A rendre par trinôme

EXERCICE 1

On considère la matrice $A \in \mathcal{M}_n\left(\mathbb{R}\right)$ de terme général $a_{ij} = \frac{1}{(i+j-1)!}$

Soit
$$Y=\left(\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right)\in\mathbb{R}^n$$
 vérifiant $AY=0_{\mathbb{R}^n}.$ On définit le polynôme $P=\sum_{k=1}^n\frac{y_k}{(n+k-1)!}X^{n+k-1}$

- 1. Calculer $P^{(k)}\left(1\right)$ pour $k\in\left[\left[0,n-1\right]\right]$.
- **2.** En déduire que P = 0, et conclure sur la matrice A.

EXERCICE 2

Dans cet exercice, la notation f^n désigne l'itérée : $f \circ \cdots \circ f$

On cherche les fonctions f définies et continues sur \mathbb{R}^+ vérifiant :

(i)
$$f(0) = 0$$
 et (ii) $\forall x \in \mathbb{R}_+, f^2(x) = 2f(x) - x$ (soit $f(f(x)) = 2f(x) - x$)

On se donne une telle fonction f.

- **1.** Montrer que f est positive sur \mathbb{R}_+
- **2.** Montrer que f est injective.
- 3. Montrer que f est strictement monotone sur \mathbb{R}_+ (on pourra raisonner par l'absurde et utiliser le théorème des valeurs intermédiaires). Quel est le sens de variation de f?
- **4.** Montrer que f n'est pas majorée sur \mathbb{R}_+ , et en déduire que f réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+ .
- **5.** Montrer par récurrence que $\forall n \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}_+, \ f^n(x) x = n \left(f(x) x \right)$
- **6.** En déduire que $\forall n \in \mathbb{N}$ et $\forall x \in \mathbb{R}_+, \ f(x) x \geqslant -\frac{x}{n}$, puis que $f(x) \geqslant x$
- 7. Montrer que f^{-1} vérifie aussi les conditions de l'énoncé.
- **8.** En déduire que $\forall x \in \mathbb{R}_+, f(x) \leq x$ et conclure.

PCSI 1 2019/2020

PROBLEME

Il est conseillé de faire des essais pour les petites valeurs (n = 3, 4 ou 5)

Les plus fragiles se contenteront de traiter le cas n=6

On fixe $n\in\mathbb{N}^*$ et on considère la suite $(u_p)_{p\geqslant 1}$ définie par récurrence par

$$\begin{cases} u_1 = 2 \\ \forall p \in \mathbb{N}, \ u_{p+1} = 2 - \frac{1}{u_p} \end{cases}$$

et la matrice

$$A = \begin{pmatrix} 2 & -1 & 0 & & 0 \\ -1 & 2 & -1 & \ddots & \\ 0 & \ddots & \ddots & \ddots & 0 \\ & \ddots & -1 & 2 & -1 \\ 0 & & 0 & -1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

- **1.** Déterminer le terme général de la suite $(u_p)_{p\geqslant 1}$.
- **2.** Donner le terme général de la matrice A.
- **3.** On définit les matrices A_1, \ldots, A_n par

$$\begin{cases} A_1 = A \\ \forall i \in \llbracket 1, n-1 \rrbracket \text{, } A_{i+1} \text{ se d\'eduit de } A_i \text{ par l'op\'eration } L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i} L_i \end{cases}$$

$$a_n \text{ (on pourra conjecturer la forme de la ligne } i \text{ de } A_i \text{ et le montrer par r\'ecurrence)}$$

- a) Calculer A_n (on pourra conjecturer la forme de la ligne i de A_i et le montrer par récurrence).
- b) En déduire que A est inversible.
- c) Démontrer que A^{-1} est symétrique.
- **4.** Si Y est une colonne de terme général y_i , on définit la colonne Y' de terme général y_i' défini par

So
$$Y$$
 est une colonne de terme general y_i , on definit la colonne Y' de terme general y_i' definit part $\{y_1' = y_1 \ \forall i \in [\![1,n-1]\!] \ , \ y_{i+1}' = y_{i+1} + \frac{1}{u_i}y_i' \}$

$$\text{Montrer que } \forall i \in [\![1,n-1]\!] \text{ le système } AX = Y \text{ équivaut à } A_iX = Y_i \text{ avec } Y_i = \begin{cases} y_1' \\ \vdots \\ y_i' \\ y_{i+1} \\ \vdots \\ y_n \end{cases}$$

- **5.** On fixe $j \in [1, n]$ et on pose Y le vecteur colonne de terme général $y_i = \delta_{ij}$
 - a) Montrer que l'unique solution du système AX=Y est la j-ème colonne de A^{-1} notée Γ_j
 - b) Montrer que $\begin{cases} \forall i < j, \ y'_i = 0 \\ \forall i \geqslant j, \ y'_i = j/i \end{cases}$
 - c) En déduire que si x_i est le terme général de Γ_j , alors $\forall i\geqslant j,\ x_i=\frac{j\left(n+1-i\right)}{n+1}$
 - d) Donner alors le terme général b_{ij} de la matrice A^{-1} .
 - e) Donner A^{-1} dans le cas où n = 6
- **6.** En utilisant les résultats de la question 2., montrer qu'il existe une matrice triangulaire inférieure L dont les coefficients diagonaux valent 1 et une matrice triangulaire supérieure U telles que A=LU.