TP n°6: Méthode du simplexe pour les problèmes de deuxième espèce

OBJECTIF: Dans cette séance, on s'intéressera à la résolution des problèmes de deuxième espèce, et en particulier à la recherche d'une solution de base admissible.

1 Vecteurs de prix marginaux

Exercice 1 On s'intéresse au problème d'optimisation linéaire (P) suivant, écrit sous forme standard :

- 1. Base réalisable.
 - Écrire ce problème sous forme matricielle

Maximiser
$${}^{t}c x$$
 sous les contraintes $Ax = b$ $x \ge 0$

• Montrer que γ donné par

$$\gamma(1) = 1$$
, $\gamma(2) = 4$ et $\gamma(3) = 5$

définit une base pour ce problème.

- 2. Forme réduite relativement à une base.
 - Représenter en python le problème à l'aide d'une matrice augmentée. Justifier que le problème est sous forme réduite relativement à la base donnée par

$$\gamma^{0}(1) = 3$$
, $\gamma^{0}(2) = 4$ et $\gamma^{0}(3) = 5$

- On souhaite faire entrer x₁ dans la base et en faire sortir x₃ pour écrire le problème sous forme réduite relativement à la base γ. Quel pivot doit-on choisir pour obtenir le résultat désiré?
- À l'aide de la fonction pivot, calculer la forme réduite relativement à la base γ de ce problème en réalisant le pivot déterminé à la question précédente sur la matrice augmentée.
- En déduire la solution de base du système Ax = b associée à γ .
- 3. Vecteur des prix marginaux.
 - On pose

$$B = A_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Calculer l'inverse de cette matrice à l'aide de la fonction np.linalg.inv (cf. TP 1).

- Réaliser un changement de base dans les contraintes, en calculant $B^{-1}A$ et $B^{-1}b$.
- Calculer le vecteur $d = {}^{\rm t}(d_1, d_2, d_3, d_4, d_5)$ des prix marginaux associé à la base γ , défini par

$${}^{t}d_{B} = (d_{1}, d_{4}, d_{5}) = (0, 0, 0)$$
 et ${}^{t}d_{N} = (d_{2}, d_{3}) = {}^{t}c_{N} - {}^{t}c_{B}B^{-1}N$

• Comparer les résultats obtenus avec la forme réduite obtenue à la question précédente.

2 Recherche d'une solution de base admissible

Exercice 2 On s'intéresse au problème d'optimisation linéaire (P) suivant, écrit sous forme canonique :

Maximiser
$$z = 2 x_1 + 4 x_2$$
 sous les contraintes $-x_1 + 2 x_2 \le -2$ $x_1 + 2 x_2 \le 10$ x_1 , $x_2 \ge 0$

- 1. Problème de deuxième espèce.
 - Pourquoi ce problème est-il de deuxième espèce?
 - Mettre ce problème sous forme standard en introduisant les variables d'écart e_1 et e_2 .
 - La base donnée par $\gamma(1) = 3$ et $\gamma(2) = 4$ est-elle réalisable?
- 2. Problème auxiliaire. On considère le problème auxiliaire suivant :

Maximiser
$$-x_5$$

sous les contraintes $-x_1 + 2x_2 + x_3 - x_5 = -2$
 $x_1 + 2x_2 + x_4 - x_5 = 10$
 x_1 , x_2 , x_3 , x_4 , $x_5 \ge 0$

• Pour chacune des bases suivantes, calculer la solution de base associée :

$$\gamma_1(1) = 3$$
, $\gamma_1(2) = 5$ et $\gamma_2(1) = 4$, $\gamma_2(2) = 5$

En déduire une base réalisable pour le problème auxiliaire.

- Représenter en python ce problème à l'aide d'une matrice augmentée.
- Écrire ce problème sous forme réduite relativement à la base déterminée à la première question.
- 3. Résolution du problème auxiliaire.
 - Mettre en œuvre la méthode du simplexe pour résoudre le problème auxiliaire (cf. TP 5).
 - Quelle est la valeur atteinte par la fonction objectif du problème auxiliaire à l'optimum? Que peut-on en déduire quant à l'existence d'une base réalisable pour le problème initial?
 - En déduire une base réalisable pour le problème initial.
 - Écrire en python une fonction extraction_base qui permet, à partir d'un problème écrit sous forme réduite, de connaître la base associée.
- 4. Initialisation de la méthode du simplexe pour le problème initial.
 - Représenter en python le problème initial à l'aide d'une matrice augmentée.
 - Appliquer le pivot de GAUSS pour écrire le problème sous forme réduite relativement à la base déterminée dans la question précédente.
 - Comparer les contraintes obtenues et celles obtenues à la dernière itération de la méthode du simplexe sur le problème auxiliaire.
 - Calculer le vecteur des prix marginaux associés à la base considérée dans cette question.
 - Comparer ce vecteur avec l'expression de la fonction objectif obtenue dans la forme réduite donnée plus haut.