

Termodinâmica e Transferência de Calor

1° Semestre – Ano Lectivo 2022/23

Recurso da componente de Termodinâmica – 08/02/2023

Duração: 1h15min

I (6 valores)

Conforme mostrado na figura ao lado, um gás contido dentro de um cilindro, com volume inicial de $0.1\,\mathrm{m}^3$, sofre uma expansão a pressão constante de 2 bar até um volume final de $0.12\,\mathrm{m}^3$, sendo aquecido lentamente através da base. A variação da energia interna do gás é de $0.25~\mathrm{kJ}$. O pistão e as paredes do cilindro são fabricadas em material resistente ao calor sendo desprezável o calor por elas absorvido, e o pistão move-se sem

atrito no cilindro. A pressão atmosférica local é de 1 bar.

- a) Considerando o gás como o sistema em estudo, calcule o trabalho e a transferência de calor, em kJ.
- b) Considerando o pistão como sistema em estudo, calcule o trabalho e a variação energia potencial, em kJ.

II (6 valores)

Um tanque rígido fechado contém uma mistura bifásica líquido-vapor de refrigerante 22, inicialmente à temperatura de $-20\,^{\circ}$ C e com um parâmetro de qualidade de 50,36%. É transferida energia sob a forma de calor para o tanque até o refrigerante atingir a pressão final de 6 bar.

a) Determine a temperatura final, em °C.

- b) Se o estado final estiver na região de vapor sobre-aquecido, a que temperatura, em °C, o tanque contém apenas vapor saturado i.e., à temperatura de saturação?
- c) Represente o processo num diagrama v-T.

III (8 valores)

Uma massa de ar contida num sistema fechado executa um ciclo de potência entre dois reservatórios térmicos com temperaturas T_H e T_C . O ar comporta-se como um gás ideal e, na gama de temperaturas a que o sistema funciona, os valores médios do calor específico a volume constante e do calor específico a pressão constante são, respectivamente, $\bar{c}_v = 0.849 \, \text{kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ e $\bar{c}_p = 1.136 \, \text{kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$.

No ponto 1 do ciclo, a temperatura do ar, T_1 , é igual a T_H , e no

ponto 3, a temperatura T_3 é igual a T_C . Durante o processo $1 \to 2$ o sistema é mantido em contacto com o reservatório térmico T_H e, durante o processo $2 \to 3$, o sistema é colocado em contacto com o reservatório térmico T_C . No retorno ao estado inicial, i.e, no processo $3 \to 1$ o sistema o sistema volta a ser colocado em contacto com o reservatório térmico T_H .

- a) Determine o rendimento de um motor que opere com este ciclo.
- b) Compare o rendimento deste ciclo com o rendimento de um ciclo de Carnot.
- c) Calcule a entropia gerada no ciclo (expresse o resultado por unidade de massa).

Prof. José M. Castanheira