INT305 W1

Nearest Neighbor

数学表达 以及 回归和分类:

Mathematically, our training set consists of a collection of pairs of an input vector $\mathbf{x} \in \mathbb{R}^d$ and its corresponding target, or label, t

- \triangleright Regression: t is a real number (e.g. stock price)
- ▶ Classification: t is an element of a discrete set $\{1, \ldots, C\}$
- \triangleright These days, t is often a highly structured object (e.g. image)

Denote the training set $\{(\mathbf{x}^{(1)}, t^{(1)}), \dots, (\mathbf{x}^{(N)}, t^{(N)})\}$

▶ Note: these superscripts have nothing to do with exponentiation!

Nearest Neighbor

- 问题:有一个 input vector x,要对它进行分类。
- 想法:在 training set 中,找到一个和 x 最像的(即:欧式距离最近的)vector x*,那么 x*的label t*就可以看作 x 的 label y。
- 算法:

欧几里得距离 (Euclidean distance):

$$\left\|\mathbf{x}^{(a)}-\mathbf{x}^{(b)}
ight\|_2=\sqrt{\sum_{j=1}^d\left(x_j^{(a)}-x_j^{(b)}
ight)^2}$$

算法:

1, Find example (x^* , t^*) (from the stored training set) closest to x. That is:

$$\mathbf{x}^* = \mathop{\mathrm{argmin}}_{\mathbf{x}^{(i)} \in \text{ train. set}} \operatorname{distance}\left(\mathbf{x}^{(i)}, \mathbf{x}\right)$$

注: argmin (argument of the minimum) 表示使目标函数取最小值时的变量值。

2, Output $y = t^*$

k-Nearest Neighbors (KNN)

- 问题: training set 中会存在很多 noisy sample(或 mis-labeled data),这会影响结果的准确性。
- 解决方法:使用多个 sample 共同判断。

前面的 Nearest Neighbor 只找到一个最近的 sample 作为依据进行判断,如果这个 sample 是 noise,那么就会出现错误。因此,找到 k 个最近的 samples 一起进行判断,就是 KNN。

- 算法:
 - 1, Find k examples $\{x^{(i)}, t^{(i)}\}$ closest to the test instance x
 - 2, Classification output is majority class

$$y = \argmax_{\mathbf{t}^{(z)} \in \, \mathbf{t}^{(i)}} \sum_{i=1}^k \mathbb{I}\left(t^{(z)} = t^{(i)}\right)$$

 Π {statement} is the identity function and is equal to one whenever the statement is true. We could also write this as $\sigma(t^{(z)}, t^{(i)})$, with $\sigma(a, b) = 1$ if a = b, 0 otherwise.

注:第一步找到 k 个最近的 samples,用 $\{x^{(i)},t^{(i)}\}$ 表示,其中 $x^{(i)}$ 和 $t^{(i)}$ 中都有 k 个值。

第二步根据 k 个 sample 的 label, 找出数量最多的那个类, 就是最后的输出。

- Tradeoffs in choosing k
 - o small k
 - 擅长捕捉细颗粒度的特征 (fine-grained patterns)
 - 可能会 overfit, 即对 training data 中的随机特征敏感
 - o large k
 - 可以通过对大量 sample 进行平均,做出稳定的预测
 - 可能 underfit, 即无法捕捉某些重要的规律
 - o balancing k
 - 最优的 k的值,取决于 data points n的数量
 - 经验法则: choose k < \sqrt{n}
- Choosing k using validation set
 - k is an example of a hyperparameter
 - we can tune hyperparameters using a **validation set**

Curse of Dimensionality

- 问题:在计算距离时可能会出现以上的情况,绝对值大的feature 在欧式距离计算的时候起了决定性作用(在某一维度或 feature 上紧密,在某一维度上分散)。
- 简单的解决方法:对每个维度的数据进行 **normalize**,使其变得 **零均值化**(zero mean,即使均值为 0;如图片像素值在 -128~128,均值为 0)和 **单位方差化**(unit variance,即使方差为 1;方差是每个样本值与全体样本值的平均数之差的平方值的平均数,可以用来表示离散程度)。

$$ilde{x}_j = rac{x_j - \mu_j}{\sigma_j}$$

其中, x_j 为某个特征的原始值, μ_j 为该特征在所有样本中的平均值, σ_j 为该特征在所有样本中的标准差(标准差是方差的算术平方根), \tilde{x}_j 为经过标准化处理后的特征值 ~ N(0,1)

Computational Cost

- number of computations at **training time**: 0 (KNN 不需要 train)
- number of computations at **test time**, per query (naive algorithm)
 - 。 calculuate D-dimensional Euclidean distance with N data points: *O(ND)*(欧几里得距离要计算 D 个 features,一共 N 个点)
 - sort the distances: **O(N logN)**