ECRICOME 2017

Exercice 1

Dans tout l'exercice, on notera $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I la matrice identité d'ordre 3. On considère la matrice A définie par :

$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix}$$

Partie A : Étude de la matrice A

- 1. Calculer les matrices $(A-I)^2$ et $(A-I)^3$.
- 2. En déduire l'ensemble des valeurs propres de A.
- 3. La matrice A est-elle inversible? Est-elle diagonalisable?

Partie B: Recherche d'une solution particulière

On note pour tout $x \in]-1,1[, \varphi(x) = \sqrt{1+x}.$

- 4. Justifier que la fonction φ est de classe \mathcal{C}^2 sur]-1,1[, et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.
- 5. En utilisant la formule de Taylor-Young pour φ en 0 à l'ordre 2, déterminer un réel α non nul tel que :

$$\sqrt{1+x} = 1 + \frac{1}{2}x + \alpha x^2 + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

- 6. On note $P(x) = 1 + \frac{1}{2}x + \alpha x^2$ la fonction polynomiale de degré 2 ainsi obtenue. Développer $(P(x))^2$.
- 7. Soit C = A I. En utilisant les résultats de la question 1, vérifier que $(P(C))^2 = A$. Expliciter alors une matrice M telle que $M^2 = A$.

Partie C : Résolution complète de l'équation

On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique $\mathscr{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base \mathscr{B} est la matrice A.

Dans cette partie, on pose : $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 8. Soient u, v et w les vecteurs définis par : $\begin{cases} w = (1, 0, 1), \\ v = f(w) w, \\ u = f(v) v. \end{cases}$
 - a) Calculer les vecteurs v et u.
 - b) Démontrer que la famille $\mathscr{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .
 - c) Déterminer la matrice représentative de f dans la base \mathscr{B}' .
 - d) En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $T = P^{-1}AP$.

- 9. Soit $N \in \mathcal{M}_3(\mathbb{R})$.
 - a) Montrer que si $N^2 = T$, alors NT = TN. En déduire que N est de la forme :

$$N = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix},$$

où a, b et c sont trois réels.

- b) Démontrer alors que l'équation matricielle $N^2=T$ admet exactement 2 solutions N_1 et N_2 .
- 10. Montrer que l'équation matricielle $M^2 = A$ d'inconnue $M \in \mathcal{M}_3(\mathbb{R})$ admet exactement deux solutions que l'on écrira en fonction de P, P^{-1} , N_1 et N_2 .
- 11. L'ensemble E des matrices M appartenant à $\mathcal{M}_3(\mathbb{R})$ telles que $M^2=A$ est-il un espace vectoriel?

Exercice 2

Dans tout l'exercice, a est un réel strictement positif.

Partie A

On considère la fonction φ définie sur \mathbb{R}_+^* par : $\forall x > 0$, $\varphi(x) = \ln(x) - ax^{2a}$.

- 1. Déterminer $\lim_{x\to 0} \varphi(x)$ et $\lim_{x\to +\infty} \varphi(x)$.
- 2. Étudier les variations de la fonction φ et dresser son tableau de variations. On fera apparaître dans ce tableau le réel $x_0 = \left(\frac{1}{2a^2}\right)^{\frac{1}{2a}}$.
- 3. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, l'équation $\varphi(x) = 0$ admet exactement deux solutions z_1 et z_2 , vérifiant : $z_1 < x_0 < z_2$.

 Que se passe-t-il si $a = \sqrt{\frac{1}{2e}}$? Si $a > \sqrt{\frac{1}{2e}}$?

Partie B

Soit f la fonction définie sur l'ouvert $U = (\mathbb{R}_+^*)^2$ par :

$$\forall (x,y) \in U, \quad f(x,y) = \ln(x)\ln(y) - (xy)^{a}.$$

- 4. Justifier que f est de classe C^2 sur U.
- 5. Calculer les dérivées partielles premières de f.
- 6. Démontrer que pour tout $(x,y) \in U$:

$$(x,y)$$
 est un point critique de $f \Leftrightarrow \begin{cases} x=y, \\ \varphi(x)=0. \end{cases}$

7. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définis dans la **Partie A**.

Déterminer aussi les éventuels points critiques de f dans les cas où $a = \sqrt{\frac{1}{2e}}$ et $a > \sqrt{\frac{1}{2e}}$.

Partie C

Dans cette partie, on suppose que $a < \sqrt{\frac{1}{2e}}$. On rappelle alors que la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définis dans la partie A.

- 8. Calculer les dérivées partielles d'ordre 2 de la fonction f.
- 9. Calculer la matrice hessienne de f au point (z_1, z_1) . Vérifier que cette matrice peut s'écrire sous la forme :

$$\nabla^2(f)(z_1, z_1) = \begin{pmatrix} -a^2 z_1^{2a-2} & \frac{1}{z_1^2} - a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} - a^2 z_1^{2a-2} & -a^2 z_1^{2a-2} \end{pmatrix}.$$

- 10. On pose $M = \nabla^2(f)(z_1, z_1)$, $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Calculer MX_1 et MX_2 , et en déduire les valeurs propres de M.
- 11. La fonction f présente-t-elle un extremum local en (z_1, z_1) ? Si oui, est-ce un minimum? Un maximum?
- 12. La fonction f présente-t-elle un extremum local en (z_2, z_2) ? Si oui, est-ce un minimum? Un maximum?

Exercice 3

Soit n un entier naturel non nul.

On effectue une série illimitée de tirages d'une boule avec remise dans une urne contenant n boules numérotées de 1 à n. Pour tout entier naturel k non nul, on note X_k la variable aléatoire égale au numéro de la boule obtenue au k-ième tirage.

Pour tout entier naturel k non nul, on note S_k la somme des numéros des boules obtenues lors des k premiers tirages :

$$S_k = \sum_{i=1}^k X_i.$$

On considère enfin la variable aléatoire T_n égale au nombre de tirages nécessaires pour que, pour la première fois, la somme des numéros des boules obtenues soit supérieure ou égale à n.

Exemple: avec n = 10, si les numéros obtenus aux cinq premiers tirages sont dans cet ordre 2, 4, 1, 5 et 9, alors on obtient: $S_1 = 2$, $S_2 = 6$, $S_3 = 7$, $S_4 = 12$, $S_5 = 21$ et $T_{10} = 4$.

Partie A

- 1. Pour $k \in \mathbb{N}^*$, déterminer la loi de X_k ainsi que son espérance.
- 2. a) Déterminer $T_n(\Omega)$.
 - **b)** Calculer $\mathbb{P}([T_n = 1])$.
 - c) Montrer que :

$$\mathbb{P}([T_n = n]) = \left(\frac{1}{n}\right)^{n-1}$$

- 3. Dans cette question, n=2. Déterminer la loi de T_2 .
- 4. Dans cette question, n=3. Donner la loi de T_3 . Vérifier que $\mathbb{E}(T_3)=\frac{16}{9}$.

Partie B

- **5.** Déterminer $S_k(\Omega)$ pour tout $k \in \mathbb{N}^*$.
- 6. Soit $k \in [1, n-1]$.
 - a) Exprimer S_{k+1} en fonction de S_k et X_{k+1} .
 - b) En utilisant un système complet d'événements lié à la variable aléatoire S_k , démontrer alors que :

$$\forall i \in [k+1, n], \ \mathbb{P}([S_{k+1} = i]) = \frac{1}{n} \sum_{j=k}^{i-1} \mathbb{P}([S_k = j]).$$

- 7. a) Pour $k \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$, rappeler la formule du triangle de Pascal liant les nombres : $\binom{j-1}{k-1}$, $\binom{j-1}{k}$ et $\binom{j}{k}$.
 - b) En déduire que pour tout $k \in \mathbb{N}^*$ et pour tout entier naturel i supérieur ou égal à k+1:

$$\sum_{j=k}^{i-1} \binom{j-1}{k-1} = \binom{i-1}{k}.$$

c) Pour tout entier $k \in [1, n]$, on note \mathcal{H}_k la proposition :

$$\forall i \in [k, n], \ \mathbb{P}([S_k = i]) = \frac{1}{n^k} \binom{i-1}{k-1}$$
».

Démontrer par récurrence que pour tout entier $k \in [1, n]$, \mathcal{H}_k est vraie.

- 8. a) Soit $k \in [1, n-1]$. Comparer les événements $[T_n > k]$ et $[S_k \leqslant n-1]$.
 - **b)** En déduire que : $\forall k \in [0, n-1], \mathbb{P}([T_n > k]) = \frac{1}{n^k} \binom{n-1}{k}.$
- **9.** Démontrer que $\mathbb{E}(T_n) = \sum_{k=0}^{n-1} \mathbb{P}([T_n > k])$, puis que $\mathbb{E}(T_n) = \left(1 + \frac{1}{n}\right)^{n-1}$.
- 10. Calculer $\lim_{n\to+\infty} \mathbb{E}(T_n)$.

Partie C

Dans cette partie, on fait varier l'entier n et on étudie la convergence en loi de la suite de variables $(T_n)_{n\geqslant 1}$.

- 11. Soit Y une variable aléatoire à valeurs dans \mathbb{N}^* telle que : $\forall k \in \mathbb{N}^*$, $\mathbb{P}([Y=k]) = \frac{k-1}{k!}$.
 - a) Vérifier par le calcul que $\sum_{k=1}^{+\infty} \mathbb{P}([Y=k]) = 1$.
 - b) Montrer que Y admet une espérance et calculer cette espérance.
- 12. Pour tout entier naturel k non nul, démontrer que :

$$\lim_{n \to +\infty} \mathbb{P}([T_n > k]) = \frac{1}{k!}.$$

13. Démontrer alors que $(T_n)_{n\geq 1}$ converge en loi vers la variable aléatoire Y.

14. On rappelle qu'en langage Scilab, l'instruction grand(1, 1, 'uin', 1, n) renvoie un entier aléatoire de [1, n]. Compléter la fonction ci-dessous, qui prend en argument le nombre n de boules contenues dans l'urne, afin qu'elle simule la variable aléatoire T_n :

```
function y=T(n)
1
     S=.....
2
     y=.....
3
     while ......
4
        tirage = grand(1,1,'uin',1,n)
        S=S+tirage
6
        y=.....
7
     end
8
  endfunction
```

15. On suppose déclarée la fonction précédente et on écrit le script ci-dessous :

```
function y = loitheoY(n)
1
         y = zeros(1, n)
\underline{2}
         for k = 1:n
3
              y(k) = (k-1)/prod(1:k)
4
         end
<u>5</u>
6
    endfunction
7
    clf
    n = input('n=?')
9
   plot2d(loitheoY(6), style=-2)
<u>10</u>
    x = freqT(n)
11
    bar(x(1:5))
```

L'exécution de ce script pour les valeurs de n indiquées a permis d'obtenir les graphes ci-dessous :

- a) Expliquer ce que représentent les vecteurs renvoyés par les fonctions freqT et loitheoY. Comment ces vecteurs sont-ils représentés graphiquement dans chaque graphique obtenu?
- b) Expliquer en quoi cette succession de graphiques permet d'illustrer le résultat de la question 13.