

The following is a two-stage direct-coupled BJT amplifier circuit, on which we will perform full DC and AC analyses.

Which type of transistor is Q_1 , and in what amplifier configuration is it being used?

Pdiss = VCE · IC

=9.283.3,549=32.94

Determine V_{B1} , V_{E1} , I_{C1} , V_{C1} , and V_{CE1} if base current may be assumed negligible due to high β . Check P_{diss1} and verify that the transistor is operating in the active region.

$$V_{B_i} = 20$$
 $\left[\frac{100k}{100k + 22k}\right] = 16.39 \text{ V}$ $(+2)$

$$T_{c_1} = \frac{V_{cc} - V_{E_1}}{R_{E_1}} = \frac{20 - 17.09}{820} = 0.003549$$

Vc, = Ic, Re, = 3,549 y 2,24 = 7,807V (

 $= V_{c}, -V_{\bar{c}}, = 7,807 - 17.09 = -9,283 V(+2)$

Calculate the parameters g_{m1} , r_{b1} , and r_{o1} if $\beta = 300$ and the Early voltage $|V_A|$ is 100 V. Include a <u>unit</u> with each answer.

$$g_{m_1} = 35 \text{ Ic} = 35.3,549 = 124.2 \text{ mA/V}$$
 $V_{b_1} = \frac{8}{9^m} = \frac{300}{124.2} = 2.415 \text{ kg} + 20$
 $V_{o_1} = \frac{100}{12} = 28.18 \text{ kg} + 20$

Draw the mid-frequency AC small-signal model for amplifier section pertaining to Q_1 . Hint: due to the circuit configuration, R_L is no longer part of the first amplifier stage.

Compute the input and output transfers A_{V1} and A_{V2} and use them to determine the overall mid-frequency gain $A_{V}(dB)$.

$$R_{b} = R_{1} ||R_{2}||_{r_{b_{1}}} = 22k ||look|| 2.415k = 2.130 kn (+2)$$

$$A_{V_{1}} = \frac{R_{b}'}{R_{b}' + R_{5}} = \frac{2.130}{2.130 + 1.25} = 0.6302 (+2)$$

$$A_{V_{2}} = -g_{m_{1}} \cdot (r_{01} ||R_{c}) = -124.2 (28.18k || 2.2k) = 253.5$$

$$A_{V} = 0.6302 \cdot -253.5 = -159.7 (+2)$$

$$44 d_{B} inverting (+2)$$

Determine the high-frequency input capacitance using Miller's Theorem if $C_{BC1} = 5.0$ pF and $C_{BE1} = 22$ pF. Use it to compute the input HF cutoff frequency. You do not have to compute the output capacitance or cutoff frequency.

$$C_{BC(IN)} = C_{BC_1}(I-Av_2) = 5 \times 10^{-12}(I-253.5)$$

$$= 1273 \text{ pF} \qquad (1)$$

$$F_{H(IN)} = \frac{1}{2\pi}(C_{BE_1} + C_{BC(IN)})(R_5 || R_5)$$

$$= 1250 || 2130$$

$$= 787.7 \Omega$$

$$F_{H(IN)} = 156.0 \text{ kHz} \qquad (+2)$$

Compute the LF cutoff frequencies due to the input and emitter capacitors.

$$f_{CIN} = \frac{1}{2\pi \cdot C_{IN}} \left(\frac{R_{S} + R_{IS}}{R_{S}} \right) = \frac{2\pi \cdot 1 \times 10^{-6} \left(\frac{1.25k + 2.130k}{1.25k + 2.130k} \right)}{4 \times 10^{-6} \left(\frac{1.25k + 2.130k}{1.25k + 2.130k} \right)}$$

$$f_{CIN} = \frac{47.09 \text{ Hz}}{1000 \times 10^{-6} \cdot 8.052 \text{ Jz}} \left(\frac{1}{1000} \right)$$

$$f_{CE} \approx \frac{1}{9m} = \frac{1}{2\pi \cdot C_{E} \cdot R_{CE}} = \frac{1}{2\pi \cdot 1000 \times 10^{-6} \cdot 8.052}$$

$$f_{CE} = \frac{19.77 \text{ Hz}}{1000 \times 10^{-6} \cdot 8.052}$$

0

What type of transistor is Q_2 , and in what amplifier configuration is it being used?

Determine V_{B2} , V_{E2} , I_{E2} , I_{E2} , and I_{CE2} if base current may be assumed negligible due to high β . Check I_{diss2} and verify that the transistor is operating in the active region. Note: we already know I_{B2} due to the direct-coupled connection to I_{B2} . Also determine I_{B2} due to the direct-coupled connection to I_{B2} .

$$V_{B2} = V_{C_1} = 7.807V (H)$$

$$V_{BE_2} = 0.7V (NPN)$$

$$V_{E_2} = V_{B_2} - V_{BE_2} = 7.807 - 0.7 = 7.107 (12)$$

$$I_{E_2} = \frac{V_{E_2}}{R_{E_2}} = \frac{7.107}{1.5k} = 4.738 \text{ mA} (+2)$$

$$V_{CE_2} = V_{C_2} - V_{E_2} = 20 - 7.107 = 12.89 V (+2)$$

$$V_{CE_2} = V_{C_2} - V_{E_2} = 4.738 \cdot 12.89 = 61.09 \text{ mW}$$

$$V_{E_3} = I_{E_2} \cdot V_{CE_2} = 4.738 \cdot 12.89 = 61.09 \text{ mW}$$

Determine the LF cutoff frequency caused by the output capacitor. Hint: we know the output resistance of the amplifier, so we can compute the resistance "seen" by C_{OUT} . Finally, determine the approximate overall cutoff frequency f_L .

$$\int_{0}^{10} M_{2} = 35 \text{ Ic}_{2} = 35 \cdot 4.738$$

$$= 165.8 \text{ mA/V} \qquad (17)$$

$$\int_{0}^{10} R_{00}T \approx \int_{0}^{10} g_{m_{2}} = \frac{1}{165.8 \times 10^{-3}} = \frac{6.030}{52}$$

$$= \frac{1}{10}$$

$$R_{00}T \approx R_{00}T + R_{L} = \frac{1}{6.030} + 5k \approx 5k \text{ ft}$$

$$\int_{0}^{10} f_{L} |_{00T} = \frac{1}{27 \cdot (C_{00}T \cdot R_{2}(C_{00}T))} = \frac{1}{217 \cdot 10 \times 10^{-6} \cdot 5k}$$

$$\int_{0}^{10} f_{L} |_{00T} = 3.123 \text{ Hz} \qquad (12)$$

$$\int_{0}^{10} f_{L} \approx 47 \cdot ish \text{ Hz} \qquad (12)$$

$$(in \cdot ventity a (ithe higher)$$

7