Efficient Three-party Boolean-to-Arithmetic Share Conversion

Nan Cheng¹ Feng Zhang² Katerina Mitrokotsa¹

¹University of St. Gallen, Switzerland

²Nanyang Institute of Technology, China

June 14, 2024

Outline

- Background.
- SOTA.
- Our ideas.
- Evaluation.

Secret Sharing (SS)

A **secret sharing** over x is denoted [x].

$$([x]_0, [x]_1) \leftarrow SS.Share(x)$$

 $x \leftarrow SS.Reveal([x]_0, [x]_1)$

Sharing types

Given a secret $x \in \{0, 1\}^n$

• Boolean Secret Sharing: denoted with $[x]^B$.

$$[x_1]^{\mathsf{B}},\cdots,[x_n]^{\mathsf{B}}$$

• Arithmetic Secret Sharing: denoted with $[x]^A$.

$$[x]_0^\mathsf{A},[x]_1^\mathsf{A}$$

A concrete example

Given a secret $x = x_1 || x_2 = 1 || 0$, share it among two parties P_0, P_1 .

• [x]^B:

	$[x_1]^{B}$	$[x_2]^{B}$
P ₀	1	1
P_1	0	1

• $[x]^A$ in \mathbb{Z}_{2^3} :

A

Boolean-to-Arithmetic share conversion

Definition

- Bit2A: $\forall b \in \{0,1\}, [b]^A \leftarrow Bit2A([b]^B).$
- B2A: $\forall x \in \{0,1\}^n, [x]^A \leftarrow B2A([x]^B)$.

Why Bit2A/B2A?

- Essential in mixed protocol MPC frameworks, like in ABY, ABY2, ABY3.
- Verifiable secure aggregation, e.g., Prio+.

Replicated three-party Secret Sharing (RSS)

Definition

The replicated **secret sharing** over $b \in \{0,1\}$ is denoted as [x].

$$(b_0, b_1), (b_1, b_2), (b_2, b_0) \leftarrow \mathsf{RSS.Share}(b)$$

$$b \leftarrow \mathsf{RSS}.\mathsf{Reveal}(b_0,b_1,b_2)$$

	P ₀	P ₁	P ₂	
$\llbracket b rbracket^{\operatorname{B}}$	(b_0, b_1)	(b_1, b_2)	(b_2, b_0)	$b=b_0\oplus b_1\oplus b_2$
$[\![b]\!]^{A}(\mathbb{Z}_{2^\ell})$	(b_0, b_1)	(b_1, b_2)	(b_2, b_0)	$b = \sum_{i=0}^{\ell-1} b_i \mod 2^{\ell}$

A recap of Bit2A in ABY3

The three-party Oblivious transfer

	P ₀	P ₁	P ₂
	(m_0, m_1)	Ь	b
OT	ϵ	m _b	-
3P-OT	ϵ	m_b	ϵ

- Offline: P_0 and P_2 agree upon (OTP_0, OTP_1) .
- Online:
 - \bullet P₀ sends (c_0, c_1) to P₁ where

$$(c_0, c_1) = (\mathsf{OTP}_0 \oplus m_0, \mathsf{OTP}_1 \oplus m_1).$$

- \bigcirc P₂ sends OTP_b to P₁.
- **3** P_1 computes $m_b = c_b \oplus OTP_b$.

A recap of Bit2A in ABY3

How is Bit2A realized in ABY3?

	P ₀	P ₁	P ₂
$\llbracket b \rrbracket^{B}$	(b_0, b_1)	(b_1, b_2)	(b_2, b_0)
PRG seeds	(S_0, S_1)	(S_1, S_2)	(S_2, S_0)
-	(r_0, r_1)	$(r_1, -)$	$(-, r_0)$
-	$ \begin{cases} m_0 = (b_0 \oplus b_1) - r_0 - r_1 \\ m_1 = (1 \oplus b_0 \oplus b_1) - r_0 - r_1 \end{cases} $	b ₂	<i>b</i> ₂

- P_0, P_1, P_2 invokes the 3P-OT protocol, such that P_1 obtains $m_{b_2} = b r_0 r_1$.
- P_0, P_2, P_1 invokes the 3P-OT protocol, such that P_2 obtains $m_{b_2} = b r_0 r_1$.

Compare our work to ABY3

	Ref.	Comm.		Compu. (PRG calls, #Mod Operations)	
	Rei.		rounds	Compu. (FNG cans, #Iviod Operations)	
	GC	-	-	-	
Offline	LSS	-	-	-	
Offilite	FHE	-	-	-	
	HSS	-	-	-	
	GC	*	*	*	
0-1:	LSS	*	*	*	
Online	FHE	*	*	*	
	HSS	*	*	*	

Compare our work to ABY3

	Ref.	Setup	Comm.[bi	its] Total	Online Rounds
Bit2A	ABY3	0	2ℓ	2ℓ	1
DILZA	Our Π_1	$4\ell/3$	1	$4\ell/3 + 1$	1
B2A	ABY3	-	$\ell + \ell \log \ell$	-	$1 + \log \ell$
DZA	Our Π_2	$\ell^2/3$	5ℓ/3	$(\ell^2 + 5\ell)/3$	2
			\		¥
		Less online comm.			Less comm. in total

Compare our work to ABY3

Let's understand the relationship between b, γ , and θ . $\forall \theta, \gamma, b \in \{0,1\}$, define:

- $v = (-1)^{\theta} \cdot \gamma$
- $\beta = b \oplus \gamma$
- $\sigma = b \oplus \gamma \oplus \theta$

Now, it turns out:

$$b=(-1)^{\sigma}\cdot v+\beta.$$

Let's understand the relationship between b, γ , and θ . $\forall \theta, \gamma, b \in \{0, 1\}$, define:

- $v = (-1)^{\theta} \cdot \gamma$
- $\beta = b \oplus \gamma$
- $\sigma = b \oplus \gamma \oplus \theta$

Now, it turns out:

$$b = (-1)^{\sigma} \cdot v + \beta.$$

Breaking this down...

$$(-1)^{\sigma} \cdot v + \beta = (-1)^{\sigma+\theta} \cdot \gamma + \beta$$
$$= (-1)^{b \oplus \gamma} \cdot \gamma + (b \oplus \gamma)$$

Let's understand the relationship between b, γ , and θ . $\forall \theta, \gamma, b \in \{0,1\}$, define:

- $v = (-1)^{\theta} \cdot \gamma$
- $\beta = b \oplus \gamma$
- $\sigma = b \oplus \gamma \oplus \theta$

Now, it turns out:

$$b = (-1)^{\sigma} \cdot v + \beta.$$

Breaking this down...

$$(-1)^{\sigma} \cdot v + \beta = (-1)^{\sigma+\theta} \cdot \gamma + \beta$$
$$= (-1)^{b \oplus \gamma} \cdot \gamma + (b \oplus \gamma)$$

So, what does this mean?

- When b matches γ : $b \oplus \gamma = 0$, so our equation simplifies to b.
- When b is the opposite of γ : The equation still simplifies to b!

Let's understand the relationship between b, γ , and θ . $\forall \theta, \gamma, b \in \{0, 1\}$, define:

- $v = (-1)^{\theta} \cdot \gamma$
- $\beta = b \oplus \gamma$
- $\sigma = b \oplus \gamma \oplus \theta$

Now, it turns out:

$$b = (-1)^{\sigma} \cdot \mathbf{v} + \boldsymbol{\beta}.$$

Which implies...

$$\llbracket \boldsymbol{b} \rrbracket^{\mathsf{A}} = (-1)^{\boldsymbol{\sigma}} \cdot \llbracket \boldsymbol{v} \rrbracket^{\mathsf{A}} + \llbracket \boldsymbol{\beta} \rrbracket^{\mathsf{A}}$$

So. what does this mean?

- Prepare $\gamma, \theta \in \{0, 1\}$, compute $[v]^A$ in the offline phase.
- Compute β, σ , and $\llbracket b \rrbracket^A = (-1)^{\sigma} \cdot \llbracket v \rrbracket^A + \llbracket \beta \rrbracket^A$ in the online phase.

More Bit2A details

Offline phase

Prepare $\gamma, \theta \in \{0, 1\}$, compute $\llbracket v \rrbracket^A$.

	P ₀	P ₁	P ₂	
Input	γ	θ	$\boldsymbol{ heta}$	$\gamma, \theta \in \{0, 1\}$
Round-1	0	<i>r</i> ₀	$r_1 = \gamma - r_0$	$r_0, r_1 \in \mathbb{Z}_{2\ell}$
-	0	$(-1)^{\theta} \cdot r_0$	$(-1)^{ heta}\cdot r_1$	[v] ^A -
Round-2	$(R_0, R_1 + r_0)$	$(R_1 + r_0, R_2 + r_1)$	$(R_2 + r_1, R_0)$	[[v]] ^A

Online phase

Compute β , σ , and $\llbracket b \rrbracket^A = (-1)^{\sigma} \cdot \llbracket v \rrbracket^A + \llbracket \beta \rrbracket^A$.

- **1** All parties reveal $\sigma = b \oplus \gamma \oplus \theta$.
- ② Define $[\![\beta]\!]^A = \{(0,0),(0,\beta),(\beta,0)\}$, then all parties locally compute

$$\llbracket b \rrbracket^{\mathsf{A}} = (-1)^{\sigma} \cdot \llbracket v \rrbracket^{\mathsf{A}} + \llbracket \beta \rrbracket^{\mathsf{A}}$$

Realizing B2A

To compute $x \in \{0,1\}^{\ell}$, instead of naively invoking

$$[x]^{A} = \sum_{i=0}^{\ell-1} \text{Bit2A}([x_i]^{B}) \cdot 2^{\ell-1-i},$$

Realizing B2A

To compute $x \in \{0,1\}^{\ell}$, instead of naively invoking

$$[x]^{A} = \sum_{i=0}^{\ell-1} \text{Bit2A}([x_i]^{B}) \cdot 2^{\ell-1-i},$$

we use

$$\begin{split} [x]^A &= \sum_{i=0}^{\ell-1} \bigl((-1)^{\sigma_i} [v_i]^A + [\beta_i]^A \bigr) \cdot 2^{\ell-1-i} \text{ and} \\ [\![x]\!]^A &\leftarrow [x]^A. \end{split}$$

To compute $x \in \{0,1\}^{\ell}$, instead of naively invoking

$$[\![x]\!]^{A} = \sum_{i=0}^{\ell-1} \text{Bit2A}([\![x_{i}]\!]^{B}) \cdot 2^{\ell-1-i},$$

we use

$$[x]^{\mathbf{A}} = \sum_{i=0}^{\ell-1} ((-1)^{\sigma_i} [v_i]^{\mathbf{A}} + [\beta_i]^{\mathbf{A}}) \cdot 2^{\ell-1-i} \text{ and}$$

$$[x]^{\mathbf{A}} \leftarrow [x]^{\mathbf{A}}.$$

- Pro: Reduced communication bits in the offline phase from $4\ell^2/3$ to $\ell^2/3$ bits per party.
- Con: One more round in the online phase.

Evaluation

Conversion	Ref.	#Parties	Comm.[bits]			Rounds
			Setup	Online	Total	Rounds
	ABY2.0	2	0	$(\lambda + \ell)/2$	$(\lambda + \ell)/2$	1
Bit2A	ABY3 (OT)	3	0	2ℓ	2ℓ	1
BILZA	edabits-based Bit2A	n	-	$t^2 + 2\ell + 3$	-	$\log(t+1)+3$
	Our Π_1	3	4ℓ/3	1	$4\ell/3 + 1$	1
	ABY	2	$\lambda \ell / 2$	$(\ell^2 + \ell)/4$	$(2\lambda + 1)\ell/4 + \ell^2/4$	2
B2A	ABY2.0	2	$(\lambda \ell + \ell^2)/2$	ℓ	$(\lambda/2+1)\ell + \ell^2/2$	1
	ABY3	3	-	$\ell + \ell \log \ell$	-	$1 + \log \ell$
	Our Π_2	3	$\ell^2/3$	5ℓ/3	$(\ell^2 + 5\ell)/3$	2

Thank you for your Attention!