Listing of Claims:

Please make the following amendments to the claims. Material to be inserted is in **bold and underline**, and material to be deleted is in **strikeout** or (if the deletion is of five or fewer consecutive characters or would be difficult to see) in double brackets [[]]. These amendments correct typographical errors in the application and more particularly point out and distinctly claim aspects of the disclosure on which applicants first would like to receive a patent. In particular, applicants have amended claims 32, 34, 47, and 48, canceled claims 18-22, without prejudice, and added new claims 52-55.

1. (Original) A composition of matter comprising a reporter compound, the reporter compound having a four-, five-, or six-member aromatic ring Z, with substituents A, B, C, D, E, and F, according to the formula:

15

5

10

wherein F is absent when Z is a five-member ring, and wherein E and F are absent when Z is a four-member ring;

wherein A, B, C, D, E, and F may be present in any order, provided that B and C are adjacent, in which case each of A, D, E, and F is neutral, or provided that B and C

are separated by one of A, D, E, or F, in which case one of A, D, E, and F is negatively charged;

when the A substituent is neutral, A is selected from the group consisting of =N-R^c, wherein R^c is selected from the group consisting of aliphatic, heteroatom-substituted aliphatic, polyether, aromatic, reactive aliphatic, and reactive aromatic groups; when the A substituent is negatively charged, A is -(N-R^c)⁻;

each B and C substituent is selected from the group consisting of W^1 and W^2 , wherein W^1 and W^2 have the respective formulae

$$X^2$$
 X^4
 X^4

 W^1

10

5

and

$$X^2$$
 X^4
 X^4

 W^2

15

where each B and C substituent is W^1 if B and C are adjacent on Z, and one of B and C is W^1 and the other of B and C is W^2 if B and C are separated by one of A, D, E, and F on ring Z;

each D, E, and F substituent, when present and neutral, is independently selected from the group consisting of =O, =S, =Se, =Te, $=N-R^c$, and $=C(R^f)(R^g)$, wherein R^c is selected from the group consisting of aliphatic, heteroatom-substituted aliphatic, polyether, aromatic, reactive aliphatic, and reactive aromatic groups, R^f and R^g being selected from the group consisting of carboxylic acid, cyano, carboxamide, carboxylic ester, and aliphatic amine groups; D, E, and F, when present and negatively charged, are independently selected from the group consisting of $-O^-$, $-S^-$, $-Se^-$, $-Te^-$, $-(N-R^c)^-$, and $-(C(R^f)(R^g))^-$;

m and n are independently selected from the group consisting of 0, 1, and 2;

Y is independently selected for each of B and C from the group consisting of O, S, Se, Te, N-R^h, and $C(R^i)(R^j)$, wherein R^h is selected from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, and reactive aliphatic groups, and wherein each of Rⁱ and R^j is selected from the group consisting of aliphatic and reactive aliphatic groups;

each R¹ is independently selected for each of B and C from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, and ionic substituents capable of increasing the hydrophilicity of the entire compound;

each of X¹, X², X³, and X⁴ is independently selected for each of B and C from the group consisting of N, O, S, and C-R^k, wherein R^k is selected from the group consisting of H, F, Cl, Br, I, aliphatic groups, alicyclic groups, aromatic groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or

10

15

more reactive groups capable of covalent attachment to a carrier, ionic substituents capable of increasing the hydrophilicity of the entire compound, parts of a condensed aromatic or heterocyclic ring, and parts of a substituted condensed aromatic or heterocyclic ring; and

each H may be independently replaced by a fluorine.

2. (Original) The composition of claim 1, wherein the reporter compound has the formula

$$R^7$$
 R^8
 R^1
 R^1
 R^1
 R^2
 R^3
 R^4
 R^4

where D is -O or -S;

5

 R^1 and R^3 are independently H, -(CH₂)_k -L, or -(CF₂)_k-L where k = 1 - 30, and each L is one of H, F, Cl, Br, I, NH₂, SO₃⁻, COOH, and CO-NHS; and

 $R^5 - R^{12}$ are each independently H, F, or SO_3^- .

R^c is selected from the group consisting of aliphatic, heteroatom-substituted aliphatic, polyether, aromatic, reactive aliphatic, and reactive aromatic groups, hydrogen, CN, SO₃H, and COO-R^m, where R^m is selected from a group consisting of hydrogen, aliphatic substituents, aromatic substituents, reactive aliphatic substituents, reactive aromatic or heterocyclic substituents, and linked carriers.

Rⁱ and R^j are H, aliphatic groups, alicyclic groups, aromatic groups, polyethers, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents and spacers containing one or more ionic substituents, capable of increasing the hydrophilicity of the entire compound; or Rⁱ and R^j taken in combination form a ring-system that is optionally substituted by one or more reactive or ionic substituents.

- 3. (Original) The composition of claim 1, wherein Z is based on squaric acid, croconic acid, or rhodizonic acid.
- 4. (Original) The composition of claim 1, wherein at least one substituent of Z includes a reactive group.
- 5. (Original) The composition of claim 4, wherein the reactive group is selected for reacting with amine moieties from the group consisting of N-hydroxysuccinimide esters, isothiocyanates, and sulfonylhalogenides.
- 6. (Original) The composition of claim 4, wherein the reactive group is selected for reacting with thiol moieties from the group consisting of iodoacetamides and maleimides.
- 7. (Original) The composition of claim 4, wherein the reactive group is selected for reacting with nucleic acids from the group consisting of phosphoramidites.
- 8. (Original) The composition of claim 1, wherein at least one substituent of Z includes a linked carrier.

5

10

15

- 9. (Original) The composition of claim 8, wherein the carrier is selected from the group consisting of polypeptides, polynucleotides, beads, microplate well surfaces, and metallic nanoparticles.
- 10. (Original) The composition of claim 9, wherein the carrier is a polypeptide or a polynucleotide.
 - 11. (Original) The composition of claim 1, further comprising a carrier, which is associated covalently with the reporter compound through reaction with a reactive group on at least one substituent of Z.
 - 12. (Original) The composition of claim 1, wherein at least one substituent of Z is an ionic substituent capable of increasing the hydrophilicity of the entire photoluminescent compound.
 - 13. (Original) The composition of claim 12, wherein the ionic substituent is selected from the group consisting of SO_3^- , COO^- , PO_3^{2-} , $O-PO_3^{2-}$, PO_3^{3-} , PO_3^{3-} , PO_3^{3-} , PO_3^{3-} , PO_3^{3-} , wherein R and R are independently an aliphatic or aromatic moiety.
 - 14. (Original) The composition of claim 1, wherein the substituents of Z are selected so that the reporter compound is electrically neutral, increasing its hydrophobicity.
 - 15. (Original) The composition of claim 1, wherein R^f is $(CH_2)_nCOOH$ or $(CH_2)NH_2$.
- 16. (Original) The composition of claim 1, wherein the reporter compound is capable of covalently reacting with at least one of biological cells, DNA, lipids, nucleotides, polymers, proteins, and pharmacological agents.

5

10

- 17. (Original) The composition of claim 1, wherein the reporter compound is covalently or noncovalently associated with at least one of biological cells, DNA, lipids, nucleotides, polymers, proteins, and pharmacological agents.
 - 18-22. (Canceled)

5

10

- 23. (Original) The composition of claim 1, wherein the reporter compound may be induced to luminesce by exposing the reporter compound to one or more of the following: electromagnetic energy, chemical energy, and electrochemical energy.
 - 24. (Original) A reporter compound having the formula

$$X^{2} = X^{1}$$

$$X^{3} = X^{4}$$

$$X^{4} = X^{1}$$

$$X^{1} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{1} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{2}$$

$$X^{2} = X^{2}$$

$$X^{3} = X^{2}$$

$$X^{4} = X^{4}$$

$$X^{4} = X^{4}$$

$$X^{4} = X^{4}$$

$$X^{4} = X^{4$$

wherein D is selected from the group consisting of O⁻, S⁻, Se⁻, Te⁻, N-(R^c)⁻, and C(R^f)(R^g)⁻, where each R^c is selected from the group consisting of aliphatics, heteroatom-substituted aliphatics, polyethers, aromatics, reactive aliphatics, reactive aromatics, and linked carriers; R^f and R^g being selected from the group consisting of carboxylic acids, cyano, carboxamides, carboxylic esters, and aliphatic amines;

m and n are independently selected from the group consisting of 0, 1, and 2;

each Y is independently selected from the group consisting of O, S, Se, Te, N- R^h , and $\mathsf{C}(\mathsf{R}^i)(\mathsf{R}^j)$, where R^h is selected from the group consisting of hydrogen, aliphatics, alicyclics, aromatics, and reactive aliphatics; and where each of R^i and R^j are H, aliphatic groups, alicyclic groups, aromatic groups, polyethers, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents and spacers containing one or more ionic substituents, capable of increasing the hydrophilicity of the entire compound; or R^i and R^j taken in combination for a ring-system that is optionally further substituted by one or more reactive or ionic substituents;

each R¹ is independently selected for each of B and C from the group consisting of hydrogen, aliphatics, alicyclics, aromatics, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, and ionic substituents capable of increasing the hydrophilicity of the entire compound;

each of X¹, X², X³, and X⁴ is independently selected from the group consisting of H, N, O, S, and C-R^k, wherein R^k is selected from the group consisting of H, F, Cl, Br, I, aliphatics, alicyclics, aromatics, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents capable of increasing the hydrophilicity of the entire compound, parts of a condensed aromatic or heterocyclic

10

15

ring, and parts of a substituted condensed aromatic or heterocyclic ring; and each hydrogen may be independently replaced by a fluorine.

5

10

15

- 25. (Original) The compound of claim 24, where R^c is selected from the group consisting of hydrogen, CN, OH, SO₃H, C=ONHR^m, COO-NHS and COO-R^m, where R^m is selected from a group consisting of hydrogen, aliphatic substituents, aromatic substituents, reactive aliphatic substituents, reactive aromatic substituents, and linked carriers.
- 26. (Original) A method of performing a photoluminescence assay, the method comprising:
 - selecting a photoluminescent compound according to claim 1; exciting the photoluminescent compound with excitation light; and detecting emission light emitted by the photoluminescent compound.
- 27. (Original) The method of claim 26, including the step of detecting fluorescence.
- 28. (Original) The method of claim 26, including the step of detecting phosphorescence.
- 29. (Original) The method of claim 26, further comprising analyzing the emission light and determining at least one of luminescence intensity, lifetime, and polarization.
- 30. (Original) The method of claim 26, further comprising associating the photoluminescent compound with a second molecule.
- 31. (Original) The method of claim 26, further comprising performing multicolor multisequencing analysis based on *in-situ* hybridization.

32. (Amended) A composition of matter comprising a photoluminescent compound, the photoluminescent compound having a four-, five-, or six-member aromatic ring Z, with substituents A, B, C, D, E, and F, according to the formula:

wherein F is absent when Z is a five-member ring, and wherein E and F are absent when Z is a four-member ring;

wherein A, B, C, D, E, and F may be present in any order, provided that B and C are adjacent, in which case each of A, D, E, and F is neutral, or provided that B and C are separated by one of A, D, E, or F, in which case one of A, D, E, and F is negatively charged;

when the A substituent is neutral, A is =O; when the A substituent is negatively charged, A is -O⁻;

where each D, E, and F substituent, when present and neutral, is independently selected from the group consisting of =O, =S, =Se, =Te, =N-R^c, and =C(R^f)(R^g), wherein each of R^c is selected from the group consisting of aliphatic, heteroatom-substituted aliphatic, polyether, aromatic, reactive aliphatic, and reactive aromatic groups, hydrogen, CN, OH, SO₃H, and COO-R^m, where R^m is selected from a group consisting of hydrogen, aliphatic substituents, aromatic substituents, reactive aliphatic substituents, reactive aromatic substituents, and linked carriers, and where R^f and R^g are selected from the group consisting of carboxylic acid, cyano, carboxamide,

10

15

Rg, taken in combination, may form 5- and 6-membered rings that include, but are not limited to, pyrazolidine-dione, barbituric acid, thiobarbituric acid, isoxazolone, pyrazolone, pyridone, rhodanine, pyrrolotriazole, and pyrazolotriazole rings;

D, E, and F, when present and negatively charged, are independently selected from the group consisting of -O⁻, -S⁻, -Se⁻, -Te⁻, -(N-R^c)⁻, and -(C(R^f)(R^g))⁻;

each B and C substituent is selected from the group consisting of W^1 and W^2 , wherein W^1 and W^2 have the respective formulae

$$X^2$$
 X^3
 X^4
 X^4
 X^3
 X^4
 X^4

 W^1

10 and

5

$$X^2$$
 X^3
 X^4
 X^4

 W^2

15

where each B and C substituent is W^1 if B and C are adjacent on Z, and one of B and C is W^1 and the other of B and C is W^2 if B and C are separated by one of A, D, E, and F on ring Z;

m and n are independently selected from the group consisting of 0, 1, and 2;

each Y is independently selected for each of B and C from the group consisting of O, S, N-R^h, and $C(R^i)(R^j)$, wherein R^h is selected from the group consisting of H.

aliphatic groups, alicyclic groups, aromatic groups, spacers bound to ionic and reactive groups, and Rⁱ and R^j are selected from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, polyether groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents and spacers containing one or more ionic substituents capable of increasing the hydrophilicity of the entire compound; or Rⁱ and R^j taken in combination form a ring-system that is optionally further substituted by one or more reactive or ionic substituents; provided that at least one Y is C(Rⁱ)(R^j), and at least one of R^j or R^j includes a reactive group, a linked carrier, or an ionic substituent capable of increasing the hydrophilicity of the entire compound;[[-]]

each R¹ is independently selected for each of B and C from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, polyether groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, and ionic substituents capable of increasing the hydrophilicity of the entire compound;

each of X¹, X², X³, and X⁴ is independently selected for each of B and C from the group consisting of N, O, S, and C-R^k, wherein R^k is selected from the group consisting of H, F, Cl, Br, I, aliphatic groups, alicyclic groups, aromatic groups, polyether groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents capable of increasing the hydrophilicity of the entire compound, parts of a

5

10

15

condensed aromatic or heterocyclic ring, and parts of a substituted condensed aromatic or heterocyclic ring; and

each H may be independently replaced by a fluorine.

- 33. (Original) The composition of claim 32, where at least one of Rⁱ and R^{i is} a reactive aliphatic group.
 - 34. (Amended) The composition of claim 32, wherein the composition has the formula

$$R^7$$
 R^8
 R^1
 CH
 CH
 R^1
 R^9
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

where D is =O, =S, =Se, =Te, =N- R^c , or =C(R^f)(R^g);

 R^1 and R^3 are independently H, -(CH₂)_k -L, or -(CF₂)_k-L where k = 1 - 30, and L is one of H, F, Cl, Br, I, CH₂-NH₂, SO₃⁻, COOH, and CO-NHS;

 $R^5 - R^{12}$ are each independently H, F, SO_3^- , PO_3^{2-} , $O-PO_3^{2-}$, PO_3R^- , $O-PO_3R^-$, $-(CH_2)_k$ –L, or – $(CF_2)_k$ -L; where k = 1 - 30, and L is one of H, F, Cl, Br, I, CH_2 -NH₂, SO_3^- , COOH, and CO-NHS [[F]], or SO_3^- , PO_3^{2-} , $O-PO_3^{2-}$, PO_3R^- , or $O-PO_3R^-$;

Rⁱ and R^j are H, aliphatic groups, alicyclic groups, aromatic groups, polyethers, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents and spacers containing one or more ionic substituents, capable of increasing the hydrophilicity of the entire compound; or Rⁱ and R^j taken in combination

5

10

for a ring-system that is optionally further substituted one or more time by reactive or ionic substituents;

(CX) is an alkyl chain with 1-22 carbon atoms, a polyether chain, any other polycarbon chain, or a part of a ring system; and

K is COOH, N-hydroxy succinimide, iodoacetamide, maleimide, sulfonychloride, phosphoramidite, SO₃-, PO₃²⁻, O-PO₃²⁻, OH, or NH₂.

- 35. (Original) The composition of claim 1, wherein Z is based on squaric acid, croconic acid, or rhodizonic acid.
- 36. (Original) The composition of claim 32, wherein at least one of Rⁱ and R^j includes a reactive group selected for reacting with amine moieties from the group consisting of N-hydroxysuccinimidyl esters, isothiocyanates, and sulfonylhalogenides.
- 37. (Original) The composition of claim 32, wherein at least one of R¹ and R² includes a reactive group selected for reacting with thiol moieties from the group consisting of iodoacetamides and maleimides.
- 38. (Original) The composition of claim 32, wherein at least one of Rⁱ and R^j includes a reactive group selected for reacting with nucleic acids from the group consisting of phosphoramidites.
- 39. (Original) The composition of claim 32, wherein at least one of Rⁱ and R^j includes a linked carrier.
- 40. (Original) The composition of claim 39, wherein the carrier is selected from the group consisting of polypeptides, polynucleotides, beads, microplate well surfaces, and metallic nanoparticles.

5

10

15

- 41. (Original) The composition of claim 39, wherein the carrier is a polypeptide or a polynucleotide.
- 42. (Original) The composition of claim 32, wherein at least one substituent of Z includes an ionic substituent selected from the group consisting of SO₃⁻, COO⁻, PO₃²⁻, O-PO₃R⁻, O-PO₃R⁻ and N(R^I)₃⁺, wherein R and R^I are aliphatic or aromatic moieties.
- 43. (Original) The composition of claim 32, wherein the photoluminescent compound is capable of covalently reacting with at least one of biological cells, DNA, lipids, nucleotides, polymers, proteins, and pharmacological agents.
- 44. (Original) The composition of claim 32, wherein the photoluminescent compound is covalently or noncovalently associated with at least one of biological cells, DNA, lipids, nucleotides, polymers, proteins, and pharmacological agents.
 - 45. (Original) The composition of claim 32, wherein m and n are 1.
- 46. (Original) The composition of claim 32, further comprising a second reporter compound selected from the group consisting of luminophores and chromophores, where the first reporter compound is an energy transfer acceptor and the second reporter compound is a corresponding energy transfer donor.
 - 47. (Amended) A compound having the formula

$$X^{2}$$
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{4}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{3}
 X^{4}
 X^{4}
 X^{3}
 X^{4}
 X^{4}
 X^{3}

10

wherein D is selected from the group consisting of O⁻, S⁻, Se⁻, Te⁻, N-(R^c)⁻, and C(R^f)(R^g)⁻, wherein R^c is selected from the group consisting of aliphatic, heteroatom-substituted aliphatic, polyether, aromatic, reactive aliphatic, and reactive aromatic groups, R^f and R^g are selected from the group consisting of carboxylic acid, cyano, carboxamide, carboxylic ester, and aliphatic amine groups or R^f and R^g taken in combination may form substituted 5- and 6-membered rings;

m and n are independently selected from the group consisting of 0, 1, and 2;

Y is selected from the group consisting of O, S, Se, Te, N-R^h, and $C(R^i)(R^j)$, wherein R^h is selected from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, and reactive aliphatic groups, and wherein each of R^i and R^j are H, aliphatic groups, alicyclic groups, aromatic groups, polyethers, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents and spacers containing one or more ionic substituents, capable of increasing the hydrophilicity of the entire compound; or R^i and R^j taken in combination form a ring-system that is optionally substituted by one or more reactive or ionic substituents;

(CX) is an alkyl chain with 1-22 carbon atoms, a polyether chain, any other polycarbon chain, or part of a ring system;

K is selected from the group consisting of COOH, N-hydroxy succinimide, iodoacetamide, maleimide, sulfonychloride, phosphoramidite, and SO₃, PO₃, OH, or NH₂;

each R¹ is independently selected for each of B and C from the group consisting of H, aliphatic groups, alicyclic groups, aromatic groups, linked carriers, reactive groups

10

15

capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, and ionic substituents capable of increasing the hydrophilicity of the entire compound;

each of X¹, X², X³, and X⁴ is independently selected from the group consisting of H, N, O, S, and C-R^k, wherein R^k is selected from the group consisting of H, F, Cl, Br, I, aliphatic groups, alicyclic groups, aromatic groups, linked carriers, reactive groups capable of covalent attachment to a carrier, spacers bound to one or more reactive groups capable of covalent attachment to a carrier, ionic substituents capable of increasing the hydrophilicity of the entire compound, parts of a condensed aromatic or heterocyclic ring, and parts of a substituted condensed aromatic or heterocyclic ring; and

each H may be independently replaced by a fluorine.

48. (Amended) The composition of claim 32, wherein the composition includes a compound having the formula

49. (Original) A method of performing a photoluminescence assay, the method comprising:

selecting a photoluminescent compound according to claims 32-48; exciting the photoluminescent compound with excitation light; and detecting emission light emitted by the photoluminescent compound.

- 50. (Original) The method of claim 49, including the step of detecting fluorescence.
- 51. (New) The method of claim 50, further comprising analyzing the emission light and determining at least one of luminescence intensity, lifetime, or polarization.
- 52. (New) The composition of claim 32, wherein R^f and R^g, taken in combination, form 5- and 6-membered rings that include a pyrazolidine-dione, barbituric acid, thiobarbituric acid, isoxazolone, pyrazolone, rhodanine, indanedione, pyridine, or quinone structure.
- 53. (New) The composition of claim 52, wherein R^f and R^g, taken in combination, form 5- and 6-membered rings that include the pyrazolidine-dione, barbituric acid, thiobarbituric acid, isoxazolone, pyrazolone, rhodanine, indanedione, pyridine, and quinone structures below:

5

10

wherein R^p, R^o are selected from the groups of H, aliphatic, reactive aliphatic, aromatic, reactive aromatic groups and linked carriers; R^q is selected from COOH, CONHRⁿ, COORⁿ, CN, SO₃⁻, PO₃⁻, wherein Rⁿ is selected from a group consisting of hydrogen, aliphatic substituents, aromatic substituents, reactive aliphatic substituents, and linked carriers.

54. (New) The composition of claim 32, wherein the composition includes a compound having the formula

where n and m are 1 or 2.

55. (New) The composition of claim 32, wherein the composition includes a compound having the formula

where n and m are 0, 1 and 2.