УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 129

 ${
m C}_{
m T}$ ХХХ ХХХ ${
m P}$ З1ХХ

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $-2 \le x_1x_2 - x_3x_4x_5 \le 1$ и неопределенное значение при $x_1x_2 - x_3x_4x_5 = -3$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	x_1x_2	$x_3x_4x_5$	x_1x_2	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	1	0	1	1
2	0	0	0	1	0	0	2	0	2	1
3	0	0	0	1	1	0	3	0	3	d
4	0	0	1	0	0	0	4	0	4	0
5	0	0	1	0	1	0	5	0	5	0
6	0	0	1	1	0	0	6	0	6	0
7	0	0	1	1	1	0	7	0	7	0
8	0	1	0	0	0	1	0	1	0	1
9	0	1	0	0	1	1	1	1	1	1
10	0	1	0	1	0	1	2	1	2	1
11	0	1	0	1	1	1	3	1	3	1
12	0	1	1	0	0	1	4	1	4	d
13	0	1	1	0	1	1	5	1	5	0
14	0	1	1	1	0	1	6	1	6	0
15	0	1	1	1	1	1	7	1	7	0
16	1	0	0	0	0	2	0	2	0	0
17	1	0	0	0	1	2	1	2	1	1
18	1	0	0	1	0	2	2	2	2	1
19	1	0	0	1	1	2	3	2	3	1
20	1	0	1	0	0	2	4	2	4	1
21	1	0	1	0	1	2	5	2	5	d
22	1	0	1	1	0	2	6	2	6	0
23	1	0	1	1	1	2	7	2	7	0
24	1	1	0	0	0	3	0	3	0	0
25	1	1	0	0	1	3	1	3	1	0
26	1	1	0	1	0	3	2	3	2	1
27	1	1	0	1	1	3	3	3	3	1
28	1	1	1	0	0	3	4	3	4	1
29	1	1	1	0	1	3	5	3	5	1
30	1	1	1	1	0	3	6	3	6	d
31	1	1	1	1	1	3	7	3	7	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \vee \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{1}(f)$		$K^2(f)$						
m_0	00000	√	m_0 - m_1	0000X	√	m_0 - m_1 - m_2 - m_3		000XX	$\overline{}$			
m_1	00001	· /	m_0 - m_2	000X0	· /	m_0 - m_1 - m_8 - m_9	,	0X00X	· /			
m_2	00010	√	m_0 - m_8	0X000	\checkmark	m_0 - m_2 - m_8 - m_1		0X0X0	✓			
m_8	01000	√	m_2 - m_3	0001X	√	m_8 - m_9 - m_{10} - m_{10}		010XX	$\overline{}$			
m_9	01001	$\overline{}$	m_1 - m_3	000X1	\checkmark	m_2 - m_3 - m_{10} - m_{10}		0X01X	\checkmark			
m_{10}	01010	√	m_8 - m_9	0100X	\checkmark	m_1 - m_3 - m_9 - m_1		0X0X1	✓			
m_{17}	10001	√	m_{8} - m_{10}	010X0	\checkmark	m_2 - m_3 - m_{18} - m_{18}		X001X	√			
m_{18}	10010	✓	m_{8} - m_{12}	01X00		m_1 - m_3 - m_{17} - m_{17}		X00X1				
m_{20}	10100	\checkmark	m_1 - m_9	0X001	✓	m_2 - m_{10} - m_{18} - m_{1	n_{26} .	XX010	✓			
m_3	00011	✓	m_2 - m_{10}	0X010	\checkmark	m_{18} - m_{19} - m_{26} -		1X01X	$\overline{}$			
m_{12}	01100	✓	m_1 - m_{17}	X0001	✓	m_{20} - m_{21} - m_{28} -	m_{29}	1X10X				
m_{11}	01011	\checkmark	m_2 - m_{18}	X0010	✓	m_{10} - m_{11} - m_{26} -	m_{27} .	X101X	✓			
m_{19}	10011	✓	m_{10} - m_{11}	0101X	√	m_3 - m_{11} - m_{19} - m_{19}		XX011	✓			
m_{26}	11010	✓	m_9 - m_{11}	010X1	\checkmark							
m_{28}	11100	✓	m_3 - m_{11}	0X011	\checkmark							
m_{21}	10101	✓	m_{18} - m_{19}	1001X	\checkmark							
m_{27}	11011	√	m_{17} - m_{19}	100X1	\checkmark							
m_{29}	11101	✓	m_{20} - m_{21}	1010X	\checkmark							
m_{30}	11110	✓	m_{17} - m_{21}	10X01								
			m_{18} - m_{26}	1X010	\checkmark							
			m_{20} - m_{28}	1X100	\checkmark							
			m_3 - m_{19}	X0011	\checkmark							
			m_{10} - m_{26}	X1010	\checkmark							
			m_{12} - m_{28}	X1100								
			m_{26} - m_{27}	1101X	√							
			m_{28} - m_{29}	1110X	\checkmark							
			m_{28} - m_{30}	111X0								
			m_{26} - m_{30}	11X10								
			m_{19} - m_{27}	1X011	\checkmark							
			m_{21} - m_{29}	1X101	\checkmark							
			m_{11} - m_{27}	X1011	\checkmark							
				$K^3(f)$			Z(f)					
	m_0 -	$-m_1$ - n	n_2 - m_3 - m_8 - m_8	a_9 - m_{10} - m_{10}	11	0X0XX	01X00)				
	m_2 -	$-m_3$ - n	n_{10} - m_{11} - m_{18}	$-m_{19}$ - m_{20}	$_{3}$ - m_{27}	XX01X	10X01	1				
							X1100)				
							111X()				
							11X10)				
							X00X	1				
							1X10X	Χ				
							0X0X2	X				
							XX012	X				

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

								0-ку	бы						
	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Простые импликанты			0	1	1	1	1	0	0		0	1	1	1 1	1
		0	0				0	0	0		1			1	
			1				1	0	1			1	1		
		1			I		1	1		I			lI		
	0	1	2	8	9	10	11	17	18	19	20	26	27	28	29
01X00				X											
A 10X01								X							
X1100														X	
111X0														X	
11X10												X			
B X00X1		Х						X		X					
1X10X				H	H						Х			X	X
0X0XX	X	X	Х	Х	Х	X	Х								
XX01X			X			X	X		X	X		X	X		

Ядро покрытия:

$$T = \begin{cases} 0X0XX \\ XX01X \\ 1X10X \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы
		1
		0
Пр	остые импликанты	0
		0
		1
		17
A	10X01	X
В	X00X1	X

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor B)$$

Приведем выражение в ДНФ:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0X0XX \\ XX01X \\ 1X10X \\ 10X01 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0X0XX \\ XX01X \\ 1X10X \\ X00X1 \end{Bmatrix}$$

$$S_{1}^{a} = 11$$

$$S_{1}^{a} = 15$$

$$S_{2}^{a} = 10$$

$$S_{2}^{a} = 14$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X0XX \\ XX01X \\ 1X10X \\ X00X1 \end{cases}$$
$$S^{a} = 10$$
$$S^{b} = 14$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_3} \vee \overline{x_3} \, x_4 \vee x_1 \, x_3 \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, \overline{x_3} \vee \overline{x_3} \, x_4 \vee x_1 \, x_3 \, \overline{x_4} \vee \overline{x_2} \, \overline{x_3} \, x_5$$

Определение МКНФ

$$f = (x_1 \vee \overline{x_3}) \ (\overline{x_3} \vee \overline{x_4}) \ (\overline{x_1} \vee x_3 \vee x_4 \vee x_5) \ (\overline{x_1} \vee \overline{x_2} \vee x_3 \vee x_4)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,\overline{x_3}\vee\overline{x_3}\,x_4\vee x_1\,x_3\,\overline{x_4}\vee\overline{x_2}\,\overline{x_3}\,x_5 \qquad S_Q=14 \quad \tau=2$$

$$f=\overline{x_3}\,\left(\overline{x_1}\vee x_4\vee\overline{x_2}\,x_5\right)\vee x_1\,x_3\,\overline{x_4} \qquad S_Q=12 \quad \tau=4$$

$$\varphi=\overline{x_1}\vee x_4$$

$$\overline{\varphi}=x_1\,\overline{x_4}$$

$$f=\overline{x_3}\,\left(\varphi\vee\overline{x_2}\,x_5\right)\vee\overline{\varphi}\,x_3 \qquad S_Q=13 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=\overline{x_3}\,\left(\overline{x_1}\vee x_4\vee\overline{x_2}\,x_5\right)\vee x_1\,x_3\,\overline{x_4} \qquad S_Q=12 \quad \tau=4$$

Факторизация и декомпозиция МКНФ

$$f=(x_1\vee\overline{x_3})\ (\overline{x_3}\vee\overline{x_4})\ (\overline{x_1}\vee x_3\vee x_4\vee x_5)\ (\overline{x_1}\vee\overline{x_2}\vee x_3\vee x_4) \qquad S_Q=16 \qquad \tau=2$$

$$f=(\overline{x_3}\vee x_1\,\overline{x_4})\ (\overline{x_1}\vee x_3\vee x_4\vee \overline{x_2}\,x_5) \qquad \qquad S_Q=12 \qquad \tau=3$$

$$\varphi=x_1\,\overline{x_4}$$

$$\overline{\varphi}=\overline{x_1}\vee x_4$$

$$f=(\overline{x_3}\vee\varphi)\ (\overline{\varphi}\vee x_3\vee \overline{x_2}\,x_5) \qquad \qquad S_Q=12 \qquad \tau=4$$
 Декомпозиция нецелесообразна
$$f=(\overline{x_3}\vee x_1\,\overline{x_4})\ (\overline{x_1}\vee x_3\vee x_4\vee \overline{x_2}\,x_5) \qquad \qquad S_Q=12 \qquad \tau=3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_3} \ (\overline{x_1} \lor x_4 \lor \overline{x_2} \ x_5) \lor x_1 \ x_3 \ \overline{x_4} \quad (S_Q = 12, \tau = 4)$$

Схема по упрощенной МКНФ:

$$f = (\overline{x_3} \vee x_1 \, \overline{x_4}) \, (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_2} \, x_5) \quad (S_Q = 12, \tau = 3)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{\overline{x_3}} \overline{x_1} \overline{x_4} \overline{\overline{x_2} x_5}} \overline{x_1} \overline{x_3} \overline{x_4} \quad (S_Q = 17, \tau = 8)$$

Схема по упрощенной МКН Φ в базисе И, НЕ:

$$f = \overline{x_3 \,\overline{\varphi}} \, \overline{\varphi \, \overline{x_3} \, \overline{\overline{x_2} \, x_5}} \quad (S_Q = 15, \tau = 5)$$
$$\varphi = x_1 \, \overline{x_4}$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{\overline{x_4}}} \overline{\overline{\overline{x_2}} \overline{x_5}}} \overline{\overline{x_1}} \overline{\overline{\overline{x_3}} \overline{\overline{x_4}}} \quad (S_Q = 18, \tau = 6)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_3} \, \overline{x_1} \, \overline{x_4}} \, \overline{\overline{x_1} \, \overline{x_3}} \, \overline{\overline{\overline{x_4}}} \, \overline{\overline{\overline{x_2}} \, x_5} \quad (S_Q = 20, \tau = 6)$$

