Colles - Semaine 12

Exercice 1

- 1. Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{(1+x)^2} dx$ est convergente et donner sa valeur.
- 2. On considère la fonction f définie par : $\forall x \in \mathbb{R}, \ f(x) = \frac{1}{2(1+|x|)^2}$
 - a) Montrer que f est paire.
 - b) Montrer que f peut être considérée comme une fonction densité de probabilité.

Dans la suite, on considère une variable aléatoire X, définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ admettant f comme densité.

On note F la fonction de répartition de X.

- 3. On pose $Y = \ln(1 + |X|)$ et on admet que Y est une variable aléatoire, elle aussi définie sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.
 - a) Déterminer $Y(\Omega)$.
 - b) Exprimer la fonction de répartition G de Y à l'aide de F.
 - c) En déduire que Y admet pour densité la fonction g définie par :

$$g(x) = \begin{cases} 2e^x f(e^x - 1) & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

d) Montrer enfin que Y suit une loi exponentielle dont on déterminera le paramètre.

Exercice 2

Soit X et Y deux variables aléatoires indépendantes de loi uniforme sur [0,1]. On définit les variable aléatoires $U = \min(X,Y)$ et $V = \max(X,Y)$.

1. Démontrer que :

$$[U > t] = [X > t] \cap [Y > t]$$
 et $[V \leqslant t] = [X \leqslant t] \cap [Y \leqslant t]$

- 2. Déterminer la fonction de répartition G, puis une densité g de U.
- 3. Déterminer la fonction de répartition H, puis une densité h de V.
- 4. Calculer l'espérance de U.
- 5. Exprimer U+V en fonction de X et Y. En déduire l'espérance de V.

Exercice 3

Toutes les variables aléatoires qui interviennent dans ce problème sont considérées comme définies sur des espaces probabilisés non nécessairement identiques, mais qui, par souci de simplification, seront tous notés $(\Omega, \mathscr{A}, \mathbb{P})$.

- 1. On considère la fonction g définie sur \mathbb{R} par : $g(x) = \frac{1}{2} \times e^{-|x|}$.
 - a) Montrer que les intégrales $\int_{-\infty}^{0} g(x) dx$ et $\int_{0}^{+\infty} g(x) dx$ sont convergentes et de même valeur.
 - b) Établir que g est une densité de probabilité sur \mathbb{R} .

Soit Y une variable aléatoire à valeurs réelles admettant g pour densité.

On dit alors que Y suit la loi $\mathcal{L}(0)$.

- 2. Étudier les variations de g et tracer l'allure de sa représentation graphique dans le plan rapporté à un repère orthonormé.
- 3. a) Pour $r \in \mathbb{N}$, montrer l'existence de $m_r(Y)$ (moment d'ordre r de Y).
 - b) Calculer, pour tout r de \mathbb{N} , $m_r(Y)$ en fonction de r. Quelles sont les valeurs de l'espérance $\mathbb{E}(Y)$ et de la variance $\mathbb{V}(Y)$ de la v.a.r. Y?