Методы решения транспортной задачи

Транспортная задача линейного программирования формулируется следующим образом. Необходимо минимизировать транспортные расходы

$$Q(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} \rightarrow \min$$

при ограничениях

$$\sum_{i=1}^{m} x_{ij} = b_{j}, \qquad j = \overline{1, n},$$

$$\sum_{j=1}^{n} x_{ij} = a_{i}, \qquad i = \overline{1, m},$$

$$x_{ij} \ge 0, \quad i = \overline{1, m}, \quad j = \overline{1, n},$$

где c_{ij} - стоимость перевозки единицы продукции из пункта i в пункт j; x_{ij} - планируемая величина перевозок из пункта i в пункт j (план перевозок X - матрица размерности $m \times n$); b_j - потребности в продукте в пункте j; a_i - запасы в пункте i.

Предполагается, что модель закрытого типа, то есть $\sum_{j=1}^n b_j = \sum_{i=1}^m a_i$.

Если модель открытого типа $\left(\sum_{j=1}^n b_j \neq \sum_{i=1}^m a_i\right)$, то ее всегда можно привести к

закрытому типу введением фиктивного пункта производства или фиктивного пункта потребления:

$$ullet$$
 Если $\sum_{j=1}^n b_j < \sum_{i=1}^m a_i$, то $b_{n+1} = \sum_{i=1}^m a_i - \sum_{j=1}^n b_j$, тогда $\sum_{j=1}^{n+1} b_j = \sum_{i=1}^m a_i$, причем $c_{i,n+1} = 0 \quad orall i$.

• Если
$$\sum_{j=1}^n b_j > \sum_{i=1}^m a_i$$
, то $a_{m+1} = \sum_{j=1}^n b_j - \sum_{i=1}^m a_i$, $\sum_{j=1}^n b_j = \sum_{i=1}^{m+1} a_i$ и $c_{m+1,j} = 0 \quad \forall j$.

Транспортная задача представляет собой задачу линейного программирования и, естественно, ее можно решить с использованием метода последовательного улучшения плана или метода последовательного уточнения оценок. В этом случае основная трудность бывает связана с числом переменных задачи $(m \times n)$ и числом ограничений (m+n). Поэтому специальные алгоритмы оказываются более эффективными. К таким алгоритмам относятся метод потенциалов и венгерский метод.

Метод северо-западного угла

Заполнение начинается с верхнего левого угла таблицы. Величина перевозки устанавливается равной минимальной из величин: величины остатка запасов в пункте i или величины еще неудовлетворенного спроса в пункте j.

- Если ресурс в данной строке исчерпан, то переходим к перевозке в следующей строке текущего столбца (на одну строку вниз).
- Если потребности для данного пункта (столбца) удовлетворены, то переходим к следующей перевозке текущей строки в следующем столбце.

Метод минимального элемента

В таблице отыскивается $\min \left\{ c_{ij} \right\}$ и в первую очередь заполняется соответствующая клетка: $x_{ij} = \min \left\{ a_i, b_j \right\}$. Затем вычеркивается остаток соответствующей строки, если $a_i < b_j$, или столбца, если $a_i > b_j$, и корректируем остатки запасов и неудовлетворенного спроса. В оставшихся клетках таблицы снова отыскивается минимальная стоимость перевозки и заполняется соответствующая клетка и т.д.

Определение 1. Набором называется произвольная совокупность перевозок транспортной таблицы.

Определение 2. Цепью называют такие наборы, когда каждая пара соседних клеток в цепи расположены либо в одном столбце, либо в одной строке.

Определение 3. Циклом называется цепь, крайние элементы которой находятся либо в одной строке, либо в одном столбце.

Метод потенциалов

Метод позволяет находить оптимальный план перевозок транспортной таблицы. В основе лежит следующая теорема.

Теорема. Для того, чтобы некоторый план $X = [x_{ij}]_{m \times n}$ транспортной задачи был оптимальным, необходимо и достаточно, чтобы ему соответствовала такая система m+n чисел $u_1,u_2,...,u_m;v_1,v_2,...,v_n$, для которой выполняются условия:

$$v_j - u_i \le c_{ij}, \ i = \overline{1, m}, \ j = \overline{1, n},$$
 (1)

$$v_i - u_i = c_{ii}, \ \forall x_{ii} > 0.$$
 (2)

 u_i и v_j называются потенциалами соответствующих пунктов отправления и пунктов назначения. Условия (1)-(2) называются условиями потенциальности.

План X будем называть потенциальным, если для него существует система u_i и v_j , удовлетворяющая (1)-(2). Тогда теорема коротко формулируется следующим образом.

Теорема. Для оптимальности транспортной задачи необходимо и достаточно, чтобы он был оптимален.

Достаточность. Пусть план X потенциален, так что существует система u_i и v_j , удовлетворяющая (1)-(2). Тогда для любого допустимого плана $X' = [x'_{ij}]_{m \times n}$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x'_{ij} \ge \sum_{i=1}^{m} \sum_{j=1}^{n} (v_{j} - u_{i}) x'_{ij} = \sum_{j=1}^{n} v_{j} \sum_{i=1}^{m} x'_{ij} - \sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} x'_{ij} =$$

$$= \sum_{j=1}^{n} v_{j} b_{j} - \sum_{i=1}^{m} u_{i} a_{i} = \sum_{j=1}^{n} v_{j} \sum_{i=1}^{m} x_{ij} - \sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} x_{ij} =$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} v_{j} x_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i} x_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} (v_{j} - u_{i}) x_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} x_{ij},$$

т.е. стоимость перевозок по любому плану X' не меньше стоимости перевозок по потенциальному плану X . Следовательно, план X оптимален.

Необходимость. Будем рассматривать транспортную задачу, как задачу линейного программирования с минимизацией линейной формы

$$Q(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} \rightarrow \min$$

при соответствующих ограничениях. Заполним симплексную таблицу и рассмотрим двойственную к ней задачу, что легко получить из таблицы. Прямую таблицу будем заполнять, повернув.

	0=	 0=	 0=	0=	 0=	 0=	Q =
	$-u_1$	$-u_i$	$-u_m$	$-v_1$	$-v_j$	$-v_n$	1
$x_{11} y_{11} =$	-1	 0	 0	1	 0	 0	c_{11}
• • •	• • •	 	 • • •	• • •	 •••	 •••	• • •
$x_{In} y_{In} =$	-1	 0	 0	0	 0	 1	c_{1n}
• • •		 	 • • •		 	 •••	• • •
$x_{il} y_{il} =$	0	 -1	 0	1	 0	 0	c_{il}
•••	• • •	 	 • • •	• • •	 •••	 •••	• • •
$x_{ij} y_{ij} =$	0	 -1	 0	0	 1	 0	c_{ij}
•••		 	 • • •		 	 •••	• • •
$x_{in} y_{in} =$	0	 -1	 0	0	 0	 1	C_{in}
		 	 	•••	 	 •••	
$x_{m1} y_{m1} =$	0	 0	 -1	1	 0	 0	C_{mI}
•••		 	 		 	 	
$x_{mn} y_{mn} =$	0	 0	 -1	0	 0	 1	C_{mn}
1 w=	a_1	 a_i	 a_n	$-b_1$	 $-b_j$	 $-b_n$	0

Получаем, что двойственная задача имеет вид:

$$w = \sum_{j=1}^{n} b_j v_j - \sum_{i=1}^{m} a_i u_i \to \max$$

при ограничениях

$$y_{ij}=u_i-v_j+c_{ij}\geq 0\,,\quad i=\overline{1,m}\,,\ j=\overline{1,n}\,,$$

 T.e. $v_j-u_i\leq c_{ij},\quad i=\overline{1,m}\,,\ j=\overline{1,n}\,.$

Пусть $X = [x_{ij}]_{m \times n}$ — оптимальное решение транспортной задачи. Тогда на основании теоремы двойственности двойственная задача имеет оптимальное решение

$$u_1^*, ..., u_m^*; v_1^*, ..., v_n^*.$$

Убедимся, что эти числа являются потенциалами соответствующих пунктов транспортной задачи. Действительно, все u_i^*, v_j^* как опорное решение двойственной задачи удовлетворяют неравенствам (1).

Если $x_{ij} > 0$, то по второй теореме двойственности соответствующее ограничение

$$y_{ij}^* = u_i^* - v_j^* + c_{ij} \ge 0$$

двойственной задачи обращается в строгое равенство

$$v_j^* - u_i^* = c_{ij}.$$

Алгоритм метода потенциалов

Алгоритм метода потенциалов состоит из предварительного этапа и повторяющегося основного этапа.

Предварительный этап.

- 1. Каким-либо способом ищется допустимый план X (методом северозападного угла или минимального элемента).
- 2. Для полученного плана строится система m+n чисел $u_1,...,u_m, v_1,...,v_n,$ таких, что $v_i-u_i=c_{ii}, \ \forall x_{ii}>0$.
- 3. Построенная система u_i и v_j исследуется на потенциальность (то есть план X исследуется на оптимальность). Для этого проверяется $v_j u_i \le c_{ij}$, $\forall x_{ij} = 0$.

Если система непотенциальна, то переходят к основному этапу (т.к. план не оптимален), иначе оптимальный план найден.

Основной этап.

- 1. Улучшаем план, то есть от плана X переходим к $X': Q(X) \ge Q(X')$.
- 2. Для плана X' строим новую систему u_i , v_j , $i=\overline{1,m}$, $j=\overline{1,n}$, такую, что $v_j-u_j=c_{ij}$, $\forall x_{ij}>0$.
- 3. Исследуем систему u_i , v_j на потенциальность. Если система непотенциальна, то переходим на п.1. Иначе найден оптимальный план.

Найдем методом потенциалов оптимальное решение задачи, взяв в качестве опорного план, построенный методом северо-западного угла (1-й шаг предварительного этапа).

Определение 4. Допустимый опорный план транспортной задачи называется невырожденным, если число заполненных клеток транспортной таблицы, т.е. число положительных перевозок $x_{ij} > 0$, равно m+n+1, где m — число пунктов отправления, n— число пунктов назначения.

Определение 5. Если допустимый опорный план содержит менее m+n+1 элементов $x_{ij} > 0$, то он называется вырожденным, а транспортная задача называется вырожденной транспортной задачей.

Следующая теорема позволяет определить вырожденность задачи до ее решения.

Теорема. Для невырожденной транспортной задачи необходимо и достаточно отсутствие такой неполной группы пунктов производства, суммарный объем производства которой точно совпадает с суммарными потребностями некоторой группы пунктов потребления.

Другими словами, это условие означает, что для любых двух систем индексов $i_1, i_2, ..., i_t, \ j_1, j_2, ..., j_S$, где t+S < n+m, имеет место неравенство $\sum_{l=1}^t a_{i_k} \neq \sum_{l=1}^S b_{j_k} \ .$ (Доказательство не сложно, от противного.)

Для решения транспортной задачи методом потенциалов строится система потенциалов $v_j - u_i = c_{ij}, \quad \forall x_{ij} > 0$. Если опорное решение невырожденно, то число неизвестных на 1 больше числа уравнений. При вырожденном опорном решении число этих уравнений еще меньше. По аналогии симплекс-методом, в невырожденном решении $x_{ij} > 0$ представляют собой базисные переменные, а $x_{ij} = 0$ — небазисные. Если опорное решение вырожденно, то часть базисных переменных принимает нулевые значения.

Пусть первое опорное решение, найденное методом северо-западного угла или методом минимального элемента, является вырожденным. Тогда, чтобы решать задачу методом потенциалов необходимо выбрать в качестве базисных переменных некоторые перевозки $x_{ij}=0$ и для них также составить уравнения $v_j-u_i=c_{ij}$ по условию (2) теоремы. Какие перевозки вида $x_{ij}=0$ включать в базисные? Выбираются такие клетки таблицы с $x_{ij}=0$, чтобы из базисных переменных нельзя было организовать ни одного цикла!

При переходе к новому улучшенному плану задачи в небазисные переменные переводится перевозка в отрицательной полуцепи, которая находится следующим образом $\theta = \min\left\{x_{ij}^-\right\}$. В вырожденной задаче это значение может достигаться на нескольких перевозках x_{ij} отрицательной полуцепи.