

SEQUENCE LISTING

<110> Laus, Reiner
Gold, Mitchell
Madhusudan, Peshwa
Pickering, Grant
Kylstra, Jelle
Rini, Brian
Small, Eric

<120> Immunotherapeutic Compositions and Methods for the Treatment of Moderately to Well-differentiated Cancers

<130> 11311.1002U

<160> 6

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 386
<212> PRT
<213> Human

<400> 1
Met Arg Ala Ala Pro Leu Leu Leu Ala Arg Ala Ala Ser Leu Ser Leu
1 5 10 15
Gly Phe Leu Phe Leu Leu Phe Phe Trp Leu Asp Arg Ser Val Leu Ala
20 25 30
Lys Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Ser
35 40 45
Pro Ile Asp Thr Phe Pro Thr Asp Pro Ile Lys Glu Ser Ser Trp Pro
50 55 60
Gln Gly Phe Gly Gln Leu Thr Gln Leu Gly Met Glu Gln His Tyr Glu
65 70 75 80
Leu Gly Glu Tyr Ile Arg Lys Arg Tyr Arg Lys Phe Leu Asn Glu Ser
85 90 95
Tyr Lys His Glu Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr
100 105 110
Leu Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly
115 120 125
Val Ser Ile Trp Asn Pro Ile Leu Leu Trp Gln Pro Ile Pro Val His
130 135 140
Thr Val Pro Leu Ser Glu Asp Gln Leu Leu Tyr Leu Pro Phe Arg Asn
145 150 155 160
Cys Pro Arg Phe Gln Glu Leu Glu Ser Glu Thr Leu Lys Ser Glu Glu
165 170 175
Phe Gln Lys Arg Leu His Pro Tyr Lys Asp Phe Ile Ala Thr Leu Gly
180 185 190
Lys Leu Ser Gly Leu His Gly Gln Asp Leu Phe Gly Ile Trp Ser Lys
195 200 205
Val Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Leu Pro
210 215 220
Ser Trp Ala Thr Glu Asp Thr Met Thr Lys Leu Arg Glu Leu Ser Glu
225 230 235 240
Leu Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gln Lys Glu Lys Ser
245 250 255

Arg Leu Gln Gly Gly Val Leu Val Asn Glu Ile Leu Asn His Met Lys
 260 265 270
 Arg Ala Thr Gln Ile Pro Ser Tyr Lys Lys Leu Ile Met Tyr Ser Ala
 275 280 285
 His Asp Thr Thr Val Ser Gly Leu Gln Met Ala Leu Asp Val Tyr Asn
 290 295 300
 Gly Leu Leu Pro Pro Tyr Ala Ser Cys His Leu Thr Glu Leu Tyr Phe
 305 310 315 320
 Glu Lys Gly Glu Tyr Phe Val Glu Met Tyr Tyr Arg Asn Glu Thr Gln
 325 330 335
 His Glu Pro Tyr Pro Leu Met Leu Pro Gly Cys Ser Pro Ser Cys Pro
 340 345 350
 Leu Glu Arg Phe Ala Glu Leu Val Gly Pro Val Ile Pro Gln Asp Trp
 355 360 365
 Ser Thr Glu Cys Met Thr Thr Asn Ser His Gln Gly Thr Glu Asp Ser
 370 375 380
 Thr Asp
 385

<210> 2
 <211> 3089
 <212> DNA
 <213> Human

<400> 2
 agcagttcct cctaactcct gccagaaaaca gctctcctca acatgagagc tgcacccctc 60
 ctctggcca gggcagaacag ctttagcctt ggcttcttgt ttctgtttt tttctggcta 120
 gaccgaagtg tactagccaa ggagttgaag tttgtgactt tggtgtttcg gcatggagac 180
 cgaagtccca ttgacacctt tcccactgac cccataaaagg aatcctcatg gccacaagga 240
 tttggccaac tcacccagct ggcatggag cagcattatg aacttggaga gtatataaga 300
 aagagatata gaaaattctt gaatgagtcc tataaacatg aacaggttta tattcgaagc 360
 acagacgttg accggacttt gatgagtgtc atgacaaaacc tggcagccct gtttccccca 420
 gaaggtgtca gcatctggaa tcctatccta ctctggcagc ccattcccggt gcacacagtt 480
 cctcttctg aagatcagtt gctatacctg cctttcagga actgcccctg ttttcaagaa 540
 cttgagagtg agactttgaa atcagagggaa ttccagaaga ggctgcaccc ttataaggat 600
 tttatagcta cttggaaaa acttcagga ttacatggcc aggaccttt tgaaatttgg 660
 agtaaagtct acgaccctt atattgttag agtgttcaca atttcactt accctcctgg 720
 gccactgagg acaccatgac taagttgaga gaattgtcag aattgtccct cctgtccctc 780
 tatggaattc acaagcagaa agagaaatct aggcttcaag ggggtgtcct ggtcaatgaa 840
 atcctcaatc acatgaagag agcaactcag ataccaagct aaaaaaaaaact tatcatgtat 900
 tctgcgcatg acactactgt gagtggccta cagatggcgc tagatgttta caacggactc 960
 cttcccccct atgcttcttgc acacttgcacg gaattgtact ttgagaaggg ggagtacttt 1020
 gtggagatgt actaccggaa tgagacgcac cacgagccgt atcccccctcat gctacccctggc 1080
 tgcagcccca gctgtccctt ggagagggtt gctgagctgg ttggccctgt gatccctcaa 1140
 gactggtcca cggagtgtat gaccacaaac agccatcaag gtactgagga cagtacagat 1200
 tagtgtgcac agagatctct gttagaaagag tagctgcct ttctcaggcc agatgtatgc 1260
 ttgagaacat actttggcca ttacccccc gctttgagga aaatgggctt tggatgatta 1320
 ttttatgttt tagggacccc caacctcagg caattcctac ctcttcaccc gaccctggcc 1380
 ccacctgcca taaaacttag ctaagttttt ttttggggc cagcgtaat gtaaaggggc 1440
 agcagtgcca aaatataatc agagataaaag ctttagtcaa agttcataga gttcccatga 1500
 actatatgac tggccacaca ggtatctttt tatttaagga ttctgagatt ttgcttgagc 1560
 aggatttagat aagtctgttc tttaaatttc tgaaatggaa cagatttcaa aaaaaattcc 1620
 cacaatctag ggtggaaaca aggaaggaaa gatgtgaata ggctgatggg gaaaaaaacca 1680
 attacccat cagttccagc ctctctcaa ggagaggcaa agaaaggaga tacagtggag 1740
 acatctggaa agttttctcc actggaaaaac tgctactatc tgttttata tttctgttaa 1800
 aatatatgag gctacagaac taaaattaa aaccttcttg tgccttgg tcctggaaaca 1860
 tttatgttcc tttaaagaa aaaaaatca aactttacag aaagatttga tgtatgtaat 1920

acatatacgca	gctcttgaag	tatataatc	atagcaaata	agtcatctga	tgagaacaag	1980
ctatgggc	acaacacatc	aggaaagaga	gcaccacgtg	atggagtttc	tccagaagct	2040
ccagtataa	gagatgtta	ctctaaagtt	gatthaaggc	caggcatggt	ggtttacgcc	2100
tataatccca	gcatttggg	actccgaggt	gggcagatca	cttgagctca	ggagctcaag	2160
atcagcctgg	gcaacatggt	gaaaccttgc	ctctacataa	aataaaaaaa	cttagatggg	2220
catggtgctg	tgtgcctata	gtccactact	tgtggggcta	aggcaggagg	atcacttgag	2280
ccccggaggt	cgaggctaca	gtgacccaag	agtgcactac	tgtactccag	ccaggcgaag	2340
agagcgagac	cctgtctcaa	taaataataa	aataaaataa	taaataataa	aataaaaaca	2400
aagggttgc	agaaaggaaag	tataggccag	gcacagtggc	tcacacctgt	aatccttgca	2460
tttggaaagg	ctgaggcagg	aggatcaactt	taggcctgg	gtgttcaaga	ccagcctgg	2520
caacatagt	agacactgtc	tctacccaaa	aaaggaagga	agggacacat	atcaaactga	2580
aacaaaatta	gaaatgtaat	tatgttatgt	tctaagtgc	tccaaagtca	aaacttattg	2640
gaatgttgc	agtgtgtta	cggaaatacgt	taggaggaca	aaaggaatgt	gtaagtcttt	2700
aatggccgata	tcttcagaaa	acctaagcaa	acttacaggt	cctgctgaaa	ctgcccactc	2760
tgcaagaaga	aatcatgata	tagcttcca	tgtggcagat	ctacatgtct	agagaacact	2820
gtgtcttatt	accattatgg	ataaagatga	gatgggttct	agagatgggt	tctactggct	2880
gccagaatct	agagcaaaagc	catccccct	cctgggggt	cacagaatga	ctgacaaaga	2940
catcgattga	tatgctctt	tgtgttattt	ccctccaaag	taaatgttt	tccttgggtc	3000
cattttctat	gcttgcact	gtcttctagc	agtgagccaa	atgtaaaata	gtgaataaaag	3060
tcattattag	gaagttcaaa	aaaaaaaaaa				3089

<210> 3
<211> 144
<212> PRT
<213> Human

<400> 3

Met	Trp	Leu	Gln	Ser	Leu	Leu	Leu	Leu	Gly	Thr	Val	Ala	Cys	Ser	Ile
1					5				10						15
Ser	Ala	Pro	Ala	Arg	Ser	Pro	Ser	Pro	Ser	Thr	Gln	Pro	Trp	Glu	His
									20						25
Val	Asn	Ala	Ile	Gln	Glu	Ala	Arg	Arg	Leu	Leu	Asn	Leu	Ser	Arg	Asp
									35						40
Thr	Ala	Ala	Glu	Met	Asn	Glu	Thr	Val	Glu	Val	Ile	Ser	Glu	Met	Phe
									50						55
Asp	Leu	Gln	Glu	Pro	Thr	Cys	Leu	Gln	Thr	Arg	Leu	Glu	Leu	Tyr	Lys
									65						70
Gln	Gly	Leu	Arg	Gly	Ser	Leu	Thr	Lys	Leu	Lys	Gly	Pro	Leu	Thr	Met
									85						90
Met	Ala	Ser	His	Tyr	Lys	Gln	His	Cys	Pro	Pro	Thr	Pro	Glu	Thr	Ser
									100						105
Cys	Ala	Thr	Gln	Ile	Ile	Thr	Phe	Glu	Ser	Phe	Lys	Glu	Asn	Leu	Lys
									115						120
Asp	Phe	Leu	Leu	Val	Ile	Pro	Phe	Asp	Cys	Trp	Glu	Pro	Val	Gln	Glu
									130						135
															140

<210> 4
<211> 767
<212> DNA
<213> Human

<400> 4

cgaggatgt	ggctgcagag	cotgctgctc	ttgggcactg	tggcctgcag	catctctgca	60
cccgccccgt	cggcccgccc	cagcacgcag	ccctggggc	atgtgaatgc	catccaggag	120
gccccggcgtc	tcctgaacct	gagtagagac	actgctgctg	agatgaatga	aacagtagaa	180
gtcatctcag	aaatgttga	cctccaggag	ccgacactgccc	tacagacccg	cctggagctg	240
tacaaggcagg	gcctgcgggg	cagcctcacc	aagctcaagg	gccccttgac	catgatagcc	300

agccactaca	agcagcactg	ccctccaacc	ccggaaacctt	cctgtgcaac	ccagattatc	360
acctttgaaa	gttcaaaga	gaacctaagg	gactttctgc	ttgtcatccc	ctttgactgc	420
tgggagccag	tccaggagtg	agaccggcca	gatgaggctg	gccaaaggcg	ggagctgctc	480
tctcataaaa	caagagctag	aaactcagga	ttgtcatctt	ggagggacc	aggggtgggc	540
cacagccatg	gtgggagtg	cctggacctg	ccctgggcca	cactgaccct	gatacaggca	600
tggcagaaga	atgggaatat	tttatactga	cagaatctag	taatatttat	atatttat	660
ttttaaaata	tttattttat	tatattta	agttcatatt	ccatatttat	tcaagatgtt	720
ttaccqtaat	aattattatt	aaaaatatqc	ttctaaaaaaaa	aaaaaaa		767

<210> 5
<211> 144
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab from human amino acids

```

<400> 5
Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile
      1           5           10          15
Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His
      20          25          30
Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp
      35          40          45
Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
      50          55          60
Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys
      65          70          75          80
Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met
      85          90          95
Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser
      100         105         110
Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys
      115         120         125
Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu
      130         135         140

```

```
<210> 6
<211> 767
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Made in a lab from human nucleic acids

```

<400> 6
cgaggatgt ggctgcagag cctgctgctc ttgggactg tggcctgcag catctctgca 60
ccggcccgct cccccagccc cagcacgcag ccctgggagc atgtgaatgc catccaggag 120
ccccggcgtc tcctgaacct gagtagagac actgctgctg agatgaatga aacagtagaa 180
gtcatctcag aaatgtttga cctccaggag ccgacctgcc tacagacccg cctggagctg 240
tacaaggcagg gcctgcgggg cagcctcacc aagctcaagg gccccttgac catgatagcc 300
agccactaca agcagcactg ccctccaacc ccggaaactt cctgtcaac ccagattatc 360
accttgaaa gttaaaaga gaacctgaag gactttctgc ttgtcatccc ctgtactgc 420
tgggagccag tccaggagtg agacccgcca gatgaggctg gccaagccgg ggagctgctc 480
tctcatggaa caagagctag aaactcagga tggcatctt ggagggacca aggggtggc 540
cacagccatg gtgggagtgcc cctggacctg ccctgggcca cactgaccct gatacaggca 600
tggcaqaqaqa atqqqaatat tttatactqa caqaaatcq taatatttat atatttatat 660

```

tttaaaata tttatttatt tatttattta agttcatatt ccatatttat tcaagatgtt 720
ttaccgtaat aattattatt aaaaatatgc ttctaaaaaa aaaaaaaa 767