INTRODUCTORY LTSPICE SIMULATIONS

ENERGY HARVESTING EH-202420

Circuit I - Schematic

- Switching element on bottom of primary coil, 50% duty cycle.

Circuit I - Waveforms

Circuit I - Waveforms (cont.)

Doing a parametric sweep of the switching element's on-time, i.e. a sweep of duty cycle.

Increasing Duty Cycle

Circuit II - Schematic

- Switching element on top of primary coil, 3.125% duty cycle.
- Second rectifier on secondary side.
- After 100ms, V_L =46.65V, I_L =466.5µA → P_L =21.7mW (Spot on with 2nd paper.)

Circuit II - Waveforms

A more effective parametric sweep of switching duty cycle.

Smaller duty cycles increase power extraction.

Circuit III - Schematic

- Zangl Topology: Taking PWS input off C1 (Harvester Capacitance)
- Much harder to get clean simulations.

Circuit III - Waveforms

Circuit III - Waveforms

- Increasing C₁=35nF:
 - V_{out}=1.91mV
 - $-I_1 = 75.95 \text{ nA}$
 - P_{out}=145pW

MODELLING COMPONENTS: Rectifier Diodes

Following Rodriguez, we added the BYG10Y rectifier diodes rated for 1600V_{peak} reverse.

MODELLING COMPONENTS: NMOS

Drain-Source Resistance and Capacitance modelled for Wolfspeed C2M1000170 NMOS (V_{DS} =1700V).

EH-202420 - SEC ECE495E - ELECTRIC FIELD ENERGY HARVESTER

MODELS / SUBCIRCUITS

Switch Model:

.model MYSW SW(Ron=100 Roff=100Meg Vt=.5 Vh=0.1)

PARAMETRIC SWEEPS

.step param ton_sw1 list 0.5u 1us 2us 4us 8us

FBR Diode Model:

.model byg10y d is = 1.81766E-009 n = 1.87266 rs = 0.102527

+ eg = 1.25284 xti = 0.357254 t_measured = 27

+ cjo = 2.4451E-011 vj = 0.7 m = 0.41827 fc = 0.5

+ tt = 9.66791E-006 by = 1760 iby = 10 af = 1 kf = 0

$$(t=0.2s) => P = (46V)(475uA) = 21.9mW$$

 V_{out} rises as V_{bus} saturates

 V_{AC} rises as time passes, nearing 795VAC @ t=1.0s.

POSSIBLE GOAL: Maximizing Energy Converter Impedance