Лабораторная работа №1. Прямые методы решения больших разреженных СЛАУ MatLab

Разреженная матрица – совокупность схемы хранения данных в сочетании с соответствующим алгоритмом для выполнения необходимых действий

БАЗА (0)

1. Создание симметричных ПО матриц разреженной структуры

1.1. Создать матрицу $3x3$ $a = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 0 & 20 \\ 30 & 40 & 0 \end{pmatrix}$ обычным способом.		A1=[10,0,0;0,0,20;30,40,0]
1.2. Преобразование полной матрицы в разреженную матрицу. Как она храниться?	sparse	sA1 = sparse(a)
1.3. Создание разреженной матрицы без предварительного создания полностью заполненной матрицы	sparse	sA2 = sparse([1 3 3 2], [1 1 2 3], [10 30 40 20], 3, 3)
1.4. Преобразование разреженной матрицы в обычную	full	a2 = full(sA2)
1.5. Создание случайной разреженной матрицы. Последний аргумент – плотность, отношение ненулевых элементов к общему количеству элементов	sprand	sB1 = sprand(10,10,1/30)
1.6. Создание диагоналей разреженной матрицы. Арг.1 — матрица из диагоналей; арг.2 — вектор положений относительно главной диагонали; арг3 и 4 - размерность	spdiag	E = ones(10,1) D = spdiags(-E, 0, 10, 10)
1.7. Создание разреженной единичной матрицы	speye	sE = speye(10)
1.8. Создание симметричной ПО разреженной матрицы. Арг. 1 — размерность, арг.2 — плотность, арг3 — число обусловленности, арг.4 — определяет ПО матрицы	sprandsym	sB2 = sprandsym(10,1/30, 0,8, 1)
1.9. Создание симметричной ПО матрицы по формуле A = B+B ^T +100 E, где B – случайная, E – единичная		

2. Работа с ненулевыми элементами разреженных матриц

2.1. Число ненулевых элементов	nnz	nnz(A1)
2.2. Вычисление функций от ненулевых элементов	spfun	spfun(@cos,A1)
2.3. Визуализация разреженной матрицы	spy	sC1 = sprand(100,100,1/100)
		spy(sC1)

- 3. Зачем нужно переупорядочивание
- 3.1. Создать матрицу с ненулевыми элементами на главной диагонали и в последнем столбце и последней строке обычным способом. Матрица должна быть симметричной и ПО. Размер матрицы от 5 до 10. Проверить визуально правильность созданной матрицы
- 3.2. Преобразовать матрицу в разреженную
- 3.3. Применить преобразование Холецкого (chol). Визуализировать полученную матрицу.
- 3.4. Создать матрицу с ненулевыми элементами на главной диагонали и в ПЕРВОМ столбце и ПЕРВОЙ строке обычным способом. Матрица должна быть симметричной и ПО. Размер матрицы от 5 до 10. Проверить визуально правильность созданной матрицы
- 3.5. Перевести матрицу в разреженную форму, применить преобразование Холецкого, визуализировать результат.

МИНИМУМ (+1)

- 4. Обратный алгоритм Катхилла-Макки
- 4.1. Создать случайную разреженную матрицу размерности 150 с плотностью 0,01 (лучше по формуле). Сколько у нее ненулевых элементов?
- 4.2. Применить разложение Холецкого
- 4.3. Найти матрицу перестановок по обратному алгоритму Катхилла-Макки функция symrcm
- 4.4. Применить разложение Холецкого
- 4.5. Визуализировать все 4 получившиеся матрицы в одном окне
- 5. Алгоритм минимальной степени

Проделать аналогичные действия, используя для создания матрицы перестановок функцию symamd

ДОСТАТОЧНО (+1)

6. Построить зависимость заполнения множителей разложения Холецкого при применении chol к исходной матрице и к матрицам с переставленными строками и столбцами при помощи symrcm и symamd.

Размерность матрицы менять от 100 до 400. Плотность можно взять 0,01.

7. Что быстрее?

Определить время работы алгоритма при решения СЛАУ с разложением Холецкого без перестановок (A) и с перестановками(Б)

Создать цикл по плотности заполнения матрицы. Построить график времени от плотности

МАКСИМУМ (+1)

8. Перестроить зависимости заполнения и времени, создав усреднение результатов по нескольким матрицам одной размерности и одной плотности соответственно