1 Supplementary Material accompanying the manuscript titled, "Prevention of Hepatitis C By 2 Screening and Treatment in United States Prisons" by Tianhua He, Kan Li, Mark S. Roberts, 3 Anne C. Spaulding, Turgay Ayer, John J. Grefenstette, Jagpreet Chhatwal. 4 5 Supplementary Appendix 1: Model Structure and Inputs 6 S1.1 Overall Model Features 7 S1.2 Baseline Population 8 S1.3 HCV Transmission 9 S1.4 HCV Disease Progression 10 S1.5 HCV Diagnosis and Treatment 11 S1.6 Arrest and Release Prisoners 12 S1.7 Injection Drug Use 13 S1.8 Cost Inputs and Quality-of-Life Weights 14 15 eTable 1. Baseline Demographics in the Model 16 eTable 2. Baseline Age Distribution 17 eTable 3. Baseline Hepatitis C Prevalence 18 eTable 4. Baseline Hepatitis C Disease Distributions 19 eTable 5. Transmission-Related Parameters 20 eTable 6. Natural History Transition Probabilities 21 eTable 7. Probability of Getting Diagnosed for Inmates and General Population 22 eTable 8. Treatment Duration and Sustained Viral Response (SVR) Rates of oral DAAs by Virus 23 Genotype, Disease States, and Treatment History 24 eTable 9. Probability of Incarceration 25 eTable 10. Length of Sentences 26 eTable 11. Cost Parameters (in 2014 US dollars) 27 eTable 12. Health-Related and Age-related Quality-of-Life Inputs 28 29 **Supplementary Appendix 2: Model Validation** 30 S2.1 Natural History of HCV 31 S2.2 Arrest and Release of Prisoners 32 33 eTable 13. Validation of the Natural History of HCV 34 eTable 14. Validation of Admission and Release of Prisoners 35 36 **Supplementary Appendix 3: Additional Results** 37 S3.1 Additional Base-case Results 38 eFigure 1. HCV Infections Averted over Time 39 eFigure 2. Reduction in HCV Infected People in Prison over Time

eFigure 3. Total Cost of HCV Screening and Treatment in Prisons from 2015 to 2029

40

42 S3.2 Sensitivity Analyses 43 eTable 15. Results of 1-Way Sensitivity Analysis Showing New Infections Averted 44 eTable 16. Results of 1-Way Sensitivity Analysis Showing Liver-Related Deaths Averted 45 eTable 17. Results of 1-Way Sensitivity Analysis Showing the Cost-effectiveness of Screening 46 Strategies 47 eTable 18. Results of 1-Way Sensitivity Analysis Showing 1-year Prison Budget 48 eTable 19. Results of 1-Way Sensitivity Analysis Showing 15-year Prison Budget 49 50 S3.3 Scenario Analyses 51 eTable 20. 30-year cumulative incidences of infection, advanced diseases, and results of 52 cost-effectiveness analysis of scenario when all F0-F4 patients were eligible for treatment. 53 eTable 21. 30-year cumulative incidences of infection, advanced diseases, and results of 54 cost-effectiveness analysis of scenario when F3-F4 patients were treated immediately after 55 diagnosed. 56

Supplementary Appendix 1: Model Structure and Inputs

S1.1 Overall Model Features

We developed *TapHCV* (treatment as prevention of hepatitis C virus) model, an agent-based model (ABM) to simulate the population dynamics of both prisoners and general population in the community in order to gain insight into the relationship between prison-related interventions and hepatitis C virus (HCV) disease burden in society. Agents in our model were prisoners or community members with or without HCV. The model was developed in Java, a general-purpose computer programming language (1), and consisted of the following major components: HCV disease transmission and progression, HCV screening and treatment, and simulation of prison and general population dynamics. The baseline population in the model represented the United States population in 2015.

We used 2 million agents to define our population and adjusted all results by a factor of 152.6 to project national data. We stratified our model's population, based on data in year 2009, with age, gender, health states, prevalence of HCV, range of HCV genotype, treatment acceptability, treatment experiences, injection drug use, and incarceration history (Appendix S1.2). All agents followed the same rule of behaviors, which include aging and dying, incarceration and release from prisons, initiating and quitting drug use, infecting others, disease progression, etc. These actions are dependent on patient demographics as well as the location of agents. We assumed that the agents' behavior rules were not changed in the next 30-years due lack of data on future trends.

We simulated the long-term benefits and costs of 5 HCV screening scenarios in prison, from mild to intense, starting from year 2015: 1) no screening, 2) 1-time risk-based screening of currently incarcerated and entrants who were active or former IDUs for 1 year (1Yr-Risk), 3) 1-time opt-out universal HCV screening of currently incarcerated inmates followed by opt-out screening of all incoming inmates for up to 1 year (1Yr-All), 4) 5 years (5Yr-All), and 5) 10 years (10Yr-All).. Diagnosed patients were eligible for treatment, based on their fibrosis score, with recently approved direct-acting antivirals (DAAs). We projected 30-year cumulative costs and quality-adjusted life years (QALYs) for each scenario. In addition, we projected reduction in costs and disease burden by reduction in the number of new HCV infections, decompensated cirrhosis, hepatocellular carcinoma, liver transplants and liver-related deaths.

We performed all model runs on MD Anderson RISTS HPC Cluster with 2.2 GHz AMD Opteron 6174 processor. We ran our model in parallel, 40 times using different random number seeds. The average execution time of each run was 15.32 hours.

\$1.2 Baseline Population

The initial condition was modeled to simulate socio-demographic feature of US population in year 2009 due to lack of HCV-related data in 2015. We generated 2 million heterogeneous agents to define our population and adjusted all results by a factor of 152.6 to project national data. Among those, 0.5% were inside state or federal prisons at any given time (eTable 1)(2). Our model didn't include population in jails, which are short-stay facilities while prisons are long-term facilities.

We probabilistically assigned population characteristics to the model, including age, gender, and drug use behavior (active or former injection drug users [IDUs] and non-IDU). We used the statistical reports of US Census Bureau and Bureau of Justice Statistics (BJS) to define age distribution of general and incarcerated population, respectively (eTable 2) (2-5). Then we assigned a proportion of individuals between age 15 and 50 to be either active or former injection IDU based on published surveys (6, 7). We adjusted HCV prevalence using two hazard ratios—one for active and former IDUs, and the other for inmates (eTable 3). Then we assigned HCV infection status based on individuals' characteristics and further define their health states, genotype of HCV virus, treatment acceptability, and treatment history.

We also considered population growth. Newborns were added each year based on the annual birth rates in the US (8). We used 2011 census life-tables for the annual mortality rates from non-hepatic causes (9). For injection drug users and inmates, we adjusted the baseline mortality rates by standardized mortality ratio (SMR) (eTable 1) (10, 11).

The prevalence of HCV for IDUs and non-IDUs by age were derived from NHANES data (eTable 3) (12). To assign HCV prevalence in IDUs and prisoners in the model we used hazard ratios for IDUs and prisoners, which were back-calculated such that the HCV prevalence among prisoners was 17.6% and that among active IDUs was 35%(12, 13). We found that the hazard ratios of 18 and 12 for IDUs and prisoners, respectively, provided the HCV prevalence within +/- 5% of the reference values. We defined the baseline distribution of the four most common HCV genotypes (G1, 2, 3 and 4), and chronic HCV stages using METAVIR fibrosis scores (no fibrosis [F0], portal fibrosis without septa [F1], portal fibrosis with few septa [F2], numerous septa without fibrosis [F3], or compensated cirrhosis [F4]), advanced HCV states (decompensated cirrhosis, hepatocellular carcinoma, liver transplant, and liver-related death) and treatment history (previously treated or treatment-naïve) using published studies (eTable 4) (14-17).

eTable 1. Baseline Demographics in the Model

Model Parameters	Value
Population	
General population	2 000 000
Prisoners	10 000
Proportion of inmates (2)	0.5%

Gender (Male%)		
Prisoners (2)	91%	
General population (4)	52%	
Prevalence of IDUs (6, 7)	Active IDUs	Former IDUs
In prisons	26%	20.5%
Outside of prisons	1.2%	1.3%
Birth-rate (18)		
Number of newborns per 1000 population per year	14.3	
Standardized mortality ratio (SMR)		
IDUs (10)	2.54	
Inmates (11)	0.85	

Abbreviations: IDU, injection drug user.

133134

eTable 2. Baseline Age Distribution

Age Category	In General Po	pulation (4)	In Prison	s (2, 5)
	Female %	Male %	Female %	Male %
0-5	6.7	7.2		
5-9	6.6	7.1		
10-14	6.3	6.8		
15-19	6.6	7.1		
18-19			0.9	1.5
20-24	6.8	7.3	11.2	12.4
25-29	6.7	7.2	17.4	16.4
30-34	6.5	6.7	17.5	16.6
35-39	6.2	6.3	14.8	13.8
40-44	6.7	6.8	14.1	12.6
45-49	7.2	7.2	11.8	11.1
50-54	7.2	7.1	7	7.7
55-59	6.5	6.3	3.2	4.1
60-64	5.8	5.6	1.4	2.1
65-69	4.2	3.7	0.9	1.7
70-74	3.2	2.8		
75-79	2.6	2.0		
80-84	2.2	1.6		
>85	2.0	1.2		

135136

eTable 3. Baseline Hepatitis C Prevalence

Model Parameters	Value	
HCV Prevalence by Age and Gender (12)	Male	Female
0-6	0.0093%	0.0093%
6-20	0.0498%	0.0498%

20-29	0.1231%	0.0704%
30-39	1.0523%	0.6023%
40-49	3.9494%	2.2604%
50-59	4.3334%	2.4801%
> 60	0.8069%	0.4618%
Overall	1.9798%	1.1331%
HCV prevalence among newborns (19)	0.0093%	
Hazard ratio of HCV prevalence in IDUs (back-calculation)	18	
Hazard ratio of HCV prevalence in inmates (back-calculation)	on) 12	

Abbreviations: HCV, hepatitis C virus; IDU, injection drug user.

137138

eTable 4. Baseline Hepatitis C Disease Distributions

Model Parameters	Value
HCV Genotype (14)	
G1	79.6%
G2	13.0%
G3	6.3%
G4	1.1%
Chronic Hepatitis C Disease Stage (15)	
METAVIR score F0	13.7%
METAVIR score F1	24.6%
METAVIR score F2	18.7%
METAVIR score F3	16.7%
METAVIR score F4	22.9%
Decompensated cirrhosis	3.1%
Hepatocellular carcinoma	0.3%
Proportion of Patients Aware of HCV Infection	
General population (20)	50.0%
Prisoners (21)	25.0%
Proportion of Treatment-Experienced Patients (22)	
Among all diagnosed patients	39.0%
Previous Treatment Response in Genotype 1	
Patients (17)	
Prior relapse	53.0%
Prior partial response	19.0%
Prior null response	28.0%
Previous Treatment Response in Genotype 2/3/4	
Patients (16)	
Prior relapse	47.0%
Prior partial response	16.0%
Prior null response	37.0%

Abbreviations: G1–4, genotype 1–4; METAVIR, Meta-analysis of histologic data in viral hepatitis; IDU, injection drug user.

S1.3 HCV Transmission

We modeled two kinds of HCV transmission, 1) IDU-related, and 2) everything else, separately in prisons and in the general population. We explicitly modeled IDU-related transmission in the model, which contributes to 60% of all HCV transmissions (23, 24). Because data on non-IDU transmission is limited, we did not simulate specific modes of transmission, and instead grouped them together.

At each month, we constructed links between agents to simulate HCV transmission among them and updated these links in every cycle. For that purpose, we probabilistically formed pairs between individuals. HCV-infected individual inside prisons could only pair with those inside prisons, and vice versa. IDUs had a higher probability of pairing with other IDUs, and vice versa. Note that we did not explicitly model sexual transmission in our model due to lack of data on the sexual behaviors and transmission rates.

Once a possible transmission pair was formed, an infected individual could transmit HCV to a susceptible individual with a probability, P_{trans.} This transmission probability was dependent on: awareness of infector's HCV status, prior HCV treatment, and injection drug use status of both infector and infectee.

We calculated P_{trans} as follows:

 $P_{trans} = P_D \times (1 - A_I) \times (1 - T_I)$

where P_D was:

$$P_D = 1 - (1 - P_0)^{D_I \times D_E}$$

 A_1 was a reduction factor for infectors' HCV awareness status, T_1 was a reduction factor for prior HCV treatment, D_1 was the hazard ratio for injection drug use of an infector, and D_E was the hazard ratio for injection drug use of an infectee (eTable 5). Thus we differentiated agents by their prior treatment and HCV awareness in terms of their likelihood to be infected.

Because some transmission-related parameters are not known, we estimated their values using a calibration process (25). Particularly, we ran our simulation model with several possible combinations of three unknown variables: baseline transmission probability, IDU-IDU interaction probability, and hazard ratio of infection due to needle sharing (eTable 5) and selected the combination that matched the computer generated output with the known HCV incidence reported by the Center for Disease Control and Prevention (CDC) reports (26). This process is referred to as *calibration*, and has been applied to several disease models (27). We used the standard Calibration Reporting Checklist to define our calibration approach (27). These were defined as: 1) Target data and corresponding model output: 10-year cumulative incidence of HCV in IDUs; 2) Search algorithm: trial and error; 3) goodness of fit metric: relative distance of within 5%; 4) Acceptance criteria: within 5% of target value; 5) Stopping rule: manual; and 6) Validation: none. Our model projected the 10-year cumulative incidence of HCV in IDUs to be 179 700, which was

5% over that reported by the CDC. We assumed that the awareness of one's HCV status and a successful prior HCV treatment would reduce the contact probability by 50% and 70%, respectively. Our results were not sensitive to any of above parameters (see supplementary appendix 3 for details).

186187188

183

184

185

eTable 5. Transmission-Related Parameters

Transmission Probability per Contact (Assumed and Calibrated)	
Baseline transmission probability ^a	0.00015
IDU-IDU interaction probability ^a	98.8%
Hazard ratio of infection due to needle sharing $(D_l \text{ or } D_E)^{a,b}$	12
Awareness reduction factor (A _I) ^c	50%
Treatment reduction factor (T _I) ^c	70%

189 a Calibrated parameters

190 b Infection due to needle sharing occurs at the situation where an infected IDU pairs with a susceptible IDU.

^cAssumptions: awareness of the disease would decrease the probability of transmitting HCV to others by 50%; and previous treatment history would decrease the probability of transmitting HCV to others by 70%.

Abbreviations: IDU, injection drug user.

193194

191

S1.4 HCV Disease Progression

All newly infected individuals started with the acute phase of HCV. The acute infection lasted for six months and ended with either a recovery at 25% chance or otherwise advancement to the chronic phase of HCV disease (28). The natural history of chronic HCV was defined using a Markov model (Figure 1). The chronic disease progressed through different stages of fibrosis, as defined by Meta-Analysis of Histologic Data in Viral Hepatitis (METAVIR) scale units, F0 to F4. We used meta-regression equations from 111 studies to estimate the progression of fibrosis (29). Patients at METAVIR fibrosis score F3 and F4 could develop advanced diseases such as decompensated cirrhosis, hepatocellular carcinoma (28, 30-40). Patients with decompensated cirrhosis or hepatocellular carcinoma were eligible for receiving a liver transplant or they could die because of high liver-related mortality (eTable 6) (15, 41-44). We assumed that patients while inside prisons were not eligible for a liver transplant.

Disease progressed at the same rate for patients who failed to achieve SVR as in untreated patients. Those who achieved SVR were assumed to not progress if they were not cirrhotic. In cirrhotic patients, we assumed that the disease would progress even after achieving SVR, though at a slower rate (28).

eTable 6. Natural History Transition Probabilities

	al History Transition Probabilities	
Model Parameters		Value
Equations Providing	ng Fibrosis Progression Probabilities (Annual)(29)	
F0 to F1	$\exp[-2.0124 - (0.07589 \times duration) + (0.3247 \times 0.5) +$	(0.5063 ×
	$f(\text{male})) + (0.4839 \times f(G1))]$	
F1 to F2	$\exp[-1.5387 - (0.06146 \times duration) + (0.8001 \times f(exce))]$	ss alcohol))]
F2 to F3	$\exp[-1.6038 + (0.0172 \times \text{age at HCV}) - (0.05939 \times \text{durat})]$	tion) + (0.4539 ×
	0.19)]	
F3 to	$\exp[-2.2898 + (0.01689 \times \text{age at HCV}) - (0.03694 \times \text{durg})]$	ation) +
compensated	$(0.5963 \times f(IDU)) + (1.1682 \times 0.31) - (0.4652 \times f(G1))$	
cirrhosis (F4)		
Transition Probab	ilities (Annual)	
F3 to hepatocell	ular carcinoma (30)	0.008
Compensated ci	rrhosis (F4) to decompensated cirrhosis (32)	0.039
Compensated ci	rrhosis (F4) to hepatocellular carcinoma (32)	0.014
SVR after cirrho	sis to decompensated cirrhosis (28)	0.008
SVR after cirrho	sis to hepatocellular carcinoma (28)	0.005
Decompensated	cirrhosis to hepatocellular carcinoma (40)	0.068
Decompensated	cirrhosis to liver transplant in general population (41, 45)	0.023
Decompensated	cirrhosis to liver transplant inside prisons (Assumption)	0

Decompensated cirrhosis (first year) to liver-related death (40)	0.182
Decompensated cirrhosis (subsequent year) to liver-related death (40)	0.112
Hepatocellular carcinoma to liver transplant in general population (42, 43)	0.040
Hepatocellular carcinoma to liver transplant inside prisons (Assumption)	0
Hepatocellular carcinoma to liver-related death (32)	0.427
Liver transplant (first year) to liver-related death (44)	0.116
Liver transplant (subsequent year) to liver-related death (44)	0.044

215 f(male) = 1, if patient is male; and 0 if patient is female.

216 f(G1) = 1, if patient has hepatitis C virus (HCV) genotype 1; and 0 otherwise.

f(excess alcohol) = 1, if patients has excess alcohol consumption; and 0 otherwise. The prevalence of excess alcohol consumption was 24% for male inmates, 17% for female inmates, and 23% for general population (46).

f(IDU) = 1, if patients are active injection drug users; and 0 otherwise.

Abbreviations: SVR, sustained virology response; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4,

METAVIR fibrosis score.

S1.5 HCV Diagnosis and Treatment

Inside prisons, patients could get diagnosed with the implementation of one of the four screening scenarios. In risk-based screening scenario, we assumed that 75% of prisoners with active IDU or IDU history received HCV screening (eTable 7) (47). Our assumption is based on the Arrestee Drug Abuse Monitoring (ADAM) jail study, in which even when detainees were told that a survey on drug use will be confidential and the survey will be followed by urine testing, only 50% with opiates in urine disclosed their IDU. We conservatively assumed that 75% of IDU would admit to using drugs (our assumption favored risk-based screening, and hence provided a conservative estimate of ICERs of opt-out screening). In all opt-out screening scenarios, we assumed that the uptake rate was 90%, similar to that of HIV opt-out screening in prisons (48). We also assumed that all HCV tests were 100% sensitive and 100% specific, and HCV-infected chronic persons aware of their status would not be screened because their status wouldn't change without treatment.

Outside prisons, patients could get diagnosed following the current standard-of-care of HCV screening, which included birth-cohort screening, risk-based screening, and usual care (49, 50). We implemented the standard-of-care by probabilistically making unaware patients aware of their disease. We used a previously published study to implement the screening practice in the general community (eTable 7) (22).

Only patients who were aware of their status could get antiviral treatment. Following the current clinical practice (51), our model assigned treatment to patients with METAVIR fibrosis score F3 and F4. We assumed that F0-F2 patients would receive APRI test every year and become eligible for treatment if they advanced to F3 state. According to the recent guidelines by Federal Bureau of Prison, HCV patients with APRI score > 1.0 or between 0.7 and 1.0 are prioritized for treatment (52). The cost of APRI is negligible and was not included. With the availability of cheaper generic drugs in 2030, we assumed that all patients irrespective of their fibrosis scores would get antiviral treatment (53). Furthermore, inside prisons, only inmates with remaining length of sentence of more than 12 months were eligible for treatment. We ran alternative scenario where all HCV positive, F0 to F4, were eligible for treatment if their length of sentence was more than 12 months (eTable 20).

Because of a limited treatment capacity in prisons, eligible patients were assigned treatment based on a published study—2.6% per month for patients in community and 4.1% per month for inmates (54). The probability of initiating treatment was higher in prisons because of better linkage to care than in the community (54). We also simulated a hypothetical scenario where every eligible candidate was treated at diagnoses (eTable 21).

We estimated the proportion of diagnosed HCV patients who were eligible for treatment with oral DAAs. In prisons, 11.5% inmates had contraindications to antiviral treatment and 8.5% inmates

declined treatment (55, 56). Therefore, 80% of the diagnosed prisoners were eligible for treatment. In the general community, we assumed 74.3% of the patients were eligible for treatment with oral DAAs, which also took into account access to insurance (57, 58).

We used the AASLD-IDSA guidelines to assign therapies to individuals according to their HCV genotype, treatment history, and presence of cirrhosis (51). Efficiency data and duration of each therapy were extracted from published clinical trials (eTable 8). Because the treatment recommendations are in flux and being updated frequently, we used the efficacy data from sofosbuvir-based therapies as a reference (59-66). Most of the recently approved regimens reported similar efficacy data; therefore, other results and conclusions are applicable to all oral therapies. We assumed that patients who failed to achieve SVR are eligible for another treatment after a gap of 6 months. We restricted the number of retreatments after failing to achieve SVR to a maximum of 2 times. SVR rates of 2nd re-treatment were assumed to be identical to that of 1st re-treatment.

eTable 7. Probability of Getting Diagnosed for Inmates and General Population

Model Parameters	Value		
Uptake Rate of HCV Testing inside Priso	n		
Risk-based (47)	75%		
Opt-out (48)	90%		
Probability of Becoming Aware of HCV under Standard-of-care by Disease Stage (Annual)			
(22)			
METAVIR score F0	0.03700		
METAVIR score F1	0.02971		
METAVIR score F2	0.04218		
METAVIR score F3	0.04604		
METAVIR score F4	0.16259		

We assumed that all patients with decompensated cirrhosis and hepatocellular carcinoma would be aware of their disease.

Abbreviations: METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score.

eTable 8. Treatment Duration and Sustained Viral Response (SVR) Rates of oral DAAs by Virus Genotype, Disease States, and Treatment History. Simplified regimens are generated according to AASLD/IDSA-Recommended

Therapies.

Virus	Duration (Weeks)	SVR Rates	SVR Rates	Ref.
Genotype		Non-Cirrhosis (F1-F3)	Cirrhosis (F4)	
Treatment-Naïv	re Patients			
G1	8/12 ^a	97%	97%	(59, 60)
G2	12	97%	83%	(61)
G3	24	94%	92%	(62)

G4	24	92%	92%	(63)
Treatment-Expe	rienced Patients			
G1	12/24 ^b	95%	99%	(64)
G2	12	96%	60%	(65)
G3	24	85%	60%	(62)
G4	12	95%	95%	(66)

Abbreviations: DAA, Direct Antiviral Agents; AASLD, American Association for the Study of Liver Diseases; IDSA, Infectious Diseases Society of America; G1–4, genotype 1–4; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; SVR, sustained virologic response.

^a In non-cirrhotic treatment-naïve patients, the duration of oral DAAs depends on patient's baseline HCV RNA. Those with HCV RNA less than 6 million IL/mL are considered for 8 weeks of treatment, and 12 weeks otherwise. Among this patient group, 57% of patients were eligible for 8 weeks of treatment.

^b Patients with cirrhosis were assigned 24 weeks of treatment.

S1.6 Arrest and Release of Prisoners

We simulated movement of people from community to prisons and vice versa. At each cycle, agents in our model could get arrested with some probability. We estimated the baseline crime probabilities separately for people with and without incarceration history using the BJS data and published surveys (eTable 9) (67-70). We estimated the length of sentence from BJS reports (5). Because the *actual* length of stay in prisons is typically less than the *assigned* length of sentence, we estimated the *actual* stay in prison by adjusting for the proportion of the assigned sentence completed (eTable 10) (71). We assumed that patients with hepatocellular carcinoma or after a liver transplant have 50% less likelihood to commit a crime and get arrested. In addition, we assumed that people below the age 14 or over 70 would not get arrested. After completing the assigned duration of sentence, inmates would transition in the community.

eTable 9. Probability of Incarceration

Model Parame	ters			Value		
Probability of	Incarceration for	Individuals without In	carceration History (Monthly) (67-69)		
Age			Probal	bility		
18-19	0.000234					
20-24			0.0	0083		
25-29			0.00	0978		
30-34			0.00	1034		
35-39			0.00	0916		
40-44			0.00	0806		
45-49		0.000519				
50-54	0.000312					
55-59			0.00	0187		
60-64			0.00	0115		
65-70			4.12	E-05		
Probability of	Incarceration for	Individuals within 36	Months after Release	e (Monthly) (70)		
Age at		Probability (By Mo	onths after Release)			
Release		1 Tobability (By Wio	intilis after Nelease)			
	0-6 months	6-12 months	12-24 months	24-36 months		
18-24	0.00986	0.00534	0.00415	0.00218		
25-29	0.00879	0.00475	0.0037	0.00194		
30-34	0.00846	0.00458	0.00356	0.00187		
35-39	0.00784	0.00424	0.0033	0.00173		
40-44	0.00599	0.00324	0.00252	0.00132		
45 or older	0.00553	0.00299	0.00233	0.00122		

eTable 10. Length of Sentence

Model Parameters	Value	
model i didilicioi	Talao	

Sentence Length (Years) at Admission (5)	Proportion
<2	13.70%
2-4	43.50%
5-9	24.40%
10-19	12.30%
20-49	4.10%
50-99	0.40%
100	0.10%
Life/death	1.50%
Assigned Length of Sentence at	Actual Length served (% of assigned length)
Admission(71)	
<3 months	90%
3-12 months	80%
1-3 years	70%
3-7 years	60%
>7 years	50%

S1.7 Injection Drug Use

313314315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

We modeled a dynamic change in behavior with respect to injection drug use. Active IDUs could stop injecting drugs. Similarly, inactive IDUs or persons between age 15 and 50 with no history of injecting drugs could start injecting drugs. In our model, we assigned probabilities of initiating and quitting injection drugs per month. We assumed that non-IDUs who have IDU history would have a higher probability of resuming drug use than those who did not have any IDU history. Because these parameters are not known and difficult to estimate in real life, we used a calibration process to estimate their values. We ran our model with several combinations of these unknown parameters. We selected the combination that kept the number of active and former IDUs stable over time, and also matched model's projected annual incidence of drug use with the reported value of 0.115% per person-year (72). During our calibration process, we assumed that the number of IDUs remain stable over time because some active IDU would stop injecting and other inactive IDUs could start injecting. The estimated monthly probabilities of initiating and guitting injection drugs were 0.00885% and 0.558%. The corresponding annual probabilities were 0.106% and 6.494%. The hazard ratio of initiating IDU in persons with IDU history equal to 20. The standard Calibration Reporting Checklist is defined as: 1) Target data and corresponding model output: annual incidence of drug use of 0.115% per person-year; 2) Search algorithm: trial and error; 3) goodness of fit metric: relative distance of within 5%; 4) Acceptance criteria: within 5% of target value; 5) Stopping rule: manual; and 6) Validation: our calibrated model was further validated by comparing the prevalence of active IDUs from model with known studies (6, 7). We found that the prevalence of IDUs remained stable at 26% inside prisons and at 1.2% in the general community.

S1.8 Cost and Quality-of-Life Weights

Cost-related model parameters included HCV screening costs, antiviral treatment costs, and chronic hepatitis C management costs.

The cost of HCV screening consisted of the costs of anti-HCV antibody test, HCV RNA test, HCV genotype assay and FibroSure test (eTable 11) (73, 74). Persons who tested positive on anti-HCV antibody test were given HCV-RNA test, and among those who were viremic were tested for HCV genotype. To determine treatment eligibility, we assumed that all viremic persons got FibroSure test to determine their fibrosis stage. We assumed that F0-F2 patients would receive APRI test every year, and the cost of APRI is negligible and was not included (52).

The cost of antiviral treatment was determined by the duration and combination of drug regimens, which was dependent on patient's HCV genotype, prior treatment history, and fibrosis stage (eTable 8). We used the weekly wholesale acquisition costs (WAC) of sofosbuvir-based regimens in the base case, and conducted sensitivity analyses using 46% discount of WAC and the average wholesale price (eTable 11) (75-77). Average wholesale price was assumed to be 20% higher than the WAC. HCV treatment is influx and several alternatives are available (and more will be available in future); however, our base case results are applicable to alternative therapies as well because they are priced similar to sofosbuvir-based treatments.

We assigned health-related quality-of-life (QOL) weights to each person, which were dependent on liver health, age, sex and injection drug use (eTable 14). We assumed the QOL of patients who achieved SVR were equivalent to uninfected people if they had F0 or F1 METAVIR scores, and worse than healthy people, otherwise.

eTable 11. Cost Parameters (In 2014 US Dollars)

Model Parameters	Value (\$)
HCV Management Costs (Annual)	
F0, F1 (78, 79)	720
F2 (78, 79)	732
F3 (78, 79)	1500
Compensated cirrhosis (F4) (79)	1740
Decompensated cirrhosis (79)	19 380
Hepatocellular carcinoma (79)	35 652
Liver transplant, first year (79)	105 269
Liver transplant, subsequent year (79)	27 060
HCV Test Costs (1-time)	
HCV ELISA test (anti-HCV antibody test) (73)	33

Quantitative HCV RNA (73)	92
HCV Genotype assay (73)	408
FibroSure test (74)	250
Cost per case identified outside prisons (22)	2873
HCV Treatment Costs (Weekly) (75)	
Ribavirin	309
Sofosbuvir	7000
Ledipasvir	1125

Abbreviations: SVR, sustained virology response; METAVIR, meta-analysis of histologic data in viral hepatitis; F0–F4, METAVIR fibrosis score; HCC, hepatocellular carcinoma; ELISA, enzyme-linked immunosorbant analysis; SVR, sustained viral response.

eTable 12. Health-Related and Age-Related Quality-of-Life Inputs

CTABLE 12. Health Related and Age Related	a Quality	or Eno inpute
Model Parameters		Value
Health-Related Quality-of-Life Weights		
METAVIR score F0, F1 (80)		0.93
METAVIR score F2, F3 (80)		0.93
Compensated cirrhosis (METAVIR score F4) (80)		0.90
Decompensated cirrhosis (80)		0.80
Hepatocellular carcinoma (80)		0.79
Liver transplant (first year) (80)		0.84
Liver transplant (subsequent year) (80)		0.84
Post SVR (F0-F1) (Assumption)		1.00
Post SVR (F2-F4) (Assumption)		0.93
Antiviral therapy multiplier, no anemia (81)		0.90
Antiviral therapy multiplier, anemia		0.95
Anemia multiplier (82)		0.83
Active injection drug use multiplier (72, 83)		0.83
Former injection drug use multiplier		1.00
Age-Related Quality-of-Life Weights (84)		
Age Group	Male	Female
0–29	0.928	0.913
30–39	0.918	0.893
40–49	0.887	0.863
50–59	0.861	0.837
60–69	0.84	0.811
70–79	0.802	0.771
>80	0.782	0.724

369 Abbreviations: METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; SVR, sustained virologic response.

Supplementary Appendix 2: Model Validation

S2.1 Natural History of HCV

To validate the natural history of our model, we compared the intermediate model outcomes with a large clinical study of HCV disease progression (85). We ran a submodel with the natural history Markov chain in patients with similar demographic and health characteristics (mean age 48; fibrosis score: F3, 27% and F4, 74%; SVR and no SVR) as included in the clinical study. We compared our model's 10-year projected incidence rates of decompensated cirrhosis, hepatocellular carcinoma and liver-related death/liver transplantation with the reported values (eTable 13) (85). The projected incidence rates were within the reported 95% confidence intervals, except for that the model underestimated 10-year cumulative incidence of decompensated cirrhosis in patients who failed to achieve SVR.

eTable 13. Validation of the Natural History of HCV

Initial Treatment	Subsequent	10-year Cumulative Incidence			
Response	Liver	van der Meer et al. Model			
	Complication		Prediction		
Patients who did	DC	29.9% (95% CI: 24.3–35.5%)	23.9%		
not achieve SVR	HCC	21.8% (95% CI: 16.6–27.0%)	22.3%		
	LRD plus LT	27.4% (95% CI: 22.0-32.8%)	26.5%		
Patients who	DC	2.1% (95% CI: 0-4.5%)	1.4%		
achieved SVR	HCC	5.1% (95% CI: 1.3-8.9%)	3.7%		
	LRD plus LT	1.9% (95% CI: 0-4.1%)	3.6%		

 $Abbreviations: SVR, sustained\ virologic\ response;\ DC,\ decompensated\ cirrhosis;\ HCC,\ hepatocellular\ carcinoma;\ LRD,\ decompensated\ cirrhosis;\ HCC,\ hepatocellular\ carcinoma;\ LRD,\ hepatocellular\ carcinoma;\ hepatoce$

liver-related death; LT, liver transplant; CI, confidence interval.

S2.2 Arrest and Release of Prisoners

We performed external validation by comparing our model's projected number of admissions to prisons with BJS data (71, 86, 87). Specifically, we compared the admission turnover rate, which is the ratio of the number of new court commitments during a year, divided by the total sentenced prisoners at the end of last year. The predicted admission turnover rates were between 28—30%, which matched with reference value. Because BJS reports provide data until year 2012, we started our model in year 2009 to validate our model's projected number of admissions and releases during 2009–2012 (eTable 14).

eTable 14. Validation of Admission and Release of Prisoners

	BJS reports(5, 67, 86, 87)		Model prediction		
Year	Total Prison	Arrest Turnover	Total Prison	Arrest	
	Population	Rate ^a	Population	Turnover Rate	
2009	1 615 487	29.40%	1 602 300	28.11%	
2010	1 613 803	28.40%	1 602 895	29.31%	
2011	1 598 968	28.43%	1 618 621	29.26%	
2012	1 570 397	28.31%	1 645 211	29.70%	

^a Arrest turnover rate is calculated by dividing number of arrested prisoners during year X by total prison population at the end of year (X-1).

Abbreviations: BJS, bureau of justice statistics.

Supplementary Appendix 3: Additional Results

S3.1 Additional Base-case Results

Our model projected that the number of HCV infections averted would peak between 2020 and 2024 and decline afterwards (eFigure 1). Interventions in prisons would reduce the number of HCV-infected people in prisons over time, and the benefits of screening will peak around year 2035 and decline afterwards (eFigure 2).

eFigure 1. HCV Infections Averted over Time

eFigure 2. Reduction in HCV Infected People in Prison over Time

Budget Impact on Prison System

We estimated the budget needed to treat HCV patients for all screening scenarios and compared it with the current healthcare spending in US prisons. Total Federal and state prisons spending in 2014 Dollar was estimated at \$54.72 and \$6.86 billion, respectively (88, 89). Of the total prison budget, 15%–17.7% was spent of healthcare, which is \$9.24–\$10.88 billion. Therefore, the

first-year budget needed to implement risk-based and opt-out screening followed by treatment with DAAs would require an additional 9.7% and 12.4% over the current healthcare budget, respectively.

eFigure 3. Total Cost of HCV Screening and Treatment in Prisons from 2015 to 2029. The budget needed to screen, treat HCV infection, and manage chronic hepatitis C in prisons under (A) 1-time risk-based screening of currently incarcerated and entrants who were active or former IDUs for 1 year (1Yr-Risk), (B) 1-time opt-out universal screening of currently

incarcerated inmates and entrants for 1 years (1Yr-All scenario), and (C) for 5-years (5-Yr-All scenario).

S3.2 Sensitivity Analyses

We ran 1-way sensitivity analysis on a total of 64 model parameters. We presented new infections averted, liver-related deaths averted, ICERs, 1-year and 15-year prison budget impact for different screening scenarios (eTables 15-19).

436 437

438

439 440

eTable 15. Results of 1-Way Sensitivity Analysis Showing New Infections **Averted**

		Nove Infortion	ew Infectio	tions Averted ^a		
Parameter	Value (Low /	New Infections	(Compared with No Scr	No Screeni	ng)	
	High)	No Screening	1Yr-Risk	1Yr-All	5Yr-All	10Yr-All
Base Case		166 084	5508	8041	11 001	12 603
Transition Probabilities						
(Annually)						
F0 to F1 ^b	0.104	167 911	6088	7965	11 230	13 000
101011	0.130	168 113	6683	9430	11 627	13 748
F1 to F2 ^b	0.075	169 429	6134	8011	11 459	13 458
111012	0.096	167 415	6164	9063	11 612	13 824
F2 to F3 ^b	0.109	165 710	5813	8362	11 795	13 153
121010	0.133	163 490	6531	8835	11 337	12 924
F3 to compensated cirrhosis	0.104	163 921	5340	8346	11 566	13 122
(F4) ^b	0.129	161 937	5279	7950	11 032	12 695
F3 to hepatocellular carcinoma	0.003	168 487	5951	9262	11 795	13 748
rs to nepatocellular carcinoma	0.014	164 672	5676	9109	11 017	13 137
Compensated cirrhosis (F4) to	0.010	170 596	6027	8240	11 017	12 726
decompensated cirrhosis	0.039	164 302	5707	8423	10 635	12 466
Compensated cirrhosis (F4) to	0.010	172 054	6454	8987	12 191	13 809
hepatocellular carcinoma	0.079	156 482	5890	8041	11 047	12 634
Decompensated cirrhosis to	0.030	166 664	5356	7873	10 833	12 893
hepatocellular carcinoma ²	0.083	166 549	5661	8835	11 368	12 878
Decompensated cirrhosis to liver	0.010	166 301	6668	8575	11 535	13 168
transplant ²	0.062	166 770	6470	7339	11 245	13 244
Decompensated cirrhosis (first	0.065	167 224	5752	9033	11 886	13 153
year) to liver-related death ²	0.190	166 744	6073	9155	11 642	13 397
Decompensated cirrhosis	0.065	167 713	5890	8636	11 535	13 534
(subsequent year) to liver-related death	0.190	164 558	6454	8301	11 383	12 939
Hepatocellular carcinoma to liver	0.000	164 840	6103	7858	10 818	12 298
transplant	0.140	168 693	5600	9002	11 596	13 229
Hepatocellular carcinoma to	0.330	167 453	5478	7614	10 910	12 527
liver-related death	0.860	162 632	5340	8453	10 254	12 405

Liver transplant (first year) to	0.060	166 652	6134	8438	10 910	13 107
liver-related death	0.420	165 668	6027	8178	11 825	13 290
Liver transplant (subsequent	0.024	166 782	5417	8117	11 413	12 970
year) to liver-related death	0.110	165 657	5447	7965	11 078	13 031
SVR after cirrhosis to	0.002	166 084	5508	8041	11 001	12 603
decompensated cirrhosis	0.036	169 345	5920	8819	10 772	12 573
SVR after cirrhosis to	0.002	166 080	6042	8301	11 963	13 626
hepatocellular carcinoma	0.013	167 327	6821	8926	11 764	13 992
Agent's Behavior Inputs						
Uptake rate of HCV testing in	0.5	166 084	3860	8041	11 001	12 603
prison under risk-based scenario	1.0	166 084	7492	8041	11 001	12 603
Uptake rate of HCV testing in	0.0	400.004	5500	0000	0000	44.057
prison under opt-out scenarios	0.8	166 084	5508	6836	9903	11 657
	1	166 084	5508	8713	11 535	13 092
F0.110) (I'	0.02787	167 842	6424	8346	11 352	13 214
F0 HCV diagnosis probability	0.04606	165 615	5997	8911	11 276	13 260
	0.02236	167 980	5524	8453	10 818	12 603
F1 HCV diagnosis probability	0.03702	164 844	6012	8285	10 727	12 375
	0.03179	168 739	6103	8468	11 261	12 848
F2 HCV diagnosis probability	0.05246	164 108	5936	8133	10 177	12 573
	0.03471	169 002	6286	8911	11 581	13 717
F3 HCV diagnosis probability	0.05724	164 535	5432	8240	10 681	12 451
- 4.1.0.4.11	0.12439	169 147	6515	8621	11 810	13 702
F4 HCV diagnosis probability	0.19926	163 982	5661	8117	10 742	11 932
Probability of quitting IDU	0.004967	174 628	6744	9933	12 329	14 465
(monthly)	0.006655	156 421	5264	7400	9689	11 368
Treatment initiation probability	0.036	166 687	5569	8529	11 413	13 153
per month (prisoners) ²	0.046	166 629	6180	8484	11 764	13 733
Treatment initiation probability	0.023	167 709	6149	8102	11 154	12 741
per month (general population)	0.029	164 867	5981	8575	11 337	13 076
	10% decrease	170 219	5035	7171	9292	10 833
Baseline crime probability	10% increase	162 204	5386	8957	11 520	13 427
110//	0.00005	93 088	3158	4761	6241	6775
HCV transmission probability	0.00025	255 254	9979	13 412	17 578	21 087
A	0.25	208 632	4715	6485	8316	10 711
Awareness reduction factor	0.75	126 118	7568	10 208	13 794	15 518
	0	167 987	6470	9140	12 039	13 824
Treatment reduction factor	1	165 912	6180	7980	11 352	13 290
HCV-associated Agent Character	ristics					
	0.000061	166 213	6195	9262	11 673	13 565
HCV prevalence among newborn	0.00018	166 816	5844	9216	11 581	13 534

Proportion of patients aware of	25%	193 736	6592	9521	13 290	15 289
HCV infection (General	75%	139 408	4455	6500	9109	10 284
population)	75%	139 406	4400	0000	9109	10 264
Proportion of patients aware of	10%	169 200	6775	9475	12 466	13 412
HCV infection (Prisoners)	50%	161 838	5356	6576	8682	10 025
Proportion of	0.29	166 538	5432	7248	10 696	12 359
treatment-experienced patients	0.40	407.000	0400	0000	44.040	40.005
initially ²	0.49	167 392	6180	9063	11 612	13 305
	Community:					
	30%, Prisons:	169 868	5279	7278	10 299	11 947
Proportion of diagnosed patients	47%					
eligible for treatment	Community:					
	50%, Prisons:	158 565	5951	8621	10 483	13 092
	78%					
Additional treatment eligibility	0.12975	168 510	5463	8896	10 650	12 878
with interferon-free regimen	0.21625	164 661	6164	8377	11 200	13 412
Miscellaneous						
	46% discount	166 084	5508	8041	11 001	12 603
Drug price	of WAC	100 004	3306	0041	11 001	12 003
	AWP	166 084	5508	8041	11 001	12 603
Self-clearance probability after	0.23	167 140	5752	8545	11 352	13 092
acute infection	0.28	165 176	6470	8728	11 749	13 275
SMR of inmates	0.77	166 851	6134	8377	12 115	13 687
SIMIC OF ITHINIALES	0.94	165 946	5813	8148	11 306	13 199
SVR rates of oral DAAs	0% decrease	166 084	5508	8041	11 001	12 603
OVICTALES OF OTAL DAMS	15% decrease	166 477	6225	8529	10 910	13 549
Conorio drug avoilobility year	2025	162 021	6271	8438	11 520	13 595
Generic drug availability year	2032	167 743	5600	8117	10 925	12 436
	20 years	143 818	4776	6439	9018	10 132
Time horizon	40 years	175 273	5859	8453	11 581	13 549
	,					

443

444

445

446

447

448

449

450

451

452

^a Infections averted in comparison with no screening were presented in the sensitivity analysis. Because the overall number of infections under no screening also changed for each parameter in the sensitivity analysis, the relative number of infections averted in the base case may not necessarily remain within the range obtained by low or high parameter values. Second, the trends may look inconsistent if the results obtained by low and high parameters are directly compared to each other. Third, because of small differences across strategies, results could be influenced by first-order uncertainty that could result in inconsistent trends.

b In the base case, we simulated fibrosis progression by using regression equations (eTable 6); however, for 1-way sensitivity analysis, we used fixed upper and lower values of fibrosis progression instead of equations.

Abbreviations: DAA, direct anti-viral agent; HCV, hepatitis C virus; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; SVR, sustained virologic response; SMR, standardized mortality ratio; WAC, wholesale acquisition cost; AWP, average wholesale price.

eTable 16. Results of 1-Way Sensitivity Analysis Showing Liver-Related Deaths Averted

	Value (low /	Liver-Related	Liver-Related Deaths Averted ^a			
Parameter		Deaths	(Compared with No Screening)			
	high)	No Screening	1Yr-Risk	1Yr-All	5Yr-All	10Yr-All
Base Case		780 803	4303	7950	10 360	11 734
Transition Probabilities						
(Annually)						
F0 to F1 ^b	0.104	769 088	3891	6775	9247	10 406
10.011	0.130	774 909	4013	7614	10 116	11 123
F1 to F2 ^b	0.075	759 666	3982	7309	9353	10 666
11012	0.096	775 767	4379	7522	10 025	11 413
F2 to F3 ^b	0.109	801 367	4791	8377	11 368	12 695
12.013	0.133	822 370	4700	8941	11 657	13 046
F3 to compensated cirrhosis (F4) ^b	0.104	853 310	4700	8194	11 169	12 573
1 o to compensated cirriosis (1 +)	0.129	882 694	4425	8499	11 322	12 680
F3 to hepatocellular carcinoma	0.003	745 964	4120	8072	10 025	11 398
r 3 to nepatocellular carcillonia	0.014	818 029	4852	8575	10 833	12 466
Compensated cirrhosis (F4) to	0.010	683 973	3845	6912	9140	10 299
decompensated cirrhosis	0.039	818 594	4715	8407	11 291	12 909
Compensated cirrhosis (F4) to	0.010	689 046	3616	6119	8545	9811
hepatocellular carcinoma	0.079	896 320	6027	10 147	13 733	16 006
Decompensated cirrhosis to	0.030	776 164	4379	7995	10 376	11 902
hepatocellular carcinoma	0.083	780 165	4394	7767	10 345	11 642
Decompensated cirrhosis to liver	0.010	787 032	4440	7965	10 803	12 191
transplant	0.062	764 381	4639	8133	10 696	11 932
Decompensated cirrhosis (first	0.065	789 134	4455	8133	10 849	11 963
year) to liver-related death	0.190	780 249	4639	8209	10 803	12 100
Decompensated cirrhosis	0.065	773 673	4227	7538	10 223	11 673
(subsequent year) to liver-related death	0.190	778 727	4806	8590	11 093	12 680
Hepatocellular carcinoma to liver	0.000	790 663	4822	7889	10 620	11 917
transplant	0.140	758 064	4318	7675	10 010	11 306
Hepatocellular carcinoma to	0.330	782 782	4150	7507	9948	11 306
liver-related death	0.860	765 884	3799	7767	10 452	12 115
Liver transplant (first year) to	0.060	779 445	4593	8270	11 017	12 527
liver-related death	0.420	787 440	4791	7919	10 986	12 100
Liver transplant (subsequent year)	0.024	767 078	4227	7599	10 742	12 054
to liver-related death	0.110	799 498	4455	8148	10 894	12 146
SVR after cirrhosis to	0.002	780 803	4303	7950	10 360	11 734

SVR after cirrhosis to 0.002 755 481 4745 8377 11 261 12 771							
hepatocellular cardinoma 0.013 841 828 4099 7431 9897 11 017 Agent's Behavior Inputs Uptake rate of HCV testing in prison under risk-based scenario 0.5 780 803 5859 7950 10 360 11 734 Uptake rate of HCV testing in prison under opt-out scenarios 1 0.8 780 803 4303 6851 9613 11 149 13 082 F0 HCV diagnosis probability 0.02787 781 165 4593 7980 10 498 12 088 F1 HCV diagnosis probability 0.02236 781 443 4349 8148 10 345 12 089 F2 HCV diagnosis probability 0.03702 779 856 4486 7614 10 254 11 479 F2 HCV diagnosis probability 0.03179 782 145 4013 7767 10 289 11 520 F3 HCV diagnosis probability 0.03179 782 145 4013 7767 10 289 11 520 F4 HCV diagnosis probability 0.03471 785 788 4852 8606 11 459 12 939 <	decompensated cirrhosis	0.036	949 728	3189	6058	8224	9430
Agent's Behavior Inputs Uptake rate of HCV testing in prison under risk-based scenario 1.0 780 803 5659 7950 10 360 11 734	SVR after cirrhosis to	0.002	755 481	4745	8377	11 261	12 771
Uptake rate of HCV testing in prison under risk-based scenario 1.0 780 803 5859 7950 10 360 11 734	hepatocellular carcinoma	0.013	841 828	4089	7431	9887	11 017
prison under risk-based scenario 1.0 780 803 5859 7950 10 360 11 734 Uptake rate of HCV testing in prison under opt-out scenarios 1 780 803 4303 6851 9613 11 169 F0 HCV diagnosis probability 0.02787 781 165 4593 7980 10 498 12 008 F1 HCV diagnosis probability 0.02236 781 443 4349 8148 10 345 12 069 F1 HCV diagnosis probability 0.03702 779 856 4486 7614 10 254 11 98 F2 HCV diagnosis probability 0.03179 782 145 4013 7767 9842 11 474 F3 HCV diagnosis probability 0.05246 778 727 4394 7767 10 269 11 520 F3 HCV diagnosis probability 0.05724 776 294 4181 8041 10 421 11 795 F4 HCV diagnosis probability 0.05724 776 294 4181 8041 10 421 11 795 F4 HCV diagnosis probability 0.05724 776 294 4181 8041 <	Agent's Behavior Inputs						
Uptake rate of HCV testing in 0.8 780 803 4303 6861 9613 11 169	Uptake rate of HCV testing in	0.5	780 803	2716	7950	10 360	11 734
prison under opt-out scenarios 1 780 803 4303 8514 11 749 13 092 F0 HCV diagnosis probability 0.02787 781 165 4593 7980 10 498 12 008 F0 HCV diagnosis probability 0.04606 780 158 4181 7965 9964 11 612 F1 HCV diagnosis probability 0.03702 779 856 4486 7614 10 254 11 963 F2 HCV diagnosis probability 0.03179 782 145 4013 7767 9842 11 474 F3 HCV diagnosis probability 0.05246 778 727 4394 7767 10 269 11 520 F3 HCV diagnosis probability 0.05724 776 294 4181 8041 10 421 11 795 F4 HCV diagnosis probability 0.12439 793 284 4776 8682 11 612 13 122 F4 HCV diagnosis probability 0.12439 738 284 4776 8682 11 612 13 122 F0 HCV diagnosis probability 0.12439 738 284 4769 7843 10 772 12	prison under risk-based scenario	1.0	780 803	5859	7950	10 360	11 734
F0 HCV diagnosis probability 0.02787 781 165 4593 7980 10 498 12 208 F1 HCV diagnosis probability 0.04606 780 158 4181 7965 9964 11 612 F1 HCV diagnosis probability 0.03702 779 856 4486 7614 10 254 11 963 F2 HCV diagnosis probability 0.03702 779 856 4486 7614 10 254 11 963 F2 HCV diagnosis probability 0.03179 782 145 4013 7767 9842 11 474 F3 HCV diagnosis probability 0.05246 778 727 4394 7767 10 269 11 520 F3 HCV diagnosis probability 0.05724 776 294 4181 8041 10 421 11 795 F4 HCV diagnosis probability 0.19926 771 765 4379 7263 9521 10 833 Probability of quitting IDU 0.004967 780 894 4639 7843 10 772 12 283 (monthly) 0.006655 780 238 3693 7583 9948 11 368 Treatment initiation probability per 0.036 780 871 4013 7446 10 208 11 490 month (prisoners) 0.046 780 741 4486 8255 10 879 12 451 Treatment initiation probability per 0.023 789 542 4654 8011 10 528 11 581 month (general population) 0.029 773 292 4425 7995 10 498 11 795 Macercase HCV transmission probability 10% 789 990 5669 9781 12 283 13 961 HCV transmission probability 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 Awareness reduction factor 0.057 775 844 5081 8133 10 696 11 947 Treatment reduction factor 0.057 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000018 781 245 4349 8117 10 620 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General 75% 836 175 5661 9826 12 695 14 846 HCV infection (General 75% 836 175 5661 9826 12 695 14 846	Uptake rate of HCV testing in	0.8	780 803	4303	6851	9613	11 169
F0 HCV diagnosis probability P1 HCV diagnosis probability P1 HCV diagnosis probability P1 HCV diagnosis probability P2 HCV diagnosis probability P3 HCV diagnosis probability P4 HCV diagnosis probability P5 HCV diagnosis probability P6 HCV diagnosis probability P6 HCV diagnosis probability P6 HCV diagnosis probability P6 HCV diagnosis probability P7 HCV diagnosis probability P7 HCV diagnosis probability P6 HCV diagnosis probability P7 HCV prevalence among newborn P7 HCV prevalence among newborn P7 HCV diagnosis probability P7 HCV infection (General	prison under opt-out scenarios	1	780 803	4303	8514	11 749	13 092
Page 14 Page 14 Page 15 Page 15 Page 14 Page 15 Page		0.02787	781 165	4593	7980	10 498	12 008
F1 HCV diagnosis probability P2 HCV diagnosis probability P3 HCV diagnosis probability P3 HCV diagnosis probability P3 HCV diagnosis probability P3 HCV diagnosis probability P4 HCV diagnosis probability P5 HCV diagnosis probability P6 HCV diagnosis probability P6 HCV diagnosis probability P6 HCV diagnosis probability P7 HCV diagnosis	F0 HCV diagnosis probability	0.04606	780 158	4181	7965	9964	11 612
Page		0.02236	781 443	4349	8148	10 345	12 069
F2 HCV diagnosis probability P3 HCV diagnosis probability F3 HCV diagnosis probability F4 HCV diagnosis probability F4 HCV diagnosis probability F5 HCV diagnosis probability F6 HCV diagnosis probability F7 HCV diagnosis	F1 HCV diagnosis probability	0.03702	779 856	4486	7614	10 254	11 963
Record 11 520 11 520 12 520 12 520 13 520 13 520 14 520 14 520 14 520 14 520 14 520 15 520 1	5 2.110.11 1 1 1 1 1 1 1 1 1	0.03179	782 145	4013	7767	9842	11 474
F3 HCV diagnosis probability	F2 HCV diagnosis probability	0.05246	778 727	4394	7767	10 269	11 520
F4 HCV diagnosis probability F5 HCV diagnosis probability F6 HCV diagnosis probability F6 HCV diagnosis probability F7 Diagnosis probability F8		0.03471	785 788	4852	8606	11 459	12 939
F4 HCV diagnosis probability 0.19926 771 785 4379 7263 9521 10 838 Probability of quitting IDU 0.004967 780 894 4639 7843 10 772 12 283 (monthly) 0.006655 780 238 3693 7583 9948 11 368 Treatment initiation probability per 0.036 780 871 4013 7446 10 208 11 490 month (prisoners) 0.046 780 741 4486 8255 10 879 12 451 Treatment initiation probability per 0.023 789 542 4654 8011 10 528 11 581 month (general population) 0.029 773 292 4425 7995 10 498 11 795 decrease 10% 781 066 3616 6485 8301 9353 Baseline crime probability 10% 779 990 5569 9781 12 283 13 961 increase 10% 779 990 5569 9781 12 283 13 961 HCV transmission probability 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.00018 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General 75% 733 547 4135 6866 9231 10 345	F3 HCV diagnosis probability	0.05724	776 294	4181	8041	10 421	11 795
Probability of quitting IDU		0.12439	793 284	4776	8682	11 612	13 122
(monthly) 0.006655 780 238 3693 7583 9948 11 368 Treatment initiation probability per month (prisoners) 0.036 780 871 4013 7446 10 208 11 490 month (prisoners) 0.046 780 741 4486 8255 10 879 12 451 Treatment initiation probability per month (general population) 0.029 773 292 4425 7995 10 498 11 795 Abseline crime probability increase 10% decrease 3616 6485 8301 9353 Baseline crime probability increase 10% 779 990 5569 9781 12 283 13 961 HCV transmission probability increase 0.00005 769 477 3769 7171 9353 10 421 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 Treatment reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444	F4 HCV diagnosis probability	0.19926	771 785	4379	7263	9521	10 833
Treatment initiation probability per 0.036 780 871 4013 7446 10 208 11 490 month (prisoners) 0.046 780 741 4486 8255 10 879 12 451 Treatment initiation probability per 0.023 789 542 4654 8011 10 528 11 581 month (general population) 0.029 773 292 4425 7995 10 498 11 795 10% 781 066 3616 6485 8301 9353 decrease 10% 10% 789 900 5569 9781 12 283 13 961 10% 10% 1000025 799 044 4944 8117 11 154 13 061 1000025 792 044 4944 8117 11 154 13 061 1000025 792 044 4944 8117 11 154 13 061 1000025 775 844 5081 8133 10 696 11 947 1000000000000000000000000000000000000	Probability of quitting IDU	0.004967	780 894	4639	7843	10 772	12 283
month (prisoners) 0.046 780 741 4486 8255 10 879 12 451 Treatment initiation probability per month (general population) 0.029 773 292 4425 7995 10 498 11 795 Baseline crime probability 10% 781 066 3616 6485 8301 9353 HCV transmission probability 0.00005 769 477 3769 7171 9353 10 421 Awareness reduction factor 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866	(monthly)	0.006655	780 238	3693	7583	9948	11 368
Treatment initiation probability per 0.023 789 542 4654 8011 10 528 11 581 month (general population) 0.029 773 292 4425 7995 10 498 11 795 10%	Treatment initiation probability per	0.036	780 871	4013	7446	10 208	11 490
month (general population) 0.029 773 292 4425 7995 10 498 11 795 Baseline crime probability 10% 781 066 3616 6485 8301 9353 HCV transmission probability 0.00005 769 477 3769 7171 9353 10 421 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 Awareness reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 772 4394 7721 10 605 12 175 HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	month (prisoners)	0.046	780 741	4486	8255	10 879	12 451
Baseline crime probability 10%	Treatment initiation probability per	0.023	789 542	4654	8011	10 528	11 581
Baseline crime probability 10% 10% 10% 10% 100005 10	month (general population)	0.029	773 292	4425	7995	10 498	11 795
Baseline crime probability 10% 10% 100005 769 477 3769 7711 9353 10 421 HCV transmission probability 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.00018 781 245 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345		10%	704.000	0040	0.405	0004	0050
10% increase HCV transmission probability 0.00005 769 477 3769 7171 9353 10 421 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 781 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population)	Decelled of the mark of The	decrease	781 066	3616	6485	8301	9353
HCV transmission probability 0.00005 769 477 3769 7171 9353 10 421 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 470 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population)	Baseline crime probability	10%	770.000	5500	0704	40.000	10.001
HCV transmission probability 0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345		increase	779 990	5569	9781	12 283	13 961
0.00025 792 044 4944 8117 11 154 13 061 Awareness reduction factor 0.25 785 887 4654 7675 10 650 12 176 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 772 4394 7721 10 605 12 115 Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	110)///	0.00005	769 477	3769	7171	9353	10 421
Awareness reduction factor 0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 1 780 772 4394 7721 10 605 12 115 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	HCV transmission probability	0.00025	792 044	4944	8117	11 154	13 061
0.75 775 844 5081 8133 10 696 11 947 Treatment reduction factor 0 780 772 4394 7721 10 605 12 115 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of proportion of patients aware of population (General population) 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	According to store	0.25	785 887	4654	7675	10 650	12 176
Treatment reduction factor 1 780 410 3998 7583 10 269 11 444 HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	Awareness reduction factor	0.75	775 844	5081	8133	10 696	11 947
HCV-associated Agent Characteristics HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 Proportion of patients aware of HCV infection (General population) 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	Trootmont roduction forten	0	780 772	4394	7721	10 605	12 115
HCV prevalence among newborn 0.000061 780 375 4593 7751 10 528 12 039 0.00018 781 245 4349 8117 10 620 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	rearment reduction factor	1	780 410	3998	7583	10 269	11 444
HCV prevalence among newborn 0.00018 781 245 4349 8117 10 620 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General 75% 733 547 4135 6866 9231 10 345 population)	HCV-associated Agent Characteris	stics					
0.00018 781 245 4349 8117 10 620 12 039 Proportion of patients aware of 25% 836 175 5661 9826 12 695 14 846 HCV infection (General population) 75% 733 547 4135 6866 9231 10 345	HCV provolonce among nowhere	0.000061	780 375	4593	7751	10 528	12 039
HCV infection (General 75% 733 547 4135 6866 9231 10 345 population)	nov prevalence among newborn	0.00018	781 245	4349	8117	10 620	12 039
75% 733 547 4135 6866 9231 10 345 population)	Proportion of patients aware of	25%	836 175	5661	9826	12 695	14 846
population)	HCV infection (General	750/	722 547	A125	6966	0224	10 245
Proportion of patients aware of 10% 782 733 5066 8941 11 810 12 954	population)	15%	133 54/	4135	0000	9231	10 345
	Proportion of patients aware of	10%	782 733	5066	8941	11 810	12 954

HCV infection (Prisoners)	50%	776 309	3967	6897	8835	9933
Proportion of	0.29	793 234	4684	8240	11 017	12 603
treatment-experienced patients	0.49	776 626	4440	7889	10 635	11 963
initially	0.43	770 020	4440	7009	10 033	11 903
	Community:					
	30%, Prisons:	771 232	3860	6378	8743	9857
Proportion of diagnosed patients	47%					
eligible for treatment	Community:					
	50%, Prisons:	725 773	5249	9460	12 649	14 221
	78%					
Additional treatment eligibility	0.12975	800 394	4333	7431	10 193	11 474
with interferon-free regimen	0.21625	759 658	4715	8468	11 123	12 451
Miscellaneous						
	46% discount	780 803	4303	7950	10 360	11 734
Drug price	of WAC	700 000	4303			11754
Drug price	of WAC AWP	780 803	4303	7950	10 360	11 734
Drug price Self-clearance probability after						
	AWP	780 803	4303	7950	10 360	11 734
Self-clearance probability after acute infection	AWP 0.23	780 803 781 577	4303 4516	7950 7904	10 360 10 620	11 734 12 207
Self-clearance probability after	AWP 0.23 0.28	780 803 781 577 779 265	4303 4516 4745	7950 7904 7767	10 360 10 620 10 559	11 734 12 207 11 932
Self-clearance probability after acute infection SMR of inmates	AWP 0.23 0.28 0.77	780 803 781 577 779 265 781 459	4303 4516 4745 4364	7950 7904 7767 8514	10 360 10 620 10 559 11 001	11 734 12 207 11 932 12 542
Self-clearance probability after acute infection	AWP 0.23 0.28 0.77 0.94	780 803 781 577 779 265 781 459 780 467	4303 4516 4745 4364 4639	7950 7904 7767 8514 8636	10 360 10 620 10 559 11 001 10 544	11 734 12 207 11 932 12 542 11 871
Self-clearance probability after acute infection SMR of inmates SVR rates of oral DAAs	0.23 0.28 0.77 0.94 0% decrease	780 803 781 577 779 265 781 459 780 467 780 803	4303 4516 4745 4364 4639 4303	7950 7904 7767 8514 8636 7950	10 360 10 620 10 559 11 001 10 544 10 360	11 734 12 207 11 932 12 542 11 871 11 734
Self-clearance probability after acute infection SMR of inmates	0.23 0.28 0.77 0.94 0% decrease	780 803 781 577 779 265 781 459 780 467 780 803 781 092	4303 4516 4745 4364 4639 4303 4455	7950 7904 7767 8514 8636 7950 8178	10 360 10 620 10 559 11 001 10 544 10 360 10 803	11 734 12 207 11 932 12 542 11 871 11 734 12 298
Self-clearance probability after acute infection SMR of inmates SVR rates of oral DAAs	AWP 0.23 0.28 0.77 0.94 0% decrease 15% decrease 2025	780 803 781 577 779 265 781 459 780 467 780 803 781 092 779 265	4303 4516 4745 4364 4639 4303 4455 4257	7950 7904 7767 8514 8636 7950 8178 8072	10 360 10 620 10 559 11 001 10 544 10 360 10 803 10 437	11 734 12 207 11 932 12 542 11 871 11 734 12 298 11 902

^a Liver-deaths averted in comparison with no screening were presented in the sensitivity analysis. Because the overall number of liver-deaths under no screening also changed for each parameter in the sensitivity analysis, the relative number of liver-deaths averted in the base case may not necessarily remain within the range obtained by low or high parameter values. Second, the trends may look inconsistent if the results obtained by low and high parameters are directly compared to each other. Third, because of small differences across strategies, results could be influenced by first-order uncertainty that could result in inconsistent trends.

Abbreviations: DAA, direct anti-viral agent; HCV, hepatitis C virus; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; SVR, sustained virologic response; SMR, standardized mortality ratio; WAC, wholesale acquisition cost; AWP, average wholesale price.

eTable 17. Results of 1-Way Sensitivity Analysis Showing the Cost-effectiveness of Screening Strategies

Parameter Value (low / Probability of Cost-effectiveness in 40 runs (%) ^b
--

^b In the base case, we simulated fibrosis progression by using regression equations (eTable 6); however, for 1-way sensitivity analysis, we used fixed upper and lower values of fibrosis progression instead of equations.

Base Case Transition Probabilities (Annually) F0 to F1a F1 to F2a	0.104 0.130 0.075 0.096	0 0 0	0 0	5.0 5.0	22.5 17.5	72.5
(Annually) F0 to F1 ^a	0.130 0.075	0			17.5	77.5
F0 to F1 ^a	0.130 0.075	0			17.5	77.5
	0.130 0.075	0			17.5	77.5
	0.075		0	0.5		77.5
F1 to F2 ^a		0		2.5	20.0	77.5
F1 t0 F2"	0.096		0	2.5	10.0	87.5
		0	0	2.5	15.0	82.5
Fo Fo.	0.109	0	0	2.5	12.5	85.0
F2 to F3 ^a	0.133	0	0	2.5	15.0	82.5
F3 to compensated cirrhosis	0.104	0	0	0	22.5	77.5
(F4) ^a	0.129	0	0	0	12.5	87.5
	0.003	0	0	7.5	22.5	70.0
F3 to hepatocellular carcinoma	0.014	0	0	2.5	10.0	87.5
Compensated cirrhosis (F4) to	0.010	0	0	5.0	25.0	70.0
decompensated cirrhosis	0.039	0	0	7.5	10.0	82.5
Compensated cirrhosis (F4) to	0.039	0	0	2.5	22.5	75.0
hepatocellular carcinoma	0.079	0	0	0	5.0	95.0
Decompensated cirrhosis to	0.079	0	0	2.5	20.0	77.5
hepatocellular carcinoma	0.030	0	0	2.5	20.0	77.5
Decompensated cirrhosis to	0.003	0	0	7.5	10.0	82.5
liver transplant	0.062	0	0	2.5	20.0	77.5
Decompensated cirrhosis (first	0.065	0	0	5.0	20.0	75.0
year) to liver-related death	0.190	0	0	2.5	10.0	87.5
Decompensated cirrhosis	0.065	0	0	5.0	12.5	82.5
(subsequent year) to	0.003	U	U	5.0	12.5	02.5
liver-related death	0.190	0	0	2.5	20.0	77.5
Hepatocellular carcinoma to	0.000	0	0	2.5	17.5	80.0
liver transplant	0.140	0	0	5.0	10.0	85.0
Hepatocellular carcinoma to	0.330	0	0	2.5	15.0	82.5
liver-related death	0.860	0	0	2.5	17.5	80.0
Liver transplant (first year) to	0.060	0	0	5.0	17.5	77.5
liver-related death	0.420	0	0	2.5	20.0	77.5
Liver transplant (subsequent	0.420	0	0	2.5	15.0	82.5
year) to liver-related death	0.024	0	0	0	12.5	87.5
SVR after cirrhosis to	0.002	0	0	5.0	22.5	72.5
decompensated cirrhosis	0.002	0	3	10.0	25.0	62.5
SVR after cirrhosis to	0.002	0	0	0	10.0	90.0
hepatocellular carcinoma Costs (2014 US dollars)	0.013	0	0	2.5	32.5	65.0

HCV management costs: F0	540	0	0	5.0	22.5	72.5
TIOV management costs. To	912	0	0	5.0	22.5	72.5
HCV management costs: F1	540	0	0	2.5	20.0	77.5
TIOV management cools. I I	912	0	0	5.0	22.5	72.5
HCV management costs: F2	552	0	0	2.5	20.0	77.5
Trov managomoni oodio. 12	924	0	0	5.0	22.5	72.5
HCV management costs: F3	1128	0	0	2.5	22.5	75.0
TIOV management 605to. To	1872	0	0	5.0	22.5	72.5
HCV management costs:	1308	0	0	5.0	22.5	72.5
compensated cirrhosis (F4)	2184	0	0	5.0	22.5	72.5
HCV management costs:	14 544	0	0	5.0	22.5	72.5
decompensated cirrhosis	24 240	0	0	2.5	22.5	75.0
HCV management costs:	26 736	0	0	5.0	22.5	72.5
hepatocellular carcinoma	44 568	0	0	5.0	22.5	72.5
HCV management costs: liver	78 949	0	0	5.0	22.5	72.5
transplant, first year	131 589	0	0	5.0	22.5	72.5
HCV management costs: liver	20 292	0	0	5.0	22.5	72.5
transplant, subsequent year	33 828	0	0	2.5	22.5	75.0
HCV ELISA test	25	0	0	2.5	20.0	77.5
TIOV ELIGA (est	41	0	0	5.0	22.5	72.5
Quantitation HCV RNA	69	0	0	5.0	22.5	72.5
Quantitation HCV KINA	115	0	0	5.0	22.5	72.5
FibroSure test	474	0	0	5.0	22.5	72.5
FibioSule test	789	0	0	5.0	22.5	72.5
HCV genotype assay	306	0	0	5.0	22.5	72.5
по у депотуре аssay	510	0	0	5.0	22.5	72.5
Health-Related						
Quality-of-Life Inputs						
METAVIR score F0, F1	0.84	0	0	2.5	17.5	80.0
WETAVIK SCOLE FO, FT	0.99	0	0	7.5	20.0	72.5
METAVIR score F2, F3	0.84	0	0	0	12.5	87.5
WILTAVIN SCOIL F2, F3	0.99	0	0	7.5	25.0	67.5
Compensated cirrhosis	0.81	0	0	2.5	15.0	82.5
(METAVIR score F4)	0.99	0	0	7.5	25.0	67.5
	0.57	0	0	2.5	20.0	77.5
Decompensated cirrhosis	0.99	0	0	5.0	22.5	72.5
	0.54	0	0	2.5	20.0	77.5
Hepatocellular carcinoma	0.99	0	0	5.0	22.5	72.5
.	0.77	0	0	2.5	22.5	75.0
Post liver transplant	0.93	0	0	5.0	22.5	72.5
Post SVR (F0-F1)	0.92	0	0	7.5	25.0	67.5

	1.00	0	0	5.0	22.5	72.5
D 40VD (50 54)	0.92	0	0	20.0	30.0	50.0
Post SVR (F2-F4)	1.00	0	0	5.0	22.5	72.5
Agent's Behavior Inputs						
Uptake rate of HCV testing in	0.5	0	0	5.0	22.5	72.5
prison under risk-based scenario	1.0	0	0	5.0	22.5	72.5
Uptake rate of HCV testing in	0.80	0	0	0	15.0	85.0
prison under opt-out scenarios	1.00	0	0	2.5	15.0	82.5
F0 HCV diagnosis probability	0.02787	0	0	5.0	10.0	85.0
r c r c r alaginosis prosasiini,	0.04606	0	0	2.5	10.0	87.5
F1 HCV diagnosis probability	0.02236	0	0	2.5	10.0	87.5
T TTO V diagnosis probability	0.03702	0	3	2.5	12.5	82.5
F2 HCV diagnosis probability	0.03179	0	0	7.5	7.5	85.0
12110 V diagnosis probability	0.05246	0	0	2.5	25.0	72.5
F3 HCV diagnosis probability	0.03471	0	0	2.5	25.0	72.5
1 0 110 v diagnosis probability	0.05724	0	0	0	15.0	85.0
F4 HCV diagnosis probability	0.12439	0	0	5.0	17.5	77.5
14 FIC V diagnosis probability	0.19926	0	0	10.0	27.5	62.5
Probability of quitting IDU	0.004967	0	0	5.0	12.5	82.5
(monthly)	0.006655	0	0	2.5	17.5	80.0
Treatment initiation probability	0.036	0	0	5.0	20.0	75.0
per month (prisoners)	0.046	0	0	2.5	7.5	90.0
Treatment initiation probability	0.023	0	0	5.0	37.5	57.5
per month (general population)	0.029	0	0	2.5	20.0	77.5
Pagalina orima probability	10% decrease	0	0	7.5	35.0	57.5
Baseline crime probability	10% increase	0	0	0	22.5	77.5
LICV transmission probability	0.00005	0	0	5.0	10.0	85.0
HCV transmission probability	0.00025	0	0	2.5	10.0	87.5
Autoropoop radication factor	0.25	0	0	2.5	10.0	87.5
Awareness reduction factor	0.75	0	3	2.5	12.5	82.5
Transfer and made satisfaction	0	0	0	7.5	7.5	85.0
Treatment reduction factor	1	0	0	2.5	25.0	72.5
HCV-associated Agent Characteristics						
HCV prevalence among	0.000061	0	0	2.5	5.0	92.5
newborn	0.00018	0	0	2.5	12.5	85.0
Proportion of patients aware of HCV infection (General	25%	0	0	0	5.0	95.0
population)	75%	0	0	2.5	30.0	67.5
Proportion of patients aware of	10%	0	0	5.0	32.5	62.5
HCV infection (Prisoners)	50%	0	0	5.0	30.0	65.0

Proportion of	0.29	0	0	5.0	12.5	82.5
treatment-experienced patients	0.49	0	0	2.5	22.5	75.0
initially	0.40	U	V	2.0	22.5	75.0
	Community:					
	30%, Prisons:	0	0	0	15.0	85.0
Proportion of diagnosed	47%					
patients eligible for treatment	Community:					
	50%, Prisons:	0	0	0	10.0	90.0
	78%					
Additional treatment eligibility	0.12975	0	0	10.0	10.0	80.0
with interferon-free regimen	0.21625	0	0	2.5	15.0	82.5
Miscellaneous						
	46% discount of	0	0	0	5.0	95.0
Drug price	WAC	U	O	O	5.0	93.0
	AWP	0	0	7.5	25.0	67.5
Self-clearance probability	0.23	0	0	5.0	12.5	82.5
after acute infection	0.28	0	0	2.5	22.5	75.0
SMR of inmates	0.77	0	0	2.5	10.0	87.5
SIMIC OF ITITIALES	0.94	0	0	0	12.5	87.5
SVR rates of oral DAAs	0% decrease	0	0	5.0	22.5	72.5
SVR fales of oral DAAS	15% decrease	0	0	2.5	20.0	77.5
Consula duran errallah ilitarrasa	2025	0	0	2.5	2.5	95.0
Generic drug availability year	2032	0	0	5.0	20.0	75.0
	20 years	0	8	45.0	45.0	2.5
Time horizon	40 years	0	0	0	12.5	87.5

^a In the base case, we simulated fibrosis progression by using regression equations (eTable 6); however, for 1-way sensitivity analysis, we used fixed upper and lower values of fibrosis progression instead of equations.

eTable 18. Results of 1-Way Sensitivity Analysis Showing 1-year Prison Budget

Davamatav	Value (law / high)	Prison F	irst Year Budge	t Impact
Parameter	Value (low / high)	No-Screening	1Yr-Risk	1Yr-All, 5Yr-All,

^b We conducted sensitivity-analysis by running the model 40 times for each parameter value and presented the probability of each strategy being cost-effective using \$50,000 willingness to pay threshold. Because of small differences across strategies, results could be influenced by first-order uncertainty that could lead to inconsistent trends such as extended dominance. To avoid presentation of misleading trends, we did not present ICERs; instead we presented the likelihood of each strategy being cost-effective, as commonly done in generating cost-effectiveness acceptability curves.

Abbreviations: DAA, direct anti-viral agent; HCV, hepatitis C virus; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; ELISA, enzyme-linked immunosorbant analysis; SVR, sustained virologic response; SMR, standardized mortality ratio; WAC, wholesale acquisition cost; AWP, average wholesale price.

				10Yr-All
Base Case		\$4 074 758	\$5 899 396	\$7 510 893
Transition Probabilities				
(Annually)				
F0 to F1 ^a	0.104	\$4 062 312	\$5 854 316	\$7 437 367
101011	0.130	\$4 066 321	\$5 865 092	\$7 450 046
F1 to F2 ^a	0.075	\$4 019 835	\$5 748 351	\$7 292 109
11012	0.096	\$4 048 879	\$5 794 809	\$7 364 541
F2 to F3 ^a	0.109	\$4 044 249	\$5 875 886	\$7 493 219
12.013	0.133	\$4 129 002	\$6 025 773	\$7 684 629
F3 to compensated cirrhosis (F4)	0.104	\$4 047 586	\$5 869 647	\$7 486 397
a	0.129	\$4 146 777	\$5 976 819	\$7 587 216
F3 to hepatocellular carcinoma	0.003	\$4 060 008	\$5 900 951	\$7 518 109
1 3 to nepatocellular carcinoma	0.014	\$4 086 000	\$5 891 742	\$7 491 215
Compensated cirrhosis (F4) to	0.010	\$3 960 608	\$5 881 349	\$7 567 082
decompensated cirrhosis	0.039	\$4 096 842	\$5 871 704	\$7 452 557
Compensated cirrhosis (F4) to	0.010	\$4 067 594	\$5 969 343	\$7 650 098
hepatocellular carcinoma	0.079	\$4 012 725	\$5 634 025	\$7 122 607
Decompensated cirrhosis to	0.030	\$4 095 794	\$5 930 079	\$7 531 566
hepatocellular carcinoma	0.083	\$4 060 892	\$5 879 253	\$7 487 799
Decompensated cirrhosis to liver	0.010	\$4 081 105	\$5 895 103	\$7 499 163
transplant	0.062	\$4 057 228	\$5 860 476	\$7 466 719
Decompensated cirrhosis (first	0.065	\$4 184 443	\$5 996 126	\$7 604 141
year) to liver-related death	0.190	\$4 065 372	\$5 870 050	\$7 472 356
Decompensated cirrhosis	0.065	\$4 173 384	\$5 989 459	\$7 601 461
(subsequent year) to liver-related death	0.190	\$3 939 115	\$5 758 742	\$7 371 299
Hepatocellular carcinoma to liver	0.000	\$4 056 856	\$5 859 602	\$7 468 970
transplant	0.140	\$4 085 756	\$5 896 058	\$7 508 216
Hepatocellular carcinoma to	0.330	\$4 206 043	\$6 016 820	\$7 626 999
liver-related death	0.860	\$3 719 660	\$5 521 241	\$7 127 338
Liver transplant (first year) to	0.060	\$4 078 512	\$5 895 709	\$7 513 066
liver-related death	0.420	\$4 068 670	\$5 881 902	\$7 488 173
Liver transplant (subsequent	0.024	\$4 073 886	\$5 902 594	\$7 513 465
year) to liver-related death	0.110	\$4 066 405	\$5 884 900	\$7 499 492
SVR after cirrhosis to	0.002	\$4 074 758	\$5 899 396	\$7 510 893
decompensated cirrhosis	0.036	\$4 097 578	\$5 930 033	\$7 540 576
SVR after cirrhosis to	0.002	\$4 069 698	\$5 892 860	\$7 505 971
hepatocellular carcinoma	0.013	\$4 086 766	\$5 918 790	\$7 535 440

1101/	540	\$4 070 797	\$5 890 338	\$7 497 180
HCV management costs: F0	912	\$4 078 722	\$5 908 461	\$7 524 614
LICV/ management costs, E4	540	\$4 066 345	\$5 881 402	\$7 483 915
HCV management costs: F1	912	\$4 083 177	\$5 917 403	\$7 537 887
LICV/ management costs, F2	552	\$4 066 917	\$5 883 443	\$7 487 181
HCV management costs: F2	924	\$4 082 596	\$5 915 342	\$7 534 593
LICV/ management acets, F2	1128	\$4 061 162	\$5 873 593	\$7 471 736
HCV management costs: F3	1872	\$4 088 359	\$5 925 207	\$7 550 060
HCV management costs:	1308	\$4 043 313	\$5 846 346	\$7 436 560
compensated cirrhosis (F4)	2184	\$4 106 204	\$5 952 448	\$7 585 227
HCV management costs:	14 544	\$3 927 029	\$5 751 163	\$7 362 174
decompensated cirrhosis	24 240	\$4 222 489	\$6 047 631	\$7 659 612
HCV management costs:	26 736	\$3 946 618	\$5 770 365	\$7 380 827
hepatocellular carcinoma	44 568	\$4 202 900	\$6 028 429	\$7 640 959
HCV management costs: liver	78 949	\$4 074 758	\$5 899 396	\$7 510 893
transplant, first year	131 589	\$4 074 758	\$5 899 396	\$7 510 893
HCV management costs: liver	20 292	\$4 068 566	\$5 893 204	\$7 504 700
transplant, subsequent year	33 828	\$4 080 951	\$5 905 589	\$7 517 085
1101/ 51 104 +	25	\$4 074 758	\$5 880 783	\$7 418 066
HCV ELISA test	41	\$4 074 758	\$5 918 014	\$7 603 738
Quantitation HCV RNA	69	\$4 074 758	\$5 892 823	\$7 498 066
Quantitation FICV KNA	115	\$4 074 758	\$5 905 970	\$7 523 720
FibroSure test	474	\$4 074 758	\$5 887 865	\$7 488 182
i ibiodule test	789	\$4 074 758	\$5 910 928	\$7 533 603
HCV genotype assay	306	\$4 074 758	\$5 875 932	\$7 464 561
	510	\$4 074 758	\$5 922 859	\$7 557 220
Agent's Behavior Inputs				
Uptake rate of HCV testing in	0.5	\$4 074 758	\$5 329 834	\$7 510 893
prison under risk-based scenario	1.0	\$4 074 758	\$6 475 577	\$7 510 893
Uptake rate of HCV testing in	0.8	\$4 074 758	\$5 899 396	\$7 158 083
prison under opt-out scenarios	1	\$4 074 758	\$5 899 396	\$7 928 777
	0.02787	\$4 069 499	\$5 896 348	\$7 512 250
F0 HCV diagnosis probability	0.04606	\$4 083 674	\$5 909 147	\$7 516 477
	0.02236	\$4 065 632	\$5 892 400	\$7 504 311
F1 HCV diagnosis probability	0.03702	\$4 086 686	\$5 906 729	\$7 512 441
F0.1101/4/F	0.03179	\$4 062 505	\$5 893 355	\$7 515 787
F2 HCV diagnosis probability	0.05246	\$4 087 411	\$5 904 980	\$7 512 064
F0.1101/ II	0.03471	\$4 049 854	\$5 894 429	\$7 515 400
F3 HCV diagnosis probability	0.05724	\$4 103 721	\$5 911 603	\$7 501 904
	0.12439	\$3 942 251	\$5 833 266	\$7 489 934
F4 HCV diagnosis probability	0.19926	\$4 128 365	\$5 892 093	\$7 467 748

Probability of quitting IDU	0.004967	\$4 105 123	\$6 002 639	\$7 574 949
(monthly)	0.006655	\$4 018 096	\$5 736 224	\$7 382 269
Treatment initiation probability per	0.036	\$3 879 673	\$5 569 521	\$7 082 444
month (prisoners)	0.046	\$4 171 609	\$6 132 803	\$7 838 978
Treatment initiation probability per	0.023	\$4 150 094	\$5 967 410	\$7 577 512
month (general population)	0.029	\$3 993 495	\$5 817 332	\$7 425 646
D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10% decrease	\$3 229 337	\$4 636 703	\$5 914 624
Baseline crime probability	10% increase	\$4 839 182	\$6 969 502	\$8 896 631
11017	0.00005	\$4 069 499	\$5 896 348	\$7 512 250
HCV transmission probability	0.00025	\$4 083 674	\$5 909 147	\$7 516 477
	0.25	\$4 065 632	\$5 892 400	\$7 504 311
Awareness reduction factor	0.75	\$4 086 686	\$5 906 729	\$7 512 441
	0	\$4 062 505	\$5 893 355	\$7 515 787
Treatment reduction factor	1	\$4 087 411	\$5 904 980	\$7 512 064
HCV-associated Agent Characteri	stics			
	0.000061	\$4 074 755	\$5 899 752	\$7 511 040
HCV prevalence among newborn	0.00018	\$4 074 836	\$5 899 503	\$7 510 889
Proportion of patients aware of	25%	\$3 605 233	\$5 744 340	\$7 723 569
HCV infection (General		•		
population)	75%	\$4 487 064	\$5 825 451	\$7 163 655
Proportion of patients aware of	10%	\$3 829 148	\$5 797 063	\$7 454 315
HCV infection (Prisoners)	50%	\$4 533 852	\$6 056 427	\$7 407 256
Proportion of	0.29	\$4 056 354	\$5 844 771	\$7 479 506
treatment-experienced patients	0.40	# 0.050.000	05 740 740	#7.050.005
initially	0.49	\$3 959 982	\$5 748 713	\$7 356 685
	Community: 30%,	£4,000,000	ΦΕ CAC 500	Ф 7 074 770
Proportion of diagnosed patients	Prisons: 47%	\$4 090 263	\$5 646 580	\$7 074 776
eligible for treatment	Community: 50%,	#4.007.000	ФС 270 F 10	¢0.472.070
	Prisons: 78%	\$4 287 902	\$6 370 549	\$8 173 870
Additional treatment eligibility with	0.12975	\$3 869 903	\$5 626 965	\$7 182 358
interferon-free regimen	0.21625	\$4 285 471	\$6 184 092	\$7 829 396
Miscellaneous				
Drug price	46% discount of WAC	\$2 840 163	\$4 042 927	\$5 229 743
Drug price	AWP	\$4 611 539	\$6 706 557	\$8 502 697
Self-clearance probability after	0.23	\$4 056 354	\$5 844 771	\$7 479 506
acute infection	0.28	\$3 959 982	\$5 748 713	\$7 356 685
CMD of inmotor	0.77	\$4 079 331	\$5 911 287	\$7 520 294
SMR of inmates	0.94	\$4 068 860	\$5 891 886	\$7 496 164
CVD retes of and DAA	0% decrease	\$4 074 758	\$5 899 396	\$7 510 893
SVR rates of oral DAAs	15% decrease	\$4 074 758	\$5 899 396	\$7 510 893
Generic drug availability year	2025	\$4 074 758	\$5 899 396	\$7 510 893

	2032	\$4 074 758	\$5 899 396	\$7 510 893
Time horizon	20 years	\$4 074 758	\$5 899 396	\$7 510 893
	40 years	\$4 074 758	\$5 899 396	\$7 510 893

^a In the base case, we simulated fibrosis progression by using regression equations (eTable 6); however, for 1-way sensitivity analysis, we used fixed upper and lower values of fibrosis progression instead of equations.

Abbreviations: DAA, direct anti-viral agent; HCV, hepatitis C virus; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; ELISA, enzyme-linked immunosorbant analysis; SVR, sustained virologic response; SMR, standardized mortality ratio; WAC, wholesale acquisition cost; AWP, average wholesale price.

eTable 19. Results of 1-Way Sensitivity Analysis Showing 15-year Prison Budget

Downwater	Value (low/	w/ Prison Fifteen Year Budget Impact				
Parameter	high)	No-Screening	1Yr-Risk	1Yr-All	5Yr-All	10Yr-All
Base Case		\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
Transition Probabilities						
(Annually)						
F0 to F1 ^a	0.104	\$ 21 148 032	\$ 25 713 984	\$ 29 580 662	\$ 32 453 951	\$ 34 019 550
10.011	0.130	\$ 21 284 170	\$ 25 914 911	\$ 29 798 723	\$ 32 714 871	\$ 34 351 330
F1 to F2 ^a	0.075	\$ 20 873 640	\$ 25 333 110	\$ 29 161 773	\$ 31 963 231	\$ 33 506 299
111012	0.096	\$ 21 294 283	\$ 25 879 519	\$ 29 783 848	\$ 32 664 934	\$ 34 338 107
F2 to F3 ^a	0.109	\$ 22 192 544	\$ 27 009 107	\$ 31 091 247	\$ 34 260 180	\$ 36 008 526
121013	0.133	\$ 22 687 587	\$ 27 678 903	\$ 31 909 692	\$ 35 194 034	\$ 36 985 327
F3 to compensated	0.104	\$ 21 639 171	\$ 26 443 005	\$ 30 393 538	\$ 33 470 181	\$ 35 175 218
cirrhosis (F4) ^a	0.129	\$ 22 113 393	\$ 26 922 296	\$ 30 872 493	\$ 33 816 578	\$ 35 465 985
F3 to hepatocellular	0.003	\$ 21 481 938	\$ 26 323 862	\$ 30 281 142	\$ 33 361 347	\$ 35 128 029
carcinoma	0.014	\$ 21 636 583	\$ 26 307 346	\$ 30 196 742	\$ 33 135 837	\$ 34 817 279
Compensated cirrhosis	0.010	\$ 20 675 931	\$ 25 654 187	\$ 29 885 193	\$ 33 105 300	\$ 34 932 187
(F4) to decompensated						
cirrhosis	0.039	\$ 21 840 681	\$ 26 364 542	\$ 30 189 588	\$ 33 149 929	\$ 34 845 628
Compensated cirrhosis	0.010	\$ 21 810 610	\$ 26 814 290	\$ 31 025 363	\$ 34 214 860	\$ 36 024 620
(F4) to hepatocellular	0.079	\$ 20 286 695	\$ 24 350 982	\$ 27 855 580	\$ 30 590 609	¢ 22 447 022
carcinoma	0.079	\$ 20 200 695	\$ 24 350 962	\$ 27 655 560	\$ 30 590 609	\$ 32 147 933
Decompensated cirrhosis	0.030	\$ 21 978 573	\$ 26 771 278	\$ 30 709 945	\$ 33 722 093	\$ 35 437 955
to hepatocellular	0.083	\$ 21 448 482	\$ 26 147 591	\$ 30 079 797	\$ 33 089 706	\$ 34 826 201
carcinoma	0.063	φ 21 44 0 402	φ 20 14 <i>1</i> 591	\$ 30 0 <i>19 191</i>	φ 33 009 700	φ 34 626 201
Decompensated cirrhosis	0.010	\$ 21 583 609	\$ 26 341 962	\$ 30 284 461	\$ 33 265 594	\$ 34 968 817
to liver transplant	0.062	\$ 21 609 813	\$ 26 337 357	\$ 30 290 057	\$ 33 324 746	\$ 35 005 403
Decompensated cirrhosis	0.065	\$ 22 345 784	\$ 27 103 689	\$ 31 033 224	\$ 34 020 334	\$ 35 705 320
(first year) to liver-related	0.190	\$ 21 487 272	\$ 26 180 863	\$ 30 165 014	\$ 33 224 138	\$ 34 957 395
death	0.130	ψ Z I 401 Z I Z	ψ 20 100 003	ψ 30 103 014	ψ 33 ΖΖ4 130	ψ 34 33 <i>1</i> 333

Decompensated cirrhosis	0.065	\$ 22 600 252	\$ 27 294 757	\$ 31 219 772	\$ 34 235 399	\$ 35 922 454
(subsequent year) to	0.190	\$ 20 304 229	\$ 25 043 629	\$ 28 989 450	\$ 32 031 068	\$ 33 733 061
liver-related death	0.130	Ψ 20 00+ 220	Ψ 20 0+0 020	Ψ 20 303 400	ψ 32 001 000	Ψ 33 7 33 33 1
Hepatocellular carcinoma	0.000	\$ 21 318 199	\$ 26 018 705	\$ 29 947 142	\$ 32 945 089	\$ 34 685 574
to liver transplant	0.140	\$ 21 995 729	\$ 26 730 014	\$ 30 659 916	\$ 33 653 889	\$ 35 423 076
Hepatocellular carcinoma	0.330	\$ 22 714 951	\$ 27 400 622	\$ 31 360 321	\$ 34 319 966	\$ 36 061 548
to liver-related death	0.860	\$ 18 922 246	\$ 23 762 552	\$ 27 789 325	\$ 30 857 379	\$ 32 604 137
Liver transplant (first year)	0.060	\$ 21 600 941	\$ 26 362 871	\$ 30 313 787	\$ 33 381 337	\$ 35 152 260
to liver-related death	0.420	\$ 21 382 824	\$ 26 113 774	\$ 30 014 477	\$ 33 072 818	\$ 34 801 622
Liver transplant	0.024	\$ 21 591 358	\$ 26 320 030	\$ 30 260 653	\$ 33 253 308	\$ 34 954 448
(subsequent year) to	0.110	\$ 21 350 687	\$ 26 107 970	\$ 30 051 011	\$ 33 021 390	\$ 34 743 347
liver-related death	0.110	\$ 21 330 067	\$ 20 107 970	\$ 30 031 011	φ 33 UZ I 39U	φ 34 <i>1</i> 43 34 <i>1</i>
SVR after cirrhosis to	0.002	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
decompensated cirrhosis	0.036	\$ 22 555 202	\$ 27 385 373	\$ 31 364 622	\$ 34 458 398	\$ 36 213 174
SVR after cirrhosis to	0.002	\$ 21 451 142	\$ 26 119 399	\$ 30 077 318	\$ 33 095 929	\$ 34 791 137
hepatocellular carcinoma	0.013	\$ 21 763 681	\$ 26 431 060	\$ 30 363 294	\$ 33 466 501	\$ 35 159 155
Costs (2014 US dollars)						
HCV management costs:	540	\$ 21 518 364	\$ 26 199 641	\$ 30 099 809	\$ 33 120 919	\$ 34 819 440
F0	912	\$ 21 585 097	\$ 26 311 349	\$ 30 252 557	\$ 33 301 941	\$ 35 015 485
HCV management costs:	540	\$ 21 477 689	\$ 26 132 404	\$ 30 009 010	\$ 33 017 951	\$ 34 710 562
F1	912	\$ 21 625 797	\$ 26 378 630	\$ 30 343 415	\$ 33 404 975	\$ 35 124 432
HCV management costs:	552	\$ 21 476 221	\$ 26 135 132	\$ 30 014 016	\$ 33 027 283	\$ 34 722 710
F2	924	\$ 21 627 181	\$ 26 375 764	\$ 30 338 221	\$ 33 395 428	\$ 35 112 057
HCV management costs:	1128	\$ 21 466 552	\$ 26 120 465	\$ 29 985 102	\$ 32 999 004	\$ 34 695 012
F3	1872	\$ 21 636 912	\$ 26 390 528	\$ 30 367 270	\$ 33 423 858	\$ 35 139 914
HCV management costs:	1308	\$ 21 348 019	\$ 25 962 529	\$ 29 787 169	\$ 32 804 327	\$ 34 502 092
compensated cirrhosis	24.04	¢ 04 755 404	¢ 00 E40 404	¢ 20 ECE 4EE	£ 22 640 402	¢ 25 222 770
(F4)	2184	\$ 21 755 424	\$ 26 548 431	\$ 30 565 155	\$ 33 618 482	\$ 35 332 778
HCV management costs:	14 544	\$ 20 443 428	\$ 25 181 634	\$ 29 119 361	\$ 32 171 123	\$ 33 881 963
decompensated cirrhosis	24 240	\$ 22 660 019	\$ 27 329 328	\$ 31 232 963	\$ 34 251 686	\$ 35 952 906
HCV management costs:	26 736	\$ 20 630 420	\$ 25 364 275	\$ 29 302 856	\$ 32 357 328	\$ 34 068 540
hepatocellular carcinoma	44 568	\$ 22 473 028	\$ 27 146 688	\$ 31 049 469	\$ 34 065 482	\$ 35 766 331
HCV management costs:	78 949	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
liver transplant, first year	131 589	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
HCV management costs:	20 292	\$ 21 444 151	\$ 26 147 896	\$ 30 069 062	\$ 33 104 304	\$ 34 810 334
liver transplant,	33 828	¢ 21 650 200	¢ 26 362 050	¢ 30 303 3EF	¢ 22 240 40 7	¢ 35 034 530
subsequent year	33 0Z0	\$ 21 659 288	\$ 26 363 058	\$ 30 283 255	\$ 33 318 497	\$ 35 024 528
HCV ELISA toot	25	\$ 21 551 720	\$ 26 236 864	\$ 30 083 332	\$ 33 029 923	\$ 34 638 467
HCV ELISA test	41	\$ 21 551 720	\$ 26 274 094	\$ 30 269 004	\$ 33 392 915	\$ 35 196 452
Ougatitation LIOV/DNA	69	\$ 21 551 720	\$ 26 248 904	\$ 30 163 332	\$ 33 192 185	\$ 34 893 029
Quantitation HCV RNA	115	\$ 21 551 720	\$ 26 262 051	\$ 30 188 986	\$ 33 230 618	\$ 34 941 834

- " • • • •	474	\$ 21 551 720	\$ 26 243 946	\$ 30 153 448	\$ 33 181 154	\$ 34 883 011
FibroSure test	789	\$ 21 551 720	\$ 26 267 009	\$ 30 198 869	\$ 33 241 648	\$ 34 951 851
	306	\$ 21 551 720	\$ 26 232 013	\$ 30 129 828	\$ 33 149 828	\$ 34 847 379
HCV genotype assay	510	\$ 21 551 720	\$ 26 278 940	\$ 30 222 486	\$ 33 272 968	\$ 34 987 477
Agent's Behavior Inputs						
Uptake rate of HCV	0.5	\$ 21 551 720	\$ 24 714 749	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
testing in prison under	4.0	A A A B A B B A B B B B B B B B B B	A 07 044 055	A A A B A B A B A	^ 	* • • • • • • • • • • • • • • • • • • •
risk-based scenario	1.0	\$ 21 551 720	\$ 27 841 055	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
Uptake rate of HCV	0.8	\$ 21 551 720	\$ 26 255 477	\$ 29 207 223	\$ 32 030 103	\$ 33 720 556
testing in prison under						
opt-out scenarios	1	\$ 21 551 720	\$ 26 255 477	\$ 31 222 114	\$ 34 426 023	\$ 36 194 758
F0 HCV diagnosis	0.02787	\$ 21 505 427	\$ 26 256 247	\$ 30 183 780	\$ 33 226 663	\$ 35 008 320
probability	0.04606	\$ 21 621 546	\$ 26 300 836	\$ 30 268 130	\$ 33 251 753	\$ 34 952 752
F1 HCV diagnosis	0.02236	\$ 21 460 494	\$ 26 176 796	\$ 30 096 300	\$ 33 174 214	\$ 34 964 259
probability	0.03702	\$ 21 591 823	\$ 26 287 387	\$ 30 219 733	\$ 33 189 259	\$ 34 869 974
F2 HCV diagnosis	0.03179	\$ 21 461 496	\$ 26 170 672	\$ 30 121 365	\$ 33 193 216	\$ 34 987 292
probability	0.05246	\$ 21 622 164	\$ 26 312 144	\$ 30 198 967	\$ 33 237 403	\$ 34 913 924
F3 HCV diagnosis	0.03471	\$ 21 403 116	\$ 26 163 960	\$ 30 104 704	\$ 33 240 204	\$ 35 065 694
probability	0.05724	\$ 21 649 339	\$ 26 295 090	\$ 30 197 550	\$ 33 180 087	\$ 34 890 870
F4 HCV diagnosis	0.12439	\$ 21 141 919	\$ 25 994 826	\$ 30 054 620	\$ 33 284 579	\$ 35 149 471
probability	0.19926	\$ 21 808 590	\$ 26 339 622	\$ 30 154 955	\$ 33 108 846	\$ 34 724 209
Probability of quitting IDU	0.004967	\$ 21 855 243	\$ 26 874 743	\$ 30 696 696	\$ 33 789 250	\$ 35 561 382
(monthly)	0.006655	\$ 21 070 156	\$ 25 468 064	\$ 29 581 771	\$ 32 551 437	\$ 34 167 996
Treatment initiation	0.036	\$ 21 147 700	\$ 25 692 225	\$ 29 493 840	\$ 32 421 798	\$ 34 112 535
probability per month	0.040	# 04 000 040	¢ 00 000 500	¢ 00 707 000	Ф 00 074 744	Ф о <u>г ог</u> д ггд
(prisoners)	0.046	\$ 21 863 310	\$ 26 680 592	\$ 30 737 393	\$ 33 871 741	\$ 35 657 557
Treatment initiation	0.023	\$ 22 124 272	\$ 26 839 429	\$ 30 837 129	\$ 33 876 177	\$ 35 594 010
probability per month	0.020	\$ 21 039 618	¢ 25 704 717	¢ 20 752 005	¢ 22 704 240	¢ 24 521 900
(general population)	0.029	\$ 21 039 616	\$ 25 784 717	\$ 29 753 005	\$ 32 781 248	\$ 34 521 899
Pagalina arima probability	10% decrease	\$ 17 353 598	\$ 21 053 012	\$ 24 208 441	\$ 26 631 855	\$ 27 975 997
Baseline crime probability	10% increase	\$ 25 671 631	\$ 31 320 358	\$ 36 073 518	\$ 39 655 067	\$ 41 707 597
HCV transmission	0.00005	\$ 21 505 427	\$ 26 256 247	\$ 30 183 780	\$ 33 226 663	\$ 35 008 320
probability	0.00025	\$ 21 621 546	\$ 26 300 836	\$ 30 268 130	\$ 33 251 753	\$ 34 952 752
Awareness reduction	0.25	\$ 21 460 494	\$ 26 176 796	\$ 30 096 300	\$ 33 174 214	\$ 34 964 259
factor	0.75	\$ 21 591 823	\$ 26 287 387	\$ 30 219 733	\$ 33 189 259	\$ 34 869 974
Treatment reduction factor	0	\$ 21 461 496	\$ 26 170 672	\$ 30 121 365	\$ 33 193 216	\$ 34 987 292
Trouble in Todaction Tactor	1	\$ 21 622 164	\$ 26 312 144	\$ 30 198 967	\$ 33 237 403	\$ 34 913 924
HCV-associated Agent Cha	aracteristics					
HCV prevalence among	0.000061	\$ 21 514 922	\$ 26 228 108	\$ 30 157 027	\$ 33 211 775	\$ 34 945 852
newborn	0.00018	\$ 21 524 216	\$ 26 237 754	\$ 30 166 522	\$ 33 201 840	\$ 34 933 336
Proportion of patients	25%	\$ 20 576 076	\$ 26 257 558	\$ 30 842 773	\$ 34 655 315	\$ 36 717 664

aware of HCV infection	75%	\$ 22 604 109	\$ 26 461 171	\$ 29 602 069	\$ 32 039 725	\$ 33 416 313
(General population)	.070	4 22 00 1 100	420 101 111	\$ 20 002 000	Ų 02 000 120	\$ 55 1.6 5.6
Proportion of patients	10%	\$ 20 937 420	\$ 26 203 493	\$ 30 425 645	\$ 33 612 707	\$ 35 380 462
aware of HCV infection	50%	\$ 22 908 891	\$ 26 837 063	\$ 30 110 890	\$ 32 837 505	\$ 34 452 948
(Prisoners)						
Proportion of	0.29	\$ 22 001 390	\$ 26 857 076	\$ 30 684 807	\$ 33 961 217	\$ 35 699 829
treatment-experienced	0.49	\$ 21 774 164	\$ 26 482 017	\$ 30 348 723	\$ 33 369 556	\$ 35 099 313
patients initially						
	Community:			•	•	•
Proportion of diagnosed	30%, Prisons:	\$ 20 976 548	\$ 25 093 814	\$ 28 586 186	\$ 31 200 079	\$ 32 732 573
patients eligible for	47%					
treatment	Community:	¢ 22 271 720	¢ 27 646 002	\$ 31 989 922	\$ 35 385 275	\$ 37 322 299
	50%, Prisons:	\$ 22 271 739	\$ 27 646 902	\$ 31 969 922	\$ 30 360 Z/O	Ђ 37 322 299
Additional treatment	0.12975	\$ 20 927 489	\$ 25 481 182	\$ 29 270 434	\$ 32 191 813	\$ 33 831 811
eligibility with	0.12070	ψ 20 027 100	ψ 20 101 102	Ψ20270 IOT	ψ 02 101 010	Ψ 00 001 011
interferon-free regimen	0.21625	\$ 22 179 781	\$ 27 069 479	\$ 31 122 906	\$ 34 262 707	\$ 36 074 225
Miscellaneous						
	46% discount	•			*	
Drug price	of WAC	\$16 443 602	\$19 445 843	\$22 183 850	\$24 161 288	\$25 368 047
	AWP	\$23 772 640	\$29 216 188	\$33 651 075	\$37 146 233	\$39 069 338
Self-clearance probability	0.23	\$ 22 001 390	\$ 26 857 076	\$ 30 684 807	\$ 33 961 217	\$ 35 699 829
after acute infection	0.28	\$ 21 774 164	\$ 26 482 017	\$ 30 348 723	\$ 33 369 556	\$ 35 099 313
SMR of inmates	0.77	\$ 21 605 268	\$ 26 364 824	\$ 30 321 364	\$ 33 364 209	\$ 35 106 510
OWIN OF IMPLACES	0.94	\$ 21 552 107	\$ 26 242 642	\$ 30 201 036	\$ 33 220 979	\$ 34 921 458
SVR rates of oral DAAs	0% decrease	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
2	15% decrease	\$ 21 548 753	\$ 26 294 375	\$ 30 207 667	\$ 33 249 143	\$ 34 961 994
Generic drug availability	2025	\$ 20 596 669	\$ 25 211 883	\$ 29 095 847	\$ 32 030 274	\$ 33 423 264
year	2032	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
Time horizon	20 years	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431
	40 years	\$ 21 551 720	\$ 26 255 477	\$ 30 176 159	\$ 33 211 401	\$ 34 917 431

a In the base case, we simulated fibrosis progression by using regression equations (eTable 6); however, for 1-way sensitivity analysis, we used fixed upper and lower values of fibrosis progression instead of equations.
 Abbreviations: DAA, direct anti-viral agent; HCV, hepatitis C virus; METAVIR, meta-analysis of histologic data in viral hepatitis; F0-F4, METAVIR fibrosis score; ELISA, enzyme-linked immunosorbant analysis; SVR, sustained virologic

response; SMR, standardized mortality ratio; WAC, wholesale acquisition cost; AWP, average wholesale price.

S3.3 Scenario Analyses

eTable 20. 30-year cumulative incidences of infection, advanced diseases, and results of cost-effectiveness analysis of scenario when all F0-F4 patients were eligible for treatment.

	No screening	1Yr-Risk vs.	1Yr-All vs.	5Yr-All vs.	10Yr-All
		No	No	No	No
		Screening	Screening	Screening	Screening
30-year Cumulative Incidences	_	_	_	_	_
Total HCV Infections	153 644	-7080	-10 128	-14 709	-16 635
Decompensated Cirrhosis	631 606	-2956	-5398	-7221	-8228
Hepatocellular Carcinoma	726 483	-3624	-6386	-8453	-9605
Liver Transplants	92 306	-339	-603	-801	-927
Liver-related Deaths	776 141	-5226	-8957	-11 825	-13 385
30-year Total Cost (\$, million)					
Screening Cost	\$0	+\$37	+\$107	+\$179	+\$250
Treatment Cost	\$88 927	+\$1590	+\$2975	+\$4052	+\$4663
Advanced HCV Complications					
Cost	\$91 339	-\$200	-\$332	-\$490	-\$560
Cost-Effectiveness Analysis	No screening	1Yr-Risk vs.	1Yr-All vs.	5Yr-All vs.	10Yr-All
		No	1Yr-Risk	1Yr-All	vs. 5Yr-All
		screening			
QALY	5 677 427 916	+52 189	+42 148	+27 900	+12 386
Total Cost (\$, million)	\$180 266	+\$1426	+\$1323	+\$992	+\$611
ICER (\$ per QALY)	-	\$27 331	\$31 387	\$35 559	\$49 346

Scenarios:

"No screening": No screening inside prisons;

506 "1Yr-Risk": 1-time risk-based screening of currently incarcerated and entrants who were active or former IDUs for 1-year.

"1Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 1 year.

"5Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 5 year.

"10Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 10 years.

Abbreviations: QALY, quality-adjusted life-years; ICER, incremental cost-effectiveness ratio.

Note that any discrepancies in ICERs may be due to rounding.

eTable 21. 30-year cumulative incidences of infection, advanced diseases, and results of cost-effectiveness analysis of scenario when F3-F4 patients were treated immediately after diagnosed.

•	_			
No	1Yr-Risk vs.	1Yr-All vs.	5Yr-All vs.	10Yr-All
screening	No	No	No	No

		Screening	Screening	Screening	Screenin
					g
30-year Cumulative					
Incidences					
Total HCV Infections	156 341	-5859	-8453	-11 772	-14 068
Decompensated Cirrhosis	591 503	-2464	-5009	-6702	-7404
Hepatocellular Carcinoma	683 370	-3807	-6382	-8518	-9651
Liver Transplants	86 233	-366	-710	-954	-1057
Liver-related Deaths	712 109	-5009	-8751	-11 524	-13 023
30-year Total Cost (\$,					
million)					
Screening Cost	\$0	+\$37	+\$107	+\$179	+\$250
Treatment Cost	\$75 500	+\$851	+\$1569	+\$2051	+\$2339
Advanced HCV					
Complications Cost	\$84 792	-\$134	-\$213	-\$350	-\$384
Cost-Effectiveness	No	1Yr-Risk vs.	1Yr-All vs.	5Yr-All vs.	10Yr-All
Analysis	screening	No screening	1Yr-Risk	1Yr-All	vs.
					5Yr-All
QALY	5677 199 951	+41 905	+33 696	+20 201	+9898
Total Cost (\$, million)	\$160 292	+\$754	+\$709	+\$419	+\$324
ICER (\$ per QALY)	-	\$15 210	Dominated	\$16 915	\$27 650

516 Scenarios:

518

519

521

522

524525

517 "No screening": No screening inside prisons;

"1Yr-Risk": 1-time risk-based screening of currently incarcerated and entrants who were active or former IDUs for 1-year.

"1Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 1 year.

520 "5Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 5 year.

"10Yr-All": 1-time opt-out screening of currently incarcerated inmates and entrants for 10 years.

Abbreviations: QALY, quality-adjusted life-years; ICER, incremental cost-effectiveness ratio.

 $523\,$ Note that any discrepancies in ICERs may be due to rounding.

REFERENCES

526527

- 528 1. Arnold K, Gosling J, Holmes D. *The Java programming language*: Addison-wesley Reading; 1996.
- West HC, Sabol WJ, Greenman SJ. Prisoners in 2009. Bureau of justice statistics bulletin. 2010:1-37.
- Bureau USC. Current Population Survey, Annual Social and Economic Supplement, 2011
 Internet release date: November 2012.
- Howden LM, Meyer JA. Age and sex composition: 2010. United census bureau. 2011.
- 535 5. Carson EA, Sabol WJ. Prisoners in 2011. Washington, DC: Bureau of Justice Statistics. 2012.
- 537 6. Brady JE, Friedman SR, Cooper HLF, Flom PL, Tempalski B, Gostnell K. Estimating the 538 prevalence of injection drug users in the US and in large US metropolitan areas from 1992 539 to 2002. J urban health. 2008;85(3):323-51.
- Mumola CJ, Karberg JC. Drug use and dependence, state and federal prisoners, 2004.
 Bureau of Justice Statistics Special Report. 2006;NCJ 213530.
- Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Mathews T, Kirmeyer S, et al. Births: final data for 2007. National vital statistics reports. 2010;58(24):1-125.
- Arias E. United States life tables, 2007. National vital statistics reports: from the Centers
 for Disease Control and Prevention, National Center for Health Statistics, National Vital
 Statistics System. 2011;59(9):1.
- Vlahov D, Wang C, Ompad D, Fuller CM, Caceres W, Ouellet L, et al. Mortality risk among
 recent-onset injection drug users in five US Cities. Substance Use & Misuse.
 2008;43(3-4):413-28.
- 550
 11. Spaulding AC, Seals RM, McCallum VA, Perez SD, Brzozowski AK, Steenland NK.
 551 Prisoner survival inside and outside of the institution: implications for health-care planning.
- 552 Am J Epidemiol. 2011;173(5):479-87.
- 553 12. Denniston MM, Jiles RB, Drobeniuc J, Klevens RM, Ward JW, McQuillan GM, et al.
 554 Chronic hepatitis C virus infection in the United States, National Health and Nutrition
 555 Examination Survey 2003 to 2010. Ann Intern Med. 2014;160(5):293-300.
- Amon JJ, Garfein RS, Ahdieh-Grant L, Armstrong GL, Ouellet LJ, Latka MH, et al.
 Prevalence of hepatitis C virus infection among injection drug users in the United States,
 1994–2004. Clinical Infectious Diseases. 2008;46(12):1852-8.
- 559 14. Nainan OV, Alter MJ, Kruszon-Moran D, Gao FX, Xia G, McQuillan G, et al. Hepatitis C 560 virus genotypes and viral concentrations in participants of a general population survey in 561 the United States. Gastroenterology. 2006;131(2):478-84.
- 562 15. Davis GL, Alter MJ, El-Serag H, Poynard T, Jennings LW. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology. 2010;138(2):513-21.

- 565 16. Poynard T, Colombo M, Bruix J, Schiff E, Terg R, Flamm S, et al. Peginterferon alfa-2b and ribavirin: effective in patients with hepatitis C who failed interferon alfa/ribavirin therapy. Gastroenterology. 2009;136(5):1618-28.
- Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, et al. Telaprevir for
 retreatment of HCV infection. New England Journal of Medicine. 2011;364(25):2417-28.
- 570 18. Bank. W. Birth rate, crude (per 1,000 people). Online at: 571 http://data.worldbank.org/indicator/SP.DYN.CBRT.IN. 2014.
- 572 19. Cottrell EB, Chou R, Wasson N, Rahman B, Guise J-M. Reducing Risk for Mother-to-Infant Transmission of Hepatitis C Virus.
- 574 20. Denniston MM, Klevens RM, McQuillan GM, Jiles RB. Awareness of infection, knowledge 575 of hepatitis C, and medical follow-up among individuals testing positive for hepatitis C:
- National Health and Nutrition Examination Survey 2001-2008. Hepatology. 2012;55(6):1652-61.
- 578 21. Spaulding AC, Thomas DL. Screening for HCV infection in jails. Jama. 579 2012;307(12):1259-60.
- 580 22. Kabiri M, Jazwinski AB, Roberts MS, Schaefer AJ, Chhatwal J. The changing burden of 581 hepatitis C virus infection in the United States: model-based predictions. Ann Intern Med. 582 2014;161(3):170-80.
- 583 23. Nelson P, Mathers B, Cowie B, Hagan H, Des Jarlais D, Horyniak D, et al. The 584 epidemiology of viral hepatitis among people who inject drugs: results of global systematic 585 reviews. Lancet. 2011;378(9791):571.
- 586 24. Shiffman ML. Chronic Hepatitis C Virus: Advances in Treatment, Promise for the Future: Springer Science & Business Media; 2011.
- Taylor DC, Pawar V, Kruzikas D, Gilmore KE, Pandya A, Iskandar R, et al. Methods of
 model calibration: observations from a mathematical model of cervical cancer.
 PharmacoEconomics. 2010;28(11):995-1000.
- 591 26. Surveillance for Viral Hepatitis United States, 2011. Accessed at Center for Disease
 592 Control and Prevention at http://www.cdc.gov/HEPATITIS/Statistics/index.htm Last
 593 accessed: August 25, 2015.
- 594 27. Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods used in cancer simulation models and suggested reporting guidelines. PharmacoEconomics. 2009;27(7):533-45.
- 597 28. Cardoso AC, Moucari R, Figueiredo-Mendes C, Ripault MP, Giuily N, Castelnau C, et al.
 598 Impact of peginterferon and ribavirin therapy on hepatocellular carcinoma: incidence and
 599 survival in hepatitis C patients with advanced fibrosis. Journal of Hepatology.
 600 2010;52(5):652-7.
- Thein HH, Yi Q, Dore GJ, Krahn MD. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression.

 Hepatology. 2008;48(2):418-31.

- 604 30. Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of 605 hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver 606 disease. Gastroenterology. 2009;136(1):138-48.
- Benvegnu L, Noventa F, Bernardinello E, Pontisso P, Gatta A, Alberti A. Evidence for an association between the aetiology of cirrhosis and pattern of hepatocellular carcinoma development. Gut. 2001;48(1):110-5.
- 32. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, et al. Morbidity and
 mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients.
 Gastroenterology. 1997;112(2):463-72.
- 613 33. Gentilini P, Laffi G, La Villa G, Romanelli RG, Buzzelli G, Casini-Raggi V, et al. Long 614 course and prognostic factors of virus-induced cirrhosis of the liver. The American Journal 615 of Gastroenterology. 1997;92(1):66-72.
- Sangiovanni A, Prati GM, Fasani P, Ronchi G, Romeo R, Manini M, et al. The natural history of compensated cirrhosis due to hepatitis C virus: A 17 year cohort study of 214 patients. Hepatology. 2006;43(6):1303-10.
- Serfaty L, Aumaître H, Chazouillères O, Bonnand AM, Rosmorduc O, Poupon RE, et al.
 Determinants of outcome of compensated hepatitis C virus-related cirrhosis. Hepatology.
 1998;27(5):1435-40.
- Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study.

 Hepatology. 1997;25(3):754-8.
- Tateyama M, Yatsuhashi H, Taura N, Motoyoshi Y, Nagaoka S, Yanagi K, et al.
 Alpha-fetoprotein above normal levels as a risk factor for the development of
 hepatocellular carcinoma in patients infected with hepatitis C virus. Journal of
 gastroenterology, 2011:1-9.
- Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. New England Journal of Medicine. 1993;328(25):1797.
- Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. Annals of internal medicine. 1999;131(3):174.
- 40. Planas R, Ballesté B, Antonio Álvarez M, Rivera M, Montoliu S, Anton Galeras J, et al.
 Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200
 patients. Journal of Hepatology. 2004;40(5):823-30.
- Thuluvath P, Guidinger M, Fung J, Johnson L, Rayhill S, Pelletier S. Liver transplantation in the United States, 1999–2008. Am J Transplant. 2010;10(4p2):1003-19.
- Lang K, Danchenko N, Gondek K, Shah S, Thompson D. The burden of illness associated with hepatocellular carcinoma in the United States. J Hepatol. 2009;50(1):89-99.

- 43. Saab S, Hunt DR, Stone MA, McClune A, Tong MJ. Timing of hepatitis C antiviral therapy
 in patients with advanced liver disease: A decision analysis model. Liver Transpl.
 2010;16(6):748-59.
- Wolfe R, Roys E, Merion R. Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant. 2010;10(4p2):961-72.
- Davis G, Alter M, El-Serag H, Poynard T, Jennings L. Aging of hepatitis C virus
 (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence
 and disease progression. Gastroenterology. 2010;138(2):513-21.
- Substance Abuse and Mental Health Services Administration, Results from the 2012
 National Survey on Drug Use and Health: Summary of National Findings, NSDUH Series
 H-46, HHS Publication No. (SMA) 13-4795. Rockville, MD: Substance Abuse and Mental
 Health Services Administration, 2013. Substance Abuse and Mental Health Services
 Administration, Rockville. 2013.
- 47. Office of National Drug Control Policy. ADAM II 2012 Annual report of the arrestee drug
 abuse monitoring program. May 2013. Available at:
 http://www.whitehouse.gov/sites/default/files/ondcp/policy-and-research/adam_ii_2012_a
- 658 <a href="http://www.whitenouse.gov/sites/default/files/ondcp/policy-and-research/adam_ii_2012_a
 659 nnual_rpt_web.pdf Last accessed August 25, 2015.
- Centers for Disease Control and Prevention. HIV Screening of Male Inmates During
 Prison Intake Medical Evaluation --- Washington, 2006--2010. Morbidity and Mortatlity
 Weekly Report (MMWR). Available at:
- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6024a3.htm Last accessed August 25, 2015.
- 665 49. Centers for Disease Control and Prevention. Recommendations for prevention and control 666 of hepatitis C virus (HCV) infection and HCV-related chronic disease. MMWR: Morbidity 667 and Mortality Weekly Report. 1998;47(No. RR-19).
- Centers for Disease Control and Prevention. Recommendations for the identification of
 chronic hepatitis C virus infection among persons born during 1945-1965. MMWR:
 Recommendations and Reports. 2012;61(RR04):1-18.
- 51. 2014 American Association for the Study of Liver Diseases and Infectious Diseases
 Society of America Recommendations for testing, managing, and treating Hepatitis C.
 Available at: http://www.hcvguidelines.org/full-report-view Last accessed August 25,
 2015.
- Evaluation and Management of Chronic Hepatitis C Virus (HCV) Infection. Federal
 Bureau of Prisons Clinical Practice Guidelines. Available at:
 http://www.bop.gov/resources/pdfs/hepatitis_c.pdf. Last accessed July 10, 2015.
- Hill A, Khoo S, Fortunak J, Simmons B, Ford N. Minimum costs for producing hepatitis C
 direct-acting antivirals for use in large-scale treatment access programs in developing
 countries. Clin Infect Dis. 2014;58(7):928-36.
- 681 54. Rice JP, Burnett D, Tsotsis H, Lindstrom MJ, Cornett DD, Voermans P, et al. Comparison of hepatitis C virus treatment between incarcerated and community patients. Hepatology. 2012;56(4):1252-60.

- Falck-Ytter Y, Kale H, Mullen KD, Sarbah SA, Sorescu L, McCullough AJ. Surprisingly
 small effect of antiviral treatment in patients with hepatitis C. Ann Intern Med.
 2002;136(4):288-92.
- 56. Zeuzem S, Feinman SV, Rasenack J, Heathcote EJ, Lai MY, Gane E, et al. Peginterferon alfa-2a in patients with chronic hepatitis C. N Engl J Med. 2000;343(23):1666-72.
- 689 57. Rein DB, Smith BD, Wittenborn JS, Lesesne SB, Wagner LD, Roblin DW, et al. The 690 cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care 691 settings. Ann Intern Med. 2012;156(4):263-70.
- Talal AH, LaFleur J, Hoop R, Pandya P, Martin P, Jacobson I, et al. Absolute and relative contraindications to pegylated-interferon or ribavirin in the US general patient population with chronic hepatitis C: results from a US database of over 45 000 HCV-infected, evaluated patients. Aliment Pharmacol Ther. 2013;37(4):473-81.
- 696 59. Afdhal N, Zeuzem S, Kwo P, Chojkier M, Gitlin N, Puoti M, et al. Ledipasvir and sofosbuvir 697 for untreated HCV genotype 1 infection. N Engl J Med. 2014;370(20):1889-98.
- 698 60. Kowdley KV, Gordon SC, Reddy KR, Rossaro L, Bernstein DE, Lawitz E, et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N Engl J Med. 2014.
- Lawitz E, Mangia A, Wyles D, Rodriguez-Torres M, Hassanein T, Gordon SC, et al.
 Sofosbuvir for previously untreated chronic hepatitis C infection. New England Journal of
 Medicine. 2013;368(20):1878-87.
- Zeuzem S, Dusheiko G, Salupere R. Sofosbuvir+ ribavirin for 12 or 24 weeks for patients
 with HCV genotype 2 or 3: the VALENCE Trial. 64th Annual Meeting of the American
 Association for the Study of Liver Diseases, 2013. 1-5.
- Ruane P, Ain D, Riad J. Sofosbuvir plus ribavirin in the treatment of chronic HCV
 genotype 4 infection in patients of Egyptian ancestry [abstract no. 1090]. Hepatology.
 2013;58(4 Suppl):736A.
- Afdhal N, Reddy KR, Nelson DR, Lawitz E, Gordon SC, Schiff E, et al. Ledipasvir and
 sofosbuvir for previously treated HCV genotype 1 infection. N Engl J Med.
 2014;370(16):1483-93.
- Jacobson IM, Gordon SC, Kowdley KV, Yoshida EM, Rodriguez-Torres M, Sulkowski MS, et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. New England Journal of Medicine. 2013;368(20):1867-77.
- Kapoor R, Kohli A, Sidharthan S et al. All oral treatment for genotype 4 chronic hepatitis C
 infection with sofosbuvir and ledipasvir: interim results from the NIAID SYNERGY trial.
 [Abstract 240.] 65th Annual Meeting of the American Association for the Study of Liver
- 717 [Abstract 240.] 65th Annual Meeting of the American Association for the Study of Live 718 Diseases (AASLD). Boston, MA.; 2014.
- Guerino P, Harrison PM, Sabol WJ. Prisoners in 2010. Bureau of Justice Statistics,
 Washington, DC. 2011.
- 521 68. Sabol WJ, Minton TD, Harrison PM. Prison and jail inmates at midyear 2006. Bureau of justice statistics bulletin. 2007.

- 723 69. West HC. Prison inmates at midyear 2009: Statistical tables. Bureau of Justice Statistics 724 Statistical Tables. 2010:NCJ 230113. Available at:
- 725 http://www.bjs.gov/content/pub/pdf/pim09st.pdf Last accessed August 26, 2015.
- 726 70. Langan PA, Levin DJ. Recidivism of prisoners released in 1994. Federal Sentencing Reporter. 2002;15(1):58-65.
- 728 71. Rhode Island Department of Corrections Planning & Research Unit. Fiscal Year 2013
 729 Annual Population Report. Available at:
- http://www.doc.ri.gov/administration/planning/docs/FY13 Annual Report.pdf Last accessed on August 25, 2015.
- 732 72. Cipriano LE, Zaric GS, Holodniy M, Bendavid E, Owens DK, Brandeau ML. Cost 733 effectiveness of screening strategies for early identification of HIV and HCV infection in 734 injection drug users. PLoS One. 2012;7(9):e45176.
- 735 73. Centers for Medicare & Medicaid Services. Fee schedules. Available at:
- 736 https://<u>http://www.cms.gov/ClinicalLabFeesched</u> (lab fees) and
- 737 https://<u>http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/PhysicianFeeSc</u>
- 738 <u>hed/index.html?redirect=/PhysicianFeeSched</u> (physician fees). Last accessed on August 26, 2015.
- 74. Carlson JJ, Kowdley KV, Sullivan SD, Ramsey SD, Veenstra DL. An evaluation of the
 741 potential cost-effectiveness of non-invasive testing strategies in the diagnosis of
 742 significant liver fibrosis. J Gastroenterol Hepatol. 2009;24(5):786-91.
- 743 75. First DataBank, Inc. Drug databases. Available at:
- 744 http://www.firstdatabank.com/Support/drug-pricing-policy.aspx Last accessed August 25, 2015.
- 76. Spaulding AS, Kim AY, Harzke AJ, Sullivan JC, Linas BP, Brewer A, et al. Impact of new therapeutics for hepatitis C virus infection in incarcerated populations. Top Antivir Med. 2013;21(1):27-35.
- 749 77. Silverman E. What the 'Shocking' Gilead Discounts on its Hepatitis C Drugs Will Mean.
- 750 The Wall Street Journal. Retrieved from:
- http://blogs.wsj.com/pharmalot/2015/02/04/what-the-shocking-gilead-discounts-on-its-hep atitis-c-drugs-will-mean/ Accessed Feb 4, 2015.
- 753 78. Davis KL, Mitra D, Medjedovic J, Beam C, Rustgi V. Direct economic burden of chronic 754 hepatitis C virus in a United States managed care population. Journal of Clinical 755 Gastroenterology. 2011;45(2):e17.
- 756 79. McAdam-Marx C, McGarry LJ, Hane CA, Biskupiak J, Deniz B, Brixner DI. All-Cause and Incremental Per Patient Per Year Cost Associated with Chronic Hepatitis C Virus and
- Associated Liver Complications in the United States: A Managed Care Perspective. J
- 759 Manag Care Pharm. 2011;17(7):531-46.
- 760 80. Chong CAKY, Gulamhussein A, Heathcote EJ, Lilly L, Sherman M, Naglie G, et al.
- Health-state utilities and quality of life in hepatitis C patients. Am J Gastroenterol.
- 762 2003;98(3):630-8.

- 763 81. Siebert U, Sroczynski G, Rossol S, Wasem J, Ravens-Sieberer U, Kurth B, et al. Cost 764 effectiveness of peginterferon -2b plus ribavirin versus interferon -2b plus ribavirin for 765 initial treatment of chronic hepatitis C. Gut. 2003;52(3):425.
- Wilson J, Yao G, Raftery J, Bohlius J, Brunskill S, Sandercock J, et al. A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment. Health Technology Assessment. 2007;11(13):1-202.
- Dijkgraaf MG, van der Zanden BP, de Borgie CA, Blanken P, van Ree JM, van den Brink
 W. Cost utility analysis of co-prescribed heroin compared with methadone maintenance
 treatment in heroin addicts in two randomised trials. BMJ. 2005;330(7503):1297.
- Hanmer J, Lawrence WF, Anderson JP, Kaplan RM, Fryback DG. Report of nationally representative values for the noninstitutionalized US adult population for 7 health-related quality-of-life scores. Medical Decision Making. 2006;26(4):391-400.
- van der Meer AJ, Veldt BJ, Feld JJ, Wedemeyer H, Dufour J-F, Lammert F, et al.
 Association between sustained virological response and all-cause mortality among
 patients with chronic hepatitis C and advanced hepatic fibrosis. Jama.
 2012;308(24):2584-93 %@ 0098-7484.
- 780 86. Carson EA. Prisoners in 2013. Washington, DC: Bureau of Justice Statistics. 2014.
- 781 87. Carson EA, Golinelli D, Bureau of Justice S, Justice USDo, Office of Justice P, United
 782 States of A. Prisoners in 2012: Trends in Admissions and Releases, 1991–2012.
 783 Washington, DC: Bureau of Justice Statistics. 2013.
- 784 88. James N. The Bureau of Prisons (BOP): Operations and Budget. Congressional Research
 785 Service. March 4, 2014. Available at: http://www.fas.org/sgp/crs/misc/R42486.pdf Last
 786 accessed August 27, 2015. 2014.
- 787 89. Kyckelhahn T. State corrections expenditures, FY 1982-2010. Bureau of Justice Statistics.
 788 December 2012, NCJ 239672. Available at:
- 789 http://www.bjs.gov/content/pub/pdf/scefy8210.pdf Last accessed August 27, 2015.

790