Key Terms and Concepts

- 1. First Non-Dominated Front ($\alpha^{(i)}$):
 - The set of solutions in the current population that are not dominated by any other solution. These represent the best trade-offs among the objectives.

2. Infeasible Solutions ($\gamma^{(i)}$):

• The set of solutions in the current population that violate one or more constraints. These solutions need to be repaired to become feasible.

3. Normalized Constraint Violation:

• A measure of how much a solution violates the constraints, normalized to allow comparison between different types of violations. This helps in identifying which solutions are closer to being feasible.

4. Crowding Distance:

• A measure of the density of solutions surrounding a particular solution in the objective space. Solutions with a higher crowding distance are more diverse and less likely to be similar to other solutions in the population.

5. Non-Domination Rank:

• A ranking system where solutions are ranked based on the number of solutions that dominate them. Solutions in the first non-dominated front have a rank of 1, those dominated by one solution have a rank of 2, and so on.

Repair Algorithm 1 (Reparating Entire Population)

- Repair Algorithm 1a:
 - Set of Repair Candidates (R_1) : Select solutions starting with those having the lowest sum of normalized constraint violation.
 - Replace Procedure: For each repair candidate, replace infeasible variables with feasible ones from donor solutions in the set D, starting with the best-ranked solutions.
 - **Donor Solutions** (*D*): Select solutions with the best non-domination rank and lowest Euclidean distance to the infeasible solution.
- Repair Algorithm 1b:
 - Set of Repair Candidates (R_2): Select solutions with the best non-domination rank and highest crowding distance.
 - Repeat the replace procedure for each repair candidate in R_2 .

Repair Algorithm 2 (Repairing Using Feasible Solutions)

- Set of Feasible Solutions ($\omega^{(i)}$):
 - The set of feasible solutions in the current parent population.
- Set of Infeasible Solutions ($\gamma^{(i-1)}$):
 - The set of infeasible solutions in the previous generation.
- Potential Repair Candidates ($\alpha^{(i-1)}$):
 - Members of $\gamma^{(i-1)}$ that dominate $\omega^{(i)}$.

• Repair Procedure:

- Rank solutions in $\alpha^{(i-1)}$ based on non-domination rank and crowding distance.
- Form a set of repair candidates R from $\alpha^{(i-1)}$ until its size equals N_R .
- Replace infeasible variables in each repair candidate with values from the closest feasible solutions in $\omega^{(i)}$.

Summary

- Repair Algorithm 1 focuses on repairing the entire population of infeasible solutions by leveraging normalized constraint violation and Euclidean distance.
- Repair Algorithm 2 emphasizes using feasible solutions from the current population to repair infeasible solutions, taking into account non-domination rank and crowding distance to guide the repair process.