TODO?

Věta 0.1 (Banach–Diedinone)

 $X \ Banach \ space, \ \varphi: X^* \to \mathbb{F} \ linear, \ \varphi|_{B_{X^*}} \ w^*$ -continuous. Then $\varphi \in \varkappa(X)$.

 $D\mathring{u}kaz$

Banach–Alaoglu $\Longrightarrow (B_{X^*}, w^*)$ compact $\Longrightarrow \varphi(B_{X^*})$ is compact in \mathbb{F} . So boundedness $\Longrightarrow \varphi \in X^{**}$.

Assume $\mathbb{F}=\mathbb{R}$. Fix $\varepsilon>0$ and define $A_{\varepsilon}\coloneqq\{x^*\in B_{X^*}|\varphi(X^*)\leqslant -\varepsilon\}$ and $B_{\varepsilon}\coloneqq\{x^*\in B_{X^*}|\varphi(x^*)\geqslant \varepsilon\}$. Then $A_{\varepsilon},B_{\varepsilon}$ are w^* -compact, convex and disjoint. And if ε is small enough and φ nonzero (φ zero is trivially element of $\varkappa(X)$). From the Hahn–Banach separation theorem applied to (X^*,w^*) : $\exists \psi\in(X^*,w^*)^*:\sup\psi(A_{\varepsilon})<\inf\psi(B_{\varepsilon})$. (Note: $A_{\varepsilon}=-B_{\varepsilon},$ so $\psi(A_{\varepsilon})=-\psi(B_{\varepsilon}),$ thus $\sup\psi(A_{\varepsilon})=-\inf\psi(B_{\varepsilon}),$ which (with previous) means $\sup\psi(A_{\varepsilon})<0<\inf\psi(B_{\varepsilon})$ and $\ker\psi|_{B_{X^*}}\cap B_{X^*}\subset B_{X^*}(A_{\varepsilon}\cup B_{\varepsilon}).$) So $\|\varphi|_{\ker\psi}\|\leqslant \varepsilon.$ TODO!!!

TODO!!!

TODO!!!

1 Banach spaces and compact spaces

Poznámka

Compact := Compact Hausdorff.

```
Poznámka (Připomenutí)
```

X Banach space \implies (Banach Alaoglu) (B_{X^*}, w^*) is compact.

 $K \text{ compact } \Longrightarrow (C(K), \|\cdot\|_{\infty}) \text{ is a Banach space.}$

```
Poznámka (A kind of duality)
```

$$J: X \to C(B_{X^*}, w^*), J(x)(x^*) = x^*(x), x^* \in B_{X^*}, x \in X. (J(x) = \varkappa(x)|_{B_{X^*}})$$

It is well defined.

$$D\mathring{u}kaz$$

$$J(x) \in C(B_{x^*}, w^*).$$
 $J(x) : x^* \mapsto x^*(x)$ is w^* -continuous.

J is linear.

 $J(\alpha x + \beta y)(x^*) = x^*(\alpha x + \beta y) = \alpha x^*(x) + \beta x^*(x) = \alpha J(x)(x^*) + \beta J(y)(x^*) = (\alpha J(x) + \beta J(x))(x^*).$ J is isometry. $D\mathring{u}kaz$ $||J(x)|| = \sup_{x^* \in X^*} |J(x)(x^*)| = \sup_{x^* \in X^*} |x^*(x)| = ||x||.$ (Previous holds also for non-Banach space. Here, we need completeness.) J(X) is $\|\cdot\|$ closed in $C(B_{X^*}, w^*)$. $D\mathring{u}kaz$ X is complete $\implies J(X)$ is complete $\implies J(X)$ is closed. J is a homeomorphism $w \to \tau_p$. "Continuity": Fix $x^* \in B_{X^*}$. Then $x \mapsto J(x)(x^*) = x^*(x)$ is w-continuous. "", J^{-1} continuous": Fix $x^* \in X^*$. $f(x) \ni F \mapsto x^*(J^{-1}(f))$ should be τ_n -continuous. $J^{-1}: J(X) \to X^*: \exists y^* \in B_{X^*}, \ \alpha > 0: x^* = \alpha y^*. \text{ Then } x^*(J^{-1}(x)) = \alpha y^*(J^{-1}(f)) = \alpha y^*(J^{-1}(f))$ $\alpha J(J^{-1}(f))(y^*) = \alpha \cdot f(y^*)$. So, $f \mapsto x^*(J^{-1}(f)) = \alpha f(y^*)$ is τ_p -continuous. J(X) is τ_p -closed. $D\mathring{u}kaz$ "Real case": $J(X) = \{ f \in C(B_{X^*}, w^*) | f(\mathbf{o}) = 0 \}.$ RHS – set is τ_p closed. f is a t-fine (i.e. $\forall x^*, y^* \in R_{X^*} \ \forall t \in [0,1]: f(tx^* + (1-t)y^*) =$ $t \cdot f(x^*) + (1-t)f(y^*)$. ?:?? ? : $f \in \text{RHS-set.}$ Then $\exists \tilde{f}: X^* \to \mathbb{R}$ linear. $\tilde{f}|_{B_{X^*}} = f$. TODO? "Complex case": $J(X) = \{ f \in C(B_{X^*}, w^*) | f(\mathbf{o}) = 0, f \text{ is a } t\text{-fine}, f(\alpha x^*) = \alpha f(x^*) \text{ for any complex } \alpha \} = 0 \}$ $= \{ f \in C(B_{X^*}, w^*) | \forall x^*, y^* \in B_{X^*}, \forall \alpha, \beta \in \mathbb{C} : \alpha x^* + \beta y^* \in B_{X^*} \implies f(\alpha x^* + \beta y^*) = \alpha f(x^*) + \beta f(y^*) \}$ δ is a homeomorphism of K into $(B_{C(K)^*}, w^*)$.

 $D\mathring{u}kaz$

" δ is one-to-one": $t_1, t_2 \in K, t_1 \neq t_2$. \Longrightarrow (Uryhson) $\exists f \in C(K) : f(t_1) = 1 \land f(t_2) = 0$. It follows the $\delta_{t_1} \neq \delta_{t_2}$.

 $,\delta$ is continuous": Fix $f \in C(K)$. Then $t \mapsto \delta_t(f) = f(t)$ is continuous.

" δ is a homeomorphism": $F \subset K$ closed $\implies F$ is compact $\implies \delta(F)$ is compact $\implies \delta(F)$ is closed.

TODO(Examples)

TODO!!!

Věta 1.1

X vector space, $M \subset X^{\#}$ separating points $\Longrightarrow (X, \sigma(X, M))$ has ccc.

Lemma 1.2

Let $B \subset \operatorname{span}(M)$ be an algebraic basis of $\operatorname{span}(M)$. Consider $\Phi: X \to \mathbb{F}^B$ defined by $\Phi(x)(b) = b(x), \ b \in B, \ x \in X$. Then Φ is a homeomorphism of $(X, \sigma(X, M))$ onto $\Phi(X)$ and $\Phi(X)$ is dense in \mathbb{F}^B .

 $D\mathring{u}kaz$

" Φ is one-to-one": $x, y \in X$, $\Phi(x) = \Phi(y) \implies \forall b \in B : b(x) = b(y) \implies \forall m \in M : m(x) = m(y) \implies x = y \ (M \text{ separates points}).$

" Φ is homeomorphism": observe $\sigma(X, M) = \sigma(X, B)$. $(b \in B : X \mapsto \Phi(x)(b) = b(x)$ is $\sigma(X, B)$ continuous). $f \in \Phi(x) \mapsto b(\Phi^{-1}(f)) = f(b)$ is continuous.

"density": $b_1, \ldots, b_n \in B$ discrete $\alpha_1, \ldots, \alpha_n \in \mathbb{F} \implies x \in X$ such that $\Phi(x)(b_j) = \alpha_j$, $j \in [n]$. $\exists x_1, \ldots, x_n \in X$ such that $b_i(x_j) = 1$ if i = j and $b_i(x_j) = 0$ if $i \neq j$. (Assume not, WLOG x_1 does not exists $\implies \bigcap_{j=2}^n \operatorname{Ker} b_j \subset \operatorname{Ker} b_1 \implies b_1 \in \operatorname{span}(b_2, \ldots, b_n) \not$ \downarrow .) $x := \sum \alpha_j x_j$.

Lemma 1.3

T topological space, $A \subset T$ dense. Then T has $ccc \Leftrightarrow A$ has ccc.

 $D\mathring{u}kaz$

Lemma 1.4

 \mathbb{F}^{Γ} has ccc for each Γ .

 $D\mathring{u}kaz$

Since $\mathbb{C} = \mathbb{R}^2$ WLOG $\mathbb{F} = \mathbb{R}$. $\mathbb{R}^{\mathbb{R}}$ is separable (has its own ccc). Assume $a_1 < b_1 < a_2 < b_2 < \ldots < a_n < b_n$ are rational numbers, $r_1, \ldots, r_n \in \mathbb{Q}$. Define $f_{a_1,b_1,\ldots,a_n,b_n,r_1,\ldots,r_n}(x) = r_i$ if $x \in [a_i,b_i]$ and 0 elsewhere. There are countably such functions. They form a dense set $(f \in \mathbb{R}^{\mathbb{R}}, x_1 < \ldots < x_n, \varepsilon > 0 \implies \text{find } a_1,b_1,\ldots,a_n,b_n,r_1,\ldots,r_n \in \mathbb{Q})$. TODO!!!

Věta 1.5

X vector space, $M \subset X^{\#}$ separating points, $f: X \to \mathbb{F}$ $\sigma(X, M)$ -continuous $\Longrightarrow \exists S \subset M$ countable, such that $p_S: X \to \mathbb{F}^S$ is the evaluation mapping $(p_S(x)(m) = m(x), m \in S, x \in X)$, then $\exists h: p_S(X) \to \mathbb{F}$ continuous such that $f = h \circ p_S$.

Tvrzení 1.6

Let T be a T_3 -topological space, $|T| \ge 2$, Γ countable set. Then following assertions are equivalent:

- 1. T^{Γ} has ccc;
- 2. $\forall U \subset T^{\Gamma} \text{ open } \exists S \subset \Gamma \text{ countable such that } \overline{U} = \pi_S^{-1}(\pi_S(\overline{U}));$
- 3. $\forall U \subset T^{\Gamma} \text{ open } \forall X \subset U \text{ dense } \forall f; X \to \mathbb{F} \text{ continuous } \exists S \subset \Gamma \text{ countable } \exists h : \pi_S(X) \to \mathbb{F} \text{ continuous such that } f = h \circ \pi_S|_X.$

 $D\mathring{u}kaz$ (tvrzeni \Longrightarrow veta)

Take $B \subset M$, a basis of span M. Let Φ be as in the lemma above $\Longrightarrow \Phi$ is a homeomorphism $(X, \sigma(X, M))$ onto $\Phi(X)$, $\Phi(X)$ is dense in \mathbb{F}^B .

 $f: X \to F$ $\sigma(X, M)$ -continuous $\Longrightarrow \tilde{f} \coloneqq f \circ \Phi^{-1} : \Phi(X) \to \mathbb{F}$ is continuous. From the previous lemma $\exists S \subset B$ countable, $h: \pi_S(\Phi(X)) \to \mathbb{F}$ continuous, $h \circ \pi_S|_{\Phi(X)} = \tilde{f} \Longrightarrow h \circ \pi_S \circ \Phi = \hat{f} \circ \varphi = f$. That's it.

Důkaz (tvrzeni)

"3 \Longrightarrow 2": Let $U \subset T^{\Gamma}$ be open $\Longrightarrow X \coloneqq U \cup (T^{\Gamma} \backslash \overline{U}) \Longrightarrow X$ is open, $\overline{X} = T^{\Gamma}$. $f \coloneqq \psi_U$ continuous $X \to \mathbb{R} \stackrel{3}{\Longrightarrow} \exists S \subset P$ countable, $h : P_S(X) \to \mathbb{R}$ continuous such that $f = h \circ \pi_S|_X$.

Then $\overline{U} = \pi_S^{-1}(\pi_S(\overline{U}))$: " \subset " always, " \supset ": $\underline{\pi_S(U)} \cap \pi_S(T^{\Gamma} \backslash \overline{U}) = \emptyset$ $(h|_{\pi_S(U)} = 1, h|_{\pi_S(T^{\Gamma} \backslash \overline{U})} = 0)$. π_S is an open mapping $\Longrightarrow \overline{\pi_S(U)} \cap \pi_S(T^{\Gamma} \backslash \overline{U}) = \emptyset \Longrightarrow \pi_S(\overline{U}) \cap \pi_S(T^{\Gamma} \backslash \overline{U}) = \emptyset \Longrightarrow \pi_S^{-1}(\pi_S(\overline{U})) \subset \overline{U}$.

 $,2 \implies 1$ ": Assume T^{Γ} fails ccc. $\implies \exists U_{\alpha}, \alpha < \omega_1$ disjoin nonempty open sets. WLOG

$$U_{\alpha} = \pi_{F_{\alpha}}^{-1}(\prod_{j \in F_{a}} O_{j}^{\alpha}), \qquad F_{\alpha} \subset \Gamma \text{ finite}, O_{j}^{a} \subset \pi \text{ open.}$$

 $\alpha < \omega_1 \text{ find } S_\alpha \in \Gamma \backslash F_\alpha, \ \alpha \neq \beta \Longrightarrow S_\alpha \neq S_\beta \ (S_\alpha \in \Gamma \backslash (F_\alpha \cup \{S_\beta | \beta < \alpha\})). \ V_\alpha \subset U_\alpha \text{ open such that } \overline{\pi_{S_\alpha}(V_\alpha)} \neq T. \ H \coloneqq \overline{\bigcup_\alpha V_\alpha} \Longrightarrow \exists S \text{ countable } H = \pi_s^{-1}(\pi_S(H)). \ \exists \alpha : S_\alpha \notin S \Longrightarrow \exists x \in H : x \in U_\alpha \backslash \overline{V_\alpha} \Longrightarrow x \notin \overline{\bigcup_{b \neq \alpha} V_b} \not 4.$

TODO!!!

Tvrzení 1.7

X NLS then following assertions are equivalent:

- 1. (X, w) has countable base;
- 2. (X, w) is metrizable;
- 3. (X, w) has countable character;
- $4. \dim X < \infty.$

Důkaz

$$(4. \implies 1. \land 2.)$$
": $\dim X < \infty \implies w = \|\cdot\|$ on $X.$ $(X = \mathbb{F}^n.)$

 $1. \implies 3.$ and $2. \implies 3.$ by obvious.

"3. \Longrightarrow 4.": Assume $(U_n)_{n\in\mathbb{N}}$ is a base of neighbourhood of **o**. WLOG $U_n = \{x \in X | |f_1^n(x)| < \varepsilon_1^n, \ldots, \text{ for } \varepsilon_j^n > 0, f_j^n \in X^*.$

Claim: "span $\{f_j^n | 1 \le j \le k_n, n \in \mathbb{N}\} = X^*$ ". Let $f \in X^*$ be as the $V = \{x \in X | |f(x)| < 1\}$ is a weak neighbourhood of $0 : \exists n \in \mathbb{N} : U_n \subset V \implies \bigcap_{j=1}^{k_n} \operatorname{Ker} f_j^n \subset \operatorname{Ker} f$. $(x \in \bigcap_{j=1}^{k_n} \operatorname{Ker} f_j^n \implies f_j^n(x) = 0$, for all $i \in [k_n] \implies \forall m \in \mathbb{N} : mx \in U_n \subset V \implies |f(x)| < 1 \implies |f(x)| < \frac{1}{m} \implies f(x) = 0$.) Hence $f \in \operatorname{span} \{f_1^n, \dots, f_{k_n}^n\}$.

 $\Longrightarrow \exists (y_n) \subset X^* \text{ such that span } \{g_n; n \in \mathbb{N}\} = X^*. \ F_n \coloneqq \text{span } \{g_1, \dots, g_n\}. \ \text{Then } F_n \Subset X^*, \text{ closed, } \bigcup_n F_n = X^*. \ X^* \text{ is complete } \Longrightarrow \text{ (Baire) } \exists n : \text{int } F_n \neq \emptyset. \Longrightarrow F_n = X^* \Longrightarrow \dim X^* < \infty \Longrightarrow \operatorname{char} X < \infty.$

Věta 1.8

X measure space, $A \subset X$. Then following assertions are equivalent:

- 1. $(A, \|\cdot\|)$ is separable;
- 2. (A, w) is separable;
- 3. (A, w) has countable network.

$D\mathring{u}kaz$

"1. \Longrightarrow 3.": $(A, \|\cdot\|)$ is separable \Longrightarrow $(A, \|\cdot\|)$ has countable base and this base is a network for (A, w).

 $3. \implies 2.$ ": obvious."

Důsledek

X Banach space. Then X is separable \Leftrightarrow (X, w) is separable \Leftrightarrow (X, w) has countable network.

Příklad

X,Y Banach spaces, (X,w) and (Y,w) are homeomorphic. Are X,Y isomorphic?

Věta 1.9

X Banach space. Then following assertions are equivalent:

- 1. X is seprable;
- 2. $\exists T: X^* \to \mathbb{F}^{\mathbb{N}} \text{ linear, one-to-one, } w^*\text{-continuous;}$
- 3. $\exists T: X^* \to c_0 \text{ linear, one-to-one, } w^* \tau_p \text{ continuous, } ||T|| \leq 1;$
- 4. $\exists T: X^* \to c_0 \text{ linear, one-to-one, } w^* w \text{ continuous, } ||T|| \leq 1.$

Důkaz

 $.4. \implies 3. \implies 2.$ ": obvious.

 $\mathfrak{Z}_{n} : \mathbb{R} = 1.$ ": Let T be as in 2. Define $\varphi_{n} : X^{*} \to \mathbb{F}$ by $\varphi_{n}(x^{*}) := \text{the } n\text{-th coordinate}$ of $T(x^{*})$. Then φ_{n} is linear, w^{*} -continuous. $\Longrightarrow \exists x_{n} \in X \text{ such that } \varphi_{n}(x^{*}) = x^{*}(x_{n}),$ $x^{*} \in X^{*}$. Then $\{x_{n}; n \in \mathbb{N}\}$ separates points of X^{*} . $\{x^{*} \in X^{*} \setminus \{\mathbf{o}\} \stackrel{\text{one-to-one}}{\Longrightarrow} Tx^{*} \neq \mathbf{o} \implies \exists n \in \mathbb{N} : x^{*}(x_{n}) = \varphi_{n}(x^{*}) = (Tx^{*})(n) \neq 0.$ $\Longrightarrow \overline{\text{span}\{x_{n}n \in \mathbb{N}\}}^{\|\cdot\|} = X \implies X$ is separable.

"1. \Longrightarrow 4.": X separable \Longrightarrow B_X is separable. Let $\{x_n\}_{n=1}^{\infty}$ be base in B_X . Define $T: X^* \to c_0$ by $Tx^* = \left(\frac{1}{n}x^*(x_n)\right)_{n=1}^{\infty}$. Then $Tx^* \in c_0$. $(|\frac{1}{n}x^*(x_n)| \leqslant \frac{1}{n}||x^*|| \cdot ||x_n|| \leqslant \frac{1}{n||x^*|| \to 0}$.)

"T is linear, $||T|| \leq 1$ ": $w^* - w$ continuity: Let $f \in c_0^*$, we will show that $f \circ T$ is w^* -continuous. So, fix $f \in c_0^* \implies \exists (y_n)_{n=1}^{\infty} \in l_1$ representing f. Then

$$(f \circ T)(x^*) = f(T(x^*)) = f\left(\left(\frac{1}{n}x^*(x_n)\right)_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} y_n \cdot \frac{1}{n}x^*(x_n) = x^*\left(\sum_{n=1}^{\infty} \frac{y_n}{n}x_n\right),$$

so it is w^* -continuous.

$$\sum_{n=1}^{\infty} \left\| \frac{y_n}{n} x_n \right\| = \sum_{n=1}^{\infty} \frac{|y_n|}{n} \|x_n\| \leqslant \sum_{n=1}^{\infty} |y_n| \leqslant \|f\| < \infty.$$

Věta 1.10

X separable Banach space.

- 1. Any $\|\cdot\|$ -open set is weakly F_{σ} . In particular non-Borel and weakly Borel sets coincide.
- 2. $X \text{ is } F_{\sigma\delta} \text{ in } (X^{**}, w^*).$

Důkaz

"1.":
$$U \subset X \parallel \cdot \parallel$$
-open $\Longrightarrow \forall x \in U \; \exists \delta_x > 0 : \overline{U(x, \delta_x)} \subset U \Longrightarrow \bigcup_{x \in U} U(x, \delta_x) = U \Longrightarrow (X \text{ separable}) \bigcup_{n=1}^{\infty} U(x_n, \delta_{x_n}) = U. \text{ Then } U = \bigcup_{n=1}^{\infty} \overline{U(x_n, \delta_{x_n})} \Longrightarrow U \text{ is weakly } F_{\sigma}.$

"2.": Let $\{x_n\} \subset X$ be $\|\cdot\|$ -dense. Then

$$X = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} (x_n + \frac{1}{k} B_{X^{**}}).$$

RHS is $F_{\sigma\delta}$ in w^* .

,, \subset ": $x \in X$, $k \in \mathbb{N} \implies \exists n \in \mathbb{N} : ||x - x_n|| < \frac{1}{k} \implies x \in x_n + \frac{1}{k}B_X \subset x_n + \frac{1}{k}B_{X^{**}}$. So $x \in RHS$.

"⊃": $x^{**} \in RHS$. Fix $k \in \mathbb{N} \implies \exists n : x^{**} \in x_n + \frac{1}{k}B_{X^{**}}. \implies \|x^{**} - x_n\| \leqslant \frac{1}{k} \implies \operatorname{dist}(x^{**}, X) \leqslant \frac{1}{k}$. This holds for each $k \in \mathbb{N}$, hence $\operatorname{dist}(x^{**}, X) = 0$ and from X is closed, we get $x^{**} \in X$.

Věta 1.11

- 1. X Banach space. Then X is separable $\Leftrightarrow (B_{X^*}, w^*)$ is metrizable.
 - 2. K compact T_2 . Then K is metrizable $\Leftrightarrow C(K)$ is separable.

 $D\mathring{u}kaz$

"1., \Longrightarrow ": X separable \Longrightarrow (from the theorem above) $\exists T: X^* \to c_0$ linear, one-to-one, $\|T\| \leqslant 1$, $w^* - \tau_p$ continuous. Then $T|_{B_{X^*}}$ is a homeomorphism of (B_{X^*}, w^*) into (B_{c_0}, τ_p) (use compactness of (B_{X^*}, w^*)). $T(B_{X^*}) \subset B_{c_0} \subset \{t \in \mathbb{F} | |t| \leqslant 1\}^{\mathbb{N}}$. The last one is metrizable compact, so (B_{X^*}, w^*) is metrizable.

"2., \Leftarrow ": C(K) is separable, so (from first part) $(B_{C(K)^*}, w^*)$ is metrizable. Sic $K \hookrightarrow (B_{C(K)^*}, w^*)$, K is metrizable.

"2., \Longrightarrow ": Let K be metrizable. Then $\exists (f_n) \subset C(K, \mathbb{R})$ separating points of K (K metrizable compact \Longrightarrow it has countable base $(U_n)_{n \in \mathbb{N}}$. Let $I := \{(m, n) \in \mathbb{N} \times \mathbb{N} | \emptyset \neq \overline{U_m} \subset U_n\}$, then I is a countable set. $(m, n) \in I \Longrightarrow \exists f_{m,n} : K \to [0, 1]$ continuous,

$$f_{m,n}(x) = \frac{\operatorname{dist}(x, K \setminus U_m)}{\operatorname{dist}(x, K \setminus U_n) + \operatorname{dist}(x, K \setminus U_m)}, \qquad f_{m,n}|_{U_m} = 1, \quad f_{m,n}|_{U_n} = 0.$$

 $(f_{m,n})_{(m,n)\in I}$ separates points of K. $x \neq y \in K \implies \exists n \in \mathbb{N} : x \in U_n, y \notin U_n$ because $K \setminus \{y\}$ is open and $x \in K \setminus \{y\}$. $\implies \exists V$ open: $x \in V \subset \overline{V} \subset U_n \implies \exists m \in \mathbb{N} : x \in U_m \subset V$. Then $(n, m \in I), f_{m,n}(x) = 1, f_{m,n}(y) = 0$.)

Let $\mathcal{A} := \text{span} \{1, \text{ finite products of } (f_n)\}$. Then \mathcal{A} is separable, separates points of K, contains constants, $f \in \mathcal{A} \implies \overline{f} \in \mathcal{A}$, so \mathcal{A} is an algebra \implies (Stone–Weierstrass) $\overline{\mathcal{A}}^{\|\cdot\|} = C(K)$, so C(K) is separable.

"1., \Leftarrow ": (B_{X^*}, w^*) is metrizable, so (from the third part) $C(B_{X^*}, w^*)$ is separable and $X \subset C(B_{X^*}, w^*)$ is also separable.

Poznámka

The first part of the proof provides a formula for a metric on B_{X^*} :

$$(x_n) \subset B_X \text{ dense} \quad \Longrightarrow \quad \varrho(x^*, y^*) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x^*(x_n) - y^*(x_n)|.$$

Kelloc's theorem \implies (X is separable, dim $X = \infty \implies (B_{X^*}, w^*)$ is homeomorphic to $[0, 1]^{\mathbb{N}}$).

In particular, X separable, reflexive, dim $X = \infty \implies (B_X, w)$ is homeomorphic to $[0, 1]^{\mathbb{N}}$.

Příklad

 $T: l_p \to l_q, T((x_n)_n) = ((\operatorname{sgn} f_n)|f_n|^{\frac{p}{q}})_n \Longrightarrow T \text{ is a bijection } l_p \text{ onto } l_q. \|Tx\|_q^q = \|x\|_p^p.$ In particular $T(B_{l_p}) = B_{l_q}$ and T is $\tau_p \to \tau_q$ homeomorphism ($\Longrightarrow T$ is homeomorphism $(B_{l_p}, w) \to (B_{l_q}, w)$).

Definice 1.1

Let X be a Banach space. A Markuševič basis of X is a system $(x_{\alpha}, x_{\alpha}^*)_{\alpha \in A} \subset X \times X^*$, such that:

- $x_{\alpha}^*(x_{\beta}) = 1$ if $\alpha = \beta$ and 0 if $\alpha \neq \beta$;
- $\overline{\operatorname{span}} \{x_{\alpha}, \alpha \in A\} = X;$
- $\forall x \in X \setminus \{\mathbf{o}\} \ \exists \alpha \in A : x_{\alpha}^{*}(x) \neq 0 \ (\text{i.e.} \ (x_{\alpha}^{*})_{\alpha \in A} \text{ separate points of } X \Leftrightarrow \overline{\operatorname{span}}^{w^{*}} \{x_{\alpha}^{*}, \alpha \in A \neq X^{*}\}).$

Poznámka

X separable Banach space, $(x_{\alpha}, x_{\alpha}^*)_{\alpha \in A}$ is an Markuševič basis. Then A is countable.

 $D\mathring{u}kaz$

WLOG $||x_{\alpha}^*|| = 1$ for each α .

 $\alpha \neq \beta \implies \|x_{\alpha} - x_{\beta}\| \geqslant |x_{\alpha}^{*}(x_{\alpha} - x_{\beta})| = 1 \implies (x_{\alpha})_{\alpha \in A} \text{ 1-discrete } \implies A \text{ is countable.}$

Věta 1.12 (Markuševič)

X separable Banach space $(\dim X = \infty)$, $(z_n) \subset X$ such that $\overline{\operatorname{span}}\{z_n, n \in \mathbb{N}\} = X$, $(z_n^*) \subset X^*$ separates points of X. Then \exists an Markuševič basis $(x_n, x_n^*)_{n \in \mathbb{N}}$ such that $\operatorname{span}\{x_n, n \in \mathbb{N}\} = \operatorname{span}\{z_n, n \in \mathbb{N}\}$.

 $D\mathring{u}kaz$

 $k_1 := \text{the first index such that } z_{k_1} \neq 0.$ $x_1 := z_{k_1}.$ Find $l_1 \in \mathbb{N}$ such that $z_{l_1}^*(x_1) \neq 0.$ $x_1^* := \frac{z_{l_1}^*}{z_{l_1}^*(x_1)}.$

Find the smallest l_2 such that $z_{l_2}^* \notin \text{span}\{x_1^*\}$. $x_2^* \coloneqq z_{l_2}^* - z_{l^2}^*(x_1) \cdot x_1^* \ (\Longrightarrow x_2^*(x_1) = 0, x_2^* \neq 0)$. Find k_2 such that $x_2^*(z_{k_2}) \neq 0$. $x_2 \coloneqq \frac{z_{k_2} - x_1^*(z_{k_2}) \cdot x_1}{x_2^*(z_{k_2})}$. $(\Longrightarrow x_1^*(x_2) = 0, x_2^*(x_2) = 0$.)

Find the smallest k_3 such that $z_{k_3} \notin \text{span}\{x_1, x_2\}$. $x_3 \coloneqq z_{k_3} - x_1^*(z_{k_3})x_1 - x_2^*(z_{k_3}) \cdot x_2$. Find l_3 such that $z_{l_3}^*(x_3) \neq 0$. $x_3^* \coloneqq \frac{z_{l_3}^* - z_{l_3}^*(x_1)x_1^* - z_{l_3}^*(x_2)x_2^*}{z_{l_2}^*(x_3)}$.

Etc. Then $(x_n, x_n^*)_{n \in \mathbb{N}}$ satisfies first. span $\{x_n, n \in \mathbb{N}\}$ = span $\{z_n, n \in \mathbb{N}\}$ (" \subset " clear, " \supset ": k_{2n-1} is always the smallest such that $z_{k_{2n-1}}$ is not covered by span $\{x_1, \ldots, x_{2n-1}\}$ and $z_{k_{2n-1}} \in \operatorname{span}\{x_1, \ldots, x_{2n-1}\}$). span $\{x_n^*, n \in \mathbb{N}\}$ = span $\{z_n^*, n \in \mathbb{N}\}$ (analogous).

Věta 1.13

Let X be a Banach space. Then following assertions are equivalent:

- 1. X^* is separable;
- 2. (B_X, w) is metrizable;
- 3. $X = \bigcup_n F_n$ for F_n weakly closed and (F_n, w) metrizable;

 $D\mathring{u}kaz$ (1. \Longrightarrow 2.)

 X^* separable \Longrightarrow (by the theorem above) $(B_{X^{**}}, w^*)$ is metrizable. And note that $(B_X, w) \subset (B_{X^{**}}, w^*)$.

 $D\mathring{u}kaz$ (2. \Longrightarrow 3.)

Take $F_n = n \cdot B_X$.

 $D\mathring{u}kaz$ (3. \Longrightarrow 2.)

 $X = \bigcup_n F_n$ as in 3. F_n is weakly closed $\Longrightarrow F_n$ are $\|\cdot\|$ closed \Longrightarrow (Baire) $\exists n : \operatorname{int}_{\|\cdot\|} F_n \neq \emptyset \Longrightarrow \exists x \in X \ \exists r > 0 : x + r \cdot B_X \in F_n \Longrightarrow (x + r B_X, w)$ is metrizable (homeomorphic to (B_x, w) , so (B_x, w) is metrizable).

 $D\mathring{u}kaz$ (2. \Longrightarrow 1.)

Let ϱ be a metric on B_X inducing w. Then $U_n = \{x \in B_x | \varrho(0, x) < \frac{1}{n}\}$ is w-open $\Longrightarrow \exists x_{n,1}^*, \ldots, x_{n,k_n}^* \in X^*$ such that $\{x \in B_x | |x_{n,j}^*(x)| < 1, j \in [k_n]\} \subset U_n$. Define $Y \coloneqq \overline{\operatorname{span}} \{x_{n,j}^*, j \in [k_n], n \in W$ will show $Y = X^*$.

Assume $X^*\backslash Y\neq\varnothing$. Fix $x^*\in X^*\backslash Y$. Then $d\coloneqq \operatorname{dist}(x^*,Y)>0$. From Hahn-Banach theorem: $\exists x^{**}\in X^{**}: \|x^{**}\|=\frac{1}{d},\ x^{**}|_Y=0,\ x^{**}(x^*)=1$. Define $V\coloneqq\{x\in B_X\big||x^*(x)|<\frac{d}{2}\}$. Then V is w-open neighbourhood of \mathbf{o} in $B_X\Longrightarrow\exists n:U_n\subset V$.

Goldstine $\implies \exists x_1 \in B_X \text{ such that}$

 $|x^*(x_1)-d| = |x^*(x_1)-dx^{**}(x^*)| < \frac{d}{2} \wedge |x_{n,j}^*(x_1)-dx^{**}(x_{n,j})| = |x_{n,j}^*(x_1)| < 1, \text{ for } j \in [k_n].$

Then $x_1 \in U_n \subset V \implies |x^*(x_1)| < \frac{d}{2}, |x^*(x_1)| \ge d - |x^*(x_1) - d| > \frac{d}{2}$. 4.

Poznámka

1. $\Longrightarrow X$ is separable. $(X^* \text{ separable } \Longrightarrow (B_{X^{**}}, w^*)$ is a metrizable compact, so, it is a separable metrizable space. So $(B_X, w) \subset (B_{X^{**}}, w^*)$ is also separable metrizable. Thus from the theorem above $(B_X, \|\cdot\|)$ is separable $\Longrightarrow X$ is separable.)

If, moreover, X is separable, also next ones are equivalent to 1.-3. (The remark means that 1. \implies 4. holds and that 4. \implies 1. needs separability of X.) (TODO count from 4.)

- 1. X has a shrinking (i.e., $\overline{\operatorname{span}\left\{x_{\beta}^*, \beta \in A\right\}}^{\|\cdot\|} = X^*$) Markuševič basis.
- 2. (X^*, w) is Lindelöf.

```
3. Borel(X^*, \|\cdot\|) = Borel(X^*, w^*).
    4. Borel(X^*, w) = Borel(X^*, w^*).
  D\mathring{u}kaz (1. \Longrightarrow 4.)
  X^* and X are separable, so \exists (z_n) \subset X and \exists (z_n^*) \subset X^* \parallel \cdot \parallel-dense. Apply the theorem
_above.
  D\mathring{u}kaz (4. \Longrightarrow 1.)
  X separable \implies any Markuševič basis is countable. So, there is a shrinking Markuševič
 basis (X_n, X_n^*)_{n \in \mathbb{N}}. Then X^* = \overline{\operatorname{span}}^{\|\cdot\|} \{x_n^*, n \in \mathbb{N}\} \implies X^* is separable.
  D\mathring{u}kaz (1. \Longrightarrow 5.)
  Trivial. (X^* \text{ separable } \Longrightarrow (X^*, \|\cdot\|) \text{ is Lindelöf } \Longrightarrow (X^*, w) \text{ is Lindelöf.})
                                                                                                                                        D\mathring{u}kaz (1. \Longrightarrow 6.)
  X^* separable \implies any \|\cdot\|-open set in X^* is w^*-F_\sigma. See the proof above. (U is \|\cdot\|-
 open. x^* \in U \exists r_{x^*} : \overline{U(x^*, r_{x^*})} \subset U. \ U(x^*, r_{x^*}), x^* \in U  is an open cover of U \implies
\exists (x_n^*) : U = \bigcup_n U(x^*, r_{x^*}) = \bigcup_n U(x^*, r_{x^*}) \text{ which is } w^* \text{ compact.})
  D\mathring{u}kaz (6. \Longrightarrow 7.)
 Clear, as w^* \subset w \subset \|\cdot\|. Hence Borel(X^*, w^*) \subset Borel(X^*, w) \subset Borel(X, \|\cdot\|).
```

 $D\mathring{u}kaz$ (5. \Longrightarrow 1. \land 7. \Longrightarrow 1.)

Claim: X separable, X^* non-separable $\Longrightarrow \exists \Delta \subset S_{X^*}$ such that (Δ, w^*) is homeomorphic to $\{0,1\}^{\mathbb{N}}$ (= Cantor set) and (Δ, w) is discrete.

"If we prove this claim, we are done": Δ is w^* -closed (is homeomorphic to $\{0,1\}^{\mathbb{N}}$), hence w-closed. w-closed and discrete $\Longrightarrow (\Delta, w)$ is not Lindelöf, hence (X^*, w) is not Lindelöf. 4 with 5. (Δ, w) is closed and discrete, hence each subset is w-closed. But (Δ, w^*) is homeomorphic to $\{0,1\}^{\mathbb{N}}$ and there are non-Borel sets in $\{0,1\}^{\mathbb{N}}$. 4 with 7.

"Claim": Assume X is separable, X^* is non-separable.

Step 1: Given $\varepsilon > 0$ $\exists (x_{\alpha}^*, x_{\alpha}^{**})_{\alpha < \omega_1} \subset X^* \times X^{**}$ such that $\|x_{\alpha}^*\| = 1$, $\|x_{\alpha}^{**}\| < 1 + \varepsilon$ and $x_{\alpha}^{**}(x_{\beta}^*) = 1$ if $\beta = \alpha$ and = 0 if $\beta < \alpha$. In sketch: Fix x_0^* , x_0^{**} such that $\|x_0^*\| = 1 = \|x_0^{**}\| = x_0^{**}(x_0^*)$. Now assume $1 \le \alpha < \omega_1$ and that we already have $(x_{\beta}^*, x_{\beta}^{**})$ for $\beta < \alpha$. $Z \coloneqq \overline{\text{span}}\{x_{\beta}^*, \beta < \alpha\} \implies Z$ is separable, so $Z \subsetneq X^* \implies \exists x_{\alpha}^{**} \in X^{**}$ such that $x_{\alpha}^{**}|_{Z} = 0$, $\|x_{\alpha}^{**}\| = 1 + \frac{\varepsilon}{2}$. Then find $x_{\alpha}^* \in X^*$, $\|x_{\alpha}^*\| = 1$ and $x_{\alpha}^{**}(x_{\alpha}^*) = 1$.

Step 2: WLOG $\{x_{\alpha}^*, \alpha < \omega_1\}$ is locally uncountable in (X^*, w^*) . $(\{x_{\alpha}^*, \alpha < \omega_1\} =: A$ is an uncountable subset of (B_{X^*}, w^*) . (B_{X^*}, w^*) is a separable metrizable space. $\mathcal{U} = \{U \subset B_{X^*} | w^* \text{-open } \wedge U \cap A \text{ is countable}\}$. $\Longrightarrow \exists \mathcal{U}' \subset \mathcal{U} \text{ countable such that } \bigcup \mathcal{U} = \bigcup \mathcal{U}'$. Thus, $A \cap \bigcup \mathcal{U}$ is countable. $A' \coloneqq A \setminus \bigcup \mathcal{U}$. Then A' is uncountable (in fact $A \setminus A'$ is countable) and $\forall U \subset B_{X^*}$ $w^* \text{-open } U \cap A' \neq \emptyset \Longrightarrow U \cap A'$ is uncountable.)

Step 3: Fix ϱ a metric generating w^* on B_{X^*} . We will construct w^* -open sets $U_s \subset B_{X^*}$, $s \in \bigcup_{n=0}^{\infty} \{0,1\}^n$ and $X_s \in X$, $||x_s|| < 1 + \varepsilon$ such that:

- $U_{\varnothing} = B_{X^*};$
- diam $U_s < \frac{1}{|s|+2}$ if $|s| \ge 1$;
- $\overline{U_s}^{w^*} \cap \left(1 \frac{1}{|s|+2}\right) \cdot B_{X^*} = \emptyset$, for $|s| \ge 1$;
- $\overline{U_{s \wedge 0}}^{w^*} \cup \overline{U_{s \wedge 1}}^{w^*} \subset U_s, \overline{U_{s \wedge 0}}^{w^*} \cap \overline{U_{s \wedge 1}}^{w^*} = \emptyset;$
- $U_s \cap A \neq \emptyset$;
- $\forall x^* \in U_s : (x^*(x_s) 1) < \frac{1}{|s|+1}, \text{ for } |s| \ge 1;$
- $\forall x^* \in \bigcup \{U_t | |t| = |s|, t \neq s\} : |x^*(x_s)| < \frac{1}{|s|+1}, \text{ for } |s| \geqslant 1.$

Construction: Set $U_{\emptyset} = B_{X^*}$. Assume that for $n \in \mathbb{N}$, we have the construction for |s| < n. For |s| = n - 1 we find $V_{s^{\wedge}0}$ and $V_{s^{\wedge}1}$ (w^* -open in B_{X^*}) such that "II to V" are satisfied.

We have $V_s, s \in \{0, 1\}^n$, order that by $V_0, V_1, \dots, V_{2^n - 1}$. Find $\alpha_1, \alpha_2, \dots, \alpha_{2^n - 1} < \omega_1$ such that $x_{\alpha_i}^* \in V_i, i \in [2^n - 1]$. Next find $\alpha_0 > \max\{\alpha_1, \dots, \alpha_{2^n - 1}\}$ such that $x_{\alpha_0}^* \in V_0$. Then $x_{\alpha_0}^{**}(x_{\alpha_0}^*) = 1, x_{\alpha_0}^{**}(x_{\alpha_i}^*) = 0, i \in [2^n - 1] \implies (\text{Goldstine}) \exists x_0 \in X, ||x_0|| < 1 + \varepsilon, |x_{\alpha_0}^*(x_0) - 1| < \frac{1}{n+1}, |x_{\alpha_i}^*(x_0)| < \frac{1}{n+1}, i \in [2^n - 1].$

$$V_{0,0} := \left\{ x^* \in V_0 \middle| \begin{vmatrix} x^*(x_0) - 1 \end{vmatrix} < \frac{1}{n+1} \right\},$$

$$V_{i,0} := \left\{ x^* \in V_i \middle| |x^*(x_0)| < \frac{1}{n+1} \right\}, \quad i \in [2^n - 1].$$

2 Reflexive spaces

TODO?

Tvrzení 2.1

- 1. X is reflexive $\Leftrightarrow X^*$ is reflexive.
 - 2. X is reflexive and separable $\implies X^*$ is separable.

$D\mathring{u}kaz$

,,2.": X reflexive and separable $\implies X^{**}$ separable $\implies X^{*}$ separable. ,,1.": Intro to FA.

Tvrzení 2.2

X Banach space, then following assertions are equivalent:

- 1. X is reflexive;
- 2. (B_X, w) is compact;
- 3. (X, w) is σ -compact.

$D\mathring{u}kaz$

"1. \Longrightarrow 2.": X reflexive $\Longrightarrow \varkappa(X) = X^{**} \Longrightarrow \varkappa(B_X) = B_{X^{**}}$. \varkappa is w-w* homeomorphism and $B_{X^{**}}$ is w* compact, so B_X is w-compact.

"2. \Longrightarrow 1.": Assume B_X is w-compact, then $\varkappa(B_X)$ is w^* -compact, hence w^* -closed and by Goldstine it is w^* -dense in $B_{X^{**}} \Longrightarrow \varkappa(B_X) = B_{X^{**}} \Longrightarrow \varkappa(X) = X^{**}$.

 $",2. \implies 3.": X = \bigcup_{n=1}^{\infty} n \cdot B_X. ",3. \implies 2.": X = \bigcup_{n=1}^{\infty} K_n, (K_n, w) \text{ compact } \implies K_n \text{ are } w\text{-closed, so } \|\cdot\|\text{-closed. Baire } \implies \exists n: \inf_{\|\cdot\|} K_n \neq \varnothing \implies \exists x \in X \ \exists r > 0 \text{ such that } x+r\cdot B_X \subset K_n \implies x+r\cdot B_X \text{ is } w\text{-compact } \implies B_X \text{ is } w\text{-compact.}$

Tvrzení 2.3

 $X \text{ reflexive} \Leftrightarrow (B_{X^*}, w) \text{ is compact.}$

```
D\mathring{u}kaz
```

"Method 1": Use the previous propositions.

"Method 2": " \Longrightarrow " X reflexive \Longrightarrow on X^* we have $w = w^*$. (B_{X^*}, w^*) is compact (Banach-Alaoglu) \Longrightarrow (B_{X^*}, w) is compact.

Tvrzení 2.4

C(K) is reflexive $\Leftrightarrow K$ is finite.

 $D\mathring{u}kaz$

 $, \Leftarrow$ ": K finite $\implies \dim C(K) < \infty \implies C(K)$ is reflexive.

 \Longrightarrow ": K is infinite \Longrightarrow C(K) not reflexive:

"Method 1": Using Riesz theorem: $C(K)^* \approx M(K)$, $\mu \in M(K)$, $\mu(f) = \int f d\mu$. K is infinite $\Longrightarrow \exists x_0 \in K$ non-isolated. Define $\varphi \in M(K)^*$ by $\varphi(\mu) = \mu(\{x_0\})$. Then $\|\varphi\| = 1$ and $\varphi \notin \varkappa(C(K))$. (Assume $f \in C(K)$, $\varphi = \varkappa(f)$. Then for $x \in K : f(x) = \delta_x(f) = \varkappa(f)(\Gamma_x) = \varphi(\delta_x) = \varphi_x(\{x_0\}) = 1$ if $x = x_0$ and 0 for $x \neq x_0$. So, $f = \chi_{x_0}$, which is not a continuous function. 4.)