Semaine n° 17 : du 20 janvier au 24 janvier

Lundi 20 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.2 : Polynômes premiers en eux ; théorème de Bézout ; théorème de Gauss ; unicité de la décomposition en produit de polynômes irréductibles.
 - Partie 4.3 : PGCD de n polynômes; polynômes premiers entre eux dans leur ensemble; théorème de Bézout.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices n° : exercices

Mardi 21 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.4 : Plus petits communs multiples de deux polynômes. Unicité du PPCM unitaire ou nul de deux polynômes; propriétés.
 - Partie 5 : Formule d'interpolation de Lagrange.
- Exercices à corriger en classe
 - Feuille d'exercices n°: exercice.

Jeudi 23 janvier

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 1.1 : Taux d'accroissement.
 - Partie 1.2 : Fonction dérivable en un point a, nombre dérivée en a; fonction dérivable sur un intervalle I; caractérisations de la dérivabilité d'une fonction en un point.
 - Partie 1.3 : Dérivabilité et dérivée d'une somme, d'un produit, d'un quotient, d'une composée de fonctions dérivables.
 - Partie 1.4: Dérivées successives d'une fonction; fonction n fois dérivable, fonction de classe \mathcal{C}^n , fonction de classe \mathcal{C}^∞ ; opérations sur les fonctions de classe \mathcal{C}^n , formule de Leibniz.
- Exercices à corriger en classe
 - Feuille d'exercices n° : exercices .

Vendredi 24 janvier

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 2.1 : Extrema locaux; points critiques d'une fonction dérivable.
 - Partie 2.2 : Théorème de Rolle.
 - Partie 2.3 : Égalité et inégalités des accroissements finis ; fonctions lipschtizienne.

Échauffements

Mardi 21 janvier

	-	
• Ca	Fouver les racines de $2X^4 - 21X^3 + 68X^2 - 89X + 9$ cher toutes les assertions vraies : Soit A et B is deg $A > \deg B$, alors $\deg(A+B) = \deg A$. If $\deg(A+B) \geqslant \min(\deg A, \deg B)$. If $\deg(A \circ B) = (\deg A) \times (\deg B)$. If $A \mid B$, alors $\deg A \leqslant \deg B$. If $A \mid B$, toute racine de A est racine de A . If is toute racine de A est racine de A .	
Jeudi 2	3 janvier	
• Co	scher toutes les assertions vraies : Soit P un por Si r_1, \dots, r_n sont les racines de P , et qu'elles $\sum_{i=1}^n m_i.$ Si λ est une racine de P de multiplicité m , alc	de $\mathbb{R}[X]$ le polynôme $(X^2 - X + 2)^2 + (X - 2)^2$. olynôme. sont de multiplicité m_1, \dots, m_n , alors deg $P = 0$ ors λ est une racine de P' de multiplicité $m-1$. ors λ est une racine de P de multiplicité $m+1$.
Vendred	di 24 janvier	
dé • Ca qu est	terminer son ordre de multiplicité. Socher toutes les assertions vraies : Soit f une for le la suite $f(1/n)$ converge vers 0 . Laquelle de t continue à droite en 0 ?	$(x+2)X - n$. Montrer que 1 est racine de P_n et enction de \mathbb{R} dans \mathbb{R} avec $f(0) = 0$. On suppose s conditions suivantes permet de déduire que $f(0)$
	f est projesente	☐ f est paire ☐ c'est touigurs le ces
	f est croissante	□ c'est toujours le cas