

High Availability iRODS System (HAIRS)

Yutaka Kawai, KEK Adil Hasan, ULiv

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Summary

Introduction

- Replication enables high availability (HA) system for catalog service
 - Replicate by back-end, i.e. iRODS
 - Replicate by front-end;
 - i.e. AMGA (ARDA^[1] Metadata Grid Application)
 - Metadata Catalogue of EGEE's gLite 3.1 Middleware
 - Back-end: Oracle, PostgreSQL, MySQL, SQLite
 - http://amga.web.cern.ch/amga/
- The current iRODS HA is implemented by replicating ICAT DB with PgPool tool [2]
 - A problem when iRODS server fails
 - Solve the problem by using Director

The Current iRODS HA

ICAT DB replication by Pgpool

Problem of the current HA

Even if the iRODS server fails, clients still continue to access the same server without noticing the failure.

Solution by using Director

- Place a Director between Client and Server
 - Monitor the iRODS server statuses
 - Load balance to the iRODS servers

How to Implement Director?

- UltraMonkey [3]
 - Linux based director
 - Low cost but not so high speed
 - Need some steps to setup
- Hardware Director
 - High cost and high speed
 - Easy to setup (?)
 - Cisco, HP, etc.

UltraMonkey 管

- UltraMonkey consists of 3 components
 - Linux Virtual Server (LVS): Load balancing
 - Idirectord : Monitoring real servers
 - Linux-HA (LHA) : Monitoring directors
- LVS and Idirectord are used here
 - LVS : Provide Virtual IP for load balance
 - Idirectord : Monitoring iRODS service
 - LHA: Future use for director redundancy

Virtual IP for load balance

Monitoring iRODS service

- Idirector monitors iRODS real servers
 - Polling server status via iRODS control port

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Summary

Large File Transfer

- iRODS uses parallel ports to transfer a large file.
 - Smaller than 32MB file is transferred through iRODS control port #1247.
- iRODS catalog server directs a server to open parallel ports to transfer a large file
 - iRODS clients can directly connect with the server through the parallel ports.

Process of Large File Transfer

Steps to transfer a large file in iRODS

Large File Transfer w/ Director

 Need to confirm whether Director interferes in transferring a large file or not

- The physical storage should be located out of the local network of iRODS real servers
 - Director handles only iRODS catalog server IP
 - Director cannot manage all of the parallel ports

Process using Director

- Works as same as normal case
 - Only one additional step between (1) and (2)

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Summary

Speed Performance

- Test Program
 - concurrent-test in iRODS package
 - iput, imeta, iget, imv
 - ▶ 1000 entries
 - Servers are VMs (Xen) on same physical machine
 - Client is located on the different machine

Test Case

- Case1: Normal case.
 - Client directly accesses one iRODS server.
- Case2: Using a director.
 - Client accesses one iRODS server via Director.
- Case3: Load sharing case.
 - Client accesses two iRODS servers via Director.

Speed Performance (cont'd)

- Using a Director (Case2)
 - About 10% slower than no Director (Case1)
 - Reasonable to consider tradeoff between speed and availability

Speed Performance (cont'd)

- Load sharing case (Case3)
 - About 5% slower than Case2
 - The concurrent-test is not suitable under such a Load balanced system.
 - Need a program using multi-clients or multi-threading methods.

Opinions in this study

Network limitation

- Director works as NAT. Difficult to place iRODS catalog servers in different subnets.
- But the problem depends on NAT technology. We hope some NAT vender can implement extensions.

Speed Performance

The "concurrent-test" consumes overhead. The result 10% slow is in one of the worst cases. We may see less than 10% in actual uses.

PostgreSQL only?

- How about other DB services? They have the same tools as PgPool?
- Back-end replication is enough? Front-end replication should be considered for iRODS?

Summary

- iRODS HA system
 - The current approach using only PgPool
 - The new approach using Director
 - The new one can solve the current problem
- Large File Transfer
 - ▶ iRODS large file transfer works well when using Director
- Speed Performance
 - Director results in the speed performance of concurrent– test getting slower 10%
- Future works
 - Apply this solution to other catalog services

References

- [1]: ARDA is A Realization of Distributed Analysis for LHC, http://lcg.web.cern.ch/LCG/activities/arda/arda.html
- [2]: iRODS High Avaliability, https://www.irods.org/index.php/iRODS_High_Avaliability
- [3] : Ultra Monkey project, http://www.ultramonkey.org/
- ► [4] : citation from abstract of "Resource Namespace Service Specification", https://forge.gridforum.org/sf/go/doc8272
- [5]: http://www.cs.virginia.edu/~vcgr/wiki/index.php/
 Understanding_Your_Genesis_II_Distribution#RNS_Namespace

Back up

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary

- Introduction
- ► iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary

- Introduction
- ► iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary

What is RNS?

- RNS : Resource Namespace Service
 - RNS offers a simple standard way of mapping names to endpoints within a grid or distributed network [4]
 - The latest version is available here; https://forge.gridforum.org/sf/go/doc8272
- Java based RNS application is being developed by Osaka University and Tsukuba University
 - This application is similar to iRODS
 - The other kind of RNS application is Grid Shell of Genesis II by The Virginia Center for Grid Research (VCGR) [5].

Apply to RNS application??

- Derby can do replication?
 - http://wiki.apache.org/db-derby/ReplicationWriteup
 - No load-sharing in the above example

Issues in RNS application

- Several issues to be solved
 - Derby is not enough to work replication as same as using PostgreSQL w/Pgpool
 - Need some developments to replace Derby by PostgreSQL
 - The catalog implementation in the current RNS application has specific IP addresses