امتحانِ ترمودینامیک و مکانیکِ آماری

- ۱ مسائل
- ۱.۱ گاز کامل
- ۱.۱.۱ گاز و فنر

یک سیستم بسته متشکل از دوبخش وجود دارد، در سمت راست یک فنر و در سمت چپ گاز تکاتمی ایده آلی N ذره) وجود دارد. بینِ این دوبخش پیستونی قرار گرفته که آزادانه چپ و راست می شود.

سطحِ مقطع جانبیِ جعبه، \tilde{A} و طولِ جعبه L است. از ضخامت پیستون صرف نظر کنید. همچنین ضریب سختیِ فنر برابر K خواهد بود. طولِ آزادِ این فنر نیز برابر همان L است.

انرژیِ سیّستم را برحسب k ، k ، k ، k و T بنو یسید. سپس ظرفیت گرمایی ویژهٔ سیستم را به دست آور بد.

۲.۱.۱ بازهم چرخهٔ گرد

(حواستان باشد این سؤال با سؤال تمرین متفاوت است) چرخهای ساختهایم که در نمودارِ T-S به شکل یک بیضیای به مرکز (S_0,T_0) و به شعاعهای ΔS و ΔT است. ابتدا بگویید در کدام یک از بخشهای مسیر Φ مثبت و در کدام بخشها منفیست. سپس بازده آن را حساب کنید.

٣.١.١ نوسانگرها

قسمت اول: فرض کنید یک سیستم متشکل از N نوسان گرِ کوچک داریم که برای هرکدام انرژی مقدار گسسته ی دارد. این مقدار می تواند $h\nu$ یا $2h\nu$ یا $2h\nu$ یا $3h\nu$ یا مقدار می تواند $h\nu$ یا باشد. اگر انرژی سیستم E باشد (که ضریبی از $h\nu$ است)، $\ln\Omega$ را حساب کنید.

(راهنمایی: جواب معادلهٔ سیاله N=n $|x_i\in\mathbb{N}|$ است) (راهنمایی: جواب معادلهٔ سیاله N=n $|x_i\in\mathbb{N}|$ است) (حتماً تقریب بزنید و درنظر بگیرید که $N\gg 1$ و $N\gg 1$ و حتی $N\gg N$. ولی حواستان باشد خیلی تقریب نزنید که پارامترها حذف نشوند.)

قسمت دوم: یکی از این نوسانگرها را مشخص کردهایم، میخواهیم انرژیِ نوسانگرِ موردنظر برابرِ $mh\nu$ با این شرط چقدر خواهد شد؟

(راهنمایی اول: این مشابه حالتی ست که انگار یک نوسان گر کم تر داریم و مقدار $mh\nu$ کم تر انرژی برای تقسیم داریم، یعنی اگر جواب قسمت قبل را داشته باشیم $\Omega(E-mh\nu,N-1)$ پاسخ این قسمت است)

(راهنمایی دوم: این پاسخ را با تقریب به دست آورید و توجه کنید که $\frac{mh\nu}{E}\gg \frac{1}{N}$ کنید که این پاسخ را با تقریب به دست آورید. قسمت سوم: احتمالِ این که انرژی نوسانگر مذکور برابر $mh\nu$ باشد را به دست آورید.