NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
MASS, SALT, AND HEAT TRANSPORT ACROSS FOUR LATITUDE CIRCLES IN --ETC(U)
DEC 78 J R MASON
NPS68-78-007
NL AD-A066 368 UNCLASSIFIED 1 of 2 AD 66368

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

MASS, SALT, AND HEAT TRANSPORT ACROSS FOUR LATITUDE CIRCLES IN THE SOUTH ATLANTIC OCEAN

by

J. Robert Mason

December 1978

Thesis Advisor:

G. H. Jung

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Tyler F. Dedman Superintendent

Jack R. Borsting Provost

This thesis is prepared in conjunction with research supported in part by OFFICE OF NAVAL RESEARCH under #N00014-78-WR-80032 issued 1 October 1977.

Reproduction of all or part of this report is authorized.

Released as a Technical Report by:

Dean of Research

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION I	10. 3. RECIPIENT'S CATALOG NUMBER
NPS68-78-007	
TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVER
Mass, Salt, and Heat Transport Across Four	
Latitude Circles in the South Atlantic Ocean	
	6. PERFORMING ORG. REPORT NUMBER
· AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(s)
(9)M	aster's thesis
O) J. Robert/Mason /	
	10. 00000000000000000000000000000000000
Naval Postgraduate School	10. PROGRAM ELEMENT, PROJECT, TAS
Monterey, California 93940	N00014-78-WR-80032
Monterey, California 93940	
1. CONTROLLING OFFICE NAME AND ADDRESS	REPORT DATE
Naval Postgrađuate School	7 / De cember 9.78
Monterey, California 93940	S. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 18. SECURITY CLASS. (of the report)
	Unclassified
	154. DECLASSIFICATION DOWNGRADIN
Approved for public release; distribution unl	imited.
Approved for public release; distribution unl	
Approved for public release; distribution unl	
Approved for public release; distribution unl	
Approved for public release; distribution unl	
Approved for public release; distribution unl	
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES	
Approved for public release; distribution unl	
Approved for public release; distribution unl	from Report)
Approved for public release; distribution unl	from Report)
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numbers South Atlantic Ocean, general circulation, he	from Report) Dec) at transport, mass transport
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES	from Report) Dec) at transport, mass transport
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers South Atlantic Ocean, general circulation, he	from Report) Dec) at transport, mass transport
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the electroct entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numbers of the salt transport, geostrophic ocean currents, 1	her) at transport, mass transport evel of no motion.
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the obstract antered in Block 20, if different 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block numb South Atlantic Ocean, general circulation, he salt transport, geostrophic ocean currents, 1	her) at transport, mass transport evel of no motion.
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the electrocal entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb South Atlantic Ocean, general circulation, he salt transport, geostrophic ocean currents, 1 10. Abstract (Continue on reverse elde if necessary and identify by block numb In this report classic dynamic height cal-	at transport, mass transport evel of no motion.
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the electroct entered in Block 20, if different 8. KEY WORDS (Continue on reverse elde if necessary and identify by block numbers of transport, geostrophic ocean currents, 1 10. ADSTRACT (Continue on reverse elde if necessary and identify by block numbers of the point of the p	at transport, mass transport evel of no motion.
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers of the salt transport, geostrophic ocean currents, 1 10. ADSTRACT (Continue on reverse side if necessary and identify by block numbers of the salt transport of the salt transport of the salt international Geophysical Year (1957–1958) and phic data to obtain geostrophic currents and of the salt transport of the salt salt of the salt salt of the salt salt salt salt salt salt salt salt	at transport, mass transport evel of no motion. culations were made from d adjacent 1959 oceanogra-estimates of mass, salt,
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different 8. KEY WORDS (Continue on reverse side if necessary and identify by block numbers of the salt transport, geostrophic ocean currents, 1 10. Additional (Continue on reverse side if necessary and identify by block numbers of the salt transport, geostrophic ocean currents, 1 10. Additional (Continue on reverse side if necessary and identify by block numbers of the salt transport classic dynamic height call International Geophysical Year (1957-1958) and phic data to obtain geostrophic currents and and heat transports in the South Atlantic Ocean	at transport, mass transport evel of no motion. culations were made from d adjacent 1959 oceanogra-estimates of mass, salt, an. The cross sections
Approved for public release; distribution unl 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers of the salt transport, geostrophic ocean currents, 1 10. ADSTRACT (Continue on reverse side if necessary and identify by block numbers of the salt transport of the salt transport of the salt international Geophysical Year (1957–1958) and phic data to obtain geostrophic currents and of the salt transport of the salt salt of the salt salt of the salt salt salt salt salt salt salt salt	at transport, mass transport evel of no motion. culations were made from d adjacent 1959 oceanogra-estimates of mass, salt, an. The cross sections 8°S, 16°S, 24°S, and 32°S

1

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

251 450

SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

JOB

> A level of no motion was determined by establishing mass and salt continuity across each of the latitudinal cross sections. This level varied from 1100 meters at 8°S to 1270 meters at 32°S. It is approximated by the 27.57 sigma-t surface and corresponds closely to the boundary between the Antarctic Intermediate Water and the South Atlantic Deep Water masses.

The resulting meridional heat transport was then examined and compared with other estimates. Northward (equatorward) heat transports resulted at each latitude, which would seem to oppose the conventional view of the role of the ocean in the earth's heat budget as a means to transfer heat from equator to poles. However, the northward direction of the net absolute heat transport agrees with the consensus of previous work and is attributed to the warmer surface currents with a net northward transport dominating the cooler deeper currents and their net southward flow.

A general circulation pattern was developed from mass transport values for each of three layers of water: Upper, Intermediate, and Deep and Bottom Water. These derived circulation patterns are then compared to general descriptive circulation patterns found in the literature. General agreement was found with the notable exception of lacking a strong Brazil current in the surface and central waters. Vertical cross sections of velocity, mass, salt, and heat transport were contoured to examine the eddy field circulation pattern and further describe general circulation patterns.

Approved for public release; distribution unlimited.

Mass, Salt, and Heat Transport Across Four Latitude Circles in the South Atlantic Ocean

by

J. Robert Mason Lieutenant, United States Navy B.S., United States Naval Academy, 1972

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL December 1978

ABSTRACT

In this report classic dynamic height calculations were made from International Geophysical Year (1957-1958) and adjacent 1959 oceanographic data to obtain geostrophic currents and estimates of mass, salt, and heat transports in the South Atlantic Ocean. The cross sections extend from South America to Africa along the 8°S, 16°S, 24°S, and 32°S latitude lines, providing temperature and salinity data from the surface to near bottom.

A level of no motion was determined by establishing mass and salt continuity across each of the latitudinal cross sections. This level varied from 1100 meters at 8°S to 1270 meters at 32°S. It is approximated by the 27.57 sigma-t surface and corresponds closely to the boundary between the Antarctic Intermediate Water and the South Atlantic Deep Water masses.

The resulting meridional heat transport was then examined and compared with other estimates. Northward (equatorward) heat transports resulted at each latitude, which would seem to oppose the conventional view of the role of the ocean in the earth's heat budget as a means to transfer heat from equator to poles. However, the northward direction of the net absolute heat transport agrees with the consensus of previous work and is attributed to the warmer surface currents with a net northward transport dominating the cooler deeper currents and their net southward flow.

A general circulation pattern was developed from mass transport values for each of three layers of water: Upper, Intermediate, and Deep and Bottom Water. These derived circulation patterns are then compared to general descriptive circulation patterns found in the literature.

General agreement was found with the notable exception of lacking a strong Brazil current in the surface and central waters. Vertical cross sections of velocity, mass, salt, and heat transport were contoured to examine the eddy field circulation pattern and further describe general circulation patterns.

TABLE OF CONTENTS

		RODUCTION	-	10
II.	BAC	KGROUND	-	12
	A.	ENERGY TRANSPORT	-	12
	в.	DETERMINATION OF THE LEVEL OF NO MOTION	-	13
III.	STA	TEMENT OF THE PROBLEM	-	15
IV.	PRO	CEDURE	-	16
	A.	DATA SOURCE	-	16
	в.	COMPUTING TRANSPORTS	-	19
	c.	BOTTOM AREA CONTRIBUTIONS	-	23
	D.	ESTIMATING TRANSPORTS FOR THE PERIPHERAL AREAS ADJACENT TO LAND	-	29
	E.	IDENTIFICATION OF WATER MASSES	-	33
	F.	GENERAL CIRCULATION	-	39
v.	DIS	CUSSION OF RESULTS	-	43
	A.	THE LEVEL OF NO MOTION	-	43
	в.	MASS AND SALT TRANSPORT	-	46
	c.	HEAT TRANSPORT	-	46
	D.	GENERAL CIRCULATION BASED ON MASS TRANSPORT	-	58
		1. The Circulation in the Upper Water	-	62
		2. The Circulation in the Intermediate Water	-	64
		3. The Circulation in the Deep and Bottom Water	-	64
VI.	CON	CLUSIONS	-	66
APPENI	DIX .	A: GEOSTROPHIC DATA	-	67
APPENI	DIX :	B: VERTICAL CROSS SECTIONS	-	79
APPENI	DIX	C: CQMPUTER PROGRAM	-	96
BIBLI	OGRA	ърну – – – – – – – – – – – – – – – – – – –	-1	15
INITI	AL D	ISTRIBUTION LIST	-1	19

LIST OF TABLES

I.	Oceanographic Station Data
II.	Estimated Transports of Mass, Salt, and Heat in the Peripheral Zones at 8°S, East End 31
III.	Estimates of Mass, Salt, and Heat Transports for Peripheral Areas at Each Latitude 32
IV.	Temperature and Salinity Criteria for Water Mass Identification in the South Atlantic Ocean 34
v.	Level of No Motion Obtained for Each Latitudinal Cross Section 44
VI.	Transports of Mass and Salt by Water Mass Type: 8°S
VII.	Transports of Mass and Salt by Water Mass Type: 16°S
VIII.	Transports of Mass and Salt by Water Mass Type: 24°S
IX.	Transports of Mass and Salt by Water Mass Type: 32°S
х.	Transports of Heat by Water Mass Type at 8°S, 16°S, 24°S, and 32°S 52

LIST OF FIGURES

1.	Chart of the Tracks and Station Numbers for
1.	Research Vessels Crawford and Atlantis 18
2.	Illustration of the Averaging Process Used to Obtain a Central Mean Value for Velocity, Density, Salinity, and Temperature for the Rectangular Cross-Sectional Area
3.	Bottom Peripheral Areas: 8°S Latitude Section 24
4.	Bottom Peripheral Areas: 16°S Latitude Section 25
5.	Bottom Peripheral Areas: 24°S Latitude Section 26
6.	Bottom Peripheral Areas: 32°S Latitude Section 27
7.	Illustration of the Technique for Estimating the Transports of Mass, Salt, and Heat in the Peripheral Zones 30
8.	Water Masses and Level of no Motion: 8°S 35
9.	Water Masses and Level of no Motion: 16°S 36
10.	Water Masses and Level of no Motion: 24°S 37
11.	Water Masses and Level of no Motion: 32°S 38
12.	Integrated Mass Transports for Five Degree Increments: Upper Water
13.	Integrated Mass Transports for Five Degree Increments: Intermediate Water 41
14.	Integrated Mass Transports for Five Degree Increments: Deep and Bottom Water 42
15.	Comparison of Derived Level of no Motion with Previous Estimate by Neumann 45
16.	Comparison of Heat Transports Across Various Latitudes with Previous Works 53
17.	Circulation Patterns Based on Mass Transport Vectors: Upper Water 59

18.	Circulation Patterns Based on			
	Vectors: Intermediate Water		60	
19.	Circulation Patterns Based on			
	Vectors: Deep and Bottom Water	r	61	

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Glenn H. Jung for his guidance during the preparation of this thesis.

The author also wishes to thank his wife, Gail M. Mason, for her support in this project.

I. INTRODUCTION

For the total earth-atmosphere system, the amount of heat received from the sun at the upper boundary of the system must, in the long term average, equal closely the amount of heat lost by reflection and radiation to space. This approximate balance must exist, since observed short term changes in the mean annual temperature of the atmosphere and oceans are small enough to be neglected. Therefore, over a time period of several years, an energy balance may be assumed and the short wave radiation absorbed by the land, the oceans, and the atmosphere is considered balanced by the long wave radiation to space from the entire system. Part of the arriving energy is transformed into the kinetic energy which drives ocean and atmosphere circulations.

The arriving short wave radiation does not strike the earth uniformly. Due to the geometry of the earth's orbit, the lower latitudes
receive more short wave energy than is lost by long wave radiation; at
higher latitudes the reverse is true. There is consequently a net gain
of heat in the tropics and a net loss in the higher latitudes. Since,
for a given latitude the mean annual temperatures remain unchanged, there
must be energy transport from lower to higher latitudes. The air-ocean
circulation systems are primarily responsible for this redistribution
of energy between the latitudes.

In the early part of this century it was popularly assumed that the transport of heat by oceanic currents was small or negligible when compared with that transported by the atmosphere. Bjerknes et al. (1936) and Sverdrup et al. (1942) proceeded under this assumption, but provided

the caveat that the question had not been thoroughly examined.

In examining the question further, Jung, in 1952, proposed that the oceans could indeed provide a significant contribution to the heat balance of the earth. Previous works considered only the horizontal surface current systems in heat transport studies whereas Jung proposed closed vertical circulations in the north-south direction which could transport significantly large amounts of heat between equator and pole. Jung's hypothesis was extended in a 1955 study of geostrophic currents in the North Atlantic derived from the METEOR Expedition data which resulted in computations of significant oceanic heat transport meridionally. Other studies have verified further the importance of ocean circulations in the transport of energy. Budyko (1956), Sverdrup (1957), Bryan (1962), Sellers (1965), Emig (1967), Vander Haar and Oort (1973), and Bennett (1978) all estimated significant meridional heat transports in various oceans.

This study attempts a nearly synoptic look at four latitudinal sections in the South Atlantic Ocean between 8°S and 32°S using temperature and salinity data from the International Geophysical Year (1957-1958) and 1959. A computer program developed by Greeson (1974) is used to calculate volume, mass, salt, and heat transports across the various latitude sections. The computer program was modified to include previously hand calculated transports in areas below the deepest sounding and to identify water masses by salinity and temperature criteria. By requiring mass and salt continuity across each section conclusions were drawn concerning the level of no motion, general geostrophic circulation, and net heat flux characteristics of the South Atlantic Ocean during this period.

II. BACKGROUND

A. ENERGY TRANSPORT

The redistribution of energy in the earth-atmosphere system is accomplished primarily by advection of sensible heat within the ocean's current systems and transport of latent and sensible heat within atmospheric circulations. Ordinarily, the processes of conduction throughout continental land masses and through the ocean floor are ignored. Whether the ocean or the atmosphere is the dominant mechanism for energy transport has been a source of debate over the past century.

Maury (1856) and Ferrel (1890) maintained that the ocean was the chief source of energy transport meridionally because even though oceanic velocities are an order of magnitude smaller than atmospheric velocities and the atmosphere has a greater volume exchange than the ocean, the mass exchange and heat capacity of the ocean is greater. An opposing view was held by Bjerknes et al. (1933) and Sverdrup et al. (1942), both of whom assumed that the transport of energy from lower to higher latitudes by ocean currents is negligible when compared to the atmospheric contribution for worldwide averages, but can be of importance locally in certain regions. A study by Angstrom (1925) indicated a rough equality between ocean and atmospheric contributions to energy transport. Jung (1952, 1955) showed that meridional transport by the oceans, while not as large as the atmosphere, was not insignificant. Neumann et al. (1966) stresses the importance of the ocean, particularly in transferring energy to the region between 20°N and 40°N wherein it is made available to the atmosphere in the form of latent heat for further northward transport. This study attempts a quantitative analysis of the ocean transports of mass, salt, and heat across vertical cross sections of the ocean in the South Atlantic Ocean at four latitudes.

B. DETERMINATION OF THE LEVEL OF NO MOTION

The procedure for computing transports in this study uses the dynamic method for calculating relative geostrophic velocities between oceanographic station pairs. The procedure is described in Section IV-B. In order to obtain quantitative estimates of the transports, however, the relative geostrophic velocities calculated by the dynamic method must be converted to absolute velocities. To accomplish this, a level of no meridional motion was required against which the relative velocities were referenced and thereby converted to absolute velocities.

Since current measurements are not taken along with the standard oceanographic station cast, indirect methods of determining the level of no motion have been developed over the past 60 years. A comprehensive summary of these methods is found in Sherfessee (1978) and Baker (1978) and includes descriptions of techniques developed by Jacobsen (1916), Parr (1938), Hidaka (1949), Defant (1941), Sverdrup et al. (1942), Stommel (1956), and Stommel and Schott (1977).

The method used to determine the level of no motion in this study was that from Sverdrup et al. (1942). The method entails imposing the requirement of mass and salt continuity across a given latitude section that extends completely across an ocean basin. The level of no motion is placed at the depth where the transport above the reference level is equal to and opposite to the transport below the reference level. This method requires data across an entire cross section of the ocean and

from the surface to the near bottom. This method proved to be the most reasonable for the comprehensive data used herein.

III. STATEMENT OF THE PROBLEM

The objectives of this study were sixfold: (1) to add to an existing computer program, which computes ocean transports through a vertical cross section, a subroutine which automatically classifies the water masses and sums their transport contributions by individual water mass type; (2) to modify the computer program to include in the transport calculations the cross sectional areas below the deepest sounding adjacent to the bottom whose effects previously were hand calculated; (3) to determine quantitatively the level of no motion in the South Atlantic such that the net mass and salt transport across each of the four sections is approximately zero; (4) to use the resulting mass transport to compare and describe the general circulation of the South Atlantic for Upper, Intermediate, and Deep and Bottom Water layers; (5) to compute the transport of sensible heat from the selected vertical cross sections, and (6) to estimate eddy activity by examining eddy patterns revealed in vertical cross sections of velocity and mass, salt, and heat transport which were contoured by the computer.

IV. PROCEDURE

A. DATA SOURCE

To apply the classic method of determining dynamic depths in the ocean, detailed temperature and salinity observations at known geometric depths below the actual sea surface were required for a given time period. In practice, simultaneous observations are not available, especially for an area the size of the South Atlantic Ocean, but it may be assumed that time changes in the pressure distribution are so small that observations taken within a given time frame may be considered synoptic. This is the assumption most often made in studies of broad oceanic circulations, especially prior to the satellite era.

The most comprehensive set of data meeting these criteria was found in Atlantic Ocean Atlas published by F. C. Fuglister in 1960. It is a compendium of data taken as part of International Geophysical Year (IGY, 1957-1958). To obtain these data, the classic oceanographic station measurements were carried out involving serial observations from surface to near bottom using Nansen bottles and reversing thermometers for temperature and salinity information. Data for the South Atlantic are in transects at four latitudes extending from South America to Africa with stations at roughly one degree intervals. The data were collected between March 1957 and June 1959. Table I shows additional information on these latitudinal cross sections.

Figure 1 shows the tracks along which the data were taken. Although the data were collected over slightly more than a two-year time period, they are considered synoptic for the purpose of studying the general circulation patterns.

TABLE I
OCEANOGRAPHIC STATION DATA

Average Latitude	Vessel	Station Numbers	Dates	Tracks
8°15' S	Crawford	86-92 94-120	March 1-22, 1957	Brazil to Angola
15°45' S	Crawford	121-153	April 1-22, 1957	Brazil to Angola
24°15' S	Crawford	416-458	October 2-26, 1958	Brazil to Southwest Africa
32°30' S	Atlantis	5798 5806-5843	April 11, 1959 April 26 - June 3, 1959	Brazil to Union of South Africa

Chart of the Tracks and Station Numbers for Research Vessels Crawford and Atlantis during March 1957-June 1959. Figure 1.

B. COMPUTING TRANSPORTS

Transports of volume, mass, salt, and heat across a vertical cross section were computed using velocities derived by the Helland-Hansen formula [equation (4)] and the procedure from Sverdrup et al. (1942).

In general, the method consists of application of the geostrophic approximation. Since the vertical shear of geostrophic velocity is proportional to the horizontal density gradient, a relative velocity profile may be calculated by assuming or measuring a velocity at one level and then vertically integrating measured horizontal density gradients converted to dynamic heights.

Specifically, a computer program was used from a master's thesis by Greeson (1974) which computed dynamic heights for standard depths at each ocean station by the Sverdrup procedure in the following manner.

The IGY temperature and salinity data taken at various depths were interpolated to standard depths using a combination linear and parabolic scheme. Then specific volume and the specific volume anomaly were computed for each standard depth. Next, an average specific volume anomaly for the center of the layer between standard depths is calculated using the equation:

$$\bar{\delta} = \frac{\delta_z + \delta(z + \Delta z)}{2} , \qquad (1)$$

where $\bar{\delta}$ is the average specific volume anomaly, and δ_z and $\delta_{(z+\Delta z)}$ are the computed specific volume anomalies at standard depths z and z+ Δz respectively.

Dynamic height difference, AD, for each layer is computed by:

$$\Delta D = \overline{\delta}[z - (z + \Delta z)] . \qquad (2)$$

A vertical summation is made to obtain the total dynamic height of each station relative to the sea surface:

$$\sum_{o}^{z} \Delta D = D . \tag{3}$$

Next, another subroutine is employed to compute L, the distance between each station pair as a function of latitude and longitude.

Geostrophic relative velocity differences at a location midway between each station pair were calculated for each standard depth using the Helland-Hansen equation:

$$v_1 - v_2 = \frac{10}{fL} (D_A - D_B)$$
 (4)

where v_1 and v_2 are the velocities at standard depths 1 and 2, D_A and D_B are the dynamic heights of the two stations, and f is the coriolis parameter.

The ocean surface was considered a geopotentially level surface with zero inclination between the pressure surface and the level surface for the purpose of calculating these relative velocities.

In order to convert from relative to absolute velocities, some criterion was required by which to establish the actual surface which has zero inclination, and thus, zero velocity. This surface is the level of no motion discussed in Section II. The method used in this study to determine that depth was simply to impose the requirement that the resulting net mass transport and net salt transport across the entire latitude sections of ocean be zero when based on the selected reference level:

$$\int \rho_{s} v_{n_{s}} do = 0$$

$$\int \rho_{s} v_{n_{s}} do = 0$$
(5)

where S is salinity in parts per thousand and \mathbf{v}_{n} is the velocity component perpendicular to the cross section.

The procedure followed was experimentally to vary the depth of the level of no motion in the computer program until the total net mass and salt balances across the sections were as small as could be obtained. The velocities for the remaining standard depths computed relative to this level of no motion were then considered absolute. The velocities thus obtained apply to a point midway between each station for each standard depth.

From these absolute velocities, transports of volume, mass, salt, and heat for the cross sectional area between the station pairs were next calculated for each layer between the standard depths. The velocities were available at the midpoints between the stations; values of density, salinity and temperature were interpolated for each standard depth.

To obtain a value for velocity, density, salinity, and temperature representative of the entire cross sectional area of the layer between the two stations an averaging process was performed to arrive at a central value for each parameter. The averaging process used by the computer program is illustrated in Figure 2.

These central values and the cross sectional area of the layer are used to compute the transports. The product of area, velocity, and density gives mass transport, which is then multiplied by the salinity and temperature, respectively, to obtain heat transport and salt transport.

Figure 2. Illustration of the averaging process used to obtain a central mean value for velocity, density, salinity, and temperature for the rectangular cross-sectional area.

Mass, salt, and heat transports are summed in the vertical for each station pair and also in the horizontal for each layer.

Due to the procedures for data interpolation techniques and limitations in the accuracy of the computer, it was impossible to obtain exact zero mass and salt fluxes simultaneously for a single level of no motion. For the purposes of this study, mass balance was considered the primary criterion and salt an important, although secondary, balance consideration for continuity. Once mass and salt continuity was achieved as closely as possible, for the entire section, the corresponding heat transport for the section was recorded.

C. BOTTOM AREA CONTRIBUTIONS

The method described above determines the transports for the cross-sectional area down to the greatest common depths for each station pair. Figures 3 through 6 show the area below the greatest common depths which also must be included. In addition, an estimate must be made for the peripheral areas between the last station on either end of the section and land. An estimate for the latter will be discussed in Section IV-D.

The existing computer program was modified to account for the effects of these areas adjacent to the bottom which in the past were hand calculated. Bathymetric profiles for each latitude section were provided by Woods Hole Oceanographic Institution and the cross-sectional area between the ocean floor and the deepest common depth was measured for each station pair (the near-bottom area). Next, a linear decrease in velocity was assumed from the deepest common level to a zero velocity at the ocean floor; that is, a value of one-half the deepest calculated absolute velocity was used as the average velocity value for each area. Mass transport across the near-bottom area was found by multiplying this velocity by the

Figure 3. Bottom Peripheral Areas: 8°S Latitude Section.

Figure 4. Bottom Peripheral Areas: 16°S Latitude Section.

Figure 5. Bottom Peripheral Areas: 24°S Latitude Section.

Figure 6. Bottom Peripheral Areas; 32°S Latitude Section.

deepest interpolated mean density and the near-bottom area. The mass transport was multiplied by the deepest average temperature and salinity values to find the corresponding heat and salt transports. The modified program then automatically added these results to the respective transports for the station pair. Consequently, these near-bottom areas are taken into consideration automatically during the search for the level of no motion for which net mass and salt fluxes across the entire latitude section must approach zero.

One potential problem with the method described above is in the accounting for the proper direction of the Antarctic Bottom Water. No Antarctic Bottom Water was identified from the oceanographic data, not because it was not present, but because the Nansen cast did not extend deep enough to sample it. Consequently, the deepest sampled water in the deep ocean stations is always South Atlantic Deep Water, which usually flows southward (poleward). By the method described above, the water below the deepest sounding is assigned a velocity of one half the average velocity at the deepest sounding. Therefore, the direction assigned to the water in the area adjacent to the bottom is usually southward also. The usually northward transports of the Antarctic Bottom Water may be missed entirely by this technique.

The cross-sectional area through which Antarctic Bottom Water flows is small by comparison to the remaining cross section, but not insignificant. A study by Greeson (1974) showed that the bottom peripheral area amounted to approximately ten percent of the total cross-sectional area, with some unknown portion of this area being attributed to the flow region of the Antarctic Bottom Water.

A volume transport of three million m³/sec is estimated for Antarctic Bottom Water flowing northward across 30°S by Sverdrup et al. (1942). Even smaller values would be expected for Antarctic Bottom Water at lower latitudes. These values are considered negligible when compared with typical transports for even a single station pair in the cross section. Consequently, any bias in transports caused by not detecting the Antarctic Bottom Water in the Nansen casts was considered negligible.

D. ESTIMATING TRANSPORTS FOR THE PERIPHERAL AREAS ADJACENT TO LAND

The portion of the cross-sectional area as yet not accounted for was
that of the peripheral areas between the last station on either end of
the section and land. Values of mass, salt, and heat transport for

these peripheral zones were calculated as follows.

The transport (volume, mass, salt, and heat) within each standard layer in the peripheral zone was considered to be a fraction of the transport for the same layer in the first station pair nearest the end. The fraction was determined by assuming a linear decrease in current velocities toward shore for each horizontal layer, with zero velocity at the beach. Therefore, a value of one-half the layer volume transport for the first station pair was considered representative for the peripheral zone. Next, this estimate was corrected for the difference in cross-sectional area between the first station pair and the periphery by multiplying by the ratio of areas, layer by layer. Finally, the layers were summed to obtain total transports for the peripheral zone.

This method was devised to take advantage of the observed salinity and temperature data for each layer. For purposes of comparison the results were qualitatively evaluated against climatological temperature and salinity data obtained from Fleet Numerical Weather Central's

"Hydroclimatological Data Retrieval Program" (HYDAT) and current velocities from pilot charts. The statistics from HYDAT were consistent with the data of this study. but were not detailed enough for the layer-by-layer estimates obtained by the ratio method. Several of the peripheral areas had negligible cross-sectional areas and their contribution to transport was discarded.

To demonstrate the procedure described above, transports were calculated for a single end zone. Figure 7 illustrates the geometry of the problem and Table II lists the results. As can be seen from Table II, the mass, salt, and heat transports for each 50-meter layer of the adjacent station pairs were multiplied by the ratio of lengths and then by one-half to account for the assumed linear decrease in velocity toward shore.

Table III shows the results for each end zone, the cumulative contribution of the two end zones for each latitude, and a grand total net result for all eight peripheral areas. For the purpose of evaluating total net transports the results were considered negligible since compensating for even the largest value obtained changed the level of no motion across the latitude section by less than one meter.

Figure 7. Illustration of the technique for estimating the transports of mass, salt, and heat in the peripheral zones; $d = a \tan \alpha$.

TABLE II

ESTIMATED TRANSPORTS OF MASS, SALT, AND HEAT
IN THE PERIPHERAL ZONES AT 8°S, EAST END

a (km)	<u>R</u> 1	(.5R)x Mass (g/sec)	(.5R)x Salt (g/sec)	(.5R) x Heat (cal/sec)
.300	2.4955	22435 ²	-7.64393 ³	-66.92056 ²
.250	2.0796	.02946	1.04579	8.61866
.150	1.6636	.08013	2.85529	23.18796
.100	1.2477	.02327	0.81847	1.57821
.050	0.8318	.00368	0.12073	1.05214
.000	0.4159	.00099	03458	28034
	0.0	0.0	0.0	-32.76393
Total		08880	-2.82923	-32.76393

¹R is the ratio of lengths for each 50 meter layer;

 $d = a \tan \alpha$;

 $R = d/1 = a \tan \alpha/1$.

²(all values times 10¹²)

 $^{^{3}}$ (all values times 10^{9})

TABLE III ESTIMATES OF MASS, SALT, AND HEAT TRANSPORTS FOR PERIPHERAL AREAS AT EACH LATITUDE

Latitude		West End	East End	Total
8°S	Mass ¹ Salt ² Heat ³	06432 - 3.41850 -27.66394	08880 - 2.82923 -32.76393	15312 - 6.24773 -60.42787
16°S	Mass Salt Heat	09711 - 3.53711 -29.37412	.23887 8.49962 69.57869	.14176 4.96251 40.20457
24°S	Mass Salt Heat	Negligible	Negligible	Negligible
32°S	Mass Salt Heat	Negligible	16417 - 5.76357 -47.13947	16417 - 5.76357 -47.13947
Grand Total	Mass Salt Heat	17553 - 7.04879 -67.36277		

 $^{^{1}}$ g/sec x 10^{12}

 $[\]frac{2}{9}$ g/sec x 10^{9} 3 cal/sec x 10^{12}

E. IDENTIFICATION OF WATER MASSES

An additional modification of the existing computer program was effected in order to provide automatic identification of water masses in the South Atlantic Ocean based on salinity, temperature, and depth criteria and additionally to identify and sum mass, salt, and heat transports according to water mass type.

The criteria used to identify the various water masses in the South Atlantic Ocean were found in Defant (1961), Sverdrup et al. (1942), Williams et al. (1973), and Bialek (1967). The specific temperature and salinity for each water mass used in this study were extracted from these works and expanded somewhat to include the transition waters between each water mass type. Table IV lists the temperature and salinity values used in this study to identify the water masses in the South Atlantic Ocean.

No specifications for surface water were listed in the literature; thus, a temperature criterion was established to delineate the mixed layer adjacent to the sea surface.

Figures 8 through 11 depict the various water masses found in the South Atlantic and the level of no motion through the cross section. No Sub-Antarctic Water, Antarctic Circumpolar Water or Antarctic Bottom Water was found. It is reasonable to assume that Sub-Antarctic Water and Antarctic Circumpolar Water were not identified due to the low latitude of the sections. Antarctic Bottom Water, however, was undoubtedly present but went undetected because the data available did not extend deep enough to sample it. Rather than arbitrarily specifying that any water below the last sounding was Antarctic Bottom Water, this water was instead assigned to a Deep and Bottom Water category collectively.

TABLE IV

TEMPERATURE AND SALINITY CRITERIA FOR WATER MASS IDENTIFICATION IN THE SOUTH ATLANTIC OCEAN

Watermass	Temperature (°C)	Salinity (0/00)	Reference
Antarctic Bottom Water	< 0	34.65 to 34.67	Defant
Antarctic Circumpolar Water	0-2.5	34.68 to 34.80	All
Sub-Antarctic Water	7.0-9.0	34.10 to 34.68	Defant
South Atlantic Deep Water	7.0-9.0	34.70 to 34.97	Defant
Antarctic Intermediate	2.8-7.0	33.80 to 34.71	Sverdrup and Defant
South Atlantic Central	5.0-18.0	34.45 to 36.10	Williams
Surface	> 18.0		

Figure 8. Water Masses and Level of no Motion: 8°S.

Figure 9. Water Masses and Level of no Motion: 16°S.

Figure 10. Water Masses and Level of no Motion: 24°S.

Figure 11. Water Masses and Level of no Motion: 32°S.

F. GENERAL CIRCULATION

In order to study the general circulation of the South Atlantic Ocean the mass transports were separated into three layers: Upper Water (consisting of Surface and Central Waters), Intermediate Water and Deep and Bottom Water. The absolute mass transport for each layer and for each station pair was computed and recorded on the chart at the proper location.

These integrated mass transport figures for each layer at each station pair were combined into a composite value for increments of five degrees of latitude. Figures 12 through 14 give a graphical idea of the net transports involved for each increment. A general circulation pattern was then devised for the Upper, Intermediate, and Deep and Bottom Waters consistent with net mass transports across each latitude circle. To provide continuity of mass and to match observed circulations, series of cyclonic and anticyclonic eddies were constructed. Robinson (1976) reports extensive mid-ocean eddy activity at all scales in the ocean from the sea surface to the bottom thus lending credence to the eddy concept used here in approximating the circulation.

Areas of convergence and divergence are shown as symbols for gain and loss to the layers of water depicted in Figures 17 through 19. These indicate the general areas of upwelling and downwelling required for continuity in the vertical. To further identify the general circulation and examine it in the vertical, geostrophic current velocities and transports of mass, salt, and heat were interpolated in the computer to a rectangular matrix representing a vertical cross section of the ocean and then contoured at various levels by a computer subroutine named CONTUR. An attempt was made to describe quantitatively by size and frequency distribution any eddy features identified by this procedure. The results of this effort are found in Appendix III.

Figure 12. Integrated Mass Transports for Five Degree Increments: Upper Water; (Fig. 17 shows circulation pattern).

Figure 13. Integrated Mass Transports for Five Degree Increments: Intermediate Water (Fig. 18 shows circulation pattern).

Integrated Mass Transports for Five Degree Increments: Deep and Bottom Water (Fig. 19 shows circulation pattern). Figure 14.

V. DISCUSSION OF RESULTS

A. THE LEVEL OF NO MOTION

The procedure for determining the level of no motion was taken from Sverdrup et al. (1942) as described in Section II. The resulting depths of the level of no motion obtained in this study for each section are listed in Table V and illustrated in Figures 8 through 11.

Previous evaluations of the level of no motion for the Southern Hemisphere are found in Defant (1961) and Neumann (1954, 1955). A comparison of those obtained in this study with those of Neumann shows the same general trend of deepening with increasing latitude. However, this study showed a deeper level of no motion for the region from the equator to 20°S and a shallower level of no motion for the region between 20°S and 40°S. Figure 15 illustrates the results of each study.

A comparison of the level of no motion surface with isothermal and isohaline surfaces diagrammed in the Atlas (Fuglister, 1960) revealed that the level of no motion followed salinity surfaces between 34.55 o/oo and 34.70 o/oo and temperature surfaces between 3° and 4.1°C. The corresponding sigma-t surface averaged about 27.57 for all of the latitudes in this study. This isopynchal surface might prove useful as a first estimate for the level of no motion at other latitudes.

Defant (1941) and Sverdrup et al. (1942) after an examination of the METEOR profiles to the south of 20°S state that the level of no motion is approximately 1100 meters at 20°S and deepens somewhat toward the south, coinciding with the boundary between Antarctic Intermediate Water and South Atlantic Deep Water. The level of no motion found in this study is also approximately 1100 meters at 20°S and coincides very closely with the boundary between the Intermediate and Deep Water masses for all latitudes studied.

TABLE V

LEVEL OF NO MOTION OBTAINED FOR EACH LATITUDINAL CROSS SECTION

Latitude	Level of No Motion
8°S	1100 m
16°S	1300 m
24°S	1145 m
32°S	1270 m

Figure 15. Comparison of Derived Level of no Motion with Previous Estimate by Neumann.

B. MASS AND SALT TRANSPORT

A mass and salt transport balance was attempted at each section as a prerequisite to estimating the heat transport. Attaining a zero net transport value for both mass and salt proved impossible; consequently, zero mass flux was chosen as the primary consideration, with zero salt flux as secondary. Excellent mass continuity and satisfactory salt continuity was attained for each section. Tables VI through IX lists the resulting transports of mass and salt for each latitude section by water mass type and the cumulative total net transport.

C. HEAT TRANSPORT

Meridional heat transport across a latitude section may be represented by the following equation:

$$\Sigma C_{p} \overline{T} \rho V_{1} A . \qquad (6)$$

By assuming the specific heat of seawater at constant pressure, C_p , to be unity, the expression reduced to

$$\Sigma \bar{\mathbf{T}} \rho \mathbf{V}_1 \mathbf{A}$$
, (7)

where A is the cross-sectional area between the station pairs, ρV_1 is the north or south mass transport at each station pair, and \bar{T} is the average absolute temperature for the station pair. The summation is across all the station pairs.

Because mass continuity was required, the net mass transports ρV_1 (north) and ρV_1 (south) must cancel, that is,

$$\Sigma \rho V_1$$
 (north) + $\Sigma \rho V_1$ (south) = 0. (8)

TABLE VI

TRANSPORTS OF MASS AND SALT BY WATER MASS TYPE AT 8°S

(Negative values indicate northward transport; positive values indicate southward transport)

(all values times 10¹²)

		Transports	
Water Mass	Mass (gm/sec)		Salt (gm/sec)
Surface	- 6.21528		-232.87947
Central	- 1.32696		- 47.18784
Intermediate	12.78718		440.85053
Deep and Bottom	- 5.22625		-178.54060
Total for 8°S	.01869		- 17.75700

TABLE VII

TRANSPORTS OF MASS AND SALT BY WATER MASS TYPE AT 16°S

(Negative values indicate northward transport; positive values indicate southward transport)

(all values times 10¹²)

Water Mass	Mass (gm/sec)	Transports	Salt (gm/sec)
Surface	-11.24442		-413.63354
Central	-13.13231		-461.25879
Intermediate	- 5.12388		-176.45419
Deep and Bottom	29.49049		1029.91431
Total for 16°S	01012		- 21.43221

TABLE VIII

TRANSPORTS OF MASS AND SALT BY WATER MASS TYPE AT 24°S

(Negative values indicate northward transport; positive values indicate southward transport)

(all values times 10^{12})

Water Mass	Mass (gm/sec)	Transports	Salt (gm/sec)
Surface	- 3.40335		-122.69826
Central	-16.98189		-597.16504
Intermediate	- 1.99157		- 68.17680
Deep and Bottom	22.35007		779.98511
Total for 24°S	02674		- 8.05499

TABLE IX

TRANSPORTS OF MASS AND SALT BY WATER MASS TYPE AT 32°S

(Negative values indicate northward transport; positive values indicate southward transport)

(all values times 10¹²)

Transports

Water Mass	Mass (gm/sec)	Salt (gm/sec)
Surface	85776	- 29,92361
Central	-25.17276	-881.97144
Intermediate	-16.78152	-576.14258
Deep and Bottom	42.82959	1494,25366
Total for 32°S	.01755	6.21603

However, a balance of the heat transport was not anticipated as a by-product of mass continuity due to the varying temperature properties of the water masses involved. The heat transports calculated by this method were taken as representative of the direction and magnitude of the actual oceanic heat transports across these latitude sections. The resulting heat transports by the various water mass types and the total heat transports across each section are listed in Table X.

Methods of computing heat transports have been proposed by Model (1950), Jung (1955), Sverdrup (1957), Bryan (1962), Sellers (1965), Emig (1967), Vander Haar and Oort (1973), and Bennett (1978). Of these, Model, Sverdrup, Emig, Bryan, and Bennett report estimates for at least one latitude in the Southern Hemisphere (see Figure 16).

Model (1950) uses an empirical and dynamical apporach to estimate transports of absolute heat through a latitude section. He estimates the heat transported by main ocean currents using volume transport and temperature information from Sverdrup et al. (1942). By determining the effects of slope currents using oceanographic station data and wind drift currents using monthly wind charts of the South Atlantic an average transport was estimated. Model obtained a figure of 150 x 10^{12} calories per second towards the north across 30° S in the South Atlantic Ocean.

Sverdrup (1957) used the heat budget equation to obtain heat transport results. He took into account heat exchange by currents, evaporation, condensation, sensible heat, and radiation excess at a given latitude through use of radiation data from Kimball (1928) and evaporation and turbulent heat flux from charts by Jacob (1957). Meridional heat transport for an ocean basin was then calculated by integrating the field of net heating with respect to latitude. A constant of integration was selected to give

TABLE X

TRANSPORTS OF HEAT BY WATER MASS TYPE AT 8°S, 16°S, 24°S AND 32°S

Heat Transports (cal/sec) across four latitude cross sections (all values times 10¹²)

(Negative values indicate northward transport; positive values indicate southward transport)

Watermass	8°S	<u>16°S</u>	24°S	32°S
Surface	-1853.79395	-3328.71582	- 993.78101	- 250.10114
Central	- 382.53979	-3745.13647	-4861.37500	-7184.11328
Intermediate	3553.36621	-1424.19434	- 554.42651	-4663.28906
Deep and Bottom	-1380.01392	8131.60547	6170.85547	11799.19141
Total	- 62.98145	- 366.44116	- 238.72705	- 298.31207

Figure 16. Comparison of Heat Transports Across Various Latitudes with Previous Works.

what he deemed as reasonable results. Sverdrup obtained an estimate of net heat transport across the equator of 67 x 10^{12} calories per second toward the north.

Bryan (1962) uses a dynamic method for combining hydrographic station data and climatological estimates of surface wind stress to calculate meridional heat transport directly. Basically the method provides an estimated value for the transport integral as given by

$$\int_{0}^{1} \int_{-H}^{0} C_{p} \theta \rho \ v dz dx , \qquad (9)$$

where x is the coordinate in the east-west direction, z is the vertical coordinate, v is the meridional velocity, θ is the potential temperature, and ρ is the density.

The method requires hydrographic data from which the derivative of the geostrophic volume transport is calculated. The method involves measuring the integral of the covariance of the meridional velocity and temperature over an entire vertical cross section of the ocean. Bryan divided this heat transport integral into two parts. One part can be calculated from the hydrographic data alone and is independent of any reference level of no motion. The other part of the integral is calculated from the field of surface wind stress and does require a fixed reference level. According to Bryan, Sverdrup's formula for computing the total integrated transport from the curl of the wind stress vector as used in this portion of the integral provides the most objective way to fix the reference level of no motion. This part of the integral is most important when the transport is influenced by a strong western boundary current

flowing over a shallow shelf which is compensated for by a return flow in deeper water. Bryan attempted to minimize this portion of the integral by choosing cross sections which avoided this effect.

Bryan (1962) calculated heat transports for three South Atlantic sections, all of which indicated a strong northward transfer of heat toward the equator for two 16°S and one 24°S sections. The IGY section at 16°S has a heat transfer twice that of the METEOR section at 16°S taken many years earlier. Bryan noted that circulations in the vertical meridional plane played the most important role in transports, thus confirming Jung's (1952) proposal that heat transports by such circulations in the ocean could be significantly different from those by similar atmospheric circulations at mid-latitudes.

Bennett (1978) employed Bryan's (1962) method using IGY data in the South Atlantic with differing results. Bennett begins with the same total energy transport integral as Bryan, but separates the integral into a sum of five integrals for evaluation. Bennett also employs an L parameter characterizing the width of the western boundary current. His different values of heat transport for the same latitude as illustrated in Figure 16 are due to his different guesses for the width of the boundary current. For all values of L chosen, however, Bennett's results showed strong northward (equatorward) heat transports at 24°S and 32°S.

Emig (1967) evaluated heat transports in the Atlantic Ocean by using the heat flux charts of Budyko (1962). The heat flux divergence for a latitude band was calculated as a residual by Sverdrup's heat budget method and then integrated to yield the heat transports. The boundary condition imposed was that all heat transport across 70°S be zero. The results of Emig's study are illustrated in Figure 16 and are the only estimates

which indicate a southward (poleward) heat flux across the latitude circles in the Southern Hemisphere.

The results of the present thesis study show heat transports of the same order of magnitude and same direction (northward) as in the majority of the previous cited works. The results for 16°S agree quite closely with Bryan's results using the same data and a different method. The results for 24°S and 32°S, however, are almost twice as large as those of Bryan. Results from Bryan, Bennett, and Model, however, all agree with the direction of heat transport obtained herein.

It is surprising to note the equatorward flux of heat across these Southern Hemisphere latitude sections as obtained by Model, Sverdrup, Bryan, Bennett, and Mason. The usual concept of the earth's heat budget would seem to suggest just the opposite result. Ordinarily, the heat balance is described as a poleward flux of heat in both atmosphere and ocean to offset the sun's excess radiation in the tropical regions and deficit in the polar regions. Indeed, this must be the case averaged worldwide, since, over time periods of a century or so, the tropics are not getting warmer nor the poles colder. However, the results of this study and the consensus of previous works indicates that for the South Atlantic at least the oceanic heat flux is in a direction opposite to that expected within the entire fluid envelope.

Bryan (1962) and Bennett (1978) examined several reasons for the unexpected results. Bryan (1962) implied that many of the earliest estimates of heat flux concentrated on transports by horizontal currents and ignored circulations in the vertical plane associated with the thermohaline circulations as originally proposed by Jung (1952). Bryan's results show that while vertical circulations are weak in terms of volume transport,

they dominate the heat transport. It is, therefore, the warmer surface currents with a net northward flux which dominate the net southward flux of cooler deeper water in terms of absolute heat content. However, Bryan does state that the spacing of hydrographic stations is not dense enough to define the role of transient meanders which may have a significant effect on heat transport. For example, Newton (1961) reports that a single Gulf Stream meander can lead to a meridional heat transport of 1 to 2×10^{14} calories per second, a value larger than many of the net heat transports for an entire latitude section. Meanders and eddies in the South Atlantic are not defined sufficiently so as to estimate their effect on the METEOR or IGY data.

Bennett (1978), in agreement with Bryan states that conventionally spaced stations do not resolve the mid-ocean eddy field; however, he does attempt some estimate of eddy flux contributions to heat flux. He concludes that even though the eddy contributions are not negligible, they do not account for the unexpected northward heat flow. It is the large scale flow which is responsible for the northward heat flux, and, although eddies introduce variability into the heat flux estimates, they do not dominate the results.

It appears that this northward oceanic heat transport must be compensated by either the atmospheric heat transport of the Southern Hemisphere, or by oceanic transports southward in other Southern Hemispheric oceans.

Another possibility is that the northward oceanic heat transport is a seasonal effect which may be compensated by a reversal in another part of the year. It is to be noted that three of the cross sections were associated with the Southern Hemispheric autumn season and only the 24°S cross section was from the Southern Hemisphere spring season. It is

possible that the oceanic heat transports may be equatorward during these transition seasons and poleward at other times.

D. GENERAL CIRCULATIONS BASED ON MASS TRANSPORT

The general circulation pattern was drawn according to the procedures described in Section IV-F. The resulting eddy circulations are consistent with the pattern of mass transport vectors illustrated in Figures 17 through 19.

Eddy circulations in the North Atlantic have been studied extensively by Iselin (1936, 1940), Fuglister (1947, 1963, 1971), Iselin and Fuglister (1948), Fuglister and Worthington (1951), Barrett (1963), Richardson (1976), and Parker (1971). The eddy fluctuations discussed in the literature are usually associated with the Gulf Stream, but eddies of similar characteristics occur in the other oceans. The typical eddy is a low frequency mesoscale phenomenon with a diameter between 100 and 200 kilometers. Robinson (1976) described the mid-ocean eddy as a feature orders of magnitude more energetic than the main flow. These eddies exist as cyclonic and anti-cyclonic rings extending from the surface to the bottom as measured in the MODE-I experiment.

Only eddies the diameter of one station pair or greater are detectable by the method used in this thesis. Most of the eddies persist with depth through the surface, central and intermediate water, and then reverse their direction of rotation in the deeper regions. This reversal of circulation with depth has been reported in the Northern Hemisphere by McCartney, Worthington, and Schmitz (1978).

Figures 17 through 19 indicate the derived circulation system, depicting a hypothetical gyre pattern for the South Atlantic which best explains some of the observed features. All mass units are in terms of 10^{12} gm/sec.

Figure 17. Circulation Patterns Based on Mass Transport Vectors: Upper Water.

Figure 18. Circulation Patterns Based on Mass Transport Vectors: Intermediate Water.

Figure 19. Circulation Patterns Based on Mass Transport Vectors: Deep and Bottom Water.

1. The Circulation in the Upper Water

The Benguela Current, powered mainly by the prevailing southeast trades, is a slow-moving current flowing north along the western coast of Africa. It is most constant in speed and direction between Cape Agulhas and 25°S with well-defined nearly stationary boundaries. North of this region there is a confused coastal part and a steady oceanic part of the current (Boisvert, 1967). Figure 17 shows the narrow flow at 30°S broadening and becoming more zonal as it progresses northward. A net northward flow of 15.6 units is comparable with 16 units derived by Sverdrup et al. (1942) for the same current. Some convergence and sinking, 2.3 units, is seen in the area of the Subtropical Convergence Zone. The Atlantic South Equatorial Current is clearly seen as the more zonal westward flow between 16°S and 24°S. North of 15°S a more confused gyre pattern is pictured with large convergence, 16.8 units, between 15°S and 8°S. The cyclonic gyre centered at 16°S, 17°E matches geostrophic calculations by Moroshkin et al. (1967). The less distinct westward flow of the Atlantic South Equatorial Current between 8°S and 20°S matches the flow described by Mazeika (1968) who detected both surface and subsurface geostrophic currents flowing eastward in this region.

Notably absent in this depiction is the expected strong Brazil Current which flows southwest parallel to the Brazil coast. Sverdrup et al. (1942) estimated 10 units of transport in a southerly direction across 30°S for the Brazil Current as compared to only one unit in Figure 17. Indeed, further north the Brazil Current even appears reversed. In view of the fact that the surface currents for the area compare favorably with Sverdrup's estimates, and yet the volume transports do not, the disagreement may stem from the great variability in the Brazil Current.

The Brazil Current is the southward extension of the Atlantic South Equatorial Current which divides at approximately 10°S. The seasonal boundaries and speeds are more variable than most other major currents and its variation in speed and direction is greater than the Atlantic South Equatorial Current from which it originates. Numerous counter-currents exist from seasonal increases in the river discharge of the Rio de la Plata, a coastal extension of the Falkland Current, and strong tidal rotations. The surface currents particularly exhibit both clockwise and counterclockwise rotations from tidal influences with reversals and diurnal inequalities adding to the confusion (Boisvert, 1967).

The variability of the Brazil Current could affect this study in several ways. If the Brazil Current were exceptionally weak at the time of measurement the lack of influence in the surface and central waters would be explained. This study of circulation patterns by mass transport vectors indicates that the strength of the southward flowing western ocean boundary current is concentrated in the Deep and Bottom Water (Figure 19).

Secondly, if the Brazil Current were very narrow in the upper reaches of the water column, its contribution to the mass transport would be small due to the reduced cross sectional area through which it flows. The depiction of circulation through the vertical cross sections at each latitude are to be found in Appendix III; it is apparent that the southward flowing currents in the region of the Brazil Current are of high velocity but small in areal extent.

Thirdly, a local anomaly in the level of no motion would cause an error in the absolute velocities which would reduce the effect of the Brazil Current. It is doubtful that such an error would extend across the entire cross section since the remainder of the circulation picture closely matches observations and previous estimates of volume transports.

Finally, the more northward extension of the Falkland Current and more southward extension of the Guiana Current during the local autumn (March-May) season, when observations for the 8°S, 16°S, and 32°S cross sections were conducted, may explain the reduced value for southward transport.

Sverdrup's values for transport are in terms of volume transport converted to cm 3/sec, whereas this study used mass transport, with gm/sec units. A comparison by Cummings (1977) showed less than a 2.7% error in equating these two transports.

2. The Circulation in the Intermediate Water

Quantitative volume transport information below the surface of the South Atlantic is scarce. Sverdrup et al. (1942) estimates a net northward transport across 30°S of 9 units for the intermediate level compared with the 16.7 units obtained in this study across 32°S. For the remaining latitudes general trends are apparent. Some deeper elements of the Benguela Current and Atlantic South Equatorial Current systems are evident in the western and middle portion of Figure 18 at these depths. The transports are generally weaker in this layer than for any other and circulation patterns are not well defined.

3. The Circulation in the Deep and Bottom Water

The primarily southward transport of deep water normally observed in current studies is verified in Figure 19. There is a distinct southward mass transport along the westward boundary and a total net southward transport across 16°S, 24°S, and 32°S. Sverdrup's (1942) estimate of a southward transport of 18 units by the deep water is less than one half of the estimate of 42 units obtained here. The northward flowing Antarctic Bottom Water was not detected by the Nansen casts and is not seen in Figure 19. Consequently, the computer attributed its contribution

to the more southerly flow of the Deep Water by default. The northward contribution from Antarctic Bottom Water is only approximately 3 units at 30°S according to Sverdrup et al (1942). Therefore, the abnormally high estimate of mass transport for Deep and Bottom Water combined is not explained by lack of detecting geostrophic currents in the Bottom Water. It does represent an approximation for geostrophic transport based on accurate station data.

VI. CONCLUSIONS

This study used the classical dynamic approach for calculating geostrophic currents to determine mass, salt, and heat transports using oceanographic station data. The results showed an equatorward heat flux in the subtropical South Atlantic at all the latitudes studied. The direction of the flow agreed with the majority of previous estimates by Sverdrup et al. (1942), Bryan (1962), Bennett (1978), and Model (1950). The magnitude, however, was in most cases greater than previous works, with rough agreement with Bryan (1962) at 16°S, and values almost twice as large as the average for Bennett's results for 24°S and 32°S. It is concluded that this unexpected equatorward heat transport is due to warmer surface currents with a net northward flux carrying more energy northward than the deeper cooler waters carry southward.

A level of no motion was experimentally determined in the subtropical South Atlantic which had a trend of deepening with increasing latitude similar to previous results, but did not deepen as sharply with increasing latitude as that of Neumann (1966). The level of no motion was closely related to the sigma-t surface of $\sigma_{\rm t}$ = 27.57 and was most often located near the bottom-most boundary of the Antarctic Intermediate Water mass.

The method employed also provided a useful picture of the absolute geostrophic velocities to be expected in the region. The derived circulation based on mass transport figures corresponds closely with observed circulations, and for the first time demonstrate a quasi-synoptic view of the major transport mechanisms in the South Atlantic.

APPENDIX A: GEOSTROPHIC DATA

	STATION	######################################	0.01869
	DEEP AND BOTTOM		-5.22625
GRAMS/SEC! X E12	ANTARCTIC		12.78718
MASS TRANSPORT UNITS ARE	S .ATLANT IC	04#04010114140001#WHITHYWATIO#000000000000000000000000000000000000	-1-32696
	SURFACE		-6.21528
	STAT ION NUMBERS	00000000000000000000000000000000000000	TOTALS

	STATION	1111	-17.75451
	DEEP AND BOTTOM	0.000000000000000000000000000000000000	-178.54060
GRAMS/SEC) X E12	ANTARCTIC INTERMED	2	440.85083
SALT TRANSPORT UNITS ARE	S - ATLANTIC		-47.18784
	SURFACE		-232.87947
	STAT 10N NUMBERS	11111111111111111111111111111111111111	TOTALS

	TOTAL	1111 12050 120	-62,98145
9	BOTTOM		-1360.01392
COX ES	INTERMED	2	3553.36621
TRANSPO UNITS A	CENT RAL		-382,53979
2	SURFACE		-1 853, 793 95
0, 141	NUMBERS	00000000000000000000000000000000000000	TOTALS

	STATION		-0.01010
	DEEP AND BOTTOM		29.49049
GRAMS/SEC! X E12	ANTARCTIC INTERMED		-5.12388
MASS TRANSPORT UNITS ARE (S - ATLANTIC CENTRAL	0	-13.13231
	SURFACE		-11.24442
	STAT 10N NUMBERS	ローコーコーコーコーコーコーコーコーコーコーコーコーコーコーコーコーコーコーコ	TOTALS

7	•		
,	2	L	

	STATION		-21.43213
	DEEP AND BOTTOM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1029.91431
AT 1 6 DEGREES SOUTH	ANTARCTIC		-176.45419
SALT TRANSPORT A	S.ATLANT IC		-461.25879
	SURFACE		-413 .63354
	STAT JON NUMBERS		TOTALS

STATION	1	-366.43750
DEEP AND BOTTOM		8131.60547
(CAL/SEC) X E12 ANTARCTIC		-1424.19434
HEAT TRAN SPORT UNITS ARE S-ATLANTIC		-3745.13647
SURFACE		-3328.71582
STAT 10N NUMBERS	11111111111111111111111111111111111111	TOTALS

	STATION	044-44-000-4-1-00-1-1-0-1-1-1-1-1-1-1-1-	-0.02673
	DEEP AND BOTTOM	0011000001444010011011411	22.35007
H			
24 DEGREES SOU MS/SEC) X E12	ANTARCT IC INTERMED	00000000000000000000000000000000000000	-1.99157
AT			
MASS TRANSPORT UNITS ARE (S. ATLANTIC	00-0000	-16.98189
	SURFACE	01400000000000000000000000000000000000	-3.40335
	STATION NUMBERS	44444444444444444444444444444444444444	TOTALS

ちょうきゅうこうかてきまるとうちょうちょうちょうしょうしょうちょうしょうしょうちょうしょう

	STATION		-8.05493
SALT TRANSPORT AT 24 DEGREES SOUTH UNITS ARE (GRAMS/SEC) X E12	DEEP AND BOTTOM		779.98511
	ANTARCTIC		-68.17680
	S. ATLANTIC		-557.16504
	SURFACE		-122.69826
	STAT ION NUMBERS	44444444444444444444444444444444444444	TOTALS

	STATION	11	-238.72266
ОТН	DEEP AND BOTTOM		6170.85547
CAL/SEC! X E12	ANTARCT IC INTERMED		-554.42651
HEAT TRANSPORT UNITS ARE	S.ATLANTIC CENTRAL		-4861.37500
	SURFACE		-993.78101
	STATION NUMBERS	44444444444444444444444444444444444444	TOTALS

,	-	١	2	2

	STATION	08544440404404404444444600044444646464666666	0.01755
	DEEP AND		42.82959
32 CEGREES SOUTH	ANT ARCT 1C INTERMED		-16.78152
MASS TRANSPORT AT	S. ATLANTIC CENTRAL		-25.17276
	SURFACE	00440000004000000000000000000000000000	-0.85776
	STATION NUMBERS	α in a rank to the total control of the total control of the total	TOTALS

STATION		-2 58.30859
DEEP AND		11799-19141
Callsect X E12 ANTARCTIC		-4663.28906
HEAT TRANSPORT UNITS ARE S.ATLANTIC		-7184.11323
SURFACE		-250.10114
STATION	ณณะเพณฑนณณณะและเพณฑนณณณณณณณณณณณณณณณณณณณณ ๓๒๓๒๓๑๓๑๑๓๓๑๓๑๓๑๓๑๓๑๓๑๓๑๓๑๓๓๓๓๓๓๓๓๓๓๓๓	TOTALS

SALT TRANSPORT AT 32 DEGREES SOUTH UNITS ARE (GRAMS/SEC) X E12	STATION		017.
	DEEP AND BOTTCH		131.67
	ANTARCT IC INTERMED		7954407
	S. ATLANTIC CENTRAL		1111100
	SURFACE		76.67
	STATION	แบลเป็นเนนนณะเนนาเนนนนนนนนนนนนนนนนนนนนนนนนนนนน	

APPENDIX B

VERTICAL CROSS SECTIONS

Appendix B illustrates vertical cross sections of velocity, and transports of mass, salt, and heat for each latitude. These data were first interpolated to a rectangular grid covering the cross section by a computer subroutine named IBCIEU and then contoured by a subroutine named CONTUR. In executing CONTUR, the data field was first scanned for the highest and lowest values and then contour levels were drawn between them at thirteen intervals. The central values of maxima or minima were labeled, as were exterior contour segments. Since the contour intervals are determined by a data scan in each case, they are not identical for each chart but can be determined from the labels.

The one-inch grid superimposed on the diagrams represents depths in the vertical of 50, 1084, 2118, 3152, 4186, and 5220 meters for every chart. However, the horizontal extent represents the length of the ship's track and is different for each latitude. The values in kilometers per inch for 8°S, 16°S, 24°S, and 32°S are 163, 290, 314, and 169 respectively.

Units are: velocity, cm/sec; mass transport, gm/sec \times 10 2 ; salt transport, gm/sec \times 10 9 ; and heat transport, cal/sec \times 10 9 .

Negative values indicate northward transports.

8°S MASS TRANSPORT

8°S SALT TRANSPORT

8°S HEAT TRANSPORT

16°S VELOCITY

16°S MASS TRANSPORT

16°S SALT TRANSPORT

16° HEAT TRANSPORT

24° MASS TRANSPORT

24°S SALT TRANSPORT

24° HEAT TRANSPORT

32°S VELOCITY

32° MASS TRANSPORT

32°S SALT TRANSPORT

32° HEAT TRANSPORT

APPENDIX C: COMPUTER PROGRAM

```
| The control of the 
    15/02/25
  78326
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2000
LEVEL
    9
  2
  FURTRAN
                                                0016
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3029
                                                                                                                                                                                                                                                                                                                                                                                                                                          001
```

MAX NUMBER OF STANCARD DEPTHS 15 48 N.SC=48 N.SC=48 REAL THE N.C. OF GECSTROPHIC CURRENTS AND TRANSPURTS TO BE CALCULATED READ (5,13) NGC READ IN THE NUMBER OF SCUARES CURRESPONDING TO THE AREA READ IN THE LAST COMPUTED GEOSTROPHIC VELOCITY	SU FORMAT(116F5.1) 1F (NGC.EC.0) GU TU 410 READ (5.5) (NPA(I), NPB(I), SLEV(I), I=1, NGC) READ (5.5) (NPA(I), NPB(I), SLEV(I), I=1, NGC) 410 NFA(NGC+1)=0 DC 41 L=1, 60 READ HEADING CARD, CHECK FOR END OF DATA, THEN	READ (1, 13, ENC=32) NOV, (NSTA(L,K),K=1,3),ALT(L),ALM(L),ALN(L), 1Ah/(L),(10ATE(L,K),K=1,3) 1	CALL LGTP IS SUBRCUTINE TC COMPUTE INTERPOLATED VALUES CALL LGTP(NDV.D.T.NSD.SC.ST.NA) CALL LGTP(NDV.D.T.NSD.SC.ST.NA) CALL LGTP(NDV.D.T.NSD.SC.ST.NA) CALL LGTP(NDV.D.T.NSD.SC.ST.NA) CALL LGTP(NDV.D.T.NSD.SC.ST.NB) CALL LGTP(NDV.D.T.NSD.SC.ST.NB) CALL LGTP(NDV.D.T.NSD.SC.ST.NB) CALL LGTP(NDV.D.T.NNB) CALL LGTP(NDV.D.ST.NSD.SC.ST.NB) CALL LGTP(NDV.D.ST.NB) CALL LGTP(NDV.D.ST.
10 00 00000			, , , , , , , , , , , , , , , , , , ,
00.30	000000 000000 0000000 0000000 0000000	00044 00045 00045 00045	201020202020 201020202020 2010202020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 20102020 2010

```
hR ITE (6.16)

CC 29 I=1, CV

hR ITE (8.21) D(1), T(1), T(1), S(1), IS(1), SGP(1), C2(1), TO(1), 10 IN, INFC(1, J), J=1,4)

hR ITE(8, 12)

hR ITE(6, 13)

hR ITE(6, 19)
VIII I.L)=(XTEMP(I.L)+XTEMP(I+1,L))*.5

VSL(I.L)

NLT=ALT(L)

NLN=ALN(L)

NRITE (6.10) (NSTA(L.K),K=1,3),NLT,ALM(L),NLN,ANM(L),

NRITE (6.10)

NRITE (6.10)

NRITE (6.10)

NRITE (6.10)

NRITE (6.10)

NRITE (6.10)
```

```
3999
            100
   500
      501
                      5003
                          4009
                           7000
                            6001
                              7001
```

```
15/00/51
11ATE = 78726
4
MATRI
                    100
             9100
               5100
                0021
                   6003
                  2700
```

G LEVEL 21 GFOCUR DATE = 76339 17/35/21	SCERLUTINE GECCUP (HA, ACH, NB, BDH, SD, BASE, XZ, VEL, NNN, DIST,	LINENSIGN 4(48), Y (60), Y (60), FL (48, 60), WK (165) RF 12	LEGICAL*1 LIGG3/.TRUE.,.TRUE.,TRUE./ LINENSICN SCUARE(60) CIPENSICN APASST(40),ASALTT(40),AHEATT(40),XMSUP(40),TE-18UM(40), DSSUM(40),YDE(48,60),YTT(40,YSL(40,60),AVDENS(40),AVTEMP(43),	LO ECEMENT (154, CEPTH BYNET BYNET (48), VEL(48), AMB(43), AVI(48) LO ECEMENT (154, CEPTH BYNET BYNET BIFF HI REL VEL ASS V JEL AVERAGE AVERAGE AVERAGE WATER MASS / 15x, MASS V ZEL AVERAGE AVERAGE AVERAGE WATER MASS / 15x, MASS V ZEL AVERAGE AVERAGE AVERAGE MATER MASS / 15x, MASS V	11 FLEFFIT (12X, F5.0, 2X, 3 (F9.5, 1X), 2 (F8.2, 2X) / 67X, F12.5, 3X, F10.2, 4X, F1	12 FCEMBT (***** LEVEL OF NG MCTION MUST DE EULAL TO A STANDARD DEPT	14 FLEGITI 1. 10x. IDIAL VOLUME TRANSPORT IS COMPUTED BY SUMMING INCR FERENTAL THANSPORTS ABOVE LEVEL OF NO MOTION: 1/5x, 1014 TEANSPORT 2 FERENCOIGLLAR TO THE PLANE OF THE STATIONS IS ", F7.3, SVERCEOPS	15 FERRITAL TO " ** VALUES IN THIS COLUMN REPRESENT TRANSPORTS IN LAYER	10 FCFMAT (7/13X, CEPTH*, 10X, 488 VOL., 8X, 488 MASS*, 7X, 488 SALT*, 7X 1, 408 FCFM*, 12X, M*, 12X, 1RANSFORT*, 6X, 1RANSFORT*, 7X, 10X, 2000 FCFM*, 8X, 10X, 10X, 10X, 10X, 10X, 10X, 10X, 10	17 F(FMAT (122x, F5.0/22x, 7(F15.5)) 13 F(F1AT ('0', 32x, **, 14x, **, 14x, **, 14x, **, 20x, *CUMULATIVE TOTALS	11 (L .61. 1) GC TC 50 YY=0. LC 1 J=1,47	1 X(_)=(SU(J)+SE(J+1))/2. XL(1)=50. L(S 1=1.4/	3 XI (I+1)=(I+11C.)+50. CC 2001 1=1,46 CC 2001 0=1,00
CHIFAN IV G LEVEL	1000	0000 00000 00000	\$ 3000 \$ 2000 \$	95000 9000	2010	1100	2000	6013	4100	0015	6617 6618 6618	221c	222
Ü	3	333	333	33	3	7	3	0	5	22	300	223	555

BETSLT=0.0 CIRSLT=C.0 GENSLT=C.0 GENSLT=C.0 CERSLT=C.0 SECSLT=C.0 CONTRIBLO.0 CONTRIBLO.0 CENTRIBLO.0 CENTRIBLO.0 CENTRIBLO.0 SECHT=0.0 CENTRIBLO.0 SECHT=0.0 CONTRIBLO.0 SECHT=0.0 SE

```
277.411 .ANC.
                                                  AND. ((34.65 .LE. AVSAL(J)) .AND.
                                                      ·LE.
                                                      (AVTEMP(J)
```

```
6.111 SU(J), ADH(J), BDH(J), AMB(J), RVEL(J), VEL(J), AVDENS(J), 6.31, 10cv...
                                                                                                                                     105X, A.A. CIRCUMPCLAR.
```

CODECECCOCCOCCC 0190 0191 0191

CIRMAS = CIRPAS + AMASST(J)

CIRLI = CIRLI + AHEATT(J)

ANNET = CIRLI + AHEATT(J)

ANNET = CIRLI + AHEATT(J)

ANNET = AINAS + AHEATT(J)

TIRLI = AINAS + ANASS +

```
1CPMAS=TCNKAS+APASST(J)
1CNAS=TCNKAS+APASST(J)
1CNSI=1CN-LT-APACHTIJ
1CNSI=1CN-LT-APACHTIJ
1CNSI=1CN-LT-APACHTIJ
1CNSI=1CN-LT-APACHTIJ
1CNAS-TCCENST
1CENST
1CENST
1CCNAS-APACST(48)
1CCNST=TCNSITAREATT(48)
1CCNST=TCNSITAREA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      35
```

TOUR DESCRIPTION TO THE PROPERTY OF THE PROPER

SCENT = SCHI + AAHEAIIIJ | SCHI + AAHEAIIIJ | SCHI

```
1=1,N
(6,17) SD(1),AVT(1),APASST(1),ASALTT(1),AHEATT(1),XMSUP(1),S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6.17) SD(1), AVT(48), AMASST(48), ASALTT(48), AMEATT(48), XMSUM * (44), SSUP(46), TEMSUM(48) * MSTE(c. 1005) * MSTE(c. 1005) * FCRMATT(11x, "BOTTOM") * FCRMATT(11x,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF STATION B IS EAST OF STATION A, A NEGATIVE SIGN IN THE "ABS VEL" COLUMN IMPLIES A SOUTHWARD FLOWING CURRENT.
TLNHT=TUNHI+AHEATT(J)

16 11 -1 -1 N) 60 TO 39

16 11 -1 N) 60 TO 39

17 LNKMAS +4MASST(48)

18 LNKHT = UNKKAS +ASALTT(4E)

18 LNKHT = UNKKAS +ASALTT(4E)

18 CCNTINUE

60 CCNTINUE

60 CCNTINUE

70 LN FIFE(6,11) SD(N), ADH(N), EDF(N), AMB(N), RVEL(N), VEL(N)

71 LN FIFE(6,11) SD(N), ADH(N), EDF(N), AMB(N), RVEL(N), VEL(N)

72 LN FIFE(6,11) SD(N), ADH(N), EDF(N), AMB(N), RVEL(N), VEL(N)

73 LST FIFE(6,11) SD(N), ADH(N), EDF(N), AMB(N), RVEL(N)

74 LN FIFE(6,11) SD(N), ADH(N), EDF(N), AMB(N), RVEL(N)

75 VI=VI+AVI(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NRITE (6.16)
N=N-1
DC 62 I=1,N
62 NRITE (6.17)
15 LM (1), TEMSUM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LUUU
```



```
C
```

```
11+
     511
```

3450 3 450 6 3450 3 450 5 3450 450 45 5 רכטרטכטטכ

BIBLIOGRAPHY

- Angstrom, A. K., "Evaporation and precipitation at various latitudes and the horizontal eddy convectivity of the atmosphere," <u>Arkiv for</u> <u>Matematik</u>, Astronomi och Fysik, v. 20, 12 pp., 1925.
- Baker, T. L., Mass, Salt and Heat Transport Across Seven Latitude Circles in the North Atlantic Ocean: A Description of the General Circulation Based on Geostrophic Calculations from International Geophysical Year and Adjacent Data, Master's Thesis, Naval Postgraduate School, Monterey, 1978.
- Bennett, A. F., "Poleward Heat Fluxes in Southern Hemisphere Oceans," Journal of Physical Oceanography, v. 8, no. 5, 1978.
- 4. Bialek, E. L., Handbook of Oceanographic Tables, U. S. Naval Oceanographic Office, 1966.
- Bjerknes, V.F.K., and others, <u>Physicalische Hydrodynamic</u>, Julius Springer, 1933.
- 6. Boisvert, W. E., Major Currents in the North and South Atlantic Oceans between 64°N and 60°S, Naval Oceanographic Office, TR-193, 1967.
- Bryan, K., "Measurement of Meridional Heat Transport by Ocean Currents," Journal of Geophysical Research, v. 67, no. 9, pp. 3403-3414, 1962.
- 8. Budyko, M. I., N. Epinova, L. Zubenok, and L. Strokina, "The Heat Balance of the Earth's Surface," Izv. Akad. Nauk. SSSR, no. 1, 1962.
- Budyko, M. I., <u>The Heat Balance of the Earth's Surface</u>, U. S. Department of Commerce, 1956.
- 10. Cummings, W. J., A Description of the General Circulation in the North Atlantic Ocean Based on Mass Transport Values Derived from IGY (1957-1958) Temperature and Salinity Data, Master's Thesis, Naval Postgraduate School, Monterey, 1977.
- 11. Defant, A., Die absolute Topographic des physisikalischen Meeresniveaus und der Druckflachen, sowie die Wasserbewegungen im Atlantischen Ozean. Wiss. Ergebn. D. Deutschen Atlantischen Exped. auf d. Forschungs u. Vermessungsschiff 'Meteor' 1925-1927, v. VI (2 Teil., 5 Leif.), Walter De Gruyter and Co., 1941.
- 12. Defant, A., Physical Oceanography, v. 1, Pergamon Press, 1961.
- 13. Emig, M., "Heat Transport by Ocean Currents," <u>Journal of Geophysical</u> Oceanography, v. 72, no. 10, 1967.

- 14. Ferrel, W., A Popular Treatise on the Winds, p. 163-164, Wiley, 1890.
- Fomin, L. M., The <u>Dynamic Method in Oceanography</u>, pp. 117-148, Elsevier Publishing Co., 1964.
- 16. Fuglister, F. C., Atlantic Ocean Atlas of Temperature and Salinity
 Profiles and Data from the International Geophysical Year of 1957-1958,
 v. 1, Woods Hole Oceanographic Institution, 1960.
- 17. Fuglister, F. C., Gulf Stream '60, Ref. No. 64-4, Woods Hole Oceano-graphic Institution, Woods Hole, Mass., pp. 265-383, 1964.
- 18. Greeson, T. D., Mass, Salt, and Heat Transport Across 40°N Latitude in the Atlantic Ocean Based on IGY Data and Dynamic Height Calculations, Master's Thesis, Naval Postgraduate School, Monterey, 1974.
- Haltiner, G. J. and Martin, F. L., <u>Dynamic and Physical Meteorology</u>, p. 13, McGraw-Hill, 1957.
- 20. Hidaka, K., "Depth of motionless layer as inferred from the distribution of salinity in the ocean," <u>Trans. Am. Geophys. Union</u>, v. 30, no. 3, 1940.
- 21. Ivers, W. D., The Deep Circulation in the North Atlantic, with Especial Reference to the Labrador Sea, Ph.D. Thesis, University of California, San Diego, 1975.
- 22. Iselin, C.O'D., "Preliminary report on long period variations in the transport of the Gulf Stream System," <u>Papers in Physical Oceanography</u> and Meteorology, no. 8, 1940.
- 23. Iselin, C.O'D., A Study of the Circulation of the Western North Atlantic, Papers in Physical Oceanography and Meteorology, 4, (4), 101 pp., 1936.
- 24. Jacobsen, J. P., "Contribution to the hydrography of the Atlantic," Medd. Komm. Havundersgelser, Ser. Hydrografi, v. 2, 1916.
- 25. Jung, G. H., "Note on the Meridional Transport of Energy by the Oceans," Journal of Marine Research, v. XI, no. 2, pp. 139-146, 15 Nov 1952.
- Jung, G. H., Heat Transport in the North Atlantic Ocean, Ph.D. Thesis,
 The A.& M. College of Texas, College Station, TX, 1955.
- Kimball, H. H., "Radiation Charts," Monthly Weather Review, v. 56, 1928.
- Maury, M. F., <u>The Physical Geography of the Sea</u>, 6th ed., Harper, 1856.
- 29. Mazeika, P. A., "Eastward Flow within the South Equatorial Current in the Eastern South Atlantic," <u>Journal of Geophysical Research</u>, v. 73, no. 18, 1968.

- 30. McCartney, M. S., Worthington, L. V., and Schmitz, W. J., "Large Cyclonic Rings from the Northeast Sargasso Sea," <u>Journal of Geophysical Research</u>, v. 83, no. C2, pp. 901-914, 20 February 1978.
- 31. Model, F., "Berechnungsmethode fur die Uberfragung von Warme durch Wassermassen (Stromungen) unter verschiedenen physikalischen Bedingungen," <u>Deutsche Hydrographische Zeitschrift</u>, Unpublished Scientific Report No. 71, 1950.
- 32. Moroshkin, K. V., V. Bubnov, and R. Bulatov, "Water Circulation in the Eastern South Atlantic," Oceanology, v. 10, no. 1, pp. 27, 1970.
- 33. Neumann, G., Ocean Currents, Elsevier, 1968.
- 34. Neumann, G. and Pierson, W. J., Jr., Principles of Physical Oceanography, Prentice-Hall, pp. 244-247, 1966.
- 35. Newton, C. W., "Estimates of Vertical Motions and Meridional Heat Exchange in the Gulf Stream Eddies, and a Comparison with Atmospheric Disturbances," <u>Journal of Geophysical Research</u>, v. 66, 1961.
- 36. Parker, C. E., "Gulf Stream Rings in the Sargasso Sea," Deep-Sea Research, v. 18, pp. 981-993, 1971.
- 37. Parr, A., "Analysis of current profiles by a study of pycnomeric distortion and identifying properties," <u>Journal of Marine Research</u>, v. 4, 1938.
- Richardson, P., "Gulf Stream Rings," <u>Oceanus</u>, v. <u>19</u>, no. 3, pp. 65-68, 1976.
- 39. Robinson, A. R., "Eddies and Ocean Circulation," Oceanus, v. 19, no. 3, pp. 2-17, 1976.
- 40. Sellers, W. D., Physical Climatology, University of Chicago Press, 1965.
- 41. Sherfesee, L., Mass, Salt, and Heat Transport in the South Pacific, Master's Thesis, Naval Postgraduate School, Monterey, 1978.
- 42. Stommel, H., "On the determination of the depth of no meridional motion," Deep Sea Research, v. 3, pp. 273-278, 1956.
- 43. Stommel, H. and Schott, F., "The Beta Spiral and the determination of the absolute velocity field from hydrographic station data,"

 <u>Deep-Sea Research</u>, v. <u>24</u>, pp. 325-329, 1977.
- 44. Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., The Oceans:
 Their Physics, Chemistry, and General Biology, Prentice-Hall, 1942.
- Sverdrup, H. U., Oceanography, Handbuch der Physik, Springer Verlag, 1957.

- 46. Vander Haar, T. H. and Oort, A. H., "New estimates of energy transport by Northern Hemisphere oceans," <u>Journal of Physical Oceanography</u>, v. 3, no. 2, pp. 169-172, 1973.
- 47. Williams, J., Higginson, J. J., and Rohrbough, J. D., Sea and Air:

 The Marine Environment, 3d Ed., p. 189, Naval Institute Press, 1973.
- 48. Wust, G., "Bottom Water and the Distribution of the Deep Water of the Atlantic," Trans-340, U.S. Naval Oceanographic Office, Washington, 1967.
- Wust, G., "Current Velocities, Deep and Bottom Waters," Trans-348,
 U.S. Naval Oceanographic Office, Washington, 1967.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Department of Oceanography, Code 68 Naval Postgraduate School Monterey, California 93940		3
2.	Commander Naval Oceanography Command NSTL Station, Mississippi 39529		1
3.	Office of Naval Research Code 481 NSTL Station, Mississippi 39529		1
4.	Dr. Robert E. Stevenson Scientific Liaison Office, ONR Scripps Institution of Oceanography La Jolla, California 92037		1
5.	SIO Library University of California, San Diego P. O. Box 2367 La Jolla, California 92037		1
6.	Department of Oceanography Library University of Washington Seattle, Washington 98105		1
7.	Department of Oceanography Library Oregon State University Corvallis, Oregon 97331		1
8.	Commanding Officer Fleet Numerical Weather Central Monterey, California 93940		1
9.	Commanding Officer Naval Environmental Prediction Research Facility Monterey, California 93940		1
10.	Department of the Navy Commander Oceanographic System Pacific Box 1390 Pearl Harbor, Hawaii 96860		1
11.			2

12.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
13.	Director Naval Oceanography Division (OP-952) Office of the Chief of Naval Operations Washington, D. C. 20350	1
14.	NORDA NSTL Station, Mississippi 39529	1
15.	Dr. Glenn H. Jung, Code 68Jg Department of Oceanography Naval Postgraduate School Monterey, California 93940	2
16.	Dr. J. J. von Schwind, Code 68Vs Department of Oceanography Naval Postgraduate School Monterey, California 93940	1
17.	LT. J. R. Mason, U.S.N. 4190 Fairfax Drive Columbus, Ohio 43220	2
18.	Dr. Abraham H. Oort Geophysical Fluid Dynamics Laboratory/NOAA Princeton University P. O. Box 308 Princeton, New Jersey 08540	1
19.	Director of Defense Research and Engineering Office of the Secretary of Defense ATTN: Office, Assistant Director (Research) Washington, D. C. 20301	1
20.	Office of Naval Research ATTN: Code 480 ATTN: Code 460 ATTN: Code 102-OS 800 N. Quincy Street Arlington, Virginia 22217	3 1 1
21.	Director Naval Research Laboratory ATTN: Library, Code 2620 Washington, D. C. 20390	1
22.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93940	1

23.	NODC/NOAA	1
	Rockville, Maryland 20882	
24.	ONR Branch Office	1
	1030 E. Green Street	
	Pasadena, California 91106	
25.	Dr. Kern Kenyon	1
	A-030	
	University of California	
	Scripps Institution of Oceanography	
	La Jolla, California 92093	
26.	Prof. J. L. Reid, Jr.	1
	A-030	
	University of California	
	Scripps Institution of Oceanography	
	La Tolla California 92093	