MOI UNIVERSITY

DEPARTMENT: MATHEMATICS, PHYSICS AND COMPUTING COURSE CODE/TITLE: STA 205: STATISTICS & PROBABILITY YEAR OF STUDY: SECOND SEMESTER: SECOND

EXAMINATION FOR: BSc. IN COMPUTER SCIENCE **TOTAL NO. OF LECTURE HOURS:** FOURTY TWO HOURS

Course goals:

Introduce basic concepts of probability and statistical inference with discussion of applications to computer science.

Course Objectives/ Expected Learning Outcomes

At the end of the course, the students should be able to:

- Explain and perform arithmetic operations on probability.
- Equip the learners with knowledge of probability distributions and their use in solving statistical problems
- Enable the learner to use statistical techniques in Quality Control processes
- Describe and apply more advanced statistical concepts to real life situation.

Course Content

- Basic Probability: Definition and interpretation of probability; axioms of probability; basic properties of probabilities.
- Working with Probabilities: Counting / permutations and combinations; conditional probability; independence of events; Bayes' Theorem;
- From Probability to Statistics: Role of simulation in studying probability distributions; role of sampling in studying populations (transition to statistics)
- Random Variables: Discrete case: Introduction to random variables emphasizing the discrete case; expectation, mean, variance.
- Discrete examples: Examples of discrete distributions (binomial, Poisson);
- Random Variables: Continuous case: Examples of continuous distributions (exponential normal distribution;
- Elementary treatment for large and small samples; Statistical Tests and Decisions (Testing hypotheses about parameters and making decisions: Z, t, F and Chi-square);
- Method of least squares and curve fitting;
- Correlation and Regression analysis: Use linear regression as example of how probability models are used in practice;
- Estimation of Parameters: Point and interval estimation of parameters of probability distributions;
- Application of statistics in quality control

WEEK	CONTENT TO BE COVERED		
1	Introduction: Basic Probability, definition and interpretation of probability, important terminologies used in probability, operation of set and algebra of sets and relationship between statistics and probability		
2	Conditional probability; independence of events; Bayes' Theorem; Sampling		
3	Random Variables: Discrete case: Introduction to random variables emphasizing the discrete case; expectation, mean, variance. Discrete examples: Examples of discrete distributions (binomial, Poisson)		
4	Continuous: normal distribution; Elementary treatment for large and small samples; Testing hypotheses about parameters and making decisions: Z, t		
5	Testing hypotheses about parameters and making decisions: F and Chi-square		
6	CAT 1		
7	Method of least squares and curve fitting		
8	Correlation and Regression analysis: Use linear regression as example of how probability models are used in practice;		
9	Estimation of Parameters: Point and interval estimation of parameters of probability distributions;		
10	Application of statistics in quality control		
11-13	END OF SEMESTER EXAMINATIONS		

Instructional	material /	equipment
---------------	------------	-----------

Textbooks, whiteboard, chalkboard, hand outs

Course Assessment:

Continuous assessment Tests 30% End of semester examination 70% **Total 100%**

References

Jay L. Devore, Probability and Statistics for Engineering and the Sciences, (2004), Brooks/Cole Publishing, Belmont, USA. Mario F. Triola (2001), Elementary Statistics, Addison-Wesley Publishing Company.

Morris H. DeGroot(1989), Probability and Statistics, Addison- Wesley Publishing Company, Reading, USA.

Textbook: A First Course in Probability by Sheldon Ross (Prentice Hall, 7th edition, 2005).

Lecturer's Sign:	Head of Department's Sign:
Date:	Date: