Appunti di

Nuclear and Particle Physics

Valerio Favitta vfavitta@gmail.com

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Indice

1	Introduzione							
	1.1	Particelle elementari ed interazione	3					
	1.2	Evoluzione storica	4					
	1.3	Sonde sperimentali	5					
	1.4	Scala di energia	5					
	1.5	Relazioni importanti	6					
	1.6	Evoluzione post-Rutherford	6					
	1.7	Scoperta del neutrone di Chadwick	6					
	1.8	Derivazione formula di Bethe-Bloch	8					
	1.9	Equazione di Dirac ed esistenza delle antiparticelle	12					
	1.10	$\beta\text{-decay}$ ed esistenza del neutrino	12					
	1.11	Classificazione delle particelle	13					
2	Cine	ematica relativistica	14					
	2.1	Trasformazioni di Lorentz	14					
	2.2	1 / 1						
	2.3	Scoperta dell'antiprotone						
	2.4	Differenza target fisso e collider						
	2.5	Trasformazioni di Lorentz tra centro di massa e laboratorio						
	2.6	Impulso trasverso						
	2.7	Scattering elastico	25					
	2.8	Decadimenti	25					
3	Sen	Senza nome per ora						
	3.1	Interazioni	29					
	3.2	Diagrammi di Feynman	31					
4	Mod	dello statico a quark	36					
	4.1	Simmetrie e leggi di conservazione	36					
	4.2	Piccolo excursus su numero barionico e leptonico	43					
	4.3	Isospin	44					
	4.4	Risonanze	47					
	4.5	Stranezza	49					
	4.6	Particelle 1	51					
	4 7	Il modello statico a quark	59					

1 Introduzione

1.1 Particelle elementari ed interazione

Una particella si dice elementare se non possiede una struttura interna.

- Una particella elementare è tale in base al tempo in cui ci troviamo: cambia in base alle nostre conoscenze. Una volta l'atomo era considerato elementare, adesso sappiamo che c'è un nucleo, che è composto a sua volta da nucleoni che è composto a sua volta da quark. Questo è ciò a cui siamo arrivati oggi, non possiamo essere sicuri che i quark siano elementari e quindi che non abbiano una struttura interna.
- Con energie maggiori, siamo in grado di migliorare la nostra risoluzione e poter sondare strutture più piccole, cioè distanze piccole. Questo viene dalla meccanica quantistica e la relazione di De Broglie.
- Un sistema come il nucleo ha dei livelli e questo è dovuto intrinsecamente al fatto che c'è una struttura interna e i nucleoni possono ri-organizzarsisu livelli diverse.
- Oggi con LHC arriviamo a 14 TeV, e così siamo arrivati ai quark. Magari migliorando la risoluzione, cioè aumentando l'energia, scopriamo una struttura interna ai quark.
- L'interazione tra particelle avviene per scambio di particelle mediatrici (non materiali). Queste particelle mediatrici sono dette bosoni e hanno spin intero (uno).

Le scale di energia sono:

- Per cristalli e molecole si parla di cm a cui corrispondono decine di eV.
- Per atomi si parla di 10^{-10} m.
- Per i nuclei si parla di 10^{-15} m a cui corrispondono fino a centinaia di MeV.
- Per le particelle elementari fino ad 1 TeV. VEDERE SLIDE DIMENSIONI DEI QUARK, SE C'È

Parliamo del Modello Standard. Sappiamo che ci sono 3 famiglie o generazioni di particelle elementari della materia, che si suddividono in quark e leptoni (sono tutti fermioni). Ricordiamo inoltre che il Modello Standard è basato sul fatto che la massa del neutrino è nulla.

- Le famiglie di leptoni sono
- Sono raggruppati in doppietti perché è sottointesa una simmetria, dovuta alla interazione debole. Si può notare che la differenza di carica tra particella alta e bassa è sempre di 1. Inoltre la particella superiore ha sempre carica maggiore di quella inferiore. Questi fatti sono dovuti al atto che si passa da una all'altra tramite interazione debole con scambio di bosoni W[±], che è quindi "l'accoppiatore" di queste particelle di ciascuna famiglia. La massa delle famiglie va ad aumentare con il numero di famiglia, che comunque non è un parametro rilevante nella loro interazione.
- I leptoni sono sempre soggetti a forza debole, invece sono soggetti a forza elettromagnetica solo se carichi. Invece i quark sono sempre soggetti a forza forte, ed a forza elettromagnetica.

- I mediatori dell'interazione elettromagnetica sono i fotoni, quelli della interazione forte sono i gluoni (otto), quelli della interazione debole sono i bosoni W^{\pm} e Z.
- La gravità chiaramente agisce su ogni particella in quanto sono dotate di masse. Sul gravitone non si hanno evidenze sperimentali. Ci piacerebbe che esistesse così da poter descrivere la gravità al pari delle altre tre interazioni. Ad ogni modo la sua intensità è 39 ordini di grandezza più piccola rispetto alla interazione forte quindi è molto difficile da osservare.

1.2 Evoluzione storica

Vediamo come si è arrivati al Modello Standard.

- Inizialmente, tra il 1700 e il 1800 da studi di reazioni chimiche si ottennero le varie leggi di Dalton, Boyle etc. Daltone giunse alla conclusione che l'atomo fosse la particella costituente della materia e che fosse indistruttibile e indivisibile. In generale la materia è fatta da atomi diversi. Avogadro aggiunse l'esistenza delle molecole, aggregazioni di atomi.
- C'erano 92 elementi la cui massa si poteva sempre esprimere come multiplo del primo elemento cioè l'idrogeno. Questo ci fa pensare che dietro si nasconda una simmetria, ossia c'è qualcosa che si ripete.
- Si può stimare il raggio atomico conoscendo densità **rivedi slide** e assumendo volume di una sfera. Otteniamo $\left(\frac{3}{4\pi n}f\right)^{\frac{1}{3}}$ con n numero di atomi per unità di volume e f fattore che tiene conto dell'impacchettamento, cioè quanto sono vicini o lontane le particelle nell'atomo. Si ottiene una stima sui 10^{-10} m.

Parliamo della tavola periodica.

- Essa non può rappresentare le particelle elementari innanzitutto per una questione filosofica: non possono essere così tante le particelle elementari. In realtà niente lo vieta, ma semplicemente non ce lo aspettiamo.
- Un fattore più importante è la regolarità delle proprietà chimico-fisiche degli elementi in essa. Questo nasconde la presenza di struttura interna.
- Ad ogni modo ha molte informazioni. È difficile individuare questo tipo di simmetrie, però sappiamo che qualcosa che si ripete c'è.
- Dunque inizialmente la particella elementare era l'atomo di idrogeno, con tutti gli atomi proporzionali ad esso.
- Successivamente Thomson scoprì l'elettrone di massa 2000 volte minore rispetto all'idrogeno. Questo destabilizza la nostra conoscenza, perché l'atomo è neutrone ed è stato scoperta qualcosa di negativo al suo interno. Quindi qualcosa doveva compensare la carica negativa dell'elettrone all'interno dell'atomo. In effetti già questa era la prova che l'atomo non fosse elementare.
- Rutherford quindi testò il modello a panettone di Thomson e scoprì che l'atomo è composto da un nucleo e da elettroni che orbitano attorno ad esso. Questo è il modello planetario. Ciò era dovuto al fatto che mandando un fascio di α contro un foglio d'oro si osservava che la maggior parte delle particelle passava dritto, ma alcune venivano deviate di molto, alcune addirittura backscatterate. Questo è dovuto al fatto che l'atomo è composto da un nucleo

molto piccolo rispetto al volume dell'atomo, mentre se fosse vero il modello di Thomson le particelle si sarebbero dovute deviare di poco. Questa scoperta fu possibile solo alla scoperta della radioattività naturale, infatti per generare il fascio di α si usò il polonio che è radioattivo.

Approfondiamo questo aspetto. Se mandiamo un fascio di α contro un foglio d'oro, se la carica
positiva è diffusa su tutto l'atomo allora in base al parametro d'impatto del fascio, esso vedrà
una carica ridotta (cioè non tutta) secondo il teorema di Gauss in base al parametro d'impatto.
Si ha che la carica dentro e fuori si compensano e quindi non si dovrebbe avere una grande
deflessione, mentre si osservò l'opposto.

1.3 Sonde sperimentali

- Per la scelta di una sonda l'elemento chiave è la risoluzione. Il motivo è legato all'ottica. Quando mandiamo onde contro delle fenditure, si devono confrontare l'elemento geometrico (in questo caso l'apertura della fenditura) e la lunghezza d'onda dell'onda incidente. Questo è ciò che dobbiamo fare anche in meccanica quantistica. Minore sono le lunghezze d'onda, maggiore sarà la risoluzione e, ricordando la relazione di De Broglie, maggiore deve essere l'energia. Questa è la base della fisica degli acceleratori. C'è dunque un legame tra la lunghezza d'onda incidente e un fattore geometrico dell'oggetto da osservare.
- Grazie effetto fotoelettrico e relazione di De Broglie c'è completo legame tra onde e particelle.
- Rutherford infatti riuscì nel suo esperimento perché la lunghezza d'onda delle particelle α era vicina alle dimensioni che oggi sappiamo essere del nucleo, ossia 10^{-15} m. Quindi aveva risoluzione esatta. Impiegò $v_{\alpha}=0.05$ c (vale espressione di impulso classica). $\lambda_{\alpha}=\frac{\hbar}{m_{\alpha}v_{\alpha}}\approx 10^{-15}$ m. Se di 1 MeV avesse usato energie del keV non avrebbe visto nulla.
- In generale quindi se ho lunghezze d'onda maggiori del raggio nucleare, le particelle incidenti non riescono a vedere il nucleo e interagiscono solo con nube elettronica, portando a debole scattering (cioè piccole deflessioni); se le due dimensioni sono comparabili, si osservano forte deflessioni come in Rutherford e si risolve la struttura nucleare; se la lunghezza d'onda è inferiore al raggio nucleare, non solo esploriamo il nucleo ma anche i costituenti dei nucleoni. Pertanto, la lunghezza d'onda gioca un ruolo chiave nel determinare cosa si possa "vedere" e quali fenomeni si osservano a livello nucleare o subnucleare.
- Tipicamente invece di parlare di lunghezza d'onda si parla di quadrimpulso trasferito q^2 . Esso è collegato al potere risolutivo (se q^2 è grande, la risoluzione è grande).

1.4 Scala di energia

- In fisica delle particelle l'energia la si dà in multipli di eV. Nel LHC un protone ha energia di 6.5 TeV. Questi corrispondono a 10⁻⁶ J, che in scala microscopica è enorme, mentre in scala macroscopica è una energia insignificante. Quindi è rilevante sapere il sistema di cui si sta parlando, oltre all'ordine di grandezza.
- Si usano unità naturali ecc. Mettere la tabella dalle slide.
- Un altro punto importante è la analisi dimensionale. Usiamo unità naturali. Al solito tempo e spazio sono omogenei e sono inversi all'energia. Inserire altra tabella.

1.5 Relazioni importanti

Al solito valgono le formule relativistiche (uso unità naturali).

- Sappiamo che $E=m=\frac{m_0}{\sqrt{1-v^2}}$. Se $v\ll 1$ (cioè $v\ll c$) allora $E\approx m_0+\frac{1}{2}m_0v^2$ sviluppando in serie
- Inoltre $p = mv = \frac{m_0 v}{\sqrt{1-v^2}}$ e $E^2 = p^2 + m^2$. Per il fotone E = p.
- Facciamo un esempio numerico. Supponiamo di avere un elettrone (m=0.511 MeV con v=0.99. Quindi $\gamma=7.089$. Allora E=3.62 MeV e p=3.58 MeV, cioè sono molto vicini! Questo è dovuto al fatto che la massa è piccola rispetto all'energia. Questa approssimazione la facciamo **sempre**, cioè la massa la poniamo a zero perché trascurabile rispetto all'impulso che ha la particella.
- Se invece v = 0.999, l'energia e l'impulso erano ancora più vicini.

1.6 Evoluzione post-Rutherford

- Allora l'atomo è neutro. Si suppose inizialmente che avesse semplicemente tanti protoni quanti elettroni e che il responsabile della massa dell'atomo fosse il nucleo.
- Ma se fossi così, la massa non tornerebbe con le misure sperimentali. Deve esistere dunque altro. Deve essere neutro perché la carica è già a posto, e deve avere massa simile ai protoni perché la massa misurata era circa il doppio di quella prevista considerando solo protoni.
- Con l'idea del neutrone nasce anche l'idea di una nuova interazione, quella forte che si aggiunge a quella gravitazionale e quella elettromagnetica. Infatti fino ad ora quella elettromagnetica era responsabile di tutto, ma non può invece spiegare come mai i neutroni sono legati.
- Il problema era evidente considerando l'anomalia del ¹⁴N. **GUARDA QUADERNO RIZZO** Ma se l'atomo è composto da fermioni, allora nel sistema con 14 protoni e 7 elettroni, avendo 21 particelle avrò per forza spin semintero perché le accoppio a due a due, mentre si misura spin pari a 1.
- Se invece considero il neutrone, allora ho 7 protoni, 7 neutroni e 7 elettroni, quindi ho 28 particelle e quindi spin intero.

1.7 Scoperta del neutrone di Chadwick

Non approfondiremo l'apparato sperimentale più di tanto, ma ci concentreremo su altre questioni.

- L'esperimento per la scoperta del neutrone fu fatto già prima di Chadwick (1932) ma fu mal interpretato. Cerchiamo di capire perché.
- La reazione coinvolta è $\alpha + \frac{9}{4} Be \rightarrow_6^{12} C + n$, che sappiamo essere quella corretta (interpretabile come scattering $\gamma + n \rightarrow \gamma + n$). Sul canale d'ingresso non abbiamo dubbi, perché le particelle α le forniamo noi dalla sorgente di polonio e il target di berilio lo abbiamo scelto noi. I problemi sorgono sul canale di uscita.

- Nella interpretazione scorretta della reazione, senza considerare il neutrone, si supponeva che la reazione fosse $\alpha + {}_{4}^{9} Be \rightarrow {}_{6}^{13} C + \gamma$ (oppure $\gamma + p \rightarrow \gamma + p$). Infatti ai tempi si sapeva solo che ci fosse radiazione neutra molto penetrante.
- Quale è la differenza? Se fosse davvero un γ , avrebbe energia molto elevata, che in realtà non ho a disposizione (50 MeV)

Vediamo l'apparato sperimentale. METTI IMMAGINE SLIDE

- Se mandiamo un fascio di protoni contro un bersaglio, essi vengono rallentati e non penetrano più di tanto. Al contrario i neutroni è possibile che passino indisturbati (sono molto penetranti). Se i neutroni collidono con un nucleo, normalmente avviene una reazione di knock-out, ossia esce una particella, tipicamente il protone.
- Quindi serve il vuoto nella camera dei neutroni, si mette polvere di polonio per generare particelle α e si mette un bersaglio di berillio. Il neutrone penetra il bersaglio di berillio e arriva fino alla camera di ionizzazione. Inoltre si mette della paraffina tra bersaglio e camera a ionizzazione. La paraffina è ricca di protoni, faccio questo per massimizzare la sezione d'urto protone-neutrone, che è elevata perché hanno masse simili. Chiaramente nella camera a ionizzazione rivelo protoni e non neutroni.

Vediamo perché quella reazione è sbagliata.

- La reazione sbagliata che hanno considerato i Curie sarebbe stata $\alpha + {}^9_4 Be \rightarrow {}^{13}_6 C + \gamma$, che possiamo esprimerla come $\gamma + p \rightarrow \gamma + p$, cioè effetto Compton, ma con il protone.
- Rivediamo velocemente l'effetto Compton.
- Si ha dalla conservazione dell'impulso lungo le due direzioni

$$\begin{cases} p_0 = p_1 \cos \vartheta + p \cos \varphi \\ 0 = p_1 \sin \vartheta - p \sin \varphi \end{cases} \begin{cases} p_0^2 + p_1^2 \cos^2 \vartheta - 2p_0 p_1 \cos \vartheta = p^2 \cos^2 \varphi \\ p_1^2 \sin^2 \vartheta = p^2 \sin^2 \varphi \end{cases} \begin{cases} p^2 = p_0^2 + p_1^2 - 2p_0 p_1 \cos \vartheta \\ p_1^2 \sin^2 \vartheta = p^2 \sin^2 \varphi \end{cases}$$

• Invece dalla conservazione dell'energia

$$E_0 + m_e c^2 = E_1 + T + m_e c^2 \Rightarrow E_0 - E_1 = T \Rightarrow c(p_0 - p_1) = T$$

• Vogliamo l'energia dell'elettrone: $E_{\rm TOT}^{\rm elettrone} = m_e c^2 + T = (m_e^2 + c^4 + c^2 p^2)^{\frac{1}{2}}$ (usando la relazione di mass-shell) ed elevando al quadrato troviamo $\frac{T^2}{c^2} + 2m_e T = p_0^2 + p_1^2 - 2p_0 p_1 \cos \vartheta$ da cui usando la conservazione dell'energia troviamo

$$\frac{p_0 - p_1}{p_0 p_1} = \frac{1}{m_e c} (1 - \cos \vartheta) \Rightarrow \frac{E_0 - E_1}{E_0 E_1} = \frac{1}{m_e c^2} (1 - \cos \vartheta)$$

dove E_0 è l'energia del fotone incidente e E_1 è l'energia del fotone diffuso. Possiamo ottenere

$$E_1 = \frac{E_0}{1 + \frac{E_0}{m_e c^2} (1 - \cos \vartheta)}$$

Adesso possiamo trovare l'energia dell'elettrone da $E=E_0-E_1$. Otteniamo

$$E = \frac{\frac{E_0^2}{m_e c^2} (1 - \cos \vartheta)}{1 + \frac{E_0}{m_e c^2} (1 - \cos \vartheta)} \Rightarrow E_{\text{MAX}}^{\text{elettrone}} = \frac{\frac{2E_0^2}{m_e c^2}}{1 + 2\frac{E_0}{m_e c^2}} = \frac{2E_0^2}{m_e c^2 + 2E_0}$$

• Tornando a Curie, al posto della massa dell'elettrone mettiamo la massa del protone. Dall'ultima relazione otteniamo l'equazione di secondo grado in E_0

$$2E_0^2 - 2E_0E_p^{\text{MAX}} - m_p c^2 E_p^{\text{MAX}} = 0$$

Avendo misurato $E_p^{\text{MAX}} \approx 5.3 \text{ MeV}$, si ottiene $E_0 \approx 52.6 \text{ MeV}$. Finora negli esperimenti erano abituati a qualche MeV di energia per i fotoni, quindi era una novità. Tuttavia, il problema non era questo. Con l'interpretazione di Curie avrebbero $E_\gamma = m(\alpha) + m\binom{9}{4}Be - m\binom{13}{4}C \approx 11$ MeV. Invece con Chadwick si ha $T_n = m(\alpha) + m\binom{9}{4}Be - m\binom{12}{4}C - m(n) = 945.3 MeV - m(n)$.

• Dunque con Curie¹ servirebbe un fotone di energia di circa 50 MeV che è incompatibile con l'energia a disposizione di soli 11 MeV. Invece se ho il neutrone, la sua energia cinetica sarà pari a $T_n \approx 945.3 MeV - m(n)$.

Ricaviamo la relazione che lega dati sperimentali con la massa del neutrone.

• Stiamo considerando un urto elastico neutrone-protone, quindi si conserveranno sia energia ed impulso.

$$\begin{cases} m_n v_n^{\text{MAX}} = m_p u_p - m_n v_n' \\ \frac{1}{2} m_n v_n^{\text{MAX},2} = \frac{1}{2} m_p u_p^2 + \frac{1}{2} m_n v_n'^2 \end{cases}$$
 (1)

Si ricava v'_n dalla prima e lo si sostituisce nella seconda. Alla fine si ottiene

$$u_p = \frac{2m_n}{m_n + m_p} v_n^{\text{MAX}}$$

Se ripetessimo l'esperimento con scattering di azoto, si trova la stessa formula ma con azoto $u_N = \frac{2m_n}{m_n + m_N} v_n^{\text{MAX}}$.

• Noi misuriamo u_p e u_N mentre m_N e m_p sono note, quindi facendo il rapporto si trova

$$\frac{u_p}{u_N} = \frac{m_N + m_n}{m_p + m_n} \Rightarrow m_n \approx m_p$$

Anche se in realtà la massa del neutrone è leggermente superiore di quella del protone.

• Abbiamo detto che si può misurare la velocità dal range della particella carica che attraversa il materiale. Questo è possibile grazie alla formula di Bethe-Bloch.

1.8 Derivazione formula di Bethe-Bloch

L'interazione radiazione-materia è alla base della rivelazione di particelle. Consideriamo solo particelle cariche.

- Interagiscono il campo della particella incidente con il campo del mezzo mediante ionizzazione ed eccitazione. Così costruisco diverse tipologie di rivelatori.
- Sono rilevanti il tipo di materiale, il tipo e la velocità della particella incidente. Anche se nel nostro caso non proviene da un fascio da ma una reazione.
- Se $b > R_{\text{atomico}}$ eccito e/o ionizzo e vedo l'atomo come un blocco. Non c'è deflessione.

¹Majorana nel frattempo li perculava dicendo che non sapevano di aver già scoperto il neutrone.

- Se $b \approx R_a$ uguale a prima ma l'elettrone atomico è come se fosse libero.
- Se $R_{\rm N} < b < R_{\rm a}$ vedo il nucleo e c'è forte deflessione.
- Le cariche possono: ionizzare, emettere luce di scintillazione, avere effetto Cherenkov o emettere radiazione di transizione. I γ possono interagire con effetto fotoelettrico, effetto Compton o produzione di coppie. I neutroni urtano un nucleo che rincula. Infine i neutrini possono diffondersi solo per interazione debole, con $\sigma \approx 10^{-41}$ cm² e quindi servono tonnellate di materiale per rivelarle.

Sappiamo che la perdita di energia $\frac{dE}{dx} \propto z^2 \cdot \frac{1}{\beta^2} \cdot \frac{Z}{A}$.

- Si usa di solito $\frac{1}{\rho} \frac{dE}{dx}$ per cui il *MIP* (Minimum Ionizing Particle) è simile per tutti i materiali ed è circa $1-2 \frac{\text{MeV g}}{\text{cm}^2}$.
- Da $\frac{dE}{dx}$ si può ricavare il range residuo della particella carica. Supponendo che E_0 perda energia solo da ionizzazione/eccitazione, possiamo esprimere il range come

$$R = \int_0^R \mathrm{d}x = \int_{E_0}^{mc^2} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \mathrm{d}E = m \cdot F(v)$$

quindi il range è funzione della velocità iniziale della particella. A quei tempi il range si misurava dalle camere a nebbia manualmente con un righello! E così si ottenevano informazioni sulla velocità della particella.

• Per le particelle neutre non abbiamo tracce, però possiamo guardare le cariche prodotte dalla collisione. Ad esempio se i prodotti sono $^{12}C + n$, mettiamo uno strato di paraffina così che dallo scattering n - p riveliamo il protone (lascia una traccia nella camera a nebbia, da cui ricaviamo il range).

Deriviamo la formula di Bethe-Bloch.

- Consideriamo un atomo con carica Z e massa A ed una particella incidente di carica ze e massa m. Supponiamo che la massa sia tale che $m \gg m_e$ e che l'elettrone sia fermo rispetto alla particella incidente in quanto la velocità è elevata.
- Mettere immagien da slide altrimenti da npp 04
- La particella incidente vedrà gli elettroni del mezzo muoversi con velocità -v. Possiamo calcolare la quantità di impulso trasferito nell'urto. La forza è dovuta al campo elettrico, quindi $F = e\varepsilon_{\perp}$ (uguale in sistema di riferimento del laboratorio e della particella), dove la componente longitudinale si elimina per simmetria nell'integrale.

$$\vec{p}'_e = \Delta \vec{p}_e = \int e\varepsilon_\perp dt = \int e\varepsilon_\perp \frac{dx}{v} = \frac{e}{v} \int \varepsilon_\perp dx$$

A questo punto applichiamo il teorema di Gauss, considerando superficie cilindrica di raggio b, parametro d'impatto. Otteniamo

$$\Phi(\vec{\varepsilon}) = \int_{S} \vec{\varepsilon} \cdot \hat{n} \, \mathrm{d}a = 2\pi b \int \varepsilon_{\perp} \, \mathrm{d}x = \frac{ze}{\varepsilon_{0}}$$

Dalle ultime due segue che

$$p_e = \frac{ze^2}{2\pi\varepsilon_0 v} \frac{1}{b} = \frac{ze^2}{4\pi\varepsilon_0 b^2} \frac{2b}{v}$$
 = Forza di Coulomb·tempo di urto

Possiamo notare che l'impulso trasferito è invariante Infatti

$$\begin{cases} \varepsilon_{\perp} = \gamma \varepsilon_{\perp}' \\ \Delta t = \frac{\Delta t'}{\gamma} \end{cases}$$

Dunque $p_e \sim \Delta t \cdot \varepsilon_{\perp} \sim p'_e$ invariante.

• Quindi assumendo $m \gg m_e$ e che considero elettrone fermo perché particella incidente molto veloce, possiamo scrivere

$$T_e = \frac{p^2}{2m_e} = \left(\frac{ze^2}{4\pi\varepsilon_0 b}\right)^2 \frac{2}{m_e v^2} = 2z^2 \left(\frac{e^2}{4\pi\varepsilon_0 m_e c^2}\right)^2 \frac{\left(m_e c^2\right)^2}{b^2 m_e v^2} = 2m_e c^2 \frac{z^2}{\beta^2} \frac{r_e^2}{b^2}$$
(2)

con $r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c^2}$ raggio classico dell'elettrone. Questo valore di T_e è l'energia persa dalla particella in un singolo urto!

• Per generalizzare ad n urti, consideriamo la densità elettronica n_e in un tratto dx con parametro d'impatto tra b e b + db. Il numero di urti sarà $n = n_e 2\pi b \, db \, dx$. Quindi l'energia persa per numero di urti sarà

$$\frac{\partial^2 E}{\partial b \partial x} = n_e r_e^2 m_e c^2 \frac{4\pi}{b} \frac{z^2}{\beta^2} \implies \frac{\mathrm{d}E}{\mathrm{d}x} = \int_{b_{\min}}^{b_{\max}} 4\pi n_e r_e^2 m_e c^2 \frac{z^2}{\beta^2} \frac{\mathrm{d}b}{b} \sim \ln \frac{b_{\max}}{b_{\min}}$$

• b_{max} corrisponde al Δt dell'urto, se esso è grande rispetto al tempo di rivoluzione degli elettroni allora non c'è trasferimento di energia.

$$\frac{b}{v\gamma} > T_e \implies b_{\text{max}} = v\gamma T_e$$

non capisco che cazzo è. spero nelle slide altrimenti consultare libri.

- Invece b non può essere inferiore alle dimensioni dell'elettrone visto dalla particella incidente, quindi da $\lambda = \frac{\hbar}{p_e} = \frac{\hbar}{m_e c \beta \gamma} \implies b_{\min} = \frac{\hbar}{m_e c \beta \gamma}$.
- Se materiale ha proprietà Z, A, ρ allora ho, considerando $n_e = \frac{N_a Z \rho}{A}$ e al posto di $\ln \frac{b_{\text{max}}}{b_{\text{min}}}$ metto el espressioni trovate:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 4\pi r_e^2 m_e c^2 \frac{N_a Z \rho}{A} \frac{z^2}{\beta^2} \ln \left(\frac{m_e c^2 \beta^2 \gamma^2 T_e}{\hbar \omega_e} \right)$$

chiamata formula di Bohr, che è il predecessore della formula di Bethe-Bloch in quanto è semiclassica. Da notare che poi per $\hbar\omega_e$ si mette l'energia di legame dell'elettrone, cioè il potenziale medio di ionizzazione I.

• Normalmente si passa da spessore dx a ρ dx così da avere quantità quasi indipendente dall'atomo. Infatti $\frac{dE}{\rho dx} \propto \frac{Z}{A} \ln \cos t$. e si definisce $C = 4\pi r_e^2 m_e c^2 N_A = 0.307 \text{ MeV g}^{-1} \text{ cm}^{-2}$, in modo da poter scrivere la formula di Bohr come

$$\frac{\mathrm{d}E}{\rho\,\mathrm{d}x} = C\frac{Z}{A}\frac{z^2}{\beta^2}\ln\left(\frac{m_e c^2 \beta^2 \gamma^2}{\langle I \rangle}\right)$$

• Dalla Equazione 2 abbiamo:

$$b^2 = 2r_e^2 \frac{z^2}{\beta^2} \frac{m_e c^2}{E_e} \implies |2b \, db| = 2r_e^2 \frac{z^2}{\beta^2} \frac{m_e c^2}{E_e^2} \, dE_e$$

e da questa possiamo ricavare la probabilità che percorrendo un tratto unitario la particella subisca una collisione con parametro urto tra $b \in b + db$, risulta

$$d\sigma = 2\pi b db n_e = \cdots \implies \frac{d\sigma}{dE} = 2\pi r_e^2 m_e c^2 n_e \frac{z^2}{\beta^2} \frac{1}{E_e^2}$$

quindi ho dipendenza da E_e^{-2} quindi collisioni con trasferimento di energia elevato sono rare!

- Consideriamo l'urto con un nucleo piuttosto che con elettrone. Per fare ciò dobbiamo considerare $\frac{Z}{1840A} \sim 10^{-4}$ quindi un contributo totalmente trascurabile!
- Le differenze con la formula di Bethe-Bloch sono i termini che tengono conto degli effetti di densità di carica e l'energia cinetica massima trasferita all'elettrone in un singolo urto.
- Dobbiamo tenere conto di due cose quando passiamo da Bohr a Bethe-Bloch: se abbiamo a che fare con elettroni e positroni il termine nel ln va modificato perché le masse delle due particelle sono uguali, detto termine delle fore di scambio; anche T_{max} possiamo ricavare dalla cinematica.
- Saltando passaggi matematici (**vedi slide**) sostituendo T_{max} e alla fine abbiamo

$$\frac{\mathrm{d}E}{\rho\,\mathrm{d}x} \propto z^2 \cdot \frac{Z}{A} \frac{1}{\beta^2}.$$

Da qui possiamo comprendere che la traccia dell'azoto è piccola rispetto a quella del protone a parità di energia, proprio per il termine z^2 . Inoltre visto che per la maggior parte dei materiali $\frac{Z}{A} \sim \frac{1}{2}$ allora abbiamo che il $MIP \sim 1-2$ MeV g⁻¹ cm⁻² (solo per l'idrogeno il rapporto vale 1).

- Questa formula non funziona ad energie elevate (> TeV) perché dovrei tenere conto di altri
 effetti relativistici, e non funziona neanche a basse energie cioè ad energie paragonabili a quelle
 degli elettroni atomici in quanto non posso più considerarli fermi.
- Quindi la perdita di energia è la stessa per tutti i materiali! Ad esempio un protone da 10 MeV perde la stessa energia attraversando 1 $\frac{g}{cm^2}$ di rame, alluminio ecc. Per energie minori del MIP ogni particella perde energia in modo diverso, quindi posso identificare la particella.
- Si può scrivere la legge di scala $-\frac{\mathrm{d}E_2}{\mathrm{d}x}=-\frac{z_2^2}{z_1^2}\cdot\frac{\mathrm{d}E_1}{\mathrm{d}x}$
- Code di Landauimmagine da slide: in generale qualunque rivelatore ha una granularità limitata. Misuro la perdita di energia in spessore finito. Se consideriamo uno spessore sottile (e bassa densità), si avranno mediamente poche collisioni e alcune saranno caratterizzate da grande energia trasferita. Se grafichiamo la distribuzione di energia trasferita sarà la distribuzione di Landau con una bella coda lunga. È importante perché di solito si prende il valor medio della distribuzione, ma funziona bene se è gaussiana o in generale simmetrica. In questo caso è asimmetrica ed ho grandi fluttuazioni per perdita di energia grande. Normalmente si tagliano le code iniziali e finali per minimizzare le fluttuazioni e si va il valor medio di quello che resta. Invece con grandi spessori abbiamo distribuzione simmetrica gaussiana, avendo molte collisioni.

Una volta che abbiamo la formula di Bethe-Bloch possiamo ricavare il range come già detto. Le fluttuazioni nella perdita di energia si riflettono nello straggling del range. Se volessimo ricavare range per mesoni K^+ va be mi secco esempio numerico speriamo slide.

1.9 Equazione di Dirac ed esistenza delle antiparticelle

Poi arrivo l'equazione di Dirac $(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar})\psi = 0.$

- Al contrario dell'equazione di Schrödinger, questa è relativistica e del primo ordine. Le γ^{μ} sono le matrici di Dirac e sono 4×4 , quindi ψ non è uno scalare bensì uno spinore a quattro componenti, in cui le prime due sono per la particella e le altre due per antiparticella. Sono due per tenere conto dello spin up e down. Quindi ci sono quattro soluzioni.
- All'energia negativa quindi associò l'esistenza di una antiparticella. Ma questo doveva essere verificato. La verifica avvenne con la scoperta del positrone da parte di Anderson nel 1932.
- Come già detto, a quei tempi le uniche sonde disponibili per gli esperimenti in laboratorio erano le sorgenti radioattive naturali e i raggi cosmici. Per scoprire il positrone usarono raggi cosmici. Nella camera a nebbia arrivavano queste particelle e mettendo un campo magnetico avevano differente raggio di curvatura.
- Se ho un elettrone o un positrone la curvatura sarà la stessa, quindi solo con camera a nebbia e campo magnetico non posso distinguerli. Allora si mette un blocco di materiale per dare un ordine temporale, perché ogni particella che attraversa un blocco materiale esce con energia minore. Si misura quindi il raggio di curvatura prima e dopo il blocco e si ricava l'impulso dalla relazione $r = \frac{mv}{qB} = \frac{p}{qB} \implies p(GeV) = 0.3B(T)Rr(m)$.
- Una volta che siamo stati in grado di determinare la carica di tale particella (conoscendo B), resta ancora il dubbio se fosse il protone (o a questo punto qualunque altra particella nuova positiva). Per risolvere il problema si valuta $\frac{P}{E}$. Avendo misurato impulso iniziale di 63 MeV (dalla curvatura), Risulta $E_p \approx 1.13 \text{ GeV} \implies \frac{p}{E_p} \sim 0.05c$ e a questo valore, dalla formula di Bethe-Bloch si osserva un range $R \sim 5mm$. Il punto è che si osservava un range di 50mm, quindi c'è una forte discrepanza. Se invece ripetiamo il calcolo con il positrone, avendo massa trascurabile risulta $E_{e^+} \approx 63 \text{ MeV}$ stessi, e a questi corrispondono un range compatibile con quello sperimentale.
- Riepilogando, mettendo il blocco facciamo cambiare la curvatura alla traiettoria della particella e da ciò capiamo il segno della carica. Infine capisco che si tratta del positrone e non di altre particelle positive perché calcolando l'energia e vedendo poi la perdita di energia tramite Bethe-Bloch (ricorda che nelle ascisse c'è proprio $\beta\gamma$), risulta un range compatibile con quello misurato.

1.10 β -decay ed esistenza del neutrino

• L'ipotesi dell'esistenza del neutrino nasce andando ad osservare lo spettro energetico dell'elettrone da β -decay. Essendo continuo, non può essere un decadimento a due corpi come si pensava, altrimenti si avrebbe uno spettro discreto come l' α -decay. Quindi deve essere un decadimento a tre corpi, e questa terza particella deve essere neutra ed a massa nulla. A livello nucleare si ha $n \to p + e^- + \overline{\nu}$.

Che conoscenze si avevano nel 1935?

• sta parte storica discorsiva la facciamo dopo che manda slide, lezione 5 e prima parte della lezione 6

1.11 Classificazione delle particelle

• Le particelle si dividono in bosoni con spin intero e fermioni con spin semintero.

Fermioni:
$$\left\{ \begin{array}{l} \text{Leptoni } e^{\pm}, \mu, \tau \text{ e neutrini} \\ \text{Barioni } p, n, \Lambda, \dots \end{array} \right. \quad \text{Bosoni:} \quad \left\{ \begin{array}{l} \text{Mesoni } \pi, K \dots \\ \text{Di Gauge (vettori) } \gamma, W^{\pm}, Z^0, g \end{array} \right.$$

- I baroni sono costituiti da tre quark, quindi sono per forza fermioni con spin $\frac{1}{2}$ o $\frac{3}{2}$. Invece i mesoni sono costituiti da quark e antiquark e quindi sono bosoni con spin 0 o 1. In generale col termine adroni si indicano particelle soggette a interazione forte.
- [...] slide Per due particelle identiche vale $|\psi(1,2)|^2 = |\psi(2,1)|^2$, cioè se le scambio di posto la probabilità è la stessa. Per i bosoni vale la simmetria, per i fermioni l'antisimmetria $\psi(1,2) = -\psi(2,1)$ da cui ne segue il principio di Pauli cioè che fermioni identici non possono stare nello stesso stato quantistico.
- La materia è fatta da fermioni e sappiamo che ci sono tre generazioni di leptoni e quark, ma solo le prime generazioni compongono la materia. Ribadiamo che i leptoni subiscono sempre forza debole e quella carica solo se carichi, mentre i quark subiscono tutti i tipi di forza, anche quella forte.
- I bosoni vettori (o di Gauge) sono gluone, fotone, W^{\pm} , Z^0 e il gravitone. Hanno tutti $J^{\pi} = 1^-$ (eccetto W^+ per cui vale 1^+).
- I quark invece si suddivono in leggeri (u, d, s) e pesanti (c, b, t). Le masse sono:

Quark	Up	Down	Strange	Charm	Bottom	Top
Massa	7 MeV	9 MeV	$150~{ m MeV}$	$1.5 \; \mathrm{GeV}$	5 GeV	$175~{ m GeV}$

Quindi il quark top è la particella più pesante che conosciamo, quella che più si avvicina è il bosone di Higgs di 125 GeV.

• Invece per i leptoni le masse sono:

Leptone	Elettrone	Muone	Tauone	Neutrini
Massa	$0.511~\mathrm{MeV}$	$106~{ m MeV}$	$1780~\mathrm{MeV}$	0

Quindi $m_{\tau} \sim 3000\,m_e$ e $m_{\mu} \sim 200\,m_e$. Nel Modello Standard i neutrini hanno massa nulla, ma sperimentalmente da oscillazioni (cambiano flavour) sappiamo che in realtà hanno massa che non conosciamo, ma di cui abbiamo ottenuto dei limiti superiori. Si pensa siano tutti di qualche frazione di eV. $m_{\nu_e} < 3$ eV, $m_{\nu_{\mu}} < 0.19$ MeV, $m_{\nu_{\tau}} < 18$ MeV.

• I neutrini, come tutti i fermioni, sono caratterizzati da due stati di spin. In particolare per i neutrini si parla di elicità $\eta = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}$ cioè la proiezione dello spin sulla direzione del moto della particella. Notiamo che η è Lorentz invariante per particelle con m=0, anche se è comunque utilizzabile in prima approssimazione se $p \gg m$, cioè η si conserva. Per $\eta=1$ si dice che la particella è destra, per $\eta=-1$ si dice che è sinistra. Finora sono stati osservati solo neutrini sinistri e antineutrini destri. Esistono ν con $\eta=1$? Non lo possiamo sapere! Sappiamo che finora non li abbiamo rivelati, perché W interagisce solo con neutrini sinistri (e antineutrini destri). Se effettivamente esistono, non interagiscono con interazioni che conosciamo (oppure è con quella gravitazionale).

2 Cinematica relativistica

Riprenderei appunti di Russo e basta. Riportiamo cmq quello che dice lei. Ci sono quattro principi base nella relatività.

- Ogni legge fisica è invariante in ogni sistema di riferimento inerziale.
- Energia, impulso, momento angolare in ogni sistema fisica isolato si conservano.
- La velocità della luce è la stessa in ogni sistema di riferimento.
- Il tempo non è invariante (assoluto).
- I primi due sono legati alla meccanica classica, gli ultimi due alla relatività. Da ciò ne segue che le trasformazioni galileiane non valgono più, e al loro posto ci sono le trasformazioni di Lorentz. Nel limite $\beta \ll 1$ le trasformazioni di Lorentz diventano quelle di Galileo.

2.1 Trasformazioni di Lorentz

- Definiamo i quadrivettori come $A = (a_0, a_i) = (a_0, \vec{a})$, con a_0 componente temporale e a_i componente spaziale.
- Definiamo il prodotto scalare tra quadrivettori come $\tilde{A}\tilde{B} = a_0b_0 a_ib_i$. Questo prodotto è invariante sotto trasformazioni di Lorentz.
- Se consideriamo un sistema di riferimento S e un altro S', con S' che si muove rispetto a S con velocità v lungo l'asse x, allora le trasformazioni di Lorentz sono date da:

$$\begin{pmatrix} a'_0 \\ a'_1 \\ a'_2 \\ a'_3 \end{pmatrix} = \underbrace{\begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{=L(\beta)} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} \gamma a_0 - \beta\gamma a_1 \\ -\beta\gamma a_0 + \gamma a_1 \\ a_2 \\ a_3 \end{pmatrix} \implies \begin{cases} ct' = \gamma(ct - \beta x) \\ x' = \gamma(x - \beta ct) \end{cases}$$

Una proprietà importante è $L(\beta)^{-1} = L(-\beta)$, da cui ne segue che per invertire le trasformazioni di Lorentz basta scambiare variabile con indice con quelle senza e $\beta \to -\beta$.

• Che si ha al limite non relativistico? Supponiamo $\beta \ll 1 \implies \gamma \approx 1 + \frac{\beta^2}{2} \approx 1$. Ne segue per il tempo che

$$ct' = \left(1 + \frac{\beta^2}{2}\right)(ct - \beta x) \approx ct - \beta x + \frac{\beta^2}{2}ct \approx ct \implies t' = t$$

e per lo spazio che

$$x' = \left(1 + \frac{\beta^2}{2}\right)(x - \beta ct) \approx x - \beta ct \implies x' = x - vt$$

• Se il moto non è solo lungo x, allora dobbiamo considerare $\vec{\beta} = \frac{\vec{v}}{c}$ e

$$\begin{cases} ct' = \gamma(ct - \beta x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - \beta ct) \\ \vec{x}'_{\perp} = \vec{x}_{\perp} \end{cases}$$

• Dimostriamo che il prodotto scalare è invariante. Sia $A = (a_0, \vec{a})$ e $B = (b_0, \vec{b})$. Calcoliamo $A' \cdot B'$.

$$A' \cdot B' = a'_0 b'_0 - \vec{a}' \cdot \vec{b}' = \gamma^2 (a_0 - \beta a_1)(b_0 - \beta b_1) - \gamma^2 (a_1 - \beta a_0)(b_1 - \beta b_0) - a_2 b_2 - a_3 b_3 = \dots = A \cdot B$$

Vediamo alcune conseguenze in high energy physics.

- La contrazione delle lunghezze. Consideriamo un oggetto di lunghezza L che si muove con velocità v. Supponiamo che il sistema solidale ad esso sia S' e la lunghezza misurata sia $d' = x'_2 x'_1$ che avviene simultaneamente quindi $t_2 = t_1$. Se trasformiamo otteniamo $d' = x'_2 x'_1 = \gamma(x_2 \beta ct_2) \gamma(x_1 bct_1) = \gamma(x_2 x_1) \gamma\beta c(t_2 t_1) = \gamma(x_2 x_1) = d \implies d' = \gamma d$. Ne segue che la lunghezza misurata da un osservatore in moto è contratta di un fattore γ , e la lunghezza propria, misurata nel sistema solidale all'oggetto è la massima possibile.
- La dilatazione temporale. Consideriamo due eventi che avvengono nello stesso punto nello spazio, ma in tempi diversi. Se trasformiamo otteniamo $c\Delta t = c(t_2 t_1) = \gamma c(t_2' t_1') + \beta \gamma (x_2' x_1') = \gamma c\Delta t'$. Ne segue che il tempo misurato da un osservatore in moto è dilatato di un fattore γ , e il tempo proprio, misurato nel sistema solidale all'oggetto è il minimo possibile. Da ciò si hanno varie conseguenze.

2.2 Esperimento CPP, muoni, pioni e Yukawa

- Nel 1912 Hess scoprì i raggi cosmici. Nel 1932 Anderson scoprì i positroni, predetti da Dirac nel 1928 (già discussa).
- Nel 1935 Yukawa introdusse la teoria delle interazioni forti, predicendo una massa mediatrice di ~ 100 MeV. Il mesone di Yukawa doveva decadere in elettrone e netruino con tempo di decadimento di ~ 1μs. Nel 1937 si scoprì il mesotrone (Anderson e Neddermeyer), con una massa di 110 MeV, associata alla particella di Yukawa. Nel 1940 si studiò assorbimento e decadimento delle proprietà di assorbimento del mesone di Yukawa.
- Il decadimento del mestrone (che in realtà è un μ) fu studiato diverse volte. Nel 1940 si osservò il suo decadimento in positroni; nel 1941 ci fu una misura da Rasetti che ottenne $\tau = (1.5 \pm 0.3)\mu$ s. Nel 1941 Piccioni e Conversi decisero di lavorare assieme e migliorare la precisione nella misura del tempo di decadimento (del mesone di Yukawa).
- Nel 1939 Montgomery fece un esperimento (Figura 1) per misurare il decadimento del μ

Figura 1: Esperimento di Montgomery. Volevano estrarre il tempo di decadimento dalle intensità delle coincidenze ritardate con e senza stopper. Purtroppo non riuscirono a misurare il tempo di decadimento del μ a causa del troppo rumore in B.

- Un altro tentativo fu fatto da Rasetti nel 1940, con un apparato più complicato (Figura 2). Nella procedura sperimentale si definisce un fascio di mestroni con la coincidenza ABCD. L'anticontatore G discrimina dagli sciami elettromagnetici. L'anticontatore F seleziona i mestroni che si sono fermati nell'assorbitore. Il contatore E rivela particelle emesse nell'assorbitore. Non si usarono coincidenze ritardate ma "immediate" con tempi di risoluzione diversi. Guardando le combinazioni dei tempi con cui il segnale arriva, hanno fatto un fit particolare ed estratto il tempo di decadimento. Ottennero $\tau = (1.5 \pm 0.3)\mu$ s.
- Successivamente l'esperimento fu riproposto da Conversi, Pancini e Piccioni con l'idea di effettuare una misura migliore (vedi Figura 3) Un mesotrone si ferma nell'assorbitore (Fe) e poi decade. Si usano coincidenze ritardate tra i contatori sopra e sotto e le anticoincidenze (A). Gli elettroni si fermano nell'assorbitore di Pb. Le anticoincidenze servono a scartare l'evento. Misurarono τ = (2.33 ± 0.15)μs, meglio di Rasetti.

Torniamo ai quadrivettori.

- La matrice della metrica la conosciamo è $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$. Un quadrivettore importante è quello di impulso $P^{\mu} = (E, \vec{p})$. Questo quadrivettore non è invariante ma il suo quadrato sì. Facendolo, scopriamo che vale $P^{\mu}P_{\mu} = m^2$ usando la relazione di mass-shell.
- Alcune relazioni utili sono: $p=\gamma mv,\, E=\gamma m,\, T=mc^2(\gamma-1),\, \beta=\frac{p}{E}.$
- Quando facciamo esperimento di fisica di particelle, ci mettiamo nel riferimento di laboratorio solidale all'osservatore e ai rivelatori. In questo riferimento tipicamente $v_T = 0$. Possiamo scrivere allora nel riferimento del laboratorio $P_1 = (E_1, \vec{p}_1), P_2 = (m_T, 0)$ (1 = proiettile, 2 = target). Allora $P_{\text{tot}} = sP_1 + P_2 = (E_1 + m_T, \vec{p}_1)$.
- Un altro sistema di riferimento utile è quello del centro di massa, in cui $\vec{p}_{\text{tot}} = 0$. Se consideriamo una particella incidente in un target, avremo $P_1^* = (E_1^*, \vec{p})$ e $P_2^* = (E_2^*, -\vec{p})$. Allora $P_{\text{tot}}^* = (E_1^* + E_2^*, 0)$. Poichè è un invariante, P_{tot}^2 sarà uguale nel riferimento del centro di massa e in quell del laboratorio. Ne segue che $P_{\text{tot}}^{*,2} = E_{\text{CM}}^2 = P_{\text{tot}}^{\text{lab},2} = (E_1 + m_{\text{T}})^2 p_1^2 = E_1^2 + m_{\text{T}}^2 + 2E_1m_{\text{T}} p_1^2 = m_1^2 + 2E_1m_{\text{T}} + m_{\text{T}}^2$. ('sta roba è inutile?)

Figura 2: Disposizione dei contatori, illustrando le connessioni con gli amplificatori.

- Se consideriamo un fascio di n particelle allora dovremo considerare la sommatoria. $P_{\mu}P^{\mu} = (E_1 + E_2 + \cdots + E_n)^2 (\vec{p_1} + \vec{p_2} + \cdots + \vec{p_n})^2$ in generale. Se consideriamo il sistema del centro di massa avremo $P^{\mu,*} = (E_{\rm CM}, 0)$. Quindi nel riferimento del centro di massa questo scalare è solo il quadrato dell'energia nel sistema del centro di massa.
- Riprendiamo la storia. Nel 1947 ci fu la scoperta del pione, usando le emulsioni nucleari. Decade
 in sequenza il pione in muone ed infine in elettrone. In tutti gli eventi il muone aveva energia di
 4.1 MeV a cui corrisponde il range misurato di 600 μm, le strisce sono tutte di uguale lunghezza
 (sappiamo da Bethe-Bloch che il range e l'impulso sono legati). In base a densità di ionizzazione
 (dE / dx) distinguiamo il tipo di particella.
- Visto che il range è sempre lo stesso, l'impulso del muone sarà sempre lo stesso 29 MeV. Visto che l'impulso è sempre lo stesso, il decadimento deve essere a due corpi (e non tre altrimenti si avrebbe spettro continuo).
- Supponendo che si abbia un decadimento a due corpi con la particella iniziale che si ferma, abbiamo $X \to \mu + \nu_{\mu}$ e il sistema del centro di massa coincide con il sistema solidale a X (il π). Da ciò ne segue che impulso di neutrino e muone sono uguali ed opposti, quindi

$$m_{\rm X}^2 = E_{\rm cm}^2 = (E_{\mu} + E_{\nu})^2 \implies m_{\rm X} = \sqrt{m_{\mu}^2 + p_{\mu}^2} + p_{\nu} = \dots = 138.9 \text{ MeV}$$

• Il decadimento $\pi^- \to \mu^- + \overline{\nu}_{\mu}$ è dovuto alla forza debole, lo si capisce dal fatto che da quando avevo quark e antiquark, nei prodotti non li avrò più cioè non conservano il flavour. Un altro modo per capirlo è dai tempi di decadimento.

Figura 3:

- 1. Debole $10^{-8} 10^{-10}$ s.
- 2. Elettromagnetico (come $\pi^0 \rightarrow \gamma + \gamma$) $10^{-17} 10^{-16}$ s.
- 3. Forti $10^{-22} 10^{-23}$ s.

Parliamo di processi virtuali e reali.

- Supponiamo di avere $e^- \to \gamma + e^-$. Abbiamo inizialmente (nel riferimento solidale all'elettrone) $e^-(m_e c^2, \vec{0})$, invece dopo l'interazione abbiamo $e^-(E_k, -\vec{k}) + \gamma(c |\vec{k}|, \vec{k})$. Valutiamo $\Delta E = ck + \sqrt{(m_e c^2)^2 + (ck)^2} m_e c^2$ consderando i due casi limite:
 - 1. $ck \ll m_e c^2 \implies \Delta E \gtrsim ck$
 - 2. $ck \gg m_e c^2 \implies \Delta E \lessapprox 2ck$

Ne segue che

$$kc < \Delta E < 2kc$$

ma ciò che importa è che $\Delta E \neq 0$. Questo è un processo virtuale che non può avvenire da isolato. È possibile per un tempo compatibile con il principio di indeterminazione $t < \frac{\hbar}{\Delta E}$, a cui corrisponde uno spazio percorso $l = ct = \frac{c\hbar}{\Delta E} \propto (\Delta E)^{-1}$.

- Consideriamo un generico processo di scambio $A + B \to A + B$ che avviene tramite X. Avremo inizialmente $A(m_Ac^2, \vec{0})$, invece dopo $A(E_p, \vec{p}) + X(E_X, -\vec{p})$ e uguale per B. Vediamo quanto vale $\Delta E = E_X + E_p m_Ac^2$ e i due casi limite:
 - 1. $p \to \infty \implies \Delta E = 2pc$
 - 2. $p \to 0 \implies \Delta E \ge m_X c^2$

ne segue che vale sempre $\Delta E \geq m_X c^2$. Abbiamo detto che si può violare la conservazione dell'energia per $t \sim \frac{\hbar}{\Delta E} \implies l = \frac{c\hbar}{\Delta E} \approx \frac{\hbar}{m_X}$, dove l è la massima distanza raggiungibile dal mediatore X prima di essere ri-assorbito, e corrisponde esattamente al range della interazione.

• Viceversa, se conosco il range della interazione posso trovare la massa del mediatore! La relazione dunque è $R=\frac{\hbar}{m_Xc}$. Cerchiamo la massa del mediatore della interazione forte, supponendo che abbia $R\approx 1.2$ fm. Abbiamo

$$m_X = \frac{1}{R} = 140 \text{ MeV}$$

che è il mesotrone di Yukawa, chiamato così perché aveva massa intermedia tra p ed e^- (uniche particelle note oltre a n).

• Dunque se la massa del mediatore è nulla, il range dell'interazione è infinito (interazione elettromagnetica con fotoni). Se invece usiamo la massa del W, troviamo il range dell'interazione debole

$$R_{\text{debole}} = \frac{\hbar c}{m_W c^2} = \frac{1}{m_W} = \frac{200 \text{ MeV} \cdot \text{fm}}{80 \cdot 10^3 \text{ MeV}} = 2.5 \cdot 10^{-3} \text{ fm}$$

ben tre ordini di grandezza inferiori rispetto a quello nucleare.

• In passato si aveva una visione errata del β -decay, ad esempio $n \to p + e^- + \overline{\nu}$. In realtà questo avviene con uno scambio di W^- , cioè il neutrone (in realtà è tra quark) emette un W^- diventando un p, e contemporaneamente $W^- \to e^- + \overline{\nu}$. Tuttavia questo processo lo trascuriamo a basse energie (MeV) in quanto irrilevante.

Torniamo alla parte storica e all'esperimento CPP.

- Abbiamo detto che l'esperimento CPP è importante perché da una migliore misura di τ_{μ} , ma c'è un altro motivo per cui è importante.
- Nel 1940 Tomonaga e Araki proposero una teoria, che fu accettata da tutti, sull'interazione forte. Il mesone di Yukawa interagisce con il nucleo mediante interazione forte. Secondo i calcoli, la cattura nucleare dipende leggermente dallo Z del materiale. I mesotroni positivi sono respinti dal nucleo, mentre quelli negativi possono essere catturati, ne segue che i mesotroni positivi possono soltanto decadere.
- Per testare questa teoria che prevedeva una asimmetria tra mesotroni positivi e negativi, si usò lo stesso apparato CPP. La differenza stava in assorbitori più sottili (0.6 cm di Fe invece di 5 cm) per migliorare la efficienza di rivelazione degli elettroni. Misurarono il rapporto di mesotroni che decadono dentro il ferro che era in accordo con il valore aspettato (da raggi cosmici si aspettavano un eccesso del 20%).
- Poi ripetettero l'esperimento con un apparato migliore utilizzando le lenti magnetiche per separare mesotroni positivi e negativi. Con un assorbitore ad alto Z (ferro) ci fu conferma della teoria, con uno a basso Z (carbonio), per completezza e per rivelare i fotoni emessi da cattura nucleare dei mesotroni negativi, invece ci fu disaccordo. Quindi la differenza è il campo magnetico che distingue i mesotroni positivi e negativi e utilizzo di assorbitori con alto e basso Z.
- Attraverso assorbitori di 5 cm di Fe c'è accordo perché la frequenza di decadimento è maggiore per quelli positivi non catturati rispetto a quelli negativi, il cui risultato sperimentale è compatibile con zero (vengono catturati dai nuclei prima di decadere). Il problema nasce con assorbitori di grafite, perché si trova che il rate di decadimento delle particelle negative non solo è diverso da zero, ma molto simile a quelle positive. Allora i mesotroni non sono le particelle di Yukawa, quelle che interagiscono fortemente.

- Fermi e altri discussero, e conclusero che ci sono circa 12 ordini di grandezza di differenza tra il tempo di cattura per una particella di Yukawa negativa e i risultati dell'esperimento. Quindi il mesotrone fu ribattezzato, come lo conosciamo oggi, mesone μ , ed oggi sappiamo che il pione è la particella di Yukawa.
- Quindi CPP è rivoluzionario perché scopre che il muone non è la particella di Yukawa, quindi è un altro leptone! Apre la strada alla seconda generazione di particelle, con cui si va oltre la materia ordinaria. Quindi è l'inizio della fisica delle particelle.

Vediamo il potenziale di Yukawa.

• Consideriamo $A + B \rightarrow A + B$ con particella mediatrice X. Questa particella è un bosone, se in più la consideriamo relativistica allora obbedisce all'equazione di Klein-Gordon. Nel caso statico (stazionario) si riduce a

$$\nabla^2 \phi(\vec{x}) = \frac{m_X^2 c^2}{\hbar^2} \phi(\vec{x})$$

se la massa è nulla ritroviamo l'equazione di Laplace e quindi il mediatore è il fotone e la soluzione è il campo elettrostatico $V(r) = -\frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}$. Se invece la massa non è nulla otteniamo $V(r) = -\frac{g^2}{4\pi}\frac{e^{-r/R}}{r}$ che è il potenziale di Yukawa con il range $R = \frac{\hbar}{m_X c}$. La forma del potenziale è simile a quello che si ottiene quando consideriamo effetti di schermaggio e vogliamo la carica effettiva subita dal sistema.

- Ci sono delle ipotesi su cui si basa il modello di Yukawa.
 - 1. I nucleoni sono le sorgenti del campo nucleare e l'interazione tra essi avviene tramite scambio di bosoni che quantizzano il campo nucleare (detti mesoni).
 - 2. L'interazione è a corto range, con range legato alla massa della particella mediatrice.
 - 3. L'interazione nucleare è indipendente dalla carica elettrica.
 - 4. Il potenziale è a simmetria sferica e dipende anche dagli spin dei nucleoni (che abbiamo ignorato).

Il modello di Yukawa serve anche a spiegare lo scattering p-n.

- La distribuzione angolare di scattering protone-neutrone ha un andamento a parabola con picchi in 0 e 180 gradi (e minimo in mezzo da qualche parte). Senza il modello di Yukawa non è spiegabile.
- Se lo scattering è elastico $|\vec{p_i}| = |\vec{p_f}|$. L'impulso trasferito varrà $\Delta p = |\vec{p_i} \vec{p_f}| = F_{\text{media}} \Delta t$. Considerando il potenziale nucleare come una buca, avremo $F_{\text{media}} = \frac{V_0}{R}$. La variazione di impulso è legata all'angolo soltanto visto che è elastico, quindi (usando $\Delta t = R/v$)

$$\Delta \vartheta \approx \frac{\Delta p}{p} = \frac{F_{\rm m} \Delta t}{p} = \frac{V_0}{vp} \implies \vartheta = \frac{V_0}{2E_{\rm cin}}$$

usando il valore tipico di $V_0 = 35 \text{ MeV}$ e 100 MeV $\leq E_{\text{cin}} \leq 600 \text{ MeV}$ (usati sperimentalmente) otteniamo $\vartheta = 10$ gradi, che è in accordo con i dati sperimentali.

 Quindi con la cinematica spieghiamo il picco ad angoli bassi, ma non quello ad angoli alti. Per spiegarlo dobbiamo considerare il modello di Yukawa, si scambiano un pione quindi esiste uno stato intermedio (non è puntuale, pensando a diagramma di Feynman senza mediatore).

2.3 Scoperta dell'antiprotone

- Gli antiprotoni sono più difficili da rivelare rispetto ai positroni perché avranno una massa pari a quella del protone e quindi sono più difficile da produrre. Ovviamente ce li aspettiamo con massa negativa.
- Quindi come possiamo crearli? Da raggi cosmici non è possibile vederli. Serve un acceleratore e non deve essere collider. A quanta energia deve arrivare? Consideriamo la reazione $p+p \to p+p+\bar p+p$ e troviamo la energia di soglia.
- Calcoliamo l'energia di soglia nel caso in cui abbiamo inizialmente un proiettile i contro un target T fermo e si hanno N particelle finali. perché visto che voglio l'energia di soglia basta la loro "massa". Ne segue che

$$m_i^2 + m_T^2 + 2m_T E_i \ge \left(\sum_k m_k\right)^2$$

Sostituendo $E_i = T_i + m_i$ risulta

$$T_i \ge \frac{(\sum_k m_k)^2 - (m_T + m_i)^2}{2m_T}$$

Questa relazione ci da l'idea di quanta energia devo dare alla particella incidente per produrre una certa reazione.

• Applichiamolo al nostro caso per produrre l'antiprotone.

$$T_i \ge \frac{(4m_p)^2 - (2m_p)^2}{2m_p} = 5.6 \text{ GeV}$$

Questo non va bene. Il problema è che abbiamo considerato il protone del target fermo, ma noi non abbiamo mai un protone libero.

- In questo particolare esperimento usarono rame come target, quindi il protone era confinato nel nucleo e si muove. Assumendo che in questa interazione interagiamo con quello della shell più esterna, questo avrà l'impulso di Fermi $p_F = 0.24$ GeV. Questo complica il calcolo perché adesso c'è una certa distribuzione di energia in quanto questo impulso può essere orientato casualmente. Studiamo i casi limite in cui è parallelo e antiparallelo all'impulso della particella incidente.
- Nel riferimento del laboratorio abbiamo $P^{\mu} = (E_i + E_F, \vec{p}_i + \vec{p}_F)$, dunque

Iniziale:
$$P^{\mu}P_{\mu} = (E_i + E_F)^2 - (\vec{p}_i + \vec{p}_F)^2 = E_i^2 + E_F^2 + 2E_iE_F - p_i^2 - p_F^2 - 2\vec{p}_i \cdot \vec{p}_F$$

Applichiamo la relazione di mass-shell $E_{i,F}^2 - p_{i,F}^2 = m_{i,T}^2$ e consideriamo $\vec{p_i} \cdot \vec{p_F} = \pm p_i p_F$, dove il caso antiparallelo corrisponde al segno meno, che diventa positivo, e quindi corrisponde ad energia di soglia maggiore. Risulta

$$2m_p^2 + 2E_p E_F \pm 2p_p p_F \ge 16m_p^2$$

Facciamo un paio di considerazioni.

- 1. $E_F=m_p+rac{p_F^2}{2m_p}$, cioè un approccio classico dovuto al fatto che l'energia di Fermi è bassa.
- 2. $E_p \approx p_p$ che in realtà sarebbe p=6 GeV contro la massa del protone $m_p=1$ GeV ma approssimiamo lo stesso $p\gg m$.

Ne segue che

$$2m_p^2 + 2E_p\left(m_p + \frac{p_F^2}{2m_p}\right) \pm 2p_F E_p \ge 16m_p^2 \implies \cdots \implies$$

$$\implies E_p \ge \frac{7m_p}{1 + \frac{p_F^2}{2m_p^2} \pm \frac{p_F}{m_p}}$$

 $\bullet\,$ A questo punto l'energia cinetica la ricaviamo da $T_p=E_p-m_p$ ottenendo

$$4.2 \text{ GeV} \leq T_p \leq 7.5 \text{ GeV}$$

Sono importanti sia il minimo che il massimo: il minimo perché altrimenti non riusciamo a vedere quello che desideriamo, il massimo perché costruire acceleratori che raggiungono alte energie è costoso (se possibile tecnologicamente). Segrè e l'altro fecero questo esperimento a 6.2 GeV, quindi non prendevano proprio tutti i casi in quanto non avevano la massima energia possibile, ma è un esperimento di scoperta quindi basta una rivelazione.

- Adesso che sappiamo che energia incidente serve, come riveliamo l'antiprotone? Tanto per cominciare dalla reazione p + p possono succedere tante cose.
- Come prima cosa distinguiamo il segno delle cariche usando un campo magnetico. Adesso serve distinguere i π⁻ da i p̄. I pioni veloci si possono tagliare tramite un rivelatore Cherenkov che dà un trigger solo se si ha una certa velocità e si scartano le particelle che lo attivano. Resta il problema dei pioni lenti. Per risolvere questo problema si misura il tempo di volo. Appunti di albergo non capisco e conoscendo tempo di volo e massa si può identificare l'antiprotone.

2.4 Differenza target fisso e collider

Bisogna fare attenzione a non confondere acceleratori circolari, in cui i ltarget è comunque fisso, con collider.

- Nei collider di solito c'è particella contro antiparticella oppure particelle uguali. È Più efficiente produrre particelle in questo modo perché non spendo energia per spostare il centro di massa.
- Consideriamo target fisso. Abbiamo $P_1^{\mu}=(E_1,\vec{p}_1)$ e $P_2^{\mu}=(m_2,0)$. Calcoliamo la massa invariante (sommando i quadri-impulsi)

$$s^2 = P^{\mu}P_{\mu} = (E_1 + m_2)^2 - p_1^2 = \dots = m_1^2 + m_2^2 + 2E_1m_2 \underset{m_{1,2} \ll E_1}{\Longrightarrow} \sqrt{s} = \sqrt{2E_1m_2}$$

• Consideriamo collider. In generale $P_1^\mu=(E_1,\vec{p}_1)$ e $P_2^\mu=(E_2,\vec{p}_2)$ da cui (di solito $E_1=E_2$)

$$s^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = \dots = m_{1}^{2} + m_{2}^{2} + 2(E_{1}E_{2} - \vec{p}_{1} \cdot \vec{p}_{2}) \underset{|p_{1,2}| \approx E_{1,2}}{\Longrightarrow} s = 2E^{2}(1 - \cos \vartheta)$$

Da cui, visto che è un collider avremo $\vartheta=\pi\implies \sqrt{s}=2E.$

- Dunque, ricordando che $E_{\rm cm} = \sqrt{s}$, si avrà che l'energia a disposizone per creare nuove particelle sarà maggiore, a parità di energia del fascio, per il collider piuttosto che target fisso.
- Possiamo fare un calcolo esplicito. Consideriamo un fascio di protoni a E=100 GeV. Nel caso di target fisso abbiamo

$$\sqrt{s} = \sqrt{2E_1m_2} \approx 14 \text{ GeV}$$

invece in un collider ho

$$\sqrt{s} = 2E_1 \approx 200 \text{ GeV}$$

Quindi con un collider ho molta più energia a disposizione. Se volessi infatti avere a disposizione 200 GeV a target fisso dovrei avere un fascio di energia

$$200 = \sqrt{2E} \implies E = 2 \cdot 10^4 \text{ GeV}$$

d'altra parte già dagli anni 70 si usano solo collider.

2.5 Trasformazioni di Lorentz tra centro di massa e laboratorio

ullet Per un sistema di n particelle abbiamo

$$P_{
m lab}^{\mu} = \left(\sum_k E_k, \sum_k \vec{p_k}\right)$$

$$P_{\rm cm}^{\mu} = \left(\sum_{k} E_{k}^{\rm cm}, 0\right) = (\sqrt{s}, 0)$$

Se trasformiamo con Lorentz abbiamo

$$\begin{pmatrix} \frac{\sqrt{s}}{c} \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \gamma_{\text{cm}} & -\beta_{\text{cm}}\gamma_{\text{cm}} & 0 & 0 \\ -\beta_{\text{cm}}\gamma_{\text{cm}} & \gamma_{\text{cm}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sum_{k} \frac{E_{k}}{c} \\ \sum_{k} \vec{p}_{k} \\ 0 \\ 0 \end{pmatrix} \implies$$

$$\Rightarrow \begin{cases} \frac{\sqrt{s}}{c} = \gamma_{\text{cm}} \sum_{k} \frac{E_{k}}{c} - \beta_{\text{cm}}\gamma_{\text{cm}} \sum_{k} |\vec{p}_{k}| \\ 0 = -\beta_{\text{cm}}\gamma_{\text{cm}} \sum_{k} \frac{E_{k}}{c} + \gamma_{\text{cm}} \sum_{k} |\vec{p}_{k}| \end{cases}$$

da cui $\beta_{\rm cm} = \frac{|p_{\rm lab}^{\rm tot}|}{E_{\rm lab}^{\rm tot}}$ velocità del centro di massa, e $\gamma_{\rm cm} = \frac{E_{\rm lab}^{\rm tot}}{\sqrt{s}}$ sempre del centro di massa.

 Si può anche fare al contrario da sistema del centro di massa a sistea del laboratorio. Stavolta abbiamo

$$P_{\text{lab}}^{\mu} = (E_1 + m_2, \vec{p}_1)$$

 $P_{\text{cm}}^{\mu} = \left(\sum_k E_k^{\text{cm}}, 0\right) = (\sqrt{s}, 0)$

Se trasformiamo con Lorentz abbiamo

$$\begin{pmatrix} E_1 + m_2 \\ 0 \\ 0 \\ p_1 \end{pmatrix} = \begin{pmatrix} \gamma_{\text{cm}} & 0 & 0 & \beta_{\text{cm}} \gamma_{\text{cm}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta_{\text{cm}} \gamma_{\text{cm}} & 0 & 0 & \gamma_{\text{cm}} \end{pmatrix} \begin{pmatrix} \sqrt{s} \\ 0 \\ 0 \\ 0 \end{pmatrix} \implies$$

$$\implies \begin{cases} E_1+m_2=\gamma_{\rm cm}\sqrt{s}\\ p_1=\beta_{\rm cm}\gamma_{\rm cm}\sqrt{s} \end{cases}$$
da cu
i $\beta_{\rm cm}=\frac{p_1}{E_1+m_2}$ e $\gamma_{\rm cm}=\frac{E_1+m_2}{\sqrt{s}}$

2.6 Impulso trasverso

Normalmente nei collider si usano rivelatori a simmetria cilindrica o sferica. Vediamo le relazioni in termini di coordinate sferiche.

 Assumiamo che il centro di massa si muova lungo z, e passiamo dal riferimento del centro di massa a quello del laboratorio. Indichiamo con * le quantità nel riferimento del centro di massa.

$$P^{\mu} = \begin{pmatrix} E \\ p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} E \\ p\sin\vartheta\cos\varphi \\ p\sin\vartheta\sin\varphi \\ p\cos\vartheta \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & \beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} E^* \\ p^*\sin\vartheta^*\cos\varphi^* \\ p\sin\vartheta^*\sin\varphi^* \\ p\cos\vartheta^* \end{pmatrix} \implies$$

$$\implies \begin{cases} E = \gamma E^* + \beta\gamma p^*\cos\vartheta^* \\ p\sin\vartheta\cos\varphi = p^*\sin\vartheta^*\cos\varphi^* \\ p\sin\vartheta\sin\varphi = p^*\sin\vartheta^*\sin\varphi^* \\ p\cos\vartheta = E^*\beta\gamma + \gamma p^*\cos\vartheta^* \end{cases}$$

Dalla seconda e terza equazione otteniamo $\tan \varphi = \tan \varphi^*$ cioè che l'angolo azimutale φ è invariante per trasformazioni di Lorentz. Invece dalla terza e quarta otteniamo

$$\tan \theta = \frac{\sin \theta^*}{\gamma \frac{\beta}{\beta^*} + \cos \theta^*}$$

$$\operatorname{con} \beta^* = p^*/E^*.$$

- L'impulso trasverso. È definito come $p_{\perp} = p \sin \vartheta$. Dalla seconda e terza equazione (facendo il quadrato e sommando) otteniamo che $p_{\perp} = p_{\perp}^*$, cioè l'impulso trasverso è invariante per trasformazioni di Lorentz.
- Che configurazioni possiamo avere? Dobbiamo guardare il denominatore di tan ϑ .
 - 1. $\beta_{\rm cm} > \beta^*$ (velocità del centro di massa è maggiore della velocità nel centro di massa). In questo caso il denominatore è positivo per ogni valore di ϑ^* . Da ciò ne segue che $0 < \vartheta < \pi/2$ cioè nel riferimento del laboratorio è sempre in avanti. **Speriamo nelle slide non capisco bene.** La espressione si annulla per $\vartheta^* = 0, \pi$ a cui corrisponde un valore nel laboratorio di massimo $\vartheta_{\rm max}$. Troviamolo facendo la derivata e ponendola pari a zero:

$$\frac{\mathrm{d}\tan\vartheta}{\mathrm{d}\vartheta^*} = \dots = \frac{1 + \frac{\beta}{\beta^*}\cos\vartheta^*}{\gamma\left(\frac{\beta}{\beta^*} + \cos\vartheta^*\right)^2} = 0 \implies \cos\vartheta^* = -\frac{\beta}{\beta^*} \implies \tan\vartheta_{\mathrm{max}} = \frac{\beta^*}{\gamma\sqrt{\beta^2 - \beta^{*,2}}}$$

E possiamo anche trovare che valore di energia corrisponde ad esso (ad un certo punto si usa $\beta^* = p^*/E^*$ e $E^* = \gamma^* m$)

$$E(\vartheta_{\max}) = \gamma(E^* + \beta p^* \cos \vartheta^*) = \dots = m \frac{\gamma}{\gamma^*}$$

- 2. $\beta_{\rm cm} < \beta^*$. In questo caso non ho valori massimi di ϑ perché la derivata è sempre positiva. La velocità della particella nel centro di massa può compensare (parzialmente) il boost del centro di massa, quindi posso anche avere backscattering.
- 3. $\beta_{\rm cm} = \beta^*$. In questo caso $\cos \vartheta^* = -1$ e quindi $\vartheta_{\rm max} = \pi/2$. La particella nel riferimento del centro di massa viaggia in verso opposto al moto del centro di massa, nel laboratorio il centro di massa è fermo.

2.7 Scattering elastico

Consideriamo elettrone contro un nucleo. Ricordiamo che le particelle prima e dopo non cambiano.

• In scattering elastico si conserva il quadri-impulso (lo indico solo con P, e quando è accentato è post-collisione).

$$P_e + P_N = P'_e + P'_N \text{ con } \begin{cases} P_e = (E, \vec{p}) \\ P_N = (m_N, 0) \end{cases} \begin{cases} P'_e = (E', \vec{p}') \\ P'_N = (E'_N, \vec{p}_N) \end{cases}$$

Eleviamo al quadrato la relazione

$$P_e^2 + P_N^2 + 2P_e P_N = P_e^{2\prime} + P_N^{2\prime} + 2P_e^{\prime} P_N^{\prime} \underset{\substack{P_e^2 = m_e^2 \\ P_N^2 = m_N^2}}{\Longrightarrow} P_e P_N = P_e^{\prime} P_N^{\prime}$$

poiché non accediamo all'energia del nucleo che rincula, la riscriviamo usando $P'_N = P_e + P_N - P'_e$, infatti noi accediamo all'energia dell'elettrone diffuso che è proprio ciò che riveliamo.

$$P_e P_N = P'_e (P_e + P_N - P'_e) = P'_e P_e + P'_e P_N - \underbrace{P'^2_e}_{m^2} = P'_e P_e + P'_e P_N - m_e^2$$

Nel riferimento del laboratorio dunque abbiamo, sviluppando i prodotti tra tensore

$$Em_N = EE' - \vec{p} \cdot \vec{p}' + E'm_N - m_e^2 \underbrace{\approx}_{m_e \ll p} E'E - E'E\cos\vartheta + E'm_N \implies E' = \frac{E}{1 + \frac{E}{m_N}(1 - \cos\vartheta)}$$

Dunque in generale $E \neq E'$. Coincidono se il nucleo sostanzialmente non prende energia. L'energia diffusa dell'elettrone dipende dall'angolo di scattering, a bersaglio fissato. L'energia di rinculo del nucleo E - E' dipende dal rapporto E/m_N e quindi aumenta con l'energia iniziale dell'elettrone (**slide**).

2.8 Decadimenti

Decadimenti a due corpi

Secondo la prof noi diamo per vero che lo spettro sia discreto senza sapere il perché. Non si ricorda che già abbiamo il titolo di "Dottore in Fisica".

• Se abbiamo un decadimento ad n corpi, si ha

$$m = \sum_{i=1}^{n} = \sum_{i} \sqrt{p_i^2 + m_i^2} \ge \sum_{i} m_i \implies m \ge \sum_{i} m_i$$

cioè la massa del nucleo originale è sempre maggiore o uguale alla somma di tutti i prodotti.

Se consideriamo un decadimento a due corpi, abbiamo nel riferimento del centro di massa

$$\begin{cases} m_a = E_b^* + E_c^* \\ 0 = \vec{p}_b^* + \vec{p}_c^* \end{cases} \implies m_a = (p_b^{*2} + m_b^2)^{1/2} + (p_c^{*2} + m_c^2)^{1/2} \implies m_a = (p^{*2} + m_b^2)^{1/2} + (p^{*2} + m_c^2)^{1/2} \implies m_a - (p^{*2} + m_b^2)^{1/2} = (p^{*2} + m_c^2)^{1/2}$$

Va be con tanti conti elevando due volte al quadrato (si tiene $(m_b^2 - m_c^2)$ come termine unico nella seconda quadratura) si arriva a

$$p^{*2} = \frac{m_a^4 - 2m_a^2(m_b^2 + m_c^2) + (m_b^2 - m_c^2)^2}{4m_a^2} = \frac{[m_a^2 - (m_b + m_c)^2][m_a^2 - (m_b - m_c)^2]}{4m_a^2}$$

da cui

$$E_b^* = \sqrt{p^{2*} + m_b^2} = \frac{m_a^2 + (m_b^2 - m_c^2)}{2m_a}$$

$$E_c^* = \sqrt{p^{2*} + m_c^2} = \frac{m_a^2 - (m_b^2 - m_c^2)}{2m_a}$$

belle queste formule, ma quello che ci interessa è che l'energia dei prodotti finali ha dei valori fissi, che dipendono dalle masse coinvolte. Questo spiega matematicamente perché lo spettro è discreto. Se b=c allora l'energia è ripartita a metà equamente tra i due corpi prodotti, infatti $E^*=E_b^*+E_c^*=\frac{m_a}{2}$. Questo nel riferimento del centro di massa, cioè della particella originale che decade.

Distribuzioni angolari del decadimento a due corpi

Consideriamo $a \to b + c$.

• Nel riferimento del centro di massa si ha

$$\begin{cases} m_a = E_b^* + E_c^* \\ 0 = \vec{p_b^*} + \vec{p_c^*} \end{cases}$$

sappiamo che valgono le formule $\beta=\frac{p}{E}$ e $\beta\gamma=\frac{p}{m_a}.$

- Nel riferimento del laboratorio abbiamo due angoli $\vartheta_{1,2}$ rispetto alla direzione di volo della particella originale, mentre nel centro di massa c'è un solo angolo ϑ^* (rispetto a direzione iniziale) e le figlie hanno impulso uguale ed opposto. Cerchiamo una relazione tra questi due angoli e quello nel centro di massa, usando le formule di trasformazione di Lorentz.
- ullet Consideriamo il passaggio da laboratorio a centro di massa. Nel piano xy abbiamo

$$\begin{pmatrix} E \\ p_x \\ p_y \end{pmatrix} = \begin{pmatrix} \gamma & \beta \gamma & 0 \\ \beta \gamma & \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} E^* \\ p_x^* \\ p_y^* \end{pmatrix} \implies \begin{cases} E_1 = \gamma E_1^* + \beta \gamma p_x^* = \gamma E_1^* + \beta \gamma \cos \vartheta^* p^* \\ p_{1x} = p_1 \cos \vartheta_1 = \gamma p_{1x}^* + \beta \gamma E_1^* = \gamma p^* \cos \vartheta^* + \beta \gamma E_1^* \\ p_{1y} = p_1 \sin \vartheta_1 = p_{1y}^* = p^* \sin \vartheta^* \end{cases}$$

Per la particella due le relazioni sono identiche con l'unica differenza che se p_1 è positivo, p_2 è negativo. Quindi $\vartheta^* \to \pi + \vartheta^*$ ed il coseno cambia segno ($\cos(x + \pi) = -\cos x$). Dunque

$$\begin{cases} E_2 = \gamma E_2^* - \beta \gamma \cos \vartheta^* p^* \\ p_{2x} = p_2 \cos \vartheta_2 = -\gamma p^* \cos \vartheta^* + \beta \gamma E_2^* \\ p_{2y} = p_2 \sin \vartheta_2 = p_{2y}^* = p^* \sin \vartheta^* \end{cases}$$

Adesso troviamo la tangente facendo al solito la divisione:

$$\tan \vartheta_1 = \frac{p^* \sin \vartheta^*}{\gamma(p^* \cos \vartheta^* + \beta E_1^*)} = \frac{\sin \vartheta^*}{\gamma(\cos \vartheta^* + \beta \frac{E^*}{p^*})} = \frac{\sin \vartheta^*}{\gamma(\cos \vartheta^* + \frac{\beta}{\beta_1^*})}$$

e per l'angolo due al solito la stessa espressione cambiando il segno al coseno:

$$\tan\vartheta_2 = \frac{\sin\vartheta^*}{\gamma(-\cos\vartheta^* + \frac{\beta}{\beta_2^*})}$$

Come già visto, se $\beta^* < \beta$ le particelle vengono emesse in avanti. Possiamo calcolare anche in questo caso il valore dell'angolo massimo e si ha un risultato analogo.

$$\frac{\mathrm{d} \tan \vartheta_1}{\mathrm{d} \vartheta^*} = 0 \implies \cos \vartheta^* = -\frac{\beta_1^*}{\beta} \implies \tan \vartheta_{1,\max} = \frac{\beta_1^*}{\gamma \sqrt{\beta^2 - \beta_1^{*,2}}}$$

• Indicando con $\vartheta = \vartheta_1 + \vartheta_2$ l'angolo tra le due particelle, possiamo scrivere $P^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2p_1p_2\cos\vartheta = M^2$ e da qui ricavo

$$\cos \vartheta = \frac{m_1^2 + m_2^2 + 2E_1E_2 - M^2}{2p_1p_2} \underset{E_i \approx p_i}{\approx} \frac{m_1^2 + m_2^2 + 2E_1E_2 - M^2}{2E_1E_2} \Rightarrow \sin \frac{\vartheta}{2} = \frac{\sqrt{M^2 - m_1^2 - m_2^2}}{2\sqrt{E_1E_2}}$$

Si ha il valore di ϑ minimo quando il denominatore è massimo. Troviamo i valori per cui è massimo:s

$$E_0 = E_1 + E_2 \implies E_1 E_2 = E_1 (E_0 - E_1) \implies \frac{\mathrm{d}}{\mathrm{d}E_1} (E_1 E_0 - E_1^2) = 0 \implies E_1 = \frac{E_0}{2} = E_2$$

dunque abbiamo il valore dell'angolo minimo nel caso in cui l'energia è equipartita tra i due corpi.

Decadimento del pione

- Ci concentriamo sul decadimento $\pi^0 \to \gamma + \gamma$. Questo a differenza del decadimento dei pioni carichi, è un decadimento elettromagnetico infatti ha $\tau \approx 10^{-16}$ s, mentre quello debole è $\tau \approx 10^{-8}$ s.
- Ci sono principalmente due motivi per cui è utile studiare questo decadimento:
 - 1. Perché i pioni sono in generale i mediatori della interazione nucleare.
 - 2. Perché da raggi cosmici che penetrano nell'atmosfera vengono prodotti principalmente pioni. Anche in qualunque esperimento a bersaglio fisso. D'altra parte visto che la forza nucleare è indipendente dalla carica, ci sono sempre pioni carichi e neutri in mezzo.
- In questo caso abbiamo un nucleo origine che decade in due figli di uguale massa, che in particolare è zero! Quindi i due fotoni nel riferimento del laboratorio avranno un certo impulso con un certo angolo rispetto quello del π^0 e per rivelarli dovrò rivelare le coppie elettrone-positrone, che se sono in un campo magnetico curveranno con verso opposto. Quindi avremo nel riferimento del laboratorio $\vec{p}_0 = \vec{p}_1 + \vec{p}_2$ e $\vartheta = \vartheta_1 + \vartheta_2$:

$$\begin{cases} \vec{p_0} = \vec{p_1} + \vec{p_2} \implies p_0^2 = p_1^2 + p_2^2 + 2p_1p_2\cos\vartheta \\ \sqrt{m_{\pi^0}^2 + p_0^2} = E_1 + E_2 = p_1 + p_2 \implies m_{\pi^0}^2 + p_0^2 = p_1^2 + p_2^2 + 2p_1p_2 \end{cases}$$

$$\implies 2p_1p_2(1-\cos\theta) = m_{\pi^0}^2 \implies \sin^2\frac{\theta}{2} = \frac{m_{\pi^0}^2}{4E_1E_2}$$

che è lo stesso risultato di prima ma generico.

- Ci sarebbero i commenti ad un grafico che se mai avrò le slide metterò. C'è una iperbole nel primo quadrante, ed è ϑ_{\min} in funzione dell'energia in GeV, per il π^0 e η . Si vede che ad energie basse l'angolo minimo è grande, mentre ad energie alte l'angolo minimo diminuisce sempre più. Questo vuol dire che se faccio esperimenti ad alta energia, avrò i due fotoni proiettati in avanti, quindi se vogio essere in grado di distinguerli serve un rivelatore con risoluzione sufficiente.
- Vediamo la distribuzione energetica dei due fotoni nel riferimento del laboratorio, perché nel centro di massa sappiamo che sono più energetici e si ha $E^* = \frac{m_{\pi^0}}{2}$. Fissiamo assi in modo tale che x è direzione del moto di π^0 e il moto è nel piano xy.
- Facciamo il conto:

$$\beta = \frac{p_0}{E_0}, \quad \gamma = \frac{E_0}{E^*} = \frac{E_0}{m_{\pi^0}}, \quad p_y = p_y^* = p^* \sin \vartheta, \quad p_x = \gamma(p^* \cos \vartheta + \beta E^*)$$

$$E_1 = \gamma(E_1^* + \beta p_1^* \cos \vartheta^*) = \gamma \frac{m_{\pi^0}}{2} (1 + \beta \cos \vartheta^*) = \frac{E_0}{m_{\pi^0}} \frac{m_{\pi^0}}{2} \left(1 + \frac{p_0}{E_0} \cos \vartheta^* \right) =$$

$$= \frac{E_0}{2} \left(1 + \frac{p_0}{E_0} \cos \vartheta^* \right) = \frac{E_0}{2} \frac{E_0 + p_0 \cos \vartheta^*}{E_0} = \frac{E_0 + p_0 \cos \vartheta^*}{2}$$

Questo è per E_1 e ovviamente se guardo E_2 ho lo stesso risultato con il segno cambiato del coseno.

• Dunque la distribuzione energetica è compresa tra un valore massimo e minimo di E_1 per i valori limite del coseno.

$$E_{\min} = \frac{E_0 - p_0}{2} (\vartheta^* = \pi), \quad E_{\max} = \frac{E_0 + p_0}{2} (\vartheta^* = 0)$$

e chiaramente i valori sono complementari tra fotone 1 e 2, cioè quando uno è al minimo l'altro è al massimo e viceversa.

• Adesso non ci resta che trovare come varia l'energia in questo intervallo. Sappiamo che π^0 è un mesone a spin zero, quindi i fotoni nel centro di massa sono emessi isotropicamente. Quindi la distribuzione angolare non dipende dall'angolo solido, cioè uniforme su $\cos \vartheta^*$. Sia $f(\cos \vartheta^*)$ la distribuzione angolare, allora avremo

$$\int_{-1}^{1} f(\cos \vartheta^*) d\cos \vartheta^* = 1 \implies f(\cos \vartheta^*) = \frac{1}{2}$$

differenziando $E_1 = \frac{E_0}{2} + \frac{p_0}{2}\cos\vartheta^*$ rispetto a $\cos\vartheta^*$ otteniamo

$$\frac{\mathrm{d}E_1}{\mathrm{d}\cos\vartheta^*} = \frac{p_0}{2} \left(= \frac{\beta E_0}{2} = \frac{1}{2}\beta\gamma m_{\pi^0} \right) \implies \mathrm{d}n = f(\cos\vartheta^*) \,\mathrm{d}\cos\vartheta^* = \frac{1}{2}\,\mathrm{d}\cos\vartheta^* = \frac{\mathrm{d}E_1}{p_0}$$

la distribuzione di energia è costante tra i valori massimo e minimo

$$\frac{\mathrm{d}n}{\mathrm{d}E_1} = \frac{1}{p_0}$$

Dunque nel riferimento del centro di massa è una δ centrata nella massa del π^0 ; invece nel riferimento del laboratorio è una distribuzione piatta tra i valori massimo e minimo.

• Dimostriamo che la configurazione di decadimento per ϑ_{\min} è proprio quella più probabile. Partiamo da

$$\sin^{2} \frac{\vartheta}{2} = \frac{m_{\pi^{0}}^{2}}{4E_{1}E_{2}} \Rightarrow 4E_{1}(E_{0} - E_{1}) = \frac{m_{\pi^{0}}^{2}}{\sin^{2} \frac{\vartheta}{2}} \Longrightarrow \sin^{2} \frac{\vartheta}{2} = \frac{m_{\pi^{0}}^{2}}{4E_{1}E_{2}} \Longrightarrow 4E_{1}(E_{0} - E_{1}) = \frac{m_{\pi^{0}}^{2}}{\sin^{2} \frac{\vartheta}{2}}$$

$$\Longrightarrow 4(E_{0} - 2E_{1}) dE_{1} = -2\frac{m_{\pi^{0}}^{2}}{\sin^{3} \frac{\vartheta}{2}} \cos \frac{\vartheta}{2} \frac{1}{2} d\vartheta = -m_{\pi^{0}}^{2} \frac{\cos \frac{\vartheta}{2}}{\sin^{3} \frac{\vartheta}{2}} d\vartheta$$

Se torniamo alla distribuzione angolare

$$\frac{\mathrm{d}n}{\mathrm{d}\vartheta} = \frac{\mathrm{d}n}{\mathrm{d}E_1} \frac{\mathrm{d}E_1}{\mathrm{d}\vartheta} = \frac{1}{p_0} \frac{m_{\pi^0}^2}{4(E_0 - 2E_1)} \frac{\cos\frac{\vartheta}{2}}{\sin^3\frac{\vartheta}{2}}$$

Facciamo un altro passaggio diverso

$$E_1(E_0 - E_1) = \underbrace{\frac{m_{\pi^0}^2}{4\sin^2\frac{\vartheta}{2}}}_{-A} \implies E_1^2 - E_0E_1 + A = 0 \implies E_0 - 2E_1 = \mp \sqrt{E_0^2 - 4A} = \mp \frac{E_0}{\sin\frac{\vartheta}{2}}$$

da cui sostituendo in $\frac{\mathrm{d}n}{\mathrm{d}\vartheta}$ otteniamo

$$\frac{\mathrm{d}n}{\mathrm{d}\vartheta} = \frac{m_{\pi^0}^2}{p_0 E_0} \frac{\cos\frac{\vartheta}{2}}{4\sin^2\frac{\vartheta}{2}\sqrt{\sin^2\frac{\vartheta}{2} - \frac{m_{\pi^0}^2}{E_0^2}}}$$

e si ha un massimo quando il denominatore è minimo (divergenza) per cui si ottiene proprio la formula di prima di ϑ_{\min} (ponendo la radice quadrata pari a zero). Questa è proprio la configurazione più probabile, quando i due fotoni hanno minore apertura angolare che corrisponde ad energia iniziale equipartita.

• servirebbe slide. Facciamo esempi numerici. Supponiamo di essere nel riferimento del laboratorio e abbiamo energia del fascio π^0 di 4.05 GeV. L'energia del pione nel laboratorio è $E_{\pi^0}^{\text{lab}} = \gamma m_{\pi^0}$ e $\beta^* \gamma \dots$

3 Senza nome per ora

3.1 Interazioni

- L'interazione classica a distanza è descritta da un potenziale o da un campo. In meccanica quantistica invece c'è uno scambio di quanto, e ad ogni interazione è associato un bosone.
- Ad esempio consideriamo due cariche. Classicamente la forza che la prima carica esercita sulla seconda dipende dal campo elettrico; quantisticamente invece l'interazione tra le due cariche è mediata da un fotone, figlio della violazione di conservazione di energia in accordo con il principio di indeterminazione di Heisenberg $\Delta E \Delta t \sim \hbar$.
- Esistono quattro tipi di interazione:
 - 1. Forte. Lega i quark in adroni e protoni/neutroni in nuclei. È mediata dai gluoni.

- 2. Elettromagnetica. Lega gli elettroni al nucleo formando l'atomo ed è anche responsabile delle forze molecolari in liquidi e solidi. È mediata dai fotoni.
- 3. Debole. È responsabile dei decadimenti radioattivi, specie i β -decay. È mediata dai bosoni W e Z.
- 4. Gravitazionale. È la più debole e riguarda ogni corpo con massa. È mediata dai gravitoni... o forse no.
- Come sappiamo la massa del mediatore è inversamente proporzinale al range della interazione. Se il mediatore ha massa nulla, il range è infinito (fotone ed interazione elettromagnetica). Se il mediatore ha massa finita, il range è finito. Più è massivo, più è corto il range. Infatti la interazione debole ha range molto piccolo (inferiore al fermi) e il mediatore lo metto in evidenza solo ad energie elevate.
- Per indicare l'intensità di ciascuna forza (non ho letto sbene slide diceva di protoni che si toccano) si pone pari a uno l'interazione forte. Allora avremo

Forte Elettromagnetica Debole Gravitazionale $1 10^{-2} 10^{-7} 10^{-39}$

Secondo Einstein forse è possibile unificare le quattro forze in un'unica teoria, ma non è ancora stato fatto. Finora solo la forza elettromagnetica e debole sono state unificate in una sola teoria. Si pensa che ad alte energie si riescono a unificare tutte le forze, solo che sono troppo elevate per raggiungerle. A 10¹⁶ GeV si uniscono forza elettromagnetica, debole e forte; A 10¹⁹ GeV si unisce anche la gravitazionale. Oggi siamo a 12 ordini di grandezza di distanza da 10¹⁶ GeV.

- L'intensità di una forza è associata ad una costante di accoppiamento.
 - 1. Quella elettromagnetica sappiamo che è la costante di struttura fine

$$\alpha = \frac{\text{Energia elettrostatica tra due elettroni a distanza } \hbar/mc}{\text{massa a riposo dell'elettrone}} = \frac{\frac{1}{4\pi}\frac{e^2}{\hbar/mc}}{m_ec^2} = \frac{e^2}{4\pi\hbar c} = \frac{1}{137}$$

2. Quella debole interviene nei β -decay e in assorbimenti di neutrini (che sarebbe la stessa cosa). Ma interviene anche in altri processi più *strani*. Vediamo i due decadimenti:

$$\Sigma_{dds}^{-} o n_{ddu} + \pi^{-}$$
 $\tau_{w} \sim 10^{-10} s$ Forza debole
$$\Sigma_{uds}^{0} o \Lambda_{uds} + \gamma$$
 $\tau_{\rm EM} \sim 10^{-19} s$ Forza elettromagnetica

La prima è effettivamente associata all'interazione debole in quanto viene violata la conservazione di flavour (un quark strange diventa up) ed ha un tempo di 10^{-10} s, mentre la seonda è elettromagnetica perché, oltre alla presenza di un fotone, viola soltanto la conservazione dell'isospin e il tempo è di 10^{-19} s. Come già sappiamo, il principio di indeterminazione lega vita media e larghezza del decadimento in modo inversamente proporzionale. Ma anche la larghezza di decadimento Γ dipende dalla costante di accoppiamento α che caratterizza l'interazione tra lo stato iniziale e i prodotti finali del decadimento. In generale, il tasso di decadimento (sezione d'urto) è proporzionale al quadrato della costante di accoppiamento, quindi possiamo scrivere che $\Gamma \propto \alpha^2$. Questa dipendenza dal quadrato della costante di accoppiamento è una conseguenza della teoria quantistica dei campi, dove l'ampiezza della transizione dipende linearmente da α , mentre la probabilità di transizione (e quindi il tasso

di decadimento o sezione d'urto) dipende dal modulo al quadrato di tale ampiezza. Da ciò segue che il tempo di vita medio τ è inversamente proporzionale al quadrato della costante di accoppiamento α : $\tau \propto \alpha^{-2}$ di conseguenza, più è forte l'interazione (cioè, maggiore è la costante di accoppiamento), più breve sarà il tempo di vita della particella, mentre un'interazione più debole (con α più piccolo) darà luogo a un tempo di vita più lungo.

$$\frac{\alpha_w}{\alpha} = \sqrt{\frac{\tau_{\rm EM}}{\tau_w}} \approx 10^{-4} - 10^{-5}$$

Cioè, come già visto nella tabella precedente, la forza debole è 4-5 ordini meno intensa di quella elettromagnetica.

3. L'interazione forte invece conserva tutto. Quindi quella elettromagnetica viola al massimo la conservazione di isospin; quella debole viola molte cose tra cui parità, coniugazione di carica, flavour ed isospin; quella forte non viola niente. Vediamo le due reazioni:

$$\Sigma^{0*}(1385) \to \Lambda + \pi^0$$
 $\tau \sim 10^{-23} s$ Forza forte $\Gamma = 36 \text{MeV}$

$$\Sigma^0(1192) \to \Lambda + \gamma$$
 $\tau \sim 10^{-19} s$ Forza elettromagnetica

In questo caso abbiamo

$$\frac{\alpha_s}{\alpha} = \sqrt{\frac{\tau_{\rm EM}}{\tau_s}} = \sqrt{\frac{10^{-19}}{10^{-23}}} \approx 10^2$$

I quanti in questo caso sono i gluoni e ci sono sei cariche. La forza tra i quark è simmetrica per colore ossia non dipende da essa. Vale la cromodinamica quantistica per l'interazione forte, e si hanno i due comportamenti:

Libertà asintotica
$$V_s \to \alpha_s/r$$
 $q^2 \to \infty$
Confinamento $V_s \to kr$ $q^2 \to 0$

Cioè ad alte energie (piccole distanze) il potenziale è coulombiano, mentre a piccole energie (grandi distanze) il potenziale è elastico. La soglia di energia alta/bassa è sui GeV.

3.2 Diagrammi di Feynman

Introduzione inutile sui diagrammi. Lei però considera tempo da sinistra verso destra. Dice anche la storia dell'interferenza di quando consideri più diagrammi per uno stesso processo (fai il quadrato della somma, non la somma dei quadrati quella storia lì perché i diagrammi sono ampiezze).

Variabili di Mandelstam

Consideriamo il processo $a+b\to c+d$ (e.g. $p\overline{p}\to n\overline{n}$). Le variabili di Mandelstam sono (per processi $2\to 2$):

- 1. $s = (p_a + p_b)^2 = (p_c + p_d)^2$ è il quadrato dell'energia nel centro di massa.
- 2. $t = (p_a p_c)^2 = (p_b p_d)^2$ è il quadrato del momento trasferito.
- 3. $u = (p_a p_d)^2 = (p_b p_c)^2$ è il quadrato del momento scambiato.

Inoltre vale $s+t+u=(m_a^2+m_b^2+m_c^2+m_d^2)$ è la somma delle masse a riposo.

• Facciamo un esempio con lo scattering elettrone-positrone, quindi supponendo $E_i \sim p_i$. Nel riferimento del centro di massa avremo:

$$\begin{cases} p_a = (E, p, 0, 0) \\ p_b = (E, -p, 0, 0) \\ p_c = (E, p \cos \vartheta, p \sin \vartheta, 0) \\ p_d = (E, -p \cos \vartheta, -p \sin \vartheta, 0) \end{cases}$$

con ϑ l'angolo tra la direzione iniziale di collisione e la direzione di scattering (finale). Allora abbiamo:

$$\begin{cases} s = 4E^2 \text{ come nei collider} \\ t = -\frac{1}{2}s(1 - \cos \vartheta) = -s\sin^2 \frac{\vartheta}{2} \\ u = -\frac{1}{2}s(1 + \cos \vartheta) = -s\cos^2 \frac{\vartheta}{2} \end{cases}$$

e si ha effettivamente s+t+u=0, che vuol dire che solo due variabili sono indipendenti e scegliamo noi quale usare per descrivere il sistema (e.g. $(E,\vartheta),(s,t),(\sqrt{s},\vartheta)$). Invece l'angolo azimutale φ non compare e c'è simmetria (della sezione d'urto) in esso se la dinamica non lo esplicita, ad esempio con lo spin. Se non posso trascurare la massa $s=m_a^2+m_b^2+2p_ap_b\Longrightarrow s+t+u=\sum_i m_i^2$.

 Consideriamo adesso masse uguali. Diamo una rappresentazione grafica o qualcosa del genere non è che si capisce a che cosa serva.

$$\begin{cases} s = 4E^2 \ge 4m^2 \\ t = -4p^2 \sin^2 \frac{\vartheta}{2} \\ u = -4p^2 \cos^2 \frac{\vartheta}{2} \end{cases}$$

L'equazione $s+t+u=4m^2=M$ oltre a dirci che solo due variabili sono indipendenti, rappresenza l'equazione di un piano nello spazio 3D stu. La regione del piano in cui s,t,u>0 forma un triangolo equilatero, come in Figura 4. I confini di questo triangolo sono dati dalle

Figura 4: Piano di Mandelstam

line
e $s=0,\ t=0$ eu=0, come mostrato. Il vertice superiore del triangolo corrisponde a
 t=u=0, quindi, dalla equazione precedente, vediamo che l'altezza del triangolo è
 M. Sebbene siano necessari solo due vettori unitari per specificare una posizione in questo piano, è consuetudine definire tre vettori unitari $\hat{e}_s,\ \hat{e}_t$ e
 $\hat{e}_u,$ ciascuno dei quali è perpendicolare alla rispettiva linea zero, come mostrato in Figura 4. Visto che l'angolo tra due di questi versori è sempre $\frac{2}{3}\pi,$ abbiamo

$$\hat{e}_i \cdot \hat{e}_j = \cos\frac{2}{3}\pi = -\frac{1}{2} \qquad i \neq j$$

Per qualche motivo oscuro vogliamo esprimere \hat{e}_i in funzione di \hat{x} e \hat{y} . Notiamo subito che $\hat{e}_s = \hat{y}$. Invece \hat{e}_u ha un angolo pari a $\frac{2}{3}\pi + \frac{\pi}{2} = \frac{7}{6}\pi$ rispetto all'asse \hat{x} , dunque $\hat{e}_u = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})$. Infine \hat{e}_t sta a $-\frac{\pi}{6}$ rispetto all'asse \hat{x} , quindi $\hat{e}_t = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$. Queste relazioni possiamo invertirle e ricavare \hat{x} e \hat{y} in funzione di \hat{e}_i . Sempre per lo stesso oscuro motivo, la prof ci tiene a dire che le regioni fisicamente permesse sono quelle fuori dal triangolo e comprese tra le linee che fuoriescono da ciascun angolo. Per esempio la regione permessa di s sta sopra. IO credo sia dovuto a questo: quando siamo nella retta parallela all'asse x e passante per il vertice in alto, abbiamo $s = 4m^2, t = u = 0$. Quindi se andiamo "sopra", $s > 4m^2$ e t, u < 0. Ok però così non ha senso che non si possa stare anche dentro il triangolo ok ci rinuncio.

- c'è una parte poco chiara servirebbero slide.
- A cosa servono? Due sono indipendenti, la terza no e in base al processo che abbiamo esprimiamo le sezioni d'urto in funzione di una variabile piuttosto che di un'altra. Consideriamo un processo X indipendente (forse senza polarizzazione?) da φ , allora

$$\frac{\mathrm{d}\sigma_X}{\mathrm{d}\Omega} = \frac{1}{2\pi} \frac{\mathrm{d}\sigma_X}{\mathrm{d}\cos\vartheta} = \frac{s}{4\pi} \frac{\mathrm{d}\sigma_X}{\mathrm{d}t} \qquad \text{perch\'e } t = -\frac{s}{2}(1-\cos\vartheta)$$

Per $m^2 \ll s$ la sezione d'urto dipende dal modulo quadro dell'elemento di matrice del processo

$$\frac{\mathrm{d}\sigma_X}{\mathrm{d}t} = \frac{\left|M_X\right|^2}{16\pi s^2}$$

In base al processo che considero, avrò una espressione diversa.

• Definizione di sezione d'urto, al solito probabilità di interazione quando il proiettile entra in regione unitaria di volume con un target. Considerimo un fascio di N_b particelle contro uno strato dl del target con N_T particelle in volume V. Indicando con $n_T = \mathrm{d}N_T/V$ la densità del target, abbiamo che $\mathrm{d}N_b \propto N_b n_t \, \mathrm{d}l$.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\partial^2\sigma}{\partial\cos\vartheta\partial\varphi} \underset{\mathrm{Non \ dipende \ da}}{\Longrightarrow} \frac{1}{2\pi} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\vartheta}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\vec{p}} = \frac{\mathrm{d}^3\sigma}{\mathrm{d}p_x\,\mathrm{d}p_y\,\mathrm{d}p_z} = \frac{\mathrm{d}^3\sigma}{p_T\,\mathrm{d}p_T\,\mathrm{d}p_L\,\mathrm{d}\varphi} \Longrightarrow \mathrm{slide}$$

Non lo so perchè ho scritto ciò².

²Ho chiesto a ChatGPT di spiegare i passaggi e sotto c'è lo jacobiano (ovviamente mi dicono dalla regia, cervello mode: off) da $(x, y, z) \rightarrow (p_T, \varphi, p_L)$ con $p_T = \sqrt{p_x^2 + p_y^2}, \varphi = \tan^{-1}\left(\frac{p_y}{p_x}\right), p_L = p_z$

• Una cosa da attenzionare è che la sezione d'urto bisogna precisare a cosa è riferita. Consideriamo $ab \to cX$. Se mi interessa solo sapere come è prodotto c e non mi interessa da cosa è accompagnato, è una sezione d'urto inclusiva $\sigma(ab \to cX)$ e devo considerare tutti i processi che lo producono. Se invece sono interessato ad un canale ben preciso, avrò la sezione d'urto esclusiva. La somma di tutte le sezioni d'urto esclusive darà quella inclusiva. Quindi se $\sigma_{inc} \ll \sigma_{tot}$ allora posso esplicitare la probabilità di produrre c:

$$\mathbb{P}(c) = \frac{\sigma_{\text{inc}}(ab \to cX)}{\sigma_{\text{tot}}(ab)}$$

Se invece $\sigma_{\rm inc} \approx \sigma_{\rm tot}$ allora quel rapporto fornisce il numero di c prodotti nello stato finale.

In base al contesto posso esplicitare o meno se si tratta di sezione d'urto inclusiva/esclusiva.
 Ad esempio in LHC si lavora per la produzione di Higgs, quindi è sottointeso che la sezione d'urto sia inclusiva.

$$\sigma_{\rm Higgs}({\rm LHC, 8\,TeV}) = \sigma_{\rm inc}\big(pp \to Hx, \sqrt{s} = 8\,{\rm TeV}\big) \approx 22.3~{\rm pb}$$

$$\sigma_{\rm tot}\big(pp, \sqrt{s} = 8\,{\rm TeV}\big) = 101.7 \pm 2.9~{\rm mb}$$

Quindi ci sono 10 ordini di grandezza di differenza (pico = 10^{-12} , milli = 10^{-3}). Il rapporto ci dà la probabilità di produrre il bosone di Higgs:

$$IP(Higgs @ LHC) = 2 \cdot 10^{-10}$$

Vediamo un altro esempio.

$$\sigma_{\rm inc} \left(pp \to \pi^0 X, \ p_{\rm LAB} = 24 \, {\rm GeV} \right) = 53.5 \pm 3.1 \, {\rm mb}$$

$$\sigma_{\rm to} \left(pp, \ p_{\rm LAB} = 24 \, {\rm GeV} \right) = 38.9 \, {\rm mb}$$

In questo caso il rapporto dà il numero. La probabilità la abbiamo solo se la frazione è *molto* piccola.

• La sezione d'urto inoltre è legata alla matrice del processo, al fattore di spazio delle fasi $\left(\frac{2\pi}{\hbar}\rho(E)\right)$ e al rapporto tra elemento di volume e velocità della particella incidente tramite la seconda regola d'oro di Fermi.

$$\sigma = \frac{WV}{v_b} = \frac{2\pi}{\hbar} |M_{\rm if}|^2 \rho(E) \frac{V}{v_b}$$

Con la teoria abbiamo questa espressione della sezione d'urto. Noi con la teoria accediamo a $|M_{\rm if}|^2$ mentre sperimentalmente abbiamo numero di eventi in un determinato canale e poi si confronta.

• Nel caso di stati eccitati il decadimento è esponenziale $N(t) = N_0 e^{-t/\tau}$ con τ tempo di vita medio del processo, con al solito $\Gamma \propto \frac{1}{\tau}$. Se τ è piccolo, l'energia a riposo (o massa) di uno stato non è unica (non è una delta di Dirac) ma varia attorno ad un valore centrale. La funzione che descrive la distribuzione di energia che lo stato può assumere è una lorentziana:

$$\left|\tilde{\psi}(E)\right|^2 = \frac{1}{2\pi} \frac{\left|\psi_0\right|^2}{(E - E_0)^2 + \Gamma^2/4}$$

che però in questo contesto fisico chiamiamo formula di Breit-Wigner (la si ricava facendo la trasformata di Fourier di $\psi(t) = \psi_0 e^{-i(E_0 - i\Gamma/2)t}$). La larghezza a metà altezza della lorentziana è proprio Γ ed è la larghezza di decadimento. Questa formula è importante perché la Breit-Wigner appare ogni volta che abbiamo processi con risonanze, e dal picco troviamo la massa e dalla larghezza del picco troviamo la larghezza di decadimento (o tempo di vita medio).

• Consideriamo un processo con step intermedio $ab \to R \to X$. Allora abbiamo la formula (J_R) momento angolare totale della risonanza mentre s_a, s_b spin delle particelle iniziali)³

$$\sigma(ab \to R \to X, E_{\rm cm} = \sqrt{s}) = \frac{\pi}{\left|p_{ab}\right|^2} \underbrace{\frac{2J_R + 1}{(2s_a + 1)(2s_b + 1)}}_{\text{molteplicità di stati di spin}} \underbrace{\frac{\Gamma_{ab}\Gamma_X}{(\sqrt{s} - M_R)^2 + \Gamma_R^2/4}}_{\text{Breit-Wigner}} \approx$$

$$\underset{s \approx \left| n_{cb} \right|^2}{\approx} \frac{16\pi}{s} \frac{2J_R + 1}{(2s_a + 1)(2s_b + 1)} \frac{\Gamma_{ab}}{\Gamma_R} \frac{\Gamma_X}{\Gamma_R} \frac{\Gamma_R^2/4}{(\sqrt{s} - M_R)^2 + \Gamma_R^2/4}$$

quindi la si scrive in termini del branching ratio BR con i rapporti delle larghezze di decadimento. Applichiamola ad un caso specifico:

$$\sigma(e^{+}e^{-} \to J/\psi \to \mu^{+}\mu^{-}) = \frac{16\pi}{s} \frac{3}{4} \frac{\Gamma_{e^{+}e^{-}}}{\Gamma_{J/\psi}} \frac{\Gamma_{\mu^{+}\mu^{-}}}{\Gamma_{J/\psi}} \frac{\Gamma_{J/\psi}^{2}/4}{(E - M_{J/\psi})^{2} + \Gamma_{J/\psi}^{2}/4} =$$

$$= \frac{12\pi}{s} BR(J/\psi \to e^{+}e^{-}) BR(J/\psi \to \mu^{+}\mu^{-}) \frac{\Gamma_{J/\psi}^{2}/4}{(E - M_{J/\psi})^{2} + \Gamma_{J/\psi}^{2}/4}$$

Da notare che non si conosceva nulla sulla J/ψ , né momento angolare né massa. Da fit si ricavarono entrambi. È importante sottolineare che la presenza di questo step intermedio è dovuta al fatto che sperimentalmente si osserva una risonanza, da ciò deduciamo che non sta semplicemente avvenendo $e^+e^- \to \mu^+\mu^-$.

- Ci sono diverse formule di Breit-Wigner semi-empiriche o *ispirate*. Ne abbiamo già viste due, ma possiamo anche averne una considerando $M_R \gg \Gamma_R$ e nego la dipendenza da s (?); oppure in regime relativistico un'altra formula.
- In generale quando faccio una misura io **non** ottengo mai la vera larghezza di decadimento, ma una convoluzione della larghezza intrinseca del decadimento e l'efficienza del rivelatore.
- Quando abbiamo grandi numeri, consideriamo la distribuzione gaussiana mentre con piccoli numeri può essere binomiale o altro a seconda dei casi. Per scoprire una nuova particella consideriamo la distribuzione di Gauss e quando siamo distanti dal valore atteso: quando ci troviamo tra 3 e 5 deviazioni standard, si conclude che abbiamo osservato qualcosa di nuovo. Se siamo oltre 5 deviazioni standard, si conclude che abbiamo scoperto qualcosa di nuovo. Ovviamente è una convenzione.
- La forma della curva quando si osserva una risonanza è la *Voigt* che tiene conto di larghezza intrinseca e risoluzione del rivelatore. Non ha una forma analitica ma solo integrale (di gaussiana per lorentziana).

³Sto 16 nella formula dopo non lo capisco, dovrebbe essere un 4. Purtroppo la campionessa non passa le slide quindi non posso controllare se è colpa mia.

4 Modello statico a quark

pippo

4.1 Simmetrie e leggi di conservazione

In generale una legge fisica è simmetrica rispetto ad una trasformazione quando la forma della legge è invariante per questa trasformazione. Sia in meccanica classica che quantistica.

- In QM se l'operatore non dipende esplicitamente dal tempo allora commuta con la hamiltoniana del sistema. In generale (non sempre?) i numeri quantici conservati sono associati ad operatori che commutano con l'hamiltoniana.
- Le simmetrie si dividono in continue e discrete. Vediamo ad esempio la traslazione spaziale (continua)

$$\psi(r + \delta r) = \psi(r) + \delta r \frac{\mathrm{d}\psi}{\mathrm{d}r} = \left(1 + \delta r \frac{\partial}{\partial r}\right) \psi(r)$$

L'operatore che descrive una traslazione finita è l'impulso:

$$D = 1 + \frac{i}{\hbar} p \delta r \implies D = \lim_{n} \left(1 + \frac{ip\Delta r}{n\hbar} \right)^{n} = e^{\frac{i}{\hbar} p \Delta r}$$

Chiamiamo p generatore dell'operatore D di traslazione spaziale. Se l'hamiltoniana è invariante per traslazioni, allora commuta con D e dunque anche con p. Questo lo si può esprimere in tre modi equivalenti:

- 1. L'impulso si conserva in un sistema isolato.
- 2. L'hamiltoniana è invariante per traslazioni spaziali.
- 3. L'operatore impulso commuta con l'hamiltoniana.
- A simmetrie continue associamo numeri quantici additivi, a simmetrie discrete sono associati numeri quantici moltiplicativi.

Parità

La trasformazione di parità è l'inversione delle coordiante spaziali.

$$P\psi(\vec{r}) = \psi(-\vec{r})$$

Chiaramente se applico due volte l'operatore ottengo la funzione iniziale:

$$P^2\psi(\vec{r}) = \psi(\vec{r}) \implies P^2 = 1 \text{ (unitario)} \implies \lambda = \pm 1$$

Vediamo degli esempi:

• Consideriamo le semplici funzioni trigonometriche

$$\psi(x) = \cos x \xrightarrow{P} \cos(-x) = \cos(x) = \psi(x)$$
 Pari
 $\psi(x) = \sin x \xrightarrow{P} \sin(-x) = \sin(x) = -\psi(x)$ Dispari

In generale una combinazione lineare $\psi(x) = \cos x + \sin x$ non è detto che sia simmetrica per parità.

• Un altro esempio può essere la funzione d'onda di un elettrone in un atomo di idrogeno. La simmetria della funzione d'onda ha la stessa parità di l. Infatti

$$\psi(r, \vartheta, \varphi) = \chi(r) \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_m^l(\cos \vartheta) e^{im\varphi}$$

Fare una trasformazione di parità vuol dire

$$\vec{r} \to -\vec{r} \implies \begin{cases} \vartheta \to \pi - \vartheta \\ \varphi \to \pi + \varphi \end{cases} \implies \begin{cases} e^{im\varphi} \to e^{im(\pi + \varphi)} = (-1)^m e^{im\varphi} \\ P_m^l(\cos\vartheta) \to (-1)^{l+m} P_m^l(\cos\vartheta) \end{cases} \implies$$
$$\implies Y_l^m(\vartheta, \varphi) \to (-1)^{l+2m} Y_l^m(\vartheta, \varphi) = (-1)^l Y_l^m(\vartheta, \varphi)$$

Questo risultato vale in generale per le armoniche sferiche, che quindi hanno parità data da l. Nelle transizioni di dipolo elettrico la regola di selezione è $\Delta l = \pm 1$, quindi la parità atomica cambia. Però nei processi elettromagnetici la parità si conserva, quindi la parità della radiazione emessa deve essere negativa per compensare la parità.

- In questo caso il numero quantico è moltiplicativo e non si conserva soltanto nei decadimenti deboli. Inoltre è necessario che per convenzione assegniamo una parità intrinseca a ciascuna particella: a protoni e neutroni assegniamo parità positiva.
- Assegnare la parità intrinseca serve a distinguere particelle che interagiscono tra di loro (come cariche elettriche). Chiaramente il segno della parità intrinseca è scelto arbitrariamente, quello che conta è la parità relativa tra due particelle. Ad esempio particelle ed antiparticelle hanno parità opposta. Ad esempio nella reazione per la scoperta dell'antiprotone $p+p \to p+p+\overline{p}+p$ la parità totale nel canale di ingresso è uguale a quella in uscita (l'interazione forte la conserva). Questo discorso però funziona solo per i fermioni! Nel caso di fermioni, particella ed antiparticella hanno la stessa parità.
- I vettori polari cambiano segno sotto trasformazione di parità e quelli assiali (pseudovettori) no.

$$\begin{cases} \vec{r} \to -\vec{r} \\ \vec{p} \to -\vec{p} \end{cases} \quad \text{Polari} \quad \begin{cases} \vec{\sigma} \to \vec{\sigma} \\ \vec{L} \to \vec{L} \end{cases} \quad \text{Assiali} \\ \vec{E} \to -\vec{E} \end{cases}$$

Parità del pione carico

Consideriamo il decadimento $\pi^- + d \to n + n$, che è un processo forte perché tutto si conserva. Canale di ingresso: $\pi^- + d$

- 1. Momento angolare totale j iniziale:
 - Supponiamo che lo stato sia preparato sperimentalmente con l=0.
 - La particella π^- ha spin s=0, quindi non contribuisce con il proprio spin. Inoltre ha parità negativa (è un cosiddetto mesone pseudoscalare).
 - Il deuterone (d) ha s = 1 e parità positiva (essendo un sistema di due nucleoni in uno stato legato con parità).

Pertanto il momento angolare iniziale è j = 1.

- 2. Parità iniziale:
 - La parità del sistema $\pi^- + d$ è data dalla parità del prodotto tra il π^- e il deuterone:

$$P_{\text{ingresso}} = P_{\pi^-} P_d = (-1) \cdot (+1) = -1$$

Canale di uscita: n+n

- 1. Momento angolare totale j finale:
 - Gli stati possibili dei neutroni sono s = 0 (singoletto) e s = 1 (tripletto).
 - Il momento angolare orbitale l tra i due neutroni determinerà il valore di j nel canale di uscita:

$$j = l \pm s$$

- Per i neutroni, che sono fermioni, il sistema complessivo deve essere antisimmetrico. Questo implica che se s=0 (singoletto), l deve essere pari; se s=1 (tripletto), l deve essere dispari.
- 2. Parità finale (canale di uscita):
 - La parità del sistema n + n è data da:

$$P_{\text{uscita}} = (-1)^l$$

visto che i neutroni hanno parità +1.

Allora per conservazione di momento angolare e parità, dovrò avere per gli stati finali

$$j_{\rm i} = j_{\rm f} \implies 1 = l + s$$

$$P_{\rm ingresso} = P_{\rm uscita} \implies -1 = (-1)^l \implies l \text{ dispari}$$

Visto che s = 0, 1 e l deve essere dispari, allora l = 1 e s = 1 è l'unica combinazione che soddisfa entrambe le condizioni. Quindi il canale di uscita n + n ha l = 1 e s = 1 (tripletto).

Parità del pione neutro

Il pione neutro decade con BR = 99% in $\gamma + \gamma$. Questo decadimento è un processo elettromagnetico, quindi la parità si conserva.

- Siano \vec{k} e $-\vec{k}$ gli impulsi dei due fotoni e ε_1 e ε_2 i vettori polarizzazione.
- Visto che i fotoni sono bosoni, la funzione d'onda totale deve essere simmetrica per scambio di particelle.

$$\psi$$
 pari: $\psi_1(2\gamma) = A(\vec{\varepsilon_1} \cdot \vec{\varepsilon_2}) \propto \cos \varphi$
 ψ dispari: $\psi_1(2\gamma) = B(\vec{\varepsilon_1} \times \vec{\varepsilon_2}) \cdot \vec{k} \propto \sin \varphi$

dove φ è l'angolo tra i piani di polarizzazione dei fotoni. La ψ_1 è scalare (parità positiva), la ψ_2 è pseudoscalare (parità negativa).

• Quindi per ora non sappiamo quale delle due funzioni d'onda è quella giusta. Abbiamo i due casi

$$P_{\pi^0} = +1 \implies |\psi|^2 \propto \cos^2 \varphi$$
$$P_{\pi^0} = -1 \implies |\psi|^2 \propto \sin^2 \varphi$$

Per misurare devo studiare il decadimento del $\pi^0 \to \gamma \gamma$. Noi ovviamente per rivelare i fotoni andiamo a cercare le coppie elettrone-positrone. Dunque cerchiamo

$$\pi^0 \to \gamma \gamma \to e^+ e^- e^+ e^-$$

detto decadimento doppio Dalitz con BR $(3.14 \pm 0.30) \cdot 10^{-5}$. Da un grafico (che metterò mai visto che non passa le slide) vedo distribuzione sperimentale che è in accordo con andamento con parità negativa (funzione d'onda va con $\sin^2 \varphi$).

Conservazione della parità

Abbiamo detto che la parità è conservata nei processi forti ed elettromagnetici e non nei processi deboli.

- Un esempio è il neutrino. Noi li conosciamo solo sinistri (left-handed) e non destri. Infatti un neutrino come lo conosciamo noi ha elicità negativa, cioè impulso e spin antiparalleli. Se facciamo una trasformazione di parità solo l'impulso cambia segno e non lo spin, quindi si avrebbe un neutrino destro che in realtà non esiste, o meglio non interagisce con la materia attraverso le forze che conosciamo presenti nel Modello Standard, dunque non è rivelabile.
- In realtà sperimentalmente è stata misurata una piccola violazione della parità in processi forti ed elettromagnetici. Ciò è dovuto al fatto che la hamiltoniana in realtà è composta da tre pezzi delle tre interazioni, quindi la parità non è conservata in generale perché c'è sempre un piccolo contributo di interazione debole. Ad esempio questo problema non sorge con l'elettrone, che sappiamo esistere sia destro che sinistro in quanto ha comunque la carica elettrica e quindi mal che vada elettromagneticamente lo riveliamo sempre. Il problema sussiste solo con il neutrino.
- Nella corrente carica, cioè scambio di W[±], la parità è violata al 100%. Questo perché il W interagisce sempre solo con particella sinistra o antiparticella destra (ignora le altre due tipologie, è razzista, non ci interagisce). Nel caso della corrente neutra, cioè scambio di Z⁰, la situazione è più complessa. Infatti esso interagisce sia con particelle sinistre che destre, ma con pesi (accoppiamenti) diversi, di meno con particelle destre. Invece interazione forte ed elettromagnetica non distinguono elicità, cioè particelle destre o sinistre, e quindi la parità è conservata.

Particelle ed antiparticelle

- Al solito noi ci aspettiamo che esistono antiparticelle anche solo dalla relatività speciale in quanto ci sono soluzioni con energia negativa.
- In meccanica quantistica rappresentiamo l'ampiezza di un flusso di particelle (e.g. elettroni) come una funzione d'onda piana

$$\psi(x) = Ae^{\frac{i}{\hbar}(px - Et)}$$

questa espressione rappresenta anche particelle di energia -E e impulso -p che si muovono in direzione opposta nello spazio e nel tempo (anche in Klein-Gordon, per questo nei diagrammi di Feynman hanno direzione indietro nel tempo).

Coniugazione di carica

- L'effetto dell'operatore coniugazione di carica C è di invertire carica e il momento magnetico della particella.
- In fisica classica abbiamo che le leggi di Maxwell sono invarianti per esse, che sono

$$\begin{aligned} q &\to -q \\ \vec{J} &\to -\vec{J} \\ \vec{E} &\to -\vec{E} \\ \vec{H} &\to -\vec{H} \end{aligned}$$

• In meccanica quantistica invece quando applichiamo C abbiamo

	Protone	Antiprotone
Carica	+e	-e
N. barionico	1	-1
Momento	eħ _ 2.70	-2.79
magnetico	$\frac{e\hbar}{2mc} = 2.79$	-2.19
Spin	$\frac{1}{2}\hbar$	$-\frac{1}{2}\hbar$

• Consideriamo il neutrino sinistro. Se effettuiamo la trasformazione di parità otteniamo un neutrino destro (spin e impulso parallelo); se effettuiamo la trasformazione di coniugazione di carica otteniamo un antineutrino sinistro (spin e impulso antiparalleli). Entrambe particelle che non esistono. Tuttavia se effettuiamo entrambe le trasformazioni, otteniamo un antineutrino destro, che è una particella che esiste. Quindi c'è buona simmetria CP (o PC) che viene rispettata... c'è solo una piccolissima violazione.

Autostati dell'operatore C

Solo i bosoni neutri che coincidono con la propria antiparticella possono essere autostati di C.

• Se applichiamo C ad un pione carico non otteniamo un autostato:

$$C\left|\pi^{+}\right\rangle = \left|\pi^{-}\right\rangle \neq \lambda \left|\pi^{+}\right\rangle$$

dunque i pioni carichi non sono autostati di C.

• Invece abbiamo, poichè applicando due volte C torniamo allo stato di partenza $C^2 |\pi^0\rangle = |\pi^0\rangle$,

$$C |\pi^{0}\rangle = \lambda |\pi^{0}\rangle \implies C^{2} |\pi^{0}\rangle = \lambda^{2} |\pi^{0}\rangle = |\pi^{0}\rangle \implies \lambda = \pm 1$$

Per determinare se è positivo o negativo, ricordiamo che il decadimento è $\pi^0 \to \gamma\gamma$ quindi $C(\pi^0) = +1$ perché l'interazione elettromagnetica è invariante per coniugazione di carica (la conserva). Lo si capisce anche classicamente, infatti cambiando la carica cambiano segno sia \vec{E} sia \vec{B} .

• Dunque $C(\gamma) = -1$ e da ciò deduciamo che il decadimento $\pi^0 \to 3\gamma$ è proibito. D'altra parte troviamo sperimentalmente

$$\frac{\mathrm{BR}(\pi^0 \to 3\gamma)}{\mathrm{BR}(\pi^0 \to 2\gamma)} < 3.1 \times 10^{-8}$$

Conservazione di C

- La coniugazione di carica si conserva in interazioni forti ed elettromagnetiche. Allora nei processi forti mi aspetto sempre particelle ed antiparticelle per compensarsi.
- Il mesone η decade in vari modi ($J^P = 0^-, m = 550 \text{MeV}$).
 - 1. $\eta \rightarrow \gamma \gamma \text{ BR} = 39.4\%$
 - 2. $\eta \to \pi^+ \pi^- \pi^0 \text{ BR} = 23.1\%$
 - 3. $\eta \to \pi^+ \pi^- \gamma \text{ BR} = 4.7\%$
 - 4. $\eta \to \pi^0 e^+ e^- \text{ BR} < 4 \times 10^{-5} \%$

poiché $\eta \to \gamma \gamma$ è il decadimento principale, si deve avere $C(\eta) = +1$. Dunque il decadimento $\eta \to \pi^0 e^+ e^-$ è proibito dalla conservazione di C. Ma questo è dovuto al fatto che $C(e^+ e^-) = +1$. Vediamo perché.

Decadimento del positronio

• Il positronio è uno stato legato e^+e^- che possiede livelli energetici simili all'atomo di idrogeno (con circa la metà dello spazio). La funzione d'onda la suddividiamo:

$$\psi(e^+e^-) = \varphi(\text{spazio}) \times \alpha(\text{spin}) \times \chi(\text{carica})$$

- 1. $\varphi(\text{spazio})$. Lo scambio di particelle è equivalente all'inversione spaziale, dunque questo termine introduce solo un fattore $(-1)^L$ dove L è il momento angolare orbitale.
- 2. $\alpha(\text{spin})$. Avendo due fermioni, si possono accoppiare in singoletto (s=0) o tripletto (s=1). Indicando gli stati con $\psi(s,s_z)$, abbiamo:

$$\begin{cases} \alpha(1,1) = \psi_1(\frac{1}{2}, \frac{1}{2})\psi_2(\frac{1}{2}, \frac{1}{2}) \\ \alpha(1,0) = \frac{1}{\sqrt{2}} \left(\psi_1(\frac{1}{2}, \frac{1}{2})\psi_2(\frac{1}{2}, -\frac{1}{2}) + \psi_1(\frac{1}{2}, -\frac{1}{2})\psi_2(\frac{1}{2}, \frac{1}{2}) \right) \end{cases}$$
 s = 1 Tripletto Simmetrico

$$\alpha(0,0) = \frac{1}{\sqrt{2}} \bigg(\psi_1 \bigg(\frac{1}{2},\frac{1}{2}\bigg) \psi_2 \bigg(\frac{1}{2},-\frac{1}{2}\bigg) - \psi_1 \bigg(\frac{1}{2},-\frac{1}{2}\bigg) \psi_2 \bigg(\frac{1}{2},\frac{1}{2}\bigg) \bigg) \qquad \begin{array}{c} s = 0 \text{ Singoletto} \\ \text{Antisimmetrico} \end{array}$$

La simmetria della parte di spin è data da $(-1)^{s+1}$, dunque è pari se s è dispari e viceversa.

- 3. Per la parte carica invece consideriamo un fattore C.
- Dunque la simmetria totale della funzione d'onda per scambio di elettroni e positroni è

$$K = (-1)^{L} (-1)^{s+1} C$$

siccome abbiamo un sistema di due fermioni, la simmetria totale deve essere antisimmetrica K = -1.

• Allora con $L=0 (\implies J=s)$ sperimentalmente posso avere due diversi decadimenti

$$e^+e^- \to 2\gamma$$
 $e^+e^- \to 3\gamma$

e dunque possiamo avere (il vincolo è $K = -1 = (-1)^{L+s+1}C$)

	J = S	L	C	K
2γ	0	0	+1	-1
3γ	1	0	-1	-1

perché sappiamo già che $C(n\gamma) = (-1)^n$.

• Le larghezze di decadimento si possono confrontare teoricamente dalla QED e sperimentalmente. C'è accordo!

Notiamo che entrambi sono possibili!

- Sommario:
 - 1. Se ho un sistema di due mesoni, come pioni carichi:

$$C |\pi^{+}\pi^{-}; L\rangle = (-1)^{L} |\pi^{+}\pi^{-}; L\rangle$$

perché in questo caso coniugazione di carica vuol dire scambiare la posizione, e spazialmente si ottiene sempre $(-1)^L$.

2. Se ho un sistema fermione e antifermione, posso avere tripletto o singoletto e tutto il discorso fatto prima. Quindi

$$C |f\overline{f}; J, L, S\rangle = \underbrace{(-1)^L}_{\text{spazio}} \underbrace{(-1)^{S+1}}_{spin} (-1) |f\overline{f}; J, L, S\rangle$$

e l'ultimo (-1) è dovuto al fatto che la coppia fermione antifermione ha parità intriseca negativa dal principio di Pauli. Per convenzione la particella ha +1 e l'antiparticella -1.

Gauge invarianza e conservazione di carica

Ha detto due cose in croce. Il legame tra conservazione di carica e gauge invarianza.

Teorema CPT

- Quando effettuiamo una inversione temporale $t \to -t$ le reazioni sono invarianti. Questo comporta che la sezione d'urto di una reazione è uguale a quella della reazione inversa, a meno di una piccola violazione.
- Perché c'è questa violazione? In meccanica quantistica c'è un teorema che afferma che: Tutte le interazioni sono invarianti per applicazione dei tre operatori C,P e T in qualunque ordine. Dunque i processi che violano CP, violano anche T così che si conservi tutto. Si hanno diverse conseguenze:

- 1. La massa della particella è uguale a quella della antiparticella. $\frac{m_{K^0}-m_{\overline{K}^0}}{m_{K^0}+m_{\overline{K}^0}}<10^{-19}$
- 2. Il tempo di vita media è uguale tra particella ed antiparticella.
- 3. Il momento magnetico è uguale ed opposto in segno tra particella ed antiparticella.
- La CP è una buona simmetria, per le cose che facciamo è esatta. Nel 1964 studiando decadimenti di K_L^0 (long), che normalmente decadono in tre pioni (CP = -1), si è osservato che decadono anche in due pioni (CP = +1). Questa è una violazione di CP. Questa è l'unica fonte di spiegazione, nel Modello Standard, al fatto che nell'universo c'è asimmetria tra materia ed antimateria.
- Dunque la violazione di CP equivale ad una violazione di T per il teorema CPT. I modi di osservare la violazione di T sono due:
 - 1. La polarizzazione trasversa $\vec{\sigma} \cdot (\vec{p_1} \times \vec{p_2})$ nei decadimenti deboli come quello del muone.
 - 2. Il momento di dipolo elettrico $\vec{\sigma} \cdot \vec{E}$.

Spin dei pioni carichi π^{\pm} in realtà è legato a prima forse rendere subsection "time reversal"?

- Dalla inversione temporale possiamo avere informazione sullo spin dei pioni carichi.
- È stato determinato guardando la reazione $p + p \rightleftharpoons \pi^+ + d$. La sezione d'urto praticamente ha la stessa formula della larghezza di decadimento, a meno di fattori dello spazio delle fasi. Abbiamo

$$\sigma(pp \to \pi^+ d) = |M_{if}|^2 \frac{(2s_{\pi} + 1)(2s_d + 1)}{v_i v_f} p_{\pi}^2$$

 $\sigma(\pi^+ d \to pp) = \frac{1}{2} |M_{if}|^2 \frac{(2s_p + 1)^2}{v_f v_i} p_p^2$ Il fattore $\frac{1}{2}$ viene dalla integrazione su metà angolo solido, poiché el

$$\implies \frac{\sigma(pp \to \pi^+ d)}{\sigma(\pi^+ d \to pp)} = 2 \frac{(2s_\pi + 1)(2s_d + 1)}{(2s_p + 1)^2} \frac{p_\pi^2}{p_p^2}$$

Misurando le sezioni d'urto e conoscendo gli impulsi e spin di deuterio e protone, ricavo che $s_{\pi} = 0$. Questo però è il pione carico.

• Per lo spin del pione neutrone si guarda il decadimento $\pi^0 \to \gamma \gamma$, che ci dice subito che lo spin deve essere intero e diverso da uno. I fotoni hanno m=0, s=1 e $s_z=\pm 1$. Prendendo come asse di quantizzazione la direzione comune di propagazione dei fotoni nel sistema di riferimento del π^0 , se S è lo spin totale dei due fotoni possiamo avere: $S_z=0$ oppure $S_z=2$. Se lo spin di π^0 è 1, allora $S_z=0$. In questo caso l'ampiezza del sistema a due fotoni deve trasformarsi sotto rotazioni spaziali come il polinomio $P_1^0(\cos \vartheta)$, che è dispari rispetto allo scambio dei due fotoni. Ma la funzione d'onda deve essere simmetrica rispetto allo scambio dei due bosoni identici, quindi lo spin di π^0 non può essere 1. In conclusione, $s_\pi=0$ o $s_\pi\geq 2$. ChatGPT

4.2 Piccolo excursus su numero barionico e leptonico

pippo

4.3 Isospin

- Fu introdotta nel 1932 da Heisenberg notando la similitudine della massa tra protone e neutrone. Suppose che fossero stati di carica differente di una particella chiamata nucleone. Ad esempio osservando nuclei speculari come ⁷Li e ⁷Be si osserva che i livelli energetici hanno lo stesso pattern.
- Al nucleone è associato il numero quantico di *isospin*, conservato solo nelle interazioni forti. Il nucleone ha isospin $I = \frac{1}{2}$, e le due proiezioni corrispondono a protone con $I_3 = \frac{1}{2}$ e neutrone con $I_3 = -\frac{1}{2}$.
- Il nucleone ha un grado di libertà interno con due stati consentiti (il protone e il neutrone), che non sono distinti dalla forza nucleare. Scrivendo gli stati del nucleone come $|I, I_3\rangle$, si può scrivere la stessa cosa di prima per un sistema a due nucleoni con tripletto I = 1 e singoletto I = 0.
- Vale l'importante Gell-Mann Nishijima.

$$Q = I_3 + \frac{1}{2}Y$$
 con $Y = B$ (ipercarica)

L'interazione elettromangetica rompe la simmetria di isospin, da cui si ha una differenza in massa tra protone e neutrone (o anche tra pioni carichi e neutri).

• Ad esempio per i pioni che sono mesoni quindi B = 0 abbiamo $Q = I_3$, dunque abbiamo un tripletto di isospin perché Q = 1, 0, -1.

Isospin del deuterone

• Sappiamo che il deuterone è uno stato legato pn in s-wave cioè l=0 ed è in tripletto. Suddiviamo la funzione d'onda in parte spaziale, di spin e di isospin.

$$\psi = \underbrace{\varphi(\operatorname{spazio})}_{\substack{(-1)^L = +1 \\ (L=0)}} \times \underbrace{\alpha(\operatorname{spin})}_{\substack{(-1)^{S+1} = +1}} \times \underbrace{\chi(\operatorname{isospin})}_{\substack{(-1)^{I+1}}}$$

La funzione d'onda per due fermioni identici (nucleoni) deve essere antisimmetrica. Questo implica che il deuterone ha spin nullo

$$(-1)^{I+1} = -1 \implies I_d = 0$$

Dunque il deuterone è uno stato singoletto anche per l'isospin. Infatti se consideriamo in generale
due nucleoni, possiamo avere il tripletto simmetrico I = 1 o il singoletto antisimmetrico I = 0.
 Però se avessimo il tripletto, dovremmo osservare anche sistemi legati pp e nn, che non esistono.

Altri esempi di isospin

• Consideriamo le due reazioni.

$$p + p \to \pi^+ + d$$
$$p + n \to \pi^0 + d$$

Poiché $I_{\pi} = 1$ e $I_d = 0$, allora gli stati finali hanno entrambi isospin pari ad 1. Gli stati iniziali invece sono:

$$pp = |1, 1\rangle$$

$$np = \frac{1}{\sqrt{2}}(|1, 0\rangle - |0, 0\rangle)$$

La sezione d'urto è proporzionale all'ampiezza al quadrato

$$\sigma \propto |\text{ampiezza}|^2 \approx \sum_{I} \left| \left\langle I', I_3' \right| A \left| I, I_3 \right\rangle \right|^2$$

e da conservazione di isospin (sono processi forti) abbiamo che $I=I^\prime=1$ e $I_3=I_3^\prime.$

• La reazione $np \to \pi^0 d$ va come $\left(\frac{1}{\sqrt{2}}\right)^2$ rispetto alla reazione $pp \to \pi^+ d$:

$$\frac{\sigma(np \to \pi^0 d)}{\sigma(pp \to \pi^+ d)} = \frac{1}{2}$$

ed è importante perché al solito misurando una, la più semplice da effettuare sperimentalmente, trovo l'altra.

Isospin per sistema nucleone-nucleone

• Consideriamo i seguenti processi

a)
$$p + p \rightarrow d + \pi^+$$

b) $p + n \rightarrow d + \pi^0$
c) $n + n \rightarrow d + \pi^-$

• Poichè il deuterone ha I=0, per gli stati finali abbiamo

$$d + \pi^+ = |1, 1\rangle$$

$$d + \pi^0 = |1, 0\rangle$$

$$d + \pi^- = |1, -1\rangle$$

mentre per quelli iniziali

$$p + p = |1, 1\rangle$$

$$p + n = \frac{1}{\sqrt{2}}(|1, 0\rangle + |0, 0\rangle)$$

$$n + n = |1, -1\rangle$$

- Poiché l'isospin totale si deve conservare, solo gli stati con I=1 contribuiscono. Dunque per i tre processi le ampiezze di scattering sono nel rapporto: windows deve esplodere, commentato
- I processi a) e b) sono stati misurati e, tenendo conto dell'interazione elettromagnetica, sono nel rapporto previsto.

Isospin per sistema nucleone-mesone

• Poichè esistono tre pioni, gli assegniamo $I_{\pi}=1$, con carica data da $Q=I_3$ perché B=0. Dunque abbiamo

$$\left|\pi^{+}\right\rangle = \left|1,1\right\rangle \quad \left|\pi^{0}\right\rangle = \left|1,0\right\rangle \quad \left|\pi^{-}\right\rangle = \left|1,-1\right\rangle \quad \left|p\right\rangle = \left|\frac{1}{2},\frac{1}{2}\right\rangle \quad \left|n\right\rangle = \left|\frac{1}{2},-\frac{1}{2}\right\rangle$$

e ricordiamo che le regole sono:

$$|I^1 - I^2| \le I \le I^1 + I^2$$
 $I_3 = I_3^1 + I_3^2$

• Nel sistema π N l'isospin totale può essere $\frac{1}{2}$ o $\frac{3}{2}$, perché devo combinare isospin 1 e $\frac{1}{2}$. Vediamo le diverse possibilità:

$$\pi^{+}p \to \pi^{+}p$$

$$\pi^{-}n \to \pi^{-}n$$

$$\pi^{-}p \to \pi^{-}p$$

$$\pi^{-}p \to \pi^{0}n$$

$$\pi^{+}n \to \pi^{+}n$$

$$\pi^{+}n \to \pi^{0}p$$

- Le prime due sono degli stati puri di isospin $\frac{3}{2}$. Questo perché $I_3 = 1 + \frac{1}{2} = \frac{3}{2}$, dunque il caso $I = \frac{1}{2}$ è proibito (cioè NON posso avere $\left|\frac{1}{2}, \frac{3}{2}\right>$).
- Tutte le altre in generale sono combinazioni lineari dei due casi, con ampiezze date dai coefficienti di Clebsch-Gordan. Consideriamo ad esempio $\pi^+ n \to \pi^0 p$. Abbiamo

$$\left|\pi^{+}n\right\rangle = \left|1,1\right\rangle \times \left|\frac{1}{2},-\frac{1}{2}\right\rangle = \alpha \left|\frac{3}{2},\frac{1}{2}\right\rangle + \beta \left|\frac{1}{2},\frac{1}{2}\right\rangle$$

perché in questo caso sono consentiti i due valori di isospin dato che $I_3 = \frac{1}{2}$. I valori dei coefficiente α e β si ottengono dalla tabella dei coefficienti di Clebsch-Gordan (Guida a mano, in realtà basta leggere come al solito. Il termine che sceglie la tabella è $I^1 \times I^2$; poi guardi le componenti di isospin delle due particelle e le cerchi a sinistra selezionando la riga; infine in alto consideri isospin e sua componente dello stato di cui vuoi trovare il coefficiente).

• Consideriamo le tre seguenti reazioni (tanto le altre sono analoghe)

$$\pi^+ p \to \pi^+ p$$

$$\pi^- p \to \pi^- p$$

$$\pi^- p \to \pi^0 n$$

le prime due sono scattering elastico (una pura e una no), l'ultima è una reazione di scambio di carica. La sezione d'urto è data da

$$\sigma \propto \left| \left\langle f \right| H \left| i \right\rangle \right|^2 = \left| M_{\mathrm{if}} \right|^2$$

Definiamo

$$M_{1} = \left\langle I = \frac{1}{2} \middle| H_{1} \middle| I = \frac{1}{2} \right\rangle$$
$$M_{3} = \left\langle I = \frac{3}{2} \middle| H_{3} \middle| I = \frac{3}{2} \right\rangle$$

- 1. Per la prima reazione $|i\rangle=|f\rangle$ ed essendo uno stato puro $(I=\frac{3}{2})$ la sezione d'urto è proporzionale solo a $|M_3|^2$.
- 2. Anche in questo caso $|i\rangle=|f\rangle$ però non è puro: $\sigma_2\propto \left|\frac{1}{3}M_3+\frac{2}{3}M_1\right|^2$. Non conosciamo i valori di M ma il loro "rapporto".
- 3. Per la terza reazione $|i\rangle \neq |f\rangle$. Risulta $\sigma_3 \propto \left|\sqrt{\frac{2}{9}}M_3 \sqrt{\frac{2}{9}}M_1\right|^2$

Dunque conosciamo il rapporto delle sezioni d'urto::windows deve esplodere, commentato Nell'ipotesi che la modalità di transizione dominante sia l'una o l'altra, abbiamo windows deve esplodere, commentato quindi misuriamo sperimentalmente le sezioni d'urto e calcoliamo teoricamente queste ampiezze di transizioni, anche se sono molto difficili perché ci sono in mezzo gli adroni e avviene adronizzazione (?).

• Dunque abbiamo le seguenti formule per le sezioni d'urto

$$\sigma(\pi^{+} + p \to \pi^{+} + p) = K \left| A_{\frac{3}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + p \to \pi^{0} + n) = K \left| \frac{\sqrt{2}}{3} A_{\frac{3}{2}} - \frac{\sqrt{2}}{3} A_{\frac{1}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + p \to \pi^{-} + p) = K \left| \frac{1}{3} A_{\frac{3}{2}} + \frac{2}{3} A_{\frac{1}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + n \to \pi^{-} + n) = K \left| A_{\frac{3}{2}} \right|^{2}$$
(3)

con

$$A_{\frac{3}{2}} = \left\langle \frac{3}{2}, I_3 \middle| H \middle| \frac{3}{2}, I_3 \right\rangle \qquad A_{\frac{3}{2}} = \left\langle \frac{1}{2}, I_3 \middle| H \middle| \frac{1}{2}, I_3 \right\rangle$$

dunque il primo ed ultimo processo hanno la stessa sezione d'urto (a parità di energia) ed è stato verificato sperimentalmente. Per gli altri processi bisogna conoscere il termine $A_{\frac{1}{2}}$ e le fasi relative tra le ampiezze.

4.4 Risonanze

• In generale si ha una risonanza quando si passa per uno stadio intermedio prima di ottenere i prodotti:

$$a+b \to R \to a+b$$
 reazioneelastica
 $a+b+\to R \to X$ reazioneinelastica

dunque la risonanza può decadere in particelle uguali a quelle iniziali o in altre particelle.

• La risonanza è descritta dalla formula di Breit-Wigner

$$\sigma(E) = \frac{4\pi\hbar^2}{p_{\rm cm}^2} \frac{2J+1}{(2S_a+1)(2S_b+1)} \frac{\Gamma_{\rm in}\Gamma_{\rm fin}}{(E-M_R)^2 + \Gamma^2/4}$$

con $p_{\rm cm}$ impulso nel sistema del centro di massa, J spin della risonanza, S_a e S_b spin delle particelle iniziali, $\Gamma_{\rm in}$ e $\Gamma_{\rm fin}$ larghezza di decadimento iniziale e finale.

Risonanze Δ

- I barioni Δ sono barioni relativamente leggeri (m=1236 MeV) composti da soli quark up e down che hanno spin e isospin $\frac{3}{2}$, questo li distingue dai nucleoni (protoni e neutroni che hanno spin e isospin $\frac{1}{2}$).
- Tutte le varietà di barioni Δ decadono tramite l'interazione forte in un nucleone e un pione con carica appropriata. Le ampiezze dei vari stati di carica finale sono date dalle loro rispettive coppie di isospin. Più raramente e più lentamente, il Δ^+ può decadere in un protone e un fotone e il Δ^0 in un neutrone e un fotone.
- Lo spin $\frac{3}{2}$ precisa che tutti e tre i quark dentro una particella Δ hanno il loro asse di spin indicante la stessa direzione, a differenza del quasi identico nucleone in cui lo spin intrinseco di uno dei tre quark costituenti è sempre opposto allo spin degli altri due. Questo allineamento di spin è integrato da un numero quantico di isospin di $\frac{3}{2}$ il quale differenzia i barioni Δ^+ e Δ^0 e i nucleoni ordinari, che hanno spin e isospin di $\frac{1}{2}$.
- La famiglia Δ è costituita da quattro particelle diverse distinte dalla loro carica elettrica, che è la somma delle cariche della mescolanza di quark up (u) e down (d) che compongono le particelle barioniche Δ. Ci sono inoltre quattro antiparticelle con carica opposta, costituite di antiquark corrispondenti. L'esistenza del Δ⁺⁺, con la sua inusuale carica +2, fu un indizio fondamentale per lo sviluppo del modello a quark.
- La larghezza è circa 120MeV che è abbastanza grande, circa il 10% della massa. È un processo forte infatti la sezone d'urto è grande sui 10-100 mb e il tempo di vita medio è sui 10^{-24} s.
- Studiando la distribuzione angolare dei prodotti di decadimenti si trova che lo spin del Δ è 3/2. Infatti ci sono quattro particelle nella sua famiglia: $\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$. Per $\sqrt{s} < 1.4$ GeV le sezioni d'urto elastica e totale coincidono.

$$\pi^+ p \to \Delta^{++}$$

$$\pi^+ n \to \Delta^+$$

$$\pi^- p \to \Delta^0$$

$$\pi^- n \to \Delta^-$$

- Dunque guardando la sezione d'urto in funzione dell'impulso si vede che il sistema pione nucleone ha risonanze: questa è la prova che esiste Δ.
- Se confrontiamo sperimentalmente le sezioni d'urto di scattering elastico e totale ad esempio di $\pi^- p$, c'è accordo con la teoria. Infatti abbiamo

$$\sigma(\pi^- p \to \pi^- p) = 22 \text{ mb}$$

$$\sigma(\pi^- p \to \pi^0 n) = 45 \text{ mb}$$

cioè sono in rapporto circa 2:1, come previsto. Questo è dovuto al fatto che la risonanza Δ ha isospin $\frac{3}{2}$ quindi i processi che coinvolgono l'apparizione della Δ come risonanza posso avvenire

solo attraverso canali con I = 3/2. Dunque da (3) abbiamo:

$$\sigma(\pi^{+} + p \to \pi^{+} + p) = K \left| A_{\frac{3}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + p \to \pi^{0} + n) = K \left| \frac{\sqrt{2}}{3} A_{\frac{3}{2}} \right|^{2} = K \frac{2}{9} \left| A_{\frac{3}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + p \to \pi^{-} + p) = K \left| \frac{1}{3} A_{\frac{3}{2}} \right|^{2} = K \frac{1}{9} \left| A_{\frac{3}{2}} \right|^{2}$$

$$\sigma(\pi^{-} + p \to \pi^{-} + n) = K \left| A_{\frac{3}{2}} \right|^{2}$$

dunque

$$\frac{\sigma(\pi^{+} + p \to \pi^{+} + p)}{\sigma(\pi^{-} + p \to \pi^{-} + p)} = 9 \qquad \frac{\sigma(\pi^{-} + p \to \pi^{0} + n)}{\sigma(\pi^{-} + p \to \pi^{-} + p)} = 2$$

e vediamo proprio il rapporto 2:1 tra le sezioni d'urto inelastica ed elastica, questo perché c'è il contributo da uno stato finale aggiuntivo $I = \frac{1}{2}$ che invece non abbiamo negli stati puri⁴.

4.5 Stranezza

Scoperta delle particelle strane

- I primi studi sulle particelle strane sono stati fatti mediante esperimenti di camera a nebbia a livello del mare o in alta quota, usando emulsione nucleare in mongolfiere.
- Nel 1943 il fisico Leprince-Ringuet scoprì una particella di massa $506 \pm 61 \text{MeV}$.
- Nel 1947 Rochester e Butler identificarono una particella neutra, denominata V, con la presa
 dati di un anno al livello del mare con la camera a nebbia. Era neutra perché non lasciava
 traccia, ma poi improvvisamente spuntava la forma V, indicando che è decaduta in due particelle
 cariche (era K⁰ → π⁺ + π⁻).
- Oltre alla particella strana V, si notarono particelle strane cariche che decadono in particelle cariche (+ neutre) detta ϑ ($K^+ \to \mu^+ \nu$) o in tre particelle cariche (detta τ , ma non è il leptone $K^+ \to \pi^+ + \pi^+ + \pi^-$).
- Una proprietà delle particelle strane è che sono sempre prodotte in coppia, la cosiddetta produzione associata: nel 1947 divenne chiaro che queste nuove particelle venivano prodotte in coppie, una di massa 500 MeV (K) e un'altra di massa maggiore a quella del nucleone, detto iperone. L'iperone poi decadeva in nucleone e pione.

⁴Questa affermazione non so se è giusta, non mi sembra chiara.

Produzione associata

Figura 5: La reazione A) è $\pi^- + p \to K^0 + \Lambda$, cioè decade in due particelle neutre che non vediamo; la reazione B) è $K^0 \to \pi^- + \pi^+$; la reazione C) è $\Lambda \to p + \pi^-$. A destra vediamo lo schema di ciò che è avvenuto.

- Dal raggio di curvatura ottengo l'impulso delle particelle cariche e conoscendo la loro massa posso calcolare l'energia.
- Dalla massa invariante posso ricavare la massa della particella madre:

$$m_K = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

- Dalla massa e dall'energia totale $E_1 + E_2$ posso ricavare γ e β .
- Dunque misurando il libero cammino medio λ (la traccia) ritroviamo il tempo di vita medio

$$\lambda = \gamma \beta c \tau$$

Perché sono strane?

- La sezione d'urto è dell'ordine del mb, tipico delle interazioni forti. Tuttavia, la vite medie sono dell'ordine di 10⁻¹⁰ s, tipico dei decadimenti deboli.
- Ci sono dei dubbi:
 - 1. Perché $\Lambda \to p + \pi^-$ non avviene tramite interazione forte?
 - 2. Perché le particelle strane sono sempre prodotte in coppia?
 - 3. Questa particella carica decade in due modi diversi, stessa massa e vita media ma hanno parità opposta.
- Una spiegazione dell'anomalia fu fornita da Gell-Mann e Pais nel 1954 indipendentemente da Nishijima. Introdussero un nuovo numero quantico, la stranezza, che viene conservata nelle interazioni forti e violata nelle interazioni deboli.
- È una simmetria discreta quindi è un numero quantico additivo. Gli adroni già noti, nucleoni e pioni hanno stranezza nulla. Gli iperoni hanno stranezza -1 e i mesoni K hanno stranezza ± 1 .
- Inoltre le particelle strane devono essere prodotte in coppia (produzione associata) con stranezza opposta affinché si conservi.

Produzione di particelle strane

• Vennero utilizzati fasci di K carichi per produrre nuove particelle strane.

$$K^- + p \to \Lambda + \pi^0$$
 Interazione forte: s si conserva $\Lambda \to p + \pi^-$ Interazione debole: s non si conserva

• A parità di energia, i K^- producono più particelle dei K^+ perché si producono anche gli iperoni che hanno stranezza -1.

Figura 6:

• Da raggi cosmici e acceleratori furono trovati sei iperoni strani metastabili.

	Q	S	m (MeV)	τ (ps)	cτ (mm)	Principal decays (BR in %)
1	0	-1	1116	263	79	$p\pi^{-}(64), n\pi^{0}(36)$
Σ^+	+1	-1	1189	80	24	$p\pi^{0}(51.6), n\pi^{+}(48.3)$
Σ^0	0	-1	1193	7.4×10^{-8}	2.2×10^{-8}	$\Lambda \gamma(100)$
Σ^{-}	-1	-1	1197	148	44.4	$n\pi^{-}(99.8)$
Ξ0	0	-2	1315	290	87	$4\pi^{0}(99.5)$
En ful fu	-1	-2	1321	164	49	$\Lambda \pi^{-}(99.9)$

notiamo che Σ^0 decade elettromagneticamente, legata a livello energetico che si diseccita ??????? Perché Λ ha quei BR?

4.6 Particelle 1

Classificazione delle particelle

- Nel 1950, nuove particelle e risonanze furono scoperte. Questo fu dovuto al fatto che si iniziarono ad avere a disposizione gli acceleratori e si smise di basarsi unicamente sui raggi cosmici.
- Fu fatto un tentativo di classificare tutte queste particelle in modo da rivelarne la vera natura, simile alla tavola periodica.
- Una prima simmetria era associata all'isospin; particelle con stesso isospin sono identiche davanti alla forza forte, mentre la forza elettromagnetica (e debole)rompe la simmetria causando una differenza in massa di qualche % tra le particelle dello stesso multipletto.

Gli adroni sono particelle elementari?

• Col tempo la nozione di particella *elementare* entrò in crisi. L'esistenza di troppi adroni fu vista come una contraddizione rispetto alla natura elementare della componente fondamentale della materia.

- Era naturale interpretare gli adroni come risonanze di componenti elementari. Il problema principale divenne quindi misurare le proprietà di queste componenti ed eventualmente osservarle.
- Troppi stati adronici, sono allora risonanze? La sezione 4.6 mostra le scoperte delle particelle dal 1898 agli anni '60; la loro abbondanza e regolarità, in funzione di numeri quantici come carica e stranezza, suggerivano una possibile sequenza, simile alla tavola di Mendeleev.

- Per estendere la simmetria, si è tentato di raggruppare diversi multipletti di isospin in un gruppo più grande con lo stesso spin e parità, ma con diversa stranezza (o ipercarica).
- Esistono altre possibili scelte a priori, come mantenere la stessa stranezza ma con spin e parità diversi, ma queste opzioni non funzionano.
- Nel 1949 Fermi e Yang proposero una strategia per classificare tutte le particelle. Tutte sono
 descritte da stati legati di protone e neutrone, ed in particolare sono risonanze di questo sistema.
 Con la scoperta delle particelle strane questo fu scartato (fino a risonanze Δ funzionava).
- Nel 1956 Sakata estese questo modello includendo il Λ per tenere conto della stranezza: tutti gli stati adronici erano composti da protone, neutrone e Λ e rispettive antiparticelle.
- Nel 1961 Gell-Mann e Ne'eman proposero una classificazione delle particelle basata sulla simmetria matematica SU(3), detta Eightfold Way (via dell'ottetto). La classificazione non menziona esplicitamente la presenza di una struttura interna. Il nome fu inventato da Gell-Mann e viene dagli otto comadamenti del buddismo.

Simmetrie e gruppi

Consideriamo ad esempio il gruppo di rotazione.

- Due rotazioni successive R_1 seguita da R_2 sono equivalenti ad una singola rotazione $R = R_2R_1$. Il gruppo in questo caso è *chiuso* rispetto alla moltiplicazione.
- Esiste l'elemento identità (no rotazione) e ogni rotazione ha una inversa R^{-1} .

- Il prodotto non è necessariamente commutativo $R_1R_2 \neq R_2R_1$ (dunque non è abeliano), ma vale sempre la proprietà associativa $(R_1R_2)R_3 = R_1(R_2R_3)$. Invece nelle rotazioni nel piano vale la proprietà commutativa.
- Il gruppo è continuo: ogni rotazione può essere descritta da un insieme di parametri che variano continuamente $(\alpha_1, \alpha_2, \alpha_3)$, i quali possono essere considerati come le componenti di un vettore $\vec{\alpha}$ diretto lungo l'asse di rotazione, con una intensità data dall'angolo di rotazione.
- Il gruppo delle rotazioni è un gruppo di Lie: ogni rotazione può essere espressa come il prodotto di una successione di rotazioni infinitesime (arbitrariamente vicine all'identità). Il gruppo è quindi completamente definito dalla "vicinanza all'identità".
- Le rotazioni sono un sottoinsieme delle trasformazioni di Lorentz e formano un gruppo di simmetria di un sistema fisico: la fisica è invariante rispetto alle rotazioni. Infatti consideriamo

$$|\psi\rangle \xrightarrow{R} |\psi'\rangle = U |\psi\rangle$$

e poiché la probabilità deve restare la stessa:

$$\left| \left\langle \phi | \psi \right\rangle \right|^2 = \left| \left\langle \phi' \middle| \psi' \right\rangle \right|^2 = \left| \left\langle \varphi | U^\dagger U | \psi \right\rangle \right|^2 \implies U^\dagger U = 1$$

cioè U deve essere unitario. Gli operatori U(R) formano un gruppo, in particolare una rappresentazione unitaria del gruppo delle rotazioni.

• Poiché la hamiltoniana è invariante per operazioni di simmetria R del sistema, gli elementi di matrice si conservano:

$$\langle \phi' | H | \psi' \rangle = \langle \phi | U^{\dagger} H U | \psi \rangle = \langle \phi | H | \psi \rangle \implies U^{\dagger} H U = H \implies [U, H] = 0$$

ullet La trasformazione U non ha dipendenza esplicita dal tempo e l'equazione del moto

$$i \frac{\mathrm{d} |\psi(t)\rangle}{\mathrm{d}t} = H |\psi(t)\rangle$$

è invariante per trasformazioni di simmetria. Dunque il valore di aspettazione di U è una costante del moto.

• Tutte le proprietà di gruppo seguono dal considerare rotazioni infinitesime attorno all'identità. Un esempio di rotazione attorno al terzo asse:

$$U = 1 - i\epsilon J_3$$

con J_3 generatore delle rotazioni attorno al terzo asse.

$$1 = U^{\dagger}U = (1 + i\varepsilon J_3^{\dagger})(1 - i\varepsilon J_3) = 1 + i\varepsilon(J_3^{\dagger} - J_3) + \mathcal{O}(\varepsilon^2)$$

dunque $J_3^{\dagger}=J_3$ è hermitiano ed è un osservabile.

• Effettuiamo una rotazione R sulla funzione d'onda. Poiché la fisica è invariante per rotazione, abbiamo:

$$\psi'(\vec{r}) = \psi(R^{-1}\vec{r}) = U\psi(\vec{r}) \implies$$

$$U\psi(x,y,z) = \psi(x+\varepsilon y, y-\varepsilon x, z) = \psi(x,y,z) + \varepsilon \left(y\frac{\partial\psi}{\partial x} - x\frac{\partial\psi}{\partial y}\right) = \psi[1 - i\varepsilon(xp_y - yp_x)]$$

da cui ne segue che $J_3 = xp_y - yp_x$ è il generatore delle rotazioni attorno all'asse z, ossia la componente del momento angolare. L'invarianza per rotazioni implica la conservazione del momento angolare.

• Per una rotazione finita di ϑ :

$$U(\vartheta) = [U(\varepsilon)]^n = \left(1 - i\frac{\vartheta}{n}J_3\right)^n \to e^{-i\vartheta J_3}$$

al solito l'algebra dei generatori è di Lie in quanto vale la relazione

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$

Le funzioni non lineari dei generatori che comutano con tutti i generatori sono dette invarianti o operatori Casimir. Per il gruppo di rotazione l'unico operatore Casimir è:

$$J^2 = J_1^2 + J_2^2 + J_3^2$$
 infatti $[J^2, J_i] = 0$

e ne segue che⁵ possiamo costruire gli autostati simultanei di J^2 e J_3 :

$$J^{2} |j, m\rangle = \hbar^{2} j(j+1) |j, m\rangle$$
$$J_{3} |j, m\rangle = \hbar m |j, m\rangle$$

Gruppo SU(2)

• Nella dimensione minore non banale del gruppo delle rotazioni, $j = \frac{1}{2}$, i generatori sono le matrici di Pauli:

$$J_k = \frac{1}{2}\sigma_k$$

che descrivono particelle con spin $\frac{1}{2}$. La matrice di trasformazione è $U(\vartheta_i) = e^{-i\vartheta_i\frac{\sigma_i}{2}}$. Queste matrici sono unitarie cioè appartengono a U(2). Tuttavia, le matrici di Pauli sono tutte a traccia nulla, dunque in particolare appartengono a SU(2). Si dimostra che ogni matrice hermitiana a traccia nulla σ vale:

$$\det e^{i\sigma} = e^{i\text{Tr}\sigma} = 1$$

• Per un sistema composto valgono le usuali regole del momento angolare. Si ha $J = J_A + J_B$ che soddisfa l'algebra di Lie e gli autovalori J(J+1) ed M di J^2 e J_3 sono numeri quantici conservati. Dunque abbiamo il prodotto di due rappresentazioni irriducibili $2J_A + 1$ e $2J_B + 1$ che diventa 2J + 1 nella base $|J_A, J_B, J, M\rangle$, con

$$|J_A - J_B| \le J \le J_A + J_B$$
 $M = m_A + m_B$

e per trovare gli autostati su usano i coefficienti di Clebsch-Gordan.

• Chiaramente è uguale il discorso per l'isospin e le matrici sono le stesse di Pauli.

⁵Mi ricorda i famosi tre puntini di Marano.

slide misteriosa Isospin for antiparticles

$$\begin{pmatrix} p' \\ n' \end{pmatrix} = e^{-i\pi\frac{\tau_2}{2}} = -i\tau_2 \begin{pmatrix} p \\ n \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p \\ n \end{pmatrix}$$
$$\begin{pmatrix} \overline{p}' \\ \overline{n}' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{p} \\ \overline{n} \end{pmatrix}$$

Affinché l'anti doppietto si trasformi come il doppietto, dobbiamo riordinare il doppietto ed introdurre un segno meno:

$$\begin{pmatrix} -\overline{n}' \\ \overline{p}' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{p} \\ \overline{n} \end{pmatrix}$$

da cui per nucleone-antinucleone:

$$\begin{cases} |1,1\rangle = -p\overline{n} \\ |1,0\rangle = \sqrt{\frac{1}{2}}(p\overline{p} - n\overline{n}) \\ |1,-1\rangle = n\overline{p} \end{cases}$$

$$|0,0\rangle = \sqrt{\frac{1}{2}}(p\overline{p} + n\overline{n})$$

Non lo so. So solo che

$$\begin{pmatrix} p \\ n \end{pmatrix} \longrightarrow \begin{pmatrix} -\overline{n} \\ \overline{p} \end{pmatrix}$$

Gruppo SU(3)

- È il gruppo delle matrici unitarie 3 × 3 con determinante unitario. I generatori sono 3² 1 = 8 matrici hermitiane a traccia nulla e linearmente indipendenti. Due di esse sono diagonali. Otto è il numero massimo di generatori che commutano mutualmente (questo vuol dire essere indipendenti), che è dunque il rango del gruppo.
- Si può dimostrare che il rango del gruppo è uguale al numero di operatori Casimir.
- La rappresentazione fondamentale di SU(3) è un tripletto (e.g. i tre colori di un quark). I generatori sono matrici 3×3 indicante con λ_i , dette matrici di Gell-Mann.

$$\lambda_3 = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} \qquad \lambda_8 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$

- È necessario passare a SU(3) a causa della introduzione di un secondo numero quantico additivo, la stranezza, che assieme ad I_3 rende necessario aumentare il gruppo di simmetria. Fu proposto nel 1961. L'assegnazione delle particelle al multipletto SU(3) non è ovvia a causa della elevata differenza in massa tra le varie particelle strane e non strane.
- Ad esempio l'ottetto barionico contiene particelle con differenza di massa fino a 400 MeV, con in media una massa di 1100 MeV.

- La simmetria in SU(3) è molto più approssimata rispetto a SU(2) che è solo per l'isospin. Questo è dovuto al fatto che il quark s è molto più pesante di u e d. La simmetria SU(3) è alla base del modello a quark ed è utile anche per classificare gli adroni e capire le loro proprietà.
- Invece i colori in SU(3) sono una simmetria esatta.

La via dell'ottetto (1961-1964)

- Tutti gli adroni noti negli anni 60 sono classificati nel piano $I_3 Y$.
- La stranezza, che contribuisce a Y, ha l'effetto di allargare la simmetria di isospin dal gruppo SU(2) al gruppo SU(3).
- Questa simmetria la chiamiamo flavour $SU(3)_F$ per distinguerla dalla color $SU(3)_C$ che è invece esatta per le interazioni forti in QCD.
- Le particelle formano multipletti di $SU(3)_F$. Ciascun multipletto contiene particelle che hanno stesso spin e parità intrinseca. La molteplicità base per i mesoni è nove $(3 \times \overline{3})$, che si suddivide in dui multipletti: ottetto + singoletto. Per i barioni invece ci sono ottetti + decupletti.
- La nascita di SU(3) fu lunga e complicata. Spiegò sia i multipletti di particelle/risonanze note, sia predisse l'esistenza di nuove particelle prima ancora che furono scoperte.
- Tuttavia, la differenza in massa tra protone e neutrone (o tra i pioni carichi e neutri) è inferiore a qualche MeV, mentre tra pioni e kaoni o protoni e lambda è molto maggiore. Dunque la simmetria di isospin SU(2) è quasi esatta, mentre la simmetria di SU(3), che raggruppa particelle strane e non-strane, è sostanzialmente violata.
- In principio, la scoperta di flavour più pesanti può essere interpretata con gruppi di rango maggiore, ad esempio con SU(4) includiamo il quark charm e così via. Tuttavia, queste simmetrie maggiori sono ancora più rotte, come dimostrato dai valori di massa. Dunque poi non si usano.

Mesoni $J^P=0^-$

Figura 7: Mesoni scalari.

Nel piano I_3-Y i mesoni $J^P=0^-$ formano un ottetto e un singoletto. Si può osservare come la simmetria di flavour è inesatta dalla differenza in massa ogni scatto di ipercarica. I mesoni η sono combinazioni di $u\overline{u}$, $d\overline{d}$ e $s\overline{s}$.

${\sf Mesoni}\ J^P=1^-$

Figura 8: Mesoni vettore.

Queste sono invece risonanze mesoniche, tutte scoperte nel 1961^6 .

 $[\]overline{}^6\phi=s\overline{s},$ i mesoni ρ sono combinazioni di u e d, invece $\omega=\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})$

Barioni $J^P=rac{1}{2}^+$

Finora abbiamo considerato solo mesoni dunque Y = S. Ora con i barioni avremo Y = B + S.

Notiamo come le masse dei mesoni, a causa di CPT che fa passare da kaone ad antikaone, in un ottetto sono simmetriche rispetto Y=0 e $I_3=0$, mentre per i baroni la massa aumenta con S perché $m_s>m_u,m_d$. Lo scatto di massa è circa 150 MeV, pattern regolare.

Barioni
$$J^P = \frac{3}{2}^+$$

Quando fu proposta la via dell'ottetta, si conoscevano solo nove membri su dieci del decupletto, quindi l'ultimo era una predizione.

- È un decupletto;
- La stato $Y = -2, I_3 = 0 \implies Q = -1, S = -3, B = 1$ deve esistere;
- Lo si chiama Ω^- ;

- Si guardano le differenze in massa rispetto alla Y;
- Ci aspettiamo che la massa di questa particella sia sui 1680 MeV, che non è una *richiesta obbligatoria* del modello, ma una ragionevole assunzione;
- Le leggi di conservazione impostano la dinamica della produzione e del decadimento di Ω^- .

La scoperta di Ω^-

- Dunque per completare il decupletto manca una particella di stranezza pari a -3.
- Fu predetta nel 1962 nelle sue varie proprietà: stranezza -3, carica -1, spin ³/₂, massa 1680 MeV, isospin nullo, ipercarica -2. Fu dunque prevista anche la sua vita media, tipica di quella debole in quando il decadimento forte è proibito, e i principali modi di decadere dovevano essere Ω⁻ → Ξ⁰π⁻ oppure Ω⁻ → Ξ⁻π⁰ oppure Omega⁻ → Lambda⁰K⁻.
- Può decadere solo in stati con stranezza due. Infatti se decadesse forte (o elettromagneticamente), la reazione più probabile dovrebbe essere $\Omega^- \to \Xi^0 K^-$, ma questa è impossibile cinematicamente perché

$$m(\Omega) \approx 1700 \text{MeV} < m(\Xi) + m(K) \approx 1800 \text{MeV}$$

dunque deve decadere violando la conservazione della stranezza, cioè per interazione debole.

- Per osservarlo servì sia fortuna che ingegno. Ad esempio la probabilità di conversione di due fotoni in H_2 non è elevata.
- Dunque si parte da un fascio di K^- in una camera a bolle e si osservano i seguenti decadimenti.

$$K^- + p \rightarrow \Omega^- + K^+ + K^0$$

$$\downarrow^{} \Xi^0 + \pi^- (\Delta S = 1 \text{ weak decay})$$

$$\downarrow^{} \pi^0 + \Lambda (\Delta S = 1 \text{ weak decay})$$

$$\downarrow^{} \pi^- + p (\Delta S = 1 \text{ weak decay})$$

$$\downarrow^{} \gamma + \gamma \text{ (e.m. decay)}$$

$$\downarrow^{} \psi^+ e^- e^+ e^-.$$

Dunque si parte da stranezza -3 e si sempre a diminuire a scatti di 1 decadendo debolmente.

4.7 Il modello statico a quark

- Dunque nel 1964 Gell-man e Zweig indipendentemente proposore che tutti gli adroni fossero composti da tre particelle, dette quark (da un romanzo di Joyce).
- Ancora non era chiaro se questa ipotesi fosse soltanto una convenienza matematica o realtà.
 Oggi invece sappiamo che i quark sono reali, così come tutte le particelle quantistiche, ma non possono essere osservati come oggetti singoli isolati.

- Questo modello, che fu poi arricchito con altri altri quark ed interazioni (elettrodebole e QCD), è ancora alla base della nostra comprensione delle particelle elementari: il Modello Standard.
- Noi considereremo solo le proprietà statiche dei tre quark originali.
- I quark devono essere fermioni in quanto devono essere in grado di formare fermioni e bosoni. In analogia con l'idea di Fermi e Yang, i mesoni sono coppie quark ed antiquark in generale diversi; i barioni (antibarioni) sono stati con tre quark (antiquark).
- Per formare particelle non strane di carica $0, \pm 1$ servono almeno due quarks. Questi devono formare un doppietto di isospin, così che hanno sia I = 0 che I = 1.
- Per formare particelle strane serve un terzo quark, a cui è assegnato per convenzione s = -1. Il numero minimo di costituenti è dunque tre.
- Ai quark viene assegnato $B=\frac{1}{3}$ per sistemare il numero barionico. Inoltre hanno parità $J^P=\frac{1}{2}^+$.
- Dalla formula di Gell-Mann e Nishijima ne segue che

$$Q(u) = +\frac{2}{3}$$
 $Q(d) = Q(s) = -\frac{1}{3}$

dunque i quark hanno carica elettrica frazionaria.

• I quark formano un tripletto, che è una rappresentazione base del gruppo SU(3). Possono essere rappresentati in forma vettoriale nel piano $I_3 - Y$; le loro combinazioni, cioè gli adroni, sono somme di tali vettori.

I mesoni

• Consideriamo per ora solo i quark $u \in d$.

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix} \implies \begin{cases} |1,1\rangle = -u\overline{d} \\ |1,0\rangle = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d}) & |0,0\rangle = \frac{1}{\sqrt{2}} (u\overline{u} + d\overline{d}) \\ |1,-1\rangle = \overline{u}d \end{cases}$$

- Se aggiungiamo il terzo quark s ci sono 9 possibili combinazioni: un ottetto e un singoletto. Sotto trasformazioni in SU(3) gli otto stati si trasformano tra di loro, ma non si mischiano mai col singoletto.
- Dunque costruiamo i mesoni $q\overline{q}$ con queste regole:
 - 1. Nello spazio $I_3 Y$ sommi i vettori (quark/antiquark) per produrre coppie $q\overline{q}$, cioè i mesoni.

2. Tutte le combinazioni sono permesse.

Figura 9: I mesoni pseudoscalari $(J^P=0^-)$ sono gli stati $q\overline{q}$ in s-wave con spin opposti.

• Abbiamo dunque tre mesoni con ipercarica ed isospin nullo.

Mesoni $J^{PC}=0^{-+}$

Sono i mesoni in stati di energia più bassa. Specificatamente con s-wave otteniamo il nonetto pseudoscalare:

Notiamo che π^0, η, η' sono tutte combinazioni (mixing) di tre possibili stati $q\overline{q}$, come già detto.

- I tre stati con $I_3 = Y = 0$ sono ortogonali e combinazioni lineari di $u\overline{u}, d\overline{d}, s\overline{s}$.
- Indichiamo gli stati con $\{n, |I, I_3\rangle\}$ dove n è la dimensione della rappresentazione (singoletto, doppietto, etc...).
- Il singoletto di SU(3) deve contenere, per motivi di simmetria, tutti e tre gli stati con stesso peso (una rotazione in SU(3) non cambia lo stato), cioè è puro:

$$\eta_1 = \{1, |0,0\rangle\} = \frac{1}{\sqrt{3}} \left(u\overline{u} + d\overline{d} + s\overline{s}\right)$$

• Ne restano altri due che appartengono all'ottetto. Uno di essi deve appartenere al tripletto con I=1, dunque lo possiamo ricavare con gli operatori scala di isospin.

- Così come p ed n formano un doppietto, allo stesso modo u e d e lo stesso per antiparticelle. Poiché s è un singoletto, quando lo aggiungiamo ad un doppietto di isospin non cambia le proprietà del doppietto (cioè considerare $u\bar{s}$ è come u, nel contesto di doppietto).
- Le proprietà dell'operatore scala sono le solite:

$$I_{\pm} |I, I_3\rangle = \sqrt{I(I+1) - I_3(I_3 \pm 1) |I, I_3 \pm \rangle}$$

Possiamo vedere varie applicazioni.

$$\begin{cases} I_{+} \left| d \right\rangle = \left| u \right\rangle \\ I_{+} \left| \overline{u} \right\rangle = \left| -\overline{d} \right\rangle \\ I_{+} \left| u \right\rangle = I_{+} \left| \overline{d} \right\rangle = 0 \end{cases} \begin{cases} I_{-} \left| 1, 1 \right\rangle = I_{+} \left| 1, -1 \right\rangle = \sqrt{2} \left| 1, 0 \right\rangle \\ I_{+} \left| 1, 0 \right\rangle = \sqrt{2} \left| 1, 1 \right\rangle \\ I_{-} \left| 1, 0 \right\rangle = \sqrt{2} \left| 1, -1 \right\rangle \\ I_{+} \left| 1, 1 \right\rangle = I_{-} \left| 1, -1 \right\rangle = 0 \end{cases}$$

Possiamo applicarlo ad esempio a $\pi^- = -d\overline{u}$, così da trovare la particella del tripletto I = 1 con $I_3 = 0$:

$$I_{+}\left|\pi^{-}\right\rangle = I_{+}\left|-d\overline{u}\right\rangle = \left|-\left[(I_{+}d)\overline{u} + d(I_{+}\overline{u})\right]\right\rangle = \left|-u\overline{u} + d\overline{d}\right\rangle = \sqrt{2}\left(\frac{1}{\sqrt{2}}\left|-u\overline{u} + d\overline{d}\right\rangle\right) = \sqrt{2}\left|\pi^{0}\right\rangle$$

Dunque si definisce

$$\{8, |0,0\rangle\} = \pi^0 = \frac{1}{\sqrt{2}} \left(d\overline{d} - u\overline{u}\right) \implies I_+ \left|\pi^0\right\rangle = \sqrt{2} \left|\pi^+\right\rangle$$

• Resta da trovare l'ultimo. Poiché s ed \overline{s} sono singoletti, non possono accoppiarsi per dare stati con I=1. Possono tuttavia accoppiarsi ad uno stato I=0, dunque in generale quest'ultimo stato sarà una combinazione lineare dei tre quark/antiquark. Per trovarlo basta dunque calcolarlo dal generico autostato $a\,u\overline{u}+b\,d\overline{d}+c\,s\overline{s}$ ed imporre l'ortogonalità con i due già trovati. Risulta

$$\eta_8 = \{8, 0, 0\} = \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s}) \qquad I_{\pm}\eta_8 = 0$$

• In realtà gli stati fisici sono combinazioni di questi due termini con $s\bar{s}$, tuttavia siccome l'angolo di mescolamento è piccolo ($\approx 11^{\circ}$), li possiamo identificare in essi stessi.

$$\eta_8 := \eta \qquad m_{\eta} = 548 \text{MeV}$$
 $\eta_1 := \eta' \qquad m_{\eta'} = 958 \text{MeV}$

Questo non è totalmente vero, ma c'è poca "contaminazione" come già detto. Infatti uno andrà come il coseno e l'altro come il seno, e l'angolo è piccolo.

I mesoni $J^{PC} = 1^{--}$

Questi invece sono in un certo senso gli stati eccitati dei precedenti mesoni, infatti il contenuto in quark è spesso lo stesso. In questo caso dunque gli spin sono paralleli.

Figura 10: Nonetto.

Il contenuto di K^{0*} è lo stesso di K^{0} , e lo stesso per ρ^{-} con π^{-} e così via. Notiamo che anche ρ^{0} corrisponde a π^{0} , mentre $\omega=\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})$ e $\phi=s\overline{s}$ non sono "corrispondenti" a η ed η' .

Numeri quantici dei mesoni

- Il primo set di mesoni abbiamo detto che hanno $J^{PC}=0^{-+}$, dunque sono s-wave cioè hanno L=0.
- I quark ed antiquark hanno parità opposta, quindi per i mesoni

$$P(q\overline{q}) = P(q)P(\overline{q})(-1)^{L} = (-1)(-1)^{L} = (-1)^{L+1}$$

• Invece riguardo la conjugazione di carica, abbiamo C = PS, cioè parità e scambio di spin.

Burcham-Jobes pagina 269: Ovviamente tante particelle isolate non sono autostati di C, ma molti sistemi di particelle possono esserlo se hanno Q = B = L = S = 0. Ad esempio un sistema protone-antiprotone system in uno stato di momento angolare definito l (ruotano) e spin s è un autostato di C, come adesso mostriamo. Assumiamo che inizialmente l'antiprotone ha coordinate spaziali x_1 , e si trovi in uno stato di spin σ_1 , mentre il protone è in x_2 , in uno

stato di spin σ_2 . Abbiamo

$$C|\overline{p}x_1\sigma_1, px_2\sigma_2\rangle = |px_1\sigma_1, \overline{p}x_2\sigma_2\rangle$$

che non è un'equazione agli autovalori ma possiamo renderla tale scambiando spin e posizione. Il protone e l'antriprotone hanno entrambi spin $\frac{1}{2}$ e quindi possono formare stato di singoletto e tripletto. Il tripletto è simmetrico rispetto allo scambio di spin mentre il singoletto è antisimmetrico. Dunque in scambio di spin appare un fattore $(-1)^{s+1}$. Lo scambio di coordinate è semplicemente una trasformazione di parità che, per il sistema in cosiderazione, dà un fattore $(-1)^l$ dal moto orbitale ed un fattore (-1) dalle parità intrinseche opposte di protone ed antiprotone. Dunque nello scambio abbiamo

$$C|\overline{p}x_1\sigma_1, px_2\sigma_2\rangle = (-1)^{s+1}(-1)^{l+1}|\overline{p}x_1\sigma_1, px_2\sigma_2\rangle$$

che è una equazione agli autovalori, con autovalori pari a $(-1)^{l+s}$.

- Lo spin intrinseco di un mesone, visto nella sua interezza come particella unica elementare, è J del sistema $q\overline{q}$.
- Ci sono dunque tanti mesoni oltre quelli visti π e ρ , ed il modo generale per trovarli è con una reazione $p\bar{p}$ in camera a bolle. Si cercano risonanze (picchi) negli stati finali rispetto a certe masse. Otteniamo una visione molto generale e consistente...fu un successo.
- Ad esempio possiamo guardare la reazione $\pi^+ p \to X$ (con $p_{\pi} = 2.3 2.9 \,\text{GeV}$) si hanno le seguenti risonanze:
 - 1. $X = \pi^+ \pi^0 p$
 - 2. $X = \pi^+ \pi^+ \pi^- p$
 - 3. $X = \pi^+ \pi^+ \pi^- \pi^0 p$

La prima è una risonanza $\rho^+(770) \to \pi^+\pi^0$. La seconda è una risonanza $\rho^0(770) \to \pi^+\pi^-$, e la terza è una risonanza $\eta(548) \to \pi^+\pi^-\pi^0$ e $\omega(782)$. Come mai quest'ultimo è una risonanza ω e non ρ^0 ? Le masse sono simili. È dovuto alla struttura a multipletti di isospin: ρ^0 fa parte di un tripletto, ω è un singoletto. Questo distingue le risonanze.

Decadimento $ho^0 o \pi^0 \pi^0$

Il decadimento $\rho^0 \to \pi^0 \pi^0$ è consentito? No, per tre motivi:

1. **C-Parity**: abbiamo che

$$C(\rho^0) = -1$$
$$C(\pi^0) = +1$$

dunque, visto che lo stato iniziale è un autostato di C, risulterebbe

$$-1 = (+1) \times (+1) \implies NO$$

La simmetria di C è violata.

2. Coefficienti di Clebsch-Gordan nello spazio degli isospin:

$$|\rho^0\rangle = |1,0\rangle |\pi^0\rangle = |1,0\rangle$$

dalla tabella dei coefficienti di Clebsch-Gordan si ha che il sistema $|\pi^0\pi^0\rangle$ ha coefficiente nullo per $|1,0\rangle$ dunque risulta

$$\langle \pi^0 \pi^0 | \rho^0 \rangle = 0 \implies NO$$

3. Statistica di spin: sappiamo che $S(\rho^0) = 1$ (perché J = 1), e poiché abbiamo che $S(\pi^0) = 0$, per conservare J servirebbe che $L(\pi^0\pi^0) = 1$ che è impossibile. Cioè ρ^0 è un bosone dunque ha funzione d'onda simmetrica; i due π^0 sono bosoni identici dunque hanno funzione d'onda spaziale simmetrica; L = 1 rende la funzione d'onda asimmetrica.

Dunque abbiamo tre motivi per cui non può avvenire $\rho^0 \to \pi^0 \pi^0$, anche se per dire che è un processo proibito ne bastava una. Una regola generale è: un vettore non può decadere in due pseudoscalari uguali. Tuttavia le prime due **non** valgono per i decadimenti deboli. Invece la terza ragione è dovuta a statistica e conservazione del momento angolare, che vale per ogni interazione (proibisce anche $Z^0 \to HH$, che comunque non può avvenire per motivi di massa).

Commenti generali sui decadimenti

- I decadimenti esistono se nessuna regola di selezione li vieta.
- Bisogna stare attenti se una regola di selezione è valida per tutte le interazioni o meno, ma soprattutto bisogna stare attenti al fatto che alcune regole **non** sono ovvie ma sono comunque valide, come $\rho^0 \to \pi^0 \pi^0$.
- Le regole di selezione includono:
 - 1. Numeri quantici come carica, numero barionico, numero leptonico, ecc...
 - 2. Conservazione del quadrimpulso, del momento angolare, ecc...
- Per ogni decadimento esiste un elemento di matrice ed una larghezza parziale Γ_i . Ciascuno di essi contribuisce alla larghezza totale.
- Per una particella, le Γ_i parziali possono variare molto, principalmente a causa dei loro accoppiamenti, e.g. $\Gamma(\rho^0 \to \pi^+\pi^-) \gg \Gamma(\rho^0 \to e^+e^-)$.
- Nella pratica quando un decadimento forte esiste, è quello dominante. Gli altri decadimenti hanno probabilità piccole ma non nulle, ad esempio $BR(\rho^0 \to e^+e^-) \approx 4.7 \times 10^{-5}$.
- Inoltre i modi di decadere e le rispettive larghezze Γ sono specifiche per ogni processo e non necessariamente simili per particelle simili. e.g. $\Gamma(\pi^{\pm}) \ll \Gamma(\pi^{0})$, oppure il protone è stabile mentre il neutrone ha $\tau_{n} \sim 879$ s.

Mescolamento dei mesoni

- I mesoni sono stati legati $q\bar{q}$. Consideriamo solo i quark uds (e le antiparticelle) nei nonetti $(J^P = 0^-, 1^-)$.
- Gli stati $\pi^+ = u\overline{d}, \pi^- = d\overline{u}, K^+ = u\overline{s}, K^- = s\overline{u}, K^0 = d\overline{s}, \overline{K}^0 = s\overline{d}$ non hanno ambiguità di quark.
- Ma $u\overline{u}, d\overline{d}, s\overline{s}$ hanno gli stessi numeri quantici dunque i tre stati $\psi_{8,0}, \psi_{8,1}, \psi_1$ si mescolano come già visto (due angoli per nonetto).
- Le particelle fisiche sono π^0, η, η' per 0^- , mentre sono ρ^0, ω, ϕ per 1^- e sono tutte combinazioni lineari di $q\overline{q}$.
- Gli angoli di mescolamento per pseudoscalari e vettori si calcolano... argomento per curriculum NPP. Lo metto tra un po' prima dei barioni. Rompiamo la quarta parete? Ok la ho appena demolita.
- Le ampiezze di decadimento dei canali elettromagnetici si possono calcolare e confrontare con l'esperimento. Cerchiamo stati finali con coppie elettrone-positrone, prodotti dal γ.
- Ci sono alcuni problemi al riguardo:
 - 1. I valori sono molti piccoli, e.g. $BR(\rho^0 \to e^+e^-) \approx 4.7 \times 10^{-5}$. Ovviamente i decadimenti dominanti di ρ^0 , ω e ϕ sono forti; tuttavia alcuni decadimenti elettromagnetici, con bassa sezione d'urto, sono rivelabili. Dunque si misurano le larghezze elettromagnetiche e si confrontano le cariche dei quark.
 - 2. Il fattore di fase è importante, soprattutto per ϕ , che è molto vicino alla soglia $s\bar{s}$ ($m_{\phi} 2m_K = \text{pochi MeV}$).
- Se questi processi sono elettromagnetici, la sezione d'urto (o larghezza) è proporzionale al quadrato della carica della particella coinvolta. Cioè

$$M_{\rm fi}(\rho^0\omega\phi\to e^+e^-)\propto\alpha\sum_iQ_q^i$$

dunque le larghezze saranno:

$$\Gamma(\rho^0 \to e^+ e^-) \propto \left[\frac{1}{\sqrt{2}} \left(\frac{2}{3} - \frac{-1}{3} \right) \right]^2 = \frac{1}{2}$$

$$\Gamma(\omega \to e^+ e^-) \propto \left[\frac{1}{\sqrt{2}} \left(\frac{2}{3} + \frac{-1}{3} \right) \right]^2 = \frac{1}{18}$$

$$\Gamma(\phi \to e^+ e^-) \propto \left[\frac{1}{3} \right]^2 = \frac{1}{9}$$

da cui

$$\Gamma(\rho) \colon \Gamma(\omega) \colon \Gamma(\phi) = \begin{cases} 9 \colon 1 \colon 2 & \text{teorico} \\ 8.8 \pm 2.6 \colon 1 \colon 1.7 \pm 0.4 & \text{sperimentale} \end{cases}$$

dato che lo stato finale è uguale, il rapporto dipende solo dallo stato iniziali. La situazione in generale è motlo chiara: la teoria spiega bene i dati!

SLide 47-50 (WIP)

OZI rule (Okubo, Zweig, Iizuka)

• Per ϕ e per ω si hanno principalmente tre possibili decadimenti:

$$\phi \to \begin{cases} K^+ K^- & 49.1\% \\ K_L^0 K_S^0 & 34.4\% \\ \pi^+ \pi^- \pi^0 & 15.3\% \end{cases} \qquad \omega \to \begin{cases} \pi^+ \pi^- \pi^0 & 88.8\% \\ \pi^0 \gamma & 8.5\% \\ \pi^+ \pi^- & 2.2\% \end{cases}$$

• Tuttavia, se guardiamo la cinematica (o termine di spazio delle fasi) di ϕ , il decadimento a 3π è favorito rispetto ai 2K.

$$Q_{3\pi} = m_{\phi} - 2m_{\pi^{\pm}} - m_{\pi^{0}} \approx 600 \,\text{MeV}$$
 $Q_{2K^{0}} = m_{\phi} - 2m_{K^{0}} \approx 24 \,\text{MeV}$ $Q_{2K^{+}} \approx 32 \,\text{MeV}$

• A cosa è dovuto questo disaccordo? Alla regola di Zweig (swayig). Il diagramma per il decadimento a 3π è soppresso perché contiene linee di quark sconnesse.

Figura 11: Regola di Zweig (OZI).

Barioni

• I barioni sono semplici da costruire. Basta considerare tre quark.

Figura 12: Piano $Y-I_3$ in termini di quark. Ai vertici abbiamo ddd, uuu, sss; poi spostandoci nel grafico si scambia un quark con un altro.

- Quando accoppiamo i tre quark uds otteniamo un decupletto, due ottetti e un singoletto. In realtà il secondo ottetto (e il singoletto) non li vediamo in quanto sono proibiti da conservazione di numeri quantici "che vedremo prossimamente". I tre quark dei barioni hanno sempre L=0.
- "Dimostrazione":

$$(3 \otimes 3) \otimes 3 = (6 \oplus \overline{3}) \otimes 3 \implies$$

$$1) 6 \otimes 3 = 10 \oplus 8$$

$$2) \overline{3} \otimes 3 = 8 \oplus 1$$

Barioni: ottetto con $J^P={1\over 2}^+$

• Il multipletto a massa inferiore è un ottetto, che contiene protone e neutrone, un tripletto con S=-1 (le Σ), un singoletto con S=-1 (il Λ), e un doppietto con S=-2 (i Ξ detti anche cascade).

Figura 13: I tre quark hanno l = 0 e spin $\uparrow \uparrow \downarrow$, i.e. spin totale $\frac{1}{2}$.

• Le masse sono

 $\approx 940\,\mathrm{MeV}$ per protone e neutrone $\approx 1115\,\mathrm{MeV} \text{ per il } \Lambda$ $\approx 1190\,\mathrm{MeV} \text{ per le } \Sigma$ $\approx 1320\,\mathrm{MeV} \text{ per le } \Xi$

• La differenza è inferiore a qualche MeV in ciascun multipletto di isospin, a causa della interazione elettromagnetica.

Barioni: decupletto con $J^P=rac{3}{2}^+$

Il decupletto è piut
tosto semplice, anche se c'è un problema di spin/statistica che vedremo dopo. Gli spin sono tutti e tre allineat
i $\uparrow\uparrow\uparrow$ così da avere $J=\frac{3}{2}$.

Figura 14:

Le masse sono

 $\approx 1230\,\mathrm{MeV}$ per le Δ $\approx 1385\,\mathrm{MeV}$ per le Σ $\approx 1530\,\mathrm{MeV}$ per le Ξ $\approx 1670\,\mathrm{MeV}$ per la Ω^-

Notiamo che la massa suddivisa tra i multipletti è molto simile, circa 150 MeV... importante per la scoperta della Ω^- , molte speculazioni ma nessuna spiegazione reale.

Conclusione su massa dei quark

Se le differenze di massa fossero dovute solamente al fatto che s è più pesante di u e d, avremmo

$$J = \frac{3}{2}^{+} \underbrace{\Sigma(1384) - \Delta(1232)}_{\approx 152 \,\text{MeV}} = \underbrace{\Xi(1533) - \Sigma(1384)}_{\approx 149 \,\text{MeV}} = \underbrace{\Omega(1672) - \Xi(1533)}_{\approx 139 \,\text{MeV}}$$

$$J = \frac{1}{2}^{+} \underbrace{\Sigma(1193) = \Lambda(1116)}_{\approx 152 \,\text{MeV}} \Longrightarrow \underbrace{\Lambda(1116) - N(939)}_{\approx 152 \,\text{MeV}} = \underbrace{\Xi(1318) - \Lambda(1116)}_{\approx 162 \,\text{MeV}}$$

L'ordine di grandezza è corretto, ma ci sono comunque discrepanze significative! Per capire meglio le masse degli adroni bisogno tenere in considerazione effetti di *splitting iperfine* nelle interazioni tra quark. D'altra parte Δ^+ e p hanno esattamente gli stessi quark yet hanno masse diverse, hanno J diverse dunque il momento totale gioca un ruolo fondamentale, come ci aspettiamo perché ad esempio nell'atomo di idrogeno il livello fondamentale ha l=0 e i livelli superiori hanno l maggiore. (ricordiamo inoltre che la interazione elettromagnetica è il motivo per cui SU(3) non è esatta e nello stesso multipletto si hanno masse diverse)

Slide saltate su massa degli adroni 61-70

Mesoni e barioni con il quark charm

- Se consideriamo il quark c, abbiamo 4 flavour e bisogna passare a SU(4).
- Adesso dunque s non è più singoletto bensì forma un doppietto con c.
- Bisogna considerare i mesoni D che contengono il quark c e uno degli altri tre già noti.
- Il discorso vale anche per i barioni.
- LHCb si occupa della scoperta di questi quark pesanti, in particolare come dice il nome di b. Ha scoperto tanti nuovi barioni con c. Ad esempio $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ che era predetto dal modello a quark. La tecnica è la stessa di ρ, ω, ϕ : cambia solo lo stato finale. Si vede la massa invariante dei prodotti ricercati (o comunque quelli possibili), ad esempio per ρ si vede pioni e protoni. Se c'è risonanza vediamo un picco, altrimenti l'andamento è piatto.

Altra matematica su SU(3)

- Per la simmetria SU(2) i generatori sono le matrici di Pauli. Per SU(3) i generatori sono le matrici di Gell-Mann.
- Le due matrici diagonali sono associate alla terza componente dell'isospin T_3 e la ipercarica T_8 . Gli autovettori sono i quark u, d, s.
- Ricordiamo quali sono le λ_3 e λ_8 :

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

e abbiamo che

$$\hat{T}_3 = \frac{1}{2}\lambda_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \hat{Y} = \frac{1}{\sqrt{3}}\lambda_8 = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

dunque quando applichiamo questi operatori agli autostati $|u\rangle, |d\rangle, |s\rangle$ (sono la solita base canonica di \mathbb{R}^3) otteniamo i valori di componente di isospin o ipercarica.

Ad esempio

$$\hat{T}_3 |u\rangle = \frac{1}{2} |u\rangle \quad \hat{Y} |\overline{d}\rangle = -\frac{1}{3} |\overline{d}\rangle$$

• Si hanno inoltre gli operatori scala

$$T_{+} = T_{1} \pm iT_{2}; \quad U_{+} = T_{6} \pm iT_{7}; \quad V_{+} = T_{4} \pm iT_{5}$$

ed agiscono nel seguente modo:

Figura 15: Operatori scala $T_{\pm}, U_{\pm}, V_{\pm}$.

Colore: nuovo numero quantico

- Consideriamo la risonana $|\Delta^{++}\rangle = \left|\frac{3}{2}, \frac{3}{2}\right\rangle$, con spin dei tre quark u allineati in modo da avere $J = \frac{3}{2} \ (l = 0)$.
- La funzione d'onda sarebbe del tipo

$$\psi(\Delta^{++}) = \psi_{\text{space}} \times \psi_{\text{flavour}} \times \psi_{\text{spin}}$$

che è falso! Perchè?

- 1. Δ^{++} è lo stato più leggero di uuu dunque l=0. Da cui $\psi_{\rm space}$ è simmetrica.
- 2. ψ_{flavour} e ψ_{spin} sono simmetriche.

ne segue che la funzione d'onda totale è simmetrica, ma Δ^{++} è un fermione!

- Dunque c'è una anomalia: la particella Δ^{++} è un fermione a spin $\frac{3}{2}$ e la sua funzione d'onda deve essere antisimmetrica per il principio di Pauli. Tuttavia, è data dal prodotto di funzioni d'onda simmetriche, dunque è totalmente simmetrica.
- La soluzione fu proposta da Greenberg nel 1964, con la introduzione di un nuovo numero quantico per le particelle che interagiscono forte, composte da quark: *il colore*.

L'idea dei colori:

- I quark esistono in tre colori, che chiamiamo r, g, b.
- La loro somma è bianco, cioè uno stato neutro r + g + b = 0.
- L'anticolore è tale che un colore + il suo anticolore danno il bianco, e.g. $\overline{R} = g + b$. Gli antiquark possiedono anticolore.
- Mesoni e barioni, fatti da quark, non hanno colore (sono neutri) e per questo sono detti singoletti di colore.
- Dunque dobbiamo includere il colore nella funzione d'onda totale:

$$\psi(\Delta^{++}) = \psi_{\text{space}} \times \psi_{\text{flavour}} \times \psi_{spin} \times \psi_{\text{colour}}$$

$$\psi_{\text{colour}} = \frac{1}{\sqrt{6}} \left(u_r^1 u_g^2 u_b^3 + u_g^1 u_b^2 u_r^3 + u_b^1 u_r^2 u_g^3 - u_g^1 u_r^2 u_b^3 - u_r^1 u_b^2 u_g^3 - u_b^1 u_g^2 u_r^3 \right)$$

- Dunque la ψ_{colour} è antisimmetrica per scambio di due quark e così sarà la funzione d'onda totale.
- La introduzione del colore ha molte altre evidenze sperimentali ed implicazioni teoriche.

Simmetrie e multipletti. Riassunto

- Poiché le interazioni forti conservano l'isospin I, gli adroni si raggruppano in multipletti di I. All'interno di ciascun multipletto, gli stati sono identificati dal valore di I_3 .
- Se nessun effetto rompe la simmetria, i membri di ciascun multipletto sarebbero degeneri in massa. Le interazioni elettromagnetiche, che non rispettano la simmetria di *I*, rompono questa degenerazione di massa (per pochi %) nei multipletti di *I*.
- Poiché le interazioni forti conservano I, gli operatori di I devono commutare con l'Hamiltoniana delle interazioni forti H_s e con tutti gli operatori che a loro volta commutano con H_s .
- Tra questi operatori ci sono il momento angolare J e la parità P. Di conseguenza, tutti i membri di un multipletto di isospin devono avere lo stesso spin e la stessa parità.
- H_s è anche invariante rispetto alle rappresentazioni unitarie di SU(2). I numeri quantici che identificano i componenti dei multipletti sono tanti quanti i generatori che possono essere diagonalizzati simultaneamente, poiché commutano tra loro. Questo numero è il rango del gruppo. Nel caso di SU(2), il rango è 1 e l'operatore è I_3 .
- Poiché $[I_j, I_k] = i\varepsilon_{jkm}I_m$, ciascuno dei generatori commuta con I^2 : $I^2 = I_1^2 + I_2^2 + I_3^2$. Pertanto I^2 , essendo ovviamente hermitiano, può essere diagonalizzato insieme a I_3 .
- Gli autovalori di I e I_3 possono "etichettare" gli autovettori e le particelle.
- Questo permette di raggruppare gli stati in multipletti con un dato valore di I.
- Questo meccanismo si può generalizzare per ogni operatore: se si può dimostrare che H è invariante per un dato tipo di trasformazioni, allora:
 - 1. Cercare un gruppo di simmetria appropriato;
 - 2. Identificare le sue rappresentazioni irriducibili e derivare i multipletti possibili;
 - 3. Verificare che essi descrivano stati fisici che esistono realmente.
- Questo approccio ha suggerito l'idea che barioni e mesoni siano raggruppati in due ottetti, composti da multipletti di isospin.
- In realtà, poiché le differenze di massa tra i membri dello stesso multipletti sono 20%, la simmetria è "rotta" (cioè approssimata).
- Poiché gli ottetti sono caratterizzati da due numeri quantici $(I_3 \text{ e } Y)$, il gruppo di simmetria ha rango = 2, cioè due generatori commutano tra loro.
- Siamo interessati alle "rappresentazioni irriducibili" del gruppo, tali che si possa ottenere ogni membro di un multipletto partendo da un altro, usando le trasformazioni.
- La rappresentazione non banale (non banale = diversa dal singoletto) di dimensione minore è chiamata "rappresentazione fondamentale".
- In SU(3) ci sono otto generatori di simmetria. Due di essi sono diagonali e associati a I_3 e Y.
- Le rappresentazioni fondamentali sono tripletti (quark), da cui si derivano multipletti superiori (adroni):

- 1. mesoni: $3 \otimes \overline{3} = 1 \oplus 8$;
- 2. barioni: $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$.
- Questo schema puramente matematico ha due applicazioni rilevanti:
 - 1. "SU(3) di sapore", $SU(3)_F$ con Y_F e I_{3F} per i quark uds. Questa simmetria è approssimata (cioè "rotta");
 - 2. "SU(3) di colore", $SU(3)_C$ con Y_C e I_{3C} per i colori rgb; questa simmetria è esatta.

subsection Sapori pesanti La maggior parte degli studi per i quark pesanti sono stati effettuati con collisioni e^+e^- .

Collisione e^+e^-

- A basse energia, i processi principali avvengono tramite un fotone virtuale.
- Con basse energie intendiamo $m_f \ll \sqrt{s} = E_{\rm CM} = 2E = m_{\gamma^*} \ll m_Z$, dove m_f è la massa dei fermioni iniziali + finali. Quando $E_{\rm CM} \approx m_Z$, si può formare un Z^* ; il processo $e^+e^- \to Z$ è risonante a $\sqrt{s} = m_Z$ e diventa dominante.
- Lo stato iniziale ha carica nulla, numero leptonico, barionico (e gli altri additivi) nulli, e spin pari ad 1 (dal fotone).
- Vediamo la cinematica nel centro di massa:

$$e^+~[E,p,0,0]$$

$$e^-~[E,-p,0,0]$$

$$\gamma^*~[2E,0,0,0]$$

$$m(\gamma^*)=\sqrt{s}=2E~~\text{fotone virtuale, vita breve}$$

 \bullet Ad energie basse (no Z) possiamo avere dunque diversi processi:

- A noi serve una di queste sezioni d'urto, quella simmetrica $e^+e^- \to \mu^+\mu^-$ e la confrontiamo con quella che ha come prodotti $q\bar{q}$.
- Il processo è analogo a quello con $f\overline{f}$ come prodotti, solo che i quark liberi non esistono e si formano jet di adroni.

- Per studiare la collisione tra elettrone e positrone ho la classica catena di rivelatori: un tracker interno (e.g. silicio) con campo magnetico, poi un calorimetro elettromagnetico, un calorimetro adronico ed infine rivelatori per muoni. Si mettono assieme i segnali di tracker e l'altro rivelatore a seconda che sia elettroni (ecal) o muoni (rivelatore esterno). Per i quark invece è diverso e non vedo solo due tracce ma jet di nucleoni e soprattutto pioni.
- Le sezioni d'urto sono diverse:

$$\sigma_{\mu\mu} = \frac{21.7 \text{ nb}}{E_{\text{beam}}^2[\text{GeV}]} = \frac{4\pi\alpha^2}{3s}$$
$$\sigma_{q\bar{q}} = \frac{4\pi\alpha^2}{3s} c_f q_f^2$$

dove c_f è il colore (per i quark 3, per i leptoni 1) e q_f è la somma delle cariche.

• Consideriamo il rapporto tra le sezioni d'urto con prodotti adroni e con muoni:

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_c \frac{\sum_{\text{quarks}} q_i^2}{\sum_{\text{muons}} q_i^2} = N_c \sum_{\text{quarks}} q_i^2$$

avendo la stessa cinematica (sono processi elettromagnetici), nel rapporto elimino tutti i fattori e resta la carica. Abbiamo i seguenti valori per diversi \sqrt{s}

1.
$$0 \le \sqrt{s} \le 2m_c \implies R = R_{\text{uds}} = N_c \left[\left(\frac{2}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 \right] = N_c \frac{2}{3}$$

2.
$$2m_c \le \sqrt{s} \le 2m_b \implies R = R_{\text{udsc}} = R_{\text{uds}} + 3 \times \left(\frac{2}{3}\right)^2 = N_c \frac{10}{9}$$