Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Pank

Partitioning

Intra-bank

Results

Comment

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis Yuxin W., Peng L., Jason C.

FPGA'14, Feb 26-28, 2014

March 14, 2022

Presented by: Akshay G

About the Authors

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning

Reculte

Comment

北京大学高能效计算与应用中心 Center for Energy-efficient Computing and Applications

Joint Research Institute in Science and Engineering by Peking University and UCLA

Outline

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Intra-bank

Result

- Introduction.
- Background.
- Bank Partitioning.
- Intra-bank Offset.
- Results.
- Comments.

Introduction

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

Introduction

- Memory Partitioning problem.
- Partitioning given multiple memory ports?
- Algorithm parametric to partition scheme?
- Modular to memory ports?

Memory Partitioning

```
Theory and
Algorithm for
Generalized
Memory
Partitioning in
High-Level
Synthesis
```

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning

Results

Comments

(a) Loop kernel

Partitioning Schemes

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning

Reculte

Efficient Mapping

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning . . .

Results

Comments

(b) Cyclic partitioning

(c) Block-cyclic partitioning

Towards Theory: Symbols!!

 w_k

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank Partitioning

Partitioning

Results

Comments

Variables Meaning						
variables	Meaning					
N	Partition factor, representing the number					
	of logic banks used after memory partition-					
	ing					
B	Partition block size					
P	Memory port number					
l	Level of loop nest					
d	Number of dimensions of the array					
m	Number of array references in the inner					
	loop					
\mathcal{D}	Iteration domain					
\mathcal{M}	Data domain					
\vec{i}	Iteration vector					
\vec{x}	Array index vector					
\vec{lpha}	Partition vector					
\boldsymbol{q}	Padding size					
i, j, k, t	Temporal variables					
\mathbb{Z}	Integer set					

The k-th dimensional size of the array

Table 1: Symbol table

Iteration Vector and Affine Reference

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

Background

$$\begin{split} &\inf A[w_0][w_1];\\ &\text{for } (j=1;j< w_0-1;j++)\\ &\text{for } (i=1;i< w_1-1;i++)\\ &\text{foo}(A[j][i-1],A[j-1][i],A[j+1][i],A[j][i+1]); \end{split}$$

(a) Loop kernel

Example 1. An affine array reference $A[i_0][i_1 + 1]$ is represented as $\vec{x} = (i_0, i_1 + 1)^T$, where

$$\vec{x} = \left(\begin{array}{c} i_0 \\ i_1 + 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} i_0 \\ i_1 \end{array}\right) + \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

Framing the Partitioning Problem

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

${\sf Background}$

Bank

Intra-hank

Offset

Results

Comments

Two parts:

- Bank Minimization.
- Storage Minimization.

$$Minimize: N = max_{\leq i < m} \{f(\vec{x}_i)\}$$

$$\exists \vec{i} \in \mathcal{D}, 0 \leq j < k < m, f(\vec{x}_j) \neq f(\vec{x}_k).$$

$$Minimize: \sum_{j=0}^{N-1} max_{\leq i < m, f(\vec{x}_i) = j} \{g(\vec{x}_i)\}$$

$$\forall \vec{x}_j, \vec{x}_k \in \mathcal{M}, (f(\vec{x_j}), g(\vec{x_j})), \neq (f(\vec{x_k}), g(\vec{x_k})).$$

Bank Mapping

Theory and
Algorithm for
Generalized
Memory
Partitioning in
High-Level
Synthesis

FPGA'14, Fel 26-28, 2014

Introduction

Background

Bank

Partitioning

Result

Comments

$$\mathcal{P}_{conf}(\vec{x}_0, \vec{x}_1) = \{\vec{i} | \forall \vec{i} \in \mathcal{D}, f(\vec{x}_0) = f(\vec{x}_1)\}.$$

Obviously, if $\forall \vec{i} \in \mathcal{D}$, $f(\vec{x}_0) \neq f(\vec{x}_1)$, $\mathcal{P}_{conf}(\vec{x}_0, \vec{x}_1)$ is empty.

$$\mathcal{P}_{conf}: \left\{ \begin{array}{c} \vec{\alpha} \cdot (A_0 - A_1) \cdot \vec{i} + \vec{\alpha} \cdot (C_0 - C_1) + Nk = 0 \\ \vec{i} \in \mathcal{D} \\ k \in \mathbb{Z} \end{array} \right.$$

Bank Mapping: Multi Port

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning

Reculto

Comments

$$f(\vec{x}_0) = f(\vec{x}_1)$$
 and $f(\vec{x}_1) = f(\vec{x}_2)$.

The conflict polytope is constructed as

$$\mathcal{P}_{conf}: \begin{cases} \vec{\alpha} \cdot (A_0 - A_1) \cdot \vec{i} + \vec{\alpha} \cdot (C_0 - C_1) + Nk_0 = 0 \\ \vec{\alpha} \cdot (A_1 - A_2) \cdot \vec{i} + \vec{\alpha} \cdot (C_1 - C_2) + Nk_1 = 0 \\ \vec{i} \in \mathcal{D} \\ k_0, k_1 \in \mathbb{Z} \end{cases}$$

Intra-bank Offset Mapping

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Fel 26-28, 2014

Introduction

Background

Bank Partitioning

Intra-bank

Offset Results

Comments

Definition 7. (Bank Polytope [16]) Given a d-dimensional array reference \vec{x} , $\mathcal{P}_{bank}(\vec{x})$ is a bank polytope of \vec{x} in the data domain \mathcal{M} defined as

$$\mathcal{P}_{bank}(\vec{x}) = \{\vec{y} | \forall \vec{y} \in \mathcal{M}, f(\vec{x}) = f(\vec{y})\}.$$

Definition 8. (Lexicographic Order) A lexicographic order \prec_{lex} on a d-dimensional set \mathcal{M} is a relation, where for $\forall \vec{x}, \vec{y} \in \mathcal{M}, \vec{x} = (x_0, x_1, ..., x_{d-1})$ and $\vec{y} = (y_0, y_1, ..., y_{d-1})$,

$$\vec{y} \prec_{lex} \vec{x}$$

$$\Leftrightarrow \exists 1 < t < d, \forall 0 \le i < t, (x_i = y_i) \land (y_t < x_t).$$

Offset Mapping Intuition

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Bank

Partitioning Intra-bank

Offset

Results

$$g(\vec{x}) = \sum C(\mathcal{P}_t(\vec{x}))$$

Algorithm Flow

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb 26-28, 2014

Introduction

Background

Rank

Partitioning

Results

Figure 5: The design flow

Results (compared to previous work LTB)

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Fel 26-28, 2014

Introduction

Background

Bank Partitioning

Results

Table 5: Experimental results										
Benchmark	Access	Bit	Method	BRAM	Slice	DSP	CP (ns)	Dynamic		
	#	width						Power(mw)		
DENOISE	4	32	LTB [21]	5	520	4	3.729	26		
			GMP (P=1), B=2	4	303	0	3.395	16		
			GMP vs LTB	-20.00%	-41.73%	-100.00%	-8.96%	-38.46%		
DECONV	5	32	LTB [21]	5	597	5	4.538	27		
			GMP (P=1), B=1	5	597	5	4.538	27		
			GMP vs LTB	0.00%	0.00%	0.00%	0.00%	0.00%		
DENOISE-UR	8	32	LTB [21]	8	794	0	3.738	31		
			GMP (P=1), B=1	8	794	0	3.738	31		
			GMP vs LTB	0.00%	0.00%	0.00%	0.00%	0.00%		
BICUBIC	4	32	LTB [21]	5	483	4	4.364	24		
			GMP (P=1), B=2	4	238	0	3.169	15		
			GMP vs LTB	-20.00%	-50.72%	-100.00%	-27.38%	-37.50%		
			LTB [21]	9	1523	9	4.468	53		
SOBEL	9	32	GMP (P=1), B=1	9	1523	9	4.468	53		
			GMP vs LTB	0.00%	0.00%	0.00%	0.00%	0.00%		
MOTION-LV	6	8	LTB [21]	6	538	6	3.682	25		
			GMP (P=2), B=1	4	425	0	3.169	25		
			GMP vs LTB	-33.33%	-21.00%	-100.00%	-13.93%	0.00%		
MOTION-LH	6	8	LTB [21]	6	536	6	3.946	21		
			GMP (P=2), B=1	4	334	0	3.169	23		
			GMP vs LTB	-33.33%	-37.69%	-100.00%	-19.69%	9.52%		
MOTION-C	4	8	LTB [21]	4	174	0	3.405	14		
			GMP (P=2), B=1	2	155	0	3.169	12		
			GMP vs LTB	-50.00%	-10.92%	0.00%	-6.93%	-14.29%		
Average			GMP vs LTB	-19.58%	-20.26%	-50.00%	-9.61%	-10.09%		

Limitations?

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Fel 26-28, 2014

Introduction

Background

Bank Partitioning

Intra-bank Offset

Result

- Experiments on Partitioning algorithm performance.
- Lack of some important mathematical details (some function definitions missing).

Thank you

Theory and Algorithm for Generalized Memory Partitioning in High-Level Synthesis

FPGA'14, Feb

Introduction

Background

Ŭ

Partitioning

Intra-bank

Results

Comments

Questions?