AD-A	100 576	HAND	800K 0	CHNOLOG F EQUIP	MENT RE	RIGHT—F Pair.(PATTERS	ON AFB	ОН	F/6	15/5	`
JNCL	ASSIFIED	FTD-	ID(RS)	r-0685-	80					 NL.		
	1 or 4											
	1000.76											
	أحت											
						_						
					:							
	١											
=												

FTD-ID(RS)T-0685-80

FOREIGN TECHNOLOGY DIVISION

HANDBOOK OF EQUIPMENT REPAIR

Approved for public release; distribution unlimited.

STE CUE

81 6 23 098

EDITED TRANSLATION

(12)

FTD-ID(RS)T-0685-80

14 May 1981

MICROFICHE NR: FTD-81-C-000426

6 HANDBOOK OF EQUIPMENT REPAIR.

English pages: 290 2, 7

Source: Handbook of Mechanical Engineering Equipment Repair and Maintenance Part I, Verume II, Peking, 1976, pp. 1-271

Country of origin (China) Translated by: LINGUISTIC SYSTEMS, INC.

F33657-78-D-0618

H. P. Lee.
Requester: FTD/TQTA

Approved for public release; distribution

unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD -ID(RS)T-0685-80

Date: 4 May 1931

1412 2

Machine Manufacturing Plant

Handbook of Mechanical and Power Equipment Repair and Maintenance

Part 1 Volume 2

HANDBOOK OF EQUIPMENT REPAIR

Commonly Used Materials For Equipment Repair and Maintenance

(first revised edition)

The Revising Group of "Handbook of Mechanical and Power Equipment Repair and Maintenance", Part One

Edited by
China Mechanical Engineering Association and

Mechanical Industry Department, No. 1

Mechanical Industry Publications

The revision of this book is made in response to the requests of a great number of readers, and in this revised edition new materials are amply added. Firstly, in the parts of both ferrous metal material and non-ferrous metal material, section materials are added; secondly, in the part of non-metallic materials, many of daily used materials, such as rubber, plastic materials, asbestos and sealing materials are added; and thirdly, a comparison of steel grade and brands of non-ferrous metal of China with those of other countries is made more inclusive. Compared with the tentative edition of this book, the contents of this revised edition are relatively complete and more practical.

This book can be used as reference by equipment repair and maintenance workers and technicians.

It must be made clear here that this revision is made entirely by Peking Factory of Switches.

Commonly Used Materials For Equipment Repair and Maintenance

(first revised edition)

The Revising Group of "Mandbook of Mechanical and Power Equipment Repair and Maintenance", Part Che Mechanical Industry Publications Peking, 1976

Explanations of the Revision

The tentative edition of this Mechanical Repair Manual began, since 1966, to be published in separate volumes and up to the end of 1973 the publication was basically completed. Since the beginning of the Proletarian Great Cultural Revolution, people throughout China, under the direction of Chairman Mao's revolutionary line, created a high tide of presping revolution and promoting production, so the socialistic revolution and economic development and construction were all found in a state of leaping forward. In recent years, many mechanical repair workers often write and ask us to reprint the book. In our consideration, however, a part of the contents of the tentative edition appears to be out of date, and the rest few parts of this book, which has not been published yet, due to the fact that the manuscipt of them was drafted some times ago, have the same problem. So we have no plan to print the unpublished parts in the form of tentative edition, and we now try to revise both the published and the unpublished parts and publish it as "Revised First Edition".

After revision, this manual consists of seven sections. Section 1: The Design of Equipment Repairing, Calculation and Measurement Drawing; Section 11: The Repair of Equipment Parts and Working Techniques; Section 111: The Repair of Metal Cutting Machine; Section IV: The Repair of Casting, Forcing Press, Lifting and Transportation equipment and Industry Murnace; Section V: The Repair of Power Equipment; Section VI: The Repair of Electrical Equipment; and Section VII: The Maintenance of Equipment.

This section is the revision of the Section 1 of the tentative edition. Originally it consists of seventeen chapters. Except that Chapter 17, The Manufacturing Techniques of Main Repair Pieces of Equipment, is alloted to Section 11, the rest sixteen chapters remain. Because the original chapters 1, 2 and 3 are combined into one chapter, and there is an additional chapter, "The Standard Pieces", this section now comprises fifteen chapters and is divided into thirteen volumes. Chapter 1: "The Fundamental data of Equipment Repair" (Volume 1); Chapter 2: "The Materials often Used in Equipment Repair" (Yolume II); Chapter 3: "The Driving of Cylindrical Gear" (Yolume III); Chapter 4: "The Driving of Conical Gear" (Volume IV); Chapter 5: "The Criving of Screw Rod" (Volume V); Chapter 6: "The Belt Driving" and Chapter 7: "The Chain Driving" (Volume VI); Chapter 3: "Screw Thread and Ball Wire Support" (Volume VII); Chapter 9: "Spring" and Chapter 10: "Key Linkage" (Volume VIII); Chapter 11: "Axes Connector" (Volume IX); Chapter 12: "Standard Pieces" (Volume X); Chapter 13: "Rolling Bearing" (Volume XI); Chapter 14: "Sliding Bearing" (Yolume XII); Chapter 15: "The Driving of Liquid Pressure" (Volume XIII). To the chapters which remain, revision and addition of different degrees are also made. Among them, Chapter 4 "The Driving of Conical Gear" is the result of rewriting and Chapter 15 "The Driving of Liquid Pressure" is never published in the form of tentative edition and it is also the result of rewriting.

Of this revision, the revising group and those who take part in writing and editing, based on the opinions suggested by readers recarding the tentative edition, all make some definite investigation and research. Even though, inadequacy and errors in this revised elition are certainly not

nonexsistent.

The revision of this Section is carried out by the revising group, which is selected and organized under the guidance of Mechanical Industry Bureau and Motor Industry Company of Peking. The revising group includes members from Peking Automobile Factory; Peking Machine-tool Factory, No.1; Peking General Factory of Internal Combustion Engine; Peking Factory of Switches; Peking Machine-tool Factory; No.6, Peking Factory of Machine-tool Accessories; Peking Crane Factory.

CONTENTS

•	Fern	rous Metal Materials	
	(1)	The Princinples of Naming and Numbering Steel Produced in China	1
	ı.	Current Standard (GB221-63)	1
	2.	Old Standard (regulated by former Heavy Industry Ministry)	9
	(2)	The Brand, Composition, Property and Uses of Steel	11
	1.	General Carbon Steel (GB7CO-65)	17
	2.	High Quality Carbon Construction Steel (GB699-65)	15
	3.	Easy-to-cut Construction Steel (YB191-63)	2
	4.	General Low Alloy Construction Steel (YB13-69)	25
	5.	Alloy Construction Steel (YB6-71)	33
	6.	Carbon Tool Steel (Y35-59)	56
	7.	Alloy Tool Steel (Y37-59)	5 9
	ತೆ.	High Speed Tool Steel (YBl2-59)	4 7
	9.	Hot Rolled Flat and Screw Spring Steel (YB8-59)	69
	10.	Strinless and Anti-acid Steel (Y910-59)	77
	11.	Heat Resisting and Blisterless Steel (TB11-59)	~6
	12.	Chrone Bearing Steel (Y39-68)	82
	(3)	The Heat Treatment Norms and Substituting Materials of Steel	8 3
	ı.	The Cormonly Used Heat Treatment Methods of Steel	83
	2.	The Symbols of Steel Heat Treatment (GC423-62)	82
	3.	Heat Treatment Norms and Substituting Materials	85
	(4)	Iron Casting and Steel Casting	101
	1.	Gray Iron Casting (GB976-67)	101
	2.	Cray Iron Casting (JB297-62)	103
	•	Sphonoidal Crapidtia Tran Capting (13302 63)	101

4.	Forgeable Iron Casting (GE978-67)	105
5.	Heat-resisting Iron Casting (JB640-65)	106
6.	Carbon Steel Casting (GB979-67)	108
(5)	Section Steel	109
1.	Rolled Thin Steel Plate (G3708-65)	109
2.	Hot-rolled Thick Steel Plate (GB709-65)	111
3.	Hot-rolled Round Steel and Square Steel (GB702-65,3B703-65)	113
4.	Hot-rolled Hexagonal Steel (GE704-65)	115
5.	Cold Draw Round Steel (GB905-66)	116
ó.	Cold Draw Square Steel (G3906-66)	117
~.	Cold Draw Hexagonal Steel (GB907-66)	118
3.	Fot-rolled Flat Steel (G3704-65)	119
9.	Hot-rolled Equilateral Angle Steel (Y3166-65)	120
10.	Hot-rolled Unequilateral Angle Steel (Y3167-65)	126
11.	Hot-rolled General Channel Steel (GB707-65)	129
12.	Hot-rolled Light Channel Steel (YB161-63)	131
13.	Hot-rolled General I Steel (GBTC6-65)	132
14.	Hot-rolled Light I Steel (YE163-63)	134
15.	Crance Steel Runway (73172-63)	135
16.	Steel Rail	136
1~.	Electric-welding Steel Pipe (YB242-63)	139
13.	Water and Gas Feeding Steel Pipe (YD234-63)	141
19.	Hot-rolled Seamless Steel Pipe (YB231-64)	143
20.	Cold Draw (Cold-rolled) Seamless Steel Pipe (YB231-64)	146
21.	Roiler-use Seamless Steel Pipe (MB232-63)	151
22.	Carbon Spring Steel Wire (VR274-64)	7.50

23.	Spring Steel Wire for Important Use (YB550-65)	154
(6)	A Comparison of China's Principal Steel Grades With Those of Other Countries	156
1.	The Principles of Maning and Numbering Steel in Other Countries	156
2.	A Comparison of China's Steel Grades With Those of Other Countries	190
(7)	The Marks of Steel Material Painting	197
11. No:	n-ferrous Metal Materials	200
(1)	The Methods of Indicating the Brand of Non-ferrous Metal and Alloy Products	200
(2)	The Brand, Composition, Property and Uses of Non-ferrous Metal and Alloy Products	204
1.	Products from Pure Copper Processing (Y3145-65)	204
2.	Cast Brass	205
3.	Products from Brass Processing (YB146-71)	208
4.	Cast Bronze	212
5.	Products from Bronze Processing (YB147-71)	213
ó .	Cast Aluminium Alloy (Y3143-65)	217
7.	Tin-base Bearing Alloy (YB487-65)	219
(3)	Section Materials	220
1.	Copper Bar (YB456-71)	220
2.	Brass Bar (YB45~-71)	220
3.	Silcon Bronze Bar (YB455-71)	222
4.	Copper Plate and Bar (YB459-64)	223
5.	Brass Plate and Band (YB460-1)	224
6.	The Different Kinds of Muminum and Aluminum Mllor Plate (YB605-66)	226
7.	Aluminum and Aluminum Alloy Plate Which Cannot be Strengthened Through Heat Treatment	327

ಕೆ.	Aluminum Alloy Plate Which Can Be Strengthened Through Heat Treatment	228
۵		
	Hot-rolled Aluminum and Aluminum Alloy Plate (Y3608-66)	229
10.	Extruded Copper Pipe (Y3447-70)	230
11.	Drawn Copper Pipe (YB447-70)	232
12.	Extruded Brass Pipe (YB448-71)	236
13.	Drawn Brass Pipe (YB448-71)	238
(4)	A Comparison of China's Principal Non-ferrous Metal Brands With Those of Other Countries	240
111. No	n-metallic Materials	244
(1)	Pubber and Rubber Products	244
1.	Sealing Rubber Products (HC4-329-66) (ring-shaped)	244
2.	Rubber Sheet for Industry Use (MG4-400-66)	246
3•	Square and Round Rubber Strip (Hu Q/HG16-019-63)	249
4.	General All-rubber Tube (HGA-404-66)	249
5.	Rubber Tube Reinforced With Cotton Thread (4G4-405-66)	250
6.	Pressure Rubber Tube of Rubber-sandwich-cloth (HGB4005-60)	251
7.	High Pressure Rubber Tube With Steel Wire Reinforcement (MC4-406-66)	252
(2)	Plastic Materials and Their Products	253
1.	Phenolic Plastic Material	253
2.	Industry Organic Glass (HG2-343-66)	255
3.	Polyvinyl-choride	255
4.	Fluorinated Plastic Materials	260
5.	Cinnamene-Butadiene-Propenyl-cyanide Copolymer (ABS)	265
6.	Low Pressure Polythene	266
7.	Folyamide (nylon)	266

8.	Polyformaldehyde	268
9.	Polycarbonate	269
10.	Polysulfone	270
(3)	Asbestos and Asbestos Products	270
1.	Rubber Asbestos Sheet (JC125-66)	271
2.	Oil-resistant Rubber Asbestos Sheet (GH539-65)	272
3•	Asbestos Brake Band, Brake Friction Blade and Clutch Friction Blade (manufacturing mark 48-61, JC23-66 and JC124-66)	2 7 3
4.	Oil-immersed Asbestos Coil Root (1068-64)	2 7 4
5.	Rubber Asbestos Coil Root (JC67-64)	2 7 6
(4)	Wool Blanket for Industry Use (FJ314-66)	277
(5)	Sealing Materials	2 <u></u> ò
	A List of Tables (Substitute for Index)	283

1. Ferrous Metal Material

- (1) The Principles of Maming and Mumbering Steel Produced in China
 1. Current Standard (GB221-63)
 - (1) Chemical Elements Indicated by International Chemical Symbols (Table 2-1-1)

		le 2-1-1 T									
Eleme	ent	Internati	Eleme	nt	Internatl	Eleme	ent	Internati	Flem	ent	Internati
"lame	in	Chemical	Name	in	Chemical	Name	in	Chemical	∵ame	in	Chemical
Chine	ese	Symbol	Chine	se	Symbol	Chine	ese	S-mbol	Chine	ese	Stribol
Ge	\$ 7.	Cr	Wu	15	`A	Peng	₹	3	4	97.2	1c
Nie	E.	Ni	Mu	钼	Мo	Ku	:-	Co	Tan	20	C
Gui	a	Si	Fan	护	Α	Dan	瓦	37 -1	Shi	i.	Ce
Meng	84	Mn	Tai	钛	Ti	Ni	智	ď."	Se	抽	Cs
Ltt	帽	41	Tong	9	Cu	Tan	₩.	Тa	Gao	ŗ?	Zr
Lin	2	P	Tie	铁	Fe	Gai	FF.	Ca	Lan	j.	<u> La</u>

(2) The Chinese Characters and the Initials of Romanized Chinese used for Indicating the Uses, Smelting Methods and Pouring Methods of the Products (Table 2-1-2)

Table 2-1-2 The Symbols of Tses, Smelting Methods and Pouring Methods of Steel Products

Nam e	Chinese	Initial Romanize		Name	,	Initial Romanize	
	Character	Chinese			Character	Chinese	
Open furnace	Ping	Capital	P	Bridce ≈teel	Qi30	Smc11	a
Acid side-blown	-			Furnace steel	Guo		O.
converter	Suan	:	S	Rail steel	Gui	Capital	IJ
Basic side-blown				Grade A steel			A
converter	Jian		J	Grade B steel			В
Top-blown	**			Special kind	行 報		
converter	Ding		D	steel	189 167		С
Boiling steel			ਬਾ	Rivet screw	V30		•
Semi-killed	***			steel	luo		ML
steel	Fu s s s s s s s s s s s s s s s s s s s	Small		High Trequen-	排標		
Cast pig iron	Zhu 🤼		2	cy (used for	, #3		
Cold-cast	电铁		_	electric sil-			
wheel pig iron	Leng		L	con steel)	Gao		G
Silcon steel			_	Weal marmetic			•
used in elec-				field (used			
tric industry	Dian		D	for electric			
Pure iron used	<i>D</i> 2 (33)		_	silcon steel)			3
in electric	Dian			Medium magne-			
industry	Tie		or	*			
12000 02 /		TO 777 CO		tic field			
	,	lo be co.	TIN	U T D			

Continued		~		~ .	T-212-7	
**	Chinese	Initial of	i	Chinese	Initial of	
Name		Romanized	Name		Romanized	
-, 	Character	Chinese	; ,	Character	Chanese	
Easy-cutting		†	used for elec-	:	1	
steel	Yi		tric silcon	:		
Magnetic steel	! Ci	Ċ	, steel)	Zhong	, ;	H
Carbon tool		1	Steel used for			
steel	Tan	T	geological			
Welding bar	1	t	exploring tube	Dizhi 🕳	•	DZ
steel	Han s	H	Gray cast	上质		
Ball bearing	**		iron	Huitie 次数	•	TT
steel	Gun 🥳	G	Forgeable cast	球鉄		
High grade	Han 最级 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数		iron	Ketie	3	T.
steel	· Gao 特	A	Scheriodal			
Special Grade	Te fil	፵	graphite cast			
Ship-building		_	iron (machine			
steel	Chuan	С	mark)	Quitie		QT
20002		•	Pearlite forge			•
Meat-resisting			able cast iron			
cast iron			(machine mark)			KTZ
(machine mark)	Retie **	37	Heat-resisting			
Cast steel	1.000		spheriodal gra	1		
0230 3:061	1	20	phite cast iron			
	İ		(machine mark)	1		ROT
			(mac time mark)			

(3) The Brand of Steel Products Indicated by Chinese Characters or the Letters of Romanized Chinese (Table 2-1-3)

Table 2-1-3 T			Brand of Steel Products
Name of	Samples of E	Brand	'fethods of
	Brand in	Letter	Indicating
Products	Chinese	Symbol	Brands
Pig iron			The brands of pi iron are
Cpen furnace	Jianping 08	POS, PlO	indicated by the regulated
pig iron	Jianoins 10		symbols. Then the average
Acid converter	Xuanzhuan 13	S13, S13	silcon content of some per
pig iron	Xuanzhuan 13	•	ten thousand is added. For
Basic side-blown	Jianzhuan 😘 💎	J08, J10	instance, of cast pig iron,
converter pig iron	Jianzhuan 10	,	of which the silcon content
Cast pig iron	Zhu 40, Zhu 30	Z40, Z30	is 3.76 - 4.25%, the brand
Cold-cast wheel	,	,	is "Zhu 40" or "Z40".
<u>piz</u> iron	Leng 08	LO3	
Iron allow			The symbols of the chemical
Silcon iron	Gui90, Gui45	3i°O, Si45	elements in the iron alloy
Manganese iron	Meng 1, Meng 3	Mnl, Mn3	brands are indicated accord-
Titanium iron	Tai 25, Tai 231		ing to regulations, and

Name of	Samples of Bra		Methods of
	Brand in	Letter	Indicating
Products	Chinese	Symbol	Brands
Iron alloy			only the chemical element
Chromium iron	Ge∕000,Ge 5	Cr0000, Cr5	not the iron element are
Boron iron	Peng 51, Peng 52	B 51, B52	indicated. For example, th
Phosphorus iron	Lin 20	P20	brand of silcon iron
Molybdenum iron	Mu 551, Mu 552	Mo551.Mo552	(Si75%) is "Gui75" or
Tungsten iron	Wu 30, Wu 65	w80, w65	"Si75". The brand of man
Niobium iron	Ni 20	Nb20	gamese-silcon alloy is
Vanadium iron	Fan 351, Fan 352	V351, V352	"Meng-gui 20" or "MnSi20".
Manganese-silcon	Meng-gui 20	MnSi20	If the contents of main
alloy	Meng-qui 17	Mn17	elements are same and the
Calcium-silcon	Gai-gui 20	CaSi2O	contents of foreign mate-
alloy	· dar-gar 2)	0.10220	rials are different, the
4110./	•		main contents are indicat
			by arabic numbers after
	•		the Chinese character acc
	i		-ding to the order of this
	1		quantity. For example, the
			molybdenum iron of which
	1		the molybdenum content is
			55%, it is indicated as "in
			551;"% 552" and "Nu 553"
	i ;		or "Mo551", "Mo552", and
			Mo553".
	!		Chromium iron and mang-
			anese iron are indicated
			respectively by arabic
•			number in due order after
			the element symbols.
General carbon stee.	1		7.0 520mc10
A grade steel	A3, 4-Jian-3,	A3, Aj3	General carbon steels
. 3	A-Suan-3, 13-74,1		are indicated by the sym-
	A-Ding-3, 13-ban	AD3, A3b	bols of A, B, C, and arabic
B rade steel	31, 3-Suan-3	B1, BS3	numbers in order. The ger
B Tade 50002	B-Jian-3, 31-Fu	BJs, BlF	eral car on steels can be
	7-Suan-3-Fu		divided into A grade stee
	B-Jian-3-Tu	3 537 BJ 3F	(guaranteed mechanical
	B-Ding-3,31-ban	BD3, 315	property, 3 made steel
	3-Suan-3-ban	3 5 3b	(ruaranteed chemical com-
	B-Jian-3-ban	BJ3b	ponents) and C grade stee
Special steel	Te-3, Te-Jian3	C3, CJ3,	(<i>ruarinteed mechanical</i>
Special Speci	Te-Ding-3	CD3	property and chemical components
	10-11-1-y		
			ponents). Converter steel
			is prefixed with symbols
			of processing methods;
	TO BE CONTIN	TED	and the second s

Name of	Samples of B	rand	_ Methods of
	Brand in	Letter	indicating
Products	Chinese	Symbol	brands
	9.12.1030		basic converter steel is marked with "J"; acid converter steel with "Sus or "S"; top-blown converter steel with "Ding" or "D"; and open furnace steel is not marked with any symbol, for example, "Jial" or "Al"; "Yi-Jian 2" or "BJ2"; and "Te-Suan 3" or "CS3". Steel which is for special use is marked with an initial letter of the usage at its end, for example, "Jia-3-qiao" or "A3q"; boiling steel and semi-dead-melted steel are respectively marked with "Fu" or "F" and "Bar or "D" at the end; the killed steel is not marked
			with any symbol.
High-quality carbon steel	05, 08Fu 50 meng, 20 ban	75,087 50141,20b	High quality carbon steel is often indicated that its average content of carbon is only some by ten thousand. Boiling steel and semi-dead-melted specifically, for example the brand of semi-dead-melted steel of which the average content of carbon is 0.10% is "10-ban"or "10b". Of the high quality carbon steel which has high content of manganese, the manganese element must be marked out, for example, the brand of killed stee of which the carbon content is 0.5% and the manganese content is 1.77 - 1.00% is "50 meng" or

TO BE CONTINUED

Name of	Samples of	Brand	Matheday 10
	Brand in	Letter	lethods of indicating
Products	Chinese	Symbol	brands
			The high quality car-
		;	
		! I	bon steel for special use
		1	must be marked by using
		!	Chinese characters indi-
			cating usage or letters o
		•	romanized Chinese, such a
		·	"20 guo" or "20g".
Carbon tool steel	Tan 7, Tan 3	T7, T8	Carbon tool steel can
	Tan-10- meng	TIÓM	be shown by using "Tan"
	Tan-10-2a0	T10 4	or "T" and indicated by
		•	some per thousand of the
			average carbon content. The
		•	
		i	manganese element of carb
		i	tool steel with high con-
			tent of manganese must be
			marked out. The high grad
		•	good quality carbon tool
			steel is marked with sym-
			bols of "Gao" or "A", for
			example, the brand of hig
			manganese centent (0.15
			0.40%) carbon tool steel
			with an average carbo
			content of 1.00% is "Tan-
	•		10-meng" or "TlOM".
	w: 30		The easy-to-cut steel
The sale has been as a large			ine easy-co-mit steel
East-to-cut	Yi 12,	¥12	
East-to-cut steel	Yi-40-meng	112 140Mn	is often marked by using
			is often marked by using "Yi" or "Y" and indicated
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average
			is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i
steel	Yi-40-meng	Y49Mn	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y405m".
steel Silcon steel used	Yi-40-meng Dian 31	Y40Mn D31	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y40Mm". The Chinese characters
steel	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-40-meng" or "Y40\m". The Chinese characters letters of rownized
steel Silcon steel used	Yi-40-meng Dian 31	Y40Mn D31	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y40th". The Chinese characters letters of rownized Chinese and numbers in the
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y405m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y401m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y400m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give the following meanings:
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y401m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give the following meanings: The first Chinese char
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y401m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give the following meanings: The first Chinese char
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y40%". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give the following meanings: The first Chinese character "Dian" or a letter "
Silcon steel used in electric in-	Yi-40-meng Dian 31 Dian Gao 310	Y40Mn D31 DG310	is often marked by using "Yi" or "Y" and indicated by some per ten thousand of average carbon content for example, the brand of high manganese content (1.20 - 1.55%) easy-to-cu steel with an average carbon content of 0.40% i "Yu-10-meng" or "Y401m". The Chinese characters letters of rownized Chinese and numbers in the brand of silcon steel use in electric industry give the following meanings: The first Chinese char

Name of	Samples of	Brand	Methods of
	Brand in	Letter	indicating
Products	Chinese	Symbol .	brands
		1	The second Chinese char-
		Ť	acters "Gao", "Ruo", "Zhong"
		}	or the letters "G", "3" and
	1		"H" are used respectively
		ļ	to indicate the conditions
		1	of magnetic field when the
	!		steel plates are examined.
	1	į.	"Gao" or "G" — steel
		İ	plates examined when the
	j :	1	frequency is 400 cycles.
			"Jou" or "R" steel
	•		plates examined at a weak
		•	magnetic field.
			"Zhong" or "H" stee
			plates examined at a mediu
		1	magnetic field.
	1		If there is no second
•			Chinese character, it indi
	4	:	cates that steel plates ar
	!	:	examined at a strong magne
	1	i	tic field.
	i		The first digits of num
		i	bers (1, 2, 3, 4) are used
			respectively to indicate
	i	:	the degree of silcon conte
	•	i	of the steel plate:
			1 low silcon steel
			2 medium silcon ste
			3 higher silcon ste
			4 him silcon steel
			The second digit (1, 2,
			3, 4) shows the guaranteed
			electromagnetic property
			of the steel plates. Of the
	i	;	same allow grade and at the
	i	t.	same examining magnetic
	1		field, the greater the sec
			ond digit is, the better
			the electromagnetic proper
			ty of the steel plate is.
			The third and fourth di
			rits (0.00) simily the
			following cold-rolled stag
			plates:
			0 orrstal orie thati

Mame of	Samples of Bra	ınd	→ Methods of
	Brand in	Letter	
Products	Chinese	Symbol	indcationg brands
			cold-rolled steel
			plate
			00 cold-rolled
			steel plate of
			lesser degree of
			crystal orienta-
			tion.
Pure iron used	Dian-tie 1	DTl	"Dian-tie" or "DT" is used
in electric	Dian-tie-1-Jao	DTiA	to represent pure iron used
industry	Dian-tie-l-Te	DTLE	in electric industry and 1,
-			2, 3 the order number
			added after is to distinguish
			the different brands. At the
			end of the pure iron which ha
			better electromagnetic proper
			ty is marked with "Gao" or "A
			At the end of pure iron which
	;	• •	has specially good electro-
			magnetic property is marked
			with "Te" or "E", for example
			"Dian-tie-l-Te" or "DT15".
Alloy steel			
Low alloy	10-Meng-Gui-Tong		
structural	25-Meng-Gui	251 nSi	bols in the brand of allow
steel	-0.2	000 15 13	steel are marked according to
Alloy structural			Athe existing regulations
steel	30-Ge-Meng-Gui	30CrlinSi	
Alloy tool	5-Ge-Nie-Mu	5CrNiMo	mical components are as
steel	Ge-12,Ge-06		Sfollows:
	4-Ge-Wu-2-Gui	4CrW2Si	1. Carron content: They are
Spring steel		55Si2	all indicated by some per ten
	60-Jui-2	60Si2	thousand of average carbon
Heat-resistant,	~~ ·· · · · · · · · · · · · · · · · · ·	2Cr13	content. The carbon content of
stainless and	1-Je-18-Jie-9Tai	Ti	stainless steel, high electric
acid-resistant		11	resistant alloy, high speed
steel	0 C- 17 T- 5	00-17417	steel, magnetic steel and other
Steel and high	0-Ge-17-Lu-5	OUTIVAL5	allow steels is not marked out
electric resis-	Ge-14-Nie-14-	Si2W2No	
tance alloy	Gui-2-Wu-2-Mu		
High-speed tool	Mu-l-Ge-4-Fan	VISCr4V	the average carbon content of
steel	Wu-9-Ge	790r	alloy tool steel is larger
Ball bearing	Gun=Ge=6	GCr6	than or equal to 1.00%, the
steel	Gun=Ge=15-Gui=	30r1551-	carbon content will not be
Steel used for	Meng Han-08-lao	H084	marked out. If the content is
welding bar	Han-0-3e-13-	1900r19-	less than 1.00%, it will be

Name of	Semples of B	rand	Methods of
	Brand in	Letter	indicating
Products	Chinese	Symbol	brands
	Nie-9-Tai	Ni9Ti	indicated by some per thou-
Magnetic steel	Ci-Ge-5	CCr5	sand.
_		1	2. Alloy elements content:
		1	Except for ball bearing steel
		•	and low chrome alloy tool
			steel, the content of alloy
			elements will be indicated in
			accordance with the following
			principles (average content).
			1) When allow average con-
		i	tent is less than 1.50%, in
			steel grade, only are element
	i		shown not the content.
		1	2) When alloy average con-
	!		tent is equal to or larger
	i		than 1.50%, 2.50%, 3.50%
	! !		23.503, it should be cor-
	i		respondingly written into 2,
	ļ		3, 4, 24
	•		3) When alloy average con-
			tent is 1.50 - 2.49%, 2.50 -
	1		3.49% 22.50 - 23.49%
			it should be correspondingly
			writen into 2, 3, 23
	:		4) In order to avoid redu
			dance of the brand of ball
			bearing steel with that of
			other allows, the carbon con-
			tent of ball bearing steel
	•		will not be given, and the
	1		chrone content is indicated
	•		some per thousand and is also prefixed with the name of usa
	•		ge, for instance, of ball bes
			ring steel, of which the chro
			content is 0.90%, the brand i
	t		Gun-Ge-9" or "GOr9". Low chro
			allow tool steel shows its
	:		chrome content by some per
	•		thousand, and the content is
			prefixed with "O", for exampl
	ı		the brand of alloy tool steel
			which has a chrome content of
			0.00%, is "GeOo" or "Grace".
			The mark of welding bar
			steel is prefixed with ""an"

TO BE COUTTUED

Name of	Samples of	Methods of	
Products	Brand in Chinese	Letter Symbol	indicating brands
			or "H", for example, "Ham-2-Ge-3" or "H2Cr13". Magnetic steel is indicated by alloy elements, which is pre- fixed with Chinese chara cter "Ci" or "C", for example, the brand of magnetic steel, which ha chrome content of 5%, is "CiGe-5" or "CCr5".

2. Old Standard (regulated by former Heavy Industry Ministry)

In 1952, the former Heavy Industry Ministry issued the steel numbering method, which is essentially identical with the current standard except that letters of the romanized Chinese characters are used to indicate chemical elements, uses, processing methods and pouring and casting methods (Table 2-1-4)

Table 2-1-4 A Contrastive Table of the Old and New Standards of
Using Symbols to Indicate the Brands of Steel Products

Name	Old Standars	New Standards
Acid converter steel	与丸	PS (acid converter steel, rade B
Open furnace steel	久大	B (open furnace steel, rade B)
Molybdenum	п	Mo
Vanadium	L .	, v
Carbon, carbon steel	±	! т
Chromium	*	1 Cr
Cobalt	į «	Co
High quality steel	4	A
Silcon	T	Si
Ball bearing steel	*	G
East-to-cut steel	P	Y
High speed tool steel	4	_
Tungsten	X	w
Aluminum	u	A1
Nickel	+	Ni
Titanium	*	Ti
Steel	t	A (grade A steel)
Manganese	1	Mn

 (2) The Brands, Composition, Properties and Uses of Steel

1. General Carbon Steel (GB700-65)

	able 2-1-	7 1110 11.0	G. 12111.	teel	oner sies	s and 1	ses or	zeneral	Carbon	Steel (
No. of Order	Rasic Ope		ace Ste	el	Side-bl Steel		sic Con	verter :	Steel	onverter
		mbol 3	and S	aradei	Brand		Specia.	T Strade	France	A
1	甲; (ご:3 l) A 甲:弗 (Jai l-		:		31	37730 <u>1</u>	.ar And	39m.01	Trand	<u>Symbol</u>
2	用2 (Jia 2) A 用2 m (Jia 2- 子1) A	特:	2) :#s	C2 (Fac Jian 2) Fac Jian Jij an 2Tu		特战 ? (Te-Ji- an 2) 特策 2 第 (Te-Ji- an 2 Fu	CJ2		
	#3 (Jia 3) A	3 (Te		03 (₩₩3 Jia-Ji- an 3)		特報3 (Te-Ji- an 3)		甲腺3 (Jin=Sunnan)	- 153
3					·		符號 3 帰		甲酸3份	
	#3 औ (Jia 3 A ∓u)	#3 3F (Te Fu	3	C3Ŧ (##3# Jia-Jir n 3 Fu)					
4	甲4 (Jia 4) A 甲4弗 (Jia 4 : A Fu)	25 g	4) 0 ** 4 0	4 (a 47 (Has Jia-Ji n 4) Has Jia-Ji un 4 Tu)	ህ ፈዋ	特報4 (Te-Jian 4) 特職4時 (Te-Jian 4 Tu)	·	甲酸4 (Jia-Su an 4) 甲酸4島 (Jia-Su an 4 下a	. 1347

TO BE COMMITTUED

Ta	able 2	2-1-5	The l	<u>fechanic</u>	al Prope	rties and Use	s of General Carbon Steel (2)
l'o. of Order	Yield (k		ngth) Size	Tensile Strnth	Mechanic Rate of	al Prope 180°Cold Pen Test.d = ben diameter o = thicknes of tstg pcs	rties d d Samples of Uses
1	•			34-40	33 28	d = 0	Spare parts of metal structure for small load, padding piece, rivet, padding ring, foundation bolt, open pin, guy rod, parts of press and welding piece.
2	22	20	19	34-42	31 26	· · · · · · · · · · · · · · · · · · ·	Metal structure component, guy rod, ring, rivet, bolt, stub axle, mandrel, cam wheel (for small load), hook, padding ring, carbureter part and welding piece.
	24	23	22	38-40 41-43 44-47			Metal structure component, carbureter or cyanation parts which require no high central strength, hook, guy rod, carrier hook, ring, cylinder, commonly, bolt, female screw, connecting rod, wheel axle, wedge,
3	24	22	21	3°-40 41-43 44-47	27 23 26 22 25 21	d = 0.5a	
4	26	25	24	42-44 45-43 49-52		đ = 2a	Yetal structure component, surming skle, mandrel, suy rod, hook, hoop, rowing rod, bolt, wedge, switch and other spare marts which require no high strength. Meldability is guite mood.

TO BE CONTINUED

	nued (Steel			Grade			
	Basic (Open Fu	rnace St	eel	3ide-bl Steel	own	Basic Co	nverter	Side-1 Acid (Steel	olown Converte
	Grade	Λ	Special	Grade		4	Speci	al Grade		Ą
	Brand	Symbol	Brand	Symbol	Brand	Symb	ol Brand	Symbol	Brand	Symbol
<u> </u>	#5 (Jia 5)) 1 <i>E</i>	#\$ 5 (77 E)	05	甲載 5	175	特破 5		甲酸 5	
כ	(dra)	1 A)	(Te 5)	6 5	(/13-02 an 5)		(Te-/)	⊵ CJ5	(Jia-Su an 5)	155
	 	·	 							·
6	#: (Jia 6)	A6			甲酰 6 (Jia-Ji				甲艘 6 (Jia-Su	- 156
	, ,	!			an 6)				an 6)	.,
		-					: 			
:	β 1 7	1	•	:	甲載7					
(Jia 7)	A7			(Jia-Ji an 7)	AJ7	:			
		1			*	1				

Cont	inue	d (2)						
				,	'ech	anica	d Prope	erties
	Gro	(kg/					180°Cold Ben Test,d = ben diameter o = thicknes of tata pcs	d d Samples of Tses
5	28	27	26	50-53 54-57 58-62	20]16	d = 3a	Turning axle, mandrel, pin axle, switch wheel, brake bar, bolt, female screw, padding ring, connecting rod, hook, wedge, cogwheel, switch and other parts of which the requirement of strength is high. The weldability is quite good
6	31	30	30	60-63 64-67 68-72	1 5	12		Turning axle, mandrel, main axle, clutch and frictional clutch, chain-ring, brake steel band, switch and spare parts, of which the requirement of strength is high. Welda-
7				70 – 74 ≥ 7 5				bility is not good enough Turning axle, mandrel, main axle, clutch and frictional clutch, chain- ring, brake steel band, switch and spare parts which can endure strong friction. Weldability is poor

2. High Quality Carbon Construction Steel (GB699-65)

Table 2-1-6 The Chemical Composition, "echanical Properties and Uses of High Quality Carbon Construction Steel (1)

Stee	1 Grade	TILL I NUCLE		onstruction Component		
Brand	Symbol	c	Si	ľ'n	P S	Cr Ni
05# ()57ei)	057	<u>€ 2.06</u>	≤0.03	2,43	0.035 0.040 0.	<u> 20 0.25</u>
08 क़ (OSTei)	Cêr	p.0 5.0.11	<pre> ≤ 0.03</pre>	0.25~0.50	3.040 9.340 9.	10 0.25
08	08	0.05~0.12	0.17~0.37	0.35~0.65	0.035 0.040 0.	.10 0.25
10第 (10Fei)	10F	0.07~0.14	. ≤ 0.07	10.25~0.50)	.15 1.25
10	10	 0.07 ~ 1.12	 0.17 ~ 0.37 	7 0.35~0.6	5 0.035 0. 040 0	2.15 7.75
15第 (15Fei)	15₹	0.12 ~ 0.19	€ 0.07	0.25~0.50	0.040 0.040 0	.25 0.25
15	15	0.12~0.19	0.17~0.37	7 0.35 ~ 0.6	5 0.040 0.040 0	0.25 0.25
20# (20Fei)	20 F	0.17~0.24	€ 7.37	0.25~7.	50 0.040 0.040	0.250.25
20	20	0.17~0.2	40.17~0.3 C BE CONTI		650.0400.25	<u> 3.253.25</u>

Table 2-1-6 The Chemical Composition, Mechanical Properties and Uses

1	of Hig	h Quality	Carbon Consti ical Propert	ruction Steel (2)
Strength	Tensile Strength o. (kg/mm ²)	Rate of Extension	Rate of Contraction	Immact Hardness
		>	· · · · · · · · · · · · · · · · · · ·	
. 17	30	35		131
20	33	33	60	131
19	32	33	55	137
21	34	31	55	137
22	36	29	55	243
23	30	27	55	143
23	39	27	55	156
25	: , 42	. 25	55	. 156

TO BE CONTINUED

Samples of Uses

Spare parts of cold washed bar steel and deep die pressed thin plate

The strength of this steel is not great but its plasticity and tenacity is high and performance in pressing, extending and bending is good. Spare parts which require good plasticity: pipe, padding piece, cap, packing ring. Carbureter and cyanation spare parts which require no high central strength: sleeve, stub axle, stopping block, supporting stand, copying die, cogwheel, clutch cushion. The weldability is good.

Spare parts which require good plasticity: pipe, padding piece, packing ring. Carbureter and cyanation parts which require no high central strength: sleeve, stub axle, stopping block, supporting stand, copying die, cogwheel, clutch cushion. The weldability is good.

The yield point and tensile strength specific value of this kind of steel is relatively low but itsplasticity and tenacity are both high, so in the cold state, it is easy to be pressed into shape. This steel is generally used to make guy rod, clamp head, steel pipe backing piece, packing ring, rivet. This steel shows no tendency of temper brittleness and its weldability is very good so it is often used to make welding parts.

Spare parts which require good plasticity: pipe, padding piece, packing ring. Carbureter and cyanation parts which require no high central strength: sleeve, stub axle, stopping block, sumporting stand, copying die, cogwheel, clutch cushion. The weldability is good. It can also be used to make rowing rod, hock, transverse pole, patching work, bolt, carriage hook.

Plasticity, tenacity, weldability and cold washing performance are all good, but the strength is relatively low. It can be used to make spare parts which receive no great force and require high tenacity. It can also be used as carbureter parts, fastening parts, mold pressed forging and low load parts which require no heat treatment, such as bolt, screw, draw strip, flannel disk and storage vessel in chemical industry and steam boiler.

Same as 157 steel

It can be used in various spare parts which do not bear treat stress and require very great tenacity, such as lever, axlebox, screw, aum rod, crate hook. It can also be used as carbureter and dynamical spare parts which has surface of high degree hardness and require no meat central strength.

Continued	(7)	۱
Continued	۱ <u>۱</u>	

ontinue —		Grade		Chemical	. Compositio	<u>p(3)</u>			
Bre	and	Symbol	c	Si	Mn	p	3	Or -	Ni ———
25	5	25	0.22~7.30	0.17~0.37	0.50~0.30	0.040	0.040	0.25	0.25
30		30	0.27~0.35	0.17~0.37	0.50~0.30	0.040	0.040 0	•25	0.25
35		35	0.32~0.40	0.17~0.37	0.50~0.90	0.040	0.740	.25	0.25
40		40	0.37~0.45	0.17~0.37	0.50~0.30	0.040	0.047.0	.25	0.25
45 		45	0.42~0.50	0.17~0.37	0.50~0.30	0.740	0 . 040 0	.25	0.25
, 50		50 D	.47~7.55	0.17~0.37	.50~0.30	0.343	.040 0.	25 C	.25
55	1	55 O	.52~ 0.60 0	.17~0.37	.50~3.30	2.340 0	. 940 / 6.	25	. 25
ļ	1								

TO BE CONTINUED

Continued (2	Con	ti	nued	(2)
--------------	-----	----	------	-----

		l'echanica	al Properties			
σ_{i}	06	Rate of Extension	Rate of Contraction	٥.	Hot- rolled	Annealed Steel
(kg/mm^2)	(kr/mm ²)		(%)		Steel	
					<u> </u>	<u> </u>
28	46	23	50	9	170	
30	50	21	50	*	179	
32	54	20	45	7	187	
34	58	19	45	6	217	1\$7
36	61	16	40	5	341	Io ~
3 \$	64 .	14	40	4	241	207
39	óó	13	35		255	21~

TO TE COUTITUED

Sample of Uses

The property is similar to that of steel No.20. This steel can be used to make welding equipment and spare parts which are processed through forging, hot pressing and mechanical working and bear no high stress, such as axle, roller, connector, packing ring, bolt, screw and female screw. The weldability and cold straining plasticity of this steel are high and there is no tendency of temper bristleness.

When this steel is used in steel product of small profile, after hardening and tempering, there comes a sorbite structure and thereby its strength and synthesis performance become better. Such spare parts as screw, wire rod, zwy rod, sleeve and axle.

The property is similar to that of Mo.30. It has good plasticity and adequate strength, so it can be used to make such articles as bent axle, turning axle, axle pin, lever, linking rod, beam, star wheel, disk, sleeve, hook ring, packing ring, screw and female screw. This kind of is mostly being used in the state of normalizing and modification and generally it is not used for welding.

T is kind of steel has high strength and it is generally through the processes of hardening and tempering. It can be used for welding, but before welding it must be heated to 150°C. Its workability is good. When it is making cold transformation, its plasticity is so so. It can be used to make roller, axle, crank pin, live axle, piston rod, link rod and disk.

It can be used in share parts which require high strength, and it is generally being used in the state of modification and normalizing. It is used to make blade wheel of steam turbine, and share parts of compressor and pump. In making share parts of compheel, wile, piston pin, steel Mc.45 can be used to replace carentation steel and it must go through high frequency current or flame surface hardening.

The fine steel of medium carbon with high decree of strength can be used to make spare parts which require high abrasive resistance and their dynamic load and the percusive action are not great, such as forged cogwheel, my rod, roller, axle friction disk, secondary spring, plough-share used in farming, heavy-load central axle andaxle. The weldability of this steel is not good.

After heat treatment, this steel shows high degree of surface hardness and strength. It has good plasticity and menerally is used affer normalizing, hardening and tempering. It can be used to make complete, link rod, axle ring, wheel rim, flat spring and roller, and it can also be used for casting. Its weldability and cold alterability are low.

be used for casting. Its weldability and count alteration and how.

This is a kind of steel which has considerably high strength and flexibility. In hardening, it can produce hardening crack. Only the

TO RE CONTINUED

Steel Grade					Chemical Composition(3)						
Brand	Syrm	nbol	С		Si	15	n	P	S	Cr	: Ni
	 _			<u> </u>		·				<	
60	60	0.5	5 7~ 0.6	5 0.17	~ 0.37	0.50~	0.80		0.040	0.25	5 0.2
									,		
65	65	0.6	62 ~ 0.7	0 0.17	~ 0.37	0.50~	0 . 30	0.049) 0.04	0-0.25	5 0.2
									·		-
									:		
7 0	70	0.6	⁷ ~ 0.75	0.17~	0.37	0.50~0	.30	0.040	: 0.040 	0.25	0.25
75	75	0.72	2~0 . go	0.0.17	•0.37	0.50~0	.80	0.040	0.040	0.25	0.25
30	30	0.7	7~0.85	5 0.1~~	0.37	0.50~0	.30	0.040	0,040	0.25	0.25
•							,				
35	85	0,82	~∘ . 90	C.17~	0.37 0	.50 ~ 0.	30 D	.040	0.949	0.25	0.25
15 組 (15] [eng)	15? ជ	0.12	~ 0.19	0.17~	0.37).70 ~ 1.	on 0	.040	0.040	0.25	0.25
20篇 (20Meng)	201'n	0,17	~ 0.24∶	0.17~	0.37	.~0~1.	00 0	•040 p	C.040	C.25	0.25
25 년 (25Meng)	251/h	.J.33	~ 0.30	0.17~	0.37	.70~1.	00 0	.040	0.340	0.25	0.25

CEUTITION EE OT

Can	+ 4	nue	a ((2)
: AC 3 E I				,

Viola	Tangila	Rate of	Properties	Impact	ardness		
Strength o,	Strength (kg/mm ²)	Extension	Contraction	Value (kg.m/cm ²)	Tot- rolled	Annealed	
			>			<	
41	69	12	35		255	229	
42	71	10	30		255	229	
43	73	9	30		269	229	
90	110	7	30		285	241	
95	110	6	30		285	241	
100	115	ó	30		372	255	
25	42	26	55		163		
23	46	24	50		107		
30	50	22	50	ò	207	1	

TO RE CONTINUED

Samples of Uses

small sized articles made of this steel can go through hardening and those of large size are mostly through normalizing. It can be used to make roller, axle, spring ring, spring, various packing rings, clutch, cam wheel, and steel rope. The cold alterability is low.

After proper heat treatment, the strength and flexibility of this steel become considerably high. Articles of large size made of this steel will produce crack easily when they are through hardening, so it is good to have normalizing. But article of small size can have hardening. This steel is not sensitive to tempering. It is mainly used to make valve spring, srping ring, axle, roller, various packing rings and cam wheel.

The strength and plasticity of this steel are higher than steel No.65 and the other properties are very approximate. The hardenability is relatively low. It cannot go through hardening if the diameter of a spring is over 12-15mm. It is only good for making spring of small cross-section and it is mainly used to make flat spring, cylindrical spring, steel wire, steel band and wheel rim.

Band spring, helical spring and abrasive resistant spare parts

Band spring, helical spring and abrasive resistant spare parts

The strength of this steel is higher than steel No.70 but the flexibility is low and the other properties are approximate. Its hardenability is poor, so it is only good for making vibrating spring of small cross-section and low bearing strength. It can also be used to make rail car, automobile, tractor and flate spring of machines, cylindrical spiral spring and steel wire and steel band.

If n steel is a dementation steel with high manganese and low carbon. Its properties are similar to those of steel No.15 except that its hardenability, strength and plasticity are all higher than steel No.15. It can be used to make spare parts which must be carburized and require high mechanical property at central part. The weldability is high.

Carburized steel with high manganese and low carbon has properties similar to those of 15 n. It can be used to make can shaft, completel, exte connector, which chain, draw rod. The weldability is scod.

The strength and hardenability of this steel are better than those of steel No. 10 and 15. It can be used to make carbureter and welding spare parts, such as cam shaft, cogwheel, axle connector, winch chain, pin, draw rod. The weldability is good.

TO BE COMMITTED

Steel	Grade		Chemic	al Composit	<u> Hon (5</u>)		
Brand	Symbol	· C	Si	l'in	P	5	Cr <	_
30望	1			;	,	····		
(301!eng)	301'n	0.27~0.35	0.17~0.37	0.70~1.00	0.040	0.040	0.25	
35 ½ (35) [eng)	מ'ול5	0.32~0.40	0.1~0.37	0.70~1.00	0.040	[0.040	0.25	_
40程 (40Meng)	401/m	0.37~0.45	0.1~0.37	0.70~1.00	0.040	0.040	0.25	_
45 4 (4 <i>5</i> . eng)	1451m	0.42~0.50	0.17~0.37	0.70~1.00	0.040	0.040	0.25	5
50 4 (501'eng)	501/n	0.43~0.56	0.1~~0.3~	0.70~1.00	0.040	0.040	C.25	_
00 ⊈ (රට`'eng)	60; n	0.5~~0.65	0.1~~0.3~	0.70~1.00	0,040	0.040	0.25	_
65 % (65! eng)	651 'n	0.62~0.70	0.17~0.37	0.90~1.20	0.040	0.040).25	-
								_
70億 (<u>70)</u> [eng]	מיינים	0.67~0.75	2 19 27	0.00-3.00	240	2 2/2	0 2-	

		<u> l'echanica</u>	L Properties			
Tield Strength o. (kg/mm ²)	o,	Rate of Extension	Rate of Contraction	Impact Value (kg.m/cm ²)	ot- rcoled	rdness Annealed Steel
, 		>				«
32	55	20	45	3	217	197
34	57	13	45	7	329	107
36	60	17	45	6	539	20 7
38	63	15	40	5	241	217
40	66	13	40	4	255	217
42	71	11	35		269	22°
44	~5	Ċ	30		235	53¢
<u></u> 	70	3	30		285	227

Samples of Uses

The strength and hardenability of this steel are higher than the corresponding carbon steel. The weldability is medium and the plasticity is good in cold transformation. It has good cutting workability, too. But there is a tendency of temper brittleness. After forging it must be tempered immediately. It is generally being used in a state of normalizing. It is used to make bolt, screw can, screw, lever, brake padd

Abrasive resistant spare parts: turning axle, mandrel, com/neel, fork, gripping rod, bolt, female screw, screw. The well-ability is

This steel can be used in the state of normalizing or hardening and tempering. Its cutting workability is good. The plasticity is medium in cold transformation. The weldability is poor. It can be used to make fatigue load bearing parts, such as axle-tree, screw which works under high stress and screw cap.

Abrasive resistant spare parts: turning axle, mandrel, cogmeel, fork, ripping rod, bolt, female screw, screw. The weldability is poor but the laoding ability is good. It can also be used to make clutch cushion, splined shft, free joint, cam shaft, bent axle, automobile rear axle, anchor bolt and double-headed bolt

The flexibility, strength and hardness of this steel are all high, and it is used mostly after hardening and tempering but under some condition it can be used after normalizing. The weldability is poor. It can be used to make heat treatment parts which require high abrasive resistance and can act under high load, such as cogwheel, rear shaft, friction disk and central axle with a cross-section under "Orm.

The strength of this steel is high and the hardenability is before than carbon spring steel. And the tendency of decarbonization is small but it has overheat sensitiveness, so it is easy to produce hardening cracks and also shows temper brittleness. It can be used to make large spiral spring, plate spring, various flat and cylindrical springs, spring ring and leaf and cold-draw steel wire (< Time and spring cord.

he strength of this steel is high and the hardenability is great. The tendency of decarbonization is small but it has overheat sensitiveness, so it is easy to produce hardening cracks and also has temper brittleness. It can be used to make various flat and ordinarical springs of large size, such as seat spring, spring cord and other abrasime resistant agricultural machines parts, such as plough and outsing lmife. It can also be used to make clutch spring for light load truck.

Spring ring, spring resider, coiled spring, anti-thrust ring, clubch austion and binding ring.

3 Easy-to-cut Construction Steel (YB191-63)

Table 2-1-7 The Chemical Composition, Mechanical Properties

							and Us	es o	f Ea	sy-t	o-cut	Construc	tion	Stee:	L
	eel. ede	Chen	ical	Corr	osit	ion			echar	nical	l Pron	erties			
Brand	S;/mbo1	С	lin	Si	S	P	Hot her The listrific (kg/	roll: t <u>tr</u> e Ext.	ing r Sect. contr	no ent Frnl Trdns	Tens	old drawing the strict tree ile strict kn/m-2) r steel eter(-m) 20-3020+	tren hExt Fat	t Frnl ehdns	Sample of "ses
5 12	Y12	0.38~	0.50~	0.15~ 0.35	9.0 1~ 9.20	0.08~ 0.15	42~57	22	36	160	60~80	55~75 52~7	7.0	167~ 217	To make screw and female screw
3 20	Y 20	0.15~	0.50~ 0.90	0.15~ 9.35	0.09~ 0.15	<0.06	16~61	20	30	168	52~80	57~76 54~7	3' 7.0	167~	To make parts of low machinability and complicated section, such as ram shaft
# 10	A 20	0.25~ 0.35	0.70~	0.15~ 0.35	0.08~ 0.15	< 9.06	52~67	15	25	185	64~84	60~8055-7	6.0	174~	To make parts which require high strengthe
# 10 E	Y40Mn	0.35~ 0.45	1.20~	0.15~ 0.15	0.18~ 0.30	<0.0;	i 0∼ 75	14	29	297		50~80	17.0	179~ 2291	

L. Deneral Low Allow Construction Steel (YB13-69)

Table 2-1-8 The Chemical Composition of General Low Alloy Construction Steel

				TOM	<u> </u>	0115 01.70	<u>- 11011 - </u>) oeer			
	Steel	Grade		Che	mical C	omposit	ion _	(9,1	5)		
10.37	Brand	3;mbol	(義)	Mn (猛)	Si (種)	(≱I) V	Ti (数)	运, AP	P (Age)	Re (翻 比) 加 <u>、</u> 成1	O th ers
	09锰钒 09锰铌	09MaV 109MaNb			0.20~0.60 0.20~0.60	0.04~0.12	=	- 0.015~0.050	_	= ,	-
	(09键 2) 12键	(09Ma2) 12Ma	≤0.12 ≤0.16		0.20~0.50 0.20~0.60		=	=	=	-	-
	18紀半 Cs锰磷精土	18Nbb 08MnPRe	0.14~0.22 <0.12		≤0.17 0.20~0.50	_	_	0.015~0.053	- 0.08~0.13	— ≤0.20	
	109锰铜磷钛 109锰 2 钒	09MnCuPTi 09Mn2V	<0.12	1.40~1.80		- 10.04~9.10	≤0.03 —	=	0.05~0.12 —	_	1 an. 17 ~9.40 —
16	州(09億2硅) 川2锰吗	(09Ma2Si) 12Mn V	≤0.15	1.00~1.40	0.50~0.80 0.35~0.6	1	-	=	_	- 1	_
13	H12锰磷稀土 2014锰泥半	12MnPRe 14MnNbb	0.12~0.15	0.30~1.20		· _	_	0.015~0.050		'≤0.20¦ — ¦	-
1	31.4 标题 () 16 通	16Mn	0.12~0.18	1.20~1.50	0.20~0.60	-	=	10.015~0.050	! -		-
i		16MnRe 10MnPNbRe	≤0.14	0.89~1.20	10.29~0.60 0.20~0.60	- :	_	0.915~0.950	 0.05 -0. [≼0.20' ≼0.22'	-
1	115種訳 815種故 915種録	15MaV :5MnTi 16MnNh	0.12~9.18	1.20~1.60	(9.20∼0.60 (0.20∼0.60	!	0.12~0.29	0.015~0.050		_	-
2		sit 4Mn V Fifs Sit 4Mn V Fifs	≤0.8	1.30~1.50	0.20~0.50	0.01~0.10			<u> </u>	< 1, 200	
_		45MnVNr			0.20~0.50		-			!	().0 (+ n,).2 5

Table 2-1-9 The Mechanical Properties of General

			Low All	low Cons	truction S	teel		
9	Steel	Grade	Steel	Yield	Tensile	1	Cold	
Ordinal	35552	32 340	thick-	point	strength	1	bend-	
Ħ	}		ness or	('cg/mm ²)) (kg/mm ²)	ება (%)	ling	
	Brand	Symbol	diameter (mm)	Con mine	less than		test	
			<16	30	44	22	d = 2 a	_
1	09锰乳	09M n V	17~25	28	41	22	d = 3 a	
_	·	1	€16	30	42	23	d = 2a	
2	109锰铌	09MnNb	17~25	28	40.	21	d = 3 a	
	1		€16	30	45	21	d = 2 a	
3	(09種2)	(09Mn2)	17~30	28	43	21	d = 3 a	
		i '	32~100 S,T	26	42	21	d = 3 a	
_		1	<16	30	45	21	d = 2a	
	12镭	,12Mn	17~25	28	44	19	d = 3 a	
5	! 'le記半	18Nbb	6~16	30	46	21	d = 2 a	
_	10 a 42 FB 44 L	00M - DD	< 5	36	48	20	d = 2 c	
_	168锰磷稀土	08NITE RE	6~16	33	46	20	d = 2a	
	00.07 (63.77) #1	act C BT:	€16	35	50	21	d = 2 a	
_	19超過解試	09MnCuPTi	17~25	34	50	19	u = 3 a	
8	09罐 2 钒	09Mn2V	5~20	35	50	?1	d = 2 a	
_		least acr	<16	34	48	23	d = 2 a	
9	i(09緒2硅) · ·	(09Mn2S1)	17~30	33	47	23	d = 2 a	
-		i o V - V	<16	35	50	21	d = 2 a	
10	12锰钒	12MnV	17~25	34	50	19	d = 3 a	
11	12結構粉土	12MnPRe	6~20	35	52	21	d = 2 a	
12	14锰铌半	14MnNbb	6~20	35	50	21	d = 2a	
12	142760	14MnNb	<16	36	50	20	d = 2a	
13	14 猛铌	141414148	17~25 b	34	48	18	d = 3 a	_

Translator's note: s,r = square and round steel and b = bar steel round steel and b = bar steel round steel and b = bar steel

, }	Steel	Grade	Steel	Yield	Tensile	Tet.	Cold
[P]			thick-	point	strength		bend-
			ness or] a,	σ 6		ing
. [3	rand	Symbol	diameter	(kr/mm²)	(kg/m2)		test
4-			(mm)	No le	ess than		
		l	i < 16	35	52	1 21	d = 2 a
1	•	Ì	17~25	33	50	19	1 = 3 a
413654		16 %	26~36	31	48	. 19	d = 3 a
-		•	38~50	29	48	19	d = 30
{			155~100 s,r	28	45	. 19	ui ÷ 3 ₁3
5 16 🛀	希土	16MnRe	≤ 16	35	52 -	31	d = 2 a
10#	4 報記稀土	10MaPN6Re	€10	40	52	1.0	d = 24
1			<5	42	56	19	d = 2 c
1			5~16	40	54	10	្ជ ∈ា ង
7)15锰	钒	.SMnV	17~25	38	52	17	d - 3 a
į			26~36	36	50	15	. J = 3 a
			38~50	34	50	17	d = 3 a
			€25	40	54	19	i d = 3 a
815锰	, AT	15MnTi	26-40	38	52	19	d = 3 a
			<16	40	54	19	d = 2 a
164	F E !	16MaNb	17-20	38	52	18	d = 3 a
	(· · · · · · · · · · · · · · · · · · ·	€12	45	56	1 18	1=13
11454	列 ·茲爾 土	14Mn VTiRe. 	13~20	42	54	:8	d = 3 a
	j		<10	48	, 65	;;	d = 20
	1	15MnVN	<17 p	45	60	; 0	d = 3 i
15望	訊复		11~25	45	60	18	d = 3 a
1	Í	15MaVNr	26~38	42	56	17	J = 3a
1	ļ	ļ	40~50	40	54	17	d = 30

Iranslator's note: s,r = square and round steel and p = profile steel

	Table 2-1-10 The Uses of General Low Allow Steel
Steel Grade	Samples of Wses
091'nV	The 09thV steel has good impact tenacity, weldahility and anti-errosion property. I can be used to make autocar, welding pipe and vessels.
091mith	The 09%nWb steel can be used in the state of hot-rolling to make autocar and locomotive.car.
09) (n.2	The 09Mn2 steel has good plasticity and tenacity and its welfability is excellent, so it can be used to make locomotive car.
121'n	The internated property and moderate temperature performance of 12% steel are good, so it can be used to make boiler and vessel.
131166	The 180bb semi-dead steel has good plasticity and weldability, so it can be used to make pressure vessel and elevator machinery.
03''nPRe ~	The ORMAPRe steel has good anti-atmospheric corrosion performance and excellent weldability, so it can be used to make vehicle, welding pipe and other spare parts which require strict anti-atmospheric corrosion performance.
091 51.0 uPTi	The O9MnCuPTi steel has good anti-atmospheric corrosion performance and good integrated property, so it can be used to make vehicle and vessels.
0 9 °' n27	The 09Mn2V steel is the steel which is used at low temperaure of - 700C. Its integrated property is good and it is widely used to make freezing equipment, wessel and hipe line.
091 m25i	The 09Mh2Si steel can be used to make low pressure boiler.
12'27	The 121mV steel is an ordinary construction steel, which can be used to make vehicle, metal structural piece and mechanical parts.
12: npde	The 12inPRe steel has good integrated property and its anti-atmospheric corrosion performance is particularly great, so it can be used to make crane and other metal structural pieces.
147 milliop	The 141mimb semi-dead steel has very mood interrated mechanical property and its plasticity and welliability are

CFUTTUOD EE OT

Continued	
Steel Grade	Samples of Uses
	particularly good, so it can be used to make vessels used in chemical industry, pipe line and crane.
14'nlib	The L4MnTb steel has good integrated mechanical property and weldability and it can be used to make vessels of which the operating temperature is - 20-45°C and other welding structural pieces.
16Mn	The 16% n steel has good integrated mechanical property, weldability and workability, and it can be widely used to make rehicles, large vessels, pipe line and heavy machines.
lóMnRe	The impact tenacity and cold bending performance of lowning steel are higher than those of lown steel, and the uses of this steel are same as lown steel.
10)mPlTbRe	The 10% nPMbRe steel has good integrated mechanical property, weldability and anti-corrosion performance, so it can be used to make metal structural piece.
15tmV	The 15%nV steel has good machinability, workability and weldability, so it is widely used to make high pressure boiler, high pressure vessel and elevation equipment.
15/nTi	The 15 mTi steel has good integrated property and weldability, and it is used to make welding structural piece for bearing dynamic load.
lôi hĩb	The lownib steel has good interpreted property and it is used to make large welding structure, such as ressel, nine line and heavy machine equipment.
141'nVTiRe	The LAMMYTiRe steel has good internated promerty and weldability, and its low temperature tenacity is marticularly good, so it can be used to make high pressure vessel, elevation machine and other welding structural piece.
151/nVX	The 15MnVN steel has high strength and good plasticity, tenacity and welding performance. It can be used to make boiler and high pressure vessel.

5. Alloy Construction Steel (YB6-71)

Table 2-1-11 The Chemical Components of Alloy Construction Steel

	Steel	Grade			Chemi	cal C	omno s	ition			(9		
Io.	Zwany - Coser	Symbol	С	Si	Mn	Mo	W	Cr	Ni	v	Ti	В	1
1	10年 2	10Mn2	0.07~		1.20~								
2	15键 2	15 M n 2	0.12~		2.00~								
3	20號 2	20 M n 2	0.17~		1.40~								
4	30鑑 2	30 M n 2	0.27~		1.40~								
5	35程 2	35 M n 2	0.32~		1.40~								
6	40键 2	10M n 2	0.37~		1.10~				İ				
7	45糧2	15 M a 2			1.40~				;		. i		
6	50键 2	50 M 11 2			1.10~				i :				!
9	27硅锰	27SiMn			1.10~				i	;			ļ !
0	35硅锰	38SiMn	0.32~	1.10~						,			1
I	1265 福	42SiMn	0.39~		11.10~			: 1	,				l
12	10年鑑2	* insisting	7.37-		1.10~				1				!

TO BE CONTINUED

Can	44	n	10	A
1 21	. 1.	المند	15	-

	Steel	Grade			Chem	ical	Compos	itio	n		()	á) 	
•		Symbol	С	Si	Mn	Мо	w	©r_	Ni	V	Ti	Б	Al
3	15锰钒	≠15MnV	0.12~							0.07~			
4	20锰钒	20MnV	0.17~	0.20~ 0.40			}			0.07~		ł	
5	25 锰 2 钒	25 M n 2 V	0.22~							0.10~		l	
6	42键 2 钒	42Mn2V	0.38~	0.20~						0.07~		: !	
7	45 燧 2 钒	*45Mn2V	0.42~							0.10~			}
8	15硅锰 3 钼	#15SiMn3Mo	0.11~						l			 	
9	30 儲 2 相偽	* 30 Mn 2 Mo W	0.27~										
20	20硅锰 2 钼钒	*20SiMa2MoV	0.17~							0.05~			
?1	25硅锰 2 钼钒	* 25Si Mn2MoV	0.22~							0.05~			
2	30硅锰 2 钼钴	¥30SiMn2MoV	0.27~				1			0.15~			
23	35硅2程2年 氨	* 35Si2Mn2MoV	0.32~							0.10~			
24	37硅锰 2 钼钒	* 37S1 Mn2MoV	0.33~							0.05~			

TO BE CONTINUED

Cont	:	• -	_
Ont	וחי	10	∼

ا د د	Steel G	rade	1_	Che	mical	Compo	sitio	a		_		0	
J.	3rand	Symbol	С	S,	Mn	Мо	W	Cr	Ni	v	Ti	В	Al
25	12硅锰 2 钨钒	*12SiMa2WV	0.09~		2.30~		0.40~			0.05~			
6	16硅锰 2 钨钒	*16SiMn2WV	0.13~	0.80	2.60		0.40-			0.05~			
27	15硅锰 3 钼钨 钒	* 15SiMn3Mo WV	0.12~	0.10~	2.90~ 3.30	, ,,,,,	1101		}	0.05-			
28	37硅锰 2 铝钨 钒	*37SiMa2Mo WV	0.34~		1.60~	0.10~ 0.50				0.05~			
9	20年2項	20Mn2B	0.17~		1.50~				}			0.001~	
0	20條 钛硼	20MnTiB	0.17~		1.30~					İ	0.06~ 0.12	0.001~	
11	25種 钛硼	* 25MnTiB	0.22~		1.50~	!		; }	1		0.06~ 0.12	0.001~	
2	20 餐 2 钛硼	* 20Mn2TiB	0.17~	0.20~	1.50~	! !	<u> </u>	İ	1		0.06~	0.001~	
33	15怪钒砲	*15MnVB		0.20~				: !		0.07~		0.001-	
3 4	20懂钒霉	20MnVF	0.17~		1.20~		1	}	ĺ	0.07~		0.001~	
35	20锰 2 氫硼	* 26Mn2VB	0.17~		1.50~		1 1	! :		0.07~		0.001~	
3 F.	1 20群議部欄 1	20SiMnVB	0.17~					i		0.07~		0.001~	

TO BE COUTTUED

Co	n+	÷	ווי	16	d
1 .()	11.	_	-11	~	

о.	Steel	Grade		<u>C</u> h	emica.	I Com	positi	on			(%)		
	3rand	Symbol	С	Si	Mn	Мо	w	Cr	Ni	V	Ti	В	A
17	30智 2 钼铁钢	; !! ≈30Mn2MoTi B. 	0.27~								0.02~ 0.08	0.001~ 0.004	
8	40 ₹ •	40 B	0.37~									0.001~	
9	45 4	45 B	0.42~									0.001~	
0	50 @	50 B	0.47~									0.001~	
1	40 怪 聯	40MnB	0.87~									0.001~ 0.0035	
2	45锰礦	45MnB	0.42~									0.001~ 0.0035	
3	45個 2 確	# 45Mn2B	0.42~								i	0.001~	
4	40智钒礦	40MuVB	0.37~							0.05~		0.001~	
5	4.0 锰钨硼	*40MnWB	0.37~				0.40~					0.001~	
6	38倍硅 .	38CrSi	0.35~ 0.43					1.30~					
7	40 倍硅	40CrSi	0.37~					1.30~		<u> </u>			
8	15倍智	15CrMn	0.12~					0.40~				1	

TO BE CONTINUED

	_3teel	Grade			Cher	nical	Comp	ositio	n		(%)		
۰.	Brand	Symbol	С	Si	Мп	Мо	w	Cr	Ni	v	T·	В	Al
19	20条镭	20 CrMn	0.17~		0.90~ 1.20			0.90~					
50	40 答 锰	40 CrMa	0.37~ 0.45		0.90~ 1.20			0.90~			!		
51	20幣營建	20CrM _B Si	0.17~					0.80~		!			
52	25 俳 锰硅	25CrMøSi	0.22~		0.80~ 1.10			0.80~					
53	30條價達	30CrMnSi	0.27~ 0.34					0.80~					ļ
54	35铬锰硅	35CrMaSi	0.32~		0.80~ 1.10			1.10~					
55	15格號 2 硅钼	#15CrMn2SiMo	0.13~ 0.19		2.00~			0.40~			!		
56	20倍钢	20Cr V	0.17~					0.80~		0.10~			
57	40 特 钒	40CrV	0.37~		0.50~			0.80~		0.10~			
58	45 終 例	45CrV	0.42~					0.80~		0.10~	<u> </u>		
59	50 KF (R	50Cr V	0.47~ 0.54	0.20~		i : !		0.80~		0.10~			
80	20倍锰钛	20CrMnTi	0.17~			; ;		1.00~			0.06~		

TO BE CONTINUED

Continue d

	Steel	Grade			Chemi	ical O	ompo	sition			(%)		
ο.	Brand	Symbol	С	Sı	Мп	Мо	w	Cr	Ŋ١	V	T	В	A
61	30名程钛	30CrMaTi	0.24~		0.80~			1.00~			0.06~		
62	16個	16Mo	0.13~			0.40~							
63	12恪帽	12Cr Mo	<0.15		0.40~	0.40~		0.40~					
64	15条領	15CrMe			0.10~	0.40~		0.80~					1
65	2014年1日	20CrMo	0.17~		0.40~	0.15~		0.80~					
66	30倍钼	30СгМо	0.26~		0.40~	0.15~		0.80~ 1.10					
57	35 依 相	35CrMo			0.40~	0.15~		0.80~		} 			
68	42 答 組	12CrMo			0.50~	0.15~		0.90~		Ì			
69	15体辐射	15CrMaMo	0.12~		0.90~			1.00~					
70	20 格 锰 铜	20CrMnMc			0.90~	0.20~		1.10~		(
71	40卷锰铜	40CrMnMo			0.90~ 0 1.2	0.20~ 6.30		0.90-					
72	12幣組銀	12CrMoV	0.08~		0.40~			0.30~ 0.60		0.15~	0		

TO BE COMMITTED

	Steel	Grade			Che	emical	Comp	ositio	n		(%)		
``a,	Brand	Symbol	С	Si	Mn	Мо	W	Cr	Ni	V	Τ,	В	Αl
73	12格 1 钼钒	12CrMoV				0.25~		0.80~		0.15~			
74	24倍铝钒	24CrMoV	0.20~			0.50~		1.20~		0.15~			i !
75	25格 2 钼钒	25Cr2MoV	0.22~			0.25~ 0.35		1.50~		0.15~	į		!
76	25格2個1钒	25Cr2Mo1V	0.22~			0.90~		2.10~		0.30~			
77	35幣相纸	35CrMoV			0.40~ 0.70	0.20~		1.00~		0.10~	;	ı	
78	38條照铝	38CrMoAl				0.15~		1.35~					0.70~ 1.1
79	18格 3 钼钨钒	18Cr3MoWV						2.50~ 3.00		0.05~	 		i
90	20 66 3 相钨钒	20Cr3MoWV				0.35~		2.50~		0.70~			
81	15幣	15Cr	0.12~		0.40~		: :	0.:0~					į
8 2	20%	20Cr	0.17~ 0.24		0.50~ 0.80)		0.70∼			; , !		
83	30 15	30Cr	0.34	0.40	10.50~ 1 0.80			0.80~			ļ		}
84	35 45	35Cr	0.32~		0.50~ i 0.80	oj.		0.70~					ļ

TO BE COUTTIVED

Continued

;	Steel	Grade			Che	emical	Co:	mositi	on		(%)		
o.	3 r and	5-mbol	С	Si	Мп	Мо	W	Cr	Ni	V	Ti	В	Al
85	40%	40Cr			0.50~ n: 0.80			0.80~					
86	45幣	45Cr	1 - 1 - 1		0.50-			0.80~					
87	50 %	50Cr			0.50~			0.80~			1		
88	20恪镍	20CrNi			0.40~			0.45~	1.00~				
89	40倍钟	40CrN1			0.50~			0.45~	1.00~		 		
90	45倍镍	45CrNi	0.42~ 0.49		0.50-	j j			1.00~				
91	12 幣 僚 2	12CrNi2			0.30~			0.60~	1.50~ 2.00				
92	12髂镍 3	i 2CrNi3			0.30~			0.60~	2.75~				
93	20倍镍3	20CrN i3			0.30~			0.60~	2.75~				
94	30 格 雜 3	30CrNi3			0.30~				2.75~		<u> </u>		

CFITTION EE OF

Continued

, _	Steel	Grade	1		Cher	nical	Comp	ositio	n		(%)		
·	Brand	Simbol	С	Si	Мп	Мо	W	Cr	Ni	v	Ti	В	Al
95	37铬镍3	37CrNi3	0.34~		0.30~			1.20~	3.00~ 3.50				
96	12 祭 2 强 4	12Cr2N14	0.10~		0.30~			1.25~	3.25~ 3.75				
97	2066 2 9 4	20Cr2Ni4	0.17~		0.30~				3.25~ 3.75				
98	40娇蕖钼	40CrNiMo			0.80		 	0.60~	1.25~				
99	45铬镍钼钒	45CrNiMoV			.0.50~ 0.80			0.80~		0.10~ 0.20			
100	30 倍 獲 2 钼 钒	30CrNi2MoV			0.30~			0.50~		0.15~			
101	18 條 2 領 4 資	18Cr2Ni4W			0.30~			1.35~					
102	25 券 2 課 4 質	3:25Cr2Ni4W			0.50~ 0.80			1.35~					
103	30幣福硅镍 2	30CrMnSiNi2	= .		1.00~				1.40~				
			1]	İ	i	r 					<u> </u>	İ

Note: Those which are attached * are new steel made

Tab	le 2-1-12	The Mechan	ical Pro	one <u>r</u> ti	es of	Mloy Co	onstruc	ction Steel (1)
Ordinal			Size			Teat Trea	atment	
			of		Quench			npering
	Brand	Symbol	rough	Tempe:	rature		Temp.	
number	İ	1 *	sam-	()	G)	Coolant		Coolant
		i i	ple	lst	2nd		(°C)	000=2219
		1		gunch			()	
	1		(
1	10驾 2	10Mn2	15	900	_	а.		
2	15年 2	15Mn2	15	900	_ '	a	-	~
3	20锰 2	20M = 2	15	850 880	_	¦ਯ,⊙ ¦ਯ,⊃	200	w,a w,a
4	30键 2	30Mn2	25	840	-	w	500	ম
5	35⊈ 2	35Mn2	25	840	-	-1	500	74
6	40年 2	40Ma2	25	840	_	М	520	М
7	45些 2	45Mn2	25	840	_	ò	550	w.o
8	50 4 2	50M n2	25	820	-	0	550	w, 9
9	27硅锰	27SiMa	25	920	-	W	450	w,o
10	25 € €	3551Mn	25	900	_	W	590	₩,0
11	42硅锰	42SiMo	25	880	-	Ŋ	590	N
12	40硅锰 2	* 40SiMu2	25	880	-	и, о	550	w,o
13	15蟹領	*15MnV	15	880	-	'ਸ,੦	200	w,a
14	20锰钒	20M n V	15	880	-	พ,ว	200	w,a
15	25 筐 2 択	25M a 2 V	25	900		м, о	650	w
16	42個 2 例	42M n 2 V	25	860	-	0	600	, w
17	45催 2 钒	# 45Ma2V	25	860	-	0	600	W
18	15硅锰 3 钼	≠ 15SiMn3Mo	15	950	870	3	200	w,a
19	30年2相負	*30Ma2MoW	25	900	-	0		ีน, ว
20	20硅镁 2 钼钒	#20SiMn2MoV	s	900	-	0	:	w,a
!	25硅锰 2 钼钒	*25SiMu2MoV	S	900	-	0	200	∖w,a ⊦
i	30硅锰 2 钼钒	*30SiMn2MoV	25	870	- ;	0	650	
	İ	*35Si2Mn2MoV	S	920	-	0	250	w, a
24	37群體 2 钼钒	*37SiMu2MoV	25	870	-	<i>M</i> ,○.	650	w,a

	Table 2-1	-12 The :	lechanic	al Prope	r-les of Ul	ov Construction Steel (2)
:				roper le		The Brinell hardness of
	Tensile	Yield	Dxt.	Contr.	Impact	steel in annealing or
:	strength	point	rata	rate	value	high temperature tempering
	, p 2)	(kg/mm ²)	^a 5	Ψ	a _k	providing state, the
	(lca/mm²)	(kg/mx^2)	(3)	(3)	$(kg/m/cm^2)$	impression diameter is no
<u>-</u>			o less	than		less then (mm)
	43	25	25	55	_	4.5
	60	35	17	40	_	4.5
:	80	60	10	40	6	4.4
	80	65	12	45	ď	
	85	70	12	45	7	4.2
	100	80	10	45	6	4.1
	90	75	10	45	6	4.1
	95	80	9	40	5	4.0
	100	85	12	40	5	4.1
	90	75	15	45	6	4.0
	90	75	15	40	6	4.0
	85	70	12	40	6	4.0
	75	50	11	45	7	4.4
	80	60	10	40	7	4.4
	75	60	15	50	10	4.2
	100	85	11	45	6	4.1
	100	85	11	45	6	4.0
	120	90	10	45	10	3.7
	100	85	12	50	9	3.7
	140	-	10	45	7	3.7
į	150		10	40	6	3.7
!	90		12	50	9	3.7
	170	İ	9	40	5	3.7
; 	100	85	12	50	8	3.7

TO BE COUTTIFIED

Cont	inued (L)						
Ordina.	1		Size		. 6	at Treatm	ent	
	1	ļ	of		Juench	ing	Te	empering
	Brand	Symbol	rough	Temper			Tem	
Number			sam-	(30	J)	Coolant		1
	1	l	ple	first	2nd	}	(oc	' Coolant
			(::: <u>::::</u>)	gunch	aunc:		_	
		j				1		
25	12硅锰 2 钨钒	* 12SiMn2WV	15	860	_	ļ c	200	∖м, а.
26	16硅锰 2 钨钒	*16SiMn2WV	15	860	_	0	1	lu,a
		: :*15SiMn3MoWV	15	950	880	a	- 1	− 1.1.1. - 1.1.1. a.
28	- 钒 '37硅锰 2 铝钨	! * 37SiMn2MoWV	25	900	_	w, o		·, a.
	K	20Ma2B	15	880	_	į	i	
30	20征钦键	20MnTiB	15	860		0	200	,,,
	25锰钛硼	* 25MnTiB	s		_	0	ſ	W, 2
		*20Mn2TiB	15	860		C	200	¦и,а
		* 15Mn V B	15	860	-)	200	\ u, a
				860	_	. 0	200	W, 3
		20MnVB	15	860	_))	200	្នុឃ,ឩ
35	20锰 2 钒硼	*20Mn2VB	15	860	-	ာ	200	W,2
	_	20SiMnVB	15	900	_	0	200	и, а
37	30锰 2 钼铁螺	*30Mn2MoTiB	ន	870	-	0	200	w,a
38	40編	40 B	25	840	-	V	550	\
39	15覇	45 B	25	840	_	*#	550	•7
40	50 iii	50 B	20	840	-	0	600	a
41	10世曜	40M n B	28	*850	_	0	500	:1 , 0
42	45锰硼	45MnB	25	840	_ !	၁	500	∵,≎
43	45盤2種	*45Mn2B	25	840	_	0	520	7.7
44	40锰钒石	40MnVB	25	850		2	500	** 5
45	10锰钨器	*40MaWB	25	870	_	च , ०.	500	₩ , a 17 , a
46	38络硅	38CrSi	25	900	_ !	3, 3 ¹	600	
47	40倍硅	40CrSi	5	900于33 ;	n~350	0	1	ਅ•਼• ਅ•਼•
48	15俗锰	15CrMn	15	90 80	0_		[[,
				880	- i)	200	v,≘

Translator's note: a = a'r; o = oil: v = water; s = sample and
 i = isothermal quenching

בער בניים מכיים בר סב

Continued	(2)				
	ec	annionl 1	Properti		The Prinell hardness of
Tensile	Yield		Contr		steel in annealing or
strength	po int	rate	rate	value	high temperature tempering
1 0) (3)	,	(kg/m/cm ²)	providing state, the
(kg/nm²)	(30.2\u00e4\u00e	1 31	(3)	1 (kg/m/cm ⁻¹	impression diameter is no less than (mm)
'		To leas t	than		Less 5 and (191)
100	80	10	50	10	3.7
120	90	10	45	8	3.7
120	90	10	45	10	3.7
1		12	1	7	i
100	85	1	45	1	3.7
100	80	10	45	7	4.4
115	95	10	45	7	4.4
140	-	10	40	6	4.0
115	95	10	45	7	4.2
90	65	10	45	7	4.2
110	90	10	45	7	4.2
120	90	10	45	7	4.2
120	100	10	45	7	4.2
150	_	9	40	5	3.8
80	65	12	45	7	4.2
85	70	12	45	6	4.1
80	55	10	45	5	4.2
100	80	10	45	6	4.2
105	85	9	40	5	4.1
100	85	9	40	5	4.1
100	80	10	45	6	4.2
100	80	10	45	7	4.0
100	85	12	50	7	3.8
125	105	11	40	5	3.8
80	60	12	50	5	4.5

מפרדינדיים פר סנ

Cont	inued (1)	}							
Ordina	4		Size	Weat Treatment					
		Symbol	1 1			ing	T	emnering	
Number	Brand			ough Temperature			Temp.		
			sam- ple	(°C) first	2nd	Coolant	(oc)	Coolant	
		}	(mm)	punch	gunch				
49	20倍锰	20CeMn	15	850	_	0	200	v, 3.	
50	40倍益	40CrMn	25	840	_	0	520	พ,ว	
51	20倍锰硅	20CrMnSi	25	880	_	ာ	480	и , э	
52	25 倍 锰 硅	25CrMnSi	25	880	_	э	450	и, э	
5 3	30倍锰矿	30CrMnSi	25	880	-	ာ	520	.:: , 0	
54	35條盤台	35CrMnSi	S		80 ∼32 0	0	230	w,a	
55	15 格盤 2 硅钼	+ 15CrMn2SiMo	15	860	80 —	0	200	w,a	
56	20條祭	20CrV	15	880	800	W,O.	200	w,a	
57	40倍年	40CrV	25	880	_	0	650	17,0	
58	45條鉄	45CrV	25	860	-	0	600	w,o	
59	50倍钡	50Cr V	25	860	_	0	500	ਯ,੦	
60	20倍锰钛	20CrMnTi	15	880	870	0	200	м, a	
6)	30 条 锰 钛	30CrMnTi	s	880	850	0	200	¥,a	
62	16個	16Mo	30	880	-	ã	630	a	
63	12條相	12CrMo	30	900	_	2	650	a	
64	15條相	15CrMo	30	900	<u> </u>	a.	650	a	
65	20倍钼	20CrMo	15	880	-	' भ,≎	500	ਯ,≎	
66	30 倍 恒	30CrMo	25	880	-	ˈw,○	540	7.7,0	
67	35格帽	35CrMo	25	850	_	0	550	и , 0	
68	42條相	42CrMo	25	850	_	0	580	77,0	
69	15铬锰铝	15CrMnMo	15	860	_	0	200	w, 2	
70	20 祭 猛 相	20CrMnMo	15	850	-	0	200	ત્ર,દ	
71	40 傳 號 相	40CrMnMo	25	850	_	c	600	<i>u,</i> ∙0	
72	12幣相钒	12CrMoV	30	970	. - '	a	750	a	

Translation's note: a = air; w = water; o = cil; s = sample: and i = isothermal quenching

TO BE COMMINDED

nringed (Mecha:		operties		The Brinell hardness of
Tensile	Tield	Ext.	Contr.	Impact	steel in annealing or
strenuth	noint	ra :e δ 5	rate	value	high temmerature temmering
σ _b 2	σ (2 × 2)		Υ	(kg/m/cm ²)	providing state, the
(kg/mm ²)		(%) .ess tha:		((Kg/m/cm~)	impression diameter is no less than (mm)
	0_1	ess that	1		Tess Clan (151)
ŕ			, ,,,	1 6	
95	75	10	45	6	4.4
100	85	9	45	6	4.0
80	65	12	45	7	4.2
110	90	10	40	5	4.1
110	90	10	45	5	4.0
165	_	9	40	5	4.0
120	90	10	45	8	4.0
85	60	12	45	7	4.3
90	75	10	50	9	3.9
100	80	10	45	8	3.8
130	115	10	40	_	3.8
110	85	10	45	7	4.1
159	- 1	9	40	6	4.0
40	25	25	60	12	4.5
42	27	24	60	14	4.5
45	30	22	60	12	4.5
90	70	12	50	10	4.3
95	80	12	60	8	4.0
100	85	12	45	8	4.0
110	95	12	45		4.1
15	70	11	60	•	4.3
120	00	10	45	7	4.1
100	80	10	45	•	4-1
	1		1	1	3.0

ממונות פת בד סד

dinal		Size	Meat Treatment				
		of		Juenc:			empering
Brand	Symbol	rough	Temper	ature		Temp,	
mber		sam-	(5C)		Coolant	1	Coolant
ĺ		ple	first	2nd		(oc	\
		(mm)	gunch	gunch			
73:12倍 1 组织	12Cr1MoV	30	970	_	а	750	, a
74 24 条组钒	24CrMoV	25	900	i -	0	1	
75 25 倍 2 铝钒	25Cr2MoV	25	900	<u> </u>	0	620	и , 0
76 25 格 2 領 1 領	25Cr2Mo1V	25	1040	l _	3	700	a a
77 35 密铝钒	35Cr MoV	25	900	-	o	· •	요 V.O
78 38 路 組 铝	38CrMoAl	30	940	-	w,0	1	₩ , 0
79 18 8 3 铝钨钢		25	960	<u> </u>	, 0		₩,o
80 20格 3 組钨钢		25	1050	-	2,0	720	v,0
81 1546	15Cr	15	880	800	w, o	200	v , o w , a
82 20 協	20Cr	15	880	800	w,0	1	W. 2
83 30格	30Cr	25	860	-	10	i	w, o
84 35倍	35Cr	25	860	-	0	1	W,0
85 10格	40Cr	25	850	_	0	1	w,0
86 រុំ ១ភី	45Cr	25	840	_)	1	171,0
87 50 倍	50Cr	25	830	-	0	520	\₩,0
88 20 条 镍	20CrNi	25	850	_	ਯ,੦	460	W,0
89 40條 強	40CrNi	25	820	-	0	500	1 -
90 45 裕 镇	45CrNi	25	820	_	0	530	W,0
91 12倍 賽 2	12CrNi2	15	860	780	<i>11,</i> 0	200	1 -
92 12 幣 佛 3	12CrNi3	15	860	780	0	200	vi, a
93 20 倍 健 3	20CrNi3	25	830	-	w,0	480	1
94 30 倍 株 3	30CrNi3	25	820	-	ó	500	1
95 37倍	37CrNi3	25	820	-	0	500	1
96:12卷 2 築 4	12Cr2Ni4	15	860	780	ာ	200	u, a
97 20 第 2 第 4	20Cr2Ni4	15	880	780	0	200	√ v,a
98 40 倍 年相	40CrNiMo	25	850	_))	600	
99 45 备 编 组 钒	45CrNiMoV	3	860	-	0	460	1 1
100 30 毎 袋 2 帽も	30C1Ni2MoV	25	860		0	65	w,0
101 18格 2 集 4 年	18Cr2Ni4W	15	950	850	a	20	o w,a
102 25格 2 维 4 \$	25C12N14W	28	850		0	55	o
103 30格锰硅镍	1 - 14 - 15	s.	900	260 ± 20	. 0	25	0 17,a

Translator's note: a = air; o = oil; w = water; s = sample and
 i = isot ermal quenching

Take: * indicates new sheel of which the mechanical properties can only be used as reference and not a base upon η ich a conclusion is made

Continued	(2)				
	l'ech:	rical P	ropertie	S	The Brinell hardness of
Tensile	Tield	Ext.	Contr.	Immact	steel in annealing or
strength	point	rate	rate	value 💮	high temperature tempering
l on	ا ر	δ5	Ψ	٥,	providing state, the
(kg/mm ²)	(kg/mm ²)	(3)_	(3)	$(kg./m/cm^2)$	impression diameter is no
	110	less th	an		less than (mm)
50	25	22	Su	q	1.5
80	60	14	50	6	3.8
95	80	14	55	8	3 .9
75	60	16	50	6	3.9
110	95	10	50	9	3.9
100	85	14	50	. 9	4.0
65	45	18	40	12	3.0
80	65	14	40	7	4.0
75	50	11	45	7	4.5
85	55	10	40	6	4.5
90	70	11	45	6	4.4
95	75	11	45	6	4.2
100	80	9	45	6	4.2
105	85	9	40	5	4.1
110	95	9	40	5	4.0
80	60 .	10	50	8	4.3
100	80	10	45	7	3.9
100	80	10	45	7	3.8
80	60	12	50	8	4.2
95	70	11	50	9	4.1
95	75	11	55	10	3.9
100	80	9	45	8	3.9
115	100	10	50	6	3.7
110	85	10	50	y	3.7
120	110	10	45	8	3.7
; 100	85	12	55	10	3.7
150	135	7	35	4	3.7
90	80	12	50	•	3.9
120	85	10	45	10	3.7
110	95	11	45	9	3.7
160	-	9	40	6	3.8
	<u> </u>			·	

Kind of	Ste e l	C1 - 2.7
Steel	Grade	Samples of Uses
Canganese	101h2	It is used to make steel plate and steel pipe. It
steel		is usually through normalizing.
	151/n2	It is used to make steel plate and steel pipe. It
		is usually through normalizing or modification.
	20Mn2	It is equivalent to 200r steel in making share parts
		of small cross-section. This steel can be used to
		make small sears of carbureter, pony axle, piston pin,
		diesel engine sleeve, valve push rod and steel case.
	301 m2	It can be used to make modification steel, such as
		cold-heading bolt and modification parts with larger
		cross-section.
	351 n2	It is equivalent to 400r steel in making spare parts
		of small cross-section. This steel can be used to
		make various cold-heading bolts (less than 15mm) for
		trucks and pony axle.
	40° n2	It is equivalent to 400r steel in making spare parts
	1	of small cross-section. This steel can be used to
		substitute 40Cr steel to make important bolt and
		parts when the diameter is less than 50mm.
	451 n2	It is equivalent to 400r steel in making spare parts
	1	of small cross-section. This steel can be used to
		substitute 400r steel to make amportant bolt and
		parts when the diameter is less than 50mm.
	501/n2	This steel can be used to make spline shaft of auto-
		car, internal rear of heary machine and gear shaft.
Silcon-man-	27 31Mn	This strel can be used to make modification steel
ranese	355il'n	This steel can be used to substitute 400r steel to
steel		make mdofication parts when low temperature (-750)
		and high tenacity are required and can also partially
		substitute 400r i steel. The anti-abroadability an
		fatigure resistance of this steel are both yery
		good, so it can be used to make axle, compreed and
		important fastening piece under 43000.
	361 n2Si	It can be used to make steel pipe, and after norma-
		lizing, it can also be used to make modification
		parts which can aviod hardening transformation.
	425ilh	It is same as 35Si'n steel, but it is exclusively
		used to do surface hardening. It is equivalent to 200mli steel
Manganese-	201m7	it is equivalent to 200min steel
ranadium	.25 n27	It can be used to make waffle plate and blade
st eel		(medium temperature and pressure) of steam
	1011 77	engine.
	421 n27	It can be used to make high strength external the
		important autoern modification piece, such as swimel joint and secondam aris.
		araina da da da da da da da da da da da da da

Mind of Steel	Steel Grade	Samples of Uses
Cirome Steel	150r	This steel can be used to make bolt used on the main engine of a ship, piston pin, can wheel, can axle, cover ring of steam engine and small spare parts of locomotive. It can also be used to make carbureter parts which require high central strength.
	20Cr	This steel is used to make piston pin of diesel engine, cam wheel, axle, the turning year of small tractor and some important carruration parts. 201978, 201923 can be used as its substitute.
	30Cr	This steel can be used to make holt and other important modification spare parts.
	400r	This steel is used to make modification parts, such as autocar swivel joint, conecting rod, bolt. gas inlet value, important gear and axle. 40 mB and 40 myB can be used as its substitute.
	45Cr	This steel can be used to make tractor clutch, gear, diesel engine connecting rod, bolt and tappet rod.
	50 Cr	This steel is used to make central axle of bearing roll, axle or year which requires high strength and abrasive resistance, and axle cover of ring oiling bearing.
hrome Sil- on Steel	38CrSi	This steel can be used to make gas inlet valve of tractor and oil pump gear of internal combustion engine.
	40CrSi	This steel can be used to make axlebox, heat resistant piece, bearing plate and hot-saw.
	15CrMn	This steel can be used to make sealed axlebox of steam engine
·	20 0r) 'n	This steel can be used to make machine casced accelerator friction-wheel, gear and axle. Its properties are similar to thos of 200rNi steel, and they can be better than 200r after heat treatment.
	350ri n2	This steel can be used as substite for 350rl to make spare parts of which the cross-section is not very large and the temperature is not very hi
	400rlin	This steel can be used to substitute 420rMs to make spare parts of which the cross-section is not very large and the temperature is not very high.
Chrome-man- ganes-silcon		This steel c a make components of high strength and its weldability is good.
Steel	1250r1h3i	This steel can make components of high strength and it can be welded.

TO RECUTION OF OT

Kind of	Steel	
Steel	, Grade	Samples of Uses
	30CrMnSi	This steel can be used to make high strength steel,
	i	high pressure blower, high pressure compressor and
		or a of high construction or and
	35CrinSiA	axls of high speed rotating emery wheel.
) JOH HOLA	This steel can be used to make high strength steel,
		the blade wheel of high pressure blower and high
		pressure used on aircrafts.
	TOCLA	This steel can be used to make blade of separation
lium Steel	·	plate on a steam turbine and nozzle.
	lóCr2V4	This steel can be used to make core of high pressur
	·	anti-chlorine jar.
	200my	This steel can be used to make female screw for
		the use on steam turbine.
	35Cr2V	This steel can be used to make blade wheel of steam
	, , , , , , , , , , , , , , , , , , , ,	turbine and its yield point of is required to be
		60-70kg/mm ² .
	400r7	This steel can be used to make water-injection
	40011	
		pump shaft, tension couple-bolt (420°C, 360
		atmosphere pressure), locomotive connecting
	45Cr7	This steel can be used to substitute 400rNi steel
		to make large axle (500-900mm), universal joint of
:	•	rolling mill (1900-1290mm), pressure bolt (above
		300mm). Its integrated mechanical property is good.
	50 Cr 7 A	This steel can be used to make important spare part
		of steam temperature over 40000 and large springs
		which can bear large load and have high fatigue
		strength.
hrome-man-	180r!hTi	This steel can be used to make important gears for
		the use on automobile and tractor and decelerator
•		gear of high strength and tenacity. It can have
rome-man- mese-ti- mium meel		carburization treatment.
) 166±	30CrinTi	This steel can be used to make important rears of
hrome-man- anese-ti- anium teel teel	سالما المال الر	large cross-section for the use on automobile and
	•	tractor, such as drive hevel fear, rear main fear
	1	
	1	and carburization gear which requires very high
		central strength.
	35Cr!hTi	This steel can be used to make modification steel
		pieces of large size.
	40Cr!mTi	This steel can be used to make large gears and main
		axle which must have great strength and good
		abrasive resistance, such as the large gears and
		main axle on heavy machine tool.
hrome-tung-	120CrW/	This steel can be used to make blades and pins of
		_steam turbine
	" 16.'o	
	1 0. 0	This steel can be used to make separation plate.
il Jenum		snecial bolt and flannel disc (steam marameter
1 b		readles 45000 a didie temperature of pipe unll is

בס פב טט מבינובס

Kind of	Steel	Samples of Tses
Steel	Grade	Samples of Ses
0.002		47500 of various coil pipes and conduit pipes and
		their corresponding forgings for the use on sterm
	•	turbine.
	12Crl'o	This steel can be used to make main steam pipe of
	, 120110	which the steam temperature can reach 510°C, coil
	: !	pipes of which the pipe wall temperature is over
		540°C and conduit pipes and their forgings.
	120r3!foA	This steel can be used to make high pressure anti-
	1201 7.10.1	chlorine steel.
	150rl'o	This steel can be used to make main steam pipe of
	-, 34 . 5	which the steam temperature can reach 51000.
	•	various coil pipes of which the pipe wall tempera-
		ture is over 5300C, conduit pipes and their corres-
	•	bonding forgings.
	200rlio	This steel can be used as high grade steel used
	. 2001.0	for carburization.
	250rMol	This steel can be used to make bolt and flange
	. 2,02.304	which show great stress when under 5000C, steam
		pipe, high pressure pipe of more than 500 atmos-
	•	pher pressure and bolts and flantes on large
	200-36	equipment.
	30 0 r16	This steel can be used to make fastening piece of
	1	boiler under 480°C, flance and bolt receiving high
		pressure under 500°C. It is especially rood for
	: t	making pipes which receive 300 atmosphere press
		and above LOCOC.
	350r16	This steel can be used to substitute 300r nii and
		400mMi steel. to make large rears and awle, genera-
		tor rotor of sturm turbine and fastener of boiler
		under 4000.
	420milio	This steel orn be used to substitute modification
	1	steel which contains Mi and the steel used to make
		large formings. It can also be used to make large
	1	towing year of locomotive, rurning tear of trestur-
		izer and the joint of petroleum driller for a well
		denth of 1200-2000 meters and drawing instrument.
rome-mang-	150mlml'o	This steel can be used as high grade carburized
ese-mol-5-	i	steel and substitute carburized steel which has
num Steel	ı İ	high content of Mi. It can also be used to make
	(turning tear on the rear axle of a large tractor.
	1	piston pin, reared irill of re-roleur iriller and
		share parts of small cross-section. 220rimio
	320mimilio	This steel can be used to make commonent parts of
		large cross-section.
	250±21'm1'o	This steel is good for making permoleum equipment

TO 32 00 TI TED

Kind of	Steel	
3 ⁺ eel	_Grade_	Samples of Tses
	,	and high pressure pipeline and steel plate used
	:	for making carbon hydrogen compound. It can also
		be used to make component parts of which the wall
		thickness is above 120mm, such as furnace shell
		and furnace cover.
	40Crlinilo	This steel is equivalent to 400rWil'o high grade
	•	modification steel
Chrome-moly-		This steel can be used to make steam turbine
denum-vana-		separation plate, separation plate outer ring,
lium Steel		main steam pine and steering blade ring.
	120r1:07	This steel can be used to make main steam pipe in
		Which the steam temperature orn reach 54000, soil
		pipe of which the pipe wall temperature is over
		570°S and conduit pipe and its corresponding
		forgings.
	15CrMolY	This steel can be used to make main steam pipe in
	1)Q1101.	which the steam temperature can reach 5000.
	24Crl'oV	This steel can be used to make rotor of 50,000 -
	, 2401:04	100,000kw steam turbo-senerator, steam turbine
		blade wheel (yield strength of 65-75kg/mm2), and
		it can subtitute chrome-nickel-molybdenum steel to
		make turning gear and axle for electric spade of
	250r2Mo74	'Am'. This steel can be used to make rotor sleeve of a
	250F2F07A	
	,	steam turbin, valve, main steam valve, adjusting
		valve, female screw for steam temperature 535 -
	0.50.004.3374	550°C and bolt for temperature under 530°C.
	250r2''01VA	This steel can be used to make fromt cylinder of
		steam turbine in which the steam temperature can
		reach 5657C, bolt, and value stem.
	30 Cr 275V	This steel can be used to make rator of large stead
		turbo-generator, high grade modification steel,
		1150 blooming mill rear, shaft year and petroleum
		drill explore aperture run.
	350=167	This steel can be used to make rotor of turbo-blow
		and compressor, cover disk and shaft disk.
	40 Cr 21'o7	This is high grade modification steel of high
		strength and good tenacity. It can be used to make
	•	dears of large cross-section and high strength,
		axle, wheel rim and the rotating part of a wheel.
		It can have high frequency hardening.
Chrome-sil-	30.0~5:107	This steel can be used to make high pressure bolt
con-mol-rb-		and flance under 50000 and heat resistant bolt
denum-wang- von-kor v-		Which requires very high creep strength. It can
denum- min- dium Stoel		also be used to make steam pipeline and high pres-
Timu 20061	•	gine pineline over 100 atmosphere pressure and
		and flamme of lawme cross-section. TO TE OCTETED

Kind of	Steel	
3teel	Grade	Samples of Tses
Chrome-alumi	-390rAl	This steel can be used in machine tool to make
num Steel	i	carburation component parts which must have very
	į	high hardness, abrasive resistance, fatitie
	1	strength and corrosion resistance, and component
		parts which has little change after heat treatment
		such as precise sleeve and machine tool main axle,
Chrome-noly-	38Cri'o 474	This steel can be used to make carburation parts,
bdenum-alu-	3302.0.2	such as high pressure value stem and value opening
minum Steel		buon and marke procedure while of a some stage which openions
Chrome-wol-	300rWA1	This steel can be used to make machine parts which
fram-vana-	12.01.11.51	require Vickers hardness HV above 900 after being
dium-alumi-		nitrogenated, such as borer, bore rod and screw
	• •	
num Steel	120Mn23	This steel can substitute 200r steel to make
Boron	120Pm25	
Steel	0016 715	carburation component parts. This steel can substitute 120rthTi steel to make
	201 nTiB	
	<u></u>	hizh grade gears.
	201 n 73	This steel can substitute 200rHi steel to make
	1	carburation parts and can also be used as 200r
		steel.
	2051 nV3	This steel can substitute 190mMnTi steel to make
	l	high grade carburation gears.
	20CrMnB	This steel can substitute 150" hTi steel to make
		high grade carburation gears.
	20! ml/o3	Generally this steel can substitute 120m13 steel
		to important rears.
	200rlm73A	This steel can be used to make high grade carcuma
		tion rears. It is equivalent to chrome-middel
	,	steel which contains 33-45.
	1203	The hardenability and strength of this steel are
	, 200	hither than steel Mo.40. It can be used to make
	1	machine parts of large cross-section.
	453	The hardenability and strength of this sheel are
	142	higher than steel No.45. It can be used to make
		machine parts of large cross-section.
	1 <u>201993</u>	The properties of this steel are similar to 400r
	40.23	steel. It can be used to make modification steel,
		steel. It can be used to have not and steel,
		and can also be used as 400r steal.
	(1.5°m3	The properties of this steel are similar to those
		of 450m speel. It can be used to make modification
		steel, and can also be used as 400m steel.
	L019173	The properties of this steel are befrer than thos
	1	of 400r steel. It can be used to make mailed natio
		steel, and can also be used as 400m steel
	70023	The contents of currie of this steel is lower that
		(COm grael. It gam be used as /Com stock
	·	70 70 70 70 70 70 70 70 70 70 70 70 70 7

Continued						
Kind of Steel	Steel Grade	Samples of Uses				
	400rim3 This steel can substitute 400rillo steel.					
	400rl hl 6/34	This is high grade modification steel. The component parts made of this steel can have large cross-section, such as high pressure blower blade wheel and large years.				
Throme-moly- tidenum-tung-	180r3'6W/\	This steel is used for high pressure anti-hydrogen (300 atmosphere pressure equipment).				
sten-ranadium Steel	200x316NVA	This steel is used for high pressure anti-varogen (700 atmosphere pressure equipment).				

5. Carbon Tool Steel (Y85-59)

סומפר	2_7_77	The	Chemical	Composition	of Carbon	Tool	Steel
	~	¥ C	Jan Carlon C. Andr.	こうじょうし ロエリニワー		1001	~ ~ ~ ~ ~ ~

	Steel Grade Chemical Commosition (%)						
.lo.		Symbol	'	Manga- nese		S ;	P re Than
1	碘 7	T 7	0.65~0.74	0.20~0.40	0.15~0.35	9.030	0.035
2	3 袋	Tr	0.75~0.84	0.20~0.40	0.15~0.35	0.030	0.035
3	000 月锰	T8Me	0.80~0.90	0.35~0.60	0.15~0.35	0.030	0.035
4	· : 2美 9	T9	0.85~0.94	0.15~0.35	0.15~0.35	0.030	0.035
5	a#10	T 10	0.95~1.04	0.15~0.35	0.15~0.35	0.030	0.035
6		T 11	1.05~1.14	0.15~0.35	0.15~0.35	0.030	0.035
7	3 €12	T 12	1.15~1.24	0.15~0.35	0.15~0.35	0.030	0.035
8	2 #13	T 13	1.25~1.35	0.15~0.35	0.15~0.35	0.030	0.035
9	第7高	T7A	0.65~0.74	0.15~0.30	0.15~0.30	0.020	0.030
10	张 6 高	T8A	0.75~0.84	0.15~0.30	0.15~0.30	0.020	0.030
11	職 8 锰高	T8MnA	0.80~0.90	0.35~0.60	0.15~0.30	0.029	0.030
12	碳9萬	T9A	0.85~0.94	0.15~0.30	0.15~0.30	9.020	0.030
13	碳10高	T10A	0.95~1.04	0.15~0.30	0.15~0.30	0.020	0.030
14	碳11高	THA	1.05~1.14	0.15~0.30	0.15~0.30	0.020	0.030
15	碳12高	T 12 A	1.15~1.24	0.15~0.30	0.15~0.30	0.020	0.030
16	製 13 高	T 13A	1.25-1.35	0.15~0.30	0.15~0.30	0.020	0.030

Table 2-1-15 The Hardness of Carbon Tool Steel								
Hardness after annealin Uardness after hardening								
	#3	d = 10mm, p = 3000 kg	Hardening temp. TRC					
Steel Grade	lo more than	impression diameter		o less tim				
		(mm) no less than	ant					
TT, TTA	137	4.4	300-820, water	62				
	i			4.5				
TS, TSA	137	4.4	780-300, water	62				
, -								
TSin, TSinA	137	4.4	730-300, water	62				
,				(0				
79, T9A	172	4.35	760-780, water	62				
,	1			/0				
TIO, TIOA	197	4.3	760-730.water	62				
•	; !							
Tll, TllA	207	4.2	760-730, water	62				
,		_	m(0 md0 + + + + + + + + + + + + + + + + + + +	62				
T12, T12A	207	4.2	760-730, water	OZ.				
ŕ			7(0 730	62				
T13, T131	217	4.1	760-760, water) V				
	<u> </u>		<u> </u>	<u> </u>				

Steel Grade	Table 2-1-16 The uses of carbon tool.steel Samples of "ses
T7A	This steel can be used to make tools which can stand
E/A	vibration and shock, and under the condition of appropriate hardness the tool has great tenacity, such as chisel, carpenter's saw and metal saw and hammer.
TSA	This steel can be used to make various tools which can stand vibration and require adequate tenacity and high hardness, such as simple press mold and saw blade.
Tò7	This steel can be used to make tools which has tenacity and definite hardness, such as press mold.
TLOA	This steel can be used to make tool which receives no strong vibration but requires sharp cutting edge, such as cutter, bore-bit, wire-drawing mold and file.
TILA	This steel can be used to make cutters which require an integrated property of good tenacity, hardness and abrasive resistance, such as wire-cone and erasing knife.
T121	This steel can be used to make tools which receive no shock but have high strength, such as cutter, milling cutter, steer, wire-cone, measuring gauge, edge-cutting mold and punching mold.
713A	This steel can be used to make cutters which receive no shock but require extremely high strength, such as erasing lmife, and wire-irawing tool.

7. Alloy Tool Steel (YE7-59)

Table 2-1-17 The Chamical Composition of Milor Tool Stael											
Ordinal	Ordina Steel		Steel Grade		Chemical Composition (3)						
		prend	<u> Symbol</u>	<u> </u>	Mn	S <u>1</u>	يتل	74	7	Mo	
1 1.	in steel	9 建 2	9 M n 2	0.85~0.95			_	_	-	_	
2 2	lhV steel	9 锰 2 钒	9Mn2V	0.85~0.95				_	0.10~0.25	-	
3 3	InCrWV steel	锰铬钨钒	MnCrWV	0.95~1.05	,			0.10~0.50	0.15~0.30	-	
4 4	MnSi steel	8 锰硅	8MaSi	0.75~0.85	i		-	-	-	-	
5	Si'n steel	5 锰硅	5MnSi	0.50~0.60			-	-	-	-	
ó		7 锰硅 2	7MnSi2	0.65~0.75			-	-	-	-	
7		福祉	MnSı	0.95~1.05			- 1	-	-	-	
j 3	Si'n7 steel	6 硅锰钒	6SiMnV	0.55~0.65				-	0.15~0.30	-	
ું જુ		硅锰钒	SiMnV	1.30~1.50		- i		'	0.15~0.30	_	
3 10	SilhW steel	6 硅锰钨	6SiMnW	0.60~0.70	1			1.20~1.50	-	_	
7 1:	SilmloV steel	<i>f</i>	5SiMnMoV	0.15~0.55				_	[0.20 ~0 .30 ¹ 0	.30~0.50	
1 12	3iOm steel	6硅铬	6SiCr	0.55~0.65	;			-	- !	_	
13		9 硅铬	9SiCr	0.85~0.95				-	- ,	-	
7 .		硅铬	SiCr	1.10~1.30	I I			-	- }	-	
15		硅物 3	SiCr3	1.40~1.60	€0.10	1.30~1.60	1.30~3.60	_	-	_	
9 15	SiCrV steel	4 硅铬钒	4SiCrV	0.40~0.50	<0.10	1.27~1.5	1.30~1.6		0. ~0.25	_	
10 17	Cr steel	络 2	Cr2	0.95~1.10	€0.40	≪0.35	1.10~1.6		-	-	
13		格	Cr	0.95~1.16			n. *5 ~1.+ €		-	_	
19		幣 06	Cr06	1.30~1.45	0.20~0.40	≤ 0.35	9.50~9.70		~	-	

TO BE COULTAINED

Conti	nued										-
Group No.	Ordinal	Steel Group	Steel	Grade		Chemi	cal Con	npositio	on (%)		
		_	Brand	Symbol	C	Mn	Si	C;	W	V	Mo
	20		9 45 2	9Cr2	0.80~0.95	0.20~0.35	0.25~0.45	1.40~ 1.70	_	_	_
	21		6 45 5	8Cr3	0.76-0.85	0.20-0.40	<0.35	3.2~3.86	_	_	_
	55		<i>a</i> 8	aC,	0.80~0.90	0.20~0.40		0.45~0.70	-	_	-
	23		18 12	Cr12	2.00-2.30	<0.35	<0.40	11.50~	-	_	-
11	24	Crl'n steel	46 2 5 6	Cr2Mo	1.80~2.10	0.70~1.00	<0.40	1.80~2.10		_	-
	25		en es	CrMa	1.30~1.50	0.45~0.75	<0.35	1.30~1.60	-	-	_
12	26	Crim'o steel	5 格锰钼	5CrMaMo	0.50~0.60	1.20~1.60	0.25~0.60	0.60~0.90	_	+	0.15~0.30
13	27	Cr!'nWV steel	44.6年级	CreW V	1.00-1.15	€0.45	≤0.35	5.50~7.00	1.10-1.20	0.50~0.70	-
14	28	CrMnSi steel	មាខេឌីសា	Cr2MnSi	0.95~1.10	0.80~1.20	0.50~1.00	1.40~1.80	-	-	-
15	29	Cr'nSiW steel	4前3强硅钙识	4Cr3MnSiWV	0.40~0.50	1.35~1.65	0.80~1.20	2.50~3.00	0.80~1.20	9.20~0.40	-
16	30	CrW steel	45 45	CrW	1.10~1.25	0.20~0.40	<0.35	0.60~0.80	1.20~1.50	-	-
	31		络奥 多	CrWs	1.25~1.50	<0.30	<0.30	1.40~0.70	4.50~5.50	-	-
	32		95 1 2 FF	Cr12W	2.00~2.30	€0.35	€0.40	11.00~	0.50~0.00	-	-
17	33	CrWV steel	3 45 2 45 8 钒	1	0.30~0.40	0.20~0.40	<0.35	2.24~2.70	7.50~9.90	0.20-1.50	-
18	34	CrWV steel	16 的程	CrWMn	0.90~1.05	0.80~1.10	0.15~0.35	0.111~1.20	1.20~1.60	-	~
1	35		9 新鲜酱	9CrWMn	0.85~0.95	0.90~1.20	0.15~0.35	0.50~-0.80	0.50~0.90	-	-
19	36	CrWSi steel	5 16 14 2 12	1	0.45~0.55	0.20~0.40	0.50~0.80	1.00~1.30	2.90~2.50f	-	-
1	37		6物料2数	6CrW2Si	9.55~0.65	0.20~0.40	0.50~0.81	1.00~1.30	2.20~2.70	-	
	38		{ · ··· · · · ·	4CrW2Si	1	0.20~0.40			1	-	-
20	39	CrMoV steel	第12個類	CrizMoV	1.45~1.70	< 0.35	≪0.45	11.00~ 12.50		9.15~0.36	0.10~9.60

TO BE CONTINUED

Conti	nued										
Group [Ord nal	Steel Proup	Steel	Grade		Ch	emical	Composi	tion (3)	
	•		Brand	Symbol .	С) _e a	Si	Cr	7.7	A	Yo
21 22 23 24 25 26	40 41 42 43 44 45 46 47 49 50 51	CrVMoW steel Cr W Steel CrW steel CrMiMo steel W steel WCrSiV steel	4 幣的 (相) (相) (相) (相) (相) (相) (相) (相) (相) (相)	4CrVMoW 3CrAJ 8CrV CrV 5CrNiMo W W2 5W2CrSiV 4W2CrSiV 3W2CrSiV 3W4CrSiV 3W4CrSiV	0.40~0.50 0.30~0.40 0.80~0.90 1.10~1.25 0.50~0.60 1.05~1.25 1.10~1.25 0.50~0.60 0.40~0.50 0.30~0.40 0.30~0.40	0.30~0.50 0.20~0.40 0.30~0.60 <0.40 0.50~0.40 0.20~0.40 0.20~0.40 0.20~0.40 0.20~0.40 0.20~0.40	0.50~0.80 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 0.80~1.10 0.80~1.10 <0.80~1.10	1.20~1.50 1.20~1.50 0.45~0.70 0.45~0.70 0.50~0.80 0.10~0.30 0.80~1.10 0.80~1.10 0.80~1.10 2.20~2.70	0.40~0.50 包1.00~ 1.50 作1.40~ 1.80 0.80~1.20 1.80~2.20 1.80~2.20 1.80~2.20	- 0.15~0.30 0.15~0.30 	0.30~0.50 - - 0.15~0.30 - - -
	;	7 steel 7 steel	特格识 等 3 格织 钒	8W2CrV WCrV W3CrV V	0.75~0.90 1.20~1.40 1.30~1.50 0.95~1.05 0.75~0.85	<0.40 <0.40 0.20~0.40	<0.35 <0.35 <0.35	0.30~0.50	0.80~1.16 3.00~3.50 —	0.15~0.30	- -

Note: The contents of sulfur and phosphorus in the steel must not be over 0.030%.

ट्या	- 1		Delivery	state steel	ardened	steel
<u>.</u>	Ordinal	Stee1		Impression	Temperature (10)	
Group No.	4	Grade	(EB)	diameter (mm)	and test piece	
741	3		(,	d = 10mm	hardener	· !
١	-			$P = 3000 k\pi$		f
						·
1	1	★9M n2	<229	≥4.0	760~780. Trater	62
2	2	≠9Ma2V	<229	≥4.0	780~810, oil	52
3	3	* MaCrWV	<223	≥4.05	800-820, 017	63
4	4	∗8M¤Si	<229	≥4.0	800-820. Oil	50
ĺ	5	≠5MnSi	€229	≥4.0	800~840. Jater	5 3
	6	*7MaSi2	€229	≥4.0	820~850. 011	53
Ì	7	≠ MnSi	229~187	4.0~4.4	800~820. Water	#NO.50 02.60
5	8	*6SiMnV	, €229	≥4.0	830~860. Oil	્રેંઇ
ļ	9	≠ SiMnV	<217	≥4.1	780~815. oil	64
6	10	≠ 6SiMπW	€229	≥4.0	820~850. oil	57
7	11	≠5SiMnMoV	≤217	≥4.1	840~900. Water	61
8	12	≠ 6SiCr	€229	≥4.0	830~860. oil	5 7
	13	*9SiCr	241~197	3.9~4.3	820~860. oil	62
i	14	≠ SiCr	<241	≥3.9	830~860. oil	52
	15	#SiCr3	<269	≥3.7	840~860, Cil	6 4
9 8	16	#4SiCrV	<229	≥4.0	860~900. oil	5 7
10	17	#Cr2	229~179	4.0~4.5	830~850. oil	62
	18	∗ Cr	229~179	4.0~4.5	830~860. oil	52
1	19	#Cr06	241~187	3.9~4.4	780~810. water	64
i	20	9Cr2	217~179	4.1~4.5	820~850. oil	⁻ 62
i	21	8Cr\$	255-207	3.8~4.2	850~880. oil	; 55
	22	#8Cr	€229	≥4.0	800~830, cil	51
	23	Cr12	269~217	3.7~4.1	950~1000. oil	. 60
11	24	#Cr2Mn	€229	≥4.0	830~850. oil	52
	25	CrMa	241~197	3.9~4.3	800~830. 011	51
12	26	5CrMaMo	241~197	3.9~4.3	820~850, Oil	j jo
13	27	¥Cr6WV	€235	≥3.95	960-1020 oil or a	ir 50
14	28	Cr2MnSi	255~207	3.8~4.2	830~860. OLL	· 52
15	29	#4Cr3MaSiWV	€229	≥4.0	930~960. 727	52 50 50 50 50 52 57 52
16	30	*CrW	€223	≥4.05	840~870. 011	92
	31	CrW5	285~229	3.6~4.0	800~820. Whiter	55 62
	32	*Cr12W	<272 < 272	≥3.68	940~970. 017	02
17	33	3Cr2W8V	255~207	3.8~4.2	1075~1125, Oil	46

TO BE COMMINED

	nred	Deliver	r state steel	i larden	ed steel
Ordinal	Steel Grade	(::3)	Impression diameter(rm) d = 10mm P = 3000kg	Temperature and test pied hardness	(PC) (RC
18 34 35 19 36 37 38 20 39 21 40 22 41 23 42 43	9CrWMn 6CrW2Si 5CrW2Si 4CrW2Si Cr12MoV #4CrVMoW #3CrAl	255~207 241~197 285~229 255~207 217~179 255~207 <244 <244 207~170 <229	3.8~4.2 3.9~4.3 3.6~4.0 3.8~4.2	. 800~830. oil 800~830. oil 860~900. oil 860~900. oil 950~1000. oil 1000~1050. oil 850~880. wate 810~850. wate 810~840. oil	
24 14	5CrNiMo	241~197	3.9~4.3	830~860. oil	47 52
28 55	W2 *5W2CrSiV *4W2CrSiV *3W2CrSiV *3W4CrSiV *3W4CrSiV *3W4CrSiV *3W4Cr2V *8W2CrV	229~187 255~207 <223 <234 <229 <244 <244 <234 <272 217~179 <201	4.0~4.4 3.8~4.2 ≥4.05 ≥3.96 ≥4.0 ≥3.88 ≥3.88 ≥3.88 ≥3.88 ≥3.68 4.1~4.5 ≥4.25	800~830. Wate 840~860. oil 880~920. oil 960~1000. cil 1000~1050. oil 1050~1100. oil 770~800. Wate 780~820. Wate 780~810. Wate	56 56 50 43 52 61 62 64 64 62 62

Note: The data of steels which are attached a mark of * can only be used as reference.

		Tal	ble 2-1-19 The Uses of Allow Tool Steel
Order No. Group No.	Steel	Grade	
् हैं			
1 1	. 9Mn2		Small die, die and shear, cold press die, carving
			die, die-filling, various measuring gauges of slight
			shape-change, profile gauge, die hob, die block and shear.
2 2	9Mn2V		Same as stated above.
	l'nCrWV		Same as stated above.
	ð 'nSi		Carpenter's chisel, saw blade and other cutting
~-	. 3.1. 3.		tools.
. 5	i insi		This steel can be used to make puncher and vole-
, ,	. 1.01		
: 2	mnSi2		magnifier and hot-forging die and punch of small size.
, 0	n.n.512		Edger, nuncher, hole-magnifier, hot-press for ing
			die, bolt, dogmail and punch.
_ 1 1/	' 'nSi		Drawing die, cold punch and cutters.
	6SilmV		Forging die of small or medium size.
. 9	Sil'nV		Die plate, cold reviting die, cut-off die, cold
			ipunch, measuring gauge and die hob.
6 IO) óSilmV		Hand chisel, pneumatic chisel, munch, remit die,
:			pneumatic bore and pneumatic pickex.
7 11	5SiMnMo	o7.	Hand or pneumatic chisel, boiler tools, forging
	•	_	tools, heavy-load punch, shear, impetuous-vibration
			cutter, revit die and cold boring die.
3 13	6SiCr		Cold punch, pneumatic chisel.
	9SiCr		Die block, die hob, bore bit, shear, rear milling
	, , , 5101		cutter, cold punch and cold-rolling roller.
	SiCr		
	, 3131		Stamp-forming die, steel stamp and puncher, shear,
7.	7 7 7 7 7		milling cutter and die block.
	SiCr3		Die, press-forging die, complicated nunching lie,
2 : 2 /			punch, shear, die hob and milling cutter.
9 16	4SiCr7		Hot hammer, stamp-forming die, hot-cutting tools
			and stamping die.
10 17	7 Cr2		Outting tools, cutter, knife, block cutter,
			measuring tools, profile gauge, shear, ram pin,
			eccentric wheel and cold roller.
13	Cr Cr		Same as stated above.
19	9 Cr06		. Shaving knife and blade, erasing knife, crawing
!			knife and file.
1 20	9 0r 2		This steel can be used to make cold-rolling roller,
			inress-rolling roller, sheel stamp piereing chisel,
			'cold die and punch and carmenter's thols.
/ 23	0.0%0		
			Tot-combing die, bolt and screw die.
53	متن ۽ اُن		Gold-Working steel stamp, combing die, punch.
	:		olain rod, musi rod, oldsel, compenter's planer and
			olog outter.
			CELLIE OC EL OC

Conti	nued		
Gre	Order		
dne	ler	Steel Grade	Samples of Tses
ŏ	₹		
	23	Crl2	Cold-die punch, cold-cutting shear (hard and
		•	thin metal) bore jacket, measuring gauge, screw-
		i	thread rolling die, metallurgical powder die, die
			filling, drawing die and carpenter's cutting tools.
11	24	Cr2'in	Drawing die of high abrasive resistance and
	~~		drawing plate and other abrasive resisting tools.
3.0	25	Crlin	Various measuring gauges and block gauges.
		50rihilo	Forging die of medium size.
ل ا⊥	2.7	CróW	Forming die, bore jacket, cold-punching die,
	:	•	punch, combing die, stamping die, screw-thread
٦,	20	0-286-04	rolling die, shear and measuring gauges.
1,4,	: ८ ၁	Cr2MnSi	Measuring tools which have absolutely no shape- change after hardening.
15	20	4Cr3MnSiWV	Forging die of medium size and ferrous metal
1)	27	401 FILLIAN	(aluminum alloy) casting die.
16	30	CrW	Wood-work plane, cutter (for wood work, hard
20	٥ر	. 51 "	rubber and leather), wood work chisel and cutting
		•	tools.
	` 3]	CrW5	Cutters for low speed cutting of hard metal, such
	!	:	as milling cutter, lathe knife and planer; and
			carving knife working under high pressure.
	32	Orl2W	Cold cutting shear knife, circular saw, combing
		1	die, slitting die, standard tools and measuring rauge,
		1	die hob, thin metal punch and screw=thread rolling
		:	idie.
17	33	3Cr2V87	High stress press die, bolt or screw hot-press
			die and hot-shearing outter.
13	34	CrW'n	Die block, scraping-out cutter, measuring gaute
			and die of complicated shape and high precision.
	35	, 90rW.h 50rW2 5 i	Measuring gaure and profile gauge.
72	36	50 m 42 5 1	Hand or pneumatic chisel, air harmer tool, boiler
		1	thool, top die and upper die, shear knife (heave vibration), cutter (heave vibration) and dement breaker
	27	60rW2Si	Same as stated above, but this steel can be used
	;) '	, 001 4231	to make tools to cut even harder metal.
	33	40r1/25i	Ron-forging die of medium stress.
20		Gr121'oV	Gold-outting shear knife, circular saw, combing
~~),	31 =2. 3 .	die, slitting die, standard tools and measuring
			gauge, die hob, punching die and screw thread roll-
			ing die.
21	40	40m77.6W	Hot-cutting tools, hot-punching die, fording die.
		i	screw, female screw, hot forming lie.
33	41	307.NL 307.7	Anti-acid die and blanking die.
23	. 42	10r7	Sheel showp, combing die and punch.
	1		TO BE COUTT TED

<u>Conti</u>	nued		
Group No.	•	Steel Grade	Samples of Tses
	43	Cr7	Various advanced saw and file for cutting metal,
		•	milling cutter for wood work, planer and bore bit and coining dies.
24	44.	50rlliMo	Blanking die and large forging die.
25	45	A	Twist drill, die hob, shear knife and plain
	46	. 15	spiral milling cutter. Twist drill, die hob, shear knife, plain spiral milling cutter, blade and special cutting tools.
26	1.7	5 Macraiy	Hot forging die of medium size, forming die and
		-	tools for cutting metal.
	48	4M2CrSiV	Hot forging die of large and medium size, casting
		·	die and shear knife for cutting metal.
	49	3W2CrSiV	Hot forging die of large and medium size, casting
	:		die and extruding die, and tools which can bear
	50	3W4CrSiV	heavy impact load. Same as stated above.
27		3W4Cr2V	Large size harmer forging die and extruding die.
		3M2CrV	Cold punching die, combing die and punching die.
	;	WCrV	Cold shear knife and advanced sawing and curting
	7.7		tools.
	54	W3CrV	Cutter for cutting extremely hard metal and
			cutter for cutting extremely soft metal.
2ਹੈ	55	7	Cold punching die, shear, chisel, rneumatic
	<u> </u>		bore, pneumatic picker, hollow-bore (for mining
			mineral), die, cold punch (bolt and remit) and cold
	1	ATT.	die.
	20	ê.A	Same as stated above.
			1

8. High Speed Tool Steel (YB12-59)

	Tal	ble 2-1-30	The	Che	mica	L Cor	mosi	tion	and	Har	dne	ess of	High	Speed Too	ol Steel	
or Or	Sto	el Grade			C'-:	enic	al Co	nnos	itio	nn		Te:	it Tre	atment	Hardness	3
dinel	Brand	Symbol	C	Mn	Si	Cr	W	Mo	V	les Les	s	Hdng Hemp. OC		Tempr. rule	HB Deliverv state	RC(aft hdng & tempr.)
1	19.12婚4択4期	W12Cr4V4Mo	1.20	<0.40	<0.4€	3.80 4.40	11.50	0.90	3.80	0.030.	03	1250~ 1270	oil	550 ~ 57090	Forging steel	>62
2	外18幣 4 択	W18Cr4V	0.70 0.80	<0.10	<0.40	3.80 4.40	17.50	<0.30	1.00	0.030.	03	1270~ 1285	oil	temp. retain	2°5-20° cutting	>02
3	路 9 倍 4 呎 2	W9Cr4V2	0.85	<0.10	≪ 0.10	3.80 4.40	8.50	€0.31	2.00 2.50	0.030.	03	1225~ 1240	oil	for 1 hr, tempr	steel 255-207	>62
•	14 9 16 4 W.	W9Cr4V	0.70	<0.40	<0.4€	3.80	10.00	<0.30	1.40	0.030.	03	1220~ 1240	oil	2 times	cutting steel W12Cr ATMO HB 262	>42

Tabl	e 2-1-21 The Uses of High Speed Tool Steel
Steel Grade	Samples of Tses
	The abrasive machinability of this steel is not very good. It is generally used to make fine lathe knife, milling cutter, shear knife, plain cutter, block gear cutter and forming lathe knife. It is also suitable to make machining abrasive material, such as plastics, fiber, plawood and it is also suitable to make working heat-resisting alloy, titanium-based alloy and steel of medium hardness.
713C±47	This steel has good red hardness, tenacity. and abrasive machinability, so it can be widely used. It can be used to make twist bore, screw cutter, lathe knife, milling cutter, shear knife, block gear cutter and materials of working soft or medium hardness.
19Cr47a	The abrasive machinability of this steel is not good and it can be widely used. It is good for making bore bit, lathe knife, milling cutter, screw cutter, belt saw and wood work tools.

9. Hot Rolled Flat and Screw Spring Steel (YB8-59)

Table 2-1-22 The Chemical Composition, Mechanical Properties and

	Τ		Uses	of Hot	Rolle	d Flat	and Sc	rew S	prin	g Steel	·
Steel Grade				Chem	ical C	omposit	tion (%	}		Heat	Treatment
Symbol	c	Si	Мп	C,	Ni	₩	V	S	P	quench temper T (°C)	Coolant
65	0.62~0.70	0.17~0.37	0.50~0.80	< 1.25	€0.25			0.045	0.040	840 480	tempering
70	0.67-0.75	0.17~0.37	0.50~0.80	<0.25	€0.25		}	0.045	0.040	830 480	tempering
75	0.72-0.80	0.17~0.37	0.50~0.80	€0.25	€0.30			0.015	0.040	820 480	tempering
85	0.82~0.90	0.17~0.37	0.50~0.80	<0.25	<0.30			0.045	0.040	820 480	ouchch oil tempering
60Mn	0.57~0.65	0.17~0.37	0.70~1.00	<0.25	<0.15			0.015	0.040	830 489	quench oil tempering
65Ma	0.62-0.70	0.17~0.37	0.90~1.20	<0.25	<0.25			0.045	0.040	830 480	quench oil tempering
65MnSi	0.52-0.80	0.50~0.80	0.80~0.91	€0.23	. €2.10		i	0.045	0.040	820 480	tempering
55SiMn	0.50-0.61	1.30~1.80	0.80~1.00	€0.30	€0.10			0.045	0.040	880 460	tempering
60SiMn	0.55~0.65	1.30~1.80	0.80~1.90	<0.30	€0.40		1	0.045	0.010	860 460	cuench oil tempering
60SiMnA	0.56~0.64	1.30~1.80	0.90~1.96	<0.30	<0.10		i	0.030	0.035	860 460	tempering
50Si2Mo	0.47-0.55	1.50~2.00	0.60~0.90	<0.30	<0.40			0.045	0.040	870 460	quench bil or water, tempering
55Si2Ms	0.52~0.40	1.50~2.00	0.60~0.96	<0.30	<0.10			0.015	0.040	070	quench oil or water, tempering

Continue Steel		hanical	proper	ties	Hardness	
	Yield	Tensile	Ext	Contr.	HB	
grade		strength			(hot rol-	d 1 0 7
3	03.2			- 3.30	ling	Samples of Uses
	(k-/	(kg/mm)	810	ψ	state)	
Symbol	1 /	(328)	(%)	(%)	5000e)	
			>		\	
85	80	100	9	35	255	This steel will have him strangth after heat treatment and it also has adequate plasticity
70	85	105	8	30	269	and tensoity. It is assually used to take place spring and shiral spring of small size to be
75	90	110	7	30	285	used on automobile, ornator, locamotive daar and other machines.
85	100	115	6	30	302	
60Mn	80	100	g	35	269	The strength of this steel is birn and its hardenability is better than carbon spring steel. Its decarbonization tendency is small but it has over-heat sensitivity, so it is easy to produce quenching crack and tenter brittleness. It can be used to make large spring spring, plate spring, various flat and ordindrical springs, spring soil and spring leaf.
65 M n	80	 to0	8	30	269	The strength of this steel is high, the hardenability is great, and the decembonization tendency is small; but there is an overhear sensitivity so it is easy to produce tardening flaw and tempering brintleness. The sheel is good to be used to take various flat and cylindrical springs of larne suce, cushion spring, spring rib, spring coil, white spring rolling agring at the street wire.
55MnSi	80	190	8	30	285	The hardenacili wand a rearth of this steel are both high and its decarbonization tendence is small. But its shortcomings are averteed sensitivity and rempering britaleness. It is good to be used to make flat, huffer and spiral spring of large size.
55Si.Mn	120	130	5	30	295	unong these nine different kinds of 31'm steel. 553iJMn, 60Si2Mn and 60Si2MnA have longest record
50SiMn	120	130	5	25	285	of various usages and they are used most valely. The are mainly used to make rail Locomotoge can.
50SiMnA	110	160	5	25	235	automobile, plate spring and spiral smrings for tractors, sale valve spring of collinder, preck
50Si2Mn	110	120	6	1 30	295	Taive shring and some other internation arribus which work under list stress, and acti-less
55Si2Mn	120	130	6	30	285	spring Thich is used under the condition of relow 2500.

ntinued		 -									
Steel Grade			Gest Treasment								
Similar	c	Si	Mn	Cr	Ni	w	v	S S	P	quench temper	Coolant
60Si2Mn	0.57.0.05		0 00 0 00	<u> </u>	<u> </u>		<u> </u>		`	870	quench o
- 00312Will	0.57~0.65	1.50~2.00	0.60~0.90	€0.30	≤0.10			0.045	0.040	450	tempering
60Si2Mn A	0.56~0.64	1.60~2.00	0.60~0.90	≤0.30	≤0.40			0.030	0.035	870 460	temperin
63Si2MnA	0.60~0.65	1.80~2.20	0.60~0.90	€0.30	≤0.40			0.030	0.035	860 450	quench of tempering
70Si3MnA ,	0.66~0.74	2.40~2.80	0.60~0.90	≤0.30	≤0.40			0.030	0.035	860 420	temperin
60Si2CrA	0.56~0.64	1.40~1.80	0.40~0.70	0.70~1.00	≤0.40			0.030	0.035	870 420	quench of tempering
65SiCrA	0.62~0.70	1.20~1.50	0.40~0.70	0.10~0.61	€0.40			0.030	0.035	850 450~500	quenca of tempering
50CrMn	0.46~0.54	0.17~0.37	0.70~1.00	0.90~1.20	≤0.40			0.045	0.010	490	quench of tempering
50CrMnA	0.46~0.54	0.17~0.37	0.80~1.00	0.95~1.20	<0.40			0.036	0.035	840 490	temperin
50CrVA	0.46~0.54	0.17~0.37	0.50~0.80	0.80~1.10	≤0.40		0.10~0.20	0.030	0.035	850 520	quench of tempering
50CrMnVA	0.48~0.55	0.17~0.37	0.80~1.00	0.95~1.20	€0.40		0.15~0.25	0.030	0.035	520	temperin
30 W 4Cr2V A	0.28~0.34	0.1.~0.37	≤0.4	2.00~2.50	≤0.10	1.00~4.50	0.50~0.80	0.030	0.035	550~650	temperin
60Si2CrYA	0.58~0.64	1.40~1.80	0.40~0.70	0.90~1.20	<0.40		0.10~0.20	0.030	0.035	110	quench o
65Si2Mn W A	0.61~0.69	1.50~2.00	0.70~1.00	<0.30	<0.40	0.80~1.20		0.030	0.035	850 420	temperin

Note: The mechanical of 65SiCrA and 30 W4Cr2VA can only used as reference.

66Si2Mn₩A	170	190	5	20	302	It is used to make the most important spring which can been heavy load, resist heat (\$350000) and resist import.
60Si2CrVA	170	190	5	20	302	Its properties are similar to that of 60312074 and 6551074, and it can be used to make important spring to bear hearm load,
30W4Cr2VA		170~150			321	This is an und-head straing steel with high strength and it was specially high hardenability. It is mainly used to make upring which can be used at high temperature (#5000).
A VeMaDoz	120	130	6	35	321	50CrimVi has him strength, Mandensbillty and it is not easy to be over heated. It has the properties of carbons manager steel and carbons wandium steel. It is mainly used to take alone string & smiral amping uploy one bear heart land and trent alones
50CrVA	110	130	10	15	302	The hardenability of this steel is similar to that of 60S12cm'4, 60S12cm'4, seed is mily used to make high stress bearing spiral spring of large cross-section and valve spring and piston spring chick can work below 30002.
50CrMnA	120	302	5	35	130	better than silcon-manganese spring steel and slightly better than silcon-chrome spring steel. This steel is mostly used to make important place spring and spiral spring of large cross- section.
50CrMn	110	302 /	5	35	130	The hardenability of SOCT'M(SOCT'M1) is term him because it is added about 11 of chrone and manganese. Even a spring with a diameter of 50mm can be hardened, so its hardenability is
65SiCrA	130~120	170~150	5.	20	302	specially mood to be used to make inti-heat spring and immet stress bearing spring which can be used below 100-15000.
60SizCrA	160	180	6	20	321	The mechanical properties of WS12Crt and 0551Crt are mem- good because they are added channe and manadium. They are mainly used to make springs which can stand tith stress and it is
70Si3MnA	160	180	5	20	302	and it can also be used to make anti-heat applica thick can be used under helov 250°C.
63SizMnA	140	160	6	20	302	the safty valve spring of cylinder, the creek valve spring and some other important springs which can work under him stress,
60Si2MnA	140	160	5	20	302	used most widely. They are reinly used to take plate spring and spiral spring used on rail locorotive car, automobile and tractor.
60Si2Ms	120	130	5	25	302	Among these nine different kinds of 31'h steel, 40312'h and 40512WhA have longest records of various USES and they are
07.4004	;		>		<	
Symbol	(kg/	(kg/mm ²)	810 (%)	ဖို့ ်	state)	
grade	point	strength	rate	rate	(hot rol-	Samples of uses
		Tensile			HB	Samples of Uses
Steel	}	echanical	prop	erties	Hardness	

10. Stainless and Anti-acid Steel (YELO-59)

Table 2-1-23 The Chemical Composition of	'Stainless a	and Anti-acid Steel
--	--------------	---------------------

Ocdinal	S teel	Grade		C lt	emical	Composit	vion	(%)		
12.	Brand	Symbol	C	Si	'n	Or	- + -	74	S >	₽.
1	1 络13	1Cr13	€0.15	≤0.60	€0.60	12.0~14.0	-	-	0.030	0.035
2	2 報 13	2C113	0.16~0.24	€0.60	≤0.60	12.0~14.0	-	-	0.030	0.035
3	3 幣13	3Cr13	0.25~0.34	≤0.60	€0.60	12.0~14.0	-	-	0.930	0.035
4	4 镕 13	1Cr13	0.35~0.15	≤0.60	≤ 0.60	12.0~14.0	-	~	0.030	0.035
5	1 绪18課 9	1Cr18Ni9	€0.11	≤0.40	€2.00	17.0~19.0	8.0~11.0	-	0.030	0.035
6	2 格18簿 9	2Cr18Ni9	0.15~0.24	€0.80	€2.00	17.0~19.0	8.0~11.0		0.030	0.035

Table 2-1-24 The Yechanical Properties of Stainless and Inti-acid Steel
al Grade | Heat Treatment | Yechanical Properties |
| Quench | Temper | Table Yield Ext.Contrimpact Steel Grade Steel arade ΞΞ. santh point raterate value
(kg/(kg/) (3) (3) (3) temp. temp. (.tg.m/TRC) Coolant (kg/ Coolant (°C) (cC) less than (Annealing) 121~187 42 20 60 1 1 格13 1Cr13 700~79° 0,11,a 60 9 ०,∀ 1000~1050 126~197 2 2 16 13 2Cr13 1000~1050 \circ ,w660~770 0,7,3 66 45 16 55 3 3 精13 3Cr13 1000~1050 48 131~207 200~300 50 113~229 4Cr13 1050~1100 4 4 特13 200~300 1100~1150 50 45 55 20 6 2集18集9 2Cr18Ni9 1100~1150 22 40 55

Imposlator's note: o = oil; v = water; and a = air

Staal Garde	Main Properties	Semples of Tses
10r13 20r13	rosion performance in syeam, air and weak	To make anti-aircorrosion parts and parts which require high tenacity and can bear impact load, such value, axle and hastening piece
3Cr13	corrosion agent. After heat treatment and polishing, the anti-cor-	Same as indicated above. It can also be
40r13	rosion performance be- comes even better.	To make anti-air corrosion parts, main axle for heavy load and srew rod. And to make spring, carburetor needle valve and ball bearing
9 Cr1 3	High anti-corrosion performance in atmospher	To make parts of high abrasive resistance and corrosion resistance, such as ball bearing,
10:13:119 20:13:119	Anti-acid and they show high performance of corrosion resistance when they are in various corrosive media.	To make parts which require high performance of various medium corrosion resistance.
7.0.10V/Om/	Anti-acid and it has his	Same as ICrlavio. It can be used to make parts which require no inter-crystalline corrosion.

various corrosive media.

It has special ability of inter-crystalline corro-

sion resistance.

10m13Hi9Ti

Table 2-1-25 The Uses of Stainless and Anti-acid Steel

11. Heat Resisting and Blisterless Steel (Y311-59)

Table 2-1-26 The Chemical Composition of Heat

	lable 2-	-1-26		ical Composit rand Blister	_		(1)
		Q		1 Grade			cosition (g)
Group No.	Steel Group	Ordinal	Brand	Symbol	С	Зi	Mn
1	CrSi steel	1	格 3 硅	Cr3Si	<0.10	1.00~1.50	<0.70
			·		0.35~0.50		
				Cr13Si3	!	2.30~2.80	
		-		Cr18Si2	<0.12	1.90~2.40	≤1.00
		5	格20硅 3	Cr20Si3	<0.15	2.50~3.00	≤ 1.00
	:	6	格25硅 2	Cr25Si2	<0.10	1.66~2.10	≤ 1.00
	į	7	4 俗 3 硅 4	4Cr3Si4	0.40~0.50	3.80~4.30	€0.70
	CrMo steel	8	务 5 領	C15Mo	€0.15	<0.50	<0.60
3	CrSiV steel	g	 烙 6 硅钼	Cr6SiMo	€0.15	1.50~2.00	€0.70
	1	10	4 铬10硅 2 铝	4Cr10S12Mo	0.35~0.45	1.90~2.60	€0.70
4	lCrl3 steel	11	1 挤13	1Cr13	€0.15	<0.60	€0.60
5	CrllMoV steel	12	挤11钼钒	Cr11MoV	0.11~0.18	€0.50	[†] ≤0.60
6	CrNiTi steel	13	1 格18鍊 9 钛	1Cr18Ni9Ti	€0.12	€0.80	≤2.00
		1	1 格18镍12钛	1Cr18Ni12Ti	0.08~0.12	€0.80	2.00
		15	格13硅铝	Cr13SiA1	0.10~0.20	1.00~1.50	<0.70
7	CrilSi steel	11	617相4硅	Cr17A14Si	€0.10	1.00~1.50	°,≤0.70
		17	恪24铝2硅.	Cr24A12Si	€0.12	0.80~1.20	i ≤ 1.00
		18	洛 6 硅 2 钛	Cr6Si2Ti	€0.15	2.00~2.50	€0.70
8	CrSiTi steel	19	6 许 2 硅钼钛	Cr2SiMoTi	l .	1.30~1.70	•
9	CrSiMoTi steel	21	各硅钼钒	CrSiMoV	1	1.20~1.60	
10	CrSiMo7 steel	2	1 络 8 铝 5	Cr8A15	<0.10	<1.00	
11	Cr 41 steel	2:	2 祭 7 铝 7	Cr7A17	€0.12	<1.00	1
	;	2	3 格20铝 5 钴 2	Cr20 A 15 Co2	<0.12	€1.00	
	,	2	4 格13 铝 4	Cr13Al4	<0.15	<1.00	1
		2	5 1 祭17铝 5	1Cr17A15	<0.12	€1.20	1
		21	6 0 格17 铝 5	0Cr17A15	<0.06	<0.60	I .
	1	21	7 1 祭25铝 5	1Cr25A15	€0.12	<1.20	€0.70
		21	8 0 格25铝 5	0Cr25A15	€0.06	€0.60	€0.70
10	ConvictModi atool		#B 5A	1Cr14Ni14W2MoTi	€0.15	€0.80	€0.70
12	CrwiwMoTi steel	31	4倍14镍14钨2钼	4Cr14N114W2Mo	0.40~0.50	<0.80	<0.70
13 14	CrNiWio steel CrNiWii steel	3	1 格15億36個 3 数	Cr15Ni36W3Ti	<0.12	€0.80	1.00~ 2.00

Mote: Except otherwise indicated, no remanent content of mickel in the steel is more than 0.60%.

TO BE COMITUED

Continued

Table 2-1-26 The Chemical Composition of Heat

	•	101 0 2-	7-20 III	e unemi sistiro	car.	omo:	osition of sterless (Heat
		C	hemical	Compos	itic	n	Terless 3 (3)	Steel (2)
Cr	Ni	Mo	Ti				S	P
<u> </u>		1.0	1 1	Al	И	Δ	Mo more than	No more than
3.0~3.5	-	· <u>-</u>	; –	_		—)	0.030	0.035
8.0~10.0		. -	· -	· - ,	-	- :	0.030	0.035
12.5~14.5	. –	· –	-	· –	_	1 — i	0.030	0.035
17.0~19.0		_	-	_	;	- !	0.030	0.035
19.0~21.0	-	_	_	-	;	- 1	0.030	0.035
24.0~26.0	-	-	-		_ ;	- :	0.030	0.035
2.5~3.0	_		_	<u> </u>	- 1	_ i	0.030	0.035
4.0~6.0	_	0.50~0.60	<u> </u>	-	- 1	- !	0.030	0.035
5.0~6.5		0.45~0.60		-	_ '	- :	0.030	0.035
9.0~10.5	≤0.50);0.70 ~0 .90	-		- :	-	0.030	0.035
12.0~14.0	_	-	-	- ,	- ;	- ;	0.030	0.035
10.0~11.5	-	0.5~0.7		-	-	0.25~ 0.40	0.030 i	0.035
17.0~19.0	8.0~		5 × (C% -0.62) ~ 0.80		- !	-	0.030	0.035
17.0~19.0	11.0~ 13.0		5 × (C % -0.02) ~ 0.65	-	- j	- ;	0.030	0.035
12.0~14.0	_	i l		1.00~1.80	- 1	_ 1	0.020	0.035
16.5~18.5	_	-	-	3.50~4.50	- :	;	0.030	0.035
23.0~25.0	-	! - !		1.40~2.40		- !	0.030	0.035
5.8~6.8	_	! - !	0.08~0.15		-	- '	0.030	0.035
2.0~2.5	_	0.45~0.60	€0.20	-	-	-	0.030	0.035
1.5~1.8	_	0.20~0.50	-	- !	-	0.32	0.030	0.035
7.5~8.5	-	-	- !	4.50~5.50	-	-	0.030	0.035
6.5~7.5	_	· - }		6.00~8.00		-	0.035	0.035
19.0~21.0	_	. –	<u> </u>	4.00~6.00	1.50~: 3.00	- :	0.030	0.035
13.0~15.0		- 1		3.50~5.50	1	- ;	0.030	0.030
16.0~19.0	_	_	-	4.00~6.00	- 1	_	0.030	0.035
16.0~19.6	_	-	- 1	4.00~6.00	- :	- :	0.030	0.035
23.0~27.0		! -	-	4.50~6.50	- 1	- :	0.030	0.035
23.0~27.0		-		4.50~6.50	- 1	- :	0.030	0.030
· } .	12.0		≥0.50, Ti:C= 4~5	- ;	2.00~	- [0.030	0.035
113.0~15.0	13.0~	0.26~0.40	-	- 1	2.25	-	0.030	0.035
14.0~16.0	38.0	. –	1.10~1.40	-	2.80~ 3.20	- !	0.030	0.035

Table 2-1-27 The Mechanical Properties of Heat
Resisting and Blisterless Steel (1)

			<u>sesisting and </u>	<u>Blisterless</u>	Steel (1)
2		Ordinal	Steel Gr		Heat Treatment Quenching
Group	Steel Group	<u>.</u>			temperature
No.	· -	; 3	Brand	Symbol	· (oc)
		1		3,7:1201	1
,	CrSi steel				
	CLOI Steel	1	格3硅	CraSi	
	i .	2	4倍9硅2	4Cr9Si2	1050
	•	3)倍13硅 3	Cr13S:3	-
		. 4	'格18硅2	Cr18S12	
	•	5	條20硅3	Cr20Si3	
		6	备25硅 2	Cr25S12	· -
		7	4 幣 3 硅 4	4Cr3Si4	950~1000
.2	Crlo steel	8	路5期	Cr5Mo	-
3	CrSiMo steel	9	- 络6硅钼	Cr6SiMo	
	i	10	4 络10 硅 2 钼	4Cr10Si2Mo	1010~1010
4	'Cr steel	11	1 \$13	1Cr13	:000~1050
5	.CrMoV steel	12	绪!!钼钒	Cr11MoV	1050~1100
6	CrHiTi steel	. 13	i : 1 絡18錄 9 钛	1Cr18Ni9Ti	1100~1150
	i	14	1 格18银12钛	1Cr18Ni12Ti	1100~1150
7	Cr!loSi steel	15	格13硅铝	Cr13SiAl	_
		. 16	格17倍4硅	Cr17Al4Si	-
	1	17	格21個 2 硅	Cr24Al2Si	_
3	CrSiTi steel	18	格6硅2钛	Cr6Si2Ti	· -
_	CrSiMoTi steel	19	格 2 硅钼钛	Cr2SiMoTi	· _
1ó	CrSiMoV steel	20	格硅铝钒	CrSiMoV	_
	CrAl steel	21	48 65 5	Cr8Al5	_
	STAL STEEL	22	路7個7	Cr7A17	_
		23	格20铝 5 钨 2	Cr20 A 15Co2	_
		24	· 洛13铝 4	Cr13A14	_
	i		: 1 祭17借 5	1Cr17 Ais	_
	!	26	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0Cr17 A15	_
		1 27	1 格25 铝 5	1Cr25 A15	
		28	0 修25個 5	0Cr25 A15	_
12	Charlet Diame About	29	1 俗14镍14钨 2 钼铁	1Cr14Ni14W2MoTi	1150
13	CrNi'N'oTi steel	30	1 格14線14約 2 相似	4Cr14Ni14W2Mo	1130
-	CrMi Mo steel			Cr15N :36W3Ti	1150
IA	CrNiWTi steel	31	格15镍36钨3钛	CrisN 136 W 3 T1	1150

Note: 1. Of those the data are not presented in the table, they can be decided by supplier and consumer upon their agreement.

2. There is not impact tenacity test of round steel of which the diameter is less than lorm and square steel or flat steel of which the thickness is less than 12mm.

Continued

Table 2-1-27 The Mechanical Properties of Heat
Resisting and Blisterless Steel (2)

Resisting and Blisterless Steel (2)							el (2)	
∹eat Tr	eatment	;	Mechanical Properties					
Coolant	Temper temp. (°C)	Coolant	strength (kg/mm ²)	Yield point (kg/mm ²) No less	Ext.Coraters (3) (3)	ite	(kg.m/cm ²)	
oil oil water oil water air oil water water	700 700~800 700~800 700~800 700~750 — 740 700~790 720~740 — 700~800 700~800 700~800 - — — — — — — — — — — — — — — — — — —	air air air air oil vater air air air air	50 90 60 55 50 90 60 70 55 56 50 60 70 55 45 45 45	35 60 40 35 40 35 70 40 30 70 42 50 20 28 35 35 40 27	14 20 15 15 18 15 14 18 30 10 20 16 40 40 16 15 18 22	55 35 40 60 35 60 55 55 55		
- water	820 780~790 730~740	ageing ageing	72	32 40	35 15 15	60 35 35	- 6	

Table 2-1-26 The Properties and Uses of Heat
Resisting and Blisterless Steel

		Resisting and Bl	listeriess Steel
Order	Steel Grade	l'ain Properties	Samples of Tses
1 3 5 18 15	Cr3Si Cr13Si3 Cr2OSi3 Cr6Si2Ti Cr13SiAl	Good anti-oxygenization performance, suitable to make high temperature structural component of high temerature low load and loderate load. Cr3Si is good to be used to work under 750°C. Cr13Si3, Cr13SiAl and Cr20Si3 are good to work under 800 - 1000°C. Cr6Si2Ti is good to work under 250°C.	They can be used to make ash- blower pipe, nozzle, annealing furnace with an air circulator and annealing vessel of light metal and overheater stand. Stand of pipe-type heating furnace used in petroleum industry.
6	Cr24Al2Si Cr25Si2	Good anti-ozygenization per- formance, and it is especially good to work under strong temperature fluctuation.	18% chrome steel cannot be used, and heat resisting component of temperature over 1050°C.
16	Cr17AI4Si	It will not blister at 110000 and it is weldable. The welding cannot be used as impact load bearing component.	
	Cr2SiMoTi CrSiMo	under 650°C.	They can be used to make seam- less steel pipe of 550-700°C, overheating pipe, stand, tube. bo-tom plate and coil pipe and hot was blower component.
10	40r95i2 40r105i216	To blister under 30000 Heat resisting and no blister under 95000.	Automobile engine exhaust
77	40r33i4	No blister under 750°C	Inlet valve of especially high load and exhaust valve of low load.
4	2r183i2	No blister under 100000 and other properties are similar to those of Crl7Al4Si.	It can be used to make hard- ening box, heat exchanger and heat resisting structural component.
m Co	Cr51'o Cr6Si'o	Heat resisting and no blister under 30000.	Fine which receives corrosion action in the cracking process, Fump component, value, miston rod, and component of high pressure hydrogenization equipment.

rd-		· ·	
ru- r	Steel Grade	Mina Properties	Samples of Tses
11	1Cr13		Steam turbine blade which
	Crll'oV	:	receives steam action.
	lCrlSUi9Ti	To blister under 1000°C.	Cracking equipment which can
	10-18W112Ti		be heated to 650-720°C, over
-4	, 401 401.4424		heater pipe, aero-encine,
			nozzle and collector used o
	+		exhaust system.
20	10:14:1144	Heat resisting and no blis-	High temperature and high
~/	2'67i	ter under 1000c.	referire steam overheater
	سد ال سنة	, ,	parts and component of 600-
			63000 funace steel nine.
30	40:1411141	Heat resisting and no blis-	Engine valve and steam and
	2Mo	per under 30000.	gas pipeline parts.
3]	Crl5Vi36W3Ti		It can be used to make blad
21		•	which works under 55000 an
			connection parts under 650-
			680°C.
27	CrSA15	No blister under 950°C,	Resistance wire for electri
جـ ټ	ر سه، د. عن	specific resistance is	funace.
	4	1.2 ohm-mm ² /m	
22	Cr7417	No blister under 1000°C,	Resistance wire for electri
~~		specific resistance is	furnace.
		1.2 ohm-mm/m	
23	Cr20Al5Co5	It can be used at 1150-	
,		130000.	· ·
24	2r13A14	No blister under 850°C,	Resistance wire for general
		smedific resistance is	'heaher and elschrichester
		<u>1.8 okm-nm²/m</u>	
25	10:17 115	o blister under 10000,	Electric wire and electric
		specific registance is	rensele egazi vol tled ther
		1.24 ohm-rm ² /n	firmana.
25	00:17415	No blister under 1000°C,	Electric wire emi electric
		specific registance is	heat belt for large electro
		1.24 ohm-mm²/m	furnace and the service li
	•		is longer.
27	10r25A15	No blister under 1150°C,	ointoele bat eniv cintoel?
		specific resistance is	heat belt for large electr
		1.35 olun-mm²/m	furnace.
23	0.422472	No blister under 120000,	Electric wire and electric
		specific registance is	heat belt for large electr
		1.35 olum-mm²/m	furnice and the service li
			is longer.

12. Chrome Bearing Steel (VB9-68)

Table (2-1-29 T	he Chemi	cal Cor					74 2+ 66
	Steel	Grade_		Chemic	rl_Comp	<u>ositior</u>	$\frac{1}{1}(\frac{7}{1})$	
Order	1		С	? ^	Si	Cr	3	P
	Brand	Symbol Symbol						!
1	液络 6	GCr6	1.05~1.15	0.20~0.40	0.15~0.85	0.40~0.70	×0.020	€0.027
	液势 9	GCr9	1.00~1.10	0.20~0.40	0.15~6.35	0.90~1.20	<0.02€	€0.027
3	液傷9社	GCr9SiMn	1.09~1.10	0.90~1.20	0.40~0.70	0.90~1.20	<0.02€	€0.027
4	渡 祭 15	GCr15	0.95~1.05	0.20~0.40	0.15~0.35	1.30~1.65	€0.021	€0.027
5	政格 15 硅锰	GCr15SiMn	0.95~1.05	0.90~1.20	0.40~0.65	1.30~1.65	≪ 0.92′	€0.027

	Toble 2-1-3	O The Properties and Tses of Chrone Posming Dr
೦೫ನ-		
inal	Steel Grade	Main Properties and Uses
1	GC=6	This is a fine low chrome steel, its than the
i		resistance is higher than that of carbon tool world
		its cold working plastic deformation and man illing and
	}	also better but it is sensitive to the former of thite
	1	spot. It shows a tendency of tempering ri cleasess uni
		its weldability is not good so it can be used to make
		bearing steel ball and roller.
2	GCr9	This is a widely used ball steel and its parasive
		resistance and hardenability are higher than those of
	1	GCr6. It is rather sensitive to the formation of white
	1	spot and its cutability is good but wellability is poor
	1	so it can be used to make bearing steel well and roller.
3	GCr9SiMn	Same as GCrl5
-	·	
4	GCr15	This steel has very high abresive vesistance. It
		is sensitive to the formation of white grot and its
		cold working plastic deformation is medium. It can be
	1	used to make automobile, various hears equipment and
		high speed rotation and heavy load reaming steel ball,
		roller and sleeving ring.
5	3Cr155ilh	The abrasive resistance and hardenability of this
		steel are higher than those of GCrl5. It is sensitive
		to the formation of white spot and its cold working
	1	plastic deformation is medium. It can be used to make
	1	large bearing, steel ball and roller. Its other usages
		are same as GCrl5.

- (3) The Heat Treatment Norms and Substituting Materials of Steel
- 1. The Commonly Used Heat Treatment Methods of Steel

Table	e 2-1-31 The cormonly used heat treatment methods of steel
!ame	Method
Full armealing	When heating reaches a point above Ac3, insulating and the
	steel begins cooling slowly in furnace or insulator. Full annealing can be applied to hypo-eutectoid steel and eutectoid
	steel parts. Its purposes are to reduce hardness, to improve
	machinability, to increase tenacity, to eliminate inner stress,
	to refine its structure and to elevate the homogeneity of the
	structure.
Spheroidized	When heating reaches a point above Acl, the steel begins to
annealing	cool in furnace to a certain degree and chances to air cooling.
	Spheroidized armealing is suitable for eutectoid steel and
	hyper-eutectoid steel parts. Its purposes are to improve the
	machinability, to reduce hardness and to eliminate inner stree.
Formalization	When heating reaches a point above Ac3 (or \cm), after insu-
	lation, the steel begins to cool in the air. The purposes of formalization are to refine the structure and elevate the homo-
	geneity of the structure, to eliminate inner stress and to
	inprove such properties as hardness and strength.
Quenching	When heating reaches a quenching temperature above Acs (or
3 5	Acl), insulating and then the steel is put into a coolant to
	cool of rapidly, so as to elevate such properties as hardness
	and strength.
Tempering	When heating reaches a tempering temperature below Acl,
	insulating, and then the steel begins to cool off rapidly or
	slowly in water, oil or air. The purposes are to eliminate the
	inner stress during quenching, to elevate tenacity so as to
Cementation	meet the machinability requirement. Adding carbon at a temperature above Ac3 to the steel surface
Jemen 02011	layer to make it contain saturated carbon element. The purposes
	are to maintain the core hardness and tenacity and to increase
	surface hardness, abrasive resistance and fatigue strength.
Mitridation	It temperature under 500-60000, adding nitrogen to surface
	layer of the steel to make it contain saturated nitrogen element
1	The purposes are to elevate the surface larger hardness, abrasive
Oceani de tito	resistance, corrosive resistance and fatigue strength.
Cyanidation	At a temperature under 500-62000 or 750-35000, adding carbon
	and nitrogen simultaneously to the surface lawer of steel to
i	saturate the carbon and nitrogen elements. The purposes are to elevate the abrasive resistance and fatigue strength of steel
	surface lawer and to maintain the core plasticity and tenacity.

2. The Symbols of Steel Heat Treatment (30423-62)

Table 2-1-32 The Symbols of Steel Heat Trentment Yethods Heat Treatment Methods Symbol Indications Th Annealing Z "ormalization 7235 - modifying to MR220-250 Modification SAR - quenchiar tempering TRSA5-50 Quenc'ain-Y35 - oil cold quenching tempering TRC30-40 Cil cold quenching High frequency G52 - him frequency quenching tempering G quenching HRC50-55 Modification high T-054 - modification high frequency quesching frequency quenching 7-3 tempering IRC52-53 H54 - flame heating quenching tempering Н Flame quenching TRC52-53 359 - cyaniding quenching tempering Graniding HR056-62 100.3 - 900 mitriding depth reaches 0.3mm and Tit briding hardness is measer than 'V'50. Certurising quenching |3-0 |3 0.5 - 059 - carburising layer 0. from on Septim. quenching tempering 37075-60 Ornirurizing high 3 0.4-359 - earhumining layer 0.7mm of Benth, high frequency quenching tempering S-C frequency quenching 4R056-62

AD-A100 576	FOREIGN T	ECHNOLOGY OF EQUIPME	DIV WRIGH	IT-PATTERS	ON AFB	ОН	F/6	15/5	,
UNCLASSIFIED	MAY 81 FTD-ID(RS	T-0685-80	·				NL		
2 of 4									

3. Heat Treatment Norms and Substitute Materials

Table 2-1-33 The Heat Treatment Norms and

				<u>"ater</u>			Steel (1)	
	Heat			l'echa	nical	Pro	perties	
		- Heat treatment norms	strth		rate 8	# rate	r.Impact value 	strenth
					(%)	(%)	om <u>S)</u>	(<u></u> 5)
08	ТЪ	950~960°C furnace cooling	>33	>20	≥33	≥55		
15	Z	900~940°C air cooling	≥38	≥23	≥2? ; ;	≥55	≥6. 5	
	S-C59	900~950°C carburizing 780~800°C water cooling 180~200°C tempering				bre		
	S - G 59	900~950°C cerburizing 820~840°C high frequency heating water cooling 180~200°C tempering	45~55	25~30	≥20	≥50		
	Q-59	830~850°C cyenating oil cooling 180~200°C tempering						
35	Z	860~880°C air cooling	≥54	≥32	≥20	≥45	≥7	
	C 35	840~860°C Water cooling 386~420°C tempering	≥100	≥65	≥R	≥30	≥6	
45	Z	840~860°C, air conling	>51	≥36	≥16	≥ 10	≥5	≥26
	T 235	820~840°C water cooling 560~600°C tempering	≥75	≥45	≥13	≥35	>4	
	Y 35	830~850°C oil cooling 160~180°C tempering	≥90	≥65	≥15	≥10	~4	- ; ; !

Table 2-1-33 The Heat Treatment Norms and Substitute Vaterials of Steel (2)

			Substitute Yaterials of Steel (2)
Mechan	ical	Per-		Substi-
Proper	ties	nit-		tude
Hardn	ess	ed	Samples of Uses	steel
		sect.		grade
		size		
HRC	H3			
			To make sparts which have good magnetic	-
	<131		conductivity and less surplus magnet, such as	
			magnetic absorb disk and magnetic iron.	
	≤143		To make spare parts of low load and simple	
			shape, which can stand friction and impact,	
		!	such as pony aule, sleeve, blocking iron and	
	 	<u> </u>	nin	
56~62	Core	3 ≤ 100		20
	!			
]		
56~62	core	≤100		
. 50 - 52	≤143	100		
	1	1		
		1		1
		 i		
56~62	146~163	វីៗឡ		73
		2 3		
		3 11		
	≤187		To make low load and less friction spare	~
			parts, such as enla, gur rod and handle.	! ! ·
			To make spare parts which require high	36
30~40		φ16	strength, such as peny axle, blocking iron,	. , 30
		≤ φ 50	sorew, female sorew, ring, pin and backing	
		<u></u>	The first of the control of the cont	
	€229		To make share haves which can bear modifier	
		i	load, such as apple, with has, shippile and read.	
	220 - 255		To make share names of which the choss-	
	220~250	~ 100	agonion is unler 100mm to Year medium	
		ŀ	The tours and low speed work, such as tear,	•
ĺ			axila, splined shaft, sleete, shail bar, large	
		}	set serry and large positioning screw can.	}
30~40		€80	To make this and small share parts of com-	
		:	plicated stame, of which the cross-section is	
			under 6-7mm, such as alseve, ring and Pesten-	
			ing sorew cap.	1
				1

CFEMILINO ES OT

Continued (1) Mechanical Properties Mest Thal Yield Ext. Contr. Impact Tatigue Steel treat. strthpoint value strentth rate rate Heat treatment norms Grade ment σ_b † σ_a 4 ò (Kg/) (kg/) (kg.m /cm² (kg/ (%) (%) 6 45 C 42 820~840°C water cooling 10 40 120 100 350~370°C tempering 820~840°C water cooling ≥22 ≥120 **≥**6 , ≥95 260~280°C tempering G42 860~900°C high frequency heating water cooling 320~340°C tempering 860~900 Chigh frequency heating water cooling 220~250 C tempering Core see~seec high frequency ≥17 1 ≥35 ≥45 ≥75 heating water cooling 180~200° tempering C 45 780~800°C oil or water cocling 400~420°C tempering 760~780°C water cooling T 8 C 58 240~260°C tempering 760~770 C hest-preserving T10 630~650°C" spheroidizing furnace cooling 810~830°C water or T 215 loil cooling 600~640°C tempering 1770~790°C Water cooling 180~220°C tempering C 61

ontinu 'echan		Per-	· • • • • • • • • • • • • • • • • • • •	Substi-					
		mit-		tude					
roper									
.:ard	ness	ted	Samples of Uses	steel					
		sect.		grade					
HRC	НВ	size							
40~45		€80	To make spare parts which have high strength hardness and simple shape and its cross-section is under 30rm, such as gear, clutch, blocking	36					
į		i	iron, axle, positioning pin and key	•					
45~50		≤ 50	To make high strength spare parts which receive no impact and its cross-section is under	}					
			150mm, such as gear, paw wheel and aule.	t t					
40~45		≤60	To make low load, medium speed and smaller impact year, clutch and axle of large diameter.	! 					
45~50		<60	To make low load, medium speed gear, clutch of smaller impact and axle of large diameter						
52~58	心部 220~250		To make constant load and medium speed gear o which the modulus is smaller than 4, clutch of smaller impact and axle of large diameter	f					
42~48			To make small cross-section, simple shape and receiving no large stress spring and elastic spare parts.						
55~60		≤80	To make top point, clamping head and abrasive resisting parts.						
	≤197		To make wire bar for making precise machine tool.						
200~230	! 	:	To make wire bar which can bear heavy load an have definite abrasive resistance.	đ					
58~64		-	To make spare parts which have high abrasive resistance, such as top point, thimble, spring and clamping head.	; ;					

Continue	ed (1)							
				l'ec	ranica	1 Pro	perties	
	Heat treat	Heat treatment norms	strth	Yield point	Ext.	Contr	Impact	Tatigue strength
Grade	ment		(kg/ .mm2)	(kg/)	(%)	(%)	(127.7) (27.7)	(kg2)
T 12	Th	160~170°C heat preserving 630~650°C spheroidizing furnace cooling	•					:
	T 215	310~840°C water or oil cooling 630~650°C tempering			!			
	C 61	180~800°C water cooling 180~220°C tempering	1					: :
50Mn2	Z	820~840°C air cooling	≥75	→ 43	≥10	≥35	≥6	:
	T 280	810~840°C oil cooling 500~600°C tempering	≥95	>70	≥9	~10		:
35SiMn	T 235	840~860°C oil cooling 600~650°C tempering	83-10	0 73-91	≥11	≥10	≥6	· · · · · · · · · · · · · · · · · · ·
	Y42	840~850°C oil cooling 350~370°C tempering	>131	≥124	8.3	54	8.7	
	Y 48	860~880°C oil cooling 250~270°C tempering	179		5	40	5.6	
42SiMn	Y 12	840~860°C oil cooling 370~390°C tempering	141.4	113.7	13.6	48.6	8.2	
	Y48	840~860°C cil cooling 280~320°C tempering	199			34.7	4.0	j (

TO BE CONTINUED

ontinued (2)		
Pechanical Per- Properties mit- Hardness ted sect.	Samples of Uses	Substi- tude steel grade
HRC HB size		Taue
<207	Same as T10	
200~230	Same as T10	TIO
53~64 <60	Same as T10	
<241	To make medium load and large cross- section spare parts, such as gear and main axle.	
285~302	To make main axle of machine tool which roates in the rolling bearing and medium load large gears	
220~250	To make medium load and medium speed spare parts, such as gear, screw rod, splined shaft, top socket and main axle which rotates in the rolling bearing.	
40~45	To make medium speed and heavy load spare parts, such as jear, main axle, rotor of hydraulic nump and slipper.	
45~50		•
40~45 < ¢ 50	Same as 35311m-742	
45~50 < d 40	Same as SiMn-Y43	

TO BE COMPINUED

	,		Me	chanic	al Pro	onerti	es_	
	Heat treat	Heat treatment norms	Thel strth o. (kg/ mm ⁻)	1	rate 8		Value ('cg.m	strt
42&iMa	Y 52	s50~860°C oil cooling 180~200°C tempering	206			33	3.5	
	G42	860~880°C high frequency heating erulation cooling 350~370°C tempering		!		!	:	
		860~880°C high frequency heating emulsion cooling 180~200°C tempering						
20Min2B	S-Y59	900~950°C carburization 820~840°C oil cooling 180~200°C tempering	(37		1	re 58.5	11	
	S-G59	900~950°C cerburization 830~880°C high frequency heating enulsion cooling 180~200°C tempering		!				
20MnVB	S-Y59	900~950°C carburization 810~830°C oil cooling 180~200°C tempering				bre		
		900~950°C carburization 820~860°C high frequency heating erulsion cooling 180~200°C tempering	153	,	11.5	45	13	
0S:MaVB	S-Y59	900~950°C carburization 820~840°C oil cooling 180~200°C tempering	≥120	100	≥10	≥50	55 ≥3	
	S-G59	900~950°C carburization 800~880°C fich frequency heating emission cooling 180~200°C tempering						

TO BE COMMITTED

Contin	ued ((2)		
Mecha				Substi-
Prope	rties	mit-		tude
	ness	ted	Samples of Uses	'steel
		sect.	•	grade
		size		
HRC	.43	!	· · · · · · · · · · · · · · · · · · ·	
		1	Same as Silm-Y43 but the cross-section is	
50~55		< ø 30	smaller	
40~45			To make medium speed and medium load gear	
			and other spare parts	
50~55		ļ	To make spare parts which require high sur-	
	!	!	face strength and high abrasive resistance, such	
		<u>i</u>	as main axle, axle and gear.	
		≤ 40	To make spare parts of medium and small soze,	
56~62	i	•	which can bear impact and high speed work, such	
	İ		as the main axle which rotates in sliding bearing	
		•	speed-changing box gear, clutch, sleeve, direction	n
			plate, simulation plate and screw rod.	
56~62		:≤120	To make spare parts which have high abrasive	
		i	resistance and less deformation after heat treat-	
	ļ		ment, such as gear of which the modulus is smalle	ī.
	! 	<u> </u>	than 3mm, main axle, axle and splined shaft.	
	Core	i	Same as 201/n23-159	
	389	<40		
	١	1		
	Cor	₫	Same as 201/h23-G59	
	143~17	9 < 120		
	!			
	! _	 		
	12000		To make spare parts which can bear impact and	i
56~62	Core < 285	1	high speed work, such as year, screw rod, claw	
3002	285		clutch, sleeve and main axle which rotates in	
	!		sliding bearing.	
36~62	j	i	Same as 20Sil'n73-3-059 and used to make spare	:
	1		parts which require less deformation after heat	
	1		treatment, such as year and claw clutch.	
		·		

CETTITION EF OT

Continue	ed (1)							
	Heat treat		Insl strth (kg/ mm ²)	Yield Point (kg/	TXt.	Contr		ratique stren;th 6-1 (kg/
45MnB	T 235	840~860°C oil cooling 600~650°C tempering	>74	≥60	≥22	≥64	≥16	
	Y 42	830~850°C oil cooling 350~370°C tempering					ı	
	Y 48	830~850°C oil cooling 280~300°C tempering				!		
	Y 52	840~860°C oil cooling 180~200°C tempering	i !			İ	;	
40MaVB	T 235	830~850°C oil cooling 550~650°C tempering	>80	≥70	≥30	≥55	≥12	
	C42	830~850°C oil cooling 350~370°C tempering						
	C48	830~850°C oil cooling 280~320°C tempering				: ! 		!
	C 52	830~850°C oil cooling 180~200°C tempering		:				
	G48	860~880°C water or emulsion cooling 260~220°C tembering				1		
	G52 T · G52	860~880°C Water or emulsion cooling 260~280°C tempering	!	i	 -		1	
18CrMnTı	S - Y 59	900~950°C darburization 820~840°C dil cooling 180~200°C tempering	≥ 100	≥80	ære ≥9	≥50	>8	65 :
	S-G59	900~950°C carburization 820~860°C high frequency neating artilision cooling 180~200°C tempering						

TO BE CONTINUED

ontin	led (2	2)		
Mechai Prope Hardi	nical rties ness	Per- mit- ted sect.	Samples of Tses	Substi- tude steel grade
FRC	33	size		
] 22 0~ 250		Same as 35SiMn-T235	
40~45		:	Same as 35Silm-Y42	
45~50			Same as 35311n-743	
50~55		!	Same as 42Sil'n-Y52	
	220~250) :	Same as 35Siln-T235	
		€50	Same as 35Silm-742	
		€10	Same as 35SiNh-Y43	
		€30	Same as 425il/n=152	
46~51		<100	Same as 42Si'n-G48	
50~55		<100 [‡]	Same as 425i'h-0 52	
56∼ 62	Core	,	To make spare parts which can bear medium load and impact load and high speed work, such as year, screw rod, claw clutch and main axle which rotates in sliding bearing.	
56~62		€120	Same as 130mmi-159 and the spare parts which require less deformation after heat treat-	
	(i	ment.	Į.

תפודונים פב סו

Continued ((1)

	: ***			<u></u>				onarties	
		- Heat	treatment norms	Insl strth				·Immact e value	
Grade	ment			(kg/ mm')	(lig/	δ	(%)	('ig.m /cm')	([ca/ ====================================
35CrMo	T 280	850~870°C	oil cooling tempering	; , ≥ 90	≥80	≥15	≥40	≥7	
	Y48	850~870°C 200~220°C	oil cooling tempering	≥160	≥140	≥!3	≥3⊭		óξ
38C1MoAl	T 280	waver	oil or cooling tempering	100	85	15	50	9	
	D900		corburization air cooling					is deter restmen	
20Cr	S-Y59	800~820°C	corburization oil cooling tempering					:	
	S-G59	heating	corburization high frequency semulation cooling tempering						
40Cr	T 235	840~860°C	oil cooling	>85	>65	≥ i0	≥40	≥6	40
	Y 42	830~850°C 350~370°C	oil cooling tempering		 •	Angel III			
	Y 48	840~860°C 280~320°C	nil cooling tempering						
	Y 52	850~870°C	oil cooling						
	'	180~200°C	tempering						

TO BE COUTING

	anical enties		i	Swisti de					
	dness		Samples of Uses						
HRC	HB	size							
	255~302	-	To make spare parts of high rotation precision such as gears	1,					
45~ 50			To make gears of high fatigue strength, medium speed and heavy load, main able and other spare parts	!					
	≥280		To make spare parts which have have high abrasive resistance, high fatigue strength, high strength and less deformation after heat treatments such as boring ber, main axle, year, screw rod,						
	H V ≥900	i	thimble and sleeving ring.						
56~62	Core ≥212		Same as 201/h2B-3-159	201523 772103					
	1								
		≤120	Same as 201/n23-3-059						
	220~250		Same as 201/n23-5-059 Same as 355iNn-T235	355£13 40151					
40~45	220~250			355000 40007 45007 40007 45003					
		€.80	Same as 35SiMn=T235	353(1)3 401/117 401/117 401/117 451/113					
10~45		≤ 80 ≤ 50	Same as 355iNn-T235 Same as 355iNn-T42	70,27 72,27 70,27 70,27					

CERNILLINOS EU OL

	1	1		Mechanical Properties								
Heat Steel, treat Grade ment		Test	treatment norms	Insl strth o. (kg/ mm ²)		Ext	.Contr e rate	Tripact Value (icg.m.				
40Cr	G52 T-G52	860~880℃ heating 180~200℃	erulsion cooling			:	!		:			
9Mn2V	Y 56	780~810°C 240~260°C		!	•	:		!				
	Y 62	780~810°C 180~200°C	cil cooling tempering	İ		: 		!				
	T-G60	810~830°C 180~200°C	oil cooling tempering			1	,					
CrMn	Y 56	830~850°C 260~320°C	oil cooling tempering									
	Y 62	830~850°C 180~200°C	oil cooling tempering			_						
CrWM _p	Y 56	830~850°C 280~340°C	oil cooling tempering				L ;	,				
	Y 62	830~850°C 180~200°C	oil cooling témpering									
65 M n	Y 45	796~820°C 370~400°C	oil cocling tempering	≥150	≥125	≥ 5	≥10		59 23 - 2			
	Y 58	790~820℃ 200~280℃	oil cocling sempering		·		<u>:</u>		· ·			
60Si2MnA	Y 42	850~880°C	oil cooling tempering	≥130	≥120	≥ 5	≥25					
	Y 45		oil cooling tempering	≥150	≥130	≥ 5	≥20					

בבונובניסט בכ סב

Continu) fer	2)									
Mechan				Substi-							
Proper	ties	mit-		triđe							
Handr	less	ted	Samples of Tses								
		sect.	•	grade							
1		size									
HRC	$^{\mathtt{HB}}$										
50~55		<80	Same as 42SiYn-G52	401 n 73							
ì				401mB							
1		}									
54~58		≤50	To make precision quenching wire rod of	!							
34 - 30			less deformation and high horasive resistance,	:							
			profile gaure, cam wheel, mould and other	i							
		!	snime nama.	·							
60~64		€30									
1		1		1							
			To make main axle of grinding machine	-							
60~62		i		1							
		•	which rotates with high samed.	:							
54~58		≤40	To make precision quenching wire rod, of	9\m27							
•,	†		which the diameter is smaller than 40mm and it								
	1	!	has less deformation and high abrasive resistance	•							
		-	cam wheel, profile gauge, mould directing sleeve.								
60~61		≤30									
	,	,									
····			To make precision quenching wire rod of	9 n2 7							
54~58		<70	less deformation and high abrasive resistance,	•							
	1	İ	and directing sleeve	1							
60~64	1	< 40		1							
0004	1			·							
			To make belt spring and spring of which the								
42~48	i	€35	cross-section is larger than form and backing ring	•							
	1	:									
	55~60	\ <15	To make spare paras of highelasticity, high								
35~60	1 3300		abrasive resistance and high strength, such as								
		•	spring clambing head and machine tool main autle.								
	1		To make large spring of which the cross-	,							
40~15	1	}	section is over 5mm and it can bear heavy load.	1							
			4	į							
42-18	i i		•	į.							
	*	-		i							
				:							

TO BE CONTINUED

	:	1	L	`'ec	nanic	al Pro	portie	S
Steel Grade	Heat treat ment	Heat treatment norms	Insl strth o. (kg/ mm ²)	Tield	Ext.	Contr. rate	Impact value (kg.m /cm ²)	Fatigue streneth (kg/ m2)
50CrVA	Y 42	850~870°C oil cooling 460~480°C tempering	≥130	≥ 110	≥10	≥45	~3	·
	Y 45	840~860°C oil cooling 370~420°C tempering	≥150	≥139	≥12	≥40		ęġ
2Cr13	T 250	1000~1050°C oil cooling	≥66	≥45	≥16	≥55	>:	
	·	600~700°C. tempering						
G Cr6	Y 63	830~850°C oil cooling 150~160°C tempering					! !	
GC+15	Y 60	840~860°C oil cooling 180~200°C tempering				,	:	
	Y 63	840~860°C oil cooling 150~160°C tempering			,			
GCr15SiMn	Y 63	830-840°C cil cooling 150-160°C tempering						
W9Cr4V2	Y 63	750~800°C. pre-heating 1220~1240°C cil cooling 560~580°C tempering	!					
W18Cr4V	Y 63	750~800°C. pre-heating 1266~1280°C oil cooling 560~580°C tempering two times						

		2) Per-		Substi-
		mit-		⊃r.e_
Hura	ness	1	Samples of Tses	steel
		sect. size		grage
RC	33	.size		i
10~15	l	≤ 35	To make important spring of heavy load,	60SiMnA
49 - 40			high fatigue strength and high elasticity.	9032101A
	<u>:</u>	.	aren reorgae surengur might erasorors.	
42~48	Ì	€25		
	240 00		To make spare parts which can remain mot-	
	210~26	1	prrof in atmosphere and bear no heavy load, such	
			as mirror shaft, standard gauge and frotening	
			<u> </u>	
51 ~ €5	ļ	€10	To make steel ball of which the diameter is	
			smaller than 13mm and roller and various pins of	
			which the diameter is under 10mm.	
58~62		≤ 35	To make padding block and mandrel which have	
30 32	i	4.53	high abrasive resistance and bear no great	
			pressure.	
			7	
61~65	}	<15	To make spars of heavy load and high	
			abrasive resistance, such as wane pump setter, comming die, sleeve of which the wall thickness	
	:			
		•	is less than 14mm, bearing ring of which the external diameter is less than 250mm, steel ball	
			of which the diameter is less than 50mm and	
			roller of which the diameter is less than 23mm.	
			To make bearing ring of which the wall thick-	
6:~55		€35	nger is nore than 14m or the external firmeter	
			is more than 250mm, smeel hall of which the	
			is reter is more than form and roller of which	
			The limeter is nore than 23rm.	
			To make sil nump blade, screw-thread mind-	
			ing machine top point and other spare parts of	
			high temperature antiabrasion.	
	<u> </u>		12 12 321 731 1 1 2 5 11 71 301 RB1011•	
60~65	i			
	į.			
	:	i		

(4) Iron Casting and Steel Casting

1. Gray Iron Casting (GB976-67)

Table 2-1-34 The Mechanical Properties and Uses

						Iron Cas	ting (G	12976_67)
Brand	Casting main well thick-ness (-m)	1 -	Tensile stren- gth (kg/mm ²)	Bendg stren- gth (kg/mm ²)	xion Fulcrur = 100	Compression strength (kg/mm²)	НВ	Samples of Uses
HT10-26	all cizes	30	10	26	2	50	143~229	
HT15-33	4~8 >8~15 >15~30 >30~50 >50	13 20 30 45	28 20 15 12	47 39 33 25 21	1.5 2 2.5 3	65		body, valve shell, pipe and pipeline accessory, hand-wheel, machine tool surport, rachine body and completed parts,
HT20-40	6~8 >8~15 >15~30 >30~50 >50	13 20 30 45 63	32 25 20 18 16	53 45 40 34 31	1.8 2.5 2.5 3 4.5	75	170~241 170~241 170~241 163~229	machine body, fly wheel, gear rac auxiliary cylinder, machine body

	>8~15	20	29	50	2.8		187~258	Valve shell, oil tank, cylinder, axle connector, machine body, gear,	
	>15~30	30	25	47	,		170~241	gear-box shell, fly wheel, auxiliary	
HT25-47	>30~50	45	22	42	4	100	100	170~241	cylinder, comwheel and bearing pile.
	>50	>50 60 20 39 4.5	163~229						
	15~30	30	30	54	3		187~256	Gear, camwheel, machine tool clamping disk, shear bench, pressure	
HT30-54	>30~50	45	27	50		110	170~241	machine body, guide plate, hexagon,	
	>50	60	26	48	4.5		170~241	automatic lathe and machine body of	
	>15~30	30	35	01	3.5		107~750	heavy load machine tool which has guide track, high pressure liquid-	
HT35-61	>30~50	45	32	56	4	120	187~255	pressure cylinder, liquid-pressure pump and sliding valve shell.	
	>50	60	31	54	4.5		179~241	pump and Silding valve shell.	
	>20~30	30	40	58	3.5		207~269		
HT40-68	>30~50	45	38	65			197~269		
	>50	60	37	63	4.5		197~269		

Note: 1. The first group of numbers following "ET" signifies the lowest tensile strength; the second group of numbers signifies the lowest bending strength.

2. The main wall thickness of the casting refers to the point of the casting that bears load.

3. The permitted minimum number of the "casting main wall thickness" of each brand in the table is generally corresponding to the permitted minimum wall thickness of the iron casting of that brand.

4. In the new standard, compression strength has not been regulated yet, the numbers given in the table indicate the compression strength when wall thickness is more than 15-30mm, and they are based on the standard of (JB297-62).

2. Gray Iron Casting (JB297-62)

Table 2-1-35 The Mechanical Properties of Gray Iron Casting (J3297-62)

		Mechanical Properties											
	Tensile	Bending	Deflexion	n (mm)	Compression	·							
3rand	strength	strength	Fulcrum	Fulcrum	strength	HB							
	σι	σ.,	distance	distance	٥,								
·	(!r~/mm²)	(<u>len/mm²)</u>	500	300	(kg/mm²)								
HT00	To test	No test			; -	_							
HT12-28	12	28	6	2	50	143~229							
HT15-32	15	32	8	2.5	65	163~229							
HT18-36	18	36	8	2.5	70	170~229							
HT21-40	21	40	9	3	75	170~241							
HT24-44	24	44	9	3	85	170~241							
HT28-48	28	48	9	3	100	170~241							
HT32-52	32	52	9	3	110	187~255							
HT35-56	35	56	9	3	120	197~269							
HT38-60	38	60	ļ 9 ;	3	130	207~269							
	}		1		1								

3. Spheroidal Graphitic Iron Casting (JB299-62)

Table 2-1-36 The Mechanical Properties and Uses of

		.	Sp:	meroidal G	raphitic	Cast Iron Piece
Grand	Tensile strength	strengt (kg/~m2	Ext. Arate	Impact	HB	Samples of Tses
QT45-0	45	36			187~255	1. To make able parts, such as diesel engine bent able (generally QT50-1.5 or QT50-2) can able and thater burn parts.
QT50-1.5	50	38	1.5	1.5	187~255	2. To make gears (generall QT45-5), the proper casting
QT50-2	60	42	2.0	1.5	197~269	wall thickness is 10-75rm. 3. To make diston ring.
QT45-5	45	33	5.0	2.0	170~207	Criction blade and automobile rear bridge and other spare
QT40-10	40	30	10.0	3.0	156~197	parts. 4. Yedium pressure value, low pressure value, bearing
 	\	}	1			support and fack support.

Note: The first moun of numbers following "QT" indicates the lowest tensile strength, and the second moun of numbers indicates the lowest expension rate.

4. Forgeable Iron Casting (GB978-67)

Table 2-1-37 The Mechanical Properties and Uses

				of For	geable_C	ast Iron	n Piece
Brand	Casting arin wall thickness (rm)	l bar diame-		Ext. rate &	Yield strength o.> (kg/mm ²)	нв	Sammles of Uses
KT-30-6	<8 8~12 >12	8 12 16	34 33 30	10 9 6		120~163	1. Tractor, automobile casting parts, such as wheel hub on rear bridge shell, steering mechanism shell body and spring plate
KT-33-8	<8 8~12 >12	12 18	37 36 33	11 8	}	120~163	support. 2. Various machine tool accessory
KT-35-10	<8 8~12 >12	\$ 12 16	39 38 35	14 13 10		120~163	such as hook-shaped trigger, and screw-thread hinge trigger. 3. Various pipe joints which
KT-37-12	<8 8~12 >12	8 12 16	41 40 37	16 15 12		120~163	can be used to substitute copper casting, such as running water nozzle.
KTZ-45-5		16	45	5	28	152~219	4. To make low pressure valve and farming instruments.
KTZ-50-4		18	50	4	34	179~211	
KTZ-60-3		16	60	3	42	201-269	
KTZ-70-2		16	70	2	5.5	710~270	
			! !				<u> </u>

Note: The first group of numbers following "KT" and "KTZ" indicate minimum tensile strength and the second group of numbers indicate minimum extension rate.

5. Heat-resisting Iron Casting (JR640-65)

Table 2-1-38 The Mechanical Properties and Uses of Heat-resisting Cast Iron Piece (1) Heat Mechanical Properties
Chemical Composition (3)resi- at Room Temperature
stingInsl BendgDeflexion Yechanical Properties Brand Mame temp.strthstrth2 fulcrum (lig/ (kg/ 300mm mm2) mm2) (mm) Cr (20) #3 C Si Ma P S Containing o mome tentRTCr-0.8 2.8 1.5 36 2.5 207~285 resisting cast iron Contrining chrome heat RTC-1.5 resisting 32 : 2.5 cast iron Tigh silcon heat resis-RTSi-5.5 2.2 15.0 24 2.0 : 140~255 ting cast iron High silcon heat resis-RQTSi-5.5 2.4 5.0 <0.7 <0.2 <0.03 Tot Not Below mea- measured 208~321 900 iron 22 suređ

Tote: 1. The graphite of 2073i-5.5 high silcon heat-resisting spheroidal graphitic cast iron should be spheroidal and the flair graphite is no more than 157.

2. The high silcon heat-resisting cast iron piece and high silcon

^{2.} The high silcon heat-resisting cost iron piece and high silcon heat-resisting spheroidal graphtitic cost iron piece should all go through heat treatment to eliminate internal stress.

Table 2-1-38 The Mechanical Properties and Uses of Heat-resisting Cast Iron Piece (2)

	of Heat-resisting Cast Iron Piece (2)
Matrix structure	Samples of Uses
Pearlite or pearlite plus cementite	To make spare parts which can work in the air below 600°C and in furnace has medium, such as gas producer floodrate, furnace war and open hearth furnace cooling cabinet.
Pearlite or pearlite plus cementite	To make spare parts which can work in the air below 650°C, furnace gas or producer gas medium, such as furnace bar, furnace har sumport, open hearth furnace cooling cabinet and heat exchange pipe.
Ferrite or ferrite plus pearlite (less than 203)	To make spare parts which can work in the air below 350°C and in furnace gas or producer gas medium, such as heat exchange pipe, gas control valve, open hearth furnace cooling cabinet, the furnace bar beam of steam boiler.
Ferrite or ferrite plus pearlite (less than 193)	To make spare parts which can work in the air below 950°C (Si content less than 51) and below 1000°C (Si content more than 5.53) and infurnace has medium, such as heat exchange pipe and furnace bar.

6. Carbon Steel Casting (GB979-67)

Table 2-1-39 The Chemical Composition, Mechanical Properties

						and :	ses o	f Carbo	n Steel Casting
	Chemic	al Comp	osition	l'ec ¹	anica	l Po	rperti	es	
Steel Grade	С	lin		strth o, (kg/		rate	rate	Impact value (kg.m/cm ²)	Samples of Uses
	i	_(1)_				>			
ZG 15	0.12~0.22	0.35~0.65	0.20~0.45	20	40	25	40	6.0	Machine parts of various shapes, such as machine stand and speed chance box shell
ZG 25	>0.22~0.32	0.50~0.80	0.20~0.45	24	45	20	32	4.5	To make machine stand, harrer wheel, both body and pipeline accessories which as work under 450°C. Shod weldability.
ZG 35	>0.32~0.42	0.50~0.80	0.20~0.45	28	50	16	25	3.5	Machine articles of various stapes, such as fly wheel, machine stand, steam hammer, rom harmer, tooth wheel, water endine operation distern and beam. Weldability is all right.
ZG 45	>0.42~0.52	0.50~0.80	0.20~0.45	32	5ਨੇ	12	20	3.0	Prohine articles of marious shares, such as axle connector, which cylinder, mear genr ring and beaut machine stand.
ZG 55	>0.52~0.62	0.50-0.80	0.20~0.45	35	65	10	1.5	2.0	Grane and transporter rear, attle con- nector and important racine parts.

Note: 1. The castings can, according to their quality, he classified into three grades: Grade I - high grade casting; grade II - fine casting and grade III - ordinary casting.

Casting	1 _ Chemical composition	(*;)
erudes	S	P
	0.04	0.04
į	9.05 9.06	0.05 0.06

2. The mode of the mass of costings is indicated after the steel grade, but grade III is not given, for example, ZG35 I; Zg35 II; and ZG35.

(5) Section Steel

1. Polled Phin Strel Plate (32700-05)

Table 2-1-40 The Norms and Dimensions of Rolled Thin Steel Plate

Thickness					Wid	th		(rum))				
	500	600	710	750	800	850	900	950	1000	1100	1250	1:00	1500
(mm)					Ler	ngth		(==	<u>m</u>)				
			Hot	roll	led s	s-eel	. pla	te					
0.35, 0.4, 0.45, 0.5, 0.55, 0.8, 0.7, 0.75	1000 1500 2000	1200 1500 1800 2000	1000 1420 2000		1500 2000	1700	1500 1800 2000	1900	1500		i	!	:
0.8, 0.9	1000 1500	1200	1420		1500	1500 1700 2000	1500 1800 12000	1900	1500	1			_
1, 1.1, 1.2, 1.25, 1.4, 1.5, 1.6, 1.8	1000 1500 2000	1200 1420 2000	1000 1420 2000	1000 1500 1800 2000	1500	1500 1700 2000	1000 1500 1800 2000	1500 1900 2000	1500	1		,	
2, 2.2, 2.5, 2.8	500 1000 1500	600 1200 1500	1000 1420 2000	1500 1800 2000	1500 2000	1500 1700 2000	1000 1500 1300 2000	1500 1900 2000		1 3000	2500 3000 1000		300 0 4000
3, 3.2, 3.5, 3.8, 4	500 1000	600	1420	1000 1500 1800 2000	1500 2000	1500 1700 2000	1000 1500 1800 2000	1500 1900 2000	2000 3000 4000	2200 3000 1000	2500	2800 3000 3500 1000	300 0 3500 1000

Coll rolled steel plate

									,	
0.2. 0.25. 0.3, 0.4	12	100 1120	1500	1500	1500			1	ļ	!
	j 1000 ; 18	160 1800	1300	1800	1800	1500	1500			:
	1500 20	000 2000	2000	2000	2000	1900	2000 .	į	:	
0.5. 0.55. 0.6	1 12	100 1420	1500	1500	1500	1		!	:	1
	1000 18	1800	1800	1800	1800	1500	1500			
	1500 20	100 2000	2000	2000	2000	1800	3000	1		
0.7, 0.75	12	00 1420	1500	1500	1500				i	:
	1000 18	1800	1800	1800	1800	1500	1500	i	İ	i
	1500 20	2000	2000	3000	2000	1800	1 2000 ;	i	•	
0.8. 0.9	12	200 1120	1500	1500	1500	1500			[
	1000 18	1800	1800	1200	1800	1800	1500 2000	2000		*
	1500 20	000 2000	2000	2000	2000	2000	2900 3261	2500	1	
1, 1.1, 1.2, 1.4, 1.5, 1.6, 1.	8. 2 1000 12	100 : 1420	1500	1500	1500			,	2800	2800
	1500 18	300 1800	1800	1800	1800	1800	2000	2000	3000	3000
	2000 20	000 - 2000	2000	3000	2000	2000	2000 2200	1 1 2500	3509	3500
2.2. 2.5, 2.8. 3, 3.2. 3.5, 3.	8. 4 500 · 6	300	1	!		!			1	
	1:000 1:	200 1420	1500	1500	1500		ì	i.	ĺ	í
	1500 (8	100 1800	1800	1800	1800	1			1	
	: 2000 i 20	000 2000	2000	2090	2000	1800 1	2009			:

Take: 1. Common the ericle: ordinary combon stoel (30000-65), dise armoon stoel (30600-65), ordinary low allow sometimetion stoel (3813-60) and strikless anti-acid steel (3810-59) 2. For theoretical weight of steel plate, see Intle 2-1-42.

2. Hot-rolled Thick Steel Plate (GET19-65)

Table 2-1-41 The Norms and Dimensions of Not-malled Thick Steel Place

Thickness				W13:	ti:		(=)			
/ \	0.6~1.2	>1.2~1.5	>1.5~1.	6 > 1.6~1.7	>1.7~1.8	>1.8~2.0	>2.0~2.2	>2.2~2.5	>2.5~2.8	>2.8~3.
(<u></u>)				Yaximum	length		(m)			
4.5~5.5	12	12	12	12	12	6				
6~7	12	12	12	12	12	10		1		
8~10	12	12	12	12	12	12	9	9		
11~15	12	12	12	12	12	12	9	8	8	8
16~20	12	12	12	10	10	9	8	7	7	7
21~25	12	ıı	11	0,1	9	8	7	8	6	6
26~30	12	10	9	9	9	8	7	6	6	6
32~34	12	9	8	7	7	7	7	7	6	5
36~40	10	8	7	7	6.5	6.5	5.5	5.5	5	
42~50	9	8	7	7	6.5	6	5	4		
52~60	8	6	6	6	5.5	5	4.5	4		

- Note: 1. Sormonly used materials: ordinary carbon steel (37700-65), fine combon steel (33690-65), ordinary low allow accommentation steel (7213-69) and stainless anti-acid steel (7213-69).
 - 2. The thickness of steel plate is more than 4-imm and the thickness interval is 0.5mm. If the thickness is more than 5-10 m, the thickness interval is lim. If the thickness is now than 30-30mm, the thickness interval is 2mm.
 - 3. The width of speel plate is 50mm, the length is a multiple of 100mm, but it must not be less than 1200mm.

 4. For theoretical weight of stast plate, see Table 1-1-42.

Thickness	Therre-	Thickness	Theeore-	Thickness	Theore-	l'iichteas	71.60272
	tical		tical	i i	tical ;		tionl
	weight	1	weight	il	weight		weight
(mm)	(!:g)	, (mm)	(kg)	(1771)	(kg)	()	(k <u>r</u>)
			1		!		
	!		1	. 1	1		1
0.2	1.570	1.50	11.78	10.0	78.50	29	227.70
0.25	1.953	1.6	12.56	11	86.35	30	235.50
0.27	2.120	1.8	14.13	12	94.20	32	251.20
0.30	2.355	2.0	15.70	: 13	102.10	34	266.90
0.35	2.748	2.2	17.27	14	109.90	36	282.60
0.40	3.140	2.5	19.63	15	117.80	38	298.30
0.45	3.533	2.8	21.98	16	125.60	40	314.00
0.50	3.925	. 3.0	23.55	17	133.50	42	329.70
0.55	4.318	3.2	25.12	1.8	141.30	44	345.40
0.60	4.710	3.5	27.48	:9	149.20	46	361.10
0.70	5.495	3.8	29.83	20	157.00	48	376.90
0.75	5.888	4.0	31.40	. 21	164.90	50	392.50
0.80	6.280	4.5	35.33	22	172.70	52	108.20
0.90	7.065	5.0	39.25	23	180.60	54	423.90
1.00	7.850	5.3	43.18	24	188.40	56	439.60
1.19	8.635	6.0	47.10	25	196.30	58	455.39
1.20	9.420	7.0	54.95	26	204.10	60	171.00
1.25	9.813	8.0	62.80	27	212.00		
1.40	10.990	9.0	70.65	29	219.80		

3. Hot-rolled Round Steel and Square Steel (93702-65, 98703-65)

Table 2-1-43 The Norms and Dimensions of Hot-rolled

			d Steel a	nd Saria:	re Steel	
Diameter d	Permitted	Deviation	Sectiona.	l Area	Theoretica	l Weigth
or length	(mm)	<u>i</u>		n ²)		<u>/n)</u>
of Side a	Ordinary	High	Round			Square
(mm)	Precision	Precision	Steel :	<u>Steel</u>	Steel	Steel
5			0.1963	0.25	0.154	0.196
5.5			0.2375	0.30	0.193	0.236
6		Ì	0.2827	0.36	0.222	0.283
6.5		± 0.2	0.3318	0.42	0.260	0.332
7	± 0.4		0.3848	0.49	0.302	0.385
8			0.5027	0.64	0.395	0.502
9			0.6362	0.81	0.499	0,636
10		± 0.25	0.7854	1.0	0.617	0.785
11			0.9503	1.21	0.746	0.95
12	:		1.131	1.44	0.888	1.13
13		•	1.327	1.69	1.04	1.33
14			1.539	1.96	1.21	1.54
15			1.767	2.25	1.39	1.77
16	±0.4	± 0.25	2.011	2.56	1.58	2.01
17			2.270	2.89	1.78	2.27
18			2.545	3.24	2.00	2.54
19			2.835	3.61	2.23	2.82
36			3.142	4.00	2.47	3.14
21			3.464	4.41	2.72	3.46
22		_	3.801	4.84	2.98	3.80
23		*	4.155	5.29	3.26	4.15
24	± 0.ŝ	± 0.3	4.524	5.76	3.55	4.52
25			4.909	6.25	3.85	4.91
26			5,309	6.76	4.17	5.30
27			5.726	7.29	4.49	5.72
28			6.158	7.84	4.83	6.15
29	± 0.5	± 0.3	6.605	8.41	5.18	6.60
30			7.069	9.00	5.55	7.06
31			7.548	9.61	5.93	7.54
32			8.042	10.24	6.31	8.04
33			8.553	10.89	6.71	8.55
34		1	9.079	11.56	7.13	9.07
35			9.621	12.25	7.55	9.52
0.0			10.18	12.96	7.99	10.17
3 fi				1		1
3 h	± 0.6	± 0.4	11.34	14.44	8.90	11.24

DE MITTHOS ES OF

inued						
Diameter d	1		Section	al Area	Theoretic	al Weight
or length		<u>m)</u>	. (cm ²)	(ltg/m)
of Side a	Ordinary	High	?ound	Souare	Parina	Garage
(ww.)	Precision	Precision		Steel	Stoel	
42			13.85	17.64	10.87	13.85
45	1		15.90	20.25	12.48	15.90
48			18.10	23.04	14.21	18.09
50			19.64	25.00	15.42	19.63
52	± 0.8	± 0.6	21.24	27.04	16.67	21.23
58			23.76	30.25	18.65	23.75
56	*		24.63	31.36	19,33	24.61
58			26.42	33.64	20.74	2h, 41
60			28.27	36.90	22.19	28,26
63	± 0.8	±0.6	31.17	39.69	24.47	31.16
65	i		33.18	42.25	26.05	33.17
68	.		36.32	46.24	28.51	36.30
70	;		38.48	49.00	30.21	38.17
75		1	41.18	56.25	34.68	44.16
80	· · · · · · · · · · · · · · · · · · ·		50.27	64.00	39.40	50.24
85	:		56.75	72.25	41.55	56.72
90 95	1		63.62	81.00	49.94	. 63.59
100	±1.1	± 0.9	70.88	90.25	55.64	70.85
105	i		78.54 86.59	100.00	61.65	78.50
110		:	95.03		67.97 74.60	-
115			103.82	:	81.50	
120			113.10	1	88.78	!
125	±1.4	_	122.72	i -	96,33	-
130 - 140			132.73	Ì	104.20	;
140			153.94		120.84	
15 0 160			176.72		138.72	
170	± 2. 0	-	201.06	-	157.83	· _
180			226.98	1	178.18	
			254.47		199.76	
190 200			283.53	-	222.57	_
210			314.16		246.62	
220	± 2.5	_	346.36	_	271.89	_
240			380.13	1	298.40	
250			452.39 490.88	1	355.13 385.34	
			430.00		303.34	

Note: 1. Commonly used materials: ordinary carbon steel (37702-65), fine carbon steel (33699-65), easy-to-cut construction steel (336-63) and alloy construction steel (336-59).

2. The length of hot-rolled round steel and square steel:

Lane	Cound steel Source steel
dora (m)	< 25 1 ≥26
Length fordinary steel	4 - 10 3 - 9
(m) Ofine smapl	9 - 3_

4. Hot-rolled Hexagonal Steel (GB701-65)

Table 2-1-44 The Norms and Dimensions of

			Hot-ro	olled Hexagonal	Steel	
	nscribed	Permitted	Deviation	Sectional Area	Theoretical	'leight
	Circle		(mm)	200 9201102 12 011	1	
Ι)iameter	Ordinary	High			
	a	brecision	precision	-	:	
	(mm)	1-]	(cm ²)	(lcg/m)	
						
	8		+0.1	0.5542	0.425	
	9	!	- 0.3	0.7015	0.551	
	10	1		0.866	0.680	
	11			1.048	0.823	
	12	1		1.247	0.979	
	13	+ 0.3		1.463	1.15	
	14	-0.5	+0.2	1.403		
		ļ	- 0.3	1.697	1.33	
	15	!	- 0.3	1.948	1.53	
	16	1		2.217	1.74	
	17	į l		2.490	1.96	
	18	!		2.806	2.20	
	19	;		3.126	2.45	
	20			3.464	2.72	
	21			3.822	3.00	
	21	+0.4	+ 0.2	4.191	3.29	
		-0.5				
	23	-0.5	- 0.4	4.581	3.59	
	24	!		4.993	3.92	
	25	<u> </u>		5.412	4.25	
	26			5.847	4.39	
	27	!		6.313	4.96	
	28	1		6.790	5.33	
	30			7.794	6.12	
	32			8.868	6.96	
	34	+0.4	+0.2	10.010	7.86	
	36	-0.7	-0.6	11.220	3.81	
	38	- 0.1	- 0.0	12.510	9.82	
	38 40	į l		13.86	10.88	
	42			15.27	11.99	
		1				
	45	!		17.54	13.77	
	48			20.00	15.66	
	50			21.64	16.99	
	53	+0.4	+0.2	24.33	19.10	
	56	-1.0	- 0.9	27.15	21.32	
	58 58	***	V	28.13	22.08	
		<u> </u>		60.10	22.00	
	60	i		31.18	24.50	
	63	+0.5	+0.3	34.37	26.98	
	65			36.59	28.70	
	68	-1.1	-1.0	40.04	31.43	
	70	į l		42.43	33.30	
		1	ļ			
						~~~ <del>~~~~~</del>

Note: 1. Commonly used materials: ordinary carbon steel (GBT00-55), fine carbon steel (17699-65), east-to-out construction steel (Y3191-63) and allow construction steel (Y710-59).

2. The length of not-rolled hemagonal steel is 3-6m.

#### 5. Cold Draw Round Steel (GE905-16)

Table 2-1-45 The Yorms and Dimensions of Gold-draw Round Steel

Round Steel   Inde of Precision   Round Steel   Inde of Precision   Round Steel   Inde of Precision   Round Steel   Inde of Precision   Round Steel   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Inde of Precision   Indeposit   Indeposit   Indeposit   Inde of Precision   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit   Indeposit					of Col	ld-draw Roun	d Steel			
A   5   6   7	Round Steel	Grade	of Pr	ecisi				e of	Precis	ion
Permitted Deviation   A   Permitted Deviation   3.0	Diameter	grade	grade	grade				rade	grade	ànage
3.0		4	5	6	7	1				
3.2 3.4 3.5 3.8 4.0 4.2 4.5 4.8 5.0 5.6 6.0  6.3 6.7 7.0 7.5 8.0 9.0 9.5 10.0  10.5 11.0 11.5 12.0 14.0  17.0 18.0 19.0 20.0 21.0 22.0 24.0 22.0 24.0 22.0 24.0 25.0 26.0 30.0 30.0 30.0 6.7 7.0 38.0 7.5 40.0 9.5 10.0 10.5 11.0 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.04 11.5 12.0 10.06 11.0 11.5 12.0 10.06 11.0 11.0 11.0 11.0 11.0 11.0 1	d	Permit	ted I	Deviat	ion	đ	Permi	tted	Deviat	ion
3.4 3.5 3.4 3.5 3.8 4.0 4.2 4.5 4.8 5.0 5.3 5.6 6.0  32.6 6.3 6.7 7.0 7.5 8.0 7.5 9.0 9.5 10.0  10.5 11.0  11.5 12.0 19.0 20.0 21.0 22.0 24.0 -0.04 -0.08 -0.16 22.0 24.0 -0.04 -0.08 -0.14 -0.26  25.0 30.0 32.6 34.0 35.0 35.0 38.0 40.0 -0.05 -0.10 -0.31 -0.31 -0.06 -0.10 -0.20 42.0 48.0 9.5 10.0  10.5 11.0 60.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 70.0 75.0	3.0	- 0.92	-0.04	- 0.06	- 0.12	16.0				
3.4 3.5 3.8 4.0 4.2 4.5 4.8 5.0 5.3 5.6 6.0  6.3 6.7 7.0 7.5 8.0 9.0 9.5 10.0  10.5 11.0 11.5 12.0 13.0 14.0  18.0 19.0 20.0 21.0 22.0 22.0 24.0 -0.04 -0.08 -0.16  224.0 -0.04 -0.08 -0.14 -0.26  28.0 30.0 32.6 48.0 40.0 -0.05 -0.10 -0.20 42.0 42.0 48.0 9.5 11.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	3.2	1		:		17.0	- 0.04	- 0.07	- 0.12	- 0.24
3.5 3.8 4.0 20.0 21.0 4.2 4.5 4.8 5.0 5.3 5.6 6.0  6.3 6.7 7.0 7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 48.0 9.5 10.0  10.5 11.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0			i 	1	1	18.0			· 	
3.8 4.0 4.2 4.5 4.5 4.8 5.0 5.0 5.3 5.6 6.0		i				19.0				
4.0 4.2 4.5 4.8 5.0 5.3 5.6 6.0 6.3 6.7 7.0 7.5 8.0 9.0 9.5 10.0 11.5 12.0 -0.04 -0.05 -0.05 -0.08 -0.16 -0.08 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.17 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31	3.8		:	:		1				
4.5 4.8 5.0 5.3 5.6 6.0  6.3 6.7 7.0 7.5 8.0 9.0 9.5 10.0  10.5 11.0 11.5 12.0 13.0 14.0 14.0  14.0  14.0  14.0  15.0 16.0  16.0  17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	4.0		:	: !	: !					
4.5 4.8 5.0 5.3 5.6 6.0 6.3 6.7 7.0 7.5 8.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0 14.0 14.0 15.6 17.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	4.2			0.03	- 0.10					
5.0 5.3 5.6 6.0 32.6 6.3 6.7 7.0 7.5 40.0 -0.03 -0.06 -0.10 -0.20 42.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	4.5	- 0.02	- 0.05	-0.08	0.10	24.0	- 0.04	- 0.08	- 0,14	- 0.28
5.3 5.6 6.0  32.6  6.3 6.7 7.0 7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 8.5 9.0 9.5 10.0  10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	4.8		!		 	25.0		I		
5.6     30.0       6.0     32.6       6.3     34.0       6.7     35.0       7.0     38.0       7.5     40.0       8.0     -0.03       8.5     40.0       9.0     48.0       9.5     50.0       10.5     50.0       11.0     60.0       11.5     63.0       12.0     -0.04     -0.07       13.0     70.0       14.0     75.0	5.0				!	26.0				
6.0  6.3  6.7  7.0  7.5  8.0  -0.03  -0.06  -0.10  -0.20  42.0  8.5  9.0  48.0  9.5  10.0  10.5  11.0  11.5  12.0  -0.04  -0.07  -0.12  -0.24  67.0  75.0	5.3					28.0			1 *	
6.3 6.7 7.0 7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 8.5 9.0 9.5 10.0  10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	5.6	:	1	i	;	30.0				
6.3 6.7 7.0 7.0 7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 48.0 9.5 10.0  10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	6.0				İ	32.6				
6.7 7.0 7.0 7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 48.0 9.5 10.0  10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	6.3	:								
7.5 8.0 -0.03 -0.06 -0.10 -0.20 42.0 48.0 9.5 10.0  10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 75.0	6.7	i						: !		
8.0	7.0	1	1			38.0			1	
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 13.0 14.0 15.6 48.0 50.0 50.0 60.0 60.0 60.0 67.0 70.0 70.0 70.0	7.5	•				40.0	- 0.05	-0.10	- 0.1	- 0.31
9.0 9.5 10.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 13.0 14.0	8.0	- 0.03	-0.06	- 0.10		42.0		i		
9.5 10.0 10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 13.0 14.0 75.0	8.5		i	1		15.0		!	!	
10.0  10.5  11.0  11.5  12.0  13.0  14.0  10.5  53.0  60.0  60.0  60.0  60.0  70.0  70.0  75.0	9.0				i	48.0		ļ		
10.5 11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 13.0 14.0 75.0	9.5	•	ļ			50.0		!	1	ı
10.5 11.0 11.5 12.0	10.0	1		!	}	53.0		1	:	-
11.0 11.5 12.0 -0.04 -0.07 -0.12 -0.24 67.0 13.0 14.0 75.0	10.5	<del></del>	i	1	1			İ	:	
11.5 12.0				1	j	:				! !
12.0 -0.04 -0.07 -0.12 -0.24 67.0 -0.06 -0.12 -0.20 -0.4 13.0 70.0 75.0				1		•		•	1	
13.0 14.0 75.0		-0.04	- 0.07	-0.12	- 0.24		-0.06	-0.12	- 0.20	- 0
14.0			1	1	1			!	1	1
		:				1			1	! !
									!	!
		1	1					İ	ì	1

Mote: 1. Cormonly used materials: ordinary carbon steel (G7700-65), fine carbon steel (3B699-65), east-to-cut construction steel steel YB191-63) and allow construction steel (YB6-59).

2. The length of cold-draw steel: precision of 4 made -- 2-4m

and precision of 5-7 grade -- 2-6m.

## 6. Cold Draw Square Steel (G3906-66)

Table 2-1-46 The Norms and Dimensions

	of Col	d-draw Square	Steel
Square Steel	Grade of Precision		Grade of Precision
Length of Side		Length of Side	Grade Grade Grade
a	5 6 7	J	5 5 7
· · · · · · · · · · · · · · · · · · ·	Permitted Deviation	<u> </u>	Permi ted Deviation
3.0	- 0.04 ; - 0.06   - 0.12	15.0	
3.2		16.0	-0.07 -0.12 -0.24
3.4	,	18.0	
3.5		10.0	<del></del>
3.8		19.0	
4.0		20.0	
4.2	-0.05 -0.08 -0.16	21.0	
4.5	•	22.0	
4.8		1 24.0	-0.08 -0.14 -0.28
5.0		25.0	
5.3	!	26.0	
5.6		28.0	
6.0	1	30.0	
6.3		32.0	
6.7	!	34.0	
7.0		35.0	
7.5		38.0	i :
8.0	-0.06 -0.10 -0.20	40.0	-0.10 -0.17 -0.34
8.5		42.0	
9.0		45.0	
9.5		48.0	
10.0	1	50.0	
10.5		53.0	
11.0		56.0	
11.5		60.0	
12.0	-0.07 -0.12 -0.24	63.0	-0.12 -0.20 -0.40
13.0		67.0	
14.0		70.0	

Mote: 1. Cormonly used materials: ordinary carbon steel (33700-65), fine carbon steel (33699-65), easy-to-cut construction steel (33191-63)

and allow construction steel (776-59).

^{2.} The length of cold-draw square steel: 2-6m.

# 7. Cold Draw Hexagonal Steel (33907-66)

Table 2-1-47 The Norms and Dimensions of

,	• –	-draw Mexagonal Stee	
Hexagonal Steel Inscribed Circle Dismeter d	Brade of Precisio	n Hexagonal Steel Inscribed Circle Diameter	Grade of Precision Grade Grade Grade 5 6 7 Permi ed Deviatio
3.0 4.0 4.5 5.0	-0.04 -0.06 -0.12	22.0 24.0 25.0 26.0	-0.08 -0.14 -0.28
5.5 6.0	-0.03 -0.08 -0.10	28.0 30.0	
,7.0 8.0 9.0 10.0	-0.06 -0.10 -0.20	31.0 36.0 38.0	
11.0 . 12.0 13.0 14.0	-0.07 -0.12 -0.24	40.0 42.0 45.0 48.0 50.0	-0.10 -0.17 -0.34
15.0 16.0 17.0 18.0		53.0 55.0 60.0 65.0	-0.12 -0.20 -0.40
19.0 20.0 21.0	-0.08 -0.14 -0.28	70.0 75.0	

Note: 1. Commonly used materials: ordinary carbon steel (20700-65), fine carbon steel (33699-65), easy-to-sub construction steel (33699-65), easy-to-sub construction steel (33699-65).

2. The length of cold-braw heratonal steel: 2 - 6m.

#### 8. Hot-rolled Flat Steel (GB704-65)

Table 2-1-48 The Norms and Dimensions of Hot-rolled Mat Steel

Thickness (mm)				Σ.
Thickness (mm)				M1d
	50 5	56	60	đth
Theoretical Weight (kg/m)				
Theoretical Weight (lcg/m)  10.0.14.0.310.390.47 0.55 0.63	1.4035. 36,37. .29.41. .1848. 10.52. .06.54.	37.36.4 39.56.4 11.76.4 13.96.4 15.16.1 18.35.4 52.75.5 54.95.3	42.39 44.75 47.19 19.46 1.81 56.52 38.48	10 12 16 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
150 3 .53 4 .715 .89 7 .07 8 .24 9 .42 10 .60 11 .78 12 .95 14 .13 16 .49 18 .84 21 .20 23 .55 25 .91 29 .44 32 .97 35 .33 37 .68 42 .39 47 .1052 .99 5	. P. 85.	55.947	70.55	150
160:3.775.02:6.287.54 8.79 10.05 11.30 12.56 13.82 15.07 17.57 20.10 22.61 25.12 27.63 31.40 35.17 37.63 40.19 45.2250.2456.326 170,4.005.346.678.01 9.34 10.68 12.01 13.35 14.68 16.01 18.58 21.35 24.02 25.06 29.36 33.36 37.37 40.84 42.70 48.0453.3860.056	.73:74.	74.738	80.07	170
186 4.245.657.078.481 9.891 11.30 12.72 14.13 15.54 16.96 19.78 22.61 25.43 28.26 31.09 35.33 39.56 42.39 45.22 50.8736.5 03.3917 1904.476.977.468.95103.481 11.93, 13.42 14.92 16.41 17.90 20.82 23.86 26.85 29.83 32.81 37.29 41.76 44.75 47.72 53.6959.67 67.227	.65 79.	79.128	84.7PI	180
2004 . 71.5. 2 PT . R. 5 9 . 4210 . 90 12.56 14.13 15.70 17.27 18.84 21.98 25.12 28.25 31.40 34.54 39.25 43.96 47.10 50.24 56.52 67.80 70.65 7	.50,87.	87.923	31.20	200

Note: Corrolly used materials: ordinary carbon steel (GB700-65), fine carbon steel (GB69-65), ordinary low allow construction steel (TB13-69) and allow construction steel (TB6-59). 2. First group - theoretical weight is less than 19kg/m; second group, more than 19-60kg/m; and third group, more than 60kg/m. 3. First group - 3-9m; second group - 3-7m; and third group - 3-5m.

# 9. Hot Rolled Equilateral Angle Steel (YB166-65)

Table 2-1-49 The Norms and Dimensions of Hot-rolled Equilateral Angle Steel

#### Legend



- b- Side width

- W-Section coefficient
- d Side thickness
- r- Internal circular arc radius r- Side-end internal arc radius (r. 3ide-end internal arc radius (r. 1-1)

  1- Inertial moment radius (r. 1-1)

  - r Topcircular arc radius Thertial moment

    - z.- Center of gravity distance

	Di	ens	io		Theore	L 1		F	efere	nce r	umeri	ical ·	value				z.
steel		(===			tical weight	ace		<i>x-x</i>			$X_{\bullet}-X_{\bullet}$			$Y_{\bullet}-Y_{\bullet}$		$X_1-X_1$	
Number	ь	d	r	( <del>c²)</del>		(m²/ m) (	اء ئىسىدۇ	(cm)	W., (cm ³ )	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	('æ')	ולה"ם)	Ire (and)	ire.	W	(27)	(
	20	3		1.132	0.889	0.07B	9.40	0.59	0.29	9.63	0.75	0.45	0.17	0.39	0.20	0.81	0.60
		4	3.5	1.459	1.145	0.077	0.50	0.58	0.36	0.78	0.73	0.55	0.22	0.38	0.24	1.09	0.64
2.5	25	3	<b></b>	1.432	1.124	0.098	0.82	0.76	0.46	1.29	0.95	0.73	0.34	0.19	0.33	1.57	0.73
2.3		4		1.859	1.459	0.097	1.03	0.74	0.59	1.62	0.93	0.92	0.43	0.48	0.40	2.11	0.76
		3		1.749	1.373	0.117	1.46	0.91	0.68	2.31	1.15	1.09	0.61	0.59	0.51	2.71	0.85
3.0	30	4	1	2.278	1.786	0.117	1.84	0.90	0.87	2.92	1.13	1.37	0.77	0.58	0.62	3.63	0.89

									~								
,	ĺ	3		2.109	1.656	0.141	2.58	1.11	0.99	4.09	1.39	1.51	1.07	0.71	0.76	4.68	1.30
3.6	36	4	4.5	2.756	2.183	0.141	3.29	1.09	1.28	5.22	1.38	2.05	1.37	0.70	0.93	6.25	1.04
1	ĺ	5		3.382	2.654	0.141	3.95	1.08	1.56	6.24	1.36	2.15	1.65	0.70	1.09	7.84	1.07
		3	İ	2.359	1.852	0.157	3.59	1.23	1.23	5.69	1.55	2.01	1.49	0.79	0.96	6.41	1.09
4	40	4		3.086	2.422	0.157	4.60	1.22	1.60	7.29	1.54	2.58	1.91	0.79	1.19	8.56	1.13
1		5		3.791	2.976	0.156	5.53	1.21	1.96	8.76	1.52	3.10	2.30	9.78	1.39	10.74	1.17
		3	5	2.659	2.088	0.177	5.17	1.40	1.58	8.20	1.76	2.58	2.14	0.90	1.24	9.12	1.22
		4		3.486	2.736	0.177	6.65	1.38	2.05	10.56	1.74	3.32	2.75	0.89	1.54	12.18	1.26
4.5	45	5		4.292	3.369	0.176	8.04	1.37	2.51	12.74	1.72	4.00	3.33	0.88	1.81	15.25	1.30
		6		5.076	3.985	0.176	9.33	1.36	2.95	14.76	1.70	4.64	3.89	0.88	2.06	18.36	1.33
		3		2.971	2.332	0.197	7.18	1.55	1.96	11.37	1.96	3.22	2.98	1.00	1.57	12.50	1.34
		4	}	3.897	3.059	0.197	9.26	1.51	2.56	14.70	1.94	4.16	3.82	0.99	1.96	16.69	1.38
•	50	5	7.3	4.803	3.770	0.196	11.21	1.53	3.13	17.79	1.92	5.03	4.64	0.38	2.31	20.90	1.42
		6		5.588	4.465	0.196	13.05	1.52	3.68	20.68	1.31	5.85	5.42	9.98	2.63	25.14	1.16
		; 3		3.343	2.621	0.221	10.13	1.75	2.48	16.14	2.20	1.08	4.24	1.13	2.02	17.56	1.48
5.6	56	4	5	1.090	3.446	0.220	13.18	1.73	3.21	20.92	2.18	5.25	5.16	1.11	2.52	23.43	1.53
	: [	5	ì	5.415	4.251	0.220	16.02	1.72	3.97	25.42	3.17	6.42	6.61	1.10	2.98	29.33	1.57

Continued	!																
\ngle Steel	Pin	ens (:::		Sect.	Theore-	Sur-			Refer	ence	luner	ricel	Value				, z,
0 0002		1	1		Meight	Area		x-x			$X_{\bullet} - X_{\bullet}$	•	}	Y.		$X_1 - X_1$	
Number	ь	ď	-	(an ² )	(kg, ⁷ m)	(m² /m)	1. (cm4)	( بين ( بين )	(5m3)	1 z g ( ~1944)	(c <u></u> )	w 59	(CT4)	(cn)	(0:73)	(cr.4)	(cm)
5.6	56		6	8.367	6.568	9.219	23.63	1.68	6.03	37.37	2.11	9.44	9.89	1.09	4.16	47.24	1.68
	Ī	4	·	4.978	3.907	0.248	19.03	1.96	4.13	39.17	2.46	6.78	7.89	1.26	3.29	33.35	1.70
	İ	5		6.143	4.822	0.248	23.17	1.94	5.08	36.77	2.45	8.25	9.57	1.25	3.90	41.73	1.74
6.3	63	_ 6	7	7.288	5.721	0.247	27.12	1.93	5.00	43.03	2.43	9.66	11.20	1.24	4.46	50.11	1.78
	1	8		9.515	7.469	0.247	34.46	1.90	7.75	54.56	2.40	12.25	14.33	1.23	5.47	67.11	1.85
	1	10	1	11.657	9.151	0.215	41.09	1.88	9.39	64.85	2.36	14.56	17.33	1.22	6.36	84.31	1.93
		1		5.570	4.372	0.275	26.39	2.18	5.14	41.80	2.74	8.41	10.99	1.40	4.17	45.74	1.88
		5	_[	6.875	5.397	0.275	32.21	2.15	6.32	51.08	2.73	10.32	13.34	1.39	4.95	57.21	1.91
7	70	6	8	8.160	6.406	0.275	37.77	2.15	7.48	59.93	2.71	12.11	15.61	1.38	5.67	68.73	1.95
	1	1	1	9.424	7.398	0.275	43.09	2.14	8.59	68.35	2.69	13.81	17.82	1.38	6.34	80.29	1.99
	느	8	<u> </u>	10.667	8.373	0.274	48.17	2.12	9.64	76.37	2.68	15.43	19.38	1.37	5.98	91.92	2.03
	1	5	_	7.357	5.818	0.295	39.97	2.33	7.32	63.30	2.92	11.94	16.63	1.50	5.77	70.56	2.04
	}	6	_	8.797	6.905	0.294	46.95	2.31	8.64	74.38	2.90	14.02	19.51	1.49	6.67	84.55	2.07
(7.5)	75	7	9	10,160	7.976	0.294	53.57	2.30	9.93	84.96	2.89	16.02	22.18	1.48	7.44	98.71	2.11
	1		1	11.503	9.030	0.294	59.96	2.28	11.20	95.07	2.88	17.93	24.86	1.47	8.19	112.97	2.15
		10	. 1	14.126	11.089	0.293	71.98	2.26	13.54	113.92	2.84	21.48	30.05	1.46	9.56	141.71	2.22

												·					
	!	5		7.912	6.211	0.315	48.79	2.18	8.74	_77 . 13_	3.13	13.67	20.25	1.60	5.66	85.36	2.15
	ł	. 6		9.397	7.376	0.314	\$7.35	2.47	9.07	90.98	3.11	16.08	23.72	1.59	7.65	102.50	2.19
3	80	7	9	10.860	8-525	0.314	65.33	2.15	11.37	104.07	3.10	18.10	27.09	1.58	8.58	119.70	2.23
	1	8		12.303	9.658	0.314	73.19	2.11	13.33	116.50	3.08	20.51	30.39	1.57	9.46	135.97	2.27
	i i	. 10		15.126	11.874	0.313	88.13	2.12	15.64	140.09	3.04	24.76	36.77	1.56	11.08	171.74	2.35
	1	6		10,637	8.350	0.354	82.77	2.79	12.61	131.26	3.51	20.63	34.28	1.8)	9.95	145.87	2.44
	}	7		12,301	9.656	0.354	94.83	2.78	14.54	150.17	3.50	27.64	39.18	1.78	11.19	170.30	2.18
9	90	8	10	13.914	10.916	0.353	106.17	2.75	16.12	168.97	3.18	26,55	43.97	1.78	12.35	194.80	2.52
	}	10		17.167	13.476	0.353	128.58	2.74	20.97	203.90	3.15	32.04	\$3.26	1.76	14.52	244.07	2.59
	i 1	12		20.306	15.910	0.352	149.22	2.71	23.57	234.21	3.41	37.12	62.22	1.75	16.19	293.76	2.67
	1	6		11.932	9.366	0.393	114.95	3.10	15.58	181.98	3.90	25.74	17.92	2.00	12.69	200.07	2.67
	į	7		13.796	10.830	0.393	131.86	3.09	18.10	208.97	3.89	29.55	54.71	1.79	14.26	233.51	2.71
		8		15.638	12.276	0.393	148.24	3.08	20.17	235.07	3.88	33.24	61.11	1.98	15.75	267.09	2.76
10	100	10		9.261	15.120	0.392	179.51	3.05	25.06	284.68	3.84	40.26	74.35	1.06	18.54	334.48	2.84
		12		22.800	17.898	0.391	208.90	3.03	29.49	330.95	3,81	15.80	86.84	1.25	21.08	102.31	2.91
		14	12	26.256	20.611	0.391	236.53	3.00	33.73	374.06	2.77	52.90	99.00	1.94	23.11	479,75	2.99
		16	! 2	19.627	23.257	0.390	262.53	2.98	37.82	111. 6	3.74	58.5	110.89	1.94	25.63	539.40	3.06
		7		15.196	11.928	0.433	177.16	3.11	22.15	280.91	4.30	36.12	73,38	2.30	17.5	310.64	2.96
	į.	9		7.238	13.532	0.433	199.16	3.10	24.95	16.19	1.28	10.40	82.12	2.19	19.39	355.20	3.01
11	110	10		21.261	16.690	0.1321	242.13	3.38	30.00	384,39	4.25	10.12	99.98	2.17	22.31	111.65	3.09
	,	.:2		15.20n	19.782	0.431	182.55	3.35	36.95	18.17	4.22	57.52	116.93	2.15	25.15	534.60	3.16
		11		29,956	22.309	0.431	320.71	3.32	11.1	308.91	4.18.	_55 <u>.`1</u>	133.40	2.14	29.14	625.16	3.24

ספטונוניים פנ סנ

frije	Dim	ensi	1	t.Cleore−	. S.m-			Refe:	rence	Time	rionl	7223	3			. Z,
) Na-0 <u>-</u>		()	lmes	l ploni Meight			χχ		.1	r,Y	ú	}	`a-}`,		Y - X	
numina.	1 ,	d	,   ( am		(==	(2-/-)	(LEC.)	( ~ ? ·	1 (cm4)	(3, 7	( 2m 29	(cm²)	('27')	W 13	17.	. ( ~
	l	8	19.750	15.504	0.492	297.43	1.88	32.52	170.49	4.48	53.28	123.16	2.50	25.36	521.91	3.3
	:	10	24.373	19.133	0,491	361.67	3.85	39.97	573.89	4.85	64.93	149.46	2.18	30.52	551.93	3.45
12.5	125	12	.8.912	22.696	0.491	123.16	3.83	11.17	671.33	4.82	75.96	174.88	2.16	35.03	83.42	3.5
	1	14	33.367	26.193	0.190	481.65	3.40	54.15	1 763.73	4.78	85.11	199.57	2.45	39.13	915.51	3.5
		10	27.373	21.488	0.551	514.65	4.21	50.58	817.27	5.16	82.56	212.04	2.78	33.20	915.11	3.82
	1	12	32.512	25.522	0.551	603.68	4.31	59.30	958.79	5.13	96.85	248.57	2.76	45.02	199.28	3.90
1.4	1 40	14	37.567	29.490	0.550	688.81	1.28	58.75	1993.56	5.10	119.17	284.06	2.75	50.45	1284.22	3.96
	i	16	12.539	33.393	0.519	770.24	4.26	77.16	1221.81	5.36	123.42	318.57	2.74	55.55	1470.07	4.06
	,	10	31.502	14.729	0.630	779.53	4.98	66.70	1237.30	6.27	100.36	321.76	3.20	52.76	1365.33	4.31
		12	37.441	29.391	0.630	916.58	1.95	78.98	1155.68	6.24	123.67	377.19	3.18	60.71	1639.57	4.39
15		14	13.296	33.987	9.820	1048.36	4.92	90.95	1865.02	6,20	(147-17	13:.70	3.15	68.21	1911.58	1.4
	1	16	19.067	38.5'8	0.629	1175.08	1.39	102.63	1865.57	6.17	1:64.*9	484.59	3.14	75.31	2:30.82	4.5

,		12	:	42.241	33.159	0.710	1321.35	5.59	100.82	2:00.10	7.05	165.00	542.61	3.58	78.41	2332.80	4.89
		14		48.896	38.383	0.709	1514.48	5.56	116.25	2107.12	7.02	189.14	521.53	3.56	88.38	2723.48	1.97
1.8	180	16	16	55.467	43.542	0.709	1700.99	5.54	131.13	2703.37	6.38	212.10	698.60	3.55	97.83	J115.29	5.95
		18	İ	51.955	48.634	0.708	1375.12	5.50	145.54	2988.24	6.94	234.78	762.01	3.51	105711	3502.43	3.13
	!	14	:	54.642	42.894	0.788	2103.55	6.20	14.70	3343.26	7.82	235.10	863.83	3.98	111.82	3 <b>73 (</b> 116	5.16
		16	!	62.013	48.680	0.788	2366.15	6.18	163.65	3760.89	7.79	165.93	971.11	3.36	123.96	4270.39	5.54
20	200	18	18	69.301	54.401	0.787	2620.64	6.15	182.22	1164.54	7.75	294.48	1076.74	3.94	135.52	4808.13	5.62
		20		76.505	50.055	0.787	2467.30	5.12	200.12	1554.55	7.72	122.06	1180.04	3.93	::46.55	5347.51	5.69
		24		90.661	71.168	0.785	3338.25	6.07	236.17	5294.97	7.64	374.41	1381.53	3.90	166.55	6157.16	5.87

Note: 1. Commonly used material: ordinary carbon steel (GBT00-65) 2. The length of hot-rolled equilateral angle steel:

led steel.	2~1	4.5~×	9~14	16~20
Length (m)	3~9	4~12	4~19	6~19

#### 10. Hot Rolled Unequilateral Angle Steel (YB167-65)

# Table 2-1-50 The Norms and Dimensions of Hot-rolled Unequilateral Angle Steel

## Legend

d- Thickness of side - Interior circulararc radius

 $r_i$ — Sid-end interior arc radius $(r_i = \frac{1}{3}d)$ 

Top circular are radius -- Side-end externalare radius

i- Inertial radius I-Inertial moment

X-- Center of gravity distance W-Section coefficient

				Y		101		•	0.311.06	TO U	gravi	uy a	rstar	ice				oelli			
Angle	iC le	mer	sic	n	Sect.	Theore	Sur-		R	efere	ice l'i	umer:	ical	Value		Cente	er of	gray	ri ty	dist:	<u>ince</u>
Steel		(=1	<u>)</u>		Area	tion1	1.		x-x			<i>Y</i> – <i>Y</i>		X,-		Υ	-Y ,		<u></u>	- <i>U</i>	
Number	В	,	a	,	(c::2)	'eight (:-/-)	(:n-2	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	<u> </u>	(m3)	1,	1,	(cm3)	Ju	Y.	(2)	(cm)	(e:-)	(cm)	(3	lga
	<u> </u>		3		1.162	0.912	0 180	0.70	0.78	0.43	0.22		0.19	1.56			0.12		0.34		0.392
2.5/1.6	25	10	•	٠.	1.499	1.176	0.379	0.88	0.77	0.55	0.27	0.43	0.24	2.09	0.90	0.59	0.46	0.17	0.34	0.20	0.381
3.2/2	32	20	3	3.3	1.492	1.171	0.102	1.53	1.01	0.72	0.46	0.55	0.30	3.27	1.08	0.82	0.19	0.28	0.43	0.25	0.382
3.2/2	1	20	4		1.939	1.522	0.,01	1.93	1.00	0.93	0.57	0.54	0.39	4.37	1.12	1.12	0.53	0.35	0.42	0.32	0.374
4/2.5		25	3		1.890	1.484	0.127	3.08	1.28	1.15	0.93	0.70	0.49	6.39	1.32	1.59	0.59	0.56	0.54	0.40	0.386
	••		4	•.	2.467	1.936	0.127	3.93	1.26	1.49	1.18	0.69	0.63	8.53	1.37	2.14	0.63	0.71	0.54	0.52	0.381
4.5/2.8		78	3		2.149	1.687	0.143	4.45	1.44	1.47	1.34	0.79	0.62	9.10	1.47	2.23	0.64	0.80	0.61	0.53	0.383
	; <b>*</b> 3	2.5	• !		2.806	2.202	0.143	5.69	1.42	1.91	1.70	0.78	0.80	12.13	1.51	3.00	0.68	1.02	0.60	0.60	6.380
5/3.2	50	12	3		2.431	1.908	0.161	6.24	1.60	1.84	2.02	0.91	0.82	12.49	1.60	3.31	0.73	1.20	0.70	9.68	0.404
3/3.2	. 30	"	4		3.177	2.494	0.160	6.02	1.50	2.39	2.58	0.90	1.06	16.65	1.65	4.45	0.77	1.53	0.59	0.87	0.402
	İ		3		2.743	2.153	0.181	8.88	1.80	2.32	2.92	1.03	1.05	17.54	1.78	4.70	0.80	1.73	0.79	0.87	0.408
6.6/3.6	58	26	•	•	3.590	2.818	0.180	11.45	1.79	3.03	3.76	1.02	1.37	23.39	1.82	6.33	0.85	2.23	0.79	1.13	0.408
			5		4.415	3.466	0.180	13.86	1.77	3.71	4.49	1.01	1.65	29.25	1.87	7.94	0.88	2.67	0.78	1.36	0.404

		1 . <i>t</i>				r! eee	1 =				n Corre		Mariner.	1001		<b>-</b>					
Sten	'  -	٦,	1	Τ	( )	1001	Veren		X X			Y Y	,	i	Χ,		۲. `		11 ~	ı.	•
	`,,	1.	J	١.	ĺ	1	(	1.	1 ,	Ιн.	†   10.		B',	14		1	1				
Sample	η	"	"	' '	( <u>~</u>	<u>(: -/-)</u>	(1)		11(mn)	(1991)	1,41	( ^ייים )	/ ¹ )	$\frac{2}{2}$	( )	(,,,,')	1000	(/	/\	(2003)	187
			1	ĺ	4.0"	3,185	0.202	16.49	2.07	3.87	6,23	1,14	1.70	11 10	2.04	# 45	0 97	1,17	0.88 !	1.46	0,740
8.2/4	43	40	8	,	4.503	1	0.267	70.07	1	1.74	6.3E	1.17	1	41 63	:	10.46	0.85	3.7h	8.87	1,71	u, Tur
		i	,		6.WAR 8.FO7	4,638	0.701	21.34	1	5.57	7.29	1.31	i	40.98	i	-	0,99	i ,			0,*43
	<del>-</del> -	-	.1		4.617	3.570	0.201	24,63		1 6.40	8.74	1.10	, - <del>-</del> -	1 .		18.47		• •			0,**6
7/4.6		145	7		6 400	4,401	0.275	23.17 27.95	2.76	4.86 5.82	7.55	1.29	2.17			17,76	1.02				O.430 in,4nt
77 V.B	1	1	n	7.6	6.647	8.218	0.225	32.54	2.21	8.95	10,62	1.26	3.12	(	i	18.68	1	: 1			n, 404
	. 1	1	,	_	7,657	8.011	0.275	37.77	2.70	4.03	12.01		3.57		1	21.84	1				0.407
	Ì		3		4,175	4.808	B.245	34,46	7 34	6,81	12.51	1.44	3.10	1		21,84	(		1.18		0.415
(7.5/5)	76	5.0	۸.		7.260	5,699	0.246	41.12	2.3#	8.17	14.70	1.42	3.88	84.36	2.44	25.37	1.21	A.54	).DA '	2.14	0,425
			A	ļ	9,467	7.431	0.244	52.39	2.35	10.62	18.53	1.40						10.47		1. 10	0.474
	<u> </u>	!	10		11,590	9,009	0.244	67 71	2.33		21.96	- 1	8.04		i i			13.10			0.425
				ì	6.375 7.580	5.00°	0.266	41,96	2 55	7.14	12.82		3.32		4 1			7.56	1		0,308
8/5	40	80	7		4.724	6.519	0.258	10,40 56.16	2.56	4.75	14.95	-		1	i ı			8,85	1		0.31.
<b>.</b> .			9	,	W. 86.	7.74%	0.21.4	62.43	2.64     2.62	11.07	16.06			į				10,1X j 11,34 j			0,384
		!	A		7.717	1,081	0.247	60 46	2.00	9.02	18.32	i					. •	16.38		1	0.186
9/8.8		36	4		8,557	6 717	0.786	71.03	2.85	11.74	21.47				1 1			17.90		,	0.384
	, ,	- }	7		9,340	7.786	0.786	MI.01	7.88		24.36	1.57	8.70	169,68	1,00	41,71	1.31	14.67	1.77	1.72	0,187
		1	<b>a</b> †	- !	11.185	8,779	0.286	ej just	2.85	15.27	27.15	1.56	6.41	184.17	3.04	47.93	1.36	16.34	3,21	5.79	0,300
			6 '	-	9.617	7.556	0.370	89,06	3.21		30.94		6.35	199,71	3.24	vu vo	1.43	18 42	1.38	5.25 -	0,784
10/#.3	100	61	7	- 1	11.111	4.772	0.120	1	1.70		15.24				: 1		- 1	21.00		. 1	
ļ			10		12.584	9.878 12.142	0.319		3.18		30,39		: "					23 50	ļ-	B.ºm Ì	
		1		- 1	10,617		0.354	1	3.16.   1.17		61.24	}			i i			28 33   31.65	1	0.24 0.37	-
10/8	100		11	- 1	17.391	9,651	0.354		1.18	,	70.04		11.71		; 1			16.17	i	H 50	
	į			- 1	13.944	10,946	Í	137.92	· ·		i	- 1	13.21		! !	137.37	- 1	40.58		10.80	
· · · · · · · · · · · ·	<u></u>	_ ;	16 1	1.	12.162	13,478	0.353	140.47	3.12	24.24	. 1		T1			-1		49.10	·- ,	18.12	
1177	110	:0	4 .	- (-	- 1		- 1	133.37	1.54	17.85	42.92	2.01	_7.80	268.78	1.13	69.06	1.87	25.16	1,54	4.52	8.403
i	!	.1	! -		2.301	0,650	0.364	163.00	3.43	20.60	49.01	1.04	_9.09	110.07	3.57	10.82	1.61	15.95	1.61	7.50	0.403

7.,,		_		<del></del> ,	'a · · · · ·		h						<b></b>								
Steel (r) Area Uten! free									X· Y	Re	k-k Leandudo Jimion,			ical Value				U-U			
<u></u>	<i>n</i> [	,	d	,	. ,	! (!/-:)	( )	(000)	(,,,,)			(mn)	(,,	( <u>/ ) (</u>	,,,,}	171	<u>) (</u>		1000		1gq
11/7	110	78	10	10	}	10.416	0,363	172.04 208 19	3.48	29.54	66.48	1.96	12.18	443.13	1.70	42.70  1   118.83  1	,12 İ	18 20	1.51	10.79	0.397
12.4/0	125		1.			11.056	0,403	727 98 256.77	4.02	28.86 30.41	1	2.26	13.68	519.99	4.06	120.32 1 137.81 1	.84	49.15	1.75	31,18	0.407
			10			18,474	0,402	317,84 164,41	3.98 _3.98	17.33 44.01	116.67	2.24	19,43	740.39	4.72	173.40 1 209.67 2	.00	RD.35	1.72 1	16,01	0.400 .
14, 5	140		# 18	12	I —	17,476	0,453	145 60	4.17	47.31	146.03	2.58	21.72	913.70	4.58	195,79 2 245,92 2	.17	R5.82	1.98	17.48	0.409
			12 14	ł	10,410	20,724	0.471	871,59 594 10	4 12.	84.18	102.10	2.51	28.54	1779.31	1.74	7116,811 2	. 27   1	14.13	1.94	23.52	0.403
16/18	181	101,	12	í	10,064	19.872	0.611	668,60 784,91	5.11	73.49	229.06	1.42	31.78	1635.40	5.32	376.19 2 400 94 2 476.47 2	.38	42 33	2.17	25.79	0.188
	. }		14 16 10		10,781	27.247 30,836 27,271	0.510	876 30 1003.01 958,75	6.05	un.33	1301.60	2.77	40.74	2181.70	1.48	344.75 2 447.25 2	. 25 1	#2.57	2.16	13.44	0.142
11/11	180	111	12		53,712	26,484	0.871	1124.72	5.78	93.53	325.03	3.16	38.37	7378.38	5.94	518 94 Z	. 42 1	84.87	2.40	AB, LE	0.1;4
-		-	1A 12	14	14,110	34,649	0.560	1443.06	8.72	121.64	411.86	3.08	19.11	3105.15	6.34	778.46- 2 787.74  2	. 67 12	es.94 ¹	2.38	40.87	0.149
20/12.8	206-1	l Znj	14		43.887	14,438	0.846	1400,97	6.41	134.65	560.83	3.54	57.44	3726.17	A.A2 3	822 47 2 [C18.86] 2	.01  3	2A.AB 🚶	2.73	47,34	0.190
-		- 1	14		55,578	(1,5AR	0,619	221R,30	6.35	100.33	877.10	1.49	11.74	4792.nnl	8.78 ¹	1197, 131-1	.06	64.43	2.70	60,10	0.325

Note: 1. Commanly used meterial: ordinary carbon steel (GUTYO-65)
2. The length of hot-rolled unequilateral angle steel:

Angle steel number	2.5/1.6~-5.6/3.6	6.3/4~9/5.6	10/6.3~14/9	18/10~20/11.5
Laugth (m)	1~1	4~12	4~10	9~19

#### 11. Not Rolled General Channel Stool (GR707-65)

Table 2-1-51 The Horms and Dimensions of Het-rolled Goneral Channel Stool



#### Lorond

A- Unight

b - Log width

* Lov-ond circular are radius

1. Inertial moment

#- Weist Uhlekmenn

W - Shatton confittetant

1-Year leg Ulekness (-Ineridal radius

r=Innor atrealar are  $Z_{r}\!\!=\!\!\gamma_{r}\gamma_{r}\gamma_{r}\gamma_{r}$  Distance between axes radius

Tima		ŋ	tenenet	nη				Throre	Reference Munorfeel Value									
				1			Arren	titent Volget	XX					Y Y .				
				L'	'	1	ļ	1 . 1	w,	1.	1,	11'	$\{-t\}$	1.	1.	1		
"o•			mm				Cini	kg/m "	cm3	CIII	cn		in/	nin	: cin/i	חים		
<b>b</b> '	90	37	4.5	,	1	3.8	9.93	5.44	10.4	76	1.94	3.46	1.3	1.1	70.0	11.15		
	63	10	4.8	7.8	7.8	1.70	1.444	6.63	16.123	50.788	2.453		11,872	1.146	28.30	1.16		
	40	13			1		10.24	8.04	25.3	101.3	3.15	6.70	18,6	1.27	15.4	1.43		
10	100	11	6.1	1.5	1.1	4.25	12.74	10	39.7	190.3	3.98	7.4	75.6	) {- 1, (I	54.9	1.52		
12.4 .	128	53	1.5		1 •	4.4	15.40	12.37	A2.137	391.464	4.953	10.242	37.90	1,567	77,09	11,59		
•	140	11		9.5	1.6	4.78	18.51	14.63	10.6	563.7	\$.52	13.01	53.2	1.7	107.1	11.71		
ъ ;	140			9.5	7.5	4.75	21.31	16.73	87.1	609.4	5.38	14.12	11.1	1,69	120.A	1.67		
16 4	11.0	43	6.5	10	10	6	21.95	17.23	106.3	864.2	6.24	16.3	73.3	1.83	144.1	1.8		
	160	65	8.8	10	10		28.16	10.74	116.6	934.3	6.1	17.88	13,4	1.82	160.R	1.73		
14.	1.00	4.	,	10.5	19.8	8.26	23.69	20.17	141.4	1272.7	7.04	20.03	98.6	1.96	189.7	1.88		
10 1	180	70	•	10.3	10.8	6.35	19.29	22.00	162.2	1369.9	1.84	21.82	111	1.95	210.1	1.84		

I, m		ot -	ountor	١				Thoore -	Reference Concentral Value									
		)	١.	1		1	Area	,tioni Wolght	X - X			Y-1'			YY.	1 -		
	•	h	1 4	'	'	,	l .	arriga i u	11'	1.		W.,	1.	1, .	. 1.	Z.		
i or		· 		ma			cma.)	kir/m	7119	,	ניוח	٦٦	,	· (***)	μη/,	· /***		
79 a	200	73	,	11	11	8.8	21.83	22.83	178	1780.4	7.86	24.7	128	\$.11	744	2.01		
20	200	78	•	11	111	8.0	; 37.83	26.27	191.4	1913.7	7.44	26. 88	143.6	2.04	768,4	11.25		
27 •	220	77	,	11.0	11.8	1.7-	31.44	24.99	217.6	2393.0	3.67	28.17	167.3	2.23	298.2	1 2.1		
22	120	70	•	11.5	11.8	8.75	16.24	28.48	235.8	2571.4	1.42	30.05	174.4	2.21	178.3	2.03		
	250	- 14	1	12	12		34.91	27,47	249.697	3369.52	9.423	10.607	174.529	2.243		2.065		
25 h	250	10	•	12	12		30.81	31.30	217.107	3530.04	9,406	32.667	į :	,	351.187			
•	250	+2	11	12	12		44.11	16.32	290,236	3690.45	<b>0,05</b> 6	35.976	214.416	2.206	384,111	1,421		
•	2110	12	7.8	12.5	12.6	n.25	40.02	31.42	140.128	4764.58	10.01	35,718	217.044	2.331	387.866	,		
<b>20</b> 6	280	#4	7.5	12.8	12.3	8.28	45. 62	36.81	348.18	8130.48	10.8	37.929	212 333	2.394	1:7.500	2.016		
•	280	84	11.6	12.5	12.5	0-28	51.72	10.21	392 194	N408.32	10.36	10.201	267 602	2.276	428.847	1.95		
•	329	11		14	14	,	48.7	36.22	474.879	7598.06	12.49	46.473	304.777	2.502 ;	352.31	2.242		
32.6	320	, 90	10	14	14	1	65.1	43.25	509.019	1111.2	12.15	40,157	\$36,532	2.471	592,831	2,158		
ا ،	320	92	12	14	14	,	61.6	48.28	843.146	1840.33	11.48	12.642	374.176	2.407	643.2kg	2.692		
•	140	**	•	10	10		60,49	47.8	85W.7	11974.2	17.97	A3.84	455	2.73	818.4	12.11		
36 5	360	96	11	16	16	ı	68.00	53.48	702.9	1265i.#	13.63	66.76	185.7	3.7	RRO. 4	2.37		
•	340	100	13	14	16		75.20	50.1	746.1	13429.4	13.36	70.02	135 4	7.87	947.H	2.31		
•	400	100	10.5	10	ja .	•	75.05	58.91	A78.W	17677.8	18.30	78.83	692	2.81	1067.7	2.10		
40 1,	400	102	12.5	18	18	•	83.05	F\$.10	932.2	18044.6	14.28	\$2.52	840	2.78 I	1135.5	2.21		
٠	400	304	14.5	16	10	•	91.05	71.47	986.6	19711.2	14.71	44.19	687.8	2.76	1270.7	1.42		

Enter 1. Commonly used entertal: ordinary carbon steel (GB700-65)

2. Pot-rolled general channel steel length:

Channel steel see | 10-18 | 10-48 |

Low, th (n) | 6-12 | 6-19 | 8-19 6~12 6~10 6~10

#### 12. Not Rolled Light Channel Steel (YB161-63)

Table 2-1-52 The Horma and Dimensions of Hob-rolled Light Channel Steel



		<u> </u>														
Ton		ŋ	Irona'	ion				Thompson		Rotte	rouca	Trumen's	ल्ला अस	1.1		
7 .190	1 .			.	,	,,	Arma	Value t		x-	×			Y - Y		4.
	•	b	d .	'		''	1		1.	₩,	10	.5.	1. :	nr,	١,	! ".
'n.	i		tgu	1			<u>ا</u> -	10.0/19	cm/4	ciu j	<u>~</u>	הייז	and.	רים '	دناء	
5	, 10	32	4.4	1.0	8.0	2.5	8.15	4.84	22.A		1.92	3.50	\$.64	2.75	0.954	11.16
4.4	85	16	4.4	7.2	6.0	3.5	7.51	5.20	48.8	13.0	2.54	0.00	6.70	1.68	1.0€	1.74
	10	40	6.3	7.4	7.0	2.5	10.00	7.06	1 A9.4	22.4 24.8	3.14	29.4	20.4	4.78 8.46	1.10	1.31
10	110	32	4.8	7.3	7.3	1.0	13.10	10.4	3/14	50.6	4.78	24.4	31.2	N. 10	1.37	1,41
14	110	5.8	4.9	8.1	4.0	8.0	15.60	12.3	191	70.2	5.80	44.8	4 fr. 4		1.70	1 1
14.0	140	52	1.9	1.7	4.0	3.0	17.40	13.3	545	17.A	6.08	15.1	17.6	13.1	1,84	1 4
16	11.0	64	4.0	1 4.4	1.5	1.4	14.10	14.2	747	¥3.4	0.42	54.1	11.3	13.8	1.47	
15.4	1 150	68	5.0	u.a	6.5	1.5	9. 30	15.3	823	103	6.40	10.4	78.6 i	18.4	2.41	0.00
1.0	140	70	5.1	4.7	9.0	3.5	29.70	16.3	16.00	121	7.24	n0.4	0.18	17 0	2.01	1.84
18 4	1	74	5.1	9,3	9.0	1.6	22.20	17.4	1120	132	7.32	70.1	185	20 0	2.10	2.11
20	200	78	5.2	9.5	0.8	1.0	23.4	18.4	1670	112	A.07	67.8	313 (	70.5	2.70	2.67
20 .	210	<b>5</b> 0	3.2	9.7	9.6	4.0	75.2	19.4	1670	167	A 15	95.0	13"	74.2	2.35	1.2.28
12	220	12	5.4	9.5	10.6	1.0	26.7	21.0	2110	185		110	151	75.4	2.37	1 2.21
24 4	220	11.7	5.4	10.2	10.0	4.0	* 1	27.6	2330	211		121	187	30.0	2.55	2 1A
24	210	90	5.4	10.0	10.5	4.0	30.0	24.0	5000	242	9.73	130	20A	11.6	2.46	
24 =	210	<b>₽</b> 5	5.4	10.7	10.5	1.0	12.9	25.4	3140	208	9.54	161	244	17.2	2 74	: 67
27	279	45	8.0	1 10.5	11	4.6	35.2	27.7	4160	30A	10.9	178	262	17.3	2 73	2.07
10	34.0	100	8.5	11.0	12	G	10.5	31.8	5810	387	12.0	224	1:7	63.6	2.44	1 2 32
11	3 10	10%	7.0	11.7	13		46.8	38.5	7940	484	13,1	111	410	N1 - 8 1	1 97	2 A4
36	340	110	1.5	12.6	14		61.5	41.9	10820	601	14.2	350	613	41.7	3.10	2.A4
10	409	115	₩.0	13.5	15	4	0149	40.0	16220	781	18.7	444	842 /	73.4	3.23	2.75

Dote: 1. Composit used raterial: ardinary carbon stool (700-65)
2. The length of hot-railed channel stool:

#### 13. Hot Rolled General I Steel (GB706-65)

Table 2-1-53 The Norms and Dimensions of Hot-rolled General I Steel



#### Legend

4-Height -- Leg end circular arc radius

/- Inertial moment

h-Leg width
d_Maist thickness w-Section coefficient

. Mean leg thickness . - Inertial radius

. Inner circular arc s-Static moment of semi-section

Tjrpe		1	inens	ion				Theore-		Referen	ice Nume	erical	Value		
		,				F1	Area	tical Weight		Υ-	- <i>x</i>			Y-Y	
	_ "			į		,			1.	w,	ie		1.	w,	í y
to.			n	un.			cm ²	kg/m	.cm4	cm3	cm	1,:5.	Cm/	cm ³	cm
10	190	68	4.5	7.6	6.5	3.3	14.3	11.2	245	49	4.14	8.59	33	9.72	1.52
12.6	126	74	5	8.4	1	3.5	18.1	14.2	188.43	77.529	5.195	10.85	46.906	12.677	1.609
14	140	80	5.5	9.1	7.5	3.6	21.5	16.9	712	102	5.76	12	64.4	16.1	1.73
16	160	88	6	9.9		•	26.1	20.5	1130	141	6.58	13.5	93.1	21.2	1.89
10	- 180	94	6.5	19.7	6.5	4.3	30.6	24.1	1660	185	7.38	15.4	122	26	2
20 =	200	100	7	11.4		4.5	35.5	27.9	2370	237	8.15	17.2	158	31.5	2.12
20 b	200	102	•	11.4	•	4.5	39.5	31.1	2500	250	7.96	16.9	169	33.1	2.06
22 •	220	110	7.5	12.3	9.5	4.4	42	33	3400	309	8.99	18.9	225	40.9	2.31
22 b	220	112	9.5	[2.3	9.5	4.8	46.4	36.4	3570	325	8.78	18.7	239	42.7	2.27
25 .	250.	116	•	13	10	6	48.5	38.3	5023.54	401.88	10.18	21.53	280.046	48.283	2.40
25 b	250	118	18	19	10		53.5	42	5283.96	422.72	1.934	21.27	309.297	52.423	2.40

Type			Dimens	sion			Sect.	Theore	_	Refere	ence Mu	merical	Value		
					,		Area	tical		x-	- <i>X</i>			Y - Y	
1		•	1	1	'	71		Weight	l,	W _z	1,		1,	w,	1,
ິ່ວ.				תת			cm-	k7/m	cm ⁴	cm ³	CIM .	1.:5.	c::- ⁴	gm3	c::
28 =	280	122	g. 5	13.7	10.5	5.3	55.45	43.4	7114.14	568.15	11.32	24.62	345.051	56.565	2.49
28 b	280	124	10.5	13.7	10.5	5.3	41.05	47.9	7480	534.29	11.08	24.24	379.496	£1.209	2.49
32 a	320	130	9.5	15	11.5	5.4	67.05	52.7	11075.5	592.2	12.84	27.46	459.93	70.758	2.61
32 h	320	132	11.5	15	11.5	5.8	73.45	57.7	11621.4	726.33	12.58	27.09	501.53	75.989	2.61
32 ¢	320	134	13.5	15	11.5	5.4	79.95	62.8	12167.5	760.17	12.34	26.77	543.81	81.166	2.60
36 4	360	136	10	15.8	12	6	76.3	59.9	15760	875	14.4	30.7	552	81.2	2.69
36 b	360	138	12	15.8	12	6	83.5	65.6	16530	919	14.1	30.3	582	84.3	2.64
36 c	360	140	14	15.8	12	6	90.7	71.2	17310	962	13.8	29.9	612	87.4	2.6
40 A	460	142	10.5	16.5	12.5	6.3	86.1	67.6	21720	1090	13.9	34.1	660	93.2	2.7
40 b	400	144	12.5	16.5	12.5	6.3	94.1	73.8	22780	1140	15.5	33.6	692	96.2	2.7
10 C	460	146	14.5	16.5	12.5	6.3	102	80.1	23856	1190	15.2	33.2	727	99.6	2.6
45 8	450	150	11.5	18	13.5	6.4	102	80.4	32240	1430	17.7	38.5	855	114	2.89
45 Ն	450	152	13.5	18	13.5	6.8	111	87.4	33760	1500	17.4	38	894	118	2.84
45 C	450	154	15.5	18	13.5	6.8	120	94.5	35280	1570	17.1	37.6	938	122	2.79
50 .	500	158	12	20	14	7	119	93.6	46470	1860	19.7	42.8	1120	142	3.01
50 b	500	160	14	20	14	7	129	101	48560	1940	19.4	42.4	1170	116	3.0
50 c	560	162	16	20	14	7	139	109	50610	2080	19	12.8	1220	151	2.90
56 #	560	166	12.5	21	14.5	7.3	135.25	106.2	65575.6	2342.31	22.02	47.73	1370.16	165.08	3.41
56 b	560	168	14.5	21	14.5	7.3	146.45	115	68512.5	2146.69	21.63	47.17	1486.75	174.25	3.1
5 <b>6</b> c	560	170	16.5	21	14.5	7.3	157.85	123.9	71439.4	2551.41	21.27	46.6F	1558.30	183.34	3.1
63 &	630	176	13	22	15	7.5	154.9	121.6	93915.2	2981.47	24.62	54.17	1700.55	193.24	3.3
63 b	630	178	15	22	15	7.5	167.5	131.5	98083.6	3163.98	24.2	53.51	1812.67	203.6	3.2
63 c	630 j	180	17	22	15	7.5	180.1	141	102251.1	3298.42	23.82	52.92	1924.91	213.88	3.2

Note: 1. Material used: ordinary carbon steel (CB700-65)
2. The length of hot-rolled I steel:

I steel type No. | 18-18 | 20-63 Length (m) | 5-18 | 6-19

## 14. Hot Rolled Light I Steel (YB163-63)

Table 2-1-54 The Norms and Dimensions of Hot-rolled Light I Steel

	9 1.01.10 3414 DE1010101010	y 100-rotted bight 1 20661
<b>y</b>	<u>Legend</u>	
b-d    Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid	<ul> <li>h-Height</li> <li>b-Leg width</li> <li>d-Waist thickness</li> <li>i-Mean leg thickness</li> <li>r-Inner circular are radius</li> </ul>	<ul> <li>Inequal circular arc radius</li> <li>Inertial moment</li> <li>V-Section coefficient</li> <li>Inertial radius</li> <li>Static moment of semi-section</li> </ul>

70		ħ	izensi	an.			Sect	Theor.	<del>,</del>	Referen	<u> </u>	mical '	Ialite		
Type							Area	Weight		X-	X		1 1 1 1 1 1 1	Y-Y	
'	h	ь	d		·	F 1	ML GAL		1,	W.	17	1 512	1.	1117,	1,
.::o.			****	1			am/-	দল/ল	CM4	cm ²	cm	رس	0m/+	3-3	Cm.
10	100	55	4.5	7.2	7.0	2.5	12.0	9.46	198	39.7	4.06	23.0	17.9	6.49	1.22
12	120	64	4.8	7.3	7.5	3.0	14.7	11-5	350	58.4	4.88	33.7	27.9	8.72	1.38
14	140	73	4.9	7.5	8.0	3.0	17.4	13.7	572	81.7	5.73	46.8	41.9	11.5	1.55
16	160	81	5.0	7 - 8	8.5	3.5	20.2	15	873	109	6.37	62.3	58.6	14.5	1.70
18	180	90	5.1	8.1	9.0	3.5	23.1	18.4	1290	143	7.42	81.4	82.6	18.4	1.88
18 .	190	100	5.1	8.3	9.0	3.5	25.4	19.9	1430	159	7.51	89.8	114	22.8	2.12
20	200	100	5.2	8.4	9.5	4.0	26.8	21.0	1840	184	8.28	104	115	23.1	2.07
20 a	200	110	5.2	8.6	9.5	4.0	28.9	22.7	2030	203	8.37	114	155	28.2	2.32
22	220	110	5.4	8.7	10.0	4.0	30.6	24.0	2550	232	9.13	131	157	28.6	2.27
22 🛎	220	120	5.4	8.9	10.0	4.0	32.5	25.8	2790	254	9.22	143	206	34.3	2.50
24	240	115	5.6	9.5	10.5	4.0	34.5	27.3	3460	289	9.97	163	198	34.5	2.37
24 8	210	123	5.6	9.8	10.5	4.0	37.5	29.4	3800	317	10.1	178	260	41.6	2.63
27	270	125	5.0	3.8	17.0	4.5	40.2	31.5	5010	371	11.2	210	260	41.5	2.54
27 A	270	135	6.0	10.2	11.0	4.5	43.2	33.9	5500	407	11.3	229	337	50.0	2.80
30	300	125	6.5	10.2	12.0	5.0	46.5	36.5	7080	472	12.3	268	337	49.9	2.69
30 A	300	145	6.5	10.7	12.0	5.0	49.9	39.2	7780	518	12.5	292	436	60.1	2.95
33	330	110	7.0	11.2	13.0	5.0	53.8	42.2	9840	597	13.5	339	419	59.9	2.79
36	350	145	7.5	12.3	14.0	6.0	51.9	48.6	13380	743	14.7	423	516	71.1	2.89
40	400	155	8.0	13.0	15.0	6.0	71.4	56.1	18930	947	16.3	540	566	85.9	3.65
45	450	160	8.6	14.2	16.0	7.0	83.0	65.2	27450	1220	18.2	699	807	101	3.12
50	500	170	9.5	15.2	17.0	7.0	97.8	76.8	39290	1570	20.0	905	1040	122	3.26
55	550	1#0	10.3	1f.5	18.0	7.0	114	89.8	<b>5</b> 5130	2000	22.0	1150	1350	150	3.44
60	600	190	11.1	17.8	20.0	8.0	132	104	75450	2510	23.9	1450	1720	181	3.60
65	650	200	12	19.2	22.0	9.0	153	120	101400	3120	25.8	1800	2170	217	3.77
70	700	210	13	20.8	24.0	10.0	176	138	131600	3840	27.7	2230	2730	260	3.94
70 ▲	700	210	15	24.0	24.0	10.0	202	158	150700	4360	27.5	2550	3240	309	4.01
70 b	700	210	17.5	28.2	24.0	10.0	234	184	175370	5010	27.4	2940	3910	373	4.09

Mote: 1. Material used: 1. ordinary carbon steel (GB700-65)
2. The length of hot-rolled light I steel:

I steel type No. 19~18 29~78 Length (m) 5~9 6~19

## 15. Orane Steel Runnay (TT172-63)

Table 2-1-55 The Norms and Dimensions of Crane Steel Runway



Steel	1	* 3	Inertial Moment	Section Coefficient	lore	Dimension
nank	om ²	Y , Y z	i, i,	$\frac{\left W_1 - \frac{I_X}{Y_1}\right  W_2 - \frac{I_X}{Y_2}\left W_1 - \frac{I_2}{b_{x/2}}\right }{\text{cm}^3}$	coll kg/	h b, b, s h h h R R R r r, r,
QUAR QUAR	81.13 113.32	6.43 6.57 7.60 7.10	1081.99 327.16 1547.46 482.39 2864.73 940.98 4923.79 1694.83		63.69 88.96	7076.5.12025.12032.524 400 23 38 5 6 1.5 80

Yo's: 1. Steel runway material: P 71.2. The standard length of steel runway: 9,9.5,10, 10.5, 11, 11.5, 12 and 12.5m.

^{*}Translator's note: C G D stands for center of gravity distance.

#### 15. Steel Rail

Table 2-1-56 The Norms, Dimensions and Naterials of Steel Rail



Translator's note: *MD = main dimension; *CPD = center of travity distance;

*TB = to rail bottom; *TP = to rail top; *TY = inertial

moment; *SD = section coefficient; *TY = represent veicht;

*TP = rail top; *C = obliquity; *TY = theoretical veicht;

*VI = usual learth.

John Inue	<u> </u>																	<del></del> -			
Rail								]	Dimer	sion		(::	<u> </u>								
type (kg/:	=)	h,	h,	hı	a	ь	g	$f_1$	fz	$f_{\bullet}$	۲,	۲,	71	5.	S2	Sı	þ	R	$R_1$	R.	L
Light '	5	9.0	12	27.8	9.25			3.5	!		4	2	2	26	52		13		4	4	58
و د د ي سال	8	12	17	35	13.4			4.3			5	3	2.5	32	70		16	1	5	5	6 <b>3</b>
,	11	12.5	23	45.5	17.25	19.4	33.3	4			7	2	3.5	14	100		16	95	5	5	62.5
	15	16.25	28.75	51.75	19.5	24.2	37	4.5	6.5	9	?	2.5	4	17	100		19	146.25	5	5	16
rail	18	20	32	51	20.9	28.2	36.1	4.25	7	9.4	7	4	4	16.5	100		19	90	4.5	4.5	34.3
	21	17	32	61	23.28	26.13		5.5	10	14.75	13	3	4	60	100	i	22	300	5	3	
	33	21	35	67	27.5	35.5		7.3	!		13	3	4	66	160		29	309	7	10	
	38	24	39	74.5	27.7	43.9	79	9	10.8		13	4	4	56	110	160	29	300	7	7	
	43	27	42	77.5	30.4	46	78	†   11	14		13	2 :	4	56	110	160	29	300	5. ∤Ր	15	
mnil.	50	27	42	83.5	33.3	46		10.5	!		13	2.5	1	66	150	146	31	360	5,12	20	

TO BE CONTINUED

	<del></del>		l ister:	<u>als</u>					<del></del>			···	
5~	24 kg/m l	ight rail					33~	-50 kg	:/m	heary	rail		
Rail type	* CoRH		* 3	*OH	S	1	* *CC	S		Low:	21107	steel	
Kind of steel	~11 <u>cg/m</u>	15~2 ng/m	Iname A	P71	P71	P 67	1 68	1 53	J 53	1 U-Cu	U-Mn	U-51	$U-T_i$
Open hearth	Р	P	Tensle							:	i		<del></del>
steel	I	I	strnth kg/_2	ارد≷	>80	`≥75 [']	≥80	≥75	≥65	≥92	>90	≥92	≥92
Acid side-blown:	_	Р	Range	50	38		50	38	33	:- <del></del>	1		
converter steel	Р	1	of			33 kg		kg /m		1			
Rasic side-blown		P	uses		/==	<u>/=</u>	<u>'</u>	/m	<u>/</u> m				
leeta marmernee	Р	I	*TCS	ΥT	B32-60	i	١	/B33-6	0		V B 3 4	- 60	
Probhical Condi-	Y B221-64	YB220-63											

Intualator's note: * CoRM = classification by mail hardness; * SK = armbols of kind of smeel; * OKK3 = open hearth killed steel; * CC3 = converser carbon steel; * TCS = technical condition standard; * GLR = general light rail; and * HLR = hard light rail.

<u>parkon_content:</u>

U-Cu, 明仇, U-Ma, 猛机, U-Si, 缝机, U-Ti, 铁机 Ch-cai 16-2021 Si-2021 Ci-2021

#### 17 . Mostefe-voldfor Steel Pine (YEX/2-61)

Table 241.57 The Commont Meantland of Meantland the Steel Plan-

12.11	,		*******		-	Th (1)		10 10	.0.11	(	an )						
1 10	.5   0.6   0.4	1.0	1.2	1.4 1.8	1.6	1.8	7.1	1.2	2.5	2.0 5 6	3.2	3.5 3.6	4.0	1.7	4 5 1 4	4 7.0	3.5
	1 : '	•		,				r Portu	. 1 111								,
1							t dit o										
	.nsn. 0.665 h.949 (			,/A   1.91 ,AZ   1.94	2.01	2.31	2.50	2.75	3.11	3.5 (1.7)			1 !	1	1	i	30.0
	.uam 0.0v= 0.117			.02 2.05	2.18	2.45	2.71	2.97	3.36	3.744.00			1 1		ı	1	1 4.5
- CAN 9.	.042 0.119 0.147 1	0.171, (4.		.02   2.16	2.31	2.58	2.86	3.13	3.55	1.84.1.2					Į.		1.0
	.100 0.126 0.16 1			.14   2.29	2.44	2.73	3.01	3.12	3.75 4.15	4,654,9			1 1	, ,	1.88	1	63.5   70
	.117] 0.137 0.187 1 .129] 0.154: 0.203			37 2.63	2.70	3.02	3.35	4.00	4.53	5.076.4			r. 7.10			1 .	. 76
	.142 0.16# 0.221	, ,	0.320 9.		0.411		4.00	4,37	4.96	5.57.5.93						1	· #3
(13.	0.184 0.241		0.419 0.		0.451		1 4.29	4.70	6.33	0.015.39						91	74
114-1	0.100. 0.760		0,379 6.		0.450		4,52	5.02	6.70	h, 1.8.8	lir del	7,50, 2	tl.	- 1			10.
15	0.214 0.24		0,4 mut 0.		0.529		6.91	6.40	6,11	0.4417.33							107
1 c	0.27 0.201		U. 41M D.		0.568		1	i				u, 021 u. 7					
17:1	0.24H 0.37H (		3,458€ U. D.≮97, σ.		0.447		(0.740	}				9,54410 " 0,1410."			7.1 1.	9 13.54	1 11
(19)	0.274 0.369 (		)		0.647		NLK.0)	1				0,61,11.1			3.59 14.	tr 1 04	
20	0.288: 0.379		0.554		0.7.5	1	1					1.18(12.)					
(21)			. Set. 0.		0.787		0.937										18.24° 119
:: [	1 1 10	7.817 0	, a i t   9. 1	710 0.758	ner, o	6.Ruff	0.UAR	)			j L	7   17'13.1	214 35	16. 61	6 3 37	12 10 13	16.
1231			0.045		0.14		1.040	1.130	1.240		1		1 .		į.		
21			),6/4 g.;			(0,984)	(1.090	(1, 180)			1 ;	į	i i	i	į.		
25.]			1.793  0.1 3.734  0.1		0.9**		1.110	1.791	1.450	1 1	1 1	1		1	- !		
17.			0.76" 0.1		1.000		1.210	1.340	1.510	{ }	1 1				!		
2=	1 1 10	nee; 0	797 4.	116 (d.9×0)	1,040	1.100	C1.288	(3, 196)	(1.570)	4	]	į		i	i		
371			J. #25 (4.)		1, 376		1.330	1.470	1,64#	1	1 1	1		i	i i		
30 (			),#15.0,9 },#41 <u>)</u> },#			1, har		(1.10)	1,760	1	1	·	į	:			
32	i i !		010		1.15		1.470	1.50.	1,476		1 !	i			- 1		
11			941 1.		1.238		1.530	1.00	(1,000)		1 1	i	:				
(34)	1 1 1		1,664 1,		1.289		1.5#6	1,770	1,940	1 1	1 1	i		!	1		
(3%)	1 1 1		),998( ].		1.32%		1.630	1.780	2.100						1		
(36)			1.07.   1. 1.059   1.		1,350		1.739	1.810	2,070								
3.8			0.07		1.440		1.740	1,110	2,100	1 1	1						
(32)			1.3		1.47	1.65	1.82	1,99	2.26		1 1						
40		1	1.3	33 1.42	1.52	1.69	1.87	2.95	(2, 31)		1		,			1	!
(41)	1 [	- 1	1.3		1.65	1.74	1.92	2.10	2.37			1					
42		-			1.65	1.79 1.82	1.97	2.16	2.44	1		İ					
44.5		1			1.65	1.84	2.10	2.20	2.59	2.4013.07	ri I	- 1		,			
45		1	1.3	51 1.61	1.71	1.91	2.12	2.32	2,67	2,91,3.11				:		1 .	
C#1.1		ł	11.5		1.75	1,46	2.17	2.37	2.6A		1 1	1	:		i	į '	
(47) (48)	i	1	11.1		1.79	2.00	2.22	2.43	2.74	3.113.33		3.54	ł	1		1 1	i
(4.7)	1 1 1	i	11:5		1.83	2.18	2.27	2,48	7.89	3.3717.42		4,10	1	1 1	1	- 1	1

#### An Appendant Table

Steel	#1:3	P	#L=	3P	*#	3P
Opnde	*TS (1: /mm.)	: 8:0 : 8:0	FIRS (Post)	\$1. \$1. (20)	*1.5 (\ke //ma)	*31 (8%
	<u> </u>			>		
08 &10	32	20	38	12	40	. 5
15	36	18	41	10	45	4
20	10	17	45	8	50	3
A2 2 A J2	34	20	36	12		!
A3 2 AJ3	38	18	40	10		
$A4$ $\Re$ $AJ_{4}$	42	17	44	. 8		

Translator's note: *NSP = mild steel ping: *MSP = low hardness steel pipe; *MSP = hard steel pipe; *TS = tensile strength; and *TP = extension rate.

- Note: 1. In Table 2-1-57, the external diameter and weight thick are in parentheses refer to the steel pipes that to through the process of cold-drawing, the external diameter is less than 53.5mm and wall thickness is less than 2.5mm. Those external diameters and weight which are not in parenthese refer to the steel pines that are made through or not through process of cold-drawing. The rest of the edge are made without the process of cold-drawing.
  - 2. The length of electric-welding steel pipe: If external line as is less than 30cm, the length is 2-6m; external linears is more a an 30-70cm, the length is 3-10m; and external distance more than 70cm, the length, 4-10m/
  - ?. According to the state of material, the steel pines are made mild; low hardness, of which the external diameter is more than 30 mm; and hard cold-limits piped and those of which the external diameter is less than 30mm are made without through cold-drawing.
  - 4. Materials used: ordinary carbon sheel (33700-65) and fine ourbon sheel (33600-65).
  - 5. For mechanical properties of the stral pine, see the American Table.

18. Whiter and Gas Feeding Steel Pipe (YB234-63)

	т	able 2-1	-58 T	ne Norms	nad D	irension	s of Thte	er and C	ns Feedi	ng Steel	Pine
	minal meter	internal directer	Control	Stoel on pipe		ned pipe	Base		Length o		Joint weight shared by each
(run)	(in.)		thic- thess	*DTM	Wall thic- lmess	*DTW	plane diameter	of		Cylinde-	meter of the pipe (one joint by every 6 meters)
		·	(==1)		(mn)		(mm)			read	(kg)
•	1 8	10	2.00	0.39	2.50	0.46					
•	1	13.5	2.25	0.62	2.75	0.73					
10	3	17	2.25	0.82	2.75	0.97					
15	1 2	21.25	2.75	1.25	3.25	1.44	20.956	14	12	14	6.01
20	3	26.75	2.75	1.63	3.50	2.01	26.442	14	14	16	u.02
25	1	33.50	3.25	2.42	4.00	2.91	33.250	11	15	18	0.03
32	1 -1	42.25	3.25	3.13	4.00	3.77	41.912	11	17	20	0.04
40	1 -1-		3.50	3.84	4.25	4.58	-47.805	11	10	22	0.96

Translator's note: *DTW = disregarding pipe joint theoretical weight.

Homir		External		Steel P			Pi	pe Scre	w Thread		Joint weight
	(in.)		Corre	*DTW	Thick Wall thic- kness (nm)	}	Pase plane diameter	Tooth of	Length Thread Conical	of Screw (mm)  Cylinde-	shared by each meter of the pipe (one joint by every 6 meters)
50		60	3.50	4.88	4.50	6.15	\$9.616	11	22	24	0.08
70	2 1/2	75.8	3.75	6.84	4.50	7.88	75.187	11	23	27	9.13
80	3	88.5	4.00	8.34	4.75	9.41	17.887	11	32	30	9.20
100	4	114	4.00	10.85	5.00	13.44	113.034	11	38	36	0.40
125	6	140	4.50	15.04	5.50	18.24	138.435	11	41	30	0.60
150	•	165	4.50	17.81	<b>5</b> .50	21.62	163.836	11	45	42	0.80

Note: 1. The stoel pipes are classified into zinc plated (black pipe) and non-zinc plated: screw threaded and non-screw threaded.

2. The zinc plated pipe is heavier than non-zinc plated by 3-63.

3. Commonly used material: ordinary carbon steel (G3700-65).

4. The length of water and gas feeding steel pipe: the non-zinc plated pipe without screw thread is 4-12m and the zinc plated and non-zinc plated with screw thread are 4-9m.

· · · ·

10. Mot Collect Seculogy Steel Pipe (Moral=64)

الرساي						11.1	l male	1	(11.1	1)						
1 ,	1.5	2.1	3	3.5	1	4.6		5.5	a	(8.5)	•	6.0		. (6.2)		1 (4.5)
( )				· ··•	Th	narati	מייז. אר	11:11:6	. (	)						
3* 88 42	1,76 2,19 2,61	1.02 1.43 2.70	2.16 2.69 2.80	2.46 2.98 1.35	£.76 3.24 3.75	3.08	3.31 4.07 4.58	9.59 4.41 4.95	\$.85 4.74 5.33	6,09 6,05	6.35 6.35	\$.64 \$.64 6.38	3.82 3.82 4 6.41	7.12	7.32	7.60
45 60 64	2.62	2.91 3.25	3.11 3.48 2.77	3.5A 4.01 4.3f	4.04 4.54 4.03	6.49 6.ns 9.49	4.93 5.68 8.94	5.38 6.04 8.57	6.77 6.41 7.50	6.17 6.97 7.61	8.55 7.47 8,11	N.44 7.26 N.GD	7.39 8.79 11.08	7.66 8.76 9.54	7.99 9.10 9.59	#.30 9.45 10 43
67 60 63.6		İ	4.00 4.22 4.48	4.62 4.88 5.18	\$.23 \$.52 \$.87	6.43 6.16 6.55	6.41 8.78 7.21	6.05 7.39 7.87	7.55 7.99 8.51	8,10 8,58 9.14	8.63 9.15 9.75	#.18 7.71 10.16	9.67 10.76 10.95	10.17 10.60 11.53	10.66 11.37 12.10	11.15 11.85 12.65
48 70 71			4.81 4.96 8.18	8.67 5.74 6.00	6.31 6.61 6.81	7,0% 7,27 7,60	7.77 8.01 8.38	8.48 8.76 9.16	9.17 9.47 9.91	9,86 [4,18 [0,66	10.51 10.84 11,59	11.19 21.34 12.11	11,84 12,13 11,82	17.47 12.79 13.57	13.10 13.4 14.71	13.71 14.17 14.88
- 16 83 89			6.49	6,26 6,86 7.38	7.10 7.70 8.38	7.03 8.71 9.38	# 78 9.62 10.36	10.50	10.16 11.79 17.28	11,14 12,76 13,77	11,10	12.67 13.06 13.07	15.17 14.77 15.98	14.15 15.65 16.87	14.3/ 16.42 17.76	15.54
95 302 304				7.00 0.50	0.07 10.26	10 04 10.82 22.48	11.10	12.14 13.00 13.00	13.17 14.71 15.09	14.19 15.31 16.27	16.19 16.19 17.44	18.18 11.48 18.59	17.16	18.17 10.00 20.26	19.69 20.71 21.97	76 05 71. 73.00
114 121 127					10.88 11.84 12.13	17.16 12.02 13.50	15.44 14.30 15.04	14.77 18.67 19.4#	16.94 17.02 17.00	17.25 18.35 18.37	18.47 19.68 21.72	10.09	76 01 20 20 71.08	73.5# 71.84	23,31 24,86 28,14	1.48
14n 11n 11s		ļ			12.73	14.76 15.04 15.70	15.78 10.65 17.39	17.29 14.24 19.06	18.79 [8,85 26.72	70.28 25.40 72.38	21,75 72.96 24.68	23.21	21.76	27 78. 82	27 5# 27 5# 16 41	7 11, un
152 150 160						16.37 17.15	18.13	10.87 20.82 27.04 23.70	21,50 22,64 73,47 25,75	23.32 24.45 25.80	25,83 76,24 17,78	78 73 28 67 29,81	79.43 29.78 73.57	30,08 31,55 33,43 35,95	31.74   31.29   35.29   37.95	31.39 1.03 37.13
194 201 219							21.60 23.31	25.60	21.42 20.14 31.52	27.70 16.60 31.50	29.A7 32.28 33.A3 38.60	11.91 14.50 18 10	A6.70 21.57	38.89 40.77	41.00 43.7.	67.23 45.33
245 273 278				}					31.02	34.06 38.23 42.64	46.93	39.12 43.85 49.10 53.01	40.76 52.2#	10.56 15.45 60.80	62 3H 58 60 64,37	61 73
925 351 377		1					j					58.74	67.67	66.32 71.80	70 14 75,91	13.97 NO.01
402 426 450												i !			#7.21 #2.55	91,95 97.57
(465) 480	]		}		}	}								i '	101.10	110.22

Ont Int			<del></del> -			****	1 855			(1911)						<del></del>
()	10	11	13	(13)	14	ooro!	16	(17)	10	(19)	20	12	124)	16	(26)	10
32 38 42 45 50 54 67 60 83.8 68 78 73 74 83 88 85 102 107 114 121 127 137 140 140 140 152 172 173 140 140 152 173 174 175 175 175 175 175 175 175 175 175 175	7.88 6.63 9.86 10.85 11.59 12.33 13.19 14.30 14.40 15.54 18.00 19.48 20.06 22.69 24.17 25.66 27.37 28.86 33.56 33.56 33.56 33.56 33.67 41.92 46.38 47.69 51.84 57.95 64.86 77.57 64.86 77.57 64.86	21.67 72.48 13.29 14.24 15.46 16.07 10.83 19.53 21.16 22.79 24.60 20.31 27.04 31.47 33.14 33.14 34.00 36.02 38.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40.15 40	\$2.32 14.27 15.24 16.57 17.10 18.05 18.05 21.01 22.50 24.50 24.50 24.50 30.19 32.26 34.03 35.81 37.88 39.00 41.43 45.37 46.17 48.17 63.40 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42 63.42	74.17 16.07 16.19 17.63 14.27 19.24 22.44 24.37 26.29 23.63 30.46 32.31 30.66 38.67 40.77 42.04 44.66 46.81 49.69 65.54 55.54 55.54 56.09 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00	15.88 17.09 18.64 19.32 20.37 21.47 23.82 23.82 23.82 24.97 30.38 32.45 34.53 38.94 39.01 43.60 45.67 47.66 80.06 83.17 67.31 67.13 67.13 67.13 70.78 70.78 70.78 70.78	19.81 20.34 21.46 22.67 27.37 29.51 34.40 35.65 46.74 48.48 80.68 80.68 80.68 80.68 61.64 75.46 60.54 75.46 80.54 75.46	70.52 21.71 22.49 25.49 26.49 27.44 28.40 31.17 31.43 43.41 46.17 44.17 51.66 56.43 59.98 64.72 70.74 80.16 90.56 101.41	23.48 24.74 27.67 30.29 35.64 38.15 40.62 48.63 51.67 54.08 65.63 63.31 68.34 71.71 77.97 64.69 147.53	24.41 26.75 28.86 31.57 34.18 37.29 39.95 42.02 45.72 48.39 51.65 54.15 56.42 50.48 62.66 62.66 62.66 62.67 71.91 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78.13 78	28.30 20.71 27.34 33.70 33.71 41.70 44.77 60.61 62.32 65.00 99.82 75.44 82.00 99.82 105.90 1119.92 131.20	34.03 34.03 34.90 46.44 43.40 46.36 48.73 56.73 56.11 62.15 67.30 73.00 73.00 73.02 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23 85.23	36,38 38,61 41,40 45,66 49,91 53,71 66,37 64,28 71,59 74,33 79,21 85,27 91,32 98,32 98,32 170,09 136,18 170,09 174,30 175,09 176,30	79.00 85.23 92.11 100.61 105.04	74.60 78.30 82.62 88.16 95.56 104.10 109.74 119.56 122.40 168.03 184.46	04.78 FR. A1 71.10 70.94 40.79 85.28 91.05 98.74 107.72 113.49 123.75 340.47 17.8.38	114.63
377 402 428 450 1465) 486	90.81 90.87 102.59 108.50 112.20 118.90	112.5# 119.08 112.5# 119.08 123.18 127.22	104.02 115.41 122.82 130.61 134.05 138.40	117.00 124.71 132.41 140.09 144.96 148.71	176.33 133.94 142.25 150.52 186.70 180.88	133.01 143.15 162.04 160.90 186.46 172.00	162.30	150.03 101.40 171.47 181.82	150.46 170.46 181.11 191.70	167.78 179.45 180.71 201.84	176.08 188.40 200.26 212.06 210.47	197.61 206.16 219.19 233.29 349.34	208.93 275.72 237.93 262.12 263.00	232.42 247.23 272.61 271.28	241.08 218.48 271.85 281.47	274.13

Cont to	i						3011	111	Lidenn	riri		( i mrs )					
[n: n! np (m=)	38	12	1 634	1101	36			huz	(45)		50 (1999	:.6	00	A3	18,11	10	76
112 244 47 45 50 54 87 60 62.5 68 67 67 70 70 70 70 70 70 70 102 100 114 121 127 133 140 646 152 170 180 180 180 180 180 180 180 180 180 18	71.76 76.70 81.38 85.82 90.78 95.94 102.10 110.18 121.33 127.93 139.03 119.02 218.25 237.49 256.23 276.23	78,71 84,27 84,27 94,70 100,27 107,36 127,86 127,86 134,94 147,50 130,19 210,21 211,21 221,24 222,26	##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ## ##, ##, ## ##, ##, ## ##, ##, ## ##, ##, ##, ## ##, ##, ##, ## ##, ##, ##, ##, ## ##, ##, ##, ##, ##, ##, ## ##, ##, ##, ##, ##, ##, ##, ##, ##, ##,	98.81 95.81 100.91 107.03 114.80 125.18 137.74 145.00 258.41 227.87 750.41 227.87 206.43	92.33 97.88 102.40 104.20 117.19 127.85 148.76 219.41 233.53 279.86 302.77 3124.92	121.85 133.07 146.19 164.62 189.82 20.23 244.58 203.72 117.68	126.27 138.10 161.41 116.78 176.58 202.22 224.85 705.40 281.14 306.79 332.44	130.81 142.94 167.44 190.75 230.27 756.70 231.13 120.06 146.20 172.86	238.30 149.82 165.30 175.13 291.25 263.03 281.88 310.73 339.59	202.43	188,85 208,38 208,38 274,96 107,77 379,10 371,16 403,22	335.57 371.49 407.40 427.30	353. 87 392.09 430.04 480.06 506.02	368.84 607.04 447.43 484.84 578.84	3/8, ng 418,72 4/8, 43 500, 14	110.14 485.24 529.48	414.29 402.28 510.46 558.56
426 450 (486) 480	292.48 310,72 321,81 332.81	310.93 729.84 341,89 383.62	328.69 348.79 381.37 373.94	358.19 358.19 373.33 384.08	346.27 367.53 380.86 384.17	388.08 400.13 414.19	380.77 404.42 419.22 436.01	307.74 422.56 418.11 463.64	432.82 449.43 488.67 402.72	447.46 478.84 483.59 511.36	463.64 195.20 511.70 530.10	510.87 146.10 184.33 585.53	541.57 577.04 590.24 621.48	601.24 574.54	617.12 841.16		649,23 493,56 721,31 749,08

# 10. Cold Draw (Cold-rolled) Seveleds Steel Pipe (YD231-64)

Table 2-1-60 The Norms and Dimensions of Gold Draw (Gold-rolled Seamless Steel Pipe

Enternal			- <del></del>		<u>Phic mess</u>	- ا	, ,				
diameter.	0.25   0.30   0.40				1.4   (1.5)	1.6   1.8	2.0:	2.2   2.5	2.8	3.0	3.2
(55)	L		<u>leore</u>	cs	.iei flat						
2	0.0108	1	ľ	1		!	: 1	1 1		1	
	0.01390.01630.0207				,		i	1 1	:		
3	0.01650.02000.0256	;	į		! i				1	i	
4	0.02310.02740.0355	0.043 0.050	0.063 0	.074 0.083		i			- 1	i	
	0.02920.03480.0454						, i	! !	1	1	
	0.03540.0421:0.055							' i	1		
	0.04160.04960.065								1	i	
8	0.0477 0.057 0.075	0.092, 0.110							- 1	1	
	0.054 0.064 9.085									1	
	0.060 0.072 0.095										
	0.066 0.079 0.105	0.129 0.154									
	0.072 0.087 0.115	0.142 0.169									
	0.079 0.094 0.124	0.154 0.184									
	0.085 0.101 0.134	0.166 0.199									
	0.091 0.109 0.144										
	0.097 0.116 0.154										
	0.103 0.124 0.164										
	0.109 0.131 0.174										
	0.115 9.138 0.183										
	0.122  0.146  2.193										1.33
(21)	0.203										1.41
22	0.212	0.265 0.318									1.19
(23)	0.222	0.277 0.333									1.57
(24)	0.236	0.290 0.347									1.64
25	10.242	0.302 0.363									1.72
(27)	0.262										
28	0.272								1.71		1.96 2.02
29	0.282										2.12
30	0.292								2.02		2.28
32 34		0.413 0.496							2.15		2.13
34	1 10.331	1 0.413 0.495	0.0000	. ut 41 A . a . 9	1.12   1.20	1.40   1.40	1.30   I	1 . 54 :	2.13		4.10

36	2.51	2.37	2.22	2.00	1.78	1.63	1.47	1.32	1.24	1.16	0.998	0.838	0.675	0.510	0.426	0.341	1	(35)
38	2.59	2.14	2.29	2.07	1.83	1.68	1.52	1.36	1.28	1.19	1.03	0.853	0.695	0.525	0.438	0.350	ſ	
40	2.75	2.59	2.43	2.19	1.94	1.78	1.61	1.44	1.35	1.26	1.09	0.912	0.734	0.555	0.464	0.370		
42	2.91	2.74	2.56	2.31	2.05	1.87	1.69	1.52	1.42	1.33	1.15	0.932	0.774	0.585	0.494	0.390	ł	40
44.5   1.07   1.28   1.48   1.59   1.65   1.88   2.10   2.29   2.59   2.89   3.07   3.25   48   1.15   1.36   1.51   1.61   1.71   1.91   2.12   2.32   2.52   2.91   3.11   3.33   50   1.28   1.44   1.88   1.79   1.91   2.14   2.37   2.59   2.93   3.25   3.18   3.77   (51)   1.23   1.47   1.71   1.83   1.96   2.18   2.42   2.44   2.39   3.32   3.55   3.79   (53)   1.28   1.53   1.78   1.90   2.03   2.27   2.51   2.76   3.11   3.46   3.70   (54)   1.31   1.59   1.82   1.94   2.07   2.31   2.56   2.81   3.18   3.53   3.77   (57)   1.38   1.65   1.49   2.02   2.15   2.10   2.66   2.92   3.30   3.66   3.92   (57)   1.38   1.65   1.49   2.02   2.15   2.10   2.66   2.92   3.30   3.66   3.92   (57)   1.16   1.74   2.02   2.16   2.31   2.58   2.86   3.13   3.55   3.94   (58)   1.58   1.89   2.20   2.35   2.50   2.80   3.11   3.40   3.85   (68)   1.58   1.89   2.20   2.35   2.50   2.80   3.11   3.40   3.85   4.29   4.39   (73)   1.70   2.03   2.37   2.53   2.70   3.02   3.65   4.04   4.49   4.81   5.12   (75)   1.78   2.12   2.14   2.24   2.93   3.25   3.64   4.05   4.96   5.28   (76)   1.85   2.18   2.54   2.71   2.90   3.24   3.60   3.95   1.16   4.97   5.32   5.68   (78)   1.85   2.21   2.57   2.76   2.94   3.29   3.65   4.00   4.53   5.05   5.10   (83)   1.85   2.21   2.57   2.76   2.94   3.29   3.65   4.00   4.37   4.96   5.55   (83)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (83)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (84)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (85)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (85)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (86)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (87)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (87)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (88)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.56   6.46   (81)   2.88   3.08   3.29   3.69   4.09   4.18   5.18   5.66   (81)	3.07	2.89	2.70	2.44	2.16	1.97	1.79	1.60	1.50.	1.41	1.21	1.01			1	)	į	
45	3.25	3.07	2.89	2.59	2.29	2.10	1.88	1.65	1.59	1.48	1.28	1.07	1 1		}	j	ļ	
48       1,15       1,38       1,61       1,72       1,33       2.05       2.27       2,18       2.81       3.11       3.13       3.5         (51)       1,21       1,44       1,68       1,79       1,91       2.14       2.37       2.59       2.93       3.25       3.18       3.76         (51)       1,23       1,17       1,71       1,83       1,96       2.18       2.42       2.44       2.99       3.32       3.55       3.75       3.55       3.75       3.55       3.75       3.55       3.75       3.55       3.75       3.55       3.75       3.55       3.77       4.02       3.66       3.11       3.46       3.70       3.94       4.22       4.27       2.51       2.76       3.11       3.46       3.70       3.94       4.22       4.22       4.22       3.30       3.66       3.92       4.12       4.02       2.15       2.10       2.56       2.81       3.11       3.46       3.70       3.94       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.22       4.12       4.22       4.12       4.12       4.12	3.31	3.11	2.91	2.52	2.32	2.12	1.91	1.71	1.61	1.51	1.30	1.09	( i		l i		1	
1.21   1.44   1.88   1.79   1.91   2.14   2.37   2.59   2.93   3.25   3.18   3.77	3.54	3.33	3.11	2.81	2.18	2.27	2.05	1.33	1.72	1.61	1.38	1.15	1 1			1	-	
(51)       1.23       1.47       1.71       1.83       1.96       2.18       2.42       2.42       2.94       2.93       3.32       3.55       3.75         (54)       1.28       1.53       1.53       1.78       1.90       2.03       2.27       2.51       2.76       3.11       3.46       3.70       3.03       3.77       4.02         56       1.36       1.52       1.94       2.07       2.31       2.56       2.81       3.18       3.53       3.77       4.02         56       1.36       1.52       1.94       2.07       2.31       2.56       2.81       3.18       3.53       3.77       4.02         60       1.38       1.65       1.92       2.05       2.18       2.15       2.71       2.97       3.36       3.74       4.00       4.22         63       1.66       1.74       2.02       2.16       2.31       2.58       2.86       3.13       3.55       3.94       4.22       4.19         63       1.58       1.83       2.20       2.35       2.50       2.80       3.11       3.40       3.85       3.44       4.22       4.19         668       1.65	3.70	3.18	3.25	2.93	2.59	2.37	2.14	1.91	1,79	1.68	1.14	1.21	)		}	1	Ì	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	3.79	3.55	3.32	2.39	2.54	2.42	2.18	1.96	i.83	1.71	1.17	1.23	1 7			Ì	1	
(54)         1.31         1.59         1.82         1.94         2.07         2.31         2.56         2.81         3.18         3.53         3.77         4.02           (57)         1.38         1.62         1.92         2.02         2.15         2.40         2.66         2.92         3.30         3.66         3.92         4.17           (60)         1.16         1.74         2.02         2.16         2.31         2.58         2.86         3.13         3.55         3.94         4.22         4.19           (63)         1.58         1.83         2.13         2.27         2.42         2.71         3.01         3.30         3.72         4.15         4.14         4.12         4.19         4.22         4.19         4.38         4.22         4.19         4.38         4.22         4.19         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14         4.14 <td>3.94</td> <td></td> <td>3.46</td> <td>3.11</td> <td>2.76</td> <td>2.51</td> <td>2.27</td> <td>2.03</td> <td>1.90</td> <td>1.78</td> <td>1.53</td> <td>1.28</td> <td>! ;</td> <td></td> <td>1</td> <td>ļ</td> <td></td> <td></td>	3.94		3.46	3.11	2.76	2.51	2.27	2.03	1.90	1.78	1.53	1.28	! ;		1	ļ		
56 (57)       1.36   1.52   1.49   2.02   2.15   2.10   2.66   2.92   3.30   3.76   3.92   4.17   3.06   3.92   4.17   3.06   3.92   4.17   3.06   3.66   3.92   4.17   3.06   3.65   3.13   3.55   3.94   4.22   4.18   3.15   3.15   3.18   3.15   3.18   3.15   3.18   3.15   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18   3.18	4.02	3.77	3.53	3.18	2.81	2.56	2.31	2.07	1.94	1.82	1.59	1.31	j		}	1	}	
(57)	4.17	3.92	3.66	3.30	2.92	2.56	2.10	2.15	2.02	1.49	1.52	1.36	[ [			ł	i	
60	4.25	1.00	3.74	3.36	2.97	2.71	2.15	2.18	2.05	1.92	1.65	1.38	į l	(				
1.58   1.89   2.20   2.35   2.50   2.80   3.11   3.40   3.85   4.29   4.59   4.89   1.65   1.98   2.30   2.46   2.62   2.93   3.26   3.57   4.94   4.49   4.81   5.12   7.0   1.70   2.03   2.37   2.53   2.70   3.02   3.35   3.68   4.16   4.63   4.96   5.28   1.78   2.12   2.47   2.64   2.82   3.16   3.50   3.84   4.35   4.44   5.18   5.52   7.5   1.82   2.18   2.54   2.71   2.90   3.24   3.60   3.95   1.16   4.97   5.32   5.68   1.85   2.21   2.57   2.76   2.94   3.29   3.65   4.00   4.53   5.05   5.10   5.75   80   1.85   2.21   2.28   3.02   3.21   3.60   3.24   3.60   4.37   4.96   5.52   5.92   6.31   85   2.88   3.08   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.88   3.88   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.88   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.85   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.85   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.85   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.85   3.85   3.29   3.69   4.99   4.18   5.18   5.66   6.46   6.46   3.85   3.85   3.85   3.29   3.69   4.99   4.18   5.18   5.66   6.46   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85   3.85	4.19	4.22	3.94		3.13	2.86	2.58	2,31	2.16	2.02	1.74		l i		1 1	i	l	
65 (68)	4.73	4.11	4.15	3.72	3.30	3.01	2.71	2.42	2.27	2.13	1.83	1.53			(	1	1	63
770	4.89	4.59	4.29	3.85	3.40	3.11	2.80	2.50	2.35	2.20	1.89		l i		1		1	
(73) 75 (1.82   2.18   2.54   2.71   2.90   3.24   3.60   3.93   4.34   5.18   5.52   (76) (1.85   2.21   2.57   2.76   2.94   3.29   3.65   4.00   4.53   5.05   5.40   5.75   (83) (83) (83) (83) (83) (83) (84) (85) (85) (85) (85) (85) (85) (85) (85	5.12	1.81	4.19										) !		1	}	•	(68)
75 (76)			4.63											'	1		1	70
75 (76) (   1.82   2.18   2.54   2.71   2.90   3.24   3.60   3.95   1.16   4.97   5.32   5.68   (76)   ( 1.85   2.21   2.57   2.76   2.94   3.29   3.65   4.00   4.53   5.05   5.10   5.75   80   ( 1.85   2.21   2.90   3.09   3.17   3.84   4.22   4.77   5.32   5.69   6.07   (83)   ( 1.85   2.82   3.02   3.21   3.60   4.00   4.37   4.26   5.52   5.92   6.31   85   ( 1.85   2.88   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.06   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.08   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.85   3.29   3.69   4.09   4.13   5.18   5.66   6.16   ( 1.85   2.85   3.85   3.29   3.69   4.09   4.13   5.18   3.08   ( 1.85   2.85   3.85   3.29   3.69   4.09   4.13   5.18   3.08   3.29   3.69   4.09   4.13   5.18   3.08   3.29	5.52			4.35	3.84	3.50	3.16	2.82	2.64	2.47	2.12	1.78	j (		1 1	1		(73)
(76)	5.68	5.32	1.97	1.16			3.24	2.90	2.71	2.54	2.18	1.82	1 1		! !	í	-	
(83)   2.82   3.02   3.21   3.60   4.00   4.37   4.96   5.52   5.92   6.31   85   2.88   3.08   3.29   3.69   4.19   4.13   5.18   5.66   6.96   6.46	5.75	5.10	5.05			3.65	3.29	2.94	2.76		2.21	1.85			1 1	1	į	
85   2.88 3.08 3.29 3.69 4.19 4.13 5.18 5.66 6.26 6.16													1 1		1 1	1	ł	80
												ı i	1 1			!		(83)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									3.08	2.88			1 1		}	}	}	85
													1 1		!	i	1	(89)
90 3.05 3.27 3.49 3.91 4.34 4.76 5.39 6.01 6.13 6.86												. 1	1 [	i '		Į	1	90
95 3.21 3.46 3.68 4.13 4.59 5.70 8.76 6.81 7.26													1		i ;	ί.	ļ	95
100 3.64 3.88 4.35 4.33 5.30 8.00 6.79 7.17 7.65													! !		1		1	100
(102)													1 !			ļ	1	(102)
(108) 3.95 4.21 4.72 5.23 5.74 6.50 7.75 7.77 8.29											i	. ]	1 1		!	i	1	(108)
3.74 4.03 4.28 (.81 5.32 5.8) 6.62 7.29 7.92 8.43										3.74			<u> </u>		1	1		110
120 4.36 4.66 5.25 5.83 6.38 7.24 8.07 8.66 9.22								4.65	4.36		l		1 !		1		i	120
125 5.16 6.16 6.64 7.54 8.42 9.02 9.61					5.64	6.06	5.16	1	1	1		i 1	i i		1	1		125
130 7.86 8.7H 9.40 10 00						!	1	}	i				1		1	1	i	130
(133)				3.05	:			}	1	i					!	į		(133)
140				i 1	i		1	1	j	ļ	j	! )	)	į	}	!		140
150	1.52	10.85	1		1	i	1	1	1		1	1	<u> </u>	<u> </u>	!!	1	_ l	150

Continu	iea	<del></del>					InII		1770	mesa	<del></del>	(	7							
Liameter	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0 !	8.5	9	<u> i</u>	9.5	10	11	+ 1	2	13	. 14
()		<del>,                                      </del>				ن رين	) ''a *.	. 63		'a - ' - '	-	(	Ì							
2.5	!			ļ				ļ			ļ		ļ	1	1			- 1		
3		! !			1	i			1	1	į		İ	i	- 1					
4 5				İ	ì				-	- 1			ì	1	ļ		i		į	
6	1					- 1	l	İ	i	1	1		ì		1		:		ļ	
7	i				İ	- 1		İ	-				ł		1			F	,	
9	ļ			ŀ		1			i	1			!	İ	1		İ			
	0.561			į	i	i		ł	i	į	į			ĺ	1				i	
	0.647	0 789		1		i		ļ	1	1	i		i		1		!			
	0.820			, }	- 1	- {	ļ	- 1	1	- !	{		1 4		İ			1	Ì	
	0.906			1 00	ł	.	ĺ	1	!	1	į		-		i		ļ		İ	
(15) 16	1.08	1.09	1.17	1.23	1		}	İ		i	1		ţ							
(17)	1.17	1.28	1.39	1.48	i		ļ			:			,		- 1					
1 <b>8</b> (19)	1.25	1.38	1.50	1.60	1.54	1.92	!		:				1		i				. !	
20	1.42	1.58	1.72	1.85	1.97	2.07	ĺ		:					i			!	j	:	
(21)	1.51	1.68	1.83	2.10	2.10	2.22					!			İ	;		:	-	1	
(23)	1.69	1.97	2.05	2.22	2.37	2.52	- !		1				;						÷	
(24)	1.77	1.97	2.15	2.34	2.51	2.66	2.81	2.93									!	1	;	
25 (27)	1.46	3.67	2.38	2.17	2.64	2.81° 3.11°	3.29	3.11					i	1	ŀ		:	1		
28	2.11	2.37	3.61	2.84	3.05	3.26	3.15	3.53	i						į		;	ļ		
29 30	2.20	2.47	2.72	2.96 3.08	3.19	3.10	3.61	3.80i 3.97.	0.98 ¹ 4.16	4.34			:	i	i		i	İ		
32	2.46	2.76	3.05	3.33	3.59	3.85	4.09	4.32	4.53	4.74			ŀ	İ	i		1	-	- 1	
34	2.63	2.95	3.27		3.87	4.14	4.41	4.66	1.90	5.13				i	1				,	

(35)	2.72	3.06	3.38	3.70	4.00	4.29	4.57	4.83	5.09	5.33	,	,	,	:	1			
36	2.81	3.16	3.50	3.82	4.14	4.44	4.73	5.01	5.27	5.52	i	1		1	ļ	1	į	
38	2.98	3.35	3.72	4.07	4.41	4.74	5.05	5.35	5.64	5.92	6.18	6.44	'	i	-	į	- 1	
40	3.15	3.55	3.94	4.32	4.68	5.03	5.37	5.70	6.01	6.31	6.60	6.88	i		1	i		
42	3.32	3.75	4.16	4.56	4.95	5.33	5.69	6.04	6.38	6.71	7.02	7.32	- 1	!	:			
44.5		4.00	4.44	4.87	5.29	5.70	6.09	6.47	6.84	7.20	7.55	7.88	1	1	1	- 1	i	
45	3.58	4.04	4.49	4.93	5.36	5.77	6.17	6.56	6.94	7.30	7.65	7.99	8.32	8.63	j		1	
48	3.84	4.34	4.83	5.30	5.76	6.21	6.65	7.08	7.49	7.89	8.28	8.65	9.02	9.37	- 1	į	1	
50	4.01	4.54	5.05	5.55	6.04	6.51	6.97	7.42	7.86	8.29	8.70	9.10	9.19		10.59		i	
(51)	4.10	4.64	5.16	5.67	6.17	6.66	7.13	7.60	8.05	8.48	8.91	9.32			10.85		1	
53	4.27	4.83	5.38	5.92	6.44	6.95	7.45	7.94	8.42	8.88	9.33				11.39		- [	
(54)	4.36	4.93	5.49	6.04	6.58	7.10	7.61	8.11	8.50	9.08	9.54				11.67		i	
56	4.53		5.71	6.29	6.85	7.40	7.93	8.40	8.97		9.96				12.21		i	
(57)	4.62			6.41	6.99	7.55	8.10	8.63				10.65						
60	4.83			6.78	7.39	7.99	8.58			10.26							15.07	15.88
63	5.13		6.49	7.14	7.77	8.41	9.04			10.81							- 1	
65	5.31			7.40	8.07	8.73				11.25							_ (	
(68)	5.57	6.31	7.05	7.77	8.48	9.17				11.84								
70	5.74	6.51	7.27	8.01	8.75					12.23								
(73)	6.00	6.81	7.50	8.38	9.16					12.82							19.21	20.37
75	6.17	7.00	7.82	8.62						12.17								
(76)	6.26	7.10	7.93	8.75						13.42							20.20	21.41
80	6.50	7.49	8.37	9.24						14.15								
(83)	6.86	7.79	8.71	9.52						14.80							22.10	23.82
85	7.04	7.98	8.93	1.86						15.13								25 20
(89)	7.38		9.38							15.93							24.50	33.85
90	7.47			10.47						16.11								
95	7.90		10.04							17.16								
100	8.32	9.46	10.59							18.01 14.57								
(102) (108)					13.90													
110		10.46								20.035								
		11.11								22.10								
				14.80						23.18.								
		12.43			16 82	18.35	10 803	21	22 764			26,90						
				15.75														
1:	11 80	13 42	15 05	16.65	18.24	19.831	21.10	22 76	24.511	26.04	27.5	20 10	10	12 86	71.100	37 44		
				7.8														
		11.03	110.11		4 .,	6 1 1 6 1 1				-		* * * * * *	45.41	34.34	31 1 1 1	~~~~		

- Tota: The four points that follow are applicable to hot-rolled seamless steel pine and cold-drawn seamless steel pine (Table 2-1-59 and Table 2-1-60).
  - 1. Commonly used materials: ordinary carbon steel (GETCC-65), fine carbon steel (32699-69), teneral low alloy struction steel (Y313-69) and alloy construction steel (Y36-59).
  - 2. The length of seamless steel pipe: the hot-rolled nine is 4-12.5m, and the cold-drawn pine of which the wall thickness is less than 1mm is 1.5-7m and of which the wall thickness is more than 1mm is 1.5-9m.
  - 3. In Table 2-1-60, the dimensions which are in parentheses are not recommended for use.
  - 4. For mechanical properties of seamless steel pipes, see the table that follows:

Steel		Yield strength	Extension rate	Charl Dina Complains Charles
Grade	(lig/mm²)	o. (kg/mm²)	85	Steel Pipe Supplying State
		>		
10	34	21	24	1. Mot-rolled steel mine undergoe
15	38	23	22	no annealing, but cold-draim
20	40	25	20	steel mine undergoes annealin
25	46	28	19	2. Supplying according to their
31	50	30	18	chemical compositions and
35	52	32	17	mechanical properties.
40	56	34	15	
45	60	36	14	
A2. AS2. AJ2	34	22	24	1. Fot-rolled speel pine underros
3. AS3. AJ3	38	24	22	no annealing, but cold-drawn
4. AS4. AJ4	42	26	20	steel pipe whiermoes anneali.
5, AS5, AJ5	50	28	17	2. Sunniting appointing to their
46. AS6. AJ6	60	31	14	mechanical properties.

## 21. Boiler-use Seamless Steel Pipe (YB232-63)

Table 2-1-61 The Norms and Dimensions of Boiler-use Seamlest Steel Fire

Name		Steel Grade	External diameter (mn)	Wall Thickness
Various construc- tion boi-	Super- leated steam thine	10 20	22, 24, 25 29 32, 35, 38, 10, 12	2.5, 3, 3,5, 4 2.5, 3, 3,5, 1, 1.5, 5, 5,5 2.5, 3, 3.5, 1, 4.5, 5, 5,5, 6
ler-use steel pipes.	Boiling water pipe	10 20	51, 57 60, 63.5	2.5, 3, 3.5, 1, 4.5, 5, 5.5, 6, 7, 8 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9 3, 3.5, 1, 4.5, 5, 5.5, 6, 7, 8, 9, 10
Locomotive	Super- leated steam	10	7h, 33, 89 95, 102, 108 24, (29), 30 35, 38,	3.5. 4. 4.5. 5. 5.5. 6. 7. 8. 9. 10 1. 1.5. 5. 5.5. 6. 7. 8. 9. 10 3 3.5
steel pipe	mine Small smalle mine	10	11.5, 51	1.5
	Arch pipe Larve snoke	10	76, v9 89 127, 123	3,5
	pipe		110, 152	1.5

Note: 1. Commonly used material: fine carbon steel (38605-65)

2. The length of boiler-use semmless steel pipe: The hot-rolled pipe is 4-12.5m and the cold-drawm pipe is 1.5-9m.

3. The dimensions which are in parenthese are not recommended for use.

## 33. Sarton Spring Steel Mire (WESAP-64)

Table 2-1-52 The Horms, Dimensions and Mechanical

·			P-2				n Spring	3teel	- <u>   </u>	.э		
Diameter	: 			Mechai	<u> rical</u>	Prop	erties			<del></del>		<del></del> -
	Ga	roup I	ı	G	roup I	I	Gro	up lla	<u>.</u>	. Gz	oup 1	11
	g. 1	-ted bi bend-ti ing	ing imes	strength a.	-ted h bend-t	ing	s-rength	-ted f bend-t ing	sing	armengt:	jend− jend− ind	tint times
(::::::)		>	ج		≽	≥		≥ ¦	≥		. ≥	≥
0.14 0.15 0.16	270~310 270~310 270~310		35 34 33	225~270 225~270 225~270		35 34 33	225~270 225~270 225~270		35 34 33	175~225 175~225 175~225		35 34 33
0.19 0.20 0.22	270~310 270~310 270~310	!	31 30 29	225~270 225~270 225~270	ļ	31 30 29	225~270 225~270 225~270		33 32 32	175~225 175~225 175~225		31 30 29
0.25 0.28 0.30	270~310 270~310 270~310		27 26 23	225~270 225~270 225~270		27 26 23	225~270 225~270 225~270	ļ	32 31 31	175~225 175~225 175~225		27 26 23
0.32 0.36 0.40	265~305 265~305 265~305		22 22 20	220~265 220~265 220~265		22 22 21	220~265 220~265 220~265	:	30 28	170~220 170~220 170~220	: :	22 22 21
0.15 0.50 0.56	265~305 265~305 265~305		17 16 16	220~265 220~265 220~285		20 19 19	220~265 220~265 220~265		28 27 27	170~220 170~220 170~220		20 19 19
0.60 0.63 0.70	265~305 260~300 260~300		16 16 16	220~265 215~260 215~260		18 18 18	220~265 215~260 215~260		23 25 25	170~220 170~215 170~215	·	18 18 18

0.75 0.80 0.85 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 2.20 2.50 2.80 3.60 3.60 4.00 4.50 5.60 5.60 6.30	260~300 260~300 255~290 255~290 255~290 250~285 240~275 240~270 230~260 220~250 210~240 210~240 200~230 190~220 180~205 175~200 170~195 165~190 165~190 160~185 150~175 145~170 145~170	11 10 9 9 7 19 17 15 13 11 10 8 7 4 4 4 3 3 4 4 5 5 5 3	16 16 16 16 16 16 16 16 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	215~260 215~260 215~260 210~255 205~250 195~210 195~240 190~230 185~220 185~220 180~210 180~210 180~210 180~210 180~210 165~195 165~195 165~195 165~195 155~180 155~180 150~155 140~165 140~165 140~160 135~160 135~160 125~115	12 11 11 10 8 7 18 17 15 13 10 10 9 8 7 9 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7	17 17 17 17 17 17 17 17 17 17 17 17 17 1	215~260 215~260 215~260 220~255 205~250 195~240 195~240 190~230 185~220 185~220 180~210 180~210 180~210 165~195 165~195 165~195 165~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180 155~180	12 11 10 8 7 18 17 15 13 10 10 9 9 5 5 5 5 6	24 24 24 24 24 24 24 24 24 24 24 24 24 2	170~215 170~215 170~215 185~210 165~210 165~210 155~200 155~200 150~190 150~190 145~185 140~180 140~180 140~180 140~185 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155 120~155	12 11 10 9 8 18 17 15 13 11 10 9 8 10 7 7 6 5 6 5	17 17 17 17 17 17 17 17 17 17 17 17 17 1
	145~170	3				1	135~160	<b>б</b>	1 6		6 6 5	1

Note: 1. Carbon spring stabl wire (YD240-64) is used for bold-frawm apring steel wire, which is of round section. This steel wire is used to make spring which is wound into form under cold state and without going through quenching.

2. Commonly used materials: ordinary carbon steel (33699-65) and carbon tool steel (Y35-59).

## 23. Spring Steel Wire for Important Tse (13550-65)

Table 2-1-53 The Norms and Dimensions of String Steel Wire for Important Use

Steel wire Diameter	Permitted Deviation		Steel Wire iameter	Permitted Deviation	Sreel Vire Diameter	Permitted Deviation
1.0	<b>!</b>	i	2.5		, 4.0	
1,1			2.8	± 0.03	4.2	ł
1.2	1		3.0		4.5	
1.4	= 0.03	-1		1	4.8	± 0.04
1.6	_ 0.03		3.2		5.0	10.04
1.8	1		3.4		5.3	!
2.0	1	1;	3.5	±0.04	5.5	
2.2		1	3.8		6.0	

Table 2-1-64 The Yechanical Properties of Spring Steel Wire for Important Use

iameter			noTimes not	Diameter	_		oTimes no nLess Than
(::::::)	(kg/mm ² )!			(mm)	(kg/rm ² )		
1.0	180~215	8	19	3.4	:60~185	6	13
1.1	180~215	8	19	3.5	150~175	5	11
1.2	180~215	8	19	3.8	145~170	5	10
1.4	175~205	7	18	4.0	145~170 j	4	10
1.6	175~205	6	17	4.2	145~170	3	9
1.6	170~200	5	16	4.5	140~165	3	9
2.0	170~200	5	16	4.8	135~160	2	8
2.2	165~195	4	15	5.0	135~160	2	8
2.5	165~190	3	15	5.3	135~160	2	6
2.8	160~185	3	15	5.5	130~155	2	6
3.0	160~185	6	13	6.0	130~155	2	5
3.2	160~185	6	13	0.0	130133	4	v
	1				1		

Note: Naterial used: 651'n.

- (5) A Communication of Chicate Principal School Grades With Tropp of Colon Communication
- 1. The Principles of Marine and Mamberine Seed in Other Sauntains

  **LGOST**J

  (1) The FOCT System of Soviet Union

The way of indicating steel broads in the FOCT dystem is fundamentally similar to the vey of indicating steel broads in China's GB system, except that in the Soviet system, the names of chemical elements, the smelting process, powring method and uses of steel trade are indicated by using Duction language.

The following is a comparison of symbols in GB system and FOCT system.

Name	GB	гост	Name	Gr.	LOCT
	Symbol	Symbol	· · · · · · · · · · · · · · · · · · ·	Symbol	stribol
High grade fine	l I A	A	Semi-killed steal	h (#) to	яc
Mitrogen	N	A	Boron	8 (■. **	P P
"iobium	Nh	Б	Tigh speed speel		P
Moldram	! w	В	Silcon	Sı	С
Mananese	Mn	Г	Ti kandam	Τ.	፣
Cohner	Cu	л	Onrbon tool strel	T	y
Curome stainless steel		ж	i <u>Lawa garam</u>	v	Φ
Cobalt	Co	к	Chrome	Cr	Y .
Poiling stoel	F(%)	кп	Ball bearing sheel	G	ш
Molybdenum	Mo	М	\luminum	(   A1	ю
Tiolial	Ni	H	Cr-Mi strinless strol		, я

Example:

Innualization of a (inn) manne "inline" and we (pena) manualization.

#### (2) The DIY system of German Pederal Remailie

The way of indicating steel grade of DIV system is fundamentally similar to that of TGL system of German Democratic Republic.

The basic structure of indicating steel grade of DTM system is to use figures and alphabetical letters. The order of steel grade is prefixed by a letter which stands for smelting method, and then come in order the letters which stand for original characteristics, marking core and figures which stand for guarantee range and alphabetical letters indication; urgained state. These letters and figures can be used simultaneously or singly but in many cases only "marking core" is used.

- 1) The significance of letters and figures
- (1) The letters which stand for smelting methods:

Smelting methods	Symbol	Smelting methods	3vmbol
Bessemer steel (acid converter steel)	3	Electric furnace steel	Ξ
Thomas steel(basic converter steel)		Open hearth steel	
Converter substituting steel		Crucible furnace steel	7-
Are furnace steel	1	Welding-use steel	1 33
Induction functor stage		Marmered iron	PP

Miditional letters: B -- alkalimity and Y --acidity. These letters follow those which stand for smelting methods.

For example: II -- acid electric furnace steel.

## (2) The letters which stand for original characteristics:

Criminal characteristics _	Simbol	Criginal characteristics	Symbel?
High P and (or) 3 contents		Boiling pouring	
Low P and (or) S contents	K	Ertendable	3
Somi-feed powering	Ξ	Meliable	5
Dead rouring	3	Prescure reliable for te reliable	P
- Michline-redistint brittleness	- -	Cold com The results (entire) ().	,
<u>Nami-arainn</u>	1	<u> </u>	

## (3) l'arting cors:

When it is based on material strength, the order is:

Core mark "st", tensile strength lower limit value.

When it is based on chemical composition, the order is:

Carbon symbol, carbon centent value or

Carbon content value, alloying elements symbols, allow value or

Prefixing letter K, carbon content value, alloying elements symbols, allow value.

(4) The figures standing for gurantee range:

Guarantee Rance	71 -120
Bending or top forging test (one time a furnace)	Nofimme
Mield point	1
Bending or top forging test	2
Impact tenacity	3
Wield point and beading or top forging test	4
Impact tenacity and bending or top forging test	5
Yield point and impact tenacity	6
Wield point and impact tenacity and bending or top forging test	7
High temperature strength or creep strength	\$
Electric propertity or magnetic property	<u> </u>

The figures standing for quarantee range follow the marking core and the figures must be separated by a point. For example, stA2.6.

(5) The latters standing for treatment state:

Treatment Grate	Service1	Treatment State	Symbol
Chrough tempering	1.	Through surface snark quenching	
Phrough quenching	7.	Through surface high frequency	
Through normalization treatment	7.7	induction quenching	₽I
Inrough cementation quenching	3	Having best outability through	
Through softening annealing	G	Greatment	3
Through cementation		Through cold working (cold	
Eurough hardening and tempering	7	rolling and cold drawing)	••
•		Through eliminatian internal	
		stress annealing	5
		Without treatment	••

²⁾ Unrhering according to material among the

This kind of numbering is applicable only to non-alloy steel.

The marking core is composed of a sign of "st" and the following tensile strength lower limit value.

For example, Ast42 = anti-ageing steel and its tensile strength is  $42kg/mm^2$ .

The following is a more complete mark:

Anti-ageing open hearth steel of which the tensile strength is 45kg/mm², guarantee yield point and impact tenscity through normalization treatment.

#### 3) Numbering according to chemical composition

This kind of numbering is better because it can distinguish non-alloy steel, low allow steel and high allow steel. Carbon steel can be marked according to its chemical composition only when other characteristics become more decisive in its use than tensile strength or yield point or when the steel requires consumer to to make heat treatment (such as computation steel and hardened and tempered steel).

## (1) Mon-alloy steel

The marking come is commosed of carbon symbol "O" and the following carbon combent makes (it is indicated by america carbon combent makes by the percentage multiplied by 100%.

For outcomis. Cl2, C25, C35 nume published centiless should nite outcomis. C16 to destrain high barnessume. C15 is demonstrain actual. C20. C25. C25. C45.

and C50 are hardened and tempered steel. Cl5 is dementation steel of which the carbon content is 0.15%, through dementation quenching. C35 is hardened and tempered steel of which the carbon content is 0.35%, through normalization treatment.

If the tensile strength lower limit has to be indicated, the tensile strength value is given after the letters which stand for heat treatment. If there is no heat treatment and no letters standing for heat treatment, a letter "F" is placed after carbon content value to indicate that the figures after F are strength value.

For example, 035150 is hardened and tempered steel of which the carbon content is 0.35% and through normalization treatment. Its tensile strength lower limit is  $50 \text{kg/cm}^2$ .

035760 is hardened and tempered sterl of which the carbon content is 0.357 and its tensile strength lower limit is  $60 \text{kg/mm}^2$ .

151035770 is acid open hearth steel of which the carbon content is 0.35%, and its tencile strength lower limit can reach 70kg/mm2after hardening and tempering.

Generally, a large quantity of steel used for production has undergone heat treatment in the plant and very few requires consumer to give heat treatment. These kinds of steel are usually marked by letters, which stand for smelting method, and carbon content value. Sometimes there is an additional letter to indicate the original characteristic. The symbol "O" can be understood.

For example, IS in Thomas sheet of which the carbon convent is 0.20%.

More than its present to thing sheet of which the carbon

content is 0.12%.

12.114 is anti-ageing basic open herath steel of which the carbon content is 0.143.

In case, some certain characteristics have to be indicated, the chemical symbols of elements that cause these characteristics are given after the mark. All is aluminum content, our is copper, I'm is manganese. Pland 3 indicate a higher phosphorus and sulfur content and Si, a higher piloon content.

For example, MIONnSi is open hearth steel killed by using silcon and its carbon content is 0.10% but manganese content is higher.

1912Cu is open hearth steel containing a small amount of copper and its carbon content is 0.12%.

(2) Low alloy steel (total alloy content is not more than 5%)

The marking core is composed of carbon content value, symbols of allow elements and allow value. The foremost carbon content value is similar to mon-allow steel. That reads the percentage of carbon content is multiplied by 100, but the prefixing symbol C is omitted. The charical symbols of allow elements are arranged in order according to their respective quantity. If the the contents are equal to each other, the letters are arranged in alphabetic order. Allow value equals to that the percentage of allow content is multiplied respectively by 4, 10 or 100, and the products are made into integral numbers by disregarding fractions lower than five.

Or, So, Mr. Mi.Si and W malriplied by L.

Al, Ca, Mo, Mo, Ra, Ri and 7 multiplied by MO.

^{2, 7, 2, 3} ml/iplied or 100.

If the treatment methods must be given, then the letters standing for treatment state are connected by a sign of "+". In order to avoid mistake, the letters for treatment state and strength lower limit value can be placed together.

For example, 150r3E is chrome steel containing 00.15%, 0r0.75% and through cementation quench.

250rMo567 + 558 is chrone-molyhdesum steel containing CO.25%, Orl.25%, NoO.6%, its tensile strength can reach 65kg/mm³ after hardening and tempering and it underwent internal stress eliminating annealing.

El3Cr753.8 is chrome-wardium steel containing CO.13%, Cr1.25%, 70.3% and guarantee a certain de ree of high temperature.

### (3) High alloy steel

In order to make distinction from other winds of steel, the steel grade of high alloy steel is prefixed with a letter X, then come the carbon of their walue, chemical symbols of allow elements and allow value. Secause of the high alloy content, the number of allow value is 1.

For example, KIOCTVIISS is stainless steel containing 6 0.10%, Orlass and Miss.

XLOCTWITI1992 is stainless steel containing 10 . 1, Orled, Wi95 and Tips.

In one carbon content is insignificant without a mark of 2, the prefiring larger X can be omitted.

#### (3) The MIST and SMR arrows of the United Shapes

- 1) Construction Steel
- 1 The way of indicating steel grade of SAE system

Generally, the steel grade is indicated by using a four-digit number. the first two digits indicate the kind of steel and the second two digits indicate the numerical value per 10000 of average carbon content.

0 -- general carbon steel
1 -- ensi-to-out carbon steel
3 -- In consummetion steel

For example, 1030 is carbon steel and its everage carbon content is 0.30%.

2 x x x ...nickel steel

3 — average content of Ni3.57

5 — average content of Ni5.07

For example, 2517 is mickel steel and its average Ni content is 5.05 and 0.175.

3 x x x x mickel-chrome steel

1 -- average content of Mil.25%,
Cr0.55% or 0.90%

3 -- average content of Mi3.5%,
Cr1.55%

For example, 3310 is mickel-chrome steel and its average content of Mi is 3.57, Orl.555 and 0.105.

4 x x x steel containing %

0, 4, 5 -- molybdenum steel has different No contents

1 -- chrome-molybdenum steel

3, 7 -- molybdenum steel has different Ni, Cr and No contents

6, 8 -- molybdenum steel has different Ni and Mo contents

For example, 4315 is mickel-molybdenum steel containing Mi3.257-3.757, No 0.2-0.37 and 0 0.13-0.187.

5 x x x, chrome steel

O -- low chrome steel has an average content of Or 0.27% and 0.55%

l -- low chrome steel has an average content of Or 0.30%,0.95% and 1.05%

For example, 5135 is chrome steel containing Or 0.70-1.057 and 0 0.33-0.39%.

6 1 × × chrome-vanadium steel containing Or0.95% and U>0.10%.
For example, 6150 is chrome-vanadium steel containing Or0.70-1.00% and
U more than 0.15% and C 0.4%-0.53%.

8 × × × low MiCro steel

5 -- average content of NiO.55%, OrO.50% and NoO.20%

7 -- average content of Mi0.554, Or0.504 and Mo0.255

For example, 3740 is NiOrNo steel containing NiO.4-0.74, 000.40-0.604, NoO.2-0.34 and 0 0.33-0.434.

 $_{9}$   $_{2}$   $_{\times}$   $_{\times}$   $_{\times}$  Silh steel containing Sil.30-2.25 and Nn0.70-1.005.

9 × × ×

- 2 -- Silm steel containing Si 1.70-2.25 and im 0.70-1.00%
- 3 -- Micro steel with an average content of Mis.25%, Orl. 20% and Mo.12%
- 4 NiOrMo steel with an average content of NiO.45%, CrO.40% and MoO.12%
- 7 MiCrNo steel with an average content of NiO.55%, CrO.17% and NoO.20%
- S -- MiCrNo steel with an average content of Mi 1.00%, Gro.30% and No.25%

# x x B x x steel containing boron

For example, 50 B 46 is GrB steel with an average content of 0 0.464, Or 0.20-0.35% and B less than 0.0005%.

## x x L x x steel containing lead

For example, 12114 is easy-to-out steel containing 0 0.15%, in 0.7-1.20% and Pb 0.15-035%.

x x x x -H steel which requires a certain hardenability

For example, CLCO-H is Or'o steel which requires a contain, hardenability.

The war of indiansian spent grade of N131 arrayam to indically chillen to that of 317 ordina. Marketon, those is core this arraya. The example,

in AlSI system, some steel grade has preciming letters or suffixing letters.

The steel grade of ensy-to-out steel and carbon steel is prefixed with:

C - open hearth steel

B -- Easic converter steel

The steel grade of alloy steel is prefixed with:

E - electric steel

TS -- standard steel grade of testing

At the end of steel grade, a letter F is attached -- easy-to-cut steel

Moreover, in addition to the whole set of steel grades of SAE system, which are included in those listed in the ALSI system, there still are some which are not listed in the SAE system, such as TSALAO, 94340. A complete comparison will be given as follows:

A comparison of the ways of indicating steel arade of construction steel in both NLSI and SAE systems

AISi		SAE	AISI	SAE
C 100F		1006	4815	4815
C 1030	t	1030	5135	5135
B 1113	1	! 113	6150	6150
1335	i	1335	86 B 45	86 B 45
F 2517	1	2517	94 B 40	_
E 3310	i	3310	12 L 14	12 L 14
TS4140			4140- H	4140-1

2) Rolling Rearing Steel

The indication of steel grade of SNE system

. 5 × × × rolling bearing steel

0 -- average content of Or0.50%

1 -- average content of Crl.003 2 -- average content of Crl.455

indicating average content of carbon

The ways of indicating steel grade of rolling bearing steel are basically the same in ALSL system and SAE system. The following is a comparison of the ways of indicating:

AISI	SAE	Type of steel	Average content of chrome
£501 × ×	501 × ×	Low chrome bearing steel	0.50%
E511 × ×	511 × ×	Medium chrome bearing steel	
 E 521 × ×	521 × ×	Highchrome bearing steel	1.45%

For example, 52100 is a tupe of high parbon and high chrome bearing steel which contains 0 0.95-1.10% and 0r 1.30-1.60%.

#### 3) Tool Steel

A unified numbering system of NISL-SAN is widel- adopted.

- V -- which quenched tool steel (general carbon tool steel containing a small quantity of Cr and V
- S -- Impact resisting tool steel (OrW steel, SiNo steel and OrNo steel containing C 0.50-1.45%)
- O -- Oil quenching littorking tool steel (TrWh steel. Yn steel, Silv coel and Orlow steel containing Oil-2-1.457)
- i— Alloy sold woulding tool steel in his cooling and lands ing(Cr)'s steel and Or'm's esteel containing 0 0.00-1.007)

x x x tool steel

- D Wigh carbon and high chrome type cold working tool steel (Or steel, Or o steel, Or WSi steel and Or WOO steel containing 01.00-2.25%)
- HI -- Yedium carbon and medium chrome type hot working mould steel (Crio steel, Crio7 steel and CrioWi steel containing C 0.35-0.55 and Cr5.0-7.0%)
- H2 -- Tungsten wire hot working mould steel (OrV steel and OrWV steel containing C 0.35-050 and M 9.0-13.05)
- E4 -- Molybdenum wire hot working mould steel (CrioV steel and CrioWI steel containing C 0.55-0.55 and No5.0-8.03)
- T -- Tungsten wire high speed steel
- M -- Molybdenum wire high speed steel
- L -- Low alloy tool steel for special use (Cr steel, Cr7 steel, Cr7nio steel, Cr7nio steel and Cr7o steel containing C 0.5-1.17)
- F -- Carbon-tungsten tool steel (W steel and Cr steel containing Cl.O-1.25% and WL.25-3.50%)
- P -- Low carbon tool steel (Cr steel, Crii steel, Crio steel and Criino steel containing C less tean 0.07-0.30%)

For example, 07 is oil quanch cold working tool steel which contains 0 1.20%, Or 0.75%, VI.75% and Im 0.30%.

- 4) Stainless Steel and Meat-resistant Steel
- ( The indication of steel grade of ALSI system

2 -- Orimidial musternite steel
3 -- MiOr musternite steel
4 -- Mior markensize steel and low carbon him chrome ferritic stain-less and ment-resistant steel
5 -- Low amore moretancine steel

For example, 302 is stainless steel which contains 0 less than 0.15%, Or 17.0-19.0% and Mi %.0-10.0%.

2 The indication of steel grade of SAE system



For example, 51501 is heat-resistant steel containing 0 more than 0.10%, Cr4.0-6.0% and Mo0.40-0.65%.

#### (4) The JlS system of Japan

By the method of indicating steel grade of JIS system, the steel grade is composed of three different parts. The first part is the letters which start for material classification, then the letters for the brind of material and uses and finally the letters for the order of different binds and the minimum value of densite obveryth. At the end of some shool grade, there are letters to i block the transport of the quality of steel.



1) General steel and rolling stock (bar stock and section material)

S S  $\times$   $\times$  rolling **stock** for general construction use letters **standing** for quality of rolling stock tensile strength value P, F, A, B

For example, SS34P is plate material for general construction use and its tensile strength is no less than 34m/m2.



**-**~

For example, \$7503P-N is flat steel for B-grade welding consernation use and its tensile strength is no less than 50kg/mm.

S B C bar stock for chain use

S S D × × hetero-shaped bar stock

tensile strength value

hetero-shape

S R D × × revolled bar stock

tensile strength value

S R B × × revolled carbon steel

2) Construction Steel

S × × C × crrbon construction steel

numerical value per 10000 of steel average darbon content

those which are used mainly as companytion steel are marked with "I"

For example, 3150% is dementation steel containing 0 0.154.

letters standing for kind of steel

MC — MiCr steel

MCM — MiCr steel

MCM — Cr steel

MCM — Cr steel

MCM — Cr steel

MCM — Cr steel

MCM — Cr steel

MCM — Cr steel

For example, SUCL is NiCr alloy construction steel which has an average content of 0 0.32-0.40%, Ni 1.00-1.50% and Or 0.50-0.00%.

Of cold worked rolling stock, including general steel and carbon construction steel, symbols are given at the end of steel grade:

- D -- cold draw working
- T -- through machine working
- G -- through grinding

Following the symbols listed above, figures, 0,1,2,3, are added to indicate the common difference series of cold processing.

Those which are through quenching treatment are marked with "Q" between the symbols listed above and original steel grade.

For example, SCIIQ-DGI is No.1 OrNo construction steel bar stock, which, according to the first grade common difference, first has cold drawing, then quenching and finally grinding.

#### 3) Tool Steel



S K H × high speed tool steel

S K C × hollow steel

S K U × cutter steel

4) Steel for special use





#### 5) Plate material



For example, SFTE-C is cold-rolled and tin electroplated iron skin.

#### 6) Pine material



S T × × × × steel pipe for various uses PG -- carbon steel pipe used to bear pressure under 35000 S - carbon steel pipe used for high pressure PT -- carbon steel pipe used for high temperature(above 350°C) PY - electric arc welding carbon steel pipe PA -- alloy steel pipe PL -- steel pipe used for low temperature (below 0°C) 3 - cercon steel pipe for boiler and heat exchanger use L -- steel pipe for locomotive coiler use 31 - allow steel pipe for boiler and heat exchanger use BL -- below 000 heat exchanger steel pipe K -- combon steel pipe for general construction use K: - carbon steel pipe for mechanical construction use MS - allow steel pipe for construction H -- sermless steel pipe for high tem-; perature gas cyanation use

tensile strength value STPA, STBA, STKS indicating pipe number)

[&]quot;) Wire material

S W R × × wire for various uses

"- mild steel coil rod

H — hard steel coil rod

S — wire for piano use

"- wire for electrowelding core rod use

S W M - x iron wire

B — Jeneral
A — annealed
N — use to make nail
G — zinc-plated

8) Casting and Forging

tensile strength value

S C × × - carbon steel casting

tensile strength value

S C A × alloy steel casting

steel series number

S C S × stainLess steel casting

steel series number

S C H × heat resisting steel

casting

steel series number

# S C Mm H x high Mn steel casting steel series number

#### (5) The BS System of England

From the way of indicating steel grade of the British BS system, the chemical composition and mechanical properties of the material cannot be directly seen, so the definite standard must be checked. However, from the classification that follows, the kind of steel of the components are grade can be found out. For steel of same kind and the components are similar, letters A,B,C,D,... are often marked at the end.

- 1) Carbon Steel
  En1A, En1B, En2, En3, En3A, En3B, En4, En4A, En5, En5D,
  En6, En6A, En7, En8, En8M, En9, En15A, En15B, En43A
- 2) Alloy Steel
  En10, En11, En12, En13, En14A, En14B, En15, En16, En17,
  En18 En19, En19A, En20, En21, En22, En23, En24, En25, En26,
  En27, En28, En29, En30A, En30B, En100, En111, En160
  - 3) Rolling Bearing Steel

En31

- 4) Cementation Steel
  En32A, En32B, En32M, En33, En34, En35, En36, En37, En38,
  En39A, En39P, En201, En202, En320, En325
  - 5) Nitride Steel En40A, En40B, En40C, En41
- 6) Spring Steel
  En12, En43, En44, En45, En15A, En46, En47, En48, En49,
  En50
  - 7) Valve Steel
    En51, En52, En53, En54, En55, En59
  - 8) Stainless, Arti-acid and Meat-resisting Starl En56. En57. En58

#### (6) The NF System of France

The steel grade in NF system is made on the basis of steel classification and the indicating methods are as follows:

- 1) Non-alloy steel and carbon steel
- 1) Of steel for general use (steel A), there are:

ADx -- general commercial steel and its tensile strength is 33-50 kg/mm². The steel grades of other kinds of steel consist of A33, A37, A42, M3, A56, A65, A75, A85 and A95. The following is the way of indicating the steel grade:



For example, A37T2bisbr is steel A of which tensile strength is 37-14 kg/mm², the grade of quality is No.2 in cold working state.

It is steel plate for construction use, and its P content is 0.08% and S content 0.06% in annealing state.

(2) Non-alloy steel for heat treatment use
Of non-alloy steel for construction use, there are:
Steel C

For example, C 10S is weldable carbon steel and its average C content is 0.104.

Steel XC

figure per 10000 of average carbon content

For example, XO10d is XO carbon steel and its O don ent is 0.05-0.157

Sand P content is grade d.

Tool steel for heat treatment use -- tool steel for general use belongs to the category of steel XC and the S and P content can be classified into three different grades. The symbols are suffixed to the steel made.

Orades of classification :	P	S. j	<u> </u>
Extva-fins(lilinest)	< 0.015	<0.02	< 0.03
Fins (liin's)	< 0.025	< 0.03	< 0.05
Qualite courante ( = = = = = = = ]	<0.94	- 0.54	0.07

For swample, KC958ins is carbon tool steel of which the 3 content is 0.05% and P and S content is high grade.

- 2) Alloy Steel
- (1) Alloy steel (steel A) for general use



For example, AS55% is weldable manganese steel and its tensile strength is 55 kg/mm² and manganese content is 13.

2 Alloy steel for heat treatment use

Low allow steel — carbon content is usually indicated by using 0.3 multiplied by 100 and the important elements are indicated by letters. The element content is indicated by using the percentage of the content multiplied by the index listed in the chart.

For example, A2004 is Orlo steel and it contains 0.0.424, Or 14 and to more than 0.104.

Might allow steel — the steel grade is prefixed with Z and allow element content is indicated linearly. The rest are some as low allow steel. For example, ZCOVAC is wolfrom steel and it contains 0 0.000 and VLOO.

Latiers alreading for allow elements and indexes of anothers are directly the following about the

AD-A100 576	HANDBOOK OF EQUIPMENT REPAIR.(U)									
UNCLASSIFIED	FTD-ID(RS	FTD-ID(RS)T-0685-80 NL								
3 or 4										
									<u> </u>	

Manes of elements and chemical symbols	Letters used in steel grade	Index
(ge) & Cr	С	1
(gu) # Co	K	4
(meng) 🕊 Ma	M	4
(nie) 🛊 Ni	N	4
(gui) 键 Si	s	4
(lt) 铝 Al	A	10
(pi) 敏 Be	Be .	10
(tong) # Cu	U	10
(xi) # Sn	E	10
(mei) 鉄 Mg	G .	19
(mu) 钼 Mo	D	10
(lin) 🐃 P	P	10
(ייניי) 😫 W	w	10
(fan) 钒 V	v	10
(xin) # Za	z	10

For the convenience of writing, simplified steel grades as listed in the following chart are often used.

Kind of steel	Complete steel grade	Simplified steel grade
Mon-allow special steel	XC12f	C12
	28 C 4 e	2C4
Low alloy steel	50CV1	5CV4
	Z3CNT18	CNT18
High allow steel	Z70WK12-05	W K12-05

## (7) The ČSN system of Czechoslovakia

The method of numbering steel grade in OSN system. The number is composed of a group of six digits and the first digit is "4" to indicate metallurgical material. But for construction steel, tool steel and stainless steel, this first digit is omitted. So the numbering is, in fact, made of five digits.

#### 1) Steel for mechanical mamufacturing



For example, 11340 is steel for mechanical manufacturing, it is of general quality and its tensile strength is no less than  $32 \text{kg/m}^2$ .

2) Fine construction steel



For example, 14342 is fine construction steel, which contains Cr 1.27, In 0.95, Si 1.25 and total content = 35 and average C content is 0.32-0393.

3) Stainless anti-acid steel and heat resisting steel

	1 7 × × × · · :	sta and	inless anti-aci heat resisting	d steel steel
O Or steel containing Al, and Ni	, Mo	heat t	pplementamy fir reatment state onstruction sta	(same as
2 Ordi steel being added				
stable elements Ti and 3 OrWi steel being added stable lements Ti and N		0 - 9		
and containing No, T and				
4 inCr steel				
5 Hi steel				
6 In steel				
7 — Inlii steel				
S - steel being added some			ber related to	C 00:3707
. other elements based of	on   se	ries num	ber related to	, Go,e
9 special need				
	100 70 /4		0.2000 - 4-34	
The 4th digit of 170xx,171xx and 173xx indicates Cr conte		-	of 175mm indica	etes lil
and 173mm indicates Cr conte	ent conten	t h digit	of Mi stoel	mes li
and 173mm indicates Cr conte	ent content the 4t among	t h digit 17 kinds	of Mi stoel	content
and 173mm indicates Or conte	ent contentent 3 The 4th mong	t h digit 17 kinds er ele-	of Mi stoel of stool Other ele-	
and 173mm indicates Or conternal Ath digit of Sr conternal Sr steel and Mi	ent contentent 3 The 4th mong	t h digit 17 kinds er ele-	of Mi stoel	oontent
and 173mm indicates Cr contents the Ath digit of Cr contents or steel and Wi steel among 17 Cr steel Cr Winds of steel Cr 426	ent contentent 3 The 4th mong	t h digit 17 kinds er ele- s added	of Mi stoel of sponl Other ele- ment is raded	content
and 173mm indicates Cr contents to a digit of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the Cr contents of the C	ent content of the 4th among is steel contant in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in conten	t h digit 17 kinds er ele-	of Mi stoel of stool Other ele-	oontent
and 173mm indicates Cr contents to a digit of the Ath digit of the Cr contents that the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath din Ath digit of the Ath digit of the Ath digit of the Ath digit of	ent content of The 4t among to other the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of	t h digit 17 kinds er ele- s added	of Mi stoel of sponl Other ele- ment is raded	content
and 173mm indicates Cr contents to a digit of the Ath digit of the Cr contents the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digit of the Ath digi	ent content of the 4th among is steel contant in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in content in conten	t digit 17 kinds er ele- s_added	of Mid stool of stool Other ele- ment is relea	6~10 10~16
and 173mm indicates Cr contents in the Ath digit of Cr contents in the Steel and Winds of Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in the Steel Critical in th	ent content the 4t among looth content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content i	t digit 17 'cinds er ele- s added 1750 × 1751 × 1752 ×	of 34 stoel of stoel Of stoel Ottoer ele- ment is added   1755 x     1756 x     1757 x	6~10 10~16 16~25
and 173mm indicates Cr contents The Ath digit of	ent content the 4th among to oth the 4th among to oth the 4th among to oth the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th amo	t digit 17 cinds er ele- s added 1750×	of Mi stoel	6~10 10~16
and 173mm indicates Cr contents in a digit of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of	ent content the 4t among looth content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content i	t digit 17 'cinds er ele- s added 1750 × 1751 × 1752 ×	of 34 stoel of stoel Of stoel Ottoer ele- ment is added   1755 x     1756 x     1757 x	6~10 10~16 16~25
and 173mm indicates Cr contents The Ath digit of Cr contents Cr steel and Wilsten Cr steel Critical    17 × 0 ×	ent content the 4t among looth content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content i	t digit 17 'cinds er ele- s added 1750 × 1751 × 1752 × 1753 ×	of II stoel	6~10 10~16 16~25 25~40
and 173mm indicates Cr contents The Ath digit of Cr contents Cr steel and Wing steel among 17 Cr steel Crist  **Trial **	ent content the 4t among looth content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content in steel content i	t digit 17 'cinds er ele- s added 1750 × 1751 × 1752 × 1753 ×	of II stoel	6~10 10~16 16~25 25~40
and 173mm indicates Cr contents in a digit of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of the contents of	ent content of the 4th among to oth ment is steel content of the 4th among to oth ment is content of the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among the 4th among	t digit 17 'cinds er ele-s added 1750 × 1751 × 1752 × 1753 × 1754 ×	of II stoel	6~10 10~16 16~25 25~40

content

ong 17 kind		content	The 4th digit of 1'h ste	el content
other ele-	Other eleme:	nts i	emong 17 kinds	
ent is added	Hillo, H add	ed		وم ا
1740×	1745×		1760×	
1741×	1746×	6~10	1761 ×	6 <b>~</b> 10
1742×	1747×	10~16	1762×	10~16
1743 ×	1748 ×	16~25	1763×	1 16~25
1744×	1749×	>25	1764×	>25

The 4th and 5th digit of 177xx among 17 kinds of steel grade indicate: 17700-17749 are steel of which the Ni content is high. 17750-17709 are steel of which the Nn content is high.

For example, 17021.6 is Cr stainless steel in modification state and its general Cr content is 11.5-14.5% and C content is 0.15%.

#### 4) Tool steel



Imposed and allow tool steel and high speed steel; M=2m steel; and M=2m of steel;

196××	機構, Ni-V, Cr-Ni, Cr-Ni-V, Cr-Ni-Mn-V, Cr-Ni-W,
	Cr-Ni-Mo(V)
197 × ×	Cr-Si. W-Cr-Si-V, W-Cr Ni-V, W-Cr-Mo-V, W- Cr-Co-V
198××	高速切削钢。低W、高W、W-Mo,含 Co及其它元素
199××	casting tool steel

Translator's note: N = Ni steel; N = N steel; and H = high speed cutting steel; low N, high N, N-No, containing Co and other elements.

The average	C conte	ent of steal
		mbination of
	algio c	of carbon tool
<u>s</u> teel		
	2777 the	3rd and avg.
4th digit	C Att	ı digit C
(	cont.	cont.
· ·	d,	7
~	<del>. ,</del> .	
1900 ×	2.05	1915×10.80
1901 ×	0.10	1916 × (0.85
1902×	0.15	1917 × 0.90
1903×	0.20	1918 × 0.95
1904 ×	0.25	1919×11.00
1905 ×	0.30	1929 × 1.05
1906 *	0.35	1921 × 11.10
1907 ×	0.40	1922 × 11.15
1908×	0.45	1923 × 1.20
1909 ×	0.50	1924 × 11.25
1910 ×	0.55	1925 × 1.30
1911 ×	0.60	1926 × 1.35
1912 ×	0.65	1927 × 1.40
1913 ×	0.70	1928 × 1.45
1914×	0.75	1929 × 1.50

For example, 19191.3 is carbon tool steel of ordinary quality through spheroidized annealing and its average C content is 1.00%.

19421.0 is CrV alloy tool steel through no annealing and it contains C 1.10-1.25%, Cr 0.3-1.20% and V more than 0.06%.

(3) The UNI System of Italy

In the following, are the wars of indicating steel garde of UTL system:

1) General hot-rolled and cold-rolled high strength steel



The standard numbering (TNL x x x x) of marious kinds of stable 2953 — contextation stable 2054 — incremed and terrered stable

30% -- nitride steel; 3097 -- rolling bearing steel; 3543 -- hot-roll high strength steel; 3544 -- cold-roll high strength steel for welding construction use; 3545 -- spring steel; 3597 -- ordinary and fine carbon steel for modification use; 4365 - steel for rivet and screw use; 2955 -- tool steel: 4047 -- stainless steel (steel material): 3992 -heat resisting steel (steel material); 3161 -- stainless cast steel; 3159 -- heat resisting cast steel; 3608 -- thermostrength cast steel being used under 300-50000; 3072 -- seamless stael for ship use and also being used under high pressure; 1379 -- forgeable iron.

For example, Aa45UN13544 is cold-roll high strength steel for welding construction use and its tensile strength is 45-55 kg/m2.

#### 2) Construction steel

C * * fine carbon construction steel

m per 10000 of average 3 content

For example, 020 is fine carbon construction steel which contains 0 0.15-025%

> * * allow construction steel m per 10000 of average C content allow element contract: the newdentage of oversite content of principal element is multiplied as the inferrol of the claims. litare in the bin dinart

letters smadian for allow <u>eloments</u>

¬ ·· ·;

Names of elements and chemical symbols	Letters used in steel grade	Index	
(ge) Mr Cr	C	4	
) (@1) <b>% C₀</b>	к	4	
(meng) 🖷 Ma	M	4	
(nie) 🛊 Ni	N	4	
(gu <u>i</u> ) ∎ Si	s	4	
(Iti) na Ai	A .	10	
(mu) 📶 Mo	D	10	
(1711) 😘 W	w	10	
(32i) <b>t</b> Ti	Т	10	
(fan) 🙀 🔻	v	10	

For example, 25106 is linor steel and its average commont of 0 is 0.05%, In 1.5% and Cr more than 0.25%.

The ways of indicating steel grade of spring steel, rolling bearing steel, nitride steel and steel for rivet and screw use are some as those of fine carbon construction steel and alloy construction steel.

#### 3) Tool steel



For example, UC100 is carbon tool steel of which the arrange 3 content is 1.00%.



For example, USCMO20 is WCr tool stool which has an average compant of 0.0.54, U2.04 and Or more than 0.254.



For example, UK20WK1810 is high speed steel which has an average content of C 0.80%, W18% and Co 10%.

4) Stainless steel and heat resisting steel



For example, M29013 is stainless steel which contains C 0.2% and Or 137.

(°) The \$13 System of Sweden

In 313 gratem , a 1-digit number is great to indicate strel mode:

1 -- indicating carbon steel 2 -- indicating alloy steel

Figures standing for the highest alloy elements of alloy steel principal contents

0 - Si

1 -- Mn

2 -- low Or

3 -- high Sr 5 -- Mi

7 -- 7

9 - Al or V

Figures standing for different components of same steel group

steel series number

In making steel grades of SIS system, steel is classified into eight dif 'erent kinds and each kind of steel has the following steel grades:

x x x x

Kind of steel	SIS steel grade
steel for general construction	1300, 1210, 1310, 1311, 1410, 1411, 2110, 1510, 2114,
steel for mechanical manufacturing	1210, 1350, 1450, 1550, 1555, 1650, 1655
steel for pressure capacitor use	1330. 1430. 21:2. (2332. 2338. 23:0. 23:1. 2342. 23:3)*
spring steel	1770, 2090, 2230, 2231
cementation steel % nitride steel	1370, 2510, 2514, 2515, 2520, 2240, 2940, 1350, 1450
modification steel	2120, 2530, 2532, 2534, 2536, 2225, 2303, 2321, 2210, 2940, 1550, 1555, 1650, 1655
roll steel	1780, 1880, 1885, 2092, 2140, 2260, 2310, 2312, 2550, 2700, 2705, 2710, 2730, 2750, 2752, 2754, 2756, 2900
stainless steel **	2302(F+M), 2303(M), 2304(M), 2320(F), 2321(M), 2322 (F), 2323 (F+A), 2324 (F+A), 2330 (A), 2331 (A), 2332 (A), 2333 (A), 2334 (A), 2340(A), 2341(A), 2342(A), 2343(A), 2360(A), 2361(A)

^{*} Steel grade in parentheses is stainless steel.

Figures in parentheses indicate steel of different organization: Y -- martensite steel, Y -- ferritic steel, X -- custanite steel. 7 + 11 and 7 + A and so on.

2. A Comparison of China's Steel Grades With Those of Other Countries

Table 2-1-65 A Comparison of China's principal steel grades with those of other countries

ditan	60ST	SAE	Station Apr	'5yrl ami   85	Jesen	rrinco NY	German F. R. IMM	Gzoch. ČSN	Italy UNI	Swndor   515
atna c	erkon const	.mot.ton	toel		······					
0.0	08	1008	C1966	En2A/1	1 1		1 1	12010		1
0# P	081611	1006	C 1006	(	1 1					
10	10	1010		En2A	SIOC	XCIO	C10 CK10	12023	C 10	1276
18	15	1916		iin2	S 18C	XC12	C18 CK18	12023	C 18	i
10	10	1020		En2C	S 20C	C 20	C22 CK22	N 2024	C 20	1410
25	26	1028		Ene EneA	S 26C	C 28		12030		1450
10	10	1030		Ens A Ensi	S30C }	C10	}	1203)	C30	1
35	15	1935		EntA	S 36C	XC38	C35 CK15	12046		1350
49	40	1040		EnsD	S100	XC42	1	12041	C 40	188A
18	45	1045		]	S 48C	Cit	C45 CK46	12050		1850
	66	1080		Fa42	SAC	C 39	CKB	12061	Cin	
64	63	1058		Ens Ensk	S 68 C	XCSS CSS	CISA	17000		}
44	60	1000		En43D	1	C 60	Ceo CKeo	12041	C 60	1468
46	48	1048		En48B	SUPE	XCsa	CK#7	12071		į
78	73	1074		ſ	SUP3	XC79	C76 MK78	12072	CTI	
15Ma	135	1016	C 1016	1	SB46	XCIA	1 1	12020		1276
10Mn	201	1022	C 1022	EoJC	1		1			
26Mn	18 [	1026	C1016	1			1 1			1
30M n	105	1033	C 1013	EnsD EnsK			}	13341		}
35Mn	38.7	1037	C 1037				1			1
40Mm	40 [	1030	C 1039	En180						}
45Mn	иг	1048	C 1040	[		40MB	19M4			
soM _n	105	1050	C 1050	EntlA			1 1	13180		
		1	•	Enest:					·	<u> </u>

Cont.t	med
--------	-----

Chlan	hir of a	1	Station	Dielmid	Jopan	Phanco	Cornan F. R.	Czech	Tholy	ესიქი
	1202	446	AISI	115	115	יות	UIN	C5N	1111	515
Alloy 6	oral metto	1 about								
1051-12	101,1	1	ł	[Po201	1 1		10Mne		1	1
15Mn7	151'9				1		1	15220	1	
205fn2	20 [ 2	1820	C 1320	Pates	1 1		20Mns			- {
16Mny	30 7 2	1330	C 1330	En14D	1 1	\$2M8	\$0Mn8	13141		2120
16 M # 2	35 [73	1936	C1235	Ente EnteA	1 1	\$6M6	30Ma8	14240		2120
40Mn2	101:	1310	C1346	EntsA	1 1	40M6		13142		2120
15Mn2	101.3	1349	C 1345					13250		-
50M n2	50[2	1942	C1952	}		86 M 8		13160	1	1
155-M#	350°F			}			87MnSib	13740	16MS6	
47% Min	4201	}		Enes			40MnSi4	13240		
1031nV					1		20Mn V 8	13123	1	Í
25Mn2V		1	(				26MnV8			{
42 Ma 2 V	1	1 1					42Mn V7	18242		1
1864	16%	STIR			SCHI	1203	15Cr3	14120		1
10C,1	79 X	1170		15n207	SCr22	IRC \$	20Ce4			
30C+	Jo A	5136 5132		EntaA	SCea	\$1C4	14014			
69Cr	40.3	6110		Cnigl)	SCre	34C4	41Cr4	14140	40C4	2228
45Cr	19.8	8148 5147		}	SCet	41C4		14150	1	{
FOC:	40 X	\$180 \$182 }	j	En48	1		1	14159		
38C+S+	1840	1 }	{	1	}		1	[484]	}	}
10(15)	1041		İ	}	}		}		1	
18C+Mn	1188		1			SEMCS	16MnCr8	14770		
zoCeMa	INXT		1	}	}	20MCs	20MaCra	14221		}
iof +Ma	40XF		}		}				}	1
teCrMuSi	INSTEE:		1	}	}		)		}	}

Part Done	ı
-----------	---

C for	Friends GOST	Inthat SAR	Station Aisi	Die Land 85	สักกาท สร	אוע מטונייינ <u>ת</u>	Gornan F. P.	Canch.	Italy Uni	Outrains SIS
##CrMiiSi	25XFC								İ	
\$0C) MirSi	30 X F.C.	}	1	}	}				}	
16CrMnStA	15XI'CA		}		]					
10C+V	18ХФ	6117								
10CrV	20 ХФ	6120	ł	1	ĺ	}	1		1	
40CrV	40 X Ф A	6140			}					
45C+V		6148		P.n60					1	
(#CrMnT)	IAXET	}	}	}	}		1		}	}
\$0CrMnTi	BOXIT									
36( - MnT)	BAXET	j	}	j		}	}			1
INCIMATI	POXIT	}					1			
1611	1681	4017	1	1052			16Mo3	15020		1
12CrMo	12 X M			ļ		12CD4	13CrMo44	N 8120		
70Cr Mo	20 X M	4119			SCM22	1#C174	20CrMob	18124		
75CrMo	}			En20A		26CD4	25CrMo4	15130	25C'D4	1225
\$0CrMo	30 X M	4130	\		SCM2		1	18131	32(1)4	}
15CrMo	35 X M		E 4132 E 4136	Entell	SCMa	\$5CD4	34CrMn4	15340	28C1)4	2274
42CrMo		4140	2,,,,,,,	EntoA	SCM4	42CD4	42CrMn4		\$8CD4	1744
14CrMnV	<b>[</b> [			Ì		ļ	24CrMoVBB	N 5238	}	į
asCrMoV	16XMAA		Ì	, 						
40 B	{		TS14B58	İ			{			
40 D			50 11 4611			i	1			)
40MaB			TS14B3611	1			1			
45MnB			TStational			(	1			}
(OCrB	40XP	10 B 40	60 B 40							]
10CrMnB	40XPP	60 R 26	68 [] 20	}		}				ļ

Continue	tur In	Hirt land	Darlant	100	Japen	Proper	Garrann F. n.	Canali.	Italy	Synde
Makara	SUST	SAF	AISI	199	1779	NA FLAMEN	DIN	CSN	UNI	SIS
40C+MnH	JONEP .	\$0  1 40   1	60 (1 40) [	1						
18CrAIA	AOIYAE	]		}		1	1 1			1
ant a MicAlA	S SMICA			Reall	SACT	45CAD4+18	#4CrAIMob	18340	BACADT	1940
Tral armo	of Place, or	id second the	frody virts							
anstn	A01.	1060	l	Ental	1	1	) )		ļ	1
#SA(n	esr	BPD1	CIDAN	En43E	}	}	)		}	1
605+Mn	60CF	\$240	9260	EnesA	501%	f	805:Mne	13270		
60512Mn	50C2F				}	4857	\$1S17		42.51	2000
68512Mn	SECZE	9258	9216	En48	1	8654	88S17	1326)	62 S R	2010
naSi2Mii	N3 (" 2 ["	9260	9260		Stre	}	66517	12270		1
A V (Doz	SOXIDA	1	4150	En47	SUPP	LOCV4	SOC - V4	18260	601 V4	2230
110 ! 1 144	r be offing	ntant			•					
GCr4	J111X4	\$0100	C80100	1		100C3	105Cr8	14103	1	1
GCr0	IIIX+	\$1100	E81100	En31	SUI	100C5	105Cr4	14102		1
GCr#SiM#	}			]	โรยม		1		Innt Ma	}
GCris	111X 18	62100	ff \$2100	Eall	SUD	100C8	100f re	14100	1000 8	Į.
GCr1851Mn	HIXIST			Ì	l	1	100C/Mns	14200	25MC6	1
Grebon	tool pla	n1								
<b>1</b> 1	<b>, Y</b> /			}	SKT	1	1		}	1
T7A	YZA				}	*Cation	C70W1			
T P	Y #	₩1-0,8C	W1-0.4C	1	SKU	XUAS fins	CasW:	19152	UCS	1
TAA	YAA	WE O.AC Special	W) 6.4C -Special		}	XC un fine	CANWI			1740
T 10	Y 10	W1-1.0C	W1-1.0C		SKa	XC98 fine	C100W2	19193	UCIA	1840
TIPA	AfaV	Willor -Special	WI-1.0C -Special			XC98 extra-fins	C100W1	19101	UC100	1
T 12	Y 12	W1-1-2C	W1-1-2C	,	SK1 SKU2	XC120 fine	C116W2	19722	UCIII	1845
T12A	Y 12 A	W1-1.3C -Special	W1:1:1C Special			XC120 extra-fine	CIIOWI	19221	}	}

<b></b>	'amstra	Und Lord	Balon	Bug land	JAPHN	Pronce	Garman F.R.	Gzach,	! TUNTY	Stode
Outne	<b>€</b> 0€T	SAE	AISI	BS	115	NF	DIN	ĊSN	UNI	515
T 13	Y 13				5k ² SKI	IXC.160 fine	C130W2	19268		
TIBA	A13V					CISO fine		19257		1
11109	Londy Look	1 ,	l	•	'		'			•
eMn2V	1	02	ļ	I e	1	80M8	eoMnV8	19212	UnaMVII	1
4MnSi				1		SONCV12	60MnSI4			
EMnSi		·		1		•	C76W#			1
7MnSi2		S4					70S17			
451Cr	AXC					[	84SiCr8	19457		
€SiCr	•XC			1		]	90CrSi5			2083
SICE							128Cr518	19460		
4SiCrV	1XC						46SiCeV#	19457		
C/2	x	Li				)	105Crh			
Cı	X 09					100C8	106Cr4 90Cr8	19421		1
Cros	X 08				SKSA		110Cr2	15420		
0C13	• X					100C6	#6Crf			
&Ce	YIX	Wn				!	noCe1	N 2418		1
Cr12	X 13				SKDi	Z200 C 13	X210Cr13	19424	UX200C19	
Cr Ma	хг	Le				помв	148Cr6			
6CrMnMn	5X FM			1	SKT	1	40CcMnMo7	N 9526	1	1
4CrN1Ma	SXIIM	L.s			SKT4	60NCDV06-03	56NIC+MoV6	Navus	U62ND86	1880
CrW	XB	70	'	ì	SKS2	100WG18-04	110WCrV8	19710		
Cr W s	XB6			-	SKSi	120WC45-02	X130W6	19714	UXIIOWE	
CrizW		D4			SKD:		X210CrW12	N9437		2312
1C11W4V	3 X 2 B 8	1121	ļ	j	SKDs	7.30 W Coo- 03	X30WCrY9-3			
CrWMs	XHE		Ì		SKSII	10 M 8	106WCr6		UIOOWC	1
Kir W25r	aX BaC	1	ĺ	- 1	SKS41		1 1	19732	U40W20	Ì

	'aimala	finited 5	la last			Franca	German F.R	Cruch	Ibely	Lüveder
M.1nn	COST	SAR	Alsi	1.384	115	NF.	DIN	CSS	UNI	1 - SIS
BC ( W 25)	p VInc	i		1	1	40.W C20-04		18732	UNIN . O	<del></del>
40 r W 25 r	6 X 1:21.		1	ļ		inWt zn 04		(8734	16011 20	{
CrtzMaV	X 17M	1	1	1	SKOW	Z 200 C 12	A Inst a Mar V 12		1001120	2310
4C+VMoW		1	1	1	{	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	esce No Wood		1	1
3C + A1	{	1	1	1	1	[	MILIAIN	14240 [7	1	3940
BC3 A	85 ሺው 4X ው	Li	1		}	1	#DCr\s	N 9426		
C ₁ ¥	XΦ	WI LE	1	1		}	1160'09'		U100CM4	Í
W	B1	141	ł	1	SK521	100 WC 18-04	170W4		UIIAW	
W1	It z		1	j	SK57		LII-Wa I		J	1
WZC (SIV	-	1	1	ļ		}	80W1, V7		1	1
4W21 656V	1	i	}	}	}	45 W C 20 04	45.W1 . V7		1	
1W21 +5+V		1	)	ļ	)	45WCrV7	1		i	2710
311.11.121	1		,	]	}		X.mVC+V41	1974#	U2#W46	1
3 W41 12 V	lex z hodeM	1	}	]	SKD	40WCD535 12	XanWC (Vad		}	1
W+ + V	1135 W	)	)	]	SKS21	100 WC18-04	120WV4	NUTTI	ì	2706
(V 31 + V	16.3		]	<u> </u>	SKSH	120WC46 02	142WV13	19354	1	1
Ψ	Ф	Wa-1.0C-V-Faire	j	]	SKS4a		100 V 1		1	1
£Y		Wa-9.9C-V-Extra		1	SKSH	ĺ	1	(83(3	}	2900
atha ma	of the Land He	]				•				
Wat 14V2	119 :111262	Tr	1	ĺ	SKIII	270WD12	ARC1	14902	į.	1
WitzGraVaMn	Pudis 011706			İ	1	7121W V 16- W	\$12-1-4 EV4	19416	1	ļ
WING rev	Pra 1991	Ti	1		SKIII	280 W IH	(518	12214	UX751V18	1
"think man	tottor mul	bitalerten al	001.			•	' '		'	•
i SMa	'X 2M	\$150)	801 802		1	lm contro	1		ſ	į.
18'01	1 X 9 C 2		10,	Ensa	SEIII	Z 12CIDs Z 45C S10	12CrMo198	17102	W	
110 m2Ma.	4X 10C 2M				SEHI	Z15CSD10	X450.4Si98	N7116	X4ECSu	l
(135:3					41.114	7 Int. 51710	X10CrSita		ì	1
185(2	į į		442			ł	XIOCISII		ļ	1
25512	1					}	AIVI Faill			1
r264125)						1	1		1	1
HENICEWZMA	extellielizm		1	East	SEH	Z46CNWS16-14	1	N 7323	Xam'NW) at a	1
15N+16W 3 Fr	IX CLASS T		510			Z10NCS36-18	X12NiCeSisus	4.064	X250 N1488	í

	1 Marie In	់ ៧.೮.	1.	ish tand	Japan.	Pronon	Germann W.R.	Cznah.	፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲ ፲	Sunda
Ostina	<b>C</b> OST	SAE	A151	IIS	J15	NP.	DIN	CSN	UNI	515
Stateleen	aut,1 weld after	· [	_							
C, 13	(0 x 13, .+11 (08)	1 1	410	Ense A		Z6C13	X7Ceta	ĺ		
Cep	rx is General Medical Medical Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the		403	EnteA PeteAM	SUS21	Z12C13	X10Cr13			2302
īu <b>r</b>	X (TG)R(T)	51430 60444	684	En <b>co</b>	SUS24	2FC17 Z10C17 Z12C10	XaCel7			
Tear To	6 X 17 T (315848)	1 1			•		XACeTitt			
ext Moz Dr	1	[ [		1		[	XaCrMoTilf	1		1
121	X 25 GM (81) X 25 T (191428)	51445 50448	418			Z 15 C 27 Z 20 C 28	XACir2n			-3:2
C +13	2 X 13 (33K2)	51410 65410	418	linsec.	SUS:	Z 20 C 13	X20Cr13			
Cris	3X13(3K), Ж3:	61474 80478	420	EnseM	SUS23	X 10 C 13				2301
(113	4 X 18 - (2004) - 21 X 4 -	ļ		i.nsel)		Z 40C 13	X40Cr13	17029	X 10C 14	1
Ex17Ma	ì	] ]			1		X35CrMn17	<u>'</u>	1	ł
CestMoVCo	1			i	l	ł	Xant'rMaVi'alf		1	į
CapathiV		B1440 [1	44611		ļ		X90CrMnV18		ł	ļ
f, in	X 18 (# X 18. 311229)						}		ŀ	
+17Mi2	Z17H)	51431	431	f-n67	5050	Z16CN18-2	1			
225 - NOT	İ			i			1		X2nC'N1#	2121
111	X 1103812415	80410 F	416	EnseA M			1		X 18C F 13	
rj#Mo#NiN	X17AL SH4 GHHZID		207 201 204			Z16CMNt0 8 Z16CMNt8 7 Z12CMNt8-7	XaCrMnNiia			4357
	а <u>д 1#</u> }}}о со <u>д 1#</u> }}о	10304 66104	304	Fn54E	5US27	Z/C N (# 10 ZnC N (# 10 ZnC N (# 0#	XSCeN1189			
f pjaNiu	t X 1861a ic X 1861a, 1981a	30302 80302	802	EnteA	SU\$40	Z12CN18-10	X12CrNiina	!		
Cristing	A MINTO TO DERTO	30321	121	Kasau Fasac		Z101 NT18-10  Z104 NT18-08	X10CrNiTile	17748 (N.7358)	YAC NTIBLO CX LOCINTIBOFY	
esanie, Nh	0 % 183112 fi c % 18311111. 141724 [311148. 3411022	30747	347 348	EntaF	SUSAR	Z10CNNb18-10	X10C+N+Nb189	N7247		
*1#N (12Mo2 f)	N 1881 - MTT (A)7883M2F, 388 400, 3814013			Ensalt		ZEGNDT18-12	X10CcNiMaTi1810	N 73 (8 N 73 (7		
araNaraMozt wa F	!			l	i	l	XMCrNiMaCuTilaia		j	1

#### (7) The Marks of Steel Material Painting

#### Table 2-1-66 The marks of steel material painting

Brand	Mark of End Surface Painting
General carbon	steel
·	Maite + black Yellow Red Black Green Blue Red + brown (for special kind of steel, a strip of lead-white is added)
Fine carbon constru	action steel
05 - 15 20 - 25 30 - 40 45 - 65 157n - 40 7n 457n - 707n	Thite Brown + green White + blue White + brown Two white strips Three green strips
122om construc	otion oteal
Silh steel InV steel Or steel	Tallow + bluck  Ted + black  Slue + red  Slue + black  Red + purple  Green + black

Brown + black Cr'TV steel Mo steel Purnle Cotto steel Graen + murnla Original Street
Original Street
Original Street Pumple + :hiice Pumple + brown
Pumple + brown
Pumple + brown
Callow + reside Corva II an Orio 1 steel
Orio 1 steel Tolley + mad

Tellow + black

Crimii steel

Brand	Mark of End Surface Printing
3 steel	Purple + blue
CritoWV steel	Purple + black
Hig	gh speed tool steel
1120047416	Brown - strip + yellow - strip
TAROPAT	Grown - strip - blue - sprip
190m412	Broim − strin ÷
T&C⊅₹A	Grown - strip +
Cr steel	Numinum color + black
CrTi steel	Aluminum color + plack Aluminum color + yellov
Orlh steel	Aluminum color + green
Orlo stool	Numinum color + white
Crli steel	Aluminum color + red
CrlinNi steel	Aluminum color + brown
CrMiTi steel	Aluminum color + clue
CrNiNb steel	Aluminum color + blue
	Aluminum color + white + rellow
CrloTi steel	
CrNil'oTi steel	Aluminum color + red + yellow
CrNil'oTi steel CrNoV steel	Muninum color + red + rellow Muninum color + purple
CrNiNoTi steel CrNoV steel CrNoVCo steel	Aluminum color + red + rellow Aluminum color + purple Aluminum color + purple
CrNiNoTi steel CrNoV steel CrNoVCo steel CrNiNTi steel	Aluminum color + red + rellow  Murinum color + purple  Aluminum color + purple  Aluminum color + blus + white
CrNiNoTi steel CrNoV steel CrNoVCo steel	Aluminum color + red + rellow Aluminum color + purple Aluminum color + purple

### Meat resisting blisterless steel and electrothermal alloy

CrSi steel	Red + white
Orlo steel	Red + green
Or 3illo steel	Red + Slue
Or steel	Aluminum coloe + blac's
Crlb7 steel	Numinum color + purple
CrlliTi steel	Municum color + blue
CrAlSi steel	?ed + 3lnck
CrSiTi steel	Ted + rellow
OrSiNoli steel	ಿe⊰ೆ ÷ ರ್ಣಾವಿ
TrSiNoV speal	790 + mm-20
Or Al steal	Red + nlimium color
Issta iloga vital	Rad + Smorth

Brand	Mark of End Surface Painting
Crliwo steel	Red + brown
CrMiWTi steel	Aluminum color + white + red (the former is wide strip and the latter is narrow strip)

Roll Gr6	Green-strip + white-strip
Poll 0:9	Maite-strip + yellow-strip
Poll Cr9Silfn	Two green strips
Roll Crl5	One blue strip
Roll Crissiin	Green-strip + blue-strip

#### 11 Mon-ferrous Metal Materials

# (1) The Methods of Indicating the Brand of Mon-ferrous Metal and Alloy Products

According to the regulations of G3340-64, there are the methods that follow to indicate the brand of products of non-ferrous metal and its alloy:

- 1) The way of maming the brand of products of non-ferrous metal and its allow is to use the figure which stands for components or serial number after the symbolic letter to combine the name of allow cotegory or allow group.
- 2) The symbol of products of non-ferrous metal and its alloy is a combination of alphabetic letters of Chine pinyin as shown in Table 2-2-1 and Table 2-2-2, international chemical element symbols and Arabic numbers.
- 3) The general name of products of non-ferrous metal and its alloy (such as aluminum material and steel material), category, type (such as pipe, bar, wire, band and plate), and those products which require special smelting and processing methods are all indicated by using Chinese words.
- 4) The condition of products of non-ferrous metal and its alloy is indicased by using alphabetic letters of Chinese pingin as shown in Table 2-12-1.

Table 2-2-1 The commonly used names and symbols of non-ferrous metal and alloy

Serial	Name	Symhol
Tumer		
1	何(tong)	Ţ
2	据(工法)	L
3	t (mei)	M
4	# (nig)	N
F	am("ung tong)	н
3	青朝(ging ton)	Q
5	/ 青州(qing loon / / 春興(Yeni Song)	В
7	新聞(392,50%で)	

Table 2-2-2 The names and symbols of non-ferrous metal and alloy for special use

Serial '	Name	3 mbol
,	の数据(fang-xiu-lt)	LF
,	報 朝 (duan-lt)	LD
3	爱 铝 (ying-lt)	LY
4	W要名 (ciao-ring lu)	LC
	特殊铝(te-shu-lt)	LT
	无复稿(yu-yang-tang)	TU
-	真空明 (zhen-kong-tong)	ΤK
	金属物末(fin-shu-fen-no)	F
8	_ ,,	_
9	時間数(pen-lit-fen)	FLP
10	お村田舎(・パープェスロープ・パープラス)	FLU
11	细胞数(xi_ld-len)	FLX
12	名品を (X1-g1 -ing-zhi he-jin)	YG
13	的估数硬质合金(Nul- nu-tei ying-shi he-jin)	ΥT
14	等查碳化钨 (cast wa carbide)	YZ
15	1 ha iin)	Z
16	aeee(变形加工用) (mei he-jin/(for deformation)	MB
17	如料合金(han-liao he-jin)	HI
	mmaa (min_shia te-tim)	Ī
18	和末合金 (zhou-cheng he-jin)	Ch
19	和本な主(Z.iuu-u-u-u-u	NY
20	用极镍 (yong-ji nie)	14.1

Table 2-2-3 The names and symbols of non-ferrous metal product condition

Serial	Nome	Symbol
<u>unigen</u>		
<u> </u>	Amenling	(4.
2	Quenching	G
3	Juenching (natural ageing)	52
<u> </u>	Quenching (artificial areing)	03
<b>z</b>	and	· <u>*</u>
3	3/4 hard, 1/2 hard, 1/3 hard, 1/4 hard	· · · · · · · · · · · · · · · · · · ·
ž	Estrenely hard	
ç.	Mot-roll, hot extrusion	<u> </u>
g 9	Time sumface	C
ıó	Fine surface (annealing)	MC
11	Fine sunface (quenching)	~C
12	Thickened aluminium olad	
13	Not aluminium olad	В
7,	Not aliminium clad (hor-roll)	BR
7 5	Not aluminium clad (annealing)	BM
= {	Top I plat (menciling cold bradening)	877
اسان سان	Tot I plat (ruenching, Sime musice)	<b>9</b> 10
- <del>-</del> -	of the Mark of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	10 9 8 TTC
Ŧo.	granalia, jaron el ajata, dila embas al	•
· <del>-</del>	3024 Service from	<b>C</b> 7770

5) The method of indicating the brand of products of non-ferrous metal and alloy (Table 2-2-4).

Table 2-2-4 Methods of indicating the brand of non-ferrous metal and alloy products

Mame of	17707	Brand	Method of Indication
Product from	copper	Cu-1, Cu-2	Products from pure metal smelting are indicated by using a combination of inter-
pure	alumi- nium	Al-1, Al-02	national chemical symbols and the serial
metal amel:- ing	lend	Pb-1, Pb-2	number. The chemical symbol and serial number are connected by a dash. The downs of numity of industry pure metal decreases as the serial number increases. But the degree of high purity metal elevates as the serial number increases and the serial number is prefixed with an "O".
Product	cophen	T1. T2	Products of pure metal processing of
from	alumi-	L1, L2	copper, aluminium, magnesium and nickel are indicated by using alphabetic letters of
pure repal	nickel	N2. N4	Chinese pinyin plus serial number. Products of
proces-	. zinc	Z::1. Z::2	other pure metal processing are indicated by using international chemical symbols and
sing	lead	Pb1. Pb2	serial number.
Piro filiati from allor		H62, HP559-1 HSa62-1, HMn57-3-1	The general method of indicating brass is to us letter "M" of Chinose pinrin plus the content of basis element copper. For brass of more than three elements, the indication is made of letter """ plus the second additional element symbol and component finume except for sinc
nroces- sing	bronze	QSn4-3, QAl10+3 1.5 QSn1-3	The indication of bronze is made of a letter "q" of Chinese pinyin plus the first additional element symbol and component firms except for basis element Cu.
	white	B16, BMa3-12	The indication of white brass is made of a letter "B" of Chinese pingin and the content
	brass		of Mi. For white brash of more than three elements, the indication is made of a letter "T" plus the second principal additional element symbol and figure for cours and entering for basis element O1.

מקודובביינט מיי סנ

Continu			
Name of		Brand	Method of Indication
Product from	nickel	NCr9. NMa2-2-1	The indication of mickel allow is to use letter """ of Chikese pinyin plus the first principal additional element symbol and figure for component except for basis element nickel.
proces-	Al alloy	LY1, LF2 MB1, MB2	The indication of aluminium alloy and magnesium alloy is to use letters of Chinese pintin and serial number.
	In alloy In alloy Intermediate alloy	PbSb2 ZnAl10-2 AgCu4 AuNi7.5-1.5 CuSi25	The indication of alloy of noble metal and rare metal which are not simplified by letters of Chinese pinnin, such as lawf, the and mine, is to use basis element symbol plus the first principal additional element symbol and the figure for components except for basis element.
Allor for special use	Bearing alloy *Dralloy Palloy Velding raterial	ChSnSb11-6 ChPbSb0.75 YG6. YT5-7 [PbSb14-4 HICuZn64 HIAgCu20-15	The indication of allow for special use which is symbolized by letters of Chinase mingrin (not including east allow) is to use the letters of Chinese pinyin plus two basis elements symbols and the figures for components except for the first basis element. But for hard metal alloy, it is to use letters of Chinese pinyin plus the symbol of principal element component which determines characteristics of allow.
Symbol indian produc condin	oin; de	LF1-M QBe2-Y	The indication of product antition or symbols is so use lawders of Chinese minute sufficient to the symbol which straid for product and there is a fact between the symbol for product product one the Chinese piamin lewer.

^{*} Translator's note: M' alloy = hard metal alloy: P alloy = print alloy

(2) The Brand, Composition, Property and Uses of Mon-forrous Motal and Alloy Products

## 1. Products from pure cooper processing (YBM5-65)

Table 2-2-5 The chemical composition and uses of products from pure copper processing

												'			_	
grants		19			mar i	1207	Ç,	1 3 (1)	1616	iil		(36)				
	Brand	14	(f) i							יוניייי						Samples of Vises
	<u> </u>		-1	11	3	A:	57,	1	Ph	hi	<u> </u>	l p	Zh	0	1,1	
Puge	y w	۲١	00 01	0 40.	9.00.	0.007	B. 0#	0,00	0.464	0,000	0,00	0,661	0.60%	0.02	0.08	top electricity conduction and along or high munity
	: ૫ 🙀	1,3	29.80	0,007	0,002	0.002	9,00%	0 1100	a per	0.90:	0.01:		9,005	11,06	0.1	Conner enterfal for cos-
Server	" 9 <b>9</b> 4	rı -	99,70	9, 10;	8,000	9.01	0.05	0.7	0.01	0.05	v. 01	-		0.1	0.3	General conson subortal
	[76 94 <del>194</del>	r,	31. Pt	4,001	1 01	4.05	a.08	9,2	0.08	0.06	1.01			0.1	0.5	General contact antestal.
Deron!	<b>♥</b> \.₩₩	1 11371 1		9,007	9,007	0 1107	n , 406	4,002	0,000	4,08	0.000	0,403	0,003	0,603	0.01	The vections artificial ass
* "!	. 9 E. M. 81	ruz		0.1117	0,007	0 //02	4.006	0.907	0.196	0.002	0.000	0.001	0.003	0,000	0.08	The vermical exclusion are
- cote e	# T X H	FIGE		4, 90 1	7 (14	9,85	9,06	1.7	0.01	0.00	0.01	-		0,61	0,10	Ann part they one
	LURU	LUM		9 402	1.007	1.002	9.05	6.00%	0 1107	0.002	0,005	0.003	0.007	-	0.30	for vectors articles une

The slab of a reas: * FT - balsh exempt of Coretan marker, ** 1. Tong Na.1; 2. Tong Na.2;

7. Co. Jo.7; A. Tong Na.4. *** 1. Joan Black cores Na.1; 2. Joan Black cores No.2; ploupherus leart-Greek cores; can press decided cores.

#### 2. Cast Brass

Table 2-2-6 The Chemical composition and uses of cast brass

number Serial	Enond	3-mha]		Che	mica	l Con	mos:	Ltior	1 (3)			Samples of Use	The Corresponding
oor ial	Erand	Symbol	Cu	Ρħ	AI.	Mn	Fe	Si	Sn	Zn	1	belipies of ood	Brand
-	ł	ZHPb 59-1	57~61	0.8 ~1.9						Ss		Car brake valve, bear- ing case.	лсья-іл
2	等查如贵妇 67-2-5 突走妇的妇	ZHA1 67-2.5	n6∼48		2~3					Ss	3.4	Anti-corrosion part in sea water; anti-abrasion part in mechanical work.	ЛА67-2.5
_	56-5-3-2 劳劢铝黄铜	ZHA1 66-6-3-2	54~68		6~7	1.5 ~2.5	2~4			Ss	2.1	Temale screw of pres- cure screw; heavy worm,	
•	58-2-2 铸造锰货钢	ZHMn 58-2-2	57 ~80	1.2 ~2.5		1.3 ~2.5			· •	   Ss 	2.5	high land formule screw keeping and	AMaC58-2-2
5	58 2-2-2 19 16 16 18 19	Z11Ma 58-2-2-2	56~60	0.5 ~2.5		1.5			1.5   ~2.5	l : Sa	1.2	nti-abracion article   Corr (of preat   otrougth)	-TMnOC. -18-2-2-2

Translator's note: * FT = total amount of foreign matter no more than;

** Ss = surplus; *** 1. gast lead brace, 2. cast
aluminium brace, 3. cast aluminium brace, 4. cast
manganese brace and 5. cast can make brace.

Frand	Symbol		Cher	nical	. Com	posi	tion	(%)	·		Samples of Use	The corre
		Ou	Pb	AT	151	Гe	Si	Sn	Zn	FT	Julian of the second	Russian brand
### 8   55-3-1 勞造性支援	ZHMn 55-3-1	53~58			3~4	0.5			** Ss	2.0	Heavy type parts which can work under 300°C; spare parts of which the shape is not complicated, for important use.	С ЛМпЖ(55-3-1
60-1-1 传查饮度明	ZHFe 60-1-1	58~61		0.75	0.1 ~0.6	0.75		0.2	Ss	0.7	Liner and bearing (anti- corrosion)	Л. АЭК 60-1-15
80-3 谷选硅效钢	ZHSi 80-3	79~81					2.5	;	Ss	2.8	Stay alloy (good mobility and abrasive resistance)	ЛК80-3Л
9 80-3-3 传电磁度侧	ZHSi 80-3-3	79~81	2~4				2.5	<b>i</b>	Ss	2.0	Bearing, liner substitute for phosphorus, tin and brass (abrasive resistance)	ЛКС80-3-8

Translator's note: *FT = total amount of foreign matter no more than; ** Ss = surplus; *** 5. cast manganese brass, 7. cast iron brass, 3. cast silicon brass and 9. cast silicon brass.

Table 2-2-7 The mechanical properties of cast brass

		Specific	Stretch	Tribensign
Symbol	Casting Method	1	strongth	rate (7)
		Gravity	(Mg/mm~) Noless than	No less than
	1 3 13 1	į	1	•
ZHA167-2.5	hard mold casting sand mold casting	8.5	40	15
	Seria mora casoning		30	12
ZHPb59-1	centrifugal casting	8.5	20	30
ZHA166-6-3-2	hard mold casting	8.5	65	7
	sand mold casting		<b>60</b>	7
	centrifugal casting	) * 1	70	7
ZHMn58-2-2	hard mold casting	8.5	35	8
	sand mold casting		25	: <b>U</b>
			1	
ZHMn58-2-2-2	hard mold casting	, 8.5	30 .	4
	sand mold casting		30	6
ZHMn55-3-1	hard mold casting	8.5	50	10
	sand mold casting		45	15
			1	
ZH A 160-1-1	hard mold easting sand mold easting	8.5	42	18
	Janu noun cas sang	ĺ	38	20
ZHS180-3	hard moll easting	8.7	30	15
	sand mold casting		25	10
ZHS:80-3-3	hard mold casting	8.6	30	15
	sand mold casting	1	25	7

# 3. Products From Brass Processing (VBLA6-71)

Table 2-2-3 The chemical composition and uses of products from brass processing (1)

Chair	7		Che		il Co				(7)		
Group	Brand	Symbol	(h)	Pb:				+	i Si	i	Zn
	96 黄 駅(Tuang tong)	H 96	95.0 ~97.0	- ;	;	_	-	_	! <del>-</del>	-	Ss
	(ornes)  90 黄铜(Juang tong)	1490	88.0 ~91.0	-	- :	_	-	_	· _	_	, 3s
Ordi-	85 黄铜(Tuang tong)	H 85	84.0 ~86.0	- :	-	_	-	_	_	-	. Ss
2022	80 数据("mann tonn)	}:*n	79.0 ~81.0	- ;	-		- !	-	· <del>-</del>	<u> </u>	38
	75 黄 新(Tuang tong)	H75	74.0 ~76.0			-	- :	-	_	-	Ss
	70 黄铜(Tuang tong)	H70	69.0 ~72.0	-	-	_ :	- ,	-	_	-	, Sε
	68 黄铜(Tuang tong)	Hax	67.0 ~70.0	-	-	-		-	_	· -	: Ss
	65 黄铜(Tiang tong)	H 65	64.0	- :			-	-		_	Ss
_	の質明(Huang tong)	1163	62.0 ~65.0	- 1	- !	_ !	-	-	-	· -	3s
Brass	62 黄铜(Huang tong)	H 62	60.5 ~63.5	-	-	-	-	-	-	-	Ss
	se 數据(Fuang tong)	H 59	57.0 ~60.0	_	_	- !	-	_	_	i –	_ Ss
Gien	74-3   伯黄朝(Qian huang tong)	HP5 74-3	72.0 2 ~75.0		- ;	-	-	- ;	_	_	3s
(Pb)	64-2 (Pb brass) 報費網(Gian huang tong)	HPb 64-2	63.0 1 ~66.0		-	_	-	_	_	-	33
	63-0.1     <b>報報(</b> <u>Gian</u>		61.5 0 -63.5		- !	- !	-	-	-	-	Sa
	63-3 報貨幣 ( lian luan j tona)		62.0 2 -65.0		- 1	-	-	-	-	-	3ε
Binss	60-1   新世編 ( Jian huan tong)	HPb 60-1	59.0 0 -61.0		-	-	-	-	-	-	<b>3</b> 3
	ieo-3   · <b>伯貴根 (Qia</b> n   huan    tong)		59.0 2 ~61.0		-	-	<u> </u>	-	-	-	3s
	69-1 報責集(Qian huang tong)		57.0 0 ~60.0		-	- !	-	-	-	_	Sæ
			57.0 0 -61.0		-	-	-	- !	-	- ¦	<b>3</b> s

Translator's note: 3s = sumplus

Table 2-2-3 The chemical composition and uses of products from brass processing (2)

emi:			oosit :. no		~~`	<u>()</u> ( ) (3)			<del></del>	Samples of Tise	The corresponding Runsien
Po			] 3i	P	-		<del>~~~</del>	M	TA	†	orand
0.03	0.10	0.005	0.002	0.01	-	<u> </u>	-	-	0.2	plate, band, pipe, bur	796
0.03	G 10	0.005	0.002	0.01	-	-	-	-	0.3	bar, wire,	790
0.03	0.10	0.005	0.002	0.01	-	_	-	-	0.3	iplate, band inime	Лээ
0.03	0.10	0.005	0.002	0.01		  -	-	· -	0. s	hlate, band, bar, wire	A 80
6.03	0.20	0.005	0.002	-	<u> </u>	! !	<u>'</u> -		0.3		J~5
0.03	0.10	0.005	0.002	0.01	-	_	-	ļ	0.3	rdra place, bad	Л70
0.03	0.10	0.005	0.002	0.01	-	-	-	-	9.3	blate, brad. pipe, bar, wire	.T 48
0.63	0.10	0.005	0.002	0.01	[ <del>-</del>	! —	: -	!	0.3	plate, band,	.7 65
0.2	0.2	0.01	-	_	0.1	_	0.1	0.1	1.2	wire Band	J 63
0.98	0.15	0.005	0.002	0.01	-	-	-	-		plate, band, pipe, bar, wire	Л 62
0.5	0.3	0.01	0.003	0.01	<u> </u>	0.01	0.20	<b> </b> _		plate, band,	J1 50
-	0.13	0.005	0.002	0.01	-	-	_	_	0.25	plate, band	ЛС 74-3
- ]	0.10	0.005	0.002	0.01	-	-	-	-	0.3	plate, band	<b>ЛС 64-2</b>
-	0.13	0.00é	0.002	0.01	-	- ;	_	_	0.š	nipe, bar	_
-	0.10	0.005	0.002	0.01	_	-	_ {	1.5	0.75	•	ЛС 63-3
-	0.15	0.005	0.002	0.01	-	-	_	_	0.30	rilana, brad, rdina	ЛС 60-1
-	0.10	0.005	0.002	0.01	-	- :	-	0.50	0.75	nlade, brod, wire	-
-	0.5	0.010	0.003	0.02	_	- !	-	-	0.75	plate, band, pipe, bar, wire	IIC 5 <b>5-1</b>
-	0.5	0.01	0.003	0.02	-	-	-	-	1.5	plate, bar, wire	ЛС 59-1А

Translator's note: TA = total arount

Cont	ciaued (1)		·							<del></del>	
Trom	Brand	Symbol :		<u>.</u>	<u> Ster</u> rinc	<u>rionl</u> Logi		nosi. pone.			·
-			Cu	Pb	13::	79		17	31	1	<u> Zia</u>
Xi	'90-1 : 傷黄綱(xi huang tong)		88.0 ~91.0	_	0.25 ~0.7	1 _	-	- :	_	-	3s
(Sn)	170-1 Sn orass (編集)(xi huang tong)		59.0 ~71.0	~	1.0 ~1.	_	_	-	-	_	Ss
Erass	mam(in nuclis cons)	62-1	61.0 -63.0	-	0.7 ~1.	-	_	_	_	-	Ss
	- 傷身俱(wi huang tong)		39.0 ~61.0	_	1.0		-	-	-	· -	3s
	報酬(1世 huang tong)	HA1 77-2	76.5 ~79.0		! -	-	- ,	1.75 ~2.50		· –	<b>3</b> s
[3] (3])	和-2A Al brass 情報家(2性 brain, tong)	77-2A	76.0 ~79.0	-	-	120.03	· •~0.06	1.8 ~2.6	Por co	n.01°	]s
ار غيث ا	17-28 報政制(1性 hunng tong)	77-2B	76.0 ~79.0	_	-	Sa.02			⊝ <b>o</b> .co	0.015	1
Srass	10-1.5   当所# (1性 huang tong)   67-2.5	70-1.5	~71.0	-	-	.1.≊0.03	-0.07	1.0	_	-	3s 
	相類像(Id huang tong)	67-2.5	66.0 ~68.0	-	-	0.75		2.0 ~3.0	-	-	Ss
	: 個黄銅(Lu huang 50mg/ )	60-1-1	~61.0	-	_	~1.50	~0.€	~1.50 2.50	_	2.0	3s
	報報 (lu huang tong)	59-3-2	~60.0	_	-	2.0	-	~3.50	- i	~3.	Ss C
	ERR(lu humng tong)	66-6-3-2			<del>  -</del>		~2.5				¦Sε <del>√</del>
eng	58-2   種類物(meng huang tong)   57-3-1   In brass	58-2	57.0 ~60.0	-	-	-	1.0 ~2.0	-	-	-	Ss
Brass	: 锰黄铜(meng hung tong)	-	55.0 ~58.5	-	-	-	~3.5	0.5 ~1.5	! — i	-	Ss
119	s5-3-1 · 锰黄铜(meng luang tong)		53.0 ~58.0	<u> </u>	<del>-</del>	~1.5	3.0 ~4.0	·	! <b>-</b>	-	133
(79)	59-1-1 鉄黄樹(tie huser tong) 58-1-1 , Te brass	59-1-1	57.0 -60.0		$[0.3]{-0}$ .	$\frac{70.6}{7}$ $\sim 1.2$	~0.8	0.1   ~9.4	-	<del>-</del>	] 3a   -
Trace Trace	# <b>考</b> 每 [ 7] 2 [ 10 10 10 10 10 10 10 10 10 10 10 10 10		56.0 ~58.0		3 -	n.7 ~!.3		<u> </u>	(2.5	· <del>-</del>	3s 3s
(3i) Ornas	能商用(gui huang tonn)	HSi	63.5	2.5		: _	- -	: -	~4.0	. — . —	35
1198	ume (eni hueng tong)	43-1.5-3	~ 66.5	~3.	5:					<del></del> -	<del></del>
( ±)	nie want tong)		64.0 ∼67.0	-	-	-	. –	! -	! -	5.0   <b>~</b> 6.:	Sŝ
Brass		<del></del>									

Inn slatonia noto: Ss = sumplus

Continued (2)

		~				<u>tion</u>		<u>زز</u>		The correspon-
<u>ੋਂ ਹੁਹਾ ਹੈ</u> ਨਾਰ	in		5∸ e <u>r</u> ,			than IsSn		1071	Samples of Use	ding Russian
-	<del></del>		0.002		_	 		· e	plate, band	AO 90-1
0.07	9.16	0.905	0.602	0.01	: <u>-</u> i		_	0.3	pipe	JO 70-1
0.10	0.10	0.005	0.002	6 P1	_		_	0.3	plate, band bar, wire	ЛО 62-1
0.3	9.10	0.005	0.002					1.0	wire	JIO 60-1
0.07	0.10	0.005	0.002	6 m;	_			0.3	nipe, mira	J A77-2
0.05	0.06	0.95	0.002	0.02	- '	- ' -	~	5.0	nipe	<u> </u>
0.05			0.002			:		5.5	pipe	_
0.05		1	0.062		!		~	(.3	pipe	<u> </u>
0.5		1	!		· i	- ^.2		'	plate, bar	_
0 40			0.902		,	:		0.7	plate, bar	ЛАЖ60 1 1
).10	0.50	9.005	0.003	0.01	<b>-</b> ;	<b>-</b> :	-	0.9	nine	ЛАН 59-0
).5		0.05	<u> </u>	0.02		- 0.2		1.5	plate, bar	
6.1	1.0	0.005	0.002	0.01	- ;	-   -	~ :	1.2	plate, band, Car, wire	ЛМп 58-2
0.2	1.0	0.005	0.002	0 01	_ :	- : -	-	1.3	plate, bar	ЛМпА 57-3-1
0.5	_	0.05	-	(.02		- 0.2	0.1	1.5	plate, bar	
	_	0.01	0.103	ŭ 61		-!-		0.28	bar, plate	ЛЖМи 59-1-1
_ !		0.01	0.003	6 05	- 1			0.5		ЛЖС 58-1-1
		1	1			- 0.2		!	bar 1-to mine	<del>-</del>
	0 15	9.005	0.002	0.01	·-o.	1 0 200		r.s	plate, pipe	
. 23	0.15	0.005	0.002	0.01	- }	_   _	~ !	0.3	plate, bang, wire	_

Translator's note: *Ti = total amount

## A. Cast Bronze

Table 2-2-9 The chemical composition and uses of cost bronze

3025-1	Brand	Symbol	- sn	7n	Chomica In	1.  - 1.1	Compar	ition P		M proje	Semilan of Unas	,Correction= 
1	19 x 19 3-8-8 99 /	70'110-6-6	1.0~6.0	4.0~6.0	4.0~0.0			1	3 ii 3a	1.3	Alumniyo	to Otto sa
2	6-6-3岭北海市湖	ZQSn6-6-3	5.0~7.0	5.0~7.0	2.0~4.0				Sn	1.3	rentalemen	op eittenns
	4-4-17转选链背到	7Q5n4-4-17	3.5~6.6	2.0~4.0	14.0~20.0				Set	1.3	north.	Ep. OHC4 4-17
4	3.5-6-6-6-6-10 場 中間	7Q5n3.5-4-4	3.0~4.5	5.0-7.0	4.0~4.0				Зя	1,3	Tractor bort	lip. Olde 1.6-0-6
3	7-1.5-1.5的金粉幣幣	7Q417-1.8-1.8			1.0~1.8	!   <b>8</b> • #	1.0~1.6		Sn	1.6	Bouring, ax tolox	#ip A2KC 7:1,5:1,4
٤	30分页 67 年79	ZQI'b30			27~33	; 			Sa	0.9	[96] 11-cm	Eq. U36
,	10-196日进行进	705m10-1	9~11			!		0.A~1.2	Sø	0.75	ittely amounted	Tip Orbins
,	1			1			•		•		nrongure hearing	

re contained note: * AT or fored as mathem taked amount no take them; ** Sa o according and *** 1. coat the broade, 2. coat the broade, 3. coat the broade, 4. coat the twende, 5. coat absolute broade, 6. coat tend to be, 7. coat the broade.

## 5. Products From Bronze Processing (VBL/7-71)

Table 2-2-10 The chemical composition and uses of products from bronze processing (1)

Group	Brand	Symbol						tion nonen	( <u>~;)</u> .ts	
	_		Al	7	Fe	M		Sn	P:	Cu
4-	3傷會用 (xi ging tong)	QSn4-3	_	Zn 2.7	<b>7∼3</b> .3	_	-	3.5 ~4.5	-	Sa
(2-)	4-2.5 Sn Bronze 福青铜(xi ging tong)	QSn 4-4-2.5	_	Zn 3.0	~5.0	Pb.1.	5~3.5	3.0 ~5.0	-	Ss
(311) :	4-4編書家 (元章 ((直元) 5020g)	Q5n4-4-4	-	En 3.0	~5.0	 Po 3.:	5~4.ò	3.0	-	3s
45	5-0.7 傷音劇 (mi ging tong)	QSn 6.5-0.1	-	-	-	-	-	7.0	.1 1 -0 25	Ss
6.	5-0.4 場市塚(xi ging tong)	QSn 6.5-0.4	-	-	-	-	-	6.0	.3 ~0.4	3s
7-	-0.2協會版(xi ging tong)	QSn7-0.2	_	-	-	-	-	6.0 0	.1 -0.25	<b>S</b> s
4-	-0.3傷有病(wi qing tong)	Q5r4-0.3	_	-	-	-	_	3.5 0	.2 ~0.3	Ss
	紹音場 (lt ging tong) Al bronze	QA15	4.0 ~6.0	-	-	-	_	-	-	Ss
Lti (AI) . 7	#IT CHOINZE	QA17	6.0 ~8.	_	-	-	_	-	-	Ss
1	-2旬春海 (lit ging tong)	Q.A19-2	! 8.7 ~10.0	,   –	: -	1.5 1 ~2.5	! -	!	~	Ss
9	Hat ping tong)	QA19-4	8.0 ∼10.(	-	2.0	-	<u> </u>			Ss
Ironze	0-3-1.5 報費網(工程 ging tont)	QA1 10-3-1.5	8.5 ~10.0	· –	2.0 ~4.0	1.0 ~2.0	, <u> </u>		- [	Ss
:	· 和有的(lt ging tong)	QA110-4-4	9.5 ~11.6	. <u>.</u>	3.5 ~5.5		3.5 ~5.	5 -	- ;	3s
j	1-6-6 和書館(14 ging tont)	!  Q.\111-6-0	10.0 ~11.5	, -	5.U ∼4.5	_	5.0 ~6.	- i		Ss

Translator's note: Ss = surrlus

Table 2-2-10 The chemical composition and uses of products from bronze processing (2)

+							or								Samples of Uses
As	Sõ	Sn	Si	끄	Pb	P	S	Fe.	Зi	Zn	\'i	'n	g	7	
-	0.002	   	0.062	u.0C2	0.02	0.02	_	10.05	0.002	_	-	-	. <del></del>	0.2	place, band, ba
-	0.002	-	-	0.002	-	0.03	_	0.05	ა.002	-	-	_	-	0.2	plate, hand
¦ -	J.002	-		0.002	_	0.03	_	0.05	0.002	_	-	_	-	0.2	plote, bond
-	0.002	-	0.002	0.002	0.02	-	_	0.02	0.602	_	_	-	-	0.1	- plate, band, ba - wire
-	0.002	-	J.002	0.002	0.02	-	-	0.02	ù.002	_	i —	<u>-</u>	_	0.1	plate, band, ba
-	0.01	-	0.02	0.01	0.02	-	0.008	0.03	0.002	輕 +	值0.2	<u> </u> _	–	0.3	wire rlate, brad, bra wire
-	0.002	-	0.002	0.002	0.02	-	_	0.02	0.002	_	-	-	_	0.1	pipe
0.01	0.002	0.1	0.1	-	0.03	0.01	-	0.5	-	0.5	0.5	0.5	_	1.6	plate, brad, vi
0.01	0.002	G.1	0.1	_	0.03	0.01	_	0.5	_	0.5	0.5	0.5	_	1.6	plate, band
t	!	1	Ì				}	ļ				l I	•	; ;	plate, brad, pip
0.0.	0.002	0.1	0.1	_	0.03	0.01	-	0.5	- !	1.0	0.5	: <del>-</del>	· —	1.7	br, wire
9.5.	0.002	0.1	0.1		0.01	0.01	· -	-	- 1	1.0	0.5	0.5	<u> </u>	1.7	pipe, bar
0.3,	0.002	0.1	0.1	-	0.93	0.01	· -	-	_	0.5	0.5	· -	-	0.75	pipe, bar
0.0:	0.002	10 1	0.1	-	0.02	0.01	_	-	_	0.3	-	0.3	_	0.5	pipe, krr
).e.	0.05	0.2	0.2	; <del>-</del>	0.05	0.1	! <del>-</del>	_	-	6.5	_	0.5	١	1.51	bar

Translator's tota: *T1 = total emount

Continue	3 (1)						
_	:					position (1)	
gwarto	i Brand		Simbol	Pri	ncirol (	Componenta	
				JĽ Be	7e l'a	Hi Sn P	Ou
Pi (Be)	2 被百制	(Pi qing tong) Be bronze	QBe2	- 1.9	-   -	0.2	Sc
(	2.15飯青铜(	(Pi ging tong)	Q!Je2.15	$-\frac{2.0}{\sim 2.3}$	-   -	-   -   -	<b>5</b> 0
Emonge	1.7数音调 (	(Pi ming tong)	QBe1.7	- 1.60 ~1.85		0.20 Ti ~0.40 0.10~0.25	<b>3</b> ::
^- <u>1</u> :	1.9籔青锅 (	Pi ging tong)	Q5e1.9	- 11.85 - 2.16		6.20 -0.41 0.10-6.25	3.1
(35)	1-3硅背錫 (	(min ging home)	QSi1-3		- 0.1	2.4 3:0.6~1.1	٠. ن
Oronze	3-1硅青铜 (	(Sti bronze	QSi3-1	- -	- 1.0 ~1.5	- S.2.75~3.5	3-
Meng (Mm)	1.5锰青铝	(Yeng ging tong)	QMn1.5	; - i -	- 1.20 - 1.55	-   -   -	3-
Emonde	5 锰青铜	lin bronze (lieng ging tong)	QMn5	-   -	- 4.5 ~5.5	-   -	Ss
Trouse Od	1.0俗背铜 (	(Re "Ca" ming tong)	QCd1.0	ित 0.9~1.2		[ -	<b>3</b> s
Le (Cr)	9.5終青铜	(Le ging tong)	QCr0.5	PT 0.5~1.0			37
Pronse	0.5-0.2-0.1 络青锡	Or bronze (Le ding tong)	QCr 0.5-0.2-0.	0.1	2:0.4~1.0	0.1~0.25 -	3-
3ao (Zr)	0.2售費制	(Pro ging tong) In bronze	QZr0.2	度下0.15~0.25	- -		38
•	0.4結會到	Gao qing bong)	QZro.4	Z=0.30~0.50	-  -		3s

Imposlado da modo: Sa = aumilua

٦.	'n÷	•	נומ	a á	1 (	2	١
ت.	n	7	7111	90	٠ ١		i

Foreign matter, no more than					Shuples of Tsea										
.\s	   3b	Sn	3 <b>i</b>	17	i Pb	P		Те	Эi	Zn	<u>i</u>	Mn	Mg	1 '	
-	-	i	1	ì	0.00	Ì		ì		_	-	-		0.5	plate, oncoor loor, wire
-	-	-	0.15	0.1	0.005	0.02	-	0.4	0.002	-	0.5	-	0.05	1.2	bar, vira
-	<u>.</u>	-	0.15	0.15	0.00	- -	-	0.17	_	-	! <del></del>	_	-	0.	plobe, boot, otre
-	_	-	0.15	0.15	0.005	i –	<u> </u>	0.15	_	_	_	-	_	0.3	plate, band, wire
0.002	Ì	1	1	1	0.15	i .		1		1	Ì	-	:	0.4	bar mlote, bord, bar, wire
0.1	0.005	0.05	0.1	0.07	0.01	-	0.01	0.1	0.002	1+	ე _ლ 0.2	<u> </u>	_	0.3	plave, band
u.Çı	0.002	0.1	0.1	-	0.03	0.01	-	0.35	-	0.4	0.5	_	-	0.9	place, band
	-	-	-	<u> </u>	-	-	-	-	_	<u> </u>	-	-	<u> </u>	-	plate, bar, wire
	-	-	-	-	-	-	_	-	_	-	-	i –	-	0.5	plate, bar, wire
-	_	-	-	-	-	-	_	-		_	· -	-	-	0.5	bn2
	ic.005	0.05	; <b>-</b>	-	0.01	_	0.01	0.05	0.002		0.2	-	-	0.5	bar
_	10 . 205	0.05	! _	_	0.01	_	0.01	0.05	0.002	-	0.2	_	_	0.5	io n <u>ir</u>

In male trols cope: *11 = tepal amount

# (. Cast Aluminium Alloy (YB143-65)

Table 2-2-11 The chemical composition of east aluminium alloy

	1.33			Chemic	al Co	mositi	 lon	(~;	<u> </u>			Serres-
Ormid	Symbo.	Pri	ncipal		mpone			Forei	şn ma	Jer,≒	o nore	ponding ponding
44	1	Si	Ju	∷'g	] n	774	17	Te 112	Zn   Hi	7±  3:	: 35,5n	I i Brand
铸造铝合金 1	ZLı	_	9.0	_	_			0.3 0.5	0.50.5		1.76.2	3.CA.712
<b>前遺铝合金2</b>	ZL2	_	4.0~5.0	_	-	<u> </u>	Ss	0.5.0.1	0.2		1 0 03	2.5 A.77
勞造铝合金 3	ZL3	5.0~6.5	6.00 ~7.0	0.3~0.5	-	i -	Ss.	0.5 0.5	0.5 0.3	-  -		1.5 АЛ10В
铸造铝合金 4		_	10 00	1.25~1.75		1.75~2.25	์ เรีย	0.8	0.3 -	-  -	0.7 -	1.5 АЛ1
传递机合金 5	1		_	9.5~11.5		_		0.3 0.1		0.07 0.3		1. 17.Л.Л8
等遊倡合金 6 等遊組合金 7	i i	0.8~1.3	ł i	4.5~5.5	0.1-0.4	-		0.3		- 0.1 - 0.8	1 1 1	0.€¦АЛ13
等造铝合金 8	i	11.0~13.0	<b>!</b>	0.4~1.0	0.5~0.3	_	1	0.5 0.5	1 1		-  -	2.2 \\JI2 0.8 \A\\328\(\)
传造铝合金 9	i	11.0~13.0	1 !		_			. 6 0.1	1 1	0.2   -		1.6 A 32 ( T)
铸造铝合金10	ZLio	8.5~10.5	-	0.17~0.3	0.25 ~0.5	_	1	0.5 -	!	0.15 0.3	-0.01	1.1[АЛ4
两进铝合金[]	ZL11	6.5~8.0	-	0.2~0.4		. –	¦S₃	0.5 0.5	0.3 -	0.2		1.0 AJI9
转遣铝合金!2	ZL12	4.5~6.0	2.0~3.0	_	-	_	53	0.7 0.3	0.3	-1 -	- 0.1	T.8/A.76
铸造铝合金13	ZL13	4.5~5.5	1.0~1.5	0.35~0.6	_	_	່3≘ຸ	0.5 0.5	0	0.15 -	1 1 1	1.0 1.75
符禮間合金14	ZL14	4.0~6.0	2.9~3.5	0.2~0.8		ı		0.6	0.3 -	-  -	-0.01	1.2 A.73B
節蓋铝合金15	ZL15	6.0~8.0	-	-	_	.Zn 11.0∼14.0	Ss	0.8 0.5		- 0.6	-	1.8 ≈ 1.711
务建划合金16	ZL16	9.0~11.0	3.0~4.0				Ss	0.3 0.5	0.80.5	0.2   -		

Translatur's note: "TA = total amount; ** from 1 through 16, the Crimese means cast aluminium alloy.

Table 2-2-12 The mechanical properties and uses of cast aluminium alloy

		. Yechan	<u>ionl Por</u>	merhiss_	
Brong	Symbol	Tensile strength	mote	nBrinell hardness	Samples of Tses
-4		06	Σ 13G	Time ss	
按捺		(':g/mm ² )	(্ৰ) less ths	<u> </u>	
	71.	11			0-24-2
铸造铝合金1	i ZLI	11	-	50	Cylinder cap casting piece of air conling low power engine
傳造铝合金 2	ZL2	20	3	60	Caulingant parts of rearm lo found
<b>资选铝合金3</b>	Z1_3	16	ı	80	simple shape  Car extine orlinder miston
前直铝合金 4	. ZLa	18	1	, 80 ,	Orlinder mismon and ments of hit
<b>奶造铝合金</b> 5	ZL5	20	2	60	Lond out complementation working at this nemperature
药造铝合金 6	ZL6	15	1	55	Parts of rearr impact load and him compaion resistance
等遺铝合金7	ZL7	16	2	, so	Part of high corresion resistance or morking under high strength
铸造铝合金 8	ZLs	20	-	85	Orlinder misson and parms of complex since and working at high tempertur
铸造铝合金 9	. Z1.9	20	-	100	Wigh speed internal combustor miston of high strangth and low arm.coeff.
<b>转造</b> 影合金10	ZL10	15	Z	50	Noter heat broadment, Al alloy and (astability can be improved Heary and medium names of heary end.
特选图合金11	ZL11	16	2	50	and heavy load which coolin syl.
新造品合金](	Z1.12	12	3	40	Commiles are no retime distriction to a re-
传递银台金13	ZLis	18	1	65	Melding accessor, as twis outlet,
傳進報合金1-	ZL14	17	0.5	65	jana na pilin hilogra
	4				Nero-orgine policion on . for an
<b>好造出台金!</b>	5 ZL15	20	1.5	80	equipment names
傳達報合金1	e ZL16	20	1.5	80	Car and thuk engine you a Wigh strangth &L allow for high bressure casting

Note: Items listed in the table are hard mold casming merformades.

Immelatoria note: ** from 1 shrough 16, the Chinese means nost aluminium allog.

### 7. Tin-base Bearing Alloy (YA87-65)

Table 2-2-13 The chemical composition, medianted proposition

		વાલી મ	nton of Mashana bearing alloy
	Chartant Composi	tion (f) MP	
Symbol .	Principal Compo	nonta F n w	Srumles of Mood
	Sh   Cu   Ph   i	NI   Su   T   111   C	·
ChSatder 4	4-1 4-6	र्द् _{ल्लु} धः ः िश्वः तः ३०६	Must, good for switting building outling. Inherent to - building, little uponed beautifus and authorized to.
ChSn567.5~3	1~4 1~4	S48 0.27 18.3 218	Tennelly is mene on Chialbart, most for colling bearing and orie beaking of large and bee, seent presence bearing.
Christia s	7.3~8.57.4~8.5	Seq 0, 11 (4, 3) 2 16	Title bendung which to bour like accounties, and for modify bouring and oxide bucking of land two local for Soft but tough and able to attend processing, and for
ChSaSh12-3-10	11-13 2.5-3.6 8-11	1329 0 . AS 28 , B 1#5	multing with hereing of englise, but not good for high townsentures.
ChSnSh13+2+1#	14-10 1.5-2.5 17-19	S:3 0.85 20.6 18.	Good for maining recition beautiful at solition intend and procuums, but not good for hi is terminature.  Mendoul, good for relating like moved atoms on the of
ChSaSbill-4	10-12 3.6-4.6	Sa 0.55 10 211	nore then 2000 horsepower and tarbina outlie of roce than 500 horsepower, "latatic community, "latate pump and lift speed internal accidation."
ChSnSh #(\$,n 0,5	71 3.1~4 0.3	-0, 4 Sr 0,56 28,4 238	Strong Loundly, pressure contactor, at realou rentation and first realisating some as Consut. 5-3
ChSnSb9 7	4 = 10   A = A	5.000	Shoper Connector, proof for motter take and no bu- nton, aska benefit open aska fund to be onto abote. Good Car sakture hit k proced and of the score was no bec-
Ch5n5h11-9	18-12 1-10	School	boostry and axia incling.  Good for making smiller around and smiller encounter
Ch5n5h13-5-12	2-14 1-6 11-13		emaisten hearing and main the fire.

Enter This table is spollerable to Mine-true bearing alog which can be used to make rolling to story and an'e backing.

To ober and only broking.

Translatoris notes in a machinated property; M = foreign unbher; M = berthean; if a notif it joint, T a bord a sount; and Sn = marphus.

#### (3) Section Materials

### 1. Copper Ber (13456-71)

Table 2-2-14 The norms and dimensions of round, square

	<u>and hexago</u>	onal dram copper bar	
Mominal Diameter	Diameter permi	rted deviation (mm)	
MONITHEE DIFFE SET	हुम्बतेल б	manda n	
5~6	-0.08	- 0.16	
6.5~10	-0.16	-0.20	
11~18	- 0.12	- 0.24	
19~30	-0.14	-0.28	
31~50	- 0.17	+0.31	
51~80	- 0.71	-6.10	

Note: 1. The diameter of square and hexagonal bar refers to the internally

tangent circle diameter.

Length of the bor: diameter (mm) 5~24 (25~50 sl~12)

Length (m) 1.5~5 ( 1~1) 2. Length of the ber:

Table 2-2-15 The mechanical properties of round, square

 laterial	Par Diameter	-031/SUTUAL	115., 235e kie
Condition	(mm)	No less t	han
 Yard (Y)	5~40 >40~60 >60~80	27 25 21	6
 Soft (M)	5~80	. 20	

Mote: Materials used: Ti. Tr. Tr. Tr. Pt. Pt. Pt. among products from pure conjer processing.

#### 2. Brans Bor (IDA57-71)

Table 3-2-16 The norms and dimensions of round, symma

Diameter Dimension	Pormitted Da	erriation (mm)
( <u>:::::</u> )	grade 6	grade 7
5~6	-0.08	- 1,16
6.5~10	-0.10	1 -0 20
11~:8	-0.12	-0.21
15~36	-0.14	- 0.25
31 ~ 50	-0.17	- 0.01
51~80	- 0.20	1 = 0.30

Note: 1. "Dinneter dimension" for equare and destaranal broad bous refers to the dimension of intermedia tentent sizele diameter.

0. Let r(t) = 0.0 brace box:  $\frac{150 \cdot 16}{5 \cdot 100} \cdot \frac{(-10)^2}{100} \cdot \frac{5 \sim 60}{100} \cdot \frac{61 \sim 160}{0.6 \sim 4}$ 

Table 3-2-17 The mechanical properties of round, equare and hermanal drawn brace bar

	Grand	Material	lar diameter	Insl surth  (k-/2)	7250 (%)
_		Condition		O Less +	i on
	H 62	1	5~40	38	15
_	H 05	Grava	>10~80	34	20
		1	5~12	. 38	15
	1125	מוזים -	>12~40	32	25
	Hőĕ		>40~80	30	30
		Draw 14	13~-35	10	1 ć
	HPb59-1	Draim	5~40	40	, 2
		ì	>4090	3.8	! 6
		Dian. 20	5~9.5	52	2
		hard . Draim .	>9.5~14	59	5
		1/Shard	>14~20	. 4*	8
	HP563-3	Ly snow u	>20~30	12	16
		Drain	10~20	36	12
		1./Ch <del>ar</del> d	>26~60	, , , , , , , , , , , , , , , , , , , ,	. 16
	HSn62-1	Draim	5~10	10	15
			>40~30	37	20
	HF=58-1-1	Imaim	5~40	45	10
	11. 130 1		>40~80	40	. 13
			5~12	45	.0
	HMn58-2	$\Im m$	>12~40	. 42	20
			>40~80	, 40	25
			5~12	50	15
	HF+59-1-1	Dratm	>12~10	45	1 <b>7</b>
	:	i I	>40~80	12	20

Mone: Maseriale used: Among products from Lagra attornation (TDI) (LDI),
H62, H68, HPb59-1, HPb63-3, HSa62-1, HMa58-2, HF659-1-1, HF658-1-1,

#### 3. Silcon Bronze Bar (UBA55-71)

Table 2-2-17 The norms and finensions of norms, source on hexagonal distance imposes for

			and hex	agonal d	<u> </u>	con cronce orr	
•	Dr-un bar	dinneter	•		bar did	neter	
	Tominal dimension	Permite	d devia-	Nominal -dimens-	Permitted deviation (mm)		
	<u> </u>	<u> </u>	rade 7	ion	grade ó	-ride 7	
	5			17.0	-0.12	-0.21	
	5.5	-0.08	- C.16	18.0	0.12	- 0.21	
	6.0	· 1	l .	19.0			
	6.5			20.0	1		
	7.0	į		21.0	İ	:	
	7.5	1	-0.20	22.0			
	8.0			24.0	- 0.14	-0.28	
	8.5	-0.1		25.0		• :	
	9.0	<u>'</u>		27.0	: !		
	9.5	,		28.0	1		
	10.0	: !		30.0	1		
<del>, ,</del>	i1.0			32.0			
	12.0	(		35.0	į	:	
	13.0	-0.12	- 0.21		: · ~0.17	+ 6.31	
	14.0	-0.12	-0.24	36.0	- 7	-0.31	
	15.0	,		38.0			
	16.0			40.0		· •	

Not: 1. The diameter of square and hexagonal har refers to the internally tangent circle distreter.

2. Length of silcon broaze bor: diameter (---): 5~30 31~75 76~100 length (---): 5~30 31~75 76~100

Table 2-2-19 The mechanical properties of product, symmetric and becareout drawn siles through burn

Brend	Manufact- unling unethod	Ear Minmeter (mm)	insleamily (in the second	िक्यं - स्वर्थ ह (१)
		5~12	50	16
QSi3-1		>12~40	19	15

Note: Naturial used: QSi3-1 of products from functs proceeding. (YB/47-7/)

#### 4. Copper Plate and Dar (73/59-6/)

Table 2-2-30 The norms and dimensions of coll molled corner blots out for

	ndhil hellor	_	in of col	<u> </u>	Thickness of sold rolled bur
Thio mass	610×1200	700×1430		i060 × 2000	Permitted demiation
	Permitte	त तेकातंत्र	tion of t	hiolmess	•
0.26				1	- 0.06
0.25		-	-	- :	-0.0€
0.30	: -	_	<b>–</b>	- :	- 0.06
0 35	- !	-	<b>–</b>	: - !	- 0.07
0.40	-0.07	-0.09	_	- 1	- 0.07
0.45	-0.07	-0.09	_	-	- 0.07
0.50	- 0.07	-0.09	-	:	- 0.07
0.60	-0.08	-0.10	_	- :	- 0.47
0.70	-0.98	-0.10	-		- 0 . 08
0.*0	-0.16	-0.10	-0.12	-0.15	- 0.08
0.90	-0.10	-0.12	-0.14	- 0.17	-0.09
1.00	-0.12	-0.12	- 0.14	-0.17	-0.09
1.1	-0.12	-0.12	-0.14	-0.18	<del></del>
1.2	-0.14	-0.14	-0.16	-0.18	-0.10
1.3	- !		_	-	-0.10
1.35	-0.11	-0.14	-0.16	-0.18	
1.40	_	-	J	- :	-0.10
1.56	-0.16	-0.16	-0.18	-0.21	- 0.10
1.60	:	_	_	- 1	-0.12
1.65	-0.16	-0.16	-0.18	-0.21	-
1.8	-0.16	-0.16	-0.18	- 0.21	- C.12
2.0	-0.18	-0.18	-0.20	- 6.21	-0.12
2.25	-0.18	-0.18	-0.20	-0.24	-
2.50	-0.18	- 0.21	-0.22	- G.24	-0.12
2.75	-0.20	-0.21	-0.21	-0.24	-0.14
3.0	-0.20	-0.21	-0.24	-0.24	-0.14
3.5	-0.23	- 2.24	-0.27	-0.30	-0.16
4.0	-0.23	-0.24	-0.27	-0.30	~ 0.18
4.5	-0.26	-0.27	-0.30	-0.35	- 0.20
5.0	-0.26	-0.30	- 0.35	-0.37	~ 0.30

Moto: If the cold molled ber thickness is 0.20-0.35mm, the misth is 200-400mm; thickness is 0.40-5.0mm, thickness is 0.40-5.0mm; thickness is 0.20-0.45mm, length is 500-1000m; thickness is 0.50-0.75mm, length is 500-2000m; thickness is 3.00-5.0mm, length is 1000-0000m.

Table 2-2-21 The medianical pronervies of coll

Mademial	Incl surath as	(10 = 11.3 \( \frac{F_0}{F_0} \)	
Somiliaion	o	0.03	
3525 (M) Topa (Y)	20 30	; 30 3	

## 5. Erass Plate and Eand (UB460-71)

Table 2-2-23 The norms and dimensions of colf rolled brass plate and band

	<del></del>						()
	206	<u>√idt]</u> ~500	>500~500	<u>f P]</u>   >600~,00	2te >700~800	: >800	
Thickness of Plate	ليطيل الم	क्रक्र¥स₽्		ess permi			
0.26~0.30	-0.06		: <b>-</b>	ī -	_	_	
0.35		•		-	,	-	
0.40		!			_	-	
0.45	-0.07	,	-0.07	_	_		
0.70		-		- 0.69			
0.60		:				_	
0.70	1	!	*0.0x	0.16	_	_	
0.30	-0.08	i i	-0.09	1	0 : 2		
0.90	• 40	1	-0.10	1	- 0.12		
1,00	- <b>0.</b> 09	-0.08	-0.11	- 0,12	- 0.14		
1.10	!					-0.18	
1.20	-0.10	0.00	-0.12	-0.1:	G. 16	0.10	
1.35	-0.10	-0.69		1	l		
1.50	1	.,	-0.14	-0.16	<i>i</i> 1		
1.65				1	-0.18	0.21	
1.80			-0.15		i 		
2.00	-0.12	-0.10		-0.18	0.26		
2.25				· · · · · · · · · · · · · · · · · · ·			
2.50	i	· ·	-0.16		-0.00	6.04	
2.75	0.11	1	1 -0.10	- 0.21	-0.24		
3.00	· <del></del>	-0.12		· <del></del> -	i		
3.50	-0.16		-0.20	-0.24	-0.24 -0.27 -0.30		
4.00	-0.18	İ	0.20				
4.50	- 0.20	-0.15	- 0.22	-0.27	- 0.30	-6.35	
5.00		! 0	-0.22	0.30	-0.35	0.37	

Translabar's note: *TPD = thickness permitted fortation; **ap = general precision; ***TP = high proclaton.

Table 2-2-23 The norms and dimensions of cold volled brass band

Thickness	3-12-13	es permi	7]'\10't+	l'isimpse	<del>-</del>	
of Band	go*	##hp	Tiness of Dand	inermi red <u>Tarintion</u>		
0.05~0.09	-0.01		20~100	-0.6		
0.10~0.13	-0.02	<u> </u>	-			
0.15	- 0.03		20~200	-0.6	≥200C₁	
0.18~0.22		-0.02	_			
0.25~0.33	-0.04	-0.03	<u> </u>			
0.40~0.4	-0.05	-0.04	İ	(if 1>175 tien-1.0)		
0.50	- 3.06		_!	1 1911- 1.07		
0.55~0.70		0.05	_		≥10000	
0.75~0.8	-0.07	_!	20~300		<b>=100</b> 00	
0.90~1.00	-0.08	-0.06	2,9 - 300			
1.10	_			-1.0		
1.20~1.4	-0.09	-0.07	_	(if H>175	≥7000	
1.50	0.09	-0.08		then -1.5) [		

Translator's note: *op = ordinary precision; **hp = high precision.

Table 2-2-21 The mechanical properties of cold rolled brass plate and band

"aterial	Brand	Tesl strer	ngth Tcc.R	δ (%) 1.3 $\sqrt{F_6}$ )
Condition	Brand	*cp 387		ວານປີ.
Bost (N)	H 62 H 68 H 80 H 90 HPb 59~1	30 30 27 27	30   40 30   46 27   50 24   35 35   25	35 40 50 38 25
1/Shard (Yo	H 62 H 68 H 90		38 27 35 25 7	20 25 —
Mand (Y)	H 62 H 80 H 90 H 63 HPb 59-1	45 40	12 10 15 5 10 15 15 5	10 Mensa 5 15 5
Very (T)	H 62 H 68		50 2.5 50 —	2.5

Imposintry's note: "op = cold molle" plate.

6. The Different Kinds of Aluminum and Aluminum Alloy Plate (13605-66)

Table 2-2-25 The kinds of aluminum and aluminum allow plate

	Width of Plate							
hickness	400与560	600	806	LOON	1200	1500	2000	
	Thi	lclmess	permi	ted dev	viation			
0.3	-0.05	-	_	±0.05	±0.06	-	_	
0.4	-0.05	-	_	±0.05	±0.06	:	_	
0.5	-0.05	-0.05	-0.08	-0.10	-0.12	-0.13	-	
0.5	-0.05	-0.06	-0.10	-0.12	-0.12	-0.14	· ~	
0.7	-0.07	-0.07	-0.11	-0.12	-0.13	-0.11	-	
0.8	-0.08	- 0.08	-0.12	-0.12	-0.13	-0.11	-	
0.9	-0.09	-0.09	~0.13	-0.14	- 0.15	-0.16	;	
1.0	-0.10	-0.10	-0.15	-0.15	-0.16	-0.17		
1.2	~0.10	-0.15	- 0.15	-0.15	-0.15	-0.17		
1.5	~0.15	-9.15	-0.20	-0.20	- 0.22	-0.15	-	
1.8	-0.15	0.15	0.20	-0.20	-0.22	-0.35	-0.27	
2.0	-0.15	-0.15	-0.20	-0.20	- 0.24	-0.26	-0.28	
2.3	-0.20	- 0.20	-0.22	-0.23	-0.26	-0.28	-0.29	
2.5	-0.20	- 0.20	-0.25	-0.25	-0.28	-0.29	- 0.30	
2.8	-0.25	-0.35	- 0.27	-0.28	- 0.31	-0.32	-0.34	
3.0	-0.25	-0.25	- 0.30	-0.30	-0.33	-0.34	-0.35	
3.5	-0.25	-0.25	-0.30	-0.30	-0.34	-0.35	-0.36	
4.0	-0.25	~0.25	-0.30	-0.30	-0.35	-0.36	-0.37	
5.0	- 0.30	- 0.30	-0.35	+0.10 -0.35	+0.10 -0.36	+0.10	_	

7. Liminum and Aluminum Alloy Plate Which Connot De Strenathened Through Heat Trentment

Table 2-2-26 The mechanical properties of aluminum and aluminum allog plate which cannot be strengthened through heat treatment

Miloy	Supply	Thick- ness	Tensile strth a.	,	Extension rate (7)
Brand	Condition	(::::::::::::::::::::::::::::::::::::::		less than	
	Amealed (M)	0.3~0.5	i		20
ĺ	remeased (F)	0.51~0.9	1	_	25 28
• - • - أ		; 0.3~0.1	, 10	<u> </u>	3
L1, L2, L3, L4,	Semi-cold hardened (1	0.41~0.7	10	<u> </u>	4
L5. L6		0.71~1.0	10	-	5
ļ		1.1~4.0	16	-	+
	Cold hardened (Y)	0.3~4.0	1;		:
į	ward handened (1)	4.1~5.0	13	; -	4
	innealed (M)	0.3~1.0	17~23		'£
	<b>2</b> 2300,200 (11)	1.1~5.0	17~23		: 18
	Semi-cold hardened (To	0.3~1.0	24	i -	1
LF2	Semi-cord Handened (15	1.1~5.0	24	-	6
İ	Cold hardened (Y)	0.3~1.0	2?	_	3
į	oord har delied (1)	1.1~4.0	27	1 -	4
	Annealed (II)	0.5~4.5	20	1 10	15
LF3	Semio-cold hardened (M	2) 0.5~4.5	23	20	8
LF5, LF11	Annealed (II)	0.5~4.5	28	. 15	15
LF6	Anne led (:')	5~4.5	32	: 5	15
	Annealed (11)	0.3~3.0	10~15		22
	ALL. EXECUTION	3.1~5.0	10~15	-	20
) - 1	Semi-cold hardened (Ya	) 0.3~5.0	15-22	-	6
LF21		0.3~0.5	19	-	1
	Gold hardened (T )	0.6~0.8	19	, -	2
i	John Hardened (1)	0.9~1.2	!9	-	3
		1.3~5.0	19	_	4

Note: The norms and dimensions of the plate are in accordance with the regulations of aluminum and aluminum allow plate (77615-56).

3. Aluminum Alloy Plate Maich Can Be Strengthened Through Heat Treatment

Table 2-2-27 The mechanical properties of aluminum and aluminum alloy plate which can be strengthened through heat treatment

		blate which can be strengt	hened th	rough hea	it treatme	ent
lloy	Kind	Supply Condition	Thick- ness	Tensile strength		Tenensio
			(2221)		less than	
	plate	! Annealing (M)	0.5~5 5.1~10	≤15 ≤15	_	20 15
	, not	Quenching natural	0.3-0.6	20 20	<del></del>	18 20
LD2	A2-	ageing (CZ)	0.7~3   3.1~5	20	_	' ×
	clad		5.1~10	18		16
	G-44	Quenching artificial	0.3~5 5.1~10	30 30	<del>-</del>	10
	11-clad	ageing (gs)	0.3~10	<u>√"</u> 5	<del></del>	10
LC4	nlate	Quenching and ideal	0.3~2.5	49	41	
	1		2.6~10	50	42	77
	!	Amnealing (M)	0.3~4 4.1~10	≤22 ≤24		14 12
		On the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	0.3~2.5	41.5	27.5	13
	Al-clad	Quenching natural	2.6~6	13.5	28	11 10
	plate	ageing (CZ) Quenching natural ageing	6.1~10	43.5	2K	
	ì	cold hardening (CZI)	1.5~2.5	43.5	34	10 8
	1		2.6~6.5	46.5	35	
LY12	1	Annealing (31!)	0.3~3	€24 €24	1 = '	;2 11
LY12	plate	Quenching natural	$\frac{3.1\sim10}{10.3\sim1.5}$	1 45	29.5	14
	·not	ageing (302)	1.6~6	45	29.5	t <b>3</b>
	111-		6.1~10	45	29.5	12
	clad	Quenching natural ageing	1.5~3	48.5	36.5	10
	Thickened	cold hardening (BCZY) Amealing (J)	3.1~6.5	48.5	36.5	9
	Al-clad	Annealing (J.)	0.5~4	€23		10
	: Plats	Amealing (J!) (Jegoning natural areing	0.5~4	37	23.5	13
	11-clad	Annealing (11)	0.3~2.5	€23		12 12
LY11	72350	Tremonia of manager	$\frac{2.6\sim10}{0.3\sim2.5}$	· <u>≤24</u>	19	15
	1	ienchia natural	2.6~10	38	20	12
		Amealing (11)	0.3~1.5	€ 23		
	11-clad		1.6~10	<u>≤24</u> 37	23.5	16.
	1	Quenching natural	0.3~0.7	41.5	27.5	13
	plate	ageing (CZ)	1.6~2.5	43	28	12
LY6		250226 (30)	1. 2.6~6 6.1~10	43.5	28 28	11
DI to	1	Quenching natural ageing	1 1.5	13.5	34	14
	1	cold hardening (CZY)	1.6~2.5	46	35	8
	1	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	2.6~7.5	46.5	36	·
		-int cold hardening (Ggf)	1.5~2.5	51 52	41	
		Threating (M)  Magnotic natural orgin	1:13	_ €24		1 à
LY16		: ' ) ii :	022	28	_	12
		Talenchian ambidicial	11	38	28	×

Tour: I o come al di di manaione of dhe mlace ame in accaming which Wee an til tions of dhe discussion and aliminate and aliminate allem mlace (minimate)

#### 9. Hot-rolled Aluminum and Aluminum Alloy Plate(17602-55)

Table 2-2-28 The mechanical properties of hot-rolled aluminum and aluminum alloy plate

Mllog	'aterial	ness	brength	straneth	Tritens rate
Brand	Condition	(==)	'= <u>g/?)(</u> No le	re/rm4); es than .	
L1. L2 L3. L5	Hot rolled (%)	5~10 11~25 26~80	7 8 6.5		15 18 10
L4. L6	Tot molled (B)	5~10 11~35 26~80	7 8 6.5	~ ~ 	18 ! я ! 5
LF2	Not rolled (3)	5~25 26~80	18 16	-	; 6
LF3	Not rolled (R)	5~10   11~25   26~50	19 18 17	8 7 6	15 12 1)
LF5, LF11	Hot rolled (3)	5~10 11~25 26~50	28 27 26	13 12	15 13 12
LF6	Not rolled (R)	5~10 11~25 26~50	32 31 30	16 15 14	15 11 6
LF21	Hot rolled (R)	5~10 11~25 26~50	11 12 11	=	15 15 12
. D.	Quenching and natural ageing (CZ)	5-25 26-40 41-80	18 17 17		14 12 10
LD2	Quenching and artificating againg (CZ)	5~25 26~40 41~80	30 29 28		7 6 6

More: The norms and dimensions of the plate are in accordance with the regulations of the kinds of aluminum and aluminum allow plate (17605-66).

# 10. Estruded Conper Pipe (YBAAT-70)

Table 2-2-29 The norms and dimensions of extinuded compar pine

			<del></del>	<del></del>		<del></del> _	<del></del>	
External	Ma11	Eyeone-	Exte	rVall	Theore	Diter	Va.LL	Inometical
	1	+ 7 00 1	<u></u>	とりてでく	+ 3 0 Q (	1 27 1		
	2000	weight	dia-	-ness	weight	dia-	-ness	veight
dinmeter	633	, ,	me ter	,,		meter	i	<u>.</u>
		(a / )			12 / 1	/ 302	/ \ ·	(2/)
(===)	1 ( inst )	( <u>k-/=)</u>	<u> ( )</u>	( ::: <u>'</u>	$\frac{1(\log/m)}{n}$	( )	(****)	(':,/)
			d.	1	:	1	1	
			79	12.5	20.09	# a 100	22.5	48.73
30 32	5.0	3.493	70	15.0	23.05	a 100 : 100	25.0	52.40
32	6.0	4.359	75	7.5	14.15	100	27.5	55.71
34	6.0	4.695	75	10.0	18.16	100	30.0	58.68
36	5.0	4.331	75	12.5	21.83	105	12.5	32.31
		5 050		15.0		105	15.0	37.72
36 38	7.0	5.673 5.365	75	15.0 17.5	25.15 28.12	105	17.5	42.79
38 40	5.0	4.890	80	10.0	19.56	105	20.0	47.52
40	7.0	6.465	80	12.5		105	22.5	51.87
40	7.5	6.811	80	15.0		105	25.0	55.89
. 4		1			1 20 50		27.5	59.56
40 40	8.5	7.482 8.383	80 80	17.5	30.56 33.53	105	27.5	59.56 62.87
42	6.0	6.036	85	10.0	20.90	110	10.0	27.94
42	8.0	7.610	85	12.5	25.32	110	12.5	34.06
45	5.0	5.589	85	15.0	29.34	110	15.0	39 82
	1		i		:	1	i	4: 32
46	14.0	8.495	85 85	17.5	33.01	110	17.5	45.23 50.30
46 50 ·	5.0	10.06	85	22.5	39.30	110	22.5	55.02
50	1 7.3	8.907	90	7.3	17.29	110	25.0	59.08
50	10.3	11.18	90	10.0	22.36	110	27.5	63.40
			1					57 07
50	12.5	13.10	90	12.5	27.07	110	30.0	67.07 35.80
50 55	15.0	14.67	90	17.5	35.45	115	15.0	11.92
55	7.5	9.955	90	20.0	39.12	115	17.5	47.68
55	10.0	12.58	90	22.5	42.44	115	20.0	53.09
	i			1	!	ii 		
55	12.5	14.85	90	25.0	45.41 18.34	115	22.5	58.16 62.87
55 60	15.0	16.77 7.685	95 95	7.5	23.75	115	27.5	67.24
60	7.5	11.00	95	12.5	28.85	115	30.0	71.26
60	10.0	13.97	95	15.0	33.53	120	10.0	30.74
	İ	•	1			8		1
60	12.5	16.59	95 95	17.5	37.90	120	15.0	44.01 50.13
60	[5.0 5.0	18.86 8.383	∯ 95 - 95	20.0	41.92	120	20.0	55.89
65 65	7.5	12.05	95	25.0	48.90	120	22.5	61.30
65	10.0	15.37	95	27.5	51.87	120	25.0	46.37
	}	1	1	İ	į			
65	12.5	18.34	. 100	10.0	25.15	120	27.5	71.08 75.45
65	15.0	20.96	100	12.5	30.56 35.63	120 125	30.0	39.30
70 70	5.0 7.5	9.082	100 100	17.5	40.34	125	17.5	52.57
70	10.0	16.77	100	20.0	44.71	125	20.0	58.68
3	1		ĺ			4	1	1
	<u> </u>	i	17	<u> </u>	<u> </u>	.	<u>!</u> _	·

External	ייין.	Tieoro	IXTO		eoe	liter.	::2	T eoresic
diameter	+ '0 1 0'	-tical	-nal	-hidic	-tical	727	- الم ا	tra field
		reight	dia-	-ness	reion÷	41a_	-1853	
	-4955	3.3.3.	mete	m		me-er		
()	(mm)	(200/m)	(mm)	(mm)	( com/m)	/\ me e-	(1	(2/)
(	. (/	(Ag/)	(1:-1)	(.44)	(4.3/10)	(121)	(	(.02/7.)
			i					
125		64.45	160	30.0		200	30.0	142.5
125 125	25.0 27.5	69.66	165 165	12.5 17.5	53.27 72.13	210 210	10.0	55.89 81.74
125	30.0	74.99 79.64	165	22.5	89.60	210	20.0	106.2
130		33.53	165		105.7	210	25.0	129.2
130	10.0	33.33	103	21.0	100.7	2.0	20.0	123.2
130	15.0	48.20	170	10.0	44.71	210	30.0	150.9
130	20.0	61.48	170	15.0	64.97	220	10.0	58.6%
130	22.5	67.69	170	20.0	83.83	220	15.0	85.93
130	25.0	73.35	170	25.0	100.3	220	20.0	111.8
130	27.5	78.77	170	30.0	117.4	220	25.0	136.2
					i			
130	30.0	33.83	175	12.5	56.76	220	30.0	159.3
135	12.5	42.79	175	17.5	77.02	230	10.0	61.48
135	17.5	57.46	175		95.88	230	15.0	90.12
135	22.5	76.73	175	27.5	113.4	230	20.0	117.4
135	25.0	76.35	180	10.0	47.51	230	25.0	143.2
		:						
135	27.5	82.51		15.0	69.16	230	30.0	167.7
135	30.0	88.02	180	20.0	89.42	240	10.0	64.21
140	10.0	36.33	180	25.0	108.3	240	15.0	94.31
145	12.5	46.28	180	30.0	125.8	240	20.0 25.0	123.0 150.2
145	17.5	62.35	185	12.5	60.25	240	23.0	130.2
145	22.5	77.02	185	17.5	81.91	240	30.0	176.1
145			185	22.5	102.2	250	10.0	67.07
145	30.0	96.41	185	27.5	121.0	250	15.0	98.50
150	10.0	39.12	190	10.0	50.30	250	20.0	128.50
150	15.0	56.59	190	15.0	73.25	250	25.0	157.20
	f		:					
156	20.0	72.65	190	20.0	95.01	250	30.0	
	25.0	87.33	190		115.3	260	10.0	69.36
150	30.0	100.6	190		134.1	260	20.0	134.1
155	12.5	49.78	195	12.5	68.75	260	25.0	164.2
155	17.5	67.24	195	17.5	86.80	260	30.0	192.8
,			,,,,	22 -	100 -	270	15.0	106.9
155 155		83.31 97.98	195 195	22.5 27.5	108.5 128.7	270	25.0	171.2
160	10.0	41.92	200	10.0	53.09	270	30.0	201.2
160	15.0	60.78	200	15.0	77.55	280	10.0	75.45
160		78.24	200	20.0	100.6	280	20.0	145.3
	l		1		;			ļ
160	25.0	94.31	200	25.0	122.3	280	30.0	209.6

Note: 1. Materials used: among products from pure common managerating (NBLA5-65) T2.T3. T4. TUP. TU1. TU2.

Among mroducts from brace proceeding(NBLA4-65) H96.

2. The length of extraded copper pine: 0.5-6m.

# 11. Drawn Copper Pipe (MTA47-70)

Table 2-2-30 The norms and dimensions of drawn copper pipe

	Wall	Ticore			Theory	Titer		Theoretical
diameter	thick ness	weight	naı  dia-		-tical weight	Ria-	thick -ness	Weight
()	(mm)	(k7/m)	neter (mm)	('''''') 	(kg/n)	meter	(- <u></u> )	: (1:5/~)
	:			<del> </del>			<del></del>	
3 3	0.5	0.035	12 12	1.0	0.307	18 18	3.0	1.258
4	0.5	0.049	12	2.0	0.559	18	4.0	1.565
4	0.75	0.066	12	2.5	0.664	1 11	4.5 1.0	1.695
4 5	1.0	0.084	12	3.0 3.5	0.11	10 10	1.5	6.734
5 5	0.75	0.089	13	1.0	6.335 6.482	19 19	2.0	. 0.95: 1.153
5	1.5	0.117	13	2.0	0.615	19	3.0	1.735
6	0.5	0.077	13	2.5	0.70:	19	3.5	1.513
6 6	0.75	0.110	13 13	3.0 3.5	0.838	i 19	4.0	1.677
6	1.5	0.189	14	1.0	0.363	h 20	1.0	0.531
6 7	2.0	0.224	14	1.5	0.524	20 20	1.5	0.775 1.606
7	0.5 0.75	0.091	14 14	2.0 2.5	0.803	20	2.5	1.223
7	1.0		14	3.0	0.922	20	3.0	425
7 7	1.5	1 0 790	14 15	3.5 1.0	0.391	20 20	3.5	1.603 1.778
8	0.5	0.105	15	1.5	0.566	§ 20	4.5	1.94#
8	0.75	0.152	15	2.0	0.727	20	5.0	2.096 0.559
<b>8</b> 8	1.0	0.196	15	2.5 3.0	1.006	21 21		0.817
8	2.0	0.335	15	3.5	1.125	21	2.0	1.062
8 9	2.5	0.384	16 16	1.0	0.419	21	2.5 3.0	1.291 1.509
9	0.75	0.173	16	2.0	0.782	2 1	3.5	i 1.703
9	1.0	0.224	16	2.5	0.943	21	4.0	. 1.901 2.078
9 9	1.5	0.314	16 16	3.0 3.5	1.090	21 22	1.0	0.587
9	2.5 0.5	0.454 0.133	16 16	4.0	1.341	22	1.5	0.859
10	0.75	0.194	17	1.0	0.445	22	2.5	1.36;
10	1.0	0.252	17	1.5	0.641	22	3.9	1.593
10 10	1.5	0.356	17	2.0	0.838	22	3.5 4.0	1.800 2.012
10	2.5	0.524	17	3.0	1.174	22	4.5	. 2.201
10	3.0	0.587	17	3.5 4.0	1.320 1.453	22	5.0 1.0	1 2.375 1 0.615
11 11	1.0	0.230	17	4.5	1.570	23	1.5	0.901
11	2.0	0.503	18	1.0	0.475	23	2.0	1.174
11 11	2.5	0.594	18 18	1.5	0.692	23	3.0	1.40 1.661
12	0.75	0.236	18	2.5	1.082	23	3.5	1.897

<u>Convinued</u>	· · · · · · · · · · · · · · · · · · ·							
External	Wall.	Theore	lt:∴ər	$T_{2}$	Pieore-	Titer	7/0.7.7	Propretical
	ל יול מי	-tical-	nal	thick	tical .	nal	51:201:	
diameter	-ness	weight	di	-ness	weight	dia-		i initiat
.(==).	(1771)	(kg/m)	eter (mm)	(::::::::::::::::::::::::::::::::::::::	(k7/m)	neter (mm)	(mm.)	(Tg/m)
	1	,				i		
23	4.0	2.124	28	2.5	1.782	34	4.5	1 3.7
23	4.5	2.326	28	3.0	2.096	34	5.0	1.6
24	1.0	0.643	28	3.5	2.395	35	1.0	0.9
24	1.5	0.943	28	4.0	2.683	35	1.5	1.40
24	1 2.0	1.230	28	4.5	2.955	35	2.5	2,2-
24	2.5		28	5.0	3.214		3.0	2.68
24	3.0		1 30 i	1.0	810	' a	3.5	3.05
24	3.5	2.005	30	1.5	1.195	35	4.0	3.46
24	4.0	2.236	30	2.0	1.565	35	: 4.5	3.80
24	4.0	2 452	30	2.5	1.922	35	5.0	4.192
24	5.0	2.655	30	3.0	2.264	36	1.0	0.978
25	1.5		30	3.5	2.592	36	1.5	1.445
		1 800			2.906	36		1 000
25 25	2.0 2.5	1.286	30	4.0	3.206	36	2.0	1.900
25		1.844	30	5.0	3.493	36	3.0	2.767
25	3.5	2.102	(31)	1.0	0.839	36	3.5	3.18
•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		i			! :	
25		2.348	(31)	1.5	1.236	36	4.0	3.577
25	4.5	2.578	(31)	2.0	1.621	36	4.5	3.961
25	5.0	2.795	(31)	2.5 3.0	1.99	36 38	5.0	4.331
26	1.0	0.699	(31)	3.0	2.347	30	1.0	1.034
26	1.5	1.027	(31)	3.5	2.696	38	1.5	1.530
26	2.0	1.341	(31)	4.0	3.019	38	2.5	2.480
26	2.5	1.642	(31)	4.5	3.332		3.0	2.934
26	3.0	1.923	(31)	5.0	3.634	38	3.5	3.375
26	3.5	2.200	32	1.0	0.866	38	4.0	3.800
26	4.0	2.460	32	1.5	1.278		4.5	4.213
26	4.5	2.704	32	2.0	1.67		5.0	4.612
26	5.0	2.934	32	2.5	2.050	10	1.0	1.090
27	1.0	0.727	32	3.0	2.431	40	1.5	1.614
27	1.5	1.970	32	3.5	2.790	40	2.0	2.124
27	2.0	1.398	32	4.0	3.136		2.5	2.620
27	2.5	1.712	32	4.5	3.458	40	3.0	3.102
27	3.0	2.012	32	5.0	3.773	40	3.5	. 3.57
27 27	3.5	2.297	. 34	1.0	0.922	40	4.0	4.025
27	1 4.0	2.571	34	1.5	1.362	40	4.5	4.464
27	4.5	2.829	34	2.0	1.788	40	5.0	4.890
		2 2-	.	أي	0 001	40		1 140
27	5.0	3.074	34	3.0	2.201 2.599	42 42	1.0	1.146
28 28	1.0	0.755	34	3.5	2.68	42	1.5 2.0	1.693 2.236
28	2.0	1.453	34	4.0	3.354	12	2.5	2.760
•			- 1				'	
	•	:	İ					

Erternal		Theore	Ett:	r''all	.Treome ≟sianl	Date Wall Timerrical				
dinmeter		sweight	din-	noss	meight					
<u>(rm)</u>	(11111)	(½~/~)	ret?	± (-1	<u>(::-/)</u>	रिडेडर	()	(log/)		
42 42 42 42	3.0 3.5 4.0 4.5	3.270 3.765 4.248 4.716	50 50 (51) (51)	5.0 6.0 1.5 2.5	6.287 7.379 2.075 3.388	60 60 60	2.5 3.0 3.5 4.0	4.017 4.778 5.527 6.259		
42 14 44 44	5.0 2.0 2.5 3.0	5.171 2.347 2.904 3.438	(51) (51) (51) (51)	3.0 3.5 4.0 4.5	4.024 4.647 5.255 5.348	60 60 631	4.5 5.0 6.7 1.5	6.980 7.585 9. 35 2.27€		
4.4 4.4 4.4 4.4	3.5 4.0 4.5 5.0	3.962 4.472 4.968 5.450	(51) (51) (53) (53)	5.0 6.0 1.5 2.0	6.409 7.517 2.139 1 2.830	(62)		7.415 4.214 2.415		
4 1 45 45 45	6.0 1.0 1.5 2.0	6.373 1.230 1.823 2.403	(\$3) (\$3) (\$3) (\$3) (\$3)	2.5 3.0 3.5 4.0	3.529 4.197 4.847 5.478	61 61 61 61	: :	* E46 * * *		
45 45 43 45	2.5 3.0 3.5 4.0	2.969 3.521 4.059 4.584	(53) (53) (53) (54)	4.5 5.0 6.0 2.0	6.100 6.708 7.882 2.906	#5 ## #3 8 <b>5</b>	3.3 3.5 3.5	1. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th		
45 45 45 48	4.5 5.0 6.0 1.5	5.094 5.589 6.540 1.949		2.5 3.0 3.5 4.0	3.599 4.276 4.940 5.590	65 65 65	4.1 4.1 5.0 6.0	97273 9727 97270		
48 48 48 48	2.0 2.5 3.0 3.5	2.571 3.180 3.772 4.353	(54) (54) (54) 55	4.5 5.0 6.0 1.0	6.225 6.248 8.050 1.499	68 63 68	2.0 2.5 3.0 3.5	0,049 3,577 3,478 8,479		
48 48 48 48	4.0 4.5 5.0 6.0	4.918 5.471 6.008 7.043	55 55 55 55	1.5 2.0 2.5 3.0	2.242 2.952 3.668 4.359	68 68 68	4.0 1.5 5.0 6.0	7,174 7,986 8,804 10,399		
50 50 50 50	1.0 1.5 2.0 2.5	1.369 2.033 2.683 3.318	55 55 55 55	3.5 4.0 4.5 5.0	5.038 5.702 6.351 6.986	70 70 70 70	1.5 2.0 2.5 3.0	2.371 3.360 4.716 5.617		
50 50 50 50	3.0 3.5 4.0	3.940 4.559 5.142 5.723	55 60 60	6.0 1.0 1.5 2.0	8.217 1.649 2.452 3.242	70 70 70 70	3.5 4.0 4.5 5.0	6.504 7.377 8.238 9.082		

Erternal	15077	Tieore	Dite:	rVall	, II. core	E		Trabma iba
		-tical	-nal	thick	-mical	-222	bhácir	
liameter		weight	1	-ness	weight	<u> 111</u>	-ness	rei hit
(mm)	(225)	(kn/n)	mete: (~m)	(mm)	(lag/m)	reter (mm)	(::::::)	(':g/m)
70	6.0	10.733	95	1.5	3.919	150	5.0	20
75	1.5	3.081	95	2.0	5.198	156	3.0	12.5
75	2.0	4.080	95	2.5	6.462	157	3.5	15.02
75	2.5	5.065	96	3.0	7.796	158	4.0	17.52
75	3.0	6.036	96	5.0	13.27	160	5.0	21.67
75	3.5	6.991	100	1.5	4.129	165	2.5	11.00
75	4.0	7.936	" 100	2.0		166	3.0	13.67
75	4.5	8.367	: :00	2.5	6.311	168	4.0	18.34
75	5.0	9.730	100	3.0	8.132	170	5.0	23.07
75	6.0	11.571	100	3.5	9.438	170	;0.0	44.74
(76)	3.0	6.120	104	2.0	5.70	180	10.0	47.53
(76)	3.5	7.092	105	2.5	7.16	j 181	3.0	14.23
(76)	1.0	8.050	1 106	3.0	8.64	182	3, ₺	17.47
(76)	4.5	8.993	: 107	3.5	10.13	183	4.0	20.02
(76)	5.0	9.922	108	4.0	11.63	185	5.0	25.16 35.62
(76)	6.0	11.739	; 110	5.0	14.68	189	7.0	35.62
80	1.5	3.290	110	10.0	27.96	206	3.0	17.03
80	2.0	4.359	114	2.0	6.26	207	3.5	19.91
80	2.3	5.414	114	7.0	20.94	208	. 4.0	22.81
80	3.0	6.156	4 115	2.5	7.86	210	5.0	28.66
80	3.5	7.484	1116	3.0	9.48	212	6.0	34.56
80	4.0	8.498	120	5.0	16.08	214	7.0	40.51
80	4.5	9.496	120	10.0	30.76	231	3.0	19.12
80	5.0	10.48	1 122	6.0	19.46	232	3.5	22.36
80	6.0	12.410	124	7.0	22.90	233	4.0	25.61
85	1.5	3.500	125	2.5	8.56	235	5.0	32.15
85	2.0	4.639	129	2.0	7.10	239	7.0	45.41
85	2.5	5.76?	130	2.5	8.91	258	4.0	28.41
85	3.5	7.971	130	10.0	33.55	260	5.0	35.65
85	4.0	9.054	131	3.0	10.74	282	3.5	27.25
85	4.5	10.12	132	3.5	12.57	283	4.0	31.20
85	5.0	11.18	135	5.0	18.17	307	3.5	29.70
(86)	3.0	6.958	137		21.98	308	4.0	34.00
90	1.5	3.709	129	7.0	25.87	310	5.0	42.64
90	2.5	6.113	144		7.94	332	3.5	32.15 34.59
90	3.5	8.460	145	2.5	9.96	357	. 3.5	34.59
90	1.5	10.75	145	10.0	37.75	358	4.0	39.59
90	5.0	11.88	146	3.0	11.99	360	5.0	19.63

Note: 1. grant products from pure copier processing (TTAL5-65) T2.T3.T4.TUP.TU:.TU2.

when the products from burse broke saing (TPI/6-65)

1. Length of Carum corner pine: 1-im.

3. The ofee in the nameonhesis is not uncorneried to work.

# 12. Bitriled Brass Pine (TAMP-71)

Table 2-2-31 The norms and dimensions of entireded bread pine

External	Jall	Theore	inte	01911	Theore	Liter	ia.1.1	Tileomo Masi
221001100		-tical			-5:021		taick	
diameter	-nesh	weight	ſ		rweight	Rice meter		reight
()	(777)	(1=-(-1)	mete: (mm)	(~~;)	(isg/m)	()	()	(/-)
21	1.5	0.781	3.7 3.7	4.5	3.903	55 55	5.0	5.67° 7.167
22 23	2.0	1.068	37	6.0 8.5	4.964 6.465	55	7.5	9.5()
23	2.5	1.368	38		3.630	55	10.2	12.91
24 24	2.0 3.0	1.174	38	6.0 7.0	5.171 5.791	50 55	10.5 15.9	11.15 15. 1.767
25 25	1.5	0.941	39 39	4.5 7.0	4.143 5.978	58 58	1.0	1.76 4.934
25	3.5	2.008	40	2.5	2.502	38	م.و	11.76
26 26	2.0	1.281	40	5.0 7.0	4.670 6.165	59 60	1 4.5	6.517 7.339
26	4.0	2.349	10	7.5	6.505	60	7.5	10.51
27 27	2.5	1.535	10	8.n 10.0	6.832 8.005	,,,,	10.0	13.34 10.85
27 27 28	4.5		- 12 42	7.5 6.0	3.546	60 63	18.0	18.01
		!	42		7.259	68	5.0	8.664
ar.	4.0 5.0	3.050	43	4.0	4.163	65 65	7.5	1.51
29 29	3.5 4.5	2.382	45 45	2.5 5.0	2.836 5.308	63 -	10.5	17.51
30	2.0	1.495	46	3.0	3.442	çz	15.0	20.02
30 30	4.0 5.0		46	5.0 8.0	5.945 ) 8.113	68	4.0 6.5	6.832 10.67
31	2.5	1.902	46	10.0	9.808	EX	9.0	14.17
31 31	3.5	2.569	47	3.5 6.0	1.06	70 70	11.5	17,34 8,67:
32 32	3.0 5.0	2.322	, 18 , 18	4.0 6.5	4.697 7.199	70 70	7.5	12.51 16.01
32	6.0	4.163	48	9.0	9.36	70	12.5	19.18
33	3.5	2.756	50	5.0 7.5		70 72	15.0 3.5	20.02 6.398
34 34	2.0	1.708 3.203	50	10.0	10.68		8.5	14.40
34	6.0	4.484	50	12.5	12.51	73	1.0	7.33F 18.86
35 35	2.5	2.168 3.663	50 51	3.0	3.843	73	14.0	22.04
35	5.0	,	52	3.5	4.530		5.0	9.341
36 36	1 4.0	2.642 4.137	52 53		7.366 5.231		€.5 7.5	10.93 13.51
36 37	7.0	5.418 3.129	54 54	4.5 7.0	5.945 8.780	75	10.0	** **
75	15.0	24.02	100	17.5	38.43	120	20.0	75.
75 80	11.5	26.85 10.01	100	20.0 22.5	42.70 46.54	120 120	22.5	35 63
80	7.5	14.51	100		50.04	120	1 27.5 I	C7.>
86 80	10.6		100	27.5	50.21 56.04	120	30.0 14.0	₹2.34 40.7
86		25.02	105	7.5 10.0	19.53 25.35	125 125	12.5	37.54
80		#3.1°	103	19.0	50.50		,	- 4.

<u>outimed</u>									
Transal	•		'.nore-1	trer	70.11	Tieore	Incom		Treome :ionl
		hidok				: chl		há alt -	
	7				-	-			
	-	ness	weight	719.→	-nesst	reight	7in	mess,	reitit
							•		•
		, , ;	. / \	rete:	7 \	1 /\	Teter (	()	('ta/=)
(:)	(	(mm) (	1: z/m)	(2000)	(::::::::::::::::::::::::::::::::::::::	(l:g/m)_	1	<u>\</u> -	<u>\</u>
						30.86	125	17.5	50.21
	80	20.0		105	12.5	30.00	125	20.0	56.04
	85	5.0	10.68	105	15.0			22.5	
	85	7.5	15.51	105	17.5	40.87	125		66.72
	85	10.0	20.02	105	20.0	45.37	125	25.0	00.12
	1	j	ļ	!					71.56
	85	12.5	24.19	105	22.5	49.54	125	27.5	
	85	15.0	28.02	105	25.0	53.38		30.0	76.06
	85	17.5	31.42	105	27.5		130	10.0	32.29
	85		34.69	105	30.0	60.05	130	15.0	16.04
		1	-	4				'	-a
	85	22.5	37.53	110	5.0	14,U1	130	20.0	58.71
	90	5.0		110	10.0	26.69	130	25.0	70.06
	90	7.5		110	12.5	32.53	130	27.5	75.23
	90	10.0		110	15.0	38.03	130	30.0	80.06
	30	10.0	44.00	" <b>v</b>			<u> </u>	j	
	00	12.5	25.85	110	17.5	43.20	135	7.5	25.52
	90			110	20.0	48.04	135	12.5	40.87
	90	15.0		110	22,5			17.5	54.88
	90 :	17.5	33.86	110		56.71	135	22.5	67.55
	90	20.0	37.36	110	25.0	30.7.1			
	į			1	97 6	60.55	135	27.5	78.90
	90	22.5		110	27.5	64.05	140	10.0	34.59
	90 :	25.0		110	30.0		140	15.0	50.04
	92	6.0	13.77	112	6.0	16.97			64.05
	95	7.5	17.51	115	7.5	21.52	140	20.0	04.03
				i i			į	25.0	76.73
	95 '	10.0	22.68	115	10.0	28.02	140	25.0	88.07
	95	12.5	27.52	115	12.5	34.19	140	30.0	
	95	15.0	32.03	115	15.0	40.03	140	37.5	102.6
	95	17.5	36.20	115	17.5	45.54	145	12.5	44.20
	30	•		<u> </u>		ļ ·	1		
	95	20.0	40.03	115	20.0	50.71	145	17.5	
	95	22.5	43.53	115	22.5	55.54	145	22.5	73,56
	95	25.0	46.70	115	25.0	60.21	145	27.5	
	95	27.5	49.54	115	27.5	64.22	145	37.5	107.6
	30	2.40	75,57	1		!	1	,	
	100	7.5	18.51	115	30.0	68.05	150	10.0	37.36
		10.0	24,02	120	10.0	29.36	150	15.0	54.04
	100			120	15.0		150	20.0	69.39
	100	12.5		120	17.5	47.84	150	25.0	83.40
	100	15.0	34.03	140	17.0	11.04		25.0	. 103.40
	150	30.0	96.08	165	27.5	100.9	180		120.I
	155	12.5	47.54		10.0	42.70	180	30.0	
		17.5	64.22	170	15.0	62.05	185	12.5	57.55
		22.5	79.56	170 170 170	20.0	80.66	185	17.5	78.23
	153	3	, , , , ,	4	1			!	07 -0
		0.7.2	93.57	170	25.0	96.74	185	22.5	97.58
	155			170		112-1	185	27.5	115.6
	160	10.0	40.03		12.5	54.21	185	32.5	132.3
	160		58.05			73.56	185	37.5	147.6
	160	20.0	74.73	175	11.0	, , , , , , , , ,	4	1	1
				ä		91.57	190	25.0	110.1
	160	25.0	90.07	., 110	22.5		190	35.0	144.8
	160	30.0	104.1	175		103.3		27.5	122.9
	165	12.5	50.87	180		45.37	190		140.9
	165	17.5	68.89	180	15.0	66.05	_# 195	1 32.0	
			:			1	195	1 42.5	173.0
		22.5	85.57	180	20.0	35.40	195	14.3	113.0

 ⁽¹⁰ to: 1. (1) termicals where summary printing of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the terminant of the termi

13. Drawn Drass Pipe (WTA/8-71)

	-32 Ih	e norms	and	dimen	sions o	್ ರೇ	wn Gry	nis nine
Etternal	Vall	eor.s			. I teops	iniar	70.11	Tileone tionI
		-tical			-bical		didolo	
diameter	-ness		<b>.</b> . '		weight	i	-ness	weight
(mm)	(mm.)	(kg/n)		(::-)	(kg/n)	(jejjer	(:::-)	(12/2)
3	0.5	0.0334	9	0.5		12	2.0	U.531
4 5	0.5	0.0467	9	0.75 1.0	0.165	12	2.5 3.0	0.634 0.721
5	0.75	0.0851	9	1.5	0.300	13	0.5	0.167
5	1.0	0.107	9	2.0	0.374	13	0.75	0.245
6 6	0.5	0.0734 0.105	10	0.5 0.75	0.127 0.185	13	1.0	0.320 0.460
6	1.0	0.134	10	1.0	0.240	13	3.0	0.801
6	1.5	0.180	10	1.5	0.340	14	0.5	0.180
7 7	0.5 0.75	0.125	10	2.0 1.0	0.427 0.267	14	1.0	0.317 0.540
8	0.5	v.100	11	1.5	0.381	14	2.0	0.641
8	0.78	0.140	12	0.5	0.154	15	0.5	0.194
8 8	1.0	0.187 0.260	12	0.75 1.0	0.225 0.294	15 15	1.0	0.374 6.540
8	2.e	0.320	12	1.5	0.420	15	2.0	0.691
15	2.5	0.825	22 22	4.0	1.922	28 28	3.0 3.5	2.002
15 16	3.0	0.961 0.207	23	1.0	0.587	28	4.0	2.5
16	1.0	0.400	23	1.5	0.861	28	5.0	3.064
16	1.5	0.581	23	2.5	1.368	28	6.0	
16 16	2.0 2.5	0.747 0.891	23 23	3.0 3.5	1.601	29 29	1.0 2.0	0.747
16	3.0		23	4.5	2.222	30	1.0	0.774
17	0.5	0.220	24	1.0	0.614	30	1.5	
17 17	2.5	0.967	24 24	2.0 3.0	1.174	30 30	2.0 2.5	1.495 1.835
18	3.5	1.261	24	4.0	2.136	30	3.0	2.162
* 4	, ,	0.001	•	7.0	3.176	30	4.0	2.77€
13 18	1.5	0.661	24 25	1.0	0.541	30	6.0	3.243
18 18	3.0	1.201	7 25 25	1.5 2.0	0.941	31	3.0 4.0	2.2:-
	1		!				}	
19 19	0.5	0.247 0.366	25 25	2.5 3.0	1.501	31 32	4.5 1.0	3.183 0.827
19	1.0	0.480	25	3.5	2.008	32	1.5	1.221
19	1.5	0.701	25	4.0	2.242	32	2.0	1.601
19	2.0	0.907	26	1.0	0.667	32	4.0	2.989
19 20	4.5	1.741	26 26	2.0	1.281	32 32	4.5 5.0	3.303 3.603
20	1.5	0.741	26	3.0	1.842	34	5.0	3.870
20	2.0	0.961	26	4.0	2.349	34	6.0	1 4.484
20 20	2.5	1.168	26	5.0 6.0	2.802	35 35	1.0	0.907
20	3.0 5.0	1.361	26 26	7.0	3.550	35	2.0	1.761

<u>Continuel</u>								
Briemal	770.	fileora	Dite	<u> 1911</u>	Theore	T::ser	7022	Theomo vitan1
ii metem	shidk +Acaa	-tical weight	~:1.1. 3* 3_	loh <b>id</b> : 	=:iool woight∣	•	thiali	l reijit
			igte:	· · (::::::)		L		- T
(, 22)	<del>(. 23)</del>	<u>(ing/m)</u>	(1277)	) (:: <u>::</u> ::)	<u>(==/=)</u>	(3:13-)	()	(:/)
21	2.0	1.014	27	1.0		35	2.5	2.168
21 21	2.5 4.5	1.234	27 27	2.0 3.0	1.334	35 35	3.0 4.0	2.562 3.309
22	1.0	0.560	27	3.5	2.195	35	4.5	3.663
22 22	1.5	0.821	27 28	5.0 1.0	2.936	35 36	6.0 3.0	4.644
22 22	2.5	1.301	28	1.5	1.061	36	4.0	3.416
	Į.	1.521	28	2.0	1.388	36	5.0	4.137
36 36	7.0	. 5.415	46 47	5.0 1.0	5.471 1.228	60 60	1.0	
37 37	2.5 7.0	2.302 5.605	48 48	3.0 5.0	3.663 5.665	60 60	3.0 3.5	4.50 t 5.27*
•			1	1.0		60	:	e seu
38 38	1.0	0.988 1.461	50 50	2.0	1.308 2.562	64	2.0	5.97× 3.309
38 38	2.0	1.922	50 50	2.5 3.0	3.169 3.763	64 65	3.5 2.0	5.651 3.363
20		2 200	F0.			65	3.5	5.745
38 38	3.0 4.0	2.802 3.630	50 50	3.5 4.0	4.343	65	7.0	. 10.84
28 38	5.0	4.023	50 51	7.0 2.0	8.037 2.615	70 70	3.0 4.0	5.364 7.046
38	10.0	7.473	51	3.0	3.843	75	2.5	4.670
40	1.0	1.041	51	3.5	4.437	75	4.0	7.413
40 40	2.0	2.028	52 52	1.0	1.361 5.705	75 76	3.0 :.0	5.845 7.686
40	3.5	3.409	52	5.0	7.366	76	0	17.61
40	4.0	3.843	54	2.0	2.776	80	2.0	4.163
40 42	6.0	1.094	54 54	4.5 5.0	5.845 6.539	. 80 .: 80	2.5 4.0	5.174 8.113
42	2.0	7 125	54	6.0	7.686	. 80	7.0	13.64
42	3.0	2.135 3.123	55	2.0	2.829	86	4.0	8.754
42 42	3.5 5.0	3.596 4.937	55 55	3.0	4.163 5.444	90	3.0	6.966 9.181
		,		5.0	6.672	90	8.0	17.61
45 45	1.5	1.741 2.295	55 58	2.0	2.989	93	2.0	4.857
45 45	3.0	3.363 3.876	58 58	3.0 3.5	4.404 5.091	96 97	3.0 2.0	7.416 5.071
					5 765	100	3.0	7.766
45 45	6.0	4.377 6.245	58 58	4.0 5.0	5.765 7.072	100	4.0	10.25
46	1.0	1.201	!					:

Tota: 1. Maserials reselt among mendinous form benes menassing (1731/5-65) Hea. Hea. HSnf0-1. HSnf0-1.

2. Langth of formum benes mine: 0.5-im.

(*) A Comparison of China's Principal Non-Jornans Metal Iranés Mith Phanes Combar Committaiss

Table 2-2-33 A comparison of China's principal non-famous setal and allow brands with those of other countries

Closofist -	Shina	Ruggia	Tni ted	States	Ing-	್ಷಿಸವಿತನ	Gezmun a	. Ozechoslovskia
ension of the	GB	COST	ASTM	AAS	BS	112	DIN	ĆSN
	L.2	A0	996 A	1060			(A199.6)	
Tarif Hean	, L3	Ai	EC	EC	IB	AICBI	A 199.5	
	L4	АД1	)	1230 1100		1		
- 32	L5	A2	990 A	1100	ΙB	A1(B)3	A 199	
	L6	АД		1230 1100				
	LF2	АМГ	GR20A	5052	N ₄	A 2C B 31	AlMg2.5	Al-Mg
	LF3	АМГ3		5154				
<u> </u>	LF5	АМГ5	}	5056	1			
J,	LF6	AMT6		ł			Į	
	LF10	АМГ5П		505 <b>6</b>	N 6	A 2C B J2	AlMg5	Al-Mg5
	LF21	АМЦ	MIN	3003	N 3	A 2C B 33	AlMn	Al-Mn
	LYI	ДівП			HR15	A 3C F ]3		Al-Cu2-Mg
	LY2	ВД17	1		1		1	
	LY4	Д19П	1					İ
	LY6	Д19	1	Ì		1	1	(
	LY8	ДіП	CM41A	2017	Hii	A 3C B 32		1 Al Cut-Mg
	LY9	Д16П	CG42A	2024	!	4 35 B 34	Virtuality	• •

I sifi-	Shina	Russia	nite		Tag-	- ವಿಜಾಯಗ	German P.	. Czechoslowalita
or letal	LY10	B 65		T	land			
12 100 22	LYII	Д1	CM41A	2017	Hi1	73(B)3	AlCuMg	Al-Cut-Mg
<u>Milani wiim</u>	LY12	Д16	CG42A	2024	<i>†</i>	A 3( B ]4	AlCuMg	Al-Cu-Mg
للسبادلشد عدشه	LY16	月20	1	2219	j	1	ļ	
*	LD2	AB	-	6061	İ	A 3C B J2	AlCuMg	Al-Cu4-Mg
<u>ಾಗ</u> ೆ	LD5	AK6	İ	1		A3(B)1	AlCuMg	Al-Cu-Mg
	LD6	AK6-1		ĺ	į		}	
Curinum	LD7	AK4-1		2618	1	1		
	LD9	AK4				ł .		
. <u></u> -07	LD9	AK2	CN12D	2018		A4(F)1	(AlCuNi)	
•	LD10	AK8	CS41A	2014	н	A3CBJ1	(AlCuMgSi)	
	i.C3	E 94				1		
	LC ₄	B 95	,	7075			1	
	LC5	B 95-1		}		!		
	LTI	AK	S5A	1043	N 21	1	SAISi5	1
	ZL-IOT (HB)	АЛ9		,		!	}	
	ZL-192(HB)	АЛ2	1	:	;	ì		
	ZL-103(HB)	∤ АЛЗ	1	1	1	1	i	
	ZL-104(HB)	A.714					!	1
	ZL-105(HD)	АЛБ		}			İ	1
	ZL-201(HB)	АЛ19	:	1			1	
	ZL-203(HB)	АЛ7	Ì				1	
	ZL-301(HB)	АЛ8						
	ZL-302(HB)	4Л22	İ	į		1		
	7.L-303(HB)	АЛ13	!	'				

75.2 <u>03.223</u>								
oluberation of	China.	Russia	<u> Inited</u>	States	Ing- Isna	ಕಮ್ಮಾಡಾ 	German F. D.	Caechoslomaide
metal :	GB	гост	ASTM	AAS	บร	IIS	DIN	ČSN
12 334	ZL-401(HB)	АЦР-1			!	í	<del></del>	
Al alloy	ZL-301(HB)	АЛП		1		1	·	
	T1	Mo					i	 
	T2	M1						
~	T 3	M2			,			
Copper	T4	M3			ŀ			
_	H96	Л96	*	基章	į		-	
222ರೆ	' H90	Л90		B 134-2 ( 50)	713	90Cu-10Zn	MS90	MS90
	H80	180 OBR	B36-4( D)	B 134-4( 17)	711	80Cu-20Zn	MS80	MS80
Solider	H68	Л68	i				MS68	MS68
_	H52	Л62	B 134-8( 7.7	•				
:111o;7	HPb59-1	ЛС59-1	B 124-2		216	j	MS58	
	HSn70-1	ЛО70-1			; 164	i i	SOMS71	MS59 <b>Pb</b>
	HSn62-1	ЛО52-1	B 291		!			
	HA160-1-1	ЛАЖ60-1-1			!		1	
	HMn58-2	ЛМЦ58-2	l					
	HFe59-1-1	ЛЖМЦ59-1-1			1		Ţ	
	QSn4-3	БрОЦ4-з					MSnBZ4	Cu-Sn4Za
	QSn4-4-2.5	∮БрОЦС4-4-2.5			}	}		

Translator's note: * p = plate and ** w = wire

	Shine	Russia	Inital States		Janen	German 7.	Czechoslovakia
igaga [†]	Q5n4-1-4	БрОЦС4-4-4	B 139BZ	1	BC6	MSnBZ4Pb	
	QSn6.5-0.1	БрОФя.5-0.15	B 139 B 159	107 3		SnBZ6	Cu-Sn6
	QSn6.5-0.4	БрОФ6.5-0.4		ļ	1	<b>\</b>	i
	QSn7-0.2	БрОФ7-0.2		1	1		C
Copper	QA15	5p 15	B 169 A	:	1	į	Cu-A15
30	QA17	БрА7	B 169 B				C. NO Ma
and	QA19-2	БрАМЦ9-2		ì	1	ì	Cu-A19-Mn
34.24	QA19-4	Ep \7K9-4			1		Cu-A110 Fe-Mn
Copper	QA110-3-1.5	Bp.\ \MII 10-3			ABC B 32		Cu-A110-Fe-Ni
20 2 7 32	QA110-4-4	БрАЖН 10-1-4	AM54640	2033		NIAIBZ	( fin William is extel
1110y	QBe2	БрБ2	)	1	}	i	
	QBe1.9	BrBHT1.9		j	1		
	QBe1.7	5pBHT1.7					Cu-Si3-Mn
	QSi3-1	БрКМЦ3-1	F98-D	[418			: Cu 513-1411
	QSi1-3	БрКН1-3		Ì	1	•	1
	QCd1.0	БрКД1.0		}	Ì	1	i
	QCro.5	BpX0.5	\$	i	-		1
	B19	MH:9	B 171	1 171-	2	CuNize	1
	B 30	MH70-30		•	}	ì	•
	1 BMn3-12	MHIMu3-12				1	1
	BMn40-1.5	¹ VHNu:0-1.5		•			
	67n15-20	VIIIu 1 20	POOR DOM		!	,	
	NCu28-2.5 1.	5) HMRViere (	1		:		

Tota: Taler JIS, the lesters in the bracket indicate the prospection shape of products, such as (3) - bor, (3) - ribbon, (7) - rlaso, (7) - tube and (7) - wire.

#### III. Mon-metallic Materials

- (1) Rubber and Rubber Products
- 1. Sealing Rubber Products (HG4-329-66) (ring-shaped)

The sealing rubber products of various section chapes made of oil resisting, heat resisting and acid and alkali resisting rubber material, all-rubber or blending with fabrics, can be used on various mechanical eqipment, and at a given temperature and pressure and with different routing media, it can perform secling action.

The rubber materials which are used to make sealing rubber products can, according to their characteristics, be classified into four groups:

Group 1: Oil resisting rubber

Group II: General rubber

Group III: Heat resisting rubber

Broup IV: Acid-alkali resisting rubber

Table 2-3-1 The characteristics and terminal

	i Rubber manerial) Syskamaenerian <u>ias</u> i		Thurs of modified	ionidag media
1 - 1   107 1 - 2   ne lium 1 - 3   high 1 - 1   107 11 - 2   ne lium 11 - 3   high 11 - 3   high 12 - 4   high		Low preserve medium high low medium high high high	-25 - + + + + + + + + + + + + + + + + + +	Inbricating oil, Stel oil builded in oil oil oil oil oil oil oil oil oil oil
111 -1 167 111 -2779 1177 111 -2 1117	nant pasishing	low medium madium	-30 - + 220 -20 - + 230 -30 - + 230	ಬಾರಾಜ್, ಇನೆಶ
IV – 1 lov IV – 8 melium IV – 3 bilyb	acid- 1731 recistion	low low low	430 - 4 50 -20 - 4 50 -30 - 4 6	milminuda na Inya mina 2015 Inya mina lamin Inti Isan in Inti Isan ina Isan maa 20

Fron				Gro									
Front	יות וו							The second of the second second					
		r		11, 101	ur 11	$\rho \mathbf{r}$		non	n 11	լ հո	genu N	p 17	.,
1-1	11	[3	1-4	1 - 1	1 2	1 - 1	1 1	1 1	<b>₹</b> 2	8 - 3	N	N 2	N 2
LH	101	111	f i	Tar	701	1 / 7 7		LH	>#11	177	1.11	1 100	1
66 1 6	afth	76 1 0	ROIA	ם י מר	0010	16 1 6	<b>R</b> 5 1.5	.5 t is	66.15	78.1%	66 1	60 1 .	78 1 6
AO	100	100	100	150	160	150	120	AU	100	100	<b>A</b> 13	100	100
160	300	250	150	450	440	100	240	400	16.0	300	400	37.0	100
30	28	25	20	35	30	30	25	16	30	30	35	10	10
- 10	- 30	- 10	76	10	40	- 16	15		•••		36	10	10
0.7	0.7	0.7	0, K	0.7	6.7	0,7	0,7	0.86	0.86	0.85	0.75	9.75	0.75
+ 15	+ 25	• 28	• 20	-	_	_	_	<b></b>	_	_	_	Ì - '	_
											!!	İ	
-3~ - 6	- 3~ + 5	- 3~ + 3	- 2~ + 4	- 1		-							-
		\ <b></b>		. ••		`•• -	•-	' .   :	, 	i i			-
-	-	-		. !	-		•			•	0.A	0.4	0,A
		'	· •-		!	 			· '			1	! !
-	, -	-	'	i				1			0.8	• •	• •
	16 + 16 16 16 16 16 16 16 16 16 16 16 16 16	155 + 5	AB + B   AB + B   AB + B     A0   100   100     16B   200   250     30   28   25     -3B   -30   -30     0.7   0.7   0.7     +2B   +2B   +2B     -3~+5   -3~+5   -3~+5			ñã r ñ         dất n         78 r b         nà i ñ         nh i à nh i n           na         100         100         100         100         100         100         100         100         100         100         100         100         100         100         450         480         30         30         28         25         20         36         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         3	No   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	No   100   100   100   160   160   160   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170	No   100   100   100   100   100   100   100   100   120   40   130   300   250   160   450   450   300   250   450   300   300   25   36   30   30   25   36   30   30   25   36   30   30   30   30   30   30   30	No   100   100   100   150   160   160   176   160   176   160   176   160   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176   176	No   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	No   100   100   100   100   100   100   100   200   400   100   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300	No

Translator's note: group 1 orr = oil resisting rubber; group 11 gr = general rubber; group 111 hr = heat resisting rubber; and group TV arr = acid alkali resisting rubber.

LH = low hardness; MG = medium hardness; and HH = high hardness.

# 2. Rubber Shoot for Industry Use (MCA-400-66)

Table 2-3-3 The physical-mechanical properties

		of mid or	Burrel, P.	or Industry uso
2226		chanlenl Prope	nd, ton	
3 4 6 0	12. 3 Tord- 4. AC 5. AGC 12. PD locate 4. AC 15. AGC		8.00	Con 11: Long
3 (g (m))	(**) (**) (**) (**) (**) (**) (**) (**)	C 20~ JO C 24 hr)	(20~30°C × 24 h (1° ) (36) <	of Heed
112" 20	250 36 80~75 0.85			White cardwers and low of yet only of antent porture one. Markt of in this of a gifth to a.
3 1125 60	26.0 ac~76 0.66			at =30 = + 6000. Publisher wealth, leading of an end work her ob at at at at object, out, I see by the star bar they were the mail.
1130 00	300 35 40~75 0.70			11 is headinger of the scient of end of the end of the forth terms of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end
1140 80	3no 36 85~70 0.78		         	Tolling burde and adverse beauty to the tent tent portained. The factor to the attribution, of -30 - + 6000 and leaves been are trained to the public resident, and and uladay poster and newto fiter and work terminal.
280 180	400 30 80-68 0.80			The Hum bandhood, good absention and the second of enticity. Norther in the air with term, or -36 - 4 6000 and tide pressure. White are the carbon of tangent, and to buffer; door and who are done and tangent, and to buffer; door and who are done and tangent.
12110 [86	100 30 46~60 9.60			Low hereboar but it is closed the testing to the attribution, of -15 - 400 0 and the precessor, the for attributed to 10 to the of the able to resign the estimates

Translator's note: 1.BS = breaking strength; 2.BE = breaking extension rate; 3.PD = permenent deformation; 4. AC = ageing coeff.; 5. ASC = acid resisting coeff.; 6. AS = alkali resisting coe-f.; 7. TC = transformer oil weight change; and 8. GB = gasoline + benzene (gasoline 75 units and benzene 25 units) weight change.

_50	nt!n	und									
30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2034	79	300	38	60~15	0.70	<b>0.</b> a	0,a			High learners an charter and self and all and anthropies. Together at test, of the first and test, of the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first and the first an
(\$ 1) (6 ); (9 ); (1) (3	2040	10	180	35	66~70	6.78	0.1	0,4			The time has been about allower in the man and the man and 2000, the take other graduation within and the man and another man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man and the man
377	1001	70	260	25	10~75	0.75			- 8	+20	Might be where the process of any are of the fall at not value. It is not sufficiently the modern and the sufficient to the modern and the modern are sufficiently the modern are sufficiently the modern are sufficiently and markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets are sufficiently at a markets and a markets are sufficiently at a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently at a markets and a markets are sufficiently
	1002	10	250	28	A0~76	0.78			- 20	9	first to a trace and and electron social and contribute and another mode and trace to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a place to a
	4001	10	<b>3</b> nd	.16	AG ~76	0,0 (100'F) » (8,1-1')					The large second start school of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
36.25	1005	100	150	16	\n <b>~</b> /u	0, n (100 () + (n 1117)		11			Militarin erial orași orași orași e este e unum nu 1791.

Table 2-3-4 The norms and dimensions of mabber sheet for inductor use

Thickness	(::::)	Thickne	ess (mm)		
Mominal	Permitted   demistion	Nominal dimension	Permitted deviation		
0.5	±0.15	500~1000	± 2%		
1.0	±0.2	500~1000	± 2%		
1.5	+ 0.3	500~1000	± 2%		
2.0	+ 0.4	500~1000	± 2%		
2.5	+ 0.5 - 0.4	500~1000	± 2%		
3.0	+ 0.6 - 0.4	500~1000	± 2%		
4.0	+ 0.7 - 0.5	500~1000	± 2%		
5.0	+ 0.7 - 0.5	500~1000	± 2 %		
6.0	+ 0.9 - 0.5	500~1000	± 2%		
8.0	+ 1.0 - 0.5	500~1000	± 2%		
10	+ 1.0 - 0.5	500~1000	± 2%		
12	+ 1.2 - 0.5	500~1000	± 2%		
14	+ 1.2 - 0.5	500~1000	± 2%		
16	+ 1.5	500~1000	± 2 %		
18	+1.5	500~1000	± 2%		
20	+1.5	500~1000	± 2 %		
22	+1.5 -1.0	500~1000	± 2%		
25	+ 1.5 - 1.0	500~1000	± 2%		
30	+ 2.0	500~1000	± 2%		
40	+ 2.0 - 1.0	500~1000	± 2%		
50	+ 2.0	500~1000	± 2%		

## 3. Square and Round Rubber Strin (Mu 3/1016-019-63)

Square and round rubber strips one be used to make sealing gashet, buffer and caulling strip used in such working media as water and air.

Table 2-3-5 The physical-mechanical properties of rubber strip

	Group
Physical-mechanical Properties	General square [Cil resisting square of round strip and round strip
Branking strangth (kg/m²)	>30 >30
Entension rate (5)	>250 >200
Dormanent Reformation (%)	<50 <40
Tordness (Shore) more than 16mm	75 ± 5 75 ± 5
less than liter	65 ± 5 60 = 5
Againg coeff. TOTO x 72 hours	>0.?
Southing in grassline at room temp. for / ars weight a volume change (4)	- <10
Fashing in angine oil at room temp. for the meint have obtained to the forms of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of the fashing of t	- <5

Table 2-3-6 The norms and dimension of rubber strip

Round must em strip			Square madder abrig			
Di meter	(::::)	Length	Side lan th	()	Zozosti: ()	
3, 4, 5, 12, 14, 16,		≥ 10 ≥ 5	5×5, 6×6, d× !3×13, 10×16,	8, 10 × 10 , 20 × 20, 25 × 25	≥:0 ≥5	

# A. General All-musber Tube ("GA-AOA-66)

The general all-rubber tube should be used at temperature of 45 4 43500. Then this kind of sipe is used, it must but to avoid any medianical damage and the contact of all and orderic colvent. The water bace and airthic matters to contact with abid and base. Then all-rubber take is used to convey tilling cold and base, the proposition of additional alignment.

Table 2-3-7 The physical-mechanical properties of general all-rubber tube

Physical-mechanical Properties		Conveying dilute acid and dilute base
Breaking strength (Mg/mm2)	≥50	≥65
Dreakin wextension rate (3)	≥250	≥300
Tauriness (Shore A tyme) (degree)	63~78	66~75
Ameing coeff. (709 0 m /3 ms)	≥0.8	≥9.8
Anti-acid coeff. (407th 50/m 241ms)		≥0.85

Table 2-3-8 The norms and dimensions of all-malber tube

Inner diameter (tm)	3 5 6 8 10 13 16 19 22 25 32 38 51 64 7	6
Thickness of mitter layer (mm)	1.5 1.5 1.5 2 2, 2.5 2.5 3.5 3.5 3.5 3.5 4.5 4.5 5.5 5	.5
Langth (m)	>6	_

## 5. Rubber Tabe Reinforced With Sotton Thread (HCA-405-66)

Table bube reinforced with cotton timeed is made of inner mixer lawer, sown in med fabric lawer and outer mixer lawer. It can be used as reprinting temperature of  $-15-495^\circ$ C and under remide the approximation of lifety and where.

Table 2-3-9 The physical-mechanical promerties of robbin tube reinforced with cotton thread

	Phraical-medianion1 promorties							
Tubben Lorren	Breaking strength (1-3/mil)	Transiting artonoion	(a000 • 10 point) (a000 • 10 points)					
To the second to the	50	350	2.70					
Original professional	۲۵	200	2.30					

Table 3-3-10 The norms and dimensions of rubber tube reinforced with cotton throad

Inner dinmeter	l'mimess qi	mubber lyer	Monsting preserves
(=====)	Inner layer	Cuter layer	(leg/mm ² )
5	>1.4	>1.2	
6	>1.4	>1.2	
8	>1.4	>1.2	5, 10, 15
10	>1.6	>1.2	
13	>1.6	>1.2	,

# 6. Pressure Rubber Tube of Rubber-sandwich-cloth (HGBA905-60)

Table 2-3-11 The norms and dimensions of pressure rubber tube of rubber-sandwich-cloth

Jses			Lawer thick ness no les than (mm)	t- Working pre- ss saure no higher than	Rubber buse langth	
			Innerouser	( <u>:-</u> /- <u>-</u> , <u>-</u> )	permitted common	
To convey yas, gasoling neuroleum, Lubricaving will, and dilube acid and basic solution	:	= 0.5 = 0.5 = 0.5 = 0.5 = 1.0 = 1.0 = 1.0 = 1.5 = 1.5 = 2.0 = 2.0	1.5   1.0   1.8   1.0   1.8   1.0   2.6   1.0   2.6   1.0   2.0   1.2   2.0   1.2   2.3   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   1.5   2.5   2.5   1.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5	5, 10, 15 5, 10, 15 5, 10, 15 5, 10, 15 5, 10, 15 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 10 7, 1	The League of mulces mine is muler 10m, the portion liferen se is ± 100mm. If learth is prem 100m common difference is ± 200mm.	

	-		Lagrer	thick	Toulding pur -	Richer mine Learth
	Inner d	iameter	ness	no less	ssure no	
Tses	(	)	then	<u>(::::::::::::::::::::::::::::::::::::</u>	higher than	
	To final	Permitted	Inner	Cuter		Parmitted common
	dimension	com.diff.	lagrer	layer	( <u>leg/mm</u> ()	li rerence
o convey .						The length of militer
nter.	8	±0.5	1.2	0.8	5,10,15,20,25	pipe is under 10m,
	9.5	±0.5	1.2	1.0	5, 10, 15, 20, 25	the common differen-
	13	±1.0	1.2	1.0	5,10,15,20,25	ce is ± 100mm. If
	16	±1.0	1.2	1.0	5,10,15,20.25	length is over 10 mm
	19	±1.0	1.2	1.0	5,10,15,20.05	bie common di lesu-
	25	±1.0	1.6	1.2	5.10,15,20.25	page is ± 200mm.
	32	±1.5	1.6	1.2	5, 10, 15, 20	1
	38	±1.5	1.6	1.2	5, 10, 15	i
	51	= 2.0	1.6	1.2	5, 10, 15	!
	64	± 2.0	1.6	1.2	5, 10	ì
	76	± 2.0	1.6	1.2	5, 10	j
	89	±2.0	1.6	1.2	5	
	102	±3.0	2.0	1.5	3, 5	1
	127	± 3.0	2.0	1.5	3, 5	
	152	±3.0	2.0	1.5	3, 5	

Note: The length is suggested by consumer and has consent from the manufacturer.

The high Pressure Rubber Tabe With Steel Mire Reinforcement (132-406-46)
The high pressure rubber tube with steal wire reinfinement is high
therefore oil redisting hose, which is compaced of the immer rubber layer, the
steel wire fabric layer, swelliamy conton thread fabric layer, middle rubber
layer and outer rubber layer. According to the difference of verking pressure.
There are three different types of structure: rubber tube with one lawer of
thele wire reinforcement: rubber tube with two layers of sheel wire reinforcement. The such
ent and rubber wire with the slavers of sheel wire reinforcement. The such
ent we want to conver entire oil, labrication oil and aim as we wint to somersturn of -90 - 4000 and we with a pressure of 60 - 000 to/mi.

Table 3-3-12 The norma and dimensions of high presource refler whe which sheet offer meinfire on it

"omilia	ไวร์ อาราธุรสาดสำ	· · · · · · · · · · · · · · · · · · ·	Course Manates	
inner rubber layer Higheter no less than		Tabler true with one lawer of steel wire	two layers of steel wire	Paulier ribe mitto timee larers of steel ribe
Ston- Corn.	Inner Outer	Straderd Common	Stradard Cormon	Standard Cornon
# ±0.3 ±0.2 5 ±0.2 6 ±0.2 8 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 10 ±0.2 1	1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.5   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	15	19	25 ± 1.0 27 ± 1.0 28 ± 1.0 31 ± 1.0 31 ± 1.0 35 ± 1.0 41 ± 1.2 41 ± 1.2 53 ± 1.2 61 ± 1.2 61 ± 1.2

# (2) Plastic Materials and Their Products

### 1. Phenolic Plastic Material

The phenolic placetic material is a widely used thermosething placetics. In the great toughness and lesser cold flowability. The residing temperature is high and has the commoderistics of not softending and deforming at high an appropriate. The commonly used type of phenolic placetic material is expectibled placetics, which can be used to make place, bornered tube. This expectible placetics can be filled with different materials, such as paper filled placetics, show the filled placetics. The can be used to make space placetics. The can be used to make space prove of various shapes. Phenolic placetics are affected when the cold to make space proves of various shapes. Phenolic placetics are affected to the filled placetics are affected by the filled placetics. The can be used to make space proved by which has placetic are affected by the filled placetics.

20 A mesmosocia o multinormo o Presimbulin rada i micrualia minda i en la micrualia.
2012. 34043 01. 2012. 849414.

Table 2-3-13 The physical-mechanical properties of phenolic stratified plate

					anical propert				
	Specific gravity	Niter absor-		Beuding	Impact value	Fres	sing	lartens	
Prentd		-	strength (kg/mr2)	Strength (lig/mg2)	nerp.to plate (kg.mm/mm²)	stre (':~/	ngth mm²)	nnti- hen <b>t</b>	Uses
	(g/cm ³ )	(ਫ਼/ਰਸ਼ ² )	(diametral)	(dinmetral	)(diametral)	داراء	##∐ŋ	(ng)	
3302-1	1.30~1.45	<0.6	≥1000	>1600	>35	>2500	≥1500	1 30125	As structural making terial and making
3302-2	1.30~1.45	<0.6	≥850	≥1450	≥35	≥2300	≥1300	≥125	mechanical part
	1			1	1	<del></del> -		>125	terial and :

Translator's note: *Pp = perpendicular to the plate and **Bp = parallel to the plate

Table 2-3-14 The norms and dimensions of phenolic stratified plate

	Thickness	(m)	(mm) no less th
0.5, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1	.4, 1.5, 1.6, 1.7,	1.8, 1.9, 2.0, 2.3, 2.5, 2.8, 3.0, 3.3, 3.5,	600 × 400
3.8, 4.0, 4.3, 4.5, 5.0, 5.3, 5.5, 6	.0, 6.3, 6.5, 7.0,	7.3, 7.5, 8.0,8.5, 9.0, 9.5, 10.0, 10.5, 11.0.	
11.5, 12.0, 12.5, 13.0, 13.5, 14.0,	14.5, 15.0. 16.0, 1	7.0, 18.0, 19.0, 20.0, 21.0, 22.0,23.0,21.0,	
25.0, 26.0, 27.0, 28.0, 29.0, 30.0.	31.0. 32.0. 33.0. 3	4.0, 35.0, 16.0, 37.0, 38.0, 39.0,40.0,12.0,	
45.0, 48.0, 50.0, 52.0, 55.0, 58.0.	60.0. 62.9. 65.0. 6	8.0, 70.0, 77.0, 80.0, 85.0, 40.0, 95.0,100.0	

#### 2. Industry Organic Glass (MGR-343-66)

Industry organic glass is a semifinished plastics entruded into the shape of plate, but or tube from polymethyl methacrylate with or without additional plasticizer. Its appearance is transparent, semi-transparent or non-transparent and it has color or no color. It is mainly used to make component parts which require a certain degree of transparency and strength, such as oil marker, oil line, oiler, equirent mark, shell and acid-base resisting vescel.

Table 2-3-15 The physical-medianical propermies

					<u>istim or -</u>	<u>unic</u>	<u>_</u> 233	
	lell	Impact	strength	Tensile	lbrtens	Anti-	Iransnarenov	(colorless
	ļness	1		strength	antiheat		<u>hi</u> nsa) (	71
	<u>/2                                </u>	('-~-	<u>m/mn2)</u>			LI ack	Thickness	Thickness
Color	Colored	Color	Colored				less	more
1983		less		(lan/mm²)	(°C)		than 20mm	_ <u> </u>
13	<i>1.1.</i>	12	10	500	65	OII	<u> </u>	

Table 2-3-16 The norms and dimensions of industry organic glass

	<u> </u>	te	orts o	2 20:22 5:22		
	Parmittal lari. Mica ( modo 2)	-:Permithod deri -:It elem)	Dinmeter .)	Diameter permit-	Length	
1.0	± 0.20	± 0.40	5~15	+ 10%	200	
2.0~3.0	± 0.35	± 0.60	·	- 0.5	-7 -	
4.0~5.0	± 0.50	± 0.80	16~40	+ 1.5 - 0.5	200 200	
6.0~7.0	± 0.60	±0.90	41~100	+ 2.0	0.4.51.	
8.0~9.0	±0.70	±1.00	<u> </u>	-1.0	<u> </u>	
over lê	± 10%	± 10%	-  Cver	+ 2.5 - 1.0	Low Jew (5) Signater	

# 3. Polyvingil-choride

The molyminal-phonics is a widely used blasmoseriding ministing. To the high masternia managery, good newformance most in electric equipment had the authorized in the latest and the stability. To one to make the materials of the of nothing.

products, such as tube, rod, plate, welding bar and thin film by adding different amount of plasticizer and stabilizer in the resin. It and also be used to make pipeline, vessel, pump body and covering shall.

The properties and norms of polyvinyl-choride plate (MG2-62-65), hard polyvinyl-choride tube (MG2-63-65) and soft polyvinyl-choride tube and band (MG2-64-55) are respectively given in Table 2-3-17 through Table 2-3-20.

Table 2-3-17 The physical-mechanical properties of hard polyvinyl-choride plate

Physical-m	echanical	propertie	98	
Specific gravity (g/cm²)	Tensile strength (mg/cm2)		antiheat	Samples of Tses
1.35~1.60	≥450~500	≥800~900	≥65	Making corrosion resisting and chemical industry construction material or used as building material.

Table 2-3-13 The norms and dirensions of hard polyminal-choride place

Mominal Thickness	Midth	Length
2. 2.5. 3. 3.5. 4. 4.5. 5. 5.5. 6. 6.5. 7. 7.5. 8. 8.5. 10. 12. 13. 14. 15. 16. 17. 20	≱400	>500

Table 2-3-19 The physical-mechanical properties of hard polytim-1-choride tube

3					rertie	,		•
pebcilic	Corrosive	l'ens.	ile	Dimens	ion	Tsing pr	J G 4 MG	
gravity	-ness		ngth	chande		)	, , , , ,	
$(z/cm^3)$	( ( 2)	( <u>}</u>	em )	(7)	)	(½~/cm	٤)	
(g/cm ⁻ )	(g/m²)	30°0	60°C	Length	Diame-	Light	Heavy	
				<u>-:rise</u>	tral	tube		
1.35~1.60	<b>≤</b> ± 2	300	100	≤±4		5	10	To convey some kind of liquid and the

Table 2-3-20 The norms and dirensions of hard polywinyl-choride tube

Porinal	Internal diameter		<u>arwe ka/om</u> ?	Ye (vorkin	Len	
(:::)	( <u>m</u> )	Wall thick- ness (mm)	Approximate weight (htt/m)	Tall this ness (rm)	k- Arprominate weight (km/n)	()
8 10 15 20 25 32 40 50 65 80 100 125 150 200	12.5 15 20 25 32 40 51 65 76 90 114 140 166 218	2 2 3 3.5 4 4.5 5 6 7 8 8	0.16 0.20 0.38 0.56 0.88 1.17 1.56 2.20 3.30 4.54 5.6 7.5	2.25 2.5 2.5 3 4 5 6 7	0.10 0.14 0.19 0.29 0.49 0.77 1.49 1.74 2.34	<u>!</u>

Table 2-3-21 The physical-mechanical properties of soft ploprinyl-chorise tube and band

			ication		
Edition titals Thus		Turnil-Man (College Main Limit) onn-			
	ກັນອ <b>ີ</b> : ໂ <b>ຂກ</b> ີ ຍ	a <u>d brad</u>	<u> </u>		
Volume resistivity (ohm.em) when at 2000	≥	1×1014	1 × 1010	_	
Volume resistivity (o'un.om) when at 7000	≥	1×10 ¹¹	-	_	
Breakdown voltage strength (107/mm)	≥	18	14	_	
Tensile strength (kg/cm2)	≥	180	100	100	
Breaking-amension rate (5)	>	200	150	150	
Teading loss rate (160°C. 6hrs) (5)	<	4.0	-	_	
Coll resistance (90)	<	- 50	- 40	- 30	
Ageing performance:  Heat ageing tensile strength remains rate(")	>	90	_	80	
Root againg broaking-entakcion remains rote(f	) >	70		50	
Water abcombivity (7)	<	0.3	1	1.5	
Cil masistrace:   Dil masisting bassile rimangth remoins rese(4	` <b>&gt;</b>	80	_		
Oil registing upopt-and. Provided Date (1)				-	
Indem preserve lesses:	>	60	-	<del>-</del>	
		-	-	110	
Libertion (7000, 30 minutes, Fly (un)	<	-	1.5	_	
Combination resistance		Flame does	_	_	
		spread		1	
		uld be			
		off at			
		<u> </u>			

Table 2-3-22 The norms and dimensions of boot polymingst-choride tube and band

Thermal diameter   Tube	⊒:3e				30.32		12712	<b>0</b> 02270	ting this
### ##################################	Internal	Tube	*	Vista	Thick-	*	Inter-	Pube	Length
### ### ##############################	diameter	wall	L		ness	L	nal	tall	
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)					}	:	diame-	thick-	
1.0 ± 0.2   0.3 ~ 0.5   2   10.0 ± 1.6   0.5 ~ 0.8   2   -		1	i						
1.5 ± 0.25	(:::::::)	(1777)	( <u>m</u> ) (	(===)	(::::::::::::::::::::::::::::::::::::::	(:::)	(::::::)	(-21)	(=;)
1.5 ± 0.25   0.3 ~ 0.5   2   15.0 ± 1   0.5 ~ 0.8   2	ه رسمیدی در								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.0 \pm 0.2$	0.3~0.5	2	10.0 = 1.0	0.5~0.3	2	-	_ ;	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 ± 0.25	0.3~0.5	2	15.0 ± 1.0	0.5~0.8	2	-	-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 ± 0.25	0.3~0.5	2	15.0 ± 1.0	1.35~1.67	2	<b>-</b>	-	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 ± 0.25	0.3~0.5	2	20.0 ± 1.0	0.3~1.0	2		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		,	: 1	20.0 ± 1.0	11.35~1.65	. 2	3.0 ± 0.20	1.1 ± 0.0	10
4.5 ± 0.25   0.5 $\sim$ 0.7   2		1	1 1				- '	-	_
4.5 ± 0.25   0.5 $\sim$ 0.7   2	4 0 + 0 9 =	0.5-0.7	,	50.0+1 (	31.35∼1.63	. 2	4.0 ± 6.25	3.1 ± 0.6	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			! - !	30.0 = 11.	1		_		i _
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1			)	1 5.0 ± 0.25	3.2 ± 0.4	10
7.0 $\pm$ 0.3			i i			1	0.000	3 7 + 0 6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	!!			İ			
9.0 $\pm$ 0.5   0.5 $\sim$ 0.7   2     9.0 $\pm$ 0.5   3.3 $\pm$ 0.5   10   10 $\pm$ 0.5   0.6 $\sim$ 0.8   2   12 $\pm$ 0.5   0.6 $\sim$ 0.8   2   14 $\pm$ 0.5   0.6 $\sim$ 0.8   2   14 $\pm$ 0.5   0.6 $\sim$ 0.8   2   14 $\pm$ 0.5   0.6 $\sim$ 0.8   2   16 $\pm$ 0.8   0.8 $\sim$ 1.0   2   16 $\pm$ 0.8   3.9 $\pm$ 0.6   16   16 $\pm$ 0.8   1.0 $\sim$ 1.3   2   20 $\pm$ 1.0   1.0 $\sim$ 1.3   2   20 $\pm$ 1.0   1.0 $\sim$ 1.3   2   25 $\pm$ 1.0   1.0 $\sim$ 1.3   2   25 $\pm$ 1.0   1.3 $\sim$ 1.5   2   2   25 $\pm$ 1.0   1.3 $\sim$ 1.5   2   2   34 $\pm$ 1.3   1.3 $\sim$ 1.5   2   36 $\pm$ 1.3   1.3 $\sim$ 1.5   2   36 $\pm$ 1.3   1.3 $\sim$ 1.5   2   36 $\pm$ 1.3   4.7 $\pm$ 0.8   16   40 $\pm$ 2.0   1.5 $\sim$ 2.0   2		i	1 1		}	į	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.0 ± 0.5	0.5~0.7	2		1		1		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 ± 0.5	0.5~0.7	2		1	1	!		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ± 0.5	0.6~0.8	2		İ	i	i	í	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 ± 0.5	0.6~0.8	2			(	12 ± 0.5	3.9 ± 0.6	1 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 ± 0.5	0.6~0.8	2			1	14 ± 0.5	3.9 ± 0.6	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 ± 0.8	0.8~1.0	2			1	16±0.8	3.9 ± 0.6	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1			1	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+1 0	1 0~1 3	,			1	20 ± 1.0	3.9 ± 0.6	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1		•	-	-	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1	1	1	25 ± 1.0	3.9 ± 0.6	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1	i		_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1				_	~	_
$36\pm1.3$ $1.3\sim1.5$ 2 $36\pm1.3$ $4.7\pm0.8$ 10 $40\pm2.0$ $1.5\sim2.0$ 2 $40\pm2.0$ $4.7\pm0.8$ 10		1	1	1	j		34+13	4.7 + 0.8	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34 ± 1.3	1.3~1.5	2				1	}	
40.2.0 1.3 -2.0 2	36 ± 1.3	1.3~1.5	2					1	i
1 1 1 1 50±2.0 1 5±0.8 i IC	40 ± 2.0	1.5~2.0	2				1	1	1
		}					50 ± 2.0	5 ± 0.8	10

Note: The permitted therefore for liquid conveying take: If a the internal diameter is 3-10mm, threather is 2.5km and if the internal diameter is 12-50mm, the transmit is 2000 and 2000 and

# 4. Fluorinated Plastic Naterials

The fluorinated plastic material is a general name of thermorlast. It has much bester charical stability, electric insulation, which working termenature range, water resistance and lower coefficient of friction than other plastics. It is often used in powder through cold pressing and thermosetting to make shaped pieces, such as plate, bar and tube. The fluorinated plastics are which used to make component parts of anti-corrosion, high insulation and sight ceating, much as sealing ming, bearing, plated ming and sufference. It can also be used to make component parts of very strong corrosion resistance and very high insulation strength.

The properties and norms of the commonly used teflor plate(MD2-53'-67), bar (MD2-535-67), tube (MD2-536-67) and the filling products (MD2-539-65) of plate and tube are given in the Table 2-3-34 Narough Inble 2-3-31.

Specification   Gent   Green   Sur-   Folime   Prop-	Table 2-3-23 The physical-mechanical properties  Physical-mechanical properties	es of teflon
2.1 < 0.005 7.4 × 10-5	Spec. Miter Lin. Gest by Glensi Breek Sur- Volume Proc- Line property oned. I grant ent. The resist une Line coeff. coeff of Sur- to the resistance resis.  (1.73) (4-coil of tog/ Coff (com) (com) (com)  (2/ coil of com)	Shaples of Maer
inay ni taon ofing his openiin ofine. The discination of the opening making and the	2.1	high temperature residuals commonent, such as filler, liner, our ring walte block and write block. Also writing with temperature commonical religion rine. Line, such enemals lile, was all in the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common and the common

Table 2-3-24 The physical-mechanical properties of tellon plate

	Physion 1.	-mechanic	l popregrati	38
Brand	Specific	Tensile	Bracking	Samles of Uses
	weight	strength		
	(g/gn.3)	(leg/cm²)	(લ)	
SF3 - 1		i		Die-pressed plate can be used
	{	≥150	<b>≥</b> 250	to make liner working in warious
(die-pressed	2.1~2.3	: ==150	230	corrosive media at temperature of
nlase)	1			L140 - +250°C, sealing and anti-
rSFB-2	†			Timiorion nomnonent parts, and
(unilaterall:				rarious insulation parts used at
pressed ex-		≥300	≥30	different framencies.
ending plate		-		The unilationally arreading place
g				is suitable to be used under 12000.
SF3 - 3	<b></b>			Before being used, it much undergo
J. J - J	1			'a heat treatment at temperature
(machine pare				2500 higher than working temper-
	1	≥180	≥150	ature so as to stabilize its
place)				Himensions. It is good to be used
	1			to make dianhmagn used in comp-
		1		
		·		sive media and view mirror.

Table 2-3-35 The norms and dimensions of teilon place

<u> Iniologae</u>	'Ædth	Length
1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 25, 30	250	250
1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30	400	400
0.3, 0.5, 0.8	206	≥200, 500
0.5, 6.6, 0.7	60. 90. 120	<del></del>
0.8	50, 90, 120, 300	<b>≥</b> 250
1.0, 1.5	60	

Table 2-3-36 The physical-maximaisal proporties of tellor bar

Erand	Physical- Specific weight (g/cm3)	Tensile stre gt:	ent.rate	
SF2N - 1 (pushing pressed boy	2.1~2.3	≥100	≥100	Making liner working in termious cor estre media, sealing and friction-reducing
STDN = 2 (proprised (pro)	2.1~2.3	≥100	≥50	<pre>press rul alectric fusulation     names upod at morious laruer= j cias.</pre>
STOW - 3 (life-pressed tour)	2.1~2.3			

Table 2-3-27 The norms and dimensions of teflor bar

	()
Dinmeter	Length
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16	50, 200, 300
14, 16, 18, 20	100, 200
22, 24, 26, 28	50, RC. 100
30, 32, 34, 36, 38	, 100, 150
40, 42, 44, 46, 48, 50, 55, 60, 65, 70, 75, 80, 90, 100	100, 150, 206
140	70
170	100, 200

Table 2-3-22 The physical-mechanical properties of terior tabe

		moch							and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
timind.		Continuition (Continuity)	or dia milio (")	10 (10) 100 (10)	v ل ۱۰۰۰ بارین		wc11 •		Smarler of More
2772 -1	1=0.	<b>400</b>	700	۲,	n	10	1;		The tage of the factor of the thing of the state of the tage of the tage of the tage of the tage of the tage of the tage of the tage of the tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of tage of ta
GW -2	1.1="."	140	150	7.	ı,	10	12	:	ta recta. Meald, the tree at of the well lifely and ty to reach the power of the given
581 <b>-</b> 3	2.11.	boló	:"10						Institucy can be unset to be a set of the form essuation and them betten performently. In contains one and a sectional, be resultant of LIME 1.00000

To do 2-3-29 The norm and disconform of Letter take

			<u>(m)</u>
19ma (	Intagnol of incolors	Mod Salatoknopp	Langeth
Punisher presented	0.8. 0.9. 1.0	0.7	200 7000 200 ~ 7000
11 - (4 -0.5~1.8)	1.2, 1.4, 18, 18	0.2 0.3, 0.1	250 - 1006 260 - 2000
SFG-≇	2.0, 2.4, 2.8, 2.8, 3.0, 3.4, 3.5, 4	0.2	260 2000 260 15.00 200 1000
int the precipied ather (despoyer)	6, 6, 7	0.5 1.0 1 0.5 1	200 tone -
		1.0	200 1000 200 1000 700~1000
•	6, 9, 10	1,5	798 taon 708 (1866 758 1866
:	11, 13 (4, 17, 10, 78, /8, 10	1.1.5	100 1000
Section to the section	11a 18	[ ]; terred 24 [ ]	١٨٥ هو

table 2-3-30 The physical-machinited properties of terton physical distributions for a

				TOTAL DESIGNATION	The transfer of the second	·
Prond	new sol	Long Long Wind Lo Strong (h) (b) Zon	lumile	Proportion of Millor	Germetar intien	Scalou of Head
S'T' = 1	1.86 من	ina د	>10	d Olag 15% or greatelso	To proceed inheletty sat- contained Latinen the ta- poor	itter thee, could ge or att Interactor platon chaptority
<b>5</b> 27 = 2	>1.1	>100	160ھز		and disconding about the bul, more interesting	to contain swith end batas son this be a more and = 100 = \$100 to.
5 T = 3	>3.0	120 مز	200 مز		Soul Palettan vertsteren und Lant, conductivity und un var atablity	
SFT = A	>1.2	70 هـ	ء 10	Militar 55 of graphita and 205 Seen powler	Lood Entertion restationer; poor mechanisms attenualli	

Table 2-2-31. The normal and discussions of botton place and ber filler products

on a comment of Laftan (11) has plate	(13(1)	the norm off office of the lar	( - )
This element	Law Dr x wlath	Diemoter	Ion th
2, 5, 4, 6, 6, 7, 8, 0, 10, 11, 12, 13.	260 a 260	16, 16, 76, 72, 24, 76, 78, 36, 32, 34, 36, 38, 46, 42, 44, 48, 48, 60, 68, 80	in, E0, [90

# 5. Ginnamene-Buthdinne-Propenyl-cyanide Comolymer (ADS)

The ABS resin is composed of three elements. Dimmamene-Butadiene-Propendle synaide. It has good comprehensive properties such as heat resistance, high surface hariness, dimension stability and performance with electricity and it is easy in shape-forming and cutting, so it is widely used to make blade wheel, bearing, shell and vessel.

Table 2-3-32 The physical-mechanical properties of Ginnamene-<u>Tubadiane-Properul-cyanide (NTS) conclumen</u>

				:
Physical-rechanical properties	Super impast type		time	Anti- heat
Shecific reight Union abcomplishing (34 hms) (7)	1.05	1.07	1.02	1.06~1.08 0.2
Thermal deformation (1.6 rg/cm²) og (18.6 kg/cm²) Linear emonsion soe??. m10-5/20 Combustibility (>1.27 mm thickness) mm/sec.	96 87 10.0	98 89 7.0	98 78~85 8.6~9.9	104~116 96~110 6.8~8.2 0.55
Tensile strength (ultimate) hy/om/ (rield)  Tensile elasticity modulus r10/hg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ strength rodulus r10 hg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/ leg/om/	350 	630 2.9 970 3.0 —	210~280 210~280 0.7~1.8 250~460 1.2~2.0 180~390 62~88 27~49	\$30~560 \$30~560 2.5 840 2.5~2.6 700 108~116 16~32
Lond deformation (50°C, Lilling/om ² ) (1)		-	21~32 8.1~18.9 —	11~13
Disruptive strength(s out time)   lm/m   Volume trains   clm-on   Cislectric coefficient (106 let s)   Cislectric loos (102 let s)		10 ¹⁶ 02.4~5.0	15.1~15.7 101* 3.7	1018
Ama minakas was una	0.00		0.011~0.073 70~80	70~80

#### 6. Low Pressure Polythene

Low pressure polythene is a kind of thermodetting plastics. It has good electricity insulation performance, high chemical stability and good absosive resistance. But it is soft so its mechanical strength is low. It can be used to make component parts of friction resisting and light load, inti-corresion vessel, or pipeline, and it can also be used to spray over metal surface as a layer of anti-friction and anti-corresion

Table 2-3-33 The himsical-medianical proporties of low presoure polymiene

Physical-mechanical properties		Tumerical value
Specific weight		0.94~0.965
Inter absorptivity	(7)	< 0.01
fallting modifie	ဝင္	120~130
Pensile strength (yield) (breaking)	icg/cm ²	220~390
(breaking)	<b>J</b> .	150~160
Ettension rate (breaking)	(5) n 10 kg/m2	60~150
Pansile elasticity modulus	n 10 leg/m²	0.84~0.95
ending strength	kg/om²	250~400
mpact strength		
(trith breach)	lig. om/om ²	7~8
(no breach)	•	>182
ommagaica strancth 🚊	:/-m3	225
otigne strength (10 egole)	in/om3 kg/em3 00 00 11 10-5 / 00	110
้อนซ์ rhaiat หลือ	2,00	121~127
min lenesa temperature	<u> </u>	- 70
ilagem ermendion objet ligieno	:: 10−5 / °s	12.6~16.2
olume preistrade	olim/am	1040
(Moor socially in water for 7 days)		1016
)ielectric coefficient(LOChert)		2.3~2.38
dielegurio losa (10 ⁰ teraz)		0.0025~0.00023
isruppive surenuth	• • • • /	26.1~28.4
(Alter social) in unter for " dors)		26.1~27.2
ro rosistanos	790.	150

#### 7. Polyment to (agricon)

Policustis is consumally malled valor and a wisely used a common sing place when To use you seem that sweether will be industrial and the line of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract

resistance, but it is easy to absorb water, which can affect the stability of its physical ecclesical properties and dimensions. Foothy it is used to make revolving parts of man fee tool and material according parts, such as goar, one, blade wheel, bearing and scaling part. Eylon reader can be used to approxible friction surface such as of guideway to prove the absentace and scaling.

lylon which is made by vey of individual pouring is called MC nylon, one bind of polymoide plantics. Its Country tocalique is aimple but its mechanical properties are bother than either binds of nylon. It is used to make pour-conting unit, Jarge commonent parts, like harder, hearter and guille way.

	Table	2-2-3	4 Tho	physic	nl-roch	malent	money	<u> Llen or</u>	nglon		
Dhusteel medical amounts					dr	nul					
Physical-machanical proporty	197001	117	II R	119	N 11	3 12	1010	1: 66	610	16/16	366/2010
	1.13~1.16	1.10	1,00	1.00	1.04	1.00	1.04-1.01	1.14~ 1.1	1,64-1.09	1.11	
Tomble strength ky/cm	840~7HO	680~600	270	580~650	67#	450~600	\$20-660	570~630	4.4~600	349	174-440
Compression atrought by/org     Bonding atrongth	600~ UGO							940-1200			600~ L 10
It mate attents (constable) and	700~1000	1960	1.6~0.0	ROO-AGU	3.5~4.8	##@~#7#	1~5	3.9	100~1000 3.5~5.6		800~ 6.0
(no breeze's)		128~150	Į.	260~300		110~120	-498				50~41·
	160~250		100		60~230	230~240	100~260	nu~?na	100~710	(#u	
- Electrolty modulus x10°k /am' - Postness (Nachsell R)			0.21	0.87~1.2	ŀ		1.0		1.2~2.3		
(Princil) Kylink	86~114				7.5		7.1	100 1P	40117		
Moditing point OC	215~223	200	200~203	100~210		178	700-210	263	210123	170 -171	70~224
Marina multi-hamb	40~60			12~18	(3R)		45	LD~ &H	51~5h		
	160~160			>150	173 178		123 -190	270	195 76		
Special of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the Styles of the S	0.4~0.5			0.49			0.5	0.4~0.5			
Tent coul. near". kr/m.hg. "5				0~12	11.412.4		16.4		v.0~12.0		
Telem of county for (4)	1.9~2.0		1	1.7		1.6	0.10	1.8	0.6	1.4	

Note: Due to the great water absorptivity, various properties of nylon 6,66 and 610 are different.

Table 2-3-35 The physical-mechanical properties of NC nylon and filled NC nylon

	Classification						
Dimeiscl-macharical phonorties	is filling	Activator 0.31	Tala 1.5%	12780 (20a ).			
Tencile strength kg/	em~ 916	897	890 ,	904			
Extension rate / (	3) 20	20	28	24			
Tencile elasticity modulus $\mathbf{x}$ 10 $^{\circ}$ kg/c		_	<b>-</b>	_			
Sending strength kg/c		1526	1547	1608			
Commession surength kg/c		1102	1115	1125			
I neat strength (no irreach)kg.cm/	cm~ 520~624	512	145	138			
'artins heat resistance	OG 55	52	51	57			
Wardness (Brinell) kg/c	m ² 21.3	19.6	18.8	18.7			
(Pockwell)	91	87	88	89			
Linear expansion coeff $x 10^{-5/0}$	S 8.3	8.2	7.6	7.9			
Specific weight	1.160	1 - 1	1.162	1.165			
Priction coefficient	0.45	0.42	0.50	<b>0.4</b> 5			

Implator's note: *i = unit

### 1. Polyformaldehyde

Polyformalianness is a thermosophing angineering phratics of high obserption. It is succellent physical-mechanical properties, dimension stability and good performance in friction loss, but there is a shortcoming that it can burn when it touches fire. It is widely used to substitute for metal and alloy and to make year, can wheel, there is sering and female seriow.

Table 2-3-36 The physical-mechanical properties of collabormatic wie

Physical-mechanical properties		Numerical value
Specific capacity	cm ³ /kg	712
Formation shrink rate	(4)	2.5~2.8
Water absorption rate (24 hrs)	(4)	0.22
Linear expansion coefficient (0~40°C)	x 10 ⁷⁵ /93	9.0~11.0
Yartins heat resistance	0 %	57~62
Continuous heat resistance	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	104
Figure 1 deformation temp. (19.5km/gm2)	≎ <b>∧</b>	110
Erittlewess temperature	ာရှိ	-40
Cominus titoi Liter	•	Combuschilot Idean Corns
Sandhine effect		
Tensile strength	2 / m.?	620
Tensile elasticity modulus	%~/om² x10~kg/om²	2.8
Extension rate (yield)	(7)	12
(break)	• 7	60
Compression strength	$lc\pi/cm^2$	1130
Compression elasticity modulus	leg/em² m204 leg/em²	3.2
Bonding strongth	10 kg/cm2	910
Bending elasticity modulus	x10- kl/em2	2.6
Impact strength (no breach)	kg.cm/cm ²	90~100
(with breach)	3,000	6.5
Dielectric coefficient (60 hertz)		3.8
(10 ² hertz)		3.8
Dielectric loss (60 herts)		0.004~0.005
(lo²hertz)		0.004~0.005
Wolming resistance	olun-em	0.004~0.005
วิธีธานางมีหล สามารมสูฟไ	1/	18.6

#### 9. Polycarbonate

Polycarbonate is a thermosetting engineering plastics of good porformance. Its physical-mechanical properties are higher than those of aplon or polycormolegate. It was high impact attempts, smeelland limension stability and good lead positions. It is a observed to make year, prok, appliant which, and, and we will properties.

Table 2-3-37 The physical-mechanical properties of polycarbonase

Physical-mechanical properties		Dimerical value
Tensile strength	kg/cm ³	660~700
Intension rate	(3)	100 左右
Tensile elasticity modulus	(1) ::10 ⁴ kg/cm ²	2.2~2.5
Banding strength	ltg/cm ²	1060
Compression strength	lig/cm ²	830~880
Impact surength (no breach)	lig.on/on?	No broaking
(22220)		64~75
Residual Lindhass M		75
Brinell hardness	leg/-m ²	9.7~10.4
Martins heat resistance	÷ 0	110~130
Melting point	၁၀	220~230
Thermal deformation temp. (18.6 kg/cm2)	ာဌ	130~140
Vicas heat resistance	ာဌ	165
Drittleness temperature	ဝဌ	-100
Test conducting coefficient	's-cal/m.im. 00	0.166
Linear amansion coefficient	::10-5/ °C	6~7
Combustivility		Self-extinguishing
Volume resistance (2020)	olum-em	10:0
Dialocumic accomicians (2005)		3.0
( <u>22</u> 5 ⁷ 5)		3.1
Dielectric loss (2070)		(6~7) × 10 ⁻⁸
(12500)		4 × 10 ⁻⁸
Dismuobite strength	• /	17~22

### 10. Polysulfone

Polysulfone is a brand new thermose thing engineering plastics. It has good use anical properties and electric performance. The thermal stability is high had its long time routing termerature one meach 150-17190. It can be made to muse survivously piece of it is abreauth, his is demaine striking to the termination of this is abreauth, as is described to the terminations. The matter of the terminations and the matter of the terminations and the strike of the terminations.

Table 2-3-33 The physical-mechanical properties of polyaulione

Physical-mechanical properties	;	Numerical value
Specific weight		1.24
Mater absorptivity (24 hrs)	(3)	0.12~0.22
Linear expansion coefficient	x10-5/00	5.0~5.2
Thermal deformation temperature (13.6kg/cm²)	´°C	174
Martins heat resistance	<u>ဝ</u> ဌိ	156
Combustibility	•	Sell-extinguailing
Panaile atmenath (yield)	ing/om ²	856
Attension rate (yield)	(3)	5~6
Fittension rate (ultimate)	7-45	20~100
Tensile electicity modulus	(1) x10 (15) (21)	2.5~2.8
Bending strength	12 / m2	1080~1270
Bending elasticity modulus (room temp.)	kg/am² x124kg/am²	2.8
(150°C)	27 1 22 C.	<u>-</u>
	1-1-2	2.3
Compression strength	kg/cm ²	896~970
Shearing strength	kg/cm ² kg/cm ²	495
Impact strength (no breach)	lig.om/om/	230~370
(with breach)	į	7.0~8.1
Hardness (Rocingell M)		69
(Pockwell R)		120

### (3) Asbestos and Asbestos Products

# 1. Pubber labestos Sheet (JA125-66)

Rubber astestos board is a kind of sealing and lining material made mainly of astestos and nubber. It can be used to seal water, outwrated steam, air, gas, ammonia, basic liquid and other inert gas, at temperature 450°0 and under pressure of 60 kg/cm².

Table : Brand	2-3-39 The condition    Surface color	ions of using rubber rabestos sheet  Conditions to use						
ID2.50	Purple	Temp. 150°0, prossure under 60°17/om						
ID250	7e₹	్డారువి <b>* 3</b> 2వ్వరి* అవిర్యాయుల జన్యారికా గ్రమ్ గ్రామ్						
:::::::::::::::::::::::::::::::::::::::	ingr							

Table 2-3-40 The physical-mechanical properties of rubber asbestos sheet

			0	Lucer aspestos si	1660
	Specific weight	Reduction by heating	lyein; coeff.	Tensile strength _ (kg/cm²)	n Sealing test
Brand	(s/cm ³	(%) No less than	(100 <u>+</u> 2 ⁰ 5 .24hrs)	Longi- Lateral tudinal	Temp. Pressure (kg/cm²)
XB 450				>450 >200	446~45(110~120
XB 350	1.5~2.0	28	>0.9	>300 >125	340~350 70~80
XB 200			!	>170  >70	195~200 25~30

Table 2-3-41 The norms and discussions of

_	Thickness (m)		Length	Width
Brand ————————————————————————————————————	Tominal	Permissed	()	()
XB450	0.5, 1.0	±0.1		i !
	1.5, 2.0	± 0.15		1
_	2.5, 3.0	± 0.20	500, 620	500, 620,
X b 350	0.8, 1.0	x 0.1	1260, 1500	1000, 1260,
X 6200	1.5, 2.0	±0.15		
	2.5, 3.0	± 0.20		
	3.5, 4.0, 4.5, 5.0, 5.5, 6.0	± 0.25		

# 2. Cil-resistant Buiber labestos Sheet (37530-45)

Cil-resistant rubber asbestos shoet is mode mainly of ashestoc, humber mitrile and natural rubber. It is used to make oil feeding nine for aerosumine gasoline, lubrication oil and the joint and equipment of cold gas system, and is also used as sealing and liming materi 1 at make joint.

Table 2-3-42 The physical-mechanical properties of oil-resistant rubber asbestos sheet

veight	Tensile st; (kg/cm	<u>.</u>		
$(g/cm^3)$	Longitulinal	Lateral	lemperature (00)	Pressure
1.5-2.0	340	130	15–30	150

Table 2-3-43 The norms and dimensions of oilresistant rubber asbestos shoet

Thickness	(12m)!	1	
icrinal dimension	Permitted difference	Leagth m width (mm)	
0.4, 0.5, 0.6, 0.8, 1.0	± 0.1	500 × 500 500 × 1100 1100 × 1100	
1.2, 1.5, 2.0, 2.5, 3.0	± 10%		

- 3. Asbestos Brake Band, Brake Friction Blade, and Clutch Friction Blade (manufacturing mark 48-61, JC23-66 and JC124-66)
- (1) Asbestos broke band is a band-shaped brake material made of asbestos fibor, type or cloth immersed in cohersive agent and than through dry areasing. It is used on various auto-vehicles, machine speed-raducing and brake.
- (2) Asbestos brake friction blade is a kind of Priorion blade made of asbestos fiber, wool or cloth and cohersive agent and other auxiliary materials and through mixed hot pressing. It is used on various auto-vehicles and medianical equipment for braking and seed-reducing.
- (3) Asbestos clutch friction blade is made by the same method as asbestos funite friction blade. It is used an auto-validles and clutch of various medias for transmitting power.

Table 2-3-44 The physical-mechanical properties of asbestos brain band, brain friction blade and clutch friction blade

01.1.1.9 02 0.19 12 20 0.20 11	272585	Slassification					
Physical-mechanical properties	Asbestes Sestos brake clutch		Asbestos brake band				
	friction blade	friction blade	322	## &b	30		
Brinell hardness (kg/mm²)	20~50	20~50					
Impact strength (kg.cm/cm2)no less than	3.1	3.5	!	i			
Mater absorptivity(3)thickns<6mm nolesstha thickness≥6mm no more than	2.0	2.0	17 20	10 15	5 7		
3il absorphimityr(ع)thickms<6mm no more tha thickness≥6mm no more than	1.0	1.0	15 18	20 25	5 7		
Triotion confideinmt l?∩±500	0.4	0.36	0.42	0.5	0.42		
250 <b>-25</b> 01 <b>0</b>	0.25	0.25		j			
250 <u>±</u> 5°€	0.25	0.25					
Priction loss (mm/30min) no more than 120±5°C							
If avgmfriction coeff.=0.35-0.46	-	0.05	}				
If avg friction coeff.= over 0.46	_	0.075					
IT are frietien coeff.=0.4-0.5	0.06	<b> </b>	0.05	0.075	0.075		
If any friction cooff.= over 0.5	0.075			į 1			
If avg friction coef 1.=0.25-0.35	0.16	0.15	-		İ		
If avy friction coeff. = over 0.35	0.21	0.20	1.	i			

Translator's note: *an = aspestos rosin; **ab = aspestos rubber; and ***ao = aspestos oil immersion

Table 2-3-45 The norms and dimensions of asbestos brake bouf.

brake friction blade and clutch frietica blade.

Olassifiction	:	Thi almess (mm)	(mm) (mm)	Leagui (mm)
Nabeatos brnite brnd		7 - 10	13 - 100	-\
Asbestos brako friction blade Asbestos clutch friction blade				

1. Cill-immersed Asbestos Coil Root (2009-44)

Call—it consol astrosted coil most in indited on exists the term of the call of the interest in graphic or somewhat the collection of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the call of the

stem as quality caperial. Its morning media include attach, air, industrial rater and products of heart percelum.

Table 2-3-16 The conditions of using oil-immersed asbestos coil root

Brand	Conditions of appliantion
W37.80	Steam termername 450°C, presoure 60kg/cm²
13350	35eam vemperature 35000, pro mon 15th/200
US250	Steam temperarume 250°C, pressure 45kg/cm2

Table 2-3-47 The physical-mechanical properties of oil-immersed astestos coil root

			Physics	l-meghanic	namerti	03	
Brand	(g/cm ³ )	Limiting pressure	Tluimate temp.	of irm- ersion agenu(cil	by heating (no it her- - aion abent	Lubrication poil flashing moint used by soil woot	eioa
		(isg/arr ² )	(50)	granji <b>i</b> 50)	725 <u>7</u> ( <u>2)</u> 27 Janobao	(°a)	
YS450	>0.9	60	450	25~45	>21	/>300	
¥S350	( *r >1.1)	45	350	25~45	>24	>240	011
Y S250		45	250	25~45	>32	>215	

Pranclaments note: *r = reinferent with somer wire.

Table 2-3-40 The norms and dimensions of oilimmersed askestos coil root

Trand	Shope	Norms (liqueter or side length of square) (mm)
YS450 YS350 YS250	F	3, 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42, 45, 50
1 3200	Y	5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32, 35, 38, 42. 45, 50
	N	3, 5, 6, 8, 10, 13, 16, 19, 22, 25

Nova: 1. Each bunned of cil-impursed asbastos soil most includes three different kinds: square, round and twisted, and they

are indicated by the following symbols:

T - square, hollow or knitted by one or multi-layer. I round, there is a twictor core in the middle and the outside is knitted by one or multi-lower. If a twisted 2. Prose which are reinforced with copper tring the indicated

by a letter "I" in parenthoses after the specification.

## 5. Rubber Asbestos Coil Root (JG67-64)

Rubber habestos coil root is made by pressing into square shape after rolling

 $\mathcal{A}_{-}$  of imisting using valence clock or advectos fabor and using without as colosion agent, and its omocife is printed with sealin waterial of high orphonic graphice. Is can be used as sealing untarial at order we found only and temperature under 450°C on steam engine, pieton of ionial--notion purp, malve spem and boiler inlet hole.

Table 2-3-40 The confidings of using

*****	
2772	Constraint of and financian
<b>::5</b> 1.70	The same of the same of the same of the same
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	The source with the state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco



Table 2-3-50 The physical-mechanical properties of rubber asbestos coil root

rand	Specific weight	sical-macha Elasticity	Of steel	Reduction
XS450		'lith a		<27
XS350	1.10	certain elasticity	CK	<32
X S250				<40

Table 2-3-51 The norms and dimensions of rubber asbestos coil root

Brand	Side length (rm)
XS450	3, 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 32,
XS350	3, 4, 5, 6, 6, 10, 13, 16, 19, 22, 23, 26, 32,
XS250	35, 38, 42, 45, 50

## (4) Wool Blanket for Industrial Use (FJ314-66)

The wool blanket for industrial use can be classified into rouch wool blanket, semi-rought wool blanke and fine wool blanket. According to the different component part made of wool blanket, it can also be classified into:

Cil sealing wool blanket -- used to make oil sealing to sustain the Indication oil at the Iniction spot and prevent water and dust from scaling in.

Participing wool blanket -- made to make gacket between metal surfaces to make a composion, friction forage and to refuse impact and alcohol.

Tilizable; mod blanket -- made has filter of oil had after limits

Table 2-3-52 The physical-mechanical properties of wool blanket for industriel use

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ospillo sction (if thi _10 min)	
(%) tent (%) content content (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)		
112-44 0.44 50 90 0.30 0.35 0.12 112-41 0.41 47 105 0.30 0.35 0.12 112-39 0.39 45 110 0.30 0.40 0.12 112-36 0.36 35 115 0.30 0.40 0.12		
112-41 0.41 47 105 0.30 0.35 0.12 112-39 0.39 45 110 0.30 0.40 0.12 112-36 0.36 35 115 0.30 0.40 0.12	5m   10m	ველ
112-39     0.39       112-36     0.36       35     115       0.30     0.40       0.12	_   _	-
3 112-36 0.36 35 115 0.30 0.40 0.12	-   -	i –
	-   -	-
	-   -	i <b>–</b>
112-32 0.32 ±0.02 25 120 0.30 0.40 0.12	-   -	-
= 112-30 0.30 - 0.15 0.35 0.12	35 40	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 40	45
$\frac{5}{5}$   112-14   0.14   0.50	-   -	-
c+ 112-09 0.09	-   -	-
ा इ. 122-38 0.38 40 95 0.40 0.60 0.15	-   -	
2 5 122-38 0.38 40 95 0.40 0.60 0.15 122-36 0.36 30 - 0.40 122-34 0.34 25 110 0.40 0.60	-   -	_
110 0.40 0.60 0.15	-   -	_
3 = 122-30 0.30 = 0.02 25 125 0.40 0.60 0.15	-   -	_
122-30   0.30   = 0.02   25   125   0.40   0.60   0.15   122-24   0.24   -     -     0.15   0.50   0.15   122-36   0.36   -     -     0.40   0.60   0.15   122-36   0.36   -       0.40   0.60   0.15   122-36   0.36   -	25 35	45
5 223-36 0.30 0.40	_   _	-
c+   222-34   0.34   -   -   0.40   -   -	_   _	1

Table 2-3-53 The norms and dimensions of wool

	Tiridizaet	( \ ( :		***	Length
	<u> Permi</u>	oned <u>Cillero</u> le			
ominal <u>inanaion</u>	Fine wool blanket	Se <b>mi-</b> rough rool blacket	rough wool;	(:)	()
2	±0.5		_		
3	±0.5				
4	±1				
6	±1.5	±2			
8	±1.5	± 2	± 2		
10	±1.5	± ?	± 2	0.5~1.9	1~-5
12	± 2	± 2.5	± 2.5	0.5-1.5	
14	± 2	± 2.5	± 2.5		1
16	± 2	± 2.5	± 2.5		
18	± 2	±2.5	± 3		
20	± 2	± 2.5	± 3		!

## (5) Sealing Materials

Sealing material must have good adhesive strength to netal or non-metal with which it contacts. Various kinds of sealing materials respectively show good sealing ability and temperature resisting, water resisting and oil resisting performances.

Sealing materials can be generally classified into:

- (1) Sulphidized sending glue:
- 1) Greamy sealing glue using injecting gun to inject or to clear the surface to spread the glue on or adding solvent to make thin scaling glue, thich can be spread by using a brush to make seam or surface sealing.
- 2) Sealing glue liquid -- to make sealing by pouring into or spreading on with a brush.
  - 3) Sealing gasket -- used only to seal seans.
  - (2) Mon-sulphidized sealing compound
- 1) Scaling compound using squeezer to equeeze out various cross-sociion chaned compound to make scaling.
- 2) Sealing compound aloth belt -- being used independently or to retion with sealing compound.

Sealing glue and sealing compound can be used independently or used together. Then the location which needs to be sealed shows noor advestive strength, it should be first painted with some adhesive agent and shen araling material.

Soulding normature is tribally used in matrice transity, and it one could the joints and in between names to arrowent oil, are and traver looking.

Table 2-3-5% The propertion of coaling extended

Seemil	Adherion	Sauling performance	Other perference	fochules!	'stu onen
770) per Har	The metage abroads ('tag/ene') and metage (Gralley)	Princenton Florit dem	Cottonic MacOuce, Cold contacting, at -60°C It will not break nor crack. Peat rectaling, at 70°C, capte avg. 14, no long them 16 ca	the tentral lates of decision of less and person and lates to the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the lates of the late	pem mil atter Jahuha,
7001 seeling consequent benefit of the 1904 seeling 1906-496-67	Yound to abcountly (taylor)) and	lande alban lebent konen med bag ab	Pean the atmentik (tg/em) Roberton pon 40°C>300 Schengton pote(*) Robertomn, 200, 40°C>3	Teling uned to- gather with 1461 mention con- pound Then uned, it, to sall ed to athyl mechatic and resten the annity to the	

Cont. Inucil					
Tennel	Adhecton performed	Sort Ing	Chine to the control	[Todates]	Mala street
convoined	The arting planing— the (kg/cr/) and motest Pr. T. Se.18	Committees of Vol. perm	Cofficency Type A 2-A nee, Then C 10-16 nee, Coff rectoring -35°C no breaking Off reatabling From technique institution institution.	is a so her to he minimum of the ordinar rate here to be a full for the first and the control of the ordinar rate of the control of the control of the control of the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full for the full full for the full full for the full full full full full for the full full full full full full full ful	on, or or made to the part of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co
to com-	1	Sing order disperitual scaling as Linuing	Plantalty 10.70 need only reginting at	ko ngan se 11. anti ta e nteno a ntetn moni lago Kone utiki menti, p se ermi etaki a sect tudomale ki	Completed, Completed to the ten Completed to the Completed
thu Utua	The metric retriention (the (t. ) / met.)  The (t. ) / met.)  The direction of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	Given two room beet lag in the air of -60-150 TO a d for 1 ett of -60-130TC.		Constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the consti	Committee of the post- meter of the control of twelvers of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con

Cont.Inucil					
	Mharilan	Section:	Other	Tee steal	Pata See **
<del></del>	timetal at aname	per formance	performance	performance	
⊊l latgh	or original starring the			Squerzed out, the	Section of
	(%/cm²) and ~	soru and veld⊶	(t ₁ //e ₂ /) > 15 [∞]	dolp w and	et et la la la la la la la la la la la la la
				ata mill anot	6 70 1 1 1 1 1 1 1 1
comound		penting at	թունեն գրագրակ և նրա	to other with	to be made on each
	ंदे । <b>. १. &gt;।।</b>	-yo = 300.c		per litting on mount	
			•	intoth on to have	John's Solda
			intendency 0.5	· •	•
			- O•:3	the military makers	• •
				1 (4) (4) 100 ( 5 °C)	· 
وسعي ( COD) يريا ( `` ا العد	Pooling attendable (by Jear) and Al.	ater urbon	As other restricting	•	
	(0,7 er.) and ar.)		Med of Leontahling		
	matten for 5 lags:			Tulection or Starter Newster	11.000
		otherston lond		Le to rever or	i
g: tu-	-0000 2.5		ļ	ominer landels <b>Lo</b>	
				rominand i	
	00°0 0.5	- 10~10°CF		20_7010 pg1624 H .	
				anthou for 5 days	
				(27 hree)	
<del></del>			' can term on the second		• • •

## A List of Tables (Substitute for Index)

Table	2-1-1	The chemical symbols of the brands of steel products	1
Table	2-1-2	The symbols of uses, smelting methods and pouring methods of steel products	1
Table	2-1-3	The methods of indicating the brand of steel products	2
Table	2-1-4	A constractive table of the old and new standards of using symbols to indicate the brand of steel products	10
Table	2-1-5	The mechanical properties and uses of general carbon steel	11
Table	2 <b>-1-</b> 6	The chemical composition, mechanical properties and uses of high quality carbon construction steel	15
Table	2-1-7	The chemical composition, mechanical properties and uses of easy-to-cut construction steel	27
Table	2-1-8	The chemical composition of general low alloy construction steel	2 <u>3</u>
Table	2 <b>-1-</b> 9	The mechanical properties of general low alloy construction steel	29
Table	2-1-10	The uses of general low alloy steel	31
Table	2-1-1	l The chemical composition of alloy construction steel	33
Table	2-1-12	2 The mechanical properties of alloy construction steel	43
Table	2-1-1	3 The uses of alloy construction steel	50
Table	2-1-1	4 The chemical composition of carbon tool steel	56
Table	2-1-1	5 The hardness of carbon tool steel	5~
Table	2-1-1	6 The uses of carbon tool steel	58
Table	2-1-1	7 The chemical composition of alloy tool steel	59
Table	2-1-1	8 The hardness of carbon tool steel	62
Table	2-1-1	9 The uses of alloy tool steel	64
Table	2-1-2	O The chemical composition and hardness of high speed tool steel	67
Table	2-1-2	1 The uses of high speed tool steel	62

Table	2-1-22	The chemical composition, mechanical properties and uses of hot rolled flat and screw spring steel	69
Table	2-1-23	The chemical composition of stainless and anti-acid steel	73
Table	2-1-24	The mechanical properties of stainless and anti-acid steel	74
Table	2-1-25	The uses of stainless and anti-acid steel	75
Table	2-1-26	The chemical composition of heat resisting and blisterless steel	76
Table		The mechanical properties of heat resisting and blisterless steel	78
Table	2-1-28	The properties and uses of heat resisting and blisterless steel	30
Table	2-1-29	The chemical composition of chrome bearing steel	82
Table	2-1-30	The properties and uses of chrome bearing steel	82
Table	2-1-31	The commonly used heat treatment methods of steel	83
Table	2-1-32	The symbols of steel heat treatment methods	84
Table	2-1-33	The heat treatment norms and substitute materials of steel	85
Table	2-1-34	The mechanical properties and uses of gray iron casting (GB976-67)	101
Table	2-1-35	The mechanical properties of gray iron casting (J3297-62)	103
Table	2-1-36	The mechanical properties and uses of spheroidal prophitic cast iron piece	104
Table	2-1-37	The mechanical properties and uses of forgeable cast iron piece	105
Table	2-1-38	The mechanical properties and uses of heat-resisting cast iron piece	106
Table	2 <b>-1-</b> 39	The chemical composition, mechanical properties and uses of carbon steel casting	108
Table	2-1-/,0	The norms and dimensions of rolled thin steel plate	109
Table	2-1-41	The norms and dimensions of hot-rolled thick steel plate	111
Table	2-1-42	The theoretical weight of steel plate	112

Table	2-1-43	The norms and dimensions of hot-rolled round steel and	
		square steel	113
Table	2-1-44	The norms and dimensions of hot-rolled hexagonal steel	115
Table	2-1-45	The norms and dimensions of cold draw round steel	116
Table	2-1-46	The norms and dimensions of cold-draw square steel	117
Table	2-1-47	The norms and dimensions of cold-draw hexagonal steel	118
Table	2-1-43	The norms and dimensions of hot-rolled flat steel	119
Table	2 <b>-</b> 1-49	The norms and dimensions of hot-rolled equilateral angle steel	120
Table	2-1-50	The norms and dimensions of hot-rolled unequlateral angle steel	126
Table	2-1-51	The norms and dimensions of hot-rolled general channel steel	129
Table	2-1-52	The norms and dimensions of hot-rolled light channel steel	131
Table	2-1-53	The norms and dimensions of hot-rolled general I steel	132
Table	2-1-54	The norms and dimensions of hot-rolled light I steel	134
Table	2-1-55	The norms and dimensions of crane steel runway	135
Table	2-1-56	The norms, dimensions and materials of steel rial	136
Table	2-1-57	The norms and dimensions of electric-welding steel pipe	139
Table	2-1-58	The norms and dimensions of water and gas feeding steel pipe	141
Table	2-1-59	The norms and dimensions of hot-rolled seamless steel pipe	143
Table	2-1-60	The norms and dimensions of cold-draw (cold-rolled) seamless steel pipe	146
Table	2-1-61	The norms and dimensions of boiler-use seamless steel pipe	151
Table	2 <b>-</b> 1-62	The norms, dimensions and mechanical properties of carbon spring steel wire	152
Table	2-1-63	The norms and dimensions of spring steel wire for important use	154

Table	2-1-64	The mechanical properties of spring steel wire for important use	155
Table	2-1-65	A comparison of China's principal steel grades with those of other countries	190
Table	2-1-66	The marks of steel material painting	197
Table	2-2-1	The commonly used names and symbols of non-ferrous metal and alloy	200
Table	2-2-2	The names and symbols of non-ferrous metal and alloy for special use	201
Table	2-2-3	The names and symbols of non-ferrous metal products condition	201
Table	2-2-4	ethods of indicating the brand of non-ferrous metal and alloy products	202
Table		The chemical composition and uses of products from pure copper processing	204
Table	2-2-6	The chemical composition and uses of cast brass	205
Table	2-2-7	The mechanical properties of cast brass	207
Table		The chemical composition and uses of products from brass processing	208
Table	2-2-9	The chemical composition and uses of cast bronze	212
Table	2-2-10	The chemical composition and uses of products from bronze processing	213
Table	2-2-11	The chemical composition of cast aluminium alloy	217
Table	2-2-12	The mechanical properties and uses of cast aluminium alloy	218
Table	2-2-13	The chemical composition, mechanical properties and uses of tin-base bearing alloy	219
Table	2-2-14	The norms and dimensions of round, square and hexagonal drawn copper bar	220
Table	2-2-15	The mechanical properties of round, square and hexagonal drawn copper bar	220
Table	2-2-16	The norms and dimensions of round, square and hexagonal drawn brass bar	220

Table	2-2-17	The mechanical properties of round, square and hexagonal drawn brass bar	221
Table	2-2-13	The norms and dimensions of round, square and hexagonal drawn silcon bronze bar	222
Table	2-2-19	The mechanical properties of round, square and hexagonal drawn silcon bronze bar	222
Table	2-2-20	The norms and dimensions of cold rolled copper plate and bar	223
Table	2-2-21	The mechanical properties of cold rolled copper plate and bar	223
Table	2-2-22	The norms and dimensions of cold rolled brass plate and bar	224
Table	2-2-23	The norms and dimensions of cold rolled brass band	225
Table	2-2-24	The mechanical properties of cold rolled brass plate and band	225
Table	2-2-25	The kinds of aluminum and aluminum alloy plate	226
Table	2-2-26	The mechanical properties of aluminum and aluminum alloy plate which cannot be strengthened through heat treatment	227
Table	2-2-27	The mechanical properties of aluminum and aluminum alloy plate which can be strengthened through heat treatment	228
Table	2-2-28	The mechanical properties of aluminum and aluminum alloy hot-rolled plate	229
Tabel	2-2-29	The norms and dimensions of extruded copper pipe	230
Table	2-2-30	The norms and dimensions of drawn copper pipe	232
Table	2-2-31	The norms and dimensions of extruded brass pipe	236
Table	2-2-32	The norms and dimensions of drawn brass pipe	238
Table	2-2-33	A comparison of China's principal non-ferrous metal and alloy brands with those of other countries	240
Table	2-3-1 7	The characteristics and working conditions of rubber material	244
Table	2-3-2 1	The physical-mechanical properties of rubber	245
Table	2-3-3 1	The physical-mechanical properties of rubber sheet for industry use	246
Table	2-3-4 1	he norms and dimensions of rubber sheet for industry use	243

Table 2-3-5	The physical-mechanical properties of rubber strip	249
Table 2-3-6	The norms and dimensions of rubber strip	249
Table 2-3-7	The physical-mechancial properties of general all-rubber tube	250
Table 2-3-8	The norms and dimensions of all-rubber tube	250
Table 2-3-9	The physical-mechanical properties of rubber tube reinforced with cotton thread	250
Table 2-3-10	The norms and dimensions of rubber tube reinforced with cotton thread	251
Table 2-3-11	The norms and dimensions of pressure rubber tube of rubber-sendwich-cloth	251
Table 2-3-12	The norms and dimensions of high pressure rubber tube with steel wire reinforcement	253
Table 2-3-13	The physical-mechanical properties of phenolic stratified plate	254
Table 2-3-14	The norms and dimensions of phenolic stratified plate	254
Table 2-3-15	The physical-mechanical properties of industry organic glass	255
Table 2-3-16	The norms and dimensions of industry organic glass	255
Table 2-3-17	The physical-mechanical properties of hard polyvinyl-choride plate	256
Table 2-3-18	The norms and dimensions of hard polyvinyl-chroide plate	256
Table 2-3-19	The physical-mechanical properties of hard polyvinyl-choride tube	257
Table 2-3-20	The norms and dimensions of hard polyvinyl-choride tube	257
Table 2-3-21	The physical-mechanical properties of soft polyvinyl-choride tube and band	258
Table 2-3-22	The norms and dimensions of soft polyvinyl-choride tube and band	259
Table 2-3-23	The physical-mechanical properties of teflon	260
Table 2-3-24	The physical-mechanical properties of teflon plate	261

Table	2-3-25	The norms and dimensions of teflon plate	261
Table	2-3-26	The physical-mechanical properties of teflon bar	262
Table	2-3-27	The norms and dimensions of teflon bar	262
Table	2-3-28	The physical-mechanical properties of teflon tube	263
Table	2-3-29	The norms and dimensions of teflon tube	263
Table	2-3-30	The physical-mechanical properties of teflon plate and bar filler products	264
Table	2-3-31	The norms and dimensions of terlon plate and bar filler products	264
Table	2-3-32	The physical-mechanical properties of cinnamene-butadiene- propenyl-cyanide (ABS) copolymer	265
Table	2-3-33	The physical-mechanical properties of low pressure polythene	266
Table	2-3-34	The physical-mechanical properties of nylon	267
Table	2-3 <b>-</b> 35	The physical-mechanical properties of MC nylon and filled MC nylon	268
Table	2-3 <del>-</del> 36	The physical-mechanical properties of polyformaldehyde	269
Table	2-3-37	The physical-mechanical properties of polycarbonate	270
Table	2-3-38	The physical-mechanical properties of polysuflone	271
Table	2-3-39	The conditions of using rubber asbestos sheet	271
Table	2-3-40	The physical-mechanical properties of rubber asbestos sheet	5,5
Table	2-3-41	The norms and dimensions of rubber asbestos sheet	2~2
Table	2-3-42	The physical-mechanical properties of oil-resistant rubber asbestos sheet	2~3
Table	2-3-43	The norms and dimensions of oil-resistant rubber asbestos sheet	273
Table	2-3-44	The physical-mechanical properties of asbestos brake band, brake friction blade and clutch friction blade	274
Table	2-3-45	The norms and dimensions of asbestos brake band, brake friction blade and clutch friction blade	277

Table	2-3-46	The conditions of using oil-immersed asbestos coil root	275
Table	2-3-47	The physical-mechanical properties of oil-immersed asbestos coil root	275
Table	2-3-48	The norms and dimensions of oil-immersed asbestos coil root	276
Table	2-3-49	The conditions of using rubber asbestos coil root	276
Table	2 <b>–3–</b> 50	The physical-mechanical properties of rubber asbestos coil root	ښ2
Table	2-3-51	The norms and dimensions of rubber asbestos coil root	2 ⁷⁷
Table	2 <b>-</b> 3-52	The physical-mechanical properties of wool blanket for industrial use	278
Table	2 <del>-</del> 3-53	The norms and dimensions of wool blanket for industrial use	278
Table	2-3-5/	The properties of seeling materials	280