Sequence to Sequence Learning In Natural Language Processing

Winston Carlile

wjc140030@utdallas.edu

May 13, 2017

Overview

- 1 TensorFlow
- 2 Word Embeddings
- 3 BPTT
- 4 LSTM

Installation

https://www.tensorflow.org/install/

Why?

Why TensorFlow?

- Expressiveness of Python
- Efficiency of optimized CUDA
- Scalability

Why?

Why TensorFlow?

- Expressiveness of Python
- Efficiency of optimized CUDA
- Scalability
- Free ②

Why?

Why TensorFlow?

- Expressiveness of Python
- Efficiency of optimized CUDA
- Scalability
- Free ©

https://www.tensorflow.org/install/

How it Works

NumPy

```
a = np.random.rand(100,100)
b = np.random.rand(100,100)
np.matmul(a,b)
```

Python C/C++

TensorFlow

```
sess = tf.Session()
a = tf.Variable(tf.zeros([100,100]))
b = tf.Variable(tf.zeros([100,100]))
y = tf.matmul(a,b)
sess.run(tf.global_variables_initializer())
sess.run(y)
```


Neural Net Crash Course

- Optimize parameters of function to minimize error
- Search parameter space with Gradient Descent Algorithm

$$\boldsymbol{\theta}_{t+1} \coloneqq \boldsymbol{\theta}_t - \gamma \frac{dl_n(\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta}_t}$$

Activation Function Petting Zoo

Element-wise nonlinearities

Sigmoid

$$\sigma(\phi) = \frac{1}{1 + e^{-\phi}}$$

Gaussian Radial Basis

$$\psi(\phi) = \exp(-\phi \odot \phi)$$

Softplus

$$\mathbf{q}(\boldsymbol{\phi}) = \log(1 + e^{\boldsymbol{\phi}})$$

Loss Function Petting Zoo

Continuous Output (regression)

$$l_n(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n |\boldsymbol{y}_i - \ddot{\boldsymbol{y}}(\boldsymbol{\theta}, \boldsymbol{s}_i)|^2$$

Binary Output (classification)

$$l_n(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{y}_i \log(\ddot{\boldsymbol{y}}(\boldsymbol{\theta}, \boldsymbol{s}_i)) + (1 - \boldsymbol{y}_i) \log(1 - \ddot{\boldsymbol{y}}(\boldsymbol{\theta}, \boldsymbol{s}_i)) \right]$$

MNIST

Clone the Demo

- \$ git clone https://github.com/WChurchill/seq2seq_workshop.git
- \$ cd seq2seq_workshop/code
- \$ python mnist.py

or,

<path-to-tensorflow>/tensorflow/examples/tutorials/mnist/mnist.py

Word Embeddings

- Pretrain using unsupervised learning
- Train a small network to recognize valid n-grams

Code

Try it!

Run word2vec.py

\$ python word2vec_basic.py

\$ ls

 ${\tt tsne.png}$

Results

tsne.png

But What About Sequences?

- Matrix dimensions are fixed
- Architecture is static
- How do we make networks with variable length inputs?
- How do we make networks with variable length outputs?

But What About Sequences?

- Matrix dimensions are fixed
- Architecture is static
- How do we make networks with variable length inputs?
- How do we make networks with variable length outputs?

Bad Idea

Find maximum length of input & output vectors during preprocessing

Recurrent Neural Networks

- Networks that feed into themselves
- Hidden units remember by self-activation

Backpropogation Through Time

$$D \equiv [m{S}_1, m{S}_2, \dots, m{S}_n]$$

$$oldsymbol{S}_i \equiv [oldsymbol{s}_{i1}, oldsymbol{s}_{i2}, \ldots, oldsymbol{s}_{iT_i}]$$

Expanded Network Diagram

Input sequence is encoded as a finite-length vector

Decoding

Output sequence is a repeated projection of the encoded vector

Vanishing Gradient

- Gradient is disproportionately small in bottom layers
- Output layers receive most of the blame
- Performs poorly on long sequences

Long Short-Term Memory

- Information highway through time
- Network learns explicitly what to remember

Anatomy of an LSTM Cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Code

rnn_tutorial.py

```
lstm = tf.contrib.rnn.BasicLSTMCell(<num.units>)
state = tf.zeros([<batch size>, <lstm state size>])
```

Even More Improvements!

Some questions you might have:

- What's the difference between the cell state and hidden state?
- What's the difference between remembering new information and forgetting the old?
- Why are the gates blind to the cell state?

Gated Recurrent Units

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Code

Try It! (if you have 6 hours or a beefy GPU)

```
$ python translate.py
downloading dataset... # very large file
```

- # wait 3 hours depending on internet quality
- # dataset is downloaded
- # begin preprocessing
- # 3 more hours

Code

Try It! (if you have 6 hours or a beefy GPU)

```
$ python translate.py
downloading dataset... # very large file
# wait 3 hours depending on internet quality
# dataset is downloaded
# begin preprocessing
```

ERROR!

3 more hours

Your model is incorrect

Stacking LSTM Networks

rnn_tutorial.py

```
lstm = tf.contrib.rnn.BasicLSTMCell(<num_units>)
stacked_lstm = tf.contrib.rnn.MultiRNNCell([lstm] * <num_layers>)
```


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/recurrent_neural_networks.html

Other Applications in NLP

- Speech recognition
- Conversational Agents
- Automated Summarization

What Now?

Amazon Web services

- Discount supercomputer
- Gigabit internet speed
- Harness the scalability of tensorflow

What Now?

Amazon Web services

- Discount supercomputer
- Gigabit internet speed
- Harness the scalability of tensorflow
- Additional setup

TensorFlow Word Embeddings BPTT LSTM

Questions and Discussion