Le Gall: Measure Theory, Probability, and Stochastic Processes Companion Notes

Taken by: Mark Zhu

August 2025

Contents

Ι	Measure Theory	2
1	Measurable Spaces	2
2	Integration of Measurable Functions	5
3	Construction of Measures	8
4	L^p Spaces	10
5	Product Measures	12
7	Change of Variables	14
II	Probability Theory	15
8	Foundations of Probability Theory	15
9	Independence	17

Part I

Measure Theory

1 Measurable Spaces

Def 1.2 \mathcal{C} is a collection of subsets of E.

"Clearly, closed subsets of E are Borel sets." Let $U \subset E$, and U is open $\Longrightarrow U \in \mathcal{B}(E)$. Since $\mathcal{B}(E)$ is a σ -field, $E \setminus U \in \mathcal{B}(E)$, which is closed.

Lem 1.5 To prove $\mathcal{B}(E) \otimes \mathcal{B}(F) \subset \mathcal{B}(E \times F)$, consider the following class

$$C_B = \{ A \in \mathcal{B}(E) : A \times B \in \mathcal{B}(E \times F) \}$$

Fix $B \subset F$ be open. $\mathcal{B}(E \times F) = \sigma(\mathcal{O})$ where $\mathcal{O} = \{\text{all open subsets of } E \times F\}$, and $E \times F = \{(e, f) : e \in E, f \in F\}$. If $A \subset E$ is also open, then $A \times B \in \mathcal{B}(E \times F), A \in \mathcal{C}_B, \mathcal{B}(E) \subset \mathcal{C}_B$. Clearly $\mathcal{C}_B \subset \mathcal{B}(E)$, so $\mathcal{C}_B = \mathcal{B}(E)$.

p. 7 In the proof of property (4), discuss why

$$\mu\left(B_1\setminus\bigcap_{n\in\mathbb{N}}B_n\right)=\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)$$

Derive $B_1 \setminus \bigcap_{n \in \mathbb{N}} B_n = B_1 \cap (\bigcap_{n \in \mathbb{N}} B_n)^c = B_1 \cap (\bigcup_{n \in \mathbb{N}} B_n^c) = \bigcup_{n \in \mathbb{N}} (B_1 \cap B_n^c) = \bigcup_{n \in \mathbb{N}} A_n$.

p. 9 Discuss the equivalence of limsup and liminf for sequences of numbers $\{a_n\}$ and of sets $\{A_n\}$. Recall

$$\limsup_{n \to \infty} \{a_n\} = \lim_{n \to \infty} \sup_{k \ge n} \{a_k\}, \quad \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

Define an indicator function

$$a_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \notin A_n \end{cases}$$

 $\sup_{k\geq n}\{a_k(x)\}=1$ if $\exists k\geq n$ such that $x\in A_k$. $\sup_{k\geq n}\{a_k(x)\}=0$ otherwise. Take limits, then $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}=1$ if $\forall n\geq 1, \exists k\geq n$ such that $x\in A_k$.

Note that $\forall n \geq 1 \iff \bigcap_{n \geq 1}; \exists k \geq n \iff \bigcup_{k \geq n}, \text{ so}$

$$\lim \sup_{n \to \infty} \{a_n(x)\} = \begin{cases} 1 & x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \\ 0 & \text{otherwise} \end{cases}$$

For liminf, it's more natural to consider the inverse statement. $\inf_{k\geq n}\{a_k(x)\}=0$ if $\exists k\geq n$ such that $x\notin A_k$, so $a_k(x)=0$. $\lim_{n\to\infty}\inf_{k\geq n}\{a_k\}=0$ if $\forall n\geq 1, \exists k\geq n$ such that $x\notin A_k$. That means if $\exists n\geq 1, \forall k\geq n, x\in A_k$, then $\lim_{n\to\infty}\inf_{k\geq n}\{a_k\}=1$. Thus

$$\lim_{n \to \infty} \inf \{ a_n(x) \} = \begin{cases} 1 & x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \\ 0 & \text{otherwise} \end{cases}$$

Conclusion: the gap between real numbers and sets is closed by *indicator functions*.

Lem 1.7 Because $\bigcap_{k=n}^{\infty} A_k \subset A_k$, for all $k \geq n$,

$$\mu\left(\bigcap_{k=n}^{\infty} A_k\right) \le \mu(A_k)$$

So $\mu(\bigcap_{k=n}^{\infty} A_k) \leq \inf_{k\geq n} \mu(A_k)$. Since $\bigcap_{k=n}^{\infty} A_k$ is increasing with respect to n, use property (3) in p. 6, and get the desired result.

Prop 1.10 To let f measurable, two conditions should suffice

- 1. \exists generator $\mathcal{C} \subset \mathcal{B}$, such that $\sigma(\mathcal{C}) = \mathcal{B}$
- 2. f is measurable on C

By Def 1.8 and the second condition, $\forall B \in \mathcal{C}, f^{-1}(B) \in \mathcal{A}$. So $B \in \mathcal{G}, \mathcal{C} \subset \mathcal{G}$. Now show that \mathcal{G} is a σ -field.

- $F \in \mathcal{B}, f^{-1}(F) = E \in \mathcal{A} \implies F \in \mathcal{G}$
- Let $B \in \mathcal{G}$, so $f^{-1}(B) \in \mathcal{A}$. Since \mathcal{A} is a σ -field, $\mathcal{A} \ni E \setminus f^{-1}(B) = f^{-1}(F \setminus B)$, so $B^c = F \setminus B \in \mathcal{G}$
- If $B_n \in \mathcal{G}$, then $f^{-1}(B_n) \in \mathcal{A}$, $f^{-1}(\bigcup_{n \ge 1} B_n) = \bigcup_{n \ge 1} f^{-1}(B_n) \in \mathcal{A}$. So $\bigcup_{n \ge 1} B_n \in \mathcal{G}$

So \mathcal{G} is a σ -field. Since $\mathcal{C} \subset \mathcal{G}$, $\mathcal{B} = \sigma(\mathcal{C}) \subset \mathcal{G}$. By construction of \mathcal{G} , $\mathcal{G} \subset \mathcal{B}$. Thus $\mathcal{G} = \mathcal{B} \implies \forall B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}$, so f is measurable.

Lem 1.15

- 1. "The set A of all $x \in E$ such that $f_n(x)$ converges in \mathbb{R} as $n \to \infty$ is measurable" where 'converges' means $\limsup_n f_n = \liminf_n f_n$.
- 2. $A = G^{-1}(\Delta)$ is followed by Δ is a measurable set, G is a measurable function, so $G^{-1}(\Delta) \in \mathcal{A}$ under measurable space (E, \mathcal{A}) .
- 3. Then move on to the second statement that $h: E \to \mathbb{R}$ is measurable. If $\forall F \subset \mathbb{R}, h^{-1}(F) \in \mathcal{A}$, i.e. $h^{-1}(F)$ is a measurable set, then h is a measurable function.

(Case 1) If $0 \notin F$, then h collapses into $h(x) = \lim_n f_n(x), \forall x \in A$. Then $h^{-1}(F)$ is given by

$$h^{-1}(F) = A \cap \{x \in E : \limsup f_n(x) \in F\}$$

and both sets on the right are measurable.

(Case 2) If $0 \in F$, then $0 \notin F^c$.

$$x \in (h^{-1}(F))^c \iff h(x) \notin F \iff h(x) \in F^c \iff x \in h^{-1}(F^c)$$

which means $(h^{-1}(F))^c = h^{-1}(F^c)$. From Case 1 we know $h^{-1}(F^c)$ is a measurable set, so does $(h^{-1}(F))^c$. Because the collection of measurable sets is a σ -field (by Def 1.1), $h^{-1}(F)$ is also measurable.

p. 13 "Any σ-field is also a monotone class. Conversely, a monotone class \mathcal{M} is a σ-field if and only if it is closed under finite intersections."

Question: How 'closure under finite intersections' helps \mathcal{M} becoming a σ -field?

For property (ii), set B = E, then $A^c = E \setminus A \in \mathcal{M}$. For property (iii), given \mathcal{M} is closed under finite intersections, let $A, B \in \mathcal{M}, A^c \cap B^c \in \mathcal{M} \implies A \cup B = (A^c \cap B^c)^c$. So it's also closed under finite union. Define

$$B_n = \bigcup_{k=1}^n A_k$$

clearly $B_n \subset B_{n+1}$. Apply (iii),

$$\mathcal{M} \ni \bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} \bigcup_{k=1}^n A_k = \bigcup_{k \in \mathbb{N}} A_k$$

without the restriction of $A_n \subset A_{n+1}$.

Thm 1.18 Explanation about the proof

1. When verifying \mathcal{M}_A is a monotone class, in the complement property

$$\mathcal{M}(\mathcal{C}) \ni (A \cap B') \setminus (A \cap B) = A \cap (B' \setminus B)$$

is based on the construction of \mathcal{M}_A and nothing else.

2. Before the last step, we reached the result

$$\forall A \in \mathcal{C}, \forall B \in \mathcal{M}(\mathcal{C}), A \cap B \in \mathcal{M}(\mathcal{C})$$

But to show $\mathcal{M}(\mathcal{C})$ is closed under finite intersections, we need

$$\forall A, B \in \mathcal{M}(\mathcal{C}), A \cap B \in \mathcal{M}(\mathcal{C})$$

Previously, we fixed $A \in \mathcal{C}$ to reach the property $\mathcal{C} \subset \mathcal{M}_A$ and everything follows. So we cannot simply replace $A \in \mathcal{C}$ by $A \in \mathcal{M}(\mathcal{C})$. Here's what we do:

Fix $B \in \mathcal{C}$. Now A can be an arbitrary set in $\mathcal{M}(\mathcal{C})$. Use the conclusion above, $A \cap B \in \mathcal{M}(\mathcal{C})$, so $B \in \mathcal{M}_A$. That is, $\forall B \in \mathcal{C}, B \in \mathcal{M}_A$, thus $\mathcal{C} \subset \mathcal{M}_A, \forall A \in \mathcal{M}(\mathcal{C})$. Since \mathcal{M}_A is a monotone class, $\mathcal{M}(\mathcal{C}) \subset \mathcal{M}_A$, $\mathcal{M}(\mathcal{C})$ is closed under finite intersection.

Cor 1.19 In (1), $\mu(E) = v(E)$ ensures that \mathcal{G} satisfies its first property for being a monotone class. In (2), μ_n, v_n are respective restrictions of μ, v to E_n , i.e.

$$\mu_n(A) = \mu(A \cap E_n), \quad \forall A \in \mathcal{A}$$

 $\mu(E_n) = v(E_n)$ allows us to apply (1) to $\mu_n, v_n, \implies \mu_n = v_n$. Then

$$\mu(A) = \mu(A \cap E) = \mu\left(A \cap \bigcup_{n \in \mathbb{N}} E_n\right) = \mu\left(\bigcup_{n \in \mathbb{N}} (A \cap E_n)\right) = \lim_{n \to \infty} \uparrow \mu(A \cap E_n)$$

by property (3) in p. 6, where $A \cap E_n$ is increasing.

2 Integration of Measurable Functions

Prop 2.3 Rigorously prove property (2). Let $h \in \mathcal{E}_+$ such that $h \leq f$. Then if h(x) > 0, $f(x) \geq h(x) > 0$, so

$${x \in E : h(x) > 0} \subset {x \in E : f(x) > 0}$$

Given $\mu(\lbrace x \in E : f(x) > 0 \rbrace) = 0$, so $\mu(\lbrace x \in E : h(x) > 0 \rbrace) = 0$. The integral of h would be

$$\int h \mathrm{d}\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i) = 0$$

since either $\alpha_i = 0$ or $\alpha_i > 0$ but $\mu(A_i) = 0$. Because $h \leq f$ always holds,

$$\int f \mathrm{d}\mu = \sup_{h \le f} \int h \mathrm{d}\mu = 0$$

Thm 2.4

1. Why is f measurable?

 $f_n \to f \implies f = \limsup f_n = \liminf f_n$, then by Prop 1.14. 2. Why $\int f d\mu > \lim_n \int f_n d\mu$?

Since f_n is increasing, $f_n \leq \lim_n f_n = f$. Take integrals, $\int f d\mu \geq \int f_n d\mu$, then take limit $n \to \infty$ on the RHS.

3. Why $f_n \to f, a < 1$ leads to $E_n \uparrow E$?

We want to prove (1) $E_n \subset E_{n+1}, \forall n,$ (2) $\bigcup_{n=1}^{\infty} E_n = E$.

- (1) Take $x \in E_n$, $ah(x) \le f_n(x) \le f_{n+1}(x)$, so $x \in E_{n+1}$.
- (2) Let $x \in E, h(x) \le f(x), 0 \le a < 1$.
- (a) h(x) = 0. Then ah(x) = 0 < f(x), so $x \in E_n, \forall n$.
- (b) h(x) > 0. Then $ah(x) < h(x) \le f(x)$. Since $f_n(x) \uparrow f(x), \exists N \in \mathbb{N}$, such that for $n \ge N, ah(x) < f_n(x)$. Thus $\forall n \ge N, x \in E_n$.

We conclude that, $\forall x \in E, \exists N \in \mathbb{N}$, such that $\forall n \geq N, x \in E_n$, so

$$\bigcup_{n\in\mathbb{N}} E_n = E$$

Combined with $E_n \subset E_{n+1}, E_n \uparrow E$.

4. Given $f_n \geq a \mathbf{1}_{E_n} h$, then

$$\int a\mathbf{1}_{E_n}h\mathrm{d}\mu = \int a\mathbf{1}_{E_n}\left(\sum_{i=1}^k \alpha_i\mathbf{1}_{A_i}\right)\mathrm{d}\mu = \int \left(a\sum_{i=1}^k \alpha_i\mathbf{1}_{E_n\cap A_i}\right)\mathrm{d}\mu = a\sum_{i=1}^k \alpha_i\mu(E_n\cap A_i)$$

5. In the last step

$$\int h \mathrm{d}\mu \le \lim_{n \to \infty} \uparrow \int f_n \mathrm{d}\mu$$

take $\sup_{h \in \mathcal{E}_+, h < f}$ on both sides.

6. Conclusion:

The most insightful part of this proof is to construct a simple function $h = \sum_{i=1}^{k} \alpha_i \mathbf{1}_{A_i}$ and restrict $h \leq f$, then use Def 2.2.

Figure 1: Example for Prop 2.5(1)

The author used constructive proof for (1). Recall uniform convergence: $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N, x \in E, |f_n(x) - f(x)| < \varepsilon$. In uniform convergence, N cannot depend on x. The constructed f_n satisfies $0 \leq f - f_n \leq 2^{-n}$ where 2^{-n} does not depend on x. Example: $f(x) = 2\sin(x) + 2, n = 3$, see Fig 1.

p. 23 Counting measure is simply summing up, analogously, np.sum(x) in numpy.

1. $f_n(k) = f(n)\mathbf{1}_{\{n\}}(k)$, which means only when k = n does $\mathbf{1}_{\{n\}}(k) = 1$, thus $\sum_n f_n(k) = \sum_n f(n)\mathbf{1}_{\{n\}}(k) = f(k)$ (fix k and treat n as the variable). So $\sum_n f_n = f$. By Prop 2.5(3),

$$\int f d\mu = \int \left(\sum_{n \in \mathbb{N}} f_n \right) d\mu = \sum_{n \in \mathbb{N}} \int f_n d\mu$$

Since f_n is a simple function,

$$\int f_n d\mu = \int f(n) \mathbf{1}_{\{n\}}(k) d\mu(k) = \sum_{k \in \mathbb{N}} f(n) \mathbf{1}_{\{n\}}(k) = f(n)$$

We conclude that

$$\int f \mathrm{d}\mu = \sum_{n \in \mathbb{N}} f(n).$$

2. $f_n(k) = a_{n,k}$, remember that k is the variable.

$$\int \left(\sum_{n\in\mathbb{N}} f_n\right) d\mu = \int \left(\sum_{n\in\mathbb{N}} a_{n,k}\right) d\mu = \sum_{k\in\mathbb{N}} \left(\sum_{n\in\mathbb{N}} a_{n,k}\right)$$

$$\sum_{n\in\mathbb{N}} \int f_n d\mu = \sum_{n\in\mathbb{N}} \int a_{n,k} d\mu = \sum_{n\in\mathbb{N}} \left(\sum_{k\in\mathbb{N}} a_{n,k} \right)$$

Then use Prop 2.5(3).

Cor 2.6 Detailed proof for equation (2.1).

(Step 1) For indicator function $f = \mathbf{1}_A$

$$\int \mathbf{1}_A \mathrm{d}v = v(A) = \int \mathbf{1}_A g \mathrm{d}\mu$$

by definition of integral (see Def 2.1) and v(A).

(Step 2) Extend to simple function using Prop 2.5(2), $f_n = \sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$,

$$\int f_n dv = \int \left(\sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}\right) dv = \sum_{i=1}^n \alpha_i \int \mathbf{1}_A dv$$

By Step 1,

$$= \sum_{i=1}^{n} \alpha_i \int \mathbf{1}_A g \mathrm{d}\mu = \int f_n g \mathrm{d}\mu$$

(Step 3) Extend to all nonnegative measurable function using Prop 2.5(1). $\exists \{f_n\}_n$ such that $f_n \uparrow f$. By Thm 2.4,

$$\int f dv = \lim_{n \to \infty} \uparrow \int f_n dv = \lim_{n \to \infty} \uparrow \int f_n g d\mu = \int f g d\mu$$

Prop 2.7 (2) Logic: write ∞ as $\forall n \geq 1, \exists f(x) > n$. Call $\{f(x) > n\}$ an event, denoted by A_n . $\forall n \geq 1$ in set theory language is $\bigcap_{n\geq 1}$.

Question: Does the reverse hold? Answer: No! Counterexample: $f(x) = 1/x, x \in (0,1]$, and let μ be Lebesgue measure. $f < \infty$ a.e., but $\int_0^1 \frac{1}{x} dx = \infty$. (3) To show the set such that f(x) lies in $(0, +\infty)$ is measure zero, find a sequence of sets such that

$$(0, +\infty) = \bigcup_{n=1}^{\infty} [1/n, +\infty)$$

Prop 2.9 The proof appears extremely similar to Cor 2.6.

(Step 1) Let $h = \mathbf{1}_B$, then h = 1 only when $\varphi(x) \in B, x \in \varphi^{-1}(B)$.

$$\int_{E} \mathbf{1}_{B}(\varphi(x))\mu(\mathrm{d}x) = \int_{E} \mathbf{1}_{\varphi^{-1}(B)}(x)\mu(\mathrm{d}x) = \mu(\varphi^{-1}(B)) = v(B) = \int_{F} \mathbf{1}_{B}(y)v(\mathrm{d}y)$$

(Step 2) If h_n is a simple function, $h_n = \sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$.

$$\int_E h_n(\varphi(x))\mu(\mathrm{d}x) = \sum_{i=1}^n \alpha_i \int_E \mathbf{1}_{A_i}(\varphi(x))\mu(\mathrm{d}x) = \sum_{i=1}^n \alpha_i v(A_i) = \int_F h_n(y)v(\mathrm{d}y)$$

(Step 3) For all nonnegative measurable function h, contract $h_n \uparrow h$ using the method in Prop 2.5(1). By Thm 2.4 (MCT),

$$\int_E h(\varphi(x))\mu(\mathrm{d}x) = \lim_{n\to\infty} \uparrow \int_E h_n(\varphi(x))\mu(\mathrm{d}x) = \lim_{n\to\infty} \uparrow \int_F h_n(y)v(\mathrm{d}y) = \int_F h(y)v(\mathrm{d}y)$$

"Notice that (iii)'⇒(iii) thanks to the mean value theorem." $\exists \xi \in (u_0, u) \text{ or } \in (u, u_0), \text{ such that}$

$$|f(u,x) - f(u_0,x)| \le \left| \frac{\partial f}{\partial u}(\xi,x) \right| \cdot |u - u_0| \le g(x) \cdot |u - u_0|$$

3 Construction of Measures

Def 3.1 Can σ -subadditive $\Rightarrow \sigma$ -additive? No. Counterexample: define

$$\mu(A) = \begin{cases} 1 & A \neq \emptyset \\ 0 & A = \emptyset \end{cases}$$

Then $\forall \{A_k\}_k$,

$$\mu\left(\bigcup_{k\geq 1} A_k\right) = \mathbf{1}_{\{\exists k: A_k \neq \varnothing\}} \leq \sum_{k\geq 1} \mathbf{1}_{\{A_k \neq \varnothing\}} = \sum_{k\geq 1} \mu(A_k)$$

so σ -subadditive holds. Take $A_k = \{x_k\}$, all disjoint, but

$$\mu\left(\bigcup_{k\geq 1} A_k\right) = \mu(\{x_1, \cdots, x_n\}) = 1 \neq \infty \iff \sum_{k\geq 1} \mu(A_k) = \sum_{k\geq 1} 1$$

Thm 3.3 (i) How does the author come up with equation (3.1) to prove (i)? We want to show $\bigcup_{k\in\mathbb{N}} B_k \in \mathcal{M}$, then show

$$\mu^*(A) \ge \underbrace{\mu^* \left(A \cap \bigcup_{k \in \mathbb{N}} B_k \right)}_{(1)} + \underbrace{\mu^* \left(A \cap \left(\bigcup_{k \in \mathbb{N}} B_k \right)^c \right)}_{(2)}$$

Apply De Morgan's Law on (2). For (1), rewrite it as

$$\mu^* \left(A \cap \bigcup_{k \in \mathbb{N}} B_k \right) = \mu^* \left(\bigcup_{k \in \mathbb{N}} (A \cap B_k) \right)$$

and by σ -subadditive of μ^* ,

$$\leq \sum_{k\in\mathbb{N}} \mu^*(A\cap B_k)$$

So the minimal requirement is

p. 46

$$\mu^*(A) = \sum_{k \in \mathbb{N}} \mu^*(A \cap B_k) + \mu^* \left(A \cap \bigcap_{k \in \mathbb{N}} B_k^c \right)$$

Plug in k = 1 and check, $\mu^*(A) = \mu^*(A \cap B_1) + \mu^*(A \cap B_1^c)$, meaning the equation is very likely to hold, then we can safely explore the proof.

(ii) $\mathcal{M}(\mu^*) \subset \mathcal{P}(E)$, restriction of μ^* to \mathcal{M} simply changes the domain of μ^* from $\mathcal{P}(E)$ to \mathcal{M} , maintaining the value unchanged. So for $\mu := \mu^*|_{\mathcal{M}}$,

$$\mu: \mathcal{M} \to [0, +\infty], \quad \mu(B) = \mu^*(B), \forall B \in \mathcal{M}$$

"The infimum is over all countable covers of A by open intervals $(a_i, b_i), i \in \mathbb{N}$ (it is trivial that such covers exist)." This is not trivial, it's Heine-Borel Theorem.

1. Summing up the two inequalities, the RHS gives,

$$[(b_i \wedge \alpha) - (a_i \wedge \alpha)] + [(b_i \vee \alpha) - (a_i \vee \alpha)] = [(b_i \wedge \alpha) + (b_i \vee \alpha)] - [(a_i \wedge \alpha) + (a_i \vee \alpha)]$$
$$= (b_i + \alpha) - (a_i + \alpha) = b_i - a_i$$

2. By Lem 3 in the lecture note MIT18.S190 Lec4, that a metric space X being sequentially compact implies that X is totally bounded $(\forall \varepsilon > 0, \exists x_1, \cdots, x_k \in X \text{ with finite } k \text{ such that } \{B_{\varepsilon}(x_i)\}_k \text{ is an open cover of } X)$. It follows $\exists N, [a, b] \subset \bigcup_{i=1}^N (a_i, b_i)$.

- Prop 3.6 \mathcal{N} shows the situation when a set $A \notin \mathcal{A}$ but it's small enough to be negligible. Another name for \bar{A} is *completion*, and this proposition says there exists a unique extended measure that (1) gives the same value for all sets in \mathcal{A} , and (2) assigns zero measure to all sets in \mathcal{N} .
 - 1. Verify that \mathcal{B} is a σ -field
 - (a) Let $B = B' = E \in \mathcal{A}, \mu(E \setminus E) = 0 \implies E \in \mathcal{B}$.
 - (b) If $A \in \mathcal{B}$, then $\exists B, B' \in \mathcal{A}, B \subset A \subset B', \mu(B' \setminus B) = 0$. $B^c \supset A^c \supset B'^c, \mu(B^c \setminus B'^c) = \mu(B^c \cap B') = \mu(B' \setminus B) = 0$. So $A^c \in \mathcal{B}$.
 - (c) If $A_n \in \mathcal{B}, \forall n \geq 1$, then $\exists B_n, B_n' \in \mathcal{A}, B_n \subset A_n \subset B_n', \mu(B_n' \setminus B_n) = 0$. Let $B := \bigcup_{n \geq 1} B_n \subset \bigcup_{n \geq 1} A_n \subset \bigcup_{n \geq 1} B_n' = B_n'$.

$$\mu(B' \setminus B) = \mu\left(\bigcup_{n \ge 1} B'_n \cap \bigcap_{n \ge 1} B^c_n\right) = \mu\left(\bigcup_{n \ge 1} (B'_n \cap \bigcap_{n \ge 1} B^c_n)\right)$$

By σ -subadditive,

$$\leq \sum_{n\geq 1} \mu(B'_n \cap \bigcap_{n\geq 1} B^c_n) \leq \sum_{n\geq 1} \mu(B'_n \cap B^c_n) = \mu(B'_n \setminus B_n) = 0$$

So $\bigcup_{n>1} A \in \mathcal{B}$.

- Thm 3.8 (1) To prove the first statement, we used the pushforward of measure. $\sigma_x(\lambda)$ is a pushforward that has property $\lambda(x+A) = \lambda(A)$, we want to show $\sigma_x(\lambda) = \lambda$. Use Cor 1.19, and check if the conditions of this corollary hold. First, a $\mathcal{C} \subset \mathcal{A}$ such that $\sigma(\mathcal{C}) = \mathcal{A}$, we find open box $\mathcal{C} = (-K, K)^d$. Second, $\forall A \in \mathcal{C}, \sigma_x(\lambda)(A) = \lambda(A)$, apparently the volume of a box does not change by shifting. So apply Cor 1.19 and get $\sigma_x(\lambda) = \lambda$.
 - (2) Since $\lambda([0,1)^d) = 1$, cut $[0,1)^d$ into n^d boxes, since we have already set $c = \mu([0,1)^d)$,

$$\mu\left([0,1)^d\right) = n^d \cdot \mu\left(\left[0,\frac{1}{n}\right)^d\right) \Rightarrow \mu\left(\left[0,\frac{1}{n}\right)^d\right) = \frac{c}{n^d}$$

- Frop 3.9 $F = C \setminus U$ is a compact set because C is compact, U is open, then $C \setminus U$ is a closed subset of a compact set, which is also compact. (See Lem 20 of MIT18.S190 Lec3). Why $\lambda(F) \geq \lambda(C) \lambda(U)$? Cut C into two disjoint sets, $\lambda(C) = \lambda(C \cap U) + \lambda(C \setminus U) \leq \lambda(U) + \lambda(C \setminus U)$.
- Thm 3.12 (ii) statement: Given a function $F: \mathbb{R} \to \mathbb{R}_+$ with some properties (increasing, bounded, right-continuous, and $F(-\infty) = 0$), then \exists ! measure μ such that $F(x) = \mu((-\infty, x])$. Construct

$$\mu^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} (F(b_i) - F(a_i)) : A \subset \bigcup_{i \in \mathbb{N}} (a_i, b_i) \right\}$$

- (Step 1) $\mu^*(A)$ is an outer measure, rf. Thm 3.4(i). ("increasing", "bounded")
- (Step 2) $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}(\mu^*)$, so that restricting μ^* on $\mathcal{B}(\mathbb{R})$ gives a measure μ , rf. Thm 3.4(ii).
- (Step 3) We still need to show $F(x) = \mu((-\infty, x])$. It suffices to check $F(b) F(a) = \mu((a, b])$ (" $F(-\infty) = 0$ "). Let $\varepsilon > 0$. Since \mathbb{R} is compact, exists *finite* collection of open sets that covers $[a + \varepsilon, b]$.

$$F(b) - F(a + \varepsilon) \le \sum_{i=1}^{\infty} (F(y_i) - F(x_i)) + \varepsilon$$

As $\varepsilon \to 0$, $F(a+\varepsilon) \to F(a)$ ("right-continuous"). Thus $F(b) - F(a) \le \mu((a,b])$. The reverse \ge is by construction of μ^* .

4 L^p Spaces

Thm 4.5 See the proof that l^p is a Banach space here.

$$l^p : ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad L^p : ||f||_p = \left(\int |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

In ℓ^p , the input is a sequence (or vector) $x = \{x_i\}_{i \geq 1}$. In L^p , the input is an equivalence class of measurable functions [f].

Def 4.10 Absolute continuity $v \ll \mu$ is an analogy from real analysis. $\Delta x \to 0 \implies \Delta f \to 0$; $\mu(A) = 0 \implies v(A) = 0$. f is controlled by x and v is controlled by μ . See Fig 2.

Figure 2: Absolute continuous and Singular

Thm 4.11 Companion for Radon-Nikodym theorem.

1. (Step 1). (1.a) $L^2(\mu) \subset L^1(\mu)$. If $f \in L^2(\mu)$ and μ is a finite measure $(\mu(E) < \infty)$, then set $g \equiv 1$, by Cauchy-Schwarz inequality

$$\int |f| \,\mathrm{d}\mu \leq \left(\int |f|^2 \,\mathrm{d}\mu\right)^{1/2} \cdot (\mu(E))^{1/2} < \infty$$

So $f \in L^1(\mu)$, thus $L^2(\mu) \subset L^1(\mu)$.

(1.b) Because we assume $v \leq \mu$, if $\mu(A) = 0$, then $v(A) \leq \mu(A) = 0$, thus $v \ll \mu$. Therefore $f = \tilde{f}, \mu$ -a.e. $\Rightarrow f = \tilde{f}, \nu$ -a.e.

(1.c) Let $C = v(E)^{1/2}$, because $|\Phi(f)| \leq C||f||_{L^2(\mu)}$, $\Phi(f)$ is a bounded linear map. Therefore it is continuous, see Proposition 1.3 in MIT18.102. So now we can apply Riesz.

(1.d) Show $g \ge 0$. For every $\varepsilon > 0$,

$$\mu(\{x \in E : g(x) \leq \varepsilon\}) \geq v(\{x \in E : g(x) \leq \varepsilon\}) = \int_{\{x \in E : g(x) \leq \varepsilon\}} g \, \mathrm{d}\mu \geq \varepsilon \cdot \mu(\{x \in E : g(x) \leq \varepsilon\})$$

So $\mu(\{x \in E : g(x) \le \varepsilon\}) = 0$, take a decreasing sequence of $\varepsilon \to 0$, then $\mu(\{x \in E : g(x) < 0\}) = 0$. $g \ge 0$ μ a.e..

(1.e) The result of Step 1: Given a measure μ , then there exists a $v \leq \mu$ that is the measure of density g with respect to μ , i.e. $v = g \cdot \mu$ (see Cor 2.6),

$$\int f \, \mathrm{d}v = \int f g \, \mathrm{d}\mu$$

2. (Step 2). (2.a) We need f to be a bounded measurable function for

$$\int f \, dv = \int f h \, d\mu + \int f h \, dv \implies \int f(1-h) \, dv = \int f h \, d\mu$$

To avoid $\infty - \infty$ in rearrangement, we need to show $\int f \, dv$, $\int f h \, d\mu$ and $\int f h \, dv$ are all finite. By $0 \le h \le 1$, only need to show $\int f \, dv$, $\int f \, d\mu$ is finite. So if f is bounded,

$$\int |f| \, \mathrm{d}v \le \sup |f| \cdot \int \, \mathrm{d}v = \|f\|_{\infty} \cdot v(E) < \infty$$

similar for μ

(2.b) Then set $f_n := f' \wedge n$, $f_n \uparrow f'$, so f_n is bounded while f' is any nonnegative measurable function.

$$\int f'(1-h) dv = \lim_{n \to \infty} \int f_n(1-h) dv, \quad \int f'h d\mu = \lim_{n \to \infty} \int f_n h d\mu$$

(2.c) $N=\{x\in E: h(x)=1\}$ is the founded N such that $\mu(N)=0,$ $v_s(N^c)=v(N^c\cap N)=0,$ so $v_s\perp \mu.$

(2.d) $\forall A \in \mathcal{A}$, if $\mu(A) = 0$, since $g = \mathbf{1}_{N^c} \frac{h}{1-h}$, then $v_a(A) = \int_A dv = \int_A g \, \mathrm{d}\mu = \frac{h}{1-h} \mu(A \cap N^c) \le \frac{h}{1-h} \mu(A) = 0$. So $v_a \ll \mu$.

- 3. (Remark). Perfect counterexample. A counting measure μ on $([0,1],\mathcal{B}([0,1]))$ is not σ -finite because [0,1] is uncountable. We need to find a sequence $\{A_n\}_n$ that $[0,1] = \bigcup_{n\geq 1} A_n, \mu(A_n) < \infty$ to make μ σ -finite. But a countable union of finite sets is at most countable. So μ cannot be σ -finite.
- 4. (Conclusion). Given a measure μ , consider a new measure v. Lebesgue decomposition says $v = v_a + v_s$. Radon-Nikodym theorem tells us there $\exists !g$, such that $v_a = g \cdot \mu$. In the proof, we also determined what exactly is v_a, v_s . So the process would be, first find a set N where $\mu(N) = 0$. Then

$$v_s = \mathbf{1}_N \cdot v, \quad v_a = \mathbf{1}_{N^c} \frac{\mathrm{d}v}{\mathrm{d}\mu} \cdot \mu$$

Example (2). Consider measurable space ([0,1], \mathcal{F}_n), denote f_n as the Radon-Nikodym derivative of v with respect to λ . $\mathcal{F}_n = \sigma\left(I_i^{(n)}; i \in \{1, 2, \cdots, 2^n\}\right)$ where

$$I_i^{(n)} := \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)$$

Claim: $f_n(x)$ is constant on the atoms of \mathcal{F}_n .

Proof. Recall Def 1.8, consider $((0,1], \mathcal{F}_n), (\mathbb{R}, \mathcal{B}(\mathbb{R})), \text{ let } f_n : (0,1] \to \mathbb{R}, f_n \text{ is measurable, so}$

$$\forall A \in \mathcal{B}(\mathbb{R}), f_n^{-1}(A) \in \mathcal{F}_n$$

If $\exists a, b \in I_i^{(n)}, f_n(a) \neq f_n(b)$, then $f^{-1}(B_{\epsilon}(a)) \subset I_i^{(n)}$ and $f^{-1}(B_{\epsilon}(a)) \notin \mathcal{F}_n$.

For $x \in I_i^{(n)}$, $f_n(x) = c_i$. Since $v = f_n \cdot \lambda$ by Radon-Nikodym theorem,

$$v(I_i^{(n)}) = \int_{I_i^{(n)}} f_n(x)\lambda(\mathrm{d}x) = c_i\lambda(I_i^{(n)}) \implies c_i = \frac{v(I_i^{(n)})}{2^{-n}}$$

since the Lebesgue measure $\lambda(I_i^{(n)}) = 2^{-n}$. So we conclude that

$$f_n(x) = \sum_{i=1}^{2^n} \mathbf{1}_{I_i^{(n)}} \frac{v(I_i^{(n)})}{2^{-n}}(x)$$

5 Product Measures

Prop 5.1

(i) The goal is to show $\mathcal{C} = \mathcal{A} \otimes \mathcal{B}$. So \mathcal{C} should contain all measurable rectangles like $\mathcal{A} \otimes \mathcal{B}$, and should be a σ -field.

1. $\forall A \in \mathcal{A}, B \in \mathcal{B}$, let $C = A \times B \in \mathcal{C}$, then

$$C_x = \{ y \in F : (x, y) \in A \times B \} = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases}$$

2. C is a σ -field.

(a) Let
$$C = E \times F, x \in E, C_x = F \in \mathcal{B}$$
, so $E \times F \in \mathcal{C}$

(b) If $C \in \mathcal{C}$, then $C_x \in \mathcal{B}$.

$$(C^c)_x = \{ y \in F : (x, y) \in (A \times B)^c \} = (C_x)^c \in \mathcal{B}$$

since \mathcal{B} is a σ -field and is closed under complements.

(c) If $C_n \in \mathcal{C}$, then $(C_n)_x \in \mathcal{B}$.

$$\left(\bigcup_{n\geq 1} C_n\right)_x = \{y \in F : (x,y) \in \bigcup_{n\geq 1} C_n\} = \bigcup_{n\geq 1} \{y \in F : (x,y) \in C_n\} = \bigcup_{n\geq 1} (C_n)_x \in \mathcal{B}$$

since \mathcal{B} is a σ -field.

(ii) The text already derived $f_x^{-1}(D) = (f^{-1}(D))_x$. Because $D \in \mathcal{G}$ and f is measurable, $f^{-1}(D) \in \mathcal{A} \otimes \mathcal{B}$ by Def 1.8. By (i), $(f^{-1}(D))_x \in \mathcal{B}$, so $f_x^{-1}(D) \in \mathcal{B}$, which means f_x is \mathcal{B} -measurable by Def 1.8. (ii) is the main result of this proposition, it tells us if $f: E \times F \to G$, then $f_x(y), f^y(x)$ are measurable on the corresponding σ -field of g and g.

Thm 5.2

A trick to show uniqueness is using σ -finite together with Cor 1.19. Another trick to show $x \mapsto v(C_x)$ is \mathcal{A} -measurable for all sets is constructing a class

$$\mathcal{G} = \{ C \in \mathcal{A} \otimes \mathcal{B} : x \mapsto \nu(C_x) \text{ is } \mathcal{A}\text{-measurable} \}$$

and show \mathcal{G} equals the original σ -field $\mathcal{A} \otimes \mathcal{B}$. The structure is always: first suppose finite measures, then extend to σ -finite by restricting the measures on partitions of underlying set E. In this proof, we used Cor 1.19 for uniqueness. As for existence, assume v is finite, define

$$m(C) := \int_E v(C_x)\mu(\mathrm{d}x).$$

Consider the measurable spaces (E, \mathcal{A}, μ) and (F, \mathcal{B}, v) . Verify $v(C_x)$ is valid, that is $C_x \in \mathcal{B}$ (Prop 5.1). Then verify $x \mapsto \nu(C_x)$ is \mathcal{A} -measurable, so we can legally take integral (Thm 1.18). Now release v from finite to σ -finite. Then check m(C) is actually a measure (Def 1.6). Because

$$v(C_x) = \begin{cases} v(B) & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}, \implies v(C_x) = \mathbf{1}_A(x)v(B)$$

the property in (i) holds,

$$m(C) = v(B) \int_E \mathbf{1}_A(x) \mu(\mathrm{d}x) = v(B) \mu(A)$$

Thm 5.3

We had a hard time proving Thm 5.2, which says

$$\mu \otimes v(C) = \int_E v(C_x)\mu(\mathrm{d}x) = \int_F \mu(C^y)v(\mathrm{d}y).$$

This is a special case of Thm 5.3 with $f = \mathbf{1}_C$,

$$\int_{E\times F} f \, \mathrm{d}\mu \otimes v = \int_{E} \left(\int_{F} f(x,y) v(\mathrm{d}y) \right) \mu(\mathrm{d}x) = \int_{F} \left(\int_{E} f(x,y) \mu(\mathrm{d}x) \right) v(\mathrm{d}y)$$

The extension from Thm 5.2 to 5.3 follows the route: indicator function \rightarrow simple function \rightarrow approximation (Prop 2.5(i)). Thm 5.3 applies only to nonnegative f, Thm 5.4 removed this condition.

Write $\varphi(s,t) = \mathbf{1}_{\{s \leq t\}} f(t)g(s)$, which is on space $([a,b], \mathcal{B}([a,b]), \lambda) \times ([a,b], \mathcal{B}([a,b]), \lambda)$. Consider h(s,t) := |f(t)g(s)| is nonnegative and measurable, apply Thm 5.3,

$$\int_{[a,b]^2} h(s,t) \, \mathrm{d}(\lambda \otimes \lambda) = \int_a^b \left(\int_a^b |f(t)| |g(s)| \lambda(\mathrm{d}s) \right) \lambda(\mathrm{d}t)$$

$$= \int_a^b |f(t)| \left(\int_a^b |g(s)| \lambda(\mathrm{d}s) \right) \lambda(\mathrm{d}t) = \left(\int_a^b |g(s)| \, \mathrm{d}s \right) \left(\int_a^b |f(t)| \, \mathrm{d}t \right)$$

Notation $\lambda(dx) \iff dx$. Since f, g are integrable, $\varphi(s,t) \in \mathcal{L}^1(\lambda \otimes \lambda)$. So

$$\int_a^b \left(\int_a^b \varphi(s,t) ds \right) dt = \int_a^b \left(\int_a^b \varphi(s,t) dt \right) ds$$

Derive $I_n = n/(n+1) \cdot I_{n-2}$. By symmetry, $I_n = 2 \int_0^1 (1-x^2)^{n/2} dx$. Let $x = \sin \theta, dx = \cos \theta d\theta$, $x \in [0,1] \implies \theta \in [0,\pi/2]$.

$$I_n = 2 \int_0^1 (1 - x^2)^{n/2} dx = 2 \int_0^{\pi/2} \cos^n \theta \cdot \cos \theta d\theta = 2 \int_0^{\pi/2} \cos^{n+1} \theta d\theta$$

Integrate by part, let $u = \cos^n \theta$, $dv = \cos \theta d\theta$. This result in

$$\int_0^{\pi/2} \cos^{n+1} \theta \ d\theta = n \int_0^{\pi/2} (1 - \cos^2 \theta) \cos^{n-1} \theta \ d\theta \implies I_n = \frac{n}{n+1} I_{n-2}$$

7 Change of Variables

Prop 7.1

(1) Given $A \in \mathcal{B}(\mathbb{R}^d)$, it is not guaranteed that $f(A) \in \mathcal{B}(\mathbb{R}^d)$, even though f is continuous. It will always be Lebesgue measurable, but not necessarily Borel measurable.

Claim: All continuous functions are measurable.

Proof. Consider $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. $f: \mathbb{R}^d \to \mathbb{R}^d$ is continuous $\iff \forall$ open set $U \subset \mathbb{R}^d$, $f^{-1}(U)$ is open in \mathbb{R}^d (see Lemma 30 in MIT18.S190 Lec2). So if f is continuous, then $\forall U \in \mathcal{B}(\mathbb{R}^d)$, $f^{-1}(U) \in \mathcal{B}(\mathbb{R}^d)$. This is exactly the definition of f being Boral measurable, Def 1.8.

Since M is invertible, $g := f^{-1}$ is also continuous. Then $g^{-1}(A)$ is continuous, thus measurable. So $f(A) = (f^{-1})^{-1}(A)$ is measurable.

(2) For special cases P is orthonormal matrix and S is symmetric positive definite, we have $1 = |\det(P)|, c = |\det(S)|$.

Lemma (Polar Decomposition). Any invertible matrix M can be decomposed as M = PS where P is an orthonormal matrix and S is symmetric positive definite (spd).

Proof. The intuition is rotate (P) and stretch out (S). If M is invertible, then M^TM is spd for sure. Let $S^2 = M^TM$. Set $P = MS^{-1}$, now show that P is orthonormal,

$$P^T P = (MS^{-1})^T M S^{-1} = (S^{-1})^T M^T M S^{-1} = S^{-1} S^2 S^{-1} = I$$

So M = PS.

Since M is invertible, apply polar decomposition, M = PS and $|\det(M)| = |\det(P)| \cdot |\det(S)| = c$.

Thm 7.2

Let $f = \mathbf{1}_A$, then $f(\varphi(u)) = \mathbf{1}_A(\varphi(u)) = 1$ only if $\varphi(u) \in A, u \in \varphi^{-1}(A)$, otherwise $f(\varphi(u)) = 0$. So $\int_U f(\varphi(u)) |J_{\varphi}(u)| \, \mathrm{d}u = \int_{\varphi^{-1}(A)} |J_{\varphi}(u)| \, \mathrm{d}u$. Note that $A \subset D, B := \varphi^{-1}(A) \subset U, \varphi(B) = A$. Replace A by $\varphi(B)$,

$$\lambda_d(\varphi(B)) = \int_{\varphi^{-1}(\varphi(B))} |J_{\varphi}(u)| \, \mathrm{d}u = \int_B |J_{\varphi}(u)| \, \mathrm{d}u$$

The remaining proof is way too complicated, so skip it. Being able to use polar coordinates technique would be enough.

p. 128

Recall equation (5.6),

$$\gamma_{2k} = \frac{\pi^k}{k!}, \quad \gamma_{2k+1} = \frac{\pi^k}{(k+\frac{1}{2})(k-\frac{1}{2})\cdots\frac{3}{2}\frac{1}{2}}$$

and gamma function

$$\Gamma(n) = (n-1)!, \quad \Gamma(\frac{1}{2} + n) = (n - \frac{1}{2})(n - \frac{3}{2}) \cdots \frac{3}{2} \frac{1}{2} \sqrt{\pi}$$

Consider $d = 2k, k \in \mathbb{N}$ and $d = 2k + 1, k \in \mathbb{N}$ respectively, If $d = 2k, k \in \mathbb{N}$, then

$$\gamma_{2k} = \frac{\pi^k}{\Gamma(k+1)} = \frac{\pi^{d/2}}{\Gamma(d/2+1)}, \quad \gamma_{2k+1} = \frac{\pi^k \cdot \sqrt{\pi}}{\Gamma(\frac{1}{2}+k+1)} = \frac{\pi^{d/2}}{\Gamma(d/2+1)}$$

It generates a unified form of volume for high-dimensional balls.

Part II

Probability Theory

8 Foundations of Probability Theory

Def 8.2 ω is hidden in formulas of probability theory.

$$\mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : \omega \in X^{-1}(B)\}) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) =: \mathbb{P}(X \in B)$$

Prop 8.4 Review Fubini theorem, the only condition is $f \in \mathcal{L}^1(\mu \otimes v)$ and μ, v are σ -finite. In this case, X is defined on $(\Omega, \mathcal{A}, \mathbb{P})$.

$${X \ge x} = X^{-1}([x, +\infty))$$

X is a measurable function, $[x, +\infty) \subset \mathbb{R}$ is a Borel set, therefore $\{x \leq X\} \in \mathcal{A}$ is a measurable subset in Ω . $\mathbf{1}_{\{x \leq X\}} : \Omega \to \{0, 1\}$, check $\forall B \in \mathcal{P}(\{0, 1\})$, so $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbf{1}_{\{x \le X\}}^{-1}(B) = \{\omega \in \Omega : \mathbf{1}_{\{x \le X\}}(\omega) \in B\} \in \mathcal{A}$$

so $\mathbf{1}_{\{x \leq X\}}$ is a Lebesgue measurable function. $\mathbf{1}_{\{x \leq X\}} \in \mathcal{L}^1(\mathbb{P} \otimes \lambda)$, Fubini theorem is applicable.

Prop 8.5 Recall Prop 2.9,

$$\int_{E} h(\varphi(x))\mu(\mathrm{d}x) = \int_{F} h(y)v(\mathrm{d}y)$$

here $\mu = \mathbb{P}, v = \mathbb{P}_X, \varphi = X$,

$$\mathbb{E}[f(X)] = \int_{\Omega} f(X(\omega)) \mathbb{P}(d\omega) = \int_{E} f(x) \mathbb{P}_{X}(dx)$$

p. 142 In the discussion after Prop 8.5, the text

Since the indicator function of an open rectangle is the increasing limit of a sequence of continuous functions with compact support, the probability measure μ is also determined by the values of $\int \varphi(x)\mu(\mathrm{d}x)$ when φ varies in the space $C_c\left(\mathbb{R}^d\right)$ of all continuous functions with compact support from \mathbb{R}^d into \mathbb{R} .

means any indicator function of a rectangle $\mathbf{1}_R$ can be approximated from below by a sequence $\varphi_n \in C_c(\mathbb{R}^d)$. See a construction of Lemma 2.2 in MIT18.102. So

$$\mathbf{1}_R(x) = \lim_{n \to \infty} \varphi_n(x)$$
 with each $\varphi_n \in C_c(\mathbb{R}^d), \ \varphi_n \leq \mathbf{1}_R$

By the monotone convergence theorem,

$$\mu(R) = \int \mathbf{1}_R(x) \,\mu(dx) = \lim_{n \to \infty} \int \varphi_n(x) \,\mu(dx)$$

 $\begin{array}{|c|c|c|c|} \hline \texttt{Prop 8.9} & \mathbf{1}_{A_i} = \mathbf{1}_{B_i} \circ X. \\ \hline \end{array}$

$$1_{A_i}(\omega) = \begin{cases} 1 & \text{if } \omega \in A_i, \\ 0 & \text{otherwise,} \end{cases} = \begin{cases} 1 & \text{if } X(\omega) \in B_i, \\ 0 & \text{otherwise,} \end{cases} = 1_{B_i}(X(\omega)) = (1_{B_i} \circ X)(\omega).$$

p. 153 Show Markov inequality. Let $A_a = \{\omega \in \Omega : X(\omega) \ge a\}, X \ge a \mathbf{1}_{A_a}$

$$\int X d\mathbb{P} \ge a \int \mathbf{1}_{A_a} d\mathbb{P} = a\mathbb{P}(A_a), \implies \mathbb{P}(A_a) \le \frac{1}{a} \int \mathbf{1}_{A_a} d\mathbb{P} = \frac{1}{a} \mathbb{E}[X]$$

Prop 8.13 Given $\alpha_0 = \mathbb{E}[X]$ in equation (8.5), then

$$Z = \mathbb{E}[X] + \sum_{j=1}^{n} \alpha_j (Y_j - \mathbb{E}[Y_j])$$

To let equation (8.6) holds, plug in Z,

$$\mathbb{E}[(X - \mathbb{E}[X])(Y_k - \mathbb{E}[Y_k])] - \sum_{i=1}^n \alpha_j \mathbb{E}[(Y_j - \mathbb{E}[Y_j])(Y_k - \mathbb{E}[Y_k])] = 0$$

This is exactly $cov(X, Y_k) = \sum_{j=1}^n \alpha_j cov(Y_j, Y_k)$.

Def 8.14 A probability measure is absolutely continuous with respect to Lebesgue measure if and only if it has a density function $\varphi(x)$. Then applies Radon-Nikodym theorem, $\mathbb{P}_X(\mathrm{d}x) = \varphi(x)\lambda(\mathrm{d}x)$. Recall Fourier Transform in p. 32,

$$\hat{\varphi}(\xi) = \int e^{i\xi x} \varphi(x) \lambda(\mathrm{d}x) = \int e^{i\xi x} \mathbb{P}_X(\mathrm{d}x) =: \Phi(\xi)$$

Lem 8.15 (1) Parity argument: $e^{i\xi X} = \cos(\xi X) + i\sin(\xi X)$.

(2) To use Thm 2.13, let $h(u,x) = e^{-x^2/2}\cos(ux)$, find a function q(x) such that

$$|h(u,x) - h(\xi,x)| \le g(x) \cdot |u - \xi|$$

By mean value theorem, $\exists c \in (u, \xi)$ (or (ξ, u)), such that $|\cos(ux) - \cos(\xi x)| = |-x\sin(cx)||u - \xi|$.

$$|e^{-x^2/2}(\cos(ux) - \cos(\xi x))| \le e^{-x^2/2}|\cos(ux) - \cos(\xi x)| \le e^{-x^2/2}|x| \cdot |u - \xi| = g(x) \cdot |u - \xi|$$

where $g(x) = |x| \cdot e^{-x^2/2} \in \mathcal{L}^1_+$. So condition (ii) satisfies. (3) If $Z \sim \mathcal{N}(0, 1)$, then $\Phi_Z(\xi) = \exp(-\xi^2/2)$. For $X = m + \sigma Z \sim \mathcal{N}(m, \sigma^2)$,

$$\Phi_X(\xi) = \mathbb{E}[\exp(i\xi X)] = \mathbb{E}[\exp(i\xi(m+\sigma Z))] = e^{i\xi m} \cdot \Phi_Z(\sigma\xi) = e^{i\xi m} \cdot e^{-\sigma^2\xi^2/2}$$

Thm 8.16 (i) To establish (1), use Lem 8.15 to find that $X \sim \mathcal{N}(0, 1/\sigma)$, and use Def 8.14 to write

$$\exp(-\frac{x^2}{2\sigma^2}) = \Phi_X(x) = \int_{\mathbb{R}} e^{ix\cdot\xi} g_{1/\sigma}(\xi) \,\mathrm{d}\xi$$

9 Independence

p. 170 Given X_j is in (E_j, \mathcal{E}_j) . The following expressions are equivalent:

- 1. $\mathbb{P}(A_j)$: A_j is an element in $\sigma(X_j)$
- 2. $\mathbb{P}(\{X_j \in F_j\})$: F_j is an element in \mathcal{E}_j

In (1), $\sigma(X_j) = \{X_j^{-1}(F) : F \in \mathcal{E}_j\}$. An element in $\sigma(X_j)$ means for some $F_j \in \mathcal{E}_j$, $A_i = \{X_j^{-1}(F_j)\} = \{\omega \in \Omega : X_j(\omega) \in F_j\}$. This is exactly $\{X_j \in F_j\}$ in (2).