Exercises Set 3

Paul Dubois

September 15, 2023

Abstract

Only the questions with a * are compulsory (but do all of them!).

1 Fundamental Theorem of Calculus

Statement Let f be a continuous real-valued function defined on a closed interval [a,b]. Let F be the function defined, for all $x \in [a,b]$, by $F(x) = \int_a^b f(t)dt$.

Then F is uniformly continuous on [a,b] and differentiable on the open interval (a,b), and F'(x)=f(x) for all xin(a,b) so F is an anti-derivative of f.

Generalization / Corollary Let f(x) be a continuous function on the closed interval [a, b], and let F(x) be an anti-derivative of f(x). Prove that

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Application Evaluate the following definite integral using the Fundamental Theorem of Calculus:

$$\int_0^{\pi/2} \sin(x) \, dx$$

Evaluate the following definite integral using the Fundamental Theorem of Calculus:

$$\int_1^4 \frac{1}{x^2} \, dx$$