Data-Processing Inequality

The whispering game in the example on the previous page exhibits an important property of Markov chains: you can only lose information down the line. Charlie's final message ${\cal C}$ does not contain any more information about Alice's original message ${\cal A}$ than what was already contained in Bob's message ${\cal B}$. This observation is formalized in the following theorem:

Theorem: Data-processing inequality

If X o Y o Z, then $I(X;Y) \ge I(X;Z)$. Equality holds if and only if I(X;Y|Z) = 0.

Proof

The following entropy diagram depicts the area I(X;YZ):

From the diagram, we can see that

$$I(X;Z) + I(X;Y|Z) = I(X;YZ) = I(X;Y) + I(X;Z|Y). \label{eq:equation:equation}$$

Combining this with part (c) of the proposition on the last page, it follows that

$$I(X; Z) + I(X; Y|Z) = I(X; Y).$$

Since $I(X;Y|Z) \geq 0$, the result follows: $I(X;Z) \leq I(X;Y)$, with equality iff I(X;Y|Z) = 0.

The following corollary formalizes the intuition that the mutual information between two random variables can only decrease by post-processing any of the

created: 2019-10-21

Data-Processing Inequality | Information Theory two.

Corollary

 $I(X;Y) \geq I(X;g(Y))$ for any two random variables X and Y, and any function g on the range of Y. Paste proof here

created: 2019-10-21