

PCT

WORLD INTELLECTU  
Int'l

WO 9604528A1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                         |    |                                        |                             |
|---------------------------------------------------------|----|----------------------------------------|-----------------------------|
| (51) International Patent Classification <sup>6</sup> : | A1 | (11) International Publication Number: | WO 96/04528                 |
| G01F 1/32                                               |    | (43) International Publication Date:   | 15 February 1996 (15.02.96) |

(21) International Application Number: PCT/US95/09305

(22) International Filing Date: 24 July 1995 (24.07.95)

(30) Priority Data:  
08/283,566 1 August 1994 (01.08.94) US

(71)(72) Applicant and Inventor: LEW, Hyok, Sang [US/US];  
7890 Oak Street, Arvada, CO 80005 (US).

(81) Designated States: CA, JP, KR, European patent (AT, BE, CH,  
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the  
claims and to be republished in the event of the receipt of  
amendments.

(54) Title: VORTEX SENSING PRESSURE TRANSDUCER

(57) Abstract

A vortex flowmeter employs a differential pressure transducer converting oscillation in a differential pressure to an alternating electrical signal, wherein the differential pressure transducer comprises a pair of pressure compartments (10 and 11) respectively receiving two fluctuating fluid pressures respectively existing at two fluid regions located on the two opposite sides (8 and 9) of a vortex generator (3) respectively through a pair of tubings (13 and 14, 43 and 44, or 61 and 62) or through a pair of holes (69 and 70, or 72 and 73) embedded within the wall of the flow passage.



**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | GB | United Kingdom                           | MR | Mauritania               |
| AU | Australia                | GE | Georgia                                  | MW | Malawi                   |
| BB | Barbados                 | GN | Guinea                                   | NE | Niger                    |
| BE | Belgium                  | GR | Greece                                   | NL | Netherlands              |
| BF | Burkina Faso             | HU | Hungary                                  | NO | Norway                   |
| BG | Bulgaria                 | IE | Ireland                                  | NZ | New Zealand              |
| BJ | Benin                    | IT | Italy                                    | PL | Poland                   |
| BR | Brazil                   | JP | Japan                                    | PT | Portugal                 |
| BY | Belarus                  | KE | Kenya                                    | RO | Romania                  |
| CA | Canada                   | KG | Kyrgyzstan                               | RU | Russian Federation       |
| CF | Central African Republic | KP | Democratic People's Republic<br>of Korea | SD | Sudan                    |
| CG | Congo                    | KR | Republic of Korea                        | SE | Sweden                   |
| CH | Switzerland              | KZ | Kazakhstan                               | SI | Slovenia                 |
| CI | Côte d'Ivoire            | LI | Liechtenstein                            | SK | Slovakia                 |
| CM | Cameroon                 | LK | Sri Lanka                                | SN | Senegal                  |
| CN | China                    | LU | Luxembourg                               | TD | Chad                     |
| CS | Czechoslovakia           | LV | Latvia                                   | TG | Togo                     |
| CZ | Czech Republic           | MC | Monaco                                   | TJ | Tajikistan               |
| DE | Germany                  | MD | Republic of Moldova                      | TT | Trinidad and Tobago      |
| DK | Denmark                  | MG | Madagascar                               | UA | Ukraine                  |
| ES | Spain                    | ML | Mali                                     | US | United States of America |
| FI | Finland                  | MN | Mongolia                                 | UZ | Uzbekistan               |
| FR | France                   |    |                                          | VN | Viet Nam                 |
| GA | Gabon                    |    |                                          |    |                          |

1                   VORTEX SENSING PRESSURE TRANSDUCER  
2

3         This invention relates to a vortex flowmeter employing a  
4 differential pressure transducer detecting the difference in the  
5 fluid pressure between two fluid regions respectively adjacent  
6 to two opposite cylindrical sides of a vortex generating bluff body  
7 disposed across a flow passage, which differential pressure sensor is  
8 disposed in a dynamically isolated relationship from the mechanical  
9 vibrations of the conduit providing the flow passage, and receives  
10 two fluid pressures respectively existing at the two opposite  
11 cylindrical sides of the vortex generating bluff body respectively  
12 through two small diameter pressure transmitting holes including a  
13 buffer that dynamically isolate the differential pressure sensor  
14 from the flowmeter body including the flow passage and the vortex  
15 generating bluff body disposed across the flow passage included in  
16 in the flowmeter body.

17

18         In an earlier invention of this inventor disclosed in U.S. Patent  
19 No. 5,214,965, a vortex flowmeter employs a differential pressure  
20 sensor that detects the difference in the fluid pressure between two  
21 fluid regions respectively existing adjacent to two opposite sides  
22 of a vortex generating bluff body of an elongated cylindrical shape  
23 disposed perpendicularly across a flow stream, wherein the velocity  
24 or volume flow rate of fluid is determined as a function of the  
25 frequency of an alternating electrical signal generated by the  
26 differential pressure sensor and/or the mass flow rate of fluid is  
27 determined as a function of the frequency and amplitude of the  
28 alternating electrical signal. Experiments with and testing of the  
29 vortex flowmeter employing a differential pressure transducer have  
30 shown that, in general, the differential pressure transducer or other  
31 types of pressure transducers used as a vortex sensor works best,  
32 particularly in noisy and vibratory environments, when the  
33 differential pressure transducer is disposed in a dynamically  
34 buffered and/or dynamically isolated relationship from the mechanical  
35 vibrations of the flowmeter body and the pipe line or conduit  
36 providing the flow passage, and receives two fluid pressures existing  
37 in regions respectively adjacent to two opposite cylindrical sides of  
38 the vortex generating bluff body respectively through two small

1 diameter tubings or conduits having a low stiffness or a high  
2 flexibility. The above-described approach to the design and  
3 construction of the vortex flowmeter also teaches the construction  
4 and operation of an economic version thereof wherein the pressure  
5 transmitting holes supplying the two fluid pressures or one of the  
6 two fluid pressures in an ultra economic version, are disposed  
7 through the wall of the flow passage and connected directly to the  
8 differential pressure transducer with or without a buffering element  
9 included in the mechanical connection between the flowmeter body and  
10 the differential pressure sensor. It should be pointed out that  
11 the version of the vortex flowmeter employing the differential  
12 pressure sensor receiving the two fluid pressures through a pair of  
13 small diameter tubings of sizable length has a particularly useful  
14 advantage in measuring flow rates of fluid media heated or cooled to  
15 extreme temperatures as in the case of cryogenic fluids and very high  
16 temperature fluids.

17

18 The primary object of the present invention is to provide a vortex  
19 flowmeter comprising a flow passage with a vortex generating bluff  
20 extending thereacross at least partially in a perpendicular angle to  
21 the direction of fluid flow, and a differential pressure transducer  
22 receiving two fluid pressures existing in two regions respectively  
23 adjacent to the two opposite cylindrical sides of the vortex  
24 generating bluff body respectively through two small diameter tubings  
25 having a low stiffness or a high flexibility, or through a pair of  
26 conduits or holes disposed through the wall of the flow passage,  
27 wherein the differential pressure transducer generates an alternating  
28 electrical signal representing the vortex shedding from the vortex  
29 generating bluff body.

30 Another object is to provide the differential pressure transducer  
31 connected to the flowmeter body in a dynamically and/or thermally  
32 buffering relationship therebetween.

33 A further object is to provide the differential pressure  
34 transducer enclosed within an acoustically insulating enclosure  
35 blocking the transmission of the acoustic noise existing in the  
36 ambient surroundings.

37 Yet another object is to provide the differential pressure  
38 transducer secured to a supporting structure dynamically isolated

- 3 -

1 from the vibrations of the pipe line or conduit providing the flow  
2 passage.

3 Yet a further object is to provide the differential pressure  
4 transducer supported by the pipe line or conduit providing the flow  
5 passage in a structural relationship providing a dynamic buffering  
6 between the differential pressure transmitter and the pipe line or  
7 conduit.

8 Still another object is to provide an ultra inexpensive vortex  
9 flowmeter employing a differential pressure transducer of mass-  
10 produced construction that receives the two fluid pressures through  
11 a pair of conduits or holes disposed through the wall of the flow  
12 passage provided by the flowmeter body.

13 These and other objects of the present invention will become  
14 clear as the description of the invention progresses.  
15

16 The present invention may be described with a greater clarity and  
17 specificity by referring to the following figures:

18 Figure 1 illustrates an embodiment of the vortex flowmeter of the  
19 present invention.

20 Figure 2 illustrates another embodiment of the vortex flowmeter  
21 of the present invention.

22 Figure 3 illustrates a further embodiment of the vortex flowmeter  
23 of the present invention.

24 Figure 4 illustrates an embodiment of the economic version of the  
25 flowmeter body to be connected to a differential pressure transducer.

27 Figure 5 illustrates another embodiment of the economic version  
28 of the flowmeter body to be connected to a differential pressure  
29 transducer.

30 Figure 6 illustrates an embodiment of the transducer element  
31 included in the differential pressure transducer, that converts the  
32 alternating fluid pressure to an alternating electrical signal.

33 Figure 7 illustrates another view of the embodiment of the  
34 transducer element shown in Figure 6.

35 Figure 8 illustrates another embodiment of the transducer  
36 element included in the differential pressure transducer.  
37

38 In Figure 1 there is illustrated a cross section of an embodiment

- 4 -

1 of the vortex flowmeter constructed in accordance with the principles  
2 of the present invention. A flow passage 1 provided by a pipe or  
3 conduit 2 includes a vortex generating bluff body 3 of elongated  
4 cylindrical shape disposed across the flow passage 1, which vortex  
5 generating bluff body 3 has two pressure transmitting holes 4 and 5  
6 respectively including two sets 6 and 7 of pressure receiving  
7 openings open to the two opposite cylindrical sides 8 and 9 of the  
8 bluff body 3. The two fluid pressures existing in regions  
9 respectively adjacent to the two opposite cylindrical sides 8 and 9  
10 of the bluff body 3 and tapped respectively through the two sets 6  
11 and 7 of the pressure receiving openings are introduced respectively  
12 into two pressure compartments 10 and 11 included in an oscillatory  
13 differential pressure transducer 12 respectively through two small  
14 diameter conduits or tubings 13 and 14 having a low stiffness or a  
15 high flexibility. It should be noticed that the differential  
16 pressure transducer 12 is mounted on a rigid and massive supporting  
17 structure 15, and the two pressure transmitting conduits or tubings  
18 13 and 14 having a small diameter and low stiffness respectively  
19 include looped sections 16 and 17 which play the role of an expansion  
20 joint dynamically as well as thermally, whereby the differential  
21 pressure transducer 12 is dynamically isolated from the pipe line or  
22 conduit 2 in such a way that the structural vibrations of the pipe  
23 line or conduit 2 as well as the thermal stress experienced thereby  
24 are not transmitted or propagated to the differential pressure  
25 transducer 12. The first pressure compartment 10 comprises two  
26 planar cavities 18 and 19, while the second pressure compartment 11  
27 comprises two planar cavities 20 and 21. A first thin deflective  
28 planar member 22 separates the two planar cavities 18 and 20 from  
29 one another, and a second thin deflective planar member 23 separates  
30 the two planar cavities 19 and 21 from one another. A cavity 24  
31 containing a piezo electric transducer assembly has two opposite thin  
32 walls 25 and 26 disposed parallel to one another and straddling a  
33 reference plane perpendicularly intersecting therewith and dividing  
34 the cavity 24 into two opposite semicylindrical halves of the cavity  
35 24. The two opposite thin walls 25 and 26 respectively include two  
36 reinforcing ribs 27 and 28 disposed diametrically thereacross on the  
37 reference plane, and two force transmitting members 29 and 30 extend  
38 respectively from the two reinforcing ribs 27 and 28 in a common

- 5 -

1 direction generally parallel to the two thin walls 25 and 26, and are  
2 connected respectively to the two thin deflective planar members 22  
3 and 23 at the extremities thereof. The best result is obtained when  
4 the extremity of the force transmitting member 29 or 30 is connected  
5 to the most deflective portion of the thin deflective planar member  
6 22 or 23 such as the center portion thereof. It should be noticed  
7 that each of the two force transmitting members 29 and 30 has a stub  
8 cylindrical midsection and two opposite short angled extremities  
9 respectively anchored to the center portion of the thin wall 25  
10 or 26 and the center portion of the thin deflective planar member  
11 22 or 23. The differential pressure created by vortex shedding from  
12 the two opposite cylindrical sides 8 and 9 of the bluff body 3 in an  
13 alternating manner creates a relative lateral vibration between two  
14 thin deflective planar members 22 and 23, which in turn creates  
15 minute vibratory pivotal motions of the two opposite thin walls  
16 25 and 16 in two opposite directions respectively about two pivot  
17 axes, each of which two pivot axes is defined by the line of  
18 intersection between the thin wall 25 or 26 and the reinforcing rib  
19 27 or 28 of the thin wall. The piezo electric transducer assembly  
20 contained within the cavity 24 comprises a stacked combination of a  
21 piezo electric disc element 31 sandwiched between a pair of split  
22 electrode discs 32 and 33, which stacked combination sandwiched  
23 between a pair of insulator discs 34 and 35 is disposed intermediate  
24 the two thin end walls 25 and 26 in a compressed relationship between  
25 the thin walls 25 and 26, and straddles the reference plane defined  
26 by the two reinforcing ribs 27 and 28. Each of the pair of split  
27 electrode discs 32 and 33 is split along the reference plane into  
28 two semicircular electrodes respectively located on the two opposite  
29 sides of the reference plane. The plurality of lead wires 36, 37,  
30 38 and 39 extend respectively from four different semicircular  
31 electrodes provided by the pair of split electrode discs 32 and 33.  
32 An alternating electrical signal representing the vortex shedding  
33 from the bluff body 3 is obtained by amplifying and combining two  
34 electrical signals respectively supplied by two semicircular  
35 electrodes respectively located on two opposite sides of the  
36 reference plane. The differential pressure transducer 12 may be  
37 enclosed within an acoustically insulating enclosure 40 buffering  
38 transmission of acoustical vibrations from the ambient surroundings

- 6 -

1 to the interior of the differential pressure transducer 12. In  
2 applications subjected to extremely cold or hot temperature, the  
3 acoustically insulating enclosure 40 may be replaced by a heating  
4 or cooling jacket in order to keep the piezo electric transducer  
5 disc element 31 at a desirable temperature.

6 It must be mentioned and emphasized that the novel features of  
7 the present invention exemplified by the embodiment shown in Figure 1  
8 are, firstly, the dynamic isolation of the differential pressure  
9 transducer, which isolation is provided by a supporting structure  
10 experiencing zero or little mechanical vibration and structurally  
11 isolated from the pipe line or conduit providing the flow passage,  
12 secondly, the transmission of the fluctuating fluid pressures  
13 associated with the vortex shedding to the differential pressure  
14 transducer through two small diameter conduits or tubings having a  
15 low stiffness or a high flexibility, which low stiffness or high  
16 flexibility of conduits or tubings prevents the structural vibrations  
17 of the pipe line or conduit providing the flow passage to the  
18 differential pressure transducer, and thirdly, the small diameter  
19 conduits or tubings transmitting the fluctuating fluid pressure  
20 from the flow passage to the differential pressure transducer  
21 thermally isolates the differential pressure transducer from the  
22 fluid contained in the flow passage and, consequently, the vortex  
23 flowmeter is able to measure flow rates of cryogenic fluids and very  
24 high temperature fluids. It should be understood that only one of  
25 the two fluid pressures supplied to the differential pressure  
26 transducer 12 may be tapped from a region adjacent to one of the two  
27 opposite cylindrical sides 8 and 9 of the bluff body 3, while the  
28 other of the two fluid pressures is tapped from a region upstream of  
29 or remote from the bluff body. It should be further understood that  
30 one or both of the two fluctuating fluid pressures associated with  
31 the vortex shedding may be tapped through one or two conduits extending  
32 through the wall of the pipe or conduit 2 and terminated at a region  
33 or regions in the fluid other than the two opposite cylindrical sides  
34 8 and 9 of the bluff body 3, or a region or regions adjacent to the  
35 two opposite cylindrical sides 8 and 9 of the bluff body 3, whereat  
36 the fluid pressures fluctuate as a result of the vortex shedding.  
37 In practicing the afore-mentioned three advantages of the vortex  
38 flowmeter of the present invention, other versions of the differential

- 7 -

1 pressure transducer not shown in the illustrative embodiments and  
2 well known in the art of pressure sensing may be employed in place of  
3 the particular differential pressure transducer shown and described,  
4 in conjunction with the particular version of the fluid pressure  
5 tapping embodiment shown and described, or in conjunction with other  
6 versions not shown in the illustrative embodiments and well known in  
7 the art of vortex sensing such as the pressure tapping tubing or  
8 conduits extending through the wall of the pipe and terminated at a  
9 region in the fluid different from the immediate vicinity of the  
10 bluff body as shown in Figures 2, 3, 4 and 5.

11 In Figure 2 there is illustrated another embodiment of the vortex  
12 flowmeter employing a differential pressure transducer 41, which may  
13 be the type employed in the embodiment shown in Figure 1 or other  
14 types, that is dynamically isolated from the structural vibration of  
15 the pipe line 42, and receives the fluid pressures associated with  
16 the vortex shedding through two small diameter tubings or conduits 43  
17 and 44 having a low stiffness or or a high flexibility. This  
18 particular embodiment shows an alternative to the embodiment shown in  
19 Figure 1 in dynamically isolating the differential pressure transducer  
20 41 from the structural vibrations of the pipe line 42. The yoke or  
21 collar structure 45 mounting the differential pressure transducer 41  
22 on the pipe line 42 is mechanically secured to the pipe line 42 by a  
23 plurality of clamping bolts and nuts 46, 47, etc., and dynamically  
24 insulated from the pipe line 42 by the vibrating absorbing collars 48  
25 and 49 made of a polymer material absorbing and dessipating mechanical  
26 vibrations. The mechanical joint between the differential pressure  
27 transducer 41 and the yoke or collar structure 45 includes dynamically  
28 buffering washers or spacers 50 and 51. The alternative routing of  
29 the pressure transmitting tubings 43 and 44 respectively shown in two  
30 broken lines 52 and 53, illustrates a modified version of tapping the  
31 fluctuating fluid pressures associated with the vortex shedding.  
32 While the particular illustrative embodiment shows the differential  
33 pressure transducer 41 mounted on on the pipe line 42 in an up-right  
34 position, it can be hung on the pipe line in a pendant position as  
35 illustrated by an upside-down version of Figure 2.

36 In Figure 3 there is illustrated a further embodiment of the  
37 vortex flowmeter comprising a dynamically isolated differential  
38 pressure transducer. In this particular illustrative embodiment, the

- 8 -

1 differential pressure transducer 54 is suspended by one or a plurality  
2 of flexible elongated members 55 and 56 from a yoke or collar  
3 structure 57 secured to the pipe line 58 and dynamically buffered  
4 therefrom by the vibration absorbing and dissipating collars 59 and  
5 60. It can be readily realized that, in an alternative design, the  
6 differential pressure transducer 54 can be suspended directly from  
7 the pipe line 58 or from a saddle structure mounted on the pipe line  
8 58 by one or a plurality of vibration absorbing and dissipating  
9 flexible elongated members. The modified routings of the fluid  
10 pressure transmitting tubings 61 and 62 shown in two broken outlines  
11 63 and 64 illustrates another alternative for tapping the fluctuating  
12 fluid pressures associated with the vortex shedding, wherein the open  
13 extremities of the pressure transmitting tubings 63 and 64 extending  
14 into the stream of fluid moving through the pipe line 58 may point a  
15 direction perpendicular, parallel or angled to the direction of the  
16 fluid flow. Of course, the open extremities of the pressure  
17 transmitting conduits 63 and 64 can be terminated in a relationship  
18 flush to the inner cylindrical surface of the pipe line 58.

19 In Figure 4 there is illustrated a cross section of an embodiment  
20 of the economic version of the flowmeter body 65 including the flow  
21 passage 66 with a vortex generating bluff body, which flowmeter body  
22 65 is to be connected to the differential pressure transducer shown  
23 and described in conjunction with Figure 1. It can be readily  
24 recognized that the differential pressure transducer included in the  
25 vortex flowmeter shown in Figure 1 can be separated from the  
26 flowmeter body by unthreading the threaded connection connecting the  
27 differential pressure transducer to the flowmeter body shown in the  
28 embodiment illustrated in Figure 1. Consequently, the differential  
29 pressure transducer included in the embodiment shown in Figure 1 can  
30 be readily connected to the flowmeter body shown in Figure 4 by  
31 threading the threaded joint including the male thread included in  
32 the flowmeter body 65 and the female thread included in the  
33 differential pressure transducer shown in Figure 1. In this  
34 particular illustrative embodiment, the fluid pressure transmitting  
35 holes 69 and 70 are built into the wall structure of the flow  
36 passage 66, wherein the two pressure transmitting holes 69 and 70  
37 respectively originate from two diametrically opposite portions of  
38 the inner cylindrical surface of the wall of the flow passage 66

- 9 -

1 respectively located on the two opposite sides of the vortex  
2 generating bluff body 67. Of course, the threaded joint between the  
3 flowmeter body 65 and the differential pressure transducer can be  
4 replaced by a flange joint or other types of face-to-face joints with  
5 a gasket or washer made of a vibration absorbing and dissipating  
6 material, which gasket or washer provides the dynamic and/or thermal  
7 buffering between the flowmeter body and the differential pressure  
8 sensor. Since a mass-produced differential pressure transducer of  
9 the same size can be connected to all flowmeter bodies of different  
10 sizes, the embodiment of the vortex flowmeter shown in Figure 4  
11 provides tremendously inexpensive vortex flowmeters.

12 In Figure 5 there is illustrated a cross section of another  
13 another embodiment of the economic version of the vortex flowmeter  
14 body 71, that has essentially the same construction as that of the  
15 flowmeter body 65 shown in Figure 4 with an exception that the  
16 pressure transmitting holes 72 and 73 now originate respectively from  
17 two locations of the flow passage wall respectively adjacent to the  
18 two opposite cylindrical sides of the vortex generating bluff body  
19 74. It must be understood that all of the flowmeter bodies shown  
20 in Figures 1 through 5 may be connected to the differential pressure  
21 transducer of type shown in Figure 1 or other types which are readily  
22 available at the present time or become available in the future.

23 In Figure 6 there is illustrated a plan view of an embodiment of  
24 the transducer element seen in a direction perpendicular to the two  
25 thin walls 25 and 26 included in the embodiment shown in Figure 1.  
26 Each of the two split electrode discs 32 and 33 sandwiching the  
27 piezo electric disc element 31 is split into two semicircular  
28 electrodes 75 and 76 respectively located on the two opposite sides  
29 of the reference plane. In this particular embodiment, the two  
30 semicircular electrodes are in contact with the two opposite faces of  
31 the piezo electric disc element and located respectively on the two  
32 opposite sides of the reference plane 77 are respectively connected  
33 to two amplifiers 78 and 79 with a signal balancing means 80  
34 therebetween. Other electrodes not connected to the two amplifiers  
35 78 and 79 are grounded. The two opposite halves of the piezo electric  
36 disc element 31 respectively located on the two opposite sides of the  
37 reference plane 77 experience compression and decompression in an  
38 alternating manner as a result of the alternating relative lateral

- 10 -

1 deflection between the two thin deflective planar members 22 and 23  
2 included in the differential pressure transducer shown in Figure 1.  
3 When the entire piezo electric disc element 31 is polarized in the  
4 same direction, the two semicircular electrodes respectively in  
5 contact with the two opposite faces of the piezo electric element  
6 and respectively located on the two opposite sides of the reference  
7 plane supply two alternating electrical signals in the same phase  
8 and, consequently, the two alternating electrical signals are  
9 additively combined to obtain an resultant alternating electrical  
10 signal representing the vortex shedding in such a way that the noise  
11 signal generated by the mechanical vibration is cancelled between the  
12 two alternating electrical signals by using the two amplifiers 78 and  
13 79, and the signal level balancing means 80. In an alternative design  
14 wherein the two opposite halves of the piezo electric disc element  
15 respectively located on the reference plane are polarized in two  
16 opposite directions, the two alternating electrical signals have a  
17 phase difference of 180 degree and, consequently, the two alternating  
18 electrical signals are differentially combined in obtaining the  
19 resultant alternating electrical signal by using a combination of the  
20 pair of amplifiers and signal level balancing means such as that  
21 shown in Figure 8.

22 In Figure 7 there is illustrated an elevation view of the  
23 embodiment of the transducer element shown in Figure 6, which  
24 elevation view is seen in a direction parallel to a center plane 81  
25 defined by the piezo electric disc element and intersecting the  
26 reference plane 77 perpendicularly. It is clearly shown that the  
27 two electrodes respectively connected to the two amplifiers 78 and  
28 79 are respectively in contact with the two opposite sides of the  
29 piezo electric disc element and respectively located on the two  
30 opposite sides of the reference plane.

31 In Figure 8 there is illustrated another embodiment of the  
32 transducer element that is a design alternative of the embodiment  
33 shown in Figures 6 and 7. In this particular embodiment, two  
34 semicircular electrodes 82 and 83 in contact with the same face of  
35 the piezo electric transducer disc element and respectively located  
36 on the two opposite sides of the reference plane 77 are respectively  
37 connected to a noninverting and an inverting amplifiers 84 and 85  
38 with a signal level balancing means 86, which combination additively

- 11 -

1 combines the two alternating electrical signals respectively supplied  
2 by the two semicircular electrodes into the resultant alternating  
3 electrical signal representing the vortex shedding.

4 The alternating electrical signal generated by the differential  
5 pressure transducer and representing the vortex shedding is supplied  
6 to a data processor such as the element 86 included in the embodiment  
7 of the vortex flowmeter shown in Figure 3, which data processor  
8 determines the fluid velocity or the volume flow rate  $\dot{V}$  of the  
9 fluid moving through the flow passage as a function of the frequency  
10 of the resultant alternating electrical signal, as the fluid  
11 velocity is proportional to the frequency of the resultant alternating  
12 electrical signal in a wide range of the fluid velocity. The amplitude  
13 of oscillation in the differential pressure associated with the vortex  
14 shedding from the vortex generating bluff body is proportional to the  
15 dynamic pressure of the fluid flow, which dynamic pressure is equal to  
16 one half of the fluid density times the square of the fluid velocity.  
17 Consequently, the amplitude of the resultant alternating electrical  
18 signal generated by the differential pressure transducer is also  
19 proportional to the dynamic pressure of the fluid flow. The data  
20 processor 86 may also determine the mass flow rate  $\dot{M}$  of the fluid  
21 as a ratio of the amplitude to the frequency of the resultant  
22 alternating electrical signal generated by the differential pressure  
23 transducer. Of course, the density  $\rho$  of the fluid can be determined  
24 as the ratio of the mass flow rate to the volume flow rate of the  
25 fluid. A brief investigation of the construction and operating  
26 principles of the differential pressure transducer included in the  
27 vortex flowmeter shown in Figure 1 reveals a fact that the  
28 differential pressure transducer still works even when one of the two  
29 pressure compartments is sealed off and the combination of one of the  
30 two sets of pressure receiving openings and one of the two pressure  
31 transmitting conduits or holes supplying the fluid pressure to the  
32 now sealed off pressure compartment is omitted. Such a simplified  
33 version of the embodiment shown in Figure 1 may be used as an economic  
34 version of the vortex flowmeter in applications requiring the  
35 sensitivity of the apparatus at a reduced level. It should be pointed  
36 out that the implementation of the principles of the present invention  
37 exemplified by the illustrative embodiments in the practice of the  
38 vortex flowmeter technology makes it possible to measure the velocity

- 12 -

1 or the volume flow rate of fluid accurately and reliably by using a  
2 vortex flowmeter under all working environments and operating  
3 conditions including applications subjected to very violent pipe line  
4 vibrations and extremely high ambient acoustic noise as well as to  
5 the temperatures of cryogenic state or extremely high temperatures.

6

7 While the principles of the present inventions have now been made  
8 clear by the illustrative embodiments shown and described, there will  
9 be many modifications of the structures, arrangements, proportions,  
10 elements and materials, which are immediately obvious to those  
11 skilled in the art and particularly adapted to the specific working  
12 environments and operating conditions in the practice of the  
13 inventions without departing from those principles. It is not  
14 desired to limit the inventions to the particular illustrative  
15 embodiments shown and described and, accordingly, all suitable  
16 modifications and equivalents may be regarded as falling within the  
17 scope of the inventions as defined by the claims which follow.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

- 13 -

1       The embodiments of the inventions, in which an exclusive  
2 property or privilege, is claimed are defined as follows:

3

4       1. An apparatus for measuring flow rate of fluid comprising  
5 in combination:

6           a) a flow passage;

7           b) a vortex generator generating vortices in a stream of  
8           fluid moving through the flow passage;

9           c) means for converting an oscillation in fluid pressure  
10          associated with the vortices to an alternating electrical  
11          signal representing generation of vortices by the vortex  
12          generator; and

13          d) at least one pressure communicating hole with one end  
14          exposed to a fluctuating fluid pressure associated with  
15          the vortices and the other end opposite to said one end  
16          connected to at least one pressure compartment included  
17          in said means for converting an oscillation in fluid  
18          pressure to an alternating electrical signal; wherein  
19          at least a portion of said at least one pressure  
20          communicating hole includes one of the following two  
21          conduits; a tubing transmitting a fluctuating fluid  
22          pressure associated with the vortices from the fluid  
23          to said at least one pressure compartment, and a hole  
24          embedded within a structure including the flow passage  
25          and transmitting a fluctuating fluid pressure associated  
26          with the vortices from the fluid to said at least one  
27          pressure compartment.

28        2. An apparatus as defined in Claim 1 wherein said means for  
29          converting an oscillation in fluid pressure to an alternating  
30          electrical signal comprises a differential pressure transducer with  
31          a pair of pressure compartments, and a first pressure communicating  
32          hole with one end exposed to a first fluid region located on one  
33          side of the vortex generator transmits a first fluctuating fluid  
34          pressure to one of the pair of pressure compartments and a second  
35          pressure communicating hole with one end exposed to a second fluid  
36          region located on the other side of the vortex generator opposite to  
37          said one side transmits a second fluctuating fluid pressure to the  
38          other of the pair of pressure compartments; wherein at least a

- 14 -

1 portion of each of the first and second pressure communicating holes  
2 includes one of the following two conduits; a tubing transmitting a  
3 fluctuating fluid pressure associated with the vortices from the  
4 fluid to one of the pair of pressure compartments, and a hole  
5 embedded within the structure including the flow passage and  
6 transmitting a fluctuating fluid pressure associated with the  
7 vortices to one of the pair of pressure compartments.

8       3. An apparatus as defined in Claim 2 including means for  
9 determining velocity of fluid moving through the flow passage as a  
10 function of a frequency of the alternating electrical signal  
11 representing oscillation in differential pressure between the first  
12 and second fluctuating fluid pressures.

13       4. An apparatus as defined in Claim 2 including means for  
14 determining mass flow rate of fluid moving through the flow passage  
15 as a function of a frequency and an amplitude of the alternating  
16 electrical signal representing oscillation in differential pressure  
17 between the first and second fluctuating fluid pressures.

18       5. An apparatus as defined in Claim 2 wherein the differential  
19 pressure transducer is dynamically isolated from the structure  
20 including the flow passage in a relationship wherein transmission of  
21 mechanical vibrations from the structure including the flow passage  
22 to the differential pressure transducer is substantially suppressed.

23       6. An apparatus as defined in Claim 2 wherein at least a portion  
24 of each of the first and second pressure communicating holes  
25 includes a conduit of a small diameter and a substantial length,  
26 whereby the differential pressure transducer is thermally isolated  
27 from the structure including the flow passage.

28       7. An apparatus as defined in Claim 2 wherein the differential  
29 transducer includes a pair of thin deflective planar members  
30 respectively constituting two opposite walls of one of the pair of  
31 pressure compartments and separating the pair of pressure  
32 compartments from one another, and a transducer means converting an  
33 oscillatory relative deflection between the pair of thin deflective  
34 planar members to the alternating electrical signals as a measure  
35 of flow rate of fluid moving through the flow passage.

36       8. An apparatus as defined in Claim 7 including means for  
37 determining velocity of fluid moving through the flow passage as a  
38 function of a frequency of the alternating electrical signal

- 15 -

1 representing oscillation in differential pressure between the first  
2 and second fluctuating fluid pressures.

3       9. An apparatus as defined in Claim 7 including means for  
4 determining mass flow rate of fluid moving through the flow passage  
5 as a function of a frequency and an amplitude of the alternating  
6 electrical signal representing oscillation in differential pressure  
7 between the first and second fluctuating fluid pressures.

8       10. An apparatus as defined in Claim 7 wherein the differential  
9 pressure transducer is dynamically isolated from the structure  
10 including the flow passage in a relationship wherein transmission of  
11 mechanical vibrations from the structure including the flow passage  
12 to the differential pressure transducer is substantially suppressed.

13       11. An apparatus as defined in Claim 7 wherein at least a  
14 portion of each of the first and second pressure communicating holes  
15 includes a conduit of a small diameter and a substantial length,  
16 whereby the differential pressure transducer is thermally isolated  
17 from the structure including the flow passage.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38



Fig. 1

2/3



$$\begin{aligned} \dot{V} &= F(f) \\ \dot{M} &= G(f, A) \\ \rho &= \dot{M}/\dot{V} \end{aligned}$$



3 / 3



Fig. 4



Fig. 5



Fig. 6



Fig. 7



Fig. 8

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/09305

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(6) : G01F 1/32

US CL : 073/661

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 073/661, 861.21, 861.22, 861.24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages  | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------|-----------------------|
| Y         | US, A, 5,123,285 (LEW) 23 June 1992, col 1, line 32-col. 4 line 8.                  | 1-11                  |
| Y         | US, A, 5,060,522 (LEW) 29 October 1991, col. 1, line 57- col. 2 line 42.            | 1-11                  |
| Y         | US, A, 4,891,990 (KHALIFA ET AL.) 09 January 1990, col. 3, line 19-col. 4, line 15. | 1-11                  |
| Y         | US, A, 3,979,565 (MCSHANE) 07 September 1976, col. 1, line 50-col. 2 line 10.       | 1-11                  |

Further documents are listed in the continuation of Box C.  See patent family annex.

- \* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

21 NOVEMBER 1995

Date of mailing of the international search report

28 DEC 1995

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Facsimile No. 703-308-7382

Authorized officer

JEWEL V. ARTIS

Telephone No. (703) 308-6726

**THIS PAGE BLANK (USPTO)**