浙江工业大学 2012 - 2013 学年第二学期 概率论与数理统计试卷

姓名:	学号:	班级:	任课教师:				
一. 填空题 (每空 2 分, 共 22 分)							
1 0.6	_°						
20.12	. 0.37 .						
36	, <u>0.72</u> °						
40.1_	_°						
54	$, \underline{4}, \underline{>\frac{5}{9}} .$						
6. (9.10	0,15.56) 。						
7 0.68	<u>26</u> .						
二. 选择题	(每题3分,共18分	分)					
1. D							
2. B							
3. C							
4. B							
5. A							

6. C

三. 计算题 (共 60 分)

1. (12分)解:

1),2)

1),2)				
Y	0	1	2	
0	$\frac{1}{15}$	$\frac{4}{15}$	$\frac{1}{15}$	$\frac{6}{15}$
1	0	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{8}{15}$
2	0	0	$\frac{1}{15}$	$\frac{1}{15}$
	$\frac{1}{15}$	$\frac{8}{15}$	$\frac{6}{15}$	

3)
$$E(X-1)(Y-1) = \frac{1}{15} + \frac{1}{15} + \frac{1}{15} \times (-1) = \frac{1}{15}$$
.

2. (16分)解:

1)
$$A + B = 1, -A + B = 0 \Rightarrow A = \frac{1}{2}, B = \frac{1}{2};$$

2)
$$f(x) = \begin{cases} \frac{1}{2}\cos x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0, & 其它 \end{cases}$$

3)
$$P(-\frac{\pi}{6} < X < \frac{\pi}{6}) = \frac{3}{4} - \frac{1}{4} = \frac{1}{2};$$

4)
$$E\cos(X) = \int_{-\pi/2}^{\pi/2} \frac{1}{2}\cos^2 x dx = \frac{1}{4} \int_{-\pi/2}^{\pi/2} (\cos x + 1) dx = \frac{1}{4} (2 + \pi)$$

3. (12分)解:

1)

$$1 = \int_0^1 \int_0^x C(y+1)dydx$$
$$= C \int_0^1 \frac{1}{2}x^2 + xdx$$
$$= \frac{2}{3}C \Rightarrow C = \frac{3}{2}$$

2)

$$P(X < 2Y) = \int_0^1 \int_{x/2}^x \frac{3}{2} (y+1) dy dx$$
$$= \frac{3}{4} \int_0^1 \frac{3}{4} x^2 + x dx$$
$$= \frac{3}{4} (\frac{1}{4} + \frac{1}{2}) = \frac{9}{16}$$

3)

$$f_X(x) = \int_0^x \frac{3}{2}(y+1)dy = \frac{3}{4}x^2 + \frac{3}{2}x$$
$$f_Y(y) = \int_y^1 \frac{3}{2}(y+1)dx = \frac{3}{2}(1-y^2)$$

 $f(x,y) \neq f_X(x)f_Y(y)$, 故不独立。

- 4. (10分)解:
 - 1) 矩估计:

$$EX = E(X - 1) + 1 = \lambda + 1 \Rightarrow \lambda = EX - 1$$

矩估计为 $\hat{\lambda} = \overline{X} - 1$ 。

2) 极大似然估计:

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_i - 1}}{(x_i - 1)!}$$
$$\frac{\partial \ln L}{\partial \lambda} = \sum_{i=1}^{n} \left[-1 + \frac{x_i - 1}{\lambda} \right]$$

极大似然估计为 $\hat{\lambda} = \overline{X} - 1$ 。

- 5. (10分)解:
 - 1) $H_0: \mu = \mu_0 = 18$, $H_1: \mu \neq \mu_0$
 - 2) $u = \frac{\overline{X} \mu_0}{\sigma_0 / \sqrt{n}} = 0.6$
 - 3) 拒绝域为 (-∞, -1.96) ∪ (1.96, +∞)
 - 4) 不在拒绝域中,故可以认为该灌装机工作正常。