

Elliptic Curve Cryptosystems

Santiago Paiva

Presentation Overview

- Basics (2 min)
- Part 1: Introduction to Elliptic Curves (5 min)
- Part 2: The Discrete Logarithm Problem (5 min)
- Part 3: Discrete Logarithm Cryptosystems (5 min)
- Conclusion (1 min)
- Q & A (2 min)

Slides: http://www.github.com/spaiva/cumc-2017

Motivation

https://www.microsoft.com/en-us/research/research-area/security-privacy-cryptography/

Basics

Modular Arithmetic

Concept of Modulo Arithmetic

$$d = n \cdot q + r, \qquad 0 \le r < n$$

We say this as "d is equal to r modulo n"

Examples:

$$r \equiv d \pmod{n}$$
$$5 \equiv 26 \pmod{7}$$

Group

- Basic algebraic structure
- A pair < G,*> where G is a set and * is a binary operation such that the following hold: Closure, Associativity, Identity Element, Inverse
- A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".

Examples:

- The group \mathbb{Z}_n uses only integers from 0 to n-1
- \mathbb{Z}_{15} uses integers from 0 to 14

Ring

A triplet < R, +, *> where + and * are binary operations and R is a set satisfying the following properties:

• $\langle R, + \rangle$ is a commutative group

For all $x, y, z \in R$

- x * y is also in R
- x * (y * z) = (x * y) * z
- x * (y + z) = (x * y) + (x * z)

Example: The most familiar example of a ring is the set of all integers $\mathbb Z$

Fields

< R, +, *> is a commutative ring with:

- R has a multiplicative identity
- Each element, x, in R (except for 0) has an inverse element in R, denoted by x^{-1}

Examples:

- Rational numbers
- Real and complex numbers

Part I: Introduction to Elliptic Curves

Basics of Elliptic Curves

Definition. Let K be a field of characteristic $\neq 2,3$ and let $x^3 + ax + b$, where $a,b \in K$, be a cubic polynomial with no multiple roots. Then, an Elliptic Curve over K, noted as E(K), is defined to be the set of points (x,y) with $x,y \in K$, satisfying the equation:

$$y^2 = x^3 + ax + b$$

together with a single element denoted \mathcal{O} called the "point at infinity".

Basics of Elliptic Curves

If *K* is a field of characteristic 2, then an Elliptic Curve over *K* is the set of points satisfying an equation of the following type:

$$y^2 + cy = x^3 + ax + b$$
 $y^2 + xy = x^3 + ax^2 + b$

(where the cubic on the right has no multiple roots) together with \mathcal{O}

If *K* is a field of characteristic 3, then an Elliptic Curve over *K* is the set of points satisfying the equation:

$$y^2 = x^3 + ax^2 + bx + c$$

Elliptic Curves over $\mathbb R$

Elliptic Curves over ©

Part II: The Discrete Logarithm Problem

The Discrete Logarithm Problem

A major computationally hard problem in Number Theory

$$y = g^k \mod p$$

Given y, g, and p (g and p very large) it is not easy to calculate k

- We need fewer bits for the integer k in order to achieve the same level of security as with other cryptosystems (like RSA)
- The discrete logarithm problem is considered to be computationally intractable.
 That is, no efficient classical algorithm is known for computing discrete logarithms in general
- This problem is known to be infeasible in Elliptic Curves groups beyond
 2¹²⁰elements

The Discrete Logarithm Problem

Definition. Let G be a finite cyclic group with n elements, let g be a generator of G, and let \mathbb{Z}_n denote the ring of integers modulo n. The discrete logarithm function of base g is defined as

$$log_q: G \longrightarrow \mathbb{Z}_n$$

This function is a group isomorphism, with the following property:

If c is another generator of G, then it follows that $log_c(b) = log_c(g) \cdot log_g(b)$

The Discrete Logarithm Problem for Elliptic Curves

Problem. Given that there is some integer k such that kP = Q, where P and Q are points on the curve $E(\mathbb{F}_q)$ with $q = p^n$ for some prime p, find k (given that k exists).

Part III: Discrete Logarithm Cryptosystems

Elliptic Curves Cryptography

It is a public-key cryptosystem like RSA, Rabin, ElGamal

Every user has a public and a private key.

- Public key is used for encryption/signature verification
- Private key is used for decryption/signature generation

All public-key cryptosystems have some underlying mathematical operation

- RSA has exponentiation (raising the message or ciphertext to the public or private values)
- Elliptic Curves have point multiplication (repeated addition of two points)

Elliptic Curve Cryptosystems

- 1) Diffie-Hellman Key Exchange Protocol
- 2) Massey-Omura Encryption
- 3) Analogue of ElGamal
- 4) Shank's Algorithm
- 5) Pohlog-Hellman Algorithm

Diffie-Hellman Key Exchange Protocol

Diffie-Hellman Key Exchange

Step	Alice	Bob
1	Parameters: p, g	
2	A = random()	random() = B
	$a = g^A \pmod{p}$	$g^B \pmod{p} = b$
3	$a\longrightarrow$	
	$\longleftarrow b$	
4	$K = g^{BA} \pmod{p} = b^A \pmod{p}$	$a^B \pmod{p} = g^{AB} \pmod{p} = K$
5	$\leftarrow E_K(data) \longrightarrow$	

Massey-Omura Encryption

Massey-Omura for message transmission

Applications

- To encrypt, ECC takes nearly 10 times of that of RSA up to a key size of 384 (ECC) and 7680 (RSA)
- To decrypt, RSA takes more time for a key size higher than 1024 (RSA) compared to 163 (ECC)
- Encryption on small devices that have limited storage and computational power
- Areas: wireless communication devices, smart cards, web servers, networks, wearable devices

Conclusion

- Short introduction to Elliptic Curves
- Introduction to the Discrete Logarithm Problem and the Discrete Logarithm Problem for Elliptic Curves
- 2 Cryptosystems: Diffie-Hellman Key Exchange and Massey-Omura Encryption

Q & A

Elliptic Curve Cryptosystems Santiago Paiva

paiva.santiago@gmail.com @stronnics github.com/spaiva/cumc-2017