Introduction to Transformer

Contents

seq2seq

- encoder-decoder structure

attention mechanism

- dot product attention, scaled dot product attention

Attention is all you need (transformer)

- positional encoding
- multi head attention
- self attention
- masked attention
- transformer architecture

homework

seq2seq

Introduced by Sutskever et al. in Sequence to Sequence Learning with Neural Networks

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, 27.

seq2seq

seq2seq의 문제점

input sequence 전체를 고정된 크기의 context vector로 표현함

- 입력 시퀀스가 길어질수록 정보의 손실이 커짐

RNN 구조 기반

- gradient vanishing / exploding이 발생함
- Recurrent 구조이므로 입력 시퀀스가 길어질수록 계산량이 많아짐

특정 토큰에 대해 다른 토큰들과의 상관관계를 모델링

각 토큰은 key-value 구조로 구성된 정보를 가짐

key-value 구조의 예시) python의 dictionary 자료형

```
data = {
    'alpha': 2023,
    'beta': 2017,
    'gamma': 2015,
    'delta': 2010
}

print(data['alpha']) # 2023
print(data['delta']) # 2010
```

Attention(Q, K, V) = attention value

주어진 Query(Q)에 대해 모든 Key(K)와의 유사도를 구함 유사도에 따라 각 Key에 mapping된 Value(V) 값을 가중합하여 리턴 (soft mapping)

상관관계를 수치화하는 방법

– euclidean distance, cosine similarity, dot similarity 등…

이름	식	출처
content-based attention	$f(s,h) = \frac{s^T h}{ s \cdot h }$	Graves, 2014
additive attention (Bahdanau attention)	$f(s,h)=V^T anh(W_1s+W_2h)^{[4]}$	Bahdanau, 2015
dot-product attention (Loung attention)	$f(s,h)=s^T h$	Luong, 2015
scaled dot-product attention	$f(s,h)=rac{s^T h}{\sqrt{n}}$ [5]	Vaswani, 2017

In Transformer – dot product (scaled dot product) attention 주로 사용

$$Q=W_Qx_1+b_Q$$
 $K=W_Kx_2+b_K$ x_1 : Querying token (or sequence) x_2 : Queried token (or sequence) $X=W_Vx_2+b_V$

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

식을 뜯어 봅시다

 d_k : Q, K, V 벡터의 차원

 n_1 : Querying sequence의 길이

n₂: Queried sequence의 길이

seq2seq with attention

seq2seq의 문제점

input sequence 전체를 고정된 크기의 context vector로 표현함

- 입력 시퀀스가 길어질수록 정보의 손실이 커짐
 - → decoder에서 encoder의 상태를 attention을 통해 반영하여 해결

transformer

seq2seq의 문제점

RNN 구조 기반

- gradient vanishing / exploding이 발생함
- Recurrent 구조이므로 입력 시퀀스가 길어질수록 계산량이 많아짐
 - → RNN을 제거하고 Attention만 사용 (attention is all you need)

transformer

Introduced by Vaswani et al. in Sequence to Sequence Learning with Neural Networks

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, *30*.

transformer

seq2seq의 encoder-decode구조를 차용

lstm을 mlp 레이어로 대체

- layer를 여러층으로 쌓을 수 있음
- RNN 기반 모델에서 발생하는 문제 해결

lstm을 제거할 경우 생기는 문제점

- token들 간의 위치 정보를 반영하지 못함

다음 회합 전까지

transformer에서 사용된

- positional encoding
- self attention
- multi-head attention
- masked attention
- layer normalization
- residual connection
- 위키워드를 기반으로 transformer architecture 공부해오기 + 노션 정리