Belegung

- V ist die Menge der aussagenlogischen Variablen
 - V' V
- Belegung mit Wahrheitswerten
 - Funktion β : V'->{w,f}
- vollständige Belegung mit Wahrheitswerten
 - wenn alle Variablen abgebildet werden
 - Funktion β : V->{w,f}

Fortsetzung

- \bullet L ist die Menge aller Formeln über Variablen in V
- Fortsetzung $\&L: -> \{w, f\}, x-> \&L(x)$
 - v V: $\beta(v) = \beta(v)$
 - x L: $\beta(\neg x) = \neg \beta(x)$
 - x,y L: $\beta(x y)=\beta(x)$ $\beta(y)$
 - * analog für andere binäre Operationen
 - $\, \text{\iffill {\it B} \else$ A $\ffill {\it B} \$
 - $* [[x]]_{\beta}$
- **NOTE:** Unterschied zwischen ß und β!
- vollständige Belegung β erfüllt x, wenn $\ensuremath{\mathbb{S}}(x) \!\!=\!\! w$
 - β ist Model für x
 - -b|=x

- Formel erfüllbar, wenn für mindestens eine Belegung gilt:
 - $\beta(x)=w$
- Tautologie T
 - wenn jede vollständige Belegung erfüllbar ist

- Kontradiktion bzw. unerfüllbar
 - wenn jede vollständige Belegung unerfüllbar ist

*
$$\beta(x)=f$$

• Beispiele:

[[Diskrete Mathematik]]