Algebra 1 - Moci

Algebra di Base

Definizione di Insieme: Un Insieme è definito come una collezione di elementi (di qualsiasi genere)

 $x \in A$: si legge "x è un elemento dell'insieme A"

 $x \notin A$ si legge "x non è un elemento che fa parte dell'insieme A"

 $A \subseteq B$ si legge "L'insieme A è contenuto o uguale all'insieme B"

 $B \subseteq A$ si legge "L'insieme B è contenuto o uguale all'insieme A"

Da queste ultime due affermazioni si può dedurre che $A=B_i$ ossia che "l'insieme A è uguale all'insieme B" o che "tutti gli elementi contenuti in A sono anche contenuti in B"

Definizione di Insieme delle Parti: Dato un insieme A, si può definire Insieme delle Parti $\mathcal{P}(A)$ quell'insieme che contiene tutti i sottoinsiemi di A.

Esempio:

Dato l'insieme $A = \{x; y; z\}$, allora l'insieme $\mathcal{P}(A) = \{\emptyset; \{x\}; \{y\}; \{z\}; \{x; y\}; \{x; z\}; \{y; z\}; \{x; y; z\}\}$

È possibile inoltre poter indovinare di quale sottoinsieme si sta trattando con tre semplici domande:

- "Contiene x?"
- "Contiene y?"
- "Contiene z?"

Operazioni binarie (ossia da due elementi ne ottengo uno soltanto):

- Unione $A \cup B \Leftrightarrow B \cup A = \{x | x \in A \lor x \in B\}$
- Intersezione $A \cap B \Leftrightarrow B \cap A = \{x | x \in A \land x \in B\}$ Su queste due operazioni sono valide sia la proprietà Commutativa sia quella Associativa
- Differenza Insiemistica $A \setminus B = \{x | x \in A \land x \notin B\}$ Su quest'operazione non si posso applicare né la proprietà Commutativa né quella Associativa
- Prodotto Cartesiano: si definisce il Prodotto Cartesiano l'insieme $A \times B : \{(a;b), a \in A, b \in B\}$

Esempio:

```
A = \{1; 2; 3; 4\} B = \{x; y; z\}

A \times B = \{(1; x); (1, y); (1; z); (2; x); (2; y); \dots; (4; z)\}
```

Si osserva che se l'insieme A ha n elementi e l'insieme B ha m elementi, allora l'insieme $A \times B$ avrà $n \cdot m$ elementi

Si chiama apposta prodotto cartesiano perché (in caso si tratta di numeri) è possibile rappresentarlo in un grafico, nel quale il primo numero rappresenta l'asse delle ascisse, mentre il secondo numero quelle delle ordinate.

Definizione di Relazione: Una Relazione è un sottoinsieme R del prodotto cartesiano $A \times B$. Si dice che "a è in relazione con b se $(a;b) \in R$

Esempio:

Dati gli insiemi A = B gli insiemi di tutte le rette, si può definire R l'insieme di tutte le rette con un punto in comune

Esistono vari tipi di Relazioni. Tra queste vi sono:

Relazione di Equivalenza: Si definisce Relazione di Equivalenza una relazione $R \subseteq A \times A$ che gode delle seguenti proprietà:

- Riflessiva (R): $(a; a) \in R \land a \in A$ ogni elemento è in relazione con sé stesso;
- Simmetrica (S): se $(a;b) \in R$, allora $(b;a) \in R \land a,b \in A$;
- Transitiva (T): se $(a;b) \in R$ e $(b;c) \in R$, allora $(a;c) \in R \land a,b,c \in A$.

Esempio:

Dato un Insieme A di numeri uguali:

- (R) Un numero a è sempre uguale ad un numero a
- (S) Se un numero a è uguale ad un numero b, allora il numero b è uguale al numero a (è sempre lo stesso numero)
- (T) Se un numero a è uguale ad un numero b, e un numero b è uguale ad un numero c, allora il numero a è uguale al numero c

Relazione di Ordine: Si definisce una Relazione d'Ordine una relazione $R \subseteq A \times A$ che gode delle seguenti proprietà:

- Riflessiva (R): $(a; a) \subseteq R \land a \in A$ ogni elemento è in relazione con sé stesso;
- Antisimmetrica (A): se $(a;b) \in R$ e $(b;a) \in R$, allora b=a; se invertendo i valori a e b si ottiene lo stesso risultato allora a=b
- Transitiva (T): se $(a;b) \in R$ e $(b;c) \in R$, allora $(a;c) \in R \land a,b,c \in A$;

Esempio:

Dato un insieme di numeri $\mathbb Z$ si ha che $(a;b) \in R$ se $a \leq b$

Si definisce una Relazione d'Ordine Totale in $\mathbb Z$ se tutti gli elementi sono confrontabili attraverso il segno \leq , in particolare se dati qualunque a,b si ha che $(a,b)\in R$ oppure $(b,a)\in R$. In caso contrario viene definito Parziale.

L'Obiettivo di una Relazione di Equivalenza è quello di trovare degli aspetti di similitudine tra i vari elementi dell'insieme

L'Obiettivo di una Relazione d'Ordine è quello di gerarchizzare gli elementi secondo una condizione.

È possibile rappresentare le Relazioni d'Ordine attraverso il diagramma di Hasse:

Un particolare tipo di Relazione d'Ordine si ha quando:

Dati $n \in \mathbb{N}$, n > 1 e dati $a, b \in \mathbb{Z}$ diciamo che $a \equiv b(n)$ se n|a-b, ossia "a è congruo a b in modulo n se n divide a-b "

Esempio:

$$-7 \equiv 3 \equiv 18$$
 (5)
5|3 - 18 = 5|15 5|3 - (-7) = 5|10

Osservazioni: Si può dire che un numero a è congruo ad un numero b se hanno lo stesso resto nella divisione per n. In particolare, se n è uguale a 2 e il resto è uguale a 0 il numero è pari, mentre se il resto è 1 allora è dispari.

Questa Relazione d'Ordine diventa una Relazione di Equivalenza quando $n \in \mathbb{Z}$:

Dimostrazione

(R)
$$a \in \mathbb{Z}$$
, $a \equiv a$ $(n) \Rightarrow a - a = 0$ $n|0 = 0$

Visto che la differenza di un numero per sé stesso è 0, si ha che $\exists d: n \cdot d = a - a \Rightarrow n \cdot d = 0$

(S)
$$a \equiv b$$
 $(n) \Rightarrow n|a-b \Leftrightarrow n|b-a \Rightarrow b \equiv a$ (n)

Questo perché
$$\exists d: d\cdot n = a-b \Rightarrow -d\cdot n = b-a$$

Questo è il passaggio che rende la relazione d'Ordine (con $n \in \mathbb{N}$) una Relazione di Equivalenza (con $n \in \mathbb{Z}$)

$$\text{(T) } a \equiv b \quad (n) \wedge b \equiv c \quad (n) \Rightarrow n|a-b \wedge n|b-c \Rightarrow n|(a-b)+(b-c) \Rightarrow n|a-c \Rightarrow a \equiv c \quad (n)$$

Definizione di Classe di Equivalenza: Data una qualsiasi relazione di equivalenza (di uguaglianza o di congruenza) R di A (per cui si ha $R \subseteq A \times A$ per cui sono verificate le tre proprietà) invece di scrivere $(a,b) \in R$ si può scrivere $a \sim b$, in quanto sono accumulati da una relazione di equivalenza.

A questo punto per ogni $a \in A$ di può definire una classe di equivalenza tale che

$$[a] = \{x \in A \mid x \ \sim a\}$$

Esempio:

Siano $a,b\in A$, allora $[a]=[b]\Leftrightarrow a\sim b$

Per verificare la proposizione bisogna dimostrare entrambe le proposizioni:

$$\Rightarrow$$
) Si ha che $[a] = [b] \Rightarrow a \sim b$

$$orall x \in A, x \in [b]$$
 (per p. Riflessiva) $a \in [b] \Rightarrow a \sim b$

$$\Leftarrow$$
) Si ha che $a \sim b \Rightarrow [a] = [b]$

- Dimostriamo che $[a]\subseteq [b]$

Sia $x \in [a] \Rightarrow x \sim a$ (per Ipotesi si ha che $a \sim b$), per p. Transitiva $x \sim b \Rightarrow x \in [b]$

- Dimostriamo che $[b] \subseteq [a]$

Sia $x \in [b] \Rightarrow x \sim b$, per ipotesi si ha che $a \sim b$, per la proprietà Simmetrica si ha $x \sim b \land b \sim a$ per la proprietà

Transitiva $x \sim a \Rightarrow x \in [a]$

Avendo contemporaneamente $x \in [a]$ e $x \in [b]$ si giunge alla conclusione che [a] = [b]

Definizione di Insieme Quoziente: Si può definire l'insieme quoziente come l'insieme i cui elementi sono le classi di equivalenza

$$A_{/\sim}=\{[a],a\in A\}$$

Esempio:

Prendiamo "essere coniugi a modulo 2", gli elementi possono essere o solo pari o solo dispari (quindi appartenere alla classe [0] o alla classe [1])

Definizione di Partizione: Sia A un insieme, una partizione di A è una collezione di sottoinsiemi di A non vuoti a due a due disgiunti, la cui unione è A. A questo punto A può essere rappresentato come l'insieme di tutte le parti:

 $A = \{A : i \in I\}$ dove I rappresenta l'insieme dei contatori

Ogni sottoinsieme gode delle seguenti caratteristiche:

- $A_i \neq \varnothing, \forall i \in I$;
- $A_i \cap A_j = \varnothing, \forall i \neq j;$
- ullet $\bigcup_{i\in I}A_i=A$

Osservazione: Data una relazione di equivalenza, l'insieme delle classi di equivalenza costituisce una partizione di A (per tutti i motivi precedenti). Viceversa, data una partizione $A=\{A_i, \forall i\in I\}$, appartenere allo stessi A_i è una relazione di equivalenza.

Esempio:

Sia $A=\mathbb{Z}$ con la Relazione di Equivalenza essere congrui ad a con modulo n . L'insieme $A_{/\sim}$ può essere indicato con $\mathbb{Z}_{/n}$ per cui:

 $\mathbb{Z}_{/n}$ = Relazione di Equivalenza di essere congrui ad a di modulo n

Con n=2 si ha che $\mathbb{Z}_{/2}=\{[0];[1]\}$

Con n = 3 si ha che $\mathbb{Z}_{/3} = \{[0]; [1]; [2]\}$

Con qualsiasi n si ha che $\mathbb{Z}_{/n}=\{[0];[1];[2];\ldots;[n-1]\}$

Collegamento tra qualsiasi funzione/relazione: Siano X, Y due insiemi, una relazione $f \subseteq X \times Y$ (funzione interpretata come relazione) è una funzione o una applicazione se:

$$\forall x \in X, \exists ! y \in Y : (x, y) \in f$$

In questo caso si scrive y = f(x) oppure $f: X \to Y$

Osservazione: Normalmente una relazione di questo genere viene chiamata "Applicazione", ma se si ha che $Y \sim \mathbb{R}/\mathbb{R}^2$ allora viene definita "Funzione"

Definizione di Funzione Iniettiva: Un'applicazione $f: X \to Y$ è definita "Iniettiva" se "ad elementi diversi sono associati elementi diversi", cioè che se $f(a') = f(a) \Rightarrow a' = a$

Esempio:

$$f: rac{\mathbb{Z} o \mathbb{Z}}{a \mapsto 2a} \ f(a) = 2a$$
 è una funzione iniettiva

Definizione di Immagine: Dati $f: X \to Y$, si può definire l'Immagine di f:

$$Im(f) = \{y \in Y \mid \exists x \in X : f(x) = y\}$$

"Gli elementi di y che vengono da qualche elemento di X"

Definizione di Funzione Suriettiva: Un'applicazione $f: X \to Y$ è definita "Suriettiva" se Y = Im(f)

Esempio:

$$p: rac{\mathbb{R} o \mathbb{R}}{(x;y) \mapsto x}$$
 $p(x,y) = x$ è una proiezione $\pi: rac{A o A_{/\pi}}{a \mapsto [a]} \pi$ è una trasformazione canonica (suddivisione in classi)

Definizione di Funzione Biettiva: Un'applicazione $f: X \to Y$ è biunivoca se è Suriettiva e Iniettiva, cioè se per ogni $y \in Y$ esiste ed è unico $x \in X$ tale che f(x) = y. In questo caso è definita anche l'applicazione inversa tale che:

$$f^{-1}:rac{Y
ightarrow X}{y\mapsto f^{-1}(y)}$$
 , ossia che $x\in X$ è l'unico x tale che $y=f(x)$

Esempi:

Learnin.
$$d: \frac{X \to X}{x \mapsto x} \\ g: \frac{\mathbb{Z} \to \mathbb{Z}}{a \mapsto a+1} \Leftrightarrow g^{-1}: \frac{\mathbb{Z} \to \mathbb{Z}}{b \mapsto b-1}$$

Definizioni di Composizioni: Dati gli insiemi X, Y, Z e le funzioni $f: X \to Y$ e $g: Y \to Z$ e si ha che

$$X\stackrel{f}{
ightarrow}Y\stackrel{g}{
ightarrow}Z\Rightarrow x\mapsto f(x)\mapsto g(f(x))$$

allora è possibile comporle: $g\circ f:X\to Z$ oppure z=g(f(x)) o $z=g\circ f(x)$

Osservazione: Se si ha che $f: X \rightarrow Y$ è biunivoca allora:

- $f^{-1} \circ f$ è un'identità di x
- $f \circ f^{-1}$ è un'identità di y

Osservazione: In generale la composizione non è biunivoca

Esempio:

$$f(x)=2x\quad g(x)=x+1\quad g\circ f
eq f\circ g$$

Esempi di funzioni Suriettive e non e Iniettive e non (su $f(x) = x^2$):

 $f_1=\mathbb{R} o\mathbb{R}$ non iniettiva né suriettiva

 $f_2 = [0; +\infty) o \mathbb{R}$ solo iniettiva

 $f_3=\mathbb{R} o [0;+\infty)$ solo suriettiva

 $f_4 = [0; +\infty) \to [0; +\infty)$ biettiva

(Tutto sta nel cambiare il dominio e il codominio)

Posso "curare" la mancanza di Suriettività di una funzione f:X o Y "sostituendo" y con f(x)

Posso "curare" la mancanza di Iniettività di una funzione $f: X \to Y$ "identificando" tra loro elementi che vanno nella stessa y: introduco quindi una relazione di equivalenza $x1 \sim x2 \Leftrightarrow f(x1) = f(x2)$ e sostituisco X con $X_{/\sim}$.

Esempio:

$$f: rac{X
ightarrow Y}{x \mapsto f(x)}$$

Con le trasformazioni π e J diventa

$$f:rac{X_{/\sim}
ightarrow Im(f)}{[x]\mapsto f(x)}$$

Numeri

Definizioni e assiomi di numeri:

Per poter spiegare nell'effettivo cosa sono i numeri vi sono due approcci:

- uno più rapido, ossia direttamente l'assioma dei numeri reali;
- uno più macchinoso, iniziando prima dai numeri naturali, per passare poi a quelli interi, poi razionali, poi reali e poi complessi.

Definizione di Insieme dei Numeri Naturali: (Definiti attraverso l'assioma di Peano)

I numeri naturali sono il dato di:

- un insieme N;
- una applicazione (o funzione) iniettiva $\sigma: \mathbb{N} \to \mathbb{N}$; tale che valga la seguente proprietà:
- se $U \subseteq \mathbb{N}$ che contiene 0 e tale che $\forall k \in U, \sigma(k)$ allora $U = \mathbb{N}$ Si postula quindi che esista una terna $(\mathbb{N}, \sigma, 0)$ con questa proprietà, di dimostrache è essenzialmente unica. In

caso ce ne fosse un'altra, questa sarebbe in biezione con $(\mathbb{N}, \sigma, 0)$

Ogni numero quindi può essere definito come:

```
1 = \sigma(0); \quad 2 = \sigma(1) = \sigma(\sigma(0))
```

È possibile definire +, all'interno dell'insieme $\mathbb N$ (dimostrabile per ogni elemento tramite delle dimostrazioni per induzione - se zero gode di determinate proprietà (o qualsiasi elemento k gode di determinate proprietà, allora k+1 gode delle stesse proprietà) allora qualsiasi elemento in $\mathbb N$ gode delle stesse proprietà), però non è possibile definire la sottrazione. (Tanto che neanche i Greci avevano un concetto di negativo o di sottrazione, essendo la loro matematica legata al mondo naturale e concreto).

Definizione di numeri interi: Su $\mathbb{N} \times \mathbb{N} = \{(a,b), a,b \in \mathbb{N}\}$ introduciamo la Relazione di Equivalenza $(a,b) \sim (a',b')$ se a+b'=b+a' II che equivarrebbe a dire a-b=a'-b' ma non essendo ancora il segno – qualcosa di concreto si evita.

```
A questo punto definiamo l'insieme \mathbb{Z}=(\mathbb{N}\times\mathbb{N})_{/\sim}=\{[(a,0)],a\in\mathbb{N}\}\cup\{[(0,b)],b\in\mathbb{N},b\neq0\} a questo punto possiamo considerare (a,0)=a e (0,b)=-b quindi \mathbb{Z}=\{0;1;2;3;\ldots\}\cup\{-1;-2:-3;\ldots\}
```

Definendo le operazioni in modo usuale: $\mathbb Z$ è un "anello commutativo", ossia l'insieme che gode di certe proprietà: operazioni +, godono di proprietà associative, commutative, con elementi neutri 0 e 1 e legate dalla proprietà distributiva (come in $\mathbb N$), in $\mathbb Z$ ogni elemento $a \in \mathbb N$ ha un suo opposto -a tale che a + (-a) = 0

Tutto ciò da la possibilità di fare le sottrazioni, ma non le divisioni

Definizione di Numeri Razionali:Per poter parlare di frazioni bisogna comunque partire dall'insieme Z.

```
Dato l'insieme \mathbb{Z} \times \mathbb{Z} \setminus \{0\} = \{(p,q) \mid t.c. \quad p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\}\} pongo la relazione di equivalenza (p,q) \sim (q,p) \Leftrightarrow p \cdot q' = q \cdot p'
```

A questo punto indico con $p \cdot q = [(p,q)]$ e definisco le operazioni nel modo usuale:

 $\mathbb{Q}=(\mathbb{Z} imes\mathbb{Z})_{/\sim}$, dove \mathbb{Q} è un campo, cioè un anello commutativo con la proprietà aggiuntiva che $x\in\mathbb{Q}\land x\neq 0: x^{-1}\in\mathbb{Q}\Rightarrow x\cdot x^{-1}=1$ con x=p/q con $p,q\neq 0$

Tutto ciò era stato scoperto da Pitagora nel mondo delle relazioni tra le note musicali:

- र्वे corda equivale ad una nota dell'ottava successiva;
- $\frac{1}{2}$ corda equivale ad una distanza di quinta;
- $\frac{8}{9}$ corda equivale invece al tono successivo

Lo stesso Pitagora disse che il numero è la legge razionale dell'universo, non facendo testo del fatto che $\sqrt{2}$ non è razionale.

Definizione di Numeri Reali: Per poter spiegare i numeri reali, bisogna ricorrere alla sequenza di numeri razionali di Cauchy per cui $C = \{\text{Sequenza di numeri razionali}\} = a \cdot n \in \mathbb{Q}, \ n \in \mathbb{N}.$ Poniamo poi la relazione di equivalenza tra $a \cdot n \sim b \cdot n$ se $\lim_{n \to \infty} (a \cdot n - b \cdot n) = 0$, ponendo poi che $\mathbb{R} = C_{/\sim}$.

Ponendo i numeri in quest'ottica si ha che ogni numero razionale rappresenta una classe di una successione di numeri:

Esempi:

```
\begin{split} \pi &= [3;3,1;3,14;3,141;\dots] \\ 1 &= [1;1;1;1;\dots] \\ \frac{1}{3} &= [0;0,3;0,33;0,333;\dots] \\ 0, \overline{9} &= [0;0,9;0,99;0,999;\dots] \end{split}
```

Tuttavia si può notare come le successioni di $0, \overline{9}$ e di 1 sono talmente vicine che sono in relazione, quindi $0, \overline{9} = 1$

Si può guindi affermare che \mathbb{R} è un campo, in quanto gode delle stesse proprietà di \mathbb{Q} .

Più nello specifico è possibile affermare che $\mathbb Q$ è un sottoinsieme a sé stante di $\mathbb R$ in quanto in $\mathbb R$ è possibile fare le quattro operazioni, le radici e i limiti.

Però è anche vero che in $\mathbb R$ non si possono risolvere equazioni di secondo grado del tipo:

```
x^2 + 1 = 0
```

Definizione di Insieme dei Numeri Complessi: Per poterla risolvere è possibile inventare un "numero immaginario" i tale che $i^2=-1$

Dopo questa premessa si vuole comunque poter eseguire tutte le operazioni, quindi:

 $\mathbb{C} = \{a+b\cdot i,\ a,b\in\mathbb{R}\}$ = Insieme dei numeri Complessi

È un campo in quanto è possibile poter applicare addizioni (come si fanno tra polinomi), moltiplicazioni (come si fanno tra polinomi), esiste un opposto $(a+b\cdot i-(a+b\cdot i)=0)$ ed esiste un inverso $((a+b\cdot i)\cdot \frac{a-b\cdot i}{2^2+1^2}=1)$.

Miracolo Teorema fondamentale dell'Algebra: Ogni equazione polinomiale a coefficienti $\mathbb C$ ha soluzione in $\mathbb C$ (è un campo algebricamente chiuso, ossia tutto ha soluzioni)

Esistono altre tipologie di insiemi numerici per esempio: Dato $n > \mathbb{N}$, n > 1 si ha che:

$$Z_{/n} = \{[0]; [1]; [2]; \dots; [n-1]\}$$

È possibile rendere quest'insieme un anello attraverso l'inserimento delle operazioni $+, \cdot$

Proposizione: Le operazioni $+, \cdot$ sono ben definite, cioè non dipendono dalla scelta del rappresentante. *Dimostrazione*:

(+): Siano $a',b'\in\mathbb{Z}$ t. c. [a]=[a'] e [b]=[b']. Voglio dimostrare che [a+b]=[a'+b']

$$[a] = [a'] \Rightarrow a \sim a' \ (n) \Rightarrow n|a-a' \Rightarrow \exists k \in \mathbb{Z} \ t. \ c. \ a' = a+k \cdot n$$

$$[b] = [b'] \Rightarrow b \sim b'(n) \Rightarrow n|b-b' \Rightarrow \exists h \in \mathbb{Z} \ t. \ c. \ b' = b+h \cdot n$$

Dunque si ha che: $a'+b'=a+b+k\cdot n+h\cdot n\Rightarrow a'+b'=a+b+n\cdot (h+k)\Rightarrow$

$$n|(a+b)-(a'-b') \Rightarrow (a+b) \sim (a'+b') \Rightarrow [a+b] = [a'+b']$$

(·) (Sul foglio 2 di esercizi)

Quindi $\mathbb{Z}_{/n}$ con le operazioni $+,\cdot$ appena definite è un anello, con elementi neutri [0] e [1], ed elementi opposti: l'opposto di [a] è $[-a]=[n-a]\forall a\in\mathbb{Z}$.

È un campo? Dipende se n è primo o meno

Esempi:

 $\mathbb{Z}_{/5} = \{[0]; [1]; [2]; [3]; [4]\}$

[0] non può avere inversi

[1] è inverso di sé stesso

 $[2] \cdot [3] = [6] = [1]$ sono inversi tra loro

 $[4]\cdot [4]=[16]=[1]$ è inverso di sé stesso

 $\mathbb{Z}_{/5}$ è campo

 $\mathbb{Z}_{/6} = \{[0]; [1]; [2]; [3]; [4]; [5]\}$

 $[2] \cdot [0] = [0]$

 $[2] \cdot [1] = [2]$

 $[2]\cdot[2]=[4]$

 $[2] \cdot [3] = [6] = [0]$

 $[2] \cdot [4] = [8] = [2]$

 $[2] \cdot [5] = [10] = [4]$

Quindi $Z_{/6}$ non è campo perché [2] non ha inversi, così come [3] e [4].

Osservazione: Se n non è primo allora $\mathbb{Z}_{/n}$ non è un campo (dimostreremo poi perché)

Definizione di Dominio di Integrità: Un anello è un dominio di integrità se $x \cdot y = 0 \Rightarrow x = 0 \lor y = 0$

Esempio:

 \mathbb{Z} lo è

 $\mathbb{Z}_{/6}$ non lo è

Proposizione: Ogni campo in K è un dominio di integrità

Dimostrazione:

sia $x \cdot y = 0$ e suppongo $x \neq 0$, allora: $\exists x^{-1} \in \mathbb{K} : x \cdot x^{-1} = 1 \Rightarrow x \cdot x^{-1} \cdot y = 0 \cdot x^{-1} \Rightarrow y = 0$.

conseguenza una "copia" di $\mathbb Q$ (campo). Si può dire che la caratteristica di K=0.

Definizione di Caratteristica: Dato un \mathbb{K} , definiamo la sua caratteristica, ponendo $1+1+1+1+1+\dots$ possiamo avere due risultati :

- non ottengo mai 0;
- eventualmente ottengo 0; In insiemi come $\mathbb{N}/\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ non ottengo mai 0. In questo caso si dice che \mathbb{K} contiene una "copia" di \mathbb{Z} (anello) e di

In insiemi come $\mathbb{Z}_{/p}$ si ottiene 0 dopo p volte. In questo caso si dice che \mathbb{K} contiene una "copia" di $\mathbb{Z}_{/p}$ e diremo che la caratteristica di K=p

Dato un qualsiasi numero, per esempio 3784, 536, lo si può scrivere come:

$$3 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10^1 + 4 \cdot 10^0 + 5 \cdot 10^{-1} + 3 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Ossia come somma delle varie cifre per una potenza di 10: $\sum_{i=1}^{\ell} C_i \cdot 10^i$

Tutto ciò è legato al fatto che siamo abituati al fatto che usiamo un sistema di calcolo legato alla base decimale, ma lo si potrebbe fare per qualsiasi base b con $\forall b \in \mathbb{N}, b < 1$, in questo caso si avrebbe un insieme delle cifre $b = \{0; 1; 2; \ldots; b-1\}.$

Anche il fatto che un numero si possa definire come finito o infinito dipende dalla base che si prende:

Esempio:

$$\frac{1}{2} = 0, 5_{10} = 0, \overline{1}_3$$
 $\frac{1}{3} = 0, \overline{3}_{10} = 0, 1_3$

Questo perché 2 è un divisore di 10, mentre 3 no

Al contrario, 3 è un divisore di 3, mentre 2 no

Parlando sempre di basi dei numeri, anche i criteri di divisibilità dipendono strettamente dal fatto che usiamo una base 10.

Esempio:

Un numero è multiplo di 9 se la somma delle sue cifre è multiplo di 9

La cosa è strettamente legata al fatto che 9 è un numero vicino a 10

$$10 \equiv 1 \; (9) \qquad 10^2 \equiv 1 \; (9) \qquad \sum_{i=1}^n n \equiv C_i \; (9)$$

Più specificamente, un numero è divisibile per 9 se è congruo alla somma delle sue cifre.

La cosa si può definire simile per 11, ma bisogna alternare in ogni cifra fra la cifra stessa e il suo opposto:

$$\sum_{i=1}^n n \equiv (-1)^i \cdot C_i \ (11)$$

Poi per 2 e 5 è necessario vedere l'ultima cifra: basta che sia multiplo di 2 (0; 2; 4; 6; 8), oppure multiplo di 5 (0; 5). Questo perché sono 2 e 5 sono divisori di 10.

Definizione di Cardinalità di un insieme finito: Dato un insieme A, possiamo definire la sua Cardinalità |A| il numero dei suoi elementi.

Combinatoria

Esempio:

Dati due insiemi X e Y possiamo definire le loro cardinalità |X| = m, |Y| = n. Siano per esempio gli insiemi X e Y con |X| = m = 3 e |Y| = n = 5, quante applicazioni si possono definire?

Visto che per ogni elemento di X ho a disposizione 5 possibilità e ho 3 elementi, allora ho: $5 \cdot 5 \cdot 5 = 5^3 = 125$

Definendo un caso più generale ho $|Y|^{|X|} = n^m$ possibilità.

Esempio pt.2

Se le applicazioni dovevano essere iniettive, allora:

- per il primo elemento avrei avuto 5 possibilità;
- per il secondo elemento 4 possibilità;
- per il terzo, 3;

Quindi sarebbe stato $5 \cdot 4 \cdot 3$

Definendo più in generale, si possono distinguere 3 casi

- se $m < n = \frac{n!}{(n-m)!}$
- se m = n (quindi biunivoche) = n!
- se m > n = 0 (in questo caso non ci sarebbe stata l'iniettività)

Lavorando con gli insiemi, abbiamo visto che dato un insieme A di n elementi, allora $|\mathcal{P}(A)| = 2^n$. Riprendendo un sistema iniziale di domande per vedere se ci sono gli elementi o meno in ogni sottoinsieme S è possibile creare una

sequenza di 0 e 1 (dove 0 corrisponde a "non è presente" e 1 a "è presente"). In questo modo nasce una biezione $\operatorname{tra} \mathcal{P}(A)$ e S^n :

$$egin{aligned} \mathcal{P}(A) \stackrel{ op}{ o} S^n \ x \mapsto c_i \ldots c_n \end{aligned} \mathsf{dove} \ c_i = 1 \ \mathsf{se} \ i \in A \ \mathsf{e} \ c_i = 0 \ \mathsf{se} \ i
otin A$$

Esempio:

Quanti insiemi si possono creare con la stessa cardinalità?

Supponiamo di avere un insieme A di 5 elementi e si vuole sapere quanti sottoinsiemi S si possono creare di cardinalità 3. Si ha che per il primo elemento ci sono 5 scelte, per il secondo 4 scelte e 3 per il terzo, per un totale di 60 scelte. Però bisogna anche togliere tutti gli insiemi contati diverse volte.

Per creare un caso più generale, se
$$|A|=n$$
 e $|S|=k$ con $(0 \le k \le n)$ si ha che $\frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot (k-2) \cdot \ldots \cdot (1)} = \frac{n!}{(n-k)! \cdot k!}$

Quest'ultimo si chiama Coefficiente binomiale e può essere scritto anche come:

$$\binom{n}{k}$$

$$\begin{aligned} &\text{Sia } S_{nk} = \{ \text{Sottoinsiemi di } \{1,2,\ldots,n\} \text{ con } k \text{ elementi} \} \text{ e sia} \\ &S^{nk} = \left\{ \text{Successioni di } c_1,c_2,\ldots,c_n,c \in \{0;1\} \text{ con } k \mid \sum_{i=1}^n c_i = k \right\} \text{, allora c'è una biezione.} \\ &S_{nk} \to S^{nk} \\ &x \mapsto c_i \ldots c_n \end{aligned} \text{dove } c_i = 1 \text{ se } i \in A \text{ e } c_i = 0 \text{ se } i \not\in A \end{aligned}$$

Proprietà:
$$\binom{n}{k} = \binom{n}{n-k}$$

Si potrebbe dire con estrema semplicità che $\frac{n!}{(n-k)! \cdot k!} = \frac{n!}{k! \cdot (n-k)!}$, ma non è una dimostrazione illuminante,

quindi: Si definisce un'applicazione $c: \frac{S_{n,k} \to S_{n,n-k}}{X \to A \setminus X}$. c è direttamente biunivoca (ogni sottoinsieme ha un complementare), quindi $\binom{n}{k} = |S_{n,k}| = |S_{n,n-k}| = \binom{n}{n-k}$

Proprietà:
$$\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$$
 (Triangolo di Tartaglia)

Dimostrazione:

 $S_{n,k}=\{X\subseteq A|\ |X|=k\}$. Questo insieme può essere scritto come l'unione di due insiemi complementari $S_{n,k}=\{X\subseteq A|\ |X|=k, n\not\in X\}\cup\{X\subseteq A|\ |X|=k, n\in X\}$ ^1149df

A partire da questi sottoinsiemi possiamo crearne altri con cardinalità diversa:

$$S_{n,k} = \{X \subseteq \{1,2,\ldots,n-1\} | \ |X| = k\} \cup \{X \subseteq B \cup \{n\}, B \subseteq \{1,2,\ldots,n-1\}, |B| = k-1\}$$

$$S_{n,k} = S_{n-1,k}\{B \cup \{n\}, B \in S_{n-1,k-1}\}$$

Questo è lo stesso concetto di $(x+y)^n=(x+y)(x+y)\dots(x+y)=\sum a_i\cdot x^i\cdot y^{n-i}$, dove a_i rappresenta il numero di successioni di lunghezza n che contengono i volte x e n-1 volte y. Quindi si ottiene $a_i=\binom{i}{n}=|S_{n,i}|$

Esempi di esercizi:

1. In quanti modi posso dare C caramelle a b bambini?

Il numero di bambini corrisponde al numero di sbarrette +1, quindi il numero di sbarrette è b-1. A questo punto si può vedere come una sequenza di uno e zero tale che 1= numero di caramelle e 0= numero di sbarrette, in questo 0

2. Quante soluzioni $x \in \mathbb{N}$ ha l'espressione $x_1 + x_2 + \ldots + x_b = c$?

Stessa identica cosa di sopra. 3. In un percorso 5×3 , quanti sono i modi possibili in modo da fare il numero di passi minimi?

Si ha che la lunghezza minima è uguale a 8 con 5 in una direzione e 3 nell'altra, quindi $\binom{3}{8} = \binom{5}{8}$

Definizione di ragionamento per induzione: "Se è vero per n, allora è vero per n+1"

Esempio:

$$n^2 = \sum_{k=1}^n (2k-1) \Rightarrow n^2 + (2n+1) = \sum_{k=1}^n (2k-1) + (2n) + 1 \Rightarrow (n+1)^2 = \sum_{k=1}^{n+1} (2k-1)$$

Definizione di Cardinalità: Due insiemi A e B hanno la stessa Cardinalità se esiste una biezione A o B.

Per gli insiemi finiti si guarda il numero di elementi, per quelli infiniti invece se è presente una biezione con insiemi infiniti.

Osservazione: Essere in biezione è una relazione di equivalenza (primo foglio di esercizi).

Esempio

L'insieme \mathbb{Z} e $2\mathbb{Z}$ (l'insieme dei numeri pari) sono in biezione tra di loro perché ad ogni numero posso associare il suo doppio. Può sembrare un paradosso, in quanto insiemisticamente $2\mathbb{Z}$ ha metà degli elementi. Eppure c'è biezione, in quanto ad ogni elemento del primo è associato uno e uno solo elemento del secondo

Definizione: Diciamo che un insieme A ha cardinalità minore o uguale di un insieme B se esiste una applicazione biettiva da A a B

Esempio:

$$card(\mathbb{N}) \leq card(\mathbb{R}) \; \mathsf{per} \; rac{\mathbb{N} o \mathbb{R}}{n \mapsto n}$$

Teorema (CBS): Se $card(A) \leq card(B)$ e $card(B) \leq card(A) \Rightarrow card(A) = card(B)$. Ovvero se esistono due applicazioni iniettive $f: A \rightarrow B$ e $g: b \rightarrow A$, allora esiste una biezione tra A e B

Esempio:

Sia
$$A=[0,1]$$
 e $B=[0,1[$ e siano $A\stackrel{f,g}{\underset{f,g}{\longleftarrow}}B$ con $f(x)=\frac{x}{2}$ e $g(x)=x$ con f,g iniettive

Si ha che esiste una funzione h definita come $h: \begin{cases} \frac{x}{2} & \text{se } x = 2^{-n}, n \in \mathbb{Z} \\ x & \text{altrimenti} \end{cases}$, quindi [0,1] e [0,1[sono in biezione per h

Definizione di Numerabile: Un insieme è definito numerabile se ha la stessa cardinalità di ℕ

Osservazione: Se A è numerabile, possiamo elencare i suoi elementi con termini di una successione, cioè $A=\{a_0,a_1,a_2,\dots\}=\{a_n\wedge n\in\mathbb{N}\}$. (Se A è un insieme finito di elementi si ha che al posto di \mathbb{N} , si ha un insieme $N\subseteq\mathbb{N}$)

Esempio:

Si ha che $\mathbb Z$ è numerabile, perché mettendolo nella successione $0,1,-1,2,-2,\ldots$ ad ogni numero in $\mathbb Z$ è associato uno un solo elemento di A_n :

$$0 = a_0, 1 = a_1, -1 = a_2, 2 = a_3, 2 = a_4, \dots$$

Teorema: Il prodotto cartesiano di due insiemi è numerabile

Dimostrazione:

Siano A e B due insiemi numerabili tale che $A = \{a_n, n \in \mathbb{N}\}$ e $B = \{b_n, n \in \mathbb{N}\}.$

Si ha che ogni elemento (a_n, b_n) può essere scritto come in una tabella:

```
(a_0, b_0) (a_0, b_1) (a_0, b_2) ...

(a_0, b_0) (a_0, b_1) (a_0, b_2) ...

(a_2, b_0) (a_2, b_1) (a_2, b_2) ...

\vdots \vdots \vdots \vdots
```

Si possono tracciare delle Diagonali in modo che intersechino i punti nel seguente modo:

```
d_0:(a_0,b_0); \quad d_1:(a_1,b_0)-(a_0,b_1); \quad d_2:(a_2;b_0)-(a_1,b_1)-(a_0,b_2), e così via.
```

Seguendo quest'ordine posso associare un $n \in \mathbb{N}$ ad ogni coppia:

```
c_0:(a_0,b_0); \quad c_1:(a_1,b_0); \quad c_2:(a_0,b_1), eccetera.
```

Visto che il prodotto cartesiano è un insieme finito, si ha che tutte le diagonali insieme sono in grado di prendere ogni coppia, quindi ogni elemento è coperto. Di conseguenza ho enumerato tutti gli elementi di $A \times B$.

Osservazione: Per induzione possono mostrare che se da A_1 a A_n sono insiemi numerabili, allora $A_1 \times A_2 \times A_3 \times \ldots \times A_n$ è numerabile.

Corollario: Q è numerabile

Dimostrazione:

Si può interpretare \mathbb{Q} come $\frac{\mathbb{Z} \times \mathbb{Z} \setminus \{0\}}{/\sim}$, poi si crea una tabella simile alla precedente Algebra 1 - Moci > ^41cbb2, in cui le entrate sono i numeratori e i denominatori. Si tracciano poi le diagonali (tutto similmente a prima) e si prendono solo le frazioni che portano a risultati diversi ($\frac{2}{4}$ non si prende per esempio). Poi si procede in maniera analoga a prima.

Corollario: \mathbb{Z}^n e \mathbb{Q}^n sono numerabili ($\forall n \in \mathbb{N}, n > 0$)

Teorema: L'insieme di una infinità di insiemi numerabili è numerabile

Dimostrazione:

Siano A_0, A_1, A_2, \ldots insiemi numerabili. Ognuno di questi si può scrivere come $\forall n \in \mathbb{N} \quad A_n = \{a_{n0}, a_{n1}, a_{n2}, \ldots\}$, allora posso creare una tabella simile a quella di prima Algebra 1 - Moci > ^41cbb2, dove le entrate sono il numero dell'inisieme e il numero dell'elemento.

Così facendo ottengo un insieme tale che: $A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_n = \bigcup_{n \in \mathbb{N}} A_n$

Sia A un insieme numerabile e consideriamo l'insieme B di tutte le successioni degli elementi di A di lunghezza finita. In altre parole, consideriamo l'insieme A come l'insieme "alfabeto" e l'insieme P come le "parole".

Corollario: P è numerabile.

Dimostrazione:

 $P = \bigcup_{n \in \mathbb{N}} P_n$, dove P_n rappresenta l'insieme di tutte le parole P di lunghezza n. Si ha tuttavia che $P_n = A^n = A \times A \times A \times \ldots \times A$, n volte $\Rightarrow P_n$ è numerabile $\Rightarrow P$ è numerabile.

Insieme di Cantor:

$$C = \{x \in [0,1] \mid \text{in base } 3, \ x = c_1 c_2 c_3 \dots \ c_i \in \{0,2\} \}$$

L'insieme di Cantor è l'insieme che contiene tutti i numeri decimali compresi tra 0_3 e 1_3 tali che non contengono la cifra 1. La rappresentazione grafica è quella di un frattale.

Definizione di Insieme Non Numerabile: Un insieme si definisce non numerabile se non è possibile stabilire una biezione con \mathbb{N} .

Teorema: Sia A un insieme, allora $card(A) < card(\mathcal{P}(A))$. \leq implica che c'è una biezione, \neq implica che non c'è biezione

Dimostrazione:

Dobbiamo dimostrare che $\exists g: A \to \mathcal{P}(A)$ iniettiva e $\not\exists f: A \to \mathcal{P}(A)$.

 $g:_{a o\{a\}}^{A o\mathcal{P}(A)}$ è iniettiva e non suriettiva, ma non mi basta per dire che non c'è biezione

 $\mathsf{Sia}\; f: A \to \mathcal{P}(A) \text{, definisco un insieme}\; D = \{a \in A | a \not\in f(A)\} \text{, quindi si ha che } \forall a \in A : \substack{a \in D, a \notin f(A) \\ a \not\in D, a \in f(A)} \text{.}$

Da ciò si giunghe che D non è f(A) per nessun $a \in A$, cioè $D \in Imf$, quindi f non è suriettiva, quindi non c'è biezione

Conseguenza: esistono infinite cardinalità infinite, cioè $card(A) < card(\mathcal{P}(A)) < card(\mathcal{P}(\mathcal{P}(A))) < \dots$

Definizione di Sucessione Binarie e Infinite: $\{0,1\}^{\mathbb{N}} = \{\text{Sucessioni } a_n, n \in \mathbb{N}, a_n \in \{0,1\}\}$

Teorema: $\{0;1\}^{\mathbb{N}}$ non è numerabile

Dimostrazione:

Supponiamo per assurdo che lo sia: si può scrivere allora $\{0;1\}^{\mathbb{N}}$ come un insieme di sequenze

 $\{S_0, S_1, S_2, S_3, \dots\} = \{S_n, n \in \mathbb{N}\}$. Di conseguenza le si possono rappresentare come una tabella (simile a Algebra 1 - Moci > ^41cbb2)

$$(a_{00})$$
 (a_{01}) (a_{02}) ... (S_0)

$$(a_{10})$$
 (a_{11}) (a_{12}) ... (S_1)

$$(a_{20})$$
 (a_{21}) (a_{22}) ... (S_2) ...

In questo modo si ha che tutti gli elementi di $\{0;1\}^{\mathbb{N}}$ sono stati rappresentati.

Adesso possiamo definire una sequenza $d \in \{0;1\}^\mathbb{N}$ in questo modo: $d = \begin{cases} 0 \ se \ a_{ii} = 1 \\ 1 \ se \ a_{ii} = 0 \end{cases}$

Quindi si giunge che $d \in \{0;1\}^{\mathbb{N}}$, ma $d \neq S_i, \forall i \in \mathbb{N}$ (qui cade l'assurdo)

 $\textit{Osservazione} \colon \mathcal{P}(\mathbb{N}) \; \grave{\mathsf{e}} \; \mathsf{in} \; \mathsf{biezione} \; \mathsf{con} \; \{0;1\}^{\mathbb{N}} \text{, infatti} \; A \mapsto S_a = a_0 a_1 a_2 \ldots , a_i = \begin{cases} 1 \in A \\ 0 \not \in A \end{cases}$

Chiaramente si ha che con sottoinsiemi diversi si ottengono successioni diverse. Inoltre fornisce un'altra dimostrazione del fatto che $\mathcal{P}(N)$ non è numerabile

Teorema: $\{0;1\}^{\mathbb{N}}$ è in biezione con l'insieme di Cantor e quindi non è numerabile *Dimostrazione*:

È sufficiente sostituire gli 1 con i 2

Teorema: L'intervallo]0;1[non è numerabile ed ha la stessa cardinalità di $\{0;1\}^{\mathbb{N}}$ e $\mathcal{P}(N)$

Dimostrazione:

Mostriamo che]0;1[è in biezione con $\{0;1\}^{\mathbb{N}}$

$$\varphi: \frac{]0;1[\rightarrow \{0;1\}^{\tilde{\mathbb{N}}}}{n\mapsto c_1c_2c_3} \text{ dove } n=0,c_1c_2\ldots,c_i\in \{0;1\} \text{ in base scritto nella maniera più semplice, (ossia senza l'uso l'uso$$

spasmodico del periodico: $1_2=0,\overline{1}_2$)

si ha che φ è iniettiva ma non è suriettiva in quanto (per esempio) $0, \overline{1} \notin Im\varphi$, oppure $\frac{1}{2} = 0, 1_2 (\in \varphi) = 0, 0\overline{1}_2 (\notin \varphi)$. Tuttavia, come prima, non si può concludere che esiste una biezione tra i due, di conseguenza si opta al teorema CBS (Algebra 1 - Moci > ^a9e21f)

Definiamo quindi: $\psi:\{0;1\}^{\mathbb{N}} \to]0;1[_{\mathrm{in\;base}\;3}=c_0c_1c_2\ldots \mapsto 0, b_0b_1b_2\ldots$ dove $b_i=\begin{cases}0\;se\;a_i=0\\2\;se\;a_i=1\end{cases}$ con questo possiamo dire che ψ è insiettiva.

Avendo quindi due funzioni iniettive $\varphi:]0;1[\to \{0;1\}^{\mathbb{N}} \text{ e } \psi:\{0;1\}^{\mathbb{N}} \to]0;1[\text{ si ha che, per il teorema CBS, i due insiemi non numerabili sono in biezione.}$

Teorema: \mathbb{R} è in biezione con]0;1[. In particolare \mathbb{R} non è numerabile e $card(\mathbb{R})=card(\mathcal{P}(\mathbb{N}))$.

Dimsotrazione:

per collegare facilmente un intervallo è $\mathbb R$ c'è la funzione \tan , solo che l'intervallo desiderato è $]-\frac{\pi}{2},\frac{\pi}{2}[$. Si possono fare delle trasformaioni (prima traslazione, poi dilatazione) per ottenere l'intervallo desiderato

$$|0;1[\Rightarrow]0-\frac{1}{2};1[=]-\frac{1}{2};\frac{1}{2}[\Rightarrow]-\frac{1}{2}\cdot\pi;\frac{1}{2}\cdot\pi[=]-\frac{\pi}{2};\frac{\pi}{2}[$$

Quindi si ha che: $h = \tan \circ g \circ f:]0; 1[\to \mathbb{R}$, esiste anche quella inversa: $h^{-1}(y) = \frac{\arctan y}{\pi} + \frac{1}{2}$.

Definizione di Denso: In ogni intervallo di estremi in Q si ha che ci sono infiniti numeri

Congruenze

Definizione di Primo e Irriducibile: Un intero $p \in \mathbb{Z}$ è primo $p \neq 0, -1, 1$ è

- 1. *primo* se $orall a, n \in \mathbb{Z}$ t.c. $p|a \cdot b$, si ha che p|a oppure p|b
- 2. *irriducibil*e se $\forall a,b \in \mathbb{Z}$ t.c. $p=a\cdot b$ si ha che $a=\pm 1$ oppure $b=\pm 1$ Queste definizioni corrispondono solamente nell'anello \mathbb{Z} , ma non negli altri.

Controesempio:

 $12|28\cdot 15$ ma $12\nmid 28$ e $12\nmid 15$, quindi non è primo $12=3\cdot 4$, ma $3\neq \pm 1$ e $4\neq \pm 1$, quindi non è irriducibile

Proposizione: Ogni primo è irriducibile

Dimostrazione:

Sia $p=a\cdot b\Rightarrow p|a\cdot b$ (perché 1p=ab), ma p è primo, quindi $p|ab\Rightarrow p|a$ oppure p|b. Non è restrittivo supporre che p|a (in quanto, valendo la proprietà simmetrica, l'uno vale l'altro), cioè $\exists h\in\mathbb{Z}$ t.c. $ph=a\Rightarrow p=ab=phb\Rightarrow hb=1$, cioè $h=b^{-1}$, ma l'unico numero per cui ciò è valido è con ± 1 , quindi $b=\pm 1$.

Proposizione: Siano $a,b \in \mathbb{Z}, b \neq 0$. Allora $\exists !q,r \in \mathbb{Z} \text{ con } 0 < r \leq |b| \text{ t.c. } a = bq + r$, dove q sta per quoziente e r per resto.

Esempio:

$$14/3 = 4$$
 con resto 2: $14 = 3 \cdot 4 + 2$
 $-14/3 = -5$ con resto 1: $-14 = 3 \cdot (-5) + 1$

Dimostrazione:

Per Induzione su n = |a|

- Base di induzione: se n=0, a=0 basta prendere q=0 e r=0
- Passo: Supponiamo l'enunciato $\forall a,b$ t.c. |a| < n e dimostriamo l'enunciato $\forall a,b$ t.c. |a| = n

Sia $a,b\in\mathbb{Z},b
eq 0$ t.c. |a|=n

- Se |a|<|b|, basta prendere q=0, r=|a| (se $a\geq 0$), q=-1, r=|b|-|a| con a<0
- Se $|a| \ge |b|$, si possono distinguere vari casi

- se $a \geq 0$ e b > 0 (quindi $a \geq b$). Consideriamo a' = a b poiché |a'| < |a| = n per l'ipotesi induttiva $\exists ! q', r' \in \mathbb{Z} \ 0 < r' < b \ \text{t.c.} \ a' = bq' + r'$, ma allora a = a' + b = b + (q' + 1) + r', dunque q = q' + 1 e r' = r sono gli interi ricercati
- Se a < 0, b > 0, pongo a' = a + b, ho che |a'| < |a| = n e posso procedere in modo induttivo come prima.
- Se b<0, ho che -b>0 e quindi $\exists !q,r\in\mathbb{Z},0\leq r<|b|$ t.c. a=(-b)q+r=b(-q)+r, quindi -q e r sono i numeri cercati.

Definizione di \mathcal{MCD} : Siano $a,b\in\mathbb{Z}$. Diciamo che $d\in\mathbb{Z}$ è un Massimo Comune Divisore ($d=\mathcal{MCD}(a,b)$) se:

- $d|a \in d|b$ (d è un divisore comune);
- $\forall d' \in \mathbb{Z}$ t.c. d'|a e d'|b allora d'|d (è il massimo nel senso della divisibilità).

È unico?

Siano $d, e \in \mathbb{Z}$ due numeri che soddisfano le proprietà 1 e 2 della definizione precedente. Per la seconda proprietà si ottiene che d|e e e|d, quindi si può concludere che d=e

Quindi si, è unico a meno del segno (infatti per \mathcal{MCD} si prende generalmente quello di segno positivo)

Teorema: Siano $a,b\in\mathbb{Z}$, allora esiste $d=\mathcal{MCD}(a,b)$. Inoltre $\exists n,m\in\mathbb{Z}$ t.c. d=an+bm (Identità di Bézout) ^8c61e1 Dimostrazione:

Non è restrittivo supporre $a \geq 0$ e $b \geq 0$, infatti se sono negativi è possibile sostituirli con il loro opposto e il \mathcal{MCD} non cambia. Procediamo per induzione su m = min(a,b). Supponiamo vero l'enunciato $\forall (a,b) \in \mathbb{Z}$ t.c. min(a,b) < n e dimostriamolo con $\forall (a,b) \in \mathbb{Z}$ il min(a,b) = n

- Base: Per induzione (n=0), $\mathcal{MCD}(a,0)=a\Rightarrow d=a$
- Passo: Non è restrittivo supporre che $a \ge b$ (in caso contrario si fa in modo analogo con b). Facciamo la divisione con il resto a = bq + r, $0 \le r < b$. Per ipotesi induttiva, $\exists d = \mathcal{MCD}(b, r)$. Mostriamo che $d = \mathcal{MCD}(b, r)$
- Poiché $d = \mathcal{MCD}(b, r)$, d|b e d|r, allora d|a = d|bq + r (divide la somma di multipli di d)
- Sia $d' \in \mathbb{Z}$ t.c. d'|a, d'|b, allora d'|r = d'|a bq (visto che $d = \mathcal{MCD}(b, r)$) $\Rightarrow d'|d$, quindi, $d = \mathcal{MCD}(a, b)$ Quindi $d = \mathcal{MCD}(a, b)$

Sempre per Ipotesi Induttiva, $\exists n', m' \in \mathbb{Z}$ t.c. n'r + m'b = d. Sostituendo r = a - bq ottengo $n'(a - bq) + m'b = d \Rightarrow n'a - b(-n'q + m') = d$. n = n' e m = m' - nq sono gli interi cercati.

Come trovare il \mathcal{MCD} ?

La dimostrazione precedente è costruttiva, cioè è stata creata in modo da fornire un algoritmo (l'algoritmo di Euclide) per calcolare il \mathcal{MCD} e trovare un'identità di Bézout.

Esempio:

```
Troviamo il \mathcal{MCD}(4512,306)
```

```
4512/306 = 14 	ext{ con resto } 228 	ext{ cioè } 4512 = 306 \cdot 14 + 228, 	ext{ quindi } d = \mathcal{MCD}(306, 228)
```

306/228 = 1 con resto 78 $d = \mathcal{MCD}(228, 78)$

228/78 = 2 con resto 72 $d = \mathcal{MCD}(78, 72)$

 $78/72 = 1 \text{ con resto } 6 \qquad d = \mathcal{MCD}(72, 6)$

72/6=12 con resto 0 $d=\mathcal{MCD}(6,0)=6$

Questo si fa fino a che il resto non diventa 0.

A questo punto è possibile trovare l'identità di Bézout: 6=4512n+306n

Per fare ciò dobbiamo ricorrere alle divisioni precedenti:

6 = 78 - 72, ma si ha che $72 = 228 - 2 \cdot 78$

 $6 = 78 - 228 + 2 \cdot 78 = -228 + 3 \cdot 78$, ma si ha che 78 = 306 - 228

 $6 = -228 + 3 \cdot 78 = -228 + 3 \cdot 306 - 3 \cdot 228 = 3 \cdot 306 - 4 \cdot 228 \text{, ma si ha che } 228 = 4512 - 14 \cdot 306 + 228 \cdot 120 \cdot 120$

 $6 = 3 \cdot 306 - 4 \cdot 228 = 3 \cdot 306 - 4 \cdot 4512 + 56 \cdot 306 = -4 \cdot 4512 + 59 \cdot 306$

Si ha che n=-4 e m=59

Dimostrazione:

Sia p irriducibile. Vogliamo dimostrare che $p|ab \Rightarrow p|a$ o p|b.

Si ha quindi che $\mathcal{MCD}(a,p)=1 \lor p$ (essendo irriducibile non ha altri divisori)

Se $\mathcal{MCD}(a,p)=p$, allora si ha che p|a che è la tesi

Se $\mathcal{MCD}(a,p)=1$, ho l'identità di Bézout: $\exists m,n\in\mathbb{Z}$ t.c. na+mq=1, moltiplicando da entrambe le parti per b ottengo mab+npb=b, per lpotesi ho che $p|ab\Rightarrow p|nab+mbp$ in quanto è una somma di multipli di b, quindi p|b, ossia la tesi.

Questo è valido solo per \mathbb{Z} , in quanto è possibile fare la divisione con resto, quindi in \mathbb{Z} irriducibile e primo sono la stessa cosa.

Definizione di Equazione Diofantea: Un'equazione si definisce diofantea se è nella forma:

$$ax + by = c$$
 $a, b, c \in \mathbb{Z}$

e cerchiamo i valori interi delle incognite x, y

Esempio:

- Esercizio 5 Foglio di Esercizi 3: Foglio 3.pdf
- 4512x + 306y = 18, qui mi basta moltiplicare l'Identità di Bézout prima ricavata (<u>Algebra 1 Moci > ^0dbded</u>) (

 $4512 \cdot (-4) + 306 \cdot 59 = 6$) per 3 e ottengo le soluzioni $x = -4 \cdot 3 = -12$; $y = 59 \cdot 3 = 177$

– 4x+6y=13 non ha soluzioni perché $2=\mathcal{MCD}(4,6) \nmid 13$

Abbiamo scoperto che data l'equazione ax + by = c e posto $d = \mathcal{MCD}(a, b)$ ho 2 casi:

- se $d \nmid c_i$ non ho soluzioni in \mathbb{Z}
- se d|c, posso ottenere una delle (infinite soluzioni), moltiplicando l'Identità di Bézout (an+bm=d) per l'intero $\frac{c}{d}$.

Conseguenza: Così si possono trovare gli inversi in $\mathbb{Z}_{/n}$, infatti possiamo dimostrare il seguente teorema.

Teorema: Sia $n \in \mathbb{N}, n > 1$ e sia $a \in \mathbb{Z}$. $[a] \in \mathbb{Z}_{/n}$ è irriducibile $\Leftrightarrow \mathcal{MCD}(a,n) = \pm 1$.

In particolare $\mathbb{Z}_{/n}$ è un campo \Leftrightarrow n è primo.

Dimostrazione:

[a] è invertibile in $\mathbb{Z}_{/n} \Leftrightarrow \exists x \in \mathbb{Z} : [a] \cdot [x] = [1]$, ma $[x] \cdot [a] = [xa] \Leftrightarrow ax \equiv 1(n) \Leftrightarrow n|ax-1 \Leftrightarrow \exists y \in \mathbb{Z} \text{ t.c.}$

$$ny = ax - 1 \Leftrightarrow \exists x, y \in \mathbb{Z} \text{ t.c. } 1 = ax - ny$$

Se $d=\mathcal{MCD}(a,n)>1$ non c'è: $d|ax,\;d|ny\Rightarrow d|1$, la cosa risulta Assurda

Se $d = \mathcal{MCD}(a, n) = 1$, x e y esistono per l'identità di Bézout $\Rightarrow [a]$ è invertibile

Infine notiamo che $\mathbb{Z}_{/n}$ è un campo $\Leftrightarrow [a]$ è invertibile $\forall a \neg \equiv 0(n), a \in \mathbb{Z} \Leftrightarrow \mathcal{MCD}(a,n) = 1, \ \forall a \neg \equiv 0(n) \Leftrightarrow n$ è irriducibile.

Esempio:

Trovare che esiste l'inverso di [35] in $\mathbb{Z}_{/74}$

Si segue il ragionamento di <u>Algebra 1 - Moci > ^0dbded</u>, quindi:

 $74 = 35 \cdot 2 + 4$; $35 = 4 \cdot 8 + 3$; $4 = 3 \cdot 1 + 1$; $3 = 1 \cdot 3 + 0$. Quindi $\mathcal{MCD}(74, 35) = 1 \Rightarrow [35]$ è invertibile ma di chi? Bézout: $1 = 4 - 3 = -35 + 4 \cdot 9 = -35 + 9 \cdot (74 - 35 \cdot 2) = 9 \cdot 74 - 19 \cdot 35$. Riducendola a $\mathbb{Z}_{/74}$ diventa $1 = -19 \cdot 35$ cioè in $\mathbb{Z}_{/74}$ [1] = $[-19] \cdot [35]$, quindi l'inverso cercato è [-19] = [74 - 19] = [55]

Teorema Fondamentale dell'Aritmetica: Sia $n \in \mathbb{N}, n \geq 2$ allora n si scrive come prodotto di numeri primi, in modo unico a meno dell'ordine (La cosa è valida solamente in \mathbb{Z})

Osservazione: Su altri anelli la cosa non è verificata.

Esempio:

Sia $\mathbb{Z}[\sqrt{-5}]: \{a+\sqrt{-5}b, a, b \in \mathbb{Z}\}. (1+\sqrt{-5}) \cdot (1-\sqrt{-5}) = 2 \cdot 3 = 6$ quindi non si scrive in modo unico.

Dimostrazione dell'Esistenza:

Procediamo in modo Induttivo su n:

Base: n=2 è primo, non c'è nulla da dimostrare

Passo: Supponiamo di aver mostrato che ogni a < n si fattorizza come prodotto di primi. Si possono distinguere 2 casi in questo modo

- Se n è primo non c'è nulla da dimostrare
- Se n non è primo allora non è irriducibile $\Rightarrow \exists a,b \in \mathbb{N}$ t.c. n=ab, dove $a,b \neq \pm 1$. Poiché a < n,b < n si fattorizza come prodotto di primi $a=p_1\cdot\ldots\cdot p_n$ e $b=q_1\cdot\ldots\cdot q_\ell$ quindi $n=a\cdot b=p_1\cdot\ldots\cdot p_n\cdot q_1\cdot\ldots\cdot q_\ell$, ciò implica che esiste. Dimostrazione dell'Unicità:

Supponiamo due fattorizzazioni in fattori primi: $n=p_1\cdots p_r=q_1\cdots q_s$ (con $r\leq s$) e mostriamo che r=s a meno dell'ordine ($p_1=q_1,p_2=q_2=\ldots =p_r=q_s$). Proseguiamo per induzione su r

- Base: $r=1\Rightarrow p_1=q_1\cdot\ldots\cdot q_s$, dunque $p_1|q_1\cdot q_s\Rightarrow p_1|q_i$ per qualche i. Non è restrittivo supporre che $p_1|q_1$, ma q_1 è irriducibile, quindi $p_1|q_1\Rightarrow q_2\cdot\ldots\cdot q_s=1\Rightarrow s=1$
- Passo: $p_1 \cdot \ldots \cdot p_r = q_1 \cdot \ldots \cdot q_s$, dunque $p_i | q_1 \cdot \ldots \cdot q_s$ per qualche i. Non è restrittivo supporre che $p_i | q_i$, ma q_i è irriducibile,

quindi $p_i=q_i$. Semplificando $p_i|q_i$ si ottiene $p_2\cdot\ldots\cdot p_r=q_2\cdot\ldots\cdot q_s$ lunghi rispettivamente r-1 e s-1. Per ipotesi induttiva si ha che devono essere la stessa fattorizzazione: r-1=s-1, $p_2=q_2,\ldots,p_r=q_s$

Osservazione: Nella dimostrazione ho usato varie volte l'equivalenza tra primo e irriducibile

Proposizione (Conseguenza): Se p è primo, allora $\sqrt{p} \notin \mathbb{Q}$

Dimostrazione:

Supponiamo per assurdo che $p=rac{a^2}{b^2},\;a,b\in\mathbb{Z},\;b
eq 0$

Quindi $p = \frac{a^2}{b^2} \Rightarrow a^2 = p \cdot b^2$. p compare un numero pari di volte in a^2 , ma in numero dispari di volte in $p \cdot b^2$ quindi per il TFA (Algebra 1 - Moci > ^1c1220), non possono essere uguali.

Teorema: Esistono infiniti numeri primi

Dimostrazione:

Supponiamo per assurdo che esistano soltanto m numeri primi, p_1, p_2, \ldots, p_m dove $m \in \mathbb{N}$.

Consideriamo $n=p_1\cdot\ldots\cdot p_m+1$ con $n\equiv 1(p_1),\ldots,n\equiv 1(p_m)$, quindi non è divisibile per nessuno dei primi, quindi $n\nmid p_1,\ldots,n\nmid p_m$, quindi n è irriducibile, quindi primo.

Piccolo Teorema di Fermat: Siano $a \in \mathbb{Z}, p$ primo. Allora $a^p \equiv a(p)$ ^ed2528

Dimostrazione:

Se p|a, stiamo dicendo che $0 \equiv 0(p)$

Se $p \nmid a$, consideriamo in $\mathbb{Z}_{/p}$ le classi dei primi (p-1) multipli di a: $[a], [2a], \ldots, [(p-1)a]$

Esse sono a 2 a 2 distinte. Infatti se per assurdo $\exists 0 \leq i \neq j , allora avrei che$

 $[i] = [i][a][a^{-1}] = [j][a][a^{-1}] = [j]$, ma $i \neq j$ tra 0 e p-1, quindi è assurdo.

Quindi $[a], [2a], \ldots, [(p-1)a]$ sono tutti invertibili in $\mathbb{Z}_{/p}$ cioè come insieme $\{[a]; [2a]; \ldots; [(p-1)a]\} = \{1; 2; \ldots; p-1\}$ (sono uguali insiemisticamente).

Facendo i prodotti si ottiene che: $[a] \cdot [2a] \cdot \ldots \cdot [(p-1)a] = [1] \cdot [2] \cdot \ldots \cdot [p-1]$, ma nella prima parte si può raccogliere $[a^{p-1}]$, quindi $[a^{p-1}] \cdot [1] \cdot [2] \cdot \ldots \cdot [p-1] = [1] \cdot [2] \cdot \ldots \cdot [p-1]$, per quanto dimostrato prima, è possibile moltiplicare per gli inversi di $[1] \cdot [2] \cdot \ldots \cdot [p-1]$, quindi diventa $[a^{p-1}] = [1]$, moltiplicando poi per [a] si ottiene $[a^p] = [a] = a^p \equiv a(p)$

Corollario: In $\mathbb{Z}_{/p}$ l'inverso di $[a](a\in\mathbb{Z},p\neg|a)$ è $[a^{p-2}]$

Dimostrazione:

 $[a]=[a^{p-2}]=[a^{p-1}]=[1]$ per la dimostrazione appena vista

Esempio:

L'inverso di $[5] \in \mathbb{Z}_{/29}$ è $[5^{27}] = [6]$

Teorema cinese del resto (veniva usato per i problemi di astronomia): Siano m,n due interi coprimi ($\mathcal{MCD}=1$).

Allora l'applicazione $c: \frac{\mathbb{Z}/_{m \times n} \to \mathbb{Z}/_m \times \mathbb{Z}/_n}{[a]_m \times n \mapsto [a]_m \times [a]_n}$, $\forall a \in \mathbb{Z}$ è ben definita e biunivoca.

Esempio:

$$m=2$$
, $n=3$, $\mathcal{MCD}=1$

$$\mathbb{Z}/_{m\cdot n} \to \mathbb{Z}/_m \times \mathbb{Z}/_n$$

$$[0] \qquad \mapsto ([0]; \quad [0])$$

$$[1] \qquad \mapsto ([1]; \quad [1])$$

[2]
$$\mapsto$$
 ([0]; [2])
[3] \mapsto ([1]; [0])

$$[4] \qquad \mapsto ([0]; \quad [1])$$

$$[5] \mapsto ([1]; [2])$$

Ogni coppia di numero compare una volta soltanto

Controesempio:

$$m=4$$
 , $n=6$, $\mathcal{MCD}=2$

c non è suriettiva: $([0]_4; [1]_6) \not\in Im(c)$, un numero non può essere né pari né dispari c non è neanche iniettiva: $c([0]_{24}) = ([0]; [0]) = c([12]_{24})$, ma $c([0]_{24}) \neq c([12]_{24})$

Dimostrazione:

c è ben definita perché se $[a]_{n\cdot m}=[a']_{n\cdot m}=m\cdot n|a-a'\Rightarrow m|a-a'$ e $n|a-a'\Rightarrow [a]_m=[a]_m$ e $[a']_m=[a']_n$. c è iniettiva perché $c([a]_{mn})=c([a']_{mn})\Rightarrow ([a]_m;[a]_n)=([a']_m;[a']_n)\Rightarrow m|a-a'$ e n|a-a'. Visto che $\mathcal{MCD}=1$ sono coprimi, quindi $m\cdot n|a-a'\Rightarrow [a]_{mn}=[a']_{mn}$. Quindi è iniettiva, ma $|\mathbb{Z}/_{mn}|=m\cdot n=|\mathbb{Z}_m|\cdot |\mathbb{Z}_n|$, ciò implica che è anche suriettiva (di conseguenza è biettiva).

Definizione di Funzione ϕ **di Eulero**: Si definisce la funzione ϕ , una funzione che $\forall n \in \mathbb{N}, n \geq 2$, la funziona che associa ad ogni numero il numero degli invertibili in $\mathbb{Z}/_n$ (oppure che i numeri coprimi $0 \leq k < n$)

Esempio:

$$\phi(6)=2;\;\phi(5)=4$$
 più in generale $\phi(p)=p-1$

Proposizione:

- 1. Se p è primo e $r \in \mathbb{N}, r > 0$, allora $\phi(p^r) = p^r p^{r-1}$
- 2. Se $m,n\in\mathbb{Z}$ t.c. $\mathcal{MCD}=1$ allora $\phi(m\cdot n)=\phi(m)\cdot\phi(n)$

Dimostrazione:

- 1. Siano i numeri $1,2,\ldots,p,p+1,\ldots,2p,\ldots,p^2$. Tra questi i numeri non coprimi con p sono i soli multipli di p. Quindi i numeri coprimi sono $\frac{p^r}{p}=p^{r-1}$
- 2. Lo si dimostrare attraverso la cardinalità degli insiemi:

 $\{([b]_m; [c]_n) \in \mathbb{Z}/_m \times \mathbb{Z}/_n | [b]_m$ è invertibile e $[c]_n$ è invertibile}, ma per il teorema cinese del resto, sono invertibili in $\mathbb{Z}/_{mn}$: $\{[a]_{mn} \in \mathbb{Z}_{mn} \mid [a]_{mn} \text{ sia invertibile}\}$. Poiché il fatto che a non abbia divisori in comune né con m né con n equivale al fatto che non abbia divisori in comune con mn

Osservazione: Questa proposizione ci permette di calcolare la funzione di Eulero $\phi(n)$ per qualsiasi n, fattorizzandolo.

Esempio:

$$\phi(360) = \phi(5 \cdot 72) = \phi(5 \cdot 3^2 \cdot 2^3) = \phi(5) \cdot \phi(3^2) \cdot \phi(2^3) = (5^1 - 5^0) \cdot (3^2 - 3^1) \cdot (2^3 - 2^2) = 96$$

Teorema di Eulero: Siano $a,n\in\mathbb{Z}$ t.c. $\mathcal{MCD}(a,n)=1$, allora $a^{\phi(n)}\equiv 1$ (n)

Esempio:

$$77^{96} \equiv 1 \ (360)$$

Osservazione: Quando n è primo, il teorema di Eulero dice che $a^{n-1} \equiv 1$ (n), cioè il Piccolo Teorema di Fermat (Algebra 1 - Moci > ^ed2528) $\forall a$ t.c. $n \neg | a$. Cioè il teorema di Eulero generalizza il Piccolo Teorema di Fermat Dimostrazione (molto simile a quella del piccolo teorema di Fermat):

Consideriamo l'insieme delle classi invertibili $\{[b_1]; [b_2]; \ldots; [b_{\phi(n)}]\} = U_n$. Supponiamo che se [a] è invertibile, la moltiplicazione per [a] da una biezione di U_n con se stesso:

 $U_n = \{[b_1]; [b_2]; \dots; [b_{\phi(n)}]\} = \{[a] \cdot [b_1]; [a] \cdot [b_2]; \dots; [a] \cdot [b_{\phi(n)}]\}. \text{ Moltiplicando per gli inversi di } [b_1]; [b_2]; \dots; [b_{\phi(n)}] \text{ si ottiene: } [1] = [a^{\phi(n)}] \Rightarrow a^{\phi(n)} = 1.$

Equazioni Lineari in \mathbb{Z}/n

Rappresentano tutte le equazioni del tipo $[a] \cdot [x] = [b]$ dove $[a], [b], [x] \in \mathbb{Z}/n$. Tuttavia non si possono risolvere come le equazioni normali (nel senso di "non si possono fare tutte le cose normalmente"). Intanto possono essere viste come "congruenze lineari": $a \cdot x \equiv b$ (n)

Proposizioni: Siano $a,b\in\mathbb{Z}$, sia n>1 e sia $d=\mathcal{MCD}(a,n)$:

- 1. Se $d\neg|b$, la congruenza $a\cdot x\equiv b\ (n)$ non ha soluzioni;
- 2. Se $d|b, a \cdot x \equiv b(n)$ è equivalente alla congruenza $\frac{a}{d} \cdot x \equiv \frac{b}{d}(\frac{n}{d})$
- 3. Se d=1 allora la soluzione è un'unica classe in $\bmod n$

Esempio:

$$6x \equiv 5 \ (9), \quad \mathcal{MCD}(6,9) = 3, \quad 3 \neg | 5, \quad \text{quindi non ammette soluzioni}$$
 $6x \equiv 6 \ (9), \quad \mathcal{MCD}(6,9) = 3, \quad 3 | 6 \Rightarrow 2x \equiv 2 \ (3), \quad \text{visto che 2 \`e invertibile in } \mathbb{Z}/_3 \Rightarrow x \equiv 1 \ (3) \Leftrightarrow x \equiv 1,4,7 \ (9)$

Dimostrazione:

Se x è una soluzione di $a \cdot x \equiv b \ (n)$

- 1. Allora $\exists k \in \mathbb{Z}$ t.c. $b = a \cdot x + k \cdot n$ e quindi (poiché d|a e d|n) d|b
- 2. Supponiamo d|b. È chiaro che $a \cdot x \equiv b$ (n) è multiplo di n se e solo se $\frac{a}{d} \cdot x \frac{b}{d}$ è divisibile per $\frac{n}{d}$
- 3. In questo caso, $[a] \in \mathbb{Z}/_n$ è invertibile, quindi basta moltiplicare per il suo inverso $[c] = [a^{-1}]$. Quindi la soluzione diventa: [a][x] = [b] $(n) \Leftrightarrow [x] = [b][c]$ $(n) \Rightarrow x \equiv b \cdot c$ (n)

Poi ci possono essere casi in cui i risultati non possono essere unici, come in $3x \equiv 0$ (3)

Esempi di Sistemi di Congruenze Lineari:

$$\begin{cases} x \equiv 4 \text{ (6)} \\ x \equiv 9 \text{ (15)} \end{cases} \text{ Per il Teorema Cinese del Resto } \underbrace{\frac{Algebra \ 1 - Moci > ^66a041}_{x \equiv 9 \text{ (15)}}}, \text{ si ha che è equivalente a:} \begin{cases} x \equiv 0 \text{ (2)} \\ x \equiv 1 \text{ (3)} \\ x \equiv 0 \text{ (3)} \\ x \equiv 4 \text{ (5)} \end{cases} \text{ ma si}$$

può vedere chiaramente che il sistema è impossibile in quanto non esiste numero che possa essere congruo a due numeri contemporaneamente in modulo 3.

$$\begin{cases} x \equiv 4 \text{ } (6) \\ x \equiv 10 \text{ } (15) \end{cases} \text{ Per il Teorema Cinese del Resto } \begin{cases} x \equiv 4 \text{ } (6) \\ x \equiv 10 \text{ } (15) \end{cases} = \begin{cases} x \equiv 0 \text{ } (2) \\ x \equiv 1 \text{ } (3) \\ x \equiv 1 \text{ } (3) \\ x \equiv 0 \text{ } (5) \end{cases}$$

delle due congruenze in $\bmod 3$ in quanto dammo lo stesso risultato). Risolvere queste tre congruenze, sempre per il Teorema Cinese del Resto equivale a risolvere un uguaglianza in modulo $2 \cdot 3 \cdot 5 = 30$. In questo caso bisogna trovare un numero multiplo di 10 e $x \equiv 1$ (3); 10 è il caso nostro.

Esempio:

Risolvere il seguente sistema:

 $\begin{cases} x \equiv 25 \ (56) \\ x \equiv 7 \ (45) \end{cases}$. Poiché 45 e 56 sono coprimi, la soluzione esiste per il teorema cinese del resto e la soluzione è unica

(in modulo $45 \cdot 56$). Basta trovare l'identità di Bézout tra 45 e 56: $1 = 5 \cdot 45 - 4 \cdot 56$

A questo punto è sufficiente prendere $x = 25 \cdot 5 \cdot 45 - 7 \cdot 4 \cdot 56$, infatti se sostituiamo in modulo 56 si ottiene la seconda congruenza, mentre se sostituiamo in modulo 45 si ottiene la prima congruenza.

A questo punto basta risolvere $x=25\cdot 5\cdot 45-7\cdot 4\cdot 56$ e si ritrova la soluzione in modulo $45\cdot 56$

Crittografia

Crittografia: Tecniche per la decodifica di un messaggio

Definizione di Numeri Liberi da Quadrati: Un intero $n \ge 2$ è libero da quadrati se nessun primo della sua fattorizzazione compare con esponente maggiore di 1, cioè $n = p_1 \cdot ... \cdot p_\ell$ con $\ell > 1$ e $p_i \ne p_i, \forall i, j$.

Proposizione: Sia $n \in \mathbb{N}$ un numero libero da quadrati. Allora $\forall a,k \in \mathbb{Z}, k>0$ si ha che $a^{k\phi(n)+1}\equiv a\ (n)$ Osservazione: Se n è primo allora è il piccolo teorema di Fermat Dimostrazione:

Sia $i\in\{1,\ldots,\ell\}$. Se $p_i\nmid a$, allora per il Piccolo Teorema di Fermat, $a^{p_1-1}\equiv 1$ (p_i) e dunque poiché $\phi(n)=(p_1-1)\cdot\ldots\cdot(p_\ell-1)\Rightarrow (p_i-1)|k\phi(n)\; \forall k\in\mathbb{Z}\Rightarrow a^{k\phi(n)}\equiv 1$ $(p_i)\Rightarrow a^{k\phi(n)+1}\equiv a$ (p_i) . Se $p_i|a\Rightarrow 0\equiv 0$, quindi $a^{k\phi(n)+1}\equiv a$ (p_i) . Poiché in entrambi i casi si ha che $a^{k\phi(n)+1}\equiv a$ (p_i) $\forall i\in 1,\ldots,\ell$, allora la cosa è valida anche per il loro prodotto: $n=p_1\cdot\ldots\cdot p_\ell\Rightarrow a^{k\phi(n)+1}\equiv a$ (n)

Osservazione Preliminare: Posso esprimere ogni messaggio in forma di numero Esempio:

$$0,1,\ldots,9,A
ightarrow 10, B
ightarrow 11,\ldots,Z
ightarrow 35, {
m spazio}
ightarrow 16, ?
ightarrow 37$$

Primo Metodo: Andrea e Barbara, che vogliono mandarsi messaggi, scrivono una classe [c] invertibile in $\mathbb{Z}/_{37}$ e poi moltiplicare tutti i numeri per questa classe. Quando Andrea manda il messaggio a Barbara, moltiplica ciascun numero per [c] e Barbara, per decifrarlo, moltiplicano per l'inverso di $[c]^{-1}$.

Esempio:

$$[c] = [2]$$
 e $[c]^{-1} = [19] \Rightarrow [2][19] = [38] = [1]$ Difetti:

- 1. Facile scoprire decifrare il messaggio (basta fare n tentativi, nel nostro esempio 37)
- 2. Bisogna che Andrea e Barbara i siano scambiati le chiavi in precedenza

Secondo Metodo:

Vantaggi:

- 1. Sicuro
- 2. Chiave pubblica che conoscono tutti e che non occorre scambiarsi in precedenza, che permette di scrivere messaggi, poi c'è una chiave privata che serve solo per chi deve leggerli Funzionamento: Barbara sceglie un numero $n \in \mathbb{N}$ libero da quadrati ed $e \in \mathbb{N}$ coprimo $\phi(n)$. Barbara comunica a tutti la chiave pubblica che è fatta dalla coppia (n,e), ma Barbara è l'unica a conoscere la fattorizzazione di n e

quindi a conoscere $\phi(n)$. Andrea vuole trasmettere a Barbara un messaggio M. Assumiamo che $M \in \mathbb{N}$ e supponiamo M < n (altrimenti lo dovremmo spezzare in messaggi più piccoli). Andrea allora eleva M all'esponente e, poi lo riduce a modulo n, ottenendo così $M' \equiv M^e$ (n)' con M' < n. Poi manda M' a Barbara. Barbara riceve M' e, poiché conosce $\phi(n)$ sa calcolare l'inverso di [e] in $\mathbb{Z}/_{\phi(n)}$, cioè sa trovare $c \in \mathbb{Z}$ t.c. $ce \equiv 1$ $(\phi(n))$ cioè $\exists k \in \mathbb{Z}$ t.c. $ce = k\phi(n) + 1$. Dunque Barbara eleva M' all'esponente c e poi lo riduce a a modulo c0: c1: c2: c3: c4: c5: c5: c6: c6: c7: c8: c8: c9: c9:

Come fa però ad essere sicura che sia proprio di Francesco? Con la Firma Digitale

Barbara ha la sua chiave (n,e) e anche Andrea ha la sua chiave (n_A,e_A) , con n_A libero da quadrati, e_A coprimo con $\phi(n_A)$. Tutti conoscono (n_A,e_A) ma solo Andrea conosce $\phi(n_A)$ e quindi riesce a calcolare e_A t.c. $c_ae_A=1$. Questo serve non solo a Barbara per rispondere ad Andrea ma anche ad Andrea per firmare digitalmente il proprio messaggio. Andrea prende la propria firma F, la eleva a e_A e la riduce a e_A 0. Trasmette quindi la firma e_A 1 Barbara insieme al messaggio e_A 2. Barbara eleva quindi e_A 3 e ritrova la firma di Andrea e_A 5 e ritrova la firma di Andrea e_A 6 e ritrova la firma di Andrea e_A 7 e ritrova la firma di Andrea e_A 8 e ritrova la firma di Andrea e_A 9 e ritrova la firma e_A 9 e ritrova

Esempio:

```
Siano n=9367~(19\cdot 17\cdot 29)~e=5 Chiave di Barbara, n_A=1147~(31\cdot 37)~e_A=41 chiave di Andrea Andrea può calcolare \phi(n_A)=30\cdot 36=1080 e usando l'identità di Bézout (e l'algoritmo di Euclide) si ottiene 1=3\cdot 1080-79\cdot 41, da cui si ricava che c_A=1001
```

Allo stesso modo si ricava che $\phi(n)=8064$ e che c=1613

Andrea vuole mandare il messaggio M=134257 e lo firma con F=11

Poiché si ha che M>n si deve divedere il numero in due parti: $M_1=134$ e $M_2=257$, quindi:

$$M_1' = (147)^5 \equiv 8570 \; (9367); \quad M_2' = (257)^5 \equiv 3993 \; (9367); \quad F' = 11^{1001} \equiv 582 \; (1147)^5$$

Quindi per decifrare i messaggi, Barbara deve fare:

$$M_1 = (8570)^{1613} \equiv 134 \ (9367); \quad M_2 = (3993)^{1613} \equiv 257 \ (9367); \quad F = 582^{41} \equiv 11 \ (1147)$$

Teoria Dei Gruppi

Definizione di Gruppo: Un gruppo (G,\star) è un insieme G unito da un'operazione binaria (un'applicazione $\star: G \times G \to G$ $(g_1,g_2) \mapsto g_1 \star g_2$), con le seguenti proprietà:

- 1. \star è associativa, cioè $(g_1 \star g_2) \star g_3 = g_1 \star (g_2 \star g_3)$
- 2. Esiste un elemento neutro e tale che $e \star g = g \star e = g$
- 3. Per ogni g esiste un inverso \tilde{g} tale che $g\star \tilde{g}=e$ Diciamo che (G,\star) è un gruppo commutativo (o abeliano) se vale
- 4. $g_1 \star g_2 = g_2 \star g_1 \ \forall g_1, g_2 \in G$

Esempi:

- 1. $(\mathbb{Z},+)$ oppure $(\mathbb{Q},+)$ oppure $(\mathbb{R},+)$ oppure $(\mathbb{C},+)$ sono dei gruppi commutativi, con l'elemento neutro 0 e l'inverso $\tilde{x}=-x$ (l'opposto)
- 2. $(\mathbb{N},+)$ non è un gruppo in quanto la proprietà 3 è falsa (non c'è un inverso), $(\mathbb{N},-)$ non è un gruppo in quanto la proprietà 1 è falsa $((a-b)-c\neq a-(b-c))$
- 3. (\mathbb{R},\cdot) non è un gruppo in quanto 0 non ha un inverso. Dato un campo \mathbb{K} , denotiamo con $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$. (\mathbb{Q}^*,\cdot) oppure (\mathbb{R}^*,\cdot) oppure (\mathbb{C}^*,\cdot) sono dei gruppi commutativi con l'elemento neutro 1 e inverso $\tilde{x}=x^{-1}$
- 4. Più in generale un campo $(\mathbb{K},+,\cdot)$ è un insieme con due operazioni tali che $(\mathbb{K},+)$ e (\mathbb{K}^*,\cdot) sono gruppi commutativi e vale la legge distributiva (che lega le due operazioni)
- 5. Dato un insieme X:
- 5.1. $(\mathcal{P}(X), \cup)$ non rappresenta un gruppo perché non è valida la terza proprietà
- 5.2. $(\mathcal{P}(X), \cap)$ non rappresenta un gruppo perché non è valida la terza proprietà
- 5.3. $(\mathcal{P}(X), \setminus)$ non è un gruppo perché non è valida la prima proprietà
- 6. Per ogni $n\in\mathbb{N}, n>1, (\mathbb{Z}_{/n},+)$ è un gruppo commutativo con elemento neutro e=[0] e inverso $\tilde{[a]}=[a]^{-1}$
- 6.1. Sia $\mathbb{Z}_{/3} = \{[0], [1], [2]\}$
- + [0] [1] [2]
- $\begin{bmatrix} 0 \end{bmatrix} \quad \begin{bmatrix} 0 \end{bmatrix} \quad \begin{bmatrix} 1 \end{bmatrix} \quad \begin{bmatrix} 2 \end{bmatrix}$
- $\begin{bmatrix} 1 \end{bmatrix} \quad \begin{bmatrix} 1 \end{bmatrix} \quad \begin{bmatrix} 2 \end{bmatrix} \quad \begin{bmatrix} 0 \end{bmatrix}$
- $[2] \quad [2] \quad [0] \quad [1]$
- 7. Per ogni $n \in N, n > 1, \bigcup_n = \{ \text{ invertibili in } \mathbb{Z}_{/n} \}$ dove $|\bigcup_n| = \phi(n). (\bigcup_n, \cdot)$ è un gruppo commutativo con elemento

neutro [1]

7.1.
$$\bigcup_8 = \{[1], [3], [5], [7]\} \text{ e } \phi(8) = 4$$
 \cdot $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 5 \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 5 \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$ $\begin{bmatrix} 5 \end{bmatrix}$

[5] [5] [7] [1] [3] [7] [7] [5] [3] [1]

8. Dato uno spazio vettoriale V, $GL(V)=\{$ applicazioni lineari e invertibili $V\to V\}$ (Geometria 1A - Migliorini > $\underline{^{f462a4}}$) $(GL(V),\circ)$ è un gruppo con elemento neutro la funzione identità: $id:V\to V,v\mapsto v$ e con una funzione inversa $\tilde{g}=g^{-1}$. Però non è commutativa

8.1.
$$V=\mathbb{R}^2$$
. Siano $ginom{x}{y}=inom{y}{x}$ e $hinom{x}{y}=inom{2x}{y}$. $\begin{cases}g\circ hinom{x}{y}=g(hinom{x}{y})=ginom{2x}{y}=rac{y}{y}\\h\circ ginom{y}{y}=h(ginom{y}{y})=hinom{y}{y}=hinom{2x}{y}=ginom{x}{y}\end{cases}$

- 9. Sia X un insieme. $Sym(X) = \{ \text{ biezione di } g : X \to X \}$ è costituito da x! elementi. Si ha che $(Sym(X), \circ)$ è un gruppo non commutativo
- 9.1. Sia $X = \{1, 2, 3\}$, allora $\mathfrak{S}_3 = Sym\{1, 2, 3\}$. Si ha che e = id e $\tilde{g} = g^{-1}$

Per semplicità di scriverlo, id = id, $s_1 = (1, 2)$, $s_2 = (2, 3)$, t = (1, 3), c = (1, 2, 3), $c^{-1} = (1, 3, 2)$

Si può vedere quindi che non è simmetrica, basta fare $(S_1 \circ S_2)$ e $(S_2 \circ S_1)$. Infatti:

$$\begin{array}{ll} (\mathfrak{S}_1 \circ \mathfrak{S}_2)(1) = 2 & \quad (\mathfrak{S}_2 \circ \mathfrak{S}_1)(1) = 3 \\ (\mathfrak{S}_1 \circ \mathfrak{S}_2)(2) = 3 & \quad (\mathfrak{S}_2 \circ \mathfrak{S}_1)(2) = 1 \\ \underbrace{(\mathfrak{S}_1 \circ \mathfrak{S}_2)(3) = 1}_{C} & \underbrace{(\mathfrak{S}_2 \circ \mathfrak{S}_1)(3) = 1}_{C^{-1}} \end{array}$$

Definizione di Sottogruppo: Sia (G, \star) un gruppo e sia H un sottoinsieme di G $(H \subseteq G)$. Diciamo che H è un sottogruppo di G (scriviamo $H \subseteq G$) se H è esso stesso un gruppo all'operazione di G. Cioè

- 1. H è chiuso rispetto all'operazione \star : $\forall h_1,h_2 \in H, h_1 \star h_2 \in H, h_2 \star h_1 \in H$
- 2. $e \in H$, ossia contiene l'elemento neutro;
- 3. $\forall h \in H, \exists \tilde{h} \in H$, ossia contiene ogni inverso

Esempi:

- 1. Sla $(\mathbb{Z},+)$. $H_1=\{$ tutti i numeri pari $\}=\{2n,n\in\mathbb{Z}\}$ rappresenta un sotto gruppo di \mathbb{Z} rispetto alla somma, $H_2=\{$ tutti i numeri dispari $\}=\{2n+1,n\in\mathbb{N}\}$ invece non lo è
- 2. Sia (\mathbb{R}^*, \cdot) . $H_1 =]0, +\infty[$ è un sottogruppo di \mathbb{R}^* perché sono vere tutte le proprietà, invece $H_2 =]-\infty, 0[$ non lo è
- 3. Sia V uno spazio vettoriale, GL(V) è sottospazio di Sym(V)
- 4. Sia S_3 dell'esempio 9.1 di prima. $H_1 = \{id, S_1\}$ rappresenta un sottogruppo, mentre $H_2\{id, C\}$ no

Definizione di Omomorfismo: Siano (G,*) e (H,\star) due gruppi. Un'applicazione $f:G\to H$ è un omomorfismo di gruppi se $\forall g_1,g_2\in G,\ f(g_1*g_2)=f(g_1)\star f(g_2)$, cioè è la stessa cosa fare prima l'operazione di G e poi f e fare f e poi l'operazione di H

Esempio:

1. Siano $(G,*)=(\mathbb{R},+)$ e $(H,*)=(\mathbb{R},\cdot)$. Sia data la funzione $f:\mathbb{R}\to\mathbb{R}^*,\ f(x)=e^x$. Si ottiene che $e^{x_1+x_2}=f(x_1+x_2)=f(x_1)+f(x_2)=e^{x_1}\cdot e^{x_2}$. Quindi si ha che f è un omomorfismo tra questi gruppi 2. $f:\mathbb{Z}\to\mathbb{Z}_{/n},\ f(a)=[a]$. È un omomorfismo tra $(\mathbb{Z},+)$ e $(\mathbb{Z}_{/n},+)$, [a+b]=[a]+[b]

Osservazione: Uno spazio vettoriale V (su un campo \mathbb{K}) è un gruppo commutativo (V,+) con un'operazione aggiuntiva $\cdot: \mathbb{K} \times V \to V$ che verifica certe proprietà. Un sottospazio vettoriale è uno spazio vettoriale di (V,+) rispetto a \cdot .

Un'applicazione lineare $f:V\to U$ è un omomorfismo di gruppi (V,+) e (U,+) compatibile anche con \cdot cioè $f(\alpha v)=\alpha f(v)$

Proposizione: L'elemento neutro è unico

Dimostrazione:

Supponiamo che esistono due elementi neutri $e,u\in G$ con la proprietà che $e\star g=g=g\star e$ e $u\star g=g=g\star u, \forall g\in G.$ Si ottiene he $e=e\star u=u$, quindi e=u

In modo simile può dimostrare che l'inverso è unico.

Definizione: Sia (G,\star) un gruppo e $g\in G$ e definiamo Ordine (o Periodo) di G come il minimo n, con $n\geq 1$, t.c. $g\star g\star g\star g\star \dots\star g=e$. Si scrive o(g)=n oppure $o(g)=\infty$ se non esiste.

Esempio:

- 1. $(\mathbb{Z},+)$ con e=0. Si ha che o(0)=1 e $o(1)=\infty$
- 2. $(\mathbb{Z}_{6}, +)$ con e = [0]. Si ha che o([0]) = 1, o([1]) = 6, o([2]) = 3
- 3. (\mathbb{R}^*,\cdot) con e=1. Si ha che o(1)=1, o(-1)=1 e $o(\text{qualsiasi altro numero})=\infty$
- 4. (\mathfrak{S}_3, \circ) (Per riprendere sopra) $o(s_1) = 2$ e o(c) = 3

Osservazione: Sia $(\mathbb{K}, +, \cdot)$ un campo. La caratteristica di \mathbb{K} è l'ordine di 1 (elemento neutro della seconda operazione) in $(\mathbb{K}, +)$. Convenzionalmente si dice che è a caratteristica 0 o "non infinita".

Definizione di Nucleo e Immagine: Dato un omomorfismo $f: G \to H$, definiamo $Ker(f) = \{g \in G \mid f(g) = e_H\}$ e $Im(f) = \{f(g) \in G\} = \{h \in H \mid \exists g \in G \text{ t.c. } f(g) = h\}$

Osservazione: $Ker(f) \leq G$ e $Im(f) \leq H$. f iniettiva $\Leftrightarrow Ker(f) = \{e\}$ e f suriettiva $\Leftrightarrow Im(f) = H$

Esempio:

 $(\mathbb{Z},+)$ e (\mathbb{C}^*,\cdot) . Data la funzione $f: \frac{\mathbb{Z} \to \mathbb{C}^*}{n \mapsto i^n}$, si ha che la funzione non è suriettiva: $Im(f) = \{1,i,-1,-i\}$. Questo è un sottogruppo per omomorfismo in f. Infatti $f(m+n) = i^{m+n} = i^m + i^n = f(m) \cdot f(n)$ e $Ker(f) = \{4n,n \in \mathbb{Z}\} = \{m \in \mathbb{Z} \text{ t.c. } m \equiv 0\} = 4\mathbb{Z}$

Definizione: Un'applicazione $f:G\to H$ è un "isomorfismo di gruppo" se è un omomorfismo di gruppi ed è biunivoca 48fd47

Diciamo che 2 gruppi (G,\star) e (H,\star) sono isomorfi se esiste un isomorfismo $G\to H$

Osservazione: È una relazione di equivalenza (Infatti R =la funzione identità, S =funzione inversa, T =composione di funzioni)

Osservazione: Dato un gruppo (G, \star) , definiamo l'insieme degli Automorfismi. $Aut = \{ \text{Isomorfismi } G \to G \}$ e $(Aut(G), \circ)$ è un gruppo, o meglio, un sottogruppo di Sym(G)

Esempio:

 $arphi: rac{\mathbb{Z}_{/n} o \{1,i,-1,-i\}}{[n] \mapsto i^n}$ è ben definita, iniettiva, suriettiva e c'è un omomorfismo. Quindi arphi è un isomorfismo di gruppi, ossia il funzionamento è lo stesso.

Osservazione: I due gruppi hanno la stessa struttura, cioè funzionano allo stesso modo

Esempio:

 $f:\mathbb{R}\to]0;+\infty[\quad f(x)=e^x.$ È un omomorfismo $e^{x_1+x_2}=e^{x_1}\cdot e^{x_2}$ Questa funzione è biunivoca, infatti l'isomorfismo inverso è $f^{-1}]0;+\infty[\to\mathbb{R}$ è $f^{-1}(y)=x$

Sia $n\in N, n\geq 2$. Nel piano cartesiano \mathbb{R}^2 indichiamo con r la rotazione di centro l'origine e angolo $\frac{2\pi}{r}$. Indichiamo con $r^k=\underbrace{r\circ\ldots\circ r}_{k>0}$

Osservazione: $R_n = \{id, r, r^2, \dots, r^{n-1}\}$ è un gruppo rispetto alla composizione (l'elemento neutro e è $r^n = id$ e l'inverso di r^k è r^{n-k})

Esempio:

Se
$$n=12$$
, r = rotazione di $30\degree$ $R_{12}=\{r,r^2,\ldots,r^{11},r^{12}=id\}$

Osservazione: R_{12} rispetto alla composizione è isomorfo a $\mathbb{Z}_{/12}$. È anche isomorfo a all'orologio: $\frac{\mathbb{Z}_{/12} o R_{12}}{[k] \mapsto r^k}$

Nello specifico l'isomorfimo è ben definito, iniettivo, suriettivo e omomorfo Analogamente $\mathbb{Z}_{/n}$ è isomorfo a (R_n, \circ)

Osservazione: (R_4,\circ) e $\mathbb{Z}_{/4}$ sono isomorfi a $\overbrace{\{1,i,-1,-i\}}^{C_4}$ rispetto al prodotto

Esempio:

 $\text{Considero il gruppo } \mathbb{Z}^2_{/2} \text{ rispetto alla somma per cardinalità: } \mathbb{Z}^2_{/2} = \underbrace{\{([0],[0])}_{e}, \underbrace{([1],[0])}_{\text{Ordine} = 2}, \underbrace{([0],[1])}_{\text{Ordine} = 2}, \underbrace{([1],[1])}_{\text{Ordine} = 2}\} \\ + \underbrace{\{([0],[0])}_{e}, \underbrace{([0],[0])}_{e}, \underbrace$

Questo insieme ha 4 elementi, volendo potrei metterlo in relazione con gli altri, ma non è isomorfo con quelli precedenti.

Supponiamo che esista un isomorfismo $f:\mathbb{Z}_{/2}^2 \to \mathbb{Z}_4$ e sia x l'elemento $\in \mathbb{Z}_{/2}^2$ tale che $f(x)=[1]\in \mathbb{Z}_4$ Allora per l'isomorfismo si ha che f(x+x)=([0],[0]) ma la cosa è impossibile in quanto $[2]=[1]+[1]=f(x+x)\neq f([0],[0])=[0]$, quindi non è un isomorfismo.

Esempio:

Consideriamo le trasformazioni del piano fissato un rettangolo di centro l'origine degli assi (ossia l'intersezione degli assi) e siano le funzioni $g(x,y)=(-x,y); \ g(x,y)=(x,-y)$ e $g\circ h(x,y)=(-x,-y)$ (ossia ribaltamenti) In particolare g è la simmetria rispetto all'asse x, h è la simmetria rispetto all'asse y e $g\circ h$ è la rotazione di 180° Questo particolare gruppo $K_4=\{id,g,h,g\circ h\}$ con \circ si chiama "Gruppo di Klein" (o della carta di credito) Osservazione: è isomorfo a $\mathbb{Z}^2_{/2}$, infatti: id=[0],[0],g=[1],[0],h=[0],[1] e $g\circ h=[1],[1]$

Esempio:

Considero $(\mathbb{Z},+)$ e (\mathfrak{S}_3,\circ) . Sono isomorfi? No, Questo è già osservabile dal fatto che il primo è commutativo, il secondo no

Osservazione: L'intersezione di sottogruppi è un sottogruppo

 $extit{Dimostrazione}$: Sia G un gruppo e siano $\{G_i,\ i\in I\}$ un insieme dei suoi sottogruppi. Mostriamo che $H=\bigcap_{i\in I}G_i$ è un

$$\mathsf{sottogruppo} \; \mathsf{di} \; G. \; \mathsf{Siano} \; g_1, g_2 \in H \Rightarrow g_1, g_2 \in G_i \; \forall i \in I. \; \mathsf{Poich\'e} \; G_i \leq G \Rightarrow g_1 \star g_2 \in G_i \; \forall i \in I \Rightarrow g_1 \star g_2 \in H = \bigcap_{i \in I} \; G_i.$$

Analogamente si dimostra per l'elemento neutro e gli inversi (e appartiene in tutti $\Rightarrow e \in H$, idem per $\tilde{g} \in H$)

Osservazione: L'unione di tutti i sottogruppi non è un sottogruppo. (Stessa dimostrazione di geometria)

Definizione di Sottogruppo Generato: Sia (G,\star) un gruppo e sia $X\subseteq G$ (quindi un sottoinsieme). Definiamo il sottogruppo generato da X, indicato con $\langle X\rangle$, come il più piccolo sottogruppo di G che contiene X, ovvero l'intersezione di tutti i sottogruppi di G che contengono X. Concretamente

$$\langle X
angle = \{g_1 \star g_2 \star \ldots \star g_\ell ext{ dove } g_i \in X \wedge ilde{g_i} \in X, \; orall i \in \mathbb{N}, \; \ell > 0 \}$$

Esempi:

- 1. $(\mathbb{Z}^n,+)_t$ il suo insieme di generatori è $\langle X \rangle = \{e_1,\ldots,e_n\}$ vettori della base canonica
- 2. (\mathbb{Q}^*, \circ) , il suo sottogruppo di generatori è $\langle X \rangle = \{-1, \text{ tutti i numeri primi}\}$. Attraverso le combinazioni lineari di questi elementi è possibile creare tutto \mathbb{Q}^*

Definizione di Gruppo Ciclico: Un gruppo G è ciclico se $\exists g \in G$ t.c. $\langle g \rangle = G$

Esempi:

- 1. $(\mathbb{Z},+)$ è un gruppo ciclico, infatti $\mathbb{Z}=\langle 1\rangle=\langle -1\rangle$
- 2. $(\mathbb{Z}_{/n},+)$ è un gruppo ciclico, infatti $\mathbb{Z}_{/n}=\langle [\pm 1] \rangle$ (A meno di isomorfismi, non ce ne sono altri)

Proposizione: Sia (G,\star) un gruppo ciclico con $G \neq \langle e \rangle$. Allora G è isomorfo a $(\mathbb{Z},+)$ oppure a $(\mathbb{Z}_{/n},+)$ *Dimostrazione*:

Per Ipotesi $\exists g \in G$ tale che $\langle g \rangle = G$

- 1. Se $o(g)=\infty$, allora posso considerare $G=\{\ldots,g^{-2},g^{-1},e,g,g^2,\ldots\}=\{g^n,n\in\mathbb{Z}\}$. Quindi $a\in S$ 0 è biunivoca ed è omomorfismo perché $g^{n+m}=g^n\star g^m$
- 2. Se o(g)=n con n>1, allora $G=\{g,g^2,\ldots,g^n=e\}$. Quindi l'applicazione a>0 è ben posta, biunivoca ed è un omomorfismo per la stessa ragione di prima. Quindi si tratta di un isomorfismo.

Esempi:

1.
$$\{i,i^2=-1,i^3=-i,i^4=1\}\simeq \mathbb{Z}_{/n}=\{[0],[1],[2],[3]\}$$

2.
$$(R_n, \circ)$$
 è isomorfo a $(\mathbb{Z}_{/n}, +)$

Come sono fatti i sottogruppi dei gruppi ciclici?

Definizione di Multipli di Sottogruppo: Per ogni $m \in \mathbb{Z}$, definiamo con $m\mathbb{Z}$ i multipli di \mathbb{Z} tale che $m\mathbb{Z} = \{ma, a \in \mathbb{Z}\}$. $m\mathbb{Z}$ è un sottogruppo di \mathbb{Z} ciclico, generato da m. $m\mathbb{Z}_{/n} = \{[m][a], [a] \in \mathbb{Z}_{/n}\}$ è un sottogruppo di $\mathbb{Z}_{/n}$ generato da [m].

Esempi:

1.
$$6\mathbb{Z}_{/12} = \langle X \rangle = \{[6], [0]\} \simeq \mathbb{Z}_{/2}$$

2.
$$4\mathbb{Z}_{/12} = \langle X \rangle = \{[4], [8], [0]\} \simeq \mathbb{Z}_{/3}$$

3.
$$3\mathbb{Z}_{/12} = \langle X \rangle = \{[3], [6], [9], [0]\} \simeq \mathbb{Z}_{/4}$$

4.
$$2\mathbb{Z}_{/12} = \langle X \rangle = \{[2], [4], [6], [8], [10], [0]\} \simeq \mathbb{Z}_{/2}$$

5.
$$5\mathbb{Z}_{/12} = \mathbb{Z}_{/12}$$

Teorema:

- 1. Tutti i sottogruppi di $(\mathbb{Z},+)$ sono della forma $m\mathbb{Z}$ per qualche $m\in\mathbb{Z}$
- 2. Tutti i sottogruppi di $(\mathbb{Z}_{/n},+)$ sono della forma $m\mathbb{Z}_{/n}$ per qualche m|n. Dimostrazione:
 - 1. Sia $H\subseteq \mathbb{Z}$. Se $H=\{0\}$, basta prendere m=0. Altrimenti H contiene almeno un intero strettamente positivo. Sia n in più piccolo intero positivo in H. Vogliamo mostrare che $m\mathbb{Z}=H$. Poiché H è un è un sottogruppo di \mathbb{Z} , sicuramente $m\mathbb{Z}\subseteq H$. D'altra parte sia $h\in H$. Facciamo la divisione per m: h=mq+r con $0\le r< m$. Ma r=h-mq e per non contraddire la minimalità di m deve essere $r=0\Rightarrow m|h\Rightarrow h\in m\mathbb{Z}\Rightarrow H\subseteq m\mathbb{Z}$. Unendo queste due affermazioni si ottiene che $H=m\mathbb{Z}$
 - 2. Sia $H \leq \mathbb{Z}_{/n}$. Se $H = \{[0]\}$, basta scegliere m = 0, altrimenti sia m il più piccolo intero positivo tale che $[m] \in H$. Ragionando come nel punto precedente, si vede che $H = m\mathbb{Z}_{/n}$

Proposizione: Sia $a \in \mathbb{Z}$, sia n > 2 e sia $d = \mathcal{MCD}(a, n)$. Allora,

- 1. L'ordine in $\mathbb{Z}_{/n}$ di [a] è $\frac{n}{d}$
- 2. a in $\mathbb{Z}_{/n} = d$ in $\mathbb{Z}_{/n}$

Esempio:

$$o([9])=4$$
 in $\mathbb{Z}_{/n}$ e $9\mathbb{Z}_{/n}=3\mathbb{Z}_{/n}$

Dimostrazione:

- 1. L'ordine di [a] in $\mathbb{Z}_{/n}$ è il più piccolo intero x>0 tale che $ax\equiv 0$ (n). Per quanto visto sulle congruenze lineari, tale congruenza è equivalente a $\frac{a}{d}x\equiv 0$ $(\frac{n}{d})$, la quale ha soluzione unica modulo $(\frac{n}{d})$. Quindi la più piccola soluzione positiva è $x=\frac{n}{d}$
- 2. Per il punto precedente $o([a]) = \frac{n}{d} = o([d])$. Poiché a è multiplo di d, $a\mathbb{Z}_{/n} = \langle [a] \rangle \leq \langle d \rangle = d\mathbb{Z}_{/n}$. Ma poiché o([a]) = o([d]) devono avere la stessa cardinalità e dunque coincidono.

Definizione di Prodotto Diretto di Gruppi: Dati due gruppi (G,*) e (H,*), il loro prodotto diretto è $(G \times H, \Psi)$. Infatti $(g_1,h_1) \Psi (g_2,h_2) = (g_1*g_2,h_1*h_2)$

Esempio:

 $\mathbb{Z}_{/n} imes \mathbb{Z}_{/m}$ con la somma coordinata per coordinata

Osservazione: Il Teorema Cinese del Resto ci dice che se $\mathcal{MCD}(m,n)=1$, $c: \frac{\mathbb{Z}_{m,n} \to \mathbb{Z}_n \times \mathbb{Z}_m}{[a]_{n,m} \mapsto ([a]_n, [a]_m)}$ è una biezione. In effetti c è un isomorfismo: $[a]_{n,m} + [b]_{n,m} = [a+b]_{n,m} \mapsto ([a+b]_n, [a+b]_m)$

Esempio:

 $\mathbb{Z}_{/12}$ è isomorfo come gruppo a $\mathbb{Z}_{/4} \times \mathbb{Z}_{/3}$

Osservazione: un elemento [a] genera $\mathbb{Z}_{/n} \Leftrightarrow$ ha ordine $n \Leftrightarrow \mathcal{MCD}(a,n) = 1$. Quindi ci sono $\phi(n)$ generatori.

Esempio:

 $\mathbb{Z}_{/12}$ è generato da [1] ma anche da [5],[7] e [11] in quanto $\phi(12)=4$

Teorema: Sia $f: G \to H$ un omomorfismo di gruppi. Allora $\forall g \in G$, l'ordine o(f(g))|o(g). Inoltre se f è isomorfismo, o(f(g)) = o(g)

Dimostrazione:

Sia n=o(g) e sia d=o(f(g)). Poiché $g^n=e_G$, essendo f un omomorfismo $f(g^n)=f(e_G)=e_H$, ma per omomorfismo $f(g^n)=(f(g))^n\Leftrightarrow f(g)\star f(g)\star ...\star f(g)$. Quindi $f\leq n$. Facciamo la divisione, n=dq+r con $0\leq r< d$. Quindi $e_H=(f(g))^n=(f(g))^{dq+r}=\underbrace{((f(g))^d)^q\star (f(g))^r}_{q}=e_H\star (f(g))^r$. Poiché r< d e d è l'ordine, deve essere necessariamente

r=0, Quindi d|n. Se f è isomorfismo, esiste $f^{-1}:H\to G$ che è anche esso un isomorfismo. Applicando quindi la prima parte ad entrambi si ottiene n|d e $d|n\Rightarrow n=d$

Osservazione: Il teorema non dice che un'applicazione che manda ciascun elemento in uno dello stesso ordine è isomorfismo. Se G è ciclico e g è un suo generatore, f è determinato dalla scelta di f(g), per cui $f(g^n) = (f(g))^n$

Esempio:

Troviamo tutti gli omomorfismi $\mathbb{Z}_{/6} \to \mathbb{Z}_{/9}$ con l'operazione somma:

Si ha che
$$\mathbb{Z}_{/6} = \{[0], [1], [2], [3], [4], [5]\}$$
 e $\mathbb{Z}_{/9} = \{[0], [1], [2], [3], [4], [5], [6], [7], [8]\}$

o(f[1])=1,2,3,6, in quanto ogni elemento di $\mathbb{Z}_{/6}$ può avere questo ordine. Per quanto detto sopra bisogna mandare ogni elemento di quest'ordine in uno dello stesso ordine in $\mathbb{Z}_{/9}$, quindi 2 e 6 non vanno bene (non sono ordini di

elementi di $\mathbb{Z}_{/9}$)

Quindi si può mandare f(1) = 3, f(1) = 6, f(1) = 0. Quindi ci sono 3 omomorfismi possibili.

Gruppi Diadrali

Definizione di Gruppo Diadrale: Sia P_n un poligono regolare di n lati, centrato nell'origine. \mathfrak{D}_n rappresenta i movimenti rigidi del piano che mandando P_n in sé stesso. I suoi elementi sono

$$\mathfrak{D}_n = \{\underbrace{r, r^2, \dots, r^{n-1}, r^n = id}_{ ext{Rotazioni}}, \underbrace{s_1, s_2, \dots, s_n}_{ ext{Simmetrie}}\}$$

Esempio:

Dato un pentagono regolare, r rappresenta una rotazione di $72^{\circ} = \frac{2\pi}{\epsilon}$.

Quindi $\{r, r^2, r^3, r^4, r^5 = id\} \subseteq \mathfrak{D}_5$

Anche gli assi di simmetria da un vertice al punto medio del lato opposto sono elementi di D₅

Quindi $\mathfrak{D}_5=\{r,r^2,\ldots,r^5=id,s_1,s_2,\ldots,s_5\}$

Domanda: È un gruppo?

In generale (\mathfrak{D}, \circ) è un gruppo. L'elemento neutro e è id. L'inverso di una rotazione r^k è r^{n-k} , infatti $r^k \circ r^{n-k} = r^n = id$. L'inverso di una simmetria è se stessa.

Osservazione: In generale (\mathfrak{D}, \circ) ha 2n elementi. Ha anche un sottogruppo, costituito dalle sole rotazioni $(=R_n)$, ma non c'è il sottogruppo delle simmetrie, in quanto la composizione di due simmetrie da una rotazione.

Come fare i conti in D?

Osservazione: In un gruppo, $(g \star h) = \tilde{h} \star \tilde{g}$, perché $g \star h \star \tilde{H} \star \tilde{g} = g \star \tilde{g} = e$

Osservazione: $r \circ s = s_2$, ma anche $r \circ s_2 = s_3$ e $r \circ s_3 = s_4$ e così via. Quindi $\mathfrak D$ è generato da $\{r,s\}$

Osservazione: Poiché $\forall k, r^k s$ è una simmetria, si ha che $r^k s = (r^k s)^{-1} = s^{-1} (r^k)^{-1} = s r^{n-k}$. Questa relazione è utile per i conti

Esempio:

$$s_2\circ s_4=r\circ s\circ r^3\circ s=r\circ r^2\circ s\circ s\circ s=r^3$$

Osservazione: \mathfrak{D}_n è generato anche da $\{s, rs\}$ perché posso ottenere r con $r \circ s = r$

Teorema di Cayley: Sia G un gruppo. Allora esiste un omomorfismo iniettivo $M:G\to Sym(G)$ ^4a837d Osservazione:

- 1. Se |G|=n, numerando gli elementi di G si ha che $Sym(G)=\mathfrak{S}_n$
- 2. Dato un omomorfismo iniettivo $M: G \to Sym(G)$ significa trovare un sottogruppo di Sym(G) isomorfo a G (Im(M)).
- 3. "Tutti i gruppi finiti sono contenuti in Sym per un n abbastanza grande" Dimostrazione:

Per ogni $g\in G$, consideriamo $m_g: \displaystyle\frac{G\to G}{h\mapsto g\star h}.$ m_g è invertibile con inversa $m_{\tilde{g}}$, quindi m_g è biunivoca, ovvero $m_g\in Sym(g).$ Definisco un'applicazione $M: \displaystyle\frac{G\to Sym(G)}{g\mapsto m_g}.$ M è un omomorfismo tra (G,\star) e $(Sym(G),\circ)$ perché $M(g_1\star g_2)=m_{(g_1\star g_2)}=m_{g_1}\circ m_{g_2}=M(g_1)\circ M(g_2).$ M è iniettiva perché se $M(g_1)=M(g_2)$, allora $M(g_1)(h)=M(g_2)(h) \ \forall h\in G.$ In particolare se $h=e, mg_1(e)=mg_2(e)\Rightarrow g_1=g_2\Rightarrow M$ è iniettiva.

Exempio:

 $(G,\star)=(\mathbb{Z}_{/3},+)$. Gli elementi di $\mathbb{Z}_{/3}=\{[0],[1],[2]\}$ Sia l'applicazione: $m_{[0]}:[a]\mapsto [0]+[a]=[a]$ quindi $m_{[0]}=id$ $m_{[1]}:[a]\mapsto [1]+[a]$ si ottiene c di Algebra 1 - Moci > ^5bb0aa

Analogamente $m_{[2]}:[a]\mapsto [2]+[a]$ e si ottiene c^{-1} di <u>Algebra 1 - Moci > ^5bb0aa</u>

Osservazione: Spesso si può far di meglio per alcuni gruppi.

 $|\mathfrak{D}_5|=10$. Per il teorema di Cayley c'è omomorfismo iniettivo di $\mathfrak{D}_5 o\mathfrak{S}_{10}$ ma $|\mathfrak{S}_{10}|=10!$.

In realtà si può immergere \mathfrak{D}_5 in \mathfrak{S}_5 Sfruttando i vertici di un poligono.

Definizione di Gruppo Simmetrico: $(\mathfrak{S}_n, \circ) = Sym(\{1, \dots, n\}) = \{\text{Biezioni } \{1, \dots, n\} \rightarrow \{1, \dots, n\}\}.$

Definizione di Permutazione: Gli elementi di \mathfrak{S}_n sono dette permutazioni e sono n!

Definizione di Orbita: Dato $i \in \{i, \dots, n\}$ e dato $\sigma \in \mathfrak{S}_n$. Definisco l'orbita di i come

 $O\sigma(i) = \{i, \sigma(i), \sigma(\sigma(i)) = \sigma^2(i), \sigma(i), \dots\}$

Esempio:

Sia per esempio $\sigma \in \mathfrak{S}$

$$\sigma(1) = 3, \; \sigma^2(1) = 3 \Rightarrow O\sigma(1) = \{1,3\} = O\sigma(3)$$

$$\sigma(2) = 4, \ \sigma(4) = 5, \ \sigma(5) = 2 \Rightarrow O\sigma(2) = \{2,4,5\} = O\sigma(4) = O\sigma(5)$$

Definizione di Ciclo: Una permutazione $\sigma \in \mathfrak{S}_n$ è un ciclo se ha un'unica orbita non banale (cioè di cardinalità > 1)

Esempio:

$$\sigma(1) =$$

 $\sigma(2) =$

Si ha che $\sigma(1)$ e $\sigma(2)$ sono cicli.

 σ dell'esempio precedente non è un ciclo, ma ne è la composizione.

Notazione: Indico un ciclo S con la notazione $(i,s(i),s^2(i),\ldots,s^{k-1}(i))$, k= ordine di S

Esempio:

$$\sigma_1=(1,3)$$
 e $\sigma_2=(2,4,5)$ dell'esempio precedente

Osservazioni:

- 1. Tale scrittura non è unica: $\sigma(1)=(1,3)=(3,1)$ e $\sigma(2)=(2,4,5)=(4,5,2)=(5,2,4)$
- 2. σ non è un ciclo, ma posso scriverlo come $\sigma = \sigma_1 \circ \sigma_2 = (1,3) \circ (2,4,5)$. Però è commutativo, ossia non importa l'ordine in quanto sono cose indipendenti. $\sigma=\sigma_1\circ\sigma_2=\sigma_2\circ\sigma_1$
- 3. Ogni permutazione $\sigma \in \mathfrak{S}_n$ può essere scritto come composizione di cicli, uno per ciascuna sua orbita.

Esempio:

1.

Sia $\sigma \in \mathfrak{S}_8$

Si ha che $\sigma_1=(1,3,7,4),\ \sigma_2=(2,6),\ \sigma_3=(5),\ \sigma_4=(8)$, quindi $\sigma=(1,3,7,4)(2,6)$ 2.

Sia \mathfrak{S}_3

Sono tutti ciclici ma non è un caso (perché n è un numero piccolo)

Definizione di Trasposizione: Una Trasposizione, o Scambio, è un ciclo di lunghezza 2

Esempio:

Le trasposizioni di \mathfrak{S}_3 sono (1,2),(1,3),(2,3).

Invece (1,2,3),(1,3,2) non sono trasposizioni, ma abbiamo osservato che si scrivono come composizioni di trasposizioni.

$$(1,2)(1,3) = (2,3,1) = (1,2,3)$$
 e $(2,3)(1,2) = (1,3,2)$

Le trasposizioni si leggono da sinistra a destra, le composizioni da destra a sinsitra Esempio:

$$\sigma = (1,4,3,2,5) \in \mathfrak{S}_5 \Leftrightarrow (1,5)(1,2)(1,3)(1,4) = (1,4,3,2,5)$$

 $\textit{Proposizione} : \textit{Ogni permutazione } \sigma \in \mathfrak{S}_n \textit{ si scrive come composizione di trasposizioni}.$

Dimostrazione:

Poiché ogni permutazione è composizione di cicli, basta verificare di ogni ciclo è composizione di trasposizioni. In effetti sia $\sigma=(i_1,i_2,\ldots,i_k)$ per qualunque ciclo. Allora $\sigma=(i_1,i_k)(i_1,i_{k-1})\ldots(i_1,i_2)$

Definizione di Trasposizione Semplice/Elementare: Una trasposizione Semplice o Elementare è una trasposizione della forma (a,b), Con un esempio, sia \mathfrak{S}_n $s_1=(1,2),\ s_2=(2,3),\ldots,\ s_{n-1}(n-1,n)$

Teorema: \mathfrak{S}_n è generato da $s_1, s_2, \ldots, s_{n-1}$

Esempio:

1. $t=(1,3)=(1,2)(2,3)(1,2)=s_1\circ s_2\circ s_1$

2. $\tau \in \mathfrak{S}_7$, $\tau = (2,6)$ $\tau = (2,3)(3,4)(4,5)(5,6)(4,5)(3,4)(2,3)$

Dimostrazione:

Poiché ogni permutazione è composizione di cicli e ogni ciclo è composizione di trasposizioni, basta dimostrare che ogni trasposizione è composizione di trasposizioni semplici.

In effetti
$$(i,k) = (i,i+1)(i+1,i+2)\dots(k-1,k)\dots(i+1,i+2)(i,i+1) = s_is_{i+1}\dots s_{k-2}s_{k-1}s_{k-2}\dots s_{i+1}s_i$$

Proposizione: L'ordine di un ciclo di lunghezza m è m, l'ordine di una permutazione è il mcm delle lunghezze dei cicli Esempio:

$$|(1,2,3)(4,5)| = 6$$

Dimostrazione:

Sia a>1 e sia $\sigma=\sigma_1\ldots\sigma_k$, dove σ_1,\ldots,σ_k sono cicli. Poiché questi sono commutativi tra loro, $\sigma^a=\sigma_1^a\ldots\sigma_k^a$ e poiché lavorano su orbite distinte $\sigma^a=id\Leftrightarrow\sigma_1^a=id,\ldots,\sigma_k^a=id\Leftrightarrow a$ è divisibile per l'ordine di ciascun σ_i e dunque per il loro mcm

Esempio:

$$\sigma=(1,2,3)(4,5)\Rightarrow \sigma^a=(1,2,3)^a(4,5)^a ext{ e } egin{cases} (1,2,3)^a=id \Leftrightarrow 3|a \ (4,5)^a=id \Leftrightarrow 2|a \end{cases} \Rightarrow \sigma^a=id \Leftrightarrow 6|a|a \Rightarrow a=id \Leftrightarrow 6|a|a \Rightarrow a=id$$

Definizione di Simplesso: In \mathbb{R}^n consideriamo il sottospazio affine (traslato) di equazione $x_1+x_2+\ldots+x_n=1$. Il Simplesso di dimensione n-1 è l'indieme $\Delta_{n-1}\{(x_1,\ldots,x_n)\in V\mid x_1\geq 0,x_2\geq 0,\ldots,x_n\geq 0\}$

Esempi:

- 1. Con n=2 si ha che $V=x_1+x_2=1$ con $x_1\geq 0 \land x_2\geq 0$. Questo rappresenta un segmento di vertici (1,0) e (0,1), la cui unica simmetria non banale è quella rispetto al punto medio
- 2. Con n=3 si ha che $V=x_1+x_2+x_3=1$ con $x_1\geq 0 \land x_2\geq 0 \land x_3\geq 0$. Questo rappresenta un triangolo equilatero di vertici (1,0,0), (0,1,0) e (0,0,1). Il suo gruppo di simmetrie è $\mathfrak{D}_3\simeq\mathfrak{S}_3$
- 3. Con n=4 si ha che $V=x_1+x_2+x_3+x_4=1$ con $x_1\geq 0 \land x_2\geq 0 \land x_3\geq 0 \land x_4\geq 0$. Questo rappresenta un tetraedro (dado a 4 facce) di vertici (1,0,0,0), (0,1,0,0), (0,0,1,0) e (0,0,0,1)

Teorema: Il gruppo G dei movimenti rigidi che mandano il Simplesso Δ_{n-1} in sé stesso è il gruppo simmetrico \mathfrak{S}_n *Dimostrazione*:

Ogni trasformazione geometrica che manda Δ_{n-1} in sé stesso permutando i suoi vertici e_1, \ldots, e_n . Quindi possiamo vedere G come un sottogruppo di \mathfrak{S}_n .

Osserviamo che $\forall i \in \{1, \dots, n-1\}$, $S_i = (i, i+1)$ che scambia l'i-esima coordinata con la i+1-esima coordinata, lasciando invariata l'equazione $x_1 + x_2 + \dots + x_n = 1$, Quindi $s_i \in G$, $\forall i \in \{1, \dots, n\}$.

Cioè $G \leq \mathfrak{S}_n$, G contiene s_1, \ldots, s_{n-1} . Ma tali elementi generano G. Quindi $G = \mathfrak{S}_n$

Abbiamo visto che $\forall \sigma \in \mathfrak{S}_n$ è composizione di trasposizioni

Definizione di σ **Pari/Dispari**: σ è pari se può essere scritto come composizione di un numero pari di trasposizioni, σ è dispari se può essere scritto come composizione di un numero dispari di trasposizioni.

Esempi:

$$id = (1,2)(1,2)$$
 è pari

Tutte le trasposizioni sono dispari

$$(1,2,3)=(1,3)(1,2)$$
 è pari

$$(1,3,2,4) = (1,4)(1,2)(1,3)$$
 è dispari

$$(1,3,2,4)(5,7,6) = (1,4)(1,2)(1,3)(5,6)(5,7)$$
 è dispari

Dato un polinomio p in n variabili $p(x_1, \ldots, x_n)$ e dato $\sigma \in \mathfrak{S}_n$, definiamo σp il polinomio $\sigma p(x_1, \ldots, x_n) = p(x\sigma_1, \ldots, x\sigma_n)$ cioè σ agisce su tutte le variabili.

Esempio:

$$1. \ p_1(x_1,x_2,x_3) = x_1 + x_2^2 - 3x_3 \ (1,2,3) \\ p(x_1,\dots,x_5) = \underbrace{(x_1-x_2)}_{\times} \underbrace{(x_1-x_3)}_{\times} \underbrace{(x_1-x_4)}_{\times} \underbrace{(x_1-x_5)}_{\times} \underbrace{(x_2-x_3)}_{\times} \underbrace{(x_2-x_4)}_{\times} \underbrace{(x_2-x_5)}_{\times} \underbrace{(x_3-x_4)}_{\times} \underbrace{(x_3-x_5)}_{\times} \underbrace{(x_4-x_5)}_{\times} \underbrace{(x_3-x_5)}_{\times} \underbrace{$$

Con $(2,4)p(x_1,\ldots,x_5)$ si ottiene che quelli con \times restano invariati, quelli con \Leftrightarrow si scambiamo (quelli con lo stesso numero), quelli con \cdot cambiano di segno ma si annullano, quello con * invece cambia segno e fa cambiare segno al polinomio.

Definizione:
$$p(x_1,\ldots,x_n) = \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

Lemma: Sia $\tau \in \mathfrak{S}$ una trasposizione. Allora $\tau p(x_1,\ldots,x_n) = -p(x_1,\ldots,x_n)$

Dimostrazione:

Il prodotto contiene fattori invariati (che non contengono né i né j) e restano invariati (\times), fattori che vengono scambiati tra loro (\Leftrightarrow) $(x_h-x_i)(x_h-x_j) \forall h < i, (x_i-x_h)(x_j-x_h), \forall h > j$, fattori che sono scambiati fra loro con cambio di segno che si semplifica (\cdot) $i < h < j(x_i-x_h)(x_h-x_j) \stackrel{\tau}{\mapsto} (x_j-x_h)(x_h-x_i)$, poi c'è (x_i-x_j) che cambia di segno.

Teorema: Una permutazione può essere pari se è dispari.

Dimostrazione:

Supponiamo per assurdo che lo sia, cioè che $\sigma \in \tau_1 \circ \ldots \circ \tau_n = t_1 \circ \ldots \circ t_n$ e sia $\sigma p(x_1,\ldots,x_n) = (-1)^{2a} p(x_1,\ldots,x_n) = (-1)^{2a+1} p(x_1,\ldots,x_n) \Rightarrow p(x_1,\ldots,x_n) = -p(x_1,\ldots,x_n)$ e ciò è assurdo perché $p(x_1,\ldots,x_n) \neq 0$

Definizione di Segno di σ : Il segno di σ è $\varepsilon(\sigma) = (-1)^{\operatorname{Pari} \circ \operatorname{dispari} \sigma} = \begin{cases} 1 \operatorname{se} \sigma \ \text{è pari} \\ -1 \operatorname{se} \sigma \ \text{è dispari} \end{cases}$

Osservazione: $\varepsilon: \begin{array}{ccc} \mathfrak{S}_n & \to & \{+1,-1\} \\ \sigma & \mapsto & \varepsilon(\sigma) \end{array}$ è un omomorfismo tra (\mathfrak{S}_n,\circ) e $(\{+1,-1\},\circ)$. $Ker(\varepsilon)=\{Permutazioni pari\}$ è sottogruppo di \mathfrak{S}_n che si indica con \mathscr{A}_n e si chiama Alterno

Esempio:

$$\mathfrak{S}_3 = \{(1,2), (2,3), (1,3), \underbrace{(1,2,3)(1,3,2), id}_{\in \mathscr{A}_3}\}$$

Proposizione: $|\mathscr{A}_n| = \frac{n!}{2}$, cioè le permutazioni pari sono tante quante quelle dispari.

Dimostrazione:

 $m_{(1,2)}: rac{\mathfrak{S}_n}{\sigma}
ightarrow rac{\mathfrak{S}_n}{(1,2)\sigma}$ è biunivoca (teorema di Cayley) e σ è pari $\Leftrightarrow (1,2)\sigma$ è dispari. Quindi $m_{(1,2)}$ mette in biezione {Permutazioni Pari} $ightarrow \{Permutazioni Dispari\}$

D'ora in avanti indicheremo l'operazione di un gruppo astratto con \cdot invece di \star . Di conseguenza $g_1 \star g_2 \to g_1 g_2$ e l'inverso di un elemento g con g^{-1} al posto di \tilde{g} .

Possiamo quindi riformulare tutto questo nuovo linguaggio, ad esempio $f:G\to H$ è un omomorfismo se $f(g_1g_2)=f(g_1)f(g_2)\ \forall g\in G$

Definizione di Coniugio: Sia G un gruppo e $h \in G$. Il Coniugio per h è l'applicazione $C_h: G \to G \to hgh^{-1}$. Nella vecchia notazione sarebbe $h \star g \star g^{-1}$

Proposizione: Proprietà del Coniugio:

- 1. $(C_{h_2} \circ C_{h_1}) = C_{h_2h_1}$
- 2. C_h è un automorfismo di $G, \forall h \in G$

Dimostrazione:

$$\mathsf{1.}\; (C_{h_2}\circ C_{h_1})(g) = (C_{h_2}(C_{h_1}(g))) = C_{h_2}(h_1gh_1^{-1}) = \underbrace{h_2h_1}_{\in G}\underbrace{gh_1^{-1}h_2^{-1}}_{(h_2y_1)^{-1}} = C_{h_1h_2}(g), \forall g \in G$$

2. Dobbiamo dimostrare che C_{h_t} è biunivoca ed è un omomorfismo.

 C_h è biunivoca perché la sua funzione inversa è $C_{h^{-1}}$ (il -1 è all'h)

Infatti
$$(C_{h^{-1}}\circ C_h)(g)=(C_{h^{-1}h})(g)=C_{id}(g)=ege=g, \forall g\in G$$
 Infatti $(C_{h^{-1}}\circ C_h)=(C_{h^{-1}h})=C_{id}=e$

In alternativa avremmo potuto osservare che C_h è iniettiva perché se $C_h(g_1)=C_h(g_2)\Rightarrow$

$$\Rightarrow hg_1h^{-1}=hg_2h^{-1} \xrightarrow{ ext{Legge della Cancellazione}} g_1h^{-1}=g_2h^{-1} \Rightarrow g_1=g_2$$
, ossia è iniettiva.

Quindi $C_h:G o G$ è anche suriettiva per ragioni di cardinalità (stesso numero di elementi). Inoltre $C_h(g_1)C_h(g_2)=(hg_1h^{-1})(hg_2h^{-1})=hg_1g_2h^{-1}=C_h(g_1g_2)$ Quindi è omomorfismo

Definizione di Essere Coniugati: $g_1, g_2 \in G$ sono coniugati se $\exists h \in G$ t.c. $C_h(g_1) = g_2$

Osservazione: È una relazione di equivalenza (sul foglio di esercizi). Le classi di equivalenza sono dette classi di coniugio.

Esempi:

1. Se G è commutativo (o abeliano) allora $hgh^{-1} = hh^{-1}g = g$, ovvero $C_h = id$, $\forall g \in G$. Infatti ogni elemento di G è coniugato a se stesso.

2. Se $G = GL(n, \mathbb{K}) = \{ \text{Matrici n} \times \text{n invertibili} \}$, il coniugio è detto similitudine.

 $M_2 = C_B(M_1) = BM_1B^{-1} \Leftrightarrow M_1, M_2$ rappresentano la stessa applicazione lineare in basi diverse e B è detta la matrice del cambiamento di base.

3. Se $G = \mathfrak{D}_n$ diedrale = $\{r^k\} \cup \{r^k s\}$ con $k \in \{0, \dots, n-1\}$.

Se
$$x=r^k o C_r(x)=rr^kr^{-1}=r^k=x$$

Se
$$x=r^k o C_s(x)=sr^ks^{-1}=r^{-k}ss=r^{-k}=x^{-1}$$

Se
$$x=r^ks o C_r(x)=\overrightarrow{rr^k} \overrightarrow{sr^{-1}}=rr^krs=r^{k+2}s$$

Se
$$x=r^ks o C_s(x)=sr^kss^{-1}=sr^k=r^{-1}s$$

4. $G = \mathfrak{S}_n$ è l'esempio che vedremo più nel dettaglio

Esempio dell'esempio:

Sia
$$\sigma=(1374)$$
 e $\tau=(12)(35)(764)$

Basta vedere che $1 \rightarrow 2, 3 \rightarrow 5, 7 \rightarrow 6, 4 \rightarrow 7$ che è esattamente au

Lemma Estremamente Importante per dopo: Sia $\sigma=(i_1,\ldots,i_k)$ un k-ciclo e sia $au\in\mathfrak{S}_n$ una permutazione qualsiasi.

Allora anche $C_{\tau}(\sigma)$ sarà un k-ciclo, precisamente è il k-ciclo dato da $C_{\tau}=(\tau(i_1),\ldots,\tau(i_k))$

Dimostrazione:

Per ogni $j \in \{1, \dots, n\}$ vogliamo calcolare $C_{\tau}(\sigma)(j) = \tau \sigma \tau^{-1}(j)$. Distinguiamo 2 casi:

1. Se j non è in $\tau(i_h)$ per nessun h allora $\tau^{-1}(j)$ non è in nessun h, allora σ lo lascia invariato e quindi $\tau\sigma\tau^{-1}(j)=\tau\tau^{-1}(j)=j$

2. Se invece esiste h tale che $j= au(i_h)$, allora $au\sigma au^{-1}(j)= au\sigma(i_h)= au(i_{h+1})$ dove h=n, allora $i_{n+1}=i_1$ Quindi $au\sigma au^{-1}$ è il k-ciclo che avevamo detto e vale $(au(i_1),\dots, au(i_n))$

Definizione di Partizione di un Numero: Sia $n \in \mathbb{N}, n > 0$. Una partizione di n è la successione di λ , $(\lambda_1, \lambda_2, \lambda_3, \dots)$ con $\forall i \in \mathbb{N}, \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \dots$ con $\sum \lambda_i = n$

Esempi:

Le partizioni di 3 sono:

- $-(3,0,0,0,0,0,0,\dots)=(3)$
- $-(2,1,0,0,0,0,0,\dots)=(2,1)$
- $-(1,1,1,0,0,0,0,\dots)=(1,1,1)$

Osservazione: Diciamo che $\sigma \in \mathfrak{S}_n$ ha strutture cicliche λ se le sue orbite, ordinate di cardinalità decrescente hanno cardinalità $\lambda_1, \lambda_2, \lambda_3, \dots$

Esempio:

- -(3) = (1,2,3) e (1,3,2) 3-cicli
- -(2,1)=(1,2),(1,3),(2,3) Trasposizioni
- -(1,1,1) = Identità

Teorema: Due elementi di \mathfrak{S}_n sono coniugati \Leftrightarrow hanno stessa struttura ciclica. Quindi le classi di coniugo di \mathfrak{S}_n sono in biezione con le partizioni di n.

Dimostrazione:

Siano σ_1 e σ_2 due permutazioni con struttura ciclica $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_r)$ dove λ_r rappresenta l'ultimo λ non nullo.

$$\text{Quindi } \sigma_1 = (a_{1,1}, \ldots, a_{1,\lambda_1})(a_{2,1}, \ldots, a_{2,\lambda_2}) \ldots (a_{r,1}, \ldots, a_{r,\lambda_r}) \text{ e } \sigma_2 = (b_{1,1}, \ldots, b_{1,\lambda_1})(b_{2,1}, \ldots, b_{2,\lambda_2}) \ldots (b_{r,1}, \ldots, b_{r,\lambda_r}).$$

Considero $\tau \in \mathfrak{S}_n$ tale che $\tau(a_{1,1}) = b_{1,1}$ e così via $tau(a_{r,\lambda_r}) = b_{r,\lambda_r}$. Poiché σ_1 è un prodotto di cicli e poiché C_τ è un omomorfismo, basta calcolare C_τ per ciascun ciclo, che per il lemma precedente $C_\tau(\sigma_1) = \sigma_2$

Quindi se σ_1 e σ_2 hanno la stessa struttura ciclica sono coniugate.

D'altra parte sempre per il lemma, data una permutazione σ_1 e $au\in\mathfrak{S}_n$, $C_{ au}(\sigma_1)$ ha la stessa struttura ciclica di σ_1

Esempio:

Sia
$$n=4$$

Partizione	Elementi	Ordine	Parità	Numero`)
(4)	(1234)	4	D	6	In tutto sono $4! = 24$
(3, 1)	(123)	3	P	8	
(2,2)	(12)(34)	2	P	3	
(2,1,1)	(12)	2	D	6	
(1, 1, 1, 1)	Id	1	P	1	J

Esempio:

Siano $\sigma_1 = (137)(24)(56)$ e $\sigma_2 = (457)(26)(13) \in \mathfrak{S}_7$

Trovare τ tale che $C_{\tau}(\sigma_1) = \sigma_2$

au esiste perché σ_1 e σ_2 hanno la stessa struttura e vale (3,2,2)

Infatti τ vale (14635)

basta mettere i due cicli uno sotto l'altro e torna

Osservazione: τ non è unico, dipende da come sono scritti i cicli.

Definizione di Laterale Sinistro: Sia G un gruppo, sia $H \leq G$ un sottogruppo e sia $g \in G$. L'insieme $gH = \{gh, h \in H\}$ è detto classe laterale sinistro (o semplicemente laterale sinistro) di g.

Esempi:

- 1. $(\mathbb{Z},+)=G$ e $H=n\mathbb{Z}=\{$ Multipli di n con $n\in\mathbb{N}\}$. Per esempio con n=1 si ha che $1H=\{1+h,h\in n\mathbb{Z}\}=\{m\in\mathbb{Z}\mid m\equiv 1\ (n)\}=[1]\in\mathbb{Z}_{/N}.$ Analogamente si può fare la stessa cosa con qualsiasi
- $H = \{1 + h, h \in n\mathbb{Z}\} = \{m \in \mathbb{Z} \mid m \equiv 1 \ (n)\} = [1] \in \mathbb{Z}_{/N}$. Analogamente si puo fare la stessa cosa con qualsiasi elemento n.
- 2. $G = U_8 = \{[1], [3], [-3], [-1]\}$ e $H = \{[1], [-1]\}$. H è un sottogruppo rispetto alla moltiplicazione. Si ottiene che
- [1]H=H=[-1]H. Si ottiene inoltre che $[3]H=\{[3][1],[3][-1]\}=\{[3],[-3]\}=[-3]H$
- 3. $G = \mathfrak{D}_n$ e $H = R_n = \{r^k, \forall k \in \mathbb{Z}\}$. $r^k H = H$ ossia tutte le rotazioni. $sH = \{sr^k, \forall k \in \mathbb{Z}\} = \{\text{Tutte le simmetrie}\}$. Ma la cosa sarebbe stata uquale con tutte le simmetrie.

Lemma:

- 1. I laterali sinistri formano una partizione di G
- 2. Ciascun laterale ha la stessa cardinalità do H

Dimostrazione:

- 1. Poiché $g \in gH$, i laterali sono non vuoti e la loro unione è G. Dobbiamo dimostrare che sono a 2 a 2 disgiunti, cioè $\forall g_1,g_2 \in G$ o $g_1H=g_2H$ o $g_1H\cap g_2H=\varnothing$. Supponiamo che $g_1H\cap g_2H\neq \varnothing$, questo implica che $\exists x \in g_1H\cap g_2H \Rightarrow \exists h_1,h_2 \in H$ t.c. $x=g_1h_1=g_2h_2\Rightarrow g_1=g_2h_2h_1^{-1}$. Sia $k \in g_1H\Rightarrow \exists h \in H$ t.c. $k=g_1h$, ma per quanto abbiamo definito poco fa si ha che $k=g_1h=(g_2h_2h_1^{-1})h=g_2\underbrace{h_2h_1^{-1}}_G$ $b\in g_2H$

Definizione di Indice: Il numero di classi laterali sinistre gH è detto indice di H in G e si indica con [G:H]

Teorema di Lagrange: Sia G in un gruppo finito. $|G| = |H| \cdot [G:H] \Rightarrow |H| \text{ Divide } |G| ^6c4790$ Dimostrazione:

Per il lemma precedente ci sono [G:H] laterali, tra loro disgiunti con cardinalità |H| e la loro unione è G.

Conseguenze del Teorema di Lagrange:

- 1. Corollario 1: L'ordine di ogni elemento di G divide $\left|G\right|$
 - Dimostrazione:

 $orall g \in G, \langle g
angle$ è sottogruppo ciclico di G. $|\langle g
angle| = o(g)$ deve dividere G

- 2. Corollario 2: Se |G| è primo, allora G è ciclico
 - Dimostrazione:

Sia $g \neq id$. Dunque $o(g) \neq 1$ e per il corollario 1 $o(g)|p \Rightarrow o(g) = p \Rightarrow \langle g \rangle$ ha p elementi ed è uguale a G

- 3. Il teorema di Eulero stesso.
 - Dimostrazione:

Basta applicare il Corollario 1 a $G=U_n$ infatti $|G|=\phi(n)$. Ci dice che $\forall [n]\in U_n,\ [a]^{\phi(n)}=[1]$. Ovvero che $\forall a\in\mathbb{Z}$ t.c. $\mathcal{MCD}(a,n)=1\Rightarrow a^{\phi(n)}=1\ (n)$

Definizione di Laterale Destro: Siano $H \leq G$ e $g \in G$. Definisco Laterale Destro $Hg = \{hg \mid h \in H\}$

Osservazione: I laterali destri formano un partizione di G e ciascuno di esso ha cardinalità h=|H| Si dimostra come per il Laterale Sinistro. Di conseguenza il numero di Laterali Destri è uguale al numero di Laterali Sinistri [G:H]

Esempio:

$$G=\mathfrak{S}_3$$
 e $H=\{id,(12)\}$

Quindi ci sono $\frac{|G|}{|H|}=3$ laterali sinistri:

$$idH = H = (12)H$$

$$(23)H = \{(23)id, (23)(12)\} = \{(23), (132)\} = (132)H$$

$$(13)H = \{(13)id, (13)(12)\} = \{(13), (123)\} = (123)H$$

e ci sono 3 laterali destri:

$$Hid = H = H(12)$$

$$H(23) = \{id(23), (12)(23)\} = \{(23), (123)\} = H(123)$$

$$H(13) = \{id(13), (12)(13)\} = \{(13), (132)\} = H(132)$$

Definizione di Sottogruppo Normale: Diciamo che $H \leq G$ è normale se i laterali destro e sinistro coincidono e si indica con $H \triangleleft G$

Esempi:

- 1. $\{id, (12)\}$ <u>non</u> è normale in \mathfrak{S}_3
- 2. Se G è commutativo, tutti i sottogruppi sono normali.
- 3. I sottogruppi banali $\{e\}$ e $\{g\}$ sono sottogruppi normali.
- 4. Sia G un gruppo e H un sottogruppo di indice 2, ossia che [G:H]=2. Questo implica che ci sono 2 laterali sinistri $H,G\setminus H$ e per la stessa ragione ci sono due laterali destri: $H,G\setminus H$. Quindi $H \subseteq G$
- 5. In particolare $R_n ext{ } ext{$
- 6. $\mathscr{A}_n \unlhd \mathfrak{S}_n$ perché ha indice 2

7.
$$G=\mathfrak{D}_4=\{r,r^2,r^3,r^4=id,s,rs,r^2s,r^3s\}$$
 e $H=\{id,r^2\}$. Ci sono $\frac{|G|}{|H|}=4$ laterali.

$$idH = \{id, r^2\} = Hid$$

$$rH=\{r,r^3\}=Hr$$

$$sH = \{sid, sr^2\} = \{s, r^{-2}s\} = \{s, r^2s\} = Hs$$

$$rsH = \{rsid, rsr^2\} = \{rs, r^3s\} = Hrs$$

Quindi $H \triangleleft G$

Definizione di Centro di G: Dato un gruppo G, si definisce il centro di G con $Z(G) = \{z \in G \mid zg = gz, \forall g \in G\}$

Esempio:

$$Z(\mathfrak{D}_4)=\{id,r^2\}$$

Osservazione: Z(G) è sottogruppo normale in G

Dimostrazione:

$$\forall g \in G, \ gZ(G) = \{gz, z \in Z(G)\} = \{zg, z \in Z(G)\} = g$$

Proposizione: Un sottogruppo è normale se e solo se è unione di due classi di coniugio.

Dimostrazione:

Sia $N \leq G$, N è normale $\Leftrightarrow \forall g \in G, gN = Ng \Leftrightarrow gNg^{-1} = N \forall g \in G$. Ma $gNg^{-1} = \{gng^{-1}, n \in N\} \Leftrightarrow gng^{-1} \in N, \forall g \in G$ cioè $\forall n \in N, N$ contiene tutti i coniugati di N, infatti $gng^{-1} = C_g(n)$. Quindi N è unione di classi di coniugio.

Esempio:

- 1. In \mathfrak{S}_4 il sottogruppo N è $\{\underbrace{id}_{1,1,1,1},\underbrace{(12)(34),(13)(24),(14)(23)}_{2,2}\}$. N è quindi unione di classi di coniugio, quindi $N \unlhd G$
- 2. In \mathfrak{S}_3 , $H = \{id, (12)\}$ non è normale perché contiene (12) ma non i suoi coniugati (13) e (23)
- 3. $\mathscr{A}_n \subseteq \mathfrak{S}_n$ perché se $\sigma \in \mathscr{A}_n$ tutti gli elementi con la stessa struttura di σ sono pari.

Quindi, dato un omomorfismo $f:G\to H$, abbiamo definito Ker(f) come $\{g\in G\mid f(g)=0\}$

Proposizione: $Ker(f) \subseteq G$

Dimostrazione:

Abbiamo già verificato che era sottogruppo $Ker(f) \leq G$

Sia $n \in Ker(f)$, dobbiamo mostrare che $gng^{-1} \in Ker(f), \forall g \in G$ (e ciò la rende vera per la proposizione precedente). In effetti poiché $f(n) = e_H \Rightarrow f(gng^{-1}) = f(g)\underbrace{f(g^{-1})}_{=0} = f(g)f(g^{-1}) = e_H$

Osservazione: Sia $H \leq G_t$ allora x,y sono nello stesso laterale destro se e solo se $xy^{-1} \in H$.

Infatti se
$$xy\in Hg\Rightarrow x=h_1g; y=h_2g\Rightarrow y^{-1}=(h_2g)^{-1}=g^{-1}h_2^{-1}$$

$$\Rightarrow) \ xy^{-1} = h_1 gg^{-1}h_2^{-1} = h_1 h_2^{-1} \in H. \Leftarrow) \ \text{Viceversa se} \\ xy^{-1} \in H \Rightarrow xy^{-1} = h \Rightarrow x = hy \Rightarrow x \in Hy$$

Vogliamo ora mostrare che se N è normale, l'insieme dei suoi laterali è un gruppo.

Definizione di Compatibilità: Sia G un gruppo e \sim una relazione di equivalenza su G. Diciamo che \sim è compatibile con l'operazione di G se $\forall x, x', y, y' \in G$, $x \sim x', y \sim y' \Rightarrow xy \sim x'y'$

Esempio:

In $(\mathbb{Z},+)$, la relazione di equivalenza $x \sim y \Leftrightarrow x \equiv y \ (n)$ è compatibile perché se $x \equiv x', y \equiv y' \Leftrightarrow x+y \equiv x'+y' \ (n)$ Questo ci ha permesso di definire la somma fra classi

Sia G un gruppo e \sim una relazione di equivalenza compatibile. Possiamo definire sull'insieme quoziente $G_{/\sim}$ un'operazione $[x]_{\text{Operazione compatibile}}[y] = [x_{\text{Operazione di }G}y]$

Proposizione: Questa operazione è ben definita e rende $G_{/\sim}$ un gruppo.

Dimostrazione:

Ben definita perché se [x]=[x'] e [y]=[y'], allora perché poiché questa è compatibile, [xy]=[x'y'] È un gruppo perché [e] è l'elemento neutro, $[g]^{-1}=[g^{-1}], \forall g\in G$ e la nuova operazione eredità l'associatività dell'operazione in G

Teorema:

- 1. Se $N \le G$, allora la relazione " $x \sim y \Leftrightarrow x$ e y appartengono alla stessa classe laterale" è una relazione di equivalenza.
- 2. Se una relazione di equivalenza è compatibile, allora [e] è un sottogruppo normale di G e $x \sim y \Leftrightarrow x$ e y appartengono allo stesso laterale

Dimostrazione:

1. Dato un sottogruppo N (normale o no) se laterali formano una partizione di G, quindi appartenere allo stesso laterale è una relazione di equivalenza. Se $N \subseteq G$ mostriamo che è compatibile. Siano

$$\underbrace{x'\sim x^{-1}}_{x'x^{-1}\in N},\underbrace{y'\sim y^{-1}}_{y'y^{-1}\in N}\in G\Rightarrow \exists n\in N\ t.\ c.\ \ x'x^{-1}=n\Rightarrow x'=nx.$$
 Voglio mostrare che

Voglio mostrare che
$$xy\sim x'y'$$
, ovvero che $xy\sim (xy)^{-1}\in N$. In effetti $x'y'y^{-1}x^{-1}=n$ $\underbrace{xy'y^{-1}}_{\in N}x^{-1}\in N$. Poiché N è

normale tutto sta in N.

2. Sia G un gruppo e \sim una relazione di equivalenza compatibile. N=[e] è un sottogruppo di G poiché $e\in[e]$. Se $n\in[e]\Rightarrow n\in e\Rightarrow n^{-1}n\sim n^{-1}e\Rightarrow e\sim n^{-1}\Rightarrow n^{-1}\in[e]$. $n_1,n_2\in[e]\Rightarrow n_1\sim e,n_2\sim e\Rightarrow n_1n_2\sim ee=e\Rightarrow n_1,n_2\in N$. Normalità: sia $n\in N$ e $g\in G$, allora $gng^{-1}\sim geg^{-1}=e\Rightarrow C_g(n)\in N\Rightarrow N$ è normale.

Inoltre $x \sim y \Leftrightarrow xy^{-1} \sim yy^{-1} = e \Leftrightarrow xy^{-1} \in [e]$, dunque sono nello stesso laterale e viceversa (se x,y sono nello stesso laterale, allora $xy^{-1} \in [e] \Rightarrow xy^{-1} \sim e \Rightarrow xy^{-1} \sim yy^{-1} \Rightarrow x \sim y$)

Osservazione: Se N è normale, ho una relazione di equivalenza compatibile, le cui classi di equivalenza sono proprio i laterali.

Definizione di Gruppo Quozionete: Quindi $G_{/N}=\{ {
m Laterali\ di\ }N \}$ è un gruppo, detto Quoziente con operazione data da $g_1N\cdot g_2N=g_1g_2N$

Esempio:

- 1. Abbiamo visto che $N=\{id,r^2\}$ è normale in \mathfrak{D}_4 , ci sono 4 classi laterali e quindi $G_{/N}=\{N,rN,sN,rsN\}$, ovvero $G_{/\simeq}=\{[id],[r],[s],[rs]\}$ è un gruppo i cui elementi hanno ordine due, quindi è isomorfo al gruppo di Klein K_4
- 2. \mathfrak{S}_{4/K_4}
- 3. $\mathbb{Z}_{/n\mathbb{Z}} = \mathbb{Z}_{/n}$
- 4. Quoziente di uno spazio vettoriale V per un sottospazio U
- 5. $G=\mathfrak{S}_n$ e $H=\mathscr{A}_n$, siano $\sigma_1\sim\sigma_2\Leftrightarrow\sigma_1$ e σ_2 hanno lo stesso segno (Pari/Dispari). Quindi

$$G_{/N}=\mathfrak{S}_{n/\mathscr{A}_n}=\{id,(12)\}\simeq (\{1,-1\},\cdot)\simeq \mathbb{Z}_{/2}$$

6.
$$G=\mathfrak{D}_n$$
 e $N=R_n$: $\mathfrak{D}_{n/R_n}=\{R_n,sR_n\}=\{[id],[s]\}\simeq R_2\simeq \mathbb{Z}_2$

Teorema Fondamentale di omomorfismi tra gruppi: Sia $f:G\to H$ un omomorfismo di gruppi. Allora l'applicazione

$$egin{array}{lll} & G_{/Ker(f)} &
ightarrow & Im(f) \ \hline f:gKer(f) &
ightarrow & f(g) &
ightarrow & ext{isomorfismo}. \ & [g] &
ightarrow & f(g) \end{array}$$

Dimostrazione:

Sia N=Ker(f) e \sim la relazione di equivalenza compatibile ad essa associata, cioè $g_1\sim g_2\Leftrightarrow$ sono nello stesso laterale $\Leftrightarrow [g_1]=[g_2]\Leftrightarrow f(g_1)=f(g_2)$

Quindi \overline{f} è ben posta perché se $[g_1]=[g_2]\Rightarrow f(g_1)=f(g_2)$ e quindi $\overline{f}([g_1])=\overline{f}([g_2])$

 \overline{f} è suriettiva perché $orall f(g) \in Im(f)$ ho che $f(g) = \overline{f}([g])$

 \overline{f} è iniettiva perché se $\overline{f}([g_1])=\overline{f}([g_2])$, allora $f(g_1)=f(g_2)$, quindi $g_1\sim g_2\Rightarrow [g_1]=[g_2]$

 \overline{f} è un omomorfimo perché f lo è: $\overline{f}([g_1][g_2]) = \overline{f}([g_1g_2]) = f(g_1g_2) = f(g_1)f(g_2) = \overline{f}([g_1])\overline{f}([g_2])$

Esempi

1. Sia
$$G=(\mathbb{Z},+)$$
 e $H=(\mathbb{C}^*,\cdot)$ e $f: rac{G}{n}
ightarrow rac{H}{i^n}$

f è omomorfismo perché $i^{n+m}=i^n\cdot i^m$

Inoltre $Ker(f) riangleq G = 4\mathbb{Z} = \{ ext{Multpli di 4} \}$ e $Im(f) = \{i, -1, -i, 1\} \leq H$

Per il teorema fondamentale degli omomorfismi tra gruppi $\mathbb{Z}_{/4\mathbb{Z}}=\mathbb{Z}_{/4}\stackrel{\sim}{ o} (\{i,-1,-i,1\},\cdot)\Leftrightarrow \frac{\mathbb{Z}_{/4}}{[n]}\stackrel{\simeq}{\mapsto} \frac{C_4}{i^n}$

2. Slano i gruppi $(\mathbb{R},+)$ e (\mathbb{R}^+,\cdot) con l'omomorfismo $f: \begin{matrix} \mathbb{R} & \to & \mathbb{R}^+ \\ x & \mapsto & e^x \end{matrix}$

 $Ker(f)=\{0\}$ e $Im(f)=]0,+\infty[$ e per il teorema fondamentale degli omomorfismi $(\mathbb{R},\cdot)\simeq]o,+\infty[$

3. $arepsilon: \mathfrak{S}_n o \mathbb{R}^+$ (segno). $Ker(f) = \mathscr{A}_{n_I} \ Im(f) = \{+1, -1\}$ e per il TFO $\mathfrak{S}_{n/\mathscr{A}_n} \simeq \{+1, -1\}$

4. $det: GL(n,\mathbb{K}) \to \mathbb{K}^*$ è omomorfismo per il teorema di Binet. $Im(f) = \mathbb{K}^*, Ker(f) = SL(n,\mathbb{K})$. Quindi $SL(n,\mathbb{K}) \leq GL(n,\mathbb{K})$ e $^{GL(n,\mathbb{K})}/_{SL(n,\mathbb{K})} \simeq \mathbb{K}^*$

5. $f: \mathfrak{D}_6 \to Sym(\{\text{Simmetrie rispetto ai vertici}\}) \simeq \mathfrak{S}_3$. f è suriettiva e $Ker(f) = \{id, r^3\}$ Per TFO $\mathfrak{D}_{6/\{id, r^3\}} \simeq \mathfrak{S}_3$

Sia G un gruppo e $N \subseteq G$ e $K \subseteq G$

Definizione di Prodotto Diretto: Diciamo che G è prodotto diretto di N e K se $N \cap K = \{e\}$ e $G = NK = \{nk, n \in N, k \in K\}$

 $\text{Osservazione: Ogni } g \in G \text{ si scrive in modo unico come } g = nk \text{, infatti se } \exists n_1, n_2 \in N \text{ e} \\ \exists k_1, k_2 \in K = g \in n_1 \\ k_1 = n_2 \\ k_2 \Rightarrow \underbrace{n_2^{-1} n_1}_{\in \mathcal{N}} \underbrace{k_1 k_2^{-1}}_{\in K} = ee^{-1} \in N \cap K \text{, ma } N \cap K = \{e\} \Rightarrow n_1 = n_2, k_1 = k_2$

Proposizione:

1. $nk = kn, \forall n \in N \text{ e } \forall k \in K$

$$2. \ arphi: egin{array}{ccc} G &
ightarrow & N imes K \ nk &
ightarrow & (n,k) \end{array}$$
 è isomorfismo

Dimostrazione:

1. Equivale a dimostrare che $knk^{-1}n^{-1}=e$. In effetti $\underbrace{nkn^{-1}}_{\in K}k^{-1}\in K\Rightarrow K\trianglelefteq G$ e $\underbrace{nkn^{-1}k^{-1}}_{\in N}\in N\Rightarrow N\trianglelefteq G$, ma

 $N\cap K=\{e\}$ quindi $nkn^{-1}k^{-1}\in N\cap K=\{e\}$

2. φ è ben definita e iniettiva per l'osservazione della scrittura ed è suriettiva per definizione di $N \times K$. È un

omomorfismo per 1., perché
$$\varphi(\overbrace{g_1}^{n_1k_1}\underbrace{g_2}_{n_2k_2})=\varphi(n_1k_1n_2k_2)=\varphi(n_1n_2k_1k_2)=(n_1n_2,k_1k_2).$$

Esempi:

1. $\mathbb{Z}_{/6} \simeq N imes K$ tale che $N = \{[0], [2], [4]\}$ e $K = \{[0], [3]\}$

2. $K_4 = \{id, g, h, gh\}$ è $N \times K$ tali che $N = \langle g \rangle$ e $K = \langle k \rangle$, inoltre è isomorfo a $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$

Controesempio:

 \mathfrak{D}_n non è prodotto diretto di R_n e $\langle s \rangle$

Definizione di Prodotto Semidiretto: Sia G un gruppo, $H \leq G$ e $N \leq G$, si dice che G è prodotto semidiretto di H,N e si scrive $G = N \rtimes H$ se $G = NH = \{nh, n \in N, h \in H\}$ e $N \cap H = \{e\}$

Osservazione: È ancora vero che ogni $g \in G$ si scrive in modo unico come g = nh, ma non è vero che nh = hn

Esempio:

1. $\mathfrak{D}_n=R_n \rtimes \langle s
angle$. Infatti $R_n \rtimes \langle s
angle$. Infatti $R_n riangleq \mathfrak{D}_n$ e $\langle s
angle \leq \mathfrak{D}_n$

2. $\mathfrak{S}_n = \langle (12) \rangle \ltimes \mathscr{A}_n$

3. $GL(n, \mathbb{K}) = SL(n, \mathbb{K}) \rtimes \mathbb{K}^*$

Osservazione: Se $G=N\rtimes K$, allora $^G/_N\simeq H$

Consideriamo n carte da gioco numerate in rosso su un lato e in verde sull'altro. Diciamo che G è una trasformazione delle carte se le permuta tra loro o eventualmente ne volta qualcuna Sia $\mathcal{B}_n = \{\text{Trasformazioni di } n \text{ carte}\}$

Osservazione: $|\mathcal{B}_n| = n! \cdot 2^n$ dove n! dipende da permutazioni e 2^n voltazioni di carte.

 $\mathcal{P}_n = \{g \in \mathcal{B}_n \mid g \text{ non volta nessuna carta}\} = \langle s_1, \dots, s_{n-1} \rangle$

 $\mathcal{V}_n = \{g \in \mathcal{B}_n \mid g \text{ non permuta le carte (le volta e basta)}\} = \langle v_1, \dots, v_n \rangle$

Quindi $\mathcal{P}_n \leq \mathcal{B}_n$ e $\mathcal{V}_n \leq \mathcal{B}_n$, quindi $\mathcal{B}_n = \mathcal{P}_n \mathcal{V}_n$ e $\mathcal{P}_n \cap \mathcal{V}_n = \{id\}$

Quindi \mathcal{B}_n non è prodotto diretto di \mathcal{P}_n e \mathcal{V}_n .

 \mathcal{P}_n non è normale in \mathcal{B}_n perché $(v_1 \circ (12) \circ v_1)(1,2) \mapsto (2,1) \notin \mathcal{P}_n \Rightarrow \mathcal{P}_n \neg \subseteq \mathcal{B}_n$

Definisco un omomorfismo $d:\mathcal{B}_n o \mathcal{P}_n$ che dimentica i colori d è un omomorfismo: $d(g_1\cdot g_2)=d(g_1)\circ d(g_2)$ e $Ker(d)=\mathcal{V}_n$. In particolare $\mathcal{V}_n leq \mathcal{B}_n$ e $^{\mathcal{B}_n}/_{\mathcal{V}_n} \simeq \mathcal{P}_n$ per TFO, quindi $\mathcal{B}_n=\mathcal{P}_n \ltimes \mathcal{V}_n$

Osservazione: \mathcal{B}_n è il gruppo dei movimenti rigidi di R^n che fissa un cubo di dimensione $[-1,1]^n \in \mathbb{R}^n$

Definizione di Gruppo dei Movimenti Rigidi di una Retta: È l'insieme

 $ilde{\mathscr{A}}_1=\{ ext{Movimenti Rigidi }f:\mathbb{R} o\mathbb{R} ext{ tali che }f(\mathbb{Z})=\mathbb{Z}\}.$ Questo è costituito da $\{t^n,n\in\mathbb{Z}\}$ tale che $(t^n)(x)=x+n$ e dalle simmetrie $\{s_n,n\in\mathbb{Z}\}$ tale che s(x)=-x, $s_2(x)=-x+2$ eccetera. Si può osservare che se n è pari è una simmetria rispetto ad un elemento di \mathbb{Z} , mentre se n è dispari è un elemento di $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$.

Teorema: Sia G un gruppo e sia $H \leq G, N \subseteq G, N \subseteq H$, allora:

- 1. N riangleleft H
- $2. H/_N \leq G/_N$
- 3. $H \triangleleft G \Leftrightarrow {}^H/_N \triangleleft {}^G/_N$

Dimostrazione:

- 1) Se $N \triangleleft G, qN = Nq, \forall q \in G$ e quindi a maggior ragione $qN = Nq, \forall q \in H < G \Rightarrow N \triangleleft H$
- 2) Intanto $^H/_N \leq \subseteq \ ^G/_N \Rightarrow \{gN,g \in H\} \subseteq \{gN,g \in G\}$ è sottogruppo perché $eN = N \in \ ^H/_N$; se $h_1N,h_2N \in \ ^H/_N$, cioè $h_1,h_2 \in H$, allora $h_1Nh_2H = h_1h_2N$ che appartiene ad $^H/_N$ perché $h_1,h_2 \in H$. Analogamente per gli inversi.
- 3) \Rightarrow) $H \subseteq G \Leftrightarrow \forall g \in G, \forall h \in H, \exists h' \in H \ t. \ c. \ ghg^{-1} = h'$
- $\Leftarrow)^{H}/_{N} \trianglelefteq {}^{G}/_{N} \Leftrightarrow \forall gN \in {}^{G}/_{N}, \forall gH \in {}^{H}/_{N}, \exists h'N \in {}^{H}/_{N} \text{ t.c. } gNhNg^{-1}N = h'N \Rightarrow (ghg^{-1})N = h'N \Leftrightarrow \exists n \in N \text{ t.c. } ghg^{-1}nh' \in H \text{ perch\'e } N \subseteq H \Leftrightarrow ghg^{-1} \in H, \forall g \in G, \forall h \in H \Leftrightarrow H \trianglelefteq G$

Osservazione: Si può mostrare che $H\mapsto {}^H/_N$ è una biezione tra sottogruppi di G che contenga N e sottogruppi di G

Azioni

Definizione di Azione: Sia G un gruppo e X un insieme. Un'azione di G su X è un omomorfismo di $a:G\to Sym(X)=\{\text{Biezioni }X\to X\}.$ Inoltre si ha che $\mathcal{O}(x)=\{g.\,x,g\in G\}\subseteq X$

Osservazione: In altre parole, un'azione di G su X è il dato (Elemento di X) per ogni $g \in G$ di una biezione di $a(g): X \to X$, in modo tale che $a(g_1,g_2) = a(g_1)a(g_2) \in G$

Notazione: Quando è chiaro chi sia a, spesso si scrive g. x invece di a(g)(x)

Esempi:

- 1) Quando abbiamo mostrato che $\sigma\in\mathfrak{S}_n$, non può essere sia pari sia dispari, abbiamo definito un'azione di $G=\mathfrak{S}_n$ e
- $X = \mathbb{K}[x_1, \dots, x_n] = \{\text{Polinomi in } n \text{ variabili}\}: \forall \sigma \in \mathfrak{S}_n, a(\sigma) : \mathbb{K}[x_1, \dots, x_n] \to [x_1, \dots, x_n], p(x_1, \dots, x_n) \mapsto p(x_{\sigma(1)}, \dots, x_{\sigma(n)})$
- 2) Parlando del simplesso abbiamo considerato un'azione di $\mathfrak S$ su $X=\{e_1,\ldots,e_n\}$ data da $a(\sigma)(e_i)=e_{\sigma(i)}$ e quindi un'azione di $\mathfrak S$ su $\mathbb K^n$: $a(\sigma)(x_1,\ldots,x_n)=(x_{\sigma(1)},\ldots,x_{\sigma(n)})$
- 3) Sia P_n un poligono regolare con n lati e \mathfrak{D}_n il gruppo diedrale $\mathfrak{D}_n = \{\text{Movimenti rigidi del piano che fissano } P_n\}$ e siano $X = \{\text{Vertici di } P_n\}$. Abbiamo osservato che \mathfrak{D}_n agisca su X e questo da un omomorfismo
- $a:\mathfrak{D}\to Sym(X)\simeq\mathfrak{S}_n$ (l'isomorfismo è dato numerando i vertici del poligono). Inoltre è iniettivo.
- 4) Abbiamo osservato che \mathfrak{D}_6 agisce $X = \{ \text{Simmetrie rispetto ai vertici del poligono} \}$, ovvero ho un omomorfismo $\mathfrak{D}_6 \to Sym(X) \simeq \mathfrak{S}_3$
- 5) Nella dimostrazione del teorema di Cayley abbiamo definito $\forall g \in G, mg: G \to G, h \mapsto gh$. Osserviamo che $mg \in Sym(G): h \mapsto gh$. Quindi $M: G \to Sym(G), g \mapsto mg, mg_1mg_2 = mg_1g_2$ è un'azione, cioè G agisce su G per moltiplicazione a sinistra.

6) Sia $H \leq G$, G agisce per moltiplicazione a sinistra sull'insieme delle classi laterali, cioè

$$\overline{mg}: \ ^G/_H
ightarrow \ ^G/_H, kH \mapsto gkH \Rightarrow \overline{mg} \in Sym(^G/_H)$$

7) Un gruppo G agisce su sé stesso per conjugio, cioè $orall g\in G, C_g:G o G, h\mapsto ghg^{-1}$, ho $C_g\in Aut(G)\leq Sym(G)$ e

 $C_{g_1}\circ C_{g_2}=C_{g_1g_2}\Rightarrow C:G o Sym(G),g\mapsto C_g$ è un omomorfismo, cioè ho un'azione

8) Se $H \leq G$, allora $\forall g \in G, C_g(H) = \{ghg^{-1}, h \in H\}$ è sottogruppo di G, quindi G agisce per coniugio su $X = \{\text{Sottogruppi di } G\}$

Definizione di Orbita: Data un'azione di G su X, per ogni $x \in X$, definisco Orbita di x,

 $\mathcal{O}(x)=\{g.\,x,g\in G\}=\{a(g)(x),g\in G\}$ Dico che l'orbita è Transitiva se G è composto da una sola orbita, ossia $\forall x,y\in X,\exists g\in G\ t.\ c.\ g.\ x=y$

Definizione di Stabilizzatore: Si chiama Stabilizzatore di x l'insieme $Stab_x = \{g \in G \ t. \ c. \ g. \ x = x\}$

Osservazione:

1. Le orbite danno una partizione di X, cioè "appartenere ad una stessa orbita" è una relazione di equivalenza

$$2. \forall x \in X, Stab_x \leq G$$

Esempio:

1)
$$G=\mathfrak{S}_3, X=\mathbb{K}[x_1,x_2,x_3], p(x_1,x_2,x_3)=x_1^2+x_2x_3$$

 $Stab_p = \{id, (23)\}$. Infatti:

$$(13)p(x_1,x_2,x_3) = x_3^2 + x_2x_1 = x_3^2 + x_1x_2 = (132)p(x_1,x_2,x_3)$$

$$(12)p(x_1,x_2,x_3)=x_2^2+x_1x_3=x_2^2+x_3x_1=(123)p(x_1,x_2,x_3)$$

$$(id)p(x_1,x_2,x_3)=x_1^2+x_2x_3=x_1^2+x_3x_2=(23)p(x_1,x_2,x_3)$$

Quindi
$$o_p = \{x_1^2 + x_2x_3, x_2^2 + x_3x_1, x_3^2 + x_1x_2\}$$

2) G agisce su G, per moltiplicazione a sinistra di $x \in G$. o(x) = G perché $\forall y \in G, \exists g = yx^{-1}$ t.c. $g. x = yx^{-1}x = y$.

L'azione è transitiva $Stab_x = \{e\}$ per la legge di cancellazione: $g. \, x = x \Leftrightarrow x = e$

3) G agisce su G per coniugio, orbite=classi di coniugio, $Stab_x = \{g \in G \ t. \ c. \ C_g(x) \Leftrightarrow gxg^{-1} = x\} = \{g \in G, gx = xg\}$

 $\textbf{Definizione di Centralizzatore: } \grave{\mathsf{E}} \ \mathsf{l'insieme} \ \mathit{Cen}(x) = \{g \in \mathit{G}\ t.\, c.\ \mathit{C}_g(x) \Leftrightarrow gxg^{-1} = x\} = \{g \in \mathit{G}, gx = xg\}$

Osservazione:
$$Z(G) = \bigcap_{x \in G} (Cen(x))$$

Teorema delle Orbite: Gli insiemi o(x) e G/S_{tab_x} sono in biezione. Di conseguenza, se l'azione ha r orbite e x_1,\ldots,x_r è un insieme di rappresentanti delle orbite, allora $|X|=\sum_{i=1}^r [G:Stab_x]$

Dimostrazione

Definiamo un'applicazione $F: egin{array}{ccc} o(x) &
ightarrow & {}^G/_{Stab_x}, \ gStab_x, \end{array}$ dove $gStab_x$ sono le classi laterali di g.

È ben definita se $g_1.x=g_2.x$ per qualche $g_1,g_2\in G$, allora $g_2^{-1}g_1.x=e.x=x\Leftrightarrow g_2^{-1}g_1\in Stab_x\Leftrightarrow g_1Stab_x=g_2Stab_x$ F è suriettiva per definizione

F è iniettiva per definizione F è iniettiva perché se $g_1Stab_x=g_2Stab_x$ allora $g_2=g_1h, h\in Stab_x$ e dunque $g_2.x=g_1h.x\Leftrightarrow g_1\underbrace{hx}_{\in Stab_x}=g_1.x$

Poiché F è in biezione, $|\mathcal{O}(x)| = |G'|_{Stab_x} = [G:Stab_x]$ e poiché le orbite formano una partizione, $|X| = \sum_{i=1}^r |\mathcal{O}(x)|$

Definizione di Orbita Banale: Si dice che un'orbita $\mathcal{O}(x)$ è banale se $|\mathcal{O}(x)| = 1$, cioè se $\mathcal{O}(x) = \{x\}$

Osservazione: Considero l'azione di G su G per coniugio. Dunque le orbite sono le classi di coniugio e lo stabilizzante di X è Cen(x) ($\Rightarrow Stab_x = Cen(x)$)

Osservazione: L'orbita $\mathcal{O}(x)$ di x è banale $\Leftrightarrow gxg^{-1}=x, \forall g\in G \Leftrightarrow gx=xg, \forall g\in G \Leftrightarrow x\in Z(G)$

Corollario (Formala delle Classi): Sia s il numero di classi di coniugio non banali e siano g_1,\dots,g_a rappresentanti di tali classi. Allora $|G|=|Z(G)|+\sum_{i=1}^r[G:Cen(x)]$

Dimostrazione:

È la formula di prima, tenuto conto delle osservazioni precedenti.

Proposizione: Sia G un gruppo di Cardinalità p^m , dove p è primo e $m \ge 1$. Allora Z(G) non può essere banale, $Z(G) \ne \{e\} \Rightarrow p \mid |Z(G)|$

Dimostrazione:

 $\text{Per la formula delle classi, } |Z(G)| = |G| - \sum_{i=1}^r [G:Cen(x)]. \text{ Poich\'e } Cen(g) \leq G, |Cen(g)| = p^a, a \leq m. \text{ Se fosse } a = m, a \leq m \text{ of } a$

avrei che $Cen(g) = G \Rightarrow g \in Z(G)$, assurdo perché tutti gli elementi del centro eran già a sinistra, quindi $a < m \Rightarrow p$ divide ogni addendo $\Rightarrow p||Z(G)||$

Proposizione: Sia G un gruppo di cardinalità p^2 (con p primo), allora g è commutativo.

Dimostrazione:

Per Lagrange $|Z(G)| = 1 \lor p \lor p^2$ ma non può essere 1 per la preposizione precedente, quindi $p \lor p^2$.

Supponiamo per assurdo che $|Z(G)|=p\Rightarrow \exists g_i\in G,g\notin Z(G)$. Allora $Cen(g_i)$ deve contenere sia g_i che Z(G) e dunque ha almeno p+1 elementi. Ma allora per Lagrange $Cen(g_i)$ ha p^2 elementi \Rightarrow quindi Z(G) ha p^2 elementi \Rightarrow G è commutativo.

Lemma: Dato $n \in \mathbb{N}, n \ge 1$ e dato un primo p, definiamo $mp(n) = \{max \ r \ \text{t.c.} \ p^r | n\}$, cioè $n = p^r a, p \neg | a$, ossia $p \neg | \binom{n}{p^r}$ Esempio:

$$n=240, p=2, mp(240)=4$$
 e $\binom{240}{16}=\frac{240\cdot 239\cdot ...\cdot 225}{16\cdot 15\cdot ...\cdot 2\cdot 1}$

Dimostrazione:

$$\binom{n}{p^m} = \frac{p^m a \cdot (p^m a - 1) \cdot \ldots}{p^m \cdot (p^m - 1) \cdot \ldots} = a \prod_{i=1}^{p^m - 1} \frac{p^m a - 1}{p^m - i} \text{, adesso basta dimostrare che la frazione fattorizzata è divisibile per } p.$$

In effetti se $i = p^s j$ con $p \neg | j$ e j < m e s < m (questo perché $i < p^m$), quindi

$$\frac{p^ma-i}{p^m-i} = \frac{p^ma-p^sj}{p^m-p^sj} = \frac{p^s}{p^s} \frac{p^{m-s}a-j}{p^{m-s}-j} = \frac{p^{m-s}a-j}{p^{m-s}-j} \text{ che non \`e divisibile per } p^{m-s}$$

Primo Teorema di Sylow: Sia G un gruppo e p un primo e sia m = mp(|G|). Allora esiste un sottogruppo di G di cardinalità p^m detto sottogruppo di Sylow.

Dimostrazione:

Sia X l'insieme di tutti i sottoinsiemi di G di cardinalità m. Per la legge di cancellazione, se $X_0 \in X$, allora anche $gX_0 = \{gh, h \in X_0\} \in X \Rightarrow g$ agisce su X per moltiplicazione a sinistra.

Sempre per la legge di cancellazione, $\forall X_0 \in X, |Stab_{X_0}| < p^m$

Poiché se $g\in Stab_{X_0}, h\in X_0, gh\in X_0$ e se $g_1\neq g_2\Rightarrow g_1h\neq g_2h.$ Osserviamo che $|X|=\binom{|G|}{p^n}$ e quindi per il lemma

precedente,
$$p
mid |X| = \sum_{i=1}^r [G:Stab_{X_i}]$$

Dunque $\exists X_i \in X \text{ t.c. } p \neg | [G:Stab_{X_i}]$ e quindi $p^m | |Stab_X|$. Ma per quanto abbiamo visto prima. ossia che $|Stab_{X_i}| \leq p^m$ si ha che $|Stab_{X_i}| = p^m$

Esempio:

 $G=GL(d,\mathbb{Z}_{/p})$, con p primo e $U=\{M\in G\mid M\ ext{\'e}\ ext{triangolare superiore con tutti 1 sulla diagonale}\}.$

Vediamo che U è un p-sottogruppo di Sylow di G.

 $M\in G\Leftrightarrow \mathsf{Le}$ sue colonne formano una base di $(\mathbb{Z}_{/p})^d\cdot |G|=(p^d-1)(p^d-p)(p^d-p^2)\cdot\ldots\cdot (p^d-p^{d-1})$

Quindi
$$m_p(|G|) = 0 + 1 + 2 + \ldots + (d-1)$$

$$\mathsf{Se}\ M \in U,\ M = \begin{pmatrix} 1 & * & \dots & * \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix},\ \mathsf{allora}\ |U| = 1 \cdot p \cdot p^2 \cdot \dots \cdot p^{d-1} \Rightarrow m_p(|U|) = 0 + 1 + 2 + (d-1)$$

Osservazione: Abbiamo visto con il corollario del Teorema di Lagrange che se $g \in G$, allora o(g) divide |G|, ma non vale il viceversa:

Esempio:

 $|\mathscr{A}_4|=12$ e 6|12, ma \mathscr{A}_4 non ha sottogruppi di ordine 6

Però per i divisori primi di |G| vale il viceversa.

Teorema di Cauchy: Sia p, un numero tale che p divida |G|, allora \exists un elemento g tale che o(g) = p Dimostrazione:

Lo verifico come il corollario del primo Teorema di Sylow.

Se
$$|G|=p^ma$$
 con $p\neg|a$, allora $\exists H\leq G$, con $|H|=p^m$. Sia $x\in H$ con $x\neq e\Rightarrow$ per Lagrange $o(x)=p^e$, dove $e=\{1,\ldots,m\}$ allora $g=x^{p^{e-1}}\Rightarrow g^p=(x^{p^{e-1}})^p=g^{p^d}=1\Rightarrow o(g)=p$

Lemma: Sia H un gruppo con $|H|=p^m$ che agisce su di un insieme X e sia X^H l'insieme dei punti fissi

$$X^H = \{x \in X \mid hx = x, orall h \in H\}$$
, allora $|X| \equiv |X^H|$ (p)

Dimostrazione:

Sia $x\in X$ tale che $Stab_x
eq H$ $(\Leftrightarrow x\in X\setminus X^H)$, allora $|\mathcal{O}_x|=|^{|H|}/_{|Stab_x|}$ è multiplo di p

Quindi, poiché le orbite formano una partizione di $|X| = |X^H| + \text{Multipli di p}$

Secondo Teorema di Sylow: Siano H, K due p-sottogruppi di Sylow di G, allora H e K sono coniugati (che siano $\exists g \in G$ t.c. $K = gHg^{-1}$)

Dimostrazione:

Sia $X = {}^G/{}_K$ e considerare l'azione di H su X per moltiplicazione a sinistra. Per il lemma appena dimostrato

$$[G:K]=|X|\equiv |X^H|$$
 modulo p , e quindi poiché $p\lnot |[G:K]=a$, p non divide $|X^H|\Rightarrow X^H
eq\varnothing$.

In altre parole $\exists gK \in X^H$ per qualche $g \in G$

 $hgK=gK, \forall h\in H$ (dalla definizione di X^H) $\Rightarrow g^{-1}hgK=K\Rightarrow g^{-1}Hg\subseteq K.$

Poiché $|g^{-1}Hg|=|H|=|K|$ e questo implica che $g^{-1}Hg=K$

Definizione di Normalizzatore: Sia $H \leq G$, con G un gruppo. Si chiama Normalizzatore di H in G e indicato con $N_G(H) = \{g \in G \mid gH = Hg\}$. Inoltre $H \leq N_G(H)$

Terzo Teorema di Sylow: Sia $|G|=p^ma$ con $p\neg|a$ e sia $n_p=$ numero di p-Sylow di G_i allora:

- 1. $n_p|a$
- 2. $n_p \equiv 1$ (*p*)

Dimostrazione:

- 1) Sia X l'insieme di tutti i sottogruppi di Sylow di G. Per il primo Teorema di Sylow, X non è vuoto. Sia quindi $H \in X$, per il Secondo Teorema di Sylow, $n_p = |X| = |\mathcal{O}_x| = \frac{|G|}{|Stab_H|}$, dove $Stab_H = \{g \in G \mid gHg^{-1} = H\} = N_G(H)$ e $H \leq N_G(H)$. Per Lagrange si ha che |H| divide $|Stab_H|$, quindi n_p divide $\frac{|G|}{|H|} = a$
- 2) Considero l'azione di H su X e sia X^H l'insieme dei Punti Fissi. Se $K \in X^H$, cioè K è un p-sottogruppo di Sylow e hKH^{-1} , $\forall h \in H \Rightarrow H \leq N_G(K)$. Per il secondo Teorema di Sylow applicato a $N_G(K)$, H e K sono coniugati in $N_G(K)$, ma $K \leq N_G(K) \Rightarrow K = H$. Quindi $X^H = \{H\}$ e per il lemma $|X| \equiv |X^H| \equiv 1$ (p)

Osservazione: A volte le condizioni 1) e 2) implicano che $n_p = 1$. In questo caso l'unico p-sottogruppo di Sylow deve essere normale!

Esercizio:

Dimostrare che se |G| = 15, allora è ciclico

Soluzione:

Per il Terzo Teorema di Sylow p=3, $n_3 \neg | 5 \wedge n_3 \equiv 1 \ \ (3) \Rightarrow n_3=1.$

Allo stesso modo si ottiene che $n_5=1$

Quindi $\exists !K \leq G$ tale che |H|=3 e $\exists !K \leq G$ tale che |K|=5

Visto che devo considerarli con i loro coniugati, $H \unlhd G$ r $K \unlhd G$

Si sa che $H \cap K < H, K$ e quindi per Lagrange si ottiene che $H \cap K = \{e\}$ e poiché

$$3\cdot 5=15\Rightarrow HK=G\Rightarrow G=H\times K$$

ma $H\simeq \mathbb{Z}_{/3}$ e $K\simeq \mathbb{Z}_{/5}$, quindi $G\simeq \mathbb{Z}_{/3}\times \mathbb{Z}_{/5}\simeq \mathbb{Z}_{/15}$ per il teorema Cinese del Resto.

Si può vedere come con 7 non si avrebbe avuto lo stesso risultato in quanto $7 \equiv 1 \pmod{3}$