Trabalho Prático de Projeto e Análise de Algoritmos

Alexandre José C. M. R. Filho¹, João P. G. Carvalho¹, João Victor de Araujo Silva¹

¹Departamento de Computação – Universidade Federal do Piauí (UFPI) 64049-550 – Teresina – PI – Brasil

Resumo. Este relatório tem como objetivo explorar as características do problema de Cobertura de Vértices, desde suas aplicações práticas, seus atributos matemáticos, algoritmos que tentam solucioná-lo e a prova de que o mesmo se caracteriza como um problema NP-Completo.

1. Introdução

Mesmo com o avanço da capacidade computacional das máquinas deste milênio, ainda existem diversos desafios a serem solucionados quando se trata da capacidade destas máquinas quanto à resolução de alguns problemas. Tais desafios não se caracterizam apenas por problemas insolucionáveis, como é estudado pelos teóricos da computação, mas também quanto a quantidade de tempo necessária para se resolver determinados problemas. Tais problemas são chamados de NP-Completos, e são caracterizados pela inexistência, ou pelo menos ainda não encontradas, de soluções que lhe satisfaçam em um tempo polinomial.

Um destes problemas é o Problema da Cobertura de Vértices, ou mais apropriadamente, Problema da Cobertura de Vértices Mínima. Tal problema de otimização se baseia na proposta de que, dado um grafo, seja necessário encontrar o menor conjunto possível de vértices tal que cada aresta do grafo é incidente a pelo menos um vértice do conjunto. Como muitos problemas do mundo real podem ser reduzidos a representações matemáticas envolvendo grafos, existe um benefício no estudo de tal problema e suas possíveis soluções, como será exposto neste artigo.

O resto deste documento está organizado da seguinte forma: a seção 2 apresenta uma explicação mais formal do problema trabalhado, a seção 3 apresenta uma explicação sobre o problema da Propagação de Worms em uma Rede de Computadores, a seção 4 apresenta os algoritmos propostos para solucionar o problema, a seção 5 explora os resultados obtidos e a seção 6 conclui o trabalho com considerações finais. A seção 7 é reservada para a bibliografia utilizada.

2. Problema da Cobertura de Vértices

Cormen (2001) define a cobertura de vértices em um grafo como "em um grafo G = (V, E), uma cobertura é um subconjunto $V' \subseteq V$ tal que $(u, v) \in E$, então $u \in V'$ ou $v \in V'$ (ou ambos). Em outras palavras, cada vértice cobre suas arestas incidentes, e uma cobertura de vértices para G é um conjunto de vértices que cobre todas as arestas em E."

O problema da cobertura de vértices é o de encontrar uma cobertura de vértices de tamanho mínimo dado um grafo.

3. Propagação de Worms em uma Rede de Computadores

Na área de redes, um Worm é definido como um programa independente, geralmente malicioso, que tem como principal objetivo a replicação e propagação para outros dispositivos. Tais programas se aproveitam de vulnerabilidades numa rede de computadores para alcançar e infectar o maior número de dispositivos possíveis.

A estrutura de uma rede pode ser representada por um grafo, o que permite a operação de programas como Worm a partir de conceitos e teorias dessa área. Um desses conceitos é da cobertura de vértices, especificamente, da aplicação do problema da cobertura de vértices mínima. Se um Worm é otimizado para atacar, inicialmente, os nós de uma rede que constituem uma cobertura de vértices de tamanho mínimo, é possível economizar tempo e recursos em sua operação.

4. Heurística Proposta

5. Resultados Obtidos

6. Conclusão

7. Bibliografia

Referências

Boulic, R. and Renault, O. (2007) "Combinatorial Optimisation of Worm Propagation on an Unknown Network", In: World Academy of Science, Engineering and Technology.

CORMEN, Thomas H.; STEIN, Clifford; RIVEST, Ronald L.; LEISERSON, Charles E. Introduction to Algorithms. 2nd. ed. [S.l.]: McGraw-Hill Higher Education, 2001. ISBN 0070131511.