RF Exposure Requirements - MPE

Project #:	G101207197	Test Area:	Intertek Louisville		
Test Method:	FCC CFR47 Part 1.1310	Test Date:	09/25/2013		
EUT Model #:	M9				
EUT Serial #:	FCC1				
Manufacturer:	GE Analytical				
EUT Description:	TOC Analyzer				
Notes:	13.56MHz RFID Reader				

The following limit is from table 1 (B) Limits for General Population/Uncontrolled Exposure in FCC part 1.1310:

Power Density Limit for 13.56MHz: $180/f^2(mW/cm^2) = 180/183.874 = 0.979 mW/cm^2$

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

Power Density(S) =PG/ 4π R² or S=EIRP/ 4π R²

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (mW).

G = <u>numeric</u> power gain of the antenna in the direction of interest relative to an isotropic radiator.

R = distance to the center of radiation of the antenna (cm)

In this case, 20cm will be used.

13.56MHz RFID Radio

Maximum measured radiated field strength at 3-meters = 49.01 dBuV/m

Maximum typical gain declared by the manufacture = +1.0 dBi = 1.26 (numeric gain)

Production Tolerance declared = +/- 1.85dB

Calculated power input to the antenna = Measured Field Strength - Antenna Gain + Production Tolerance

 $49.01 \text{ dBuV/m} - (+1.0 \text{dBi}) + 1.85 \text{dB} = 49.86 \text{ dBuV/m} = EIRP - 45.37 \text{dBm} = \frac{0.00002905 \text{ mW}}{0.00002905 \text{ mW}}$

Power Density

Power (mW)	Gain (dbi)	Gain numeric	Distance (cm)	Power Density (mW/cm²)
0.00002905	+1.0	1.26	20	0.0000000728

Therefore: Power Density Margin (Δ Limit) = 0.00000000728 - 0.979 = -0.978999993 mW/cm²

Reference Conversion Equations:

- 1. Gain numeric = 10 ^(dBi/10)
- 2. Gain (dBi) = 10 log(Gain numeric)
- 3. dBm to Watts (W) = 10 ((dBm 30)/10)
- 5. E (dBuV/m) = EIRP (dBm) 20log D + 104.8