$e^{1/x} = x$, 1/x = x, $1/x = x^{1/2}$, $1/x = x^{1/2}$ |MI = 0, 1m0 = too / lim 1 = 0 > 505 Σειρές Σειρές Κριτήριο του γόρου ρ'alembert

Tim | an+1 | - L

ν-200 | an | - L 1) L <1 -> Zyk?ivousq. 2) L >1 -> Anox)ivousq. 3) L=1 -> JULK IVOUSA EICE OMORTIVOUSA Παραδάμματα: 1) $\frac{2^{\infty}}{2^{\infty}} \frac{1}{n.2^{\infty}}$ 2) 2° 3ⁿ 3) 2° 5ⁿ 4) 2° -6 M=1 4n-n2/3) N=1 (n+1) 1. / N=1 4n 5) 20 127 + 4pove 40: 1,3,4,5 |Swertes: 1) 2 (ax+bk) = 2 ak + 2 bk 2) 2 (ak = (5 ak Apporisi Lupaj Mopen: 20 1 Περιπανόσεις:

i) Aup71: Houpa outwires

11) Av p < 1: H ougà anox) iver (11.x 5m = 41/2) a gov p=1/2

Γεωμετρική σειρά :i) Μορφή ot=apt-1 = Sm	
Παιρνω το όριο $\frac{\alpha p^{\gamma}}{q p^{\gamma-1}} = p $	
i) Sujkivousa otan pl <1 ii) Anokivousa otan pl 71 iii) Ipl=1 => Sn=na i) Anokivousa jaa ato iii) Sulkivousa la ses	
ii) Sujerivousa fra a=0.	
iii) Ar p=-1 jean n aprilo sujerives sto puser iv) jean p=-1 kan n riepetto sujerives sto a	
ii) Moppi: 20 gr => p=r	
i) Av 1p1<1 (-1 < p<1) outerier	
STO $S = \frac{\alpha}{1-\nu}$ $\eta \cdot x \stackrel{20}{\stackrel{>}{\sim}} S \left(\frac{1}{\tau}\right)^{\infty}$	
ii) 1917 1 Kan azo: H oenpa arrangi Jeran Derikai	
iii) p 21 kan a < 0: It supà ancip Jeran a	ennak
n.x 5 -3 67	
iv) Av pe-1 toès u supa kupaivera	۸,
2° (-3) ^{\(\gamma\)}	
N-0	

Mapagyor Basikin snapthoem

1)
$$F(x) = \sqrt{x}$$
, $F'(x) = \frac{1}{2\sqrt{x}}$, $F(x) = \sqrt{\frac{g(x)}{g(x)}}$

2)
$$F(x) = \frac{1}{x}$$
, $F(x) = -\frac{1}{x^2}$, $F(x) = \frac{1}{g(x)}$, $F(x) = -\frac{g(x)}{g^2(x)}$
3) $F(x) = \frac{1}{x}$, $F(x) = \frac{1}{x^2}$, $F(x) = \frac{1}{g(x)}$, $F(x) = \frac{1}{g^2(x)}$, $F(x) = \frac{1}{g^2(x)}$

5)
$$F(x) = \frac{\epsilon_{\varphi x}}{\epsilon_{\varphi x}}$$
, $F(x) = \frac{1}{\epsilon_{\varphi x}}$

6)
$$F(x) = \frac{64x}{6+x}$$
, $F(x) = -\frac{1}{5in^2x}$, $F(x) = \frac{1}{6+x}$ $F(x) = \frac{1}{6+x}$

7)
$$f(x) = e^{x}$$
, $f'(x) = e^{x}$, $f(x) = e^{g(x)}$, $f(x) = e^{g(x)}$. $g'(x)$

9)
$$f(x) = \ln x, f'(x) = \frac{1}{x}, f = \ln g(x), f(x) = \frac{1}{g(x)}, g'(x)$$

Karoves magazingrans

1)
$$f(x) = c = 2f'(x) = 0$$

2)
$$f(x) = mx + b =) f'(x) = x$$

3) $f(x) = x^n =) f'(x) = x^{n-1}$

4)
$$g(x) = F(x) = 2g'(x) = CF'(x)$$

6)
$$h(x) = f(x) - g(x) = 3h'(x) = g'(x) - f'(x)$$

7)
$$h(x) = F(x) \cdot g(x) = f(x) \cdot g(x) + F(x) \cdot g(x) + F(x) \cdot g(x) - F(x) \cdot g(x) = F(x) \cdot g(x) - F(x) \cdot g(x) = F(x) \cdot g(x) + F(x) \cdot g(x) = F(x)$$

4)
$$g(x) = f(x) = g'(x) = Cf'(x)$$

5) $f(x) = f(x) + g(x) = h'(x) = f'(x) + g'(x)$
6) $h(x) = f(x) - g(x) = h'(x) = g'(x) - f'(x)$
7) $h(x) = f(x) \cdot g(x) = h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
8) $h(x) = f(x) \cdot g(x) + o = h'(x) = f'(x) \cdot g(x) - f(x) \cdot g'(x)$
 $g(x)$ $g(x)$

Παιριαμε την εκτίμηση του σφαλματος φερω του υπολοιπου taylor και το συγκρινουμε φε σι πραγματική διαγορα.

Avoladies years: 4,5,7,8

Σετ 1°: 5, 8, 10

Avartuglia Taylor:

Ti da Jucudeij 1) la spedi n n raizus reposéphons le supa Taylor TUS F(x) jupo ano To Xo= Kati.

 $P(X_0) = F(x_0) + \frac{F'(x_0)(x-x_0)^2}{1!} + \frac{F''(x_0)(x-x_0)^2}{2!} + \cdots$

+. F" (xo) (x-xo) M

2 to telos kain averkardoram en tipin Yokar Beiow to P(xo).

- Na Bpedei n neaghanixi Stayopà ou onficio x= vati F(X) - P(XI) (Bajon oro P(xo) onov x= The opinion
- 3) Arm épapha 500 enfrio x1=kar1

R (x) < M | x | m+1

Ofton M Eva ain regaglia for the tipis [f(x)]
670 Scarma Xt [xo, xi] is [xo, xo] OTTOU M EVA

 $|X| \leq X \quad (=) \quad |X|_{\omega+1} \leq X_{\omega+1}$ $|X| \leq X \quad (=) \quad |X|_{\omega+1} \leq X_{\omega+1}$

 $\leq \text{uverious} \ \begin{cases} P(x) \leq \frac{(n+1)}{(n+1)!} \\ \frac{(n+1)!}{(n+1)!} \end{cases}$

Exchinar erbastraios freem unolourou Taylor.

TO out knim be a realtaini grandoba.