Lesson 2: Linear Regression

(Optional) Closed form Solution Math

SEND FEEDBACK

SEARCH Q RESOURCES CONCEPTS

- 13. Minimizing Error Functions
- 14. Mean vs Total Error
- 15. Mini-batch Gradient Descent
- / 16. Ouiz: Mini-Batch Gradient De...
- √ 17. Absolute Error vs Squared Err...
- ✓ 18. Linear Regression in scikit-lea...
- . / 19 Higher Dimensions
- 20. Multiple Linear Regression
- . / 21 Closed Form Solution
- 22. (Optional) Closed form Solut...
 - 23. Linear Regression Warnings
 - 24. Polynomial Regression
 - 25. Quiz: Polynomial Regression
 - 26. Regularization
 - 27. Ouiz: Regularization
 - 28. Feature Scaling
 - 29. Outro

©

Mentor Help
Ask a mentor on our Q&A platform

(Optional) Closed form solution math

In this optional section, we'll develop the math of the closed form solution, which we introduced in the last video. First, we'll do it for the 2-dimensional case, and then for the general case.

2-Dimensional solution

Our data will be the values x_1,x_2,\ldots,x_m , and our labels will be the values y_1,y_2,\ldots,y_n . Let's call our weights w_1 , and w_2 . Therefore, our predictions are $\hat{y_i}=w_1x_i+w_2$. The mean squared error is

$$E(w_1, w_2) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y} - y)^2$$

We need to minimize this error function. Therefore, the factor of $\frac{1}{m}$ can be ignored. Now, replacing the value of \hat{y} , we get

$$E(w_1, w_2) = \sum_{i=1}^{m} (\hat{y} - y)^2$$
$$= \frac{1}{2} \sum_{i=1}^{m} (w_1 x_i + w_2 - y_i)^2$$

Now, in order to minimize this error function, we need to take the derivatives with respect to w_1 and w_2 and set them equal to 0.

Using the chain rule, we get

$$\begin{array}{rcl} \frac{\partial E}{\partial w_1} & = & \sum_{i=1}^m (w_1 x_i + w_2 - y_i) x_i \\ \\ & = & w_1 \sum_{i=1}^m x_i^2 + w_2 \sum_{i=1}^m x_i - \sum_{i=1}^m x_i y_i \end{array}$$

and

$$\frac{\partial E}{\partial w_2} = \sum_{i=1}^m (w_1 x_i + w_2 - y_i)$$

$$= w_1 \sum_{i=1}^m x_i + w_2 \sum_{i=1}^m 1 - \sum_{i=1}^m y_i$$

Setting the two equations to zero gives us the following system of two equations and two variables (where the variables are w_1 and w_2).

$$w_1 \left(\sum_{i=1}^m x_i^2 \right) + w_2 \left(\sum_{i=1}^m x_i \right) = \sum_{i=1}^m x_i y_i$$
$$w_1 \left(\sum_{i=1}^m x_i \right) + w_2(m) = \sum_{i=1}^m y_i$$

We can use any method to solve 2 equations and 2 variables. For example, if we multiply the first equation by $\sum_{i=1}^m x_i$, the second one by m, subtract them to obtain a value for w_1 , and then replace this value in the first equation, we get the following: