Problem Set 6

Ryan Coyne

October 18, 2023

1. Let $x, y, z \in \mathbb{Z}$. Prove: If exactly two of x, y, z are even, then 3x + 5y + 7z is odd. Case 1: Let x, y be even and let z be odd. Then, x = 2k, y = 2l, and z = 2m + 1, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 10l + 14m + 7$$
$$= 6k + 10l + 14m + 6 + 1$$
$$= 2(3k + 5l + 7m + 3) + 1$$

which is odd, by definition.

Case 2: Let x, z be even and let y be odd. Then, x = 2k, y = 2l + 1, and z = 2m, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 10l + 5 + 14m$$
$$= 6k + 10l + 14m + 4 + 1$$
$$= 2(3k + 5l + 7m + 2) + 1$$

which is odd, by definition.

Case 3: Let y, z be odd and let x be odd. Then, x = 2k + 1, y = 2l, and z = 2m, for some $k, l, m \in \mathbb{Z}$. Now,

$$3x + 5y + 7z = 6k + 3 + 10l + 14m$$
$$= 6k + 10l + 14m + 2 + 1$$
$$= 2(3k + 5l + 7m + 1) + 1$$

which is odd, by definition. \blacksquare

2. Let $a, b \in \mathbb{Z}$. Prove: If ab = 4, then $(a - b)^3 - 9(a - b) = 0$. Case 1: Let a = 1 and b = 4. Then,

$$(a-b)^3 - 9(a-b) = (1-4)^3 - 9(1-4)$$
$$= -3^3 - 9 \cdot -3$$
$$= -27 + 27$$
$$= 0.$$

Case 2: Let a = 1 and b = 4. Then,

$$(a-b)^3 - 9(a-b) = (-1+4)^3 - 9(-1+4)$$
$$= 3^3 - 9 \cdot 3$$
$$= 27 - 27$$
$$= 0.$$

Case 3: Let a=2 and b=2. Then,

$$(a-b)^3 - 9(a-b) = (2-2)^3 - 9(2-2)$$
$$= 0^3 - 9 \cdot 0$$
$$= 0$$

Case 4: Let a = -2 and b = -2. Then,

$$(a-b)^3 - 9(a-b) = (-2+2)^3 - 9(-2+2)$$
$$= 0^3 - 9 \cdot 0$$
$$= 0.$$

Therefore, $(a - b)^3 - 9(a - b) = 0$.

- 3. Let $a \in \mathbb{Z}$. Prove: If $3 \mid 2a$, then $3 \mid a$. By Result 4.8 from the textbook, if $3 \mid cd$, then $3 \mid c$ or $3 \mid d$, for some $c, d \in \mathbb{Z}$. Since $3 \mid 2a$ and $3 \nmid 2$, then it must be the case that $3 \mid a$.
- 4. Let $x, y \in \mathbb{Z}$. Prove: If 3 divides neither x or y, then $3 \mid (x^2 y^2)$. Since $(x^2 - y^2)$ can be factored into (x + y)(x - y), $3 \mid (x^2 - y^2)$ exactly when $3 \mid (x + y)$ or $3 \mid (x - y)$. Proceeding by cases according to the remainder of 3 divided by x and the remainder of 3 divided by y.
 - (i) Let x = 3k + 1, and y = 3l + 1 for some $k, l \in \mathbb{Z}$. Then,

$$x - y = 3k + 1 - 3l - 1$$

= $3k - 3l$
= $3(k - l)$,

which is divisible by 3.

(ii) Let x = 3k + 2, and y = 3l + 2 for some $k, l \in \mathbb{Z}$. Then,

$$x - y = 3k + 2 - 3l - 2$$

= $3k - 3l$
= $3(k - l)$.

which is divisible by 3.

(iii) Without loss of generality, let x = 3k + 1, and y = 3l + 2 for some $k, l \in \mathbb{Z}$. Then,

$$x + y = 3k + 1 + 3l + 2$$
$$= 3(k + l + 1),$$

which is divisible by 3.

The statement is, therefore, true. ■

- 5. Let $m, n \in \mathbb{N}$ such that $m \mid n$. Prove: if a and b are integers such that $a \equiv b \pmod{n}$, then $a \equiv b \pmod{m}$.
 - Since, $a \equiv b \pmod{n}$, then, $n \mid (b-a)$. Then b-a=nc, for some $c \in \mathbb{N}$, and given that $m \mid n$, then, b-a=mcd, for some $c,d \in \mathbb{N}$. Therefore, $m \mid (b-a)$, and by definition $a \equiv b \pmod{m}$.
- 6. Let $a_1, a_2, \ldots, a_n, n \geq 3$, be n integers such that $|a_{i+1} a_i| \leq 1$ for $1 \leq i \leq n-1$. Prove: if k is any integer that lies strictly between a_1 and a_n , then there is an integer j with i < j < n such that $a_i = k$.

Since, $|a_{i+1} - a_i| \le 1$, and all a_j are integers, $a_{i+1} = a_i$, $a_{i+1} = a_i + 1$, or $a_{i+1} = a_i - 1$. Because each integer must be equal to or only differ from the previous by 1, then in order to progress from a_1 to a_n in the sequence, we must step through each integer between them. Each integer between a_1 and a_n must be contained in the sequence.

7. Let $n \in \mathbb{Z}$. Prove: $2 \mid (n^4 - 3)$ if and only if $4 \mid (n^2 + 3)$. (\Longrightarrow) Since $2 \mid (n^4 - 3)$, then $n^4 - 3 = 2k$, for some $k \in \mathbb{Z}$. Then, $n^4 = 2k + 3 = 2(k+1) + 1$, and n^4 is therefore odd, and so n^2 must also be odd, and then n must be odd. Now, n = 2l + 1 for some $l \in \mathbb{Z}$, and therefore

$$n^{2} + 3 = 4l^{2} + 4l + 4$$
$$= 4(l^{2} + l + 1)$$

which is divisible by 4.

 (\Leftarrow) Since $4|(n^2+3)$, then, $n^2+3=4k$ for some $k\in\mathbb{Z}$. Then, $n^2=4b-3$. Now,

$$n^{4} - 3 = (4k - 3)^{2} - 3$$
$$= 16k^{2} - 14k + 6$$
$$= 2(8k^{2} - 12k + 3).$$

Therefore $2|(n^4-3)$.

8. Let $a, b \in \mathbb{Z}$. Prove: $a^2 + 2b^2 \equiv 0 \pmod{3}$ if and only if either a and b are congruent to $0 \pmod{3}$ or neither is congruent to $0 \pmod{3}$.

We will prove the statement by the contrapositive. Assume that either a is congruent to 0 mod 3, or b is, but not both. There are 4 cases.

Case 1: Assume, $a \equiv 0 \pmod{3}$ and $b \equiv 1 \pmod{3}$. Then $a^2 + 2b^2 \equiv 0 + 2 \equiv 2 \pmod{3}$, and so, $a^2 + 2b^2 \not\equiv 0 \pmod{3}$

Case 2: Assume, $a \equiv 0 \pmod{3}$ and $b \equiv 2 \pmod{3}$. Then $a^2 + 2b^2 \equiv 0 + 2 \equiv 8 \equiv 2 \pmod{3}$, and so, $a^2 + 2b^2 \not\equiv 0 \pmod{3}$

Case 3: Assume, $a \equiv 1 \pmod{3}$ and $b \equiv 0 \pmod{3}$. Then $a^2 + 2b^2 \equiv 1 + 0 \equiv 1 \pmod{3}$, and so, $a^2 + 2b^2 \not\equiv 0 \pmod{3}$

Case 4: Assume, $a \equiv 2 \pmod{3}$ and $b \equiv 0 \pmod{3}$. Then $a^2 + 2b^2 \equiv 2 + 0 \equiv 2 \pmod{3}$, and so, $a^2 + 2b^2 \not\equiv 0 \pmod{3}$

Therefore, the contrapositive holds and we have shown the original statement to be true. \blacksquare