Network Science Cheatsheet

Made by Remy Cazabet

size: number of nodes |V|. number of edges |E|Maximum number of links

Counting nodes and edges

Undirected network: $\binom{N}{2} = N(N-1)/2$

Directed network: = N(N-1)

Network Science - Introduction

Networks: Graph notation

Graph notation : G = (V, E)

set of vertices/nodes Eset of edges/links. $u \in V$

a node. $(u,v) \in E$ an edge.

Network - Graph notation

Graph

Graph notation

$$G = (V, E)$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{(1, 2), (1, 6),$$

$$(1, 5), (2, 4), (2, 3), (2, 5),$$

$$(2, 6), (6, 5), (5, 5), (4, 3)\}$$

Types of networks

Simple graph: Edges can only exist or not exist between each pair of node, and there are no self-loops, i.e., an edge connecting a node to itself.

Directed graph: Edges have a direction: $(u, v) \in V$ does not imply

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced later

Node-Edge description

N_u	Neighbourhood of u , nodes sharing a link with u .
k_u	Degree of u , number of neighbors $ N_u $.
N_u^{out}	Successors of u , nodes such as $(u, v) \in E$ in a di-
	rected graph
N_u^{in}	Predecessors of u , nodes such as $(v, u) \in E$ in a di-
	rected graph
k_u^{out}	Out-degree of u , number of outgoing edges $ N_u^{out} $.
$k_u^{out} \ k_u^{in}$	In-degree of u , number of incoming edges $ N_u^{in} $
$w_{u,v}$	Weight of edge (u, v) .
s_u	Strength of u , sum of weights of adjacent edges,
	$s_u = \sum_v w_{uv}$.

Network descriptors - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically $\langle k \rangle \ll n$. Increases slowly with network size, e.g., $\langle k \rangle \sim \log(n)^a$

$$\langle k \rangle = \frac{2m}{n}$$

Density: Fraction of pairs of nodes connected by an d,d(G)edge in G.

$$d = L/L_{\text{max}}$$

^aLeskovec, Kleinberg, and Faloutsos 2005.

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)

Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path **Shortest path**: The shortest path between nodes u, v is a path of minimal path length. Not necessarily unique.

Weighted Shortest path: path of minimal weighted path length. $\ell_{u,v}$: **Distance**: The distance between nodes u, v is the length of the shortest path

Network descriptors - Paths

 ℓ_{max}

Diameter: maximum distance between any pair of

 $\langle \ell \rangle$ Average distance:

$$\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} \ell_{ij}$$

Degree distribution

The degree distribution is considered an important network property. They can follow two typical distributions:

- Bell-curved shaped (Normal/Poisson/Binomial)
- · Scale-free. also called Power-law

A Bell-curved distribution has a typical scale: as human height, it is centered on an average value. A Scale-free distribution has no typical scale: as human wealth, its average value is not representative, low values (degrees) are the most frequent, while a few very large values can be found (hubs, large degree nodes). It has a long tail, meaning that rare (large) values are not as rare as in a bell-curved distribution.

Subgraphs

Subgraph H(W) (induced subgraph): subset of nodes W of a graph G = (V, E) and edges connecting them in G, i.e., subgraph $H(W) = (W, E'), W \subset V, (u, v) \in E' \iff u, v \in W \land (u, v) \in E$ **Clique**: subgraph with d=1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertex in the supergraph

Strongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Triangles counting

 δ_u - Triads of u: number of triangles containing node u

 Δ - **Number of triangles in the graph** total number of triangles in the graph, $\Delta = \frac{1}{3} \sum_{u \in V} \delta_u$.

Each **triangle** in the graph is counted as a **triad** once by each of its nodes.

 $\delta_u^{\rm max}$ - Triad potential of u: maximum number of triangles that could exist around node u, given its degree: $\delta_u^{\max} = \binom{k_u}{2}$ Δ^{\max} - Triangle potential of G: maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max} =$ $\frac{1}{3}\sum_{u\in V}\delta^{\max}(u)$

Clustering Coefficents - Triadic closure

The clustering coefficient is a measure of the triadic closure of a network or of a node neighborhood. The triadic closure is a notion coming from social network analysis, often summarized by the aphorism *The friends of my friends are my friends*.

- C_u Node clustering coefficient: density of the subgraph induced by the neighborhood of u, $C_u = d(H(N_u))$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta_u}{\delta_{\max}}$
- $\langle C \rangle$ Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C} = \frac{1}{N} \sum_{u \in V} C_u$.

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their C value is very sensitive, i.e., for a node u of degree 2, $C_u \in \{0,1\}$, while nodes of higher degrees tend to have more contrasted scores

 C^g - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^g = \frac{\Delta}{\Delta \max}$

Small World Network

some structural properties^a. The notion is usually not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$
- · Clustering coefficient must be high, i.e., much larger than in a random network , e.g., $C^g \gg d$, with d the network

This property is considered characteristic of *real* networks, as opposed to random networks. It is believed to be associated to particular properties (robustness to failures, efficient information flow, etc.), and to be the consequence of emergent mechanisms typical of complex systems.

Be careful: in some contexts. *small world network* can be used for a network that has a small Average distance, without considering its Clustering Coefficient.

^aWatts and Strogatz 1998.

A network is said to have the **small world** property when it has

nent in two.

Vocabulary

Complete network: $L = L_{max}$ Sparse network: $d \ll 1$, $L \ll L_{max}$

to u and another connected to v

Singleton: node with a degree k=0

Self-loop: Edge which connects a node to itself.

Hub: node u with $k_u \gg \langle k \rangle$

Connected Graph: Graph composed of a single connected com-

Bridge: Edge which, when removed, split a connected compo-

Stub: A stub is an half edge, i.e., edge (u, v) has a stub connected

ponent

Going Further

Books about network science as a whole:

- Barabási et al. 2016 (free).
- · Coscia 2021 (free)
- Zinoviev 2018
- Menczer, Fortunato, and Davis 2020

Cores and Shells

Many real networks are known to have a core-periphery structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph H(C) such as all nodes have at least a degree k, i.e., $\forall u \in C, k_u^H \geq k$, with k_u^H the degree of node u in subgraph H. **coreness:** A vertex u has coreness k if it belongs to the k-core but

not to the k + 1-core.

References

- [1] Albert-László Barabási et al. Network science. Cambridge university press, 2016.
- [2] Michele Coscia. The Atlas for the Aspiring Network Scientist. 2021, arXiv: 2101.00863 [cs.CY].
- [3] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. "Graphs over time: densification laws, shrinking diameters and possible explanations". In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. 2005, pp. 177-187.
- [4] Filippo Menczer, Santo Fortunato, and Clayton A Davis. A First Course in Network Science. Cambridge University Press, 2020.
- [5] Duncan J Watts and Steven H Strogatz. "Collective dynamics of 'small-world'networks". In: nature 393.6684 (1998), pp. 440-442.
- Dmitry Zinoviev. Complex network analysis in Python: Recognize-construct-visualize-analyze-interpret. Pragmatic Bookshelf, 2018.