- 1. Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?
- 2. A vending machine dispensing books of stamps accepts only one-dollar coins, \$1 bills, and \$5 bills.
 - a) Find a recurrence relation for the number of ways to deposit n dollars in the vending machine, where the order in which the coins and bills are deposited matters.
 - b) What are the initial conditions?
 - c) How many ways are there to deposit \$10 for a book of stamps?
 - d) Find the solution of the recurrence relation.
- 3. a) Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. [Hint: Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]
 - b) What are the initial conditions for the recurrence relation in part (a)?
 - c) Find the solution of the recurrence relation.
- 4. a) Find a recurrence relation for the number of ways to lay out a walk-way with slate tiles if the tiles are red, green, or gray, so that no two red tiles are adjacent and tiles of the same color are considered indistinguishable.
 - b) What are the initial conditions for the recurrence relation in part (a)?
 - c) How many ways are there to lay out a path of seven tiles as described in part (a)?
 - d) Find the solution of the recurrence relation.
- 5. Solve these recurrence relations together with the initial conditions given.:

(a)
$$a_n = a_{n-1} + 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = 6$

(b)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 2$, $a_1 = 1$

(c)
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 10$

(d)
$$a_n = 2a_{n-1} - a_{n-2}$$
 for $n > 2$, $a_0 = 4$, $a_1 = 1$

- (e) $a_n = a_{n-2}$ for $n \ge 2$, $a_0 = 5$, $a_1 = -1$
- (f) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = -3$
- (g) $a_{n+2} = -4a_{n+1} + 5a_n$ for $n \ge 0$, $a_0 = 2$, $a_1 = 8$
- (h) $an = 2a_{n-1} + a_{n-2} 2a_{n-3}$ for $n \ge 3$, $a_0 = 3$, $a_1 = 6$, and $a_2 = 0$
- (i) $a_n = 7a_{n-2} + 6a_{n-3}$ for $n \ge 3$ $a_0 = 9$, $a_1 = 10$, and $a_2 = 32$
- (j) $a_n = 5a_{n-2} 4a_{n-4}$ for $n \ge 4$, $a_0 = 3$, $a_1 = 2$, $a_2 = 6$, and $a_3 = 8$.
- 6. What is the general form of the particular solution of the linear non-homogeneous recurrence relation $a_n = 6a_{n-1} 12a_{n-2} + 8a_{n-3} + F(n)$ if
 - (a) $F(n) = n^2$?
 - (b) $F(n) = 2^n$?
 - (c) $F(n) = n2^n$?
 - (d) $F(n) = (-2)^n$?
 - (e) $F(n) = n^2 2^n$?
 - (f) $F(n) = n^3(-2)^n$?
 - (g) F(n) = 3?
- 7. What is the general form of the particular solution of the recurrence relation $a_n = 8a_{n-2} 16a_{n-4} + F(n)$ if
 - (a) $F(n) = n^3$?
 - (b) $F(n) = (-2)^n$?
 - (c) $F(n) = n2^n$?
 - (d) $F(n) = n^2 4^n$?
 - (e) $F(n) = (n^2 2)(-2)^n$?
 - (f) $F(n) = n^4 2^n$?
 - (g) F(n) = 2?