Pesquisa Operacional

Professor: Yuri Frota

yuri@ic.uff.br

800000000

Metalúrgica: Um metalúrgica produz 2 tipos de ligas metálicas. Cada liga é composta por Cobre, Zinco e Chumbo (em proporções diferentes). Essas quantidades de metais estão em estoque numa quantidade limitada. Queremos determinar o quanto produzir de cada liga metálica, de modo que o lucro seja o máximo possível, satisfazendo as condições impostas pelos dados na tabela abaixo:

Modelo

Matéria Prima	Liga 1	Liga 2	Estoque
Cobre	50%	30%	3 ton
Zinco	10%	20%	1 ton
Chumbo	40%	50%	3 ton
Preço de Venda	3 milhões	2 milhões	(R\$ por ton)

Booocoo

 $\begin{array}{ll} \max & f(x_1,x_2) = 3x_1 + 2x_2 \\ \text{s.a} & 0.5x_1 + 0.3x_2 \leq 3 \\ & 0.1x_1 + 0.2x_2 \leq 1 \\ & 0.4x_1 + 0.5x_2 \leq 3 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$

Usando o Python-MPI, qual é o valor das variáveis no ponto ótimo, sabendo que o valor no ponto ótimo é de 18.46.

StartUp: Uma pequena StartUp de tecnologia está considerando 6 possíveis projetos de novos aplicativos para investir. A tabela a seguir apresenta as informações necessárias de cada projeto:

Projeto	Despesa	Pessoal	Capital de	Valor
	inicial	necessário	giro médio	presente
	(\$ 000)	(unid.)	anual (\$ 000)	(\$ 000)
1	700	6	200	300
2	1080	16	300	440
3	120	2	20	60
4	300	4	70	160
5	680	10	150	380
6	420	6	90	200
Exig.	Máximo	Máximo	Mínimo de	Máximo
	de 2000	de 24	200	possível

Além disso, sabe-se de antemão que os projetos <u>3 e 4 são mutuamente exclusivos</u> e que o <u>projeto 1 só pode ser</u> realizado se o projeto 6 for. Use o Python-MIP para identificar quais projetos que devem ser selecionados pela StartUp para se ter o máximo valor presente possível, sabendo que o valor da solução ótima é de 940.

Modelo a seguir

Max
$$Z = 300x_1 + 440x_2 + 60x_3 + 160x_4 + 380x_5 + 200x_6$$
 sujeito a $700x_1 + 1080x_2 + 120x_3 + 300x_4 + 680x_5 + 420x_6 \le 2000$ $6x_1 + 16x_2 + 2x_3 + 4x_4 + 10x_5 + 6x_6 \le 24$ $200x_1 + 300x_2 + 20x_3 + 70x_4 + 150x_5 + 90x_6 \ge 200$

$x_3 +$	X_4	≤1
x ₆ -	\mathbf{x}_1	≥ 0

20000000

Projeto	Despesa	Pessoal	Capital de	Valor
-	inicial	necessário	giro médio	presente
	(\$ 000)	(unid.)	anual (\$ 000)	(\$ 000)
1	700	6	200	300
2	1080	16	300	440
3	120	2	20	60
4	300	4	70	160
5	680	10	150	380
6	420	6	90	200
Exig.	Máximo	Máximo	Mínimo de	Máximo
	de 2000	de 24	200	possível

<u>FBI:</u> O FBI possui 3 agentes disponíveis e 5 missões para serem realizadas com os seguintes parâmetros: matriz C contém os custos de designar o agente i a tarefa j; e, a matriz A contém quantidade de horas que o agente i precisa para a execução da tarefa j. A capacidade total de horas de cada agente está na matriz b.

Dado o modelo que 1) <u>minimiza o custo</u> de designação de missões a agentes, de forma que 2) <u>as missões sejam executada por exatamente um agente</u> e que 3) <u>a capacidade de horas de cada agente não seja excedida.</u>

$$C = [c_{ij}] = \begin{bmatrix} 15 & 61 & 3 & 94 & 86 \\ 21 & 28 & 76 & 48 & 54 \\ 21 & 21 & 46 & 43 & 21 \end{bmatrix}$$

$$A = [a_{ij}] = \begin{bmatrix} 31 & 69 & 14 & 87 & 51 \\ 23 & 20 & 71 & 86 & 91 \\ 20 & 55 & 39 & 60 & 83 \end{bmatrix}$$

$$b = [b_i] = \begin{bmatrix} 100 & 100 & 100 \end{bmatrix}$$

ex: o agente 2 leva 71 horas para realizar a missão 3

Use o Python-MIP para determinar que agentes realizam que missões, sabendo que o valor da solução ótima é 254.

Modelo a seguir

Modelo:

<u>Caminhão</u>: Considere o problema que você tem um conjunto de itens N com n itens, cada item i \in N possui um valor financeiro p_i . Esses itens tem que ser armazenados em um caminhão para serem transportados e vendidos, porem o caminhão possui m restrições físicas (ex: altura, largura, comprimento, peso, etc...), e para cada restrições física j=1...m, o caminhão possui um limite b_j . Além disso, cada item i ∈ N consome um valor c_{ji} para cada restrição j=1...m do caminhão.

A instancia do problema já está descrita no arquivo código base:

Use o Python-MIP para determinar que itens devem ser armazenados no caminhão, sabendo que o valor da solução ótima é 3800 .

Modelo a seguir

Modelo:

$$\max \sum_{i \in N} p_i x_i$$

$$\sum_{i \in N} c_{ij} x_i \le b_j, \qquad \forall j = 1, ..., m$$

$$x_i \in \{0, 1\}, \quad \forall i \in N$$

Bossosos

$$i \in N$$

(3)

Até a próxima

200000000

