Computer Networks I Multiplexing

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Multiplexing

- Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link
- ☐ Multiplexer (MUX): A device that combines several signals into a single signal
- □ **Demultiplexer** (DEMUX): A device that performs the inverse operation

Multiplexing

Frequency Division Multiplexing

FDM

- Each signal is allocated a different frequency band
- Usually used with analog signals
- Modulation equipment is needed to move each signal to the required frequency band (channel)
- Multiple carriers are used, each is called sub-carrier

FDM

FDM

□ Five channels, each with a 100-KHz bandwidth, are to be multiplexed together. What is the minimum bandwidth of the link if there is a need for a guard band of 10 KHz between the channels to prevent interference?

Wavelength Division Multiplexing

WDM

- ■WDM is conceptually the same as FDM
 - ☐ Multiplexing and demultiplexing involve light signals transmitted through fiber-optic channels

Src:https://commons.wikimedia.org/wiki/File:Prism_rainbow_schema.png

□Combining and splitting of light sources can be handled by a prism

Time Division Multiplexing

TDM

- User takes turns
 - Each one periodically get the entire bandwidth

UTDM:

- Synchronous TDM
- Asynchronous TDM

Synchronous TDM

 Multiplexer allocates exactly the same time slot to each device at all times, whether or not a device has anything to transmit

Statistical TDM

- In synchronous TDM it is often the case that many of the time slots in a frame are wasted
- Asynchronous time-division multiplexing, or statistical time-division multiplexing, is designed to avoid this type of waste

Statistical TDM

- Line data rate can be lower than input lines rates
- Overhead per slot for statistical TDM because each slot carries an address as well as data
- May have problems during peak periods
 - Must buffer inputs

Code Division Multiple Access

$$A = (-1 - 1 - 1 + 1 + 1 - 1 + 1 + 1)$$

$$B = (-1 - 1 + 1 - 1 + 1 + 1 + 1 - 1)$$

$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$D = (-1 + 1 - 1 - 1 - 1 - 1 + 1 - 1)$$

All chip sequences are orthogonal

$$S \bullet T = \frac{1}{m} \sum_{i=1}^{m} S_i T_i = 0$$

$$S \bullet \overline{T} = 0$$

$$S \bullet S = \frac{1}{m} \sum_{i=1}^{m} S_i S_i = \frac{1}{m} \sum_{i=1}^{m} S_i^2 = \frac{1}{m} \sum_{i=1}^{m} (\pm 1)^2 = 1$$

$$A = (-1 - 1 - 1 + 1 + 1 - 1 + 1 + 1)$$

$$B = (-1 - 1 + 1 - 1 + 1 + 1 + 1 - 1)$$

$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$D = (-1 + 1 - 1 - 1 - 1 + 1 - 1)$$

$$X = A + \overline{B} + C = (-1 + 1 - 3 + 3 + 1 - 1 - 1 + 1)$$

$$A = (-1 - 1 - 1 + 1 + 1 - 1 + 1 + 1)$$

$$B = (-1 - 1 + 1 - 1 + 1 + 1 + 1 - 1)$$

$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$D = (-1 + 1 - 1 - 1 - 1 - 1 + 1 - 1)$$

$$X = A+B+\overline{C}+D = (-2 \ -2 \ 0 \ -2 \ 0 \ -2 \ +4 \ 0)$$

☐ Proof:

• Let's consider the case of $S = (A + \overline{B} + C)$

$$S \cdot C = (A + \overline{B} + C) \cdot C = A \cdot C + \overline{B} \cdot C + C \cdot C$$

= $0 + 0 + 1 = 1$

- ☐ One significant assumption is that, the chips are synchronized in time at the receiver
 - Asynchronous CDMA
- ☐ Used in cellular networks, satellites and cable networks

Summary

- ☐ Different multiplexing techniques discussed:
 - Frequency division multiplexing
 - Wavelength division multiplexing
 - Time division multiplexing
 - Synchronous TDM
 - Asynchronous TDM