# **Big Data Analytics Project**

**Weather Long-term Time Series Forecasting** 

#### Introduction

This project focuses on conducting a comprehensive Big Data Analysis (BDA) of a time-series weather dataset. The primary objective is to leverage the scalability and efficiency of PySpark to manage and analyze large volumes of environmental data, moving beyond traditional statistical tools.

## **Project Objectives**

- 1. **Process Big Data at Scale:** Use PySpark to efficiently ingest, clean, and process the large volume of time-series weather records.
- 2. **Explore Data & Quality:** Analyze key features (Temperature, Pressure, etc.) and identify critical data quality issues, such as the -9999 placeholders.
- 3. **Establish Baseline Prediction:** Build and train a Linear Regression model to forecast a target variable (like Air Temperature) as a foundation for future modeling.
- 4. **Visualize and Summarize:** Generate descriptive visualizations, such as the Temperature Distribution chart, to derive clear, non-technical insights from the data.

## Methodology

- 1. **PySpark Setup:** Loaded data using PySpark (v4.0.1) and pre-processed features (e.g., converted date to timestamp).
- 2. **Feature Preparation:** Used VectorAssembler to consolidate all weather variables into the format required for the machine learning model.
- 3. **Baseline Modeling:** Trained a Linear Regression model to create the initial predictive forecast for Air Temperature (T).
- 4. **Results:** Generated a Temperature Distribution chart for analysis and exported the final predictions to CSV.

#### Temperature Distribution (Simulated from BDA.ipynb Logic)



## Analysis and Insights

- 1. The Linear Regression model successfully established a predictive relationship between atmospheric variables and Air Temperature.
- 2. The Temperature Distribution Pie Chart provides the clearest descriptive insight.
- 3. Analysis revealed the pervasive use of -9999 as a placeholder for missing data in key columns like Wind Velocity (wv).
- 4. The current output (final\\_weather\\_predictions.csv) represents a solid baseline model.

#### Conclusion

This Big Data Analytics project successfully established a complete pipeline using PySpark (v4.0.1) for the ingestion, processing, and preliminary predictive analysis of time-series weather data. We achieved a critical milestone by training a baseline Linear Regression model. This foundational work demonstrates a scalable framework, and the next logical step is to immediately address data quality through imputation and then advance the modeling to use specialized time-series forecasting models.