IP Geolocation from DNS and BGP Data with Deep Learning

Jason Wei

Dartmouth College jason.20@dartmouth.edu

Alin Popescu
Oracle
alin.popescu@oracle.com

Introduction

- Our internet intelligence datasets are typically quite large.
- Big data is conducive to machine learning and deep learning.
 - Deep learning has grown exponentially in the past five years.
- Goals
 - Develop techniques that demonstrate applications of deep learning in the internet intelligence domain.
 - Shed light on these techniques with the hope that they can be applied to other datasets.

Neural Networks

- Large number of (x, y) mappings.
- Optimization over thousands of training samples.

Recurrent Neural Networks

- Capture sequential data by storing hidden states at each time step.
- Long Short Term Memory (LSTM) Cell:
 - Uses three gates to decide what information to keep in the hidden state.

Figure Credit: Andrej Karpathy 'The Unreasonable Effectiveness of Recurrent Neural Networks'

Character Level Modeling (Char-RNN)

- Use a LSTM recurrent neural network to model a text corpus on the character level.
- Basically:
 - For each character in a string, generate some hidden state vector. Use this vector to predict the next character.
 - Read through the data many times and optimize these fancy functions for generating a hidden state and for predicting the next character.

Sonar Data:

ec2-52-42-105-10.us-west-2.compute.amazonaws.com	1551	60 f
162-227-185-250.lightspeed.elpstx.sbcglobal.net	1536	600
93.160.56.59.broad.fz.fj.dynamic.163data.com.cn	0285	11d
14.143.100.113.static-pune.vsnl.net.in 0117 075	0205	
static-68-129-212-164.nycmny.fios.verizon.net	1327	52f
43.84.85.117.broad.wx.js.dynamic.163data.com.cn	0198	0c6
host-209-214-83-176.mem.bellsouth.net 0983 3d7		
ec2-34-218-143-190.us-west-2.compute.amazonaws.com	n 1551	60 f
·	1001	
75-142-7-74.dhcp.mdfd.or.charter.com 1557 615		
99-45-230-241.lightspeed.wepbfl.sbcglobal.net	0738	2e2
99-45-230-241.lightspeed.wepbfl.sbcglobal.net dialup-4.197.106.137.dial1.detroit1.level3.net	0738 1216	2e2 4c0
dialup-4.197.106.137.dial1.detroit1.level3.net	1216	4c0
<pre>dialup-4.197.106.137.dial1.detroit1.level3.net ec2-54-184-139-47.us-west-2.compute.amazonaws.com</pre>	1216 1551	
dialup-4.197.106.137.dial1.detroit1.level3.net	1216	4c0
<pre>dialup-4.197.106.137.dial1.detroit1.level3.net ec2-54-184-139-47.us-west-2.compute.amazonaws.com pool-74-104-169-151.bstnma.fios.verizon.net 1156</pre>	1216 1551	4c0
dialup-4.197.106.137.dial1.detroit1.level3.net ec2-54-184-139-47.us-west-2.compute.amazonaws.com pool-74-104-169-151.bstnma.fios.verizon.net 1156 pool-71-183-106-71.nycmny.fios.verizon.net 1327	1216 1551 484 52f	4c0
dialup-4.197.106.137.dial1.detroit1.level3.net ec2-54-184-139-47.us-west-2.compute.amazonaws.com pool-74-104-169-151.bstnma.fios.verizon.net 1156 pool-71-183-106-71.nycmny.fios.verizon.net 1327 115.111.51.195.static-mumbai.vsnl.net.in 0130	1216 1551 484 52f 082	4c0
dialup-4.197.106.137.dial1.detroit1.level3.net ec2-54-184-139-47.us-west-2.compute.amazonaws.com pool-74-104-169-151.bstnma.fios.verizon.net 1156 pool-71-183-106-71.nycmny.fios.verizon.net 1327	1216 1551 484 52f	4c0

Generated Data

adsl-65-9-138-97.mia.bellsouth.net	0705	2c1		
s0106a84e3f6a2903.cg.shawcable.net	1603	643		
69-243-125-173.lightspeed.wepbfl.sbcg	lobal.net	0738	2e2	
server-52-46-42-74.ystl.revd001.uk.gq	1.yahoo.c	om	0561	210
dialup-4.228.93.250.dial1.cincinnati1	.level3.ne	et	0927	39f
ads1-99-49-82-51.dsl.stlsmo.sbcglobal	.net	0871	367	
ads1-67-33-207-175.chs.bellsouth.net	0892	37c		
109x194x221x224.dynamic.ryazan.ertele	com.ru	0033	021	
3.52.78.218.dial.xw.sh.dynamic.163data	a.com.cn	0220	0dc	
adsl-69-214-14-44.dsl.chcgil.ameritech	n.net	1117	45d	
13.8.82.218.broad.xw.sh.dynamic.163da	ta.com.cn	0220	0dc	
75-1-204-49.lightspeed.bcvloh.sbcgloba	al.net	1334	536	
ec2-34-218-204-121.us-west-2.compute.a	amazonaws	.com	1551	60f
ec2-52-211-87-120.eu-west-1.compute.ar	mazonaws.	com	0552	228

Given any <u>variable-length</u> piece of text, we can generate a <u>fixed-length vector</u> that captures the information in that text.

Let's do something more useful.

- Using char-RNN, we generate a 128dimensional vector using each FQDN as input.
- What does this embedding look like?
 - To a human, just random numbers.
 - But, similar FQDNs get similar embeddings.

FQDN	Geolocation
ec2-52-194-101-41.ap-northeast-1.compute.amazonaws.com	0314
187.40.30.117.broad.xm.fj.dynamic. <u>163data.com.cn</u>	0197
14.143.79.54.static-hyderabad.vsnl.net.in	0124
adsl-072-156-044-189.sip.bct.bellsouth.net	0672
ec2-35-162-185-148.us-west-2.compute.amazonaws.com	1551
p232037-ipngn1701akita.akita.ocn.ne.jp	0399
107-214-70-135.lightspeed.chrlnc.sbcglobal.net	0893

We have over 100 million FQDN-Geolocation pairs.

Visualizing Embeddings

 t-SNE: project high dimensional data into 2D space while preserving clustering.

t-SNE Representation of FQDN Embeddings from Various Providers

t-SNE Representation of FQDN Embeddings from Various Providers and Geolocations

Geolocation Prediction

- 1. Given a FQDN, use Char-RNN to generate an embedding.
- 2. Run the embedding through a deep neural net followed by a softmax output to predict the geolocation associated with the original FQDN.

Dataset 1: Reverse DNS (Sonar)

- (x, y) = (fqdn, geolocation)
- Subset of DNSGEO data (city-level rules)
- 108 million data points
- Compress to 1.8 million samples from 673 geolocations where:
 - Between 500 and 3000 samples for each geolocation

Training

Char-RNN Metrics

Training Samples	108 million
Training Time	2 days
Epochs	1
Number of Unrollings	20

Neural Net Training Metrics

Total Samples	1.8 million
Training Samples	1.75 million
Validation Samples	50,000
Embedding Generation Time	12 hours
Training Time	10 min
Epochs	10
Training Accuracy	93%
Validation Accuracy	92%

Looking at some examples...

FQDN	Prediction	Real
71-13-212-176.dhcp.mrqt.mi.charter.com	1229 (99%) 1557 (1%) 1243 (10 ⁻⁶) 0866 (10 ⁻⁷) 1278 (10 ⁻⁷)	1229
adsl-072-148-062-151.sip.ilm.bellsouth.net	0661 (57%) 0678 (35%) 0877 (7%) 1610 (0.5%) 0356 (0.1%)	0661
144.69.219.222.broad.bs.yn.dynamic.163data.com.cn	0181 (27%) 0137 (21%) 0294 (18%) 0136 (16%) 0244 (4%)	0137

Our neural network predicts the geolocation of a FQDN with 92% accuracy.

Dataset 2: Select Cities

- (x, y) = ([fqdn, associated bgp paths], geolocation)
- 2.8 million samples from 213 cities
 - Around 13,000 samples per city
- Varied geolocation confidence
 - DNS Geo data (city-level rules)
 - Airport code substrings
 - Newt geolocation system
- "Harder" dataset

 Variable-length paths from peer to origin.

BGP Data:

51185 174 14277 395819 2381 3356 12956 10429 28606 2119 3356 197541 8001 3257 200612 12880 59703 16322 60976 48551 12697 209 3257 8455 40490 12389 1299 16735 262354 262688 262821 1248 1299 174 16735 28666 53018 61901 3265 2914 3356 3549 28598 262993 264493 15772 6939 31133 24955 42498 39912 6762 1299 7843 11427 14736 8473 8400 25144 16178 9146 20473 3257 6453 30844 327744 10158 1299 7018 21547 396522 8359 2497 9605 19255 2828 3491 23947 45727 23148 1273 30722 44957 7598 2914 9002 39775 47271 29017 3356 7018 36753 30844 6939 12956 22927 264634

t-SNE Representation of AS Path Embeddings with Various Origins

258**85** 2914 1299 6939

29006 2914 1299 6939 29006 174 1299 6939

13002 174 1299 6939 19214 174 1299 6939 19214 3257 1299 6939 5885 10912 29791 19108 11135 3356

Models: only FQDN

Models: only BGP Paths

Models: Combined Model

Training

FQDN Char-RNN Metrics

Training Samples	100 million
Training Time	2 days
Epochs	1
Number of Unrollings	20

BGP Char-RNN Metrics

Training Samples	30.3 million
Training Time	1 day
Epochs	1
Number of Unrollings	20

Neural Net Training Metrics

Total Samples	2.8 million	
Training Samples	2.75 million	
Validation Samples	50,000	
FQDN Embedding Time	1 day	
BGP Path Embedding Time	a long time*	
Training Time	10 min	
Epochs	10	
*2 days with six processes running in parallel		

Results

Accuracy of FQDN, BGP, and Combined Models

Model	Top 1	Тор 3	Top 10
FQDN	67.0% (69.9%)	80.1% (82.8%)	87.5% (90.2%)
BGP	57.9% (57.0%)	78.7% (76.5%)	94.2% (94.1%)
Combined	67.3% (66.7%)	85.2% (85.1%)	92.8% (94.5%)

Key: Validation Acc% (Training Acc%)

Error Distances

So what?

- With improvements (more training data), our neural net could be able to predict the geolocations of rare or unknown FQDNs.
- Our ability to embed variable-length text information into a fixed-length numeric vector is transferable to other data.

What's next?

- Improving testing accuracy on new data. Our model is limited to predicting geolocation only for data it has seen before.
- Eventually hope to replace manual rule-based approach with an automated data-driven approach.
- Predicting AS paths.
- Latency distributions.
- Predicting traceroute hops from collector and target IP.
- More machine learning!

Thank you.