Basic Proofs in Predicate Logic Building Arguments Step by Step

Brendan Shea, PhD

Intro to Logic

What Is a Proof? Building Logical Bridges

- A proof is a sequence of logical steps showing a conclusion must be true given certain premises.
- Proofs are **deductive**: they preserve truth with 100% certainty from premises to conclusion.
- Each step follows by a rule of inference—a logical principle that guarantees truth preservation.
- Unlike inductive reasoning (probable conclusions) or abductive reasoning (best explanations), deductive proofs offer absolute certainty!

Why Proofs Matter: From Ancient Geometry to Modern Cryptography

- Mathematics: Proofs ensure that mathematical facts are eternally true, not just probably true.
- **Computer Security**: Your online banking is safe because of mathematical proofs about encryption.
- **Science**: Proofs help us distinguish between correlation and causation in research.
- Critical Thinking: Learning to prove things makes you immune to logical fallacies and bad arguments.

Example

Real-world applications of proofs:

- Proving that a sorting algorithm always works correctly
- Proving that a medical treatment actually causes improvement
- Proving that a voting system is fair and can't be manipulated
- Proving that a bridge design can support its maximum load

Proofs vs. Persuasion: The Gold Standard of Certainty

- Deductive proof: Guarantees truth—if premises are true, conclusion MUST be true.
- **Inductive reasoning**: Suggests probability—"All swans I've seen are white, so probably all swans are white."
- **Abductive reasoning**: Offers best explanation—"The grass is wet, so it probably rained."
- Only deductive proofs provide absolute certainty; the others give us useful but fallible conclusions.

Types of Reasoning

Type Example		Certainty	
Deductive	All birds have wings; X is a bird; so X has wings	100%	
Inductive	I've seen 1000 white swans; next one is probably white	High probability	
Abductive	Patient has symptoms A,B,C; likely has disease D	Best guess	

The Structure of a Formal Proof: Steps and Justifications

- Every proof consists of numbered lines, each containing a statement and its justification.
- Justifications can be: premises (given), rules of inference, or references to previous lines.
- Each line follows logically from previous lines according to specific rules.
- The last line of the proof is your conclusion—what you set out to prove!

Anatomy of a Proof

Line	Statement	tatement Justification	
1	P o Q	P o Q Premise	
2	P	Premise	
3	Q	Modus Ponens (1,2)	

This proves: From "If P then Q" and "P", we can conclude "Q"

Valid Arguments: When Conclusions Must Follow

- An argument is valid if the conclusion must be true whenever all premises are true.
- Validity is about the structure of the argument, not whether premises are actually true.
- A valid argument with true premises is called sound—this guarantees a true conclusion.
- Our proof rules preserve validity: applying them to true statements always yields true statements.

Example

Valid argument (even with silly premises):

- All creatures in Wonderland can talk (premise)
- 2 The Cheshire Cat is in Wonderland (premise)
- Therefore, the Cheshire Cat can talk (conclusion)

The structure is valid: All A's are B, X is an A, therefore X is B.

Common Proof Mistakes: Learning from Logical Missteps

- Circular reasoning: Using what you're trying to prove as a justification.
- **Unjustified jumps**: Skipping steps that seem "obvious" but need proof.
- Wrong rule application: Using a rule incorrectly or in the wrong situation.
- Assuming the converse: Thinking "If P then Q" means "If Q then P".

Classic Mistakes to Avoid

- "Everyone knows that..." Not a valid justification!
- Going from "Some cats are black" to "Fluffy is black" Need more info!
- Using $P \rightarrow Q$ backwards Can't conclude P from Q!
- Forgetting to cite line numbers Every step needs justification!

Your First Proof: A Simple Example to Get Started

- Let's prove: "Dorothy has silver shoes and wants to go home, so Dorothy wants to go home."
- Premises: (1) Dorothy has silver shoes AND Dorothy wants to go home
- Conclusion: Dorothy wants to go home
- We'll use our first rule: conjunction elimination (taking AND statements apart).

Example

	Line	Statement	Justification
ĺ	1	$ ext{HasSilverShoes(Dorothy)} \land ext{WantsHome(Dorothy)}$	Premise
	2	WantsHome(Dorothy)	\wedge Elimination (1)

We extracted the second part of the AND statement—our first proof is complete!

The Toolbox: Introduction and Elimination Rules

- For each logical operator, we have two types of rules: introduction and elimination.
- Introduction rules show how to prove statements with that operator.
- Elimination rules show how to use statements with that operator.
- Think of it like a toolbox: some tools build things up, others take them apart!

Rules for Each Operator

Operator	Introduction	Elimination
∧ (and) Combine statements Extr		Extract parts
∨ (or) Add possibilities		Consider cases
\rightarrow (if-then)	Assume and derive	Apply condition
¬ (not)	Show contradiction	Cancel double negative

Conjunction Introduction: Building "And" Statements

- Conjunction Introduction (\land I): If you've proved P and you've proved Q, you can conclude $P \wedge Q$.
- This rule lets us combine separate facts into a single compound statement
- Symbol: $\frac{P-Q}{P\wedge Q}$ (from P and Q separately, infer $P\wedge Q$).
- The most straightforward rule—if you know both parts, you know the wholel

Example

Line Statement Rule in action:

	Guacaniona	• data tributation
1	InKansas(Dorothy)	Premise
2	<pre>HasDog(Dorothy, Toto)</pre>	Premise
3	<pre>InKansas(Dorothy) \land HasDog(Dorothy, Toto)</pre>	∧I (1,2)

Justification

Proving Dorothy Has Ruby Slippers AND Wants to Go Home: Conjunction Introduction Practice

- Given: (1) Dorothy has ruby slippers, (2) Dorothy wants to go home
- Goal: Prove that Dorothy has ruby slippers AND wants to go home
- Strategy: Use conjunction introduction to combine the two given facts.
- This shows how we build complex statements from simpler ones.

The Proof

Line	Statement	Justification
1	HasRubySlippers(Dorothy)	Premise
2	WantsHome(Dorothy)	Premise
3	$ ext{HasRubySlippers(Dorothy)} \land ext{WantsHome(Dorothy)}$	∧I (1,2)

Notice how line 3 references both lines 1 and 2—we need both pieces!

Conjunction Elimination: Taking "And" Statements Apart

- Conjunction Elimination (\land E): From $P \land Q$, you can conclude P or conclude Q (or both).
- This rule lets us extract useful information from compound statements.
- Two forms: $\frac{P \wedge Q}{P}$ (left elimination) and $\frac{P \wedge Q}{Q}$ (right elimination).
- Like unpacking a box—if the box contains both items, you can take out either one!

Using ∧E

From "IsWitch(Glinda) \(\) IsGood(Glinda)":

- We can conclude IsWitch(Glinda) (left part)
- We can conclude IsGood(Glinda) (right part)
- We can use both conclusions in our proof!

From Complex to Simple: Conjunction Elimination Practice

- Given: The Scarecrow wants a brain AND is made of straw AND can talk
- Goal: Prove that the Scarecrow can talk
- Strategy: Use conjunction elimination to extract the part we need.
- With nested conjunctions, we may need multiple elimination steps!

Example

Line	Statement	Justifi
1	$\big(\texttt{WantsBrain}(\texttt{Scarecrow}) \ \land \ \texttt{MadeOfStraw}(\texttt{Scarecrow}) \big)$	
	∧ CanTalk(Scarecrow)	Premis
2	CanTalk(Scarecrow)	∧E (1)

We extracted the rightmost part of the complex conjunction!

Disjunction Introduction: Creating "Or" Statements

- **Disjunction Introduction** (\vee I): If you've proved P, you can conclude $P \vee Q$ for any Q.
- This might seem strange—we're adding uncertainty where there was none!
- But it's logically valid: if P is true, then "P or Q" must be true (regardless of Q).
- Useful when you need to match a specific form or work with given disjunctions.

Two Forms of ∨I

- From P, conclude $P \vee Q$ (left introduction)
- From Q, conclude $P \vee Q$ (right introduction)

Example: From "Alice is in Wonderland", we can conclude "Alice is in Wonderland OR Alice is in Oz"

Proving "The Cat Is Grinning OR Invisible": Disjunction Introduction Practice

- Given: The Cheshire Cat is grinning
- Goal: Prove that the Cheshire Cat is grinning OR the Cheshire Cat is invisible
- Strategy: Use disjunction introduction to add the alternative possibility.
- Remember: We're not claiming the cat is invisible—just that at least one option is true!

Example

	Line	Statement	Justification	
ſ	1	<pre>IsGrinning(CheshireCat)</pre>	Premise	
	2	${\tt IsGrinning(CheshireCat)} \ \lor \ {\tt IsInvisible(CheshireCat)}$	∨I (1)	

Even though we only know the cat is grinning, the "or" statement is certainly true!

Disjunction Elimination: The Case-by-Case Method

- **Disjunction Elimination** (∨E): The most complex rule so far—reasoning by cases.
- If you know $P \vee Q$, and you can prove R from P, and prove R from Q, then R must be true.
- Think: "Either way, we get the same result, so that result must hold."
- Requires setting up two sub-proofs, one for each possibility.

Structure of ∨E

To use $P \vee Q$:

- Assume P temporarily, prove R
- Assume Q temporarily, prove R
- Conclude R (since it follows either way)

Like checking both paths at a fork in the road and finding they lead to the same place!

Working Through Cases: Disjunction Elimination Practice

- Given: Either the Tin Man needs oil OR he needs a heart
- Given: If he needs oil, he can't move. If he needs a heart, he can't love.
- Goal: Prove that either he can't move OR he can't love
- Strategy: Consider both cases and show each leads to our conclusion.

Example

1	NeedsOil(TinMan) ∨ NeedsHeart(TinMan)	Premise
2	${\tt NeedsOil(TinMan)} \to {\tt CantMove(TinMan)}$	Premise
3	${\tt NeedsHeart(TinMan)} o {\tt CantLove(TinMan)}$	Premise
4	NeedsOil(TinMan)	Assume (for ∨E)
5	CantMove(TinMan)	Modus Ponens (2,4)
6	${\tt CantMove(TinMan)} \ \lor \ {\tt CantLove(TinMan)}$	∨I (5)
7	NeedsHeart(TinMan)	Assume (for ∨E)
8	CantLove(TinMan)	Modus Ponens (3,7)
9	${\tt CantMove(TinMan)} \ \lor \ {\tt CantLove(TinMan)}$	∨I (8)
10	CantMove(TinMan) ∨ CantLove(TinMan)	∨E (1,4-6,7-9)

Conditional Introduction: Building "If-Then" Statements

- Conditional Introduction $(\rightarrow I)$: To prove $P \rightarrow Q$, assume P and derive Q.
- This captures how we naturally think about "if-then": "If this were true, what would follow?"
- The assumption is temporary—only valid within the sub-proof.
- Once we derive Q from the assumption P, we can conclude $P \to Q$ outside the sub-proof.

The Power of Assumption Assume P... derive ... Get Q

Proving "If You Click Your Heels Three Times, Then You'll Go Home": Conditional Introduction

- Given: Anyone who clicks their heels three times while wearing ruby slippers goes home
- Given: Dorothy has ruby slippers
- Goal: If Dorothy clicks her heels three times, then Dorothy goes home
- Strategy: Assume the "if" part and derive the "then" part.

Example

[1	$\forall x \; ((\texttt{ClicksHeels3x}(x) \land \texttt{HasRubySlippers}(x))$	
İ		ightarrow GoesHome (x))	Premise
	2	HasRubySlippers(Dorothy)	Premise
Ì	3	ClicksHeels3x(Dorothy)	Assume (for \rightarrow I)
١	4	${\tt ClicksHeels3x(Dorothy)} \land {\tt HasRubySlippers(Dorothy)}$	∧I (3,2)
	5	GoesHome(Dorothy)	∀E, MP (1,4)
Ì	6	$\texttt{ClicksHeels3x(Dorothy)} \rightarrow \texttt{GoesHome(Dorothy)}$	→I (3-5)

Conditional Elimination (Modus Ponens): Using "If-Then" Statements

- Modus Ponens (MP or \rightarrow E): From $P \rightarrow Q$ and P, conclude Q.
- This is perhaps the most famous rule in logic—"the mode of affirming."
- It lets us apply conditional knowledge: if we know "if-then" and the "if" part is true, the "then" part follows.
- Symbol: $\frac{P \to Q}{Q} = \frac{P}{Q}$ (from the conditional and its antecedent, infer the consequent).

Example

Classic example:

- If you're in Oz, you're not in Kansas anymore
- Dorothy is in Oz
- Therefore, Dorothy is not in Kansas anymore

This pattern of reasoning is used constantly in mathematics, science, and daily life!

Following the Chain: Modus Ponens Practice

- Given: If you follow the yellow brick road, you reach Emerald City
- Given: If you reach Emerald City, you can see the Wizard
- Given: Dorothy follows the yellow brick road
- Goal: Prove that Dorothy can see the Wizard

Chain Reasoning with Modus Ponens

			П
1	extstyle ext	Premise	
2	$ ext{ReachesEC(Dorothy)} ightarrow ext{CanSeeWizard(Dorothy)}$	Premise	
3	FollowsYBR(Dorothy)	Premise	
4	ReachesEC(Dorothy)	MP (1,3)	
5	CanSeeWizard(Dorothy)	MP (2,4)	

Notice how we chain modus ponens applications to follow a sequence of implications!

Negation Introduction: Proving Something Is False

- **Negation Introduction** (\neg I): To prove \neg P, show that assuming P leads to a contradiction.
- A **contradiction** is when we derive both Q and $\neg Q$ for some statement Q.
- This rule formalizes proof by contradiction—a powerful technique!
- If assuming something leads to impossibility, that thing must be false.

Structure of ¬I

- **1** Want to prove: $\neg P$
- Assume: P (temporarily)
- **1** Derive: Both Q and $\neg Q$ for some Q
- Conclude: $\neg P$ (since P led to contradiction)

The contradiction shows our assumption was impossible!

Proof by Contradiction: When Assuming the Opposite Leads to Trouble

- Let's prove: "There is no biggest number"
- Formally: $\neg \exists x \forall y \; (\text{Number}(y) \rightarrow y \leq x)$
- Strategy: Assume there IS a biggest number, then derive a contradiction.
- This technique works when direct proof seems impossible.

Example

Wonderland example: "The Hatter is not both mad and sane"

1	IsMad(Hatter)	Premise
2	IsMad(Hatter) ∧ IsSane(Hatter)	Assume (for ¬I)
3	IsSane(Hatter)	∧E (2)
4	IsMad(Hatter)	∧E (2)
5	$ eg{IsMad(Hatter)}$	Definition of sane
6	$\neg (\mathtt{IsMad}(\mathtt{Hatter}) \land \mathtt{IsSane}(\mathtt{Hatter}))$	¬I (2-5)

Negation Elimination: The Double Negative Rule

- **Negation Elimination** ($\neg E$): From $\neg \neg P$, you can conclude P.
- This is the logical version of canceling a double negative—"not not P" just means "P".
- While it feels obvious, it plays a crucial role in formal proofs—especially when working backwards from contradictions.
- This rule ensures that nothing stays unnecessarily wrapped in extra layers of denial!

Example

Line	Statement	Justification
1	¬¬IsWizard(Gandalf)	Premise
2	IsWizard(Gandalf)	¬E (1)

We removed the double negation to get the straightforward result.

Universal Introduction: Proving "All" Statements

- Universal Introduction ($\forall I$): To prove $\forall x \ P(x)$, prove P(a) for an arbitrary a.
- The key: a must be **arbitrary**—no special properties, could be any individual.
- If we can prove something for a "generic" individual, it holds for all individuals.
- Think: "Take any random thing from the domain. If I can prove the property for it, then all things have that property."

The Arbitrary Individual Method

- Introduce a new name a that hasn't been used before
- Make no assumptions about a except what applies to everything
- 3 Prove the property holds for a
- $oldsymbol{0}$ Conclude the property holds for all x

The Arbitrary Individual: Why Universal Introduction Works

- An arbitrary individual represents "any member of the domain" without being specific.
- We can't use individuals mentioned in premises—they might have special properties!
- The name must be "fresh"—not appearing anywhere else in the proof.
- This ensures our reasoning applies to every possible individual, not just special cases.

Valid vs Invalid ∀I

Invalid	Valid
IsYellow(BigBird)	Let a be arbitrary
Therefore $\forall x \text{ IsYellow}(x)$	Prove HasColor(a)
(BigBird is special!)	Therefore $\forall x \; \texttt{HasColor}(x)$

Proving "All Roads in Oz Lead Somewhere": Universal Introduction Practice

- Given: Every road has an endpoint (general principle)
- Given: Everything in Oz is magical
- Goal: Prove that all roads in Oz lead somewhere
- Strategy: Take an arbitrary road in Oz and show it leads somewhere.

Example

1	$orall x \ (\mathtt{IsRoad}(x) o \exists y \ \mathtt{LeadsTo}(x,y))$	Premise
2	$\forall x \; (\mathtt{InOz}(x) o \mathtt{IsMagical}(x))$	Premise
3	Let a be arbitrary	For ∀I
4	${\tt IsRoad}(a) \land \ {\tt InOz}(a)$	Assume
5	${\tt IsRoad}(a)$	∧E (4)
6	$\exists y \; LeadsTo(a,y)$	∀E, MP (1,5)
7	$\forall x \; ((\mathtt{IsRoad}(x) \land \; \mathtt{InOz}(x)) \rightarrow$	
	$\exists y \; \text{LeadsTo}(x,y))$	∀I (3-6)

Universal Elimination: Using "All" Statements

- Universal Elimination ($\forall E$): From $\forall x P(x)$, conclude P(t) for any term t.
- If something is true for all individuals, it's true for any specific individual we choose.
- This is the simplest quantifier rule—just plug in the individual you need!
- Symbol: $\frac{\forall x P(x)}{P(t)}$ where t is any individual name.

Example

Using universal facts:				
1	$orall x \ (exttt{InEmeraldCity}(x) ightarrow exttt{SeesGreen}(x))$	Premise		
2	InEmeraldCity(Dorothy)	Premise		
3	$ ext{InEmeraldCity(Dorothy)} ightarrow ext{SeesGreen(Dorothy)}$	∀E (1)		
4	SeesGreen(Dorothy)	MP (2,3)		
1 1 /		D		

We instantiated the universal rule with the specific individual Dorothy!

From General to Specific: Universal Elimination Practice

- Given: All witches in Oz can cast spells
- Given: All good witches help travelers
- Given: Glinda is a good witch in Oz
- Goal: Prove that Glinda can cast spells and helps travelers

Multi	nle A	nnli	ications	of	∀F
IVIUILI	pic / t	יישץ	cations	O1	V L

1	$\forall x \; ((\mathtt{IsWitch}(x) \land \; \mathtt{InOz}(x)) \to \mathtt{CanCastSpells}(x))$	Premise
2	$\forall x \; (\texttt{IsGoodWitch}(x) \rightarrow \texttt{HelpsTravelers}(x))$	Premise
3	IsGoodWitch(Glinda) ∧ InOz(Glinda)	Premise
4	IsGoodWitch(Glinda)	∧E (3)
5	$\texttt{IsGoodWitch(Glinda)} \rightarrow \texttt{IsWitch(Glinda)}$	Logic fact
6	IsWitch(Glinda)	MP (4,5)
7	InOz(Glinda)	∧E (3)
8	IsWitch(Glinda) ∧ InOz(Glinda)	∧I (6,7)
9	CanCastSpells(Glinda)	∀E, MP (1,8)
10	HelpsTravelers(Glinda)	∀E, MP (2,4)

Existential Introduction: Proving "Some" Statements

- Existential Introduction ($\exists I$): From P(t) for a specific t, conclude $\exists x \ P(x)$.
- If we know something is true for at least one individual, then "something" has that property.
- This is straightforward: finding one example proves existence!
- Symbol: $\frac{P(t)}{\exists x P(x)}$ where t is any individual.

Example

Proving existence:

- We know: The Cowardly Lion lives in Oz and wants courage
- We can conclude: Something in Oz wants courage
- We can conclude: Some lion wants courage
- Both conclusions follow by ∃I!

The specific example (Cowardly Lion) proves the existential claim.

Finding Your Example: Existential Introduction Practice

- Given: The White Rabbit is always late
- Given: The White Rabbit works for the Queen of Hearts
- Goal: Prove that someone who works for the Queen is always late
- Strategy: Use the White Rabbit as our witness for the existential claim.

From Specific to Existential

1	AlwaysLate(WhiteRabbit)	Premise
2	WorksFor(WhiteRabbit, QueenOfHearts)	Premise
3	${\tt AlwaysLate(WhiteRabbit)} \ \land$	
	WorksFor(WhiteRabbit, QueenOfHearts)	∧I (1,2)
4	$\exists x \; (\texttt{AlwaysLate}(x) \land $	
	<pre>WorksFor(x, QueenOfHearts))</pre>	∃I (3)

The White Rabbit serves as our proof that such an individual exists!

Intro to Logic

Existential Elimination: Using "Some" Statements Carefully

- **Existential Elimination** ($\exists E$): The trickiest quantifier rule!
- From $\exists x \ P(x)$, we know something has property P, but we don't know which thing.
- Solution: Give it a temporary name (that hasn't been used before) and reason about it.
- Key restriction: The conclusion cannot mention this temporary name!

Structure of ∃E

- Have: $\exists x \ P(x)$
- 2 Say: "Let c be something such that P(c)" (where c is fresh)
- **3** Derive: Some conclusion Q using P(c)
- Occide: Q (but Q cannot contain c!)

We can use the witness temporarily but can't make claims about it specifically.

The Name Game: Existential Elimination Practice

- Given: Someone stole the tarts
- Given: Anyone who stole the tarts will be punished by the Queen
- Goal: Prove that someone will be punished by the Queen
- Strategy: Name the unknown thief temporarily and reason about them.

Example

1	$\exists x \; \mathtt{StoleTarts}(x)$	Premise
2	$\forall x \; (\mathtt{StoleTarts}(x) o \mathtt{PunishedByQueen}(x))$	Premise
3	Let c be such that StoleTarts (c)	∃E setup (1)
4	$\mathtt{StoleTarts}(c) o \mathtt{PunishedByQueen}(c)$	∀E (2)
5	${\tt PunishedByQueen}(c)$	MP (3,4)
6	$\exists x \; \mathtt{PunishedByQueen}(x)$	∃I (5)
7	$\exists x \; \mathtt{PunishedByQueen}(x)$	∃E (1,3-6)

Note: The conclusion (line 7) doesn't mention c—it was just a temporary name!

Proof Strategy: Working Backwards from Your Goal

- Forward reasoning: Start with premises and apply rules until you reach the goal.
- Backward reasoning: Look at what you want to prove and ask "What would I need?"
- Most proofs combine both approaches—work from both ends until they meet!
- Always keep your goal in mind; every step should bring you closer to it.

Strategic Questions

When stuck, ask yourself:

- What form is my goal? (Conditional? Universal? Negation?)
- What rule creates that form? (Need \rightarrow ? Use \rightarrow I!)
- What premises haven't I used yet?
- Can I break complex premises into simpler parts?

When to Use Which Rule: A Decision Tree

- Look at the main operator of what you're trying to prove or use.
- To prove statements: use introduction rules
- To use statements: use elimination rules
- Match the rule to the operator!

Common Proof Patterns: Recognizing Standard Arguments

- Chain of implications: Use repeated modus ponens to follow $P \rightarrow Q \rightarrow R$.
- **Proof by cases**: When given $P \lor Q$, show your goal follows from each option.
- Universal to specific: Apply general rules to particular individuals with ∀E.
- Existence proof: Find one example and use ∃I.

Example

Classic patterns in Wonderland:

- ullet "All cards are flat; the King is a card; so the King is flat" ($\forall E + MP$)
- "Either eat the cake or drink the potion; both lead to size change" (∨E)
- "If late, then in trouble; late; therefore in trouble" (MP)
- "The Cheshire Cat can disappear; so something can disappear" (∃I)

Tips for Getting Unstuck: What to Do When You're Lost

- **List what you have**: Write down all premises and what you've proven so far.
- Clarify your goal: What exactly are you trying to prove? What's its structure?
- Work backwards: What would directly give you the conclusion? What would give you that?
- **Look for unused premises**: Every premise should typically be used in the proof.

Common Unsticking Techniques

- ullet Can't prove P o Q? Try assuming P and proving Q
- Can't prove $\neg P$? Try assuming P and finding a contradiction
- Have $P \lor Q$ but stuck? Try both cases separately
- Can't prove $\forall x P(x)$? Prove it for an arbitrary individual
- Remember: Complex statements can often be broken into simpler parts!

Checking Your Work: How to Know Your Proof Is Complete

- Every line is justified: Each step cites a rule and the exact lines it uses.
- Rules applied correctly: Check that you're using each rule properly.
- Fresh names where required: For $\forall I$ and $\exists E$, ensure names are truly new.
- Conclusion matches goal: Your last line should be exactly what you set out to prove.

Proof Checklist

- ◆ Are all premises listed and numbered?
- ② ✓ Does each line follow from previous ones?
- ✓ Are variable restrictions respected?
- Is the conclusion exactly what was required?

If you can check all boxes, your proof is complete! Brendan Shea, PhD

Next Steps: From Basic Proofs to Mathematical Reasoning

- You've learned the fundamental rules of deductive reasoning—the foundation of all mathematical proof!
- These same techniques appear in: calculus proofs, computer science algorithms, philosophical arguments.
- Remember: Proof-writing is a skill that improves with practice—keep working problems!

Where Proofs Will Take You

- Mathematics: Prove theorems about numbers, shapes, and functions
- Computer Science: Verify algorithms work correctly every time
- Philosophy: Analyze arguments about knowledge, ethics, and reality
- Science: Distinguish between correlation and causation