Отчет по лабораторной работе № 7

По дисциплине Математическое Моделирование

Максимов Алексей Александрович

Содержание

1	Цель работы															5
2	2 Задание 3 Теоретическое введение														6	
3															7	
4	,	ораторной раб ulia penModelica														
5	Выводы															15

Список иллюстраций

2.1	image	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
4.1	image																																		9
4.2	image																•																		10
4.3	image																																		12
4.4	image																																		13
4.5	image																																		13
4.6	image																																		14
4.7	image																																		14

Список таблиц

1 Цель работы

Ознакомиться с языком программирования Julia и OpenModelica и решить задачу об эффективности рекламы.

2 Задание

Вариант № 32

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.54 + 0.00016n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000021 + 0.38n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.2\cos(t) + 0.2\cos(2t)n(t))(N-n(t))$$

При этом объем аудитории $N=609\,$, в начальный момент о товаре знает 4 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Рис. 2.1: image

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным. Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

4 Выполнение лабораторной работы

4.0.1 на Julia

```
lab6.jl
                                lab7.jl
using Plots
using DifferentialEquations
println("good")
a = 0.54
b = 0.00016
N = 609
t = collect(LinRange(0, 100, 5000))
function syst(dy, y, p, t)
     dy[1] = (a+b*y[1])*(N-y[1])
tspan=(0, 15)
prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)
plot(sol,color=:blue, label="n(t)")
savefig("C:\\Users\\maksi\\OneDrive\\Рабочий стол\\unik2.0\\Математическое
Моделирование\\julia\\julialab4jl07.1.png")
a = 0.000021
b = 0.38
N = 609
t = collect(LinRange(0, 1, 500))
function syst(dy, y, p, t)

dy[1] = (a+b*y[1])*(N-y[1])
tspan=(0, 0.1)
prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)
plot(sol, color=:red, label="n(t)")
savefig("C:\\Users\\maksi\\OneDrive\\Pабочий стол\\unik2.0\\Математическое
Моделирование\\julia\\julialab4jl07.2.png")
a = 0.2
b = 0.2
N = 609
t = collect(LinRange(0, 1, 500))
function syst(dy, y, p, t)
    dy[1] = (a*sin(2t)+b*cos(2t)*y[1])*(N-y[1])
tspan=(0, 0.3)
prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)
plot(sol, color=:green, label="n(t)")
savefig("C:\\Users\\maksi\\OneDrive\\Рабочий стол\\unik2.0\\Математическое
Моделирование\\julia\\julialab4jl07.3.png")
```


Рис. 4.2: image

максимальная скорость распростронения достигается на 0.02 секундах

Рис. 4.3: image

4.0.2 на OpenModelica

```
1
    model lab7
 2
 3
   parameter Real a1 = 0.54;
 4
    parameter Real b1 = 0.00016;
 5
   parameter Real a2 = 0.000021;
 7
    parameter Real b2 = 0.38;
9
   parameter Real a3 = 0.2;
    parameter Real b3 = 0.2;
10
11
12
    parameter Real N = 609;
13
14
   Real n1(start=4);
15 Real n2(start=4);
16 Real n3(start=4);
17
18
   equation
      der(n1) = (a1+b1*n1) * (N-n1);

der(n2) = (a2+b2*n2) * (N-n2);
19
20
21
      der(n3) = (a3*sin(2*time)+b3*cos(2*time)*n3) * (N-n3);
22
    end lab7;
```

Рис. 4.4: image

Рис. 4.5: image

Рис. 4.6: image

Рис. 4.7: image

5 Выводы

Решили задачу и написали прогррамму на Julia и OpenModelica