לכסון אורתוגונלי, תבנית רבועית

. משפט 1: מטריצה $A \Leftrightarrow D$ סימטרית סימטריצה מטריצה מטריצה מטריצה מטריצה משפט 1:

$$A = \left[egin{array}{ccccc} 4 & -4 & 0 & -4 \\ -4 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ -4 & 0 & 0 & 0 \end{array}
ight]$$
 הרגיל 1: לכסן באופן אורתוגונלי את המטריצה

פתרון: נחשב פולינום אופייני:

$$P_{A}(\lambda) = \det \begin{bmatrix} 4 - \lambda & -4 & 0 & -4 \\ -4 & -\lambda & 0 & 0 \\ 0 & 0 & -3 - \lambda & 0 \\ -4 & 0 & 0 & -\lambda \end{bmatrix} \stackrel{R_{3}}{=}$$

$$= -(3 + \lambda) \det \begin{bmatrix} 4 - \lambda & -4 & -4 \\ -4 & -\lambda & 0 \\ -4 & 0 & -\lambda \end{bmatrix} \stackrel{R_{3}}{=}$$

$$= -(3 + \lambda) \left(-4 \det \begin{bmatrix} -4 & -4 \\ -\lambda & 0 \end{bmatrix} - \lambda \det \begin{bmatrix} 4 - \lambda & -4 \\ -4 & -\lambda \end{bmatrix} \right) =$$

$$= -(3 + \lambda) \left[16\lambda - \lambda \left(-\lambda \left(4 - \lambda \right) - 16 \right) \right] =$$

$$= -(3 + \lambda) \left[32\lambda + \lambda^{2} \left(4 - \lambda \right) \right] =$$

$$= \lambda(3 + \lambda) \left(\lambda^{2} - 4\lambda - 32 \right) =$$

$$= \lambda(\lambda + 3)(\lambda + 4)(\lambda - 8).$$

ינמצא וקטורים עצמיים: . $\lambda_1=0,~\lambda_2=-3,~\lambda_3=-4,~\lambda_4=8$ ה
 הערכים עצמיים: . $\lambda=\lambda_1=0$

$$\begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ -4 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 \\ -4 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ 0 & -4 & 0 & -4 & 0 \\ 0 & 0 & -3 & 0 & 0 \end{bmatrix} \xrightarrow{R_4 + R_1} \begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ 0 & -4 & 0 & -4 & 0 \\ 0 & -4 & 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_4 - R_2} \xrightarrow{R_4 - R_2} \begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -3 & 0 & 0 \\ 0 & -4 & 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_4 - R_2} \begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -3 & 0 & 0 \\ 0 & -4 & 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_4 - R_2} \xrightarrow{R_4 - R_2} \begin{bmatrix} 4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -3 & 0 & 0 \\ 0 & -4 & 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_4 - R_2} \xrightarrow{R_4 - R$$

$$:\lambda=\lambda_2=-3$$

$$\begin{bmatrix} 7 & -4 & 0 & -4 & 0 \\ -4 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 0 & 0 & 3 & 0 \end{bmatrix} \overrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -4 & 3 & 0 & 0 & 0 \\ 7 & -4 & 0 & -4 & 0 \\ -4 & 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{4R_2 + 7R_1,} \overrightarrow{R_3 - R_1}$$

$$\begin{bmatrix} -4 & 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & -16 & 0 \\ 0 & -3 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{5R_3 + 3R_2} \begin{bmatrix} -4 & 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & -16 & 0 \\ 0 & 0 & 0 & -33 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} -4w + 3x = 0, \\ 5x - 16z = 0 \\ -33z = 0 \end{cases} \Rightarrow \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} t \quad \forall t \in \mathbb{R}.$$

$$:\lambda=\lambda_3=-4$$

$$\begin{bmatrix} 8 & -4 & 0 & -4 & 0 \\ -4 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ -4 & 0 & 0 & 4 & 0 \end{bmatrix} \xrightarrow{R_1/2} \begin{bmatrix} 4 & -2 & 0 & -2 & 0 \\ -4 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -4 & 0 & 0 & 4 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1,} \xrightarrow{R_2 + R_1} \begin{bmatrix} 4 & -2 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 2 & 0 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} 4 & -2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_i/c} \xrightarrow{R_i/c} \begin{bmatrix} 2 & -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} 2w - x - z = 0 \\ x - z = 0 \\ y = 0 \end{cases} \Rightarrow \begin{cases} 2w - 2z = 0 \\ x = z \end{cases}$$
$$\Rightarrow \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} t \quad \forall t \in \mathbb{R}.$$

$$:\lambda = \lambda_4 = 8$$

$$\begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ -4 & -8 & 0 & 0 & 0 \\ 0 & 0 & -11 & 0 & 0 \\ -4 & 0 & 0 & -8 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ 0 & -4 & 0 & 4 & 0 \\ 0 & 0 & -11 & 0 & 0 \\ 0 & 4 & 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ 0 & -4 & 0 & 4 & 0 \\ 0 & 0 & -11 & 0 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -11 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -11 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} -4 & -4 & 0 & -4 & 0 \\ 0 & 0 & -11 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} w + 2z = 0, \\ x - z = 0 \\ y = 0 \end{cases} \Rightarrow \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} t \quad \forall t \in \mathbb{R}.$$

ניתן לראות שהוקטורים עצמיים אורתוגונליים זה לזה:

$$v_1 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix},$$

ננרמל $||v_4|| = \sqrt{6}$, $||v_3|| = \sqrt{3}$, $||v_1|| = \sqrt{2}$ ננרמל

$$w_1 = \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, w_2 = v_2, \ w_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \\ 1/\sqrt{3} \end{bmatrix}, v_4 = \begin{bmatrix} -2/\sqrt{6} \\ 1/\sqrt{6} \\ 0 \\ 1/\sqrt{6} \end{bmatrix}.$$

 $PP^t=I_{4 imes 4}$ כיוון ש־ $D=\mathrm{diag}(0,-3,-4,8)$ ו־ ו־ $P=[w_1|w_2|w_3|w_4]$ נסמן נסמך $P^{-1}=P^t$ לכן

$$A = PDP^{T}$$
.

תבנית רבועית

 $Q(x)=^txAx$ מהצורה $Q:\mathbb{R}^n o\mathbb{R}$ מונקציה פונקציה על תבנית רבועית על

תרגיל 2: רשום בצורה מטריציאלית את התבנית הריבועית

$$Q([x_1, x_2, x_3]) = 3x_1^2 - 2x_2^2 + 4x_1x_2 - x_3^2 + 2x_2x_3.$$

עבור
$$A=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{bmatrix}$$
 עבור $A=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{13}&a_{23}&a_{33}\end{bmatrix}\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$ עבור $x=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$

בצע כפל .
$$Q(x)=[x_1,x_2,x_3] \left[egin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array} \right] \left[egin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right]$$
 כבצע כפל $x=\left[egin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right]$

$$Q(x) = [x_1, x_2, x_3] \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{12}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{13}x_1 + a_{23}x_2 + a_{33}x_3 \end{bmatrix},$$

לכן

$$Q(x) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3.$$

 $.2a_{23}=2$, $.2a_{12}=4$, $.a_{33}=-1$, $.a_{22}=-2$, $.a_{11}=3$ נקבל נקבל מקדמים נקבל פיוון שר $.a_{13}=0$ נקבל נקבל ב $.a_{13}=0$ כיוון אר נקבל נקבל פיוון פר $.a_{13}=0$ נקבל נקבל נקבל פרוון אר נקבל נקבל נקבל מון אר נקבל פרוון אר נקבל נקבל פרוון שר נקבל פרוון שר נקבל נקבל פרוון שר נקבל נקבל פרוון שר נקבל פרו

$$Q(x) = [x_1, x_2, x_3] \begin{bmatrix} 3 & 2 & 0 \\ 2 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

 $Q(x,y) = 2x^2 + 6xy + 2y^2$ את התבנית התבנית את לכסן (א) (א) ארגיל (א) ב) חיובית לחלוטין, שלילית לחלוטין או מעורבת Q(x,y)

 $Q(x,y)=\mathbf{x}^tA\mathbf{x}$ נסמן ש־ $\mathbf{x}=\left[egin{array}{c}x\\y\end{array}
ight]$ נסמן נסמן ג $\mathbf{x}=\left[egin{array}{c}x\\y\end{array}
ight]$ באופר כללי $\overset{ }{Q}(\overset{ }{x},\overset{ }{y})$ ניתן לתצוגה

$$\mathbf{x}^t A \mathbf{x} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = a_{11} x_1^2 + a_{22} x_2^2 + 2a_{12} x_1 x_2$$

 $A=\left[egin{array}{cc|c} 2 & 3 \\ 3 & 2 \end{array}
ight]$ זאת אומרת ור $a_{22}=2$, $a_{11}=2$ נשווה מקדמים נקבל

נסמן $\mathbf{y} = \begin{bmatrix} s \\ t \end{bmatrix}$ המטריצה אורתוגונלית (לפי משפט) אורתוגונלית

של אלכסונית צורה אלכסונית וי
 $A=PDP^t$ כאשר אלכסונית עד עד ' $\mathbf{x}=P\mathbf{y}$, אלכסונית של A

 $:P_A(\lambda)=\det(A-\lambda I)$ נחשב פולינום אופייני

$$P_A(\lambda) = \det \begin{bmatrix} 2-\lambda & 3\\ 3 & 2-\lambda \end{bmatrix} = (\lambda-2)^2 - 9 = \lambda^2 - 4\lambda - 5.$$

:הערכים עצמיים של א וד הם וו $\lambda_2=5$ ור הם א וקטורים עצמיים:

$$\lambda = \lambda_1 = -1 \Rightarrow \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \end{bmatrix} \Rightarrow \widetilde{v_1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$
$$\lambda = \lambda_2 = 5 \Rightarrow \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 \end{bmatrix} \Rightarrow \widetilde{v_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$P=\left[egin{array}{cc} -rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{array}
ight]$$
 אז $v_2=\left[egin{array}{cc} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{array}
ight]$ אז $\widetilde{v_1}\perp\widetilde{v_2}$ ננרמל $\widetilde{v_2}$ ננרמל כך ש־

$$A = PDP^{-1} = PDP^{t}, \quad D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$$

נחשב החלפה משתנים אורתוגונלית:

$$\mathbf{x} = \left[\begin{array}{c} x \\ y \end{array} \right] = P\mathbf{y} = \left[\begin{array}{cc} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right] \left[\begin{array}{c} s \\ t \end{array} \right] = \left[\begin{array}{c} -\frac{1}{\sqrt{2}}s + \frac{1}{\sqrt{2}}t \\ \frac{1}{\sqrt{2}}s + \frac{1}{\sqrt{2}}t \end{array} \right],$$

כלומר **ההצבות הו**:

$$x := -\frac{1}{\sqrt{2}}s + \frac{1}{\sqrt{2}}t, \quad y := \frac{1}{\sqrt{2}}s + \frac{1}{\sqrt{2}}t.$$

כיוון ש־ $D=P^tAP$ מתקיים

$$\begin{split} Q(x,y) &= 2x^2 + 6xy + 2y^2 = \mathbf{x}^t A \mathbf{x} = (P\mathbf{y})^t A (P\mathbf{y}) = \\ &= (\mathbf{y}^t P^t) A (P\mathbf{y}) = \mathbf{y}^t (P^t A P) \mathbf{y} = \mathbf{y}^t D \mathbf{y} = \\ &= \begin{bmatrix} s & t \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = -s^2 + 5t^2 = f(s,t). \end{split}$$

לכן יותר פשוט f(s,t), כמקום ביטוי מסובך Q(x,y) קיבלנו ביטוי פמקום ביטוי מסובך להבין את הצורה הגיאומטרית של התבנית ריבועית ביטוי את הצורה הגיאומטרית הא

. מעורבת Q(x,y) לכן לכן $\lambda_2=5>0$ ו־ וי $\lambda_1=-1<0$ מעורבת מטריצה מטריצה מטריצה אור מ

 $V
ightarrow [x_1,\dots,x_n]=\mathbf{x}$, $n=\dim_{\mathbb{R}}V$ ממימד משל מעל מרחב וקטורי מעל על מרחב $Q(\mathbf{x})=\mathbf{x}^tA\mathbf{x}$ מקראת תבנית ריבועית אם $Q(\mathbf{x})=\mathbf{x}^tA\mathbf{x}$

$$Q(\mathbf{x}) = a_1 x_1^2 + \ldots + a_p x_p^2 - a_{p+1} x_{p+1}^2 - \ldots - a_{p+q} x_{p+q}^2,$$

$$0 \le p, q \le r, \quad p+q=r, \quad a_i \in \mathbb{R},$$

. $r = \operatorname{rank}(A)$ כאשר מקדמים a_i המספרים . $r = \operatorname{rank}(A)$

תרגיל 4: רשום צורה קנונית של התבנית הריבועית

$$Q(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 4x_2x_3$$

על ידי שיטה של החלפת משתנים אורתוגונלית.

עבור \mathbb{R}^3 עבור כללי ב- $Q(\mathbf{x})=\mathbf{x}^tA\mathbf{x}$ כך ש
ר כך מטריצה (1) (1) באופן מטריצה (1) נשתמש בנוסחה: $\mathbb{R}^3\ni[x_1,x_2,x_3]=\mathbf{x}$

$$Q(\mathbf{x}) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3.$$

$$A = \left[egin{array}{cccc} 2 & 2 & -1 \ 2 & -1 & 2 \ -1 & 2 & 2 \end{array}
ight]$$
 נשווה את המקדמים ונקבל מטריצה סימטרית:

ב) נחפש ערכים עצמיים ווקטורים עצמיים של A. נחשב פולינום אופייני:

$$P_{A}(\lambda) = \det \begin{bmatrix} 2-\lambda & 2 & -1\\ 2 & -1-\lambda & 2\\ -1 & 2 & 2-\lambda \end{bmatrix} \stackrel{C_{1}}{=} (2-\lambda) \det \begin{bmatrix} -1-\lambda & 2\\ 2 & 2-\lambda \end{bmatrix} + \\ -2 \det \begin{bmatrix} 2 & -1\\ 2 & 2-\lambda \end{bmatrix} - \det \begin{bmatrix} 2 & -1\\ -1-\lambda & 2 \end{bmatrix} = \\ = (2-\lambda) [(\lambda+1)(\lambda-2)-4] - 2 [2(2-\lambda)+2] - [4-(\lambda+1)] = \\ = (2-\lambda) (\lambda^{2}-\lambda-6) - 4 (3-\lambda) - (3-\lambda) = \\ = (2-\lambda)(\lambda+2)(\lambda-3) + 4 (\lambda-3) + (\lambda-3) = \\ = [-(\lambda^{2}-4)+5] (\lambda-3) = -(\lambda^{2}-9) (\lambda-3) = \\ = -(\lambda+3)(\lambda-3)^{2}.$$

לכן, ערכים עצמיים של $\lambda_2=\lambda_3=3$, $\lambda_1=-3$ הם: A הם עצמיים עצמיים לכן, ערכים $\neq \lambda=\lambda_1=-3$

$$\begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1'} \begin{bmatrix} -1 & 2 & 5 \\ 2 & 2 & 2 \\ 5 & 2 & -1 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} -1 & 2 & 5 \\ 0 & 6 & 12 \\ 0 & 12 & 24 \end{bmatrix}$$

$$\xrightarrow{R_2/6} \begin{bmatrix} -1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow v_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$\Leftarrow \lambda = 3$$

$$\begin{bmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} -1 & 2 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{bmatrix} = \begin{bmatrix} 2y - z \\ y \\ z \end{bmatrix},$$
$$\forall y, z \in \mathbb{R} \Rightarrow v_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

קיבלנו וקטורים: $v_1 \perp v_3$ וגם $v_1 \perp v_3$ וגם $v_1 \perp v_2$ (#) נפעיל תהליך גרם־שמידט (שכולל פעולה מיותרת ראה הערה בסוף התרגיל):

$$w_1 := v_1, \quad w_2 = v_2.$$

אז

$$w_{3} = v_{3} - \frac{\langle w_{1}, v_{3} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle w_{2}, v_{3} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} =$$

$$= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \frac{\langle [1, -2, 1], [-1, 0, 1] \rangle}{\langle [1, -2, 1], [1, -2, 1] \rangle} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} - \frac{\langle [2, 1, 0], [-1, 0, 1] \rangle}{\langle [2, 1, 0], [2, 1, 0] \rangle} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} =$$

$$= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - 0 \cdot \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 + \frac{4}{5} \\ \frac{2}{5} \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{2}{5} \\ 1 \end{bmatrix} \sim \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}.$$

, $||w_2||=\sqrt{5}$, $||w_1||=\sqrt{6}$ הנורמות הם i=1,2,3 עם $\widetilde{w_i}\mapsto \frac{w_i}{||w_i||}$ (*)

$$\widetilde{w_3}=rac{1}{\sqrt{30}}\left[egin{array}{c} -1\ 2\ 5 \end{array}
ight]$$
 , $\widetilde{w_2}=rac{1}{\sqrt{5}}\left[egin{array}{c} 2\ 1\ 0 \end{array}
ight]$, $\widetilde{w_1}=rac{1}{\sqrt{6}}\left[egin{array}{c} 1\ -2\ 1 \end{array}
ight]$. $||w_3||=\sqrt{30}$

P מטריצה מטריצה נרשום הינורמלי ל־ \mathbb{R}^3 ל החווה בסיס אורתונורמלית, מהווה בסיס אורתונורמלי ל־ בסיס אורתונורמלית, כלומר לייד בסיס אורטוגונלית, כלומר לייד ב $P^{-1}=P^t$

$$P = [\widetilde{w_1}|\widetilde{w_2}|\widetilde{w_3}].$$

 $\mathbf{x} = P\mathbf{y}$ היא $\mathbf{y} = \left[egin{array}{c} x \\ y \\ z \end{array}
ight]$ היא ההחלפה משתנים אורתוגונלית למשתנים החדשים

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}}x + \frac{2}{\sqrt{5}}y - \frac{1}{\sqrt{30}}z \\ -\frac{2}{\sqrt{6}}x + \frac{1}{\sqrt{5}}y + \frac{2}{\sqrt{30}}z \\ \frac{1}{\sqrt{6}}x + \frac{5}{\sqrt{30}}z \end{bmatrix}.$$

:איא:
$$Q(\mathbf{x})$$
 איא: אלכסונית של $D=\left[\begin{array}{ccc} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right]$ היא אלכסונית אלכסונית של A היא

$$Q(\mathbf{x}) = 2x_1 - x_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 4x_2x_3 =$$

$$= \mathbf{x}^t A \mathbf{x} = (P\mathbf{y})^t A (P\mathbf{y}) = \mathbf{y}^t D \mathbf{y} =$$

$$= \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -3x^2 + 3y^2 + 3z^2.$$

, זה קורה, החישוב ההטעלה של הוקטור v_3 על הוקטור w_1 שווה לוקטור v_3 זה קורה, כיוון שלפי משפט הספקטרום למטריצות סמטריות, המרחבים העצמיים ניצבים זה לזה, כלומר הוקטורים עצמיים השייכים לערכים עצמיים שונים במאונכים זה לזה. לכן מספיק לבצע תהליך אורתוגונליזציה של גרם-שמידט לוקטורי בסיס של מרחב עצמי $V_{\lambda=3}$ בלבד, כלומר למצוא בסיס אורתונורמלי של $V_{\lambda=3}$ (שהם הוקטורים $\widetilde{w}_2,\widetilde{w}_3$), ואז בסה"כ לקבל בסיס אורתונורמלי $\widetilde{w}_1,\widetilde{w}_2,\widetilde{w}_3$ למרחב כולו, כלומר ל- \mathbb{R}^3

לא מאונכים, אבל
$$v_2=\begin{bmatrix}2\\1\\0\end{bmatrix},\quad v_3=\begin{bmatrix}-1\\0\\1\end{bmatrix}$$
 הוקטורים :(#) אבל אבל אונכים, אבל אבל אונכים, אבל אונכים, אבל

מהווים בסיס למרחב עצמי $V_{\lambda=3}$, שהוא תת־מרחב ב־ \mathbb{R}^3 . התת־מרחב נפרש על ידי 2 וקטורים, כלומר $V_{\lambda=3}$ הוא $V_{\lambda=3}$ הוא מישור ב־ \mathbb{R}^3 .

אורתוגונליים אה לזה, למשל וקטורים על בסיס של בסיס של אורתוגונליים או אינסוף אוגות אינסוף אבל א

$$a = \alpha_2 v_2 + \alpha_3 v_3, \qquad b = \beta_2 v_2 + \beta_3 v_3$$

 $\mathbb{R}
ightarrow lpha_i, eta_i$ בתנאי ש־ $a \perp b$ בתנאי

 $,a \perp b$ בתנאי ש־ $V_{\lambda=3} \ni a,b$ כך ש־ $b \neq v_3$ וקטור ה, $a \neq v_2$ בתנאי ש־ למצוא ולהמשיך את התרגיל 4 משלב (*).

$$a,b=\left[egin{array}{c} -3 \\ -1 \\ 1 \end{array}
ight],a=\left[egin{array}{c} 1 \\ 4 \\ 7 \end{array}
ight]$$
 למשל למצוא גם מקרה פרטי איזה שהוא, למשל למשל אוזה מספיק למצוא גם הדרבה:

(בדוק ש־ $a\perp b$, $V_{\lambda=3}$ (בדוק ש־ $a\perp b$, $V_{\lambda=3}$

$$\widetilde{w_1} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \qquad \widetilde{w_2} = \begin{bmatrix} \frac{1}{\sqrt{66}} \\ \frac{4}{\sqrt{66}} \\ \frac{7}{\sqrt{66}} \end{bmatrix}, \qquad , \widetilde{w_3} = \begin{bmatrix} -\frac{3}{\sqrt{11}} \\ -\frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \end{bmatrix},$$

תיהיה $\mathbf{x} = P\mathbf{y}$ ההחלפת משתנים אורתוגונלית

$$x_1 = \frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{66}}y - \frac{3}{\sqrt{11}}z,$$

$$x_2 = -\frac{2}{\sqrt{6}}x + \frac{4}{\sqrt{66}}y - \frac{1}{\sqrt{11}}z,$$

$$x_3 = \frac{1}{\sqrt{6}}x + \frac{7}{\sqrt{66}}y + \frac{1}{\sqrt{11}}z,$$

ולבסוף, לאחר חישוב ארוך (כדאי פעם אחד לכתוב) נקבל:

$$\begin{split} Q(\mathbf{y}) = & 2x_1^2 - x_2^2 + 2x_3^2 + 4x_1x_2 + \\ & - 2x_1x_3 + 4x_2x_3 = 2\left(\frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{66}}y - \frac{3}{\sqrt{11}}z\right)^2 + \\ & - \left(-\frac{2}{\sqrt{6}}x + \frac{4}{\sqrt{66}}y - \frac{1}{\sqrt{11}}z\right)^2 + 2\left(\frac{1}{\sqrt{6}}x + \frac{7}{\sqrt{66}}y + \frac{1}{\sqrt{11}}z\right)^2 + \\ & + 4\left(\frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{66}}y - \frac{3}{\sqrt{11}}z\right)\left(-\frac{2}{\sqrt{6}}x + \frac{4}{\sqrt{66}}y - \frac{1}{\sqrt{11}}z\right) + \\ & - 2\left(\frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{66}}y - \frac{3}{\sqrt{11}}z\right)\left(\frac{1}{\sqrt{6}}x + \frac{7}{\sqrt{66}}y + \frac{1}{\sqrt{11}}z\right) + \\ & + 4\left(-\frac{2}{\sqrt{6}}x + \frac{4}{\sqrt{66}}y - \frac{1}{\sqrt{11}}z\right)\left(\frac{1}{\sqrt{6}}x + \frac{7}{\sqrt{66}}y + \frac{1}{\sqrt{11}}z\right) = \\ = \\ & = \\ & \vdots \\ & = -3(x^2 - y^2 - z^2) = -3x^2 + 3y^2 + 3z^2. \end{split}$$

בדיקה יותר פשוטה:

$$\begin{split} D = & P^t A P = \\ & = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{66}} & -\frac{3}{\sqrt{11}} \\ -\frac{2}{\sqrt{6}} & \frac{4}{\sqrt{66}} & -\frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{6}} & \frac{7}{\sqrt{66}} & \frac{1}{\sqrt{11}} \end{bmatrix}^t \begin{bmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{66}} & -\frac{3}{\sqrt{11}} \\ -\frac{2}{\sqrt{6}} & \frac{4}{\sqrt{66}} & -\frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{6}} & \frac{7}{\sqrt{66}} & \frac{1}{\sqrt{11}} \end{bmatrix} \\ & = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{66}} & \frac{4}{\sqrt{66}} & \frac{7}{\sqrt{66}} \\ -\frac{3}{\sqrt{66}} & \frac{1}{\sqrt{66}} & -\frac{3}{\sqrt{11}} \\ -\frac{3}{\sqrt{6}} & \frac{21}{\sqrt{66}} & -\frac{3}{\sqrt{11}} \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \end{split}$$