一、(16 分)设 f(n)和 g(n)为自然数集合上的函数,c 和 k 为某个大于 0 的常数,在下面的空格内填上 "Y" (表示是) 或者 "N" (表示否).

f(n)	g(n)	f(n)=O(g(n))	f(n)=o(g(n))	$f(n)=\Omega(g(n))$	$f(n) = \mathcal{O}(g(n))$
$\log^k n$	n				
\sqrt{n}	$n^{\sin n}$				
$n^{\log c}$	$c^{\log n}$				
$\log(n!)$	$\log(n^n)$				

Find-Second-Min(S,n)

- 1. if S[1] < S[2]
- 2. then $min \leftarrow S[1]$, SecondMin $\leftarrow S[2]$
- 3. else $min \leftarrow S[2]$, $SecondMin \leftarrow S[1]$
- 4. for $i \leftarrow 3$ to n do
- 5. if S[i] < SecondMin
- 6. then if S[i] < min
- 7. then $SecondMin \leftarrow min, min \leftarrow S[i]$
- 8. else $SecondMin \leftarrow S[i]$

三、(14 分)设原问题的规模是 n,从下述三个算法中选择一个最坏情况下时间复杂度最低的算法,简要说明你的理由.

算法 A: 将原问题划分规模减半的 5 个子问题,递归求解每个子问题,然后在线性时间将子问题的解合并得到原问题的解.

算法 B: 先递归求解 2 个规模为 n-1 的子问题,然后在常量时间内将子问题的解合并.

算法 C: 将原问题划分规模为 n/3 的 9 个子问题,递归求解每个子问题,然后在 $O(n^3)$ 时间将子问题的解合并得到原问题的解.

四、(20 分)设 $A=\{a_1,a_2,...,a_n\}$, $B=\{b_1,b_2,...,b_m\}$ 是整数集合, 其中 $m=O(\log n)$ 。设计算法计算集合 $C=(A-B)\cup(B-A)$,说明算法的主要步骤,并以比较作基本运算分析算法最坏情况下的时间复杂度.

五、(20 分)设 $S = \{1,2,...,n\}$ 是 n 项广告的集合,广告 i (i=1,2,...,n) 有发布开始时间 s(i)和截至时间 d(i),发布效益是 v(i),其中 s(i)是非负整数,d(i) 和 v(i)是正整数。问如何在 S 中选择一组广告 A,使得 A 中任两个广告都相容(时间段不重叠)且总效益最大?

六、(20分)有n个文件存在磁带上,每个文件占用连续的空间。已知第i个文件需要的存储空间为 s_i ,被检索的概率是 f_i ,i=1,2,...,n,且 f_1 + f_2 +..+ f_n =1. 检索每个文件需要从磁带的开始位置进行操作,比如文件i 需要空间 s_i =310,存储在磁带的121-430单元,那么检索该文件需要的时间为430. 问如何排列n个文件而使得平均检索时间最少?设计算法求解这个问题,说明算法的设计思想,证明算法的正确性,给出算法最坏情况下的时间复杂度.