Question Number	Scheme	Marks
8.	(a) $\frac{dy}{dx} = 4 - \frac{25}{(x-2)^2}$	M1 A1
	At TP, $4 - \frac{25}{(x-2)^2} = 0$	M1
	$\pm 2 = \frac{5}{x - 2}$ $x = 2 \pm \frac{5}{2} = -\frac{1}{2} \text{ or } 4\frac{1}{2}$	M1 A1
	$y = -2 + 8 + \frac{25}{-2\frac{1}{2}} = -4, y = 18 + 8 + \frac{25}{2\frac{1}{2}} = 36$	A1
	Stationary points $\left(-\frac{1}{2}, -4\right)$ and $\left(4\frac{1}{2}, 36\right)$	(6)
	(b) $\frac{d^2 y}{dx^2} = \frac{50}{(x-2)^3}$	M1
	At $(-\frac{1}{2}, -4)$, $\frac{d^2 y}{dx^2} = \frac{50}{(-2\frac{1}{2})^3} < 0$, maximum	M1 (either point)
	$(4\frac{1}{2},36), \frac{d^2y}{dx^2} = \frac{50}{(2\frac{1}{2})^3} > 0$, minimum	A1 (both points)
	or consider gradient either side of each point.	(3) [9]
9.	(a) $v = 2t + c$ t = 0, $v = 6$ so $c = 6$ and $v = 2t + 6$	M1 A1
	(b) $s = t^2 + 6t + k$ $t = 0$, $s = 0$ so $k = 0$ and $s = t^2 + 6t$ *	M1 A1
	(c) $v = 3t^2 + d$ $t = 0$, $v = 0$ so $d = 0$ and $v = 3t^2$	(2) M1 A1
	(d) $s = t^3 + h$ $t = 0$, $s = 0$ so $h = 0$ and $s = t^3$	(2) M1 A1
	(e) $ (5^3) - (5^2 + 6 \times 5) = 70$	(2) M1A1ft
	$\begin{aligned} (f) \ t^2 + 6t &= t^3 \\ t^3 - t^2 - 6t &= 0 \end{aligned}$	M1 (2)
	t(t-3)(t+2) = 0 t = 3 (as t > 0)	M1 A1
		(3)
		[13]

Question Number	Scheme	Marks
--------------------	--------	-------

	T. C.		
10.	(a) (i) $\overrightarrow{BC} = 6\mathbf{i} + 6\mathbf{j} - (3\mathbf{i} + 5\mathbf{j})$	B1	
	(ii) $BC = 3\mathbf{i} + \mathbf{j} = \frac{1}{3}AD$	M1	
	So BC is parallel to AD, and ABCD is a trapezium. *	A1	
			(3)
	(b) (i) $\overrightarrow{BD} = 9\mathbf{i} + 3\mathbf{j} - (3\mathbf{i} + 5\mathbf{j}) = 6\mathbf{i} - 2\mathbf{j}$	M1	
	$\begin{vmatrix} BD \end{vmatrix} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$	M1 A1	
	(ii) unit vector is $\frac{1}{2\sqrt{10}}(6\mathbf{i}-2\mathbf{j})$ or $\frac{-1}{2\sqrt{10}}(6\mathbf{i}-2\mathbf{j})$	B1ft	
	$2\sqrt{10}$ $2\sqrt{10}$		(4)
	ULUT ULUT $2AB+AD$		(+)
	(c) $AF = AB + \frac{1}{3}BD$ or $\frac{2AB + AD}{3}$	M1	
	= $(3\mathbf{i} + 5\mathbf{j}) + \frac{1}{3}(6\mathbf{i} - 2\mathbf{j})$ or $\frac{2(3\mathbf{i} + 5\mathbf{j}) + (9\mathbf{i} + 3\mathbf{j})}{3}$	A1	
	$=5\mathbf{i}+4\tfrac{1}{3}\mathbf{j}$		
			(2)
	(d) (i) $EC = 3\mathbf{i} + 5\mathbf{j}$ URBLE URBLE URBLE URBLE URBLE $EF = EA + AF = -BC + AF$	B1	
	EF = EA + AF = -BC + AF		
	$= -3\mathbf{i} - \mathbf{j} + 5\mathbf{i} + 4\frac{1}{3}\mathbf{j} = 2\mathbf{i} + 3\frac{1}{3}\mathbf{j}$	M1 A1	
	$=\frac{2}{3}(3\mathbf{i}+5\mathbf{j})$	M1	
	$EF = \frac{2}{3}EC$, so F lies on EC *	A1	
		D1	
	(ii) $EF : FC = 2 : 1$	B1	(6)
			[15]

Question Number	Scheme	Marks
--------------------	--------	-------

		T	
11.	(a) (i) $AC^2 = 10^2 + 10^2 = 200, AC = 10\sqrt{2}$	M1 A1	
	(ii) $EG^2 = 4^2 + 4^2 = 32$, $EG = 4\sqrt{2}$	M1 A1	
	(iii) $AP = \frac{1}{2} (10\sqrt{2} - 4\sqrt{2}) = 3\sqrt{2}$	M1 A1 ft	(6)
	(b) $AE^2 = 12^2 + (3\sqrt{2})^2 = 144 + 18 = 162$	M1	(6)
	AE = 12.7 cm (3sf)	A1	(2)
	(c) $\tan EAP = \frac{12}{3\sqrt{2}} \Rightarrow \angle EAP = 70.5^{\circ}$	M1 A1	
	(d) (i) $PQ = \frac{1}{2}(10-4) = 3$	B1	(2)
	(ii) $AQ = 3$	B1	(2)
	(e) $\cos EAB = \frac{3}{\sqrt{162}} \Rightarrow \angle EAB = 76.4^{\circ}$	M1 A1	
	(f) Angle required is <i>PQE</i>	B1	(2)
	$\tan BQE = \frac{12}{3} \Rightarrow BQE = 76.0^{\circ}$	M1 A1	
			(3) [17]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UG032235 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

