Analysis of a single dose-response curve Binary/binomial data

Christian Ritz

Nov 3 2019

Example 1

Dose-response data from a acute inhalation toxicity test where 20 animals were exposed to 4 doses (mg/ml of an unknown substance), 5 animals per dose:

```
library(devtools)
install_github("DoseResponse/drcData")
library(drcData)
acute.inh
```

```
## dose total num.dead
## 1 422 5 0
## 2 744 5 1
## 3 948 5 3
## 4 2069 5 5
```

Fitting the model

The proportions of dead animals (num.dead/total), which is the response, are specified on the left hand side of the tilde (\sim), and the dose (dose) on the right hand side. The totals (total) are provided through the argument weights

We fit a two-parameter log-logistic model:

Fitted dose-response curve (1)

Using plot() again:

```
plot(acute.inh.LL.2, broken = TRUE,
    xlim = c(0, 10000), ylim = c(0, 1),
    ylab = "Proportion dead",
    xlab = "Dose (mg/ml)")
```

Fitted dose-response curve (2)

Summary of the model fit

Showing parameter estimates:

Getting confidence intervals:

e:(Intercept) 731.53397 1059.062485

```
confint(acute.inh.LL.2)

## 2.5 % 97.5 %

## b:(Intercept) -17.88909 2.028992
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Example 2

Data are from an earthworm toxicity test with 6 concentrations of the herbicide chloracetamide. For each concentration, 40 earthworms were exposed to the herbicide and subsequently the number of dead earthworms was counted. The control or natural mortality was 3/40 = 7.5%.

chlorac

```
conc total num.dead
        0
              40
       10
              40
       20
              40
       40
              40
                         38
                         40
       80
              40
## 6
      160
              40
                         40
```

Fitting the model

Natural mortality incorporated using a three-parameter dose-response model where there is an additional model parameter describing the proportion of natural mortality

We fit a three-parameter log-normal model including a parameter for the lower limit (corresponding to the natural mortality), but fixing the upper limit at 1 as was also the case for the two-parameter models in the previous example:

Fitted dose-response curve (1)

Using the plot function once more:

Fitted dose-response curve (2)

Summary of the model fit

```
summary(chlorac.LN.3u)
##
## Model fitted: Log-normal with upper limit at 1 (3 parms)
##
## Parameter estimates:
##
##
                 Estimate Std. Error t-value p-value
## b:(Intercept)
                 4.603773 1.043813 4.4105 1.031e-05 ***
## c:(Intercept) 0.099988 0.033573 2.9783 0.002899 **
## e:(Intercept) 28.291922 2.271962 12.4526 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
confint(chlorac.LN.3u)
##
                      2.5 % 97.5 %
## b:(Intercept) 2.55793762 6.6496084
## c:(Intercept) 0.03418668 0.1657886
```

e:(Intercept) 23.83895875 32.7448861

Estimating EC values

We can estimate the concentration resulting in a total mortality of 50%, which is an EC value that is defined in absolute terms based on the probability scale and not relative to limits partly or fully estimated from the data:

```
ED(chlorac.LN.3u, 50 /100, type = "absolute", interval = "delta")
```

```
## Estimated effective doses
##
## Estimate Std. Error Lower Upper
## e:1:0.5 27.4464 2.3155 22.9080 31.9847
```

If instead a two-parameter model had been fitted then the estimated EC50 would become smaller, biased downwards, with a more narrow 95% confidence intervals: a less accurate but more precise estimate of EC50 would be the result (bias-variance tradeoff)

##