

Permutations Ex 16.1 Q4(iii)

We have,

$$(n+1)(n+2)(n+3).....(2n)$$
= $[1 \times 2 \times 3 \times 4(n-1)n] \times (n+1)(n+2)..(2n-1) \times 2n$
 $[1 \times 2 \times 3 \times 4(n-1)n]$

$$=\frac{(2n!)!}{n!}$$

Permutations Ex 16.1 Q4(iv)

We have,

$$1 \times \times 5 \times 7 \times 9 \dots (2n-1)$$

$$= \frac{\left[1.3.5.7.9.\dots(2n-1)\right] \cdot \left[2.4.6.8.\dots(2n-2)(2n)\right]}{2.4.6.8.\dots(2n-2)(2n)}$$

$$= \frac{\left[1.3.5.7.9.\dots(2n-1)\right] \cdot \left[2.4.6.8.\dots(2n-2)(2n)\right]}{2^{n} \left[1.2.3.4.\dots((n-1)(n))\right]}$$

$$= \frac{1.2.3.4.5.6.7.8.\dots(2n-2)(2n-1)(2n)}{2^{n}.n!}$$

$$= \frac{(2n)!}{2^{n}.n!}$$

$$1.3.5.7.9.....(2n-1) = \frac{(2n)!}{2^n n!}$$

Permutations Ex 16.1 Q5

(i) LHS =
$$(2+3)!$$

= $5!$
= $5 \times 4 \times 3 \times 2 \times 1$
= 120
and, RHS = $2! + 3!$
= $2 \times 1 + 3 \times 2$
= $2 \times 1 + 3 \times 2 \times 1$
= $2 + 6$
= 8
 $\therefore 120 \neq 8$
 $\therefore (2+3)! \neq 2! + 3!$
So, it is false.
(ii) LHS = $(2 \times 3)!$
= $6!$
= $6 \times 5 \times 4 \times 3 \times 2 \times 1$
= 720
and, RHS = $2! \times 3!$
= $2 \times 1 \times 3 \times 2$
= 12
 $\therefore 720 \neq 12$
 $\therefore (2 \times 3)! \neq 2! \times 3!$
Hence, it is false.
Permutations Ex 16.1 Q6
LHS = $n! + (n+1)!$
= $n! + (n+1)n!$
= $n! + (n+1)n!$

= LHS

Hence, proved

n!(n+2) = n! + (n+1)!

********** END ********