Problem Set 2 — Chapter 7

Michael Brodskiy

Instructor: Mr. Morgan

November 20, 2020

- 1. For the following, draw the Lewis Structure, predict the molecular structure, state bond angles, and state if the compound is polar or not.
 - (a) NF_3

The molecular structure is most likely a <u>Tri-pyramid</u>; however, it follows the exception that the bond angles are 102°. The compound is polar.

(b) RnF_4

The molecular structure is most likely a square pyramid. The bond angles are 90°. The compound is polar.

(c) PCl₃

The molecular structure is most likely a <u>Tri-pyramid</u>; The bond angles are 109.5°. The compound is polar.

(d) KrF_2

The molecular structure is most likely <u>linear</u>; The bond angles are 180°. The compound is non-polar.

(e) SeCl₄

The molecular structure is most likely a <u>Tri-bipyramid</u>. The bond angles are 90° . The compound is non-polar.

(f) CH₃Cl

The molecular structure is most likely <u>tetrahedral</u>. The bond angles are 109.5°. The compound is polar.

(g) CH₃OH

The molecular structure is most likely tetrahedral. The bond angles are 109.5°. The compound is polar.

(h) O_3^{2-}

The molecular structure is most likely <u>bent</u>. The bond angles are 109.5°. The compound is polar.

(i) IBr_2

The molecular structure is most likely <u>bent</u>. The bond angles are 109.5°. The compound is polar.

 $(j) ClO_3^-$

The molecular structure is most likely a $\underline{\text{Tri-pyramid}}$. The bond angles are 109.5° . The compound is polar.

(k) BeF₂

The molecular structure is most likely <u>linear</u>. The bond angles are 180° . The compound is non-polar.

(l) CO_3^{2-}

The molecular structure is most likely a <u>Tri-pyramid</u>. The bond angles are 109.5° . The compound is polar.

 $(m) CSN^-$

The molecular structure is most likely <u>bent</u>. The bond angles are 109.5°. The compound is polar.

 $(n) N_2O_4$

. The molecular structure is most likely Triangular planar. The bond angles are 120°. The compound is non-polar.

(o) N_2O

The molecular structure is most likely <u>linear</u>. The bond angles are 180°. The compound is non-polar.

(p) PCl₅

The molecular structure is most likely $\frac{\text{Tri-bipyramid.}}{120^{\circ}\text{ between F}}$ and P and 180° between F and F. The compound is non-polar.

- 2. Give the bond angles to all carbon atoms in the following molecules:
 - (a) CH_3CCH
 - \bullet On the carbon attached to three hydrogen: 109.5°
 - \bullet On the carbon bonded with the other carbons: 109.5°
 - \bullet On the carbon triple bonded to another carbon and single bonded to hydrogen: 109.5°
 - (b) C_2H_4
 - On both carbons: 120°
 - (c) CHOOH
 - 120°
 - (d) CH₃CHCHCH₃
 - \bullet On the carbons attached to three hydrogen: 109.5°
 - \bullet On the carbons double bonded to each other and hydrogen: 120°