Econometrics II

Lecture 1: Identification of Causal Effects

David Schönholzer

Stockholm University

April 2, 2024

Plan for Today

- Econometric Models
 Parametric versus Nonparametric Models
 Descriptive versus Causal Models
- Identification in Econometric Models Formal Definition Examples
- Potential Outcomes Framework
 Assumptions
 Average Treatment Effects
 Assignment Mechanisms

Table of Contents

- Econometric Models
 Parametric versus Nonparametric Models
 Descriptive versus Causal Models
- 2 Identification in Econometric Models Formal Definition Examples
- 3 Potential Outcomes Framework
 Assumptions
 Average Treatment Effects
 Assignment Mechanisms

Econometrics: Models for Data

Every empirical economics project comes down to this:

Yi	Di	Xi	Z_i		
4	0	6	1		
1	1	3	1	••	
			•••	•••	

Econometric models provide a framework to analyze (i.e. summarize) economic data

To this end, they posit a data generating process (DGP): $(W_i, \varepsilon_i) \sim F_{\theta}$

- A DGP is a joint distribution of a data row: $W_i = (Y_i, D_i, X_i, Z_i, ...)$
- The DGP also includes unobservables that are not in the data, ε_i
- ullet We pretend all rows were drawn from this DGP with parameter/structure heta

A model is a restricted family of DGPs, i.e. we make assumptions about F_{θ} :

- Parametric versus non-parametric: is $\theta \in \mathbb{R}^K$ or is it a function?
- Descriptive versus causal: is θ "factual" or "counterfactual"?

Example: Parametric Model

Consider

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_i + \varepsilon_i \\ (X_i, \varepsilon_i) &\stackrel{\text{iid}}{\sim} N \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \right) \\ \theta &= (\beta_0, \beta_1, \mu_1, \mu_2, \log \sigma_1, \log \sigma_2, \sigma_{12}) \in \mathbb{R}^7 \end{aligned}$$

Everything there is to know about the data in 7 numbers!

Example: A Semi-Parametric Model

$$Y_{i} = X'_{i}\beta + \varepsilon_{i}$$

$$\mathbb{E}\left[\varepsilon_{i}|X_{i}\right] = 0$$

$$\beta \in \mathbb{R}^{K}$$

- Note we did not restrict $F_X(\cdot)$ of X_i
- Only restricted mean of $F_{\varepsilon|X}(\cdot)$ of ε_i
- Both $F_X(\cdot)$ and $F_{\varepsilon|X}(\cdot)$ potentially infinite dimensional

Another Semi-Parametric Example: Index Model

$$egin{aligned} Y_i &= g\left(X_i'eta
ight) + arepsilon_i \ &\mathbb{E}\left[arepsilon_i|X_i
ight] = 0 \ η \in \mathbb{R}^K \ &g(\cdot): \mathbb{R}
ightarrow \mathbb{R} ext{ is monotone increasing} \end{aligned}$$

- We are interested in β
- Functions $\{g(\cdot), F_{\varepsilon|X}(\cdot), F_X(\cdot)\}$ are "nuisance" (i.e. not of direct interest)

A Non-Parametric Model

$$Y_i = g\left(X_i, \varepsilon_i\right)$$
 $X_i \perp \varepsilon_i$
 $g\left(\cdot, \cdot\right) : \mathbb{R}^2 \to [0, 1]$ is monotonically increasing in both arguments

- Unrestricted marginals of ε_i and X_i
- Interested in function $g(\cdot, \cdot)$ or features like

$$h(X_i) = \mathbb{E}_{\varepsilon} [g(X_i, \varepsilon_i)]$$

Descriptive Models

- θ is "factual": capturing moments of the data, e.g. means, correlations, etc
- Goal: imagine I got a new (D_i, X_i, Z_i) . What would Y_i be? \to Want \widehat{Y}_i
- Examples:
 - 1 $\theta = \mathbb{E}[Y_i|X_i]$: earnings by educational background
 - 2 $\theta = \text{Corr}(Y_i, X_i | G_i, R_i)$: correlation of mortality and income by gender/race
 - 3 $\theta = F(Y_i, X_i | Z_i)$: joint distribution of wealth of children and parents by city
- These are always valid and often interesting objects
- → See much of Raj Chetty's recent work

Causal Models

- θ is "counterfactual": capturing (causal) effects of treatments on outcomes
- Goal: imagine I change $D_i = 0$ to $D_i = 1$ for some i. What would Y_i be?
 - Want to pin down θ itself rather than just construct \widehat{Y}
 - Interested in causal mechanisms, not descriptive facts
- When do correlations speak to causality?
 - Need an explicit counterfactual: how the world would change if I manipulate data
 - Imagine our model is $Y_i = f(X_i, U_i)$. Causal effect of changing X_i from x' to x'':

$$\Delta(x'',x') = f(x'',U_i) - f(x',U_i)$$

• Can we change X_i without changing U_i ? Beware of FUQs

Examples (we will expand on all of these):

- 1 $\theta = \mathbb{E}[Y_i(1) Y_i(0)]$ the average treatment effect of a college degree
- 2 $\theta = \mathbb{E}[Y_i(1) Y_i(0)|D_i = 1, X_i = x]$: conditional ATE of new law on large firms
- 3 $\theta = F_{Y(1)}(0.5) F_{Y(0)}(0.5)$: median treatment effect of a drug

Table of Contents

- 1 Econometric Models
 Parametric versus Nonparametric Models
 Descriptive versus Causal Models
- Identification in Econometric Models Formal Definition Examples
- 3 Potential Outcomes Framework
 Assumptions
 Average Treatment Effects
 Assignment Mechanisms

Observationally Equivalent Structures

When is a model (or its parameter/structure) identified?

A couple of preliminary definitions:

• $F_{\theta}(\cdot)$: distribution function implied by θ under the model

Definition (Observationally equivalent structures)

Two structures θ' and θ'' are observationally equivalent if

$$F_{\theta'}(\cdot) = F_{\theta''}(\cdot)$$

for any value in the domain of $F_{\theta}(\cdot)$

Two values of θ could produce the same data \Rightarrow they are observationally equivalent

The Identified Set

What values of θ are consistent with the joint distribution of the data?

• $F_W(\cdot)$: distribution function governing observed variables

Definition (The identified set)

The *identified set* of θ is the set of observationally equivalent structures:

$$\Omega(F_W,\Theta) = \{\theta \in \Theta : F_\theta(\cdot) = F_W(\cdot)\}\$$

In words, the identified set is the subset $\theta \in \Theta$ we can "isolate" with data

 $\Omega(F_W,\Theta)$ could be e.g. a single point, a collection of points, an interval, or all of \mathbb{R}^K

Identification, Identification Strategy, and Research Design

Definition (Point identification)

A model (or equivalently its parameter) is (point) identified if the identified set $\Omega(F_W, \Theta)$ is a singleton, i.e. there are no observationally equivalent structures.

If we knew population (i.e. *infinite* sample size), would we be able to learn θ ?

- Studies empirical implications of theoretical model
- Logically precedes question of how to estimate θ
- If θ is not identified, not worth constructing estimator!

Definition (Identification strategy or research design)

An *identification strategy* or *research design* consists of assumptions about the data and the model such that a (typically causal) parameter of interest θ is identified.

Example: Mixture Model

Consider this model with observed D_i and unobserved ε_i :

$$Y_i = (1 + D_i)\varepsilon_i, \quad (D_i, \varepsilon_i) \stackrel{iid}{\sim} \mathsf{Bernoulli}(p) \times N(0, 1), p \in (0, 1)$$

Claim

The parameter p is point-identified.

Proof.

By Law of Total Probability:

$$f_Y(y) = \phi(y)(1-p) + \frac{1}{2}\phi\left(\frac{y}{2}\right)p$$

where $\phi(\cdot)$ is pdf of Standard Normal. Solving for p we have:

$$p = \frac{f_Y(y) - \phi(y)}{\frac{1}{2}\phi\left(\frac{y}{2}\right) - \phi(y)}$$

Example: Additive Model

Consider the model:

$$Y_i = U_i + V_i, \quad (U_i, V_i) \stackrel{iid}{\sim} N\left(\begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

Claim

 (α, β) is not point-identified. However, $\alpha + \beta$ is.

Proof.

Taking expectations, $\mathbb{E}[Y_i] = \alpha + \beta$, so the sum is identified.

To show that (α, β) are not separately identified:

- Define $\tilde{\alpha} = \alpha + x$ and $\tilde{\beta} = \beta x$ for some $x \in \mathbb{R}$
- Then $F_{(\alpha,\beta)}(y) = F_{(\tilde{\alpha},\tilde{\beta})}(y)$ for all $y \in \mathbb{R}$

Example: Nonlinear Model

Consider the model

$$Y_i = (X_i - \theta)^2 + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i] = 0$$

Claim

The identified set is $\Omega(F_Y, \Theta) = \left\{ \mathbb{E}\left[X_i\right] \pm \sqrt{\mathbb{E}\left[Y_i\right] - Var\left(X_i\right)} \right\}$.

Proof.

Taking expectations and solving for zero, we get:

$$\mathbb{E}\left[Y_{i}\right] - \mathbb{E}\left[X_{i}^{2}\right] + 2\theta\mathbb{E}\left[X_{i}\right] - \theta^{2} = 0$$

Which yields $\Omega(F_Y, \Theta)$ as the solutions for θ (using quadratic formula).

Table of Contents

- 1 Econometric Models
 Parametric versus Nonparametric Models
 Descriptive versus Causal Models
- 2 Identification in Econometric Models Formal Definition Examples
- 3 Potential Outcomes Framework Assumptions Average Treatment Effects Assignment Mechanisms

Potential Outcomes Framekwork

- Statistics approach to causality (Neyman-Rubin) ("atheoretical" counterfactuals)
- Potential outcome $Y_i(D_i)$: outcome if D_i exposed to $D_i \in \{0, 1\}$
- Typically binary *D_i* but could be richer
- Example: Drug trial
 - D_i : 1 if treated, 0 if placebo
 - $Y_i(1)$: health if treated
 - $Y_i(0)$: health if placebo
- "Fundamental problem of causal inference" (Holland 1986):

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

- \rightarrow can only observe outcome Y_i under one treatment status
- \rightarrow can never observe individual causal effects $\tau_i = Y_i(1) Y_i(0)$

Design-Based versus Model-Based Identification

Identification can be either design-based or model-based

- 1 Design-based: D_i is random(ized), conditional on $(Y_i(0), Y_i(1))$
 - Randomized control trials
 - Instrumental variables
 - Some event study designs
- 2 Model-based: $(Y_i(0), Y_i(1))$ is random, conditional on fixed D_i
 - Basic difference-in-differences design
 - Sharp regression discontinuity design

Useful distinction to understand the identification logic of an approach

SUTVA

- When are potential outcomes well defined?
- Typically need Stable Unit Treatment Value Assumption (SUTVA, Rubin 1986)

Definition (SUTVA)

A treatment satisfies SUTVA if

- 1 No hidden treatment variation: treatment has consistent effect on unit i
 - \rightarrow e.g. if $D_i \in 0, 1$, it cannot be that $D_i = 2$
- 2 No interference: my outcome only depends on my own treatment status:

$$Y_i(d_1,...,d_N)=Y_i(d_i)$$

A Finite Population Example

i	D_i	$Y_i(0)$	$Y_i(1)$	Y_i
1	1	3	2	2
2	0	4	5	4
3	0	1	4	1
4	1	3	6	6
5	0	5	5	5
6	1	4	3	3

- Causal inference involves "imputing" missing potential outcomes
- Classic assumption: potential outcomes are missing at random (MAR):

$$D_i \perp \{Y_i(0), Y_i(1)\} \quad \forall i$$

• Conditional independence assumption (CIA): $D_i|X_i \perp \{Y_i(0), Y_i(1)\}$

PO Identification Example: Average Treatment Effect

Consider the model

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0), \quad D_i \in \{0, 1\}$$

 $\mathbb{E}[Y_i(d)|D_i] = \mathbb{E}[Y_i(d)] \text{ for } d \in \{0, 1\}$

Claim

The average treatment effect $\tau_{ATE} = \mathbb{E}[Y_i(1) - Y_i(0)]$ is identified.

Proof.

Note that

$$au_{\mathsf{ATE}} = \mathbb{E}\left[Y_i(1)\right] - \mathbb{E}\left[Y_i(0)\right]$$

$$= \mathbb{E}\left[Y_i(1)|D_i = 1\right] - \mathbb{E}\left[Y_i(0)|D_i = 0\right] \quad \text{(due to mean indep. assumption)}$$

$$= \mathbb{E}\left[Y_i|D_i = 1\right] - \mathbb{E}\left[Y_i|D_i = 0\right]$$

Selection Bias

A similar argument shows average treatment effect on the treated (ATT)

$$\tau = \mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]$$

is identified if the model includes $\mathbb{E}[Y_i(d)|D_i] = \mathbb{E}[Y_i(d)]$

- Now suppose we lack this mean independence assumption
- Then identification fails because of selection bias:

Definition (Selection Bias)

The gap between ATT and difference between treatment and control means is:

$$\mathbb{E}\left[Y_i|D_i=1\right] - E\left[Y_i|D_i=0\right] = \tau + \underbrace{\mathbb{E}\left[Y_i(0)|D_i=1\right] - \mathbb{E}\left[Y_i(0)|D_i=0\right]}_{\mathsf{Selection \ bias}}$$

Assignment Mechanism

- Whether MAR or CIA holds depends on the design $\{D_i\}_{i=1}^N$
- The design of a setting can be described through the assignment mechanism
- What determines why some units are treated and others not?
- Let $\mathbf{D} = (D_1, ..., D_N)'$ and $\mathbf{Y}(\mathbf{d}) = (Y_1(d), ..., Y_N(d))'$ for $d \in \{0, 1\}$

Definition (Assignment Mechanism)

For a population of N units, it is a function $P(\mathbf{D}|\mathbf{X},\mathbf{Y}(\mathbf{0}),\mathbf{Y}(\mathbf{1}))$ that satisfies

$$\sum_{\mathbf{D} \in \{0,1\}^N} P(\mathbf{D}|\mathbf{X},\mathbf{Y}(\mathbf{0}),\mathbf{Y}(\mathbf{1})) = 1$$

for all X, Y(0), and Y(1) where $D \in \{0, 1\}^N$ is all possible treatment assignments.

Unit Assignment Probability and Propensity Score

Definition (Unit assignment probability)

Unit *i* has the following probability of being treated for all X, Y(0), and Y(1):

$$ho_i(\mathbf{X},\mathbf{Y}(\mathbf{0}),\mathbf{Y}(\mathbf{1})) = \sum_{\mathbf{D}:D_i=1} P(\mathbf{D}|\mathbf{X},\mathbf{Y}(\mathbf{0}),\mathbf{Y}(\mathbf{1}))$$

Definition (Propensity score)

The propensity score at $X_i = x$ is for all $\mathbf{X}, \mathbf{Y}(\mathbf{0})$, and $\mathbf{Y}(\mathbf{1})$:

$$e(x) = \frac{1}{N(x)} \sum_{i: \mathbf{X} := \mathbf{Y}} p_i(\mathbf{X}, \mathbf{Y}(\mathbf{0}), \mathbf{Y}(\mathbf{1}))$$

where
$$N(x) = \#\{i = 1, ..., N | X_i = x\}$$

Example: Completely Randomized Experiment

- Let us return to the finite-sample example
- Completely randomized experiment with $n_1 < N$ treated units:

$$P(\mathbf{D}|\mathbf{Y}(\mathbf{0}),\mathbf{Y}(\mathbf{1})) = \binom{N}{n_1}^{-1}$$

if
$$\sum_{i=1}^{N} D_i = n_1$$
 and $P(\mathbf{D}|\mathbf{Y}(\mathbf{0}), \mathbf{Y}(\mathbf{1})) = 0$

• Treatment assignment with N=3 and $n_1=2$:

Assignment number:		2	3	4	5	6	7	8	pi	e(x)
i = 1	0	1	0	0	1	1	0	1	<u>2</u>	$\frac{2}{3}$
i = 2	0	0	1	0	1	0	1	1	$\frac{2}{3}$	$\frac{2}{3}$
i = 3	0	0	0	1	0	1	1	1	$\frac{2}{3}$	$\frac{2}{3}$
$P(\mathbf{D} \mathbf{X},\mathbf{Y}(1),\mathbf{Y}(0))$	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0		