Lineare Algebra 1 Hausaufgabenblatt Nr. 1

Jun Wei Tan*

 $Julius\hbox{-}Maximilians\hbox{-}Universit\"at \ \ W\"urzburg$

(Dated: October 18, 2023)

Problem 1. (a) Wenn ich an das vergangene Jahr denke, sehe ich ein produktives Jahr

- (b) In der letzten Woche hat die Freiheit im Studium mich überrascht.
- (c) Ich freue mich darauf, so viel wie möglich kernen zu können.
- (d) Ich habe mich für mein Studienfach entschieden, weil Physik mir sehr gut gefallen hat, und Mathematik auch cool ist.
- (e) Folgendes finde ich verwirrend:...
- (f) Von meinem Studium erhoffe ich mir, dass ich gute Grundlagen im Mathematik lernen kann.
- (g) Am Ende meines Studiums möchte ich Folgendes erlebt haben: Mathematik!
- (h) Mir wird es vermutlich schwer fallen,...
- (i) Mir wird es leicht fallen,...
- (j) Als Unterstützung habe ich...

Problem 2. Organisatorisches...

Proof. Gemacht, glaube ich...

Definition 1. Sind $a_1, a_2, b \in \mathbb{R}$ mit $(a_1, a_2) \neq (0, 0)$, so bezeichnet man die Menge $g := \{(x_1, x_2) \in \mathbb{R}^2 | a_1x_1 + a_2x_2 = b\}$ als Gerade.

Theorem 2. Zu jeder Geraden gibt es $c_1, c_2, d_1, d_2 \in \mathbb{R}$, sodass die Gerade in der Form

$$\{(c_1, c_2) + t(d_1, d_2) : t \in \mathbb{R}\}$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

geschrieben werden kann. Weiterhin ist obige Menge im Fall $(d_1, d_2) \neq (0, 0)$ immer eine Gerade

Problem 3. Beweisen Sie folgende Aussage: Gegeben seien zwei Punkte $p, q \in \mathbb{R}^2$ mit $p \neq q$. Dann gibt es genau eine Gerade $g \subseteq \mathbb{R}^2$ mit $p \in g$ und $q \in g$. Diese ist gegeben durch $g_{p,q} = \{x \in \mathbb{R}^2 | x_1(q_2 - p_2) - x_2(q_1 - p_1) = p_1q_2 - p_2q_1\}.$

Proof. Wir nutzen Def. 1. Weil p und q in der Gerade sind, können wir zwei gleichungen schreiben...

$$a_1p_1 + a_2p_2 = b$$
$$a_1q_1 + a_2q_2 = b$$

Dann gilt

$$a_1p_1 + a_2p_2 = a_1q_1 + a_2q_2$$

 $a_1(p_1 - q_1) = a_2(q_2 - p_2)$

Von daher folgt die Lösungsmenge

$$a_1 = t$$

$$a_2 = t \frac{p_1 - q_1}{q_2 - p_2}$$

$$b = p_1 t + p_2 \frac{p_1 - q_1}{q_2 - p_2} t$$

Es ist klar, dass die gegebene Gerade eine Lösung zu die Gleichung ist, mit $t=q_2-p_2$. Was passiert mit andere t? Sei $t=q_2-p_2$ und $t'\in\mathbb{R}$. Vergleich dann die Gleichungen

$$x_1t + x_2t \frac{p_1 - q_1}{q_2 - p_2} = p_1t + p_2 \frac{p_1 - q_1}{q_2 - p_2}t$$
$$x_1t' + x_2t' \frac{p_1 - q_1}{q_2 - p_2} = p_1t' + p_2 \frac{p_1 - q_1}{q_2 - p_2}t'$$

Es ist klar, dass die zweite Gleichung nur die erste Gleichung durch t'/t multipliziert ist. Deshalb habe die zwei Gleichungen die gleiche Lösungsmengen, dann sind die Gerade, die durch die Gleichungen definiert werden, auch gleich.

Problem 4. In Beispiel 1.2.8 wurde der Schnitt von zwei Ebenen bestimmt. Er hatte eine ganz bestimmte Form, die wir für den Kontext dieser Aufgabe als Gerade bezeichnen wollen, formal:

Ist $(v_1, v_2, v_3) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ und $(p_1, p_2, p_3) \in \mathbb{R}^3$ beliebig, dann ist die Menge

$$\{(p_1 + t \cdot v_1, p_2 + t \cdot v_2, p_3 + t \cdot v_3) | t \in \mathbb{R}\}$$

eine Gerade.

- (a) Finden Sie zwei Ebenen, deren Schnitt die Gerade $g = \{(1+3t, 2+t, 3+2t) | t \in \mathbb{R}\}$ ist. Erläutern Sie, wie Sie die Ebenen bestimmt haben und beweisen Sie anschließend, dass Ihr Ergebnis korrekt ist.
- (b) Ist der Schnitt von zwei Ebenen immer eine Gerade? Wenn ja, begründen Sie das, wenn nein, geben Sie ein Gegenbeispiel an.
- (c) Zeigen Sie: Für den Schnitt einer Geraden g mit einer Ebene E gilt genau einer der folgenden drei Fälle:
 - $g \cap E = \emptyset$
 - $\bullet |q \cap E| = 1$
 - $q \cap E = q$

Geben Sie für jeden der Fälle auch ein Geraden-Ebenen-Paar an, dessen Schnitt genau die angegebene Form hat.

Proof. (a) Wir suchen zwei Ebenen, also 6 Vektoren $\vec{\mathbf{p}}_1, \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{p}}_2, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathbb{R}^3$, die zwei Ebenen durch

$$E_1 = \{ \vec{\mathbf{p}}_1 + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 | t_1, t_2 \in \mathbb{R} \}$$

$$E_2 = \{ \vec{\mathbf{p}}_2 + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2 | t_1', t_2' \in \mathbb{R} \}$$

definieren. Einfachste wäre, wenn $p_1 = p_2 \in g$. Sei dann $p_1 = p_2 = (1, 2, 3)^T$. Wenn $\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1 = (3, 1, 2)^T$, ist es auch klar, dass der Schnitt g entschließt $(t_2 = t_2' = 0)$. Dann mussen wir $\vec{\mathbf{u}}_2, \vec{\mathbf{v}}_2$ finden, für die gelten,

$$(t,t_2') \neq (0,0) \implies t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 \neq t_1' \underbrace{\vec{\mathbf{u}}_1}_{\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1} + t_2' \vec{\mathbf{v}}_2 \forall t_1, t_1' \in \mathbb{R},$$

also

$$\xi_1 \vec{\mathbf{u}}_1 \neq t_2' \vec{\mathbf{v}}_2 - t_2 \vec{\mathbf{u}}_2 \qquad (t_2, t_2') \neq (0, 0), \forall \xi_1 \in \mathbb{R}.$$

Das bedeutet

$$\xi_1 = 0 : \vec{\mathbf{v}}_2 \neq k\vec{\mathbf{u}}_2 \qquad \forall k \in \mathbb{R}$$

 $\xi_1 \neq 0 : \vec{\mathbf{u}}_1 \notin \operatorname{span}(\vec{\mathbf{v}}_2, \vec{\mathbf{u}}_2)$

Remark 3. Wir können uns einfach für solchen $\vec{\mathbf{v}}_2, \vec{\mathbf{u}}_2$ entscheiden. Wir brauchen nur

$$\langle \vec{\mathbf{u}}_2, \vec{\mathbf{v}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{v}}_2 \rangle = 0.$$

Aber weil das innere Produkt nicht in der Vorlesung nicht diskutiert worden ist, mussen wir es nicht systematisch finden.

Remark 4. Eigentlich braucht man keine spezielle Grunde, um $\vec{\mathbf{u}}_2$ und $\vec{\mathbf{v}}_2$ zu finden. Wenn man irgindeine normalisierte Vektoren aus einer Gleichverteilung auf \mathbb{R}^3 nimmt, ist die Wahrscheinlichkeit, dass die eine Lösung sind, 1.

Daher entscheide ich mich ganz zufällig für zwei Vektoren...

$$\vec{\mathbf{v}}_2 = (1, 0, 0)^T$$

 $\vec{\mathbf{u}}_2 = (0, 1, 0)^T$

Der Schnitt von der Ebenen kann berechnet werden...

$$\vec{\mathbf{p}} + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = \vec{\mathbf{p}} + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2,$$

$$\xi_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = t_2' \vec{\mathbf{v}}_2.$$

Also

$$\xi_1 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = t_2' \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

oder

$$\begin{pmatrix} 3 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ t_2 \\ t_2' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Remark 5. Hier ist es noch einmal klar, dass die einzige Lösung $\xi_1 = t_2 = t_2' = 0$ ist, weil $\det(\ldots) \neq 0$. Aber wir mussen noch eine langere Beweis schreiben...

$$\begin{pmatrix} 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & -2 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

also die einzige Lösung ist $\xi_1=t_2=t_2'=0 \implies t_2=t_2'=0, t_1=t_2 \implies E_1\cap E_2=g$

(b) Nein.

$$E_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + u_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad u_{1}, u_{2} \in \mathbb{R},$$

$$E_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + u_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + u_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad u_{1}, u_{2} \in \mathbb{R}.$$

Dann ist $E_1 \cap E_2 = \emptyset$

(c) Es ist klar, dass maximal eines der Fälle gelten kann. Wir nehmen an, dass die erste zwei Fälle nicht gelten. Dann gilt

$$|g \cap E| \ge 2.$$

Es gibt dann mindestens zwei Punkte in $g \cap E$. Es ist auch klar, dass die Verbindungsgerade zwische die beide Punkte g ist (Pr. 3)

Lemma 6. Sei $\vec{\mathbf{a}}, \vec{\mathbf{b}} \in \mathbb{R}^3$. Die Verbindungsgerade kann als

$$\vec{\mathbf{a}} + t(\vec{\mathbf{b}} - \vec{\mathbf{a}}), \qquad t \in \mathbb{R}$$

geschrieben werden.

Proof. Klar von der Lösung zu Pr. 3

Theorem 7. Sei $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in E$. Dann ist die Verbindungsgerade zwischen $\vec{\mathbf{v}}_1$ und $\vec{\mathbf{v}}_2$ auch in E.

Proof. Sei

$$E = {\{\vec{\mathbf{p}}_1 + t_1\vec{\mathbf{u}} + t_2\vec{\mathbf{v}}|t_1, t_2 \in \mathbb{R}\}}.$$

Es wird angenommen, dass a_1, a_2, b_1, b_2 existiert, sodass

$$\vec{\mathbf{v}}_1 = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}}$$

$$\vec{\mathbf{v}}_2 = \vec{\mathbf{p}} + b_1 \vec{\mathbf{u}} + b_2 \vec{\mathbf{v}}$$

Dann ist

$$\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1 = (b_1 - a_1)\vec{\mathbf{u}} + (b_2 - a_2)\vec{\mathbf{v}},$$

also

$$\vec{\mathbf{v}}_1 + t(\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1) = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}} + t \left[(b_1 - a_1) \vec{\mathbf{u}} + (b_2 - a_2) \vec{\mathbf{v}} \right]$$
$$= \vec{\mathbf{p}} + \left[a_1 + t(b_1 - a_1) \right] \vec{\mathbf{u}} + \left[a_2 + t(b_2 - a_2) \right] \vec{\mathbf{v}} \in E$$

Deshalb ist $g \subseteq g \cap E$. Weil $g \cap E \subseteq g$, ist $g = g \cap E$

Bis zum nächsten Woche...

Problem 5. Es sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $(x_1, x_2, x_3) \to (x_1, x_2)$, s die Spiegelung in \mathbb{R}^2 , $T: \mathbb{R}^2 \to \mathbb{R}^2$ die Translation um (1,0) und $em: \mathbb{R}^2 \to \mathbb{R}^3$ die Einbettung.

- (a) Bilden Sie die Verkettungen $f \circ em, em \circ f, s \circ f, T \circ s, s \circ T$ und $em \circ s$. Geben Sie dabei jeweils Argumentmenge, Zielmenge und Zuordnungsvorschrift an.
- (b) Untersuchen Sie die Funktionen aus der vorherigen Teilaufgabe auf Surjektivität, Injektivität bzw. Bijektivität.
- (c) Sei $F = em \circ T \circ s \circ f$. Bestimmen und skizzieren Sie das Bild bzw. Urbild von $[0,1] \times [-1,1] \times [0,2]$ unter F.

Proof. (a) Test

(i) $f \circ em$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2) \to (x_1, x_2) = \mathrm{Id}_{\mathbb{R}^2}$

(ii) $em \cdot f$

Argumentmenge + Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_1, x_2, 0)$

(iii) $s \cdot f$

Argumentmenge: \mathbb{R}^3

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_2, x_1)$

(iv) $em \circ s$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2) \rightarrow (x_2, x_1, 0)$

(b) (i) $f \circ em$

Surjektive, Injektive und auch Bijektive

- (iii) $s \circ f$ Surjektive, aber nicht injektiv
- (iv) $em \circ s$ Injektiv, aber nicht surjektiv