Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Tarasov Anton Гр. 320201

Вариант 16

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:416e:746f:6e00:0/103

Задание 1.2: разбить сеть из п.1.1 на 8 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'IC}$	2001: db 8: 0: 4 ee 9: 416e: 746f: 6e 00: 0/106
Префикс $N_{\mathrm{C,P\ddot{e}PS}}$	2001:db8:0:4ee9:416e:746f:6fc0:0/106

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (16*16)/256+10=11

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (16*16)/256 = 0

Дано: Сеть 11.0.0.0/12

Задание 2.1.1: разбить сеть на 16384 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	0	0	0
Адрес сети	00001011	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

- 2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 2 бит из 1-го октета.
- 3. Итого, получается, что сеть 11.0.0.0/12 мы разбили на 16384 подсети, в каждой из которых по 62 узлов, указываем первые 5 подсетей:

	11	0	0	0
Адрес сети дв.с	00001011	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

255	255 25
Адрес сети $N_1/$ Префикс N_1	11.0.0.0/26
Адрес первого узла N_1	11.0.0.1
Адрес последнего узла N_1	11.0.0.62
Широковещательный адрес N_1	11.0.0.63
Адрес сети $N_2/$ Префикс N_2	11.0.0.64/26
Адрес первого узла N_2	11.0.0.65
Адрес последнего узла N_2	11.0.0.126
Широковещательный адрес N_2	11.0.0.127
Адрес сети $N_3/$ Префикс N_3	11.0.0.128/26
Адрес первого узла N_3	11.0.0.129
Адрес последнего узла N_3	11.0.0.190
Широковещательный адрес N_3	11.0.0.191
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.0.0.192/26
Адрес первого узла N_4	11.0.0.193
Адрес последнего узла N_4	11.0.0.254
Широковещательный адрес N_4	11.0.0.255

Адрес сети $N_5/$ Префикс N_5	11.0.1.0/26
Адрес первого узла N_5	11.0.1.1
Адрес последнего узла N_5	11.0.1.62
Широковещательный адрес N_5	11.0.1.63

Дано: Сеть 11.0.0.0/12

Задание 2.1.2: разбить сеть на 100 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	0	0	0
Адрес сети	00001011	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(100\leqslant 2^7=128)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 3 бит из 2-го октета (получается, что сеть можно разбить на 128 подсетей: $2^7=128$; оставшиеся 13 бит идут под узлы: $2^{13}-2=8190$ в каждой подсети).

	11	0	0	0
Адрес сети дв.с	00001011	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11100000	00000000
	255	255	224	0

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.0.0.0/19
Адрес первого узла N_1	11.0.0.1
Адрес последнего узла N_1	11.0.31.254
Широковещательный адрес N_1	11.0.31.255

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.12.96.0/19
Адрес первого узла N_2	11.12.96.1
Адрес последнего узла N_2	11.12.127.254
Широковещательный адрес N_2	11.12.127.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16384 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	0	0	0
Адрес сети	00001011	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382$. Т.е. нужно выбрать такую маску, которря выделит ровно 14 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^6=2048$ подсетей по 16382 узла(08) в каждой.

	11	0	0	0
Адрес сети дв.с	00001011	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.14.192.0/18
Адрес первого узла N_1	11.14.192.1
Адрес последнего узла N_1	11.14.255.254
Широковещательный адрес N_1	11.14.255.255

Адрес сети $N_2/$ Префикс N_2	11.15.0.0/18
Адрес первого узла N_2	11.15.0.1
Адрес последнего узла N_2	11.15.63.254
Широковещательный адрес N_2	11.15.63.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.15.64.0/18
Адрес первого узла N_3	11.15.64.1
Адрес последнего узла N_3	11.15.127.254
Широковещательный адрес N_3	11.15.127.255
$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	11.15.128.0/18
$egin{aligned} { m Aдреc} \ { m сети} \ N_4/\ { m Префикс} \ N_4 \end{aligned}$ $egin{aligned} { m Aдреc} \ { m первого} \ { m узла} \ N_4 \end{aligned}$	11.15.128.0/18 11.15.128.1
_ ,	,
Λ дрес первого узла N_4	11.15.128.1
Адрес первого узла N_4 Адрес последнего узла N_4	11.15.128.1 11.15.191.254
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4	11.15.128.1 11.15.191.254 11.15.191.255
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4 Адрес сети $N_5/$ Префикс N_5	11.15.128.1 11.15.191.254 11.15.191.255 11.15.192.0/18

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 500 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	0	0	0
Адрес сети	00001011	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510 \geqslant 500$.

	11	0	0	0
Адрес сети дв.с	00001011	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.0.0.0/23
Λ дрес первого узла N_1	11.0.0.1
Адрес последнего узла N_1	11.0.1.254
Широковещательный адрес N_1	11.0.1.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.15.254.0/25
Адрес первого узла N_2	11.15.254.1

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 66 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

11.15.255.254

11.15.255.255

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3(макс. 15 баллов):

Адрес последнего узла N_2

Широковещательный адрес N_2

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	0	0	0
Адрес сети	00001011	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126$.

	11	0	0	0
Адрес сети дв.с	00001011	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.15.253.128/25
Адрес первого узла N_1	11.15.253.129
Адрес последнего узла N_1	11.15.253.254
Широковещательный адрес N_1	11.15.253.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.15.254.0/25
Адрес первого узла N_2	11.15.254.1
Адрес последнего узла N_2	11.15.254.126
Широковещательный адрес N_2	11.15.254.127
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.15.254.128/25
Адрес первого узла N_3	11.15.254.129
Адрес последнего узла N_3	11.15.254.254
Широковещательный адрес N_3	11.15.254.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.15.255.0/25
Адрес первого узла N_4	11.15.255.1
Адрес последнего узла N_4	11.15.255.126
Широковещательный адрес N_4	11.15.255.127
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.15.255.128/25
Адрес первого узла N_5	11.15.255.129
Адрес последнего узла N_5	11.15.255.254
Широковещательный адрес N_5	11.15.255.255