marketing-analytics-customer-segmentation (1)

August 26, 2024

[]: Hi This is Sameer Mohammad an Data Analytic intern.

Introduction Customer segmentation is a powerful marketing technique that involves dividing a customer base into distinct segments based on shared characteristics, behaviours, or demographics. The primary purpose of customer segmentation is to better understand and serve customers in a more personalized and targeted way. Marketing segmentation helps to understand customer needs better and reach the right customer with right messaging.

Exploratory Data Analysis (EDA) is a necessary preliminary step before using a segmentation algorithm.

Data The data contains 2,205 observations and 39 columns. The dataset description on the card does not match the actual columns in the dataset. The below list contains actual columns from the dataset and the assumed descriptions from the column's names.

Feature	Description	Comment
AcceptedCmp1	1 if customer accepted the offer in	
	the 1st campaign, 0 otherwise	
$\bf AcceptedCmp2$	1 if customer accepted the offer in	
	the 2nd campaign, 0 otherwise	
AcceptedCmp3	1 if customer accepted the offer in	
	the 3rd campaign, 0 otherwise	
AcceptedCmp4	1 if customer accepted the offer in	
	the 4th campaign, 0 otherwise	
${f Accepted Cmp5}$	1 if customer accepted the offer in	
	the 5th campaign, 0 otherwise	
${\bf Accepted Cmp Overall}$	overall number of accepted	This column was added
	campaigns	from the list of actual columns
Response	1 if customer accepted the offer in	
	the last campaign, 0 otherwise	
Complain	1 if customer complained in the last	
	2 years	
DtCustomer	date of customer's enrolment with	There is no such column
	the company	in the dataset
$Customer_Days$	number of days since registration as	
	a customer	
Education	customer's level of education	There is no such column
		in the actual dataset

Feature	Description	Comment
education_2n Cycle	customer has secondary education	This column was added from the list of actual columns
education_Basic	customer has basic education	This column was added from the list of actual columns
education_Graduation	Customer has a bachelor degree	This column was added from the list of actual columns
${\bf education_Master}$	Customer has a masters degree	This column was added from the list of actual columns
education_PhD	Customer has a PhD	This column was added from the list of actual columns
Marital	customer's marital status.	There is no such column in the actual dataset
marital_Divorced	1 if customer is divorced, 0 otherwise.	This column was added from the list of actual columns
marital_Married	1 if customer is married, 0 otherwise.	This column was added from the list of actual columns
marital_Single	1 if customer is single, 0 otherwise.	This column was added from the list of actual columns
$marital_Together$	1 if customer is in relationship, 0 otherwise.	This column was added from the list of actual columns
$marital_Widow$	1 if customer is a widow / widower, 0 otherwise	
Kidhome	number of small children in customer's household	
Teenhome	number of teenagers in customer's household	
Income MntFishProducts	customer's yearly household income amount spent on fish products in the last 2 years	
${\bf MntMeatProducts}$	amount spent on meat products in the last 2 years	
MntFruits	amount spent on fruits products in the last 2 years	
MntSweetProducts	amount spent on sweet products in the last 2 years	
MntWines	amount spent on wine products in the last 2 years	

Feature	Description	Comment
${f MntGoldProds}$	amount spent on gold products in the last 2 years	
NumDealsPurchases	number of purchases made with discount	
${\bf Num Catalog Purchases}$	number of purchases made using catalogue	
${\bf NumStore Purchases}$	number of purchases made directly in stores	
${\bf NumWebPurchases}$	number of purchases made through company's web site	
${\bf NumWebVisitsMonth}$	number of visits to company's web site in the last month	
Recency	number of days since the last purchase	
Z_CostContact		This column was added from the list of actual columns
Z_Revenue		This column was added from the list of actual columns
\mathbf{Age}	Age of customer	This column was added from the list of actual columns
MntTotal	Total amount spent on all the products	This column was added from the list of actual columns
${ m MntRegularProds}$		This column was added from the list of actual columns

Data Preparation and Cleaning In this section: - Reviewing data columns and comparing them to the dataset description - Looking for missing values - Checking column types - Assessing unique values

```
[1]: #Importing necessary libraries
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
warnings.filterwarnings("ignore")
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pointbiserialr
```

```
[2]: #Reading the data
data = pd.read_csv('/kaggle/input/marketing-data/ifood_df.csv')
```

```
#Taking a look at the top 5 rows of the data data.head()
```

[2]:		Income	Kidhome	Teenhome	Recen	cy MntW	ines	Mn+F	ruits	MntMeatPr	nducts	\
[2].	0	58138.0	0	0		58	635	111101	88	imoneaur i	546	
	1	46344.0	1	1		38	11		1		6	
	2	71613.0	0	0		26	426		49		127	
	3	26646.0	1	0		26	11		4		20	
	4	58293.0	1	0		94	173		43		118	
	_	0020010	_	·		-						
		MntFishP	roducts	MntSweetPr	oducts	MntGol	dProds	S	marita	l_Togethe	r \	
	0		172		88		88	3 		()	
	1		2		1		6	6 		()	
	2		111		21		42	2			1	
	3		10		3			5 			1	
	4		46		27		15	5 		()	
	_	marital_		lucation_2n	•	educat	ion_Ba		educat	ion_Gradu		\
	0		0		0			0			1	
	1		0		0			0			1	
	2		0		0			0			1	
	3		0		0			0			1	
	4		0		0			0			0	
		educatio	n_Master	education	PhD	MntTotal	Mnt.F	Regula	arProds	\		
	0	Caacactc	0	0440401011	0	1529	111101		1441			
	1		0		0	21			15			
	2		0		0	734			692			
	3		0		0	48			43			
	4		0		1	407			392			
		Accepted	CmpOveral									
	0			0								
	1			0								
	2			0								
	3			0								
	4			0								

[5 rows x 39 columns]

There is some data in the dataframe. Let's dig into the data.

0.1 Reviewing data columns and comparing them to the dataset description

Retrieving the list of actual columns to compare with the column's description in the dictionary.png. The list of columns has been updated and the data description contains actual columns.

```
[3]: data.columns
```

0.2 Looking for missing values

Surprisingly, there is no missing values in the data and there are 2,205 observations in the data frame.

```
[4]: data.isna().sum()
```

```
[4]: Income
                               0
     Kidhome
                               0
     Teenhome
                               0
                               0
     Recency
     MntWines
                               0
     MntFruits
                               0
     MntMeatProducts
                               0
     MntFishProducts
                               0
     MntSweetProducts
                               0
     {\tt MntGoldProds}
                               0
     NumDealsPurchases
                               0
     NumWebPurchases
                               0
     NumCatalogPurchases
     NumStorePurchases
                               0
     NumWebVisitsMonth
                               0
     AcceptedCmp3
                               0
     AcceptedCmp4
                               0
     AcceptedCmp5
                               0
     AcceptedCmp1
                               0
     AcceptedCmp2
                               0
     Complain
                               0
     Z_CostContact
                               0
     Z_Revenue
                               0
                               0
     Response
                               0
     Age
```

Customer_Days 0 marital_Divorced 0 marital_Married 0 marital_Single 0 marital_Together 0 marital_Widow 0 education_2n Cycle 0 education_Basic 0 education_Graduation 0 education_Master 0 education_PhD 0 ${\tt MntTotal}$ 0 MntRegularProds 0 AcceptedCmpOverall 0

dtype: int64

Checking column types 0.3

All column types look good. There is no need to change any data types.

[5]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2205 entries, 0 to 2204 Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	Income	2205 non-null	float64
1	Kidhome	2205 non-null	int64
2	Teenhome	2205 non-null	int64
3	Recency	2205 non-null	int64
4	MntWines	2205 non-null	int64
5	MntFruits	2205 non-null	int64
6	${ t MntMeatProducts}$	2205 non-null	int64
7	${ t MntFishProducts}$	2205 non-null	int64
8	${ t MntSweetProducts}$	2205 non-null	int64
9	${\tt MntGoldProds}$	2205 non-null	int64
10	NumDealsPurchases	2205 non-null	int64
11	NumWebPurchases	2205 non-null	int64
12	${\tt NumCatalogPurchases}$	2205 non-null	int64
13	NumStorePurchases	2205 non-null	int64
14	${\tt NumWebVisitsMonth}$	2205 non-null	int64
15	AcceptedCmp3	2205 non-null	int64
16	AcceptedCmp4	2205 non-null	int64
17	AcceptedCmp5	2205 non-null	int64
18	AcceptedCmp1	2205 non-null	int64
19	AcceptedCmp2	2205 non-null	int64
20	Complain	2205 non-null	int64

21	Z_CostContact	2205	non-null	int64
22	Z_Revenue	2205	non-null	int64
23	Response	2205	non-null	int64
24	Age	2205	non-null	int64
25	Customer_Days	2205	non-null	int64
26	${\tt marital_Divorced}$	2205	non-null	int64
27	${\tt marital_Married}$	2205	non-null	int64
28	marital_Single	2205	non-null	int64
29	${ t marital_Together}$	2205	non-null	int64
30	${ t marital_Widow}$	2205	non-null	int64
31	education_2n Cycle	2205	non-null	int64
32	education_Basic	2205	non-null	int64
33	${\tt education_Graduation}$	2205	non-null	int64
34	education_Master	2205	non-null	int64
35	education_PhD	2205	non-null	int64
36	MntTotal	2205	non-null	int64
37	${\tt MntRegularProds}$	2205	non-null	int64
38	${\tt AcceptedCmpOverall}$	2205	non-null	int64
• .	07 .04(4)	٥.		

dtypes: float64(1), int64(38)

memory usage: 672.0 KB

0.4 Assessing unique values

Let's check the unique values in each column. If a column has the same values then we cannot use this column in our analysis and can remove it from the data frame.

[6]: data.nunique()

F67.	T	1000
[0]:	Income	1963
	Kidhome	3
	Teenhome	3
	Recency	100
	MntWines	775
	MntFruits	158
	${\tt MntMeatProducts}$	551
	${ t MntFishProducts}$	182
	MntSweetProducts	176
	MntGoldProds	212
	NumDealsPurchases	15
	NumWebPurchases	15
	NumCatalogPurchases	13
	NumStorePurchases	14
	${\tt NumWebVisitsMonth}$	16
	AcceptedCmp3	2
	AcceptedCmp4	2
	AcceptedCmp5	2
	AcceptedCmp1	2
	AcceptedCmp2	2

```
Complain
                            2
Z_CostContact
                             1
Z_Revenue
                             1
                             2
Response
Age
                           56
Customer_Days
                          662
marital_Divorced
                            2
marital_Married
                            2
marital Single
                             2
marital_Together
                             2
marital Widow
                             2
education_2n Cycle
                            2
education Basic
                             2
education_Graduation
                             2
education_Master
                             2
                             2
education_PhD
MntTotal
                          897
MntRegularProds
                          974
AcceptedCmpOverall
                             5
dtype: int64
```

Columns Z_CostContact and Z_Revenue have all the same values. These columns will not help us to understand our customers better. We can drop these columns from the data frame.

```
[7]: data.drop(columns=['Z_CostContact','Z_Revenue'],inplace=True)
```

Data Exploration In this section: - Box plot for the total amount spent on all products (MntTotal) - Outliers - Box plot and histogram for income - Histogram for age - Correlation matrix - Point-Biserial correlations for binary variables

0.5 Box plot for the total amount spent on all products (MntTotal)

Our analysis will be focused on total amount spent on all products (MntTotal). Boxplot will help us to find outliers if any.

```
[8]: plt.figure(figsize=(6, 4))
    sns.boxplot(data=data, y='MntTotal')
    plt.title('Box Plot for MntTotal')
    plt.ylabel('MntTotal')
    plt.show()
```


0.6 Outliers

The box plot spotted a few outliers in the MntTotal. Let's take a closer look at the outliers.

```
[9]: Q1 = data['MntTotal'].quantile(0.25)
     Q3 = data['MntTotal'].quantile(0.75)
     IQR = Q3 - Q1
     lower_bound = Q1 - 1.5 * IQR
     upper_bound = Q3 + 1.5 * IQR
     outliers = data[(data['MntTotal'] < lower_bound) | (data['MntTotal'] >__
      →upper_bound)]
     outliers.head()
[9]:
            Income
                    Kidhome
                              Teenhome
                                        Recency
                                                 MntWines
                                                            MntFruits
     1159
           90638.0
                           0
                                     0
                                             29
                                                      1156
                                                                  120
     1467
                                     0
           87679.0
                           0
                                             62
                                                      1259
                                                                  172
     1547
           90638.0
                           0
                                     0
                                             29
                                                      1156
                                                                  120
           MntMeatProducts MntFishProducts MntSweetProducts
                                                                 MntGoldProds
     1159
                       915
                                          94
                                                            144
                                                                            96
     1467
                       815
                                          97
                                                            148
                                                                            33
     1547
                       915
                                          94
                                                            144
                                                                            96
                                             education_2n Cycle
                                                                  education_Basic
           marital_Together
                             marital_Widow
     1159
                           0
```

	1467 1547		1		0 0			0 0		0 0	
	1159 1467 1547	education_Grad	uation 0 1 0	educatio	n_Mas	ter e 1 0 1	ducatio	on_PhD 0 0 0	MntTotal 2429 2491 2429	\	
	1159 1467 1547	MntRegularProd 233 245 233	3 8	ptedCmpOv	rerall 1 3						
		s x 37 columns									
[10]:	data =	data[(data['Mescribe()		. <mark>'</mark>] > lowe	er_bou	nd) &	(data['MntTot	al'] < upp	er_boı	ınd)]
[10]:		Income	K	idhome	Tee	nhome	Re	ecency	MntWin	es \	
	count	2202.000000	2202.	000000 2	202.0	00000	2202.0		2202.0000		
	mean	51570.283379	0.	442779	0.5	07266	49.0	21344	304.9600	36	
	std	20679.438848	0.	537250	0.5	44429	28.9	944211	336.1355	86	
	min	1730.000000	0.	000000	0.0	00000	0.0	00000	0.0000	00	
	25%	35182.500000	0.	000000	0.0	00000	24.0	00000	24.0000	00	
	50%	51258.500000	0.	000000	0.0	00000	49.0	00000	176.5000	00	
	75%	68146.500000	1.	000000	1.0	00000	74.0	00000	505.0000	00	
	max	113734.000000	2.	000000	2.0	00000	99.0	00000	1493.0000	00	
				Products		ishPro			etProducts	\	
	count	2202.000000		2.000000		2202.0		2	202.000000		
	mean	26.252044		4.336058			78474		26.967302		
	std	39.589747		6.312982			21185		40.926101		
	min	0.00000		0.000000			00000		0.000000		
	25%	2.000000		6.000000			00000		1.000000		
	50%	8.000000		8.000000			00000		8.000000		
	75%	33.000000		0.750000			00000		33.000000		
	max	199.000000	172	5.000000		259.0	00000		262.000000		
		MntGoldProds	mar	ital_Toge	ther	marit	al_Wido	w edu	cation_2n	Cvcle	\
	count	2202.000000		2202.00			2.00000		2202.0	•	•
	mean	44.014986	•••		7493		0.03451			89918	
	std	51.747221	•••		7353		0.18258			86130	
	min	0.000000	•••		0000		0.00000			00000	
	25%	9.000000			0000		0.00000			00000	
	50%	25.000000	•••		0000		0.00000			00000	
	• •	-									

75%	56.000000		1.00	0000	0.000000	0.000000	
max	321.000000		1.00	0000	1.000000	1.000000	
	education_Ba	sic	education_Gr	aduation	education_Master	education_PhD	\
count	2202.000	000	220	2.000000	2202.000000	2202.000000	
mean	0.024	523		0.504995	0.164396	0.216167	
std	0.154	702		0.500089	0.370719	0.411723	
min	0.000	000		0.000000	0.000000	0.000000	
25%	0.000	000		0.000000	0.000000	0.000000	
50%	0.000	000		1.000000	0.000000	0.000000	
75%	0.000	000		1.000000	0.000000	0.000000	
max	1.000	000		1.000000	1.000000	1.000000	
	${ t MntTotal}$	Mnt	RegularProds	Accepted	CmpOverall		
count	2202.000000		2202.000000	2	202.000000		
mean	560.193915		516.178928		0.297457		
std	572.096830		549.962471		0.678134		
min	4.000000		-283.000000		0.000000		
25%	56.000000		42.000000		0.000000		
50%	342.500000		288.000000		0.000000		
75%	962.000000		883.000000		0.000000		
max	2304.000000		2259.000000		4.000000		

[8 rows x 37 columns]

0.7 Box plot and histogram for income

```
[11]: plt.figure(figsize=(6, 4))
    sns.boxplot(data=data, y='Income', palette='viridis')
    plt.title('Box Plot for Income')
    plt.ylabel('Income')
    plt.show()
```



```
[12]: plt.figure(figsize=(8, 6))
    sns.histplot(data=data, x='Income', bins=30, kde=True)
    plt.title('Histogram for Income')
    plt.xlabel('Income')
    plt.ylabel('Frequency')
    plt.show()
```


Income distribution is close to normal distribution with no outliers.

0.8 Histogram for age

```
[13]: plt.figure(figsize=(8, 6))
    sns.histplot(data=data, x='Age', bins=30, kde=True)
    plt.title('Histogram for Age')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
[14]: print("Skewness: %f" % data['Age'].skew())
print("Kurtosis: %f" % data['Age'].kurt())
```

Skewness: 0.091227 Kurtosis: -0.796125

The age distribution looks approximately symmetrical and the left and right sides of distribution are roughly equal. Skewness of 0.09 (close to zero) supports the visual observation of the distribution. Kurtosis of -0.8 suggests that the distribution is close to normal with lighter tails and less peaked than a normal distribution.

0.9 Correlation matrix

There are many columns in the data. The correlation matrix will be very crowded if we use all columns of the data frame. We will group the columns and explore correlation between columns in each group and the column 'MntTotal'. We will focus on the column 'MntTotal' to understand how we can segment the customers who buy the most in overall. We can run similar analysis for every type of product.

```
[15]: cols_demographics = ['Income', 'Age']
    cols_children = ['Kidhome', 'Teenhome']
    cols marital = ['marital Divorced', 'marital Married', 'marital Single', |
     ⇔'marital_Together', 'marital_Widow']
    cols_mnt = ['MntTotal', 'MntRegularProds', 'MntWines', 'MntFruits', |
     cols_communication = ['Complain', 'Response', 'Customer_Days']
    cols_campaigns = ['AcceptedCmpOverall', 'AcceptedCmp1', 'AcceptedCmp2', |

¬'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']
    → 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 
     cols_education = ['education_2n Cycle', 'education_Basic', | ]
     [16]: corr matrix = data[['MntTotal']+cols demographics+cols children].corr()
    plt.figure(figsize=(6,6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
```

plt.title('Correlation Matrix Heatmap')

plt.show()

MntTotal has strong positive correlation with income and intermediate negative correlation with Kidhome. Income feature has nearly the same negative correlation with Kidhome and MntTotal.

0.10 Point-Biserial correlations for binary variables

Pearson correlation measures the strength and direction of a linear relationship between two continuous variables. We used Pearson correlation for MntTotal, Age and Income. When we try to understand the relationship between a continuous variable MntTotal and binary variables like marital status then we should use Point-Biserial Correlation Point-Biserial Correlation is used to measure the strength and direction of the linear relationship between a binary variable and a continuous variable.

```
0.0053: Point-Biserial Correlation for marital_Divorced with p-value 0.8041 -0.0188: Point-Biserial Correlation for marital_Married with p-value 0.3767 0.0011: Point-Biserial Correlation for marital_Single with p-value 0.9571 0.0008: Point-Biserial Correlation for marital_Together with p-value 0.9708 0.0370: Point-Biserial Correlation for marital_Widow with p-value 0.0826
```

There is no strong Point-Biserial correlation between MntTotal and different marital statuses. Some feature engineering may be required during the modelling process.

```
-0.0593: Point-Biserial Correlation for education_2n Cycle with p-value 0.0054 -0.1389: Point-Biserial Correlation for education_Basic with p-value 0.0000 0.0159: Point-Biserial Correlation for education_Graduation with p-value 0.4551 0.0004: Point-Biserial Correlation for education_Master with p-value 0.9842 0.0737: Point-Biserial Correlation for education_PhD with p-value 0.0005
```

There is no strong Point-Biserial correlation between MntTotal and various education levels.

Feature Engineering In this section: - New feature: Marital - New feature: In_relationship

0.11 New feature: Marital

The data frame contains 5 columns to reflect marital status. We are going to create a new column 'marital' with values: Divorced, Married, Single, Together, Widow. This column will allow us to draw some additional plots.

```
[19]: def get_marital_status(row):
    if row['marital_Divorced'] == 1:
        return 'Divorced'
    elif row['marital_Married'] == 1:
        return 'Married'
    elif row['marital_Single'] == 1:
        return 'Single'
    elif row['marital_Together'] == 1:
        return 'Together'
    elif row['marital_Widow'] == 1:
        return 'Widow'
    else:
        return 'Unknown'
    data['Marital'] = data.apply(get_marital_status, axis=1)
```

```
[20]: plt.figure(figsize=(8, 6))
    sns.barplot(x='Marital', y='MntTotal', data=data, palette='viridis')
    plt.title('MntTotal by marital status')
    plt.xlabel('Marital status')
    plt.ylabel('MntTotal')
```


0.12 New feature: In_relationship

There are 3 features that reflect if a person is single (Single, Divorced, Widow) and 2 features if a person is in relationship (Together, Married). We will add an additional feature 'In_relationship'. This feature will equal 1 if a customer's marital status is 'Married' or 'Together' and 0 in all other cases.

```
[21]: def get_relationship(row):
    if row['marital_Married'] ==1:
        return 1
    elif row['marital_Together'] == 1:
        return 1
    else:
        return 0
    data['In_relationship'] = data.apply(get_relationship, axis=1)
    data.head()
```

[21]:		Income	Kidhome	Teenhome	Recenc	у М	ntWines	MntFr	uits	MntMeatProduc	cts	\
	0	58138.0	0	0	5	8	635		88	5	546	
	1	46344.0	1	1	3	8	11		1		6	
	2	71613.0	0	0	2	6	426		49	1	L27	
	3	26646.0	1	0	2	6	11		4		20	
	4	58293.0	1	0	9	4	173		43	1	118	
		MntFishP	roducts	MntSweetPr	roducts	Mnt	GoldProd	s	educa	ation_2n Cycle	\	
	0		172		88		8	8 		0		
	1		2		1			6 		0		
	2		111		21		4	2		0		
	3		10		3			5 		0		
	4		46		27		1	5		0		
		education	n_Basic	education_	_Graduat	ion	educati	on_Mas	ter	education_PhD	\	
	0		0			1			0	0		
	1		0			1			0	0		
	2		0			1			0	0		
	3		0			1			0	0		
	4		0			0			0	1		
		MntTotal	MntReg	ularProds	Accepte	dCmp	Overall	Mari	tal	In_relationshi	ip	
	0	1529		1441			0	Sin	gle		0	
	1	21		15			0	Sin	gle		0	
	2	734		692			0	Toget	_		1	
	3	48		43			0	Toget			1	
	4	407		392			0	Marr			1	

[5 rows x 39 columns]

K-Means Clustering K-means clustering is an unsupervised machine learning algorithm used to cluster data based on similarity. K-means clustering usually works well in practice and scales well to the large datasets.

In this section: - Standardising data - Principal Component Analysis (PCA) - Elbow method - Silhouette score analysis

```
[22]: from sklearn.cluster import KMeans
```

0.13 Standardising data

K-means clustering algorithm is based on the calculation of distances between data points to form clusters. When features have different scales, features with larger scales can disproportionately influence the distance calculation. There are various ways to standardise features, we will use standard scaling .

```
[23]: from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
```

```
[23]:
                   Income
                               MntTotal In relationship
                                            2.202000e+03
      count 2.202000e+03 2.202000e+03
     mean
            2.742785e-17 -8.873717e-17
                                           -4.678869e-17
            1.000227e+00 1.000227e+00
                                           1.000227e+00
     std
     min
           -2.410685e+00 -9.724232e-01
                                           -1.348874e+00
     25%
           -7.926475e-01 -8.815089e-01
                                           -1.348874e+00
     50%
           -1.508040e-02 -3.806058e-01
                                            7.413589e-01
     75%
            8.017617e-01 7.024988e-01
                                            7.413589e-01
             3.006747e+00 3.048788e+00
                                            7.413589e-01
     max
```

The mean value for all colums is almost zero and the standard deviation is almost 1. All the data points were replaced by their z-scores.

0.14 Principal Component Analysis (PCA)

PCA is a technique of dimensionality reduction. PCA takes the original features (dimensions) and create new features that capture the most variance of the data.

```
[24]: from sklearn import decomposition
pca = decomposition.PCA(n_components = 2)
pca_res = pca.fit_transform(data_scaled[cols_for_clustering])
data_scaled['pc1'] = pca_res[:,0]
data_scaled['pc2'] = pca_res[:,1]
```

0.15 Elbow method

The elbow method is a technique used to determine the optimal number of clusters (K) for K-means clustering algorithm.

```
[25]: X = data_scaled[cols_for_clustering]
inertia_list = []
for K in range(2,10):
    inertia = KMeans(n_clusters=K, random_state=7).fit(X).inertia_
    inertia_list.append(inertia)
```

```
[26]: plt.figure(figsize=[7,5])
   plt.plot(range(2,10), inertia_list, color=(54 / 255, 113 / 255, 130 / 255))
   plt.title("Inertia vs. Number of Clusters")
   plt.xlabel("Number of Clusters (K)")
   plt.ylabel("Inertia")
   plt.show()
```


Elbow method suggests 4 or 5 clusters. Let's check silhouette score.

0.16 Silhouette score analysis

Silhouette score is a metric that used to assess the quality of clustering. A higher silhouette score indicates that the clusters are well-separated, while a lower score suggests that the clusters may overlap or are poorly defined.

```
[27]: from sklearn.metrics import silhouette_score
    silhouette_list = []
    for K in range(2,10):
        model = KMeans(n_clusters = K, random_state=7)
        clusters = model.fit_predict(X)
        s_avg = silhouette_score(X, clusters)
        silhouette_list.append(s_avg)

plt.figure(figsize=[7,5])
    plt.plot(range(2,10), silhouette_list, color=(54 / 255, 113 / 255, 130 / 255))
    plt.title("Silhouette Score vs. Number of Clusters")
    plt.xlabel("Number of Clusters (K)")
    plt.ylabel("Silhouette Score")
```


The highest silhouette score is for 4 clusters.

```
[28]: model = KMeans(n_clusters=4, random_state = 7)
model.fit(data_scaled[cols_for_clustering])
data_scaled['Cluster'] = model.predict(data_scaled[cols_for_clustering])
```

Exploration of Clusters In this section: - Visualisation of clusters - Mean consumption of different product types by cluster - Cluster sizes - Income by cluster - In_relationship feature by cluster

0.17 Visualisation of clusters

```
[29]: plt.figure(figsize=(8, 6))
sns.scatterplot(x='pc1', y='pc2', data=data_scaled, hue='Cluster',
→palette='viridis')
plt.title('Clustered Data Visualization')
plt.xlabel('Principal Component 1 (pc1)')
plt.ylabel('Principal Component 2 (pc2)')
plt.legend(title='Clusters')
```

[29]: <matplotlib.legend.Legend at 0x79edb0f8b280>


```
[30]: data['Cluster'] = data_scaled.Cluster
data.groupby('Cluster')[cols_for_clustering].mean()
```

[30]:		Income	${ t MntTotal}$	<pre>In_relationship</pre>	
	Cluster				
	0	71818.929329	1147.372792	1.0	
	1	37332.339956	150.761589	0.0	
	2	71946.155488	1159.612805	0.0	
	3	37892.819883	158.463158	1.0	

0.18 Mean consumption of different product types by cluster

```
[31]: mnt_data = data.groupby('Cluster')[cols_mnt].mean().reset_index() mnt_data.head()
```

```
[31]: Cluster MntTotal MntRegularProds MntWines MntFruits \
0 0 1147.372792 1076.279152 623.261484 52.489399
```

```
1
             150.761589
                              125.662252
                                            85.450331
                                                        7.832230
2
         2
           1159.612805
                             1085.332317
                                           613.862805 54.929878
3
         3
             158.463158
                              133.962573
                                            92.046784
                                                        7.640936
  MntMeatProducts
                   MntFishProducts MntSweetProducts MntGoldProds
0
        341.326855
                          75.577739
                                                           71.093640
                                             54.717314
1
         38.774834
                          10.971302
                                              7.732892
                                                           25.099338
2
        357.902439
                          77.603659
                                                           74.280488
                                             55.314024
3
                          11.423392
                                              7.913450
         39.438596
                                                           24.500585
```


0.19 Cluster sizes

```
[33]: cluster_sizes = data.groupby('Cluster')[['MntTotal']].count().reset_index()
    plt.figure(figsize=(8,6))
    sns.barplot(x='Cluster', y='MntTotal', data=cluster_sizes, palette = 'viridis')
    plt.title('Cluster sizes')
    plt.xlabel('Cluster')
    plt.ylabel('MntTotal')
```

[33]: Text(0, 0.5, 'MntTotal')


```
[34]: total_rows = len(data)
  cluster_sizes['Share%'] = round(cluster_sizes['MntTotal'] / total_rows*100,0)
  cluster_sizes.head()
```

```
[34]:
         Cluster MntTotal
                              Share%
                                26.0
                0
                         566
      0
      1
                1
                         453
                                21.0
      2
                2
                         328
                                15.0
      3
                3
                         855
                                39.0
```

0.20 Income by cluster

0.20.1 Box plot

```
[35]: plt.figure(figsize=(8, 6))
    sns.boxplot(x='Cluster', y='Income', data=data, palette='viridis')
    plt.title('Income by cluster')
    plt.xlabel('Cluster')
    plt.ylabel('Income')
    plt.legend(title='Clusters')
```

[35]: <matplotlib.legend.Legend at 0x79edb0f5ab60>

0.20.2 Scatter plot

```
plt.legend(title='Clusters')
```

[36]: <matplotlib.legend.Legend at 0x79edac123b50>

0.21 In_relationship feature by cluster

```
[37]: plt.figure(figsize=(8, 6))
    sns.barplot(x='Cluster', y='In_relationship', data=data, palette='viridis')
    plt.title('In_relationship by cluster')
    plt.xlabel('Cluster')
    plt.ylabel('In_relationship')
```

[37]: Text(0, 0.5, 'In_relationship')

Results This section contains the results of the K-means clustering analysis, which aimed to identify distinct customer segments based on the total amount of purchases they made (MntTotal). The analysis utilised 'Income' and 'In_relationship' features.

0.22 Optimal number of clusters = 4

The Elbow Method and Silhouette Analysis suggested 4 clusters (k=4). The elbow method highlighted the number of 4 or 5 clusters as a reasonable number of clusters. The silhouette score analysis revealed a peak silhouette score for k=4.

0.23 Cluster Characteristics

0.23.1 Cluster 0: High value customers in relationship (either married or together)

- This cluster represents 26% of the customer base
- These customers have high income and they are in a relationship

0.23.2 Cluster 1: Low value single customers

- This cluster represents 21% of the customer base
- These customers have low income and they are single

0.23.3 Cluster 2: High value single customers

- $\bullet\,$ This cluster represents 15% of the customer base
- These customers have high income and they are single

0.23.4 Cluster 3: Low value customers in relationship

- $\bullet\,$ This cluster represents 39% of the customer base
- These customers have low income and they are in a relationship