Multiple Linear Regression (MLR) Models

Stat 230

April 13 2022

Overview

Today:

- Multiple predictors
- Quadratic predictors
- Interactions of predictors
- Interpretation

MLR Variables

Y = quantitative response

- $x_1, ..., x_p$: p explanatory (predictor) variables
- x_i can be either quantitative or categorical
- we will cover categorical predictors in another lecture!

Statistical Modeling

$$Y_i = \mu(Y \mid x) + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma)$$

Simple Linear Regression model mean function:

$$\mu(Y \mid x) = \beta_0 + \beta_1 x$$

Multiple Linear Regression (MLR) model mean function:

$$\mu(Y \mid x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

MLR: Basic model

$$\mu(Y \mid x) = \mu_{Y \mid x_1, \dots, x_p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- General: β_j is the change in the mean response for a one unit increase in x_j holding all other predictors fixed.
- β_0 : mean response when all predictor values are 0

MLR: Presence of logged variables

If *Y* is logged, then any changes in predictors result in a multiplicative change in the median of *Y*

- If x is unlogged, this interpretation is like the SLR exponential model
- If x is also logged, this interpretation is like the SLR power model

MLR: Model interpretation

- β_j have the same basic interpretation as in a SLR, holding all other predictors constant!
- E.g. Holding all other predictors fixed, increasing x_1 by 1 unit results in a β_1 change in the mean of Y

$$\mu(y \mid x_1 + 1, x_2, ..., x_p) = \beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2 + \dots + \beta_p x_p$$

$$= \beta_0 + \beta_1 x_1 + \beta_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$= \mu(y \mid x_1, x_2, ..., x_p) + \beta_1$$

EDA Tools

• Scatterplot matrix: a *p* by *p* matrix of scatterplots for all combos of (quantitative) variables in a data frame

```
pairs(my_data) # base-R
```

- GGally package (which is installed on Maize)
 - also includes correlation coefficient and density plots

```
ggpairs(my_data) # includes all variables
```

select variables (and order)

```
ggpairs(my_data,
columns = c("y", "x1", "x2")) # include only y, x1, x2 variables
```

Example: RECS MLR

```
library(GGally)
ggpairs(energy,
columns = c("CostTotal", "SqftMeasur
lower = list(continuous = wrap("smoo
```


Example: RECS

Regression of log of energy cost against log of square footage and household size

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	4.367	0.071	61.386	0	4.227	4.506
logSqft	0.372	0.010	38.750	0	0.353	0.391
HHSize	0.084	0.005	18.191	0	0.075	0.093

$$\hat{\mu}(\log(\text{Cost}) \mid x) = 4.3667 + 0.3722\log(\text{Sqft}) + 0.0839 \text{ HHSize}$$

In the original scale of the response

$$\text{med(Cost} \mid x) = e^{4.3667 + 0.3722 \log (\text{Sqft}) + 0.0839 HH \text{Size} }$$

$$= e^{4.3667} \times (Sqft)^{0.3722} \times e^{0.0839 HH \text{Size} }$$

Example: RECS

$$\hat{\mu}(\log(\text{Cost}) \mid x) = 4.3667 + 0.3722\log(\text{Sqft}) + 0.0839 \text{ HHSize}$$

$$\uparrow \\ \text{med}(\text{Cost} \mid x) = e^{4.3667} \times (Sqft)^{0.3722} \times e^{0.0839HH \text{ Size}}$$

- $\hat{\beta}_1$ = 0.3722: An increase in log of square footage of 1 unit is associated with an estimated 0.3722 unit increase in the mean of the log of cost, holding household size constant.
- **Power model** effect $2^{0.3722} = 1.29$: A doubling of square footage is associated with an estimated 29% increase in the median energy cost, holding household size constant.

Example: RECS

$$\hat{\mu}(\log(\text{Cost}) \mid x) = 4.3667 + 0.3722\log(\text{Sqft}) + 0.0839 \text{ HHSize}$$

$$\uparrow \\ \text{med}(\text{Cost} \mid x) = e^{4.3667} \times (Sqft)^{0.3722} \times e^{0.0839HH \text{ Size}}$$

- $\hat{\beta}_2$ = 0.0839: An increase in household size of 1 person is associated with an estimated 0.0839 unit increase in the mean of the log of cost, holding square footage constant.
- **Exponential model** effect $e^{0.0839} = 1.09$: An increase in household size of 1 person is associated with an estimated 9% increase in the median energy cost, holding square footage constant.

Example: Corn Yield (Textbook Ex. 9.15)

MLR: Quadratic model

$$\mu_{y|x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2$$

- Quadratic with respect to x_1
- What happens when we change x_1 by one unit (holding x_2 constant)?

$$\mu(y \mid x_1 + 1, x_2) = \beta_0 + \beta_1(x_1 + 1) + \beta_2(x_1 + 1)^2 + \beta_3 x_2$$

$$= \beta_0 + \beta_1 x_1 + \beta_1 + \beta_2 x_1^2 + \beta_2 2x_1 + \beta_2 + \beta_3 x_2$$

$$= \mu(y \mid x_1, x_2) + \beta_1 + \beta_2(2x_1 + 1)$$

MLR: Quadratic model

$$\mu\Big(y\mid x_1+1,x_2\Big) = \mu\Big(y\mid x_1,x_2\Big) + \beta_1 + \beta_2\Big(2x_1+1\Big)$$

- x_1 effect: a 1 unit increase in x_1 is associated with a $\beta_1 + \beta_2 (2x_1 + 1)$ change in the mean response holding all other predictors fixed.
- Because of the nonlinear association, the change in y depends on the value of x_1 .
- For example, if x_1 moves from 1 to 2 units, the mean change is $\beta_1 + 3\beta_2$.

Example: Corn Yield

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	-5.015	11.442	-0.438	0.664	-28.242	18.213
Rainfall	6.004	2.039	2.945	0.006	1.865	10.144
I(Rainfall^2)	-0.229	0.089	-2.588	0.014	-0.409	-0.049

$$\hat{\mu}_{\text{yield | rain}} = -5.015 + 6.004(\text{ rain }) - 0.229(\text{ rain })^2$$

Example: Corn Yield

 An increase from 9 to 10 inches of rainfall is associated with a mean yield increase of 1.646 bushels per acre.

$$6.004 - 0.229(2 \times 9 + 1) = 1.646$$

• An increase from 14 to 15 inches of rainfall is associated with a mean yield decrease of 0.648 bushels per acre.

$$6.004 - 0.229(2 \times 14 + 1) = -0.648$$

Example: Perch interaction

```
library(Stat2Data)
data("Perch")
ggplot(Perch, aes(x = Width, y = Weight)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
facet_wrap(~ ntile(Length, n = 4))
```


MLR: Interaction model

$$\mu_{y|x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• What happens when we change x_1 by one unit (holding x_2 constant)?

$$\mu(y \mid x_1 + 1, x_2) = \beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2 + \beta_3(x_1 + 1)x_2$$
$$= \beta_0 + \beta_1 x_1 + \beta_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_3 x_2$$
$$= \mu(y \mid x_1, x_2) + \beta_1 + \beta_3 x_2$$

• The effect of x_1 on the response, depends on the value of x_2 !

Example: Perch

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	113.935	58.784	1.938	0.058	-4.025	231.894
Length	-3.483	3.152	-1.105	0.274	-9.808	2.842
Width	-94.631	22.295	-4.244	0.000	-139.370	-49.892
Length:Width	5.241	0.413	12.687	0.000	4.412	6.070

$$\hat{\mu}_{\text{Weight }|_X}$$
 = 113.93 – 3.48 Length – 94.63 Width + 5.24 Length × Width

Example: Perch

$$\hat{\mu}_{\text{Weight}|x}$$
 = 113.93 – 3.48 Length – 94.63 Width + 5.24 Length × Width

- How does width affect mean weight?
 - well, it depends on the length of the fish in a model with a length and width interaction
- Holding length fixed, a 1 unit increase in width is associated with an estimated mean change in weight of

$$\hat{\beta}_{\text{Width}} + \hat{\beta}_{\text{Width:Length}}$$
 Length = -94.63 + 5.24 Length

Example: Perch

$$\hat{\mu}_{\text{Weight }|_{X}} = 113.93 - 3.48 \text{ Length } - 94.63 \text{ Width } + 5.24 \text{ Length } \times \text{ Width}$$

 Holding length fixed at 20 cm, a 1 cm increase in width is associated with an estimated mean increase in weight of

$$\hat{\beta}_{\text{Width}} + \hat{\beta}_{\text{Width:Length}} 20 = -94.63 + 5.24(20) = 10.194 \text{grams}$$

• Holding length fixed at 40 cm, a 1 cm increase in width is associated with an estimated mean increase in weight of

$$\hat{\beta}_{\text{Width}} + \hat{\beta}_{\text{Width:Length}} 20 = -94.63 + 5.24(40) = 115.02 \text{ grams}$$

- The positive interaction parameter estimate means the effect of width on weight is greater for larger values of length
- same is true for the effect of length on weight

Fitting MLR in R

Planar

```
lm(y~x1 + x2 + x3, data = )
```

Quadratic

```
lm(y \sim x1 + I(x1^2) + x2, data = )
```

Interaction

```
lm(y ~ x1 + x2 + x1:x2, data = ) # explicitly add interaction
lm(y ~ x1*x2, data = ) # equals x1 + x2 + x1:x2
```

Updating an existing model

```
my_lm <- lm(y ~ x1, data = ) # initial model
new_lm <- update(my_lm, . ~ . + x2 + x3) # equals y ~ x1 + x2 + x3</pre>
```


05:00

- Get the in class activity file from moodle
- We will further practice the concepts seen in the slides