Multilevel Modeling (Part 2)

Random-Intercept and Random-Slope Modeling with Covariates

Desmond D. Wallace

Department of Political Science The University of Iowa Iowa City, IA

April 13, 2018

Including Level-1 Covariates

- Predicting the outcome from an intercept that varies between groups and individual-level independent variables.
- The 2-level model takes the following form:
 - Level-1 Model: $y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \varepsilon_{ij}$
 - Level-2 Models
 - Intercept: $\beta_{0j}=\gamma_{00}+U_{0j}$ where

 γ_{00} – Average (general) intercept holding across all groups (fixed effect)

 U_{0j} – Group-specific effect on the intercept (random effect)

- Slope: $\beta_{1j} = \gamma_{10}$ where
 - γ_{10} Amount of increase (decrease) in dependent variable for a one-unit change in x_{ii} (fixed effect)
- Full Specification: $y_{ij} = \gamma_{00} + \gamma_{10}x_{ii} + U_{0i} + \varepsilon_{ii}$

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q (*)

2 / 16

Assumptions

- U_{0j} and ε_{ij} are mutually independent with mean 0, given the values of x_{ij}
- ② U_{0j} is randomly drawn from a population distribution with mean 0 and variance τ_0^2
- **1** Population variance of level-1 residuals, σ^2 , is constant across groups
- ullet U_{0j} are interpretable as group-level residuals, or group effects left unexplained by x_{ij}
- Unexplained variability at multiple levels is essence of multilevel modeling

4□ > 4□ > 4 = > 4 = > = 90

Variance of yii

- Variance of y_{ii} , conditioned on the values of x_{ii} is again the sum of the level-two and level-one variances
 - $Var(y_{ii} \mid X_{ii}) = Var(U_{0i}) + Var(\varepsilon_{ii}) = \tau_0^2 + \sigma^2$
- Covariance between two observations from the same group (ij and i'j) is equal to the variance of the contribution U_{0i} that is shared by these observations
 - $Cov(y_{ii}, y_{i'i} \mid x_{ii}, x_{i'i}) = Var(U_{0i}) = \tau_0^2$

Residual Intraclass Correlation Coefficient

- A part of the covariance or correlation between two observations from the same group is explained by values of the independent variable(s)
- The rest of the covariance or correlation is unexplained
- $\rho(y \mid X) = \frac{\tau_0^2}{\tau_0^2 + \sigma^2}$
- Represents correlation between the y-values of two randomly drawn individuals in a randomly drawn group, controlling for x
- If $\rho(y \mid X) = 0$, OLS is appropriate; If $\rho(y \mid X) > 0$, then multilevel model is better

- Goal: Examine the influence students' socioeconomic status (SES)
 has on math achievement scores while controlling for students'
 minority and gender identification.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\bullet \ \beta_{0j} = \gamma_{00} + U_{0j}$
 - $\bullet \ \beta_{1j} = \gamma_{10}$
 - $\bullet \ \beta_{2j} = \gamma_{20}$
 - $\bullet \ \beta_{3j} = \gamma_{30}$
 - Full Model:

 $\mathsf{mathach}_{ij} = \gamma_{00} + \gamma_{10} \mathsf{SES}_{ij} + \gamma_{20} \mathsf{minority}_{ij} + \gamma_{30} \mathsf{female}_{ij} + U_{0j} + \varepsilon_{ij}$

4 D P 4 M P 4 E P

- Parameter Interpretation
 - γ_{00} : Overall mean of student's math achievement scores
 - γ_{10} : Effect SES has on math achievement
 - γ_{20} : Difference in math achievement between minorities and non-minorities
 - γ_{30} : Difference in math achievement between females and males
 - U_{0i} : Unique effect of school j on mean math achievement score

Random Slopes

- Belief the relationship between independent and dependent variables differs across groups
- The 2-level model takes the following form:
 - Level-1 Model: $y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \varepsilon_{ij}$
 - Level-2 Models
 - Intercept: $\beta_{0j} = \gamma_{00} + U_{0j}$ where

 γ_{00} – Average (general) intercept holding across all groups (fixed effect)

 U_{0j} – Group-specific effect on the intercept (random effect)

- Slope: $\beta_{1j} = \gamma_{10} + U_{1j}$ where
 - γ_{10} Average relationship of x_{ij} and y_{ij} across groups (fixed effect) U_{1j} Group-specific variation of the relationship between x_{ij} and y_{ij} (random effect)
- Full Specification: $y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + U_{0j} + U_{1j}x_{ij} + \varepsilon_{ij}$

Assumptions

- All residuals $(U_{0j}, U_{1j}, \text{ and } \varepsilon_{ij})$ have mean 0, given the values of the independent variable(s)
- The pair of random effects (U_{0j}, U_{1j}) are independent and identically distributed (i.i.d)
- (U_{0j}, U_{1j}) are independent of (ε_{ij})
- ε_{ij} is i.i.d

4□ > 4□ > 4 = > 4 = > = 90

Variances

- Random Effects
 - $Var(U_{0i}) = \tau_{00} = \tau_0^2$
 - $Var(U_{1i}) = \tau_{11} = \tau_1^2$
 - $Cov(U_{0i}, U_{1i}) = \tau_{01}$
- yii
 - $Var(y_{ii} \mid X_{ii}) = \tau_0^2 + 2\tau_{01}x_{ij} + \tau_1^2x_{ii}^2 + \sigma^2$
 - $Cov(y_{ii}, y_{i'i} \mid x_{ii}, x_{i'i}) = \tau_0^2 + \tau_{01}(x_{ii} + x_{i'i}) + \tau_1^2 x_{ii} x_{i'i}$
 - Residual variance is minimal for $x_{ij} = \frac{-\tau_{01}}{\tau_i^2}$
 - If within the range of possible x_{ij} values, variance will first decrease, then increase
 - If smaller than all x_{ij} values, variance will increase as a function of x
 - If larger than all x_{ii} values, variance will decrease as a function of x

- Goal: Examine the influence students' socioeconomic status (SES)
 has on math achievement scores while controlling for students'
 minority and gender identification, while accounting for the effect of
 SES varying across schools.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\bullet \ \beta_{0j} = \gamma_{00} + U_{0j}$
 - $\bullet \ \beta_{1j} = \gamma_{10} + U_{1j}$
 - $\bullet \ \beta_{2j} = \gamma_{20}$
 - $\beta_{3i} = \gamma_{30}$
 - Full Model:

 $\mathsf{mathach}_{ij} = \gamma_{00} + \gamma_{10}\mathsf{SES}_{ij} + \gamma_{20}\mathsf{minority}_{ij} + \gamma_{30}\mathsf{female}_{ij} + U_{0j} + U_{1j} + \varepsilon_{ij}$

 ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □

 Wallace (University of Iowa)
 MLM I

 April 13, 2018
 11/16

- Parameter Interpretation
 - γ_{00} : Overall mean of student's math achievement scores
 - γ_{10} : Average effect SES has on math achievement
 - γ_{20} : Difference in math achievement between minorities and non-minorities
 - γ_{30} : Difference in math achievement between females and males
 - U_{0i} : Unique effect of school j on mean math achievement score
 - U_{1i} : Unique effect of school i on SES effect on math achievement score

Wallace (University of Iowa)

Explaining Random Intercept and Random Slope Variation

- So far, coefficients have been the sum of an average and random effect.
- One could further explain this random variability via inclusion of group-level variables (Z)
- Example (Single group-level variable):
 - Random Intercept: $\beta_{0i} = \gamma_{00} + \gamma_{01}z_i + U_{0i}$
 - Random Slope: $\beta_{1j} = \gamma_{10} + \gamma_{11}z_j + U_{1j}$
- ullet Including a group-level variable in the random intercept equation leads to a main effect of z_j
- Including a group-level variable in the random slope equation leads to an interaction effect of $z_j x_{ij}$ (Cross-level Interaction)
- Just as with level-1 variables, can feature multiple level-2 variables

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 Q C

- Goal: Examine the influence students' socioeconomic status (SES) has on math achievement scores.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\beta_{0i} = \gamma_{00} + \gamma_{01} \operatorname{size}_i + \gamma_{02} \operatorname{sector}_i + U_{0i}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \text{size}_j + U_{1j}$
 - $\beta_{2i} = \gamma_{20}$
 - $\bullet \ \beta_{3j} = \gamma_{30}$
 - Full Model: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ size_j + γ_{02} sector_j + γ_{10} SES_{ij} + γ_{11} size_j * SES_{ij} + γ_{20} minority_{ij} + γ_{30} female_{ij} + U_{0j} + U_{1j} + ε_{ij}

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 Q C

Parameter Interpretation

- γ_{00} : Overall mean of student's math achievement scores
- γ_{01} : Effect school size has on overall mean of student's math achievement scores when SES = 0
- γ_{02} : Difference in overall mean of student's math achievement scores for schools in sectors coded as 1 compared to schools in sectors coded as 0.
- γ_{10} : Average effect SES has on math achievement when size = 0
- γ_{11} : Average effect SES has on math achievement depends on school size
- γ_{20} : Difference in math achievement between minorities and non-minorities
- γ_{30} : Difference in math achievement between females and males
- U_{0i} : Unique effect of school j on mean math achievement score
- U_{1j} : Unique effect of school j on SES effect on math achievement score

Email: desmond-wallace@uiowa.edu Any Questions?