Bank Service Efficiency with Discrete Event Simulation

Group members:

- Levi Valencia Rodriguez
- Manuel Alberto Arambula Ruvalcaba
- Quoc Dat Cao
- Xavier Maravilla

Motivation

- Banks face long customer wait times during peak hours
- Efficient resource (teller)
 allocation is key to improving service
- Real-world testing is costly simulation provides a risk-free way to experiment.

Problem Statement

- There is a bank with 10 tellers, each processing 10 work-units/hour
- 160 customers arrive during an 8-hour day (uniform distribution)
- Each customer has a task requiring 5–15 work-units (from a truncated normal distribution)
- Customers wait in a FIFO queue if all tellers are busy
- Goal: Understand how different teller configurations and strategies affect:
 - Customer waiting time
 - Number of customers served
 - System efficiency

Approach

- A bank with 10 teller, each teller with a work efficiency of 10 Work-Unit/Hour (WU/H), or 6/10 = 0.6 hour for 1 work unit
- The tellers can be idle or busy for 8 hours in a day
- 160 customers arrive in a uniform distribution
- customers' work-unit demand follow a normal distribution (mean: 10, std: 0.5.
 Truncated range: [5,15]

Approach (cont)

Distribution of Customer Work-Unit Demand

Approach (cont)

If a customer arrives and exist any idle window, no waiting

If all windows are busy, customer is put in queue:

First customer in the queue is assigned to the frist idle window, starting serving time -> waiting time = serving time - arrival

Average waiting time = sum(waiting time) / customers served

Experiment

- 10 windows (original)
- 11 windows
- 9 windows
- 1 speedy queue
- 10 teller who can serve 11 work-unit per hour

Results

	10 windows	9 windows	11 windows	10 window (1 speedy queue, light WU < 5.4)	10 windows (11 WU/H)
Average waiting time	27.64	48.36	9.31	32.92	9.49
Served	140	126	148	85	150
Not served	20	34	12	75	10

Discussion

The speedy queue is not efficient because most of customers' light work-unit request around 5, we put most of customers to 1 speedy line, which increase the waiting time -> It is not worth to have a speedy queue for light request in this case

If we push tellers' efficiency from 10 to 11 WU/H we can serve most of customers of the day.

% of Customers
29.38%
24.38%
21.88%
12.50% 8.12%
3.12%
0.62%
0.00%

