Восстановление траектории движения руки по видео

Владимиров Эдуард Анатольевич

Московский физико-технический институт

Курс: Моя первая научная статья Эксперт: Р. В. Исаченко Консультанты: А. Д. Курдюкова

2022

Восстановление траектории

Задача

Объединение методов канонического корреляционного анализа и метода Сугихары.

Проблема

Построение скрытого пространства по временному ряду и выбор функции согласования латентных проекций

Решение

Обучение автоэнкодеров и использование меры наличия причинно-следственной связи в функции согласования.

Методы понижения размерности и метод Сугихары

$$\begin{array}{ccc}
X & f & Y \\
 & f & Y \\$$

Статьи по теме

- 1. George Sugihara and Robert M May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268):734–741, 1990.
- 2. Farukh Yur'evich Yaushev, Roman Vladimirovich Isachenko, and Vadim Strijov. Concordant models for latent space projections in forecasting. Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 31(1):4–16, 2021.

Метод Сугихары (ССМ)

Траекторная матрица

$$\mathbf{H}_{x} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n-N+1} \\ x_{2} & x_{3} & \dots & x_{n-N+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N} & x_{N+1} & \dots & x_{n} \end{bmatrix} = [x^{1}, \dots, x^{n-N+1}]$$

Определение отображения φ между траекторными пространствами

$$\varphi: x^0 \mapsto \widehat{y^0} = \sum_{i=1}^k w_i y^{t_i}, \quad w_i = \frac{u_i}{\sum_{j=1}^k u_j}, \quad u_i = \exp(-||x^0 - x^{t_i}||).$$

Метрика связанности временных рядов

$$Score_{X \to Y} = Corr(\varphi(x^{n-N+1}), y^{n-N+1})$$

Deep PLS

Consistency:
$$\mathcal{L}_{\mathsf{cons}}(T, U) = \frac{1}{1 + \left(\frac{1}{n} \operatorname{tr}(U_{\mathsf{centered}}^\mathsf{T} T_{\mathsf{centered}})\right)^2}$$

Recovering: $\mathcal{L}_{\mathsf{recov}}(X, \hat{X}) = ||X - \hat{X}||_2^2$, where $\hat{X} = \varphi_{\mathsf{dec}}(\varphi_{\mathsf{enc}}(X))$
Loss function: $\mathcal{L} = \lambda_1 \mathcal{L}_{\mathsf{recov}}(X, \hat{X}) + \lambda_2 \mathcal{L}_{\mathsf{recov}}(Y, \hat{Y}) + \lambda_3 \mathcal{L}_{\mathsf{cons}}(T, U)$

PLS-CCM

Feature consistency:
$$\mathcal{L}_{fc}(T, U) = \mathcal{L}_{cons}(T, U)$$

Object consistency: $\mathcal{L}_{oc}(X, Y, T, U) = (CCM_{XY} - CCM_{TU})^2$

Loss function:
$$\mathcal{L} = \lambda_1 \mathcal{L}_{recov}(X, \hat{X}) + \lambda_2 \mathcal{L}_{recov}(Y, \hat{Y}) +$$

 $+ \lambda_3 \mathcal{L}_{fc}(T, U) + \lambda_4 \mathcal{L}_{oc}(X, Y, T, U)$

Вычислительный эксперимент

Цель

Сравнение различных стратегий снижения размерности пространства.

Результат работы alphapose

Данные видео-кейпоинтов

Анализ ошибки

Таблица: Сравнение ошибки предсказательной модели в траекторном пространстве и в его подпространстве

	acc_z	асс_у	acc_x	gyr_z	gyr_y	gyr_x
space	1.053 ± 2.223	0.401 \pm 0.833	0.483 \pm 0.825	0.084 ± 0.537	0.090 ± 0.094	0.063 ± 0.295
subspace	0.315 ± 0.461	0.043 \pm 0.051	0.150 ± 0.177	0.001 ± 0.001	0.015 \pm 0.031	0.001 \pm 0.003

Таблица: Сравнение различных методов снижения размерности

	Метод			
		PLS-AE	PLS-CCM	PLS
Це.	левой признак			
cyclic	acc z	4.087	5.826	4.013
	acc y	1.069	3.947	2.725
	acc x	4.113	3.257	4.358
	gyr z	0.949	1.074	2.067
	gyr y	3.462	4.193	1.401
	gyr ×	1.148	0.511	2.671
chaotic	acc z	35.675	32.448	25.588
	acc y	15.537	15.564	7.540
	acc x	36.388	32.363	38.208
	gyr z	25.892	12.686	6.574
	gyr y	10.286	17.241	3.165
	gyr_x	12.907	29.840	3.941

Заключение

- 1. Предложен метод согласованного снижения размерности, объединяющий в себе методы PLS и Сугихары
- 2. Проведён вычислительный эксперимент на данных устройств и видеоряда
- 3. Получено, что использование данных из видео повышает качество прогнозирования
- 4. Показано, что прогностическая модель менее устойчива в случае, когда та применяется в траекторном пространстве