Symmetric Matrices

Today we'll study a very important class of matrices: symmetric matrices.

We'll see that symmetric matrices have properties that relate to both eigendecomposition, and orthogonality.

Furthermore, symmetric matrices open up a broad class of problems we haven't yet touched on: constrained optimization.

As a result, symmetric matrices arise very often in applications.

Definition. A symmetric matrix is a matrix A such that $A^T = A$.

Clearly, such a matrix is square.

Furthermore, the entries that are not on the diagonal come in pairs, on opposite sides of the diagonal.

Example. Here are three **symmetric** matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7 \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Here are three **nonsymmetric** matrices:

$$\begin{bmatrix} 1 & -3 \\ 3 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & -4 & 0 \\ -6 & 1 & -4 \\ 0 & -6 & 1 \end{bmatrix}, \quad \begin{bmatrix} 5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

Orthogonal Diagonalization

First, we'll look at a remarkable property of symmatric matrices: their eigenvectors are orthogonal.

Example. Diagonalize the following symmetric matrix:

$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

Solution.

The characteristic equation of *A* is

$$0 = -\lambda^3 + 17\lambda^2 - 90\lambda + 144$$

$$=-(\lambda-8)(\lambda-6)(\lambda-3)$$

So the eigenvalues are 8, 6, and 3.

We construct a basis for each eigenspace (using our standard method of finding the nullspace of $A - \lambda I$):

$$\lambda_1 = 8 : \mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}; \quad \lambda_2 = 6 : \mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}; \quad \lambda_3 = 3 : \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

These three vectors form a basis for \mathbb{R}^3 .

More interestingly, these three vectors are $\boldsymbol{mutually}$ orthogonal.

For example,

$$\mathbf{v}_1^T \mathbf{v}_2 = (-1)(-1) + (1)(-1) + (0)(2) = 0$$

That is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an *orthogonal* basis for \mathbb{R}^3 .

Let's normalize these vectors so they each have length 1:

$$\mathbf{u}_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}; \quad \mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}; \quad \mathbf{u}_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

Now let's write the diagonalization of A in terms of these eigenvectors and eigenvalues:

$$P = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}, \quad D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Then, $A = PDP^{-1}$, as usual.

But, here is the interesting thing: P is square and has orthonormal columns. So P is an **orthogonal** matrix.

So, that measns that $P^{-1} = P^T$.

So, $A = PDP^T$.

Here is a theorem that shows that this **always** happens when we diagonalize a symmetric matrix:

Theorem. If *A* is symmetric, then any two eigenvectors of *A* from different eigenspaces are orthogonal. **Proof.**

Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that correspond to distinct eigenvalues, say, λ_1 and λ_2 . To show that $\mathbf{v}_1^T \mathbf{v}_2 = 0$, compute

$$\lambda_1 \mathbf{v}_1^T \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2$$

$$= (A \mathbf{v}_1)^T \mathbf{v}_2$$

$$= (\mathbf{v}_1^T A^T) \mathbf{v}_2$$

$$= \mathbf{v}_1^T (A \mathbf{v}_2)$$

$$= \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2)$$

$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$$

So we conclude that $\lambda_1(\mathbf{v}_1^T\mathbf{v}_2) = \lambda_2(\mathbf{v}_1^T\mathbf{v}_2)$.

But $\lambda_1 \neq \lambda_2$, so this can only happen if $\mathbf{v}_1^T \mathbf{v}_2 = 0$.

So \mathbf{v}_1 is orthogonal to \mathbf{v}_2 .

We can now introduce a special kind of diagonalizability:

An $n \times n$ matrix is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P (with $P^{-1} = P^{T}$) and a diagonal matrix D such that

$$A = PDP^T = PDP^{-1}$$

Such a diagonalization rquires *n* linearly independent and orthonormal eigenvectors.

When is this possible?

If A is orthogonally diagonalizable, then

$$A^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = PDP^{T} = A$$

So *A* is symmetric!

That is, whenever *A* is orthogonally diagonalizable, it is symmetric.

It turns out the converse is true (though we won't prove it). This leads to the following theorem:

Theorem. An $n \times n$ matrix is orthogonally diagonalizable if and only if it is a symmetric matrix.

Remember that when we studied diagonalization, we found that it was a difficult process to determine if an arbitrary matrix was diagonalizable.

But here, we have a very nice rule: every symmetric matrix is (orthogonally) diagonalizable.

Quadratic Forms

Up until now, we have mainly focused on linear equations – equations in which the x_i terms occur only to the first power.

Actually, though, we have looked at some quadratic expressions when we considered least-squares problems.

For example, we looked at expressions such as $||x||^2$ which is $\sum x_i^2$.

We'll now look at quadratic expressions generally. We'll see that there is a natural and useful connection to symmetric matrices.

Definition. A **quadratic form** is a function of variables, eg, x_1, x_2, \ldots, x_n , in which every term has degree two.

Example:

 $4x_1^2 + 2x_1x_2 + 3x_2^2$ is a quadratic form.

 $4x_1^2 + 2x_1$ is not a quadratic form.

Quadratic forms arise in many settings, including optimization, signal processing, physics, economics, and statistics.

Essentially, what an expression like x^2 is to a scalar, a quadratic form is to a vector.

Fact. Every quadratic form can be expressed as $\mathbf{x}^T A \mathbf{x}$, where A is a symmetric matrix.

To see this, let's look at some examples.

Example. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute $\mathbf{x}^T A \mathbf{x}$ for the matrix $A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$. Solution.

$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix}$$
$$= 4x_1^2 + 3x_2^2.$$

Example. Compute $\mathbf{x}^T A \mathbf{x}$ for the matrix $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$. **Solution.**

$$\mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= x_1 (3x_1 - 2x_2) + x_2 (-2x_1 + 7x_2)$$

$$= 3x_1^2 - 2x_1x_2 - 2x_2x_1 + 7x_2^2$$

$$= 3x_1^2 - 4x_1x_2 + 7x_2^2$$

Example. For \mathbf{x} in \mathbb{R}^3 , let

$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3.$$

Write this quadratic form $Q(\mathbf{x})$ as $\mathbf{x}^T A \mathbf{x}$.

Solution.

The coefficients of x_1^2, x_2^2, x_3^2 go on the diagonal of A.

Based on the previous example, we can see that the coefficient of each cross term $x_i x_j$ is the sum of two values in symmetric positions on opposite sides of the diagonal of A.

So to make *A* symmetric, the coefficient of $x_i x_j$ for $i \neq j$ must be split evenly between the (i, j)- and (j, i)-entries of *A*.

You can check that

$$Q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 5 & -1/2 & 0 \\ -1/2 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Question Time! Q24.1

Classifying Quadratic Forms

Notice that $\mathbf{x}^T A \mathbf{x}$ is a **scalar**.

In other words, when A is an $n \times n$ matrix, the quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is a real-valued function with domain \mathbb{R}^n .

Here are four quadratic forms with domain \mathbb{R}^2 .

Notice that except at x = 0, the values of Q(x) are all positive in the first case, and all negative in the last case.

<matplotlib.animation.FuncAnimation at 0x7fe36ad46cd0>

<matplotlib.animation.FuncAnimation at 0x7fe3487b94d0>

The differences between these surfaces is important for problems such as **optimization**.

In an optimization problem, one seeks the minimum or maximum value of a function (perhaps over a subset of its domain).

Definition. A quadratic form *Q* is:

- 1. **positive definite** if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$.
- 2. **negative definite** if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq 0$.
- 3. **indefinite** if $Q(\mathbf{x})$ assumes both positive and negative values.
- 4. **positive semidefinite** if $Q(\mathbf{x}) \geq 0$ for all $\mathbf{x} \neq 0$.

There is a remarkably simple way to determine, for any quadratic form, which class it falls into.

Theorem. Let *A* be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is

- 1. positive definite if and only if the eigenvalues of *A* are all positive.
- 2. negative definite if and only if the eigenvalues of *A* are all negative.
- 3. indefinite if and only if *A* has both postive and negative eigenvalues.
- 4. positive semidefinite if and only if the eigenvalues of *A* are all nonnegative.

Proof.

A proof sketch for the postive definite case.

Let's consider \mathbf{u}_i , an eigenvector of A. Then

$$\mathbf{u}_i^T A \mathbf{u}_i = \lambda_i \mathbf{u}_i^T \mathbf{u}_i.$$

If all eigenvalues are positive, then all such terms are positive.

Since *A* is symmetric, it is diagonalizable and so its eigenvectors span \mathbb{R}^n .

So any **x** can be expressed as a weighted sum of *A*'s eigenvectors.

Writing out the expansion of $x^T A x$ in terms of A's eigenvectors, we get only positive terms.

Example. Let's look at the four quadratic forms above. Their associated matrices are

$$(a) \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix} \quad (b) \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \quad (c) \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix} \quad (d) \begin{bmatrix} -3 & 0 \\ 0 & -7 \end{bmatrix}$$

Example. Is $Q(\mathbf{x}) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$ positive definite?

Solution. Because of all the plus signs, this form "looks" positive definite. But the matrix of the form is

$$\begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

and the eigenvalues of this matrix turn out to be 5, 2, and -1. So *Q* is an indefinite quadratic form.

Question Time! Q24.2

Constrained Optimization

A common problem is to find the maximum or the minimum value of a quadratic form $Q(\mathbf{x})$ for \mathbf{x} in some specified set. Typically the problem can be arranged so that \mathbf{x} varies over the set of unit vectors.

This is called **constrained optimization**. While it can be a difficult problem in general, for quadratic forms it has a particularly elegant solution.

The requirement that a vector \mathbf{x} in \mathbb{R}^n be a unit vector can be stated in several equivalent ways:

$$\|\mathbf{x}\| = 1$$
, $\|\mathbf{x}\|^2 = 1$, $\mathbf{x}^T \mathbf{x} = 1$.

Intersection of quadratic form $z = 3x_1^2 + 7x_2^2$ and ||x|| = 1

Max and Min of $z = 3x_1^2 + 7x_2^2$ s.t. ||x|| = 1

When a quadratic form has no cross-product terms, it is easy to find the maximum and minimum of $Q(\mathbf{x})$ for $\mathbf{x}^T\mathbf{x} = 1$.

Example. Find the maximum and minimum values of $Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Since x_2^2 and x_3^2 are nonnegative, we know that

$$4x_2^2 \le 9x_2^2$$
 and $3x_3^2 \le 9x_3^2$.

So

$$Q(\mathbf{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$

$$\leq 9x_1^2 + 9x_2^2 + 9x_3^2$$

$$= 9(x_1^2 + x_2^2 + x_3^2)$$

$$= 9$$

Whenever $x_1^2 + x_2^2 + x_3^2 = 1$. So the maximum value of $Q(\mathbf{x})$ cannot exceed 9 when \mathbf{x} is a unit vector. Furthermore, $Q(\mathbf{x}) = 9$ when $\mathbf{x} = (1,0,0)$.

Thus 9 is the maximum value of $Q(\mathbf{x})$ for $\mathbf{x}^T\mathbf{x} = 1$.

A similar argument shows that the minimum value of $Q(\mathbf{x})$ when $\mathbf{x}^T\mathbf{x} = 1$ is 3.

Observation.

Note that the matrix of the quadratic form in the example is

$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

So the eigenvalues of *A* are 9, 4, and 3.

We note that the greatest and least eigenvalues equal, respectively, the (constrained) maximum and minimum of $Q(\mathbf{x})$.

In fact, this is true for any quadratic form.

Theorem. Let *A* be a symmetric matrix, and let

$$M = \max_{\mathbf{x}^T \mathbf{x} = 1} \mathbf{x}^T A \mathbf{x}.$$

Then *M* is the greatest eigenvalue λ_1 of *A*.

The value of $Q(\mathbf{x})$ is λ_1 when \mathbf{x} is a unit eigenvector corresponding to M.

A similar theorem holds for the constrained minimum of $Q(\mathbf{x})$ and the least eigenvector λ_n .

Question Time! Q24.3