INTEGRAL BIKOITZA

- 1.- Sarrera
- 2.- Integral bikoitzaren kontzeptua
- 3.- Adierazpide geometrikoa
- 4.- Funtzio integragarriak
- 5.- Integral bikoitzaren kalkulua
- 6.- Integral bikoitzaren aplikazio nagusiak

Sarrera

Integral iteratuak edo integral anizkoitzak Riemannen integralaren kontzeptuaren hedadura natural bat dira, [*a*,*b*] tarte baten gainean. Beren aplikazioengatik, interes berezikoak dira R²-ko eremu bornatuen gaineko bi aldagaiko funtzioen eta R³-ko eremu bornatuen gaineko hiru aldagaiko funtzioen kasurako hedapenak, hurrenez hurren, integral bikoitzak eta hirukoitzak definituz. Koordenatu kartesiarretako ohiko notazioak hauexek dira:

<u>Funtzioa</u>	Domeinua	<u>Integrala</u>
f(x)	$[a,b] \in \mathbb{R} \rightarrow$	$\int_{a}^{b} f(x)dx$
f(x, y)	$[D] \in \mathbb{R}^2 \rightarrow$	$\iint_D f(x, y) dx dy \equiv \iint_D f(P) dA$
f(x, y, z)	$[V] \in \mathbb{R}^3 \longrightarrow$	$\iiint_{V} f(x, y, z) dx dy dz \equiv \iiint_{V} f(P) dV$

Kontzeptua:

- Izan bedi *XOY* planoko [*D*] eremu itxi eta bornatu bat.
- [D] eremua, kurba bakun itxi batek edo kurba arku batzuk eratzen duten [L] muga batek mugatzen dute.
- Izan bedi ere, $f(x,y) \equiv f(P)$, [D]-ko funtzio jarraitu bat.
- [D]-ren partiketa arbitrario bat egiten dugu:

$$\Delta A_1, \Delta A_2, \dots, \Delta A_i, \dots, \Delta A_n$$

- A_i azalerak dauzkaten n eremu partzialetan banatuta.
- Arbitrarioki, aukera dezagun eremu partzial bakoitzean erdiko puntu bat. [D]-ren azalera honela lortzen da:

Kontzeptua: $A = \Delta A_1 + \Delta A_2 + \ldots + \Delta A_i + \ldots + \Delta A_n = \sum_{i=1}^n \Delta A_i$.

[D]-ren gaineko f(x,y) -ren **batura integrala** honela definitzen da:

$$S_n = f(P_1)\Delta A_1 + \ldots + f(P_i)\Delta A_i + \ldots + f(P_n)\Delta A_n = \sum_{i=1}^n f(P_i)\Delta A_i$$
Batugai integrala

- Integral bikoitzaren kontzeptua finkatu aurretik, hurrengo definizioak behar ditugu:
- Diametroa: domeinu lau bateko edozein bi punturen arteko distantziarik handiena da. [D] domeinu baten gaineko partiketa [P] baten diametroari diam P deritzogu.
- Suposa dezagun orain [D] integrazio eremu baten gaineko partiketa bateko elementuen kopurua era mugagabean hazten dela
 - Hau da, $n \to \infty$ eta beraz, $diam P \to 0$

- Baldintza hauen menpean, aztertu beharra dago ea [D]-ren partiketa desberdinetarako sortutako batura integralen segida konbergentea den, hots, limitea existitzen den $n \to \infty$ doanean.

Kontzeptua:

"f(x,y) [D] eremuan integragarria dela esaten da, baldin batura integralaren limitea existitzen bada, $diam P \rightarrow 0$ doanean, egindako partiketa mota eta P_i puntuen aukeraketa kontutan hartu gabe". Limite honi [D] eremuaren gainean hartutako f(x,y)-ren **integral bikoitza** deritzo eta ohikoa da hurrengoa idaztea:

$$\lim_{\text{diam } P \to 0} \sum_{i=1}^{n} f(P_i) \Delta A_i = \iint_D f(P) dA \equiv \iint_D f(x, y) dx dy$$

Adierazpide geometrikoa:

[D] domeinuko z = f(x,y) funtzioak geometrikoki \mathbb{R}^3 -ko gainazal zati bat adierazten du. Baldin [D]-n f(x,y) > 0 bada, OZ ardatzaren sortzaile paraleloak eta zuzentzailetzat eremu partzialaren muga dauzkan zilindro baten bolumenaren neurritzat uler daiteke batugai integrala, zilindroa behetik eta goitik XOY planoaren z = 0 eta $z = f(P_i)$ plano paraleloek mugatuta egonda:

- Integral mugatuaren kasuan erabilitako antzeko terminologia erabiliz:
- Izan bitez f(x,y)-ren muturrak:

$$m_i \equiv \Delta A_i$$
-ko minimoa, $m \equiv D$ -ko minimoa $M_i \equiv \Delta A_i$ -ko maximoa, $M \equiv D$ -ko maximoa

Orduan, hurrengo bornapenak begi bistakoak dira:

$$m \le m_i \le f(P_i) \le M_i \le M \rightarrow m\Delta A_i \le m_i \Delta A_i \le f(P_i) \Delta A_i \le M_i \Delta A_i \le M\Delta A_i \rightarrow m\Delta A_i \le M\Delta A_i$$

$$\sum_{i=1}^{n} m\Delta A_i = mA \leq \sum_{i=1}^{n} m_i \Delta A_i \leq \sum_{i=1}^{n} f(P_i) \Delta A_i \leq \sum_{i=1}^{n} M_i \Delta A_i \leq \sum_{i=1}^{n} M\Delta A_i = MA$$

- Behe baturak, $\sum_{i=1}^{n} m_i \Delta A_i$, behetik mugatzen du bolumen zilindrikoa.
- Goi baturak, $\sum_{i=1}^{n} M_i \Delta A_i$ goitik mugatzen du bolumen zilindrikoa.
- Partiketako elementuen kopurua gero eta handiagoa izan, adierazitako bolumenak orduan eta estimazio zehatzagoa eskainiko du.
- $n \to \infty$, orduan $diam P \to 0$ eta m_i , $f(P_i)$ eta M_i puntu berdina izango dira eta bolumen estimazio zehatza lortuko dugu.

- Gorputz zilindriko baten bolumena (V), non gorputzak zuzentzailetzat D-ren L muga baitauka, sortzaileak OZ ardatzaren paraleloak baitira eta azpitik z=0 planoak eta goitik z=f(x,y) gainazalak mugatuta baitago.

Funtzio integragarriaren baldintza

- Integral mugatuen kasuan aipatu genuen teoremaren baliokidea bete beharko da.
- Teorema: f(x,y) funtzio bat [D]-n integragarria izan dadin, baldintza beharrezko eta nahikoa hurrengoa da: partiketaren diametroa zerorantz doanean, beheko, alboko eta goiko baturen limiteak existitu daitezela eta berdinak izan daitezela. Limite komun hori integralaren balioarekin bat dator

$$\lim_{\operatorname{diam} P \to 0} \sum_{i=1}^{n} m_i \Delta A_i = \lim_{\operatorname{diam} P \to 0} \sum_{i=1}^{n} M_i \Delta A_i = L \iff \iint_D f(x, y) \, dx \, dy = L$$

Funtzio integragarriak

Integral mugatuaren kasuan bezala, integragarritasun teorema betetzen duten funtzio motak hauexek dira:

- a) [D] -ko funtzio jarraituak.
- b) Gehienez etenuneen kopuru finitu bat daukaten eta [D]-n bornatuta dauden funtzioak (funtzio ia jarraituak).

"[D] domeinua, **E** ardatz baten norabidearen araberako domeinu erregular bat dela esaten da, baldin ardatz horren zuzen paralelo orok [D]-ren [L] muga gehienez bi puntutan ebakitzen duenean". Baldin [D] erregularra bada, E-ren zuzen paraleloek gehienez bi puntutan ebaki dezakete [D] domeinua (zuzen sekanteak), puntu bakar batean (ukitzaileak) edo ez ebakitzea (kanpoko paraleloak).

(A) Integralaren kalkulua, y lehenengo integrazio aldagaitzat hartuz

Izan bedi *OY* ardatzaren norabidearen araberako [*D*] domeinu erregular bat.

Baldin OY-ren paraleloak diren [D]-ko ukitzaileak marrazten badira, haien ekuazioak x = a eta x = b izanik, [D] mugatzen duen [L] muga (behetik) ANB eta (goitik) AMB kurba arkuetan deskonposa daiteke.

[D] -ren erregulartasunak ahalbidetzen du arkuak analitikoki deskribatzea, [a,b] tarteko hurrengo funtzio uniformeen bidez:

$$\widehat{ANB}$$
: $y = y_1(x)$ \widehat{AMB} : $y = y_2(x)$, $a \le x \le b$

Halako moldez non [D] honela deskriba baitaiteke:

$$[D] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \quad y_1(x) \le y \le y_2(x)\}$$

Integrakizun funtzioa [D]-n jarraitua bada, hurrengo kalkulu formula froga daiteke, non kortxeteen artean dagoen eta limite aldakorrak dauzkan integrala lehenengo integrazio aldagaitzat ebazten baita, x parametrotzat kontsideratuz. Behin jatorrizko bat lortutakoan, Barrowen formula aplikatzean $\varphi(x)$ funtzio bat lortzen da. Azkenik, funtzio hori integratuko dugu, integrazio aldagaitzat x hartuz, a eta b limite konstanteen artean.

$$\iint_{D} f(x, y) \, dx \, dy = \int_{a}^{b} \left[\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) \, dy \right] dx = \int_{a}^{b} \phi(x) \, dx = L$$

$$\iint_{D} f(x, y) \, dx \, dy = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) \, dy$$

(B) Integralaren kalkulua, x lehenengo integrazio aldagaitzat hartuz

Orain suposatuko dugu [D] erregularra dela, OX norabidearen arabera eta, beraz, [D] -ko [L] muga CND eta CMD arkuetan banatu ahalko da. Arku hauek bi puntuetan banatzen dira, OX ardatzaren norabideko y = c eta y = d zuzen ukitzaileek [L] ukitzean lortuta.

CND eta CMD arkuen ekuazioak hurrenez hurren $x = x_1(y)$ eta $x = x_2(y)$ [c,d] tarteko funtzio uniformeak direla suposatuz. Kasu honetarako, kalkuluaren formula hauxe da:

$$\iint_{D} f(x, y) \, dx \, dy = \int_{c}^{d} \left[\int_{x_{1}(y)}^{x_{2}(y)} f(x, y) \, dx \right] dy = \int_{c}^{d} \psi(y) \, dy = L$$

normalean honela idazten da:
$$\iint_D f(x, y) dx dy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$

Eskuineko integralean (lehenengoa ebazten dena), x batura-aldagaia da eta y parametrotzat kontsideratzen da. Emaitza $\psi(y)$ funtzio bat da, eta integratu behar da c eta d limite konstanteen artean.

Baldin [D]-k aurreko kalkulu formulak finkatzea ahalbidetu duten baldintzak betetzen baditu, integrala hurrengo formuletako edozein erabiliz ebatzi ahalko da:

$$\iint_{D} f(x, y) \, dx \, dy = \int_{a}^{b} \left[\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) \, dy \right] dx = \int_{c}^{d} \left[\int_{x_{1}(y)}^{x_{2}(y)} f(x, y) \, dx \right] dy$$

Kasu bakoitzean, integrazio domeinuei begiratu ostean, kalkulu aldetik errazena hartuko dugu.

Baldin [L] muga ekuazio desberdinak dauzkaten **bi arku baino gehiagoz** osatuta badago, orduan [D] **domeinu partzialetan deskonposatu** beharko da, aurreko formulak aplikatu ahal izateko.

[D] integrazio eremu ez erregularretarako, kasu bakoitzean domeinu erregularretan zatitu beharko dugu, erreferentzia-ardatzen zuzen paraleloak erabiliz.

1. adibidea

Kalkulatu bi era desberdinetan hurrengo integralaren balioa:

$$I = \iint_{D} \frac{x^{2}}{y^{2}} dx dy; D = \left\{ (x, y) \in \mathbb{R}^{2} / \frac{1}{x} \le y \le x; 1 \le x \le 2 \right\}$$

- Domeinua hurrengo kurbek mugatzen dute:

$$xy-1=0$$
; $y-x=0$; $x-1=0$; $x-2=0$

1. adibidea

Lehen integrazio aldagaitzat y aukeratzen bada, integral bakar bat behar dugu:

$$I = \iint_{D} \frac{x^{2}}{y^{2}} dx dy = \int_{1}^{2} x^{2} dx \int_{1/x}^{x} \frac{1}{y^{2}} dy = \int_{1}^{2} x^{2} dx \left[-\frac{1}{y} \right]_{1/x}^{x} =$$

$$= \int_{1}^{2} x^{2} \left(-\frac{1}{x} + x \right) dx = \left[-\frac{x^{2}}{2} + \frac{x^{4}}{4} \right]_{1}^{2} = \frac{9}{4}$$

1. adibidea

- Lehen integrazio aldagaitzat *x* hartuz gero, *D* domeinua bi arku baino gehiagoz osatuta egongo litzateke.
- Beraz, [D] domeinua deskonposatu behar dugu. Kasu honetan, D_1 eta D_2 domeinutan y=1 zuzenaren bidez banandurikoak.
- Horrela, D_1 eta D_2 -k, bakoitzak bi arkuz osaturik dago.
- Orduan, integralaren balioa honela kalkulatzen da:

$$I = \iint_{D} \frac{x^{2}}{y^{2}} dx dy = \iint_{D_{1}} \frac{x^{2}}{y^{2}} dx dy + \iint_{D_{2}} \frac{x^{2}}{y^{2}} dx dy = \int_{1/2}^{1} \frac{1}{y^{2}} dy \int_{1/y}^{2} x^{2} dx + \int_{1}^{2} \frac{1}{y^{2}} dy \int_{y}^{2} x^{2} dx = \int_{1/2}^{1} \frac{1}{y^{2}} dy \left[\frac{x^{3}}{3} \right]_{1/y}^{2} + \int_{1}^{2} \frac{1}{y^{2}} dy \left[\frac{x^{3}}{3} \right]_{y}^{2} = \frac{1}{3} \int_{1/2}^{1} (8y^{-2} - y^{-5}) dy + \int_{1}^{2} \frac{1}{3} \int_{1/2}^{2} (8y^{-2} - y) dy = \frac{1}{3} \left[-\frac{8}{y} + \frac{y^{-4}}{4} \right]_{1/2}^{1} + \frac{1}{3} \left[-\frac{8}{y} - \frac{y^{2}}{2} \right]_{1}^{2} = \frac{9}{4}$$

Bere ordena eta limiteak emanda dauden integral batean integrazio ordena alderantzikatu nahi bada, integrazio domeinuaren grafo bat marraztu beharko da, lau limiteetatik abiatuz, eta hortik beharrezko integralak planteatu, dagozkien limiteekin.

2. adibidea

- Alderantzikatu integrazio ordena hurrengo integralean:

$$I = \int_0^1 dy \int_{y^2/2}^{\sqrt{3-y^2}} f(x, y) \, dx$$

- [D] integrazio domeinua hurrengo lerroek mugatzen dute:

$$y = 0;$$
 $y = 1;$ $x = \frac{y^2}{2};$ $x = \sqrt{3 - y^2}$

2. Adibidea

2. Adibidea

- Lehen integrazio aldagaitzat y hartuz gero, D domeinua bi arku baino gehiagoz osatuta egongo litzateke.
 - Beraz, [D] domeinua deskonposatu behar dugu.

$$I = \int_0^{1/2} dx \int_0^{\sqrt{2x}} f(x, y) \, dy + \int_{1/2}^{\sqrt{2}} dx \int_0^1 f(x, y) \, dy + \int_{\sqrt{2}}^{\sqrt{3}} dx \int_0^{\sqrt{3-x^2}} f(x, y) \, dy.$$

Izan bedi hurrengo integral bikoitza:

$$I = \iint_D f(x, y) \, dx \, dy$$

[D] domeinu erregularra izanik eta [D] -ren muga $\gamma_i(x,y) = 0$ ekuazioetako kurba arku batek edo gehiagok osatuta egonda.

Izan bedi *T* hurrengo formulek definitutako *UOV* planotik *XOY* planorako aplikazio bat:

(1)
$$x = x(u, v); y = y(u, v)$$

[R]-ko (u,v) puntuei [D]-ko (x,y) irudiak esleituz.

$$(2) \qquad (u,v) \in [R] \rightarrow [x(u,v),y(u,v)] \in [D]$$

Suposa dezagun x(u,v) eta y(u,v) deribatu partzial jarraituak dauzkaten [R]—ko funtzio uniformeak direla eta (2) erlazioak ezartzen duen korrespondentzia halakoa dela non [D]-ko puntu bakoitza [R]-ko puntu bakar baten irudia baita. Baldintza hauen menpean, alderantzizko aplikazioa honakoa da:

(3)
$$(x,y) \in [D] \xrightarrow{T^{-1}} [u(x,y),v(x,y)] \in [R]$$

Froga daitekeenez, aurrekoa gerta dadin, baldintza beharrezko eta nahikoa aplikazioaren jakobiarra [R] -ko puntu guztietan nulua ez izatea da:

$$J(u,v) = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \neq 0 \quad [R]-n$$

(2)-(3) formulazioaren bidez x eta y aldagaiak u eta v aldagaiekin ordezkatzen baditugu, [D] gainean hartutako integral bikoitza [R] gainean hartutako beste batera eraman daiteke, hurrengo formularen bidez:

(4)
$$\iint_D f(x,y) dx dy = \iint_R f[x(u,v), y(u,v)] |J(u,v)| du dv$$

Honen helburu praktikoa hurrengoa da: [D] gaineko f(x,y)-ren integrala [R] gaineko beste integral sinpleago batean transformatzea.

Horretarako, g(u,v) integrakizun funtzioaren mota oso inportantea izango da eta, batez ere, [R] eremu berriaren sinpletasuna.

Propietateak:
$$\frac{D(x,y)}{D(u,v)} = \frac{1}{\frac{D(u,v)}{D(x,y)}}$$
 edo $J(u,v) = \frac{1}{J(x,y)}$

Kontsidera dezagun integrakizun funtzioa unitatea den kasu partikularra. OU eta OV ardatzen zuzen paraleloen bidez, [R] domeinuaren P partiketa errektangeluarra burutzen bada, [D]-ren T bitartezko P' partiketa, oro har, lerromakurra izango da, aurreko irudiek erakusten duten bezala.

[R]-ko partiketa errektangeluarra

[D]-ren partiketa lerromakurra

$$u \equiv K_i ; v \equiv K_j$$

$$u(x, y) = K_i ; v(x, y) = K$$

 $f(x,y) \equiv 1$ den kasurako, [D]-ren azalera neurtzen duen formula hauxe da:

$$I = \iint_D dx \, dy = \iint_R J(u, v) \, du \, dv$$

Integralaren definizioaren arabera:

$$\lim_{\operatorname{diam} P' \to 0} \sum \Delta A_i = \lim_{\operatorname{diam} P' \to 0} \sum J(P_i) \Delta u_i \Delta v_i.$$

non ΔA_i [R]-ren partiketako $\Delta u_i \Delta v_i$ partzelari [D]-n asoziatutako partzela lerromakurraren azalera baita.

Aurreko berdintzak, hurrengo baliokidetasuna ematen digu

$$\Delta A_i \cong J(P_i) \Delta u_i \Delta v_i$$

Formula honek, Jakobiarraren hurrengo interpretazioa ematen du:

"J(u,v) jakobiarrak anplifikazio faktore bat adierazten du, non [R] hasiera eremuko $\Delta u \Delta v$ azalera bider faktore hori biderkatzen bada, [D]-ko dagokion partzela lerromakurraren ΔA azalera lortzen baita".

(4) formulan Jakobiarraren balio absolutua erabiltzen da, Jakobiarrak berak erlazionatutako azalerak positiboak baitira.

3. adibidea

- Erabili hurrengo erlazioek definitutako aldagai aldaketa:

$$x = u^3 + v$$
; $y = v^3 / 3$

- Hurrengo kurbek mugatutako [D] domeinuaren azalera kalkulatzeko:

$$3y-(x-1)^3=0$$
; $3y-(x-8)^3=0$; $3y-1=0$; $3y-8=0$

Emandako aplikazioak [D] domeinua [R] domeinu karratuan transformatzen du: [R]: $1 \le u \le 2$; $1 \le v \le 2$

3. adibidea

[R] lortzeko, nahikoa da [D] domeinuko muga-lerroak aplikazioaren erlazio hauen bidez transformatzea:

$$3y - (x-1)^3 = 0 \rightarrow v^3 = (u^3 + v - 1)^3 \rightarrow u^3 - 1 = 0 \rightarrow u = 1$$

 $3y - (x-8)^3 = 0 \rightarrow v^3 = (u^3 + v - 8)^3 \rightarrow u^3 - 8 = 0 \rightarrow u = 2$
 $3y - 1 = 0 \rightarrow v^3 - 1 = 0 \rightarrow v = 1$
 $3y - 8 = 0 \rightarrow v^3 - 8 = 0 \rightarrow v = 2$.

Aplikazioaren Jakobiarra, beraz, hurrengoa da:

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 3u^2 & 1 \\ 0 & v^2 \end{vmatrix} = 3u^2v^2 > 0 \quad [R]-n.$$

3. adibidea

Eskatutako azalera kalkulatuz (liburuko 2.1 atalera joan):

$$A = \iint_D dx \, dy = \iint_R |J(u, v)| \, du \, dv = \iint_R 3u^2 v^2 \, du \, dv = 3 \int_1^2 u^2 \, du \int_1^2 v^2 \, dv = \frac{49}{3}$$

Oharra: Kasu honetan, azalaren zuzeneko kalkulua erraza zen.

$$A = \iint_D dx \, dy = \int_{1/3}^{8/3} dy \int_{(3y)^{1/3}+1}^{(3y)^{1/3}+8} dx = \int_{1/3}^{8/3} \left[(3y)^{1/3} + 8 - (3y)^{1/3} - 1 \right] dy$$

$$A = \int_{1/3}^{8/3} 7 \, dy = 7 \left(\frac{8}{3} - \frac{1}{3} \right) = \frac{49}{3}$$

Koordenatu polarretarako aldaketa

Aplikazio askotan interes handia dauka, batez ere, [D] integrazio eremua koordenatu polar konstantezko kurbek mugatuta dagoenean, hots, [D]-ren mugan zirkunferentzia arkuak edota erreferentzia jatorritik igarotzen diren zuzenak agertzen direnean. Aplikazioaren formulak hauexek dira:

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$, $J(\rho, \theta) = \rho$

 x, y, θ eta ρ aldagaietarako aldakuntza tarteak honela geratuz:

$$x \in \mathbb{R}, y \in \mathbb{R}, 0 \le \theta \le 2\pi, \rho \ge 0$$

Aplikazioaren jakobiarra:

$$J(\rho,\theta) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{vmatrix} = \rho(\cos^2 \theta + \sin^2 \theta) = \rho \rightarrow |J(\rho,\theta)| = \rho$$

Aldagai aldaketaren (4) formulan ordezkatuz:

 $\rho = \rho_1(\theta)$

$$\iint_{D} f(x, y) dx dy = \iint_{R} f(\rho \cos \theta, \rho \sin \theta) \rho d\theta d\rho$$

Kasu gehienetan, lehenengo integrazio aldagaitzat ρ hartzen da.

Koordenatu polarretako limiteak lortzeko, [R] marraz daiteke edo, bestela, [D]-tik zuzenean lortzen dira.

 $[R] \rho$ -ren arabera erregularra izateko, XOY planoan jatorritik marraztutako bektore erradioek, $\theta \equiv \text{kte}$, [D]-ren [L] muga gehienez bi puntutan ebaki behar dute. Analogoki, baldin $[R] \theta$ -ren arabera erregularra bada, orduan jatorrian zentratutako zirkunferentziek, $\rho \equiv \text{kte}$, [L] gehienez bi puntutan

 $\rho = \rho_2(\theta)$

Baldin [R] ρ -ren arabera erregularra bada, A eta B puntuetan [D]-ren ukitzaileak diren jatorritik marraztutako zuzenek [L] muga ANB eta AMB kurba-arkuetan deskonposatzea ahalbidetzen dute, arkuon koordenatu polarretako ekuazioak, hurrenez hurren, $\rho = \rho_1(\theta)$ eta $\rho = \rho_2(\theta)$ izanik, hots, $\theta_1 \leq \theta \leq \theta_2$ tartean uniformeak diren funtzioak. [R]-ren koordenatu polarretako deskribapena hauxe da:

[R]:
$$\theta_1 \le \theta \le \theta_2$$
; $\rho_1(\theta) \le \rho \le \rho_2(\theta)$

Beraz, lehenengo aldagaitzat ρ aukeratzen bada, integral bikoitzaren garapena hauxe da:

$$\iint_{D} f(x, y) dx dy = \int_{\theta_{1}}^{\theta_{2}} d\theta \int_{\rho_{1}(\theta)}^{\rho_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

Beste kasuetan bezala, [D] domeinua erregularra ez bada, partiketa egoki bat egin beharko dugu, domeinu erregularrak lortuz, aurreko formulak aplikatu ahal izateko.

[L] mugan, jatorrian ez zentratutako zirkunferentzia bat agertzen bada, zentroaren translazio bat egin beharko dugu koordenatu jatorrira edo, baliokideki, hurrengo formulak zuzenean erabili:

$$x = x_0 + \rho \cos \theta$$
, $y = y_0 + \rho \sin \theta$, $J(\rho, \theta) = \rho$

Formulek $C(x_0, y_0)$ zentroko zirkunferentziaren ekuazioa transformatzen dute:

$$(x-x_0)^2 + (y-y_0)^2 = R^2 \rightarrow \rho = R$$

4. adibidea

- Koordenatu kartesiarrak erabiliz, planteatu integralak bi era desberdinetan, hurrengo kurbek mugatutako [*D*] domeinuaren azalera kalkulatzeko):

$$x^{2} + y^{2} - 2x = 0$$
; $x^{2} + y^{2} - 4x = 0$; $y - x = 0$; $y = 0$

- Zirkunferentziei dagozkien bigarren graduko ekuazioak hurrengoak dira:

$$x^{2} + y^{2} - 2x = 0 \rightarrow (x-1)^{2} + y^{2} = 1$$
 [C₁]

$$x^{2} + y^{2} - 4x = 0 \rightarrow (x-2)^{2} + y^{2} = 4$$
 [C₂]

40

4. adibidea

- Hurrengo grafikoetan, [D]-ren partiketak erakusten dira integrazio ordena desberdinetarako:

$$A = \iiint_D dx \, dy = \int_1^2 dx \int_{\sqrt{2x - x^2}}^x dy + \int_2^4 dx \int_0^{\sqrt{4x - x^2}} dy$$

$$A = \iiint_D dx \, dy = \int_0^1 dy \int_{1+\sqrt{1-y^2}}^{2+\sqrt{4-y^2}} dx + \int_1^2 dy \int_y^{2+\sqrt{4-y^2}} dx$$

4. adibidea

Orain adibidea ebatzi, koordenatu polarrak erabiliz:

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$, $|J(\rho, \theta)| = \rho$

$$x^{2} + y^{2} - 2x = 0 \quad \Rightarrow \quad \rho^{2} = 2\rho \cos \theta \quad \Rightarrow \quad \rho = 2 \cos \theta$$

$$x = \rho \cos \theta, \quad y = \rho \sin \theta, \quad |J(\rho, \theta)| = \rho \qquad x^{2} + y^{2} - 4x = 0 \quad \Rightarrow \quad \rho^{2} = 4\rho \cos \theta \quad \Rightarrow \quad \rho = 4 \cos \theta$$

$$y - x = 0 \quad \Rightarrow \quad \rho \cos \theta - \rho \sin \theta = 0 \quad \Rightarrow \quad \theta = \pi/4$$

$$y = 0 \quad \Rightarrow \quad \rho \sin \theta = 0 \quad \Rightarrow \quad \theta = 0$$

$$A = \iint_D dx \, dy = \iint_R \rho d\theta \, d\rho = \int_0^{\pi/4} d\theta \int_{2\cos\theta}^{4\cos\theta} \rho d\rho =$$

$$= (1/2) \int_0^{\pi/4} (16\cos^2\theta - 4\cos^2\theta) d\theta = 6 \int_0^{\pi/4} \cos^2\theta d\theta =$$

$$= 6 \left[\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right]_0^{\pi/4} = 6 \left(\frac{\pi}{8} + \frac{1}{4} \right) = \frac{3}{4} (\pi + 2).$$

Koordenatu polar orokortuak

[D]-ren muga bezala elipse bat agertzen bada zeinak jatorrian zentroa duen eta a eta b erdiardatzak dituen, komenigarria da koordenatu kartesiarren ordez koordenatu polarrak erabiltzea, hurrengo formulazioaren bidez:

$$x = a\rho\cos\theta$$
; $y = b\rho\sin\theta$; $|J(\theta, \rho)| = ab\rho$

jakobiarra honela geratuz:

$$|J(\theta, \rho)| = \begin{vmatrix} a\cos\theta & -a\rho\sin\theta \\ b\sin\theta & b\rho\sin\theta \end{vmatrix} = |ab\rho(\cos^2\theta + \sin^2\theta)| = ab\rho$$

Koordenatu berriak erabiltzean, elipsearen ekuazioaren sinplifikazioa erabatekoa da: $\frac{x^2}{n^2} + \frac{y^2}{n^2} = 1$ \xrightarrow{KPO} $\rho = 1$

Orokorrean, baldin elipseren zentroa $C(x_0,y_0)$ -n badago, formulazioaren barnean sartzen da zentroaren translazio bat, erreferentzia jatorrira:

$$x = x_0 + a\rho\cos\theta$$
; $y = y_0 + b\rho\sin\theta$; $|J(\theta, \rho)| = ab\rho$

$$\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \quad \xrightarrow{KPO} \quad \rho=1 \quad \text{BILBOKO INGENIARITZA ESKOLA (Industria Ingeniaritza Teknikoa)} \quad \text{ESCUELA DE INGENIERÍA DE BILBAO (Ingeniaria Técnica Industrial)}$$

Koordenatu polar orokortuak

5. adibidea

- Kalkulatu hurrengo integrala: $\iint_{D} (x^{2} + y^{2}) dx dy$ hurrengo domeinuaren gainean $[D] = \{(x, y) \in R^{2} / x^{2} + 4y^{2} \le 4\}$
- Domeinua, jatorrian zentroa duen eta a=2, b=1 ardatzetako elipse batek mugatuta dago:

Koordenatu polar orokortuak

5. adibidea

Integrala koordenatu polar orokortuetan ebazten da:

$$T = \begin{cases} x = 2\rho \cos \theta \\ y = \rho \sin \theta ; \quad x^2 + 4y^2 = 4 & \xrightarrow{T} \rho = 1. \\ |J| = 2\rho \end{cases}$$

$$\iint_{D} (x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} (4\rho^{2} \cos^{2}\theta + \rho^{2} \sin^{2}\theta) 2\rho d\rho =$$

$$= 2 \int_{0}^{2\pi} d\theta \int_{0}^{1} (3\cos^{2}\theta + 1)\rho^{3} d\rho = \frac{1}{2} \int_{0}^{2\pi} (3\cos^{2}\theta + 1) d\theta =$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[3 \left(\frac{1 + \cos 2\theta}{2} \right) + 1 \right] d\theta = \frac{1}{2} \left| \frac{5\theta}{2} + \frac{3\sin 2\theta}{4} \right|_{0}^{2\pi} = \frac{5\pi}{2}.$$

Domeinu planoen koadratura: Baldin f(x,y) integrakizun funtzioa unitatea bada, [D] ere mugatu baten gaineko dxdy azalera elementuaren integral bikoitza domeinuaren azaleraren neurriarekin bat dator

$$A = \iint_D dA \equiv \iint_D dx \, dy$$

Masen kalkulua: Integralaren interpretazio fisikoaren arabera, baldin [D]n jarraitua den integrakizun funtzioak puntu bakoitzerako [D]-ko materia
banaketa baten gainazal-dentsitatea adierazten badu (**masa unitateak**azalera unitateko), materia horren masa hauxe da:

$$M = \iint_D \rho(x, y) \, dx \, dy$$

Masa zentroak: Kontsidera ditzagun planoko koordenatu errektangeluarren sistema bateko $P_i(x_i, y_i)$ puntuetako m masa puntualen multzo bat.

Aipatutako multzoaren masa zentroaren koordenatuak hurrengo formulen arabera definitzen dira:

(1)
$$x_m = \frac{\sum_{i=1}^{m} x_i \Delta m_i}{\sum_{i=1}^{m} \Delta m_i}$$
; $y_m = \frac{\sum_{i=1}^{m} y_i \Delta m_i}{\sum_{i=1}^{m} \Delta m_i}$ y_i : i. masaren posizioa x ardatzan y_i : i. masaren posizioa y ardatzan y_i : i. masa

Suposa dezagun orain [D] eremu bornatu batean $\rho(x,y)$ dentsitatearekin banatutako M materia, [D]-ren partiketa arbitrario bateko erdiko puntuetan kontzentratuta dagoela. Honen baliokidea, banaketa jarraitua, banaketa puntual batez ordezkatzea da, non ΔA_i azaleran dagoen materiari dagokion Δm_i masa P_i puntuan aurkitzen baita, hurrengo irudiak erakusten duenez.

 Δm_i -rako hurbilketa bat hauxe da:

$$\Delta m_i \cong \rho(P_i) \Delta A_i$$
; $\rho(P) \equiv$ dentsitate puntuala.

(1) formuletan masak ordezkatzen baditugu, banaketa jarraituaren masa zentroaren koordenatuetarako hurrengo estimazioak dauzkagu:

(2)
$$x_m = \frac{\sum_{i=1}^{m} x_i \rho(P_i) \Delta A_i}{\sum_{i=1}^{m} \rho(P_i) \Delta A_i} \quad ; \quad y_m = \frac{\sum_{i=1}^{m} y_i \rho(P_i) \Delta A_i}{\sum_{i=1}^{m} \rho(P_i) \Delta A_i}$$

hauek hainbat zehatzagoak izango dira, zenbat eta finagoa izan partiketa.

Ondorioz, [D]-ko banaketaren masa zentroaren koordenatuak definitzeko, (2) estimazioetan limiteak hartzen dira, partiketaren diametroa zerorantz doanean. Hortik hurrengo formulak lortzen dira:

$$x_{m} = \frac{\iint_{D} x \, \rho(x, y) \, dx \, dy}{\iint_{D} \rho(x, y) \, dx \, dy}; \quad y_{m} = \frac{\iint_{D} y \, \rho(x, y) \, dx \, dy}{\iint_{D} \rho(x, y) \, dx \, dy}$$

 $M = \iint_{\mathbb{R}} \rho(x, y) dx dy$ dela kontuan harturik

$$x_m = \frac{1}{M} \iint_D x \, \rho(x, y) \, dx \, dy$$

$$x_{m} = \frac{1}{M} \iint_{D} x \, \rho(x, y) \, dx \, dy$$

$$y_{m} = \frac{1}{M} \iint_{D} y \, \rho(x, y) \, dx \, dy$$

Formula hauetako integralei hurrenez hurren eta ardatzen araberako banaketaren momentu estatikoak deritze.

Baldin [D]-ko banaketa homogeneoa bada, $\rho(x,y)=k$, dentsitate funtzioa sinplifikatu egiten da eta masa zentroa [D]-ren menpekoa baino ez da izango; gauza bera gertatzen da grabitate zentro geometrikorako, [D] eremuaren azalera era isolatuan kontsideratzean, $\rho(x,y)=1$. Beraz, hurrengo formula komunak lortzen dira:

$$x_m = \frac{1}{A} \iint_D x \ dx \, dy$$

$$x_m = \frac{1}{A} \iint_D x \, dx \, dy$$

$$y_m = \frac{1}{A} \iint_D y \, dx \, dy$$

Batez besteko teoremaren arabera, irudi geometriko baten grabitate zentroaren koordenatuak irudiko puntuen koordenatuen batez besteko balioak direla ondorioztatzen da.