

Europäisches Patentamt European Patent Office

Office européen des brevets

(11) **EP 0 927 761 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.07.1999 Patentblatt 1999/27

(21) Anmeldenummer: 98123331.5

(22) Anmeldetag: 08.12.1998

(51) Int. Cl.⁶: **C12N 15/52**, C12N 15/53, C12N 15/54, C12P 25/00, C12N 9/00, C12N 9/04, C12N 9/10, C12N 9/12

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 23.12.1997 DE 19757755

(71) Anmelder:

BASF AKTIENGESELLSCHAFT
67056 Ludwigshafen (DE)

(72) Erfinder:

 Pompejus, Markus Dr. 67165 Waldsee (DE)

 Seulberger, Harald Dr. 67141 Neuhofen (DE)

 Höffken, Hans Wolfgang Dr. 67069 Ludwigshafen (DE)

 Revuelta Doval, Jose Luis Prof.-Dr. 37001 Salamanca (ES)

 Jimenez, Alberto 37006 Salamanca (ES)

 Santos Garcia, Maria Angeles Dr. 37009 Salamanca (ES)

(54) Gene der Purinbiosyntese aus Ashbya gossypii und deren Verwendung in der mikrobiellen Riboflavinsynthese

(57) Gene der Purinbiosynthese aus Ashbya gossypii und deren Verwendung in der mikrobiellen Riboflavinsynthese.

Beschreibung

25

[0001] Die vorliegende Erfindung betrifft Gene der Purinbiosynthese aus Ashbya gossypii und deren Verwendung in der Riboflavinsynthese.

[0002] Vitamin B2, auch Riboflavin genannt, ist für Mensch und Tier essentiell. Bei Vitamin B2-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Juckreiz und Entzündungen in den Hautfalten und ähnliche Hautschäden, Bindehautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme eintreten. Vitamin B2 hat daher wirtschaftliche Bedeutung insbesondere als Vitaminzusatz bei Vitaminmangel und als Futtermittelzusatz. Daneben wird es als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscreme, Pudding etc. eingesetzt.

[0003] Die Herstellung von Vitamin B2 erfolgt entweder chemisch oder mikrobiell (siehe z.B. Kurth et al. (1996) Riboflavin, in: Ullmann's Encyclopedia of industrial chemistry, VCH Weinheim). Bei den chemischen Herstellverfahren wird Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei relativ kostspielige Ausgangsprodukte, wie z.B. D-Ribose, eingesetzt werden müssen. Eine Alternative zur chemischen Synthese von Riboflavin ist die Herstelltung dieses Stoffes durch Mikroorganismen. Als Ausgangsstoffe dienen dabei nachwachsende Rohstoffe, wie Zucker oder pflanzliche Öle. Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983), aber auch Hefen, wie z.B. Candida, Pichia und Saccharomyces oder Bakterien, wie z.B. Bacillus, Clostridien oder Corynebakterien sind als Riboflavin-Produzenten beschrieben.

20 [0004] In der EP 405370 sind Riboflavin-überproduzierende Bakerienstämme beschrieben, die durch Transformation der Riboflavin-Biosynthese-Gene aus Bacillus subtilis erhalten wurden. Diese dort beschriebenen Gene und andere, an der Vitamin B2-Biosynthese beteiligten Gene aus Prokaryonten sind für ein rekombinantes Riboflavin-Herstellverfahren mit Eukaryonten, wie z.B. Saccharomyces cerevisiae oder Ashbya gossypii ungeeignet.

[0005] In der DE 44 20 785 sind sechs Riboflavin-Biosynthesegene aus Ashbya gossypii beschrieben, sowie Mikroorganismen, die mit diesen Genen transformiert wurden und die Verwendung solcher Mikroorganismen zur Riboflavinsynthese.

[0006] Mit diesen Verfahren ist es möglich, Produktionsstämme für die mikrobielle Riboflavinsynthese zu erzeugen. Diese Produktionsstämme besitzen jedoch häufig Stoffwechsellimitierungen, die durch die insertierten Biosynthesegene nicht beseitigt werden können oder manchmal erst dadurch entstehen. Solche Produktionsstämmen können manchmal nicht genügend Substrat zur Sättigung mancher Biosyntheseschritte liefern, so daß die Biosynthesekapazität mancher Stoffwechselabschnitte gar nicht voll ausgeschöpft werden kann.

[0007] Daher ist es wünschenswert, weitere Teilbereiche von Stoffwechselwegen zu verstärken, dadurch Stoffwechselengpässe zu beseitigen und dadurch dann die für die mikrobielle Riboflavinsynthese eingesetzten Mikroorganismen (Produktionsstämme) bezüglich ihrer Fähigkeit zur Riboflavinsynthese weiter zu optimieren. Es ist anzustreben, die zu verstärkenden Teilbereiche des komplexen Stoffwechsels zu identifizieren und diese auf geeignete Weise zu verstärken

[0008] Die Erfindung betrifft neue Proteine der Purinbiosynthese, deren Gene und deren Verwendung für die mikrobielle Riboflavinsynthese.

[0009] Der Purinstoffwechsel (für eine Übersicht siehe z.B. Voet, D. und Voet, J.G., 1994, Biochemie, VCH Weinheim, Seite 743-771; Zalkin, H. und Dixon, J.E., 1992, De novo purine nucleotide biosynthesis, in: Progress in nucleic acid research and molecular biology, Vol. 42, Seite 259-287, Academic Press) ist ein für alle Lebewesen essentieller Teil des Stoffwechsels. Fehlerhafter Purinstoffwechsel kann beim Menschen zu schweren Krankheiten führen (z.B. Gicht). Der Purinstoffwechsel ist zudem ein wichtiges target für die Therapie von Tumorerkrankungen und Virusinfektionen. Zahlose Publikationen sind erschienen, die Substanzen für diese Indikationen beschreiben die im Purinstoffwechsel eingreifen (als Übersicht z.B. Christopherson, R.I. und Lyons, S.D., 1990, Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents, Med. Res. Reviews 10, Seite 505-548).

[0010] Untersuchungen der in Purinstoffwechsel beteiligten Enzyme (Smith, J.L., Enzymes in nucleotide synthesis, 1995, Curr. Opinion Struct. Biol. 5, 752-757) zielen darauf ab, neue immunsuppressiv, anti-parasitär oder anti-proliferierend wirkende Medikamente zu entwickeln (Biochem. Soc. Transact. 23, Seite 877-902, 1995).

[0011] Bei diesen Medikamenten handelt es sich dann üblicherweise um natürlich nicht vorkommende Purine, Pyrimidine oder davon abgeleiteter Verbindungen.

[0012] Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:2 dargestellten Polypeptidseqenz oder einer aus SEQ ID NO:2 durch Substitution, Insertion oder Deletion von bis zu 15% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer Phosphoribosylpyrophosphat-Synthetase.

5 [0013] Die in SEQ ID NO:2 dargestellte Sequenz ist das aus Ashbya gossypii erhaltene Genprodukt des KPR1 Gens (SEQ ID NO:1).

[0014] Ein weiterer Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:5 dargestellten Polypeptidseqenz oder einer aus SEQ ID NO:5 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen

Polypeptidsequenz und der enzymatischen Aktivität einer Glutamin-Phosphoribosylpyrophosphat-Amidotransferase.

[0015] Die in SEQ ID NO:5 dargestellte Sequenz ist das aus Ashbya gossypii erhaltene Genprodukt des ADE4 Gens (SEQ ID NO:3).

[0016] Ein weiterer Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:8 dargestellten Polypeptidseqenz oder einer aus SEQ ID NO:8 durch Substitution, Insertion oder Deletion von bis zu 20% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer IMP-Dehydrogenase.

[0017] Die in SEQ ID NO:8 und 9 dargestellte Sequenz ist das aus Ashbya gossypii erhaltene Genprodukt des GUA1 Gens (SEQ ID NO:7).

[0018] Ein weiterer Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:11 dargestellten Polypeptidseqenz oder einer aus SEQ ID NO:11 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer GMP-Synthetase.

[0019] Die in SEQ ID NO:11 dargestellte Sequenz ist das aus Ashbya gossypii erhaltene Genprodukt des GUA2 Gens (SEQ ID NO:10).

[0020] Ein weiterer Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:13 dargestellten Polypeptidseqenz oder einer aus SEQ ID NO:13 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer Phosphoribosylpyrophosphat-Synthetase.

[0021] Die in SEQ ID NO:13 dargestellte Sequenz ist das aus Ashbya gossypii erhaltene Genprodukt des KPR2 Gens (SEQ ID NO:12).

[0022] Diese genannten Genprodukte können durch übliche Verfahren der Gentechnologie wie ortsgerichtete Mutagenese so verändert werden, daß bestimmte Aminosäuren ausgetauscht, zusätzlich eingeführt oder entfernt werden. Üblicherweise (aber nicht ausschließlich) werden Aminosäurereste durch solche ähnlicher Raumerfüllung, Ladung oder Hydrophilie/Hydrophobie ausgetauscht um die enzymatischen Eigenschaften der Genprodukte nicht zu verlieren. Insbesondere im aktiven Zentrum führen Veränderungen der Aminosäuresequenz oft zu drastischer Veränderung der enzymatischen Aktivitäten. An anderen, weniger essentiellen Stellen werden jedoch Veränderungen der Aminosäuresequenz häufig toleriert.

[0023] Bei den erfindungsgemäßen Proteinen können

- 1. im Fall des Genproduktes des AgKPR1-Gens, bis zu 15, bevorzugt bis zu 10 und besonders bevorzugt bis zu 5% der Aminosäuren gegenüber der im Sequenzprotokoll dargestellten Sequenzen verändert sein;
- 2. im Fall des Genproduktes des AgADE4-Gens, bis zu 10 und besonders bevorzugt bis zu 5% der Aminosäuren gegenüber der im Sequenzprotokoll dargestellten Sequenzen verändert sein;
- 3. im Fall des Genproduktes des AgGUA1-Gens, bis zu 20, bevorzugt bis zu 15, besonders bevorzugt bis zu 10 und insbesondere bevorzugt bis zu 5% der Aminosäuren gegenüber der im Sequenzprotokoll dargestellten Sequenzen verändert sein;
- 4. im Fall des Genproduktes des AgGUA2-Gens, bis zu 10 und besonders bevorzugt bis zu 5% der Aminosäuren gegenüber der im Sequenzprotokoll dargestellten Sequenzen verändert sein;
- 5. im Fall des Genproduktes des AgKPR2 Gens bis zu 10 %, bevorzugt bis zu 7 % und besonders bevorzugt bis zu 5 % der Aminosäuren gegenüber der im Sequenzprotokoll dargestellten Sequenzen verändert sein.
- [0024] Bevorzugt sind solche Proteine, die zwar noch die jeweilige enzymatische Aktivität besitzen, aber in ihrer Regulation verändert worden sind. Viele dieser Enzyme unterliegen einer starken Aktivitätskontrolle durch Zwischenund Endprodukte (feedback-Inhibition). Dies führt dazu, daß die Enzyme, sobald genügend Endprodukt vorhanden ist, in ihrer Aktivität gedrosselt werden.
- [0025] Diese im physiologischen Zustand ökonomische Regelung führt bei Produktionsstämmen jedoch häufig dazu, daß die Produktivität nicht über eine gewisse Grenze hinaus gesteigert werden kann. Durch Beseitigung einer solchen feedback-Inhibition erreicht man, daß die Enzyme ungeachtet der Endproduktkonzentration ihre Aktivität beibehalten und dadurch Stoffwechselengpässe umgangen werden. Dies führt letztlich zu einer deutlichen Steigerung der Riboflavinbiosynthese.
- [0026] Bevorzugte erfindungsgemäße Proteine sind solche, die nicht mehr durch Folgeprodukte von Stoffwechselwegen (die von Produkten der Enzyme ausgehen) gehemmt werden. Besonders bevorzugte erfindungsgemäße Proteine sind solche, die nicht mehr durch Zwischenprodukte der Purinbiosynthese, insbesonder durch Purinbasen, Purinnukleoside, Purinnukleotid-5'-Monophosphate oder Purinnukleotid-5'-Diphosphate oder Purinnukleotid-5'-Triphosphate gehemmt werden. Insbesondere bevorzugte erfindungsgemäße Proteine sind solche, mit nachfolgenden Veränderungen der Aminosäuresequenz und alle Kombinationen von Aminosäuresequenz-Veränderungen, die diese nachfolgen-

30

35

den Veränderungen enthalten.

[0027] Veränderungen der Aminosäuresequenz am AgKPR1 Genprodukt:

Lysin an Position 7 ausgetauscht gegen Valin Aspartat an Position 52 ausgetauscht gegen Histidin Leucin an Position 131 ausgetauscht gegen Isoleucin Aspartat an Position 186 ausgetauscht gegen Histidin Alanin an Position 193 ausgetauscht gegen Valin Histidin an Position 196 ausgetauscht gegen Glutamin

[0028] Veränderungen der Aminosäuresequenz am AgADE4 Genprodukt:

Aspartat an Position 310 ausgetauscht gegen Valin Lysin an Position 333 ausgetauscht gegen Alanin Alanin an Position 417 ausgetauscht gegen Tryptophan

[0029] Die folgenden Beispiele beschreiben die Herstellung der erfindungsgemäßen Proteine und Nukleinsäuren sowie deren Verwendung zur Herstellung von Mikroorganismen mit gesteigerter Riboflavinsynthese.

Beispiel 1:

5

15

25

Herstellung einer genomischen Genbank aus Ashbya gossypii ATCC10895

[0030] Genomische DNA aus Ashbya gossypii ATCC10895 kann nach üblichen Verfahren präpariert werden, z.B. wie beschrieben in EP9703208. Die genomische Genbank, ausgehend von dieser DNA, kann nach üblichen Methoden (z.B. Sambrook, J. et al. (1989) Molecular doning: a laboratory manual, Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) Current protocols in molecular biology, John Wiley and sons) in beliebigen Plasmiden oder Cosmiden, wie z.B. SuperCos1 (Stratagene, La Jolla, USA) erstellt werden.

Beispiel 2:

Klonierung des Gens für PRPP-Synthetase aus Ashbya gossypii ATCC10895 (AgKPR1)

[0031] Die Klonierung des Gens für PRPP-Synthetase aus Ashbya gossypii (AgKPR1) kann über zwei Schritte verlaufen. Im ersten Schritt kann mit folgenden Oligonukleotiden einen definierten Bereich des KPR1 Gens aus genomischer DNA von Ashbya gossypii über PCR amplifizieren:

KPR5: 5'- GATGCTAGAGACCGCGGGGTGCAAC -3'

KPR3: 5'- TGTCCGCCATGTCGTCTACAATAATA -3'

[0032] Die PCR kann nach üblicher Methode durchgeführt werden. Das resultierende 330 bp DNA Fragment kann mit üblichen Methoden in den Vektor pGEMT (Promega, Madison, USA) kloniert und sequenziert werden.

[0033] Mit dieser Nukleotidsequenz als Sonde kann mit üblichen Methoden eine genomische Cosmid-Genbank gescreent werden. Von einem Cosmid, das ein Signal mit dieser Sonde ergibt, kann dann ein 1911 bp Pstl-HindIII Fragment in den Vektor pBluescript SK+ (Stratagene, La Jolla, USA) subkloniert werden. Auf diesem Fragment liegen das KPR1 Gen und unvollständige ORFs, die Homologie zeigen zu den UBC6 und UBP9 Genen aus Saccharomyces cerevisiae.

[0034] Die PRPP-Synthetase KPR2 und die putative PRPP-Synthetase KPR4 aus Saccharomyces cerevisiae sind die Enzyme, die der PRPP-Synthetase aus Ashbya gossypii mit Ähnlichkeiten von 80,2% bzw. 79,6% am verwandtesten sind. Die KPR2 und KPR4 Gene aus Saccharomyces cerevisiae sind zu 67.6% bzw. 67.8% ähnlich zum KPR1 Gen aus Ashbya gossypii. Andere Enzyme bzw. Gene aus anderen Organismen sind deutlich verschiedener zum KPR1 Gen bzw. zur PRPP-Synthetase aus Ashbya gossypii.

[0035] Die Sequenzvergleiche können z.B. mit dem Clustal Algorithmus mit Hilfe der PAM250 Gewichtungstabelle oder dem Wilbur-Lipman DNA alignment Algorithmus (wie z.B. in dem Programmpaket MegAlign 3.06 der Firma DNA-star implementiert) durchgeführt werden. Mit dem beschriebenen Oligonukleotide-Paar ist es nicht möglich, die Gene für die verschiedenen PRPP-Synthetasen aus Saccharomyces cerevisiae zu amplifizieren.

[0036] Mit der Sonde kann man auch noch einen Klon aus der Genbank finden. Dieser zweite Klon zeigte ein Gen, das ebenfalls für eine PRPP Synthetase kodiert. Dieses Gen wird AgKPR2 genannt und ist deutlich verschieden zu AgKPR1. AgKPR2 zeigt auf Aminosäureebene 66 % Identität zu AgKPR1. Das AgKPR2 Gen (SEQ ID NO: 12) wurde mit allen Proteinen der Swissprot Datenbank verglichen. Die maximale Ähnlichkeit zeigt dieses Protein (88 % Identität bzw. 95 % Äknlichkeit) zum KPR3 Genprodukt aus Saccharomyces cerevisiae. Das Genprodukt des AgKPR1 Gens ist für den überwiegenden Teil der Aktivität der PRPP Synthetase bei Ashbya gossypii verantwortlich. Wenn man das AgKPR1 Gen von Ashbya gossypii disruptiert (analog zur Disruption anderer Ashbya Gene, wie in den Beschreibungen in den Beispielen 6-8), dann findet man deutlich verringerte Enzymaktivität: statt 22 U/mg Protein nur noch 3 U/mg Pro-

tein. Zur Analytik siehe Beispiel 13. In Beispiel 11, 13 und 15 werden Ausführungsbeispiele mit dem AgKPR1 Gen gezeigt, man kann solche Arbeiten aber auch mit AgKPR2 durchführen.

Beispiel 3:

Klonierung des Gens für Glutamin-PRPP-Amidotransferase aus Ashbya gossypii ATCC10895 (AgADE4)

[0037] Die Klonierung des Gens für Glutamin-PRPP-Amidotransferase aus Ashbya gossypii (AgADE4) kann über zwei Schritte verlaufen. Im ersten Schritt kann mit folgenden Oligonukleotiden einen definierten Bereich des AgADE4 Gens aus genomischer DNA von Ashbya gossypii über PCR amplifizieren:

ADE4A: 5'- ATATCTTGATGAAGACGTTCACCGT -3'

ADE4B: 5'- GATAATGACGGCTTGGCCGGGAAGA -3'

[0038] Die PCR kann nach üblicher Methode durchgeführt werden. Das resultierende 360 bp DNA Fragment kann mit üblichen Methoden in den Vektor pGEMT (Promega, Madison, USA) kloniert und dann sequenziert werden.

[0039] Mit dieser Sequenz als Sonde kann mit üblichen Methoden eine genomische Cosmid-Genbank gescreent werden. Von einem Cosmid, das ein Signal mit dieser Sonde ergibt, kann dann ein 5369 bp HindIII Fragment in den Vektor pBluescript SK+ (Stratagene, La Jolla, USA) subkloniert werden. Auf diesem Fragment liegen das AgADE4 Gen und das Gen für das Ashbya Homolog für den mitochondrialen ABC Transporter ATM1 aus Saccharomyces cerevisiae und ein weiterer offener Leseraster, dessen Funktion nicht bekannt ist.

[0040] Das AgADE4 Genprodukt (Glutamin-PRPP-Amidotransferase) zeigt die deutlichste Ähnlichkeit zu den ADE4 Genprodukten aus Saccharomyces cerevisiae und Saccharomyces kluyveri (81% bzw. 86.3%). Die entsprechenden Gene sind jedoch nur zu 68.8% bzw. 72% homolog. Die Ähnlichkeit zu anderen Glutamin-PRPP-Amidotransferasen ist deutlich geringer (z.B. nur 27.5% Ähnlichkeit zum entsprechenden Enzym aus Bacillus subtilis). Die Sequenzvergleiche kann man so durchführen, wie in Beispiel 2 beschrieben.

[0041] Es ist mit dem beschriebenen Paar an Oligonukleotiden nicht möglich, die ADE4 Gene aus Saccharomyces cerevisiae oder Saccharomyces kluyveri zu amplifizieren.

Beispiel 4:

50 Klonierung des Gens f
ür Inosin-Monophosphat-Dehydrogenase aus Ashbya gossypii ATCC10895 (AgGUA1)

[0042] Die Klonierung des Gens für Inosin-Monophosphat-Dehydrogenase aus Ashbya gossypii (AgGUA1) kann über zwei Schritte verlaufen.

[0043] Im ersten Schritt kann man mit folgenden Oligonukleotiden einen definierten Bereich des AgGUA1 Gens aus genomischer DNA von Ashbya gossypii über PCR amplifizieren:

IMP5: 5'- GGCATCAACCTCGAGGAGGCGAACC -3'

IMP3: 5'- CAGACCGGCCTCGACCAGCATCGCC - 3'

[0044] Die PCR kann nach üblicher Methode durchgeführt werden. Das resultierende 230 bp DNA Fragment kann mit üblichen Methoden in den Vektor pGEMT (Promega, Madison, USA) kloniert und dann sequenziert werden.

[0045] Mit dieser Sequenz als Sonde kann mit üblichen Methoden eine genomische Cosmid-Genbank gescreent werden. Von einem Cosmid, das ein Signal mit dieser Sonde ergibt, kann ein 3616 bp Apal Fragment in den Vektor pBluescript SK+ (Stratagene, La Jolla, USA) subkloniert werden. Die kodierende Region des AgGUA1 Gens Gens ist 1569 bp lang und ist unterbrochen von einem161 bp langen Intron. Die Intron Grenzen (5' splice site AGGTATGT und 3' splice site CAG) kann man durch Klonierung und Sequenzierung von AgGUA1cDNA verifizieren.

[0046] AgGUA1 ist das erste beschriebene Gen aus Ashbya gossypii mit einem Intron.

[0047] Das AgGUA1 Genprodukt (IMP-Dehydrogenase) zeigt die deutlichste Ähnlichkeit zu den 4 IMP-Dehydrogenasen aus Saccharomyces cerevisiae (Ähnlichkeiten zwischen 67% und 77.2%). Die Ähnlichkeit zu anderen IMP-Dehydrogenasen ist deutlich geringer Die Sequenzvergleiche kann man so durchführen, wie in Beispiel 2 beschrieben. Ashbya gossypii scheint nur ein Gen für dieses Enzym zu haben. Dies kann man durch southern blotting mit genomischer DNA von Ashbya gossypii mit Hilfe der oben genannter Sonde zeigen.

[0048] Das Gen aus Saccharomyces cerevisiae, das für die dem AgGUA1 Genprodukt ähnlichste IMP-Dehydrogenase kodiert (IMH3), hat eine Ähnlichkeit von 70.2% zum AgGUA1 Gen. Es ist mit dem beschriebenen Paar an Oligonukleotiden nicht möglich, dieses Gen aus Saccharomyces cerevisiae zu amplifizieren.

Beispiel 5:

10

Klonierung des Gens für Guanosin-Monophosphat-Svnthetase aus Ashbya gossypii ATCC10895 (AgGUA2)

[0049] Die Klonierung des Gens für Guanosin-Monophosphat-Synthetase aus Ashbya gossypii (AgGUA2) kann über zwei Schritte verlaufen. Im ersten Schritt kann man mit folgenden Oligonukleotiden einen definierten Bereich des AgGUA2 Gens aus genomischer DNA von Ashbya gossypii über PCR amplifizieren:

GUA2A: 5'- TGGACCGGGCGGTGTTCGAGTTGGG -3'

GUA2B: 5'- AGGCTGGATCCTGGCTGCCTCGCGC -3'

[0050] Die PCR Reaktion kann nach üblicher Methode durchgeführt werden. Das resultierende 750 bp DNA Fragment kann mit üblichen Methoden in den Vektor pBluescript SK+ (Stratagene, La Jolla, USA) kloniert und dann sequenziert werden.

[0051] Mit dieser Sequenz als Sonde kann mit üblichen Methoden eine genomische Cosmid-Genbank gescreent werden. Von einem Cosmid, das ein Signal mit dieser Sonde ergibt, kann dann ein 2697 bp Clal-EcoRV Fragment in den Vektor pBluescript SK+ (Stratagene, La Jolla, USA) subkloniert werden.

[0052] Das AgGUA2 Genprodukt (GMP-Synthetase) zeigt die deutlichste Ähnlichkeit zu GMP-Synthetase aus Saccharomyces cerevisiae (Ähnlichkeiten 86.6%). Die Gene für die GMP-Synthetasen aus Saccharomyces cerevisiae und Ashbya gossypii sind zu 71.2% homolog. Die Ähnlichkeit des AgGUA2 Genproduktes zu anderen IMP-Dehydrogenasen ist deutlich geringer Die Sequenzvergleiche kann man so durchführen, wie in Beispiel 2 beschrieben.

[0053] Es ist mit dem beschriebenen Paar an Oligonukleotiden nicht möglich, das GMP-Synthetase Gen aus Saccharomyces cerevisiae zu amplifizieren.

Beispiel 6:

5 Disruption des AgADE4 Gens von Ashbya gossypii ATCC10895

[0054] Unter Disruption eines Genes versteht man die Zerstörung der Funktionalität einer genomischen Kopie des Gens entweder durch (a) Entfernen eines Teiles der Gensequenz, oder durch (b) der Unterbrechung des Gens durch Einfügung eines Stückes Fremd-DNA in das Gen oder durch (c) Ersatz eines Teil des Gens durch Fremd-DNA. Die verwendete Fremd-DNA ist beliebig, bevorzugt aber ein Gen, das Resistenz gegen eine beliebige Chemikalie bewirkt. Zur Disruption von Genen können beliebige Resistenzgene verwendet werden.

[0055] Zur Disruption des AgADE4-Gens von Ashbya gossypii ATCC10895 kann man ein Gen verwenden, das Resistenz gegen G418 vermittelt. Es kann sich dabei um das Kanamycin-Resistenzgen aus TN903, unter Kontrolle des TEF-Promotors von Ashbya gossypii (siehe z.B. Yeast 10, S.1793-1808, 1994, WO9200379) handeln. Das Gen ist 5' und 3' von mehreren Schnittstellen für Restriktionsendonukleasen flankiert, so daß eine Kassette aufgebaut wurde, die beliebige Konstruktionen von Gen-Disruptionen mit üblichen Methoden der in vitro Manipulation von DNA ermöglichen. [0056] Das interne Hincl! Fragment von AgADE4 (zwischen den Positionen 2366 und 2924) kann durch eine wie oben skizzierte Resistenzkassette ersetzt werden. Das erhaltene Konstrukt erhält den Namen ade4::G418.

[0057] Das erhaltene Plasmid kann man in E.coli vermehren. Das BamHI / BgIII- Fragment des Konstruktes ade4::G418 kann präpariert, über Agarosegel-Elektrophorese und nachfolgende Elution der DNA aus dem Gel (siehe Proc. Natl. Acad. Sci. USA <u>76</u>, 615-619, 1979) aufgereinigt und zur Transformation von Ashbya gossypii eingesetzt werden.

[0058] Ashbya gossypii kann durch Protoplastentransformation (Gene 109, 99-105, 1991), bevorzugt aber durch Elektroporation (BioRad Gene Pulser, Bedingungen: Küvetten mit Spaltbreite 0,4 mm, 1500V, $25\mu F$, 100Ω) transformiert werden. Die Selektion transformierter Zellen erfolgt auf G418-haltigem Festmedium.

[0059] Erhaltene G418-resistente Klone können mit üblichen Methoden der PCR und Southern-Blot Analyse daraufhin untersucht werden, ob die genomische Kopie des AgADE4 Gens tatsächlich zerstört ist. Klone, deren AgADE4 Gen zerstört ist, sind Purin- auxotroph.

50 Beispiel 7:

Disruption des AgGUA1 Gens von Ashbya gossypii ATCC10895

[0060] Zur prinzipiellen Beschreibung der Disruption von Genen, der Verwendung einer Resistenzkassette und der Transformation von Ashbya gossypii siehe Beispiel 6.

[0061] Das interne Xhol / Konl Fragment von AgGUA1 (zwischen den Positionen 1620 und 2061) kann durch eine wie oben skizzierte Resistenzkassette ersetzt werden. Das erhaltene Konstrukt erhält den Namen gua1::G418.

[0062] Das erhaltene Plasmid kann in E.coli vermehrt werden. Das Xbal / BamHI - Fragment des Konstruktes

gua1::G418 kann präpariert, über Agarosegel-Elektrophorese und nachfolgende Elution der DNA aus dem Gel aufgereinigt und zur Transformation von Ashbya gossypii eingesetzt werden.

[0063] Erhaltene G418-resistente Klone können mit üblichen Methoden der PCR und Southern-Blot Analyse daraufhin untersucht werden, ob die genomische Kopie des AgGUA1 Gens tatsächlich zerstört ist. Klone, deren AgGUA1 Gen zerstört ist, sind Guanin- auxotroph.

Beispiel 8:

Disruption des AgGUA2 Gens von Ashbya gossypii ATCC10895

[0064] Zur prinzipiellen Beschreibung der Disruption von Genen, der Verwendung einer Resistenzkassette und der Transformation von Ashbya gossypii siehe Beispiel 6.

[0065] Das interne Sall Fragment von AgGUA2 (zwischen den Positionen 1153 und 1219) kann man durch eine wie oben skizzierte Resistenzkassette ersetzen. Das erhaltene Konstrukt erhält den Namen qua2::G418.

[0066] Das erhaltene Plasmid kann in E.coli vermehrt werden. Das Xbal / BamHI - Fragment des Konstruktes gua2::G418 kann präpariert, über Agarosegel-Elektrophorese und nachfolgende Elution der DNA aus dem Gel aufgereinigt und zur Transformation von Ashbya gossypii eingesetzt werden.

[0067] Erhaltene G418-resistente Klone können mit üblichen Methoden der PCR und Southern-Blot Analyse daraufhin untersucht werden, ob die genomische Kopie des AgGUA2 Gens tatsächlich zerstört ist. Klone, deren AgGUA2 Gen zerstört ist, sind Guanin- auxotroph.

Beispiel 9:

Klonierung des GAP-Promotors aus Ashbya gossypii

[0068] Das Gen für Glycerinaldehyd-3-Phosphat-Dehydrogenase aus Ashbya gossypii (AgGAP) kann man durch ein allgemein übliches Screening einer genomischen Ashbya gossypii Cosmid-Genbank (siehe Beispiel 1, mit einer Sonde, die aus Sequenzinformationen des GAP Gens aus Saccharomyces cerevisiae erstellt wurde) klonieren.

[0069] Der 5' nicht-translatierte Bereich des Gens (-373 bis -8 Region, bezogen auf den Translationsstart) wurde als Promotor angenommen. Flankierend zu dieser Sequenz wurden 2 Schnittstellen für die Restriktionsendonuklease Not1 eingeführt. In diesem Bereich findet man die bona fide TATA Box (nt 224-230), zwei Sequenzabschnitte (nt 43-51 und 77-85), die dem sogenannten GCR1 binding element und einen Sequenzabschnitt, (nt 9-20) dessen Komplement partial dem RAP1 binding element von Saccharomyces cerevisiae entspricht (siehe z.B. Johnston, M. und Carlson, M. (1992) pp.193-281 in The molecular biology and cellular biology of the yeast Saccharomyces: Gene expression, Cold Spring Harbor Laboratory Press). Die so konstruierte Promotorkassette kann als einfach portierbares Expressionsignal vor jedes beliebige Gen für die Überexpression in Ashbya gossypii gesetzt werden und führt zu deutlicher Überexpression von Genen in Ashbya gossypii, wie gezeigt in Beispiel 11.

Beispiel 10:

Konstruktion von Plasmiden mit Genen unter Kontrolle des GAP-Promotors aus Ashbya gossypii

[0070] Zur Einfügung der GAP-Promotorkassette 5i der kodierenden Region des AgADE4 Gens wurde nach üblichen Methode (z.B. Clover, D.M. und Hames, B.D. (1995) DNA cloning Vol.1, IRL press) 8 bp 5' des ATG Startcodons eine singuläre Notl Schnittstelle (Erkennungssequenz GCGGCCGC) eingeführt.

[0071] Die GAP-Promotorkassette kann dann über Notl in diese Position eingefügt werden. Analog kann man vorgehen bei der Klonierung der GAP-Promotorkassette 5' der kodierenden Region der Gene AgKPR1, AgGUA1, AgGUA2 sowie bei Varianten der Gene AgADE4, AgKPR1, AgGUA1 und AgGUA2.

[0072] In Ashbya gossypii wird die Expression der Gene, die die GAP-Promotorkassette 5' der kodierenden Region tragen durch den GAP-Promotor kontrolliert.

Beispiel 11:

Überexpression Genen in Ashbya gossypii unter Kontrolle des GAP-Promotors

[0073] Die Transformation von Ashbya gossypii mit den in Beispiel 10 beschriebenen DNA-Konstrukten kann man durchführen wie in Beispiel 6 beschrieben. Als Empfänger können bevorzugt, aber nicht ausschließlich, solche Klone dienen, die vor der hier durchzuführenden Transformation eine Disruption des zu überexprimierenden Gens tragen. So

kann man z.B. die in Beispiel 6 beschriebene Mutante von Ashbya gossypii, die eine ade4::G418 Mutation trägt, mit einem in Beispiel 10 beschriebenen GAP-ADE4 Konstrukt transformieren. Man kann die Integration des Konstruktes in das Genom durch Southern-Blot-Analyse verifizieren. Die resultierenden Klone tragen kein G418 Resistenzgen mehr (sind somit G418 sensitiv) und sind Purin-prototroph. Die Überexpression kann durch Northern-Blot-Analyse oder Nachweis der enzymatischen Aktivität (wie in Beispiel 12 beschrieben) nachgewiesen werden. Bei Expression des AgADE4 Gens unter dem natürlichen Promotor kann man 0,007 U/mg Protein nachweisen. Bei Expression des AgADE4 Gens unter dem GAP Promotor kann man 0,382 U/mg Protein nachweisen

[0074] Ein Sequenzabschnitt der kodierenden Region des AgADE4 Gens kann als Sonde verwendet werden. Analog kann man mit AgKPR1, AgGUA1, AgGUA2 sowie bei Varianten all dieser Gene vorgehen. Außerdem kann man Kombinationen aus einem dieser Gene, zusammen mit anderen Genen auf diese Weise in das Genom von Ashbya gossypii einbringen.

[0075] Der Ashbya gossypii Wild-Typ hat eine spezifische PRPP Synthetase Aktivität von 22 U/mg Protein (zur Analytik der PRPP-Synthetase siehe Beispiel 13). Bei Expression des AgKPR1-Gens unter dem GAP-Promotor kann man 855 U/mg Protein nachweisen.

Beispiel 12:

15

[0076] Varianten des AgADE4 Genproduktes (Glutamin-PRPP-Amidotransferase), die nicht mehr feedback durch Purine oder Zwischenprodukte der Purinsynthese gehemmt werden.

[0077] Glutamin-PRPP-Amidotransferasen werden durch Purin-Nukleotide feedback inhibiert. Diese Inhibition findet man in zahlreichen Organismen (siehe z.B. Switzer, R.L. (1989) Regulation of bacterial Glutamine Phosphoribosylpyrophosphate Amidotransferase, in: Allosteric enzymes pp. 129-151, CRC press, Boca Raton).

[0078] Die Glutamin-PRPP-Amidotransferase aus Ashbya gossypii wird ebenfalls durch AMP oder GMP gehemmt (siehe Abbildung). Die Aktivität der Glutamin Phosphoribosylpyrophosphat Amidotransferase aus Ashbya gossypii kann man messen, wie beschrieben in Messenger und Zalkin (1979) J. Biol. Chem. 254, Seite 3382-3392.

[0079] Man kann veränderte Glutamin Phosphoribosylpyrophosphat Amidotransferasen konstruieren, die nicht mehr durch Purine gehemmt werden. Es ist offensichtlich, daß die Überexpression solch deregulierter Enzyme den Purinstoffwechsel deutlich mehr verstärken als die Überexpression der feedback inhibierten Enzyme. Veränderungen der Sequenz des AgADE4 Gens können nach üblichen Methoden (z.B. Clover, D.M. und Hames, B.D. (1995) DNA cloning Vol.1, IRL press) vorgenommen werden. Man kann z.B. folgende Aminosäuren der Glutamin Phosphoribosylpyrophosphat Amidotransferase ausgetauschen:

[0080] Das Codon, das für Aspartat an der Position 310 kodiert, kann durch ein Codon ersetzt werden, das für Valin kodiert. Das Codon, das für Lysin an der Position 333 kodiert, kann durch ein Codon ersetzt werden, das für Alanin kodiert. Das Codon, das für Alanin an der Position 417 kodiert, kann durch ein Codon ersetzt werden, das für Tryptophan kodiert. Zusätzlich können AgADE4 Gene konstruiert werden, die Kombinationen dieser Austausche tragen.

[0081] Alle Enzyme, die den D310V, den K333A, den A417W oder jede Kombination von Austauschen tragen, die D310V oder K333A enthalten, zeigen verringerte feedback inhibition durch AMP und GMP (siehe Abbildung). Dies kann z.B. nach Expression der Enzyme in Ashbya gossypii (siehe Beispiel 11) gezeigt werden.

40 Beispiel 13:

[0082] Varianten des AgKPR1 Genproduktes (PRPP-Synthetase), die nicht mehr feedback durch Purine oder Zwischenprodukte der Purinsynthese gehemmt werden.

[0083] PRPP-Synthetasen werden feedback durch Purine, Pyrimidine und Aminosäuren inhibiert. Diese Inhibition findet man in zahlreichen Organismen (siehe z.B. Gibson, K.J. et al. (1982) J. Biol. Chem. 257, 2391-2396; Tatibana, M. et al. (1995) Adv., Enzyme Regul. 35, 229-249 und darin zitierte Arbeiten).

[0084] In der Forschung der klinischen Medizin sind Fälle erblicher Gicht beschrieben, deren Basis eine verstärkte Purinbiosynthese ist. Die molekulare Ursache hierfür ist eine sogenannte Superaktivität der humanen PRPP Synthetase (siehe z.B. Amer. J. Med. 55 (1973) 232-242; J. Clin. Invest. 96 (1995) 2133-2141; J. Biol. 268 (1993) 26476-26481). Die Basis hierfür kann eine Mutation sein, die dazu führt, daß das Enzym nicht mehr durch Purine feedback inhibiert wird.

Die Aktivität der PRPP Synthetase aus Ashbya gossypii kann man messen wie in Anal. Biochem. 98 (1979) 254-263 oder J. Bacteriol. 174 (1992) 6852-6856 beschrieben. Die spezifische Aktivität (U/mg) wird über die Menge an entstandenem Produkt definiert (nmol/min/mg Protein).

Man kann veränderte PRPP Synthetasen konstruieren, die nicht mehr durch Purine gehemmt werden. Es ist offensichtlich, daß die Überexpression solch deregulierter Enzyme den Purinstoffwechsel deutlich mehr verstärkt als die Überexpression der feedback inhibierten Enzyme. Veränderungen der Sequenz des AgKPR1 Gens können nach üblichen Methoden (z.B. Glover, D.M. und Hames, B.D. (1995) DNA cloning Vol. 1, IRL press) vorgenommen werden. Man kann

z.B. folgende Aminosäuren der PRPP Synthetase austauschen:

Das Codon, das für Leucin an der Position 131 kodiert, kann durch ein Codon ersetzt werden, das für Isoleucin kodiert. Das Codon, das für Histidin an der Position 196 kodiert, kann durch ein Codon ersetzt werden, das für Glutamin kodiert. Alle Enzyme, die einen dieser Aminosäureaustausche (L 131 oder H196Q) tragen, zeigen verringerte feedback Hemmung durch Purine. In Abbildung 2 ist dies gezeigt am Beispiel ADP.

Dies kann gezeigt werden, nachdem die entsprechenden Enzyme in Ashbya gossypii exprimiert wurden. Dies kann entsprechend Beispiel 11 durchgeführt werden.

Beispiel 14:

10

30

[0085] Varianten des AgGUA1 Genproduktes (IMP-Dehydrogenase), die nicht mehr feedback durch Purine oder Zwischenprodukte der Purinsynthese gehemmt werden.

Beispiel 15:

15

Auswirkung der Verstärkung und/oder der Optimierung von Purinstoffwechsel- Enzymen und deren Gene auf die Riboflavin-Produktion in Ashbya gossypii

[0086] Man kann den Ausgangsstamm Ashbya gossypii ATCC10895, in Vergleich mit davon abgeleiteten Klonen, die chromosomale Kopien von Genen, unter Kontrolle des GAP Promotors tragen (wie in Beispiel 11 beschrieben), im Schüttelkolben auf Riboflavin- Produktivität prüfen. Man kann dazu 300 ml Schüttelkolben, mit 20 ml YPD Medium (Sambrook, J. et al. (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press) bei einer Inkubationstemperatur von 28°C einsetzen.

[0087] Nach 2 Tagen produziert der Kontrollstamm durchschnittlich 14,5 mg Riboflavin pro I Kulturbrühe. Stämme, die 25 Gene für Purinstoffwechsel-Enzyme überexprimieren (wie z.B. in Beispiel 11 gezeigt) oder Gene für optimierte Purinstoffwechsel-Enzyme (z.B. wie in den Beispielen 12, 13 "und 14) überexprimieren, produzieren mehr Riboflavin. So produziert der Stamm, der AgADE4D310VK333A (Beispiel 12) überexprimiert, in 2 Tagen durchschnittlich 45,4 mg Riboflavin pro I Kulturbrühe.

[0088] Der Stamm, der AgKPR1 unter dem GAP-Promotor überexprimiert, produziert statt 14 mg/l (wie der WT) 36 mg/l Riboflavin. Der Stamm, der AgKPR1H196Q unter dem GAP-Promotor überexprimiert, produziert 51 mg/l Riboflavin.

Abbildung 1:

[0089] Messung der Aktivität der Gln-PRPP-Amidotransferase aus A. gossypii und von veränderten Formen des Enzyms in Abhängigkeit der Konzentration von Adenosin-5'-Monophosphat (AMP) und Guanosin-5'-Monophosphat (GMP).

WT: Gln-PRPP-Amidotransferase

A418W: Gln-PRPP-Amidotransferase, Alanin an Position 418 ausgetauscht gegen Tryptophan.

K333A: Gln-PRPP-Amidotransferase, Lysin an Position 333 ausgetauscht gegen Alanin.

D310VK333A: Gln-PRPP-Amidotransferase, Aspartat an Position 310 ausgetauscht gegen Valin und Lysin an Position 333 ausgetauscht gegen Alanin.

45 Abbildung 2:

[0090] Messung der Aktivität der PRPP Synthetase aus A. gossypii und von veränderten Formen des Enzymes in Abhängigkeit der Konzentration von Adenosin.5'-Diphosphat (ADP)

50 WT: PRPP Synthetase

L131I: PRPP Synthetase, Leucin an Position 131 ausgetauscht gegen Isoleucin

H196Q: PRPP Synthetase, Histidin an Position 196 ausgetauscht gegen Glutamin

H196Q, L131I: PRPP Synthetase, Histidin an Position 196 ausgetauscht gegen Glutamin und Leucin an Position 131 ausgetauscht gegen Isoleucin

SEQUENZPROTOKOLL

	(1) ALGEMEINE INFORMATION:
5	(i) ANMELDER:
	(A) NAME: BASF Aktiengesellschaft
	(B) STRASSE: Carl-Bosch-Strasse 38
	(C) ORT: Ludwigshafen
10	(E) LAND: Bundesrepublik Deutschland
	(F) POSTLEITZAHL: D-67056
	(G) TELEPHON: 0621/6048526
	(H) TELEFAX: 0621/6043123
	(I) TELEX: 1762175170
15	(ii) ANMELDETITEL: Gene der Purinbiosynthese aus Ashbya gossypii
	und deren Verwendung in der mikrobiellen
	Riboflavinbiosynthese
	(iii) ANZAHL DER SEQUENZEN: 13
20	(444) table but buyoutable. Is
	(iv) COMPUTER-LESBARE FORM:
	(A) DATENTRÄGER: Floppy disk
	(B) COMPUTER: IBM PC compatible
25	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
	(2) INFORMATION ZU SEQ ID NO: 1:
30	(i) SEQUENZ CHARAKTERISTIKA:
30	(A) LÄNGE: 1911 Basenpaare
	(B) ART: Nukleinsäure
	(C) STRANGFORM: Einzel
	(D) TOPOLOGIE: linear
35	(ii) ART DES MOLEKÜLS: DNS (genomisch)
	(iii) HYPOTHETISCH: NEIN
	(III) MIFOIMBIISCH: NEIN
40	(iii) ANTISENSE: NEIN
	(ix) MERKMALE:
	(A) NAME/SCHLÜSSEL: 5'UTR
	(B) LAGE: 1625
45	(ix) MERKMALE:
	(A) NAME/SCHLÜSSEL: CDS
	(B) LAGE: 6261582
	(ix) MERKMALE:
50	(A) NAME/SCHLÜSSEL: 3'UTR
	(B) LAGE: 15831911

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

	GGTAG'	CGCT	CATC	GACAC	SA C	ACAA'	rcgc	G TG	rtct	стст	GAA ^r	rcgr(CCA '	TTGG	GTGTCA	60
5	GCATC	TGAT	CGCG	GGCGC	SA TO	GGAA'	rggg:	r Aa	rcat'	ragg	AAA	CACC	AAT (GTCC	CATGGT	120
	ATTGT	CCTC	CTCG	ratgo	ST G	rctc:	AGGA	G GAG	CCCG	rgat	CAC	gtagʻ	rgc (CACA	CCAGGA	180
10	TATTG	CTTC	CTTT	GGTGC	T GO	CCAC	GATG:	r Ago	GCG	GGGG	GTT	CTCG	GTC A	ATCA:	FTTTGT	240
70	ACTCC:	TTGA	GAGC	CGCTI	G T	ACGC	CTGT	C TTC	GATG	CCAT	CTT	GCCT.	ACT Z	ATTA	GTTTCT	300
	CACCA	TTCC	CGCC	AAACA	AA TO	CTGC	ACTT	r AC	GAGC	CTA	TCT	ATCC	CTC (GGGT	CGCTCT	360
15	AGTTG?	TATT	TGGC	GAAAC	T G	ATAG'	TTCAC	G GTZ	ACTT(CCAT	GAT	GCGG'	rca '	TATCO	CACGTA	420
	TGTGA	CACG	TGAT	CATCA	G C	CATG	CTGC	C AGO	CTCA	CGGG	CCT	GCCT/	ACA (CTAT	rggagg	480
	CTCTGT	GAGT	CATG	ATTT?	T TO	GCAT	ATCA	A GC	CCAG	ATAG	TCG	rtgg(GGA '	TACT	ACCGTT	540
20	GCCGC	ATGA	GCTC	CGATA	T T	\AGT'	rgta(G CC	AAAA	\TTT	TAAC	CGGA'	rga (CTTC	TAACA	600
	GTTATT	GACG	CCGC	AATCC	T A	CGCC								CTG Leu		652
25							1	501	501		5		2,2	Deu	204	
25	GCA GC															700
	Ala G	y Asn	ser	HIS	15	Asp	Leu	Ата	GIU	20	vai	ser	vai	Arg	25	
30	GGT GT															748
	Gly Va	ıl Pro	Leu	Ser 30	Lys	Ile	Gly	Val	Tyr 35	His	Tyr	Ser	Asn	Lys 40	Glu	
	ACG TO	A GTT	ACT	ATC	GGC	GAA	AGT	ATC	CGT	GAT	GAA	GAT	GTC	TAC	ATC	796
35	Thr Se	er Val	Thr 45	Ile	Gly	Glu	Ser	Ile 50	Arg	Asp	Glu	Asp	Val 55	Tyr	Ile	
	ATC CA	G ACA	GGA	ACG	GGG	GAG	CAG	GAA	ATC	AAC	GAC	TTC	CTC	ATG	GAA	844
40	Ile G	n Thr. 60	_	Thr	Gly	Glu	Gln 65	Glu	Ile	Asn	Asp	Phe 70	Leu	Met	Glu	
	CTG C1	C ATC	ATG	ATC	CAT	GCC	TGC	CGG	TCA	GCC	тст	GCG	CGG	AAG	ATC	892
	Leu Le	u Ile '5	Met	Ile	His	Ala 80	Cys	Arg	Ser	Ala	Ser 85	Ala	Arg	Lys	Ile	
45																
	ACA GO															940
	90				95			-		100		-	-	•	105	
50	AAG TO															988
	Lys Se	er Arg	Ala	110	IIe	Thr	Ala	Lys	Leu 115	Val	Ala	ГЛЗ	Met	Leu 120	GIu	

									ACG Thr 130								1036
5									GTG Val								1084
10									AAT Asn								1132
15									GCG Ala					_			1180
20									TTG Leu								1228
									TTG Leu 210								1276
25									GCG Ala								1324
30									AAT Asn								1372
35									GGC Gly								1420
									AGC Ser								1468
40									ATT Ile 290								1516
45				_					GGG Gly								1564
50		AAC Asn 315				TAG	TGCT	GTC .	AGTG(GCAG.	AT G	CATG	ATCG	C TG	GCCT.	AATT	1619
	ATC'	TGTG'	TAA (G T TG.	ATAC.	AA T	GCAG'	TAAA	T AC	AGTA	CATA	AAA	CTGA	ATG	TTTT	TCACTT	1679

	AGG	GTGC	err 1	GTTO	TTCI	G A	AGCC	STGT	G TGC	GAAT	TTG	GAGO	TGA	AG T	TGA	CATCA	1'	739
	CGT	AATGA	AT A	CAA	CAAC	SA TI	rgcac	CATTA	A GGA	\AAA(CGA	TAA	TTAT	TT P	'TTA	TTGCA	1	799
5	ACTO	GCCI	TT C	SAGCO	TTT	AA GC	CTG	AACA	r TTI	TGCC	CTT	TTGT	TTG	CC G	TAC	GTTAT	1	859
	CACT	CGT	CT 1	rata:	TATGO	C T	ATCCI	rtct	C TTC	CCGG	ACT	тстт	rcgac	GCG 1	ra		1	911
40	(2)	INFO	RMAT	пои	zu s	SEQ I	D NO): 2:	:									
10		(RIST										
				A) LA B) AF					urer	1								
15			([) TC	POLC	GIE:	lir	near										
		(ii)	ART	DES	MOI	ÆKÜI	JS: I	Prote	ein									
		(xi)	SEC	QUENZ	BESC	HRE	BUNG	3: SI	EQ II	NO:	2:							
20	Met 1	Ser	Ser	Asn	Ser 5	Ile	Lys	Leu	Leu	Ala 10	Gly	Asn	Ser	His	Pro 15	Asp		
	Leu	Ala	Glu	Lys 20	Val	Ser	Va1	Arg	Leu 25	Gly	Val	Pro	Leu	Ser 30	Lys	Ile		
25	Gly	Val	Tyr 35	His	Tyr	Ser	Asn	Lys 40	Glu	Thr	Ser	Val	Thr 45	Ile	Gly	Glu		
	Ser	Ile 50	Arg	Asp	Glu	Asp	Val 55	Tyr	Ile	Ile	Gln	Thr 60	Gly	Thr	Gly	Glu		
30	Gln 65	Glu	Ile	Asn	Asp	Phe	Leu	Met	Glu	Leu	Leu 75	Ile	Met	Ile	His	Ala 80		
		Ara	Ser	Ala	Ser		Ara	Lvs	Ile	Thr		Val	Ile	Pro	Asn			
35					85			-		90					95			
	Pro	Tyr	Ala	Arg 100	Gln	Asp	Lys	Lys	Asp 105	Lys	Ser	Arg	Ala	Pro 110	Ile	Thr		
40	Ala	Lys	Leu 115	Val	Ala	Lys	Met	Leu 120	Glu	Thr	Ala	Gly	Cys 125	Asn	His	Val		
	Ile	Thr 130	Met	Asp	Leu	His	Ala 135	Ser	Gln	Ile	Gln	Gly 140	Phe	Phe	His	Ile		
45	Pro	Val	Asp	Asn	Leu	Tyr	Ala	Glu	Pro	Asn	Ile	Leu	His	Tyr	Ile	Gln		
	145					150					155					160		
	His	Asn	Val	Asp	Phe 165	Gln	Asn	Ser	Met	Leu 170	Val	Ala	Pro	Asp	Ala 175	Gly		
50	Ser	Ala	Lys	Arg 180	Thr	Ser	Thr	Leu	Ser 185	Asp	Lys	Leu	Asn	Leu 190	Asn	Phe		

	Ala Leu	Ile His	Lys Glu	Arg Gl 20	-	Ala As	n Glu	Val 205	Ser	Arg	Met				
5	Val Leu 210		Asp Val	Ala As 215	p Lys	Ser Cy	s Ile 220		Val	Asp	Asp				
	Met Ala 225	Asp Thr	Cys Gly 230		u Val	Lys A1 23		Asp	Thr	Leu	Ile 240				
10	Glu Asn	Cys Ala	Lys Glu 245	Val Il	e Ala	Ile Va 250	l Thr	His	Gly	Ile 255	Phe				
15	Ser Gly	Gly Ala 260	Arg Glu	Lys Le	u Arg 265	Asn Se	r Lys	Leu	Ala 270	Arg	Ile				
	Val Ser	Thr Asn 275	Thr Val	Pro Va 28	_	Leu As	n Leu	Asp 285	Ile	Tyr	His				
20	Gln Ile 290		Ser Ala	Ile Le 295	u Ala	Glu Al	a Ile 300	Arg	Arg	Leu	His				
	Asn Gly 305	Glu Ser		_	u Phe			Val	Met						
25	Asn Gly Glu Ser Val Ser Tyr Leu Phe Asn Asn Ala Val Met 305 310 315 (2) INFORMATION ZU SEQ ID NO: 3: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 5369 Basenpaare														
	305 310 315 (2) INFORMATION ZU SEQ ID NO: 3: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 5369 Basenpaare (B) ART: Nukleinsäure														
30	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 5369 Basenpaare														
	(ii	.) ART DE	S MOLEKÜ	LS: DNS	(gene	omisch)									
35		•	ETISCH:												
		.) ANTISE	NSE: NEI	N											
40	((A) N	AME/SCHL		5'UTR										
	(i)	MERKMA													
45			AME/SCHL AGE: 55.		CDS										
	(i)	MERKMA	LE: IAME/SCHL	ÜSSEL:	CDS										
			AGE: 176												
50	(i)	MERKMA (A)	LE: IAME/SCHL	ÚSSEL:	CDS										
			AGE: 358												
55															

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR (B) LAGE: 4704..5369

(B) LAGE: 4/04..550

5			٠,	J, <u>"</u>														
J		(xi) SE	QUEN	ZBES	CHRE	EBUNG	3: S1	EQ II	ON C	: 3:							
	AAG	CTTG	ACC '	TTGG	CTGG	CA C	rtga(STCG	G CA	GACA	GGTG	GAC!	TAAC	ccg z	AGCA	ATG		57
																Met		
10																1		
,,	(* א תי	CGT	CCT	m/2m	א א א	CCT	a me	mcm.	መአመ	CTC	CTTC	ъ cm	CCA	አመረግ	COO	mmm		105
		Arg																105
	мор	9	OLY	5	2,0	OLY	110	DCI	10	vul	100	Der	mu	15	V41	rne		
15		ATA																153
	His	Ile		Pro	He	Thr	Phe		Ile	Ser	Met	Val	-	Gly	Ile	Leu		
			20					25					30					
	ACA	TAC	CAG	TTT	GGT	GCT	TCC	TTC	GCT	GCT	ATA	ACA	TTC	TCG	ACT	ATG		201
20	Thr	Tyr	Gln	Phe	G1y	Ala	Ser	Phe	Ala	Ala	Ile	Thr	Phe	Ser	Thr	Met		
		35					40					45					*	
	СТТ	CTT	TAC	TCC	ATC	ттт	АСТ	TTC	AGA	ACG	ACG	GCG	TGG	CGC	ACA	CGG		249
		Leu																
25	50		-			55			_		60		•	_		65		
20																		
		AGG																297
	riie	Arg	Arg	Map	70	ASII	ьуъ	AIA	Asp	75	rys	мта	AIa	Set	80	Ala		
					, ,					, 5					00			
30		GAT																345
	Leu	Asp	Ser		Ile	Asn	Phe	Glu		Val	Lys	Tyr	Phe		Asn	Glu		
				85					90					95				
	AAG	TAC	CTT	GCG	GAC	AAG	TAT	CAC	ACA	TCC	TTG	ATG	AAG	TAC	CGG	GAT		393
<i>35</i>	Lys	Tyr	Leu	Ala	Asp	Lys	Tyr	His	Thr	Ser	Leu	Met	Lys	Tyr	Arg	Asp		
			100					105					110					
	ጥርር	CAG	АТА	AAG	GTC	ጥርር	CAA	ጥርር	CTG	GCG	արսիսի	ጥጥር	AAC	ACC	GGC	CAG		441
		Gln														-		337
40		115		_			120					125			2			
		CTA																489
	130	Leu	iie	Pne	THE	135	Ala	Leu	Thr	Ата	140	Met	TYT	Met	ALA	Cys 145		
45	150					133					140					147		
45	AAT	GGT	GTT	ATG	CAG	GGC	TCT	CTT	ACA	GTG	GGG	GAT	CTT	GTG	TTA	ATT		537
	Asn	Gly	Val	Met		Gly	Ser	Leu	Thr		Gly	Asp	Leu	Val		Ile		
					150					155					160			
	AAT	CAA	CTG	GTA	TTC	CAG	CTC	TCC	GTG	CCA	CTA	AAC	TTC	СТТ	GGT	AGC		585
50		Gln																
				165					170					175				

	TAC Tyr								633
5	CTG Leu 195								681
10	CTA Leu								729
15	GGC Gly								777
20	CCA Pro								825
	TCC Ser								873
25	CGT Arg 275								921
30	TTA Leu								969
35	GAC Asp								1017
4 0	GAT Asp								1065
	CAG Gln								1113
4 5	ATG Met 355								1161
50	TTG Leu								1209

	CTG GAT ACA CAC ACA GAG CAG GCA CTC TTG CAC ACC ATT CAG CAG AAC Leu Asp Thr His Thr Glu Gln Ala Leu Leu His Thr Ile Gln Gln Asn	1257
5	390 395 400 TTT TCT TCC AAT TCA AAG ACG AGC GTT TAC GTT GCC CAT AGA CTG CGC Phe Ser Ser Asn Ser Lys Thr Ser Val Tyr Val Ala His Arg Leu Arg	1305
10	405 410 415 ACA ATC GCT GAT GCA GAT AAG ATC ATT GTT CTT GAA CAA GGT TCT GTC	1353
10	Thr Ile Ala Asp Ala Asp Lys Ile Ile Val Leu Glu Gln Gly Ser Val 420 425 430	2333
15	CGC GAA GAG GGC ACA CAC AGC TCG CTG TTA GCG TCA CAA GGA TCC CTA Arg Glu Glu Gly Thr His Ser Ser Leu Leu Ala Ser Gln Gly Ser Leu 435 440 445	1401
20	TAC CGG GGT CTG TGG GAT ATT CAG GAA AAC CTA ACG CTT CCG GAA CGG Tyr Arg Gly Leu Trp Asp Ile Gln Glu Asn Leu Thr Leu Pro Glu Arg 450 465	1449
	CCT GAG CAG TCA ACC GGA TCT CAG CAT GCA TAGACGTCTG ACTAGAGATT Pro Glu Gln Ser Thr Gly Ser Gln His Ala 470 475	1499
25	ATATAATAAC CCTCGAGCCA AAATTATACG GCGCTAACAA GTAAAAATTT TAGTTACTTT	1559
	TCTGACTTCT CTACGCTGAC TTCTCTACCC TTCTAACATA GTTAATTGAA GTAGTGGTTA	1619
30	ATGACGACTG CATTTTATTA TTGTCCACTT TGCATTAGAA GTACTAGTGC TTAAGCGCTC	1679
	TTTAGGCCGC TTTCTTCTTC TTTGTCAGGC CGCAAGGTAA AGGAAGCACC AACGGATTGC	1739
35	TACCGCTGCT ATTCCTGCTC TCTCAAG ATG TGT GGC ATA TTA GGC GTT GTG Met Cys Gly Ile Leu Gly Val Val 1 5	1790
40	CTA GCC GAT CAG TCG AAG GTG GTC GCC CCT GAG TTG TTT GAT GGC TCA Leu Ala Asp Gln Ser Lys Val Val Ala Pro Glu Leu Phe Asp Gly Ser 10 15 20	1838
	CTG TTC TTA CAG CAT CGC GGT CAA GAT GCT GCC GGG ATT GCT ACG TGC Leu Phe Leu Gln His Arg Gly Gln Asp Ala Ala Gly Ile Ala Thr Cys 25 30 35 40	1886
45	GGC CCC GGT GGG CGC TTG TAC CAA TGT AAG GGC AAT GGT ATG GCA CGG Gly Pro Gly Gly Arg Leu Tyr Gln Cys Lys Gly Asn Gly Met Ala Arg 45 50 55	1934
50	GAC GTG TTC ACG CAA GCT CGG ATG TCA GGG TTG GTT GGC TCT ATG GGG Asp Val Phe Thr Gln Ala Arg Met Ser Gly Leu Val Gly Ser Met Gly 60 65 70	1982

	_	GCA Ala						_			_			2030
5		CAG Gln 90												2078
10		GGT Gly												2126
15		GTT Val												2174
20		ATA Ile												2222
		GAT Asp			_									2270
<i>2</i> 5		GGC Gly 170												2318
30		CGG Arg									 			2366
35		GAT Asp			_					_				2414
40		AAG Lys		_										2462
		GTC Val	_			Lys	Thr		Gly			Glu		2510
45		GTA Val 250											GTG Val	2558
50		TTC Phe												2606

		CGC Arg								_					2654
5	_	GAT Asp			_	_		_	_				_		2702
10		ACC Thr													2750
15		GGA Gly 330													2798
20		CAA Gln													2846
os.		TCA Ser								_	_			_	2894
25		CGA Arg													2942
30		GCT Ala	_		_					_		_			2990
35		CAC His 410													3038
40		AAC Asn													3086
		ATC Ile		_											3134
45		ATC Ile					 	_		_		 			3182
50		GTT Val													3230

	AAT AAC TCG AAT AAG GGT GAA GCG AAG GCC GAG GTT GAT ATT GGT CTC Asn Asn Ser Asn Lys Gly Glu Ala Lys Ala Glu Val Asp Ile Gly Leu 490 495 500	3278
5	TAC AAT TCT GCC GAC TAT TAGCGGCGCC GTTGCCGGCA TCCGGCCCCA Tyr Asn Ser Ala Asp Tyr 505 510	3326
10	TATATAGACT CATCGGGACC TAAAATAAGC CTTTACAGAT CATTATCTAC AAATATAGAT	3386
	ACCATTAAAA GCCTGACTTT CGACTTACTC CTAGCACACC CCGTTGTATC CCTGTGCTTG	3446
	CTTTCTTAAA TGCCGTTGGT TAGGCTTTGG ACTTAGCGTC CCGCCCATTT TCTAGCATGT	3506
15	GCAGATCTAG CAAATTTGGC CTAAGACAAG AAGATCCATT CGGCACCCAC ATCCTGGAGC	3566
20	CAGCACACAG TGGACCCAGA C ATG AGC AGC GGC AAT ATA TGG AAG CAA TTG Met Ser Ser Gly Asn Ile Trp Lys Gln Leu 1 5 10	3617
	CTA GAG GAG AAT AGC GAA CAG CTG GAC CAG TCC ACT ACG GAG ACT TAC Leu Glu Glu Asn Ser Glu Gln Leu Asp Gln Ser Thr Thr Glu Thr Tyr 15 20 25	3665
25	GTG GTA TGC TGC GAG AAC GAA GAT TCC CTT AAC CAG TTT TTG CAA CAA .Val Val Cys Cys Glu Asn Glu Asp Ser Leu Asn Gln Phe Leu Gln Gln 30 35 40	3713
30	TGT TGG CAG ATT GAC GAG GGC GAG AAG GTG ACC AAC CTG GAG CCG TTG Cys Trp Gln Ile Asp Glu Gly Glu Lys Val Thr Asn Leu Glu Pro Leu 45 50 55	3761
35	GGA TTC TTT ACA AAG GTG GTT TCG CGC GAC GAA GAG AAC CTC CGG CTC Gly Phe Phe Thr Lys Val Val Ser Arg Asp Glu Glu Asn Leu Arg Leu 60 65 70	3809
40	AAC GTA TAC TAT GCC AAG AGC CCA CTG GAT GCA CAG ACG CTG CAG TTT Asn Val Tyr Tyr Ala Lys Ser Pro Leu Asp Ala Gln Thr Leu Gln Phe 75 80 85 90	3857
	CTG GGC GTG TTC CTG CGC CAA ATG GAA ACC TCA CAA ATA CGT TGG ATC Leu Gly Val Phe Leu Arg Gln Met Glu Thr Ser Gln Ile Arg Trp Ile 95 100 105	3905
45	TTC CTA CTG GAC TGG CTG CTA GAC GAT AAA CGA TTA TGG CTA CGT CAA Phe Leu Leu Asp Trp Leu Leu Asp Asp Lys Arg Leu Trp Leu Arg Gln 110 115 120	3953
50	CTG CGG AAC TCG TGG GCC GCC TTG GAG GAA GCG CAG GTG GCA CCC TTT Leu Arg Asn Ser Trp Ala Ala Leu Glu Glu Ala Gln Val Ala Pro Phe 125 130 135	4001

					CTC Leu				 	4049
5					AAC Asn					4097
10					CTC Leu					4145
15					GAA Glu 195		_			4193
20					CGT Arg					4241
25					GCA Ala					4289
25					GCT Ala				_	4337
30					ATT Ile					4385
35					TGG Trp 275	_		_		4433
40					TTC Phe					4481
45					TCT Ser					4529
45					TCG Ser					4577
50					ATA Ile		_			4625

_	GCA GCC GAC TCA CCG AAC GAC GTC GCT GAC TCC ATC GAT GGG CTT ATG Ala Ala Asp Ser Pro Asn Asp Val Ala Asp Ser Ile Asp Gly Leu Met 350 355 360	4673
5	GAT GGT ATC GTA CAA AGG AAT GTT CAT TGACGTCGAC ACAAAAATTT Asp Gly Ile Val Gln Arg Asn Val His 365 370	4720
10	TGTTACTGTT CTCTCGAGAA CTATTCTCAT CCAGTACTGA CATATTAGAA GGCGAAGTGA	4780
	ACTAGGATTT ATATAAAGTA GCCTTCAGGC AATTGCACAG GGTCTATTGA GTCGCTGCCG	4840
	TTCACGAGAG AGCCCAATAT ATCGAGGACT AATTGGTCAC TTTTGTTTTG	4900
15	CCTGTATTTG CTAATCATTT ATCCGCTTTG TCCAAGTGGT TGCGAAGATA TCGAGCCAGA	4960
	ACATTAGAAT CTGGTTTGCC GCATCCTAGA GCTGTCTCCA AGCCAGTTGA ACCGTTGCGG	5020
	GAGATTACCG CAGCCGGTTT GATCAGAGTA CTGGTGACTG CCAGCACCCA CGTTTGTGAC	5080
20	TTATAAATAT ACGCCCTGTG GAGCCATAGC CATTGGCATA AAGAGAAGAG	5140
	CACGATGCAG ACACTTCCGG TGTACCCAGC GTCACAGACT GCGTCGCCTA CGAAGCGTGA	5200
25	ACTTGCAGCG GCGCCCTCGG TGCCGCAGGA CGGCGCCCGG CTGCCTGCGC AGCTCACTTT	5260
	AGTGACGCCC CCAGAACCTG ATATCCAGAA GAAGTCAGTG CGATCTCAGG TCGCGCGTTT	5320
	AAGCATCTCG GAGACAGATG TAGTGAAGAG TGATATCGTG GCTAAGCTT	5369
30	(2) INFORMATION ZU SEQ ID NO: 4:	
_	(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 475 Aminosäuren(B) ART: Aminosäure(D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKÜLS: Protein	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	
40	Met Asp Arg Gly Cys Lys Gly Ile Ser Tyr Val Leu Ser Ala Met Val 1 5 10 15	
	Phe His Ile Ile Pro Ile Thr Phe Glu Ile Ser Met Val Cys Gly Ile 20 25 30	
45	Leu Thr Tyr Gln Phe Gly Ala Ser Phe Ala Ala Ile Thr Phe Ser Thr 35 40 45	
50	Met Leu Leu Tyr Ser Ile Phe Thr Phe Arg Thr Thr Ala Trp Arg Thr 50 55 60	
	Arg Phe Arg Arg Asp Ala Asn Lys Ala Asp Asn Lys Ala Ala Ser Val 65 70 75 80	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

22

	Ala	Leu	Asp	Ser	Leu 85	Ile	Asn	Phe	Glu	Ala 90	Val	Lys	Tyr	Phe	Asn 95	Asn
5	Glu	Lys	Tyr	Leu 100	Ala	Asp	Lys	Tyr	His 105	Thr	Ser	Leu	Met	Lys 110	Tyr	Arg
	Asp	Ser	Gln 115	Ile	Lys	Val	ser	Gln 120	Ser	Leu	Ala	Phe	Leu 125	Asn	Thr	Gly
10	Gln	Asn 130	Leu	Ile	Phe	Thr	Thr 135	Ala	Leu	Thr	Ala	Met 140	Met	Tyr	Met	Ala
15	Cys 145	Asn	Gly	Val	Met	Gln 150	Gly	Ser	Leu	Thr	Val 155	Gly	Asp	Leu	Val	Leu 160
	Ile	Asn	Gln	Leu	Va1 165	Phe	Gln	Leu	Ser	Val 170	Pro	Leu	Asn	Phe	Leu 175	Gly
20				180					185	Leu				190		
			195					200		Ile			205			
25		210					215			Asp		220				
30	225					230				Ile	235					240
30					245					Ile 250					255	
35	Gly	Lys	Ser	Thr 260	Ile	Leu	Lys	Leu	Val 265	Phe	Arg	Phe	Tyr	G1u 270	Pro	Glu
			275					280		Asp			285			
40		290					295					300				Leu
	Phe 305		Asp	Thr	Ile	Trp 310	Glu	Asn	Val	Lys	Phe		Asn	Ile	Ser	Ser 320
45	Ser	Asp	Asp	Glu	11e 325		Arg	Ala	Ile	Glu 330		Ala	Gln	Leu	Thr 335	Lys
50	Leu	Leu	Gln	Asn 340		Pro	Lys	Gly	Ala 345		Thr	Val	Val	Gly 350		Arg
	Gly	Leu	Met 355		Ser	Gly	Gly	Glu 360		Gln	Arg	Leu	Ala 365		Ala	Arg

	Val	Leu 370	Leu	Lys	Asp	Ala	Pro 375	Leu	Met	Phe	Phe	Asp 380	Glu	Ala	Thr	Ser
5	Ala 385	Leu	Asp	Thr	His	Thr 390	Glu	Gln	Ala	Leu	Leu 395	His	Thr	Ile	Gln	Gln 400
	Asn	Phe	Ser	Ser	Asn 405	Ser	Lys	Thr	Ser	Val 410	Tyr	Val	Ala	His	Arg 415	Leu
10	Arg	Thr	Ile	Ala 420	Asp	Ala	Asp	Lys	Ile 425	Ile	Va1	Leu	Glu	Gln 430	Gly	Ser
15	Val	Arg	Glu 435	Glu	Gly	Thr	His	Ser 440	Ser	Leu	Leu	Ala	Ser 445	Gln	Gly	Ser
	Leu	Tyr 450	Arg	Gly	Leu	Trp	Asp 455	Ile	Gln	Glu	Asn	Leu 460	Thr	Leu	Pro	Glu
20	Arg 465	Pro	Glu	Gln	Ser	Thr 470	Gly	Ser	Gln	His	Ala 475					
	(2)	INFO	ORMAT	NOI	zu s	SEQ I	D NO): 5:	:							
25		((<i>I</i>	SEQUE A) L# B) AF O) TO	NGE:	: 510 Amino) Ami osāui	nosä e		n						
30				DES							-					
35	Met 1			QUENZ 11e								Gln	Ser	Lys	Val 15	Val
	Ala	Pro	Glu	Leu 20	Phe	Asp	Gly	Ser	Leu 25	Phe	Leu	Gln	His	Arg 30	Gly	Gln
40	Asp	Ala	Ala 35	Gly	Ile	Ala	Thr	Cys 40	Gly	Pro	Gly	G1y	Arg 45	Leu	Tyr	Gln
	Суѕ	Lys 50	Gly	Asn	Gly	Met	Ala 55	Arg	Asp	Val	Phe	Thr 60	Gln	Ala	Arg	Met
45	Ser 65	Gly	Leu	Val	Gly	Ser 70	Met	Gly	Ile	Ala	His 75	Leu	Arg	Tyr	Pro	Thr 80
EQ.	Ala	Gly	Ser	Ser	Ala 85	Asn	Ser	Glu	Ala	Gln 90	Pro	Phe	Tyr	Val	Asn 95	Ser
50	Pro	Tyr	Gly	Ile 100	Суѕ	Met	Ser	His	Asn 105	Gly	Asn	Leu	Val	Asn 110	Thr	Met

	Ser	Leu	Arg 115	Arg	Tyr	Leu	Asp	Glu 120	Asp	Val	His	Arg	His 125	Ile	Asn	Thr
5	Asp	ser 130	Asp	Ser	Glu	Leu	Leu 135	Leu	Asn	Ile	Phe	Ala 140	Ala	Glu	Leu	Glu
	Lys 145	Tyr	Asn	Lys	Tyr	Arg 150	Val	Asn	Asn	Asp	Asp 155	Ile	Phe	Cys	Ala	Leu 160
10	Glu	Gly	Val	Tyr	Lys 165	Arg	Cys	Arg	Gly	Gly 170	Tyr	Ala	Cys	Val	Gly 175	Met
15	Leu	Ala	Gly	Tyr 180	Gly	Leu	Phe	Gly	Phe 185	Arg	Asp	Pro	Asn	Gly 190	Ile	Arg
10	Pro	Leu	Leu 195	Phe	Gly	Glu	Arg	Val 200	Asn	Asp	Asp	Gly	Thr 205	Met	Asp	Tyr
20	Met	Leu 210	Ala	Ser	Glu	Ser	Val 215	Val	Leu	Lys	Ala	His 220	Arg	Phe	Gln	Asn
	Ile 225	Arg	Asp	Ile	Leu	Pro 230	Gly	Gln	Ala	Val	Ile 235	Ile	Pro	Lys	Thr	Cys 240
25	Gly	Ser	Ser	Pro	Pro 245	Glu	Phe	Arg	Gln	Val 250	Val	Pro	Ile	Glu	Ala 255	Tyr
	Lys	Pro	Asp	Leu 260	Phe	Glu	Tyr	Val	Tyr 265	Phe	Ala	Arg	Ala	Asp 270	Ser	Val
30	Leu	Asp	Gly 275	Ile	Ser	Val	Tyr	His 280	Thr	Arg	Leu	Leu	Met 285	Gly	Ile	Lys
35	Leu	Ala 290		Asn	Ile	Lys	Lys 295	Gln	Ile	Asp	Leu	Asp 300		Ile	Asp	Val
55	Val 305		Ser	Val	Pro	Asp 310	Thr	Ala	Arg	Thr	Cys 315		Leu	Glu	Суз	Ala 320
40	Asn	His	Leu	Asn	Lys 325		Tyr	Arg	Glu	Gly 330		Val	Lys	Asn	Arg 335	
	Val	Gly	Arg	Thr 340		Ile	Met	Pro	Asn 345		Lys	G1u	Arg	Val 350		Ser
45	Val	Arg	Arg 355		Leu	Asn	Pro	Met 360		Ser	Glu	Phe	2 Lys 365		Lys	Arg
	Val	. Leu		val	Asp	Asp	Ser 375		· Val	. Arg	Gly	7 Thr 380		Ser	Lys	Glu
50	11e 385		Asn	Met	. Ala	1 Lys		. Ser	G17	/ Ala	395		val	. Tyr	Phe	400

	Ser	Ala	Ala	Pro	Ala 405	Ile	Arg	Phe	Asn	His 410	Ile	Tyr	Gly	Ile	Asp 415	Leu ´
5	Ala	Asp	Thr	Lys 420	Gln	Leu	Val	Ala	Tyr 425	Asn	Arg	Thr	Val	Glu 430	Glu	Ile
	Thr	Ala	Glu 435	Leu	Gly	Суз	Asp	Arg 440	Val	Ile	Tyr	Gln	Ser 445	Leu	Asp	Asp
10	Leu	Ile 450	Asp	Суз	Суз	Lys	Thr 455	Asp	Ile	Ile	Ser	Glu 460	Phe	Glu	Val	Gly
15	Val 465	Phe	Thr	Gly	Asn	Tyr 470	Val	Thr	Gly	Val	Glu 475	Asp	Va1	Tyr	Leu	Gln 480
	Glu	Leu	Glu	Arg	Cys 485	Arg	Ala	Leu	Asn	Asn 490	Ser	Asn	Lys	Gly	Glu 495	Ala
20	Lys	Ala	Glu	Val 500	Asp	Ile	Gly	Leu	Tyr 505	Asn	Ser	Ala	qaA	Tyr 510		
	(2)	INFO	RMAT	NOI	zu s	SEQ I	D NO): 6:	:							
25		((<i>P</i>	L) LÆ	ENZ C INGE: RT: A	371 mino	Ami sāu	nosá ce		n						
30					MOI BESC					ON C	: 6:					
35	Met 1	Ser	Ser	Gly	Asn 5	Ile	Trp	Lys	Gln	Leu 10	Leu	Glu	Glu	Asn	Ser 15	Glu
	Gln	Leu	Asp	Gln 20	Ser	Thr	Thr	Glu	Thr	(T) + +			~		a 1	
40				20					25	TYL	Val	vai	Cys	30	GIU	Asn
	Glu	Asp	Ser 35		Asn	Gln	Phe		25					30		
		Asp Glu 50	35	Leu				Leu 40	25 Gln	Gln	Cys	Trp	Gln 45	30 Ile	Asp	Glu
45	Gly	Glu	35 Lys	Leu Val	Thr	Asn	Leu 55	Leu 40 Glu	25 Gln Pro	Gln Leu	Cys Gly	Trp Phe 60	Gln 45 Phe	30 Ile Thr	Asp Lys	Glu Val
	Gly Val 65	Glu 50	35 Lys Arg	Leu Val Asp	Thr Glu	Asn Glu 70	Leu 55 Asn	Leu 40 Glu Leu	25 Gln Pro Arg	Gln Leu Leu	Cys Gly Asn 75	Trp Phe 60 Val	Gln 45 Phe Tyr	30 Ile Thr	Asp Lys Ala	Glu Val Lys 80
45	Gly Val 65 Ser	Glu 50 Ser	35 Lys Arg Leu	Leu Val Asp	Thr Glu Ala 85	Asn Glu 70 Gln	Leu 55 Asn Thr	Leu 40 Glu Leu	25 Gln Pro Arg	Gln Leu Leu Phe 90	Cys Gly Asn 75 Leu	Trp Phe 60 Val	Gln 45 Phe Tyr	30 Ile Thr Tyr	Asp Lys Ala Leu 95	Glu Val Lys 80 Arg

	Leu	Asp	Asp 115	Lys	Arg	Leu	Trp	Leu 120	Arg	Gln	Leu	Arg	Asn 125	Ser	Trp	Ala
5	Ala	Leu 130	Glu	Glu	Ala	Gln	Val 135	Ala	Pro	Phe	Pro	Gly 140	Gly	Ala	Val	Val
	Val 145	Val	Leu	Asn	Pro	Ser 150	His	Val	Thr	Gln	Leu 155	Glu	Arg	Asn	Thr	Met 160
10	Val	Trp	Asn	Ser	Arg 165	Arg	Leu	Asp	Leu	Val 170	His	Gln	Thr	Leu	Arg 175	Ala
15	Ala	Cys	Leu	Asn 180	Thr	Gly	Ser	Ala	Leu 185	Val	Thr	Leu	Asp	Pro 190	Asn	Thr
	Ala	Arg	Glu 195	Asp	Val	Met	His	Ile 200	Cys	Ala	Leu	Leu	Ala 205	Gly	Leu	Pro
20	Thr	Ser 210	Arg	Pro	Val	Ala	Met 215	Leu	Ser	Leu	Gln	Ser 220	Leu	Phe	Ile	Pro
	His 225	Gly	Ala	Asp	Ser	11e 230	Gly	Lys	Ile	Cys	Thr 235	Ile	Ala	Pro	Glu	Phe 240
25	Pro	Val	Ala	Thr	Val 245	Phe	Asp	Asn	Asp	Phe 250	Val	Ser	Ser	Thr	Phe 255	Glu
30	Ala	Ala	Ile	Ala 260	Pro	Glu	Leu	Thr	Pro 265	Gly	Pro	Arg	Val	Pro 270	Ser	Asp
	His	Pro	Trp 275	Leu	Thr	Glu	Pro	Thr 280	Asn	Pro	Pro	Ser	Glu 285	Ala	Thr	Ala
35	Trp	His 290	Phe	Asp	Leu	Gln	Gly 295	Arg	Leu	Ala	Thr	Leu 300	Tyr	Arg	His	Leu
	Gly 305	Asp	Ser	Asn	Lys	Ala 310	Ile	Ser	Val	Thr	Gln 315	His	Arg	Phe	His	Lys 320
40	Pro	Arg	Ser	Glu	Asp 325	Tyr	Ala	Tyr	Glu	Phe 330	Glu	Leu	Pro	Ser	Lys 335	His
4 5	Pro	Thr	Ile	Arg 340		Leu	Ile	Arg	Ser 345		Ala	Ala	Asp	Ser 350		Asn
	Asp	Val	Ala 355		Ser	Ile	Asp	Gly 360	Leu	Met	Asp	Gly	Ile 365		Gln	Arg
50	Asn	Val 370														
	(2)	INF	ORMA	TION	ZU	SEQ	ID N	0: 7	:							

27

5	(i)	SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 3616 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: DNS (genomisch)	
10	(iii)	HYPOTHETISCH: NEIN	
	(iii)	ANTISENSE: NEIN	
15	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: 5'UTR (B) LAGE: 1863	
20	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: CDS (B) LAGE: 8641316	
20	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: intron (B) LAGE: 13171477	
25	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: CDS (B) LAGE: 14782592	
30	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: 3'UTR (B) LAGE: 25933616	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
35	GGGCCCGG	TG CCAGCTCGCC AGGTGCGGAC TCGCGCTCGG GCTGTGGGCG CTCTACCTGC	60
	TGCTGCTC	CGG CAGCTGCCTG ACGCGCGCGT ACGAGCTGTC GGATCTCGAA AACCTGGAAT	120
	CCGATTAC	TA CAGCTACGTG CTGGATGTGA ACTTCGCGCT GCTGAGCGCC ATGAGCGCGA	180
40	CCGGCCTC	GC GATGGGCGCC GTGAGCGGCT CCCTCGGGAG CGCGCCGGTG CTCGCGCAGT	240
	GGCCGGCA	AGC GATCTGGGCC GTGCGCTTCC TGCGCGCCGC GGGCTATGTC GCGATAGTCC	300
	TAATCCTG	SCC GTTCCTGTCC GTCGTCGCAT TCCTGCAGCC GCTCTGCGAG CGCGCGCTGG	360
4 5	CGCTGTTC	CCC GTTTGTGCGC GCGTGGGGCA TGGACGGCGT GTTCAACTTC CTGCTGCTCT	420
	CCGCCGTG	SCT CTGGACTGTA TTCCTGGCCG TTCGCCTGCT CCGCGCCGTC TACAGACTGC	480
E 0	TGCGCTGG	GCT GGTCGGTCTT TTGGTCCGCC TGGCACGCCT GCTGCTGCGA GGCGCCCGTC	540
50	GGACGCCT	TGC GGCGGCCCCC GAGGAGCCCG TCTAGCGTGC GCGCGTTCTA GGCCCCTGAC	600
	AGCTCCTA	ACC TGGTGCTGGC CGCCGGTAGG GCTCGCATCG TGCGGCGCAG GCCCATTGCT	660

	TTT	TGGC	ccc	CGCT	GGAT	CA TO	CGTT!	rctt'	r TA	CGTG	AAAA	GTT.	TGCA(GCG 2	ATGA	GCTGCA	720
	GTA	TAAA'	TAG	GTTT'	CTA	GA TO	GCGC	CAAA!	r cc	CAGC'	rggg	TTT	ACCG	GCG 1	rctg:	TTCGGG	780
5	ATA	GTTA	CTT	GATG	GATG	G T	CAAC	rtga(G AG	CTTG	GTT	TAG	rgtt(GAC '	rccr'	TCTCTT	840
	CAT	AGCA	CGC	CGAA	CAAA	GC G									CG Go		890
10				CTG Leu	_										_		938
15	_			GAC Asp								_					986
20				CCG Pro 45					_								1034
25				CTG Leu													1082
			_	GAC Asp	-												1130
30				GGC Gly													1178
35	_	_	_	ATG Met	_							_			_		1226
40				GTG Val 125													1274
45				AAC Asn													1316
	GGT	ATGT'	rag .	AGTG	GCAC	SC GC	GGC:	rgca	C GC	rgggz	ATGA	TGA:	rcat?	AAA !	rcaa!	FAACTT	1376
	TCG'	TTCT	ACT (GACTO	GCGAT	C A	AACGI	ATCG:	r GT2	AGAC	ACCT	TTT	ACTC	rga (CCGC	AGACGT	1436
50	GCA	GCGC	CTT '	TT T G(GCAGO	GA AC	CATG	PACT	A AC	CATO	CAGC				GC AZ		1489

_			CTG Leu								1537
5			ACC Thr 25				_			-	1585
10			CAG Gln								1633
15			AAG Lys								1681
20			CTT Leu								1729
		_	AAG Lys								1777
<i>2</i> 5			ATC Ile 105						_	 	1825
30			GAC Asp								1873
35			AAC Asn								1921
40			GCT Ala								1969
			GGC Gly	Asp		Arg					2017
45			ACT Thr 185								2065
50			AAC Asn								2113

		ATT Ile															2161
5		GCT Ala 230	CTT					GTC					ATG				2209
10		ACA Thr															2257
15		ACC Thr					_	_									2305
20		AAG Lys						_									2353
		CTG Leu															2401
<i>2</i> 5		AAG Lys 310					_								_		2449
30		GAT Asp															2497
35		GGC Gly															2545
		GGT Gly														rgagtgc	2597
40	CAC	raggo	CCC #	ACAC	ATA	A AC	etgg <i>i</i>	ATCC	G GGC	CGCGI	ATGG	CAC	CCAT	ACT 1	rtta:	TATTAT	2657
	GTT	ATTO	GAT (STAC	STAAZ	AC GZ	TAG	ATAT?	ATA	AACAG	GACG	CGG	CATC	rca :	rttg	PATGCA	2717
45	ATA:	PATCI	rgg <i>i</i>	AACA	rggti	TA TO	GCGT!	ACTC	A ACT	rgta:	rgta	CTA	CTTT	ATA ?	PACA	CAGCTC	2777
	TGG	GACAC	CTT (GTG2	AGATA	CA TA	rGT T 1	CAT	TA 7	TATO	GCCT	CGC	PATCO	GAA A	AGGT	CTGGCA	2837
	TTA	rggg	CTA (CTGGG	STCTA	LA GZ	AGTC	ATGG	TT2	ATGA	STAT	TTA:	PTTA:	rtt 2	ATTT	CTCTTC	2897
50	CTT	TTCAT	TA A	ACTO	CTC	A GO	TTCI	rttci	r GT?	AATA (CTGC	TCT	CTAG	ACT 1	rctco	CACATC	2957
	TGCT	CAATO	SAT (GTG	SAAGI	C G	TCG	TTT	CAA	AATC	CGCT	CTA	CGAG	CGC (GCTC	SAAGTT	3017

	AGAC	AGC	SCC 7	rcgt1	CAGA	C C	rtca(GACCO	GCC	TGA	CAGC	GCTC	CAC	AG (GCAG	CACGCC	3077
	AGAA	TTC	ATT (3TTTI	TAGG	T AC	CTGC	ACCTI	T ATC	CGCTC	стст	TCTC	TCA	CA (CGCT	ATACAT	т 3137
5	TCGG	GAAZ	ACC T	TGGC	AATO	G C	CAAT	ATTT	r aci	rGCG1	PAGT	GCAC	GCCG	TT :	rtgca	ATCATO	3197
	GTCC	AGAZ	ATA (BACCO	TTTT	יד די	CTTC	SATT	r cri	rgga	CCA	GGT	TAAC	AG :	PTAC!	AACCTO	3257
	CTCA	GTG1	יידיי	TGG#	CTTC	A A	rgta(GCACO	TAZ	AGTC	CTCC	CTTA	TAAC	CAA A	AAGT(CTCTTC	3317
10	CTCC	'AAT'I	CT 1	CTTC	AGTA	C A	\ATG!	TTTA.	A TAT	CGAZ	AACC	AACA	ATTTC	AG :	rcaci	TTCTC	3377
	GCCA	ACA	TAL	GCAA	AGAC	C A	GTG	ATAC	GTC	CATO	GAAA	TTCC	GTAA	CC 2	ATAC	CGGATO	G 3437
15	CTGT	'GAC	TG T	AATT	TTGI	C T	\ATG	TCA?	OAA 7	CGTT	ATCC	GAGT	rtta:	TA (GAC	CGCGGC	3497
	CTTG	TTCI	TG 7	PAAGI	GTCC	A A	STAG	rtggo	TGC	CGCTC	GAAC	AACC	TAAC	TA A	AACT	AGGAAZ	A 3557
	GCCC	AGA1	TC 1	rtggi	ATTC	T T	STAC	ATTCT	GT?	AGCC	CTGA	TCTT	rgggc	TT (CGTG	GCCC	3616
20	(2)	INFO	RMAT	NOI	ZU S	EQ :	ID NO): 8:	:								
25		(ii)	(A) LĀ B) AF D) TO	NGE: T: A POLC MOI	151 mino GIE: EKÜI	L Ami osāun : lin	re near Prote	iurer		: 8:						
30	Met	Thr	Туг	Arg	Asp	Ala	Ala	Thr	Ala	Leu	Glu	His	Leu	Ala	Thr	Tyr	
	1				5					10					15		
	Ala	Glu	Lys	Asp 20	Gly	Leu	Ser	Val	Glu 25	Gln	Leu	Met	Asp	Ser 30	Lys	Thr	
35	Arg	Gly	Gly 35	Leu	Thr	туr	Asn	Asp 40	Phe	Leu	Val	Leu	Pro 45	Gly	Lys	Ile	
40	Asp	Phe 50	Pro	Ser	Ser	Glu	Val 55	Val	Leu	Ser	Ser	Arg 60	Leu	Thr	Lys	Lys	
	Ile 65	Thr	Leu	Asn	Ala	Pro	Phe	Val	Ser	Ser	Pro	Met	Asp	Thr	Va1	Thr 80	
		Ala	Asp	Met	Ala		His	Met	Ala	Leu		Glv	Glv	Ile	Glv		
4 5	-		-		85					90		1	1		95		
	Ile	His	His	Asn 100	Cys	Thr	Ala	Glu	Glu 105	Gln	Ala	Glu	Met	Val 110	Arg	Arg	
50	Val	Lys	Lys 115	Tyr	Glu	Asn	Gly	Phe 120	Ile	Asn	Ala	Pro	Val 125	Val	Val	Gly	

	Pro	Asp 130	Ala	Thr	Val	Ala	Asp 135	Val	Arg	Arg	Met	Lys 140	Asn	Glu	Phe	Gly
5	Phe 145	Ala	Gly	Phe	Pro	Val 150	Thr									
	(2)	INFO	RMAT	NOI	zu s	EQ I	D NC): 9:								
10		((B	LÄ () AR	NGE:		Ami säur	.nosä :e	KA: uren	ı						
15			ART SEÇ							NO:	9:					
00	Asp 1	Asp	Gly	Lys	Pro 5	Thr	Gly	Lys	Leu	Gln 10	Gly	Ile	Ile	Thr	Ser 15	Arg
20	Asp	Ile	Gln	Phe 20	Val	Glu	Asp	Glu	Thr 25	Leu	Leu	Val	Ser	Glu 30	Ile	Met
25	Thr	Lys	Asp 35	Val	Ile	Thr	Gly	Lys 40	Gln	Gly	Ile	Asn	Leu 45	Glu	Glu	Ala
	Asn	Gln 50	Ile	Leu	Lys	Asn	Thr 55	Lys	Lys	Gly	Lys	Leu 60	Pro	Ile	Val	Àsp
30	Glu 65	Ala	Gly	Cys	Leu	Va1 70	Ser	Met	Leu	Ser	Arg 75	Thr	Asp	Leu	Met	Lys 80
	Asn	Gln	Ser	Tyr	Pro 85	Leu	Ala	Ser	Lys	Ser 90	Ala	Asp	Thr	Lys	G1n 95	Leu
35	Leu	Cys	Gly	Ala 100	Ala	Ile	Gly	Thr	Ile 105	Asp	Ala	Asp	Arg	Gln 110	Arg	Leu
40	Ala	Met	Leu 115	Val	Glu	Ala	Gly	Leu 120	Asp	Val	Val	Val	Leu 125	qaA	Ser	Ser
	Gln	Gly 130	Asn	Ser	Val	Phe	Gln 135	Ile	Asn	Met	Ile	Lys 140	Trp	Ile	Lys	Glu
45	Thr 145		Pro	Asp	Leu	Gln 150	Val	Ile	Ala	Gly	Asn 155		Val	Thr	Arg	Glu 160
	Gln	Ala	Ala	Ser	Leu 165		His	Ala	Gly	Ala 170	Asp	Gly	Leu	Arg	Ile 175	Gly
50	Met	G1y	Ser	Gly 180		Ile	Cys	Ile	Thr 185		Glu	Val	Met	Ala 190		Gly

33

	Arg Pro	Gln Gly 195	Thr Ala	Val Tyr 200		Thr Gl	Phe 205	Ala 1	Asn	Gln					
5	Phe Gly 210	Val Pro	Cys Ile	Ala Asp 215	Gly Gly	Val Gl		Ile (Gly :	His					
	Ile Thr 225	Lys Ala	Ile Ala 230	Leu Gly	Ala Ser	Thr Va	l Met	Met (Gly 240					
10	Met Leu	Ala Gly	Thr Thr 245	Glu Ser	Pro Gly 250	_	r Phe		Arg . 255	Asp					
15	Gly Lys	Arg Leu 260	Lys Thr	Tyr Arg	Gly Met 265	Gly Se	: Ile	Asp 2 270	Ala i	Met					
	Gln Lys	Thr Asp 275	Val Lys	Gly Asn 280		Thr Se	285	Tyr 1	Phe	Ser					
20	Glu Ser 290	Asp Lys	Val Leu	Val Ala 295	Gln Gly	Val Th	_	Ser V	Val :	Ile					
	Asp Lys 305	Gly Ser	Ile Lys 310	Lys Tyr	Ile Pro	Tyr Let 315	ı Tyr	Asn (Leu 320					
25	Gln His	Ser Cys	Gln Asp 325	Ile Gly	Val Arg		ı Val		Phe . 335	Arg					
20	Glu Lys	Val Asp 340	Ser Gly	Ser Val	Arg Phe	Glu Ph	e Arg	Thr 1	Pro	Ser					
30	Ala Gln	Leu Glu 355	Gly Gly	Val His		His Se	365	Glu 1	Lys .	Arg					
35	Leu Phe	_													
	(2) INFORMATION ZU SEQ ID NO: 10:														
40	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 2697 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 														
4 5	(ii) ART DES	MOLEKÜI	LS: DNS	(genomis	ch)									
	•) HYPOTHE) ANTISEN													
50) MERKMAI (A) NA		ÖSSEL: 5	'UTR										

34

	(i	.x) ME	RKMAL	E:												
		(.	A) NA	ME/S	CHLÜ	JSSEI	i: CI	os								
,		(B) LA	GE:	456.	.203	33									
5				_												
	(1	x) ME			~*** f											
		-	A) NA	•				OTR								
		(.	B) LA	GE:	2034	126	597									
10	(х	i) SE	QUENZ	BESC	HREI	BUNG	G: SI	EQ II	NO.	10	:					
	ATCGAT	TTCA	GGAGA	TTTT	T G	STAGO	CATT	A TTC	GAGG'	rcat	TAG	AGGC	GTT (CTGT	GACTTT	60
	CGACGA	TTTG	CACGC	GCAG	A AC	AGG	GCGT ¹	CA	ACCA	CCT	TTC	GGAT	ATT (CCGG	TTCGAG	120
15	ጥጥልጥልር	CACC	AGGGA	ጥሮልር	ر در د	יאממר	ገ ልሮሞ፤	4 GA(ድ ሞርረረ	reee	ጥርር	יים ביי	AAG :	ACCA	GCAGGT	180
	TIMINC	CAGC .	Addon	LICAG	C GC	, AGG	JACII	ı GA	3100	.000	100		ino .	noon	JCAGG1	100
	CCTGGA	ACTG .	AAGTT	GCAA	G AC	ATA	AGCAT	r TG(CGCG	GAGA	AGG	AGGC	GGT '	TAGA	GGGTGC	240
	AAGCGA	GCAG (GATGG	GGTC	T TC	GATO	GAAC1	r TCC	CCGT	CTGG	GTA?	rgtgi	AAC Z	AAGC	ACACGC	300
20																
	TGCAGG	CACA (CCGGT	'AGGG	C G	AGTGO	CAGG	3 TG	AAAA	TATA	ATA:	rgcg	CTC (GAGA	AGCGCT	360
	GGGGAT	GAGT '	TCGTC	TGCA	A C	GCA	GCG	ATC	TTC	ATCT	GAC	AAAA	CCA (GCTG	CCTACA	420
			~~~~													450
25	TCAGTO	CGAA	GCTGT	TCAG	T GA	A'I'AG!	AATA(	3 GA						GAA ( Glu (		473
									2	1et A	Ald A	ata i	/aı (	51U (	31II	
										_				,		
	GTT TC	T AGC	GTG	TTT	GAC	ACC	ATT	TTG	GTG	CTG	GAC	TTC	GGG	TCC	CAG	521
30	Val Se	er Ser	Val	Phe .	Asp	Thr	Ile	Leu	Val	Leu	Asp	Phe	-		Gln	
			10					15					20		•	
	TAC TO	G CAT	CTG	ATC	ACG	CGG	CGG	СТС	ССТ	GAG	ጥጥጥ	ААТ	GTG	TAC	GCG	569
	Tyr Se							-								
35		25					30		- 3			35				
	GAG AT															617
	Glu Me	t Leu .0	Pro	Cys	Thr		Lys	He	Ser	GIU		GLY	Trp	ьуs	Pro	
40	4	. 0				45					50					
	AAG GG	T GTG	ATT	TTG	TCA	GGC	GGG	CCG	TAC	TCC	GTG	TAC	GCG	GCA	GAT	665
	Lys Gl	y Val	Ile	Leu	Ser	Gly	Gly	Pro	Tyr	Ser	Val	Tyr	Ala	Ala	Asp	
	55				60					65					70	
45	GCT CC	'G CAC	GTG	GAC	ccc	GCG	GTG.	ጥጥር	GAG	ጥጥር	GGC	ርጥጥ	CCA	ልጥጥ	CTC	713
45	Ala Pr															/13
				75	<del>v</del>				80		1			85		
	GGC AT															761
50	Gly Il	e Cys	_	Gly	Leu	Gln	Glu		Ala	Trp	Ile	Ala		Ala	Glu	
			90					95					100			

		GGG Gly	_								80	19
5		GAC Asp 120	_								85	7
10		ATG Met									90	15
15	_	ACT Thr									 95	3
20		AAG Lys									100	1
		CAG Gln									104	9
<i>2</i> 5		GCG Ala 200	 						_	 	 109	17
30		ATC Ile									114	15
35		GGC Gly									119	13
40		GGC Gly									124	1
		AAC Asn			Val	Lys		Gly			128	}9
<b>4</b> 5		AAC Asn 280									133	37
50		GGC Gly									138	}5

					GAG Glu						1433
5					TTG Leu						1481
10					GGC Gly 350						1529
15					GAC Asp						1577
20					GAC Asp						1625
			_		GTC Val		_	_			1673
25					GGC Gly						1721
30					ATC Ile 430					GCA Ala	1769
35					CAA Gln	_					1817
40					GAC Asp						1865
					ACG Thr	_ `				_	1913
45					AAG Lys						1961
50					GTC Val 510						2009

	CCA GCT ACC GTT GAA TGG GAA TAATCACCCT TGGGATCCGC TGACTGGCTA Pro Ala Thr Val Glu Trp Glu 520 525	2060
5	CTGTAATTCT ATGTAGTGGA TTAGTACGAT AAGTTACTTT TGTATGATAG ATGTAATCAC	2120
	ATCTGGCTAT TAAAATGACT CAGCCGAGGT AAATCTAACG TCCCTTCACA AGGGTGTTCC	2180
10	TGTGTGGACT TCCGCCTGAA TTTTTATAGA TATATAGATA CTCTACTCAT GAACAACCTG	2240
	CAACCGAATA AGCATTAGTG CCAGGAGAAG AGAACCGTGG AAATGGGGCA AGTAGAAAAA	2300
	ATCATATTCC TTAAGAATAA GACAGTACCA GAGGACCATT ACGAGACGAT TTTTGAATCG	2360
15	AATGGCTTCC AGACTCACTT TGTACCCATA ATAACCCATG AACACCTGCC AGATGAGGTT	2420
	CGCGGTCGAC TATCCGACGC GAATTACATG AAAAGGTTGA ATTGTTTGGT GGTAACCTCT	2480
	CAGAGGACTG TGGAGTGTCT CTATGAGGAC GTTCTGCCCT CTCTTCCAGC TGAAGCACGC	2540
20	AAATCTCTTC TCAATACGCC AGTATTCGTG GTTGGGCGTG CCACTCAGGA ATTTATGGAG	2600
	AGATGCGGCT TTACGGACGT GAGAGGGGGA TCTGAGACTG GTAATGGCGT TTTGCTAGCG	2660
<i>2</i> 5	GAGTTAATGT TAAATATGAT CCAGAAGGGC GATGGGG	2697
	(2) INFORMATION ZU SEQ ID NO: 11:	
30	<ul><li>(i) SEQUENZ CHARAKTERISTIKA:</li><li>(A) LÄNGE: 525 Aminosäuren</li><li>(B) ART: Aminosäure</li><li>(D) TOPOLOGIE: linear</li></ul>	
	(ii) ART DES MOLEKÜLS: Protein	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
	Met Ala Ala Val Glu Gln Val Ser Ser Val Phe Asp Thr Ile Leu Val 1 5 10 15	
40	Leu Asp Phe Gly Ser Gln Tyr Ser His Leu Ile Thr Arg Arg Leu Arg 20 25 30	
	Glu Phe Asn Val Tyr Ala Glu Met Leu Pro Cys Thr Gln Lys Ile Ser 35 40 45	
45	Glu Leu Gly Trp Lys Pro Lys Gly Val Ile Leu Ser Gly Gly Pro Tyr 50 55 60	
	Ser Val Tyr Ala Ala Asp Ala Pro His Val Asp Arg Ala Val Phe Glu 65 70 75 80	
50	Leu Gly Val Pro Ile Leu Gly Ile Cys Tyr Gly Leu Gln Glu Leu Ala 85 90 95	

	Trp	Ile	Ala	Gly 100	Ala	Glu	Val	Gly	Arg 105	Gly	Glu	ГЛ̀з	Arg	Glu 110	Tyr	Gly
5	Arg	Ala	Thr 115	Leu	His	Val	Glu	Asp 120	Ser	Ala	Cys	Pro	Leu 125	Phe	Asn	Asn
	Val	Asp 130	Ser	Ser	Thr	Val	Trp 135	Met	Ser	His	Gly	Asp 140	Lys	Leu	His	Ala
10	Leu 145	Pro	Ala	Asp	Phe	His 150	Val	Thr	Ala	Thr	Thr 155	Glu	Asn	Ser	Pro	Phe 160
15	Cys	Gly	Ile	Ala	His 165	Asp	Ser	Lys	Pro	Ile 170	Phe	Gly	Ile	Gln	Phe 175	His
	Pro	Glu	Val	Thr 180	His	Ser	Ser	Gln	Gly 185	Lys	Thr	Leu	Leu	Lys 190	Asn	Phe
20	Ala	Val	Glu 195	Ile	Cys	Gln	Ala	Ala 200	Gln	Thr	Trp	Thr	Met 205	Glu	Asn	Phe
	Ile	Asp 210	Thr	Glu	Ile	Gln	Arg 215	Ile	Arg	Thr	Leu	Va1 220	Gly	Pro	Thr	Ala
25	Glu 225	Val	Ile	Gly	Ala	Val 230	Ser	Gly	Gly	Val	Asp 235	Ser	Thr	Val	Ala	Ala 240
	Lys	Leu	Met	Thr	Glu 245	Ala	Ile	Gly	Asp	Arg 250	Phe	His	Ala	Ile	Leu 255	Val
30	Asp	Asn	Gly	Val 260	Leu	Arg	Leu	Asn	Glu 265	Ala	Ala	Asn	Val	Lys 270	Lys	Ile
35	Leu	Gly	Glu 275	Gly	Leu	Gly	Ile	Asn 280	Leu	Thr	Val	Val	Asp 285	Ala	Ser	Glu
	Glu	Phe 290	Leu	Thr	Lys	Leu	Lys 295	Gly	Val	Thr	Asp	Pro 300	Glu	Lys	Lys	Arg
40	Lys 305	Ile	Ile	Gly	Asn	Thr 310	Phe	Ile	His	Val	Phe 315	Glu	Arg	Glu	Ala	Ala 320
	Arg	Ile	Gln	Pro	Lys 325	Asn	Gly	Glu	Glu	Ile 330	Glu	Phe	Leu	Leu	Gln 335	Gly
45	Thr	Leu	Tyr	Pro 340	Asp	Val	Ile	Glu	Ser 345	Ile	Ser	Phe	Lys	Gly 350		Ser
	Gln	Thr	Ile 355		Thr	His	His	<b>A</b> sn 360		Gly	Gly	Leu	Leu 365		Asn	Met
50	Lys	Leu 370		Leu	Ile	Glu	Pro 375		Arg	Glu	Leu	Phe 380		Asp	Glu	Val

	Arg His 385	Leu Gly		Leu Leu 390	Gly Il	e Ser	His 395	Glu	Leu	Val	Trp	Arg 400
5	His Pro	Phe Pro	Gly F 405	Pro Gly	Ile Al	a Ile 410	Arg	Val	Leu	Gly	Glu 415	Val
	Thr Lys	Glu Gln 420	Val G	Glu Ile	Ala Ar 42		Ala	Asp	His	Ile 430	Tyr	Ile
10	Glu Glu	Ile Arg 435	Lys A	Ala Gly	Leu Ty 440	r Asn	Lys	Ile	Ser 445	Gln	Ala	Phe
15	Ala Cys 450	Leu Leu	Pro V	/al Lys 455	Ser Va	l Gly	Val	Met 460	Gly	Asp	Gln	Arg
	Thr Tyr 465	Asp Gln		le Ala 170	Leu Ar	g Ala	11e 475	Glu	Thr	Thr	Asp	Phe 480
20	Met Thr	Ala Asp	Trp T	Tyr Pro	Phe Gl	u His 490	G1u	Phe	Leu	Lys	His 495	Val
	Ala Ser	Arg Ile 500	Val A	Asn Glu	Val Gl		Val	Ala	Arg	Val 510	Thr	Туг
25	Asp Ile	Thr Ser 515	Lys P	Pro Pro	Ala Th 520	r Val	Glu	Trp	G1u 525			
	(2) INFO	RMATION	ZU SE	EQ ID NO	): 12:							
30	(i)	(B) AF	NGE: RT: Nu PRANGF	1634 Bakleinsa FORM: Do	senpaa iure oppel	re						
35	(;;)			GIE: li								
		ART DES			CDNS ZU	mKNS						
	(iii)	ANTISEN	ISE: N	NEIN								
40	(ix)	MERKMAI (A) NA (B) LA	ME/SC	CHLÜSSE L519	ኒ: 5′ <b>ሀ</b> ፕ	R						
<b>4</b> 5	(ix)		ME/SC	CHLÜSSE								
	(ix)	MERKMAI	E:									
50				CHLÜSSE:		R						
	(xi)	SEQUENZ	BESCH	REIBUN	G: SEQ	ID NO	: 12	:				
55												

	ССТ	CGAA	CAT	CTAT	CTTCT	rg a	GCTC	GATA	G TC	racg/	LAAT	CGG	CACA	CTA (	GCCT	AATTGC	60
	CGA	GATG	AAG .	AGCT	CCAGO	G A	ACCG:	TAA	A GA	rctg/	ATGT	TCC	ATCT!	rca 2	ATCA	GGACAA	120
5	ATG	TACO	GGG 2	ATGT	CCTC	SA C	GCCA	CAGA	A GG	ragco	CTGG	TGG:	CCA	SAC A	AGAA	AAAGAG	180
	ССТ	ACACO	CAA	AGAA	SAAAC	CA T	AACA	AGAA	A AA	CCT	CCGC	ATC	STTT	rgg '	'AAA'	<b>FCATAA</b>	240
10	TAG	GCAC	GAT (	GCGC <i>I</i>	ATATA	AC CO	CTGA	CCATO	CAT	AGCG	STTC	ccc	CCGC:	CAA (	CTGC'	rccgag	300
10	CGG	STAAC	ccc (	CATGI	CACA	AA AG	STGAC	CTCTC	TC	CTT	CGTG	GTAC	GTG	ATG ?	rcaa.	ATTTTC	360
	ACG?	ACTTO	ccc i	ACCC	GATO	SA GO	CATC	CGTAT	r TCC	CTTT	CAT	CTA	\ATT(	CTA A	ATAG	ATGGCT	420
15	TATO	GATT	CT '	TATTO	GCGA	AC T	raca <i>i</i>	AGCCI	r atc	TAG!	rtgg	СТТ	CCT	CAA (	GTGT'	rcgtag	480
	TCT	ACCAC	CCT (	CACAC	CCGG	et c	raac <i>i</i>	AGCT	r acc	GAGAZ		let A		_	AAT ( Asn A	Ala	534
00												1				5	
20				CTT Leu													582
05	GCT	AAA	CGC	СТА	GGC	TTA	CGT	CTG	ACA	GAC	TGC	AAG	СТТ	AAG	CGG	GAT	630
25	Ala	Lys	Arg	Leu 25	Gly	Leu	Arg	Leu	Thr 30	Asp	Cys	Lys	Leu	Lys 35	Arg	Asp	
	TGT	AAC	GGG	GAG	GCG	ACA	ттт	TCG	ATC	GGA	GAA	TCT	GTT	CGA	GAC	CAG	678
30	Cys	Asn	Gly 40	Glu	Ala	Thr	Phe	Ser 45	Ile	Gly	Glu	Ser	Val 50	Arg	Asp	Gln	
	GAT	ATC	TAC	ATC	ATC	ACG	CAG	GTG	GGG	TCC	GGG	GAC	GTG	AAC	GAC	CGA	726
	Asp	Ile 55	Tyr	Ile	Ile	Thr	Gln 60	Val	Gly	Ser	Gly	Asp 65	Val	Asn	Asp	Arg	
35																	
				CTG Leu									_				774
	70	200	GIG	200	LCu	75	1100	110	AUL	u	80	230	••••		DCI	85	
40	CGG	CGA	ATT	ACG	GCT	GTG	ATT	CCA	AAC	TTC	CCA	TAC	GCG	CGG	CAG	GAC	822
	Arg	Arg	Ile	Thr	<b>Ala</b> 90	Val	Ile	Pro	Asn	Phe 95	Pro	Tyr	Ala	Arg	Gln 100	Asp	
	CGG	AAG	САТ	AAG	ጥ <b>ሮ ል</b>	ccc	GCG	CCA	ልጥጥ	ACC	GCG	AAG	СТС	ልጥር	GCG	GAC	870
45				Lys 105													270
	A mc	CTT-C	a com		ccc	ccc	mcc.	CAM		cmc	አመጣ	7.00	አመሮ		mm »	CAC	010
				ACC Thr													918
50			120	~~ <del>~</del>		3	-1-	125					130				

	$\mathtt{GCT}$	TCG	CAA	ATC	CAG	GGC	TTC	TTT	GAT	GTA	CCA	GTT	GAC	AAC	CTT	TAC	966
	Ala	Ser 135	Gln	Ile	Gln	Gly	Phe 140	Phe	Asp	Val	Pro	Val 145	Asp	Asn	Leu	Tyr	
5																	
												CAT					1014
	_	GIU	Pro	Ser	Val		Lys	Tyr	IIe	Lys		His	He	Pro	His		
	150					155					160					165	
	GAT	GCC	ATC	ATC	ATC	TCG	CCG	GAT	GCT	GGT	GGT	GCC	AAA	CGT	GCG	TCG	1062
10	Asp	Ala	Ile	Ile	Ile	Ser	Pro	Asp	Ala	Gly	Gly	Ala	Lys	Arg	Ala	Ser	
					170					175					180		
	CTT	CTA	TCA	GAT	CGC	CTA	AAC	TTG	AAC	TTT	GCG	CTG	АТТ	CAT	AAG	GAA	1110
15	Leu	Leu	Ser	Asp	Arg	Leu	Asn	Leu	Asn	Phe	Ala	Leu	Ile	His	Lys	Glu	
15				185					190					195			
	CGT	GCA	AAG	GCA	AAC	GAA	GTG	TCC	CGC	ATG	GTT	CTG	GTC	GGC	GAT	GTT	1158
	Arg	Ala	Lys	Ala	Asn	Glu	Val	Ser	Arg	Met	Val	Leu	Val	Gly	Asp	Val	
			200					205					210				
20	ACC	САТ	ΔΔΔ	GTC	ጥርረ	יויידע	<b>ል</b> ጥር	ርጥጥ	GAC	GAT	ልጥር	GCG	CAT	аст	ጥርጥ	GCT	1206
												Ala					1200
		215	•		•		220			•		225	•				
25	ACG	CTG	GCC	AAG	GCG	GCA	GAA	GTG	CTG	CTA	GAG	CAC	AAC	GCG	CGG	TCT	1254
	Thr	Leu	Ala	Lys	Ala	Ala	Glu	Val	Leu	Leu	Glu	His	Asn	Ala	Arg	Ser	
	230					235					240					245	
	GTG	ATA	GCC	АТТ	GTT	ACC	CAC	GGT	ATC	СТТ	TCA	GGA	AAG	GCC	ATT	GAG	1302
30	Val	Ile	Ala	Ile	Val	Thr	His	Gly	Ile	Leu	Ser	Gly	Lys	Ala	Ile	Glu	
30					250					255					260		
	AAC	ATC	AAC	AAT	TCG	AAG	CTT	GAT	AGG	GTT	GTG	TGT	ACC	AAC	ACC	GTG	1350
	Asn	Ile	Asn	Asn	Ser	Lys	Leu	Asp	Arg	Val	Val	Сув	Thr	Asn	Thr	Val	
35				265					270					275			
33	CCA	መጥር	GAG	GAG	AAC	ልጥር	AAC	ጥጥል	ምርር	CCG	AAC	TTA	СУП	СТА	ልጥጥ	CAT	1398
												Leu					1330
			280	014	2,70		, .	285	CYD	110	-,-		290	***		nop.	
40	ATC	TCG	GCA	<b>G</b> ጥጥ	Сли	GCG	GAA	ጥርር	ልጥጥ	CGC	CGT	CTA	CAC	<b>ል ልጥ</b>	CCT	GAA	1446
												Leu		-			1110
		295					300				•	305					
	AGT	ATC	TCC	TAC	CTC	TTT	AAA	AAC	AAC	CCA	СТА	TGA!	r <b>TT</b> T	GCT '	rctc	GATGCT	1499
45	Ser	Ile	Ser	Tyr	Leu	Phe	Lys	Asn	Asn	Pro	Leu						
	310					315					320						
	GGC	rtct'	TGA (	GGC	CAAT	rr r	GCCG'	raga(	G GT	AGTA'	rccc	TTC	TTTT	TAT .	attg.	ACTATT	1559
	TAA	CGAA	GAC 1	PATT'	rctr(	CA T	AAAT	GGAC'	r TC	GCT'	TCAC	TGT	GAAT	CTC .	ACAT	GATATA	1619
50	GTT	GTTT	CAG A	AGAC	С												1634

	(2)	INFORM	MOIT	ZU S	SEQ I	ID NO	): 13	3:							
5		1	SEQUI A) Li B) AI D) TO	NGE:	320 Mino	) Ami osāui	inosä ce		n						
10		(ii) AF (xi) SF							NO:	13:					
	Met 1	Ala Thi	Asn	Ala 5	Ile	Lys	Leu	Leu	Ala 10	Pro	Asp	Ile	His	Arg 15	Gly
15	Leu i	Ala Glu	Leu 20	Val	Ala	Lys	Arg	Leu 25	Gly	Leu	Arg	Leu	Thr	Asp	Cys
. 20	Lys 1	Leu Lys	-	Asp	Cys	Asn	Gly 40	Glu	Ala	Thr	Phe	Ser 45	Ile	Gly	Glu
	Ser '	Val Arq 50	Asp	Gln	Asp	Ile 55	Tyr	Ile	Ile	Thr	Gln 60	Val	Gly	Ser	Gly
25	Asp ' 65	Val Ası	Asp	Arg	Val 70	Leu	Glu	Leu	Leu	11e 75	Met	Ile	Asn	Ala	Ser 80
	Lys '	Thr Ala	Ser	Ala 85	Arg	Arg	Ile	Thr	Ala 90	Val	Ile	Pro	Asn	Phe 95	Pro
30	Tyr 7	Ala Arq	Gln 100	Asp	Arg	Lys	Asp	Lys 105	Ser	Arg	Ala	Pro	11e 110	Thr	Ala
35	Lys !	Leu Met		Asp	Met	Leu	Thr 120	Thr	Ala	Gly	Cys	Asp 125	His	Val	Ile
		Met Ası 130	Leu	His	Ala	Ser 135	Gln	Ile	Gln	Gly	Phe 140	Phe	Asp	Val	Pro
40	Val . 1 <b>4</b> 5	Asp Ası	Leu	Tyr	Ala 150	Glu	Pro	Ser	Val	Val 155	Lys	Tyr	Ile	Lys	Glu 160
	His	Ile Pro	His	Asp 165	Asp	Ala	Ile	Ile	Ile 170	Ser	Pro	Asp	Ala	Gly 175	Gly
45	Ala	Lys Ar	7 Ala 180	Ser	Leu	Leu	Ser	Asp 185	Arg	Leu	Asn	Leu	Asn 190	Phe	Ala
50	Leu	Ile Hi: 19		Glu	Arg	Ala	Lys 200	Ala	Asn	Glu	Val	Ser 205	Arg	Met	Val
		Val Gl: 210	/ Asp	Val	Thr	Asp 215	Lys	Val	Cys	Ile	Ile 220	Val	Asp	Asp	Met

Ala Asp Thr Cys Gly Thr Leu Ala Lys Ala Ala Glu Val Leu Leu Glu 225 230 235 240 5 His Asn Ala Arg Ser Val Ile Ala Ile Val Thr His Gly Ile Leu Ser 245 250 Gly Lys Ala Ile Glu Asn Ile Asn Asn Ser Lys Leu Asp Arg Val Val 265 10 Cys Thr Asn Thr Val Pro Phe Glu Glu Lys Met Lys Leu Cys Pro Lys 275 280 285 15 Leu Asp Val Ile Asp Ile Ser Ala Val Leu Ala Glu Ser Ile Arg Arg 295 300 Leu His Asn Gly Glu Ser Ile Ser Tyr Leu Phe Lys Asn Asn Pro Leu 310 315 320 20

25 Patentansprüche

30

- Protein mit der in SEQ ID NO:2 dargestellten Polypeptidsequenz oder einer aus SEQ ID NO:2 durch Substitution, Insertion oder Deletion von bis zu 15% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer Phosphoribosylpyrophosphat-Synthetase.
- 2. Protein nach Anspruch 1, das keine feed-back Hemmung durch Folgeprodukte von Stoffwechselwegen, die von Produkten des Enzyms ausgehen, mehr aufweist.
- 35. Protein nach Anspruch 1, das nicht mehr durch Zwischenprodukte der Purinbiosynthese, insbesondere durch Purinbasen, Purinnukleoside, Purinnukleotid-5'-Monophosphate oder Purinnukleotid-5'-Diphosphate oder Purinnukleotid-5'-Triphosphate gehemmt werden.
- 4. Protein nach Anspruch 1, bei dem eine oder mehrere der folgenden Aminosäureaustausche vorliegen: Lysin an Position 7 ausgetauscht gegen Valin, Aspartat an Position 52 ausgetauscht gegen Histidin, Leucin an Position 133 ausgetauscht gegen Isoleucin, Aspartat an Position 186 ausgetauscht gegen Histidin, Alanin an Position 193 ausgetauscht gegen Valin oder Histidin an Position 196 ausgetauscht gegen Glutamin.
  - 5. Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 1.
  - Protein mit der in SEQ ID NO: 13 dargestellten Polypeptidsequenz oder einer aus SEQ ID NO: 13 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer Phosphoribosylpyrophosphat-Synthetase.
- Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 6.
  - Protein mit der in SEQ ID NO:5 dargestellten Polypeptidsequenz oder einer aus SEQ ID NO:5 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer Glutamin-Phosphoribosylpyrophosphat-Amidotransferase.
  - Protein nach Anspruch 8, das keine feed-back Hemmung durch Folgeprodukte von Stoffwechselwegen, die von Produkten des Enzyms ausgehen, mehr aufweist.

55



- 10. Protein nach Anspruch 8, das nicht mehr durch Zwischenprodukte der Purinbiosynthese, insbesondere durch Purinbasen, Purinnukleoside, Purinnukleotid-5'-Monophosphate oder Purinnukleotid-5'-Diphosphate oder Purinnukleotid-5'-Triphosphate gehemmt werden.
- 5 11. Protein nach Anspruch 8, bei dem eine oder mehrere der folgenden Aminosäureaustausche vorliegen: Aspartat an Position 310 ausgetauscht gegen Valin, Lysin an Position 333 ausgetauscht gegen Alanin oder Alanin an Position 417 ausgetauscht gegen Tryptophan.
  - 12. Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 8.

13. Protein mit der in SEQ ID NO:8 und 9 dargestellten Polypeptidsequenz oder einer aus SEQ ID NO:8 und 9 durch Substitution, Insertion oder Deletion von bis zu 20% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer IMP-Dehydrogenase.

- 15 14. Protein nach Anspruch 13, das keine feed-back Hemmung durch Folgeprodukte von Stoffwechselwegen, die von Produkten des Enzyms ausgehen, mehr aufweist.
  - 15. Protein nach Anspruch 13, das nicht mehr durch Zwischenprodukte der Purinbiosynthese, insbesondere durch Purinbasen, Purinnukleoside, Purinnukleotid-5'-Monophosphate oder Purinnukleotid-5'-Diphosphate oder Purinnukleotid-5'-Triphosphate gehemmt werden.
  - 16. Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 13.
- 17. Protein mit der in SEQ ID NO:11 dargestellten Polypeptidsequenz oder einer aus SEQ ID NO:11 durch Substitution, Insertion oder Deletion von bis zu 10% der Aminosäuren erhältlichen Polypeptidsequenz und der enzymatischen Aktivität einer GMP-Synthetase.
  - **18.** Protein nach Anspruch 17, das keine feed-back Hemmung durch Folgeprodukte von Stoffwechselwegen, die von Produkten der Enzyme ausgehen, mehr aufweist.
  - 19. Protein nach Anspruch 17, das nicht mehr durch Zwischenprodukte der Purinbiosynthese, insbesondere durch Purinbasen, Purinnukleoside, Purinnukleotid-5'-Monophosphate oder Purinnukleotid-5'-Diphosphate oder Purinnukleotid-5'-Triphosphate gehemmt werden.
- 20. Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 17.
  - 21. Verwendung einer oder mehrerer der Nukleinsäuresequenzen nach den oben genannten Ansprüchen zur gentechnischen Konstruktion von Mikroorganismen, die zur Herstellung von Riboflavin in der Lage sind.
- 40 22. Verfahren zur Herstellung von Riboflavin durch Kultivierung von Mikroorganismen, die in mindestens einem Gen der Purinbiosynthese genetisch verändert worden sind.
  - 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß es sich bei dem Mikroorganismus um ein Bakterium der Gattung Bacillus oder Corynebakterium handelt.
  - 24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß es sich bei dem Mikroorganismus um einen eukaryontischen Mikroorganismus handelt.
- 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daS es sich bei dem Mikroorganismus um Ashbya gossypii 50 handelt.
  - 26. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß es sich bei dem Mikroorganismus um eine Hefe handelt.
- 27. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß es sich bei dem Mikroorganismus um eine Hefe der Gattung Candida, Saccharomyces oder Pichia handelt.
  - 28. Verfahren nach Anspruch 22. dadurch gekennzeichnet, daß die Veränderung in mindestens einer zusätzlichen

10

20



Kopie von mindestens einer der Nukleinsäuresequenzen gemäß Anspruch 5, 12, 16, 20 besteht.

-	29.	Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß durch die genetische Veränderung ein Gen codierend für ein Protein gemäß Anspruch 1, 6, 13, 17 erzeugt wird.
5		
10		
15		
20		
25		
30		
35		
40		
<b>4</b> 5		
50		
55		

Abb. 1

١,





Abb. 2



Hemmung der Wildtyp und mutagenisierten KPRS durch ADP

Abb. 1





Abb. 2



Hemmung der Wildtyp und mutagenisierten KPRS durch ADP