TRABAJO FIN DE GRADO

HERRAMIENTA PARA EL ESTUDIO DEL ALINEAMIENTO DE SECUENCIAS DE ADN MEDIANTE DEEPLEARNING

Universidad Católica San Antonio de Murcia ESCUELA UNIVERSITARIA POLITECNICA Grado en Ingeniería Informática

> Autor: Juan Francisco Illán Sánchez Directores: Francisco Arcas Túnez, Jesús Soto Espinosa

> > Murcia, Abril de 2021

IDENTIFICACIÓN DEL PROYECTO

• El proyecto pretende una suite de laboratorio web para el alineamiento de secuencias genómicas.

Informática
Biomódica

Informática
Bioinformática
Médica

TECNOLOGÍAS
DE LA
INFORMACIÓN

Imagen tomada de: Arias, Bahón, & Rodríguez

(2006), Desarrollo de una plataforma de análisis de datos en Bioinformatica basada en Matlab,

Universidad Complutense. Madrid

GENÉTICA

 En bioinformatica el alineamiento pretende identificar similitudes entre una cadena genomica de consulta y una colección de

cadenas en una base de datos.

• Palabras clave: Bioinformatica, alineamiento de secuencias, algoritmos heurísticos, redes neuronales, machine learning, clasificador bayes, identificación LSTM, python.

Pre-ARNm
Pre-ARNm
Núcleo de la célula
Citoplasma
ARNm
Aminoácidos
Cadena de proteina
en crecimiento

https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/transcripcion

National Cancer Institute.

MEDICINA

Características del Proyecto

- O Desarrollado en:
 - python 3.7
 - Flask, Html, boostrap, css, js,
- Librerías especificas ciencia de datos / machine learning:
 - Numpy, Pandas
 - Matplotlib
 - sklearn.feature_extraction.text.CountVectorizer
 - sklearn.naive_bayes .MultinomialNB
 - Tensorflow
 - keras.models import Model, Sequential
 - keras.layers import Input, Dense, Embedding, LSTM
- Base de datos: Ficheros sobre disco en formato FASTA

FUNCIONALIDAD DEL PROYECTO

- El proyecto implementa 3 funcionalidades resueltas utilizando diferentes técnicas:
 - Smith-Waterman Heuristic Algorithm
 - Multinomial Naive Bayes Classifier Machine Learning
 - LSTM Classifier Machine Learning

Alignament Nucleotide (Heuristic algorithm Smith-Waterman)

Nucleotide to Protein (Multinomial Bayes Classifier)

SMITH-WATERMAN – HEURISTIC ALGORITHM

- El Algoritmo BLAST puede describirse en tres etapas: (wikipedia.org, BLAST, 2021)
 - <u>Localización de semillas (HSSP)</u> de un tamaño k, con una alta puntuación sin huecos. High-Scoring Segment Pair.
 - Problema ¿donde empezar a contar? Todas las combinaciones de longitud k (k-mers) seran candidatas a semilla. (Clelia DI Serio, Pietro Liò, Alessandro Nonis, Roberto Tagliaferri, Computational Intelligence Methods for Bioinformatics and Biostatistics, Cambridge, 2014)
 - Heurística:
 - Selección solo de mejores semillas para cada cadena del la base de datos.
 - Extender las mejores semillas con huecos.
 - <u>Matriz Smith-Waterman</u>: para cada semilla seleccionada, consiste en ir generar una matriz con la mejor puntuación de alineamiento posible a cada celda extendiendo con huecos la puntuación inicial de la semilla sobre cada posición de la matriz calculada.
 - Finalizada la matriz, se reconstruye la ruta solución desde la celda con la puntuación mas alta para esa semilla
 - Heurística:
 - Acotar calculo de la Matriz Smith-Waterman a la "frontera" próxima a la diagonal optima.
 - Evaluación y ordenación de las mejores soluciones (alineamientos)

Imagen tomada de: wikipedia.org, Smith–Waterman algorithm, 2021

SMITH-WATERMAN – HEURISTIC ALGORITHM

- Se crea una implementación funcional para la consulta y utilización del sistema.
 - Se calcula y se muestran los mejores alineamientos en base a los parámetros de entrada
 - Se implementa un sistema de almacenamiento de estadísticas de ejecución, para valorar como afecta variar cada parámetro.

- Es un clasificador probabilístico basado en el teorema de Bayes.
- El teorema de Bayes vincula la probabilidad de un evento A dándose B con la probabilidad de B dándose A.

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

donde:

- $P(A_i)$ son las probabilidades a priori,
- $P(B|A_i)$ es la probabilidad de B en la hipótesis A_i ,
- $P(A_i|B)$ son las probabilidades a posteriori.
- Es muy eficiente al trabajar con un árbol de decisión numérico completo, de 0 a 1.
- Se utiliza en detección de correos spam, en toma de decisiones, ...
- OBJETIVO: Pretendemos dada una cadena de consulta identificar con que esta relacionado. Por ejemplo que proteína sintetiza esa cadena.

- En las cadenas genómicas, la codificación biológica se interpreta en las oraciones y párrafos, no en letras aisladas.
- ¿Porque?
 - Sabemos que la traducción de ADN/ARN a aminoácidos es cada 3 nucleótidos, genera 1 aminoácido en los ribosomas.
 - Que hay un lenguaje de 20 aminoácidos para formar las proteínas como cadenas de cientos de aminoácidos.
 - La importancia a nivel de frase o párrafo (de 20 50 nucleótidos) para la finalidad de encontrar una relación o identificación biológica.
- ¿Cómo interpretarlo?

	Α	В	С	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q
1	MOLECULE_TYPE I	D	PROTEIN_ID	PROTEIN_NAME	SEQ_ID	NAME	SEQUE	NCE									
2	dna	4382	4	Synthase	D38113.1	Pan troglodytes mitochondrial d	r ATGAA	CGAAAATCT	ATTCGCTTC	ATTCGCTG	CCCCCACA	ATCCTAGG	CTTACCC	CCGCAGT	ACTAATCA	TTCTATTC	CCCCCTCT
3	dna	4381	4	Synthase	KX211955.1	Pan troglodytes verus isolate Do	ATGCC	CCAACTAAA	TACCGCCGT	TATGACCCA	CCATAATI	ACCCCCA	TACTCCTG	ACACTATT	TCTCGTCA	CCCAACTA	AAAATAT
4	dna	2	4	Synthase	MK617223.1	Homo sapiens isolate 205_Sb hap	ATGAA	CGAAAATCT	GTTCGCTTC	ATTCATTG	CCCCACA	ATCCTAGG	CCTACCC	CCGCAGT	ACTGATCA	TTCTATTT	ссссстст
5	dna	1	4	Synthase	MW389273.1	Homo sapiens haplogroup U8b1k	ATGCC	CCAACTAAA	TACTACCGT	ATGGCCCA	CCATAATT	ACCCCCA	TACTCCTTA	CACTATT	CCTCATCA	CCCAACTA	AAAATAT
6	dna	5	3	Synthetases	NM_001178075	Homo sapiens asparagine synthe	ATGCA.	ACAGCATTT	TGAATTTGA	ATACCAGA	CCAAAGT	GGATGGTG	AGATAAT	CCTTCATC	TTTATGAC	AAAGGAG	GAATTGAG
7	dna	31	6	Transcription Facto	NM_001323042	Homo sapiens putative homeod	ATGGC	CTCAAATGA	GAGAGATG	CTATATCG	TGGTACCA.	AAAGAAG	ATTGGAGG	CCTACGAT	CAGCAGAT	TATGGGAA	AAGTCAA
8	dna	3	3	Synthetases	NM_001352496	Homo sapiens asparagine synthe	ATGTG	TGGCATTTGG	GCGCTGTT	TGGCAGTG	ATGATTGC	сттстст	TCAGTGTC	TGAGTGCT	ATGAAGA	TTGCACAC	AGAGGTO
9	dna	6	3	Synthetases	NM_001352496	Homo sapiens asparagine synthe	ATGTG	TGGCATTTGG	GCGCTGTT	TGGCAGTG	ATGATTGC	сттстст	TCAGTGTC	TGAGTGCT	ATGAAGA	TTGCACAC	AGAGGTO
10	dna	10	3	Synthetases	NM_001352496	Homo sapiens asparagine synthe	ATGTG	TGGCATTTGG	GCGCTGTT	TGGCAGTG	ATGATTGC	сттстст	TCAGTGTC	TGAGTGCT	ATGAAGA	TTGCACAC	AGAGGTO
11	dna	43	0	g protein coupled r	NM_003272.4	Homo sapiens G protein-coupled	ATGAG	GCCCGAGCG	TCCCCGGC	CGCGCGGC	AGCGCCCC	CGGCCCG	ATGGAGA	CCCGCCG	TGGGACC	CAGCCCGC	AACGACTO
12	dna	44	0	g protein coupled r	NM_003272.4	Homo sapiens G protein-coupled	ATGAG	GCCCGAGCG	TCCCCGGC	CGCGCGGC	AGCGCCCC	CGGCCCG	ATGGAGA	CCCGCCG	TGGGACC	CAGCCCGC	AACGACTO
13	dna	167	1	Tirosina kynase	NM_004560.4	Homo sapiens receptor tyrosine	ATGAA	GACCATTAC	CGCCACTG	GCGTCCTG1	TTGTGCGG	CTGGGTC	CAACGCAC	AGCCCAA	ATCATAAC	TTTCAGGA	TGATTAC
14	dna	24	2	Tirosina Phosfate	NM_007039.4	Homo sapiens protein tyrosine p	ATGCC	ACTGCCATTI	TGGGTTGAA	ACTGAAAG	GCACCCG	GCGCTACA	CGGTGTC	CAGCAAGA	AGTTGCCTG	GTTGCCC	GGATCCAA
15	dna	25	2	Tirosina Phosfate	NM_021625.5	Homo sapiens transient receptor	GCCAC	CACAGGCCT	GAAGATGA	AGCACCTC	CTTACTGG	GCAAGAG.	AGGACCG1	CTGGCAC	CTCCAATA	CACAGAC	TGGCCTGA
16	dna	17	5	ion channel	NM_021625.5	Homo sapiens transient receptor	ATGGC	GGATTCCAG	CGAAGGCC	cccgcgcg	GGGCCCGG	GGAGGTG	GCTGAGC	TCCCCGGG	GATGAGA	GTGGCAC	CCCAGGTG
17	dna	18	5	ion channel	NM_021625.5	Homo sapiens transient receptor	ATGGC	GGATTCCAG	CGAAGGCC	CCCGCGCG	GGGCCCGG	GGAGGTG	GCTGAGC	TCCCCGGG	GATGAGA	GTGGCACO	CCCAGGTG

- La idea la podemos extrapolar de la detección de correos spam.
 - Si aprendemos que cuando aparecen las palabras: win/won, movie, downloads: es spam, ya tenemos algo que mas o menos funciona...
 - Pero ... y si el mensaje pone :

"Hey, I won, I choose!

This afternoon we are going to the cinema to see the movie Here is the link to downloads the tickets"

- → No parece que no sea SPAM, pero tiene palabras asociadas a mensajes de SPAM...
- Solución: el sistema debe aportar contexto a las palabras. Para ello contamos si aparecen las palabras en un contexto y no de forma aislada.
 - o "Free dowloads movie"
 - "game free to play, now avalaible dowloads"
 - o "Your PC has a virus, download antivirus"

Esta idea se desarrollada para el alineamiento genético por: (*Thomas Nelson, Kaggle.com - Working with DNA sequence data for ML part 2, 2019*), consiste en estas ideas principales:

- Expandir cada cadena a la combinación de k-mers que da lugar. (Utilizamos K = 6).
- Utilizamos un CountVectorizer (CV). Utilizaremos el CV definiendo como rango de palabras para contar frases de (N=3 palabras) de 6 nucleotidos, mayor contexto e interelacion entre bloques contiguos (6 aminoacidos).
- El CV procesa las cadenas de base de datos [fit_transform()] aprendiendo entonces el diccionario de vocabulario de 3-Words y nos devuelve para cada cadena un vector de lenguaje (y cada fila como un array de conteo de oapraiciones del vocabulario N-Words identificadas del conjunto de datos.

SEQUENCE: ATGAA	CGAAA	PROTEIN	N_ID: 4		
	atgaac	tgaacg	gaacga		
		tgaacg	gaacga	aacgaa	
			gaacga	aacgaa	acgaaa

- Una vez generado el vector X e Y, dividimos un conjunto para entrenamiento y otro para test. Realizar el entrenamiento del clasificador el test.
- Creamos el clasificador MNB que se creara al entrenarlo con 65570 entradas, un contador/valor por cada 3-WORD identificada como lenguaje en los datos de entrenamiento.

```
classifier = MultinomialNB(alpha=0.1)

y_pred = classifier.predict(X test)
```

 La etapa de validación → nos da un 98% de precisión!! FUNCIONA!

```
cv = CountVectorizer(ngram_range=(3,3))
X = cv.fit_transform(seq_texts)

X.shape → (6061, 65570)

Donde:
# 6061 secuencias
#65570 frases de 3 palabras de 6 nucleótidos
```

Statistics:

Confusion matrix

Predicted	0	1		2 :	3 4	- 5	6
Actual							
0	164	0	0	0	1	0	2
1	0	144	0	0	0	0	6
2	0	0	10	50	0	0	4
3	1	1	0	164	41	0	0
4	0	0	0	0	195	0	2
5	0	0	0	0	0	71	1
6	0	0	0	2	0	0	349

precision = 98.30808426399021 % recall = 98.26875515251443 %

- o La etapa de clasificación en "real" consistirá en clasificar una cadena de entrada
- Convertirla en un array de contadores de 3-WORD sobre el lenguaje ya aprendido por el CV, de la forma (1, 65570)
- Una vez esto, ese array será la entrada al clasificados MNB.

• Resultados obtenidos:

- Hardware domestico para entrenar un sistema con 6000 secuencias de longitud variable
- o 6 clases de identificación

6 - Transcription Factor

- o 98 % de precisión
- Rapidez y flexibilidad.
- Time to fit = 14.602660179138184 sg.
- Time to prediction: 0.005034446716308594 sg

```
def clasiffierMNB(cbp, cv, classifier):
    seq_texts = list(getKmers(cbp.querry_seq,6))
    seq_texts = ' '.join(seq_texts)

seq = list()
    seq.append(seq_texts)

# encode document

X_seq = cv.transform(seq)

print(X_seq.shape)
# clasification
y_pred = classifier.predict(X_seq)
print("Predictions x_test: ", str(y_pred[0]))
```

Results:

The sequence is identified with the protein class: 6

Protein class table:
0 - G protein coupled receptors
1 - Tirosina kynase
2 - Tirosina Phosfate
3 - Synthetases
4 - Synthase
5 - Ion channel

- Un tipo de red neuronal que permite dar contexto son las redes neuronales recurrentes. (Christopher Olah, (2015) Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
- Concretamente usaremos las LSTM, utilizadas por ejemplo, para el procesamiento del lenguaje natural PNL.
- El enfoque de contexto nos lo genera la propia arquitectura de la red LSTM.
 - La red LSTM ira procesando palabra a palabra, pasando en cada ciclo su salida a la entrada del análisis de la siguiente palabra, generando a la salida final de la cadena un dato de salida.
- <u>OBJETIVO</u>: una red neuronal que a un fragmento de cadena de entrada nos identifique si es o no cierto patógeno conocido (Sars-CoV-2)

Imagen tomada de: (Christopher Olah, (2015) Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

• Implementación de la solución:

- Para cada secuencia se generara el array de kmers (K=6).
- A cada k-mer único se le asignara un Id de palabra único.
- Por tanto una cadena pasa a representarse como un array de números [12, 152, 32, 16, 34, 62, 22, 39]
- Se procesaran todos los arrays de representación de la base de datos indicando a la red neuronal si es o no es el patógeno conocido.
- Esta implementación esta basada en las ideas formuladas para la identificación de patrones de Neanderthal con LSTM por (Nikolay Oskolkov, (2019), LSTM to Detect Neanderthal DNA. https://towardsdatascience.com/lstm-to-detect-neanderthal-dna-843df7e85743)

	Α	В	С	D	Е	F	G
1	MOLECULE_TYPE	ID 🔻	PATHOGEN 💌	PATHOGEN_NAME 💌	SEQ_ID 💌	NAME_SECUENCE	SEQUENCE
2	dna	536	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTTGTT
3	dna	121	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTTGTT
4	dna	516	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGATAATCAAGATCT
5	dna	101	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGATAATCAAGATCTC
6	dna	976	0	OTHER	XX_XXXXX	Other Secuence (NO coronavirus 2)	AAAAAGGAAGCTGGCTATGCAGTATCACCGTATCCCACACAGTTCTCTTGAAATCAGCACCCTCGGGCTGGGAAC
7	dna	347	0	OTHER	XX_XXXXX	Other Secuence (NO coronavirus 2)	AAAAAGGAAGCTGGCTATGCAGTATCACCGTATCCCACACAGTTCTCTTGAAATCAGCACCCTCGGGCTGGGAAC
8	dna	574	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAAT
9	dna	159	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTT
10	dna	795	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTC
11	dna	1170	0	OTHER	XX_XXXXX	Other Secuence (NO coronavirus 2)	AAAACGGCCCAGCAGAGCCAGATCGCGCCCGGTGTTAAACAGGCCGGCGTTGAAGAAATAGGGGCTCTTGCGCC
12	dna	440	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGG
13	dna	25	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGG
14	dna	690	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAG
15	dna	686	1	SARS-CoV-2	NC_045512.2	Severe acute respiratory syndrome	AAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGCTCAGCTTATGTGTCAACCTATACTGTTACT
16	dna	1025	0	OTHER	XX_XXXXX	Other Secuence (NO coronavirus 2)	AAACATTGTTTCATTTAACTTATCCCACTCTTCATGAAAAAGAAATACGCGGCCAGAGAAGTGGAAAGTTGATCA
17	dna	396	0	OTHER	XX_XXXXX	Other Secuence (NO coronavirus 2)	AAACATTGTTTCATTTAACTTATCCCACTCTTCATGAAAAAGAAATACGCGGCCAGAGAAGTGGAAAGTTGATCAC
40	1	740			*** ******		

```
tokenizer = Tokenizer()
tokenizer.fit_on_texts(seq_texts) # tokenizer the word in each secuence
encoded_docs = tokenizer.texts_to_sequences(seq_texts) # Transform unique each token in a integer value
max_length = max([len(s) for s in encoded_docs]) # 135 max langth of all secuences
X = pad_sequences(encoded_docs, maxlen = max_length, padding = 'post') # the context is determinate in less 100 nucleotid
```

```
model = Sequential()
model.add(Embedding(vocab_size, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))

vocab_size = 4092
X train.shape = (996, 135)
```

vocab size = len(tokenizer.word index) + 1

Donde 135 es el máximo tamaño en palabras 6-mer de la base de datos.

X test.shape = (249, 135)

embedding (Embedding)	(None, None, 32)	130944
lstm (LSTM)	(None, 32)	8320
dense (Dense)	(None, 1)	33

Embebeding

DENSE layer

32

pathogen: SARS-CoV-2 querry_seq: ACGGCAGTGAGGACGATCAGACAACTACTATTCAAACAATGTTGA Execution mode: LSTM Classification Blast Pathogen_DNA Run

```
def clasiffierLSTM(cbp, tokenizer, model):
    seq_texts = list(getKmers(cbp.querry_seq,6))
    seq_texts = ' '.join(seq_texts)

seq = list()
    seq.append(seq_texts)

# encode document
    X_seq = tokenizer.texts_to_sequences(seq)

y_pred = model.predict_classes(X_seq)
    print("Predictions x_test: ", str(y_pred[0]))

if y_pred[0]==1:
    return "Identificate pathogen: SARS-CoV-2
    else:
    return "No identificate pathogen SARS-CoV-2
```

Resultados obtenidos:

- Hardware domestico para entrenar un sistema con 6000 secuencias de longitud variable
- Identificación de un patógeno mezclando una base de datos de un patógeno con cadenas de otro origen
- o 91 % de precisión en la etapa de validación
- Rapidez y flexibilidad.
- \circ Time to fit = 10.1767761707 sg.
- Time to prediction = 0.30618071556 sg.

Statistics:

Confusion matrix

```
0 1
01156
115 113
```

accuracy = 91.56626462936401 %

Results:

PARAMETERS:

CONCLUSIONES

- Los **OBJETIVOS** del proyecto se han cumplido.
 - El objetivo principal del proyecto era el estudio técnico e implementación de un sistema de alineamiento de secuencias genómicas
 - La implementación funcional de un sistema de identificación de patrones biológicos basado en arquitecturas de deep learning.

La VIAS FUTURAS

- Sistemas de laboratorio e investigación
- Sistemas médicos comerciales: como la detección de cadenas en test de detección de virus, patologías o predisposición genética, compatibilidad genética ...
- Distintas arquitecturas y modelos que mejor se adapte a la naturaleza de cada problema

¡MUCHAS GRACIAS!