Initialization Heuristics for Greedy Bayesian **Network Structure Learning**

Walter Perez Urcia Denis Deratani Mauá

> Universidade de São Paulo Instituto de Matemática e Estadística Departamento de Ciências da Computação

> > KDMiLE 2015

Contents

- Motivation
- 2 Bayesian Network
- 3 Learning BN
- 4 Initializing Heuristics
- 6 Experiments

Motivation

Motivation

Car Evaluation Dataset

- Buying price (B): v-high, high, med, low
- Maintain cost (M): v-high, high, med, low
- Doors (D): two, three, four, more
- Persons (P): two, four, more
- Luggage boot (L): small, medium, big
- Safety (S): low, medium, high

Motivation

o●oo Example

- $\forall c$, $Buying(c, high) \rightarrow Doors(c, four) \land Persons(c, more)$
- $\forall c, Maintain(c, low) \rightarrow Safety(c, high)$

But, how to represent:

- Half of cars that have four doors have a medium luggage boot
- 15% of cars are low safety, 77% medium safety and 8% high safety

Using probability theory, to represent all possible relations we have:

$$\mathbb{P}(B, M, D, P, L, S)$$

This requires $4 \times 4 \times 4 \times 3 \times 3 \times 3 = 1728$ probabilities hard to estimate, but we can drastically reduce this number by assuming (conditional) independences

For example:

Motivation

000● Example

- *D* and *P* are independent given *B*: $\mathbb{P}(D, P \mid B) = \mathbb{P}(D \mid B)\mathbb{P}(P \mid B)$
- M and S are independent given D: $\mathbb{P}(M, S \mid D) = \mathbb{P}(M \mid D)\mathbb{P}(S \mid D)$

Bayesian Network

Definition

- A DAG G over a set of variables X_1, \ldots, X_n
- Markov Property: Given its parents, every variable is conditionally independent from its non-descendant non-parents
- Probability constraints: $\mathbb{P}(X_i = k \mid Pa(X_i) = j) = \theta_{iik}$

Joint Probability Distribution

There is a unique probability function consistent with a BN:

$$\mathbb{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbb{P}(X_i\mid \mathit{Pa}(X_i))=\prod_{i=1}^n heta_{ijk}$$

From the previous example:

$$\mathbb{P}(B, M, D, P, L, S) = \mathbb{P}(B)\mathbb{P}(D \mid B)\mathbb{P}(P \mid B)\mathbb{P}(M \mid D)\mathbb{P}(S \mid D, P)\mathbb{P}(L \mid P)$$

Learning BN

This requires

$$4 + (4 \times 4) + (3 \times 4) + (4 \times 4) + (3 \times 4 \times 3) + (3 \times 3) = 93$$
 probabilities

Imagine each variable has kvalues: We requires k^{33} probabilities without independences.

- Elicitation from expert knowledge
- Direct translation
- Learning from data

Constructing Bayesian networks

Elicitation

ANDES: Intelligent Tutoring System to teach Newtonian Physics

Direct Translation

Learning BN

Example

- Age (A): young, adult, old
- Gender (G): male, female
- Education (E): primary, high school, university
- Occupation (O): employee, self-employed
- City size (C): big, small
- Transport (T): private (car), public (bus, train, etc)

Motivation

Age	Gender	City Education	Occupation	Transport	
adult	F	big	high	employee	car
adult	M	small	uni	employee	car
adult	F	big	uni	employee	train
young	М	big	high	self-emp	car
adult	M	big	high	employee	car
:	:	:	:	:	:
	•	<u> </u>	•	•	•

BN Structure Learning Approaches

Constraint-based approaches

Perform multiple conditional independence hypothesis testing in order to build a DAG

Score-based approaches

Associate every DAG with a polynomial-time computable score value and search for structure with high score values

Initializing Heuristics

Score-based Structure Learning

Learning as optimization

Given dataset D, select G that maximizes decomposable score function:

$$sc(G, D) = F(G) + \psi(N) \times P(G)$$

Score-based Structure Learning

Motivation

Learning as optimization

Select G that maximizes decomposable score function

$$G^* = arg \max_{G:G \text{ is a DAG}} sc(G)$$

$$G^* = arg \max_{G} \sum_{i} sc(X_i, Pa(X_i))$$

Score-based Structure Learning

$$sc(G^*) = -9508.34$$

$$sc(G^*) = -6917.23$$

$$sc(G^*) = -8891.52$$

Greedy Search is a popular approach to find an approximate solution

```
1 GreedySearch ( Dataset D ): return a BN G

2 G = Initial\_Solution(X_1, ..., X_n)

3 For a number of iterations K

4 best\_neighbor = find\_best\_neighbor(G)

5 if\ score(best\_neighbor) > score(G) then

6 G = best\_neighbor

7 Return G
```

- Structure-based
- Equivalence-based
- Order-based

Structure-based Greedy Search

Imagine incumbent solution is

Neighboorhood:

Add an edge

Remove an edge

Invert an edge's direction

Motivation

Based on the observation that the problem of learning a Bayesian network can be written as

$$G^* = \arg\max_{\substack{< \ G \text{ consistent with } <}} \sum_{i=1}^n sc(X_i, Pa(X_i))$$

$$G^* = \arg\max_{\substack{< \\ i=1}} \sum_{P \subseteq \{X_j < X_i\}} sc(X_i, P)$$

An optimal DAG can be found by maximizing the local scores independently given an order of the variables

Order-based Greedy Search

```
OrderBasedGreedySearch(Dataset D): return a BN
 1
        L = Get_{-}Order(X_1, \ldots, X_n)
 3
        For a number of iterations K
          current\_sol = L
 4
 5
          For each i = 1 to n-1 do
6
             L_i = swap(L, i, i + 1)
 7
             if score(L_i) > score(current\_sol)
8
               current\_sol = L_i
9
           if score(current\_sol) > score(L) then
10
             L = current sol
11
        Return network(L)
```

where swap(L, i, i + 1) swaps the values L[i] and L[i + 1]

Order-based Greedy Search

Imagine incumbent solution is

with sc = -8891.52

Neighborhood

- [G, A, E, C, O, T], sc = -7593.82
- [A, E, G, C, O, T], sc = -8891.48
- [A, G, C, E, O, T], sc = -9149.13
- [A, G, E, O, C, T], sc = -6917.23
- [A, G, E, C, T, O], sc = -6999.99

Initializing Heuristics

Initial solution

We propose two different approaches to reduce the space of possible orders:

- DFS-based approach
- FAS-based approach

Upper bound

We can have an upper bound for $sc(G^*)$ by getting $sc(\overline{G})$

$$\overline{G} = \arg \sum_{i} \max_{Pa(X_i)} sc(X_i, Pa(X_i))$$

Best Parent Set

The parents of a variable X_i in graph G

- We can exploit the information provided by G and avoid generating orders which are guaranteed sub-optimal
- Assume best parent set is unique
- Consider two variables X_i and X_i in \overline{G} , where X_i is parent of X_i , but there is no arc from X_i to X_i
- No optimal ordering can have X_i preceding X_i

The number of these orderings can be much smaller than the full space of orderings

DFS-based approach

Example

Graph \overline{G}

ABDC ACDB ADBC ADCB **BDAC BDCA** CDAB CDBA DABC DACB DBAC DBCA DCAB DCBA

Possible orders from \overline{G}

DFS-based approach

The algorithm

- Take as input \overline{G} and mark all nodes unvisited
- Start with an empty list L
- While there is an unvisited node
 - Select an unvisited X_i uniformly random
 - Perform a depth-first search (DFS) rooted at X_i and add to L
 the visited nodes
- Return /

FAS-based approach

Motivation

Disadvantage of DFS approach

This approach can be seen as removing edges from \overline{G} such as to make it a DAG and then extract a topological order. But not all edges are equally relevant in terms of avoiding poor local maxima.

Estimating the relevance

We can estimate the relevance of an edge $X_i \to X_i$ by

$$W_{ji} = sc(X_i, Pa^*(X_i)) - sc(X_i, Pa^*(X_i) \setminus \{X_j\})$$

where $Pa^*(X_i)$ represents the best parent set for X_i .

We then wish to find a topological ordering of \overline{G} that violates the least cost of edges.

FAS-based approach

Example

- C is not very relevant as parent to D
- B is the most relevant parent of D

Graph \overline{G}

Initializing Heuristics 0000000000

Min-Cost Feedback Arc Set

Given a weighted directed graph G = (V, E), a set $F \subseteq E$ is called a Min-Cost Feedback Arc Set (min-cost FAS) if every (directed) cycle of G contains at least one edge in F and the sum of weights is minimum.

$$F = \min_{G-F \text{ is a DAG}} \sum_{X_i o X_i \in E} W_{ij}$$

FAS-based approach

Finding FAS F

The following algorithm find an approximate solution:

```
1 MinimumCostFAS( Graph G): Return FAS F
2 F = \text{empty set}
3 While there is a cycle C on G do
4 W_{min} = \text{lowest weight of all edges in } C
5 For each edge (u, v) \in C do
6 W_{uv} = W_{uv} - W_{min}
7 If W_{uv} = 0 add to F
8 For each edge in F, add it to G if does not build a cycle
9 Return F
```

FAS-based approach

The algorithm

- Take the weighted graph \overline{G} with weights W_{ii} as input
- Find min-cost FAS F
- Remove the edges in F from \overline{G}
- Return a topological order from $\overline{G} F$

Experiments

Configuration

For each dataset considered:

- Limit parent set size to 3
- Perform 1000 runs of Order-based Greedy Search
- At most 100 iterations (K = 100)
- Use BIC score
- Find best parent sets by exhaustive search

Datasets

Setup

Dataset	n (#attributes)	N (#instances)	Density of \overline{G}
Census	15	30168	2.85
Letter	17	20000	2.41
Image	20	2310	2.45
Mushroom	23	8124	2.91
Sensors	25	5456	3.00
SteelPlates	28	1941	2.18
Epigenetics	30	72228	1.87
Alarm	37	1000	1.98
Spectf	45	267	1.76
LungCancer	57	27	1.44

Table 1: Data sets characteristics

Experiments

O • O O O O O

Motivation

Dataset	Approach	Best Score	Avg. Initial Score	Avg. Best Score	Avg. It.
Census	Random	-212186.79	-213074.18 ± 558.43	-212342.26 ± 174.21	7.26 ± 2.90
	DFS-based	-212190.05	-212736.80 ± 379.96	-212339.83 ± 152.26	5.90 ± 2.61
	FAS-based	-212191.64	-212287.99 ± 92.54	-212222.12 ± 70.99	3.28 ± 1.67
Letter	Random	-138652.66	-139774.54 ± 413.74	-139107.13 ± 329.15	6.07 ± 2.50
	DFS-based	-138652.66	-139521.38 ± 396.61	-138999.84 ± 310.06	5.75 ± 2.35
	FAS-based	-138652.66	-139050.43 ± 70.55	-139039.26 ± 87.97	$\textbf{2.24}\pm\textbf{0.96}$
Image	Random	-12826.08	-13017.13 ± 44.35	-12924.24 ± 41.39	7.59 ± 2.71
	DFS-based	-12829.10	-12999.09 ± 38.56	-12921.13 ± 37.88	7.10 ± 2.47
	FAS-based	-12829.10	-12930.63 ± 20.83	-12882.30 ± 26.43	5.05 ± 1.72
Mushroom	Random	-55513.38	-58450.72 ± 1016.54	-56563.84 ± 616.59	7.59 ± 2.76
	DFS-based	-55513.38	-58367.11 ± 871.25	-56472.72 ± 546.19	7.75 ± 2.58
	FAS-based	-55574.71	-56450.49 ± 154.54	-56198.66 ± 174.64	$\textbf{4.65}\pm\textbf{1.63}$
Sensors	Random	-62062.13	-63476.33 ± 265.46	-62726.60 ± 251.26	9.22 ± 2.94
	DFS-based	-62083.21	-63392.60 ± 255.90	-62711.50 ± 257.79	9.65 ± 3.12
	FAS-based	-62074.88	-62530.26 ± 133.44	-62330.94 ± 121.82	$\textbf{5.17}\pm\textbf{2.24}$

Motivation

Dataset	Approach	Best Score	Avg. Initial Score	Avg. Best Score	Avg. It.
SteelPlates	Random	-13336.14	-13566.50 ± 65.80	-13429.13 ± 52.14	8.96 ± 3.43
	DFS-based	-13332.91	-13572.77 ± 81.12	-13432.30 ± 57.57	9.30 ± 3.38
	FAS-based	-13341.73	-13485.26 ± 38.27	-13397.08 ± 29.53	$\textbf{7.77}\pm\textbf{2.24}$
Epigenetics	Random	-56873.76	-57722.30 ± 228.44	-57357.60 ± 222.12	5.89 ± 2.67
	DFS-based	-56868.87	-57615.36 ± 189.17	-57308.93 ± 165.18	6.42 ± 2.47
	FAS-based	-56868.87	-57660.09 ± 146.45	-57379.59 ± 148.42	$\textbf{5.33}\pm\textbf{2.28}$
Alarm	Random	-13218.22	-13324.52 ± 30.49	-13245.43 ± 15.63	10.92 ± 3.24
	DFS-based	-13217.97	-13250.72 ± 17.70	-13236.71 ± 12.02	$\textbf{4.32}\pm\textbf{2.32}$
	FAS-based	-13220.55	-13249.77 ± 2.57	-13233.98 ± 6.19	6.34 ± 1.74
Spectf	Random	-8176.81	-8202.03 ± 5.23	-8189.69 ± 4.65	7.20 ± 2.17
	DFS-based	-8172.37	-8200.04 ± 4.08	-8187.29 ± 4.91	7.86 ± 2.49
	FAS-based	-8172.51	-8176.98 ± 2.01	-8176.07 ± 2.05	$\textbf{2.27}\pm\textbf{1.11}$
LungCancer	Random	-711.23	-723.79 ± 2.69	-718.03 ± 2.84	5.46 ± 1.78
	DFS-based	-711.36	-720.47 ± 2.51	-715.29 ± 1.86	5.02 ± 1.50
	FAS-based	-711.39	-716.13 ± 0.89	-715.67 ± 1.19	$\textbf{2.73}\pm\textbf{1.79}$

Figure 1: Census

Figure 2: Letter

Random
 DFS-based

- FAS-based

Figure 3: Image

Iteration

-12900 -12950

-13000

Figure 5: Sensors

Figure 6: SteelPlates

Figure 7: Epigenetics

Figure 8: Alarm

Figure 9: Spectf

Figure 10: LungCanc

Conclusions and Future Work

- The proposed heuristics lead to better solutions on average, and increase the convergence of the search with only a small overhead
- Larger differences for datasets withs more variables are expected
- Our proposed techniques could return directed acyclic graphs instead of node orderings to be used for Structure- and Equivalence-based search approaches
- Employ the proposed heuristics in branch-and-bound solvers for finding optimal solutions

Conclusions and Future Work

Thanks!