Задача 1. а) (*Решето Эратосфена*) Выпишем целые числа от 2 до n. Подчеркнём 2 и сотрём числа, кратные 2. Первое неподчёркнутое число подчеркнём и сотрём кратные ему, и т. д., пока каждое число от 2 до n не будет подчёркнуто или стёрто. Докажите, что мы подчеркнём в точности простые числа от 1 до n. **б)** Пусть очередное число, которое мы хотим подчеркнуть, больше \sqrt{n} . Докажите, что нестёртые к этому моменту числа от 2 до n простые. **в)** Какие числа, меньшие 100, простые?

Задача 2. Числа a, b, c, n натуральные, $(a, b) = 1, ab = c^n$. Найдется ли такое целое x, что $a = x^n$?

Задача 3[©]. Решите в натуральных числах уравнение $x^{42} = y^{55}$.

Задача 4. Найдутся ли такие 10 разных целых чисел, ни одно из которых не квадрат целого числа, со свойством: квадратом целого числа будет произведение **а**) любых двух из них; **б**) любых трёх них?

Задача $\mathbf{5}^{\varnothing}$. Найдите каноническое разложение числа **a)** 2018; **б)** 17!; **в)** C_{20}^{10} .

Задача 6. При каких натуральных k число (k-1)! не делится на k?

Задача 7^{\varnothing} . а) ($Teopema\ Лежандра$) Докажите, что простое число p входит в каноническое разложение числа n! в степени $[n/p] + [n/p^2] + [n/p^3] + \dots$ (где [x] — это y числа y числа y). С какого момента слагаемые в этой сумме станут равными нулю?

б) Сколько у 2000! нулей в конце его десятичной записи? **в)** Может ли n! делиться на 2^n $(n \ge 1)$?

Задача 8. Число p простое. Докажите, что C_p^k делится на p, если 0 < k < p.

Задача 9 $^{\varnothing}$. (*Малая теорема Ферма*) Пусть p — простое, n — целое. **a)** Докажите индукцией по n, что $n^p - n$ делится на p. **б)** Докажите, что если (n, p) = 1, то $n^{p-1} - 1$ делится на p.

Задача 10°. Пусть (a, p) = 1 и p — простое. **a)** Докажите, что числа $a, 2a, \ldots, (p-1)a$ имеют разные ненулевые остатки от деления на p. **б)** Выведите из пункта a) малую теорему Ферма.

Задача 11 Пусть p простое. **a)** Докажите, что для каждого ненулевого остатка a от деления на p найдётся такой остаток b от деления на p, что $ab \equiv 1 \pmod{p}$. **6)** Для каких a из предыдущего пункта b = a? **B)** (Критерий Вильсона) Докажите, что (p-1)! + 1 делится на p.

Задача 12*. Может ли быть целым число a) $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$; 6) $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots + \frac{1}{2n+1}$?

Определение 1. Наименьшим общим кратным ненулевых целых чисел a и b называется наименьшее натуральное число, которое делится на a и на b. Обозначение: [a,b].

Задача 13. а) Как, зная канонические разложения чисел a и b, найти (a,b) и [a,b]? б) Найдите [192,270]. в) Докажите, что $ab = (a,b) \cdot [a,b]$. г) Верно ли, что [a,b]/a и [a,b]/b взаимно просты?

Задача 14. Докажите, что любое общее кратное целых чисел a и b делится на [a,b].

Задача 15. Про натуральные числа a и b известно, что $(a,b)=15,\,[a,b]=840.$ Найдите a и b.

Задача 16. Найдите $\mathrm{HOK}(1,\,2,\,3,\,\ldots\,,\,99)/\mathrm{HOK}(2,\,4,\,6,\,\ldots\,,\,200).$

Задача 17. Пусть $p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k}$ — каноническое разложение числа n. Обозначим через $\tau(n)$ и S(n) соответственно количество и сумму натуральных делителей числа n.

- а) Найдите $\tau(p_1^{\alpha_1})$. б) Верно ли, что $\tau(ab) = \tau(a)\tau(b)$, если (a,b) = 1? в) Найдите $\tau(n)$.
- г) Найдите $S(p_1^{\alpha_1})$. д) Верно ли, что S(ab) = S(a)S(b), если (a,b) = 1? е) Найдите S(n).

Задача 18. Какие натуральные числа делятся на 30 и имеют ровно 20 натуральных делителей?

Задача 19*. Число n натуральное. Докажите, что количество упорядоченных пар натуральных чисел (u;v), где [u,v]=n, равно количеству натуральных делителей у числа n^2 .

Задача 20*. Натуральное число называется *совершенным*, если оно равно сумме всех своих натуральных делителей, меньших его самого. Докажите, что чётное число n совершенно тогда и только тогда, когда найдется такое простое p, что $2^p - 1$ также простое, и $n = 2^{p-1}(2^p - 1)$.

1 a	<u>1</u> б	1 B	2	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	5 a	5	5 B	6	7 a	7 6	7 B	8	9 a	9 6	10 a	10 б	11 a	11 б	11 B	12 a	12 б	13 a	13 б	13 B	13 Г	14	15	16	17 a	17 б	17 B	17 Г	17 д	17 e	18	19	20