This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-148566

(43) Date of publication of application: 27.05.1994

(51)Int.CI.

G02B 27/18 G02F 1/13

(21)Application number : 04-294733

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

04.11.1992

(72)Inventor: ISHIKAWA MASAKI

(54) PROJECTIVE DISPLAY DEVICE

(57)Abstract:

which can vary the angle of projecting from a projecting means incident onto a screen, generate good focusing of the projected image, and is free from the generation of trapezoidal distortion. CONSTITUTION: A projective display device is composed of the first projecting optical systems 3, 4 which convert the image of a light bulb 2 into an intermediate image 5 including a trapezoidal distortion and the second projecting optical systems 6, 7 which convert the obtained intermediate image 5 into an image free from trapezoidal distortion on a screen, wherein the first lens 6 and second lens 7 of the second projecting optical systems are moved in the main beam direction by a cam 9 and a gear 10 to change the focal distance f3 along with changing of the angle θ 3, and interlocking therewith, the distances between the light bulb 2 and projecting

optical systems are changed. The angle of a mirror 8

PURPOSE: To provide a projective display device

is changed by the cam 9 to vary the angle of the light incident onto the screen.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

18. . .

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-148566

(43)公開日 平成6年(1994)5月27日

(51)Int.CL⁵
G 0 2 B 27/18

瞰別祀号

FΙ

技術表示箇所

G 0 2 B 27/18 G 0 2 F 1/13 Z 9120-2K

3 505

7348-2K

庁内整理番号

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特頭平4-294733

1

(22)出願日

平成4年(1992)11月4日

(71) 出颐人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 石川 真己

長野県諏訪市大和3丁目3番5号セイコー

エブソン株式会社内

(74)代理人 介理士 鈴木 喜三郎 (外1名)

(54)【発明の名称】 投射型表示装置

(57)【要約】

ijΫ..

【目的】 投射手段からスクリーンへ入射する角度を可変でき、しかも投射画像のピントが合い、尚且つ台形産が起こらないような投射型表示装置を提供する。

【構成】 ライトバルブ2の像を、台形歪のある中間像 5 に変換する第1の投射光学系3、4 と、台形歪のある中間像5 を、スクリーン上で台形歪のない像に変換する第2の投射光学系6、7 とかちなり、第2の投射光学系の第1レンズ6、第2レンズ7をカム日及び樹車10により主光線方向に移動して焦点距離 f 3 を変化させるのと同時に角度03を変え、これと連動して、ライトバルブ2と投射光学系の距離を変える。またカム日によりミラー8の角度を変えて、スクリーンへ人財する投射光の角度を変える。

(2)

【特許請求の範囲】

【請求項1】 光源(1′)と、光変調手段(2)と、前 記光変調手段(2)で生成される像をスクリーン(1 3) に斜めに投射する投射手段(3,4,6,7,1 1) とを有し、

前記投射手段は、前記光変調手段(2)で生成された像 を台形歪のある中間像(5)に変換する第1の投射光学 手段(3、4)と、前記台形面のある中間像(5)をス クリーン (13)上で台形歪のない像に変換する第2の 投射光学手段(6、7、11)とから構成され、

前記第1の投射光学手段は、互いに平行でない第1レン ズ(3)と第2レンズ(4)によりアフォーカル系を構 成しており、

主光線と交わる位置における、前配光変調手段(2)面 及び前記中間像(5)面及び前記スクリーン(13)面 の各法線と、前記第1及び第2の投射手段(3、4、

8、7、11)の光軸とが同一平面C内にあるように配

機械的連動手段(9)により、前記スクリーン(13) に入射する投射光の角度が可変できるとともに、

前記光変調手段(2)面上の前記平面Cに平行な線群 ~が、前記第1の投射光学于段(3、4)により前記中間 像(5) 面上で交わる点gと、前起スクリーン(13) 面上の前記平面Cに平行な線群が、前記第2の投射光学 手段(6、7、11)により前記中間像(5)面上で交 わる点g′とが一致するよう化、前配第1の投射光学手 段(3、1)および/あるいは前記第2の投射光学手段 (6、7、11)が、機械的連動手段(9、10)によ り、回転および/あるいは主光線方向に移動することを 特徴とする投射型表示装置。

【発明の詳細な説明】

(0001)

【産業上の利用分野】本発明は、ビデオ映像やコンピュ ータ画像等を表示する投射型表示装置に関する。 [0002]

【従来の技術】近時、液晶等を用い、これに表示される 画像をスクリーンに拡大投射して大画面として見せる拡 人投射方式が注目されている。

【0003】との種のライトバルブを用いた従来の投射 型表示装置は、図9に示すように、透過型液晶パネルに 40 光源から照明を与え、この液品パネルに表示される画像 を投射レンズにより拡大して、スクリーンに導く構造で、 ある。

【0004】しかし、上記投射型表示装置では、装置を 床あるいは天井に設置して、壁面に設置したスクリーン に投射しようとすると、投射レンズを出た投射光はスク リーンに対して斜めであるため、投射画像が台形状に歪 んでしまう。

【0005】そこでこれを解決する手段として、シフト 光学系が考えられる。これは図10に示したように、ラ 50 るには、投射光学手段の後に反射ミラーを置き、この角

ィトバルブ、スクリーンを上下にずらしたものである。 とれにより、ライトバルブとスクリーンは平行に保った ままであるので、台形歪は発生しないですむ。しかして の投射型表示装置では、大画角の投射レンズが必要であ り、また投射光がスクリーンに対して斜めに入射する角 度も小さく限定されてしまうという問題点があった。 [0006]

【発明が解決しようとする課題】このような問題点を解 決するため本発明者等は、光源と光変調手段と、光変調 10 手段で生成される像をスクリーンに斜めに投射する投射 手段とを有する投射光学装置であり、前記投射手段が、 光変調手段で生成された像を台形歪のある中間像に変換 する第1の投射光学手段と、台形歪のある中間像をスク リーン上で台形歪のない保に変換する第2の投射光学手 段とから構成されている投射光学装置を提案している (特願平2-224823)。

【0007】上記の我々の提案により、スクリーンに斜 めに投射しても台形歪のない投射両像が得られる投射表 示装置が得られるようになったが、本発明の目的は、投 射手段からスクリーンへ入射する角度を可変でき、しか も批削画像の全面でピントが合い、尚且つ台形歪が起こ らないような投射型表示装置を提供することにある。 [0008]

【郷題を解決するための手段】上記目的を達成するため に、本発明の投射型表示装置においては、光源と、光変 調手段と、光変調手段で生成される像をスクリーンに斜 めに投射する投射手段とを有し、前記投射手段を、光変 調手段で生成された像を台形歪のある中間像に変換する 第1の投射光学手段と、台形歪のある中間像をスクリー ン上で台形歪のない像に変換する第2の投射光学手段と から構成する。第1の投射光学手段は、互いに半行でな い第1レンズ及び第2レンズで、アフォーカル系を構成。 する.

【0009】そして、主光線と交わる位置における、光 変調手段面及び中間像面及びスクリーン面の各法線と、 第1及び第2の役射手段の光軸とが同一平面C内にある ように配置する。

【0010】さらに、光変調手段面上のC面に平行な線 群が、第1の投射光学手段により中間像面上で交わる点 gと、スクリーン面上のC面に平行な線群が、第2の投 射光学手段により中間像面上で交わる点g、とが一致す るように配置する。

【0011】そしてスクリーンに入射する投射光の角度 を変化させても、ピントが合い、尚且つ投射画像に台形 歪が起こらないようにするために、g点とg′点との一 致を保つように、カム等により第1の投射光学手段の第 1レンズ、第2レンズ、第2の投射手段を主光線方向に 移動し、且つ角度を変える。

【0012】スクリーンに入射する投射光の角度を変え

(3)

度を変えれば、容易にできる。 [0013]

1

【実施例】(実施例1)図1は本発明による投射型表示 装置を示しており、図2、図3及び図7は図1の実施例。 の光学配置を説明するための図であり、図4はライトバ ルブの像を、図5は台形歪のある中間像を、図6は台形 歪のないスクリーン上の像を示している。

【0014】図1、図2及び図3で、第1の投射光学系 の第1レンズ3の光軸、第2レンズ4の光軸、第2の投 射光学系の第1レンズ6、第2の投射光学系の第2レン ズ7の光軸、主光線と交わる点におけるライトバルブ2 及びスクリーン13の法線は、同一平面内にある。

【0015】第2の投射光学系の第1レンズ(焦点距離 f 3′) 0 と第2レンズ (魚点距離 f 4′) 7 は合成し て、1つのレンズとみなすことができ、その合成焦点距 離 1 3 は、第2の投射光学系の第1レンズ 6 と第2レン ズ7との間の距離を変えることにより、変化させること ができる。

【0016】図2に各部の配置を示す。図2の第2の投 射光学系11は、図1の第2の投射光学系の第1レンズ 20 6と第2レンズ7を合成して1つのレンズとみなしたと きの図である。図2で、第1の投射光学系の第1レンズ 4 (焦点距離 f 1) は θ 1、第 2 レンズ 4 (焦点距離 f 2) は 02、 第2の 投射光学系 11 (魚点距離 13) は heta3、中間像5は ϕ 2、それぞれ傾いており、第1レン ズ3の像側魚平面と第2レンズ4の物側魚平面の交線が ほほ主光線上を通っている。またライトバルブ2は、第 1の投射光学系の第1レンズ3の物側焦平面からx1の 位置に、中間像5は、第1の投射光学系の第2レンズ4*

*の像側焦平面からx2の位置にある。第2の投射光学系 11は中間像5からL3の位置にあり、中間像5と第2 の役射光学系11とスクリーン13は、ミラー8がない としたとき、図3に示すように、各々の延長面が同一直 線上で交わっており、斜め結像に関するシャインブルー フの法則を満足している。

【0017】図1で、光源1より出た光はライトバルブ 2をほぼ平行に照明する。したがってライトバルブに対 して光線はほぼ同一の入射角で入り、ライトバルブ2の 全面で、均一な明るさとコントラストを得ることができ

【0018】図4のような正方形状のライトバルブ2の 像は、耳いに傾いた第1の投射光学系の第1レンズ3と 第2レンズ4により、図5のような台形状の中間像5に 結像する。

【0019】そとで図2に示した如く、第1レンズ3の 像剛焦平面と第2レンズ4の主平面の交線を含み主光線 に平行な面と、中間像5がある面との交線をgとし、ま た第2の投射光学系11の物側焦平面と、中間像5があ る面との交線をg、としたとき、gとg、とを一致させ ると、図5の如く台形に歪んだ中間像5は、第2の投射 光学系11により、図6の如く台形歪のない像としてス クリーン13に結像する。 Cの時heta 1、<math> heta 2、heta 3、 ψ2, ψ3, f1, f2, f3, L3, L4, x1, x 2、拡大率m、yvの間の関係は次式のように表わされ

[0020] 【数1】

 $\tan \psi 2 = \{-f1/\cos\theta \cdot 1 \cdot \tan\theta \cdot 1 + x \cdot 1 \cdot (\tan\theta \cdot 1 + \tan\theta \cdot 2)\}$

• $f2/\cos\theta 2 \cdot (\cos\theta 1/f1)^{-2} + \tan\theta 2$

 $x2 = x1 \cdot \{ (f2/f1) \cdot (\cos \theta 1/\cos \theta 2) \}$

L3 = $(f2 \cdot \cos \theta \cdot 1 \cdot L4) / (f1 \cdot \cos \theta \cdot 2 \cdot m)$ (3)

tan θ 3 = (L3 · tan ψ 3 + L4 · tan ψ 2) / (L3+L4) (4)

1/f3 = {(1+tan \$2 • tan \$3)/L3 + $(1+\tan \psi 3 \cdot \tan \theta 3)/L4$ · $\cos \theta 3 \cdot \cdot (5)$

(G) $YV = f2/\{\cos\theta 2 \cdot (\tan\theta 1 + \tan\theta 2)\}$

 \Rightarrow d \cdot x 1 + c

(4)

【0021】ととで、図7に示すように、スクリーン1 3と投射光学系12との距離し4を一定に保ったまま、 反射ミラー8の角度を変えて、スクリーン13に入射す る投射光の角度を変える。

【0022】 42、 43は小さいので

tanψ2≒ψ2

tan 43 = 43

θ1、θ2、ſ1、ſ2、L4、ωを一定とすると、式*

L4≫1なので式(5)より $f3 = L3 / ((1 + \tan \psi 2 \cdot \tan \theta 3) \cdot \cos \theta 3)$ 7L3/((1+tanψ2·tanψ2)·cosψ2) -L3 · c o s ψ 2

* (1)より

式(3)より、 1.3 = c

02 ≒ a · x 1 + b

ψ3=L4 · (tan 03 - tan ψ2) /L3 ÷j·tanψ2

 $-k \cdot x + 1 + n$

, Y. . .

ただしa、b、c、d、e、j、kは定数

したがって、 θ 1、 θ 2、 Γ 1、 Γ 2、 Γ 4、 Π 8一定 にして、スクリーンに入射する投射光の角度43の変化 に比例してx1を変化させれば、03、02、13は、 43 に比例して変化する。

【0023】よって、スクリーン13に入射する投射光 の角度変化に比例して、図1に示すように、第2の投射 光学系の第1レンズ6、第2レンズ7をカム9及び歯車 10により主光線方向に移動して魚点距離 f3を変化さ せるのと同時に角度 8 3を変え、これと連動して、ライ トパルプ2と投射光学系の距離x1を変えて、g点とg 、点とが一致するようにすれば、スクリーンに入射する 投射光の角度を変えても、ピントが合い、尚且つ台形派 がない投射画像を得るととができる。

【0024】(実施例2)図8は本発明の第2の実施例 による投射型表示装置の図である。

[0025]光源1、ライトバルブ2、第1の投射光学 系の第1レンズ3、第1の投射光学系の第2レンズ4、 第2の投射光学系の第1レンズ6、第2レンズ7、スク リーン13を、実施例1と同様の位置関係になるように 配置する。

※【0026】実施例1と同様に、第2の投射光学系の第 1レンズ(焦点距離 f 3′) 6と第2レンズ(焦点距離 『4') 7は合成して、1つのレンズとみなすことがで き、その合成焦点距離 f 3 は、第2の投射光学系の第1 レンス6と第2レンズ7との間の距離を変えることによ り、変化させることができる。

L3≪1.4、83は小さいので、式(4)より、

03 = tan ψ2 = a · x1+b

【0027】この実施例では、凶3のx1をゼロとして 20... いる。

【0028】ととで、図7に示すように、スクリーン1 3と投射光学系12との距離し4を一定に保ったまま、 。反射ミラー8の角度を変えて、スクリーン13に入射す る投射光の角度ψ3を変える。

[0029] f 1、f 2、L 4、mを一定にして、第1 の投射光学系の第1レンズ3の傾き01、第2レンズ4 の傾き82を、43に比例して変化させると、

式(1)より

 $tan\psi 2 = \psi 2 = a \cdot \theta 1 + \theta 2$

30 式(4)より

 $\theta 3 = \tan \theta 2 = a \cdot \theta 1 + \theta 2$ $\psi 3 = 1.4 \cdot (\tan \theta 3 - \tan \psi 2) / L3$

≒j tanψ2

⇒ b · 0 1 + 0 2

式(3)より

L3 ⇔ c

式 (5) より

13~L3/((1+tanψ2·tanθ3)·cosθ3) =L3/((1+tan ψ 2·tan ψ 2)·cos ψ 2)

=1.3 · c o s ψ 2

 $= d \cdot \theta 1 + \theta 2$

リーンに人射する投射光の角度ψ3の変化に比例してθ 1、 θ 2 を変化させれば、 θ 3、 ψ 2、 f 3 は、 ψ 3 に 比例して変化する。

【0030】よって、スクリーン13に入射する投射光 の角度 43 の変化に比例するように、図8 に示したよう に、第1の投射光学系の第1レンズ3の角度 01、第2 ・レンズ4の角度82をカム8により変化させ、これと連 動して、第2の投射光学系の第1レンズ6、第2レンズ 50 の第1レンズと第2レンズとがアフォーカル系を保つと

したがって、f1、f2、L4、mを一定にして、スク・ノーフをカム9及び幽車10により上光線方向に移動して無 点距離f3を変化させるのと同時に、ψ3の変化に比例 して角度03を変え、8点と8、点とが一致するように すれば、スクリーンに人射する投射光の角度を変えて も、ピントが合い、尚且つ台形金がない投射画像を得る ととができる。

[0031]

【発明の効果】以上述べたように、第1の投射光学手段

ともに、g点とg′点との一致を保つように、カム等に より第1の投射光学手段の第1レンズ、第2レンズ、第 2の投射手段を上光線方向に移動し、且つ角度を変える ことにより、スクリーンに入射する投射光の角度を変化 させても、ピントが合い、尚且つ台形歪がない投射画像 が得られる投射型表示装配を提供できる。 また投射光 学手段の後に反射ミラーを置き、この角度を変えれば、 スクリーンに入射する投射光の角度を変化させることが 容易にできる。

【図面の簡単な説明】

【図1】本発明の第1の実施例による投射型表示装置の 図である.

【図2】本発明による投射型表示装置で、台形歪が起て らない条件の説明図である。

【図3】本発明による投射型表示装置の結像の説明図で ある。

-【図1】本発明におけるライトパルブの表示像の説明図 である。

【図5】本発明における中間像の説明図である。

【図6】本発明におけるスクリーン上での結像の説明図 である。

[図7] 本発明による投射型表示装置の、投射光の角度*

*を変える説明図である。

【図8】本発明の第2の実施例による投射型表示装置の 図である。

【図9】従来の投射型表示装置の図である。

【図10】 従来の、シフト型の投射型表示装置の図で ある.

【符号の説明】

- 1 光源
- ライトバルブ
- 第1の投射光学系の第1レンズ 3 10
 - 第1の投射光学系の第2レンズ
 - 中間像
 - 第2の投射光学系の第1レンズ
 - 第2の投射光学系の第2レンズ

 - 9 カム
 - 10 幽車
 - 11 第2の投射光学系
 - 12 投射光学系
 - 13 スクリーン
 - 14 投射レンズ

【図1】

【図5】

【図4】

特開平6-148566

[図8]

. (7)

[図10]

ともに、8点と8'点との一致を保つように、カム等に より第1の投射光学手段の第1レンズ、第2レンズ、第 2の投射手段を主光線方向に移動し、且つ角度を変える ことにより、スクリーンに入射する投射光の角度を変化 させても、ピントが合い、尚且つ台形歪がない投射画像 が得られる投射型表示装置を提供できる。 学手段の後に反射ミラーを置き、との角度を変えれば、 スクリーンに入射する投射光の角度を変化させることが 容易にできる。

【図面の簡単な説明】

【図1】本発明の第1の実施例による投射型表示装置の 図である。

【図2】本発明による投射型表示装置で、台形歪が起と、 ちない条件の説明図である。

【図3】本発明による投射型表示装置の結像の説明図で

【図4】本発明におけるライトバルブの表示像の説明図 である.

【図5】本発明における中間像の説明図である。

【図6】木発明におけるスクリーン上での結像の説明図 である。

【図7】本発明による投射型表示装置の、投射光の角度*

*を変える説明図である。

【図8】本発明の第2の実施例による投射型表示装置の 図である。

【図9】従来の投射型表示装置の図である。

【図10】 従来の、シフト型の投射型表示装置の図で ある。

【符号の説明】

- light source
- ライトバルブ light bulb
- 第1の投射光学系の第1レンズーfirst lens of livst projection
 - 第1の投射光学系の第2レンズ 中間像 intermediate image
- second lens of first projection optical system
 - 第2の投射光学系の第1レンズ
 - first lane of second projection optical system 第2の投射光学系の第2レンズ

 - second lens of second projection COM optical systam

 - 第20投射光学系 second projection optical system
 - 投射光学系 projection optical system
 - 13 XDU-V SCreen-
 - 14 投射レンス projection lens

[図1]

(图4) (図5)

