Wpływ aktywności na Twitterze na notowania spółek giełdowych

Raport z projektu

Zespół Chmurki

Sebastian Deręgowski, Klaudia Gruszkowska, Bartosz Jamroży

Spis treści

1. Wstęp	2		
2. Opis danych	2		
3. Stos architektoniczny	3		
4. Testy	7		
5. Podsumowanie	11		

1. Wstęp

Nasz projekt skupia się na analizie wpływu postów z serwisu społecznościowego Twitter na ceny akcji największych, światowych firm. W poniższym dokumencie opiszemy źródła danych, wykorzystany przez nas stos architektoniczny oraz testy.

2. Opis danych

Pierwszy zbiór danych dotyczy cen akcji kilku spółek notowanych na nowojorskiej giełdzie papierów wartościowych (NYCE). Analizujemy je pod kątem zmieniania się notowań spółek: Google'a, Microsoftu, Apple'a oraz Tesli w interwałach pięciominutowych. Dane pobieramy przy pomocy API ze strony www.alphavantage.co.

Dane są zwracane przez API w formacie CSV i zawierają informacje nt. kursu otwarcia, zamknięcia, a także najmniejszej i największej wartości w danym przedziale czasowym (przykład poniżej).

4	А	В	С	D	Е	F
1	timestamp	open	high	low	close	volume
2	1/6/2023 20:00	224.96	225.05	224.96	225.04	3006
3	1/6/2023 19:55	224.95	225	224.94	224.95	3055
4	1/6/2023 19:50	224.91	224.91	224.91	224.91	135
5	1/6/2023 19:45	224.9	224.93	224.9	224.93	666
6	1/6/2023 19:30	224.95	224.95	224.95	224.95	325
7	1/6/2023 19:25	225	225.05	225	225.05	253
8	1/6/2023 19:20	225	225	225	225	205
9	1/6/2023 19:15	225.0499	225.0499	225.0499	225.0499	495
10	1/6/2023 19:05	225.05	225.05	225.05	225.05	454
11	1/6/2023 19:00	225	225	225	225	511
12	1/6/2023 18:55	225.04	225.05	225.04	225.05	935
13	1/6/2023 18:30	225.04	225.04	225.04	225.04	977

Drugim zbiorem danych jest Twittera. A dokładniej dane pobierane przez API z serwisu Twitter dla developreów (https://developer.twitter.com/en/). Do każdej z analizowanych spółek zbieramy dane z konkretnych hashtagów powiązanych z tymi spółkami. Dane są zwracane w postaci JSONa zawierającego informacje dotyczące początku i końca rozpatrywanego okresu i ilości tweetów zawierających dany hashtag. Rozpatrujemy okresy czasowe jednominutowe i hashtagi: #Apple. #Google, #Microsoft, #Tesla. Poniżej screen z przykładowej odpowiedzi Twittera.

```
"data": [
    ł
       "end": "2023-01-05T09:16:00.000Z",
       "start": "2023-01-05T09:15:44.000Z",
       "tweet count": 2
   },
       "end": "2023-01-05T09:17:00.000Z",
       "start": "2023-01-05T09:16:00.000Z",
       "tweet count": 4
   },
       "end": "2023-01-05T09:18:00.000Z",
       "start": "2023-01-05T09:17:00.000Z",
       "tweet count": 2
    },
    {
       "end": "2023-01-05T09:19:00.000Z",
       "start": "2023-01-05T09:18:00.000Z",
       "tweet_count": 1
   },
       "end": "2023-01-05T09:20:00.000Z",
       "start": "2023-01-05T09:19:00.000Z",
       "tweet count": 4
```

3. Stos architektoniczny

Dane pobieramy z API źródeł opisanych w rozdziale 2 za pomocą Apache NiFi. Następnie również w Apache NiFi transformujemy pliki, tak aby uzyskać złączone pliki w formacie parquet na Apache Hadoop. Każdy plik twittera zawiera dane z jednego dnia i dotyczy jednego z wyszukiwanych hashtagów. Pliki alphaventage dotyczą jednej z obserwowanych spółek i zawierają historię z kilkunastu ostatnich dni.

W Apache Hadoop pliki pogrupowane sa w dwóch katalogach zależnie od źródła danych.

Następnym krokiem naszego przepływu danych jest wykorzystanie narzędzia Apache Spark. W tym miejscu wgrywane pliki z Apache Hadoop filtrujemy tak aby pokazywały tylko interesujące nas zakresy czasowe. Łączymy dane z różnych plików po wartości 'timestamp' i zapisujemy je do dwóch tabel, jednej zbierającej wszystkie informacje twitterowe i drugiej zbierającej dane alphaventage.

Dane przetworzone przez Apache Spark lądują w tabelach stworzonych w Apache HBase. Później wykorzystujemy je do analizy za pomocą narzędzia Jupyter Notebook. Jupyter Notebook ma za zadanie symulację narzędzia typu Business Intelligence umożliwiając użytkownikowi końcowemu dostęp do wybranych statystyk i analiz. Użytkownik ma możliwość modyfikowania parametrów funkcji takich jak przedział czasowy, kurs otwarcia zamknięcia, czy firmy brane pod uwagę.

Funkcja *volume_stats_compare()* pozwala na porównanie wolumenów dwóch wybranych firm w wybranym przedziale czasowym.

```
In [5]: volume_stats_compare()
        Porównanie wolumenów dla firm Tesla oraz Google w zadanym okresie:
                             Tesla
                                   Google
1.503219e+05
                                                       Różnica
                      1.019221e+06
                 std
                     1.352177e+06
                                   1.832788e+05
                                                  1.168899e+06
                 min
                      3.569000e+03
                                   1.000000e+02
                                                  3.469000e+03
                      9.783541e+06
                                   1.537600e+06
                                                  8.245941e+06
```

Funkcja *plot_companies()* umożliwia porównanie kursów otwarcia lub zamknięcia wybranych film w wybranym przedziale czasowym.

Funkcja *plot_boxplot()* umożliwia szczegółową analizę kursu otwarcia bądź zamknięcia dla wybranej firmy z danymi zagregowanymi do godziny.

Funkcja *plot_tweets()* umożliwia porównanie liczby tweetów z hashtagiem wybranych firm w wybranym przedziale czasowym. Istnieje możliwość wyboru między wykresem liniowym a skumulowaną linią trendu.

Funkcja *tweets_pie()* porównuje liczbę tweetów na wykresie kołowym w wybranym przedziale czasowym.

In [9]: tweets_pie()

Porównanie liczby tweetów z hashtagiem danej firmy w zadanym okresie

Funkcja *tweets_stock()* zestawia ze sobą liczbę tweetów nt. firmy Tesla z jej kolejnymi kursami otwarcia w interwałach pięciominutowych.

4. Testy

```
"Meta Data": {
          "1. Information": "Intraday (5min) open, high, low, close prices and volume",
         "2. Symbol": "TSLA",
"3. Last Refreshed": "2023-01-06 20:00:00",
        "4. Interval": "5min",
"5. Output Size": "Full size",
"6. Time Zone": "US/Eastern"
},
"Time Series (5min)": {
    "2023-01-06 20:00:00": {
                 "1. open": "113.4401",
"2. high": "113.7500",
"3. low": "113.4400",
"4. close": "113.6800",
"5. volume": "71404"
         },
"2023-01-06 19:55:00": {
                 "1. open": "113.3100",
"2. high": "113.4600",
"3. low": "113.3000",
"4. close": "113.4500",
"5. volume": "29992"
         },
"2023-01-06 19:50:00": {
"- "113 2300"
                 "1. open": "113.2300",
"2. high": "113.3100",
"3. low": "113.2300",
"4. close": "113.3100",
"5. volume": "19735"
         },
"2023-01-06 19:45:00": {
" "113 2400
                 "1. open": "113.2400",
"2. high": "113.2500",
"3. low": "113.2100",
"4. close": "113.2300",
"5. volume": "11671"
         },
"2023-01-06 19:40:00": {
" "113 2600"
                  "1. open": "113.2600",
"2. high": "113.3000",
                 "3. low": "113.2499",
"4. close": "113.2700",
"5. volume": "13708"
         },
"2023-01-06 19:35:00": {
                 "1. open": "113.2000",
"2. high": "113.2700",
"3. low": "113.1900",
"4. close": "113.2600",
"5. volume": "18536"
         },
"2023-01-06 19:30:00": {
                 "1. open": "113.1400",
"2. high": "113.2000",
"3. low": "113.1400",
"4. close": "113.1900",
"5. volume": "6636"
         },
"2023-01-06 19:25:00": {
                  "1. open": "113.1900",
"2. high": "113.2000",
                  "3. low": "113.1000",
"4. close": "113.1400",
                  "5. volume": "9779"
```

Test poprawności działania API giełdowego, api poprawnie odpowiada na zapytanie zwracając informacje na temat kursu akcji w danych momentach czasowych.

Test poprawności API twitterowego, interfejs poprawie zwraca informację w formacie Json o liczbie tweetów dla danego hasztaga.

Przetwarzanie danych o tweetach. Wizualna kontrola stanu procesorów w narzędziu nifi. Uruchomione oraz zaplanowane procesory nie raportują błędów.

Przetwarzanie danych o notowaniach giełdowych. Wizualna kontrola stanu procesorów w narzędziu nifi. Uruchomione oraz zaplanowane procesory nie raportują błędów.

```
Vagrant@nodel:~$ hadoop fs -ls /user/project/twitter

SLF41: Class path contains multiple SLF41 bindings.

SLF41: Found binding in [jar:file:/usr/local/hadoop-2.7.6/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF41: Found binding in [jar:file:/usr/local/hadoop-2.7.6/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF41: Actual binding is of type [org.slf4j.impl.Log4jloggerFactory]

Found 12 items

-mu-r--r- 1 root supergroup 26035 2023-01-07 09:03 /user/project/twitter/Apple_Hashtag_2023-01-06-221311129Z.parquet

-mu-r--r- 1 root supergroup 57837 2023-01-07 08:45 /user/project/twitter/Apple_Hashtag_2023-01-07-084506486Z.parquet

-mu-r--r- 1 root supergroup 26032 2023-01-07 08:45 /user/project/twitter/Google_Hashtag_2023-01-07-084506486Z.parquet

-mu-r--r- 1 root supergroup 26152 2023-01-07 08:47 /user/project/twitter/Google_Hashtag_2023-01-07-084736552Z.parquet

-mu-r--r- 1 root supergroup 26152 2023-01-07 08:48 /user/project/twitter/Microsoft_Hashtag_2023-01-06-221311129Z.parquet

-mu-r--r- 1 root supergroup 27663 2023-01-07 08:48 /user/project/twitter/Microsoft_Hashtag_2023-01-07-084842432Z.parquet

-mu-r--r- 1 root supergroup 27813 2023-01-07 08:49 /user/project/twitter/Tesla_Hashtag_2023-01-07-084952090Z.parquet

-mu-r--r- 1 root supergroup 27813 2023-01-07 08:40 /user/project/twitter/Tesla_Hashtag_2023-01-07-084952090Z.parquet

-mu-r--r- 1 root supergroup 27813 2023-01-07 08:40 /user/project/twitter/Tesla_Hashtag_2023-01-07-084952090Z.parquet

-mu-r--r- 1 root supergroup 27813 2023-01-07 08:40 /user/project/twitter/Tesla_Hashtag_2023-01-07-084952090Z.parquet
```

Test zapisu plików przez nifi do systemu plików w hadoop. Proces odpowiedzialny za informacje o tweetach poprawnie umieszcza pliki w hdfs.

Test zapisu plików przez nifi do systemu plików w hadoop. Proces odpowiedzialny za informacje o notowaniach spółek poprawnie umieszcza pliki w hdfs.

```
>> TSLA=spark.read.parquet('hdfs://localhost:8020//user/project/alphavantage/TSLA_2023-01-07-095654496Z.parquet')
 >> TSLA.show()
                                                                                                                                      low | close | volume |
                                timestamp
                                                                                                                             113.44 | 113.68 |
2023-01-06 20:00:00|113.4401|113.75|
2023-01-06 19:55:00
                                                                      113.31 113.46
                                                                                                                               113.3 113.45
                                                                       113.23 | 113.31 |
113.24 | 113.25 |
2023-01-06 19:50:00
                                                                                                                             113.23 113.31
2023-01-06 19:45:00
                                                                                                                             113.21 113.23
                                                                                                                                                                              11671
                                                                        113.26 | 113.3 | 113.2499 | 113.27 | 113.2 | 113.27 | 113.19 | 113.26 |
2023-01-06 19:40:00
                                                                                                                                                                              13708
                                                                                                                            113.19 113.26
2023-01-06 19:35:00
                                                                        113.14 | 113.2
113.19 | 113.2
                                                                                                                             113.14 113.19
2023-01-06 19:30:00
                                                                                                                                                                                  6636
                                                                                                                               113.1 113.14
2023-01-06 19:25:00
                                                                                                                                                                                  9779
                                                                                                                          113.1 | 113.14 | 113.15 | 113.2 | 113.17 | 113.18 | 113.18 | 113.18 | 113.07 | 113.17 | 113.07 | 113.12 | 113.17 | 113.18 | 113.13 | 113.13 | 113.13 | 113.13 | 113.13 | 113.13 | 113.13 | 113.14 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.15 | 113.1
                                                                          113.2 | 113.2 |
113.2 | 113.21 |
2023-01-06 19:20:00
                                                                                                                                                                                  7530
2023-01-06 19:15:00
                                                                                                                                                                                  6620
                                                                       113.18 | 113.2
113.09 | 113.19 |
2023-01-06 19:10:00
2023-01-06 19:05:00
                                                                                                                                                                              10241
                                                                        113.13|113.14|
113.18|113.18|
2023-01-06 19:00:00
                                                                                                                                                                              23811
2023-01-06 18:55:00
                                                                                                                                                                              13814
                                                                       113.2 113.2
113.13 113.2
2023-01-06 18:50:00
                                                                                                                                                                                 9488
2023-01-06 18:45:00
                                                                                                                                                                              13990
                                                                       113.13 113.17
2023-01-06 18:40:00
                                                                                                                                                                              19582
                                                                                                                            113.12|113.14|
113.08|113.14|
2023-01-06 18:35:00|113.1499|113.18|
2023-01-06 18:30:00|113.0899|113.15|
                                                                                                                                                                                 5860
                                                                                                                                                                              12493
2023-01-06 18:25:00 113.07 113.12
                                                                                                                           113.06 | 113.08 | 13162 |
nly showing top 20 rows
```

Sprawdzenie czy plik parquet stworzony przez nifi poprawnie przechowuje dane. Dane giełdowe udaje się poprawnie wyświetlić, plik zawiera oczekiwane wartości.

```
TSLA_Hash=spark.read.parquet('hdfs://localhost:8020//user/project/twitter/Tesla_Hashtag_2023-01-07-084052113Z.parquet
>> TSLA Hash.show()
                                        start tweet_count
2023-01-07T00:21:...|2023-01-07T00:20:...
 2023-01-07T00:22:...|2023-01-07T00:21:...
 2023-01-07T00:23:...|2023-01-07T00:22:...
2023-01-07T00:24:...|2023-01-07T00:23:...
2023-01-07T00:25:...
                       2023-01-07T00:24:..
                                                          3 |
6 |
1 |
0 |
4 |
7 |
4 |
3 |
0 |
3 |
0 |
2023-01-07T00:26:...|2023-01-07T00:25:...
2023-01-07T00:27:...|2023-01-07T00:26:...
2023-01-07T00:28:... 2023-01-07T00:27:...
 2023-01-07T00:29:... 2023-01-07T00:28:...
 2023-01-07T00:30:... 2023-01-07T00:29:...
 2023-01-07T00:31:... 2023-01-07T00:30:...
 2023-01-07T00:32:...|2023-01-07T00:31:...
 2023-01-07T00:33:...
                       2023-01-07T00:32:...
2023-01-07T00:34:...
                       2023-01-07T00:33:...
2023-01-07T00:35:...
                       2023-01-07T00:34:...
2023-01-07T00:36:... 2023-01-07T00:35:...
2023-01-07T00:37:... 2023-01-07T00:36:...
 2023-01-07T00:38:... 2023-01-07T00:37:...
 2023-01-07T00:39:...
                       2023-01-07T00:38:...
2023-01-07T00:40:... 2023-01-07T00:39:...
only showing top 20 rows
```

W przypadku danych o tweetach plik parquet również poprawnie przechowuje dane.

```
In 32 1 row = table.row(b'2023-01-86 16:20:00')
2 print(row)

{b'Hashtags:AAPL_tweet_count': b'14', b'Hashtags:6006_tweet_count': b'18', b'Hashtags:KSFT_tweet_count': b'22', b'Hashtags:TSLA_tweet_count': b'29', b'Id:Time': b'2023-01-86 16:20:00'} :
```

Powyższe dwa zrzuty ekranu zostały wykonane w cele wybiórczego sprawdzenia czy skrypt sparkowy (pySpark) popranie złączył i załadował pliki do tabeli hBase. Dane wyświetlają się poprawnie dla obu dostępnych tabel w hBase.

Z poziomu JupyterNotebooka możemy sprawdzać statystyki danych zarówno twitterowych jak i z giełdy.

5. Podsumowanie

Wszystkie założenia projektu zostały spełnione. Dane z obu API są pobierane, przechwytywane, przetwarzane i składowane w określonej formie. Użytkownik końcowy z poziomu Jupyter Notebooka ma możliwość samodzielnej analizy danych.

Podczas pracy nad projektem niejednokrotnie spotkaliśmy się z różnorodnymi problemami. Konfiguracja usług była nieintuicyjna, dodatkowo pojawiały się kłopoty z instalowaniem bibliotek Pythonowych na maszynie wirtualnej, a same dane ze względu na swój format wymagały bardzo dużej i szczegółowej obróbki przed ich docelowym zapisaniem. Mimo to, udało nam się stworzyć rozwiązanie end-to-end, które uważamy za satysfakcjonujące.