

3.1 数字类型 (整型、浮点型、复数类型)

整数类型

与数学中整数的概念一致

- 可正可负,没有取值范围限制

- pow(x,y)函数: 计算 xy, 想算多大算多大

>>> pow(2,100)

126765060022822940149670320 5376 >>> pow(2,pow(2,15))

141546103104495478900155 3.....

4种进制表示形式

- 十进制: 1010, 99, -217 int()

- 二进制,以0b或0B开头: 0b010, -0B101 bin() binary

- 八进制,以0o或0O开头: 0o123, -0O456 oct()_Octal number system

- 十六进制,以0x或0X开头: 0x9a, -0X89 hex() Hexadecimal

英 [ˌheksə[|]desɪml]

关于Python整数,就需要知道这些。

· 整数无限制 pow()

• 4种进制表示形式

与数学中实数的概念一致

- 带有小数点及小数的数字
- 浮点数取值范围和小数精度都存在限制,但常规计算可忽略
- 取值范围数量级约-10³⁰⁷至10³⁰⁸,精度数量级10⁻¹⁶

• 浮点数间运算存在不确定尾数,不是bug

- 0.4
- $\bullet >>> 0.1 + 0.2$
- 0.300000000000000004

• 不确定尾数

浮点数间运算存在不确定尾数,不是bug

0.1

53位二进制表示小数部分,约10-16

0.100000000000000055511151231257827021181583404541015625 (十进制表示)

二进制表示小数,可以无限接近,但不完全相同

0.1 + 0.2

结果无限接近0.3,但可能存在尾数

浮点数间运算存在不确定尾数

>>> 0.1 + 0.2 == 0.3

False

>>> round(0.1+0.2, 1) == 0.3

True

浮点数间运算存在不确定尾数

- round(x, d):对x四舍五入, d是小数截取位数
- 浮点数间运算与比较用round()函数辅助
- 不确定尾数一般发生在10-16左右, round()十分有效

浮点数可以采用科学计数法表示

- 使用字母e或E作为幂的符号,以10为基数,格式如下:

<a>e 表示 a*10b

- 例如: 4.3e-3 值为0.0043 9.6E5 值为960000.0

关于Python浮点数,需要知道这些。

- 取值范围和精度基本无限制
- · 运算存在不确定尾数 round()
- 科学计数法表示

复数类型

与数学中复数的概念一致

如果 $x^2 = -1$,那么x的值是什么?

- 定义 $j = \sqrt{-1}$ 以此为基础,构建数学体系

- a+bi 被称为复数,其中,a是实部,b是虚部

复数实例

$$z = 1.23e-4+5.6e+89j$$

- 实部是什么? z.real 获得实部 返回值默认保留一位小数

- 虚部是什么? z.imag 获得虚部

数值运算操作符

操作符是完成运算的一种符号体系

操作符及使用	描述
x + y	加, x与y之和
x - y	减,x与y之差
x * y	乘, x与y之积
x / y	除,x与y之商 10/3结果是 3.333333333333333
x // y	整数除, x与y之整数商 10//3结果是3

数值运算操作符

操作符是完成运算的一种符号体系

操作符及使用	描述
+ X	x本身
- y	y的负值
x % y	余数,模运算 10%3结果是1
x ** y	幂运算,x的y次幂,x ^y
	当y是小数时,开方运算10**0.5结果是√10

数值运算操作符

二元操作符有对应的增强赋值操作符

增强操作符及使用	描述
x op=y	即 x = x op y,其中, op 为二元操作符
	x += y x -= y x *= y x /= y x //= y x %= y x **= y
	>>> x = 3.1415 >>> x **= 3 # 与 x = x **3 等价 31.006276662836743

数字类型的关系

类型间可进行混合运算,生成结果为"最宽"类型

- 三种类型存在一种逐渐"扩展"或"变宽"的关系:

整数 -> 浮点数 -> 复数

- 例如: 123 + 4.0 = 127.0 (整数+浮点数 = 浮点数) 如果有复数参加运算的时候,返回值会带一个括号

数值运算函数

一些以函数形式提供的数值运算功能

函数及使用	描述
abs(x)	绝对值,x的绝对值 abs(-10.01) 结果为 10.01
divmod(x,y)	商余, (x//y, x%y), 同时输出商和余数 divmod(10, 3) 结果为 (3, 1)
pow(x, y[, z])	幂余, (x**y)%z, []表示参数z可省略 pow(3, pow(3, 99), 10000) 结果为 4587
round(x[, d])	四舍五入,d是保留小数位数,默认值为0 round(-10.123, 2) 结果为 -10.12
max(x ₁ ,x ₂ , ,x _n)	最大值,返回x ₁ ,x ₂ , ,x _n 中的最大值,n不限 max(1, 9, 5, 4, 3) 结果为 9
min(x ₁ ,x ₂ , ,x _n)	最小值,返回x ₁ ,x ₂ , ,x _n 中的最小值,n不限 min(1, 9, 5, 4, 3) 结果为 1

一些以函数形式提供的数值运算功能

函数及使用	描述
int(x)	将x变成整数,舍弃小数部分 int(123.45) 结果为123; int("123") 结果为123
float(x)	将x变成浮点数,增加小数部分 float(12) 结果为12.0; float("1.23") 结果为1.23
complex(x)	将x变成复数,增加虚数部分 complex(4) 结果为 (4 + 0j)

