МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. БАУМАНА

Образовательный центр VK

Дисциплина: Нейронные сети в ML

Тема проекта: Машинный перевод

Выполнили студенты: Мейерханс Алексей Сухова Екатерина Фадеев Роман

Введение

Обработка естественного языка (NLP) — это область искусственного интеллекта, которая фокусируется на взаимодействии между компьютерами и людьми через естественный язык.

Машинный перевод (МП) — это применение NLP, которое занимается автоматическим переводом текстов с одного языка на другой с использованием алгоритмов и технологий.

Состояние проблемы машинного перевода остается актуальным и многогранным. Несмотря на значительные успехи в области технологий, такие как использование глубокого обучения и нейронных сетей, остаются вызовы, связанные с качеством перевода. Проблемы, такие как многозначность слов, идиоматические выражения и культурные особенности, все еще могут приводить к ошибкам в автоматическом переводе.

Основные подходы и технологии в МП

- 1. Правила и системы на основе правил: набор заранее определенных правил для обработки грамматики и лексики языков.
- 2. Статистический машинный перевод (СМП): основывается на вероятностных моделях, которые анализируют большие корпуса параллельных текстов для выявления вероятностей перевода слов и фраз.
- 3. Нейронный машинный перевод (НМП): учитывает контекст всего предложения, а не отдельных слов.
- 4. Трансформеры: используют механизм внимания для обработки входных данных, что позволяет лучше захватывать зависимости между словами.
- 5. Адаптация к домену: Специфические области могут требовать адаптации моделей перевода для улучшения качества в узкоспециализированных текстах, таких как юридическая или медицинская документация.

Анализ обучающего набора данных

Датасет (399919 записей)

Index	Source	Target		
0	go.	марш!		
1	go.	иди.		
2	go.	идите.		
3	hi.	здравствуйте.		
4	hi.	привет!		

Количество уникальных слов (source): 31077 Количество уникальных слов (target): 87892

Количество общих слов: 313

Средняя тональность (source): 0.034 Средняя тональность (target): 3.75e-07

Статистика

Статистика	Исходная длина	Таргетная длина
count	399919.000000	399919.00000
mean	6.057924	5.24902
std	2.236346	2.07320
min	1.000000	1.00000
25%	5.000000	4.00000
50%	6.000000	5.00000
75%	7.000000	6.00000
max	101.000000	80.00000

Архитектура LSTM

Основная проблема стандартных RNN заключается в том, что они могут забывать важную информацию из-за эффекта затухающего градиента, когда градиенты становятся слишком малыми для эффективного обучения.

То есть стандартная RNN сеть не может видеть далеко назад – при прохождение градиента обратно – происходит экспоненциальное затухание градиента, чем дальше назад – тем больше затухает.

Решение – **LSTM**.

LSTM (Long Short-Term Memory) — это тип рекуррентной нейронной сети (RNN), разработанный для преодоления проблем, связанных с обучением на длинных последовательностях.

LSTM разработаны специально, чтобы избежать проблемы долговременной зависимости. Запоминание информации на долгие периоды времени — это их обычное поведение, а не что-то, чему они с трудом пытаются обучиться.

LSTM используются в различных областях, включая: • Машинный перевод • Генерация текста • Распознавание речи • Анализ тональности • Прогнозирование временных рядов

Архитектура LSTM

$$c'_{t} = \tanh (W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c'})$$

$$i_{t} = \sigma (W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$f_{t} = \sigma (W_{xf}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$o_{t} = \sigma (W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot c'_{t},$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

candidate cell state
input gate
forget gate
output gate
cell state
block output

Преимущества LSTM

- Долгосрочные зависимости
- Гибкость
- Устойчивость к затухающим градиентам

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

f: Forget gate, Забывать ли состояние элемента

i: Input gate, Писать ли состояние элемента

g: Gate gate, Сколько писать в элемент

o: Output gate, Сколько выводить из элемента

Архитектура GRU

GRU – gated recurrent unit

- Совмещаем выходные и забывающий гейты их заменяет update_gate (u)
- Совмещаем hidden_state(h) и cell_state(c) объединяем их
- Добавляем reset_gate

$$u_t = \sigma(W_{xu}x_t + W_{hu}h_{t-1} + b_u),$$

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r),$$

$$h'_t = \tanh(W_{xh'}x_t + W_{hh'}(r_t \odot h_{t-1})),$$

$$h_t = (1 - u_t) \odot h'_t + u_t \odot h_{t-1}.$$

Архитектура Transformer

Архитектура Transformer была представлена в статье "Attention is All You Need" в 2017 году и произвела революцию в области обработки естественного языка (NLP) и других задачах машинного обучения. Трансформер — это архитектура нейронных сетей, которая стала стандартом для задач обработки естественного языка (NLP), таких как машинный перевод, генерация текста и др.

Основная идея трансформеров в том, что они используют механизм внимания (Attention), который позволяет эффективно обрабатывать последовательности, выделяя важные элементы контекста без необходимости пошаговой обработки, как в RNN.

Энкодер преобразует входную последовательность в контекстные представления.

- Self-Attention (учитывает взаимосвязи между токенами входа).
- Feed-Forward Network (нелинейная обработка токенов).
- Нормализация и пропуски связей (Residual Connections).

Декодер генерирует выходную последовательность.

- Masked Self-Attention (учитывает только предыдущие токены).
- Кросс-внимание (взаимодействует с выходами энкодера).
- Аналогичные FFN и Residual Connections.

Архитектура Transformer

Выбор метрик

STEAM

STEAM

STEAM

STEAL

TEAM

STREAM

Substitution (S)

Delete (D)

Insertion (I)

WER

$$WER = \frac{S + D + I}{N}$$

CER

$$CER = \frac{S + D + I}{N}$$

BLEU

$$BLEU = BP \cdot \exp(\sum_{n=1}^{N} w_n \log p_n)$$

Ошибка на уровне слова

Ошибка на уровне символа

Обучение LSTM

```
Training Epochs: 13%
                                4/30 [10:09<53:00, 122.35s/epoch]
Epoch 5/30 - Loss: 2.4910
Training Epochs: 17%
                              5/30 [25:32<3:08:51, 453.26s/epoch]
Validation at Epoch 5: WER = 0.8088, CER = 0.6607
                              9/30 [34:51<1:03:58, 182.80s/epoch]
Training Epochs: 30%
Epoch 10/30 - Loss: 1.3228
Training Epochs: 33%
                              10/30 [48:07<2:15:26, 406.33s/epoch]
Validation at Epoch 10: WER = 0.7582, CER = 0.6022
Training Epochs: 47%
                              | 14/30 [57:22<48:04, 180.29s/epoch]
Epoch 15/30 - Loss: 0.9225
Training Epochs: 50%
                              15/30 [1:10:39<1:39:57, 399.82s/epoch]
Validation at Epoch 15: WER = 0.7351, CER = 0.5743
Training Epochs: 63%
                               | 19/30 [1:19:54<32:59, 179.97s/epoch]
Epoch 20/30 - Loss: 0.7167
Training Epochs: 67%
                              20/30 [1:33:04<1:06:06, 396.65s/epoch]
Validation at Epoch 20: WER = 0.7242, CER = 0.5614
Training Epochs: 80%
                              24/30 [1:42:18<17:56, 179.35s/epoch]
Epoch 25/30 - Loss: 0.5981
Training Epochs: 83%
                              25/30 [1:55:29<33:00, 396.10s/epoch]
Validation at Epoch 25: WER = 0.7169, CER = 0.5531
Training Epochs: 97%
                             29/30 [2:04:43<02:59, 179.48s/epoch]
Epoch 30/30 - Loss: 0.5235
Training Epochs: 100%
                             30/30 [2:18:01<00:00, 276.04s/epoch]
Validation at Epoch 30: WER = 0.7124, CER = 0.5485
```


Обучение GRU

```
Training Epochs: 13%
                                4/30 [16:02<1:23:00, 191.56s/epoch]
Epoch 5/30 - Loss: 1.5730
Training Epochs: 17%
                               5/30 [32:52<3:51:17, 555.10s/epoch]
Validation at Epoch 5: WER = 0.7198, CER = 0.5590
Training Epochs: 30%
                               9/30 [48:39<1:32:51, 265.32s/epoch]
Epoch 10/30 - Loss: 0.4677
Training Epochs: 33%
                               | 10/30 [1:05:26<3:04:16, 552.83s/epoch]
Validation at Epoch 10: WER = 0.7024, CER = 0.5388
Training Epochs: 47%
                               | 14/30 [1:21:12<1:13:13, 274.58s/epoch]
Epoch 15/30 - Loss: 0.2979
Training Epochs: 50%
                               | 15/30 [1:37:57<2:17:56, 551.80s/epoch]
Validation at Epoch 15: WER = 0.6992, CER = 0.5353
Training Epochs: 63%
                               19/30 [1:53:56<51:08, 278.94s/epoch]
Epoch 20/30 - Loss: 0.2326
Training Epochs: 67%
                                20/30 [2:10:47<1:32:40, 556.02s/epoch]
Validation at Epoch 20: WER = 0.6971, CER = 0.5337
Training Epochs: 80%
                               24/30 [2:26:36<27:45, 277.56s/epoch]
Epoch 25/30 - Loss: 0.1982
Training Epochs: 83%
                               | 25/30 [2:43:47<46:42, 560.54s/epoch]
Validation at Epoch 25: WER = 0.6981, CER = 0.5344
Training Epochs: 97% 29/30 [2:59:38<04:39, 279.01s/epoch]
Epoch 30/30 - Loss: 0.1780
Training Epochs: 100%
                              30/30 [3:16:32<00:00, 393.09s/epoch]
Validation at Epoch 30: WER = 0.6976, CER = 0.5331
```


LSTM GRU

Обучение Transformer

```
EPOCH - 0
  7%|
                | 1/15 [02:03<28:46, 123.29s/it]
Current BLEU: 11.281875423719455
не думаю что я здесь уже бывал ---> не думаю что я я я
хочешь пойти в кино завтра вечером ---> ты бы бы в в
я весь день работал не покладая рук так что был очень уставшим ---> я все все что я я я
я знаю что некоторые люди ценят мою работу ---> я знаю что это на на
том пожертвовал жизнью чтобы спасти мэри ---> том его его мэри мэри мэри мэри
EPOCH - 5
 40%
                6/15 [12:08<18:11, 121.30s/it]
Current BLEU: 18.717730186468245
я даже пытался написать песню о том что произошло ---> я даже пытался о о о том
никто не может ла дить с таким человеком ---> никто не может может с не
не понимаю зачем тому это делать ---> не не почему почему тому это делать
я встал раньше обычного чтобы успеть на первый поезд ---> я встал чем чем чем
помни что все мы в одной лодке ---> помню что мы все в в
             | 11/15 [22:14<08:06, 121.51s/it]
Current BLEU: 17.8200199398306
хочешь мы отвезём тебя обратно домой ---> хочешь чтобы чтобы мы тебя тебя
родители должны следить за благо получи ем своих детей ---> родители должно за за за
я бы удивился если бы том этого не сделал ---> я бы удивился если бы том этого делал делал
люди всегда спрашивают меня почему я делаю то что я делаю ---> люди всегда спроси меня почему я я что я я
              | 15/15 [30:22<00:00, 121.51s/it]
Current BLEU: 21.41007293142588
том не знал плакать ему или смеяться ---> том не знал что он флиртует
тебе необязательно отвечать на все вопросы ---> ты не должен отвечать на вопросы
ты не знал что том видел как ты это делал ---> ты не знал что том видел как это это это
он осуществил свою меч ту стать художником ---> он понял свои мечта художник
том ведёт себя так будто ничего не случилось ---> том ведёт себя так так ничего не случилось
Last 14 epoch train loss: 1.153939488351097
Last 14 epoch val loss: 3.2071023713974727
Last 14 epoch val bleu: 21.41007293142588
```


Пример перевода моделей одного текста

Input text	LSTM output	GRU output	Transformer output
you work hard	ты слишком много работаешь	ты много работаешь	ты много работаешь
tom was sick	том был болен	том болел больнои	том был болен
summer is here	лето здесь	летом здесь лето	лето лето
tom will win	том выиграет	том выиграет	том выиграет
i wonder where she lives	интересно где она живет	интересно где она живет в жизнь	интересно где она живёт
you will be there again soon	ты скоро будешь там снова	ты скоро опять там скоро	ты скоро там там будешь
i rarely make a mistake	я редко совершаю ошибку	я редко совершаю ошибку в ошибки	я редко делаю ошибку
i knew all about that	я знал об этом все	я знала об этом все знаю	я всё об этом знал
i plan on going there	я планирую туда поити	я планирую туда поити	я планирую туда туда
we are going to swim	мы собираемся поплавать	мы будем плавать	мы будем

Сравнение BLEU-метрики моделей

LSTM BLEU	GRU BLEU	Transformer BLEU
17,24	24,91	21,41

Пример работы

Machine Translation

Введите текст для перевода

мы собираемся поплавать

Использованные материалы:

- Лекции VK
- Книга «Николенко, Кадурин, Архангельская: Глубокое обучение. Погружение в мир нейронных сетей»
- Статьи с хабр:

https://habr.com/ru/companies/wunderfund/articles/331310/

https://habr.com/ru/articles/341240/

https://habr.com/ru/companies/mvideo/articles/780774/

• Еще полезные ссылки:

https://arxiv.org/abs/1706.03762

https://huggingface.co/docs/transformers/index

https://jalammar.github.io/illustrated-transformer/

Спасибо за внимание!