Fluid Motion Analysis

Using OpenCV and Python

Introduction

In fluid mechanics, understanding velocity distribution and shear stress is crucial for predicting flow behavior, especially in industrial processes, environmental studies, and engineering applications.

Addresses two main problems

- Velocity Calculation
- Shear Stress Calculation

Objectives

- tracking particle velocity
- calculating shear stress
- visualizing turbulent flows

System Workflow

How to determine the Velocity?

Take the floating particle position by using contour centroids at each frame.

How to determine the shear stress?

```
T = \mu (\Delta y / \Delta v)
```

Where:

- T = Shear stress (Pa)
- μ\muμ = Dynamic viscosity of the fluid (Pa·s)
- $\Delta v \triangle v = Change in velocity between fluid layers (m/s)$
- $\Delta y \Delta y = Distance between layers (m)$

```
du_dy = (velocity_magnitude[i] - velocity_magnitude[i - 1]) / (1 / pixels_per_cm_y)
shear = viscosity * du_dy
```

How to relate to real-world dimensions?

Purpose of Calibration:

Convert pixel measurements from video frames into real-world units.

Calibration Method:

- Load Calibration Image:
 - A known reference object of a specific size is used (e.g., a square with known dimensions).
- Manual Selection:
 - User selects two points on the calibration image to define the known object's size.


```
def calculate_conversion_factor(ix, iy, x, y):
    width_pixels = abs(x - ix)
    height_pixels = abs(y - iy)
    return width_pixels / KNOWN_WIDTH_CM, height_pixels / KNOWN_HEIGHT_CM
```

```
Pixels per cm (Width): 22.6
Pixels per cm (Height): 20.6
```

Results Analysis and Visualization

Results Analysis and Visualization

```
Fluid ID | Date-Time | Avg Velocity (m/s) | Avg Shear Stress (Pa)

fluid_20240915_190601 | 2024-09-15 19:06:26 | 2.96 | -0.07

fluid_20240915_190647 | 2024-09-15 19:07:28 | 1.40 | -1.72
```

Watch a sample video demonstrating how the program works.

Potential further improvements

Challenges with Current Implementation:

- The program may struggle to track multiple moving particles accurately.
- Particle overlap or occlusion leads to errors in velocity and shear stress calculations.

Potential Solutions:

- Implement blob detection
- Use Kalman filters for tracking particles
- Machine learning approaches for robust object detection and tracking.

Thank you!