

2017-2018 Grupo:

- **1.** Sean $O_n = \{ p(x) \in K_n[x] : p(x) = -p(-x) \}$ y $E_n = \{ p(x) \in K_n[x] : p(x) = p(-x) \}$.
 - 1.1 Halle un polinomio de grado mínimo de $E_{\scriptscriptstyle n}$ tal que α es una de sus raíces.
 - 1.2 Halle un polinomio de grado mínimo de O_n con coeficientes reales tal que 2i es una de sus raíces.
 - 1.3 El polinomio $q(x) = x^5 6x^4 + 17x^3 24x^2 + 52x$ es divisible por la familia de polinomios que satisface 1.2), escriba la descomposición en factores irreducibles de q(x) sobre $\mathbb{R}[x]$ y $\mathbb{C}[x]$.
 - 1.4 Pruebe que $E_n \subseteq_s \mathbb{K}_n[x]$.
 - 1.5 Asumiendo que $E_n \subseteq_s K_n[x] \land O_n \subseteq_s K_n[x]$:
 - 1.5.1 Pruebe que E_n y O_n son suplementarios en $K_n[x]$.
 - 1.5.2 Halle una base de $K_n[x]$ formada por la unión de bases de E_n y O_n para n=5.
 - 1.5.3 Halle la dimensión de O_n .
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} ax + y + z = k \\ x + y + az = 2 \\ 2x + y + az = k \end{cases} \quad a, k \in \mathbb{K}$$

- **2.1** Clasifique el sistema según los valores de los parámetros $a, k \in \mathbb{K}$.
- **2.2** Obtenga una solución particular del sistema del dado para a = 2, k = 2.
- **2.3** Determine si a la matriz (A|b) del sistema puede agregársele una fila de modo que el rango de esta nueva matriz sea siempre mayor que el $\operatorname{rg}(A|b)$ independientemente del valor de $a,k\in\mathbb{K}$.
- 3. Responda verdadero o falso y justifique cada respuesta.
 - **3.1** ___Sea E espacio vectorial (e.v.) con $v_1, v_2, v_3 \in E$ tal que $v_1 + v_2 + v_3 = 0_E$ entonces $L[v_1, v_2] = L[v_1, v_3]$
 - **3.2** ___Sea $A \in M_{5x7}(K)$ con rango 5, entonces, el sistema Ax = b tiene al menos una solución.
 - **3.3** ___La matriz $\begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ no es invertible.
 - **3.4** ___Sean $A, B \in M_n(\mathbb{K})$ diagonales entonces $\det AB = \det A \cdot \det B$.
 - **3.5** ____ Sea E un e.v. sobre K, $\dim(E) = n$, $\{a_i\}$ base de E, una condición necesaria y suficiente para que un sistema finito de vectores sea linealmente independiente, es que el sistema de sus vectores coordenados con respecto a la base $\{a_i\}$ sea linealmente independiente en K^n .
 - **3.6** ___Sea $U \subseteq_S W \subseteq_S E$ tales que $\dim U = k, \dim W = m, k < m$, y sea k < l < m, entonces, existe $X \subseteq_S E$ tal que $U \subseteq_S X \subseteq_S W \wedge \dim X = l$.
 - **3.7** ___Sea $A \in M_{mxn}(\mathbb{K})$ y $B \in M_{nxr}(\mathbb{K})$, entonces se cumple que $\operatorname{rg}(AB) \leq \operatorname{rg}(B)$.

Nota: En todos los ejercicios debe justificar rigurosamente su respuesta, apoyándose en la teoría vista a lo largo del curso.

Nota: Al entregar el examen, cada ejercicio debe estar en hojas independientes.