

${\rm CI}\,3-{\rm CIN}$: Étude cinématique des systèmes de solides de la chaîne d'énergie Analyser, Modéliser, Résoudre

Chapitre 2 – Géométrie Vectorielle

Produit scalaire

Exercice 1

On donnes les figures planes associées aux bases suivantes : $(\overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}), (\overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1})$ et $(\overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1})$:

Question 1

Calculer les produits scalaires suivants :

Question 2

Exprimer:

- le vecteur $\overrightarrow{j_1}$ dans la base $(\overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$;
- le vecteur $\overrightarrow{k_1}$ dans la base $(\overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$;
- le vecteur $\overrightarrow{i_2}$ dans la base $(\overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1})$;
- le vecteur $\overrightarrow{j_2}$ dans la base $(\overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

Exercice 2

D'après DS proposé par Antoine Martin & David Noël – Lycée Descartes – UPSTI.

Question 1

Donner le sens des trièdres ci-dessous.

- Trièdre $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$: Indirect □ Direct □
- Trièdre $(\overrightarrow{y}, \overrightarrow{x}, \overrightarrow{z})$: Indirect □ Direct □
- Trièdre $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$: Direct □ Indirect □ - Trièdre $(\overrightarrow{z_1}, \overrightarrow{x_1}, \overrightarrow{y_1})$: Direct □ Indirect \square

On considère une rotation d'angle θ autour de l'axe $(O, \overrightarrow{x_1})$ qui permet de passer de la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ vers une seconde base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$.

On considère une rotation d'angle φ autour de l'axe $(O,(\overrightarrow{z_2}))$ qui permet de passer de la base $(\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2})$ vers une seconde base $(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$.

Question 2

Faire les figures de projection correspondant à l'énoncé ci-dessus.

Question 3

Effectuer les projections planes pour exprimer le vecteur \overrightarrow{OM} dans la base $\mathcal{B}_0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$.

Question 4

En s'aidant des figures de projection proposées, effectuer les calculs vectoriels ci-dessous (les bases sont orthonormées directes).

- $-\overrightarrow{x_2}\cdot\overrightarrow{z_1};$
- $-\overrightarrow{z_3}\cdot\overrightarrow{z_3};$
- $\xrightarrow{\mathcal{Y}_1} \xrightarrow{\mathcal{Z}_2}$
- $-x_2\cdot x_3$;