Sheaves on Manifolds Exercise I.29 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.29, KS02] の解答です。

I Homological Algebra

問題 I.29. A を環とする。

- (1) 任意の自由加群は射影的であることを示せ。
- (2) 任意の射影加群はある自由加群の直和因子であることを示せ。
- (3) 射影加群は平坦加群であることを示せ。
- (4) $n \ge 0$ を自然数とする。以下の条件が同値であることを示せ:
 - (i) 任意の右 A-加群 N と任意の左 A-加群 M と任意の j>n に対して $\operatorname{Tor}_i^A(N,M)=0$ である。
 - (ii) 任意の左 A-加群 M に対して完全列 $0 \to P^n \to \cdots \to P^0 \to M \to 0$ であって各 P^i が平坦加群 となるものが存在する。
 - (iii) 任意の右 A-加群 M に対して完全列 $0\to P^n\to\cdots\to P^0\to M\to 0$ であって各 P^i が平坦加群 となるものが存在する。

これらの同値な条件を満たす最小の $n \in \mathbb{N} \cup \{\infty\}$ を wgld(A) と表し、A の**弱大域次元** (weak global dimension) という。

(5) $\operatorname{wgld}(A) \leq \operatorname{gld}(A)$ であることを示せ。

証明. (1) は函手の同型 $\operatorname{Hom}_A(A^{\oplus I},-)\cong\prod_I(-)$ より従う。

- (2) を示す。P を射影加群として全射 $p:A^{\oplus I}\to P$ をとる。P が射影加群であることから射 $\mathrm{id}_P:P\to P$ がリフトして $p\circ s=\mathrm{id}_P$ となる $s:P\to A^{\oplus I}$ が存在する。よって [Exercise 1.4 (4), KS02] より P は $A^{\oplus I}$ の直和因子である。以上で(2)の証明を完了する。
- (3) を示す。P を射影加群として、P が直和因子となるように射 $i:P\to A^{\oplus I}$ をとる。 $p:A^{\oplus I}\to P$ を i の左逆射、つまり $p\circ i=\mathrm{id}_P$ となる射とする。 $f:M\to N$ を A-加群の単射とする。(3) を示すためには、 $f\otimes_A\mathrm{id}_P$ が単射であることを示すことが十分である。可換図式

において、上と下の合成は id であり、 $M\otimes_A A^{\oplus I}\cong M^{\oplus I}$ より真ん中は単射である。従って両端も単射であることが従う。以上で (3) の証明を完了する。

- (4) を示す。(i) \Leftrightarrow (ii) を示すことができれば、 A^{op} に対して (i) \Leftrightarrow (ii) を適用することで (i) \Leftrightarrow (iii) が従う。残っているのは (i) \Leftrightarrow (ii) を示すことである。
- (i) が成り立つと仮定する。自由分解 $\cdots \to P^n \xrightarrow{d_P^n} \cdots \to P^0 \xrightarrow{d_P^n} M \to 0$ を一つとる。任意の N と j > n に対して $\operatorname{Tor}_j^A(N,M) = 0$ が成り立つので、とくに任意の N と j > n-1 に対して $\operatorname{Tor}_j^A(N,\ker(d_P^0)) = 0$ が成り立つ。 $\ker(d_P^0) \cong \operatorname{Im}(d_P^1)$ に注意して繰り返すと、繰り返して、任意の N と任意の j > 0 に対して $\operatorname{Tor}_j^A(N,\ker(d_P^{n-1})) = 0$ が成り立つ。このことは $\ker(d_P^{n-1})$ が平坦であることを意味していて、完全列 $0 \to \ker(d_P^{n-1}) \to P^{n-1} \to \cdots \to P^0 \to M \to 0$ は M の長さ n 以下の平坦分解である。以上で $(\mathbf{i}) \to (\mathbf{ii})$ が示された。
- (ii) が成り立つと仮定する。任意に左 A-加群 M と右 A-加群 N と j>n をとる。仮定より M の平坦分解 $0\to P^n\xrightarrow{d_P^n}\cdots\to P^0\xrightarrow{d_P^n}M\to 0$ が存在する。 P^n,P^{n-1} は平坦であるから、完全列 $0\to P^n\to P^{n-1}\to \mathrm{Im}(d_P^{n-1})\to 0$ に $N\otimes_A(-)$ を施すことで、任意の j>1 に対して $\mathrm{Tor}_j^A(N,\mathrm{Im}(d_P^{n-1}))=0$ であることが従う。完全列 $0\to\mathrm{Im}(d_P^{n-1})\to P^{n-2}\to\mathrm{Im}(d_P^{n-2})\to 0$ に $N\otimes_A(-)$ を施すことで、任意の j>2 に対して $\mathrm{Tor}_j^A(N,\mathrm{Im}(d_P^{n-2}))=0$ であることが従う。帰納的に、任意の j>k に対して $\mathrm{Tor}_j^A(N,\mathrm{Im}(d_P^{n-k}))=0$ であることが従う。n=k とすれば所望の結論を得る。以上で(ii)⇒(i)が示され、(4)の証明を完了する。
 - (5) は [Exercise 1.28 (1) ⇔ (3), KS02] と (3) より従う。以上で問題 I.29 の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. *Sheaves on Manifolds*. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.