

LOS NÚMEROS REALES: Inecuaciones y valor absoluto

Coordinación de Cálculo I

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Loyola

LOS NÚMEROS REALES: Inecuaciones y valor absoluto

Coordinación de Cálculo I

Primera versión - Agosto 2020

Colaboradores: Mery Choque Valdez

Rodolfo Viera
Julio Rincón
Solange Aranzubia
Aldo Zambrano

Carolina Martínez

Pablo García

Manuel Galaz Karina Matamala

Daniel Saa

Profesor:

Patricio Cerda Loyola

Definición de valor absoluto

Llamaremos valor absoluto del número $a \in \mathbb{R}$, denotado por |a|, al número:

$$|a| = \begin{cases} a & \text{si} \quad a \ge 0, \\ -a & \text{si} \quad a < 0. \end{cases}$$

Es importante mencionar que también podemos definir el valor absoluto como $|a|=\sqrt{a^2}$ o $|a|=\max\{a,-a\}.$

Definición geométrica

El valor absoluto de a es la distancia de a hasta 0 sobre la recta real. Es decir |a| = d(0, a).

Propiedades del valor absoluto

Sea $a, b, c \in \mathbb{R}$, entonces se tiene:

- 1) $|a| = c \Leftrightarrow a = \pm c$
- 2) $a \leq |a|$, para todo $a \in \mathbb{R}$
- 3) |-a| = |a|
- 4) |x| > 0, si $x \in \mathbb{R} \{0\}$
- 5) Si $b \ge 0$, $|a| \le b \Leftrightarrow -b \le a \le b$
- 6) Si $b \ge 0$, $|a| \ge b \Leftrightarrow a \ge b \quad \lor \quad a \le -b$
- 7) |ab| = |a||b|
- 8) $|a+b| \le |a| + |b|$ (Designaldad Triangular)

7)

$$|ab| = \sqrt{(ab)^2}$$
$$= \sqrt{a^2b^2} = \sqrt{a^2}\sqrt{b^2}$$
$$= |a||b|$$

8) Notemos que, por definición

$$|a+b| = \sqrt{(a+b)^2}$$
$$= \sqrt{a^2 + 2ab + b^2}$$

Por descripción del máximo

$$\le \sqrt{|a|^2 + 2|a||b| + |b|^2}$$

$$= \sqrt{(|a| + |b|)^2}$$

Así hemos probado que

$$|a+b| \le |a| + |b|$$

Ecuaciones e Inecuaciones con valor absoluto

A continuación algunos ejemplos, dónde se aplicarán algunas propiedades descritas anteriormente.

Ejemplo 1

Encuentre el conjunto solución de la siguiente ecuación

$$|x^2 - x| - |x^2 + x - 8| = 0 (1)$$

Solución: Para resolver la ecuación anterior, notamos que

$$|x^2 - x| = |x^2 + x - 8|$$
.

donde tenemos los siguientes casos posibles.

Caso 1: $x^2 - x$ y $x^2 + x - 8$ tienen el mismo signo (ambos positivos o ambos negativos). Entonces la ecuación es equivalente a $x^2 - x = x^2 + x - 8 \implies 2x - 8 = 0$, de donde x = 4.

Caso 2: $x^2 - x$ y $x^2 + x - 8$ tienen signos distintos. Entonces la ecuación es equivalente a $x^2 - x = -(x^2 + x - 8) \implies 2x^2 - 8 = 0$, de donde x = -2 y x = 2.

Así, finalmente el conjunto solución de la ecuación es $\{-2,2,4\}$.

Ejemplo 2

Encuentre el conjunto solución de la siguiente inecuación

$$\left| \frac{x^2 + 4x + 4}{x^2 + x - 2} \right| \ge 2. \tag{2}$$

Solución:

Notar que
$$\left|\frac{x^2+4x+4}{x^2+x-2}\right| = \left|\frac{(x+2)^2}{(x+2)(x-1)}\right| = \left|\frac{x+2}{x-1}\right|$$
 siempre que $x \neq -2$ y $x \neq 1$.

Así, basta resolver $\left|\frac{x+2}{x-1}\right| \ge 2$ para $x \in \mathbb{R} - \{-2,1\}$, donde notamos que $|x+2| = 0 \Longleftrightarrow x = -2$. Por otro lado $|x-1| = 0 \Longleftrightarrow x = 1$.

Considerando el análisis anterior, estudiamos la inecuación en los intervalos $(-\infty,-2),(-2,1)$ y $(1,+\infty)$.

Caso 1: Si $x \in (-\infty, -2)$, entonces $\left| \frac{x+2}{x-1} \right| = \frac{x+2}{x-1}$.

Luego $\frac{x+2}{x-1} \ge 2 \implies \frac{-x+4}{x-1} \ge 0$ donde obtenemos que la desigualdad anterior es verdad solo si $x \in (1,4]$.

Lo cual es absurdo por hipótesis del caso 1. Así tenemos que cuando $x \in (-\infty, -2)$, la inecuación no tiene solución.

Continuación del ejemplo 2

Caso 2: Si $x \in (-2,1)$, entonces $\left| \frac{x+2}{x-1} \right| = -\frac{x+2}{x-1}$.

Luego $-\frac{x+2}{x-1} \ge 2 \implies \frac{-3x}{x-1} \ge 0$ donde obtenemos que la desigualdad anterior es verdad solo si $x \in [0,1)$ y observe que $[0,1) \subset (-2,1)$.

Caso 3: Si $x \in (1, +\infty)$, entonces $\left| \frac{x+2}{x-1} \right| = \frac{x+2}{x-1}$.

 $\text{Luego } \tfrac{x+2}{x-1} \geq 2 \implies \tfrac{-x+4}{x-1} \geq 0 \text{ donde obtenemos que } x \in (1,4] \text{ y observe que } (1,4] \subset (1,+\infty).$

Finalmente, de los casos anteriores tenemos que $\left|\frac{x^2+4x+4}{x^2+x-2}\right| \ge 2$ si y solo si $x \in [0,1) \cup (1,4]$.