Announcements

- Project 1: Search
 - It's live! Due 9/14.
 - Start early and ask questions. It's longer than most!
- Need a partner? Come up after class or try Piazza
- Sections: can go to any, but have priority in your own

CS 188: Artificial Intelligence Fall 2011

Lecture 3: A* Search 9/1/2011

Dan Klein - UC Berkeley

Multiple slides from Stuart Russell or Andrew Moore

Today

- A* Search
- Graph Search
- Heuristic Design

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2-1 \leq g(n) \leq 2n+3$.

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS

[demo: countours greedy]

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

Notation:

- g(n) = cost to node n
- h(n) = estimated cost from n to the nearest goal (heuristic)
- f(n) = g(n) + h(n) = estimated total cost via n
- G*: a lowest cost goal node
- G: another goal node

Optimality of A*: Blocking

Proof:

- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G*
- This can't happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must also be on the fringe (why?)
 - n will be popped before G

$$f(n) = g(n) + h(n)$$

$$g(n) + h(n) \le g(G^*)$$

$$g(G^*) < g(G)$$

$$g(G) = f(G)$$

$$f(n) < f(G)$$

UCS vs A* Contours

 Uniform-cost expanded in all directions

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[demo: countours UCS / A*]

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

 1
 2

 3
 4
 5

 6
 7
 8

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?

,

■ h(start) = 8

 This is a relaxedproblem heuristic

	Average nodes expanded when optimal path has length		
	4 steps	8 steps	12 steps
UCS	112	6,300	3.6 x 10 ⁶
TILES	13	39	227

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

Dominance: h_a ≥ h_c if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

[demo: plan tiny UCS / A*]

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - If not new, skip it
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Warning: 3e book has a more complex, but also correct, variant

Consistency of Heuristics

- Stronger than admissibility
- Definition:

 $cost(A \text{ to } C) + h(C) \ge h(A)$ $cost(A \text{ to } C) \ge h(A) - h(C)$ real $cost \ge cost$ implied by heuristic

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Optimality of A* Graph Search

Proof:

- New possible problem: some n on path to G* isn't in queue when we need it, because some worse n' for the same state dequeued and expanded first (disaster!)
- Take the highest such *n* in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- f(p) < f(n) because of consistency
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

