MODULE 4

Dealing with Human-Generated Data/Concept of Metadata: -

- Intentional data, photos, videos, record audio ,text on a social network,Like on Facebook. Web searches, Bookmarked web searches, Emails, Phone calls.
- All of these are kinds of data that do not exist until the person makes them happen, so these are records of human actions.
- This type of data requires a level of processing beyond the capabilities of relational database systems because the goal is to interpret the meaning and create human readable data.
- Hence the concept of Metadata came in to picture that is data about data.

Big Data: -

Big data is data that contains greater variety, arriving in increasing volumes and with more velocity. Five V's of Big Data: -

Volume	Velocity	Variety	Veracity	Value
Scale of data	Speed of data	Diversity of data	Accuracy gained	Insights gained
			from data	from data.

Big Data Physical Infrastructure	Big Data Security Infrastructure
The physical infrastructure for big data refers to	The security infrastructure for big data refers to
the hardware and software components required	the measures put in place to protect the data
to store, process, and analyze large volumes of	from unauthorized access, theft, or manipulation
data.	
This can include servers, storage systems,	This can include firewalls, encryption, access
networking equipment, and data centers.	controls, authentication mechanisms, and
	monitoring tools.
The goal of the physical infrastructure is to	The goal of the security infrastructure is to
ensure that data is available, accessible, and	ensure that the data remains confidential,
reliable.	integral, and available only to authorized users.
Physical infrastructure ensures that data is	Security infrastructure ensures that the data is
accessible and can be processed efficiently	safe from unauthorized access or manipulation.

Operations on Big Data Sources: -

- Incorporate all the data sources that will give a complete picture of the business and see how the data impacts the business.
- As the world changes, it is important to understand that operational data now has to encompass
 a broader set of data sources, including unstructured sources such as social media data in all its
 forms.
- It approaches to data management in the big data world, including document, graph, columnar, and geospatial database architectures.
- These are referred to as NoSQL, or not only SQL, databases.

Role of Structured and Unstructured Data: -

Structured Data	Unstructured Data
Structured data is data that is organized and	Unstructured data, on the other hand, is data
stored in a specific format, such as in rows and	that is not organized in a specific format and
columns in a database	does not have a pre-defined schema.
Structured data is easy to query, analyze, and use	Unstructured data is more difficult to analyze and
to make data-driven decisions.	use for decision-making than structured data.
Structured data is commonly used in business	Unstructured data provides valuable insights into
intelligence, financial analysis, and performance	customer sentiment, market trends, and
management.	emerging issues.
The role of structured data is to provide a clear	The role of unstructured data is to provide a
picture of a specific aspect of a business or	more holistic view of a business or organization
organization	

By combining structured and unstructured data, decision-makers can gain a more comprehensive view of their business or organization, leading to more informed and effective decision-making.

These unstructured data are typically used with non relational databases such as NoSQL databases and include the following structures:

Key-Value Pair	Document	Columnar	Graph Database	Spatial Database
Database	Database	Database		
KVP are used in	provide a	efficient database	make use of	They are
lookup tables,	technique for	structure that	graph structures	optimized to
hash tables, and	managing	stores data in	with nodes and	store and query
configuration files	repositories of	columns rather	edges to manage	geometric objects
	unstructured and	than rows	and represent	that can include
	semi-structured		data	points, lines, and
	data such as text			polygons.
	documents, web			
	pages			

Data Services and Tools: -

Data services and tools refer to software and applications that are designed to help users manage, analyze, and extract insights from data.

There are various data services and tools available, and their use depends on the specific needs and requirements of the user. Some common data services and tools include:

- 1. Business Intelligence
- 2. Data Warehousing Tools
- 3. Data Integration Tools
- 4. Data Analytics Tools
- 5. Data Visualization Tools
- 6. Data Governance Tools

Analytical Data Warehousing: -

Algorithms that support Big Data Analytics:

Sketching and	Dimensionality	Numerical Linear	Compressed	
Streaming	Reduction	Algebra	Sensing	
Algorithm is used when streaming data from sensors	algorithms help to convert data that is highly dimensional into much simpler data	These algorithms are used when data includes large matrices	These algorithms are useful when the data is sparse or signal data from a streaming sensor are limited to a few linear or time-based	
			measurements.	

Hadoop: -

- Hadoop has emerged as one of the most important technologies for managing large amounts of unstructured data in an efficient manner because it uses distributed computing techniques.
- Hadoop enables you to use parallelization techniques to improve efficiency.
- It is an open-source community, codebase, and market for a big data environment that is designed, among other things, to parallel-execute code written to MapReduce.
- Text documents, ontologies, social media data, sensor data, and other forms of nontraditional data types can be efficiently managed in Hadoop.

Two key components to Hadoop are described here:

Hadoop Distributed File System (HDFS): A data storage cluster that is both highly reliable and low cost used to make it easy to manage related files across different machines.

MapReduce engine: Provides a way to distribute the processing of the algorithms across a large number of systems.

HADOOP CLUSTER: -

NameNodes	DataNodes
A Namenode is the master node in Hadoop that	A Datanode is a slave node in Hadoop that stores
manages the metadata of the file system.	the actual data in the HDFS.
The role of the NameNode is to keep track of where data is physically stored in the cluster	Of the two components, NameNodes have some intelligence, whereas Data Nodes are more simplistic.
To maintain this knowledge, the	They store and retrieve the data blocks in the
NameNode needs to understand which blocks on	local filesystem of the server.
which data nodes make up the complete file.	
The NameNode manages all access to the files,	They also store the metadata of a block in the
including reads, writes, creates, deletes, and	filesystem.
replication of data blocks on the data nodes.	
In addition, NameNode has the important	In addition, Data Nodes send reports to the
responsibility of telling the Data Nodes if there is	NameNode about what blocks are
anything for them to do.	available for file operations.

Motion Data	Streaming Data
Data in motion refers to the data that is actively	Streaming data is a specific type of data in
moving or being transferred from one place to	motion that refers to a continuous flow of data
another.	that is generated in real-time.
Data that is being transmitted over a network,	Streaming data is typically unbounded and
sent between applications, or processed in real-	infinite in nature
time	
Examples of data in motion include network	Examples of streaming data include stock market
traffic, sensor data from IoT devices, and data	data feeds, weather sensor data, and social

streams from social media platforms.	streams	from	social	media	platforms.
--------------------------------------	---------	------	--------	-------	------------

media updates.

Integration of Big Data with Traditional Data: -

- The integration of big data with traditional data involves combining the two types of data to gain insights and make better-informed decisions.
- Traditional data typically refers to structured data that can be easily processed using traditional database management systems, while big data includes both structured and unstructured data, such as social media feeds, sensor data, and log files.
- The integration of big data with traditional data can provide a more complete picture of a business or organization's operations and help identify patterns and trends that might not be visible with traditional data analysis methods.
- This integration can be achieved through various approaches, such as:
- 1. Data Warehousing
- 2. Data Lakes
- 3. Advanced Analytics
- 4. API's