Summary: Lecture 2

Summary for the chapters 7.1 Complexity classes and 7.2 Hierarchy problem. [3]

Complexity classes

Background knowledge:

A complexity class is a set which contains problems with similar complexities. The complexities are examined in regards of a specific ressource, for example time or space. For the problems the most efficient solution/algorithm is analysed.

Figure 1: Complexity classes [2]

Usually the complexity depends on the input size. With the asymptotic complexity, classes are build, which are the complexity classes. [4]

Summary:

Parameters of complexity classes: [1, 3]

• Model of computation:

here: multistring Turing Machine

• Mode of computation:

for example: deterministic or non-deterministic (deterministic: the computer will always produce the same output for a given input while going through the same states, non-deterministic: can show different behaviors for the same input)

• Resources:

something expensive that the machine uses up, for example: time or space

• Restrictions/Bound:

for example: upper bound, lower bound as a function $f: \mathbb{N} \to \mathbb{N}$

Definition of complexity classes: [3]

The complexity class is the set of all languages which are decided by a Turing Mashine M that is operating in the defined mode and for any input x, M uses at most f(|x|) units of the defined resource.

Definition proper complexity function: [3, 1, 4]

- $f: \mathbb{N} \to \mathbb{N}$
- $\forall n \in \mathbb{N} \ f(n+1) >= f(n) \ (f \text{ is non-decreasing})$
- It exists a multistring Turing Machine M that fullfills the following conditions with an input of size n:
 - M halts after O(n + f(n)) steps (runs in time O(n + f(n)))
 - -M uses O(f(n)) space
 - -M maps 1^n to $1^{f(n)}$

Examples of proper functions: [3]

$$f(n) = \log n^{2}$$

$$f(n) = n \log n$$

$$f(n) = n^{2}$$

$$f(n) = n^{3} + 3n$$

$$f(n) = 2^{n}$$

$$f(n) = \sqrt{n}$$

$$f(n) = n!$$

If the function f and g are proper, f + g, $f \cdot g$ and 2^g are proper, too.

Definition precise Turing Machine: [3, 1]

A multistring Turing Machine M is called a precise Turing Machine, if there are functions f and g such that, for every input x of length n, M stops after exactly f(n) steps with exactly g(n) blanks on strings 2, ..., k.

If M is a precise Turing Machine and f is a proper complexity functon such that, M decides a language in f(n), then there exists a precise Turing Machine M' of the same type as M which decides the same language in O(f(n)).

Complexity classes: [3, 1]

Class name	Description
TIME(f)	deterministic time
SPACE(f)	deterministic space
NTIME(f)	non-deterministic time
NSPACE(f)	non-deterministic space

(f is a proper complexity function)

Sometimes f is not a particular function but a family of function which are parametrized by an integer $k \ge 0$.

Class	Function	Description
P	$\bigcup_{k>=0} \text{TIME}(n^k)$	Polynomial time
NP	$\bigcup_{k>=0} \text{NTIME}(n^k)$	Non-deterministic polynomial time
EXP	$\bigcup_{k>=0} \text{TIME}(2^{n^k})$	Exponential time
L	$\operatorname{SPACElog} n$	Logarithmic space
NL	$NSPACE(\log n)$	Non-deterministic logarithmic space
PSPACE	$\bigcup_{k>=0} SPACE(n^k)$	Polynomial space
NPSPACE	$\bigcup_{k>=0}$ NSPACE (n^k)	Non-deterministic polynomial space

Complement classes: [3, 1]

For a string that is part of a language, one *yes* input needs to be found. For a string to be not part of a language, all the paths must be a *no*. The complement of a language $L \subseteq \Sigma^*$ is the set of all valid inputs that do not belong to L. It is denoted as \bar{L} with $\bar{L} = \Sigma^* - L$. This can be extended to decision problems. The complement of a decision problem A is called A COMPLEMENT. The *yes* and *no* answers on an Turing Machine can be switched to solve the complement problems.

The complement of a complexity class C, the class of all the complements is denoded as coC. The deterministic classes are closed under complement, for example coP = P. That does not cound for non-deterministic classes.

Hierarchy problem

Definitions: [3, 1]

Let f(n) >= n be a proper complexity function and H_f a time-bounded version of the HALTING language H with

$$H_f = \{M; x : M \text{ accepts input } x \text{ after at most } f(|x|) \text{ steps} \}.$$

M is a deterministic multistring Turing Machine. The following can be concluded:

$$H_f \in \text{TIME}(f(n)^3))$$
 and $H_f \notin \text{TIME}(f(\lfloor \frac{n}{2} \rfloor))$

If f(n) >= n is a proper complexity function, then the class $\mathrm{TIME}(f(n))$ is strictly contained within $\mathrm{TIME}((f(2n+1))^3)$. This has the consequence, that there is an infittely growing proper hierarchy of clompexity classes within P: $\mathrm{P} \neq \mathrm{TIME}(n^k)$ for every k and $\mathrm{P} \subset \mathrm{EXP}$ because $\mathrm{P} \subseteq \mathrm{TIME}(2^n) \subset \mathrm{TIME}(2^{(2n+1)^3}) \subseteq \mathrm{EXP}$.

If f(n) is a proper complexity function, then the class SPACE(f(n)) is a proper subset of $SPACE(f(n) \log f(n))$

There is a recursive function $f: \mathbb{N} \to \mathbb{N}$ such that $TIME(f(n)) = TIME(2^{f(n)})$.

Questions and problems

- I did not understand the proofs of the hierarchy problem yet but there will be more time and afford put into it.
- What is a parametrized function family? Are they numbered?

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Complexity classes diagram image source. https://en.wikipedia.org/wiki/Complexity_class.
- [3] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.
- [4] Prof. Dr. Thomas Schwentick. Lecture notes in Grundbegriffe der theoretischen Informatik. https://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Archiv/Bachelor_LA_GyGe_Inf_Modellv/_Module/INF-BfP-GTI/index.html.