CLAIMS

What is claimed is:

1. (Currently amended) A device for the collection and extraction of at least one analyte within a sample, said device comprising:

a vessel;

said vessel defining a chamber for holding said sample;

said chamber having an opening therein;

a neck around said opening extending away from said chamber;

a cap;

said cap bounded by a top cover exterior surface and a sidewall;

said cap selectively attachable to said neck;

said cap adapted to prevent communication therethrough from said chamber;

said cap having a top cover interior surface in communication with said chamber and

facing said chamber, said top cover interior surface immovably fixed to said cap; and

said top cover interior surface having a sorptive coating applied thereon.

- 2. (Previously presented) The device of claim 1, wherein said sorptive coating comprises at least one selection from the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkynylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;
 - (b) a porous layer;
 - (c) other immobilized polymers above their glass transition temperature;

- (d) an immobilized porous polymer;
- (e) a sol gel;
- (f) an immobilized adsorbent; and
- (g) derivatized silica.
- 3. (Previously presented) The device of claim 1, further comprising:

said cap comprising a top cover and a sidewall;

said coated surface being on the interior surface of said top cover;

said top cover having a periphery;

said sidewall attached to said top cover around said periphery to define a cavity bounded by said sidewall and said top cover;

said coated surface being inside said cavity; said neck receivable within said cavity; and said sidewall engaging said neck.

- 4. (Previously presented) The device of claim 1, further comprising: said top cover including a syringe-permeable orifice.
- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Currently amended) A device for the collection and extraction of at least one analyte within a sample, said device comprising:

a vessel;

said vessel defining a chamber for holding said sample;

said chamber having an opening therein;

a neck around said opening extending away from said chamber;

```
a cap;
```

said cap bounded by a top cover exterior surface and a sidewall;

said cap selectively attachable to said neck;

said cap adapted to prevent communication therethrough from said chamber;

said cap having a top cover interior surface in communication with said chamber and facing said chamber;

said top cover interior surface immovably fixed to said cap; and said top cover interior surface having a particulate coating applied thereon.

- 9. (Original) The device of claim 8, wherein said particulate coating comprises at least one selection from the group consisting of:
 - (a) molecular sieves;
 - (b) activated alumina;
 - (c) silica;
 - (d) silica gel;
 - (e) ion exchange resins; and
 - (f) desiccant.
- 10. (Cancelled)
- 11. (Cancelled)
- 12. (Cancelled)
- 13. (Cancelled)
- 14. (Cancelled)
- 15. (Currently amended) A device for the collection and extraction of at least one analyte within a sample, said device comprising:

a vessel;

said vessel defining a chamber for holding said sample;

said chamber having an opening therein;

a neck around said opening extending away from said chamber;

a cap;

said cap bounded by a top cover exterior surface and a sidewall;

said cap selectively attachable to said neck;

said cap adapted to prevent communication therethrough from said chamber;

said cap having a top cover interior surface in communication with said chamber and

facing said chamber;

said top cover interior surface immovably fixed to said cap;

said top cover interior surface having a coating applied thereon selected from the group consisting of: sorptive coating and particulate coating;

said sorptive coating comprises at least one selection from the group consisting of:

- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkynylaryl, haloalkyl, and haloaryl;
 - (b) a porous layer;
 - (c) other immobilized polymers above their glass transition temperature;
 - (d) an immobilized porous polymer;
 - (e) a sol gel;
 - (f) an immobilized adsorbent; and
 - (g) derivatized silica;

said particulate coating comprises at least one selection from the group consisting of:

- (a) molecular sieves;
- (b) activated alumina;
- (c) silica;
- (d) silica gel;
- (e) ion exchange resins, and
- (f) desiccant;

said cover including a syringe-permeable orifice.

16. (Currently amended) A cap for collecting a selected analyte from an analyte-bearing sample when said cap is in communication with a vessel, wherein said cap comprises:

a cover member having an outer cover periphery said cover member adapted to prevent communication therethrough from said vessel, said cover member immovably fixed to said cap;

a sidewall extending from said cover member about said outer cover periphery to define a cavity;

said cavity bounded by said sidewall and said cover member;

said cavity adapted to receive said vessel;

said sidewall adapted to engage the neck of said vessel; and

a sorptive coating applied to said cover member within said cavity.

- 17. (Original) The cap of claim 16, wherein said sorptive coating comprises at least one selection from the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkynylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached

functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;

- (b) a porous layer;
- (c) other immobilized polymers above their glass transition temperature;
- (d) an immobilized porous polymer;
- (e) a sol gel;
- (f) an immobilized adsorbent; and
- (g) derivatized silica.
- 18. (Previously presented) The cap of claim 17, further comprising: said cover member including a syringe-permeable orifice.
- 19. (Cancelled)
- 20. (Cancelled)
- 21. (Currently amended) A cap for collecting a selected contaminant from a sample when said cap is in communication with a vessel, wherein said cap comprises:

a cover member having an outer cover periphery, said cover member adapted to prevent communication therethrough from said chamber, said cover member immovably fixed to said cap;

a sidewall extending from said cover member about said outer cover periphery to define a cavity;

said cavity bounded by said sidewall and said cover member;
said cavity adapted to receive said vessel;
said sidewall adapted to engage the neck of said vessel; and
said cover member having a particulate coating applied thereto within said cavity.

- 22. (Original) The cap of claim 21, wherein said particulate coating comprises at least one selection from the group consisting of:
 - (a) molecular sieves;
 - (b) activated alumina;
 - (c) silica;
 - (d) silica gel;
 - (e) ion exchange resins, and;
 - (f) desiccant;
- 23. (Cancelled)
- 24. (Cancelled)
- 25. (Cancelled)
- 26. (Currently amended) A cap for closing a vessel, said vessel including a vessel wall, a chamber, and a neck, said neck extending outward from said vessel wall, said neck defining an opening therein providing fluid communication to said chamber, said neck including an outer neck surface, a rim and an inner rim periphery, said cap comprising:

a lower periphery, a cover periphery, and a sidewall, said cover periphery adapted to prevent communication therethrough from said vessel, said cover periphery immovably fixed to said cap;

said sidewall being between said lower periphery and said cover periphery;

said lower periphery being smaller than said cover periphery and having a coating applied thereto;

said inner neck periphery being larger than said lower periphery and smaller than said cover periphery; and

said neck receiving said cap such that said sidewall fits within said inner neck periphery in an interference fit.

- 27. (Original) The cap of claim 26, wherein said coated surface is a sorptive coating comprising at least one selection from the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;
 - (b) a porous layer;
 - (c) other immobilized polymers above their glass transition temperature;
 - (d) an immobilized porous polymer;
 - (e) a sol gel;
 - (f) an immobilized adsorbent; and
 - (g) derivatized silica.
- 28. (Original) The cap of claim 26, wherein said coated surface is a particulate coating comprising at least one selection from the group consisting of:
 - (a) molecular sieves;
 - (b) activated alumina;
 - (c) silica;
 - (d) silica gel;
 - (e) ion exchange resins, and;
 - (f) desiccant;

29. (Currently amended) A method for extraction and desorption of one or more analytes in an analyte-bearing sample in a first vessel, said method comprising:

coating an inner surface of a first cap with a sorptive coating, said first cap bounded by a top cover exterior surface and a sidewall, said cap adapted to prevent communication therethrough from said first vessel, said inner surface immovably fixed to said first cap;

attaching said first cap to said first vessel containing said analyte-bearing sample; exposing said sorptive coating to said analyte-bearing sample;

agitating said first vessel to expose said coating to said analyte-bearing sample for a predetermined period of time;

sorptively extracting at least one analyte from said analyte-bearing sample;
removing said first cap from said first vessel;
attaching a second cap to said first vessel;
attaching said first cap to a second vessel;
said second vessel containing a solvent;
agitating said second vessel to expose said analyte-bearing coating to said solvent;
desorbing at least one analyte from said analyte-bearing coating into said solvent; and
injecting said analyte-bearing solvent into an analytical device.

- 30. (Original) The method of claim 29, wherein said sorptive coating comprises at least one selection of the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkynylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;

- (b) a porous layer;
- (c) other immobilized polymers above their glass transition temperature;
- (d) an immobilized porous polymer;
- (e) a sol gel;
- (f) an immobilized adsorbent; and
- (g) derivatized silica.
- 31. (Cancelled)
- 32. (Cancelled)
- 33. (Cancelled)
- 34. (Cancelled)
- 35. (Currently amended) A method for extraction and desorption of one or more analytes in an analyte-bearing sample from a first vessel, said method comprising:

coating an inner surface of a first cap with a sorptive coating, said first cap bounded by a top cover exterior surface and a sidewall, said first cap adapted to prevent communication therethrough from said first vessel, said inner surface immovably fixed to said first cap; said sorptive coating selected from the group consisting of:

- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, haloalkyl, and haloaryl;
 - (b) a porous layer;
 - (c) other immobilized polymers above their glass transition temperature;
 - (d) an immobilized porous polymer;

- (e) a sol gel;
- (f) an immobilized adsorbent; and
- (g) derivatized silica;

attaching said first cap to said first vessel containing said analyte-bearing sample; exposing said sorptive coating to said analyte-bearing sample;

agitating said first vessel to expose said coating to said analyte-bearing sample for a predetermined period of time;

sorptively extracting at least one analyte from said analyte-bearing sample;
removing said first cap from said first vessel;
attaching a second cap to said first vessel;
attaching said first cap to a second vessel;
said second vessel containing a solvent;
agitating said second vessel to expose said analyte-bearing coating to said solvent;
desorbing at least one analyte from said analyte-bearing coating into said solvent; and

36. (Currently amended) A method for removing one or more contaminants present in an analyte-bearing sample from a first vessel, said method comprising:

injecting said analyte-bearing solvent into an analytical device.

coating an inner surface of a first cap with a particulate coating, said first cap bounded by a top cover exterior surface and a sidewall, said cap adapted to prevent communication therethrough from said first vessel, said inner surface immovably fixed to said cap;

attaching said first cap to a first vessel containing said analyte-bearing sample; exposing said particulate coating to said analyte-bearing sample; agitating said first vessel for a predetermined period of time; removing said first cap from said first vessel; and

attaching a second cap to said first vessel.

- 37. (Original) The method of claim 36, wherein said particulate coating comprises at least one selection of the group consisting of:
 - (a) molecular sieves;
 - (b) activated alumina;
 - (c) silica;
 - (d) silica gel;
 - (e) ion exchange resins, and
 - (f) desiccant.
- 38. (Cancelled)
- 39. (Cancelled)
- 40. (Cancelled)
- 41. (Cancelled)
- 42. (Original) The method of claim 37, wherein said second cap comprises a selection from the group consisting of:

an uncoated cap; and

a sorptive-coated cap.

- 43. (Original) The method of claim 42, wherein said sorptive-coated cap is coated with a sorptive coating comprising at least one selection of the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkynylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;

- (b) a porous layer;
- (c) other immobilized polymers above their glass transition temperature;
- (d) an immobilized porous polymer;
- (e) a sol gel;
- (f) an immobilized adsorbent; and
- (g) derivatized silica.
- 44. (Original) The method of claim 43, further comprising:

agitating said first vessel to expose said sorptive coating to the analyte-bearing sample for a predetermined period of time;

sorptively extracting at least one analyte from said analyte-bearing sample;

removing said second cap from said first vessel;

attaching a third cap to said first vessel;

providing a second vessel containing a solvent;

attaching said second cap to said second vessel;

agitating said second vessel to expose said analyte-bearing coating to said solvent;

solvently desorbing at least one analyte from said analyte-bearing coating;

withdrawing an aliquot of analyte-bearing solvent; and

injecting said aliquot into an analytical device.

45. (Currently amended) A method for performing purification, extraction, and desorption of a sample, said method comprising:

providing a first vessel;

coating the interior surface of said first vessel with a first coating;

providing a first cap, said first cap bounded by a top cover exterior surface and a sidewall, said first cap adapted to prevent communication therethrough from said first vessel, said first cap having an interior surface, said interior surface immovably fixed to said first cap;

coating said interior surface of said first cap with a second coating; pouring said sample into said first vessel; attaching said first cap to said first vessel; exposing said first coating and said second coating to said sample; agitating said first vessel for a predetermined period of time; sorptively extracting at least one analyte from said sample; selectively removing at least one contaminant from said sample; removing said first cap from said first vessel; attaching a second cap to said first vessel; attaching said first cap to a second vessel; said second vessel containing a solvent; agitating said second vessel; solvently desorbing at least one analyte; withdrawing an aliquot of analyte-bearing solvent; and injecting said analyte-bearing solvent into an analytical device.

- 46. (Original) The method of claim 45, wherein said first coating is a particulate coating comprising at least one selection from the group consisting of:
 - (a) molecular sieves;
 - (b) activated alumina;
 - (c) silica;
 - (d) silica gel;

- (e) ion exchange resins, and
- (f) desiccant.
- 47. (Original) The method of claim 45, wherein said second coating is a sorptive coating comprising at least one selection from the group consisting of:
- (a) an immobilized polysiloxane polymer, having two attached functional groups, wherein the first attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkynylaryl, alkynylaryl, haloalkyl, and haloaryl, and the second attached functional group is selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkenylaryl, alkynylaryl, haloalkyl, and haloaryl;
 - (b) a porous layer;
 - (c) other immobilized polymers above their glass transition temperature;
 - (d) an immobilized porous polymer;
 - (e) a sol gel;
 - (f) an immobilized adsorbent; and
 - (g) derivatized silica.