⑤ Int. Cl.⁷:

C 07 K 14/62

A 61 K 38/17

(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Höcker, Hartwig, Prof. Dr., 52076 Aachen, DE

(7) Anmelder:

® Off nl gungsschrift

® DE 199 08 041 A 1

(1) Aktenzeichen:

199 08 041.0

② Anmeldetag: (3) Offenlegungstag: 24. 2. 1999

31. 8.2000

© Erfinder:

Brandenburg, Dietrich, Prof. Dr., 64385 Reichelsheim, DE; Havenith, Chantalle, Dipl.-Chem., 52062 Aachen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(4) Kovalent verbrückte Insulindimere

TO THE SECTION OF SECT

Das Proteohormon Insulin wird in den β-Zellen der Langerhansschen Inseln gebildet. Zu seiner wichtigsten physiologischen Wirkung gehört die Senkung des Blutzuckerspiegels. Insulinmangel führt zu dem komplexen Krankheitsbild des Diabetes mellitus (Typ I), das durch einen abweichenden Glukosestoffwechsel charakterisiert ist. Zur Behandlung von Diabetes mellitus werden Insulin und Insulinanaloga in pharmazeutischen Zubereitungen eingesetzt. Bei der gebräuchlichsten Therapieform, der Substitutionstherapie, wird Insulin subcutan verabreicht. Als häufigste Nebenwirkung tritt dabei die Hypoglykämie (Unterzuckerung) auf.

Trotz der steligen Entwicklung pharmazeutischer Insulinzubereitungen für die Diabetestherapie wird ständig nach neuen Insulinanaloga gesucht, die vielversprechend im Hinblick auf ihre Wirksamkeit in Kombination mit der Reduzierung von Nebenwirkungen sind. So synthetisierten Forscher der Fa. Eli Lilly beispielsweise durch Vertauschen der Aminosäuren Prolin^{B28} und Lysin^{B29} das schnellwirkende "Insulin lispro" (EP 0 383 472 B1). Novo Nordisk entwickelte dagegen durch Fettsäure-Acylierung an der & Aminogruppe des Lysins^{B29} ein langwirkendes Insulinderivat (J. Markussen, S. Havelund, P. Kurtzhals, A. A. Andersen, J. Halstrsm, E. Hasselager, U. D. Larsen, U. Ribel, L. Schäffer, K. Vad, I. Jonassen, Diabetologia 1996, 39, S. 281–288). Zwar läßt sich der zeitliche Verlauf der Insulinwirkung durch derartige Abwandlungen der nativen Struktur des humanen Insulins beeinflussen, wesentliche Probleme sind jedoch noch nicht gelöst: Es gibt noch kein therapeutisch anwendbares Insulinanalogon, welches durch auch nur partielle Gewebsspezifniät, insbesondere eine Hepatoselektivität, eine gezieltere, den physiologischen Bedingungen entsprechende Therapie erlaubt. Ebensowenig ist ein Analogon bekannt, das infolge größerer Wirkstärke in geringeren Mengen als Humaninsulin oder tierisches Insulin nativer Struktur eingesetzt werden könnte.

Bei sämtlichen Insulinen, die zur Behandlung von Diabetes eingesetzt werden, handelt es sich immer um monomere Insulinmoleküle mit einer Molmasse um 6000. Alle monomeren Insulinanaloga und -derivate haben sich als partielle oder volle Agonisten des Insulins erwiesen (S. Gammeltoft, Physiol Rev. 1984, 64, S. 1321) und zeigen eine enge Korrelation zwischen Rezeptorbindung und Auslösung des biologischen Signals. Nur in wenigen Fällen, wie beispielsweise bei kovalent verbrückten Insulindimeren, wurde eine Diskrepanz zwischen Rezeptorbindung und biologischer Aktivität beobachtet (A. Schüttler, D. Brandenburg, Hoppe Seyler's Z. Physiol. Chem. 1982, 363, S. 317–330, M. Weiland, C. Brandenburg, D. Brandenburg, H. G. Joost, Proc. Natl. Acad. Sci. USA 1990, 87, S. 1154–1158). Weiterhin haben sich die Insulindimere zur Differenzierung von Insulinrezeptoren in verschiedenen Geweben bewährt (M. Bremer, M. Weiland, W. Becker, D. Müller-Wieland, R. Streicher, M. Fabry, H. G. Joost, Molecular Pharmacology 1993, 44, S. 271–276). Damit sind sie von grundsätzlicher Bedeutung für die Diagnostik in pathologischen Fällen.

Bei allen bisher beschriebenen Dimeren handelt es sich um die kovalente Verbrückung zweier Insuline in ihrer nativen Länge. Insulindimere sind prinzipiell für die Therapie von besonderem Interesse, da sie im Tierexperiment eine relative Hepatoselektivität zeigen (demonstriert für B1,B1'-Suberoyl-Insulindimer mit nativer Insulinstruktur, F. Shojaee-Moradie, N. C. Jackson, M. Boroujerdi, D. Brandenburg, P. H. Sönksen, R. H. Jones, Diabetologia 1995, 38, S. 1007–1013) und damit eine physiologischere Senkung des Blutzuckerspiegels erlauben als alle zur Zeit in der Diabetestherapie eingesetzten Insuline. Das dort eingesetzte B1,B1'-Suberoyl-Insulindimer hat jedoch eine wesentlich geringere Bioaktivität in vitro als Rezeptorbindung (28.8% gegenüber 157–199%, M. A. Tatnell, R. H. Jones, K. P. Willey, A. Schüttler, D. Brandenburg, Biochem, J. 1983, 216, S. 687–694). Das Verhältnis Bioaktivität zu Rezeptorbindung ist also mit 0,15–0,18 sehr niedrig. Über eine Anwendung bzw. Weiterentwicklung dieser Befunde in Richtung Diabetestherapie ist uns nichts bekannt.

Wir haben jetzt neuartige Insulindimere konzipiert und synthetisiert, die aufgrund ihrer Eigenschaften vielversprechend im Hinblick auf eine Lösung der oben genannten Probleme und eine verbesserte Diabetestherapie sind. Dabei ist gegenüber der bisherigen Therapie mit monomeren Insulinen das einzigartige an unserem Ansatz, daß kovalent verbrückte Insulindimere als Grundstruktur dienen, bei denen die C-Termini der B-Ketten verkürzt und in Position B26 niodifiziert sind. Diese neuen Insulindimere besitzen eine Verbrückung an den N-terminalen Aminogruppen der B-Kette, die aus einer linearen oder einer verzweigten bifunktionellen Carbonsäure besteht. Die Dimere lassen sich mit der allgemeinen Formel I beschreiben:

o von welcher

X = O-Alkyl, O-Aryl, NRR', Aminosäure oder deren Derivat, Alkyl- oder Arylrest R, R' = H, NH₂, Alkyl- oder Arylrest n = 0, 1, 2

Die Dimere werden in bekannter Weise durch Verbrücken von zwei gegebenenfalls partiell geschützten monomeren Molekülen mit der voraktivierten Dicarbonsäure hergestellt (A. Schüttler, D. Brandenburg, Hoppe Seyler's Z. Physiol. Chem. 1982, 363, S. 317–330). Die monomeren Analoga lassen sich mittels enzymkatalysierter Semisynthese gewinnen (siehe Erfindungsbeispiele).

Verglichen mit Humaninsulin und monomeren Insulinanaloga zeichnen sich die erfindungsgemäßen Dimeren durch

DE 199 08 041 A 1

besonders hohe Affinität zu Insulinrezeptoren und Superpotenz in vitro aus, letztere bis zum zwanzigfachen der Insulinwirkung.

Im Gegensatz zu den bisher bekannten kovalenten Insulindimeren weisen die neuartigen Dimere sehr hohe Bioaktivitäten auf Das Verhältnis von Bioaktivität zu Rezeptorbindung ist mindestens 2, teilweise sogar 4 bis 5. Sie sind damit biologisch wesentlich effektiver. Vergleicht man diese Quotienten mit denen des in der Literatur beschriebenen B1,B1'-Suberoyl-Dimeren, ergibt sich mindestens ein Faktor von 11 (0,18:2), und maximal von 28.

Die mit den ertindungsgemäßen Insulindimeren erzielten Vorteile bestehen vor allem darin, daß

- 1. gegenüber Insulin und allen zur Zeit therapeutisch eingesetzten Analoga mit einer relativen Hepatoselektivität und dannt einer physiologischeren Wirkungsweise (primärer Wirkon Leber und nicht Peripherie) zu rechnen ist, 2. gegenüber bisber bekannten Insulindimeren erstmalig eine wesentlich verbesserte biologische Effektivität vorhanden ist.
- 3. die im Vergleich zu Insulin und monomeren Analoga wesentlich erhöhte biologische Aktivität sich bei der Anweistung sehr vorteilhaft erweisen kann, da ein äquivalenter Effekt mit deutlich geringeren Mengen an Wirkstoff zu erreichen ware.

Erfindungsbeispiele

Abkürzungen

20

25

30

35

40

45

50

55

10

15

Ac Acetat (CH COO)

Äq. Äquivalente

Alox Alummune vict (Al-O,)

AS Ammosaure

CZE Kapillarzowe wiektrophorese

DIPEA N.N. Disease growk thy Lamin

DMF Dimethyltorius incl

DMSO Dimethyls altervid

Finoe 9-Pluoreny from two years onyl

HOBI I-Hydroxybenzotnazol

HPLC Hoefileistanesthissigehromatographie

MALDI Matrix assisted faser desorption/ionization

MPLC Mitteldrockthossigetromatographie

Mse Methylsultonyle boyyearbonyl

NAME AND ADDRESS OF THE PARTY O

MW Molekulargewicht

NaOH Natriumhydrosod

NMM N-Methyliners testin

RP reversed phase

ONSu N-Oxysuccinimd-ester

Sub Subcroyl

THE SECTION OF STREET, PARTY SECTION OF STREET, STREET

TBTU 2-(111-licux-treez-t-1-yl)-1.1,3,3-tetramethyluronium tetrafluoroborat

TEA Triethylamin

TIA Trifluoressigs one

TOF time of thehr

TPCK Tosyl-Lephenylatanyl-chlormethylketon

Tris Tris-thydroxyme byte aminomethan

Erfindungsbeispiel 1

Santh was son B1, B1'-Sub-[SarB26]-Des-(B27-B30)-insulin-B26-amid Insulindimer

Synthese des Tetrapeptids Gly-Phe-Phe-Sar-NH2

Die Peptidsynthese ertolgte an einem 4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxy Harz unter Verwendung der Fmoc-Schutzgruppentaktik. Die zur Kupplung verwendeten Fmoc-Aminosäureester wurden nach der TBTU/HOBt-Methode gebildet und um 3-molaren Überschuß, bezogen auf die nominale Harzbeladung, eingesetzt. Die Peptidsynthese ertolgte nach tolgendem Syntheseprotokoll:

60

45

55

Nr.	Operation	Reagenzien / Lösungsmitt I	Zeitdauer	Wiederholungen
1	Anschwellen des Harzes	DMF	1 min.	einmal .
2	Abspaltung der Fmoc-Gruppe	20% Piperidin	6 min.	dreimal
3	Waschen .	DMF	0,5 min.	dreimal
4	Waschen	2-Propanol	0,5 min.	zweimal
5	Kaiser Test*			
6	Anschwellen des Harzes	DMF	1 min.	einmal
7	Kupplung der AS	3 Äq. Fmoc-AS, jeweils 3 Äq. TBTU, HOBt und 4,5 Äq. NMM in 5 ml DMF	45 min.	einmal
8	Waschen	DMF	0,5 min.	dreimal
9	Waschen	2-Propanol	0,5 min.	zweimal
10	Kaiser Test**			
11	Anschwellen des Harzes	DMF	1 min.	einmal
12	Blockierung nicht umgesetzter Amino-Endgruppen	400 μl Ac₂O und 200 μl DIPEA in 5 ml DMF	10 min.	einmal
13	Waschen	DMF	0,5 min.	
14	Waschen	2-Propanoi	0,5 min.	

- *) fahre fort, wenn der Test positiv ist
- fahre fort, wenn der Test negativ ist. Ist das Testergebnis allerdings positiv, wiederhole dann die Schritte 6-9.

Die Abspaltung des Peptids vom Harz erfolgte acidolytisch durch Zugabe 10 ml der Abspaltungslösung aus 95% TFA, 4% H₂O und 1% Triethylsilan als Kationenfänger. Nach 2 h Rühren bei Raumtemperatur wurde das Harz abfiltriert und gründlich mit Dichlormethan gewaschen. Das Filtrat wurde bis zur Trockene eingeengt.

Die weitere Reinigung des Peptids erfolgte mittels RP-MPLC Säulenchromatographie mit einem lineraen 2-Propanol Gradienten (0-40% 2-Propanol in jeweils 400 ml 0,07% TFA Start- und Zulaufpuffer). Als stationäre Phase diente Nucleosil 20-C₁₈. Die Flußrate betrug 180-200 ml/h (82.6% Ausbeute).

Semisynthese von [Sar^{B26}]-Des-(B27-B30)-insulin-B26-amid

Das Insulin mit verkürztem C-Terminus der B-Kette wurde durch enzymatische Kupplung des Tetrapeptids an N^{αA1}-Msc-Des-(B23-B30)-insulin synthetisiert. Dazu mußte zunächst natives Insulin enzymatisch zu DOI abgebaut werden, welches anschließend partiell mit einer Schutzgruppe versehen wurde.

Synthese von Des-(B23-B30)-insulin

300 mg (51,66 µmol) Insulin werden in 60 ml Reaktionspuffer (0,05 M Tris, 1 mmol CaCl₂) aufgenommen. Nach Einstellen des pH Werts auf 9,5 mit festem Tris wird der proteolytische Abbau durch Zugabe von 16 mg TPCK-behandeltem Trypsin gestartet. Es werden ca. 6 h bei 37°C im Wasserbad inkubiert, wobei die Reaktion mittels RP-HPLC kontrolliert wird. Die Reaktion wird durch Zugabe von 4 ml Eisessig gestoppt und der Reaktionsansatz am Rotationsverdampfer eingeengt. Die Aufarbeitung erfolgt zunächst über eine Sephadex G-25f- und anschließend über eine Sephadex G-50f-Gelfiltration. Das Produkt wird lyophilisiert (73,3% Ausbeute). MW: 4865

Synthese von NaA1-(Msc)-Des-(B23-B30)-insulin

300 mg (61,66 µmol) Des-(B23-B30)-insulin werden unter Zusatz von 225 µl TEA in 22,5 ml DMSO gelöst. Unter leichtem Rühren wird eine Lösung von 18 mg (67,86 µmol) Msc-ONSu in 5 ml DMSO hinzugegeben. Nach einer Reaktionszeit von 20 min. wird die Reaktion durch Zugabe von 750 µl Eisessig gestoppt und die Reaktionslösung 16 h bei 4°C gegen entmineralisertes Wasser dialysiert. Das Retentat wird gefriergetrocknet. Zur weiteren Reinigung werden eine Ionenaustausch-Chromatographie an SP-Sepharose (pH 3; 350 ml Startpuffer, 350 ml 0,09 M NaCl-Zulaufpuffer) und Entsalzung über Sephadex G-25f durchgeführt. Das Produkt wird lyophilisiert (30,8% Ausbeute). MW: 5015,16

Typtische Kupplung von Gly-Phe-Phe-Sar-NH2 an NαA1-(Msc)-Des-(B23-B30)-insulin

132,75 mg (300 $\mu\mathrm{mol}$) Gly-Phe-Phe-Sar-NH₂ and 150,45 mg (30 $\mu\mathrm{mol}$) N^{$\alpha\mathrm{Al}$}-Msc-Des-(B23-B30)-insulin werden in 2 ml DMF (über Alox gerührt), 2 ml 1,4-Butandiol und 400 µl 0,05 M Ca(CH₃COO)2-Lösung gelöst bzw. suspendiert. Mit NMM wird der apparente pH auf 6,7-7,0 eingestellt. Anschließend werden 23 mg TPCK-behandeltes Trypsin, gelöst in 100 µl 0.05 M Ca(CH3COO)2-Lösung, dem Reaktionsgemisch zugefügt. Während der Reaktionszeit wird der Verlauf der Reaktion mittels RP-HPLC verfolgt und der pH-Wert überprüft und gegebenfalls mit NMM nachgestellt. In 4,5 h läßt sich ein Umsätz von knapp 90% erzielen. Die Reaktion wird durch Zugabe vom 4,5 ml 30% iger Essigsäure gestoppt. Das Enzym, das Peptid und weitere niedermolekulare Substanzen werden mittels einer Sephadex G-50f Gelchromatographic abgetrennt. Nicht umgesetztes Peptid wird anschließend über RP-MPLC gereinigt und wieder zurückgewonnen. Die weitere Reinigung des Insulinderivats erfolgt über präparative RP-HPLC über eine Nucleosil 100-10C8 (2.0 cm Durchmesser, 25.0 cm Länge mit einer Vorsäule von 5,0 cm (48,6% Ausbeute). MW: 5290,2

Synthese von B1,B1'-Sub-[SarB26]-Des-(B27-B30)-insulin-B26-amid Insulindimer

100 mg (18.9 µmol) N^{aA1}-Msc-[Sar^{B26}]-des-(B27-B30)-Insulin-B26-amid werden unter Zusatz von 5,5 Äquivalenten HOBt in 400 µl DMSO, 8,7 µl DMF und 9,5 µl NMM gelöst. Nach 30 min. wird mit 0,6 Äquivalenten Korksäure-bis-ONSu-ester in fester Form versetzt und 8-30 h gerührt. Der gesamte Reaktionsansatz wird unter Zugabe von 300 µl Eisessig in 1,5 ml 10%ige Essigsäure aufgenommen und über Sephadex G-50f chromatographiert. Die Dimerfraktion wird Ivophilisiert. Zur Abspaltung der Msc-Gruppen werden 100 mg Msc-geschütztes Protein in 5 ml eines Dioxan/Wasser-Gemisches (2/1, v/v) gelöst und auf 0°C gekühlt. Es wird mit 514 µl 2 N NaOH versetzt und 120 s bei 0°C gerührt. Die Reaktion wird durch Zugabe von 2,2 ml Eisessig gestoppt. Der Reaktionsansatz wird über Sephadex G-25f gelchromatographiert und lyophilisiert (11,9% Ausbeute).

Die Charakterisierung der Zwischenprodukte und des Endprodukts erfolgte mittels RP-HPLC, saurer CZE sowie MALDI-TOF Massenspektrometrie (Tabelle 1).

Tab. 1 Ausbeuten, Reinheiten nach RP-HPLC sowie CZE und Massen bei der Synthese von B1,B1'-Sub-[Sar^{B26}]-Des-(B27-B30)-Insulin-B26-amid Insulindimer

Derivat	Ausbeute	Reinheit	[%] nach	MW [g/mol]	
	[%]	RP-HPLC CZE		kalk.	gem.
Gly-Phe-Phe-Sar-NH ₂	82,6	98,5	>99	442,5	463,2*
A1-Msc-DOI-Gly-Phe-Phe- Sar-NH ₂	48,6	95,6	>99	5441,2	5439
B1,B1'-Sub-DOI-Gly-Phe- Phe-Sar-NH ₂ -Dimer	14,4	90	>99	10.720	10.710

Addukt mit Natrium (M = 23)

Erfindungsbeispiel 2

Synthese von B1,B1'-Sub-[D-Ala⁸²⁶]-Des-(B27-B30)-Insulin-B26-amid Insulindimer

Die Synthese dieses verkürzte Insulindimer erfolgte analog zur der bei Erfindungsbeispiel 1 beschriebenen Synthese mit der Ausnahme, daß das synthetische Tetrapeptid Gly-Phe-Phe-D-Ala-NH2 verwendet wurde. In Tabelle 2 sind die entsprechenden Ausbeuten, Reinheiten und Massen wiedergegeben.

5

BNSDOCID: <DE__19908041A1 1_3

35

55

60

Ausbeuten, Reinheiten nach RP-HPLC sowie CZE und Massen bei der Synthese von B1,B1'-Sub-[D-Ala^{B26}]-Des-(B27-B30)-Insulin-B26-amid Insulindimer

`	Derivat	Ausbeute	Reinheit	[%] nach	MW [g/m l]		
	20	[%]	RP-HPLC	CZE	kalk.	gem.	
10	Gly-Phe-Phe-D-Ala-NH ₂	61,6	99,1	>99	442,5	463,2*	
	A1-Msc- DOI-Gly-Phe-	53,9	95,1	>99	5441,2	5439,4	
	Phe-D-Ala-NH ₂						
15	B1,B1'-Sub-DOI-Gly-Phe-	11,9	88,1	>99	10.720	10.713	
	Phe-D-Ala-NH ₂ -Dimer						

Addukt mit Natrium

25

1971年中国国际国际国际

A CONTRACTOR

Erfindungsbeispiel 3

Northway von B1,B1'-Sub-[GluB26]-Des-(B27-B30)-Insulin-B26-amid Insulindimer

Die Synthes die ses verkurzte Insulindimer erfolgte analog zur der bei Erfindungsbeispiel 1 beschriebenen Synthese mit der Ausnal inc. dati das synthetische Tetrapeptid Gly-Phe-Phe-Glu-NH2 verwendet wurde. Tabelle 3 zeigt die entsprechenden Ausbeuten, Reinheiten und Massen.

Tab. 3

Ausbeuten, Reinfesten nach RP-HPLC sowie CZE und Massen bei der Synthese von B1,B1'-Sub-[Glu^{B26}]-Des-(B27-B30)-Insulin-B26-amid Insulindimer

35	Derivat	Ausbeute	Reinheit	[%] nach	MW [g/mol]	
		[%]	RP-HPLC	CZE	kalk.	gem.
40	Gly-Phe-Phe-Glu-NH ₂	74,9	94,5	>99	499,2	498,3
	A1-Msc- DOI-Gly-Phe-	38,6	95,7	>99	5498,2	5497,6
	Phe-Glu-NH₂					
45	B1,B1'-Sub-DOI-Gly-Phe-	15,8	>99	. >99	10.826	10.833
	Phe-Glu-NH ₂ -Dimer					

Erfindungsbeispiel 4

Biologische Eigenschaften zu den Erfindungsbeispielen 1-3

Die biologischen Eigenschaften der in den Erfindungsbeispielen 1-3 beschriebenen Dimere B1,B1'-Sub-[Sar, D-Ala oder Glu^{H20}[-128-(B27-B30)-Insulin-B26-amid Dimer wurden einerseits, anhand der Rezeptorbindung andererseits anhand der Bioaktivnat in vitro ermittelt.

Die Bestimmung der Rezeptorbindung erfolgte mittels Verdrängungsstudien an IM-9 Lymphozyten. Die relative biologische Aktivitat wurde an Kultivierten 3T3-L1 Adipozyten in Form des Glukosetransports bestimmt. In Tabelle 4 sind die Bindungsaltinitaten wwie die relativen biologischen Aktivitäten der synthetisierten Insulindimere wiedergegeben.

65

50

Relative Rezeptorbindung (bestimmt an IM-9 Lymphozyten) sowie relative biologische Aktivitäten (bestimmt an kultivierten 3T3-L1 Adipozyten) sämtlicher Insulindimere im Vergleich zu nativem Insulin

Dimer	R I. Rez pt r- bindung [%]	R I. biol. Aktivität	- 5
B1,B1'-Sub-[Sar ^{B26}]-Des-(B27-B30)- insulin-B26-amid Insulindimer	412 ± 94,8	1957 ± 575	- 10
B1,B1'-Sub-[D-Ala ^{B26}]-Des-(B27- B30)-insulin-B26-amid Insulindimer	357 ± 53,6	814 ± 184	15
B1,B1'-Sub-[Glu ^{B26}]-Des-(B27-B30)- insulin-B26-amid Insulindimer	176 ± 45,8	817,5 ± 224	20

Literatur

25

30

- 1 J. Marsussen, S. Havelund, P. Kurtzhals, A. A. Andersen, J. Halstram, E. Hasselager, U. D. Larsen, U. Ribel, L. Schäfter, K. Val. I. Jonassen, Diabetologia 1996, 39, S. 281–288.
- Furopaisches Patent EP 0 383 472 B1.
- 3. S. Garaneltott, Physiol Rev. 1984, 64, S. 1321.
- 4 A Schutter, D Brandenburg, Hoppe Seyler's Z. Physiol, Chem. 1982, 363, S. 317–330.
- 5 M. Weihard, C. Brandenburg, D. Brandenburg, H. G. Joost, Proc. Natl. Acad. Sci. USA 1990, 87, S. 1154–1158.
- 6 M. Bremer, M. Weiland, W. Becker, D. Müller-Wieland, R. Streicher, M. Fabry, H. G. Joost, Molecular Pharmacology 1993, 44, S. 271–276.
- 7.4. Storice Moradic, N. C. Jackson, M. Boroujerdi, D. Brandenburg, P. H. Sönksen, R. H. Jones, Diabetologia 1995, 38, 8–1007, 1013
- S. M. A. Tatnell, R. H. Jones, K. P. Willey, A. Schüttler, D. Brandenburg, Biochem, J. 1983, 216, S. 687-694.

Patentansprüche

40

65

- 1. Insulinanaloga, die dadurch gekennzeichnet sind, daß zwei Insulinmoleküle an den N-terminalen Aminogruppen der B-Kette über eine lineare bifunktionelle Carbonsäure variabler Länge kovalent miteinander verknüpft, im C-Terminus der B-Kette verkürzt und in Position B26 modifiziert sind [Sequenz 1].
- Insulinanaloga nach Anspruch 1, bei denen die Verknüpfung aus einer verzweigten bifunktionellen Carbonsäure variabler Lange besteht [Sequenz 2].
- 3. Insulinanaloga nach Anspruch 1, bei denen die Verknüpfung aus einer linearen oder einer verzweigten bifunktionellen Carbonsäure variabler Länge besteht, die Aminosäure in Position B26 variiert wird und C-terminal eine Carbonylgruppe vorhanden ist [Sequenz 3].
- 4. Insulinanaloga nach Anspruch 1, bei denen die Verknüpfung aus einer linearen oder einer verzweigten bifunktionellen Carbonsäure variabler Länge besteht, die Aminosäure in Position B26 variiert wird und die C-terminale Carbonylgruppe amidien ist [Sequenz 4].
- Fin boch potentes Insulinanalogon nach Anspruch 1, bei dem die Brücke aus Korksäure besteht und sich in Position B26 Sarkosin-amid befindet [Sequenz 5].
- Insulinanaloga nach Anspruch 1, bei denen zwei unterschiedlich modifizierte Insulinmoleküle mittels einer linearen oder einer verzweigten bifunktionellen Carbonsäure variabler Länge asymmetrisch miteinander verknüpft sind [Sequenz 6].
- 7. Ein Insulinanalogon nach Anspruch 1, bei dem zwei Moleküle Des-(B26-B30)-insulin-B26-amid mittels einer linearen seler einer verzweigten bifunktionellen Carbonsäure über die Positionen PheB1 und PheB1 miteinander verknüpft sind [Sequenz 7].
- 8. Pharmazeutische Zubereitungen, dadurch gekennzeichnet, daß sie neben einem Analogon nach Anspruch 1-7 Zusätze wie Zinkionen, Phenol, m-Kresol, Glycerin, Puffersubstanzen und andere Additive enthalten.
- Eine Methode zur Behandlung von Diabetes-Patienten durch Verabreicherung einer pharmazeutischen Zusammenstellung einer therapeutisch effektiven Menge eines der nach Anspruch 1–7 beschriebenen Insulinanaloga in Kombination mit einem Additiv nach Anspruch 8.
- 10. Eine Methode nach Anspruch 9, bei der das Insulinanalogon intramuskulär verabreicht wird.
- 11. Eine Methode nach Anspruch 9, bei der das Insulinanalogon subcutan verabreicht wird.
- 12. Eine Methode nach Anspruch 9, bei der das Insulinanalogon intravenös verabreicht wird.
- 13. Hine Methode nach Anspruch 9, bei der das Insulinanalogon mit Hilfe einer externen oder implantierten Pumpe

The state of the s

DE 199 08 041 A 1

verabreicht wird.

- 14. Eine Methode nach Anspruch 9, bei der das Insulinanalogon nasal verabreicht wird.15. Eine Methode nach Anspruch 9, bei der das Insulinanalogon nach der Inhalationstherapie verabreicht wird.
- 16. Diagnosekits auf Basis von Analoga nach Anspruch 1-7.

Hierzu 4 Seite(n) Zeichnungen

A. 1887. W.

S qu nz 1

X = O-Alkyl, O-Aryl, NRR', Aminosäure oder deren Derivat, Alkyl- oder Arylrest

R, R' = H, Alkyl- oder Arylrest

n = 0, 1, 2, ...

Sequenz 2

X = O-Alkyl, O-Aryl, NRR', Aminosäure oder deren Derivat, Alkyl- oder Arylrest

R, R' = H, NH₂, Alkyl- oder Arylrest

n = 0, 1, 2, ...

いでは他のなるなどをあると

NATIONAL STATE OF THE PARTY OF

S qu nz 3

X = Aminosäure oder deren Derivat

R, R' = H, NH₂, Alkyl- oder Arylrest

n = 0, 1, 2, ...

Sequenz 4

一方にはない

A LAND COMPANIES CONTROLLES ...

X = Aminosäure oder deren Derivat

R, R' = H, NH₂, Alkyl- oder Arylrest

n = 0, 1, 2, ...

Sequenz 5

Sequenz 6

CARACTER PART PART STATE OF THE PART OF TH

X, Y = OH, O-Alkyl, O-Aryl, NRR', Aminosäure oder deren Derivat, Alkyl- oder Arylrest

 $R, R' = H, NH_2, Alkyl-oder Arylrest$

n = 0, 1, 2, ...

S qu nz7

Kp 1

R, R' = H, NH₂, Alkyl- oder Arylrest

n = 0, 1, 2, ...

Gly-lle-Val-Glu-Gln-Cys-Cys-Thr-Ser-lle-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn

HN—Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-NH2

O==

(CRR')n

O==

(CRR')n

O==

Gly-lle-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-NH2

S

Gly-lle-Val-Glu-Gln-Cys-Cys-Thr-Ser-lle-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn