Labor Supply II

Contents

More on instrumental variables

- Identification
- Hausman test or Sargan test

Identification

Our model was:

```
(D): H_i = a_1 + b_1 W_i + u_i
(S): H_i = a_2 + b_2 W_i + c_2 X_i + d_2 N K_i + v_i
```

- problem: both hours and wages are endogenous
- Instrumental variables and identification to get around this problem
- If we had a model

(D):
$$H_i = a_1 + b_1 W_i + e_{1i}$$

(S): $H_i = a_2 + b_2 W_i + e_{2i}$

- from economic theory we'd expect $b_1 < 0$ and $b_2 > 0$

Identification (2)

• If we run a regression of hours on wages, we don't know what equation from the graph is estimated:

Identification (3)

- In order to determine which curve the regression estimates, we need to identify one of the equations
- Think back to the model and add one more variable to the supply equation:

(D):
$$H_i = a_1 + b_1 W_i + e_{1i}$$

(S): $H_i = a_2 + b_2 W_i + c_2 X_1 + e_{2i}$

– Where X_1 is age

Identification (4)

 With each additional variable that's not included in the other equation, we trace out another supply curve:

Identification (5)

 Each additional variable must be a factor of one equation but not the other

 Example: if age is a factor of demand such that employers hire aging workers for less hours, system is no longer identified

Order condition

- 1) "Just identified": If we have one variable that differentiates demand from supply
- 2) "Over-identification": If we have more than one variable that differentiates demand and supply
- Must have variables that are exogenous to the system that don't count in both equations!
- Example1.xls:
 - over-identified: two additional variables
 - wrong sign on b₁

Sargan test

- How do we know the system was identified at all?
- Need to test to see if:
 - added variables are in fact exogenous instruments
- Sargan test for over-identification
 - We have an estimating equation [2nd stage of TSLS]:

$$Y_i = a_1 + b_1 \hat{X}_i + u_i$$

- First we have: $X_i = a_2 + b_2 Z_i + v_i$ [1st stage of TSLS]
- Idea of test: look for correlation between the instruments Z_i and the u_i from the 2nd stage equation
 - if there is correlation, Z_i is no longer a valid instrument

Steps for the Sargan test

1) Regress errors from the second stage equation on the instrumental variables:

$$u_i = \gamma_0 + \gamma_1 Z_{1i} + \dots + \gamma_m Z_{mi} + \eta_i$$

- 2) Calculate R²*n
 - test is distributed: $[R^{2*}n] \sim \chi^{2}_{(m-q)}$ where q is the number of endogenous variables
 - we have m-1 over-identifying variables
 - null hypothesis: H_0 : E(Z, u) = 0
 - In this test, R^2 is:

$$R^{2} = \frac{\hat{\gamma}_{j} \sum_{j} Zu}{\sum_{j} u^{2}}$$
 We want numerator to tend towards zero

Quick summary

- Example1.xls
 - Shows how to construct Sargan test
- We've learned so far:
 - How to estimate given simultaneity (TSLS)
 - Working with instrumental variables
 - How to test if simultaneity still exists with the selected instruments (Sargan test)