# CS473 – Algorithms I

#### All Pairs Shortest Paths

#### All Pairs Shortest Paths (APSP)

- given : directed graph G = (V, E), weight function  $\omega : E \to R$ , |V| = n
- goal : create an  $n \times n$  matrix  $D = (d_{ij})$  of shortest path distances i.e.,  $d_{ij} = \delta(v_i, v_j)$
- trivial solution : run a SSSP algorithm *n* times, one for each vertex as the source.

#### All Pairs Shortest Paths (APSP)

- ▶ all edge weights are nonnegative : use Dijkstra's algorithm
  - PQ = binary heap : O (V . (V+ E)lgV) = O (  $V^3$ lgV) for dense graphs = O (  $V^2$ lgV) for sparse graphs
- negative edge weights : use Bellman-Ford algorithm
  - O (V. VE) = O ( $V^4$ ) on dense graphs and = O ( $V^3$ ) on sparse graphs

# Adjacency Matrix Representation of Graphs

- $\triangleright$  assume  $\omega_{ii} = 0$  for all  $v_i \in V$ , because
  - no neg-weight cycle

 $\Rightarrow$  shortest path to itself has no edge,

i.e., 
$$\delta (v_i, v_i) = 0$$

# **Dynamic Programming**

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

Assumption: negative edge weights may be present, but no negative weight cycles.

#### (1) Structure of a Shortest Path:

- Consider a shortest path  $p_{ij}^{m}$  from  $v_i$  to  $v_j$  such that  $|p_{ij}^{m}| \le m$ • i.e., path  $p_{ij}^{m}$  has at most m edges.
- no negative-weight cycle  $\Rightarrow$  all shortest paths are simple  $\Rightarrow$  m is finite  $\Rightarrow$   $m \le n 1$
- $i = j \implies |p_{ij}| = 0 \& \omega(p_{ij}) = 0$
- $i \neq j \implies \text{decompose path } p_{ij}^{m} \text{ into } p_{ik}^{m-1} \& v_k \rightarrow v_j \text{ , where } |p_{ik}^{m-1}| \leq m-1$ 
  - $ightharpoonup p_{ik}^{m-1}$  should be a shortest path from  $v_i$  to  $v_k$  by optimal substructure property.
  - ► Therefore,  $\delta(v_i, v_j) = \delta(v_i, v_k) + \omega_{kj}$

#### (2) A Recursive Solution to All Pairs Shortest Paths Problem:

- $d_{ij}^{m}$  = minimum weight of any path from  $v_i$  to  $v_j$  that contains at most "m" edges.
- m = 0: There exist a shortest path from  $v_i$  to  $v_j$  with no edges  $\leftrightarrow i = j$ .

•  $m \ge 1$ :  $d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n \land k \ne j} \{ d_{ik}^{m-1} + \omega_{kj} \} \}$ =  $\min_{1 \le k \le n} \{ d_{ik}^{m-1} + \omega_{kj} \} \text{ for all } v_k \in V,$ since  $\omega_{ij} = 0 \text{ for all } v_j \in V.$ 

- to consider all possible shortest paths with  $\leq m$  edges from  $v_i$  to  $v_j$ 
  - ► consider shortest path with  $\leq m$  -1 edges, from  $v_i$  to  $v_k$ , where  $v_k \in R_{v_i}$  and  $(v_k, v_i) \in E$



• note:  $\delta(v_i, v_j) = d_{ij}^{n-1} = d_{ij}^n = d_{ij}^{n+1}$ , since  $m \le n - 1 = /V / - 1$ 

#### (3) Computing the shortest-path weights bottom-up:

- given  $W = D^1$ , compute a series of matrices  $D^2$ ,  $D^3$ , ...,  $D^{n-1}$ , where  $D^m = (d_{ij}^m)$  for m = 1, 2, ..., n-1
  - ► final matrix  $D^{n-1}$  contains actual shortest path weights, i.e.,  $d_{ij}^{n-1} = \delta(v_i, v_j)$

```
• SLOW-APSP(W)
D^{1} \leftarrow W
for m \leftarrow 2 to n\text{-}1 do
D^{m} \leftarrow \text{EXTEND}(D^{m\text{-}1}, W)
return D^{n\text{-}1}
```

#### EXTEND (D, W)

return D

```
► D = (d<sub>ij</sub>) is an n x n matrix

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

d<sub>ij</sub> \leftarrow \infty

for k \leftarrow 1 to n do

d<sub>ij</sub> \leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\}
```

#### MATRIX-MULT (A, B)

►  $\mathbf{C} = (c_{ij})$  is an n x n result matrix for  $i \leftarrow 1$  to n do for  $j \leftarrow 1$  to n do  $c_{ij} \leftarrow 0$ for  $k \leftarrow 1$  to n do  $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$ return  $\mathbf{C}$ 

• relation to matrix multiplication  $C = A \times B$ :  $\mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$ ,

Thus, we compute the sequence of matrix products

```
we compute the sequence D^0 = D^0 
              D^{n-1} = D^{n-2} \times W = W^{n-1}
```

- running time :  $\Theta(n^4) = \Theta(V^4)$ 
  - $\triangleright$  each matrix product :  $\Theta(n^3)$
  - $\triangleright$  number of matrix products : n-1

• Example





|   | 1 | 2 | 3  | 4 | 5        |
|---|---|---|----|---|----------|
| 1 | 0 | 3 | 8  | 8 | -4       |
| 2 | 8 | 0 | 8  | 1 | 7        |
| 3 | 8 | 4 | 0  | 8 | 8        |
| 4 | 2 | 8 | -5 | 0 | $\infty$ |
| 5 | 8 | 8 | 8  | 6 | 0        |

$$D^1 = D^0 W$$



|   | 1 | 2        | 3  | 4 | 5  |
|---|---|----------|----|---|----|
| 1 | 0 | 3        | 8  | 2 | -4 |
| 2 | 3 | 0        | -4 | 1 | 7  |
| 3 | 8 | 4        | 0  | 5 | 11 |
| 4 | 2 | -1       | -5 | 0 | -2 |
| 5 | 8 | $\infty$ | 1  | 6 | 0  |

$$D^2 = D^1 W$$



|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 3  | -3 | 2 | -4 |
| 2 | 3 | 0  | -4 | 1 | -1 |
| 3 | 7 | 4  | 0  | 5 | 11 |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 5  | 1  | 6 | 0  |

$$D^3 = D^2 W$$



|   | 1 | 2  | 3  | 4 | 5  |
|---|---|----|----|---|----|
| 1 | 0 | 1  | -3 | 2 | -4 |
| 2 | 3 | 0  | -4 | 1 | -1 |
| 3 | 7 | 4  | 0  | 5 | 3  |
| 4 | 2 | -1 | -5 | 0 | -2 |
| 5 | 8 | 5  | 1  | 6 | 0  |

$$D^4 = D^3 W$$

• relation of APSP to one step of matrix multiplication



- $d_{ij}^{n-1}$  at row  $r_i$  and column  $c_j$  of product matrix  $= \delta (v_i = s, v_j)$  for j = 1, 2, 3, ..., n
- row  $r_i$  of the product matrix = solution to single-source shortest path problem for  $s = v_i$ .
  - ►  $r_i$  of C = matrix B multiplied by  $r_i$  of A ⇒  $D_i^m = D_i^{m-1} x W$

• let 
$$D_i^{\ 0} = d^0$$
, where  $d_j^{\ 0} = \begin{cases} 0 & \text{if } i = j \\ \\ \infty & \text{otherwise} \end{cases}$ 

• we compute a sequence of n-1 "matrix-vector" products

$$d_i^{1} = d_i^{0} \times W$$

$$d_i^{2} = d_i^{1} \times W$$

$$d_i^{3} = d_i^{2} \times W$$

$$\vdots$$

$$d_i^{n-1} = d_i^{n-2} \times W$$

- this sequence of matrix-vector products
  - ➤ same as Bellman-Ford algorithm.
  - ► vector  $d_i^m \Rightarrow d$  values of Bellman-Ford algorithm after m-th relaxation pass.

 $\Rightarrow$  *m-th* relaxation pass over all edges.

```
BELLMAN-FORD (G, v_i)

▶ perform RELAX (u, v) for

▶ every edge (u, v) ∈ E

for j \leftarrow l to n do

for k \leftarrow l to n do

RELAX (v_k, v_j)

RELAX (u, v)

d_v = \min \{d_v, d_u + \omega_{uv}\}
```

# Improving Running Time Through Repeated Squaring

- idea: goal is not to compute all D<sup>m</sup> matrices
  - $\blacktriangleright$  we are interested only in matrix  $D^{n-1}$
- recall: no negative-weight cycles  $\Rightarrow$   $D^m = D^{n-1}$  for all  $m \ge n-1$
- we can compute  $D^{n-1}$  with only  $\lfloor \lg(n-1) \rfloor$  matrix products as

$$D^{1} = W$$

$$D^{2} = W^{2} = W \times W$$

$$D^{4} = W^{4} = W^{2} \times W^{2}$$

$$D^{8} = W^{8} = W^{4} \times W^{4}$$

$$\mathbf{D}^{2^{\lceil \lg(n-1) \rceil}} = \mathbf{W}^{2^{\lceil \lg(n-1) \rceil}} = \mathbf{W}^{2^{\lceil \lg(n-1) \rceil - 1}} \times \mathbf{W}^{2^{\lceil \lg(n-1) \rceil - 1}}$$

This technique is called repeated squaring.

# Improving Running Time Through Repeated Squaring

```
• FASTER-APSP (W)
D^{1} \leftarrow W
m \leftarrow 1
while m < n-1 do
D^{2m} \leftarrow EXTEND (D^{m}, D^{m})
m \leftarrow 2m
return D^{m}
```

- final iteration computes  $D^{2m}$  for some  $n-1 \le 2m \le 2n-2 \Rightarrow D^{2m} = D^{n-1}$
- running time :  $\Theta( n^3 \lg n ) = \Theta( V^3 \lg V )$ 
  - $\triangleright$  each matrix product :  $\Theta(n^3)$
  - ► # of matrix products : [lg( n-1 ]
  - ightharpoonup simple code, no complex data structures, small hidden constants in  $\Theta$ -notation.

# Idea Behind Repeated Squaring

• decompose  $p_{ij}^{2m}$  as  $p_{ik}^{m}$  &  $p_{kj}^{m}$ , where

$$p_{ij}^{2m}: v_i \sim v_j$$

$$p_{ik}^{m}: v_i \sim v_k$$

$$p_{kj}^{m}: \mathbf{v}_{k} \sim \mathbf{v}_{j}$$



- assumption: negative-weight edges, but no negative-weight cycles
   (1) The Structure of a Shortest Path:
- Definition: intermediate vertex of a path  $p = \langle v_1, v_2, v_3, ..., v_k \rangle$ • any vertex of p other than  $v_1$  or  $v_k$ .
- $p_{ij}^{m}$ : a shortest path from  $v_i$  to  $v_j$  with all intermediate vertices from  $V_m = \{ v_1, v_2, ..., v_m \}$
- relationship between  $p_{ij}^{m}$  and  $p_{ij}^{m-1}$ 
  - $\triangleright$  depends on whether  $v_m$  is an intermediate vertex of  $p_{ij}^{m}$
  - case 1:  $v_m$  is not an intermediate vertex of  $p_{ij}^{\ m}$   $\Rightarrow \text{ all intermediate vertices of } p_{ij}^{\ m} \text{ are in } V_{m-1}$   $\Rightarrow p_{ij}^{\ m} = p_{ij}^{\ m-1}$

- case 2:  $v_m$  is an intermediate vertex of  $p_{ij}^{m}$ 
  - decompose path as  $v_i \ensuremath{\checkmark} v_m \ensuremath{\checkmark} v_j$

$$\Rightarrow p_1: v_i \wedge v_m \& p_2: v_m \wedge v_j$$

- by opt. structure property both  $p_1 \& p_2$  are shortest paths.
- $v_m$  is not an intermediate vertex of  $p_1$  &  $p_2$



#### (2) A Recursive Solution to APSP Problem:

•  $d_{ij}^{m} = \omega(p_{ij})$ : weight of a shortest path from  $v_i$  to  $v_j$  with all intermediate vertices from

$$V_{m} = \{ v_{1}, v_{2}, ..., v_{m} \}.$$

- note:  $d_{ij}^{n} = \delta(v_i, v_j)$  since  $V_n = V$ 
  - ▶ i.e., all vertices are considered for being intermediate vertices of  $p_{ij}^{n}$ .

- compute  $d_{ij}^{m}$  in terms of  $d_{ij}^{k}$  with smaller k < m
- $\mathbf{m} = 0$ :  $\mathbf{V}_0 = \text{empty set}$   $\Rightarrow \text{ path from } \mathbf{v}_i \text{ to } \mathbf{v}_j \text{ with no intermediate vertex.}$ i.e.,  $\mathbf{v}_i \text{ to } \mathbf{v}_j \text{ paths with at most one edge}$   $\Rightarrow \mathbf{d}_{ii}^{\ 0} = \boldsymbol{\omega}_{ii}$
- $m \ge 1$ :  $d_{ij}^{m} = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

(3) Computing Shortest Path Weights Bottom Up:

```
FLOYD-WARSHALL(W)
       \triangleright D<sup>0</sup>, D<sup>1</sup>, ..., D<sup>n</sup> are n \times n matrices
       for m \leftarrow 1 to n do
            for i \leftarrow 1 to n do
                 for j \leftarrow 1 to n do
                  d_{ii}^{m} \leftarrow \min \{d_{ii}^{m-1}, d_{im}^{m-1} + d_{mi}^{m-1}\}
       return D<sup>n</sup>
```

```
FLOYD-WARSHALL (W)
        \triangleright D is an n \times n matrix
        D \leftarrow W
       for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
                for j \leftarrow 1 to n do
                    if d_{ij} > d_{im} + d_{mj} then
                       d_{ii} \leftarrow d_{im} + d_{mi}
        return D
```

- maintaining  $n \ D$  matrices can be avoided by dropping all superscripts.
  - m-th iteration of outermost for-loop

```
begins with D = D^{m-1}
ends with D = D^m
```

- computation of  $d_{ij}^{m}$  depends on  $d_{im}^{m-1}$  and  $d_{mj}^{m-1}$ .

  no problem if  $d_{im} \& d_{mj}$  are already updated to  $d_{im}^{m} \& d_{mj}^{m}$ since  $d_{im}^{m} = d_{im}^{m-1} \& d_{mi}^{m} = d_{mi}^{m-1}$ .
- running time :  $\Theta(n^3) = \Theta(V^3)$ simple code, no complex data structures, small hidden constants

#### Transitive Closure of a Directed Graph

- G' = (V, E'): transitive closure of G = (V, E), where  $\triangleright$  E' = { (v<sub>i</sub>, v<sub>i</sub>): there exists a path from v<sub>i</sub> to v<sub>i</sub> in G }
- trivial solution : assign W such that  $\omega_{ij} = \begin{cases} 1 \text{ if } (v_i, v_j) \in E \\ \infty \text{ otherwise} \end{cases}$ 
  - run Floyd-Warshall algorithm on W
  - $ightharpoonup d_{ii}^n < n \implies$  there exists a path from  $v_i$  to  $v_i$ , i.e.,  $(v_i, v_i) \in E'$
  - $ightharpoonup d_{ii}^{n} = \infty \Rightarrow \text{ no path from } v_i \text{ to } v_i$ , i.e.,  $(v_i, v_j) \notin E'$ running time:  $\Theta(n^3) = \Theta(V^3)$

## Transitive Closure of a Directed Graph

• Better  $\Theta(V^3)$  algorithm : saves time and space.

► W = adjacency matrix : 
$$ω_{ij} = \begin{cases} 1 & \text{if } i = j \text{ or } (v_i, v_j) ∈ E \\ 0 & \text{otherwise} \end{cases}$$

- ▶ run Floyd-Warshall algorithm by replacing "min"  $\rightarrow$  " $\lor$ " & "+"  $\rightarrow$  " $\land$ "
- $\bullet \quad \text{define } t_{ij}^{\ \ m} = \left\{ \begin{array}{l} 1 \text{ if } \ \exists \text{ a path from } v_i \text{ to } v_j \text{ with all intermediate vertices from } V_m \\ \\ 0 \text{ otherwise} \end{array} \right.$

• recursive definition for  $t_{ij}^{m} = t_{ij}^{m-1} \vee (t_{im}^{m-1} \wedge t_{mj}^{m-1})$  with  $t_{ij}^{0} = \omega_{ij}$ 

#### Transitive Closure of a Directed Graph

```
T-CLOSURE (G)

ightharpoonup T = (t_{ii}) is an n \times n boolean matrix
         for i \leftarrow 1 to n do
             for j \leftarrow 1 to n do
                  if i = j or (v_i, v_j) \in E then
                       t_{ij} \leftarrow 1
                   else
                       t_{ii} \leftarrow 0
          for m \leftarrow 1 to n do
              for i \leftarrow 1 to n do
                   for j \leftarrow 1 to n do
                        t_{ij} \leftarrow t_{ij} \vee (t_{im} \wedge t_{mj})
```