Permit Number 81011

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant		n Rates_
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
3	Preheater/Regenerative Thermal Oxidizer (3Asphalt Blowing Stills/Converters, 15Asphalt Plant Active Storage Tanks, Asphalt Truck Loading Racks)	PM/PM_{10} VOC CO NO_x SO_2 H_2S CH_2O COS HAPs (5)	4.86 7.76 28.63 5.58 38.84 0.32 0.01 <0.01	14.74 12.49 119.49 24.03 159.43 1.23 0.03 0.01 2.62
189	Process Steam Generator Boiler	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.09 0.07 1.04 1.24 0.01 <0.01 0.02	0.41 0.30 4.54 5.41 0.03 <0.01 0.10
217, 218, 219	Asphalt Loading Rack Fugitives and BD Oil Loading System (4)	PM/PM_{10} VOC CO COS H_2S	0.04 0.28 0.25 <0.01 0.03	0.18 1.24 1.11 <0.01 1.15
221	Tank 1 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O	0.01 0.01 0.12 0.15 <0.01 <0.01	0.05 0.04 0.54 0.64 <0.01 <0.01

		HAPs (5)	<0.01	0.01
224	Tank 2 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 0.01 0.12 0.15 <0.01 <0.01	0.05 0.04 0.54 0.64 <0.01 <0.01
227	Tank 3 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 0.01 0.12 0.15 <0.01 <0.01	0.05 0.04 0.54 0.64 <0.01 <0.01 0.01
230	Tank 4 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 0.01 0.12 0.15 <0.01 <0.01	0.05 0.04 0.54 0.64 <0.01 <0.01 0.01
233	Tank 6 Heater	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ O HAPs (5)	0.01 <0.01 0.07 0.08 <0.01 <0.01	0.03 0.02 0.29 0.34 <0.01 <0.01
235	Tank 13 Heater	PM/PM ₁₀ VOC	0.01 <0.01	0.03 0.02

		CO NO _x SO ₂ CH ₂ O HAPs (5)	0.07 0.08 <0.01 <0.01 <0.01	0.29 0.34 <0.01 <0.01 0.01
239	Tank 14 Heater 1	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
240	Tank 14 Heater 2	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
243	Tank 15 Heater 1	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
244	Tank 15 Heater 2	PM/PM_{10} VOC CO NO_x SO_2 CH_2O	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01

		HAPs (5)	<0.01	0.02
247	Tank 16 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 <0.01 0.07 0.08 <0.01 <0.01	0.03 0.02 0.29 0.34 <0.01 <0.01 0.01
250	Tank 17 Heater 1	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
251	Tank 17 Heater 2	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
254	Tank 18 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 <0.01 0.07 0.08 <0.01 <0.01	0.03 0.02 0.29 0.34 <0.01 <0.01 0.01
258	Tank 20 (Diesel Storage)	VOC	<0.01	<0.01

Permit Number 81011 Page 5

280, 282, 283, 284, 285, 286	Asphalt Pouring Sheds	PM/PM ₁₀ VOC CO H ₂ S COS HAPs (5)	0.53 1.93 0.10 0.05 0.07 1.82	0.17 0.59 0.03 0.01 <0.01 0.56
287	Asphalt Solvent Cold Cleaner	VOC	0.08	0.33
313	Asphalt Solvent Cold Cleaner	VOC	0.08	0.33
4	3-Tab Line Filler Storage Silo Baghouse Stack	PM/PM ₁₀	0.09	0.39
5	3-Tab Line Filler Upper Surge Hopper Baghouse Stack	PM/PM ₁₀	0.05	0.23
10	Lam Line Sand Silo Baghouse	PM/PM ₁₀	0.04	0.15
11	3-Tab Line Process Baghouse Stack	PM/PM ₁₀ VOC CO H ₂ S CH ₂ O COS	0.01 4.85 3.80 0.51 0.37 0.07	0.04 4.25 4.04 0.88 1.64 0.30
16	3-Tab Line Filler Oil Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.11 0.08 1.24 1.47 0.01 <0.01 0.03	0.49 0.35 5.41 6.44 0.04 <0.01 0.12

18	3-Tab Line Process Oil Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.09 0.07 1.03 1.23 0.01 <0.01 0.02	0.41 0.30 4.51 5.37 0.03 <0.01 0.10
23-A, 23-B, 23-C, and 23- D	3-Tab Line Cooling Stacks	PM/PM ₁₀ VOC	4.60 0.64	20.15 2.79
312	3-Tab Line Asphalt Preheater	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ O HAPs (5)	0.04 0.03 0.33 0.39 <0.01 <0.01	0.16 0.12 1.44 1.72 0.01 <0.01 0.04
318	Lam Line Filler Hot Oil Heater	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ O HAPs (5)	0.03 0.02 0.33 0.39 <0.01 <0.01	0.13 0.09 1.44 1.72 0.01 <0.01 0.03
319	Lam Line Process Oil Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 0.01 0.16 0.20 <0.01 <0.01	0.07 0.05 0.72 0.86 0.01 <0.01 0.02

320	3-Tab Line Regenerative Thermal Oxidizer Stack (Sealant Bulk Tank, Coater, Coater Surge Tank)	PM/PM ₁₀ VOC CO H ₂ S NO _x SO ₂ CH ₂ O HAPs (5)	0.03 0.16 0.22 0.02 0.16 1.68 <0.01 <0.01	0.12 0.36 0.72 0.03 0.69 2.31 0.01 0.02
321 and 322	General Ventilation and Fugitives (Roof Vent, 3-Tab and Lam Line Material Surfacing Areas, 3-Tab and Lam Line Coaters, Lam Line Cooling Section, 3-Tab and Lam Line Sealant Applicators, Lam Line Adhesive Applicator, 3-Tab and Lam Line Ink Jet Printers)	PM/PM ₁₀ VOC CO H ₂ S CH ₂ O COS HAPs (5)	5.32 2.19 0.32 0.76 0.09 0.04 0.04	23.29 9.64 1.40 1.32 1.40 0.19 0.18
323	Lam Line Filler Upper Surge Hopper Baghouse Stack	PM/PM ₁₀	0.04	0.19
324	Lam Line Process Baghouse Stack	PM/PM ₁₀ VOC	0.02 4.85	0.10 4.25

		CO H ₂ S CH ₂ O COS	3.80 0.51 0.50 0.09	4.04 0.88 2.17 0.40
325	Lam Line Regenerative Thermal Oxidizer Stack (Adhesive Bulk Tank, MSA Melt Tank, Adhesive Run Tank, Coater, Coater Surge Tank, Sealant Applicator, Adhesive Applicator)	PM/PM_{10} VOC CO NO_x SO_2 H_2S CH_2O COS HAPs (5)	1.07 0.38 0.48 0.16 5.33 0.06 <0.01 <0.01	0.17 0.64 1.34 0.69 7.18 0.10 0.02 <0.01 0.03
326	Lam Line Filler Storage Silo Baghouse Stack	PM/PM ₁₀	0.04	0.19
328	Lam Line Asphalt Preheater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.01
330	3-Tab Line Surfacing Materials Silos and Unloading	PM/PM ₁₀	<0.01	<0.01
331	Lam Line Surfacing Materials Silos and Unloading	PM/PM ₁₀	<0.01	<0.01
400	Adhesive Filler Bin Vent Filter	PM/PM ₁₀	0.02	0.08
401	Sealant Filler Bin Vent	PM/PM ₁₀	0.02	80.0

	Filter			
MAT	Lam Line Mat Unwind Dry Looper Baghouse Stack	PM/PM ₁₀	0.04	0.19
UNLOAD	Railcar/Truck Granule Unloading (Both Lines)	PM PM ₁₀	<0.01 <0.01	0.01 <0.01

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) PM particulate matter suspended in the atmosphere, including PM_{10.}
 - PM₁₀ particulate matter of 10 microns or less in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - CO carbon monoxide

NO_x - total oxides of nitrogen

 SO_2 - sulfur dioxide H_2S - hydrogen sulfide CH_2O - formaldehyde COS - carbonyl sulfide

HAPS - any of the Section 112(b), Federal Clean Air Act named compounds

- (4) Fugitive emissions are an estimate only.
- (5) HAPS other than H₂S, CH₂O, and COS are included in the PM and VOC emission rates.

Date December 29, 2008