Міністерство освіти і науки України Львівський національний університет імені Івана Франка Кафедра радіофізики та комп'ютерних технологій

3	B	lΤ

про виконання

лабораторної роботи № 8

"Дослідження мегафункцій арифметичний операцій в САПР Quartus II"

Виконала

студентка групи ФЕІ - 41

Литвин Віра

Перевірив

доц. Рабик В.Г.

Мета роботи:

вивчення принципів роботи регістрів, реалізація принципових схем різних типів регістрів та моделювання їх роботи в середовищі Quartus II, експериментальна перевірка їх роботи на ПЛІС FPGA Cyclone III лабораторного стенду DE0.

Завдання:

 З допомогою САПР Quartus II реалізувати схему додавання або віднімання 4-ри розрядних двійкових чисел з допомогою мегафункції LPM_ADD_SUB (рис. 8.5). Виконати моделювання в часовій області та отримати часові діаграми реалізованого арифметичного пристрою в САПР Quartus II.

Перевірити роботу спроєктованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. Значення вхідних чисел A і В задаються з допомогою перемикачів: A[3..0] ← (SW[3], SW[2], SW[1], SW[0]); B[3..0] ← (SW[7], SW[6], SW[5], SW[4]). Вибір арифметичної операції (додавання або віднімання) визначається перемикачем SW[9]. Вхід С_Іприт підключити до перемикача SW[8]. Результат Res[3..0] підключити відповідно до світлодіодів LEDG[3],..., LEDG[0], а виходи Overflow і C_Output — відповідно до світлодіодів LEDG[5] та LEDG[7].

2. З допомогою САПР Quartus II реалізувати схему множення 4-ри розрядних двійкових чисел з допомогою мегафункції LPM_ADD_MULT (рис. 8.6). Виконати моделювання в часовій області та отримати часові діаграми реалізованого арифметичного пристрою в САПР Quartus II.

Перевірити роботу спроєктованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. Значення вхідних чисел A і B (множників) задаються з допомогою перемикачів: A[3..0] \leftarrow (SW[3], SW[2], SW[1], SW[0]); B[3..0] \leftarrow (SW[7], SW[6], SW[5], SW[4]). Результат Res[7..0] підключити відповідно до світлодіодів LEDG[7],..., LEDG[0].

3. З допомогою САПР Quartus II реалізувати схему ділення 4-ри розрядних двійкових чисел з допомогою мегафункції LPM_DIVIDE. Виконати моделювання в часовій області та отримати часові діаграми реалізованого арифметичного пристрою в САПР Quartus II.

Перевірити роботу спроєктованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. Значення вхідних чисел A (ділене) і B (дільник) задаються з допомогою перемикачів: A[3..0] \leftarrow (SW[3], SW[2], SW[1], SW[0]); B[3..0] \leftarrow (SW[7], SW[6], SW[5], SW[4]). Частку та остачу від ділення підключити відповідно до світлодіодів LEDG[7],..., LEDG[4] та LEDG[3],..., LEDG[0] відповідно.

Виконання роботи:

1) Вибираємо з бібліотеки megafunctions/arithmetic функціональний блок для додавання/віднімання.

Налаштовуємо його параметри наступним чином:

2) Додаємо до схеми вхідні та вихідні порти і шини. Схема виглядає так, як на рисунку нижче.

3) Проведемо під'єднання до виводів ПЛІС. Схема набуде наступного вигляду.

4) Для перевірки коректності роботи пристрою побудуємо часову діаграму. Часова діаграма подана на рисунку нижче.

3 діаграми чітко видно, що:

- а) при подачі на вхід ADD_SUB логічної "1" пристрій додає два 4 бітних беззнакових числа A та B.
- б) при подачі на вхід ADD_SUB логічного "0" пристрій віднімає два 4 бітних беззнакових числа A та B.

в) якщо результат операції є числом з більшою розрядністю, то на виході Overflow ми одержуємо "1"

5) Вибираємо з бібліотеки megafunctions/arithmetic функціональний блок для множення.

Налаштовуємо його параметри наступним чином:

6) Складаємо схему.

Проводимо під'єднання до виводів ПЛІС. Принципова схема набуває наступного вигляду:

7) Виконуємо моделювання в часовій області.

Часова діаграма добре ілюструє, що змодельований пристрій множить число A на число B.

8) Вибираємо з бібліотеки megafunctions/arithmetic функціональний блок для ділення.

Налаштовуємо його параметри наступним чином:

9) Завершуємо принципову схему пристрою. Вона виглядає, як показано на рисунку нижче.

10) Проводимо під'єднання до виводів ПЛІС. Після компіляції схема набуває наступного вигляду:

	Δf3 01 —	INPUT	lpm_divide0	OUTPUT Q[74]	
PIN_J6	B[30]	NPUT VCC	denom[30] remain[30]	О <u></u> О <u>ТР</u> ОТ	PIN_F2
PIN_G5	1::::::::::::::::::::::::::::::::::::::		Numer is UNSIGNED		PIN_E1
PIN_J7			Denom is UNSIGNED		PIN_C1
PIN_H7	1::::::::::::::::::::::::::::::::::::::	in	st		PIN_C2
PIN_E3	<u> </u>			*::::::::::::::::::::::::::::::::::::::	PIN_H1

11) Для перевірки коректності роботи пристрою виконаємо моделювання в часовій області.

	Nam	0 ps 22.925 ns	2.684 s	5.369 s	8.053 s	10.737 s	13.422 s	16.106 s	18.79
+	A B Q R		X0010X0011X0 X0010X0011X	100 <u>X</u> 0101 <u>X</u> 0110	X0111X1000X10 0000 1111 X0111X1000X10		1100 <u>X1101</u> X1110	 /\	0001 01)(0010)(0
	Nam	21.425 s	24.109 s	26.793 s	29.478 s	32.162 s	34.846 s	37.531 s	40.215 s
+	I A I B I Q I R	10 <u> </u>	000,0000,000	0001 1 <u>X1010</u> X1011 <u>X</u> 1 0 <u>X0000</u> X0000X0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X1111X 0000 X0000X0000X000	0 X 0001 X 01X0000X0001X0	100\(0101\(0110\) 010 0010 \(000\) 000\(0001\(0000\)	11 X0100 (0001)(0000
	Nam	58.43 s	61.115 s	63.799 s	66.484 s	69.168 s	71.852 s	74.537 s	77.221 s
+	IA IB IQ IR	0011 X	100\(\)1101\(\)111 0011 0100 000\(\)001\(\)001	X0101X	0000	0001	0100 X	001\(1010\(1011\) 0010 001\(\frac{40010}{0011\)	0011
	Nam	83.75 s	86.435 s	89.119 s	91.803 s	94.488 s	97.172 s	99.856 s	102.541 :
+	A B Q R	0000 X000	1)(0001	0101 (0001 X	0010 🗶 (0010 X0011	X	10\(\)0011\(\)0100\(\)0 0110 0000 10\(\)0011\(\)0100\(\)	X 0001
	Nam	111.018s	113.702 s	116.387 s	119.071 s	121.755 s	124 _, 44 s	127. ₁ 24 s	129.808 €
+++++++++++++++++++++++++++++++++++++++	B Q	0110X 0010X	0	000	0111 \\\0001\()	000	1	X1110X1111X000 X 0010 X X0000X0001X000	1000 0000
	Nam	140.233 s	142.918 s	145.602 s	148.286 s	150.971 s	153.655 s	156.339 s	159.024 s
+	A B Q R	100	00 \		0000	1001 X00	00000011 000	1011)(1100)(1101 11	001
	Nam	171.396 s	174,08 s	176.765 s	179.449 s	182.134 s	184.818 s	187.502 s	190.187 s
±	A B Q R	00)(1010 0001		0000	10	X 0000	010\(\)1011\(\)100\(\) \(\)0001\(\) \(\)010\(\)0000\(\)0001\(\)	0001

	210.35 s	213.034 s	215.718 s	218.403 s	221.087 s	223.772 s	226.456 s	229,14 s
Nam								
± A	01(\(0011 \)	(0100)(0101)(0	110\(0111\(1000\)	1001\(1010\(101	<u> </u>	110\(1111\(0000\)		X0100X0101
⊕ B			 	01		ШХШ	1110	
± Q	2200220		0000	(100)	X0001X	0001	0000	N/9/200 (9/2)
± R	<u></u>	,,,_,,			.,,	001,0010,0000		·
Nam	268.78 s	271.465 s	274.149 s	276.833 s	279.518 s	282.202 s	284.886 s	287.571 s
Ivani								
± A	X1101 X11	10\(1111\(0000	X0001X0010X00	11\\0100\\0101\(110 (0111)(1000	0\\1001\\1010\\10	11\(1100\(1101\)	(110)(1111)(
 ■ B	000	0 X			0001			X
+ Q	111		X0001X0010X00	—)110\(0111\(\)100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
± R	X1101 X11	10\1111\0000	<u> </u>	00 <u>00000</u> 00000000000000000000000000000	000000000000000000000000000000000000000	0x0000x0000x00	00 <u>*0000</u> *0000	0000 <u>*</u> 0000
	325.263 s	327.947 s	330.632 s	333.316 s	336.0 s	338.685 s	341.369 s	344.054 s
Nam								
± A	010°X0110	X0111 X1000X1	001)(1010)(1011)	X1100X1101X111	0X1111X0000X0	001)(0010)(0011)	(0100)(0101)(011	D X 0 1 1 1 X 1 0 0 C
⊞ B			0100				0101	
 Q	000	X	0010	0011	X	0000	X0001¥ (0001 (000
⊞ R	000,0010	X0011\x0000\0	001)(0010)(0011	000000001 001	000110000000	001,0010,0011	(0100)(0000)(000	1,0010,0011
	370.06 s	372.744 s	375.428 s	378.113 s	380.797 s	383.482 s	386.166 s	388,85 s
Nam								
	(0010)(001	1X0100X0101X	0110001110100	0\\1001\\1010\\10	11\(1100\(1101\)	(1110)(1111)(000))X0001X0010X00	11/0100/10
⊞ B	H	71-71-7		1111			1000	
⊞ Q		0000	X0001¥	0001		0010	0000	
 R	0010X001	1¥0100\0101\	0110¥0000 x000	1¥0010X0011¥01	000010110110	0000000010000	0X0001 X 0010X00	1110100010

Часова діаграма добре ілюструє, що змодельований пристрій ділить число A на число B, частку записує у Q а остачу у R.

Висновки:

Виконуючи цю лабораторну роботу було розглянуто мегафункції арифметичних операцій із стандартної бібліотеки САПР Quartus II, складено принципові схемо пристроїв із використанням розглянутих мегафункцій, змодельовано роботу цих пристроїв у часовій області та проаналізовано коректність їх роботи. Також за допомогою часових діаграм досліджено результати роботи змодельованих пристроїв у залежності від вхідних параметрів.