Sea Level Rise - Project 4

•••

Vanessa Vandenberghe Wadia Ferjani Marceau Michel Mathieu Pierronne

Summary

I/ Presentation of the Data

II/ Local study of the Sea level Rise

III/ Time series Analysis of mean SSH

IV/ Prediction of the sea level rise by 2100

V/ Comparison with NOAA predictions

I/ Presentation of the Data: Missions

I/ Presentation of the Data: Principe of the Measurement

1) Global overview

Sea level average between 1998 and 2005

Difference of the sea level between 1998 and 2015

2) Evolution of the Sea Level

3) Local Regression

Two parts of the globe with the highest rise in sea levels

4) Principal Component Analysis

$$SSH(t) \approx \sum_{i=1}^{k} \alpha_i(t) EOF_i$$

ncrease in the average of the sea surface height

5) Pacific Decadal Oscillation (PDO)

The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin.

First PC and temporal variations

 $\alpha(t)$ & PDO (NOAA)

- Time series decomposition :
 - Trend
 - Seasonality
 - Residuals

- Time series decomposition :
 - 1. Trend

- An overall upward trend
- Instability between 2010 and 2015
- During this period the trend sometimes take the shape of a curved line with ups and downs

- Time series decomposition :
 - 2. Seasonality

• We have a yearly seasonality

- Time series decomposition :
 - 3. Residuals

• We have random residuals that can be sometimes significant

Original Data vs Trend Data

• The trend shows the overall movement in the Mean SSH series

Original Data vs Rolling mean

• The rolling mean plot take the form of the original data and it remove the outliers

Mean SSH by Week, Month and Year

- The mean SSH by week, month and year are basically following the trend of the time series
- With the monthly mean SSH plot we can better observe the seasonality

Mean SSH Variation by Week, Month and Year

- The variations are random
- Significant values of variations appear in the yearly variation

Autocorrelation and Partial Autocorrelation

- Autocorrelation : The lags are close to 1 => they are statistically significant
- Partial autocorrelation : partial autocorrelation after first 2 lags is very low.

1) Linear regression : at + b

(°C) 25.8 25.6 25.4 25.2

Sea Surface 24.6

Sea surface temperature average between 1998 and 2015

Visualisation of the model

Prediction

MSE = 9.68e-05

2) Multiple linear regression: at + bcos(2pi*omega*t) + csin(2pi*omega*t) + d

Visualisation of the model

Prediction

MSE = 7.75e-05

2) Multiple linear regression: at + bcos(2pi*omega*t) + csin(2pi*omega*t) + d

predicted value for 2100:1,10 m

r2 score : 94%

Visualisation of the model

3) Multiple linear regression: at + bcos(2pi*omega*t) + csin(2pi*omega*t) + dt*t + e

predicted value for 2100: 1,64 m

r2 score : 95%

Visualisation of the model

4) AutoregRessive Integrated Moving Average

p is the auto-regressive part of the model. It allows us to incorporate the effect of past values into our model.

d is the integrated part of the model. This includes terms in the model that incorporate the amount of differencing to apply to the time series.

q is the moving average part of the model. This allows us to set the error of our model as a linear combination of the error values observed at previous time points in the past.

predicted value for 2100: 1,46 m

V/ Comparison with NOAA predictions

The prediction for the mean sea level rise (ARIMA) in 2100 compared to the mean sea level in 2000 is **68 cm**.

Thank you for your attention!