Cálculo 1

Exemplos de funções contínuas

Começamos lembrando que a função f é contínua em um ponto a no interior do seu domínio quando

$$\lim_{x \to a} f(x) = f(a).$$

Se a função é definida em um intervalo do tipo [a,b], dizemos que ela é contínua em x=a e/ou x=b se

$$\lim_{x \to a^{+}} f(x) = f(a)$$
 e/ou $\lim_{x \to b^{-}} f(x) = f(b)$,

pois, neste caso, não faz sentido fazer $x \to a$ ou $x \to b$, visto que só podemos nos aproximar destes pontos por um dos lados. Quando a função f é contínua em todos os pontos do seu domínio dizemos somente que f é uma função contínua.

No que se segue, apresentamos alguns exemplos de funções contínuas.

Exemplo 1. Para qualquer $c \in \mathbb{R}$ temos que

$$\lim_{x \to a} c = c,$$

e portanto a função constante f(x) = c é contínua. \square

Exemplo 2. Se $p(x) = b_0 + b_1 x + \cdots + b_n x^n$ é um polinômio, então

$$\lim_{x \to a} p(x) = \lim_{x \to a} (b_0 + b_1 x + \dots + b_n x^n) = b_0 + b_1 a + \dots + b_n a^n = p(a),$$

o que mostra que todo polinômio é uma função contínua. \square

Exemplo 3. Uma função racional é uma função definida como o quociente de dois polinômios. Se p(x) e q(x) são polinômios e $q(a) \neq 0$, então podemos aplicar a regra do quociente para obter

$$\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}.$$

Uma vez que $\text{dom}(p/q) = \{x \in \mathbb{R} : q(a) \neq 0\}$, concluímos que toda função racional é contínua. \square

O resultado a seguir é uma consequência das propriedades de limite. Ele nos permite construir vários outros exemplos de funções contínuas a partir dos 3 acima.

Teorema 1. Se f e g são contínuas no ponto x=a, então são também contínuas neste ponto as funções

1.
$$(f+g)(x) = f(x) + g(x)$$
;

2.
$$(f-g)(x) = f(x) - g(x)$$
;

3.
$$(f \cdot g)(x) = f(x) \cdot g(x)$$
;

4.
$$(f/g)(x) = \frac{f(x)}{g(x)}$$
, desde que $g(a) \neq 0$.

Em resumo, as operações básicas entre funções contínuas resultam em funções contínuas. Uma vez que a prova do teorema é bem simples, vamos considerar somente o item 1, deixando os demais para o leitor. Como f e g são contínua em x=a temos que

$$\lim_{x \to a} f(x) = f(a), \qquad \lim_{x \to a} g(x) = g(a).$$

Assim

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f + g)(a),$$

o que mostra que f + g é contínua em x = a. A prova dos outros itens pode ser feita de maneira análoga. Destacamos somente que, no item 4, estamos supondo $g(a) \neq 0$ para que possamos aplicar a regra do quociente para limites. De fato, se g(a) = 0, a função f/g não está definida no ponto x = a.

Exemplo 4. Lembremos que

$$\lim_{\theta \to 0} \operatorname{sen}(\theta) = 0 = \operatorname{sen}(0), \qquad \lim_{\theta \to 0} \cos(\theta) = 1 = \cos(0),$$

o que mostra que o seno e o coseno são contínuos no ponto $\theta=0$. Considerando agora um ponto qualquer $a\in\mathbb{R}$, podemos usar o fórmula do seno de uma soma e a mudança de variáveis $\theta=x-a$, para obter

$$\lim_{x \to a} \operatorname{sen}(x) = \lim_{\theta \to 0} \operatorname{sen}(\theta + a)$$

$$= \lim_{\theta \to 0} \left[\operatorname{sen}(\theta) \cos(a) + \operatorname{sen}(a) \cos(\theta) \right]$$

$$= \operatorname{sen}(0) \cdot \cos(a) + \operatorname{sen}(a) \cos(0) = \operatorname{sen}(a),$$

e portanto o seno é uma função contínua. Você vai verificar na sua tarefa que as demais funções trigonométricas são também contínuas. \Box

Exemplo 5. Embora não possamos ainda demonstrar, vamos registrar aqui que as funções exponencial e logaritmo são também contínuas. Isso significa que

$$\lim_{x \to a} e^x = e^a, \qquad \lim_{x \to b} \ln(x) = \ln(b),$$

para todos $a \in \mathbb{R}$ e b > 0. \square

O próximo resultado mostra que a composição de funções contínuas é uma função contínua.

Teorema 2. Se g é contínua no ponto x = a, e f é contínua no ponto y = g(a), então a função composta

$$(f \circ g)(x) = f(g(x))$$

 \acute{e} contínua no ponto x = a.

Intuitivamente, o que ocorre no teorema acima é o seguinte: quando x se aproxima de a, os valores y=g(x) se aproximam de g(a), porque g é contínua em x=a. Por outro lado, como f é contínua em g(a), à medida em que os valores y=g(x) se aproximam de g(a), os valores f(y)=f(g(x)) se aproximam de f(g(a)). Portanto, a composição de funções contínuas é ainda uma função contínua.

Exemplo 6. Neste exemplo final vamos considerar a função

$$f(x) = \begin{cases} x^2 \sin(1/x), & \text{se } x \neq 0, \\ 0, & \text{se } x = 0, \end{cases}$$

que já foi alvo de nosso estudo em um texto anterior. Observe que ela está definida em toda a reta. Dado $a \neq 0$, sabemos qua a função 1/x é contínua em x = a. Como o seno é contínuo, concluímos que sen(1/x) é contínua em x = a. O mesmo ocorre para x^2 , de modo que f é contínua em todo ponto $a \neq 0$ por ser o produto de duas funções contínua neste ponto.

A parte mais delicada é o estudo da continuidade no ponto x=0. Observe que

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \operatorname{sen}(1/x) = 0 = f(0),$$

o que mostra que f é também contínua em x=0. Na penúltima desigualdade acima o cálculo do limite foi feito utilizando-se o Teorema do Confronto, conforme o texto em que apresentamos as propriedades básicas do limite. \square

Tarefa

Vimos no texto que a função seno é contínua. Nesta tarefa vamos provar a continuidade das demais funções trigonométricas.

1. Utilize a fórmula

$$cos(\theta + a) = cos(\theta) cos(a) - sen(\theta) sen(a)$$

e a mesma mudança de variáveis do Exemplo 4 do texto para verificar que

$$\lim_{x \to a} \cos(x) = \cos(a),$$

e concluir que a função coseno é contínua em todo ponto $a \in \mathbb{R}$.

2. Use agora o Teorema 1 do texto para mostra que são contínua as demais funções trigonométricas, a saber

$$\tan(x) = \frac{\sin(x)}{\cos(x)}, \qquad \sec(x) = \frac{1}{\cos(x)}, \qquad \csc(x) = \frac{1}{\sin(x)}, \qquad \cot(x) = \frac{1}{\tan(x)}.$$