류체흐름속에서 큰 스톡스수를 가지는 알갱이재료의 운동에 대한 한가지 오일러-오일러방법

안철호, 정성록

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《첨단돌파전을 힘있게 벌려야 나라의 과학기술전반을 빨리 발전시키고 지식경제의 토대를 구축해나갈수 있습니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 39폐지)

론문에서는 최신흐름해석체계로도 취급할수 없는 스톡스수가 큰 알갱이재료의 운동에 대한 새로운 오일러모형을 제기하고 FLUENT의 2차개발로 수치모의할수 있게 하였다.

1. 매질운동의 모형화

알갱이매질과 류체매질이 련속성을 가지며 서로 완전침투성을 가진다고 가정한다. 이로부터 2개 매질의 운동은 련속매질에서의 련속방정식과 운동방정식으로 표시할수 있다.[1, 2]

1) 류체흐름의 기본방정식

$$\frac{\partial}{\partial t}(\varepsilon \rho_f) + \nabla \cdot (\varepsilon \rho_f \boldsymbol{v}) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\varepsilon \rho_f \mathbf{v}) + \nabla \cdot (\varepsilon \rho_f \mathbf{v} \mathbf{v}) = -\varepsilon \nabla p + \nabla \cdot \varepsilon \tau + \varepsilon \rho_f \mathbf{g} + \mathbf{F}_{sf}$$
 (2)

여기서 ε 은 다공도, ho_f 는 류체의 밀도, p는 류체의 압력, au는 류체의 점성응력, $m{v}$ 는 류체의 속도벡토르이다.

2) 알갱이흐름이 기본방정식

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s \boldsymbol{v}_s) + \nabla \cdot (\varepsilon_s \rho_s \boldsymbol{v}_s \boldsymbol{v}_s) = -\varepsilon_s \nabla p - \nabla p_s + \nabla \cdot \boldsymbol{\tau}_s + \varepsilon_s \rho_s \boldsymbol{g} + \boldsymbol{F}_{sf}$$
(3)

여기서 ε_s 는 다공도, p_s 는 고체압력, τ_s 는 알갱이무리의 운동에 의하여 생기는 응력, $\mathbf{F}_{fs} = -\mathbf{F}_{sf}$ 는 류체와 알갱이사이의 호상작용에 의한 운동량원천항, ρ_s , \mathbf{v}_s 는 알갱이의 밀도와 속도벡토르이다.

알갱이흐름의 질량보존은 다음의 방정식으로 표시된다.

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla \cdot (\varepsilon_s \rho_s \boldsymbol{v}_s) = 0 \tag{4}$$

3) 고체압력의 모형화

스톡스수는 다음과 같이 표시된다.

$$St = \frac{\tau_s}{\tau_f}$$

여기서 $au_s = rac{
ho_s d_s^2}{\mu_f}, \ au_f = rac{L_f}{V_f}$ 이다.

 L_f, V_f, d_s 는 각각 류체흐름계의 특성길이와 특성속도, 알갱이의 직경이다.

알갱이의 매질밀도가 상수이므로 일면적비압축성은 다음의 식으로 표현된다.[4]

$$\varepsilon_{s} \leq \varepsilon_{\text{max}}$$
 (5)

$$p_s(\varepsilon_{\text{max}} - \varepsilon_s) = 0, \ p_s \ge 0$$
 (6)

4) 마찰점성과 충돌점성

Schaeffer의 마찰점성모형[1, 3]을 그대로 리용한다.

$$\mu_{fr} = \frac{p_s \sin \phi}{\sqrt{I_{2D}}}$$

여기서 ϕ 는 내부마찰각, I_{2D} 는 응력텐소르의 2차불변량이다.

충돌점성을 다음의 식으로 표시할수 있다.

 $\varepsilon_s < 0.991 \varepsilon_{\lim}$ 이면 $\mu_{col} = \beta_2 \rho_s \varepsilon_s^2 S_s$, $\varepsilon_s > 0.991 \varepsilon_{\lim}$ 이면 $\mu_{sol} = 0$ 이다. β_2 도 알갱이의 특성과 관련되는 상수이다.

5) 류체와 알갱이들사이의 호상작용힘

류체가 1개 알갱이에 주는 힘의 크기는 DiFelice모형에 의하면

$$\boldsymbol{F}_{f,i} = \boldsymbol{F}_{f0,i} \varepsilon^{-(\chi+1)}$$

이다. 여기서

$$F_{f0,i} = 0.125C_{d0.i}\rho_f\pi d_{pi}^2 \varepsilon^2 | \boldsymbol{v}_f - \boldsymbol{v}_s | (\boldsymbol{v}_f - \boldsymbol{v}_s)$$

$$\chi = 3.7 - 0.65 \exp\left[-\frac{(1.5 - \log_{10} \operatorname{Re}_i)^2}{2}\right]$$

$$C_{d0.i} = \left(0.63 + \frac{4.8}{\sqrt{\operatorname{Re}_i}}\right), \operatorname{Re}_i = \frac{\rho_f d_{pi} \varepsilon}{\mu_f} | \boldsymbol{v}_f - \boldsymbol{v}_s |$$

여기서 ho_f 는 류체의 밀도, μ_f 는 류체의 점성, d_{pi} 는 알갱이의 직경이다.

단위체적안에서의 알갱이수를 n_s 라고 할 때 단위체적안에서의 알갱이들에 작용하는 전체 힘은 다음과 같다.

$$\boldsymbol{F}_{fs} = n_s \boldsymbol{F}_{f,i}$$

2. 모형방정식계의 리산화

1) 기본방정식의 리산화

식 (3)의 고체압력항을 제외하면 기본방정식들은 FLUENT로 계산한다. p_s 를 계산하기 위하여 먼저 식 (4)를 시간에 관하여 다음과 같이 리산화한다.

$$\varepsilon_s^{n+1} = \varepsilon_s^n - \Delta t \nabla \cdot \left(\varepsilon_s^{n+\frac{1}{2}} \boldsymbol{v}_s^{n+\frac{1}{2}} \right)$$
 (7)

식 (3)의 량변을 ρ_s 로 나누고 시간에 관하여 다음과 같이 리산화한다.

$$\varepsilon_{s}^{n+\frac{1}{2}} \boldsymbol{v}_{s}^{n+\frac{1}{2}} = \varepsilon_{s}^{n} \boldsymbol{v}^{n} - \frac{\Delta t}{2} \left[\nabla \cdot (\varepsilon_{s} \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}) + \frac{\varepsilon_{s} \nabla p}{\rho_{s}} - \frac{\nabla \cdot \tau_{s}}{\rho_{s}} - \varepsilon_{s} \boldsymbol{g} - \frac{\boldsymbol{F}_{fs}}{\rho_{s}} \right] - \frac{\Delta t}{2\rho_{s}} \nabla p_{s} = \varepsilon_{s}^{n} \boldsymbol{v}_{s}^{n} - \frac{\Delta t}{2} \boldsymbol{F}^{n} - \frac{\Delta t}{2\rho_{s}} \nabla p_{s}$$

$$(8)$$

식 (8)을 (7)에 대입하면

$$\varepsilon_s^{n+1} = \varepsilon_s^n - \Delta t \nabla \cdot (\varepsilon_s^n \boldsymbol{v}_s^n) + \frac{\Delta t}{2} \nabla \cdot \boldsymbol{F}^n + \frac{\Delta t^2}{2\rho_s} \nabla^2 p_s$$

이다. 이로부터 다음의 식을 얻는다.

$$\varepsilon_{\text{max}} - \varepsilon_s^{n+1} = \varepsilon_{\text{max}} - \varepsilon_s^n + \Delta t \nabla \cdot (\varepsilon_s^n \boldsymbol{v}_s^n) - \frac{\Delta t^2}{2} \nabla \cdot \boldsymbol{F}^n - \frac{\Delta t^2}{2\rho_s} \nabla^2 p_s \tag{9}$$

여기서

$$\boldsymbol{F} = \nabla \cdot (\varepsilon_{s} \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}) + \frac{\varepsilon_{s} \nabla p}{\rho_{s}} - \frac{\nabla \cdot \tau_{s}}{\rho_{s}} - \varepsilon_{s} \boldsymbol{g} - \frac{\boldsymbol{F}_{fs}}{\rho_{s}}$$

2) ∇²p_s의 리산화

 $abla^2 p_s$ 를 다음과 같이 리산화하였다.[5]

$$(\nabla^2 p_s)_i = \sum_j \Delta V_j \frac{p_{ij} r_{ij} \cdot \nabla_i W_{ij}}{|r_{ij}^2| + \delta h_i^2}$$

여기서 ΔV_j 는 리산화요소의 체적, r_{ij} 는 고찰하는 요소와 린접요소사이의 거리, $p_{ij}=p_i-p_j$ 로서 고찰하는 요소와 린접요소에서의 압력차, $\nabla_i W_{ij}$ 는 고찰하는 요소에서 평활함수의 도함수, h_i 는 고찰하는 요소에서 평활거리이다.

3차원의 경우 평활함수 W_{ii} 는 다음의 3차스플라인함수를 리용한다.

$$W_{ij} = \frac{3}{2\pi h_i^3} \begin{cases} \frac{2}{3} - s^2 + \frac{s^3}{2}, & s \le 1\\ \frac{(2-s)^3}{6}, & 1 < s \le 2\\ 0, & s > 2 \end{cases}$$

여기서 $s = |r_{ij}|/h_i$ 이다.

3) 기라항의 리산화

 $\nabla \cdot (\varepsilon_s^n \boldsymbol{v}_s^n)$ 에 대한 리산화는 매 요소에서 가우스적분을 리용하여 리산화하였다.

$$\nabla \cdot (\varepsilon_s^n \boldsymbol{v}_s^n) = \frac{1}{\Delta V} \int_{\partial \Delta V} \varepsilon_s^n (\boldsymbol{v}_{s,x}^n n_x + \boldsymbol{v}_{s,y}^n n_y + \boldsymbol{v}_{s,z}^n n_z) ds$$
 (10)

여기서 ΔV 는 고찰하는 요소의 체적이며 $\partial \Delta V$ 는 요소의 겉면이다. 그리고 $\nabla \cdot ({\pmb F}^n)$ 에 대한 리산화는 모든 요소들에서 ${\pmb F}^n$ 을 구한 후 다음과 같이 리산화하였다.

$$\nabla \cdot (\boldsymbol{F}^{n})_{i} = \sum_{j} \Delta V_{j} (\boldsymbol{F}_{j}^{n} - \boldsymbol{F}_{i}^{n}) \cdot \nabla_{i} W_{ij}$$

4) 최량화문제의 정식화

우에서 리산화한 식들을 조건 (5), (6)에 대입하고 고체압력을 공간리산화계에서의 벡 토르로 표시하면 다음과 같은 형태의 식으로 쓸수 있다.

$$Ap + b \ge 0$$

$$p \ge 0$$

$$p^{T}(Ap + b) = 0$$
(11)

여기서 p는 리산요소들에서 p_s 의 값들로 이루어진 압력벡토르, A는 식 (9)의 $\frac{\Delta t^2}{2\rho_s}\nabla^2 p_s$ 에 대한 리산화행렬, b는 식 (9)에서 오른변의 기타 나머지항들에 대한 리산화벡토르를 의미한다. 이 조건은 다음과 같은 조건부최량화문제에로 넘길수 있다.[4]

$$F = \frac{1}{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{p} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{p}$$

$$\min F(\boldsymbol{p}), \ \boldsymbol{p} \ge 0$$
(12)

우의 조건부최량화문제를 변수변환법을 리용하여 무조건최량화문제에로 넘긴다. 즉 $p_j = {p'_j}^2 \ (j=1-N,\ N$ 은 리산화한 요소의 총수)으로 교체한다. 이때 식 (12)는 다음의 무조건최량화문제로 쓸수 있다.

$$F = \frac{1}{2} \boldsymbol{p}'^2 A \boldsymbol{p}'^2 + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{p}'^2$$

5) 경계조건

입구와 출구를 통한 알갱이매질흐름은 련속방정식의 질량원천으로 모형화하는데 그 것들은 입구에서는 정의값, 출구에서는 부의값을 가진다. 출구에서는 내부요소에서 경계요소로 향하는 모든 립자가 경계면을 통하여 빠져나간다고 가정한다. 벽에는 거울반사벽경계조건을 적용한다.

6) 알고리듬

FLUENT로 류체-알갱이다상매질흐름특성량들을 예측하며 사용자정의함수로 코드화한 론문의 방법으로 알갱이매질의 흐름특성량을 수정하는 일종의 예측자-수정자도식을 구성한다.

- ① 류체와 알갱이매질흐름마당을 초기화한다.
- ② FLUENT의 SIMPLE법으로 류체흐름마당을 계산한다.
- ③ FLUENT의 SIMPLE법으로 알갱이흐름마당을 계산한다.
- ④ 식 (10)을 리용하여 행렬 A를 작성하고 흐름마당과 UDF로 코드화한 식 (11), (12)를 리용하여 벡토르 b를 작성한다.
 - ⑤ UDF로 코드화한 그라디엔트법을 리용하여 p_s 를 계산한다.
 - (6) 풀이가 수렴할 때까지 (2)~(6) 단계를 반복한다.

3. 유효성검증

실험결과와의 비교를 위하여 선행연구[2]의 모형을 리용하였다. 원통직경 6.9cm, 길

그림 1. 계산모형

이 49cm (그림 1), 알갱이직경 5.95mm, 밀도 2470kg/m³, 초기알갱이는 원통의 절반까지 채웠으며 원통의 회전수는 30~80r/min까지 변화시켰다.

기체의 운동은 중요하지 않으므로 계산과정에 류체와 알갱이의 호상작용은 고려하지 않는다. 또한 내부마찰각

∅는 30°로 하였다. 그림 2의 비교결과는 론문의 방법으로 계산한 결과가 실험 값이나 리산요소법의 결과와 매우 잘 일치한다는것을 보여주고있다.

맺 는 말

류체속에서 스톡스수가 큰 알갱이무리의 운동을 오일러견지에서 취급하는 새로운 모형화방법을 확립하였다. 오일러방법의 우점은 콤퓨터기억용량에 대한 요구가 높지 않고 계산비용이 적은것이다. 보

그림 2. 회전수에 따르는 쌓임각의 변화

다 더 중요한 우점은 수렴성이 라그랑쥬방법에 비하여 훨씬 더 좋은것이다.

참 고 문 헌

- [1] An Chol Ho et al.; International Journal of Multiphase Flow, 92, 140, 2017.
- [2] K. Yamane et al.; Physics of Fluids, 10, 6, 1419, 1998.
- [3] R. Narain et al.; ACM transactions on Graphics, 30, 5, 1, 2011.
- [4] Y. Demagh et al.; Powder Technology, 224, 260, 2012.
- [5] S. J. Cummins et al.; Journal of Computational Physics, 152. 584, 1999.

주체107(2018)년 3월 10일 원고접수

An Eulerian-Eulerian Approach for Motion of Granular Material with Large Stokes Number in Fluid Flows

An Chol Ho, Jong Song Rok

This paper presents a new Eulerian-Eulerian approach for modeling the motion of solid particles with large Stokes number in fluid flows. The approach, as compared with a previous experimental and Lagrangian numerical results, is validated.

Key words: granular flow, Multi-fluid, CFD