STAT 443: Lab 1

Flora Zhang 52135365

17 January, 2022

Question 1

(a)

```
# read the data
dat <- read_csv("LakeLevels.csv")</pre>
##
## -- Column specification ------
## cols(
    Date = col_character(),
    LakeLevel = col_double()
## )
head(dat, 10)
## # A tibble: 10 x 2
     Date
              LakeLevel
##
     <chr>
                  <dbl>
##
  1 1/1/2007
                  3733.
## 2 1/2/2007
                  3733.
  3 1/3/2007
                  3733.
## 4 1/4/2007
                  3733.
## 5 1/5/2007
                  3733.
## 6 1/6/2007
                  3733.
## 7 1/7/2007
                  3733.
## 8 1/8/2007
                  3733.
## 9 1/9/2007
                  3733.
## 10 1/10/2007
                  3733.
names(dat)
## [1] "Date"
                  "LakeLevel"
dl = dat$LakeLevel
#create plot
plot(dl, main = "Daily Lake Levels", ylab = "Lake Level")
```

Daily Lake Levels

This plot differs from one we would like to create as it is not continuous.

(b)

```
# check the time series object
is.ts(dat)

## [1] FALSE

x = ts(data=dat$LakeLevel, start = c(2007, 1), frequency = 365)

(c)

# plot the data
plot(x, main = "Daily Lake Levels", ylab = "Lake Level", xlab = "Date")
```

Daily Lake Levels

This new time series has a smoothed, continuous line and visually, looks better. The x variables have now been properly switched to the corresponding year and date.

Question 2

(a)

```
# 200 independent observations
set.seed(2022)
x = rnorm(200)

#create ts
y = ts(x)
```

(b)

```
# plot simulated time series
plot(x = y, ylab = "Y coordinates", main = "Simulated Time Series")
```

Simulated Time Series


```
# check the outliers
sum(abs(y) > 2)
```

[1] 6

There are 6 observations outside the range ± 2 . We would expect a small number of values to be outside ± 2 .

(c)

```
# create sample autocorrelation function
acf(y, lag.max = 30)
```

Series y

The sample acf has a lag of 30, and shows an alternating pattern.

More information on R Markdown

This is an R Markdown document, which can be used as a template for STAT 443 labs and assignments. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                          dist
##
                            : 2.00
    Min.
           : 4.0
                    Min.
    1st Qu.:12.0
                    1st Qu.: 26.00
##
##
    Median:15.0
                    Median: 36.00
##
    Mean
            :15.4
                    Mean
                            : 42.98
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
            :25.0
                            :120.00
##
    Max.
                    Max.
```

Using the function kable, it produces a nicer table

kable(summary(cars))

speed	dist
Min.: 4.0	Min.: 2.00
1st Qu.:12.0	1st Qu.: 26.00
Median : 15.0	Median: 36.00
Mean:15.4	Mean: 42.98
3rd Qu.:19.0	3rd Qu.: 56.00
Max. $:25.0$	Max. $:120.00$

Including Plots

You can also embed plots, for example:

plot(pressure)

Note that specifying echo = FALSE parameter would prevent printing of the R code that generated the plot. This is something you may want to do for larger reports that would not require display of the R code.

You can also modify the size and alignment of the figure.

plot(pressure)

Figure 1: title