Computational Economics Lecture 3: Introduction to Dynamics

Min Fang

University of Florida

Spring 2025

Outline

- 1. Motivation
- 2. States/Markov Chains
- 3. Distributions
- 4. Simulation
- 5. Assignment
- 6. Appendix

Motivation

- Many economics models are naturally dynamics (at least with t and t + 1)
- · So numerically, we need to know how changes happen over time
 - A state S_t transit to a state S_{t+1}
 - A distribution D_t transit to a distribution D_{t+1}
- · Some transitions are exogenous, either non-stochastic or stochastic
 - Non-stochastic: Deterministic rules, i.e., $x_{t+1} = x_t + 1$
 - · Stochastic: i.e., Markov Chains, often used: AR(1)
- Some transitions are endogenous: i.e., $x_{t+1} = x_t + z_t$, where z_t is a control
- · Finally, we often need to simulate decisions and distributions over time
- · Today, we will cover them all briefly

States/Markov Chains

- State space is the basics: Chapter 24. Linear State Space Models
- Let S be a finite set with n elements $\{x_1, \ldots, x_n\}$
- The set S is called the *state space* and x_1, \ldots, x_n are the *state values*
- Markov chains are one of the most useful classes of stochastic processes:
 - · simple, flexible, and supported by many elegant theoretical results
 - valuable for building intuition about random dynamic models
 - · central to quantitative modeling in their own right
- Finite Markov Chains: Chapter 23. Finite Markov Chains
- Continuous State Markov Chains: Chapter 18. Continuous State Markov Chains
- · Review some of the theory of Markov chains
- · Introduce some of the high-quality routines for working with Markov chains

Finite Markov Chains

- A Markov chain $\{X_t\}$ on S is a sequence of random variables on S with Markov property
- This means that, for any date t and any state $y \in S$,

$$\mathbb{P}\{X_{t+1} = y \mid X_t\} = \mathbb{P}\{X_{t+1} = y \mid X_t, X_{t-1}, \ldots\}$$

*Knowing the current state is enough to know probabilities for future states

• The dynamics of a Markov chain are fully determined by the set of values

$$P(x, y) := \mathbb{P}\{X_{t+1} = y \mid X_t = x\}$$
 $(x, y \in S)$

• We can view P as a stochastic matrix where

$$P_{ij} = P(x_i, x_j)$$
 $1 \le i, j \le n$

• Finally, to generate a Markov chain $\{X_t\}$, we just need S, P, and initial draw X_0

Finite Markov Chains: Simple Example

• The stochastic matrix of economic conditions: (Monthly Frequency)

$$P = \left(\begin{array}{ccc} 0.971 & 0.029 & 0\\ 0.145 & 0.778 & 0.077\\ 0 & 0.508 & 0.492 \end{array}\right)$$

where states are: "normal growth", "mild recession", "severe recession"

6/21

Finite Markov Chains: AR(1) with (Tauchen, 1986)

- It is convenient to replace a continuous AR(1) with a discrete Markov chains
- Discrete approximations to AR(1) processes of the form

$$y_{t+1} = \rho y_t + u_{t+1}$$
, where u_t is assumed to be i.i.d. and follow $N(0, \sigma_u^2)$

• The variance of the stationary probability distribution of $\{y_t\}$ is

$$\sigma_y^2 = \frac{\sigma_u^2}{1 - \rho^2}$$

- Tauchen's method is the most used for approximating this continuous state process with a finite state Markov chain; Other methods are also used, i.e., Rouwenhorst (95)
- · Let's write our own Tauchen method!
- · Step 1: Choose discretization objects:
 - n, the number of states for the discrete approximation
 - m, an integer that parameterizes the width of the state space
- Step 2: Choose state space $S = \{x_0, \dots, x_{n-1}\} \subset \mathbb{R}$
 - $-x_0=-m\,\sigma_y$
 - $-x_{n-1}=m\sigma_{v}$
 - $-x_{i+1} = x_i + s$ where step $s = (x_{n-1} x_0)/(n-1)$

Finite Markov Chains: AR(1) with (Tauchen, 1986)

- Step 3: Choose a stochastic $n \times n$ matrix P (most important part)
 - Let F be the cumulative distribution function of the normal distribution $N(0,\sigma_u^2)$
 - The values $P(x_i, x_j)$ are computed to approximate the AR(1) process
 - If j = 0, then set

$$P(x_i, x_j) = P(x_i, x_0) = F(x_0 - \rho x_i + s/2)$$

• If j = n - 1, then set

$$P(x_i, x_j) = P(x_i, x_{n-1}) = 1 - F(x_{n-1} - \rho x_i - s/2)$$

· Otherwise, set

$$P(x_i, x_j) = F(x_j - \rho x_i + s/2) - F(x_j - \rho x_i - s/2)$$

- With both S and P in hand, we successfully replaced a continuous AR(1)!
- So, how good is our approximation? [Will find out in the assignment]
- How about other methods, say Rouwenhorst, 1995? [Will find out in the assignment]

Finite Markov Chains: AR(1) Extension - Uncertainty Shocks

- A very popular second-moment shock is uncertainty shock (Bloom, 2009)
- Basically, a shock to the second moment σ_u in the above AR(1) process
- How to construct an uncertainty shock? i.e., $\hat{\sigma}_u > \sigma_u$
- One answer is to manipulate the stochastic $n \times n$ matrix \hat{P}
 - Step 1&2: The same progress as in normal AR(1)
 - Step 3-1: use \hat{F} as the cumulative distribution function of the normal distribution $N(0,\hat{\sigma}_u^2)$
 - Step 3-2: construct $P(x_i, x_j)$ with the same three cases
- When you hit the firms with uncertainty shock, force them to use the new matrix \hat{P}
- So, how good is this approximation? [Will find out in the assignment]
- How about other methods, say "change state space S"? [Will find out in the assignment]

Continuous State Markov Chains: Simple Introduction

- · Continuous state Markov chains is a more general case of what we just studied
- The best usage is to use on "nonlinear distributions" in economic models
- We focus on the "Density Case" where state S is a bounded interval (a, b)
- Formally, a stochastic kernel on S is a function p: S × S → R with the property that:
 1. p(x, y) ≥ 0 for all x, y ∈ S
 2. ∫ p(x, y)dy = 1 for all x ∈ S
- For example, let $S=\mathbb{R}$ and consider the particular stochastic kernel p_w defined by

$$p_w(x,y) := \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(y-x)^2}{2}\right\}$$

· This is the (normally distributed) random walk

$$X_{t+1} = X_t + \xi_{t+1}$$
 where $\{\xi_t\} \stackrel{\text{IID}}{\sim} N(0,1)$

• Applications: See QuantEcon 18.2.6. example of usage for the stochastic growth model

Distributions

- Now we formally talk about transition of distributions D_t to D_{t+1}
- · Different from the very simple distributions in Continuous State Markov Chains
- · We want to have distributions that are both nonlinear and endogenous
- · See Chapter 25. Wealth Distribution Dynamics for an example of households' wealth
- · Why do we want distribution dynamics in the model?
 - · modeling heterogeneous firms or households
 - · measures of inequality (households) or misallocation (firms) of the economy
 - · how distribution matters for the economy, etc...
- Finally, the transition of distribution is just a collection of transitions between states
- · We will play with simple one- and two-dimension distributions

Distributions: One-dimension: Model

- · Let's start with QuantEcon 25.3. A Model of Wealth Dynamics
- · This and the next pages describe the economic model
- · The model we will study is

$$w_{t+1} = (1 + r_{t+1})s(w_t) + y_{t+1}$$

- · wt is wealth at time t for a given household,
- · rt is the rate of return of financial assets,
- y_t is current non-financial (e.g., labor) income and
- $s(w_t)$ is current wealth net of consumption
- Letting $\{z_t\}$ be a correlated state process of the form

$$z_{t+1} = az_t + b + \sigma_z \epsilon_{t+1}$$

Distributions: Model

· We'll assume that

$$1 + r_t = c_r \exp(z_t) + \exp(\mu_r + \sigma_r \xi_t)$$
$$y_t = c_y \exp(z_t) + \exp(\mu_y + \sigma_y \zeta_t)$$

- Here $\{(\epsilon_t, \xi_t, \zeta_t)\}$ is IID and standard normal in \mathbb{R}^3 .
- The value of c_r is close to zero since the return on assets does not exhibit large trends.
- When we simulate a population of households, assume all shocks are idiosyncratic (i.e., specific to individual households and independent across them).
- Regarding the savings function s, our default model will be

$$s(w) = s_0 w \cdot \mathbf{1}\{w \ge \hat{w}\},$$
 where s_0 is a positive constant.

- Thus, for $w < \hat{w}$, the household saves nothing.
- For $w \ge \bar{w}$, the household saves a fraction s_0 of their wealth.

Distributions: Implementation

function wealth_dynamics_model(; # all named arguments w hat = 1.0. # savings parameter s 0 = 0.75, # savings parameter c_y = 1.0, # labor income parameter mu v = 1.0. # labor income parameter sigma y = 0.2, # labor income parameter c_r = 0.05, # rate of return parameter mu r = 0.1. # rate of return parameter sigma r = 0.5, # rate of return parameter a = 0.5. # aggregate shock parameter b = 0.0. # aggregate shock parameter sigma z = 0.1) z mean = b / (1 - a) $z = var = sigma z^2 / (1 - a^2)$ exp z mean = exp(z mean + z var / 2)R mean = $c r * exp z mean + exp(mu r + sigma r^2 / 2)$ $y_mean = c_y * exp_z_mean + exp(mu_y + sigma_y^2 / 2)$ alpha = R mean * s 0# Distributions z stationary dist = Normal(z mean, sgrt(z var)) @assert alpha <= 1 # check stability condition that wealth does not diverge</pre> return (; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z, z mean, z var, z stationary dist, exp z mean, R mean, y mean, alpha) end

wealth_dynamics_model (generic function with 1 method)

Distributions: Simulation

```
function simulate wealth dynamics(w 0, z 0, T, params)
    (; w hat, s 0, c y, mu y, sigma y, c r, mu r, sigma r, a, b, sigma z) = params # ur
   w = zeros(T + 1)
   z = zeros(T + 1)
   w[1] = w 0
   z[1] = z 0
    for t in 2:(T + 1)
        z[t] = a * z[t - 1] + b + sigma z * randn()
        v = c v * exp(z[t]) + exp(mu v + sigma v * randn())
        w[t] = y # income goes to next periods wealth
        if w[t - 1] >= w hat # if above minimum wealth level, add savings
           R = c_r * exp(z[t]) + exp(mu_r + sigma r * randn())
            w[t] += R * s 0 * w[t - 1]
       end
    end
    return w, z
end
```

 $\verb|simulate_wealth_dynamics (generic function with 1 method)|\\$

Distributions: Results in One-dimension

Let's look at the wealth dynamics of an individual household.

```
p = wealth_dynamics_model() # all defaults
y_0 = p.y_mean
z_0 = rand(p.z_stationary_dist)
T = 200
w, z = simulate_wealth_dynamics(y_0, z_0, T, p)
plot(w, caption = "Wealth simulation", xlabel = "t", label = L"w(t)")
```


Distributions: Results in One-dimension

- · Assuming the distribution is stationary (is it?), we could:
- · Plot the stationary distribution in one-dimension
- · Generate the statistics of the stationary distribution in one-dimension
- · Also, we could calculate the inequality measures like the Gini index
- [Will find out in the assignment]

Distributions: Extension in Two-dimension

- However, remember that z_{t+1} is a persistent AR(1) progress
- Actually the distribution is in two dimensions $D_t(z_t, w_t)$ instead of $D_t(w_t)$
- Plot the stationary distribution in two-dimension (z, w)
- · Generate the statistics of the stationary distribution in two-dimension
- · Also, we could calculate the inequality measures like the Gini index
- [Will find out in the assignment]

Simulation

- · Finally, let's talk about simulation of distributions
- · We have already seen stochastic simulation through random number generators

```
function simulate wealth dynamics(w 0, z 0, T. params)
    (; w hat, s 0, c y, mu y, sigma y, c r, mu r, sigma r, a, b, sigma z) = params # ur
    w = zeros(T + 1)
    z = zeros(T + 1)
    w[1] = w 0
    z[1] = z 0
    for t in 2:(T + 1)
        z[t] = a * z[t - 1] + b + sigma z * randn()
        y = c_y * exp(z[t]) + exp(mu_y + sigma_y * randn())
       w[t] = y # income goes to next periods wealth
        if w[t - 1] >= w hat # if above minimum wealth level, add savings
            R = c r * exp(z[t]) + exp(mu r + sigma r * randn())
            w[t] += R * s_0 * w[t - 1]
        end
    end
    return w, z
end
simulate wealth dynamics (generic function with 1 method)
```

- · Could we simulate stochastic progress without stochastic simulation?
- · Yes, we can! Eric Young, 2010 provides a fantastic non-stochastic simulation method!

Simulation: Stochastic

- · First, let's redo the stochastic simulation to be using discrete grids
- To make your life easier, we kill two stochastic progress $\{(\xi_t = 0, \zeta_t = 0)\}$
- For z state, use the Tauchen method: let's choose 11 states
- For w state, choose 100 grid points from $w_{low} = 0$ to $w_{cap} = 200 (0.2,4.6,...,200)$
- You can modify $w_{t+1} = (1+r_{t+1})s(w_t) + y_{t+1}$ to enforce artificially $w_{t+1} \leq 200$
- How about the w_t that is between grid points, i.e., $w_t = 2.5 \in [2, 4]$?
- Use interpolation that you learned in the last lecture to assign mess onto 2 and 4
- So, how good is our approximation? [Will find out in the assignment]

Simulation: Non-Stochastic

- · Now, let's finally do the non-stochastic simulation (Young, 2010)
- · We use exactly the same Tauchen grids and wealth grids as above
- But from time t to t + 1, we do not use random number generators!
- Instead, we could generate a distribution of possible w_{t+1} given (z_t, w_t)
- For instance, for a grid point today, $z_t = z_i$ and $w_t = w_p$
- There is a w_{t+1} value $w(z_j, w_p) \in [w_k, w_{k+1}]$ if $z_{t+1} = z_j$ with $p(z_i, z_j)$
- We could just assign the mess on w_k and w_{k+1} by distance from $w(z_j, w_p)$

$$D[z_j, w_k] += D[z_i, w_p] * p(z_i, z_j) * \frac{w_{k+1} - w(z_j, w_t)}{w_{k+1} - w_k}$$

$$D[z_j, w_{k+1}] + = D[z_i, w_p] * p(z_i, z_j) * \frac{w(z_j, w_t) - w_k}{w_{k+1} - w_k}$$

• Brilliant! So, how good is our approximation? [Will find out in the assignment]

Assignment 1

- · Individual assignment, but you can discuss with classmates
- Make presentable slides of your results (maybe some codes if you wish)
- Push codes and slides of the results to your GitHub (shared with me)
- Everyone will have 8 minutes to present the results on Feb.12th (DDL)
- · You will be graded depending on:
 - If you could deliver the correct results (40)
 - · How clean and organized are your codes written (30)
 - How well you could deliver your results in a presentation (30)

Task 1: AR(1) on Page 7&8

- Suggested Parameters: $\{\rho = 0.9, \sigma_u = 0.1, n = 11, m = 3\}$ (Choose your own if not working)
- All the outputs of tasks below is a plot!
- Task 1-1:
 Solve Tauchen (86) approximation and simulate the stationary distribution D^T(y)
- Task 1-2:
 Compare D^T(y) to true distribution D(y) (Continuous State Markov Chains)
- Task 1-3:
 Solve Rouwenhorst (95) approximation and simulate the stationary distribution D^R(y)
- Task 1-4:
 Compare D^R(y) to true distribution D(y) (Continuous State Markov Chains)

Task 2: AR(1) Extension of Uncertainty Shocks on Page 9

- Suggested Parameters: $\{
 ho=0.9, \sigma_u=0.1, n=11, m=3, \hat{\sigma}_u=0.2\}$ | Method: Tauchen (86)
- Task 2-1: Solve the stochastic matrix \hat{P} of the uncertainty shock
- Task 2-2: Simulate 1000 individuals indexed by i for 21 periods t=0,1,...,20, starting with $y_{i,0}=0$ that receive an uncertainty shock only at time t=11. Plot the time path of $y_{i,t}$ of all 1000 individuals over t.
- Task 2-3: [Bonus]
 How about other methods, say "change state space S"? For instance, an uncertainty shock pushes individuals to have larger upper bounds and smaller lower bounds.

Task 3: Distributions on Page 17&18

- · Same economic parameters as in the codes
- Simulate N=10,000 individuals with a random start until the distribution is stationary
- Task 3-1: Plot the stationary distribution in one-dimension
- Task 3-2:
 Simulate and plot the stationary distribution in two-dimension
- Task 3-3:
 Generate the statistics of the stationary distribution in two-dimension: i.e., Corr(z,w)

Task 4: Distributions on Page 20&21

- · Same economic parameters as in the codes
- Simulate N=10,000 individuals with a random start until the distribution is stationary
- For z state, use the Tauchen method: let's choose 5 states
- For w state, choose 50 grid points from $w_{low} = 0$ to $w_{cap} = 200 (0.4,8,...,200)$
- Task 4-1: Compare the stochastic simulation using discrete grids to the original stochastic simulation in Task 3. Plot the stationary distribution in one- and two-dimension.
- Task 4-2: Compare the non-stochastic simulation to the stochastic simulation using discrete grids.
 Plot the stationary distribution in one- and two-dimension.
- Task 4-3:
 Compare the computing time for all three simulations for T=1,000 period

REFERENCES

Rouwenhorst, K Geert (1995). "Asset pricing implications of equilibrium business cycle models". In: Frontiers of business cycle research 1, pp. 294–330.

Tauchen, George (1986). "Finite state markov-chain approximations to univariate and vector autoregressions". In: *Economics letters* 20.2, pp. 177–181.

Young, Eric R (2010). "Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith algorithm and non-stochastic simulations". In: *Journal of Economic Dynamics and Control* 34.1, pp. 36–41.