Detecting negation scope is easy, except when it isn't

Federico Fancellu¹ Adam Lopez¹ Bonnie Webber¹ Hangfeng He²

 $^1\mbox{ILCC},$ School of Informatics, University of Edinburgh $^2\mbox{School}$ of Electronics Engineering and Computer Science, Peking University

Negation Scope Detection (at the string level)

- ▶ Input: a sentence containing at least one negation marker (or cue)
- ► **Task**: classify a token as part of the scope of the cue or not (binary classification)

I am Italian but I do n't eat pizza

Negation Scope Detection (at the string level)

- ▶ Input: a sentence containing at least one negation marker (or cue)
- ► **Task**: classify a token as part of the scope of the cue or not (binary classification)

I am Italian but I do n't eat pizza

It is not the case that I eat pizza

Negation Scope Detection (at the string level)

- Input: a sentence containing at least one negation marker (or cue)
- ► **Task**: classify a token as part of the scope of the cue or not (binary classification)

I am Italian but I do n't eat pizza

It is not the case that I eat pizza

It is the case that I am Italian

Neural Networks for Negation Scope Detection [Fancellu et al., 2016]

- Bi-LSTM for negation scope detection
- ► Performance on par or better than previous heavily-engineered or heuristics-based approaches
- ► Tested on Conan-Doyle neg.[Morante et Daelemans, 2012]

This work

- Several corpora annotated with negation scope
 - Different annotation decisions
 - Different domains
- Our question: Does it work on these corpora?
 - ▶ BioScope (EN) [Vincze et al., 2009]
 - 3 sub-corpora (Abstract, Full, Clinical)
 - SFUProductReview (EN) [Konstantinova et al., 2012]
 - CNeSp (ZH) [Zou et al., 2015]
 - ▶ 3 sub-corpora (Product, Financial, Scientific)

Joint model

- ► Same bi-LSTM architecture, same features
- ► Add a 4-parameter transition matrix to create the dependency on the previous output

$$p(s|w,c) = \prod_{i=1}^{n} p(s_i|s_{i-1}, w, c)$$

Evaluation

- Evaluation
 - ▶ Token-level: *F*₁ on tokens correctly classified
 - Scope-level: Accuracy of full scopes we correctly match
- ▶ Performance on par or better than previous work

(

Rule-based scope detection

A lot of sentences where scope is delimited by punctuation

```
It helps activation , not inhibition of ibrf1 cells .
```

Results

Results

Blame it on the training data

```
It helps activation , not inhibition of ibrf1 cells .
```


Easy vs. hard instances

- ► Easy: predictable by punctuation

 It helps activation , not inhibition of ibrf1 cells .
- ► Hard: not predictable by punctuation
 I do not use the 56k conextant winmodem since I have cable access for the internet and he does not either .

Most of the errors are due to the model trying to match punctuation boundaries

surprisingly, expression of neither bhrf1 nor blc-2 in a b-cell line bjab, protected by the cells from anti-fas-mediated apostosis

Most of the errors are due to the model trying to match punctuation boundaries

surprisingly , expression of <u>neither bhrf1 nor blc-2 in a b-cell line</u> bjab , protected by the cells from anti-fas-mediated apostosis

Most of the errors are due to the model trying to match punctuation boundaries

surprisingly , expression of <u>neither bhrf1 nor blc-2 in a b-cell line</u> bjab , protected by the cells from anti-fas-mediated apostosis

I do not use the 56k conextant winmodem since I have cable access for the internet.

Most of the errors are due to the model trying to match punctuation boundaries

surprisingly , expression of <u>neither bhrf1 nor blc-2 in a b-cell line</u> <u>bjab</u> , protected by the cells from anti-fas-mediated apostosis

I do not use the 56k conextant winmodem since I have cable access for the internet .

Why does it happen?

Different corpora, different annotation styles

BioScope & SFU	
CNeSp	
Sherlock	

Why does it happen?

Different corpora, different annotation styles

BioScope & SFU	It helps activation, not inhibition of ibrf1 cells.
CNeSp	It helps activation , not inhibition of ibrf1 cells .
Sherlock	

Subject is seldom annotated

Why does it happen?

Different corpora, different annotation styles

BioScope & SFU	It helps activation, not inhibition of ibrf1 cells.
CNeSp	It helps activation, not inhibition of ibrf1 cells.
Sherlock	It helps activation, not inhibition of ibrf1 cells.

Subject is always annotated, omitted verb is retrieved

Is this problem caused by the annotation guidelines?

▶ We re-annotated 100 randomly selected sentences of 3 corpora using the Sherlock guidelines

Data	Easy original	Easy Sherlock
SFU	87%	42%
BioScope Abstract	84%	34%
CNeSp Financial	68%	45%

Undersampling is not enough

Conclusions

- ► GOOD PERFORMANCE FEELS GREAT BUT UNDERSTANDING YOUR MODEL FEELS EVEN BETTER!
- Detecting negation scope is easy, except when it isn't:
 - focus detection on those more difficult cases?