1).
$$\triangle = (4+3i)^2 - 4(1+5i) = (16+24i-9)-(4+20i) = 3+4i$$

$$\cdot \delta^{2} = \Delta \iff \begin{cases} x^{2} - y^{2} = 3 \\ x^{2} + y^{2} = |3 + 4xi| = 5 \end{cases} \iff \begin{cases} 2x^{2} = 8 \\ 2y^{2} = 2 \end{cases} \iff \begin{cases} x^{2} = 4 \\ 2xy = 2 \end{cases}$$

$$(\Rightarrow) \begin{cases} x = \pm \ell \\ y = \pm 1 \end{cases} (\Rightarrow) \delta = \pm (2 \pm i)$$

$$(xy = \ell)$$

$$2 = \frac{(4+3i)-(2+i)}{2} = 1+i \quad \text{ou } 2 = \frac{(4+3i)+(2+i)}{2} = 3+2i$$

Donc zi=3+li er =2=1+i

b)
$$|M_1\Omega| = |\omega - z_1| = |-4 + 2i| = \sqrt{5}$$

 $|M_1M_2| = |z_2 - z_1| = |-2 - i| = \sqrt{5}$

Donc le triangle (MIM22) est isocèle (puis que MID=MIM2)

Donc
$$\Omega M_1^2 + M_1 M_2^2 = \Omega M_2^2$$

Donc d'après la réciproque du M de Pythagore,

le triangle (M,M2) est rectangle en M,

Exercice 15: • $a = -\frac{1}{2} + i \frac{13}{2} = \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right)$; denc $a = e^{i\pi}$ • $b = \frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos(\frac{\pi}{6}) + i \sin(\frac{\pi}{6})$; donc $b = e^{i\frac{\pi}{6}}$ 2) a) $2\cos\left(\frac{9-9}{2}\right)e^{\frac{1}{2}\frac{9+9}{2}}=2e^{\frac{1}{2}\frac{9-9}{2}+e^{\frac{1}{2}\frac{9-9}{2}}\times e^{\frac{1}{2}\frac{9+9}{2}}$ $= \left(e^{i \frac{0-0}{2}} + e^{-i \frac{0-0}{2}} \right) e^{i \frac{0+0}{2}}$ $= e^{i\left(\frac{0-0}{2} + \frac{0+0}{2}\right)} + e^{i\left(\frac{0'-0}{2} + \frac{0+0'}{2}\right)}$ = e '0 + e '0 Donc $e^{i\theta} + e^{i\theta'} = 2\cos\left(\frac{\theta - \theta'}{2}\right) e^{i\theta}$ b) a + 6 = e^{lit/3} + e^{it/6} $= 2 \cos \left(\frac{2\pi}{3} - \frac{\pi}{6}\right) e^{i\frac{2\pi}{3} + \frac{\pi}{6}}$ (on applique a) axec $0 = \frac{2\pi}{3}$) $= 2 \cos\left(\frac{\pi}{4}\right) e^{i\frac{5\pi}{12}} \quad \text{donc} \quad \text{atb} = \sqrt{2} e^{\frac{5i\pi}{12}}$ (on ne peur pas applique la formula du a) $cau cest e^{i\theta} - e^{i\sigma} e^{i\sigma} + e^{i\sigma}$ $a-b=e - e = e + e e (car e^{i\pi}=-1)$ 2it/3 7it/6 $= 2 \cos \left(\frac{2 \sqrt{3} - \sqrt{1 \sqrt{6}}}{2} \right) e^{i \frac{2 \sqrt{3} + \sqrt{6}}{2}}$ = $2 \cos\left(-\frac{\pi}{4}\right) e^{\frac{11i\pi}{12}} donc a-b=\sqrt{2} e^{\frac{11i\pi}{12}}$ 3). $\triangle = (4-i\sqrt{3})^2 - 4 \times (-(1+i\sqrt{3}) = (1-2i\sqrt{3}-3) + (4+4i\sqrt{3})$ = 2 + 2i \(\sigma \) $S^{2} = \Delta \implies \begin{cases} x^{2} - y^{2} = 2 \\ x^{2} + y^{2} = |2 + 2i\sqrt{3}| = 2|1 + i\sqrt{3}| = 2 \times 2 = 4 \end{cases} \implies \begin{cases} x^{2} = 3 \\ 2xy = 2\sqrt{3} \end{cases}$ (=) $\begin{cases} x = \sqrt{3} \text{ er } y = 1 \\ \text{ou} \end{cases}$ (=) $S = \pm (\sqrt{3} + i)$ $2x = -\sqrt{3} \text{ er } y = -1$

L"

b)
$$z_1 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$$
 donc $z_1 = a + b$
 $z_2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$ donc $z_2 = a - b$

$$\frac{10 \cdot 2 = \frac{-3 + i}{1 - 2i}}{1 - 2i} = \frac{(-3 + i)(1 + 2i)}{1^{2} + 2^{2}} = \frac{-3 - 6i + i - 2}{5} = -1 - i$$

$$||2| = |-1 - i| = \sqrt{(-1)^{2} + (-1)^{2}} = \sqrt{2}$$

$$||2| = |-1 - i| = \sqrt{(-1)^{2} + (-1)^{2}} = \sqrt{2}$$

$$||2| = |-1 - i| = \sqrt{(-1)^{2} + (-1)^{2}} = \sqrt{2}$$

$$||2| = |-1 - i| = \sqrt{(-1)^{2} + (-1)^{2}} = \sqrt{2}$$

$$||2| = |-1 - i| = \sqrt{(-1)^{2} + (-1)^{2}} = \sqrt{2}$$

$$||2| = |-1 - i| = \sqrt{2} = -\sqrt{2} \text{ er sin } 0 = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \text{ idenc } 0 = -\frac{3\pi}{4}$$

Donc
$$Z = -1 - i = \sqrt{2} e^{-3i\pi}$$

2)
$$\overrightarrow{OA}, \overrightarrow{OB} = \arg\left(\frac{z_{13}-z_{0}}{z_{A}-z_{0}}\right)$$
 [217] (Formule de cours)
$$= \arg\left(\frac{z_{0}}{z_{A}}\right)$$
 [217]
$$= \arg\left(2\right) = -\frac{3\pi}{4}$$
 [217]

Exercice
$$17$$
:

1) a) $z^2 = 35 + 12i$ \implies $|x^2 - y^2 = 35|$

1) a) $z^2 = 35 + 12i$ \implies $|x^2 - y^2 = 35|$
 $|x^2 - y^2 = 3$

$$(2) \begin{cases} 2x^{2} = 72 \\ 2y^{2} = 2 \end{cases} \implies \begin{cases} x^{2} = 36 \\ y^{2} = 1 \end{cases} \implies \begin{cases} x = \pm 6 \\ y = \pm 1 \end{cases}$$

$$xy = 6 \qquad \begin{cases} xy = 6 \end{cases}$$

2)
$$\Delta = (2-3i)^2 - 4i(-C+10i) = 4-12i-9+24i+40 = 35+12i$$

Done d'après a) : S= ± (6+i)

Donc
$$z = \frac{-(2-3i)-(6+i)}{2i}$$
 ou $z = \frac{-(2-3i)+(6+i)}{2i}$
 $= \frac{-8+2i}{2i}$ $= \frac{4+4i}{2i}$
 $= \frac{2+2i}{i}$
 $= (2+2i)(-i)$
 $= 1+4i$ $= 2-2i$

Donc 2,= 2-li et 2= 1+4i

C)
$$M_1M_2 = |z_2-z_1| = |-1-6i| = \sqrt{37}$$

 $\Omega M_1 = |z_1-\omega| = |12+2i| = 2\sqrt{37}$
 $\Omega M_2 = |z_2-\omega| = |11+8i| = \sqrt{185}$

- on a $M_1M_2^2 + \Omega M_1^2 = 37 + 4 \times 37 = 185$ Donc $M_1M_2^2 + \Omega M_1^2 = \Omega M_2^2$.

 Par conséquent, d'après la réaproque du Hi de Pythagore
 le triangle (ΩM_1M_2) est rectangle en M_2
- M₁M₂ ≠ ΩM₁ et M₁M₂ ≠ ΩM₂ et ΩM₁ ≠ ΩM₂. Donc le triangle (ΣM₁M₂) n'est pas isocèle.

Exercice 18:

 $|M_2M_3 = |Z_3 - Z_2| = |-2 + 4i| = \sqrt{20}$ $|M_1M_3 = |Z_3 - Z_1| = |4 + 2i| = \sqrt{20}$ Donc $|M_2M_3 = |M_1M_3|$ Donc le triangle $|M_1M_2M_3|$ est isocèle

2)
$$Z = \frac{(7+i)-(5+5i)}{(4+3i)-(5+5i)} = \frac{2-4i}{-4-2i} = \frac{i(-2i-4)}{-4-2i} = i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

Denc $Z = e^{i\pi/2}$

3)
$$\overline{M_3M_4}$$
, $\overline{M_3M_2} = arg\left(\frac{22-23}{21-23}\right)$ [27) (Formule du cours)
$$= arg Z \quad [217)$$

$$= \overline{\frac{17}{2}} \quad [217)$$
Denc $\overline{M_3M_4} \perp \overline{M_3M_2}$; par consequent, le triangle

(MIM2M3) est rectangle en M3

Exercice
$$\frac{19}{3}$$
:

Problem of the second second