Ethnicity Sensitive Author Disambiguation Using Semi-supervised Learning

Gilles Louppe, Hussein Al-Natsheh, Mateusz Susik and Eamonn Maguire

KESW 2016, Prague

September 23, 2016

The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

E.W. Hoppe (PNL, Richland), M. Hofton, S. Howard (South Dakota Sch. Mines Tech.), M.A. Howe (North Carolina U. & TUNL, Durham), R.A. Johnson (Washington U., Seattle), K.J. Keeter (Black

Sep 2011 - 3 pages

AIP Cont.Proc. 1441 (2012) 480-482

DOI: 10.1063/1.3700592

To appear in the proceedings of Conference: C11-07-24

Proceedings

e-Print arXiv:1109.1567 [nucl-ex] | PDF

Constraining muon internal bremsstrahlung as a contribution to the MiniBooNE low energy excess

Finley, B.T. Flemina, R. Foird, F.G. Garcia, G.T. Garvey, C. Green, J.A. Green, T.L. Hart, E. Hawker, R. Imlay, R.A. Johnson, P. Kasper, T. Katori, T. Kobilarcik, I. Kourbanis, S. Oct 2007 - 3 pages

FERMILAB-PUB-07-559-E e-Print: arXiv:0710.3897 [hep-ex] | PDF Experiment: FNAL-E-0898

The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

E.W. Hoppe (PNL, Richland), M. Horton, S. Howard (South Dakota Sch. Mines Tech.), M.A. Howe (North Carolina U. & TUNIL, Durham), R.A. Johnson (Washington U., Seattle), K.J. Keeter (Black

Constraining muon internal bremsstrahlung as a contribution to the MiniBooNE low energy excess

Finley, B.T. Fleming, R. Ford, F.G. Garcia, G.T. Garvey, C. Green, J.A. Green, T.L. Hart, E. Hawker, R. Imlay, R.A. Johnson, P. Kasper, T. Katori, T. Kobilarcik, I. Kourbanis, S. Oct 2007 - 3 pages

FERMILAB-PUB-07-559-E

e-Print arXiv:0710.3397 [hep-ex] [PDF

Experiment: FNALE-2088

X Different authors

Effects of Limited Calorimeter Coverage on ET

Frank E. Paige, A.V. Vanyashin (SSCL)

Mar 1992 - 9 pages

Search for single b^* -quark production with the ATLAS detector at $\sqrt{s}=7$ TeV

Planck Inst.), Walner Vandelli (CERN), Alexandre Vaniachine (Argonom), Peter Vankov (DESY), Francois Vannucci (Paris U., VI-VII), Riccardo Varí (INFN, Rome), Erich Varmes (Arizona U.),

Jan 2013 - 11 pages

Phys.Lett. B721 (2013) 171-189 (2013-04-25)

DOI: 10.1016/j.physletb.2013.03.016 CERN-PH-EP-2012-344 e-Print: arXiv:1301.1583 [hep-ex] | PDF Experiment: CERN-LHC-ATLAS

Effects of Limited Calorimeter Coverage on ET

Frank E. Paige, A.V. Vanyashin (SSCL)

Mar 1992 - 9 pages

Search for single b^* -quark production with the ATLAS detector at $\sqrt{s}=7$ TeV

Planck Inst.), Walner Vandelli (CERN), Alexandre Vaniachine (Argonne), Peter Vankov (DESY), Francois Vannucci (Paris U., VI-VIII), Riccardo Varí (INFN, Rome), Erich Varmes (Arizona U.),

Jan 2013 - 11 pages

Phys.Lett. B721 (2013) 171-189
(2013-04-25)

DOI: 10.016/j.physletb.2013.03.016
CERN-PH-EP-2012-344
e-Print arXiv:1301.1583 [hep-ex] | PDF
Experiment: CERN-LHC-ATLAS

✓ Same authors

Homonymy in Asian Names Written in English

Please meet Yang Wang, Wang Yang, and Yang Wang!

Author Disambiguation as Entity Resolution Problem

Image source : datacommunitydc.org

Definitions

Problem to Solve

For each author, group together all his publications, and only those.

Inspirehep.net is a digital library contains

- Over 1M publication forming more than 10M signatures
- 1.2M signatures are claimed by :
 - Authors themselves (similar to Google Scholar).
 - Universal identifiers (ORCiD) .
 - Professional curators .

Problem Formulation

Learning from data

- Manual disambiguation is long and difficult, even for experienced curators.
- Couldn't we automatically find a set of rules to disambiguate two signatures?

$$\phi(s_1, s_2) =
\begin{cases}
0 & \text{if } s_1 \text{ and } s_2 \text{ belong to the same author,} \\
1 & \text{otherwise.}
\end{cases}$$

This is a machine learning task called supervised learning.

Ethnicity Features

From (IPUMS-USA) we extracted :

• White: 20M

Black: 3M

American Indian or Alaska Native: 150K

Chinese: 50K

Japanese : 50K

• Other Asian or Pacific Islander: 30K

• Other race: 1K

Pair-wise Features Extraction

Features set

Feature	Combination operator		
Full name	Cosine similarity of (2, 4)-TF-IDF		
Given names	Cosine similarity of (2, 4)-TF-IDF		
First given name	Jaro-Winkler distance		
Second given name	Jaro-Winkler distance		
Given name initial	Equality		
Affiliation	Cosine similarity of (2, 4)-TF-IDF		
Co-authors	Cosine similarity of TF-IDF		
Title	Cosine similarity of (2, 4)-TF-IDF		
Journal	Cosine similarity of (2, 4)-TF-IDF		
Abstract	Cosine similarity of TF-IDF		
Keywords	Cosine similarity of TF-IDF		
Collaborations	Cosine similarity of TF-IDF		
References	Cosine similarity of TF-IDF		
Subject	Cosine similarity of TF-IDF		
Year difference	Absolute difference		
Any ethnicity feature	Product of probabilities estimated by SVM		

Feature Importances by Recursive Elimination

Disambiguation as a clustering problem

Hierarchical Clustering

- General family of clustering algorithms that build nested clusters by merging them successively.
- This hierarchy of clusters is represented as a tree (or dendrogram).
- The root of the tree is the unique cluster that gathers all the samples, the leaves being the clusters with only one sample.

Clustering Issues

- The complexity of hierarchical clustering is $O(N^2)$. For $N=10^7$ signatures, this is impractical. Solution: partitioning into blocks all signatures with the same last name + first initial, then cluster each of these blocks.
- How do you set the cut-off threshold?
 Solution: using training data (e.g., claimed signatures), pick the threshold that locally maximizes some criterion.

General Pipeline

Solving Issue 1 : Partitioning into Blocks

Cases

Analysis of data showed that author can have multiple names in few cases :

- "Mueller, R." and "Muller, R."
- "Martinez Torres, A." and "Torres, A. Martinez"
- "Smith-Jones, A." and "Smith, A."
- "Smith, Jack" and "Smith, A. J."
- An authors surname changed (e.g., due to marriage).

Solution

Solving Issue 2 : Threshold Cut-off Strategy

Evaluation

Protocol: Use the claimed signatures (about 1M) to form ground truth clusters. Keep 10% as a training set to find model parameters, and 90% as a test set for evaluation.

$$B^{3} \text{ Precision} = \mathbb{E}_{s} \{ \frac{|\hat{C}(s) \cap C(s)|}{|\hat{C}(s)|} \}$$
 (1)

$$B^{3} \operatorname{Recall} = \mathbb{E}_{s} \{ \frac{|\hat{C}(s) \cap C(s)|}{|C(s)|} \}$$
 (2)

$$B^3$$
 F-score = $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$ (3)

where C(s) (resp., $\hat{C}(s)$) is the true (resp., predicted) set of signatures to which s belongs.

Results 1 of 2

		B^3	
Description	Prec.	Recall	<i>F</i> 1
Baseline	0.9024	0.9828	0.9409
Blocking = Surname & First Initial	0.9901	0.9760	0.9830
$\overline{Blocking} = Double metaphone$	0.9856	0.9827	0.9841
Blocking = NYSIIS	0.9875	0.9826	0.9850
Blocking = Soundex	0.9886	0.9745	0.9815
Classifier = Gradient Boosting Classifier	0.9901	0.9760	0.9830
$\overline{Classifier} = Random \; Forests$	0.9909	0.9783	0.9846
Classifier = Linear Regression	0.9749	0.9584	0.9666
Training pairs = Non-blocked, uniform	0.9793	0.9630	0.9711
Training pairs = Blocked, uniform	0.9854	0.9720	0.9786
Training pairs $=$ Blocked, balanced	0.9901	0.9760	0.9830

Results 2 of 2

		B^3	
Description	Prec.	Recall	<i>F</i> 1
Baseline	0.9024	0.9828	0.9409
Clustering = Average linkage	0.9901	0.9760	0.9830
$\overline{Clustering} = Single \ linkage$	0.9741	0.9603	0.9671
$Clustering = Complete \ linkage$	0.9862	0.9709	0.9785
No cut (baseline)	0.9024	0.9828	0.9409
Global cut	0.9892	0.9737	0.9814
Block cut	0.9901	0.9760	0.9830
Combined best settings	0.9888	0.9848	0.9868
Best settings without ethnicity features	0.9862	0.9819	0.9841

Summary Results

Method	B ³ F-score
Full name	0.8183
${\sf Last\ name} + {\sf First\ initial}$	0.9409
Our model	0.9868

Implementation

The solution is currently being used by the INSPIRE and INVENIO projects at CERN.

Execution time: 20 hours for 10M signatures, on a 16 cores machine with 32GB of RAM.

But, even only few minutes for incremental disambiguation!

Our solution is open-source 1 and we released the dataset 2 .

^{1.} github.com/inspirehep/beard

^{2.} github.com/glouppe/paper-author-disambiguation/data

Conclusions

- Semi-supervised approach on the biggest dataset ever used for author disambiguation.
- Novel blocking technique based on phonetization.
- Showing the significancy of inferred name ethnicity.
- Showing the importance of balancing the training set.

Future Work

- · Error analysis.
- Build or find more comprehensive name-ethnicity dataset.
- Explore author embedding approaches as a blocking strategy.
- Build phonetic algorithm tailored to the disambiguation task.
- Archive and utilize user's feedback to enhance the model.
- Try our disambiguation solution for other tasks.