# A.A. 2003/2004 Esercizi di Reti Logiche A $^{\ast}$

A cura di F. Ferrandi, C. Silvano

Ultimo aggiornamento, 11 novembre 2003

<sup>\*</sup>Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso di Reti Logiche A - A.A. 2003-2004

# 1 Minimizzazione di espressioni logiche con le proprietà dell'algebra di Boole

#### 1.1 Esercizi con soluzione

Esercizio 1.1 - Data la seguente funzione F:

$$F = a'bcd + abcd + ab'cd + a'bc'd$$

1. Utilizzando le proprietà e i teoremi dell'algebra di Boole, semplificare l'espressione di F, indicando le singole operazioni svolte e il nome oppure l'espressione della proprietà o del teorema utilizzato.

(Ad esempio, Proprietà Associativa oppure (AB)C=A(BC))

#### SOLUZIONE

1. Applicando le proprietà dell'algebra di Boole si ottiene:

$$F = a'bd(c+c') + abcd + ab'cd$$
 (per distributiva)  
 $F = a'bd(c+c') + acd(b+b')$  (per distributiva)  
 $F = a'bd + acd(b+b')$  (per inverso)  
 $F = a'bd + acd$  (per inverso)

I

Esercizio 1.2 - Data la seguente funzione F:

$$F = a'b'c'd' + a'b'c'd + a'b'cd' + abc'd' + abc'd' + abcd' + ab'cd'$$

1. Utilizzando le proprietà e i teoremi dell'algebra di Boole, semplificare l'espressione di F, indicando le singole operazioni svolte e il nome oppure l'espressione della proprietà o del teorema utilizzato.

(Ad esempio, Proprietà Associativa oppure (AB)C=A(BC))

SOLUZIONE

1. Applicando le proprietà dell'algebra di Boole si ottiene:

```
F = a'b'c'd' + a'b'c'd' + a'b'c'd + a'b'cd' + abc'd' + ab'c'd' +
       abcd' + ab'cd'
                                                                     (per idempotenza)
   = (a'b'c'd' + ab'c'd') + (a'b'c'd' + a'b'c'd) + (a'b'cd' + ab'cd') +
       +(abc'd' + abcd')
                                                                     (per associativa)
   = (a'+a)b'c'd' + (d'+d)a'b'c' + (a'+a)b'cd' + (c'+c)abd'
F
                                                                     (per distributiva)
   = b'c'd' + a'b'c' + b'cd' + abd'
                                                                     (pr. inverso)
F = (c'+c)b'd' + a'b'c' + abd'
                                                                     (per distributiva)
   = b'd' + a'b'c' + abd'
                                                                     (per inverso)
F = (b' + ab)d' + a'b'c'
                                                                     (per distributiva)
F = (b'+a)d' + a'b'c'
                                                                     (per a'b + a = b + a)
F = b'd' + a'b'c' + ad'
                                                                     (per distributiva)
```

Esercizio 1.3 - Data la seguente funzione F:

$$F = a'bcd + abcd + ab'cd$$

- 1. Disegnare il circuito corrispondente.
- 2. Utilizzando le proprietà e i teoremi dell'algebra di Boole, semplificare l'espressione di F, indicando le singole operazioni svolte e il nome oppure l'espressione della proprietà o del teorema utilizzato. (Ad esempio, Proprietà Associativa oppure (AB)C=A(BC)):

#### SOLUZIONE

1. Il circuito corrispondente è:



2. Applicando le proprietà dell'algebra di Boole si ottiene:

$$F = a'bcd + abcd + ab'cd + abcd$$
 (per idempotenza)  
 $F = (a + a')bcd + ab'cd + abcd$  (per distributiva)  
 $F = (a + a')bcd + acd(b + b')$  (per distributiva)  
 $F = bcd + acd(b + b')$  (per inverso)  
 $F = bcd + acd$  (per inverso)

Esercizio 1.4 - Data la seguente funzione F:

$$\mathsf{F}_{(\mathsf{a},\mathsf{b},\mathsf{c})} = \mathsf{a}'\mathsf{b}'\mathsf{c}' + \mathsf{a}'\mathsf{b}'\mathsf{c} + \mathsf{a}'\mathsf{b}\mathsf{c}' + \mathsf{a}\mathsf{b}'\mathsf{c}'$$

1. Utilizzando le proprietà e i teoremi dell'algebra di Boole, semplificare l'espressione di F, indicando le singole operazioni svolte e il nome oppure l'espressione della proprietà o del teorema utilizzato.

(Ad esempio, Proprietà Associativa oppure (AB)C=A(BC))

#### SOLUZIONE

I

1. Applicando le proprietà dell'algebra di Boole si ottiene:

$$F = a'b'c' + a'b'c + ab'c' + a'b'c' + a'bc' + a'b'c'$$
 (per idempotenza)  

$$F = a'b'(c'+c) + b'c'(a+a') + a'c'(b+b')$$
 (per distributiva)  

$$F = a'b' + b'c' + a'c'$$
 (per inverso)

Esercizio 1.5 - Data la seguente tabella della verità di F:

| a | b | $\mathbf{c}$ | $\mathbf{F}$ |
|---|---|--------------|--------------|
| 0 | 0 | 0            | 0            |
| 0 | 0 | 1            | 1            |
| 0 | 1 | 0            | 1            |
| 0 | 1 | 1            | 1            |
| 1 | 0 | 0            | 0            |
| 1 | 0 | 1            | 0            |
| 1 | 1 | 0            | 0            |
| 1 | 1 | 1            | 1            |

- 1. Ricavare l'espressione logica SOMMA DI PRODOTTI (prima forma canonica)
- 2. Utilizzando le proprietà e i teoremi dell'algebra di Boole, semplificare l'espressione di F, indicando le singole operazioni svolte e il nome oppure l'espressione della proprietà o del teorema utilizzato.

(Ad esempio, Proprietà Associativa oppure (AB)C=A(BC))

#### SOLUZIONE

I

1. La prima forma canonica di F è:

$$F = a'b'c + a'bc' + a'bc + abc$$

2. Applicando le proprietà dell'algebra di Boole si ottiene:

$$F = a'b'c + a'bc + a'bc' + a'bc + abc + a'bc (per idempotenza)$$

$$F = a'c(b'+b) + a'b(c'+c) + bc(a'+a) (per distributiva)$$

$$F = a'c1 + a'b1 + bc1 (per inverso)$$

$$F = a'c + a'b + bc (per elemento neutro)$$

Esercizio 1.6 - Data la seguente tabella della verità della funzione F a due uscite:

| $  \mathbf{A}  $ | В | $\mathbf{C}$ | f1 | <b>f2</b> |
|------------------|---|--------------|----|-----------|
| 0                | 0 | 0            | 1  | 0         |
| 0                | 0 | 1            | 1  | 1         |
| 0                | 1 | 0            | 1  | 1         |
| 0                | 1 | 1            | 0  | 0         |
| 1                | 0 | 0            | 1  | 1         |
| 1                | 0 | 1            | 0  | 0         |
| 1                | 1 | 0            | 0  | 0         |
| 1                | 1 | 1            | 0  | 1         |

1. A partire dalla tabella delle verità, ricavare l'espressione logica SOMMA DI PRODOTTI (prima forma canonica)

#### SOLUZIONE

I

1. La prima forma canonica di  ${\sf F}$  è:

$$\mathsf{f1} = \mathsf{a'b'c'} + \mathsf{a'b'c} + \mathsf{a'bc'} + \mathsf{ab'c'}$$

$$f2 = a'b'c + a'bc' + ab'c' + abc$$

# 2 Minimizzazione di espressioni logiche con le mappe di Karnaugh

#### 2.1 Esercizi con soluzione

Esercizio 2.1 - Data la seguente funzione  $\mathsf{F}$  definita attraverso il suo  $\mathsf{ON}_\mathsf{set}$ :

$$\mathsf{ON}_{\mathsf{set}} = \{m_3, m_4, m_6, m_7, m_{12}, m_{13}, m_{14}\}$$

Calcolare:

- 1. L'espressione logica SOMMA DI PRODOTTI (prima forma canonica)
- 2. Implicanti primi
- 3. Implicanti primi essenziali
- 4. Copertura minima
- 5. Dire se la copertura minima trovata è unica
- 6. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima

#### SOLUZIONE

La tabella dei mintermini è:

|     | a | b | $\mathbf{c}$ | d |
|-----|---|---|--------------|---|
| m3  | 0 | 0 | 1            | 1 |
| m4  | 0 | 1 | 0            | 0 |
| m6  | 0 | 1 | 1            | 0 |
| m7  | 0 | 1 | 1            | 1 |
| m12 | 1 | 1 | 0            | 0 |
| m13 | 1 | 1 | 0            | 1 |
| m14 | 1 | 1 | 1            | 0 |

1.  $F_{(a,b,c,d)} = \mathbf{a'b'cd} + \mathbf{a'bc'd'} + \mathbf{a'bcd'} + \mathbf{a'bcd} + \mathbf{abc'd'} + \mathbf{abc'd'} + \mathbf{abcd'}$ 

| \ c |     |    |    |    |
|-----|-----|----|----|----|
| ab\ | 0.0 | 01 | 11 | 10 |
| 0 0 | 0   | 0  |    | 0  |
| 0 1 | 1   | 0  |    |    |
| 11  |     | 1  | 0  | 1  |
| 1 0 | 0   | 0  | 0  | 0  |
|     |     |    |    |    |

- 2. Implicanti primi: a'cd, a'bc, bd', abc'
- 3. Implicanti primi essenziali: a'cd, bd', abc'
- 4. Copertura minima: a'cd+bd'+abc'
- 5. Dire se la copertura minima trovata è unica: SI

ı

Esercizio 2.2 - Si consideri la seguente funzione F definita attraverso il suo ON<sub>set</sub>:

$$ON_{set} = \{m0, m1, m2, m8, m10, m12, m14\}$$

Facendo uso della sua mappa di Karnaugh, calcolare:

- 1. Implicanti primi
- 2. Implicanti primi essenziali
- 3. Copertura minima
- 4. Dire se la copertura minima trovata è unica
- 5. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima

#### SOLUZIONE

La mappa di Karnaugh vale:

| cd al | b<br>00 | 01 | 11 | 11 |
|-------|---------|----|----|----|
| 0 0   | 1       | 0  | 1  |    |
| 0 1   |         | 0  | 0  | 0  |
| 1 1   | 0       | 0  | 0  | 0  |
| 1 0   | 1       | 0  | 1  |    |

- 1. Implicanti primi: a'b'c',b'd',ad'
- 2. Implicanti primi essenziali: a'b'c',b'd',ad'
- 3. Copertura minima: a'b'c'+b'd'+ad'
- 4. Dire se la copertura minima trovata è unica: SI

5. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima: /

Esercizio 2.3 - Si consideri la seguente funzione f definita attraverso il suo ON<sub>set</sub>:

$$ON_{set} = \{m0, m2, m6, m7, m15\}$$

Facendo uso della sua mappa di Karnaugh, calcolare:

- 1. Implicanti primi
- 2. Implicanti primi essenziali
- 3. Copertura minima
- 4. Dire se la copertura minima trovata è unica
- 5. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima

#### SOLUZIONE

La mappa di Karnaugh vale:

| \ a |     |    |    |    |
|-----|-----|----|----|----|
| cd\ | 0.0 | 01 | 11 | 11 |
| 0 0 | 1   | 0  | 0  | 0  |
| 0 1 | 0   | 0  | 0  | 0  |
| 11  | 0   |    | 1  | 0  |
| 1 0 |     | 1  | 0  | 0  |

- 1. Implicanti primi: a'b'd',a'cd',a'bc,bcd
- 2. Implicanti primi essenziali: a'b'd',bcd
- 3. Copertura minima: a'b'd'+bcd+a'bc
- 4. Dire se la copertura minima trovata è unica: NO
- 5. Se la copertura minima trovata non è unica,calcolare un'altra copertura minima: a'b'd'+bcd+a'cd'

Esercizio 2.4 - Si consideri la seguente funzione f definita attraverso il suo ON<sub>set</sub>:

$$ON_{set} = \{m3, m4, m6, m7, m12, m13, m14\}$$

Facendo uso della sua mappa di Karnaugh, calcolare:

- 1. L'espressione logica SOMMA DI PRODOTTI (prima forma canonica)
- 2. Implicanti primi
- 3. Implicanti primi essenziali
- 4. Copertura minima
- 5. Dire se la copertura minima trovata è unica
- 6. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima

#### SOLUZIONE

La mappa di Karnaugh vale:

| cd a | b<br>00 | 01 | 11 | 10 |
|------|---------|----|----|----|
| 0 0  | 0       | 1  | 1  | 0  |
| 0 1  | 0       | 0  |    | 0  |
| 1 1  |         |    | 0  | 0  |
| 1 0  | 0       |    | 1  | 0  |

1. Prima forma canonica:

$$f = a'b'cd + a'bc'd' + a'bcd' + a'bcd + abc'd' + abc'd + abcd'$$

- 2. Implicanti primi: bd',a'cd,a'bc,abc'
- 3. Implicanti primi essenziali: bd',a'cd,abc'
- 4. Copertura minima: b'd'+a'cd+abc'
- 5. Dire se la copertura minima trovata è unica: SI
- 6. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima: /

# Esercizio 2.5 - Si consideri la seguente funzione $\mathsf{F}$ definita attraverso il suo $\mathsf{ON}_{\mathsf{set}}$ :

$$\mathsf{ON}_{\mathsf{set}} = \{m_0, m_2, m_4, m_6, m_7, m_9, m_{13}, m_{15}\}$$

Calcolare:

- 1. Implicanti primi
- 2. Implicanti primi essenziali
- 3. Copertura minima
- 4. Dire se la copertura minima trovata è unica
- 5. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima



SOLUZIONE

- 1. Implicanti primi: a'd', a'bc, bcd, abd, ac'd
- 2. Implicanti primi essenziali: a'd', ac'd
- 3. Copertura minima: a'd', ac'd, bcd
- 4. Dire se la copertura minima trovata è unica: SI

I

Esercizio 2.6 - Minimizzare la funzione il cui  $\mathsf{ON}_\mathsf{set}$ è riportato di seguito:

$$ON_{set} = \{m_1, m_4, m_5, m_6, m_7, m_9, m_{11}, m_{14}, m_{15}\}$$

SOLUZIONE

|                  | x | у | $\mathbf{Z}$ | v |
|------------------|---|---|--------------|---|
| $\overline{m_1}$ | 0 | 0 | 0            | 1 |
| $m_4$            | 0 | 1 | 0            | 0 |
| $m_5$            | 0 | 1 | 0            | 1 |
| $m_6$            | 0 | 1 | 1            | 0 |
| $m_7$            | 0 | 1 | 1            | 1 |
| $m_9$            | 1 | 0 | 0            | 1 |
| $m_{11}$         | 1 | 0 | 1            | 1 |
| $m_{14}$         | 1 | 1 | 1            | 0 |
| $m_{15}$         | 1 | 1 | 1            | 1 |

| zv x | y<br>00 | 01 | 11             | 10         |
|------|---------|----|----------------|------------|
| 0 0  | 0       | 1  | 0              | 0 <b>₽</b> |
| 0 1  |         | 1  | 0              |            |
| 1 1  | 0       | 1  | 1              | 2          |
| 1 0  | 0       |    | F <sup>1</sup> | 0          |

#### IMPLICANTI PRIMI:

|              | x | у | $\mathbf{z}$ | $\mathbf{v}$ |       |      |
|--------------|---|---|--------------|--------------|-------|------|
| A            | 0 | - | 0            | 1            | x'z'v |      |
| В            | _ | 0 | 0            | 1            | y'z'v |      |
| С            | 1 | 0 | -            | 1            | xy'v  |      |
| D            | 1 | - | 1            | 1            | xzv   |      |
| $\mathbf{E}$ | 0 | 1 | -            | -            | x'y   | ESS. |
| F            | _ | 1 | 1            | -            | yz    | ESS. |

Esistono tre coperture minime:

$$E+F+A+C$$
 
$$E+F+B+C$$
 
$$E+F+B+D$$

 $\mathbf{Esercizio}\ \mathbf{2.7}\text{ - }\mathbf{Calcolare}\ \mathbf{una}\ \mathbf{copertura}\ \mathbf{minima}\ \mathbf{della}\ \mathbf{funzione}\ \mathbf{definita}\ \mathbf{dal}\ \mathbf{seguente}\ \mathsf{ON}_{\mathsf{set}} \mathbf{:}$ 

$$\mathsf{ON}_{\mathsf{set}} = \{m_1, m_3, m_4, m_5, m_6, m_8, m_9, m_{12}, m_{13}, m_{14}\}$$

SOLUZIONE

|                  | x | У | $\mathbf{Z}$ | $\mathbf{v}$ |
|------------------|---|---|--------------|--------------|
| $\overline{m_1}$ | 0 | 0 | 0            | 1            |
| $m_3$            | 0 | 0 | 1            | 1            |
| $m_4$            | 0 | 1 | 0            | 0            |
| $m_5$            | 0 | 1 | 0            | 1            |
| $m_6$            | 0 | 1 | 1            | 0            |
| $m_8$            | 1 | 0 | 0            | 0            |
| $m_9$            | 1 | 0 | 0            | 1            |
| $m_{12}$         | 1 | 1 | 0            | 0            |
| $m_{13}$         | 1 | 1 | 0            | 1            |
| $m_{14}$         | 1 | 1 | 1            | 0            |

| zv x | y<br>00                                | . 01 | 11 . | 10 |
|------|----------------------------------------|------|------|----|
| 0 0  | <sub>0</sub> C                         | 1    | 1    | 1  |
| 0 1  |                                        | 1    |      | 1  |
| 1 1  | $\begin{bmatrix} 1 \\ A \end{bmatrix}$ | 0    | 0    | 0  |
| 1 0  | 0                                      | 1    | 1    | 0  |

# IMPLICANTI PRIMI:

|              | x | У | $\mathbf{Z}$ | $\mathbf{v}$ |       |      |
|--------------|---|---|--------------|--------------|-------|------|
| A            | 0 | 0 | -            | 1            | x'y'v | ESS. |
| В            | - | - | 0            | 1            | z'v   |      |
| $\mathbf{C}$ | - | 1 | 0            | -            | yz'   |      |
| D            | - | 1 | -            | 0            | yv'   | ESS. |
| $\mathbf{E}$ | 1 | - | 0            | -            | xz'   | ESS. |

Esistono due coperture minime:

$$A + D + E + B$$
$$A + D + E + c$$

I

Esercizio 2.8 - Minimizzare la funzione il cui  $\mathsf{ON}_\mathsf{set}\grave{\mathrm{e}}$  riportato di seguito:

$$ON_{set} = \{m_0, m_1, m_2, m_4, m_5, m_9, m_{10}, m_{13}\}$$

SOLUZIONE

|                  | x | у | $\mathbf{Z}$ | v |
|------------------|---|---|--------------|---|
| $\overline{m_0}$ | 0 | 0 | 0            | 0 |
| $m_1$            | 0 | 0 | 0            | 1 |
| $m_2$            | 0 | 0 | 1            | 0 |
| $m_4$            | 0 | 1 | 0            | 0 |
| $m_5$            | 0 | 1 | 0            | 1 |
| $m_9$            | 1 | 0 | 0            | 1 |
| $m_{10}$         | 1 | 0 | 1            | 0 |
| $m_{13}$         | 1 | 1 | 0            | 1 |

| zv x | 7 00           | 01    | 11 | 10             |
|------|----------------|-------|----|----------------|
| 0 0  | 1 <sup>A</sup> | 1     | 0  | 0              |
| 0 1  | 1              | $C^1$ | 1  | D <sub>1</sub> |
| 11   | 0              | 0     | 0  | 0              |
| 1 0  |                | 0     | 0  | (1B            |

#### IMPLICANTI PRIMI:

|   | x | у | $\mathbf{Z}$ | v |        |      |
|---|---|---|--------------|---|--------|------|
| A | 0 | 0 | -            | 0 | x'y'v' |      |
| В | - | 0 | 1            | 0 | y'zv'  | ESS. |
| С | 0 | - | 0            | - | x'z'   | ESS. |
| D | - | - | 0            | 1 | z'v    | ESS. |

Esiste una sola copertura minima:

$$B + C + D$$

Esercizio 2.9 - Minimizzare la funzione il cui  $\mathsf{ON}_\mathsf{set}$ è riportato di seguito:

$$ON_{set} = \{m_0, m_1, m_2, m_4, m_5, m_9, m_{10}, m_{11}, m_{13}, m_{15}\}$$

SOLUZIONE

|                  | x | У | $\mathbf{Z}$ | $\mathbf{v}$ |
|------------------|---|---|--------------|--------------|
| $\overline{m_0}$ | 0 | 0 | 0            | 0            |
| $m_1$            | 0 | 0 | 0            | 1            |
| $m_2$            | 0 | 0 | 1            | 0            |
| $m_4$            | 0 | 1 | 0            | 0            |
| $m_5$            | 0 | 1 | 0            | 1            |
| $m_9$            | 1 | 0 | 0            | 1            |
| $m_{10}$         | 1 | 0 | 1            | 0            |
| $m_{11}$         | 1 | 0 | 1            | 1            |
| $m_{13}$         | 1 | 1 | 0            | 1            |
| $m_{15}$         | 1 | 1 | 1            | 1            |

| \ x  | У      |                |             |    |
|------|--------|----------------|-------------|----|
| zv \ | 0.0    | 01             | 11          | 10 |
| 0 0  | A<br>1 | $D_1$          | 0           | 0  |
| 0 1  | 1      | E <sub>1</sub> | 1           | 1  |
| 1 1  | 0      | 0              | $1_{\rm F}$ |    |
| 1 0  | (I)    | 0              | 0           |    |

#### IMPLICANTI PRIMI:

|              | X | у | $\mathbf{Z}$ | V |                                 |      |
|--------------|---|---|--------------|---|---------------------------------|------|
| A            | 0 | 0 | -            | 0 | x'y'v'                          |      |
| В            | - | 0 | 1            | 0 | x'y'v'<br>y'zv'<br>xy'z<br>x'z' |      |
| $\mathbf{C}$ | 1 | 0 | 1            | - | xy'z                            |      |
| D            | 0 | - | 0            | - | x'z'                            | Ess. |
| $\mathbf{E}$ | - | - | 0            | 1 | z'v                             |      |
| F            | 1 | - | -            | 1 | xv                              | Ess. |

Esiste una sola copertura minima:

$$D + F + B$$

ı

Esercizio 2.10 - Minimizzare la funzione i cui  $\mathsf{ON}_\mathsf{set}$ e  $\mathsf{DC}_\mathsf{set}$ sono riportati di seguito:

$$\begin{split} \text{ON}_{\text{set}} &= \{ \text{m}_4, \text{m}_{10}, \text{m}_{11}, \text{m}_{13}, \text{m}_{14}, \text{m}_{15} \} \\ \\ \text{DC}_{\text{set}} &= \{ \text{m}_3, \text{m}_5, \text{m}_6, \text{m}_7 \} \end{split}$$

# SOLUZIONE

|          | x | у | $\mathbf{Z}$ | $\mathbf{v}$ | f |
|----------|---|---|--------------|--------------|---|
| $m_3$    | 0 | 0 | 1            | 1            | X |
| $m_4$    | 0 | 1 | 0            | 0            | 1 |
| $m_5$    | 0 | 1 | 0            | 1            | X |
| $m_6$    | 0 | 1 | 1            | 0            | X |
| $m_7$    | 0 | 1 | 1            | 1            | X |
| $m_{10}$ | 1 | 0 | 1            | 0            | 1 |
| $m_{11}$ | 1 | 0 | 1            | 1            | 1 |
| $m_{13}$ | 1 | 1 | 0            | 1            | 1 |
| $m_{14}$ | 1 | 1 | 1            | 0            | 1 |
| $m_{15}$ | 1 | 1 | 1            | 1            | 1 |

| zv x | У 00 | 01     | 11    | 10         |
|------|------|--------|-------|------------|
| 0 0  | 0    |        | 0     | 0          |
| 0 1  | 0    | x      | $C_1$ | 0          |
| 11   | x    | x      |       | 1B         |
| 1 0  | 0    | X<br>D |       | $1_{ m E}$ |

# IMPLICANTI PRIMI:

|              | x | у | $\mathbf{z}$ | $\mathbf{v}$ |     |      |
|--------------|---|---|--------------|--------------|-----|------|
| A            | 0 | 1 | -            | -            | x'y | Ess. |
| В            | - | - | 1            | 1            | zv  |      |
| С            | - | 1 | -            | 1            | yv  | Ess. |
| D            | - | 1 | 1            | -            | yz  |      |
| $\mathbf{E}$ | 1 | - | 1            | -            | XZ  | Ess. |

Esiste una sola copertura minima:

$$A + C + E$$

#### 2.2 Esercizio senza soluzione

Esercizio 2.11 - Si consideri la seguente funzione  $\mathsf{F}$  definita attraverso il suo  $\mathsf{ON}_\mathsf{set}$ :

$$\mathsf{ON}_{\mathsf{set}} = \{\mathsf{m}_3, \mathsf{m}_4, \mathsf{m}_6, \mathsf{m}_7, \mathsf{m}_{12}, \mathsf{m}_{13}, \mathsf{m}_{14}\}$$

- 1. Ricavare l'espressione logica SOMMA DI PRODOTTI (prima forma canonica):
- 2. Disegnare il circuito corrispondente

Facendo uso della sua mappa di Karnaugh, calcolare:

- 1. Implicanti primi
- 2. Implicanti primi essenziali
- 3. Copertura minima
- 4. Dire se la copertura minima trovata è unica
- 5. Se la copertura minima trovata non è unica, calcolare un'altra copertura minima