### february 8th, 2025

exoplanet classification

### **Agenda**

- join NASA exoplanet archive data with HWC, PHL @ UPR Arecibo
- analysis on the single-host stellar systems that contain conservative & optimistic habitable exoplanets
- star mass vs planet orbit graphs per stellar system class conservative habitable
- star mass vs planet orbit graphs per stellar system class optimistic habitable

### joining NASA Exoplanet Archive with HWC, PHL

 join the NASA Exoplanet Archive data with <u>Hibitable World Catalog (HWC)</u> data from PHL
 @ UPR Arecibo

- HWC data contains a P\_HABITABLE data field:
  - P\_HABITABLE = 1: more likely to be rocky planets capable of surface liquid water
  - P\_HABITABLE = 2: might include water worlds or mini-Neptunes, with less likelihoods of habitable conditions
  - P\_HABITABLE = 0: non-habitable exoplanets



### stellar system classes - recap

- create simple stellar system classes based on member planet types:
  - o class 1: at least one Terrestrial + at least one Neptune-Like or Gas-Giant
  - o class 2: at least one Super-Earth + at least one Neptune-Like or Gas-Giant
  - o class 3: only Terrestrial or Super-Earth
  - class 4: only Neptune-Like or Gas-Giant

### stellar spectral types (single host)



#### Notes:

- lots of stellar hosts in the NASA exoplanet archive data set miss spectral types
- data points with stellar spectral types other than OBAFGKM are dropped

#### st\_spectype\_short

| G | 395 |
|---|-----|
| K | 303 |
| М | 231 |
| F | 161 |
| Α | 11  |
|   |     |

### stellar system classes (single host)



# count st\_system\_class Class 1 18 Class 2 286 Class 3 997 Class 4 2144

#### simple stellar system classes:

- class 1: at least one Terrestrial + at least one
   Neptune-Like or Gas-Giant
- class 2: at least one Super-Earth + at least one Neptune-Like or Gas-Giant
- **class 3**: only Terrestrial or Super-Earth
- class 4: only Neptune-Like or Gas-Giant

### stellar spectral types (single host) - with conservative habitable exoplanets



|                 | count |
|-----------------|-------|
| st_spectype_sho | ort   |
| М               | 10    |
| к               | 1     |

| hostname         | st_spectype_short |  |
|------------------|-------------------|--|
| GJ 1002          | М                 |  |
| GJ 1061          | М                 |  |
| TOI-700          | М                 |  |
| Teegarden's Star | М                 |  |
| GJ 273           | М                 |  |
| K2-3             | М                 |  |
| Kepler-62        | К                 |  |
| LP 890-9         | М                 |  |
| Ross 128         | М                 |  |
| TOI-715          | М                 |  |
| Wolf 1069        | М                 |  |

### stellar system classes (single host) - with conservative habitable exoplanets





# star mass vs. exoplanet orbit: stellar systems with conservative habitable exoplanets - class 1







# star mass vs. exoplanet orbit: stellar systems with conservative habitable exoplanets - class 3



Star Mass vs. Exoplanet Orbit Semi-Major Axis: TRAPPIST-1 System









### star mass vs. exoplanet orbit: stellar systems with conservative habitable exoplanets - class 3 (cont.)



Star Mass vs. Exoplanet Orbit Semi-Major Axis: LP 890-9 System

0.80







### star mass vs. exoplanet orbit: stellar systems with conservative habitable exoplanets - class 3 (cont.)









stellar spectral types (single host) - with optimistic habitable exoplanets



|                   | count |
|-------------------|-------|
| st_spectype_short |       |
| М                 | 15    |
| K                 | 2     |
| G                 | 1     |

| hostname   | st_spectype_short |  |
|------------|-------------------|--|
| GJ 180     | М                 |  |
| GJ 163     | М                 |  |
| TOI-2257   | М                 |  |
| Ross 508   | М                 |  |
| LHS 1140   | М                 |  |
| Kepler-62  | К                 |  |
| Kepler-22  | G                 |  |
| Kepler-155 | М                 |  |
| K2-9       | М                 |  |
| K2-18      | М                 |  |
| HN Lib     | М                 |  |
| HD 216520  | К                 |  |
| GJ 682     | М                 |  |
| GJ 514     | М                 |  |
| GJ 433     | М                 |  |
| GJ 357     | М                 |  |
| GJ 3293    | М                 |  |
| Wolf 1061  | М                 |  |

### stellar system classes (single host) - with optimistic habitable exoplanets





# star mass vs. exoplanet orbit: stellar systems with optimistic habitable exoplanets - class 1





# star mass vs. exoplanet orbit: stellar systems with optimistic habitable exoplanets - class 2

Terrestrial Planets

Habitable Zone



Exoplanet Semi-Major Axis (AU in Log)

Star Mass vs. Exoplanet Orbit Semi-Major Axis: Kepler-283 System

0.70

0.10











### star mass vs. exoplanet orbit: stellar systems with optimistic habitable exoplanets - class 2 (cont.)





#### future work

- continue working on the draft of the short paper.
- try with K-mean ML model to cluster stellar systems.