JC06 Rec'd/PCT/PTO Z9 MAR 2005

DOCKET NO.: 268897US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Kenzo OHKITA, et al. SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP03/07805

INTERNATIONAL FILING DATE: June 19, 2003

FOR: CYCLOOLEFIN COPOLYMER FORMED BY RING-OPENING POLYMERIZATION,

PROCESS FOR PRODUCING THE SAME, AND OPTICAL MATERIAL

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY

<u>APPLICATION NO</u>

DAY/MONTH/YEAR

08 October 2002

Japan

2002-294605

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP03/07805. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

> Respectfully submitted. OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03)

22850

Norman F. Oblon Attorney of Record Registration No. 24,618 Surinder Sachar

Registration No. 34,423

日本国特許庁 JAPAN PATENT OFFICE

19.06.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年10月 8日

REC'D 08 AUG 2003

WIRE

出 願 番 号 Application Number:

特願2002-294605

[ST. 10/C]:

[JP2002-294605]

出願人

JSR株式会社

Applicant(s):

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月25日

今井康

【書類名】 特許願

【整理番号】 JSR10128

【提出日】 平成14年10月 8日

【あて先】 特許庁長官殿

【国際特許分類】 C08F 32/04

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 大喜多 健三

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 今村 孝

【発明者】

【住所又は居所】 東京都中央区築地2丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 大嶋 昇

【特許出願人】

【識別番号】 000004178

【氏名又は名称】 ジェイエスアール株式会社

【代理人】

【識別番号】 100078754

【弁理士】

【氏名又は名称】 大井 正彦

【手数料の表示】

【予納台帳番号】 015196

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0111576

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

環状オレフィン系開環共重合体および光学材料

【特許請求の範囲】

【請求項1】 下記一般式 (1-1)、下記一般式 (1-2) 若しくは下記一般式 (1-3) で表される構造単位 (A) と、下記一般式 (2) で表される構造単位 (B) とを、モル換算で $10:90\sim50:50$ となる割合で含有してなる環状オレフィン系開環共重合体または水素添加された環状オレフィン系開環共重合体であって、

当該構造単位 (A) を得るための単量体は、下記一般式 (3-1)、下記一般式 (3-2) 若しくは下記一般式 (3-3) で表されるトリシクロモノオレフィン化合物よりなり、当該トリシクロモノオレフィン化合物におけるエンド体の割合が 80 モル%以上のものであり、

ガラス転移温度が120~250℃であることを特徴とする環状オレフィン系 開環共重合体。

【化1】

一般式
$$(1-1)$$
 一般式 $(1-2)$ 一般式 $(1-3)$ — 积式 $(1-3)$ — $(1-3)$

 $[-般式(1-1) \sim -般式(1-3)$ において、 $R^1 \sim R^{13}$ は、それぞれ独立に水素原子、ハロゲン原子、または炭素数 $1 \sim 4$ のアルキル基およびハロゲン化アルキル基から選ばれた基を示し、 $X^1 \sim X^3$ は、エチレン基またはビニレン基を示す。〕

【化2】

一般式(2)

【化3】

[一般式 (3-1) ~一般式 (3-3) において、 R^1 ~ R^{13} は、それぞれ独立に水素原子、ハロゲン原子、または炭素数 1 ~4 のアルキル基およびハロゲン化アルキル基から選ばれた基を示す。]

【請求項2】 加水分解性シリル基またはオキセタニル基を側鎖に有する環 状オレフィン系化合物に由来する構造単位(C)を全構造単位の0.1~30モ ル%となる割合で含有してなることを特徴とする請求項1に記載の環状オレフィ ン系開環共重合体。

【請求項3】 加水分解性シリル基またはオキセタニル基によって架橋されていることを特徴とする請求項2に記載の環状オレフィン系開環共重合体。

【請求項4】 構造単位(A)の少なくとも一部が、トリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンに由来する構造単位であることを特徴とする請求項 1 乃至請求項 3 いずれかに記載の環状オレフィン系開環共重合体。

【請求項5】 請求項1乃至請求項4のいずれかに記載の環状オレフィン系 開環共重合体を含有してなることを特徴とする光学材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、環状オレフィン系開環共重合体および光学材料に関し、更に詳しくは、透明性等の光学特性に優れ、他素材との親和性が高くて接着性や印刷性等の後加工性が良好で、他の素材との親和性と低吸水(湿)性とのバランスに優れ、しかも、耐熱性および機械的強度に優れた環状オレフィン系開環共重合体および光学材料に関する。

[0002]

【従来の技術】

近年、電子機器類の軽量化、小型・高密度化の要請に伴い、従来無機ガラスが 用いられていたレンズ、バックライト、導光板、液晶基板などの光学部品や液晶 表示素子部品の分野において、無機ガラスから光学的に透明な樹脂への代替が進 められている。また、透明樹脂をシート、フィルムまたは薄膜などの形態で用い られることが多くなっている。

光学材料用の透明樹脂としては、従来、ポリアクリレート、ポリカーボネートなどが広く用いられている。然るに、無機ガラス代替用の透明樹脂においては、透明性以外に、耐熱性、耐吸湿性、接着・密着性、破壊強度などの特性の向上が

求められている。

そして、このような要求に応えるため、光学材料として、環状オレフィン重合 体が使用され始めている。

[0003]

例えば、透明性、耐熱性の優れた環状オレフィン重合体としては、ビシクロ[2.2.1] ヘプトー2ーエン (ノルボルネン)を代表とする環状オレフィン化合物の付加重合体が提案されている (例えば、特許文献1、特許文献2、特許文献3および特許文献4参照)。

しかしながら、これらの環状オレフィン系付加重合体は、300℃を超えるガラス転移温度を示すため、非常に高い耐熱性を有するものであるが、その反面、射出成形、押し出し成形などの熱溶融成形が困難である、などの問題がある。

[0004]

また、環状オレフィン系化合物の重合体としては、環状オレフィン系化合物と 、エチレンなどの非環状オレフィン化合物との付加共重合体が知られている(例 えば特許文献 5、特許文献 6 および非特許文献 1 参照)。そして、これらの環状 オレフィン系付加共重合体を得るための重合触媒としては、メタロセンなどのジ ルコニウム、チタン、バナジウムを含む触媒系が知られている。

しかしながら、これらの触媒系は、エステル基やアルコキシシリル基などの極性基を含む単量体に対してはほとんど重合能を示さないため、得られる共重合体に接着性などの機能を付与したり、加水分解性シリル基などの架橋基を導入することが困難である。さらに、上記環状オレフィン系付加共重合体は、エチレン連鎖の結晶化などによって、透明性が低いものとなることがあり、光学材料として用いるには必ずしも好適なものではない。

[0005]

また、レンズや光ディスク等を製造するための光学材料に有用な環状オレフィン系重合体としては、環状オレフィン系化合物の開環(共)重合体もしくはその水素添加物が提案されている(例えば、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11および特許文献12参照)。これらの環状オレフィン系開環(共)重合体もしくはその水素添加物は、耐熱性に優れ、吸水(湿)性

が低く、透明性等の光学特性にも優れ、さらに射出成形等の成形性にも優れたものである。然るに、このような環状オレフィン系開環(共)重合体もしくはその水素添加物は、極性基を有しないために他の素材との親和性が低く、例えば、接着、印刷あるいは蒸着等の後加工性に問題がある。

そして、斯かる問題を解決すべく、環状オレフィン系開環(共)重合体もしくはその水素添加物として、分子内に極性基を導入したものが提案されている(例えば、特許文献13、特許文献14参照)。これらの環状オレフィン系開環(共)重合体もしくはその水素添加物は、耐熱性や光学特性に優れ、さらに射出成形等の成形性にも優れるばかりでなく、極性基を有しない環状オレフィン系開環(共)重合体もしくはその水素添加物と比較して、他の素材との親和性に優れるために、接着等の後加工性も優れたものである。然るに、このような環状オレフィン系開環(共)重合体もしくはその水素添加物は、機械的強度が低いため、シートやフィルム等の薄肉成形品としたときに問題が生じることがある。

[0006]

一方、ジシクロペンタジエン(別名:トリシクロ $[5.2.1.0^{2,6}]$ デカー3,8 – ジエン)は、上記の環状オレフィン系重合体を得るための単量体の合成において、出発原料として工業的に広く用いられている化合物である。

然るに、ジシクロペンタジエン(以下、「DCP」ともいう。)それ自体を、環状オレフィン系重合体を得るための単量体として用いる場合には、DCPがその分子内にオレフィン性二重結合を2個有するため、ゲル状物が生成しやすい、という問題がある。そのため、用いられる開環重合触媒は特殊なものに限定され、しかも、重合温度が比較的に低い温度に制限される。また、得られる重合体がゲル状物を含まないものであっても、分岐が生成されることにより、比較的分子量分布が広いものになる、という問題がある。

そこで、複数のオレフィン性二重結合が存在することに起因する問題を解決するため、DCPにおけるノルボルネン環の二重結合が水素化され、5 員環の二重結合のみが残存するトリシクロ $[5.\ 2.\ 1.\ 0^2,6]$ デカー3 ーエンを開環 (共) 重合してなる開環 (共) 重合体およびその水素添加物が提案されている(例えば特許文献 1.5 参照)。

しかしながら、このような開環(共)重合体は、トリシクロ [5.2.1.0 2,6] デカー3ーエンにおける5員環が開環したものであり、その水素添加物は、メチレン基の三連鎖を構造単位に含むものであるため、ガラス転移温度が比較的低いものしか得ることができない、という問題がある。

[0007]

また、DCPには、エキソ(exo)体およびエンド(endo)体の二種の立体異性体が存在するが、いずれの開環重合体の水素添加物においても、そのガラス転移温度はそれぞれ97 $\mathbb C$ 、66 $\mathbb C$ であって100 $\mathbb C$ 未満であるため、耐熱性を要求される材料に用いることは困難である(例えば非特許文献2参照)

さらに、DCPに由来する構造単位の割合が70重量%以上である開環(共) 重合体の水素添加物であって、用いられるDCPにおけるエンド体の割合が50 %以上であるものが提案され、このような開環(共)重合体の水素添加物によれ ば、耐衝撃性などの機械的強度が改良される効果があるとされている(例えば、 特許文献16参照)。然るに、これらの開環(共)重合体のガラス転移温度はい ずれも120℃以下であり、高い耐熱性が要求される材料として満足する性能を 有するものではない。

[0008]

【特許文献1】

特開平4-63807号公報

【特許文献2】

特開平8-198919号公報

【特許文献3】

特表平9-508649号公報

【特許文献4】

特表平11-505880号公報

【特許文献5】

特開昭61-292601号公報

【特許文献6】

米国特許第2,883,372号明細書

【特許文献7】

特開昭 6 3 - 2 1 8 7 8 号公報

【特許文献8】

特開平1-138257号公報

【特許文献9】

特開平1-168725号公報

【特許文献10】

特開平2-102221号公報

【特許文献11】

特開平2-133413号公報

【特許文献12】

特開平4-170425号公報

【特許文献13】

特開昭50-111200号公報

【特許文献14】

特開平1-132626号公報

【特許文献15】

特開平7-196779号公報

【特許文献16】

特開平11-130846号公報

【非特許文献1】

「マクロモレクラー ヘミー, マクロモレキュラー シンポジア (Di e Makromolekulare Chemie, Macromolecular Symposia) 」, (スイス), ヒューティッヒ アンド ヴェプフ フェアラーク, バーゼル (Huthig & Wepf Verlag , Basel) , 1991年, 第47巻, p. 83

【非特許文献2】

「ポリマージャーナル (Polymer Journal)」, (日本), 社団法人高 分子学会, 1995年12月, 第27巻, 第12号, p. 1167

[0009]

【発明が解決しようとする課題】

本発明は、以上のような事情に基づいてなされたものであって、その目的は、透明性等の光学特性に優れ、他素材との親和性が高くて接着性や印刷性等の後加工性が良好であり、他素材との親和性と低吸水(湿)性とのバランスに優れ、しかも、優れた耐熱性および機械的強度を有する環状オレフィン系開環共重合体および光学材料を提供することにある。

[0010]

【課題を解決するための手段】

本発明の環状オレフィン系開環共重合体は、下記一般式(1-1)、下記一般式(1-2)若しくは下記一般式(1-3)で表される構造単位(A)と、下記一般式(2)で表される構造単位(B)とを、モル換算で10:90~50:50となる割合で含有してなる環状オレフィン系開環共重合体または水素添加された環状オレフィン系開環共重合体であって、

当該構造単位 (A) を得るための単量体は、下記一般式 (3-1)、下記一般式 (3-2) 若しくは下記一般式 (3-3) で表されるトリシクロモノオレフィン化合物よりなり、当該トリシクロモノオレフィン化合物におけるエンド体の割合が 8.0 モル%以上のものであり、

ガラス転移温度が120~250℃であることを特徴とする。

[0011]

【化4】

一般式
$$(1-1)$$
 一般式 $(1-2)$ 一般式 $(1-3)$ — 积式 $(1-3)$ — $(1-3$

[0012]

 $[-般式(1-1) \sim -般式(1-3)$ において、 $R^1 \sim R^{13}$ は、それぞれ独立

に水素原子、ハロゲン原子、または炭素数 $1 \sim 4$ のアルキル基およびハロゲン化アルキル基から選ばれた基を示し、 $\mathbf{X}^1 \sim \mathbf{X}^3$ は、エチレン基またはビニレン基を示す。]

[0013]

【化5】

一般式(2)

[一般式 (2) において、mは1または2であり、 X^4 はエチレン基またはビニレン基を示し、 $R^{14} \sim R^{17}$ は、それぞれ独立に、水素原子、ハロゲン原子、炭素数 $1 \sim 20$ のアルキル基、シクロアルキル基、アリール基、アルケニル基、ハロゲン化炭化水素基、 R^{14} 若しくは R^{15} と R^{16} 若しくは R^{17} とが結合して形成されるアルキレン基、- (CH_2) $_k$ Zで表される基、または R^{14} 若しくは R^{15} と R^{16} 若しくは R^{17} とが結合して形成される- (CH_2) $_k$ - C (O) O - で表される基まで、 $R^{14} \sim R^{17}$ のうち少なくとも1 つは- (CH_2) $_k$ Zで表される基または- (CH_2) $_k$ - C (O) O - で表される基である。ここで、E は $0 \sim 3$ の整数であり、E は、E (E) E のを数であり、E に、E (E) E に、E に、

[0015]

【化6】

一般式 (3-1) 一般式 (3-2) 一般式 (3-3)

$$R^{1}$$
 R^{2}
 R^{2}
 R^{6}
 R^{10}
 R^{13}
 R^{12}

[0016]

[一般式 (3-1) ~一般式 (3-3) において、 R^1 ~ R^{13} は、それぞれ独立に水素原子、ハロゲン原子、または炭素数 1 ~ 4 のアルキル基およびハロゲン化アルキル基から選ばれた基を示す。]

[0017]

本発明の環状オレフィン系開環共重合体においては、加水分解性シリル基またはオキセタニル基を側鎖に有する環状オレフィン系化合物に由来する構造単位(C)を全構造単位の0.1~30モル%となる割合で含有していてもよい。

また、前記加水分解性シリル基またはオキセタニル基によって架橋されていて もよい。

また、本発明の環状オレフィン系開環共重合体においては、構造単位(A)の少なくとも一部が、トリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンに由来する構造単位であることが好ましい。

[0018]

本発明の光学材料は、上記の環状オレフィン系開環共重合体を含有してなることを特徴とする。

[0019]

【発明の実施の形態】

以下、本発明の実施の形態について詳細に説明する。

本発明の環状オレフィン系開環共重合体は、上記一般式 (1-1)、上記一般式 (1-2) 若しくは上記一般式 (1-3) で表される構造単位 (A) (以下、単に「構造単位 (A) 」ともいう。)と、上記一般式 (2) で表される構造単位

(B) (以下、単に「構造単位 (B)」ともいう。)とよりなるものである。 【0020】

本発明の環状オレフィン系開環共重合体における構造単位(A)を得るための 単量体としては、上記一般式(3-1)、上記一般式(3-2)若しくは上記一 般式(3-3)で表されるトリシクロモノオレフィン化合物よりなり、当該トリ シクロモノオレフィン化合物におけるエンド体の割合が80モル%以上であるも の(以下、「特定単量体(A)」という。)が用いられる。

このような特定単量体(A)としては、公知の方法を適宜用いて合成されたものを使用することができ、その合成法としては特に限定されるものではないが、一般にはシクロペンタジエン(以下、「CPD」ともいう。)またはDCPと、目的とする特定単量体(A)に応じて選択された単環状モノオレフィン類、例えばシクロペンテンやシクロヘキセンとのディールスーアルダー(Diels-Alder)反応による合成法が利用される。

かかるディールスーアルダー反応は、窒素、アルゴンなどの不活性気体の雰囲気下で行うことが好ましく、反応溶媒は、特に必要とされる場合を除き、用いなくてもよい。反応温度は、高ければ高いほど反応速度が高くなるが、エンド体生成の選択性が低下することが多く、このような観点から、通常、150~250℃、好ましくは170~230℃の範囲内で実施される。

[0021]

反応に供されるCPDまたはDCPと単環状モノオレフィンとは、任意の割合で用いることができるが、エンド体生成の選択性などの観点から、単環状モノオレフィンをCPDまたはDCPに対して3~50当量過剰に用いることが好ましい。また、反応原料の添加方法としては、反応原料の全部を1回で反応系に供給する方法、CPDまたはDCP、および単環状モノオレフィンの少なくとも一方を2回以上に分割して反応系に供給する方法、CPDまたはDCP、および単環状モノオレフィンの少なくとも一方を反応系に連続的に供給する方法のいずれであってもよい。

このようにして得られる生成物は、蒸留などの公知の方法によって、分離、精製した後、本発明の環状オレフィン系開環共重合体を得るための特定単量体(A

)として供される。

[0022]

特定単量体(A)において、エンド体の割合が80モル%以上であることが必要であり、好ましくは90モル%以上、さらに好ましくは95モル%以上である。特定単量体(A)におけるエンド体の割合が80モル%未満である場合には、得られる開環共重合体水素化物の機械強度が不十分なものとなる。

ここで、特定単量体(A)におけるエンド体とエキソ体との割合は、ガスクロマトグラフィー分析によって測定することができる。

[0023]

特定単量体(A)の具体例としては、

トリシクロ $[5. 2. 1. 0^{2,6}]$ デカー8ーエン、

3-メチルトリシクロ [5. 2. 1. 0², 6] デカー8-エン、

4-メチルトリシクロ [5. 2. 1. $0^{2,6}$] デカー8-エン、

3、4-iジメチルトリシクロ「5、2、1、 $0^{2,6}$] デカー8-xン、

3, 5-ジメチルトリシクロ [5. 2. 1. 0^{2,6}] デカー<math>8-エン、

3, 4, 5-トリメチルトリシクロ $[5. 2. 1. 0^{2,6}]$ デカー8-エン、

3-エチルトリシクロ [5. 2. 1. $0^{2,6}$] デカー8-エン、

4-エチルトリシクロ [5. 2. 1. 0²,6] デカー8-エン、

3, 4-ジエチルトリシクロ [5. 2. 1. 0^{2,6}] デカー8-エン、

3, 5-ジエチルトリシクロ [5. 2. 1. $0^{2,6}$] デカー8-エン、

3-メチルー5-エチルトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エン、

3- 1 プロピルトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エン、

4- 1プロピルトリシクロ $[5. 2. 1. 0^{2,6}]$ デカー8-エン、

3, $4-ジイソプロピルトリシクロ [5. 2. 1. <math>0^{2,6}$] デカー8-エン、

3, $5-ジイソプロピルトリシクロ [5.2.1.0<math>^{2,6}$] デカー8-エン、

3-メチルー5-イソプロピルトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エン、

3-クロロトリシクロ $[5. 2. 1. 0^{2,6}]$ デカー8-エン、などのトリシクロ $[5. 2. 1. 0^{2,6}]$ デセン類、

[0024]

トリシクロ $[6. 2. 1. 0^{2,7}]$ ウンデカー3ーエン、

3-メチルトリシクロ [6. 2. 1. 0^{2,7}] ウンデカー<math>3-エン、

4-メチルトリシクロ $[6.\ 2.\ 1.\ 0^{2,7}]$ ウンデカー3-エン、

3, 4-ジメチルトリシクロ [6. 2. 1. $0^{2,7}$] ウンデカー3-エン、

3, 5-ジメチルトリシクロ [6.2.1.0^{2,7}] ウンデカー<math>3-エン、

3, 4, 5, 6-テトラメチルトリシクロ $\begin{bmatrix} 6 & 2 & 1 & 0^{2,7} \end{bmatrix}$ ウンデカー 3-エン、

3-エチルトリシクロ [6. 2. 1. 0^{2,7}] ウンデカー<math>3-エン、

4-エチルトリシクロ [6. 2. 1. 0^{2,7}] ウンデカー<math>3-エン、

などのトリシクロ [6.2.1.0 2,7] ウンデセン類、

[0025]

トリシクロ $[8. 2. 1. 0^{2,7}]$ トリデカー11ーエン、

3-メチルトリシクロ [8. 2. 1. 0^{2,7}] トリデカー11-エン、

4. ーメチルトリシクロ [8. 2. 1. $0^{2,7}$] トリデカー11ーエン、

5-メチルトリシクロ [8. 2. 1. 0^{2,7}] トリデカー <math>11 ーエン、

などのトリシクロ [8. 2. 1. $0^{2,7}$] トリデセン類

などが挙げられるが、これらに限定されるものではない。

これらの化合物は、1種単独でまたは2種以上を組み合わせて特定単量体(A)として用いることができる。

[0026]

これらの中でも、トリシクロ $[5.2.1.0^{2,6}]$ デカー8-エン、トリシクロ $[6.2.1.0^{2,7}]$ ウンデカー3-エン、トリシクロ $[8.2.1.0^{2,7}]$ トリデカー11-エンが好ましく、特に、トリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンは入手しやすいため好ましく用いられる。

[0027]

本発明においては、構造単位(B)を得るための単量体として、下記一般式(4)で表される化合物(以下、「特定単量体(B)」という。)が用いられる。

[0028]

【化7】

一般式(4)

$$R^{14}$$
 R^{15} R^{16}

[0029]

[一般式(4)において、mは1または2であり、 $R^{14}\sim R^{17}$ は、それぞれ独立に、水素原子、ハロゲン原子、炭素数 $1\sim 2$ 0のアルキル基、シクロアルキル基、アリール基、アルケニル基、ハロゲン化炭化水素基、 R^{14} 若しくは R^{15} と R^{16} 若しくは R^{17} とが結合して形成されるアルキレン基、-(CH_2) $_k$ Zで表される基、または R^{14} 若しくは R^{15} と R^{16} 若しくは R^{17} とが結合して形成される-(CH_2) $_k$ -C(O) O-で表される基を示し、 $R^{14}\sim R^{17}$ のうち少なくとも1つは-(CH_2) $_k$ Zで表される基または-(CH_2) $_k$ C(O) O-で表される基である。ここで、 $R^{14}\sim R^{17}$ のうち少なくとも1のは-($R^{12}\sim R^{17}$) $R^{12}\sim R^{18}$ は、 $R^{18}\sim R^{19}$ は、炭素数 $R^{19}\sim R^{18}\sim R^{19}$ は、炭素数 $R^{19}\sim R^{18}\sim R^{18}\sim R^{19}$ は、炭素数 $R^{19}\sim R^{18}\sim R^{18}\sim R^{19}$ 0の炭化水素基またはハロゲン化炭化水素基を示す。〕

[0030]

特定単量体(B)の具体例としては、

8-メトキシカルボニルテトラシクロ [4.4.0.12,5.17,10] ドデカ-3-エン、

8-メチル-8-メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1$ 7,10] ドデカ-3-エン、

8 - メチル - 8 - エトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1$ 7,10] ドデカ - 3 - エン、

8-メチル-8-ブトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1$ 7,10] ドデカ-3-エン、

8-メチル-8-シクロヘキシルオキシカルボニルテトラシクロ [4.4.0] . $1^{2,5}$. $1^{7,10}$] ドデカ-3-エン、

8ートリフロロエチルオキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.17,10]$ ドデカー 3-エン、

8 - アセトキシオキシテトラシクロ [4.4.0.12,5.17,10] ドデカー 3 - エン、

8 - メチル - 8 - アセトキシオキシテトラシクロ [4.4.0.1 2,5 .1 7,6 10] ドデカ - 3 - エン、

11-メチル-11-メトキシカルボニルヘキサシクロ $[6.6.1.1^{3,5}$ $02,7.0^{9,14}.1^{10,13}$] ヘプタデカ-4-エン、

11-メトキシカルボニルヘキサシクロ $[6.\ 6.\ 1.\ 1^{3,6}.\ 0^{2,7}.\ 0^{9,}$ $14.\ 1^{10,13}$] ヘプタデカー4-エン、

などが挙げられるが、これらに限定されるものではない。

これらの化合物は、1種単独でまたは2種以上を組み合わせて特定単量体(B)として用いることができる。

これらの中でも、mが1であるテトラシクロドデセン類が好ましく、8-メトキシカルボニルーテトラシクロ [4.4.0.1^{2,5}.1^{7,10}] ドデカー3-エン、8-メチルー8-メトキシカルボニルテトラシクロ [4.4.0.1^{2,5}.1^{7,10}] ドデカー3-エンがより好ましい。

[0031]

本発明の環状オレフィン系開環共重合体は、上記特定単量体(A)および特定 単量体(B)を含有する混合単量体を開環共重合することにより、あるいは開環 共重合した後にさらに水素添加することにより、得られる。

本発明の環状オレフィン系開環共重合体における構造単位(A)と構造単位(B)との割合は、モル換算で構造単位(A):構造単位(B)が10:90~50:50、好ましくは20:80~50:50とされ、これにより、接着性または密着性と低吸水(湿)性とのバランスが良好で、かつ、耐熱性および機械強度に優れた、光学材料に好適な環状オレフィン系開環共重合体が得られる。

構造単位(A)の割合が過小である場合には、当該環状オレフィン系開環共重合体は、その機械強度が低いものとなることがある。一方、構造単位(A)の割合が過大である場合には、当該環状オレフィン系開環共重合体は、その接着性ま

たは密着性が低いものとなると共に、ガラス転移温度が低いものとなって耐熱性 が低いものとなることがある。

[0032]

また、本発明の環状オレフィン系開環共重合体においては、全構造単位における構造単位(A)および構造単位(B)の合計の割合が50モル%以上であることが好ましく、より好ましくは70モル%以上、さらに好ましくは80モル%以上である。構造単位(A)および構造単位(B)の合計の割合が50モル%未満である場合には、耐熱性、透明性や複屈折性等の光学特性、吸水(湿)性、他素材との親和性などの特性について、良好なバランスを得ることが困難になり、いずれかの特性が実用に適さないものとなることがある。

[0033]

本発明の環状オレフィン系開環共重合体においては、上記構造単位(A)および上記構造単位(B)に加えて、さらに加水分解性シリル基またはオキセタニル基を側鎖に有する環状オレフィン系化合物(以下、「特定単量体(C)」という。)に由来する構造単位(C)を含有させることができる。ここで、加水分解性シリル基としては、下記一般式(5-1)または下記一般式(5-2)で表される基を挙げることができる。

[0034]

【化8】

[0035]

〔一般式(5-1)および一般式(5-2)において、 R^{20} および R^{21} は、それぞれ独立に、水素原子または炭素数が $1\sim20$ の炭化水素基を示し、 $R^{22}\sim R^{25}$ は、それぞれ独立に、炭素数が $1\sim10$ のアルキル基、アリール基、アルコキシ基、アリロキシ基およびハロゲン原子から選ばれた置換基を示し、 R^{20} は、 $R^{22}\sim R^{25}$ を数を示す。また、 $R^{22}\sim R^{25}$

または芳香族ジオールの炭化水素残基を示す。〕

[0036]

このような構造単位(C)を含有してなる環状オレフィン系開環共重合体は、 光酸発生剤、熱酸発生剤、加水分解により有機酸または無機酸が発生する化合物 、スズ、アルミニウム、ジルコニウム、チタンなどの金属と、有機酸若しくは β ージケトンとの塩、またはこれらの金属のアルコキシド若しくはフェノキシドな どによって、側鎖の加水分解性シリル基またはオキセタニル基を架橋することが でき、これにより、耐薬品性、耐溶剤性、耐熱性、機械的強度が改良された環状 オレフィン系開環共重合体を得ることができる。

[0037]

特定単量体(C)の具体例としては、以下の化合物を例示することができるが、本発明はこれらに限定されるものではない。

加水分解性シリル基を有する環状オレフィン系化合物の具体例としては、

- 5-トリメトキシシリルビシクロ「2.2.1] ヘプトー2ーエン、
- 5-トリエトキシシリルビシクロ[2.2.1] ヘプトー2ーエン、
- 5-メチルジメトキシシリルビシクロ「2.2.1] ヘプトー2-エン、
- 5-メチルジエトキシシリルビシクロ[2.2.1] ヘプトー2-エン、
- 5ートリクロロシリルビシクロ[2.2.1] ヘプトー2ーエン、
- 5-メチルジクロロシリルビシクロ[2.2.1] ヘプトー2ーエン、
- 5-[1', 4', 4'-トリメチル-2', 6'-ジオキサ-1'-シラシ クロヘキシル] ビシクロ [2.2.1] ヘプト-2-エン、
- 8ートリエトキシシリルーテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ ドデカー3ーエン、
- 8-メチルジエトキシシリルーテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ ドデカー3-エンなどを挙げることができる。

[0038]

オキセタニル基を有する環状オレフィン系化合物の具体例としては、

2- [(3-オキセタニル) メトキシ] ビシクロ [2. 2. 1] ヘプト-5-エン、 2-[(3-エチル-3-オキセタニル) メトキシ] ビシクロ [2.2.1] ヘプト-2-エン、

2- [(3-オキセタニル) メトキシメチル] ビシクロ [2.2.1] ヘプト -5-エン、

2-[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロ[2.2

. 1] ヘプトー2ーエン、

8-[(3-エチル-3-オキセタニル)メトキシメチル]テトラシクロ[4

. 4. 0. 12,5. 17,10] ドデカー 3 ーエン、

ビシクロ [2.2.1] ヘプト-5-エン-2-カルボン酸(3-エチル-3-ーオキセタニル)メチル、

2-メチルビシクロ[2.2.1]ヘプト-5-エン-2-カルボン酸(3-エチル-3-オキセタニル)メチルなどを挙げることができる。

これらの化合物は、1種単独または2種以上を組み合わせて特定単量体(C) として用いることができる。

[0039]

本発明の環状オレフィン系開環共重合体において、構造単位(C)を含有する場合には、その割合が全構造単位の0.1~30モル%であることが好ましく、より好ましくは1~20モル%である。この割合が0.1モル%未満である場合には、架橋が充分に行われず、そのため、得られる環状オレフィン系開環共重合体は、耐溶媒性、耐薬品性、機械的強度の改良が不充分なものとなる。一方、この割合が30モル%を超える場合には、得られる環状オレフィン系開環共重合体の吸水性が増大し、さらに成形体とされたときの強靭性が低下することがある。

[0040]

また、本発明の環状オレフィン系開環共重合体においては、構造単位(A)、構造単位(B)および必要に応じて導入される構造単位(C)に加えて、これらの構造単位以外のノルボルネン系化合物(以下、「特定単量体(D)」という。)に由来する構造単位(D)を全構造単位の30モル%以下となる割合で含有させることができる。

特定単量体 (D) の具体例としては、ビシクロ [2. 2. 1] ヘプトー2ーエ

[0041]

本発明の環状オレフィン系開環共重合体のガラス転移温度は、120~250 ℃であり、好ましくは140~170℃である。このガラス転移温度が120℃ 未満である場合には、当該環状オレフィン系開環共重合体の耐熱性が低く、一方 、このガラス転移温度が250℃を超える場合には、当該環状オレフィン系開環 共重合体は、射出成形や押し出し成形などの熱溶融成形における加工性が低いも のとなるばかりでなく、熱溶融成形において、高い成形温度が必要となるため、 環状オレフィン系開環共重合体が熱劣化しやすく、得られる成型品が脆くなった り着色したりすることがあるため、好ましくない。

[0042]

本発明の環状オレフィン系開環共重合体は、120℃でゲル・パーミエションクロマトグラフィーにより測定されるポリスチレン換算の数平均分子量(Mn)が、好ましくは5,000~300,000、より好ましくは10,000~10,000、特に好ましくは20,000~70,000であり、同重量平均分子量(Mw)が、好ましくは20,000~700,000、より好ましくは40,000~400,000、特に好ましくは50,000~200,000である。

上記数平均分子量が5,000未満である場合または上記重量平均分子量が2

0,000未満である場合には、当該環状オレフィン系開環共重合体をフィルム、薄膜またはシートとしたときに、その破壊強度および伸びが小さくて割れやすくなることが多い。一方、上記数平均分子量が300,000を超える場合または重量平均分子量が700,000を超える場合には、当該環状オレフィン系開環共重合体は溶融粘度および溶液粘度が高いものとなり、成形加工における取扱いが困難となることがあり好ましくない。

ここで、環状オレフィン系開環共重合体の分子量は、重合触媒の量、分子量調 節剤の添加量、共重合体への転化率および重合温度を変更することによって調節 することができる。

[0043]

本発明の環状オレフィン系開環共重合体は、特定単量体(A)と、特定単量体

- (B) と、必要に応じて用いられる特定単量体 (C) および/または特定単量体
- (D) とを開環共重合することにより、あるいは上記の各単量体を開環共重合させた後にさらに水素添加することにより製造される。

[0044]

開環共重合に用いられる重合触媒としては、単成分系触媒または多成分系触媒が用いられる。

(1) 単成分系触媒としては、

ビスシクロペンタジエニルー3, 3ージメチルチタナシクロブタン、ビスシクロペンタジエニルー3-t-ブチルチタナシクロブタン、または

W (OR²⁶)₂ (=NAr) (=CH (C (CH₃)₂ R²⁷)、
Mo (OR²⁸)₂ (=NAr) (=CH (C (CH₃)₂ R²⁹)、
W (Br)₂ (OCH₂ (t-Bu))₂ (=CH (t-Bu))、
W (CO)₄ (=C (OMe) (CH₂ CH₂ CH=CH₂)、
RuCl₂ [PPh₃]₂ (=CHCO₂ Et)、
RuCl₂ [PCy₃]₂ (=CHCH=CPh₂)、
RuCl₂ [PCy₃]₂ (=CHPh)、
Ta (OAr)₃ (=CH (t-Bu))、若しくは

 $Ta (SAr')_3 (=CH (t-Bu))$

〔ここで、 $R^{26} \sim R^{29}$ は、炭化水素基あるいはハロゲン化炭化水素基を示し、Ar およびAr は芳香族置換基を示す。〕で表される化合物を用いることができる。

[0045]

- (2) 多成分系触媒としては、(i) 成分:タングステン、モリブデン、レニウム、チタンおよびハフニウムの化合物から選ばれた少なくとも1種と、(ii) 成分:周期表A、IIA、IIB、IIIA、IVAあるいはIVB族元素の化合物であって、当該元素一炭素結合または当該元素-水素結合を有するものから選ばれた少なくとも1種とを組み合わせてなるものを好適に用いることができ、必要に応じて、(iii)成分:添加剤(活性向上剤)をさらに組み合わせたものであってもよい。
- (i) 成分として適当なタングステン、モリブデン、レニウム、チタンまたはハフニウムの化合物としては、これらのハロゲン化物、オキシハロゲン化物、アルコキシド、フェノキシド、カルボン酸塩、 β ジケトン化合物、スルフォン酸塩、リン酸塩、亜リン酸塩、カルボニル錯体、アセトニトリル錯体、シクロペンタジエニル錯体、インデニル錯体、ヒドリド錯体、およびそれらの誘導体などが挙げられ、これらは単独でまたは2種以上を組み合わせて用いることができるが、タングステンおよびモリブデンの化合物としては、特にアルコキシド、フェノキシド、ハロゲン化物、オキシハロゲン化物が高い重合活性を示すことから好ましく用いられる。

[0046]

(i) 成分として用いられる化合物の具体例としては、WC 1_6 、WC 1_5 、WC 1_4 、WB r_6 、WB r_4 、WOC 1_4 、WOB r_4 、W (OC $_6$ H $_5$) 6 、WC 1_4 (OCH $_2$ CH $_2$ C1) $_2$ 、WC 1_2 (OC $_6$ H $_5$) $_4$ 、WOC 1_2 (OC $_6$ H $_3$ $_4$ 、WOC 1_3 、WO (OC $_6$ H $_3$ $_4$ 、Property $_2$) $_2$ 、WO (OC $_6$ H $_3$ $_4$ 、Property $_4$ 、MoC 1_5 、MoC 1_3 、Mo (OC $_2$ H $_5$) $_5$ 、MoO $_2$ (a cac) $_2$ 、Mo (CO) $_5$ (C $_5$ H $_5$ N) 、WC 1_6 · (C $_5$ H $_5$ N) 、Re OC 1_3 、Re (CO) $_5$ C1、Ti C1 $_4$ 、Hf C1 $_4$ 、Zr C1 $_4$ 、($_7$ $_7$ -C $_7$ H $_5$) $_2$ Ti C1 $_2$ 、($_7$ $_7$ -C9 H $_7$) $_2$ Ti C1 $_2$ などが挙げられる。こ

れらは、1種単独でまたは2種以上を組み合わせて用いることができる。

[0047]

- (ii) 成分として用いられる化合物の具体例として、例えば、メチルリチウム、エチルリチウム、ブチルリチウム、フェニルリチウム、シクロペンタジエニルリチウムなどの有機リチウム類、シクロペンタジエニルナトリウムなどの有機ナトリウム類、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ハロゲン化エチルマグネシウム、ハロゲン化ブチルマグネシウムなどの有機マグネシウム類、トリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムジハライド、アルキルアルミニウムジハライド、アルキルアルミニウムであるどの有機アルミニウム類、ジアルキル亜鉛などの有機亜鉛類、テトラアルキルスズ、テトラフェニルスズなどの有機スズ類、水素化リチウム、水素化リチウムアルミニウム、水素化ナトリウム、水素化ホウ素ナトリウム、水素化アルミニウムなどの金属水素化物類などを使用することができる。
- (ii) 成分は、(i) 成分に対して金属原子に換算したモル比で好ましくは1~100倍、より好ましくは2~30倍の範囲で用いられる。

[0048]

- (iii)成分の活性向上剤は、開環共重合の活性をより向上させるために必要に応じて用いられ、その具体例としては、水、酸素、アセトアルデヒド、アセトアルデヒドジエチルアセタール、エチレンオキシド、エピクロルヒドリン、Nーニトロソジメチルアニリン、テトラブチルアンモニウムクロライド、Nーニトロソジフェニルアミン、三臭化アルミニウムなどを挙げることができる。
- (iii)成分の使用割合は、特に限定されるものではなく、その種類により適宜 選択されるが、通常、(i)成分に対して、モル比で0.005~10倍、好ま しくは0.01~2倍の範囲で用いられる。

[0049]

開環共重合反応に用いられる溶媒としては、ペンタン、ノルマルヘキサン、ノルマルヘプタン、ブタン、2ーメチルブタンなどの脂肪族炭化水素、シクロヘキサン、シクロペンタン、メチルシクロペンタンなどの脂環式炭化水素、トルエン

、ベンゼン、キシレン、メシチレンなどの芳香族炭化水素、ジクロロメタン、1, 2-ジクロロエタン、1, 2-ジクロロエチレン、クロロベンゼン、0-ジクロロベンゼンなどのハロゲン化炭化水素、酢酸エチル、酢酸ブチル、 $\gamma-$ ブチロラクトン、ニトロメタンなどの極性溶媒が挙げられ、これらは1種単独でまたは2種以上を組み合わせて用いることができる。また、溶媒の使用量は単量体に対して重量比で1-20倍の範囲であることが好ましい。

[0050]

開環共重合の具体的な方法の一例について説明すると、窒素またはアルゴン雰囲気下で、反応容器に、溶媒と、必須の単量体である特定単量体(A)および特定単量体(B)、並びに任意の単量体である特定単量体(C)および/または特定単量体(D)からなる単量体成分と、必要に応じて用いられる分子量調節剤とを仕込み、この重合系を-20℃から100℃の範囲の温度に設定する。次いで、この重合系に重合触媒を添加し-20℃から120℃の範囲で重合を行う。以上において、分子量調節剤としては、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテンなどの $\alpha-$ オレフィン、ビニルエーテル、チオビニルエーテル、酢酸ビニルなどを用いることができる。

また、重合触媒の添加量は、当該重合触媒における遷移金属原子1グラム原子当たり単量体成分が $100\sim100$, 000モルとなる量であることが好ましい

また、重合方式はバッチ式であっても連続式であってもよい。

また、特定単量体(A) または特定単量体(B)、さらに必要に応じて使用される特定単量体(C) または特定単量体(D)のいずれかを反応容器に供給して重合を開始し、重合処理中に、その他の単量体を反応容器に段階的にまたは連続的に供給することにより、構造単位の各々の割合が傾斜的に変化した状態または各構造単位がブロック状に偏在した状態の環状オレフィン系開環共重合体を得ることもできる。

また、重合反応の停止は、水、アルコール、有機酸、炭酸ガス、アルデヒド化 合物、ケトン化合物などから選ばれた化合物により行われる。

[0051]

重合反応が終了した後、必要に応じて、重合反応混合物に対して重合触媒残さの分離・除去処理を行ってもよい。かかる分離・除去処理の方法としては、公知の方法を適宜用いることができる。例えば、重合反応混合物に塩酸、硝酸、硫酸などの無機酸や、マレイン酸、フマル酸などの有機酸を添加し、その後、水やアルコールの溶液で洗浄する方法などが挙げられる。また、重合触媒残さは、珪藻土、アルミナ、シリカ、活性炭などの吸着剤に吸着させることによって、或いはフィルターなどによるろ過処理を行うことによって、除去することもできる。

そして、重合体溶液をメタノール、エタノール、イソプロパノールなどのアルコール類やその他の貧溶媒を用いて凝固し、減圧および/または加熱乾燥することにより、目的とする環状オレフィン系開環共重合体が得られる。この工程では、重合体溶液に残存する未反応モノマーも除去される。

[0052]

本発明の環状オレフィン系開環共重合体は、必ずしも水素添加されていること は必要ではなく、その用途に応じて上記開環重合によって得られた開環共重合体 をそのまま使用することもできるが、加熱着色や熱劣化が抑制されて優れた熱安 定性が得られる点で、分子中のオレフィン性不飽和結合が水素添加されているこ とが好ましい。

[0053]

分子中のオレフィン性不飽和結合を水素添加するための水素化反応は、開環重合が終了した後、その共重合体溶液を使用して行ってもよく、触媒残さや未反応の単量体を除去処理した後に、開環共重合体を適宜の溶媒に溶解することによって調製された共重合体溶液を使用して行ってもよい。

水素化反応は、通常、水素圧が $1.0\sim15$ MPa、温度が $50\sim200$ Cの条件で行われる。水素化触媒としては、シリカ、アルミナ、ゼオライト、ケイソウ土、マグネシア、カーボン、炭酸カルシウムなどから選ばれた担体にパラジウム、白金、プラチナ、ロジウム、イリジウム、ルテニウム、ニッケルから選ばれた金属が担持された不均一系触媒、あるいはオクタン酸ニッケル/トリエチルアルミニウム、ナフテン酸ニッケル/トリエチルアルミニウム、オクタン酸コバルト/トリエチルアルミイウム、オクタン酸コバルト/ n-ブチルリチウム、ビス

シクロペンタジエニルチタニウムジクロライド/ジエチルアルミニウムクロライド、酢酸パラジウム/トリエチルアルミニウム、トリス (トリフェニルホスフィン) クロロロジウム、トリス (トリフェニルホスフィン) ヒドリド・カルボニル・クロロ・ルテニウム、トリス (トリトリルホスフィン) ヒドリド・カルボニル・クロロ・ルテニウム、トリス (トリキシリルホスフィン) ヒドリド・カルボニル・クロロ・ルテニウム、トリス (トリシクロヘキシルホスフィン) ヒドリド・カルボニル・クロロルテニウム、トリス (トリフェニルホスフィン) ジヒドロ・カルボニル・ルテニウム、ビス (トリフェニルホスフィン) ジクロロルテニウムなどの均一系触媒が好適に用いられる。

水素化触媒は、通常、開環共重合体に対し、遷移金属原子換算で10~100 0ppmの範囲で使用される。

[0054]

水素添加された開環共重合体は、分子中のオレフィン性不飽和結合の水素化率が高いほど優れた熱安定性を有するものとなる。その結果、脱溶媒工程、ペレット化工程、製品の成形加工工程などにおいて、加熱による熱劣化や酸素による劣化などを抑制することができる。

水素化率は、通常、95%以上、好ましくは99%以上、さらに好ましくは9 9.5%以上である。水素化率が95%未満の場合には、当該水素添加開環共重 合体は、耐熱劣化性が不十分となることがある。

[0055]

本発明の環状オレフィン系開環共重合体には、公知の酸化防止剤、例えば、 2 , 6-ジー t-ブチル, 4-メチルフェノール、 4 , 4 , -チオビスー(6- t-ブチルー 3-メチルフェノール)、 1 , 1

) ホスファイト、ビス (2,6-ジーtーブチルー4ーメチルフェニル) ペンタエリストールジホスファイト、ビス (2,4-ジーtーブチルフェニル) ペンタエリスリトールジホスファイトなどのリン系酸化防止剤を配合することにより、酸化安定性を向上させることができる。

これら化合物の中では、TGA (熱重量分析) における 5% 重量減少で測定される分解温度が 250 で以上となるものが好ましい。また、これら酸化防止剤の使用量は、本発明の環状オレフィン系開環共重合体 100 重量部に対して 0.0 5~5.0 重量部であることが好ましい。

[0056]

本発明の環状オレフィン系開環共重合体において、構造単位(C)を有するものは、当該構造単位(C)における加水分解性シリル基またはオキセタニル基を、架橋してなる架橋体とすることができる。

[0057]

構造単位(C)が加水分解性シリル基を有するものである場合において、当該 共重合体の架橋方法としては、例えば、

- (a)加水分解により酸を発生する化合物、または、
- (b) g線、h線、i線、等の紫外線、遠紫外線、X線、電子線等の活性光線の照射、あるいは熱により、強ブレンステッド酸、あるいはルイス酸を発生する化合物、

を共重合体に配合し、所定の操作により発生する酸によって起こる加水分解/縮 合反応により、当該シリル基間を架橋する方法が挙げられる。

上記(a)の化合物の具体例としては、有機亜リン酸エステル化合物、有機スルフィン酸エステル、カルボン酸のtーブチルエステル、カルボン酸のヘミアセタールエステルなどが挙げられる。

上記(b)の化合物としては、種々のジアゾニウム塩、アンモニウム塩、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、アルソニウム塩、オキソニウム塩などのオニウム塩、ハロゲン含有オキサジアゾール化合物、ハロゲン含有トリアジン化合物、ハロゲン含有アセトフェノン化合物、ハロゲン含有ベンゾフェノン化合物などの特定のハロゲン化有機化合物、キノンジアジド化合物、α、αー

ビス(スルフォニル)ジアゾメタン化合物、 α ーカルボニルー α ースルホニルージアゾメタン化合物、スルホニル化合物、有機酸エステル化合物、有機酸アミド化合物、有機酸イミド化合物などが挙げられる。

[0058]

構造単位 (C) がオキセタニル基を有するものである場合において、当該共重 合体の架橋方法としては、例えば、

上記(b)の化合物を配合し、発生する酸によって起こるオキセタニル基の開環カチオン重合反応によって架橋する方法が挙げられる。上記(b)の化合物として、光により酸を発生する化合物を用いる場合には、室温で架橋可能であるため、より好ましい。

[0059]

上記(a)の化合物または上記(b)の化合物は、環状オレフィン系開環共重合体100重量部に対して0.05~20重量部、好ましくは0.2~10重量部となる割合で用いられる。

[0060]

本発明の環状オレフィン系開環共重合体においては、炭化水素溶媒あるいはハロゲン化炭化水素溶媒から選ばれた当該共重合体を溶解し得る溶媒に、当該共重合体を溶解させることにより、共重合体溶液を調製し、この共重合体溶液を、スチールベルトやポリエステルなどのキャリアーフィルムなどの上にキャスティングし、その後、乾燥処理する溶剤キャスト法(溶液流延法)によって、フィルム状あるいはシート状にて成形することができる。また、射出成形法、圧縮成型法、Tダイによる押出成形法などによって、ペレット状、フィルム状、シート状、またはその他の形状に成形することができる。

[0061]

本発明の環状オレフィン系開環共重合体は、その他の熱可塑性樹脂、例えば本発明の環状オレフィン系開環共重合体以外の環状オレフィン系(共)重合体(例えば環状オレフィン系付加重合体、水素化された開環重合体)や、芳香族環あるいは脂環式炭化水素構造を有する石油樹脂類、水素化されたスチレン系樹脂などとブレンドすることにより、透明性を保持しつつ、軟化温度、複屈折などが調節

された樹脂組成物として得ることもできる。

[0062]

本発明の環状オレフィン系開環共重合体は、優れた光学透明性、耐熱性、接着・密着性、低吸水性、機械強度を有するため、導光板、偏光フィルム、表面保護フィルム、光拡散フィルム、位相差フィルム、透明導電性フィルム、反射防止フィルム、〇HPフィルム、光ディスク、光ファイバー、レンズ、プリズムなどの光学部品や、光学部品のコーティング材などの光学材料として極めて有用であり、さらには半導体封止剤などの電子部品材料、コーティング剤、接着剤さらに医療機器、各種容器、バインダーなどとして有用である。

[0063]

【実施例】

以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例において、重量平均分子量、数平均分子量分子量、全光線透過率、ガラス転移温度、吸水率、接着・密着性、引張強度および伸びは下記の方法で測定した。

[0064]

(1) 重量平均分子量および数平均分子量:

東ソー(株)製のHタイプカラムが装着された、ウオターズ(WATERS) 社製の150C型ゲルパーミエーションクロマトグラフィー(GPC)装置により、oージクロロベンゼンを溶媒として用い、120℃の条件で、試料の標準ポリスチレン換算の重量平均分子量および数平均分子量を測定した。

(2)全光線透過率:

ASTM-D1003に準拠し、厚みが120 μ mの試験片を作製し、その全光線透過率を測定した。

(3) ガラス転移温度:

動的粘弾性の $Tan\delta$ (=貯蔵弾性率E'と損失弾性率E"との比E"/E?)のピーク温度により、試料のガラス転移温度を測定した。動的粘弾性の測定はレオバイブロンDDV-01FP(オリエンテック製)を用い、測定周波数が10Hz、昇温速度が4%/C/分、加振モードが単一波形、加振振幅が 2.5μ mの

(4) 吸水率:

厚みが120μmの試験片を作製し、ASTM-D570に準拠し、この試験 片を23℃の水中に24時間浸漬させた後、試験片の重量変化より吸水率を測定 した。

(5)接着性・密着性:

10cm×10cmの試験片を作製し、この試験片にアルミニウムを蒸着し、 形成された蒸着膜に、カッターナイフにより、縦方向および横方向にそれぞれ1 mm間隔で碁盤目状に切り込みを入れることにより、互いに分離された1mm× 1mmの寸法のブロックを100個(10個×10個)形成し、セロハンテープ によって蒸着膜の剥離試験を行い、全ブロック(100個)中における剥離した ブロックの数を測定した。

(6) 引張強度および伸び

IIS K7113に準拠し、引張り速度3mm/分の条件で試験の引張強度 および伸びを測定した。

[0065]

〈実施例1〉

300ミリリットルのガラス製耐圧ビン内に、窒素雰囲気下で、溶媒としてト ルエン80ミリリットル、特定単量体(A)としてエンド体とエキソ体とのモル 比が95:5であるトリシクロ「 $5.2.1.0^{2,6}$] デカー8-エン51ミリ モル、特定単量体(B)として8-メチル-8-メトキシカルボニルテトラシク ロ $[4.4.0.1^{2,5}.1^{7,10}]$ ドデカー3-エン119ミリモル、および分 子量調節剤として1-ヘキセン42.5ミリモルを仕込み、さらに重合触媒とし てトリエチルアルミニウム0.119ミリモルおよび六塩化タングステンのメタ ノール変性物 [メタノール/タングステン=3 (モル/モル)] 0.017ミリ モルをこの順で加えた。そして、80℃で2時間の条件で特定単量体(A)およ び特定単量体(B)の開環重合を行い、その後、メタノールによって重合反応を 停止した。単量体の開環共重合体への転化率は97%であった。

次いで、得られた反応溶液に水660ミリリットルおよび乳酸47.5ミリモ

ルを加えて攪拌した後、静置することにより、水相と反応溶液相とに分離した。 その後、触媒成分の反応物を含む水相を除去し、反応溶液を3リットルのイソプロパノールに加えて生成物を凝固させて回収することにより、未反応の単量体を除去し、回収した生成物を、真空下に50で15時間乾燥処理することにより、環状オレフィン系開環共重合体を得た。得られた環状オレフィン系開環共重合体を「開環共重合体A」とする。

この開環共重合体Aのベンゼンー d_6 中における $2.70\,\mathrm{MHz}$ $^1\mathrm{H-NMRX}$ ペクトルより、トリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンに由来する構造単位(A)の割合が $3.2\,\mathrm{Th}$ モル%($2.1.5\,\mathrm{mm}$ 重量%)、8-メチルー8-メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ ドデカー3-エンに由来する構造単位(B)の割合が $6.8\,\mathrm{Th}$ 来り、 $(7.8.5\,\mathrm{mm}$ を定量された(メトキシカルボニル基に基づく $3.2\,\mathrm{mm}$ の割の吸収と、二重結合に隣接する水素に基づく $5.4\,\mathrm{mm}$ の吸収との比から算出した。)。開環共重合体Aの $^1\mathrm{H-NMRX}$ の $^1\mathrm{H-NMX}$ の

[0066]

500ミリリットルのステンレス製耐圧反応器中に、得られた開環共重合体A 15gをトルエン200gに溶解させた溶液と、カルボニルクロロヒドリドトリス (トリフェニルホスフィン) ルテニウム [RuHCl(CO)(PPh3)3] をルテニウム原子換算で70ppm加え、水素圧10MPa、165C、4時間の条件で水素化反応を行った。得られた反応溶液を乳酸水溶液によって脱触媒処理した後、イソプロピルアルコールによって凝固させることにより、水素添加された環状オレフィン系開環共重合体を得た。得られた水素添加開環状オレフィン系開環共重合体を「開環共重合体AH」とする。

この開環共重合体AHの 1 H-NMRスペクトルを測定し、メトキシカルボニル基に基づく3.2 \sim 3.6 p p mの吸収ピークと、開環共重合体AHにおける水素化されずに残留した二重結合に隣接する水素に基づく5.4 \sim 5.8 p p m の吸収ピークとの相対比から水素化率を算出したところ、99.7%であった。開環共重合体AHの 1 H-NMRスペクトル図を図3に示し、赤外吸収スペクト

ル図を図4に示す。また、開環共重合体AHのポリスチレン換算の数平均分子量 (Mn) は20,000、重量平均分子量 (Mw) は75,000、Mw/Mn は3.7であった。

[0067]

開環共重合体AH10gをテトラヒドロフラン35.5gに溶解し、得られた 共重合体溶液に、酸化防止剤としてペンタエリスリチルテトラキス[3-(3,5-2)-t-7)ルー4ーヒドロキシフェニル)プロピオネート[3-(3,4-2)-t-7) およびトリス (2,4-2) [3-(2,4-2)] おスファイトを、開環共重合体AH100 重量部に対してそれぞれ0.5重量部となる割合で添加した。この共重合体溶液 を用い、溶剤キャスト法によって、厚みが120 μ mのフィルムを作製した。得 られたフィルムの残留溶媒は0.5重量%であった。このフィルムから試験片を 作製し、各物性の評価を行った。その結果を表1に示す。

[0068]

〈実施例2〉

特定単量体 (A) としてエンド体とエキソ体とのモル比が95:5であるトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エン75ミリモル、特定単量体 (B) として8-メチルー8-メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}17,10]$ ドデカー3-エン95ミリモルを用いたこと以外は、実施例1と同様にして環状オレフィン系開環共重合体を調製し(得られた環状オレフィン系開環共重合体を「開環共重合体B」とする。)、水素化された環状オレフィン系開環共重合体を調製した(得られた水素添加環状オレフィン系開環共重合体を「開環共重合体を制製した(得られた水素添加環状オレフィン系開環共重合体を「開環共重合体BH」とする。)。単量体の開環共重合体への転化率は90%であり、開環共重合体BHの水素化率は99.8%であった。

また、開環共重合体Bにおけるトリシクロ $[5.2.1.0^{2,6}]$ デカー8ーエンに由来する構造単位の割合は45 モル% (32.3 重量%)、8 ーメチルー8 ーメトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}1^{7,10}]$ ドデカー3ーエンに由来する構造単位の割合は55 モル% (67.7 重量%) であった。

また、開環共重合体BHの数平均分子量 (Mn) は73,000、重量平均分子量 (Mw) は168,000、Mw/Mnは2.3であった。

また、開環共重合体BHについて、実施例1と同様にして試験片を作製し、各物性の評価を行った。その結果を表1に示す。

[0069]

〈実施例3〉

特定単量体(A)としてエンド体とエキソ体とのモル比が99:1であるトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンを用いたこと以外は、実施例1と同様して環状オレフィン系開環共重合体を調製し(得られた環状オレフィン系開環共重合体を「開環共重合体C」とする。)、水素化された環状オレフィン系開環共重合体を調製した(得られた水素添加環状オレフィン系開環共重合体を「開環共重合体とH」とする。)。単量体の開環共重合体への転化率は94%であり、開環共重合体CHの水素化率は99.7%であった。

また、開環共重合体 C におけるトリシクロ $[5.2.1.0^{2,6}]$ デカー 8- エンに由来する構造単位の割合は 32 モル%(21.5 重量%)、8- メチルー 8- メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}1^{7,10}]$ ドデカー 3- エンに由来する構造単位の割合は 68 モル%(78.5 重量%)であった。

また、開環共重合体CHの数平均分子量(Mn)は74,000、重量平均分子量(Mw)は151,000、Mw/Mnは2.0であった。

また、開環共重合体CHについて、実施例1と同様にして試験片を作製し、各物性の評価を行った。その結果を表1に示す。

[0070]

〈実施例4〉

特定単量体 (A) としてエンド体とエキソ体とのモル比が99:1であるトリシクロ [5.2.1.0^{2,6}] デカー8ーエン45ミリモル、特定単量体 (B) として8ーメチルー8ーメトキシカルボニルテトラシクロ [4.4.0.1^{2,5} $1^{7,10}$] ドデカー3ーエン100.5ミリモルを用いると共に、特定単量体 (C) として5ートリエトキシシリルビシクロ [2.2.1] ヘプトー2ーエン5ミリモルを用い、更に、水素添加反応における処理温度を125℃に変更したこと以外は、実施例1と同様にして環状オレフィン系開環共重合体を調製し(得られた環状オレフィン系開環共重合体を「開環共重合体D」とする。)、水素化され

た環状オレフィン系開環共重合体を調製した(得られた水素添加環状オレフィン系開環共重合体を「開環共重合体DH」とする。)。単量体の開環共重合体への転化率は93%であり、開環共重合体DHの水素化率は99.7%であった。開環共重合体DHの1H-NMRスペクトル図を図5に示す。

また、開環共重合体Dにおけるトリシクロ $[5.2.1.0^{2,6}]$ デカー8-エンに由来する構造単位の割合は32 モル% (21.3 重量%)、8 ーメチルー8 ーメトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}1^{7,10}]$ ドデカー3 ーエンに由来する構造単位の割合は65 モル% (74.9 重量%)、5 ートリエトキシシリルビシクロ [2.2.1] ヘプトー2 ーエンに由来の構造単位の割合は3 モル% (3.8 重量%) であった。

また、開環共重合体DHの数平均分子量 (Mn) は69,000、重量平均分子量 (Mw) は162,000、Mw/Mnは2.3であった。

[0071]

開環共重合体DH10gをテトラヒドロフラン35.5gに溶解し、得られた 共重合体溶液に、酸化防止剤としてペンタエリスリチルテトラキス[3-(3,5-i)-t-i] およびトリス (2,4-i)-t-i かフェニル)ホスファイトを、開環共重合体DH100 重量部に対してそれぞれ0.5 重量部となる割合で添加し、さらに架橋剤の亜リン酸ジブチルを開環共重合体DH100重量部に対して0.7 重量部となる割合で添加した。この共重合体溶液を用い、溶剤キャスト法によって、厚みが120 μ mのフィルムを作製し、このフィルムに対して120 μ 0の水蒸気を2時間接触させることにより、架橋処理を行った。架橋処理されたフィルムから試験片を作製し、各物性の評価を行った。その結果を表1に示す。

また、上記架橋処理されたフィルムから作製した試験片を、開環共重合体DHに対して良溶媒であるテトラヒドロフラン、トルエンおよび塩化メチレンに浸漬したところ、当該試験片はこれらの溶媒に対して不溶であり、架橋によって耐溶剤性が向上したことが確認された。

[0072]

〈比較例1〉

開環重合に供される単量体として、8-メチルー8-メトキシカルボニルテトラシクロ [4.4.0.12,5 17,10] ドデカー3-エン170ミリモルを用いたこと以外は、実施例1と同様して環状オレフィン系開環重合体を調製し(得られた環状オレフィン系開環重合体を「開環重合体E」とする。)、水素化された環状オレフィン系開環重合体を調製した(得られた水素添加環状オレフィン系開環重合体を「開環重合体EH」とする。)。単量体の開環重合体への転化率は100%であり、開環重合体EHの水素化率は99.8%であった。

また、開環重合体EHの数平均分子量(Mn)は20,000、重量平均分子量(Mw)は73,000、Mw/Mnは3.7であった。

また、開環重合体EHについて、実施例1と同様にして試験片を作製し、各物性の評価を行った。その結果を表1に示す。

[0073]

〈比較例2〉

エンド体とエキソ体とのモル比が95:5であるトリシクロ[5.2.1.02,6]デカー8ーエンの代わりにエンド体とエキソ体とのモル比が10:90であるトリシクロ $[5.2.1.0^2,6]$ デカー8ーエンを用いたこと以外は、実施例1と同様して環状オレフィン系開環共重合体を調製し(得られた環状オレフィン系開環共重合体を「開環共重合体F」とする。)、水素化された環状オレフィン系開環共重合体を調製した(得られた水素添加環状オレフィン系開環重合体を「開環共重合体下出」とする。)。単量体の開環共重合体への転化率は98%であり、開環共重合体FHの水素化率は99.8%であった。

また、開環共重合体FHの数平均分子量(Mn)は75,000、重量平均分子量(Mw)は165,000、Mw/Mnは2.2であった。

また、開環共重合体FHについて、実施例1と同様にして試験片を作製し、各物性の評価を行った。その結果を表1に示す。

[0074]

〈比較例3〉

8-メチル-8-メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}1^{7,5}1^{7,5}]$ $[4.4.0.1^{2,5}1^{7,5}]$ $[4.4.0.1^{2,5}]$

17,10] ドデカー3-エンを用いたこと以外は、実施例1と同様して環状オレフィン系開環共重合体を調製し(得られた環状オレフィン系開環共重合体を「開環共重合体G」とする。)、水素化された環状オレフィン系開環共重合体を調製した(得られた水素添加環状オレフィン系開環共重合体を「開環共重合体GH」とする。)。単量体の開環共重合体への転化率は99%であり、開環共重合体GHの水素化率は99.8%であった。

また、開環共重合体GHの数平均分子量 (Mn) は21,000、重量平均分子量 (Mw) は69,000、Mw/Mnは3.3であった。

また、開環共重合体GHについて、テトラヒドロフランの代わりにシクロヘキサンを用いたこと以外は実施例1と同様にして試験片を作製し、各物性の評価を行った。その結果を表1に示す。

[0075]

【表 1】

	全光線 透過率 (%)	ガラス 転移温度 (℃)	吸水率 (%)	剥離性 (個)	引張強度 (M P a)	伸び (%)
実施例 1	9 1	1 4 1	0. 1 2	0	4 8	7. 9
実施例 2	9 1	1 4 0	0. 0 9	0	5 3	9. 1
実施例3	9 1	1 4 3	0. 1 2	0	5 2	9. 0
実施例 4	9 1	1 4 5	0. 1 5	0	6 0	9. 5
比較例 1	9 1	1 6 8	0. 3 4	0	4 0	6. 9
比較例 2	9 1	1 4 5	0. 1 2	0	3 5	6. 2
比較例3	9 1	1 3 7	0. 0 1	8 0	4 3	7. 5

[0076]

表1から明らかなように、実施例1~実施例4に係る環状オレフィン系開環共 重合体(開環共重合体AH~開環共重合体DH)は、全光線透過率が高く、ガラ ス転移温度が高く、吸水率が低く、金属に対する密着性または接着性が高く、機 械的強度が高いものであることが確認された。

これに対して、比較例1に係る環状オレフィン系開環重合体(開環重合体EH

)は、実施例に係る開環共重合体に比較して吸水率が高く、強度が低いものであり、比較例2に係る環状オレフィン系開環共重合体(開環共重合体FH)は、実施例に係る開環共重合体に比較して強度が低いものであり、比較例3に係る環状オレフィン系開環共重合体(開環共重合体GH)は、実施例に係る開環共重合体に比較して密着性・接着性が低いものであった。

[0077]

【発明の効果】

本発明の環状オレフィン系開環共重合体は、エンド体の割合が80%以上である特定のトリシクロモノオレフィン類に由来する構造単位と、エステル基を有する特定のテトラシクロドデセン類に由来する構造単位とを含有してなるため、透明性等の光学特性に優れ、吸水(湿)性が低く、他素材との親和性が高くて接着性や印刷性等の後加工性が良好であり、しかも、優れた耐熱性および機械的強度を有するものである。

本発明の環状オレフィン系開環共重合体は、このような特性を有するため、光学部品や、光学部品のコーティング材などの光学材料として極めて有用であり、さらには半導体封止剤などの電子部品材料、コーティング剤、接着剤さらに医療機器、各種容器、バインダーなどとして有用である。

【図面の簡単な説明】

【図1】

実施例1で得られた開環共重合体Aの1H-NMRスペクトル図である。

【図2】

実施例1で得られた開環共重合体Aの赤外吸収スペクトル図である。

【図3】

実施例1で得られた開環共重合体AHの 1 H-NMRスペクトル図である。

【図4】

実施例1で得られた開環共重合体AHの赤外吸収スペクトル図である。

【図5】

実施例4で得られた開環共重合体DHの ¹H-NMRスペクトル図である。

【書類名】 図面【図1】

【書類名】 要約書

【要約】

【課題】 透明性等の光学特性に優れ、吸水(湿)性が低く、他素材との親和性が高くて接着性や印刷性等の後加工性が良好で、優れた耐熱性および機械的強度を有する環状オレフィン系開環共重合体および光学材料の提供。

【解決手段】 本発明の環状オレフィン系開環共重合体は、一般式(1-1)~ (1-3) で表される構造単位(A)と、エステル基を有する特定の環状オレフィンに由来する構造単位(B)とを、モル換算で $10:90\sim50:50$ となる割合で含有し、構造単位(A)を得るための単量体は、エンド体の割合が80モル%以上のトリシクロモノオレフィン化合物であり、ガラス転移温度が $120\sim250$ である。

【化1】

一般式
$$(1-1)$$
 一般式 $(1-2)$ 一般式 $(1-3)$ — 积式 $(1-3)$ — $(1-$

 $[-般式(1-1)\sim(1-3)$ において、 $R^1\sim R^{13}$ は、水素原子、ハロゲン原子、または炭素数 $1\sim 4$ のアルキル基およびハロゲン化アルキル基から選ばれた基、 $X^1\sim X^3$ は、エチレン基またはビニレン基を示す。]

【選択図】 なし

出願人履歴情報

識別番号

[000004178]

1. 変更年月日 1997年12月10日
 ・ [変更理由] 名称変更
 住 所 東京都中央区築地2丁目11番24号
 氏 名 ジェイエスアール株式会社

2. 変更年月日 2003年 5月 6日 「変更理由」 住所変更

> 住 所 東京都中央区築地五丁目6番10号 氏 名 ジェイエスアール株式会社

3. 変更年月日 2003年 5月19日 [変更理由] 名称変更 住所変更

> 住 所 東京都中央区築地五丁目6番10号 氏 名 ジェイエスアール株式会社

4. 変更年月日 2003年 6月27日 [変更理由] 名称変更 住 所 東京都中央区築地五丁目6番10号 氏 名 JSR株式会社