1 First week

 $\mathbf{2}^A$: insieme delle parti di $\mathbf{A} \Rightarrow 2^{\wedge \# A} =$ elenco delle parti di \mathbf{A}

Relazioni: dati 2 insiemi X e Y, e un sottoinsieme $\mathcal{R}(X,Y)$ è detto relazione tra X e Y e scriveremo $x\mathcal{R}y, x,y \in \mathcal{R}$

Funzione: siano dati X,Y e dia f
 una relazione tra X e Y, f $\subset X \times Y$. diremo che f è una funzione da X in Y se vale:

$$\forall x \in X : \exists ! y \in Yt.c.(x, y) \in f$$

Dominio: insieme delle x che vanno in Y

Codomidio: insieme delle y che hanno corrispondenza in X

Legge: proprietà che definisce una relazione da X a Y

Insieme di tutte le funzioni: Y^X corrisponde a tutte le funzioni con leggi diverse ma con stessi insiemi di partenza ed arrivo

Funzione identità: $id_X(X) = X$

Composizione di funzioni: $x \to^f y \to^g z \Rightarrow g(f(x)) = z \Rightarrow gof(x) = z$

Iniettiva: ad ogni f(x) corrisponde un solo y Surgettiva: ad ogni y corrisponde un f(x) Bigiettiva: sia iniettiva che suriettiva

Inversa: se f è biettiva, allora esiste $g = f^{-1}$

2 Second week

Sistemi equipotenti: X e Y sono equipotenti $(X \sim Y)$ se hanno la stessa cardinalità e la funzione $f: X \to Y$ è bigiettiva (o invertibile)

insiemi cardinali: sono gli insiemi in formato $\{0,1,...,n\}$ equipotenti all'insieme dato, si rapprensentano |A| e definiscono una cardinalità pari a n+1

TEOREMA: X e Y sono equipotenti se e solo se i loro insiemi cardinali sono uguali

$$|X| = |Y|$$

Numeri naturali: sono definiti dagli assiomi di Peano:

- 0 è un numero naturale
- $\bullet\,$ esiste una funzione successivo $\mathbb{N} \to \mathbb{N}$
- $succ(n) \in \mathbb{N} \setminus \{0\}$, cioé il successivo di ogni naturale è diverso da 0
- vale principio d'induzione

Principio d'induzione: con $A \subset \mathbb{N}$

- base induttiva: $0 \in A$
- passo induttivo: $\forall n \in \mathbb{N}, n \in A \Rightarrow succ(n) \in A$, allora $A = \mathbb{N}$

Principio induttivo di prima forma:

Prendiamo una proposizione P(n) e supponiamo che rispetti 2 condizioni:

• la base induttiva: P(0) è vera

• il passo induttivo: $\forall n \in \mathbb{N}, P(n)$ è vera (ipotesi induttiva), allora P(succ(n))

Se rispetta queste condizioni allora implica $\forall n \in \mathbb{N}, P(n)$

Teorema di ricorsione: Sia X un insieme, esite una funzione $f: \mathbb{N} \to X$ t.c.:

$$f(0) = c$$

$$f(succ(n)) = h(n, f(n))$$

Addizione: tramite il teorema di ricorsione definiamo la funzione $m \to n + m$:

$$n + 0 = n$$
$$n + succ(m) = succe(n) + m$$

Moltiplicazione: tramite il teorema di ricorsione definiamo la funzione $m \to nm$:

$$n \cdot 0 = 0$$
$$n(m+1) = mn + n$$

Ordinamento dei naturali: può essere totale o parziale

Ordine parziale: è una relazione $\mathcal{R} \subset X \times X$ e rispecchia le seguenti proprità:

• riflessiva: $x\mathcal{R}x, \forall x \in X$

• antisimmetrica: $x \mathcal{R} y e y \mathcal{R} x \Rightarrow x = y, \forall x, y \in X$

• transitiva: $x\mathcal{R}y \ e \ y\mathcal{R}z \Rightarrow x\mathcal{R}z, \forall x, y, z \in X$

Ordinamento totale: come l'ordinamento parziale, ma con la proprietà aggiunta:

• tricotomia: $x\mathcal{R}y \ o \ y\mathcal{R}x \ \forall x,y \in X$

insiemi ordinati: se \mathcal{R} è parziale o totale, dirò che (X,\mathcal{R}) è parzialmente o totalmente ordinato

Principio d'induzione shiftato di prima forma: identico alla prima forma ma la base invece che 0, parte da $k \le n$

• base induttiva: P(k) è vera

• passo induttivo: $\forall n \geq k$, P(n) è vera \Rightarrow P(n+1)

3 third week

exercises

4 forth week

Insiemi finiti: Indicando con I_n un insieme che va da 0 a n, diremo che l'insieme X è finito se essite $n \in \mathbb{N}$ t.c. $I_n \sim X$. Se non esiste lo definiremo insieme infinito.

Teorema di lemma dei cassetti: Siano X e Y due insiemi rispettivamente $X \sim I_n$ e $Y \sim I_m$ con n < m allora la funzione $f(x): Y \to X$ non è iniettiva

Cardinalità: Sia X un insieme finito. Definiamo cardinalità n t.c. I_n sia equipotente a X. Definiamo I_n come insieme cardinalità associato a X

Proposizione: Sia A insieme finito e $B \subseteq A$, allora $|B| \le |A|$

Osservazione: Qualsiasi $f(x) : \mathbb{N} \to \mathbb{N}/\{0\}$ è bigiettiva

Minimo: Sia A un insieme e $z \in A$. Se $\forall x \in A, z \leq x$, allora definiremo z come **minimo** di A.

$$z = min(A)$$

Buon ordinamento: Un ordinamento totale è definito **ben ordinato** se ogni sottoinsieme di (Z, \leq) ammette un minimo

Assioma di buon ordinamento: L'ordinamento (\mathbb{N}, \leq) è ben ordinato e l'ordinamento \leq è usuale su \mathbb{N} (cioé se $\exists k \ t.c. \ n+k=m$ allora $n\leq m$)

Principio di induzione ($2^a forma$): prendiamo una famiglia di preposizioni P(n) e supponiamo rispetti le 2 condizioni:

- la base induttiva: P(0) è vera
- il passo induttivo: $\forall n \in \mathbb{N}, \forall k \in \mathbb{N} \ t.c. \ 0 \le k \le n, \ P(k)$ è vera (ipotesi induttiva), allora P(n)

Se rispetta questa condizioni allora implica $\forall n \in \mathbb{N}, P(n)$

Divisione euclidea: Siano $n,m\in\mathbb{Z} t.c.m\neq 0 \exists !q,r\in\mathbb{Z} t.c:$

$$n = mq + r$$
$$0 \le n < |m|$$

(si definiscono q quoziente e rresto della divisione di n per m)

5 fifth week

Rappresentabilità: Sia $b \in \mathbb{N}$, diremo che $n \in \mathbb{N}$ è rappresentabile in base b se esistono $k \in \mathbb{N}$ e $\varepsilon 0, \varepsilon 1, ..., \varepsilon k \in I_b$ t.c:

$$n = \sum_{i=0}^{k} \varepsilon_i b^i$$
 con $I_b = \{0, 1, ..., b-1\}$

Teorema della rappresentazione dei naturali in base arbitraria: Sia $b \in \mathbb{N}, b \geq 2$, allora $\forall n \in \mathbb{N}, n$ è rappresentabile in base b in maniera univoca

Divisibilità: Dati $n, m \in \mathbb{Z}$ si dice che n è **divisore** di m (o m è multiplo di n) se $\exists k \in \mathbb{Z}$ t.c. m = nk e scriveremo n|m

Proprità della divisibilità:

- se n|m e m|q allora n|q
- se n|m e m|n allora $n = \pm m$

Massimo Comune Divisore: Dati $m, n \in \mathbb{Z}$ si dice $d \in \mathbb{Z}, d > 0$ massimo comune divisore se:

- d|n e d|m
- $\exists c \in \mathbb{Z} \ t.c. \ c|n \ c|m \ c|d$

proposizione: se d e d^I sono mcd tra m e n allora $d = d^I$

Teorema: dati $n, m \in \mathbb{Z} \neq 0$, esiste mcd unico indicato con (n, m)

Lemma utile: dati $n, m, c \in \mathbb{Z} \neq 0$ e c|n c|m, allora $\forall x, y \in \mathbb{Z}$ vale:

$$c|xn + ym$$

Corollario: Siano $n, m \in \mathbb{Z} \neq 0$ se sia d := (n, m) allora esistono $x, y \in \mathbb{Z}$ t.c:

$$d = xn + ym$$

Numeri coprimi: dati $n, m \in \mathbb{Z}$, si dicono coprimi fra di loro se (n, m) = 1

proposizione: sia d = n, m allora $(\frac{n}{d}, \frac{m}{d}) = 1$

Algoritmo di Euclide:

Es:

$$\begin{array}{lll} 48 = 28 \cdot 1 + 20 \\ 28 = 20 \cdot 1 + 8 \\ 20 = 8 \cdot 2 + 4 \\ 8 = \underline{4} \cdot 2 + 0 \\ MDC = 4 \end{array} \Rightarrow \begin{array}{ll} 4 = 20 - 2 \cdot 8 \\ 8 = 28 - 20 \cdot 1 \\ 20 = 48 - 28 \cdot 1 \end{array}$$

$$4 = 20 - 2(28 - 20 \cdot 1) = 3 \cdot 20 - 2 \cdot 28$$

$$4 = 3(48 - 28 \cdot 1) - 2 \cdot 28$$

$$= 3 \cdot 48 - 5 \cdot 28$$

6 Sixth week

Proprietà dei coprimi: Siano $n, m, q \in \mathbb{Z}$ e n o $m \neq 0$ e (n, m) = 1:

• Se n|mq allora n|q

• Se n|q e m|q allora nm|q

Numeri primi: $p \in \mathbb{Z}$ si dice **primo** se $p \geq 2$ e i suoi divisori sono quelli banali $(\pm 1|p, \pm p|p)$. p è primo se $\forall n, m$ e p|nm allora $p|n\bigvee p|m$

Minimo Comune Multiplo: dati $n, m \in \mathbb{Z}$ si dice M minimo comune multiplo di n e m se:

• $n|M \in m|M$

• $\exists c \ t.c. \ n|c, m|c, M|c$

Unicità mcm: dati $n, m \in \mathbb{Z}$ e M, M^1 sono mcm di n e m, allora $M = M^1$

Denotazione mcm: mcm di $n \in m$ si scrive [n, m]

Teorema d'esistenza: siano $n, m \in \mathbb{Z}$ allora $\exists [n, m]$ e se $n \bigvee m \neq 0$ allora:

$$[n,m] = \frac{nm}{(n,m)}$$

Teorema fondamentale dell'aritmetica: $\forall n \in \mathbb{N}, n \geq 2, n$ è uguale a un prodotto di numeri primi, anche ripetuti:

$$n = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_k$$

La fattorizzazione di questo prodotto è univoca

Corollario: i numeri primi sono infiniti

Congruenza: dati $a, b \in \mathbb{Z}$ diremo che a è congruo a b modulo n ($a \equiv b \mod n$) se

$$n|a-b$$

Proprietà congruenza:

• riflessiva: $a \equiv a \mod n \quad \forall a, n \in \mathbb{Z}$

• simmetrica: $a \equiv b \mod n$ allora $b \equiv a \mod n \quad \forall a, b, n \in \mathbb{Z}$

• transitiva: $a \equiv b \mod n$ e $b \equiv c \mod n$ allora $a \equiv c \mod n \quad \forall a,b,c,n \in \mathbb{Z}$

equivalenza: una relazione $\mathcal R$ binaria su l'insieme X si dice relazione d'equivalenza su X se:

• è riflessiva: $\forall x \in X, \ x \mathcal{R} x$

• è simmetrica: $\forall x,y \in X, \ x\mathcal{R}y$ allora $y\mathcal{R}x$

 \bullet è transitiva: $\forall x,y,z\in X,\ x\mathcal{R}y$ e
 $y\mathcal{R}z$ allora $x\mathcal{R}z$

7 seventh week

Classi d'equivalenza: sia X, $x \in X$ e \sim una relazione d'equivalenza su X. Chiameremo classe d'equivalenza di x in X rispetto a \sim il sottoinsieme di X i quali elementi y sono equivalenti a x:

$$[x]_{\sim} = \{ y \in x | y \sim x \}$$

Insieme quoziente: chiameremo insieme quoziente di X modulo \sim l'insieme delle classi d'equivalenza contenute in X:

$$X/\sim = \{y \in x | y \sim x\}$$

Proprietà classi d'equivalenza:

- $\forall x \in X, \ x \in [x]$
- $\forall x, y \in X, [x] = [y] \Leftrightarrow x \sim y$
- $\forall x, y \in X, [x] \cap [y] \neq 0 \Rightarrow [x] = [y]$

Classi di congruenza: Dati $a, n \in \mathbb{Z}$ definiamo la classe di congruenza di a modulo n l'insieme delle x congruenti ad a mod n:

$$[a]_n = \{ x \in \mathbb{Z} | x \equiv a \bmod n \}$$

Indicheremo l'insieme quoziente \mathbb{Z} mod \sim_n come $\mathbb{Z}/_n\mathbb{Z}$ e ha come elementi le classi di congruenza $[a]_n$ che appartengono alle partizioni di \mathbb{Z} $(2^{\mathbb{Z}})$, quindi:

$$[a]_n = \{a + kn | k \in \mathbb{Z}\}$$

Es:

$$\mathbb{Z}/_3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\}$$

Prop: Sia $a \in \mathbb{Z}$ e sia r il resto di $\frac{a}{n}$, allora $a \equiv r \pmod{n}$, oppure:

$$[a]_n = [r]_n$$

Criterio di divisibilità: dati $a, n \in \mathbb{Z}$ con $n \neq 0$, diremo che a è multiplo di n se:

$$[a]_n = [0]_n$$

Notazione: dato $a \in \mathbb{Z}$ e $x \in [a]_n$ ($[a]_n = [x]_n$), diremo che x è rappresentante della classe $[a]_n$. Se x è di tipo resto, allora x è rappresentante canonico

gli elementi di $\mathbb{Z}/_n\mathbb{Z}$ si chiamano **classi di resto** modulo n

Struttura algebrica: esistono due operazioni di somma e moltiplicazione tra insiemi quozienti:

- Somma: $[a]_n + [b]_n = [a+b]_n$
- Moltiplicazione: $[a]_n \cdot [b]_n = [a \cdot b]_n$

Prop: dati $a,a^1,b,b^1\in\mathbb{Z}$ to $[a]_n=[a^I]_n$ e $[b]_n=[b^I]_n$ allora:

- Somma: $[a+b]_n = [a^I + b^I]_n$
- Moltiplicazione: $[a \cdot b]_n = [a^I \cdot b^I]_n$

Oss: Sia $a \in \mathbb{Z}, \ m \in \mathbb{N}, \ m > 0$. Allora:

$$[a]_n^m = [a_1]_n \cdot [a_2]_n \cdot \dots \cdot [a_m]_n \cdot = [a^m]_n$$

8 eight week

Teorema cinese del resto: Siano n, m > 0 e siano $a, b \in \mathbb{Z}$. Consideriamo il seguente sistema di congruenze:

$$\begin{cases} x \in \mathbb{Z} \\ x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases} \quad \circ \quad \begin{cases} x \in \mathbb{Z} \\ [x]_n = [a]_n \\ [x]_m = [b]_m \end{cases}$$

Sia S l'insieme delle soluzioni dei precedenti Sistemi

$$S = \langle x \in \mathbb{Z} | x \equiv a \pmod{n} \ e \ x \equiv b \pmod{m} \rangle$$

Il precedente sistema è compatile (ammette soluzioni) se e soltanto se:

$$(n,m)|a-b|$$

Se
$$S \neq \emptyset$$
 e $c \in S$, allora $S = [c]_{[n,m]} \in \mathbb{Z} = \langle c + k_{[n,m]} \in \mathbb{Z} | k \in \mathbb{Z} \rangle$

Es:

$$\begin{cases} x \equiv 9 \pmod{162} \\ x \equiv -9 \pmod{114} \end{cases}$$

1 - Compatibilità

$$(162, 114) = 6 \Rightarrow (162, 114)|9 - (-9) = 6|18 = 3$$

 $\Rightarrow 9 - (-9) = 3(162, 114)_{(1)}$

2 - Calcolo di una soluzione Algoritmo di Euclide:

Da (1) e (2) segue che

$$9 - (-9) = 3(162, 114) = 3(10 \cdot 114 - 7 \cdot 162)$$
$$9 - (-9) = 30 \cdot 114 - 21 \cdot 162_{(3)}$$
$$9 + 21 \cdot 162 = -9 + 30 \cdot 114 \Rightarrow 3411$$

c=3411 è una soluzione del sistema

3 - Calcolo di S

Teorema cinese del resto:

$$S = [c]_{[162,114]} = [3411]_{[162,114]}$$
$$[162,114] = \frac{162 \cdot 114}{(162,114)} = 3078 \quad \Rightarrow \quad S = [3411]_{[3078]} = [333]_{[3078]}$$
$$\Rightarrow S = \langle 333 + 3078k \in \mathbb{Z} | k \in \mathbb{Z} \rangle$$

Bonus:

Esiste soluzione di S divisibile da 17?

metodo 1

$$\begin{cases} x \equiv 333 \pmod{3078} \\ x \equiv 0 \pmod{17} \end{cases}$$
$$(3078, 17)|333 - 0$$
$$1|333$$

è divisibile quindi accetta soluzione

metodo 2

$$[333 + 3078k]_{17} = [333]_{17} + [3078]_{17}[k]_{17}$$
$$[10]_{17} + [1]_{17}[k]_{[17]} = [10 + k]_{17}$$
$$\Rightarrow k = 7$$

9 neinth week

Elementi invertibili modulo n: Siano $a, n \in \mathbb{Z}$ con n > 0. Diremo che a è invertibile modulo n o equivalentemente che $[a]_n$ è invertibile in $\mathbb{Z}/_n\mathbb{Z}$ se esiste $x \in \mathbb{Z}$ to:

$$ax \equiv 1 \pmod{n} \Leftrightarrow [a]_n [x]_n = [1]_n$$

In questo caso diremo che x è un'inversa di $a \pmod{n}$ e $[x]_n$ è una classe inversa di $[a]_n$ in $[Z]/_n\mathbb{Z}$

Lemma: Supponiamo che a sia invertibile modulo n, ovver $[a]_n$ sia invertibile in $[Z]/_n\mathbb{Z}$. Allora esiste un unico $[x]_n \in [Z]/_n\mathbb{Z}$ tale che:

$$[a]_n[x]_n = [x]_n[a]_n = [1]_n$$

Equivalentemente $[x]_n$ è l'unica classe inversa di $[a]_n$ in $[Z]/_n\mathbb{Z}$. Tale classe $[x]_n$ viene detta inversa e viene indicata con il simbolo $[a]_n^{-1}$

Prop: $a \in \mathbb{Z}$ è invertibile $mod \ n \Leftrightarrow (a, n) = 1$, in questo caso esiste $x, y \in \mathbb{Z}$ tali che:

$$xa + yn = 1$$
(Algoritmo di euclide)

Allora

$$[a]_n^{-1} = [x]_n$$

Es:

 $11 \ inv(mod \ 30)$

$$(11,30) = 1 \Rightarrow \exists [11]_{30}^{-1}$$

alg. euclide:

$$1 = 11 \cdot 11 + (-4)30$$

$$[1]_{30} = [(11)(11) + (-4)(30)] = [11]_{30}[11]_{30} + [-4]_{30}[0]_{30} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}^{-1} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}^{-1} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30$$

Def: Dato $n \in \mathbb{Z}, n > 0$, indichiamo con $(\mathbb{Z}/_n\mathbb{Z})^*$ il sottoinsieme di $\mathbb{Z}/_n\mathbb{Z}$ formato da tutti gli interi modulo n invertibili

cioé mcd è uguale a 1

invertibili,

Prop: Sia p numero primo, allora vale:

$$(\mathbb{Z}/_{n}\mathbb{Z})^{*} = \{[1]_{n}, [2]_{n}, ..., [p-1]_{n}\} = \mathbb{Z}/_{n}\mathbb{Z}\setminus\{[0]_{n}\}$$

Prop: Sia $a \in \mathbb{Z}$ e r sia il resto di a/n, allora:

$$a \equiv n \pmod{n}$$

oppure

$$[a]_n = [r]_n$$

Criterio di divisibilità: dati $a, n \in \mathbb{Z}$ con $n \neq 0$, diremo che a è multiplo di n se:

$$[a]_n = [0]_n$$

notazione: dato $a \in \mathbb{Z}$ e $x \in [a]_n$ ($[a]_n = [x]_n$), diremo che x è rappresentante della classe $[a]_n$. Se x è di tipo resto, allora x è rappresentante canonico

Gli elementi di $\mathbb{Z}/_n\mathbb{Z}$ si chiamano classi di resto modulo n

Struttura algebrica: Esistono due operazioni di somma e moltiplicazione tra insiemi quozienti:

Somma: $[a]_n + [b]_n = [a+b]_n$ Moltiplicazione: $[a]_n \cdot [b]_n = [ab]_n$

Prop: dati $a,a^I,b,b^I\in\mathbb{Z}$ tali che $[a]_n=[a^I]_n$ e $[b]_n=[b^I]_n,$ allora:

- $\bullet \ [a+b]_n = [a^I + b^I]_n$
- $[ab]_n = [a^I b^I]_n$

Oss: Sia $a \in \mathbb{Z}, \ m \in \mathbb{N}, \ m > 0$. Allora:

$$[a]_n^m = [a^m]_n$$

10 tenth week

Il teorema di Fermat-Eulero

Definiamo la funzione $\phi: \mathbb{N}/\{0\} \to \mathbb{N}$, detta funzione phi di eulero, ponendo:

$$\phi(n) := |\{a \in \mathbb{Z} \mid \le a \le n, \ (a, n) = 1\}| \qquad \forall n \in \mathbb{N}/\{0\}$$

Oss: la funzione ϕ è moltiplicativa sulle coppie coprime:

$$\phi(n \cdot m) = \phi(n) \cdot \phi(m)$$
 $\forall n, m \in \mathbb{N}/\{0\} \ tc \ (n, m) = 1$

Sia p un numero primo e sia $m \in \mathbb{N}/\{0\}$. Considero $n = p^m$, allora $\phi(n) = \phi(p^m)$ che vale:

$$\phi(p^m) = p^m - p^{m-1}$$
 $\forall p \text{ primo e } \forall m \in \mathbb{N}/\{0\}$

Formula generale: Sia $n \geq 2$ e $n = p_1^{m_1} \cdot p_2^{m_2} \cdot ... \cdot p_k^{m_k}$ per qualche numero primo $p_1, p_2, ..., p_k$ con $p_i \neq p_j \forall i \neq j$ e $m_1, ..., m_k \in \mathbb{N}/\{0\}$. Allora:

$$\phi(n) = \phi(p_1^{m_1} \cdot \ldots \cdot p_k^{m_k}) = (p_1^{m_1} - p_1^{m_{1-1}}) \cdot \ldots \cdot (p_k^{m_k} - p_k^{m_{k-1}})$$

Lemma: Dato n > 0, vale:

$$|(\mathbb{Z}/_n\mathbb{Z})^*| = \phi(n)$$

Lemma: Dati $\alpha, \beta \in (\mathbb{Z}/_n\mathbb{Z})^*$, valgono le seguenti affermazioni:

- $\alpha\beta \in (\mathbb{Z}/n\mathbb{Z}), \quad (\alpha\beta)^{-1} = \alpha^{-1}\beta^{-1}$
- $\bullet \ \alpha^{-1} \in (\mathbb{Z}/_n\mathbb{Z}), \quad (\alpha^{-1})^{-1} = \alpha$

Teorema: Sia n > 0. Per ogni $\alpha \in (\mathbb{Z}/_n\mathbb{Z})^*$, vale:

$$\alpha^{\phi(n)} = [1]_n \text{ in } \mathbb{Z}/_n\mathbb{Z}$$

Equivalentemente, per ogni $a \in \mathbb{Z}$ tale che (a, n) = 1

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Corollario: Se p è un numero primo e $a \in \mathbb{Z}$ tale che (p,a)=1, allora:

Con
$$n = p \Rightarrow a^{p-1} \equiv 1 \pmod{p}$$

Crittografia RSA

Fissiamo n > 0. Per ogni $c \in \mathbb{N}/\{0\}$, definiamo la funzione:

$$P_c: (\mathbb{Z}/_n\mathbb{Z})^* \to (\mathbb{Z}/_n\mathbb{Z})^*$$

 $\alpha \to \alpha^c$

Ovvero $P_c(\alpha) := \alpha^c \quad \forall \alpha \in (\mathbb{Z}/n\mathbb{Z})^*$. La funzione P_c è ben definita, ovvero, se α è una classe di congruenza e n invertibile, allora anche α^c è invertibile

Teorema della crittografia RSA

Sia $c \in \mathbb{N}/\{0\}$ tale che $(c, \phi(n)) = 1$ e sia $d \in \mathbb{N}/\{0\}$ un inverso di c modulo $\phi(n)$ (ovver d > 0 e $d \in [c]_{\phi(n)}^{-1}$), allora P_c è una funzione invertibile e vale $P_c^{-1} = P_d$

$$P_d = P_c^{-1} \Leftrightarrow p_d(P_c(\alpha)) = \alpha \qquad \forall \alpha \in (\mathbb{Z}/_n\mathbb{Z})^*$$

 $p_c(P_d(\beta)) = \beta \qquad \forall \beta \in (\mathbb{Z}/_n\mathbb{Z})^*$

Corollario: Siano $a, c \in \mathbb{Z}$ tale che (a, n) = 1 e c > 0. Considero la seguente congruenza in $x \in \mathbb{Z}$

$$x^c \equiv a (mod \ n)$$

Sia S l'insieme delle soluzioni della precedente congruenza, ovvero:

$$S := \{ x \in \mathbb{Z} \mid x^c \equiv a \pmod{n} \}$$

allora se $(c, \phi(n)) = 1$ e d > 0 con $d \in [c]_{\phi(n)}^{-1}$, Allora

$$S = [a^d]_n = \{a^d + kn \in \mathbb{Z} \mid k \in \mathbb{Z}\}$$

Crittografia a chiave pubblica

Supponiamo che A voglia comunicare con B mediante RSA:

B pubblica $c, n \in \mathbb{Z}/\{0\}$, c chiave di codifica e n modulo tale che $(c, \phi(n)) = 1$. A userà l'alfabeto $(\mathbb{Z}/_n\mathbb{Z})^*$. Se A comunica $\alpha \in (\mathbb{Z}/_n\mathbb{Z})^*$, allora calcola α^c e lo invierà. Allora B $(c, \phi(n)) \to d > 0, d \in [c]_{\phi(n)}^{-1}$ con d chiave di decifratura. Quindi $\beta \to \beta^d = \alpha$

11 Eleventh week

Grafi: Dato un insieme V, indichiamo $\binom{V}{2}$ l'insieme i cui elementi sono tutti sottoinsiemi di V con 2 elementi, ovvero:

$$\binom{V}{2} := \{ A \in 2^V \mid |A| = 2 \}$$

Vale la formula:

$$|\binom{V}{2}| = \binom{|V|}{2} = \frac{|V|!}{2!(|V|-2)!} = \frac{|V|(|V|-1)}{2}$$

Def: Un grafo G è una coppia (V, E), dove V è un'insieme non vuoto detto insieme dei vertici di G e E è un sottoinsieme di $\binom{V}{2}$ detto insieme dei lati di G. Se G = (V, E) è un grafo ed $e = \{v_1, v_2\} \in E$, cioé un lato di G, allora diciamo che v_1 e v_2 sono degli estremi di e

Se G è un grafo, allora V(G) indica l'insieme dei vertici e E(G) l'insieme dei lati di G. Se G = (V, E) è un grafo ed $e = \{v_1, v_2\} \in E$, cioé un lato di G, allora diciamo che v_1 e v_2 sono gli estremi di e ed anche che e congiunge v_1 e v_2

Esempi notevoli

 $\bullet\,$ Per ogni $n\in\mathbb{N},$ definiamo il cammino P_n di lunghezza n come il seguente grafo

$$V(P_n) = \{0, 1, ..., n\} \ E(P_n) := \emptyset \text{ se } n = 0$$

 $E(P_n) := \{\{i, i+1\} \in \binom{V(P_n)}{2}\}$

- P_{∞} il cammino infinito
- Per ogni $n \in \mathbb{N}$ con $n \geq 3$, il *ciclo* di lunghezza n è definito:

$$V(C_n) = \{1, 2, ..., n\} \ E(C_n) = \{\{i, i+1\} \in \binom{V(C_n)}{2}\} \cup \{\{1, n\}\}\$$

• Per ogni $n \in \mathbb{N}$, $n \geq 1$, il grafo completo di n vertici, denotato con k_n , è definito:

$$V(k_n)_{:} = \{1, 2, ..., n\}, E(kn) := {V(kn) \choose 2}$$

Sottografi e sottografi indotti

Siano G=(E,V) e $G^I=(E^I,V^I)$ due grafi. Diremo che G^I è un sotto grafo di G se $V^I\subset V$ e $E^I\subset E$

Se G^I è sottografo di G vale:

$$E^{I} = \{e \in E \mid e = \{v_1, v_2\}, v_1 \in V^{I}, v_2 \in V^{I}\}$$

allora G^I si dice sotto grafo di G indotto da V^I e si indica con il simbolo $G[V^I]$

13/05/21

Morfismi

Siano G=(V,E) e $G^I=(V^I,E^I)$ due grafi, e $f:V\to V^I$ una funzione iniettiva. Allora si dice morfismo da G a G^I se vale:

$$\forall v_1, v_2 \in V, \{v_1, v_2\} \in E \Rightarrow \{f(v_1), f(v_2)\} \in E^I$$

Se $f: V \to V^I$ è un morfismo da G a G^I , allora scriveremo $f: G \to G^I$

Oss: Siano G=(V,E) e $G^I=(V^I,E^I)$ due grafi, sia $f:G\to G^I$. Per ogni $e=\{v_1,v_2\}\in E$, allora:

$$f(e) = \{f(v_1, v_2)\} \in \binom{V^I}{2}$$

Definiamo $f(E) := \{ f(e) \in \binom{V^I}{2} \mid e \in E \}$, segue che:

$$f(E)\subset E^I$$

Dunque f è un morfismo solo se $f(E) \subset E^I$

Isomorfinsmo

Diciamo che f è un isomorfinsmo da G in G^I se:

- f è bigiettiva
- f è morfismo da G in G^I
- $f^{-1}:V(G)\to V(G)$ è un morfismo da G^I in G. Se esiste un isomorfismo, allora G si dice isomorfo a $G^I\Rightarrow G\cong G^I$

Prop: Siano G, G^I due grafi e $f: V \to V^I$ una funzione. f è isomorfismo da G in G^I se e solo se:

- f è bigiettiva
- $f(E) = E^I$, ovvero $\forall e \in \binom{V}{2}$, $e \in E \Leftrightarrow f(e) \in E^I$

Passeggiate, cammini e cicli

Sia G una successione finita ordinata di vertici di G. Allora si dice:

- Passeggiata in G, se n=0 oppure $n\geq 1$ e $\{v_i,v_{i+1}\}\in E \quad \forall i\in\{0,1,...,n-1\}$
- Cammino in G, se è una passeggiata in G e $v_i \neq v_j \quad \forall i,j \in \{0,1,...,n\}$
- Ciclo in G se è una passeggiata in $G, v_0 = v_n$ e $n \geq 3, \ v_i \neq v_j$

Se $(v_0, v_1, ..., v_n)$ è una passeggiata in G, allora n è detto lunghezza, n = l(G)

Def

Sia G un grafo e siano $v, w \in V$. Sono congiungibili in G con passeggiata se esiste una passeggiata in G della seguente forma: $(v_0, v_1, ..., v_n)$

12 Dodicesima settimana

Congiungibilità

Sia G = (V, E) e siano $v, w \in V$. Diciamo che v e w sono congiungibili con un cammino se esiste un cammino $(v_0, v_1, ..., v_n)$ tale che $v_0 = v$ e $v_n = w$

Prop: Sia G = (V, E) e siano $v, w \in V$. Allora v e w sono congiungibili con un cammino se e soltanto se lo sono con una passeggiata

Oss: Dato un grafo G=(V,E) e $v,w\in V$ diciamo che v e w sono congiungibili se lo sono per cammini o passeggiate

Prop: Sia G = (V, E) e sia \sim la relazione binaria su V indetta dalla nozione di congiungibilità in $G : \sim \in \mathcal{P}(V \times V)$ è definita ponendo $v \sim w$ se v è congiungibile a w in G. Allora \sim è una relazione di equivalenza in V. Allora \sim è una relazione di equivalenza in V

Def:Sia G = (V, E) e sia \sim la relazione di congiungibilità su V, indichiamo con $\{V_i\}_{i \in I}$ l'insieme di tute le \sim classi d'equivalenza. I sotto grafi $\{G[V_i]\}_{i \in I}$ indotti da G su V_i si dicono componenti connesse di G

Grafi connessi

Un grafo si dice *connesso* se possiede una sola componente connessa. Altrimenti si definisce *sconnesso*

Oss:

- Sia G un grafo, allora G è connesso se e solo se ogni coppia di vertici di G è congiungibile in G
- \bullet Ogni componente connessa di G^I di G è un grafo connesso

Prop: Siano $G \in G^I$ due grafi e sia $f: G \to G^I$ un morfismo. Valgono:

- se $v, w \in V(G)$ tale che v è raggiungibile a w in G, allora f(w) e f(v) sono congiungibili in G^I
- Se f è un isomorfinsmo, allora $v \sim w$ in $G \Leftrightarrow f(v) \sim f(w)$ in G^I

Corollario: Siano G e G^I due grafi isomorfi, siano $\{G_i\}_{i\in I}$ le componenti connesse di G e $\{G_j^I\}_{j\in I}$ le componenti connesse di G^I . Allora G e G^I hanno lo stesso numero di componenti connesse e tali componenti sono 2 a 2 isomorfe. Più precisamente, $\exists \varphi: I \to J$ una bigezione talche che $G_i \cong G_{\varphi(i)}^I$ $\forall i \in I$

Corollario: Due grafi isomorfi sono entrambi connessi o non connessi

Relazione fondamentale tra gradi dei vertici e numero dei lati di un grafo finito

Def:Un grafo G è detto finito se ha un numero finito di vertici

Oss: Un grafo finito possiede anche un numero finito di lati. Viceversa è falso, esistono grafi con infiniti vertici e finiti lati.

Def: Sia G un grafo finito e sia $v \in V$. Definiamo il grado $deg_G(v)$ di v in G ponendo:

$$deg_G(v) := |\{e \in E \mid v \in E\}|$$

(o numero di lati che escono da v)

20/05/21

Prop: Sia G = (V, E) un grafo finito. Allora:

$$\sum_{v \in V} deg_G(v) = 2|E|$$

lemma delle strette di mano: In un grafo finito, il numero di vertici di grado dispari è pari

Def: Sia G = (V, E) un grafo finito con n vertici, definiamo con score di G, con il simbolo score(G), come la n-upla di interi equali ai gradi dei vertici di G.

Diremo che lo score è in forma canonica se la successione è ordinata in modo non decrescente

Prop: Siano $G \in G^I$ due grafi isomorfi, vale:

$$score(G) = score(G^I)$$

Il contrario è falso, esistono grafi non isomorfi ma con score pari.

Grafi 2-connessi e grafi di Hamilton

Def: Sia G = (V, E) un grafo finito con almeno 2 vertici e sia $v \in V$. definitamo G - v il grafico ottenuto da G rimuovendo v, ponendo:

$$V(G-v):=V/\{v\},\quad E(G-v):=\{e\in E, v\notin V\}$$

Def: un grafo G si dice 2-connesso se ha almeno 3 vertici e $\forall v \in V(G), G-v$ è connesso

Lemma: ogni grafo 2-connesso è anche connesso. il contrario non vale.

Def: Sia G un grafo. UN ciclo in G che attraversa tutti i vertici di G è detto ciclo Hamiltoniano. Se G ammette almeno un ciclo Hamiltoniano è detto grafo Hamiltoniano

Oss: Un Hamiltoniano è sempre un grafo finito e ha almeno 3 vertici

Lemma: Un grafo Hamiltonianoè anche 2-connesso

13 thirteenth week

Foglia: sia G = (V, E) un grafico e sia $v \in V$. Diciamo che v è una foglia di G se $deg_G(v) = 1$

Lemma: Un grafo 2-connesso o hamiltoniano non possiede foglie

Lemma: Siano G e G^I due grafi isomorfi. Valgono le seguenti affermazioni:

- G è 2-connesso solo se lo è anche G^I
- G è Hamiltoniano solo se lo è anche G^I

Note: per determinare l'isomorfismo di un grafo, possiamo verificare alcune caratteristiche:

- $score(G) = score(G^I)$
- $\bullet \ G$ e G^I sono entrambi connessi o meno. Il numero di componenti connesse è lo stesso
- entrambi sono 2-connessi o meno
- entrambi sono Hamiltoniani o meno
- hanno lo stesso numero di sottocili
- scelto un vertice di G di grado k, allora tutti k vertici collegati a f(v) devono avere lo stesso score di quelli collegati a v

Se tutte queste regole sono rispettate non per forza i due grafi sono isomorfi. Il modo pià accurato per determinare l'isomorfismo è di generarne uno a mano

Lemma: Sia $n \in \mathbb{N}$ con $n \geq 1$, allora se G = (V, E) è un grafo con n vertici, vale:

$$deg_G(v) \le n - 1 \qquad \forall v \in V$$

Corollario: Sia $n \in \mathbb{N}$ con $n \ge 1$ e sua $d = (d_1, ..., d_n) \in \mathbb{N}^n$ ordinato. Se $d_n > n - 1$ allora nessun grafo avrà d come score (ost 1)

Oss: Siano $n, m \in \mathbb{N}/\{0\}$ e sia $d \in \mathbb{N}^{n+m}$ in forma $(0_1, ..., 0_m, d_1, ..., d_n)$ ordinata. Definiamo d^I come d senza gli zero. Anche d^I è score del grafo

Lemma: Siano $n, k \in \mathbb{N}/\{0\}$ tale che k < n e h := n - k e d score in forma $(d_1, ..., d_h, n - 1_1, ..., n - 1_k)$ ordinata. Se $d_1 < k$ allora d non è score di un grafo (ost 2) 27/05

Lemma: Sia $n \in \mathbb{N}$ con $n \geq 3$, sia $d = (d_1, ..., d_n) \in \mathbb{N}^n$ ordinato e sia L:

$$L := |\{i \in \{1, ..., n-2\} \mid d_i \ge 2\}|$$

Se $L < d_{n-1} + d_n - n$, allora d non è score di un grafo (ost3)

Lemma: Sia $n \in \mathbb{N}/\{0\}$ e $d \in \mathbb{N}^n$ un vettore ordinato tale che $d_1 \leq ... \leq d_n \leq 2$. Vale:

- \bullet se $d=(0_1,...,0_{n-1},2)$ oppur
e $n\geq 2$ e $d=(0_1,...,0_{n-2},2,2),$ allora non è un grafo
- Se d=(0,...,0) allora d è lo score di un grafo con n vertici isolati. Se esiste $m \in \mathbb{N}$ tale che $n \geq m \geq 3$ e $d=(0_1,...,0_{n-m},2_1,...,2_m)$ allora d è lo score del grafico con n-m vertici isolati e m vertici in ciclo

Se per $k \in \mathbb{N}$ volte lo score è pari a 1 allora il grafo è formato da k/2 segmenti

Corollario: Se il numero di d=1 è pari, allora d è lo score di un grafo solo se d non ha le forme:

$$d = (0, ..., 0, 2)$$
 oppure $d = (0, ..., 0, 2, 2)$

Teorema dello score

Sia $n \in \mathbb{N}$ con $n \geq 2$ e $d \in \mathbb{N}^n$ tale che $d_1 \leq ... \leq d_n \leq n-1$. definiamo il vettore ponendo:

$$d_i^I \begin{cases} d_i & se \ i < n - d_n \\ d_i - 1 & se \ i > n - d_n \end{cases} \quad \forall i \in \{1, ..., n - 1\}$$

d è lo score di un grafo solo se lo è $d^{\cal I}$

14 fourteenth week

Alberi

Un grafo si dice albero se è connesso e senza cicli. Una foresta è un grafo senza cicli

Teorema: Sia T = (V, E) un grafo. Le seguenti affermazioni sono equivalenti:

- 1. Tè un albero
- 2. Per ogni $v,\ v^I\in V,$ esiste un unico cammino in T che congiunge v a V^I
- 3. T è connesso e, per ogni $e \in E$, il grafo T e è sconnesso
- 4. T non ha cicli e, per ogni $e \in \binom{V}{2} \setminus E$, il grafo T + e, definito ponendo $T + e := (V, E \cup \{e\})$, ha almeno un ciclo
- 5. T è connesso e soddisfa la seguente formula di eulero:

$$|V| - 1 = |E|$$

Lemma: Sia T un albero finito avente almeno 2 vertici. Allora T ha almeno 2 foglie

Osservazione: Il precedente lemma non vale se l'albero è infinito

Teorema: La connessione di T non può essere omessa per l'applicazione della formula di eulero

Corollario: Sia $n \in \mathbb{N} \setminus \{0\}$ e sia $d \in \mathbb{N}^n$. Allora esiste un albero con score d se e solo se:

$$n-1 = \frac{1}{2} \left(\sum^{n} d_i \right)$$