

Laboratorium 5 – Poszukiwanie pierwiastków

Tomasz Belczyk 05.06.2021

Metody Obliczeniowe w Nauce i Technice Informatyka niestacjonarna 2020/2021 Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

1. Treść zadań

- 1. Uruchomić program root finding.tgz.
 - Umieć odpowiedzieć na pytanie, co on robi.
 - Narysować (np. za pomocą gnuplota) wykres funkcji, której miejsc zerowych szukamy.
- 2. Zmienić program tak, aby znajdował pierwiastek metodą siecznych oraz Brent-Dekker'a.
 - Porownać metody.
 - Zamienić program tak, aby spróbował znaleźć pierwiastek równania x^2-2*x+1=0.
 - Narysować wykres tej funkcji za pomocą np. gnuplota.
 - Wyjasnić działanie programu dlaczego nie może znaleźć miejsc zerowych dla tego równania?
- 3. Napisać program szukający miejsc zerowych za pomocą metod korzystających z pochodnej funkcji. Czym różnia się od poprzednich metod i dlaczego potrafią znaleźć pierwiastek równania x^2-2*x+1=0?
 - Porównać metodę Newtona, uproszczoną Newtona i Steffensona.

Podejście do rozwiązania zadań

1.

Program root_finding szuka pierwiastka funkcji kwadratowej o postaci: x^2-5w przedziale [0,5] używając metody bisekcji. Wiadomo, że w tym przedziale musi znajdować się pierwiastek, ponieważ funkcja zmienia tam znak i jest ciągła. Dokonujemy kolejnych połowień przedziału i odrzucamy podprzedział, dla którego nie występuje zmiana znaku między końcami. Długość pozostałego podprzedziału jest oszacowaniem błędu na danym etapie, a jego środek aktualnym przybliżeniem pierwiastka. Analitycznie odnaleziona wartość pierwiastka: 2.236068 (oraz - 2.236068) Numerycznie odnaleziona wartość pierwiastka (dokładność = 0.001): 2.2357178(oraz - 2.2357178)

2. Zmieniamy program według opisu

```
#include "parameters.h"
main (int argc, char** args)
    int status;
    int iter = \theta, max_iter = 100;
    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;
    double r = \theta, r_{expected} = sqrt (5.0);
    double x_{lo} = \theta.\theta, x_{hi} = 5.\theta;
   gsl_function F;
    struct quadratic_params params = \{1.0, 0.0, -5.0\};
    F.function = &quadratic;
   F.params = &params;
    if(argc!=2)
        printf("Using: three_methods method, where method = {bisekcja, sieczne, brent}\n");
    if(strcmp(args[1],"bisekcja")==0)
        T = gsl_root_fsolver_bisection;
    else if(strcmp(args[1], "sieczne")==θ)
        T = gsl_root_fsolver_falsepos;
    else if(strcmp(args[1], "brent")==θ)
        T = gsl_root_fsolver_brent;
    {
        printf("Using: three_methods method, where method = {bisekcja, sieczne, brent}\n");
    }
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, x_lo, x_hi);
    printf ("using %s method\n",
        gsl_root_fsolver_name (s));
    printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "root", "err", "err(est)");
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        r = gsl_root_fsolver_root (s);
        x_lo = gsl_root_fsolver_x_lower (s);
        x_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (x_lo, x_hi,
                0, 0.001);
        if (status == GSL_SUCCESS)
            printf ("Converged:\n");
        printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, x_lo, x_hi,
            r, r - r_expected, x_hi - x_lo);
    }
    while (status == GSL_CONTINUE && iter < max_iter);
    gsl_root_fsolver_free(s);
    return status;
```

Z programu wynika, że metoda Brenta poradziła sobie najszybciej w 6 iteracjach. Metoda bisekcji (będąca najprostszą) potrzebowała dwa razy więcej iteracji, by uzyskać mniej dokładny wynik, natomiast metoda siecznych zajęła miejsce pomiędzy poprzednio wymienionymi metodami. Jedyna różnica w kodzie polega na zmianie struct quadratic_params params = {1.0, -2.0, 1.0};

Żadna z trzech podanych metod nie odnajduje pierwiastka, ponieważ badana funkcja nie spełnia ich założeń. Prawdą jest, że pierwiastek znajduje się w zadanym przedziale (x(0) = 1), jednak ma parzysty stopień, więc funkcja nie zmienia tu znaku.

Zmieniamy program w następujący sposób

```
#include "parameters.h"
main (int argc, char** args)
    int status;
    int iter = 0, max_iter = 100;
    const gsl_root_fdfsolver_type *T;
   gsl_root_fdfsolver *s;
double rθ, r = 5.θ, r_expected = 1.θ;
    gsl_function_fdf F;
    struct quadratic_params params = \{1.0, -2.0, 1.0\};
    F.f = &quadratic;
    F.df = &quadratic_deriv;
    F.fdf = @quadratic_fdf;
    F.params = &params;
    if(argc!=2)
        printf("Using: fdf method, where method = {newton, secant, steffenson}\n");
    }
    if(strcmp(args[1],"newton")==0)
    T = gsl_root_fdfsolver_newton;
else if(strcmp(args[1],"secant")==θ)
        T = gsl_root_fdfsolver_secant;
    else if(strcmp(args[1], "steffenson")==0)
        T = gsl_root_fdfsolver_steffenson;
    {
        printf("Using: fdf method, where method = {newton, secant, steffenson}\n");
    s = gsl_root_fdfsolver_alloc (T);
    gsl_root_fdfsolver_set (s, &F, r);
    printf ("using %s method\n",
        gsl_root_fdfsolver_name (s));
    printf ("%-5s %10s %10s %10s\n", "iter", "root", "err", "err(est)");
    {
        iter++;
        status = gsl_root_fdfsolver_iterate (s);
        rθ = r;
        r = gsl_root_fdfsolver_root (s);
        status = gsl_root_test_delta (r, r0, 0, 1e-3);
        if (status == GSL_SUCCESS)
            printf ("Converged:\n");
        printf ("%5d %10.7f %+10.7f %10.7f\n",
            iter, r, r - r_expected, r - rθ);
    while (status == GSL_CONTINUE && iter < max_iter);</pre>
    gsl_root_fdfsolver_free(s);
    return status;
```

Wyniki pokazują, że najlepiej radzi sobie metoda Steffensona, działając bardzo szybko I dając bardzo dokładny wynik. Z kolei metoda Newtona działa w tym przypadku szybciej I dokładniej niż jej uproszczona odmiana, która liczy przybliżone pochodne na podstawie wzoru funkcji.

Wykresy, tabele, wyniki liczbowe

Ad 2. bisection

iter	lower	upper	root	err	err(est)
1	0	2.5	1.25	-0.98607	2.5
2	1.25	2.5	1.875	-0.36107	1.25
3	1.875	2.5	2.1875	-0.04857	0.625
4	2.1875	2.5	2.34375	0.107682	0.3125
5	2.1875	2.34375	2.265625	0.029557	0.15625
6	2.1875	2.265625	2.226563	-0.00951	0.078125
7	2.226563	2.265625	2.246094	0.010026	0.039063
8	2.226563	2.246094	2.236328	0.00026	0.019531
9	2.226563	2.236328	2.231445	-0.00462	0.009766
10	2.231445	2.236328	2.233887	-0.00218	0.004883
11	2.233887	2.236328	2.235107	-0.00096	0.002441
12	2.235107	2.236328	2.235718	-0.00035	0.001221

falsepos

iter	lower	upper	root	err	err(est)
1	1	2.5	1	-1.23607	1.5
2	2.142857	2.5	2.142857	-0.09321	0.357143

3	2.230769	2.321429	2.230769	-0.0053	0.090659
4	2.235969	2.276099	2.235969	-9.9E-05	0.04013
5	2.236067	2.256034	2.236067	-9E-07	0.019967
6	2.236068	2.24605	2.236068	0	0.009983
7	2.236068	2.241059	2.236068	0	0.004991
8	2.236068	2.238564	2.236068	0	0.002496
9	2.236068	2.236068	2.236068	0	0

brent

iter	lower	upper	root	err	err(est)
1	1	5	1	-1.23607	4
2	1	3	3	0.763932	2
3	2	3	2	-0.23607	1
4	2.2	3	2.2	-0.03607	0.8
5	2.2	2.23663	2.23663	0.000562	0.03663
6	2.236063	2.23663	2.236063	-4.6E-06	0.000567

Ad 3.

newton

Iter	root	err	err(est)
1	3	2	-2
2	2	1	-1
3	1.5	0.5	-0.5
4	1.25	0.25	-0.25
5	1.125	0.125	-0.125
6	1.0625	0.0625	-0.0625
7	1.03125	0.03125	-0.03125
8	1.015625	0.015625	-0.01563
9	1.007813	0.007813	-0.00781
10	1.003906	0.003906	-0.00391
11	1.001953	0.001953	-0.00195
12	1.000977	0.000977	-0.00098

secant

iter	root	err	err(est)
1	3	2	-2
2	2.333333	1.333333	-0.66667
3	1.8	0.8	-0.53333
4	1.5	0.5	-0.3
5	1.307692	0.307692	-0.19231
6	1.190476	0.190476	-0.11722
7	1.117647	0.117647	-0.07283
8	1.072727	0.072727	-0.04492
9	1.044944	0.044944	-0.02778
10	1.027778	0.027778	-0.01717
11	1.017167	0.017167	-0.01061
12	1.01061	0.01061	-0.00656
13	1.006557	0.006557	-0.00405
14	1.004053	0.004053	-0.0025

15	1.002505	0.002505	-0.00155
16	1.001548	0.001548	-0.00096

Steffenson

iter	root	err	err(est)
1	3	2	-2
2	2	1	-1
3	1	0	-1
4	1	0	0

Z tego wynika, że najlepiej radzi sobie metoda Steffensona, działając bardzo szybko I dając bardzo dokłedny wynik. Z kolei metoda Newtona działa w tym przypadku szybciej I dokładniej niż jej uproszczona odmiana, która liczy przybliżone pochodne na podstawie wzoru funkcji.