7

PART 5: EARTHQUAKE RESISTANCE

CHAPTER 18

EARTHQUAKE-RESISTANT STRUCTURES

- 18.1—Scope, p. 285
- 18.2—General, p. 285
- 18.3—Ordinary moment frames, p. 291
- 18.4—Intermediate moment frames, p. 292
- 18.5—Intermediate precast structural walls, p. 299
- 18.6—Beams of special moment frames, p. 299
- 18.7—Columns of special moment frames, p. 305
- 18.8—Joints of special moment frames, p. 311
- 18.9—Special moment frames constructed using precast concrete, p. 314
- 18.10—Special structural walls, p. 317
- 18.11—Special structural walls constructed using precast concrete, p. 336
- 18.12—Diaphragms and trusses, p. 336
- 18.13—Foundations, p. 343
- 18.14—Members not designated as part of the seismicforce-resisting system, p. 351

PART 6: MATERIALS & DURABILITY

CHAPTER 19

CONCRETE: DESIGN AND DURABILITY REQUIREMENTS

- 19.1—Scope, p. 355
- 19.2—Concrete design properties, p. 355
- 19.3—Concrete durability requirements, p. 357
- 19.4—Grout durability requirements, p. 369

CHAPTER 20

STEEL REINFORCEMENT PROPERTIES, DURABILITY, AND EMBEDMENTS

- 20.1—Scope, p. 371
- 20.2—Nonprestressed bars and wires, p. 371
- 20.3—Prestressing strands, wires, and bars, p. 378
- 20.4—Headed shear stud reinforcement, p. 382
- 20.5—Provisions for durability of steel reinforcement, p. 382
- 20.6—Embedments, p. 390

PART 7: STRENGTH & SERVICEABILITY

CHAPTER 21

STRENGTH REDUCTION FACTORS

- 21.1—Scope, p. 391
- 21.2—Strength reduction factors for structural concrete members and connections, p. 391

CHAPTER 22 SECTIONAL STRENGTH

- 22.1—Scope, p. 397
- 22.2—Design assumptions for moment and axial strength, p. 397
- 22.3—Flexural strength, p. 399
- 22.4—Axial strength or combined flexural and axial strength, p. 400
- 22.5—One-way shear strength, p. 401
- 22.6—Two-way shear strength, p. 411
- 22.7—Torsional strength, p. 420
- 22.8—Bearing, p. 428
- 22.9—Shear friction, p. 430

CHAPTER 23 STRUT-AND-TIE METHOD

- 23.1—Scope, p. 435
- 23.2—General, p. 436
- 23.3—Design strength, p. 443
- 23.4—Strength of struts, p. 443
- 23.5—Minimum distributed reinforcement, p. 445
- 23.6—Strut reinforcement detailing, p. 446
- 23.7—Strength of ties, p. 447
- 23.8—Tie reinforcement detailing, p. 447
- 23.9—Strength of nodal zones, p. 448
- 23.10—Curved-bar nodes, p. 449
- 23.11—Earthquake-resistant design using the strut-and-tie method, p. 452

CHAPTER 24 SERVICEABILITY

- 24.1—Scope, p. 455
- 24.2—Deflections due to service-level gravity loads, p. 455
- 24.3—Distribution of flexural reinforcement in one-way slabs and beams, p. 460
- 24.4—Shrinkage and temperature reinforcement, p. 461
- 24.5—Permissible stresses in prestressed concrete flexural members, p. 463

PART 8: REINFORCEMENT

CHAPTER 25 REINFORCEMENT DETAILS

- 25.1—Scope, p. 467
- 25.2—Minimum spacing of reinforcement, p. 467
- 25.3—Standard hooks, seismic hooks, crossties, and minimum inside bend diameters, p. 469
- 25.4—Development of reinforcement, p. 471
- 25.5—Splices, p. 488
- 25.6—Bundled reinforcement, p. 493
- 25.7—Transverse reinforcement, p. 494
- 25.8—Post-tensioning anchorages and couplers, p. 504
- 25.9—Anchorage zones for post-tensioned tendons, p. 505

