Experimentos em Parcelas Subdivididas

Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha

08 de novembro de 2018 Londrina

Introdução Vantagens e Desvantagens Modelo estatístico Análise de Variância Exemplo

Introdução

- Tal como no caso de fatorial, o termo parcelas subdivididas não se refere a um tipo de delineamento e sim ao esquema do experimento, ou seja, a maneira pela qual os tratamentos são organizados.
- Nos experimentos em parcelas subdivididas, em geral, estuda-se simultaneamente dois tipos de fatores os quais são geralmente denominados de fatores primários e fatores secundários.

- Na instalação os níveis do fator primário (A) são distribuídos às parcelas segundo um tipo de delineamento experimental: DIC, DBC, DQL.
- Posteriormente os níveis do fator secundário (B) são distribuídos ao acaso às subparcerlas de cada parcela, quando possível.
- Tal disposição permite obter uma estimativa geral de maior precisão para os efeitos dos níveis do segundo fator.

Introdução Vantagens e Desvantagens Modelo estatístico Análise de Variância Exemplo

- Nos experimentos em parcelas subdivididas tem-se dois resíduos distintos: um correspondente às parcelas e outro às subparcelas dentro das parcelas.
- Em casos mais complexos, as subparcelas podem, também, ser repartidas em subsubparcelas. Tem-se, neste caso, três resíduos distintos:
 - Resíduo (a), referente às parcelas;
 - Resíduo (b), à subparcelas e
 - Resíduo (c), correspondendo às subsubparcelas.

 Eem parcela subdividida com a níveis primários, b níveis secundários e r repetições, temos a seguinte decomposição dos graus de liberdade:

Tabela 1: Parcela subdividida no delineamento inteiramente casualizado

GL
a − 1
a(r-1)
ar-1
b-1
(a-1)(b-1)
a(b-1)(r-1)
abr — 1

Tabela 2: Parcela subdividida no delineamento em blocos casualizados.

CV	GL
Blocos	r-1
Tratamento A	a-1
Resíduo(a)	(a-1)(r-1)
Parcelas	ar — 1
Tratamento B	b-1
$A \times B$	(a-1)(b-1)
Resíduo(b)	a(r-1)(b-1)
Total	abr-1

Tabela 3: Parcela subdividida no delineamento em quadrado latino.

CV	GL
Linhas	a-1
Colunas	a-1
Tratamento A	a-1
Resíduo(a)	(a-1)(a-2)
Parcelas	$a^{2} - 1$
Tratamento B	b-1
$A \times B$	(a-1)(b-1)
Resíduo(b)	a(a-1)(b-1)
Total	$a^{2}b-1$

Vantagens

- Em comparação com experimentos fatoriais, experimentos em parcelas subdivididas são mais fáceis de instalar;
- Quando os tratamentos associados aos níveis de um dos fatores exigem maior quantidade de material na unidade experimental do que os tratamentos do outro fator.
- O esquema pode ser utilizado quando um fator adicional é incorporado num experimento, para ampliar seu objetivo.
- Através da prévia informação, sabe-se que maiores diferenças podem ser esperadas entre os níveis de um certo fator do que entre os níveis do outro fator.

Desvantagens

- Do ponto de vista estatístico, os fatoriais são, em geral, mais eficientes que os em parcelas subdivididas;
- ② Enquanto nos fatoriais temos um só resíduo para todos os F e comparações de médias, no "split-plot" há dois resíduos, um para comparações de parcelas e outro para subparcelas;
- Para parcela, o número de GL geralmente é pequeno, levando à pouca sensibilidade na análise;
- Sempre que possível, é preferível utilizar experimentos fatoriais em lugar dos experimentos em parcelas subdivididas.

Modelo estatístico

 O modelo linear para o experimento em parcelas subdivididas no delineamento em blocos ao acaso é dado por:

$$y_{ijk} = \mu + \tau_i + \gamma_k + \mathbf{e}_{ik} + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}, \qquad \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, r \end{cases}$$
 (1)

em aue:

 y_{ijk} é o valor observado no i-ésimo tratamento, k-ésimo bloco e j-ésima subparcela;

μ é uma constante;

 τ_i é o efeito do *i*-ésimo fator A;

 γ_k é o efeito do k-ésimo bloco;

eik é o resíduo (a) da parcela;

 β_j é o efeito do *j*-ésimo fator B;

 $(\tau \beta)_{ij}$ é a interação entre o *i*-ésimo fator A e o *j*-ésimo fator B;

 ϵ_{ijk} é o resíduo (b) da subparcela;

Introdução Vantagens e Desvantage Modelo estatístico Análise de Variância Exemplo

 No experimento em parcelas subdivididas, em geral, deseja-se testar primeiramente a significância da interação entre os fatores. No caso de dois fatores, tem-se:

$$H_0$$
: $(\tau\beta)_{ij} = 0$ para todo i, j
 H_1 : Pelo menos um $(\tau\beta)_{ij} \neq 0$

• Caso a interação **não** seja significativa, testa-se os efeitos principais:

$$H_0$$
: $\tau_1 = \tau_2 = \dots \tau_a = 0$

 H_1 : Pelo menos um $\tau_i \neq 0$

$$H_0$$
 : $\beta_1 = \beta_2 = \dots \beta_b = 0$

 H_1 : Pelo menos um $\beta_j \neq 0$

Análise de Variância

Tabela 4: Quadro da Análise de Variância em um delineamento em blocos.

C.V.	G.L.	S.Q.	Q.M.	F _{calc}
Blocos	r-1	SQ_{Blocos}	$\frac{SQ_{Blocos}}{r-1}$	$\frac{QM_{Blocos}}{QM_{Res(a)}}$
A	a-1	SQ_A	$\frac{SQ_A}{a-1}$	$\frac{QM_A}{QM_{Res(a)}}$
Resíduo(a)	(a-1)(r-1)	$SQ_{Res(a)}$	$\frac{SQ_{Res(a)}}{(a-1)(r-1)}$	
(Parcelas)	(ar-1)	$(SQ_{Parcelas})$		
В	b - 1	SQ_B	$\frac{SQ_B}{b-1}$	$\frac{QM_B}{QMRes(b)}$
$A \times B$	(a-1)(b-1)	$SQ_{A \times B}$	$\frac{SQ_{A\times B}}{(a-1)(b-1)}$	$\frac{QM_{A\times B}}{QM_{Res}(b)}$
Resíduo(b)	a(r-1)(b-1)	$SQ_{Res(b)}$	$\frac{SQ_{Res(b)}}{a(r-1)(b-1)}$	
Total	abr — 1	SQ_{Total}		

• Em que as somas de quadrados são dadas por:

$$SQ_{Total} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} y_{ijk}^{2} - C \qquad C = \frac{\left(\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} y_{ijk}\right)^{2}}{abr}$$

$$SQ_{A} = \frac{1}{r \times b} \sum_{i=1}^{a} T_{A_{i}}^{2} - C$$

$$SQ_{Blocos} = \frac{1}{a \times b} \sum_{k=1}^{r} T_{Bloco_{k}}^{2} - C$$

$$SQ_{Parcelas} = \frac{1}{b} \sum_{i=1}^{a} \sum_{k=1}^{r} T_{Parcela}^{2} - C$$

$$SQ_{Res(a)} = SQ_{Parcelas} - SQ_{A} - SQ_{Blocos}$$

$$SQ_B = \frac{1}{a \times r} \sum_{j=1}^b T_B^2 - C$$

$$SQ_{A,B} = \frac{1}{r} \sum_{i=1}^a \sum_{j=1}^b T_{A_i,B_j}^2 - C$$

$$SQ_{AxB} = SQ_{A,B} - SQ_A - SQ_B$$

$$SQ_{Res(b)} = SQ_{Total} - SQ_{Parcelas} - SQ_A - SQ_{AxB}$$

Parcelas Subdivididas Desdobramentos Introdução Vantagens e Desvantagens Modelo estatístico Análise de Variância Exemplo

Exemplo 1

Suponha o caso de um experimento com três rações $(A,B,\ e\ C)$, em seis blocos casualizados, cada parcela constituída por dois animais. Em uma determinada fase do ensaio, os bovinos, dentro de cada parcela, passaram a receber, por sorteio, um dos tipos de suplementos minerais $(M\ ou\ P)$. Os ganhos de pesos individuais, ao final do experimento, são apresentados na tabela abaixo.

Introdução Vantagens e Desvantagens Modelo estatístico Análise de Variância Exemplo

Tabela 5: Ganhos de pesos, em quilos, ao final do experimento.

	1 / /						
	Tipos de Ração						
Blocos	A	4	В		B C		Totais
	М	Р	М	Р	М	Р	
1	107	89	116	101	90	96	599
П	117	101	136	110	112	89	665
Ш	122	98	130	104	99	92	645
IV	111	101	122	91	105	78	608
V	90	95	117	100	110	90	602
VI	116	90	114	94	114	93	621
Totais	663	574	735	600	630	538	3.740

A um nível de significância de 5%, faça a análise de variância e considerando um experimento em parcela subdividida no delineamento em blocos ao acaso, em que o tipo de suplemento mineral está na subparcela.

Tabela 6: Tabela auxiliar para cálculo das somas de quadrados das parcelas.

Blocos (2)		Totais				
Diocos (2)	А	В	С	Totals		
I	196	217	186	599		
II	218	246	201	665		
III	220	234	191	645		
IV	212	213	183	608		
V	185	217	200	602		
VI	206	208	207	621		
Totais	1.237 (12)	1.335 (12)	1.168 (12)	3.740		

$$\mathsf{C} \quad = \quad \frac{(107+117+\dots+90+93)^2}{3\times2\times6} = \mathbf{388.544.4}$$

$$\mathsf{SQTotal} \quad = \quad (107^2+117^2+\dots+90^2+93^2) - 388.544.4 = \mathbf{6.061.556}$$

$$\mathsf{SQRac} \quad = \quad \frac{1}{2\times6} \times (1.237^2+1.335^2+1.168^2) - 388.544.4 = \mathbf{1.173.722}$$

$$\mathsf{SQBlocos} \quad = \quad \frac{1}{2\times3} \times (599^2+\dots+621^2) - 388.544.4 = \mathbf{582.2222}$$

$$\mathsf{SQParcelas} \quad = \quad \frac{1}{2} \times (196^2+\dots+200^2+207^2) - 388.544.4 = \mathbf{2.377.556}$$

$$\mathsf{SQRes(a)} \quad = \quad SQParcelas - SQTrat - SQBlocos \\ \quad = \quad 2.377.556 - 1.173.722 - 582.2222 = \mathbf{621.6111}$$

Introdução Vantagens e Desvantagen Modelo estatístico Análise de Variância Exemplo

Tabela 7: Tabela auxiliar para cálculo das somas de quadrados das **Subparcelas**.

Suplementos (6)		Tipos de Ração		Totais
Suprementos (0)	А	В	С	Totals
М	663	735	630	2.028
Р	574	600	538	1.712
Totais	1.237 (12)	1.335 (12)	1.168 (12)	3.740

799.8333

$$\begin{aligned} & \mathsf{SQSup} &= \frac{1}{3\times 6} \times (2.028^2 + 1.712^2) - 388.544, 4 = \mathbf{2.773,778} \\ & \mathsf{SQRac,Sup} &= \frac{1}{3\times 2} (663^2 + 574^2 + \dots + 630^2 + 538^2) - 388.544, 4 \\ &= \mathbf{4.057.889} \\ & \mathsf{SQInter} &= 4.057, 889 - 1.173, 722 - 2.773, 778 \\ &= \mathbf{110,3889} \\ & \mathsf{SQRes(b)} &= SQTotal - SQParcelas - SQSup - SQInter \\ &= 6.061, 556 - 2.377, 556 - 2.773, 778 - 110, 3889 \end{aligned}$$

=

Tabela 8: Quadro da análise de variância do experimento em parcelas subdivididas no delineamento em blocos ao acaso.

Causa da Variação	S.Q.	g.l.	Q.M.	F_{calc}	<i>Pr</i> (> <i>F</i>)
Blocos	582, 22	5	116, 44		
Ração	1.173,72	2	586,86	9,441	$0,004976^{**}$
Resíduo(a)	621,61	10	62, 16		
(Parcelas)	2.377, 556	17			
Suplementos	2.773,78	1	2.773,78	52,0192	$3,011 \times 10^{(-6)^{***}}$
Ração $ imes$ Suplementos	110, 39	2	55, 19	1,0351	0, 3792
Resíduo(b)	799,83	15	53, 32		
Total	6.061, 556	35			

Os efeitos das Rações e dos Blocos são testados usando o Resíduo(a).

Os efeitos dos Suplementos e da Interação são testados usando o Resíduo(b).

Parcelas Subdivididas Desdobramentos Introdução Vantagens e Desvantagen Modelo estatístico Análise de Variância Exemplo

Efeito da Interação

 Verifica-se da Tabela 8 que a interação entre os tipos de Ração e Suplementos não foi significativa, havendo efeito dos fatores principais: Ração e Suplemento.

Efeito Ração

 No caso de ração, verifica-se que o efeito é significativo, e assim, pelo teste de tukey, temos:

$$\Delta = q_{(3,10,5\%)} \sqrt{\frac{QMRes(a)}{br}}$$

= 3,88 × $\sqrt{\frac{62,16}{12}}$

 $\Delta = 8,8 \text{ kg}$

Introdução Vantagens e Desvantagens Modelo estatístico Análise de Variância Exemplo

 Construindo-se a tabela das médias ordenadas em ordem decrescente, tem-se:

Ração	Médias (kg)	
В	111,25	а
Α	103,0833	ab
С	97,3333	b

em que letras iguais indicam médias semelhantes.

Portanto, a ração B difere da ração C, a um nível de significância de 5%, no ganho de peso dos bovinos, em que a B proporcionou um ganho maior, em kg.

Efeito Suplementos

 No caso dos suplementos, basta observar que a média de ganho de peso dos animais que foram alimentados com o suprimento M foi de

$$\bar{y}_M = 112,7 \text{ kg}$$

e com o **suprimento** *F* foi de

$$\bar{y}_F = 95, 1 \text{ kg}$$

 Assim, o suprimento M foi mais eficiente no ganho de peso, em Kg.

Introdução

- Quando a hipótese H₀ para a interação entre os fatores é rejeitada, então dizemos que a interação é significativa.
- Este resultado implica que os efeitos dos fatores atuam de forma dependente, ou seja, o efeito de um fator depende do nível do outro fator.
- Assim, não é recomendado realizar o teste F para cada fator isoladamente tal como foi apresentado para o caso da interação não significativa.

- O procedimento recomendado é realizar o desdobramento do efeito da interação.
- Para realizar este desdobramento deve-se fazer uma nova análise de variância em que os níveis de um fator são comparados dentro de cada nível do outro fator.

Desdobramento A/B

Tabela 9: Análise de variância para o desdobramento do fator A dentro de cada nível de B.

C.V.	G.L.	S.Q	Q.M.	F_{cal}
В	b-1	SQ_B	$QM_B = \frac{SQ_B}{b-1}$	$F_{calc} = \frac{QM_B}{QM_{Res}(b)}$
$A B_1$	a — 1	$SQ_{A B_1}$	$QM_{A B_1} = \frac{SQ_{A B_1}}{a-1}$	$F_{cal} = \frac{QM_{A B_1}}{QM_{ResComb}}$
$A B_2$	a-1	$SQ_{A B_2}$	$QM_{A B_2} = \frac{sQ_{A B_2}}{s-1}$	$F_{cal} = rac{QM_{A B_2}}{QM_{ResComb}}$
:	:	:	:	:
$A B_j$	a — 1	$SQ_{A B_j}$	$QM_{A B_j} = \frac{SQ_{A B_j}}{a-1}$	$F_{cal} = rac{QM_{A B_j}}{QM_{ResComb}}$
ResComb	n*	$SQ_{ResComb}$	$QM_{ResComb} = \frac{SQ_{ResComb}}{n^*}$	=
Total	SQ_{Total}	abn-1	=	=

- Para comparar os níveis de um fator principal em cada nível do fator secundário, é necessário fazer uma combinação das duas estimativas obtidas para o erro experimental bem como do número de graus de liberdade associado as mesmas.
- Esta combinação é denominada de resíduo combinado (ResComb).

 A estimativa do quadrado médio deste resíduo combinado é obtida por

$$QM_{ResComb} = \frac{QM_{Res(a)} + (b-1)QM_{Res(b)}}{b}$$

 O número de graus de liberdade associado a esta estimativa é obtido pela fórmula dos graus de liberdade de Satterhwaitte (n*) dada por

$$n^* = \frac{\left[QM_{Res(a)} + (b-1)QM_{Res(b)}\right]^2}{\frac{\left[QM_{Res(a)}\right]^2}{GL_{Res(a)}} + \frac{\left[(b-1)QM_{Res(b)}\right]^2}{GL_{Res(b)}}$$

Desdobramento B/A

Tabela 10: Análise de variância para o desdobramento do fator B dentro de cada nível de A.

_					
	C.V.	G.L.	S.Q	Q.M.	F _{cal}
	А	a — 1	SQ_A	$QM_A = \frac{SQ_A}{a-1}$	$F_{calc} = \frac{QM_A}{QM_{Res(a)}}$
	$B A_1$	b-1	$SQ_{B A_1}$	$QM_{B A_1} = \frac{SQ_{B A_1}}{b-1}$	$F_{cal} = \frac{QM_B A_1}{QM_{Res}(b)}$
	$B A_2$	b-1	$SQ_{B A_2}$	$QM_{B A_2} = \frac{sQ_{B A_2}}{b-1}$	$F_{cal} = rac{QM_B A_2}{QM_{Res(b)}}$
	:	:	:	:	:
	$B A_j$	b-1	$SQ_{B A_j}$	$QM_{B A_j} = \frac{sQ_{B A_j}}{b-1}$	$F_{cal} = rac{QM_{B A_j}}{QM_{Res}(b)}$
	Res(b)	ab(n-1)	$SQ_{Res(b)}$	$QM_{Res(b)} = \frac{SQ_{Res(b)}}{ab(n-1)}$	-
	Total	SQ_{Total}	abn-1	-	-