替换法则 The Substitution Rule

Dezeming Family

2022年1月2日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

_	替换法则	1
	替换法则举例 2 1 例子 1	2
	2 2 例子 2	2
Ξ	定积分替换法则	2
参	考文献	2

一 替换法则

替换法则是链式法则的积分版本。我们先回顾一下链式法则:

$$(f \circ g)'(x) = \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x) \tag{-.1}$$

假如我们要求某个积分:

$$\int f(g(x))g'(x)dx \tag{--.2}$$

我们令 h' = f,则得到:

$$\int h'(g(x))g'(x)dx = h(g(x)) + C \tag{-3}$$

$$make \ u = g(x) \tag{--.4}$$

$$\int h'(g(x))g'(x)dx = h(u) + C = \int h'(u)du \tag{-.5}$$

$$\Longrightarrow \int f(g(x))g'(x)dx = \int f(u)du \tag{--.6}$$

这样就得到了替换法则, 值得注意的是:

$$du = g'(x)dx \tag{--.7}$$

$$\int f(u)du = \int f(g(x))g'(x)dx \tag{--.8}$$

二 替换法则举例

21 例子1

计算 $\int \frac{x}{\sqrt{1-4x^2}} dx$:

$$make \ u = 1 - 4x^2 \quad \Longrightarrow du = -8xdx \tag{\Box.1}$$

$$\implies xdx = -\frac{1}{8}du \tag{-.2}$$

$$\int \frac{x}{\sqrt{1-4x^2}} dx = -\frac{1}{8} \int \frac{1}{\sqrt{u}} du = -\frac{1}{8} (2\sqrt{u}) + C = -\frac{1}{4} \sqrt{1-4x^2} + C \tag{\Box.3}$$

2 2 例子 2

计算 $\int \sqrt{1+x^2}x^5dx$ 。

我们可以把 x^5 拆分成 $x^4 \cdot x$ 。令 $u=1+x^2$,所以 du=2xdx,也就是说 $xdx=\frac{1}{2}du$,同时 $x^2=u-1$,于是:

$$\int \sqrt{1+x^2}x^5 dx = \int \sqrt{1+x^2}x^4 \cdot x dx \tag{\Box.4}$$

$$= \int \sqrt{u(u-1)^2} \cdot \frac{1}{2} du \tag{2.5}$$

$$=\frac{1}{2}\int (u^{\frac{5}{2}}-2u^{\frac{3}{2}}+u^{\frac{1}{2}})du\tag{-.6}$$

三 定积分替换法则

设 f(g(x))g'(x) 的不定积分结果为 $\int f(u)du = F(u) = F(g(x))$, 则:

$$\int_{a}^{b} f(g(x))g'(x)dx = F(g(x))\Big|_{a}^{b} = F(g(b)) - F(g(a))$$
 (\(\equiv.1\))

$$= \int_{g(a)}^{g(b)} f(u)du \tag{\Xi.2}$$

以前面计算过的 $\int \frac{x}{\sqrt{1-4x^2}} dx$ 为例, 计算:

$$u = g(x) = 1 - 4x^2$$
 $g(0) = 1$ $g(\frac{1}{2}) = 0$ $(\Xi.3)$

$$\int_{1}^{2} \frac{x}{\sqrt{1 - 4x^{2}}} dx = -\frac{1}{8} \int_{1}^{0} \frac{1}{\sqrt{u}} du = -\frac{1}{8} (2\sqrt{u}) \Big|_{1}^{0} = \frac{1}{4}$$
 (\equiv.4)

 $(\Xi.5)$

注意和代入 u = g(x) 以后计算的结果一定是相等的:

$$-\frac{1}{4}\sqrt{1-4x^2}\Big|_0^1 = \frac{1}{4} \tag{\Xi.6}$$

参考文献

[1] James Stewart. Calculus, Eighth Edition. 2016.