# SEMINARIO 04

## **Ethernet**

Miguel Ángel López Gordo (malg@ugr.es)
TSTC, UGR Marzo 2019







#### Introducción

- Se trata de una red en la que el medio es compartido, puede ser accedido simultáneamente por varios sin árbitraje
- Desarrollado por Xerox en 1972, el acceso al medio se basó originalmente en Aloha
- En 1973 se cambio de nombre a Ethernet
- Los estándares más comunes son:

| The Evolution of Ethernet Standards to Meet Higher Speeds |           |                       |           |                                   |  |  |  |  |  |  |
|-----------------------------------------------------------|-----------|-----------------------|-----------|-----------------------------------|--|--|--|--|--|--|
| Date                                                      | IEEE Std. | Name                  | Data Rate | Type of Cabling                   |  |  |  |  |  |  |
| 1990                                                      | 802.3i    | 10BASE-T              | 10 Mb/s   | Category 3 cabling                |  |  |  |  |  |  |
| 1995                                                      | 802.3u    | 100BASE-TX            | 100 Mb/s* | Category 5 cabling                |  |  |  |  |  |  |
| 1998                                                      | 802.3z    | 1000BASE-SX           | 1 Gb/s    | Multimode fiber                   |  |  |  |  |  |  |
|                                                           | 802.3z    | 1000BASE-LX/EX        |           | Single mode fiber                 |  |  |  |  |  |  |
| 1999                                                      | 802.3ab   | 1000BASE-T            | 1 Gb/s*   | Category 5e or higher Category    |  |  |  |  |  |  |
| 2003                                                      | 802.3ae   | 10GBASE-SR            | 10 Gb/s   | Laser-Optimized MMF               |  |  |  |  |  |  |
|                                                           | 802.3ae   | 10GBASE-LR/ER         |           | Single mode fiber                 |  |  |  |  |  |  |
| 2006                                                      | 802.3an   | 10GBASE-T             | 10 Gb/s*  | Category 6A cabling               |  |  |  |  |  |  |
| 2015                                                      | 802.3bq   | 40GBASE-T             | 40 Gb/s*  | Category 8 (Class I & II) Cabling |  |  |  |  |  |  |
| 2010                                                      | 802.3ba   | 40GBASE-SR4/LR4       | 40 Gb/s   | Laser-Optimized MMF or SMF        |  |  |  |  |  |  |
|                                                           | 802.3ba   | 100GBASE-SR10/LR4/ER4 | 100 Gb/s  | Laser-Optimized MMF or SMF        |  |  |  |  |  |  |
| 2015                                                      | 802.3bm   | 100GBASE-SR4          | 100 Gb/s  | Laser-Optimized MMF               |  |  |  |  |  |  |
| 2016                                                      | SG        | Under development     | 400 Gb/s  | Laser-Optimized MMF or SMF        |  |  |  |  |  |  |
| Note: *with auto negotiation                              |           |                       |           |                                   |  |  |  |  |  |  |



# **Pregunta:** Qué significan:

- 10,100, 1000:
- Base:
- T:
- SX:
- LX:



#### Trama

| Preámbulo | Destino | Origen | Tipo | Datos     | FCS |
|-----------|---------|--------|------|-----------|-----|
| 8         | 6       | 6      | 2    | 46 - 1500 | 4   |

Preámbulo: Sincronización

• Destino: Mac destino

• Origen: Mac origen

• Tipo: Protocolo que encapsula (eg.g. 0x0800 es IP)

• Datos: entre 46 y 1500 bytes

• FCS: Fame Check Sequence

**Visitar:** Protocolos capaz de transportar Ethernet:

https://www.cavebear.com/archive/cavebear/Ethernet/type.html



### CSMA/CD (Carrier Sense Multiple Access with Collition Detection)

- <u>CSMA/CD</u> funciona como de forma parecida a una conversación mantenida entre un grupo de amigos en círculo
  - Antes de hablar, cualquiera debe esperar a que nadie hable mas un tiempo prudencial adicional (Carrier Sense).
  - Cuando esto ocurre, entonces cualquiera puede intervenir (Multiple Access)
  - Si dos personas comienzan a hablar en el mismo momento entonces se dan cuenta y educadamente callarán a la vez (Collision Detection)



#### • Carrier Sense:

- Todas las otras interfaces deben esperar un tiempo denominado IFG (*interframe gap* ) antes de poder transmitir
- El IFG se define como 96 veces el tiempo de bit.

## **Ejemplo**:

En 100 Mbps (FEthernet) ->Tb=10 ns -> IFG = 960 ns En 1000 Gbps (GEthernet) ->Tb=1 ns -> IFG = 96 ns



**Ejercicio:** Asumiendo que no hay colisiones, calcular para Ethernet (10Mbps)

- 1. El IFG
- 2. La máxima cantidad de frames que puede transmitir un nodo en un segundo.
- 3. La máxima cantidad de datos que puede transmitir un nodo en un segundo.



1

2



#### CSMA/CD. Pasos

- 1. El host desea transmitir
- ¿Se ha detectado la portadora?
- Ensamblar trama
- Inicio de la transmisión
- 5. ¿Se ha detectado una colisión?
- Seguir transmitiendo
- 7. ¿Se realizó la transmisión?
- Transmisión completa
- 9. Señal de atascamiento de broadcast
- Intentos = Intentos + 1
- Intentos > ¿Demasiados?
- Demasiadas colisiones; interrumpir la transmisión
- El algoritmo calcula la postergación
- 14. Esperar t microsegundos





## CSMA/CD. Postergación





#### **CSMA/CD.** Colisiones

- 1. Estación 1 comienza a enviar una trama.
- 2. Antes de llegar a Estación 2, Estación 2 comienza a enviar otra trama.
- 3. Se produce una colisión cerca de Estación 2.
- 4. La colisión se propaga como perturbaciones electromagnéticas (altibajos de voltajes) en ambas direcciones.



- 5. La primera que se da cuenta es Estación 2, al principio del preámbulo de la trama que enviaba. Entonces genera su señal de "jam" o atasco (colisión) y pasa a inactivo
- 6. Un poco más tarde también se da cuenta de la colisión Estación 1, casi al final de su trama, cerca del FCS. También genera su señal de "jam" o atasco (colisión) y pasa a inactivo
- 7. En ambas estaciones así como en cualquier otra que se encuentre en este dominio de colisión, se activa el mecanismo de postergación





## Control de flujo

- Ethernet permite el control de flujo, mediante mensajes PAUSE
- Estos mensajes se identifican porque
  - Dirección MAC destino 01:80:c2:00:00:01
  - El valor de tipo es 0x8808
  - Contienen un campo opcode (2 bytes) con valor 0x0001 (PAUSE)
  - Campo adicional (2 bytes) con el tiempo de pausa en unidades de 512 bit
  - No encapsulan ningún protocolo de capa superior





## Adquisición del canal

- En FastEthernet, cuando un host ha logrado enviar al medio 512 bits (64 Bytes) más el preámbulo sin que se produzca una colisión se dice que dicha estación ha adquirido el canal.
- Se asume que si ya no hubo colisiones, después no las habrá
- Esto justifica el modo de conmutación "Fragment free" que espera los primeros 64 bytes antes de conmutar la trama sin necesidad de comprobar el FCS
- Slot time del canal: El tiempo para transmitir 64 Bytes es el slot time del canal Ethernet

## Ejercicio:



¿Cuál es el mínimo número de bytes que en 100BaseTx se necesitan para poder detectar una colisión?¿Qué tiene esto que ver con conmutación basada en "Fragment-free"? Suponga

- Que el segmento de red máximo sigue la norma 5-4-3-2-1
- Velocidad de propagación de señal eléctrica en UTP cat5= 200m/us.
- Tiempo de tránsito en la elecrónica de red despreciable



## Adquisición del canal



## ARQUITECTURAS Y SERVICIOS DE REDES CORPORATIVAS



## Referencias y bibliografía

- •Cisco CCNA Routing and Switching 200-120 Exam Cram, Fourth Edition, Video Enhanced Edition. By: Michael Valentine; Keith Barker. Publisher: Pearson IT Certification
- Ethernet. Tecnología para redes de área local (versión 2.1.0) http://www.arcesio.net