MODEL FITTING II

Prof. Alexander Huth 9/21/2017

RECAP

* Linear regression, L2 loss (minimizing squared error)

RECAP

- * Regularization
 - * Prior
 - * Penalty
 - * Geometry / ad hoc (early stopping)

RECAP

- * Families of regularized models
 - * L2 / ridge / grad. descent w/ early stopping
 - * L1 / LASSO / coord. descent w/ early stopping
 - * L0 / feature selection

- * y = output of a neuron that you are measuring
- * x = how many times per second the screen
 flashes

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

beta

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

beta

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ $\beta^2 + \beta^2 + \beta^2$

EXAMPLE

(as penalty)

L1 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda |\beta|$$
 (as penalty)

(as penalty)

L1 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda |\beta|$$
 (as penalty)

LASSO

- * Laplacian prior on beta_i
- * L1 penalty on beta
- * Coordinate descent w/ early stopping

LASS0

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_1 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ [||Y - X\beta||_2^2 + \lambda ||\beta||_1]$$
 Error or loss penalty

LASS0

- * No closed form solution
- * Solved via coordinate descent, LARS (least-angle regression) or other methods
- * Sssslllllooooowwwww.....

LASSO

h/t h/t h/t h/t <a href="https://onlinecourses.gov.psu.edu/stat857/node/stat857/node/stat857/

OTHER METHODS

- * Neural networks
- * Random forests
- * Feature selection (~L0-norm)