60 70	138.48 161.56	121.9	216.8	274 297	339	410	488
80	184.64	131.8 140.8	234.3 250.3	317	366 391	443 473	527 563
90 1 00	207.72 230.80	149.4 157.5	265.6 280.0	336 354	415 437	502 529	598 630
110 120	$253.88 \\ 276.96$		293.6 306.7	372 · 1 388	459 479	555° 580	· 661 690
130 140	300.04 323.12		319.2 331.2	404 419	499 518	604 626	718 745
150 160	346.20			434	536	649	772
170	369.28 392.36			448	553 570	670 690	797 823
180	415.44					710	845

This table is calculated from the formula given on page 73 except that H. (head) in feet is taken at 2.308 ft. per pound of head instead of 2.311 as given. The difference is not material.

WIND MILLS.

The following tables are from a circular issued by the U.S. Department of Agriculture, office of Irrigation Inquiry.

TABLE NO. 39.

SIZE AND CAPACITY OF WIND MILLS AT VARIOUS DEPTHS.

Diameter	25 ft. Eele	evation.	50 ft. Ele	vation.	100 ft. E	levation.
of wheel in feet		Gallons per hour.	Size of pump, ins.			Gallons per hour.
10	3½	500	3	300	21/2	200
12	4	750	$3\frac{1}{2}$	500	3	350
14	5 .	1150	4	800	. 3½	550
16	6	1500	5	1200	4	800

This table is only intended as a general guide and is subject to modification by reason of some mills having greater capacity, for given size, than other mills; and the same applies to the pump used and the manner of attachment.

TABLE NO. 40.

VOLUME OF WATER PUMPED PER MINUTE. From 10 to 100 Feet.

Diameter	Vertical	distance fro	m water to	o point of	delivery,	in feet.
wheel	10	15	25	50	75	100
Feet	Gallons 15.24	Gallons 10.16	Gallons 6.16	Gallons 3.02	Gallons	Gallons
10 12	48.26 86.71	32.18 57.81	19.18 33.94	9.56 17.95	6.64 11.85	4.2 5 8.49
14 16	111.67	74.44	45.14 64.60	22.57	15.30	11.25
18	155.98 249.93	103.99 159.95	97.68	$ \begin{array}{c} 31.65 \\ 52.17 \\ 69.57 \end{array} $	$ \begin{array}{r} 19.54 \\ 32.51 \\ \hline \end{array} $	16.15 24.42
20 - 25	309.60 532.52	206.40 355.01	$124.95 \\ 212.38$	$63.75 \\ 106.96$	40.80 71.60	31.25 49.73
30	1080.11	728.83	430.85	216.17	146.61	107.71

VELOCITY OF WIND.

The average over the U. S., as determined by signal service examinations, is 5769 miles per month, or about 8 miles per hour. See page 91—table of wind velocity in Dakota. Experience has demonstrated that to operate a wind mill, there is required an average velocity of wind of 6 miles per hour.

TABLE NO. 41.

VELOCITY AND FORCE OF WIND.—Haswell.

Miles per hour.	Feet per minute.	Pressure per sq. ft. in lbs.	Description of the wind.	
1 to 3 6 10 20 30 45 60 80 100	88—264 440 880 1760 2640 3960 5280 7040 8800	.005—.045 .125 .5 2. 4.5 10.125 18. 32. 50.	Just perceptible Pleasant wind Fresh breeze Stiff breeze High wind Gale Great storm Hurricane Tornado	

The mean weight of the air will support a column of water 33.95 ft. high, at sea level. The velocity of sound in air at 60° = 1107 ft. ,in water about 49,000 ft. per second.

TABLE NO. 42.

WIND IN DAKOTA.

Average daily and hourly Wind Velocity for 9 years from 1882 to 1891, inclusive, at Huron, S. D., by Sam. W. Glenn, U. S. Weather Bureau.

Month.	Average daily velocity, miles.	Average hourly velocity, miles.			
January	232.5	9.7			
February	242.6	10.1			
March	239.9	10.0			
April	274.8	13.1			
May	265.7	11.1			
June	238.6	9.9			
July	220.2	9.2			
August	217.5	9.0			
September	254.0	10.6			
October	244.7	10.0			
November	227.0	9.5			
December	224.2	9.3			

Average hourly velocity for 9 years = 10.1 miles.

TABLE NO. 43.

RAIN IN DAKOTA.

Total Rain Fall by months as recorded at Huron, S. D., from 1881 to 1892 by S. W. Glenn, U. S. Weather Bureau.

Year.	Jan	Feb	Mch	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Tot'l
1881 1882	.14		.80	4.18	4.50	5.86	3.58 5.83	6.31	3.11	$\frac{2.10}{3.37}$.45	.06	28.12
1883 1884	.17 .09	.47	$\frac{.42}{1.53}$	$\begin{vmatrix} 2.14 \\ 2.70 \end{vmatrix}$	$\frac{4.45}{2.90}$	$\frac{4.33}{3.18}$	5.20 5.11	$\begin{bmatrix} 1.77 \\ 1.18 \end{bmatrix}$	1.68 1.26	$1.96 \\ 1.52$.05 .17	.61	23.25
1885 1886 1887	$\begin{bmatrix} .15 \\ .48 \\ .23 \end{bmatrix}$	$\begin{array}{c c} .22 \\ .16 \\ 1.11 \end{array}$.62	$1.06 \\ 3.52 \\ 3.72$	$\begin{bmatrix} 5.20 \\ 1.58 \\ 1.38 \end{bmatrix}$	$\begin{bmatrix} 5.43 \\ 1.90 \\ 3.93 \end{bmatrix}$	$\frac{4.52}{1.60}$ $\frac{4.96}{4.96}$	$3.89 \\ 5.62 \\ 6.13$		1.26 1.79	1.50 1.18 $.25$	$ \begin{array}{c} .10 \\ .74 \\ 2.09 \end{array} $	25.78 20.25
1888- 1889	.78 1.26	.52	1.22	.88 3.41	4.98 3.04	$1.10 \\ 1.04$	$\frac{4.50}{3.11}$	3.46	.19 3.89	.29	.31 .16	.18	25.54 17.05 20.17
1890 1891	.66	1.32	.32 1.64	$\frac{.64}{3.45}$	2.88	5.87 8.03	$\frac{1.41}{1.01}$	1.43	.32 .47	.61 .78	.38		
Mean		.57	.72	-	3.14	4.03	3.63					.67	21.58
1892	.28	.70	1.11	5.90	6,03	4.00	Tota	ıl in 6	mon	ths=1	18.02		

Read carefully the note on the next page with reference to this table. Read it twice—and don't forget it.

PRECIPITATION FOR FIRST 6 MONTHS DURING THE FOLLOWING YEARS.

1882	15.73	1886	8.26	1890	10.55
1884	10.98	1888	9.48	1891 1892	18.02
1885	12.08	1889	9.87	Av'g.	12.10

(See also table No. 14.)

Note—As to precipitation table No. 43.

This table of rain-fall has much interest as it shows the

distribution and amount of our rains by months and years. 1882 was Dakota's "boom" year in rain-fall, as in other respects, and was the most bountiful on record in consequence. 1883—'85 and '87 were good years, while 1888—'89 and '90 were years of almost total failure. It will be of special interest to note that 1889 and 1891 have exactly the same total rain-fall; whereas 1889 was a year of drouth and failure. while 1891 was a year of phenominally good crops. Note further that the record of 1891 followed a record of but 14.68 in 1890; whereas the equal record of 1889 followed a record of 17.08 for 1838, so that, so far as the records for the two-year periods are concerned, the period of '89 and '90 ought to have shown better results than the period of '90 and 91.

Note still further that the rain-fall of 1889 for the months from January to July was but 13.36 inches out of the total of 20.17; whereas in 1891 the rain-fall for these months was 16.01 out of the total of 20.17. Herein, then, lies the secret of the good year 1891-during the growing months of 1891 there was a rain fall of 2.65 inches greater than during these months of 1889—the totals for the two years being the same. In 1889 the rain came too late, while in 1891 it came in the

proper season.

A valuable lesson may therefore be drawn from the table -it is, that the 2 or 3 inches of timely rain in 1891 saved Dakota from a fourth year of failure, and enriched the people at the rate of

OVER \$5,000,000 PER INCH.

There is the record! There is the lesson!

From this draw the further lesson as to the true value of the water of a well the distribution of which you have in your absolute control both as to the quantity and the time when it shall be used.

If this lesson alone is well learned by a few then will that one table have made this little book well worth the cost of publishing.

Year	First	Last Frost	Temperature.		Days				
	Frost		Highest	Lowest	Clear.	Fair	Cloudy	Rain	
*1881	Sept 15		95.6°	— 6°	62	81	41	66	
1882	" 20	May 22	93.7	-20	113	171	81	96	
	July 17	April 30	99.2	-32	110	168	87	115	
1884	Sept 11	May 13	95.9	-38	139	155	72	111	
1885	' 1	June 8	98.2	-33	129	164	72	95	
1886	Aug. 31	May 6	103.6	-33	121	180	64	118	
1887	Sept. 15	"3	99.2	-43	130	162	73	114	
1888	" 12	• 18	101.7	-36	141	142	83 .	95	
1889		" 2	104.0	-30	133	143	89	92	
1890	Aug. 22	" 15	103.0	-28	151	150	64	90	
1891	23	" 16	97.0	-24	135	136	94	92	

Records from Huron, S. D., Signal Station. *From July 1st 1881.

TO MEASURE THE HEIGHT OF A STREAM.

The following method will enable any one to easily and quickly measure the exact height of the stream thrown out by a well, without the use or instruments or of tables of

tangents.

Referring to figure 11 let W be a well and EF the stream thrown. Carefully measure off a distance of say 100 feet and drive a stake S, to the level of the pipe if possible. Drive another 3 or 4 feet nearer and across the top nail a piece of board B; which set level. Measure off AC = 5 feet (or any other amount) and nail the stick H to this mark, and at right angles to AC. Now look over the point of the board at A and have some one mark on the stick H a point D in line with E the top of the stream EF. Measure the length CD, then may the height EF be found by simple proportion.

Example. AF = 100 ft. AC = 5 ft. CD = 4 ft. then, AC : AF :: CD : FE or 5 : 100 :: 4 : (required height) $100 \times 4 = 400, 400 \div 5 = 80$ ft. = height of stream EF.

If the horizontal line AF will not strike the top of the pipe, as at Y, measure the distance YZ and subtract it from

the total height found.

Although a rough method it is an easy one and sufficient accuracy may be obtained. If this is done by all wells, while throwing streams of different sizes, and a record made of the results it will be a vast improvement on the guess-work so freely indulged in heretofore.

Fig. 11.

Method of measuring height of a stream.

(See also page 147.)

From Harper's Magazine.

Copyright, 1889, by Harper & Brothers.

FIG. 12. WEATHER MAP OF NORTH AND SOUTH DAKOTA. By permission of Messrs, Harper & Brothers.

Showing isothermal lines and areas of varying rainfall. It will be seen that nearly all of the agricultural section of both states has a range of rainfall of from 15—20 inches. This area should extend farther to the South than shown on the map.

From Harper's Magazine.-Copyright, 1889, by Harper & Brothers.

Fig. 13. View of Brick-Yard Well at Yankton, S. D. From photograph by L. Janousek, Yankton-By permission of Harper and Brothers.

Depth = 595 feet. Size of pipe = 6 inches.
Pressure = 48 to 57 fbs. per square inch.
Volume = 1620 to 2000 gallons per minute.
Location, on top of the Missouri river bluffs.
Use, for power. Cost, about \$3,000.
The view as taken showed the well throwing a 6 inch stream about 6 feet above the top of a 20 foot stand-pipe. This well is one of a number of large wells in the southern portion of South Dakota having a comparatively low pressure and very large volume.

RESERVOIRS.

In the western states where irrigation by water taken from streams is the rule, and irrigation by well waters the exception, the waters are, in most cases, impounded at some place near their head waters where the topography is such as to admit of the construction of a dam which will create a reservoir in the valley wherein are stored the waters of the freshet season for use, many miles away, during the season of drouth. Such vast engineering works can only be entered upon by corporations possessing vast capital, for, in some cases, the dam, with flumes and ditches to convey the water to the irrigated districts, has cost over a million dollars.

The general government has already provided for the location, survey and reservation of all sites on the public domain where dams and reservoirs may, to advantage, be located in the future, and wise restrictions have been thrown around corporations securing such sites so as the best to protect the individual comsumers from corporate exactions

Vast tracts of the finest land in the world lie undeveloped and barren because the necessary capital has not yet been found to improve it by first constructing a dam and creating a reservoir for the storage of the necessary water.

IN DAKOTA how different is all this?

There is not in the state a reservoir site worthy of the name and no money need be expended on great engineering works for the storage of water. Nor is there a stream that can, to advantage, be dammed. The Dakota reservoir will rarely if ever exceed 10 acres in area and in place of one covering many miles there may be several small ones on one mile.

When artesian irrigation was first agitated it was the popular belief that the well waters might be run directly into the ditches and thence distributed; but no thought was given to the fact that thereby the service of a well of but moderate volume would be very limited, for the water flowing within any given time would be insufficient, within that

time, to cover any considerable area.

If, however, the waters could be stored in a reservoir during such periods as it was unnecessary to apply any to the land then when water was needed over a broad area, and within a brief period of time, the accumulated store could be made to do service which the well alone could not do in the same time. The necessity for small storage reservoirs being thus apparent they become as much a part of every irrigation plant as the well itself. In fact if the land under service of any particular well is quite rolling it may, and in many cases will, be necessary to have two or more small reservoirs on the farm in order to secure the best service to the land and the most economical storage and distribution.

Reservoirs being necessary, how and where shall they be built?

LOCATION.

The highest points will, of course, be the natural sites for reservoirs but the land may lay so as to make it not only better but cheaper not to locate the reservoir on the highest point. Such cases will be few and the conditions in mind will in all such cases be apparent to one on the ground. If a tract of land is divided into two or more parts by a gully or depression of any extent it may be best in such case to have two or three smaller reservoirs, one on each tract or division of the land. If but one large reservoir were built the other tracts or elevations would have to be served from flumes which would be larger and more expensive than one sufficient to feed the reservoir alone, and they might, at the critical time, fail to do proper service by reason of adverse winds or other causes thereby causing more loss than a reservoir would cost.

In ordinary cases the proper site for a reservoir may be selected by a farmer without the aid of an engineer but where any doubt exists as to the choice of locations then no chances should be taken and the services of one competent to judge

should be secured.

FORM.

In most cases the circular form will be adopted because the greatest area is enclosed by a given amount of bank. Occasional departures from this form will be necessary by reason of the lay of the land.

Only the cicular form will be considered in the tables.

SIZE

The matter of size will, in a few cases, be governed by the land but, as a rule, the *service* to be rendered by the waters stored will govern. If a township well is to be provided with storage then the volume of the well should be determined in order to know how small a reservoir would suffice not only to give service to the area to be irrigated but also to hold all the water the well will supply within the longest time it could be permitted to run without allowing the water in the reservoir to be drawn off. This would give all the necessary storage capacity without any waste of money in

making it larger than needed.

Since most wells throw over 500 gallons per minute the time of impounding could not be long except with a very large reservoir. Table No. 37 taken in connection with tables 47 and 48 will quickly supply all needed information in this connection. From them it will be seen that a 500 gallon well will fill a 10-acre reservoir seven feet deep every 30 days, &c., &c. Where, as in case of a township well which will be used to serve several farmers, the volume used will be large the storage capacity should be as large as economy will warrant and each consumer might to his own advantage be supplied with a sub-reservoir. In case of special-service or sub-reservoirs which are designed to serve only a limited area as for example, a knoll of 10 or 15 acres then the water to be

used on that area alone should be estimated and storage area provided only sufficient for that volume, allowance being made for seepage, evaporation and waste. Thus, assume a field of 10 acres to be supplied by a sub-reservoir and volume sufficient provided to flood the land 6 inches; what would be the size of reservoir required if the water be given a depth of 5 feet in the reservoir? Table 34 or table 21 gives the cubic feet of water required to flood 10 acres 6 inches deep as 217,800. Table 29, under head of water 5 feet deep, shows at a glance that a reservoir of 1½ acres will hold this volume and enough more to cover all waste. Table 45 gives the diameter, circumference and area of this reservoir.

These suggestions will show the importance of duly considering the elements of volume of well, time it may flow, area to be served, &c., in the laying out of a reservoir for either general or special service. The depth of water in the

reservoir will always enter into the consideration.

Where any considerable volume is required it will be best to have the depth in excess of 4 feet, first, because if the water is deeper the reservoir will occupy less ground for a given capacity; second, the evaporation will be less, the exposed area being less, and the waste from seepage will be less; third, the wash of the banks will be less because the wind will have less sweep over the surface.

Table of sizes.

Table No. 45 shows the diameters, circumferences, and areas in sq. ft. of reservoirs from ½ acre to 10 acres, for each ¼ acre, and explanation follows as to calculating the elements for other sizes.

LAYING OUT.

The size having been determined the staking out follows. If the reservoir is to cover a given area the whole bank will be within that area and the foot of the outer slope will bound the given area. If the area is to *exclude* the bank the foot of the inner slope will bound the area. If the water is to cover a given area then the high water line or the point half way down the bank therefrom will bound the given area. Or the area may be bounded by the center line either of the *whole* bank or of the *top* of the bank.

Usually these considerations will not be of much importance, but in case of joint ownership or of contracting for the construction they may be important and should then be clearly understood and carefully specified. In staking out it will be best, for the convenience of graders, to drive stakes on the outer and inner lines of the bank. The line of the

top follows as a result of the slopes.

The measurement may be made with a measured wire one end of which is fastened or held at the center while the outer end is carried around and stakes driven at convenient distances along the circle. If wire cannot be had then rope or even binding twine will answer the purpose.

If the land is uneven or covered with stubble, corn stalks, growing grain or other obstructions which prevent swinging the wire or line around the center point then two persons may manage the wire or line as follows.—A holds one end at the center while B drives stakes at the north points;

(At both the inner and outer slopes of the banks.)

both then walk south across the circle until B reaches the center when A drives the south stakes; they then walk back, B turning a little to the east or west, until A comes again to the center while B drives stakes at the outer end; A then, as before, walks straight across the circle and drives other stakes. Repeat this until the circuit of the circle has been made and all the stakes set. The result is the same but the walking a little more. Any farmer can thus lay out his own reservoir, if need be, in an hour's time and do it as well as it could be done by an engineer at an expense to the farmer of \$5 to \$10. The outlines having been staked out, and the stakes numbered, the levels should be taken to determine the height of the bank at each stake. If the ground is not fairly level the stakes will have to be set in or out to give the proper base line according to the length of the slope.

Where the ground is comparatively level any farmer can do his own leveling not only for reservoirs but for ditches, but where it is rolling the services of an engineer should be secured as a measure of economy. Better to pay for having the work properly done by responsible parties than to do it wrong and then be obliged to have it done over again.

See notes on leveling, page 128 and following pages.

THE BANKS.

The banks should be constructed of as firm earth as possible in order to give strength and prevent percolation and washing, and they should be thrown up by drag scrapers which results in a more solid and firmly packed bank than can be made by the use of wheel scrapers or graders unless the work with the latter be properly done. (See embankments and footings—under head of Ditches.) The outer slope may be one of 1½ horizontal to 1 vertical. The breadth of the top will depend upon the height and strength required. Most reservoirs will be 9 feet or less in height and for such heights a width of top of 5 feet will be sufficient. Where the bank exceeds 9 feet in height an additional foot in width may be added for each 2 feet of additional height, the slopes remaining the same.

Fig. 14, on the next page shows in sectional diagram the inner slopes of banks from 1 ft. to 14 ft. high and with slopes of 2 to 1. The horizontal lines indicate the water levels and the diagonal lines the slopes of the banks. The upper horizontal line of figures indicate the distances of the foot of the banks from the top (measured horizontally;) and the lower line of figures the amount the diameter of the reservoir is reduced by banks of the different heights. Thus, if the bank is 8 feet high and the water 4 ft. deep the shore line will be at A and the area of the water surface will have a diameter 21 feet less than that of the reservoir (measured

to center line of top.) To get the volume, take the diameter half way down the bank, at C, which is 29 ft. less than the total diameter, and proceed as explained in the tables. The further use of the diagram will be apparent. Similar diagrams may easily be constructed for use with other slopes or for banks of greater height than here given.

As to construction of footings for banks see remarks under head of Ditches, on page 119, and as to cost of grading, &c., see "Excavation and Cost," P. 117.

Fig. 14.

Slope Diagram for Banks of Reservoirs.

Table No. 44 shows the cross sections of banks from 3 ft. to 10 ft. high; with area of cross sections and cubic yards of earth per lineal foot and per 100 feet.

This table will be of use to contractors and graders.

To find the cubic contents of a bank × the area of the cross section by the length of the bank in feet and then divide by 27. Thus, in first exam-

ple given in the table, the area of the cross section = $6 \times 10 = 60$) Total $20 \times 5 = 100$ = 235 $15 \times 5 = 75$) sq. ft. this \times 1656 (the circumference of a 6 acre reservoir) = 389,160 cubic feet which \div 27 = 14,413 cu. yds.; by table—870.37, the cu. yds. in 100 ft- \times 16,56 = 14.413 the same as by the other and longer method.

WASHING OF BANKS.

The washing down of the banks by the waves in the reservoir is a matter of much importance and yet little can be said as to the best means of preventing it. Where, as is the case in some sections, there are plenty of preventing it. Where, as is the case in some sections, there are plenty of stone the water line may be partially protected by riprapping with them but this involves a large amount of labor. In most sections of the state there are no stone so other means must be used. In sections near the James, or other rivers, along which willows grow these willows may, at but little expense, be transplanted in the banks where they will form a self maintaining protection. Nor can this expedient be practiced by but few. The tough prairie sods taken from the surface of the ditch may be laid aside and be afterward laid along the water line. This has been tried and has worked well and, although much labor is involved it probably remains the best for general use. Where gravel may be had a shore line may be covered with it thus forming a natural water break. In some cases it be covered with it thus forming a natural water break. In some cases it may be best to construct a break-water of plank sharpened and driven into the bank or laid to posts set in the bank. The steeper the bank the greater of course will be the displacement of the earth by wave action.

Outlets and Gates—See P. 107.

TABLE NO. 44. CROSS SECTIONS OF RESERVOIR BANKS WITH AREAS AND CUBIC CONTENTS. New.

INNER SLOPE .2101 5. OUTER SECTIONS	Area of cross section Sq. ft.	II YAS	Cu. Yds. per 100 ft. of bank.
TOTAL WIOTH 41'			
18' 37'	189.	7.0	700.0
16' 33' 12'	152. 	5.6296	562.96
14' 30'	122.5	4.5370	453.70
15. 10 3.	93.	3.4414	311.44
10. 0 8'	70.	2.5925	259.25
8. 4 6.	48.	1.7777	177.77
6. 16. 5.	31.5	1.1666	116.66
8 4 6	44.	1.6296	162.96
6. 6. 5.	28.5	1.0505	105.05

TABLE NO. 45. RESERVOIR TABLE.

Diameters, Circumferences and Areas in square ft. of reservoirs from \(\frac{1}{8} \) acre to 10 acres in area — advancing by \(\frac{1}{4} \) acre.

A mon in .	Diameter	Circmuference	Area in Square
Area in Acres.	in feet.	in feet.	feet.
Acres.			
1/8	83+	261	5 455
4	118—	371	10 890
. 1/2	167—	525	21.780
34	204—	641	32 670
1	235—	738	43 560
$\frac{1}{4}$	$^{263}+$	826	54 450
$\frac{1}{2}$	288+	905	65 340
$\frac{3}{4}$	312—	980	76 230
2	333+	1046	87 120
1/4	353+	1109	98 010
1/2	372+	1169	108 900
$3\tilde{\lambda}$	391—	1228	119 790
3 1	408	1282	130 680
<u>1/4</u> .	425—	. 1335	141 570
1/3	441	1385	152 460
3/1	456+	1433	163 350
4.	471+	1480	174 240
1/4	486	1527	185 130
1/2	500	1571	196 020
3/4	513+	1612	206 910
5	527—	1656	217 800
1/4	540	1696	228 690
1/2	552+	1734	239 580
3/4	565—	1775	250 470
$6\overset{74}{\cdot}$	577—	1813	261 360
1/	589—	1850	272 250
74	601—	1888	283 140
72 3/	612—	1923	294 030
7 74	623+	1957	304 920
1/	634	1992	315 810
74	645—	2026	326 700
72	656—	2061	337 590
8 24			348 480
0 1/	666+	2092 2124	359 370
4	676+		370 260
/2	687—	2158	381 150
0 %	697—	2189	392 040
9 7	707—	2221	
4	716+	2249	402 930
1/2	726	2281	413 820
40 4	735+	2309	424 710
10	745—	2340	435 600

NOTE—In the above table the diameters and circumferences are taken to the nearest foot. The area in square feet is correct for the given areas in acres. The signs of + and — after the diameters indicate whether the diameters given are too large or too small. Thus, 83 + indicates that a fraction of a foot, less than ½, must be added to 83 to give the true diameter; and 118 — indicates that a fraction less than ½ foot must be taken from 118 to give the true diameter; 83 is therefore a little too small and 118 a little too large—less than ½ foot in each case. See explanation on next page.

Explanation as to table 45. Table No. 45 is constructed from table 72; the areas in square feet having first been calculated. The area in sq. ft. of a 5 acre res. being 217,800 enter table 72 in the column of areas and find 2181.28 as the area of a circle whose diameter is 52.7 and circumference 165.56. This tabular area agrees most nearly with the given

Therefore, for a circle of 527 ft. diam. the circumference would be 1655.6 ft. (decimal point ONE place to the right.) and the area 218,128. (decimal point TWO places to the right.) This area corresponds most nearly to the given area and hence the diameter and circumference are the ones most nearly corresponding to the given area. If diameter is less than 100 the area and circumf. may be taken directly from the table. If diameter is more than 100 and less than 1000 enter the table 72 and from the first column take the whole number and decimal corresponding to the given diameter; then, for the area, move the decimal point TWO places, and for the circumference ONE place, to the right. Example, required the circumference and area of a circle or reservoir having a diameter of 472 ft.? In table 72 opposite 47.2 (472) find circumf. = 1482.8 and area = 174 974.1 [The decimal points having been moved as above described. The area in acres is found by dividing the area in sq. ft. by 43560.

If either the diameter, circumf. or area in sq. ft. or acres be given all the other elements may thus be found from

table 72.

area in sq. ft.

EVAPORATION AND FILTRATION.

Evaporation is the greatest during warm or windy weather; greater in shallow than in deep water and greater in running than in still water. The evaporation from a ditch or reservoir during June, July and Aug. will rarely exceed .3 to .4 inch per day. During the remaining months the average will be about .1 inch making for the year from 3 to 5 feet of loss by evaporation. To the loss by evaporation must be added the loss by seepage or filtration either into the earth or through the banks. The amount of seepage through the banks will depend not only upon the character of the soil of which they are made but also upon the solidity with which they have been thrown up. So with the seepage into the earth. If the soil is of soft loam, sand or gravel the percentage of loss will be much greater than if the sub-soil is of clay or hard-pan.

The loss from both evaporation and seepage from a properly constructed reservoir on average ground may be assumed to be about 1 inch per day after the reservoir has been in use for a season. The following table will show the approximate volume of loss per day in gallons from reservoirs of

different areas.

TT A	DI		TAL C). 46.
1 : A	В	1 1 1 1	7.4	1. 4n.

Showing loss in Reservoirs from Evaporation and Filtration.

Approximate only.

Area	Loss in Gallons.	Area	Loss in Gallons.
1 2	27100 54300	6	162000 190000
3	81400	8	217000
5	108600 135700	10	244000 271000

TABLE NO. 47.

SQUARE FEET AND ACRES; ALSO DIAMETERS AND CIRCUMFERENCES ACRE TO TEN ACRES : ALSO CUBIC YARDS OF EARTH IN THE BANKS TABLE SHOWING AREA IN OF RESERVOIRS FROM ONE IF 4 6 OR 8 FEET HIGH. 8 FEET HIGH.

 	
Cu. yds in bank 8 feet high	217 217 217 217 332 332 332 177 177 177 172
F C ∞ -	477 x c c d 1132
h. yds n bank 6 feet high	286 846 H888
Fige:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
u. yds n bank 4 feet high	- ಬಾರಾ ಈ ಚಾರು ಎಂ
fe big	312 859 859 279 944 944 223 718 718 160
<u> </u>	HH0/0/0/000004
Area in acres within this line	
rea in acres rithin this line	1.66 1.66 1.66 2.59 3.52 5.44 6.36 6.36 6.36 9.24 9.24
Arc Wiga	H21 22 472 20 20 20
	3229 816 816 816 859 1117 872 840
krea ir sq. ft. within this line	
Arc with	33 112 112 112 113 113 113 113 113 113 1
s ct B	
Sircum in feet on this line	647 955 1190 11389 1722 1722 2001 2127 2249
ii ii ii	961 225 2888
Diam. at foot of bank 6 feet nigh, ft	206 304 379 379 548 548 594 637 716
Dis f b f b igh	9999 447 KBPE
1 8 9 4 1	
in so	00000
rea in acres rithin this line	2.12 2.2.4.8.8.9 2.2.6.1.9.8.9 2.0.07 2.0.09
n Area in t sq. feet within this line	225 225 235 235 235 235 235 235 235 235
fe fe fri his	2 0011 01110
Ar sq. wi t	269 2 289 289 351 351 351 351 351 351 351 351 351 351
E to E	
Circum in feet on this line	622 930 166 166 363 543 696 696 102 102
15.5 g T	
foot banl feet gh, f	198 2296 371 4434 540 669 669 669 708
Diam. at foot of bank 8 feet high, ft	1200 440 FOOL
===	1
Circum in ft on center line of bank	893 898 5340
ircum ft or enter ine of bank	738 1 046 1 282 1 282 1 480 1 656 1 813 1 957 1 957 2 092 2 340
Diam in ft to center line of bank	1000 HFF 0000
Diam n ft to center line of bank	233 233 233 233 233 471 577 707 707 745
H'H 2:Ho	
in	62188 4888 88468 6008 4888 88468
Area in square feet	435 6 43 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
N S	422 228 888
Area in ACRES in Reservoirs	
rea in Resrvoirs	H200 4700 1-000
Ar in erv	

See table on next page.

In the above table the diameters and circumferences are given to the nearest foot. In the first section of the table it is assumed that the center of the top of the bank is on the line of the circumference of the area given. If it is desired to cover a given area with the reservoir then the circumference would be at the foot of the outer slope of the bank all of which would be within the given area. If the warder is to cover a given area the circumference would be half way between high water matrix and the foot of the bank, and most of the bank would lie outside of the given area. In the 2d and 3d sections are given areas, etc., where the banks are 6 and 8 feet high and where the available water area is assumed to be The 4th section shows the cubic yards of earth in the banks 4, 6 and 8 feet high and the area within the foot of the bank. naving sections as shown on page 101

TABLE NO. 48

in reservoirs of different sizes; with Volume in Cubic feet and Gallons, with depths of 3, 5 and 7 feet; in reservoirs having banks 8 ft high. The water diameter is taken at a point half way between the water line and the RESERVOIR TABLE, SHOWING DIAMETER AND AREA OF WATER AREA,

rvoir.	ne in	Gallons.	2 52 53 53 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 55
Water 7 ft. deep in reservoir	Volume in	hbic ft.	247 100 528 339 528 339 514 912 1 103 528 1 386 528 1 979 208 2 572 178 2 572 178 2 565 912
er 7 ft. de	Area in	feet (35 300 116 416 117 633 199 504 241 052 282 744 324 723 367 454 409 416
Wat	Diam	feet	212 310 385 448 504 554 660 643 654 722 722
reservoir.	ne in	(fallons.	1 270 939 2 750 661 4 261 233 7 358 960 7 358 960 8 88 257 10 994 828 11 994 828 11 994 828 11 944 634 13 583 464 15 144 051
ep in resc	Volun	Cubic ft.	169 900 1 367 710 2 570 710 2 774 155 5 983 750 7 1 187 920 8 1 384 93510 1 663 47511 1 868 47511 2 024 46515
Water 5 ft. de	Area in	square feet (33 980 114 009 1154 831 156 830 278 987 278 987 820 695 963 169 404 893
Wal	Diam	foet	208 306 381 444 500 500 550 639 689 680 718
rvoir.	olume in	t. Gallons.	733 500 584 2 505 105 584 2 505 105 1159 3 412 306 660 1 336 156 420 5 254 467 762 6 117 128 777 8 654 477 778 8 654 477
p in resc	Volu	Cubic f	98 2144 334 456 456 579 702 825 950 1 076
s feet dec	Area in	qu are feet,	32 685 71 632 111 628 112 053 193 220 234 140 275 254 316 693 358 909 400 394
of the t Water 3	Diam.	in foot.	204 302 377 440 496 546 535 676 676
foot	OA.	Acre Reser	Han 450 bxc5

This table will be of great use but chiefly as a basis for other estimates. If the bank is but 6 feet high the inner slope will not be so long and the reservoir will be larger for any given depth of water. The difference in volume will not be great, however, and a close approximation may be taken from the table. So, too, for other depths it will do to take volumes intermediate to those

From table—vol. in gal. for 5 ft. = 7,358,960 and for 3 ft. vol. = 4,336,156. Difference = 3,022,804 which + 2 = 1,511,402 which added to vol. for 3 ft. = 5,847,558 vol. for 4 ft. Assume the addition of 150,000 gals, for increased size of reservoir and we have 5.997,558 as the required approximate volume. The actual volume is 39,365 gals, greater, or a volume too small to be of importance in the calculation. In the table no account height of the bank as the height all around. Accompanying figure illustrates the table. Points 1, 2 and 3 are points from which diameters are measured. nere given. Example-What will be the capacity of a 5 acre reservoir with 6 ft. bank and water 4 ft. deep? has been taken of the ditch or of any irregularity of the the surface. If irregularity exists take the average

TABLE NO. 49.

COST OF RESERVOIRS.

With banks 4, 6 and 8 feet high, and at rates of 6 and 8 cents per cubic yard for moving earth. (To cost of embankment add cost of outlets, gates, protection for banks, etc.)

_												
6,000	at 8 cts	per yd.	\$332	471	577	. 667	746	816	885	942	1000	1054
Cont	at 6 cts	per yd.	\$249	353	433	200	559	612	. 661	707	750	790
Cu. yds	3 feet	high	4155	5888	7217	8332	9323	10206	11017	11777	12502	13172
0-24	at 8 cts.	per yd.	\$203	288	354	408	456	200	539	576	809	645
1 2	at 6 cts	per yd	\$153	216	265	306	342	375	404	432	459	484
Cu yds	ognk 6 feet	high	2542	3603	4419	5098	5704	6245	6741	7206	7650	0908
77.5	at8cts	per yd.	\$105	149	182	210	.236	258	278	297	316	333
2	at6cts	per yd.	£ 79	112	137	158	177	. 193	209	223	237	250
Cu Yds	In Dank 4 feet	high	1312	1859	2279	2631	2944	3223	3479	3718	3948	4160
	Area in	Acres	-	03	က	4	TO.	9	[~	∞	5.	10

Note—It is assumed that the price of moving earth will be from 6 to 8 cents per yard at which rate (8c) most of the sub-contract work on Dakota Ry. grades has been let, the lesser rate of 6 cents has, in some cases, been paid. If the cost is desired for an embankment of any other size or cross section the length may be taken directly from table 45, the cross section from table 44 and the cubic yards then quickly calculated and multiplied by the price agreed upon, in order to get the total cost. This table will answer most purposes and will be of value for ready reference.

Continued from page 100.

OUTLETS AND GATES.

OUTLETS. The outlets or culverts through the banks to the main ditches should be set before the bank is built and with refeference to the location of the ditches. The size of the outlet will be governed by the amount of water to be delivered to the ditch. If the ditch is small or short the size may be smaller than for a large or long ditch. In the latter case make the outlet large enough to deliver the requisite amount of water at a velocity not so great as to wash the banks of the ditch. The outlets may be made of plank or of sewer pipe, the latter being especially good, but, in most cases, not so readily obtainable. The earth should be well tamped about the box or pipe in order to make a water tight joint.

By reason of the difference in sizes of the outlets, the difference in length through banks of different breadths, and with the difference in the head due to constant lowering of the water in the reservoir, and the different methods of constructing the outlets, no precise data can be given as to the relative discharging capacities of different sizes of outlets but the following table will give the approximate volumes

in cubic feet per minute discharged.

1300

1440

TABLE NO. 50. FLOW OF WATER FROM RESERVOIRS.

New. Outlet Outlet Outlet Head of Outlet Outlet 12×12 12×24 24×36 water 12×36 24×24 inches inches inches in feet. inches inches 2400 400 800 1200 1600 3 500 1000 1500 2000 3000 3450 Cubic ft. 1150 1725 2300

2160

2600

3900

4320

per min.

GATES. The gates should be set at the the inner end of the outlets and a plank walk built from the top of the bank leading out over the water to a point over the gate in order that the gate may be lifted. In construction the gate is most simple; any farmer or carpenter being competent to make them. A tightly fitting slide over the end of the box or pipe outlet being all that is necessary to shut off the water. The gate may be raised or lowered by a stick of 2×4 bolted to the front of the gate and leading up through slides or guide holes in the end of the walk. Simple means too may be provided for fastening the gate either up or down. The pressure of the water against the gate will keep it in position and preserve a tight joint if the sliding surfaces have been properly dressed or surfaced. Guides should be provided in the sliding supports so as to make sure that the gate will return to its seat when it is desired to lower it. Modifications of detail are many and will suggest themselves

to any one as the conditions of the work or the setting may require.

Fig. 16 shows a simple and common form of gate.

Fig. 16.

Simple form of gate. aa=side plank of outlet box. bb and cc = top and bottom plank of outlet box. e = upright plank supporting outer end of walk. ff = guides for gate. s = space in which gate slides. g=gate. h = hoisting timber.

Sub Reservoirs and Storage Ditches.

As previously stated it may be best to have two or more reservoirs on the same farm or under service by the same well. These may be on different ridges or knolls and may be directly connected with the well or with each other by piping, flumes or ditches. A sub reservoir may be provided to receive the waters elevated from lower ditches or pools by wind mills or water rams. In many cases storage ditches will be necessary to give proper service to areas at a considerable distance from the well or reservoir. A storage ditch is merely a big ditch, or one made higher and wider than the ordinary main ditch so as to hold in store a large volume of water ready for immediate service through lateral ditches to the adjacent lands. Such a ditch or canal along a quarter line might better serve adjacent farms than a reservoir of any other form, or if located along the top of a narrow ridge where a large circular reservoir would be impracticable or needlessly expensive.

For the volume of water stored a storage ditch requires a

For the volume of water stored a storage ditch requires a greater cubic capacity of embankment and hence a greater proportionate cost than a circular reservoir; but the economy of space, the lay of the land or the character of the service to be rendered may more than compensate for the in-

creased proportionate cost.

DISTRIBUTION OF WATER BY DITCHES, FLUMES AND PIPES.

The water having been obtained and stored the next consideration is as to its conveyance from the well or reservoir to any desired place and then its distribution over the land

to be irrigated.

The distinctive feature of the great irrigation systems of the west, and of other countries, is the great length, size, and expense of the ditches and flumes necessary to convey the water from the storage reservoirs or rivers to the low-lying irrigated lands. These ditches are often of great size and extend for many miles; the cost reaching tens or hundreds of thousands of dollars. Great viaducts of masonry, or trestles of timber or iron, to carry the canal over rivers or valleys, deep cuts along the mountain sides, flumes suspended over or along precipitous canyons, tunnels through the rock hills, and enormous dams and head gates are features of great interest, as well as of expense, common to the distribution of irrigation waters in regions less favored than our own.

How tame, in comparison, will be the means of distribution on the Dakota prairies and under the individual system of irrigation by wells. Our people may well forego the glory of being the possessors of world renowned works of engineering skill, for the sake of the greater economy and the honorable distinction of being the possessors of the largest and most fertile valley in America, wherein irrigation may be more cheaply inaugurated and maintained than

in any other state

All the leading features of other systems, such as dams, head-works, main canals, pipe lines, viaducts, &c., will not be known here. Probably few ditches will be larger than 10 feet at the bottom, and but few will be over 5 miles in length. Pipe lines will be small, and flumes will be low and short. In brief, there will be no heavy or expensive features attached to the distribution of water in this prairie country, and hence the great economy of an irrigation system in Dakota.

The result sought by all systems is the bringing of water

to the land.

While it may sound well, or arouse in one the spirit of pride, to say that we have the largest dam, the largest or the longest ditch, the longest tunnel, or the highest flume in the world, it is a distinction the wary capitalist will willingly forego for the more humble statement that, for a given outlay, we have under water a larger number of acres than can be shown any where else. This will be the pride of the Dakota irrigator. He will point not to his towering masonry, not to his navigable canal system, not to his skyscraping trestle-work, nor to the dismal depths of a hole

through a hill, but with pride to his perennial fountain, to his simple ditches and to his broad expanse of fertile fields, where more that is of profit may be seen, as the result of a dollar spent, than can be shown by any of his neighbors in other states.

If this true picture does not soon attract the scrutinizing eye of capital, and Dakota ere long become their chosen

pasture, then, indeed, will all signs fail.

Water is conveyed from point of supply to place of distribution in ditches, flumes, or pipes, and is distributed over the land through smaller, lateral-ditches or by plow furrows, by the actual flooding of the surface, or by means of sub-irrigation through lines of tile pipes; the latter system however, being confined almost exclusively to the irrigation of garden and orchard lands.

Volumes might be written on the subject of water distribution and allied subjects, but the limit of this little book will admit of but brief reference to some of the matters

most likely to engage the attention of our farmers.

DITCHES.

Form and Size.

According to a classification adopted by the Census Department of Agriculture, irrigation ditches are divided into three classes.

First, those under 5 feet in width,

Second, those from 5 to 10 feet wide, and

Third, those over 10 feet wide on the bottom, the depth in a general way corresponding with these widths being 1 foot, 1½ feet, and 2½ feet and over. By reason of the comparatively small volumes of water to be carried, and the restricted area to be served from any one source, the Dakota irrigation ditches will be mostly small; few, it is safe to say, need be as large as 10 feet in width. A ditch need be only large enough to convey the water to the place whence it is to be distributed. By "large enough" is meant, of such a size as will deliver the volume of water needed, at a velocity not so great as to wash the banks of the ditch, and not so large as to present a needless excess of surface of bank, which will increase the percentage of evaporation.

In large ditches much depends upon the form or sectional outline of the excavation and banks. In smaller ditches this is of less importance so long as the flow is not impeded by the roughness of the sides or by the abrupt changes of

direction.

The same degree of care in the original construction and future maintenance of ditches cannot be secured in a section where irrigation is first practiced, and where the new irrigator has yet to learn the importance of close attention to details, as in a section where irrigation has long been practiced and where each detail of the operation has been reduced to a system.

The sooner attention is given to the careful and workmanlike construction of ditches, the sooner will the labor devoted to irrigation return a satisfactory profit. A channel, roughly scratched in the ground is not a ditch, and, however much the owner may believe in its sufficiency to give proper service, the flowing water cannot be deceived and will not do its full service until given the opportunity which the laws of of hydraulics have decreed.

The main distributing ditches should be built for permanent use. The smaller or distributing laterals may, in certain cases, be cheaply built to serve the purpose for a season. They may be thrown out by a double-mould-board plow or as a single plow furrow. The larger sections can be most cheaply built with ditching machines. The section of the ditch may have the form shown in Fig. 17, where the slope of the bank in the cut or excavation is one foot horizontal to one foot vertical. The excavated earth may, and usually will, be put into the banks as shown at A, or it may be placed as shown at B, where a berm, or ledge, b is left at the sides of the ditch. The slope of the banks in the embankment being 1½ to 1.

Fig. 17

If excess earth is required to build the bank higher or wider either the ditch may be made wider and deeper or the extra earth may be obtained from side ditches or borrow-pits D, or by both means. It is the province of the engineer to direct as to the details of the work so we will here consider only such details as relate to the ordinary work which the farmer himself may be required to perform. For all ordinary purposes of distribution from the reservoirs to the more distant laterals, main ditches from 4 to 6 feet wide will suffice. (The width of ditch, as stated, is understood to be the width at the bottom.)

The construction should be workmanlike, the bottom even and free from sods, stones, lumps, of clay, or weeds; the sides smooth, even, and free from like obstructions to the even

and free flow of the water.

Fig. 18 represents the cross section of a ditch 4 feet wide and having water 3 feet deep. The area of Fig. 18 the wet section of the ditch is equal to the

multiplied by the depth. In this case average width

 $\frac{10 \text{ ft.} + 4 \text{ ft}}{2} = \frac{14}{2} = 7, \quad 7 \times 3 = 21 \text{ sq. ft.} = \text{area of wet section}$

The Wet Perimeter in the length of that portion of the surface of the cross-section which is covered by water, AB, BC, CD In order to determine this length, the length of the slopes A B and C D must be known. These may be found, for any depth of water or for any degree of slope—as follows: The slope is the hypothenuse of the right-angled triangle A B E, and its length is therefore equal to the square root of the sum of the squares of the other two sides. In this case the sides A E and $\hat{E} B$ are each equal (the slope being 1 to 1) to 3 feet. The sum of the squares of A E & E B =9+9=18. The square root of 18 (see table of roots)=4.2, which is therefore the length of A B. If the slope had been $1\frac{1}{2}$ to 1, A E would = 4.5 feet which squared=20.25 which +9, the square of E B, = 29.25 the sq. rt. of which = 5.4= length of A B. So with any other depth or degree of slope. In this case the wet perimeter -4.2+4+4.2=12.4 feet.

The "mean radius," "hydraulic radius," "hydraulic mean depth" and "mean depth" are synonymous terms for the

 $\frac{\text{area of wet cross section}}{\text{wet perimeter}} \text{ or } \frac{\text{area } A B C D,}{(AB+BC+CD)} \text{ or, as in}$

the above illustration, $\frac{21 \text{ sq. ft.}}{12.4} = 1.69 = \text{mean radius.}$

This term, "mean radius," is frequently used in the calculation of volumes, grades, and velocities, by Kutter's and other formulae and it is is therefore explained,

Since most slopes will be 1 to 1 or $1\frac{1}{2}$ to 1, and most depths from 1 to 5 feet, and most widths from 2 to 6 feet, the following table has been prepared to show at once the lengths of the slopes A B and C D for slopes of 1 to 1, and of 1½ to 1, and for depths of 1 to 5 feet; also the wet areas of ditches, having bottom widths of 2 to 6 feet, and water from 2 to 2½ feet deep; also the lengths of the wet perimeter, and

the corresponding mean radii.

Application—The water in a ditch, having side slopes of 1 to 1, is 31/4 feet deep, what is the length of the wetted slope A B? In second column, opposite depth of $3\frac{1}{4}$, is 4.6=length in feet required. In third column is 5.8 = corresponding length when slope=1½ to 1. A ditch has 2½ feet of water and a bottom width of 5 feet, what is area of wet section, length of wet perimeter and mean radius? Under head of depth of $2\frac{1}{2}$ feet take width of 5 feet; in succeeding columns find A+18.75 sq. ft., P=12 ft., and R=1.56. The limits of the table will serve for the ordinary range of work and will no doubt save some time in making calculations.

TABLE NO. 51.

TABLE OF DEPTHS, SLOPES, WET AREAS, WET PERIMETERS AND MEAN RADII OF SMALL DITCHES. New.

Slope of 1 hor. to Depth of water in feet	o 1 vert.	Slope of bk 1½ to 1 Length of slope (ab) in feet.	Depth of water in ditches, ft.	Bottom width of ditch, ft.	Area of wet section, sq. feet.	Length of wet perime- ter in ft	Mean Radius
1	1.4	1.8	D.	W.	A	P.	R
11/4	1.8	2.2	11.	2	3,	4.8	.625
11/2	2.1.	. 2.7		3	4. 5.	5.8	690
13/4 2	2.5	. 3.2	1 1 1	4	5	6.8	.735
2.	2.8	3.6	1	5	6.	7.8	.76)
21/4	3.2	4.1	11/2	2	5.25	6.2	.847
21/2	3,5	4.5	11/2	3	6.75	7.2	.937
23/4	. 3.9	4.9	11/2	4.	8.25	8.2	1.01
3	4.2	5.4	$1\frac{1}{2}$	5	9.75	9.2	1.06
31/4	4.6	5.8	2	2	8.	7.6	1.05
31/2	4.9	6.3	2 2 2 2 2	3	10.	8.6	1.16
334	5.3	-6.7	2	4	12.	9.6	1.25
4	5.7	7.2	2	5 .	14.	10.6	1.32
41/4	6.0	.7.6	2 ·	6	16.	11.6	1.38
11/2	6.4	8.1	21/2	3	13.75	10.	1.37
13/4	6.7	8.5	21/2	5	16.25	11.	1.48
5.	7.1	9.0	$-2\frac{1}{2}$		18.75	12.	1.56
			$2\frac{1}{2}$	6	21.25	13.	1.63
	1		$2\frac{1}{2}$	1 7	23.75	14.	1.70

Flow of Water in Ditches.

This complex branch of dydraulics is treated exhaustively in several large works on the subject, it being of prime importance in countries where water is taken from rivers, or from large storage basins, and carried for miles in large canals or ditches. Important, because upon its proper treatment rests the accurate gauging of rivers and canals, or the measurement of the volume of water flowing in them. On a knowledge of the exact volume of the supply rests the matter of the volume of apportionment to different districts or ditches.

Many mechanical divices are used for measuring the velocities of running streams, and many formulae and rules are given for the calculation of the velocity and volume.

The Dakota system of irrigation being so entirely different, the necessity for the accurate measurement of water in ditches is almost entirely done away with; so but brief mention will be made of a few points in this connection. The measurement of most ditches and streams is in the unit of the cubic foot per second; or the number of cubic feet of water the stream will discharge in one second. The discharge—for a given depth of water in the ditch—will depend upon the slope or grade of the ditch, the area of the section, the condition of the bottom and banks, and upon the direction and force of the wind, which exerts a considerable effect upon the exposed surface of the water. [One-tenth of the width of surface being allowed for wind resistance.]

As above explained, the sectional area of any ditch, or of the wet section thereof, is equal to the average width ×

by the depth.

The velocity of a running stream is not the same at all points of the cross-section, it being least at the bottom and sides, where the friction is greatest, and less at the surface than at a point a short distance below it. The point of greatest velocity is therefore at the middle of the stream and just below the surface. To determine the velocity of any stream it becomes necessary, therefore, to determine the mean velocity, or such a velocity as would be common to all the threads of water of the stream if the discharge remained the same and all flowed at the same rate.

Current meters and other mechanical devices are used to determine the velocity of the current at several points in the cross-section, and from a reduction of these observa-

tions a mean is obtained for the whole section.

Intricate formulae are likewise employed to determine the velocity and discharge, mathematically; but their application, involving a considerable knowledge of mathematics and hydraulics, they are not popular with the average irrigator. The simplest way to determine the approximate mean velocity of a stream is to take a certain percentage of the ascertained maximun surface velocity. By experiment the mean velocity has been found to be from 80 to 85 per cent of the maximum surface velocity. In this country 80 per cent is usually taken as the standard. To determine the maximum surface velocity, select a straight section of ditch, in good repair, and stake out a section of 100 feet. Place in the current—at a short distance above the upper stake—a small block of wood, so that when it passes the upper stake it will have acquired the velocity of the water. Note carefully the exact time of its passage of both the upper and the lower stakes, and record the interval. Repeat this, say four or five times, and take an average of the intervals to get the nearest true interval.

Example,—1st. interval = 25 seconds. 2d. " 24 " " 3d. " 25 " 4th. " 26 "

 $\overline{100}$ which $\div 4 = 25$ sec. = aver-

age interval. If the current runs 100 feet in 25 seconds it runs $\frac{100}{25} = 4$ feet per second, = maximun surface velocity. 80 per cent of 4 feet = 3.2 feet per second = the mean velocity of the stream.

The volume in cubic feet discharged will of course equal the wet area \times by the mean velocity. Assume the ditch to be 5 feet wide and the water 2 feet deep. From table No. 51 we find the wet section to have an area of 14 square feet. Then 14×3.2 (area \times mean vel.) = 44.8 = cubic feet per second discharged. Table 36 shows this to be equal to 335

gallons per second. The section of ditch should be in good condition and fairly uniform in section.

The determination of the velocity and volume, as above described, necessitates the *measurement* of the surface velo-

city. Where formulae are used this is not necessary.

As above stated, the use of formulae not being convenient to the average irrigator, and the space within the limit of this little book being insufficient to properly explain even the simpler ones, the subject will not be considered. The reader being referred to such standard works as Trautwine's Engineer's Pocket Book—where the formula of Kutter is fully explained and illustrated by examples and tables of coefficients (P. 571 to 279b, in editions of 1888 or 1891); Wiesbach's Mechanics, where is found a much simpler formula, and one more convenient, with table of coefficients; and to the recent exhaustive work of P. J. Flynn on Irrigation, and the Flow of Water in Open Canals. (See advertisement of Irrigation Age); as well as to any of the many standard works on hydraulics.

Grades.

A study of the details of the larger canals or ditches of the west shows a great variety of sizes and grades, yet more uniformity than some would expect. Ditches running from 20 to over 100 miles have widths from 20 to 80 feet, some being built with, and some without, berms; the grades ranging from 1 foot to 7 feet per mile. The steeper grades are not common and are for short distances only. The average grades for main ditches, carrying from 2 to 6 feet of water, are from 1½ to 2¾ feet per mile. Such low grades will answer only for the larger ditches carrying large volumes of water and where the ratio of volume to resistance, or friction on the sides, is large.

In smaller distributing ditches, where the volume is smaller, and the resistance proportionately much greater, a steeper grade must be allowed. It is frequently said by those who are not informed that this country is too level to irrigate to

advantage.

Such is far from being the case. The writter has yet to find a quarter section of land, in the most level portion of the James river valley, that is too level to irrigate. The gently rolling lands, or such as have a comparatively uni-

form slope, are the best located for irrigation.

The location of the well or reservoir, on or near the highest point, fixes the point of radiation of the ditches, their lines being located according to the grades secured and the lay of the land to be served. The aim will always be to keep the water up as high as possible for it is useless to sacrifice grade or make a ditch run at a greater grade than is necessary. It is an easy matter to let the water down but a difficult thing to raise it. By keeping the grades up, a broader area is kept within the range of service.

Grades of from 2 to 5 feet per mile will be ample to secure good delivery from the smaller main ditches, while the laterals will require steeper grades, which, in many cases, may be confined to the approximate level of the field, except on hill sides or quite abrupt slopes, in which case the grades will be carried around the slope as contours. The following table will show the grades per 100 feet corresponding to given grades per mile. If the grade per rod is required it may be taken approximately from the table by taking $\frac{1}{6}$ of the grade for 100 feet. If the grade is required exactly for any given distance, and corresponding to any given grade per mile, it may be found by simple proportion, thus: grade per mile: one mile: required grade: given distance.

Example,—What is the grade for 3,500 feet, corresponding

to a grade of 10 feet per mile?

 $10:5280::(?):3500=35000 \div 5280=6.62=$ Ans. or 10:5280::6.62:3500.

That is, the given distance multiplied by the grade per mile and the product divided by 5280, the number of feet in a mile, equals the required grade. In this way any grades, other than those given in the table, may be found. In like manner the grade per mile, corresponding to the grade for any given distance, would be found, thus:

grade per mile (?): 5280: given grade: given distance.

TABLE NO. 52.

Table of Grades per Mile; or per 100 ft. measured horizontally.

From Trautwine.

Grade Grade Grade per 100 feet. Grade in feet in ft. in ft. NOTE. per 100 feet. per mi. per mi. .05 .00094.01894If the grade per mile con-23456 .1 .00189.03788sists of feet and tenths add .15 .00283.05682to the grade per 100 ft. as .07576given in the first table, .00379.25 .09470.00473 the grade per 100 feet for .3 .11364 .00568 the required tenths, 7 .35 .00662.13258given in the second table. 8 .15152Example, Grade per mile .00758.008529 .17045.45= 12.85 ft. what is grade 10 . 18939 per 100 feet and in 725 .5 .00947 .20833 .01041 11 ft.? .22727 + .01609 =.5512 .22727 .6 .01136.24336 = grade in 100.65 .2462113 .01230ft. $.24336 \times 7 = 1.70352$ 7 = grade in 700 ft. and .0132614 .26515.28409 .75 .01420 15 $.24336 \div 4 = .06084 =$.8 16 $.303 \cdot 3$ grade in 25 ft. .01515.85 .0160917 .32197+.06084 = 1.76436 =grade for 725 feet. OR .9 .0170518 .34091.95 .01799 19 .35985 $.24336 \times 7.25 = 1.76436$.0189420 1.0 .37879

Laying Out.

The laying out of the ditches is the provience of the engineer or surveyor, although the more intelligent farmers may do much of their own work and thus save considerable expense. In the arrangement of fields it may become necessary to change the location of a ditch or to lay out a new one. This work the farmer may do with simple means, although, in many cases, it will pay an intelligent farmer to own a drainage level. Its use on his own, and on his neighbors' work, will soon pay for it. Simple devices for small jobs will be described later on.

Something of a knowledge of leveling must be had in order to do the work, but sufficient may soon be acquired to permit of much home-work being done. If any doubt exists as to ones ability to lay out a piece of work it will be cheaper

to hire some one to do it who knows how.

The running of preliminary lines, making of profiles. cross sectioning, calculation of sizes, carrying capacities, and grades, and the final location and construction are details of the work, each the proper subject of a chapter. The limit of this little book will not permit, however, of any special consideration of these purely technical details of the work. (See remarks on leveling, P. 132 to 134.)

Excavation and Cost.

The smaller ditches may be constructed by hand-shoveling, by plowing and scraping, or by plowing with a large double-mould-board plow. The larger ditches by plowing and scraping, or by grading or ditching machines. Hand work is of course most expensive but it will be necessary in some places. Simple piowed ditches are of course the cheapest, as they are also but temporary, and in the end the more expensive. Scraper woak will cover the greatest range of work and will fairly represent the average cost. Work done with a ditching machine is very satisfactory and far cheaper than other work.

The New Era grader and ditcher (see advertisement) is the leading machine of its class. It will place in the bank from 1000 to 1400 cubic yards of earth per day at a cost of about 2 cents per yard; or it will load from 600 to 800 wagons per day. It has been used in all states, in all soils, and on all classes of work with full satisfaction and great economy. Its use on reservoirs is especially recommended. Done with a ditcher, the ditches on a section of average land need not cost to exceed \$200, or \$50 per quarter section. Under favorable circumstances the work has been done for half this sum. (See also page 246.)

Dakota's soil and topography renders the operation of a

grader easy, economical and altogether satisfactory.

No farmer can afford to buy a machine to do his own work alone, but when farmers become associated in the putting down of wells and construction of reservoirs and ditches, then it will pay to buy machines, for on a large job they will soon save their cost. The suggestion is made that townships or counties purchase not only drilling outfits but also ditching outfits. Each farmer could pay for its use on his work, at such a rate as would effect a great saving to himself, and, at the same time, soon return to the township the cost of the machine. An additional advantage of such an arrangement would be in the use of the grader on the public roads where much cost to the tax-payers could be saved thereby.

In this, as in all other fields, the machine has come to

stay as against all other forms of labor.

The suggestion here made will bear careful consideration by associations of farmers or by townships and counties.

Most of the railway grading in the state has been sub-let to farme s and others at from 6 to 8 cents per yard, at which

rate—and on large contracts, there is only fair wages.

Table No. 49 shows the cost of grading reservoir embankments at the rate of 6 and 8 cents per yard. A reservoir of 5 acres, having an 8 foot bank, would cost \$746 at 8 cents per yard. Four such reservoirs on adjacent farms would cost about \$3,000. If done with a grading machine, at a cost of even 3 cents per yard, there would, on that small job, be a clear saving of \$1,500 over other work. Such conservative illustrations show the value of properly considering the means of doing the work. What applies to reservoirs applies likewise to ditches.

Embankments and Footings.

Under the head "Reservoirs," on page 99, the qualified statement is made that the use of drag-scrapers will result in a more solid bank than when scrapers or graders are used. This is commonly so; but not necessarily so, for if the grader-work is properly followed up with a harrow the earth is torn, mixed, and more thoroughly compacted than in any other way and the resulting embankment is as good as if done by any other means.

The object in any embankment is to have it sufficiently solid to hold water. Around gates and outlets the earth should be solidly tamped or puddled—wetted down—in order to make a tight joint. So, too, with the footings of high banks, they require special attention. If the dirt is thrown loosely on top of the sod the water may percolate through the loose, filter-like footing of grass and weeds and

cause a leak, and possibly a wash-out of the bank.

To insure against this there should be, along the middleline of every heavy bank, several plow furrows turned and the sod cast aside. The fresh earth of the bank settles into the trench and soon forms a tight joint with the solid surface. If the banks are but 6 or 8 feet high, this will suffice; but if they are higher the trench may better be double-plowed and a bank of wet earth piled in and over it thus insuring a compact core for the bank.

Reference has been made to the slope of the banks. The slope in the excavation need not usually be more that 1 to 1, but if the cut is of any considerable depth, and the soil

sandy or loose, then a slope of 1½ to 1 will be better.

The slope in the fill or banks may usually be 1½ to 1, but if they are high a slope of 2 to 1, on the wet side, will be safer. The slopes of the reservoir banks are thus given in the diagrams and tables under head of reservoirs.

Cubic Contents of Excavations.

Tables giving the cubic contents, per unit of length, for ditches of different depths, widths, and slopes, would be convenient for reference, but they would necessarily be long in order to cover the whole ground. On this account they will be omitted and the simple rule given by which the calcluations may be made in any given case.

RULE: Multiply the area of the section of the ditch, in square feet, by the length of the ditch, in feet, and divide the product by 27 to get the cubic yards of earth in the

ditch.

Determine the area of the section as explained in connec-

tion with table 51.

Example—How many cubic yards in a ditch 4 feet wide, $2\frac{1}{4}$ feet deep, and 1835 feet long? Bottom width 4 feet+top width $8\frac{1}{2}$ feet= $12\frac{1}{2}$ which÷ $2=6\frac{1}{4}$ =average width. $6\frac{1}{4}$ × $2\frac{1}{4}$, the depth,=14.0625=area, and cubic yards in 1 ft. of ditch. 14.0625×1835, the length,=25,805 cu. ft. which÷27=956=cubic yards.

To get the contents of the ditch in gallons, proceed as above, using the wet section—and multiply the volume in

cubic feet by 7.48052 to get volume in gallons.

Gates. The gates or outlets from the main ditches to the laterals are too simple in construction to need illustration or special consideration. They may be made with more or less complication, but a simple frame of plank with a board or plank slide or gate, fitted to slide vertically within cleats will answer every purpose. When the gate is down—closed—the mud in the ditch may be drawn about the base and sides to aid in keeping it water tight.

In the working laterals, where it is desired either to cut off any further flow or to dam up the water for the flooding of a certain area, a small portable dam or stop of sheet iron or wood may be used. In case the water passing from the main ditch to the laterals is to be *measured* or gauged then the common gate will give place to the weir or to the spill-

box shown in Fig. 6.

One matter will be mentioned as to the *location* of ditches—the same applying to both flumes and pipe-lines—which is to locate them, as nearly as circumstances of economy, grades, &c will permit, on such courses as will permit of the proper working of the land. Rectangular areas are the most convenient to cultivate, and sharp angular pieces the most difficult. So, in locating water-ways some consideration should be given to the after convenience of handling machinery in the cultivation of the land. A mod-rate increase of the first cost of the water-way would be justified in an effort to secure an area more favorable in form to convenient cultivation or access from other parts of the land.

Flumes.

Flumes are boxes or troughs used to convey water where ditches are impracticable or needlessly expensive either to construct or to maintain. Where a ravine, valley, or any considerable depression crosses the line of a ditch the water may be turned into a flume, carried over the depression, and then discharged into another ditch on the farther side. It may, too, be advisable to carry the water in a flume over loose, sandy soil, where the loss by percolation would be so excessive as to render a sufficient delivery from an open ditch either difficult or impossible.

Many cases will therefore arise where the use of flumes will either save the farmer considerable expense or conserve his greater convenience. Special forms of sheet iron, or other sheet metal, flumes are much used in mountainous sections because of their lightness, tightness, and economy, and the facility of erecting them in difficult places.

As usually constructed flumes are merely wooden boxes, open at the top, and of such size and strength as is necessary to carry and support the water supplied. Many in the west are of large size, great strength, and traverse long distances and at great height. Such as Dakota farmers will use will be small, short and low. The grades may, if necessary, be somewhat lighter, and the size smaller, than those of the ditches supplying them, because of the lesser friction and the greater facility of flow. The volume of water to be carried will regulate the size the same as in ditches and the grade will, in the same way, regulate the carrying capacity by increasing or decreasing the velocity of the current.

The effect of friction of the water upon the sides of the flume, and of even a gentle wind upon the surface of the water, will be quite noticeable—more so than in a ditch. An instance is cited. A flume 12 x 18 inches by 800 feet long, with a fall of 2 feet, ran to overflowing at the upper end while discharging but 3 inches at the lower end. Wind and friction prevented the water from running.

Since the delivery depends upon the velocity of flow, and since the velocity in an open water-way is due solely to gravity, and not to any confined head or pressure, the delivering capacity of a flume will be governed by the size and grade not by the size of a pipe delivering water to it under high pressure. The volume and relative velocities must be considered. If the volume to be carried is that of the well alone, as where the flume is used to carry the water from the well to the ditches or the reservoir, the size may be moderate as compared with that of a flume farther away and forming part of the waterway from a reservoir from which a much larger volume will flow at one time than would flow from the well alone.

The flume box may be made of 2 inch plank, selected as free from loose knots or cracks, closely spiked with 5 or 6 penny wire spikes (wire spikes will hold better than others and are less apt to split the wood in driving.)

If a small box is needed a single plank of 14 to 18 in. will do for the bottom, and similar ones for the sides. The addition of a second plank to the bottom, the sides remaining the same, will double the volume and a little more than double the carrying capacity of the flume, and at but slight increase of expense for the supports, braces, etc., may remain substantially the same. The construction of a flume is but a simple matter. Any carpenter or intelligent farmer can build one.

The supports may in many cases be a single line of heavy fence posts, which may be had in lengths as great as 12 or 14 feet. The buts set 2 or 3 feet in the ground, and well tamped, give a good foundation. The grade line for the tops is marked by leveling, and the tops then sawed to grade, the caps or cross bars spiked to the posts, and the flume then constructed on these. If of 6 feet or more in height the posts and cross bars had better be braced to prevent the rocking of the flume by heavy winds.

vent the rocking of the flume by heavy winds.

Where greater heights than 10 or 12 feet are met a trestle of timber posts, properly footed, braced, and anchored, will be used. The rigidity of the supporting posts should be carefully looked to in this country of almost constant and heavy winds, for upon this will depend very largely the

tightness of the flume and its freedom from leakage.

The planks, before being spiked together, should be painted along the edges in contact, with a coat of very thick paint. This will not only aid in making a water tight joint but will preserve the wood at the joint. The edges of the planks should be dressed true so as to fit properly. As rough sawed by the mill they are often wavy or uneven. Cut out all warped or crooked pieces for they cannot be worked in to advantage.

If double widths of plank are used on the bottom or sides they should be tongued and grooved if possible, or at least carefully matched and secured in close contact by cross pieces. The joints of the plank at the "bents" or supports, will be protected by side strips or braces and the box, at intervals between the bents, will be surrounded by strips or wooden braces to give rigidity to the flume and prevent loosening of the joints.

The length of the space between the bents will depend somewhat on the style of the flume or upon the length of the lumber used. Where a single line of posts is used have the bents at the ends and middle of each length of 16 or 18 ft. plank (8 or 9 foot spaces.) If the flume is more solidly built 20 foot lumber may as well be used, leaving 10 foot spaces. If the ditch is large, and the flume correspondingly large, the trestles must be heavier and a line of stringers will support the flume between the bents.

The dressed surface of the lumber will be on the inside of the box to present as smooth a surface as possible to the running water. After the completion of the flume go over all the joints with a coat of thick paint applied with an old stiff brush. By so doing, and using care and plenty of nails, a box may be made that is perfectly water tight. A small leak may often be stopped by filling the crack with stiff clay or mud. The details of construction will depend somewhat upon the builder and his means, but they are so simple as to render further suggestion unnecessary.

PIPES. The use of pipe-lines for conveying water, in the place of ditches or flumes, has increased much since the introduction of certain cheaper forms of pipe. In the west, pipes of wood, banded with iron, are extensively used as are pipes of spiral-riveted or welded iron or steel. These latter combining great strength with lightness and economy.

Where waters can be forced under heavy pressure, as from our wells, the use of surface pipe-lines of light pipe will find a broad field of usefulness and should receive such considertion as its merits deserve; especially where the work of constructing ditches or flumes is of any special magnitude. The pipe-line is intended to take the place of the main ditch or flume and not of the distributing laterals. The advantage of a pipe-line over a ditch lies in this—that the water supply is not reduced by seepage or evaporation and the duty of the well is thereby increased. The area of surface occupied by the pipe line is not nearly so great as the area occupied by the ditch and embankments and thus the area subject to cultivation in increased. The cost of maintenance is less, for a pipe-line will need but little attention, whereas, ditches, however well they may be made, will require an annual overhauling; especially if made of loose or sandy soil which in a windy country soon blows

down. The matter of grade is of no importance for the water, being forced, will run up hill as well as down and the pipe may be laid to the grade of the surface and deliver water at a level higher than the well. The area under service from the well may thereby be increased by rendering it possible to reach areas to which gravity alone would not carry the water. In this way a well owner may be enabled to sell and deliver water to a neighbor whose land lies, or is controlled from a higher level. The advantage over a flume lies in the fact that evaporation and leakage are done away with. The delivering capacity is greater because under pressure. The first cost may be less even than that of the flumes, and the cost of maintenance less. The matter of grade is eliminated and the line is on or near the surface where it may be more easily constructed or repaired and where less liable to damage from winds. The alignment, or location, too, may be accommodated to the circumstances of the surroundings more readily than that of either ditches or flumes.

It is here assumed that the pipe line connects with the well; otherwise there could be no pressure upon the pipe and it would stand, in relation to delivery, on a plane with the ditch or flume.

If the line is accommodated to the surface and there is any inverted or downward bend in the pipe there should be a valve set at the lowest point to permit of emptying or draining the pipe during the cold weather or for repairs. The pipe may be laid on or near the surface on low supports of such form and material as circumstances may suggest. It should, at suitable intervals, be fastened or anchored down in some suitable way to prevent displacement by the wind or by other means, and it should be painted to preserve it from rust.

The concluding remark as to location of ditches may be again referred to in this connection, and the suggestion made that the location of the lines of the water-ways be made as far as possible along the lines of the fields or along fences or roads. In the case of the smaller pipe-lines the fences themselves will often serve as sufficient and convenient supports for the pipe, intermediate supports being set if necessary. In view of the advantages possessed, under certain conditions, by pipe-lines over other forms of waterways one should fully consider the advantages of each as well as the cost and maintenance before deciding which to adopt. On most lands there will be no use for either pipe-lines or flumes. Their service is justified only by the circumstances of the topography and service.

HYDRAULIC RAM.

The occasion will frequently arise where the area to be irrigated is divided by a water course, gully, or other depression, the land on the side of the well and reservoir sloping gently toward the "draw," the opposite side of which is high and comparatively level. The well and reservoir being at a distance from the draw it will hardly pay to lay a pipe line to serve the other side and the water cannot be carried across by ditch or flume. How then can it be delivered into a ditch on the opposite and higher ground? By elevating it only. This could be done from the end of an open ditch on the low side by means of a steam or wind pump. The former way, by reason of fuel and attendance, would not prove profitable, and the latter way possibly ineffectual in spite of an abundant supply. A simple and inexpensive water elevator may be had in the hydraulic engine or ram which may be so set as to take the supply from the open ditch, with a fall of such an amount as the slope will permit, leaving drainage away from the ram.

By this means the water may be forced across the draw in a constant stream, working night and day, rain or shine, and without fuel, attention, cost, or care.

The Rife's Hydraulic Engine (See advertisement, P. 214) is such a machine and one of high efficiency. The No. 40 machine is fitted with a 4-inch supply pipe and a 2-inch discharge pipe, and, with a fall of from 4 to 6 feet, it will raise from 60 to 70 gallons per minute to a height of 20 feet or more, and lesser volumes to much greater heights. The machine will work under heads of but one or two feet and in such cases it could often be used to advantage along side slopes to raise a supply of water to a ditch at a higher level.

Such appliances, together with wind mills and steam pumps, will, in the near future, find a welcome place among Dakota irrigators, for, although a well will do almost anything within its immediate reach, there will be duties to perform in connection with a properly managed irrigation system which are outside of the sphere of the well itself, yet properly within the sphere of other appliances, all of which must be considered if the greatest good is desired and secured.

PUMPS.

While this little book is devoted most especially to a consideration of artesian wells as a source of water supply for irrigation, it must not be forgotten that there are other sources of supply. Dakota has few lakes or rivers from which any supply could be drawn, except of course the Missouri, the supply from which is practically inexhaust ible.

There are many sections all over the states where large, shallow wells may be sunk into the sand and gravel beds

from which an almost inexhaustible water supply may be obtained. It must of course be elevated by artificial means and the question will at once suggest itself as to whether it will pay to do this.

Yes, It Will Pay!

As to this there can be no question, and ere long this source of water supply will cut a very large figure in the ir-

rigation of lands in Dakota.

Certain very erroneous and misleading statements have been made by government specialists and agents as to the relative value of these phreatic or sub-surface waters, and the true artesian waters; they claiming that by far the larger supply was the sub-surface supply. These statements and reports were founded upon observations elsewhere than in Dakota, and upon a woeful lack of personal knowledge as to our true artesian supply. The sub-surface supply, while no doubt of vast extent and importance, cannot be compared with the artesian supply in its extent, universality, volume, or the *ultimate* economy of obtaining it. In other words—a given volume, in a given time, may be obtained more cheaply from an artesian well than from any sub-surface source by whatever means it may be secured.

Notwithstanding this great percentage in favor of the artesian supply the other sources should by no means be neglected or overlooked. The value to the state of the phreatic supply will be beyond calculation if the people will but

seek its development.

As before stated it must be secured by mechanical means; either by wind or by steam power. Many farmers—most of them—cannot raise the means necessary to put down an artesian well, but there are few who cannot raise enough to put in a pumping plant at an expense of but a few hundred dollars

Reference must again be made to the west where the manufacture and use of water-elevating machinery is a very large and rapidly growing industry. Many sections of country cannot be supplied by water taken from streams by ditches, so the water must be elevated. Thousands of wells have been put down in the several western states and territories from which the water will not flow so it must be pumped. This industry is most fully developed in California and in Colorado. The following illustration will show the comparative economy and great value of such means.

A pumping plant, with a 50 horse-power engine, will raise 7,500,000 gallons of water to a height of 10 feet in 10 hours. This amount of water will cover 28 acres to a depth of one foot. The cost of the plant would be about \$3000. One man can operate it with about one ton of coal per day. While so large a plant would not be in order except where the supply was very large, a plant of proportionately less

capacity and cost would accomplish proportionate results. Many places may be found from which enough water may

be pumped to irrigate a quarter section of land.

The question would follow as to the means to be used in raising the water to the surface in the greatest volume and at the least expense. The author knows of no better means than the use of the PULSOMETER or the NYE VACUUM steam pumps which possess features especially adapting them to such uses. They are both vacuum pumps, having no pistons or machinery to wear out or become deranged, are exceedingly simple, strong, and efficient, and, above all, are standard the world over; being used for irrigation purposes in many countries. All that is needed is the pump, a steam boiler, and a little pipe. There are hundreds of thresher engines in the state that could be used to supply steam, and straw being used as fuel the expense of running would be but nominal.

A No. 6 Pulsometer pump throwing 300 gallons per minute (18,000 gallons per hour) would cost about \$225; an engine to supply steam could be rented during its period of idleness and could be run at an expense of but \$2 or \$3 per day for fuel and attendance. Surely, then, here is a most valuable auxiliary supply in the irrigation field of Dakota, and a means of utilizing it not heretofore presented to our

people.

The cost of starting the plant—buying the pump, pipe and fittings, digging and connecting 2 or 3 large wells and getting the boiler need not cost over \$1000, yet on such an outlay of capital enough may be easily made in any one year to pay the cost of installation and enough surplus very soon accumulated to warrant the sinking of an artesian well.

The increased service rendered by a well, as the result of a given outlay or cost, renders that means, or source of supply, cheaper in the long run, as it is otherwise the basis of more extensive operations; but if the greater source is be-yond one's financial reach then by all means grasp at the

lesser and use a pump.

WIND MILLS.

In the utilization of this sub-surface supply the agency of wind mills may be made to play an important part and this is especially true in this country of almost constant winds. A wind mill may supply water for a very considerable area of garden and orchard, and, if reinforced by a proper waterelevating device, as to which there are several good ones in the market, and also a storage reservoir, the area of service could be very greatly extended and the profit of the farm greatly increased. This means, too, deserves the careful consideration of our farmers.

Get the water from the most available source and by the most efficient means. Only get it! for to get it is to

acquire a competency.

Wherever a deposit of sand or gravel is found, or where wells wherein there is a flow or current—in and out—are found, there is to be found, beyond much doubt, a supply which would abundantly serve the land upon which the supply is found. Every farmer should take some pains to investigate the extent and character of his sub-surface supply with a view to its future utilization.

Fig. 19.

Showing the Pulsometer Pump as set for taking water from a stream for the use of irrigation. The view shows the extreme simplicity of the plant which renders it especially applicable to use where skilled labor or attendance is lacking. Any man can run it or set it up. [See next page and page 244.]

Fig. 20.

Fig. 20. Shows a No. 6 Pulsometer [capacity 18,000 gallons per hour] throwing a stream 46 feet high through 160 feet of 3½ inch pipe, into a flume on top of the bluff. The pump irrigates 1400 fruit trees, uses about ½ cord of soft wood per day and is operated by an Indain boy. The plant is in Idaho.

A No. 9 pump, on a lift of 102 feet, used ¾ cord of wood in 10 hours and delivered 60,000 gallons per hour. [See page 244.]

LEVELING.

It would require more space, diagrams, and illustrations than can be here given to fully treat of the different kinds of levels, their adjustment, use, and care; and to describe and illustrate the many nice points in the art of leveling. Much of this techincal information may be had from the pamphlets issued by level manufacturers and supplied with the instruments.

Enough will be given to convey to any person of average intelligence so much of a knowledge of the art as is necessary to aid in doing such work as may arise about the farm, and yet such as it would not pay to hire an engineer to do, even if one were to be had at call. The principle of leveling is to reduce the inequalities of the surface to a uniform plane, or to determine the position of a succession of points with reference to a uniform plane.

DATUM PLANE.

It is apparent from this that some plane of reference must be chosen which shall be that to which all other points are referred. Such an arbitrarily selected plane is called the *Datum Plane*, or plane of reference, and it is assumed to lie at a considerable distance below the surface in order that all points referred to it may have plus (+) elevations, instead of some plus (+) and some minus (-) as would be the case if some portion of the line to be run sank below the level of the datum plane.

In a rough or mountainous country 500 or 1000 feet is taken as the depth of the plane of reference. In this level country 100 feet will be sufficient. That is, in starting any piece of level work assume that the starting point is 100 feet above this plane, or at an elevation of 100; then proceed to get the elevations of all other points, whether higher or lower than the starting point. Before describing the operation of leveling let us very briefly consider the level or level-

ing instrument.

THE LEVEL.

The engineer's level is a telescopic tube carried in Ys or collars, and having a long level-bubble tube attached, mounted on a horizontally revolving cross-head which is adjusted and maintained in a level or horizontal position by four leveling-screws attached to the head of the tripod on which the instrument rests. Cross hairs in the tube give the exact center and the horizontal line of sight. Such are the main features of a level, and all are constructed on the same general plan.

Some instruments are made with a less powerful and shorter telescope, with fewer parts, lighter weight, and cheaper in price. Levels of this class known as contractors, builders or architects levels are far cheaper than larg-

er engineer's levels but they are finely constructed and good for all classes of work.

A still cheaper grade of level is the so called "drainage level" which is made for the express purpose of farm use in laying out drains and ditches. In this special class of instruments there is a wide range of design and price, the latter ranging from \$10 to \$30. (The manufacturers, Buff and Berger, W. and L. E. Gurley, and Young and Sons, whose advertisements appear herein, are leading makers of the finest instruments and will supply anything in the level line.)

A \$25 or \$50 instrument will do good work and last a lifetime, if properly cared for. One who can use a level will soon pay the cost of a good one by home-work. If no good level is at hand a simple one, for rough work, may be made out of three pieces of board as shown in Fig. 21.

Fig. 21. A simple form of level.

Take two pieces of narrow board, AB and AC, of exactly equal length and form as shown, and having a span from B to C of 10 feet [one of 16½ foot span—1 rod—may be more convenient.] At exactly equal distances from A, measured along the sides, attach the cross stick D. Fasten on the plumb line and bob P and then adjust the zero point O as follows: Drive two stakes in the ground, as supports for the level, having one of them 2 or 3 ins. higher than the other.

Set the foot C on the higher stake and mark upon D the exact point where the line cuts the edge—as at x. Then reverse the level, end for end, so foot B is on the higher stake, and again mark the point where the line cuts D—as at y. Draw o just midway between these lines. Then whenever the plumb line cuts this o mark the feet B and C are on a level. In one foot a large screw may be set, as shown in the enlarged view at S. When screwed in flush the level is set for level work but when screwed out the level is set for running grades. Thus—if a ditch has a fall of 1 foot in 500 feet the screw would be turned out slightly over ¼ inch. The level would be set 50 times in the 500 feet (it having 10 footspan,) so $\frac{1}{50}$ of 1 foot would be the grade for each setting.

Such a tool is of course crude but, if well made and skillfully handled, it will yield quite good results. Other simple, home-made levels are frequently described but this is as good as any. Get a good level if possible and learn to do good work with it. It will pay you if you do much irrigating.

The level rod is a rod of dry wood from 8 to 12 feet long, marked into feet, and tenths and hundredths of feet, measuring upward from the bottom of the rod. The rod may have a target or be what is called a "self-reading" rod. The target rod has the graduations cut into the wood and the distances indicated by figures as at A, Fig. 22, the feet in

large red figures and the tenths by smaller black figures. The leveler views the cross lines on the target and the rod-man takes the reading as indicated by the target. (In the Fig. the target reads 4 feet)

The self-reading rod needs no target. for the leveler takes the reading from sight at the instrument, the graduations being made visible by painting as shown at B, Fig. 22. Here only the feet are numbered, the smaller graduations not requiring it.

Thus, if the horizontal hair of the level cuts at the following points on the rod the reading would be as follows. Refer to B in the Fig.

1=1.0 feet. 4=1.5 feet. 2=1.05 " 5=1.75 " 3 = 1.36=1.85 "

The reading to .05 feet being easily made, and, on short sights, a finer reading may be approximated although a reading of less than .05 is not necessary except in very fine work.

Such rods can be easily and accurately made by any intelligent person, and at a cost of not over one dollar. The target may be made of sheet brass or of galvanized iron.

LEVELING.

Leveling Rods.

LEVELING.

Leveling is very simple work, and the keeping and reduction of level notes equally so. The first thing to do is to set up and level the instrument and to select the HUB or starting point. The form of note-keeping and the order of procedure is shown on the next page. In this sample page from a note-book the following is the significance of the letters heading the several columns. Stn. = Station Number; B. S. = Back Sight [sometimes called + Sight]; H. I. = Height of Instrument; F. S. = Fore Sight [sometimes called — Sight]; Elev. or Ht. = Elevation or height of Station; Rem. = Remarks.

The hub, or starting point, which may be any permanent object, or a stake driven for the purpose, is assumed to have an elevation of 100 feet which fact is entered in the note-book as shown. The rod now being held on this hub the line of sight of the instrument, or the plane passing through its center, strikes the rod 4 feet from the bottom. Enter this under B. S. as shown. Now if the hub is 100 feet and the instrument reads 4 feet above it, the center of the instrument is evidently on a plane or level

feet above it. the center of the instrument is evidently on a plane or level of 104 feet [so that Elev. added to B. S. = H. I. or 104 ft.] The H. I. being known the height of any other point is found thus—. The rodman goes to station 1 and the leveler reads a F. S. of 5.20, which he enters as shown under F. S.

Stn.	B. S.	н. і.	F.S.	Elev.	Rem.
Hub 1 3 3	4.00	104.00	5.20 6.00	100.00 98.80 98.	Hub near well.
	7.35	103.80	7.55 8.80 2.60 1.50	96.45 $95.$ 101.20 102.30	T. P. [turning point.] Hub, at barn. T. P.
4 5 6 7	1.20	103.50	8.60 2.10 1.70	94.90 101.40 101.80	1.1.

If the instrument is on a level of 104 ft., and the reading on the rod at Stn. 1 is 5.20, it is evident that Stn. 1 is 5.20 ft. lower than the instrument. The level of Stn. 1 is therefore found by merely subtracting the F. S. reading on that Stn. (5.20) from the H. I. (104) = 98.80—which enter as shown. In like manner readings are taken at Stns. 2 and 3 which result as shown in the notes. From where the instrument now stands stn. 4 cannot be seen so the level is moved to a new position from which stns. 4 and 5 may be seen. Set up and adjust as before.

The rodman having staid at Stn. 3 the leveler now takes a B. S. reading on that point. The reading of 7.35 is entered as a B. S. Stn. 3 (T. P., or turning point) having an Elev. of 96.45 and the B. S. equaling 7.35 their sum, or 103.80, will

give a new H. I. or plane of reference.

Before proceeding to take the level of Stn. 4 the leveler deems it best to take level on some new hub so that in case the original hub is moved or destroyed he can relocate his work from the new hub. The rodman sets up on the barn floor and the leveler reads 8.80 which substracted from 103.80 = 95 as the Elev. of the barn floor.

He then proceeds as before to take the elevations of other stations and to set such other hubs as he may desire. From this explanation may be drawn the whole secret of leveling

and note keeping.

The Elev. of any starting point added to the B. S. reading on that point give the H. I. and any F. S. reading subtracted from the H. I. gives the Elev. of the point on which the reading is taken. Any number of F. S. readings may be taken from one setting of the instrument so long as the range of sight is clear. Thus, the instrument may be set at or near the center of a reservoir and the levels taken at all points about the bank without moving.

Aim, however, to have the lengths of BS and FS courses as nearly equal as possible in order not to magnify any

slight error in the adjustment of the instrument.

Note especially one fact—as the grade or level runs down the target or reading runs up on the rod; that is, it takes a greatar length of rod to reach from the plane of the instru-

ment down to the surface. The reverse is also true—as the surface rises the reading on the rod lowers.

TO SET A LINE OF STAKES ON A LEVEL.

Set one stake at the level desired, set the rod on this stake and clamp the target on the reading. Proceed then to set other stakes, tapping each one down until the target—set on the stake—comes into the plane of the instrument.

TO SET A LINE OF STAKES ON ANY GRADE.

Set and get level on first stake. Suppose now that the grade runs down at the rate of .1 ft. in 50 feet and that the stakes are 25 feet apart. Move the target up on the rod .05 ft., clamp it, and set the second stake by it. Move it up 05. again and set the third stake; and so on to the end. Had the grade ran up then the target would have been set down at each setting.

If, instead of setting long stakes to the line of the grade, short ones are set, the level of each short stake may be taken and then from the notes the height of the grade-line above

or below each stake may be estimated and indicated.

Many complications will arise in any extended practice but the principle is the same and the specimen notes given embrace the secret of the whole operation. If care and judgment are exercised fairly good work may be done by one not skilled in the work.

For still further illustration the notes are here given of the level-work in the laying out of a reservoir. A reservoir of but 1½ acres will be taken for illustration. Stake out the circumference, on the center line of the top of the bank, into sections of 50 feet each (except where otherwise stated in the notes)—circumference being 905 ft.

LEVEL NOTES -LAYING OUT A RESERVOIR.

Stn.	B. S.	н. і.	F. S.	Elev.	Height to Grade.
Hub	5.2	105.2		100.0	106.0
1			5.0	100.2	5.8
2			5.5	99.7	6.3
3			6.2	99.0	7.0
3+30			7.6	97.6	8.4
+60			10.2	95.0	11.0
+90			7.5	97.7	8.3
4 5			- 6.6	98.6	7.4
5			4.2	101.0	5.0
6			3.2	102.0	4.0
7			4.4	100.8	5.2
8			4.8	100.4	5.6
9			4.8	100.4	5.6
tn = 105 ft			~ ^	400 0	
1]		5.0	100.2	5.8

Set up near the center and proceed to take the level of e ach stake; first having set a reference hub at some convenient place *outside* of the reservoir, the height of which call 100 ft., which, added to the B S of 5.2=105.2=the H I. The notes show a gradual descent from station 1 to a point 30 ft. beyond stn. 3 at which point there is a sudden descent into a shallow "draw", the bottom of which is at 3+60. Thence there is a sudden rise to 30+90 and then a gradual rise to stn. 6, where the highest point is reached, and thence a gradual fall to stn. 1 where, on a reading of 5.0, the level is found to check with the beginning of the work.

In looking over either the F. S. readings or the Elev. results one may readily see, in the imagination, a profile of the work without platting it on paper.

Assume, now, that the top of the bank will be 4 feet above the highest point, at stn. 6—the elev. of which is 102 ft, then the grade-line will be on a level of 106. Enter this in the last column as shown. It is apparent that the height of the bank at each stn. will be the difference between the level of that stn. and the level of the grade-line; therefore, subtract the height or elev. of each stn. from the grade-height (106) and the remainder will be the height of the bank at that stn., which enter as shown in the last column.

The staking out of the toe or base of the bank on the inside and outside may now be done since the height and slopes are known. The inner slope being 2 to 1 and the outer slope $1\frac{1}{2}$ to 1 measure off from each stake, toward and from the center of the reservoir the bottom widths occording to the height of the bank at that point plus $\frac{1}{2}$ the width of the top of the bank. Thus—at stn. 4. the height being 7.4 ft., the distance to the *inner* toe would be $7.4 \times 2 = 14.8 + 2.5$ ($\frac{1}{2}$ top)=17.3 ft. The distance to the *outer* toe would be $7.4 \times 1.5 = 11.1 + 2.5 = 13.6$ ft., a total width of 30.9 feet.

The estimate of the number of cubic yds. of earth in the bank may be done with sufficient accuracy by assuming the cross-section to be level and the height of the bank in each section as a mean or average of the end heights. Thus, the height at stn. 6 is 4 feet; and at stn. 7 it is 5.2 ft. The average height may be taken, therefore, as the height of the $full\ stn.$, $4.0+5.2=9.2\div2=4.6=$ average for 100 ft.

Get area of section of this height, and compute cu. yds. for 100 feet as explained under head of "Reservoirs." Do the same for each stn., add the sums to get the total cubic contents,

This, it is believed, will make clear what is really a very simple operation and will enable any farmer to do, or to aid in doing, part or all of his own work,

With three sticks, a ball of binding twine, a few stakes, and a hatchet, with a little good judgment and care thrown in, any farmer may do in two hours what it would cost him \$5 to \$10 to have done—and still not be overcharged. Do some level practice, if only for exercise.

Fig.23.

DECIMAL AND DUODECIMAL SCALES.

TRUE AND APPARENT LEVEL.

Brief mention only need be made of the difference between true and apparent level. In ordinary leveling operations no account is taken of the curvature of the earth.

True level is a water-level which is the

true curvature of the earth.

Apparent level is a horizontal plane tangent to the plane of true level at any point and extending indefinitely into

space.

In leveling the sights are short and constitute, therefore, a succession of tangent planes which closely approximate a curve of true level. The difference between a curve of true level and a plane of apparent level is about 8 inches per mile [7.98 ins. or .667 ft] and increases as the square of the distance; being 4 times 8 inches in 2 miles, 9 times 8 inches in 3 miles, etc.

MEASUREMENTS.

Nearly all measurements in engineering work are made in feet and decimals —tenths and hundredths—instead of in feet and inches. This is especially necessary in leveling. Table No. 67, showing the decimals of a foot corresponding to each $\frac{1}{64}$ of an inch will be of convenience in the conversion of measurements from one unit to the other. For ordinary work the decimal corresponding to the nearest half or quarter inch will be close enough. To aid in getting this at a glance Fig. 23 has been prepared showing (in ½ size) a foot measure divided into inches and eighths; and, on the opposite side the divisions to tenths and hundredths. This will be of much use to the leveler in certain work.

Examples.—6 inches = 5 tenths. 9 " = 75 hundredths. 10 " = 83" " and 7 tenths = 8% inches.

25 hundredths = 3 inches, &c.

The scale may be more readily used than a table.

The unit of measurement used by the government in surveys of the public lands is the chain of 66 feet,—4 rods—this being divided into 100 links of 7.92 inches each. For rules as to the conversion of chains and links to feet, yards, &c., see "Mensuration" and table of multipliers.

VALUE OF WATER, VALUE OF LAND AND SIZE OF FARMS UNDER A SYSTEM OF IRRIGATION.

VALUE OF WATER.

Water for irrigation has a double value.

First. The first cost of getting it upon the land, or the value of the Water right.

Second. The annual rental value.

Table No. 53, on the opposite page, shows statistics as to values, etc., which are official and as accurate as only the Government could secure. The table contains much of value

and deserves careful study.

The first cost of securing a water supply or *right* will depend upon the supply, the distance it must be brought, the manner of bringing, etc. All the expense of dams, headgates, ditches, flumes, pipe-lines, or tunnels must be born by the area served, so all these expenses enter into, and form a part of, the first cost per acre of a water right. The value of the right being such an amount as will pay all the expenses and leave a proper margin of profit. This value ranges from a mere nominal price to \$30 or more per acre, but averages as shown in the table. The right attaches to the land and passes with the title thereto. Once paid for it is perpetual as a right, but the continued enjoyment of that right is contingent upon the performance of other conditions—as the payment of an annual tax for the use of the water, or the performance of certain labors in maintaining the ditches.

The amount of the value of the water right may usually be considered as the value of the land, for, as a rule, the

land has little or no value without the right.

As touching most directly upon the value of well-waters reference may be made to the Gage group of 29 wells near San Bernardino, California. They are within a radius of 1 mile, are from 4 to 10 inches in diameter and have an average daily flow of about 33 miner's inches, (about 300 gallons per minute) or a total of 954 inches, (about 8600 gallons per minute.) One inch is apportioned to 5 acres and is sold as high as \$250 an acre, or \$1250 an inch. The average price thereabouts being \$1000 per inch. At this rate the total flow is worth \$954,000 and it will water nearly 5000 acres.

Four good Dakota wells will throw more water and will serve more land. Such being the case one Dakota well of 2200 gallons per minute would, according to this accepted California estimate, be worth \$238,500. (Continued on P. 138.)

137

TABLE NO. 53.

,	ŕ
7	-
-	_
è	-
4	
-	
1	Ļ
V 1 1 1 1 7	-
1	
-	
4	
	. `
E	-
-	-
,	,
+	"
-	Z
+11	_
ナトン	2
ナインスナ	
TATAL	2
THE CARRY	
A STATISTICAL	
•	
•	70 -
•	とここくじ
•	とこうとう
•	
•	
THE VIEW OF CITE	

ITEMS.	Arizona	Arizona New Mexico Utah Wyoming Montana	Utah	Wyoming	Montana	Idaho	Nevada
Total irrigated acreage in crop, 1889	9	91,745	263,473	263,473 229,676 350,582	350,582	217,005	224,403
Total number of irrigators, 1889	1,075	3,085	9,724	1,917	3,706		
Average size of irrigated crop areas, in							
acres, 1889	61	30	22	119	95	50	192
Average size of irrigated crop areas of 160							
acres and upward, in acres	287	312	312	494	307	270	213
Per ct. of acreage of irrigated crop areas of							
160 acres and upward to total irrigated,	34	21	10	65	50	96	7.9
Average size of irrigated crop areas under)			
160 acres, in acres		24	25	50	.c.	330	7.2 X
Average first cost of water per irrigated acre	\$ 7.07 \$ 5	⊕ 50.58	\$10.55		₹ 63	4 74	E-
Average annual cost of water per irrigated "	99	., 1.54	6 0.91 6	0.44 "	26.0 3	08 0	= :
Average first cost per acre of preparation))	
for cultivation		" 8.60 " 11.71	"14.85		8.23 " 8 29 " 9 31 " 10 57	. 9 31	" 10 57
Average value of irrigated land including							
buildings, etc., per acre		"48.68 " 50.98 ·	84. 25		31.40 " 49.50 " 46.50 " 41.00	" 46.50	6: 41 00
Average annual value of products per acre							
irrigated, 1889 12.80	" 13.92	" 12,80	418,03k	478 (13 4 8 95 4 19 96 4 19 93 4 19 99	19 96	6 19 03	6 19 09

Tabulated statistics as to irrigation in seven western states and territories, as reported by the U. S. Census Office in Bulletins 1 to 8 (Nos. 35, 60, 85; 107, 153, 157, 163.)

It is not the intention to place such values on wells that can be sunk for \$3000 or \$4000 yet such is their legitimate value as compared with values elsewhere.

Our wells possess values far in excess of their cost, and far greater than even their owners now dream of. A good well is really a fortune to its owner.

In Oregon, on one large tract, the annual charge is \$3.00 per acre for 1 foot depth of water (1 acre foot) to be used in 3 irrigations. At this rate a Dakota well would pay its cost in two years, if not in one. In other states the annual charge per acre foot is about the same, but, inasmuch as the crop is a certainty and abundant in amount, this apparently high tax is not felt as at all burdensome.

The Dakota irrigator who would achieve success must abandon the false idea, which many farmers entertain, of getting someting for nothing. He must put in both money and labor, and considerable of each, in order to make a success of irrigation. Nor need he be discouraged; for all the advantage is on his side. It will cost less here to secure a water right than in almost any other section because a given volume may be had for a lesser outlay.

Again, the Dakota water-right is also a water-power which very largely increases its value. It is not subject to periodic fluctuations, prior rights of up-stream claimants, and such other uncertainties and annoyances as are experienced under other systems. It is perpetual, is under perfect controll, may be put to many uses and in all respects has a value not possessed by water rights in other sections or under other systems.

The cost of reservoirs, ditches, gates, etc., is not a part of the water right, but a tax upon the land in its preparation for irrigation. In this respect also Dakota has a great advantage, for her gently rolling or nearly level lands require but little preparation as compared with the heavy work of terracing, checking, diking, ditching, leveling and otherwise treating the land, as so often necessary elsewhere.

Finally, as to the ANNUAL COST of water. Where, in other states, the annual cost is from 25 cents to \$5 per acre—averaging over \$1—the Dakota average will be but a few cents, and in most cases nothing, for the flow of the well being continuous, requires no attention or expense. Once obtained its volume comes free.

In every essential particular wherein an irrigation system burdens the irrigator with expense—first cost of water, annual cost of water, preparation of ground, future maintenance of plant—he who irrigates in Dakota bears the least burden; has the greatest advantage; the most valuable, controllable, and diverse right; to say nothing of the proximity to the best and largest markets.

A consideration of many details only tends to strengthen and confirm this conclusion that Dakota's artesian irrigation system will be the cheapest and the best of the many systems developed in this country.

The experience of the failure years, 1888-1889-1890, taken in connection with the results obtained by the great crop of 1891 (See table No. 43 and remarks in connection therewith) prove not only the enormous value of water in Dakota but substantiate the estimate of duty of water given in table 16. If the estimate there given is approximately correct, and the annual value of water be taken to be but \$2 per acre then from table 16 it will appear that a well of 1350 gallons per minute would be worth \$1950 per year or fully 40 per cent on its cost. This is assumed to be a rental value.

To the owner the actual value would be the net value of all crops raised in excess of the average yield of non-irrigated lands in his neighborhood. No reasonable person will estimate the probable average yield of irrigated wheat at less than 30 bushels per acre, which average would be fully 18 bushels more than the average without irrigation. Assuming a net return of but 50 cents per bushel, this would give to the water a value of \$9 per acre to the owner; or an amount sufficient to pay the full cost of the well together with the cost of the land, in one year.

This is not an exagerated estimated but rather an underestimate as has been demonstrated by actual experience.

A parallel cannot fairly be drawn between the values either of water or of land as between the fruit growing lands of California and the grain fields of Dakota; but making all needful allowances for the character of the crops raised, and their value per acre, the value of water to our grass and grain fields is still actually far beyond the amount which even sanguine estimate would give to it.

A thousand gold mines would not be so valuable to our people as are these artesian waters. Hasten, therefore, to develope this pent-up wealth which awaits the opportunity to flow to the coffers of each enterprising claimant.

VALUE OF LAND.

One, in considering the relative values of irrigated and unirrigated lands, may border closely upon the realm of the marvelous while yet not transgressing the bounds of cold facts, for it is truly marvelous that the worthless deserts of the arid west, have, within a few years, been clothed in semitropical luxuriance through the agency of irrigation, and have been raised in value from actual zero to as much as \$2000 per acre. It is but a few years since California and Colorado were known only as great mining states. To-day, through the agency of the impounded waters of the mountain streams, they have been transformed into great agricul-

tural states; the harvest of the golden fruit and of golden grain having long since superseded in value the harvest of the golden metal. Where then there were mining camps now there are prosperous cities, and where then vice reigned

supreme, now peace and plenty bless the community.

Millions of acres of barren, sage-brush or of sand-flecked desert, of lava-beds and of sun-parched plains have been reclaimed and are to-day the most valuable and productive lands on the continent. It is true that the high values of \$1000 per acre and upward are usually fancy prices, but many thousands of acres have ready market values of from \$50 to \$500 per acre.

Good lands, under water, the ditching and like preparation being done, are worth from \$50 to \$100 per acre, and find a

ready market at these figures.

Any piece of property is truly worth such an amount as will represent the principal upon which a fair rate of interest

can be permanently earned.

If land will produce annually a crop which will yield a net income of \$10 per acre that land is worth \$100 per acre to a man who demands a 10 per cent investment; or \$200 per acre to a man who is content with 5 per cent. Such values, and only such, are legitimate.

The remarkable development of Southern California has been due almost solely to irrigation. As an illustration of the increase in property values may be cited the statistics relative to San Diego Co., which may be taken to represent

that section of the state.

Real Estate.

Improvements.

1880 1890 \$1,307,302 \$20,000,085

1880 1890 \$341,948 \$4,450,286

While no corresponding increase can be expected in any Dakota county there is still room for an increase in value far beyond the present values. Taking Brown Co., S. D., to fairly represent the two Dakotas, the average market value of the lands of the county would probably not exceed \$6 per acre. An increase of \$5 per acre would add over \$6,000,000 to the valuation of the county and still leave the lands far below their actual value.

- Such a change in the ready market value of these lands may be brought about within two years if, within that time it can be shown that these lands can be made to produce from 25 to 50 bushels of wheat to the acre, no matter what

the season may be.

No doubt exists as to this being demonstrated—it has been already in Brown Co. and in other counties within the arte-

sian basin.

As soon as the foreign land purchaser and investor learns of the wonderful possibilities of this artesian basin the present land owners will find a ready market for their surplus holdings at prices now beyond their fairest fancies. What is it that can do this magic act—the creation of millions of value where now little appears? What is it that can and will do for Dakota what irrigation has done for our sister states? What is it that can banish poverty, misfortune and ruin from our state and bring riches, prosperity and happiness in their place? That can quench the thirst of our once parched prairies with a perennial draught of nature's purest waters?

ARTESIAN WELLS!

No agency is so pregnant of promise for the welfare of the Dakotas and none deserves the same attention as the development of this great industry—artesian irrigation. It is not only a boon to him who puts it to practice but to the community in which he lives, for it shows to the world the possibilities awaiting all who choose to engage therein, and fixes to our lands a value because of their latent possibilities for successful agricultural development.

The author has heard it remarked, but recently, by a wealthy eastern man who owns (perforce) several thousand acres of Dakota lands, but possesses no knowledge of irrigation, that if artesian irrigation proves to be what it is claimed to be he would sink several wells and thus trebble the value of the lands which today he would sell for what they cost.

No doubt there are scores of such cases, and it is to prove to such men the true value of their lands, and to still further interest them and their monied friends in schemes of development that every effort should be put forth to demonstrate to the world the true extent and value of the latent possibilities we have within our reach and control.

Every possible publicity should be given to every truth, to every demonstrated fact touching upon the well or irrigation interests, and, by reason of the approaching World's Fair and its resultant era of prosperity and commercial activity every possible effort should be made to push the business of irrigation at home and a knowledge of its results abroad; for no better time will ever come for Dakota to enthrone herself in the good will of the capitalists of the world and regain her lost prestige, than the immediate future.

The farmers and the business men of the state should organize and prepare in every legitimate way to promote this all important industry, for the success or failure of the state depends upon it, and all other interests pale before it in importance and the effect upon the general prosperity of all classes. If this appeal to the patriotic home enterprise of Dakotans shall result in creating any of that interest which the subject warrants, then will this little volume not have been issued in vain.

SIZES OF FARMS.

A word of caution as to over-irrigation, in point of area, will well-nigh be wasted inasmuch as the invariable tendency is to attempt to irrigate too large an area. A few unsuccessful attempts to irrigate too broad an area will convince the farmer that a lesser area, better served and cultivated, will yield better results.

In a fruit-growing country an area of 5 or 10 acres is enough for a single holding. As the crop is changed to vegetables, grass, or cereals the area which may be advantageously cultivated increases. It is assumed that the holding is worked on the plan of the average farm—by the farmer and his family, with the assistance of the average amount of hired help. As the number of hands, actively engaged in the farm labor, increases, so may the area treated be increased. The character of the land to be cultivated—whether it be easily managed or the reverse—will likewise determine the area which a given service of labor can properly manage; as will also, the character of the crops raised.

It will be well in starting out to thoroughly treat such an area as the supply of water, as well as of labor, can treat to the best advantage. In short, go only so far as you can go with thoroughness. The following year this area will require far less attention so the surplus of water and of labor may be expended in an extension of the area served, until the maximum shall have been reached. No other method of proceedure will prove satisfactory unless "bonanza" methods are adopted.

Table No. 53, of statistics, in the 3d, 4th, 5th and 6th lines, shows at a glance the results reached in 7 other states as to areas under irrigation.

What there is shown is true of all other states and countries, except that, as the country becomes older, and irrigation methods are improved, the duty of water increased, and more care and labor is given to a given area, the product of that area increases and a lesser holding is relied upon. So it will be in Dakota after the irrigation system is more general; the farms, instead of becoming larger will become smaller, and better and more thorough methods of cultivation will be practiced. From these smaller areas will be returned a larger yield and one as certain as the order of the seasons and as bounteous as the prosperity which will attend them.

"Bonanza" farms may be, and no doubt are, fine things for their owners, but they are of little use to any community. A community of small farms, all of which are prosperous and each of which supports in plenty a family, is the most truly a model in all the elements which enter into the general prosperity, wellfare and happiness of the people. So each farmer will do better by his own interests, and those of his neighbors, if he seeks to place his present holding under more thorough cultivation rather than to extend his holding and neglect the proper cultivation of the whole.

PHOTOGRAPHS.

Any good engraver can engrave a picture of an artesian well, and—so to speak—can doctor it up to show according to his own ideas of magnitude, or those of the person for whom he works, which ideas may far exceed the facts.

Not so, however, with a photograph or any picture having a photograph as its base—such as photo-engravings. The camera, with the quickness of light, makes a record true to nature, and of the smallest details; a record with which the

enthusiast cannot tamper; which none can question.

The importance of photographing the wells of the state has but recently impressed itself upon the leading photographers. Already several of them have quite fine collections of views of the wells in their neighborhood and take pains to secure views of each new well. Some have made a considerable profit out of their views, for a fine view finds a ready sale at home and abroad. Ere long the sale of well views will form an important item in the income of Dakota artists. A photograph of a well needs no argument back of it; it tells its own story; is its own best witness as to its truthfulness to nature, and convices the skeptic who would not otherwise accept the facts, as shown, on the affidavit of a friend, without some misgivings.

Hence the importance of taking photographs and giving them a wide circulation. They are unimpeachable witnesses as to the volume and power of our wells and will command respectful attention where the most glowing verbal descrip-

tion will be wasted on skeptical ears.

The eastern man who has never seen a flowing well cannot comprehend the nature of one from a mere verbal description; and even an old well driller, unacquainted with such great wells, will laugh in his sleeve at the narrator or will, with his friend the capitalist, say "that is the biggest Dakota lie I have heard yet."

Show him a photograph, however, and his skepticism turns to wonder and amazement. No argument will prevail against the evidence of the light, and the capitalist whose interest, perchance, has been solicited will turn to investigate or to invest instead of turning away in disgust or in wonder at the stupendous lying abilities of the Dakota man.

Euthusiasm on the well subject is ligitmate and laudable and increases as one sees and learns more of this wonderful power and supply. Enthusiasm is still further heightened by a comparison of the Dakota wells with those of other sections of the country. Not a comparison of reports, set in cold type, but a comparison of lifelike photographs. It is this enthusiasm that should be fostered by every resident of Dakota, and especially by every photographer.

Every person and corporation should lend every possible aid to the photographer in his effort to secure good views; and the photographer in his turn should improve every opportunity to secure views, and then place them at a price such as will enable every one to secure a supply to send away. There is no telling what one will find its way into the

There is no telling what one will find its way into the hands of some man who will invest thousands of dollars in wells and irrigation projects as the direct result of having seen, and been impressed with, a photograph of a well. Every person engaged in placing irrigation bonds, or the stocks of irrigation companies, should have a collection of the best views in the state and every eastern bond-negotiating agent should be similarly supplied.

Collections of well views could, to excellent advantage, be handsomely framed and placed in the lobbies of the leading eastern hotels and in other places of popular resort. Such exhibitions would be seen by thousands of wondering and admiring spectators. Thus would a knowledge of the vast possibilities of Dakota's great wells be spread among a class of people who could not be reached by other means.

Thousands of views could in this, and in other ways, be placed where they would be a greater advertisement to the

state at large than any other that could be made.

A lithograph of a goddess, of an eagle, of a gapping crowd of emigrants, or of a chariot procession may be a work of art but it can be of little value to the people; but if an equal number of views of our great artesian wells were scattered over the land the result would be a large influx of people, seeking to share the undoubted benefits the artesian waters will confer, and of money to develop an industry upon which the agricultural success of this agricultural state depends. Every view sent out should have attached a full and ACCURATE description covering as many as possible of the following points:

Name, or location of the well. When drilled, and by whom.

Depth, in feet.

Pipe, size in inches all the way, or at top and at bottom.

Volume, discharge in gallons per minute when opened and full size, and if possible, when discharging through smaller sized openings.

Pressure, in pounds per sq. inch, when closed, and, if possible, when streams of different sizes are being discharged.

Discharge, height of throw or discharge of streams of different sizes, or the horizontal distance to which the streams are thrown.

Temperature,

Character of water, hard, soft, clear, muddy, palatable, &o. Use to which the supply is put.

If several views are had of one well note which view is shown and what it is—whether it is the 4 inch stream or the

6 inch stream, &c.

Without this description the view has little value, and the value even then rests largely on the exact TRUTHFUL-NESS of the description given. It is poor policy, to say the least, to exaggerate as to the volume, pressure, discharge, or the size or height of the stream shown.

If an exceptionally fine negative is secured a duplicate should be made, for some accident may befall the first one

or it may become gradually worn out through use.

The author was desirous of having, as a prominent feature of this little volume, a series of photogravure views of the leading wells of the state but the expense would have been greater than the circumstances of its issue would permit, so the idea was abandoned for the present edition. Should the book meet with such favor as to warrant another edition this feature will be added thereto. Through the courtesy of the leading photographers of the state the author has secured a collection of all the views of the wells thus far

photographed.

A list is added(on the next page) of the photographers having views, their addresses, and a list of the views they have This will be a great boon to the general public who will thus be informed as to what views may be had, and where to secure them. By this means it is to be hoped a large trade in views may be worked up and the photographers thereby stimulated to the work of taking all such views as may be possible within their territory. The importance of cultivating this mutual interest is far reaching and it is hoped that added interest will be taken in well photography because of the great good that may flow therefrom to the people of all parts or the state.

The author with pleasure acknowledges the courtesy of views received from the following:

S. W. Fergusson, Bakersfield, Cal. 5 Kern Co. wells. Wm. Kennish, Wilmington, N. C. Ponce de Leon well, Fla. H. C. Humphrey, North Yakima, Wash. Yakima wells. And from all the photographers listed on page 146.

WHERE TO BUY WELL PHOTOGRAPHS.

Photographs of Dakota's famous artesian wells may be secured by writing to the following Photographers.

		The state of the s	
Photographer.	Address.	List of Views.	Grade.
B. W. Burnett. These views are among the best in the state.	Tyndall, S. D.	Springfield well, 6 inch stream. " 4 " " and mill. Niobrara, Neb. well, 8 in. stream. " 2 derrick v'ws Zinnert well 3 in. stream. " Shadeland farm	A A A B A
D. O. Root. City well views are the best in the state.	Woonsocket, S. D.	Large, of City well, 4 in. stream. 2 small " " " Hinds well, vertical stream. " horizontal & vert. s.	A A B B
L. Janousek.	Yankton, S. D.	Brick yard well, stand-pipe view.	A
P. C. Anderson	Redfield, S. D.	Water works display view.	В
Quiggle & Johnson.	Rapid City, S. D.	Doland well 6 inch stream.	A A
J. Q. Miller.	Aberdeen, S. D.	Railway well. Beard "6 inch stream. "4 " " Williams "4 " "	A A B
Chas. H. Newcombe. These views are also very nice.	Huron, S. D.	Day well, vertical stream. "" double "" City " water works display. 10 views of irrigated farm. Risdon well, 8 in. derrick view. "" 4 " " " "" 6 " clear " "" 5 " " " "" 4 " " "" 2 " " " "" 4 " " "" 3 views.	A A A A A A A A A A A A A A A A A A A

Note: In the above list A and B refer to the grade or relative values of the views. A indicates a view of special excellence or interest and B a view of lesser value.

EXPLANATION OF TABLE OF TANGENTS & COTANG'S. P.148

I. Required the tangent of the angle 65° 20'?

In the first column of degrees find 65, then pass horizontally across to the column headed 20' where find 2.17749 as the tang, required. If the number of minutes in the given angle is not found in the head of the table proceed as follows:

II. Required the tangent of the angle 65° 26' ?

Proceed as before to get the tangent for 65° 20', which is the next lowest number of minutes given at the head of the table. This leaves an excess of 6 minutes. At the right hand of the table under the head of "Prop. (Proportional) parts to 1" find 169 in the same line with 65° at the left side. $169 \times 6 = 1014$ which added to 2.17749, the tang. for 65° 20', equals 2.18763 as the required tangent. (This gives a sufficiently approximate Tangent for ordinary use. Exact Tangent=2.18755.)

COTANGENTS are taken from the table by taking the degrees from the column of degrees at the right side and the minutes from those indi-

cated at the foot of the table, thus-

III. Required the cotangent of the angle 24, 40'?

In the right hand column of degrees find 24°, then pass horizontally across the table—to the left—to column having 40' at the foot, and find 2.17749 as the cotang. required. From this it is seen that the tang. of any angle is the cotang of the complement of that angle, for 65° $20'+24^{\circ}$ $40'=90^{\circ}$. Proceeding as at II-

IV. Required the cotangent of angle 24° 34'?

(The complement of 65° 26'.)

Obtain cotangt. for 24° 30′ which=2.19430 and from column of prop. parts find 169, which multiplied by 4, for the 4′ we have in excess of 30′,=676. Where, in finding the tangent, this correction was added it is now subtracted, in finding the *cotangent*. 2.19430 minus 676=2.18754 The exact cotangent = 2.18755.

USE OF TABLE OF TANGENTS.

Tangents are used principally in determining heights and distances by means of angles. Refering to Fig. 11, page 93, suppose a surveyor's transit to be set at A, so the angle FAE can be measured, and suppose that angle to be 38° 40°. The line EF is the tangent of the angle FAE. From the table we find the tangent of the angle 38° 40° to be .80020 which multiplied by 100, the distance from A to F,=80.02 or 80 ft. as the height of the

Proceed in like manner, for any other angle, to multiply the horizontal

distance by the tabular tangent to get the length of the tangent. Suppose a 2 ft. rule is used to measure the angle, as described on page 158, and that the opening of the rule is 8 inches—which corresponds to an angle of 38° 57′—and that the joint is 100 feet from the well. We find from the following table that the tang. for 38° 57′ = .80855 which×100 = 80.85. In this simple way the height of a stream may be determined within a foot or less may be determined within a foot or less. So, too, in measuring horizontal distances to in-

accessible points, as across a stream. Suppose it is desired to measure the distance A B, Fig. 24, between points on opposite sides of a river, across which measurements cannot be carried. From A lay off a right angle BAC and measure AC any suitable length, say 350 feet. From C measure angle A C B which=60° 5′—then tang. of 60° 5′= 1.73805which×350=608.3 ft, the distance from A to B

TABLE NO. 78.

See explanation of table on page 147.

NATURAL TANGENTS.

Deg.	. 0′	10′	20′	30′	40′	50′		Deg.	Prop parts to 1'
0 1 2 3 4	00000 01746 03492 05241 06993	00291 02036 03783 05533 07285	00582 02328 04075 05824 07578	00873 02619 04366 06116 07870	01164 02910 04658 06408 08163	01455 03201 04949 06700 08456	01746 03492 05241 06993 08749	89 88 87 86 85	29 29 29 29 29 29
5 6 7 8 9	08749 10510 12278 14054 15838	09042 10805 12574 14351 16137	09335 11099 12869 14648 16435	09629 11394 13165 14945 16734	09923 11688 13461 15243 17033	10216 11983 13758 15540 17333	10510 12278 14054 15838 17633	84 83 82 81 80	29 29 30 30 30
10 11 12 13 14	17633 19438 21256 23087 24933	17933 19740 21560 23393 25242	18233 20042 21864 23700 25552	18534 20345 22169 24008 25862	18835 20648 22475 24316 26172	19136 20952 22781 24624 26483	19438 21256 23087 24933 26795	79 78 77 76 75	30 30 31 31 31 31
15 16 17 18 19	26795 28675 30573 32492 31433	27107 28990 30891 32814 34758	27419 29305 31210 33136 35085	27732 29621 31530 33460 35412	28046 29938 31850 33783 35740	28360 30255 32171 34108 36068	28675 30573 32492 34433 86397	74 73 72 71 70	31 32 32 32 32 33
20 21 22 23 24	36397 38386 40403 42447 44523	36727 38721 40741 42791 44872	37057 39055 41081 43136 45222	37388 39391 41421 43481 45573	37720 39727 41763 43828 45924	38053 40065 42105 44175 46277	38386 40403 42447 44523 46631	69 68 67 66 65	33 34 34 34 31 35
25 26 27 28 29	46631 48773 50953 53171 55431	46985 49134 51319 53545 55812	47341 49495 51688 53920 56194	47698 49858 52057 54296 56577	48055 50222 52427 54673 56962	48414 50587 52798 55051 57348	48773 50953 53171 55431 57735	64 63 62 61 60	36 36 37 38 38
30 31 32 33 34	57735 60086 62487 64941 67451	58124 60483 62892 65355 67875	58513 60881 63299 65771 68301	58905 61280 63707 66189 68728	59297 61681 64117 66608 69157	59691 62683 64528 67028 69588	60086 62487 64941 67451 70021	59 58 57 56 55	39 40 41 42 43
35 36 37 38 39	70021 72654 75355 78129 80978	70455 73100 75812 78598 81461	70891 73547 76272 79070 81946	71329 73996 76733 79544 82434	71769 74447 77196 80020 82923	72211 74900 77661 80498 83415	72654 75355 78129 80978 83910	54 53 52 51 50	44 45 46 47 49
40 41 42 43 44	83910 86929 90040 93252 96569	84407 87441 90569 93797 97133	84906 87955 91099 94345 97700	85408 88473 91633 94896 98270	85912 88992 92170 95451 98843	86419 89515 92709 96008 99420	86929 90040 93252 96569 1.00000	49 48 47 46 45	50 52 53 55 57
Deg.	Target (see a	50′	40'	30'	20′	10'	0′	Deg.	

NATURAL COTANGENTS.

149

TABLE NO. 79--Continued.

NATURAL TANGENTS.

Deg.	0'	10′	20′	30′	40'	50′		Deg.	Prop parts to 1'
45	1,00000	1.00583	1.01170	1.01761	1.02355	1.02952	1.03553	44	59
46	1.03553	1.04158	1.04766	1.05378	1.05994	1.06613	1.07237	43	61
47	1.07237	1.07864	1.08496	1.09131	1.09770	1.10414	1.11061	.42	63
48	1.11061	1.11713	1.12369	1.13029	1.13694	1.14363	1.15037	41	66
49	1.15037	1.15715	1.16398	1.17085	1.17777	1.18474	1.19175	40	69
50	1.19175	1.19882	1,20593	1.21310	1.22031	1.22758	1.23490	39	72
51	1.23490	1.24227	1,24969	1.25717	1.26471	1.27230	1.27994	38	75
52	1.27994	1.28764	1,29541	1.30323	1.31110	1 31904	1.31704	37	78
53	1.32704	1.33511	1,34323	1.35142	1 35968	1 36800	1.37638	36	82
54	1.37638	1.38484	1,39336	1.40195	1.41061	1.41934	1.42815	35	86
55	1.42815	1.43703	1.44598	1.45501	$\begin{array}{c} 1.46411 \\ 1.52043 \\ 1.57981 \\ 1.64256 \\ 1.70901 \end{array}$	1.47330	1.48256	34	90
56	1.48256	1.49190	1.50133	1.51084		1.53010	1.53987	33	95
57	1.53987	1.54972	1.55966	1.56969		1.59002	1.60033	32	100
58	1 60033	1.61074	1.62125	1.63185		1.65337	1.66428	31	107
59	1.66428	1.67530	1.68643	1.69766		1.72047	1.73205	30	113
60	1.73205	1.74375	1.75556	1.76749	1.77955	1.79174	1.80405	29	120
61	1.80405	1.81649	1.82906	1.84177	1.85462	1.86760	1.88073	28	128
62	1.88073	1.89400	1.90741	1.92098	1.93470	1 94858	1.96261	27	136
63	1.96261	1.97680	1.99116	2.00569	2.02039	2.03526	2.05030	16	146
64	2.05030	2.06553	2.08094	2.09654	2.11233	2.12832	2.14451	25	157
65	2,14451	2.16090	2.17749	2.19430	2.21132	2.22857	2.24604	24	169
66	2,24604	2.26374	2.28167	2.29984	2 31826	2.33693	2.35585	23	183
67	2,35585	2.37504	2.39449	2.41421	2.43422	2.45451	2.47509	22	199
68	2,47509	2.49597	2,51715	2.53865	2.56046	2.58261	2.60509	21	217
69	2,60509	2.62791	2.65109	2.67462	2.69853	2.72281	2.74748	20	235
70	2.74748	2.77254	2.79802	2.82391	2.85023	2.87700	2.90421	19	261
71	2.90421	2.93189	2.96004	2.98868	3.01783	3.04749	3.07768	18	289
72	3.07768	3.10842	3.13972	3.17159	3.20406	3.23714	3.27085	17	322
73	3.27085	3.30521	3.34023	3.37594	3.41236	3.44951	3.48741	16	360
74	3.48741	3.52609	3.56557	3.60588	3.64705	3.68909	3.73205	15	407
75	3.73205	3.77595	3.82083	3.86671	3.91364	3.96165	4.01078	14	464
76	4.01078	4.06107	4.11256	4.16530	4.21933	4.27471	4.33148	13	534
77	4.33148	4.38969	4.44942	4.51071	4.57363	4.63825	4.70463	12	621
78	4.70463	4.77286	4.84300	4.91516	4.98940	5.06584	5.14455	11	732
79	5.14455	5.22566	5.30928	5.39552	5.48451	5.57638	6.67128	10	876
80	5.67128	5.76937	5.87080	5.97576	6.08444	6,19703	6.31375	9	1068
81	6.31375	6.43484	6.56055	6.69116	6.82694	6,96823	7.11537	8	1331
82	7.11537	7.26873	7.42871	7.59575	7.77035	7 95302	8.14435	7	1708
83	8.14435	8.34496	8.55555	8.77689	9.00983	9,25530	9.51436	6	2270
84	9.51436	9.78817	10.0780	10.3854	10.7119	11,0594	11.4301	5	3168
85 86 87 88 89	11.4301 14.3007 19.0811 28.6363 57.2900	11.8262 14.9244 20.2056 31.2416 68.7501	12,2505 15,6048 21,4704 34,3678 85,9398	12.7062 16.3499 22.9038 38.1885 114.589	13.1969 17.1693 24.5418 42.9641 171.885	13.7267 18.0750 26.4316 49.1039 343 774	14.3007 19.0811 28 6363 57.2900	4 3 2 1 0	4728 7806
Deg.		50′	40′	30′	20'.	. 10′	6'	Deg	

. NATURAL COTANGENTS.

MENSURATION.

WEIGHTS, MEASURES AND USEFUL NUMBERS.

AVOIRDUPOIS OR COMMERCIAL WEIGHT.

```
16 drachms = 1 ounce = 437.5 grains.
16 ounces = 1 pound = 256 drachms = 7000 grains.
28 pounds = 1 quarter = 448 ounces.
4 quarters = 1 cwt. = 112 pounds.
20 cwts. = 1 ton = 2240 pounds (long ton.)
2000 pounds = 1 short or commercial ton.
```

APOTHECARIES WEIGHT.

LONG MEASURE.

```
12 inches = 1 foot.
3 feet = 1 yard = 36 inches.
16½ " = 1 rod = 198 "
160 rods = ½ mile = 31680 " = 2640 feet.
320 " = 1 mile = 63360 " = 5280 "
3 miles = 1 league.
A palm = 3 ins. A hand = 4 ins. A span = 9 ins.
A fathom = 6 ft.
```

GUNTER'S CHAIN.

7.92 inches				
			= 22 yards =	
80 chains	= 1 mile	= 320 ' =	= 1760 · · · =	5280 "

SQUARE MEASURE.

144	square	inches	= 1 s	quare	ioot.
9	-6.6	feet	= 1	-44	yard.
100	44	66	= 1		(architects measure.)
30.2	5 "	yards	=1	66 .	rod.
160	4.6	rods	-=1		acre.
16	6.6	66 .	= 1	,64	chain.
10	6.4	chains	= 1	4.6	acre.
640	4.6	acres	= 1		mile.
43,	560 sq. ft	a = 1 ac	re = 20	8.71 ft	, on each side.
A	circular :	acre is 2	35.504 f	t. in d	iameter.

MEASURES OF VOLUMES.

LIQUID MEASURE.

(See also Page 151.)

```
4 gills = 1 pint = 16 ounces.

2 pints = 1 quart = 8 gills = 32 ounces.

4 quarts = 1 gallon = 32 '' = 8 quarts.

31 gallons = 1 wine barrel.

63 '' = 1 hogshead.
```

DRY MEASURE.

MENSURATION, continued,

CUBIC MEASURE.

1728 cubic inches = 1 cubic foot.
27 " feet = 1 " yard = 46,656 cu. in.
Note—A cubic foot contains 2200 cylindrical ins., 3300 spherical ins., or 6600 conical inches.

LIQUID MEASURES.

Giving approximate sizes of measures to contain given quantities of liquid.

	Diam. ins.	Height.		Diam. ins.	Height.
Gill	13/4	3	Gallon	7	6
Half pint	214	$3\frac{5}{8}$.	2 gallons	7	12
Pint	$3\frac{1}{2}$	3	8 - " .	14	12
Quart	$3\frac{1}{2}$	6	10 "	14	15

A cylinder 1 ft. in diameter and 1 ft. high contains

.02909 cubic yards.	2.524 U. S. dry pecks.
.7854 " feet.	20.196 U. S. dry quarts.
1357.1712 " inches.	40.392 U. S. dry pints.
.6311 U. S. dry bushels.	23.50 U.S. liquid quarts.
51876 H S	gallone = 48 96 lbs

SQUARE BOX MEASURE.

A	box	24	X	16	inches	square	and	28	inches	deep	contains	a barrel.
	. 6	24	X	16	66	-66	66	14	6.6	46	66	1/2. 66
	6.6	16	X	1634	.66	66.	. 66	8	6.6	6.6	. 66	1 bushel.
	6.6	12	X	111/4	66	6.6	6.6	. 8	6.6	6.4	6.6	1/2 66
	66	81/4	X	81/4	66	6.6	_ 66	8	6.6	.66	6.6	1 peck.
	66	81/2	X	81/4	66	6.6	46	4	6.6	6.6	6.6	1 gallon.
	6.6	81/4	X	41/8	6.6	44	6.6	4	6.6	4.4	6.6	1/2
	6.6	4	X	11/1	66	6.6	66	4	6.6	4.6	44	Louart

MISCELLANEOUS.

A CUBIC FOOT is Equal to

1728 cubic inches. .037037 cubic yard. 7.48053 liquid gallons (of 231 cu. ins.) 6.42851 U. S. dry gallons. .803564 U. S. bushels (of 2150.42 cu. in.) 3.31426 U. S. pecks. 3300.23 spherical inches. .23748 U.S. liquid barrel of 311/2 gals. 62.425 pounds of pure water (approximately 621/3 lbs.)

A CUBIC YARD is Equal to

27 cubic feet. 46,656 cubic inches. 21,69623 U. S. bushels (struck.) 201,974 U. S. gallons.

A GALLON is Equal to

231 cubic inches. 8.3216 pounds of water (by some authorities 8.3388) 81/3 lbs. .13368 cubic foot. A cylinder 7 inches in diam, and 6 inches high. A cube 6.1358 inches on a side.

MENSURATION, continued.

OF SQUARES, RECTANGLES AND CUBES.

The area of any parallelogram = length \times width. Area of square = square of one side.

The side of a square equal = diameter \times .88623, or in area to a given circle = circumference \times .2821.

To find side of inscribed square \times diameter by .7071.

Area of inscribed square = square of radius $\times 2$.

The side of a square \times 1.128 = diameter of an equal circle.

Side of square = square root of its area.

Side of square = square root of $\frac{1}{2}$ the square of the diagonal. The side of a square = the diagonal \times .707107 or \div 1.41421 Side of square \times 1.51967=side of equilateral triangle of equal area. The diagonal = the sq. root of twice the square of a side. The diagonal = side \times 1.41421 The length of a rectangle = area \div breadth. The 4 angles of any quadrilateral = 4 right angles.

Any two adjacent angles of any parallelogram = 2 right angles. The contents of a cube = length \times breadth \times height. The length of the side of a cube = the cube root of its contents.

OF TRIANGLES AND POLYGONS.

= $\begin{cases} base \times \frac{1}{2} & the altitude, or \\ altitude \times \frac{1}{2} & the base. \end{cases}$ The area of any triangle

= { half the product of the 2 sides and the natural sine of the contained angle. The "

The complement of an angle = its defect from a right angle (90°) two right angles (180°) supplement

The 3 angles of any triangle = 2 right angles. Area of trapezoid = altitude \times ½ the sum of the parallel sides. Area of trapezium = divide into 2 triangles and and 3 find their area.

Area of equilateral triangle = square of a side \times .433.

sum of its sides × perpendicular from center to one side and product Area of any regular polygon = -(divided by 2.

OF CIRCLES.

DIAMETER \times 3.14159 = circumference. (commonly, 3.1416)

 \times .88623 = side of equal square. \times .7071 = " " inscribed square. squared \times .7854 = area of circle. 46-

= circumference $\div 3.14159 (3.1416)$.

= side of equal square ÷ .8862. = " inscribed square ÷ .7071.

 $= \sqrt{\text{area}} \div .7854.$

= circumference \times 0.3183. = \times 7 and product \div 22.

 $=1.12837 \times \text{square root of the area.}$ = as 355 is to 113 so is circumference to diameter.

 $CIRCUMFERENCE \div 3.1416 = diameter.$

= diameter \times 3.1416.

46 $= 3.5446 \times \text{square root of area}.$

= as 113 is to 355 so is diameter to circumference.

 $AREA = square of diameter \times .7854.$ " = "circumference \times .07958."

= $\frac{1}{2}$ diameter $\times \frac{1}{2}$ circumference. = square of radius \times 3.1416.

 $=\begin{cases} areas \ of \ circles \ are \ to \ each \ other \ as \ the \ squares \ of \ their \ diameters. \end{cases}$

Continued on next page.

MERSURATION, continued.

Doubling the diameter of a circle increases the area 4 times.

To find diameter of cicle = in area to a given square \(\square \) \(\times \) side of given square by 1.12837.

Diameter of circle of equal priphery as square = side \times 1.2732. Side of square of equal periphery as circle = diameter \times .7854.

Diameter \times 1.3468 = side of an equilateral triangle of equal area.

Length of arc = number of degrees \times .017453 \times radius.

Area of sector of circle = length of arc × ½ radius.

Surface of cylinder equals circumf. X length + area of two ends.

The square of the diam. of a sphere \times 3.1416 = its surface.

elipse \times 3.1416 = its circumference.

The product of the two axes of an eclipse \times .7854 = its area. The sq. rt. of ½ the sum of the squares of the two diameters of an

USEFUL MULTIPLIERS.

Note: The converse is obtained by dividing instead of by multiplying.

Lineal feet .00019miles. _.000568 yards Square inches .00695 square feet. feet .111 yards. 66 .0002067 yards acres. .4840 Acres = square yards. Cubic inches .00058 cubic feet. = feet .03704 = yards. .00546Circular inches _ square feet. Cylindrical inches .0004546cubic .02909 feet yards. = Links .22 yards. .66 =feet. 1.5151 Feet = links. Square feet Width in chains 2.2957 -square links. = acres per mile. 7.48052Cubic feet U.S. gallons. = .004329 inches = 66 Cylindrical feet 5.874= inches .0034U.S. gallons U.S. " .133679 cubic feet. inches. Cubic feet .8036 U. S. bushels. cubic feet. 1.2446 U. S. bushels .00045 lbs. avoirdupois tons (2240 lbs.) _ lbs. avoir. Cu. ft. water 62.42562.37925 lbs. (according to Haswell.) 268.8 gallons of water = 1 ton.

35.88 cu. ft. " = 1" A column of water 12 inches high by 1 inch diameter = .341 lbs.

MISCELLANEOUS NOTES.

CORN AND HOGS.

A bushel of corn will make 10½ lbs. of pork, gross. Then:

	cents		osts. bushel	Pork costs 1½ cents per pound						
17	6.6	66	66	2	- 66	- 66	- 66			
25	6.6	66 "	6.6	3	6.6	66	66			
35	+6	6.6	61	4	6.6	66	66			
42	6.6	6.6	6.6	5	66	6.6	66			
50	6.6	66	44	6	6.6	6.6	6.6			

Jones & Laughlin.

TABLE NO. 54.

TABLE OF TIME.

News.

Time.		Days.	Hours.	Minutes.	Seconds.
1 minute 1 hour 1 day 1 week 1 civil month 1 month 2 months 3 " 6 " 1 year 1 year 1 year	= 5	2 weeks		$48 \text{ m.}, 49\frac{7}{10} \text{ sec.}$	60 3 600 86 400 604 800 2 419 200 2 592 000 2 678 400 5 184 000 7 776 000 15 552 000 31 556 829
1 year ·			of 28 or 29 d of 30 days. " 31		

"A Solar Day is the time between two successive solar noons, or transits (passages) of the sun over the meridian of a place. These intervals are not of equal length all the year around. The average length of all the solar days is called the **Mean Solar Day**; and is the same as the common civil day of 24 hours of clock time. Civil noon is at 12 o'clock; but solar, or apparent noon, may be about 14½ min. before; or 16¼ min. after 12 correct clock time. **A Siderial Day** is the interval between two passages of the same star past the range of two fixed objects; and is the precise time required for one complete revolution of the earth on its axis. The sideral day never varies; but is always equal to 23 hours, 56 minutes, 4.09 sec., so that a star will on any night appear to set, or to pass the range of any two fixed objects, 3 min., 55.91 sec. earlier by the clock than it did on the night before, so that the number of sideral days in a civil year is 1 greater than that of the civil days.

An Astronomical Day degins at noon, and its hours are counted from 0 to 24. In companing it with the civil day, the last is supposed to

from 0 to 24. In comparing it with the civil day, the last is supposed to begin at the midnight before the noon at which the first began."

Example: Nov. 15 (civil day) begins at midnight; while Nov. 15 (astronomical day) does not begin until 12 hours later, i. e. at noon of Nov. 15. civil day.

⁹ A. M. of civil day = 21 o'clock of artronomical day.

TABLE NO. 55.

TABLES OF WAGES.

WAGES PER HOUR, AT DIFFERENT RATES PER DAY.

On basis of 10 hours to the day.

New.

TIME.	WAGES PER DAY.										
	1.50	1.75	2.00	2.25	2.50	3.00	4.25				
½ hour.	.07	.08	.10	.11	.12	.15	.21				
1 "	.15	.17	.20	.22	.25	.30 .60	.42				
	$.30 \\ .45$.35 .52	.60	.45	.50 .75	.90	1.27				
3 " 5 "	,60	.70	.80	.90	1.00	1.20	1.70				
5 "	.75	.87	1.00	1.12	1.25	1.50	2.12				
0	.90	1.05	1.20	1.35	1.50	1.80	$\frac{2.55}{2.97}$				
8 66	$\frac{1.05}{1.20}$	$1.22 \\ 1.40$	$1.40 \\ 1.60$	$\frac{1.57}{1.80}$	$\begin{array}{c} 1.75 \\ 2.00 \end{array}$	$\begin{array}{c} 2.10 \\ 2.40 \end{array}$	3.40				
9 "	1.35	1.57	1.80	2.02	2.25	2.70	3.82				
7 9 1 Day. 2 4 6 7	1.50	1.75	2.00	2.25	2.50	3.00	4.25				
2 "	3.00	3.50	4.00	4.50	$\frac{5.00}{7.50}$	$\frac{6.00}{9.00}$	$8.50 \\ 12.75$				
1 "	$\frac{4.50}{6.00}$	5.25 7.00	$\begin{array}{c c} 6.00 \\ 8.00 \end{array}$	$\frac{6.75}{9.00}$	10.00	$\frac{9.00}{12.00}$	17.00				
5 "	7.50	8.75	10.00	11.25	12.50	15.00	21.25				
6 "	9.00	10.50	12.00	13.59	15.00	18.00	25.50				
	10.50	12.25	14.00	15.75	$17.50 \\ .62$	$21.00 \\ .76$	29.75 1.06				
1/4 " 3/4 "	$\begin{array}{c} \textbf{.38} \\ \textbf{1.12} \end{array}$	$\frac{.44}{1.31}$	1.50	$\begin{array}{c} \textbf{.56} \\ \textbf{1.68} \end{array}$	1.87	$\frac{.10}{2.25}$	3.18				

By combination of rates given, amounts per hour at other rates may be quickly found.—amounts at 2.25+1.59 equal amount at 3.75 etc.

WAGES PER DAY, AT DIFFERENT RATES PER MONTH, AND ON BASIS OF DIFFERENT NUMBER OF DAYS IN THE MONTH.

s in mo.	Rate per day, at following rates per month.												
Days the n	\$ 20	25	30	35	40	45	50	55	60	75	80	90	100
26 28	.77	.96	1.15	1.34 1.25			1.92 1.79	2.12 1.96	2.31 2.14	2.89 2.67	3.08	3.46	3.85
30 31	.67	.83	1.00	1.17	$\frac{1.33}{1.29}$	1.50	$\frac{1.67}{1.62}$	1.83 1.78	2.00 1.94	$\frac{2.50}{2.42}$	2.67	$\begin{bmatrix} 3.00 \\ 2.90 \end{bmatrix}$	3.33 3.23

It is the practice among most large mercantile conserns and corporations, and railway companies, to pay on the basis of 26 days to the month, that being the average number of working days. All government employees are paid on substantially the same basis.

WAGES PER HOUR, AT DIFFERENT RATES PER MONTH, AND ON BASIS OF 26 DAYS TO THE MONTH.

Time.		Rate per hour, at following rates per month.											
Time.	20	25	30	35	40	45	50	60	75	90			
1 hour.	.08	.10	.12	.14	.15	.17	.19	.23	.28	.34			
2 hours	.16	.19	23	.28	.31	.34	.38	.46	.57	.69			
3 "	. 23	. 29	.35	.42	46	.51	.57	.69	.86	1:03			
4 66	.31	.38	.46	.55	.61	.69	.76	.92	1.15	1.38			
5 "	.39	.48	.58	. 69	.77	.86	.96	1.15	1.44	1.73			
6 "	.46	.57	.69		.92	1.03	1.15	1.38	1.72	2.06			
7 66	.54	.67	.81	.95	1.07	1.21	1.34	1.61	2.01	2.42			
8 "	.62	.76			1.23	1.38	1.53	1.84	2.30	2.76			
9 .6	.69	.86	1.04		1.38	1.55	1.72	2.07	2.59	3.11			
1 day.	.77	.96		1.34	1.54	1.73	1.92	2.31	2.89	3.46			

AREA OF FIELDS.

TABLE NO. 56.

SHOWING SIZES OF A ONE ACRE FIELD, THE WIDTH ADVANCING BY 5 FEET. New.

Wide	Long	Wide	Long	Wide	Long	Wide	Long	Wide	Long
ft. 1	43560	45	968	90	484	135	322.7	180	242
5	8712	50	971.2	95	458.5	-140	311.1	185	235.5
10	4356	55 ·	792	100	435.6	145	300.4	190	229.3
15	2904	60	726	105	414.9	150	290.4	195	223.4
20	2178	65	670:2	110	396	155	281	200	217.8
25	1742.5	70	622.2	115	378.8	160	272.3	205	212.5
30	1452	75	580.8	120	363	165	264	208.71	208.71
35	1244.6	80	544.5	125	348.5	170	256.3	51	
40	1089	85	512.4	130	335.1	175	248.9	A squar	re acre.

This table is near enough for all practical purposes. If the *exact* size is required to a second decimal place, or the length corresponding to any width not given in the table, divide 43,560 (the number of sq. ft. in 1 acre) by the given width. Thus: what will be the length of a field of one acre the width being 183.7 ft.?

43,560÷183.7=237.12 ft. long.

In like manner obtain the area or the size of any rectangular field. Had it been desired to find the length of a field of 17 acres the width of which was to be 183.7 ft. then 43,560 would be multiplied by 17 and the product divided by the

given 'width.

If the length and breadth are given and the area is wanted divide the total area in square feet (the product of the length×by the breadth) by 43,560 and the answer will be in acres. In the above table the doubling of any *one* dimension doubles the area—1089 ft. long by 80 ft. wide would contain 2 acres; but doubling both dimensions increases the area 4 times—2178 long by 80 ft. wide=4 acres.

TABLE NO. 57.

SHOW	ING SQUARE FEET	IN DIFFERE	NT AREAS. New.
Acres.	Square feet of area.	Acres.	Square feet of area.
1/2	21 780	60	2 613 600
1	43 560	80	3 484 800
2	87 120	100	4 356 000
3	130 680	. 120.	5 227 200
4	174 240	16 0	6 969 600
5 .	217 800	240	10 454 400
6	261 360	320	13 939 200
7	304,920	480	20 908 800
8 -	348 480	640	27 878 400
9	392 040	800	. 34 848 000
10	435 600	960	41 817 600
20	871 200	1120	48 787 200
40	1 742 400	1280	55 756 800

AREA OF FIELDS, continued.

1 Acre		=				chains.
1 square	acre	=	208.71			ı a side.
1 " 1/2	4.4	=	147.581	6.6		
1 " 14	6.6	=	104.355	6.6	. 6	
1 circular	6.6	=	235.50	66		diameter.
1 " 1/2	6.6	=	166.52	. 66	66	* 6
1 11 1/4	66	=	117.75	6.6	6.6	6.6

AREA OF RAILWAY RIGHT OF WAY.

50	feet	wide	contains	.1148	acres	to	100 feet	of	length.
100	6.0	6.6	60	.2296	. 6	6.6	100 "	6.6	6.6
50	6.6	6.6	• 6	6.06	4.6	6.6	1 mile	6.	6.
100	66	6.6	6.6	12.12	6.0	6.6	1 "	6.6	4.4

If the field is of irregular form divide it up into smaller rectangular or triangular pieces, estimate the area of each in cu. ft., add these areas and divide the total by 43,560 to get the area in acres. The division may be made by platting the outline of the field on paper, then making the divisions desired, and taking the measurements of the parts from the scale of the drawing.

If the measurement has been made in chains and links point off 5 places from the right of the product obtained, to get the area. Example.—A field is 8 chains and 20 links wide and 10 chains and 45 links long—what is the area in

acres?

 $8.20\times10.45=8.56900$. (5 places being pointed off.) Multiply the 5 figures cut off (.56900 in this case) by 4 and again point off 5 figures, the remainder is roods; multiply the 5 figures cut off by 4 and again cut off 5 figures to get a remainder in rods or perches. In the above example 56900×4 =2.27600 and 27600×4 =1.10400. Therefore, above field equals 8 acres, 2 roods and 1.103 rods in area.

TABLE NO. 58.

Ft. apart	No.	Ft. apart	No.	Ft. apart	No.	Ft. apart	No.
1	43560	5	1742	9	- 538	16	171
$1\frac{1}{2}$	19360	51/2	1440	91/2	482	17	151
. 2	10890	6	1210	10	435	18	135
21/2	6969 4840	6½	1031 889	101/2	361	20	108 69
31/2	3556	71/2	775	12	$\frac{302}{258}$	25 30	48
4	2722	8 2	680	14	223	35	35
Ã1/2	9151	81/	609	45	102	40	97

NUMBER OF HILLS ON ONE ACRE.

Haswell.

PRISMOIDAL FORMULA.

A prismoid is a solid bounded by six plain surfaces only

two of which are parallel.

To find the contents of a prismoid, add the areas of the two parallel sides and four times the area of a section taken midway between and parallel to them, and multiply this sum by $\frac{1}{6}$ of the perpendicular distance between the parallel sides.

This formula is used in the calculation of quantities of excavation and embankment on railroads, canals, etc.

From Trautwine's "Civil Engineer's Pocket Book."

ANGLES.

Approximate Measurement of Angles.

(1) The four fingers of the hand, held at right angles to the arm and at arm's length from the eye, cover about 7 degrees. And an angle of 7° corresponds to about 12.2 feet in 100 feet; or to 36.6 feet in 100 yards; or to 645 feet in a mile.

(2) By means of a two-foot rule, either on a drawing or between distant objects in the field. If the inner edges of a common two-foot rule be opened to the extent shown in the column of inches, they will be inclined to each other at the angles shown in the column of angles. Since an opening of ½ inch (up to 19 inches or about 105°) corresponds to from about ½° to 1°, no great accuracy is to be expected, and beyond 105° still less; for the liability to error then increases very rapidly as the opening becomes greater. Thus, the last ½ inch corresponds to about 12°.

Angles for openings intermediate of those given may be calculated to the nearest minute or two, by simple proportion, up to 23 inches of opening, or

about 147°.

Table of Angles corresponding to openings of a 2-foot rule. (Original).

											Correct.
Ins.	Deg. min.	Ins.	Deg. min.	Ins.	Deg. min.	Ins.	Deg.min.	Ins.	Deg. min.	Ins.	Deg. min.
34	1 12	41/4	20 24	81/4	40 13	1234	61 23	1614	85 14	2014	115 5
1/	1 48 2 24	1/	21 21 37	1/2	40 51 41 29	1/	62 5 62 47	1/2	86 3 86 52	1/2	116 12 117 20
1/2	2 24 3 00	1/2	22 13	72	42 7	1/2	63 28	72	87 41	72	. 118 30
3/4	3 36	3/4	22 50	3/4	42 46	3/4	64 11	3/4	88 31	3/4	119 40
,	4 11	_	23 27	9	43 24 44 3	13	64 53	17	89 21 90 12	21	120 52 122 6
1	4 47 5 23	5	24 3 24 39	9	44 3	13	65 35 66 18	1.6	90 12 91 3	21	122 6 123 20
1/4	5 58	.1/4	25 16	3/4	45 21	1/4	67 1	3/4	91 54	3/4	124 :56
	6 34		25 53	1	45 59		67 44		92 46		125 54
1/2	7 10	1/2	26 30	1/2	46 38	1/2	68 28	1/2	93 38 94 31	1/2	127 14 128 35
3/4	7 46 8 22	3/4	27 7 27 44	3/4	47 17 47 56	3/4	69 12 69 55	3/4	95 24	3/4	129 59
74	8 58	74	28 21	74	48 35	74	70 38		96 17		131 25
2	9 34	6	28 58	10	49 15	14	71 22	18	97 11	22	132 53
	10 10		29 35	7/	49 54 50 34	1,	72 6	77.	98 5	1/	134 24 135 58
1/4	10 46 11 22	1/4	30 11 30 49	3/4	50 34 51 13	1/4	73 36	1/4	99, 00	1/4	137 35
3-6	11 58	1/2	31 26	3/2	51 53	1/2	74 21	1/2	100 51	3/2	139 16
	12 34		32 3		52 33		75 6		101 48		141 1
3/4	13 10	3/4	32 40	3/4	53 13 53	3/4	75 51 76 36	3/4	102 45 103 43	3/4	142 51 144 46
3	13 46 14 22	7	33 54	11	54 34	15	77 22	19	104 41	23	146 48
	14 58		34 33	**	55 14	10	78 8	10	105 40	-	148 58
1/4	15 34	1/4	35 10	1/4	55 55	1/4	78 54	1/4	106 39	1/4	151 17
77	16 10	1 1/	35 47 36 25	1/	56 35 57 16	1/	79 40 80 27	1 1/	107 40 108 41	1/2	153 48 156 34
1/2	16 46 17 22	1/2	36 25	1/2	57 57	3/2	81 14	1/2	109 43	72	159 43
3/4	17 59	3/4	37 41	3/4	58 38	3/4	82 2	3/4	110 46	34	163 27
	18 35		38 19		59 19		82 49		111 49	04	168. 18
4	19 12	8	38 57 39 35	12	60 00 60 41	16	83 37 84 26	20	112 53 113 58	24	180 00
	19 40		09 00		00 41		02 20	1	110 00	1	

(3) With the same table, using feet instead of inches. From any point measure 12 feet toward * each object, and place marks. Measure the distance in feet between these marks. Suppose the first column in the table to be feet instead of inches. Then opposite the distance in feet will be the angle.

 $\frac{1}{8}$ foot = 1.5 inches.

(4) Or, measure toward * each object 100 or any other number of fact, and place marks. Measure the distance in feet between the marks. Then

Sine of half = $\frac{half}{\text{the distance between the marks}}$ *From a table of sines find this angle and multiply it by 2.

WEIGHT OF A CUBIC FOOT OF SUBSTANCES.

Trautwine.

	110	autome.
Name of substances.	Average w	eight, lbs.
Aluminum		162
		150
" common, hard		. 125
" soft		100
Coal, Pennsylvania anthracite, solid		93
broken, loose		54
" moderately shaken		58
" heaped	\dots bushel \dots ((77 to 83)
" Bituminous, solid		84
" broken, loose		49
" broken, looseheaped, loose	.bushel(74)
Coke loose		23 to 32
" heaped bushel		35 to 42
Cement, American Hydraulic, Rosendale		56
" heaped bushel. Cement, American Hydraulic, Rosendale Louisville English " Portland		50
" English " Portland		90
Clay. loose Earth, common loam, dry, loose		63
Earth, common loam, dry, loose		76
" " moderately rammed		95
as som muu		108
Flint		162
Glass		157
Gneiss		168 170
Granite		
Gravel		90 to 106 58.7
Ice		450
" wrought		480
Lead		711
Lime, loose or in small lumps		53
D" struck	hushel [
Limestone and marble	_	168
" loose in fragments		96
loose, in fragments. Masonry of Granite or limestone, well dressed		165
" " mortar rubble		154
" "mortar rubble sandstone, well dressed		144
Mortar, hardened		103
Quartz		165
Salt, coarse		45
" fine		49
Sand, pure quartz, dry. loose		90 to 106
" well 8haken		99 to 117
" wet		118 to 130
Sandstone		151
Shales		162
Silver		655
Snow, freshly fallen		5 to 12 15 to 50
" moistened and compacted		490
Steel. Water, pure, 62.425 [Fuller], 62.37925 [Haswell] app	rovimately	621/3
water, pure, 62.425 [runer], 62.57925 [naswell] app	noximately	64.3
" sea		01.0
WOODS		
<u>A</u> sh		47
Boxwood		60
Cherry		42
Cork		16
Elm		35
Hemlock		25
Hickory		53
Maple	22 40 45	35
Oak, live59, white48, red or black Pine, white25 yellow35, southern	45	
r me, white25 yellow35, southern	10	

Green timber usually weighs from ½ to ½ more than dry.

TABLE NO. 59.

NAILS AND SPIKES.

Carnegie, Phipps & Co.

-	Standard Steel Wire Nails. Steel wire spikes. Com'n, iron na'ls											
	5	standa:	rd Ste	el Wire	e Nau	s.	Steel	wire s	spikes	Com	'n. iro	n na'ls
Siz	ze.	Long		No.	Diam	No. per lb	Long	Diam ins.	No. per lb	Size.	Long	No. per lb
2 3 4 5	d d d	1 in. 1½ " 1½ " 1¾ "	.0524 .0588 .0720 .0764	640 380	.0453 .0508 .0508 .0571	913 761	3 in. 3½ " 4 " 4½ "	.1620 .1819 .2043 .2294	41 30 23 17	2 d 3 d 4 d 5 d	1 in. 1½ " 1½ " 1¾ "	800 400 300 200
6 7 .8 9	d d d	2 " 2½ " 2½ " 2½ "	.0808 .0858 .0935 .0963	160 115	.0641 .0641 .0720 .0720	214	5 '' 5½ '' 6 '' 6½ ''	.2576 .2893 .2893 .2249	$13 \\ 11 \\ 10 \\ 7\frac{1}{2}$	6 d 7 d 8 d 9 d	2 " 2½ " 2½ " 2½ "	150 120 85 75
10 12 16 20	d d d	3 " 3½ " 3½ " 4 "	.1082 .1144 .1285 .1620	60 48	.0808 .0808 .0907 .1019	137 127 90 62	7 66 8 66 9 66	.2249 .3648 .3648	5	10 d 12 d 16 d 20 d	3 " 3½ " 3½ " 4 "	60 50 40 20
30 40 50 60	d d d	4½ " 5 " 5½ " 6 ·	.1819 .2043 .2294 .2576	17 13						30 d 40 d 50 d 60 d	4½ " 5 " 5½ " 6 "	16 14 11 8

TABLE NO. 60.

Number to a keg of 150 pounds.

WROUGHT SPIKES.

Trumber to a riog of the pounds.												
Length Ins.	in. No.	$ \begin{array}{c} \frac{5}{16} \text{ in.} \\ \text{No.} \end{array} $	³ in. No.	Length Ins.	¼ in. No.	$ \begin{array}{c} \frac{5}{16} \text{ in.} \\ \text{No.} \end{array} $	$ \begin{array}{c c} \frac{3}{8} \text{ in.} \\ \text{No.} \end{array} $	7 in. No.	l in. No.			
3 3½	2250 1890			7 - 8	1161	622 635	482 455	445 384	306 256			
4 - 4 1 3	1650 1464			. 1 0		573	424 391	300 270	$\begin{array}{c c} \cdot 240 \\ 222 \end{array}$			
5 [*]	1380 1292	930 868	742 570	11 12				249 236	203 180			

TABLE NO. 61. TABLE OF MANILLA ROPE.

Trautwine.

Carnegie. Phinns & Co.

Diam- Circum-	Wt.	Break	ing load.			Wt.		ng load.
eter ference r Ins. Inches.	per ft lbs.	Tons.	Lbs.	eter Inches.	Ins.	per ft lbs.	Tons.	Lbs.
$\begin{array}{c ccccc} .239 & \frac{3}{4} \\ .318 & 1 \\ .477 & 1\frac{1}{2} \\ .636 & 2 \\ .795 & 2\frac{1}{2} \\ .955 & 3 \\ 1.11 & 3\frac{1}{2} \\ \end{array}$.019 .033 .074 .132 .206 .297 .404	.35 .70 1.21 1.91 2.73	2 733 4 278	1.27 1.43 1.59 1.75 1.91 2.07 2.23	$ \begin{array}{c c} 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \\ 6\frac{1}{2} \\ 7 \end{array} $.528 .668 .825 .998 1.19 1.39 1.62	5.16 6.60 8.20 9.80 11.4 13.0 14.6	11 558 14 784 18 368 21 952 25 536 29 120 32 704

TABLE NO. 62.

WELL DIGGING.

1 cubi	Trautwine.				
Diameter in feet.	Cubic yds. for each foot of depth.	Diameter in feet.	Cu. yds. for each foot of depth.	Diameter in feet.	Cubic yards for each foot in depth.
TATESTER OF TATESTER OF TA	.0455 .0654 .0891 .1164 .1473 .1818 .2200 .2618 .3073	Sound 4 - Herende - Herende	.4091 .4654 .5254 .5890 .6563 .7272 .8018 .8799 .9617	7 12 9 12 9 12	1.136 1.229 1.325 1.425 1.636 1.862 2.102 2.356 2.625

For diameters twice as great as those given in the table, for the cu. yds. of digging, take out those opposite ½ of the greater diam., and × by 4. Thus, for the cu. yds. in each foot of a well 12 ft. in diam., take out the yds. for a well of 6 ft. diam. and × by 4....1.074×4=4.188=cu. yds. for a well of 12 feet diameter.

TABLE NO. 63.

CAPACITY OF CISTERNS IN GALLONS.

	For each 10 inches in depth. Haswell.												
Diam.	Gallons.	Diam.	Gallons.	Diam.	Gallons.	Diam.	Gallons.						
Feet. 2. 2.5 3. 3.5 4. 4.5	19.50 30.60 44.60 59.97 78.33 99.14	Feet. 5.5 6. 6.5 7. 7.5	122.40 148.10 176.25 206.85 239.88 275.40	Feet. 8. 8.5 9. 9.5 10.	313.33 353.72 396.56 461.40 489.60 592.40	Feet. 12 13 14 15 20 25	705.0 827.4 959.6 1101.6 1958.4 3059.9						

In this table the capacity being given for 10 inches it is but necessary to divide by 10 by moving the decimal point one place to the left, in order to get the capacity for 1 inch. Thus, the capacity for 6 ft. diam and 10 inches deep=176.25 gals., and for 1 inch deep it=17.625 gals. The capacity for any depths may be found by multiplying the capacity for 1 inch by the depths in inches. Example. How many gals. in a cistern 12 feet in diam. and 9 feet deep? 9 ft.=108 in. 70.5, gals. in one inch, ×108=7614 gals. Ans.

TABLE NO. 64.

CAPACITY OF CISTERNS IN BARRELS, OF 311 GALLONS. Leffel.

D	epth		Diameter in feet.												
in	feet.	5	6	7.	8	9	10	11	12	13	14				
	7 8 9 10 11 12	28.0 32.7 37.3 42.0 46.7 51.3 56.0	33.6 40.3 47.0 53.7 60.4 67.1 73.9 80.6 87.3	64.0 73.1 82.2 91.4 100.5 109.7	59.7 71.7 83.6 95.5 107.4 119.4 131.3 143.2	75.5 90.6 105.7 120.9 136.0 151.1 166.2 181.3	93.2 111.9 130.6 149.2 167.9 186.5 205.1 223.8	112.8 135.4 158.0 180.5 203.1 225.7 248.2 270.8	134.3 161.1 188.0 214.8 241.7 268.6 295.4 322.3	157.6 189.1 220.6 252.1 283.7 315.2 346.7 378.2	182.8 219.3 255.9 292.4 329.0 365.5 402.1 438.6				
			94.0		155.2 167.1	196.4 211.5	242.4 261.1	293.4 315.9	349.1 376.0	$\frac{409.7}{441.3}$	475.2 511.8				

A BARREL.

The standard wine barrel contains 31½ gals. of 231 cu. in. In Pennsylvania a wine bbl.=32 gals. The standard wine bbl. contains 4.211 cu. ft. A hogshead=63 gals. The average size of the barrel used for oil or vinegar is about 191/2 ins. diam. of head, 221/4 ins. diam. of bung, and 29 to 30 ins. long and contains from 48 to 52 gals, the contents being usually marked on the head.

In figuring on the barrel capacity of a cistern the size or volume of the barrel should be given or, in case of contract work, it should be specified. By reason of the size of the ordinary barrel being from 48 to 52 gals. it would, for convenience, be best to figure on the basis of 50 gals, to the bbl. The bbl. of 31½ gals., however, is the one commonly used.

MISCELLANEOUS.

Shingles. 1000 laid 4 inches to the weather will cover one square of 100 sq. ft. and 5 fbs. of nails will lay them. Lath. 1000 will cover 70 sq. yds. of surface and 11 fbs. of

nails will lay them.

Mortar. 8 bushels of lime, 16 of sand and 1 of hair will make mortar for 100 sq. yds, of surface.

Stone Wall. 1 cord of stone, 3 bushels of lime, and 1 cu. yd. of sand will lay 100 cu. ft. of wall.

Brick. 5 courses of brick will lay 1 foot high.

6 brick in a course will lay a flue 4 by 12 inches.

No. to sq. ft. of wall. Thickness of wall.

 $\frac{8 \text{ inches}}{12} = \frac{1}{12} \quad \text{brick} \dots \frac{14}{12}$ No allowance being made for mortar or extra thickness of brick. Brick 8 X 4 X 2 inches. 16 20

Flooring & Siding. Add to the area to be covered to allow

for lap. This is the lumberman's rule in selling. Hay. Get the number of cubic feet in the mow or stack;

then, for new hay, divide by about 270 to get tons; for old hay, divide by about 230 to get tons; and for dry clover divide by about 310 to get tons. The weights of different grasses, in the different stages of dryness or compression, vary so greatly that any rule for weight by volume must be so purely arbitrary as to be of but little value.

Corn. Get the cubic feet and divide by 21/4 to get bushels. Apples, Potatoes, & Grain in Bin. Get cu. ft. and x by 8, then point off 1 place for decimals to get contents in bushels—or—from cubic ft. deduct \(\frac{1}{5} \) and the remainder =bushels in bin. (bush.=1.24445 cu. ft.) Example.— 100 cu. ft. $\times 8 = 800$, pointed off=80 bush.—or— $100 - \frac{1}{5}$ (20) =80 bushels.

LUMBER TABLES.

TABLE NO. 65.

FEET, BOARD MEASURE, IN JOIST, SCANTLING AND TIMBER.

Length in feet.	10	12	14	16	18	20	22	24	26	28	30
Size in Inches.				FE	ET, BO	ARD M	EASUR	E.			
2 x x x x x x x x x x x x x x x x x x x	$\frac{6^2_3}{10}$	8 12	$\frac{9^{1}_{3}}{14}$	$\frac{10^{2}_{3}}{16}$	12 18	$\frac{13^{1}_{3}}{20}$	$\frac{14\frac{2}{3}}{22}$	16 24	$\frac{17\frac{1}{3}}{26}$	$\frac{18^{2}_{3}}{28}$	20 30
2 x 8	131	16	193	211	24	26%	291	32	343	371	40
2 × 10	163	20	231	$26\frac{2}{3}$	30	333	363	40	431	463	50
2 x 1 2	20	24	28	32	36	40	44	48	52	56	60
2 x 14	231	28	323	371	42	462	511	56	633	$65\frac{1}{3}$	70
3 x 4	10	12	14	16	18	20	22	24	26	28	30
3 x 6	15 20	18 24	$\begin{array}{c} 21 \\ 28 \end{array}$	$\frac{24}{32}$	27 36	30 40	33 44	36 48	39	42	45
3 × 10	25	30	35	40	45	50	55	60	52 65	56 70	60
3 x 12	30	36	42	48	54	60	66	72	78	84	75 90
3 x [4]	35	12	49	56	63	70	77	84	91	98	105
4 x 4	131	16	183	211	24	263	291	32	313	371	40
4 x 6	20	24	28	32	36	40	44	48	52	56	60
4 x 8	$26\frac{2}{3}$	32	371	423	48	531	58_{3}^{2}	64	$69\frac{1}{3}$	743	80
4 × 10	331	40	463	531	60	663	731	80	863	931	100
4 × 12	40	48	56	64 48	72 54	80 60	88 66	96	104	112	120
6 x 6	30 40	$\frac{36}{48}$	42 56	64	72	80	88	72 96	78 104	84 112	90
6×10	50	60	70	80	90	100	110	120	130	140	120 150
6×12	60	72	84	96	108	120	132	144	156	168	180
8 x 8	$53\frac{1}{3}$	64	742	851	96	1063	1171	128	138%	1491	160
8 x 10	663	80	93_{1}^{3}	$106\frac{2}{3}$	120	1331	$146\frac{2}{3}$	160	1731	1863	200
8 x 12	80	96	112	128	144	160	176	192	208	224	240
10x10	831	100	117	133	150	167	183	200	217	233	250
10x 12	100	120	140	160	180	200	220	240	260	280	300
12x 12	120 140	144 168	168 196	192 224	216 252	240 280	264 308	288 336	312 364	336	360
12x14	163^{1}_{3}	196	228 ₃	261 ¹ / ₃	294	326g	3591	392	30± 42±2	392 457§	420 490
14414	1003	1991	2203	2013	404	0203	0003	002	1213	4018	490

TABLE NO. 66.

FEET-ROARD MEASURE IN 1 INCH BOARDS

Manu

	1 12			D MILLION	0 1013, 11		II DOME	Do.	11010					
Width		Length in feet.												
in	8		12	1	16		20	1	24					
inches.		10		14	1	18		22						
4	2%	$3\frac{1}{3}$	4	$4\frac{2}{3}$	$5\frac{1}{3}$	6	$6\frac{2}{3}$	$7\frac{1}{3}$	8					
6	4	5	6	7	8	9	10	11	12					
8	51/3	$6\frac{2}{3}$	8	91/3	10%	12	131/3	142/3	16					
10	$6\frac{2}{3}$	81/3	10	11%	$13\frac{1}{3}$	15	$16\frac{2}{3}$	181/3	20					
12	8	10	12	14	16	18 .	20	22	24					
14	91/3	$11\frac{2}{3}$	14	$16\frac{1}{3}$	$18\frac{2}{3}$	21	231/3	25%	28					
16	$10\frac{2}{3}$	$13\frac{1}{3}$	16	18%	$21\frac{1}{3}$	24	$ 26\frac{2}{3} $	$29\frac{1}{3}$	32					
18	12	15	18	21	24	27	30	33	36					
_20	$113\frac{1}{3}$	$16\frac{2}{3}$	20	$23\frac{1}{3}$	$26\frac{2}{3}$	30	331/3	36%	40					

RULE for estimating ft. b. m. in any piece of board or timber.—[A foot b. m. = 12 \times 12 inches by 1 inch thick, = 144 cubic inches.] Multiply the width by the thickness ÷ product by 12 and × quotient by length. Thus: A stick 8 by 10 inches by 10 feet equals $8 \times 10 = 80$ inches of sectional area which ÷ 12 = 6% ft. b. m. per foot of length; this × 10 = 66% ft.

^{3&}quot; by 12" by 10' equals $3 \times 12 = 36$, $36 \div 12 = 3$, $3 \times 10 = 30$ ft. B.M.

^{4&}quot; by 6" by 10' equals $4 \times 6 = 24$, $24 \div 12 = 2$, $2 \times 10 = 20$ ft. B.M.&c.

From Trantwine's "Civil Engineer's Pocket Book."

Lengths of a Degree of Longitude in different Latitudes, and at the level of the Sea. These lengths are in common land or statute miles, of 5280 ft. Since the figure of the earth has never been precisely ascertained, these are but close approximations. Intermediate ones may be found correctly by simple proportion. 1º of longitude corresponds to 4 mins of civil or clock time; 1 min of longitude to 4 secs of time.

Deg of Lat.	Miles.										
0	69.16	14	67.12	28	61.11	42	51.47	56	38.76	70	23.72
2	69.12	16	66.50	30	59.94	44	49.83	58	36.74	72	21.43
4	68.99	18	65.80	32	58.70	46	48.12	60	34.67	74	19.12
6	68.78	20	65.02	34	57.39	48	46.36	62	32.55	76	16.78
8	68.49	22	64.15	36	56.01	50	44.54	64	30.40	78	14.42
10	68.12	24	63.21	38	54.56	52	42.67	66	28.21	80	12.05
12	67.66	26	62.20	40	53.05	54	40.74	68	25.98	82	9.66

		Incl	hes re	duce	ed to	Deci	mals e	of a	Foot.	No	errors.
Ins.	Foot.	Ins.	Foot.	Ins.	Foot.	Ins.	Foot.	Ins.	Foot.	Ins.	Foot.
0	.0000	2	.1667	4	.8359	6	.5000	8	.6667 .6693	10	.8333
1-32 1-16	.0026		.1693	1	.8359 .8885		.5026 .5052		.6693 .6719		.8359
3-32	.0052		1745		1118		.5032		.6745		.8385 .8411
5-32	.0078	1/8	.1719 .1745 .1771 .1797	36	.3411 .3438	1/8	.5104	1.3%	.6771	36	.8438
5-32	.0130		.1797		-3464		.5130		.6797		.8464
3-16 7-32	.0156 .0182		.1823		.3190 .3516 .3542		.5156 .5182		.6823		.8490 .8516
1/4	.0208	1/4	.1875	1/4	.3542	34	.5208	1/4	.6849 .6875	1/4	.8542
9-32	.0234	/*	.1901	(2	-3568	/2	.5234	/3	.6901	14	.8568
5-16 11-32	.0260		.1927		.3591		.5260	1	.6927		.8594
3/4	.0286 .0313	3/8	.1953	. 3/8	.3620 .3646	3/8	.5286 .5313	3%	.6953 .6979	. 8/	.8620 .8646
13-32	.0339	78	.2005	. 78	.3672	78	-5339	79	.7005	3/8	.8672
7-16	.0365	4	.2031		.3698		.5365		.7031		8698
15-32	.0391		.2057	7.7	.3724		.5391	1	.7057		.8724
17-32	.0417 .0443 ,	1/2	.2083	3/2	.3750 .3776	36	.5417	3/2	.7083 .7109	1/2	.8724 .8750 .8776 .8802
9-16	.0469		.2135		.3802		.5469		7195	1.7	.8802
19-32	.0495 .0521		.2161 .2188	1	.3828		.5495	1	.7161		.8828 .8854
5/8 21-32	.0521	5/8	.2188	5/8	.3854 .3880	5/8	.5521 .5547	%	.7161 .7188 .7214 .7240 .7266 .7292 .7318	5/8	.8854
11-16	.0547 .0573		.2214		.3906		.5573	1	7940		.8880 .8906
23-32	.0599		.2266		.3932		•5599		.7266		.8932
25-32		3/4	.2232	3/4	.3958	3/4	-5625	3/4	.7292	3/4	.8958
25-32	.0651		.2318		.3984		•5651	i	.7318		.8984
13-16 27-32	.0677 .0793		.2344		.4010 .4036		.5677 .5703		.7344 .7370		.9010 .9036
3/6	.0729	1/8	.2396	. 1/8	.4063	7/8	.5729 .5755	1/8	.7396	76	.9063
29 32	.0755 .0781	-	.2422		.4089	·	.5755	1	7479	- "	.9089 .9115
15-16	.0781		.2448		.4115 .4141		.5781 .5807	1	.7448		.9115
31-32 1	.0807	3	.2474 .2500	5	.4167	.7	.5833	9	.7474 .7500	11	.9141 .9167
1-32	.0859		.2526		.4193		• 5 859	9	-7526		.9193 .9219
1-16	.0885	1	.2526 .2552		.4219 .4245		-5885		.7552 .7578		.9219
3-32	.0911	1/	.2578 .2604	1/8	.4240 4971	1/	.5911 .5938	1/	.7578	1/	.9245
5-32	.0964	1/8	.2630	78	.4271 .4297	1/8	-5964	1/6	.7630	1/8	.9271
3-16	.0990		.2656		.4323		.5990		.7656		.9323
7-32	.1016	7.6	.2682	7.	.4349		.6016		.7682	4	.9349
9-32	.1042 .1068	1/4	.2708 $.2734$	3/4	.4375 $.4401$	14	.6042 .6068	3/4	.7708 .7734	3/4	.9375 .9401
5-16	.1094		.2760		.4427		.6094		.7760		.9427
11-32	.1120		9786		.4453		.6120		.7786		.9453
3/8 13-32	.1146	3/8	.2813	3/8	.4479 .4505	3/8	.6146	3/8	.7813 .7839	3%	.9479 .9505
13-32	.1172		.2839 .2865		.4531		.6172 .6198		.7865		.9531
15-32	.1224	}	.2891		.4557		.6224		.7891		.9557
17-32	.1224 .1250 .1276	1/2	.2917	1/2	.4583	1/2	.6224 .6250 .6276	36	.7917 .7943	3/2	.9557 .9583
9-16	.1276		.2943		.4609		.6276 .6302		.7943 .7969		.9609 .9635
19-32	.1302		.2995		.4635 .4661		.6328		.7995		.9661
5/8	.1354	5/8	.3021	5/8	.4688	5/8	.6354	5/8	.8021	5/6	.9688
5/8 21-32	.1380		.3047		.4714		.6380		.8047		.9714
11-16 23-32	.1406 .1432		.3073 .3099		.4740 .4766		.6406 .6432		.8073 .8099		.9740 .9766
8/4	.1452	3/4	.3125	3/4	.4792	3/4	.6458	. 3/4	.8125	3/4	.9792
84 25-32	.1484	(*	.3151	74	.4818	/*	.6484 .6510		.8125 .8151	17	.9818
13-16	.1510		.3177		.4844		.6510		.8177		.9844
27-32	.1536 .1563	3/8	.3203	1/8	.4870 .4896	3/8	.6536 .6563	7/8	.8203 .8229	36	.9870 .9896
19 32	.1589	78	.3255	78	.4922	78	.6589	78	.8255	738	.9922
15-16	.1615		.3229 .3255 .3281 .3307		.4948 .4974		.6615 .6641		.8281		,9948
31-32	.1641]	.3307		.4974		.6641		.8307		.9974

TABLE NO. 68.

DECIMALS OF AN INCH FOR EACH 54th. INCH.

₹2ds.	64ths.	Decimal.	Fraction.	$\frac{1}{32}$ ds.	ths.	Decimal.	Fraction.
1 2	1 2 3 4	.015625 .03125 .046875 .0625	1–16	17 18	33 34 35 36	.515625 .53125 .546875 .5625	9–16
3· 4	5 6 7 8	.078125 .09375 .109375 .125	1-8	19 20	37 38 39 40	.578125 .59375 :609375 .625	5-8
5 6	9 10 11 12	.140625 .15625 .171875 .1875	3–16	21 22	41 42 43 44	.640625 .65625 .671875 .6875	11–16
7 8	13 14 15 16	.203125 .21875 .234375 .25	1-4	23 24	45 46 47 48	.703125 .71875 .734375 .75	3-4
9	17 18 19 20	.265625 .28125 .296875 .3125	5-16	25 26	49 50 51 52	.765625 .78125 .796875 .8125	13–16
11 12 ·	21 22 23 24	.328125 .34375 .359375 .375	3-8	27 28	53 54 55 56	.828125 .84375 .859375 .875	7-8
13 14	25 26 27 28	.390625 .40625 .421875 .4375	7–16	29 30	57 58 59 60	.890625 .90625 .921875 .9375	15–16
15 16	29 30 31 32	.453125 .46875 .484375 .5	1-2	31 32	61 62 63 64	.953125 .96875 .984375	

From Trautwine's "Civil Engineer's Pocket Book."

HYDRAULICS.

TABLE Of the square roots of the fifth powers of numbers. In this table the numbers and the roots are supposed to be in the same dimensions; that is, both in inches, or both in feet, &c. See the next table.

No.	Sq. Rt. of 5th Power.	No.	Sq. Rt. of 5th Power.	No.	Sq. Rt. of 5th Power.						
.25	.031	7.	129.64	17.5	1281.1	31.	5351	49	16807 -	76	50354
.5	.177	7.25	141,53	18.	1374 6	31.5	5569	50	17678	77	52027
.75	.485	7.5	154.05	18.5	1472.1	32,	5793	51	18575	78	53732
1.	1.	7.75	167.21	19.	1573.6	32.5	6022	52	19499	79.	55471
1.25	1.747	8.	181.02	19.5	1679.1	33.	6256	53	20450	80	57243
1.5	2.756	8.25	195.50	20.	1788.9	33.5	6496	54	21428	81	59049
1.75	4.051	8.5	210.64	20.5	1902.8	34,	6741	55	22434	82	60888
2.	5.657	8.75	226.48	21.	2020.9	34.5	6991	56	- 23468	83	62762
2.25	7.594	9.	243.	21.5	2143.4	35.	7247	57	24529	-84	64669
2.5	9.882	9.25	260.23	22.	2270.2	35.5	7509	58	25620	85	66611
2.75	12.541	9.5	. 278.17	22.5	2401.4	36.	7776	59	26738	86	68588
3.	15.588	9.75	296.83	23.	2537.	36.5	8049	60	27886	87	70599
3.25	19.042	10.	316.23	23.5	2677.1	37.	8327	61	29062	88	72646
3.5	22.918	10.5	357.2	24.	2821.8	37.5	8611	62	30268	89	74727
3.75	27.232	11.	401.3	24.5	2971.1	38.	8901	63	31503	- 90	76843
4.	32.	11.5	448.5	25.	3125.	38.5	9197	64	32768	91	78996
4.25	37.24	12.	498.8	25.5	3283.6	39.	9498	65	34063	92	81184
4.5	42.96	12.5	552.4	26.	3446.9	39.5	9806	66	35388	93	83408
4.75	49.17	13.	609.3	26.5	3615.1	40.	10119	67	36744	94	85668
5.	55.90	13.5	669.6	27.	3788.	41.	10764	68	38131	95	87965
5.25	63.15	14.	733.4	27.5	3965.8	42.	11432	69	39548	96	90298
5.5	70.94	14.5	800.6	28.	4148.5	43.	12125	70	40996	97	92668
5.75	79.28	15.	871.4	28.5	4336.2	44.	12842	71	42476	· 98 ·	95075
6.	88.18	15.5	945.9	29.	4528.9	45.	13584	72	43988	.99	97519
6.25	97.66	16.	1024.	29.5	4726.7	46.	14351	73	45531	100	100000
6.5	107.72	16.5	1105.9	30.	4929.5	47.	15144	.7±	47106		1
6.75	118.38	17.	1191.6	30.5	5138.	48.	15963	75	48714		1

Numbers, in inches. Square roots of fifth powers, in feet.

	Sq. Rt. of 5th Pow.		Sq. Rt. of 5th Pow.		Sq. Rt. of 5th Pow.		Sq. Rt. of 5th Pow.		Sq. Rt. of 5th Pow.
Ins.	Feet.	Ins.	Feet.	Ins.	Feet.	-Ins.	Feet.	Ins.	Feet.
34	.00006	334	.0547	12.	1.000	221/2	4.813	42	22.92
** ** ** **	.00017	4.	.0641	13.	1.108 1.221	23	5.086 5.365	43 44	24.31 25.74
1/6	.00062	1/4 1/2 3/4	.0827	1/2	1.342	24	- 5.657	45	27.23
% %	.00098	5.	.0971 .1120	14.	1.470 1.605	25 26	6.264 6.909	46 47	28.77 30.36
1.	.0020	1/4	.1271	15.	1.747	27	7.593	48	32.00
78 1/4	.0027	1/4 1/2 3/4	1428 .1590	16.	1.896 2.053	28 29	8.316 9.079	49 50	33.69 35.44
3/8	.0044	6.	.1768	1/2	2.217	30	9.882	51	37.25
16148915644	.0055 .0067	7.	.2160 .2599	17.	2.389 2.567	31 32	10.73 11.61	52 53	39.13 41.02
34	.0081	1/2	.3088	18.	2.756	33	12.54	54	42.96
2%	.0096 .0113	8.	.3628 .4228	19,	2.950 3.155	34 35	13.51 14.53	55 56	44.97 47.05
1/4	.0152	9.	.4871	. 1/2	3,365	36	15.59	57	49.17
1/2 ·	.0198 .0252	10.	.5577 .6339	20.	3.586 3.813	37 38	16.69 17.84	58 59	51.35 53.60
3.	.0312	1/2	.7162	21. 22	4.051	39	19.04	60	55.90
*	.0383 . 0459	11. %	.8043 .8990	22.	4.297 4.551	40 41	20.29 21.58	61	58.27

From Trautwine's "Civil Engineer's Pocket Book."

MENSURATION.

To find the length of a circular arc by the following table.

Knowing the rad of the circle, and the measure of the arc in deg, min, &c.

Sum = .2347856

And .2347856 \times 12.43 or rad = 2.918385 feet, the reqd length of arc.

LENGTHS OF CIRCULAR ARCS TO RAD 1.

No errors.

	No er								
Deg.	Length.	Deg.	Length.	Deg.	Length.	Min.	Length.	Sec.	Length.
1	.0174533	61	1.0646508	121	2.1118484	1	.0002909	1	.0000048
2	.0349066	62	1.0821041	122	2.1293017		.0005818	2	.0000097
2 3	.0523599	63	1.0995574	123	2.1467550	3	.0008727	3	.0000145
5	.0698132	64	1.1170107	124	2.1642083	4	.0011636	4	.0000194
5	.0872665	65	1.1344640	125	2.1816616	5 6 7 8	.0014544	5	.0000242
6 7 8	.1047198	66	1.1519173	126 127	2.1991149	6	.0017453	6	.0000291
7	.1221730 .1396263	67 68	1.1639706 1.1868239	127	2.2165682 2.2340214	0	.0020362	7 8	.0000339
9	.1570796	69	1.2042772	129	2.2514747	9	.0023271	9	.0000388
10	.1745329	70	1.2217305	130	2.2689280	10	.0029089	10	.0000485
11	.1919862	71	1.2391838	131	2.2863813	îi	.0031998	11	.0000533
12	.2094395	72	1.2566371	132	2.3038346	12	.0034907	12	.0000582
13	.2268928	73	1.2740904	133	2.3212879	13	.0037815	13	.0000630
14	.2443461	74	1.2915436	134	2.3387412	14	.0040724	14	.0000679
15	.2617994	75	1.3089969	135	2.3561945	15	.0043633	15 16	.0000727
16	.2792527	76	1.3264502 1.3439035	136 137	2.3736478 2.5911011	16 17	.0046542	17	.0000776
17 18	.2967060 .3141593	77 78	1.3613568	138	2.4085544	18	.0049451	18	.0000824
19	.3316126	79	1.3788101	139	2.4260077	19	.0055269	19	.0000873
20	.3490659	80	1.3962534	140	2.4434610	20	.0058178	20	.0000970
21	.3665191	81	1.4137167	141	2,4609142	21	.0061087	21	.0001018
22	.3839724	82	1.4311730	142	2.4783675	22	.0063995	22	.0001067
23	.4014237	83	1.4485233	143	2.4958208	23	.0066904	23	.0001115
24	.4188790	84	1.4660766	144	2.5132741	24	.0069813	24	.0001164
25	.4363323	85 86	1.4835299	145	2.5307274	25	.0072722	25 26	.0001212
26 27	.4537856 .4712389	87	1.5009832 1.5184364	146	2.5481807 2.5656340	26 27	.0075631	27	.0001261
28	.4886922	88	1.5358397	148	2.5830873	28	,0081449	28	.0001309
29	.5061455	89	1.5533433	149	2,6005406	29	.0084358	29	.0001331
30	.5235988	90	1.5707933	150	2.6179939	30	.0087266	30	.0001454
31	.5410521 -	91	1.5882493	-151	2.6354472	31	.0090175	31	.0001503
32	.5585054	92	1.6057029	152	2.6529005	32	.0093084	32	.0001551
33	.5759587	93	1.6231562	153	2.6703538	33	.0095993	33	.0001600
34 35	.5934119 .6108652	94 95	1.6406095	154	2.6878070	34 -	.0098902	34 35	.0001648
36	.6283185	96	1.6580628 1.6755161	155 156	2.7052603 2.7227136	36	.0101811	36	.0001697
37	.6457718	97	1.6929694	157	2.7401669	37	.0107629	37	.0001745
38	.6632251	98	1.7104227	158	2.7576202	38	.0110538	38	.0001842
39	.6806784	99	1.7278760	159	2.7750735	39	.0113446	39	.0001891
40	.6981317	100	1.7453293	160	2.7925268	40	.0116355	40	.0001939
41	.7155859	101	1.7627825	161	2.8099801	41	.0112264	41	.0001988
42	.7330383	102	1.7802358	162	2.8274334	42	.0122173	42	.0002036
43	.7504916 .7679449	103	1.7976391	163	2.8448867	43	.0125082	43	.0002085
45	.7853982	104	1.8151424 1.8325957	164 165	2.8623400 2.8797933	44 45	.0127991	44	.0002133
46	.8928515	106	1.8599499	166	2.8972466	46	.0133809	46	.0002182
47	.8203017	107	1.8375723	167	2.9146999	47	.0136717	47	.0002279
48	.8377530	108	1.8819556	168	2.9321531	48	.0139626	48	.0002327
49	.8552113	109	1.9024089	169	2.9496064	49	.0142535	49	.0002376
50	.8726546	110	1.9198622	170	2.9670597	50	.0145444	50	.0002424
51	.8901179	111	1.9373135	171	2.9845130	51	.0148353	51	.0002473
52 53	.9075712 .9250215	112	1.9547688	172	3.0019663	52	.0151262	52	.0002521
54	.9121778	113	1.9896753	178	3.0194196 3.0368729	53 54	.0154171	53 54	.0002570
55	.9599311	115	2,0071286	175	3:0543263	55	.0159989	55	.0002618
56	.9773844	116	2,0245819	176	3.0717795	56	.0162897	56	.0002715
57	.9949377	117	2.0429352	177	3,0892328	57	0165806	57	.0002763
58	1.0122910	118	2,0594885	178	3.4046861	58	.0168715	58	.0002812
59 60	1.0297443	119	2.0769418	179	3.1241394	59	.0171624	59	.0002860
D17	1.0471976	120	2.0943951	180	3 1415927	60	.0174533	60 1	.0002909

EXPLAINATION OF TABLES OF CIRCLES.

It will be noticed that there are three tables of circles.

FIRST —Table giving diameters in units and EIGHTHS.

SECOND — " " " " TENTHS

THIRD — " " " " TWELFTHS.

The diameter in all cases extending to 100.

The following rules with reference to the table giving the diameters in TENTHS will also be of value.

To compute the area or circumference of a diameter greater than 100 and less than 1001:

Rule—Take out the area or circumference from the table as though the number had one decimal, and move the decimal point two places to the right for area and one place for the circumference.

Example—Wanted the area and circumference of 567. The tabular area for 56.7 is 2524.9687, and circumference 178.1283. Therefore area for 567=252496.87 and circumf.=1781.283.

To comptue the area or circumference of a diameter greater than 1000.

Rule—Divide by a factor 2, 3, 4, 5, etc., if practicable, that will leave a quotient to be found in the table; then multiply the tabular *area* of the quotient by the *square* of the factor, to get required area; and the tabular circumference by the factor to get the required circumference.

Example—Wanted the area and circumference of 2109. Dividing by 3 the quotient is 703, for which the area is 388,150.84 and the circumference 2208.54. Therefore area of $2109 = 388150.84 \times 9$ (9 = square of 3) = 3493357.56, and the circumference = $2208.54 \times 3 = 6625.62$.

The following rules with reference to table giving the diameters in EIGHTHS will also be found of value.

If the required diameter is not in the table, separate it and take the circumference of each and add them.

Example—Wanted the circumference of $25\frac{2}{3}\frac{1}{2}$ inches. Circumference of 25 in.=78.5398 and of $\frac{2}{3}\frac{1}{3}$ =2.06167; adding these we get 80.60147 the required circumference. This process will not answer for the area, however. In case the area is wanted, reduce the given diameter to a decimal and multiply this by itself and the product by .7854 (area=square of diameter×.7854). Reduce to a decimal of a foot or of an inch by use of tables 67 and 68. See AREA P. 152.

Where the diameter contains more than one decimal, or where it contains fractions of an inch, see small tables following the tables giving diameters in TENTHS & TWELFTHS respectively, on pages 177 and 184.

See rules on page 152 for calculating diameters, circumferences, or areas, or the sides of equal squares, without the

use of tables.

CIRCLES.

TABLE 1 OF CIRCLES. Diameters in units and eighths, &c.

Circumferences or areas intermediate of those in this table, may be found by simple arithmetical proportion.

pro arritmonour proportion.											
						D:	g:e		٦.	G: 1	
Diam.	Circumf.	Area.	Diam.	Circumif.	Area.	Diam.	Circumf.	Area.	Diam.	Circumf.	Area,
2											
1-64 1-32	.049037	.00019	$\frac{3}{9-16}$	10.9956	9.6211	101/8	31.8086	80.516	1914	60.4757	291.04
1-32	.098175	.00077		11.1919	9.9678	1/4	32.2013	82.516	3/8	60.8684	294.83
3-64 1-16	.147262	.00173	11-16	11.3883 11.5846	10.321 10.680	% 12	32.5940 32.9867	84.541	72 5/	61.2611 61.6538	298.65 302.49
3-32	.294524	.00690	.34	11.7810 11.9773 12.1737	11.045	1/4 3/8 1/2 5/8 3/4 1/8	33.3794	88.664	3/8 1/2 5/8 3/4 1/8	62.0465	306.35
3/8 5-32	.392699	.01227	. 13-16	11.9773	11.416	3/4	33.3794 33.7721 34.1648	90.763	1/8	62.4392	310.24
5-32	.490874 589049	.01917	15-16	12.1737	11.045 11.416 11.793 12.177	11 78	34.1648	92.886 95.033	20.	62.8319 63.2246	314.16 318.10
3-16 7-32	.687223	.03758	4. 1.16	12.5334	12.566	11. 11. 18. 14. 14. 14. 14. 14. 14. 14. 14. 15. 16. 16. 16. 16. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	34.9502	97,205	1/8 1/4 3/8 1/6	63.6173	322.06
9.32	.785398	.04.00)	1-16		12.962	14	35.3429	97.205 99.402	3/8	64 0100	326.05
9.32	.883573	.06213	3-16	12 9531	19,364	78	35.7356 36.1283	101.62	36 - 57 -	64.4026	330.06
5-16 11-32	.981748 1.07992	.07870	3-10	13.1554 13.3518 13.5481 13.7445 13.9493	13.772 14.186	. 72	36.5210	103.87 106.14	5/8 3/4 7/8	64.4026 64.7953 65.1880 65.5807 65.9734 66.3661	334.10 338.16
3/8 13-32	1.17810	.09281 .11045 .12932 .15033	$5 \cdot 16$	13.5481	14.607 15.033	3.4	36.5210 36.9137 37.3064 37.6991	108.43 110.75	1/8	65.5807	342.25 346.36
13-32	1.17810 1.27627 1.37445 1.47262	.12932	7-16	13.7445	15.033	7/5	37.3061	110.75	21.	65.9734	346.36
7-16 1 5-32	1.37440	.17257	1-16	13 9105	15.466 15.904	12.	38.0918	113.10	1/8	66.7588	350.50 354.66
1/2	1.57080	.19635	9-16	14.3333	16.349	14	33.4845	117.86	3/8	66.7588 67.1515	358.84
17-32	1.66897	.22163	11-16	14.5233 1	16.349 16.800	3/8	38.8772	120.28	1/2	67.5442	363.05
9-16 19-32	1.76715 1.86532	.21850	11-16	14.7262 14.9226	17.257	½ 5/	39 2699 39 ceac	122.72 125. 19	1/8 1/4 3/8 1/2 5/8 3/4	67.9369	367.28
5%	1.96350	.3033)	13-15	15.118)	17.721 18.190	78 3/4	40.0553	127.68	74	68.7223	371.5± 375.83
21-32	2.06167	33391	15-16	15.118) 15.3153	18.665	1/8 1/4 3/8 1/2 5/8 3/4 1/8	39.6626 40.0553 40.4480 40.8407	127.68 130.19	22.	68.3296 68.7223 69.1150	380.13
11-16	2.15984	.37122	15-16	15.5116	19.147	13,	40.8407	132.73	1/8	69.5077	384.46
23-32	2.25802 2.35619	.37122 .40574 .44173	5 .16	15.5116 15.7033 15.3013	19.635 20.129	13. 18. 14. 18. 14. 14.	41.2334 41.6261	135.30 137.89	1/8 1/4 3/8 1/2 5/8 - 3/4	69.9004	388.82 393.20
34 25-32	2.45437	.47937	1/8 3-16	16.1007	20.629	3/8	42.0188	140.50	1/2	70.2931 70.6858	397.61
13-16	2.55254	.51840	3-18	16.2970 16.4934	21.135	1/2	42.4115	140.50 143.14 145.80	5/8	71.0785	402.04
27-32	2.65072	.55914 .60132	5:16	16.4934	21.648	% 3/	42.8042 43.1969	145.80	½ %	71.4712	406.49 410.97
29-32	2.74839 2.84707	.64504	3%	16.6897 16.8861	22.691	74 7/ ₆	43.5896	151.20	23.	72.2566	415.48
15-16	2.94524	.69029	7-16	17.0324	22.166 22.691 23.221 23.758	14.	43.5896 43.9823	148.49 151.20 153.94	3/8	71.0785 71.4712 71.8639 72.2566 72.6493	420.00
31-32	3.04342 3.14159	.73705 .78540	9-16	17.2788 17.4751	23,758	1/8	44.3750 44.7677	156.70	1/4	73.0420 73.4347	424.56 429.13
1-16	3.33794	.88661	5/6	17.6715	24.301 24.850	1/8- 1/4 3/8 1/2 5/8 3/4	45.1604	159.48 162.30	1/8 1/4 3/8 1/2	73.8274	433.74
3-16	3.53429	.99402	11-16	17.8678	25.406	1/2	45.5531	165.13	5/8	74.2201	438.36
3-16	3.73064	1.1075	13.16	18.0642	25.967	5/8	45.9458	167.99	5/8 3/4 7/8	74.6128	443.01
5-16	3.92699 4.12334 4 31969	1.2272 1.3530	13.10	18.2605 18.4569	26.535 27.109	7/8	46.3385 46.7312 47.1239 47.5166	170.87	24.	75.0055 75.3982 75.7909 76.1836	447.69
3/8	4 31969	1.4849	15.16	18.6532	27.688 28.274	15. 1/8 1/4 3/8 1/2 5/8 3/4 1/6.	47.1239	173.78 176.71	1/8	75.7909	452.39 457.11
7 -16	4.51604 4.71239 4.90874	1.6230	16.	18.8496 19.2423	28.274	1/8	47.5166	1119.01	1/8 1/4 3/8 1/2 5/8 3/4	76.1836	461.86
9-16	4.71239	1.7671	1/8 1/4 3/8 1/2 1/2 1/8 3/4	19.2±23	29.465 30.680	3/4	47.9093 48.3020	182.65 185.66	3/8 1/2	76.5763 76.9690	466.64
5/8	5.10509	2.0739	3/8	20.0277	31.919	1/2	48.6947	188.69	5/8	77.3617	476.26
11-16	5.30144	2.2365	. 1/2	20.4204	33.183	5/8	49.0874	188.69 191.75	3/4	77.7544 78.1471	481.11
13-16	5.49779 5.69414	2.4053 2.5802	78 3/	20.8131	34.472	% 7/	49,4801	194.83 197.93 201.06	25.	78,1471	485.93
	5.89049	2.7612	74	21,2058 21,5984	37.122	16.	50.2655	201.06	1/6	78.9325	490.87 495.79 500.74
15-16	6.08684	2.9483	7.	21.9911	34.472 35.785 37.122 38.485	1/8 1/4	50.6582	204.22 207.39	1/8 1/4	79.3252	500.74
1-16	6.28319 6.47953	3.1416 3.3410	1/8	22.3839 22.7765	39.871 41.282 42.718	1/4		207.39	3/8 1/2 5/8 3/4	78.5398 78.9325 79.3252 79.7179 80.1106	505.71 510.71
1-10	6.67588	3.5466	3/4	23.1692	42.718	1/2	51.4436 51.8363 52.2290	210.60 213.82	5/9	6606.00	515.72
3-16	6.87223	3.7583	1/2	23.5619	44.179	5/8	52.2290	213.82 217 08	3/4	80.8960	520.77
5·16	7.06858	3.9761 4.2000	1/4 3/8 1/2 5/8 3/4	23,9546	45 661	3/8 1/2 5/8 3/4 17. 1/8 1/4 3/8 1/2 5/8 3/4	52.6217	220.35	26.	81.2887 81.6814	525.84
34	7.46128	4.4301	7/8	21.3473 24.7400 25.1327	47.173 48.707	17.	53.0144 53.4071	223.65 226.98	25.	82.0741	536.05
3/8 7-16	7.65763	4.6664	8.	25.1327	48.707 50.265 51.849	1/8	53.4071 53.7998 54.1925	230.33	1/4	82.0741 82.4668	536.05 541.19
9-16	7.85398 8.05033	4.9087 5.1572	1/8	25.5254 25 9181	51.849	1/4	54.1925	233.71	1/4 3/8 1/2 5/8 3/4	82.8595	546.35
5/6	8.24668	5.4119	3/4	26.3108	53.456 55.088	78 16	54.5852 54.9779	237.10 240.53	5%	83.2522 83.6449	551.55 556.76
11-16	8.44303	5.6727	1/2	26 7035	55.088 56.745	5/8	55,3706	243.98	3%	83.6449 84.0376	562.00
13-16	8,63938	5.9396	1/8 1/4 3/8 1/2 5/8 3/4 7/8	27.0962 27.4889 27.8816	58.426	3/4	55.7633 56.1560	247.45	27. 1/8	84.4303	567.27
		6.2126	1/4 V	27.8816	60.132	18.	56.5487	250.95	1/	84.8230 85.2157 85.6084	572.56 577.87
15-16	9 99843	6.7771 7.0686	19.	28.2743 28.6670	61.862 63.617	1/8	56.5487 56.9414	254.47 258.02	1/4	85.6084	577.87 583.21
3.	9.42478	7.0686	1/8	28.6670	65.397	1/8 1/4 3/8 1/6	57.3341	261.59	3/8 1/6	86.0011	588.57
1-16	9.62113	7.3662 7.6699	3/4	29.0597 29.4524	67.201	9/8 1/6	57.7268 58.1195	265.18 268.80	5/2	86.3938	593.96 599.37
3-16	10.0138	7.9798	3/2	29.8451	.70.882	5/8	58.5122	272.45	5/8 3/4	86.7865 87.1792	604.31
1/4	10.2102 10.4065	8.2958	5/8	30.2378	72,760	5/8 3/4 3/8	58.9049	276.12	7/8	87.5719	610.27
5-16	10.4065	8.6179 8.9462	14 3/8 1/2 9/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	30.6305 31.0232	74 662 76.589	19. 18	59.2976 59.6903	279.81 283.53	28.	87.9646 88.3573	615.75 621.26
7-16	10.6029 • 10.7992	9.2806	10. 78	31.4159	78.540	3/9	60.0830	287.27	1/8 1/4	88.7500	626.80

170 TABLE NO. 71—CON.

From Trautwine's "Civil Engineer's Pocket Book."

CIRCLES.

TABLE 1 OF CIRCLES—(Continued). Diameters in units and eighths, &c.

		Dia	met	ers in	unit	s an	a eign	iths,	ac.		
Diam.	Ctrcumf.	Area.	Diam.	Circumf.	Area.	Diam.	Circumf.	Area.	Diam.	Circumf.	Area.
283/8 1/2 5/6 3/4	89.1427	632.36	38.	119.381	1134.1	475%	149.618	1781.4	571/4 3/8 1/2 5/8 3/4 1/8	179.856	2574.2
1/2	89.5354 89.9281 90.3208 90.7135	637.94 643.55 649.18	1/8 1/4 3/8 1/2 5/8 3/4	119.773 120.166 120.559 120.951 121.344 121.737 122.129 122.522	1141.6 1149.1 1156.6	475% 34 578	150.011 150.404 150.796 151.189 151.582 151.975 152.760 153.153 153.545 153.938 154.723 155.116 155.509 155.902 156.294 156.687	1790.8	3/8	180.249 180.642 181.034	2574.2 2585.4
3/4	90.3208	649.18	· ½4	120.166	1149.1	48	150.404	1800.1 1809.6	5/2 5/6	181.034	2596.7 2608.0
1/8	90.7135	654.84 660.52	1/2	120.951	1164.2	1/8	151.189	18100	34	181.427	2619.4 2630.7
del .	91.1062	660.52	5/8	121.344	1171.7	14	151.582	1828.5	7/8	181.820	2630.7
78 1/4	91.4989 91.8916	671.96	% %	121.737	1186.9	% 16	152 367	1837.9	58.	182.212	2642.1
1/8 1/4 3/8 1/2 5/8 3/4	92.2843 92.6770	666.23 671.96 677.71 683.49	39.	122.522	1156.6 1164.2 1171.7 1179.3 1186.9 1194.6	1/8 1/4 3/8 1/6 5/8 3/4 7/8	152.760	1828.5 1837.9 1847.5 1857.0	58. 1/8 1/8 1/2 1/8 1/2 1/8 1/2 1/8 1/2 1/8 1/8	181.820 182.212 182.605 182.998	2642.1 2653.5 2664.9
1/2		683.49 689.30	1/8	122.915 123.308	1202.3 1210.0	34	153.153	1866.5 1876.1 1885.7	3/8	183.390	2676.4 2687.8 2699.3
78 3/4	93.4624	695.13	3/4	123.508	1217.7	49.	153.938	1885.7	72 56	184.176	2699.3
1/8	93.8551	700.98	1/2	123.700 124.093 124.486	1225.4 1233.2	1/8	154.331	1895.4 1905.0 1914.7	34	183.390 183.783 184.176 184.569 184.961	2710.9
30.	94.2478	706.86	5/8	124.486 124.878	1233.2 1241.0	3/4	154.723	1905.0	50 78	184.961 185.354	2722.4
14	93.0697 93.4624 93.8551 94.2478 94.6405 95.0332 95.4259 95.8186 96.2113 96.6040 96.9967	695.13 700.98 706.86 712.76 718.69	1/8 1/4 3/8 1/2 5/6 3/4 7/8 40.	125.271	1248.8	1/8 49. 1/8 1/4 3/8 1/2 5/8 3/4 1/8 50.	155.509	1924.4	1/8	185.747	2710.9 2722.4 2734.0 2745.6
3/8	95.4259	724.64 730.62	40.	125.664	1956 G	5/8	155.902	1924.4 1934.2	14	185.747 186.139	2757.2
5/2	95,8186	730.62 736.62	1/8	126.056 126.449	1264.5	%4 7/	156.294	1943.9 1953.7	3/8 1/2	186.532 186.925	2768.8
3/4	96.6040	742.61 748.69	3.8 1.8	126.842	1264.5 1272.4 1280.3 1288.2	50.	157.080	1963.5	5/8	187.317 187.710 188.103	2757.2 2768.8 2780.5 2792.2 2803.9
76		748.69	1/2	126.842 127.235	1288.2	1/8	157.472	1973.3	3/4	187.710	2803.9
1/6	97.7821	760.87	9/8 3/	127.627 -128.020	1296.2 1304.2	7/4 3/6	158,258	1983.2 1993.1	60.	188.496	2815.7 2827.4
1/4	97.3894 97.7821 98.1748	754.77 760.87 766.99	1/2 5/8 3/4 3/8	128.413	1304.2 1312.2	1/2	158.650	1993.1 2003.0	1/8	188.496 188.888	2827.4 2839.2
3/8	98.5675	773.14	41.	128.805	1320.3 1328.3	5/8	159.043	2012.9 2022.8	1/4	189.281 189.674	2851.0
31 - 18 4 8 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	99,3529	785.51	78	128.805 129 198 129.591	1336.4	74	156.687 157.080 157.472 157.865 158.258 158.650 159.043 159.436 159.829 160.221 160.614	2032.8	78	190.066	2851.0 2862.9 2874.8 2886.6
34.	99.7456	791.73	3/8	129.983 130.376 130.769	1344.5 1352.7	51.	160.221	2032.8 2042.8 2052.8	5/8	190.459	2886.6
32.	100,138	1 804.25	7/2 5/6	130.376	1360.8	1/8	161.007	2052.8	7/4	190.852	2898.6 2910.5
1/8	98,1748 98,5675 98,9602 ,99,3529 99,7456 100,138 100,531 100,924	785.51 791.73 797.98 804.25 810.54	1/8 41. 1/8 1/4 3/8 1/2 5/8 3/4 7/8	131.161	1360.8 1369.0	3/8	161.399	2062.9 2073.0 2083.1	61.	190.852 191.244 191.637	9999 5
1/4	101.316	816.86	4978	131.554	1377.2	1 1/2	161.792	2083.1	1/8	192,030	2934.5
78 1/2	101.316 101.709 102.102	816.86 823.21 829.58	1/8	131.161 131.554 131.947 132.340	1377.2 1385.4 1393.7	50.	162.577	2103.3	74 3/8	192.815	2934.5 2946.5 2958.5
5/8	109 191	835.97	42. 42. 1/8 1/4 8/8	132.732	1402.0	7/8	162.970	2113.5	1/2	193,208	2970.6 2982.7
1/8 1/4 3/8 1/2 5/8 3/4 7/8	102.887 103.280 103.673 104.065	835.97 842.39 848.83 855.30 861.79	% 1/2	132.732 133.125 133.518 133.910 134.303	1410.3 1418.6 1427.0 1435.4 1443.8 1452.2 1460.7	52.	160.614 161.007 161.399 161.792 162.185 162.577 162.970 163.363 163.756 164.148 164.541	2093.2 2103.3 2113.5 2123.7 2133.9	50.	191,637 192,030 192,423 192,815 193,208 193,601 193,993 194,386 194,779 195,171	2994.8
7/8 33.1/8 1/4/8 3/4/8 3/4/8 34.	103,673	855.30	1/3/ 5/8 3/4	133.910	1427.0	18 14 3/8 1/2 5/8 3/4 7/8	164.148	2144.2 2154.5	7/8	194.386	2994.8 3006.9 3019.1 3031.3 3043.5
1/8 1/	104,065 104,458	861.79	7/8	134.303 134.696	1435.4	1/8	164.541	2154.5 2164.8	62. i	194,779	3019.1
3/8	104.851 105.243 105.636 106.029	868.31 874.85	40.		1452.2	5/8	164.541 164.934 165.326 165.719 166.112 166.504	2175.1 2185.4	1/4	195.564 195.957 196.350 196.742	3043.5
1/2	105,243	881.41 888.00	1/8 1/4 3/8 1/2/5/8 3/4 7/8	135.088 135.481 135.874 136.659 137.052 137.445 137.837 138.230 138.623	1460.7	3/4	165.719	2185.4	3/8	195.957	3055.7 3068.0 3080.3
78 3/4	105,030	894.62 901.26 907.92 914.61	3/4	136.267	1469.1 1477.6 1486.2 1494.7	53.	166:504	2195.8 .2206.2	72 5/8	196.742	3080.3
7/8	106.421 106.814	901.26	1/2	136.659	1486.2	1/8	166.504 166.897 167.290 167.683 168.075 168.468 168.861 169.253	2216.6 2227.0 2237.5 2248.0	3/4	197.135 197.528 197.920 198.313	3092.6 3104.9
34.	106.814	907.92	· %8	137.445	1503.3	7/4 3/6	167.683	2237.5	63.	197.920	3117.2
1/8 1/4 3/8 1/2 5/8 3/4 1/8	107.207 107.600 107.992 108.385 108.778	921.32 928.06	1/8	137.837	1503.3 1511.9 1520.5	3/2	168.075	2248.0	1/8.	198,313	3117.2 3129.6 3142.0 3154.5 3166.9
3/8 1/2	107,992	928.06	44.	138,230	1520.5	1 % 3/	168.468	2258.5 2269.1	3/4	198,706	3142.0
5/8	108,778	934.82 941.61	1/4	139,015	1529.2 1537.9	- 7/8	169.253	2279.6	1 1/2	199.491	3166.9
3/4		948.42	3/8	139.408	1546.6	54.	169.646	.2290.2 2300.8	5/8	199,884	3179.4 3191.9
35.	109,565	962.11	72 5%	140.194	1555.3 1564.0	78	170.039	2311.5	1/4	199.491 199.884 200.277 200.669	3204.4
35.1/8 35.1/8 35.1/8 36.2/8 36.2/8 36.2/8	109,170 109,563 109,956 110,348	948.42 955.25 962.11 969.00	1/8 1/4 3/8 1/2 5/8 3/4 7/8	139,408 139,801 140,194 140,586 140,979 141,372 141,764 142,157 142,550 142,942 143,335 143,728 144,121	1572.8 1581.6	1/8 1/4 3/8 1/2 5/8 1/4 5/8 1/4 1/8 1/4 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	169.646 170.039 170.431 170.824 171.217 171.609 172.002 172.788 173.180 173.573	2322.1	64.	201.062 201.455 201.847 202.240	2017 0
3/4	110.741	975.91	15 78	140,979	1581.6 1590.4	1/2	171.217	2332.8	1/8 1/	201.455	3229.6
78 16	111.527	989.80	1/8	141.764	1500 9	3/4	172.002	2354.3	3/8	202,240	3254.8
28	110.741 111.134 111.527 111.919	975.91 982.84 989.80 996.78	1/4	142.157	1608.2 1617.0 1626.0	7/8	172.395	2343.5 2354.3 2365.0 2375.8 2386.6	1/2	202.633 203.025	3229.6 3242.2 3254.8 3267.5
7/2	112.312 112.705 113.097	1003.8 1010.8	9/8 1/2	142,000	1617.0	35.	173,180	2315.8	3/8	203.025	3280.1 3292.8
36.	113.097	1017.9	5/8	143,335	1634.9	14	173.573	2397.5 2408.3	1/8	203.418 203.811	3292.8 3305.6
1/8	113,490	1017.9 1025.0 1032 1	34	143,728	1643.9 1652.9	3/8	173.966	2408.3	65.	204.204 204.596	3318.3 3331.1
3/2	113,490 113,883 114,275 114,668 115,061	1039.2	45. 18 14 38 12 58 34 78 46. 18 14 38	144,513	1661.9	72 5/8	174,751	2419.2 2430.1	78 1/4	204.989	3343 .9
3/2	114,668	7010 9	1/8	144.906	1670 0	3/4	175.144	2441.1	3/8	205.382	3356.7
% 3/		1053.5	34	144.513 144.906 145.299 145.691	1680.0	56 8	175.929	2441.1 2452.0 2463.0	72 5%	204.989 205.382 205.774 206.167	3369.6 3382.4
1/4 3/8 1/2 5/8 3/4 1/2	115.454 115.846	1053.5 1060.7 1068 0 1075.2 1082.5	1/2	146.084	1680.0 1689.1 1698.2 1707.4	55. 1814 88 18 18 18 18 18 18 18 18 18 18 18 18	173.573 173.966 174.358 174.751 175.144 175.536 175.929 176.322 176.715 177.107 177.500 177.893 178.285	2474.0 - 2485.0	61. 18 14 18 1	200.000	3382.4 3395.3
37.	116.239 116.632	1075.2	5/8	146.477	17165	3/4	176.715	2485.0 2496.1	66 78	206.952 207.345	3408.2 3421.2
78 1/4	117.024	1089.8	1/8	146,869 147,262 147,655	1725.7	1/2	177.500	2507.2 2518.3	1/8 .	,207.738	3421.2 3434.2
3/8	117.024 117.417 117.810	1089.8 1097.1 1104.5	47.	147.655	1725.7 1734.9 1744.2	. 5%	177.893	2518.3 2529.4	1/4	207.345 ,207.738 ,208.131 208.523	3447.2 3460.2
72 5/2	118.202	11111.8	1/8	148.048 148.440	1753.5	1/4.	178.678	2540.6	78 1/2	208.916	3473.2
37. 37. 38. 34. 38. 38. 38. 38. 38. 38. 38. 38. 38.	118.202 118.596	1119.2 1126.7	1/2 5/8 3/4 47 1/8 1/4 3/8 1/2	148.440 148.833 149.226	1762.7 1772.1	57.	179.071 179.463	2551.8 2563.0	1/8 . 1/4 3/8 1/2 5/8 3/4	209.309 209.701	3486.3 3499.4
36	118.988	1126.7	1 1/2	149.226	1772.1	-3%	179.463	2563.0	1 %	209.701	3499,4

CIRCLES.

TABLE 1 OF CIRCLES—(Continued). Diameters in units and eighths, &c.

iam.	Circumf.	Area.	Diam.	Circumf.	Area.	Diam.	Circumf.	Area.	Diam.	Circumf.	Area
7/8	210.094	3512.5	751/4 3/8 1/2 5/6 3/4 7/8	236,405	4447.4	835% 34 78	262.716	5492.4	92.	289.027	6647.
7.	210.487	3525.7	3/8	236.798	4462.2	34	263.108	5508.8	1/8 1/4 3/8 1/2 5/8 3/4 7/8	289.419	6665.
1/8 1/2 1/8 1/8 1/8	210.879	3538.8	1/2	237.190 237.583	4477.0 4491.8	84. 18	263.501 263.894	5525.3	1/4	289.812	6683.
3/4	211.272 211.665	3552.0 3565.2 3578.5 3591.7 3605.0	3/8	231.303	4506.7	1/8	264.286	5541.8	9/8 1/	290.205 290.597	6701. 6720.
78	212.058	3578 5	74	237.976 238.368 238.761	4521.5	1/4	264.679	5574.8	72 5/	290.990	6738
5/6	212.450	3591.7	76.	238.761	4536.5	1/4 3/8 1/2 5/8 3/4 7/8	265.072	5591.4	3/4	291.383	6756
3%	212.843	3605.0	1/8	239.154	4551.4	1/2	265.465	15607.9	7/8	291.775	6774
1/8	213.236	9010.9	1/4	239.546	4566.4	5/8	265.857	5624.5	93.	292.168	6792
8.	213-628	3631.7	3/8	239.939	4581.3	3/4	266.250	5641.2	1/8	292.561	6811
1/8	214.021	3645.0 3658.4	14 34 38 14 56 34 78	240.332 240.725	4596.3	/8	266.643 267.035	5657.8	1/4 3/8 1/2 5/6 3/4 1/8	292.954	6829 6847
14 3/8 1/2 5/6 8/4	214.414 214.806	3671.8	7/8 3/	241.117	4611.4	85.	267.428	5674.5	78	293.346 293.739	6866
78	215.199	3685.3	74	241.510	4641.5	1/8 1/4 3/8 1/2 5/8 3/4 1/8	267.821	5707.9	72 5%	294.132	6884
6/6	215.592	3698.7	77.	241.903	4656.6	3%	268.213	5724.7	3/4	294.524	6902
8/1	215.984	3712.2		242.295	4671.8	1/2	268.606	5741.5	1/3	294.917	6921
7/8	216.377	3725.7	14 3/8 14 3/8 14 5/8 3/4	242.688	4686.9	5/8	268.999	15758.3	94.	295.310	6939
9.	216.770	3739.3	3/8	243.081	4702.1	3/4	269.392	5775.1	1/8	295.702	6959
1/8	217.163	3752.8	16	243,473	4717.3	78	269.784	5791.9	1 1/4	296.095	6976
74	217.555 217.948	3766. 4 3780.0	78	243.866 244.259	4732.5 4747.8	86.	270.177 270.570	5808.8	1 %	296.488 296.881	6995
3/9 1/2 5/6 3/4 1/8	218.341	3793.7	7/8	244.652	4763.1	78	270.962	5842.6	1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	297.273	7032
5/6	218.733	3807.3	78.	245.044	4778.4	3%	271.355	5859.6	3/4	297.666	7051
3/4	219.126	3821.0	1/8	245.437	4778.4 4793.7	1/2	271,748	5876.5	1/8	298.059	7069
1/8	219.519	3834.7	1/4	245.830	4809.0	1/8 1/4 3/8 1/2 5/8 3/4 1/8	272.140	15893.5	95.	298.451	7085
).	219.911	3848.5	1/4 3/8	246.222	4824.4	3/4	272.533	5910.6	1/8	298.844	7100
38	220.304	3862.2	1 1/2	246.615	4839.8	1/8	272.926	5927.6	76 74 38 76 76 34 78	299.237	7125
1/4	220.697 221.090	3876.0 3889.8	5/8	247.008 247.400	4855.2	87.	273.319	5944.7	9/8	299.629 300.022	7144
78	221.482	3903.6	3/4 7/8	247.793	4870.7 4886.2	1/8	273.711 274.104	5978.9	5/2	300.022	718
5/2	221.875	3917.5	79.	248.186	4901.7	1/4 3/8	274.497	5996.0	8/	300.807	7200
3/1	222,268	3931.4	1/8	248.579	4917.2	1/6	274.889	6013.2	7/2	301.200	7219
1/4 3/8 1/2 5/8 3/4 1/4	222,660	3945.3		248.971	4932.7	½ 5% 34 7%	275.282	6030.4	96.	F 301.593	7238
1.	223.053	3959.2	1/4 3/8 1/2 5/8 3/4 7/8	249.364	4948.3	3/4	275.675	6047.6	1/8	301.986	725
**************************************	223,446	3973.1	1/2	249.757	4963.9	1 %	276.067	6064.9	14 3/8 1/2 5/6 3/4 7/8	302.378	7276
3/4	223.838 224.231	3987.1 4001.1	1 %	250.149 250.542	4979.5	88.	276.460	6082.1	3/8	302.771 303.164	729-
78	224.624	4015.2	7/4	250.935	4995.2 5010.9	1/8 1/4 3/8	277.246	6116.7	5/2	303.556	733
86	225,017	4029.2	80.	251.327	5026.5	3,0	277.638	6134.1	3/	303.949	735
3/4	225.409	4043.3	1/8	251.720	5042.3	1%	278.031	6151.4	3/6	304.342	737
3/8	225.802	4057.4		252.113	5058.0	1/2 5/8 3/4 7/8	278.424	6168.8	97.	304.734	735
2.	226.195	4071.5	3/8 3/8 3/2 5/8 3/4 7/8	252.506	5073.8	3/4	278.816	6186.2	3/8	305.127	740
78	226.587	4085.7	1/2	252.898	5089.6	1/8	279.209	6203.7	1/4	305.520	742
74	226.980 227.373	4114.0	3/8	253.291 253.684	5105.4 5121.2	89.	279.602 279.994	6221.1	9/8	305.913 306.305	744
78	227,765	4128.2	74	254.076	5137 1	78	280.387	6256.1	5/2	306.698	748
5/6	228,158	4142.5	81.	254.469	5137.1 5153.0	1/8 1/4 3/8	280.780	6273.7	3/	307.091	750
16 14 14 15 16 16 16 17	228.551	4156.8	1/8	254.862	5168.9	1 1/2	281.173	6291.2	34 34 34 34 34	307.483	752
3/6	228.944	4171.1	1/8 1/4 3/8 1/2 5/6 8/4	255.254	5184.9	1/2 5/8 3/4 7/8	281.565	6308.8	98.	307.876	754
3.	229,336	4185.4	3/8	255.647	5200.8	3/4	281.958	6326.4	34 34 34 34 34 34	308.269	756
78	229.729 230.122	4199.7 4214.1	72	256.040 256.433	5216.8 5232.8	1 78	282.351	6344.1	1 1/4	308.661 309.054	758 760
8/4	230.514	4228.5	8/8	256 825	5248.9	90.	282.743 283.136	6361.7	1 %	309.054	762
14	230.907	4242.9	1/8	257.218	5264.9	78	283.529	6397.1	5/2	309.840	763
1/8 1/4 1/4 1/4 1/4 1/4 1/4	231.300	4257.4	82.	257.218 257.611 258.003	5281.0	1/8 1/4 3/8	283.921	6414.9	3/	309.840 310.232	763 765
3/4	231.692	4271.8	1/8	258.003	5297.1	3/2	284.314	6432.6	1 7/8	310.625	767
1/8	232.085	4286.3	1/4	258.396 258.789	5313.3	5/8	284.707	6450.4	99.	311.018	109
4.	232.478	4300.8	1/4 1/4 9/8 1/2 5/8 3/4	258.789	5329.4	5/8 5/8 3/4 7/8	285.100	6468.2	14 38 14 38 34 34 34	311.410 311.803	771
78	232.871 233.263	4315.4 4329.9	1/2	259.181	5345.6	107 %	285.492	6486.0	1/4	311.803	773
3/4	233.656	4344.5	3/	259.574 259.967	5361.8 5378.1	91.	285.885 286.278	6503.9	1 78	312.196 312.588	777
36	234.049	4359.2	1/8	260.359	5394.3	1/8	286.670	6539.7	5/	312.981	779
8/2	234.441	4373.8	83.	260.752	5410.6	3/6	287.063	6557.6	3/4	313.374	781
**************************************	234.834	4388.5	1/6		5426.9	1/9	287.456	6575.5	7/3	313.767	783
1/8	235.227	4403.1	14 14 18 14	261.538	5443.3	1/6 1/4 3/8 1/2 5/8 3/4 1/8	287.848	6593.5	100.	314.159	785
5.	235.619 236.012	4417.9	3/8	261.930	5459.6	3/4	288.241	6611.5			
1/8	200.012	4432.6	72	262.323	5476.0	1 1/8	288.634	6629.6		1	1

CIRCLES.

TABLE 2 OF CIRCLES. Diameters in units and tenths.

5.5 .6 .7 .8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 2.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	.814159 .628319 .942478 1.256637 1.570796 1.884956 2.199115 2.513274 2.827433 3.141593 3.455752 3.769911 4.398230 4.712389 5.026548 5.654867 5.969026 6.283185 6.591504 7.225663	.007854 .031416 .070686 .125664 .196350 .282743 .381845 .502655 .636173 .785398 .930332 .1.18097 .1.32732 .1.38938 .76715 .2.01062 .2.26980 .2.54469 .2.83529 .3.14159	6.3 .4 .5 .6 .7 .8 .9 7.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	19.79208 20.10619 20.42035 20.73451 21.04867 21.36283 21.67699 21.99115 22.30331 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026 24.50442	31.17245 32.16991 33.18307 34.21194 35.25652 36.31681 37.39281 38.48451 39.59192 40.71504 41.85387 43.00840 44.17865 45.36460	12.5 .6 .7 .8 .9 13.0 .1 .2 .3 .4 .5 .6 .7	39.26991 39.58407 39.89823 40.21239 40.52655 40.84070 41.15486 41.46902 41.78318 42.09734 42.41150 42.72566 43.03982	122.7185 124.6898 126.6769 128.6796 130.6981 132.7823 134.7822 136.8478 138.9291 141.0261 143.1388 145.2672
2 3 4 5 6 7 7 8 9 1.0 1.1 2.2 3 4 5.5 6 7 7 8 9 2.0 1.2 2.3 3 4 5.5 6 7 8 8 9 9 2.0 1.1 2.2 3 3 9 1.0 1.1 2.2 3 1.1 3 1.	.942478 1.256637 1.570796 1.884956 2.199115 2.513274 2.827433 3.141593 3.455752 3.455752 4.398230 4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.597345 6.2911504 7.225663	.081416 .070686 .125664 .196350 .282743 .381845 .502655 .636173 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.4 .5 .6 .7 .8 .9 7.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	20.42035 20.73451 21.04867 21.36283 21.67699 21.99115 22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	32.16991 33.18307 34.21194 35.25652 36.31681 37.39281 38.48451 39.59192 40.71504 41.85387 43.0840 44.17865	.7 .8 .9 13.0 .1 .2 .3 .4 .5	39.89823 40.21239 40.52655 40.84070 41.15486 41.46902 41.78318 42.09734 42.41150 42.72566	124.6898 126.6769 128.6796 130.6981 132,7323 134.7822 136.8478 138.9291 141.0261 143.1388 145.2672
.4 .5 .6 .7 .8 .9 .1 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .2 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	1.256687 1.570796 1.884956 2.199115 2.513274 2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.340708 5.654867 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	125664 196350 282743 384845 502655 636173 785398 930332 1.13997 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.6 .7 .8 .9 7.0 .1 .2 .3 .4 .5 .6 .7 .8	20.78451 21.04867 21.36283 21.67699 21.99115 22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	34.21194 35.25652 36.31681 37.39281 38.48451 39.59192 40.71504 41.85387 43.00840 44.17865	.8 .9 13.0 .1 .2 .3 .4 .5	40.21239 40.52655 40.84070 41.15486 41.46902 41.78318 42.09734 42.41150 42.72566	128.6796 130.6981 132.7323 134.7822 136.8478 138.9291 141.0261 143.1388 145.2672
.6 .7 .8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 2.0 .1 .2 .3 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	1.570796 1.884956 1.884956 2.199115 2.513274 2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.340708 5.340708 6.283185 6.597345 6.911504 7.225663	.196350 .282743 .381845 .502655 .636173 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	7 8 9 7.0 1 2 3 4 5 6 7 8	21.04867 21.36283 21.67699 21.99115 22.30531 22.61947 22.93868 23.24779 23.56194 23.87610 24.19026	35.25652 36.31681 37.39281 38.48451 39.59192 40.71504 41.85387 43.00840 44.17865	.9 13.0 .1 .2 .3 .4 .5	40.52655 40.84070 41.15486 41.46902 41.78318 42.09734 42.41150 42.72566	130.6981 132,7323 134,7822 136,8478 138,9291 141,0261 143,1388 145,2672
.6 .7 .8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 2.0 .1 .2 .3 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	1.884956 2.199115 2.513274 2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	.282743 .384845 .502655 .636173 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.8 .9 7.0 .1 .2 .3 .4 .5 .6 .7 .8	21.36283 21.67699 21.99115 22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	36,31681 37,39281 38,48451 39,59192 40,71504 41,85387 43,00840 44,17865	13.0 .1 .2 .3 .4 .5	40.84070 41.15486 41.46902 41.78318 42.09734 42.41150 42.72566	132,7323 134,7822 136,8478 138,9291 141,0261 143,1388 145,2672
.8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .2 .0 .2 .3 .3 .4 .5 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	2.199115 2.513274 2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.654867 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	.384845 .502655 .636173 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.9 7.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	21.67699 21.99115 22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	37.39281 38.48451 39.59192 40.71504 41.85387 43.00840 44.17865	.1 .2 .3 .4 .5	41.15486 41.46902 41.78318 42.09734 42.41150 42.72566	136.8478 138.9291 141.0261 143.1388 145.2672
.8 .9 1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .2 .0 .2 .3 .3 .4 .5 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	2.513274 2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.340708 5.654867 5.654867 6.283185 6.597345 6.911504 7.225663	.502655 .636178 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	7.0 .1 .2 .3 .4 .5 .6 .7 .8	21.99115 22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	38.48451 39.59192 40.71504 41.85387 43.00840 44.17865	.2 .3 .4 .5	41.46902 41.78318 42.09734 42.41150 42.72566	136.8478 138.9291 141.0261 143.1388 145.2672
9 1.0 1.1 .2 .3 .4 .5 .6 .7 .8 .9 .2.0 .6 .7 .8 .9 .9 .1 .1 .2 .2 .3 .4 .5 .6 .7 .8 .8 .9 .9 .1 .1 .2 .1 .3 .1 .1 .3 .1 .1 .3 .1 .1 .3 .1 .1 .3 .1 .1 .3 .1 .1 .3 .1 .1 .3 .1 .3 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	2.827433 3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.340708 5.654867 5.969026 6.283185 6.597345 6.591504 7.225663	.636173 .785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.1 .2 .3 .4 .5 .6 .7 .8 .9	22.30531 22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	39.59192 40.71504 41.85387 43.00840 44.17865	.3 .4 .5	41.78318 42.09734 42.41150 42.72566	138.9291 141.0261 143.1388 145.2672
1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 2.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	3.141593 3.455752 3.769911 4.084070 4.398230 4.712389 5.026548 5.654867 5.969026 6.283185 6.597345 6.591504 7.225663	.785398 .950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.2 .3 .4 .5 .6 .7 .8 .9	22.61947 22.93363 23.24779 23.56194 23.87610 24.19026	40.71504 41.85387 43.00840 44.17865	.5	42.09734 42.41150 42.72566	141.0261 143.1388 145.2672
1 2 3 4 5 6 6 7 8 8 8 9 6 6 7 8 8 8 8 9 6 6 7 8 8 8 8 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9	3.455752 3.769911 4.984070 4.398230 4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	950332 1.13097 1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.4 .5 .6 .7 .8	22.93363 23.24779 23.56194 23.87610 24.19026	41.85387 43.00840 44.17865	.5	$\begin{array}{c} 42.41150 \\ 42.72566 \end{array}$	143.1388 145.2672
2.3 .4 .5 .6 .7 .8 .9 2.0 2.0 .2 .3 .4 .5 .6 .7 .8 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	4.084070 4.398230 4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	1.32732 1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.4 .5 .6 .7 .8	23.24779 23.56194 23.87610 24.19026	44.17865	.6		145.2672
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	4.398230 4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	1.53938 1.76715 2.01062 2.26980 2.54469 2.83529	.8	$\begin{array}{c} 23.87610 \\ 24.19026 \end{array}$.7	43.03982	
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	4.712389 5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	1.76715 2.01062 2.26980 2.54469 2.83529	.8	24.19026	45.36460			147.4114
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	5.026548 5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	2.01062 2.26980 2.54469 2.83529	.8			.8	43.35398	149.5712
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	5.340708 5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	2.26980 2.54469 2.83529	.9		46.56626	.9	43.66814	151.7468
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	5.654867 5.969026 6.283185 6.597345 6.911504 7.225663	2.54469 2.83529		24.81858	47.78362 49.01670	14.0	43.98230 44.29646	153.9380 156.1450
2.0 2.0 3.3 4.5 6.6 7.7 8.8 9.9 3.0 2.1 10 3.1 10 3.1 10 3.1 10 10 10 10 10 10 10 10 10 10 10 10 10	5.969026 6.283185 6.597345 6.911504 7.225663	2.83529	8.0	25.13274	50 265.18	.1	44.61062	158.3677
2.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 3.0 .1 .2 .2 .3 .4 .5 .6 .7 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	6.283185 6.597345 6.911504 7.225663	3 1.1150	.1	25.44690	50.26548 51.52997	.2	44.92477	160.6061
.1 .2 .3 .3 .4 .5 .6 .7 .8 .9 .9 .1 .2 .1	6,597345 6,911504 7,225663	+7.141+77	.2	25.76106	52.81017	.4	45.23893	162.8602
.4 .5 .6 .7 .8 .9 .1 .2 10 .3 10	7.225663	3.46361	.2	26.07522	54.10608	.5	45.55309	165.1300
.4 .5 .6 .7 .8 .9 .1 .2 10 .3 10		3.80133	.4	26.38938	55.41769	.6 .7	45.86725	167.4155
.5 .6 .7 .8 .9 3.0 .1 .2 .1 .3		4.15476	.4 .5	26.70354	56.74502	.7	46.18141	169.7167
3.0 3.0 3.1 3.2 3.10	7.539822	4.52389	.6 .7 .8	27.01770	58.08805	.8	46.49557	172.0336
3.0 3.0 3.1 3.2 3.10	7.853982	4.90874	.7	27.33186	59.44679	.9	46.80973	174.3662
3.0 3.0 3.1 3.2 3.10	8.168141 8.482300	5.30929	.8	27.64602 27.96017	60.82123 62.21139	15 .0	47.12389 47.43805	176.7146
3.0 3.0 1 3 .2 10 3 10	8.796459	5.72555 6.15752	9.0	28.27433	63.61725	.2	47.75221	179.0786 181.4584
3.0 3 .1 3 .2 10 .3 10	9.110619	6.60520		28.58849	65.03882	.3	48.06637	183,8539
.1 9 .2 10 .3 10	9.424778	7.06858	2	28.90265	66.47610	.4	48.38053	186.2650
.2 10 .3 10 .4 10	9.738937	7.54768	.1 .2 .3	29.21681	67.92909	.5	48.69469	188.6919
$\begin{array}{c c} .3 & 10 \\ .4 & 10 \end{array}$	0.05310	8.04248	.4 .5 .6 .7	29.53097	69.39778	.6	49.00885	191.1345
.4 11	0.36726	8.55299	.5	29.84513	70.88218	.7	49.32300	193.5928
F 76	0.68142	9.07920	.6	30.15929	72.38229	.8	49.63716	196.0668
	0.99557 1.30973	9.62113	.8	30.47345	73.89811	.9	49.95132	198.5565
.6 1	1.62389	10.17876 10.75210	.0	30.78761 31.10177	75.42964 76.97687	16 .0	50.26548 50.57964	201.0619 203.5831
	1.93805	11.34115	10 .0	31.41593	78.53982		50.89380	206.1199
.9 1	2.25221	11.94591	.1	31.73009	80.11847	.2	51.20796	208.6724
4.0 12	2.56637	12.56637	.1 .2 .3 .4 .5	32.04425	81.71282	.4	51.52212	211.2407
.1 1	2.88053	13.20254	.3	32.35840	83.32289	.5	51.83628	213.8246
	3.19469	13.85442	.4	32.67256	84.94867	.6	52.15044	216.4243
.3 13	3.50885	14.52201	.5	32.98672	86.59015	.7	52.46460	219.0397
.4 13	3.82301	15.20531	.6	33.30088	88.24734	-8	52.77876	221.6708
.5 14	4.13717 4.45133	15.90431 16.61903	.7 .8	33.61504 33.92920	89.92024 91.60884	.9 17.0	53.09292 53.40708	224.3176 226.9801
7 1	4.76549	17.34945	0.0	34 94336	93.31316	.1	53 79193	229.6583
	5.07964	18.09557	.9 11.0	34.24336 34.55752	95.03318	2	53.72123 54.03539	232.3522
.9 1	5.39380	18.85741	.1	34.87168	96.76891	.2	54.34955	235.0618
	5.70796	19.63495	.2	35.18584	98.52035	.4	54.66371	237.7871
	6.02212	20.42821	.1 .2 .3	35.50000	100.2875	.5	54.97787	240.5282
	6.33628	21.23717	.4	35.81416	102.0703	.6	55.29203	243.2849
.3 . 10	6.65044	22.06183	.5	36.12832	103.8689	.7	55.60619	246.0574
	6.96460	22.90221	.6 .7 .8	36.44247	105.6832	.8	55.92035	248.8456
6 1	7.27876 7.59292	23.75829 24.63009	16	36.75663	107.5132	.9 18. 0	56.23451 56.54867	251.6494 254.4690
	7.90708	25.51759	.0	37.07079 37.38495	109.3588 111.2202	.1	56.86283	257.3043
8 1	8.22124	26.42079	12.0	37.69911	113.0973	.1	57.17699	260.1553
.9 1	8.53540	27.33971	.1	38.01327	114.9901	.2	57.49115	263.0220
6.0 1	U.UUUTU	28.27433 29.22467	.2	38.32743	116.8987	.4	57.80530	265.9044
.1 1	8.84956	29.22467	.3	38.64159	118.8229	.4 .5 .6	58.11946	268.8025
.2 1	.8.84956 .9.16372	30.19071	.4	38.95575	120.7628	.6	58.43362	271.7163

CIRCLES.

TABLE 2 OF CIRCLES—(Continued). Diameters in units and tenths.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
18.7	58.74778 59.06194	274.6459 277.5911	24.9 25.0	78.22566 78.53982	486.9547 490.8739	31. 1	97.70353 98.01769	759.6450 764.5380
.9	59.37610	280.5521	.1	78.85398	494.8087	.3	98.33185	769.4467
19.0	59.69026	283.5287	.2	79.16813	498.7592	.4	98.64601	774.3712
.1	60.00442	286.5211	.3	79.48229	502.7255 506.7075	.5	98.96017	779.3113
.2	60.31858 60.63274	289.5292 292.5530	.5	79.79645 80.11061	510.7052	.6 .7	99.27433 99.58849	784.2672 789.2388
.4	60.94690	295.5925	.6	80.42477	514.7185	.8	99.90265	794.2260
.5	61.26106	298.6477	.6	80 73893	518.7476	.9	100.2168	799.2290
.6	61.57522	301.7186	.8	81.05309	522.7924	32.0	100.5310	804.2477
.8	61.88938 62.20353	304.8052 307.9075	.9 26 .0	81.36725 81.68141	526.8529 530.9292	.1	100.8451 101.1593	809.2821 814.3322
.9	62.51769	311.0255	.1	81.99557	535.0211	.3	101.4734	819.3980
20.0	62.83185	314.1593	.2	82.30973	539.1287	.4	101.7876	824.4796
.1	63.14601 63.46017	317.3087 320.4739	.3 .4	82.62389 82.93805	543.2521 547.3911	.5	102.1018 102.4159	829,5768 834,6898
.2	63,77433	323.6547	.5	83.25221	551.5459	.7	102.4133	839.8184
.4	64.08849	326.8513	.6	83.56636	555.7163	.8	103.0442	844.9628
.5	64.40265	330.0636	.7	83.88052	559.9025	.9	103.3584	850.1228
.6	64.71681 65.03097	333.2916 336.5353	.8	84.19468 84.50884	564.1044 568.3220	33. 0	103.6726 103.9867	855.2986 860.4901
.8	65,34513	339.7947	27.0	84.82300	572.5553	.2	104.3009	865.6973
.9	65.65929	343.0698	.1	85.13716	576.8043	.2	104.6150	870.9202
21.0	65.97345	346.3606	.2	85.45132	581.0690	.4	104.9292	876.1588
.1	66.28760	349.6671 352.9894	.3	85.76548 86.07964	585.3494 589.6455	.5	105.2434 105.5575	886.6831
.2	66.91592	356.3273	.5	86.39380	593,9574	.7	105.8717	891.9688
.4	67.23008	359.6809	.6	86.70796	598.2849	.8	106.1858	897.2703
.5	67.54424	363.0503	.7	87.02212	602.6282	.9	106.5000	902.5874
.6 .7	67.85840 68.17256	366.4354 369.8361	.8	87.33628 87.65044	606.9871 611.3618	34.0 .1	106.8142	907.9203 913.2688
.8	68.48672	373.2526	28.0	87.96459	615.7522	.2	107.4425	918.6331
.9	68,80088	376.6848	.1	88.27875	620.1582	.3	107.7566	924.0131
22 .0	69.11504 69.42920	380.132 7 383.5963	.2	88.59291 88.90707	624.5800 629.0175	.5	108.0708 108.3849	929.4088 934.8202
.1	69.74336	387.0756	.4	89.22123	633.4707	.6	108.6991	940.2473
.2	70.05752	390.5707	.5	89.53539	637.9397	.7	109.0133	945.6901
.4 .5 .6	70.37168	394.0814	.6	89.84955	642.4243	.8	109.3274	951.1486
.5	70.68583 70.99999	397.6078 401.1500	.8	90.16371 90.47787	646.9246	.9 35 .0	109.6416 109.9557	956.6228 962.1128
.7	71.31415	404.7078	.9	90.79203	655.9724	.1	110.2699	967.6184
.7	71.62831	408.2814	29.0	91.10619	660.5199	.2	110.5841	973.1397
23 .0	71.94247	411.8707	.1	91.42035 91.73451	665.0830 669.6619	.3	110.8982 111.2124	978.6768 984.2296
.1	72.25663 72.57079	415.4756 419.0963	.2	92.04866	674.2565	.5	111.5265	989.7980
.2	72.88495	422.7327	.4	92.36282	678.8668	.6	111.8407	995.3822
.3	73.19911	426.3848	.5	92.67698	683.4928	.7	112.1549	1000.9821
.4	73.51327 73.82743	430.0526 433.7361	.6	92.99114 93.30530	688.1345 692.7919	.8	112.4690 112.7832	1006.5977
.4 .5 .6 .7	74.14159	437.4354	.8	93.61946	697.4650	36.0	113.0973	1017.8760
.7	74.45575	441.1503	.9	93.93362	702.1538	.1	113.4115	1023.5387
.8	74.76991	444.8809	30.0	94.24778	706.8583	.2	113.7257	1029.2172
24.0	75.08406 75.39822	448.6273 452.3893	.1	94.56194 94.87610	711.5786 716.3145	.3	114.0398 114.3540	1034.9113
.1	75.71238	456.1671	.2	95.19026	721.0662	.5	114.6681	1046.3467
.2	76.02654	459.9606	.4	95.50442	725.8336	.6	114.9823	1052.0880
.3	76.34070 76.65486	463.7698	.5	95.81858 96.13274	730.6166 735.4154	.7	115.2965 115.6106	1057.8449 1063,6176
.4	76.05486	467.5947 471,4352	.6 .7	96.13274 96.44689	735.4154 740.2299	.8 .9	115.9248	1069.4060
.6	77.28318	475.2916	.8	96.76105	745.0601	37.0	116.2389	1075.2101
.6 .7 .8	77.59734	479.1636	.9	97.07521	749.9060	.1	116.5531	1081.0299
.8	77.91150	483.0513	31.0	97.38937	754.7676	.2	116.8672	1086.8654

CIRCLES.

TABLE 2 OF CIRCLES—(Continued). Diameters in units and tenths.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
37.3	117.1814	1092.7166	43.5	136.6593	1486.1697	49.7	156.1372	1940.0041
.5	117.4956	1098.5835	.6	136.9734	1493.0105	.8	156.4513	1947.8189
.5	117.8097	1104.4662	.7	137,2876	1499.8670	.9	156.7655	1955.6493
.6 .7	118.1239 118.4380	1110.3645 1116.2786	.8	137,6018 137,9159	1506.7393 1513.6272	50 .0	157.0796 157.3938	1963.4954 1971.3572
.8	118.7522	1122.2083	44.0	138.2301	1520.5308	.2	157.7080	1979.2348
38.0	119.0664	1128.1538	.1	138.5442	1527.4502	.2	158.0221	1987.1280
38.0	119.3805	1134.1149	.2	138.8584	1534.3853	.4	158.3363	1995.0370
.1	119.6947	1140.0918	.3	139.1726	1541.3360	.5	158.6504	2002.9617
.3	120.0088 120.3230	1146.0844 1152.0927	.4±	139.4867 139.8009	1548.3025 1555.2847	.6 .7	158.9646 159.2787	2010.9020 2018.8581
.4	120.6372	1158.1167	.4 .5 .6 .7	140.1150	1562.2826	.8	159.5929	2026.8299
.4 .5	120.9513	1164.1564	.7	140.4292	1569.2962	.9	159.9071	2034.8174
.6	121.2655	1170.2118	.8	140.7434	1576.3255	51. 0	160.2212	2042.8206
.6 .7 .8	121.5796	1176.2830 1182.3698	.9 45 .0	141.0575	1583.3706	.1	160.5354	2050.8395 2058.8742
.9	121.8938 122.2080	1188.4724	.1	141.3717 141.6858	1590.4313 1597.5077	.2	160.8495 161.1637	2066.9245
39.0	122.5221	1194.5906	.2	142.0000	1604.5999	.4	161.4779	2074.9905
.1	122.8363	1200.7246	.2	142.3141	1611.7077	.4	161.7920	2083.0723
.2	123.1504	1206.8742	.4	142.6283	1618.8313	.6	162.1062	2091.1697
.3	123.4646	1213.0396	.5	142.9425	1625,9705	.7	162.4203	2099.2829
-4 5	123.7788 124.0929	1219.2207 1225.4175	.0	143.2566 143.5708	1633.1255 1640.2962	.8	162.7345 163.0487	2107.4118 2115.5563
.6	124.4071	1231.6300	.5 .6 .7 .8	143.8849	1647.4826	52.0	163.3628	2123.7166
.3 .4 .5 .6	124.7212	1237.8582	.9	144.1991	1654.6847	.1	163.6770	2131.8926
.8	125.0354	1244.1021	46.0	144.5133	1661.9025	.2	163.9911	2140.0843
40.0	125.3495	1250.3617	.1	144.8274	1669.1360	.3	164.3053	2148.2917
40 .0	125.6637 125.9779	1256.6371 1262.9281	.2	145.1416 145.4557	1676.3853 1683.6502	.5	164,6195 164,9336	2156.5149 2164.7537
.2	126.2920	1269.2348	.4	145.7699	1690.9308	.6	165.2478	2173.0082
.2	126.6062	1275.5573	.4	146.0841	1698.2272	.6 .7	165.5619	2181.2785
-4	126.9203	1281.8955	.6 .7	146.3982	1705.5392	.8	165.8761	2189.5644
.4 .5 .6 .7	127.2345 127.5487	1288.2493 1294.6189	.8	146.7124 147.0265	1712.8670 1720.2105	.9 53 .0	166.1903	2197.8661
.0	127.8628	1301.0042	.9	147.0203	1720.2105	.1	166.8186	2206.1834 2214.5165
.8	128.1770	1307.4052	47.0	147.6549	1734.9445	2	167.1327	2222.8653
.9 41 .0	128.4911	1313.8219	.1	147.9690	1742.3351	.2	167.4469	2231.2298
41.0	128.8053	1320.2543	.2 .3 .4 .5 .6	148.2832	1749.7414	.4	167.7610	2239.6100
.1	129,1195 129,4336	1326.7024	.5	148.5973 148.9115	1757.1635 1764.6012	.5 .6 .7 .8	168.0752 168.3894	2248.0059 2256.4175
.2	129.7478	1339.6458	.5	149.2257	1772.0546	.7	168.7035	2264.8448
.4	130.0619	1346.1410	.6	149.5398	1779.5237	.8	169.0177	2273.2879
.5	130.3761	1352.6520	.7	149.8540	1787.0086	.9	169.3318	2281.7466
.6	130.6903 131.0044	1359.1786 1365.7210	.8	150,1681	1794.5091	54.0	169.6460	2290.2210
.8	131.3186	1372.2791	.9 48 .0	150.4823 150.7964	1802.0254 1809.5574	.1	169.9602 170.2743	2298.7112 2307.2171
.9	131.6327	1378.8529	.1	151.1106	1817.1050	.2	170.5885	2315.7386
42. 0	131.9469	1385.4424	.2	151.4248	1824.6684	.4	170.9026	2324.2759
.1	132.2611	1392.0476	.3	151.7389	1832.2475	.5	171.2168	2332.8289
.2	132.5752 132.8894	1398.6685 1405.3051	.4 .5 .6 .7	152.0531 152.3672	1839.8423 1847.4528	.6 .7 .8	171.5310 171.8451	2341.3976 2349.9820
.3	133.2035	1405.3031	6.6	152.5672	1847.4528	8	171.8451	2349.9820 2358.5821
,5	133,5177	1418.6254	.7	152.9956	1862.7210	.9	172,4734	2367.1979
:6	133.8318	1425.3092	.8	153.3097	1870.3786	55. 0	172.7876	2375.8294
.4 .5 .6 .7 .8	134.1460	1432.0086	40.0	153.6239	1878.0519	.1	173.1018	2384.4767
.8	134.4602 134.7743	1438.7238 1445.4546	49. 0	153.9380 154.2522	1885.7410 1893.4457	.3	173.4159 173.7301	2393,1396 2401,8183
13 .0	135.0885	1452.2012	2	154.5664	1901.1662	.3	174.0442	2410.5126
.1	135.4026	1458.9635	.2	154.8805	1908.9024	.5	174.3584	2419.2227
.1 .2 .3	135.7168	1465.7415	.4 .5	155.1947	1916.6543	.4 .5 .6 .7	174.6726	2427.9485
.3	136.0310	1472.5352	.5	155.5088	1924.4218	.7	174.9867	2436,6899
.4	136,3451	1479.3446	.6	155.8230	1932.2051	.8	175.3009	2445.4471

CIRCLES.

TABLE 2 OF CIRCLES—(Continued).

Diameters in units and tenths.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
55.9	175.6150	2454.2200	62.1	195.0929	3028.8173	68.3	214.5708	3663.7960
56.0	175.9292	2463.0086	.2	195.4071	3038.5798	.4	214.8849	3674.5324
.1	176.2433 176.5575	2471.8130		195.7212	3048.3580	.5	215.1991	3685.2845
.2	176.5575	2480.6330	.4.	196.0354	3058.1520	.6 .7	215.5133	3696.0523
.3	176.8717	2489.4687	.5	196.3495	3067.9616	.7	215.8274	3706.8359
.4 .5	177.1858	2498.3201	6	196.6637	3077.7869	.8	216.1416	3717.6351
.5	177.5000	2507.1873	.7	196,9779	3087.6279 3097.4847	.9 69 .0	216.4557	3728,4500 3739,2807
.6 .7	177.8141	2516.0701		197.2920 197.6062	3107.3571		216.7699 217.0841	3750.1270
.8	178.1283	2524.9687 2533.8830	.9 63 .0	197.9203	3117.2453	.1	217.3982	3760.9891
.9	178.4425 178.7566	2542.8129	.1	198.2345	3127.1492	.3	217.7124	3771.8668
57.0	179.0708	2551.7586	9	198.5487	3137.0688	.4	218.0265	3782.7603
.1	179.3849	2560.7200	.2	198.8628	3147.0040	.5	218.3407	3793.6695
	179,6991	2569,6971	.4	199.1770	3156.9550	.6	218.6548	3804.5944
.3	180.0133	2578,6899	.5	199,4911	3166.9217	.6 .7	218,9690	3815.5350
.4	180.3274	2587.6985	.6	199.8053	3176.9042	.8	219.2832	3826,4913
.5	180.6416	2596.7227	.6 .7	200.1195	3186.9023	.9	219.5973	3837.4633
.6	180.9557	2605,7626	.8	200.4336	3196.9161	70.0	219.9115	3848.4510
.6 .7 .8	181.2699	2614.8183	.9	200.7478	3206.9456	.1	220.2256	3859.4544
	181.5841	2623.8896	64.0	201.0619	3216.9909	.2	220,5398	3870.4736
.9	181.8982	2632.9767	.1	201.3761	3227.0518 3237.1285	.3	220.8540	3881.5084
58.0	182.2124	2642.0794	.2	201.6902	3237.1285	.4	221.1681	3892,5590
.1	182.5265	2651.1979	.3	202.0044	3247.2209	.5	221.4823	3903.6252
.2	182.8407	2660.3321	.5	202.3186	3257.3289	.6 .7	221.7964	3914.7072
.3	183.1549	2669.4820	G.	202.6327	3267.4527	.1	$\begin{array}{c} 222.1106 \\ 222.4248 \end{array}$	3925.8049
.4 .5 .6 .7	183.4690	2678.6476	.6	202.9469	3277.5922	.8		3936.9182
.5	183.7832	2687.8289	.7	203,2610	3287.7474 3297.9183	.9 71.0	222.7389 223.0531	3948.0473 3959.1921
.0	184.0973	2697.0259	.8	203.5752 203.8894	3308.1049	.1	223,3672	3970.3526
• 6	184.4115	2706.2386 2715.4670	65 .0	203.0094	3318,3072	.1	223.6814	3981.5289
.9	184.7256 185.0398	2724.7112	:1	204.2033	3328.5253	.2	223,9956	3992.7208
59.0	185.3540	2733.9710	9	204.8318	3338.7590	4	224.3097	4003.9284
	185.6681	2743 2466	.2	205.1460	3349.0085	.5	224.6239	4015,1518
.1 .2 .3	185.9823	2743.2466 2752.5378	.4	205.4602	3359.2736	.6	224,9380	4026 3908
.3	186.2964	2761.8448	.4	205.7743	3369.5545	.6 .7	225.2522	4037.6456
.4	186.6106	2771.1675	.6 .7	206.0885	3379.8510	.8	225.5664	4048.9160
.4 .5 .6 .7	186.9248	2780.5058	.7	206.4026	3390.1633	.9		4060.2022
.6	187.2389	2789.8599	.8	206 7168	3400.4913	72.0	226.1947	4071.5041
.7	187.5531	2799.2297	.9	207.0310	3410.8350	.1	226.5088	4082.8217
.8 .9 60 .0	187.8672	2808.6152	66 .0	207.3451	3421,1944	.2	226.8230	4094.1550
.9	188.1814	2818.0165	.1	207.6593	3431,5695	.3	227.1371	4105.5040
60 .0	188.4956	2827.4334	.2	207.9734	3441.9603	.4	227.4513	4116.8687
.1	188.8097	2836.8660	.3	208.2876	3452,3669	.5	227.7655	4128.2491
.2	189.1239	2846.3144	.4 .5	208.6018	3462,7891	.6 .7	228.0796	4139.6452
.3	189.4380	2855.7784	.5	208.9159	3473,2270 3483,6807	./	$\begin{bmatrix} 228.3938 \\ 228.7079 \end{bmatrix}$	4151.0571 4162.4846
.4	189.7522	2865,2582 2874,7536	.6 .7	209.2301 209.5442	3494,1500	.8	228,7079 229,0221	4173.9279
.0	190.0664 190.3805	2884,2648	.8	209.5442 209.8584	3504,6351	73.0	229,0221	4175.9279
.6 .7	190.5805	2893.7917	.8	210,1725	3515.1359	.1	229.6504	4196,8615
.8	191.0088	2903.3343	67.0	210.1723	3525.6524		229.9646	4208.3519
.9	191.3230	2912.8926	.1	210.8009	3536.1845	.2	230.2787	4219,8579
61.0	191,6372	2922.4666	2	211.1150	3546.7324	.4	230.5929	4231.3797
.1	191.9513	2932.0563	.2	211.4292	3557.2960	.5	230.9071	4242.9172
.2	192.2655	2941.6617	.4	211.7433	3567.8754		231.2212	4254.4704
.2	192.5796	2951.2828	.4	212.0575	3578.4704	.6 .7 .8	231.5354	4266,0394
.4	192.8938	2960.9197	.6	212.3717	3589,0811	.8	231.8495	4277.6240
.4 .5	193.2079	2970.5722	.7	212.6858	3599.7075	.9	232.1637	4289.2243
.6	193.5221	2980.2405	,8	213.0000	3610.3497	74.0	232.4779	4300.8403
.7	193.8363	2989.9244	.9	213.3141	3621.0075	.1	232.7920	4312.4721
.8	194.1504	2999.6241	68.0	213.6283	3631.6811	.2	233.1062	4324.1195
62.0	194.4646	3009.3395	.1	213.9425	3642.3704	.3	233,4203	4335.7827
A-107 ()	194.7787	3019,0705	.2	214.2566	3653,0754	.4	233.7345	4347.4616

CIRCLES.

TABLE 2 OF CIRCLES—(Continued). Diameters in units and tenths.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
74.5	234.0487	4359.1562	80.7	253.5265	5114.8977	86.9	273.0044	5931,0206
.6 .7	234.3628	4370.8664	.8	253.8407	5127.5819	87.0	273.3186	5944.6787
.7	234.6770	4382.5924	.9	254.1548	5140.2818	.1	273.6327	5958.3525
.8	284.9911 235.3053	4394.3341	81. 0	254.4690 254.7832	5152.9974 5165.7287	.2	273.9469	5972.0420
75. 0	235,6194	4417.8647	.2	255.0973	5178.4757	.5	274.2610 274.5752	5985.7472 5999.4681
.1	235,9336	4429.6535	.2	255.4115	5191.2384	.5	274.8894	6013.2047
.2	236.2478	4441.4580	.4	255.7256	5204.0168	.6	275.2035	6026.9570
.3	236.5619	4453.2783	.5	256.0398	5216.8110	.7	275.5177	6040.7250
.5	236.8761 237.1902	4465.1142	.6 .7	256.3540 256.6681	5229.6208	.8	275.8318	6054.5088
.6	237.5044	4476.9659 4488 8332	.8	256.9823	5242.4463 5255.2876	.9 88.0	276.1460 276.4602	6068.3082 6082.1234
.6 .7 .8	237.8186	4500.7163	.9	257.2964	5268.1446	.1	276.7743	6095.9542
.8	238.1327	4512.6151	82.0	257.6106	5281.0173	.2	277.0885	6109.8008
.9	238.4469	4524.5296	.1	257.9248	5293.9056	.3	277.4026	6123.6631
76. 0	238.7610	4536.4598	.2	258.2389	5306.8097	.4	277.7168	6137.5411
.1	239.0752 239.3894	4548.4057 4560.3673	.5	258,5531 258,8672	5319.7295 5332.6650	.5	278.0309 278.3451	6151.4348 6165.3442
.3	239,7035	4572.3446	.5	259.1814	5345.6162	.6 .7	278.6593	6179.2693
.4	240.0177	4584.3377		259.4956	5358.5832	.8	278.9734	6193.2101
.5	240.3318	4596.3464	.6 .7	259.8097	5371.5658	.9	279.2876	6207.1666
.6	240 6460	4608.3708	.8	260.1239	5384.5641	89.0	279.6017	6221.1389
.7	240.9602 241.2743	4620.4110	.9	260.4380	5397.5782	.1	279.9159	6235.1268
.9	241.2745	4632.4669 4614.5384	83.0 .1	260.7522 261.0663	5410.6079 5423.6534	.2	280.2301 280.5442	6249.1304 6263.1498
77.0	241.9026	4656.6257	$\frac{1}{2}$	261.3805	5436.7146	4	280,8584	6277,1849
.1	242.2168	4668.7287	.2	261.6947	5449.7915	.4 .5	281.1725	6291 2356
.2	242.5310	4680.8474	.4	262.0088	5462.8840	.6	281.4867	6305.3021
.3	242.8451	4692.9818	.5	262.3230	5475.9923	.7	281.8009	6319.3843
.5	243,1593 243,4734	4705.1319 4717.2977	.6	262.6371	5489.1163	.8	282.1150	6333.4822
.o 6	243.7876	4729.4792	.7	262.9513 263.2655	5502.2561 5515.4115	.9 90 .0	282.4292 282.7433	6347.5958 6361.7251
.6	244.1017	4741.6765	.9	263.5796	5528.5826	.1	283.0575	6375.8701
.8	244.4159	4753.8894	84.0	263.8938	5541.7694	.2	283.3717	6390.0309
.9	244.7301	4766.1181	.1	264.2079	5554.9720		283.6858	6404.2073
78.0	245.0442	4778.3624	.2	264.5221	5568.1902	.4	284.0000	6418.3995
.1 .2 .3	$245.3584 \ 245.6725$	4790.6225 4802.8983	.5	264.8363 265.1504	5581.4242 5594.6739	.5	284.3141 284.6283	6432.6073 6446.8309
.3	245.9867	4815.1897	.4 .5	265.4646	5607.9392	.6 .7 .8	284.9425	6461.0701
.4	246.3009	4827.4969	.6	265.7787	5621.2203	.8	285.2566	6475.3251
.5	246.6150	4839.8198	.7	266.0929	5634.5171	.9	285.5708	6489.5958
.6	246.9292	4852.1584	.8	266.4071	5647.8296	91.0	285.8849	6503.8822
.8	247.2433 247.5575	4864.5128 4876.8828	85.0	266.7212 267 9354	5661.1578 5674.5017	.1	286.1991 286.5133	6518.1843 6532.5021
.9	247.8717	4889.2685	.1	267 3495	5687.8614	.3	286.8274	6546.8356
79.0	248.1858	4901.6692		267 6637	5701.2367	.4	287.1416	6561.1848
.1	248.5000	4914.0871	.2	267 9779	5714.6277	.5	287.4557	6575.5498
.2	248.8141	4926.5199	.5	268.2920	5728.0345	.6	287.7699	6589.9304
.3	249.1283	4938.9685	.5	268.6062	5741.4569	.7	288.0840	6604.3268
.4	249.4425 249.7566	4951.4328 4963.9127	.6 .7	268.9203 269.2345	5754.8951 5768.3490	.8	288.3982 288.7124	6618,7388 6633,1666
.6	250.0708	4976.4084	.8	269.5486	5781.8185	92.0	289.0265	6647.6101
.7	250.3843	4988.9198	.9	269.8628	5795.3038	.1	289.3407	6662.0692
.8	250.6991	5001.469	86.0	279.1770	5808.8048	.2	289.6548	6676.5441
9	251.0133	5013.9897	.1	270.4911	5822.3215	.3	289.9690	6691.0347
80 .0	251.3274 251.6416	5026.5482 5039.1225	.2	270.8053 271.1194	5835.8589 5849.4020	.4	290.2832 290.5973	6705.5410 6720.0630
.2	251.9557	5055.1225	4	271.4336	5862.9659	6	290.9115	6734.6008
.2	252.2699	5064.3180	.4	271.7478	5876.5454	.6 .7	291.2256	6749.1542
.4	252 5840	5076.9394	.6	272.0619	5890.1407	.8	291.5398	6763.7233
.4 .5 .6	252.8982	5089.5764	.7	272.3761	5903.7516	.9	291.8540	6778.3082
0.	253.2124	5102.2292	.8	272.6902	5917.3783	33.0	292.1681	6792.9087

CIRCLES.

TABLE 2 OF CIRCLES—(Continued). Diameters in units and tenths.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
00.1	200, 1000	400F 5050	05.5	200.0001	7163.0276	97.8	307.2478	7512.2078
93.1	292.4823	6807.5250	95.5	300.0221	7178.0366	.9	307.5619	7527.5780
.2	292.7964	6822.1569	.6	300.3363	7178.0300	98.0	307.8761	7542.9640
.3	293.1106	6836.8046	.7	300.6504	7193.0012	.1	308.1902	7558.3656
.4	293.4248	6851.4680	.0	300.9040	7223.1577	.2	308.5044	7573.7830
.5	293.7389	6866.1471		301.2787	7238.2295	.3	308.8186	7589.2161
.6	294.0531	6880.8419	96.0	301.9071	7253.3170	.3	309.1327	7604.6648
.7	294.3672	6895.5524 6910.2786	$\frac{.1}{.2}$	302.2212	7268.4202	.5	309.4469	7620.1293
.9	294.0814	6925.0205	.2	302.5354	7283.5391	.6	309.7610	7635.6095
94.0	294.9950	6939.7782	.3	302.8495	7298.6737	.7	310.0752	7651.1054
.1	295.6239	6954.5515	.5	303.1637	7313.8240	.8	310.3894	7666.6170
.2	295.9380	6969.3406	.6	303.4779	7313.0240	.9	310.7035	7682.1444
	296.2522	6984.1453	.7	303.7920	7344.1718	99.0	311.0177	7697.6874
.4	296.5663	6998.9658	.8	304.1062	7359.3693	.1	311.3318	7713.2461
.5	296.8805	7013.8019	.0	304,1002	7374.5824	.2	311.6460	7728.8206
.6	297.1947	7013.6019	97.0	304.7345	7389.8113	.3	311.9602	7744.4107
.7	297.5088	7043.5214	.1	305.0486	7405.0559	.4	312.2743	7760.0166
.8	297.8230	7058.4047	.2	305,3628	7420.3162	.5	312.5885	7775.6382
.9	298.1371	7073.3037	.3	305,6770	7435.5922	.6	312.9026	7791.2754
95.0	298.4513	7088.2184	.4	305.9911	7450.8839	.7	313.2168	7806.9284
.1	298.7655	7103.1488	.5	306,3053	7466.1913	.8	313.5309	7822.5971
.2	299.0796	7118.0950	.6	306,6194	7481.5144	.9	313.8451	7838.2815
.3	299.3938	7133.0568	.7	306.9336	7496.8532	100.0	314.1593	7853.9816
.4	299,7079	7148.0343		000.5000	1 100:000	100.0	011.1000	,000,0010
. 2	200.1010	7140.0040						

Circumferences when the diameter has more than one place of decimals.

Diam.	Cîrc.	Diam.	Circ.	Diam.	Circ.	Diam.	Circ.	Diam.	Circ.
.1	.314159	.01	.031416	.001	.003142	.0001	.000314	.00001	.000031
.2	.628319 .942478	.02	.062832	.002	.006283	.0002	.000628	.00002	.000063
.0	1.256637	.04	.125664	.003	.012566	.0004	.001257	.00004	.000126
.5	1 570796	.05	.157080	.005	.015708	.0005	.001571	.00005	.000157
.6	1.884956 2.199115	.06	.188496	.006	.018850	.0006	.001885	.00006	.000188
.8	2.199113	.08	.251327	.007	.021991	.0008	.002133	.00008	.000220
.9	2.827433	.09	.282743	.009	.028274	.0009	.002827	.00009	.000283

Examples.

			•	
Diameter = 3	.12699		Circumfce =	9.823729
Circumferen	ce=	Sum of	Diameter =	Sum of
Circ for dia of	3.1	= 9.738937	Dia for circ of	9.738937 = 3.1
66	.02	= .062832		.084792
"	.006 .0009	= .018850 $= .002827$	66	.062832 = .02
44,	.00009	- = .002821	. 66	.021960
		9.823729	•	.018850 = .006
			66	.003110 $.002827 = .0009$
				.000283
			64	.000283 = .00009
				3.12699

CIRCLES.

TABLE 3 OF CIRCLES.

Diams in units and twelfths; as in feet and inches.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
Ft.In	Feet.	Sq. ft.	F t. In		Sq. ft.	Ft.In.	Feet.	Sq. ft.
			5 .0	15.70796	19.63495	10 0	31.41593	78.53982
0 1 2 3 4 5 6 7 8	.261799	.005454	1	15.96976	20.29491	1	31.67773	79.85427
2	.523599	.021817	2 3 4 5 6 7	16.23156	$\begin{array}{c} 20.96577 \\ 21.64754 \end{array}$	2 3	31.93953 32.20132	81.17963 82.51589
3	.785398 1.047198	.049087	3 4	16.49336 16.75516	22.34021	1	32.46312	83.86307
5	1.308997	.136354	5	17.01696	23.04380	5	32.72492	85.22115
6	1.570796	.196350	6	17.27876	23.75829	4 5 6 7 8	32.98672	86.59015
7	1.832596	.267254	7	17.27876 17.54056	24.48370	7	33.24852	87.97005
8	2.094395	.349066	8	17.80236	25.22001	8	33.51032	89.36086
9	2.356195	*441786	9	18.06416	25.96723	9	33.77212	90.76253
10	2.617994	.545415	10	18.32596	26.72535	10	34.03392	92.17520 93.59874
11	2.879793	.659953	11	18.58776	27.49439	11	34.29572	93.59874
1 0	3.14159	.785398	6 0	18.84956	28.27433	11 0	34.55752	95.03318
Ţ	3.40339	.921752	1	19.11136	29.06519 29.86695	1	34.81932 35.08112	96.47853 97.93479
2	3.66519 3.92699	1.06901 1.22718	2 2	19.37315 19.63495	30.67962	2 3	35.34292	99.40196
3 1	4.18879	1.39626	4	19.89675	31.50319	4	35.60472	100.8800
1 2 3 4 5 6 7 8	4.45059	1.57625	2 3 4 5 6 7 8	20.15855	32.33768	5	35.86652	102.3690
6	4.71239	1.76715	6	20.42035	33.18307	6	36.12832	103.8689
7	4.97419	1.96895	7	20.68215	34.03937	6 7	36.39011	105.3797
8	5.23599	2.18166	8	20.94395	34.90659	8	36.65191	106.9014
9	5.49779	2.40528	9	21.20575	35.78470	9	36.91371	108.4340
9 10	5.75959	2.63981	10	21.46755	36.67373	10	37.17551	109.9776
11	6.02139	2.88525	_ 11	21.72935	37.57367	11	37.43731	111.5320
2 0	6.28319	3.14159	7 0	21.99115	38.48451	12 0	37.69911	113.0973
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	6.54498	3.40885	1	22.25295 22.51475	39.40626	1	37.96091	114.6736
2	6.80678	3.68701	22 9	22.51475	40.33892 41.28249	2 3	38.22271 38.48451	116.2607 117.8588
- 5 - 1	7.06858	3.97608 4.27606	1	23.03835	42.23697	1	38.74631	119.4678
4 5 6 7	7.59218	4.58694	1 2 3 4 5 6 7	23.30015	43 20235	4 5	39.00811	121.0877
6	7.85398	4.90874	6	23.56194	14.17865	6	39.26991	122,7185
7	8.11578	5.24144	7	23.82374	45.16585	6 7	39.53171	124.3602
8	8.37758	5.58505	8	24.08554	46.16396	8	39.79351	126.0128
9	8.63938	5.93957	9	24.34734	47.17298	9	40.05531	127.6763
10	8.90118	6.30500	10	24.60914	48.19290	10	40.31711	129.3507
11	9.16298	6.68134	8 11 8 0	24.87094	49.22374	11	40.57891	131.0360
3 0 1 2 3	9.42478	7.06858	8 0	25.13274	50.26548	13 0	40.84070	132.7323
1	9.68658	7.46674	$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	25.39454 25.65634	51.31813 52.38169	$\frac{1}{2}$	41.10250 41.36430	134.4394 136.1575
2	9.94838	7.87580 8.29577	2	25.91814	53.45616	3	41.62610	137.8865
4	10.47198	8.72665	4	26.17994	54.54154	4	41.88790	139.6263
5	10.73377	9.16843	$\hat{5}$	26.44174	55.63782	5	42.14970	141.3771
4 5 6 7 8	10.99557	9.62113	5 6 7 8	26.70354	56.74502	4 5 6 7 8	42.41150	143.1388
7	11.25737	10.08473	7	26.96534	57.86312	7	42.67330	144.9114
8	11.51917	10.55924	8	27.22714	58.99213	8	42.93510	146.6949
9	11.78097	11.04466	9 10	27.48894	60.13205	9	43.19690	148.4893
10		11.54099	10	27.75074	61.28287	10	43.45870	150.2947
11	12.30457	12.04823	11	28.01253	62.44461	11 14 0	43.72050	152.1109
4 0	$\begin{vmatrix} 12.56637 \\ 12.82817 \end{vmatrix}$	12,56637	9 0	28.27433 28.53613	63.61725 64.80080	14 0	43.98230 44.24410	153.9380 155.7761
9	13.08997	13.09542 13.63538	2	28.79793	65.99526	2	44.50590	157.6250
2	13.35177	14.18625	3	29.05973	67.20063	1 2 3 4 5 6 7	41.76770	159.4849
4	13.61357	14.74803	4	29.32153	68.41691	4	45.02949	161.3557
5	13.87537	15.32072	5	29.58333	69.64409	5	45.29129	163.2374 165.1300
6	14.13717	15.90431	6	29.84513	70.88218	6	45.55309	165.1300
7	14.39897	16.49882	7	30.10693	72.13119	7	45.81489	167.0335
4 0 1 2 3 4 5 6 7	14.66077	17.10423 17.72055	9 0 1 2 3 4 5 6 7 8	30.36873	73.39110	8	46.07669	168.9479
9	14.92257	17.72055	9		74.66191	9	46.33849	170.8732 172.8094
10 11	15.18436	18.34777	10 11	30.89233	75.94364 77.23627	10	46.60029 46.86209	172.8094 174.7565
11	. 15.44616	18.98591	1 11	31.15413	17,20021	11	10,00209	174,7000

CIRCLES.

TABLE 3 OF CIRCLES-(Continued).

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
15 0	47.12389	176.7146	20 0	62.83185	314.1593	25 0	78.53982	490.8739
1	47.38569	178.6835	1	63.09365	316.7827	1	78.80162	494.1518
2 3	47.64749	180.6634	$\frac{\tilde{2}}{3}$	63.35545	319.4171	2 3 4 5 6 7 8	79.06342	497.4407
3	47.90929	182.6542	3	63.61725	322.0623	3	79.32521	500.7404
4	48.17109	184.6558	. 4	63.87905	324.7185	4	79.58701	504.0511
4 5 6 7 8 9	48.43289	186.6684	4 5 6 7	64.14085	327.3856	5	79.84881	507.3727
6	48.69469	188.6919	6	64.40265	330.0636	6	80.11061	510.7052
7	48.95649	190.7263	7	64.66445	332.7525	7	80.37241	514.0486
8	49.21828	192.7716	8	64.92625	335.4523	8	80.63421	517.4029
	49.48008	194.8278	9	65.18805	338.1630	9	80.89601	520.7681
10	49.74188	196:8950	10 11	65.44985	340,8846	10	81.15781	524.1442
16 ¹¹	50.00368	198.9730 201.0619	21 0	65.71165 65.97345	343.6172	20 0	81.41961 81.68141	527.5312
10 0	50.52728	203.1618	1	66.23525	346,3606	20 0 1	81.94321	530.9292
9	50.78908	205.1016	9	66.49704	349.1149 351.8802	2	82,20501	534.3380 537.7578
2 3	51.05088	205.2725 207.3942	$\frac{2}{3}$	66.75884	354,6564	2 3	82.46681	541.1884
1	51.31268	209.5268	4	67.02064	357.4434	4	82.72861	544.6300
5	51.57448	211.6703	5	67.28244	360,2414	5	82.99041	548.0825
6	51.83628	213.8246	6	67.54424	363,0503	6	83.25221	551.5459
4 5 6 7 8 9	52.09808	215.9899	5 6 7 8 9	67.80604	365.8701	6 7 8	83.51400	555.0202
8	52.35988	218.1662	8	68.06784	368,7008	8	83.77580	558.5054
ğ	52.62168	220.3533	9	68.32964	371,5424	9	84,03760	562.0015
10	52.88348	222.5513	10	68.59144	374.3949	10	84.29940	565.5085
11	53,14528	224.7602	11	68.85324	377.2584	11	84.56120	569,0264
17 0	53.40708	226.9801	22 0	69.11504	380,1327	27 0	84.82300	572.5553
1	53.66887	229.2108 231.4525	1	69.37684	383.0180	1	85.08480	576.0950
2	53.93067	231.4525	2	69.63864	385.9141	2	85.34660	579.6457
3	54.19247	233.7050	3	69.90044	388.8212	3	85.60840	583.2072
1 2 3 4 5 6 7	54.45427	235.9685	2 3 4 5 6 7	70.16224	391.7392	2 3 4 5	85.87020	586.7797
5	54.71607	238.2429 240.5282	_5	70.42404	394.6680	5	86.13200	590.3631
6	54.97787	240.5282	. 6	70.68583	397.6078	6 7	86.39380	593.9574
7	55.23967	242.8244	. 7	70.94763	400.5585		86.65560	597.5626
8 9	55.50147	245.1315	8 9	71.20943	403.5201	8 9	86.91740	601.1787
	55.76327	247.4495	10	71.47123 71.73303	406.4926	10	87.17920	604.8057
10 11	56.02507	249.7784 252.1183	11	71.75505	409.4761 412.4704	11	87.44100 87.70279	608.4436 612.0924
18 0	56.54867	254.4690	23 0	72.25663	415,4756	28 0	87.96459	615.7522
	56.81047	256.8307		72.51843	418.4918	1	88.22639	619,4228
1 2 3	57.07227	259.2032	5	72.78023	421,5188	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	88.48819	623.1044
3	57.33407	261.5867	3	73.04203	424.5568	3	88.74999	626.7968
4	57.59587	263.9810	4	73,30383	427.6057	4	89.01179	630.5002
5	57.85766	266.3863	5	73.56563	430 6654	5	89.27359	634.2145
4 5 6 7 8 9	58.11946	268.8025	1 2 3 4 5 6 7 8 9	73.82743	433,7361	5 6 7	89.53539	637.9397
7	58.38126	271.2296	7	74.08923	436.8177	7	89.79719	641.6758
8	58.64306	273.6676	8	74.35103	439.9102	8	90,05899	645,4228
9	58.90486	276.1165		74,61283	443.0137	9	90,32079	649.1807
10	59.16666	278.5764	10	74.87462	446.1280	10	90.58259	652.9495
11	59.42846	281.0471	11	75.13642	449.2532	11	90.84439	656.7292
19 0	59.69026	283.5287	24 0	75.39822	452.3893	29 0	91.10619	660.5199
1	59.95206	286.0213	1	75.66002	455.5364	1	91.36799	664.3214
2 3	60.21386	288.5247	3	75.92182	458.6943	2 3	91.62979	668,1339
3	60.47566	291.0391	3	76.18362	461.8632	3	91.89159	671.9572
4	60.73746	293.5644	· 4 5	76.44542	465.0430	4	92.15338	675.7915
4 5 6 7	60.99926	296.1006	5	76.70722	468.2337	5	92.41518	679.6367
6	61.26106	298.6477	6 7	76.96902	471.4352	6 7	92.67698	683,4928
6	61.52286	301.2056	7	77,23082	474.6477		92.93878	687.3591
8 9	61.78466	303.7746	8	77,49262	477.8711	8	93.20058	691.2377
10	62.04645	306.3544	9	77.75442	481.1055	9	93.46238	695.1264
10. 11	62.30825	308.9451 311.54 67	10 11	78.01622 78.27802	484,3507 487,6068	10 11	93.72418	699.0261 702.9361

CIRCLES.

TABLE 3 OF CIRCLES-(Continued).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Diams in units and twelfths; as in feet and inches.							enes.
30	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
1 94,59958 710,7908	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
2 94.77138 714.7341 2 110.4793 971.2975 3 126.1878 1267.1309 3 95.03318 718.6884 3 110.7411 975.9063 3 126.4491 1272.3616 6 93.55678 726.6297 5 111.2647 985.1566 5 126.9727 1282.9534 6 93.5678 726.6297 5 111.2647 985.1566 6 127.2345 1282.9534 7 96.08038 734.6145 7 111.7583 994.4504 7 127.4963 1293.5562 8 96.4217 738.6233 8 112.0501 999.1137 8 127.7581 1298.8749 9 96.60397 742.6131 9 112.5139 1008.4731 10 128.8139 101.25737 10 96.68577 746.6737 10 112.5737 1008.4731 11 128.5135 1314.8929 11 129.12757 750.7152 11 112.8355 1013.1691 11 128.5435 1314.8929 10 97.58397 754.7676 36 0 113.0973 1017.8760 41 0 128.82853 130.9542 1 97.65117 758.8310 1 113.3591 1022.5939 1 129.0671 1325.6267 2 113.6209 1027.8226 1 129.8289 1331.0099 1384.3657 771.0865 4 114.1445 1056.8128 4 129.8565 1341.8091 6 198.94877 775.1934 5 114.4668 1046.3467 6 130.3761 1352.6267 9 99.74557 791.7894 9 114.4095 1051.390 9 1051.390 7 130.6379 1358.8098 8 99.48577 787.5798 8 115.1917 1055.942 9 10.100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 1379.9500 10 100.0074 795.8920 10 115.7153 1069.5929 9 131.1615 1368.9981 10 100.6868 83.8365 7 118.6715 1109.8969 7 136.3510 149.966 8 10.483	30 0	94.24778	706.8583		109.9557	962.1128		125.6637	1256.6371
4 95.29498 722.6536 4 111.0029 980.5260 5 126.7109 1277.6682 6 95.81858 730.6166 6 111.5265 989.7980 7 127.4963 1282.9581 7 96.08038 734.6145 7 111.7883 994.4504 8 127.77681 1293.8740 9 96.60397 742.6431 9 112.8119 1003.7879 9 128.0199 1304.2027 10 96.66377 746.6737 10 112.5737 1008.4731 10 128.5435 131.4929 11 97.6577 740.6737 10 112.5737 1008.4731 10 128.5435 1314.8929 12 97.91297 760.7152 11 112.8355 1013.1691 11 128.5435 1314.8929 2 97.91297 762.9052 2 113.6209 1027.8226 4 10 128.8408 132.02.548 1 98.817477 7766.904 3 113.8827 1032.0623 3 129.5607 136.669 14.4445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 104.808 14.477 17.809 19 15.4535 1069.7293 9 13.1438 14.8528 10.000074 795.8920 10 115.7153 1065.5433 10 11.00.692 800.0644 11 115.9771 1070.3723 11 131.6851 1379.9500 120.00074 795.8920 10 115.7153 1065.5433 10 13.468 18.6862 3 117.0243 1089.7800 3 132.7323 1401.9848 1 100.7828 803.4420 1 116.6007 1089.0588 1 11.000.600 8 10.800 1 10.800 8 10.800 8 10.800 8 10.800 1 10.800 8 10.800 8 10.800 1 10.800 8 10.800 1 10.800 8 10.800 1 10.800 8 10.800 1 10.800 1 10.800 8 10.800 1 10.800 1 10.800 1 10.800 1 10.800 1 1	1	94.50958		1			1		1261.8785
4 95.29498 722.6536 4 111.0029 980.5260 5 126.7109 1277.6682 6 95.81858 730.6166 6 111.5265 989.7980 7 127.4963 1282.9581 7 96.08038 734.6145 7 111.7883 994.4504 8 127.77681 1293.8740 9 96.60397 742.6431 9 112.8119 1003.7879 9 128.0199 1304.2027 10 96.66377 746.6737 10 112.5737 1008.4731 10 128.5435 131.4929 11 97.6577 740.6737 10 112.5737 1008.4731 10 128.5435 1314.8929 12 97.91297 760.7152 11 112.8355 1013.1691 11 128.5435 1314.8929 2 97.91297 762.9052 2 113.6209 1027.8226 4 10 128.8408 132.02.548 1 98.817477 7766.904 3 113.8827 1032.0623 3 129.5607 136.669 14.4445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 1341.8091 14.445 1036.8128 4 129.8525 104.808 14.477 17.809 19 15.4535 1069.7293 9 13.1438 14.8528 10.000074 795.8920 10 115.7153 1065.5433 10 11.00.692 800.0644 11 115.9771 1070.3723 11 131.6851 1379.9500 120.00074 795.8920 10 115.7153 1065.5433 10 13.468 18.6862 3 117.0243 1089.7800 3 132.7323 1401.9848 1 100.7828 803.4420 1 116.6007 1089.0588 1 11.000.600 8 10.800 1 10.800 8 10.800 8 10.800 8 10.800 1 10.800 8 10.800 8 10.800 1 10.800 8 10.800 1 10.800 8 10.800 1 10.800 8 10.800 1 10.800 1 10.800 8 10.800 1 10.800 1 10.800 1 10.800 1 10.800 1 1	2	94.77138	714.7341	2	110.4793	971.2975	2		1267.1309
7 96.0898 734.6145 7 111.7883 994.4504 7 127.7681 1293.5746 99 137 8 127.7561 1293.8749 10 96.86577 746.6737 10 112.8319 1003.7879 10 128.9137 11 128.5435 1314.8929 131.0973 1017.8760 11 128.5435 1314.8929 129.0671 1326.6267 1326.	3	95.03318	718.6884	3	110.7411			126.4491	
7 96.0898 734.6145 7 111.7883 994.4504 7 127.7681 1293.5746 99 137 8 127.7561 1293.8749 10 96.86577 746.6737 10 112.8319 1003.7879 10 128.9137 11 128.5435 1314.8929 131.0973 1017.8760 11 128.5435 1314.8929 129.0671 1326.6267 1326.	4			4 5			4		
7 96.0898 734.6145 7 111.7883 994.4504 7 127.7681 1293.5746 99 137 8 127.7561 1293.8749 10 96.86577 746.6737 10 112.8319 1003.7879 10 128.9137 11 128.5435 1314.8929 131.0973 1017.8760 11 128.5435 1314.8929 129.0671 1326.6267 1326.	6			6			9		
10	7			7	111.5205		7	127.2040	
10	8			8	112.0501		8	127.7581	
31 0 97.38937 754.7676 754.7676 36 0 113.0973 1017.8760 41 0 128.6485 1314.8922.543 134.0723 1017.8760 41 0 128.6485 1320.2543 132.02543 132.02543 1 128.855 1018.1661 11 128.6585 1018.1661 11 128.6585 1018.669 1 128.6585 1280.2543 1 128.6585 1280.2543 1 128.6585 1280.2543 1 128.6585 1280.2543 1 128.6585 1018.660 1 128.6585 1280.2543	9			9	112.3119		9		1304.2027
1 197.65117 758.8310 1 1133.591 1022.5939 1 129.0671 1325.6529 133.1009 133.1009 1325.6529 129.3289 131.009 1325.6529 129.3289 131.009 133.6027.3226 2 129.3289 131.009 133.6027.3226 2 129.3289 1383.0099 1363.6441 144.445 1036.8128 4 129.5957 1384.041 136.6491 144.4445 1036.8128 4 129.5852 1341.801 136.6491 144.4445 1036.8128 4 129.5852 1341.801 136.6491 144.4445 1036.8128 4 129.5852 1341.801 1362.6529 130.6379 1362.6529 130.6379 136.26520 130.0436 1362.6529 130.6379 1362.6529 130.6379 1363.585 1362.6529 1362.6529 131.1615 1363.585 1363.688 1362.6529 1362.6529 9 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 1362.6529 1362.6529 <td></td> <td></td> <td>746 6737</td> <td></td> <td>112.5737</td> <td></td> <td></td> <td>128.2817</td> <td>1309.5424</td>			746 6737		112.5737			128.2817	1309.5424
1 197.65117 758.8310 1 1133.591 1022.5939 1 129.0671 1325.6529 133.1009 133.1009 1325.6529 129.3289 131.009 1325.6529 129.3289 131.009 133.6027.3226 2 129.3289 131.009 133.6027.3226 2 129.3289 1383.0099 1363.6441 144.445 1036.8128 4 129.5957 1384.041 136.6491 144.4445 1036.8128 4 129.5852 1341.801 136.6491 144.4445 1036.8128 4 129.5852 1341.801 136.6491 144.4445 1036.8128 4 129.5852 1341.801 1362.6529 130.6379 1362.6529 130.6379 136.26520 130.0436 1362.6529 130.6379 1362.6529 130.6379 1363.585 1362.6529 1362.6529 131.1615 1363.585 1363.688 1362.6529 1362.6529 9 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 131.1615 1363.585 137.0211 1362.6529 1362.6529 1362.6529 <td></td> <td>97.12757</td> <td>750.7152</td> <td>11</td> <td>112.8355</td> <td>1013.1691</td> <td>11</td> <td>128.5435</td> <td>1314.8929</td>		97.12757	750.7152	11	112.8355	1013.1691	11	128.5435	1314.8929
2 97,91297 762,9052 2 113,6209 1027,3226 2 129,3289 1381,0099 4 98,43657 771,0865 4 114,1445 1056,8128 4 129,8525 1341,8091 5 98,69837 775,1934 5 114,4063 1041,5743 5 130,1143 1347,2251 6 98,69017 783,4401 7 114,9299 1051,1300 7 130,6379 1358,0898 99,48377 787,5798 8 115,1917 1055,9242 8 130,8997 1365,8385 10 100,0074 795,8920 10 115,7153 1065,5453 10 131,4233 1374,4686 11 100,2692 800,0644 11 115,9771 1070,3723 131,4685 1379,9500 131,0463 131,469 1385,4424 101,5782 812,6471 2 116,5067 1080,0588 1 132,2087 1390,9456 101,8400 825,3280 5 117,0243 1094,6705 5 101,8400 825,3280 5 117,5479 1094,6705 5 103,2941 1407,5208 8 102,6254 838,1071 8 118,3363 1114,3055 133,2559 1431,0673 131,490 816,6810 111,03,4108 850,9844 101,1886 133,4043 830,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 850,9844 101,4198 870,0344 101,4198 850,9844 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 870,0344 101,4198 101,4198 870,0344 101,4198 870,0344 101,4198 101,419	31 0		754.7676	36 0	113.0973	1017.8760	41 0		1320.2543
4 98.483657 771.0865 4 114.1446 1036.8128 4 129.8525 1341.8091 5 98.96017 775.1931 6 114.6681 1046.3467 7 130.6379 1358.0898 8 99.48377 787.5798 8 115.1917 1055.9242 8 130.8997 1363.5385 9 99.74557 791.7304 9 115.7153 1065.7293 9 131.1615 1368.9981 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 131.1615 1368.9981 32 0 100.5310 804.2477 37 0 116.2389 1075.2101 42 0 131.4969 1385.4424 1 100.7928 808.4420 1 116.6007 1080.0588 1 132.2927 1390.4568 3 101.8400 825.3280 5 117.5479 1009.5629 5 133.2752 1401.9818 4 102.6544 812.3886	1			1			1		1325.6267
4 98.483657 771.0865 4 114.1446 1036.8128 4 129.8525 1341.8091 5 98.96017 775.1931 6 114.6681 1046.3467 7 130.6379 1358.0898 8 99.48377 787.5798 8 115.1917 1055.9242 8 130.8997 1363.5385 9 99.74557 791.7304 9 115.7153 1065.7293 9 131.1615 1368.9981 10 100.0074 795.8920 10 115.7153 1065.5453 10 131.4233 131.1615 1368.9981 32 0 100.5310 804.2477 37 0 116.2389 1075.2101 42 0 131.4969 1385.4424 1 100.7928 808.4420 1 116.6007 1080.0588 1 132.2927 1390.4568 3 101.8400 825.3280 5 117.5479 1009.5629 5 133.2752 1401.9818 4 102.6544 812.3886	2			2 9			2 2		
9 99.74557 791.7304 795.8920 10 100.0074 795.8920 11 100.2692 800.0644 11 115.9751 1070.3723 11 131.6851 1379.9500 32 0 100.5310 804.2477 1 106.7928 808.4420 1 116.5007 1080.0588 1 322.4705 1396.4568 3 101.3164 816.8632 3 117.0243 1089.7820 3 132.4705 1396.4568 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9380 6 102.1018 829.5768 6 117.8097 1104.4662 7 102.8636 833.8365 7 118.0715 1109.3804 7 133.7795 1442.1911 103.1498 846.6810 11 103.1499 846.6810 11 103.1498 859.6237 2 104.1962 863.9588 3 100.1659 1144.0851 135.5855 1462.2012 135.5858 1462.2012 135.5858 1462.2012 135.5858 1462.2012 150.5052 855.8087 7 121.2131 1160.5052 855.8087 7 121.2131 1160.5052 800.2052 810.26634 834.4131 6 120.9513 1164.1564 6 136.6593 1486.1697 100.68286 899.0409 11 106.8142 90.79203 122.5221 1194.5966 100.8848 894.6176 9 121.7367 1174.2575 8 122.3831 122.2521 119.4826 10 137.7665 1509.0355 184.4920 10 106.8142 90.79203 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 107.0759 912.3763 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 109.1703 948.4174 9 124.8783 1220.5985 7 140.6627 1561.1152 1566.6564 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1	4			4			3		
9 99.74557 791.7304 795.8920 10 100.0074 795.8920 11 100.2692 800.0644 11 115.9751 1070.3723 11 131.6851 1379.9500 32 0 100.5310 804.2477 1 106.7928 808.4420 1 116.5007 1080.0588 1 322.4705 1396.4568 3 101.3164 816.8632 3 117.0243 1089.7820 3 132.4705 1396.4568 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9380 6 102.1018 829.5768 6 117.8097 1104.4662 7 102.8636 833.8365 7 118.0715 1109.3804 7 133.7795 1442.1911 103.1498 846.6810 11 103.1499 846.6810 11 103.1498 859.6237 2 104.1962 863.9588 3 100.1659 1144.0851 135.5855 1462.2012 135.5858 1462.2012 135.5858 1462.2012 135.5858 1462.2012 150.5052 855.8087 7 121.2131 1160.5052 855.8087 7 121.2131 1160.5052 800.2052 810.26634 834.4131 6 120.9513 1164.1564 6 136.6593 1486.1697 100.68286 899.0409 11 106.8142 90.79203 122.5221 1194.5966 100.8848 894.6176 9 121.7367 1174.2575 8 122.3831 122.2521 119.4826 10 137.7665 1509.0355 184.4920 10 106.8142 90.79203 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 107.0759 912.3763 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 109.1703 948.4174 9 124.8783 1220.5985 7 140.6627 1561.1152 1566.6564 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1	5			5			5		1347 2251
9 99.74557 791.7304 795.8920 10 100.0074 795.8920 11 100.2692 800.0644 11 115.9751 1070.3723 11 131.6851 1379.9500 32 0 100.5310 804.2477 1 106.7928 808.4420 1 116.5007 1080.0588 1 322.4705 1396.4568 3 101.3164 816.8632 3 117.0243 1089.7820 3 132.4705 1396.4568 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9380 6 102.1018 829.5768 6 117.8097 1104.4662 7 102.8636 833.8365 7 118.0715 1109.3804 7 133.7795 1442.1911 103.1498 846.6810 11 103.1499 846.6810 11 103.1498 859.6237 2 104.1962 863.9588 3 100.1659 1144.0851 135.5855 1462.2012 135.5858 1462.2012 135.5858 1462.2012 135.5858 1462.2012 150.5052 855.8087 7 121.2131 1160.5052 855.8087 7 121.2131 1160.5052 800.2052 810.26634 834.4131 6 120.9513 1164.1564 6 136.6593 1486.1697 100.68286 899.0409 11 106.8142 90.79203 122.5221 1194.5966 100.8848 894.6176 9 121.7367 1174.2575 8 122.3831 122.2521 119.4826 10 137.7665 1509.0355 184.4920 10 106.8142 90.79203 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 107.0759 912.3763 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 109.1703 948.4174 9 124.8783 1220.5985 7 140.6627 1561.1152 1566.6564 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1	6			6			6		1352.6520
9 99.74557 791.7304 795.8920 10 100.0074 795.8920 11 100.2692 800.0644 11 115.9751 1070.3723 11 131.6851 1379.9500 32 0 100.5310 804.2477 1 106.7928 808.4420 1 116.5007 1080.0588 1 322.4705 1396.4568 3 101.3164 816.8632 3 117.0243 1089.7820 3 132.4705 1396.4568 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9380 6 102.1018 829.5768 6 117.8097 1104.4662 7 102.8636 833.8365 7 118.0715 1109.3804 7 133.7795 1442.1911 103.1498 846.6810 11 103.1499 846.6810 11 103.1498 859.6237 2 104.1962 863.9588 3 100.1659 1144.0851 135.5855 1462.2012 135.5858 1462.2012 135.5858 1462.2012 135.5858 1462.2012 150.5052 855.8087 7 121.2131 1160.5052 855.8087 7 121.2131 1160.5052 800.2052 810.26634 834.4131 6 120.9513 1164.1564 6 136.6593 1486.1697 100.68286 899.0409 11 106.8142 90.79203 122.5221 1194.5966 100.8848 894.6176 9 121.7367 1174.2575 8 122.3831 122.2521 119.4826 10 137.7665 1509.0355 184.4920 10 106.8142 90.79203 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 107.0759 912.3763 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 10 137.7065 1509.0355 184.4920 10 122.5221 1194.5966 138.2911 1520.5988 10 109.1703 948.4174 9 124.8783 1220.5985 7 140.6627 1561.1152 1566.6564 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1578.6721 10 1	7			7			7		
10 100,0074 795,8920 10 115,7153 1065,5453 10 131,4233 1374,4686 100,7928 804,427 1 116,5007 105,00588 1 132,2087 1390,9456 101,15782 821,0901 4 117,2861 1094,6705 4 132,7932 1401,9848 1 102,8289 5 101,800 825,3280 5 117,6479 1099,5629 5 133,2752 1418,0676 6 102,1018 829,5768 6 117,807 1104,4662 6 133,5177 1418,6254 7 102,8366 838,8365 7 118,0715 1109,8804 7 133,7795 1424,1941 101,03,408 846,6810 11 103,4108 850,9844 11 103,4108 850,8287 1 103,3944 850,6287 2 104,1962 868,3068 3 100,1659 1149,866 3 135,5303 1457,8353 2 104,1962 868,3068 3 100,1659 149,8066 3 135,5303 1469,1864 1 105,5052 885,8087 7 121,2134 160,208 890,409 10 106,2906 890,409 10 121,9985 1184,4022 10 106,5244 894,4174 9 122,7837 122,1462 10 137,7059 123,7763 2 107,0759 912,3763 2 107,0759 912,3763 2 107,0759 912,3763 2 107,0759 912,3763 2 109,4321 908,4814 8 108,4838 934,8905 5 108,4915 10 108,8985 938,4817 7 122,5291 122,5291 119,5996 140,6863 157,8935 156,1156 108,8985 946,976 916,8438 934,8905 5 108,4916 5 108,8985 946,976 910,703,377 916,8433 2 123,6693 122,5291 119,5996 138,4910 1 138,4919 1526,2939 10 107,0759 912,3763 2 107,0377 916,8433 2 123,0457 120,9555 188,4910 1 138,4919 1526,2939 1560,5884 10 108,8849 934,8905 5 108,8985 943,8741 8 124,6165 125,1401 124,61869 10 140,8481 1578,6721 10 109,4321 952,9716 10 125,1401 124,61869 10 140,8481 1578,6721 10 109,4321 952,9716 10 125,1401 124,61869 10 140,8481 1578,6721 10 125,1401 124,61869 10 140,8481 1578,6721 10 125,1401 1246,1869 10 140,8481 1578,6721 10 125,1401 1246,1869 10 140,8481 1578,6721 10 125,1401 1246,1869 10 140,8481 1578,6721 10 125,1	8		787.5798	8	115.1917	1055.9242	8	130.8997	1363.5385
32 0 100.5310 804.2477 (100.7928) 808.4420 (116.5037) 11 100.7928 (116.5037) 100.5310 (100.5310) 804.2477 (100.5310) 42 0 131.9469 (1385.4424) 1385.4424 (100.5328) (100.538) 1 116.5007 (100.0588) 1 132.2087 (1390.9456) 1390.9456 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 1390.4598 1 132.2087 (1390.4598) 1 132.2087 (1390.4598) 1 1390.4598 1 132.2087 (1390.4598) 1 1390.4598 1 132.2087 (1390.4598) 1 1390.4598						1060.7293	9	131.1615	1368.9981
32 0 100.5310 804.2477 37 0 116.2389 1075.2101 42 0 131.9469 1385.4424 1 100.7928 808.4420 1 116.5007 1080.0588 1 132.2087 1390.9456 2 101.0546 812.6471 2 116.7625 1084.9185 2 132.4705 1396.4598 3 101.3164 816.8632 3 117.0243 1089.7800 4 132.9941 1407.5208 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9941 1407.5208 5 101.8400 825.3280 5 117.5479 1099.5629 5 133.2559 1413.0676 6 102.1018 829.5768 6 117.8097 1104.4662 6 133.5177 1418.6254 7 102.3636 838.1071 8 118.3951 1109.3804 7 133.7795 1424.1941 9 102.8872 482.3886 9 118.5951 1119.2415 9 134.3031 1429.7737 10 103.4490 846.6810 10 11.8552 12.14.1884 10 134.5649 1440.9656 1 103.3944 859.6237 1 119.6423 1139.9046						1065.5453			
1 100.7928 808.4420 1 116.5007 1080.0588 1 132.2087 1390.9456 2 101.0546 812.6471 2 116.7625 1084.9185 2 132.4705 1396.4598 4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9941 1407.5208 5 101.8400 825.3280 5 117.5479 1099.5629 5 133.2559 1413.0676 6 102.1018 829.5768 6 117.8097 1104.4662 6 133.5177 1418.6254 7 102.3636 838.3855 7 118.0715 1109.3804 7 133.7795 1424.1941 8 102.6254 838.1071 8 118.3533 1114.3055 8 134.3031 1429.7737 9 102.8872 842.3886 9 118.85691 1124.1884 10 134.5649 1440.9656 11 103.6726 855.2986 58 119.3895 1134.1149 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
3 101,3164 816,8632 3 117,0243 1094,6705 4 132,7925 1401,5782 3 132,7924 1401,5782 3 132,7924 1407,5208 5 101,8400 825,3280 5 117,5479 1099,5629 5 133,2559 1413,0676 6 102,1018 829,5768 6 117,8097 1104,4662 6 133,5177 1418,6254 7 118,0715 1109,3804 7 133,7795 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 140,355 8 134,0413 1422,1942 1424,1941 140,355 143,3031 1435,3642 144,09556 1124,1884 11 119,1409 86,6810 118,8569 1124,1884 10 134,3031 1435,3642 144,09566 141,1662 38,01134,1149 140,9816 141,1662 863,9598 119,9041 1144,0851 111,34,8267 1446,5780 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 146,4657 149,4656 3135,8739 1464,6570 316,4445 316,4447					116,2509			191,9409	
3 101,3164 816,8632 3 117,0243 1094,6705 4 132,7925 1401,5782 3 132,7924 1401,5782 3 132,7924 1407,5208 5 101,8400 825,3280 5 117,5479 1099,5629 5 133,2559 1413,0676 6 102,1018 829,5768 6 117,8097 1104,4662 6 133,5177 1418,6254 7 118,0715 1109,3804 7 133,7795 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 1424,1941 140,355 8 134,0413 1422,1942 1424,1941 140,355 143,3031 1435,3642 144,09556 1124,1884 11 119,1409 86,6810 118,8569 1124,1884 10 134,3031 1435,3642 144,09566 141,1662 38,01134,1149 140,9816 141,1662 863,9598 119,9041 1144,0851 111,34,8267 1446,5780 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 1457,8353 146,4657 149,4656 3135,8739 1464,6570 316,4445 316,4447	2		819 6171	2	116.5007	1084 9185	9	132,2007	
4 101.5782 821.0901 4 117.2861 1094.6705 4 132.9941 1407.5208 5 101.8400 825.3280 5 117.5479 1099.5629 5 133.2559 1413.0676 6 102.1018 829.5768 6 117.8077 1104.4662 6 133.5177 1418.6254 7 102.3636 833.8365 7 118.0715 1109.3804 7 133.7795 1424.1941 8 102.6234 838.1071 9 118.5951 1119.2415 9 134.0413 1429.7737 9 102.8726 855.2986 850.9844 11 119.1187 1129.1462 9 134.3031 1435.3642 1 1435.3642 1 134.5364 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 134.53642 1 135.5331 1	รี		816.8632	3	117.0243	1089.7890	3	132.7323	
6 102.1018 829 5768 6 117.8097 1104.4662 7 102.3636 833.8365 7 118.0715 1109.3804 8 102.6254 838.1071 8 118.3353 1114.3055 9 102.8872 842.3886 9 118.5951 1119.2415 9 134.3031 1429.7737 9 102.8872 842.3886 9 118.5951 1119.2415 10 103.1490 846.6810 10 118.8569 1124.1884 10 134.5649 1440.9656 11 103.4108 850.9844 11 119.1187 1129.1462 11 103.9314 859.6237 119.6423 1139.0946 11 103.9314 859.6237 119.6423 1139.0946 11 144.0851 144.0856 104.4580 868.3068 3 120.1659 1149.0866 3 135.8739 1469.1364 1 104.7198 872.6646 4 120.4277 1154.0990 4 136.1357 1474.8032 1 105.5052 885.8037 7 121.2131 1169.2015 5 136.3975 1480.4810 1 106.52434 881.4131 6 120.9513 1164.1564 6 136.6593 1480.4810 1 106.2966 890.2052 8 121.4749 1174.2575 8 137.1829 1497.5798 1 106.5244 907.9203 11 122.2663 1189.4910 1 137.9683 1497.5798 1 137.9683 1514.7767 1 179.3244 10 137.9685 150.90335 11 122.5630 119.7015 119.7065 120.9355 119.7015 119.7015 119.7015 119.7015 119.7015 119.7015 119.7015 119.7015 119.7015 119.7015 1	4			4		1094.6705	4		
8 102,624 838,1071 8 118,3353 1114,3055 9 134,3031 1429,7737 9 102,8872 842,3886 9 118,5951 1111,2415 9 134,3031 1435,3642 10 103,4140 846,6810 10 118,8569 1124,1884 10 134,5649 1440,9656 30 103,6726 855,2986 38 0 119,8805 1134,1149 43 0 135,0885 1452,2012 1 103,9344 850,6237 1 119,6423 1139,0946 1 135,503 1457,8353 2 104,1962 863,9598 2 15,99041 114,0851 2 135,6121 1463,4804 3 104,4580 868,3068 3 120,1659 1149,0866 3 135,8739 1469,1364 4 104,7198 877,0334 5 120,6895 1159,1222 5 136,6121 1463,4804 6 105,2434 881,4131 6 120,9513 1164,1564 6 136,6559 1480,4810 7 105,5052 885,8037 7 121,2131 1169,2015 8 137,1829 1491,8693 8 10,7670 890,2052 8 121,4749 1174,2575 8 137,1829 1497,5798 9 106,0288 894,6176 9 121,7367				5	117.5479		5	133.2559	
8 102,624 838,1071 8 118,3353 1114,3055 9 134,3031 1429,7737 9 102,8872 842,3886 9 118,5951 1111,2415 9 134,3031 1435,3642 10 103,4140 846,6810 10 118,8569 1124,1884 10 134,5649 1440,9656 30 103,6726 855,2986 38 0 119,8805 1134,1149 43 0 135,0885 1452,2012 1 103,9344 850,6237 1 119,6423 1139,0946 1 135,503 1457,8353 2 104,1962 863,9598 2 15,99041 114,0851 2 135,6121 1463,4804 3 104,4580 868,3068 3 120,1659 1149,0866 3 135,8739 1469,1364 4 104,7198 877,0334 5 120,6895 1159,1222 5 136,6121 1463,4804 6 105,2434 881,4131 6 120,9513 1164,1564 6 136,6559 1480,4810 7 105,5052 885,8037 7 121,2131 1169,2015 8 137,1829 1491,8693 8 10,7670 890,2052 8 121,4749 1174,2575 8 137,1829 1497,5798 9 106,0288 894,6176 9 121,7367			829.5768	6	117.8097	1104.4662	6	133.5177	
9 102,8872 842,3886 9 118,5951 1119,2415 9 134,3031 1435,3642 10 103,1490 846,6810 10 118,8569 1124,1884 10 134,5649 1440,9656 33 0 103,6726 855,2986 38 0 119,3805 1134,1149 11 134,8267 1446,65780 1 103,9344 859,6237 1 119,1887 1139,0946 1 135,3503 1457,8353 2 104,1962 863,9598 2 119,9041 1144,0851 2 135,6121 1463,4804 4 104,7198 872,6646 4 120,4277 1154,0990 4 136,1357 1474,8032 5 104,9816 877,0334 5 120,6885 1159,1222 5 136,3975 1480,4810 6 105,2434 881,4131 6 120,9513 1164,1561 6 136,6593 1480,4810 7 105,5052 885,8087 7 121,2131 1169,2015 8 137,1829 1497,5798 9 106,0288 894,6176 9 121,7367 1179,3244 11 137,9683 154,4479 1179,3244 10 106,8142 907,9203 11 122,2603 1189,4910 11 137,9683 154,4797 2 107,3377 91	7			6		1111 2055	7	133,7795	
10 103,1490 846,6810 10 118,8569 1124,1884 10 134,5649 1440,9656 38 0 103,6726 855,2986 38 0 119,3805 1134,1149 43 0 134,8267 1446,5780 2 104,1962 863,9598 2 119,8042 1139,9046 1 135,3853 1457,8353 2 104,1962 863,3688 3 120,1659 1149,0866 3 135,8739 1463,4804 4 104,7198 872,6646 4 120,4277 1154,090 4 136,1857 1474,8032 5 104,9816 877,0334 5 120,6895 1159,1222 5 136,3975 1480,4810 6 105,2434 881,4131 6 120,9513 1164,1564 7 136,921 149,1869 8 105,7670 890,2052 8 121,4749 1174,2575 7 136,921 149,1869 1 106,62906 899,0497 10 1				o l					
11 103.4108 850.9844 11 119.1187 1129.1462 11 134.1149 43 0 135.0885 1452.2012 1 103.6726 855.2986 38 0 119.6385 1134.1149 43 0 135.0885 1452.2012 1 103.9344 859.6237 1 119.6423 1139.0946 1 135.0853 1457.8353 2 104.1962 868.3668 3 120.1659 1149.0866 2 135.0851 1452.2012 1463.4804 4 104.7198 872.6646 4 120.4277 1154.0990 4 136.357 1469.1364 5 104.9816 877.0334 5 120.6895 1159.1222 5 136.3975 1480.4810 6 105.2434 881.4131 6 120.9513 1164.1564 6 136.6593 1480.4910 8 105.7670 890.2052 8 121.4749 1174.2575 8 137.829 1497.5798 8 137.4447					118.8569	1124.1884			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			850.9844	ii	119.1187	1129.1462		134.8267	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 0	103.6726	855.2986		119.3805	1134.1149	43 0	135.0885	1452.2012
4 104.7198 572.6646 4 120.4277 1154.0990 4 136.1357 1474.8032 5 104.9816 677.0334 6 120.9513 1159.1222 5 136.3975 1480.4810 6 105.2434 881.4131 6 120.9513 1164.1564 7 105.5052 885.8087 7 121.2131 1169.2015 8 137.1829 1497.5798 7 126.2131 1169.2015 8 137.1829 1497.5798 8 105.7670 890.2052 8 121.4749 1174.2575 8 137.1829 1497.5798 9 106.0288 894.6176 9 121.7367 1179.3244 9 137.4065 1509.0352 11 106.5524 903.4751 11 122.2603 1189.4910 11 137.9683 1514.7767 34 0 106.8142 907.9203 90 122.5221 1194.5906 11 137.9683 1514.7767 3 107.5799 912.3763 1 122.7839 1199.7011 1 138.4919 1526.2959 3 107.5995 921.3211 3 123.3075 1209.9550 3 139.0155 1537.8587 4 107.8613 925.8099 4 123.5693 1215.0982 4 139.2773 1543.6565 108.1231 930.3096 5 123.8311 1220.2524 5 139.5391 1549.4651 6 108.3849 934.8202 6 124.0929 1225.4175 6 139.8009 1555.2847 7 108.6467 939.3417 7 124.3547 1230.5935 7 140.0627 1561.1152 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.910.8481 1578.6721				1		1139.0946			1457.8353
4 104.7198 572.6646 4 120.4277 1154.0990 4 136.1357 1474.8032 5 104.9816 677.0334 6 120.9513 1159.1222 5 136.3975 1480.4810 6 105.2434 881.4131 6 120.9513 1164.1564 7 105.5052 885.8087 7 121.2131 1169.2015 8 137.1829 1497.5798 7 126.2131 1169.2015 8 137.1829 1497.5798 8 105.7670 890.2052 8 121.4749 1174.2575 8 137.1829 1497.5798 9 106.0288 894.6176 9 121.7367 1179.3244 9 137.4065 1509.0352 11 106.5524 903.4751 11 122.2603 1189.4910 11 137.9683 1514.7767 34 0 106.8142 907.9203 90 122.5221 1194.5906 11 137.9683 1514.7767 3 107.5799 912.3763 1 122.7839 1199.7011 1 138.4919 1526.2959 3 107.5995 921.3211 3 123.3075 1209.9550 3 139.0155 1537.8587 4 107.8613 925.8099 4 123.5693 1215.0982 4 139.2773 1543.6565 108.1231 930.3096 5 123.8311 1220.2524 5 139.5391 1549.4651 6 108.3849 934.8202 6 124.0929 1225.4175 6 139.8009 1555.2847 7 108.6467 939.3417 7 124.3547 1230.5935 7 140.0627 1561.1152 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.9782 10.910.8481 1578.6721				2			2	135.6121	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	104.4580		3			3	135.8739	
6 105,2434 881,4131 6 120,9513 1164,1564 6 136,6593 1486,1697 7 105,5052 885,8087 7 121,2131 1169,2015 7 136,9211 1491,8693 8 105,7670 890,2052 8 121,4749 1174,2575 8 137,1829 1497,5798 9 106,0288 894,6176 9 121,7367 1179,3244 9 137,4447 1503,3012 10 106,2906 899,0409 10 121,9985 1184,4022 10 137,7065 1509,0335 11 106,5524 903,4751 11 122,2603 1189,4910 11 137,9683 1514,7767 34 0 106,8142 907,9203 39 0 122,5221 1194,5906 4 0 138,2301 1520,5308 1 107,7599 912,3763 1 122,7839 1199,7011 1 138,4919 1520,5308 3 107,5995 921,3211 3	4	104.7198	877 033.1	4			4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				8			6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7		1169.2015	7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			890.2052	8		1174.2575	8	137.1829	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	106.0288	894.6176		121.7367	1179.3244			1503.3012
34 0 106.8142 907.9203 39 0 122.5221 1194.5906 44 0 138.2301 1520.5308 1 107.0759 912.3763 1 122.7839 1199.7011 1 138.4919 1526.2950 2 107.3877 916.8483 2 123.0375 1209.9550 2 188.7587 1532.0718 3 107.5995 921.3211 3 123.3075 1209.9550 3 139.0155 1537.8587 4 107.8613 925.8099 4 123.5693 1215.0982 4 139.2773 1543.6565 5 108.1231 930.3096 5 123.8311 1220.2524 5 139.5391 1549.4651 6 108.3849 934.8202 6 124.0929 1225.4175 6 139.8009 1555.2847 7 108.6467 939.3417 7 124.3547 1230.5935 7 140.0627 1561.1152 8 108.9085 943.8744 9 1						1184.4022			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							11.	137.9683	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			907.9205		122,5221		44 0	138.2301	1520.5508
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		916.8433	2	122.7009		2	138 7537	1532 0718
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3			3			3		
6 108.3849 934.8202 6 124.0929 1225.4175 6 139.8009 1555.2847 7 108.6467 939.3417 7 124.3547 1230.5935 7 140.0627 1561.1152 8 108.9085 943.8741 8 124.6165 1235.7804 8 140.3245 1566.9566 9 109.1703 948.4174 9 124.8783 1240.9782 9 140.5863 1572.8089 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721	4	107.8613	925.8099	4			4	139.2773	
9 109.1703 948.4174 9 124.8783 1240.9782 9 140.5863 1572.8089 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721	5	108.1231	930,3096	5	123.8311	1220.2524	5		1549.4651
9 109.1703 948.4174 9 124.8783 1240.9782 9 140.5863 1572.8089 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721	6			6	124.0929		6		
9 109.1703 948.4174 9 124.8783 1240.9782 9 140.5863 1572.8089 10 109.4321 952.9716 10 125.1401 1246.1869 10 140.8481 1578.6721	7			7					
10 109,4321 952,9716 10 125,1401 1246,1869 10 140,3663 1572,3089 11 109,6939 957,5367 11 125,4019 1251,4065 11 141,1099 1584,5462	8		943.8741	8			8		1570 9090
11 109.6939 957.5367 11 125.4019 1251.4065 11 141.1099 1584.5462			952 9716					140.0803	1578 6791
3001010			957.5367					141.1099	1584.5462
			1						

CIRCLES.

TABLE 3 OF CIRCLES—(Continued).

			-		23, 43 111	-		
Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
45 0	141.3717	1590.4313	50 0	157.0796	1963.4954	55 0	172.7876	2375.8294
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	141.6335	1596.3272	1 2 3	157.3414	1970.0458	1	173.0494	2383.0344
2	141.8953	1602.2341	$\frac{2}{9}$	157.6032	1976.6072	2 3	173.3112	2390.2502
3	142.1571 142.4189	$ 1608.1518 \\ 1614.0805$	4	157.8650 158.1268	1983,1794 1989,7626	3	173.5730 173.8348	2397.4770 2404.7146
5	142.4103	1620.0201	5	158.3886	1996.3567	4 5	174.0966	2411.9632
4 5 6 7	142.9425	1625.9705	6 7	158.6504	2002.9617	6	174.3584	2419.2227
7	143,2043	1631.9319	7	158.9122	2009.5776	6 7 8	174.6202	2426.4931
8 9	143.4661	1637.9042	8	159.1740	2016.2044 2022.8421	8 9	174.8820	2433.7744
10	143.7279 143.9897	1643.8874 1649.8816	9 10	159.4358 159.6976	2022.6421	10	175.1438 175.4056	2441.0666 2448.3697
11	144.2515	1655.8866	11	159.9594	2036.1502	11	175.6674	2455.6837
46 0	144.5133	1661.9025	51 0	160.2212	2042.8206	56 0	175.9292	2463.0086
1	144.7751	1667.9294	1	160.4830	2049.5020	1	176.1910	2470.3445
2 3	145.0369	1673.9671	2	160.7448	2056.1942	1 2 3	176.4528	2477.6912
3	145.2987 145.5605	$\begin{array}{c} 1680.0158 \\ 1686.0753 \end{array}$	3	161.0066 161.2684	2062.8974 2069.6114	3	176.7146 176.9764	2485.0489 2492.4174
5	145.8223	1692.1458	5	161.5302	2076.3364	. 5	177.2382	2499.7969
6	146.0841	1698.2272	4 5 6	161.7920	2083.0723	6	177.5000	2507.1873
7	146.3459	1704.3195	7	162.0538	2089.8191	7	177,7618	2514.5886
4 5 6 7 8 9	146.6077	1710.4227	8	162.3156	2096.5768	4 5 6 7 8	178.0236	2522.0008
10	146.8695	1716.5368	9	162.5774	2103.3454 2110.1249	10	178,2854	2529.4239 2536.8579
11	147.1313 147.3931	1722.6618 1728.7977	11	162.8392	2116.1249	11	178.5472 178.8090	2544,3028
47 0	147.6549	1734.9445	52 0	163,1010 163,3628	2123.7166	57 0	179.0708	2551.7586
1	147.9167	1741.1023		163.6246	2130.5289	1	179.3326	_2559.2254
2	148.1785	$\frac{1747.2709}{1753.4505}$	1 2 3	163.8864	2137.3520	2	179.5944	2566.7030
2 3 4 5 6 7 8	148.4403	1753,4505	3	164.1482	2144.1861	2 3 4 5 6 7 8	179.8562	2574.1916 2581.6910
5	148.7021 148.9639	1759.6410 1765.8423	4	164.4100 164.6718	2151.0310 2157.8869	5	180.1180 180.3798	2589,2014
6	149.2257	1772.0546	5 6	164.9336	2164.7537	6	180.6416	2596.7227
. 7	149.4875	$\frac{1772.0546}{1778.2778}$	7	165.1954	2171.6314	7	180.9034	2604.2549
8	149.7492	1784.5119	8	165.4572	2178.5200	8	181.1652	2611.7980
10	150.0110	1790.7569 1797.0128	9	165.7190 165.9808	2185.4195	9	181.4270 181.6888	2619.3520 2626.9169
11	150.2728 150.5346	1803.2796	11	166.2426	2192.3299 2199.2512	11	181.9506	2634.4927
48 0	150.7964	1809.5574	53 0	166.5044	2206.1834	58 0	182.2124	2642.0794
1	151.0582	1815.8460	1	166.7662	2213.1266	1	182.4742	2649.6771
2	151.3200	1822 1456	2	167.0280	2220.0806	2	182.7360	2657.2856
3	151.5818 151.8436	1828.4560 1834.7774	3	167.2898 167.5516	2227.0456 2234.0214	3	182.9978 183.2596	2664.9051 2672.5354
5	152.1054	1841.1096	2 3 4 5	167.8134	2241.0082	3 4 5	183.5214	2680.1767
2 3 4 5 6 7	152.3672	1847.4528	6	168.0752	2248 0059	6 7	183.7832	2687.8289
7	152.6290^{+}	1853.8069	7	168.3370	2255.0145	7	184.0450	2695.4920
8	152.8908	1860.1719	8	168.5988	2262.0340	8	184.3068	2703.1659
9 10	153.1526 : 153.4144	1866.5478 1872.9346	10	168.8606 : 169.1224	2269.0644 2276.1057	10	184.5686 184.8304	2710,8508 2718,5467
11	153.6762	1879.3324	11	169.3842	2283.1579	11	185.0922	2726.2534
49 0	153.9380	1885.7410	54 0	169.6460	2290.2210	59 0	185.3540	2733,9710
1 ;	154.1998	1892.1605	1	169.9078	2297.2951	1	185.6158	2741.6995
2	154.4616	1898.5910	- 1 2 3	170.1696	2304.3800	2 3	185.8776	2749.4390
1 2 3 4 5 6 7 8	154.7234 154.9852	1905.0323	3 4	170.4314 170.6932	2311.4759 2318.5826	3	186.1394 186.4012	2757.1893 2764.9506
5	155 2470	1911.4846 1917.9478	5	170.0952 170.9550	2325.7003	4 5 6 7 8 9	186.6630	2772.7228
6	155.5088	1924.4218	6	171.2168	2332.8289	6	186.9248	2780.5058
7	155.7706	1930.9068	7	171.4786	2339.9684	7	187.1866	2788.2998
8	156.0324	1937.4027	5 6 7 8 9	171.7404	2347.1188	8	187.4484 187.7102	2796.1047
10	156.2942 156.5560	1943.9095 1950.4273	10	172.0022 172.2640	2354.2801 2361,4523	10	187.7102	2803.9205 2811,7472
11	156.8178	1956.9559	11	172.2040	2368.6354	11	188.2338	2819.5849
				;				

CIRCLES.

TABLE 3 OF CIRCLES-(Continued).

	Jiaius I.	n units	anu	- WELLUIK	s, as III I	eet a	nu mei	ies.
Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
60 0	188.4956	2827.4334	65 0	204.2035	3318.3072	70 0	219.9115	3848.4510
1	188.7574	2835.2928	1	204.4653	3326.8212	1	220.1733	3857.6194
$\frac{1}{2}$	189.0192	2843,1632	2	204.7271	3335.3460	2	220.4351	3866.7988
3	189.2810	2851.0444	2 3 4 5 6 7 8	204.9889	3343.8818	3	220.6969	3875.9890
4 5	189.5428	2858.9366	4 5	205.2507 205.5125	3352.4284 3360.9860	4 5	220.9587 221.2205	3885.1902 3894.4022
6	189.8046 190.0664	2866.8397 2874.7536	6	205.7743	3369.5545	6	221.4823	3903.6252
7	190.3282	2882.6785	7	206.0361	3378.1339	7	221.7441	3912.8591
4 5 6 7 8 9	190.5900	2890.6143	8	206.2979	3386.7241	2345678	222.0059	3922.1039
	190.8518	2898.5610	9	206.5597	3395.3253	9	222.2677	3931.3596
10	191.1136	2906.5186	10	206.8215	3403.9375	10	222,5295	3940.6262
11	191.3754	2914.4871	ec 11	207.0833	3412.5605	11	222.7913	3949.9037
61 0	191.6372 191.8990	2922.4666 2930.4569	66 0 1	207.3451 207.6069	3421.1944 3429.8392	71 0	223.0531 223.3149	3959.1921 3968.4915
2	192.1608	2938.4581	2	207.8687	3438.4950	2	223.5767	3977.8017
3	192.4226	2946.4703	3	208.1305	3447.1616	3	223,8385	3987.1229
4	192.6843	2954.4934	4	208.3923	3455.8392	4	224.1003	3996.4549
5	192.9461	2962.5273	5	208.6541	3464.5277	5	224.3621	4005.7979
6	193.2079	2970.5722	6	208.9159	3473.2270	6	224.6239	4015.1518
23 4 5 6 7 8	193.4697	2978.6280	2 3 4 5 6 7 8	209.1777 209.4395	3481.9373 3490.6585	1 2 3 4 5 6 7 8	224.8857	4024 5165 4033.8922
9	193.7315 193.9933	2986.6947 2994.7723	9	209.7013	3499.3906	9	225.1475 225,4093	4033.0922
10	194.2551	3002.8608	10	209.9631	3508.1336	10	225,6711	4052.6763
11	194.5169	3010.9602	11	210,2249	3516.8875	11	225.9329	4062.0848
62 0	194.7787	3019.0705	67 0 1	210.4867	3525.6524	72 0	226.1947	4071.5041
1	195.0405	3027.1918	1	210.7485	3534.4281	1	226.4565	4080.9343
2	195.3023	3035.3239	$\frac{2}{3}$	211.0103	3543.2147 3552.0123	2 3	226.7183	4090.3755
3	195.5641	3043.4670 3051.6209	5 1	211.2721 211.5339	3560.8207	3 1	226.9801 227.2419	4099.8275
4 5	195.8259 196.0877	3059.7858	5	211.7957	3569.6401	5	227.5037	4118.7643
1 2 3 4 5 6 7 8	196.3495	3067.9616	4 5 6 7 8	919 0575	3578.4704	4 5 6 7 8 9	. 227.7655	4128.2491
7	196.6113	3076.1483	7	212.3193	3587.3116	7	228.0273	4128.2491 4137.7448
8	196.8731	3084.3459	8	212.5811	3596.1637	8	228.2891	4147.2514
	197.1349	3092,5544 3100,7738	9	212.8429 213.1047	3605.0267	10	228,5509	4156.7689 4166.2973
10	197.3967	3109,0041	10 11	213.3665	3613.9006 3622.7854	11	228.8127 229.0745	4175.8366
63 0	197.6585 197.9203	3117.2453	68 0	213.6283	3631.6811	73 0	229,3363	4185.3868
1	198.1821	3125.4974	1	213.8901	3640.5877		229.5981	4194.9479
1 2 3	198.4439	3133.7605	$\frac{2}{3}$	214.1519	3649.5053	1 2 3	229 8599	4204.5200
3	198.7057	3142.0344	3	214.4137	3658.4337	3	230.1217	4214.1029
4 5 6 7 8 9	198.9675	3150.3193	4 5	214.6755	3667.3731	4 5 6 7	230.3835 230.6453	4223.6968 4233.3016
5	199,2293 199,4911	3158.6151 3166.9217	0	214.9373 215.1991	3676.3234 3685.2845	6	230.0453	4233,3010
7	199.4911	3175.2393	6 7	215.1991	3694.2566	-7	231.1689	4252.5438
8	200.0147	3183.5678	8	215.7227	3703.2396	8-	231.4307	4262.1813
9	200.2765	3191.9072	9	215.9845	3712.2335	9	231.6925	4271.8297
10	200.5383	3200.2575	10	216.2463	3721.2383	10	231.9543	4281,4890
11	200.8001	3208.6188	11	216.5081	3730.2540	74 0	232.2161	4291.1592
64 0	201.0619 201.3237	3216.9909 3225.3739	69 0	$\begin{array}{c} 216.7699 \\ 217.0317 \end{array}$	3739.2807	74 0°1	232.4779 232.7397	4300.8403 4310.5324
64 0 1 2 3 4 5 6 7 8	201.3237	3233.7679-	$\frac{1}{2}$	217.0317	3748.3182 3757.3666	2,	233.0015	4320.2353
3	201.8473	3242.1727	3	217.5553	3766.4260	3	233.2633	4329.9492
4	202.1091	3250.5885	4	217.8171	3775 4962	4	233.5251	4339.6739
5	202.3709	3259.0151	5	218.0789	3784.5774	4 5 6 7 8	233.7869	4349.4096
6	202.6327	3267.4527	6	218.3407	3793.6695	6	234.0487	4359.1562
7	202:8945	3275.9012	7 8	218.6025	3802.7725 3811.8864	7	234.3105 234.5723	4368.9136 4378.6820
8	203.1563 203.4181	3284.3606 3292.8309	9	218.8643 219.1261	3821.0112	9	234.8341	4388.4613
10	203.4181	3301.3121	10	219.3879	3830.1469	10	235.0959	4398.2515
10	203.9417	3309.8042	îĭ	219.6497	3839.2935	11.	235.3576	4408.0526
	1					,		

CIRCLES.

TABLE 3 OF CIRCLES—(Continued).

Diams in units and twelfths; as in feet and inches.

-	1		1.					
Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	Area.
Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
75 0	235.6194	4417.8647	80 0	251.3274	5026.5482	Số 0	267.0354	5674.5017
1	235.8812	4427.6876	1	251.5892	5037.0257	1	267.2972 267.5590	5685 6337
2 3	236.1430	4437.5214	$\frac{2}{3}$	251.8510	5047.5140	2 3	267.5590	5696.7765
3 1	236.4048	4447.3662 4457.2218) j	252.1128 252.3746	5058.0133 5068.5234	4	267.82081 268.08261	5707.9802 5719.0949
4 5	236.9284	4467.0884	4 5	252.6364	5079.0445	5	268 3444	5730.2705
6	237.1902	4476.9659	6	252.8982	5089.5764	6	268.6062	5741.4569
6 7	237.4520	4486.8543	6 7	253.1600	5106.1193	67	268.8680	5752.6543 5763.5626
8	237.7138	4496.7536	8	253.4218	5110.6731	8	269.1298	5763.5626
9	237.9756	4506.6637	9	253.6836	5121.2378	9	269.3916	5775.0518
10 11	238.2374 238.4992	4516.5849 4526.5169	10 11	253.9454 254.2072	5131.8134 5142.3999	10 11	269.6534 269.9152	5786.3119 5797.5529
76 0	238.7610	4526.5109	S1 0	254.4690	5152.9974	86 0	270.1770	5808 5048
1	239.0228	4546.4136	1	254.7308	5163.6057	1	270.4388	5820.0676
	239.2846	4556.3784		254.9926	5174.2249	2 3	270.7006	5831.3414
3	239.5464	4566.3540	3	255.2544	5184.8551	3	270.9624	5842.6260
4	239.8082	4576.3406	2 3 4 5	255.5162	5195.4961	4 5	271 2242	5853.9216
2 3 4 5 6 7 8	240.0700	4586.3380	5	255.7780 256.0398	5206.1451	5	271.4860	5865.2280
7	240.3318 240.5936	4596.3464 4606.3657	6 7	256.3016	5216.8110 5227.4847	67	271.7478 272.0096	5876.5454 5887.8737
8	240.8554	4616.3959	8	256.5634	5238.1694	8	272.2714	5899.2129
9	241.1172	4626.4370	9	256.8252	5248.8650	9		5910,5630
10	241.3790	4636.4890	10	257.0870	5259.5715	10	272.5332 272.7950	5921 5240
11	241.6408	4646.5519	11	257.3488	5270.2889	11	273.0568	5933 1959
77 0	241.9026	4656.6257	82 0	257.6106	5281.0173	87 0	273 3186	5944 6787
1	242.1644	4666.7104	1	257.8724	5291.7565	7	273.5804	5956.0724
2 3	242.4262 242.6880	4676.8061 4686.9126	2 3	258.1342 258.3960	5302.5066 5313.2677	1 2 3	273.8422	5967.4771 5978.8926
4	242.9498	4697.0301	4	258.6578	5324.0396	4	274.3658	5990.3191
4 5 6 7	243.2116	4707.1584	4 5 6 7	258.9196	5334.8225	5	274.6276	6001.7564
6	243.4734	4717.2977	6	259.1814	5345.6162	67	274.8894	6013.2047
7	243.7352	4727.4479	7	259.4432	5356.4209	7	275.1512	6024.6639
8 9	243.9970	4737.6090	8 9	259.7050	5367.2365	8	275.4130	6036.1340
10	244.2588 244.5206	4747.7810 4757.9639	10	259.9668 260.2286	5378.0630 5388 9004	9 10	275.6748 275.9366	6047.6149 6059.1065
11	244.7824	4768.1577	11	260.4904	5399.7487	11	276.1984	6070.6097
78 0	245.0442	4778.3624	83 0	260,7522	5410.6079	88 0	276.4602	6082.1234
1	245.3060	4788.5781	1	261.0140	5421.4781	1	276.7220	6093.6480
2 3 4 5 6	245.5678	4798.8046	2 3	261.2758	5432.3591	2 3	276.9838	6105.1835
3	245.8296	4809.0420	3	261.5376	5443.2511		277.2456	6116.7300
4 5	246.0914 246.3532	4819.2904 4829.5497	4 5 6 7	261.7994 262.0612	5454.1539	4	277.5074	6128.2878 6189.8556
6	246.6150	4839.8198	6	262.3230	5465.0677	5 6	277.7692 278.0309	6151,4848
. 7	246.8768	4850.1009	7	262.5848	5486.9279	7	278.2927	6163.0_48
8	247.1386	4860.3929	8	262.8466	5497.8744	8	278.5545	6174.6258
. 9	247.4004	4870 6958	9	263.1084	5508.8318	9	278.8163	6186.2377
10	247.6622	4881.0096	10	263.3702	5519.8001	10	279.0781	6197.8605
79 0	247.9240	4891.3343	11	263,6320	5530.7793	11	279.3399	6209.4942
1	248.1858 248.4476	4901.6699 4912.01 6 5	84 0	263,8938 264,1556	5541.7694 5552.7705	89 0	279.6017 279.8635	6221.1859 6232.7944
2	248.7094	4922.3739		264,4174	5563.7824	5	280.1253	6244.4605
$\frac{2}{3}$	248.9712	4932.7423	2 3	264,6792	5574.8053	1 2 3	280.3871	6256.1382
4	249,2330	4943.1215	4	264.9410	5585.8390	4 5	280.6489	6267.8264
4 5 6 7	249.4948	4953.5117	4 5 6 7	265,2028	5596.8837	5	280.9107	6279.5256
6	249.7566	4963.9127	6	265.4646	5607.9392	67	281.1725	6291,2356
0	250.0184 250.2802	4974.3247 4984.7476	8	265.7264 265.9882	5619.0057 5630.0831	8	281.4343 281.6961	6302 9566 6314.6885
8 9	250.2802	4995.1814	9	266.2500	5641.1714	9	281.0901	6326.4313
10	250.8038	5005.6261	10	266,5118	5652.2706	10	282.2197	6338.1850
11	251.0656	5016.0817	ii	266.7736	5663.3807	.11	282.4815	6349.9496

TABLE NO. 13-CONCL.

CIRCLES.

TABLE 3 OF CIRCLES-(Continued).

Diams in units and twelfths; as in feet and inches.

Dia.	Circumf.	Area.	Dia.	Circumf.	Area.	Dia.	Circumf.	. Area
Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.	Ft.In.	Feet.	Sq. ft.
90 0	282.7433	6361.7251	98 5	293,4771	6853,9134	96 9	303,9491	7351.7686
1	283.0051	6373.5116	6	293.7389	6866.1471	10		7364,4386
2	283.2669	6385.3089	7	294,0007	6878.3917	11	304.4727	7377.1195
3	283.5287	6397.1171	8	294.2625	6890.6472	97 0	304.7345	7889.8113
4	283.7905	6408.9363	9	294.5243	6902.9135	1	304.9963	7402.5140
5	284.0523	6420.7663	10	294.7861	6915.1908	. 2	305.2581	7415.2277
6	284.3141	6432.6073	11	295.0479	6927.4791	3		7427.9522
7	284.5759	6114.4592	94 0	295.3097	6939.7782	4	305.7817	7440.6877
8	284.8377	6456.3220	1	295.5715	6952.0882	5		7453.4340
9	285.0995	6468.1957	2	295.8333	6964.4091	6		7466.1913
10	285.3613	6180.0803	3	296.0951	6976.7410	7		7478.9595
11	285.6231	6491.9758	4	296.3569	6989.0837	8		7491.7385
91 0	285 8849	6503.882:	5	296.6187	7001.4374	9		7504.5285
1	286.1467	6515.7995	6	296.8805	7013.8019	10		7517.3294
2 3	286 4085	6527.7278	7	297.1423	7026.1774	11	307.6143	7530.1412
4	286.6703	6539.6669	8	297.4041	7038.5638	98 0		7542.9640
5	286.9321 287.1939	6551.6169	9	297.6659	7050.9611	1	308.1379	7555.7976
6	287.4557	6563.5779 6575.5498	10 11	297.9277	7063.3693	2 3	308.3997	7568.6421 7581.4976
7	287.7175	6587.5325	95 0	298.1895 298.4513	7075.7884 7088.2184	4		7594.3659
8	287.9793	6599.5262	1	298.7131	7100.6593	5		7607.2412
9	288 2411	6611.5308	0	298.9749	7100.0595	a 6		7620.1293
10	288.5029	6623.5463	2 3	299.2367	7125.5739	7	309.7087	7633.0284
11	288 7647	6635.5727	4	299.4985	7138.0476	8		7645.9884
92 0	289.0265	6647.6101	5	299.7603	7150,5321	9		7658.8593
1	289.2883	6359,6583	6	300.0221	7163.0276	10		7671.7911
$\bar{2}$	289.5501	6671.7174	7	300.2839	7175.5340	îĭ	310,7559	7684.7338
3	289.8119	6683.7875	8	300.5457	7188.0513	99 0	311,0177	7697.6874
4	290.0737	6695,8684	ğ	300.8075	7200.5794	i	311.2795	7710.6519
5	290.3355	6707,9603	10	301.0693	7213.1185		311,5413	7723.6274
6	290.5973	6720.0630	11	301.3311	7225.6686	3	311.8031	7736.6137
7	290.8591	6732.1767	96 0	301.5929	7238.2295	4	312.0649	7749.6109
- 8	291.1209	6744 3013	1	301.8547	7250.8013	5	312.3267	7762,6191
9	291.3827	6756 4368	2	302.1165	7263.3840	6	312.5885	7775.6382
10	291.6445	6768.5832	2 3	302.3783	7275.9777	7	312.8503	7788.6681
11	291.9063	6780.7405	4	302.6401	7288.5822	. 8		7801.7090
93 0	292.1681	6792.9987	5	302.9019	7301.1977	. 9		7814.7608
1	292.4299	6805.0878	6	303.1637	7313.8240	10		7827.8235
2	292.6917	6817.2779	7	303.4255	7326.4613	11	313.8975	7840.8971
3	292.9535	6829.4788	8	303.6873	7339.1095	100 0	314.1593	7853.9816
4	293.2153	6841-6907	1				{	

Circumferences in feet, when the diam contains fractions

	of an inch. See similar process, p 177												
Diam, inch.	Circumf.	Diam, inch	Circumf,	Diam, inch	Circumf,	Diam, inch.	Circumf,	Diam, inch.	Circumt,				
1-64	.004091	7-32	.057269	27-64	.110447	5-8	.163625	53-64	.216803				
1-32	.008181	15-64	.061359	7-16	.114537	41-64	.167715	27-32	.220893				
3-64	.012272	1/4	.065450	29-64	.118628	21-32	.171806	55-64	.224984				
1-16	.016362	17-64	.069540	15-32	.122718	43-64	.175896	7-8	.229074				
5-64	.020453	9-32	.073631	31-64	.126809	11-16	.179987	57-64	.233167				
3-32	.024544	19-64	.077722	1/2	.130900	45-64	.184078	29-32	.237256				
7-64	.028634	5-16	.081812	33-64	.134990	23-32	.188168	59-64	.241346				
1/8	.032725	21-64	:085903	17-32	.139081	47-64	.192259	15-16	.245437				
9-64	.036816	11-32	.089994	35-64	.143172	3/4	.196350	61-64	.249528				
5-32	.040906	23-64	.094084	9-16	.147262	49-64	.200440	31-32	.253618				
11-64	.044997	3/8	.098175	37-64	.151353	25-32	.204531	63-64	.257709				
3-16	.049087	25-64	.102265	19-32	.155443	51-64	.208621	1	.261799				
13-61	053178	13,39	106356	30.61	150534	12.16	919719						

SQUARE AND CUBE ROOTS.

Square Roots and Cube Roots of Numbers from .1 to 28.

10	No errors.	No									-
	t. C. Rt.	Sq. Rt.	No.	C. Rt.	Sq. Rt.	No.	C. Rt.	Sq. Rt.	Cube.	Square.	No.
		0.001		1 500	0.007		404	216	001	03	
.25	2.375	3.688		1.797		.8	.531	. 387		.0225	.15
.35	2.399	3.715	.8	1.807		.9	.585		.008	.04	.2
		3.742 3.768				0,		.548	.0136		.3
	2.433	3.795	.4	1.837	2.490	.2.	.705	.592	.0429	.1225	-35
.55 .25	2.444	3.821 3.847	.6	1.847	2.510	.3.	.737	.633 671		2025	45
.65 .36	2.466	3.873	15.	1.866	2,550	.5	.794	.707	.125	.25	.5
.65 .4225 .2746 .806 .866 .88 .2.608 1.895 .6 3.99 .7.5 .5625 .4219 .866 .899 7. .2.646 1.913 16. .4. .8. .8. .8. .8. .2.608 1.922 .2. 4.0. .8. .8. .9. .2. .2.663 1.931 16. .4. .8. .8. .9. .8. .7. .8. .8. .9. .2. .2.663 1.931 .4. .4. .9. .9. .8. .7. .9. .9. .8. .7. .9. .9. .9. .8. .7. .9. .9. .9. .8. .7. .9. .9. .9. .8. .7. .9.		3,899	.2			.6		.742			
.85	2.499	3.950			2.608	:8.	.866	.806	.2746	.4225	.65
.85	2.509	3.975		1.904		-,9			. ,343		-75
1.5	2.520 2.530	4.025				1.1			512	.64	.8
1. 1.000	2.541	4.050	.4	1.931	2,683	.2	.947	.922	.6141	.7225	85
1. 1.000 1.000 1.000 1.000 5. 2.739 1.957 17. 4.1	2.551 2.561	4.074 4.099	.8		2.702	.5		.949	.8574		.95
1.1 1.210 1.331 1.049 1.032 7 2.775 1975 4 4.1	2.571	4.123	17.	1.957	2.739	.5	1.000	1.000			1.
1.5		4.147 4.171	-2			.6					1.1
1.8	2.601	4.195	.6	1.983	2.793	:8	1.048	1.072	1.521	1.323	.15
1.3 1.690 2.197 1.140 -1.091 .1 2.286 2.008 .2 4.42 1.4 1.960 2.744 1.162 1.105 .2 2.864 2.017 .4 4.2 1.5 2.103 3.049 1.204 1.132 .4 2.288 2.033 .8 4.3 1.5 2.250 3.372 1.225 1.145 5.5 2.933 2.049 .2 4.3 1.6 2.560 4.096 1.265 1.170 7 2.950 2.057 4 4.4 6.55 2.723 4.492 1.285 1.182 8 2.966 2.065 .6 4.4 1.7 2.890 4.913 1.304 1.193 .9 2.983 2.072 .8 4.4 4.5 3.423 6.332 1.342 1.216 .1 3.017 2.088 2.072 .4 4.4 8.5 3.423 6.332 1.382 <	2.611	4.219 4.243	18	2.000	2.811	8.9		1.095	1.728	1.440	1.2
1.44 1.960 2.744 1.183 1.119 3 2.2851 2.025 .6 4.3 1.55 2.103 3.049 1.204 1.132 .4 2.889 2.025 .6 4.3 1.55 2.250 3.3724 1.245 1.157 .6 2.933 2.049 .2 4.3 1.6 2.560 4.096 1.265 1.170 .7 2.936 2.065 .4 4.4 1.7 2.890 4.913 1.304 1.193 .9 2.983 2.072 .8 4.4 7.5 3.063 5.359 1.323 1.205 9. 3 2.080 20. 4.4 7.5 3.063 5.359 1.323 1.229 .3 3.050 2.080 20. 4.4 4.5 3.423 6.332 1.382 1.239 .3 3.050 2.103 .6 4.5 1.9 3.610 6.859 1.378 1.239	2.630	4.266	-2.	2.008	2.846	.1	-1.091	1.140	2.197	1.690	1.3
.45 2.103 3.049 1.204 1.132 .4 2.898 2.033 .8 4.3 .55 2.250 3.375 1.225 1.145 .5 2.933 2.049 .2 4.3 1.6 2.560 4.096 1.265 1.170 .7 2.930 2.049 .2 4.3 1.7 2.890 4.913 1.304 1.193 .9 2.983 2.072 .8 4.4 1.7 2.890 4.913 1.304 1.193 .9 2.983 2.072 .8 4.4 1.8 3.240 5.832 1.322 1.205 9. 3. 2.080 20. 4.4 8.5 3.423 6.332 1.360 1.228 .2 3.031 2.088 .2 4.4 4.9 3.610 6.859 1.378 1.239 .3 3.050 2.103 .6 4.5 4.9 3.803 7.415 1.396 1.249	2 640 2.650	4.290 4.313	.4			.2		1.162	2.460		
1.6	2.659	4.336	8	2.033	2.898	.4	1.132	1.204	3.049	2.103	.45
1.66 2.560 4.096 1.265 1.170 ,7 2.950 2.057 ,4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.7 2.983 2.072 .8 4.4 4.7 3.063 5.359 1.323 1.205 9. 3. 2.080 20. 4.4 4.4 4.6 8.5 3.423 6.332 1.360 1.228 2. 3.033 2.095 4 4.5 8.5 3.423 6.639 1.378 1.239 .3 3.050 2.103 6 4.5 9. 4.5		4.359 4.382	19.	2.041		.5	1.145				1.5
.65 2.723 4.492 1.285 1.182 .8 2.966 2.065 .6 4.4 1.7 2.890 4.913 1.304 1.193 .9 2.983 2.072 .8 4.4 7.5 3.063 5.359 1.323 1.205 9. 3. 2.080 20. 4.4 .85 3.423 6.332 1.360 1.228 .2 3.033 2.095 .4 4.5 .95 3.803 7.415 1.396 1.228 .2 3.033 2.095 .4 4.5 .95 3.803 7.415 1.396 1.249 4 3.066 2.110 .8 4.5 .95 3.803 7.415 1.396 1.249 4 3.066 2.118 21. 4.5 .95 3.803 1.414 1.260 .5 3.082 2.118 21. 4.5 .1 4.410 9.261 1.449 1.281 .6 3.08	2.687	4.405	1.4.	2.057	2.950	.7	1.170	1.265	4.096	2.560	1.6
.75 3.063 5.359 1.323 1.205 9, 3. 2.080 20, 4.4 .85 3.240 5.832 1.342 1.216 1.1 3.017 2.088 2.2 4.4 .85 3.423 6.839 1.378 1.239 .3 3.030 2.03 .6 4.5 .95 3.803 7.415 1.396 1.249 .4 3.066 2.110 .8 4.5 2. 4.900 8.000 1.414 1.260 .5 3.082 2.118 21. 4.5 .1 4.410 9.261 1.449 1.281 6 3.098 2.118 21. 4.5 .2 4.840 10.65 1.483 1.301 .7 3.114 2.133 .4 4.6 2.2 4.4 4.6 2.2 4.4 4.6 2.147 .8 4.6 4.6 2.147 .8 4.6 4.6 2.147 .8 4.6 4.6		4.427		2.065		.8				2.723	.65
1.8 3.240 5.832 1.342 1.216 .1 3.017 2.088 .2 4.45 1.9 3.423 6.332 1.360 1.228 2 3.033 2.095 .4 4.5 1.9 3.610 6.839 1.378 1.239 .3 3.050 2.103 .6 4.5 2. 4.000 8.000 1.444 1.260 .5 3.082 2.118 21. 4.5 .1 4.410 9.261 1.449 1.281 .6 3.098 2.125 .2 4.6 .2 4.840 10.65 1.483 1.301 .7 3.114 2.133 .4 4.6 .3 5.290 12.17 1.517 1.320 .8 3.130 2.140 .6 4.6 .4 5.760 13.82 1.581 1.337 10. 3.162 2.154 22. 4.6 .5 6.250 15.63 1.581 1.375 .1 3.178 2.162 2.47 7 7.290 19.68 1.643 1.3	2.714	4.472	20.	2.080	3.	.9.	1.205	1.323	5.359	3.063	.75
1.99 3.610 6.859 1.378 1.239 3 3.050 2.103 .6 4.5 2. 3.803 7.415 1.396 1.249 .4 3.066 2.103 .6 4.5 2. 4.800 1.065 1.449 1.281 .6 3.098 2.125 .2 4.6 .2 4.840 1.065 1.483 1.301 .7 3.114 2.133 .4 4.6 .3 5.290 12.17 1.517 1.320 .8 3.130 2.140 .6 4.6 .4 5.760 13.82 1.549 1.339 9 3.146 2.147 .8 4.6 .5 6.250 15.63 1.581 1.337 10 3.162 2.154 22 4.6 .6 6.760 17.58 1.612 1.375 .1 3.178 2.162 2. 4.7 .7 7.290 19.68 1.643 1.392 .2	2.723	4.494	.2	2.088	3.017	.1					
.95 3.803 7.415 1.396 1.249 .4 3.066 2.110 .8 4.5 2. 4.000 8.000 1.414 1.260 .5 3.082 2.110 .8 4.5 2. 4.840 10.65 1.483 1.301 .7 3.114 2.133 .4 4.6 .3 5.290 12.17 1.517 1.920 .8 3.130 2.140 .6 4.6 .4 5.760 13.82 1.549 1.339 .9 3.146 2.147 .8 4.6 .5 6.250 15.63 1.581 1.337 10 3.162 2.147 .8 4.6 .6 6.760 17.58 1.612 1.337 10 3.178 2.162 .2 4.7 .7 7.290 19.68 1.643 1.392 .2 3.194 2.162 .2 4.7 .8 .410 24.39 1.703 1.426 .4		4:539		2.103	3,050	.3	1.228		6.859	3.610	1,9
.1	2.750	4.561	.8	2.110	3.066	.4	1.249		7.415	3.803	.95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.759	4.604	.2	2.116	3.098	.6	1.281		9.261	4.410	
.6 6.760 17,38 1.612 1.375 .1 3.178 2.162 .2 4.77 .7 7,290 19,68 1.643 1.392 .2 3.194 2.162 .4 4.7 .8 7,840 21,95 1.673 1.409 .3 3.209 2.176 .6 4.7 .9 8,410 24,39 1.703 1.426 .4 3.292 2.183 .8 4.7 .1 9,61 29.79 1.761 1.458 .6 3.256 2.197 .2 4.8 .2 10.24 32.77 1.789 1.474 .7 3.271 2.004 4 4.8 .3 10.89 35.94 1.817 1.489 .8 3.266 2.210 .6 4.8 .4 11.56 39.30 1.844 1.504 9 3.302 2.217 .8 4.8 .5 12.25 42.88 1.571 1.518 11.	2.776	4.626	.4		3.114	-7	1.301	1.483	10.65	4.840	-2
.6 6.760 17,38 1.612 1.375 .1 3.178 2.162 .2 4.77 .7 7.290 19.68 1.643 1.392 .2 3.194 2.162 .4 4.7 .8 7.840 21.95 1.673 1.409 .3 3.209 2.176 .6 4.7 .9 8.410 24.39 1.703 1.426 .4 3.292 2.183 .8 4.7 .1 9.61 29.79 1.761 1.458 .6 3.256 2.197 .2 4.8 .2 10.24 32.77 1.789 1.474 .7 3.261 2.210 .6 4.8 .3 10.89 35.94 1.517 1.489 .8 3.266 2.210 .6 4.8 .4 11.56 39.30 1.844 1.504 9 3.302 2.217 .8 4.8 .5 12.25 42.88 1.571 1.518 11.	2.785	4.669			3.146		1.339			5.760	.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.802	4.690		2.154	3.162		1.337		15.63	6.250	-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.810 2.819	4.712	-2	2.162		2			19.68	7.290	-7
S. 9. 27. 1.732 1.442 5. 3.240 2.190 23. 4.7 1. 9.61 29.79 1.761 1.458 .6 3.256 2.197 .2 4.8 2. 10.24 32.77 1.789 1.474 .7 3.271 2.204 .4 4.8 3. 10.89 35.94 1.817 1.489 .8 3.266 2.210 .6 4.8 4. 41.56 39.30 1.814 1.504 .9 3.302 2.217 .8 4.8 .6 12.26 42.88 1.571 1.518 11. 3.317 2.224 24. 4.8 .6 12.96 46.66 1.897 1.533 1 3.347 2.224 24. 4.8 .7 13.69 50.65 1.924 1.547 .2 3.347 2.237 .4 4.9 .8 14.44 54.87 1.949 1.560 .3	2.827	4.754	.6	2.176	3.209	.3	1.409	1.673	21.95	7.840	-8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.775 4.786	23.	2.183	3.240	.5		1.732	27.	. 9.	3 .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.852	4.817	.2	2.197	3.256	.6	1.458		29.79	9.61	.1 }
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4.858								10.24	.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.876	. 4.879	.8	2.217	3.302	.9	1.504		39.30	11.56	-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.884	4.899	.2	2.224			1.533	1.897	46.66	12.25	.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.900	4.940	.4	2.287	3,347	.2	1.547		50.65		.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4.980								15.21	.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.924	5.	25.	2.257	3.391	.5	1.587	2.	64.	16.	4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.932	5.020 5.040	.2			- 6			68.92 74.09	16.81	- 1
.5 20.25 91,13 2.121 1.651 12. 3.464 2.289 26. 5.0 .6 21.16 97.34 2.145 1.663 .1 3.479 2.296 .2 5.1 .7 22.09 103.8 2.168 1.675 .2 3.493 2.302 4 5.1 .8 23.04 110.6 2.191 1.687 .3 3.507 2.308 .6 5.1	2.947	5.060	.6	2.277	3.435	.8	1.626	2.074	79.51	18.49	.3
7 22.09 103.8 2.168 1.675 .2 3.493 2.302 4 5.1 28 23.04 110.6 2.191 1.687 .3 3.507 2.308 .6 5.1	2.955	5.079 5.099	26.	2.283					85.18 91.13		.5
.7 22.09 103.8 2.168 1.675 .2 3.493 2.302 4 5.1 .8 23.04 110.6 2.191 1.687 .3 3.507 2.308 .6 5.1	2.970	5.119	.2	2.296	3 479	.1	1.663	2.145	97.34	21.16	-0
	2.978	5.138 5.158				.2			103.8		
9 24.01 117.6 2.214 1.698 .4 3.521 2.315 .8 5.1	2.993	5.177	-8	2.315	3.521	.4	1.698	2.214	117.6	24.01	.9
5. 25. 125. 2.236 1.710 .5 3.536 2.321 27. 5.1 1 26.01 132.7 2.258 1.721 .6 3.550 2.327 .2 5.2	3.000	5.19 6 5.215	27,	2,321	3,536				125.	26.01	5.
2 27.04 140.6 2.280 1.732 .7 3.564 2.333 .4 5.2	3.015	5.235	.4	2.333	3.564	.7	1.732	2.280	140.6	27.04	.2
3 28.09 148.9 2.302 1.744 8 3.578 2.339 6 5.2	3.022	5.254 5.273			3.578	.8]	1.744	2.302			
5 30.25 166.4 2.345 1.765 13. 3.606 2.351 28. 5.2	3.037	5.292	28.	2.351	3.606	13.	1.765	2.345	166.4	30.25	.5
.6 31.36 175.6 2.366 1.776 2 3.633 2.363 2.563 5.2 5.3	3.044	5.310	.2	2.363	3,633	.2	1.776	2.366	175.6	31.36	.6

To find roots by logarithms see Pages 200 and 202.

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000.

REMARK ON THE FOLLOWING TABLE. Wherever the effect of a fifth decimal in the roots would be to add 1 to the fourth and final decimal in the table, the addition has been made. No errors.

No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
1	1	1	1.0000	1.0000	61	3721	226981	7.8102	3.9365
2	4	8	1.4142	1.2599	62	3844	238328	7.8740	3.9579
3	9	27	1.7321	1.4422	63	3969	250047	7.9373	3.9791
4	16	64	2.0000	1.5874	64	4096	262144	8.0000	4.
5	25	125	2.2361	1.7100	65	4225	274625	8.0623	4.0207
6 7 8 9	36 49 64 81 100	216 343 512 729 1000	2.4495 2.6458 2.8284 3.0000 3.1623	1.8171 1.9129 2.0000 2.0801 2.1544	66 67 68 69 70	4356 4489 4624 4761 4900	287496 300763 314432 328509 343000	8.1240 8.1854 8.2462 8.3066 8.3666	4.0412 4.0615 4.0817 4.1016 4.1213
11	121	1331	3.3166	2.2240	71	5041	357911	8.4261	4.1408
12	144	1728	3.4641	2.2894	72	5184	373248	8.4853	4.1602
13	169	2197	3.6056	2.3513	73	5329	389017	8.5440	4.1793
14	196	2744	3.7417	2.4101	74	5476	405224	8.6023	4.1983
15	225	3375	3.8730	2.4662	75	. 5625	421875	8.6603	4.2172
16	256	4096	4.0000	2.5198	76	5776	438976	8.7178	4.2358
17	289	4913	4.1231	2.5713	77	5929	456533	8.7750	4.2543
18	324	5832	4.2426	2.6207	78	6084	474552	8.8318	4.2727
19	361	6859	4.3589	2.6684	79	6241	493039	8.8882	4.2908
20	400	8000	4.4721	2.7144	80	6400	512000	8.9443	4.3089
21	441	9261	4.5826	2.7589	81	6561	531441	9.	4.3267
22	484	10648	4.6904	2.8020	82	6724	551368	9.0554	4.3445
23	529	12167	4.7958	2.8439	83	6889	571787	9.1104	4.3621
24	576	13824	4.8990	2.8845	84	7056	592704	9.1652	4.3795
25	625	15625	5.0000	2.9240	85	7225	614125	9.2195	4.3968
26	676	17576	5.0990	2.9625	86	7396	636056	9.2736.	4.4140
27	729	19683	5.1962	3.0000	87	7569	658503	9.3274	4.4310
28	784	21952	5.2915	3.0366	88	7744	681472	9.3808	4.4480
29	841	24389	5.3852	3.0723	89	7921	704969	9.4340	4.4647
30	900	27000	5.4772	3.1072	90	8100	729000	9.4868	4.4814
31	961	29791	5.5678	3.1414	91	8281	753571	9.5394	4.4979
32	1024	32768	5.6569	3.1748	92	8464	.778688	9.5917	4.5144
33	1089	35937	5.7446	3.2075	93	8649	804357	9.6437	4.5307
34	1156	39304	5.8310	3.2396	94	8836	830584	9.6954	4.5468
35	1225	42875	5.9161	3.2711	95	9025	857375	9.7468	4.5629
36	1296 -	46656	6.0000	3,3019	96	9216	884736	9.7980	4.5789
37	1369	50653	6.0828	3,3322	97	9409	912673	9.8489	4.5947
38	1444	54872	6.1644	3,3620	98	9604	941192	9.8995	4.6104
39	1521	59319	6.2450	3,3912	99	9801	970299	9.9499	4.6261
40	1600	64000	6.3246	3,4200	100	10000	1000000	10.	4.6416
41	1681	68921	6.4031	3.4482	101	10201	1030301	10.0499	4.6570
42	1764	74088	6.4807	3.4760	102	10404	1061208	10.0995	4.6723
43	1849	79507	6.5574	3.5034	103	10609	1092727	10.1489	4.6875
44	1936	85184	6.6332	3.5303	104	10816	1124864	10.1980	4.7027
45	2025	91125	6.7082	3.5569	105	11025	1157625	10.2470	4.7177
46	2116	97336	6.7823	3.5830	106	11236	1191016	10.2956	4.7326
47	2209	103823	6.8557	3.6088	167	11449	1225043	10.3441	4.7475
48	2304	110592	6.9282	3.6342	108	11664	1259712	10.3923	4.7622
49	2401	117649	7.0000	3.6593	109	11881	1295029	10.4403	4.7769
50	2500	125000	7.0711	3.6840	110	12100	1331000	10.4881	4.7914
51	2601	132651	7.1414	3.7084	111	12321	1367631	10.5357	4.8059
52	2704	140608	7.2111	3.7325	112	12544	1404928	10.5330	4.8203
53	2809	148877	7.2801	3.7563	113	12769	1442897	10.6301	4.8346
54	2916	157464	7.3485	3.7798	114	12996	1481544	10.6771	4.8488
55	3025	166375	7.4162	3.8030	115	13225	1520875	10.7238	4.8629
56	3136	175616	7.4833	3.8259	116	13456	1560896	10.7703	4.8770
57	3249	185193	7.5498	3.8485	117	13689	1601613	10.8167	4.8910
58	3364	195112	7.6158	3.8709	118	13924	1643032	10.8628	4.9049
59	3481	205379	7.6811	3.8930	119	14161	1685159	10.9087	4.9187
60	3600	216 000	7.7460	3.9149	120	14400	1728000	10.9545	4.9324

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(CONTINUED)

			1						
No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
121	14641	1771561	11.	4.9461	186	34596	6434856	13.6382	5.7083
122	14884	1815848	11.0454	4.9597	187	34969	6539203	13.6748	5.7185
123	15129	1860867	11.0905	4.9732	188	35344	6644672	13.7113	5.7287
124	15376	1906624	11.1355	4.9866	189	- 35721	6751269	13.7477	5.7388
125	15625	1953125	11.1803	5.	190	36100	6859000	13.7840	5.7489
126	15876	2000376	11.2250	5.0133	191	36481	6967871	13.8203	5.7590
127	16129	2048383	11.2694	5.0265	192	36864	7077888	13.8564	5.7690
128	16384	2097152	11.3137	5.0397	193	37249	7189057	13.8924	5.7790
129	16641	2146689	11.3578	5.0528	194	37636	7301384	13.9284	5.7890
130	16900	2197000	11.4018	5.0658	195	38025	7414875	13.9642	5.7989
131	17161	2248091	11.4455	5.0788	196	38416	7529536	14.	5.8088
132	17424	2299968	11.4891	5.0916	197	38809	7645373	14.0357	5.8186
133	17689	2352637	11.5326	5.1045	198	39204	7762392	14.0712	5.8285
134	17956	2406104	11.5758	5.1172	199	39601	7880599	14.1067	5.8383
135	18225	2460375	11.6190	5.1299	200	40000	8000000	14.1421	5.8480
136	18496	2515456	11.6619	5.1426	201	40401	8120601	14.1774	5.8578
137	18769	2571353	11.7047	5.1551	202	40804	8242408	14.2127	5.8675
138	19044	2628072	11.7473	5.1676	203	41209	8365427	14.2478	5.8771
139	19321	2685619	11.7898	5.1801	204	41616	8489664	14.2829	5.8868
140	19600	2744000	11.8322	5.1925	205	42025	8615125	14.3178	5.8964
141	19881	2803221	11.8743	5.2048	206	42436	8741816	14.3527	5.9059
142	20164	2863288	11.9164	5.2171	207	42849	8869743	14.3875	5.9155
143	20449	2924207	11.9583	5.2293	208	43264	8998912	14.4222	5.9250
144	20736	2985984	12.	5.2415	209	43681	9129329	14.4568	5.9345
145	21025	3048625	12.0416	5.2536	210	44100	9261000	14.4914	5.9439
146	21316	3112136	12.0830	5.2656	211	44521	9393931	14.5258	5.9538
147	21609	3176523	12.1244	5.2776	212	44944	9528128	14.5602	5.9627
148	21904	3241792	12.1655	5.2896	213	45369	9663597	14.5945	5.9721
149	22201	3307949	12.2066	5.3015	214	45796	9800344	14.6287	5.9814
150	22500	3375000	12.2474	5.3133	215	46225	9938375	14.6629	5.9907
151	22801	3442951	12,2882	5.3251	216	46656	10077696	14.6969	6.
152	23104	3511808	12,3288	5.3368	217	47089	10218313	14.7309	6.0092
153	23409	3581577	12,3693	5.3485	218	47524	10360232	14.7648	6.0185
154	23716	3652264	12,4097	5.3601	219	47961	10503459	14.7986	6.0277
155	24025	3723875	12,4499	5.3717	220	48400	10648000	14.8324	6.0368
156	24336	3796416	12.4900	5.3832	221	48841	10793861	14.8661	6.0459
157	24649	3869893	12.5300	5.3947	222	49284	10941048	14.8997	6.0550
158	24964	3944312	12.5698	5.4061	223	49729	11089567	14.9332	6.0641
159	25281	4019679	12.6095	5.4175	224	50176	11239424	14.9666	6.0732
160	25600	4096000	12.6491	5.4288	225	50025	11390625	15.	6.0822
161	25921	4173281	12.6886	5.4491	226	51076	11543176	15.0333	6.0912
162	26244	4251528	12.7279	5.4514	227	51529	11697083	15.0665	6.1002
163	26569	4330747	12.7671	5.4626	228	51984	11852352	15.0997	6.1091
164	26896	4410344	12.8062	5.4737	229	- 52441	12008989	15.1327	6.1180
165	27225	4492125	12.8452	5.4848	230	52900	12167000	15.1658	6.1269
166	27556	4574296	12.8841	5.4959	231	53361	12326391	15.1987	6.1358
167	27889	4657463	12.9228	5.5069	232	53824	12487168	15.2315	6.1446
168	28224	4741632	12.9615	5.5178	233	54289	12649337	15.2643	6.1534
169	28561	4826809	13.	5.5288	234	54756	12812904	15.2971	6.1622
170	28900	4913000	13.0384	5.5397	235	55225	12977875	15.3297	6.1710
171	29241	5000211	13.0767	5.5505	236	55696	13144256	15.3623	6.1797
172	29584	5088448	13.1149	5.5613	237	56169	13312053	15.3948	6.1885
173	29929	5177717	13.1529	5.5721	238	56644	13481272	15.4272	6.1972
174	30276	5268024	13.1909	5.5828	239	57121	13651919	15.4596	6.2058
175	30625	5359375	13.2288	5.5934	240	57600	13824000	15.4919	6.2145
176	30976	5451776	13.2665	5.6041	241	58081	13997521	15.5242	6.2231
177	31329	5545233	13.3041	5.6147	242	58564	14172488	15.5563	6.2317
178	31684	5639752	13.3417	5.6252	243	59049	14348907	15.5885	-6.2403
179	32041	5735339	13.3791	5.6357	244	59536	14526784	15.6205	6.2488
180	32400	5832000	13.4164	5.6462	245	60025	14706125	15.6523	6.2573
181	32761	5929741	13.4536	5.6567	246	60516	14886936	15.6844	6,2658
182	33124	6028568	13.4907	5.6671	247	61009	15069223	15.7162	6,2743
183	33489	6128487	13.5277	5.6774	248	61504	15252992	15.7480	6,2828
184	33856	6229504	13.5647	5.6877	249	62001	15438249	15.7797	3,2912
185	34225	63 31625	13.6015	5.6980	250	62500	15625000	15.8114	6,2996

SQUARES, CUBES, AND ROOTS.

TABLE of Souares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(CONTINUED.)

	Of Rumbers from 1 to 1000 — (COMINGED.)										
No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.		
511	261121	133432831	22.6053	7.9948	576	331776	191102976	24.	8.3203		
512	262144	134217728	22.6274	8.	577	332929	192100033	24.0208	8.3251		
513	263169	135005697	22.6495	8.0052	578	334084	193100552	24.0416	8.3300		
514	264196	135796744	22.6716	8.0104	579	335241	194104539	24.0624	8.3343		
515	265225	136590875	22.6936	8.0156	580	336400	195112000	24.0832	8.3396		
516	266256	137388096	22.7156	8.0208	581	337561	196122941	24.1039	8.3443		
517	267289	138188413	22.7376	8.0260	582	338724	197137368	24.1247	8.3491		
518	268324	138991832	22.7596	8.0311	583	339889	198155287	24.1454	8.3539		
519	269361	139798359	22.7816	8.0363	584	341056	199176704	24.1661	8.3587		
520	270400	140608000	22.8035	8.0415	585	342225	200201625	24.1868	8.3634		
521	271441	141420761	22.8254	8.0466	586	343396	201230056	24.2074	8.3682		
522	272484	142236648	22.8473	8.0517	587	344569	202262003	24.2281	8.3730		
523	273529	143055667	22.8692	8.0569	588	345744	203297472	24.2487	8.3777		
524	274576	143877824	22.8910	8.0620	589	346921	204336469	24.2693	8.3625		
525	275625	144703125	22.9129	8.0671	590	348100	205379000	24.2899	8.3572		
526	276676	145531576	22.9347	8.0723	591	349281	206425071	24.3105	8.3919		
527	277729	146363183	22.9565	8.0774	592	350464	207474688	24.3311	8.3967		
528	278784	147197952	22.9783	8.0825	593	351649	208527857	24.3516	8.4014		
529	279841	148035389	23.	8.0876	594	352836	209584584	24.3721	8.4061		
530	280900	148877000	23.0217	8.0927	595	354025	210644875	24.5926	8.4103		
531	281961	149721291	23.0434	8.0978	596	355216	211708736	24.4131	8.4155		
532	283024	150568768	23.0651	8.1028	597	356409	212776173	24.4336	8.4202		
533	284089	151419437	23.0868	8.1079	598	357604	213847192	24.4540	8.4249		
534	285156	152273304	23.1084	8.1130	599	358801	214921799	24.4745	8.4296		
535	286225	153130375	23.1301	8.1180	600	360000	216000000	24.4949	8.4343		
536	287296	153990656	23.1517	8.1231	601	361201	217081801	24.5153 24.5357 24.5561 24.5764 24.5967	8.4390		
537	288369	154854153	23.1733	8.1281	602	362404	218167208		8.4437		
538	289444	155720872	23.1948	8.1332	603	363609	219256227		8.4434		
539	290521	156590819	23.2164	8.1382	504	364816	220348864		8.4530		
540	291600	157464000	23.2379	8.1433	605	366025	221445125		8.4577		
541	292681	158340421	23,2594	8.1483	606	367236	222545016	24.6171	8.4623		
542	293764	159220088	23,2809	8.1533	607	368449	223648543	24.6374	8.4670		
543	294849	160103007	23,3024	8.1583	608	369664	224755712	24.6577	8.4716		
544	295936	160989184	23,3238	8.1633	609	370881	225866529	24.6779	8.4763		
545	297025	161878625	23,3452	8.1683	610	372100	226981000	24.6982	8.4809		
546	298116	162771336	23.3666	8.1733	611	373321	228099131	24.7184	8,4856		
547	299209	163667323	23.3880	8.1783	612	374544	229220928	24.7386	8,4902		
548	300304	164566592	23.4094	8.1833	613	375769	230346397	24.7583	8,4943		
549	301401	165469149	23.4307	8.1882	614	376396	231475544	24.7790	8,4994		
550	302500	166375000	23.4521	8.1932	615	378225	232608375	24.7992	8,5040		
551	303601	167284151	23.4734	8.1982	616	379456	233744896	24.8193	8.5086		
552	304704	168196608	23.4947	8.2031	617	380689	234885113	24.8395	8.5132		
553	305809	169112377	23.5160	8.2081	618	381924	236029032	24.8596	8.5178		
554	306916	170031464	23.5372	8.2130	619	383161	237176659	24.8797	8.5224		
555	308025	170953875	23.5584	8.2180	620	384400	238328000	24.8998	8.5270		
556	309136	171879616	23.5797	8.2229	621	385641	239483061	24.9199	8.5316		
557	310249	172808693	23.6008	8.2278	622	386884	240641848	24.9399	8.5362		
558	311364	173741112	23.6220	8.2327	623	388129	241804367	24.9600	8.5408		
559	312481	174676879	23.6432	8.2377	624	389376	242970624	24.9800	8.5453		
560	313600	175616000	23.6643	8.2426	625	390625	244140625	25.	8.5499		
561	314721	176558481	23.6854	8.2475	626	391876	245314376	25.0200	8.5544		
562	315844	177504328	23.7065	8.2524	627	393129	246491883	25.0400	8.5590		
563	316969	178453547	23.7276	8.2573	628	394384	247673152	25.0599	8.5635		
564	318096	179406144	23.7487	8 2621	629	395641	248858189	25.0799	8.5631		
565	319225	180362125	23.7697	8.2670	630	396900	250047000	25.0998	8.5726		
566	320356	181321496	23.7908	8.2719	631	398161	251239591	25.1197	8.5772		
567	321489	182284263	23.8118	8.2768	632	399424	252435968	25.1396	8.5917		
568	322624	183250432	23.8328	8.2816	633	400689	253636137	25.1595	8.5962		
569	323761	184220009	23.8537	8.2865	634	401956	254840104	25.1794	8.5907		
570	324900	185193000	23.8747	8.2913	635	403225	256047875	25.1992	8.5952		
571	326041	186169411	23.8956	8.2962	636	404496	257259456	25.2190	8.5997		
572	327184	187149248	23.9165	8.3010	637	405769	.258474853	25.2389	8.6043		
573	328329	188132517	23.9374	8.3059	638	407044	.259694072	25.2587	8.6033		
574	329476	189119224	23.9583	8.3107	639	408321	.260917119	25.2784	8.6132		
575	330625	190109375	23.9792	8.3155	640	409600	.262144000	25.2982	8.6177		

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(Continued.)

	1	1	1	1			1		
No.	Square.	Cube.	Sq. Rt.	C. Rt	No.	Square.	Cube.	Sq. Rt.	C. Rt.
251	63001	15813251	15.8430	6.3050	316	99856	31554496	17.7764	6.4113
252 253	63504	16003008	15.8745	6.3164	317	100459	31855013	17.8045	6.5135
253	64009 64516	16194277	15.9060	6.3247 6.3330	318 319	101124 101761	32157432 32461759	17.8326 17.8606	6.8256 6.8328
254 255	65025	16387064 16581375	15.9374 15.9687	6.3413	320	102400	32768000	17.8885	6.8399
256	65536	16777216	16.	6.3496	321	103041	33076161	17.9165	6.5470
257	66049	16974593	16.0312	6.3579	322	103684	33386248	17.9444	6.8541
258 259	66564 67081	17173512 17373979	16.0624 16.0935	6.3661 6.3743	323 324	104329 104976	33698267 34012224	17.9722	6.8612 6.863
260	67600	17576000	16.1245	6.3825	325	105625	34328125	18.0278	6.8753
261	68121	17779581	16.1555	6.3907	326	106276	34645976	18.0555	6.8824
262 263	68644 69169	17984728 18191447	16.1864 16.2173	6.3988 6.4070	327 328	108929 107584	34965783 35287552	18.0831	6.8894 6.8964
264	69696	18399744	_ 16,2481 .	6.4151	. 329	108241	35611289	18.1384	6.9034
265	70225	18609625	16.2788	6.4232	330	108900	35937000	18.1659	6.9104
266 267	70756 71289	18821096 19034163	16.3095 16.3401	6.4312 6.4393	331 332	109561 110224	36264691 36594368	18.1934 18.2209	6.9174 6.9244
268	71824	19248832	16.5707	6.4173	333	110889	36926037	18.2483	6.9313
269	72361	19465109	16.4012	6.4553	334	111556	37259704 37595375	18.2757	6.9332
270	72900	19683000	16.4317	6.4633	335	112225		18.3030	6.9451
271	73441 73984	19902511 20123648	16.4621 16.4924	6.4713	336 337	112896 113569	37933056	18.3303 18.3576	6.9521
272 273	74529	20346417	16.5227	6.4792 6.4872	338	114244	38272753 38614472	18.3848	6.9589 6.9655
27 1	75076	20570524	16.5529	6.4951	339	114921	38958219	18.4120	6.9727
275	75625	20796875	16.5831	6.5030	340	115600	39304000	18.4391	6.9795
276	76176 76729	21024576 21253933	16.6132 16.6433	6.5108 6.±187	341 342	116281 116964	39651821	18.4662 18.4932	6.9864 6.9932
277 278	77284	21484952	16.6733	6.5265	343	117649	40001688 40353607	18.5203	7.
279	77841	21717639	16.7033	6.5343	344	118336	40707584	18.5472	7.0068
280	78400	21952000	16.7332	6.5421	345	119025	41063625	18.5742	7.0136
281 282	78961 79524	22188041 22425768	16.7631 16.7929	6.5499 6.5577	346 347	119716 120409	41421736 41781923	18,6011 18,6279	7.0203 7.0271
283	80089	. 22665187	16.8226	6.5654	348	121104	42144192	18.6548	7.0338
284 285	80656 81225	22906304 23149125	16.8523 16.8819	6.5731 6.5808	349 350	121801 122500	42508549	18.6815 18.7083	7.0406 7.0473
							42875000		
286 287	81796 82369	23393656 23639903	16.9115 16.9411	6.5885 6.5962	$\frac{351}{352}$	123201 123904	43243551 43614208	18.7350 18.7617	7.0540 7.0607
288	82944	23887872	16.9706	6.6039	353	124609	43986977	18.7883	7.0674
289 290	83521 84100	24137569 24389000	17. 17.0294	6.6115 6.6191	354 355	125316 126025	44361864 44738875	18.8149 18.8414	7.0740 7.0807
					_				
291 292	84681 85264	24642171 24897088	17.0587 17.0880	6.62fi7 6.6343	356 357	126736 127449	45118016 45499293	18.8680 18.8944	7.0873 7.0940
293	.85849	25153757	17.1172	6.6419	358	128164	45882712	18.9209	7.1006
291 295	86436 87025	25412184 25672375	17.1464 17.1756	6.6404 6.6569	35M 360	128881 129600	46268279 46656000	18.9473 18.9737	7.1072 7.1133
296	87616	25934336	17.2047	6.6644	361	130321	47045881	19.	7.1204
297	88209	26198073	17.2337	6.6719	362	131044	47437928	19,0263	7.1269
298 299	88804 89401	26463592 26730899	17.2627 17.2916	6.6794 6.6869	363 364	131769 132496	47832147 48228544	19.0526 19.0788	7.1335 7.1400
300	90000	27000000	17.3205	6,6943	365	133225	48627125	19.1050	7.1466
301	90601	27270901	17.3494	6.7018	366	133956	49027896	19.1311	7.1531
302	91204 91809	27543608 27818127	17.3781	6.7092	367	134689	49430863	19.1572	7.1596
303	92416	28094464	17.4069 17.4356	6. 7166 6. 7240	368 369	135424 136161	49836032 50243409	19.1833 19.2094	7.1661 7.1726
305	93025	28372625	17.4642	6.7313	370	136900	50653000	19.2354	7.1791
306	93636	28652616	17.4929	6.7387	371	137641	51064811	19.2614	7.1855
307 308	94249 94864	28934443 29218112	17.5214 17.5499	6.7460	372 373	138384 139129	51478848 51895117	19.2873 19.3132	7.1920 7.1954
309	95481	29503629	17.5784	6.7533 6.7606	374	139876	52313624	19.3391	7.2043
310	96100	29791000	17.6068	6.7679	375	140625	52734375	19,3649	7.2112
311 312	96721 97344	30080231 30371328	17.6352 17.6635	6,7752	.376	141376 142129	53157376 53582633	19.3907 19.4165	7.2177 7.2240
313	97969	30664297	17.6918	6.7824 6.7897	377 378	142884	54010152	19.4422	7,2304
314 315	98596 99225	30959144 31255875	17.7200 17.7482	6.7969	379	143641	54439939 54872000	19.4679 19.4936	7.2368 7.2432
213	99220 1	01200510	14.7452	6.8041	350	144400	3±372000	19,4930	1.2431

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(Continued.)

No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
381 382 383 384 385	145161 145924 146689 147456 148225	55306341 55742968 56181887 56623104 57066625	19.5192 19.5448 19.5704 19.5959 19.6214	7.2495 7.2558 7.2622 7.2685 7.2748	446 447 448 449 450	198916 199809 200704 201601 202500	88716536 89314623 89915392 90518849 91125000	21.1187 21.1424 21.1660 21.1896 21.2132	7.6403 7.6460 7.6517 7.6574 7.6631
386 387 388 389 390	148996 149769 150544 151321 152100	57512456 57960603 58411072 58863869 59319000	19.6469 19.6723 19.6977 19.7231 19.7484	7.2811 7.2874 7.2936 7.2999 7.3061	451 452 453 454 455	203401 204304 205209 206116 207025	91733851 92345408 92959677 93576664 94196375	21.2368 21.2603 21.2838 21.3073 21.3307	7.6688 7.6744 7.6801 7.6857 7.6914
391 392 393 394 395	152881 153664 154449 155236 156025	59776471 60236288 60698457 61162984 61629875	19.7737 19.7990 19.8242 19.8494 19.8746	7.3124 7.3186 7.3248 7.3310 7.3372	456 457 458 459 460	207936 208849 209764 210681 211600	94818816 95443993 96071912 96702579 97336000	21.3542 21.3776 21.4009 21.4243 21.4476	7.6970 7.7026 7.7082 7.7138 7.7194
396 397 398 399 400	156816 157609 158404 159201 160000	62099136 62570773 63044792 63521199 64000000	19.8997 19.9249 19.9499 19.9750 20.	7.3434 7.3496 7.3558 7.3619 7.3681	461 462 463 464 465	212521 213444 214369 215296 216225	97972181 98611128 99252847 99897344 100544625	21.4709 21.4942 21.5174 21.5407 21.5639	7.7250 7.7306 7.7362 7.7418 7.7473
401 402 403 404 405	160801 161604 162409 163216 164025	64481201 64964808 65450827 65939264 66430125	20.0250 20.0499 20.0749 20.0998 20.1246	7.3742 7.3803 7.3864 7.3925 7.3986	466 467 468 469 470	217156 218089 219024 219961 220900	101194696 101847563 102503232 103161709 103823000	21.6102 21.6333 21.6564	7.7529 7.7584 7.7639 7.7695 7.7750
406 407 408 409 410	164836 165649 166464 167281 168100	66923416 67419143 67917312 68417929 68921000	20.1494 20.1742 20.1990 20.2237 20.2485	7.4047 7.4108 7.4169 7.4229 7.4290	471 472 473 474 475	221841 222784 223729 224676 225625	104487111 105154048 105823817 106496424 107171875	21.7486 21.7715	7.7805 7.7860 7.7915 7.7970 7.8025
411 412 413 414 415	168921 169744 170569 171396 172225	69426531 69934528 70444997 70957944 71473375	20.2731 3 20.2978 20.3224 20.3470 20.3715	7.4350 7.4410 7.4470 7.4530 7.4590	476 477 478 479 480	226576 227529 228484 229441 230400	107850176 108531333 109215352 109902239 110592000	21.8403 21.8632 21.8861	7.8079 7.8134 7.8188 7.8243 7.8297
416 417 418 419 420	173056 173889 174724 175561 - 176400	71991296 72511713 73034632 73560059 74088000	20.3961 20.4206 20.4450 20.4695 20.4939	7.4650 7.4710 7.4770 7.4829 7.4889	481 482 483 484 485	231361 232324 233289 234256 235225	111284641 111980168 112678587 113379904 114084125	21.9773 22.	7.8352 7.8406 7.8460 7.8514 7.8568
421 422 423 424 425	177241 178084 178929 179776 180625	74618461 75151448 75686967 76225024 76765625	20.5183 20.5426 20.5670 20.5913 20.6155	7.4948 7.5007 7.5067 7.5126 7.5185	486 487 488 489 490	236196 237169 • 238144 239121 240100	114791256 115501303 116214272 116930169 117649000	22.0681 22.0907 22.1133	7.8622 7.8676 7.8730 7.8784 7.8837
426 427 428 429 430	181476 182329 183184 184041 184900	77308776 77854483 78402752 78953589 79507000	20.6398 20.6640 20.6882 20.7123 20.7364	7.5244 7.5302 7.5361 7.5420 7.5478	491 492 493 494 495	241081 242064 243049 244036 245025	118370771 119095488 119823157 129553784 121287375	22.2036 22.2261	7.8891 7.8944 7.8998 7.9051 7.9105
431 432 433 434 435	185761 • 186624 187489 188356 189225	80062991 80621568 81182737 81746504 82312875	20.7605 20.7846 20.8087 20.8327 20.8567	7.5537 7.5595 7.5654 7.5712 7.5770	496 497 498 499 500	246016 247009 248004 249001 250000	122023936 122763473 123505992 124251499 125000000	22.2935 22.3159 22.3383	7.9158 7.9211 7.9264 7.9317 7.9370
436 437 438 439 440	190096 190969 191844 192721 193600	82881856 83453453 84027672 84604519 85184000	20.8806 20.9045 20.9284 20.9523 20.9762	7.5828 7.5886 7.5944 7.6001 7.6059	501 502 503 504 505	251001 252004 253009 254016 255025	125751501 126506008 127263527 128024064 128787623	22.4054 22.4277 22.4499	7.9423 7.9476 7.9528 7.9581 7.9634
441 442 443 444 445	194481 195364 196249 197136 198025	85766121 86350888 86938307 87528384 88121125	21. 21.0238 21.0476 21.0713 21.0950	7.6117 7.6174 7.6232 7.6289 7.6346	506 507 508 509 510	256036 257049 258064 259081 260100	129554216 130323843 131096512 131872229 132651000	22.5167 2 22.5389 2 22.5610	7.9686 7.9739 7.9791 7.9843 7.9896

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(Continued.)

		,				,			
No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
641	410881	263374721	25.3180	8.6222	706	498436	351895816	26.5707	8.9043
642	412164	264609288	25.3377	8.6267	707	499849	353393243	26.5895	5.9035
643	413449	265847707	25.3574	8.6312	708	501264	354894912	26.6083	8.9127
611	414736	267089984	25.3772	8.6357	709	50268!	356400829	26.6271	8.9169
612	416025	268336125	25,3969	8.6401	710	504100	357911000	26.6458	8.9211
646	417316	269586136	25.4165	8.6146	711	505521	359425431	26.6646	8.9253
647	418609	270810023	25.4362	8.6490	712	506944	360944128	26.6833	8.9295
648	419904	272097792	25,4558	8.6535	713	508369	362467097	26.7021	8.9337
649 650	421201 422500	273359449 274625000	25.4755 25.4951	8.6579 8.6624	714 715	509796 511225	363994344 365525875	26.7208 26.7395	8,9378 8,9420
651 652	423801 425104	275894451 277167898	25.5147 25.5343	8.6668 8.6713	716 717	512656 514089	367061696	26.7582	8.9462
653	426109	278145077	25.5539	8.6757	718	515524	368601813 370146232	26.7769 26.7955	8.9503 8.9545
651	427716	279726264	25.5734	8.6801	719	516961	371694959	26.8142	8.9587
655	429025	281011375	25.5930	8.6845	720	518400	373248000	26.8328	8.9623
656	430336	282300416	25.6125	8,6890	721	519841	374805361	26.8514	8.9670
657	431649	283593393	25.6320	8.6934	799	521284	376367048	26.8701	8.9711
658	432964	284890312	25.6515	8.6978	723	522729	377933067	26.8887	8.9752
659	434281	286191179	25.6710	8.7022	724	524176	379503424	26.9072	8,9794
660	435600	287496000	25.6905	8.7066	725	525625	381078125	26.9258	8.9835
661	436921	288801781	25.7099	8.7110	726	527076	382657176	26.9444	8.9876
662	438244	290117528	25,7294	8.7154	727	528529	3842405S3	26.9629	8.9918
663	439569	291434247	25.7488	8.7198	728	529984	385828352	26.9815	8.9959
664	440896	292754944	25.7682	8.7241	729	531441	387420489	27.	9.
665	442225	294079625	25.7876	8.7253	730	532900	389017000	27.0185	9.0041
666	443556	295408296	25.8070	8.7329	731	534361	390617891	27.0370	9.0082
667	444889	296740963	25.8263	8.7373	732	535824	392223168	27.0555	9.0123
668	446224 447261	298077632 299418309	25.8457	8.7416	733 734	537289 538756	393832837	27.0740	9.0164
670	448900	300763000	25.8650 25.8844	8.7460 8.7503	735	540225	395446904 397065375	27.0924 27.1109	9.0205 9.0246
671	450241	302111711	25.9037	S.7547	736	541696	398688256	27.1293	9.0287
672 673	451584 452929	303464448 304821217	25.9230 25.9422	8.7590 8.7631	737 738	543169 544644	400315553 401947272	27.1477 27.1662	9.0328 9.0369
G7 £	454276	306182024	25.9615	8.7677	739	546121	403583419	27.1816	9.0410
675	455625	307546875	25.9808	8.7721	740	547600	405224000	27.2029	9.0450
676	456976	308915776	26.	8.7764	741	549081	406869021	27.2213	9.0491
677	458329	310288733	26.0192	8.7807	742	550564	408518488	27.2397	9.0532
678	459684	311665752	26.0384	8.7850	743	552049	410172407	27.2580	9.0572
679	461041	313046839	26.0576	8.7893	744	553536	411830784	27.2764	9.0613
680 ,	462400	314432000	26.0768	8.7937	745	555025	413493625	27.2947	9.0654
681	463761	315821241	26.0960	8.7980	746	556516	415160936	27.3130	9.0694
682	465124	317214568	26.1151	8.8023	747	558009	416832723	27.3313	9.0735
683 684	466489 467856	318611987 320013504	26.1343 26.1534	8.8066 8.8109	748 749	559504 561001	418508992 420189749	27.3496 27.3679	9.0775 9.0816
685	469225	321419125	26.1554	8.8152	750	562500	421875000	27.3861	9.0856
020	40000	0.100000000							
686 687	470596 471969	322828856 324242703	26.1916 26.2107	8.8194 8.8237	751 752	564001 565504	423564751 425259008	27.4044 27.4226	9.0896 9.0937
688	473344	325660672	26.2298	8.8280	753	567009	426957777	27.4408	9.0977
689	474721	327082769	26.2488	8.8323	754	568516	428661064	27.4591	9.1017
690	476100	328509000	26.2679	8.8366	754 755	570025	430368875	27.4773	9.1057
691	477481	329939371	26.2869	8.8108	756	571536	432081216	27.4955	9.1098
692	478861	331573888	26.3059	8.8451	757	573049	433798093	27 5136 27.5318	9.1135
693	480249	335.812557	26.3249	8.8493	758 1	574564	435519512	27.5318	9.1178
694 695	481636 483025	384255384 835702375	26.3439 26.3629	8.8536	759	576081 577600	437245479 438976000	27.5500 27.5681	9.1218 9.1258
				8.8578	760		1000010000	1	
696	481416	337153536	26.3818	8.8621	761	579121	440711081	27.5862	9.1298
697 698	485809 487204	338608873 340068392	26.4008	8.8663 8.8706	762	580644 582169	442450728 444194947	27.6043 27.6225	9.1338 9.1378
699	488601	341532099	26.4197 26.4386	8.8748	763 764	583696	445943744	27.6405	9.1418
700	490000	343000000	26.4575	8.8748 8.8790	765	585225	445943744 447697125	27.6586	9.1458
20-	491401	344472101	26.470	8.8833	766	586756	449455096	27.6767	9.1498
70° 702	492804	345948408	26.4953	8.8875	767	588289	4512176631	27.6948	9.1537
793	494200	347428927	26.5141	8 8917	768	589824	452984832	27.7128	9.1577
701	495616 497025	348913664 350402625	26.5330	8.8959	769	591361	454756609	27.7308	9.1617 9.1657
600	¥31025	330402623	26.5518	8.9001	770 .	592900	456533009	27.7489	9.1001

192 . T

TABLE NO. 75—CON.

From Trautwine's "Civil Engineer's Pocket Book."

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(CONTINUED.)

No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
771	594441	458314011	27.7669	9.1696	836	698896	584277056	28.9137	9.4204
772	595984	460099648	27.7849	9.1736	837	700569	586376253	28.9310	9.4241
772 773 774	597529 599076	461889917	27.8029	9.1775 9.1815	838 839	702244 703921	588480172	28.9482	9.4279
775	600625	463684824 465484375	27.8209 27.8388	9.1815	840	703921	590589719 592704000	28.9655 28.9828	9.4316 9.4354
776	602176	467288576	27.8568	9.1894	841	707281	594823321	29.	
776 777	603729	469097433	27.8747	9.1933	842	708964	596947688	29.0172	9.4391 9.442 9
778	605284	470910952	27.8927	9,1973	843	710649	599077107	29.0345	9.4466
779 780	606841 608400	472729139 474552000	27.9106 27.9285	$9.2012 \\ 9.2052$	844 845	712336 714025	601211584 603351125	29.0517 29.0689	9.4503 9.4541
781	609961	476379541	27.9464	9,2091	846			29.0861	
782	611524	478211768	27.9643	9.2130	847	715716 717409	605495736 607645423	29.1033	9.4578 9.4615
783	613089	480048687	27.9821	9.2170	848	719104	609800192	29.1204	9.4652
784 785	614656 616225	481890304 483736625	28. 28.0179	9.2209 9.2248	849 850	720801 722500	611960049 614125000	29.1376 29.1548	9.4690 9.4727
786 787	617796	485587656	28.0357	9.2287 9.2326	851 852	724201	616295051	29.1719	9.4764
788	619369 620944	487443403 489303872	28.0535 28.0713	9.2365	853	725904 727609	618470208 620650477	29.2062	9.4801 9.4838
788 789	622521	491169069	28.0713 28.0891	9.2404	854	729316	622835864	29.2233	9.4875
790	624100	493039000	28.1069	9.2443	855	731025	625026375	29.2404	9.4912
791	625681	494913671	28.1247	9.2482	856	732736	627222016	29.2575	9.4949
792	627261	496793088	28.1425	9.2521	857	734449	629422793	29.2746	9.4986
793 1 794	628849 630436	498677257 500566184	28.1603 28.1780	9:2560 9:2599	858 859	736164 737881	631628712 633839779	29.2916 29.3087	9.5023 9.5060
795	632025	502459875	28.1957	9.2638	860	739600	636056000	29.3258	9.5097
796	633616	504358336	28.2135	9.2677	861	741321	638277381	29.3428	9.5134
797	635209	506261573	28.2312	9.271€	862	743044	640503928	29.3598	9.5171
798 799	636804 638401	508169592 510082399	28.2489 28.2666	9.2754 9.2793	863 864	744769 746496	642735647 644972544	29.3769 29.3939	9.5207 9.5244
800	640000	512000000	28.2843	9.2832	865	748225	647214625	29.4109	9.5281
801	641601	513922401	28.3019	9.2870	866	749956	649461896	29.4279	9.5317
802	643204	515849608	28.3196	9.2909	867	751689	651714363	29.4449	9.5354
803 804	611809 646416	517781627 519718464	28.3373 28.3549	9.2948 9.2986	868 869	753424 755161	653972032 656234909	29.4618 29.4788	9.5391 9.5427
805	648025	521660125	28.3725	9.3025	870	756900	658503000	29.4958	9.5464
806	649636	523606616	28.3901	9.3063	871.	758641	660776311	29.5127	9.5501
807	651249	525557943	28.4077	9.3102	872	760384	663054848	29.5296	9.5537
808 809	652864 654481	527514112 529475129	28.4253 28.4429	9.3140 9.3179	873 874	762129 763876	665338617 667627624	29.5466 29.5635	9.557 4 9.5610
810	656100	531441000	28.4605	9.3217	875	765625	669921875	29.5804	9.5647
811	657721	533411731	28,4781	9.3255	876	767376	672221376	29.5973	9.5683
812	659344	535387328	28.4956	9.3294	877	769129	674526133	29.6142	9.5719
813 814	680469 662596	537367797 539353144	28.5132 28.5307	9.3332 9.3370	878 879	770884 772641	676836152 679151439	29.6311 29.6479	9.5756 9.5792
£15	664225	541343375	28.5482	9.3408	880	774400	681472000	29.6648	9.5828
8 16	665856	543338496	28.5657	9.3447	881	776161	683797841	29.6816	9.5865
817	667489	545338513	28.5832	9.3485	882	777924	686128968	29.6985	9.5901
818 ' 819 -	639124 670761	547343432 549353259	28.6007 28.6182	9.3523 9.3561	883 884	779689 781456	688465387 690807104	29.7153 29.7321	9.5937 9.5973
520	672400	551368000	28.6356	9.3599	885	783225	693154125	29.7489	9.6010
821 .	674041	553387661	28.6531	9.3637	886	784996	695506456	29.7658	9.6046
822 .	675684	555412248	28.6705	9.3675	887	786769	697864103	29.7825	9.6082
823 824	677329	557441767	28.6880	9.3713	888 889	788544 790321	700227072	29.7993 29.8161	9.6118 9.6154
825	678976 680625	559476224 561515625	28.7054 28.7228	9.3751 9.3789	890	792100	704969000	29.8329	9.6190
826	689276	563559976	28.7402	9.3827	891	793881	707347971	29.8496	9.6226
827	683929	565609283	28.7576	9.3865	892	795664	709732288	29.8664	9.6262
828 600	685584	567663552	28.7750 28.7924	9.3902	893 894	797449 799236	712121957 714516984	29.8831 29.8998	9.6298 9.6334
829 830	687241 688900	569722789 571787000	28.8097	9.3940 9.3978	895	801025	716917375	29.9166	9.6370
831	690561	573856191	28.8271	9,4016	896	802816	719323136	29.9333	9.6406
832	692224	575930368	28.8444	9.4053	897	804609	721734273	29.9500	9.6442
633	693889	578009537	28.8617	9.4091 9.4129	898 899	806404 808201	724150792 726572699	29.9666 29.9833	9.6477 9.6513
834 835	695556 697225	580093704 582182875	28.8791 28.8964	9.4166	900	810000	7290000000	30.	9.6549
-									

SQUARES, CUBES, AND ROOTS.

TABLE of Squares, Cubes, Square Roots, and Cube Roots, of Numbers from 1 to 1000—(Continued.)

-	1			1	1	1	1		1
No.	Square.	Cube.	Sq. Rt.	C. Rt.	No.	Square.	Cube.	Sq. Rt.	C. Rt.
901	011001	721490701	30.0167	0.0505	051	004407	000005351	30,8383	9,8339
902	811801 813604	731432701 733870808	30.0333	9.6585 9.6620	951 952	904401 906304	860085351 862501408	30.8545	9.8374
903	815409	736314327	30.0500	9.6656	953	908209	865523177	30.8707	9.8403
904	817216	738763264	30,0666	9,6692	954	910116	868250664	30.8869	9.8443
905	819025	741217625	30:0832	9.6727	955	912025	870983875	30.9031	9.8477
906	820836	743677416	30.0998	9.6763	956	913936	873722816	30.9192	9.8511
907	822649	746142643	30.1164	9.6799	957	915849	876467493	30.9354	9.8546
908	824464	748613312	30.1330	9.6834	958	917764	879217912	30.9516	9.8580
910	826281 828100	751089429 753571000	30.1496 30.1662	9.6870 9.6905	959 960	919681 921600	881974079 884736000	30.9677 30.9839	9.8614 9.8648
911	829921	756058031	30.1828	9,6941	961	923521	887503681	31.	9.8683
912	831744	758550528	30.1993	9.6976	962	925444	890277128	31.0161	9.8717
913	833569	761048497	30.2159	9.7012	963	927369	893056347	31.0322	9.8751
914	835396	763551944	30.2324	9.7047	964	929296	895841344	31.0483	9.8785
915	837225	766060875	30.2490	9.7082	965	931225	898632125	31.0644	9.8819
916	839056	768575296	30.2655	9.7118	966	933156	901428696	31.0805	9.8854
917	840889	771095213	30.2820	9.7153	967	935089	904231063	31.0966	9.8888
918 919	842724 844561	773620632 776151559	30.2985 30.3150	9.7188 9.7224	968 969	937024 938961	907039232	31.1127 31.1288	9.8922 9.8956
920	846400	778688000	30.3315	9.7259	970	940900	909853209 912673000	31.1448	9.8990
921	848241	781229961	30.3480	9.7294	971	942841	915498611	31.1609	9.9024
922	850084	783777448	30.3645	9.7329	972	944784	918330048	31.1609 31.1769	9.9058
923	851929	786330467	30.3809	9.7364	973	946729	921167317	31.1929	9.9092
924	853776	788889024	30.3974	9.7400	974	948676	924010424	31.2090	9.9126
925	855625	791453125	30.4138	9.7435	975	950625	926859375	31.2250	9.9160
926	857476	794022776	30,4302	9.7470	976	952576	929714176	31.2410	9.9194
927	859329	796597983	30.4467	9.7505	977	954529	932574833	31.2570	9.9227
928	861184	799178752	30.4631	9.7540	978	956484	935441352	31.2730	9.9261
929	863041	801765089	30.4795	9.7575	979	958441	938313739	31.2890	9.9295
930	864900	804357000	30.4959	9.7610	980	960400	941192000	31.3050	9.9329
931	866761	806954491	30.5123	9.7645	981	962361	944076141	31.3209	9.9363
932	868624	809557568	30.5287	9.7680	982	964324	946966168	31.3369	9.9396
933 934	870489 872356	812166237	30.5450	9.7715	983 984	966289	949862087	31.3528	9.9430
935	874225	814780504 817400375	30.5614 30.5778	9.7750 9.7785	98± 985	968256 970225	952763904 955671625	31.3688 31.3847	9.9464 9.9497
936	876096	820025856	30.5941	9.7819	986	972196	958585256	31.4006	9.9531
937	877969	822656953	30.5941	9.7854	987	972196	961504803	31.4166	9.9565
938	879844	825293672	30.6268	9.7889	988	976144	964430272	31,4325	9.9593
939	881721	827936019	30.6431	9.7924	989	978121	967361669	31.4484	9.9632
940	883600	830584000	30.6594	9.7959	990	980100	970299000	31.4643	9.9666
941	885481	833237621	30.6757	9.7993	991	982081	973242271	31.4802	9.9699
942	887364	835896888	30.6920	9.8028	992	984064	976191488	31.4960	9.9733
943	889249 891136	838561807	30.7083	9.8063	993	986049	979146657	31.5119	9.9766
944	893025	841232384 843908625	30.7246 30.7409	9.8097 9.8132	994 995	988036 990025	982107784 985074875	31.5278 31.5436	9.9800 9.9833
946	894916	846590536	30.7571	9.8167	996	992016	988047936	31.5595	9.9866
947	896809	849278123	30.7734	9.8201	997	994009	991026973	31.5753	9,9900
948	898704	851971392	30.7896	9.8236	998	996004	994011992	31.5911	9,9933
949	900601	854670349	30.8058	9.8270	999	998001	997002999	31.6070	9.9967
950	902500	857375000	30.8221	9.8305	1000	1000000	1000000000	31.6228	10,

To find the square or cube of any whole number ending with ciphers. First, omit all the final ciphers. Take from the table the square or cube (as the case may be) of the rest of the number. To this square add twice as many ciphers as there were final ciphers in the original number. To the cube add three times as many as in the original number. Thus, for 905002; 9052=819025. Add twice 2 ciphers, obtaining 8190250000. For 905003, 9053=741217625. Add 3 times 2 ciphers, obtaining 741217625000000.

SQUARE AND CUBE ROOTS.

Square Roots and Cube Roots of Numbers from 1000 to 10000.

Squa	T C TEC	o ts a		1,00 1	OULS	OX 11 11		3 11 0		No	errors.
Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.
1005	31.70	10.02	1405	37.48	11.20	1805	-42.49	12.18	2205	46.96	13.02
1010	31.70 31.78	10.02 10.03	1410	37.48 37.55	11.21	1810	42.54	12.19	2210	47.01	13.03
. 1015	31.86	10.05 10.07	1415 1420	37.62	11.23	1815 1820	42.60 42.66	12.20 12.21	2215 2220	47.06	13.04
1020 1025	31.94 32.02	10.07	1425	37.68	11.24 11.25	1825	42.72	12.21	2225	47.12 47.17	13.05 13.05
1025 1030	32.09	10.10	1430	37.75 37.82	11.27	1830	42.78	12.23	2230	47.22	13.06
1035	32.17	10.12	1435	37.88	11.28	1835	42.84	12.24	2235	47.28	13.07
1040	32.25 32.33	10.13 10.15	1440 1445	37.95 38.01	11.29 11.31	1840 1845	42.90 42.95	12.25 12.26	2240 2245	47.33 47.38	13.08 13.09
1045 1050	32.40	10.16	1450	38.01 38.08	11.32	1850	43.01	12.28	2250	47.43	13.10
1055	32.48	10.18	1455	38.14	11.33	1855	43.07	12.29	2255	47.49	13.11
1060	32.56 32.63	10.20 10.21	1460 1465	38.21 38.28	11.34 11.36	1860 1865	43.13	12.30 12.31	2260 2265	47.54 47.59	13.12 13.13
1065 1070 1075	32.71	10.23	1470	38.34	11.37	1870	43.24	12.32	2270	47.64	13.14
1075	32.79	10.24	1475	38.41	11.38 11.40	1875	43.50	12.33	2275 2280	47.70	13.15
1080 1085	32.86 32.94	10.26 10.28	1480 1485	38.47 38.54	11.40	1880 1885	43.36 43.42	12.34 12.35	2285	47.75	13.16 13.17
1090 1095	33.02	10.29	1490	38.60	11.42	1800	43.47	12.36	2250	47.85	13.18
1095	33.09	10.31	1495	38.67	11.43 11.45	1895 1900	43.53	12.37	2295 2300	47.91	13.19 - 13.20
1100 1105	33.17 33.24	10.32 10.34	1500 1505	38.73 38.79	11.46	1905	43.59 43.65	12.39	2305	47.96 48.01	13.21
1110	33.32	10.35	1510	38.86	11.47	. 1910	43.70	12.41	2310	48.06	13.22
1115	33.39	10.37	1515	38.92 38.99	11.49	1915	43.76	12.42 12.43	2315 2320	48.11	13.23 13.24
1120	33.47 33.54	10.38 10.40	$1520 \\ 1525$	39.05	11.51	1920 1925	43.87	12.43	2325	48.22	13.25
1120 1125 1130	33.62	10.42	1530	39.12	11.52	1925 1930	43.93	12.45	2330	48.27	13.26
1135	33.69	10.43 10.45	1535 1540	39.18	11.54 11.55	1935 1940	43.99	12.46 12.47	2335	48.32 48.37	13.27 13.28
1140 1145	33.76 33.84	10,46	1545	39.24 39.31	11.56	1945	44.10	12.48	2345	48.43	13.29
1150 1155	33.91	10.48 10.49 10.51	1550	39.37	11.57	. 1950	44.16	12.49	1 235 0	48.48	13.30
1155	33.99	10.49	1555 1560	39.43 39.50	11.59 11.60	1955 1960	44.22	12.50 12.51	235 5 236 0	48.53 48.58	13.30 13.31
1160 1165	34.06 34.13	10.52	1565	39.56	11.61	1965	44.33	12.53	2365	48.63	13.32
1170	34.21	10.54	1570	39.62	11,62	1970	44.38	12.54	2370	48.68	13.33
1175 -	34.28 34.35	10.55 10.57	1575 1580	39.59	11.63 11.65	1975 1980	44.44 44.50	12.55 12.56	2375 2380	48.73 48.79	13.34 13.35
1180 1185	34.42	10.58	1585	39.69 39.75 39.81	11.66	1985	44.55	12.57	2385	48.84	13.36
1190	34.50	10.60	1590 1595	39.87	11.67 11.68	1990 1995	44.61	12.58 12.59	2390 2395	48.89	13.37 13.38
1195 1200	34.57 34.64	10.61 10.63	1600	39.94 40.00	11.70	2000	44.67 44.72.	12.60	2400	48.99	13.39
1200 1205	34.71	10.64	1605	40.06	11.71	2005	44.78	12.61	2405	49.04	13.40
1210 1215	34.79	10.66	1610 1615	40.12 40.19	11.72 11.73	2010	44.83 44.89	12.62 12.63	2410 2415	49.09	13.41 13.42
1220	34.86 34.93	10.67 10.69	1620	40.25	11.74	2020	44.94	12.64	2420	49.19	13.43
1225	35.00	10.70 10.71 10.73 10.74	1625	40.31	11.76	2025	45.00	12.65	2425	49,24	13.43
1230	35.07	10.71	1630 , 1635	40.37 40.44	11.77 11.78	2030 2035	45.06 45.11	12.66 12.67	2430 2435	49.30 49.35	13.44 13.45
1235 1240	35.14 35.21	10.74	1640	40.50	11.79	2040	45.17	12.68	. 2440	49.40	13.46
1245 1250	35.28	10.10	$1645 \\ 1650$	40.56	11.80 11.82	2045 2050	45.22	12.69	2445 2450	49.45	13.47 13.48
1255	35.36 35.43	10.77 10.79	1655	40.62 40.68	11.83	2055	45.28 45.33	12.70 12.71	2460	49.60	13,50
1255 1260	35.43 35.50	10.80	1660	40.74	11.84	-2060	45.39	12.72	2470	49.70	13.52
1265	35.57	10.82 10.83	1665 1670	40.80	11.85 11.86	2065 2070	45.50	12.73	2480 2490	49.80	13.54 13.55
1275	35.71	10.84	1670 1675 1680	40.93	11.88	2075	45.44 45.50 45.55	12.74 12.75	2500	50.00	13.57
1265 1270 1275 1280 1285	35.64 35.71 35.78	10.86	1680	40.99	11.89	2080	45.61	12.77	2510	50.10	13.59
1285 1290	35.85 35.92	10.87	1685 1690	41.05	$11.90 \\ 11.91$	2085 2090	45.66 45.72	12.78 12.79	2520 2530	50.20	13.61 13.63
1295 1300	35.99	10.89 10.90	1690 1695	41.11 41.17	11.92	2095	45.72 45.77	12.80	2540	50.40	13.64
1300	35.99 36.06	10 91 1	1700	41.23	11.93	2100	45.83	12.81	2550	50.50	13.66
1305 1310	36.12	10.93 10.94 10.96	1705 1710 1715	41.29 41.35	11.95 11.96	2105 2110	45.88 45.93	12.82 12.83	2560 2570	50.60	13.68 13.70
1315	36.19 36.26 86.33	10.96	1715	41.41	11.97	2115	45.99	12.84	2580	50.70 50.79	13.72
1320 1326	86.33	10.97	1720	41.47 41.53	11:98	2120 2125	46.04 46.10	12.85 12.86	2590 2600	50.89	13.73
1330	36.40	10.98 11.00	1725 1730	41.59	11.99 12.00	2130	46.15	12.87	2610	51.09	13.75 13.77
1335	36.47 36.54	11.01	T199	41.65	12.02	2135	46.21	12.88	2620	51.19	13.77
1340	36.61 36.67	11.02 11.04	1740 1745	41.71 41.77	12.03 12.04	2140 2145	46.26 46.31	12.89 12.90	2630 2640	51.28 51.38	13.80 13.82
1345 1350 1355	36.74 36.81	11.05	1745 1750 1755	41.83	12.05	2150	46.37	12.91	2650	51.48	13.84
1355	36.81	11.07	1755	41.89	12.06	2155	46.42	12.92	2660	51.58	13.86
1360 1365	36.88 36.95	11.08 11.09	1760 1765	41.95 42.01	12.07 12.09	2160 2165	46.48 46.53	12.93 12.94	2670 2680	51.67	13.87 13.89
1370	37.01 37.08	11.09 11.11	1770	42.07	12.10	2165 2170	46.53 46.58	12.95	2690	51.77 51.87	13.89 13.91
1370 1375 1380	37.08	11.12	1770 1775 1780	42.13 42.19	12.11 12.12	2175 2180	46.64	12.96 12.97	2700 2710	51.96 52.06	13.92 13.94
1385	37.15 37.22	11.13 11.15	1785	42.25	12.13	2185	46.69 46.74	12.98	2720	52.15	13.96
1390	37.28	11.16	1785 1790 1795	42.31	12.14	2190	46.80	12.99 13.00	2730	52.25	13.98
1395 1400	37.35 37.42	11.17 11.19	1795 1800	42.37 42.43	12.15 12.16	2195 2200	46.85	13.00	2740 2750	52.35 52.44	13.99 14.01
2200	01,124				, 20						

SQUARE AND CUBE ROOTS.

Square Roots and Cube Roots of Numbers from 1000 to 10000 —(CONTINUED.)

							<u></u>				
Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.	Num.	Sq. Rt.	Cu. Rt.
2760 2770	52.54	14.03	3550	59.58	15.25	4340 4350	65.88 65.95	16.31	5130	71.62	17.25
2770 2780	52.63 52.73	14.04 14.06	3560 3570	59.67 59.75	15.27 15.28	4360	66.03	16.32 16.34	5140 5150	71.69 71.76	17.26 17.27
2790	52.82	14.08	3580	59.83	15.30	4370	66.11	16.35	5160	71.83	17.28
2800	52.92	14.09	3590	59.92	15.31	4380	66.18	16.36	5170	71.90	17.29 17.30
2810 2820	53.01 53.10	14.11 14.13	3600 3610	60.00	15.33 15.34	4390 4400	66.26 66.33	16.37 16.39	5180 5190	71.97	17.30 17.31
2830	53.20	14.14	. 3620	60.17	15.35	4410	66.41	16.40	5200	72.11	17.32
2840	53.29	14.16	3630	60.25	15.37	4420	66.48	16.41	5210 5220	72.18	17.34
2850 2860	53.39	14.18 14.19	3640 3650	60.33	15.38 15.40	4430 4440	66.56	16.42 16.44	5230	72.25 72.32	17.35 17.36
2870	53.57	14.21	3660	60.50	15.41	4450	66,71	16.45	5240	72.39	17.37
2880	53.67	14.23	3670	60.58	15.42	4460	66.78	16.46	5250	72.46	17.38
2890 2900	53.76 53.85	14.24 14.26	3680 3690	60.66 60.75	15.44 15.45	4470 4480	66.86	16.47 16.49	5260 5270	72.53	17.39 17.40
2910	53.94	14.28	3700	60.83	15.47	4490	67.01	16 50	5270 5280	72.66	17.41
2920 2930	54.04	14.29	3710	60.91	15.48	4500	67.08	16.51	5290	72.73	17.42
2910	54.13	14.31 14.33	3720 3730	60.99	15.49 15.51	4510 4520	67.16	16.52	5300 5310	72.80 72.87	17.44
2950	54.22 54.31	14.34	. 3740	61.16	15.51 15.52	4530	67.23 67.31	16.53 16.55	5320	72.94	17.45 17.46 17.47
2960	54.41	14.36	3750	61.24	15.54	4540	67.38	16.56	5330	73.01	17.47
2970 2980	54.50 54.59	14.37 14.39	3760 3770	61.32 61.40	15.55 15.56	4550 4560	67.45	16.57 16.58	5340 5350	73.08 73.14	17.48 17.49
2990	54.68	14.41	3770 3780 3790	61.48	15.58	4570 4580	67.53 67.60 67.68	16.59	5360	73,21	17.50 17.51
3000	54.77	14.42	3790	61.56	15.59	4580	67.68	16.61	5370 5380	73.28	17.51
3010 3020	54.86 54.95	14.44 14.45	3800 3810	61 64 61.73	15.60 15.62	4590 4600	67.75 67.82	16.62 16.63	5390	73.35 73.42	17.52 17.53
3030	55.05	14.47	3820	61.81	15.63	4610 4620	67.90 67.97	16.64	5400	73.48	17.54
3040 3050	55.14 55.23	14.49	3830	61.89	15.65 15.66	4620 4630	67.97	16.C6	5410	73.55	17.55
3060	55.32	14.50 14.52	3840 3850	62.05	15.67	4640	68.04 68.12	16.67 16.68	5420 5430	73.62 73.69	17.57 17.58
3070	55.41	14:53	3860	62.13	15.69	4650	68.19	16.69	5440	73.76	17.59
3080 3090	55.50 55.59	14.55 14.57	3870 3880	62.21 62.29	15.70 15.71	4660	68.26	16.70 16.71	5450 5460	73.82	17.60 17.61 17.62
3100	55.68	14.58	3890	62.29	15.73	4670 4680	68.34	16.73	5470	73.89	17.61
3110	55.77	14.60	3900	62.45	15.74	4690	68.48	16.74	5480	74.03	17.63
3120 3130	55.86 55.95	14.61 14.63	3910	62.53 62.61	15.75 15.77 15.78	4700	68.56	16.75 16.76 16.77	5490	74.09	17.64
3140	56.04	14.64	3920 3930	62.69	15.78	4710 4720	68.63 68.70	16.77	5500 5510	74.16 74.23	17.65 17.66
3150	56.12	14.66	3940	62.77	15.79	4730	68.77	16.79	5520	74.30	17.67
3160 3170	56.21 56.30	14.67	3950 3960	62.85	15.81 15.82	4740	68.85	16.80	5530	74.36	17.68
3180	56.30 56.39	14.69 14.71	3970	62.93 63.01	15.83	4750 4760	68.92 68.99	16.81 16.82	5540 5550	74.50	17.69 17.71
3190	56.48	14.72	3970 3980	63.09	15.85	4770	69.07	16.83	5560	74.57	17.71 17.72
3200 3210	56.57 56.66	14.74	3990 4000	63.17 63.25	15.86 15.87	4780 4790	69.14 69.21	16.85 16.86	5570 5580	74.63 74.70	17.73 17.74
3220	56.75	14.75 14.77 14.78	4010	63.32	15.89 15.90	4800	69.28	16.87	-5590	74.77	17.75
3230	56.83	14.78	4020	63.40	15.90	4810	69.35	16.88	5590 5600	74.83	17.75 17.76 17.77
3240 3250	56.92 57.01	14.80 14.81	4030	63.48 63.56	15.91 15.93	4820 4830	69.43 69.50	16 89 16.90	5610 5620	74.90	17.77 17.78
3260	57.10	14.83	4050	63.64	15.94 15.95	4840	69 57	16.92	5630	75.03	17.79
3270 3280	57.18 57.27	14.84	4060	63.72 63.80	15.95 15.97	4850 4860	69.64	16.93 16.94	5640 5650	75.10	17.80
3290	57.36	14.86 14.87	4060 4070 4080	63.87	15.98	4870	69.64 69.71 69.79	16.95	5660	75.17	17.81 17.82
3300	57.45	14.89	4090	63.95	15.99	4880	69.86	16.96	5670	75.30	17.83
3310 3320	57.45 57.53 57.62	14.90 14.92	4100 4110	64.03 64.11	16.01 16.02 16.03	4890	69.93 70.00 70.07	16.97	5680	75.37	17.84 17.85 17.86
3330	57.71	14.93	4110	64.19	16.03	4900 4910	70.07	16.98 17.00	5690 5700	75.43 75.50	17.86
3340	57.79	14.95	4130	64.27	16.04	4920	70.14	17.01	5710	75.56	17.87
3350 3360	57.88 57.97	14.96	4140 4150	64.34 64.42	16.06	4930 4940	70.21	17.02	5720 5730	75.63	17.88
3370	58.05	14.98 14.99	4160	64.50	16.07 16.08	4950	70.29 70.36	17.03 17.04	5730 5740	75.70 75.76	17.89 17.90
3380	58.14	15,01	4170	64.5 8.	16.10	4960	70.43	17.05	5750	75.83	17.92
3390 3400	58.22 58.31	15.02	4180 4190	64.65 64.73	16.11 16.12	4970 4980	70.50 70.57	17.07 17.08	5760 5770	75.89 75.96	17.93
3410	58.40	15.04 15.05 15.07	4200	64.81	16.13	4990	70.64	17.09	5780	76.03	17.94 17.95 17.96
3420	58.48	15.07	4210	64.88	16.13 16.15	5000	70.71	17.10	5790	76.09	17.96
3430 3440	58.57 58.65	15.08 15.10	4220 4230	64.96 65.04	16.16 16.17	5010 5020	70.78 70.85	17.11 17.12	5800 5810	76.16	17.97 17.98
3450	58.74 58.82	15.11 15.12	4240	65.12 65.19	16.19	5030	70.92	17.13	5820	76.29	17.99
3460	58.82	15.12	4250	65.19	16.20 16.21	5040 5050	70.99	17.13 17.15	5830	16.30	18.00
3470 3480	58.91 58.99	15.14 15.15	4260 4270	65.27 65.35	16.21 16.22	5050 5060	71.06 71.13	17.16 17.17	5840 5850	76.42 76.49	18.01 18.02
3490	59.08	15.17	4280	65.42	16.24	5070	71.20	17.18	5860	76.55	18.03
3500 3510	59.16 59.25	15.17 15.18 15.20	4290 4300	65.42 65.50 65.57	16.25 16.26	5080 5090	71.27 71.34	17.19 17.20	5870 5880	76.62	18.04
3520	59.33	15.20	4300 4310	65.65	16.26	5100	71.34	17.20	5890 5890	76.68 76.75	18.05 18.06
3530	59.41	15.23	4320	65.73	16.29	5110	71.48	17.22	5900	76.81	18.07
3540	59.50	15.24	4330	65.80	16.30	5120	71.55	17.24	5910	76.88	18.03

TABLE NO. 70-CUN.

130

From Trautwine's "Civil Engineer's Pocket Book."

SQUARE AND CUBE ROOTS.

Square Roots and Cube Roots of Numbers from 1000 to 10000

-- (CONTINUED.) Sq. Rt. Cu. Rt. Num. Cu. Rt. Num. Sq. Rt. Cu. Rt. Sq. Rt. Num. Sq. Rt. Cu. Rt 76.94 18.09 86.60 86.66 91.05 77.01 77.07 77.14 77.20 77.27 19.58 19.59 19.60 19.61 19.62 6720 6730 6740 6750 593€ 18.10 81.98 18.87 7510 8300 91.10 5940 18.11 82.04 18.88 7520 86.72 8310 91.16 5950 18.12 82.10 18.89 7530 86.78 8320 18.13 82.16 18.90 7540 8330 5970 18.14 6760 18.91 7550 86.89 8340 77.33 77.40 77.46 6770 6780 19.63 19.64 18.15 82,28 18.92 7560 86.95 8350 5990 18.16 82.34 18.93 7570 87.01 8360 91.43 6000 18.17 6790 6800 82.40 18.94 7580 87.06 19.64 19.65 8370 8380 8390 6010 77.52 18.18 82,46 18.95 7590 87.12 20.31 77.59 77.65 77.72 77.78 19.66 19.67 6020 18.19 6810 82.52 18.95 7600 87.18 20.32 8400 6030 18.20 6820 82.58 18.96 7610 87.24 87.29 91.65 20.33 19.68 19.69 6040 18.21 6830 82.64 18.97 7620 8410 20.34 6050 18.22 6840 82.70 18.98 7630 87.35 8420 20.34 77.85 77.91 6850 7640 7650 19.70 19.70 6060 18.23 82.76 18.99 87.41 8430 20.35 6860 20.36 6070 18.24 82.83 19.00 87.46 8440 6080 77.97 18.25 6870 82.89 19.01 7660 19.71 8450 20.37 87.52 6090 78.04 18.26 6880 82.95 19.02 7670 87.58 19.72 6100 78.10 18.27 6890 83.01 19.03 7680 87.64 19.73 19.74 8470 8480 20.38 6900 6110 78.17 18.28 83.07 19.04 7690 87.69 92.09 6120 73.23 18.29 6910 83.13 19.05 7700 7710 87.75 19.75 8490 8500 20.40 92.14 6130 78.29 18.30 6920 83.19 19.06 87.81 19.76 6140 78.36 18.31 6930 19.07 7720 19.76 8510 83.25 87.86 6150 78.42 18.32 6940 83.31 19.07 7730 87.92 19.77 8520 8530 92.30 6160 78.49 18.33 6950 83.37 19.08 87.98 19.78 19.79 7740 6170 78.55 18.34 6960 83.43 19.09 7750 88.03 8540 92.41 6180 78.61 18.35 6970 83.49 7760 88.09 19.80 20.45 19.10 6190 78.68 18.36 6980 83.55 19.11 7770 88.15 19.81 20.46 6200 78.74 18.37 6990 83.61 19.12 7780 7790 88.20 19.81 8570 8580 6210 78.80 18.38 7000 83,67 19.13 88.26 19.82 20.47 6220 78.87 18.39 7010 83.73 83.79 7800 88.32 92.68 20.48 19.14 19.83 6230 78.93 18.40 19.15 7810 88.37 19.84 8600 20.49 92,74 6240 78.99 18.41 7030 88.43 20.50 83.85 19.16 7820 19.85 8610 92,79 6250 79.06 18.42 7040 83.99 19.17 7830 88.49 19.86 8620 92,84 20.50 7050 7060 7070 6260 79.12 18.43 88.54 83.93 19.17 7840 19.87 92.90 20.51 6270 79.18 18.44 84.02 19.18 7850 88.60 19.87 8640 20.52 88.66 88.71 88.77 88.83 6280 79.25 18.45 84.08 7860 93.01 20.53 19.19 19.88 8650 6290 79.31 18.46 7080 84.14 19.20 7870 19.89 20.54 93,06 6300 79.37 18.47 7090 84.20 19.21 19.90 19.91 8670 8680 93.11 20.54 6310 79.44 18.48 7100 84.26 19.22 7890 93.17 6320 79.50 18.49 7110 84.32 7900 88.88 19.92 19.92 19.93 8690 19.23 93,22 20.56 7120 7130 6330 79.56 18.50 84.38 19.24 7910 88.94 8700 93,27 6340 79.62 18.51 88.99 20.57 84.44 19.25 7920 8710 93.33 6350 79.69 18.52 7140 84.50 19,26 7930 89.05 19.94 19.95 8720 8730 93.38 6360 79.75 18.53 7150 84.56 7940 20.59 19.26 89.11 93,43 6370 79.81 18.54 7160 7950 89.16 19.96 19.97 8740 84.62 19.27 93.49 20.60 6380 79.87 18.55 7170 7180 7960 8750 8760 84.68 19.28 89.22 93.54 20.61 6390 79.94 18.56 84.73 84.79 7970 89.27 19.97 19.98 19.29 93.59 20.61 6400 80.00 18.57 7190 19.30 7980 89.33 8770 8780 93.65 6410 80.06 18.58 7200 84.85 7990 89.39 19.99 93.70 19.31 20.63 6420 80.12 18.59 7210 7220 84.91 8000 20.00 20.01 8790 19.32 89.44 93.75 20.64 6430 80.19 18.60 8010 89.50 8800 93.81 84.97 19.33 6440 80.25 18.60 7230 89.55 20.02 85.03 19.34 8020 8810 93.86 20.65 6450 80.31 18.61 7240 85.09 19.35 8030 89.61 20.02 8820 93.91 20.66 8040 6460 80.37 18.62 7250 89.67 20.03 85.15 19.35 93.97 20 67 6470 80.44 18.63 7260 8050 89.72 89.78 20.04 85.21 19.36 8840 94.02 20.68 7270 7280 6480 80.50 18.64 8060 20.05 85.26 19.37 8850 94.07 20.68 8070 8080 8090 8100 89.83 89.89 6490 80.56 18.65 85.32 20.06 8860 94.13 19.38 20.69 80.62 20.70 6500 18.66 7290 85.38 19.39 20.07 8870 94.18 6510 80.68 18.67 7300 89.94 20.07 8880 85.44 19.40 94.23 6520 80.75 18.68 7310 90.00 20.08 8890 85.50 19.41 94.29 20.72 6530 80.81 18.69 7320 20.09 8900 94.34 20.72 85,56 19.42 8110 6540 6550 6560 6570 18.70 18.71 20.73 20.74 20.75 20.75 80.87 7330 90.11 20.10 20.11 8910 85.62 19,43 8120 94.39 80.93 7340 85.67 19.43 8130 90.17 8920 94.45 80.99 18.72 7350 85.73 85.79 8930 94.50 19.44 8140 90.22 20.12 81.06 18.73 7360 8150 90.28 8940 19.45 20.12 94.55 6580 6590 90.33 90.39 81.12 18.74 7370 85.85 8160 20.13 8950 94.60 $\frac{20.76}{20.77}$ 19.46 81.18 18.75 7380 85.91 8170 20.14 8960 94.66 19.47 81.24 18.76 7390 85.97 19.48 8180 90.44 20.15 8970 94.71 94.76 20.78 6610 81.30 20.16 18.77 7400 86.02 8190 90.50 8980 20.79 19.49 6620 81.36 18.78 7410 86.08 8200 90.55 20.17 20.17 20.79 19.50 8990 94.82 6630 81.42 18.79 7420 86.14 8210 90.61 9000 19.50 94.87 20.80 81.49 18.80 7430 8220 20.18 9010 19.51 90.66 94.92 6650 81.55 7440 7450 $\frac{90.72}{90.77}$ 18.81 86.26 19.52 8230 20.19 9020 94:97 20.8286.31 6660 81.61 18.81 19.53 8240 9030 95,03 20.82 6670 81.67 18.82 7460 86.37 19.54 8250 20.21 9040 95.08 20.83 6680 18.83 7470 19.55 81.73 8260 90.88 95.13 20.84 18.84 7480 86 49 19 56 90.94 95.18 18,85 7490

SQUARE AND CUBE ROOTS.

Square Roots and Cube Roots of Numbers from 1000 to 10000 - (CONTINUED.)

Sq. Rt. Cu. Rt Num. Sq. Rt. Cu. Rt. Num. Sq. Rt. Cu. Rt. Num. Cu. Rt. Num. Sq. Rt. 9550 97.72 97.78 9780 21.39 9050 20.86 9320 96.54 27 04 21.05 98.94 21.39 96.59 9790 9090 95.34 20.87 9330 21.23 98.99 21.40 21.06 97.83 97.88 9800 9100 95.39 20.88 9340 96.64 9570 21.24 21.41 95.45 20.89 96.70 21.07 9580 99.05 97.93 9590 $\frac{21.25}{21.25}$ 95.50 95.55 9820 99.10 21.41 20.89 9360 96.75 97.98 9830 99.15 20.90 96.80 21.08 9600 21.26 21,43 95.60 98.03 9840 99.20 20.91 9380 96.85 21.09 9610 21.44 95.66 20.92 9390 96.90 9620 98.08 21.27 99,25 21.44 9160 95.71 95.76 20.92 9400 96.95 21.10 9630 98.139860 99.30 20.93 9410 97.01 21.11 9640 98.18 21.28 9870 99.35 21.45 20.94 9420 97.06 21.12 9650 98.23 21.29 9880 99.40 21.46 95.81 9190 9430 21.13 9660 98.29 21.30 9890 99.45 21.47 95.86 20,95 97.11 9670 95.92 97.16 21.13 98.34 21.30 9900 99.50 21.47 9200 9210 20.95 95,97 20.96 9450 97.21 21.14 9680 98.39 21.31 9910 99.55 21.48 96.02 20.97 97.26 9690 98.44 9920 99.60 21.49 9220 9230 9460 21.16 98.49 9930 99.65 21.49 96.07 97.31 9700 20.98 9470 21.16 9710 98.54 9940 99.70 21.50 9240 96.12 20.98 9480 91.37 9720 9730 9490 97.42 97.47 21.17 98.59 21.34 9950 99.75 21.51 96.18 96.23 20.99 9260 9500 21.18 98.64 9960 99.80 21.52 21.00 9740 9750 9760 21.36 21.36 98.69 9970 99.85 9270 96.28 21.01 9510 97.52 21.19 97.57 $98.74 \\ 98.79$ 99.90 21.53 96,33 21.19 9980 21.01 9520 21.54 9990 99.95 9290 96.38 21.02 9530 97.62 21.20 21.54 98 84 21.38 10000 100.00 96,44 9540 97.67 96.49 21.04

To find Square or Cube Roots of large numbers not contained in the column of numbers of the table.

Such roots may sometimes be taken at once from the table, by merely regarding the columns of powers as being columns of numbers; and those of numbers as being those of roots. Thus, if the sq rt of 25281 is read, first find that number in the column of squares; and opposite to it, in the column of numbers, is its sq rt 159. For the cubert of 857375, find that number in the column of cubes; and opposite to it, in the col of numbers, is its cube rt 95. When the exact number is not contained in the column of squares, or cubes, as the case may be, we may use instead the number nearest to it, if no great accuracy is read. But when a considerable degree of accuracy is necessary, the following very correct methods may be used. following very correct methods may be used.

For the square root.

This rule applies both to whole numbers, and to those which are partly (not wholly) decimal. First, in the foregoing manner, take out the tabular number, which is nearest to the given one; and also its tabular so grt. Mult this tabular number by 3; to the prod add the given number. Call the sum A. Then mult the given number by 3; to the prod add the tabular number. Call the sum B. Then

A : B : : Tabular root : Reqd root.

Ex. Let the given number be 946.53. Here we find the nearest tabular number to be 947; and its tabular sq rt 30.7734. Hence,

$$\begin{array}{c}
947 = \text{tab num} \\
3 = 2841 \\
946.53 = \text{given num.}
\end{array}$$
and
$$\begin{cases}
946.53 = \text{given num.} \\
3 \\
2839.59 \\
947 = \text{tab num.} \\
3786.59 = \text{B.}
\end{cases}$$

Then

The root as found by actual mathematical process is also 30.7657 +.

21595

For the cube root.

This rule applies both to whole numbers, and to those which are partly decimal. First take out the tabular number which is nearest to the given one; and also its tabular cube rt. Mult this tabular number by 2; and to the prod add the given number. Call the sum A. Then mult the given number by 2; and to the prod add the tabular number. Call the sum B. Then

A : B :: Tabular root : Read root.

Ex. Let the given number be 7368. Here we find subset to be 6859; and its tabular cubert 19. Hence, Here we find the nearest tabular number (in the column of

A. Then, as 21086 19 19,4585 The root as found by correct mathematical process is 19.4588. The engineer rarely requires even

SQUARE AND CUBE ROOTS.

this degree of accuracy; for his purposes, therefore, this process is greatly preferable to the ordinary laborious one.

To find the square root of a number which is wholly decimal.

Very simple, and correct to the third numeral figure inclusive. If the number does not contain at least five figures, counting from the first numeral, and including it, add one or more ciphers to make fit. If, after that, the whole number is not separable into twos, add another cipher to make it so. Then beginning at the first numeral figure, and including it, assume the number to be a whole one. In the table find the number nearest to this assumed one; take out its tabular sq rt; move the deci-

In the table find the number nearest to this assumed one; take out its tabular at rt; move the decimal point of this tabular root to the left, half as many places as the finally modified decimal number has figures.

Ex. What is the sq rt of the decimal .002? Here, in order to have at least five decimal figures, counting from the first numeral (2), and including it, add ciphers thus, .00,20,00,0. But, as it is not now separable into twos, add another cipher, thus, .00,20,00,00. Then beginning at the first numeral (2), assume this decimal to be the whole number 200000. The nearest to this in the table is 198809; and the sq rt of this is 447. Now, the decimal number as finally modified, namely, .00,20,00,00, has eight figures; one-half of which is 4; therefore, move the decimal point of the root 447, four places to the left; making it .0447. This is the reqd sq rt of .002, correct to the third numeral 7 included.

To find the cube root of a number which is wholly decimal.

ery simple, and correct to the third numeral inclusive.

If the number does not contain at least five figures, counting from the first numeral, and including it, add one or more ciphers to make five. If, after that, the number is not separable into threes, add one or more ciphers to make it so. Then beginning at the first numeral, and including it, assume the number to be a whole one. In the table find the number nearest to this assumed one, and take out its tabular cub rt. Move the decimal point of this rt to the left, one-third as many places as the

out its tabular cub rt. Move the decimal point of this rt to the left, one-third as many places as the finally modified decimal number has figures.

Ex. What is the cube rt of the decimal .002? Here, in order to have at least five figures, counting from the first numeral (2), and including it, add ciphers thus, .002,000,0. But as it is not now separable into threes, add two more ciphers to make it so; thus, .002,000,000. Then beginning with the first numeral (2), assume the decimal to be the whole number 2000000. The nearest cube to this in the table in the column of cubes, is 200376; and its tabular cuber ta should in the col of numbers, is 126. Now, the decimal number as finally modified, namely, .002 000 000, has nine figures; one-third of which is 3; therefore, move the decimal point of the root 126, three places to the left, making it .126. This is the reqd cubert of the decimal .002, correct to the third numeral 6 included.

See pages To find roots by logarithms, 200 & 202.

For tables of sq. rts. of 5th powers see table 69, page 166.

To find the sq. or cu. rt. of a number consisting of intigers and decimals.

Multiply the difference between the root of the intiger part of the given number, and the root of the next higher number, by the decimal part of the given number, and add the product to the root of the given intiger. The sum is the root required.

Ex.—Required the sq. rt. of 20.321—square root of 21 = 4.5825 ... 20 = 4.4721

Difference = .1104 \times .321 = .354384, add to rt. of 20, 4.4721, and get 4.5075384=rt. required.

 $104 \times .321 = .394304$, and to 11. of 20, 4.4121, the gold Ex.—Required the cu. rt. of 16.42—cube root of 17 = 2.5712 " " 16 = 2.57198

Difference =

 $.0514 \times .42 = .021588$, add to rt. of 16, 2.5198, and get 2.541388 = rt. required. To find the sq. or cu. rt. of a higher number than is contained in the table, when the number is divisible by 4 or 8 without leaving a remainder.

RULE.—Divide the number by 4 or 8 respectively, as the sq. or cu. rt. is required; take the rt. of the quotient in the table, multiply it by 2, and the product will be the root required.

Ex.—What are the square and cube roots of 2400? $2400 \div 4 = 600 \qquad \text{and} \qquad 240$ $2400 \div 8 = 300$

Then the sq. rt. of 600, per table, = 24.4949, which, being \times 2 = 48.9898 = sq. rt. required.

Then the cu.rt. of 300, per table, = 6.6943, which, being \times 2 = 13.3886 =

cu. rt. required.

To find the 4th root of any number.

Take the square root of its square root. To find the 6th root of any number.

Take the cube root of its square root.

To find any root or any power by logarithms see pages 200 and 202.

Logarithms of Numbers, from 0 to 1000.*

No.	0	1	2	3	4	5	6	7	8	9	Prop.
0	0	00000	30103	47712	60206	69897	77815	84510	90309	95424	
10	00000	00432	00860		01703	02118	02530	02938	. 03342	03742	415
11	04139	04532	04921	05307	05690	06069	06445	06818	07188	07554	379
11 12	07918	08278	08636		09342	09691	10037	10380	10721	11059	349
13	11394	11727	12057		12710	13033	13353	13672	13987	14301	323
14	14613	14921	15228	15533		16136	16435	16731	17026	17318	300
15	17609	17897	18184	18469		19033	19312	19590	19865	20139	281
16	20412	20682	20951	21218	21484	21748	22010	22271	22530	22788	264
17 18	23045	23299	23552	23804		24303	24551	24797	25042	25285	249
18	25527 27875	25767	26007	26245		26717	26951	27184	27415	27646	236
19	27875	28103	28330	28555 30749		29003 31175	29225 31386	29446 31597	29666 31806	29885	223
20	30103	30319	30535	90149	20802	21112	91990	91991	91900	32014	212
21 22 23	32222	32428	32633	32838		33243	33445	33646	33845	34044	202
22	34242	34439	34635	34830	35024	35218	35410	35602	35793	35983	194
23	36173	36361	36548	36735		37106	37291	37474	37657	37839	185
24	38021	38201	38381	38560		38916	39093	39269	39445	39619	177
24 25 26 27 28	39794	39967	40140	40312		40654	40824	40993	41162	41330	171
26	41497	41664	41830	41995		42324	42488	42651	42813	42975	164
21	43136	43296	43456	43616		43933	44090	44248	44404	44560	158
28	44716	44870	45024	45178		45484	45636 47129	45788 47275	45939 47421	46089 47567	153 148
29 30	46240 47712	46389 47856	46538 48000	46686 48144		46982 48430	48572	48713	48855	48995	143
30	#1114	#1000	40000	40144	10401	40400	40012	40713	40000	40990	140
31	49136	49276	49415	49554	49693	49831	49968	50105	50242	50379	138
32	50515	50650	50785	50920		51188	51321	51454	51587	51719	134
33	51851	51982	52113	52244	52374	52504	52633	52763	52891	53020	130
34 1	53148	53275	53402	53529	53655	53781	53907	54033	54157	54282	126
35	54407	54530	54654	54777	54900	55022	55145	55266	55388	55509	122
36	55630	55750	55870	55990		56229	56348	56466	56584	56702	119
37	56820	56937	57054	57170		57403	57518	57634	57749	57863	116
38	57978	58092	58206	58319		58546	58658	58771	58883	58995	113
39	59106	59217	59328	59439		59659	59769	59879	59988	60097	110
40	60206	60314	60422	60530	60638	60745	60852	60959	61066	61172	107
41	61278	61384	61489	61595	61700	61804	61909	62013	62118	62221	104
42	62325	62428	62531	62634	62736	62838	62941	63042	63144	63245	102
43	63347	63447	63548	63648		63848	63948	64048	64147	64246	99
44	64345	64443	64542	64640		64836	64933	65030	65127	65224	98
45	65321	65417	65513	65609		65801	65896	65991	66086	66181	96
46	66276	66370	66464	66558		66745	66838	66931	67024	67117	94
47	67210 68124	67302	67394	67486		67669	67760	67851	67942	68033	92
48	68124	68214	68304	68394		68574	68663	68752	68842	68930	90
49	69020	69108	69196	69284		69460	69548	69635	69722	69810	88
50	69897	69983	70070	70156	10243	70329	70415	70500	70586	70671	86
51	70757	70842	70927	71011	71096	71180	71265	71349	71433	71516	84
52	71600	71683	71767	71850	71933	72015	72098	72181	72263	72345	82
53	72428	72509	72591	72672	72754	72835	72916	72997	73078	73158	81
54	73239	73319	73399	$73480 \\ 74272$	73559	73639	73719	73798	73878	73957	80
55	74036	74115	74193	74272	74351	74429	74507	74585	74663	74741	78 77
56	74818	74896	74973	75050	75127	75204	75281	75358	75434	75511	77
57	75587	75663	75739	75815	75891	75966	76042	76117	76192	76267	75
58	76342	76417	76492	76566 77305	76641	76715	76789	76863	76937	77011	74
. 59	77085	77158	77232	77305	77378	77451	77524	77597	77670	77742 78461	73 72
60	77815	77887	77959	78031	18103	78175	78247	78318	78390	70401	12
61	78533	78604	78675	78746	78816	78887	78958	79028	79098	79169	71
62	79239	79309	79379	79448	79518	79588	79657	79726	79796	79865	70
63	79934	80002	80071		80208	80277	80345	80413	80482	80550	69
64 65	80618	80685	80753	80821		80956	81023	81090	81157	81224	68
65	81291	81358	81424	81491	81557	81624	81690	81756	81822	81888	67

^{*}Each log is supposed to have the decimal sign before it. An error of less than 1 in the final decimal exists in a number of the logs of this table, it will not, however, be material in ordinary computations.

Logarithms of Numbers, from 0 to 1000*-(Continued.)

-	1							1	1		
No.	0	1	2	3	4	5	6	7	8	9	Prop.
66	81954	82020	82085	82151	82216	82282	82347	82412	82477	82542	66
67	82607	82672	82736	82801	82866	82930	82994	83058	83123	83187	65
68	83250	83314	83378	83442	83505	83569	83632	83695	83758	83821	64
69	83884	83947	84010	84073	84136	84198	84260	84323	84385	84447	63
70	84509	84571	84633	84695	84757	84818	84880	84941	85003	85064	62
71	85125	85187	85248		85369	85430	85491	85551	85612	85672	61
72	85733	85793	85853		85973	86033	86093	86153	86213	86272	60
73	86332	86391	86451		86569	86628	86687	86746	86805	86864	59
74	86923	86981	87040		87157	87215	87273	87332	87390	87448	58
75	87506	87564	87621		87737	87794	87852	87909	87966	88024	57
76	88081	88138	88195		88309	88366	88422	88479	88536	88592	56
77	88649	88705	88761		88874	88930	88986	89042		89153	56
78	89209	89265	89320		89431	89487	89542	89597	89652	89707	55
79	89762	89817	89872	89927		90036	90091	90145		90254	54
80	90309	90363	90417	90471	90525	90579	90633	90687	90741	90794	54
81	90848	90902	90955		91062	91115	91169	91222	91275	91328	53
82	91381	91434	91487		91592	91645	91698	91750	91803	91855	53
83	91907	91960	92012		92116	92168	92220	92272	92324	92376	52
84	92427	92479	92531		92634	92685	92737	92788	92839	92890	51
85	92941	92993	93044		93146	93196	93247	93298	93348	93399	51
86	93449	93500	93,550		93651	93701	93751	93802	93852	93902	
87	93951	94001	94051	94101	94151	94200	94250	94300	94349	94398	49
88	94448	94497	94546	94596	94645	94694	94743	94792	94841	94890	49
89	94939	94987	95036	95085	95133	95182	95230	95279	95327	95376	48
90	95424	95472	95520	95568	95616	95664	95712	95760	95808	95856	48
91	95904	95951	95999	96047	96094	96142	96189	96236	96284	96331	48
92	96378	96426	96473	96520	96567	96614	96661	96708	96754	96801	47
93	96848	96895	96941	96988	97034	97081	97127	97174	97220	97266	47
94	97312	97359	97405	97451	97497	97543	97589	97635	97680	97726	46
95	97772	97818	97863	97909	97954	98000	98045	98091	98136	98181	46
96	98227	98272	98317	98362	98407	98452	98497	98542	98587	98632	45
97	98677	98721	98766	98811	98855	98900	98945	98989	99033	99078	45
98	99122	99166	99211	99255	99299	99343	99387	99431	99475	99519	41
99	99563	99607	99651	99694	99738	99782	99825	99869	99913	99956	44
									1		

*See foot note on page 199.

> What is the log of 2873? Here, log of 2870 = 3.45788And prop 153×3 = 459

> > 3.458339

To find roots divide the log (with its index) of the given number, by that number which expresses the kind of root. The quotient will be the log of the required root.

Example. What is the cube root of 2870?

Here, the log of 2870, with its index, is 3.45788. And $\frac{3.45788}{3} = 1.15263$. Hence the cube root is 14.2.

The Hyperbolic, or Napierian logarithm is the common log of the table multiplied by 2.3025851.

Sq. rt. 6925=Log 3.84042+2=log 1.92021, corresponding No.=83.2138=sq. rt· Cu-rt. 6925= 3.84042+3= 1.28014, 1=19.0669=cu. rt. 4th rt. 6925= 3.84042+4= 96010, 1=9.1222=4th rt.

Proceed in like manner for any other root required. This method of extracting roots is more rapid and simple than any other.

EXPLANATION AS TO TABLES OF LOGARITHMS.

LOGARITH MS are the exponents with which a fixed number must be affected in order to produce a given number. The fixed number is called the BASE. The base of the common system of logarithms is 10.

Since $10^0 = 1$ the logarithm of 1 is 0.

10^1 = 10 " " 10" 1.

102 = 100 " " 100 " 2.

Thus, the logarithms of all powers of the base are integral numbers, while the logarithms of numbers intervening between exact powers of the base are composed of an intiger and a fractional or decimal part-called The integral part of the logarithm being called the

INDEX OF CHARACTERISTIC

NOTE WELL THE FOLLOWING RULES.

The log. of any exact power of 10 is a positive (+) intiger one less than the number of places in the number.

Thus—See figures at foot of table on page 200-Log of 2870 has 3 for its index, there being 4 figures in the number. 66 66 66 66 6.6 6. 6.6 6.6 " 0 . " 22 6.6 66 66 2.2

II. The characteristic of any decimal number is negative (—) and numerically one more than the number of zeros immediately following the decimal point.

Thus—See figures on page 200 (2d column.) Log of decimal .287 (being no zeros) = -1. Negative, and 1 in excess of """.028 (" 1 zero) = -2. the number of zeros immedi""".002 (" 2 zeros] = -3. ately following deci'al point. The minus sign instead of being placed before the index, as here shown, is usually placed above their ndex, thus, 3.

USE OF TABLE. The logarithms of numbers from 1 to 9 are taken from the top horizontal line of the table, Log of 9 being .95424; and logs of numbers from 11 to 99 are taken from the first column, headed by 0, the index 1 being added as above explained [I]. Thus—the log of 91 = 1.95904, Log of 80 = 1.90309. Logs of numbers from 100 to 1000 are taken from the table as follows—required the log of 915; find 91 in first column and then run horizontally across the table to the column headed 5 where is found the log .96142 to which add an index of 2, as above explained, making 2.96142 the log required. Log of 800 would in like manner be 2.90309, log of 801 = 2.90363. Since the decimal part of the logarithm is not changed by multiplying or dividing the number by any power of 10 the logarithm of a multiplying or dividing the number by any power of 10 the logarithm of a number of 4 or 5 places may also be taken from the table as shown at the foot of the table. The log of 287 = 2.45788 and log of 2870 = 3.45788—the foot of the table. The log of 287 = 2.45788 and log of 2870 = 3.45785—the index only being changed. If, however, the 4th figure is other than O, as 2873, then proceed as follows:—find the log of the 3 left hand figures and in the same horizontal line, at its intersection with the last vertical column. headed "Prop." [Proportionate parts] take the number indicated and multiply it by the last figure of the given number. Exclude one figure from the product and add the remainder to the log first found. In case as shown at foot of table log is taken for 2870 then in last column is found 153 which \times 3, the last number of the given number 2873, exclude the right hand figure from the product of 459 and add the remainder, 45, to the log first found first found.

What is the log of 28735? Here $\log \text{ of } 28700 = 4.45788$ 53.55And prop $153 \times 35 =$ Log of 28735

Here 2 figures are cast off because there are 2 figures in the multiplier [35]. With numbers of 5 figures this may be in error 1 in the last decimal.

In the use of logarithms it is not only necessary to find the log corresponding to a given number but also to find the number corresponding to any given log.

III. Given any log to find the corresponding number.

A.—Where the mantissa is found in the table.

Look in the table for the given log, take out the corresponding number

and place the decimal point according to the given index.

Example—Given log 4.96142, what is the corresponding number?

Look in table for log 96142 and find it corresponds to the number 915.

The given index 4 indicates a number of 5 places therefore point off the number obtained to have 5 places and to read 91500.

Log of 2.90309 corresponds to 800; Log .30103 to 2. &c.

B.—Where the mantissa is not found in the table.

Take from the table the next lesser mantissa and its corresponding number. Then subtract this mantissa from the given one and divide the remainder by the number opposite in the column "Prop." Annex the quotient so found to the tabular number taken out and then point off as indi-

cated by the given index.

Example—Given the log 1.96166 to find the corresponding number.

From table we find .96142 to be the nearest lesser mantissa and 915 to be the corresponding number. .96166, the given mantissa, minus .96142 the lesser one = difference of 24 which being divided by 48, the number found in column "Prop." = .5. This being annexed to the tabular number 915= 9155. The given index 1 indicates a number of 2 places, so 91.55 becomes the required number.

THE USE OF LOGARITHMS.

The ADDITION of logarithms corresponds to ordinary, MULTIPLICA-TION and any number of given numbers either integral, decimal or mixed, may be multiplied together by one operation.
Thus: multiply together 166, 71.5, 8.25 and .078 (=7637.7).

Log 166. 2.22010 1.85430 8.25 =0.91645.078 =-2.89209" of product = 3.88294

Note. The index of the last log being minus it is subtracted from the sum of the + indices, 5, leaving 3 the index of the sum.

By method B, above given, the log 3.88294 is found to correspond to the number 7637.7 which is the required product.

The SUBTRACTION of logarithms corresponds to ordinary DIVISION. The log of the divisor being subtracted from the log of the dividend gives, as a remainder, the log of the quotient.
Thus—Divide 86.32 by 6.85 (=12.601).

Log 86.32 = 0.835696.85

" quotient= 1.10042, which, by method "B," = 12.601 = quotient.

TO RAISE A NUMBER TO A POWER.

Rule.—Multiply the log of the number by the exponent of the power and find the number corresponding to the product. Thus—What is the 5th power of 7.65?

Log of 7.65 = .88366 which $\times 5 = 4.41830$ the number corresponding to which is 26200.

TO FIND ANY ROOT BY LOGARITHMS.

See explanation at foot of table on page 200. The cube root 14.2 being the number corresponding to log 1.15263. Proceed in like manner for any other root required.

The foregoing explanations as to the use of logarithms are cheifly for the benefit of those who have, by disuse, become "rusty" in the use of the tables; although any one may in a day or two become familliar with them and may, by their use, greatly lessen the drudgery of mathematical calculations. Such uses only have been explained as pertain to the simpler mathematical operations.

EXPLANATION OF CHARACTERS.

The following brief explanation is given of a few of the more common characters used in calculations, etc. and which are so frequently met with in mathematical and similar works.

Signifies Fanglity

= Signifies	Equality, as $2+2=4$.
+ "	Plus, as $2 + 2 = 4$.
Χ " " "	Multiplied by, as $2 \times 4 = 8$.
"	Minus, $as 8 - 2 = 6$.
66	Divided by, as $8 \div 2 = 4$.
: &:: "	<i>Proportion</i> , as 2:8::4:16 readsas 2 is to 8 so is 4 to 16, or, 2 is to 8 as 4 is to 16.
	The Vinculum or Bar indicates that all the numbers over which it is placed are to be considered as one quantity, thus, $2+8 \div 2=5$; or $5 \times 8-2=30$.
()[]	Parenthesis or Brackets indicate, as in above, that all included figures are to be considered as one quantity, thus, $(3 \times 5) + 10 = 25$; or $3 \times [5 + 10] = 45$.
	Decimal Point.
V	The Radical or Root sign when placed before a number indicates that the square root of the number is
	required, $\sqrt{16} = 4$; $\sqrt{15+10} = 5$. The degree of the root, other than the square root, is indicated by a figure placed above the radical, which figure is called the <i>Index</i> . $\sqrt[3]{} = Cube\ root$; $\sqrt[4]{} = 4th.\ root\ etc.$
Z Signifies	Angle.
Z Signifies 1 "	Perpendicular.
Δ "	Triangle. or triangular as Δ iron or inches.
□ (*)	Square, as 🗆 " " "
0 ."	Circle or Circular, as O " " "
66	Therefore or Hence.
	Because.
π "	The Ratio of the circumference of a circle to its diameter, which = 3.1416.
> < "	Greater and Less, $a > b$ reads $-a$ greater than b . Infinity,
0 / // 46	Degrees. Minutes, and Seconds of arc.
F 112 GE	Feet and Inches.
½ 3 &c. ·	when set superior to a number, that the square or cube root etc. is wanted, thus $25^{\frac{1}{2}}$ indicates the sq. rt. of 25.
3 5 6 &c. "	when set superior to a number, respectively, the sq. rt. of the cube; the sq. rt. of the 5th. power; and the cube root of the 6th. power etc.
235 &c. "	when set superior to a number, the power to which the

number is to be raised, thus $2^2 = 4$; $2^3 = 8$; $2^5 = 32 &c$.

CONCLUSION.

The public may claim that the author owes to them an apology for having presented an irrigation manual wherein no direction is given as to the detail workings of an irrigation plant, or any direction as to when, and how often, to irrigate, how to prepare the soil, &c. Such was not the object, as stated in the preface, but rather to present certain items of techniject, as stated in the preface, but rather to present certain items of technical information, and such other matter as would tend to show the importance and practicability of irrigation in the Dakotas. The subject is one too vast to be treated fully in one volume, or in a score of volumes, such as this. More has been omitted than has been included, and much which was of value, and which it was desired to include, has been omitted because of the limited means and space, and the circumstances under which this little book was made. Should it become advisable to issue a second edition many additional features of interest and of value will be included. A start has, however, been made which it is to be hoped others will more successfully emulate until all of the people of these states shall have become imbued with the vital importance to themselves and to their childcome imbued with the vital importance to themselves and to their children of this matter of irrigation; and until the thousands of acres of our now waste paradise shall have put on that cloak of perrennial verdure which is their due and their destiny.

No more fitting conclusion can be made than to quote from the eloquent words of the late Hon. S. S. Cox, congressman from New York, delivered in his oration at Huron on July 4th, 1889. Words as poetic in sentiment as they are prophetic of truth. He said:

"But yesterday your fruitful valley was whitened with the bones of the buffalo. Now it is an ideal farming area. It is a lesser Nile region, without its overflow. Artesian Wells give water where the sun once made drouth perrennial. The water power of your matchless valley is as yet immeasurable by your matchess valley is as yet immeasurable by ordinary mechanical standards. It is so prevalent that your people will utilize its specific gravity for the diversity of their industries. When its undiminished flow and steady pressure from the bosom of the earth are properly harnessed by mechanism, it will give its lucid lymph to make grasses for stock and lawns for beautiful homes. Its sunless currents, through the ingenuity of man, will enhance the rich soil by quenching its thirst. Fabulous are the wasted energies of your water power ulous are the wasted energies of your water power, as we count it by the standard horse power of mechanics; but still more marvellous are the real energies of the soil which it would fructify.

The beautiful and fruitful valley of the James

may not be as redolent of historic association and traditions as another James River of the colonial days; but deeper than historical or traditional incident are Dakota's pure springs under a magic more enchanting than that of Aladdin, which leap

from your modern Artesium.

Advertising Appendix.

THE author, on behalf of the public for whom this Manual is intended and to whom it will come, acknowledges the obligation due to the advertisers herein; for from the proceeds of this feature of the book has, in chief, been derived the funds for its publication. Had it not been for this patronage the book could not have been made. It is hoped and expected that in no sense has this been a charity, but rather a good paying investment, for the goods advertised will be used in large quantities in these states and the advertisers deserve the patronage of our people not only because the largest and most responsible representatives in their respective lines, but because of the acknowledged excellence and reputation of the goods they represent.

The information contained in this appendix will be of value to irrigators and others who often find difficulty in learning as to where to find reputable dealers with whom to deal. Such only have been solicited, and to such as are here represented our people fairly owe their patronage.

James B. Clow & Son,

LAKE AND FRANKLIN STREETS,

CHICAGO. - - ILLINOIS.

Manufacturers of and Dealers in

Wrought Iron Pipe, Artesian Well Tubing, Well Casing * Line Pipe, Boiler Tubes. Well Tools. Fittings & Brass Goods Supplies for Plumbers, Gas and Steam Fitters and Water Works.

SEND FOR CATALOGUE AND PRICES.

WELL DRILLING MACHINERY,

MANUFACTURED BY

Williams Brothers, ITHACA, N. Y.

Mounted and on Sills,

Deep or shallow wells,

WITH

Steam or horse power.

Address

Williams Brothers,

ITHACA, N. Y.

Engineering News

AND

AMERICAN RAILWAY JOURNAL.

Is published EVERY THURSDAY at the Tribune Building, NEW YORK City. It is a 60 page paper, was established in 1874, and it is the PIONEER in publishing the news of ENGINEERING CONSTRUCTION WORK throughout the Continent. It was the first journal in America to make a specialty of WATER WORKS construction and it still maintains its lead in that large and growing interest over all its competitors.

ENGINEERING NEWS was the first American journal which paid particular attention to the subject of IRRIGATION, and it has published more valuable information on this important interest of the arid regions of the west than all other American papers combined. It was the only Engineering journal in America specially represented at the IRRIGATION CONGRESS recently held in Salt Lake City, and it is now the only paper East of Denver which is interested in the great question of Irrigation.

ENGINEERING NEWS is a national journal; it circulates in every state and territory on the American Continents—from Alaska to the Argentine Republic; it is read by more contractors and hydraulic engineers than all other engineering newspapers combined and is an especially favorable medium for advertising PROPOSALS FOR IRRIGATION WORKS to be constructed in the West.

The price of the paper is \$5.00 per year; the cost of advertising proposals for contracts is 20 cents per line of seven words to the line.

If you want to get the services of the best contractors for the lowest price try an advertisement in Engineering News.

ADDRESS

ENGINEERING NEWS PUBLISHING CO.,

TRIBUNE BUILDING, NEW YORK.

A Great Work on Irrigation.

A magnificent double volume containing over 800 pages devoted to irrigation progress in every land. The most complete work ever published; containing over 200 valuable cuts. This great book, entitled "Irrigation Canals and other Irrigation Works" and "Flow of Water in Irrigation Canals" is now ready for distribution. It is written by P. J. Flynn, the famous engineer of California. Engineers, Investors and all who are interested in irrigation should have this book. Price for both volumes \$8.00. Send your order to

The Irrigation Age,
Salt Eake Gity, Utah.

THE IRRIGATION AGE.

The Pioneer Irrigation Journal of the World.

PUBLISHED SEMI-MONTHLY BY THE

Emythe, Britton & Poore Co.

Offices:

Salt Lake City. Denver.

San Francisco. Washington.

Invaluable to every farmer of Dakota.

SUBSCRIPTION PRICE, \$2.00 PER YEAR.

CHAPMAN VALVE MANFG. GO.

Works and General Office, Treasurer's Office, 1ndian Orchard, Mass. 72 Kilby St., Boston, Mass. JASON GILES, Gen, Mgr. C. J. GOODWIN, Treasurer. Chicago Office, 24 W. Lake St. E. W. BUSS, Western Mgr.

GATE VALVES

for steam or water. Also

Fire Hydrants.

THE CHAPMAN VALVES ARE THE BEST AND MOST DURABLE MADE.

> A full stock always on hand in Chicago. Give us a trial.

THE CHICAGO * WATER MOTOR *

For running by Artesian Wells or Hydrant Pressure, Sewing Machines, Dental Lathes, and Engines, Organs, Printing Presses, Sausage Machines, Coffee Mills, Corn and Feed Mills, Ventilating Fans, Ice Cream Freezers, Elevators, Electric Lights, &c.
We have more motors in use IN DAKOTA, than all other makes

combined.

"Huronite," HURON, S. D., May 8, 1890.

GENTS:

Your Double Motor we regard as an improvement over the Tuerk. Signed: SHANNON & LONGSTAFF.

(The above after using a Tuerk Motor 2 years purchased one of ours.)

WATERTOWN, S. D., May 1st, 1800.

GENTS:

We are using one of your No. 11 Double Motors for driving Pony, cylinder and job press-pressure 60 lbs. Our former superintendent put a Little Giant motor in our office but we found that this motor, when running only one press, used more water than yours when running two presses; and, even with the larger consumption of water was not able to run both presses.

> Signed: CONKLIN & REDDICK, Publishers, Conklin's Dakotian.

WE WILL MAKE

THAN ANY OTHER

First Glass Motor.

CAN ALSO SELL YOU A

WIND MILL

and the best GRINDING MILL in the market.

Address

Chicago Water Motor Company, 101 LAKE ST., CHICAGO.

ST. LOUIS WELL MACHINE TOOL

CO.,

ST. LOUIS, MO.

MANUFACTURERS OF

WELL MACHINERY, WELL TOOLS, WELL SUPPLIES.

CATALOGUE FREE.

Address,

St. Louis Well Machine & Tool Co.,

Wabash Track and Newstead Ave. (South 44th St.,) ST. LOUIS, MO. We find it to our interest to buy

WROUGHT IRON PIPE

for steam gas and water, also

KRTESIKN WELL TUBING,

CRSING,
LINE PIPE,
DRIVE PIPE,
Boiler Tubes,
&c., &c.

FROM

G. W. CRANE & CO.,

Wholesale Bealers,

MINNEAPOLIS, MINN.

We also carry

The Most Complete Stock

OF

STERM'GOODS

in the Northwest.

Send for Illustrated Catalogue.

Rife's Hydraulic Engine (or Ram.)

Patented February 8, 1887.

For supplying water to Small Towns, Factories, Steam Mills, Daries, Stock Yards, Railway Tanks, Residences, and for

IRRIGATION.

Constructed on new and improved principles, greatly increasing the capacity and avoiding extreme concussion that has heretofore proved destructive to all common Hydraulic Rams, making this

Especially Adapted to Railroad Water Supply and Irrigation.

The following is an extract from a letter to the company from a gentleman who is using one of these rams to water over 12 acres of trees:

OROVILLE, CALIFORNIA, Dec. 10, 1890.

The machine is doing better work now than ever before, discharging about 25 gallons per minute or the enormous amount of 36,000 gallons per day.

Signed: D. B. HAYS.

Write for illustrated catalogue, to

Rife's Hydraulic Engine Mfg. Co., ROANOKE, VIRGINIA.

(See page 124 of this book.)

BUFF & BERGER,

IMPROVED

Engineerging and Surveying Instruments,

No. 9 Province Court, Boston, Mass.

They aim to secure in their Instuments.—Accuracy of division; Simplicity in manipulation; Lightness combined with strength; Achromatic telescope, with high power; Steadiness of adjustments under varying temperatures; Stiffness to avoid any tremor, even in a strong wind,

and thorough workmanship in every part.

Their instruments are in general use by the U. S. Government Engineers, Geologists and surveyors, and the range of instruments, as made by them for River, Harbor, City, Bridge, Tunnel, Railroad and Mining Engineering, as well as those made for Triangulation or Topographical Work and Land Surveying, is larger than that of any other firm in the country.

Illustrated Manual and Catalogue sent on application.

TRAUTWINE'S

Civil Engineer's Pocket Book.

"If you can own but a single book let it be this, and by all means have this if you are but a rodman, if you intend to continue in the work."—Railway Age, Oct. 9, 1884.

"Without doubt it has proved itself to be the most useful hand-book in the language for the Engineering profession."—Engineering and Mining Journal, Aug 25, 1888.

"The best general text-book on civil engineering in the English language. It is a whole library in itself."—Engineering News, Jan. 27th, 1883.

"It is a book for the civil, mechanical, hydraulic and mining engineer, and architect and builder. Its tables are invaluable, and almost absolute reliance can be placed in them."—Engineering and Building Record, Aug. 11th, 1888.

"It is, deservedly, one of the most popular of Pocket Books, because the information it contains is presented in such plain terms as to be readily comprehended by those who have not had the advantages of a technical education. Every statement is in the fewest words that will clearly convey the meaning."—American Machinist, May 9th, 1885.

For sale by John Wiley & Sons, 53 East 10th St., New York City, or by J. C. Trautwine, Jr., 3301 Haverford St., Philadelphia, Pa. PRICE, \$500.

THE

Addyston Pipe & Steel Co., cincinnati, o.

GAST IRON PIPE

FOR

Culverts, Sewers AND Irrigation.

WATER PIPE, GAS PIPE.

Castings of Every Description.

WRITE US FOR ESTIMATES.

DENNIS LONG & COMPANY

LOUISVILLE, KY.

MANUFACTURE EXCLUSIVELY

Cast Iron Gas and Water Pipe

AND SPECIAL CASTINGS OF ALL SIZES.

F. G. AUSTIN MFG. CO.,

MANUFACTURERS OF

ARTESIAN WELL DRILLING MACHINERY.

Pole Tool Rigs.
Cable Rigs.
Hydraulic Rigs.
Jetting Rigs.
Turning Rigs
Combined Rigs.
Drilling Tools
and Supplies.

CARPENTER ST. & CARROLL AVE.

CHICAGO,

ILLINOIS

(See pages 117, 118 & next page.)

New Era Grader and Ditcher

New Era Grader, Ditcher and Wagon Loader, for building irrigation canals and storage reservoirs is guaranteed capable of placing in the embankment 1000 to 1500 cubic yards of earth in 10 hours, with 6 teams and 3 men, at a cost not exceeding 2 cents per yard; and of wagons 600 to 800 loads of 1½ yards per load in the same time.

The Best Machine for building

IRRIGATION DITCHES.

Austin Steel Reversible Road Machine.

Austin's Steel Reversible Road Machine, for making lateral ditches and building country roads, will build ¼ mile of lateral ditch per day. We also make Dump Wagons: Wheel, Drag and Buck Scrapers and Contractor's Plows. Send for catalogue to the

F. C. Austin Manfg. Co., Chicago, Ill. Corner of Carpenter St.

W. & L. E. GURLEY, TROY, N. Y.

Largest manufacturers in America of Civil Engineers' and Surveyors' Instruments; our latest illustrated price list on application.

THE ARCHITECT'S LEVEL.

Price as shown, with tripod, \$50.00.

This figure represents the level introduced by us in 1874, and which has since been very largely used by architects, builders, engineers, and surveyors, in the grading of streets, drives, sewers, etc., in all parts of the country.

It has a telescope 12 inches long, furnished with rings, wyes, etc,

precisely like our larger levels, and adjusts in the same way.

The leveling head has the ordinary screws and a clamp to the spindle; it has also a horizontal circle 3 inches in diameter, fitted to the upper end of the socket, and turning readily upon it; the circle is graduated to degrees, figured from 0 to 90 each way, and is easily read to five minutes of a degree by a vernier which is fixed to the spindle.

The adjustments are not liable to derangement, and ordinarily re-

quire but little attention.

LEVELS!

TROY, N. Y.

FARMER'S OR DRAINAGE LEVEL.

Price, as shown, with tripod, \$25.00.

This Level combines the extremes of simplicity and compactness with real efficiency, and at moderate cost. The telescope, 9 inches long, is achromatic, and of sufficient power. The cross wires are not easily disturbed. The level and telescope are both inclosed in an outer bronze case. The instrument is approximately leveled by the ball spindle on the socket and then precisely so by the leveling screws. The advantage of this form of Level in the work of the farmer in laying out ditches and reservoirs will be apparent on inspection. When desired we add to this level a 3-inch needle magnetic compass at an extra cost of \$5. This is fitted to the case as shown below and can be removed at pleasure.

The NEW Photographic WONDER

Nearly ONE-THIRD SMALLER than any other Camera of equal capacity. 100 4x5 Pictures without reloading. Size 5½ x 6½ x 8½ inches. Price, WE DEVELOP AND FINISH THE PICTURES WHEN DESIRED.

THE BLAIR CAMERA COMPANY. FRAMK-HYE, Boston, Massachusetts, also makers of the and other Photographic Apparatus. Branches: 208 State St., Chicago. 918 Arch St., Philadelphia. E. & H. T. ANTHONY, & CO., Trade Agents, New York.

Also sold by all Dealers in Photo Goods.

Send for the Kamaret Booklet.

WELL MACHINERY.

Send for our Gatalogue

DESCRIBING A FULL LINE OF

ARTESIAN WELL OUTFITS,

PORTABLE ROCK DRILLS,

AND THE CELEBRATED

Pech Well Auger,

WIND MILLS,

GENERAL WELL SUPPLIES,

THE PECH MFG. CO.,

SIOUX CITY, IOWA.

THE LUDION

Valve Manufacturing Co.,

MANUFACTURERS OF

Valves and Fire Hydrants

Double and Single Gate

VALVES,

ALSO

Check Valves,

Foot Yalves,

and Yard and Wash

HYDRANTS.

FACTORY AND OFFICE.

938 to 954 River St., and 67 to 83 Vail Ave.,

TROY, N. Y., U. S. A.

SEND FOR CIRCULARS.

WELL DRILLING MACHINERY,

AND TOOLS, ADAPTED TO ALL KINDS

of work, and prospecting.

Horse and Steam Power.

They never fail. They are Simple, Practical, and Thorough.

We also make a full line of gas and

Water Works Goods, Gate Valves, & Hydrants.

Our open-way hydrants are the best in the market.

Corporation Cocks,

and the best

Tapping Machine

in the world.

Write for Circulars, and let us talk it over with you.

Address the

Brass & Iron Works Co.

FOSTORIA, OHIO.

THE PELTON WATER WHEEL.

Affords the most efficient and reliable power for all purposes, being especially adapted to utilize the power from ARTESIAN WELLS. They are warranted to give from 25 to 40 per cent better results than any other wheel. The Woonsocket and Yankton Mills and Huron Electric Lights are run with Pelton wheels.

(See page 81.)

PELTON WATER MOTORS,

embrace the smaller wheels set in iron casings ready for pipe connections Made of capacities from a fraction of 1, up to 50 horse power. The cheap est and, most convenient power. Parties interested in the development of Dakotas great artesian power will be furnished with catalouge, circulars, and other information on demand to the

Oil Well Supply Co.,

PITTSBURGH, PENN.

Manufacture every article, tool or appliance needed at

ARTESIAN WELLS.

Boilers, Engines, Pumps,
Derricks, Cordage, Fittings,
Drilling and Fishing Tools,
Tubing and Casing.

Brass and Iron Goods and Bupplies.

For Steam, Gas, Petroleum or Water. Catalogues and Price Lists on application.

W. E. SWAN CO.,

ANDOVER, S. D.

ARTESIAN WELL CONTRACTORS

Drilled the first well in Dakota, at Aberdeen.

Have had TEN YEARS' experience IN DAKOTA.

Being the oldest drillers in the state, and having the most experience in the hard Dakota formations, and the best rigs and most important tools we are better equipped for rapid and successful work than any drillers in the Dakota basin. Our experience extends over 6 states and our record is as good as our experience is broad and varied. We are prepared to drill to any depth and of any size. Among our wells are the following:

WELLS IN N. AND S. DAKOTA.

Aberdeen. Columbia, Groton, Andover. Ashton, Huron, Mellette. Devils Lake, Bismarck. Grafton, Frankfort, Ipswich,

in both states.

- 6 wells in Manitoba. Many in Minnesota. Wisconsin. Iowa. llinois.

Correspondence solicited. Give us a chance to bid on your work if And many farm wells you want good work and promptly done.

WING AND WANIFACTIRNG PLANTS HEADS FROM 2 to 400 FEET RETING

of all kinds driven by the Leffel. Send for our fine, handsomely illustrated Water Wheel Pamphlet, stating your wants fully.

THE JAMES LEFFEL & CO. SPRINGFIELD, OHIO, U. S. A.

The Great Northwest

is traversed by the

Chicago & Northwestern Railway.

The finest cars in the land are run on its trains between Chicago and all the principal points in

ILLINOIS, WISCONSIN. MINNESOTA,

NEBRASKA, SOUTH DAK.. AND IOWA.

Chicago, St. Paul, Ashland, Council Bluffs, Sioux City, Huron, Aberdeen, are all reached by our lines.

Milwaukee, Minneapolis, Superior, Omaha, Sioux Falls. Watertown, and

Madison, Duluth, Winona, Des Moines, Mitchell. Pierre, Oakes.

Parties desiring to visit the great

ARTESIAN BASIN

of Dakota should take this line for all the great artesian wells are reached by our road.

The best farming land in America is to be had in the Dakotas where IRRIGATION BY ARTE-SIAN WELLS will make every farmer rich.

Profitable Investments.

THE CHICAGO AND

NORTH-WESTERN RAILWAY CO.

Owns Lots in most of the Cities and Towns on itsilines in

SOUTH DAKOTA.

These Lots are For Sale

at such prices and terms as to secure to purchasers safe and profitable investments.

South Dakota is All Right,

and those seeking locations for investments, or opportunities for the investment of capital, should give it an intelligent investigation.

For particulars apply to

CHAS. E. SIMMONS,

Land Commissioner C. & N.-W. Ry. Company,
CHICAGO, ILLINOIS.

A GREAT RAILWAY.

The Chicago, Milwaukee & St. Paul Rail-WAY COMPANY now operates over sixty-one hundred miles of thoroughly equipped road in Illinois, WISCONSIN, NORTHERN MICHIGAN, MINNESOTA, Iowa, Missouri, South and North Dakota. Each recurring year its lines are extended in all directions to meet the necessities of the rapidly populating sections of country west, northwest and southwest of Chicago, and to furnish a market for the products of the greatest agricultural and stock raising districts of the world. In Illinois it operates 317 miles of track; in Wisconsin 1,636 miles; in Northern Michigan 96 miles; in Iowa 1,551 miles; in Minnesota 1,115 miles; in South Dakota 1,092; in North Dakota 118 miles; in Missouri 140 miles, and the end is not yet. It has terminals in such large cities as Chicago, Milwaukee, La Crosse, St. Paul, Minneapolis, Fargo, Soiux City, COUNCIL BLUFFS, OMAHA and KANSAS CITY and St. Joseph, Missouri, and along its lines are hundreds of large and small thriving cities, towns and villages. Manufacturing interests are cultivated, and all branches of trade find encouragement. The Railway Company has a just appreciation of the value of its patrons, and its magnificent earnings are the result of the good business tact which characterizes the management of its affairs.

THE POPULARITY OF THE

Chicago, Milwaukee and St. Paul Railway

is attested by the fact that notwithstanding the strongest kind of competition of old and new lines, the Chicago, Milwaukee & St Paul Railway continues to carry the greater proportion of all the business between Chicago, Milwaukee, St. Paul and Minneapolis. It is the best patronized route between Chicago, Council Bluffs and Omaha and to and from all points in Wisconsin, Minnesota, Dakota and Iowa, and its Kansas City and St. Joseph line has taken equal rank with the older lines leading to and from the Southwest.

On all its through lines of travel the Chicago, Milwaukee & St. Paul Railway runs the most perfectly equipped trains of Sleeping, Parlor and Dining Cars. The through trains on all its lines are systematically heated by steam. No effort is spared to furnish the best accommodations for the least money, and, in addition, patrons of the road are sure of courteous treatment from its employes.

Engineering Magazine

A high-class, beautifully illustrated monthly magazine, like the Century and Harper's, but devoted exclusively to industrial affairs and engineering problems. It covers the entire field of industry, and besides nine special departments, and a monthly index to all that is of value in technical literature, each number contains ten leading articles by distinguished authorities upon topics that are uppermost in public interest.

The following are among the leading articles published in

recent numbers:

Progress in Aerial Navigation, (Illustrated)

O. Chanute, president American Society C. E. The Future of our Wagon Roads—Wm. Claypoole, C. E. The Solution of the Block Signal Problem, (Ill.) H. Ward Leonard, E. E.

Is the limit reached in armored Warships?

Albert Williams, Jr., E. M.

Pure Water and Public Health.

Floyd Davis, Ph. D. Chemist, Iowa State Board of Health. The Canadian Pacific Railroad—T. K. Thomson, C. E.

Worthless Government Engineering—Geo. Y. Wisner, C. E. Followed by a criticism by Lieut. Col. W. R. King of the

Engineer Corps, and a rejoinder by the author.
The World's Store of Tin, (Ill.) E. W. Claypole, A. B., D. Sc. The Rights of the Lowest Bidder; What the Contractor

Wants to Know, L. Allen, A. B., M. E. The Answer of the Law, C. E. Hellier, LL. B.

The Decline in Railroad Building, T. L. Greene. The Wind as a factor in Geology (Ill.), G. P. Merrill. The Manufacture of Ice, L. Allen, A. B., M. E.

The Purification of Water, F. Davis, Ph. D.

Price—25 cents a number; \$3.00 a year. At all news stands, or by mail. Send 10 cts. for a sample copy, and mention this manual.

THE ENGINEERING MAGAZINE CO.

World Building, NEW YORK, U.S. A.

[&]quot;Edited with marked ability,"—Boston Herald.

"Readable from cover to cover."—Indianapolis News.

"Studded with ideas of practical value,"—Norfolk Virginian.

"The contributors are men of the highest rank."—St. Louis Republic.

"We heartily commend it to the general public."—Boston Transcript.

"Unquestionably the most elaborately illustrated engineering journal that has yet appeared on either side of the Atlantic."—Mechanical World London.

Great Northern Ry.

Has 3 lines in South Dakota, connecting

Sioux Falls, Huron, Watertown and Aberdeen

St. Paul,
Minneapolis,
Duluth,

Superior

EAST.

Reaches more points in Minnesota,

AND

North Dakota

than any other line.

Has 2 Lines

from St. Paul and Minneapolis to the

Red River Valley.

It is the direct route to GREAT FALLS, HELENA and BUTTE. Gives choice of TWO ROUTES TO THE PACIFIC COAST. Round Trip Tourist Tickets to all the leading points in the west. For Maps, publications and information apply to any agent of the Co., or address

F. I. WHITNEY, G. P. & T. A., ST. PAUL. MINN. TAKE THE *

Northern Pacific Railroad.

The "Dining Car Line

AND

Yellowstone

Park Route"

TO ALL PRINCIPAL POINTS IN

The Great Northwest

For Rates, Time-Tables and Illustrated Tourists' Publications, address

J. N. HANNAFORD,

CHAS. S. FEE,

Gen'l Traffic Manager. Gen'l Pass. & Ticket Agent.

St. Paul, Minn.

Northern Pacific Railroad.

Tittle Giant Mater Motor,

[IMPROVED.]

Best in the World.

Specially adapted to high pressure service for running machinery of all kinds, from 1/8 to 15 horse-power.

elknap Motor

Manufacturers of

Little Giant Water Motors.

The B. C. Standard Electric

ROOT'S

Steel or Iron Spiral Riveted Pipe

3 to 24 inches diameter. 2 to 25 feet lengths.

Connections and Fittings to suit service
required. Unrivaled for

Water Works, Hydraulic Mining

AND

IRRIGATION,

AS HAS BEEN PROVED BY

14 Years Practical Experience.

(See pages 24, 122, 123 herein.)

Facfory at Greenpoint, L. I.

New York Office 28 Cliff Street.

Pacific Coast Office, 23 Davis Street, San Francisco, Cal.

A. L. ALDERSON, Representing GEO. F. EBERHARD, Mgr.

ABENDROTH & ROOT MFG. CO.

(See next page also.)

Spiral Riveted Water Pipe

Bolted Joint Connection,

Abendroth & Root Mfg. Co.

Bolted Joint Section.

A B A C

(See page 238.)

YOUNG & SONS,

Manufacturers of

Engineering, Mining, and Surveying Instruments.

Established 1820.

No. 43 North Seventh St., Philadelphia.

DRAINAGE LEVELS.

Bend for our Special List of

Drainage Levels.

Mailed to any address upon application

TO

YOUNG & SONS,

NO. 43 NORTH 7TH ST., PHILADELPHIA.

Robinson & Cary Co.,

JOBBERS OF

Wrought Iron

PIPE

Cast Iron

FITTINGS,

PUMPS,

VALVES,

·公C.

ENGINES,

BOILERS,

MACHINERY.

Railway, Miners' & Mill Supplies

4TH & WACOUTA STS.

St. Paul, - Minnesota.

SWAN BROS., Well Orillers,

ANDOVER, SOUTH DAKOTA.

"BY THEIR DEEDS SHALL YE KNOW THEM."

We have drilled wells in all parts of the Dakotas, in Wisconsin, Iowa, Minnesota and in the Canadian Northwest. We are always successful. We use the best rigs, tools, and machinery, and we are acknowledged to be the best drillers in this field. We let our work speak for us.

Correspondence solicted.

The Pulsometer— Steam Pump.

Time Tested, Best and Cheapest Automatic Steam Vacuum Pump Known, for Irrigation. Mining and General Farm Purposes.

Has no
Piston Rods,
Cranks, Eccentrics, Levers,
Beams, Jets,
Weights or
other Complicated Mechanism to get out
of order and
absorb power.

Requires Less Steam and Fuel than other Pumps.

OPERATES HUNG UP OR STATIONERY.

ANYBODY CAN OPERATE IT IT WILL NEVER WEAR OUT.

Catalogues, Estimates and Particulars Furnished on Application

THE PULSOMETER STEAM PUMP CO.,

Sole Owner and Manufacturer,

NEW YORK:

See also pages 126, 127, 128.

ARTESIAN IRRIGATION IN ITS PERFECTION.

Where power of well is used for Threshing and Grinding Feed.

- 1. Me Buy, Irrigate, and Sell Land.
- 2. We Sink Artesian Wells by Contract.
- 3. We Rent Land and Pay Taxes for Non-residents and Corporations.
- 4. We Sell the Best Paying and Safest Securities in the U.S.
- 5 Investigate us.

The Dakota Irrigation Co.,

ABERDEEN, S. D.

S. W. Narregang, President, Excelsior Block.

The Western Wheeled Scraper Co.,

AURORA, ILL.

(Formerly of Mount Pleasant, lowa.)

THE LEADING MANUFACTURERS OF GRADING IMPLEMENTS.

Our celebrated

Western Wheeled SCRAPERS

are used in all parts of the world. Our

Western Doublebottom Drag SCRAPERS

are unequaled and are the favorite with all graders.

We make the MOORE IRRIGATING DITCHER which is extensively used in all the Western States for making Irrigating Ditches and laterals, and for leveling land. We also make the

Best Road Machine on Earth.

Also Wheelbarrows, Dump-Carts and Farm Wagons. Send for Catalogues and Prices to the

Western Wheeled Scraper Co., AURORA, ILLS.

NYE'S PATENT

STEAM VACUUM PUMPS

FOR

IRRIGATION, Etc.

Guaranteed to be
The Cheapest,

The Simplest,

and the most

Economical Pump in the Market.

The pump works equally well if the water is loaded with sand or gravel.

No Pistons, no parts to Wear or Break.

Any man or boy can manage it.

(See page 126.)

Please write for Catalogue and full information, to the

NYE STEAM VACUUM PUMP CO.,

7 and 9 S. Jeffers in St., Chicago, Ill.

500FOOT
MACHINE
set up in 30
MINUTES,

ANY ONE
can
RUNIT.

Water Your Farms and Irrigate Your Lands

WITH THE VERY BEST AND CHEAPEST

Artesian Well Machinery.

For wells 2,000 feet or less ten sizes set up and has the well half way down before an ordinary "Derrick" could be built. Drills 30 to 80 feet per 24 hours in hard rock. Manufactured in the great oil fields of Pennsylvania. No extras needed with these machines. Made with or without "traction attachment." Our 2,000 foot rig can be run by a thresher engine. Buy one and make money with your idle thresher engine the year round. A skilled operator sent free to set and start each machine and give full instructions in its use. Every machine guaranteed.

Correspondence solicited from parties wanting artesian wells. SOLD DIRECT TO USERS AT

MANUFACTURERS PRICES.

Catalogue of Artesian Irrigating

PUMPS

for wind or steam power. Can be run with a thresher engine. Will save 50 per cent. of power, and do more work than any other pump.

KEYSTONE DRILLER CO.,

Beaver Falls, Penn.

Now is the Time to Subscribe.

HARPER'S PERIODIGALS

HARPER'S MAGAZINE, One Year - \$4.00 HARPER'S WEEKLY, One Year - - 4.00 HARPER'S BAZAR, One Year - - 4.00 HARPER'S YOUNG PEOPLE, One Year, 2.00 Postage free to all subscribers in the

United States, Canada, and Mexico.

The Volumes of the Weekly and Bazar begin with the first numbers for January. the Volumes of the Young People with the first number for November, and the Volumes of the Magazine with the Numbers for June and December of each year.

Booksellers and Postmasters usually receive subscriptions. Subscriptions sent direct to the publishers should be accompanied by Post-Office Money Order or Draft. When no time is specified, subscriptions will begin with the current

Number.

The Magazine is an overflowing store of good literature and exquisite art—a delightful production deserving all the fame and the material success which have been won by it. The Weekly is a rarely illustrated chronicle of the year's events; there is no end of pleasure and profit in its pages. The Bazar is a repository of fashion, and a gallery of some of the finest engravings of the time. The Young People is a treasure-house fascinating to every boy and girl as well as to plenty of persons older. A remarkable and valuable, an instructive and delightful line of publications, indeed.—N. Y. Sun.

Address:

HARPER & BROTHERS, Franklin Square, New York City. JOHN H. MILLER, PRES. W. N. COLER, VICE PRES. JOHN L. PYLE, SEC. ALVA E. TAYLOR, TREAS

Valley Land and Irrigation Company,

CAPITAL STOCK, \$2,000,000. INCORPORATED 1891.

100,000 Acres of Farm Lands in THE ARTESIAN BELT

FOR SALE ON EASY TERMS.

Address:

NORTH AMERICAN LOAN & TRUST CO., Agents, 190 and 192, Dearborn St., Chicago, Ill.

First National Bank

UNITED STATES DEPOSITORY, HURON, SOUTH DAKOTA.

Capital, \$75,000. Surplus, \$15,000.

A General Banking Business Cransacted.

THOS. H. CAMPBELL, President.
J. W. MACKENZIE, Cashier.
ED. J. MILLER, Assistant Cashier.

ARTESIAN IRRIGATION

CONSOLIDATED LAND AND * [RRIGATION COMPANY,

HURON, SOUTH DAKOTA.

A Reliable Medium for both Buyer and Seller of South Pakota

JOHN E. DIAMOND, PRESIDENT.

D. L. BUSH, VICE-PRESIDENT.

M. H. PRICHARD, SEC. & TREAS.

R. O. RICHARDS, MANAGER.

Land Irrigated, Bought, Sold and Managed.

See Advertisements

OF

W. P. BUTLER,

ON

pages 2 and 41.

Of Making Many Books There is no End.

Remember We Manufacture

County Records, Bank Books, and all Kinds of Blank Books.

Send in your Magazines and have them Bound in Handsome Volumes, English Tree Calf, and Red Undergilt Edges down to the cheapest styles. Preserve your old Books and send them in.

Full Line of Legal Blanks.

Send Your Orders to Us. Save Money and Time.

Mail Orders Promptly Attended to.

The Largest and Best Equipped Fob Office in the State.

Bend for Bample Copies of the Daily and Weekly Huronite.

SHANNON & LONGSTAFF, HURON, S. D.

THE

American Well Works,

AURORA, ILL.

(Or 11 and 13 So. Canal St., Chicago, Ill.; Dallas, Texas; and Sydney, N. S. W. Australia.)

MANUFACTURE THE LARGEST VARIETY OF

WATER WELL, OIL, GAS, AND PROSPECTING MACHINERY,

Operated by Horse or Steam Power; suitable for any SIZE HOLE, to any depth, through any formations or combination of formations.

Interested parties should send for Catalogue illustrating and describing our new

Eliptical Drilling Machine,

Combined with either the Revolving, Jetting, Rope or Pole tools. Also describing and illustrating all styles of

STEAM PUMPS, BRASS VALVES,

Deep Water Cylinders & Valves, PIPE, PIPE FITTINGS, &c.

NOV 26 1945

LIBRARY OF CONGRESS

00025958202