AERO-423, Spring 2024, Homework #1 (Due date: 23:59 hours, Wednesday, February 7, 2024)

Show all the work and justify your answer! Make sure to upload your submission to the Canvas, in time.

- 1. A direction cosine matrix (DCM) $C_{\mathcal{B}\mathcal{A}}$ represents transformation from coordinate frame \mathcal{A} to frame \mathcal{B} . The vectors $\mathbf{v}_{\mathcal{A}}$ and $\mathbf{v}_{\mathcal{B}}$ are the vector \mathbf{v} in frames \mathcal{A} and \mathcal{B} , respectively. Answer the following.
 - Part a. (2 points) Express the relationship between $v_{\mathcal{B}}$ and $v_{\mathcal{A}}$. Using $C_{\mathcal{B}\mathcal{A}}$ write the expressions for both $v_{\mathcal{B}}$ and $v_{\mathcal{A}}$.
 - **Part b.** (2 points) If the direction cosine matrix C is parameterized using the 3-2-1 Euler angle sequence. The angles are ϑ_1, ϑ_2 , and ϑ_3 . Show the steps in the computation of C.
 - Part c. (10 points) Determine the forward and inverse kinematic equations associated with the "3-2-1" Euler angle rotation sequence. Specify frame transformations and explain your approach. Is there any singularity?
- 2. The position of a point P can be specified using Cartesian coordinates (x, y, z) or spherical coordinates (r, φ, λ) , where r is the radial distance of P from origin of the $\{\hat{x}, \hat{y}, \hat{z}\}$ coordinate system. Angles λ and φ denote azimuth and elevation angles respectively as shown in the below figure. The unit vectors $\{\hat{i}, \hat{j}, \hat{k}\}$ form the spherical coordinate system to represent any arbitrary point P on the sphere.

- Part a. (2 points) Express the Cartesian coordinates (x, y, z) in terms of spherical coordinates (r, φ, λ) and vice-versa. For simplification, you may consider (x, y, z) are positive values.
- Part b. (6 points) The equations transforming the unit-vectors $\{\hat{x}, \hat{y}, \hat{z}\}$ to the unit-vectors $\{\hat{i}, \hat{j}, \hat{k}\}$ are,

$$\hat{\boldsymbol{i}} = -\sin\lambda\,\hat{\boldsymbol{x}} + \cos\lambda\,\hat{\boldsymbol{y}}
\hat{\boldsymbol{j}} = -\sin\varphi\cos\lambda\,\hat{\boldsymbol{x}} - \sin\varphi\sin\lambda\,\hat{\boldsymbol{y}} + \cos\varphi\,\hat{\boldsymbol{z}}
\hat{\boldsymbol{k}} = \cos\varphi\cos\lambda\,\hat{\boldsymbol{x}} + \cos\varphi\sin\lambda\,\hat{\boldsymbol{y}} + \sin\varphi\,\hat{\boldsymbol{z}}$$

Prove that the angular velocity, $\boldsymbol{\omega}$, of the $\{\hat{\boldsymbol{i}}, \hat{\boldsymbol{j}}, \hat{\boldsymbol{k}}\}$ frame relative to the inertial $\{\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}\}$ frame can be written as,

$$\boldsymbol{\omega} = a\,\hat{\boldsymbol{i}} + b\,\hat{\boldsymbol{j}} + c\,\hat{\boldsymbol{k}}$$

by finding the expressions of a, b, and c, in terms of φ , λ , and their derivative, $\dot{\varphi}$ and $\dot{\lambda}$.

HINT: Use transport theorem, e.g., $\frac{d\hat{\mathbf{k}}}{dt} = \boldsymbol{\omega} \times \hat{\mathbf{k}}$.

Part c. (3 points) Validate that

$$\frac{\mathrm{d}\hat{\boldsymbol{i}}}{\mathrm{d}t} = \boldsymbol{\omega} \times \hat{\boldsymbol{i}}$$
 $\frac{\mathrm{d}\hat{\boldsymbol{j}}}{\mathrm{d}t} = \boldsymbol{\omega} \times \hat{\boldsymbol{j}}$ $\frac{\mathrm{d}\hat{\boldsymbol{k}}}{\mathrm{d}t} = \boldsymbol{\omega} \times \hat{\boldsymbol{k}}$