

CFA LEVEL

Quantitative Methods

泽稷网校梁老师

一级数量—假设检验

直播时间19:00-20:30

视频观看地址:

http://live.zejicert.cn/i

tem?targetId=96

需要更多CFA免费学习资料/加入CFA学习打卡组织请添加QQ:717849352 (●°u°●)」

Hypothesis Testing

- Four steps of hypothesis testing
- Stating the decision rule
- Type I and type II errors
- Test-Statistic

Four steps of hypothesis testing

- Step 1: Stating the hypothesis
- Step 2: Selecting and calculating the appropriate test statistic
- Step 3: Specify the level of significance (α)
- Step 4: Stating the decision rule regarding the hypothesis

Hypothesis Testing

- Four steps of hypothesis testing
- Stating the decision rule
- Type I and type II errors
- Test-Statistic

Stating the decision rule

- Null hypothesis(原假设 H₀) & Alternative hypothesis(备择假设 H_a)
 - ✓ Two-tailed test
 - H_0 : $\mu = 0$ H_a : $\mu \neq 0$
 - ✓ One-tailed test
 - H_0 : $\mu \ge 0$ H_a : $\mu < 0$
 - H₀: μ≤0 H_a: μ>0

Stating the decision rule

- Reject H₀ if |test statistic|>critical value
 - \checkmark μ is significantly different from μ_0
- Fail to reject H₀ if |test statistic| < critical value
 - \checkmark μ is not significantly different from μ_0
 - ✓ We can never say "accept" H₀

Stating the decision rule 95% 95% 2,5% 2.5% 5% -1.96 +1.96 +1.645 Reject H₀^I Reject H₀ Fail to Reject H₀ Reject H₀ Fail to Reject H₀

P-value

- The p-value is the smallest level of significance at which the null hypothesis can be rejected
 - ✓ If P-value < alpha, we reject null hypothesis</p>

Hypothesis Testing

- Four steps of hypothesis testing
- Stating the decision rule
- Type I and type II errors
- Test-Statistic

Type I and type II errors

- Type I error: reject the null hypothesis when it's actually true
- Type II error: fail to reject the null hypothesis when it's actually false
- \blacksquare Significance level (α): the probability of making a Type I error
 - ✓ Significance level =P (Type I error)
- Power of a test (检验势): the probability of correctly rejecting the null hypothesis when it is false
 - ✓ Power of a test=1-P(Type II error)

Type I and type II errors

Decision	True Condition		
	H ₀ is true	H_0 is false	
Do not reject H ₀	Correct decision	Incorrect decision Type II error	
Reject H ₀	Incorrect decision Type I error Significance level, α, =P(Type I error)	Correct decision Power of the test =1-P(Type II error)	

Which of the following statements about hypothesis testing is least accurate?

- A. The higher the significance level, the higher the power of the test
- B/If the alternative hypothesis is H_a : $\mu > \mu_0$, a two-tailed test is appropriate
- C. A Type II error is failing to reject a false null hypothesis

Hypothesis Testing

- Four steps of hypothesis testing
- Stating the decision rule
- Type I and type II errors
- **■** Test-Statistic

- Tests concerning a single mean
 - ✓ $H_0: \mu = \mu_0$

$$\checkmark$$
 $z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$ $t_{n-1} = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$

When compling from a	Test statistic		
When sampling from a:	Small sample(n<30)	Large sample(n≥30)	
正态分布,总体方差已知	z-statistic	z-statistic	
正态分布,总体方差未知	t-statistic	t-statistic /z-statistic	
非正态分布,总体方差已知	Not available	z-statistic	
非正态分布,总体方差未知	Not available	t-statistic /z-statistic	

- Tests concerning the mean of the differences between paired observations
 - ✓ When two samples are dependent
 - \checkmark H₀: μ_d=0 H_a: μ_d≠0
 - ✓ t-test

•
$$t = \frac{\overline{d} - 0}{s_{\overline{d}}}$$

- Tests concerning the differences in means
 - ✓ When two samples are independent
 - ✓ $H_0: \mu_1 = \mu_2$
 - √ t-test
 - 方差相等,未知(σ₁²=σ₁²)

$$-t_{n_1+n_2-2} = \frac{\bar{x}_1 - \bar{x}_2}{s_w \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{1/2}}; S_w^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{n_1 + n_2 - 2}$$

方差不相等,未知(σ₁² ≠ σ₁²)

$$- t = \frac{\bar{x}_1 - \bar{x}_2}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^{1/2}}$$

- Tests concerning a single variance
 - ✓ Chi-Square test
 - H_0 : $\sigma^2 = \sigma_0^2$
 - The chi-square test (χ²-test)
 - Test-Statistic: $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$, df=n-1

- $-\sigma_0^2$ =Hypothesized value for the population variance;
- df=Degree of freedom.

- Tests concerning two variance
 - ✓ F-test

•
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

Test type	Assumptions	H ₀	Test- statistic	Critical value
Mean hypothesis testing	Normally distributed population, known population variance	μ=0	$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)
	Normally distributed population, unknown population variance	μ=0	$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$	t(n-1)
	Independent populations, unknown population variances assumed equal	μ ₁ -μ ₂ =0	t	t(n ₁ +n ₂ - 2)
	Independent populations, unknown population variances not assumed equal	μ ₁ -μ ₂ =0	t	t

Test type	Assumptions	H ₀	Test-statistic	Critical value
Variance hypothesis testing	Normally distributed population	$\sigma^2 = \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	χ ² (n-1)
	Two independent normally distributed populations	$\sigma_1^2 = \sigma_2^2$	$F = \frac{s_1^2}{s_2^2}$	F(n ₁ -1,n ₂ -1)

Roberts believes that the mean price of houses in the area is greater than \$145,000. A random sample of 36 houses in the area has a mean price of \$149,750. The population standard deviation is \$24,000, and Roberts wants to conduct a hypothesis test at a 1% level of significance.(The critical value of the z-statistic is 2.33)

The appropriate alternative hypothesis is?

The value of the calculated test statistic is closest to?

Two-tailed test or One-tailed test?

Should Roberts reject or not reject the null hypothesis?

 H_0 : $\mu \le 145,000$

 H_a : $\mu > 145,000$

$$z = \frac{149,750 - 145,000}{24,000/\sqrt{36}} = 1.1875$$

Roberts should not reject the null hypothesis

An analyst is conducting a hypothesis test to determine if the mean time spent on investment research is different from three hours per day. The test is performed at the 5% level of significance and uses a random sample of 64 portfolio managers, where the mean time spent on research is found to be 2.5 hours. The sample standard deviation is 1.5 hours.

At a 5% level of significance, Analyst should reject or not reject the null hypothesis?

The 95% confidence interval for the population mean is?

R12: Hypothesis Testing

$$H_0$$
: $\mu = 3$
 H_a : $\mu \neq 3$
 $t = \frac{2.5 - 3}{1.5 / \sqrt{64}} = -2.6667$
 2.5%
 95%
 2.5%
 -2
 $+2$

Analyst should reject the null hypothesis

CFA全球考友百日打卡集训营 在全球最大的CFA考友社群中寻找CP

扫码加入全球最大的 CFA人脉圈 本期主题:CFA数量重难点--假设检验

本期主讲人:梁老师

祝大家都能顺利通过CFA一级的考试!