Relationship between Computer Architecture and Electrical Engineering

Nahin Ul Sadad Lecturer CSE, RUET

Program to Physics

প্রশ্নঃ একটা program কিভাবে Computer এর Processorএ run হয়?

High Level Language Program

```
int main(){int a=10; a=a+5; return 0;}
```


Instruction Set Architecture

Program Counter (PC)

- 1. Program Counter will have address of next instruction to be executed in current clock cycle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- 4. Data within registers and/or immediate values will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- Finally, PC will be incremented to point to the next instruction in next clock cycle.

- 1. Program Counter will have address of next instruction to be executed in current clock cycle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- Data within registers will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- Finally, PC will be incremented to point to the next instruction in next clock cycle.

- Program Counter will have address of next instruction to be executed in current clock cvcle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- Data within registers will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- Finally, PC will be incremented to point to the next instruction in next clock cycle.

- Program Counter will have address of next instruction to be executed in current clock cvcle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- Instruction will be decoded by control unit and will select registers and/or immediate values.
- 4. Data within registers will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- Finally, PC will be incremented to point to the next instruction in next clock cycle.

- Program Counter will have address of next instruction to be executed in current clock cycle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- 4. Data within registers be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- 6. Finally, PC will be incremented to point to the next instruction in next clock cycle.

- Program Counter will have address of next instruction to be executed in current clock cycle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- Data within registers and/or immediate values will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- Finally, PC will be incremented to point to the next instruction in next clock cycle.

- Program Counter will have address of next instruction to be executed in current clock cycle.
- 2. Address in PC will be sent to RAM to retrieve instruction.
- 3. Instruction will be decoded by control unit and will select registers and/or immediate values.
- Data within registers and/or immediate values will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 5. ALU will perform operation and result will be sent to the register to be written.
- 6. Finally, PC will be incremented to point to the next instruction in next clock cycle.

প্রশ্নঃ AND gate/OR gate কি দিয়ে তৈরি?

উত্তরঃ Transistor দিয়ে তৈরি।

We will learn in this direction.

Analog Electronics

প্রশ্নঃ Transistorএর কাজ কি?

উত্তরঃ গোটা পৃথিবীতে Transistorএর Role দুইটা।

- 1. Switch
- 2. Amplifier

প্রশ্লঃ Transistorএর কাজ কি Computerএ?

উত্তরঃ Transistor switch হিসেবে কাজ করে।

এর মানে ON/OFF করে।

Transistor (BJT) as Switch

Transistor Circuit Diagram

2-input Transistor AND Gate

Link: https://www.electronics-tutorials.ws/logic/logic_2.html

2-input Transistor OR Gate

Link: https://www.electronics-tutorials.ws/logic/logic 3.html

প্রমঃ Processor এ কোন transistor ব্যবহার করা হয়?

উত্তরঃ Processor의 CMOS transistor ব্যবহার ক্রা হয়।

CMOS = Complementary Metal—Oxide— Semiconductor Field Effect Transistor

Next Day: CMOS

Summary:

- 1. Computer তৈরি AND/OR gate দিয়ে এবং AND/OR gate তৈরি transistor দিয়ে।
- 2. গোটা পৃথিবীতে Transistorএর Role দুইটা Switching এবং Amplification I
- 3. Switch মানে ON/OFF করা। Transistor switch হিসেবে কাজ কুবাব সম্য

 - a. 5V দিলে transistor ON হবে (closed)। b. 0V দিলে transistor OFF হবে (Open)।
- Real life CPU (processor) তৈরি CMOS দিয়ে।

Thank You ©