

Fiche technique et méthodes de calcul des intégrales multiples

A.U.: 2020-2021 **Prof.** H. El-Otmany

NB: cette fiche présente les techniques de calcul des intégrales multiples et leur applications. !!! Elle n'est pas autorisée pendant le DS et l'examen final de Ma212!!!

1 Intégrales doubles

1. Intégration sur un domaine rectangulaire (Théorème de Fubini) : Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction continue sur un rectangle $D = [a, b] \times [c, d]$ (a < b et c < d). Alors, on a

$$\int \int_D f(x,y) dx dy = \int_a^b \left(\int_c^d f(x,y) dy \right) dx = \int_c^d \left(\int_a^b f(x,y) dx \right) dy.$$

- 2. Intégrations successives ou itérées : Soit f une fonction continue sur un domaine borné \mathcal{R} . L'intégrale double $\int \int_{\mathcal{R}} f(x,y) dx dy$ se calcule par l'une ou l'autre des manières suivantes :
 - Si $D=\{(x,y)\in\mathbb{R}^2; a\leqslant x\leqslant b,\, g(x)\leqslant y\leqslant h(x)\}$ où h et g sont deux fonctions continues sur [a,b]. Alors, on a

$$\int \int_D f(x,y) dx dy = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx.$$

— Si $D=\{(x,y)\in\mathbb{R}^2; c\leqslant y\leqslant d,\, q(y)\leqslant x\leqslant p(y)\}$ où p et q sont deux fonctions continues sur [c,d]. Alors, on a

$$\int \int_D f(x,y) dx dy = \int_c^d \left(\int_{p(y)}^{q(y)} f(x,y) dx \right) dy.$$

3. Changement de variables en \mathbb{R}^2 : "les variables x et y sont changées en u et v, c'est-à-dire, avec det(J) est le déterminant jacobien de la transformation, on a

$$\begin{cases} x &= \varphi(u,v) \\ y &= \psi(u,v) \end{cases}; (x,y) \in D \text{ devient } (u,v) \in \Delta \longmapsto \begin{cases} x &= \varphi(u,v) \\ y &= \psi(u,v) \end{cases}; \, dxdy = |det(J)| dudv$$

$$\int \int_D f(x,y) dxdy = \int \int_{\Delta} f(\varphi(u,v),\psi(u,v)) |det(J)| dudv.$$

4. Coordonnées polaires du point $(x,y) \in \mathbb{R}^2 \setminus \{(a,b)\}$: $x = a + r\cos(\theta), y = b + r\sin\theta$ avec $(r,\theta) \in R + \times (0,2\pi)$. On a

$$\int \int_{D} f(x,y)dxdy = \int \int_{\Delta} f(a+r\cos(\theta),b+r\sin(\theta))rdrd\theta.$$

Attention : il ne faut pas oublier r dans l'intégrale. Les bornes de θ dépendent des conditions sur x et y. À titre indicatif, le cercle a pour équation $(x-a)^2+(y-b)^2=R^2$.

5. Coordonnées elliptiques du point $(x,y) \in \mathbb{R}^2 \setminus \{(a,b)\}$: $x = a + \alpha r \cos(\theta)$, $y = b + \beta r \sin \theta$ avec $(r,\theta) \in R + \times (0,2\pi)$, $(\alpha,\beta) \in \mathbb{R}^2$. On a

$$\int \int_{D} f(x,y) dx dy = \int \int_{\Delta} f(a + \alpha r \cos(\theta), b + \beta r \sin(\theta)) \alpha \beta r dr d\theta.$$

Attention : il ne faut pas oublier $\alpha\beta r$ dans l'intégrale. Les bornes de θ dépendent toujours des conditions sur x et y. À titre indicatif, l'ellipse a pour équation $\frac{(x-a)^2}{\alpha^2} + \frac{(y-b)^2}{\beta^2} = 1$.

6. Intégration des fonctions séparables : si $D = [a, b] \times [c, d]$ (avec a < b, c < d), et si f(x, y) = g(x)h(y), où g et h sont deux fonctions continues d'une seule variable. Alors, on a :

$$\int_a^b \int_c^d f(x,y) dx dy = \int_a^b \int_c^d g(x) h(y) dx dy = \left(\int_a^b g(x) dx \right) \left(\int_c^d h(y) dy \right).$$

7. Symétrie : si pour tout $(x,y) \in D$, $(-x,y) \in D$ et f(-x,y) = f(x,y) (idem $(x,-y) \in D$ et f(x,-y) = f(x,y)) alors

$$\int \int_D f(x,y) dx dy = 2 \int \int_{D_{sym}} f(x,y) dx dy, \quad D_{sym} = D \cap (\mathbb{R}^+ \times \mathbb{R}).$$

2 Intégrales triples

1. Soit $g : \mathbb{R}^3 \longrightarrow \mathbb{R}$ une fonction continue sur un parallélépipède $\Omega = [a,b] \times [c,d] \times [m,n]$ (a < b, c < d et m < n). Alors, on a

$$\int \int \int_{\Omega} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\int_{c}^{d} \left(\int_{m}^{n} f(x, y, z) dz \right) dy \right) dx = \int_{m}^{n} \left(\int_{c}^{d} \left(\int_{a}^{b} f(x, y, z) dx \right) dy \right) dz$$

$$= \int_{m}^{n} \left(\int_{c}^{b} \left(\int_{c}^{d} f(x, y, z) dy \right) dx \right) dz = \dots$$

2. Changement de variables en \mathbb{R}^3 : "les variables x, y et z sont changées en u, v et w, c'est-à-dire, avec det(J) est le déterminant jacobien de la transformation, on a

$$\begin{cases} x = \varphi(u, v, w) \\ y = \psi(u, v, w) \\ z = \nu(u, v, w) \end{cases} ; (x, y, z) \in \Omega \text{ devient } (u, v, w) \in \Delta \longmapsto \begin{cases} x = \varphi(u, v, w) \\ y = \psi(u, v, w) \\ z = \nu(u, v, w) \end{cases}$$

dxdydz = |det(J)|dudvdw

$$\iint \int \int_{\Omega} f(x,y,z) dx dy dz = \iint \int_{\Delta} f(\varphi(u,v,w),\psi(u,v,w),\nu(u,v,w)) |det(J)| du dv dw.$$

3. Coordonnées cylindriques du point $(x,y,z) \in \mathbb{R}^3 \setminus \{(a,b,c)\} : x = a + r\cos(\theta), y = b + r\sin\theta, z = z \text{ avec } (r,\theta,z) \in R + \times (0,2\pi) \times \mathbb{R}.$ On a

$$\iint \int \int_{\Omega} f(x, y, z) dx dy dz = \iint \int \int_{\Delta} f(a + r \cos(\theta), b + r \sin(\theta), z) r dr d\theta dz.$$

Attention : il ne faut pas oublier r lors du changement de variables. Les bornes de θ dépendent des conditions sur x et y.

4. Coordonnées sphériques du point $(x,y,z) \in \mathbb{R}^3 \setminus \{(a,b,c)\} : x = a + r \sin \varphi \cos(\theta), y = b + r \sin \varphi \sin \theta, z = c + r \cos \varphi \text{ avec } (r,\theta,\varphi) \in R^+ \times (0,2\pi) \times (0,\pi).$ On a

$$\int \int \int_{\Omega} f(x,y,z) dx dy dz = \int \int \int_{\Delta} f(a+r\sin\varphi\cos(\theta),b+r\sin\varphi\sin(\theta),c+r\cos\varphi) r^2 \sin\varphi dr d\theta d\varphi.$$

Attention : il ne faut pas oublier $r^2 \sin \varphi$ lors du changement de variables. Les bornes de θ et φ dépendent toujours des conditions sur x, y et z.

5. Intégration des fonctions séparables : si $\Omega = [a,b] \times [c,d] \times [m,n]$ (avec a < b, c < d, m < n), et si f(x,y,z) = g(x)h(y)k(z), où g, h et k sont deux fonctions continues d'une seule variable. Alors, on a :

$$\int_a^b \int_c^d \int_m^n f(x,y,z) dx dy dz = \int_a^b \int_c^d g(x) h(y) k(z) dx dy dz = \left(\int_a^b g(x) dx \right) \left(\int_c^d h(y) dy \right) \left(\int_m^n k(z) dz \right).$$

3 Applications

1. **calcul d'aire** : si D est une région bornée du plan \mathbb{R}^2 , bordée par une courbe fermée continue, alors on a

$$\begin{split} Aire(D) &= \int \int_{(x,y) \in D} dx dy \quad (en \ coordonn\'ees \ cart\'esiennes) \\ Aire(D) &= \int \int_{(r,\theta) \in D'} r dr d\theta \quad (en \ coordonn\'ees \ polaires) \\ Aire(D) &= \int \int_{(r,\theta) \in D'} \alpha \beta r dr d\theta \quad (en \ coordonn\'ees \ elliptiques) \end{split}$$

2. calcul du centre de gravité ou d'inertie en \mathbb{R}^2 : D est une région de densité massique ρ , le centre de gravité est déterminé par les coordonnées (x_G, y_G) tels que

$$x_G = \frac{\int \int_D x \rho(x, y) dx dy}{\int \int_D \rho(x, y) dx dy}, y_G = \frac{\int \int_D y \rho(x, y) dx dy}{\int \int_D \rho(x, y) dx dy}$$

- 3. calcul des moments en \mathbb{R}^2 : soit D une région du plan \mathbb{R}^2 de densité massique ρ . On a
 - I_x le moment d'inertie de la région D par rapport à l'axe des abscisses $(OX):I_x=\int\int_D x^2\rho(x,y)dxdy.$
 - I_x le moment d'inertie par rapport à l'axe des ordonnées (OY): $I_y = \int \int_D y^2 \rho(x,y) dx dy$.
 - I_o le moment d'inertie de la région D par rapport à l'origine du repère $(O, \vec{i}, \vec{j}, \vec{k}): I_o = \int \int_D (x^2 + y^2) \rho(x, y) dx dy$.

Attention : si la région D est homogène alors la densité massique est constante $\rho(x,y)=c\in\mathbb{R}$.

4. calcul de volume : si Ω est un domaine borné de l'espace \mathbb{R}^3 , bordée par une courbe fermée continue, alors on a

$$Vol(\Omega) = \int \int \int_{(x,y,z)\in\Omega} dx dy dz \quad (en \ coordonn\'ees \ cart\'esiennes)$$

$$Vol(\Omega) = \int \int_{(r,\theta,z)\in\Omega'} r dr d\theta dz \quad (en \ coordonn\'ees \ cylindriques)$$

$$Vol(\Omega) = \int \int_{(r,\theta,\varphi)\in\Omega'} r^2 \sin\varphi dr d\theta d\varphi \quad (en \ coordonn\'ees \ sph\'eriques)$$

5. calcul du centre de gravité ou d'inertie en \mathbb{R}^3 : soit D est une région de masse volumique μ , le centre de gravité est déterminé par les coordonnées (x_G,y_G,z_G) tels que

$$x_G = \frac{\int \int \int_{\Omega} z \mu(x,y,z) dx dy}{\int \int \int_{\Omega} \mu(x,y,z) dx dy dz}, \ y_G = \frac{\int \int \int_{\Omega} y \mu(x,y,z) dx dy}{\int \int \int_{\Omega} \mu(x,y,z) dx dy dz}, \ z_G = \frac{\int \int \int_{\Omega} z \mu(x,y,z) dx dy}{\int \int \int_{\Omega} \mu(x,y,z) dx dy dz}$$

- 6. calcul des moments en R^3 : soit Ω une région de l'espace \mathbb{R}^3 de masse volumique μ . On a
 - I_x le moment d'inertie de la région Ω par rapport à l'axe des abscisses (OX): $I_x = \int \int \int_{\Omega} (y^2 + z^2) \mu(x,y,z) dx dy dz$.
 - I_x le moment d'inertie de la région Ω par rapport à l'axe des ordonnées (OY): $I_y = \int \int \int_{\Omega} (x^2 + z^2) \mu(x, y, z) dx dy dz$.
 - I_x le moment d'inertie de la région Ω par rapport à l'axe des ordonnées (OY) : $I_y = \int \int \int_{\Omega} (x^2 + y^2) \mu(x,y,z) dx dy dz$.
 - I_o le moment d'inertie de la région Ω par rapport à l'origine du repère $(O,\vec{i},\vec{j},\vec{k}):I_o=\int\int_D(x^2+y^2+z^2)\mu(x,y,z)dxdy$.

Attention : si la région Ω est homogène alors la masse volumique est constante $\mu(x,y,z)=c\in\mathbb{R}$.