Sources of Geographic Variation in Health Care: Evidence From Patient Migration

Amy Finklestein, Matthew Gentzkow, Heidi Williams

Presentation by: Hanna Kagele

September 17, 2020 Econ 771 Emory University

Motivation

- ▶ Wide variation of health care utilization across the US
 - Miami (\$14, 423) vs. Minneapolis (\$7,819)
 - ► McAllen (\$13,648) vs. El Paso (\$8,714)

Motivation

- ▶ Wide variation of health care utilization across the US
 - ► Miami (\$14, 423) vs. Minneapolis (\$7,819)
 - ► McAllen (\$13,648) vs. El Paso (\$8,714)
- Higher utilization not correlated with better health outcomes-Skinner (2011)

Motivation

- ▶ Wide variation of health care utilization across the US
 - Miami (\$14, 423) vs. Minneapolis (\$7, 819)
 - ► McAllen (\$13,648) vs. El Paso (\$8,714)
- Higher utilization not correlated with better health outcomes-Skinner (2011)
- ► Important for policy makers to understand what drives the variation: patient or place?

Patient vs. Place

Place Specific: Supply

- Doctor's incentives/beliefs (aggressive care)
- hospital market structure
- endowments

Patient vs. Place

Place Specific: Supply

- Doctor's incentives/beliefs (aggressive care)
- hospital market structure
- endowments

Patient Specific: Demand

- Health level
- Preference of care

Preview

We'll look at event study and main model estimations.

Preview

We'll look at event study and main model estimations.

Authors find that demand drives 40 - 50% of geographic variation

- ▶ Patient-share is larger when narrowed to outcomes where patients have more discretion (e.g. preventative care)
- ► Place-share is larger in areas with high share of for-profit hospitals and doctor's with preference for aggressive care

Preview

We'll look at event study and main model estimations.

Authors find that demand drives 40 - 50% of geographic variation

- ▶ Patient-share is larger when narrowed to outcomes where patients have more discretion (e.g. preventative care)
- ▶ Place-share is larger in areas with high share of for-profit hospitals and doctor's with preference for aggressive care

Contribution: Using migration of patients allows separation of this variation without depending solely on observables.

Building Model & Assumptions

Patient:

$$\max_{y} u_i(y|h_{it}, \eta_i) = \max_{y} -\frac{1}{2}(y - h_{it})^2 + \eta_i y$$

- ▶ hit: health status, (higher means worse)
- \triangleright η_i : preferences, (higher means prefers more aggressive)

Building Model & Assumptions

Patient:

$$\max_{y} u_i(y|h_{it}, \eta_i) = \max_{y} -\frac{1}{2}(y - h_{it})^2 + \eta_i y$$

- ▶ hit: health status, (higher means worse)
- \triangleright η_i : preferences, (higher means prefers more aggressive)

$$\mathbf{y}^* = \mathbf{h_{it}} + \eta_{\mathbf{i}}$$

Building Model & Assumptions

Patient:

$$\max_{y} u_i(y|h_{it}, \eta_i) = \max_{y} -\frac{1}{2}(y - h_{it})^2 + \eta_i y$$

- ▶ hit: health status, (higher means worse)
- \triangleright η_i : preferences, (higher means prefers more aggressive)

$$\mathbf{y}^* = \mathbf{h_{it}} + \eta_{\mathbf{i}}$$

Assumption: Expectation of y^* can be written as addition of patient fixed effect and data observed by econometrician.

$$E[y_{it}^*|i,j,t,x_{it}] = \alpha_i + x_{it}\beta$$

Physician:

$$\max_{y} \, \tilde{\textit{u}}_{\textit{j}}(y|\textit{h}_{\textit{it}}, \eta_{\textit{i}}) - \mathsf{PC}_{\textit{jt}}(y)$$

- ▶ j: geographic area
- ▶ **PC**_{it}: private cost to physician

Physician:

$$\max_{y} \tilde{u}_{j}(y|h_{it},\eta_{i}) - \mathsf{PC}_{jt}(y)$$

- ▶ j: geographic area
- ▶ **PC**_{it}: private cost to physician
- $\tilde{\mathbf{u}}_{\mathbf{j}}(\mathbf{y}|\mathbf{h}_{\mathbf{it}},\eta_{\mathbf{i}}) = u_{i}(y|h_{it},\eta_{i}) + \lambda_{j}y$
 - Perceived utility
 - $ightharpoonup \lambda_j$ represents practice style (higher means more aggressive)
 - captures heterogeneity in physician beliefs

Putting It Together:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

Putting It Together:

Max physician problem and write in terms of fixed effects:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

► *y*_{ijt}: log of total utilization

Putting It Together:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

- \triangleright y_{ijt} : log of total utilization
- $ightharpoonup \alpha_i$: patient fixed effect

Putting It Together:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

- ▶ y_{ijt}: log of total utilization
- $ightharpoonup \alpha_i$: patient fixed effect
- $ightharpoonup \gamma_j$: place fixed effect

Putting It Together:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

- ▶ y_{ijt}: log of total utilization
- $\triangleright \alpha_i$: patient fixed effect
- $\triangleright \gamma_i$: place fixed effect
- $\triangleright \tau_t$: time fixed effect

Putting It Together:

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

- ► *y*_{ijt}: log of total utilization
- $\triangleright \alpha_i$: patient fixed effect
- $ightharpoonup \gamma_i$: place fixed effect
- $ightharpoonup au_t$: time fixed effect
- \triangleright x_{it} : dummies for age (in 5-year bins) and relative year fixed effects

Decomposing Variation:

- $ightharpoonup \overline{y_{it}}$: avg utilization across patients in area j in year t
- $ightharpoonup \overline{y_j}$: avg of $\overline{y_{jt}}$ across t
- $ightharpoonup \overline{y_{jt}^*}$ and $\overline{y_j^*}$ same but for patient optimal care utilization level

Then

$$\overline{y_{j}} - \overline{y_{j'}} = \underbrace{\left(\gamma_{j} - \gamma_{j'}\right)}_{place} + \underbrace{\left(\overline{y_{j}^{*}} - \overline{y_{j'}^{*}}\right)}_{patient}$$

$$1 = \underbrace{\frac{\left(\gamma_{j} - \gamma_{j'}\right)}{\overline{y_{j}} - \overline{y_{j'}}}}_{S. \cdot (i, i')} + \underbrace{\frac{\left(\overline{y_{j}^{*}} - \overline{y_{j'}^{*}}\right)}{\overline{y_{j}} - \overline{y_{j'}}}}_{S. \cdot (i, i')}$$

Identification

- Need movers
- Assume utilization shocks do not coincide directly with the time of the move
- Assume α_i amd λ_j are additively separable

 - Assume similar patients do not seek out different types of providers
- Assume λ_j that are relevant for movers are also relevant for nonmovers
- No habit formation

Data

Claims Data- 20% random sample of Medicare patients (65+) from 1998 to 2008

- Utilization is adjusted for regional price differences
- ► Use log utilization+1 in regressions
- Geographic regions defined by HRRs

TABLE I SUMMARY STATISTICS

	(1)	(2)
	Nonmovers	Movers
Female	0.57	0.60
White	0.86	0.88
Age first observed:		
65–74	0.67	0.59
75–84	0.24	0.31
≥85	0.09	0.09
First observed residence:		
Northeast	0.20	0.17
South	0.39	0.41
Midwest	0.26	0.19
West	0.16	0.23
Annual utilization:		
Mean	\$7,796	\$7,399
Std. dev.	\$12,690	\$9,567
Share of patient-years with zero	0.06	0.06
Number of chronic conditions:		
Mean	2.98	3.30
Std. dev.	2.15	2.06
Share of patient-years with zero	0.18	0.15
Average # of years observed	6.26	7.45
Share who die during sample	0.35	0.32
Share of patient-years excluded because		
patient is in Medicare Advantage that year	0.18	0.20
# of patients	2,033,096	497,097
# of patient-years	12,730,766	3,702,189

Event Study

Preliminary:

Event Study

$$y_{it} = \alpha_i + \theta_{r(i,t)} \hat{\delta}_i + \tau_t + x_{it} \beta + \epsilon_{it}$$

- $\hat{\delta}_i$: difference in sample means of log utilization between origin and destination
- \triangleright $\theta_{r(i,t)}$: coefficient of interest
 - Measure changes in log utilization around the move, scaled relative to $\hat{\delta}_i$

Event Study

Main Model

Recall,

$$y_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \epsilon_{ijt}$$

TABLE II
Additive Decomposition of Log Utilization

	(1) Above/	(2) Top &	(3) Top &	(4) Top &	(5)	(6)		
	below median	bottom 25%	bottom 10%	bottom 5%	McAllen & El Paso	Miami & Minneapolis		
Difference in average log utilization								
Overall	0.283	0.456	0.664	0.817	0.587	0.667		
Due to place	0.151	0.271	0.406	0.461	0.374	0.466		
Due to patients	0.132	0.185	0.258	0.356	0.213	0.200		
Share of difference	due to							
Patients	0.465	0.405	0.388	0.435	0.363	0.300		
	(0.027)	(0.029)	(0.026)	(0.025)	(0.161)	(0.088)		
Place	0.535	0.595	0.612	0.565	0.638	0.700		

Extra Analysis

TABLE IV
COMPONENTS OF UTILIZATION

		(1)	(2) Above/below median		(3)
	Utilization measure	Mean of utilization measure	difference in utilization measure	Share due to patients	
(1)	Baseline: log(utilization)	7.193	0.283	0.465	(0.027)
(2)	Seen a primary care physician	0.884	0.042	0.452	(0.027)
(3)	Seen a specialist	0.815	0.051	0.322	(0.024)
(4)	Any hospitalization	0.226	0.037	0.410	(0.034)
(5)	Any emergency room visit	0.346	0.045	0.714	(0.031)
(6)	Log(# of diagnostic tests)	1.449	0.550	0.092	(0.008)
(7)	Log(# of imaging tests)	0.842	0.220	0.142	(0.014)
(8)	Log(# of preventive care measures)a	1.376	0.098	0.611	(0.018)
(9)	Log(# of different doctors seen)	1.525	0.113	0.392	(0.016)
(10)	Log(inpatient utilization) ^b	2.004	0.340	0.242	(0.035)
(11)	Log(outpatient utilization)b	6.890	0.193	0.358	(0.031)
(12)	Log(emergency room utilization)b	2.296	0.352	0.639	(0.031)
(13)	Log(other utilization) ^b	3.430	0.957	0.124	(0.010)

Robustness

- Robust to limiting the window of time before and after move
- Robust to allowing place effects for each quartile of patient age
- Robust to excluding patients who enter/exit the sample
- Robust to different definitions of movers

Threats

- Assumption of no habit formation
- ► Limited to short run supply side
- Would be troublesome to extend to different population