Engineering Statics - 01 Math Review Handout

3) Solve
$$c^2 = a^2 + b^2 - 2bc \cos C$$
 for $\cos C$.

4) Solve
$$b^2 = a^2 + c^2 - 2ac \cos B$$
 for B.

$$Q = \frac{CD^{2.63} \left(\frac{h_L}{L}\right)^{0.54}}{279000}$$

5) Solve the equation for h_L , then evaluate h_L using the values Q=135, C=120, D=202.7 and L=1200

6) Use the Pythagorean Theorem to determine the lengths of *CE* and *CB*

ABCD is a rigid (i.e., it does not deform) plate, pinned at When horizontal force *P* is applied at *A*, *ABCD* rotates 550 mm about *C* and *A* deflects 2.45 mm horizontally rightwards. Assume that *BF* remains horizontal and that *DE* remains vertical. 360 mm 16) Determine δ_{BF} , the change in length of BF. 17) Determine δ_{DE} , the change in length of DE. 290 mm 18) Show that right triangles $\triangle ABC$, $\triangle ABD$ and $\triangle ACD$ all have the \boldsymbol{B} same angles (i.e. they are all similar). \boldsymbol{D} 19) Given that AC = 100 mm and AD = 65 mm, determine $\angle ACD$ and $\angle ABD$.

24) and 25) Find the values of x and y

$$F_{BC} \sin 15^{\circ} + F_{AC} \cos 35^{\circ} + 1030.1 = 0$$

 $F_{BC} \cos 15^{\circ} + F_{AC} \sin 35^{\circ} = 0$

26) and 27) Determine F_{AC} and F_{BC}

