DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA CUARTA PRÁCTICA (Modelo A)

1. Calcula una primitiva de la función $f(x) = \frac{x - \sqrt{\operatorname{atan}(2x)}}{1 + 4x^2}$

$$\frac{\log(4x^2+1)}{8} - \frac{\tan^{3/2}(2x)}{3}$$

2. Determina las coordenadas de los puntos en los que se alcanzan el máximo y el mínimo de la función

$$F(x) = x + \int_{x}^{0} (t^2 - 2t)dt$$

El máximo se alcanza en $M=\left(1+\sqrt{2}\;,\; \frac{5+4\sqrt{2}}{3}\right)$ y el mínimo en $m=\left(1-\sqrt{2}\;,\; \frac{5-4\sqrt{2}}{3}\right)$

3. Representa gráficamente la región encerrada por la función $f(x) = \frac{\sin(x)}{x}$ y el eje de abscisas sobre el intervalo $[0, 2\pi]$. La región pedida se obtiene al simplificar la expresión

PlotInt
$$\left(\left| \frac{\sin(x)}{x} \right| \right)$$
 , x, $\boxed{0}$, $\boxed{2\pi}$, y

El valor aproximado del área es 2.285722526.

4. Representa gráficamente la región encerrada entre las funciones $f(x) = x^3$ y g(x) = 2x + 1. La región pedida se obtiene al simplificar la expresión

AreaBetweenCurves
$$\left(\boxed{x^3} \right)$$
 , $\boxed{2x+1}$, x , $\boxed{-1}$, $\boxed{\frac{1+\sqrt{5}}{2}}$, y

El valor del área es $\boxed{\frac{15\sqrt{5}-11}{8}} \approx \boxed{2.817627457}$.

5. Obtén el valor aproximado de la integral $\int_0^1 \frac{\cos(x)}{x+1} dx$ mediante el método de los trapecios considerando n=10.

$$\int_{0}^{1} \frac{\cos(x)}{x+1} dx \approx \boxed{0.6014141291}$$

Calcula la derivada segunda de la función $f(x) = \frac{\cos(x)}{x+1}$ y a partir de una gráfica adecuada halla M_2 , cota de f'' en el intervalo [0,1].

$$M_2 = \boxed{1}$$

Acota el error cometido en la aproximación, de donde se deduce que la aproximación garantiza 2 decimales correctos, al menos.

La aproximación que proporciona DERIVE para la integral anterior será

$$\int_0^1 \frac{\cos(x)}{x+1} dx \approx \boxed{0.6010443852}$$

Compara este valor con el resultado anterior.

APELLIDOS: NOMBRE: GRUPO:

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA CUARTA PRÁCTICA (Modelo B)

1. Calcula una primitiva de la función $f(x) = \frac{e^{3x}}{\sqrt{e^{2x} - 1}}$

$$\boxed{\frac{e^x\sqrt{e^{2x}-1}}{2} + \frac{\log\left(\sqrt{e^{2x}-1} + e^x\right)}{2}}$$

2. Determina las coordenadas de los puntos en los que se alcanza el máximo y el mínimo en $\mathbb R$ de la función

$$F(x) = x - \int_0^x e^{(t^2 - 1)} dt$$

El máximo se alcanza en el punto de abscisa x=1 y su valor aproximado es $F\left(\boxed{1}\right) \approx \boxed{0.46192049}$; el mínimo se alcanza en el punto de abscisa x=-1 y su valor aproximado es $F\left(\boxed{-1}\right) \approx \boxed{-0.46192049}$.

3. Representa gráficamente la región encerrada por la función $f(x) = x + \sin(2x)$ y el eje de abscisas sobre el intervalo [-3, 3]. La región pedida se obtiene al simplificar la expresión

PlotInt
$$(x + \sin(2x))$$
 , x, -3 , 3 , y

El valor del área es $10 - \cos(6) \approx 9.039829713$.

4. Representa gráficamente la región encerrada entre las funciones $f(x) = x^4 - x + 1$ y $g(x) = x^4 - x^3 + 1$. La región pedida se obtiene al simplificar la expresión

AreaBetweenCurves
$$\left(\boxed{x^4-x+1} \right)$$
 , $\boxed{x^4-x^3+1}$, x , $\boxed{-1}$, $\boxed{1}$, y

El valor del área es $\boxed{\frac{1}{2}} \approx \boxed{0.5}$.

5. Obtén el valor aproximado de la integral $\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx$ mediante el método de Simpson considerando n = 10.

$$\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx \approx \boxed{1.443174696}$$

Calcula la derivada cuarta de la función $f(x) = \sqrt{2 + \cos^2(x)}$ y a partir de una gráfica adecuada halla M_4 , cota de f^{IV} en el intervalo [1, 2].

$$M_4 = \boxed{4}$$

Acota el error cometido en la aproximación, de donde se deduce que la aproximación garantiza 5 decimales correctos, al menos.

La aproximación que proporciona DERIVE para la integral anterior será

$$\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx \approx \boxed{1.443176131}$$

Compara este valor con el resultado anterior.