Lecture # 22 CHE331A

Energy Balance for reactors

Adiabatic Flow Reactors

Determined relationship between T and X

Species and Energy balance for an adiabatic PFR

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Adiabatic PFR as an example for Design/Analysis

- ▶ Example 8.3: $A \rightleftharpoons B$, e.g., $nC_4H_{10} \rightleftharpoons i C_4H_{10}$ (gasoline additive)
- Reaction in a high-pressure adiabatic PFR species in liquid-phase
- $ightharpoonup F_{A0} = 163 \ kmol/h; \ C_{A0} = 9.3 \ kmol/m^3; \ X = 0.70$

Inlet is 90 mol% n-butane and 10 mol% i-pentane (inert); $T_0 = 330 \, K$

$$\Delta h_{Rxn}^0 = -6900 \frac{J}{\text{mol butane}}$$
 (exothermic reaction)

$$E = 65.7 \frac{kJ}{mol}$$
; $k = 31.1h^{-1}$ at 360 K; $K_C = 3.03$ at 60° C (= 333 K)

$$C_{P,n-B} = 141 \frac{J}{mol};$$
 $C_{P,i-B} = 141 \frac{J}{mol};$ $C_{P,i-P} = 161 \frac{J}{mol}$

Design/Analysis of a PFR operating under adiabatic conditions

- ▶ Mol Balance equation for PFR: $F_{A0} \frac{dX}{dV} = -r_A$
- ► Rate law: $nC_4H_{10} \rightleftharpoons i C_4H_{10}$ $-r_A = k\left(C_A \frac{C_B}{K_C}\right)$
- ► Temperature effect of *k* and *K*_C given by:

$$\circ k = k_1 \cdot exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

$$\circ K = K_{C,2}. exp \left[\frac{\Delta H_{Rxn}}{R} \left(\frac{1}{T_2} - \frac{1}{T} \right) \right]$$

► Liquid-phase reaction: $C_A = C_{A0}.(1-X)$ and $C_B = C_{A0}.X$ $-r_A = kC_{A0}\left[1-\left(1+\frac{1}{K_C}\right)X\right]$

The relationship between temperature and conversion

$$ightharpoonup F_{A0} rac{dX}{dV} = -r_A$$
 with $-r_A = kC_{A0} \left[1 - (1 + \frac{1}{K_C}) \right]$ need $T = T(X)$

- $T = \frac{X[-\Delta h_{Rxn}^{0}(T_R)] + \sum [\theta_i C_{P,i} T_0] + X\Delta C_p T_R}{\sum \theta_i C_{P,i} + X\Delta C_P}$ Energy balance:
- With $\Delta C_p = 0$ since $C_{P,n-B} = 141 \frac{J}{mol} = C_{P,i-B}$
- ► And $\sum \theta_i C_{P,i} = C_{P,n-B} + \frac{1}{9} C_{P,i-P} = 141 + \frac{1}{9} * 161 = 159 \frac{J}{mol \ K}$
 - $_{\circ}$ since 90% $C_{P,n-B}$ and 10% $C_{P,i-P}$

$$T = T_0 + \frac{X[-\Delta h_{Rxn}^0]}{\sum \theta_i C_{P,i}} = 330 + \frac{-(-6900)*X}{159}; \quad T = 330 + 43.4X \quad \text{in Kelvin}$$

Reversible reactions posses additional constraints

- ▶ For T = 330 + 43.4X the temperature at X = 0.7 is T = 360.3
- ► Important to check the temperature when the equilibrium conversions (X_e) will reach 0.7
- For $nC_4H_{10} \rightleftharpoons i C_4H_{10}$; $K_C = \frac{Xe}{1-Xe}$ and for $X_e = 0.7$; $K_C = 2.33$
- $ightharpoonup K_C = K_{C,2}.exp\left[\frac{\Delta H_{Rxn}}{R}\left(\frac{1}{T_2} \frac{1}{T}\right)\right]; \text{ and } K_{C,2} = 3.03 \ at \ T_2 = 333 \ K$
- ► And, $ln\left(\frac{K_C}{3.03}\right) = -830.3\left(\frac{T-333}{333*T}\right)$ T = 372 K
- ► Thus, 372 K is the maximum possible temperature permissible, which is less than the temperature as per the energy balance equation

The Levenspiel plot for determining the reactor volume

- ▶ To make the Levenspiel plot we need the value of $\frac{F_{A0}}{-r_A}$ as a function of X
- ► To determine $\frac{F_{A0}}{-r_A}$, $-r_A = kC_{A0} \left[1 \left(1 + \frac{1}{K_C} \right) X \right]$ is required for different X (or T)
- ► To generate such a plot the rate and equilibrium constant as a function of temperature needs to be determined

o
$$k = k_1 \cdot exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]; \quad k = 31.1 exp\left[7906\left(\frac{T - 360}{360T}\right)\right]h^{-1}$$

o
$$K_C = K_{C,2}.exp\left[\frac{\Delta H_{Rxn}}{R}\left(\frac{1}{T_2} - \frac{1}{T}\right)\right]; K_C = 3.03exp\left[-830.3\left(\frac{T - 333}{333T}\right)\right]$$

The table for making the Levenspiel plot

X	T (K)	k (h ⁻¹)	K _C	-r _A	$F_{A0}/(-r_A)$ m ³
0.00	330.0	4.22	3.1	39.2	3.74
0.20	338.7	7.66	2.9	52.8	2.78
0.40	347.3	14.02	2.73	58.6	2.50
0.60	356.0	24.27	2.57	37.7	3.88
0.65	358.1	27.74	2.54	24.5	5.99
0.70	360.3	31.67	2.50	6.2	23.29

Volume for conversion of 0.7 is 2.60 m³

Analysis of an adiabatic CSTR

- ► For a CSTR, the volume to achieve 70% conversion is:
- $V = \frac{F_{A0}}{-r_A}X = 23.29 * 0.7 = 16.3 m^3$
- For a CSTR, the volume to achieve 40% conversion is:
- $V = \frac{F_{A0}}{-r_A}X = 2.5 * 0.4 = 1 m^3$
- ► For PFR, the volume is given by integration (about 1.15 m³)

