Latent Variable Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 6

Plan for today

- Latent Variable Models
 - Learning deep generative models
 - Stochastic optimization:
 - Reparameterization trick
 - Inference Amortization

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(0, I)$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- **3** Even though $p(\mathbf{x} \mid \mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible

Recap

- Latent Variable Models
 - Allow us to define complex models p(x) in terms of simple building blocks $p(x \mid z)$
 - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
 - No free lunch: much more difficult to learn compared to fully observed, autoregressive models

Marginal Likelihood

- Suppose some pixel values are missing at train time (e.g., bottom half)
- Let X denote observed random variables, and Z the unobserved ones (also called hidden or latent)
- Suppose we have a model for the joint distribution (e.g., PixelCNN) $p(\mathbf{X}, \mathbf{Z}; \theta)$

What is the probability $p(\mathbf{X} = \bar{\mathbf{x}}; \theta)$ of observing a training data point $\bar{\mathbf{x}}$?

$$\sum_{\mathbf{z}} \rho(\mathbf{X} = \bar{\mathbf{x}}, \mathbf{Z} = \mathbf{z}; \theta) = \sum_{\mathbf{z}} \rho(\bar{\mathbf{x}}, \mathbf{z}; \theta)$$

Need to consider all possible ways to complete the image (fill green part)

The EM Algorithm

• Suppose $q(\mathbf{z})$ is **any** probability distribution over the hidden variables

$$D_{\mathsf{KL}}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x}; \theta)) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + \log p(\mathbf{x}; \theta) - H(q) \geq 0$$

• Evidence lower bound (ELBO) holds for any q

$$\log p(\mathbf{x}; \theta) \ge \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

• Equality holds if $q = p(\mathbf{z}|\mathbf{x}; \theta)$

$$\log p(\mathbf{x}; \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q)$$

This is what we compute in the E-step of the EM algorithm

A variational approximation to the posterior

- What if the posterior $p(\mathbf{z}|\mathbf{x};\theta)$ is intractable to compute in the E-step?
- Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)
 - \bullet E.g., a Gaussian with mean and covariance specified by $\phi,$ a fully factored probability distribution, a FVSBN, etc.

$$q(\mathbf{z}; \phi) = \prod_{\text{unobserved variables } z_i} (\phi_i)^{z_i} (1 - \phi_i)^{(1 - z_i)}$$

 Note: conditioned on the bottom part (x), choosing pixels independently in z is not a terrible approximation

The Evidence Lower bound

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$
$$= \mathcal{L}(\mathbf{x}; \theta, \phi) + D_{KL}(q(\mathbf{z}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))$$

The better $q(\mathbf{z}; \phi)$ can approximate the posterior $p(\mathbf{z}|\mathbf{x}; \theta)$, the smaller $D_{KL}(q(\mathbf{z}; \phi)||p(\mathbf{z}|\mathbf{x}; \theta))$ we can achieve, the closer ELBO will be to the true $\log p(\mathbf{x}; \theta)$ which is what we want to optimize

A variational approximation to the posterior

- Assume $p(\mathbf{z}, \mathbf{x}; \theta)$ is close to $p_{\text{data}}(\mathbf{z}, \mathbf{x})$
- Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables \mathbf{z} parameterized by ϕ (variational parameters)

$$q(\mathbf{z}; \phi) = \prod_{\text{unobserved variables } z_i} (\phi_i)^{z_i} (1 - \phi_i)^{(1 - z_i)}$$

- Is $\phi_i = 0.5 \ \forall i$ a good approximation to the posterior $p(\mathbf{z}|\mathbf{x};\theta)$? No
- Is $\phi_i = 1 \ \forall i$ a good approximation to the posterior $p(\mathbf{z}|\mathbf{x};\theta)$? No
- Is $\phi_i \approx 1$ for pixels i corresponding to the top part of digit **9** a good approximation? Yes
- Note: not true if $p(\mathbf{z}, \mathbf{x}; \theta)$ is far from $p_{\text{data}}(\mathbf{z}, \mathbf{x})$, i.e., at the beginning of learning

Potential issues with Variational EM algorithm

(Figure adapted from tutorial by Sean Borman)

The Evidence Lower bound applied to the entire dataset

• Evidence lower bound (ELBO) holds for any $q(z; \phi)$

$$\log p(\mathbf{x}; \theta) \ge \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$

Maximum likelihood learning (over the entire dataset):

$$\ell(\theta; \mathcal{D}) = \sum_{\mathbf{x}^i \in \mathcal{D}} \log p(\mathbf{x}^i; \theta) \geq \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

Therefore

$$\max_{\theta} \ell(\theta; \mathcal{D}) \geq \max_{\theta, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

• Note that we use a different variational parameters ϕ^i for every data point \mathbf{x}^i , because the true posterior $p(\mathbf{z}|\mathbf{x}^i;\theta)$ is different across datapoints \mathbf{x}^i

Learning via stochastic variational inference (SVI)

• Optimize $\sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$ as a function of $\theta, \phi^1, \cdots, \phi^M$ using (stochastic) gradient descent

$$\mathcal{L}(\mathbf{x}^{i}; \theta, \phi^{i}) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi^{i}) \log p(\mathbf{z}, \mathbf{x}^{i}; \theta) + H(q(\mathbf{z}; \phi^{i}))$$
$$= E_{q(\mathbf{z}; \phi^{i})}[\log p(\mathbf{z}, \mathbf{x}^{i}; \theta) - \log q(\mathbf{z}; \phi^{i})]$$

- Initialize $\theta, \phi^1, \cdots, \phi^M$
- ② Randomly sample a data point \mathbf{x}^i from $\mathcal D$
- **3** Optimize $\mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$ as a function of ϕ^i :
 - $\bullet \quad \mathsf{Repeat} \ \phi^i = \phi^i + \eta \nabla_{\phi^i} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$
 - **2** until convergence to $\phi^{i,*} \approx \arg \max_{\phi} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$
- **o** Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^i; \theta, \phi^{i,*})$
- **1** Update θ in the gradient direction. Go to step 2
- How to compute the gradients? There might not be a closed form solution for the expectations. So we use Monte Carlo sampling

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)]$$

- Note: dropped i superscript from ϕ^i for compactness
- To evaluate the bound, sample z^1, \dots, z^k from $q(z; \phi)$ and estimate

$$E_{q(\mathbf{z};\phi)}[\log p(\mathbf{z},\mathbf{x};\theta) - \log q(\mathbf{z};\phi)] \approx \frac{1}{k} \sum_{k} \log p(\mathbf{z}^{k},\mathbf{x};\theta) - \log q(\mathbf{z}^{k};\phi))$$

- ullet Key assumption: $q(\mathbf{z};\phi)$ is tractable, i.e., easy to sample from and evaluate
- Want to compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- ullet The gradient with respect to heta is easy

$$\nabla_{\theta} E_{q(\mathbf{z};\phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)] = E_{q(\mathbf{z};\phi)}[\nabla_{\theta} \log p(\mathbf{z}, \mathbf{x}; \theta)]$$

$$\approx \frac{1}{k} \sum_{k} \nabla_{\theta} \log p(\mathbf{z}^{k}, \mathbf{x}; \theta)$$

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)]$$

- Want to compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- \bullet The gradient with respect to ϕ is more complicated because the expectation depends on ϕ
- We still want to estimate with a Monte Carlo average
- Later in the course we'll see a general technique called REINFORCE (from reinforcement learning)
- For now, a better but less general alternative that only works for continuous

Reparameterization

ullet Want to compute a gradient with respect to ϕ of

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z})] = \int q(\mathbf{z};\phi)r(\mathbf{z})d\mathbf{z}$$

where **z** is now **continuous**

- Suppose $q(\mathbf{z}; \phi) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathbf{z} \sim q_{\phi}(\mathbf{z})$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = g(\epsilon; \phi)$
- Using this equivalence we compute the expectation in two ways:

$$E_{\mathbf{z} \sim q(\mathbf{z}; \phi)}[r(\mathbf{z})] = E_{\epsilon \sim \mathcal{N}(0, l)}[r(g(\epsilon; \phi))] = \int p(\epsilon)r(\mu + \sigma\epsilon)d\epsilon$$
$$\nabla_{\phi} E_{q(\mathbf{z}; \phi)}[r(\mathbf{z})] = \nabla_{\phi} E_{\epsilon}[r(g(\epsilon; \phi))] = E_{\epsilon}[\nabla_{\phi} r(g(\epsilon; \phi))]$$

- Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ϕ and ϵ is easy to sample from (backpropagation)
- $E_{\epsilon}[\nabla_{\phi} r(g(\epsilon; \phi))] \approx \frac{1}{k} \sum_{k} \nabla_{\phi} r(g(\epsilon^{k}; \phi))$ where $\epsilon^{1}, \dots, \epsilon^{k} \sim \mathcal{N}(0, I)$.
- Typically much lower variance than REINFORCE

Learning Deep Generative models

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q(\mathbf{z}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}; \phi))$$
$$= E_{q(\mathbf{z}; \phi)} [\underbrace{\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q(\mathbf{z}; \phi)}_{r(\mathbf{z}, \phi)}]$$

- Our case is slightly more complicated because we have $E_{q(\mathbf{z};\phi)}[r(\mathbf{z},\phi)]$ instead of $E_{q(\mathbf{z};\phi)}[r(\mathbf{z})]$
- Can still use reparameterization. Assume ${\bf z}=\mu+\sigma\epsilon={\bf g}(\epsilon;\phi)$ like before. Then

$$E_{q(\mathbf{z};\phi)}[r(\mathbf{z},\phi)] = E_{\epsilon}[r(g(\epsilon;\phi),\phi)]$$

$$\approx \frac{1}{k} \sum_{k} r(g(\epsilon^{k};\phi),\phi)$$

Amortized Inference

$$\max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D}) \geq \max_{\boldsymbol{\theta}, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \boldsymbol{\theta}, \phi^i)$$

- So far we have used a set of variational parameters ϕ^i for each data point \mathbf{x}^i . Does not scale to large datasets.
- Amortization: Now we learn a single parametric function f_{λ} that maps each \mathbf{x} to a set of (good) variational parameters. Like doing regression on $\mathbf{x}^i \mapsto \phi^{i,*}$
 - For example, if $q(\mathbf{z}|\mathbf{x}^i)$ are Gaussians with different means μ^1, \dots, μ^m , we learn a **single** neural network f_{λ} mapping \mathbf{x}^i to μ^i
- ullet We approximate the posteriors $q(\mathbf{z}|\mathbf{x}^i)$ using this distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$

A variational approximation to the posterior

• Assume $p(\mathbf{z}, \mathbf{x}^i; \theta)$ is close to $p_{\text{data}}(\mathbf{z}, \mathbf{x}^i)$. Suppose $q(\mathbf{z}; \phi)$ is a (tractable) probability distribution over the hidden variables \mathbf{z} parameterized by ϕ^i

$$q(\mathbf{z}; \phi^i) = \prod_{\text{unobserved variables } z_i} (\phi^i_j)^{\mathbf{z}_j} (1 - \phi^i_j)^{(1 - \mathbf{z}_j)}$$

- If $\phi^i_j \approx 1$ for pixels j corresponding to the top part of digit **9**, is $q(\mathbf{z}; \phi^i)$ a good approximation of $p(\mathbf{z}|\mathbf{x}^1; \theta)$ (\mathbf{x}^1 is the leftmost datapoint)? Yes
- If $\phi_j^i \approx 1$ for pixels j corresponding to the top part of digit **9**, is $q(\mathbf{z}; \phi^i)$ a good approximation of $p(\mathbf{z}|\mathbf{x}^3; \theta)$ (\mathbf{x}^3 is the rightmost datapoint)? No
- \bullet For each $\mathbf{x}^i,$ can find good $\phi^{i,*}$ via optimization, but this is expensive.
- Amortized inference: learn how to map \mathbf{x}^i to a good set of parameters ϕ via $q(\mathbf{z}; f_{\lambda}(\mathbf{x}^i))$. f_{λ} learns how to solve the optimization problem for you
- ullet In the literature, $q(\mathbf{z}; f_{\lambda}(\mathbf{x}^i))$ often denoted $q_{\phi}(\mathbf{z}|\mathbf{x})$

Learning with amortized inference

• Optimize $\sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$ as a function of θ, ϕ using (stochastic) gradient descent

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q_{\phi}(\mathbf{z}|\mathbf{x}))$$
$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))]$$

- Initialize $\theta^{(0)}, \phi^{(0)}$
- ② Randomly sample a data point \mathbf{x}^i from \mathcal{D}
- **3** Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$
- **9** Update θ, ϕ in the gradient direction
- How to compute the gradients? Use raparameterization like before

Autoencoder perspective

$$\begin{split} \mathcal{L}(\mathbf{x}; \theta, \phi) &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{z}, \mathbf{x}; \theta) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \end{split}$$

- $oldsymbol{0}$ Take a data point $oldsymbol{\mathsf{x}}^i$
- **②** Map it to $\hat{\mathbf{z}}$ by sampling from $q_{\phi}(\mathbf{z}|\mathbf{x}^i)$ (*encoder*)
- 3 Reconstruct $\hat{\mathbf{x}}$ by sampling from $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$ (decoder)

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i \ (\mathbf{x}^i \ \text{likely under} \ p(\mathbf{x}|\hat{\mathbf{z}};\theta))$
- Second term encourages $\hat{\mathbf{z}}$ to be likely under the prior $p(\mathbf{z})$

Learning Deep Generative models

- ① Alice goes on a space mission and needs to send images to Bob. Given an image \mathbf{x}^i , she (stochastically) compresses it using $\hat{\mathbf{z}} \sim q_\phi(\mathbf{z}|\mathbf{x}^i)$ obtaining a message $\hat{\mathbf{z}}$. Alice sends the message $\hat{\mathbf{z}}$ to Bob
- ② Given $\hat{\mathbf{z}}$, Bob tries to reconstruct the image using $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$
- This scheme works well if $E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z};\theta)]$ is large
- The term $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ forces the distribution over messages to have a specific shape $p(\mathbf{z})$. If Bob knows $p(\mathbf{z})$, he can generate realistic messages $\hat{\mathbf{z}} \sim p(\mathbf{z})$ and the corresponding image, as if he had received them from Alice!

Summary of Latent Variable Models

- Combine simple models to get a more flexible one (e.g., mixture of Gaussians)
- ② Directed model permits ancestral sampling (efficient generation): $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} \sim p(\mathbf{x}|\mathbf{z}; \theta)$
- However, log-likelihood is generally intractable, hence learning is difficult
- ullet Joint learning of a model (heta) and an amortized inference component (ϕ) to achieve tractability via ELBO optimization
- **5** Latent representations for any \mathbf{x} can be inferred via $q_{\phi}(\mathbf{z}|\mathbf{x})$

Research Directions

Improving variational learning via:

- Better optimization techniques
- More expressive approximating families
- Alternate loss functions

Model families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ..)

- Scalability: Efficient learning and inference on massive datasets
- Regularization effect: Because of joint training, it also implicitly regularizes the model θ (Shu et al., 2018)

Augmenting variational posteriors

- Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC (Salimans et al., 2015, Hoffman, 2017, Levy et al., 2018), Sequential Monte Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018), Rejection Sampling (Grover et al., 2018)
- Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)

Model families - Decoder

- Powerful decoders $p(\mathbf{x}|\mathbf{z};\theta)$ such as DRAW (Gregor et al., 2015), PixelCNN (Gulrajani et al., 2016)
- Parameterized, learned priors $p(\mathbf{z}; \theta)$ (Nalusnick et al., 2016, Tomczak & Welling, 2018, Graves et al., 2018)

Variational objectives

Tighter ELBO does not imply:

- Better samples: Sample quality and likelihoods are uncorrelated (Theis et al., 2016)
- Informative latent codes: Powerful decoders can ignore latent codes due to tradeoff in minimizing reconstruction error vs. KL prior penalty (Bowman et al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the reverse-KL divergence:

- Renyis alpha-divergences (Li & Turner, 2016)
- Integral probability metrics such as maximum mean discrepancy, Wasserstein distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)