Smruti Dawale B21BB007 Lab_05

Que1)

a)

Almost all the algorithms in scikit learn are not capable of handling missing data, so before training your model you must handle your missing data.

One of the ways is "list wise deletion of cases": discarding observations where value in any of the variables is missing .Here observations are your rows and variables are columns, you basically discard the row if any of the values in your column is missing.

I used dataDropNa = data.dropna(axis=0)

Visualization of data

b)

Categorical data can be divided into 2 types Nominal data (here you cannot define a relationship between the data) and Ordinal data (here you can define a relationship between the data). Categorical data is present mostly in the form of strings and machine learning algorithms expect numbers, so it's your duty to convert these categories to numbers . there are various type of encoding, one is Ordinal encoding which is used for the Ordinal type of data and OneHotEncoding is used for Nominal data.

.

c)

min_samples_leafint or float, default=1

min_samples_leaf to ensure that multiple samples inform every decision in the tree, by controlling which splits will be considered. A very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from learning the data. min_samples_split can create arbitrarily small leaves, min_samples_leaf guarantees that each leaf has a minimum size, avoiding low-variance, over-fit leaf nodes in regression

problems. For classification with few classes, min_samples_leaf=1 is often the best choice.

Note that min_samples_split considers samples directly and independent of sample_weight, if provided (e.g. a node with m weighted samples is still treated as having exactly m samples). Consider min_weight_fraction_leaf or min_impurity_decrease if accounting for sample weights is required at splits.

max_depth

The depth of a tree is the maximum distance between the root and any leaf. Max_depth has no effect on accuracy of data.

On Varying the values of max_depth and min_samples_split i observed changing max_depth doesn't change the accuracy.

d) max_depth=8, min_samples_leaf= 2
Accuracy score = 1.0

Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to the number of features is important, since a tree with few samples in high dimensional space is very likely to overfit.

Decision Tree

