Project Development Phase Model Performance Test

Date	10 NOvember 2022	
Team ID	PNT2022TMID21521	
Project Name	Project - Car Resale Value Prediction	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in the model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: Random Forest MAE - 1828.4064277700807 MSE -13862647.498698067 RMSE -3723.2576460269397 Accuracy - 80.43%	[17] y_pred = regressor-predict(X_test) print(2_score(Y_test_y_pred)) 0.804266990772561 [18] from skleam.metrics import mean_squared_error_mean_absolute_error mse = mean_squared_error(Y_test_y_pred) print(mse) 1362647_49669067 [19] mse = np.sqrt(mse) print(mse) mae = mean_absolute_error(Y_test_y_pred) print(mse) 3723_2576460269397 182844964277700807
2.	Tune the Model	Hyperparameter Tuning 1) Learning Rate: [0.01, 0.03, 0.05, 0.07] 2) Max features: ['auto','sqrt'] 3) Number of Estimators: [10,20,30,50] 4) min_samples_leaf: [2,4,6] Validation Method: Grid Search Cross Validation	DB _ settlemen - [103,150] men, better = [100, 100] men, better = [100] men, better = [100]
		Best Parameters: Learning Rate – 0.07 Number of Estimators - 300	

Screenshots

1) Metrics

Accuracy

```
[17] y_pred = regressor.predict(X_test)
print(r2_score(Y_test,y_pred))

0.8042868905072561
```

Mean squared error

```
[18] from sklearn.metrics import mean_squared_error,mean_absolute_error mse = mean_squared_error(Y_test,y_pred)

print(mse)

13862647.498698067
```

Root mean squared error & mean absolute error

```
| [19] | rmse = np.sqrt(mse) | print(rmse) | mae = mean_absolute_error(Y_test , y_pred) | print(mae) | 3723.2576460269397 | 1828.4064277700807
```

2) Hyperparameter tuning

```
| [24] | n_estimators = [10,20,30,50] | max_features = ['auto', 'sqrt'] | max_depth = [int(x) for x in np.linspace(10, 50, num = 8)] | min_samples_split = [4, 8, 10] | min_samples_leaf = [2, 4, 6] | bootstrap = [True,False] | random_grid = {n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf } |
| [27] | from_sklearn.model_selection_import_RandomizedSearchCV | rf_random_e_RandomizedSearchCV(estimator = regressor,param_distributions = random_grid, n_iter = 10, cv = 5, verbose=2) | rf_random.fit(X_train, Y_train) |
```

Output:

```
Fitting 5 folds for each of 10 candidates, totalling 50 fits
//usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estimators=50; total time= 1.3s
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator.fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estimators=50; total time= 1.2s
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator.fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estimators=50; total time= 1.2s
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator.fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estimators=50; total time= 1.2s
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator.fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estimators=50; total time= 1.2s
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:680: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please estimator.fit(X train, y train. "fit: params)
[CV] END max_depth=21. max_features=auto, min_samples_leaf=2, min_samples_split=4, n_estima
```

```
RandomizedSearchCV(cv=5,
            estimator=RandomForestRegressor(max_depth=10,
                                n estimators=1000,
                                random_state=34),
            param distributions={'max depth': [10, 15, 21, 27, 32, 38,
                                  44, 50],
                         'max features': ['auto', 'sqrt'],
                         'min samples leaf': [2, 4, 6],
                         'min samples split': [4, 8, 10],
                         'n_estimators': [10, 20, 30, 50]},
            verbose=2)
```