

FACULTY OF ENGINEERING AND ARCHITECTUREDEPARTMENT OF MECHATRONICS ENGINEERING

FIVE BAR MECHANISM AND FOUR BAR MECHANISM KINEMATIC SYNTHESIS

Bengi Sueda ERDAL	Baran BOR
200412065	210412023
Enes FIDE 200412009	

MAY 2024

ABSTRACT

Kinematic synthesis revolves around crafting mechanisms capable of producing predetermined motion paths or trajectories. In essence, it involves the design and configuration of systems, such as linkages and cams, to achieve desired motion patterns. This process entails determining the appropriate dimensions, shapes, and layouts of components to fulfill specific motion requirements. For instance, in industrial settings, kinematic synthesis might involve devising mechanisms to facilitate tasks like lifting and relocating objects with precision. This facet is integral to fields like robotics, automation, and machinery design.

1. AIM OF THE PROJECT

The aim of the project is to design a five-bar mechanism that follows a given function and then convert the designed five-bar mechanism into a four-bar mechanism to determine the path it follows. Subsequently, an error analysis is conducted, and the results are interpreted.

2. DESIGN PROCEDURE

2.1 FIVE BAR MECHANISM

The inverse task method was used in the design of a 5-bar mechanism. During the application of the inverse task, link dimensions were initially determined, and necessary calculations were made considering these dimensions. As a result of these calculations, 2 input and 2 output angles were obtained. One of these different solutions was selected, and a 5-bar mechanism was drawn on a graph. By means of a button, it was observed whether the mechanism followed the desired path. As a result of the process, the 5-bar mechanism successfully followed the desired path.

2.1.1 FIVE BAR MECHANISM CALCULATIONS

For the right side of mechanism replace:

a= a+f

b=e

c=d

Qb=Qe

Qc=Qd calculations rewrited and Qe Qd degrees found. In this Project 1st solution was used.

2.2 FOUR BAR MECHANISM

During the design stage of the 4-bar mechanism, the relationship between input and output angles was assumed to be the same as that of the 5-bar mechanism.3 precision point was selected ,based on this assumption, the link lengths of the 4-bar mechanism were calculated.

Link length of 'f' five bar mechanism must be equal to link length of 'd' for four bar mechanism. First step d link length was assumed to 1 but five bar mechanism 'f' link length is 150 mm so, four bar mechanism link lengths must be scale by multiplying each link to 150.

	PRECISION POIN	NTS			FOUR BA	R LINK LENGTHS	
	Qb1	Qe1	A-1*C=B	MATRIX			scale
PP1	2,681999507	1,60753741	P0	0,84188	а	-1,70082	-255,123061
PP2	2,232612218	0,85224385	P1	-0,58795	b	1,61897	242,8459216
PP3	1,308795868	0,11685332	P2	-0,43211	С	-2,31424	-347,136567
					d	1	150
A MATRIX							
1	-0,036732818	0,89623305					
1	0,658295725	0,61455038					
1	0,993180416	-0,2590133					
A-1 MARRIX							
1,522690293	-1,717183508	1,19449321					
-1,703449301	2,252730563	-0,5492813					
-0,653025225	2,008331045	-1,3553058					
C MATRIX							
0,476205309							
0,189279135							
0,369855771							

2.2.1 FOUR BAR MECHANISM DIRECT TASK

By performing the direct task, the relationship between the input and output angles of the known 4-bar mechanism is obtained. Thus, the design of the 4-bar mechanism is completed.

input degree	radium		dograp	radvan	dograp	radiuan	dogram	radvan
derece	radyan		degree	radyan	degree	radyan	degree	radyan
Qb1	Qb1	S	α	α	β	β	Qe1	Qe1
153,6672524	*	137,81459	124,799		147,307	_ *	-92,105	-1,6075
153,0942946		139,05319		2,16203		2,56372	-90,766	*
152,5213368		140,30518		2,14612		2,55665	-89,449	
151,948379	*	141,57009		2,1304		2,54977	-88,154	-1,5386
151,3754212	2,641999507	142,84743		2,11487		2,54306	-86,88	-1,5163
150,8024634	2,631999507	144,13676	120,294	2,09953	145,333	2,53654	-85,627	-1,4945
150,2295056	2,621999507	145,43763		2,08437		2,5302	-84,395	-1,473
149,6565478	2,611999507	146,7496		2,06939		2,52402	-83,183	-1,4518
149,08359	2,601999507	148,07225	117,719	2,05459	144,272	2,51802	-81,991	-1,431
148,5106323	2,591999507	149,40517	116,881	2,03997	143,938	2,51219	-80,819	-1,4106
147,9376745	2,581999507	150,74795		2,02551		2,50652	-79,666	-1,3904
147,3647167	2,571999507	152,1002	115,235	2,01122	143,298	2,50101	-78,532	-1,3706
146,7917589	2,561999507	153,46154	114,425	1,9971	142,991	2,49567	-77,417	-1,3512
146,2188011	2,551999507	154,83158	113,626	1,98314		2,49047	-76,319	-1,332
145,6458433	2,541999507	156,20997	112,835	1,96934	142,405	2,48543	-75,239	-1,3132
145,0728855	2,531999507	157,59635	112,053	1,95569	142,124	2,48054	-74,177	-1,2946
144,4999277	2,521999507	158,99038	111,279	1,94219	141,853	2,47579	-73,132	-1,2764
143,9269699	2,511999507	160,39171	110,514	1,92884	141,589	2,47119	-72,103	-1,2584
143,3540121	2,501999507	161,80002	109,758	1,91563	141,333	2,46673	-71,091	-1,2408
142,7810543	2,491999507	163,215	109,009	1,90257	141,085	2,4624	-70,094	-1,2234
142,2080965	2,481999507	164,63632	108,269	1,88964	140,845	2,45821	-69,114	-1,2063
141,6351387	2,471999507	166,06369	107,536	1,87685	140,612	2,45415	-68,148	-1,1894
141,0621809	2,461999507	167,49681	106,811	-		2,45021	-67,198	-1,1728
140,4892231	2,451999507	168,93539	106,093	1,85167	140,169	2,4464	-66,262	-1,1565
				_		_		

(Relationship between input and output angle)

(Four bar mechanism)

2.3 ERROR CALCULATION

The polynomial approximation method was chosen for error calculation.

FINDING THE PATH WHICH FOUR BAR MECHANISM'S TOP POINT FOLLOWS.

$$(x-F_x)^2 + (y-F_y)^2 = n^2$$
 $n=220mm$

$$\mathbb{E}qn \oplus -\mathbb{E}qn \oplus \supseteq \frac{\mathbb{K}_2 - \mathbb{K}_1}{2} = \mathbb{K}(-\mathbb{F}_X + \mathbb{E}y) + y(-\mathbb{F}y + \widehat{\mathbb{E}}y)$$

 $y = \frac{\frac{|x_2 - y|}{2} - jx}{2}$ (substitute y ean to ean() then find the x

$$\frac{220^{2} - F_{X} - F_{Y}}{V_{2}} = x^{2} + \left(\frac{(2-V_{1})}{2} - 3(F_{X} \cdot X + F_{Y} \cdot Y)\right)$$
Note $C_{X} = \frac{V_{2} - V_{1}}{2}$

$$0 = x^{2} - k_{2} + \frac{L^{2} + j \cdot x^{2} - 2Ljx}{t^{2}} - 2F_{x} \cdot x - 2F_{y} \cdot \frac{L - jx}{2}$$

$$x_1 = \frac{-b \pm \sqrt{\Delta}}{2a}$$
 (x founded) $y = \frac{x_2 - k_1}{2} - 3x_1$ (y founded)

Trepeat this calculations for every position than, find the path function

							L		coefficients of the equation			The path w	he path which is four bar mecha		anism follov		
Ex	Ey	М	K1	Fx	Fy	K2	(K2-K1)/2	J=-Fx+Ey	Z=-Fy+Ey	а	b	С	delta	x1	x2	y1	y2
-29,247	-199,87	200		291,919	-219,85	-85151	-42175	-491,78	19,9865	242251	-5E+07	-336624126	49452941,6	197,089	-7,0505	2739,36	-2283,7
-28,35	-199,98	200	398,301	297,059	-219,98	-88235	-44317	-497,04	19,9982	247450	-5E+07	-354630853	52147238	203,703	-7,0354	2846,85	-2390,9
-29,247	-199,87	200		291,919		-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-26,505 $^{\prime}$	-199,9	200	330,492	307,088	-219,89	-94253	-47292	-506,98	19,9896	257433	-5E+07	-378072985	56230029,2	211,482	-6,9445	2997,87	-2541,9
-29,247		200			-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-24,589 🛚	-199,42	200	186,024	316,775 °	-219,36	-100065	-50125	-516,19	19,9418	266852	-6E+07	-398745738	60164472,9	218,625	-6,8348	3145,52	-2690,5
-29,247		200		291,919		-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-22,603	-198,59	200	-26,328	326,113	-218,44	-105668	-52821	-524,7	19,8586	275703	-6E+07	-416601567	63939164,5	225,203	-6,7097	3290,42	-2837,1
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-20,547	-197,44	200	-298,02	335,101	-217,18	-111060	-55381	-532,54	19,7438	283987	-6E+07	-431655215	67546341,5	231,278	-6,5721	3433,14	-2982,3
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-18,424	-196,01	200	-620,83	343,74	-215,61	-116244	-57811	-539,75	19,6007	291711	-7E+07	-443971813	70981386	236,903	-6,4244	3574,17	-3126,4
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-16,233	-194,33	200	-987,01	352,033	-213,76	-121220	-60116	-546,36	19,4326	298885	-7E+07	-453655818	74242347,5	242,129	-6,2687	3714,01	-3269,8
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-13,976	-192,42	200	-1389,3	359,987	-211,66	-125992	-62301	-552,41	19,2422	305525	-7E+07	-460841079	77329494,9	246,997	-6,1068	3853,08	-3413,1
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-11,653	-190,32	200	-1820,9	367,608	-209,35	-130565	-64372	-557,93	19,0322	311648	-8E+07	-465682179	80244911,1	251,546	-5,9403	3991,81	-3556,4
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-9,266	-188,05	200	-2275,5	374,904	-206,86	-134943	-66334	-562,96	18,8051	317272	-8E+07	-468347073	82992129,1	255,81	-5,7706	4130,58	-3700,2
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-6,8149	-185,63	200	-2747,6	381,886	-204,19	-139132	-68192	-567,52	18,563	322419	-8E+07	-469010987	85575814,9	259,819	-5,5987	4269,77	-3844,7
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-4,301	-183,08	200	-3231,8	388,563	-201,39	-143138	-69953	-571,64	18,3079	327110	-8E+07	-467851473	88001492,2	263,602	-5,4258	4409,73	-3990,3
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
-1,7254	-180,42	200	-3723,6	394,946	-198,46	-146967	-71622	-575,36	18,0416	331366	-9E+07	-465044516	90275309,4	267,181	-5,2527	4550,81	-4137,3
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
0,91087	-177,66	200	-4218,6	401,045	-195,42	-150627	-73204	-578,7	17,7657	335211	-9E+07	-460761536	92403842,3	270,579	-5,08	4693,33	-4286
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
3,60677	-174,82	200	-4713,1	406,871	-192,3	-154123	-74705	-581,69	17,4816	338666	-9E+07	-455167181	94393932,1	273,814	-4,9084	4837,62	-4436,7
-29,247		200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
6,36123	-171,91	200	-5203,7	412,436	-189,1	-157462	-76129	-584,34	17,1908	341753	-9E+07	-448417759	96252551,4	276,905	-4,7385	4984,01	-4589,6
-29,247		200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3
9,17315	-168,94	200	-5687,3	417,75	-185,84	-160650	-77481	-586,69	16,8942	344492	-9E+07	-440660210	97986696,7	279,867	-4,5706	5132,8	-4745
-29,247	-199,87	200	400,696	291,919	-219,85	-85151	-42776	-491,78	19,9865	242251	-5E+07	-341906178	50054893,6	199,552	-7,0727	2769,88	-2314,3

3. RESULTS

In the project, the path that the mechanism needed to follow was a function in the x and y planes. This means that a 2-degree-of-freedom mechanism can follow this path with zero error. We proved this with the synthesis of the 5-bar mechanism. However, when we converted our 5-bar mechanism to a 4-bar mechanism, the degrees of freedom reduced to 1, causing the mechanism to fail to follow the required path and errors to occur. In the final step of the project, this error was calculated to reach a conclusion.