STAT 450: Bayesian Statistics - Homework 8

Problem 1: LeBron James' 3-Point Shooting Percentage

```
LBJ3points <- readRDS("LBJ3points.rds") # load dataset
```

(a)

```
mtext <- "
model
 {
 for(j in 1:17){
  y[j] ~ dbinom(theta, n[j])
 theta ~ dbeta(a, b)
 y_pred ~ dbinom(theta, 320)
dat <- list(y = LBJ3points$Made, n = LBJ3points$Attempted, a = 1, b = 1)</pre>
start_val <- list(</pre>
              list( ".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
              list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
out <- run.jags(model = mtext,</pre>
                monitor = c("theta", "y_pred"),
                data = dat,
                n.chains = 2,
                inits = start_val,
                sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:17:32 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 17
##
      Unobserved stochastic nodes: 2
      Total graph size: 39
## . Reading parameter file inits1.txt
```

```
## . Reading parameter file inits2.txt
## . Initializing model
## . Adapting 1000
                        -----| 1000
## -----
## ++++++++ 100%
## Adaptation successful
  . Updating 4000
  . . . Updating 10000
## *********** 100%
  . . . . . Updating 0
## . Deleting model
## .
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Calculating summary statistics...
\mbox{\tt \#\#} Calculating the Gelman-Rubin statistic for 2 variables....
## Finished running the simulation
plot(out)
## Generating plots...
                                            1.0
                                            8.0
theta
                                            0.6
                                            0.4
                                            0.2
                                            0.0
                                                            0.35
         6000 8000 10000 12000 14000
                                                  0.33
                                                       0.34
                                                                 0.36
                                                                     0.37
                  Iteration
                                                          theta
                                        Autocorrelation of theta
                                             1.0
    3
% of total
                                             0.5
    2
                                             0.0
    1
                                            -0.5
    0
                                            -1.0
         0.33 0.34
                   0.35
                         0.36 0.37
                                                     10 15 20 25 30 35 40
                 theta
                                                           Lag
```


95% credible interval for theta and posterior predictions

```
parameters <- rbind(out$mcmc[[1]], out$mcmc[[2]])
kable(apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975))))</pre>
```

	theta	y_pred
2.5%	0.3314949	93
97.5%	0.3565012	127

(b)

```
mtext <- "
model{
  for(j in 1:17){
    y[j] ~ dbinom(theta[j], n[j])
    theta[j] ~ dbeta(a,b)
  }
}</pre>
```

```
dat <- list(y = LBJ3points$Made,</pre>
          n = LBJ3points$Attempted,
          a = 1, b = 1
start_val <- list(</pre>
            list( ".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
            list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
            )
out <- run.jags(model = mtext,
             monitor = "theta",
             data = dat,
             n.chains = 2,
             inits = start_val,
              sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:17:35 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
    Resolving undeclared variables
##
##
    Allocating nodes
## Graph information:
##
    Observed stochastic nodes: 17
##
     Unobserved stochastic nodes: 17
##
     Total graph size: 53
## . Reading parameter file inits1.txt
## . Reading parameter file inits2.txt
## . Initializing model
## . Adapting 1000
## -----| 1000
## +++++++ 100%
## Adaptation successful
## . Updating 4000
## -----| 4000
## ************ 100%
## . . Updating 10000
## -----| 10000
## ************* 100%
## . . . . Updating 0
## . Deleting model
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Calculating summary statistics...
\mbox{\tt \#\#} Calculating the Gelman-Rubin statistic for 17 variables....
## Finished running the simulation
parameters <- rbind(out$mcmc[[1]], out$mcmc[[2]])</pre>
```

m <- matrix(1:17, 5)</pre>

Warning in matrix(1:17, 5): data length [17] is not a sub-multiple or multiple ## of the number of rows [5]

```
for (i in 1:ncol(m)) {
  cat(kable(
    apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))[, m[, i]],
    'latex', booktabs=TRUE) %>% kable_styling(full_width = T), "\\newline")
}
```

	theta[1]	theta[2]	theta[3]	theta[4]	theta[5]
2.5% 97.5%	$\begin{array}{c} 0.2356278 \\ 0.3544312 \end{array}$	0.2983262 0.4048961	$\begin{array}{c} 0.2903312 \\ 0.3845028 \end{array}$	$\begin{array}{c} 0.2708958 \\ 0.3735881 \end{array}$	$\begin{array}{c} 0.2693702 \\ 0.3635286 \end{array}$
	theta[6]	theta[7]	theta[8]	theta[9]	theta[10]
2.5% 97.5%	$\begin{array}{c} 0.2979268 \\ 0.3936642 \end{array}$	$0.2886659 \\ 0.3812821$	0.2765157 0.3860883	0.2892278 0.4410923	$\begin{array}{c} 0.3466759 \\ 0.4666602 \end{array}$
	theta[11]	theta[12]	theta[13]	theta[14]	theta[15]
2.5% 97.5%	0.3268736 0.4342044	0.3060445 0.4064084	0.2564087 0.3648174	0.3134492 0.4144924	$\begin{array}{c} 0.3219759 \\ 0.4142270 \end{array}$
	theta[16]	theta[17]	theta[1]	theta[2]	theta[3]
2.5% 97.5%	0.2904719 0.3922880	0.3027610 0.3977981	$\begin{array}{c} 0.2356278 \\ 0.3544312 \end{array}$	0.2983262 0.4048961	0.2903312 0.3845028

(c)

```
mtext <- "
model{
 for(j in 1:17){
   y[j] ~ dbinom(theta[j], n[j])
   theta[j] ~ dbeta(a,b)
 mu ~ dbeta(10, 20)
 nu ~ dlnorm(0, 1/4)
  a <- mu*nu
  b <- nu*(1 - mu)
 theta_new ~ dbeta(a,b)
  ytilde ~ dbinom(theta_new, 320)
dat <- list(y = LBJ3points$Made,</pre>
            n = LBJ3points$Attempted)
start_val <- list(</pre>
              list( ".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
              list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
```

```
out <- run.jags(model = mtext,</pre>
              monitor = c("theta", "a", "b", "mu", "nu", "theta_new", "ytilde"),
              data = dat,
             n.chains = 2,
             inits = start val,
              sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:17:44 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
     Resolving undeclared variables
##
##
     Allocating nodes
## Graph information:
##
     Observed stochastic nodes: 17
##
     Unobserved stochastic nodes: 21
##
     Total graph size: 65
## . Reading parameter file inits1.txt
## . Reading parameter file inits2.txt
## . Initializing model
## . Adapting 1000
## -----| 1000
## ++++++++ 100%
## Adaptation successful
## . Updating 4000
## -----| 4000
## ************ 100%
## . . . . . . . Updating 10000
## -----| 10000
## *********** 100%
## . . . . Updating 0
## . Deleting model
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Calculating summary statistics...
## Calculating the Gelman-Rubin statistic for 23 variables....
## Finished running the simulation
95% credible interval for the thetas, other parameters, and predictions
parameters <- rbind(out$mcmc[[1]], out$mcmc[[2]])</pre>
m <- matrix(1:23, 5)
## Warning in matrix(1:23, 5): data length [23] is not a sub-multiple or multiple
```

of the number of rows [5]

```
for (i in 1:ncol(m)) {
  cat(kable(
    apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))[, m[, i]],
    'latex', booktabs=TRUE) %>% kable_styling(full_width = T), "\\newline")
}
```

	theta[1]	theta[2]	theta[3]	theta[4]	theta[5]
2.5% $97.5%$	$\begin{array}{c} 0.2825873 \\ 0.3627394 \end{array}$	$\begin{array}{c} 0.3118976 \\ 0.3824072 \end{array}$	$\begin{array}{c} 0.3067575 \\ 0.3732602 \end{array}$	$\begin{array}{c} 0.2983979 \\ 0.3678791 \end{array}$	$\begin{array}{c} 0.2953011 \\ 0.3638971 \end{array}$
	theta[6]	theta[7]	theta[8]	theta[9]	theta[10]
$2.5\% \\ 97.5\%$	$\begin{array}{c} 0.3106608 \\ 0.3772274 \end{array}$	$\begin{array}{c} 0.3055645 \\ 0.3722451 \end{array}$	$\begin{array}{c} 0.3024278 \\ 0.3738451 \end{array}$	$\begin{array}{c} 0.3106269 \\ 0.3911898 \end{array}$	$\begin{array}{c} 0.3293528 \\ 0.4127965 \end{array}$
	theta[11]	theta[12]	theta[13]	theta[14]	theta[15]
2.5% 97.5%	$\begin{array}{c} 0.3234886 \\ 0.3990245 \end{array}$	0.3155780 0.3846601	0.2906395 0.3656440	0.3193348 0.3885046	$\begin{array}{c} 0.3224000 \\ 0.3891459 \end{array}$
	theta[16]	theta[17]	a	b	mu
2.5% 97.5%	0.3080289 0.3760820	0.3135494 0.3805420	41.36392 882.73547	79.02756 1694.70875	$\begin{array}{c} 0.326824 \\ 0.361615 \end{array}$
	nu	theta_new	ytilde	theta[1]	theta[2]
2.5% 97.5%	120.5159 2579.6118	0.2931940 0.3974731	87 134	0.2825873 0.3627394	$\begin{array}{c} 0.3118976 \\ 0.3824072 \end{array}$

(d)

The CI in part c is larger. This would seem surprising at first, since we would usually expect a hierarchical model to have less certainty than a combined model. But this result in our context actually makes more sense because we are using informative priors which introduces more variability to the posterior predictions since they don't utilize as much information from the data as the cases where we use flat priors.

Problem 2: Radon Levels in Minnesota Counties

```
radonData <- readRDS("radon.rds") # load dataset</pre>
```

(a)

```
start_val <- list(</pre>
             list( ".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
             list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
out <- run.jags(model = mtext,</pre>
              monitor = "theta",
               data = dat,
               n.chains = 2,
               inits = start_val,
               sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:17:56 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
     Resolving undeclared variables
##
     Allocating nodes
## Graph information:
##
     Observed stochastic nodes: 919
     Unobserved stochastic nodes: 1
     Total graph size: 922
##
## . Reading parameter file inits1.txt
## . Reading parameter file inits2.txt
## . Initializing model
## . Adaptation skipped: model is not in adaptive mode.
## . Updating 4000
## ********** 100%
## . . Updating 10000
## -----| 10000
## ********** 100%
## . . . . Updating 0
## . Deleting model
## .
## Note: the model did not require adaptation
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Calculating summary statistics...
## Calculating the Gelman-Rubin statistic for 1 variables....
## Finished running the simulation
95% credible interval and mean for theta
parameters <- rbind(out$mcmc[[1]], out$mcmc[[2]])</pre>
kable(apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))) %>% kable_styling()
```

	theta
2.5%	0.1965109
97.5%	0.2234942

```
apply(parameters, 2, mean)
       theta
## 0.2098209
(b)
mtext_im <- "</pre>
model{
 for(j in 1:n){
     y[j] ~ dexp(theta[county[j]])
 for(i in 1:k){
    theta[i] ~ dgamma(1,1)
  }
}
dat_im <- list(y = radonData$radon,</pre>
               n = length(radonData$radon),
               county = as.numeric(radonData$county),
               k = n_distinct(radonData$county)
start_val_im <- list(</pre>
              list( ".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
              list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
out_im <- run.jags(model = mtext_im,
                   monitor = "theta",
                   data = dat_im,
                   n.chains = 2,
                   inits = start_val_im,
                   sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:17:57 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 919
##
      Unobserved stochastic nodes: 85
      Total graph size: 1926
##
## . Reading parameter file inits1.txt
## . Reading parameter file inits2.txt
```

```
## . Initializing model
## . Adaptation skipped: model is not in adaptive mode.
## . Updating 4000
## -----| 4000
## ********** 100%
## . . Updating 10000
## -----| 10000
## ********** 100%
## . . . . Updating 0
## . Deleting model
## Note: the model did not require adaptation
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Note: Summary statistics were not produced as there are >50 monitored
## variables
## [To override this behaviour see ?add.summary and ?runjags.options]
## FALSEFinished running the simulation
parameters <- rbind(out_im$mcmc[[1]], out_im$mcmc[[2]])</pre>
```

95% credible intervals for the thetas

```
m <- matrix(1:n_distinct(radonData$county), 5)

for (i in 1:ncol(m)) {
  cat(kable(
   apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))[, m[, i]],
   'latex', booktabs=TRUE) %>% kable_styling(full_width = T), "\\newline")
}
```

theta[5]	theta[4]	theta[3]	theta[2]	theta[1]	
0.1003178	0.1197472	0.0971188	0.2554955	0.1733221	2.5%
0.6396127	0.4937419	0.7889123	0.4407871	1.1057900	97.5%
theta[10]	theta[9]	theta[8]	theta[7]	theta[6]	
0.0622856	0.1825852	0.0686465	0.0777002	0.0689965	2.5%
0.2931443	0.6018494	0.4234030	0.2195083	0.5496287	97.5%
theta[15]	theta[14]	theta[13]	theta[12]	theta[11]	
0.1207380	0.0669462	0.1208249	0.0545961	0.0952124	2.5%
0.7608299	0.1887668	0.5682443	0.3448886	0.5005984	97.5%
theta[20]	theta[19]	theta[18]	theta[17]	theta[16]	
0.0569786	0.1652346	0.1802253	0.0766869	0.1201818	2.5%
0.4572456	0.2703782	0.5445839	0.4781313	1.4109390	97.5%
theta[25]	theta[24]	theta[23]	theta[22]	theta[21]	
0.0680976	0.0555315	0.0912701	0.1617704	0.0950008	2.5%
0.1907314	0.1966296	1.0806500	0.7428886	0.3378735	97.5%
theta[30]	theta[29]	theta[28]	theta[27]	theta[26]	
0.1815141	0.1115202	0.1553692	0.0854438	0.1803509	2.5%
0.5770422	0.8972059	0.8129081	0.4033040	0.2641956	97.5%

	theta[31]	theta[32]	theta[33]	theta[34]	theta[35]
2.5%	0.0491150	0.0959933	0.0460024	0.0810608	0.2835561
97.5%	0.2556956	0.6011901	0.2896451	0.6650488	1.1847537
	theta[36]	theta[37]	theta[38]	theta[39]	theta[40]
2.5%	0.0216815	0.2586816	0.0745858	0.0745115	0.0392988
97.5%	0.2513941	0.9228481	0.4714532	0.3973232	0.2528610
	theta[41]	theta[42]	theta[43]	theta[44]	theta[45]
2.5%	0.0732578	0.0502028	0.0531769	0.1107445	0.1006934
97.5%	0.2839461	1.1311135	0.1897570	0.4666069	0.2918213
	theta[46]	theta[47]	theta[48]	theta[49]	theta[50]
2.5%	0.1096874	0.0868541	0.1638715	0.0820678	0.0188560
97.5%	0.6004238	0.9914347	0.5900860	0.2388514	0.4247716
	theta[51]	theta[52]	theta[53]	theta[54]	theta[55]
2.5%	0.0406576	0.0488443	0.0898719	0.1524920	0.0962704
97.5%	0.2536894	0.3896447	0.7203508	0.3438637	0.3712749
	theta[56]	theta[57]	theta[58]	theta[59]	theta[60]
2.5%	0.1003544	0.2047254	0.0571433	0.0744452	0.0753878
97.5%	0.8009600	0.9480596	0.3600087	0.4752891	0.8759128
	theta[61]	theta[62]	theta[63]	theta[64]	theta[65]
2.5%	0.1933709	0.0506663	0.0759628	0.0794837	0.0566146
97.5%	0.3846066	0.2685269	0.5865605	0.2547533	0.6560429
	theta[66]	theta[67]	theta[68]	theta[69]	theta[70]
2.5%	0.1379992	0.0782875	0.1553110	0.0985795	0.1362739
97.5%	0.3808476	0.2251370	0.5949958	0.6346976	0.2961233
	theta[71]	theta[72]	theta[73]	theta[74]	theta[75]
2.5%	0.0964766	0.0462161	0.2710908	0.1273150	0.0669337
97.5%	0.3252513	0.5348295	0.3881614	0.7953466	0.5578494
	theta[76]	theta[77]	theta[78]	theta[79]	theta[80]
2.5%	0.0481293	0.0697996	0.1292648	0.1195768	0.1580101
97.5%	0.3020557	0.2925101	0.6746982	0.7728183	0.2802939
	theta[81]	theta[82]	theta[83]	theta[84]	theta[85]
2.5%	0.0352659	0.0233255	0.0951279	0.1007816	0.0814168
97.5%	0.2844516	0.5434632	0.2778953	0.2892907	0.9553273

Means of the thetas

apply(parameters, 2, mean)

```
## theta[1] theta[2] theta[3] theta[4] theta[5] theta[6] theta[7] theta[8] ## 0.5362657 0.3422697 0.3639023 0.2747645 0.3126868 0.2529891 0.1391145 0.2063438 ## theta[9] theta[10] theta[11] theta[12] theta[13] theta[14] theta[15] theta[16] ## 0.3612504 0.1567261 0.2577238 0.1697705 0.3023875 0.1196634 0.3702195 0.5879738 ## theta[17] theta[18] theta[19] theta[20] theta[21] theta[22] theta[23] theta[24] ## 0.2333111 0.3392552 0.2148719 0.2072272 0.1977381 0.3997910 0.4502400 0.1152557
```

```
## theta[25] theta[26] theta[27] theta[28] theta[29] theta[30] theta[31] theta[32]
## 0.1214570 0.2201477 0.2153148 0.4184152 0.4075866 0.3521067 0.1319541 0.2943202
## theta[33] theta[34] theta[35] theta[36] theta[37] theta[38] theta[39] theta[40]
## 0.1415720 0.3016505 0.6565996 0.1059012 0.5390579 0.2309618 0.2039448 0.1234785
## theta[41] theta[42] theta[43] theta[44] theta[45] theta[46] theta[47] theta[48]
## 0.1609536 0.4080397 0.1109391 0.2573783 0.1839294 0.3041124 0.4147870 0.3462583
## theta[49] theta[50] theta[51] theta[52] theta[53] theta[54] theta[55] theta[56]
## 0.1505990 0.1522014 0.1250856 0.1800789 0.3255366 0.2390406 0.2104200 0.3678347
## theta[57] theta[58] theta[59] theta[60] theta[61] theta[62] theta[63] theta[64]
## 0.5107219 0.1756520 0.2327807 0.3644328 0.2808763 0.1377363 0.2683229 0.1550024
## theta[65] theta[66] theta[67] theta[68] theta[69] theta[70] theta[71] theta[72]
## 0.2732147 0.2439810 0.1416399 0.3406859 0.3080089 0.2094706 0.1929697 0.2222867
## theta[73] theta[74] theta[75] theta[76] theta[77] theta[78] theta[79] theta[80]
## 0.3268243 0.3906356 0.2527719 0.1471876 0.1614670 0.3479942 0.3744397 0.2145548
## theta[81] theta[82] theta[83] theta[84] theta[85]
## 0.1301535 0.1933472 0.1739793 0.1833019 0.3942317
```

(c)

```
mtext_hm <- "
model{
 for(j in 1:n){
      y[j] ~ dexp(theta[county[j]])
 for(i in 1:k){
   theta[i] ~ dgamma(a,b)
 mu \sim dgamma(0.01, 0.05)
  sigma ~ dunif(0, 1)
  a <- mu^3 / sigma^2
  b <- mu / sigma^2
}
dat_hm <- list(y = radonData$radon,</pre>
               n = length(radonData$radon),
               county = as.numeric(radonData$county),
               k = n_distinct(radonData$county)
start_val_hm <- list(</pre>
              list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45081),
              list(".RNG.name" = "base::Wichmann-Hill", ".RNG.seed" = 45082)
              )
out_hm <- run.jags(model = mtext_hm,
                   monitor = c("theta", "a", "b"),
                    data = dat_hm,
```

```
n.chains = 2,
                inits = start_val_hm,
                sample = 10000)
## Calling the simulation...
## Welcome to JAGS 4.3.2 on Mon May 20 07:18:02 2024
## JAGS is free software and comes with ABSOLUTELY NO WARRANTY
## Loading module: basemod: ok
## Loading module: bugs: ok
## . . Reading data file data.txt
## . Compiling model graph
##
     Resolving undeclared variables
##
     Allocating nodes
## Graph information:
##
     Observed stochastic nodes: 919
##
     Unobserved stochastic nodes: 87
     Total graph size: 1937
## . Reading parameter file inits1.txt
## . Reading parameter file inits2.txt
## . Initializing model
## . Adapting 1000
## -----| 1000
## Adaptation successful
## . Updating 4000
## ********** 100%
## . . . . Updating 10000
## -----| 10000
## ********** 100%
## . . . . Updating 0
## . Deleting model
## .
## Simulation complete. Reading coda files...
## Coda files loaded successfully
## Note: Summary statistics were not produced as there are >50 monitored
## variables
## [To override this behaviour see ?add.summary and ?runjags.options]
## FALSEFinished running the simulation
parameters <- rbind(out hm$mcmc[[1]], out hm$mcmc[[2]])
95% credible intervals for the thetas, a, and b
m <- matrix(1:n_distinct(radonData$county), 5)</pre>
for (i in 1:ncol(m)) {
cat(kable(
  apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))[, m[, i]],
  'latex', booktabs=TRUE) %>% kable_styling(full_width = T), "\\newline")
}
```

	theta[1]	theta[2]	theta[3]	theta[4]	theta[5]
2.5% 97.5%	$\begin{array}{c} 0.1409439 \\ 0.3649637 \end{array}$	$\begin{array}{c} 0.2257829 \\ 0.3726055 \end{array}$	0.1277318 0.3388855	$\begin{array}{c} 0.1349507 \\ 0.3229623 \end{array}$	0.1306269 0.3316196

	theta[6]	theta[7]	theta[8]	theta[9]	theta[10]
2.5%	0.1195928	0.1068191	0.1169876	0.1584039	0.1096339
97.5%	0.3147726	0.2255590	0.2994506	0.3583622	0.2669395
	theta[11]	theta[12]	theta[13]	theta[14]	theta[15]
2.5%	0.1284248	0.1106807	0.1370430	0.0963432	0.1333838
97.5%	0.3164950	0.2826806	0.3338951	0.2067971	0.3424031
	theta[16]	theta[17]	theta[18]	theta[19]	theta[20]
2.5%	0.1271137	0.1211317	0.1613246	0.1672238	0.1157098
97.5%	0.3508060	0.3106421	0.3559895	0.2602339	0.3015612
	theta[21]	theta[22]	theta[23]	theta[24]	theta[25]
2.5%	0.1262678	0.1459105	0.1243969	0.0938099	0.0971327
97.5%	0.2828610	0.3581912	0.3425589	0.2203787	0.2099231
	theta[26]	theta[27]	theta[28]	theta[29]	theta[30]
2.5%	0.1793713	0.1231150	0.1410037	0.1304539	0.1606151
97.5%	0.2572843	0.2989202	0.3574343	0.3457945	0.3564239
	theta[31]	theta[32]	theta[33]	theta[34]	theta[35]
2.5%	0.1008272	0.1284809	0.1034677	0.1237222	0.1640819
97.5%	0.2554265	0.3288866	0.2670118	0.3281388	0.4039450
	theta[36]	theta[37]	theta[38]	theta[39]	theta[40]
2.5%	0.0948040	0.1707338	0.1208777	0.1189898	0.0980978
97.5%	0.2601543	0.4015957	0.3079044	0.2968003	0.2554414
	theta[41]	theta[42]	theta[43]	theta[44]	theta[45]
2.5%	0.1125661	0.1171816	0.0928225	0.1334762	0.1248808
97.5%	0.2612971	0.3319811	0.2156636	0.3162983	0.2662140
	theta[46]	theta[47]	theta[48]	theta[49]	theta[50]
2.5%	0.1335828	0.1234228	0.1525160	0.1114810	0.1037591
97.5%	0.3324693	0.3395399	0.3521769	0.2377178	0.2939266
	theta[51]	theta[52]	theta[53]	theta[54]	theta[55]
2.5%	0.0980556	0.1093022	0.1268640	0.1563347	0.1255352
97.5%	0.2549378	0.2935940	0.3319063	0.2961334	0.2926237
	theta[56]	theta[57]	theta[58]	theta[59]	theta[60]
2.5%	0.1296016	0.1532950	0.1111011	0.1213825	0.1224386
97.5%	0.3362861	0.3745397	0.2850173	0.3106830	0.3328986
	theta[61]	theta[62]	theta[63]	theta[64]	theta[65]
2.5%	0.1821746	0.1031122	0.1217807	0.1130339	0.1169842
97.5%	0.3256145	0.2593622	0.3207413	0.2479634	0.3221450
	theta[66]	theta[67]	theta[68]	theta[69]	theta[70]
2.5%	0.1459804	0.1081730	0.1500207	0.1277628	0.1454329
97.5%	0.3057574	0.2313988	0.3487634	0.3279228	0.2725874

	theta[71]	theta[72]	theta[73]	theta[74]	theta[75]
2.5% 97.5%	0.1251950 0.2778651	0.1131226 0.3080352	$\begin{array}{c} 0.2528817 \\ 0.3603422 \end{array}$	0.1349394 0.3469588	0.1199154 0.3157826
	theta[76]	theta[77]	theta[78]	theta[79]	theta[80]
2.5% 97.5%	$\begin{array}{c} 0.1038050 \\ 0.2699461 \end{array}$	$\begin{array}{c} 0.1130604 \\ 0.2660052 \end{array}$	0.1378820 0.3434074	0.1349206 0.3462176	$\begin{array}{c} 0.1606935 \\ 0.2657313 \end{array}$
	theta[81]	theta[82]	theta[83]	theta[84]	theta[85]
2.5% 97.5%	0.1013468 0.2653728	0.1082225 0.3050636	$\begin{array}{c} 0.1218950 \\ 0.2573754 \end{array}$	0.1255007 0.2668189	0.1233586 0.3391528

cat(kable(

apply(parameters, 2, function(x) quantile(x, c(0.025, 0.975)))[, 86:87],
'latex', booktabs=TRUE) %>% kable_styling(full_width = T), "\\newline")

	\mathbf{a}	b
2.5%	7.823484	36.67395
97.5%	35.114245	172.61305

Means of the thetas, a, and b

apply(parameters, 2, mean)

theta[3] theta[4] theta[5] theta[6] theta[7] ## theta[1] theta[2] ## 0.2360357 0.2937195 0.2188965 0.2181582 0.2170545 0.2062845 0.1624429 ## theta[8] theta[9] theta[10] theta[11] theta[12] theta[13] theta[14] 0.1982701 0.2446037 0.1817159 0.2113706 0.1883294 0.2223398 ## 0.1483146 ## theta[15] theta[16] theta[17] theta[18] theta[19] theta[20] theta[21] 0.2240690 0.2229417 0.2047470 0.2111399 0.1983925 ## 0.2457734 0.1967651 ## theta[22] theta[23] theta[24] theta[25] theta[26] theta[27] theta[28] ## 0.2366394 0.2177829 0.1524623 0.1498127 0.2166214 0.2021602 0.2333536 theta[29] ## theta[30] theta[31] theta[32] theta[34] theta[33] theta[35] ## 0.2219660 0.2459040 0.1709465 0.2147829 0.1777581 0.2126684 0.2635634 theta[36] theta[37] theta[39] theta[40] theta[41] ## theta[38] theta[42] ## 0.1703631 0.2670885 0.2043538 0.1984111 0.1699959 0.1807373 0.2101457 ## theta[43] theta[44] theta[45] theta[46] theta[47] theta[48] theta[49] ## 0.1494956 0.2147879 0.1895643 0.2199908 0.2168479 0.2385414 0.1702255 ## theta[50] theta[51] theta[52] theta[53] theta[54] theta[55] theta[56] 0.1885322 0.1709877 0.1920174 0.2154165 0.2203557 0.2014647 0.2189280 ## theta[62] ## theta[57] theta[58] theta[59] theta[60] theta[61] theta[63] ## 0.2469402 0.1899763 0.2049306 0.2138576 0.2477699 0.1742092 0.2088140 ## theta[64] theta[65] theta[66] theta[67] theta[68] theta[69] theta[70] ## 0.1752344 0.2064398 0.2180791 0.1652490 0.2358728 0.2159610 0.2045364 ## theta[71] theta[72] theta[73] theta[74] theta[76] theta[75] theta[77] 0.1945355 0.1999294 0.3040319 0.2257788 0.2063625 0.1800321 0.1828286 ## theta[78] theta[79] theta[80] theta[81] theta[82] theta[83] theta[84] ## 0.2264384 0.2244872 0.2097288 0.1762139 0.1959036 0.1841663 0.1897782 b ## theta[85] 0.2155487 16.8135861 81.4487512

15