UFR des Sciences - Portail BST Licence 1º année

TD Physique —Optique

Université de Caen Normandie

TD 2

1 Lentilles minces.

1.1 Constructions diverses.

- 1. Construire l'image par une lentille mince, d'un objet étendu AB (segment de droite perpendiculaire à l'axe principal de la lentille). On étudiera tous les cas : (i) lentille convergente objet réel à gauche du foyer objet, objet réel à droite du foyer objet, sur le foyer objet, objet virtuel, objet à l'infini ... (ii) lentille divergente objet réel à gauche du foyer image, objet réel à droite du foyer image, sur le foyer image, objet virtuel, objet à l'infini Choisir une focale de 3 cm que la lentille soit divergente ou convergente.
- 2. Prédire la position et la taille de l'image à l'aide de la relation de conjugaison et de l'expression du grandissement.

1.2 Association de lentilles minces.

On suppose dans tout l'exercice que la lumière se propage de la gauche vers la droite. Soit une lentille mince convergente L_1 de distante focale $OF'_1 = 2$ cm et de centre O_1 . Un objet AB de hauteur 3 cm est placé à l'abscisse $O_1A = -4$ cm ; A est situé sur l'axe optique. La lentille L_1 donne de AB une image A_1B_1 .

- 3. Donner la relation de conjugaison qui s'applique dans le cas d'une lentille mince.
- 4. On cherche la position de l'image A_lB_1 . Pour ce faire, calculer la distance algébrique O_1A_l . Quelle est la nature de l'image obtenue ?
- 5. Déterminer le grandissement transversal et en déduire la taille de l'image. L'image est-elle droite ou renversée ?
- 6. Construire l'image A₁B₁ de l'objet AB en traçant les trois rayons faisant intervenir le centre optique et les foyers de la lentille.

On place à droite de la lentille L_1 , à une distance de 12 cm, une lentille divergente L_2 de distance focale $O_2F_2 = -4$ cm, de centre optique O_2 . La lentille L_2 donne de A_1B_1 une image A_2B_2 .

- 7. Calculer la distance algébrique O₂A₁. A l'aide de la relation de conjugaison, déterminer la distance algébrique O₂A₂. En déduire la nature de l'objet A₁B₁ et de l'image A₂B₂.
- 8. Déterminer le grandissement γ_2 , puis le grandissement total des lentilles L_1 et L_2 . En déduire la taille de l'image finale de AB.
- 9. Poursuivre le dessin commencé précédemment en construisant l'image A₂B₂ de l'objet A₁B₁ en traçant les trois rayons faisant intervenir le centre optique et les foyers de la lentille L₂.

2 Dioptre sphérique.

Un dioptre sphérique convexe, convergent de 60 D, sépare l'air $(n_{air} = 1)$ d'un milieu dont l'indice de réfraction est 1,353.

- 10. Précisez la position des foyers objet et image de ce dioptre.
- 11. Précisez la position de l'image d'un objet positionné à 5 m devant le dioptre.
- 12. Précisez la position de l'image d'un objet positionné à 0,25 m devant le dioptre.
- 13. De combien la puissance doit augmenter pour maintenir l'image au même niveau que l'objet à 5 m (cas a) pour un objet à 25 cm (cas b).
- 14. Quelle est la taille de l'image d'un objet de 1,20 m de haut situé à une distance de 5 m devant le dioptre ?