DataBOOM: the canon for data science

Databrew

2021-06-07

Contents

1	Welcome!	9
	What this is, and what it isn't	9
	Who this is for	9
	What you will learn	10
	Who we are	11
Ι	Core theory	13
2	Principles of data science	15
	What is data science?	15
	What is the data life cycle?	15
	What is a pipeline?	15
	Data science 'in the wild'	15
	The reproducibility crisis	15
3	Visualizing data	17
	3.1 Bad examples	17
	3.2 Good exaples	17
	3.3 Edward Tufte	17
	3.4 Grammar of graphics	17
	3.5 Design principles	17
	3.6 Plots & power	17
4	Data ethics	19
5	Setting up RStudio	23
6	Running R code	25
	RStudio's Console	25
	Running code in the <i>Console</i>	26
	Use R like a calculator	28
	Using operators in R	29
	Use built in functions within R	30

4 CONTENTS

7	Using RStudio and R scripts	33
	R and RStudio: what's the difference? $\dots \dots \dots \dots$.	33
	Two-minute tour of RStudio	34
	Scripts	35
	Your working directory	40
	Typical workflows	41
8	Variables in R	45
	Introducing variables	45
	Types of data in R	47
9	Structures for data in R	51
	Introducing data structures	51
	Vectors	51
10	Calling functions	57
_5	Introducing R functions	57
11	Base plots	63
	Introduction	63
	Create a basic plot	63
	Most common types of plots	64
	Basic plot formatting	66
	Plotting with data frames	72
	Next-level plotting	73
12	Packages	81
	Introducing R packages	81
	Finding the packages already on your computer	82
	Installing a new package	83
	Loading an installed package	84
	Calling functions from a package	85
	Review: the workflow for using a package	85
	A note on package dependencies	87
	A note on package versions	87
13	Basics of ggplot	89
	What is ggplot?	89
	The name and concept	89
	A practical example	90
	Learning examples	90
	Other resources	90
11	Importing data	0.2
14	Importing data	93
	.csv files	93
	Data format requirements	95
	Reading in data	97

CONTENTS 5

15	Dataframes	101
	Subsetting & exploring dataframes	101
	Tidy data	108
16	Exporting data & plots	109
	write.csv()	109
	saveRDS()	110
	pdf() and png()	110
17	Exploring data	113
	Exploring distributions	114
	Descriptive statistics	121
18	Significance statistics	123
	p-values	
	Tests for different data types	
	Comparison tests	
	Tests of association	
	Reporting results	137
19	Joining datasets	145
	Joining: the basics	145
20	Writing functions	155
	First steps	155
	Next steps	156
	Sourcing functions	162
21	for loops	165
	Basics	165
	for loops in plots	167
	Using for loops to process & summarize data	174
22	Conditional statements	187
	First steps	
	Next steps	189
23	Working with text	193
	Basics	193
	Common tools	193
24	Working with dates & times	197
25	Working with factors	199
26	Matrices & lists	201
	Lists	201

6	CONTENTS
6	CONTENTS

Matrices	. 203
27 Cleaning messy data	211
28 Excel files & GoogleSheets	213
II Interactive dashboards	215
29 Intro to Shiny apps	217
30 Shiny dashboards	219
31 Data entry apps	221
III Databases	223
32 Introduction 32.1 What 32.2 Why 32.3 When 32.4 When not	. 225 . 225
33 Platforms 33.1 PostgreSQL	. 227
34 Alternatives 34.1 NoSQL	229 . 229
35 Practices	231
IV Documenting your work	233
36 R Markdown	235
37 Reproducible research	237
38 Automated reporting	239
39 Formatting standards 39.1 Tables	. 241

C	ONTENTS	S 7	7

40 G	it 24	13
T	here is a better way $\dots \dots \dots$	15
W	That is git?	16
W	Thy?	16
G	et ready for git \ldots 24	17
In	stallation	18
	etting to know git bash	
	onfiguration	
	ithub	
	bit more practice	
A	dvanced git	56
\mathbf{V}	Sharing research 25	7
	ections of a report 25	
	verall structure	
	bstract	
	troduction	
	ethods	
	$_{\cdot}$ esults	
	iscussion	
U	ther elements of a report	ſŪ
	ormatting, structure & style 27	_
	ore principles	
	urther considerations	
	ogistics of scientific writing	
	ormatting tables	
F	ormatting figures	3 U
43 P	resentations 28	33
Crea	ting websites 29	1
VI	Advanced skills 29	3
44 M	Tapping 29)5
45 G	eographic computing & GIS 29	7
46 S	tatistical modeling 29	9
47 A	pply family 30)1
48 R	andomization statistics 30)3

8	CONTENTS

Basic idea	
49 Iterative simulations	323
50 Image analysis	325
51 Machine learning	327

Chapter 1

Welcome!

Welcome to DataBOOM, a curriculum designed to guide you from your very first line of code towards becoming a professional data scientist.

What this is, and what it isn't

This is not a textbook or a reference manual. It is not exhaustive or comprehensive. It is a *training manual* designed to *empower researchers to do impactful data science*. As such, its tutorials and exercises aim to get you, the researcher, to start writing your own code as quickly as possible and – equally of importance – to *start thinking like a data scientist*, by which we mean tackling ambiguous problems with persistence, independence, and creative problem solving.

Furthermore, this is not a fancy interactive tutorial with bells or whistles. It was purposefully designed to be simple and "analog". You will not be typing your code into this website and getting feedback from a robot, or setting up an account to track your progress, or getting pretty merit badges or points when you complete each module.

Instead, you will be doing your work on your own machine, working with real folders and files, downloading data and moving it around, etc. – all the things you will be doing as a data scientist in the real world.

Who this is for

This curriculum covers everything from the absolute basics of writing code in R to machine learning with tensorflow. As such, it is designed to be useful to everyone in some way. But the target audience for these tutorials is the student who wants to work with data but has zero formal training in programming, computer science, or statistics.

This curriculum was originally developed for the **Sewanee Data Institute for Social Good** at Sewanee: The University of the South, TN, USA.

What you will learn

• The **Core theory** unit establishes the conceptual foundations and motivations for this work: what data science is, why it matters, and ethical issues surrounding it: the good, the bad, and the ugly.

The next several units comprise a *core* curriculum for tackling data science problems:

- The **Getting started** unit teaches you how to use R (in RStudio) to explore and plot data. Here you will add the first and most important tools to your toolbox: working with variables, vectors, dataframes, scripts, and file directories.
- The Basic R workflow unit teaches you how to bring in your own data and work with it in R. You will learn how to format data to simplify analysis and add tools for *data wrangling* (i.e., transforming and re-formatting data to prepare it for plotting and analysis). You will also learn how to conduct basic statistics, from exploratory data analyses (e.g., producing and comparing distributions) to significance testing.
- The Essential R skills unit equips you with the tools, tricks, and mindset
 for tackling the most common tasks in data science. This is where you
 really begin to cut your teeth on real-world data puzzles: figuring out how
 to use the R tools in your toolbag to tackle an ambiguous problem and
 deliver an excellent data product.

The next several units provide a suite of skills essential to any data science professional:

- The Interactive dashboards unit teaches you how to make dashboards and websites for projects using shiny in RStudio.
- The **Databases** unit teaches you how to access, create, and work with relational databases online using **SQL** and its alternatives.
- The Documenting your work unit teaches you to use R Markdown to produce beautiful, reproducible data reports. You will also learn about version control, using Git and GitHub to collaborate on shared projects and work on data science teams.
- The Sharing research unit teaches you to produce publishable research articles and compelling presentations.

The final unit, **Advanced skills**, introduces you to a variety of advanced data science techniques, from interactive maps to iterative simulations to machine learning, that can help you begin to specialize your skillset.

Who we are

Joe Brew is a data scientist, epidemiologist, and economist. He has worked with the Florida Department of Health (USA), the Chicago Department of Public Health (USA), the Barcelona Public Health Agency (Spain), the Tigray Regional Health Bureau (Ethiopia) and the Manhiça Health Research Center (Mozambique). He is a co-founder of Hyfe and DataBrew. His research focuses on the economics of malaria and its elimination. He earned his BA at Sewanee: The University of the South (2008), an MA at the Institut Catholique de Paris (2009) and an MPH at the Kobenhavns Universitet (2013). He is passionate about international development, infectious disease surveillance, teaching, running, and pizza.

Eric Keen is a data scientist, marine ecologist, and educator. He is the Science Co-director at BCwhales, a research biologist at Marecotel, a data scientist at Hyfe, and a professor of Environmental Studies at Sewanee: the University of the South. He earned his BA at Sewanee (2008) and his PhD at Scripps Institution of Oceanography (2017). His research focuses on the ecology and conservation of whales in developing coastal habitats. He is passionate about whales, conservation, teaching, small-scale farming, running, and bicycles. And pizza.

Part I Core theory

Chapter 2

Principles of data science

What is data science?

Data science is an interdisciplinary field. Some have argued that it is not a field unto itself, but rather an extension of statistics. In this course, however, we'll take the majority view that data science is its own field: a new field, which combines statistics, mathematics, and computer science.

But we'll go one step outward. Data science is not just the combination of those academic disciplines which form its core; its also something more. Good data science involves domain knowledge (ie, familiarity with the problem being solved), effective communication, an iterative mentality (ie, creating feedback loops for rapid hypothesis testing), a bias to real-world effects rather than theoretical frameworks, and a willingness/desire to work in the real world.

There are a lot of Venn diagrams and figures out there, trying to show what data science is. For example...

The Data Scientist Venn Diagram

... or ...

