

Schotterwerk (2)								
Aufgabennummer: B_071								
Technologieeinsatz:	möglich □	erforderlich 🗵						

Ein Schotterwerk untersucht die Nachfrage nach Schotter sowie den möglichen Gewinn bei Schotter und Kies.

a) Die Nachfrage nach Schotter steigt durch Preissenkung nach der folgenden Tabelle:

x Nachfragemenge in Tonnen (t)	1	2	3	4	5	6	7	8	9	10
p _N Preis in Euro/Tonne (€/t)	14,2	12,9	12,5	11,6	9,8	9	8,2	6,9	6,1	5,7

- Ermitteln Sie mithilfe der linearen Regression die Preisfunktion der Nachfrage, die den Preis p_N in Abhängigkeit von der nachgefragten Menge x angibt.
- Runden Sie die Parameter auf ganze Zahlen.
- b) Erstellen Sie anhand der Grafik aus den Informationen über Erlös *E* und Kosten *K* den Verlauf der Gewinnfunktion *G* für Schotter.
 - Lesen Sie die ungefähren Werte für die Gewinngrenze und den maximalen Gewinn ab.

c) Die Preisfunktion der Nachfrage für Kies lautet: $p_N(x) = -0.07x^2 + 16$.

 $p_N(x)$... Nachfragepreis bei x Mengeneinheiten in Geldeinheiten (GE) bezogen auf eine Mengeneinheit (ME) x ... nachgefragte Menge in Mengeneinheit (ME)

 Berechnen Sie die Erlösgrenzen und das Erlösmaximum. Runden Sie die Ergebnisse auf 2 Dezimalstellen.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Schotterwerk (2) 2

Möglicher Lösungsweg

a) Die Preisfunktion der Nachfrage wird über Regression mittels Technologieeinsatz ermittelt. $p_N(x) = -x + 15$

b) G = E - K. Diese Differenz wird grafisch ermittelt, daher nur ungefähre Werte.

Der Gewinnbereich liegt zwischen ca. 1,8 Tonnen und ca. 8,6 Tonnen.

Der maximale Gewinn beträgt ca. € 24.

(Ableseungenauigkeiten sind zu tolerieren!)

c)
$$p_N(x) = -0.07x^2 + 16$$

 $E(x) = -0.07x^3 + 16x$

Erlösgrenzen mittels Technologieeinsatz berechnen: $x_1 = 0$, $x_2 = 15,12$

Bis zu einer Menge von 15,12 ME macht man mit Kies Umsatz.

$$E'(x) = -0.21x^2 + 16 = 0$$

 $x = 8.73$... erlösmaximale Menge
 $E_{\text{max}} = 93.11$

Der maximale Erlös wird bei einer Verkaufsmenge von 8,73 ME erzielt und beträgt 93,11 GE.

Schotterwerk (2) 3

Klassifikation

Wesentlicher Bereich der Inhaltsdimension:

⊠ Teil B

a) 4 Analysis

□ Teil A

- b) 3 Funktionale Zusammenhänge
- c) 4 Analysis

Nebeninhaltsdimension:

- a) 5 Stochastik
- b) —
- c) —

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) A Modellieren und Transferieren
- c) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) —
- b) C Interpretieren und Dokumentieren
- c) -

Schwierigkeitsgrad:

a) 3

Punkteanzahl:

a) leicht

a) 3 b) 4

b) mittelc) mittel

c) 3

Thema: Wirtschaft

Quellen: -