ECE 65: Components & Circuits Lab

Lecture 15

CMOS introduction and transfer function

Reference notes: sections 4.4

Sedra & Smith (7th Ed): sections 5.1.8, 14.3

Saharnaz Baghdadchi

Course map

4. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Complementary MOS (CMOS) is based on NMOS/PMOS pairs

CMOS Inverter

Low State: 0, High State: V_{DD}

Maximum signal swing

Zero "static" power dissipation ($i_D = 0$ in each state).

The case of $i_D = 0$

When MOS is in cut-off, $i_D = 0$. However, $i_D = 0$, does not mean that MOS is in cut-off.

Assume that a MOS is in triode.

MOS ON: $V_{OV} > 0$ and $v_{DS} \le V_{OV}$

Condition of $i_D = 0$ gives:

$$i_D = 0.5\mu_n C_{ox} \frac{W}{L} [2V_{OV} v_{DS} - v_{DS}^2] = 0 \quad \rightarrow v_{DS} = 0$$

The case of $i_D = 0$

Assume that a MOS is in saturation.

MOS ON: $V_{OV} > 0$ and $v_{DS} \ge V_{OV}$

Condition of $i_D = 0$ gives:

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} (V_{OV})^2 = 0$$
 $\rightarrow V_{OV} = 0$ Not valid

 i_D can be zero if a MOS is in the triode mode and v_{DS} = 0.

Analysis of CMOS Inverter

Circuit equations:

GS1 KVL: $v_{GS1} = v_i$

GS2 KVL: $V_{DD} = v_{SG2} + v_i$

DS1&2 KVL: $V_{DD} = v_{SD2} + v_{DS1}$

KCL: $i_{D1} = i_{D2}$

 $v_o = v_{DS1} = V_{DD} - v_{SD2}$

Analysis of CMOS Inverter

Case 1: $v_i = 0$

$$v_{GS1} = v_i < V_{tn} \rightarrow \text{Q1 is OFF} \rightarrow i_{D1} = 0$$

$$i_{D1} = 0 \rightarrow i_{D2} = 0$$

$$V_{DD} = v_{SG2} + v_i \rightarrow v_{SG2} = V_{DD} > |V_{tp}| \rightarrow Q2 \text{ is ON}$$

Q2 is ON and $i_{D2}=0 \rightarrow$ Q2 is in Triode and $v_{SD2}=0$.

For $v_i=0$, $v_o=V_{DD}-v_{SD2}=V_{DD}$, and $(i_{D1}=0,\,i_{D2}=0)$ Gate remains in this state as long as $v_i < V_{tn}$ (Q1 OFF)

Analysis of CMOS Inverter

Case 2:
$$v_i = V_{DD}$$

$$v_{SG2} = V_{DD} - v_i = 0 < \left| V_{tp}
ight| \;
ightarrow \;$$
 Q2 is OFF $ightarrow i_{D2} = 0$

$$i_{D2} = 0 \rightarrow i_{D1} = 0$$

$$v_{GS1} = v_i = V_{DD} > V_{tn}$$
 \rightarrow Q1 is ON

Q1 is ON and $i_{D1}=0 \rightarrow \text{Q1}$ is in Triode and $v_{DS1}=0$.

For $v_i=V_{DD},\ v_o=v_{DS1}=0$ and $(i_{D1}=0,\ i_{D2}=0)$ Gate remains in this state as long as $v_i>V_{DD}-\left|V_{tp}\right|$, (Q2 OFF)

CMOS transfer function example

In the below circuit, find v_i and i_D when both NMOS and PMOS are in saturation. What is the range of v_o in this case?

$$V_{tn} = |V_{tp}| = 1 V$$
, $k_n = k_p = 1 mA/V^2$, $\lambda = 0$.

KCL at the output node:
$$i_{D1} = i_{D2}$$

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$V_{tn} = \left| V_{tp} \right| = 1 V$$
 $v_{GS1} = v_i \rightarrow v_i < 1 V$

$$i_{D1} = i_{D2} = 0$$

$$v_{SG2} = 5 - v_i \rightarrow v_i = 5 - v_{SG2} < 1 V \rightarrow v_{SG2} > 4 V$$

$$v_{SG2} > \left|V_{tp}\right|
ightarrow extsf{Q2}$$
 is ON

Q2 is ON and $i_{D2} = 0 \rightarrow v_{SD2} = 0$ and Q2 is in Triode mode.

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

For $v_i < 1 V$, Q1 is off and Q2 is in Triode-mode.

$$v_o = 5 - v_{SD2} = 5 V$$

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

Q2 off: $v_{SG2} < |V_{tp}|$, $i_{D2} = 0$

$$V_{tn} = \left| V_{tp} \right| = 1 V$$

$$v_{SG2} = 5 - v_i < 1 V \rightarrow v_i > 4 V$$

$$i_{D1} = i_{D2} = 0$$

$$v_{GS1} = v_i > 4 V \rightarrow v_{GS1} > V_{tn} \rightarrow Q1 \text{ is ON}$$

Q1 is ON and $i_{D1}=0 \rightarrow v_{DS1}=0$ and Q1 is in Triode mode.

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

For $v_i > 4 V$, Q2 is off and Q1 is in Triode-mode.

$$v_o = 0$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$i_{D1} = \frac{1}{2} k_n (V_{OVn})^2$$

$$i_{D2} = \frac{1}{2} k_p \left(V_{OVp} \right)^2$$

$$v_{DS1} > V_{OVn}$$

$$v_{SD2} > V_{OVp}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$V_{OVn} = v_i - V_{tn} = v_i - 1$$

$$V_{OVp} = 5 - v_i - |V_{tp}| = 4 - v_i$$

$$i_{D1} = i_{D2} \rightarrow \frac{1}{2} \times 1 \times (v_i - 1)^2 = \frac{1}{2} \times 1 \times (4 - v_i)^2$$

$$v_i = 2.5 V$$

$$i_{D1} = i_{D2} = 1.125 \, mA$$

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$v_{DS1} > V_{OVn}$$

$$V_{OVn} = v_{GS1} - V_{tn}$$

$$v_{GS1} = v_i = 2.5 V \rightarrow V_{OVn} = 1.5 V$$

$$v_{DS1} > 1.5 V$$

$$v_o = v_{DS1} \rightarrow v_o > 1.5 V$$

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$v_{SD2} > V_{OVp}$$

$$V_{OVp} = v_{SG2} - |V_{tp}|$$
 and $v_i = 2.5 V$

$$v_{SG2} = 5 - v_i = 2.5 V \rightarrow V_{OVp} = 1.5 V$$

$$v_{SD2} > 1.5 V$$

$$v_o = 5 - v_{SD2}$$
 \rightarrow $v_o < 3.5 V$

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

For $v_i = 2.5 V$, Q1 and Q2 are in saturation.

$$1.5 < v_o < 3.5 V$$

KCL at the output node:

$$i_{D1} = i_{D2}$$

$$v_{GS1} = v_i$$

$$v_{SG2} = 5 - v_i$$

$$3.5 < v_o < 5 V$$

$$0 < v_o < 1.5 \text{ V}$$

Transfer function of a CMOS inverter

Transfer function is "symmetric" for matched transistors:

$$V_{tn} = |V_{tp}| \& \mu_n(W/L)_n = \mu_p(W/L)_p$$

During transition from one state to another, $i_D > 0$

Lecture 15 reading quiz

In the circuit below, find V_i and i_D when both NMOS and PMOS are in saturation. What is the range of V_o in this case?

$$V_{tn} = 1 \ V$$
 , $V_{tp} = -1 \ V$ and $k_n = \mu_n C_{ox} \ (W/L)_n = 1 \ mA/V^2$, $k_p = \mu_p C_{ox} \ (W/L)_p = 0.4 \ mA/V^2$. $\lambda = 0$.

Discussion question 1. (Pseudo-NMOS inverter)

In the circuit below, find v_o for $v_I=0$ and $v_I=1.8~V$.

The transistor parameters are matched $V_{tn} = \left| V_{tp} \right| = 0.4~V$, and

$$k_n = 0.3 \ mA/V^2$$
, $k_p = 0.2 \ k_n$, $\lambda = 0$.

Discussion question 1. (Pseudo-NMOS inverter)

In the circuit below, find v_o for $v_I=0$ and $v_I=1.8~V$.

The transistor parameters are matched $V_{tn} = \left| V_{tp} \right| = 0.4~V$, and

$$k_n = 0.3 \ mA/V^2$$
, $k_p = 0.2 \ k_n$, $\lambda = 0$.

- Label V_{GS}, V_{SG}, V_{DS}, and V_{SD} for PMOS and NMOS.
- Find V_{OV} for each MOSFET and determine if they are ON or in Cut-off.
- If MOSFETs both are ON, there are four possibilities for their modes of operation. You can make an educated guess.

Because this is an inverter, we expect a low output when input is high, and since the output is equal to v_{DS1} , we expect to get a low value for v_{DS1} when $v_I=1.8\ V$. We also know that when NMOS operates in triode, $v_{DS1} < v_{OVn} = 1.4\ V$, so most probably the low output (small v_{DS1}) will be less than 1.4V, so we assume triode region for Q_N .

Also, $v_{SD2}=1.8-v_{DS1}$. With small v_{DS1} , v_{SD2} will probably be a large value close to 1.8 V. v_{SD2} is likely greater than $v_{OVp}=1.4~V$, so PMOS probably operates in saturation.

