

Proof: $hn \in HVV$. Shn. | hGH, $n \in N$ }. is closed under multiplication and taking inverses. x = h, n, $hi \in H$ $n_3 = \frac{h^2 \cdot h_1 h_2}{n_1 h_2} \in N$ (normal) $y = h_2 n_2$. $n_1 \in N$ normal subgroup $n_1 h_2 = h_2 n_3$. $3y = (h_1 n_1 h_2 n_2) = h_1 (h_1 h_2) n_2 = (h_1 h_2) n_3 n_2 \in [h_1 h_2 h_3]$ EH EN. closed under multiplication $\lambda = hn \cdot m = hnh^{-1} \in N$ (normal) invariant. $m^{-1} = h n^{-1} h^{-1} \Rightarrow h^{-1} m^{-1} = n^{-1} h^{-1}$ $x' = \underbrace{n^{-1} \cdot h^{-1}}_{P} = \underbrace{h^{-1} \underline{m^{-1}}}_{P} \quad e \quad \text{finite H. new}.$ Closed under taking inverses H -> HN be the natural inclusion. wormal. HN is normal $gh \cdot N = gh \cdot N$ N is wormal. $x \in HN/N$ $x = h\underline{n} \cdot N = hN \cdot h \in H$. Surjective. $h \in H$ is her (p) hN = N the identity (uset) $h \in N$. LE HNN following First isomorphism theorem. Third isomorphism Let KCH be two normal subgroups of group G. G/H \(G/K)/(H/K). theorem:

1) G/H \(G/K)/(H/K).	
proof: G -> G/H Kerner H contains K	
$G/K \rightarrow G/H$ homomorphism.	
$gK \rightarrow gH$ swjettive	
gx is the berrel gH is the ide	ntity. gH=H. gGH.
geH H/V = 89K 196H3.	•
G/H = (G/K)/CH/K	first isomorphism theorem. D
Definition: Let G be a group and let H be a subgroup	
we say that H is a characteristic subgroup of G, if for every antomorphism & of G. \$(H)=H.	
G G G	committee with every element of G
Jemma: Let G be a group. Let 2	= 2.CG) be the centre.
Then Z is characteristic nor	y2 = 2y.
proof. Let ϕ be an automorphism of G . $\phi(2) = 2$. $x^2 = 2x$.	
$262.$ $x \in G.$ $x = p(y)$	ye G.
$A \cdot \beta(\mathbf{Z}) = \beta(\mathbf{y}) \cdot \beta(\mathbf{Z})$	
$=\phi(y2)=\phi(2y)=\phi(2)\phi(y)=\phi(2)x.$	
\$12) commutes with every element of	
$\phi^{-1}(Z)$ commutes	$\phi(Z)\subset Z$.

\$ 102) commutes

Ø(2)=Z

 $\phi(Z) \subset Z.$ $Z \subset \phi(Z)$

Ҵ.

18. December: 4:00 (China)