Optimizing Food Safety Inspections in Chicago

Enhancing the efficiency of inspections to improve overall public health in the city.

By Linda Fung (Data Engineering Final Project)

Executive Summary

In a city as bustling as Chicago, ensuring food safety standards across its diverse array of food establishments is paramount. However, the efficient allocation of resources for food safety inspections remains a challenge. This executive summary outlines a data-driven approach to optimize food safety inspections in Chicago by leveraging insights from food inspections datasets.

Research Objectives

Problem Statement

The primary problem to be addressed is the optimization of food safety inspections in Chicago to mitigate the risk of foodborne illnesses by:

- Identifying higher-risk establishments and neighborhoods
- Prioritizing inspection resources to areas with the most need

Data

The research will utilize two primary datasets:

- City of Chicago Food Inspections Dataset
- City of Chicago Business
 Licenses Dataset

Methodologies

Raw Data Cleaning & Preparation

Data Modeling & Database Creation

Data Visualization & Analytics

OpenRefine

The initial dataset underwent a cleaning process aimed at eliminating redundant columns, filtering out rows with excessive missing data, and resolving inconsistencies and errors within the dataset to enhance its quality and reliability.

MySQL

A data model was developed to organize the information, normalization was performed to 3NF, and structured data was imported into a relational database. Queries were then executed to address specific questions and extract relevant insights.

Tableau

An interactive dashboard with dynamic visuals was created to draw additional insights as well as support insights driven from the SQL queries.

EER Model

Data Analysis: SQL Queries

Overage Averages

What are the overall average risk, passing and failing rates?

- Higher risk establishments seem to be more common.
- Inspections seem to pass most of the time.

```
        avg_risk
        avg_pass_rate
        avg_fail_rate

        84.0705
        68.0609
        19.7183
```

```
SELECT
    AVG(CASE
        WHEN risk id = 1 THEN 100
        WHEN risk_id = 2 THEN 50
        WHEN risk id = 3 THEN 0
    END) AS avg_risk,
    AVG(CASE WHEN inspection_results LIKE 'PASS%'
        THEN 1 ELSE 0 END) * 100
    AS avg_pass_rate,
    AVG(CASE WHEN inspection_results = 'FAIL'
        THEN 1 ELSE 0 END) * 100
    AS avg_fail_rate
FROM
    inspection;
```

Risk and Failure Rate

Are higher risk restaurants more prone to failing? Is there a correlation between risk and fail rate?

- There doesn't seem to be a strong correlation between risk and failing rate.
- Surprisingly, low risk establishments have a slightly higher fail rate.

risk	total_inspectio	failed_inspectio	failure_rate
HIGH	196230	38032	19.3813
MEDIUM	48283	9329	19.3215
LOW	17614	4326	24.5600

```
SELECT
    r.risk,
    COUNT(*) AS total_inspections,
    SUM(CASE WHEN i.inspection_results = 'FAIL'
        THEN 1 ELSE 0 END) AS failed_inspections,
    SUM(CASE WHEN i.inspection_results = 'FAIL'
        THEN 1 ELSE 0 END) / COUNT(*) * 100 AS failure_rate
FROM
    risk r

JOIN
    inspection i ON r.risk_id = i.risk_id
GROUP BY risk;
```

Facility Types and Failure Rate

Are certain facility types more prone to failing? Also, how high is their respective risk? Looking at facility types with a decent amount of inspections (200+):

- Wholesale, liquor, and tavern facility types have the highest failure rates.
- The facility types with failure rates higher than the average also tend to be high risk.

facility_type	total_inspectio	failed_inspectio	failure_rate	risk_scale
WHOLESALE	510	169	33.1373	35.4902
LIQUOR	1102	365	33.1216	4.6279
TAVERN	414	128	30.9179	4.3478
MOBILE FOOD DISPENSER	782	216	27.6215	8.1202
GAS STATION	222	60	27.0270	17.3423
MOBILE FOOD PREPARER	908	234	25.7709	53.3040
LONG TERM CARE	2000	471	23.5500	99.9000
GROCERY STORE	32808	7536	22.9700	48.3602
DAYCARE COMBO	679	148	21.7968	99.8527
SCHOOL	16687	3624	21.7175	94.8703
BAKERY	3849	829	21.5381	70.5508
DAYCARE UNDER 2 YEARS	303	65	21.4521	100.0000
DAYCARE 2 6 YEARS	3124	616	19.7183	99.2318
DAYCARE ABOVE AND UN	3597	683	18.9880	99.8471

```
SELECT
    f.facility type,
    COUNT(*) AS total inspections,
   SUM(CASE WHEN i.inspection results = 'FAIL'
       THEN 1 ELSE 0 END) AS failed_inspections,
   SUM(CASE WHEN i.inspection results = 'FAIL'
       THEN 1 ELSE 0 END) / COUNT(*) * 100 AS failure rate,
   AVG(CASE
       WHEN r.risk id = 1 THEN 100
       WHEN r.risk_id = 2 THEN 50
       WHEN r.risk id = 3 THEN 0
   END) AS risk scale
FROM
   facility f
JOIN
    inspection i
   ON f.facility_id = i.facility_id
JOIN
   risk r
   ON i.risk_id = r.risk_id
GROUP BY facility_type
HAVING total_inspections >= 200
ORDER BY failure_rate DESC;
```

Zip Codes and Failure Rate

Are certain zip codes more prone to failing? Also, how high is their respective risk? Looking at facility types with a decent amount of inspections (200+):

• The zip codes with failure rates higher than the average also tend to have very high risk.

zip	total_inspectio	failed_inspectio	failure_rate	risk_scale
60619	5217	1380	26.4520	73.9218
60628	4680	1197	25.5769	76.8376
60615	3002	753	25.0833	83.7941
60621	2263	561	24.7901	72.5144
60620	4988	1234	24.7394	75.3007
60637	2966	722	24.3425	79.1133
60636	3034	738	24.3243	70.4351
60644	3217	762	23.6867	72.6764
60623	6097	1439	23.6018	81.6303
60617	5179	1208	23.3250	83.2593
60639	7033	1621	23.0485	82.3262
60651	3696	848	22.9437	69.6023

```
SELECT
    a.zip,
    COUNT(*) AS total inspections,
    SUM(CASE WHEN i.inspection results = 'FAIL'
        THEN 1 ELSE 0 END) AS failed inspections,
    SUM(CASE WHEN i.inspection_results = 'FAIL'
        THEN 1 ELSE 0 END) / COUNT(*) * 100 AS failure rate,
    AVG(CASE
        WHEN r.risk_id = 1 THEN 100
        WHEN r.risk_id = 2 THEN 50
        WHEN r.risk_id = 3 THEN 0
    END) AS risk_scale
FROM
    address a
JOIN
    inspection i
   ON a.address_id = i.address_id
JOIN
    risk r
    ON i.risk_id = r.risk_id
GROUP BY zip
HAVING total_inspections >= 200
ORDER BY failure_rate DESC;
```

Inspections Over The Years

Are there any trends in the amount of inspections over the years? How about the pass rates?

- There was a slight increase in overall inspections between 2013 and 2017.
- Passing rates seem to be trending downward over the years.

inspection_year ^	total_inspections	pass_count	pass_rate
2010	16777	12459	74.2624
2011	17689	12960	73.2659
2012	17188	12102	70.4096
2013	19562	13464	68.8273
2014	20615	14698	71.2976
2015	20338	14098	69.3185
2016	22437	15422	68.7347
2017	21261	14253	67.0382
2018	16979	11432	67.3302
2019	18786	12388	65.9427
2020	14851	9594	64.6017
2021	15677	10021	63.9217
2022	16685	10619	63.6440
2023	18010	11457	63.6147

```
YEAR(inspection_date) AS inspection_year,
COUNT(*) AS total_inspections,
SUM(CASE WHEN inspection_results LIKE 'PASS%'
THEN 1 ELSE 0 END) AS pass_count,
SUM(CASE WHEN inspection_results LIKE 'PASS%'
THEN 1 ELSE 0 END) / COUNT(*) * 100 AS pass_rate
FROM
inspection
WHERE YEAR(inspection_date) < 2024
GROUP BY inspection_year
ORDER BY inspection_year;
```

Inspections and Day of the Week

Which days of the week are busiest for inspections? Also, what are their pass rates?

- Weekdays are busiest for inspections with Tuesday, Thursday, and Friday leading, in that order.
- Pass rates are higher toward the end of the week on Saturday, Friday, and Thursday.

day_of_week	total_inspections	pass_count	pass_rate
Monday	43246	29071	67.2224
Tuesday	59693	40217	67.3731
Wednesday	48602	33311	68.5383
Thursday	58817	40012	68.0280
Friday	51653	35710	69.1344
Saturday	104	77	74.0385
Sunday	12	8	66.6667

```
SELECT
    DAYNAME(inspection_date) AS day_of_week,
    COUNT(*) AS total_inspections,
    SUM(CASE WHEN inspection_results LIKE 'PASS%'
        THEN 1 ELSE 0 END) AS pass_count,
    SUM(CASE WHEN inspection_results LIKE 'PASS%'
        THEN 1 ELSE 0 END) / COUNT(*) * 100 AS pass_rate
FROM
    inspection
GROUP BY day_of_week
ORDER BY FIELD(day_of_week,
    'Monday', 'Tuesday', 'Wednesday', 'Thursday',
    'Friday', 'Saturday', 'Sunday');
```

Violations and Passing Rate

What are the number of businesses with violations by facility type and their passing rate?

- The establishments with the most violations are slightly above average in passing rates.
- Restaurants, grocery stores, schools tend to have the most violations.

facility_type	count_with_violations	pass_rate
RESTAURANT	134474	75.7604
GROCERY STORE	23835	69.9308
SCHOOL	14295	74.8164
CHILDRENS SERVICES FACILITY	4277	75.9878
BAKERY	2909	71.8804
DAYCARE ABOVE AND UNDER 2 YEARS	2729	75.3390
DAYCARE 2 6 YEARS	2134	72.3993
LONG TERM CARE	1677	72.0930
CATERING	1072	77.9851
LIQUOR	622	48.0707
MOBILE FOOD PREPARER	576	59.8958
GOLDEN DINER	564	75.7092

```
SELECT
    f.facility_type,
    COUNT(*) AS count_with_violations,
    SUM(CASE WHEN inspection_results LIKE 'PASS%'
        THEN 1 ELSE 0 END) / COUNT(*) * 100 AS pass_rate
FROM
    facility f

JOIN
    inspection i
    ON f.facility_id = i.facility_id
WHERE i.inspection_violations = "YES"
GROUP BY facility_type
ORDER BY count_with_violations DESC;
```

Zip Codes and Violations

Which zip codes had the most violations?

 The zip codes with the most violations have passing rates that are slightly above average.

zip	count_with_violations	pass_rate
60614	7095	73.2770
60647	6737	71.6936
60657	6403	75.0586
60618	5977	78.7519
60611	5893	80.8926
60622	5729	75.1091
60608	5607	71.3572
60625	5421	72.0347
60607	5412	75.6652
60639	5284	70.2687
60640	5258	72.5371

```
SELECT

a.zip,

COUNT(*) AS count_with_violations,

SUM(CASE WHEN inspection_results LIKE 'PASS%'

THEN 1 ELSE 0 END) / COUNT(*) * 100 AS pass_rate

FROM

address a

JOIN

inspection i

ON a.address_id = i.address_id

WHERE inspection_violations = "YES"

GROUP BY a.zip

ORDER BY count_with_violations DESC;
```

Data Analysis: Data Visualization

Data Analysis

Visualization

- Passing rates have been trending downward over the years.
- The northeastern section of Chicago has the most establishments with violations.
- Fail rates are slightly higher in areas of southeastern Chicago.
- When analyzing levels of risk alone, there doesn't seem to be a correlation with pass or fail rates.
- However, when looking at facility types, the facilities with the lowest pass rates also tend to be high risk.

Facility Type	_	Count of inspe	pass_rate =	risk_scale
BANQUET HALL		242	46	84
LIQUOR		1,102	53	5
TAVERN		414	53	4
GAS STATION		222	57	17
WHOLESALE		510	59	35
MOBILE FOOD PREP	Α	908	63	53
DAYCARE COMBO		679	63	100
GROCERY STORE		32,808	64	48
MOBILE FOOD DISPE	EN	782	65	8
BAKERY		3,849	65	71
CATERING		1,654	65	97
DAYCARE 2 6 YEARS	S	3.124	68	99

Year & Pass Zip Code and Fail Rate Rate

74.26

68.83

68.73

67.04

67.33

65.94

64.60

63.92

63.64

63.61

65.23

Risk

HIGH LOW MEDI.

Year of Insp..

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

Risk

60

20

Value

Zip Code and Violations

@ Mapbox @ OSM

Wrap Up: Conclusions

Recommendations

Corrective Measures

- **Geographic Focus**: Prioritize inspections and interventions in southeastern Chicago, which contains regions with failure rates higher than average. Implement preventive measures and educational campaigns tailored to the specific needs of these communities to improve food safety standards.
- High-Risk Establishments: Allocate more resources and attention to establishments classified as wholesale, liquor, and
 taverns, as they have shown to have the highest failure rates. Implement targeted inspections and enforcement measures to
 improve compliance in these establishments.
- Violation Enforcement: Restaurants, grocery stores, and schools tend to have the most violations. Focus efforts on the
 northeastern section of Chicago, where the most establishments with violations are located. Strengthen enforcement
 measures for establishments with repeated violations, including fines, penalties, and license suspensions for
 non-compliance.
- Weekday Inspection Scheduling: Given that weekdays are busiest for inspections and pass rates are higher toward the end
 of the week, consider adjusting inspection schedules to allocate more resources during peak inspection days. This may help
 improve efficiency and increase pass rates.

Scope for Improvement

• Time-Based Analysis: Investigate the reasons behind the slight increase in overall inspections between 2013 and 2017 and the downward trend in passing rates over the years. Review inspection protocols, training programs, and enforcement strategies to ensure effectiveness and address any underlying issues contributing to the decline in passing rates.

- **Continuous monitoring** and evaluation of food safety inspections are essential for identifying emerging risks, patterns, and addressing compliance gaps proactively.
- **Data-driven decision-making**, supported by in-depth analytics, data tools, and reporting capabilities, can provide valuable insights for improving food safety results.
- By **implementing** these **corrective measures** and applying lessons learned from past experiences, food, health, and safety agencies can work together to enhance food safety practices..

Thank you!

