NOIP2023 模拟赛

题目名称	Triple	Traversal	DESTRUCTION 3,2,1	烤枯磊忒
题目类型	传统题	传统题	传统题	传统题
目录	triple	traversal	destruction	calculate
可执行文件 名	triple	traversal	destruction	calculate
输入文件名	triple.in	traversal.in	destruction.in	calculate.in
输出文件名	triple.out	traversal.out	destruction.out	calculate.out
时间限制	1.0 秒	1.0 秒	1.0秒	$1.0\sim3.0$ 秒
内存限制	256 MiB	$256~\mathrm{MiB}$	256 MiB	1024 MiB
是否使用 SPJ	否	否	是	否
子任务数量	4	10	3	4

提交源程序文件名:

编译选项:

对于 C++ 语言 -02 -std=c++14 -static

注意事项

- 1. 文件名 (程序名和输入输出文件名) 必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参照具体需求。
- 4. 若无特殊说明, 结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于 100KB。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 选手目录下提供了快速读入模板 fastio.cpp 与使用说明。

Triple

题目描述

给你一个长度为 n,值域 $1 \sim n$ 的整数序列 a,请你求出满足以下要求的三元组 (i,j,k) ($1 \leq i < j < k \leq n$) 的数量:

• 存在一个位置 p $(1 \le p \le a_i)$ 满足 $a_p = a_j = a_k$ 。

输入格式

从文件 triple.in 读入数据。

第一行一个整数表示 n, 第二行 n 个整数表示 a。

输出格式

输出到文件 triple.out 中。

输出一个整数表示合法三元组数量。

样例输入输出

样例输入#1

```
6
1 1 4 5 1 4
```

样例输出#1

1

样例输入#2

```
12
1 1 4 5 1 4 1 9 1 9 8 1
```

样例输出#2

36

样例输入#3

```
20
9 20 6 17 9 3 17 16 15 12 1 19 1 19 11 1 9 3 18 15
```

样例输出#3

43

样例 #4

见选手目录下的 triple/triple4.in 与 triple/triple4.ans。

样例 #5

见选手目录下的 triple/triple5.in 与 triple/triple5.ans.

数据范围

本题使用捆绑测试。

对于 100% 的数据,有 $1 \le n \le 5 \times 10^5$ 。

	n	分值
Subtask1	≤ 50	10
Subtask2	≤ 500	20
Subtask3	$\leq 5 imes 10^3$	20
Subtask4		50

其中留空表示无特殊性质。

提示

本题输入输出量可能较大,请使用快速的读写方式。

Traversal

题目描述

有一个 $3 \times n$ 的网格, 左上角为(1,1), 右下角为(3,n)。

有一个棋子初始在(1,1),每次可以令其向上下左右其中一个方向走一步,但是不能走出边界。

请求出使棋子不重不漏的经过网格中每个点,且最后到达 (x,y) 的移动方案数,对 998244353 取模。

输入格式

本题一个测试点内包含多组数据。

从文件 traversal.in 读入数据。

第一行一个整数 T 表示数据组数。

每一组数据包含一行三个整数 $n, x, y \ (1 \le x \le 3, 1 \le y \le n, (x, y) \ne (1, 1))$ 。

输出格式

输出到文件 traversal.out 中。

为了减少输出量,请你输出一行一个整数,表示每组数据的答案的异或和。

保证标程可以对于每组数据分别求出答案。

样例输入输出

样例输入#1

```
7
1 3 1
3 2 2
3 3 1
3 3 3
4 2 3
5 1 3
6 2 1
```

样例输出#1

```
0
```

样例输入#2

```
8
5 1 2
10 2 4
655 3 6
262 1 44
524 2 88
2097 1 52
16777 2 16
335544 3 2
```

样例输出#2

```
862279033
```

样例输入#3

```
2
1145141 1 91981
1919810 1 14514
```

样例输出#3

```
75901580
```

样例解释

对于第一个样例,原本的输出应为 1,2,2,2,4,3,4,异或和为 0。

```
对于 n = 3, (x, y) = (2, 2), 有以下两种方案:
```


对于 n = 3, (x, y) = (3, 1),有以下两种方案:

对于 n = 3, (x, y) = (3, 3), 有以下两种方案:

对于 n=4,(x,y)=(2,3),以下是其中一种可能的方案:

数据范围

本题使用捆绑测试。

对于 100% 的数据,有 $1 \leq T \leq 6 \times 10^6, 1 \leq n \leq 2 \times 10^6$ 。

	T	n	特殊性质	分值
Subtask1	≤ 40	≤ 5		10
Subtask2	$< 3 imes 10^3$	$\leq 10^3$	А	10
Subtask3	$<3 imes10^3$	$\leq 10^3$	В	10
Subtask4	$< 3 imes 10^3$	$\leq 10^3$	С	10
Subtask5	= 3n - 1	$\leq 10^3$	D	10
Subtask6			А	10
Subtask7			В	10
Subtask8			С	10
Subtask9	=3n-1		D	10
Subtask10				10

其中留空表示无特殊性质。

特殊性质 A: x=1。

特殊性质 B: x=2。

特殊性质 C: x=3。

特殊性质 D: 测试点内每组数据 n 都相同,且 T=3n-1,每一对合法的 (x,y) 恰好出现一次。

提示

本题输入输出量可能较大,请使用快速的读写方式。

DESTRUCTION 3,2,1

题目描述

虽然题目名字是 destruction, 但是你要做一道 constructive problem。

给你一个 n , 让你构造一个 $1\sim n$ 的排列 a , 你要保证存在一个 $0\sim n-1$ 的排列 b 使得 $\forall i,|i-a_i|=b_i$, 或者报告无解。

a, b 的下标都是从 1 开始的。

输入格式

本题一个测试点内包含多组数据。

从文件 destruction.in 读入数据。

第一行一个整数T,表示数据组数。

接下来T行,每行一组数据。

每一组数据包含一个整数 n。

输出格式

输出到文件 destruction.out 中。

对于每组数据,输出一行:

如果存在一组解,你要输出一个长度为 n 且满足要求的排列 a (若有多解,可输出任意一个)。

否则,输出-1。

输入输出样例

样例输入#1

```
5
3
4
5
1
9
```

样例输出#1

```
-1
4 1 3 2
4 2 5 3 1
1
7 9 3 6 8 5 2 4 1
```

样例解释

n=3 时可以证明没有一个合法的 a。

当 n=4 时,对于 a=[4,1,3,2],存在 b=[3,1,0,2] 满足要求。

当 n=5 时,对于 a=[4,2,5,3,1],存在 b=[3,0,2,1,4] 满足要求。

当 n = 1 时,对于 a = [1],存在 b = [0] 满足要求。

当 n=9 时,对于 a=[7,9,3,6,8,5,2,4,1],存在 b=[6,7,0,2,3,1,5,4,8] 满足要求。

数据范围

本题使用捆绑测试。

对于 100% 的数据, $n \ge 1, \sum n \le 2 \times 10^6$ 。

	n	分数
Subtask1	≤ 19	20
Subtask2	$\sum n \leq 10^3$	30
Subtask3		50

其中留空表示无特殊性质。

提示

本题输入输出量可能较大,请使用快速的读写方式。

烤枯磊忒

题目描述

计算哥给你一个长度为 n 的非负整数序列 a $(0 \le a_i \le n)$ 与一个正整数 m $(m \le n)$,请你求出将 a 划分成若干段,且每段的长度都 $\le m$,能得到的最大价值。

定义 a 序列的一个子段 a[l,r] 的价值为 $\text{MEX}(a[l,r]) \times \sum_{i=l}^r a_i$,定义一种划分方案的价值为划分出的每个子段的价值和,请你求出价值最大的划分方案的价值。

其中,对于一个非负整数序列 b,MEX(b) 表示最小的未在 b 中出现过的**非负整数**,比如 MEX([1,9,1,9,8,1,0])=2。

输入格式

从文件 calculate. in 读入数据。

第一行两个整数 n, m,第二行 n 个整数 a。

输出格式

输出到文件 calculate.out 中。

输入输出样例

样例输入#1

8 5 1 2 0 1 3 4 0 5 55

样例输入#2

7 4 1 9 1 9 8 1 0

样例输出#2

36

样例 #3

见选手目录下的 calculate/calculate3.in 与 calculate/calculate3.ans。

样例 #4

见选手目录下的 calculate/calculate4.in 与 calculate/calculate4.ans.

样例解释

对于第一个样例,一种使价值最大的划分方案为 [1],[2,0,1,3,4],[0,5],价值为 $0\times 1+5\times 10+1\times 5=55$ 。

另外一种划分方案为 [1],[2,0,1,3,4,0,5],价值为 $0\times 1+6\times 15=91$,但是因为第二段长度超过了 m,所以不应计入答案。

对于第二个样例,一种使价值最大的划分方案为 [1,9,1],[9,8,1,0],价值为 $0\times 11+2\times 18=36$ 。

数据范围

本题使用捆绑测试。

对于 100% 的数据, $1 < m < n < 2 \times 10^5$ 。

	n	特殊性质	分数
Subtask1	$\leq 5 imes 10^3$		20
Subtask2		А	20
Subtask3	$\leq 5 imes 10^4$	В	20
Subtask4			40

其中留空表示无特殊限制。

特殊性质 A: a_i 在 [0,n] 内均匀随机生成。

特殊性质 B: 该子任务时限 1.0 秒。