



# **Numerische Analysis**

Mitschrift der Tafelnotizen

**Tobias Wedemeier** 

9. April 2015 gelesen von Prof. Dr. Ohlberger





| 0  | Einleitung |                                                                                                                          |   |  |
|----|------------|--------------------------------------------------------------------------------------------------------------------------|---|--|
|    | 0.1        | Variationsprinzip und Galerkinapproximation                                                                              | Ш |  |
|    | 0.2        | ${\sf Definition} \ 1 \ ({\sf Energieminimierung/Vartiationsprinzip}) \ \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots$ | Ш |  |
| Αŀ | bildu      | ungsverzeichnis                                                                                                          | Α |  |

Inhaltsverzeichnis

## 0 Einleitung

#### 0.1 Variationsprinzip und Galerkinapproximation

Beispiel: Elastizitätstheorie in der Physik:

Gesucht:  $u: \mathbb{R}^d \to \mathbb{R}, \ d=1,2,3$ , Gegeben: Energiefunktional  $E: \mathbb{R} \to \mathbb{R}$ 

Aufgabe: Finde  $\operatorname{argmin} E(u)$ 

u entspricht der Auslenkung/Verschiebevektor,  $\nabla u$  der Gradient (Jacobimatrix); der Symmetrische Gradient  $\frac{1}{2}(\nabla u + \nabla u^T) =: \epsilon(u)$ , dann ist die elastische Gesamtenergie:

$$E(u) := \frac{1}{2} \int_{\Omega} \Theta : \epsilon(u) dx - \int_{\Omega} f(x)u(x) dx$$

mit symmetrischem Spannungstensor  $\Theta$  und äußerer Kraft  $f: \mathbb{R}^d \to \mathbb{R}^d$ . Materialgesetz: Der Spannungstensor ist proportional zum Verzerrungstensor:

: ist das Skalarprodukt

$$\Theta(u) = A\epsilon(u)$$

$$\Theta(u)_{i,j} = A_{ijkl}\epsilon(u)_{kl} \ \forall i, j, k, l = 1, \dots, d$$

$$\Rightarrow E(u) = \frac{1}{2} \int_{\Omega} A\epsilon(u) : \epsilon(u) dx - \int_{\Omega} f(x)u(x) dx$$

### 0.2 Definition 1 (Energieminimierung/Vartiationsprinzip)

- (a) Physikalisches Prinzip: Ein physikalisches System strebt immer in einen Zustand minimaler Energie.
- (b) Mathematisches Prinzip: Sei  $\bar{u}(x,t)$  eine Zustandsvariable und E(u) die Energie eines Systems, das durch  $\bar{u}$  repräsentiert wird. Dann strebt  $\bar{u}$  gegen ein u=u(x), der die Energie minimiert, d.h. falls E genügend glatt ist gilt:

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon}E(u+\epsilon\varphi)|_{\epsilon=0}=0 \qquad \forall \text{zul\"{assigen Variationen von } \varphi$$

Elastizität:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\epsilon} E(u+\epsilon\varphi)|_{\epsilon=0} &= \frac{\mathrm{d}}{\mathrm{d}\epsilon} \left[ \frac{1}{2} \int\limits_{\Omega} A\epsilon(u+\epsilon\varphi) : \epsilon(u+\epsilon\varphi) \mathrm{d}x - \int\limits_{\Omega} f(x) u(x) \mathrm{d}x \right]_{\epsilon=0} \\ &= \int\limits_{\Omega} A\epsilon(u) : \epsilon(\varphi) \mathrm{d}x - \int\limits_{\Omega} f\varphi \stackrel{!}{=} 0 \\ &\Rightarrow \nabla(A\epsilon(u)) = f \text{ Dgl.} \end{split}$$

# Abbildungsverzeichnis

Abbildungsverzeichnis