

Corso di Laurea in Ingegneria Informatica

COMUNICAZIONI NUMERICHE – 08-06-12

Esercizio 1

Siano dati i segnali $x_1(t) = 2B \operatorname{sinc}(2Bt)$ e $x_2(t) = B \operatorname{sinc}^2(Bt)$ in ingresso al sistema in Fig. 1 e siano $h_{BP}(t) = 4B \operatorname{sinc}(2Bt) \cos(2\pi f_1 t)$ e $h_{LP}(t) = 2B \operatorname{sinc}(2Bt)$ le risposte impulsive dei filtri relativi. Note le frequenze $f_0 = 4B$ e $f_1 = 2B$ a) si calcoli e disegni lo spettro del segnale x(t), b) si calcolino le espressioni analitiche dei segnali $z_1(t)$ e $z_2(t)$, c) si calcolino infine la energia e potenza dei segnali $z_1(t)$ e $z_2(t)$.

Fig. 1

Esercizio 2

Al ricevitore di Fig. 2 e' presente il segnale PAM in banda base $r(t) = \sum_n x [n] p(t-nT) + n(t)$. Sapendo che i simboli x[n], indipendenti ed equiprobabili, sono appartenenti all'alfabeto $A_s \equiv [-1,2]$, $p(t) = B \mathrm{sinc}^2(Bt)$, $h_R(t) = B \mathrm{sinc}(Bt)$, n(t) e' un processo Gaussiano bianco con DSP $S_n(f) = \frac{N_0}{2}$ e che la soglia del decisore e' fissata a $\lambda = 0$, si calcoli:

- 1) L'energia trasmessa media per simbolo E_S ;
- 2) La potenza media di rumore P_{n_n} all'uscita del filtro in ricezione $h_{R}(t)$;
- 3) Si verifichi la condizione di Nyquist;
- 4) Si determini la probabilità di errore sul bit $P_E(b)$

Fig. 2