Rec'd PGT/PTO 25 APR 2005

10/532623

(12) NACH DEM VERTRAS ÜBER DIE INTERNATIONALE ZUSAMMENA. JEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

. | 1886 | 1887 | 1887 | 1887 | 1887 | 1887 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 |

(43) Internationales Veröffentlichungsdatum 6. Mai 2004 (06.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/037607 A2

(51) Internationale Patentklassifikation⁷:

- (21) Internationales Aktenzeichen: PCT/EP2003/011518
- (22) Internationales Anmeldedatum:

17. Oktober 2003 (17.10.2003)

(25) Einreichungssprache:

Deutsch

B60Q 1/00

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 102 49 817.2 24. Oktober 2002 (24.10.2002) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): EGGERS, Helmuth [DE/DE]; Einsteinstrasse 17/1, 89077 Ulm (DE). KURZ, Gerhard [DE/DE]; Panoramastrasse 19, 73240 Wendlingen (DE). SEEKIRCHER, Jürgen [DE/DE]; Gartenstrasse 39, 73760 Ostfildern (DE). WOHLGE-MUTH, Thomas [DE/DE]; Teckstrasse 2, 72631 Aichtal (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: SWITCHING ARRANGEMENT FOR ACTUATING LIGHTING SYSTEMS ON A MOTOR VEHICLE
- (54) Bezeichnung: SCHALTANORDNUNG ZUR BETÄTIGUNG VON BELEUCHTUNGSSYSTEMEN AN EINEM KRAFT-FAHRZEUG
- (57) Abstract: Future motor vehicles will require additional lighting means. Additional lighting means are required, above all, in conjunction with environmental sensors, especially sensors which are used in night vision systems. As a result of the generally increasing number of electric and electronic systems in motor vehicles, such systems must be easy to operate for the driver. The invention thus relates to a switching arrangement which enables a plurality of lighting systems to be ergonomically operated on one motor vehicle. Said switching arrangement comprises a single switch having a plurality of switching stages. In this way, all switching stages pertaining to different lighting systems are located in the same switching region, enabling the lighting systems to be operated in a simple and intuitive manner.
 - (57) Zusammenfassung: Bei künftigen Kraftfahrzeugen wird es notwendig sein, zusätzliche Beleuchtungsmittel einzubauen. Zusätzliche Beleuchtungsmittel werden vor allem im Zusammenhang mit umgebungserfassenden Sensoren erforderlich, insbesondere bei solchen Sensoren die in Nachtsichtsystemen eingesetzt werden. Aufgrund der insgesamt steigenden Anzahl elektrischer und elektronischer Systeme in Kraftfahrzeugen ist es daneben erforderlich, dass derartige Systeme durch den Fahrer einfach zu bedienen sind. Deshalb wird eine Schaltanordnung realisiert, mit welcher es möglich ist, mehrerer Beleuchtungssysteme an einem Kraftfahrzeug ergonomisch zu bedienen. Die Schaltanordnung umfasst dabei einen einzigen Schalter, welcher mehrere Schaltstufen aufweist. Somit befinden sich sämtliche Schaltstufen unterschiedlicher Beleuchtungssysteme im selben Schaltbereich und es wird dadurch eine einfache und intuitive Bedienbarkeit der Beleuchtungssysteme möglich.

15

20

Schaltanordnung zur Betätigung von Beleuchtungssystemen an einem Kraftfahrzeug

5 Die Erfindung betrifft eine Schaltanordnung zur Betätigung von Beleuchtungssystemen an einem Kraftfahrzeug.

Moderne Kraftfahrzeuge verfügen bereits über unterschiedliche Beleuchtungsmittel wie z.B. Hauptscheinwerfer, Nebelscheinwerfer und Nebelschlussleuchten. Bei künftigen Kraftfahrzeugen wird es notwendig sein, zusätzliche Beleuchtungsmittel einzubauen. Zusätzliche Beleuchtungsmittel werden vor allem im Zusammenhang mit umgebungserfassenden Sensoren erforderlich, insbesondere bei solchen Sensoren die in Nachtsichtsystemen eingesetzt werden. Aufgrund der insgesamt steigenden Anzahl elektrischer und elektronischer Systeme in Kraftfahrzeugen ist es daneben auch erforderlich, dass derartige Systeme vom Fahrer einfach zu bedienen sind. Durch die Verwendung mehrstufiger Schalter in Verbindung mit einfachen Schaltkonzepten, lassen sich die Beleuchtungsmittel eines Kraftfahrzeugs einfach und intuitiv bedienen.

Aus der nachveröffentlichten deutschen Patentanmeldung des Anmelders mit dem amtlichen Aktenzeichen 10126492.5 ist ein Verfahren zur Verbesserung der Sicht in Fahrzeugen, insbesondere bei Dunkelheit, schlechter Witterung und Nebel, bekannt. Bei dem vorgestellten Verfahren wird Laserlicht mit einer Wellenlänge außerhalb des sichtbaren Spektrums in einen vorgegebenen Raumwinkelbereich abgestrahlt. Der ausgeleuchtete

30

Raumwinkelbereich wird mittels einer Kamera beobachtet und deren Bilder dem Fahrer angezeigt. Zur Ausleuchtung des Raumwinkelbereichs sind ein oder mehrere Laserscheinwerfer Fahrzeug angebracht. Um andere Verkehrsteilnehmer nicht zu gefährden, werden die Laserscheinwerfer nur dann kontinuierlich betrieben, wenn auch die Scheinwerfer des Fahrzeugs in Betrieb sind, insbesondere wenn das Fern- oder Abblendlicht eingeschaltet ist. Die Laserscheinwerfer werden auch dann nur kontinuierlich betrieben, wenn sich das Fahrzeug in Fahrt be-10 findet. Die Information darüber, ob die normalen Scheinwerfer eines Fahrzeugs in Betrieb sind bzw. ob sich ein Fahrzeug in Fahrt befindet, stehen in modernen Kraftfahrzeugen, die über einen Bordrechner verfügen, automatisch zur Verfügung. Andernfalls kann diese Information mittels sehr einfacher Elektrik oder Elektronik leicht gewonnen werden. Der Betrieb 15 der Scheinwerfer ist ein zuverlässiges Indiz dafür, dass die Nachtsichteinrichtung tatsächlich benötigt wird. Werden die Scheinwerfer ausgeschaltet, dann wird auch die Nachtsichteinrichtung abgeschaltet, so dass die Laserscheinwerfer keiner-20 lei Gefahr mehr darstellen können.

Vorrichtungen die an einem Fahrzeug angebracht sind und aufgrund der Eigenbewegung des Fahrzeugs automatisch eingeschaltet bzw. Ausgeschaltet werden sind bekannt. Beispielsweise wird in der US-Schrift mit der Patentnummer US 5 717 398 eine Vorrichtung zur Detektion von Radar und/oder Laserstrahlung im Zusammenhang mit einem Fahrzeug gezeigt. Die Stromversorgung der Vorrichtung besteht aus Solarzellen sowie wiederaufladbare Batterien. Um den Stromverbrauch gering zu halten, ist ein zusätzlicher Schaltkreis an der Vorrichtung vorgesehen. Mit dem Schaltkreis wird die Stromversorgung des Radarund/oder Laserdetektors abgeschaltet, falls das Fahrzeug sich länger als für einen vorgegebenen Zeitraum nicht fortbewegt. Der Radar- und/oder Laserdetektor wird automatisch wieder mit Strom versorgt, sobald sich das Fahrzeug bewegt. Die Bewegung des Fahrzeugs kann dabei z.B. aufgrund der Beschleunigung festgestellt werden.

Aus Mercedes-Benz Fahrzeugen sind drehbar gelagerte Lichtschalter bekannt. Diese Lichtschalter sind links neben dem Lenkrad am Cockpit angebracht. Dabei wird durch eine Drehung am Schalter im Uhrzeigersinn in einer ersten Schaltstufe das Standlicht und in einer zweiten Schaltstufe das Abblendlicht betätigt. Mittels einer Drehung gegen den Uhrzeigersinn wird in einer ersten Schaltstufe die rechte Parkleuchte und in einer zweiten Schaltstufe die linke Parkleuchte eingeschaltet. In der Schaltstufe "Abblendlicht" werden beim Ziehen am Schalter in einer ersten Schaltstufe die Nebelscheinwerfer und in einer zweiten Schaltstufe die Nebelrückleuchte aktiviert.

Aus dem europäischen Patent mit der Patentnummer EP0426538 B1 15 ist eine Schaltanordnung für die Betätigung der Hauptscheinwerfer sowie der Nebelscheinwerfer und der Nebelschlussleuchten eines Kraftfahrzeugs bekannt. Die Schaltanordnung besteht hierbei aus der Kombination von drei Schaltern. Dabei können für die Hauptscheinwerfer mittels einem Hauptwählschalter, 20 der drehbar in einem Gehäuse eingebaut ist, die Positionen "Aus-Standlicht-Abblendlicht/Fernlicht" gewählt werden. die Nebelschlussleuchten und die Nebelscheinwerfer sind zusätzliche Beleuchtungswählschalter am Hauptwählschalter vorgesehen, wobei diese eine Ausgangsposition sowie eine Betäti-25 gungsposition einnehmen können, in welcher die Nebelschlussleuchten und der Nebelscheinwerfer ausgeschaltet bzw. eingeschaltet sind. Die Betätigung der zusätzlichen Beleuchtungswählschalter erfolgt im Fall der Nebelschlussleuchte mittels eines Schiebers, der im Verhältnis zum Hauptwählschalter ge-30 radlinig beweglich zwischen den beiden Positionen des Nebelschlussleuchtenschalters angeordnet ist. Der Nebelscheinwerferschalter ist im Verhältnis zum Hauptwählschalter koaxial drehbar eingebaut. Ferner ist der Hauptwählschalter sowie die zusätzlichen Beleuchtungswählschalter mit Vorsprüngen und 35 Rampenmitteln versehen, so dass der Nebelschlussleuchtenschalter reinitialisiert wird, wenn der Hauptwählschalter in die Position "Aus" zurückkehrt. Der Nebelschlussleuchtenschalter wird ebenfalls reinitialisiert wenn sich der Hauptwählschalter in der Position "Standlicht" befindet und der Nebelscheinwerferschalter in die Ausgangsposition zurückkehrt.

5

10

15

20

25

30

35

Auf der Internetseite der Toyota Motor Corporation (www.toyota.co.jp/Showroom/All toyota lineup/LandCruiserCygnu s/safety/index.html) wird ein System zur Unterstützung des Sehvermögens des Fahrers bei Nachtfahrten vorgestellt. Zum Betrieb des Systems ist es erforderlich, dass der "Night-View-Schalter" betätigt wird, wobei es sich bei dem Schalter um einen gewöhnlichen Taster handelt. Der Taster befindet sich dabei in einem eigens dafür vorgesehenen Schaltbereich und ist im Gegensatz zu den Schaltern anderer Beleuchtungssysteme, wie z.B. dem Hauptlicht, an einer separaten Stelle angeordnet.

Der Erfindung liegt die Aufgabe zu Grunde, eine Möglichkeit zur ergonomischen Bedienung für zwei unterschiedliche Arten von Beleuchtungssystemen an einem Kraftfahrzeug zu schaffen.

Die Aufgabe wird gemäß der Erfindung durch eine Schaltanordnung mit den Merkmalen des Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung werden in den Unteransprüchen aufgezeigt.

Der Erfindung liegt eine Schaltanordnung für die Betätigung von Beleuchtungssystemen an einem Kraftfahrzeug zugrunde. Wobei ein erstes Beleuchtungssystem mit mehreren Beleuchtungszuständen mit einem Abblend- und ein Fernlicht sichtbares Licht ausstrahlt. Ein zweites Beleuchtungssystem strahlt Licht aus, dessen Wellenlängenbereich im Infraroten bzw. im nichtsichtbaren Wellenlängenbereich liegt. Hierbei kann es sich beispielsweise um eine Ultraviolette Beleuchtung oder auch um ein mm-Wellen Radar handeln. Die Schaltanordnung umfasst dabei einen einzigen Schalter, welcher mehrere Beleuch-

tungszustände repräsentierende Schaltstufen zur Betätigung der Beiden Beleuchtungssysteme aufweist. In einer erfinderischen Weise ist die Anordnung der Schaltstufen der Schaltanordnung hierbei derart festgelegt, dass das zweite Beleuchtungssystem erst nach der das Abblendlicht repräsentierenden Schaltstufe einschaltbar ist. In einer weiteren alternativen erfinderischen Ausgestaltung der Erfindung ist die Anordnung der Schaltstufen der Schaltanordnung derart festgelegt, dass die das Fernlicht repräsentierende Schaltstufe erst nach der Betätigung des zweiten Beleuchtungssystems einschaltbar ist.

Erfindungsgemäß kann der Schalter dergestalt ausgelegt sein, dass dieser drehbar gelagert ist. Auch ist ein Schalter denkbar, der genauso wie ein herkömmlicher Fernlichtschalter auf einer Schwenkachse gelagert ist.

Dabei ist es vorteilhaft, wenn alle Schaltstufen in derselben Richtung betätigt werden können, wobei der Schalter an der jeweiligen Position einer Schaltstufe einrastet und sich in dieser Lage von selbst hält.

20

25

15

10

In einer gewinnbringenden Weise der Erfindung, ist die Schaltreihenfolge der Schaltanordnung derart festgelegt, so dass das zweite Beleuchtungssystem für das Infrarote bzw. nichtsichtbare Licht erst nach der Betätigung des Abblendlichts einschaltbar ist. Aufgrund der Beleuchtungsstärke des Abblendlichts können Personen nur kurze Zeit in dessen Richtung blicken und werden somit auch vor der Strahlung des ebenfalls aus dieser Richtung leuchtenden nichtsichtbaren Lichts des zweiten Beleuchtungssystems geschützt.

30

35

Gleichsam ist es denkbar die Schaltreihenfolge der Schaltanordnung derart festzulegen, so dass das Fernlicht erst nach
der Betätigung des zweiten Beleuchtungssystems einschaltbar
ist. Dadurch wird es möglich das nichtsichtbare Licht des
zweiten Beleuchtungssystems auch dann zu nutzen, wenn entgegenkommender Verkehr vorhanden ist und deshalb das Fernlicht
nicht eingeschaltet werden kann. So kann das zweite Beleuch-

tungssystem für entferntere Bereiche ausgelegt sein, deren Ausleuchtung durch zuvor betätigte Fernlichter den entgegenkommenden Verkehr blenden würde.

5 In besonders vorteilhafter Weise kann die Anordnung der Schaltstufen der Schaltanordnung hierbei mechanisch, elektromechanisch oder elektronisch festgelegt sein, was im Gegensatz zu einer softwarebasierten Festlegung der Schaltreihenfolge eine erhöhte Systemsicherheit bietet. So wird unter an-10 derem sichergestellt, dass auch in Störungsanfälliger Umgebung keine Fehlfunktion auftritt. Um eine Fehlfunktion handelt es sich hierbei beispielsweise, falls das zweite Beleuchtungssystem für das infrarote Licht nicht erst nach der Betätigung des Abblendlichts einschaltbar ist. Auch handelt es sich z.B. um eine Fehlfunktion, falls das Fernlicht nicht 15 erst nach der Betätigung des zweiten Beleuchtungssystems einschaltbar ist.

In einer weiteren Ausgestaltungsform der Erfindung weist die Schaltanordnung, insbesondere wenn es sich um eine auf einer Schwenkachse gelagerte Schaltanordnung handelt, in einer Richtung Schaltstufen auf, welche nicht einrasten. Vorzugsweise ist die Richtung eine Richtung die dem Fahrer zugewandt ist. Der Fahrer hält dabei den Schalter manuell an der jeweiligen Position einer Schaltstufe. Damit kann das nichtsichtbare Licht des zweiten Beleuchtungssystems gleichsam einer Lichthupe verwendet werden.

In einer gewinnbringenden Weise der Erfindung, ist an der Schaltanordnung eine Kontrollleuchte angebracht. Die Kontrollleuchte dient dazu, den Betrieb zusätzlicher Beleuchtungsmittel anzuzeigen. Der Fahrer hat so jederzeit den Überblick, ob das zweite Beleuchtungssystem aktiviert ist. Beispielsweise kann es beim Unterschreiten einer vorgegebenen Mindestgeschwindigkeit des Fahrzeugs vorkommen, dass das zweite Beleuchtungssystem automatisch abgeschaltet wird. Ohne Kontrollleuchte wäre der Fahrer in so einem Fall nicht dar-

über informiert, dass die Beleuchtung des zweiten Beleuchtungssystems deaktiviert ist.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Figuren. Dabei strahlt ein erstes Beleuchtungssystem sichtbares Licht aus und ein zweites Beleuchtungssystem strahlt Licht aus, dessen Wellenlängenbereich im Infraroten bzw. nichtsichtbaren Wellenlängenbereich liegt. Dabei zeigen:

10

Fig. 1 Eine drehbar gelagerte Schaltanordnung

Fig. 2 Eine auf einer Schwenkachse gelagerte Schaltanordnung.

15

20

25

In Fig. 1 wird eine beispielhafte Schaltanordnung zur Betätigung von Beleuchtungssystemen an einem Kraftfahrzeug dargestellt, welche drehbar gelagert ist. Mit der Schaltanordnung werden die Hauptlichter, Parkleuchten, Nebelscheinwerfer, Nebelschlussleuchten sowie die Infrarotbeleuchtung des Kraftfahrzeugs betätigt. Dabei sind in der Schaltstufe "Aus" sämtliche Beleuchtungsmittel inaktiv. Mit der Schaltstufe 1 wird das Standlicht des Kraftfahrzeugs eingeschaltet. Das Abblendlicht wird mittels der Schaltstufe 2 betätigt. Zusätzlich zum Abblendlicht lässt sich mit der Schaltstufe 3 die Infrarotbeleuchtung für das Nachtsichtsystem hinzuschalten. Mit den Schaltstufen 4 und 5 wird die rechte bzw. linke Parkleuchte aktiviert. Beim Ziehen am Schalter lassen sich mit der Schaltstufe 7 die Nebelscheinwerfer und mit der Schaltstufe 8 die Nebelschlussleuchten betätigen.

Alle Schaltstufen der Schaltanordnung sind derart ausgelegt, dass der Schalter an der jeweiligen Position einer Schaltstufe einrastet und sich in dieser Lage von selbst hält.

30

Alternativ wäre es auch denkbar, das vor den Schaltstufen 7 - und 8 anstelle der Schaltstufe 3 eine Schaltstufe 6 vorgesehen ist, mittels derer die Infrarotbeleuchtung für das Nachtsichtsystem aktiviert werden kann. Analog zur Schaltstufe 3 ist mittels der Schaltstufe 6 die Infrarotbeleuchtung nur dann aktivierbar, wenn zuvor mit der Schaltstufe 2 bereits das Abblendlicht eingeschaltet worden ist.

In Fig. 2 wird eine beispielhafte Schaltanordnung zur Betätigung von Beleuchtungsmitteln an einem Kraftfahrzeugs dargestellt, welche mittels einer Schwenkachse gelagert ist. Mit
der Schaltanordnung lassen sich beispielsweise die Fernlichter, Lichthupen und Scheibenwischer eines Kraftfahrzeugs betätigen. In der Grundstellung sind sämtliche Beleuchtungsmittel sowie die Scheibenwischer inaktiv. Mittels Schaltstufe 10
wird das IR-Fernlicht eingeschaltet und das sichtbare Fernlicht wird mit der Schaltstufe 20 betätigt. Die IR-Lichthupe
wird mit der Schaltposition 30 und die sichtbare Lichthupe
mit der Schaltposition 40 aktiviert.

20

25

30

Der Scheibenwischer ist auf der Schaltposition 0 inaktiv. Aufgrund einer Drehbewegung in der Richtung 60 erfolgt mittels der Position I Intervall-Wischen, wohingegen mit der Position II normales Wischen und mit der Position III schnelles Wischen betätigt wird. Einmaliges Wischen wird durch Betätigung der Schaltstufe 50 erreicht.

Die Schaltstufen 10,20,0,I,II und III sind derart ausgelegt, dass der Schalter an der jeweiligen Position einer Schaltstufe einrastet und sich in dieser Lage selbst hält, wohingegen die Schaltstufen 30,40 und 50 derart ausgelegt sind, dass diese nicht einrasten und vom Fahrer manuell an der jeweiligen Position einer Schaltstufe gehalten werden.

Patentansprüche

1. Schaltanordnung zur Betätigung eines ersten Beleuchtungs-

- systems zur Ausstrahlung sichtbaren Lichts mit mehreren
 Beleuchtungszuständen mit einem Abblend- und einem Fernlicht
 und zur Betätigung eines zweiten Beleuchtungssystems zur
 Ausstrahlung von Licht dessen Wellenlängenbereich im Infraroten bzw. im nichtsichtbaren Wellenlängenbereich
 liegt,
 mit einem einzigen Schalter, der mehrere Beleuchtungszustände repräsentierende Schaltstufen zur Betätigung der
 beiden Beleuchtungssysteme aufweist,
- d a d u r c h g e k e n n z e i c h n e t ,
 dass die Anordnung der Schaltstufen der Schaltanordnung
 derart festgelegt ist, dass das zweite Beleuchtungssystem
 erst nach der das Abblendlicht repräsentierenden Schaltstufe einschaltbar ist.
- Schaltanordnung zur Betätigung eines ersten Beleuchtungssystems zur Ausstrahlung sichtbaren Lichts mit mehreren Beleuchtungszuständen mit einem Abblend- und einem Fernlicht und zur Betätigung eines zweiten Beleuchtungssystems zur Ausstrahlung von Licht dessen Wellenlängenbereich im Infraroten bzw. im nichtsichtbaren Wellenlängenbereich liegt,
- 30 mit einem einzigen Schalter, der mehrere Beleuchtungszustände repräsentierende Schaltstufen zur Betätigung der

30

beiden Beleuchtungssysteme aufweist,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Anordnung der Schaltstufen der Schaltanordnung
derart festgelegt ist, dass die das Fernlicht repräsentierende Schaltstufe erst nach der Betätigung des zweiten
Beleuchtungssystems einschaltbar ist.

- Schaltanordnung nach Anspruch 2,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass die Schaltanordnung in einer Richtung, vorzugsweise
 in der zum Fahrer gewandten, Schaltstufen aufweist, die
 nicht einrasten und manuell an der jeweiligen Position
 einer Schaltstufe gehalten werden können.
- 15 4. Schaltanordnung nach einem der vorgehenden Ansprüche, dad urch gekennzeichnet, dass die Schaltanordnung drehbar gelagert ist.
- Schaltanordnung nach einem der vorgehenden Ansprüche,
 dadurch gekennzeichnet,
 dass die Schaltanordnung mittels einer Schwenkachse gelagert ist.
- 6. Schaltanordnung nach einem der vorgehenden Ansprüche, da durch gekennzeichnet, dass alle Schaltstufen in derselben Richtung betätigt werden, wobei der Schalter der Schaltanordnung an der jeweiligen Position einer Schaltstufe einrastet und sich in dieser Lage von selbst hält.
 - 7. Schaltanordnung nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet,
dass eine Kontrollleuchte an der Schaltanordnung angebracht ist, um den Betrieb eines der weiteren Beleuchtungsmittel anzuzeigen.

BEI DER INTERNATIONALEN BEARBEITUNG NICHT ZU BERÜCKSICHTIGEN