Generative Adversarial Networks (GANs)

Nội dung

Tóm lược GANs

17 High frame rate video?

ng Úng dụng

Lợi ích cho nhóm

Tóm lược GANs

GANs (Generative Adversarial Networks)

- Generative: learn a generative model

- Adversarial: Trained in an adversarial setting

- Networks: Use Deep Neural Networks

Cat

Cat

Cat????

Traditional classified/discriminative models:

- Given an image X, predict label Y
- Estimate P(Y|X)

Discriminate models limitations:

- Can't model P(X), i.e the probability of seeing a certain image.
- Thus, can't sample from P(X), i.e can't generate new images

Generative models

- Can model P(X)
- Can generate new images

Magic of GANs

Raw material

Basic GAN

Advanced GAN

Magic of GANs

Magic of GANs

12 Kiến trúc mạng GANs

Architecture of GANs

Discriminator Training

Generator Training

Generator Training

GANs Game

Gan is formulated as a game, where:

- The Discriminator is trying to maximize its reward V(D,G)
- The Generator is trying to minimize Discriminator reward (or maximize loss)

$$\min_{G} \max_{D} V(D, G)$$

$$V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

So,

- Idea Discriminator result: for every x or z, D(x) = 1 and D(G(z)) = 0 (max V(D,G))
- Idea Generator result: for every x or z, D(x) = 0 and D(G(z)) = 1 (min V(D,G))

GANs Game End Conditions

How does the game end?

The Game end and only end, if and only if the GANs is convergence

When does the game end?

It's depend on you and the resource you have !!

Traditional GAN Problems

Improved GAN architecture

Improved GAN architecture

GANs With Latent space

GAN Advantages

Why GANs?

- Sampling (or generation) is straightforward
- Just use Backpropagation for updating weights loss function (or reward function)
- Robust to Overfitting since Generator never seen the training data\
- At the end, Discriminator and Generator can be separated and use a distinguished module in the other applications.

Face aging with conditional Gan

Video Render in Between

Vietnamese Painting Generated by VQGAN

Text to Images By Gan

