Verteilte Systeme und Komponenten

Zusammenfassung Frühlingssemester 2018

Patrick Bucher

23.05.2018

Inhaltsverzeichnis

1	Kon	nponenten	1
	1.1	Begriffe und Architekturen	1
		1.1.1 Der Komponentenbegrif	1
		1.1.2 Der Nutzen von Komponenten	2
		1.1.3 Der Entwurf mit Komponenten	3
		1.1.4 Komponenten in Java	3
	1.2	Schnittstellen	4
		1.2.1 Begriff und Konzept	4
		1.2.2 Dienstleistungsperspektive	5
		1.2.3 Spezifikation von Schnittstellen	5
	1.3	Modularisierungskriterien	8
2	Entv	wicklungsprozess	8
	2.1	Projektplanung	8
	2.2	Source Code Management, Build und Dependency-Management	8
	2.3	Build-Server	8
	2.4		8
	2.5	Entwurfsmuster	8
	2.6	Testing	8
	2.7	Continuous Integration	8
	2.8	Review	8
	2.9	Konfigurationsmanagement	8
	2.10	Deployment	8
			8
3	Vert	teilte Systeme	8
	3.1	Socket-Kommunikation	8
	3.2	Serialisierung	8
	3.3		8
	3.4		8

3.5	Thrensynchronisation	8
3.6	'erteilung: Data Grid	8

1 Komponenten

Herkunft: componere (lat.) = zusammensetzen

Abbildung 1: Komponentendiagramm (UML2)

1.1 Begriffe und Architekturen

1.1.1 Der Komponentenbegrif

- Definition: Eine Software-Komponente
 - 1. ist ein Software-Element
 - 2. passt zu einem bestimmten Komponentenmodell
 - 3. folgt einem bestimmten Composition Standard
 - 4. kann ohne Änderungen mit anderen Komponenten verknüpft und ausgeführt werden
- Eigenschaften: Software-Komponenten
 - 1. sind eigenständig ausführbare Softwareeinheiten
 - 2. sind über ihre Schnittstellen austauschbar definiert
 - 3. lassen sich unabhängig voneinander entwickeln
 - 4. können kunden- und anwendungsspezifisch oder anwendungsneutral und wiederverwendbar sein
 - COTS (Commercial off-the-shelf): Software «von der Stange»
 - 5. können installiert und deployed werden
 - 6. können hierarchisch verschachtelt sein
- Komponentenmodelle
 - sind konkrete Ausprägungen des Paradigmas der komponentenbasierten Entwicklung
 - definieren die genaue Form und Eigenschaften einer Komponente
 - definieren einen Interaction Standard

- * wie können die Komponenten miteinander über Schnittstellen kommunizieren (Schnittstellenstandard)
- * wie werden die Abhängigkeiten der Komponenten voneinander festgelegt
 - · von der Komponente verlange Abhängigkeiten: Required Interfaces
 - · von der Komponente angebotene Abhängigkeiten: Provided Interfaces
- definieren einen Composition Standard
 - * wie werden die Komponenten zu grösseren Einheiten zusammengefügt
 - * wie werden die Komponenten ausgeliefert (Deployment)
- Beispiele verbreiteter Komponentenmodelle:
 - Microsoft .NET
 - EJB (Enterprise Java Beans)
 - OSGi (Open Services Gateway Initiative)
 - CORBA (Common Object Request Broker Architecture)
 - DCOM (Distributed Component Object Model)

1.1.2 Der Nutzen von Komponenten

- Packaging: Reuse Benefits
 - Komplexität durch Aufteilung reduzieren (Divide and Conquer)
 - Wiederverwendung statt Eigenentwicklung spart Entwicklungszeit und Testaufwand
 - erhöhte Konsistenz durch Verwendung von Standardkomponenten
 - Möglichkeit zur Verwendung bestmöglichster Komponente auf dem Markt
- Service: Interface Benefits
 - erhöhte Produktivität durch Zusammenfügen bestehender Komponenten
 - erhöhte Qualität aufgrund präziser Spezifikationen und vorgetesteter Software
- Integrity: Replacement Benefits
 - erweiterbare Spezifikation durch inkrementelle Entwicklung und inkrementelles Testing
 - parallele und verteilte Entwicklung durch präzise Spezifizierung und Abhängigkeitsverwaltung
 - Kapselung begrenzt Auswirkungen von Änderungen und verbessert so wie Wartbarkeit

1.1.3 Der Entwurf mit Komponenten

- Komponentenbasierte Enwicklung
 - steigende Komplexität von Systemen, Protokollen und Anwendungsszenarien
 - Eigenentwicklung wegen Wirtschaftlichkeit und Sicherheit nicht ratsam
 - Konstruktion von Software aus bestehenden Komponenten immer wichtiger
 - Anforderungen (aufgrund mehrmaliger Anwendung) an Komponenten höher als an reguläre Software
- Praktische Eigenschaften
 - Einsatz einer Komponente erfordert nur Kenntnisse deren Schnittstelle

- Komponenten mit gleicher Schnittstelle lassen sich gegeneinander austauschen
- Komponententests sind Blackbox-Tests
- Komponenten lassen sich unabhängig voneinander entwickeln
- Komponenten fördern die Wiederverwendbarkeit
- Komponentenspezifikation
 - Export: angebotene/unterstützte Interfaces, die von anderen Komponenten genutzt werden können
 - Import: benötigte/verwendete Interfaces von anderen Komponenten
 - Kontext: Rahmenbedingungen für den Betrieb der Komponente
 - Verhalten der Komponente

1.1.4 Komponenten in Java

- Komponenten in Java SE
 - Komponenten als normale Klassen implementiert
 - Komponenten können, müssen sich aber nicht and die Java Beans Specification halten
 - * Default-Konstruktor
 - * Setter/Getter
 - * Serialisierbarkeit
 - * PropertyChange
 - * Vetoable
 - * Introspection
 - Weitergehende Komponentenmodelle in Java EE
 - * Servlets
 - * Enterprise Java Beans
- Austauschbarkeit
 - Die Austauschbarkeit von Komponenten wird durch den Einsatz von Schnittstellen erleichtert.
 - Schnittstellen werden als Java-Interface definiert und dokumentiert (JavaDoc).
 - Eine Komponente implementieren eine Schnittstelle als Klasse.
 - * mehrere, alternative Implementierungen möglich
 - * Austauschbarkeit über Schnittstellenreferenz möglich
 - Beispiel: API von JDBC (Java Database Connectivity)
 - * von Sun/Oracle als API definiert
 - * von vielen Herstellern implementiert (JDBC-Treiber für spezifische Datenbanksysteme)
 - * Datenbankaustausch auf Basis von JDBC möglich
- Deployment
 - über . jar-Dateien (Java Archive): gezippte Verzeichnisstrukturen bestehend aus
 - * kompilierten Klassen und Interfaces als .class-Dateien
 - * Metadaten in META-INF/manifest.mf
 - * optional weitere Ressourcen (z.B. Grafiken, Textdateien)
 - Deployment von Schnittstelle und Implementierung zum einfacheren Austausch häufig

in getrennten . jar-Dateien mit Versionierung, Beispiel (fiktiv):

- * jdbc-api-4.2.1. jar enthält die Schnittstelle
- * jdbc-mysql-3.2.1. jar enthält die MySQL-Implementierung
- * jdbc-postgres-4.5.7. jar enthält die PostgreSQL-Implementierung
- * Versionierung idealserweise im Manifest und im Dateinamen (Konsistenz beachten!)

1.2 Schnittstellen

1.2.1 Begriff und Konzept

- Der Begriff Schnittstelle als Metapher
 - Beim Zerschneiden eines Apfels entstehen zwei spiegelsymmetrische Oberflächen.
 - Die Komponenten müssen so definiert werden, damit sie an der Schnittstelle zusammenpassen, als ob sie vorher auseinandergeschnitten worden wären.
 - Tatsächlich werden Verbindungsstellen erstellt, welche Kombinierbarkeit sicherstellen.
 - Eine Schnittstelle tut nichts und kann nichts.
 - Schnittstellen trennen nichts, sie verbinden etwas:
 - * Komponenten untereinander (Programmschnittstellen)
 - * Komponenten mit dem Benutzer
- Die Bedeutung von Schnittstellen (bei korrektem Gebrauch):
 - 1. machen Software leichter verständlich (man braucht nur die Schnittstelle und nicht die Implementierung zu kennen)
 - 2. helfen uns Abhängigkeiten zu reduzieren (Abhängigkeit nur von einer Schnittstelle, nicht von einer Implementierung)
 - 3. erleichtern die Wiederverwendbarkeit (bei der Verwendung bewährter Schnittstellen statt Eigenentwicklung)
- Die Beziehung zwischen Schnittstellen und Architektur:
 - System > Summe seiner Teile (Beziehungen zwischen den Teilen: durch Schnittstellen ermöglicht)
 - * Schnittstellen & Beziehungen zwischen den Komponenten: wichtigste Architekturaspekte!
 - * Mehrwert des Systems gegenüber Einzelkomponenten liegt in den Schnittstellen & Beziehungen der Komponenten zueinander
 - Spezialisten für Teilsysteme konzentrieren sich auf ihr Zeilproblem
 - * Architekten halten das Gesamtsystem über Schnittstellen zusammen
 - * Schnittstellen verbinden ein System mit der Aussenwelt und ermöglichen die Interaktion damit
- Kriterien für gute Schnittstellen
 - 1. Schnittstellen sollen *minimal* sein:
 - wenige Methoden (mit möglichst geringen Überschneidungen in ihren Aufgaben)
 - geringe Anzahl von Parameters
 - setzen möglichst keine oder nur wenige globale Daten voraus

- 2. Schnittstellen sollen einfach zu verstehen sein
- 3. Schnittstellen sollen gut dokumentiert sein

1.2.2 Dienstleistungsperspektive

- Die Schnittstelle als Vertrag:
 - Ein Service Consumer schliesst einen Vertrag mit einem Service Provider für eine Dienstleistung ab
- Design by Contract (DbC): Das Zusammenspiel zwischen den Komponenten wir mit einem Vertrag geregelt
 - Preconditions: Zusicherungen, die der Aufrufer einhalten muss
 - * Nutzer: Prüfen der Vorbedingungen vor der Ausführung
 - * Anbieter: Überprüfung mittels Assertions
 - Postconditions: Nachbedingungen, die der Aufgerufene garantiert
 - * Nutzer: Überprüfung mittels Assertions
 - * Anbieter: Prüfen der Nachbedingungen nach der Ausführung
 - *Invarianten*: Über alle Instanzen einer Klasse geltende Grundannahmen ab deren Erzeugung
 - * Anbieter: Überprüfung mittels Assertions

1.2.3 Spezifikation von Schnittstellen

- Dokumentation von Schnittstellen
 - Umfang:
 - * was ist wichtig für die Benutzung der Komponente
 - * was muss der Programmierer versethen und beachten
 - Eigenschaften der Methoden:
 - * Syntax (Rückgabewerte, Argumente, Typen, call by value/reference)
 - * Semantik (was bewirkt die Methode)
 - * Protokoll (synchron/asynchron)
 - * Nichtfunktionale Eigenschaften (Performance, Robustheit, Verfügbarkeit)
 - Schnittstellen an der Systemgrenze fliessen in die Systemspezifikation ein
- öffentliche Schnittstellen werden als API bezeichnet (Application Programming Interface)
 - objektorientierte API (sprachabhängig, z.B. API der JSE)
 - REST-API (Representational State Transfer, sprach- und plattformunabhängig, datenzentriert)
 - Messaging-API (sprach- und plattformunabhängig, z.B. Push-Notifications für Mobile Apps)
 - dateibasierte API (Informationsaustausch, Konfigurationsdateien)

- 1.3 Modularisierungskriterien
- 2 Entwicklungsprozess
- 2.1 Projektplanung
- 2.2 Source Code Management, Build und Dependency-Management
- 2.3 Build-Server
- 2.4 Integrations- und Systemtesting
- 2.5 Entwurfsmuster
- 2.6 Testing
- 2.7 Continuous Integration
- 2.8 Review
- 2.9 Konfigurationsmanagement
- 2.10 Deployment

Abbildung 2: Deploymentdiagramm

- 2.11 Code-Qualität
- 3 Verteilte Systeme
- 3.1 Socket-Kommunikation
- 3.2 Serialisierung
- 3.3 Message-Passing
- 3.4 Verteilung & Kommunikation: RMI
- 3.5 Uhrensynchronisation
- 3.6 Verteilung: Data Grid