MATH/COSC 303

Interpolation Errors

Theorem 4.1.1 Let $f \in C^{\infty}$ and suppose $x_0 < x_1 < ...x_n$.

Let $p(x) = a_0 + a_1x + a_2x^2 + ...a_nx^n$ be the unique interpolation polynomial of degree n for f over $\{x_0, x_1, ...x_n\}$. (I.e., $p(x_i) = f(x_i)$ for i = 0, 1, ...n.) Let $M = \max\{|f^{(n+1)}(x): x \in [x_0, x_n]\}$ and $\Delta = |x_n - x_0|$.

$$|f(x) - p(x)| \le \frac{1}{(n+1)!} M |\prod_{i=0}^{n} (x - x_i)| \le \frac{1}{(n+1)!} M \Delta^{n+1}, \tag{1}$$

and

$$|f'(x) - p'(x)| \le \frac{1}{(n+1)!} M |\sum_{j=0}^{n} \prod_{i \ne j} (x - x_i)| \le \frac{1}{n!} M \Delta^n.$$
 (2)

PROOF: Let $x \in [x_0, x_n]$ be such that $x \neq x_i$ for all i. (We will deal with the case $x = x_i$ later by using limits.) Define (note that x is now fixed)

$$w(t) := \prod_{i=0}^{n} (t - x_i), \tag{3}$$

$$\lambda := \frac{f(x) - p(x)}{w(x)},\tag{4}$$

and

$$\phi(t) := f(t) - p(t) - \lambda w(t). \tag{5}$$

Notice that $\lambda w(x) = f(x) - p(x)$, so $\phi(x) = 0$. Also

$$\phi(x_j) = f(x_j) - p(x_j) - \lambda w(x_j)
= 0 - \lambda \prod_{i=0}^{n} (x_j - x_i)
= 0,$$

as $(x_i - x_i) = 0$. Finally, we note that $\phi \in \mathcal{C}^{\infty}$ (as f, p, and w are all \mathcal{C}^{∞}).

In summary, we now have $\phi \in \mathcal{C}^{\infty}$ with (at least) n+2 roots in $[x_0, x_n]$. Applying the MVT (or Rolle's Theorem) this implies,

- $\phi' \in \mathcal{C}^{\infty}$ with (at least) n+1 roots in (x_0, x_n) ,
- $\phi'' \in \mathcal{C}^{\infty}$ with (at least) n roots in (x_0, x_n) ,
- $\phi^{(n)} \in \mathcal{C}^{\infty}$ with (at least) 2 roots in (x_0, x_n) , and
- $\phi^{(n+1)} \in \mathcal{C}^{\infty}$ with (at least) 1 root in (x_0, x_n) .

Let $c \in (x_0, x_n)$ be a root of $\phi^{(n+1)}$ (i.e., $\phi^{(n+1)}(c) = 0$).

Now, notice that

$$\begin{array}{lll} \phi^{(n+1)}(t) & = & f^{(n+1)}(t) - p^{(n+1)}(t) - \lambda w^{(n+1)}(t) \\ & = & f^{(n+1)}(t) - \lambda w^{(n+1)}(t) & \text{(as p is a polynomial of degree n)} \\ & = & f^{(n+1)}(t) - \lambda \frac{d^{n+1}}{dx^{n+1}} \prod_{i=0}^n (x-x_i) \\ & = & f^{(n+1)}(t) - \lambda (n+1)! \end{array}$$

as $\prod_{i=0}^{n} (x-x_i)$ is a polynomial of degree n+1 with the first term x^{n+1} . So

$$f^{(n+1)}(c) - \lambda(n+1)! = 0.$$

Recalling the definition of λ (equation (4)), this yields

$$\frac{f(x) - p(x)}{w(x)}(n+1)! = f^{(n+1)}(c),$$

so

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(c) \prod_{i=0}^{n} (x - x_i).$$
 (6)

Noting $|f^{(n+1)}(c)| \leq M$, we have

$$|f(x) - p(x)| = \frac{1}{(n+1)!} M |\prod_{i=0}^{n} (x - x_i)|, \quad \text{for all } x \neq x_i, \ x \in [x_0, x_n].$$

As f, p, and $\prod_{i=0}^{n} (x - x_i)$ are all continuous in x, this bound will hold at $x = x_i$ as well, which proves the first inequality in (1). The second inequality follows from $|x - x_i| \leq \Delta$.

To see (2), take the derivative on each side of equation (6) to yield

$$f'(x) - p'(x) = \frac{1}{(n+1)!} f^{(n+1)}(c) \sum_{i=0}^{n} \prod_{i \neq j}^{n} (x - x_i),$$

(by the product rule). Using $|f^{(n+1)}(c)| \leq M$ yields the first inequality in (2), and the second inequality follows from $|x - x_i| \leq \Delta$.