Examen de Probabilités du 20 mars 2017

4 exercices indépendants (Durée : 2 heures)

Exercice I-

Une urne contient 2 boules blanches et 8 boules noires. Un joueur tire successivement, avec remise, 5 boules dans cette urne. Pour chaque boule blanche tirée, il gagne 2 points et pour chaque boules noire tirée, il perd 3 points. On note X la variable aléatoire représentant le nombre de boules blanches tirées et Y le nombre de points obtenus par le joueur.

- 1. Déterminer la loi de X, son espérance et sa variance.
- 2. Déterminer la loi de Y, son espérance et sa variance.
- 3. Le joueur fait maintenant n tirages avec remise dans cette urne. Soit Z_k la variable de Bernoulli qui vaut 1 si le joueur tire une boule blanche et 0 sinon. On pose $S_n = \sum_{k=1}^n Z_k$.
 - a) Montrer, en utilisant l'inégalité de Bienaymé-Tchebychev, que, pour tout a > 0,

$$P\left(\left|\frac{S_n}{n} - \mathbb{E}(Z_1)\right| \ge a\right) \le \frac{\operatorname{Var}(Z_1)}{na^2}.$$

b) À partir de quel nombre n de tirages peut-on garantir, à plus de 95%, que la proportion de boules blanches obtenues sera comprise entre 0.15 et 0.25?

Exercice II-

On considère une suite (U_n) de variables aléatoires indépendantes de même loi uniforme $\mathcal{U}([0,1])$. On note $Y = \min_{1 \le k \le n} U_k$ et $Z = \max_{1 \le k \le n} U_k$.

- 1. Montrer que $P([Y \ge y] \cap [Z \le q]) = (z y)^n$ pour $0 \le y \le z \le 1$.
- **2.** Vérifier que $f_{Y,Z}(y,z) = -\frac{\partial}{\partial y} \frac{\partial}{\partial z} P([Y \ge y] \cap [Z \le z])$ et en déduire que, pour $y,z \in \mathbb{R}$,

$$f_{Y,Z}(y,z) = n(n-1)(z-y)^{n-2} \mathbb{I}_{0 \le y \le z \le 1}.$$

- **3.** En déduire que $f_Z(z) = nz^{n-1}\mathbb{I}_{[0,1]}(z)$ et que $\mathbb{E}(Z) = \frac{n}{n+1}$. Calculer $\operatorname{Var}(Z)$.
- **4.** Montrer que Y et 1-Z ont même loi et en déduire l'espérance et la variance de Y.
- 5. Montrer que $\mathbb{E}(Y/Z) = \frac{Z}{n}$ et retrouver $\mathbb{E}(Y)$ en utilisant la question 3.
- **6.** Déterminer $\mathbb{E}(YZ/Z)$ puis calculer Cov(Y,Z).

Exercice III-

Soit (X,Y) un vecteur aléatoire dans \mathbb{R}^2 de densité f définie par :

$$f(x,y) = e^{-x/(1-y)} \frac{x}{(1-y)^2} \, \mathbb{I}_{]0,+\infty[}(x) \, \mathbb{I}_{]0,1[}(y).$$

- 1. Montrer que X suit une loi exponentielle dont on donnera le paramètre.
- **2.** Montrer que Y suit une loi uniforme.
- **3.** Vérifier que la loi conditionnelle de X sachant Y = y est une loi Gamma dont on précisera les paramètres. En déduire que $\mathbb{E}(X/Y) = 2(1-Y)$. Les variables X et Y sont-elles indépendantes ?
- 4. Montrer que la densité du couple $(U,V)=\left(\frac{X}{1-Y},\frac{XY}{1-Y}\right)$ est g défine par :

$$g(u, v) = e^{-u} \mathbb{I}_{\Delta}(u, v)$$
 où $\Delta = \{(u, v) \in \mathbb{R}^2 ; 0 < v < u\}.$

5. En déduire que U suit une loi Gamma dont on précisera les paramètres et déterminer la loi conditionnelle de V sachant U=u.

Exercice IV-

On suppose que l'on effectue n lancers indépendants d'une pièce de monnaie équilibrée et on note N_k , à valeurs dans Ω_n , le nombre de séries lors des k premiers lancers $(k \leq n)$. Par exemple, si on prend n=11 et si les lancers successifs donnent $\omega=\text{FFPPPFFPPP}\in\Omega_{11}$ (F désignant face et P pile), on a : $N_1(\omega)=N_2(\omega)=1$, $N_3(\omega)=N_4(\omega)=N_5(\omega)=N_6(\omega)=2$, $N_7(\omega)=N_8(\omega)=3$ et $N_9(\omega)=N_{10}(\omega)=N_{11}(\omega)=4$.

- 1. Déterminer les lois de N_1 , N_2 et N_3 et donner leurs espérances.
- **2.** Déterminer $N_n(\Omega_n)$, puis calculer les valeurs de $P([N_n = 1])$ et $P([N_n = n])$.
- **3.** On pose, pour $n \in \mathbb{N}^*$ et pour $s \in [0,1]$, $G_n(s) = \sum_{k=1}^n P([N_n = k])s^k$.
- a) Pour $s \in [0,1]$, comparer l'espérance de la variable aléatoire s^{N_n} avec $G_n(s)$. Que représente $G'_n(1)$?
 - b) Montrer que, pour tout $n \geq 2$ et tout $k \in [\![1,n]\!],$ on a :

$$P([N_n = k] \cap P_n) = \frac{1}{2}P([N_{n-1} = k] \cap P_{n-1}) + \frac{1}{2}P([N_{n-1} = k - 1] \cap F_{n-1})$$

et de même en intervertissant P et F. En déduire alors que :

$$P([N_n = k]) = \frac{1}{2}P([N_{n-1} = k]) + \frac{1}{2}P([N_{n-1} = k - 1]).$$

c) Soit $n \ge 2$. Montrer que $G_n(s) = \frac{1+s}{2}G_{n-1}(s)$. Calculer $G_1(s)$ et en déduire que

$$G_n(s) = s \left(\frac{1+s}{2}\right)^{n-1}.$$

d) Déterminer le nombre moyen de séries dans les n lancers.