Human-Digital Content Interaction for Immersive 4D Home Entertainment

Human-Digital Content Interaction for Immersive 4D Home Entertainment

The Whole Picture: Immersive and Interactive Mixed Reality

Interaction techniques for the immersive MR contents

- Use hands/fingers (Direct interaction)
 - Tracking: Kinect, Leap, Glove, Camera-image, Camera-Fiducial
 - Outside in vs. Inside out
 - 2 Finger Pinch
 - Natural and intuitive
 - For selection and manipulation
 - Pinch/release detection (Ewha)
 - Multimodal
 - Visual: Real / Virtual (Ewha)
 - Aural
 - (Vibro)Tactile
 - Application of tactile illusion (minimize actuators)
 - Extension to ring-like design (improve wearability)
 - Kinesthetic (Ewha also)
 - Vibro-tactile rendering methods for different effects (richer experience)
 - Fusing pseudo and actual force feedback
- Use whole body (Experiential)
 - Tracking: Kinect, Camera-image/Fiducial, Wearable sensor + SVM/HMM/IK
 - Detection of extreme motion
 - Application to interaction design for immersive contents

Year 1

Intricate haptic device is not so convenient ... and simple vibration cannot convey much ...

Use illusion, multimodality fusion and rendering variation to create wearable yet richer experience

- Use hands/fingers (Direct interaction)
 - Tracking: Kinect, Leap, Glove, Camera-image, Camera-Fiducial
 - Outside in vs. Inside out
 - 2 Finger Pinch
 - Natural and intuitive
 - For selection and manipulation
 - Pinch/release detection (Ewha)
 - Multimodal
 - Visual: Real / Virtual (Ewha)
 - Aural
 - (Vibro)Tactile
 - Application of tactile illusion (minimize actuators)
 - Extension to ring-like design (improve wearability)
 - Kinesthetic (Ewha also)
 - Vibro-tactile rendering methods for different effects (richer experience)
 - Fusing pseudo and actual force feedback
- Use whole body (Experiential)
 - Tracking: Kinect, Camera-image/Fiducial, Wearable sensor + SVM/HMM/IK
 - Detection of extreme motion
 - Application to interaction design for immersive contents

Year 2

$$Q(t) = A(v)e^{-Bt}\sin(2\pi\omega t).$$

Material	$A(s^{-1})$	$B(s^{-1})$	ω (Hz)
Rubber	-240	60,000	30
Wood	-150	80,000	100
Aluminum	-300	90,000	300

Vibro-tactile rendering for various effects

Ring-type: Improving wearability / Validation

Interaction techniques for the immersive MR contents

- Use hands/fingers (Direct interaction)
 - Tracking: Kinect, Leap, Glove, Camera-image, Camera-Fiducial
 - Outside in vs. Inside out
 - 2 Finger Pinch
 - Natural and intuitive
 - For selection and manipulation
 - Pinch/release detection (Ewha)
 - Multimodal
 - Visual: Real / Virtual (Ewha)
 - Aural
 - (Vibro)Tactile
 - Application of tactile illusion (minimize actuators)
 - Extension to ring-like design (improve wearability)
 - Kinesthetic (Ewha also)
 - Vibro-tactile rendering methods for different effects (richer experience)
 - Fusing pseudo and actual force feedback
- Use whole body (Experiential)
 - Tracking: Kinect, Camera-image/Fiducial, Wearable sensor + SVM/HMM/IK
 - Detection of extreme motion
 - Application to interaction design for immersive contents

Year 3

Detecting body dynamics and associating it to contents