Dağıtık Sistemler Ders Notları

Kaynak: Andrew S. Tanenbaum and M. V Steen, *Distributed Systems: Principles and Paradigms, 2nd Ed.*, Pearson, 2007

İkincil Kaynak: George Coulouris, Jean Dollimore and Tim Kindberg, *Distributed Systems:Concepts and Design, 4th Ed.*, Pearson, 2005

Giriş

İletişim Ağı: Birbirleriyle iletişim halindeki birimlerin kümesi Her yer bilgisayar ağı!

— Mobil telefon ağları, Kurumsal ağlar, Fabrika ağları, Kampus ağları, Ev ağları, Araç-içi ağlar, Uçak ve trenlerdeki yerleşik ağlar

Dersin Amacı:

- dağıtık sistemler/uygulamalarda temel kavramlar,
- bu sistemlerin belirleyici özellikleri, avantajları
- Mimari yapılar, client(istemci)-server(sunucu)
- görevler arası iletişim, socket programlama ile DS
- Ortakatman ve dağıtık nesneler (Sun RPC, Java RMI),
- İsimlendirme ve ağ hizmetleri,
- Senkronizasyon ve Mantıksal Saat
- Tutarlılık ve Veri Tekrarı
- dağıtık dosya sistemleri tasarımı ve gerçekleştirimi

Tanımlar

- A distributed system is a collection of independent computers that appears to its users as a single coherent system.
- Dağıtık bir sistem, kullanıcılara tek bir uyumlu sistem olarak görünen, bağımsız bilgisayarlar topluluğudur. [Tanenbaum]
- Ağdaki bilgisayarlarda bulunan sistem bileşenlerinin yalnızca mesaj göndererek haberleştikleri ve hareketlerini koordine ettikleri bir sistem. [Coulouris]

Tanımda öne çıkanlar:

- DS, otonom bileşenlerden (bilgisayarlar gibi) oluşuyor.
- Kullanıcılar(program/insan), tek bir sistemle muhatap. O halde bileşenler eşgüdüm içinde olmalı.

Örnek: Bir bölüm ağındaki birkaç workstation + işlemciler. Eğer sistem bir bütün olarak, tek işlemcili timesharing sistem gibi duruyor ve öyle de davranıyorsa, bu distributed system olarak değerlendirilir.

Tanım (devam)

1)Kullanıcılardan gizlenmiş durumda:

- •Çeşitli bilgisayarlar arası farklılıklar
- •Bunların nasıl haberleştiği (communicate)
- •DS'nin iç mimarisi
- 2) Tektip tip görünüş (Uniform view)
 - •Zaman ve mekandan bağımsız olarak, kullancılar (insan/uygulama) DS ile tutarlı/tek tip (consistent/uniform) bir etkileşim içinde
- 3) Ölçeklenebilir (Scaleable)
 - •Genişleme/ölçekleme kolaylığı (bağımsız bilgisayarlar ve bunların DS'ye katılımının gizlenmiş olmasının neticesi olarak)
- 4) Süreklilik (Availability)
 - •DS sürekli servis sağlar (bazı parçaları/bileşenleri çalışmasa da)

DS: Yazılım (S/W) katmanı olarak

- DS, iki katman arasında. Bunlar, bir üst katman (users/apps) ile bir alt katman (OS and basic comm facilities)
- Böyle bir DS, middleware(orta katman) olarak da anılmakta
- Orta katman çok sayıda makine üzerine yayılmış durumda,
- Her uygulamaya aynı arayüzü (same interface) sunmakta
- Uygulamalardan donanım(H/W)/OS farklılıklarını gizlemekte.

DS'yi olabilir eden 3 Gelişme (3 Advances)

- Güçlü mikro-işlemci (micro-processor):
 - 8-bit, 16-bit, 32-bit, 64-bit
 - x86 family, 68k family, Alpha chip
 - Clock rate: 4.77MHz up to 4.0 GHz
- Bilgisayar ağı (Computer network)
 - Local Area Network (LAN), Wide Area Network (WAN), MAN, Wireless Network (Wi-Fi), Mobile Network (3G/UMTS)
 - Network type: Ethernet, Token-bus, Token-ring, FDDI, ATM, Fast-Ethernet, Gigabit Ethernet, Fibre Channel
 - Transfer rate: 64 kbps up to 1Gbps
- İkincil Bellek (Secondary storage, Hard Disk)
 - 5-10Mb(85), 100-250Mb(90), 1Gb(93), 4-6Gb(97), 10-20Gb(00), 80-120+Gb.

DS: Amaçlar

4 Önemli Amaç:

1. Kaynaklara kolay erişim - Make resources easily accessible

- Users/apps to easy access remote resources: printers, computers, storage facilities, data, files, web pages, networks
- Why? Economics. 1 printer per user vs 1 printer shared by n users
- Share costly resources such as supercomputers, high-performance storagesystems, imagesetters, other expensive peripherals
- Collaborate and exchange information (Internet): files, mail, auido, video
- Virtual organization. Groupware: s/w for collaborative editing, teleconference
- Electronic commerce: buy/sell all kinds of goods

2. Kaynakların ağda dağıtık halde bulunduğu gerçeğini sakla

- Hide the fact that DS processes and resources are phsically distributed
- A DS that is able to present itself to users / apps as if it were only a singe computer system is said to be *transparent*.

DS: Amaçlar (devam)

3. Açıklık (Openness)

- Open system offer services according to standard rules that describe those services' syntax and semantics
- In computer networks, standard rules govern the format, contents, and meaning of msgs sent and received. Such rules are formalized in **protocols**.
- In DS, services are specified through interfaces (described in IDL).
- IDL: captures syntax of services. NOT what services do (semantics)

4. Ölçeklenebilirlik (Scalability)

- More users or resources: with respect to size (/geography/admin)
- Services, data and algorithms centralized? Can become a bottleneck!
 - Centralized services: a single server for all users
 - Centralized data: a single on-line telephone book
 - Centralized algorithms: routing based on complete info
- Decentralized alg:partial state, decide on local info, one failure:ok, no g.clock

Distributed Systems VS. Centralized Systems

Avantajlar

- <u>Ekonomik</u>: Microprocessors offer a better price / performance than mainframes
- H1z: A dist. system may have more total computing power than a mainframe.
- <u>Uygulama ile uyum</u>: Some apps (banking) involve spatially separated machines
- <u>Güvenilirlik (Reliability)</u>: If 5% of the machines are down, the system as a whole can still survive with a 5% degradation of performance.
- Adım adım büyüme: Computing power can be added in small increments
- Veri Paylaşımı (Data sharing): Allow many users access to a common database
- <u>Aygıt (Device) Paylaşımı</u>: Allow many users to share expensive peripherals.
- <u>İletişim</u>: Make human-to-human communication easier-- Email, ICQ.
- <u>Esneklik (Flexibility)</u>: İş yükünü var olan makinelere dağıtma kolaylığı

Dezavantajlar

- Yazılım-Software: Little software exists at present for distributed systems
- Ağ problemi: The network can saturate or cause other problems
- <u>Güvenlik-Security</u>: Easy access also applies to secret data

Dağıtık Sistemlerin Nitelikleri

Paralel işlemler

Birlikte çalışan bağımsız bileşenlerden oluşur

Mesaj gönderme ile iletişim

Ortak bellek yok (No shared memory)

Kaynak paylaşımı

Veri tabanı, yazıcılar, işleme gücü, veri, diğer servisler

Genel sistem durumu belirsizliği (No global state)

Hiçbir işlem, sistemin genel durumuna dair tam bilgiye sahip değil

Ortak saat yok

– İşlemler için sadece kısıtlı derecede saat eşitleme mümkün olabilir

Ağlar VS. Dağıtık Sistemler

- Ağ: Yerel veya geniş alandaki bilgisayarları bağlamak ve protokoller arası mesaj alışverişi yapmak için kullanılan ortam. Ağ birimleri görülebilirdir ve açıkça adreslenmiştir (IP adresleriyle).
- Dağıtık sistem: Birçok bağımsız bilgisayarın varlığı belirgin değildir
- Açıklık, güvenilirlik gibi birçok problem ortaktır, ancak farklı katmanlardadır.
 - Ağlar, paket yönlendirme vs üzerine odaklanırken, dağıtık sistemler uygulamalara odaklanır.
 - Bir dağıtık sistem bilgisayar ağı tarafından sağlanan servisler üzerine bina edilir.

Dağıtık Sistemler

Bilgisayar Ağları

Network OS, Distributed OS, and Multiprocessor OS

Network OS:

- Config I: All stand-alone workstation each with its own CPU, memory, hard disk, and OS, and connected by a LAN.
- Make use of the following commands: rlogin, rcp, rsh, telnet, ftp.
- Config II: System like the above but with some dedicated servers -- file servers, application servers, ftp server, mail server, name server, PPP server.
- True Distributed System: Single-system image or virtual uniprocessor concept
 - A single, global interprocess communication mechanism -- do not have to deal with different mechanisms on different machines and deal with local versus remote machines.
 - A global protection scheme -- no mixing of access control list, protection bits and capabilities.
 - Process management is the same everywhere -- how processes are created, destroyed, started, and stopped must not vary from machine to machine.
 - File system must look the same everywhere -- having different filename construct is a nightmare.
 - Same system call everywhere.
 - Kernel will take care of scheduling, memory management, and local resources management -- no need to centralize these.

Network OS, Distributed OS, and Multiprocessor OS (continue)

Item	Network OS	Distributed OS	Multiprocessor OS
Does it look like a virtual uniprocessor?	No	Yes	Yes
Do all have to run the same OS?	No	Yes	Yes
How many copies of OS are there?	N	N	1
How is communication achieved?	Shared files	Messages	Shared memory
Are agreed upon network protocol required?	Yes	Yes	No
Is there a single run queue?	No	No	Yes
Does file sharing have well-defined semantics?	Usually no	Yes	Yes

Örnek Dağıtık Sistemler

Internet:

- Çeşitli servisler barındıran birçok farklı bilgisayar türlerinden oluşan büyük bir ağ topluluğu
- Uygulamalar iletişimi mesajlarla sağlar
- Servisler: www, email, dosya gönderme gibi
- Intranet: Yerel güvenlik politikası var.
 - Internetin bir alt parçası,
 - Ayrı bir yönetimi var (organizasyon),
 - Kaynakların ağ içerisinde paylaşımını destekler (dosya/depolama sistemleri ve yazıcılar)
- Kablosuz ağlar

Genel bir intranet

Kaynak paylaşımı ve Web: açık protokoller, ölçeklenebilir sunucular, takılabilir tarayıcılar

World Wide Web kaynakları

- Web'de kaynaklar ve diğer servisler URL'ler ile isimlendirilir
- Web Sayfaları paylaşılan kaynaklara örnektir. İstemci URL ile isteğini belirtir.
- Bu kaynaklar Web sunucuları (web server, process) tarafından yönetilir
- Web, istemci-sunucu mimarisini kullanır.
 - Web tarayıcısı: istemci programı (client process),
 - Web sunucusu: istenen web sayfalarını içeren yerel dosyalara (kaynaklara) erişir ve istemciye iletir (server process).
- URL Uniform Resource Locator

URL Örneği

- URL: http://www.dcs.qmw.ac.uk/research/distrib/book.html
- İlk kısım: Kullanılacak protokol. (:'dan önceki kısım)
 - protokol http'dir ("HyperText Transport Protocol").
- İkinci kısım: Web sunucusunun domain adı. (// ile / arası).
 - domain adı (hostname) : www.dcs.qmw.ac.uk.
- Kalan kısım: (Tek '/'tan sonraki kısım). O domain üzerindeki kaynağı (dosyayı) gösterir
- Web sunucusunun kullandığı üst dizinden itibaren adlandırılır (pathname). research/distrib/book.html

Design Issues: a)Transparency(şeffaflık) in DS

- 1. Access(erişim): hide differences in data representation and how a resource is accessed
- 2. Location(konum) transparency: The users cannot tell where resources are located
- 3. Migration(taşınma): Resources can move at will without changing their names.
- 4. Replication transparency: The users cannot tell how many copies exist.
- 5. Relocation transparency: Resources can move to another location while in use.
- **6.** Concurrency(Eşzamanlılık): Multiple users can share resources automatically.
- 7. Parallelism transparency: Activities can happen in parallel without users knowing
- **8.** Failure transparency: hide the failure and recovery of a resource.

Design Issues (continue)

- b) Reliability
 - Availability
 - Fault tolerance
- c) Performance
 - Fine-grained parallelism
 - Coarse-grained parallelism
- d) Scalability
 - Potential bottle-necks in very large distributed systems
 - Centralized components: A single mail server for all users
 - Centralized tables: A single on-line telephone book
 - Centralized algorithms: Doing routing based on complete information
 - Use decentralized algorithms. Their characteristics are:
 - No machine has complete information about the system state
 - Machines make decisions based only on local information
 - Failure of one machine does not ruin the algorithm
 - There is no implicit assumption that a global clock exists

Scaling Techniques: a) Hide comm. delay

Figure 1-4. The difference between letting (a) a server or (b) a client check forms as they are being filled.

Scaling Techniques: b)distribution

Split a component into smaller parts, spread parts across the system Ex: divide DNS name space into a tree of domains, then zones (names in a zone are handled by a name server). Consider name nl.vu.cs.flits

Scaling Techniques: c)replication

Replicate components across distributed system

- Make a copy of resource
- Put it near of the client that access resource

Result

- Increase availability
- Balance the load between components
- Better performance
- Caching: a form of replication
 - Decided by client, not owner of resource
 - Happens on demand, not planned in advance
- Both lead to consistency problem

DS Uygulama Örneği

- Online kitapçı (World Wide Web üzerinde)
 - Müşteriler kendi bilgisayarlarından sizin bilgisayarınıza (web sunucunuza) bağlanabilir:
 - Stoktaki ürünlere bakabilir
 - Sipariş verebilir

. . . .

DS Uygulama Örneği – zorluklar I

- Ya . . . ?
 - Müşteriniz çok farklı bir donanım kullanıyorsa? (PC, MAC,...)
 - ... farklı bir işletim sistemi? (Windows, Unix,...)
 - ... farklı bir veri gösterim biçimi? (ASCII, EBCDIC,...)
 - Çeşitlilik (networks, h/w, os, prog lan)
 - Erişim şeffaflığı
- Veya . . . ?
 - İşinizi ve bilgisayarlarınızı güneye taşimak isterseniz (hava şartlarından dolayı)?
 - Müşterileriniz güneye taşınırsa (daha muhtemel)?
 - Konum / Taşınma şeffaflığı

DS Uygulama Örneği – zorluklar II

- Ya . . . ?
 - İki müşteri aynı ürünü aynı anda sipariş verirse?
 - Eşzamanlılık/Parallelizm şeffaflığı
- Veya . . . ?
 - Stok bilginizi tutan veri tabanı çökerse?
 - Sipariş esnasında müşterinizin bilgisayarı çökerse?
 - Failure transparency (Fault tolerance)

DS Uygulama Örneği – zorluklar III

- Ya ...?
 - Birileri veri çalmak için sisteminize girmeye çalışırsa?
 - ... bilgi çekerse?
 - müşteriniz sipariş verir de, sonradan vermedim diyerek ödemeyi reddederse?
 - Security (Güvenlik)
- Veya . . . ?
 - Öyle başarılı olursunuz da, milyonlarca insan aynı anda online mağazanızı aynı anda ziyaret ederse?
 - Scalability (Ölçeklenebilirlik)

DS Uygulama Örneği – zorluklar IV

- Sistem kurulurken ...
 - Bütün yazılımı tek başınıza mı yazmak istersiniz (network, database,...)?
 - Güncellemeler, yeni teknoloji takibi?
 - Reuse (tekrar kullanılabilirlik) ve Openness (açıklık) (Standartlar)

Heterogeneity (Çeşitlilik)

- Çeşitli bileşenler birbiriyle uyumlu şekilde çalışabilmeli
 - İşletim sistemleri
 - Donanım mimarileri
 - İletişim mimarileri
 - Programlama dilleri
 - Yazılım arayüzleri
 - Güvenlik ölçüleri
 - Bilgi gösterimleri

DS Geliştirirken Yanlış Varsayımlar

False assumptions made by first time developer:

- The network is reliable.
- The network is secure.
- The network is homogeneous.
- The topology does not change.
- Latency is zero.
- Bandwidth is infinite.
- Transport cost is zero.
- There is one administrator.