Nur die Aufgaben mit einem * werden korrigiert.

12.1. MC Fragen.

- (a) Der Wert des Integrals $\int_{-1}^{1} |x| dx$ beträgt
 - \Box 0

 - \Box 1
 - \square 2
- (b) Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Wählen Sie die richtige Aussagen:
 - \Box f ist immer integrierbar.
 - \square Falls f monoton ist, ist f auch integreirbar.
 - \square Falls f beschränkt ist, ist f auch integrierbar.
 - \square Falls f stetig ist, ist f auch integrierbar.
- (c) Ist die folgende Aussage wahr?

Sei $f \colon [a,b] \to \mathbb{R}$ eine Funktion. Dann gibt es $c \in [a,b]$ mit

$$\int_{a}^{b} f(x) dx = f(c)(b - a).$$

- □ Ja
- □ Nein

12.2. Integration I.

(a) Überprüfen Sie nach der Definition, ob das Folgende gilt:

$$\int_{a}^{b} c \, dx = c \cdot (b - a),$$

wobei $a, b, c \in \mathbb{R}$.

(b) Berechnen Sie

$$\int_0^4 \lfloor x \rfloor dx.$$

*12.3. Integration II. Berechnen Sie die Integral

$$\int_1^2 \frac{1}{x^2} \, dx$$

nach der Definition.

Hinweis: Als Partition nehmen Sie $P = \left\{ x_k \coloneqq 1 + \frac{k}{n} \mid k \in \{1, 2, \dots, n\} \right\}$ und als Mittelpunkte nehmen Sie $\xi_i = \sqrt{x_i \cdot x_{i+1}}$.

*12.4. Stammfunktionen

(a) Seien $f:[a,b]\to\mathbb{R}$ und $g:[c,d]\to\mathbb{R}$ differenzierbare Funktionen mit $[c,d]\subseteq$ f([a,b]). Bestimmen Sie eine Stammfunktion zu

$$x \mapsto f'(g(x))g'(x), \quad x \in [c, d].$$

Finden Sie eine Stammfunktion der folgenden Funktionen:

(b)
$$(x^2 - 2x + 2)^{2022}(2x - 2);$$

(c)
$$-e^{1/x}\frac{1}{x^2}$$

(c)
$$-e^{1/x}\frac{1}{x^2}$$
;
(d) $\frac{x}{\sqrt{1+x^2}}$;

(e)
$$\frac{f'(x)}{f(x)}$$
, mit f beliebig;

(f) $\tan x$.