MATEMĀTISKĀ ANALĪZE

Atvasināšanas formulas

1.
$$k' = 0$$
, kur $k \in \mathbb{R}$ — konstante, 2. $(x^n)' = nx^{n-1}$, $n \in \mathbb{R}$,

3.
$$(\sin x)' = \cos x$$
, 4. $(\cos x)' = -\sin x$,

5.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$
, 6. $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$

7.
$$(a^x)' = a^x \ln a, \ a > 0,$$
 8. $(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \neq 1,$

9.
$$(\ln x)' = \frac{1}{x}$$
, 10. $(e^x)' = e^x$,

11.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
, 12. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

13.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$
, 14. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$.

Atvasināšanas likumi

1.
$$(kf(x))' = kf'(x)$$
,

2.
$$(f(x) + g(x))' = f'(x) + g'(x),$$

 $(f(x) - g(x))' = f'(x) - g'(x),$

3.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
,

4.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Nenoteikto integrāļu formulas

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C,$$
 2. $\int \frac{dx}{x} = \ln|x| + C,$

3.
$$\int \sin x \, dx = -\cos x + C,$$
 4.
$$\int \cos x \, dx = \sin x + C.$$

7.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0$, $a \neq 1$ 8. $\int e^x dx = e^x + C$,

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C = -\arccos x + C$$
, 10. $\int \frac{dx}{1+x^2} = \arctan x + C$,

11.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{|a|} \operatorname{arctg} \frac{x}{|a|} + C, \quad a \neq 0.$$

Lineārā substitūcija: $\int f(ax+b)\,dx = \frac{1}{a}F(ax+b) + C$

Substitūcijas metode:

$$\int f(\phi(x)) \dot{\phi}'(x) \, dx = \int f(t) \, dt = F(t) + C = F(\phi(x)) + C$$

Parciālās integrēšanas metode: $\int u \, dv = uv - \int v \, du$

Dažas trigonometrijas formulas

$$\sin^2 x + \cos^2 x = 1$$
, $\sin 2x = 2\sin x \cos x$,
 $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$