LMS QUIZ VII-SEMESTER (CSE Core) MACHINE LEARNING (CSE_4032)

Duration: 5 minutes

Student name	Reg no.	Section	Semester

Q NO.	Question					
Q1	Question: Select all statements that are true. Which of the following best highlights a limitation of inductive learning?	1M				
	 A. Inductive learning requires rules to be explicitly programmed before training begins. B. Inductive learning never requires assumptions. C. Inductive learning guarantees perfect generalization if enough training data is available. D. Inductive learning infers general rules from specific examples, which may lead to overfitting if data is noisy. 					
Q2	 Select all statements that are true. Which of the following best explains the analytical difference between Euclidean and Manhattan distance? A. Euclidean distance sums absolute differences across dimensions, while Manhattan distance squares them. B. Euclidean distance is more sensitive to large coordinate differences because it squares them, while Manhattan distance grows linearly with differences. C. Manhattan distance always produces smaller values than Euclidean distance in high dimensions. 					
Q3	D. Euclidean and Manhattan distance yield identical results regardless of dimensionality. Unsupervised learning, no prior labels required. 1. Association Analysis Typically reduces dimensionality of data (e.g., via PCA-like transformations). 2. Cluster Analysis 3. Both	1M				
Q4	expressed as rules $(X \to Y)$. 4. Neither Finds hidden structure by grouping based on similarity/distance. Match the choice of k with its general effect on overfitting vs. underfitting:					
	Balance between bias and variance, better generalization 1. Very small k High variance, low bias, risk of overfitting 2. Very large k High bias, low variance, risk of underfitting Classifies all inputs as the majority 4. k→∞					

Q5	Select all statements that are true. Identify the true analytical distinctions between inference and causality in Bayesian Belief Networks:		
	A. Inference answers probabilistic queries such as P(X Evidence).		
	B. Causality in Bayesian Belief Networks requires interpreting directed edges under a causal framework, not just conditional dependence.		
	C. Inference can be exact or approximate, depending on complexity.		
	D. Inference and causality are interchangeable because both rely on Bayes' rule.		

Question	Q1	Q2	Q3	Q4	Q5
Answer	D	В	3 4 1 2	3124	A,B,C