Scalar Valued Functions

Aayush Bajaj

Version 0.1

2025-05-15

Abstract

Whilst the author believes the raison d'être of this manuscript is obvious, they do not believe that the scope is.

The *Theory of Functions* is rich and central to Mathematics. As such, we limit our scope here to definitions and graphs of univariate functions $f: \mathbb{R} \to \mathbb{R}$. Whilst we include common equalities between different functions - say circular and exponential - what you will not find here are derivations of any sort. You will **not** find proofs **nor** set theoretic discussions of "jectivities", binary relations, etc. Furthermore there is a purposeful lack of rigour in this / catalogue/; theorems are asserted as is, with no warranty and no proof. Finally, analytic concerns of limits and convergence are also dutifuly ignored.

Table of Contents

1.	Elementary		. 3
	1.1.	Algebraic	. 3
		1.1.1. Polynomials	. 3
		1.1.2. Rational	. 3
	1.2.	Transcendental	. 4
		1.2.1. Exponential	. 4
		1.2.2. Logarithm	. 4
		1.2.3. Trigonometric	. 4
		1.2.4. Inverse Trigonetric	. 4
		1.2.5. Hyperbolic	. 4
		1.2.6. Inverse Hyperbolic	. 4
2.	Non	n-Elementary	. 5
	2.1.	Gamma	. 5
	2.2.	Error	. 5
	2.3.	Elliptic	. 5
	2.4.	Bessel	. 5
	2.5.	Riemann Zeta	. 5
	2.6.	Fresnel	. 5
3.	Disc	continuous	. 6
	3.1.	Absolute Value	. 6
	3.2.	Step	. 6
		3.2.1. Heaviside	. 6
		3.2.2. Floor	. 6
		3.2.3. Ceiling	. 6
		3.2.4. Square Wave	. 6

1. Elementary

These such functions are continuous on their domains and include taking **sums**, **products**, **roots** and **compositions** of finitely many <u>algebraic</u> or <u>transcendental</u> functions.

1.1. Algebraic

1.1.1. Polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_0 = \sum_{k=0}^n a_k x^k \tag{1}$$

todo polynomial subplot grid from x^0 to x^7 .

1.1.2. Rational

Much in the same way that $\mathbb Q$ is defined as any element $\frac{a}{b}$ where $a,b\in\mathbb Z$:

a function f is called a rational function if it can be written in the form:

$$f(x) = \frac{P(x)}{Q(x)} \tag{2}$$

where P(x) and Q(x) are polynomial functions of x and Q is not the zero function.

1. Elementary

1.2. Transcendental

- 1.2.1. Exponential
- 1.2.2. Logarithm
- 1.2.3. Trigonometric
- 1.2.4. Inverse Trigonetric
- 1.2.5. Hyperbolic
- 1.2.6. Inverse Hyperbolic

2. Non-Elementary

- **2.1. Gamma**
- 2.2. Error

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\Pi}} \int_0^x e^{(-t)^2} \, \mathrm{d}t \tag{3}$$

- 2.3. Elliptic
- 2.4. Bessel
- 2.5. Riemann Zeta
- 2.6. Fresnel

$$S(x) = \int_0^x \sin(t^2) dt, C(x) = \int_0^x \cos(t^2) dt$$
 (4)

3. Discontinuous

3.1. Absolute Value

- 3.2. Step
- 3.2.1. Heaviside
- 3.2.2. Floor
- **3.2.3. Ceiling**
- 3.2.4. Square Wave