

Report DAAK70-78-C-0044

DC TEST RIG PROPULSION MOTOR

Sylvain Garnett Bogue Electric Manufacturing Co. 100 Pennsylvania Avenue Paterson, New Jersey 07509 D D C DECEMBER OCT 12 1979 NEGET V GU

May 1979

Final Engineering Report

Approved for Public Release; Distribution Unlimited

FILE COPY

Prepared for

USA MERADCOM, DRDME-PE-1 Fort Belvoir, Virginia 22060

USA MERADCOM, DRDME-EA Electrical Equipment Division Fort Belvoir, Virginia 22060 Attn: E. Reimers

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Polared) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER DAAK70-78-C-0044 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) FINAL rest. DC TEST RIG PROPULSION MOTOR . 8. CONTRACT OR GRANT NUMBER(s) 7. AUTHOR(s) SYLVAIN GARNETT DAAK70-78-C-0044 new PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS BOGUE ELECTRIC MANUFACTURING CO. 100 PENNSYLVANIA AVENUE PATERSON, NEW JERSEY 07509 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS MAY 1979 USA MERADCOM, DRDME-PE-1 NUMBER OF PAGES FORT BELVOIR, VIRGINIA 22060 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Centrolling Office) USA MERADCOM, DRDME-EA UNCLASSIFIED ELECTRICAL EQUIPMENT DIVISION 15a. DECLASSIFICATION/DOWNGRADING FORT BELVOIR, VIRGINIA 22060 ATTN: E. REIMERS 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and Identify by block number) DC MOTOR, SERIES FIELD WITH AUX. SHUNT FIELD; ELECTRIC PROPULSION FOR DC CHOPPER CONTROL. This projects mission was o 20. ABSTRACT (Continue on reverse side if necessary and identity by block number DESIGN, CONSTRUCT AND EVALUATE TWO HIGH SPEED DC PROPULSION MOTORS WITH A NOMINAL RATING OF 10HP @ 6000 RPM AND AN INTERMITTENT RATING OF 20HP @ 3000 RPM AT A MOTOR WEIGHT OF 95LBS/UNIT. THE MOTORS ARE DESIGNED FOR USE IN CONJUNCTION WITH EITHER A CONVENTIONAL DC CHOPPER MOTOR CON-TROLLER, OR AS A DUAL MOTOR DRIVE IN CONJUNCTION WITH A TWO PHASE, SEQUENTIALLY SWITCHED DC CHOPPER MOTOR CONTROLLER. THE AUXILIARY SHUNT FIELD IS USED TO SYNCHRONIZE SPEED BETWEEN THE TWO MOTORS AND TO ASSIST THE SERIES FIELD DURING THE REGENERATIVE BRAKE MODE DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) SUMMARY.

This report describes the design, construction, and evaluation of two high speed D.C. motors for a propulsion application with a nominal rating of 10HP at 6000RPM and an intermittent rating of 20HP at 3000RPM.

The objective of the work done by Bogue Electric Manufacturing Company was to design, construct, and test two D.C. propulsion motors which were to be compatible with a multiphase D.C. chopper-motor drive, described in the IEEE Transactions On Industry Applications, Vol. IA-8, No: 2, March/April 1972, pp 136-144, entitled "Design Analysis of Multiphase DC Chopper Motor Drive".

The motors also had to interface with an existing electric propulsion test rig design, originated by Barber-Nichols Engineering Company, Arvada, Colorado, which limited its envelope dimensions.

NTIS GRA&I DDC TAB	P
Unannounced	H
Justification_	
By	
Distribution/	
Availability	Todos
at special	

TABLE OF CONTENTS	PAGE
Summary	1
Introduction	3
General Discussion	4
Summary of Design	5
Discussion	13
Analysis of comparable weight and cost of a single motor rated 20HP versus two 10HP motors	.14
Weight of Parts	15
Alternative Concept Motors	16
LIST OF ILLUSTRATIONS	FIG.
Control Schematic	1
Motor Characteristics	2,3,4,5,6,7,8,9,10, 11,12
Inductance Measurements	13,14
Heat Run	15
Maximum HP vs. Time	16
LIST OF DRAWINGS	
Layout	L-1193
Connection Diagram	B-43079
Rotor Lamination	B-43080
Pole Lamination	A-2300
Brush	A-54305
DISTRIBUTION LIST	PAGE 33-34

INTRODUCTION.

DESIGN OF A 10HP, 6000RPM, CONTINUOUS 20HP, 3000RPM INTERMITTENT DUTY TRACTION MOTOR.

The design is based on a compromise between good efficiency and low weight-two conflicting requirements. Any reduction in electro-magnetic weight causes a decrease in efficiency and any increase in efficiency increases weight.

The electric loading and current densities are based on values extrapolated from previous designs of similar units. As it turned out after testing, the limit in the design was not temperature or efficiency but commutation. Considerable difficulty was experienced due to the fact that only two commutating poles were used in order to save weight. We will discuss this in greater detail in a later section of this report.

GENERAL DISCUSSION.

The solid state control methodology utilized in conjunction with these motors requires that each motor contains a series field which is supplanted by an auxiliary shunt field. The auxiliary shunt field assists in the recuperation of energy during braking, whereby the series field usually remains in circuit and returns energy to the source during the freewheeling operating mode of the controller. In addition, the auxiliary shunt field controls speed balance between the two motors and provides steering angle control if necessary.

As can be seen on the motor interconnection diagram in Fig. 1. the two armatures are connected in series, whereas the series fields of the respective motors are connected in parallel. By sequentially switching the paralleled series fields, the armature current becomes twice the field current.

The special requirement for this motor is to provide a series field winding which furnishes 85 to 100 percent of the required ampere-turns with only half the armature current, while the remaining requirements for magnetic flux excitation is provided by the shunt field. Since it was necessary to pretest this motor as a conventional series motor, the series field was arranged in two parallel circuits making it possible to operate in a series connection under electronic control or in parallel connection as a conventional series motor.

Another requirement is to minimize its weight. The nominal rating of the motor is 10HP at 6000RPM with an intermittent rating of 20HP at 3000RPM. A goal of 90 lbs. was set for this motor by extrapolating from similar motors built in the past. Because of the relatively low voltage of this motor the currents are high and require a large commutator, a large brush, rigging, and heavy lead wires.

We had a choice between a 4 pole or a 6 pole configuration. For reasons of economy, we adopted the 4 pole design. To reduce weight, we provided only two interpoles which also provided space to accommodate the large number of leads. We also reduced weight by fabricating the end brackets of aluminum and the brush-holders of thin gauge brass.

We investigated the possibility of using Vanadium-Permendur for the magnetic structure but found the cost prohibitive for the small reduction in weight that could be realized.

Vanadium-Permendur contains 50% cobalt and the price of cobalt has risen from \$5 a pound to \$50 a pound during the last four years. It is also a material that must be imported from unreliable sources providing another reason to avoid its use.

SUMMARY OF DESIGN

THE DESIGN IS BASED ON THE PEAK RATING OF 20HP, 3000RPM, 48 VOLTS.

Armature:

Outside Diameter	$D_a = 5.000 \text{ in. } (12.7 \text{cm})$
Inside Diameter	$D_i = 1.500 \text{ in. } (3.81 \text{cm})$
Length of Stack	$L_a = 4.00 \text{ in. } (10.16 \text{cm})$
Number of Slots	S = 45
Number of Poles	P = 4
Slots per Pole Pitch	S/P= 11.25
Type of Winding	Simplex Wave
Number of Coils	45
Turns per Coil	1
Number of Conductors	90
Conductors per Slot	2
Total Flux in the Gap	2.69 x 10 ⁶ lines
Distribution Constant	0.66
Magnetic Loading	Q = 1146 AN/in (451 AN/cm)
Flux per Pole	4.44 x 10 ⁵ lines
Conductors	2 No. 10 AWG Square (2.59 x 2.59mm
Copper Area	.0197 in. ² (.127cm ²)
Insulation	Class H
Current Density at 400 Amps	$10152A/in.^{2}$ $(1574A/cm^{2})$
Resistance at 25°C	.007 Ohms

Frequency of Armature Current 100 Hertz

SUMMARY OF DESIGN-CONTINUED

Amp Turns per Pole

Material of Laminations

Rotating Mass Inertia

Poles and Yoke:

Material-Main Poles

Material-Interpoles

Material-Yoke (Frame)

Pole Height

Pole Length

Pole Width

Interpole Dimensions

Interpole Shoe

Pole Arc

Main Pole Air Gap

Outside Diameter of Yoke

Inside Diameter of Yoke

Length of Yoke

Magnetic Section of Pole

Magnetic Section of Yoke

Pole Leakage Constant

2250

M-19, #29Ga. (.035cm)

0.605 Lb.Ft.² (255Kgcm²)

M-19, #29Ga (.035cm)

Low Carbon Steel

Low Carbon Steel

1.250 in. (3.175cm)

4.00 in. (10.16cm)

1.25 in. (3.175cm)

.5 x 3.5 in. (1.27 x 8.89cm)

.625 in. (1.58cm)

60°

0.071 in. (0.180cm)

8.750 in. (22.2cm)

7.640 in. (19.4cm)

5.500 in. (13.97cm)

4.75 in.² (30.63cm²)

5.95 in. 2 (38.37cm²)

1.2

Stationary Windings:

		SERIES	INTERPOLE	SHUNT
Size of Conductor AWG (cm)		#7SQ (.365)	#7SQ (.365)	#24 (.051)
Conductor cross section (in ²) (cm ²)		.0199	.0199	.000317
Maximum current/section (A)		210	210	2.7
Current density (A/in ²) (A/cm ²)		10552 (1636)	10552 (1636)	8517 (1320)
Turns per pole		8	17	400
Resistance/section at 25°C	(ohm)	.01	.007	40
Resistance/section at $125^{\circ}\mathrm{C}$	(ohm)	.014	.01	56
Voltage Drop	(V)	2.94	2.06	108
Watts Loss	(W)	1180	825	292

Commutator and Brushes:

Diameter	4 in. (10.16cm)
Length of brush surface	2.5 in. (6.35cm)
Number of bars	45
Bar pitch	.279 in. (.708cm)
Number of brushes	8
Size of brush	.375 X 1.00 in. (.952 X 2.54cm)
Current density (At 400 AMP)	266A/in. ² (41 A/cm ²)

SUMMARY OF COMMUTATION

Bars covered by Brush	1.342
Commutating Zone on Armature Surface	0.73 in. (1.85cm)
Width of Neutral Zone	1.335 in. (3.39cm)
Width of Interpole Shoe	0.625 in. (1.59cm)
Gap of Interpole	.045 in. (114cm)
Commutating Zone in % of Neutral	54%
Reactance Volts at 400A	0.7 volts
Interpole Gap Density	12732 L/in. ² (1974 Gausses)
Amp. Turns for Gap Density	148
Armature Reaction (At 400 AMP)	2250 AT/Pole
Total Amp Turns Required (Approx. 125%)	3400 AT/Pole
Turns per Int. Pole (2 Par. Circ.)	17

LOSS PROFILE AT OVERLOAD.

Resistance drop at overload (at 420 AMPS	and 125°C)	(25°C)
Armature IR .008 X 1.4 X 420 =	4.70 V	3.36 V
Series Field IR .005 X 1.4 X 420 =	2.94 V	2.10 V
Interpole IR .0035 X 1.4 X 420 =	2.06 V	1.47 V
Brush Drop (Copper Graphite) =	1.00 V	.71 V
	10.70 V	7.64 V
Losses (at 20HP, 3000 RPM)		
Copper and Brush Contact 10.70 Volts X 420 AMPS	4495 Watts	3209 W
Brush Friction	95 Watts	95 W
Iron Losses	160 Watts	160 W
Friction + Windage	90 Watts	90 W
Stray Load	400 Watts	400 W
	5240 Watts	3954 W

Efficiency = $\frac{14920}{14920 + 5240}$ = .74 (at 125°C)

Efficiency = $\frac{14920}{14920 + 3954}$ = .79 (at 25°C)

Torque at 3000 RPM

$$T_D = \frac{7.04 \times 2.69 \times 10^6 \times 90 \times 420 \times .66}{2 \times 60 \times 10^8} = 39.4 \text{ LBS. Ft.}$$

$$= 53.4 \text{ N-m}$$

Required Torque = 35 LBS Ft. (47.46 N-m)

LOSS PROFILE AT RATED LOAD.

Full Load Resistance Drop (at 183 AMPS a	and 125°C)	(25 ^o c)
Armature IR	2.04 V	1.46 V
Series IR	1.28 V	.91 V
Interpole IR	0.89 V	.64 V
Brush Drop (Copper Graphite) TOTAL	0.50 V	.50 V
TOTAL	4.71 V	3.51 V
Full Load Losses (at 133 AMPS, 6000RPM)		
Copper and Brush Contact 4.71 X 183	862 Watts	642 W
Brush Friction	95 Watts	95 W
Iron Losses	50 Watts	50 W
Windage + Friction	200 Watts	200 W
Stray Load	100 Watts	100 W
	1307 Watts	1087 W

Efficiency =
$$\frac{7460}{7460 + 1307} \approx .85 \text{ (at } 125^{\circ}\text{C)}$$

Efficiency =
$$\frac{7460}{7460 + 1087} = .87 \text{ (at } 25^{\circ}\text{C)}$$

Torque at 6000 RPM

$$T_{d} = \frac{7.04 \times 1.47 \times 10^{6} \times 90 \times 183 \times .66}{2 \times 60 \times 10^{8}} = 9.37 \text{ LBS Ft.}$$

$$= 12.71 \text{ N-m}$$

MAGNETIC CIRCUIT AT 3000RPM, 20HP

	DENSIT	Y	LE	LENGTH AT/IN OERSTED		AT/IN OERSTED	
AREA	LINES/IN ²	GAUSSES	IN	N CM			
GAP	42500	6589	.071	.180	wa 750 Mil wa		1131
теетн	102000	15814	.600	1.524	85	42	51
ARM. YOKE	80000	12403	1,500	3.810	10	4,95	15
POLE	106000	16434	1.250	3.175	125	61.84	159
FRAME	90000	13953	3.22	8.179	40	19.79	129

TOTAL = 1485

BECAUSE OF ARMATURE CROSS MAGNETIZATION THE ACTUAL TOTAL AT/POLE ARE 1600.

MAGNETIC CIRCUIT AT 6000RPM, 10HP

	DENSITY		LE	LENGTH		OERSTED	AT/POLE
AREA	LINES/in ²	GAUSSES	IN	СМ			
GAP	23200	3596	.071	.180			609
теетн	55300	8573	.600	1.52	3.5	1.73	2.1
ARM. YOKE	26000	4031	1.50	3.81	1.5	0.74	2.3
POLE	57600	8930	1.25	3.18	4	1.98	5.0
FRAME	47200	7317	3.22	8.18	10	4.95	32.2
			· · · · · · · · · · · · · · · · · · ·			TOTAL =	650.6

BECAUSE OF CROSS MAGNETIZATION THE ACTUAL AT/POLE ARE 732.

DISCUSSION.

The purchase description for this motor specifies two points for the Speed - Torque Characteristic. 10HP at 6000RPM and 20HP at 3000RPM. By careful choice of saturation levels, air-gap and series field turns we were able to accommodate both points at the same voltage level. This relegates the shunt field to balancing the speed of the two motors, to angle control and intermittent regenerative braking. There is no need any more to maintain a large shunt field on the low speed end in order to reach top speed by weakening this field as was envisioned in the Interim Report.

As mentioned previously we encountered some difficulty with commutation. In order to save weight, this motor has only two commutating poles. Therefore, the commutating pole flux has to return through the main pole. But the main pole becomes highly saturated at overloads and cannot accommodate the additional interpole flux. For proper operation of the interpoles it is necessary to maintain linearity between flux and current which cannot be accomplished while the main flux is subject to large fluxtuations. Therefore, we had to compromise in the calibration of the interpoles in order to achieve a tolerable degree of commutation.

As a further consequence of our difficulties with commutation we could not achieve the efficiency during overload that was predicted in the interim report. This is due to parasitic torques in the conductors undergoing commutation and is buried in the loss profile under the heading of Stray Load Losses. Nevertheless, the efficiency is still as good as on machines weighing much more.

In order to further improve the efficiency of the motor under solid state control, one could laminate the entire field structure of the motor. This may produce a measurable reduction in iron losses. The additional cost of the laminated motor would have to be justified by the possible energy savings over the life of the motor. This is a subject that is beyond the scope of this present study.

The airflow was maintained at 200 CFM during our test program. The pressure drop at this flow rate is 1.0 in. of water.

ANALYSIS OF COMPARABLE WEIGHT AND COST OF A SINGLE MOTOR RATED 20HP VS. TWO 10HP MOTORS.

We assume in this analysis that the 10HP motors are 48 Volt motors operating in a series connection and that the 20HP motor is rated at 96 Volt. This keeps the current in both ratings the same and permits us to use the same size commutators, brush-riggings, and cables. Based on the above assumptions the 10HP motor will weigh 95 LBS. and the 20HP motor will weigh 163 LBS.

A Cost Breakdown for these motors based on 1979 Dollars follows:

QUANTITY	10HP	20НР
100	\$ 1250.00	\$ 1800.00
1000	\$ 1060.00	\$ 1530.00
10000	\$ 875.00	\$ 1260.00

Weight of Parts:

Bearing Bracket Ext. End Aluminum	3.69 lbs.	(1.67Kg)
Bearing Bracket Comm. End Aluminum	5.57 lbs.	(2.52Kg)
Frame Ring Steel	21.72 lbs.	(9.85Kg)
4 Main Poles	8.57 lbs.	(3.89Kg)
2 Int. Poles	1,25 lbs.	(0.57Kg)
M.P. Coils	3.7 lbs.	(1.68Kg)
I.P. Coils	2,75 lbs.	(1.24Kg)
Armature Coils	5,00 lbs.	(2.27Kg)
Armature Laminations	16,10 lbs.	(7.30Kg)
Commutator	9,35 lbs.	(4.24Kg)
Cables	2,00 lbs.	(0.91Kg)
Shaft	6,31 lbs.	(2.86Kg)
2 Bearings	1,00 16.	(0.45Kg)
Brush Holders	1,12 lbs.	(0.51Kg)
Brushes	,45 lb.	(0.20Kg)
Rocker Ring	.24 lb.	(0.11Kg)
Cover - Ext. End	.91 lb.	(0.41Kg)
Bearing Inserts	.36 16.	(0.16Kg)
Cover Commutator End	3.00 lbs.	(1.36Kg)
Hardware	1,91 lbs.	(0.86Kg)

TOTAL 95 1bs. 43 Kg

ALTERNATIVE CONCEPT MOTORS .

In discussions with representative of MERADCOM it was agreed that endurance testing and environmental testing as prescribed by Par. 4.4 and Par. 4.5 should be cancelled and that instead two more motors be built.

The original motors had radial brushes in order to insure complete by-directional capability. A radial brush is not very stable and under certain conditions, especially under very high speed, may cause chatter with simultaneous arcing.

Brushes in trailing configuration or reaction type brushes are much more immune to chatter but have one disadvantage; they are unidirectional.

In view of the fact that propulsion motors operate in one direction most of the time, we will take advantage of this characteristic and build these motors with trailing type brushholders.

The original motors had only 2 interpoles which caused some difficulties with the interpole flux due to saturation of the main poles. Therefore it was decided to incorporate 4 interpoles in the new motors.

F.S. = FULL SPEED CONTACTOR

FIGURE 1

Patent Applied
USAMERADCOM, Elec Power Lal
Electrical Equipment Divisi
Fort Belvoir, Virginia 220

46 1323

* Note to the TOTE INCH TX IS THESE

20.

*ELFFEL & ESSEM CO 1, Inch, 5th lines accepted and a c.s.

23.

REGENERATIVE BRAKING WITH SERIES FIELD ONLY

RPM1=3428

I,	1 V2	Is	VE	TOCAUE	PGEN	PINDUT	EFFICIENC
A	V	A	V	N-m	IL VL	(359 × Tq) + VFIF	Ps/Pan
				0.81	0	290	0
50	8.8	31	.62	2.17	440	798	.55
100	18.3	70	1.40	6.37	1830	2385	.77
150	27.4	118	2.36	12.88	4110	4902	.84
200	36.5	196	3.92	22.64	7300	8896	.82

COMPUTATION OF INDUCTANCES

IAC	Ioc	V,		V	2	V	' 3	V.	1	4	12	43	24
		AC	DC	AC	DC	AC	DC	AC	DC	WH	MH	MH	MI
17.5	0	1.15	. 0	1.15	0	1.5	0	3.8	0	.17	.17	.22	.55
17.5	100	1.05	1.80	1.05	1.80	1.4	1.05	3.5	4.65	.15	.15	.21	.51
17.5	200	1.00	3.10	1.00	3.10	1.3	2.10	3,3	8.30	.145	.145	.19	.43
17.5	400	0.95	5.85	0.95	5.85	1.2	4.20	3.1	15.90	.14	.14	.18	.46

F19.13

Tester		Act (Fig.		1	48	48	48	48	48	2 48	48	h.I.d	V	E in	0	69	▲ QC-7896/I	Applicable specification			Description of Equipment:	TEST	BOGUE ELECTRIC MFG. CO.
					183	183	183	183	183	183	183	183	A	ı I in				tion		48 V,	ment: 10 HP,	TEST DATA	E ELECTRIC MFG. CO
Govern		STAT	AIR		6100	6100	6100	6100	6100	6100	6100	6100		RPM	G	F	m	0		183 AMPS	6000		Contract or Order No.
Government Inspector:		IC PRES	FLOW:		11.86	11.86	11.86	11.86	11.86	11.86	11.86	11.86	N-m	Torque						S.	RPM		Z of or
ir:		SURE DROP	200 CFM																			7896	Job or Nodel No.
		= 1 in			61	61	61	60	59	58	55	41	Main Pole	1						4.8	Spec.		Serial No.
		ich H ₂ 0			63	63	63	63	63	62	58	42	Main	THERMOCOUP					Air F	Temper	•		
					54	54	54	54	52	52	49	40	Inter Pole	COUPLES:					Flow	ature	Paragraph	HEAT RUN	Type of Test
					67	67	67	67	68	65	63	61	Brush	0 C						Rise			
-					27	27	27	27	26	26	26	25	Ambie	5		-	-				No. Sp	6/6/79	D _a
						+	-						-								Spec.		De p
					10:55	10:45	10:35	10:25	10:15	10:00	9:50	9:40		Time							Paragraph	15	
								3,136	-												Zz		Page

		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<u></u>		A AIR FLOW	g v
	S MOSE	MRXMUNE: HF AT 200 C.FM	MINUTES
:	BOS VI	14 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	8
•	8.		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
359-61 -00, matrices -00, matrices	765,		2 9 9
SEMI LOGARITHMIC	3		m T
C	2		3
•	1	HP -20 -15	ō 7
		F16. 16	32.

THIS DOCUMENT AND MY CONTENTS ARE THE PROPERTY OF POOL RECETTION MANUFACTURING COMPARY.

AMERIT FOR USE DIDBESSLY CHARTED, IN WINTING, TO ITS MEMBERS, VENDER AND THE UNITED STATES GOVERNMENT.

THE BOOME ELECTRIC MARRIAGE OF WARD COMPARY OF THE BOOM REPRODUCTION MIGHTS THERETO. THESE CONTENTS SHALL HOT OF USED DUPLICATED OR DISCLOSED TO AN OUTSIDE PARTY IN WHOLE OR IN PART WITHOUT WRITTEN PERMISSION OF THE LOWPARY.

] pea	estration.				林
			and a	全 樣	To A To A	
3		OF ARE INCET. SHOW ALL LEADS	pu	3 J.	9.978	6
C		DELETED COIL SUPPORT	A.S.		11-1-78	Ken
D	39762	ADDED METRIC EQUIUALENTS	N		5/2/19	K

*

9.525MM DIA 8 HOLES
EQUALLY SPACED
ON G.500 DIA B.C.
165.100 MM

- 222

15.63 397.00 MM

BRUSH SIZE .875 L6 x 1.000 W x .875 TH. 22.225 MM 25,400 MM 9.525 MM

RADIAL BALL BEARING

THIS END COVER TUBE CAN BE RO

THIS END COVER WITH AIR INLET TUBE CAN BE ROTATED IN STEPS OF 90°

45 BAR COMMUTATOR
BAR SIZE - 1279
7.087 MM

7-A

- AIR IN

NA SEALS 6. 225 (FAG) 2 # 4 AWG LEADS

> ALL DIMENSIONS ABOVE LINE ARE IN INCHES & BELOW LINE IN MILLIMETERS.

2 THERMAL SWITCHES ON INTERPOLES TO CLOSE AT 200 F AND 350 F 192.2 C

13 RATING

10 HP 6000 RPM 48VDC CONTINUOUS

WEIGHT CALCULATED 90 LBS

Mat Daed	ON 78	96	BOC	HE EL	ECTRIC NEW JER	Mrg.	CQ.
	ir.	DATE		ALERZON'	NEW TEN		
morf	16V	1/0/70		A may be discovered			10-47
RANK ""				AYO	14.4		
HECKED	12						
SHEER	D.A.	THY	LJX	- N	COL	No. of the	
POROVED .	The second		100	THE RES	N. A. Wales	A LIVE	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
	The state of	Series Series	SIZE CONTRACTOR	COT AND THE			
			OZ	BEO #			
				PART AND	· · · · · · · · · · · · · · · · · · ·		
	" I'm maket	The second of the Part	er adoms the holds.	The same of the same	serpentings but a many a surprise	بمرار بيورتون	

THIS DOCUMENT AND ITS CONTENTS ARE THE PROPERTY OF BOGUE ELECTRIC MANUFACTURING COMPANY.

ERCEPT FOR USE EXPRESSLY GRANTED. IN WRITING. TO ITS VENDORS VENDEE AND THE UNITED STATES GOVERNMENT. THE BOGUE ELECTRIC MANUFACTURING COMPANY RESERVES ALL PROPRIETARY DESIGN. USE. MANUFACTURING. AND REPRODUCTION RIGHTS THERETO. THESE CONTENTS SHALL NOT BE USED. DUPLICATED OR DISCLOSED TO AN OUTSIDE PARTY IN WHOLE OR IN PART WITHOUT WRITTEN PERMISSION OF THE COMPANY.

DATE OF ISSUE

SEP 28 1979

ROTATION VIEWED FROM COMMUTATOR

TO WATER

THIS DOCUMENT AND ITS CONTENTS ARE THE PROPERTY OF BOGUE ELECTRIC MANUFACTURING COMPANY. EXCEPT FOR USE EXPRESSLY GRANTED. IN WRITING. TO ITS VENDORS, VENDEE AND THE UNITED STATES GOVERNMENT. THE BOGUE ELECTRIC MANUFACTURING COMPANY RESERVES ALL PROPRETARY DESIGN. USE, MANUFACTURING, AND REPRODUCTION RIGHTS THERETO, THESE CONTENTS SHALL NOT BE USED. DUPLICATED OR DISCLOSED TO AN OUTSIDE PARTY IN WHOLE OR IN PART WITHOUT WRITTEN PERMISSION OF THE COMPANY.

TOLE ANGE 2 PL 3 PL

4

B

REVISIONS

D.C.N. ZONE LTR DESCRIPTION DRFT DATE ENG APPRVD

45 SLCTS & 8°.00' WAS 49 SWOTS

A 5020 A 5020 METRIC DIMENSIONS THE 9/12/79 St. MS

REVISIONS

DRFT DATE ENG APPRVD

45 SLCTS & 8°.00' WAS 49 SWOTS

A 5020 A 5020 METRIC DIMENSIONS

REVISIONS

DRFT DATE ENG APPRVD

45 SLCTS & 8°.00' WAS 49 SWOTS

A 5020 A 5020 METRIC DIMENSIONS

REVISIONS

DRFT DATE ENG APPRVD

A 5020 FW 9/12/79 St. MS

A 5020 METRIC DIMENSIONS

REVISIONS

8°-00')

BLANKING DIE - A 2849 (206) SLOT DIE A 50655 (T-7682)

MATERIAL

PART 1- # 29 GA M. 19- CB STEEL . 356MM

DATE OF ISSUE

SEP 28 1979

BOGUE ELECTRIC MEG. CO

A MILLIMETERS

FIRST USED ON 7896 BOGUE ELECTRIC MFG. CO. PATERSON. NEW JERSEY, U.S.A. UNLESS OTHERWISE SPECIFIED DIMENSIONS, ARE IN INCHES TOLERANCES: FRACTIONS # ANGLES ± DATE PLACE DECIMALS ± ROTOR LAMINATION PLACE DECIMALS ± DRAWN CHECKED MATERIAL ENGINEER APPROVED SIZE CODE IDENT NO. DRAWING NO. B 43080 07860 SCALE

Distribution List

ADRESSEE	NUMBER
Department of Defense	
Technical Library DDR & E The Pentagon, Room 3E1039 Washington, DC 20301	1
Director, Technical Information Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209	1
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
Department of the Army	
Dr. Charles H. Church Chief, Advanced Concepts Team USADCSRDA, DAMA-ARZ The Pentagon, Room 3E-361 Washington, DC 20301	1
Director, Tank Automotive Science Laboratory ATTN: Colonel Herbert H. Dobbs USATARADCOM, DRDTA-RGT Warren, MI 48090	2
Department of Energy	
Mr. Edward Beyma Transportation Energy Conservation Division	5
Department of Energy 20 Massachusetts Avenue, NW Washington, DC 20545	
HCAMED ADCOM	
<u>USAMERADCOM</u>	
Commander ATTN: Special Assistant for R&D USAMERADCOM, DRDME-ZK Fort Belvoir, VA 22060	1

USAMERADCOM (Continued)

Commander: ATTN: Special Assistant for Materiel Assessment USAMERADCOM, DRDME-ZG Fort Belvoir, VA 22060	1
Commander ATTN: Office of Patent Counsel USAMERADCOM, DRDME-L Fort Belvoir, VA 22060	1
Commander Electrotechnology Laboratory USAMERADCOM, DRDME-E Fort Belvoir, VA 22060	1
Commander ATTN: Electrical Equipment Division USAMERADCOM, DRDME-EA Fort Belvoir, VA 22060	12
Commander ATTN: Technical Library USAMERADCOM, DRDME-WC Fort Belvoir, VA 22060	2