High-Voltage Direct-Current Transmission Systems

Fujin Deng
School of Electrical Engineering
Southeast University

fdeng@seu.edu.cn

Outline

- I. HVDC Systems
- II. Multi-terminal HVDC Systems
- **III. DC Grid for Offshore Wind Farms**
- **IV. DC-Line Fault Situations**

1 HVDC Transmission System

- High Voltage Alternative Current (HVAC) Technology
- High Voltage Direct Current (HVDC) Technology

HVDC System Configuration

HVDC System with monopolar configuration

HVDC System Configuration

Bipolar operation with metal return line

Operation Mode 2

monopolar operation with metal return line

Operation Mode 3

Bipolar operation without metal return line

Operation Mode 4

Operation as STATCOM

HVDC System Configuration

Yu-e BTB VSC-HVDC

- Com. year: 2017
- ±420kV/1250MW, 4 channels

Nan-Hui VSC-HVDC

- Com. Year: 2013
- ±30kV, 18MW,8.6km land cable

Zhou-Shan VSC-MTDC

- Com. year: 2014
- ±200kV, 400/300/3×100MW,
 129 km submarine cable, 12.5
 km OHL

Luoping BTB VSC-HVDC

- Com. Year, 2016
- ±350kV/1000MW

Guang-Dong BTB VSC-HVDC

- Com. Year: 2019
- planned

Zhong-Hai-You VSC-HVDC

- Com. Year: 2012
- ±10kV, 4MW, 40km
 submarine cable

Xia-Men VSC-HVDC

- Com. Year: 2015
- ±320kV, 1000MW, 10.7
 km land cable

Nan-Ao VSC-MTDC

- Com. Year: 2013
- ±160kV, 200/100/50MW,
 20.2 km land/submarine cable,
 20.6 km OHL

2 Multi-Terminal VSC-HVDC Systems

Multi-Terminal VSC-HVDC Systems

Why VSC-MTDC?

- Multiple power supply and multidrop power;
- Provides additional operation flexibility,
- Redundancy
- High reliability.

Features

- 2-Terminal System: most existing HVDC systems are point-to-point systems.
- MTDC Systems: DC transmission with 3 or more converter stations.
- For instance, the EU SuperGrid and Nan'ao VSC-MTDC project.

Multi-Terminal VSC-HVDC Systems

■ Nan' ao VSC-MTDC project

R&D Valve test Commissioning Operation 2012-12-30 2013-08-01 2013-10-21 2013-12-25

Multi-Terminal VSC-HVDC Systems

■ Multi-Terminal VSC-HVDC Systems Configurations

Connection Topologies	Series connection	Mixed connection	Radial parallel connection	Ring network parallel connection
	AC DC DC DC	AC DC DC DC DC	DC DC DC AC AC	AC DC AC DC AC
Features	 Slow fault recovery, Not conducive to the expansion of power grid because of insulation and voltage withstand requirements. 		 Fast fault recovery, Conducive to power grid expansion, High reliability, Easy maintenance, Flexible operation mode. 	
Application	Less		Widely	

3 DC Grid for Offshore Wind Farm

DC Grid

- (1) Collection system
- (2) HVDC transmission system

Onshore Converter

MMC for onshore converter

- Multilevel
- Low switching frequency
- Small harmonics
- > High reliability

Onshore Converter Control

Onshore converter (POFC & NOFC) control

- DC-link voltage control Vn
- Reactive power control Q

Offshore DC/DC Converter

MMC-based offshore converter

- Isolated DC transformer
- Multilevel configuration
- Medium switching frequency

Offshore DC/DC Converter Control

1. Negative Offshore converter (NOFC) control

Collection voltage control V_{MV}

2. Positive Offshore converter (POFC) control

Power follow control Poff1

4 DC-Line Fault Situation

HVDC transmission system

- (1) Onshore converter (PONC & NONC)
- (2) Offshore converter (POFC & NOFC)

Fault Current at Onshore Converter

Protective Inductor for onshore Converter

2. Only one diodes in one leg in condition

 $i_{d2_max} = \text{Max}[|i_{a1}|, |i_{b1}|, |i_{c1}|]$

Peak value $i_{n1m} = V_{n10} \sqrt{C_{n1}/L_{pn}}$ $Max[i_{n1}] \le 1.5 Max[|i_{a1}|, |i_{b1}|, |i_{c1}|]$ $i_{d1 \ max} \leq i_{d2 \ max}$

Onshore Converter Performance

Offshore Converter Protection under Faults

Peak value
$$i_{cf1}(t) = \sqrt{V_{f10}^2 \frac{C_{f1}}{L_{pf}} + I_{f10}^2}$$

Offshore Converter Performance

Redundancy for HVDC System Faults

Redundancy

- (1) Redundancy for onshore converter
- (2) Redundancy for offshore converter

DC Grid Control under Faults

■ DC grid control under faults

- (1) HVDC system control
- (2) Wind farm control

Wind turbine (WT) control P_{g} P_{g_ref} P_{g_ref} P_{g} P_{g_ref} P_{g} P_{g}

 $P_{g,ref} \longrightarrow PI \longrightarrow i_d \longrightarrow$

Chopper resistor control

Thanks!