Digitaltechnik Wintersemester 2021/2022 6. Vorlesung

Umfrage zur letzten Woche

Klausur

- Termin: Dienstag, 08.03.2022, 11:00 13:00 Uhr
 - Bearbeitungszeit: 90 Minuten
 - Derzeit in Präsenz geplant. Raumzuteilung wird rechtzeitig bekannt gegeben
- Wiederholungsklausur im Herbst 2022
- Wir stellen keine alten Klausuren zur Verfügung

DT Hybridlehre

DT Präse	nzbearbeitung	Interesse Präsenzteilnahme bei DT Hybrid-Vorlesung				
Datum	Anmeldungen / Anwesende		100%	50%	0%	
Fr, 22.10.	70 / 100					
Fr, 29.10.	80 / 92	Mi, 03.11.	101	98	10	
Fr, 05.11.	55 / 73	Mi, 10.11.	69	87	89	
Fr, 12.11.	40 / 45	Mi, 17.11.	50	60	84	
Fr, 19.11.	25 / 26					

Aufgrund der aktuellen Pandemielage und Vorgaben (3G im Hörsaal) möchten wir die <u>DT Präsenzbearbeitung derzeit beibehalten</u> und die Planung zur zusätzlichen DT Hybrid-Vorlesung vorerst stoppen.

Bitte passen Sie gut auf sich selbst und auf Andere auf!

Inhalt

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Agenda

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

7-Segment Anzeige: $\mathbb{B}^4 \to \mathbb{B}^7$

- ► (Typ.) vier Eingänge für dargestellte Ziffer
- ► Sieben *unabhängig* schaltbare Segmente S₀, ..., S₆
- ⇒ jedes Segment nur für bestimmte Zeichen aktiv

Hexadezimale 7-Segment Anzeige (0, ..., F)

Hexadezimale 7-Segment Anzeige Wahrheitswertetabelle

A_3	A_2	A_1	A_0	S_0	S_1	S_2	S_3	S_4	S_5	S_6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

Hexadezimale 7-Segment Anzeige Normalformen

DNF:
$$S_0 = \overline{A_3} \ \overline{A_2} \ \overline{A_1} \ \overline{A_0}$$
 [m_0]
 $+ \overline{A_3} \ \overline{A_2} \ A_1 \ \overline{A_0}$ [m_2]
 $+ \overline{A_3} \ \overline{A_2} \ A_1 \ A_0$ [m_3]
 $+ \overline{A_3} \ A_2 \ \overline{A_1} \ A_0$ [m_5]
 $+ \overline{A_3} \ A_2 \ A_1 \ \overline{A_0}$ [m_6]
 $+ \overline{A_3} \ \overline{A_2} \ \overline{A_1} \ \overline{A_0}$ [m_7]
 $+ A_3 \ \overline{A_2} \ \overline{A_1} \ \overline{A_0}$ [m_9]
 $+ A_3 \ \overline{A_2} \ \overline{A_1} \ \overline{A_0}$ [m_9]
 $+ A_3 \ \overline{A_2} \ A_1 \ \overline{A_0}$ [m_{10}]
 $+ A_3 \ A_2 \ A_1 \ \overline{A_0}$ [m_{10}]
 $+ A_3 \ A_2 \ A_1 \ \overline{A_0}$ [m_{10}]

KNF:
$$S_0 = (A_3 + A_2 + A_1 + \overline{A_0})$$
 $[M_1]$
 $\cdot (A_3 + \overline{A_2} + A_1 + A_0)$ $[M_4]$
 $\cdot (\overline{A_3} + A_2 + \overline{A_1} + \overline{A_0})$ $[M_{11}]$
 $\cdot (\overline{A_3} + \overline{A_2} + A_1 + \overline{A_0})$ $[M_{12}]$
 $\cdot (\overline{A_3} + \overline{A_2} + A_1 + \overline{A_0})$ $[M_{13}]$

Hexadezimale 7-Segment Anzeige Verkürzte Minterm/Maxterm-Schreibweise

- Boole'sche Funktion eindeutig spezifiziert durch
 - Indizes der 1-Minterme für DNF bzw.
 - Indizes der 0-Maxterme für KNF
- ⇒ Erlaubt kompaktere Schreibweise

$$S_0 = m_0 + m_2 + m_3 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{14} + m_{15}$$

$$= \sum m(0, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15)$$

$$= M_1 M_4 M_{11} M_{12} M_{13}$$

$$= \prod M(1, 4, 11, 12, 13)$$

Hexadezimale 7-Segment Anzeige Karnaugh Diagramm

Dezimale 7-Segment Anzeige (0, ..., 9)Wahrheitswertetabelle mit Don't Cares

A_3	A_2	A_1	A_0	S_0	S_1	S_2	S_3	S_4	S_5	S_6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	*	*	*	*	*	*	*
1	0	1	1	*	*	*	*	*	*	*
1	1	0	0	*	*	*	*	*	*	*
1	1	0	1	*	*	*	*	*	*	*
1	1	1	0	*	*	*	*	*	*	*
1	1	1	1	*	*	*	*	*	*	*

Dezimale 7-Segment Anzeige Minterm/Maxterm-Schreibweise mit Don't Cares

- Don't Cares können als 0 oder 1 realisiert werden
- ⇒ in DNF und KNF gleichermaßen enthalten

$$S_0 = m_0 + m_2 + m_3 + m_5 + m_6 + m_7 + m_8 + m_9 + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15}$$

$$= \sum m(0, 2, 3, 5, 6, 7, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

$$= M_1 M_4 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15}$$

$$= \prod M(1, 4) \prod D(10, 11, 12, 13, 14, 15)$$

 Achtung: Don't cares nur für verkürzte Schreibweise in einem Ausdruck möglich (kein Teil von DNF oder KNF)

Dezimale 7-Segment Anzeige Karnaugh Diagramm mit Don't Cares

Dezimale 7-Segment Anzeige Karnaugh Diagramm mit Maxtermen

S_0 : A_1 A_2	A_2		,	4 ₃		
A_1A_0	00	01	11	10		
00	0	4 0	12 *	8		$= \overline{A_0} \overline{A_1} \overline{A_2}$ $+ \overline{A_0} \overline{A_1} \overline{A_2} \overline{A_3}$
01	1 0	5	13 *	9		
11	3	7	15 *	11 *	A_0	$S_0 = (A_0 + A_1 + \overline{A_2})$ $(\overline{A_0} + A_1 + A_2 + A_3)$
A ₁ 10	2	6	14 *	10 *		(70 + 71 + 72 + 73)
			A ₂		_	

Überblick der heutigen Vorlesung

- Algorithmische Logikminimierung
- Mehrwertige Logik
- Zeitverhalten

Harris 2013/2016 Kap. 2.6, 2.9

> Katz 2005 Kap. 3.2

Agenda

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Beispiele für Verfahren zur Logikminimierung

- Algebraisch:
 - Umformen nach Axiomen/Theoremen
- Grafisch:
 - Karnaugh Diagramme
- Algorithmisch

exakt: Quine-McCluskey

heuristisch: Espresso

⇒ Minimiere Anzahl der zur Darstellung einer Funktion notwendigen Implikanten

Verwendbarkeit der Verfahren

- Grafische Verfahren:
 - ► für viele (> 6) Eingänge nicht mehr praktikabel
 - keine Optimierung zwischen Ausdrücken für mehrere Ausgänge
- Quine-McCluskey-Methode
 - berechnet zunächst alle möglichen Implikanten
 - ermittelt danach minimale Teilmenge für vollständige Überdeckung
 - ⇒ Rechenzeit steigt exponentiell in der Anzahl der Eingänge
- ⇒ für wirklich große Probleme (> 50 Variablen) nur Heuristiken sinnvoll
 - geringere Laufzeitkomplexität
 - geringere Lösungsqualität

Espresso-Heuristik

- in 1980er Jahren von IBM und UC Berkeley entwickelt
- unterstützt auch mehrere (zusammen optimierte) Ausgänge
- Details des Algorithmus hier nicht relevant (Buch v. Katz 2005, sowie Rudell 1986 "Multiple-Valued Logic Minimization for PLA Synthesis")
- hier nur Anwendung einer konkreten Implementierung
 - https://embedded.eecs.berkeley.edu/pubs/downloads/espresso
 - Anleitung / Quellen auch in Moodle verfügbar
 - spezielles Dateiformat für boole'sche Funktionen
 - erlaubt auch exakte Minimierung (als Referenz für Heuristik): espresso -D exact input.esp > output.esp espresso -D ESPRESSO input.esp > output.esp

Espresso Minimalbeispiel

xor.esp

Espresso Dateiformat

- relevante Informationen zeilenweise nach Keywords
 - .i Anzahl n_i der Eingänge (erforderlich)
 - .o Anzahl no der Ausgänge (erforderlich)
 - .ilb Name(n) der Eingänge
 - . ob Name(n) der Ausgänge
 - .p Anzahl der Tabellenzeilen
 - .e Dateiende
- Wahrheitswertetabelle
 - jede Zeile beschreibt einen Implikanten mit ni Zeichen ...
 - 0 Eingang negiert im Implikanten
 - 1 Eingang nicht-negiert im Implikanten
 - Eingang nicht im Implikanten (kein Minterm)
 - ightharpoonup ... und n_o Ausgangsfunktionen mit je einem Zeichen
 - 0 Implikant im off set des Ausgangs (optional)
 - 1 Implikant im on set des Ausgangs
 - Implikant im on set oder off set des Ausgangs (Don't Care)
- "#" leitet Kommentar ein

Espresso Dezimale 7-Segment Anzeige Eingabedateien

			sevenseg/s0.esp	
1	# S0	of	7-segment	display
2	.i	4		
3	. 0	1		
4	0000	1		
5	0010	1		
6	0011	1		
7	0101	1		
8	0110	1		
9	0111	1		
10	1000	1		
11	1001	1		
12	1010	-		
13	1011	-		
14	1100	-		
15	1101	-		
16	1110	-		
17	1111	-		

```
sevenseg/all.esp
     7-segment display
   .i
   . 0
   0000
         1111110
   0001 0110000
   0010 1101101
   0011 1111001
   0100 0110011
   0101 1011011
   0110 1011111
   0111 1110000
11
   1000 1111111
12
   1001 1111011
   1010
   1011
   1100
   1101
   1110
   1111
19
```

Espresso Dezimale 7-Segment Anzeige Ausgabedateien

espresso -D ESPRESSO sevenseg/s0.esp

```
1 # SO of 7-segment display
2 .i 4
3 .o 1
4 .p 4
5 -0-0 1
6 1--- 1
7 --1- 1
8 -1-1 1
9 .e
```

$$\overline{A_2} \overline{A_0} + A_3 + A_1 + A_2 A_0$$

espresso -D ESPRESSO sevenseg/all.esp

```
# 7-segment display
.i 4
. 0
.p 9
-0-0 1001100
-0-1 0110000
--10 1001100
-01- 0101001
-1-0 0010011
--11 1110000
--00 0110010
-101 1011011
1--- 1001011
.е
```

Espresso kann noch viel mehr

- Mehrwertige Logik
- Optimierung von Zustandsautomaten
 - Reduktion der Anzahl der Zustände
 - Erkennung von äquivalenten Zuständen
 - Optimierungen der Zustandskodierung

Pause & Umfrage bis hier

Agenda

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Mehrwertige Logik

- bisher galt:
 - jeder Schaltungsknoten (außer Eingänge) wird von genau einem Schaltungselement auf 0 oder 1 getrieben
 - Axiome der boole'schen Algebra basieren auf $\mathbb{B} = \{0, 1\}$
- ⇒ ignoriert wichtige Teile der Realität
 - Wie breiten sich ungültige Spannungen in Schaltung aus?
- ⇒ Unterscheidung von zwei weiteren Logikwerten neben 0 und 1
 - X mehrfach getrieben: fehlerhaft
 - Z ungetrieben/hochohmig (high impedance): gezielt
- Achtung:
 - nicht mit "Don't Care" (*) verwechseln
 - tatsächliche Spannung kann auch im 0- oder 1-Bereich liegen, das Schaltungsdesign stellt dies aber nicht sicher

X (mehrfach getrieben) bei konkurrierenden Ausgängen

- mehrere (unabhängige) Treiber für den selben Schaltungsknoten
- Konflikt, sobald Treiber in entgegengesetzte Richtung ziehen
 - instabil: abhängig von Betriebsspannung, Temperatur, etc.
 - destruktiv: Kurzschluss verursacht hohen Energieverbrauch
- fast immer ein Entwurfsfehler
 - z.B. doppelte Zuweisung in Hardwarebeschreibung
 - ⇒ Konflikt-Quelle muss in Simulation leicht nachvollziehbar sein

Z (ungetrieben/hochohmig) bei Tristate-Buffer

- zusätzliches Enable-Signal EN an Buffer
 - ► EN=1: Funktion wie normaler Buffer
 - ► EN=0: Ausgang hochohmig (offen, ungetrieben, floating, high-impedance) Z
- Achtung: $Z \neq 0$

EN	Α	Υ
0	0	Z
0	1	Ζ
1	0	0
1	1	1

Bus mit Tristate-Buffern

- mehrere Treiber an gemeinsamer Leitung
- zu jedem Zeitpunkt genau ein aktiver Treiber
- erlaubt Wechsel der Kommunikationsrichtung

Tristate-Buffer für Multiplexer

S	Α	В	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
			'

Mehrwertige Logik in Schaltnetzen

- ► Resolutionstabellen definieren Ausbreitung von X (mehrfach getrieben) und Z (hochohmig))
- mehr Konvention (für Simulator) als physikalische Realität
- ► z.B. IEEE 1164:

Agenda

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Abstrakte Eigenschaften logischer Schaltungen

- Eingänge
- Ausgänge
- Spezifikation der realisierten (boole'schen) Funktion
- Spezifikation des Zeitverhaltens

Zeitverhalten einer kombinatorischen Schaltung

- Kombinatorisch: Werte der Ausgänge hängen nur von Werten an Eingängen ab
- reale Schaltungselemente benötigen aber endliche Zeit, um Änderung am Eingang auf Ausgang zu übertragen
 - z.B. für Umladen von MOSFET Gate-Kapazitäten
- ⇒ Zentrale Fragen
 - Wann sind die Ausgänge stabil?
 - Gibt es funktional äquivalente Schaltungen mit geringerer Verzögerung?

- Timing-Analyse anspruchsvoll, denn
 - Eingang kann Ausgang über verschiedene Pfade beeinflussen
 - Verzögerung kann für steigende/fallende Flanken unterschiedlich sein
 - Verzögerungen im (Sub-)Nanosekundenbereich

Ausbreitungs- und Kontaminationsverzögerung propagation and contamination delay

- t_{pd} maximale Zeit vom Eingang zum Ausgang (**Ausbreitungsverzögerung**, propagation delay)
- t_{cd} minimale Zeit vom Eingang zum Ausgang (**Kontaminationsverzögerung**, contamination delay)

Ausbreitungs- und Kontaminationsverzögerung

- Ursachen für Verzögerung
 - Kapazitäten, Induktivitäten und Widerstände in der Schaltung
 - Lichtgeschwindigkeit als maximale Ausbreitungsgeschwindigkeit: 30 cm/ns
- Warum können t_{pd} und t_{cd} unterschiedlich sein?
 - mehrere Ein- und Ausgänge mit unterschiedlich langen Pfaden
 - unterschiedliche Verzögerungen für steigende (t_{pd,LH}) und fallende (t_{pd,HL}) Flanken (Laden/Entladen des Gates in MOS Transistor)
 - Schaltungen werden
 - langsamer bei Erwärmung (Hitze erhöht Widerstand des leitfähigen Materials)
 - schneller bei Abkühlung

Kritische (lange) und kurze Pfade

Störimpulse (Glitches)

- eine Änderung eines Eingangs verursacht mehrere Änderungen des Ausgangs
- können durch geeignete Entwurfsdisziplin entschärft werden
 - Ausgänge nur zu bestimmten Zeiten auswerten (synchroner Entwurf)
 - Pfade modifizieren / hinzufügen
 - nicht alle Störimpulse können eliminiert werden (z.B. gleichzeitiges Schalten mehrerer Eingänge)
- können durch Timing- und Karnaugh-Diagramme analysiert werden

Beispiel für Störimpuls: Erkennen

- ► Was passiert, wenn (*A*, *B*, *C*) von (0, 1, 1) nach (0, 0, 1) schaltet?
- $t_{pd,NOT} = 1$, $t_{pd,AND/OR} = 2$

Beispiel für Störimpuls: Beheben

► Kritische Stelle im Karnaugh-Diagramm mit zusätzlichem Implikanten Ā C überdecken

Agenda

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Zusammenfassung und Ausblick

- Kombinatorische Logik
 - Algorithmische Logikminimierung
 - Vierwertige Logik
 - Zeitverhalten
- Nächste Vorlesung behandelt
 - Arithmetische Grundschaltungen
 - Sequentielle Schaltungen