MATHD022: Discrete Mathematics

Connor Petri

Spring 2025

Contents

1	The	Language of Mathematics	3
	1.1	Variables	3
	1.2		5
	1.3	Relations and Functions	7
2	The	Logic of Compound Statements	9
	2.1	Logical Form and Equivalence	9
	2.2	Conditional Statements	11
	2.3	Valid and Invalid Arguments	14
3	The	Logic of Quantified Statements	18
	3.1	Predicates and Quantified Statements (Part 1)	18
	3.2	Predicates and Quantified Statements (Part 2)	21
	3.3	Statements with Multiple Quantifiers	22
	3.4	Arguments with Quantified Statements	23
4	Eler	mentary Number Theory and Methods of Proof	25
	4.1	Direct Proof and Counterexample	25
	4.2	Skipped	27
	4.3	Rational Numbers	28
	4.4	Divisibility	31
	4.5	The Quotient-Remainder Theorem	33
	4.6	Skipped	35
	4.7	Contradiction and Contraposition	36
5	Seq	uences, Induction, and Recursion	39
	5.1	Sequences	39
		5.1.1 Product Notation	41
	5.2	Mathematical Induction 1: Proving Formulas	43
	5.3	Mathematical Induction 2	45
	5.4	Strong Mathematical Induction	47
	5.5	Skipped	
	5.6	Solving Recurrence relations by Iteration	50

1. The Language of Mathematics

1.1 Variables

Definition A **variable** is a symbol that is used as a placeholder when:

- The quantity has one of more values, but is not known.
 - For example: $2x^2 x = 7$
- The quantity represents any element from a given set.
 - For example: The reciporical of any non-zero integer n is $\frac{1}{n}$.

Writing Sentences using Variables We can rewrite the following sentences using variables:

- Is there an integer n that has a remainder of 2 when it is divided by 5?
 - Is there an integer n such that n%5 = 2?
- The cube root of any negative real number is negative.
 - For any real number s, if s < 0, then $\sqrt[3]{s} < 0$.

Types of Statements

- A universal statement is a statement that is true always true.
 - For example: All positive numbers are greater than 0.
- A **conditional statement** is a statement that is true if a certain condition is met.
 - For example: If 378 is divisible by 18, then 378 is divisible by 6.
- A universal conditional statement is a statement that is both conditional and universal.

- For example: For all animals a, if a is a dog, then a is a mammal.
- As a universal statement: For all dogs a, a is a mammal.
- As a conditional statement: If a is a dog, then a is a mammal.
- An **existential statement** gives a property that is true for at least one thing.
 - There is a prime number that is even.
- A universal existential statement is a statement where the first part is universal and the second part is existential.
 - Every real number has an additive inverse.
 - For all real numbers r, there is an additive inverse -r.
 - For all real numbers r, there is a real number s such that r+s=0.
- An **existential universal statement** is a statement where the first part is existential and the second part is universal.
 - There is a positive integer that is less than or equal to every positive integer.
 - There is a positive integer m such that every positive integer is greater than or equal to m.
 - There is a positive integer m with the property that for all positive integers $n, m \le n$.

1.2 Sets

Definition A **set** is a collection of objects.

Notation

- $x \in S$: x is an element of S.
- $x \notin S$: x is not an element of S.
- $S = \{1, 2, 3, \dots\}$: is set roster notation.

Axion of Extension A set is determined by what its elements are. Orders of elements or repeated elements can't be determine the set. For example: $\{1, 2, 3\} = \{3, 2, 2, 1, 2, 3, 1\}$. There are 3 elements in both sets.

Common Sets

- \mathbb{R} : the set of all real numbers.
- \mathbb{Z} : $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ the set of all integers.
- \mathbb{N} : $\{1, 2, 3, \dots\}$ the set of all natural numbers.
- \mathbb{Q} : the set of all rational numbers.
- $\emptyset = \{\}$: the empty set, or null set.

The null set is a subset of every set.

Set Builder Notation Let S denote a set and let $x \in S$ be and element in S. P(x) is a property that some elements of S satisfy.

$$A = \{x \in S | P(x)\}$$

A constains elements in S such that (-) P(x) is true.

Subsets

Definition Let A and B be sets. A is a **subset** (\subseteq) of B if every element of A is also an element of B.

Proper Subsets Let A and B be sets. A is a **proper subset** (\subset) of B if every element of A is also an element of B, and there is at least one element in B that is not in A.

Example Let $A = \mathbb{Z}^+, B = \{n \in \mathbb{Z} | 0 \le n \le 100\}, and C = \{100, 200, 300, 400, 500\}.$

- $B \subseteq A$ is false.
- $C \subset A$ is true.
- $C \subseteq B$ is false.
- $C \subseteq C$ is true.

Cartesian Product of sets Let A and B be sets. The Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Example Let $A = \{1, 2, 3\}$ and B = u, v.

$$A \times B = \{(1, u), (1, v), (2, u), (2, v), (3, u), (3, v)\}$$

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

1.3 Relations and Functions

Relations Let A and B be sets. A **relation** from A to B is a subset of the Cartesian product $A \times B$.

$$R \subseteq A \times B$$

- If $(x,y) \in R$, we say that x is related to y by R, denoted as xRy.
- \bullet **A** is in the **domain** of **R**
- B is the codomain of R

Example Let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$ and define a relation R from A to B as follows:

$$(x,y) \in R \iff \frac{x+y}{2} \in \mathbb{Z}$$
 $R = \{(1,1), (1,2), (2,1), (2,2), (3,1)\}$
Domain of $R = \{1,2,3\}$
Codomain of $R = \{1,2\}$

Functions

Definition Let A and B be two sets. A function F from A to B is a relation with domain A and co-domain B that satisfies the following properties:

- For every element $x \in A$, there is an element $y \in B$ such $(x,y) \in F$
- For every element $x \in A$ and $y, z \in B$:

- If
$$(x,y) \in F$$
 and $(x,z) \in F$, then $y=z$

Example Let $A = \{2, 4, 6\}$ and $B = \{1, 3, 5\}$. Which of the relations defined below are functions from A to B?

- $R = \{(2,5), (4,1), (4,3), (6,5)\}$
 - Not a function because 4 is related to 1 and 3. This is not a many-to-one relationship.
- For all $(x.y) \in A \times B, (x,y) \in S \iff y = x+1$
 - $S = \{(2,3), (4,5)\}$ is a function from A to B.
- $T = \{(2,5), (4,1), (6,1)\}$
 - $-\ T$ is a function from A to B as A has a many-to-one relationshop with B.

Equivalent Functions

Let A and B be two sets. Two functions f and g from A to B:

$$f = g \iff f(x) = g(x) \quad \forall \quad x \in A$$

2. The Logic of Compound Statements

2.1 Logical Form and Equivalence

Arguments

Definition An arguement is a sequence of statements aimed at demonstrating the truth of an assertion.

- The assertion at the end of the sequence is called the conclusion.
- The statements that support the conclusion are called premises.
- If the premises are true, the conclusion must also be true.

Example

- If student A is a math major or student A is a computer science major,
- Then student A will take Discrete Math.

Logical Statements

Definition A logical statement is a declarative sentence that is either true or false, but not both.

- Not p: $\neg p$
- p and/but q: $p \wedge q$
- p or q: $p \lor q$
- Neither p nor q: $\neg p \land \neg q$

Example h = healthy, w = wealthy, s = wise

- John is healthy and wealthy but not wise.
 - $(h \wedge w) \wedge \neg s$
- John is neither wealthy nor wise, but he is healthy
 - $(\neg w \wedge \neg s) \wedge h$

Equivalent Statements

Definition Two logical statements are equivalent if they have the same truth tables, denoted:

$$p \equiv q$$

De Morgan's Laws The negation (\neg) of an and statement is logically equivalent to the or statement of the negations. Similarly, the negation of an or statement is logically equivalent to the and statement of the negations.

- $\bullet \ \neg (p \land q) \equiv \neg p \lor \neg q$
- $\neg (p \lor q) \equiv \neg p \land \neg q$

Tautological and Condtradictory Statements

- A tautological statement is a statement that is always true.
- A contradictory statement is a statement that is always false.

2.2 Conditional Statements

Definition A Conditional statement is in the form "If p, then q" and is denoted as $p \implies q$ This is read as p implies q.

- \bullet p is the **hypothesis** of the statement.
- \bullet q is the **conclusion** of the statement.

Order of Operations

- (): parentheses
- ¬: negation
- \langle \tau \cdots \
- \Longrightarrow : implication

Equivalent of Conditional Statements

$$p \implies q \equiv \neg p \lor q$$
$$\neg (p \implies q) \equiv p \land \neg q$$

Example Find the negation of the following statement: "If my car is in the repair shop then I cannot go to class".

- Hypothesis (p): "My car is in the repair shop"
- Conclusion (q): "I cannot go to class"
- Convert: $p \implies q \equiv \neg p \lor q$
- Negation: $\neg(p \implies q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$
- Convert back: "My car is in the repair shop and I can go to class"

Negation vs Inverse The negation of a statement is NOT the same as the inverse of the statement.

• Negation: $\neg(p \implies q)$

• Inverse: $\neg p \implies \neg q$

Example If p is a square, then p is a rectangle.

• Hypothesis (p): "p is a square"

• Conclusion (q): "p is a rectangle"

• Negation: $\neg(p \implies q) \equiv p \land \neg q$

• Convert back: "p is a square and p is not a rectangle"

• Inverse: $\neg p \implies \neg q \equiv p \vee \neg q$

• Convert: "If p is not a square, then p is not a rectangle"

More statement types

• Contrapositive of $p \implies q \equiv \neg q \implies \neg p$

• Converse of $p \implies q \equiv q \implies p$

• Inverse of $p \implies q \equiv \neg p \implies \neg q$

Example If today is Easter then tomorrow is Monday.

 \bullet Hypothesis (p): "Today is Easter"

• Conclusion (q): "Tomorrow is Monday"

• Convert: $p \implies q$

• Contrapositive: $\neg q \implies \neg p \equiv \text{If tomorrow is not Monday, then today is not Easter}$

• Converse: $q \implies p \equiv \text{If tomorrow}$ is Monday, then today is Easter

• Inverse: $\neg p \implies \neg q \equiv \text{If today is not Easter}$, then tomorrow is not Monday

Biconditional Statements A biconditional statement is in the form "p if and only if q" and is denoted as $p \iff q$. This is read as p if and only if q.

$$p \iff q \equiv (p \implies q) \land (q \implies p) \tag{1}$$

Sufficient and Necessary Conditions If r and s are statements:

- r is a sufficient condition for s if $r \implies s$.
- r is a necessary condition for s if $s \implies r$ or $s \implies r$.
- r is a necessary and sufficient condition for s if $r \iff s$.

2.3 Valid and Invalid Arguments

Definition An **argument** is a sequence of statements, and an **argument** form is a sequence of statement form.

- The final statement or statement form is called the **conclusion**. The symbol ∴ (therefore) is used to denote the conclusion.
- All the preceding statements or statement forms are called **premises**, or assumptions or hypotheses.
- An argument form is **valid** means if all premises are true, then the conclusion must also be true.

Example Determine whether the following argument form is valid or invalid:

$$\begin{array}{c} p \implies q \vee \neg r \\ q \implies p \wedge r \\ \therefore p \implies r \end{array}$$

p	q	r	$p \implies (q \vee \neg r)$	$q \implies (p \wedge r)$	$p \implies r$	Valid?
T	Т	Т	Т	T	Τ	Valid
T	Т	F	F	m T	F	Invalid
T	F	Т	${ m T}$	F	${ m T}$	Invalid
T	F	F	F	F	F	Invalid
F	Т	Т	${ m T}$	F	${ m T}$	Invalid
F	Т	F	T	F	${ m T}$	Invalid
F	F	Т	T	F	${ m T}$	Invalid
F	F	F	Т	F	${ m T}$	Invalid

Therefore the argument form is invalid.

Syllogisms

Definition An argument form with two premisies are called syllogism. The firest and second premises are called the major premise and minor premise respectively.

Modus Ponens Modus Ponens is a valid argument form that can be expressed as:

$$\begin{array}{c} p \implies q \\ p \\ \vdots q \end{array}$$

This means that if $p \implies q$ (if p then q) is true, and p is true, then we can conclude that q must also be true.

Example If there are more pigeons than there are pigeonholes, then at least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴ At least two pigeons roost in the same hole.

Modus Tollens Modus Tollens is a valid argument form that can be expressed as:

$$\begin{array}{c}
p \implies q \\
\neg q \\
\therefore \neg p
\end{array}$$

This means that if $p \implies q$ (if p then q) is true, and q is false, then we can conclude that p must also be false.

Rules of Inference A rule of inference is a form of argument that is valid. Both modus ponens and modus tollens are rules of inference. The following are additional examples of rules of inference:

		V-27001 - CC V-070	1907
Modus Ponens	$p \rightarrow q$ p $\therefore q$	Elimination	a. $p \lor q$ b. $p \lor q$ $\sim q \qquad \sim p$ $\therefore p \qquad \therefore q$
Modus Tollens	$ \begin{array}{c} p \to q \\ \sim q \\ \therefore \sim p \end{array} $	Transitivity	$p \to q$ $q \to r$ $\therefore p \to r$
Generalization	a. p b. q $\therefore p \lor q$ $\therefore p \lor q$	Proof by Division into Cases	$p \lor q \\ p \to r$
Specialization	a. $p \wedge q$ b. $p \wedge q$ $\therefore p$ $\therefore q$		<i>q</i> → <i>r</i> ∴ <i>r</i>
Conjunction	p q ∴p∧q	Contradiction Rule	$\sim p \rightarrow c$ (contradiction $\therefore p$

Prove by Detachment Prove by contrapositive Disjunctive of syllogism Law of Syllogism

Contradictions

Definition A contradiction is a statement that is always false.

$$\neg p \implies c$$
$$\therefore p$$

2 column rule The 2 column rule is a way to prove by contradiction. For example with knights and knaves. Knights always tell the truth and knaves always lie:

- A says B is a knight
- B says A and I are of opposite types

Suppose A is a knight:

What A says must be true	By the definition of a knight
B is a knight	by given (what A says)
What B says must be true	By the definition of a knight
A and B are of opposite types	by given (what B says)
Contradiction	A is not a knight or A is a knave
The supposition is false	by rule of contradiction
A is not a knight or A is a knave	by negation of supposition.

3. The Logic of Quantified Statements

3.1 Predicates and Quantified Statements (Part 1)

Predicates

Definition A predicate is a sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables. For example: "P(x): x is a positive integer" is a predicate. The statement P(3) is true, while P(-2) is false.

Domain of a Predicate The Domain of a predicate is the set of all values that can be substituted for the variable.

Example Let P(x) be the predicate " $x^2 > x$." The domain of P(x) is \mathbb{R} .

$$P(\frac{1}{2}): (\frac{1}{2})^2 > \frac{1}{2}$$
 = False
 $P(-\frac{1}{2}): (-\frac{1}{2})^2 > -\frac{1}{2}$ = True
 $P(2): 2^2 > 2$ = True

Truth Sets

Definition If P(x) is a predicate with domain D, the truth set of P(x) is the set of all elements in D for which P(x) is true when they are substituted for x. The truth set of P(x) is denoted by:

$$\{x\in D\ni P(x)\}\subseteq D$$

Example Let P(x) be the predicate " $n^2 \le 30$ " with domain \mathbb{Z} . The truth set of P(x) is:

$${x \in \mathbb{Z} \ni P(x)} = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}$$

Quantified Statements

Definition A quantified statement is a statement that contains a quantifier. The two most common quantifiers are:

- Universal Quantifier \forall (for all)
- Existential Quantifier ∃ (there exists)

Universal Statements Let P(x) be a predicate with domain D. A universal statement is a statement of the form " $\forall x \in D, P(x)$ " which is read as "for all x in D, P(x) is true."

- It is defined to be true if and only if P(x) is true for all x in D.
- It is defined to be false if and only if P(x) is false for at least one x in D.
- The value of x for which P(x) is false is called a counterexample.

Example Let $D = \{1, 2, 3\}$, and show that the statement " $\forall x \in D, x^2 \ge x$ " is true.

$$1^2 \ge 1$$
 is true $2^2 \ge 2$ is true $3^2 \ge 3$ is true $\therefore \forall x \in D, x^2 \ge x$ is true.

Existential Statements Let P(x) be a predicate with domain D. An existential statement is a statement of the form " $\exists x \in D \ni P(x)$ " which is read as "there exists an x in D such that P(x) is true."

- It is defined to be true if and only if P(x) is true for at least one x in D.
- It is defined to be false if and only if P(x) is false for all x in D.
- The value of x for which P(x) is true is called a witness.

Example Show that the statement " $\exists x \in \mathbb{Z} \ni \frac{1}{x} = x$ " is true.

$$x = 1 : \frac{1}{1} = 1$$
 is true
 $\therefore \exists x \in \mathbb{Z} \ni \frac{1}{x} = x$ is true.

Universal Conditional Statements A universal conditional statement is a statement of the form " $\forall x \in D, P(x) \implies Q(x)$ " which is read as "for all x in D, if P(x) is true, then Q(x) is true."

3.2 Predicates and Quantified Statements (Part 2)

Negations of Quantified Statements

Negation of a Universal Statement

$$\neg(\forall x \in D, P(x)) \equiv \exists x \in D \ni \neg P(x)$$

Negation of an Existential Statement

$$\neg(\exists x \in D \ni P(x)) \equiv \forall x \in D, \neg P(x)$$

Negation of a Universal Conditional Statement

$$\neg(\forall x \in D, P(x) \implies Q(x)) \equiv \exists x \in D \ni P(x) \land \neg Q(x)$$

Consider the statement: $\forall x \in D, P(x) \implies Q(x)$.

It's contrapositive is: $\forall x \in D, \neg Q(x) \implies \neg P(x)$

It's converse is: $\forall x \in D, Q(x) \implies P(x)$

It's inverse is: $\forall x \in D, \neg P(x) \implies \neg Q(x)$

3.3 Statements with Multiple Quantifiers

Consider the statement: $\forall x \in D, \exists y \in E \ni P(x,y)$. To show the truth of the statement, we must show that for every x in D, there exists a y in D such that P(x,y) is true.

Example Let $D = \{1, 2, 3\}$ and P(x, y) be the predicate "x + y = 4". Show that the statement $\forall x \in D, \exists y \in D \ni P(x, y)$ is true.

$$\begin{aligned} x &= 1: & \exists y \in D \ni 1 + y = 4 \implies y = 3 \\ x &= 2: & \exists y \in D \ni 2 + y = 4 \implies y = 2 \\ x &= 3: & \exists y \in D \ni 3 + y = 4 \implies y = 1 \\ & \therefore & \forall x \in D, \exists y \in D \ni P(x,y) \text{ is true.} \end{aligned}$$

Consider the statement: $\exists x \in D \ni \forall y \in D, P(x, y)$. To show the truth of the statement, we must show that there exists an x in D such that for every y in D, P(x, y) is true.

Example Let $D = \{1, 2, 3\}$ and P(x, y) be the predicate "x + y = 4". Show that the statement $\exists x \in D \ni \forall y \in P, P(x, y)$ is false.

$$x = 1: \quad \forall y \in D, 1 + y = 4 \implies y = 3$$

 $x = 2: \quad \forall y \in D, 2 + y = 4 \implies y = 2$
 $x = 3: \quad \forall y \in D, 3 + y = 4 \implies y = 1$
 $\therefore \quad \exists x \in D \ni \forall y \in D, P(x, y) \text{ is false.}$

Negation of Multiply-Quantified Statements

$$\neg(\forall x \in D, \exists y \in E \ni P(x,y)) \equiv \exists x \in D \ni \forall y \in E, \neg P(x,y))$$
$$\neg(\exists x \in D, \ni \forall y \in E, P(x,y)) \equiv \forall x \in D, \exists y \in E \ni \neg P(x,y)$$

3.4 Arguments with Quantified Statements

Universal Model Ponens (Direct Proof)

$$\forall x, P(x) \implies Q(x)$$
 If x makes $P(x)$ true, then x makes $Q(x)$ true.

 $P(a)$ Input a makes $P(a)$ true.

$$\therefore$$
 $Q(a)$ Therefore a makes $Q(a)$ true.

Example Let P(x) be the predicate "x is a prime number" and Q(x) be the predicate "x is an odd number".

$$\forall x, P(x) \implies Q(x)$$
 If x is a prime number, then x is an odd number. $P(3)$ 3 is a prime number, therefore 3 is an odd number.

Universal Modus Tollens (Prove by Contradiction)

$$\forall x, P(x) \implies Q(x)$$
 If x makes $P(x)$ true, then x makes $Q(x)$ true. $\neg Q(a)$ Input a makes $Q(a)$ false. $\therefore \neg P(a)$ Therefore a does not make $P(a)$ true.

Example Consider the statement "All irrational numbers are real numbers.":

$$\forall x \in \mathbb{R} - \mathbb{Q}, x \in \mathbb{R} \qquad \text{If x is an irrational number, then x is a real number.}$$

$$\frac{1}{0} \notin \mathbb{R}$$

$$\frac{1}{0} \text{ is not a real number,}$$

$$\therefore \quad \frac{1}{0} \notin \mathbb{R} - \mathbb{Q}$$
 therefore $\frac{1}{0}$ is not an irrational number.

Converse and Inverse Errors

Converse Error

$$\forall x, P(x) \implies Q(x)$$
 $Q(a) : P(a)$ (Invalid Arguement)

Inverse Error

$$\forall x, P(x) \implies Q(x) \qquad \neg P(a) :. \quad \neg Q(a) \text{(Invalid Arguement)}$$

4. Elementary Number Theory and Methods of Proof

4.1 Direct Proof and Counterexample

Definitions Let P(n) be the predicate "n is an even number".

$$\forall n \in \mathbb{Z}, P(n) \iff \exists k \in \mathbb{Z} \ni n = 2k.$$
$$\forall n \in \mathbb{Z}, \neg P(n) \iff \exists k \in \mathbb{Z} \ni n = 2k + 1.$$

Example Is -301 even or odd?

$$-301 = 2k + 1$$
 for $k = -151$

Example If $a, b \in \mathbb{Z}$, is $6a^2b$ even?

$$\exists a, b \in \mathbb{Z} \ni 6a^2b = 2(k) + 1$$

 $6a^2b = 2(3a^2b) \text{ for } k = 3a^2b$
 $6a^2b \text{ is even.}$

Prime and Composite Number Definition Let P(n) be the predicate "n is a prime number".

$$\forall n \in \mathbb{Z}_{>1}, P(n) \iff \forall r, s \in \mathbb{Z}_{>1}, n = rs \implies r = n \lor s = n$$

$$\forall n \in \mathbb{Z}_{>1}, \neg P(n) \iff \exists r, s \in \mathbb{Z}_{>1} \ni n = rs \land 1 < r < n \land 1 < s < n$$

Constructive Proof of Existential Statement

$$\exists x in D \ni Q(x)$$

- Find an x in D that makes !(x) true.
- Give a set of directions for finding such an x in D

Example Prove there is and even integer n such that n can be written in two ways as a sum of two prime numbers.

Let
$$n = 10$$
,
 $10 = 3 + 7$
 $10 = 5 + 5$

 \therefore the statement is true.

Disproving Universal Statement by Counterexample

$$\forall x in D, P(x) \implies Q(x)$$

• Find an x in D that makes P(x) true, but Q(x) false.

Method of Exhaustion of Proving Universal Statement

$$\forall xinD, P(x) \implies Q(x)$$

• Check all x in D to make sure that when P(x) is true, Q(x) is false.

Direct Proof of Universal Statement

$$\forall x \in D, P(x) \implies Q(x)$$

- Suppose x is an arbitrary element in D for which the hypothesis P(x) is true.
- Using definitions or previously established results and rules to conclude Q(x) is true.

Example Prove the statement "the sum of any two even integers is even."

Suppose a and b are two even integers

$$\therefore a = 2k, \exists k_1 \in \mathbb{Z}$$

$$\therefore b = 2k, \exists k_2 \in \mathbb{Z}$$

$$\therefore a+b=2k_1+2k_2$$

$$a + b = 2(k_1 + k_2)$$

$$\therefore$$
 $a+b$ is even

4.2 Skipped

4.3 Rational Numbers

Definitions

- A real number r is rational if and only if $\exists a, b \in \mathbb{Z}$ such that $r = \frac{a}{b} \land b \neq 0$.
- A real number that is not rational is irrational.

Example Is 320.5492492492... a rational number? (The 492 repeats). We can split the number into two parts: 320.5 and 0.0492492...

First we rewrite 320.5 as a fraction:

$$320.5 = \frac{3205}{10}$$

Then we rewrite 0.0492492... as a fraction:

$$10000(0.0492492...) - 10(0.0492492...) = 492.492... = 0.492492... = 492$$

$$\Rightarrow 10000x - 10x = 492$$

$$\Rightarrow$$
 9990 $x = 492$

$$\Rightarrow \quad x = \frac{492}{9990}$$

Now we can combine the two fractions:

$$320.5492492... = \frac{3205}{10} + \frac{492}{9990}$$

$$\Rightarrow \frac{3205 \cdot 999}{10 \cdot 999} + \frac{492 \cdot 1}{9990}$$

$$\Rightarrow \frac{3205 \cdot 999 + 492}{9990}$$

$$3199995 + 492$$

$$\Rightarrow \frac{3199993 + 492}{9990}$$
 3200487

$$\Rightarrow \frac{3200487}{9990}$$

∴ 320.5492492... is rational.

Zero Product Property

Theorem If neither of two real numbers is zero, then their product is non-zero. The contrapositive of this theorem is also true: If the product of two real numbers is zero, then at least one of the two numbers is zero.

Let
$$a, b \in \mathbb{Q}$$

If $ab = 0 \Rightarrow a = 0 \lor b = 0$
If $ab \neq 0 \Rightarrow a \neq 0 \land b \neq 0$

Example

Let
$$a, b \in \mathbb{Q}$$
:

$$\therefore$$
 $a = \frac{n_1}{d_1}, \exists n_1, d_1 \in \mathbb{Z} \land d_1 \neq 0$ Definition of rational numbers.

$$\therefore b = \frac{n_2}{d_2}, \exists n_1, d_1 \in \mathbb{Z} \land d_2 \neq 0$$

$$\therefore a + b = \frac{n_1}{d_1} + \frac{n_2}{d_2}$$
 Substitution principle.

$$\therefore a+b = \frac{n_1d_2 + n_2d_1}{d_1d_2}$$

$$d_1d_2 \neq 0$$
 Zero product property

 \therefore a+b is rational

Corollaries

Definition A corollary is a statement whose truth can be immediately deduced from a theorem that has already been proven.

Example Prove that the product of two rational numbers is rational.

Let $a, b \in \mathbb{Q}$:

$$\therefore a = \frac{n}{m}, \exists n, m \in \mathbb{Z} \land m \neq 0$$
 Definition of rational numbers.

$$\therefore b = \frac{s}{t}, \exists s, t \in \mathbb{Z} \land t \neq 0$$

$$\therefore \quad a \cdot b = \frac{n}{m} \cdot \frac{s}{t}, m \neq 0 \land t \neq 0$$

$$\therefore ab = \frac{ns}{mt}, mt \neq 0$$

Zero product property.

$$\therefore ab \in \mathbb{Q}$$

Example Prove or disprove by counterexample the following statement: "The quotient of any 2 rational numbers is rational."

$$\forall p, q \in \mathbb{Q}, \frac{p}{q} \in \mathbb{Q}$$

Statement

Let
$$p = 1, q = 0$$

$$\therefore \quad \frac{p}{q} \notin \mathbb{Q}$$

$$\therefore \exists p, q \in \mathbb{Q} \ni \frac{p}{q} \notin \mathbb{Q}$$

Example Prove or disprove by counterexample the following statement: $\forall a, b \in \mathbb{R}, a < b \implies a < \frac{a+b}{2} < b$.

$$\therefore a < b \implies a + b < 2b$$

$$\therefore \quad \frac{1}{2} > 0$$

$$\therefore \quad a < b \land \frac{1}{2} > 0 \implies \frac{a+b}{2} < \frac{b}{2}$$

$$\therefore a < b \implies 2a < b + a$$

$$\therefore \quad \frac{1}{2} > 0$$

$$\therefore \quad a < b \land \frac{1}{2} > 0 \implies a < \frac{a+b}{2}$$

$$\therefore \quad a < \frac{a+b}{2} \land \frac{a+b}{2} < b \equiv a < \frac{a+b}{2} < b$$

4.4 Divisibility

Definitions If n and d are integers and $d \neq 0$, then n is divisible by d if and only if n = dk for some integer k.

- Notation: d|n is read "d divides n".
 - $\ d|n \iff \exists k \in \mathbb{Z} \ni n = dk$
 - Note that the factor comes first in this notation.

It is equivalent to the following statements:

- n is a multiple of d
- d is a factor of n
- d is a divisor of n
- d divides n

Example Prove the following statement: $\forall a, b, c \in \mathbb{Z}, a | b \wedge a | c \implies a | (b + c).$

Suppose $a, b, c \in \mathbb{Z} \wedge a | b \wedge a | c$

$$\therefore b = ak, \exists k \in \mathbb{Z}$$

Definition of Divisibility

$$\therefore \quad c = am, \exists m \in \mathbb{Z}$$

$$\therefore b+c=a(k+m)$$

Integers are closed under addition

Substitution and distributive

$$\therefore k+m \in \mathbb{Z}$$
$$\therefore a|(b+c)$$

Def. of divisibility

Divisibility Theorems

Positive Divisor of a Positive Integer Theorem

$$\forall a, b \in \mathbb{Z}, a > 0 \land b > 0 \land a | b \implies a \le b.$$

Divisors of 1 Theroem The only divisors of 1 are 1 and -1.

Transistivity of Divisibility Theorem

$$\forall a, b, c \in \mathbb{Z}, a|b \wedge b|c \implies a|c$$

Divisible by a Prime Theorem Any integers n ; 1 is divisible by a prime number.

Unique Factorization of Integers Theorem Given any integers n $\[i \]$ 1, there exists k many distinct prime numbers (p_1, \ldots, p_k) and k many positive integers (e_1, \ldots, e_k) , where k is a positive integer, such that:

$$n = \prod_{i=1}^{k} p_i^{e_i}$$

Example If $a = \prod_{i=1}^k p_i^{e_i}$, find the standard factored form of a^2 :

$$a^{2} = \prod_{i=1}^{k} p_{i}^{e_{i}} \cdot \prod_{i=1}^{k} p_{i}^{e_{i}}$$

$$= (p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}) \cdot (p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}})$$

$$= p_{1}^{2e_{1}} p_{2}^{2e_{2}} \cdots p_{k}^{2e_{k}}$$

$$= \prod_{i=1}^{k} p_{i}^{2e_{i}}$$

4.5 The Quotient-Remainder Theorem

Theorem

$$\forall n \in \mathbb{Z}, \forall d \in \mathbb{Z}^+, \exists q, r \in \mathbb{Z} \ni n = dq + r \land 0 \le r < d$$

Definition Given any integer n and any positive integer d:

$$n \div d = q$$
$$n \mod d = r$$

Example If today is tuesday, what day of the week will it be in 365 days?

$$365 \mod 7 = 1$$
Tuesday $+ 1$ day $=$ Wednesday

The Parity Property

Definition We call the fact that any integer is either even or odd the parity property.

(Method of Proof by Division Into Cases) To prove a statement of the form "If $A_1 or A_2 \dots or A_n$, then C."

Example The product of two consecutive integers is even.

$$\exists n \in \mathbb{Z}$$

Case 1:
$$2|n$$

$$\therefore$$
 $2|n \implies \exists k \in \mathbb{Z} \ni n = 2k \implies n+1 = 2k+1$

$$\therefore n(n+1) = 2k(2k+1) = 2(2k^2 + k)$$

$$\therefore k \in \mathbb{Z} \implies 2k^2 + k \in \mathbb{Z}$$

$$n(n+1) = 2(2k^2 + k) \wedge 2k^2 + k \in \mathbb{Z} \implies [2|n(n+1)]$$

Case 2:
$$\neg(2|n)$$

$$\therefore \neg (2|n) \implies \exists k \in \mathbb{Z} \ni n = 2k+1 \implies n+1 = 2k+2$$

$$n(n+1) = (2k+1)(2k+2) = 2(2k^2+3k+1)$$

$$\therefore k \in \mathbb{Z} \implies 2k^2 + 3k + 1 \in \mathbb{Z}$$

$$\therefore n(n+1) = 2(2k^2 + 3k + 1) \land 2k^2 + 3k + 1 \in \mathbb{Z} \implies [2|n(n+1)]$$

$$[2|n(n+1)]$$

Absolute Value

Definition For any real number x, the absolute value of x, delotes —x—, is defined as:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Lemma

$$\forall r \in \mathbb{R}, -|r| \le r \le |r|$$

 $\forall r \in \mathbb{R}, |-r| = |r|$

The Triangle Inequality

$$\forall x, y \in \mathbb{R}, |x+y| \le |x| + |y|$$

4.6 Skipped

4.7 Contradiction and Contraposition

Method of Proof by Contradiction

- Suppose the opposite of the to-be proved conclusion.
- Show that this supposition leads logically to a contradiction (a statement that is always false).
- Conclude that the statement to be broved is true.

Example Prove the theorem by contradiction: "There is no greatest integer."

Suppose: $\exists m \in \mathbb{Z} \ni \forall n \in \mathbb{Z}, n \leq m$ Opposite of theorem

 $\exists n \in \mathbb{Z} \ni n = m+1$

 $\therefore \quad \nexists m \in \mathbb{Z} \ni \forall n \in \mathbb{Z}, n \leq m$

Example Prove the theorem by contradiction: "The square root of any irrational number is irrational."

Theorem: $\forall n \notin \mathbb{Q}, \sqrt{n} \notin \mathbb{Q}$ Suppose: $\forall n \notin \mathbb{Q}, \sqrt{n} \in \mathbb{Q}$

Opposite of theorem

Theorem

Definition of rational numbers

 $\therefore \quad \sqrt{n} \in \mathbb{Q} \implies \exists a, b \in \mathbb{Z} \ni \sqrt{n} = \frac{a}{b} \land b \neq 0$ $\therefore \sqrt{n} = \frac{a}{b} \implies n = \frac{a^2}{b^2}$

Squaring both sides

 $\therefore a, b \in \mathbb{Z} \implies a^2, b^2 \in \mathbb{Z}$

Integers are closed under squaring

 $\therefore n = \frac{a^2}{b^2} \wedge a^2, b^2 \in \mathbb{Z} \implies n \in \mathbb{Q}$

Definition of rational numbers

 $n \in \mathbb{Q} \land n \notin \mathbb{Q}$

Contradiction

The assumption is false, and the theorem is true.

Example Prove the theorem by contradiction: "The sum of any rational number and any irrational number is irrational."

Theorem: $\forall n \in \mathbb{Q}, \forall m \notin \mathbb{Q}, n+m \notin \mathbb{Q}$

Suppose:
$$\forall n \in \mathbb{Q}, \forall m \notin \mathbb{Q}, n+m \in \mathbb{Q}$$

Opposite of theorem

$$\therefore$$
 $n+b\in\mathbb{Q} \implies \exists a,b\in\mathbb{Z}\ni n+m=\frac{a}{b}\land b\neq 0$ Definition of rational numbers

$$\therefore m = \frac{a}{b} - n$$

$$\therefore n \in \mathbb{Q} \implies \exists x, y \in \mathbb{Z} \ni n = \frac{x}{y} \land y \neq 0$$

Definition of rational numbers

$$\therefore m = \frac{a}{b} - \frac{x}{y}$$

$$\therefore m = \frac{ay - bx}{by} \implies m \in \mathbb{Q}$$

$$\therefore m \in \mathbb{Q} \land m \notin \mathbb{Q}$$

Contradiction

 $\therefore \forall n \in \mathbb{Q}, \forall m \notin \mathbb{Q}, n+m \notin \mathbb{Q}$

The theorem is true.

Method of Proof by Contraposition

- Express the given statement in the form of " $\forall x \in D, P(x) \implies Q(x)$ ".
- Rewrite in contrapositive form: " $\forall x \in D, \neg Q(x) \implies \neg P(x)$ ".
- Prove the contrapositive by direct proof.
 - Suppose $\exists x \in D \ni \neg Q(x)$.
 - Prove $\neg P(x)$.

Example Prove the statement by contraposition: "For all integers m and n, if mn is even then m is even or n is even."

Theorem: $\forall m, n \in \mathbb{Z}, 2|mn \implies 2|m \vee 2|n$

Contrapositive: $\forall m, n \in \mathbb{Z}, \neg(2|m) \land \neg(2|n) \implies \neg(2|mn)$

Suppose: $\exists m, n \in \mathbb{Z} \ni \neg(2|m) \land \neg(2|n)$

$$\therefore \neg (2|m) \land \neg (2|n) \implies \exists k, l \in \mathbb{Z} \ni m = 2k+1 \land n = 2l+1$$

mn = (2k+1)(2l+1)

$$\implies mn = 4kl + 2k + 2l + 1 \implies mn = 2(2kl + k + l) + 1$$

 $\therefore k, l \in \mathbb{Z} \implies 2kl + k + l \in \mathbb{Z}$

$$\therefore mn = 2(2kl + k + l) + 1 \wedge 2kl + k + 1 \in \mathbb{Z} \implies \neg(2|mn)$$

5. Sequences, Induction, and Recursion

5.1 Sequences

Definiton A sequence is a function whose **domain** is either all the **integers** between two given integers or all the integers greater than or equal to a given integers.

Notation

$$a_{1} = f(1)$$

$$\dots$$

$$a_{n-1} = f(n-1)$$

$$a_{n} = f(n)$$

$$a_{n+1} = f(n+1)$$

Example Write the first three terms of the sequence whose **explicit** or **general formula** is given:

$$a_n = \frac{(-1)^n}{2^n + 1} \text{ for } n \ge 1$$

$$a_1 = \frac{(-1)^1}{2^1 + 1} = -\frac{1}{3}$$

$$a_2 = \frac{(-1)^2}{2^2 + 1} = \frac{1}{5}$$

$$a_3 = \frac{(-1)^3}{2^3 + 1} = -\frac{1}{9}$$

Summation Notation

Definition If m and n are integers and $m \le n$, then a **series** can be notated as:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

- Read as "the summation from i = m to n of a-sub-i"
- i is called the index of the Summation
- m is called the lower limit of the Summation
- n is called the upper limit of the summation

Example Expand and evaluate the following:

$$\sum_{i=2}^{6} (i-1)^2$$
= 1 + 4 + 9 + 16 + 25
= 55

Re-indexing a Summation Re-indexing a summation involves changing the index variable or the limits of summation, often to simplify the expression or to match another sum's index.

$$\sum_{i=1}^{n+1} \frac{1}{i^2}$$

$$= \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}$$

Example If j = i + 1, transform the following summation by rewriting it in terms of j: $\sum_{i=4}^{k-1} i(i-1)$

$$i=4 \implies j=4+1=5$$
 Rewrite lower limit. $i=k-1 \implies j=k-1+1=k$ Rewrite upper limit $j=i+1 \implies i=j-1$ Rewrite i in terms of j
$$\sum_{j=5}^k (j-1)(j-2)$$
 Rewrite sum

Product Notation

Definition If m and n are integers and $m \le n$, then a **series** can be notated as:

$$\prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \cdot \dots \cdot a_n$$

- Read as "the product from i = m to n of a-sub-i"
- i is called the index of the product
- m is called the lower limit of the product
- **n** is called the **upper limit** of the product

Example Expand and evaluate the following:

$$\prod_{k=2}^{5} \frac{k}{k+1}$$

$$= \frac{2}{2+1} \cdot \frac{3}{3+1} \cdot \frac{4}{4+1} \cdot \frac{5}{5+1}$$

$$= \frac{1}{3}$$

Theorem Given sequences $\{a\}$ and $\{b\}$ and $c \in \mathbb{R}$, the following equations hold:

$$\sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_n + b_n)$$

$$c \cdot \sum_{i=m}^{n} a_i = \sum_{i=m}^{n} c \cdot a_i$$

$$\prod_{i=m}^{n} a_i \cdot \prod_{i=m}^{n} b_i = \prod_{i=m}^{n} (a_i b_i)$$

Factorials

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$

Binomial Coefficient

Definition Let n and r be integers with $0 \le r \le n$, the binomial coeffecient is notated as:

$$nCr = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

It presents the number of combinations of choosing r items from n choices.

Example Evaluate:

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

5.2 Mathematical Induction 1: Proving Formulas

Method of Proof by Induction

Definition Induction proof explores the **patterns** we recognize from a list of unknown terms.

Method Consider the statement $\forall n \in \{a \in \mathbb{Z} : n \geq a\}, P(n)$

- Step 1: (basis step): Show that P(a) is true.
- Step 2: (inductive step): Show that if we suppose P(k) is true, then P(k+1) is true.

Example Use the formula to evaluate $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Suppose
$$n = 50$$

 $1 + 2 + \dots + 50 = \frac{50(50 + 1)}{2}$
 $= \frac{50(51)}{2}$
 $= \frac{2550}{2}$
 $= 1275$

Definition If a sum with a variable number of terms is show to equal an expression that does not contain either an ellipsis or a summation sign, we can say that the sum is written in **closed form**.

Example Use the formula to evaluate $1 + 2 + \cdots + n$

Geometric Series

Definition If $r \in \mathbb{R} \land r \neq 1$, the sum of the first n terms of a geometric series is given by:

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

Example Use the above formula to evaluate $1 + 3 + \cdots + 3^{m-2}$

$$r = 3, n = m - 2$$

$$1 + 3 + \dots + 3^{m-2} = \sum_{i=0}^{m-2} 3^{i}$$

$$= \frac{3^{m-1} - 1}{3 - 1} = \frac{3^{m-1} - 1}{2}$$

Example
$$3^2 + 3^3 + \dots + 3^m$$

$$3^{2} + 3^{3} + \dots + 3^{m} = 1 + 3 + 3^{2} + 3^{3} + \dots + 3^{m} - (1+3)$$

$$\implies [3^{0} + 3^{1} + 3^{2} + 3^{3} + \dots + 3^{m}] - 4 = \sum_{i=0}^{m} 3^{i} - 4 \quad (r = 3, n = m)$$

$$\implies \sum_{i=0}^{m} 3^{i} - 4 = \frac{3^{m+1} - 1}{3 - 1} - 4 = \frac{3^{m+1} - 9}{2}$$

5.3 Mathematical Induction 2

Deduction and Induction

Definitions

- **Deduction** is to infer a conclusion from general principles using laws of logical reasoning.
- **Induction** is to infer a general principle from specific examples.

Example Use mathematical induction to prove $\forall n \in \{x \in \mathbb{Z} : x \geq 0\}, 3 | (2^{2n} - 1):$

Step 0: Identify the property
$$P(n)$$

$$P(n) \equiv 3|(2^{2n} - 1)$$

Step 1: Prove
$$P(0)$$

$$2^{2(0)} - 1 = 2^0 - 1 = 1 - 1 = 0$$

$$\therefore 3|(2^{2(0)}-1)$$

Step 2: Suppose P(k) is true for $k \ge 0$, then prove P(k+1)

Suppose
$$3|(2^{2k}-1)$$

$$\implies \exists m \in \mathbb{Z} \ni 2^{2k} - 1 = 3m$$

$$\implies 2^{2(k+1)} - 1 = 2^{2k} \cdot 2^2 - 1$$

$$\implies 2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1$$

$$\implies 2^{2(k+1)} - 1 = 4(2^{2k} - 1) + 3$$

$$\implies 2^{2(k+1)} - 1 = 4(3m) + 3$$

$$3|(2^{2(k+1)}-1)|$$

Example Use mathematical induction to prove

$$\forall n \in \{x \in \mathbb{Z} : x \ge 5\}, n^2 < 2^n$$

Base Step: n = 5

$$5^2 < 2^5 = 25 < 32$$

Inductive Step: Suppose $\forall k \in \{x \in \mathbb{Z} : x \geq 5\}, k^2 < 2^k$ then prove $(k+1)^2 < 2^{k+1}$

$$LHS = (k+1)^2$$

$$(k+1)^2 = k^2 + 2k + 1$$

$$k^2 < 2^k \implies k^2 + 2k + 1 < 2^k + [2k+1]$$

 $RHS = 2^{k+1}$

$$2^{k+1} = 2^k \cdot 2^1 = 2^k + [2^k]$$

Prove $(k+1)^2 < 2^{k+1}$ for $k \ge 5$:

$$2 \cdot 5 + 1 = 11 < 32 = 2^5$$

$$2 \cdot 6 + 1 = 13 < 64 = 2^6$$

$$2 \cdot 7 + 1 = 15 < 128 = 2^7$$

and so on.

$$\forall k \in \{x \in \mathbb{Z} : x \ge 5\}, 2k + 1 < 2^k$$

$$\forall k \in \{x \in \mathbb{Z} : x \ge 5\}, (k+1)^2 < 2^{k+1}$$

$$\therefore \quad \forall k \in \{x \in \mathbb{Z} : x \ge 5\}, k^2 < 2^k$$

Recursion

Definition A **recursion** is a function that is defined in terms of itself. A recursive function is a function that calls itself.

Example $a_k = 5a_{k-1}$ for all integers $k \ge 2$.

5.4 Strong Mathematical Induction

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers with $a \leq b$.

- Basis Step: Show that P(a), P(a+1), ..., P(b) are all true.
- Inductive Step: Show that for every ingeger $k \geq b$, if P(a), P(a+1), ..., P(k) are all true, then P(k+1) is true.

Example Define a sequence:

$$S_0 = 0$$

$$S_1 = 4$$

$$\forall k \in \{x \in \mathbb{Z} : x \ge 2\}, S_k = 6S_{k-1} - 5S_{k-2}$$

Prove $\forall n \in \{x \in \mathbb{Z} : x \ge 0\}, S_n = 5^n - 1$:

Let
$$G = \{x \in \mathbb{Z} : x > 0\}$$

Basic step:

$$S_0 = 5^0 - 1 = 1 - 1 = 0$$

 $S_1 = 5^1 - 1 = 5 - 1 = 4$

Inductive step:

Suppose
$$\forall k \in G, S_k = 5^k - 1$$

$$\implies S_{k+1} = 6S_k - 5S_{k-1} = 6(5^k - 1) - 5(5^{k-1} - 1) = 6(5^k) - 6 + 5(5^{k-1}) + 5$$

$$= 6(5^k) - (5^{k-1+1}) - 1 = (6-1)5^k - 1 = 5 \cdot 5^k - 1 = 5^{k+1} - 1$$

$$\therefore S_{k+1} = 6S_k - 5S_{k-1}$$

$$\therefore \forall n \in \{x \in \mathbb{Z} : x \ge 0\}, S_n = 5^n - 1$$

Well-Ordering Principle for the Integers

Definition Let S be a **non-empty** set of **integers**. If all elements in S are greater than some fixed integers, then S has a **least element**. For the well-ordering principle to work:

- The set must be integers.
- The set must be non-empty.
- The set must be greater than some fixed integers.

5.5 Skipped

5.6 Solving Recurrence relations by Iteration

Method Starting from the initial conditions, calculate the successive terms of sequences from the recurrence formula until a pattern emerges. Then, use the pattern to find a closed form for the sequence.

Example

$$a_n = \begin{cases} 1, & n = 0 \\ a_{n-1} + 2, & \forall n \in \mathbb{Z}^+ \end{cases}$$

Solve the recurrence relation.

$$\forall n \in \mathbb{Z}^+, a_k = a_{k-1} + 2$$

$$a_n = (a_{n-1} + 2) + 2$$

$$a_n = (a_{n-2} + 2) + 2(2)$$

$$\cdots$$

$$a_n = a_{n-k} + k(2)$$

$$\therefore \forall n \in \mathbb{Z}^+, \quad a_n = a_0 + 2n$$

$$\therefore \forall n \in \mathbb{Z}^+, \quad a_n = 1 + 2n$$

Arithmetic Sequence

Definition A sequence is arithmetic if there is a constant d such that:

$$\forall k \in \mathbb{Z}^+, \quad a_k = a_{k-1} + d$$

General Formula

$$\forall n \in \{x \in \mathbb{Z} : x \ge 0\}, \quad a_n = a_0 + nd$$

Geometric Sequence

Definition A sequence is geometric if there is a constant r such that:

$$\forall k \in \mathbb{Z}^+, \quad a_k = a_{k-1}r$$

General Formula

$$\forall n \in \{x \in \mathbb{Z} : x \ge 0\}, \quad a_n = a_0 r^n$$

Example Use iteration to find the explicit formula of the following sequence:

$$e_k = \begin{cases} 2, & k = 0\\ 4e_{k-1} + 5, & k \ge 0 \end{cases}$$

$$e_0 = 2$$

$$e_1 = 4(2) + 5$$

$$e_2 = 4(4(2) + 5) + 5 = 4^2(2) + 4(5) + 5$$

$$e_3 = 4(4^2(2) + 4(5) + 5) + 5 = 4^3(2) + 4^2(5) + 4(5) + 5$$
...
$$e_k = 4^k(2) + 4^{k-1}(5) + 4^{k-2}(5) + \dots + 4(5) + 5$$

$$= 4^k(2) + 5\sum_{i=0}^{k-1} 4^i = 4^k(2) + 5(\frac{4^{k-1+1} - 1}{4 - 1})$$

$$e_k = 4^k(2) + 5(\frac{4^k - 1}{3})$$