CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 9: Priority Queues

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation

Collections

A collection is a data types that store groups of items.

data type	key operations	data structure					
stack	Push, Pop	linked list, resizing array					
queue	ENQUEUE, DEQUEUE	linked list, resizing array					
priority queue	INSERT, DELETE-MAX	binary heap					
symbol table	PUT, GET, DELETE	BST, hash table					
set	ADD, CONTAINS, DELETE	BST, hash table					

[&]quot;Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious." — Fred Brooks

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

operation	argument	return value
insert	Р	
insert	Q	
insert	Е	
remove ma:	x	Q
insert	Χ	
insert	Α	
insert	M	
remove ma:	x	Χ
insert	Р	
insert	L	
insert	Е	
remove ma:	x	Р

Priority queue API

Requirement. Generic items are Comparable.

Key must be Comparable (bounded type parameter)								
public class MaxPQ <key comparable<key="" extends="">></key>								
	MaxPQ()	create an empty priority queue						
	MaxPQ(Key[] a)	create a priority queue with given keys						
void	insert(Key v)	insert a key into the priority queue						
Key	delMax()	return and remove the largest key						
boolean	isEmpty()	is the priority queue empty?						
Key	max()	return the largest key						
int	size()	number of entries in the priority queue						

Priority queue applications

Spam filtering.

 Event-driven simulation. [customers in a line, colliding particles] [reducing roundoff error] Numerical computation. Data compression. [Huffman codes] Graph searching. [Dijkstra's algorithm, Prim's algorithm] Number theory. [sum of powers] Artificial intelligence. [A* search] Statistics. [online median in data stream] [load balancing, interrupt handling] Operating systems. Computer networks. [web cache] Discrete optimization. [bin packing, scheduling]

[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Challenge. Find the largest *M* items in a stream of *N* items.

- Fraud detection: isolate \$\$ transactions.
- NSA monitoring: flag most suspicious documents.

N huge, M large

Constraint. Not enough memory to store N items.

% more tiny	/Batch.txt	
Turing	6/17/1990	644.08
vonNeumann	3/26/2002	4121.85
Dijkstra	8/22/2007	2678.40
vonNeumann	1/11/1999	4409.74
Dijkstra	11/18/1995	837.42
Hoare	5/10/1993	3229.27
vonNeumann	2/12/1994	4732.35
Hoare	8/18/1992	4381.21
Turing	1/11/2002	66.10
Thompson	2/27/2000	4747.08
Turing	2/11/1991	2156.86
Hoare	8/12/2003	1025.70
vonNeumann	10/13/1993	2520.97
Dijkstra	9/10/2000	708.95
Turing	10/12/1993	3532.36
Hoare	2/10/2005	4050.20
Dijkstra vonNeumann Dijkstra Hoare vonNeumann Hoare Turing Thompson Turing Hoare vonNeumann Dijkstra Turing	8/22/2007 1/11/1999 11/18/1995 5/10/1993 2/12/1994 8/18/1992 1/11/2002 2/27/2000 2/11/1991 8/12/2003 10/13/1993 9/10/2000 10/12/1993	2678.40 4409.74 837.42 3229.27 4732.35 4381.21 66.10 4747.08 2156.86 1025.70 2520.97 708.95 3532.36

Priority queue client example

Challenge. Find the largest M items in a stream of N items.

- · Fraud detection: isolate \$\$ transactions.
- NSA monitoring: flag most suspicious documents.

N huge, M large

Constraint. Not enough memory to store N items.

Priority queue client example

Challenge. Find the largest M items in a stream of N items.

implementation	time	space			
sort	$N \log N$	N			
elementary PQ	MN	M			
binary heap	$N \log M$	M			
best in theory	N	M			

order of growth of finding the largest M in a stream of N items

Priority queue: unordered and ordered array implementation

operation	argument	return value	size	(tents dere							tents lered				
insert	Р		1	Р							Р						
insert	Q		2	Р	Q						Р	Q					
insert	É		3	Р	Q	Ε					Ε	Р	Q				
remove max	c	Q	2	Р	Ē						Ε	Р					
insert	X		3	Р	Ε	Χ					Ε	Р	Χ				
insert	Α		4	Р	Ε	Χ	Α				Α	Ε	Р	Χ			
insert	M		5	Р	Ε	Χ	Α	M			Α	Ε	M	Р	Χ		
remove max	c	X	4	Р	Ε	M	Α				Α	Ε	Μ	Р			
insert	Р		5	Р	Ε	M	Α	Р			Α	Ε	Μ	Ρ	Р		
insert	L		6	Р	Ε	M	Α	Р	L		Α	Ε	L	M	Р	Р	
insert	Е		7	Р	Ε	M	Α	Р	L	Ε	Α	Ε	Ε	L	M	Р	Р
remove max	c	Р	6	Е	Μ	Α	Р	L	Ε		Α	Ε	Ε	L	Μ	Р	

A sequence of operations on a priority queue

Priority queue: unordered array implementation

```
public class UnorderedArrayMaxPO<Kev extends Comparable<Kev>>
   private Key[] pq; // pq[i] = ith element on pq
   private int N: // number of elements on pa
   public UnorderedArrayMaxPO(int capacity)
                                                                          no generic
                                                                        array creation
   { pq = (Key[]) new Comparable[capacity]; }
   public boolean isEmptv()
   { return N == 0; }
   public void insert(Kev x)
   \{ pq[N++] = x; \}
   public Key delMax()
      int max = 0:
                                                                         less() and exch()
      for (int i = 1; i < N; i++)
                                                                      similar to sorting methods
         if (less(max. i)) max = i:
                                                                         (but don't pass pg[])
      exch(max. N-1):
                                should null out entry
      return pa[--N]: ←
                                 to prevent loitering
```

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementation	insert	del max	max
unordered array	1	N	N
ordered array	N	1	1
goal	$\log N$	$\log N$	$\log N$

order of growth of running time for priority queue with N items

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is $\lfloor \lg N \rfloor$. Pf. Height increases only when N is a power of 2.

A complete binary tree in nature

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- · Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Indices start at 1.
- · Take nodes in level order.
- · No explicit links needed!

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at k/2.
- Children of node at k are at 2k and 2k+1.
- left subtree of k is empty if 2k>N.
- right subtree of k is empty if (2k+1)>N.
- k is a leaf node if 2k>N.

