МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПИИКТ

ЛАБОРАТОРНАЯ РАБОТА № 6

Вариант №-3309

Выполнил: Студент группы Р3133 Хасаншин Марат Айратович Преподаватель: Блохина Елена Николаевна

Санкт-Петербург, 2023

Лабораторная работа №6

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также итнорировать все необрабатываемые прерывания.

Введите номер варианта 3309

- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом 04216) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)= -4X-5 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Код на ассемблере:

ORG 0x0

V0: WORD \$DEFAULT, 0x180

V1: WORD \$DEFAULT, 0x180

V2: WORD \$INT2, 0x180

V3: WORD \$INT3, 0x180

V4: WORD \$DEFAULT, 0x180

V5: WORD \$DEFAULT, 0x180

V6: WORD \$DEFAULT, 0x180

V7: WORD \$DEFAULT, 0x180

DEFAULT: IRET

ORG 0x042

X: WORD?

LEFT_ODZ: WORD 0xFFDF

RIGHT_ODZ: WORD 0x001E

ORG 0x060

START: DI

CLA

OUT 0x1

OUT 0x7

OUT 0xB

OUT 0xD

OUT 0x11

```
OUT 0x19
      OUT 0x1D
      LD #0xA
      OUT 0x5
      LD #0xB
      OUT 0x7
      JUMP $PROGRAM
PROGRAM: EI
            CLA
CYCLE:
           ΕI
                  LD $X
                  DI
                  SUB #0x3
                  CMP $LEFT_ODZ
                  BLT MIN
                  CMP $RIGHT_ODZ
                  BGE MIN
                  ST $X
                  JUMP $CYCLE
            LD $RIGHT_ODZ
MIN:
            ST $X
            JUMP $CYCLE
            WORD 0x5
A:
INT3:
            DI
            LD $X
            NEG
            ASL
            ASL
```

OUT 0x15

SUB A OUT 6 LD \$X HLT **IRET** INT2: DI CLA IN 4 AND \$X CMP \$LEFT_ODZ BLT INT_MIN CMP \$RIGHT_ODZ BGE INT_MIN ST \$X LD \$X HLT **IRET** INT_MIN: LD \$RIGHT_ODZ ST \$X LD \$X HLT

Описание программы:

IRET

Реализуемая функция:

Основная программа в цикле уменьшает переменную X на 3

По готовности ВУ-3 выводится функция -4X-5 на данный ВУ, а по готовности ВУ-2 выполняется побитовая операция "И" между содержимым РД данного ВУ и X, и результат записывается в ячейку X.

Если в какой-то момент X выходит за рамки ОДЗ, то в X записывается максимальное по ОДЗ число

Расположение в памяти БЭВМ программы, подпрограммы, исходных данных:

042 – исходные данные

043-044 - данные для комплекса программ

06F-07A – программа

07F-087 – подпрограмма1

088-092 - подпрограмма2

ОД3:

$$-128 \le f(X) \le 127$$

$$-33 \le X \le 30$$

Проверка программы:

- 1. Загрузить программу в БЭВМ
- 2. Изменить NOP на HLT
- 3. Запустить программу
- 4. Установить готовность ВУ-3
- 5. Дождаться остановки программы
- 6. Записать содержимое ІР
- 7. Записать текущее значение X из аккумулятора
- 8. Записать содержимое РД ВУ-3
- 9. Продолжить выполнение команды
- 10. В РД ВУ-2 вводим произвольное число
- 11. Записать текущее значение X из аккумулятора
- 12. Установить готовность ВУ-2
- 13. Дождаться остановки программы
- 14. Записать содержимое ІР
- 15. Записать из аккумулятора получившееся число
- 16. Продолжить выполнение программы
- 17. Удостоверимся, что ожидаемые значения совпадают с получившимися

IP	Χ	-4X-5	-4X-5	ВУ-	IP	Χ	ву-2 & х	ву-2 & х
		(ожидаемое)	(получившееся)	2			(ожидаемое)	(получившееся)
87	-30	115	115	32	92	30	10	10
87	-12	43	43	4	92	-3	4	4
87	-21	79	79	1F	92	-27	5	5

Вывод:

В ходе выполнения данной лабораторной работы была изучена процесса прерывания программы.