Problem Statement

Churn (loss of customers to competition) is a problem for companies because it is more expensive to acquire a new customer than to keep your existing one from leaving. This problem statement is targeted at enabling churn reduction using analytics concepts.

Target Variable – Churn

Exploratory Data Analysis - It includes following steps Looking into the data means visualizing the data through graphs and analyzing all variables.

- Visualization
- Missing value analysis
- Outlier analysis
- Correlation
- Feature scaling
- Dummy data create
- Feature sampling

Models:- Applied below models on preprocessed data

- KNN
- Logistic Regression
- Random forest
- Linear regression

Loading Dataset

```
train_original = pd.read_csv("Train_data.csv")
test_original = pd.read_csv("Test_data.csv")
```

Exploring Data

train.head(5)

	state	account length		phone number	international plan	voice mail plan	number vmail messages	total day minutes	total day calls	total day charge	 total eve calls	total eve charge	total night minutes	total night calls	total night charge	total intl minutes	total intl calls	total intl charge	c
() KS	128	415	382- 4657	no	yes	25	265.1	110	45.07	 99	16.78	244.7	91	11.01	10.0	3	2.70	
•	ОН	107	415	371- 7191	no	yes	26	161.6	123	27.47	 103	16.62	254.4	103	11.45	13.7	3	3.70	
2	NJ	137	415	358- 1921	no	no	0	243.4	114	41.38	 110	10.30	162.6	104	7.32	12.2	5	3.29	
;	ОН	84	408	375- 9999	yes	no	0	299.4	71	50.90	 88	5.26	196.9	89	8.86	6.6	7	1.78	
4	ОК	75	415	330- 6626	yes	no	0	166.7	113	28.34	 122	12.61	186.9	121	8.41	10.1	3	2.73	

#Checking info of data as data types and rows n cols

train.info()

train.describe()

	account length	area code	number vmail messages	total day minutes	total day calls	total day charge	total eve minutes	total eve calls	total eve charge	total night minutes	total night calls	total ı ch
count	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.00
mean	101.064806	437.182418	8.099010	179.775098	100.435644	30.562307	200.980348	100.114311	17.083540	200.872037	100.107711	9.03
std	39.822106	42.371290	13.688365	54.467389	20.069084	9.259435	50.713844	19.922625	4.310668	50.573847	19.568609	2.27
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	23.200000	33.000000	1.04
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	166.600000	87.000000	14.160000	167.000000	87.000000	7.52
50%	101.000000	415.000000	0.000000	179.400000	101.000000	30.500000	201.400000	100.000000	17.120000	201.200000	100.000000	9.05
75%	127.000000	510.000000	20.000000	216.400000	114.000000	36.790000	235.300000	114.000000	20.000000	235.300000	113.000000	10.59
max	243.000000	510.000000	51.000000	350.800000	165.000000	59.640000	363.700000	170.000000	30.910000	395.000000	175.000000	17.77

To check unique values now

for i in train.columns:

```
print(i,' -- ',len(train[i].value_counts()))
```

```
state -- 51
account length -- 212
area code -- 3
phone number -- 3333
international plan -- 2
voice mail plan -- 2
number vmail messages -- 46
total day minutes -- 1667
total day calls -- 119
total day charge -- 1667
total eve minutes -- 1611
total eve calls -- 123
total eve charge -- 1440
total night minutes -- 1591
total night calls -- 120
total night charge -- 933
total intl minutes -- 162
total intl calls -- 21
total intl charge -- 162
number customer service calls -- 10
Churn -- 2
```

Replacing spaces from columns name with underscore

```
train.columns = train.columns.str.replace(" ","_")
test.columns = test.columns.str.replace(" ","_")
```

```
Changing area code type to categorical in both test and train data set
train['area code'] = train['area code'].astype('object')
test['area code'] = test['area code'].astype('object')
Droping phone number
train = train.drop('phone number',axis=1)
test = test.drop('phone number',axis=1)
All categorical var and removing target var
cat names = train.select dtypes(exclude=np.number).columns.tolist()
cat names.remove('Churn')
cat names
['account length', 'number vmail messages', 'total day minutes',
'total day calls', 'total day charge', 'total eve minutes',
'total eve calls', 'total eve charge', 'total night minutes',
'total night calls', 'total night charge', 'total intl minutes',
'total intl calls', 'total intl charge', 'number customer service calls']
['state', 'area code', 'international plan', 'voice mail plan']
```

Checking Missing Value in Data

print(train.isnull().sum())

```
state
                                0
account length
                                0
                                0
area code
                                0
international plan
voice mail plan
                                0
number_vmail_messages
                                0
total day minutes
                                0
total day calls
                                0
total_day_charge
                                0
                                0
total eve minutes
                                0
total eve calls
total eve charge
                                0
total_night_minutes
                                0
total_night_calls
                                0
                                0
total night charge
```

Visualizing data

```
plt.figure(figsize=(8,6))
sns.countplot(x = train.Churn,palette='muted')
plt.xlabel('Customer churn', fontsize= 15)
plt.ylabel('Count', fontsize= 15)
plt.title("Distribution of Churning Vs Not Churning Customer",fontsize= 20)
plt.show()
```


#State Wise Churning of customer

diff_bar('state','Churn')

#area_code Wise Churning of customer

diff_bar('area_code','Churn')

#International_Plan Wise Churning of customer

diff_bar('international_plan','Churn')

#Number of Customer_Service Call Wise Churning of customer

diff_bar('number_customer_service_calls','Churn')

#No. of Customer Churning and had a Voice mail plan

diff_bar('voice_mail_plan','Churn')

Pairplot

#Total intl charge and Total intl Minute

diff_scattr('total_intl_charge','total_intl_minutes')

Total night charge and Total night Minute

diff_scattr('total_night_charge','total_night_minutes')

#Total eve charge and Total eve Minute

diff_scattr('total_eve_charge','total_eve_minutes')

#Total day charge and Total Day Minute

diff_scattr('total_day_charge','total_day_minutes')

Changing Categorical colum values to numeric codes

#function for converting cat to num codes

```
def cat_to_num(df):
    for i in range(0, df.shape[1]):
        #print(i)
        if(df.iloc[:,i].dtypes == 'object'):
            df.iloc[:,i] = pd.Categorical(df.iloc[:,i])
            df.iloc[:,i] = df.iloc[:,i].cat.codes
            df.iloc[:,i] = df.iloc[:,i].astype('object')
        return df
```

Feature Selection

```
#Setting up the pane or matrix size
f, ax = plt.subplots(figsize=(18,12)) #Width,height
#Generate Corelation Matrix
corr = train[cname].corr()
#Plot using Seaborn library
sns.heatmap(corr,mask=np.zeros_like(corr, dtype=np.bool),
cmap=sns.diverging_palette(220,10, as_cmap=True),\
square=True, ax=ax,annot=True,linewidths=1 , linecolor= 'black',vmin = -1, vmax = 1)
plt.show()
```

account_length	1	-0.0046	0.0062	0.038	0.0062	-0.0068	0.019	-0.0067	-0.009	-0.013	-0.009	0.0095	0.021	0.0095	-0.0038		
number_vmail_messages	-0.0046	1	0.00078	-0.0095	0.00078	0.018	-0.0059	0.018	0.0077	0.0071	0.0077	0.0029	0.014	0.0029	-0.013		- 0.8
total_day_minutes ·	0.0062	0.00078	1	0.0068	1	0.007	0.016	0.007	0.0043	0.023	0.0043	-0.01	0.008	-0.01	-0.013		
total_day_calls ·	0.038	-0.0095	0.0068	1	0.0068	-0.021	0.0065	-0.021	0.023	-0.02	0.023	0.022	0.0046	0.022	-0.019		
total_day_charge	0.0062	0.00078	1	0.0068	1	0.007	0.016	0.007	0.0043	0.023	0.0043	-0.01	0.008	-0.01	-0.013		- 0.4
total_eve_minutes :	-0.0068	0.018	0.007	-0.021	0.007	1	-0.011	1	-0.013	0.0076	-0.013	-0.011	0.0025	-0.011	-0.013		
total_eve_calls ·	0.019	-0.0059	0.016	0.0065	0.016	-0.011	1	-0.011	-0.0021	0.0077	-0.0021	0.0087	0.017	0.0087	0.0024		
total_eve_charge ·	-0.0067	0.018	0.007	-0.021	0.007	1	-0.011	1	-0.013	0.0076	-0.013	-0.011	0.0025	-0.011	-0.013		- 0.0
total_night_minutes	-0.009	0.0077	0.0043	0.023	0.0043	-0.013	-0.0021	-0.013	1	0.011	1	-0.015	-0.012	-0.015	-0.0093		
total_night_calls ·	-0.013	0.0071	0.023	-0.02	0.023	0.0076	0.0077	0.0076	0.011	1	0.011	-0.014	0.0003	-0.014	-0.013		
total_night_charge ·	-0.009	0.0077	0.0043	0.023	0.0043	-0.013	-0.0021	-0.013	1	0.011	1	-0.015	-0.012	-0.015	-0.0093		0.4
total_intl_minutes	0.0095	0.0029	-0.01	0.022	-0.01	-0.011	0.0087	-0.011	-0.015	-0.014	-0.015	1	0.032	1	-0.0096		
total_intl_calls ·	0.021	0.014	0.008	0.0046	0.008	0.0025	0.017	0.0025	-0.012	0.0003	-0.012	0.032	1	0.032	-0.018		
total_intl_charge ·	0.0095	0.0029	-0.01	0.022	-0.01	-0.011	0.0087	-0.011	-0.015	-0.014	-0.015	1	0.032	1	-0.0097		0.8
nber_customer_service_calls	-0.0038	-0.013	-0.013	-0.019	-0.013	-0.013	0.0024	-0.013	-0.0093	-0.013	-0.0093	-0.0096	-0.018	-0.0097	1		
	account_length -	number_vmail_messages -	total_day_minutes -	total_day_calls -	total_day_charge -	total_eve_minutes -	total_eve_calls -	total_eve_charge -	total night minutes -	total_night_calls -	total_night_charge -	total_intl_minutes -	total intl calls -	total intl charge -	number_customer_service_calls -		

Chi-Square for Categorical variables

from scipy.stats import chi2_contingency
for i in cat_names:
 print(i)

#As we know imput to chi square is always a contiguency table so we generating it using crostab function present in pd

chi2, p, dof, ex =chi2_contingency(pd.crosstab(train['Churn'],train[i]))

```
#as above pd.crosstab(dependent variable , independent variable)
print(p)
```

```
state

0.002296221552011188

area_code

0.9150556960243712

international_plan

2.4931077033159556e-50

voice mail plan

5.15063965903898e-09
```

```
#Remove correlated variable & the variable which doesn't contain any meaning full info

rmev = ['state','total_day_charge','total_eve_charge','total_night_charge','total_intl_charge']

train = train.drop(rmev,axis=1)

test = test.drop(rmev,axis=1)
```

Feature Scaling

```
#Check distribution of data via pandas visualization train[cname].hist(figsize=(20,20),color='g',alpha = 0.7) plt.show()
```


#Histogram break down

```
def plot_hist_y(x,y):
```

```
plt.hist(list(x[y == 1]),color='green',label='True',bins='auto') \\ plt.hist(list(x[y == 0]),color='grey', alpha = 0.7, label='False',bins='auto') \\ plt.title("Histogram of \{var\} breakdown by \{Y\}".format(var = x.name,Y=y.name)) \\ plt.xlabel("Value")
```

```
plt.ylabel("Frequency")

plt.legend(loc="upper right")

plt.savefig("Histogram of {var} breakdown by {Y}.png".format(var = x.name,Y=y.name))

plt.show()

for i in cname:
    #print(i)
    plot_hist_y(train[i],train.Churn)
```


#Applying standarization as most of the variables are normalized

```
def scale_standard(df):
    for i in cname:
        #print(i)
        df[i] = (df[i] - df[i].mean())/df[i].std()
    return df
```

Sampling Data For Train and Test

```
#Using train test split functionality for creatuing sampling
```

```
X = train.iloc[:,:14]
y = train.iloc[:,:14]
y=y.astype('int')

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=101)

(X_train.shape),(y_train.shape)
((2233, 14), (2233,))
```

Using SMOTE (SMOTE: Synthetic Minority Over-sampling Technique)

Due to target variable is imbalance

```
Smo = SMOTE(random_state=101)

X_train_res, y_train_res = Smo.fit_sample(X_train,y_train)

(X_train_res.shape,y_train_res.shape)

((3790, 14), (3790,))
```

Prediction function

```
def pred(model_object,predictors,compare):
    """1.model_object = model name
     2.predictors = data to be predicted
      3.compare = y_train""
   predicted = model object.predict(predictors)
   # Determine the false positive and true positive rates
   fpr, tpr, _ = roc_curve(compare, model_object.predict_proba(predictors)[:,1])
   cm = pd.crosstab(compare,predicted)
   TN = cm.iloc[0,0]
   FN = cm.iloc[1,0]
   TP = cm.iloc[1,1]
   FP = cm.iloc[0,1]
   print("CONFUSION MATRIX -----")
   print(cm)
   print()
   ##check accuracy of model
   print('Classification paradox :----')
   print('Accuracy :- ', round(((TP+TN)*100)/(TP+TN+FP+FN),2))
   print()
   print('Specificity // True Negative Rate :- ',round((TN*100)/(TN+FP),2))
   print()
   print('Sensivity // True Positive Rate // Recall :- ',round((TP*100)/(FN+TP),2))
   print()
   print('False Negative Rate :- ',round((FN*100)/(FN+TP),2))
   print()
   print('False Postive Rate :- ',round((FP*100)/(FP+TN),2))
   print()
   print(classification_report(compare,predicted))
   print()
   # Calculate the AUC
   print ('AUC -: %0.2f' % auc(fpr, tpr))
```

RandomForest

```
#Random Forest Model
 rf_model = RandomForestClassifier(n_estimators=100,random_state=101).fit(X_train_res,y_train_res)
 #Model Score on Valdation Data Set
 pred(rf_model,X_test,y_test)
 # Accuracy :- 94.73
 # Specificity // True Negative Rate :- 96.86
# Sensivity // True Positive Rate // Recall :- 80.69
 # False Negative Rate :- 19.31
# False Postive Rate :- 3.14
 # AUC -: 0.91
   CONFUSION MATRIX ---->>
   col_0 0 1
   Churn
         925 30
   0
         28 117
   1
   Classification paradox :---->>
   Accuracy :- 94.73
   Specificity // True Negative Rate :- 96.86
   Sensivity // True Positive Rate // Recall :- 80.69
   False Negative Rate :- 19.31
   False Postive Rate :- 3.14
                precision recall f1-score support
                            0.97 0.97
0.81 0.80
                    0.97
                                                   955
                   0.80
                                                   145
             1
   avg / total
                   0.95 0.95 0.95
                                                  1100
```

AUC -: 0.91

Logistic Regression

```
1 [115]: #Logistic without binaries
logit_model = LogisticRegression(random_state=101).fit(X_train_res,y_train_res)
       #Model Score on Valdation Data Set
       pred(logit_model,X_test,y_test)
       # Classification paradox :---->>
       CONFUSION MATRIX ---->>
         col_0 0 1
         Churn
              752 203
         0
1
              37 108
         Classification paradox :---->>
         Accuracy :- 78.18
         Specificity // True Negative Rate :- 78.74
         Sensivity // True Positive Rate // Recall :- 74.48
         False Negative Rate :- 25.52
         False Postive Rate :- 21.26
             precision recall f1-score support
          0
                  0.95 0.79
                                    0.86
                                               955
                0.35 0.74 0.47
                                              145
             0.87 0.78 0.81 1100
 avg / total
 AUC -: 0.81
```

KNN

```
: #KNN Model Development
  KNN_Model = KNeighborsClassifier(n_neighbors=5).fit(X_train_res,y_train_res)
  #Model Score on Valdation Data Set
  pred(KNN_Model,X_test,y_test)
  # Classification paradox :---->>
  # Accuracy :- 78.09
# Specificity // True Negative Rate :- 79.48
# Sensivity // True Positive Rate // Recall :- 68.97
  # False Negative Rate :- 31.03
# False Postive Rate :- 20.52
  # AUC = 0.80
    CONFUSION MATRIX ---->>
    col_0 0 1
    Churn
    0
          759 196
           45 100
    Classification paradox :---->>
    Accuracy :- 78.09
    Specificity // True Negative Rate :- 79.48
    Sensivity // True Positive Rate // Recall :- 68.97
    False Negative Rate :- 31.03
    False Postive Rate :- 20.52
               precision recall f1-score support
                                     0.86
0.45
                                                  955
145
                    0.94
                            0.79
           0
           1
                    0.34
                             0.69
                 0.86 0.78 0.81 1100
 avg / total
 AUC -: 0.80
```

Navie Bayes

```
: #Navie Model Development
  Naive_model = GaussianNB().fit(X_train_res,y_train_res)
  #Model Score on Valdation Data Set
  pred(Naive_model,X_test,y_test)
  # Classification paradox :---->>
  # Accuracy :- 78.64
  # Specificity // True Negative Rate :- 78.95
  # Sensivity // True Positive Rate // Recall :- 76.55
  # False Negative Rate :- 23.45
# False Postive Rate :- 21.05
  # AUC = 0.82
   CONFUSION MATRIX ---->>
   col_0 0 1
   Churn
   0 754 201
          34 111
    1
   Classification paradox :---->>
    Accuracy :- 78.64
    Specificity // True Negative Rate :- 78.95
    Sensivity // True Positive Rate // Recall :- 76.55
    False Negative Rate :- 23.45
   False Postive Rate :- 21.05
               precision recall f1-score support
                     0.96
                                0.79
                                            0.87
                                                         955
            1
                     0.36
                                0.77
                                            0.49
                                                         145
avg / total
                     0.88 0.79
                                            0.82
                                                        1100
AUC -: 0.82
```

Final Model :- Random Forest

AUC -: 0.91

As above random forest fits best for out dataset out of our tested models

Hyper Parameter Optimization with RandomSeacrhCV

below code will take time to execute so just made it commented

```
In [119]: # Training Final Model With Optimum Parameters
         final_Model = RandomForestClassifier(random_state=101, n_estimators = 500,n_jobs=-1)
         final_Model.fit(X_train_res,y_train_res)
 oob_score=False, random_state=101, verbose=0, warm_start=False)
▶ In [120]: #Validating Predictions
         pred(final_Model,X_test,y_test)
          CONFUSION MATRIX ---->>
          col 0
                0 1
          Churn
               927 28
          Classification paradox :---->>
          Accuracy :- 95.09
 Specificity // True Negative Rate :- 97.07
 Sensivity // True Positive Rate // Recall :- 82.07
 False Negative Rate :- 17.93
 False Postive Rate :- 2.93
               precision
                              recall f1-score
                                                  support
            0
                     0.97
                                0.97
                                           0.97
                                                       955
            1
                     0.81
                                0.82
                                                       145
                                           0.82
 avg / total
                     0.95
                                0.95
                                           0.95
                                                      1100
```

Features Importance

```
#Calculating feature importances
importances = final_Model.feature_importances_

# Sort feature importances in descending order
indices = np.argsort(importances)[::1]

# Rearrange feature names so they match the sorted feature importances
names = [train.columns[i] for i in indices]

# Creating plot
fig = plt.figure(figsize=(10,10))
plt.title("Feature Importance")

# Add horizontal bars
plt.barh(range(X.shape[1]), importances[indices],align = 'center')
plt.yticks(range(X.shape[1]), names)
plt.show()
#fig.savefig('feature_importance.png')
```


AUC & ROC Curve

```
: #from sklearn.metrics import roc_curve,auc,roc_auc_score
# Determine the false positive and true positive rates
fpr, tpr, _ = roc_curve(y_test, final_Model.predict_proba(X_test)[:,1])
# Calculate the AUC
roc_auc = auc(fpr, tpr)
print ('ROC AUC: %0.2f' % roc_auc)

# Plot of a ROC curve for a specific class
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```

ROC AUC: 0.91

Final Test Data Predictions

```
: # #Test Data Spliting parts target and Predictors
XX = test.iloc[:,:14].values #predictors
yy = test.iloc[:,14].values #target
yy=yy.astype('int')
: #Predicting test data
   #pred(model_object=final_Model,predictors=XX,compare=yy)
   Churn_Pred = final_Model.predict(XX)
   cm = pd.crosstab(yy,Churn_Pred)
TN = cm.iloc[0,0]
   FN = cm.iloc[1,0]
   TP = cm.iloc[1,1]
   FP = cm.iloc[0,1]
   print("CONFUSION MATRIX ---->> ")
   print(cm)
   print()
##check accuracy of model
   print('Accuracy :- ', round(((TP+TN)*100)/(TP+TN+FP+FN),2))
print('False Negative Rate :- ',round((FN*100)/(FN+TP),2))
print('False Postive Rate :- ',round((FP*100)/(FP+TN),2))
      CONFUSION MATRIX ---->>
      col_0
                 0 1
      row_0
      0
               1331 112
      1
                 37 187
      Accuracy :- 91.06
     False Negative Rate :- 16.52
False Postive Rate :- 7.76
   print(classification_report(yy,Churn_Pred))
                         precision recall f1-score support
                     0
                                0.97
                                               0.92
                                                              0.95
                                                                             1443
                     1
                                0.63
                                               0.83
                                                              0.72
                                                                              224
      avg / total
                                0.93
                                               0.91
                                                              0.92
                                                                             1667
```

AUC & ROC over Test Data

```
from sklearn.metrics import roc_curve,auc,roc_auc_score
# Determine the false positive and true positive rates
fpr, tpr, _ = roc_curve(yy, final_Model.predict_proba(XX)[:,1])
# Calculate the AUC
roc_auc = auc(fpr, tpr)
print ('ROC AUC: %0.2f' % roc_auc)

# Plot of a ROC curve for a specific class
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.xlim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```

ROC AUC: 0.92

Extra Figures of R code

Churning ~ international_plan

Churning ~ Area Code Churn False. True.

Churning ~ Area Code by Voice Mail Plan

Churn of international_plan by voice_mail_plan and Area Cod

Churn ~ international_plan by voice_mail_plan

CORRELATION PLOT

Histogram of train\$total_day_calls

Histogram of train\$total_day_minutes

Histogram of train\$account_length

RF_model

