МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ по лабораторной работе №1, вариант - 24

Теория автоматического управления

по теме: УПРАВЛЯЕМОСТЬ И НАБЛЮДАЕМОСТЬ

Студент:

Группа R3336 Поляков А.А.

Предподаватель:

 κ .т.н., доцент Π ашенко A.B.

СОДЕРЖАНИЕ

1	ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ					
	1.1	1.1 Условие задачи				
	1.2	Решение задачи				
		1.2.1	Исследование управляемости системы	5		
		1.2.2	Грамиан управляемости	6		
		1.2.3	Моделирование управления	7		
		1.2.4	Вывод	8		
2	ЕЩЕ ОДНО ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ					
	2.1	.1 Условие задачи				
	2.2	Решение задачи				
		2.2.1	Принадлежность точек управляемому подпространству	9		
		2.2.2	Исследование управляемости системы	10		
		2.2.3	Грамиан управляемости	11		
		2.2.4	Моделирование управления	13		
		2.2.5	Вывод	14		
3	ИССЛЕДОВАНИЕ НАБЛЮДАЕМОСТИ					
	3.1	Услов	овие задачи			
	3.2	Решен	Решение задачи			
		3.2.1	Исследование наблюдаемости системы	16		
		3.2.2	Грамиан наблюдаемости	17		
		3.2.3	Определение начальных условий	19		
		3.2.4	Вывод	21		
4	ЕЩЕ ОДНО ИССЛЕДОВАНИЕ НАБЛЮДАЕМОСТИ					
	4.1	Условие задачи				
	4.2	иие задачи	22			
		4.2.1	Исследование наблюдаемости системы	22		
		4.2.2	Грамиан наблюдаемости	24		
		4.2.3	Определение начальных условий	25		
		4.2.4	Альтернативные начальные условия	27		
		4.2.5	Вывод	32		

5	ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ ПО ВЫХОДУ				
	5.1	Услови	ие задачи	33	
	5.2	Решение задачи			
		5.2.1	Исследование управляемости и наблюдаемости системы	33	
		5.2.2	Вывод	35	
6	ОБЦ	ЦИЕ ВЬ	ЛВОДЫ	36	

1 ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ

1.1 Условие задачи

Необходимо рассмотреть систему:

$$\dot{x} = Ax + Bu$$

и выполнить следующие шаги:

- Исследовать управляемость системы:
 - Найти матрицу управляемости системы, определить ее ранг, сделать вывод об управляемости системы в целом.
 - Найти собственные числа матрицы А, найти для каждого из собственных чи сел матрицу Хаутуса (для управляемости), определить ранги матриц, сделать выводы об управляемости каждого собственного числа и системы в целом.
 - Найти Жорданову (или диагональную) форму системы и сделать выводы об управляемости каждого собственного числа и системы в целом.
- Найти Грамиан управляемости системы относительно времени $t_1 = 3$, вычислить его собственные числа. Проанализировать полученные собственные числа с точки зрения управляемости системы.
- Найти управление, переводящее систему из x(0) = 0 в $x(t_1) = x_1$ за время t_1 . Вы полнить моделирование системы, демонстрирующее корректность выполненных расчетов

1.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 3 & -6 & 4 \\ 4 & -5 & 4 \\ -4 & 4 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \qquad x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

1.2.1 Исследование управляемости системы

Найдем матрицу управляемости системы:

$$U = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} -1 & -17 & 83\\ 3 & -15 & 51\\ 1 & 11 & -47 \end{bmatrix}$$
$$rank(U) = 3$$

В таком случае по критерию Калмана, наша система полностью управляема по состоянию, так как ранк матрицы управляемости равен порядку системы.

Найдём собственные числа матрицы A:

$$\lambda_{1,2} = -3 \pm 2i, \qquad \lambda_3 = -1$$

Вычислим матрицу Хаутуса для каждого собственного числа:

$$H_{1} = \begin{bmatrix} A - \lambda_{1}I & B \end{bmatrix} = \begin{bmatrix} 6 - 2i & -6 & 4 & -1 \\ 4 & -2 - 2i & 4 & 3 \\ -4 & 4 & -2 - 2i & 1 \end{bmatrix}$$

$$rank(H_{1}) = 3$$

Значит собственное число λ_1 является управляемым, если ранг его матрицы Хаутуса равняется порядку системы.

$$H_2 = \begin{bmatrix} A - \lambda_2 I & B \end{bmatrix} = \begin{bmatrix} 6 + 2i & -6 & 4 & -1 \\ 4 & -2 + 2i & 4 & 3 \\ -4 & 4 & -2 + 2i & 1 \end{bmatrix}$$

$$rank(H_2) = 3$$

Аналогично, собственное число λ_2 является управляемым.

$$H_3 = \begin{bmatrix} A - \lambda_3 I & B \end{bmatrix} = \begin{bmatrix} 4 & -6 & 4 & -1 \\ 4 & -4 & 4 & 3 \\ -4 & 4 & -4 & 1 \end{bmatrix}$$

$$rank(H_3) = 3$$

Аналогично, собственное число λ_3 является управляемым. В итоге, так как все собственные числа матрицы A - управляемые, значит и система полностью управляема.

Теперь найдём Жорданову форму системы, в общем виде она выглядит следующим образом:

$$\begin{cases} \dot{\hat{x}} = P^{-1}\mathbf{A}P\hat{x} + P^{-1}\mathbf{B}u \\ y = CP\hat{x} \end{cases}$$

Система в жордановой форме полностью управляема тогда и только тогда, когда

- Все жордановы клетки относятся к различным собственным числам
- Элементы матрицы входных воздействий, соответствующие ...
 - $-\mathbb{R}$ случай: последним строкам жордановых клеток, не равны нулю.
 - \mathbb{C} и не кратные, случай: верхняя или нижняя строка жордановых клеток, не равны нулю.
 - $\mathbb C$ и кратные, случай: обе нижние строки жордановых клеток, не равны нулю.

В нашем случае жорданова клетка и входное воздействие таково:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & -2 \\ 0 & 2 & -3 \end{bmatrix} \qquad P^{-1}B = B^* = \begin{bmatrix} 4 \\ -1.5 + 1.5i \\ -1.5 - 1.5i \end{bmatrix}$$

Как можно заметить, оба собственных числа соответствуют различным жордановым клеткам, и для каждой из них строка матрицы входных воздействий не равна нулю. Значит эти три собственных числа управляемы, и как следствие - вся система полностью управляема.

1.2.2 Грамиан управляемости

Грамиан управляемости системы относительно времени $t_1=3$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt = \begin{bmatrix} 8.78 & -0.5 & -7.47 \\ -0.5 & 0.8 & 0.39 \\ -7.47 & 0.39 & 6.38 \end{bmatrix}$$

Его собственные числа:

$$p_1 = 0.01, \qquad p_2 = 0.78, \qquad p_3 = 15.18$$

Как можно заметить, они все положительные, а это значит, что она положительно определена. Также это значит, что её определитель положительный.

Грамиан управляемости должен быть невырожден во все моменты времени:

$$\forall t_1 > 0, \to det \left(\int_0^{t_1} e^{A^T t} C^T C e^{At} dt \right) > 0$$

В нашем случае это тоже выполняется, тогда система полностью управляема.

1.2.3 Моделирование управления

Рассчитаем управление, переводящее систему из x(0)=0 в $x(t_1)=x_1$ за время t_1 :

$$u(t) = B^T e^{A^T(t_1 - t)} (P(t_1))^{-1} x_1 =$$

Рисунок 1 — Управляющий сигнал

Вектор состояний системы будет выглядеть следующим образом:

Рисунок 2 — Состояния системы

Видно, что система управляемая в соответствии с заданным управлением и переходит в заданное состояние в нужный момент времени.

1.2.4 Вывод

Исследование системы задания показало, что она является полностью управляемой. Это было продемонстрировано с помощью критерия Калмана, через управляемость всех собственных значений и жорданову форму системы. Ещё был найден грамиан управляемости и проверены его собственные числа. Проведено моделирование системы с управлением, которое переводит систему в заданное состояние. Результаты такого моделирования показали, что что система управляема и программное управление работает корректно.

2 ЕЩЕ ОДНО ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ

2.1 Условие задачи

Продолжаем рассматривать систему:

$$\dot{x} = Ax + Bu$$

и выполнить следующие шаги:

- Проверить обе точки x_1', x_1'' на принадлежность управляемому подпространству системы. Принять целевой точкой х 1 ту, что принадлежит.
- Выполните все шаги Задания 1 для рассматриваемой системы и выбранной целевой точки x1.

2.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 3 & -6 & 4 \\ 4 & -5 & 4 \\ -4 & 4 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} 11 \\ 7 \\ -7 \end{bmatrix} \qquad x_1' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad x_1'' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

2.2.1 Принадлежность точек управляемому подпространству

Проверим принадлежность точек, для этого должно выполниться следующие условие для точки x:

$$rank(U) = rank([Ux])$$

Для начала найдём матрицу управляемости(склейка):

$$U = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 11 & -37 & 79 \\ 7 & -19 & 23 \\ -7 & 19 & -23 \end{bmatrix}$$

В нашем случае, для x_1' :

$$rank(\begin{bmatrix} 11 & -37 & 79 \\ 7 & -19 & 23 \\ -7 & 19 & -23 \end{bmatrix}) = rank(\begin{bmatrix} 11 & -37 & 79 & 1 \\ 7 & -19 & 23 & 0 \\ -7 & 19 & -23 & 0 \end{bmatrix})$$

$$2 = 2$$

Нетрудно заметить, что в обеих сторонах равенства будет по одно паре линейно зависимых строк. Значит точка x'_1 принадлежит управляемому подпространству. В нашем случае, для x'_1 :

$$rank(\begin{bmatrix} 11 & -37 & 79 \\ 7 & -19 & 23 \\ -7 & 19 & -23 \end{bmatrix}) = rank(\begin{bmatrix} 11 & -37 & 79 & 0 \\ 7 & -19 & 23 & 0 \\ -7 & 19 & -23 & 1 \end{bmatrix})$$

$$2 = 3$$

Ранги не равны, а значит точка x_1'' не будет принадлежать управляемому подпространству.

В итоге, $\mathbf{x}_1' = \mathbf{x}_1$, идём дальше и выполняем все проверки из задания 1.

2.2.2 Исследование управляемости системы

$$U = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 11 & -37 & 79 \\ 7 & -19 & 23 \\ -7 & 19 & -23 \end{bmatrix}$$
$$rank(U) = 2$$

По критерию Калмана, наша система не полностью управляема по состоянию, так как ранк матрицы управляемости не равен порядку системы.

Найдём собственные числа матрицы A:

$$\lambda_{1,2} = -3 \pm 2i, \qquad \lambda_3 = -1$$

Вычислим матрицу Хаутуса для каждого собственного числа:

$$H_1 = \begin{bmatrix} A - \lambda_1 I & B \end{bmatrix} = \begin{bmatrix} 6 - 2i & -6 & 4 & 11 \\ 4 & -2 - 2i & 4 & 7 \\ -4 & 4 & -2 - 2i & -7 \end{bmatrix}$$

$$rank(H_1) = 3$$

Значит собственное число λ_1 является управляемым, если ранг его матрицы Хаутуса равняется порядку системы.

$$H_2 = \begin{bmatrix} A - \lambda_2 I & B \end{bmatrix} = \begin{bmatrix} 6+2i & -6 & 4 & 11 \\ 4 & -2+2i & 4 & 7 \\ -4 & 4 & -2+2i & -7 \end{bmatrix}$$

$$rank(H_2) = 3$$

Аналогично, собственное число λ_2 является управляемым.

$$H_3 = \begin{bmatrix} A - \lambda_3 I & B \end{bmatrix} = \begin{bmatrix} 4 & -6 & 4 & 11 \\ 4 & -4 & 4 & 7 \\ -4 & 4 & -4 & -7 \end{bmatrix}$$

$$rank(H_3) = 2$$

Здесь λ_3 не является управляемым. Как следствие - система не полностью управляема.

Теперь найдём Жорданову форму системы, в общем виде она выглядит следующим образом:

$$\begin{cases} \dot{\hat{x}} = P^{-1}\mathbf{A}P\hat{x} + P^{-1}\mathbf{B}u \\ y = CP\hat{x} \end{cases}$$

В нашем случае жорданова клетка и входное воздействие таково:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & -2 \\ 0 & 2 & -3 \end{bmatrix} \qquad P^{-1}B = B^* = \begin{bmatrix} 0 \\ -3.5 - 0.5i \\ -3.5 + 0.5i \end{bmatrix}$$

Как можно заметить, оба собственных числа соответствуют различным жордановым клеткам, но для $\lambda_3=-1$ строка матрицы входных воздействий равна нулю, поэтому система не полностью управляема.

2.2.3 Грамиан управляемости

Грамиан управляемости системы относительно времени $t_1=3$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt = \begin{bmatrix} 15.47 & 10.69 & -10.69 \\ 10.69 & 7.47 & -7.47 \\ -10.69 & -7.47 & 7.47 \end{bmatrix}$$

Его собственные числа:

$$p_1 = 0, \qquad p_2 = 0.08, \qquad p_3 = 30.33$$

Получается, одно из собственных чисел равно нулю, а это значит, что матрица Грамиана является положительно полуопределённой, значит система не полностью управляема.

2.2.4 Моделирование управления

Рассчитаем управление, переводящее систему из x(0)=0 в $x(t_1)=x_1$ за время t_1 :

$$u(t) = B^T e^{A^T(t_1 - t)} (P(t_1))^{-1} x_1$$

Рисунок 3 — Управляющий сигнал

Вектор состояний системы будет выглядеть следующим образом:

Рисунок 4 — Состояния системы

2.2.5 Вывод

Были рассмотрены две точки x'_1, x''_1 и проверена их принадлежность управляемому подпространству. Первая точка - принадлежит, вторая - нет.

Исследование системы в этом задании показало, что она не является полностью управляемой. Это было показано с помощью критерия Калмана, через управляемость собственных значений и жорданову форму системы. При этом оказалось, что собственное число $\lambda_3 = -1$ не является управляемым. Также был найден грамиан управляемости и проверены его собственные числа. Было получено, что одно из собственных чисел равно нулю, что говорит - система не является полностью управляемой.

Проведено моделирование системы с управлением, которое переводит систему в заданное состояние. Результаты показали, что управление работает корректно.

3 ИССЛЕДОВАНИЕ НАБЛЮДАЕМОСТИ

3.1 Условие задачи

Рассматриваем систему:

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases}$$

и выполнить следующие шаги:

Исследовать наблюдаемость системы:

- Найти матрицу наблюдаемости системы, определить ее ранг, сделать вывод об наблюдаемости системы в целом.
- Найти собственные числа матрицы А, найти для каждого из собственных чисел матрицу Хаутуса (для наблюдаемости), определить ранги матриц, сделать выводы об наблюдаемости каждого собственного числа и системы в целом.
- Найти Жорданову (или диагональную) форму системы и сделать выводы об наблюдаемости каждого собственного числа и системы в целом.

Найти Грамиан наблюдаемости системы относительно времени $t_1=3$, вычислить его собственные числа. Проанализировать полученные собственные числа с точки зрения наблюдаемости системы.

Считая, что выход системы y(t) подчиняется закону y(t) = f(t) на временном интервале $t \in [0,t_1]$ определить начальные условия системы. Выполнить моделирование системы, демонстрирующее корректность выполненных расчетов.

3.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 8 & -3 & -12 \\ -3 & -2 & -6 \\ 6 & 0 & 7 \end{bmatrix} \qquad C = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}^{T} \qquad f(t) = 2e^{-2t}cos(3t) + e^{-2t}sin(3t)$$

3.2.1 Исследование наблюдаемости системы

Для начала найдём матрицу наблюдаемости системы:

$$V = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 4 & -3 & 2 \\ -11 & -6 & 16 \end{bmatrix}$$

$$rank(V) = 3$$

По критерию Калмана, наша система полностью наблюдаема, так как ранк матрицы наблюдаемости равен порядку системы.

Найдём собственные числа матрицы A:

$$\lambda_{1,2} = -2 \pm 3i, \quad \lambda_3 = 1$$

Вычислим матрицу Хаутуса для каждого собственного числа:

$$H_1 = \begin{bmatrix} A - \lambda_1 I \\ C \end{bmatrix} = \begin{bmatrix} -6 - 3i & -3 & -12 \\ -3 & -3i & -6 \\ 6 & 0 & 9 - 3i \\ 1 & 0 & 2 \end{bmatrix}$$

$$rank(H_1) = 3$$

Значит собственное число λ_1 является наблюдаемым, если ранг его матрицы Хаутуса равняется порядку системы.

$$H_2 = \begin{bmatrix} A - \lambda_2 I \\ C \end{bmatrix} = \begin{bmatrix} -6 + 3i & -3 & -12 \\ -3 & +3i & -6 \\ 6 & 0 & 9 + 3i \\ 1 & 0 & 2 \end{bmatrix}$$

$$rank(H_2) = 3$$

Аналогично, собственное число λ_2 является наблюдаемым.

$$H_3 = \begin{bmatrix} A - \lambda_3 I \\ C \end{bmatrix} = \begin{bmatrix} -9 & -3 & -12 \\ -3 & -3 & -6 \\ 6 & 0 & 6 \\ 1 & 0 & 2 \end{bmatrix}$$

$$rank(H_3) = 3$$

Аналогично, собственное число λ_3 является наблюдаемым. Как следствие - система полностью наблюдаема.

Теперь найдём Жорданову форму системы, в общем виде она выглядит следующим образом:

$$\begin{cases} \dot{\hat{x}} = P^{-1}\mathbf{A}P\hat{x} + P^{-1}\mathbf{B}u \\ y = CP\hat{x} \end{cases}$$

Система в жордановой форме полностью наблюдаема тогда и только тогда, когда

- Все жордановы клетки относятся к различным собственным числам
- Элементы матрицы выходов, соответствующие первым столбцам жордановых клеток, не равны нулю.

В нашем случае жорданова клетка и выходное воздействие таково:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & -3 \\ 0 & 3 & -2 \end{bmatrix}$$

$$CP = C^* = \begin{bmatrix} 1 & 0.5 - 0.5i & 0.5 + 0.5i \end{bmatrix}$$

Как можно заметить, оба собственных числа соответствуют различным жордановым клеткам, и для каждой из них первый столбец матрицы выходных воздействий не равен нулю, поэтому все собственные числа наблюдаемые и система полностью наблюдаема.

3.2.2 Грамиан наблюдаемости

Грамиан наблюдаемости системы относительно времени $t_1=3$:

$$Q(t_1) = \int_0^{t_1} e^{A^T t} C^T C e^{At} dt = \begin{bmatrix} 201.92 & -201.35 & 202.09 \\ -201.35 & 201.15 & -201.30 \\ 202.09 & -201.30 & 202.42 \end{bmatrix}$$

Его собственные числа:

$$q_1 = 605.006, \qquad q_2 = 0.007, \qquad q_3 = 0.492$$

Получается, все собственные числа положительны, а это значит, что матрица Грамиана является положительно определённой, значит система полностью наблюдаема.

3.2.3 Определение начальных условий

Будем считать, что выход системы соответствует заранее заданной функции: $f(t)=y(t)=2e^{-2t}cos(3t)+e^{-2t}sin(3t)$

Посчитаем вектор начальных условий:

$$x(0) = (Q(t1))^{-1} \int_0^{t_1} e^{A^T t} C^T y(t) dt = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Вектор состояний системы будет выглядеть следующим образом:

Рисунок 5 — Состояния системы

Как можно заметить, они совпадают с моделированием вектора состояний.

Теперь проведём моделирование с начальными условиями x(0), без управления: на рисунке ниже видно, что выход системы совпадает с функцией y(t) выше заданной. Ошибка наблюдения достаточно мала и не превышает 10^{-10} .

Рисунок 6 — Выход системы

Рисунок 7 — Ошибка выхода системы

3.2.4 Вывод

В этом задании нам удалось показать, что система является полностью наблюдаемой. Это было показано с помощью матрицы наблюдаемости, через наблюдаемость собственных значений и жорданову форму системы. Также был найден грамиан наблюдаемости и проверены его собственные числа. Провели моделирование системы с начальными условиями, при которых выход системы совпадает с заданной функцией. Результаты моделирования показали, что система наблюдаема и наблюдение работает корректно.

4 ЕЩЕ ОДНО ИССЛЕДОВАНИЕ НАБЛЮДАЕМОСТИ

4.1 Условие задачи

Рассматриваем систему:

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases}$$

и выполнить следующие шаги:

- Исследовать наблюдаемость системы, как в третьем задании
- Определить, мог ли выход вида y(t) = f(t) быть порожден начальными условиями, отличными от найденных. Если да, то привести хотя бы три таких вектора начальных условий и выполнить для каждого из них (включая изначально най денный) моделирование, демонстрирующее корректность выполненных расчетов (одинаковые выходы при разном поведении векторов состояния систем).

4.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 8 & -3 & -12 \\ -3 & -2 & -6 \\ 6 & 0 & 7 \end{bmatrix} \qquad C = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}^{T} \qquad f(t) = 2e^{-2t}cos(3t) + e^{-2t}sin(3t)$$

4.2.1 Исследование наблюдаемости системы

Для начала найдём матрицу наблюдаемости системы:

$$V = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 3 & -2 & 1 \\ -12 & -5 & -17 \end{bmatrix}$$

$$rank(V) = 2$$

Как можно заметить, второй и третий столбец будут линейно зависимыми. А значит, по критерию Калмана, наша система не полностью наблюдаема, так как ранк матрицы наблюдаемости не равен порядку системы.

Найдём собственные числа матрицы A:

$$\lambda_{1,2} = -2 \pm 3i, \qquad \lambda_3 = 1$$

Вычислим матрицу Хаутуса для каждого собственного числа:

$$H_{1} = \begin{bmatrix} A - \lambda_{1}I \\ C \end{bmatrix} = \begin{bmatrix} -6 - 3i & -3 & -12 \\ -3 & -3i & -6 \\ 6 & 0 & 9 - 3i \\ 0 & 1 & 1 \end{bmatrix}$$

$$rank(H_{1}) = 3$$

Значит собственное число λ_1 является наблюдаемым, если ранг его матрицы Хаутуса равняется порядку системы.

$$H_2 = \begin{bmatrix} A - \lambda_2 I \\ C \end{bmatrix} = \begin{bmatrix} -6 + 3i & -3 & -12 \\ -3 & +3i & -6 \\ 6 & 0 & 9 + 3i \\ 0 & 1 & 1 \end{bmatrix}$$

 $rank(H_2) = 3$

Аналогично, собственное число λ_2 является наблюдаемым.

$$H_3 = \begin{bmatrix} A - \lambda_3 I \\ C \end{bmatrix} = \begin{bmatrix} -9 & -3 & -12 \\ -3 & -3 & -6 \\ 6 & 0 & 6 \\ 0 & 1 & 1 \end{bmatrix}$$

$$rank(H_3) = 2$$

Однако, собственное число λ_3 не будет наблюдаемым. Как следствие - система не полностью наблюдаема по критерию Хаутуса.

Теперь найдём Жорданову форму системы, в общем виде она выглядит следующим образом:

$$\begin{cases} \dot{\hat{x}} = P^{-1}\mathbf{A}P\hat{x} + P^{-1}\mathbf{B}u \\ y = CP\hat{x} \end{cases}$$

В нашем случае жорданова клетка и выходное воздействие таково:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & -3 \\ 0 & 3 & -2 \end{bmatrix}$$

$$CP = C^* = \begin{bmatrix} 0 & 0.5 - 0.5i & 0.5 + 0.5i \end{bmatrix}$$

Как можно заметить, оба собственных числа соответствуют различным жордановым клеткам, но для $\lambda_3=1$, первый столбец матрицы выходных воздействий равен нулю, поэтому наблюдаемыми будут лишь сопряженная пара комплексных чисел, но не все, а значит система не полностью наблюдаема.

4.2.2 Грамиан наблюдаемости

Грамиан наблюдаемости системы относительно времени $t_1 = 3$:

$$Q(t_1) = \int_0^{t_1} e^{A^T t} C^T C e^{At} dt = \begin{bmatrix} 0.08 & 0.05 & 0.14 \\ 0.05 & 0.16 & 0.22 \\ 0.14 & 0.22 & 0.36 \end{bmatrix}$$

Его собственные числа:

$$q_1 = 0.55, \qquad q_2 = 0.05, \qquad q_3 = 0$$

Получается, одно из собственных чисел равно нулю и это значит, что матрица Грамиана является положительно полуопределённой - система не полностью наблюдаема.

4.2.3 Определение начальных условий

Будем считать, что выход системы соответствует заранее заданной функции: $f(t)=y(t)=2e^{-2t}cos(3t)+e^{-2t}sin(3t)$

Посчитаем вектор начальных условий:

$$x(0) = (Q(t1))^{-1} \int_0^{t_1} e^{A^T t} C^T y(t) dt = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Вектор состояний системы будет выглядеть следующим образом:

Рисунок 8 — Состояния системы

Как можно заметить, они совпадают с моделированием вектора состояний.

Теперь проведём моделирование с начальными условиями x(0), без управления: на рисунке ниже видно, что выход системы совпадает с функцией y(t) выше заданной. Ошибка наблюдения достаточно мала и не превышает 10^{-10} .

Рисунок 9 — Выход системы

Рисунок 10 — Ошибка выхода системы

4.2.4 Альтернативные начальные условия

Так как система не является полностью наблюдаемой, то мы можем найти бесконечное количество начальных условий, при которых выход системой будет совпадать с исходной y(t)=f(t). Чтобы найти это множество, нам нужно найти nullspace ядра матрицы наблюдаемости V:

$$\text{Nullspace}(V) = \left\{ \begin{bmatrix} -0.57\\ -0.57\\ 0.57 \end{bmatrix} \right\}$$

Тогда общее множества "ненаблюдаемых" начальных условий можно выразить как линейную комбинацию:

$$x^*(0) = x(0) + \beta \begin{bmatrix} -0.57 \\ -0.57 \\ 0.57 \end{bmatrix}$$

Выберем следующие значения коэффициента:

$$\beta_1 = 1, \qquad x_1^*(0) = \begin{bmatrix} -0.57 \\ 0.42 \\ 1.57 \end{bmatrix}$$

$$\beta_2 = 5, \qquad x_2^*(0) = \begin{bmatrix} -2.88 \\ -1.88 \\ 3.88 \end{bmatrix}$$

$$\beta_3 = 100, \qquad x_3^*(0) = \begin{bmatrix} -57.73 \\ -56.73 \\ 58.73 \end{bmatrix}$$

Теперь проведём моделирование с этими начальными условиями и убедимся в том, что выход у всех этих систем будет идентичный...

Рисунок 11 — Выход системы с начальными условиями $x_1^*(0)$

Рисунок 12 — Состояние системы с начальными условиями $x_1^*(0)$

Рисунок 13 — Выход системы с начальными условиями $x_2^*(0)$

Рисунок 14 — Состояние системы с начальными условиями $x_2^*(0)$

Рисунок 15 — Выход системы с начальными условиями $x_3^*(0)$

Рисунок 16 — Состояние системы с начальными условиями $x_3^*(0)$

4.2.5 Вывод

В этом задании мы исследовали не полностью наблюдаемую систему, это мы увидели с помощью матрицы наблюдаемости, критерия Калмана, через наблюдаемость собственных значений и жорданову форму системы. Также был найден грамиан наблюдаемости и проверены его собственные числа. Провели моделирование системы с начальными условиями, при которых выход системы совпадает с заданной функцией. Нам удалось показать, что для не полностью наблюдаемых систем есть пространство "ненаблюдаемых" начальных условий, при которых выходы систем не будут отличаться друг от друга, и по траектории y(t) в таком случае мы не сможем однозначно восстановить x(0).

5 ИССЛЕДОВАНИЕ УПРАВЛЯЕМОСТИ ПО ВЫХОДУ

5.1 Условие задачи

Необходимо рассмотреть систему:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

и выполнить следующие шаги:

- Найти Жорданову (или диагональную) форму системы.
- Определить управляемость и наблюдаемость каждого из собственных чисел и системы в целом.
- Найти матрицу управляемости системы по выходу при $D=\mathbf{0}_{2\times 2}$, определить её ранг, сделать вывод об управляемости системы по выходу.
- Проанализировав полученные результаты, попытаться сделать выводы о причинах управляемости или неуправляемости системы по выходу.
- Предложить такую матрицу связи D, которая могла бы обеспечить полную управляемость по выходу.

5.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 3 & -6 & 4 \\ 4 & -5 & 4 \\ -4 & 4 & -5 \end{bmatrix} \qquad B = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & -4 & -3 \\ 0 & -8 & -6 \end{bmatrix}$$

5.2.1 Исследование управляемости и наблюдаемости системы

Найдём Жорданову форму системы, в общем виде она выглядит следующим образом:

$$\begin{cases} \dot{\hat{x}} = P^{-1}\mathbf{A}P\hat{x} + P^{-1}\mathbf{B}u \\ y = \mathbf{C}P\hat{x} + Du \end{cases}$$

В нашем случае жорданова клетка и входное/выходное воздействие таково:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & -2 \\ 0 & 2 & -3 \end{bmatrix} \qquad P^{-1}B = B^* = \begin{bmatrix} 4 \\ -1.5 + 1.5i \\ -1.5 - 1.5i \end{bmatrix}$$

$$CP = \begin{bmatrix} -3 & 1 & 1 \\ -6 & 2 & 2 \end{bmatrix}$$

Как можно заметить, три собственных числа соответствуют различным жордановым клеткам, и для каждой из них строка матрицы входных/выходных воздействий не равна нулю. Значит эти три собственных числа управляемы и наблюдаемы, и как следствие - вся система полностью управляема по состоянию и наблюдаема.

Найдем матрицу управляемости системы по выходу при $D = \mathbf{0}_{2 \times 2}$:

$$U_{out} = \begin{bmatrix} CU & D \end{bmatrix} = \begin{bmatrix} -15 & 27 & -63 & 0 & 0 \\ -30 & 54 & -126 & 0 & 0 \end{bmatrix}$$

Нетрудно заметить, что...

$$rank(U_{out}) = 1$$

Ранг матрицы управляемости по выходу не равен размерности выхода, в таком случае наша система не управляема по выходу.

Это произошло из-за того, что матрица матрица наблюдения C содержит в себе два линейнозависимых вектора-строки, которые снижают ранг до 1. Также из-за этого мы теряем информацию по выходу y(t), потому что обе компоненты вектора станет созависимыми и мы не сможем обеспечить все возможные выходы у системы.

Чтобы исправить это и сделать систему управляемой по выходу, необходимо подобрать такую матрицу D, которая сделает ранг $U_{out}=2$. Например:

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Тогда матрица управляемости по выходу будет равна:

$$U_{out}^* = \begin{bmatrix} CU & D \end{bmatrix} = \begin{bmatrix} -15 & 27 & -63 & 1 & 0 \\ -30 & 54 & -126 & 0 & 1 \end{bmatrix}$$

и её ранг уже будет равен 2.

5.2.2 Вывод

В этом задании мы рассмтрели полная линейную систему. Мы нашли жорданову форму систему, по которой мы исследовали управляемость по состоянию и наблюдаемость, вышло, что система управляема по состоянию и наблюдаема. Однако при этом нулевая матрица связи $D_{2\times 2}$ не делала эту систему упроавляемой по выходу, но мы нашли подходящую.

6 ОБЩИЕ ВЫВОДЫ

В ходе выполнения лабораторной работы была рассмотрена линейная система в полной и неполной форме. Для них мы исследовали характеристики управляемости и наблюдаемости ...

Использовал связку Live-script + Matlab, все исходные материалы, использованные в работе можно найти в репозитории.