

Caroline, Jean e Yasmin

Cálculo Numérico Computacional

OQUE É UM VÍDEO?

Vídeo é sequência de imagens em movimento

Uma imagem é composta por pixels

Cada pixel armazena informações como a cor, intensidade luminosa e outros atributos visuais

CODIFICATIORES DE VÍDEO

Inviável armazenar vídeos sem codificadores!

Um codificador de vídeo é utilizado para comprimir e representar eficientemente dados de vídeo

NÍVEL DE QUANTIZAÇÃO (QP)

Quantidade de bits necessários para representar a informação visual

Maior QP (Menos bits) => Redução do tempo

QP	TEMPO DE EXECUÇÃO (s)
22	152737.193
27	76626.425
32	49530.841
37	29775.422

NÍVEL DE QUANTIZAÇÃO [QP]

QP

22

27

32

37

Qual o tempo de execução para valores intermediários de QPs (15, 25, 30, 35 e 40)?

Condições comuns de teste (CTC)

CONFIGURAÇÕES

CODIFICAÇÃO EFETIVA

- Vídeo classe A (4k):
 Campfire_3840x2160_30fps_bt70
 9_420_videoRange
- Software de referência: VTM
- **Frames:** 60

MÉTODO DE INTERPOLAÇÃO

Método de Newton

O método de Newton, que utiliza diferenças divididas e o método de Horner para avaliação, constrói um polinômio eficiente para prever valores desconhecidos a partir de pontos conhecidos.

RESULTABO

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	420987.013	116,94
22	152737.193	42,43
25	98855.109	27,45
27	76626.425	21,28
30	57154.453	15,87
32	49530.841	13,76
35	39463.971	10,96
37	29775.422	8,27
40	4108.641	1,14

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	271294.25	75,36
22	152737.193	42,43
25	97844.524	27,18
27	76626.425	21,28
30	59952.289	16,65
32	49530.841	13,76
35	37545.265	10,43
37	29775.422	8,27
40	20330.427	5,65

RESULTADOS

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	420987.013	116,94
22	152737.193	42,43
25	98855.109	27,45
27	76626.425	21,28
30	57154.453	15,87
32	49530.841	13,76
35	39463.971	10,96
37	29775.422	8,27
40	4108.641	1,14

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	271294.25	75,36
22	152737.193	42,43
25	97844.524	27,18
27	76626.425	21,28
30	59952.289	16,65
32	49530.841	13,76
35	37545.265	10,43
37	29775.422	8,27
40	20330.427	5,65

RESULTRODS

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	420987.013	116,94
22	152737.193	42,43
25	98855.109	27,45
27	76626.425	21,28
30	57154.453	15,87
32	49530.841	13,76
35	39463.971	10,96
37	29775.422	8,27
40	4108.641	1,14

QP	TEMPO DE EXECUÇÃO (s)	TEMPO DE EXECUÇÃO (h)
15	271294.25	75,36
22	152737.193	42,43
25	97844.524	27,18
27	76626.425	21,28
30	59952.289	16,65
32	49530.841	13,76
35	37545.265	10,43
37	29775.422	8,27
40	20330.427	5,65

Google Colo

https://colab.research.google.com/drive/1sz8XwYLV0pf 99GzzzJn50yvzkSU-1wjl?usp=sharing

Caroline, Jean e Yasmin

Cálculo Numérico Computacional