Cvičení 8

Uloha 1. Fourierovy obrazy:

Spočítejte Fourierovy obrazy následujících vektorů:

- a) (x, x, ..., x) pro $x \in \mathbb{R}$ (zkuste nejdříve x = 1)
- b) $(1,-1,1,-1,\ldots,1,-1)$
- c) $(1,0,1,0,\ldots,1,0)$
- d) $(\omega^0, \omega^1, \omega^2, \dots, \omega^{n-1})$ e) $(\omega^0, \omega^2, \omega^4, \dots, \omega^{2n-2})$

Úloha 2. O jakých vlastnostech vektoru vypovídá nultý a (n/2)-tý koeficient Fourierova obrazu?

Úloha 3. Obraz kanonické báze:

Jak vypadá Fourierův obraz jednotkového vektoru e_i , tedy vektoru který má na i-té pozici jedničku a všude jinde 0?

Úloha 4. Inverz kanonické báze:

Pro každé i najděte vektor, jehož Fourierovým obrazem je e_i . Jak z toho sestrojit inverzní Fourierův obraz?

Úloha 5. DFT reálného vektoru:

Ukažte, že Fourierův obraz y reálného vektoru x je antisymetrický, tedy $y_i =$ $\overline{\mathbf{y}_{n-j}}$ pro všechny indexy j.

Jaký pak bude Fourierův obraz antisymetrického vektoru?

Úloha 6. Odmocniny z jedničky a volba ω :

Kolik existuje n-tých odmocnin jedničky a jak vypadají? Proč jiná čísla nejsou n-tou odmocninou z jedničky? Které z n-tých odmocnin jedničky jsou primitivní?

Ve Fourierově transformaci máme volnost v tom, jakou primitivní odmocninu ω si vybereme. Ukažte, že Fourierovy obrazy pro různé volby ω se liší pouze pořadím složek.

Úloha 7. Bonus pro milovníky komplexních čísel:

Spočítejte druhou mocninu polynomu $x^3 - x^2 - 2x + 2$ pomocí DFT, tedy $(x^3 - x^2 - 2x + 2)^2$.