Modelling and Optimization

INF170

#4:General LP

AHMAD HEMMATI

Optimization Group Dept. of Informatics University of Bergen

Fall Semester 2018

OPTIMIZATION MODEL

Page 2

- 1) Decision variables
- 2) Objective function
- 3) Constraints
- 4) Parameters
- 5) Sets

$$\min f(x)$$

$$st g(x) \le b$$

$$x \in X$$

1) Decision variables (or just variables)

The <u>unknown numerical value</u> which is pursued to find through the resolution of the model.

Examples:

x = Amount of crude oil to be processed this week

y = Capacity of a new production plant

z = "Yes" or "No" decisions

The <u>decision maker has control</u> on the value that the decision variables will take.

2) Objective function

Measure which allows to <u>evaluate</u> the performance of the different values that the variables can take.

Examples:

Minimize cost function C

Maximize a profit function P

Minimize carbon emissions E

Maximize fairness F

3) Constraints

Conditions that <u>restrict the values</u> of the decision variables. These

conditions define relations (\leq , = , \geq) the variables must satisfy.

Examples:

Total production ≤ Capacity

Number of carbon emissions ≤ Limit allowed

Output = Input * Conversion factor

4) Parameters

The parameters are <u>fixed values given beforehand</u> in the problem (the <u>decision maker has no control</u> on them when solving the optimization problem).

Examples:

Capacity

Budget

Demand...

5) Sets

The sets define the <u>domain of variables</u> and parameters.

Examples:

Set of customers

Set of production plants

 \mathbb{R}

{0,1}

DIET MODEL

Variables:

 x_{BEEF} : the number of packages of beef to be purchased

. . .

Objective function:

Minimize
$$3.19 x_{BEEF} + 2.59 x_{CHK} + 2.29 x_{FISH} + 2.89 x_{HAM} + 1.89 x_{MCH} + 1.99 x_{MTL} + 1.99 x_{SPG} + 2.49 x_{TUR}$$

Subject to (Constraints):

total percentage of vitamin "A" daily requirement met

$$60 x_{BEEF} + 8 x_{CHK} + 8 x_{FISH} + 40 x_{HAM} +$$

$$15 x_{MCH} + 70 x_{MTL} + 25 x_{SPG} + 60 x_{TUR} \ge 700$$

. . .

DIET MODEL

Minimize $3.19 x_{beef} + 2.59 x_{chk} + 2.29 x_{fish} + 2.89 x_{ham} + 1.89 x_{mch} + 1.99 x_{mtl} + 1.99 x_{spg} + 2.49 x_{tur}$

subject to A:

$$60 x_{beef} + 8 x_{chk} + 8 x_{fish} + 40 x_{ham} + 15 x_{mch} + 70 x_{mtl} + 25 x_{spg} + 60 x_{tur} > = 700$$

subject to C:

$$20 x_{beef} + 0 x_{chk} + 10 x_{fish} + 40 x_{ham} + 35 x_{mch} + 30 x_{mtl} + 50 x_{spg} + 20 x_{tur} > = 700$$

subject to B1:

$$10 x_{beef} + 20 x_{chk} + 15 x_{fish} + 35 x_{ham} + 15 x_{mch} + 15 x_{mtl} + 25 x_{spg} + 15 x_{tur} > = 700$$

subject to B2:

$$15 x_{beef} + 20 x_{chk} + 10 x_{fish} + 10 x_{ham} + 15 x_{mch} + 15 x_{mtl} + 15 x_{spg} + 10 x_{tur} > = 700$$

$$x_{beef} >= 0$$
; $x_{chk} >= 0$; $x_{fish} >= 0$; $x_{ham} >= 0$; $x_{mch} >= 0$; $x_{mtl} >= 0$; $x_{spg} >= 0$; $x_{tur} >= 0$;

SUMMATION AND "FOR ..." NOTATION

> Summation notation

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \sum_{j=1}^n a_j x_j$$

> "for ..." notation

$$a_{1,1}x_1 + a_{1,2}x_2 \le b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 \le b_2$$

$$a_{3,1}x_1 + a_{3,2}x_2 \le b_3$$

$$a_{i,1}x_1 + a_{i,2}x_2 \le b_i$$
 for $i = 1,2,3$

for
$$i = 1, 2, 3$$

DIET MODEL

Sets:

F = set of foods

N = set of nutrients

Parameters:

 a_{ij} = amount of nutrient j in food i, $\forall i \in F, \forall j \in N$

 $c_i = \text{cost per serving of food } i,$ $\forall i \in F$

 $Fmin_i$ = minimum number of required servings of food i, $\forall i \in F$

 $Fmax_i = \text{maximum allowable number of servings of food } i, \forall i \in F$

 $Nmin_i$ = minimum required level of nutrient j, $\forall j \in N$

 $Nmax_j = \text{maximum allowable level of nutrient } j,$ $\forall j \in N$

Variables:

 x_i = number of servings of food i to purchase/consume, $\forall i \in F$

Objective Function:

Minimize the total cost of the food

DIET MODEL

Minimize
$$\sum_{i \in F} c_i x_i$$

#Constraint Set 1: For each nutrient $j \in N$, at least meet the minimum required level.

$$\sum_{i \in F} a_{ij} x_i \ge N \min_j, \forall j \in N$$

#Constraint Set 2:For each nutrient $j \in N$, do not exceed the maximum allowable level.

$$\sum_{i \in F} a_{ij} x_i \leq N \max_j, \forall j \in N$$

#Constraint Set 3:For each food $i \in F$, select at least the minimum required number of servings.

$$x_i \ge Fmin_i$$
, $\forall i \in F$

#Constraint Set 4:For each food $i \in F$, do not exceed the maximum allowable number of servings.

$$x_i \leq F max_i$$
, $\forall i \in F$

MAXIMIZING PROFITS

```
var XB;
var XC;
maximize Profit: 25 * XB + 30 * XC;
subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B limit: 0 <= XB <= 6000;</pre>
subject to C limit: 0 <= XC <= 4000;
solve;
display XB, XC;
```

MAXIMIZING PROFITS

Set:

P, a set of products

Parameters:

 $a_j = tons \ per \ hour \ of \ product \ j, \ for \ each \ j \in P$

b = hours available at the mill

 c_j = profit per ton of product j, for each $j \in P$

 $u_j = maximum \ tons \ of \ product \ j, \ for \ each \ j \in P$

variables:

 $x_i = tons \ of \ product \ j \ to \ be \ made, for \ each \ j \in P$

Objective function:

 $Maximize \sum_{j \in P} c_j x_j$

Subject to (Constraints):

$$\sum_{j \in P} (1/a_j) x_j \le b$$

 $0 \le x_j \le u_j$, for each $j \in P$

MAXIMIZING PROFITS

```
set P;
param a {j in P};
param b;
param c {j in P};
param u {j in P};
var X {j in P};
maximize Total Profit: sum {j in P} c[j] * X[j];
subject to Time: sum \{j \text{ in } P\} (1/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];</pre>
```


Page 19

Maximize $25 x_B + 30 x_C$

Subject to:

$$x_B \ge 6000$$

$$x_C \ge 4000$$

Page 23

Page 24

$$c_1 x_1 + c_2 x_2$$

$$x_1 + x_2 \le 2b$$

$$|x_1 - x_2| \le b$$

$$x_1$$
, $x_2 \ge 0$

$$c_1 x_1 + c_2 x_2$$

$$x_1 + x_2 \le 2b$$

$$x_1 - x_2 \le b$$

$$x_1 - x_2 \ge -b$$

$$x_1$$
, $x_2 \ge 0$

Maximize
$$c_1 x_1 + c_2 x_2$$

Subject to:
$$x_1 + x_2 \le 2b$$

$$|x_1 - x_2| \ge b$$

$$x_1$$
, $x_2 \ge 0$

$$Maximize$$
 $c_1 x_1 + c_2 x_2$

Subject to:
$$x_1 + x_2 \le 2b$$

$$x_1 - x_2 \ge b - My$$

$$x_1 - x_2 \le -b + M(1 - y)$$

$$x_1$$
, $x_2 \ge 0$

IF-THEN CONDITION

Minimize
$$c_1 x + c_2 y$$

st: $g(x) \ge b$
 $x \ge 0 \text{ and } y \in \{0, 1\}$

$$If x > 0 \leftrightarrow y = 1
If x = 0 \leftrightarrow y = 0$$

$$x \le M y$$

$$y = 0 \quad y = 1$$

$$x = 0$$

Feasible region:

$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \le 5$$
 (3)

$$x_1 \leq 4 \qquad (4)$$

$$x_2 \ge 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \geq 0 \qquad (7)$$

No feasible solutions!

Feasible region:

$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 \qquad (4)$$

$$x_2 \ge 3 \qquad (5)$$

$$x_1 \geq 0$$
 (6)

$$x_2 \geq 0 \qquad (7)$$

max
$$3x_1 + 5x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 \quad (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \ge 0$$
 (7)

$$\max 3x_1 + 5x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \ge 0$$
 (6)

$$x_2 \ge 0$$
 (7)

max
$$3x_1 + 5x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 \quad (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \ge 0$$
 (7)

$$\max 2x_1 + 3x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 \quad (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \ge 0$$
 (7)

$$\max 2x_1 + 3x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \geq 0$$
 (7)

$$\max 2x_1 + 3x_2$$

s.t.
$$2x_1 + 3x_2 \le 10$$
 (1)

$$x_1 + 3x_2 \le 8$$
 (2)

$$x_1 + x_2 \leq 5$$
 (3)

$$x_1 \leq 4 (4)$$

$$x_2 \le 3$$
 (5)

$$x_1 \geq 0$$
 (6)

$$x_2 \ge 0$$
 (7)

max
$$2x_1 + 3x_2$$

s.t. $2x_1 + 3x_2 \le 10$ (1)
 $x_1 + 3x_2 \le 8$ (2)
 $x_1 + x_2 \le 5$ (3)
 $x_1 \le 4$ (4)
 $x_2 \le 3$ (5)
 $x_1 \ge 0$ (6)
 $x_2 \ge 0$ (7)

An optimal solution is a <u>feasible solution</u> with objective function value at least as good as any other feasible solution

The optimal value of an optimization model is the objective function value of any optimal solution

max
$$3x_1 + x_2$$

s.t. $-x_1 + x_2 \le 1$ (1)
 $x_1 - 2x_2 \ge -4$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)

max
$$3x_1 + x_2$$

s.t. $-x_1 + x_2 \le 1$ (1)
 $x_1 - 2x_2 \ge -4$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)

max
$$3x_1 + x_2$$

s.t. $-x_1 + x_2 \le 1$ (1)
 $x_1 - 2x_2 \ge -4$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)

 $x_1 = x_2 = x_1 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_2 = x_2 = x_1 = x_2 = x_1 = x_2 = x_1 = x_2 = x_$

N

max
$$3x_1 + x_2$$

s.t. $-x_1 + x_2 \le 1$ (1)
 $x_1 - 2x_2 \ge -4$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)

The model is "unbounded"

An optimization model is unbounded when feasible choices of values for the decision variables can produce arbitrarily good objective function values

 X_2

Consider the following LP. Note that c_1 and c_2 are unspecified.

min
$$c_1 x_1 + c_2 x_2$$

s.t.
$$x_1 + x_2 \ge 1$$
 (1)

$$2x_1 + x_2 \leq 9$$
 (2)

$$x_1 - x_2 \ge -1$$
 (3)

$$x_2 \le 3$$
 (4

$$x_1 \ge 0, x_2 \ge 0$$

- Suppose we have a unique optimal solution. Which points could it be, if any?
- Suppose "e" is an optimal solution. Which other points must also be optimal, if any?
- Suppose "f" and "h" are both optimal solutions. Which other points must also be optimal, if any?

Based on characteristics of:

- decision variables
- > constraints
- > objective function

- A decision variable is continuous if it can take on any value in a specified interval
 - Example: a nonnegative variable is continuous, since it can take on any value in $[0,+\infty)$
- A decision variable is integral if it is restricted to a specified interval of integers
 - > Sometimes referred to as discrete
 - > Special example: binary (0 or 1) variables are integral

- A function $f(x_1, ..., x_n)$ is linear (in $x_1, ..., x_n$) if it is a constant-weighted sum of $x_1, ..., x_n$
- Put another way, f can be written in the form

$$f(x_1, ..., x_n) = c_1x_1 + c_2x_2 + ... + c_nx_n$$

where c_1 , ..., c_n are constants

- Otherwise, a function is nonlinear
- An objective function can be linear or nonlinear

$$f(x_1, x_2, x_3) = 9x_1 - 17x_3$$

linear

$$f(x_1,x_2,x_3)=\frac{5}{x_1}+3x_2-6x_3$$

nonlinear

$$f(x_1, x_2, x_3) = \sum_{j=1}^{3} x_j$$

linear

$$f(x_1,x_2,x_3)=\frac{x_1-x_2}{x_2+x_3}$$

nonlinear

$$f(x_1, x_2, x_3) = x_1x_2 + 3x_3$$

nonlinear

• A constraint can be written in the form

$$g(x_1,\ldots,x_n)$$
 $\begin{cases} \leq \\ = \\ \geq \end{cases} b$

where $g(x_1, ..., x_n)$ is a function of the decision variables $x_1, ..., x_n$ and b is a specified constant

- The Constraint is
 - \triangleright linear if $g(x_1, ..., x_n)$ is linear in $x_1, ..., x_n$
 - > nonlinear if $g(x_1, ..., x_n)$ is nonlinear in $x_1, ..., x_n$
- We don't allow strict inequalities (< or >) in the optimization models we study

- An optimization model is a linear program (LP) if
 - > the decision variables are continuous,
 - the objective function is linear, and
 - > the constraints are linear
- An optimization model is a nonlinear program (NLP) if
 - the decision variables are continuous
 - the objective function is nonlinear or at least one of the constraints is nonlinear

min
$$12z_1 + 4z_3$$

s.t.
$$z_1 z_2 z_3 = 1$$

$$z_1, z_2 \geq 0$$

max
$$3z_1 + 14z_2 + 7z_3$$

s.t.
$$10z_1 + 5z_2 \le 25 - 18z_3$$

$$z_j \geq 0$$
 for $j = 1, \ldots, 3$

min
$$7z_1z_2 + 4z_1z_3 + 2z_1z_3$$

s.t.
$$\sum_{j=1}^{3} z_j = 2$$

$$z_j \leq 0$$
 for $j = 1, \ldots, 3$

nonlinear

linear

nonlinear

- An optimization model is an integer program if at least one of its decision variables is integral
- Finer classification:
 - If all variables are integral → pure integer program
 - Otherwise → mixed integer program

- An optimization model is an (mixed) integer linear program
 (MILP/ILP) if
 - (At least one/All) of its decision variables is integral,
 - the objective function is linear, and
 - > the constraints are linear
- An integer program is an integer nonlinear program (INLP) if
 - at least one of its decision variables is integral,
 - the objective function is nonlinear *or* at least one of the constraints are nonlinear

min
$$3w_1 + 14w_2 - w_3$$

s.t. $w_1w_2 \le 1$
 $w_1 + w_2 + w_3 = 10$
 $w_j \ge 0$ for $j = 1, \dots, 3$
 w_1 integer

max
$$19w_1$$

s.t. $w_1 \le w_2$
 $w_2 + w_3 = 10 + w_1$
 $w_2 \ge 1, w_3 \ge 1$

 $w_1 \geq 0$

(mixed) integer nonlinear

linear

- In general:
 - linear constraints and objective functions are preferred to nonlinear ones
 - continuous variables are preferred to integral variables
- Rule of thumb: when the optimal solution has values that are likely to be large enough so that fractions have no practical importance, using continuous variables is generally preferred.
- For example:
 - > 2,000,000 pounds of rice vs 2,000,001 pounds of rice
 - > 12 aircraft vs 13 aircraft

• Do <u>not</u> follow this rule in the exam/mandatory assignment unless it is clearly mentioned!

- Sometimes, "tricks of the trade" can be used to convert certain nonlinear programs into linear programs
- Some nonlinear programs can be solved "as quickly" as a linear program
- Some integer linear programs can be solved "as quickly" as a linear program
- Linear programs are "the holy grail"

- Classification of optimization models via characteristics of variables, constraints, and objective functions
 - linear programs
 - nonlinear programs
 - (pure and mixed) integer linear programs
 - > (pure and mixed) integer nonlinear programs
- Linear better than nonlinear
- Continuous better than integral

MODEL COMPLEXITY

- Model size
 - Number of variables
 - Number of constraints
- Mathematical formulations
 - Linear/ Nonlinear formulations
- Variables
 - Continuous/ Discrete
- Data
 - Deterministic/ Stochastic
 - Aggregated / Disaggregated

A GOOD MODEL

- Ease of understanding the model
- > Ease of detecting errors
- > Ease of computing the solution
- Units of measurement / scaling
- Modelling languages/ Solvers

There is no recipe...

NEXT LECTURE

ASSIGNMENT #2:

AMPL BOOK
CHAPTER 2. EXERCISES(1-8)

NEXT LECTURE

LECTURE #5:

LP MODELS

