ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa A

- Zadane su tri Booleove funkcije: $f_1(A, B, C, D) = \overline{A}D$, $f_2(A, B, C, D) = \sum_{i=1}^{n} m(3,7)$, $f_3(A, B, C, D) = \sum m(1,5,10,11)$. Sve tri funkcije potrebno je ostvariti jednim programirljivim poljem (PLA) tipa NI-NI. Neka je *n* broj ulaza u PLA, *l* broj NI sklopova prve razine a *k* broj NI sklopova druge razine. Minimalne dimenzije potrebnog PLA sklopa $n \times l \times k$ su: a) $3 \times 3 \times 3$ b) $4 \times 3 \times 3$ c) $4\times4\times3$ d) $4\times4\times2$ e) $2\times3\times4$ f) ništa od navedenoga
- Kod koje izvedbe bistabila može doći do pojave osciliranja izlaza kada je signal takta trajno omogućen (i uz prikladnu pobudu)?
 - a) razinom upravljanog JK
- c) dvostrukog JK
- e) bridom okidanog D

- b) bridom okidanog JK
- d) razinom upravljanog D
- f) ništa od navedenoga
- Na raspolaganju je trobitni registar s paralelnim ulazima DI₂, DI₁, DI₀ te paralelnim izlazima Q₂, Q_1 , Q_0 (DI₂ je ulaz najviše težine, Q_2 je izlaz najviše težine), te ispisna memorija 8×3 (A₂ je adresni ulaz najviše težine, D₂ podatkovni izlaz najviše težine). U memoriju je po lokacijama, počevši od nulte, zapisan sljedeći sadržaj: 1, 3, 4, 5, 0, 2, 7, 6. Memorija i registar spojeni su na način $DI_2 \leftarrow D_2$, $DI_1 \leftarrow D_1$, $DI_0 \leftarrow D_0$, $A_2 \leftarrow Q_2$, $A_1 \leftarrow Q_1$, $A_0 \leftarrow Q_0$ (vidi sliku 1). Utvrdite duljinu ciklusa u kojem radi sklop (ako ih ima više, najduljeg) te ima li ili nema siguran start.
 - a) 5, ima siguran start
- c) 6, nema siguran start
- e) 4, ima siguran start

- b) 8, ima siguran start
- d) 1, ima siguran start
- f) ništa od navedenoga
- 3-bitni posmačni registar ima paralelne izlaze Q2, Q1, Q0 te serijski ulaz Sin a podatak pomiče od Q2 prema Q_0 . Na ulaz S_{in} spojen je kombinacijski sklop koji računa funkciju $\overline{Q_1 \oplus Q_0}$. Istovjetni sklop želimo ostvariti uporabom 3-bitnog posmačnog registra i jednog multipleksora 4/1, pri čemu ostvareni sklop mora imati siguran start. Na adresne ulaze multipleksora spojeno je $A_1=Q_2$, $A_0=Q_1$. Na podatkovne ulaze D₀, D₁, D₂ i D₃ multipleksora potrebno je dovesti redom:
 - a) $1, \overline{Q}_0, 0, Q_0$
- c) $Q_0, \overline{Q}_0, Q_0, \overline{Q}_0$ c) Q_0, \overline{Q}_0, Q_0 d) $1, \overline{Q}_0, 0, 0$
- e) $\overline{Q}_0,1,0,\overline{Q}_0$

b) $\overline{Q}_0, Q_0, \overline{Q}_0, 0$

f) ništa od navedenoga

Stroj s konačnim brojem stanja prikazan na slici 2 ostvarite (bez minimizacije) uporabom 2 bistabila tipa D, uz prirodno binarno kodiranje stanja. Neka su izlazi bistabila označeni s Q₁ i Q₀ a ulaz stroja označen s I. Minimalni zapis Booleove funkcije koju treba dovesti na ulaz D₁ glasi:

a) $Q_1\overline{Q}_0 + I$

c) \overline{Q}_0I

e) $\overline{Q}_1 + \overline{Q}_0 I$

b) $\overline{Q}_1 + Q_0 + I$

d) \overline{Q}_1I

f) ništa od navedenoga

6	Za stroj s konačnim brojem stanja čiji je dijagram promjene stanja prikazan na slici 2 utvrdite broj parova ekvivalentnih stanja (S_i, S_j) , $i < j$?					
	a) 4	b) 2	c) 3	d) 0	e) 1	f) ništa od navedenoga
7	Bistabil tipa AB, čija je jednadžba promjene stanja $Q_{n+1} = \overline{A} \cdot \overline{Q}_n + B \cdot Q_n$, ostvarite uporabom bistabila T. Minimalni oblik Booleove funkcije koju je potrebno dovesti na ulaz T je:					
	a) $\overline{A} + BQ_n$	a) $\overline{A} + BQ_n$ c) $Q_nB + \overline{Q}_n\overline{A}$		$\overline{Q}_n\overline{A}$	e) $Q_n \overline{B} + \overline{Q}_n \overline{A}$	
	b) $\overline{A}B$	d) $\overline{A}B$			f) ništa od navedenoga	
8	Zadana je funkcija $f(A,B,C,D) = m(0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13)$. Koliko ta funkcija ima bitnih primarnih implikanata/minimalnih oblika?					
	a) 2/3	b) 2/1	c) 4/2	d) 3/1	e) 5/1	f) ništa od navedenoga
9	Uporabom bistabila T s dodatnim asinkronim ulazima za postavljanje \overline{S}_d (aktivna 0) potrebno je izgraditi asinkrono brojilo koje broji u ciklusu s 10 stanja. Neka bistabil B_0 pohranjuje bit najmanje težine. Svi ulazi \overline{S}_d spojeni su zajedno i njima upravlja signal X. Koju funkciju treba ostvarivati kombinacijski sklop koji prekida ciklus brojanja (generira signal X). a) $\overline{Q}_3 + \overline{Q}_2 + \overline{Q}_1 + Q_0$ c) $Q_3 + \overline{Q}_2 + Q_1 + \overline{Q}_0$ e) $Q_3 + \overline{Q}_2 + \overline{Q}_1 + Q_0$					
	b) $\overline{Q}_3 + Q_2 + Q_3$		d) $Q_3 + \overline{Q}$			sta od navedenoga
10		simalnu frekver ći parametri: t _{se} b) 100MHz		$= 5 \text{ ns}, t_{db} = 1$		jila (u užem smislu) ako su s. f) ništa od navedenoga
11	Odredite maksimalnu frekvenciju rada 5-bitnog sinkronog binarnog brojila sa serijskim prijenosom ako su poznati sljedeći parametri: $t_{setup} = 10$ ns, $t_{hold} = 5$ ns, $t_{db} = 15$ ns, $t_{dls} = 5$ ns.					
	a) 10MHz	b) 100MHz	c) 25MHz	d) 40MHz	e) 5MHz	
12	Na raspolaganju je 8-bitna memorija kapaciteta 32kbita. Ako je organizacija memorijskog polja 2½D i ako se na adresni dekoder dovodi 8 adresnih bitova, koliko svaka fizička riječ sadrži logičkih riječi?					
	a) 8	b) 128	c) 32	d) 2	e) 16	f) ništa od navedenoga
13	Kombinacijski sklop koji na izlazu daje paritetni bit (uz parni paritet) kojim se štiti podatkovna riječ $d_7d_6d_5d_4d_3d_2d_1d_0$ želimo ostvariti jednim multipleksorom 32/1. Koliko varijabli imaju rezidualne funkcije koje se dovode na podatkovne ulaze multipleksora?					
	a) 8	b) 5	c) 3	d) 2	e) 6	f) ništa od navedenoga
14	Na raspolaganju su memorijski moduli RAM-a 1024×8 bita. Njihovom uporabom želimo izgraditi memoriju za digitalni sustav koji koristi 16-bitne podatkovne riječi a za adresiranje koristi 13 adresnih bitova. Uz potreban broj navedenih memorijskih modula trebat ćemo i jedan adresni dekođer. O kojem se (minimalnom) dekođeru radi?					
	a) 3/8	b) 10/1024	c) 2/4	d) 8/256	e) 1/2	f) ništa od navedenoga
15	4-bitni binarni DA pretvornik s težinskom otpornom mrežom i operacijskim pojačalom broj 15 pretvara u izlazni napon od -5V. Najveći otpor u težinskoj mreži je 15 k Ω a referentni napon je 5V. Odredite iznos otpora R_f koji je u povratnoj vezi operacijskog pojačala.					
	a) 4 kΩ	b) 500 Ω	c) 2 kΩ	d) 10 kΩ	e) 1 kΩ	f) ništa od navedenoga

e) 1,1,0,0,0,0,1,1

f) ništa od navedenoga

Ako se rješavaju, sljedeća dva zadatka moraju biti riješena u unutrašnjosti košuljice, kako je napisano uz svaki od zadataka. Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

Sljedeća dva zadatka slična su posljednjem zadatku s laboratorijskih vježbi. Ostvarujemo automat koji upravlja s dva svjetla: crvenim (upaljeno je kada je izlaz C=1) i zelenim (upaljeno je kada je izlaz Z=1). Automat za potrebe mjerenja vremena ima na raspolaganju vremenski sklop (timer) koji na izlazima T2, T4 i T8 postavlja vrijednost 1 u trenutku kada su prošle dvije, četiri odnosno 8 sekundi od reseta vremenskog sklopa (automat ga resetira postavljanjem signala *tres* u 1; taj je signal izlaz automata i ulaz vremenskog sklopa). Automat mora osigurati sljedeći ciklus paljenja svjetala:

- 2 sekunde upaljeno je samo crveno
- potom 6 sekundi crveno i zeleno
- potom 8 sekundi samo zeleno

Pretpostavite da po uključenju na napajanje automat odmah mora resetirati vremenski sklop jer u suprotnom on neće započeti s mjerenjem vremena.

Zadatak 22. Riješiti na unutrašnjosti košuljice, s lijeve strane.

Nacrtajte dijagram promjene stanja Moorevog automata koji rješava opisani problem. Nemojte zaboraviti jasno naznačiti kojim su redoslijedom prikazani ulazi odnosno izlazi na dijagramu koji ćete nacrtati.

Zadatak 23. Riješiti na unutrašnjosti košuljice, s desne strane.

Nacrtajte dijagram promjene stanja Mealyjevog automata koji rješava opisani problem. Nemojte zaboraviti jasno naznačiti kojim su redoslijedom prikazani ulazi odnosno izlazi na dijagramu koji ćete nacrtati.