afni_proc.py is your *friend*

or it will be soon

Example scripts from

AFNI_data6/FT_analysis

Also see https://arxiv.org/abs/1709.07471

Appendix has processing scripts

What the h--l is afni_proc.py?

- It is a Python program that
 - Takes as input a series of "options" describing processing steps to use to analyze datasets from one subject
 - Produces as output a Unix tcsh script file that runs all the AFNI programs to do the processing
- Reasons to use afni_proc.py
 - It is flexible and compact, to produce a long script
 - The output script not only does the data analysis, but also saves various diagnostic tools and files
 - All intermediate output datasets are saved to help diagnose things when results are confusing or just plain wrong
 - You can get help from us on the AFNI message board

Where do afni_proc.py command lines/scripts come from?

Method #1:

 take an existing script (from yourself or a friend), and modify it to meet your needs

Method #2:

- find an approximate fit to what you want in examples, or from afni_proc.py's help, and modify to meet your needs
- Method $\#\sqrt{-1}$:
 - use GUI uber_subject.py
- Method #666:
 - beg for help on the AFNI message board

```
afni proc.py -subj id FT
        -dsets FT/FT_epi_r?+orig.HEAD
        -copy anat FT/FT anat+orig
        -tcat_remove first trs 2
        -regress stim times FT/AV*.txt
        -regress stim labels Vrel Arel
        -regress basis 'BLOCK(20,1)'
        -regress est blur errts
        -regress opts 3dD
             -gltsym 'SYM: Vrel -Arel'
             -glt label 1 V-A
                                         Script file
                                        s01.ap.simple
```

```
afni proc.py -subj id FT
        -dsets FT/FT epi r?+orig.HEAD
ID will label
        -copy anat FT/FT anat+orig
output files
        -tcat_remove first trs 2
        -regress stim times FT/AV*.txt
        -regress stim labels Vrel Arel
        -regress basis 'BLOCK(20,1)'
        -regress est blur errts
        -regress opts 3dD
             -gltsym 'SYM: Vrel -Arel'
             -glt label 1 V-A
                                         Script file
```

s01.ap.simple

```
afni proc.py -subj id FT
        -dsets FT/FT_epi_r?+orig.HEAD
 EPI time
        -copy anat FT/FT anat+orig
 series
        -tcat_remove first trs 2
 datasets
to analyze
        -regress stim times FT/AV*.txt
        -regress stim labels Vrel Arel
        -regress basis 'BLOCK(20,1)'
        -regress est blur errts
        -regress opts 3dD
             -gltsym 'SYM: Vrel -Arel'
             -glt label 1 V-A
```

Script file s01.ap.simple

```
afni proc.py -subj id FT
         -dsets FT/FT epi r?+orig.HEAD
         -copy anat FT/FT anat+orig
T1-weighted
         -tcat_remove first trs 2
anatomical
dataset for
         -regress stim times FT/AV*.txt
alignment to
         -regress stim labels Vrel Arel
EPI datasets
         -regress basis 'BLOCK(20,1)'
         -regress est blur errts
         -regress opts 3dD
              -gltsym 'SYM: Vrel -Arel'
              -qlt label 1 V-A
                                            Script file
                                           s01.ap.simple
```

```
afni_proc.py -subj id FT
          -dsets FT/FT epi r?+orig.HEAD
          -copy anat FT/FT anat+orig
          -tcat remove first trs 2
 Stimulus
timing files,
          -regress stim times FT/AV*.txt
labels, and
          -regress stim labels Vrel Arel
HRF model;
          -regress_basis 'BLOCK(20,1)'
Note: timing
          -regress est blur errts
 files have
start times
          -regress opts 3dD
 for each
               -gltsym 'SYM: Vrel -Arel'
task iteration
               -glt label 1 V-A
                                              Script file
```

s01.ap.simple

```
afni proc.py -subj id FT
         -dsets FT/FT epi r?+orig.HEAD
         -copy anat FT/FT anat+orig
         -tcat remove first trs 2
         -regress stim times FT/AV*.txt
         -regress stim labels Vrel Arel
         -regress basis 'BLOCK(20,1)'
         -regress est blur errts
 Estimate
smoothness
         -regress opts 3dD
of EPI noise
             -gltsym 'SYM: Vrel -Arel'
for group
             -glt label 1 V-A
 analysis
                                           Script file
```

s01.ap.simple

```
afni proc.py -subj id FT
         -dsets FT/FT epi r?+orig.HEAD
        -copy anat FT/FT anat+orig
        -tcat remove first trs 2
        -regress stim times FT/AV*.txt
         -regress stim labels Vrel Arel
         -regress basis 'BLOCK(20,1)'
         -regress est blur errts
 Set up
 General
         -regress opts 3dD
 Linear
             -gltsym 'SYM: Vrel -Arel'
  Test
             -qlt label 1 V-A
between 2
                                          Script file
```

s01.ap.simple

conditions

A Real Case - 1

```
#!/usr/bin/env tcsh
```

creation date: Thu Sep 10 14:27:59 2015

```
# set data directories
set top dir
           = FT
# set subject and group identifiers
set subj
             = FT
set group_id = horses
```

Not actually used here

Code subject level information into shell variables: Makes it easier to re-use this afni_proc.py command

A Real Case - 2

Script file s05.ap.uber

```
afni proc.py -subj id $subj
-script proc.$subj -scr overwrite
-blocks tshift align tlrc volreg blur mask scale regress \
-copy_anat $top dir/FT anat+orig
-dsets
     $top dir/FT epi r1+orig.HEAD
     $top dir/FT epi r2+orig.HEAD
     $top dir/FT epi r3+orig.HEAD
-volreg align to MIN OUTLIER
-volreg align e2a
-volreg tlrc warp
-blur size 4.0
-tcat remove first trs 2
-regress stim times
     $top dir/AV1 vis.txt
     $top dir/AV2 aud.txt
-regress stim labels
     vis aud
-regress basis 'BLOCK(20,1)'
-regress censor motion 0.3
-regress opts 3dD
     -jobs 2
     -qltsym 'SYM: vis -aud' -qlt label 1 V-A
     -gltsym 'SYM: 0.5*vis +0.5*aud' -glt label 2 mean.VA \
-regress compute fitts
-regress make ideal sum sum ideal.1D
-regress est blur epits
-regress est blur errts
-regress run clustsim yes
 -execute
```

The entire afni_proc.py command: Font size will be bigger on following slides!

A Real Case - 3a

Script file s05.ap.uber

```
afni_proc.py -subj_id $subj
 -script proc.$subj -scr overwrite
 -blocks tshift align tlrc volreg blur mask scale regress
 -copy anat $top dir/FT anat+orig
                                             Set up which
 -dsets
                                             processing
     $top dir/FT epi r1+orig.HEAD
                                              "blocks"
     $top dir/FT epi r2+orig.HEAD
                                             will be run
     $top dir/FT epi r3+orig.HEAD
 -volreg align to MIN OUTLIER
 -volreg align e2a
 -volreg tlrc warp
 -blur size 4.0
```

A Real Case - 3b

Script file s05.ap.uber

```
afni proc.py -subj_id $subj
 -script proc.$subj -scr overwrite
 -blocks tshift align tlrc volreg blur mask scale regress
 -copy anat $top dir/FT anat+orig
 -dsets
                                            Select input
     $top dir/FT epi r1+orig.HEAD
                                             datasets
     $top dir/FT epi r2+orig.HEAD
                                            (anat and EPI)
     $top dir/FT epi r3+orig.HEAD
 -volreg align to MIN OUTLIER
 -volreg align e2a
 -volreg tlrc warp
 -blur size 4.0
```

A Real Case – 3c

Script file s05.ap.uber

```
afni_proc.py -subj_id $subj
 -script proc.$subj -scr overwrite
 -blocks tshift align tlrc volreg blur mask scale regress
 -copy anat $top dir/FT anat+orig
 -dsets
     $top dir/FT epi r1+orig.HEAD
     $top dir/FT epi r2+orig.HEAD
     $top dir/FT epi r3+orig.HEAD
 -volreg align to MIN OUTLIER
                                             Specify how
 -volreg align e2a
                                            "volreg" step
 -volreg tlrc warp
                                             will operate
 -blur size 4.0
```

A Real Case – 3d

Script file s05.ap.uber

```
afni proc.py -subj id $subj
 -script proc.$subj -scr overwrite
 -blocks tshift align tlrc volreg blur mask scale regress
 -copy anat $top dir/FT anat+orig
 -dsets
     $top dir/FT epi r1+orig.HEAD
     $top dir/FT epi r2+orig.HEAD
     $top dir/FT epi r3+orig.HEAD
 -volreg align to MIN OUTLIER
                                             Specify how
 -volreg align e2a
                                             much spatial
 -volreg tlrc warp
                                             blurring will
 -blur size 4.0
                                               be used
                                             (FWHM mm)
```

A Real Case – 4a

Script file s05.ap.uber

```
-tcat remove first trs 2
                                         Specify task timing,
-regress stim times
                                         labels, and response
    $top_dir/AV1_vis.txt
                                              model;
    $top dir/AV2 aud.txt
-regress stim labels
                                        Note: task timing files
    vis aud
                                         contain start times
-regress basis 'BLOCK(20,1)'/
                                        for each task iteration
-regress censor motion 0.3
-regress opts 3dD
    -jobs 2
    -gltsym 'SYM: vis -aud' -glt label 1 V-A
    -gltsym 'SYM: 0.5*vis +0.5*aud' -glt label 2 mean.VA
-regress compute fitts
-regress make ideal sum sum ideal.1D
-regress est blur epits
-regress est blur errts
-regress run clustsim yes
```

-execute

A Real Case – 4b

```
-tcat_remove_first_trs 2
-regress stim times
    $top dir/AV1 vis.txt
    $top dir/AV2 aud.txt
-regress_stim_labels
```

vis aud

-regress_basis 'BLOCK(20,1)'

-regress_censor_motion 0.3

-regress opts 3dD -jobs 2

-gltsym 'SYM: vis -aud' -glt label 1 V-A

-gltsym 'SYM: 0.5*vis +0.5*aud' -glt label 2 mean.VA -regress compute fitts

-regress make ideal sum sum ideal.1D -regress est blur epits

-regress est blur errts

-regress run clustsim yes

-execute

Maximum motion

(in mm) to accept between successive TRs

Script file

s05.ap.uber

A Real Case – 4c

Script file s05.ap.uber

```
-tcat remove first trs 2
-regress stim times
    $top_dir/AV1_vis.txt
    $top dir/AV2 aud.txt
                                      Other regression options:
-regress stim labels
    vis aud
-regress_basis 'BLOCK(20,1)'
-regress censor motion 0.3
```

Use 2 CPUs Set up GLTs

```
-jobs 2
    -gltsym 'SYM: vis -aud' -glt label 1 V-A
    -gltsym 'SYM: 0.5*vis +0.5*aud' -glt_label 2 mean.VA/
-regress compute fitts
-regress make ideal sum sum ideal.1D
-regress est blur epits
```

-regress opts 3dD

-execute

-regress est blur errts

-regress run clustsim yes

A Real Case – 4d

Script file s05.ap.uber

```
-tcat remove first trs 2
-regress stim times
    $top dir/AV1 vis.txt
    $top dir/AV2 aud.txt
                                       Other regression options:
-regress stim labels
                                        Compute fitted model
    vis aud
                                          (best fit to data);
-regress_basis 'BLOCK(20,1)'
                                        Create sum of task ideal
-regress censor motion 0.3
                                         response time series
-regress opts 3dD
                                         (for display purposes)
    -jobs 2
    -gltsym 'SYM: vis -aud' -glt label 1 V-A
    -gltsym 'SYM: 0.5*vis +0.5*aud' -glt label 2 mean.VA
-regress_compute_fitts
-regress make ideal sum sum ideal.1D
-regress est blur epits
-regress est blur errts
-regress run clustsim yes
```

-execute

Script file s05.ap.uber

```
A Real Case - 4e

-tcat_remove_first_trs 2
-regress_stim_times
    $top_dir/AV1_vis.txt
    $top_dir/AV2_aud.txt
-regress_stim_labels
    vis aud
-regress_basis 'BLOCK(20,1)'
-regress_censor_motion 0.3

Estimate smoothness of noise in the data:
From the dataset itself,
From the residuals
```

-regress_opts_3dD -jobs 2

-gltsym 'SYM: 0.5*vis +0.5*aud' -glt_label 2 mean.VA
-regress_compute_fitts
-regress_make_ideal_sum sum_ideal.1D
-regress_est_blur_epits

-gltsym 'SYM: vis -aud' -glt label 1 V-A

-regress_est_blur_epits
-regress_est_blur_errts
-regress_run_clustsim yes
-execute

And estimate clustersize thresholds from smoothness estimates

(=data-model fit).

```
A Real Case – 4f
-tcat remove first trs 2
-regress stim times
   $top_dir/AV1_vis.txt
   $top dir/AV2 aud.txt
-regress stim labels
```

vis aud -regress_basis 'BLOCK(20,1)'

-regress censor motion 0.3

-regress_opts_3dD -jobs 2

-regress est blur epits

-regress est blur errts

-execute

-regress run clustsim yes

-gltsym 'SYM: vis -aud' -glt label 1 V-A -gltsym 'SYM: 0.5*vis +0.5*aud' -glt label 2 mean.VA -regress compute fitts

-regress make ideal sum sum ideal.1D

Run script after

it is created

Script file

s05.ap.uber

Summarizing Results

- Each afni_proc.py results directory has a file with a name like out.ss review.SUBJECT-ID.txt
 - Each line give some information about the data and the processing results, such as number of time points censored
- A command like this will generate a table with all these summary results from all subjects:

```
gen_ss_review_table.py
  -infiles data_orig/sub*/*.results/out.ss_review.*.txt
  -tablefile UCLA.xls
```

- Next slide: what part of this output looks like in Excel
 - On Linux, you can use LibreOffice http://www.libreoffice.org/

Excel Snapshot Image of UCLA.xls

•							
num TRs per run (censored)							
0	Р	Q	R	S	Т	U	V
max censore	outlier limit	average outl	num TRs abo	num runs foi	num TRs per	num TRs per	num TRs per
value_1	value_1	value_1	value_1	value_1	value_1	value_1	value_1
1.86277	0.02	0.0015669	3	1	242	222	20
0.542716	0.02	0.00133806	5	1	242	236	6
1.01995	0.02	0.00101045	2	1	242	231	11
0.970727	0.02	0.00113016	2	1	242	239	3
1.2554	0.02	0.00493115	17	1	242	220	22)
	Num	ber of TRs	Nun	nber of TRs	Nur	nber of TRs	
	with	too many		found	С	ensored	
		out	lier values	for e	ach subject	for e	each subject
		for e	ach subject				

Another Valuable Summary: TSNR

- Measures magnitude of EPI signal strength divided by standard deviation of noise
 - For 3 Tesla data, TSNR values near 180-200 are usual with "standard" scanning parameters (TR 2-3s, voxel size 2-3mm)
- If some subject's TSNR is much lower than others, examine the data to find the problem!

Masking for Group Analysis

- In each results directory, the output dataset
 mask_epi_anat.SUBJECT-ID+tlrc.HEAD is the 0-1 brain
 mask of the EPI dataset in the template space
- Combine all these masks into one mask dataset:

```
3dmask_tool -input
data_orig/sub-*/*.results/mask_epi_anat.*.HEAD
-prefix mask all.nii -frac 0.8
```

Another way: use a gray matter plus CSF mask from MNI template (if you have used nonlinear alignment to that template):

```
3dresample -master mask_all.nii -prefix mask_GC.nii
-rmode NN
-input ~/abin/MNI152_2009_template.nii.gz'[4]'
```

Whole Brain and GM+CSF Masks

73517 voxels

3 mm³ voxels

53104 voxels

Nonlinear Warping to MNI Template

- afni_proc.py can do the nonlinear warping for you
 - But, nonlinear warping is slow (in fact, slowly slow)
 - If you need to re-rerun subject analysis, nonlinear warping will slow the re-run script down *a lot*
- Solution: do the nonlinear warping *before* using afni_proc.py, then supply the warping results so that afni_proc.py will skip doing the warping itself
- Mechanism: the @SSwarper script (tcsh)
 - Does Skull Stripping ("SS") and nonlinear warping
 - Base dataset is MNI152_2009_template_SSW.nii.gz
 - Nonlinearly warped, not too blurry

Two MNI Templates

MNI152_1mm_uni+tlrc
Affine alignments

MNI152_2009_template_SSW.nii.gz
Nonlinear alignments

What @SSwarper Reads and Writes

- Inputs:
 - T1-weighted anatomical image of subject (skull-on)
 - Subject ID code, for names of output files
- Outputs (subject ID = sub007):
 - anatSS.sub007.nii
 - skull-stripped dataset in original coordinates
 - anatQQ.sub007.nii
 - skull-stripped dataset, nonlinearly warped to MNI template
 - anatQQ.sub007.aff12.1D
 - affine matrix to transform original dataset to MNI template
 - anatQQ.sub007 WARP.nii
 - incremental warp from affine transformation to nonlinearly aligned dataset
- These files are needed for later use in afni_proc.py

@SSwarper Results

sub00440 from Beijing-Zang in the FCON-1000 collection

MNI Template Slices

For comparison

Nonlinear Registration Script

- What follows is a script for doing nonlinear warping (registration) of one anatomical dataset to an MNI template
- In a real study, this script is run once for each subject
- Takes a long time, so the script should be submitted to a multi-node cluster

```
#!/bin/tcsh
### This script nonlinear warps one anatomical dataset,
### taken from the anat orig directory, to the MNI 2009
### nonlinear template (supplied with AFNI binaries), and
### puts the resulting files into anat warped directory.
### The only command line argument is the subject ID
set subj = $argv[1]
set tempdir = .
# don't log AFNI programs in ~/.afni.log
# don't try any version checks
# don't auto-compress output files
setenv AFNI DONT LOGFILE YES
setenv AFNI_VERSION CHECK NO
setenv AFNI COMPRESSOR NONE
```

```
### go to data directory
# topdir = directory above this Scripts directory
set topdir = `dirname $cwd`
cd $topdir/anat orig
### create final output directories
mkdir -p $topdir/anat warped
mkdir -p $topdir/anat warped/snapshots
### create temp directory to hold work, and copy anat there
mkdir -p temp $subj
cp anat $subj.nii.gz temp $subj
cd temp $subj
```

```
### process the anat dataset, using the AFNI script
### that does the warping and skull-stripping
@SSwarper —input anat $subj.nii.gz —subid $subj \
          -base MNI152_2009_template_SSW.nii.gz
# compress the output datasets
qzip -1v *.nii
### move the results to where they belong
# skull-stripped original, Q-warped dataset, and the warps
\mv -f anatSS.${subj}.nii.gz anatQQ.${subj}.nii.gz
       anatQQ.${subj}.aff12.1D anatQQ.${subj} WARP.nii.gz \
       $topdir/anat warped
# snapshots for visual inspection
\mv -f *.jpg $topdir/anat warped/snapshots
# delete the temporary directory
cd ..
\rm -rf temp_$subj
exit 0
```

Add these lines above **afni_proc.py** command:

```
set basedset = MNI152_2009_template_SSW.nii.gz
set tpath = `@FindAfniDsetPath $basedset`
if( "$tpath" == '' ) then
   echo "***** @SSwarper -- Failed to find $basedset :("
   exit 1
endif
set basedset = $tpath/$basedset

Add these options to afni_proc.py command:
```

```
-copy_anat anat_warped/anatSS.${subj}.nii
-tlrc_base $basedset
-tlrc_NL_warp
-tlrc_NL_warped_dsets
$warpdir/anatQQ.${subj}.nii.gz
$warpdir/anatQQ.${subj}.aff12.1D
$warpdir/anatQQ.${subj}_WARP.nii.gz
```