Respostas da Lista de Exercícios

João Pedro Abreu de Souza

October 22, 2023

1 Respostas

1.1 Questão 1

1.1.1 1.8.1

 $(((a^*a)b)Ub)=(((a^*a)b)U(b))=(((a^*a)b)U(eb))=((((a^*a))U(e))b)=(a^*)b$ = "linguagem das palavras que são uma sequencia de a's terminadas por b"

1.1.2 1.8.2

- (a) $\emptyset*Ua*Ub*U(aUb)* = eUa*Ub*U(aUb)* = eUa*Ub*U(a*b*)* = (a*b*)* = (aUb)*$
- (b) ((a*b*)*(b*a*)*)* = ((aUb)*(b*a*)*)* = ((aUb)*(bUa)*)* = ((aUb)*(aUb)*)* = ((aUb)*)* = (aUb)*
- (c) (a*b)*U(b*a)* = (aUb)*
- (d) (aUb)*a(aUb)* = b*a(aUb)*

1.1.3 1.8.3

- (a) b*Ub*ab*Ub*ab*ab*ab*ab*ab*
- (b) $b^*(ab^*ab^*ab^*)^*$
- (c) (eUabb*Uaabb*Ub)*aaa((bUbab*Ubaab*)*U(baUbaa))

1.1.4 1.8.5

- (a) baa pode ser obtido ao capturar a palavra vazia no primeiro a*, b no b* seguinte, aa no a* seguinte e por fim, a palavra vazia no ultimo b*
- (b) Dividamos a prova nas duas continências

- b*a* ∩ a*b* ⊆ a* U b* Tomemos uma palavra pertencente a b*a* ∩ a*b*. Esta pode ser vazia ou não-vazia. Sendo vazia, pertence a a*, logo pertence a a*U b*. Sendo não-vazia, sua primeira letra poderá ser a ou b. Sendo a, b*a* exige que seja composta apenas de a's, logo pertencente a a*. Da mesma forma, sendo a primeira letra b, a*b* exige que seja composta apenas de b's, logo pertence a b*. Em ambos os casos, pertencente a a* U b*
- b*a* ∩ a*b* ⊇ a* U b* Tomemos uma palavra pertencente a a* U b*. Temos duas possibilidades : ou ela pertence a a* ou a b*. Suponha que seja de a*. logo é composta apenas por a's, logo pertence a b*a*, cabendo apenas reconhecer a palavra vazia em b* e a palavra inteira em a*, e também a*b*, cabendo apenas reconhecer a palavra inteira em a* e a vazia em b*. Logo pertence a sua intersecção. Pertencendo a b*, é composta apenas por b's, logo pertence a b*a*, cabendo apenas reconhecer a palavra inteira em b* e a vazia em a*, e também a*b*, cabendo apenas reconhecer a palavra vazia em a*, e também a*b*, cabendo apenas reconhecer a palavra vazia em a* e a palavra inteira em b*, logo pertencendo a sua intersecção.
- (c) Falso pois a palavra vazia pertence a a*b*∩b*c*
- (d) Falso pois para ter c na palavra é necessário que antes do c venha um a ou d, não b.

1.2 Questão 2

1.2.1 expressão regular

0*100*10*10*U0*100*10*

1.2.2 AFD

	0	1
{S}	{q2}	qt
q1	Э	О

Table 1: AFD

1.2.3 AFND

	0	1
{S} q1	{q2} 5	$\frac{\mathrm{qt}}{6}$

Table 2: AFD

1.2.4 gramática regular

 $S \to a A$

 $S \to b \ B$

 $A \rightarrow a C$

 $A \to a$

 $A \rightarrow b B$

 $\mathrm{B} \to \mathrm{a}\; \mathrm{A}$

 $\mathrm{B} \to \mathrm{b} \; \mathrm{C}$

 $\mathrm{B} \to \mathrm{b}$

 $\mathrm{C} \to \mathrm{a} \ \mathrm{C}$

 $C \to a$

 $\mathrm{C} \to \mathrm{b}~\mathrm{C}$

 $C \to b$

1.3 Questão 3

1.3.1 2.1.2

- Palavras que começam com a, seguida de uma sequência de ba
- Palavras que começam com uma sequência de a's, seguida de b

•

•

•

•

 $1.3.2 \quad 2.1.3$

1.3.3 2.2.2

1.3.4 2.2.3

 $1.3.5 \quad 2.2.9$

1.3.6 2.2.10

 $1.3.7 \quad 2.3.1$

1.3.8 2.3.4

1.4 Questão 4

1.5 Questão 5

 $S \to a \; A$

 $S \to b \ B$

	0	1
{S}	$\{q2\}$	qt
q1	5	6

Table 3: AFD

 $\begin{array}{c} A \rightarrow a \ C \\ A \rightarrow a \\ A \rightarrow b \ B \end{array}$

 $\begin{array}{c} \mathrm{B} \to \mathrm{a} \ \mathrm{A} \\ \mathrm{B} \to \mathrm{b} \ \mathrm{C} \end{array}$

 $B \rightarrow b C$ $B \rightarrow b$ $C \rightarrow a C$ $C \rightarrow a$ $C \rightarrow b C$ $C \rightarrow b$