Inteligência Artificial

Introdução

Conteúdo - Aula 1

- Conhecer o perfil de todos e conversar sobre a disciplina;
- Introdução ao conceito de aprendizado de máquina;
- Tipos de algoritmo aprendizado de máquina;
- Fluxo de uma aplicação em aprendizado de máquina;
- Estratégias para separação de dados e validação dos modelos;

Fernando Vieira da Silva

Formação:

- Tec. Processamento de Dados (FATEC)
- Mestre Ciência da Computação (IC/UNICAMP)
- Doutorando Ciência da Computação (IC/UNICAMP)

Atuação:

- Processamento de Linguagem
 Natural
- Pesquisador Líder na n2vec

Quem são vocês?

- Formação
- O que espera da Pós graduação?
- Quais são suas expectativas quanto às aplicações de inteligência artificial?
- Qual sua experiência com Python? Quais bibliotecas conhece?
- Já tem ideia do que fará como TCC?

Avaliação

4 Encontros:

- 6,0: Apresentação de atividades (2,0 x 3)
- 4,0: Atividade no último encontro

Ao final de cada encontro, será discutido um problema que deverá ser estudado e testado até o próximo encontro. Os resultados encontrados serão apresentados no começo do encontro seguinte, em formato de pitch (até 5 minutos).

O que é Inteligência artificial?

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Definição

 Field of study that gives computers the ability to learn without being explicitly programmed. (Arthur Samuel, 1959)

 A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. (Tom Mitchell, 1997)

Habilitar computadores a aprenderem através de dados

Tarefa

ENC: Segundo aviso de fatura em atraso # 879748475

VIVO Adic. a círc.

a para mim 🔻

VIVO <cobrancaviqrbga4380@terra.com.br>

@ 00:05 (Há 55 minutos) 🖈

₩ ▼

Mostrar detalhes

Prezado Cliente, Informamos que será debitado em 07/05/2016 do debito automático de sua conta, o valor de R\$ 228,14 referente a um debito que consta em seu nome em nosso sistema. Para mais detalhes consulte fatura 231566818 detalhada em anexo.

Caso: Classificador de SPAM

Abordagem convencional

Fonte: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

E se?

Novos padrões de e-mails SPAM foram criados?

- 1. Extrair novos padrões do conteúdo de e-mails classificados como SPAM
- 2. Adicionar uma nova regra para classificar um e-mail como SPAM
- 3. Manter uma quantidade cada vez maior de regras de classificação

A abordagem utilizando aprendizado de máguina mente PAM e SPAM, o sistema é capaz de aprender a identificar novos e-mails como SPAM, onde:

- Os dados são um conjunto de e-mails
- O sistema deve aprender diferenciar os e-mails SPAM dos e-mails HAM
- Deve ser adotada uma métrica para avaliar o sistema

Dados de treinamento

HAM e-mails

SPAM e-mails

Por que utilizar aprendizado de máquina? Abordagem com aprendizado de máquina

Fonte: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Tipos de sistemas de aprendizado de máquina

Aprendizado supervisionado

Os dados de treinamento são fornecidos junto com a saída esperada *(Label / Target variable)*

 Classificação: Classificar os dados de entrada, entre 2 ou mais categorias

 Regressão: Tem como objetivo, através de características de entrada, predizer um valor discreto (numérico)

Aprendizado nãosupervisionado ao sistema não contêm a resposta

Os dados de treinamento fornecidos ao sistema não contêm a resposta desejada do sistema

- Agrupamento
- Redução de dimensões
- Detecção de anomalias

Fonte: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Outros tipos de aprendizado

- Aprendizado semi-supervisionado: Ex.: Google Photos
- Aprendizado por reforço: Ex.: Robótica móvel

Fonte: Laboratório de robótica móvel ICM-USP

Aprendizado baseado em exemplo vs modelo

 Sistema carrega os dados e utiliza para classificar novos dados através de medidas de similaridade (Ex.: K-nn)

Modelo

 Através dos dados de treinamento é extraído um modelo que é utilizado para efetuar novas predições (Ex.: Linear Regression)

Desmitificando Inteligência Artificial

COMO A MÁQUINA APRENDE?

Exemplo: Algoritmo que prevê o valor de uma casa, com base na metragem

COMO A MÁQUINA APRENDE?

m

COMO A MÁQUINA APRENDE?

Abordagem simples: Descobrir qual função f(x) permite chegar ao valor de y? (preço)

$$y = x$$
, $y = x + 2$

$$y = x$$
, $y = x + 2$, $y = x - 2$

y = x, y =

$$y = x, y = 2x, y = 3x$$

$$y = x$$
, $y = 2x$, $y = 3x$, $y = 0.5x$

$$y = 2x + 2$$
, $y = 0.5x - 3$

$$y = 2x + 2$$
, $y = 0.5x - 3$

O QUE O ALGORITMO APRENDE?

$$y = 2x + 2$$
, $y = 0.5x - 3$

EXERCÍCIO 1

Escreva um algoritmo que aprende os melhores valores de a e b, tentando combinações diferentes. Os melhores valores são aqueles que permitem obter o melhor resultado final.

COMO MEDIMOS O ERRO?

Mean Squared Error: Média da soma das diferenças quadrádicas

COMO ESCOLHER OS VALORES DE A E B?

Vamos escolher o a e b onde MSE for o menor possível!

Nosso alpinista não sabe onde está o fundo do vale! Precisa andar até encontrar...

Fonte: https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931

O "vale" na verdade é a função MSE (ou os erros obtidos)

Fonte: https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931

O "vale" na verdade é a função MSE (ou os erros obtidos)

O aprendizado funciona assim:

- 1 Definimos valores iniciais para a e b
- 2 Atualizamos a e b a cada iteração, para tentar chegar no fundo do "vale"

Mas como podemos atualizar a e b?

Ao seguirmos a reta tangente à curva em um determinado ponto (aka. Ponto = resultado obtido no MSE), andamos em direção ao mínimo

Ao seguirmos a reta tangente à curva em um determinado ponto (aka. Ponto = resultado obtido no MSE), andamos em direção ao mínimo

Reta tangente lembra alguma coisa?

Usamos a derivada da função MSE para obter a angulação da reta tangente!

Obtemos as derivadas da função MSE, usando a e b como variáveis (o restante como constantes), e substituímos nas fórmulas abaixo (L = taxa de aprendizado):

$$a = a - L * MSE'_a$$

 $b = b - L * MSE'_b$

Obtemos as derivadas da função MSE, usando a e b como variáveis (o restante como constantes), e substituímos nas fórmulas abaixo (L = taxa de aprendizado):

```
a = a - L* ((-2/n)* sum(X*(Y - Y_pred)))

b = b - L* ((-2/n)* sum(Y - Y_pred))
```


Exerício 2

Agora, vamos usar a descida do gradiente para atualizar os valores de a e b durante o aprendizado.

Overfitting e Underfitting

Dois conceitos muito importantes quando se discute aprendizado em inteligência artificial são **overfitting** e **underfitting**, respectivamente, **sobreajustamento** e **subajustamento**

Sobreajustar um modelo implica em viciar o modelo nos dados de treino e torná-lo incapaz de generalizar para os dados de teste.

Subajustar significa não ter desempenho aceitável nem mesmo no conjunto de treino.

Overfitting e Underfitting

Fonte: Towards Data Science - Overfitting vs. Underfitting: A Complete Example

Overfitting e Underfitting

Esses fenômenos são mais facilmente observáveis em uma curva de aprendizado, analisando o erro de um modelo a medida que mais amostras de treino são dadas e o resultado é confrontado com o conjunto de teste fixo durante todo o processo.

Fonte: Towards Data Science - Overfitting vs. Underfitting: A Complete Example

Overfitting e Underfitting - O que fazer? Underfitting

- Simplificar o modelo
- Coletar mais dados

- Selecionar um modelo mais complexo
- Melhorar os dados utilizados

Fluxo de aplicações de AM

Estratégias para separação de dados e validação de modelos

Treino e Teste e Validação

Cross Validation (k = 3)

Estratégias de validação

As estratégias de validação são extraídas do campo da estatística e estão associadas a tornar o protocolo experimental robusto, minimizando que os resultados não tenham sido encontrados por acaso.

Enquanto o Hold-Out é executado uma única vez, mas corre o risco de amostras simples caírem no conjunto de teste, o Cross Validation é executado várias vezes, e o resultado final é a média com desvio padrão, se assim fizer sentido. Em alguns cenários, Cross-Validation é proibitivo devido o tempo que demandaria.

Leave-One-Out

A estratégia Leave-One-Out é vista como o protocolo experimental mais robusto, e mais caro também computacionalmente. Implica em treinar com n – 1 amostras e testar a amostra isolada, repetindo o processo n vezes até que todas as amostras tenham sido expostas ao teste.