

低功耗测试说明

低功耗测试说明

测试项	功耗	休眠状态	唤醒源
BT深睡+M0休眠	2.55ua	BT不广播无法维持连接, 唤醒芯片复位	RTC定时唤醒,IO唤醒
BT深睡,M0降频到12M	2.807ma	BT不广播无法维持连接, 唤醒芯片不复位	M0降频,程序仍在运行,需要软件逻辑上操作进行唤醒
BT浅睡,MO休眠 (蓝牙未连接进入休眠)	90ua	BT广播以一秒间隔维持, MO休眠,唤醒复位不需要 重新初始化BT	RTC定时唤醒,IO唤醒, BT连接唤醒
BT浅睡,M0休眠 (蓝牙连接进入休眠)	370ua (蓝牙连接后连接间隔 由app端决定,不同app 连接后进入休眠功耗会 有所不同)	BT保持连接,M0休眠。唤醒 复位不需要重新初始化BT	RTC定时唤醒,IO唤醒, BT发送数据唤醒和断开 连接唤醒
POWER OFF	0.33ua	整个芯片下电	插入USB或者 POWERKEY开机

低功耗测试DEMO说明

标注2为读取标志位 判断蓝牙唤醒后是否 需要进行初始化蓝牙 操作,测试项case3 中会调用

SSC LPMKeyWrite () 写入标志位,唤醒复 位后读取该标志位信 息。

```
UART_Configuration();
MyPrintf("YC3121 Sleep Mode Demo V1.0!\n");
SSC LPMKeyRead(bpk buf,FLAG LEN,0);
Syslick_Config(CPU_MHZ/100);
BT_ConfigerInit(bpk_buf[0]);
                                 /*为TRUE 蓝开不初始化唤醒,唤醒后清
if(bpk buf[0] == TRUE)
   bpk_buf[0] = FALSE;
   SSC_LPMKeyWrite(bpk_buf,FLAG_LEN,0);
```


低功耗测试DEMO说明

```
MyPrintf(" Please input the following numbers to configure the sleep mode !\n");
MyPrintf(" 1: M0 Sleep and BT Deep Sleep\n");
MyPrintf(" 2: M0 Div Frequency and BT Deep sleep!\n");
MyPrintf(" 3: M0 Sleep and BT Light Sleep!\n");
MyPrintf("=======\\n");
uint8 t uartretval;
```


休眠分为3个测试case:

- 1. BT深睡+MO休眠
- 2. BT深睡, MO降频到12M
- 3. BT浅睡, MO休眠。进入休眠状态分为蓝牙连接 后进入休眠和蓝牙不连接进入休眠, 两者功耗 不同

CASE1休眠配置: 直接配置IO脚 PD, 调用CMO Sleep,唤醒 条件配置为定时10S 唤醒和GPIO33高电平 唤醒

```
case '1':
   MyPrintf(" M0 Sleep and BT Deep Sleep....\n");
   Disable Trng();
    GPIO Unused Pd();
    GPIO Config(GPIOA, GPIO Pin 1, GPCFG PD);
    GPIO Config(GPIOA, GPIO Pin 0, GPCFG PD);
    GPIO Config(GPIOA, GPIO Pin 14, GPCFG PD);
   GPIO Config(GPIOA, GPIO Pin 15, GPCFG PD);
   CM0 Sleep(10,0,1<<1,0,1);
    break;
```


CASE2休眠配置: 直接配置IO脚 PD, M0时钟降频,关闭 相应时钟,关闭蓝牙。 唤醒条件软件配置为 IO33高唤醒

```
MyPrintf(" M0 Div Frequency and BT Deep sleep....\n");
GPIO Config(GPIOC, GPIO Pin 1, GPCFG PD);
SYSCTRL HCLKConfig(SYSCTRL HCLK Div8);
Disable Trng();
GPIO Unused Pd():
GPIO Config(GPIOA, GPIO Pin 1, GPCFG PD);
GPIO Config(GPIOA, GPIO Pin 0, GPCFG PD);
GPIO Config(GPIOA, GPIO Pin 14, GPCFG PD);
GPIO Config(GPIOA, GPIO Pin 15, GPCFG PD);
SYSCTRL_AHBPeriphClockCmd(SYSCTRL_AHBPeriph_INTR | SYSCTRL_AHBPeriph_SHA |
            SYSCTRL AHBPeriph CRC | SYSCTRL AHBPeriph PWM
           SYSCTRL AHBPeriph WDT | SYSCTRL AHBPeriph USB
            SYSCTRL_AHBPeriph_SPI | SYSCTRL_AHBPeriph_DES |
           SYSCTRL AHBPeriph RSA | SYSCTRL AHBPeriph ASE |
           SYSCTRL AHBPeriph 7816 | SYSCTRL AHBPeriph SM4 |
           SYSCTRL AHBPeriph 7811 | SYSCTRL AHBPeriph ADC7811 | \
           SYSCTRL AHBPeriph UART
           SYSCTRL AHBPeriph CP, DISABLE);
BT Hibernate();
while(1)
    if(GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_1) == 1)
        IpcInit();
        SYSCTRL_AHBPeriphClockCmd(SYSCTRL_AHBPeriph_INTR | \
        SYSCTRL AHBPeriph UART | SYSCTRL AHBPeriph CP, ENABLE);
        GPIO Config(UARTO TX PORT, UARTO TX PIN, UARTO TXD);
        GPIO Config(UARTO RX PORT, UARTO RX PIN, UARTO RXD);
        SYSCTRL HCLKConfig(SYSCTRL HCLK Div2);
        MyPrintf("Wake up !\n");
```


CASE3休眠配置: 直接配置IO脚 PD,配 置蓝牙进入低功耗模 式,广播间隔设为1s, 调用CMO Sleep,唤醒 条件配置为蓝牙唤醒。 (蓝牙连接, 断开, 发送数据)

```
case '3':
    MyPrintf(" M0 Sleep and BT Light Sleep....\n");
    GPIO Unused Pd();
    GPIO Config(GPIOA, GPIO Pin 1, GPCFG PD);
    GPIO Config(GPIOA, GPIO Pin 0, GPCFG PD);
    GPIO Config(GPIOA, GPIO Pin 14, GPCFG PD);
    GPIO Config(GPIOA, GPIO Pin 15, GPCFG PD);
    BT_SetLpmMode(0x01);
    BT SetLEAdvInterval(0x640);
    bpk_buf[0] = TRUE;
    SSC_LPMKeyWrite(bpk_buf,FLAG_LEN,0);
    CM0 Sleep(0,0,0,0,0);
    break;
```