Breast Cancer Prediction

Libraries to Import

In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.metrics import confusion matrix **from** sklearn.model_selection **import** train_test_split **from** sklearn, model selection **import** cross val score from sklearn.model_selection import KFold from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from pandas.plotting import scatter_matrix %matplotlib inline In [96]: # Citation Request: This breast cancer databases was obtained from the University of Wisconsin

```
Hospitals, Madison from Dr. William H. Wolberg. If you publish results
   when using this database, then please include this information in your
   acknowledgements. Also, please cite one or more of:
   1. O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear
    programming", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
   2. William H. Wolberg and O.L. Mangasarian: "Multisurface method of
    pattern separation for medical diagnosis applied to breast cytology",
     Proceedings of the National Academy of Sciences, U.S.A., Volume 87,
#
    December 1990, pp 9193-9196.
   3. O. L. Mangasarian, R. Setiono, and W.H. Wolberg: "Pattern recognition
     via linear programming: Theory and application to medical diagnosis",
     in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying
    Li, editors, SIAM Publications, Philadelphia 1990, pp 22-30.
   4. K. P. Bennett & O. L. Mangasarian: "Robust linear programming
#
     discrimination of two linearly inseparable sets", Optimization Methods
     and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).
# URL to load data
source = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer
# Adding names to CSV columns
colNames = ['id', 'clumpThickness', 'uniformCellSize', 'uniformCellShape',
   'marginalAdhesion', 'singleEpithelialSize', 'bareNuclei',
```

```
'blandChromatin', 'normalNucleoli', 'mitoses', 'class']

bCancerDF = pd.read_csv(source, names=colNames)
bCancerDF.head()
```

Out[96]:		id	clumpThickness	uniformCellSize	uniformCellShape	marginalAdhesion	singleEpithelialSize	
	0	1000025	5	1	1	1	2	
	1	1002945	5	4	4	5	7	
	2	1015425	3	1	1	1	2	
	3	1016277	6	8	8	1	3	
	4	1017023	4	1	1	3	2	
	<						>	
In [3]:	# checking number of rows & columns bCancerDF.shape							
Out[3]:	(6	99, 11)						

Preprocessing

'marginalAdhesion', 'singleEpithelialSize', 'bareNuclei',
'blandChromatin', 'normalNucleoli', 'mitoses', 'class'],
dtype='object')

Handling Missing Values

```
In [5]:
          # Dataframe Information
          bCancerDF.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 699 entries, o to 698
         Data columns (total 10 columns):
            Column
                           Non-Null Count Dtype
                         _____
            clumpThickness
                               699 non-null int64
                             699 non-null int64
         1 uniformCellSize
            uniformCellShape
                               699 non-null int64
            marginalAdhesion
                               699 non-null int64
            singleEpithelialSize 699 non-null int64
         5
            bareNuclei
                            699 non-null object
            blandChromatin
                               699 non-null int64
            normalNucleoli
                              699 non-null int64
            mitoses
                          699 non-null int64
            class
                         699 non-null int64
```

dtypes: int64(9), object(1) memory usage: 54.7+ KB

```
#Diagnosis class:
# 2 is for Benign
# 4 is for Malignant

# Total number of Benign and Maglinant cases from the dataset
bCancerDF['class'].value_counts()
```

Out[6]: 2 458 4 241

Name: class, dtype: int64

counting number of rows for bareNuclei from 1 to 10 bCancerDF['bareNuclei'].value_counts()

Name: bareNuclei, dtype: int64

```
# finding unknowns
bCancerDF[bCancerDF['bareNuclei'] == '?']
```

Out[9]:		${\bf clump Thickness}$	uniformCellSize	uniformCellShape	marginalAdhesion	single Epithelial Size	bareNu
	23	8	4	5	1	2	
	40	6	6	6	9	6	
	139	1	1	1	1	1	
	145	1	1	3	1	2	
	158	1	1	2	1	3	
	164	5	1	1	1	2	
	235	3	1	4	1	2	
	249	3	1	1	1	2	
	275	3	1	3	1	2	
	292	8	8	8	1	2	
	294	1	1	1	1	2	
	297	5	4	3	1	2	
	315	4	6	5	6	7	

```
clumpThickness uniformCellSize uniformCellShape marginalAdhesion singleEpithelialSize bareNu
                              3
                                                                  1
                                                                                                         2
           321
                                               1
                                                                                     1
           411
                               1
                                               1
                                                                  1
                                                                                     1
                                                                                                         1
           617
                                                                  1
                                                                                     1
                                                                                                         1
In [10]:
            # getting sum of values for each feature (column) with unknown values
            bCancerDF[bCancerDF['bareNuclei'] == '?'].sum()
           clumpThickness
                                       54
Out[10]:
           uniformCellSize
                                      39
           uniformCellShape
                                        46
           marginalAdhesion
                                        29
           singleEpithelialSize
                                       39
           bareNuclei
                             ???????????????
           blandChromatin
                                       50
           normalNucleoli
                                      44
           mitoses
                                  16
           class
                                 36
           dtype: object
In [11]:
            # replace nan with '?'
            bCancerDF.replace('?',np.nan,inplace=True)
            # checking data at index 23 for the confirmation of replacement
            bCancerDF.loc[23,:]
           clumpThickness
                                 8
Out[11]:
           uniformCellSize
                                4
           uniformCellShape
                                 5
           marginalAdhesion
                                 1
           singleEpithelialSize
                                 2
           bareNuclei
                            NaN
           blandChromatin
           normalNucleoli
                                3
           mitoses
           class
           Name: 23, dtype: object
In [12]:
            # Number of records with Null values
            bCancerDF.isna().sum()
           clumpThickness
                                0
Out[12]:
           uniform Cell Size \\
                                o
           uniformCellShape
           marginalAdhesion
                                 0
           singleEpithelialSize
                                0
           bareNuclei
                            16
           blandChromatin
           normalNucleoli
           mitoses
                            0
           class
                          0
           dtype: int64
```

```
# filling null values with 'ffill'
In [13]:
            # that propagates last valid observation forward
            bCancerDF.fillna(method='ffill', inplace=True)
            #now you can see that there isn't any null value
            bCancerDF.isna().sum()
           clumpThickness
                               o
Out[13]:
           uniformCellSize
                               o
           uniformCellShape
                                0
           marginalAdhesion
                                0
           singleEpithelialSize
           bareNuclei
           blandChromatin
           normalNucleoli
                               o
           mitoses
           class
           dtype: int64
In [14]:
            bCancerDF.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 699 entries, o to 698
           Data columns (total 10 columns):
              Column
                              Non-Null Count Dtype
              clumpThickness
                                  699 non-null int64
              uniformCellSize
                                 699 non-null int64
              uniformCellShape
                                  699 non-null int64
              marginalAdhesion
                                  699 non-null int64
              singleEpithelialSize 699 non-null int64
           4
              bareNuclei
                              699 non-null object
           5
              blandChromatin
                                  699 non-null int64
              normalNucleoli
                                 699 non-null int64
              mitoses
                             699 non-null int64
              class
                           699 non-null int64
           dtypes: int64(9), object(1)
           memory usage: 54.7+ KB
In [15]:
            #changing bareNuclei dataype to int64
            bCancerDF['bareNuclei'] = bCancerDF['bareNuclei'].astype('int64')
```

Exploratory Data Analysis (EDA)

```
In [20]:
            # dataframe information
           bCancerDF.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 699 entries, o to 698
          Data columns (total 10 columns):
                             Non-Null Count Dtype
              Column
             clumpThickness
                                 699 non-null int64
             uniformCellSize
                                699 non-null int64
             uniformCellShape
                                 699 non-null int64
             marginalAdhesion
                                 699 non-null int64
             singleEpithelialSize 699 non-null int64
```

5 bareNuclei 699 non-null int64

6 blandChromatin 699 non-null int64

7 normalNucleoli 699 non-null int64

8 mitoses 699 non-null int64

9 class 699 non-null int64

dtypes: int64(10) memory usage: 54.7 KB

In [21]:

describing statistical values for numeric data

bCancerDF.describe()

Out[21]:

	clumpThickness	uniformCellSize	uniformCellShape	marginal Adhesion	singleEpithelialSize	bareN
count	699.000000	699.000000	699.000000	699.000000	699.000000	699.00
mean	4.417740	3.134478	3.207439	2.806867	3.216023	3.52
std	2.815741	3.051459	2.971913	2.855379	2.214300	3.63
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.00
25%	2.000000	1.000000	1.000000	1.000000	2.000000	1.00
50%	4.000000	1.000000	1.000000	1.000000	2.000000	1.00
75%	6.000000	5.000000	5.000000	4.000000	4.000000	6.00
max	10.000000	10.000000	10.000000	10.000000	10.000000	10.00
<						>

Data Visualization

1. Bivariate Data Analysis

Histogram plot with KDE

In [38]: ene di

sns.displot(bCancerDF['class'],kde=True)

Out[38]:

<seaborn.axisgrid.FacetGrid at 0x12eb24ca620>

Scatter plot with hue

In [23]:

showing scatter plot for clumpThickness and unifromCellSize between the two classes ax = bCancerDF[bCancerDF['class'] == 4][0:50].plot(kind='scatter', x='clumpThickness', y='uniformCellSize', coplt.show()

2. Multivariate Data Analysis

single histogram for all variables

In [40]: sns.displot(data=bCancerDF)

Out[40]: <seaborn.axisgrid.FacetGrid at 0x12eb8328190>

Histograms for each attribute

```
sns.set_style('dark')
bCancerDF.hist(figsize=(30,30))
plt.show()
```


Scatter plot matrix

In [42]:

scatter_matrix(bCancerDF, figsize = (20,20))
plt.show()

Box plot (vertial orientation)

```
plt.figure(figsize=(20,20))
sns.boxplot(data=bCancerDF)
```

Out[44]: <AxesSubplot:>

Box plot with horizontal orientation

```
plt.figure(figsize=(20,20))
sns.boxplot(data=bCancerDF, orient='h')
```

Out[45]: <AxesSubplot:>

Feature selection

Correlation chart

In [47]: coR = bCancerDF.corr() coR

Out[47]:		clumpThickness	uniformCellSize	uniformCellShape	marginalAdhesion	single Epitheli
	clumpThickness	1.000000	0.644913	0.654589	0.486356	0.5
	uniformCellSize	0.644913	1.000000	0.906882	0.705582	0.7
	uniformCellShape	0.654589	0.906882	1.000000	0.683079	0.7
	marginal Adhesion	0.486356	0.705582	0.683079	1.000000	0.5
	single Epithelial Size	0.521816	0.751799	0.719668	0.599599	1.0
	bareNuclei	0.583571	0.681309	0.701137	0.663669	0.5
	blandChromatin	0.558428	0.755721	0.735948	0.666715	0.6

		clumpThickness	uniformCellSize	uniformCellShape	marginal Adhesion	single Epitheli
nor	malNucleoli	0.535835	0.722865	0.719446	0.603352	0.6
	mitoses	0.350034	0.458693	0.438911	0.417633	0.4
	class	0.716001	0.817904	0.818934	0.696800	0.6
<						>

Heatmap

In [49]:

plt.figure(figsize=(30,20))
sns.heatmap(coR,vmax=1, square = **True**, annot=**True**, cmap=plt.cm.Blues)
plt.title('Correlation between different Attributes')
plt.show()

Pairplot

In [50]:

sns.pairplot(bCancerDF,diag_kind='kde')
plt.show()

Correlation with output

Correlation with output variable

```
cor_target = abs(coR["class"])
#Selecting highly correlated features
relevant_features = cor_target[cor_target>o]
relevant_features
```

clumpThickness 0.716001 Out[51]: uniformCellSize 0.817904 uniformCellShape 0.818934 marginalAdhesion 0.696800 singleEpithelialSize 0.682785 bareNuclei 0.807394 blandChromatin 0.756616 normalNucleoli 0.712244 mitoses 0.423170

class 1.000000 Name: class, dtype: float64

Train and Test Model

Splitting

```
In [53]: # Split the data first into predictor and target variable
# Then by train and test sets.

# everything except 'Class' attribute
X = bCancerDF.drop('class', axis=1).values
Y = bCancerDF['class'].values

# Splitting by 70% for train and 30% for test
X_train, X_test, Y_train, Y_test = train_test_split (X, Y, test_size = 0.30, random_state=21)
In [58]: # Testing Options
scoring = 'accuracy'
```

Model Selection

- 1. Decision Tree
- 2. support Vector Machine
- 3. Gaussian Naive Bayes
- 4. KNN', K-Nearest Neighbors

```
In [61]:
            # Define models to train
            models=[]
            models.append(('CART', DecisionTreeClassifier()))
            models.append(('SVM', SVC()))
            models.append(('NB', GaussianNB()))
            models.append(('KNN', KNeighborsClassifier()))
            # evaluate each model in turn
            results = []
            names = []
            for name, model in models:
              kfold = KFold(n_splits=10)
              cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
              results.append(cv_results)
              names.append(name)
              msg = "For %s Model:Mean accuracy is %f (Std accuracy is %f)" % (name, cv_results.mean(), cv_results.st
              print(msg)
```

For CART Model:Mean accuracy is 0.954974 (Std accuracy is 0.020103) For SVM Model:Mean accuracy is 0.971386 (Std accuracy is 0.013512) For NB Model:Mean accuracy is 0.963223 (Std accuracy is 0.025463) For KNN Model:Mean accuracy is 0.969345 (Std accuracy is 0.016428)

```
In [64]: fig = plt.figure(figsize=(10,10))
```

```
fig.suptitle('Model Performance Comparison')

ax = fig.add_subplot(111)

plt.boxplot(results)

ax.set_xticklabels(names)

plt.show()
```

Model Performance Comparison


```
In [65]:
```

Make predictions on validation dataset

```
for name, model in models:
    model.fit(X_train, Y_train)
    predictions = model.predict(X_test)
    print("\nModel:",name)
    print("Accuracy score:",accuracy_score(Y_test, predictions))
    print("Classification report:\n",classification_report(Y_test, predictions))

# Accuracy - ratio of correctly predicted observation to the total observations.
# Precision - (false positives) ratio of correctly predicted positive observations to the total predicted positive.
```

Recall (Sensitivity) - (false negatives) ratio of correctly predicted positive observations to the all observat # F1 score - F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both false p

Model: CART

Accuracy score: 0.9047619047619048

Classification report:

precision recall f1-score support

2 0.90 0.96 0.93 133 4 0.93 0.81 0.86 77

accuracy 0.90 210

macro avg 0.91 0.88 0.89 210 weighted avg 0.91 0.90 0.90 210

Model: SVM

Accuracy score: 0.9714285714285714

Classification report:

precision recall f1-score support

2 0.98 0.98 0.98 133 4 0.96 0.96 0.96 77

accuracy 0.97 210 macro avg 0.97 0.97 0.97 210 weighted avg 0.97 0.97 0.97 210

Model: NB

Accuracy score: 0.9523809523809523

Classification report:

precision recall f1-score support

2 0.96 0.96 0.96 133 4 0.94 0.94 0.94 77

accuracy 0.95 210 macro avg 0.95 0.95 0.95 210 weighted avg 0.95 0.95 0.95 210

Model: KNN

Accuracy score: 0.9571428571428572

Classification report:

precision recall f1-score support

2 0.96 0.97 0.97 133 4 0.95 0.94 0.94 77

accuracy 0.96 210 macro avg 0.96 0.95 0.95 210

macro avg 0.96 0.95 0.95 210 weighted avg 0.96 0.96 0.96 210

Support Vector Machine

AS SVC has the highest accuracy score in prediction, we are selecting it for test score

Test Accuracy

```
In [93]:
             clf = SVC()
             clf.fit(X_train, Y_train)
             accuracy = clf.score(X_test, Y_test)
             print("Test Accuracy:",accuracy)
             predict = clf.predict(X_test)
```

Test Accuracy: 0.9714285714285714

Example Prediction

```
In [86]:
            example_measures = [[4,2,1,9,1,2,3,2,9]]
            prediction = clf.predict(example_measures)
            prediction
           array([4], dtype=int64)
```

Out[86]:

Bengin or Malignant?

```
In [87]:
             if (prediction == 2):
               print('Benign')
             else:
               print('Malignant')
```

Malignant

Confusion Matrix

```
In [94]:
            import itertools
            sns.set_theme(style="dark")
             def plot_confusion_matrix(cm, classes, normalize=False,title='Confusion matrix', cmap=plt.cm.Blues):
               Prints and plots the confusion matrix.
               Normalization can be applied by setting `normalize=True`.
               if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
                 print('Confusion matrix, without normalization')
               print(cm)
               plt.imshow(cm, interpolation='nearest', cmap=cmap)
               plt.title(title)
               plt.colorbar()
               tick_marks = np.arange(len(classes))
               plt.xticks(tick_marks, classes, rotation=45)
               plt.yticks(tick_marks, classes)
               fmt = '.2f' if normalize else 'd'
```

```
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[o]), range(cm.shape[1])):
    plt.text(j, i, format(cm[i, j], fmt),
        horizontalalignment="center",
        color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
    plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

```
In [92]:
```

```
# Compute confusion matrix

cnf_matrix = confusion_matrix(Y_test, predict, labels=[2,4])

np.set_printoptions(precision=2)

print (classification_report(Y_test, predict))

# Plot non-normalized confusion matrix

plt.figure()

plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion'
```

```
precision recall f1-score support
     2
          0.98
                  0.98
                         0.98
                                 133
          0.96
                  0.96
                         0.96
  accuracy
                                210
                        0.97
 macro avg
               0.97
                      0.97
                             0.97
                                     210
weighted avg
                0.97
                                       210
```

Confusion matrix, without normalization [[130 3] [3 74]]

Conclusion

We had Wisconsin Breast Cancer Database with 699 records on 11 columns.

Attributes at column indices 2 through 10 have been used to represent instances.

- Each instance has one of 2 possible classes: benign or malignant.
- These classes was included as attribute at column index 11

Class distribution was:

Benign: 458 (65.5%)
 Malignant: 241 (34.5%)

After processing data and obtaining analysis from it, we split the dataset into train-test of 70%-30%. we trained four models. By far, SVM model had highest accuracy for training and test data.