

Professional, Applied and Continuing Education

INTRODUCTION TO MACHINE LEARNING

DIT 45100

Professional, Applied and Continuing Education

Module 1 Introduction

Agenda

- Course Overview
- What is machine learning?
- How machine learning works

Professional, Applied and Continuing Education

Course Overview

Course Objectives

- This course introduces the fundamentals of machine learning theory and algorithm design that is necessary to adapt and apply AI to solve real-world problems.
- The course provides a foundational understanding of various machine learning and statistical pattern recognition algorithms and, using available machine learning platforms, teaches practical and applied design, testing, and implementation of machine learning models.
- Course Outcomes
 - Describe and apply machine learning algorithms and models, including rule and tree-based classifiers, uncertainty modeling, clustering and correlation techniques, and numeric prediction.
 - Design, construct, test, and implement supervised and unsupervised machine learning models using Python programming language and supporting libraries

Preparatory Activities

 The following preparatory activities prior to model building have already been covered in previous courses.

Business Understanding

Data Understanding

Data Preparation

Machine Learning Algorithms

 The following five families of supervised machine learning algorithms for building artificial intelligence solutions:

Linear Regression Models

Classification Models

Non-Parametric Models

Probabilistic Models

Decision Trees

Machine Learning Algorithms

We will also look at modelling approaches for:

Unsupervised Learning Text Classification

 We also cover a range of approaches to evaluating & optimizing prediction models along the way.

Professional, Applied and Continuing Education

What is Machine Learning?

- Machine learning and pattern recognition can be viewed as two facets of the same field.
- Machine learning grew out of computer science, whereas pattern recognition has its origin in engineering.
- Both have undergone substantial development over the past two to three decades.
- Machine learning, now a days, is all around us

Formal definition:

Machine learning is the subfield of computer science that gives "computers the ability to learn without being explicitly programmed".

Arthur Samuel, 1959.

- Machine Learning is a subfield of Artificial Intelligence that enables machines to improve at a given task with experience without being explicitly programmed.
- Deep Learning (DL) is a subset of ML that aims at imitating the human brain using mathematical equations.

Flavors of Machine Learning

There are three major forms of machine learning

- Supervised Learning
 - Learning from examples
 - Labelled data
- Unsupervised Learning
 - Learning the internal structure of the data
 - No labels
- Reinforcement Learning
 - Learning from the environment
 - Actions / perceptions

Supervised Machine Learning

Unsupervised ML: Clustering

Reinforcement Learning

- (Supervised) Machine Learning is different from traditional approach to statistical modeling
 - Statistical modeling:
 - Model defining the rules → Answers
 - Objective is understanding the relationships
 - Machine Learning:
 - Answers → Model defining the rules
 - Objective is to make (accurate) predictions

Statistical Modeling: The Two Cultures

- There are two cultures in the use of statistical modeling to reach conclusions from data
 - Data Modeling
 - Traditionally, 98% of all statisticians use this approach
 - Algorithmic Modeling
 - 2% of statisticians, and many in other fields use this approach

Statistical Modeling

Goals of Data Analysis:

- 1. How **y** relates to **x**
- 2. Predict **y** from new **x**

There are two approaches towards these goals

Data Modeling Culture

y = f(x, parameters, random noise)

Algorithmic Modeling Culture

 $f: \mathbf{x} \rightarrow \mathbf{y}$

Professional, Applied and Continuing Education

"If our goal as a field is to use data to solve problems, then we need to move away from exclusive dependence on data models and adopt a more diverse set of tools". That is, we need to use Machine Learning.

Leo Breiman, 2001

Major Machine Learning Techniques

- Regression / Estimation
 - Predicting continuous values
- Classification
 - Predicting the item class / category of a case
- Clustering
 - Finding the structure of data; summarization
- Associations
 - Associating frequent co-occurring items / events

Major Machine Learning Techniques

- Anomaly detection
 - Discovering abnormal and unusual cases
- Sequence mining
 - Predicting next events; click streams (Markov Models; HMM)
- Dimension reduction
 - Reducing the size of data (PCA)
- Recommendation systems
 - Recommending items

Applications of Machine Learning

Let's look at a simple example of a machine learning model

Bank Loan Approval Scenario

			LOAN-SALARY	
ID	OCCUPATION	AGE	RATIO	OUTCOME
1	industrial	34	2.96	repaid
2	professional	41	4.64	default
3	professional	36	3.22	default
4	professional	41	3.11	default
5	industrial	48	3.80	default
6	industrial	61	2.52	repaid
7	professional	37	1.50	repaid
8	professional	40	1.93	repaid
9	industrial	33	5.25	default
10	industrial	32	4.15	default

 What is the relationship between the descriptive features (OCCUPATION, AGE, LOAN-SALARY RATIO) and the target feature (OUTCOME)?

Bank Loan Approval Scenario

			LOAN-SALARY	
ID	OCCUPATION	A GE	RATIO	OUTCOME
1	industrial	34	2.96	repaid
2	professional	41	4.64	default
3	professional	36	3.22	default
4	professional	41	3.11	default
5	industrial	48	3.80	default
6	industrial	61	2.52	repaid
7	professional	37	1.50	repaid
8	professional	40	1.93	repaid
9	industrial	33	5.25	default
10	industrial	32	4.15	default

if Loan-Salary Ratio > 3 then
Outcome='default'
Else
Outcome='repay'
end if

- > This is an example of a prediction model
- > This is also an example of a consistent prediction model

Let's now look at a relatively larger version of the Bank-Loan Dataset

Bank Loan (Extended) Dataset

			Loan- Salary					
ID	Amount	Salary	Ratio	Age	Occupation	House	Type	Outcome
1	245,100	66,400	3.69	44	industrial	farm	stb	repaid
2	90,600	75,300	1.2	41	industrial	farm	stb	repaid
3	195,600	52,100	3.75	37	industrial	farm	ftb	default
4	157,800	67,600	2.33	44	industrial	apartment	ftb	repaid
5	150,800	35,800	4.21	39	professional	apartment	stb	default
6	133,000	45,300	2.94	29	industrial	farm	ftb	default
7	193,100	73,200	2.64	38	professional	house	ftb	repaid
8	215,000	77,600	2.77	17	professional	farm	ftb	repaid
9	83,000	62,500	1.33	30	professional	house	ftb	repaid
10	186,100	49,200	3.78	30	industrial	house	ftb	default
11	161,500	53,300	3.03	28	professional	apartment	stb	repaid
12	157,400	63,900	2.46	30	professional	farm	stb	repaid
13	210,000	54,200	3.87	43	professional	apartment	ftb	repaid
14	209,700	53,000	3.96	39	industrial	farm	ftb	default
15	143,200	65,300	2.19	32	industrial	apartment	ftb	default
16	203,000	64,400	3.15	44	industrial	farm	ftb	repaid
17	247,800	63,800	3.88	46	industrial	house	stb	repaid
18	162,700	77,400	2.1	37	professional	house	ftb	repaid
19	213,300	61,100	3.49	21	industrial	apartment	ftb	default
20	284,100	32,300	8.8	51	industrial	farm	ftb	default
21	154,000	48,900	3.15	49	professional	house	stb	repaid
22	112,800	79,700	1.42	41	professional	house	ftb	repaid
23	252,000	59,700	4.22	27	professional	house	stb	default
24	175,200	39,900	4.39	37	professional	apartment	stb	default
25	149,700	58,600	2.55	35	industrial	farm	stb	default

Bank Loan (Extended) Dataset

```
if LOAN-SALARY RATIO < 1:5 then
   OUTCOME='repay'
else if LOAN-SALARY RATIO > 4 then
   OUTCOME='default'
else if AGE < 40 and OCCUPATION ='industrial' then
   OUTCOME='default'
else
   OUTCOME='repay'
end if</pre>
```


Professional, Applied and Continuing Education

How Does Machine Learning Work?

How does ML Work?

 Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.

How does ML Work?

- Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.
- An obvious search criteria to drive this search is to look for models that are consistent with the data.

How does ML Work?

- Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.
- An obvious search criteria to drive this search is to look for models that are consistent with the data.
- However, because a training dataset is only a sample ML is an ill-posed problem.

A Simple Retail Scenario

ID	BBY	ALC	ORG	GRP
1	no	no	no	couple
2	yes	no	yes	family
3	yes	yes	no	family
4	no	no	yes	couple
5	no	yes	yes	single

- Three binary descriptive features with yes/no entries
- Target feature (GRP) with 3 levels
- Data for 5 customers (instances)
- Objective:
 - to predict demographic group of each customer based on their shopping habits

A Simple Retail Scenario

THE UNIVERSITY OF WINNIPEG

Table: A full set of potential prediction models before any training data becomes available.

Вву	ALC	Org	GRP	\mathbb{M}_1	\mathbb{M}_2	\mathbb{M}_3	\mathbb{M}_4	\mathbb{M}_5	 M_{6561}
no	no	no	?	couple	couple	single	couple	couple	couple
no	no	yes	?	single	couple	single	couple	couple	single
no	yes	no	?	family	family	single	single	single	family
no	yes	yes	?	single	single	single	single	single	couple
yes	no	no	?	couple	couple	family	family	family	 family
yes	no	yes	?	couple	family	family	family	family	couple
yes	yes	no	?	single	family	family	family	family	single
yes	yes	yes	?	single	single	family	family	couple	family

 $2^3 = 8$ combinations of feature values

3⁸ = 6561 models consistent with the features

A Simple Retail Scenario

Table: A sample of the models that are consistent with the training data

Вву	ALC	Org	GRP	M_1	\mathbb{M}_2	M_3	\mathbb{M}_4	\mathbb{M}_5	 $M_{6.561}$
no	no	no	couple	couple	couple	single	couple	couple	couple
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no	no	?	couple	couple		family	family	
yes	no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	?	single	single	family	family	couple	family

Notice that there is more than one candidate model left! It is because a single consistent model cannot be found based on a sample training dataset that ML is ill-posed.

Model Selection

- Consistency is akin to memorizing the dataset.
- Consistency with noise in the data isn't desirable.
- Goal: a model that **generalizes** beyond the dataset and that isn't influenced by the noise in the dataset.
- So what criteria should we use for choosing between models?

Inductive Bias

- Inductive bias is the set of assumptions that define the model selection criteria of an ML algorithm.
- There are two types of inductive bias that we can use:
 - restriction bias
 - preference bias
- Inductive bias is necessary for learning (beyond the dataset).

Summary of How ML Works

ML algorithms work by searching through sets of potential models.

There are two sources of information that guide this search:

- the training data
- the inductive bias of the algorithm.

Professional, Applied and Continuing Education

Inductive Bias Versus Sample Bias

Bias

- Inductive bias is necessary for machine learning, and in a sense, key goal of a
 data analyst is to find the correct inductive bias.
- Inductive bias is not the only type of bias that affects machine learning, a particularly important type of bias that we need to be aware of is sampling bias

Bias

- Sampling bias arises when the sample of data used within a data-driven process is collected in such a way that the sample is not representative of the population the sample is used to represent.
- If a sample of data is not representative of a population, then inferences based on that sample will not generalize to the larger population.
- Sample bias is something that a data analyst should proactively work hard to remove from the data used in any data analytics or Al project.

Supervised Machine Learning

- (Supervised) Machine Learning techniques automatically learn a model of the relationship between a set of **descriptive features** and a **target feature** from a set of historical examples.
- The objective is to develop predictive models that can generalize well to new queries, i.e., unknown data that the models have not "seen" before during training
- It's a two step process
 - Training
 - Prediction

Step 1: Model Training

Step 2: Prediction

Is This a Benign or Malignant Cell?

Machine learning helps with predictions!

Machine learning helps with predictions!

How Machine Learning Works

How Machine Learning Works

Professional, Applied and Continuing Education

What Can Go Wrong with Machine Learning?

What Can Go Wrong with ML?

- No free lunch!
- What happens if we use wrong inductive bias?
 - Underfitting
 - Overfitting

Age-Income Dataset

ID	Age	Income
1	21	24000
2	32	48000
3	62	83000
4	72	61000
5	84	52000

Objective: We would like to predict income based on the age of an individual

Scatter plot of the age-income dataset

A Straight Line Fit

2nd Order Polynomial Fit

Higher Order Polynomial Fit

Figure: Striking a balance between overfitting and underfitting when trying to predict age from income.

Preventing Model Overfitting

- Bigger datasets
- Regularization
- Validation dataset