# **Polyatomic Ions**

Certain atoms bond covalently with each other to form a group of atoms that has both molecular and ionic characteristics. A charged group of covalently bonded atoms is known as a polyatomic ion. Polyatomic ions combine with ions of opposite charge to form ionic compounds. The charge of a polyatomic ion results from an excess of electrons (negative charge) or a shortage of electrons (positive charge). For example, an ammonium ion, a common positively charged polyatomic ion, contains one nitrogen atom and four hydrogen atoms and has a single positive charge. Its formula is NH<sub>4</sub>, sometimes written as [NH<sub>4</sub>]<sup>+</sup> to show that the group of atoms as a whole has a charge of 1+. The seven protons in the nitrogen atom plus the four protons in the four hydrogen atoms give the ammonium ion a total positive charge of 11+. An independent nitrogen atom has seven electrons, and four independent hydrogen atoms have a total of four electrons. When these atoms combine to form an ammonium ion, one of their electrons is lost, giving the polyatomic ion a total negative charge of 10-.

Lewis structures for the ammonium ion and some common negative polyatomic ions—the nitrate, sulfate, and phosphate ions—are shown below. To find the Lewis structure for a polyatomic ion, follow the steps of Sample Problem D, with the following exception. If the ion is negatively charged, add to the total number of valence electrons a number of electrons corresponding to the ion's negative charge. If the ion is positively charged, subtract from the total number of valence electrons a number of electrons corresponding to the ion's positive charge.

$$\begin{bmatrix} H \\ H: \ddot{N}: H \\ \ddot{H} \end{bmatrix}^{+} \qquad \begin{bmatrix} : \ddot{O}: \\ \ddot{N}: \ddot{O} \\ \vdots \ddot{O}: \end{bmatrix}^{-} \qquad \begin{bmatrix} : \ddot{O}: \\ \vdots \ddot{O}: \ddot{S}: \ddot{O}: \\ \vdots \ddot{O}: \end{bmatrix}^{2-} \qquad \begin{bmatrix} : \ddot{O}: \\ \vdots \ddot{O}: \ddot{P}: \ddot{O}: \\ \vdots \ddot{O}: \end{bmatrix}^{3-}$$
Ammonium ion Nitrate ion Sulfate ion Phosphate ion

## extension

### **Chemistry in Action**

Go to **go.hrw.com** for a full-length article on nanoscale computers.



## **SECTION REVIEW**

- **1.** Give two examples of an ionic compound.
- 2. Use electron-dot notation to demonstrate the formation of ionic compounds involving the following:
  - a. Li and Cl
  - b. Ca and I
- **3.** Distinguish between ionic and molecular compounds in terms of the basic units that each is composed of.
- **4.** Compound B has lower melting and boiling points than compound A. At the same temperature, compound B vaporizes faster than compound A. If one of these compounds is ionic and the other is molecular, which would you expect to be molecular? ionic? Explain your reasoning.

#### **Critical Thinking**

**5. ANALYZING DATA** The melting points for the compounds Li<sub>2</sub>S, Rb<sub>2</sub>S, and K<sub>2</sub>S are 900°C, 530°C, and 840°C, respectively. List these three compounds in order of increasing lattice energy.