1. XADC

ADC yang dapat diakses melalui PS dengan software ataupun PL secara langsung. Spesifikasi sebagai berikut:

Sampling: 1 MSPSResolusi: 12-bitInput voltage: 0-1V

• Datasheet: https://docs.xilinx.com/v/u/en-US/pg091-xadc-wiz

2. Block Design

Berikut ni merupakan block design untuk melakukan pembacaan XADC dengan ILA pada Vivado 2016.4. Terdiri dari IP XADC dan system ILA untuk debugging melihat nilai output ADC.

3. Constraint

Menggunakan pin clk dan SWO untuk reset.

4. Rangkaian Input untuk Test ADC

Maximum tegangan input XADC adalah **0V – 1V.** Jadi kita harus membuat pembagi tengangan untuk diinputkan sebagai sinyal input ke ADC. Pembagi berikut ini menghasilkan output 0.798V yang akan diinputkan ke ADC.

5. Lokasi Pin XADC

Pin XADC berada pada Pmod A.

Figure 16. Pmod diagram.

Pmod JA (XADC)	Pmod JB (Hi-Speed)	Pmod JC (Hi-Speed)	Pmod JD (Hi-Speed)	Pmod JE (Hi-Speed)	Pmod JF (MIO)
JA1: N15	JB1: T20	JC1: V15	JD1: T14	JE1: V12	JF1: MIO-13
JA2: L14	JB2: U20	JC2: W15	JD2: T15	JE2: W16	JF2: MIO-10
JA3: K16	JB3: V20	JC3: T11	JD3: P14	JE3: J15	JF3: MIO-11
JA4: K14	JB4: W20	JC4: T10	JD4: R14	JE4: H15	JF4: MIO-12
JA7: N16	JB7: Y18	JC7: W14	JD7: U14	JE7: V13	JF7: MIO-0
JA8: L15	JB8: Y19	JC8: Y14	JD8: U15	JE8: U17	JF8: MIO-9
JA9: J16	JB9: W18	JC9: T12	JD9: V17	JE9: T17	JF9: MIO-14
JA10: J14	JB10: W19	JC10: U12	JD10: V18	JE10: Y17	JF10: MIO-15

6. Debugging dengan ILA

Program Zybo dengan Hardware Manager di Vivado, kemudian tampilan ILA akan keluar. Buat sinyal virtual yang berisi data dari xadc_wiz_0_m_axis_tdata mulai dari bit 15 sampai 4 menjadi adc[15:4]. Karena ADC memiliki spesifikasi 12-bit.

Sinyal output pada adc[15:4] adalah sekitar **3266-3270**. Data ADC valid ketika **xadc_wiz_0_m_axis_tvalid bernilai 1.** Nilai perhitungan ADC = 0.798V * 2^12 = 3268.608, sehingga hasil pembacaan ADC sudah benar.

7. Konfigurasi IP XADC

8. Konfigurasi System ILA

