Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est :

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

En notant T_i , $(0 \le i \le n-1)$ les éléments de T, et $S_{ij} = \sum_{k=i}^{J} T_k$ la somme de la

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

En notant T_i , $(0 \le i \le n-1)$ les éléments de T, et $S_{ij} = \sum_{k=i}^J T_k$ la somme de la

tranche des éléments d'indice i (inclus) à j (inclus), le but du problème est de déterminer le maximum des S_{ij} pour $0 \le i \le j \le n-1$

Quelques cas particuliers.

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

En notant T_i , $(0 \le i \le n-1)$ les éléments de T, et $S_{ij} = \sum_{k=i}^J T_k$ la somme de la

- Quelques cas particuliers.
 - a. Répondre au problème pour le tableau [-2,7,1,-9,4,4,-5]

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

En notant T_i , $(0 \le i \le n-1)$ les éléments de T, et $S_{ij} = \sum_{k=i}^J T_k$ la somme de la

- Quelques cas particuliers.
 - a. Répondre au problème pour le tableau [-2,7,1,-9,4,4,-5]
 - b. Quelle est la réponse au problème si le tableau ne contient que des valeurs positives ?

Présentation du problème

On considère un tableau T de n entiers, le but du problème est de déterminer la somme maximale d'une tranche (c'est à dire d'éléments contigus de T). Par exemple si T=[2,-7,-5,4,-1,10,-4,9,-2] alors la somme maximale d'une tranche est : 18, et elle est obtenue en prenant la tranche [4,-1,10,-4,9].

En notant T_i , $(0 \le i \le n-1)$ les éléments de T, et $S_{ij} = \sum_{k=i}^J T_k$ la somme de la

- Quelques cas particuliers.
 - a. Répondre au problème pour le tableau [-2,7,1,-9,4,4,-5]
 - b. Quelle est la réponse au problème si le tableau ne contient que des valeurs positives?
 - c. Et si le tableau ne contient que des valeurs négatives?

A la recherche de solution

Un premiere algorithme naïf

A la recherche de solution

- Un premiere algorithme naïf
 - a. Proposer un premier algorithme qui utilise une fonction annexe calculant la somme d'une tranche.

A la recherche de solution

- 2 Un premiere algorithme naïf
 - a. Proposer un premier algorithme qui utilise une fonction annexe calculant la somme d'une tranche.
 - b. En donner une implémentation en langage C.

A la recherche de solution

- 2 Un premiere algorithme naïf
 - a. Proposer un premier algorithme qui utilise une fonction annexe calculant la somme d'une tranche.
 - b. En donner une implémentation en langage C.
 - c. Combien d'additions cet algorithme doit-il effectuer pour parvenir à la solution?
 - Rappel:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Une amélioration

Un second algorithme plus efficace

Une amélioration

- Un second algorithme plus efficace
 - a. Proposer un second algorithme plus efficace.

Une amélioration

- Un second algorithme plus efficace
 - a. Proposer un second algorithme plus efficace.
 - b. En donner une implémentation en langage C.

Une amélioration

- Un second algorithme plus efficace
 - a. Proposer un second algorithme plus efficace.
 - b. En donner une implémentation en langage C.
 - c. Combien d'additions cet algorithme doit-il effectuer pour parvenir à la solution?