Structuring Apache Spark SQL, DataFrames, Datasets, and Streaming

Michael Armbrust - @michaelarmbrust

Background: What is in an RDD?

- Dependencies
- Partitions (with optional locality info)
- Compute function: Partition => Iterator[T]

Background: What is in an RDD?

- Dependencies
- Partitions (with optional locality info)
- Compute function: Partition => Iterator[T]

Opaque Computation

Background: What is in an RDD?

- Dependencies
- Partitions (with optional locality info)
- Compute function: Partition => Iterator[T]

Opaque Data

Struc·ture ['strək(t)SHər]

verb

1. construct or arrange according to a plan; give a pattern or organization to.

Why structure?

- By definition, structure will *limit* what can be expressed.
- In practice, we can accommodate the vast majority of computations.

Limiting the space of what can be expressed enables optimizations.

Structured APIs In Spark

DataFrames SQL Datasets

Syntax Compile Compile Runtime Errors Time Time

Analysis Compile

Runtime Runtime Time Errors

Datasets API

Type-safe: operate on domain objects with compiled lambda functions

```
val df = spark.read.json("people.json")
// Convert data to domain objects.
case class Person(name: String, age: Int)
val ds: Dataset[Person] = df.as[Person]
ds.filter( .age > 30)
// Compute histogram of age by name.
val hist = ds.groupBy(_.name).mapGroups {
  case (name, people: Iter[Person]) =>
    val buckets = new Array[Int](10)
    people.map(_.age).foreach { a =>
      buckets(a / 10) += 1
    (name, buckets)
```

DataFrame = Dataset[Row]

- Spark 2.0 unifies these APIs
- Stringly-typed methods will downcast to generic Row objects
- Ask Spark SQL to enforce types on generic rows using df.as[MyClass]

What about **?** python?

Some of the goals of the Dataset API have always been available!

Shared Optimization & Execution

DataFrames, Datasets and SQL share the same optimization/execution pipeline

Structuring Computation

Columns

New value, computed based on input values.

```
col("x") === 1
df("x") === 1
expr("x = 1")
sql("SELECT ... WHERE x = 1")
```

Complex Columns With Functions

- 100+ native functions with optimized codegen implementations
 - String manipulation concat,format_string, lower, lpad
 - Data/Time current_timestamp,date_format, date_add, ...
 - Math sqrt, randn, ...
 - OthermonotonicallyIncreasingId,
 sparkPartitionId, ...

```
🤚 python"
```

```
from pyspark.sql.functions import *
yesterday = date_sub(current_date(), 1)
df2 = df.filter(df.created_at > yesterday)
```



```
import org.apache.spark.sql.functions._
val yesterday = date_sub(current_date(), 1)
val df2 = df.filter(df("created_at") > yesterday)
```


Functions

Columns

col("x") === 1

```
You Type (x: Int) => x == 1
```

```
Spark Sees
```

class \$anonfun\$1{
 def apply(Int): Boolean

EqualTo(x, Lit(1))

Columns: Predicate pushdown

You Write

```
spark.read
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "people")
  .load()
  .where($"name" === "michael")
```

Spark Translates
For Postgres

SELECT * FROM people WHERE name = 'michael'

Columns: Efficient Joins

```
Filter
myUDF = udf(lambda x, y: x == y)
                                                 n^2
                                                        Cartisian
df1.join(df2, myUDF(col("x"), col("y")))
                                                      df1
                                                              df2
               Equal values sort to
                 the same place
                                           n log n
                                                     SortMergeJoin
df1.join(df2, col("x") == col("y"))
                                                             df2
                                                      df1
```

Structuring Data

Spark's Structured Data Model

- Primitives: Byte, Short, Integer, Long, Float, Double, Decimal, String, Binary, Boolean, Timestamp, Date
- Array[Type]: variable length collection
- Struct: fixed # of nested columns with fixed types
- Map[Type, Type]: variable length association

Tungsten's Compact Encoding

Encoders

Encoders translate between domain objects and Spark's internal format

IVM Object MyClass(123, "data", "bricks")

Internal Representation 0x0 123 32L 48L 4 "data" 6 "bricks"

databricks

Bridge Objects with Data Sources

Encoders map columns to fields by name


```
"name": "Michael",
 "zip": "94709"
 "languages": ["scala"]
case class Person(
  name: String,
```

languages: Seq[String],

zip: Int)

Space Efficiency

Serialization performance

Serialization / Deserialization Performance

Operate Directly On Serialized Data

DataFrame Code / SQL

df.where(df("year") > 2015)

Catalyst Expressions

GreaterThan(year#234, Literal(2015))

Low-level bytecode

```
bool filter(Object baseObject) {
   int offset = baseOffset + bitSetWidthInBytes + 3*8L;
   int value = Platform.getInt(baseObject, offset);
   return value34 > 2015;
}

JVM intrinsic JIT-ed to
   pointer arithmetic
```

Structured Streaming (6)

The simplest way to perform streaming analytics is not having to **reason** about streaming.

Apache Spark 2.0 Continuous DataFrames

Single API!

Structured Streaming

High-level streaming API built on Apache Spark SQL engine

- Runs the same queries on DataFrames
- Eventtime, windowing, sessions, sources & sinks

Unifies streaming, interactive and batch queries

- Aggregate data in a stream, then serve using JDBC
- Change queries at runtime
- Build and apply ML models

Example: Batch Aggregation

```
logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
    .write.format("jdbc")
    .save("jdbc:mysql//...")
```

Example: Continuous Aggregation

```
logs = spark.read.format("json").stream("s3://logs")

logs.groupBy(logs.user_id).agg(sum(logs.time))
    .write.format("jdbc")
    .stream("jdbc:mysql//...")
```

Execution

Logically:

DataFrame operations on static data (i.e. as easy to understand as batch)

Physically:

Spark automatically runs the query in streaming fashion (i.e. incrementally and continuously)

Incrementalized By Spark

What's Coming?

- Apache Spark 2.0
 - Unification of the DataFrame/Dataset & *Context APIs
 - Basic streaming API
 - Event-time aggregations
- Apache Spark 2.1+
 - Other streaming sources / sinks
 - Machine learning
 - Watermarks
- Structure in other libraries: MLlib, GraphFrames

Questions?

@michaelarmbrust

