Harvard Data Science Capstone

Ekundayo Azubuike

2024-11-21

Introduction

Data Overview

The following analysis and modeling center on the movielens data set (you can read more about it here). This data.frame is a subset of a larger data set containing 9,000,055 rows of observations and six columns of variables: userId, movieId, rating, timestamp, title, and genres. The target variable is rating, and the other five variables are predictors.

Purpose

The goal of the analysis that follows is to build and train a statistical model to predict the rating for each row in the holdout set given a set of predictor variables. Root mean squared error (RMSE) will be the metric used to evaluate the quality of the model.

Procedure

- 1. First, I set up my environment by creating a new R project and populating the required files: capstone report.Rmd, capstone report.pdf, and capstone code.R.
- 2. Next, I loaded the movielens data according to the course instructions.
- 3. I then performed some pre-processing to change a few data types, add new predictors, and split the data into training and test sets.
- 4. I used the pre-processed data to perform exploratory data analysis to develop a preliminary understanding of the data.
- 5. I performed variable selection and built a linear model of rating as a function of a subset of the original predictor variables: movieId, userId, genres, and year.
- 6. I calculated regularized bias terms for each predictor.
- 7. I calculated RMSE on the final model.
- 8. Finally, I tested the model against the holdout set, yielding a final RMSE of less than 0.86549.

Methods/Analysis

Loading Course Code

The following analysis will leverage functionality from the tidyverse library for data cleaning, manipulation, and visualization. I used caret for pre-processing and Hmisc for some exploratory data analysis.

```
# install and load relevant libraries
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
if(!require(Hmisc)) install.packages("Hmisc", repos = "http://cran.us.r-project.org")
if(!require(dslabs)) install.packages("dlabs", repos = "http://cran.us.r-project.org")
library(tidyverse)
library(caret)
librarv(Hmisc)
library(dslabs)
library(knitr)
ds_theme_set()
# MovieLens 10M dataset:
# https://grouplens.org/datasets/movielens/10m/
# http://files.grouplens.org/datasets/movielens/ml-10m.zip
options(timeout = 120)
dl <- "ml-10M100K.zip"</pre>
if(!file.exists(dl))
  download.file("https://files.grouplens.org/datasets/movielens/ml-10m.zip", dl)
ratings_file <- "ml-10M100K/ratings.dat"</pre>
if(!file.exists(ratings_file))
  unzip(dl, ratings file)
movies_file <- "ml-10M100K/movies.dat"</pre>
if(!file.exists(movies_file))
  unzip(dl, movies_file)
ratings <- as.data.frame(str_split(read_lines(ratings_file), fixed("::"), simplify = TRUE),</pre>
                          stringsAsFactors = FALSE)
colnames(ratings) <- c("userId", "movieId", "rating", "timestamp")</pre>
ratings <- ratings %>%
  mutate(userId = as.integer(userId),
         movieId = as.integer(movieId),
         rating = as.numeric(rating),
         timestamp = as.integer(timestamp))
movies <- as.data.frame(str_split(read_lines(movies_file), fixed("::"), simplify = TRUE),</pre>
                         stringsAsFactors = FALSE)
colnames(movies) <- c("movieId", "title", "genres")</pre>
movies <- movies %>%
  mutate(movieId = as.integer(movieId))
movielens <- left_join(ratings, movies, by = "movieId")</pre>
# Final hold-out test set will be 10% of MovieLens data
set.seed(1, sample.kind="Rounding") # if using R 3.6 or later
# set.seed(1) # if using R 3.5 or earlier
test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE)</pre>
edx <- movielens[-test_index,]</pre>
```

```
temp <- movielens[test_index,]

# Make sure userId and movieId in final hold-out test set are also in edx set
final_holdout_test <- temp %>%
    semi_join(edx, by = "movieId") %>%
    semi_join(edx, by = "userId")

# Add rows removed from final hold-out test set back into edx set
removed <- anti_join(temp, final_holdout_test)
edx <- rbind(edx, removed)

rm(dl, ratings, movies, test_index, temp, movielens, removed)</pre>
```

Inspecting Data

The data is contained within a data.frame object, and it contains three integer vectors (userId, movieId, and timestamp), two character vectors (title and genres), and a target vector of doubles (rating). The summary() doesn't provide a very useful overview because many of the variables are not properly encoded, but we do get a somewhat useful understanding of the distribution of the target variable rating given the measures of centrality. The mean and median values for rating are 3.512 and 4.000 respectively.

```
# view summary of edx data set
str(edx)
                   9000055 obs. of 6 variables:
  'data.frame':
   $ userId
              : int 1 1 1 1 1 1 1 1 1 1 ...
   $ movieId : int 122 185 292 316 329 355 356 362 364 370 ...
##
   $ rating
              : num 5555555555...
   $ timestamp: int 838985046 838983525 838983421 838983392 838983392 838984474 838983653 838984885 8
                     "Boomerang (1992)" "Net, The (1995)" "Outbreak (1995)" "Stargate (1994)" ...
##
   $ title
              : chr
                     "Comedy|Romance" "Action|Crime|Thriller" "Action|Drama|Sci-Fi|Thriller" "Action|A
   $ genres
              : chr
class(edx)
## [1] "data.frame"
```

```
summary(edx) %>% kable()
```

```
userId
               movieId
                              rating
                                             timestamp
                                                                title
                                                                                  genres
               Min.: 1
Min.: 1
                              Min. :0.500
                                                                Length:9000055
                                                                                  Length:9000055
                                             Min. :7.897e+08
                                                                                  Class :character
                                                                Class:character
1st
               1st Qu.: 648
                              1st
                                             1st
Qu.:18124
                              Qu.:3.000
                                             Qu::9.468e+08
Median
               Median:
                              Median
                                             Median
                                                                Mode
                                                                                  Mode
:35738
               1834
                              :4.000
                                             :1.035e+09
                                                                :character
                                                                                  :character
Mean :35870
               Mean: 4122
                              Mean : 3.512
                                                                NA
                                                                                  NA
                                             Mean
                                             :1.033e+09
                                                                NA
                                                                                  NA
3rd
               3rd Qu.:
                              3rd
                                             3rd
Qu.:53607
               3626
                              Qu.:4.000
                                             Qu.:1.127e+09
```

userId	movieId	rating	timestamp	title	genres
Max. :71567	Max. :65133	Max. :5.000	Max. :1.231e+09	NA	NA

head(edx) %>% kable()

	userId	movieId	rating	timestamp title	genres
1	1	122	5	838985046 Boomerang (1992)	Comedy Romance
2	1	185	5	838983525 Net, The (1995)	Action Crime Thriller
4	1	292	5	838983421 Outbreak (1995)	Action Drama Sci-Fi Thriller
5	1	316	5	838983392 Stargate (1994)	Action Adventure Sci-Fi
6	1	329	5	838983392 Star Trek: Generations (1994)	Action Adventure Drama Sci-Fi
7	1	355	5	838984474 Flintstones, The (1994)	${\bf Children} {\bf Comedy} {\bf Fantasy}$

Data Pre-processing

As a first step, I created a year column by using a regular expression ("\\((\\d{4}\)\\)\$") to match the characters between the parentheses at the end of the title string and converting the match to a factor. Similarly, I converted the userId, movieId, and genres columns to factors as well for analysis. For the genres column, I also extracted the primary categorization with a regular expression ("^[^|]+") to reduce the number of levels in the factor for analysis. Lastly, I converted the timestamp column to a datetime and reviewed the summary with the recoded values. Already, it's clear that some users have supplied more ratings than others. Moreover, some movies receive more ratings than others. Action, Comedy, and Drama are the genres with the greatest number of reviews. Lastly, different years have different numbers of reviews, with 1995 having the greatest number. All of this information points to the idea that these four variables (userId, movieId, genres, and year) may benefit from regularization to account for the differences in numbers of ratings per category. The date column ranges from 29 January 1996 to 5 January 2009.

userId	movieId	rating	timestamp	title	genres	year	date
59269 : 6616	296 : 31362	Min. :0.500	Min. :7.897e+08	Length:9000	0 %5 tion :2560545	1995 : 786762	Min. :1995-01-09 11:46:49.00
67385:	356:	1st	1st	Class	Comedy	1994:	1st
6360	31079	Qu.:3.000	Qu.:9.468e+	08harac- ter	:2437260	671376	Qu.:2000-01-01 23:11:23.00
14463:	593:	Median	Median	Mode	Drama	1996:	Median
4648	30382	:4.000	:1.035e+09	:charac-	:1741668	593518	:2002-10-24
				ter			21:11:58.00

userId	movieId	rating	timestamp	title	genres	year	date
68259: 4036 27468: 4023	480: 29360 318: 28015	Mean :3.512 3rd Qu.:4.000	Mean :1.033e+09 3rd Qu.:1.127e+	NA NA -09	Adventure: 753650 Crime : 529521	1999: 489537 1993: 481184	Mean :2002-09-21 13:45:07.38 3rd Qu.:2005-09-15
19635 : 3771 (Other):8	110 : 26212 97 (6t ther):88	Max. :5.000 82 36A 5	Max. :1.231e+09 NA	NA NA	Horror: 233074 (Other): 744337	1997: 429751 (Other):55	02:21:21.00 Max. :2009-01-05 05:02:16.00 4 792 7

```
head(edx.mutated) %>% kable()
```

	userId	movieId	rating	timestamp	title	genres	year	date
1	1	122	5	838985046	Boomerang (1992)	Comedy	1992	1996-08-02
								11:24:06
2	1	185	5	838983525	Net, The (1995)	Action	1995	1996-08-02
								10:58:45
4	1	292	5	838983421	Outbreak (1995)	Action	1995	1996-08-02
								10:57:01
5	1	316	5	838983392	Stargate (1994)	Action	1994	1996-08-02
								10:56:32
6	1	329	5	838983392	Star Trek: Generations	Action	1994	1996-08-02
					(1994)			10:56:32
7	1	355	5	838984474	Flintstones, The (1994)	Children	1994	1996-08-02
					. ,			11:14:34

Training and Testing Subsets

I created a 20% partition on the target variable rating to generate a testing index. I used that index to subset the original data so that I could trian my model on 80% of the original data and test it on the remaining 20%. I used the semi_join() to ensure that all movies represented in the training set were also present in the testing set.

Exploratory Data Analysis

Predictor Correlation

I began my exploratory data analysis by computing a Spearman correlation matrix to determine if any of the variables were too highly correlated. The highest correlation (0.50) exists between the movieId and timestamp variables, but the correlation isn't very strong, so it shouldn't affect analysis.

```
# correlation matrix
edx.train %>%
select(-c(rating, genres, title, date)) %>%
as.matrix() %>%
Hmisc::rcorr(type = "spearman")
```

```
##
             userId movieId timestamp year
## userId
               1.00
                       0.01
                                  0.02 0.00
                        1.00
                                  0.50 0.33
## movieId
               0.01
## timestamp
               0.02
                       0.50
                                  1.00 0.22
## year
               0.00
                       0.33
                                  0.22 1.00
##
## n= 7197526
##
##
## P
##
             userId movieId timestamp year
                    0.000
                            0.000
## userId
                                       0.662
             0.000
                             0.000
                                       0.000
## movieId
## timestamp 0.000 0.000
                                       0.000
             0.662 0.000
                             0.000
## year
```

Stratification, Summary, and Visualization

Next, I stratified the data by each categorical predictor (movieId, userId, genres, and year) in order to uncover patterns in the distribution of rating counts and measures of centrality of the rating (mean and standard deviation).

Stratification by movieId As there is a large range of number of reviews (25114), I am justified in applying regularization to the movieId bias term later on in the analysis to lessen the impact of movies with fewer reviews on the predictions.

movieId	movie.avg	movie.sd	rating.count
296	4.155604	1.0012415	25115
356	4.011619	0.9708657	24916
593	4.202483	0.8405775	24402
480	3.663599	0.9378060	23472
318	4.457967	0.7161132	22387
110	4.083158	0.9527615	20870
457	4.010198	0.7773298	20838
589	3.926932	0.9091842	20741
260	4.222360	0.9118768	20577
150	3.888378	0.8519416	19472

 $\frac{\text{range}}{25114}$

A histogram of the distribution of rating counts among movies further illustrates the point above: it is more common for movies to have 2,000 or fewer reviews. The distribution is not normal; it has positive skew (that is, its right tail is longer due to the higher prevalence of smaller values).

Distribution of Count of Ratings among Movies

Stratification by userId Stratification by userId reveals a similar but less dramatic range in rating counts between users (5317) that justifies a regularization procedure on the userId bias term.

movieId	user.avg	user.sd	rating.count
296	4.155604	1.0012415	25115
356	4.011619	0.9708657	24916
593	4.202483	0.8405775	24402
480	3.663599	0.9378060	23472
318	4.457967	0.7161132	22387
110	4.083158	0.9527615	20870
457	4.010198	0.7773298	20838
589	3.926932	0.9091842	20741
260	4.222360	0.9118768	20577
150	3.888378	0.8519416	19472

 $\frac{\text{range}}{5317}$

The histogram of rating counts among users also has positive skew, indicating that smaller values predominate.

Distribution of Count of Ratings among Users

Stratification by genres Stratification by genres indicates that Action movies are the most frequently rated, whereas Film-Noir movies receive the highest rating on average. A large range of rating counts between genres (2047641) justifies a regularization procedure on the genres bias term.

genres	genre.avg	count
Action	3.421619	2047647
Comedy	3.453687	1949021
Drama	3.666679	1392410
Adventure	3.564667	602730
Crime	3.871234	423772
Horror	3.032229	186649
Animation	3.550586	174536
Children	3.246862	144745
Thriller	3.531206	75754
Documentary	3.788425	64776
Sci-Fi	3.430775	40101
Mystery	3.699514	24472
Fantasy	3.313265	20821
Musical	3.637403	13031
Film-Noir	4.142583	12754
Western	3.533891	12260
Romance	3.283274	10188
War	3.684239	1840
IMAX	2.230769	13
(no genres listed)	3.666667	6

genres	genre.avg	count
Film-Noir	4.142583	12754
Crime	3.871234	423772
Documentary	3.788425	64776
Mystery	3.699514	24472
War	3.684239	1840
Drama	3.666679	1392410
(no genres listed)	3.666667	6
Musical	3.637403	13031

genres	genre.avg	count
Adventure	3.564667	602730
Animation	3.550586	174536
Western	3.533891	12260
Thriller	3.531206	75754
Comedy	3.453687	1949021
Sci-Fi	3.430775	40101
Action	3.421619	2047647
Fantasy	3.313265	20821
Romance	3.283274	10188
Children	3.246862	144745
Horror	3.032229	186649
IMAX	2.230769	13

 $\frac{\text{range}}{2047641}$

A bar graph illustrates the stark differences in rating counts between genres.

Stratification by year Stratification by year highlights two points. First, movies that were released in 1946 have the highest average rating. Second, movies released in the 1990's consistently have the highest number of ratings. The range in number of ratings between the most- and least-rated years is 629022, justifying a regularization procedure on the year bias term.

year	year.avg	rating.count
1934	4.054029	4766
1946	4.053627	13538
1942	4.046771	16089
1941	4.020090	19263
1931	4.018929	6181
1957	4.012780	19522
1954	4.006534	24104
1927	4.000604	3310
1962	3.990199	26834
1944	3.990120	9615

year	year.avg	rating.count
1952	3.984296	9265
1936	3.963973	3317
1972	3.954009	31658
1935	3.947997	4942
1949	3.944507	6226
1948	3.943099	7926
1951	3.942791	17366
1924	3.942667	375
1938	3.941675	6258
1920	3.930851	470

year	year.avg	rating.count
1994	3.472427	536780
1985	3.469999	111846
1989	3.466854	182737
1988	3.465090	137239
1986	3.461705	140594
1978	3.460758	43830
2003	3.458629	169104
2008	3.454059	21386
1999	3.452428	391646
2002	3.451468	217277
1995	3.442592	629047
2001	3.439443	244347
1992	3.431593	189228
1998	3.416500	321905
1990	3.397056	184750
2000	3.394694	306213
1997	3.365133	343906
1915	3.363636	143
1996	3.362030	474475
1919	3.339130	115

year	year.avg	rating.count
1995	3.442592	629047
1994	3.472427	536780
1996	3.362030	474475
1999	3.452428	391646
1993	3.496240	384853
1997	3.365133	343906
1998	3.416500	321905
2000	3.394694	306213
2001	3.439443	244347
2002	3.451468	217277
1992	3.431593	189228
1990	3.397056	184750
1989	3.466854	182737
2003	3.458629	169104
2004	3.530170	163521
1991	3.572297	157427
1986	3.461705	140594
1987	3.505349	137505
1988	3.465090	137239
1984	3.558070	130480

 $\frac{\text{range}}{629022}$

A bar graph of rating counts by year clearly illustrates the higher frequency of ratings among movies released in the 1990's.

Rating Counts by Year

Bias Term Regularization

Setup and Overview

The next step was to calculate regularized bias terms for the selected predictors (movieId, userId, genres, and year). I first stored the overall mean (mu) and test ranges for lambda in variables. I ultimately ran my code using the variable even.more.lambdas after testing other ranges. The benefit of the structure of even.more.lambdas is that exponentiation allowed me to explore a wide range of values for lambda with a higher level of granularity as lower values.

```
# regularization procedures: define overall average `mu` and bias penalty ranges to test
mu <- mean(edx.train$rating)
lambdas <- seq(0, 20, 0.1)
more.lambdas <- seq(0, 100, 5)
even.more.lambdas <- 10^seq(-2, 2, 0.1)</pre>
```

Regularization followed the same general procedure for each term. For the sake of brevity, I have summarized the procedure here:

- 1. Subtract the overall mean (mu) from each rating to calculate the difference.
- 2. Stratify by the predictor in question.
- 3. Determine the number of ratings in each stratum.
- 4. Calculate the sum of the difference between the mean (mu) and each rating.
- 5. Test a range of values for lambda (the regularization term).
- 6. Select the value for lambda that minimizes RMSE.
- 7. Store the regularized bias terms with the ideal value for lambda in a variable for future modeling.

Movie Bias Term Regularization

```
{\it \# find ideal lambda for movie regularization}
movie.rmses <- sapply(even.more.lambdas, function(x) {</pre>
  edx.train %>%
    mutate(mu = mean(rating),
           y.mu.diff = rating - mu) %>%
    group_by(movieId) %>%
    summarise(n.movies = n(),
              sum.movie.diff = sum(y.mu.diff),
              b_lambda = sum.movie.diff / (n.movies + x)) %>%
    left_join(edx.test, by = "movieId") %>%
    mutate(pred = mu + b_lambda) %>%
    filter(!is.na(rating)) %>%
    summarise(rmse = RMSE(pred, rating)) %>%
    pull(rmse)
})
# cbind(lambdas, movie.rmses)
# cbind(more.lambdas, movie.rmses)
cbind(even.more.lambdas, movie.rmses) %>% kable()
```

even.more.lambdas	movie.rmses
0.0100000	0.9437139
0.0125893	0.9437137
0.0158489	0.9437135
0.0199526	0.9437132
0.0251189	0.9437128
0.0316228	0.9437124
0.0398107	0.9437119
0.0501187	0.9437112
0.0630957	0.9437104
0.0794328	0.9437094
0.1000000	0.9437082
0.1258925	0.9437068
0.1584893	0.9437051
0.1995262	0.9437030
0.2511886	0.9437007
0.3162278	0.9436980
0.3981072	0.9436949
0.5011872	0.9436917
0.6309573	0.9436882
0.7943282	0.9436847
1.0000000	0.9436815
1.2589254	0.9436790
1.5848932	0.9436776
1.9952623	0.9436783
2.5118864	0.9436821
3.1622777	0.9436904
3.9810717	0.9437054
5.0118723	0.9437297

even.more.lambdas	movie.rmses
6.3095734	0.9437664
7.9432823	0.9438199
10.0000000	0.9438952
12.5892541	0.9439986
15.8489319	0.9441375
19.9526231	0.9443209
25.1188643	0.9445590
31.6227766	0.9448642
39.8107171	0.9452505
50.1187234	0.9457342
63.0957344	0.9463336
79.4328235	0.9470691
100.0000000	0.9479632

 $\frac{\text{rmse}}{0.9436776}$

The ideal lambda for regularization of the movieId bias term is 1.5848932.

User Bias Term Regularization

```
# find ideal lambda for user regularization
user.rmses <- sapply(even.more.lambdas, function(x) {</pre>
  edx.train %>%
   left_join(b.movie, by = "movieId") %>%
    mutate(mu = mean(rating),
           y.mu.diff = rating - mu - b_movie) %>%
    group_by(userId) %>%
    summarise(n.users = n(),
              sum.user.diff = sum(y.mu.diff),
              b_lambda = sum.user.diff / (n.users + x)) %>%
    left_join(edx.test, by = "userId") %>%
    mutate(pred = mu + b_lambda) %>%
    filter(!is.na(rating)) %>%
    summarise(rmse = RMSE(pred, rating)) %>%
    pull(rmse)
})
cbind(even.more.lambdas, user.rmses) %>% kable()
```

even.more.lambdas	user.rmses
0.0100000	0.9951257
0.0125893	0.9951249
0.0158489	0.9951239
0.0199526	0.9951226
0.0251189	0.9951211
0.0316228	0.9951191
0.0398107	0.9951166
0.0501187	0.9951135
0.0630957	0.9951096
0.0794328	0.9951047
0.1000000	0.9950985
0.1258925	0.9950909
0.1584893	0.9950813
0.1995262	0.9950693
0.2511886	0.9950544
0.3162278	0.9950360
0.3981072	0.9950133
0.5011872	0.9949853
0.6309573	0.9949513
0.7943282	0.9949101
1.0000000	0.9948608
1.2589254	0.9948026
1.5848932	0.9947350
1.9952623	0.9946584
2.5118864	0.9945742
3.1622777	0.9944854
3.9810717	0.9943975
5.0118723	0.9943188
6.3095734	0.9942616
7.9432823	0.9942420
10.0000000	0.9942804
12.5892541	0.9944013

even.more.lambdas	user.rmses
15.8489319	0.9946321
19.9526231	0.9950026
25.1188643	0.9955431
31.6227766	0.9962832
39.8107171	0.9972506
50.1187234	0.9984692
63.0957344	0.9999582
79.4328235	1.0017312
100.0000000	1.0037942

 $\frac{\mathrm{rmse}}{0.994242}$

The ideal lambda for regularization of the userId bias term is 7.9432823.

Genre Bias Term Regularization

```
# find ideal lambda for genre regularization
genre.rmses <- sapply(even.more.lambdas, function(x) {
  edx.train %>%
```

even.more.lambdas	genre.rmses
0.0100000	1.059639
0.0125893	1.059639
0.0158489	1.059639
0.0199526	1.059639
0.0251189	1.059639
0.0316228	1.059639
0.0398107	1.059639
0.0501187	1.059639
0.0630957	1.059639
0.0794328	1.059639
0.1000000	1.059639
0.1258925	1.059639
0.1584893	1.059639
0.1995262	1.059639
0.2511886	1.059639
0.3162278	1.059639
0.3981072	1.059639
0.5011872	1.059639
0.6309573	1.059639
0.7943282	1.059639
1.0000000	1.059639
1.2589254	1.059639
1.5848932	1.059639
1.9952623	1.059639
2.5118864	1.059639
3.1622777	1.059639
3.9810717	1.059639
5.0118723	1.059639
6.3095734	1.059639
7.9432823	1.059639
10.0000000	1.059639
12.5892541	1.059639
15.8489319	1.059639
19.9526231	1.059639

even.more.lambdas	genre.rmses
25.1188643	1.059639
31.6227766 39.8107171	1.059639 1.059639
50.1187234	1.059639
63.0957344 79.4328235	$1.059639 \\ 1.059639$
100.0000000	1.059639

```
1.genre <- even.more.lambdas[which.min(genre.rmses)]</pre>
# genre regularization
edx.train %>%
 left_join(b.movie, by = "movieId") %>%
  left_join(b.user, by = "userId") %>%
  mutate(mu = mean(rating),
         y.mu.diff = rating - mu - b_movie - b_user) %>%
  group_by(genres) %>%
  summarise(n.genres = n(),
            sum.genre.diff = sum(y.mu.diff),
            b_lambda = sum.genre.diff / (n.genres + 1.genre)) %>%
  left_join(edx.test, by = "genres") %>%
  mutate(pred = mu + b_lambda) %>%
  filter(!is.na(rating)) %>%
  summarise(rmse = RMSE(pred, rating)) %>%
  kable()
```

 $\frac{\text{rmse}}{1.059639}$

The ideal lambda for regularization of the genres bias term is 0.7943282.

Year Bias Term Regularization

```
# find ideal lambda for year regularization
year.rmses <- sapply(even.more.lambdas, function(x) {
  edx.train %>%
```

```
left_join(b.movie, by = "movieId") %>%
   left_join(b.user, by = "userId") %>%
    left_join(b.genre, by = "genres") %>%
    mutate(mu = mean(rating),
           y.mu.diff = rating - mu - b_movie - b_user - b_genre) %>%
    group_by(year) %>%
    summarise(n.year = n(),
              sum.year.diff = sum(y.mu.diff),
              b_lambda = sum.year.diff / (n.year + x)) %>%
   left_join(edx.test, by = "year") %>%
    mutate(pred = mu + b_lambda) %>%
    filter(!is.na(rating)) %>%
    summarise(rmse = RMSE(pred, rating)) %>%
    pull(rmse)
})
cbind(even.more.lambdas, year.rmses) %>% kable()
```

year.rmses	even.more.lambdas
1.059873	0.0100000
1.059873	0.0125893
1.059873	0.0158489
1.059873	0.0199526
1.059873	0.0251189
1.059873	0.0316228
1.059873	0.0398107
1.059873	0.0501187
1.059873	0.0630957
1.059873	0.0794328
1.059873	0.1000000
1.059873	0.1258925
1.059873	0.1584893
1.059873	0.1995262
1.059873	0.2511886
1.059873	0.3162278
1.059873	0.3981072
1.059873	0.5011872
1.059873	0.6309573
1.059873	0.7943282
1.059873	1.0000000
1.059873	1.2589254
1.059873	1.5848932
1.059873	1.9952623
1.059873	2.5118864
1.059873	3.1622777
1.059873	3.9810717
1.059873	5.0118723
1.059873	6.3095734
1.059873	7.9432823
1.059873	10.0000000
	10 50005 11
1.059873 1.059873	12.5892541 15.8489319

even.more.lambdas	year.rmses
19.9526231	1.059874
25.1188643	1.059874
31.6227766	1.059874
39.8107171	1.059874
50.1187234	1.059875
63.0957344	1.059875
79.4328235	1.059876
100.0000000	1.059877

```
1.year <- even.more.lambdas[which.min(year.rmses)]</pre>
# year regularization
edx.train %>%
  left_join(b.movie, by = "movieId") %>%
 left_join(b.user, by = "userId") %>%
 left_join(b.genre, by = "genres") %>%
  mutate(mu = mean(rating),
         y.mu.diff = rating - mu - b_movie - b_user - b_genre) %>%
  group_by(year) %>%
  summarise(n.year = n(),
            sum.year.diff = sum(y.mu.diff),
            b_year = sum.year.diff / (n.year + 1.year)) %>%
  left_join(edx.test, by = "year") %>%
  mutate(pred = mu + b_year) %>%
  filter(!is.na(rating)) %>%
  summarise(rmse = RMSE(pred, rating)) %>%
  kable()
```

 $\frac{\text{rmse}}{1.059873}$

The ideal lambda for regularization of the year bias term is 0.01.

Results

Model Evaluation

Naive Model ("Guessing")

I started by modeling random guesses for the rating variable by sampling from a discrete uniform distribution between 0.5 and 5 inclusive with replacement. Random guessing yields a RMSE of greater than 1.9. This will serve as our baseline for evaluation.

[1] 1.941357

Movie Bias Model

After adding in a regularized bias term for movield, we get a significantly improves RMSE of 0.9436776.

```
edx.test %>%
  left_join(b.movie, by = "movieId") %>%
  mutate(pred = mu + b_movie) %>%
  filter(!is.na(pred)) %>%
  summarise(rmse = RMSE(rating, pred)) %>%
  kable()
```

 $\frac{\mathrm{rmse}}{0.9436776}$

Movie + User Bias Model

Including a regularized bias term for userId further improves the RMSE of our predictions to 0.865678.

```
edx.test %>%
  left_join(b.movie, by = "movieId") %>%
  left_join(b.user, by = "userId") %>%
  mutate(pred = mu + b_movie + b_user) %>%
  filter(!is.na(pred)) %>%
  summarise(rmse = RMSE(rating, pred)) %>%
  kable()
```

 $\frac{\text{rmse}}{0.865678}$

Movie + User + Genre Bias Model

Adding the regularized bias term for genres provides a very small improvement to RMSE: 0.8655764.

```
edx.test %>%
  left_join(b.genre, by = "genres") %>%
  left_join(b.movie, by = "movieId") %>%
  left_join(b.user, by = "userId") %>%
  mutate(pred = mu + b_movie + b_user + b_genre) %>%
  filter(!is.na(pred)) %>%
  summarise(rmse = RMSE(rating, pred)) %>%
  kable()
```

 $\frac{\text{rmse}}{0.8655764}$

Movie + User + Genre + Year Bias Model

Adding the final regularized bias term for year improves our RMSE by another small margin: 0.8653371

```
edx.test %>%
  left_join(b.year, by = "year") %>%
  left_join(b.genre, by = "genres") %>%
  left_join(b.movie, by = "movieId") %>%
  left_join(b.user, by = "userId") %>%
  mutate(pred = mu + b_movie + b_user + b_genre + b_year) %>%
  filter(!is.na(pred)) %>%
  summarise(rmse = RMSE(rating, pred)) %>%
  kable()
```

 $\frac{\text{rmse}}{0.8653371}$

Our final model is as follows: $rating = \mu + b_{movie}(\lambda) + b_{user}(\lambda) + b_{genre}(\lambda) + b_{genre}(\lambda)$ where mu is the overall average of rating in the training set, and b_predictor(lambda) are the regularized bias terms for each of the selected predictors.

Final Model Performance

When tested against the pre-processed final_holdout_test set, the model yields a final RMSE of 0.8653659 (less than 0.86549).

```
left_join(b.year, by = "year") %>%
left_join(b.genre, by = "genres") %>%
left_join(b.movie, by = "movieId") %>%
left_join(b.user, by = "userId") %>%
mutate(pred = mu + b_movie + b_user + b_genre + b_year) %>%
filter(!is.na(pred)) %>%
summarise(final.rmse = RMSE(rating, pred)) %>%
kable()
```

 $\frac{\text{final.rmse}}{0.8653659}$

Conclusion

Summary

In conclusion, a predictive model for ratings that includes regularized bias terms for the movieId, userId, genres, and year predictors yielded the lowest RMSE and was therefore the best model. The model can be represented with the following equation: $rating = \mu + b_{movie}(\lambda) + b_{user}(\lambda) + b_{genre}(\lambda) + b_{genre}(\lambda) + b_{genre}(\lambda)$

Limitations and Future Work

Due to memory (RAM) limitations, some of the caret library's more powerful models were not available to me as options. With greater processing power, I would like to compare the results of the model I have developed to those of a k-nearest neighbors classification model and a random forest model. Moreover, I would like to implement k-folds cross-validation to identify the ideal tuning parameters for each of the models (e.g. k and mtry respectively).