Introduction to Algorithms Lecture 9

By: Darmen Kariboz

Asymptotic Notations

- Overview
- "Big O" notation
- "Omega" notation
- "Theta" notation
- General rules

Why should we care about Time Complexity?

Prime numbers

1.
$$i=2$$
 to $n-1$

2.
$$i=2$$
 to \sqrt{n}

Why should we care about Time Complexity?

Prime numbers

2.
$$i=2$$
 to \sqrt{n} ($\sqrt{n-1}$ times)

Why should we care about Time Complexity?

Prime numbers

2.
$$\sqrt{n}$$

How to analyze Time Complexity?

- Running time depends on:
- 1. Processor (single vs multi)
- 2. Read/write speed to memory
- 3. 32 bt vs 64 bit
- 4. Input

Model Machine

- Single processor
- 32 bit
- 1 unit time for arithmetical and logical operations
- 1 unit for assignment and return

- F1 > Sum of A and B
- F2 -> Sum of list
- F3 -> Sum of matrix

$$T = k$$

$$T = an + b$$

$$T = an^2 + bn + c$$

- F1 > Sum of A and B
- F2 -> Sum of list
- F3 -> Sum of matrix

$$T = k$$

$$T = an + b$$

$$T = an^2 + bn + c$$

Asymptotic Notation

- O notation: asymptotic "less than": f(n)=O(g(n)) implies: f(n) " \leq " g(n)
- Ω notation: asymptotic "greater than":
 - f(n) = Ω (g(n)) implies: f(n) "≥" g(n)
- Θ notation: asymptotic "equality":
 - $\neg f(n) = \Theta(g(n)) \text{ implies: } f(n) = g(n)$

Big-O Notation

- We say $f_A(n)=30n+8$ is order n, or O (n) It is, at most, roughly **proportional** to n.
- $f_B(n)=n^2+1$ is order n^2 , or O (n^2) . It is, at most, roughly **proportional** to n^2 .
- In general, any $O(n^2)$ function is <u>faster-growing</u> than any O(n) function.

Example

- $n^4 + 100n^2 + 10n + 50$
- $10n^3 + 2n^2$
- $n^3 n^2$
- constants

10

1273

Example

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- n^3 n^2 is $O(n^3)$
- constants

```
10 is O(1)
1273 is O(1)
```

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$

 \exists positive constants c and $n_{0,}$ such that $\forall n \geq n_{0,}$
we have $0 \leq f(n) \leq cg(n) \}$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of g(n).

g(n) is an asymptotic upper bound for f(n).

Examle

- $f(n) = 5n^2 + 2n + 1$
- $g(n) = n^2$
- $f(n) \le 8n^2$, c = 8 and $n_0 = 1$
- $f(n) = O(n^2)$

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n:

 $\Omega(g(n)) = \{f(n) :$ \exists positive constants c and n_0 , such that $\forall n \geq n_0$, we have $0 \leq cg(n) \leq f(n)$

Intuitively: Set of all functions whose rate of $f(n) = \Omega(g(n))$ for $f(n) = \Omega(g(n))$ higher figure as $\Omega(g(n))$ for $\Omega(g(n))$.

Examle

- $f(n) = 5n^2 + 2n + 1$
- $g(n) = n^2$
- $f(n) >= 5n^2$, c = 5 and $n_0 = 0$
- $f(n) = \Omega(n^2)$

Θ–notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

Examle

- $f(n) = 5n^2 + 2n + 1$
- $g(n) = n^2$
- $f(n) = n^2$, $c_1 = 5$, $c_2 = 8$ and $n_0 = 1$
- $f(n) = \Theta(n^2)$

General Rules

- We analyze time complexity for:
 - 1. Very large input size
 - 2. Worst case scenario
- Rules:
 - 1. Drop lower order terms
 - 2. Drop constants and multipliers

Examle

•
$$17n^4 + 3n^3 + 4n + 8$$

• 16n + log n

O(1) Constant Time:

- An algorithm is said to run in constant time if it requires the same amount of time regardless of the input size
- array: accessing any element
- fixed-size stack: push and pop methods
- fixed-size queue: enqueue and dequeue methods

O(n) Linear Time

- An algorithm is said to run in linear time if its time execution is directly proportional to the input size, i.e. time grows linearly as input size increases.
- Array: Linear Search, Traversing, Find minimum etc
- ArrayList: contains method
- Queue: contains method

O(log n) Logarithmic Time:

- An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of the input size
- Binary Search
- the task is to guess the value of a hidden number in an interval. Each time you make a guess, you are told whether your guess is too high or too low. Twenty questions game implies a strategy that uses your guess number to halve the interval size. This is an example of the general problem-solving method known as binary search

O(n log n) Logarithmic Time:

- Think of this as a combination
 of O(log(n)) and O(n). The nesting of the for
 loops help us obtain the O(n*log(n))
- QuickSort
- MergeSort
- HeapSort

O(n2) Quadratic Time

- An algorithm is said to run in quadratic time if its time execution is proportional to the square of the input size.
- Bubble Sort
- Selection Sort
- Insertion Sort

Quiz

Next week

• Lectures 6-9 (including both)