Supporting Information

immediate

Harmonised trait datasets

Discrepancies in trait definitions

in multiple grouping features per database. Hence, differences for reproduction have been described in the The definition is quoted if it enables differences to be identified, otherwise the differences are described. The hyphen indicates a missing trait. Reproduction was captured paper. Body form traits are not different between databases, except that the Vieira database contains the Table 1: Comparison of trait definitions between invertebrate trait databases. Only traits that are differently trait Bluff (blocky) which does not appear in the other databases. described across databases are listed.

Nous Zooloo	Ivew Zealand
A.1.0440]:0	Austrana
Vicino	v ieira
DIMOD	COMOS
Toobot	raciie
Freshwater-	ecology.info
+	ıraıı

Shredders						
• Detrivore† • Trait herbivore includes among others the trait shredder						
Shredder						
 "Shred decomposing vascular plant tissue" Trait herbivore includes among others insect that shred living aquatic plants 						
"Eat coarse detritus, plants or animal material"						
"Feed from fallen leaves, plant tissues, CPOM"						
Feeding						

Predator	No distinction between active and passive	"< 1 reproductive cycle per year"
Piercer & engulfer	No distinction No distinction No distinction bebetween active between active and passive passive	"< 1 generation per year"
Predator	No distinction between active and passive	"< 1 generation per year"
Engulfers ("ingest prey whole or in parts") & piercers ("prey tissues and suck fluids")		"< 1 genera- tion per year"
 Carvers, engulfers & swallowers Piercers (plants & animals) are an additional trait 	No distinction between active and passive	"Life cycle lasts at least two years"
"Eating from prey"	Distinguishes be- tween active and passive	"One generation in two years"
Feeding	Feeding filter- feeder	Semivoltine

1-2 generations per bi/multivoltinë 1 reproductive cycles up to 5 generations per year berations per year berations per year berations per year ber year					
 1-2 generations per year bi/multivoltinerations per year up to 5 generations per year up to 10 generations per year 					
"> 1 generations per year"					
"> 1 genera- tions per year" per year"					
"Able to complete at least two successive generations per year"					
"Three or more generations per year" ‡					
Multi- voltine					

ers col-
Swimmers (water oumn)
Distinguishes swimmer and skater
Swimmer
"Adapted for "fishlike" Swimmer swimming"
 Surface swimmers (over and under the water sur- face) Full water swimmers (e.g. Baeti- dae).
 Passive movement like floating or drifting (trait swim- ming/scating) Active movement (trait swim- ming/diving)
Locomotion

Burrowers (infauna)	1
"Moving deep into the substrate and thus avoiding flow"	
Burrower	Sprawler
"Inhabiting fine sediment of streams and lakes"	Sprawling: "inhabiting the surface of floating leaves of vascular hydrophytes or fine sediments"
 Burrowing "within the first centime- ters of the benthic fine sediment" Differentiates also the trait interstitial (endoben- thic) 	1
"Burrowing in soft substrates or boring in hard substrates"	Locomotion walking actively sprawling with legs, pseu- & walking dopods or on a mucus"
Locomotion	Locomotion sprawling & walking

Crawlers (epibenthic)	Does not distinguish and temporarily and permanently attached
Database contains traits crawler, sprawler, climber and clinger.	Distinguishes temporarily and permanently attached
ı	Does not distin- distinguishes guish temporar- temporarily ily and permanent permanently nently attached attached
Defined as crawling on the surface of floating leaves or fine sediments on the bottom	Does not distinguish temporarily and permanently attached
"Crawling over the the bottom sub- leav strate" sedii	Distinguishes temporarily and permanently attached
ı	Locomotion guish temporarily temporarily sessil and permanently attached attached
Locomotion	Locomotion

Respiration plastron $\&$ spiracle	Respiration Plastron and spir-plastron & acle (aerial) are spiracle two separate traits	Definition includes respiration using air stores of aquatic plants	tion in- Plastron and strespiration spiracle comair stores of bined into one ic plants trait	Distinguishes spiracular gills, plastron, at- mospheric breathers and plant breathers	Plastronandspiracle (termed aserial)cccurasseparateDistinguishes andtraitsCombinedplastrontraitsCon-andspiratian-tains also traits:cle (termed air (plants), aerial)atmospheric, and functionalspiracles	and (termed occur separate Distinguishes ombined plastron Con- and spira-cotraits: cle (termed (plants), aerial)
Body size small Body size medium Body size large		Multiple size classifications¶	< 9 mm 9 - 16 mm > 16 mm	< 9 mm 9 - 16 mm > 16 mm	< 9 mm †§ 9 - 16 mm > 16 mm	Multiple size classifications*

[†] Traits from Botwe et al.

[‡] Contains also bivoltine (two generations per year), trivoltine (three generations per year) and flexible.

[§] Contains a size trait with numeric size values. Contains also traits classifying size like Tachet and like the North American trait databases.

 $[\]P \text{ Size classifications: } <= 0.25 \ cm, > 0.25 - 0.5 \ cm, 0.5 - 1 \ cm, 1 - 2 \ cm, 2 - 4 \ cm, 4 - 8 \ cm, > 8 \ cm. \text{ No distinction into small, medium and large.}$

 $[\]star$ Size classifications: > 0.25-0.5 cm, 0.5-1 cm, 1-2 cm, 2-4 cm, 4-8 cm. No distinction into small, medium and large.

Comparing aggregation methods

Comparison of family-level aggregated traits with family-level assigned traits

Figure 1: Cases (factor combination of investigated families and traits) where differences occurred between aggregated traits and expert assigned traits at family level for the North American dataset. Violin plots - mirrored density plots - show the density of the absolute trait affinity differences for the grouping features locomotion, respiration, and body size. For more details see Figure ??.

Comparison of aggregation methods with varying taxonomic hierarchies and trait variability

Figure 2: Ranges of aggregated trait affinities for the three examples of taxonomic hierarchies and simulated levels of trait variability. Shown are the results for the simulated traits T2 and T3. Boxplots depict results for 100 replicated simulations of each trait aggregation method. Trait aggregation methods are in order of least to greatest produced ranges to improve visual inspection. For more details see Figure ??.

Taxonomic hierarchy in the trait datasets used for comparisons with assigned traits at family level

Figure 3: Number of genera per family and species per genus for those families of the North American trait dataset that have been compared with assigned traits at family level. For better visual display only families with more than 15 genera are displayed.

Figure 4: Number of genera per family and species per genus for the Australian trait dataset. For better visual display only families with more than 7 genera are displayed.

Effects of harmonisation and trait aggregation on inferences regarding trait-environment relationships

Table 2: Mean, median and standard deviation of the affinities of traits that were responsive to the salinity gradient in the original study but not in the re-analysis using the harmonised European trait dataset.

Type	Trait	Mean	Median	SD	Responsive?
Stepw_median	Shredder	0.20	0.14	0.25	No
Stepw_mean	Shredder	0.18	0.12	0.22	No
$\operatorname{Direct_median}$	Shredder	0.21	0.14	0.25	No
Direct_mean	Shredder	0.19	0.14	0.22	No
Weighted	Shredder	0.19	0.14	0.22	No
Harmonised; not_aggregated	Shredder	0.18	0.12	0.24	No
Original	Shredder	0.25	0.14	0.32	Yes
Stepw_median	Gills	0.30	0.27	0.32	Yes
Stepw_mean	Gills	0.29	0.22	0.32	Yes
Direct_median	Gills	0.30	0.30	0.32	Yes
Direct_mean	Gills	0.30	0.30	0.32	Yes
Weighted	Gills	0.30	0.30	0.32	Yes
Harmonised; not_aggregated	Gills	0.30	0.25	0.32	No
Original	Gills	0.28	0.00	0.33	Yes
Stepw_median	Short life cycle	0.64	0.75	0.39	No
Stepw_mean	Short life cycle	0.64	0.79	0.39	No
Direct_median	Short life cycle	0.67	0.75	0.37	Yes
Direct_mean	Short life cycle	0.67	0.79	0.38	Yes
Weighted	Short life cycle	0.67	0.79	0.38	Yes
Harmonised; not_aggregated	Short life cycle	0.64	0.75	0.40	Yes
Original	Short life cycle	0.64	0.75	0.40	Yes
Stepw_median	Long life cylce	0.36	0.25	0.39	No
Stepw_mean	Long life cylce	0.36	0.21	0.39	No
$Direct_{median}$	Long life cylce	0.33	0.25	0.37	Yes
Direct_mean	Long life cylce	0.33	0.21	0.38	Yes
Weighted	Long life cylce	0.33	0.21	0.38	Yes
Harmonised; not_aggregated	Long life cylce	0.36	0.25	0.40	Yes
Original	Long life cylce	0.36	0.25	0.40	Yes

Figure 5: RDA of traits constrained by electric conductivity for the data aggregated with direct_agg mean, stepwise_agg mean, and weighted_agg. Shown are boxplots of the site scores along the conductivity axis. The rug on the right side of each plot indicates species scores of the traits on the conductivity axis. For more details see Figure ??. Abbreviations: lcd, life cycle duration; nr.cy, potential number of cycles per year.