B. 随机情况:估计如果块是随机映射到磁盘扇区上时读该文件所需要的时间(以 ms 为单位)。下面的表给出了一些不同的高速缓存的参数。对于每个高速缓存,填写出表中缺失的字段。记住m 是物理地址的位数,C 是高速缓存大小(数据字节数),B 是以字节为单位的块大小,E 是相联度,S 是高速缓存组数,t 是标记位数,s 是组索引位数,而 b 是块偏移位数。

高速缓存	m	C	В	E	S	t	S	b
1.	32	1024	4	4	64	24	6	2
2.	32	1024	4	256		}0	0	2
3.	32	1024	8	1	128	w	7	3
4.	32	1024	8	128	1	29	0	3
5.	32	1024	32	1	32	22	2	5
6.	32	1024	32	4	8	24	3	5

COC 下面的主体山了 化不同的自油经方的会粉 股的任久且持军山土中华马马士

** 6. 29

假设我们有一个具有如下属性的系统:

- 内存是字节寻址的。
- 内存访问是对1字节字的(而不是4字节字)。
- 地址宽 12 位。
- 高速缓存是两路组相联的(E=2),块大小为 4 字节(B=4),有 4 个组(S=4)。 高速缓存的内容如下,所有的地址、标记和值都以十六进制表示:

组索引	标记	有效位	字节0	字节1	字节2	字节3
0	00	1	40	41	42	43
1	83	1	FE	97	CC	D0
i	00	1	44	45	46	47
	83	0			~	_
2	00	1	48	49	4A	4B
	40	0	_	_	_	-
3	FF	1	9A	C0	03	FF
	00	0	_	_	_	_

A. 下面的图给出了一个地址的格式(每个小框表示一位)。指出用来确定下列信息的字段(在图中

标号出来):

CO

高速缓存块偏移

CI 高速缓存组索引

CT高速缓存标记

Ē	こと、	B=4.	5 = 4
		b = 2	S=2
		1	1
		co	LI

B. 对于下面每个内存访问, 当它们是按照列出来的顺序执行时, 指出是高速缓存命中还是不命 中。如果可以从高速缓存中的信息推断出来,请也给出读出的值。

操作	地址	命中?	读出的值(或者未知)	
读	0x834		表知	
写	0 x 836	命中	未为	
读	0xFFD	命中		

(军必须移3)

假设我们有一个具有如下属性的系统:

1111 1111 1101

- 内存是字节寻址的。
- 内存访问是对1字节字的(而不是4字节字)。
- 地址宽 13 位。

● 高速缓存是四路组相联的(E=4), 块大小为4字节(B=4), 有8个组(S=8)。

考虑下面的高速缓存状态。所有的地址、标记和值都以十六进制表示。每组有 4 行,索引列 包含组索引。标记列包含每一行的标记值。V 列包含每一行的有效位。字节 0~3 列包含每一行的 数据,标号从左向右,字节0在左边。

4 路组相联高速缓存

芽	引	标记	V	=	字节	0~	3	标记	V	字	节(0~	3	标记	V	字	节() ~	3	标记	V	字	节0	~ 3	3
	0	F0	1	ED	32	0A	A2	8A	1	BF	80	1D	FC	14	1	EF	09	86	2A	ВС	0	25	44	6F	1A
	1	BC	0	03	3E	CD	38	A0	0	16	7B	ED	5A	ВС	1	8E	4C	DF	18	E4	1	FB	В7	12	02
	2	BC	1	54	9E	1E	FA	В6	1	DC	81	B2	14	00	0	В6	1F	7B	44	74	0	10	F5	В8	2E
	3	BE	0	2F	7E	3D	A8	CO	1	27	95	A4	74	C4	0	07	11	6B	D8	вс	0	C7	В7	AF	C2
	4	7E	1	32	21	1C	2C	8A	1	22	C2	DC	34	вс	1	BA	DD	37	D8	DC	0	E7	A2	39	ва
	5	98	0	A9	76	2B	EE	54	0	ВС	91	D5	92	98	1	80	BA	9B	F6	BC	1	48	16	81	0A
	6	38	0	5D	4 D	F7	DA	BC	1	69	C2	8C	74	8A	1	A8	CE	7F	DA	38	1	FA	93	EB	48
	7	8A	1	04	2A	32	6A	9E	0	В1	86	56	0E	CC	1	96	30	47	F2	ВС	1	F8	1D	42	30

A. 这个高速缓存的大小(C)是多少字节? C = BXSXE = 128 byte B. 下面的图给出了一个地址的格式(每个小框表示一位)。指出用来确定下列信息的字段(在图中 标号出来).

CO 高速缓存块偏移 CI 高速缓存组索引

CT 高速缓存标记

		10										
CT	UT	CT	CT	CT	CŢ	CT	CT	cI	CI	CI	co	Co

** 6.31 假设程序使用作业 6.30 中的高速缓存,引用位于地址 0x071A 处的 1 字节字。用十六进制表示出它所访问的高速缓存条目,以及返回的高速缓存字节值。指明是否发生了高速缓存不命中。如果有高速缓存不命中,对于"返回的高速缓存字节"输入"一"。提示:注意那些有效位!A. 地址格式(每个小框表示一位):

		10									
0	6	1	1	 0	0	0	1	1	0	1	b
	1										

B. 内存引用:

参数	值
高速缓存块偏移(CO)	0x_ Z
高速缓存组索引(CI)	0x_6
高速缓存标记(CT)	0x_ 38
高速缓存命中? (是/否)	石
返回的高速缓存字节	0x

** 6.34 考虑下面的矩阵转置函数:

```
typedef int array[4][4];

void transpose2(array dst, array src)

{
   int i, j;

for (i = 0; i < 4; i++) {
   for (j = 0; j < 4; j++) {
      dst[j][i] = src[i][j];
   }

}

}</pre>
```

假设这段代码运行在一台具有如下属性的机器上:

sizeof(int)==4.

, is

4x4x4=64 / 數姐

●数组 src 从地址 0 开始, 而数组 dst 从地址 64 开始(十进制)。

● 只有一个 L1 数据高速缓存,它是直接映射、直写、写分配的,块大小为 16 字节。

● 这个高速缓存总共有 32 个数据字节,初始为空。

4JU so do so de so do de se do se de se de

•对 src 和 dst 数组的访问分别是读和写不命中的唯一来源。 行\ d, d3 51 d151 d3 d1 d353 d1 对于每个 row 和 col, 指明对 src[row][col]和 dst[row][col]的访问是命中(h)还是不命中(m)。

例如, 读 src[0][0]会不命中, 而写 dst[0][0]也会不命中。

			dst	数组	1
茂		列0	列1	列2	列3
Ī	行0	m	m	m	m
	行1	m	m	m	m
	行2	m	m	m	m
V	行3	m	m	m	M

		src	数组	
	列0	列1	列2	列3
行0 [m	m	h	m
行1	M	h	m	h
行2 [m	M	h	m
行3 [m	h	M	h

/ / 71月50, 史人的妖人小云带助阵队小叩中竿吗! / 71日本此以自21日本个的

6.87 这道题也是测试你分析 C 语言代码的高速缓存行为的能力。假设我们在下列条件下执行图 6-47 中的 3 个求和函数,

- sizeof(int) == 4. 4096 B 212 2 284 = 2567 th
- 机器有 4KB 直接映射的高速缓存,块大小为 16 字节。
- 在两个循环中,代码只对数组数据进行内存访问。循环索引和值 sum 都存放在寄存器中。
- 数组 a 从内存地址 0×08000000 处开始存储。 对于 N=64 和 N=60 两种情况,在表中填写它们大概的高速缓存不命中率。

35

有如下假设:

图 6-47 作业 6.37 中引用的函数

6,38 3M 决定在白纸上印黄方格,做成 Post-It 小贴纸。在打印过程中,他们需要设置方格中每个点的 CMYK(蓝色,红色,黄色,黑色)值。3M 雇佣你判定下面算法在一个具有 2048 字节、直接映射、 块大小为 32 字节的数据高速缓存上的效率。有如下定义:

- sizeof(int)==4.
- square 起始于内存地址 0。
- 高速缓存初始为空。
- ●唯一的内存访问是对于 square 数组中的元素。变量 i 和 j 存放在寄存器中。确定下列代码的高速缓存性能: 328

```
for (i = 0; i < 16; i++){

for (j = 0; j < 16; j++) {

square[i][j].c = 0;

square[i][j].m = 0;

square[i][j].y = 1;

square[i][j].k = 0;

}
```

- A. 写总数是多少? 16×16×4 = 1024
- B. 在高速缓存中不命中的写总数是多少? 128
- C. 不命中率是多少? 12.5%