Carnegie Mellon University

95-885 Data Science and Big Data

PageRank with MapReduce

Agenda

- The essence of the algorithm
- Simulating with a spreadsheet
- Expressing with a mapper and reducer

THE INTUITION BEHIND THE PAGERANK ALGORITHM

A Sample Set of Interconnected Web Pages

Pagerank (page)

Probability of navigating to that page

If you sum all the probabilities on the adjacent figure you will get 100 3.3 + 38.4 + ... + 1.6

The Intuition behind the PageRank algorithm

- A -> B means A thinks B is worth something
- A page is important if it is pointed to by other important pages
 - -e.g., a link to a page from Wikipedia etc
 - -the "slashdot effect"
- Note that this measure of importance is calculated *independent* of the *content* of the page
 - "wisdom of the crowds"

Quantifying the Intuition

- We get to a page in one of two ways
- 1. By randomly jumping to it
- 2. By navigating (clicking) to it from the page we currently are on
 - Hence the probability of getting to a page x is:
 - -P(x) = P(randomly jumping to the page) + P(navigating to it by clicking a link)
- Suppose the probability of deciding to navigate from a page i.e., click a link on the page is β , then the probability of not clicking a link i.e., randomly jumping to a page is 1- β
 - If there are a total of N pages then,
 - -P(randomly jumping to a page) = $\frac{1-\beta}{N}$

Probability of Navigating to a Page

- ■Suppose page y₁ links to page x
- ■Then the probability of navigating to x from y_1 is:
 - $-PR(y_1) * 1/out(y_1)$
- -where $PR(y_1)$ is the probability of getting to y_1 and $out(y_1)$ is the number of outlinks from y_1
- We may have several 'y's linking to x so

$$-PR(y_1)/out(y_1) + ... PR(y_m)/out(y_m) +$$

Combining the two pieces together we have

Probability of clicking on a link

$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

Total number of pages

P(x) = P(randomly jumping to the page) + P(navigating to it by clicking)

PAGERANK ON A SPREADSHEET

Spreadsheet available on Canvas schedule

Spreadsheet: Working through the PageRank Algorithm

Exercise

PAGERANK: MAPPER AND REDUCER

•Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$
-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

-yield
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

node, out-links

Reducer $\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)}, \left\{ z_1, ..., z_k \right\} \right\} \right\rangle$ do de, Δ PR from in-links

-compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

$$\left\langle z_{j}, \frac{PR(x)}{out(x)} \right\rangle$$
-for j=1..k, $\left\{z_{1}, z_{2}, ..., z_{k}\right\} \right\rangle$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

Mapper

Mapper

node, out-links

$$\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

node, out-links

$$\blacksquare \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

node, out-links

$$\blacksquare \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

node, out-links

$$\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

-for i =1..n, yield
$$\left\langle x_i, \frac{PR(y)}{out(y)} \right\rangle$$

node, out-links

 $\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$

-for i =1..n, yield
$$\left\langle x_i, \frac{PR(y)}{out(y)} \right\rangle$$

node, out-links

•Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

node, out-links

Reducer

node, ΔPR from in-links

■ Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

-for i =1...n, yield
$$\left\langle X_i, \frac{PR(y)}{out(y)} \right\rangle$$

■Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, \triangle PR from in-links

•Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

■ Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, Δ PR from in-links

Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

■Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, Δ PR from in-links

-Compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

$$\text{-Reducer} \left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, \dots, \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$

Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, $\triangle PR$ from in-links
$$-Compute PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

■ Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

■Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, Δ PR from in-links

-Compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

■ Mapper
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

-for i =1..n, yield $\langle x_i, \frac{PR(y)}{out(y)} \rangle$

Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$

Reducer
$$\left\langle x, \left\{ \frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)} \right\} \right\rangle$$
 node, $\triangle PR$ from in-links
$$-Compute PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

-for j=1, k yield
$$\left\langle z_{j}, \frac{PR(x)}{out(x)} \right\rangle$$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

- $\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$
 - -for i =1..n, yield $\left\langle X_i, \frac{PR(y)}{out(y)} \right\rangle$
 - yield $\langle y, \{x_1, x_2, ..., x_n\} \rangle$

-Compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

-for j=1, k yield
$$\left\langle z_{j}, \frac{PR(x)}{out(x)} \right\rangle$$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

$$\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

-for i =1..n, yield
$$\langle x_i, \frac{PR(y)}{out(y)} \rangle$$

-yield
$$\langle y, \{x_1, x_2, ..., x_n\} \rangle$$

$$= \text{Reduce}\left(x, \left\{\frac{PR(y_1)}{out(y_1)}, ..., \frac{PR(y_m)}{out(y_m)}, \left\{z_1, ..., z_k\right\}\right\} \right) \text{node, } \Delta PR \text{ from in-links}$$

-compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

-for j=1..k, yield
$$\left\langle z_{j}, \frac{PR(x)}{out(x)} \right\rangle$$

$$PR(x) = [...] + PR(y1)/out(y1) +$$

$$\bullet \mathsf{Mapper} \left\langle y, \{x_1, x_2, ..., x_n\} \right\rangle$$

-for i =1..n, yield
$$\langle x_i, \frac{PR(y)}{out(y)} \rangle$$

$$-$$
yield $\langle y, \{x_1, x_2, ..., x_n\} \rangle$

-compute
$$PR(x) = \frac{1-\beta}{N} + \beta * \sum_{y \to x} \frac{PR(y)}{out(y)}$$

-for j=1..k, yield
$$\left\langle z_{j}, \frac{PR(x)}{out(x)} \right\rangle$$

 $\left\langle x, \left\{ z_{1}, z_{2}, ..., z_{k} \right\} \right\rangle$

$$PR(x) = [...] + PR(y1)/out(y1) +$$