Numerical Solution of ODEs

Numerical solution of first order ordinary differential equations

$$\frac{dy}{dx} = f(x, y)$$

"One step" methods

- 1) Euler's method
- 2 Improved Euler

 3 Runge Kutta

First step - common to all methods set up a grid of X: Values, Dx spacing

- based on first order, forward Euler's method difference approximation

$$\frac{dy}{dx}\Big|_{X_{o}} = \frac{y_{i} - y_{o}}{\Delta x}$$

$$\int Subs info$$

$$\frac{y_{1}-y_{0}}{\Delta x}=f(x,y)$$

general form,
general form,
explicit Ealer
$$y_{i+1} = y_i + \Delta x \cdot f(x_i, y_i)$$

EXAMPLE
$$\frac{dy}{dx} = \frac{x^3 + 1}{y} \quad y(0) = 2 \quad 0 \le x \le 10, \Delta x = 0.5$$

$$\text{Euler eq.} \quad y_{i+1} = y_i + \Delta x \cdot f(y_i, y_i)$$

$$y_{i+1} = y_i + 0.5 \left(\frac{y_i^3 + 1}{y_i}\right)$$

i	X _i	y _i	$\frac{f(x_{i},y_{i})}{y_{i}} \frac{x_{i}^{3}+1}{y_{i}}$	y _{i+1}
0	0	Z (initial (ondition)	1 2	2 + 0.5(1/2) $= 2.25$
	0.5	7.25	0.5	2.25+ 0.5 (0.5) = 2.5
Z	/.0	7.5	0.8	7.9

continue to i=20 0 5 X 5 10

i	X	X R	f(x,y)	y_new(y_exact	error	$=\sqrt{\frac{\chi^{4}}{2}+2\chi+4}$
0	0	2.00	0.50	2.25	2.00	0.00	2
1	0.5	2.25	0.50	2.50	2.24	0.01	
2	1	2.50	0.80	2.90	2.55	0.05	
3	1.5	2.90	1.51	3.65	3.09	0.19	
4	2	3.65	2.46	4.89	4.00	0.35	
17	8.5	50.26	12.24	56.38	51.29	1.03	
18	9	56.38	12.95	62.85	57.47	1.09	
19	9.5	62.85	13.66	69.68	64.00	1.14	
20	10	69.68	14.37	76.86	70.88	1.20	
		y (10)					

Error estimate

- method is based on first order approximated,

E & AX

- error accumulates as solution proceeds

- If Yexact not available, how do you choose AX to get an accurate result? perform convergence study

1) start at "reasonable" # points, solve

2) repeat solution for 1x/2

```
f(x,y)
                                 y_new
                                          y_exact error
                 2.00
                         0.50
                                  2.25
                                          2.00
                                                   0.00
                 2.25
                         0.45
                                  2.36
                                          2.12
                                                   0.13
                 2.36
                         0.48
                                  2.48
                                                   0.12
                                          2.24
3
        0.75
                 2.48
                         0.57
                                  2.63
                                          2.38
                                                   0.10
        1
                 2.63
                         0.76
                                  2.82
                                          2.55
                                                   0.08
                 60.13
                                  63.42
                                          60.69
                                                   0.56
37
        9.25
                         13.18
38
                 63.42
                                  66.81
                                          64.00
                                                   0.57
        9.5
                         13.53
                 66.81
                         13.89
39
        9.75
                                  70.28
                                          67.39
                                                   0.59
40
                 70.28
                         14.24
                                  73.84
                                          70.88
     \chi = 10
                                                   0.60
              VS. 69.68
       Continue process until / ynew-Yold/ X100% 15
less than criteria

> Solution 15 "grid independent"
```

Implicit Euler method

- problem, error accumulates because of forward diff.

- uses backword difference

$$\frac{dy}{dx}\Big|_{X_{c+1}} = f(X_{i+1}, y_{+1})$$

$$y_{i+1} = y_{i} + \Delta x \cdot \int (x_{i+1}, y_{i+1})$$

Implicit equation, yill is on both sides of equation

EXAMPLE
$$\frac{dy}{dx} = \frac{x^3 + 1}{y} \quad y(0) = 2 \quad 0 \le x \le 10, \Delta x = 0.5$$
Implicit for $i = 1$

$$y_i = 2 + 0.5 \quad (0.5) + 1$$
Use therefore Solution for find y_i

$$y_1 = 2 + 0.5 \left(\frac{(0.5)^3 + 1}{y_1} \right) = 2 + \frac{0.5825}{y_1}$$

$$y_1^{\text{new}} = 2 + \frac{0.5625}{2} = 2.281$$

$$y_1^{\text{new}} = Z + \frac{0.5825}{Z.281} = Z.247$$

$$= 2.250$$

$$= 2.250$$

$$y_2 = y_1 + 0.5 \left(\frac{(x_2)^3 + 1}{y_2} \right)$$

X	y _{exact}	y Eyp. Y Euler	y _{Imp.Euler}
0	2	2	2
1	2.55	2.5	(2.63)
2	4.00	3.65	4.33
3	7.106	6.58	6.97
4	4 11.83		12.02

bether thom
explicit
Euler

6/9/2023

Notes - both methods are first order accurate EQ DX

- given DX, implicit Euler is more accurate that explicit but

requires iteration at each step.