LECTURE 16: ORDINARY DIFFERENTIAL EQUATIONS

• ODE: higher order differential equations can always be rewritten as a series of 1st order:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

• We also need to specify boundary conditions. Typical case is initial value problem: we specify at initial time. For example, specify initial position and velocity of a particle and then use Newton's law to solve for its time evolution

Euler Method, 2nd Order Midpoint ...

• We start with the simplest method, 1st order (explicit) Euler:

dy/dx = f(x,y), dx = h

 $\bullet \quad y_{n+1} = y_n + h f(x_n, y_n)$

• 2nd order extension (midpoint, or 2nd order Runge-Kutta)

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$y_{n+1} = y_n + k_2 + O(h^3)$$

4th Order Runge-Kutta

• Historically often the method of choice

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + O(h^5)$$

4th Order Runge-Kutta

- Add adaptive stepsize control, doubling the step.
- Richardson extrapolation adds one more order

$$y(x + 2h) = y_1 + (2h)^5 \phi + O(h^6) + \dots$$
$$y(x + 2h) = y_2 + 2(h^5)\phi + O(h^6) + \dots$$
$$y(x + 2h) = y_2 + \frac{\Delta}{15} + O(h^6)$$

$$\Delta \equiv y_2 - y_1$$

Bulirsch-Stoer method: "infinite" order extrapolation

- Uses Richardson's extrapolation again (we also used it for Romberg integration): we estimate the error as a function of interval size h, then we try to extrapolate it to h=0
- As in Romberg we need to have the error to be in terms of h² instead of h

• Can use polynomial or rational function extrapolation: we discussed both for interpolations

2nd Order Conservative Equations

$$\ddot{q} = f(q)$$

- Stormer-Verlet with two step formulation: we are interpolating parabola through 3 points
- Gains a factor of 2

$$q_{n+1}-2q_n+q_{n-1}=h^2f(q_n)$$

One Step Formulation: Leap-frog

• We introduce momentum $p = \dot{q}$, $\ddot{q} = f(q)$

$$\dot{q}=p, \qquad \dot{p}=f(q)$$

$$p_{n+1/2} = p_n + \frac{h}{2}f(q_n)$$

$$q_{n+1} = q_n + hp_{n+1/2}$$

$$p_{n+1} = p_{n+1/2} + \frac{h}{2}f(q_{n+1})$$

Generalization: Symplectic Integrators

- Symplectic integrators preserve phase space (p,q) volume: p,q must be canonical variables
- Symplectic transformation preserves phase space area (p,q) (Lioville's theorem)

- Hamiltonian is not conserved, but a related quantity is and one does not accumulate amplitude error, only phase error
- Useful if one needs to integrate a system for a long time (e.g. planet orbits etc)

Leapfrog is Symplectic

Hamiltonian problem $\dot{p} = -H_q(p,q), \ \dot{q} = H_p(p,q)$

Theorem. The Störmer-Verlet method

$$p_{n+1/2} = p_n - \frac{h}{2} H_q(p_{n+1/2}, q_n)$$

$$q_{n+1} = q_n + \frac{h}{2} \Big(H_p(p_{n+1/2}, q_n) + H_p(p_{n+1/2}, q_{n+1}) + H_p(p_{n+1/2}, q_{n+1}) + H_p(p_{n+1/2}, q_{n+1}) \Big)$$

$$p_{n+1} = p_{n+1/2} - \frac{h}{2} H_q(p_{n+1/2}, q_{n+1})$$

is symplectic.

Euler can be made symplectic

applied to
$$\dot{p} = -H_q$$
, $\dot{q} = H_p$:

$$p_{n+1} = p_n - hH_q(p_{n+1}, q_n)$$

$$q_{n+1} = q_n + hH_p(p_{n+1}, q_n)$$
(SE1)

or

$$q_{n+1} = q_n + hH_p(p_n, q_{n+1})$$

 $p_{n+1} = p_n - hH_q(p_n, q_{n+1})$ (SE2)

Theorem. (de Vogelaere, 1956)

The symplectic Euler method is symplectic.

Theorem. The implicit midpoint rule is symplectic.

Phase Space Flow

Example: Planetary Orbit Integration

- Explicit Euler's orbits decay. This is not cured by higher order (Runge-Kutta, B-S...)
- Symplectic integrators preserve the orbit amplitude (but not the phases, not shown)

Hamiltonian Monte Carlo

- Remember the HMC discussion: we take a few steps integrating Hamiltonian along the path, then resample the momentum. Acceptance rate is 1 if Hamiltonian is conserved, otherwise it drops. So we'd like to move as far as possible to reduce the correlation of samples, while preserving the Hamiltonian.
- In hierarchical Bayesian models we work with many latent variables that we marginalize over: it is important that HMC solver conserves H in very high dimensions
- Symplectic integrators are ideal for this purpose. Typically we use leap-frog (2nd order, symplectic)
- Codes like Stan are currently best on the market
- However, we need gradient H_q : we will discuss automatic differentiation in the next lecture

Stiff Equations

• Explicit (forward) Euler:

$$y' = -cy$$

$$y_{n+1} = y_n + hy'_n = (1 - ch)y_n$$

- Unstable if h > 2/c, since y goes to infinity
- Example:

$$u' = 998u + 1998v$$
 $u(0) = 1$ $v(0) = 0$
 $v' = -999u - 1999v$ $u = 2e^{-x} - e^{-1000x}$
 $u = 2y - z$ $v = -y + z$ $v = -e^{-x} + e^{-1000x}$

- But the system is unstable if h > 1/1000
- Solution: implicit (backward Euler)

$$y_{n+1} = y_n + h y_{n+1}'$$

$$y_{n+1} = \frac{y_n}{1 + ch}$$

General Appraoch

• If we are solving a linear system: $\mathbf{y}' = -\mathbf{C} \cdot \mathbf{y}$

$$\mathbf{T}^{-1} \cdot \mathbf{C} \cdot \mathbf{T} = \operatorname{diag}(\lambda_0 \dots \lambda_{N-1})$$
 $\mathbf{z}' = -\operatorname{diag}(\lambda_0 \dots \lambda_{N-1}) \cdot \mathbf{z}$ $\mathbf{z} = \operatorname{diag}(e^{-\lambda_0 x} \dots e^{-\lambda_{N-1} x}) \cdot \mathbf{z}_0$

- Exact solution: $\mathbf{y} = \mathbf{T} \cdot \operatorname{diag}(e^{-\lambda_0 x} \dots e^{-\lambda_{N-1} x}) \cdot \mathbf{T}^{-1} \cdot \mathbf{y}_0$
- Explicit scheme: $\mathbf{y}_0 = \sum_{i=0}^{N-1} \alpha_i \boldsymbol{\xi}_i$ $\mathbf{y}_n = \sum_{i=0}^{N-1} \alpha_i (1 h\lambda_i)^n \boldsymbol{\xi}_i$
- Stability condition: $|1 h\lambda_i| < 1$ i = 0, ..., N-1 $h < \frac{2}{\lambda_{\text{max}}}$
- Implicit scheme: $\mathbf{y}_{n+1} = (\mathbf{1} + \mathbf{C}h)^{-1} \cdot \mathbf{y}_n$
- Always stable: $|1 + h\lambda_i|^{-1} < 1$ i = 0, ..., N-1

Stiff Nonlinear Equations

• In general, implicit scheme hard to solve

$$\mathbf{y}' = \mathbf{f}(\mathbf{y})$$
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(\mathbf{y}_{n+1})$$

- Linearize f: $\mathbf{y}_{n+1} = \mathbf{y}_n + h \left[\mathbf{f}(\mathbf{y}_n) + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \middle|_{\mathbf{y}_n} \cdot (\mathbf{y}_{n+1} \mathbf{y}_n) \right]$ (Newton's method)
- Invert Jacobian: $\mathbf{y}_{n+1} = \mathbf{y}_n + h \left[\mathbf{1} h \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \right]^{-1} \cdot \mathbf{f}(\mathbf{y}_n)$
- This is semi-implicit Euler method
- There are also stiff versions of higher order ODE

Partial Differential Equations

- This is a vast subject, and we will only mention its existence
- Hyperbolic, e.g. wave equation: $\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$
- Parabolic, e.g. diffusion equation: $\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right)$
- Both of these are initial value (Cauchy) problems
- Boundary value problem: elliptic, Elliptic, e.g. Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$

• If source $\rho=0$ this is Laplace equation

Finite Difference Method

• Discretize on a grid...

(a)

Summary

- ODEs and PDEs are central to numerical analysis in physical sciences, engineering...
- ODEs have a relatively stable methods
- PDEs have a vast array of approaches: relaxation, finite differences, finite elements, spectral methods, matrix methods, multi-grid, Monte Carlo, variational...

Literature

• Numerical Recipes, Press et al., Chapter 17-20