

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENT- UND

MARKENAMT

(12) Offenlegungsschrift

(10) DE 199 41 768 A 1

(51) Int. Cl. 7:

C 12 N 1/19

C 12 N 15/81

(71) Anmelder:

Lichtenberg-Fraté, Hella, Dr., 53115 Bonn, DE

(21) Aktenzeichen: 199 41 768.7

(22) Anmeldetag: 2. 9. 1999

(23) Offenlegungstag: 15. 3. 2001

(72) Erfinder:

gleich Anmelder

(56) Entgegenhaltungen:

Eur. J. Biochem. 260, S.31-37; 1999;
J. Membrane Biol. 152, S.169-181, 1996;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Schizosaccharomyces pombe Hefewirtsstämme mit Defekten in der Kaliumaufnahme

(55) Gegenstand der Erfindung sind Schizosaccharomyces pombe Hefewirtsstämme mit Defekten in den Kaliumtransportproteinen TKhp und Trk2.

Ein weiterer Gegenstand der Erfindung ist ein Schizosaccharomyces pombe Hefewirtsstamm, der die Nukleinsäuresequenz für den humanen erg Kaliumionen-Kanal (HERG), aber nicht die der Hefe eigenen TKhp oder Trk2 Kaliumionen-Transportproteine exprimiert sowie ein Verfahren zur Detektion spezifischer Modulatoren des HERG Kaliumionen-Kanals, einschließlich:

a) Die Behandlung des Schizosaccharomyces pombe Hefewirtsstamms, der die Nukleinsäuresequenz für den humanen erg Kaliumionen-Kanal oder ein funktionelles Derivat oder eine Mutationsform dieses Kaliumionen-Kanals, aber nicht die der Hefe eigenen TKhp oder Trk2 Kaliumionen-Transportproteine exprimiert mit Testsubstanzen,

b) Wachstumsbestimmungen in Anwesenheit oder nach Anwendung einer Testsubstanz,

c) Messungen des Anstiegs oder der Abnahme des Kaliumtransports derjenigen Stämme in Anwesenheit oder nach Anwendung einer Testsubstanz.

DE 199 41 768 A 1

BEST AVAILABLE COPY

Beschreibung

Die Erfindung betrifft Schizosaccharomyces pombe Hefewirtsstämme entsprechend dem Oberbegriff des Anspruchs I.

5

Beschreibung

Gegenstand der Erfindung sind Schizosaccharomyces pombe Hefewirtsstämme mit Defekten in der Kaliumaufnahme, deren Verwendung zur Expression von Kaliumionen Kanälen sowie Prozesse zur Identifizierung von Inhibitoren und/ oder Aktivatoren solcher Kaliumkanalproteine.

Die Hefe Schizosaccharomyces pombe nimmt als einzelliger Eukaryont Kalium aus der extrazellulären Umgebung auf und akkumuliert dieses Kation intrazellulär bis zu einer Konzentration von 180 mM (180 µmol/µl Zellwasser). Diese Kaliumaufnahme geschieht auch unter Bedingungen, in denen die extrazelluläre Konzentration von Kalium unter 30 µM sinkt.

Verantwortlich für diesen einwärts gerichteten Kaliumtransport ist u. a. ein in der Plasmamembran dieser Hefe lokalisierter Transportprotein TKHp (Transporter von Kalium und Protonen H⁺). Die Kaliumaufnahme und Kaliumtransportfunktion des Schizosaccharomyces pombe Proteins TKHp ist beispielsweise beschrieben in:

- Lichtenberg-Fraté, H., Reid, J. D., Heyer, M., Höser, M. (1996). J. Membrane Biol. 152: 169–181

20

Ein Schizosaccharomyces pombe Hefestamm mit einer Mutation im TKHp ist im Vergleich zu dem Wildstamm weiterhin in der Lage auf Medien mit so geringen extrazellulären Kaliumkonzentrationen wie 1 mM oder weniger im Kulturnedium gut zu wachsen, wie z. B. beschrieben in:

25 – Balcells et al., (1999) Eur. J. Biochem. 260: 31–37

Vom Sanger Center, Cambridge, England wurde 1997 aus dem Gesamtgenom der Hefe Schizosaccharomyces pombe ein vermutliches Gen SPAC1F5.12 (Chromosom I, Cosmid C1F5, offener Leserahmen 12) veröffentlicht.

30 – <http://www.sanger.ac.uk/yeast/home.html>

dessen abgeleitete Aminosäuresequenz hohe Ähnlichkeit (37%) mit dem Kaliumaufnahmeprotein TKHp aus Schizosaccharomyces pombe aufweist. Dieses Gen ist bisher nicht isoliert und/oder funktionell charakterisiert worden.

Das bisher bekannte und zur Kaliumaufnahme notwendige Transportprotein TKHp und das vermutete zweite Kaliumtransportprotein aus Schizosaccharomyces pombe gehören aufgrund der hohen Homologie sowohl auf Nukleinsäure- als auch auf Aminosäureebene zu einer phylogenetisch konservierten Klasse von Kaliumtransportproteinen (Transporter von Kalium), deren nächst verwandte Mitglieder in der Hefe Saccharomyces cerevisiae beschrieben wurden, z. B. in:

- Rodriguez-Navarro, A. and Ramos, J. (1984). J. Bacteriol. 159: 940–945
- Gaber, R. F., Styles, C. A. and Fink, G. R. (1988). Mol. Cell. Biol. 8: 2848–2859
- Ko, C. and Gaber, R. F. (1991). Mol. Cell. Biol. 11: 4266–4273

Aus einer Vielzahl von Spezies wurden durch die Anwendung von molekulärbiologischen Techniken eine Reihe von Kaliumkanälen isoliert. Allgemein sind Ionenkanäle Transmembranproteine, die selektiv den Fluß bestimmter, spezifischer Ionen durch Membranen vermitteln. Unter den bisher bekannten Ionenkanälen stellen Kaliumkanäle (K⁺-Kanäle) die zahlreichste und heterogenste Gruppe dar. Sowohl in erregbaren als auch in nicht-erregbaren Zellen sind sie ihr die Aufrechterhaltung des Ruhepotentials verantwortlich. Die durch Kaliumionen-Kanäle vermittelten Auswärtsströme sind die Grundlage sowohl der Form und Frequenz als auch der Repolarisierung von Aktionspotentialen in erregbarem Gewebe. Kaliumionen-Kanäle sind ubiquitäre Membranproteine mit einer erstaunlichen Vielfalt elektrischer Eigenschaften, wobei viele der "klassischen" spannungsabhängigen K⁺-Kanäle der sogenannte Kv-Familie (Abkürzung v ihr voltagge = spannungsabhängig) zugeordnet werden.

Während der letzten Jahre demonstrierten eine Reihe von Arbeiten eine Anzahl menschlicher Krankheiten als Resultat von Mutationen in für Kaliumionen-Kanäle kodierenden Genen. So verursacht z. B. eine Punktmutation im Kaliumkanal Kv1.1 die Episodische Ataxie wie beschrieben in:

55

- Adelmann, J. P., Bond, C. T., Pessia, M. and Mylic, J. (1995). Neuron 15: 1449–1454

Das LQT Syndrom ist eine Krankheit, die die ventrikuläre Repolarisation betrifft. Eine verzögerte Repolarisation ventrikulärer Myozyten verursacht eine Verlängerung des QT Intervalls im Elektrokardiogramm (EKG). Das LQT Syndrom wird meist als autosomal dominante oder rezessive Krankheit vererbt. Wenn die ventrikulären Arrhythmien zur Fibrillation degenerieren kann plötzlicher Tod die Folge sein.

In diesem Zusammenhang ist die Rolle des humanen erg (human eag related gene, HERG) Kaliumionen-Kanals im Herzen von besonderem Interesse. In ventrikulären Myozyten sind repolarisierende Kaliumströme, genannt "delayed rectifier", aktiv, die sich aus mehreren Komponenten zusammensetzen. Diese multiplen Komponenten werden anhand der Geschwindigkeit ihrer Aktivierung (schnell = rapid = I_{Kr}; langsam = slow = I_{ks}) und ihrer unterschiedlichen Pharmakologie unterschieden. Die schnelle Komponente I_{Kr} wird durch Klasse III anti-arrhythmische Agentien wie D-Sotalol, Dofetilid und Clofildium blockiert. Die durch den HERG Kaliumionenkanal-Kanal vermittelten Ströme entsprechen den in isolierten Herzmuskelzellen gemessenen schnellen I_{Kr} Komponente des "delayed rectifier", wie beschrieben in:

- Lees-Miller, J. P., Kondo, C., and Wang, L. (1997). Circ. Res. 81: 719-723

HERG vermittelte Kaliumionenströme tragen zur Verkürzung der Aktionspotentiale bei schnellerer Herzschlagrate bei. Mutationen in HERG verursachen eine erbliche Form der polymorphen ventrikulären Arrhythmie (torsades des pointes), auch bekannt als LQT2 Syndrom, wie beschrieben in:

- Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M.-T. (1995). Cell 81: 299-307
- Curran, M. E., Splaski, I., Timothy, K. W., Vincent, G. M., Green, E. D. and Keating, M. T. (1995). Cell 80: 795-803
- Keating, M. T. and Sanguinetti, M. C. (1996). Science 272: 681-685

Ein weiteres Syndrom (LQT1) wird durch einen Defekt im Kaliumionen-Kanal Gen Kv-LQT1 bedingt, wie beschrieben in:

- Wang, Q., M. E. Curran, I. Splawski, T. C. Burn, J. M. Millholland, T. J. VanRaay, J. Shen, K. W. Timothy, G. M. Vincent, T. de Jager, P. J. Schwartz, J. A. Toubin, A. J. Moss, D. L. Atkinson, G. M. Landes, T. D. Connors & M. T. Keating (1996). Nat. Genet. 12: 17-23

Kaliumionen-Kanal Modulatoren sind daher wertvolle pharmakologische Agentien mit therapeutischer Anwendung. Hoch-selektive Blocker (Toxine) und/oder Aktivatoren sind nur für eine relativ begrenzte Anzahl von Kaliumionen-Kanälen bekannt. Traditionell werden die meisten pharmakologisch wirksamen Substanzen und agrochemischen Produkte durch Massen-Durchmusterung chemischer oder natürlicher Banken entdeckt. Neue Substanzen werden üblicherweise in stabilen, Kaliumionen-Kanal Gene exprimierenden Säugerzelllinien getestet. Jedoch ist dieses Verfahren durch das Vorhandensein endogener Kanäle in den verwendeten Zelllinien erschwert und für biotechnologische Zwecke (homologe und heterologe Expression von Kaliumionen-Kanälen) verständlicherweise nicht geeignet. Die Nachteile zur Verwendung tierischer Zelllinien sind insbesondere:

- Die Kultivierung tierischer Zelllinien ist wesentlich komplizierter, finanziell aufwendig sowie kontaminationsanfällig.
- Homolog und/oder heterolog exprimierte Kaliumionen-Kanäle beeinflussen das Wachstum tierischer Zelllinien nicht.
- Das Vorhandensein endogener Kaliumionen-Kanäle erschwert die Auswertung der experimentellen Daten.

Die Aufgabe der vorliegenden Erfindung war es, diese Nachteile zu vermeiden und Schizosaccharomyces pombe Hefestämme als alternatives Expressionssystem zur funktionellen Expression von Kaliumionen-Kanal Genen zu entwickeln und zur Verfügung zu stellen. In der Biotechnologie besteht ein Bedarf an gut wachsenden Hefewirtsstämmen für die heterologe Expression von Kaliumionen-Kanal Genen aus höheren Eukaryonten. Insbesondere besteht ein Bedarf an stabilen Hefewirtsstämmen für die heterologe Expression von in menschlichen Krankheiten involvierten, Kaliumionen transportierenden Kaliumionen-Kanal Genen für pharmakologische Zwecke.

Diese Aufgabe wird durch einen genetisch modifizierten Schizosaccharomyces pombe Hefestamm gelöst, erhältlich durch die Einführung eines oder mehrerer selektiver Marker (Auxotrophie und/oder Resistenzen), der die Nukleinsäuresequenz für ein humanes erg Kaliumionen-Kanalprotein (HERG) oder ein funktionelles Derivat oder eine Mutationsform dieses Kaliumionen-Kanalproteins exprimiert, aber nicht die der Hefe eigenen TKH_p oder Trk2 Kaliumionen-Transportproteine exprimiert.

Die vorliegende Erfindung betrifft einen Schizosaccharomyces pombe Hefewirtsstamm, der Mutationen in den Kaliumtransportproteinen TKH_p und Trk2 beinhaltet. Das vermutete, aber bisher nicht charakterisierte Schizosaccharomyces pombe Gen SPAC1F5.12 (Chromosom I, Cosmid C1F5, offener Leserahmen 12) wurde Trk2 benannt und das Genprodukt (Protein) auf seine Kaliumtransportfunktion hin funktionell analysiert. Zum Erhalt des doppelt-mutanten Schizosaccharomyces pombe Hefewirtsstamm wurden beide Kaliumtransportproteine sukzessive durch gezielte Gendeletion und Gendisruption ausgeschaltet. Der erzeugte doppelt-mutante Hefewirtsstamm mit Defekten in der Kaliumaufnahme zeigt Wachstumsdefekte auf Kulturmédien mit minimalen Kaliumkonzentrationen von 1 mM oder weniger. Im Vergleich zum Schizosaccharomyces pombe Wildstamm bedarf dieser mutante Hefewirtsstamm eines Zusatzes von mindestens 50 mM Kalium im Kulturmedium um vergleichbar gut zu wachsen.

Die selektierbaren biosynthetischen Markergene (Auxotrophicbedürfnisse und/oder Resistenzen) können durch rekombinante DNS Techniken in die Loci der Wildtyp Kaliumtransportergene eingeführt werden. Geeignete selektierbare Marker sind z. B. die Auxotrophiemarker Ura4, His7, ade2 und LEU2 oder Gene, die eine Resistenz z. B. gegen Kupfer (CUP1 Gen) oder G418 (Aminoglycosid Phosphotransferase Gen) bewirken. Solche modifizierten Allele können dann in Hefe transformiert werden, wo sie durch homologe Rekombination die Wildtyp Loci ersetzen. Die modifizierten Allele können durch Selektion auf den oder die biosynthetischen Marker ermittelt werden. Die in die Loci der Kaliumtransporter eingeführten selektierbaren biosynthetischen Marker stellen außerdem einen einfachen Weg zum Transfer dieser Mutationen in genetisch andere Linien dar (Kreuzung). Ein Stamm, der eine Mutation in einem Kaliumtransporter (z. B. TKH_p) beinhaltet, kann mit einem Stamm des entgegengesetzten Paarungstyps, der eine Mutation in einem anderen Kaliumtransporter (z. B. Trk2) trägt, gekreuzt werden. Die Nachkommenschaft kann dann auf die Anwesenheit beider biosynthetischer Marker hin selektiert werden.

Ein weiterer Gegenstand der Erfindung ist ein Schizosaccharomyces pombe Hefewirtsstamm der die Nukleinsäuresequenz für den humanen erg Kaliumionen-Kanal (HERG), aber nicht die der Hefe eigenen TKH_p oder Trk2 Kaliumionen-Transportproteine exprimiert sowie ein Verfahren zur Detektion spezifischer Modulatoren des HERG Kaliumionen-Kanals, einschließlich:

- a) Die Behandlung des *Schizosaccharomyces pombe* Hefewirtsstamms, der die Nukleinsäuresequenz für den humanen erg Kaliumionen-Kanal oder ein funktionelles Derivat oder eine Mutationsform dieses Kaliumionen-Kanals aber nicht die der Hefe eigenen TKHIp oder Trk2 Kaliumionen-Transportproteine exprimiert mit Testsubstanzen.
- b) Wachstumsbestimmungen in Anwesenheit oder nach Anwendung einer Testsubstanz.
- c) Messungen des Anstiegs oder der Abnahme des Kaliumtransports derjenigen Stämme in Anwesenheit oder nach Anwendung einer Testsubstanz.

Dieses Verfahren ist zur Identifizierung spezifischer Modulatoren des HERG Ionenkanals geeignet.

Der Wachstumsdetekt des mutanten *Schizosaccharomyces pombe* Hefewirtsstamms kann zur Isolierung und Anreicherung von Kaliumionen-Kanalgenen aus Genbibliotheken (z. B. humane cDNA Bibliotheken) verwendet werden.

- wenn die exprimierten Gene die Mutationen in dem doppelt-mutanten Hefewirtsstamm komplementieren und ein Wildtypphänotyp hinsichtlich der benötigten Kaliumkonzentration resultiert. Damit können Kaliumionen-Kanäle identifiziert werden, die zwar physiologisch beschrieben, aber bisher noch nicht isoliert wurden. Alternativ können verschiedene Kaliumionen-Kanäle in die Doppel-Mutante eingeführt werden, um zu testen, ob der Wachstumsdefekt auf Kalium limitierten Medien komplementiert wird. Der *Schizosaccharomyces pombe* Wildtypphänotyp kann durch Auswahl derjenigen Stämme, welche nach Transformation, Selektion und nach Anzucht unter Bedingungen von 10 mg/l Kalium im Kulturmedium ermittelt werden.

Jede dieser Anwendungen resultiert in einem Hefestamm, der heterolog einen fremden Kaliumionen-Kanal exprimiert und zur Durchmusterung von Modulatoren des betreffenden Kaliumionen-Kanals verwendet werden kann. Ein Hefestamm, der heterolog einen fremden Kaliumionen-Kanal exprimiert, kann in einfachen Verfahren zur Durchmusterung verschiedener Testsubstanz-Bibliotheken verwendet werden. Diese einfache Verfahren, in denen Wachstumsveränderungen oder gesteigerte und/oder verminderte Kaliumaufnahme durch Agarplattentests und/oder in Flüssigkultur beobachtet werden kann, können somit spezifische Substanzen detektieren, die die Kaliumionen-Kanal Funktion modulieren. Zur Durchmusterung auf Aktivatoren einer Kaliumionen-Kanal Funktion kann das Durchmusterungsverfahren solche Veränderungen wie metabolische Aktivität, gesteigerte Wachstumsrate oder gesteigerte Kaliumionen Aufnahme beinhalten. Zur Durchmusterung auf Inhibitoren einer Kaliumionen-Kanal Funktion kann das Durchmusterungsverfahren solche Veränderungen wie verminderte Wachstumsrate oder verminderte Kaliumionen Aufnahme beinhalten. Die Testsubstanzen, die im Verfahren zur Detektion spezifischer Modulatoren eingesetzt werden, können z. B. synthetische oder natürliche Produkte sein. Natürliche Produkte beinhalten pflanzliche, tierische oder mikrobielle Extrakte.

- In Fig. 1 ist eine schematische Darstellung der genormischen Fragmente, die die Wildtyp TKHIp und Trk2 Loci enthalten sowie die entsprechenden mutierten Allele trk1::LEU2, trk2::Ura4 und trk2::adhHerg/Ura4 dargestellt. Die TKHIp und Trk2 kodierenden Regionen sind durch schwarze Balken gekennzeichnet. Die mutanten Allele wurden zum Ersatz der entsprechenden Wildtyp Loci in *Schizosaccharomyces pombe* Stämme transformiert.

In Fig. 2 ist die abgeleitete Aminosäure- (SEQ. ID. NO. 2) und die Nukleinsäuresequenz (SEQ. ID. NO. 1) des *Schizosaccharomyces pombe* Kaliumtransportproteins TKHIp dargestellt. Die durch Unterstrich hervorgehobene Region entspricht der deletierten und durch den biosynthetischen Marker LEU2 ersetzen Sequenz.

In Fig. 3 ist die abgeleitete Aminosäure- (SEQ. ID. NO. 4) und die Nukleinsäuresequenz (SEQ. ID. NO. 3) des *Schizosaccharomyces pombe* Kaliumtransportproteins Trk2 dargestellt. Die durch Unterstrich hervorgehobene Region entspricht der Eco RV Stelle, in die der biosynthetische Marker Ura4 eingeführt wurde.

- In Fig. 4 ist die Nukleinsäure- (SEQ. ID. NO. 5) und abgeleitete Aminosäuresequenz (SEQ. ID. NO. 6) des humanen erg Gens (HERG) dargestellt. Die Sequenz entspricht der in der Originalpublikation von Trudeau, M. C., Warmke, J. W., Ganetzky, B. and Robertson, G. (1995). Science 269: 92-95 beschriebenen.

In Fig. 5 ist das Wachstum der erzeugten *Schizosaccharomyces pombe* Kaliumtransport defekten Mutanten in Abhängigkeit von der Kaliumkonzentration im Kulturmedium gezeigt. Die Stämme wurden auf Vollmedium, pH 4.5 bei 30°C über Nacht angezogen und anschließend auf 100 mM, 10 mM und 1 mM Kalium enthaltende Agarplatten replika-platiert. Die Platten wurden bei 30°C für zwei Tage inkubiert. Der *Schizosaccharomyces pombe* Hefestamm mit Defekten in beiden Kaliumtransportproteinen (Doppel-Mutante) wächst unter Bedingungen von 1 mM Kalium im Medium nicht.

Fig. 6 zeigt das Wachstum vom *Schizosaccharomyces pombe* Wildstamm, der Kaliumtransport Doppel-Mutante sowie den modifizierten Hefestamm, der das humane erg Gen (HERG) exprimiert auf 100 mM, 10 mM und 1 mM Kalium enthaltenden Agarplatten. Die Platten wurden bei 30°C für zwei Tage inkubiert. Im Gegensatz zur *Schizosaccharomyces pombe* Kaliumtransport Doppel-Mutante ist der das humane erg Gen (HERG) exprimierende Stamm in der Lage, auf 1 mM Kalium im Medium zu wachsen.

In Fig. 7 ist die Wirkung bekannter Inhibitoren des HERG Kaliumionen-Kanals dargestellt. Der HERG exprimierende modifizierte *Schizosaccharomyces pombe* Stamm wurde auf Vollmedium, pH 4.5 bei 30°C über Nacht angezogen und anschließend auf 1 mM Kalium enthaltende Agarplatten in der Gegenwart von 1 mM Barium, 1 mM Cäsium und 40 µM Lanthan replika-platiert. Durch die Inhibition des heterolog exprimierten Gens kann der modifizierte *Schizosaccharomyces pombe* Stamm mit Defekten in beiden Kaliumtransportproteinen nicht mehr wachsen.

Die nachfolgenden Beispiele erläutern die Erfindung weiter.

60

Beispiele

Allgemeine Methoden

Rekombinante DNA Technik

65

Zur Anreicherung und Manipulation von DNA wurden Standardmethoden benutzt, wie sie bei Sambrook, J. et al., In: Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), beschrieben sind. Die verwendeten molekulargenetischen Reagenzien wurden nach den Angaben der Hersteller einge-

setzt.

Hefetransformation

Schizosaccharomyces pombe Stämme wurden entsprechend der Methode, wie sie von Moreno, S. et al., (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods in Enzymology 194: 795-824, beschrieben sind, transformiert.

Beispiel 1

1.1 Konstruktion der Schizosaccharomyces pombe Mutante tkh

Die Mutation in dem Schizosaccharomyces pombe Kaliumionen-Transporter TKHp wurde in dem Plasmid pIL61SPF1, das die kodierende Nukleinsäuresequenz mit 2958 Basenpaaren (bp) für diesen Transporter enthält, wie beschrieben in Lichtenberg-Fraté, H., Reid, J. D., Heyer, M., Höfer, M. (1996). J. Membrane Biol. 152: 169-181, durchgeführt.

In dem Gen wurde eine 1102 bp Deletion in der kodierenden Region durch Spaltung mit der Restriktions-endonuklease Hind II eingeführt. Die DNS Fragmente wurden durch Agarosegelektrophorese getrennt und das größere Fragment (6684 bp), das die restlichen Transportersequenzen sowie Vektoranteile enthält isoliert und gereinigt. Zum Erhalt einer Deletions/Insertionsmutation wurde das LEU2 Sma I/Hind II Gen aus *Saccharomyces cerevisiae* als biosynthetischer Marker durch Ligation mit dem TKII Restfragment eingeführt. Das resultierende mutante Allel tkh::LEU2 (Fig. 1) wurde als lineares Not I Konstrukt zur Transformation des Schizosaccharomyces pombe Wildstammes h⁻ ade6-M210 ura 4-D18 leu1-31 verwendet. Die Auswahl erfolgreich transformierter Kolonien erfolgte durch die Selektion auf Leucin Prototrophie. Die Bestätigung der durch homologe Rekombination eingeführten Mutation im Kaliumtransporter TKHp erfolgte durch Restriktionsspaltung genomicscher Schizosaccharomyces pombe DNS und Southern blot Hybridisierung, wie beschrieben in Saribrook, J. et al. In: Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Der durch Mutation des Schizosaccharomyces pombe Kaliumtransporters TKHp resultierende mutante Phänotyp (Genotyp h⁻ ade6-M210 ura 4-D18 leu1-31 tkh::LEU2) wächst im Vergleich zum Wildstamm auf Kalium limitierten Medien gleich gut (Fig. 5). Daher wurde die Aktivität eines weiteren spezifischen Kaliumtransporters in dieser Schizosaccharomyces pombe Mutante postuliert.

1.2 Konstruktion der Schizosaccharomyces pombe Mutante trk2

Zur Konstruktion der Schizosaccharomyces pombe Mutante trk2 wurde mit den Oligonukleotiden SpTRK2#5 5' CAC GGA TCC ACA GAT TTT ATC ATG CAG TTA TCG GGT TTT TCT ACA AAC GGT TCC 3' (SEQ. ID. NO. 7) welches der 5' kodierenden Region des Start-Codons ATG entspricht (Position -21 bis +33), und SpTRK2#H3 5' CGC GAA AGA AGC TTG GGC GA 3' (SEQ. ID. NO. 8) welches komplementär zur 3' kodierenden Region der Hind III Restriktionsstelle an Position 625 ist (Position +593 bis +612), ein 625 bp langes Fragment durch die Polymerase-Ketten-Reaktion aus genomicscher DNS der Schizosaccharomyces pombe Mutante h⁻ ade6-M210 ura 4-D18 leu1-31 tkh::LEU2 amplifiziert. Nach Spaltung mit den Restriktionsendonukleasen Bam HI und Hind III wurde dieses Fragment mit dem entsprechend gespaltenen bakteriellen Plasmidvektor pBSKII (Firnia Stratagene, Heidelberg) ligiert. Im resultierenden Plasmid pBT2 wurde durch Sequenzierung das 625 bp Teilstück des Kaliumtransporters Schizosaccharomyces pombe Trk2 bestätigt. Das erhaltene Konstrukt wurde durch Spaltung mit der Restriktionsendonuklease Eco RV an Position 246 im Trk2 Genfragment linearisiert und das die Disruptions/Insertionsmutation durch Ligation des Ura4 Sma I/Hind II Gens aus Schizosaccharomyces pombe als biosynthetischer Marker eingeführt (Fig. 1). Das gewünschte Plasmid (pBT2URA), das das mutante Allel trk2::Ura4 enthält, wurde durch Restriktionskartierung und Polymerase-Ketten-Reaktion mit den o. g. Oligonukleotiden als 2.3 kb Fragment bestätigt. Das erhaltene mutante Allel trk2::Ura4 (Fig. 1) wurde als lineares Bam HI/Kpn I Konstrukt zur Transformation des Schizosaccharomyces pombe Wildstammes (h⁻ ade6-M210 ura 4-D18 leu1-31) verwendet. Die Transformation des Wildstammes führte zum Erhalt einer Schizosaccharomyces pombe Mutante in der singulär der Kaliumtransporter Trk2 (Genotyp h⁻ ade6-M210 ura 4-D18 leu1-31 trk2::Ura4) disruptiert ist. Die Selektion positiver Transformanten erfolgte auf die Uracil Prototrophie hin. Die Bestätigung der durch homologe Rekombination eingeführten Mutation im Schizosaccharomyces pombe Kaliumtransporter Trk2 erfolgte durch Southern blot Hybridisierung.

Nach Mutation des Schizosaccharomyces pombe Kaliumtransporters Trk2 wurde der resultierende mutante Phänotyp (Genotyp h⁻ ade6-M210 ura 4-D18 leu1-31 trk2::Ura4) im Vergleich zum Wildstamm-Phänotyp und der Kaliumtransporter Mutante tkh getestet (Fig. 5). Die singuläre Mutation des Kaliumtransporters Trk2 zeigte im Vergleich zum Wildstamm und der Kaliumtransporter Mutante tkh auf Kalium limitierten Medien gleiches Wachstum.

1.3 Konstruktion der Schizosaccharomyces pombe Doppel- Mutante tkh trk2

Das erhaltene mutante Allel trk2::Ura4 (Fig. 1) wurde als lineares Bam HI/Kpn I Konstrukt zur Transformation der Kaliumtransporter Mutante tkh (h⁻ ade6-M210 ura 4-D18 leu1-31 tkh::LEU2) verwendet. Die Transformation Mutante tkh führte zum Erhalt einer Schizosaccharomyces pombe Doppel-Mutante in der beide Kaliumtransporter TKHp und Trk2 (Genotyp Mutante (h⁻ ade6-M210 ura 4-D18 leu1-31 tkh::LEU2 trk2:: Ura4) deletiert und disruptiert sind. Die Selektion positiver Transformanten erfolgte auf die Leucin und Uracil Prototrophie hin. Die Bestätigung der durch homologe Rekombination eingeführten Mutation im Schizosaccharomyces pombe Kaliumtransporter Trk2 erfolgte durch Southern blot Hybridisierung.

Die Bestätigung, daß Trk2 der gesuchte weitere Schizosaccharomyces pombe Kaliumtransporter ist, erfolgte durch Ausplattierung des erzeugten Hefestamms im Vergleich zum Wildstamm und der Kaliumtransporter Mutante tkh auf Kalium limitierten Medien (Fig. 5). Der Phänotyp der Kaliumtransporter Doppel-Mutante tkh trk2 ist dadurch gekennzeichnet, daß Zellen dieses Hefestamms auf Konzentrationen kleiner 1 mM Kalium im Kulturmedium nicht lebensfähig sind.

5

1.4 Konstruktion des HERG exprimierenden Schizosaccharomyces pombe tkh trk2 Stamms

Das Gen für den humanen erg Kaliumionen-Kanal (HERG) wurde durch Spaltung mit den Restriktionsendonukleasen Bam HI und Eco RI als 3.5 Kilobasenpaar (kb) Fragment aus dem Plasmid pcDNA1-HERG (erhalten von Dr. G. Robertson, University of Wisconsin, Madison, USA) und Auftrennung durch Agarosegelektrophorese erhalten.

Zur Transkription eines humanen Gens in der Hefe Schizosaccharomyces pombe ist ein Hefe-eigener Promotor notwendig. Der in Schizosaccharomyces pombe konstitutiv aktive adh Promotor (Alkohol Dehydrogenase Gen) wurde als Sal I/Bam HI Fragment aus dem Plasmid pEV11, wie beschrieben in Moreno, S. et al., (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods in Enzymology 194: 795-824, nach Auftrennung durch Agarosegelektrophorese isoliert. In einer Dreifach-Ligation wurden die adh Sal I/Bam HI und HERG Bam HI/Eco RI Fragmente mit dem Sal I/Eco RI gespaltenem Plasmidvektor pBSKII ligiert. Das gewünschte Plasmid pBSKII-Herg wurde durch Restriktionskartierung bestätigt. Aus diesem Plasmid wurde ein 4.6 kb adh-Herg Verbundfragment durch Spaltung mit den Restriktionsendonukleasen Hinc II und Xba I und nach Auftrennung durch Agarosegelektrophorese erhalten. In diesem Verbundfragment wurden die überstehenden Nukleotidenden der Xba I Stelle durch DNS Polymerase I aufgefüllt.

In dem Plasmid pBT2Ura (siehe 1.2), welches das mutante Allel trk2::Ura4 enthält, wurde mit der Restriktionsendonuklease Eco RI eine Linearisierung an Position 251, direkt vor dem Ura4 Gen durchgeführt, die überstehenden Nukleotidenden der Eco RI Stelle durch DNS Polymerase I aufgefüllt und durch Alkaline Phosphatase dephosphoryliert. Dieses linearisierte Fragment wurde mit dem 4.6 kb adh-Herg Verbundfragment ligiert (Fig. 1). Das gewünschte Plasmid wurde Restriktionskartierung identifiziert. Das erhaltene mutante Allel trk2::adh-Herg/Ura4 (Fig. 1) wurde als lineares Xba I/Kpn I 7.0 kb Fragment nach Auftrennung durch Agarosegelektrophorese zur Transformation der Kaliumtransporter Mutante tkh (h^+ ade6-M210 ura 4-D18 leu1-31 tkh::LEU2) verwendet. Die Transformation dieser tkh Mutante führte zum Erhalt einer Schizosaccharomyces pombe Doppel-Mutante, in der der Kaliumtransporter TKIIp deletiert ist und der Kaliumtransporter Trk2 durch die stabile Einführung des humanen erg Gens (HERG) disruptiert ist. Anstelle des Kaliumtransporters Trk2 wird in diesem Schizosaccharomyces pombe Stamm (Genotyp h^+ ade6-H210 ura 4-D18 leu1-31 tkh::LEU2 trk2::adh-Herg/Ura4) der HERG Kaliumionen-Kanal exprimiert. Die Selektion positiver Transformanten erfolgte auf die Leucin und Uracil Prototrophic hin. Die Bestätigung der durch homologe Rekombination eingeführten stabilen Integration des humanen erg Gens (HERG) an den Schizosaccharomyces pombe Trk2 Locus erfolgte durch RNS Analyse.

Die Expression des HERG Kaliumionen-Kanals den restauriert Phänotyp der Kaliumtransporter Doppel-Mutante tkh trk2 auf Kalium limitierten Medien (Fig. 6). Durch Expression des HERG Kaliumionen-Kanals können Zellen dieses genetisch modifizierten Hefestamms im Gegensatz zur Doppel-Mutante tkh trk2 auf Konzentration kleiner 1 mM Kalium gut wachsen. Die Restaurierung des Wildtyp Phänotyps ist abhängig von der heterologen Expression des HERG Kaliumionen-Kanals, wie anhand der Inhibition von HERG auf 1 mM Kalium enthaltenden Agarplatten in der Gegenwart von 1 mM Barium, 1 mM Cäsium und 40 µM Lanthan bestätigt (Fig. 7). Durch die Inhibition des HERG Kaliumionen-Kanals kann der Schizosaccharomyces pombe Stamm mit Defekten in beiden Kaliumtransportproteinen auf der 1 mM Kaliumkonzentration nicht mehr wachsen.

1.5 Wachstumstests auf Kalium limitierten Medien

45

Kulturen von Schizosaccharomyces pombe Wildstamm, der Kaliumtransport defekten Mutanten tkh, trk2 und tkh trk2 und dem HERG exprimierenden Stamm wurden im Vollmedium YEP (2% yeast extract, 1% peptone) mit 2% D-glucose, pH 4.5 bei 30°C über Nacht unter Schütteln angezogen. Serielle Verdünnungen wurden auf Vollmedium-Agarplatten ausgestrichen, bei 30°C über Nacht inkubiert und auf selektive Agarplatten (0.67% yeast nitrogen base without amino acids, 0.5% NH₄SO₄, 2% D-glucose, pH 4.5) mit 100(A), 10(B) oder 1(C) mM KCl replika-plattierte. Diese Platten wurden für 48 Stunden bei 30°C inkubiert.

1.6 Wachstumstests in Gegenwart von Inhibitoren

Kulturen von Schizosaccharomyces pombe Wildstamm, der Kaliumtransport defekten Mutante tkh trk2 und dem HERG exprimierenden Stamm wurden im Vollmedium YEP (2% yeast extract, 1% peptone) mit 2% D-glucose, pH 4.5 bei 30°C über Nacht unter Schütteln angezogen. Serielle Verdünnungen wurden auf Vollmedium-Agarplatten ausgestrichen, bei 30°C über Nacht inkubiert und auf selektive Agarplatten (0.67% yeast nitrogen base without amino acids, 0.5% NH₄SO₄, 2% D-glucose, pH 4.5) mit 1 mM KCl und 1 mM Barium (A), 1 mM Cäsium (B) und 40 µM Lanthan (C) replika-plattierte. Diese Platten wurden für 48 Stunden bei 30°C inkubiert.

Publikationsliste

- Adelmann, J. P., Bond, C. T., Pessia, M. and Mylie, J. (1995). Episodic ataxia results from voltage-dependent potassium channels with altered functions. *Neuron* 15: 1449-1454
 65 Balcells, L., Calero, F., Gomez, N., Ramos, J. and Arino, J. (1999) The Schizosaccharomyces pombe Pzh1 protein phosphatase regulates Na⁺ ion influx in a Trk1-independent fashion. *Eur. J. Biochem.* 260: 31-37
 Curran, M. E., Splaski, I., Timothy, K. W., Vincent, G. M., Green, E. D. and Keating, M. T. (1995). A molecular basis for

DE 199 41 768 A 1

- cardiac arrhythmia: HERG mutations cause long QT syndrome. *Cell* 80: 795–803
- Gaber, R. F., Styles, C. A. and Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 8, 2848–2859
- Keating, M. T. and Sanguinetti, M. C. (1996). Molecular genetic insights into cardiovascular disease. *Science* 272: 681–685
- Ko, C. and Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K⁺ transporters in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 11, 4266–4273
- Lichtenberg-Fraté, H., Reid, J. D., Heyer, M. and Höfer, M. (1996). The SpTRK gene encodes a potassium-specific transport protein TKH_p in *Schizosaccharomyces pombe*. *J. Membrane Biol.* 152, 169–181
- Lees-Miller, J. P., Kondo, C., and Wang, L. (1997). Electrophysiological characterization of an alternatively processed ERG K⁺ channel in mouse and human hearts. *Circ. Res.* 81: 719–723
- Moreno, S., Klar, A. and Nurse, P. (1991) Molecular genetic analysis of fission yeast *Schizosaccharomyces pombe*. *Methods in Enzymology* 194: 795–824
- Rodriguez-Navarro, A. and Ramos, J. (1984). Dual system for potassium transport in *Saccharomyces cerevisiae*. *J. Bacteriol.* 159, 940–945
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) In: *Molecular cloning: A laboratory manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I_{Kr} potassium channel. *Cell* 81: 299–307
- Wang, Q., M. E. Curran, I. Siplawski, T. C. Burn, J. M. Millholland, T. J. VanRaay, J. Shen, K. W. Timothy, G. M. Vincent, T. de Jager, P. J. Schwartz, J. A. Toubin, A. J. Moss, D. L. Atkinson, G. M. Landes, T. D. Connors & M. T. Keating (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. *Nat Genet* 12: 17–23

5

10

15

20

30

35

40

45

50

55

60

65

Sequenzliste

1. Allgemeine Information

- 5 a) Anmelder: Dr. Hella Lichtenberg-Frate
 b) Titel: *Schizosaccharomyces pombe* Hefewirtsstämme mit Defekten in der
 Kaliumaufnahme
 c) Anzahl der Sequenzen: 8
 10 d) Korrespondenzadresse: Dr. Hella Lichtenberg-Frate, Botanisches Institut,
 Kirschallee 1, 53115 Bonn

2. Information zur SEQ ID NO.1

a) Sequenzcharakteristika

- 15 1. Länge: 2958 Basenpaare
 2. Typ: Nukleinsäure
 3. Strang: Einzelstrang
 4. Topologie: linear

b) Molekültyp: cDNS

c) Sequenzbeschreibung SEQ ID NO.1

SQ SEQUENCE 2958 BP; 824 A; 577 C; 551 G; 1006 T; 0 OTHER;
 AAAGAAGACG CGATTTACG TTGTATTATA AGAGAGGAAT CCTCAAGTAT TGTTGAAAGG
 AATCGTAAA GATTGGTAA AAATGTCGTT TGTCAATTGT CATAATTCCC TTTAGAAAT
 25 TTAGTGGTTT CCTCATCAGT ATCGCTTTA CCCGTAGATT TCAAAACTAA TTGCTTCTTA
 TCTTGTCAT AGTTAAGGAT TTCCGTTAAC TTCAAACCAA TTTCTCTGTT TCTTGTTCTG
 TTGTTGGTGG GTTGGCTGG AACTATTGAC TAAAATAAAT GGTCCTAAAT TACATTCAA
 30 GATGGTTCAA GTGGGTGATA CCAACTTTG GATTCAAGGC AATTCAATTAT ATTTACATAT
 ATCCCTTAACG ATCATTGCCG CTGTCCTACT TTTTACCGGA GGGACCACCA CGAAAATCAA
 GTATATCGAT GCTTTATTCT TAGCTAGCAG CGCAACTACC CAAACAGGCC TTAACAGTGT
 TGACTTAAAT TCTTTATCTA TCTGGCAGCA GTTATCCTG TATGGATTAA CTGCTATTAC
 GGTTCTATA TGGATGCAAG GAAAGTATTTC CTTCATCCGG CTGTATTGGT TTGACGAAA
 35 ATTTAAAGAC GTTGGTCGTC AAAATCGTAC TCGAAAATT CAGAGAAAGC TCCGTAAAAG
 CTTAATGAAA AAAAGCGAGG ATGACGAAGA ACAGGGTGT CGTGGTAGAA AAATTCTGTGT
 AATGTTACCA TACCTACATT CACTAAGGAG TCCAACGTCT CTAAAAAAACT TCTCGAGATT
 TGACACGCAT GACAGTACGA ACAATCCGTA CTTTCCGTAC AACCCCCCTT CTCCCAAGGC
 40 AGATATATCT AAAGACGAGT ATTTTGGAAA GTATCTCCC AAAAAGTCTG ATACGCTAGA
 CATGGATTG GAAAGTCACA ACATGACTTT TCATGACTAT GAACCTTCCA TTGAAAATAA
 AAATTACGAT TTTGGTAGTT CGCATTTCAGC CTCGATGCAA ATGTATGAAA TGGATGACCT
 TCATCCCCGA CTTCGTAGAC AAAGCTCTT TATTCCTCC GTTAATCCTT TAGAGGCTGA
 45 CTACACCGT GAAAATTAT CTGAAGGCAG CTTAGTTCACTAGTCTCC CTATGGCTTA
 TAGTTATTCT GATACTAATT TGGTTGTATC GAGGGATTCA TTTACTCTCA CTGGGGACGA
 CAATCTTTG CCAGAAGGTG GTTAAGGCC TGCCAATACA ATAGACGGAA TAGTAAGGTC
 GTCTCTGTCT TCTTCCCTCC TATCTAAAGA CACTGAACCA TCGACAGTTG ACATGCATAT
 TGCTTCACC GGACTTAATA AGCCCACCAT AGAGCGTGA CGTAATCTTA AACTAAGAAA
 50 AAAAAGTCGT TTTTATAAAA AATCTTTACG TTCCAGATT TCGCGAGGAC TTCATCGTCC
 AATACGTTGG ACAAAAGTCAT TCACCTCTAA CCGACGAAAC TTGACTCTG AACGAGTCCT
 TTCTTCTGCC TTTGCTAAA AACATGAGCC TTCTATTCA TCAAGACACA CTACTATGTC
 ACTTCCCTAT TTGTCGTATA ATCCTACTGT CGATCGTAAT TCTGCTTTCG TTGCTTTGTC
 TAAAGAACAG CGGGACGAGC TGGGTGGAAT TGAATATAGA GCTTTGAAAT GCGTCTGCTC

55

60

65

CATGGTTATC CTTTATTTA TCATTTTAA TATTGCTGCC TTTGTGACCT TCATTGTTT
TGCTTATACG GCAGTGGGAT CGCGAGAGGT AATAGATTCT TATGACTTAC GTCGTGGGTG
GTGGCGTTA TTCTCGTCTG CTTCTTCATT TAATGATTG GGGTTTCTT TAATACCATC
GTCTTTGTG CCAATGAATC GAAACATTTC TCTTTGTTG ATTCATCTT TATTCAATTAT
CGCAGGTAAC ACGGGATTCC CTTGTTTTT TAGAACATTC ATTTGGACAA CGTATAAGCT
ATACCCTTT AGTTTGAGA AGAAAAGAAGC TATGGCATTT CTCCCTGATC ATCCTCGACG
ATGTTCACT TTATTGTTTC CATCTGGAGC AACCTGGTC TTGTTTTTG TTTGCTGCT
GCTTAATGTC ATTGATCTGG TATTGTTCAT GGTCTTAGAT ACTGGAAGTA AAGCAGTCGC
TAGCCTTCCT AAAGGTATTA GGGTTGAAA TGCAATATT CAATCAGTT GTACAAGAAC
CGCAGGATTAC ACGAGTGTAT CAATTAGTGA ACTTCACCCA GCAGTACTGG TCAGTTACAT
GGTTATGATG TATATTCTG TTTATCCAGT TGCTATCAAC ATGAGAAATA CCAATGTTA
TGAGGAGCGA TCTTGGGTG TTTACAGAAC TGAAGATGAT GAGGGGAAAT CTTCTTAAA
AGATCACCTT ACTGAACAAT TAAGTTACGA TTTATGGTAT ATTTTCTAG GGCTATTCA
CATATGCATT TGTGAAGGAG GTAAAATCTC CAATCCTCTA GATACCGATT TCAGTATTT
TACTGTCCTT TTTGAAGTAG TCTCTGCTTA CGGTACGGTG GGACTTAGTA CTGGATTAAAG
CTCCTCAAAT TGTTCACTT CAGCAAGATT TACTACTATA AGTAAACTAG TTATTATAGC
ACTTGAAC TGCGGTAGAC ATAGAGGTTT ACCCAGGGCT GTTGTACGAG CCATCCTCT
TCCCTCTGAA AAAATAATC TGAAAGAAGA AGAAGATTAT CAACGTCGTC ACGGATTTTC
CATAGACAAC GCACGTGGCA GTATTGCAGT TTCTCGAGAC TGATATTCT TATCACGATC
ATGTATTATA TTTGTAATT ATATCATCTA ATAAATAGTA CTCCGCTAAA TTTCATACTC
CTGATCGATA CACCGTTGT CCGCCATTTC TGAGTTGAAT TGTTCTTC GACGAAAGAA
TTTGTAAGC CATTCTA

5

10

15

20

25

3. Information zur SEQ ID NO.2

a) Sequenzcharakteristika

1. Länge: 841 Aminosäuereste
2. Typ: Aminosäure
3. Strang: kodicrend
4. Topologie: linear

30

35

b) Molekültyp: Protein

c) Sequenzbeschreibung SEQ ID NO.2

FT CDS 302..2803
FT /NOTE="NCBI GI: 550526"
FT /CODON_START=1
FT /PRODUCT="K+ TRANSPORTER HOMOLOGUE"
FT /DB_XREF="PID:G550526"
FT /DB_XREF="SWISS-PROT:P47946"
FT /TRANSLATION="MVQVGDTNFWIQGNNSLYLHISLTIIASVLLFTGGTTKIK
FLASSATTQTGLNSVDLNSLSIWQQFILYFTAIVPIWMHGSISFIRLYWFRR
VRQRNRTRKFQRKLRKSLMKKSEDDDEEQGVGRKRIRVMLPYLHSILRSPTSLKNFS
DSTNNPYFPDNPPSPKADISKDEYFGKYLPKKSDTLDMDLESHNMTFHDYEPSI
DFGSSHSASMQMYEMDDLHPRLRRQSSFISSVNPLEADYTRETLSSEGALVQESL
YSDTNLVVSRDSFTLTGDDNLPEGGLRPANTIDGIVRSSLSSSSLKDTEPST
AFTGLNKPTIERERNLKLRRKKSRYKKSLRSRFSRGHLRPIRWTKSFTSNRRNL
LSSAFAKKHEPSISSRHTTMSLPYLSYNPTVDRNSAFVALSKERDELGGIEYR
CSMVILYFIIFNIAAFVTIFIVFAYTAVGSREVIDSYDLRRGWALFSSASFND
IPSSFVPMNRNIFLLISLFIAGNTGFPFFRTFIWTTYKLYPFSFEKKEAM
HPRRCFTLLFPGATWVLFFVLLLNVIDLVLFMVLDTGSKAVASLPKGIRVNV
VCTRTAGFTSVSISELHPAVLVSYMVMMMYISVYPVAINMRNTNVYEERSLGVYR
GKSFLKDHLTEQLSYDLWYIFLGLFIICICEGGKISNPLDTSIFTVLFEVVS
GLSTGLSSSNCSLSARFTTISKLVIIALELGRGRHRLPRAVVRAILLPSEKNNL
YQRRHGFSIDNARGSIAVSRD"

40

45

50

55

60

65

4. Information zur SEQ ID NO.3

a) Sequenzcharakteristika

1. Länge: 2806 Basenpaare
2. Typ: Nukleinsäure
3. Strang: Einzelstrang
4. Topologie: linear

b) Molekültyp: cDNS

c) Sequenzbeschreibung SEQ ID NO.3

ID	SPTRK2	PRELIMINARY; DNA; 2806 BP.
SQ	SEQUENCE	2806 BP; 828 A; 550 C; 540 G; 888 T; 0 OTHER;
15	ATACAGATT	TATCATGCAG TTATCGGGTT TTTCTACAAA CGGTTCCGGT TCCTTGAATA
	CCATTGTATG	TGAAAAACTT CTTTCAAGC CTAACCTTGT TCAAGATTCT TTTATAATAG
	GAATGACTAT	TTTATGTTCA GTAATATTGT ATGGGTCGGG AAATTGCGC TACATAGATG
20	CTTTGTTGTT	GGCTTCTGGT TCTGTACTC AGACTGGCTT GCAGCCTGTG GACCTCACGC
	AGATATCCAT	TTACCAACAG TAACTATTTC TCCTTTTGG AGTTTGAGT ACACCAATTA
	CTGTGAACCT	GGGCTTGACT TTGTTAACG TGTACTCTA TAACAAGCGA TATGACATGG
	TCATAACAAA	TAATAAACTT AGGATGACAT ATACTTATCA CACTGTAAGA AGAAGGGATA
25	CTCCAGAGCC	TTCCAAAGTT GGCAATCGAA AAATTGGGT TTTGTTAGAC CAGGTAATC
	AAATGCACCG	GCCAGTTGCC CCAGAGACTA AGGCTGAGGA AGCTGAACAC CAAGAGAATG
	AAAAACATCA	CAGGCACCAT TTTGTCCTAA GGAAATTGTC TAATGCAATC GATGCCCAA
	GCTTCTTCG	CGGGAAATACC ATGCCCGCTC TCCCTAGTTA TGCAAGGTGTT AGAAATTCTC
	AAGAAAATGA	AGACAGAACT GAAGCATTAA GTCCAGCTCT TGGGAAACGA AGAATGGCAT
30	CAATCGACAA	TGGATCTTA TCCGTTGTAC AAAACAATGC TAGAAATAAT CCTGTCGACT
	TTTACATTCC	TAGTTCGTT GAAGAATCAT CTTTCTAAC AATTCTGAG GATTTGAGC
	CTCAAGTACA	TGACCAACGAG AATCAAACAC AACTGAACCA TCATCTGGAT AACAAACAGTT
	CTATCTCTTC	GCACAATCCT TCCCTAGAAA CTGCAAATGA TGGAATTCAG GAAACTGTTT
	CATCTCTAAA	CTCAAACATAC AGCACAACAA GAGTTGACAA TGATCCACAT GTAGCATCTT
35	ATTCACCTCA	AAATTGCAAT TTTGATCATC AGGCTGCTGC AACTACTAAC GATGACACATC
	AAAATGTAGT	ACGCGGCTCT GCAATTACCA TTGCACCAAC CCCTGTTCCC AGGCATAATC
	GCAGGCCTAT	ATATTTGCT GATGACACGA ATGGAGCTGA GCAGGAAAAA GGTGCTCATC
	GACTTGATGG	ACGAGGTTAGA AACGTGGTA AATCATTG TGTTACACCT ACACCTCACAC
40	GGAATGAGCG	CTCAATGTCT GTCCTACCAT TTCAATTAGC CAAATCATT ACATCTGCTC
	TTCCCTCGAAG	ACTCACATTC AACCGTACTC ACACGAAAGC TAGCACAATG AGTTTACCTT
	ATTTATCGTA	CAATGCAACA GTGGGCAGAA ATTCTGCATT TTATGCTTA ACTCCAGTGG
	AGAGAGAAGA	ATTGGCGGGA ATTGAATATG AATCTCTCAG GATATTGACT GTCATATTAG
	TGGTTTATT	TCTGTTTGG CATATTCTT GTTTGGTTGC GTTCTAATA TTCATTATA
45	CTGCTAAAAC	ATCCGGTCGT GTAGTTACGG ACGGCGGTAT AAATAGAGGC TGGTGGCAG
	CGTTTACTTC	TAGTTGCTG TTTGATAATC TAGGCTATTG GTTGAACAGC GATTCTTAA
	ATTCTCTTCA	AAAAGCCATA TTTCCTCAGG TTCTTGGAAC TATTCTGATA TTTTTAGGGA
	ATACCTTCTT	TCCAATTATG CTCCGGTTA TAATTGGAT TATGATACGA ACAACGAGAT
50	TTTCCGCTAA	TTTCCAGCAA GCTTTGTACT TTCTTTTCA ACACCCCTCGA CGAAGTTTA
	CTCTTCTGTT	TCCTTCAAAA ACTACTGGG TGCTTTTTT AAATTTAATC TTATTGAATT
	TTGCTTCCCTT	TTCTTTTTT ATGGTTTAG ACTTGGGTAA TTCATATGTT GACAAAATTC
	CAGTTGGTTA	TCGAATTATG AATGCTATAT TTCAAAACGC AGCTACACGT TCTGCTGGCT
55	TTACGGTGGT	TGATTTAACG CAAATTGCTC CGGCAGTAAT GTGACCTAC ATGTTTATGA
	TGTATATCTC	TGCCTATCCA ATCGCAATGA GTATTGACA AACTATGTT TACGAGGAAC
	GTTCTCTTGG	AATATATGCA CGAGACACCG AAAATGATGA TGATAATAAT ATTAATAATA
	ATAATAATGA	TAATAATACG CCGAAAAGGA AAAATTGTTT GATGGACCAT ATACAAAGGC
	AACTGAGTCA	CGATTTGTGG TATTTATTCC TAGGCTACTT CATAATTACT ATAGTCGAAG
60	GTCGTCGATT	AGAGTCGGAA CGGGAACCGC AATTACGCT TTTTGTATT TTATTGAGG
	TGATTTCAAGG	CTATGGCACT GTGGGCCTAA GCTTAGGGTA CAAAAATGAT CCTTCGCTTA
	CGGCTCAGTT	CGGGAAAATT AGCAAACTTG TTATGGTTGC ACTACAGATT CGTGGACGAC
	ATAGAGGACT	TCCAAGTGCA TTAGATAGAG CAGTGTAAAT GCCTTCGGAT AAAAACTTTG
	ACCGGGAAAGA	AGAGGATTAT ATGAGACGTC ACGGGAAAAA AAATACTAAT AGAGCAGACC
65	CGGTACCCAG	TTCTTAATGA TTATAACCTC ACGGTTGATT AGACTTACCT TCTATGAAAA
	TGCAAGGCAA	GGTCAGGAGC TAATGAAAAT TGTACTGTAT CTTCTGGTTC TGTGCCATT
	TAACTGATTG	GGCCTTAAAAA GAACCTTTG TTTTATTATA TTTTAC

5. Information zur SEQ ID NO.4

a) Sequenzcharakteristika

1. Länge: 880 Aminosäurereste
2. Typ: Nukleinsäure
3. Strang: kodierend
4. Topologie: linear

b) Molekültyp: Protein

c) Sequenzbeschreibung SEQ ID NO.4

ID SPTRK2 PRELIMINARY; PRT; 880 AA.
 DT 01-NOV-1997 (CREATED BY PC/GENE PROGRAM TRANSL)
 DE SCH POMBE
 OS SPTRK2 OHNE INTRONS
 CC TRANSLATED FROM DNA SEQUENCE SPTRK2 (BASES 15 TO 2654).
 SQ SEQUENCE 880 AA; 99848 MW; 3988070 CN;
 MQLSGFSTNG SGSLNTIVCE KLLFKPNFVQ DSFIIGMTIL CSVILYSGSN LRYIDALLLA
 SGSCTQTGLQ PVDLTQISIY QQLTILLFGV LSTPITVNLG LTLFKLYFYN KRYDMVITNN
 KLRMPTYTYHT VRRRDTPEPS KVGNRKIRVL LDQGNQMHRP VAPETKAEEA EHQEKEKHH
 HHFRLRKFAN AIDRPSFFRG NTMPALPSYA GVRNSQENED RTEALSPALG KRRMASIDNG
 SLSVVQNNAR NNPVDFYIPS SFEESSFQTI PEDFEPQVHD HENQTQLNHH LDNNSSSISSH
 NPSLETANDG NQETVSSNS NYSTTRVDND PHVASYSPQN SNFDHQAAAT TNDAHQNVVR
 GSATIATPTP VPRHNRPIY FADDTNGAEQ EKGAAHRLDGR GRKRGKSFAV TPTLHRNERS
 MSVLPFQLAK SFTSALPTRL TFNRRTHTKAS TMSLPYLSYN ATVGRNSAFY ALTPVEREEL
 AGIEYESLRI LTIVLVVYFL FWHLGLVAF LIFIYTAKTS GRVVTDGGIN RGWWAAFTSS
 SLFDNLGYSL NSDSLNSFQK AIFPVQLGTI LIFLGNTFFF IMLRFIIWIM IRTTRFSPNF
 QQALYFLFEH PRRSFTLLFP SKTTWVLFLN LTLLNFASFF FFMVLDLGNS YVDKIPVGYR
 IMNAIFQNA TRSAGFTVVD LSQIAPAVMV TYMFMMYISA YPIAMSIRQT NVYEERSLGI
 YAADTENDDD NNINNNNNNDN NTPKRKNFLM DHIQRQLSHD LWYLFLGYFI ITIVEGRRLE
 SEAEPQFTLF AILFEVISGY GTVGLSLGYK NDPSLTAQFR KISKLVMVAL QIRGRHRGLP
 SALDRAVLMP SDKNFDREEEE DYMRRHGKKN TNRADPVPSS

6. Information zur SEQ ID NO.5

a) Sequenzcharakteristika

1. Länge: 4070 Basenpaare
2. Typ: Nukleinsäure
3. Strang: Einzelstrang
4. Topologie: linear

b) Molekültyp: cDNS

c) Sequenzbeschreibung SEQ ID NO.5

SQ SEQUENCE 4070 BP; 713 A; 1413 C; 1255 G; 689 T;
 ACGCGGCCTG CTCAGGCCTC CAGCGGCCGG TCGGAGGGGA GGCGGGAGGC GAGCGAGGAC
 CCGCGCCCGC AGTCCAGTCT GTGCGCGCCC GTGCTCGCTT GGCGCGGTGC GGGACCAGCG
 CCGGCCACCC GAAGCTTAGT GCGTCGCCGG GTGGGTGGGC CCGCCCGCGC CCATGGGCTC
 AGGATGCCGG TGCGGAGGGG CCACGTCGCG CCGCAGAACCA CCTTCCTGGA CACCATCATC
 CGCAAGTTTG AGGGCCAGAG CCGTAAGTTC ATCATCGCCA ACGCTCGGGT GGAGAACTGC
 GCCGTCACTC ACTGCAACGA CGGCTCTGCG GAGCTGTGCG GCTACTCGCG GGCGGAGGTG
 ATGCAGCGAC CCTGCACCTG CGACTTCTG CACGGCCGC GCACGCAGCG CGCGCCTGCC
 GCGCAGATCG CGCAGGCCT GCTGGCGCC GAGGAGCGCA AAGTGGAAAT CGCCTCTAC
 CGGAAAGATG GGAGCTGCTT CCTATGTCTG GTGGATGTGG TGCCCGTGAA GAACGAGGAT
 GGGGCTGTCA TCATGTTCAT CCTCAATTTC GAGGTGGTGA TGGAGAAAGGA CATGGTGGGG
 TCCCCGGCTC ATGACACCAA CCACCGGGGC CCCCCCACCA GCTGGCTGGC CCCAGGCCGC
 GCCAAGACCT TCCGCTGAA GCTGCCCGCG CTGCTGGCGC TGACGGCCCG GGAGTCGTCG
 GTGCGGTGCG GCGGCCGGGG CGGCGCGGGC GCCCCGGGGG CGTGGTGGT GGACGTGGAC
 CTGACGCCCG CGGCACCCAG CAGCGAGTCG CTGGCCCTGG ACGAAGTGCAC AGCCATGGAC
 AACCACGTGG CAGGGCTCGG GCCCCGGAG GAGCGCGTG CGCTGGTGGG TCCCGCTCT
 CCGCCCCGCA GCGCGCCCGG CGAGCTCCCA TCGCCCCGGG CGCACAGCCT CAACCCCCGAC

GCCTCGGGCT CCAGCTGCAG CCTGGCCGG ACACGCTCCC GAGAAAGCTG CGCCAGCGTG
 CGCCGCGCCT CGTCGGCGA CGACATCGAG GCCATCGCG CGGGGGTGTGCT GCCCCCCGCCA
 CCGCGCCACG CCAGCACCGG GGCCATGCAC CCACATCGCA GCGGTTGCT CAACTCCACC
 5 TCGGACTCCG ACCTCGTGC CTACCGCACC ATTAGCAAGA TTCCCCAAAT CACCCCTAAC
 TTTGTGGACC TCAAGGGCGA CCCCTTCTTG GCTTCGCCC CAAGTGACCG TGAGATCATA
 GCACCTAAGA TAAAGGAGCG AACCCACAAT GTCACTGAGA AGGTCACCCA GGTCTGTCC
 CTGGGCGCCG ACGTGCTGCC TGAGTACAAG CTGCAGGCAC CGCGCATCCA CCGCTGGACC
 10 ATCCCTGCATT ACAGCCCCCT CAAGGCCGTG TGGGACTGGC TCATCCTGCT GCTGGTCATC
 TACACGGCTG TCTTCACACC CTACTCGGCT GCCTTCCTGC TGAAGGAGAC GGAAGAAGGC
 CCGCCTGCTA CCGAGTGTGG CTACGCCTGC CAGCCGCTGG CTGTGGGAA CCTCATCGT
 GACATCATGT TCATTGTGGA CATCCTCATC AACTTCCGCA CCACCTACGT CAATGCCAAC
 GAGGAGGTGG TCAGGCCACCC CGGCCGCATC GCCGTCACACT ACTTCAAGGG CTGGTTCTC
 15 ATCGACATGG TGGCCGCCAT CCCCTTCGAC CTGCTCATCT TCGGCTCTGG CTCTGAGGAG
 CTGATCGGGC TGCTGAAGAC TGCGCGGTG CTGCGGCTGG TGCGCGTGGC GCGGAAGCTG
 GATCGCTACT CAGAGTACGG CGCGGCCGTG CTGTTCTTG TCATGTGCAC CTTTGCCTC
 ATCGCGCACT GGCTAGCCTG CATCTGGTAC GCCATCGGCA ACATGGAGCA GCCACACATG
 20 GACTCACGCA TCGGCTGGCT GCACAACTG GGCGACCAGA TAGGCAAACC CTACAACAGC
 AGCGGCCCTGG GCGGCCCTC CATCAAGGAC AAGTATGTGA CGGCGCTCTA CTTCACCTTC
 AGCAGCCTCA CCAGTGTGGG CTTCGGCAAC GTCTCTCCA ACACCAAAC AGAGAAGATC
 TTCTCCATCT GCGTCATGCT CATTGGCTCC CTCATGTATG CTAGCATCTT CGGCAACGTG
 TCGGCCATCA TCCAGCGGCT GTACTCGGGC ACAGCCCGCT ACCACACACA GATGCTGCGG
 25 GTGCGGGAGT TCATCCGCTT CCACCAAGATC CCCAATCCCC TGCGCCAGCG CCTCGAGGAG
 TACTTCCAGC ACGCTGGTC CTACACCAAC GGCACTGACA TGAACCGGGT GCTGAAGGGC
 TTCCCTGAGT GCCTGCAGGC TGACATCTGC CTGCACCTGA ACCGCTCACT GCTGCAGCAC
 TGCAAACACCT TCCGAGGGC CACCAAGGGC TGCCCTCGGG CCCTGGCAT GAAGTTCAAG
 30 ACCACACATG CACCGCCAGG GGACACACTG GTGCATGCTG GGGACCTGCT CACCGCCCTG
 TACTTCATCT CCCGGGGCTC CATCGAGATC CTGCGGGCG ACGTCGTGCT GGGCATCCTG
 GGGAAAGATG ACATCTTGG GGAGCCTCTG AACCTGTATG CAAGGCTTGG CAAGTCGAAC
 GGGGATGTGC GGGCCCTCAC CTACTGTGAC CTACACAAGA TCCATGGGA CGACCTGCTG
 GAGGTGCTGG ACATGTACCC TGAGTTCTCC GACCACTTCT GGTCCAGCCT GGAGATCACC
 35 TTCAACCTGC GAGATACCAA CATGATCCCC GGCTCCCCCG GCAGTACGGA GTTAGAGGGT
 GGCTTCAGTC GGCAACGAA GCGCAAGTTG TCCTTCGCA GGCGCACCGA CAAGGACACCG
 GAGCAGCCAG GGGAGGTGTC GGCCCTGGGG CGGGGCCGGG CGGGGGCAGG GCCGAGTAGC
 CGGGGCCGGC CGGGGGGGCC GTGGGGGGAG AGCCCGTCCA GTGGCCCTC CAGCCCTGAG
 40 AGCAGTGAGG ATGAGGGCCC AGGCCGCAGC TCCAGCCCC TCCGCTCTGGT GCCCTTCTCC
 AGCCCCAGGC CCCCCGGAGA GCCGCCGGGT GGGGAGCCCC TGATGGAGGA CTGCGAGAAC
 AGCAGCGACA CTTGCAACCC CCTGTCAGGC GCCTTCTCAG GAGTGTCAA CATTTCAGC
 TTCTGGGGGG ACAGTCGGG CCGCCAGTAC CAGGAGCTCC CTCGATGCC CGCCCCCACC
 CCCAGCCTCC TCAACATCCC CCTCTCCAGC CGGGTCTGGC GGCCCCGGGG CGACGTGGAG
 45 AGCAGGCTGG ATGCCCTCCA GCGCCAGCTC AACAGGCTGG AGACCCGGCT GAGTGCAGAC
 ATGGCCACTG TCCTGCAGCT GCTACAGAGG CAGATGACGC TGGTCCCGCC CGCCTACAGT
 GCTGTGACCA CCCCCGGGCC TGGCCCCACT TCCACATCCC CGCTGTTGCC CGTCAGCCCC
 CTCCCCACCC TCACCTTGGA CTCGTTTCT CAGGTTTCCC AGTTCATGGC GTGTGAGGAG
 50 CTGCCCCCGG GGGCCCCAGA GCTTCCCCAA GAAGGCCCCA CACGACCCCT CTCCCTACCG
 GGCCAGCTGG GGGCCCTCAC CTCCCAGCCC CTGCACAGAC ACGGCTCGGA CCCGGGCAGT
 TAGTGGGGCT GCCCCAGTGTG GACACGTGGC TCACCCAGGG ATCAAGGCGC TGCTGGCCG
 CTCCCCCTGG AGGCCCTGCT CAGGAGGCC TGACCGTGGA AGGGGAGAGG AACTCGAAAG
 CACAGCTCCT CCCCCAGCCC TTGGGACCAT CTTCTCTGC AGTCCCCCTGG GCCCCAGTGA
 55 GAGGGGCAGG GGCAGGGCCG CGACTAGGTG GGGCCTGTGG TCCCCCCACT GCCCTGAGGG
 CATTAGCTGG TCTAACTGCC CGGAGGCACC CGGGCCCTGGG CCTTAGGCAC CTCAGGACT
 TTTCTGCTAT TTACTGCTCT TATTGTTAAG GATAATAATT AAGGATCATA TGAATAATT
 ATGAAGATGC TGATGACTAT GAATAATAAA TAATTATCCT GAGGAGAAAA

60

65

7. Information zur SEQ ID NO.6

a) Sequenzcharakteristika

1. Länge: 1159 Aminosäurereste
2. Typ: Aminosäure
3. Strang: kodierend
4. Topologie: linear

b) Molekültyp: Protein

c) Sequenzbeschreibung SEQ ID NO.6

```

FT CDS 184..3663
FT /STANDARD_NAME="HUMAN EAG RELATED GENE"
FT /GENE="HERG"
FT /NOTE="NCBI GI: 487738"
FT /PRODUCT="PUTATIVE POTASSIUM CHANNEL SUBUNIT"
FT /CODON_START=1
FT
/TRANSLATION="MPVRRGHVAPQNTFLDTIIRKFEGQSRKFIIANARVENCAVIYC
FT NDGFCELCGYSRAEVMQRPCTCDFLHGPTQRRAAAQIAQALLGAEERKVEIAFYRKD
FT GSCFLCLVDVVPVKNEDGAVIMFILNFEVVMEKDMVGSPAHDTNHRGPPTSWLAGRA
FT KTFRLKLPALLALTARESSVRSGGAGGAGAPGAVVVVDVDLTPAAPSSESLALDEVTAM
FT DNHVAGLGPAAERRALVGPGSPPRSPAPGQLPSPRAHSNLNPDAAGSSCSLARTRSRESC
FT ASVRASSADDIEAMRAGVLPPPPRHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIP
FT QITLNFVDLKGDPLASPTSDREIIAPKIKERTHNVTEKVTQVLSIGADVLPEYKLQA
FT PRIHRWTILHYSPFKAVWDWLILLIVIYTAVFTPYSAAFLLKETEEGPPATECGYACQ
FT PLAVVDLIVDIMFIVDILINFRTTYVNANEEVVSHPGRIAVHYFKGWFLIDMVAAIPF
FT DLLIFGSGSEELIGLLKTARLLRLVRVARKLDYSEYGAALFLLMCTFALIAHWLAC
FT IWYAIIGNMEQPHMDSRIGWLHNLDQIGKPYNSSGLGGPSIKDKYVTALYFTFSSLTS
FT VGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVRE
FT FIRFHQIPNPLRQLREYFQHAWSYTNGIDMNAVLKGFPECLQADICLHLNRSSLQHC
FT KPFRGATKGCLRALAMKFTTHAPPGTLVHAGDLLTALYFISRGSIIEILRGDVVAI
FT LGKNDIFGEPLNLYARPGKNSNGDVRALTYCDLHKIHRRDDLEVLDMPPEFSDHFWSL
FT EITFNLRDTNMIPGSPGSTELEGGFSRQRKRKLSFRRRTDKDTEQPGEVSAALGPGRAG
FT AGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPRLVFPSSPRPPGEPPGEP
FT LMEDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGRQYQELPRCPAPTPSLLNIPLSSP
FT GRRPRGDVESRLDALQROLNRLETRLSADMATVLQLLQRQMTLVPPAYSAVTPGPGP
FT TSTSPLPVSPPLPTLTDLSQVSQFMACEELPPGAELPQEGPTRRLSLPGQLGALT
FT SQPLHRHGSDPGS"

```

8. Information zur SEQ ID NO.7

a) Sequenzcharakteristika

5. Länge: 54 Basen
6. Typ: Nukleinsäure
7. Strang: Einzelstrang
8. Topologie: linear

b) Molekültyp: Oligonukleotid

c) Sequenzbeschreibung SEQ ID NO.7

5' CAC GGA TCC ACA GAT TTT ATC ATG CAG TTA TCG GGT TTT TCT ACA AAC GGT TCC 3'

9. Information zur SEQ ID NO.8

a) Sequenzcharakteristika

9. Länge: 20 Basen
10. Typ: Nukleinsäure
11. Strang: Einzelstrang
12. Topologie: linear

b) Molekültyp: Oligonukleotid

c) Sequenzbeschreibung SEQ ID NO.8

5' CGC GAA AGA AGC TTG GGC GA 3'

5

10

15

20

25

30

35

40

45

50

55

60

65

Patentansprüche

1. Schizosaccharomyces pombe Mutanten mit Defekten in der Kaliumaufnahme die erhältlich sind durch Mutation der Kaliumtransporter TKHp und/oder Trk2p. Einführung einer oder mehrerer selektiver Marker (Auxotrophien und/oder Resistenzen).
2. Schizosaccharomyces pombe Mutanten tkh, trk2 und tkh trk2
3. Verwendung der Schizosaccharomyces pombe Mutanten nach Anspruch 1 oder 2 als Wirtsorganismus zur homologen oder heterologen Expression von Kaliumionen Kanälen.
4. Ein genetisch modifizierter Schizosaccharomyces pombe Hefestamm der die Nukleinsäuresequenz für das humane erg Kaliumionen-Kanal Gen (HERG) aber nicht die der Hefe eigenen Kaliumtransporter TKHp und Trk2p exprimiert.
5. Ein Verfahren zur Detektion spezifischer Modulatoren des HERG Kaliumionen-Kanals, einschließlich:
 - a) Die Behandlung des Schizosaccharomyces pombe Hefewirtsstamms, der die Nukleinsäuresequenz für den humanen erg Kaliumionen-Kanal (HERG) oder ein funktionelles Derivat oder eine Mutationsform dieses Kaliumionen-Kanals aber nicht die der Hefe eigenen TKHp oder Trk2 Kaliumionen-Transportproteine exprimiert mit Testsubstanzen.
 - b) Wachstumsbestimmungen in Anwesenheit oder nach Anwendung einer Testsubstanz.
 - c) Messungen des Anstiegs oder der Abnahme des Kaliumtransports derjenigen Stämme in Anwesenheit oder nach Anwendung einer Testsubstanz.
6. Ein Verfahren nach Anspruch 4 zur Detektion von anti-arrhythmische Substanzen.
7. Ein Verfahren nach Anspruch 4 zur Detektion von antifibrillatorische Substanzen.
8. Ein Verfahren nach Anspruch 4 zur Detektion von anti-entzündlichen Substanzen.

Hierzu 10 Seite(n) Zeichnungen

25

30

35

40

45

50

55

60

65

Fig. 1

Tk_h::LEU2 (3620 bps)

Trk2::URA4 (2440 bps)

Trk2::adhHerg/Ura4 (7077 bps)

ID SPTRKH PRELIMINARY; DNA; 2958 BP.
 AC L36563;
 DT 01-OCT-1994 (REL. 41, CREATED)
 DT 01-OCT-1995 (REL. 45, LAST UPDATED, VERSION 2)
 DE SCHIZOSACCHAROMYCES POMBE K+ TRANSPORTER TRK HOMOLOGUE GENE,
 DE COMPLETE CDS.
 KW K+ TRANSPORT PROTEIN.
 OS SCHIZOSACCHAROMYCES POMBE (YEAST)
 OC EUKARYOTA; PLANTAE; THALLOBIONTA; EUMYCOTA; HEMIASCOMYCETES;
 OC ENDOMYCETALES; SACCHAROMYCETACEAE.
 RN [1]
 RP 1-2958
 RA SOLDATENKOV V.A., VELASCO J.A., AVILA M.A., DRITSCHILO A.,
 RA NOTARIO V.;
 RT "ISOLATION AND CHARACTERIZATION OF SP TRK, A GENE FROM
 RT SCHIZOSACCHAROMYCES POMBE PREDICTED TO ENCODE A K+ TRANSPORTER
 RT PROTEIN";
 RL GENE 161:97-191 (1995).
 DR SWISS-PROT; P47946; TRK_SCHPO.
 CC NCBI GI: 550525
 FT SOURCE 1..2958
 FT /ORGANISM="SCHIZOSACCHAROMYCES POMBE"
 FT /SEQUENCED_MOL="DNA"
 FT CDS 302..2803
 FT /NOTE="NCBI GI: 550526"
 FT /CODON_START=1
 FT /PRODUCT="K+ TRANSPORTER HOMOLOGUE"
 FT /DB_XREF="PID:G550526"
 FT /DB_XREF="SWISS-PROT:P47946"
 FT /TRANSLATION="MVQVGDTNFWIQGNNSLYLHISLTIIASVLLFTGGTTKIK
 FT FLOSSATTQTLGLNSVDLNSLSIWQQFILYGFTAITVPIWMHGSISFIRLYWFR
 FT VRQRNRTRKFQRKLRKSLSMKKSEDDEEQGVGRKRKIRVMLPVLHSLRSPSLKNFS
 FT DSTNNPYFPDNPPSPKADISKDEYFGKYLPKKSDTLDMDLESHNMTFHDYEPSI
 FT DFGSSHSASMQMYEMDDLHPRLRRQSSFISSVNPLEADYTRETLSEGALVQESL
 FT YSDTNLVVSRDSFTLTGDDNLPEGGLRPANTIDGIVRSSLSSSSLSKDTEPST
 FT AFTGLNKPTIERERNLKLRLKKSRSFYKKSLRSRFSRGLHRPIRWTKSFTSNRRNL
 FT LSSAFAKKHEPSISSRHTTMSLPYLISYNPTVDRNSAFVALSKERQDELGGIEYR
 FT CSMVILYFIIFNIAAFVTFIVPAYTAVGSREVIDSYDLRRGWALFSSASSFND
 FT IPSSFVPMNRNIFLLLISSLFIIAGNTGFPCFFRTFIWTTYKLYPFSFEKKEAM
 FT HPRRCFTLLFPNGATWVLFVLLLNVIDLVLFMVLDTGSKAVASLPKGIRVWN
 FT VCTRRTAGFTSVSISELHPAVLVSYMVMYISVYPVAINMRNTNVYEERSLGVYR
 FT GKSFLKDHLTEQLSYDLWIIFLGLFIICICEGGKISNPPLTDTSIFTVLFEVVS
 FT GLSTGLSSSNCSLSARFTTISKLVIALELRGRHRLPRAVVRAILLPSEKNNL
 FT YQRHGFSDNARGSIAVSRD"
 SQ SEQUENCE 2958 BP; 824 A; 577 C; 551 G; 1006 T; 0 OTHER;
AAAGAAGACG CGATTTACG TTGTATTATA AGAGAGGAAT CCTCAA GTTGAAGG
AATCGTCAAA GATTGGTAA AAATGTCGTT TGTCAATTGT CATAATTCCC TTTTAGAAT
TTAGGGTT CCTCATCAGT ATCGCTTTA CCCGTAGATT TCAAAACTAA TTGCTTCCTA
TCTTGTCAT AGTTAAGGAT TTCCGTTAAC TTCAAAACCAA TTTCTCTGTT TCTTGTTCTG
TTGGTGGTGG GTTTGGCTGG AACTATTGAC TAAAATAAT GGTCTAAAT TACATTCAA
GATGGTCAA GTGGGTGATA CCAACTTTG GATTCAAGGC AATTCAATT ATTACATAT
ATCCTTAAT ATCATTGCCT CTGTCCTACT TTTTACCGGA GGGACCA CGAAAATCAA
GTATATCGAT GCTTTATTCT TAGCTAGCAG CGCAACTACC CAAACAGGCC TTAACAGTGT
TGACTTAAAT TCTTTATCTA TCTGGCAGCA GTTTATCTG TATGGATTAA CTGCTATTAC
GGTTCTATA TGGATGCACG GAAGTATTC CTTCATCCGG CTGTATTGGT TTGACGAAA
ATTTAAAGAC GTTGGTCGTCA AAAATCGTAC TCGAAAATTT CAGAGAAAGC TCCGTAAG
CTTAATGAAA AAAAGCGAGG ATGACGAAGA ACAGGGTGT CGTGGTAGAA AAATTCGTGT
AATGTTACCA TACCTACATT CACTAAGGAG TCCAACGTCT CTAAAAAACT TCTCGAGATT
TGACACGCAT GACAGTAGCA ACAATCCGTA CTTTCTGAC AACCCCCCTT CTCCCAAGGC
AGATATATCT AAAGACGAGT ATTTGGAAA GTATCTCCA AAAAAGTCTG ATACGCTAGA
CATGGATTTG GAAAGTCACA ACATGACTTT TCATGACTAT GAACCTTCCA TTGAAAATAA
AAATTACGAT TTTGGTAGTT CGCATTCCAGC CTCGATGCAA ATGTATGAAA TGGATGACCT
TCATCCCCGA CTCGTAGAC AAAGCTCTT TATTCCTCC GTTAATCCTT TAGAGGCTGA

Fig.2A

CTACACCCGT GAAACTTTAT CTGAAGGCAG CTTAGTCAG GAATCTCTCC CTATGGCTTA
 TAGTTATTCT GATACTAATT TGGTTGTATC GAGGGATTCA TTTACTCTCA CTGGGGACGA
 CAACTTTTC CCAGAAGGTG GTTTAAGGCC TGCCAATACA ATAGACGGAA TAGTAAGGTC
 GTCTCTGTCT TCTTCCCTCCC TATCTAAAGA CACTGAACCA TCGACAGTTG ACATGCATAT
 TGCTTTCACCG GAGCTTAATA AGCCCCACCAT AGAGCGTGAA CGTAATCTTA AACTAAGAAA
 AAAAGTCGT TTTTATAAAA AATCTTACG TTCCAGATT TCAGCAGGAC TTCATCGTCC
 AATACGTTGG ACAAAAGTCAT TCACCTCTAA CCGACGAAAC TTGACTCTTG AACGAGTCCT
 TTCTTCTGCC TTTGCTAAAA AACATGAGCC TTCTATTTC TCAAGACACA CTACTATGTC
 ACTTCCCTAT TTGTCGTATA ATCCTACTGT CGATCGTAAT TCTGCTTTCG TTGCTTTGTC
 TAAAGAACAG CGGGACGAGC TGGGTGGAAT TGAATATAGA GCTTTGAAAT GCGTCTGCTC
 CATGGTTATC CTTTATTTTA TCATTTTAA TATTGCTGCC TTTGTGACCT TCATTGTTTT
 TGCTTATAACG GCAGTGGGAT CGCGAGAGGT AATAGAATTCT TATGACTTAC GTCGTGGGTG
 GTGGGCCTTA TTCTCGTCTG CTTCTTCATT TAATGATTG GGGTTTCTT TAATACCATC
 GTCTTTGTC CCAATGAATC GAAACATTTC TCTTTGTTG ATTTCATCTT TATTCAATTAT
 CGCAGGTAAC ACGGGATTCC CTTGTTTTT TAGAACATTC ATTTGGACAA CGTATAAGCT
 ATACCCCTTT AGTTTGAGA AGAAAGAACG TATGGCATTTC CTCCTTGATC ATCCTCGACG
 ATGTTTCACT TTATTGTTTC CATCTGGAGC AACCTGGGTC TTGTTTTG TTTGCTGCT
 GCTTAATGTC ATTGATCTGG TATTGTCAT GGCTTAGAT ACTGGAAGTA AAGCAGTCGC
 TAGCCTTCT AAAGGTATTA GGGTTGAAA TGAATATTTC CAATCAGTTT GTACAAGAAC
 CGCAGGATTC ACGAGTGTAT CAATTAGTGA ACTTCACCCA GCAGTACTGG TCAGTTACAT
 GGTTATGATG TATATTCTG TTTATCAGT TGCTATCAAC ATGAGAAATA CCAATGTTA
 TGAGGAGCGA TCTTGGGTG TTTACAGAAC TGAAGATGAT GAGGGAAAT CTTTCTTAAA
 AGATCACCTT ACTGAACAAAT TAAGTTACGA TTATGTTAT ATTTTCTAG GGCTATTCA
 CATATGCATT TGTAAGGAG GTAAAATCTC CAATCCTCTA GATACCGATT TCAGTATT
 TACTGTCTT TTTGAAGTAG TCTCTGCTTA CGGTACGGTG GGACTTAGTA CTGGATTAAG
 CTCCTCAAAT TGTCACCTT CAGCAAGATT TACTACTATA AGTAAACTAG TTATTATAGC
 ACTTGAAC TG CGGGTAGAC ATAGAGGTT ACCCAGGGCT GTTGTACGAG CCATCCTTCT
 TCCTTCTGAA AAAATAATC TGAAAGAAGA AGAAGATTAT CAACGTCGTC ACGGATTTTC
 CATAGACAAAC GCACGTGGCA GTATTGCAGT TTCTCGAGAC TGATATTCT TATCACGATC
 ATGTATTATA TTTGTAATT ATATCATCTA ATAAATAGTA CTCCGCTAAA TTCATAC
 CTGATCGATA CACCGTTGT CCGCCATTTC TGAGTTGAAT TGTTCCCTC GACGAAAGAA
 TTTGTAAAGC CATTCTA

Fig.2B

ID SPTRK2 PRELIMINARY; PRT; 880 AA.
 DT 01-NOV-1997 (CREATED BY PC/GENE PROGRAM TRANSL)
 DE SCH POMBE
 OS SPTRK2 OHNE INTRONS
 CC TRANSLATED FROM DNA SEQUENCE SPTRK2 (BASES 15 TO 2654).
 SQ SEQUENCE 880 AA; 99848 MW; 3988070 CN;
 MQLSGFSTNG SGSLNTIVCE KLLFKPNFVQ DSFIIGMTIL CSVILYGSQN LRYIDALLA
 SGSCTQTGLQ PVDLTQISIY QQLTILLFGV LSTPITVN LG LTLLFKLYFYN KRYDMVITNN
 KLRMITYTYHT VRRRDTPEPS KVGNRKIRVL LDQGNQMHRP VAPEAKAEEA EHQUEEKHHR
 HHFLRLRKFAN AIDRPSFFRG NTMPALPSYA GVRNSQENED RTEALSPALG KRRMASIDNG
 SLSVVQNNAR NNPVDFYIPS SFEESSFQTI PEDFEPVQHD HENQTLNHH LDNNSSISSH
 NPSLETANDG NQETVSSNS NYSTTRVDND PHVASYSQN SNFDHQAAAT TNDAHQNVVR
 GSAITIAPTP VPRHNRRPIY FADDTNGAEQ EKGKAHLRDGR GRKRGKSFAV TPTLHRNERS
 MSVLPFQLAK SFTSALPRL TFNRTHTKAS TMSLPYLSYN ATVGRNSAFY ALTPVEREEL
 AGIEYESLRI LTIVLUVYFL FWHLGLVAF LIFIYTAKTS GRVVTDGGIN RGWWAAFTSS
 SLFDNLGYSL NSDSLNSFQK AIFPQVLGTI LIFLGNTFFF IMLRFIIWIM IRTTRFSPNF
 QQALYFLFEH PRRSFTLLFP SKTTWVLFLN LTLLNFASFF FFMVLDLGN S YVDKIPVGYR
 IMNAIFQNAA TRSAGFTVVD LSQIAPAVMV TYMFMMYISA YPIAMSIRQT NVYEERSILGI
 YAADTENDDD NNINNNNNNDN NTPKRKNFLM DHIQRQLSHD LWYLFGLYFI ITIVEGRRL
 SEAEPQFTLF AILFEVISGY GTVGLSLGYK NDPSLTAQFR KISKLVMDVAL QIRGRHRLP
 SALDRAVLMP SDKNFDREEE DYMRMRHGKKN TNRADPVPS
 //
 ID SPTRK2 PRELIMINARY; DNA; 2806 BP.
 SQ SEQUENCE 2806 BP; 828 A; 550 C; 540 G; 888 T; 0 OTHER;
 ATACAGATT TATCATGCAG TTATCGGGTT TTTCTACAAA CGGTTCCGGT TCCTTGAATA
 CCATTGTATG TGAAAACCTT CTTTCAGG CTAACCTTGT TCAAGATTCT TTTATAATAG
 GAATGACTAT TTTATGTTCA GTAATATTGT ATGGGTCGGG AAATTGCGC TACATAGATG
 CTTTGTGTT GGCTTCTGGT TCTTGACTC AGACTGGCTT GCAGGCTGTG GACCTCACGC
AGATATCCAT TTACCAACAG TTAACATTTC TCCTTTTGG AGTTTGAGT ACACCAATTA
 CTGTGAACCTT GGGCTTGACT TTGTTTAAGC TGTACTTCTA TAACAAGCGA TATGACATGG
 TCATAACAAA TAATAAACCTT AGGATGACAT ATACTTATCA CACTGTAAGA AGAAGGGATA
 CTCCAGAGCC TTCCAAAGTT GGCAATCGAA AAATTGGGGT TTTGTTAGAC CAGGGTAATC
 AAATGCACCG GCCAGTTGCC CCAGAGACTA AGGCTGAGGA AGCTGAACAC CAAGAGAATG
 AAAAACATCA CAGGCACCAT TTTCGTCTAA GGAAATTGGC TAATGCAATC GATGCCCAA
 GCTTCTTCG CGGGAAATACC ATGCCCGCTC TCCCTAGTTA TGCAGGTGTT AGAAATTCTC
 AAGAAAATGA AGACAGAACT GAAGCATTAA GTCCAGCTCT TGGGAAACGA AGAATGGCAT
 CAATCGACAA TGGATCTTTA TCCGGTGTAC AAAACAATGC TAGAAATAAT CCTGTCGACT
 TTTACATTCC TAGTTGTTT GAAGAATCAT CTTTCAAAAC AATTCTGAG GATTTGAGC
 CTCAAGTACA TGACCACGAG AATCAAACAC AACTGAACCA TCATCTGGAT AACAAACAGTT
 CTATCTCTC GCACAATCCT TCCCTAGAAA CTGCAAATGA TGGTAATCAG GAAACTGTTT
 CATCCTCAAA CTCAAACATC AGCACAACAA GAGTTGACAA TGATCCACAT GTAGCATCTT
 ATTACACCTCA AAATTCGAAT TTTGATCATC AGGCTGCTGC AACTACTAAC GATGCACATC
 AAAATGTAGT ACGCGGCTCT GCAATTACCA TTGCACCAAC CCCTGTTCCC AGGCATAATC
 GCAGGGCTAT ATATTTTGCT GATGACACGA ATGGAGCTGA GCAGGAAAAA GGTGCTCATC
 GACTTGATGG ACGAGGTTAGA AAACGTGGTA AATCATTGC TGTTACACCT ACACCTCACA
 GGAATGAGCG CTCATGTCT GTCTTACCAT TTCAATTAGC CAAATCATT ACATCTGCTC
 TTCTCGAAG ACTCACATT AACCCTACTC ACACGAAAGC TAGCACAATG AGTTTACCTT
 ATTTATCGTA CAATGCAACA GTGGGCAGAA ATTCTGCATT TTATGCCCTA ACTCCAGTGG
 AGAGAGAAGA ATTGGCGGGA ATTGAATATG AATCTCTCAG GATATTGACT GTCATATTAG
 TGGTTATTT TCTGTTTGG CATATTCTTG GTTGGTTGC GTTCTTAATA TTCATTATA
 CTGCTAAAC ATCCGGTCTG GTAGTACGG ACGGCGGTAT AAATAGAGGC TGGTGGCAG
 CGTTTACTTC TAGTTGCTG TTTGATAATC TAGGCTATTG GTTGAACAGC GATTCTTAA
 ATTCCCTTC AAAAGCCATA TTTCCCTCAGG TTCTTGGAAC TATTCTGATA TTTTTAGGGA
 ATACTTCTT TCCAATTATG CTCCGGTTA TAATTTGGAT TATGATACGA ACAACGAGAT
 TTTCGCTAA TTTCCAGCAA GCTTTGACT TTCTTTCTGA ACACCCCTCGA CGAAGTTTA
 CTCTTCTGTT CCCTTCAAAA ACTACTTGGG TGCTTTTTT AAATTTAACT TTATTGAATT
 TTGCTCCTT TTTCTTTTT ATGGTTTTAG ACTTGGGTA TTCAATGTT GACAAAATTC
 CAGTTGGTTA TCGAATTATG AATGCTATAT TTCAAAACGC AGCTACACGT TCTGCTGGCT
 TTACGGTGGT TGATTTAAGC CAAATGCTC CGGCAGTAAT GGTGACCTAC ATGTTTATGA
 TGTATATCTC TGCCTATCCA ATCGCAATGA GTATTGACCA AACTAATGTT TACGAGGAAC
 GTTCTCTGG AATATATGCA GCAGACACCG AAAATGATGA TGATAATAAT ATTAATAATA
 ATAATAATGA TAATAATACG CCGAAAAGGA AAAATTTTTT GATGGACCAT ATACAAAGGC
 AACTGAGTCA CGATTTGTGG TATTATTCC TAGGCTACTT CATAATTACT ATAGTCGAAG

Fig.3A

GTCGTCGATT AGAGTCGGAA GCGGAACCGC AATTTACGCT TTTTGTATT TTATTCGAGG
TGATTCAGG CTATGGCACT GTGGGCCTAA GCTTAGGGTA CAAAAATGAT CCTTCGCTTA
CGGCTCAGTT TCGGAAAATT AGCAAACCTG TTATGGTTGC ACTACAGATT CGTGGACGAC
ATAGAGGACT TCCAAGTGCA TTAGATAGAG CAGTGCTAAT GCCTTCGGAT AAAAACTTG
ACCGGGAAGA AGAGGATTAT ATGAGACGTC ACGGGAAAAAA AAATACTAAT AGAGCAGACC
CGGTACCCAG TTCTTAATGA TTATAACCTC ACGGTTGATT AGACTTACTT TCTATGAAAA
TGCAAGGCAA GGTCAAGGAGC TAATGAAACT TGTACTGTAT CTTCTGGTTC TGTGCCATT
TAACTGATTG GGCCTTAAAA GAACCTTTG TTTTATTTA TTTTAC

Fig.3B

//

ID HERG PRELIMINARY; DNA; 4070 BP.
 DE HUMAN PUTATIVE POTASSIUM CHANNEL SUBUNIT (HERG) mRNA, COMPLETE CDS.
 AC U04270;
 OS HOMO SAPIENS
 OC EUCLAYOTAE; METAZOA; CHORDATA; VERTEBRATA; GNATHOSTOMATA; MAMMALIA;
 OC EUTHERIA; PRIMATES; CATARRHINI; HOMINIDAE; HOMO.
 RN [1] (BASES 184-3663)
 RA WARMKE J.W., GANETZKY B.
 RT "A NOVEL FAMILY OF POTASSIUM CHANNEL GENES RELATED TO EAG IN
 RT "DROSOPHILA AND MAMMALS
 RL PROC. NATL. ACAD. SCI. U.S.A. (1994) IN PRESS
 RN [2] (BASES 1-4070)
 RA WARMKE J.W.
 RT "DIRECT SUBMISSION
 RL SUBMITTED (09-DEC-1993) JEFFREY W. WARMKE, GENETICS AND MOLECULAR
 RL BIOLOGY, MERCK RESEARCH LABORATORIES, 126 EAST LINCOLN AVENUE, P.O.
 RL BOX 2000, RAHWAY, NJ 07065, USA
 FH KEY LOCATION/QUALIFIERS
 FH
 FT SOURCE 1..4070
 FT /CLONE="PBII+HH1, PBII+HH10, PBHH10-4.5"
 FT /CLONE_LIB="STRATAGENE NUMBER 936205 HUMAN HIPPOCAMPUS
 FT CDNA LIBRARY"
 FT /CHROMOSOME="7"
 FT /ORGANISM="HOMO SAPIENS"
 FT /TISSUE_TYPE="HIPPOCAMPUS"
 FT /DEV_STAGE="2 YEAR OLD"
 FT /SEX="FEMALE"
 FT CDS 184..3663
 FT /STANDARD_NAME="HUMAN EAG RELATED GENE"
 FT /GENE="HERG"
 FT /NOTE="NCBI GI: 487738"
 FT /PRODUCT="PUTATIVE POTASSIUM CHANNEL SUBUNIT"
 FT /CODON_START=1
 FT /TRANSLATION="MPVRRGHVAPQNTFLDTIIRKFEQQSRKFIIANARVENCAVIYC
 FT NDGFCELCGYSRAEVVMQRPTCDFLHGPRTRQRRAAQIAQALLGAEERKVEIAFYRKD
 FT GSCFLCLVDVVPVKNEDGAVIMFILNEVVMKDMVGSPAHDTNHRGPPTSMLAPGRA
 FT KTFRKLKPALLALTARESSVRSGGAGGAGAPGAVVVVDVLTPAAPSSESLALDEVTAM
 FT DNHVAGLGPAAERRALVGPGSPPRSAPGQLPSRAHSLNPDASGSSCSLARTRSRESC
 FT ASVRASSADDIEAMRAGVLPPPDRHASTGAMHPLRSGLLNSTSDSLVRYRTISKIP
 FT QITLNFVDLKGDPLASPTSDREIIAPKIKERTHNVTEKVTVQVLSLGADVLPEYKQQA
 FT PRIIRWTILHYSPFKAVWDWLILLLVITYAVFTPYSAAFLLKETEEGPPATECGYACQ
 FT PLAVVDLIVDIMFIVDILINFRRTTYVNANEEVVSHPGRIAVHYFKGWFLIDMVAAPF
 FT DLLIFGSGSEELIGLLKTARLLRLVRVARKLDRYSEYGAAVLFLLMCTFALIAHWLAC
 FT IWYAIIGNMEQPHMDSRIGWLHNLDQIGKPYNSGGLGGPSIKDKYVTALYFTFSSLTS
 FT VGFGNVPNTNSEKIFSICVMLIGSLMYASIIFGNVSAIIQRLYSGTARYHTQMLRVRE
 FT FIRFHQIPNPLRQRLEEFQHAWSYTNGIDMNAVLKGFPECLQADICLHLNRSSLQHC
 FT KPFRGATKGCLRALAMFKTTTHAPPGDTLVHAGDLTALYFISRGSIIEILRGDVVVAI
 FT LGKNDIFGEPLNYARPGKNSGDVRALTYCDLHKIHRRDDLLEVLDMDYPEFSDHFWS
 FT EITFNLRDTNMIPGSPGSTELEGGFSRQRKRKLSFRRRTDKDTEQPGEVSALGPGRA
 FT AGPSSRRGGPGWGESPSSGPSSPESSEDEGPGRSSSPRLVPFSSPRPPGEPPGGE
 FT LMEDCEKSSDTCPNPLSGAFGVSNIFSFWGDSRGRQYQELPRCPAPTPSLLNIPLSSP
 FT GRRPRGDVESRLDALQRQLNRLETRLSADMATVLQLLQRQMTLVPPAYSAVTTPGPGP
 FT TSTSPLLPSPLPTLTLDLSQSQVSMACEELPPGAPELPQEGPTRRLSLPGQLGALT
 FT SOPLHRHGSDPGS"
 CC ORIGIN
 SQ SEQUENCE 4070 BP; 713 A; 1413 C; 1255 G; 689 T;
 ACGCGGCCTG CTCAGGCCCTC CAGCGGCCGG TCGGAGGGGA GGCGGGAGGC GAGCGAGGAC
 CGCGCCCGC AGTCCAGTCT GTGCCGCCGG GTGCTCGCTT GGCGCGGTGC GGGACCAAGCG
 CGCGCCACCC GAAGCCTAGT GCGTCGCCGG GTGGGTGGGC CGGCCCGGC CGCATGGGCTC
 AGGATGCCGG TCGGGAGGGGG CCACGTCGCCG CGCAGAAC A CCTTCCTGGA CACCATCATC
 CGCAAGTTG AGGGCCAGAG CCGTAAGTTC ATCATCGCCA ACGCTGGGT GGAGAACTGC
 CGCGTCATCT ACTGCAACGA CGGCTCTGC GAGCTGTGCG GCTACTCGCG GGCGAGGTG

ATGCAGCGAC CCTGCACCTG CGACTTCCTG CACGGGCCGC GCACGCAGCG CCGCGCTGCC
 GCGCAGATCG CGCAGGCACT GCTGGCGCC GAGGAGCGA AAGTGGAAAT CGCCTTCTAC
 CGGAAAGATG GGAGCTGCTT CCTATGTCTG GTGGATGTGG TGCCCGTGA GAACGAGGAT
 GGGGCTGTCA TCATGTTCAT CCTCAATTTC GAGGTGGTGA TGGAGAAGGA CATGGTGGGG
 TCCCCGGCTC ATGACACCAA CCACCGGGGC CCCCCCACCA GCTGGCTGCC CCCAGGCCGC
 GCCAAGACCT TCCGCCTGAA GCTGCCCGCG CTGCTGGCGC TGACGGCCCG GGAGTCGTCG
 GTGCGGTGCG CGGGCGGGG CGGGCGGGGC GCCCCGGGGG CGTGGTGGT GGACGTGGAC
 CTGACGCCCG CGGCACCCAG CAGCGACTCG CTGGCCCTGG ACGAAGTGA AGCCATGGAC
 AACACACGTGG CAGGGCTCGG GCCCAGGGAG GAGCGGCGTG CGCTGGTGGG TCCCAGCTCT
 CGGCCCCCGA CGCGCCCGG CCAGCTCCA TCGCCCCGGG CGCACAGCCT CAACCCCGAC
 GCCTCGGGCT CCAGCTGAG CCTGGCCCGG ACAGCTCCC GAGAAAGCTG CGCCAGCGTG
 CGCCCGCCCT CGTCGGCCGA CGACATCGAG GCCATGCCG CGGGGGTGT GCCCCCGCCA
 CCGCGCCACG CGAGCACCGG GGCCATGCAC CCACTGCAC GCGGCTTGCT CAACTCCACC
 TCGGACTCCG ACCTCGTGCCTTACCGC ATTAGCAAGA TTCCCCAAAT CACCCCTCAAC
 TTTGTGGACC TCAAGGGCGA CCCCTTCTTG GCTTCGCCA CCAGTGAACCG TGAGATCATA
 GCACCTAAGA TAAAGGAGCG AACCCACAAT GTCACTGAGA AGGTCAACCA GGTCTGTCC
 CTGGCGCCCG ACGTGCTGCC TGAGTACAAG CTGCAGGCAC CGGCATGCCA CGCTGGACC
 ATCCCTGCATT ACAGCCCCCTT CAAGGGCGTG TGGGACTGGC TCATCTGT GCTGGTCATC
 TACACGGCTG TCTTCACACC CTACTCGGCT GCCTTCCTGC TGAAGGAGAC GGAAGAAGGC
 CGCCTGCTA CCGAGTGTGG CTAGCCCTGC CAGCGCTGG CTGTTGGT GACATCATGT
 TCATTGTGGA CATCCTCATC AACCTCCGCA CCACCTACGT CAATGCCAAC
 GAGGAGGTGG TCAGCCACCC CGGCCGCATC GCGTCCACT ACTTCAAGGG CTGGTTCTC
 ATCGACATGG TGGCCGCCAT CCCCTTCGAC CTGCTCATCT TCGGCTCTGG CTCTGAGGAG
 CTGATCGGGC TGCTGAAGAC TGCGCGGCTG CTGCGGCTGG GATCGCTACT CAGAGTACGG
 CGCGGCCGTG CTGTTCTGC TCATGTGCAC TTTTGCCTC
 ATCGCGCACT GGCTAGCTG CATCTGGTAC GCCATGCAC ACATGGAGCA GCCACACATG
 GACTCACGCA TCGGCTGGT GCACAACTG GCGGACAGA TAGGCAAACC CTACAACAGC
 AGCGGCCCTGG CGGGCCCCCTC CATCAAGGAC AAGTATGTGA CGCGCTCTA CTTCACCTTC
 AGCAGCCTCA CCAGTGTGGG CTTCGGCAAC GTCTCTCCA ACACCAACTC AGAGAAGATC
 TTCTCCATCT GCGTCATGCT CATTGGCTCC CTCATGTATG CTAGCATCTT CGGCAACGTG
 TCGGCCATCA TCCAGCGGCT GTACTCGGGC ACAGCCCCCT ACCACACACA GATGCTGCGG
 GTGCGGGAGT TCATCCGCTT CCACCAAGATC CCCAATCCCC TGCGCCAGCG CTCGAGGAG
 TACTTCCAGC ACGCCTGGTC CTACACCAAC GGCATCGACA TGAACCGGGT GCTGAAGGGC
 TTCCCTGAGT GCCTGCAGGC TGACATCTGC CTGACCTGA ACCGCTCACT GCTGCAGCAC
 TGCAAACCCCT TCCGAGGGC CACCAAGGGC TGCTTCGGG CCCTGGCCAT GAAGTTCAAG
 ACCACACATG CACCGCCAGG GGACACACTG GTGCATGCTG GGGACCTGCT CACCGCCCTG
 TACTTCATCT CCCGGGGCTC CATCGAGATC CTGCGGGCG ACCTCGTCGT GGCCATCCTG
 GGGAAAGATG ACATCTTGG GGAGCCTCTG AACCTGTATG CAAGGCTGG CAAGTCGAAC
 GGGGATGTGC GGGCCCTCAC CTACTGTGAC CTACACAAGA TCCATGGGA CGACCTGCTG
 GAGGTGCTGG ACATGTACCC TGAGTTCTCC GACCACTTCT GGTCCAGCCT GGAGATCACC
 TTCAACCTGC GAGATACCAA CATGATCCCG GGCTCCCCCG GCAGTACGGA GTTAGAGGGT
 GGCTTCAGTC GGCAACGCAA GCGCAAGTTG TCCCTCCGCA GGCGCACGGA CAAGGACACG
 GAGCAGCCAG GGGAGGTGTC GGCTTGGG CGGGGGCGGG CGGGGGCAGG GCGGAGTAGC
 CGGGGCCGGC CGGGGGGGGC GTGGGGGGAG AGCCCGTCCA GTGGCCCTC CAGCCCTGAG
 AGCAGTGAGG ATGAGGGCCC AGGCCGCAGC TCCAGCCCC TCCGCCTGGT GCCCTTCTCC
 AGCCCCAGGC CCCCCGGAGA GCGCCGGGT GGGGAGCCCC TGATGGAGGA CTGCGAGAAG
 AGCAGCGACA TTGCAACACC CCGTCAGGC GCCTTCTCAG GAGTGTCCAA CATTTCAGC
 TTCTGGGGGG ACAGTCGGGG CGGCCAGTAC CAGGAGCTCC CTCCATGCC CGCCCCCACC
 CCCAGCCTCC TCAACATCCC CCTCTCCAGC CGGGGTCCGC GGCCCCGGGG CGACGTGGAG
 AGCAGGCTGG ATGCCCTCCA GCGCAGCTC AACAGGCTGG AGACCCGGCT GAGTGCAGAC
 ATGGCCACTG TCTGCACTG GCTACAGGG CAGATGACGC TGGTCCCCTGCC CGCCTACAGT
 GCTGTGACCA CCCCCGGGGC TGCCCCACT TCCACATCCC CGCTGTTGCC CGTCAGCCCC
 CTCCCCACCC TCACCTTGAA CTCCGTTTCT CAGGTTTCCC AGTTCATGCC GTGTGAGGAG
 CTGCCCCGGG GGGCCCCAGA GCTTCCCCAA GAAGGCCCCA CACGACGCCT CTCCCTACCG
 GGCCAGCTGG GGGCCCTCAC CTCCAGGCC CTGCACAGAC ACAGGCTCGGA CCCGGGCAGT
 TAGTGGGGCT GCCCCAGTGTG GACACGTGCC TCACCCAGGG ATCAAGGCGC TGCTGGGGCG
 CTCCCCCTGG AGGCCCTGCT CAGGAGGCC TGACCGTGA AGGGGAGAGG AACTCGAAAG
 CACAGCTCCT CCCCCAGCCC TTGGGACCAT CTTCTCCTGC AGTCCCCCTGG GCCCCAGTGA
 GAGGGCAGG GGCAGGGCCG GCAGTAGGTG GGGCCTGTGG TCCCCCCACT GCCCTGAGGG
 CATTAGCTGG TCTAACTGCC CGGAGGCACC CGGCCCTGGG CCTTAGGCAC CTCAAGGACT
 TTTCTGCTAT TTACTGCTCT TATTGTTAAG GATAATAATT AAGGATCATA TGAATAATT
 ATGAAGATGC TGATGACTAT GAATAATAAA TAATTATCCT GAGGAGAAAA

Fig.4B

//

102 011/507

A

100mM K⁺

Fig.5

B

10 mM K⁺

C

1mM K⁺

Fig.6

S. pombe Δtrkh,2*S. pombe**S. pombe* Δtrkh,2[HERG]*S. pombe* Δtrkh,2*S. pombe**S. pombe* Δtrkh,2[HERG]*S. pombe* Δtrkh,2*S. pombe**S. pombe* Δtrkh,2[HERG]100 mM K⁺10 mM K⁺1 mM K⁺

Fig.7

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.