Project Development Phase Model Performance Test

Date	19 November 2022
Team ID	PNT2022TMID49531
	Project -Exploratory Analysis of Rainfall Data in India for Agriculture.
Maximum Marks	10 Marks

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Metrics	1.Linear Regression	Linear Regression Model
		Test Data	[] from sklearn.linear_model import LinearRegression LR = LinearRegression() LR.fit(X_train.y_train)
		MAE: 36.693305772295616	LinearRegression()
		MSE: 2707.377549592384	[] # predicting y_train_predict=LR.predict(X_train) y_test_predict=LR.predict(X_test)
		RMSE : 52.032466303187896	print("Test Data") print("MAE:', metrics.mean_absolute_error(y_test, y_test_predict))
		Train Data	<pre>print("MSE:', metrics.mean_squared_error(y_test, y_test_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict))) print("\n")</pre>
		MAE: 37.684332030035904	print("MAE:", metrics.mean_absolute_error(y_train,y_train_predict)) print("MSE:", metrics.mean_squared_error(y_train, y_train_predict)) print("MUSE:", np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))
		MSE: 3113.2867829842517	<pre>print("\nTraining Accuracy") print(round(LR.score(X_train,y_train),3)*100) print("") print(round(LR.score(X_test,y_test),3)*100)</pre>
		RMSE : 5579683488321046	Test Data
			MAE: 36.693305772295616
			MSE: 2707.377549592384
			RMSE: 52.032466303187896
			Train Data
			MAE: 37.684332030035904
			MSE: 3113.2867829842517
			RMSE: 55.79683488321046
			Training Accuracy
			41.6999999999999
			Testing Accuracy
			33.1

2.Lasso model

-----Test Data-----

MAE: 41.774633175550605

MSE: 3011.482049035098

RMSE: 54.8769719375540

-----Train Data-----

MAE: 46.667686894462854

MSE: 3948.760899348929

RSME: 62.839166921188

Lasso Model

```
from sklearn import metrics

print("-----Test Data-----")

print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict))

print('MSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))

print("\n-----Train Data------")

print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict))

print('MSE:', metrics.mean_squared_error(y_train, y_train_predict))

print('MSE:', metrics.mean_squared_error(y_train, y_train_predict)))

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))

print("\n----Training Accuracy------")

print(round(lasso.score(X_train,y_train),3)*100)

print("----Testing Accuracy------")

print(round(lasso.score(X_test,y_test),3)*100)
```

-----Test Data-----MAE: 41.774633175550605
MSE: 3011.4820490350985
RMSE: 54.87697193755408
------Train Data-----MAE: 46.667686894462854
MSE: 3948.760899348929
RMSE: 62.839166921188
-----Training Accuracy------

-----Testing Accuracy-----

25.6

3.Ridge model Ridge Model -----Test data-----[] from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV MAE: 36.694264997117806 ridge=Ridge() parameters={'alpha':[1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20,30,35,40,45,50,55,100]} ridge_regressor=GridSearchCV(ridge,parameters,scoring='neg_mean_squared_error',cv=5) MSE: 2700.404122847211 $ridge_regressor.fit(X_train,y_train)$ print(ridge_regressor.best_params_) print(ridge_regressor.best_score_) RMSE: 51.96541275547815 {'alpha': 1e-15} -----Train data------3139.0798658992653 MAE: 37.71478463865123 [] print("Best Parameter for Ridge:",ridge_regressor.best_estimator_) Best Parameter for Ridge: Ridge(alpha=1e-MSE: 3113.4499194422324 RSME: 55.79826743200254 [] ridge-Ridge(alpha-100.0) ridge.fit(X_train,y_train) Ridge(alpha=100.0) y_train_predict=ridge.predict(X_train) y_test_predict=ridge.predict(X_test) [] from sklearn import metrics print("-----Test Data----print('WAE:', metrics.mean_absolute_error(y_test, y_test_predict)) print('MSE:', metrics.mean_squared_error(y_test, y_test_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict))) print("\n-----") print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict)) print('MSE:', metrics.mean_squared_error(y_train, y_train_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict))) print("\n-----Training Accuracy------") print(round(ridge.score(X_train,y_train),3)*100) print("----Testing Accuracy---print(round(ridge.score(X_test,y_test),3)*100) -----Test Data----MAE: 36.694264997117806 MSE: 2700.404122847211 RMSE: 51.96541275547815 -----Train Data-----MAE: 37.71478463865123 MSE: 3113.4499194422324 RMSE: 55.798296743200254 ----Training Accuracy-----41.69999999999996 ----Testing Accuracy-----33.300000000000004

4.SVM model -----Test data----MAE: 76.73671497584542 MSE: 9936.306763285023 RMSE: 99.6102509146375 -----Train data----MAE: 78.82815734989649

MSE : 11555.623188405798

RSME: 107.4970845577023

Svm Model

```
[ ] from sklearn import preprocessing from sklearn import svm svm_regr = svm.SVC(kernel='rbf') svm_regr.fit(X_train, y_train)
```

SVC()

```
[ ] y_test_predict = svm_regr.predict(X_test)
    y_train_predict = svm_regr.predict(X_train)
```

SVM Model

```
[] from sklearn import metrics
print("-----Test Data------")
print("MAE:', metrics.mean_absolute_error(y_test, y_test_predict))
print("MSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))

print("Nn-----Train Data------")
print("MAE:', metrics.mean_absolute_error(y_train,y_train_predict))
print("MSE:', metrics.mean_squared_error(y_train,y_train_predict))
print("RUSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))

print("Nn----Training Accuracy------")
print(round(svm_regr.score(X_train,y_train),3)*100)
print("----Testing Accuracy------")
print(round(svm_regr.score(X_test,y_test),3)*100)
```

-----Test Data----MAE: 76.73671497584542
MSE: 9936.306763285023
RMSE: 99.68102509146374

-----Train Data-----

MAE: 78.82815734989649 MSE: 11555.623188405798 RMSE: 107.4970845577023

-----Training Accuracy-----3.50000000000000004
-----Testing Accuracy-----1.70000000000000000

.

5.Random Forest Regressor	
· ·	
Test data	
MAE : 34.11254680110697	Random Forest Model
MSE : 2343.0259771944416	[] from sklearn.ensemble import RandomForestRegressor random_forest_model = RandomForestRegressor(max_depth=100, max_features='sqrt', min_samples_leaf=4, min_samples_split=10, n_estimators=800)
RSME : 48.40481357462749	random_forest_model.fit(X_train, y_train)
Test data	RandomForestRegressor(max_depth=100,
MAE : 25.907192325293526	<pre>max_features='sqrt', min_samples_leaf=4,</pre>
MSE : 1457.4100445477081	<pre>min_samples_split=10, n_estimators=800)</pre>
RSME : 38.1760401894658	<pre>[] y_train_predict=random_forest_model.predict(X_train) y_test_predict=random_forest_model.predict(X_test)</pre>
	[] print("Test Data") print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict)) print('MSE:', metrics.mean_squared_error(y_test, y_test_predict)) print('RWSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))
	<pre>print("\nTrain Data") print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict)) print('MSE:', metrics.mean_squared_error(y_train, y_train_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))</pre>
	Test Data
	MAE: 34.05103074139167
	MSE: 2341.6039068475443
	RMSE: 48.3901219966177
	Train Data
	MAE: 25.907838970434035
	MSE: 1456.8105348382642
	RMSE: 38.168187471220904
	<pre>print("</pre>
	Training Accuracy
	72.7
	Testing Accuracy 42.19999999999996
	TE. 1000000000000000000000000000000000000

Tune the Model Validation Method: Linear Regression Model 1.Linear Regression [] from sklearn.linear_model import LinearRegression LR = LinearRegression() LR.fit(X_train,y_train) LinearRegression() Training Accuracy [] # predicting y_train_predict=LR.predict(X_train) 41.699999999999996 y_test_predict=LR.predict(X_test) 1 4 0 **0 0 0** 1 1 1 print("ME:", metrics.mean_absolute_error(y_test, y_test_predict))
print("ME:", metrics.mean_squared_error(y_test, y_test_predict))
print("MSE:", np.sqr(metrics.mean_squared_error(y_test, y_test_predict))) Testing Accuracy 33.1 print("\n----Train Data-----")
print("WAE:', metrics.mean_bbsolute_error(y_train,y_train_predict))
print("WAE:', metrics.mean_squared_error(y_train, y_train_predict))
print("WAE:', mp.sqrt(metrics.mean_squared_error(y_train,y_train_predict))) print("\n----Training Accuracy-----")
print(round(LR.score(X_train,y_train),3)*100)
print("----Testing Accuracy-----")
print(round(LR.score(X_test,y_test),3)*100) -----Test Data-----MAE: 36.693305772295616 MSE: 2707.377549592384 RMSE: 52.032466303187896 -----Train Data-----MAE: 37.684332030035904 MSE: 3113.2867829842517 RMSE: 55.79683488321046 ----Training Accuracy-----41.69999999999996 ----Testing Accuracy-----33.1

2.Lasso model

Training Accuracy

26.1

Testing Accuracy

25.6

Lasso Model

```
from sklearn import metrics
         print("-----")
         print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict))
         print('MSE:', metrics.mean_squared_error(y_test, y_test_predict))
         print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))
         print("\n-----")
         print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict))
         print('MSE:', metrics.mean_squared_error(y_train, y_train_predict))
         print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))
         print("\n----Training Accuracy-----")
         print(round(lasso.score(X_train,y_train),3)*100)
         print("----Testing Accuracy-----")
         print(round(lasso.score(X_test,y_test),3)*100)
Output
<p
       MAE: 41.774633175550605
        MSE: 3011.4820490350985
        RMSE: 54.87697193755408
```

MAE: 41.774633175550605
MSE: 3011.4820490350985
RMSE: 54.87697193755408
-----Train Data----MAE: 46.667686894462854
MSE: 3948.760899348929
RMSE: 62.839166921188
----Training Accuracy----26.1
----Testing Accuracy-----

Ridge Model 3.Ridge model [] from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV ridge=Ridge() Training Accuracy parameters={'alpha':[1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20,30,35,40,45,50,55,100]} ridge_regressor=GridSearchCV(ridge,parameters,scoring='neg_mean_squared_error',cv=5) ridge_regressor.fit(X_train,y_train) 41.699999999996 print(ridge_regressor.best_params_) print(ridge_regressor.best_score_) Testing Accuracy {'alpha': 1e-15} -3139.0798658992653 33.30000000004 [] print("Best Parameter for Ridge:",ridge_regressor.best_estimator_) Best Parameter for Ridge: Ridge(alpha=1e-[] ridge-Ridge(alpha-100.0) ridge.fit(X_train,y_train) Ridge(alpha=100.0) y_train_predict=ridge.predict(X_train) y_test_predict=ridge.predict(X_test) [] from sklearn import metrics print("-----") print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict)) print('MSE:', metrics.mean_squared_error(y_test, y_test_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict))) print("\n-----") print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict)) print('MSE:', metrics.mean_squared_error(y_train, y_train_predict)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict))) print("\n-----Training Accuracy------") print(round(ridge.score(X_train,y_train),3)*100) print("----Testing Accuracy--print(round(ridge.score(X_test,y_test),3)*100) -----Test Data-----MAE: 36.694264997117806 MSE: 2700.404122847211 RMSE: 51.96541275547815 -----Train Data-----MAE: 37.71478463865123 MSE: 3113.4499194422324 RMSE: 55.798296743200254 ----Training Accuracy-----

41.69999999999996

33.300000000000004

----Testing Accuracy-----

Svm Model 4.SVM model Training Accuracy 3.500000000000000004 Testing Accuracy 1.7000000000000000000 SVM Model

[] from sklearn import preprocessing from sklearn import svm svm_regr = svm.SVC(kernel='rbf') svm_regr.fit(X_train, y_train)

SVC()

[] y_test_predict = svm_regr.predict(X_test) y_train_predict = svm_regr.predict(X_train)

```
[] from sklearn import metrics
   print("-----")
   print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict))
   print('MSE:', metrics.mean_squared_error(y_test, y_test_predict))
   print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))
    print("\n-----")
    print('MAE:', metrics.mean_absolute_error(y_train,y_train_predict))
    print('MSE:', metrics.mean_squared_error(y_train, y_train_predict))
    print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, y_train_predict)))
    print("\n----Training Accuracy-----")
    print(round(svm_regr.score(X_train,y_train),3)*100)
    print("-----Testing Accuracy-----")
   print(round(svm_regr.score(X_test,y_test),3)*100)
```

-----Test Data-----MAE: 76.73671497584542 MSE: 9936.306763285023

RMSE: 99.68102509146374

-----Train Data-----

MAE: 78.82815734989649 MSE: 11555.623188405798 RMSE: 107.4970845577023

-----Training Accuracy-----3.5000000000000004 ----Testing Accuracy-----1.70000000000000002

1	Τ
5.Random Forest Regressor	Random Forest Model
Training Accuracy 72.7 Testing Accuracy 42.19999999999999	[] from sklearn.ensemble import RandomForestRegressor random_forest_model = RandomForestRegressor(max_depth=100, max_features='sqrt', min_samples_leaf=4, min_samples_split=10, n_estimators=800) RandomForestRegressor(max_depth=100, max_features='sqrt', min_samples_leaf=4, max_features='sqrt', min_samples_leaf=4,
	min_samples_split=10, n_estimators=800) [] y_train_predict-random_forest_model.predict(X_train) y_test_predict-random_forest_model.predict(X_test) [] print("Test Data") print("MAE:", metrics.mean_absolute_error(y_test, y_test_predict)) print("MSE:", np.sqrt(metrics.mean_squared_error(y_test, y_test_predict))) print("NTrain Data") print("MAE:", metrics.mean_absolute_error(y_train,y_train_predict)) print("MSE:", metrics.mean_squared_error(y_train, y_train_predict)) print("MSE:", metrics.mean_squared_error(y_train, y_train_predict)))
	Test Data MAE: 34.05103074139167 MSE: 2341.6039068475443 RMSE: 48.3901219966177 Train Data MAE: 25.907838970434035 MSE: 1456.8105348382642 RMSE: 38.168187471220904
	print("