This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

暗号と情報セキュリティ

笠原正雄編著辻井重男編著

暗号と情報セキュリティ

C=MG'+n

(5.76)

で与えられる.ここにnはMG'をさらに隠蔽するために付加する ペクトルであり,重みげ≦tのn次元ペクトルである.

受信側においては、まず、

 $CP^{-1} = MSG + nP^{-1}$

を得る.Pは置換行列であるから nP-1は依然として重みげの ペクトル である.したがって Goppa 符号の復号法を用いて nP-1を訂正することにより MSを得ることができる.これより,

 $MSS^{-1}=M$

として平文 Mを復号することができる。このMcEliceの公解選暗号では行列S,P の選択に大きな自由度があるほか。Goppa 多項式G(Z)の選択にもかなりの自由度が存在する。このため McElice暗号は暗号として安全なものになると考えられている。

- W. W. Peterson and E. J. Weldon: "Error-correcting codes", Second Ed., MIT Press, 1972.
- (2) 笠原,田烯,小倉:"情報理論一基礎と応用一",昭晃堂,1985.

6. 認証とディジタル署名

高度情報化社会の出現とともに、通信技術とコンピュータ技術にささえられた情報システムを介して、情報交換が頻繁に行われるようになった。その結果、人間が対面することにより声や姿などから付随的に得られていた個人特有の情報が得られなくなり、情報交換に際して納得して行動することに支障が生じるようになった。情報システムを介して情報交換をしている相手は一体誰なりの情報が、本当に当人に伝えられたか、などをなんらかの手段により確認する必要がある。このような確認の機能を一般に認証(authentication)という。また認証の機能をなんらかのアルゴリズムにより、機械的に実現するシステムを認証システムとよび、その実現手法としては暗号的手法(cryptographic scheme)が有効である。したがって本章では暗号的手法をCryptographic scheme)が有効である。したがって本章では暗号的手法を同いた認証とディジタル署名について解説しよう。

.1 暗号と認証-

暗号の機能は大きく分けて、情報の秘匿(privacy)と認証 (authentication) に分類される、情報の秘匿とはなんらかの手段により情報が露呈されることがあっても、鍵がない限りその情報の意味がわからないようにして、第三者に対して情報の機密を守ることである。一方、契約や送金などが伴うビジネスの世界では、署名は欠かせない、電子郵便(electronic mail) や電子送金(electronic funds transfer) といった新しい形態のデータ通信では、文書の署名・捺印に相

の争いを避けるためには必要不可欠である 当する、情報および送受信者の認証機能を備えていることが、ビジネスの上で

図6.1は暗号の機能を概念的で示したものたある。一般で認証と呼ばれてい

図 6.1 暗号技法の分類

- Θ メッセージ認証 (message authentication)
- および、これら両者の機能を兼ね備えた エンティティ認証 (entity authentication)
- ディジタル署名 (digital signature)

に分けられる

ূন ティティ)Aが、まさにそのエンティティAであることを保証する機能であ おいて情報の生成・伝送・処理・記憶・判断などの行為に関与した実体(エン であることを保証する機能である.一方エンティティ認証は,情報システムで メッセージ認証とは、情報が改変されておらず、原情報のままの正しいもの AがBにAであることを証明できるが、第三のエンティティCがAになり すなわち、 エンティティAとエンティティBが協調 するという 条件の下

すまして、Aであることを証明できないことを保証する機能である:

付加するとき、個人識別(identification)というエンティティ認証の機能にな 第三のエンティティCに対して,Aであることを証明できない"という条件を このようなエンティティ認証において"当事者であるエンティティB自身も

能が、ディジタル署名ということになる ら見ると、個人識別の機能に"エンティティBがB自身に対してもAであるこ **52面性のあることは、前述の通りである。これをエンティティ認証の見地か** とを証明できない"という条件をさらに付加することにより生まれる新しい機 ディジタル署名には,メッセージ認証の機能とエンティティ認証の機能とい

かのトラブルが発生した場合に、Bが問題となっているメッセージの送り主が 示する証拠を呈示することができ、かつBが"にせ"のメッセージを偽造し 確かにAであることを証明できる機能が個人識別である。さらにその事実を明 そのような機能をディジタル署名という <u>、個人識別とディジタル署名の</u>概念の差異は微妙である。 AとBの間でなんら "そのメッセージの送り主がAである" と主張することができないとき、

53 図 6.2 はこのような階層構造をもつ3つのエンティティ認証の機能を示して

開閉

個人識別 A → B ··· D

ディジタル署名 A --- B --- D C --- プ ()

図 6.2 エンティティ認証の階層構造

댂 七 鰛 RS 6.2

認証方式の一般概念を図6.3に示す.図中Gは メッセージ Mを通信文 cに

V:認証アルゴリズム G:暗号アルゴリズム X:非合法的エンティティ A, B: 合法的エンティティ

図 6.3 認証方式の一般的概念

変換するアルゴルズムであり、Vは受信した通信文で、を認証するアルゴルズ ムである。AおよびBは情報システムに合法的に関与するエンティティを示 まずAは通信文を生成アルゴリズムG し、Xは通信路に介在してメッセージを盗聴したり吹ぎかしたりかる非合法な を用いて、メッセージMから。を生成し、必ずしも安全性が保証されていない 通信路出力は一般にぐと 通信文c'を受信したBは認証アルゴリズムVを用いて、復元したメッセ ージ M′とAが送信したメッセージ M が等しいかどうか, ならびに受信側のエ ンティティB が想定している相手が確かに A であるかどうかを検査し、その結 果得られる妥当性 (validity) を出力する. これが認証方式の一般概念である. 通信路 (insecure channel) を通じてBに伝送する. エンティティ_(eavesdropper) を示す。 なる.

このような一般概念から,図6.4に示すような認証方式を実現する2つの基 相手のエンティティおよびメッセージが正しいことを認証できる. したがって まず図6.4(a)の一体型では,2つの変換アルゴリズムΓおよびその逆変換 ^-'が,それぞれ鍵 Kr および Kr-1により制御される暗号化・復号アルゴリズ 本形が考えられる.図6.4の(a)は一体型,(b)は分離型と呼ばれている. **ムを形成している.その出力のメッセージ M' が意味のあるものであれば,**

6.2 悶能力式

131

このよう 認証と同時に秘匿の機能も兼ね備える認証のシステムが構成できる. な認証方式は通信文復元法と呼ばれている。

図 6.4 認証方式の基本形

用いられることが蜂散であり、普通縮約型のハッシュ関数 (hash function) h *Γ⁻¹(s')* と受信されたメッセージ M′ にハッツュ関数を作用させて得られる値 h(M') が一致するか否かによって, メッセージならびに相手のエンティティを 図6.4(b) の分離型は, メッセージ Mを圧縮するなんらかのアルゴリズムが が用いられる. Γ および Γ-1 は一体型と同様,鍵 Κŗ および Κŗ-1 によって制御 される2つの変換アルゴリズムである。またらは認証子 (authenticator) とよ ばれ,受信された認証子ダに復号アルゴリズム Γ-1を適用して得られる値。 このような認証方式は認証予照合法と呼ばれている 認証できる.

であり, 公開、 したり, RSA 暗号をはじめとする公開鍵暗号系 (public-key cryptosystem)の 具体的な実現法としては,鍵 K_Γ および $K_{\Gamma^{-1}}$ により制御 される 変換 Γ およ 知られているDES暗号, FEAL暗号などの暗号化・復号アルゴリズム を適用 び1-1に,共通鍵暗号系(common-key cryptosystem)の標準暗号としてよく 復号アルゴリズムおよび暗号化アルゴリズムを適用する方法が考えられる。 だし共通鍵暗号系を適用する場合には, Kr=Kr-1=K(秘密)

鍵暗号系を適用する場合には $K_r=K_D$ (秘密)、 $K_{r^{-1}}=K_B$ (公開) かつ E_{KB} $(D_{KD}(M))=M$ が成立しなければならない

共通鍵暗号系を認証方式の基本形 (a) の一体型に適用するとき、実現できる認証システムは、最も制約条件のゆるやかなエンティティ認証とメッセージ認証が同時に実現できる。しかしすべてのメッセージに暗号化および復号処理を施さなければならない。(b) の分離型の場合には、メッセージの秘匿の機能は失われるが、縮約型のハッジュ関数を用ってメッセージルを圧縮しているので、暗号化および復号処理を施すべきデータ量は少なくなる。

公開鍵暗号系を適用した認証システムは、暗号化鍵が公開されているので、後述するようにメッセージの秘匿機能のない認証システムとして位置づけることができる。しかし、暗号化・復号過程を (段吹)して少し工夫をこらすと、次に述べる最も制約条件の厳しいディジタル署名が実現できる。

.3 ディジタル署名

6.3.1 公開鍵暗号系を適用したディジタル署名

公開鍵暗号系(0)を認証方式の基本形に適用すると、最も制約条件の厳しいエンティティ認証であるティジタル署名が実現できる。ただし公開鍵 K_B が公開されているので、一体型の認証方式に適用する場合においては、メニュージの数距の機能を備えることができない。すなわち、秘密の鍵 K_D を用いてメッセージに暗号化処理を施して伝送しても、その暗号文を盗聴して公開の暗号化鍵 K_B により容易に平文のメッセージ Mを得ることができる。前述の通り、一体型の認証システムではすべてのメッセージ Mで得ることができる。前述の通り、一体型の認証システムではすべてのメッセージ Mで暗号化処理を施すのであるから、もし可能ならば秘匿の機能も兼ね備えたいという要望が発生する。このような要望に的確に答えたディジタル署名方式が存在するので、以下では秘匿の機能を有するディジタル署名方式について述べよう。

公開鍵暗号系の中には暗号化Eと復号Dの順序を交換できる暗号系,すなら,

$E_{KE}[D_{KD}(M)]=M$

が支障なく実行できる公開鍵暗号系が存在する。RSA暗号系のはその典型的な例である。式 (6.1) がなんら支障なく実行できるといて前提案件の下に一体型の認証方式を変形して、ディジタル署名と同時に秘匿の機能も備わった認証システムを構成できる 図 6.5 はエンティティAからエンティティBへ秘密通信を行う場合を想定して構成した秘匿機能を備えた認証システムを示す。こ

図 6.5 公開鍵暗号系を適用した認証システム

の認証システムの優れている 点は、 受信側で秘密鍵 KD*を用いてべを復号した結果得られる値

$$D_{KD_{\theta}}[c'] \tag{6.2}$$

を取り出せることである。すなわちエンティティAの公開鍵 Keaで 5-を暗号化することによりメッセージ M'が得られるので、もしM'が意味のある平文であれば、そのメッセージ M'=MはエンティティAにより送付されたものと断定できる。しかも受信者を含めA以外のいかなるエンティティもこの5を偽造できないので、Bは5を保持するごとによりAが後でメッセージ Mを送付した事実を否定できず、制約条件の最も厳しいディジタル署名方式になっている。

公開鍵度号系を応用したディジタル署名方式を具体的に実現する際には、いるいろな解決すべき問題点が残されている。 典型的な公開鍵暗号系としてよく知られている RSA暗号系を用いて実現した場合にも次のような問題がある。

まずRSA暗号系は次のように要約される (詳細は、第3章を参照されたい). 2つの大きな素数 p, qをランダムに選び、それらの積 n= pq を求める、nは公開されるが、2つの素数 p, qは秘密に保たれる、次に p, qを用いてnのオイ

$$\phi(n) = (p-1)(q-1)$$

により計算する.さらに秘密のの(n) により規定される2つの条件

(6.3)

$$\gcd(d, \Phi(n)) = 1$$
 (6.4)

$$\max \{ \rho, q \} \langle d \langle \phi(n) \rangle$$

(6.5)

を満たす整数 4を任意に選び合同式

$$ed \equiv 1 \mod \Phi(n)$$

(6.6)

にメッセージを伝送する場合,メッセージの1つのブロックをM(0≤M≦n て保持する。このような準備の下にエンティティAがエンティティBに秘密 を解いて。を求める.。 は公開鍵として公開リストに登録し,dは秘密鍵とし で表現し,公開鍵リストから Bo 公開鍵 $\mathrm{K_{Bo}}$ =(e,n)を読み取り,暗 <u>-</u>

$$c \equiv M^e \mod n$$

(6.7)

を計算してBに伝送する.この暗号文。を受信したBは,秘密鍵 $K_{D_0} \! = \! (d,n)$ を用いた

$$c^d \equiv M^{ed} \equiv M^{k\phi(n)+1} \equiv M \mod n \tag{}$$

と計算し, メッセージ Mを復元する

 $_{A}$ $_{A}$ $_{A}$ $_{A}$ $_{A}$ $_{A}$ $_{B}$ $_{A}$ $_{B}$ $_{B}$ と modngの計算の順序の違いにより 計算結果が 異なるという 重要な問題が発 エンティチ のような問題に対し,Konfelder が明快な解決法を与えているのでその 方法を 生し,具体的な暗号化,復号並びに認証の方法を工夫しなければならない. このRSA暗号系を図6.5に示す認証システムに適用する場合, 箔ぐしたおいる。

Konfelder⁽³⁾ の暗号化および復号の方法は,nAとnBの大小関係により二つ の場合に分けて表 6.1のように実行する. このような暗号通信において,エンティティAとエンティティBの間でなん 調停者の助けを借りて表 6.2 のような方法で認 らかの争いが生じた場合には, 証することにより解決できる。

ディジタル署名 6.3

135

_
9
嵌
PIC

⟨n _A >n _B ⟩⟩	$c' = D_{KD_A} [E_{KE_B}(M)]$ $M = D_{KD_B} [E_{KE_A}(c')]$	表6.2	⟨n _A >n _B ⟩	(c) M, c'	
$\langle \langle n_A \langle n_B \rangle \rangle$	$c = E_{KE_{\theta}} [D_{KD_{A}}(M)]$ $M = E_{KE_{A}} [D_{KD_{\theta}}(c)]$		$\langle\langle n_A \langle n_B \rangle\rangle$	$M, x = D_{KD_B}(c)$	$M' = E_{KE_A}(x)$
				エンティティBが調停者に呈示	int.
,	酷号化 復 号			エンティテ に呈示	調停者の計算

4U ← いmodulusによる計算を後で実行するように工夫されている点に着目すると容 またメッセージ Mは,nAとnBの小さい方よりも小さくなけ このようなKonfelderの方法では, modulusの大きい方を先に計算し, 易に納得できる. ればならない

M=M'

判定条件

6.3.2 離散対数問題に基づくディジタル署名

いる.これは,大きな素数Pを法とする離散対数計算の困難さに基づくディジ ElGamal公開鍵暗号系のの提案者として有名なElGamalは,同じ論文の中 でElGamal 暗号の考え方を応用したディジタル署名方式につい ても 提案して タル署名方式である. ElGamal のディジタル署名方式の中心的役割を果たす離散対数問題(discrete が実は極めて困難な問題なのである.いま大きな素数をPとし,Pを法として logarithm problem) は、次に示すような問題であり、一見簡単そうに見え 生成される有限体GF(P) の原始元をαとするとき,方程式

 $y \equiv \alpha^x \mod P$

において、エよりりを求めることは容易であるが、りが与えられたときエを求 次 このような一方向性関数を用いて、 のようなディジタル署名方式が実現できる. めることは、極めて困難な問題である。

₩ ₩ エンティティAが署名し,エンティティBが認証する場合を考えよら.

準備として、エンティティAは大きな素数Pを選び、これを公開する。また乱数 z4(0≤z4<P-1)を生成し、これをAの秘密鍵とする。さらにz4とαを用いて、

$$y_A \equiv \alpha^{x_A} \mod P$$

(6. 10)

を計算し、 α と y_A を公開する.ここで y_A を公開しても秘密鍵 x_A が割り出せないのは、離散対数問題の困難さに基づいている.

いま署名を行うメッセージを<math>M(0 $\leq M$ <P-1)とするとき、次式を満足する r とs の対(r,s)をMの署名とする。

$$\alpha^M \equiv y^r \cdot r^s \mod P$$

エンティティAは固有の秘密鍵 x4を保持しているので,次のようにして署名(r,s)を作成できる.

- (i) gcd(k,P-1)=1および0≤k<P-1を満たす乱数 kを選ぶ。
- (ii) kおよびaを用いて、rを次式により計算する.

$$r \equiv \alpha^k \mod P \tag{6.12}$$

(iii) 式 (6.12) を式 (6.11) に代入すると,

$$\alpha^M \equiv \alpha^{x_{A} \cdot r} \alpha^{k_{\cdot s}} \mod P$$

(6.13)

となり

$M \equiv x_A \cdot r + k \cdot s \mod P - 1$

(6. 14)

が得られるので、sについて解くことにより、署名 (r,s) が得られる. なお 2の一意性は、kが (i) の条件を満たすことにより保証されている. メッセージ M および署名 (r,s) を受信したエンティティB は、式 (6.11) が 成立することを確認することにより、Aの署名の正当性を認証できる.

なお, 同じ kを二度と使用しないように注意しなければならない. なぜならば, 異なるメッセージの署名に同じ kの値を使用 すると, 式 (6.14) より z s および k を未知数とする連立方程式 M=xa·r+k·s

 $M = x_A \cdot r + k \cdot s$ $M' = x_A \cdot r + k \cdot s'$

が得られ、xaが算出できるからである。

6.3.3 ナップザック問題に基づくディジタル署名

MH 法と呼ばれているナップザック問題に基づく公開鍵暗号系向は、式(6.1)を支障なく実行できるという条件を満足しないために、ディジタル署名には適していない。しかし Shamir はナップザック問題の NP 完全性に着眼し、MH 法を直接適用する方法とは異なった考え方でナップサック問題に基づくディジタル署名法を提案している(6).

まず簡単に署名の原理を説明しよう、kビットで表現される任意の案数をれ整数表示したメッセージをM($0 \le M \le n-1$),1 つの正整数 ベクトルを $a=(a_1,a_2,\cdots,a_{2k})$ とするとき, $M \equiv ca \mod n$ 、すなわち,

$$M \equiv \prod_{j=1}^{n} c_j a_j \mod n \tag{6.15}$$

を満足する正整数ペクトル $\mathbf{c}=(c_1,c_2,...,c_{2k}),\ 0 \le c_j \le \lceil \log_2 n \rceil$ を求めるナップザック問題は、NP 完全である.ここでナップザック問題の解であるペクトル \mathbf{c} を署名と考えると,署名の検証は、

$$ca \mod n \equiv M \tag{6.16}$$

によりきわめて容易に実現できる。また署名を偽造するためには、式(6.15)で与えられる NP 完全なナップザック問題を解く必要があり、異なるメッセージ M'に署名することは、きわめて困難である。

しかし上述の署名の原理によれば、正当な署名者にとってもcを計算することは、きわめて困難である。そこでトラップドアとして大きな役割を果たす秘密の情報をk行2k列の乱数行列H= $[H_{ii}]$ により与え、

$$\begin{bmatrix}
h_{1,1} & h_{1,2} & \cdots, h_{1,2k} \\
h_{2,1} & h_{2,2} & \cdots, h_{1,2k} \\
\vdots & \vdots & \vdots \\
h_{k,1} & h_{k,2} & \cdots h_{k,2k}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_{2k}
\end{bmatrix}
\begin{bmatrix}
2^0 \\
2^1 \\
\vdots \\
mod n$$
(6. 17)

を満足するベクトルa=(a1, a2, …, a2) を計算し公開する。上式 (6.17) は2k

個の未知数を含む 4個の方程式であるから,ぬからぬまではランダムに 選ぶことができる.4+1から 424までは 4個の線形方程式を連立して解くこと により求められる.

いまメッセージを M (0≤M≤n−1)とし,Mの2進表現の各ビットを,左側を下位として並べたペクトルを m で示すと, メッセージ M に対する署名は次式に y 決定できる.

$$c=mH (6.$$

また署名この検証はことaを用いて,

$$ca \mod n \equiv \sum_{j=1}^{2} c_j a_j \mod n \equiv \sum_{j=1}^{2} \left[\sum_{i=1}^{4} m_i h_{ij} \right] a_j \mod n$$

$$\equiv \sum_{i=1}^{4} m_i \left[\sum_{j=1}^{2} h_{ij} a_j \right] \mod n \equiv \sum_{i=1}^{4} m_i 2^{i-1} \mod n \equiv M$$

となるので,送信されたMとの一致性を確認すればよい,

(6.19)

上述の署名法は完全な方式のように思われるが,数多くのMとこの対を集めると上式 (6.18) よりHを決定できる.これを防止するためには,署名する前にメッセージをランダム化すればよい.まずランダムな2進ベクトルをr=(r, r2, …, r2) とし,

$$M^* \equiv (M - ra) \mod n \tag{6.20}$$

を計算する.その結果 Mは M* を用いて,

$$M\equiv(M^*+ra)\mod n$$
 (6.21)
と記述できる、つぎに上述の署名方式を適用して M^* を署名し c^* を得る、この c^* にrを加えて得られる値

$$:=c^*+r \tag{6.2}$$

を署名とする.

署名の検証は次式のようにして容易に実行できる。

 $ca \mod_n \equiv (c^* + r)a \mod_n$ $\equiv c^* a + ra \mod_n$ $\equiv (M^* + ra) \mod_n$

*Y*v =

このように修正すれば、数多くのMとの対を集めても,行列Hの要素を算出することはきわめて困難になる.

6.4 ID情報に基づくディジタル署名

固有の情報 (identity information, ID) に基づく暗号系と 署名法の基本概念は、1984年に開催された CRYPTO' 84において Shamir^の により提案された大変興味深いユニークな発想である。この節では、まず ID 情報に基づく暗号系と署名法の基本概念を示し、次に Shamir 自身により提案されたディジタル署名法でついて紹介しよう.

6.4.1 IDに基づく暗号系と署名法の基本概念

送受信者間で公開鍵や秘密鍵を交換する必要が全くなく,また鍵のリストや第三者によるサービスも必要としない方法で,任意のエンティティ間で安全に通信ができ,かつ互いに署名を認証できる新しい暗号化方式である.この方法は信頼できる鍵生成センタの存在を仮定している.鍵生成センタを設置する唯一の目的は,新規にエンティティが情報ネットワークに加入する時に,そのエンティティの名前や住所,電話番号などの固有の情報を受け取り,センタ固有の秘密のアルゴリズムを用いて,そのIDに対応する秘密鍵を生成し,個人ペースで使用するスマートカードに記録して発行することである.このカードの中に収められている秘密の情報により,通信相手が変わっても各エンティティは全く独自に自分の送るメッセージを暗号化したり署名を行うことができる.また自分の受け取る暗号文の復号や認証を行うことができる.IDに基づく暗号系と署名系の概念を図6.6 まよび図6.7 に示す.

IDに基づく暗号系と署名法は、公開鍵として IDを使用し、共通の秘密鍵生成アルゴリズムを鍵生成センタ固有の秘密情報とする、公開鍵暗号方式であると考えられる。