

Sia
$$1 \leq K \leq m$$
, allora $\sigma_{n} = \|\vec{q}_{a} - \vec{q}_{g}\|^{2} - L_{K}$ do se $\alpha = V_{FK1}$ $\beta = V_{FK2}$ $c \propto_{i} \beta \leq_{i} N$

Oursets porta a (in querty could be $q \sim_{i} N > 0$)

 $0 = \|\vec{q}_{a} + S\vec{q}_{a} - \vec{q}_{p} - S\vec{q}_{p}\|^{2} - L_{K} = (3 - \frac{1}{3}) \text{ satto querty could} = 1 + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla y}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{i} N_{j} \left[\left(\frac{\nabla u}{m_{a}} - \frac{\nabla u}{m_{p}} \right) \vec{\sigma}_{i} \right]_{t} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} N_{i} N_{j} N_{i} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{j} N_{i} N_{j} N_{j} N_{i} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} + \frac{1}{3} \sum_{i=1}^{n+m} N_{i} N_{i} N_{j} N_{i} N_{i} N_{j} N_{j} N_{i} N_{i} N_{j} N_{i} N_{i} N_{j} N_{i} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} N_{j} N_{i} N_{j} N_$

Sia
$$n+1 \le k \le n+m$$
 affora $o_k = \|\vec{q}_k - \vec{q}_j\|^2 - L_k^1$
dove $\alpha = V_{Rk_1}$ $\beta = V_{Rk_2}$, $N+1 \le a \le N+M$, $1 \le \beta \le N$

Questo porta a: $\left(\operatorname{rear-elando} \ \delta \vec{q}_{\beta} \left(t+h \right) = \frac{h^2}{m_p} \sum_{i=1}^{m_p} \vec{V}_i \cdot \vec{V}_{\beta} \cdot \vec{v}_{i-1} \right)$
 $0 = \|\vec{q}_{a} - \vec{q}_{b} - S_{i}^{2}\|^2 - L_{k}^2 = \|S\vec{q}_{\beta} \left(t+h \right) - \frac{h^2}{m_p} \sum_{i=1}^{m_p} \vec{V}_i \cdot \vec{V}_{\beta} \cdot \vec{v}_{j+1} \right) - L_{k}^2$
 $0 = \|\vec{q}_{a} - \vec{q}_{b} - S_{i}^{2}\|^2 - L_{k}^2 - L_{k}^2 + \|S\vec{q}_{b} - S_{i}^{2}\|^2 - L_{k}^2 + \|\vec{q}_{a} - \vec{q}_{b}\|^2 - L_{k}^2$
 $0 = \frac{h^2}{m_p} \sum_{i=1}^{m_p} \vec{V}_{i-1} \cdot \vec{V}_{i} \cdot \vec{V}_{j} \cdot \vec{$

