

UG-9664HSWAG01 96 X 64 Application note Evaluation Kit User Guide

Writer: Wabber. Huang

Email: Wabber_huang@univision.com.tw

Version: Preliminary

REVISION HISTORY

Date	Page	Contents	Version		
2006/7/17		Preliminary	Preliminary 0.0		

EVK Schematic

悠景科技股份有限公司

Symbol define

VCC: Power supply for panel driving voltage.

VSS: This is ground pin.

VDD: Power supply for core logic operation.

VDDIO: Power supply for interface logic level.

BS0~BS2: MUC bus interface selection pin(BS0 pulled LOW in internal).

CS: This pin is chip select input(active LOW).

RES: This pin is reset signal input(active LOW).

D/C: This is DATA/COMMAND control pin. When it is Pulled HIGH, the data at D[0~7] is treated as data. When it is pulled LOW, the data at D[0~7] will be transferred to the command register.

In I2C mode, this pin acts as SA0 for slave address select.

R/W: This is read/write control input pin connecting to the MCU interface.

When interface to a 6800-series microprocessor, Read mode will be carried out when this pin is pulled HIGH and write mode when low.

When interface to an 8080-microprocessor, this pin when be the data Write input.

When serial interface is selected, this pin must be connected to Vss.

E/RD : When interface to a 6800-series microprocessor , this pin will be used as the Enable(E) signal.

When interface to an 8080-microprocessor, this pin receives the Read(RD#)signal.

D0~D7: These are 8-bit bi-directional data bus to be connected to the microprocessor's data bus.

When serial interface mode is selected, D0(SCLK) will be the serial clock input,D1(SDIN) will be the serial data input,D2 should be left opened.

When I2C mode is selected,D1(SDAin) AND D2(SDAout) should be tied

together,D0(SCL) is the I2Cclock input

IREF: This is segment output current reference pin.

VCOMH: This pin for COM signal deselected level voltage.

6800 INTERFACES DESCRIPTIONS & TIMMING CHARACTERISTICS

 $(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW_{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

8080 INTERFACES DESCRIPTIONS & TIMMING CHARACTERISTICS

 $(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Typ	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
tAS	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
tACC	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

SPI INTERFACES DESCRIPTIONS & TIMMING CHARACTERISTICS

 $(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t_{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t_{AH}	Address Hold Time	150	-	-	ns
t _{CSS}	Chip Select Setup Time	120	-	-	ns
t_{CSH}	Chip Select Hold Time	60	-	-	ns
t_{DSW}	Write Data Setup Time	50	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	100	-	-	ns
t_{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

12C INTERFACES DESCRIPTIONS & TIMMING CHARACTERISTICS

(VDD - VSS = $2.4 \text{ to } 3.5, TA = 25^{\circ} \text{ C}$)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
t_{SD}	Data Setup Time	100	-	-	ns
t _{SSTART}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
t _{SSTOP}	Stop condition Setup Time	0.6	-	-	us
t _R	Rise Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	-	-	us

Figure1 EVK PCB and OLED Module

悠景科技股份有限公司

Figure 2The combination of the module and EVK

The SSD1305Z is COG type package, that the connect pads are on the top of the module connector. When finished assembled the module and EVK, then push the locking pad to lock the module. See the Figure 1 and Figure 2.

User can use leading wire to connect EVK with customer's system. The example shows as Figure 3

悠景科技股份有限公司

Figure3 EVK with test platform

Note 1: It is the external most positive voltage supply. In this sample is connected to power supply.

Note 2: The leading wire has 13 pins totally in this case. (D0-D7 \cdot E/RD \cdot R/W \cdot D/C \cdot RES \cdot CS)

Note 3 : Select Mode(8080 \(6800 \) SPI \(12C)

悠景科技股份有限公司

How to use SSD1305Z module

Power down and Power up Sequence

To protect OLED panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. Such that panel has enough time to charge up or discharge before/after operation.

{

RD recommend Initial Code:

```
void initial()
     write command(0x02);//set low column address
     write command(0x12);//set high column address
     write_command(0x40);//(display start set)
     write_command(0x2e);//(stop horzontal scroll)
     write command(0x81);//(set contrast control register)
     write command(0x32);
     write command(0x82);//(brightness for color banks)
     write_command(0x80);//(display on)
     write command(0xa1);//(set segment re-map)
     write_command(0xa6);//(set normal/inverse display)
     write command(0xa8);//(set multiplex ratio)
     write_command(0x3F);
     write command(0xd3);//(set display offset)
     write_command(0x40);
     write_command(0xad);//(set dc-dc on/off)
     write_command(0x8E);//
     write command(0xc8);//(set com output scan direction)
     write_command(0xd5);//(set display clock divide ratio/oscillator/frequency)
     write command(0xf0);//
     write_command(0xd8);//(set area color mode on/off & low power display mode )
     write_command(0x05);//
     write_command(0xd9);//(set pre-charge period)
     write_command(0xF1);
     write command(0xda);//(set com pins hardware configuration)
     write command(0x12);
     write_command(0xdb);//(set vcom deselect level)
     write command(0x34);
     write_command(0x91);//(set look up table for area color)
     write command(0x3f);
     write command(0x3f);
     write command(0x3f);
     write_command(0x3f);
     write_command(0xaf);//(display on)
     write_command(0xa4);//(display on)
```


WRITE DATA & COMMAND SUB FUNCTION

```
void write_command(unsigned char aa)
  IOCLR = 0x000000ff;
  IOSET = RD_IN;//RD=1
  IOCLR = DC_IN;//RS=0
  IOCLR = CS_IN;//CS=0
  IOCLR = WR_IN;//W_R=0
  IOSET = aa;//----input command
  IOSET = WR_IN;//W=1
  IOSET = CS_IN;//CS=1
  IOCLR = RD_IN;
 }
void write_data(unsigned char bb)
  IOCLR = 0x000000ff;
  IOSET = RD_IN;//RD=1
  IOSET = DC_IN;//RS=1
  IOCLR = CS_IN;//CS=0
  IOCLR = WR_IN;//W_R=0
  IOSET = bb; //----input data
  IOSET = WR_IN;//W_R=1
  IOSET = CS_IN;//CS_1=1
}
```

Note: RD recommend Initial code and sub function for 8080 series CPU interface.