Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (2 - 17 de 18)

Gramáticas

INF/UFG - LFA 2021/1 - H. Longo

Definição 1.1

- ▶ Uma gramática é uma 4-upla $G = (V, \Sigma, P, S)$ onde:
 - *V* é um conjunto finito não vazio de símbolos, chamados de não-terminais;
 - Σ é um conjunto finito não vazio de símbolos, chamados de terminais, tal que $\Sigma \cap V = \varnothing$;
 - S é o símbolo (não terminal) inicial ($S \in V$); e
 - *P* é um conjunto de regras (de produção) da forma $\alpha \rightarrow \beta$, onde:
 - $\alpha \in (V \cup \Sigma)^* V (V \cup \Sigma)^*$,
 - $\qquad \qquad \beta \in (V \cup \Sigma)^*.$

Gramática linear à direita

Definição 1.2

- ▶ Uma gramática $G = (V, \Sigma, P, S)$ é regular à direita (também chamada de gramática linear à direita) se toda regra de derivação está numa das seguintes formas:
 - 1. $A \rightarrow aB$
 - $2. A \rightarrow a$
 - 3. $A \rightarrow \varepsilon$;

onde
$$\left\{ \begin{array}{l} A,B\in V,\\ a\in \Sigma. \end{array} \right.$$

Exemplo 1.3

- $\blacktriangleright \mathcal{L}(a^*bc^*).$

INF/UFG _ LFA 2021/1 - H. Longo | Gramáticas regulares (3 - 17 de 18) | INF/UFG _ LFA 2021/1 - H. Longo | Gramáticas regulares (4 - 17 de 18)

Gramática linear à esquerda

Definição 1.4

- ▶ Uma gramática $G = (V, \Sigma, P, S)$ é regular à esquerda (também chamada de gramática linear à esquerda) se toda regra de derivação está numa das seguintes formas:
 - 1. $A \rightarrow Ba$,
 - $2. A \rightarrow a$
 - 3. $A \rightarrow \varepsilon$;

onde
$$\left\{ \begin{array}{l} A,B\in V,\\ a\in \Sigma. \end{array} \right.$$

Exemplo 1.5

- $ightharpoonup \mathcal{L}(a^*bc^*).$

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (5 - 17 de 18

Gramática regular

- ▶ Uma gramática é regular se é uma gramática linear à direita ou à esquerda.
- Alguns autores não permitem regras de derivação vazias $(A \to \varepsilon)$ e assumem que a cadeia vazia não pertence às linguagens regulares.
- Existe uma correspondência direta entre as regras de derivação de uma gramática regular à direita e as transições de um autômato finito não determinístico, de modo que a gramática gere exatamente a linguagem que o autômato reconhece.

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (6 - 17 de 18)

Gramáticas regulares estendidas

- Uma gramática regular estendida à direita é aquela em que todas as regras de derivação estão numa das formas:
 - 1. $A \rightarrow wB$
 - $2. A \rightarrow a$
 - 3. $A \rightarrow \varepsilon$;

$$\text{onde} \left\{ \begin{array}{l} A,B \in V, \\ a \in \Sigma, \\ w \in \Sigma^*. \end{array} \right.$$

- Uma gramática regular estendida à esquerda é aquela em que todas as regras de derivação estão numa das formas:
 - 1. $A \rightarrow Bw$
 - $2. A \rightarrow a$
 - 3. $A \rightarrow \varepsilon$;

onde
$$\begin{cases} A, B \in V \\ a \in \Sigma, \\ w \in \Sigma^*. \end{cases}$$

Misturando derivações à esquerda e à direita

- ► A mistura de regras de derivação à esquerda e à direita ainda gera uma gramática linear, mas não necessariamente uma gramática regular.
- ▶ Uma tal gramática não necessariamente gera uma linguagem regular!!!

Exemplo 1.6

- ► Gramática $G = (V = \{A, S\}, \Sigma = \{a, b\}, P, S)$, onde: $P = \left\{ \begin{array}{l} S \rightarrow aA \mid \varepsilon \\ A \rightarrow Sb \end{array} \right\}$.
- $\mathcal{L}(G) = \{a^ib^i \mid i \geqslant 0\}$, a qual não é uma linguagem regular.

Gramática regular

Definição 1.7 (Notação utilizada)

→ : Definição de regra de derivação.

▶ Regra de derivação pertence ao conjunto $V \times (V \cup \Sigma)^*$.

⇒ : Aplicação de regra de derivação.

Aplicação transforma uma cadeia em outra e pertence ao conjunto $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$.

⇒ : Derivação usando uma ou mais regras de derivação.

 $\stackrel{n}{\Longrightarrow}$: Derivação de comprimento n:

 $v \stackrel{n}{\Longrightarrow} w : w$ é derivado a partir de v usando n regras de derivação.

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (9 - 17 de 18

Gramática regular

Definição 1.8

- A aplicação de $A \to w$ à variável A em uA gera a cadeia uw (em Au gera a cadeia wu).
- ▶ Se $(A \rightarrow w) \in P$, então $uA \rightarrow uw$.
- $u \stackrel{*}{\Longrightarrow} v \text{ se } u = v \text{ ou } \exists u_1, u_2, \dots, u_k, \ k \geqslant 0 \text{ tal que } u \to u_1 \to u_2 \Rightarrow \dots \to u_k \to v.$

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (10 - 17 de 18

Gramática regular

Exemplo 1.9

- ► Expressão regular: 0*1⁺.
- ► Derivação da cadeia 00011:

$$S \Rightarrow 0S \Rightarrow 00S \Rightarrow 000S \Rightarrow 0001A \Rightarrow 00011A \Rightarrow 00011\varepsilon \equiv 00011$$
.

Linguagem regular

- ▶ Uma linguagem é regular se pode ser gerada por uma gramática regular.
- ▶ Uma linguagem regular pode ser gerada por gramática não regular.
- As formas sentenciais de uma gramática regular contêm no máximo uma variável (símbolo mais a direita na cadeia).

Gramática regular e linguagem regular

Teorema 1.10

Seja $G = (V, \Sigma, P, S)$ uma gramática linear à direita, então a linguagem $\mathcal{L}(G)$ é regular.

Teorema 1.11

Se \mathcal{L} é uma linguagem regular sobre o alfabeto Σ , então existe uma gramática linear à direita G tal que $\mathcal{L} = \mathcal{L}(G)$.

Teorema 1.12

▶ Uma linguagem \mathcal{L} é regular se e somente se existe uma gramática linear à esquerda G tal que $\mathcal{L} = \mathcal{L}(G)$.

Teorema 1.13

▶ Uma linguagem \mathcal{L} é regular se e somente se existe uma gramática regular G tal que $\mathcal{L} = \mathcal{L}(G)$.

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (13 - 17 de 18)

Gramática regular

Exemplo 1.14

- ► A linguagem $\mathcal{L} = \{a^+b^* \mid a, b \in \Sigma\}$ é regular, G_1 não é regular e G_2 é regular:
 - $G_1 = (V_1, \Sigma, P_1, S)$, onde:

$$\begin{split} V_1 &= \{S,A,B\}, \\ \Sigma &= \{a,b\}, \\ P_1 &= \left\{ \begin{array}{l} S \to AB \\ A \to aA \mid a \\ B \to bB \mid \varepsilon \end{array} \right\}. \end{split}$$

• $G_2 = (V_2, \Sigma, P_2, S)$, onde:

$$\begin{split} V_2 &= \{S, B\}, \\ \Sigma &= \{a, b\}, \\ P_2 &= \left\{ \begin{array}{l} S \rightarrow aS \mid aB \\ B \rightarrow bB \mid \varepsilon \end{array} \right\}. \end{split}$$

INF/UFG - LFA 2021/1 - H. Longo

Gramáticas regulares (14 - 17 de 18)

Gramática regular

Exemplo 1.15

 $ightharpoonup G = (\{S, A\}, \{a, b\}, P, S), \text{ onde:}$

$$P = \left\{ \begin{array}{l} S \to abSA \mid \varepsilon \\ A \to Aa \mid \varepsilon \end{array} \right\}.$$

- ▶ A linguagem de G é dada pela expressão regular $\varepsilon \cup (ab)^+a^*$.
- ► Gramática regular equivalente: $G_1 = (\{S, A, B\}, \{a, b\}, P_1, S)$, onde:

$$P_{1} = \left\{ \begin{array}{l} S \to aB \mid \varepsilon \\ B \to bS \mid bA \\ A \to aA \mid \varepsilon \end{array} \right\}.$$

Gramática regular

Exemplo 1.16

- ▶ $\mathcal{L} = \{ w \in \{a, b\}^* \mid |w| \text{ é par } \}.$
- Gramática $G = (V = \{A, S\}, \Sigma = \{a, b\}, P, S)$, onde:

$$P = \left\{ \begin{array}{l} S \to aA \mid bA \mid \varepsilon \\ A \to aS \mid bS \mid a \mid b \end{array} \right\}.$$

Gramática regular

Exemplo 1.17

- $ightharpoonup \mathcal{L} = \{a, b\}^* \cup \{a, c\}^* \cup \{b, c\}^*.$
- Gramática $G = (V = \{A, B, C, S\}, \Sigma = \{a, b, c\}, P, S)$, onde:

$$P = \left\{ \begin{array}{l} S \rightarrow \varepsilon \\ S \rightarrow aB \mid aC \\ S \rightarrow bA \mid bC \\ S \rightarrow cA \mid cB \\ A \rightarrow bA \mid cA \mid \varepsilon \\ B \rightarrow aB \mid cB \mid \varepsilon \\ C \rightarrow aC \mid bC \mid \varepsilon \end{array} \right\}.$$

INF/UFG - LFA 2021/1 - H. Longo Gramáticas regulares (17 - 17 de 18)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Introdução à Teoria de Autômatos, Linguagens e Computação.

Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long. Theory of Finite Automata – With an Introduction to Formal Languages.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (932 - 17 de 18)