CH NG I

C S LOGIC

I. M NH LOGIC:

1.1/ **KHÁI NI M:** *M nh* logic (g i t t là *m nh*) là m t câu phát bi u (v m t l nh v c nào ó) úng ho c sai m t cách khách quan. Tính úng ho c sai c a m nh c xác nh t chính n i dung c a m nh mà không ph thu c vào ng i phát bi u.

Ta dùng các ký hi u A, B, C, ... ch các m nh .

Tính úng họ c sai c a m t m nh c g i *chân tr* (hay *giá tr chân lý*) c a m nh ó. Ta s d ng các s nh phân 1 (ho c 0) th hi n chân tr *úng* (ho c *sai*) c a m t m nh .

Ví d

a) Các phát bi u d i ây là m nh (logic):

A = "N c Vi t Nam thu c v châu \acute{A} " (chân tr $\acute{u}ng$).

B = "T giác có b n c nh b ng nhau là hình vuông" (chân tr sai).

C = "Vàng không n ng h n s t" (chân tr sai).

D = "Truy n Ki u c a thi hào Nguy n Du" (chân tr úng).

b) Các phát bi u d i ây không ph i là m nh (logic):

E = "Hãy c sách!" (câu m nh 1 nh).

F = "Anh i âu?" và G = "Tú mu n u ng n c không?" (các câu nghi v n).

G = "Tr i l nh quá!" (câu c m thán mang tính ch quan).

c) C n phân bi t nh ngh a v i M nh . nh ngh a không ph i là M nh

H = "Hình bình hành là t giác có các c p c nh i song song" (nh ngh a).

K = "Hình bình hành có các c p c nh i t ng ng b ng nhau" (M nh).

L = "Tam giác là hình ph ng có 3 nh và 3 c nh" (nh ngh a).

M = "T ng c a ba góc trong m t tam giác b ng 180°" (M nh).

1.2/PHÂN LO IM NH :

M t m nh c x p vào m t trong hai lo i sau ây:

- a) *M nh* s c p : không s d ng tr ng t "KHÔNG" trong phát bi u **và** không th chia thành các m nh nh h n.
- b) *M nh ph c h p:* có s d ng tr ng t "KHÔNG" (hàm ý ph nh) trong phát bi u **hay** có th chia thành các m nh nh h n (b ng cách s d ng các t n i : và, hay, suy ra, kéo theo, n u ... thì, t ng ng, n u và ch n u, khi và ch khi, ...).

Víd:

 \overline{A} = "Tháng giêng có 30 ngày" là m nh s c p.

B = "22 không chia h t cho 5" và $C = "4 \le 1$ " là các m nh ph c h p.

 $D = "N \ u \ 6 > 7 \ thi \ 8 > 9 " \ là m \ nh \ ph \ c \ h \ p.$

II. CÁC PHÉP N I LOGIC (CÁC PHÉP TOÁN M NH):

Cho các m nh P và Q.

2.1/ M NH PH NH: Ký hi u \overline{P} hay $P = \mathbb{I}$ hav $P = \mathbb{I}$ have $P = \mathbb{I}$ hav $P = \mathbb{I}$ have $P = \mathbb{I}$ h

P	1	0		
\overline{P}	0	1		

Vid:

 $A = \frac{3}{3} > 8$ " có $\overline{A} = 3 \le 8$ ".

 $B = \text{``} 4 \neq 7 \text{''} \text{ có } \overline{B} = \text{``} 4 = 7 \text{''}.$

C = "Tu i c a An kho ng t 18 n 20" có $\overline{C} =$ "Tu i c a An < 18 ho c > 20" D = "Áo này màu xanh" có $\overline{D} =$ "Áo này không ph i màu xanh".

E = "M t n a l p thi t môn Toán" có

 \overline{E} = "T 1 s sinh viên c a 1 p thi t môn Toán không ph i là 1/2".

F = "Không quá 15 h c sinh c a tr ng c d tr i hè qu c t " có

 \overline{F} = "H n 15 h c sinh c a tr ng c d tr i hè qu c t".

2.2/M NH H I (PHÉP N I LI N):

P	1	1	0	0
Q	1	0	1	0
$P \wedge Q$	1	0	0	0

2.3/ M NH TUY N (PHÉP N I R I):

Ký hi u $P \vee Q$ là m nh tuy n c a P và Q (c là P tuy n Q, P hay Q). $P \vee Q$ ch sai khi P và Q cùng sai.

P	1	1	0	0
Q	1	0	1	0
$P \vee Q$	1	1	1	0

2.4/ **M NH KÉO THEO:**

Ký hi u $P \rightarrow Q$ là m nh $k\acute{e}o$ theo c a P và Q (c là P $k\acute{e}o$ theo Q, P suy ra <math>Q, n u P thì Q).

 $P \rightarrow Q$ ch sai khi P úng và Q sai.

P	1	1	0	0
Q	1	1 0 1		0
$P \rightarrow Q$	1	0	1	1

Nh n xét t b ng chân tr c a $P \rightarrow Q$ r ng:

- * N u P sai thì $P \rightarrow Q$ úng (b t ch p Q).
- * N u Q $\acute{u}ng$ thì $P \rightarrow Q$ $\acute{u}ng$ (b t ch p P).

Ch ng h n cho D = [A \rightarrow (B \rightarrow C)] v i B là m nh sai và A, C là các m nh tùy ý. M nh ph c h p D có chân tr úng b t ch p A và C.

2.5/ M NH T NG NG:

Ký hi u $P \leftrightarrow Q$ là m nh t ng ng c a P và Q. (c là P t ng ng Q, P n u và ch n u Q). ý $(P \leftrightarrow Q) \equiv [(P \rightarrow Q) \land (Q \rightarrow P)].$

 $P \leftrightarrow Q$ ch úng khi P và Q có cùng chân tr.

P	1	1	0	0
Q	1	0	1	0
$P \leftrightarrow Q$	1	0	0	1

Ví d: Xét các m nh sau:

A = " N c tinh khi t không d n i n" (úng).

B = "Công th c hóa h c c a n c là H_2O " (úng).

C = "Vua Quang Trung ã i th ng quân Minh" (sai).

 $D = \sqrt[4]{2} + \sqrt{3} \le 3$ " (sai),

E ="Có s s ng ngoài trái t" (?).

F = " i tuy n bóng á Hà Lan s vô ch worldcup tr c n m 2100" (?).

Các m nh sau là $\acute{u}ng: \overline{C}$, $A \wedge B$, $A \vee B$, $A \vee D$, $B \vee E$, $A \rightarrow B$, $C \rightarrow A$,

 $D \to C, \ D \to F, \ E \to B, \ A \leftrightarrow B, \ C \leftrightarrow D.$

Các m nh sau là $sai : \overline{A}$, $C \wedge B$, $D \wedge C$, $D \wedge E$, $C \vee D$, $A \rightarrow C$, $B \leftrightarrow D$.

2.6/ TH T UTIÊN C A CÁC PHÉP N I LOGIC:

Khi không có d u ngo c, ta qui c phép ph nh có u tiên cao nh t, ti p theo là các phép toán \wedge và \vee (\wedge và \vee có u tiên ngang nhau), th p nh t là các phép toán \rightarrow và \leftrightarrow (\rightarrow và \leftrightarrow có u tiên ngang nhau).

Khi có m t ng th i hai phép toán có u tiên ngang nhau thì s d ng d u ngo c phân cách ng i c bi t phép toán nào c th c hi n tr c.

Ta c ng s d ng các d u ngo c thay i th t u tiên theo ý mu n. Cho các m nh A, B và C.

Vi t $\overline{A} \wedge B \rightarrow C$ chi u là th chi n \overline{A} r i th chi n $(\overline{A} \wedge B)$ và sau cùng th chi n $(\overline{A} \wedge B) \rightarrow C$.

Vi t $A \vee B \leftrightarrow \overline{C}$ chi u là th chi n \overline{C} r i th chi n $(A \vee B)$ và sau cùng th chi n $(A \vee B) \leftrightarrow \overline{C}$.

Vi t $(A \lor B) \land C$, $A \lor (B \land C)$, $(A \to B) \leftrightarrow C$, $A \to (B \leftrightarrow C)$, $(A \to B) \lor C$, $(A \leftrightarrow B) \land C$ v i hàm ý là các phép toán trong ngo c c th c hi n tr c.

2.7/ B NG CHÂN TR C A M NH PH C H P:

B ng chân tr c a A có 2^n c t t ng ng v i m i kh n ng chân tr c a $P_1, P_2, ...$ và P_n .

<u>Ví d:</u> Cho các m nh s c p P, Q, R và m nh ph c h p A nh sau : $A = \{ [(P \lor Q) \land (\overline{P} \to R)] \leftrightarrow \overline{R} \}.$

xét chân tr c a A, ta c n xét chân tr c a các m nh trung gian $B = (P \lor Q), \overline{P}, C = (\overline{P} \to R), D = (B \land C)$ và \overline{R} .

B ng chân tr c a A có $2^3 = 8$ c t t ng ng v i $2^3 = 8$ kh n ng chân tr ng th i c a P, Q và R.

P	1	1	1	0	1	0	0	0
Q	1	1	0	1	0	1	0	0
R	1	0	1	1	0	0	1	0
$B = (P \vee Q)$	1	1	1	1	1	1	0	0
\overline{P}	0	0	0	1	0	1	1	1
$C = (\overline{P} \to R)$	1	1	1	1	1	0	1	0
$D = (B \wedge C)$	1	1	1	1	1	0	0	0
\overline{R}	0	1	0	0	1	1	0	1
$A = (D \leftrightarrow \overline{R})$	0	1	0	0	1	0	1	0

III. <u>CÁC D NG M NH :</u>

3.1/ KHÁI NI M:

a) Bi n s th c là n i thay vào các h ng s th c khác nhau.

Ch ng h n $F(x,y,z,t) = \frac{2x^2y - 4yz^3t^4 + t - 3}{\sqrt{y^2 + 3z^4 + 1}}$ là m t bi u th c i s theo các

bi ns th c x, y, z và t.

b) Bi n m nh là n i thay vào các m nh khác nhau.

D ng m nh là m t c u trúc bao g m các m nh , các bi n m nh và các phép toán m nh - , \wedge , \vee , \rightarrow , \leftrightarrow liên k t các m nh và bi n m nh . Ch ng h n $F(p,q,r,s) = { <math>(p \leftrightarrow \overline{q}) \lor [r \to (A \land \overline{s})] } \land (q \lor B)$ là m t d ng m nh theo các bi n m nh p,q,r,s và các m nh $A = "\pi > \sqrt{11}"$ và B = "N c sôi 100° C d i áp su t th ng".

3.2/ D NG M NH H NG ÚNG VÀ H NG SAI:

 $\overline{\text{Cho d ng m nh}} \quad \overline{F = F(p_1, p_2, \dots, p_n) \text{ theo n bi n m nh}} \quad p_1, p_2, \dots \text{ và } p_n .$

- a) N u F $lu \hat{o}n \ lu \hat{o}n \ ung$ (b ng chân tr c a F có dòng cu i toàn giá tr 1) b t ch p chân tr c a $p_1, p_2, ...$ và p_n thì ta nói F là $m \ t \ d \ ng \ m \ nh$ $h \ ng$ ung và ta ký hi u F \Leftrightarrow 1.
- b) N u F *luôn luôn sai* (b ng chân tr c a F có dòng cu i toàn giá tr 0) b t ch p chân tr c a $p_1, p_2, ...$ và p_n thì ta nói F là m t d ng m nh h ng sai và ta ký hi u F \Leftrightarrow \mathbf{O} .

Ví d: Cho các bi n m nh p, q và r.

- a) $F(p, q, r) = [(p \land \overline{q}) \rightarrow (\overline{q} \lor r)]$ có $F \Leftrightarrow \mathbf{1}$ (hãy 1 p b ng chân tr cho F).
- b) $G(p, q, r) = \{ p \leftrightarrow [q \lor (\overline{r} \to B)] \} \land A \lor i \text{ các m nh} \qquad A = "2^3 > 3^2 " và B = "Lào ti p giáp v i Vi t Nam". Ta có <math>G \Leftrightarrow \mathbf{O}$ (vì A có chân tr sai).

3.3/ H QU LOGIC VÀ T NG NG LOGIC:

Cho các d ng m nh $E = E(p_1, p_2, ..., p_n)$ và $F = F(p_1, p_2, ..., p_n)$ theo n bi n m nh $p_1, p_2, ...$ và p_n .

- a) $E \rightarrow F$ ch là s kéo theo hình th c. $E \rightarrow F$ không nh t thi t h ng úng.
- b) N u $(E \rightarrow F) \Leftrightarrow \mathbf{1}$ thì ta vi t $E \Rightarrow F$ và nói F là h qu logic c a E. ây là s kéo theo th c s .
- c) $E \leftrightarrow F$ ch là s t ng ng hình th c. $E \leftrightarrow F$ không nh t thi t h ng úng.
- d) N u $(E \leftrightarrow F) \Leftrightarrow \mathbf{1}$ thì ta vi t $E \Leftrightarrow F$ và nói E và F t ng $ng \ logic \ v$ i nhau. ây là s t ng $ng \ th \ c \ s$.

Ví d: Cho các bi n m nh p, q, r và s. L p b ng chân tr th y

- a) [p \rightarrow (p \land \bar{q})] và [(p \lor q) \leftrightarrow (p \land q)] u không ph i là các d ng m nh h ng úng.
- b) Ta có $[(p \land \overline{r}) \Rightarrow (p \lor \overline{q} \lor s)]$ và $\{[p \land (p \lor q)] \Leftrightarrow [p \lor (p \land q)] \Leftrightarrow p\}$.

IV. CÁC LU TLOGIC (TÍNH CH TC A CÁC PHÉP N I LOGIC):

Cho các d ng m nh (ho c các m nh) $E = E(p_1, p_2, ..., p_n), F = F(p_1, p_2, ..., p_n)$ và $G = G(p_1, p_2, ..., p_n)$ theo n bi n m nh $p_1, p_2, ...$ và p_n .

4.1/ LU T PH NH KÉP: $\overline{E} \Leftrightarrow E$.

4.2/ <u>LU TL Y NG</u> (c a \wedge và \vee): $E \wedge E \Leftrightarrow E$; $E \vee E \Leftrightarrow E$.

4.3/ <u>LU TGIAO HOÁN</u> (c a \wedge và \vee): $F \wedge E \Leftrightarrow E \wedge F$; $F \vee E \Leftrightarrow E \vee F$.

4.4/ LU TPH NH DE MORGAN (c $a \wedge va \vee$):

 $\overline{E \wedge F} \iff \overline{E} \bigvee \overline{F}$; $\overline{E \vee F} \iff \overline{E} \bigwedge \overline{F}$.

<u>Ví d:</u>

 \overline{A} = "Tôi h c ti ng Anh và ti ng Pháp".

 \overline{A} = "Tôi không học tiếng Anh hay không học tiếng Pháp".

B = "An ntr ng hay nth vi n".

 \overline{B} = "An không n tr ng và không n th vi n".

 $C = \sqrt[4]{3a-8} < 1$ " (a là h ng s th c) $\iff C = \sqrt[4]{3a-8} \ge 0$ và $\sqrt{3a-8} < 1$ ".

 $\overline{C} = \text{``}(3a-8) < 0 \text{ hay } \sqrt{3a-8} \ge 1\text{''}.$

4.5/ LU TH PTHU (gi a \wedge và \vee):

 $[\ E \wedge (E \vee F)\] \iff E.$

 $[E \vee (E \wedge F)] \Leftrightarrow E.$

4.6/LU TK TH P (c a \wedge và \vee):

$$\begin{array}{c} [\;(E \wedge F) \wedge G\;] \iff [\;E \wedge (F \wedge G)\;] \iff (E \wedge F \wedge G). \\ [\;(E \vee F) \vee G\;] \iff [\;E \vee (F \vee G)\;] \iff (E \vee F \vee G). \end{array}$$

Ví d: Cho a, $b \in \mathbf{R}$. Ta có

[
$$(a \ge 2)$$
 và $(a \ge 4$ và $2a \ne b)$] \Leftrightarrow [$(a \ge 2$ và $a \ge 4)$ và $(2a \ne b)$] \Leftrightarrow [$(a \ge 4)$ và $(2a \ne b)$].
[$(a < -1)$ hay $(a < -2$ hay $a^3 = 2\cos b)$] \Leftrightarrow [$(a < -1)$ hay $(a^3 = 2\cos b)$].

4.7/ LU T PHÂN PH I (gi $a \wedge va \vee$):

$$[E \land (F \lor G)] \Leftrightarrow [(E \land F) \lor (E \land G)] (\land \text{ phân ph i v i } \lor).$$

$$[E \lor (F \land G)] \Leftrightarrow [(E \lor F) \land (E \lor G)] (\lor \text{ phân ph i v i } \land).$$

Ví d: Cho $x, y \in \mathbf{R}$. Ta có

 $\begin{array}{l} [\ (x<-1)\ \ v\grave{a}\ \ (x<4\ \ hay\ \ y\geq 3)\] \iff [\ (x<-1\ \ v\grave{a}\ \ x<4)\ hay\ (x<-1\ \ v\grave{a}\ \ y\geq 3)\] \\ \iff [\ (x<-1)\ \ hay\ \ (x<-1\ \ v\grave{a}\ \ y\geq 3)\] \iff (x<-1)\ \ \Leftrightarrow \ \ (x<-1\ v\grave{a}\ \ y\ \ th\ \ c\ t\grave{u}\grave{u}\ \ \acute{y}). \\ [\ (xy\geq 5)\ hay\ \ (xy\geq 2\ \ v\grave{a}\ \ x^3\neq y^2)\] \iff [\ (xy\geq 5\ hay\ xy\geq 2)\ v\grave{a}\ \ (xy\geq 5\ hay\ x^3\neq y^2)\] \\ \iff [\ (xy\geq 2)\ \ v\grave{a}\ \ (xy\geq 5\ hay\ x^3\neq y^2)\]. \end{array}$

4.8/ <u>LU TTRUNG HÒA</u> (c a \land và \lor): (E \land 1) \Leftrightarrow E ; (E \lor O) \Leftrightarrow E.

<u>Ví d</u>: Cho $x, y \in \mathbf{R}$. Ta có

```
\frac{1}{(2x + y > 3)} x^{3} 4x^{2} + e^{y} \ge -1) \iff (2x + y > 3).

[8\sinx - 5\cos(y^{3}) = 14 hay x^{6} \ne 9^{y} + 1] \Rightarrow (x^{6} \neq 9^{y} + 1).
```

4.9/LU TTH NGTR (c a \wedge và \vee): $(E \wedge O) \Leftrightarrow O$; $(E \vee 1) \Leftrightarrow 1$.

Ví d: Cho a, $b \in \mathbf{R}$. Ta có

 $\overline{(|a| - \ln b)} = 2 \text{ và } b^2 < \sin^2 b) \Leftrightarrow \mathbf{O} \text{ (không có a, b nào th a h)} \Leftrightarrow \text{(h vô nghi m)}.$ $[a\cos(ab) > 2 \text{ hay } e^{ab} + e^{-ab} \ge 1] \Leftrightarrow \mathbf{1} \text{ (a, b nào c ng th a h)} \Leftrightarrow \text{(a, b th c tùy ý)}.$

4.10/LU $T B \dot{U}$ (c a \wedge và \vee): $(E \wedge \overline{E}) \Leftrightarrow O$; $(E \vee \overline{E}) \Leftrightarrow 1$.

Ví d: Cho u, $v \in \mathbf{R}$. Ta có

 $(uv \ge 1 \ va) \ uv < 1) \Leftrightarrow \mathbf{O}$ (không có u, v nào thah) \Leftrightarrow (h vô nghim). $(7u^4 \ne 2^v + 3) \ hay \ 7u^4 = 2^v + 3) \Leftrightarrow \mathbf{1}$ (u, v nào c ng thah) \Leftrightarrow (u, v th c tùy ý).

4.11/ CÁC D NG T NG NG VÀ PH NH C A M NH KÉO

THEO:

- a) $(E \to F) \Leftrightarrow (\overline{E} \lor F)$ (dùng xóa d u \to)
- b) $(E \to F) \Leftrightarrow (\overline{F} \to \overline{E})$ (dùng suy lu n theo d ng $ph \ n$ o).
- c) $(\mathbf{E} \to \mathbf{F})$ không t ng $ng \vee i d ng ph n <math>(\overline{E} \to \overline{F})$.
- d) $(\mathbf{E} \to \mathbf{F})$ không t ng ng v i d ng o $(\mathbf{F} \to \mathbf{E})$.
- e) $\overline{E \to F} \iff (\mathbf{E} \wedge \overline{F})$.

[T a), dùng (4.4) và (4.1) ta có $\overline{E \to F} \iff \overline{\overline{E} \lor F} \iff (\overline{\overline{E}} \land \overline{F}) \Leftrightarrow (E \land \overline{F})$].

$\underline{\text{Ví d}}$:

A = "N u (An h c t t) thì (An thi t) " ($E \rightarrow F$).

 $A \Leftrightarrow B \ v \ i \ B =$ " (An h c không t t) hay (An thi t) " ($\overline{E} \vee \mathbf{F}$).

 $A \Leftrightarrow C \text{ v i } C = \text{``N u (An thi không t) thì (An } \tilde{a} \text{ h c không t t) ''} (\overline{F} \to \overline{E}).$

 $A \Leftrightarrow D \vee i D = "N \cup (An \wedge c \wedge b) \cap (An \wedge b) \cap (\overline{E} \to \overline{F}).$

 $A \Leftrightarrow E \ v \ i \ E = "N \ u \ (An \ thi \ t) \ thì \ (An \ \tilde{a} \ h \ c \ t \ t) " \ (\mathbf{F} \to \mathbf{E}).$

ý A úng và D, E u sai nên A không t ng ng v i D và E.

4.12/ ÁP D NG:

Các lu t logic c s d ng

- -Rútg n m t d ng m nh
- Ch ng minh m t d ng m nh h ng úng ho c h ng sai.
- Ch ng minh hai d ng m nh t ng ng v i nhau.

Ví d: Cho các bi n m nh p, q và r.

a) Rút g n A = [$(p \wedge q) \vee (\overline{p} \wedge q) \vee (p \wedge \overline{q})$].

 $A \Leftrightarrow [(p \land q) \lor (\overline{p} \land q)] \lor (p \land \overline{q}) \Leftrightarrow [(p \lor \overline{p}) \land q] \lor (p \land \overline{q}) \Leftrightarrow$

 $\Leftrightarrow (\mathbf{1} \land q) \lor (p \land \overline{q}) \Leftrightarrow q \lor (p \land \overline{q}) \Leftrightarrow (q \lor p) \land (q \lor \overline{q}) \Leftrightarrow$

 $\iff (q\vee p)\wedge \mathbf{1} \iff (q\vee p).$

b) Ch $\ \text{ng minh} \ B = \{ \ [\ p \to (q \lor r) \] \to [\ (p \to q) \lor (p \to r) \] \ \} \ h \ \text{ng} \ \text{ung.}$

 $\mathsf{B} \iff \overline{p \to (q \lor r)} \lor \ \overline{p} \lor \mathsf{q} \lor \ \overline{p} \lor \mathsf{r} \iff \overline{p \to (q \lor r)} \lor (\ \overline{p} \lor \overline{p}) \lor (\mathsf{q} \lor \mathsf{r}) \iff$

 $\Leftrightarrow \overline{p \to (q \lor r)} \lor [\overline{p} \lor (q \lor r)] \Leftrightarrow \overline{G} \lor G \Leftrightarrow \mathbf{1} \lor i G = [p \to (q \lor r)].$

c) Ch ng minh $C = \{ [p \land (q \lor r)] \land \overline{(p \land q) \lor r} \}$ h ng sai.

 $C \Leftrightarrow [(p \land q) \lor (p \land r)] \land \overline{p \land q} \land \overline{r} \Leftrightarrow$

 \Leftrightarrow $(H \lor K) \land (\overline{H} \land \overline{r}) \lor i H = (p \land q) \lor k K = (p \land r)$. Suy ra

 $C \Leftrightarrow (H \wedge \overline{H} \wedge \overline{r}) \vee (K \wedge \overline{H} \wedge \overline{r}) \Leftrightarrow (O \wedge \overline{r}) \vee (K \wedge \overline{H} \wedge \overline{r}) \Leftrightarrow O \vee (K \wedge \overline{H} \wedge \overline{r})$

 $\Leftrightarrow \ K \wedge \overline{H} \wedge \overline{r} \ \Leftrightarrow \ \overline{H} \wedge K \wedge \overline{r} \ \Leftrightarrow \ (\overline{H} \wedge p) \wedge (r \wedge \overline{r}) \ \Leftrightarrow \ (\overline{H} \wedge p) \wedge \mathbf{O} \ \Leftrightarrow \ \mathbf{O}.$

d) Cho E = { [$q \rightarrow (p \land r)$] $\land \overline{(p \lor r) \rightarrow q}$ } và F = $\overline{(p \lor r) \rightarrow q}$.

Ch ng minh $E \Leftrightarrow F$.

 $E \Leftrightarrow [\overline{q} \lor (p \land r)] \land (p \lor r) \land \overline{q} \Leftrightarrow (\overline{q} \lor u) \land \overline{q} \land (p \lor r) \lor i \ u = (p \land r)$

 $\Leftrightarrow \left[\ \left(\, \overline{q} \vee \mathbf{u} \right) \wedge \overline{q} \, \, \right] \wedge \left(\mathbf{p} \vee \mathbf{r} \right) \, \Leftrightarrow \, \overline{q} \wedge \left(\mathbf{p} \vee \mathbf{r} \right) \, \Leftrightarrow \, \overline{\left(\, p \vee \mathbf{r} \right) \wedge \overline{q}} \, \Leftrightarrow \, \overline{\left(\, p \vee \mathbf{r} \right) \rightarrow q} \, = \mathrm{F}.$

V.M NH L NGT:

- 5.1/ L NGT: Chot ph p A và bi n x l y các giá tr trong A.
 - a) L ng t ph bi n $\forall (v i m i, v i m i, v i t t c).$

 $\forall x \in A : v \text{ im } i(v \text{ im } i, v \text{ it tc}) \text{ ph nt } x \text{ thu } cv \text{ t ph p } A.$

- b) L ng t t nt i \exists (t nt i, có ít nh t m t, có ai ó, có gì ó). $\exists x \in A : t$ nt i (có ít nh t m t) ph nt x thu c v t p h p A.
- **5.2**/ \underline{V} \underline{T} : Cho các t p h p A_j và các bi n $x_j \in A_j$ $(1 \le j \le n)$. $p(x_1, x_2, ..., x_n)$ là m t câu phát bi u có n i dung liên quan n các bi n x_j và chân tr c a $p(x_1, x_2, ..., x_n)$ ph thu c theo các bi n x_j $(1 \le j \le n)$. Ta nói $p(x_1, x_2, ..., x_n)$ là m t v t theo n bi n $x_j \in A_j$ $(1 \le j \le n)$.

Ví d:

- a) $p(x) = "3x^2 4x > 1$ " $v i x \in \mathbf{R}$. Ta có p(0) sai và p(2) úng. Ta g i p(x) là v t 1 bi n.
- b) q(y,z) = (4y 7z) : 5 v i $y \in \mathbb{Z}$ và $z \in \mathbb{Q}$. Ta có $q(-2, \frac{3}{7})$ sai và $q(6, \frac{-1}{7})$ úng. Ta g i q(y,z) là v t 2 bi n.

5.3/ <u>M NH L NG T :</u>

Cho các t p h p A_j và các bi n $x_j \in A_j$ $(1 \le j \le n)$. Xét v t theo n bi n $p(x_1, x_2, ..., x_n)$ và các l ng t $\delta_1, \delta_2, ..., \delta_n \in \{ \forall, \exists \}$.

- a) Ta xây d ng m t m nh l ng t theo n bi n $x_1, x_2, ..., x_n$ là $A = \delta_1 x_1 \in A_1, \delta_2 x_2 \in A_2, ..., \delta_n x_n \in A_n, p(x_1, x_2, ..., x_n)$.
- b) Qui $c \ \forall \equiv \exists, \ \exists \equiv \forall, \text{ ta có } d \ ng \ ph \ nh \ c \ a \ m \ nh \ 1 \ ng \ t \ A \ 1à$ $\overline{A} = \text{``} \ \overline{\delta_1} \ x_1 \in A_1, \ \overline{\delta_2} \ x_2 \in A_2, \dots, \ \overline{\delta_n} \ x_n \in A_n, \ \overline{p(x_1, x_2, \dots, x_n)} \ \text{``}.$
- c) Ta có the xét troc tip chân troc a A (n u ngi n) ho c xét gián tip chân troc a A risuy ra chân troc a A (n u chân troc a A dexét h n A).

Vid:

- a) $A = "\exists x \in \mathbf{Q}, x^3 = x"$ có $\overline{A} = "\forall x \in \mathbf{Q}, x^3 \neq x"$. A úng vì $\exists 1 \in \mathbf{Q}, 1^3 = 1$.
- b) $B = \text{``} \forall x \in \mathbf{R}, x > \sin x \text{''} \text{ có } \overline{B} = \text{``} \exists x \in \mathbf{R}, x \leq \sin x \text{''}.$ \overline{B} úng vì $\exists 0 \in \mathbf{R}, 0 \leq \sin 0 = 0$. Suy ra B sai.
- c) $C = \text{``}\exists x \in \mathbb{R}, \forall y \in (0, +\infty), x \le 2^y 3\text{''} \text{ có } \overline{C} = \text{``}\forall x \in \mathbb{R}, \exists y \in (0, +\infty), x > 2^y 3\text{''}.$ $C \text{ úng vì } \exists (-2) \in \mathbb{R}, \forall y \in (0, +\infty), -2 \le 2^y - 3 \text{ (} \text{ ý } 2^y > 1, \forall y \in (0, +\infty)).$
- d) $D = \text{``} \forall x \in \mathbf{Z}, \exists y \in \mathbf{Q}, 2y^3 > 5x^4 + 8 \text{'`} \text{ có } \overline{D} = \text{``} \exists x \in \mathbf{Z}, \forall y \in \mathbf{Q}, 2y^3 \le 5x^4 + 8 \text{''}.$ Ta có the gi i thích trecti p D úng ho cegi i thích gián ti p là \overline{D} sai. D úng vì $\forall x \in \mathbf{Z}, \exists y \in \mathbf{Q}$ the a $y > \sqrt[3]{5x^4 + 8} > 0$, ngh a là $2y^3 > y^3 > 5x^4 + 8$.

 \overline{D} sai. The toy, now \overline{D} unique this converges on the second that $2y^3 \le 5x^4 + 8$,

 $\forall y \in \mathbf{Q}$. Cho $y \to +\infty$ (lúc ó $2y^3 \to +\infty$) thì có mâu thu n vì $5x^4 + 8$ c nh.

e) $E = \text{``} \forall x \in \mathbf{R}, \exists y \in \mathbf{R}, (x^2 > y^2) \rightarrow (x > y) \text{'`}. \text{ Ta có}$ $E \Leftrightarrow E' = \text{``} \forall x \in \mathbf{R}, \exists y \in \mathbf{R}, (x^2 \le y^2) \text{ hay } (x > y) \text{'`} (x \text{óa d } u \rightarrow) \text{ và}$ $\overline{E} = \text{``} \exists x \in \mathbf{R}, \forall y \in \mathbf{R}, (x^2 > y^2) \text{ và } (x \le y) \text{''}. \text{ Ta kh ng } \text{nh } E \text{ úng b ng}$ cách gi i thích gián ti p là E' úng hay gi i thích gián ti p là \overline{E} sai.

E' úng vì $\forall x \in \mathbf{R}, \exists y = x \in \mathbf{R}, (x^2 \le y^2 = x^2).$

 \overline{E} sai. Th t v y, n u \overline{E} úng thì có x th c c nh th a y² < x², \forall y \in **R**.

Cho $y \to +\infty$ (lúc ó $y^2 \to +\infty$) thì mâu thu n vì x^2 c nh.

- f) F = "H (chúng tôi, các b n) i du l ch Rome "(l ng t ph bi n ti m n). $\overline{F} =$ "Có ai ó trong s h (chúng tôi, các b n) không i du l ch Rome ".
- g) G = " (T t c) các ngh s thích h c ngo i ng ".

 \overline{G} = "Có ngh s nào ó không thích h c ngo i ng ".

h) H = "Có b n nào ó trong l p t i m 10 môn Toán".

 $\overline{H} =$ " $C \ l \ p \ không \ t \ i \ m \ 10 \ môn Toán ".$

= "Không có b n nào ó trong l p t i m 10 môn Toán".

k) K = "Không có ai n tr " = "M i ng i không n tr ". $\overline{K} =$ "Có ai ϕ n tr ".

5.4/ <u>HOÁN IL NGT :</u>

Cho các t p h p A, B và v t 2 bi n p(x,y) v i $x \in A$ và $y \in B$. Ta có

- a) Có th hoán i 2 l ng t cù ng lo i ng c nh nhau.
 - " $\forall x \in A, \forall y \in B, p(x,y)$ " \iff " $\forall y \in B, \forall x \in A, p(x,y)$ ".
 - " $\exists x \in A, \exists y \in B, p(x,y)$ " \iff " $\exists y \in B, \exists x \in A, p(x,y)$ ".
- b) Không choán i 2 *l* ng t khác lo i ng c nh nhau.

" $\exists x \in A, \forall y \in B, p(x,y)$ " \Rightarrow " $\forall y \in B, \exists x \in A, p(x,y)$ " (chi u \Leftarrow sai). V trái : có x c nh trong A, y tùy ý trong B.

V ph i: v i m i y tùy ý trong B, có x trong A và x ph thu c theo y.

Ví d:

- \overline{a}) " $\forall x \in \mathbf{R}$, $\forall y \in \mathbf{R}$, $e^{x + \sin y} \le 4$ " \iff " $\forall y \in \mathbf{R}$, $\forall x \in \mathbf{R}$, $e^{x + \sin y} \le 4$ ". C hai v u có chân tr sai.
- b) " $\exists x \in \mathbb{Z}$, $\exists y \in \mathbb{Q}$, 3x + y = -1" \Leftrightarrow " $\exists y \in \mathbb{Q}$, $\exists x \in \mathbb{Z}$, 3x + y = -1". C hai v u có chân tr úng.
- c) " $\forall x \in \mathbf{Q}$, $\exists y \in \mathbf{R}$, $y = \sin x$ " (chân truống vì hàm sin xác nh trên \mathbf{Q}). " $\exists y \in \mathbf{R}$, $\forall x \in \mathbf{Q}$, $y = \sin x$ " (chân trusai vì $y = \sin 0 = 0$ và $y = \sin 1 > 0$).

VI. CÁC QUI T C SUY DI N (CÁC PH NG PHÁP CH NG MINH)

Cho các m nh P, Q, R, S, P_1 , P_2 , ... và P_n .

6.1/QUIT CPH N O (Ph n ch ng d ng 1):

 $(P \Rightarrow Q) \equiv (\overline{Q} \Rightarrow \overline{P})$ (Ta có thoch ng minh vo photh thay cho chong minh vo tráin u vi c chong minh vo photh no phot

- <u>Ví d</u>: Cho các s nguyên a và b. Ch ng minh "(ab 1) \Rightarrow (a và b u1)".
- a) Ch ng minh tr c ti p (r m rà): Vi t a=2c+r và b=2d+s trong ó c, d là các s nguyên và r, $s\in\{0,1\}$. Do ab=2(2cd+cs+dr)+rs l nên rs = 1. Suy ra r=s=1, ngh a là a và b u l .
- b) Ch ng minh ph n ch ng (n gi n h n): "(a hay b ch n) \Rightarrow (ab ch n)" Gi s a hay b ch n, ngh a là a = 2c và b = 2d v i c, d là các s nguyên. Ta có ab = 2(cb) hay ab = 2(ad) nên ab ch n.

6.2/ QUI T C NÊU MÂU THU N (Ph n ch ng d ng 2):

 $(\mathbf{P} \Rightarrow \mathbf{Q}) \equiv [(\mathbf{P} \wedge \overline{\mathbf{Q}}) \Rightarrow \mathbf{O}] \text{ trong } \acute{\mathbf{O}} \text{ th hi n } s \text{ mâu thu } n \text{ hay } v\^{o} \, l\acute{y}.$ (Ta có tho chong minh vo pho i thay cho chong minh vo tráin u vio chong minh v ph i n gi n h n).

Ví d: Cho các s th c a và b.

Ch ng minh "(a h u t và b vô t) \Rightarrow (a+b vô t)".

- a) Ch ng minh tr c ti p: không th c vì ta không có d ng t ng quát cho các s vôt.
- b) Ch ng minh ph n ch ng: "(a h ut, b vôt và a + b h ut) \Rightarrow O".

Gi s a h u t, b vô t và a + b h u t, ngh a là $a = \frac{p}{a}$ và $a + b = \frac{r}{s}$ trong ó

p, q, r, s là các s nguyên v i $q \neq 0 \neq s$. Suy ra $b = (a + b) - a = \frac{qr - ps}{as}$ là s

h u t: mâu thu n v i gi thi t b vôt.

6.3/ QUIT CH ITUY N NGI N:

- a) $[(\mathbf{P} \wedge \mathbf{Q}) \Rightarrow \mathbf{P}]$ (h i n gi n xóa b t thông tin Q không c n thi t).
- b) $[P \Rightarrow (P \lor Q)]$ (tuy n n gi n thêm vào thông tin Q gây nhi u).

$\underline{\mathbf{Vi}} \mathbf{d}$:

 $(An h c Anh v n và Pháp v n) \Rightarrow (An h c Anh v n).$

Cho s th c a. ta có $(a > 5) \Rightarrow [(a > 5) \text{ hay } (\sin a < 0)].$

6.4/ QUI T C KH NG NH (Modus – Ponens):

a) D ng 1:
$$\begin{Bmatrix} P \Rightarrow Q \\ P \end{Bmatrix} \Rightarrow Q$$
.

b) D ng 2:
$$\left\{ \frac{P \vee Q}{P} \right\} \Rightarrow Q$$
.

Víd:

- a) [(N u An r nh thì An xem phim) và (An r nh)] \Rightarrow (An xem phim).
- b) [(Tú hay Vy \tilde{a} n gà quay) và (Tú n chay tr ng)] \Rightarrow
 - \Rightarrow [(Tú hay Vy \tilde{a} n gà quay) và (Tú không n gà quay)] \Rightarrow (Vy \tilde{a} n gà quay).

$$\begin{Bmatrix} P \Rightarrow Q \\ \overline{Q} \end{Bmatrix} \Rightarrow \overline{P}$$

Víd:

ng b ng p) và (n u ng b ng p thì An v nhà tr)] \Rightarrow [(N u tr i m a l n thì \Rightarrow [(N u tr i m a l n thì An v nhà tr)].

6.7/ QUI T C CH NG MINH THEO CÁC TR NG H P:

$$[(P_1 \vee P_2 \vee ... \vee P_n) \Rightarrow Q] \equiv \begin{cases} P_1 \Rightarrow Q \\ P_2 \Rightarrow Q \\ \vdots \\ P_n \Rightarrow Q \end{cases}.$$

(Ta có tho chong minh các trong hop riêng l v ph i thay cho ch ng minh v trái vì vi c ch ng minh v ph i n gi n h n ch ng minh m t tr ng h p t ng quát v trái).

Ví d: Cho s nguyên k.

 $\overline{a)}$ Ch ng minh k^2 chia 4 d 0 ho c 1.

Ta ch ng minh theo 2 tr ng h p k ch n ho c k 1.

N u $k = 2r (r \in \mathbb{Z})$ thì $k^2 = 4^2 r$ chia 4 d 0.

N u k = 2r + 1 ($r \in \mathbb{Z}$) thì $k^2 = [4(r^2 + r) + 1]$ chia 4 d 1.

b) Ch ng minh $(2k^2 + k + 1)$ không chia h t cho 3.

Ta ch ng minh theo 3 tr ng h p t ng ng v i s d khi chia k cho 3.

N u k = 3r ($r \in \mathbb{Z}$) thì $(2k^2 + k + 1) = 18r^2 + 3r + 1 = [3r(6r + 1) + 1]$ chia 3 d N u k = 3r + 1 ($r \in \mathbb{Z}$) thì $(2k^2 + k + 1) = 18r^2 + 15r + 4 = [3r(6r + 5) + 4]$ chia

3 d 1. N u k = 3r + 2 ($r \in \mathbb{Z}$) thì $(2k^2 + k + 1) = 18r^2 + 27r + 11 =$ = [9r(2r + 3) + 11] chia 3 d 2.

6.8/ H QU

$$\overline{\mathbf{a}) \left\{ \begin{matrix} P \Rightarrow Q \\ R \Rightarrow S \end{matrix} \right\}} \Rightarrow [(\mathbf{P} \wedge \mathbf{R}) \Rightarrow (\mathbf{Q} \wedge \mathbf{S})]$$

a)
$$\begin{cases} P \Rightarrow Q \\ R \Rightarrow S \end{cases} \Rightarrow [(P \land R) \Rightarrow (Q \land S)].$$
b)
$$\begin{cases} P \Rightarrow Q \\ R \Rightarrow S \end{cases} \Rightarrow [(P \lor R) \Rightarrow (Q \lor S)].$$

6.9/ ÁP D NG:

Cho các d ng m nh $E_1, E_2, ..., E_n$ và F.

a) Gi i thích m t quá trình suy lu n là úng:

Ta mu n ch ng minh [$(E_1 \land E_2 \land ... \land E_n) \Rightarrow F$] là $\acute{u}ng$. Lúc \acute{o} ta ký hi u

$$\begin{array}{c} E_1 \\ E_2 \\ \vdots \\ E_n \end{array}$$

∴ F

N u dùng b ng chân tr ho c dùng các lu t logic bi n i thì khá ph c t p, c bi t là khi n 1 n. Ta dùng m t trong hai cách ch ng minh sau cngi n và có hi u qu h n:

Cách 1: chia bài toán thành nhi u b c suy lu n trung gian và m i b dùng các lu t logic (m c IV) ho c các qui t c suy di n ã nêu trên.

Cách 2: dùng qui t c ph n ch ng d ng 2 trong (6.2), ngh a là gi s quá trình suy lu n là sai. Lúc ó, xu t phát t $(E_1 \wedge E_2 \wedge ... \wedge E_n \wedge \overline{F})$, ta s ch ra m t s mâu thu n. Nh v y quá trình suy lu n là úng.

b) Gi i thích m t quá trình suy lu n là sai:

Ta mu n kh ng nh $[(E_1 \land E_2 \land ... \land E_n) \Rightarrow F]$ là sai. Ta ch có m t cách duy nh t nh sau: Ta gán cho m i bi n m nh chân tr 0 ho c 1 sao cho E_1 , E_2 , ..., E_n u úng và F sai. Khi ó [$(E_1 \land E_2 \land ... \land E_n) \Rightarrow F$] sai trong tr ng h p c bi t ã gán, ngh a là suy lu n trên là sai.

Ví d: Cho các bi n m nh p, q, r, s, t và u.

Xem xét các suy lu n d i ây úng hay sai và gi i thích t i sao ?

a)
$$p \to t (1)$$
 b) $p \to r (1)$ c) $(\overline{p} \lor q) \to (r \land s) (1)$ d) $p (1)$

$$\overline{r} \to q (2)$$

$$\overline{u} (2)$$

$$\overline{t} (2)$$

$$\overline{p} \to q (2)$$

$$p (3)$$

$$s \to t (3)$$

$$r \to t (3)$$

$$(q \land r) \to s (3)$$

$$t \to \overline{q} (4)$$

$$\overline{s} \to \overline{r} (4)$$
 ...
$$t \to r (4)$$

$$\cdots \to r (4)$$

$$\cdots \to r (5)$$

$$\therefore r \to s (5)$$
.
$$\therefore p \to q (6)$$

 $\therefore p \rightarrow q(6)$.

Ta ch ng minh a) úng b ng cách 1: T (1) và (3), ta có t (6). T (6) và (4), ta có \overline{q} (7). T (7) và (2), ta có \overline{r} (8). T (8), ta có r (9). T (9), ta có $r \vee s$ (5). Nh Nh v y suy lu n a) là úng.

Ta ch ng minh b) úng b ng cách 2: Gi s (1), (2), (3), (4), (5) úng và (6) sai. T (2) và (6), ta có p úng và u, q u sai. T (1) ta có r úng. T (5), ta có t sai. T (3) ta có s sai. Do s sai và r úng, ta có (4) sai : mâu thu n v i i u ã gi s . Nh v y suy lu n b) là úng.

Ta ch ng minh c) úng b ng cách 1: T (2) và (3), ta có \overline{r} (5). T (5), ta có $\overline{r} \vee \overline{s}$ (6). T (6), ta có $\overline{r} \wedge \overline{s}$ (7). T (7) và (1), ta có $\overline{p} \vee q$ (8). T (8), ta có $\overline{p} \wedge \overline{q}$ (9). T (9), ta có $p \wedge \overline{q}$ (10). T (10), ta có p (11). T (11), ta có $\overline{s} \vee p$ (12). T (12), ta có s \rightarrow p (4). Nh v y suy lu n c) là úng.

Ta ch ng minh d) sai b ng cách gán chân tr c bi t cho các bi n m nh Gán chân tr 1 cho p, r, t và gán chân tr 0 cho q, s thì (1), (2), (3), (4) uúng và (5) sai. Nh v y suy lu n d) là sai.

NG PHÁP CH NG MINH QUI N P: VII. PH

Cho $m \in \mathbb{N}$. Gi s ta có m t dãy vô h n các m nh P_n ($n \ge m$) và ta mu n ch ng minh chúng u úng. Ta dùng ph ng pháp ch ng minh qui n p.

7.1/QUIN PGI THI TY U (ÍTGI THI T):

- * Ki m tra P_n úng khi n = m.
- * Ch ng minh $\forall k \ge m$, $(P_k \text{ úng } \Rightarrow P_{k+1} \text{ úng})$.
- * K t lu n: P_n úng $\forall n \ge m$.

<u>Ví d</u>: Ch ng minh $\forall n \ge 1, 1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Ta ch ng minh $P_n = "1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6} " úng <math>\forall n \ge 1$.

*
$$P_1 = "1^2 = \frac{1(1+1)(2.1+1)}{6}$$
" hi n nhiên úng.

* Xét $k \ge 1$ và gi s P_k úng, ngh a là $1^2 + 2^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$ (*).

Ta ch $ng minh P_{k+1} c ng úng$.

Vi t
$$P_{k+1} = "1^2 + 2^2 + ... + k^2 + (k+1)^2 = \frac{(k+1)[(k+1)+1][(2(k+1)+1]}{6}$$
".

Ta ki m tra v trái c a P_{k+1} b ng v ph i c a P_{k+1} .

V trái =
$$1^2 + 2^2 + ... + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 [s d ng (*)]$$

= $\frac{(k+1)}{6} [k(2k+1) + 6(k+1)] = \frac{(k+1)(k+2)(2k+3)}{6} = V$ ph i.

* V y P_n úng $\forall n \ge 1$.

7.2/QUIN PGI THI TM NH (NHI UGI THI T):

- * Ki m tra P_n úng khi n = m.
- * Ch ng minh $\forall k \geq m$, [($P_m, P_{m+1}, \dots v \nmid P_k \quad u \quad u \neq 0$].
- * K t lu n: P_n úng $\forall n \ge m$.

Ta ch ng minh $P_n =$ " n là tích c a các s nguyên t d ng " úng $\forall n \ge 2$.

- * P_2 = "2 là tích c a úng m t s nguyên t d ng " hi n nhiên úng.
- * Xét $k \geq 2$ và gi s P_2, P_3, \ldots, P_k u úng, ngh a là

 $\forall t \in \{2, 3, ..., k\}, t$ là tích c a các s nguyên t d ng (*).

Ta ch ng minh P_{k+1} c ng úng b ng cách xét 2 tr ng h p [xem (6.7)].

Vi t P_{k+1} = "(k+1) là tích c a các s nguyên t d ng ".

Khi (k+1) là s nguyên t thì ng nhiên (k+1) là tích c a úng m t s nguyên t d ng.

Khi (k+1) là s không nguyên t thì (k+1) = uv v i $u, v \in \{2, 3, ..., k\}$. Theo (*), $u = p_1p_2...p_r$ và $v = q_1q_2...q_s$ v i $p_1, p_2, ..., p_r, q_1, q_2, ..., q_s$ là các s nguyên t d ng. Suy ra $(k+1) = uv = p_1p_2...p_r q_1q_2...q_s$ c ng là tích c a

* V y P_n úng $\forall n \ge 2$.

các s nguyên t d ng.
