

X3-Class HiPerFET™ **Power MOSFET**

IXFT240N15X3HV IXFH240N15X3

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	150	V	
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to $150^{\circ}\mathrm{C}$, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	150	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	240	A	
I _{L(RMS)}	External Lead Current Limit	160	Α	
I _{DM}	$T_{\rm c} = 25$ °C, Pulse Width Limited by $T_{\rm JM}$	420	Α	
I _A	T _C = 25°C	120	А	
E _{AS}	$T_{c} = 25^{\circ}C$	2.2	J	
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	20	V/ns	
P _D	T _C = 25°C	780	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M_d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV	4	g	
	TO-247	6	g	

		acteristic Values Typ.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	150			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$			5.4	mΩ

150V 240A $5.4m\Omega$

TO-268HV (IXFT..HV)

G = Gate D = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

Symbol Test Conditions Char		acteristic Values		
$(T_J = 25^{\circ}C)$	C, Unless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	75	125	S
R_{Gi}	Gate Input Resistance		1.4	Ω
C _{iss})		9580	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1670	pF
C _{rss}	J		40	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		1030	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1750	pF
t _{d(on)}	Resistive Switching Times		29	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		26	ns
$\mathbf{t}_{d(off)}$	$R_{G} = 3\Omega$ (External)		95	ns
t,) II _G = 052 (External)		8	ns
$Q_{g(on)}$)		150	nC
Q_{qs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		46	nC
\mathbf{Q}_{gd}			40	nC
R _{thJC}				0.16 °C/W
R _{thCS}	TO-247		0.21	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	V _{GS} = 0V			240	Α
SM	Repetitive, pulse Width Limited by $T_{_{JM}}$			960	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 120A$, -di/dt = 100A/ μ s $V_R = 100V$		97 340 7		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 $V_{\rm DS}$ - Volts

Fig. 15. Maximum Transient Thermal Impedance

CVAA	INCHES		MILLIMETER		
SYM	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
Α1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
Ь	.045	.057	1.15	1.45	
С	.016	.026	0.40	0.65	
A2 b C C2 D	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.465	.476	11.80	12.10	
D2	.295	.307	7.50	7.80	
D3	.114	.126	2.90	3.20	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е		BSC	5.45 BSC		
(e2)	.374	.386	9.50	9.80	
Н	.736	.752	18.70	19.10	
L	.067	.079	1.70	2.00	
L2	.039	.045	1.00	1.15	
L3	.010	BSC		BSC	
L4	.150	.161	3.80	4 .10	

