```
function [raiz,fx,ea,iter]=bissec(func,xl,xu,es,maxit,varargin]
% bissec: localização de raízes pelo método da bissecção
% [raiz,fx,ea,iter]=bisect(func,xl,xu,es,maxit,pl,p2,...):
    usa o método da bissecção para encontrar a raiz de func
% entrada:
% func = nome da função
% xl, xu = aproximações inferior e superior
% es = erro relativo desejado (padrão = 0,0001%)
% maxit = número máximo de iterações permitidas (padrão = 50)
% pl,p2,... = parâmetros adicionais usados por func
% saida:
% raiz = raiz real
% fx = valor da função em raiz
% ea = erro relativo aproximado (%)
% iter = número de iterações
if nargin<3,error('são necessários pelo menos 3 argumentos de
entrada'), end
test = func(x1,varargin(:))*func(xu,varargin(:));
if test>0,error('não há mudança de sinal'),end
if nargin<4|isempty(es), es=0.0001;end
if nargin<5|isempty(maxit), maxit=50;end
iter = 0; xr = xl; ea = 100;
while (1)
 xr velho = xr;
 xr = (x1 + xu)/2;
 iter = iter + 1;
 if xr \sim= 0, ea = abs((xr - xr _velho)/xr) * 100; end
 test = func(x1, varargin(:)) *func(xr, varargin(:));
 if test < 0
   xu = xr;
 elseif test > 0
   xl = xr;
 else
   ea = 0;
 if ea <= es | iter >= maxit, break, end
end
raiz = xr; fx = func(xr, varargin(:));
```

FIGURA 5.7 Função do MATLAB para implementar o método da bissecção.

5.5 O MÉTODO DA FALSA POSIÇÃO

O método da falsa posição (também chamado de método da interpolação linear) é outro método intervalar bem conhecido, bastante similar ao método da bissecção, com a exceção de que ele utiliza uma estratégia diferente para chegar à sua nova estimativa da raiz. Em vez de dividir o intervalo de x_i a x_j em duas partes iguais, ele localiza a raiz ligando $f(x_i)$ e $f(x_j)$ por uma reta (Figura 5.8). A intersecção dessa reta com o eixo x representa uma estimativa melhorada da raiz, ou seja, a forma da função

influencia a nova estimativa da raiz. Usando triângulos semelhantes, a intersecção da reta com o eixo x pode ser estimada como (ver Chapra e Canala, 2010, para detalhes)

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$
(5.7)

Essa é a *fórmula da falsa posição*. O valor de x_r calculado com a Equação (5.7) substitui então qualquer uma das duas aproximações iniciais, x_r ou x_u , que forneça um valor da função com o mesmo sinal que $f(x_r)$; dessa forma, os valores de x_r e x_u sempre delimitam a raiz verdadeira. O processo é repetido até que a raiz seja estimada adequadamente, e o algarismo é idêntico ao da bissecção (Figura 5.7), com a diferença de que a Equação (5.7) é utilizada para calcular a estimativa da raiz.

FIGURA 5.8 O método da falsa posição.

EXEMPLO 5.5 O método da falsa posição

Use o método da falsa posição para resolver o mesmo problema abordado graficamente e com o método da bissecção nos Exemplos 5.1 e 5.3.

Solução. Como no Exemplo 5.3, comece os cálculos com aproximações $x_j = 50$ e $x_n = 200$. Primeira iteração:

$$x_l = 50$$
 $f(x_l) = -4,579387$
 $x_u = 200$ $f(x_u) = 0,860291$
 $x_r = 200 - \frac{0,860291(50 - 200)}{-4,579387 - 0,860291} = 176,2773$

que tem um erro relativo verdadeiro de 23,5%.

Segunda iteração:

$$f(x_l)f(x_r) = -2,592732$$

A raiz, portanto, está no primeiro subintervalo e x_r se torna a aproximação superior da próxima iteração, $x_u = 176,2773$,

$$x_l = 50$$
 $f(x_l) = -4,579387$
 $x_u = 176,2773$ $f(x_u) = 0,566174$
 $x_r = 176,2773 - \frac{0,566174(50 - 176,2773)}{-4,579387 - 0,566174} = 162,3828$

que tem erros relativos verdadeiro e aproximado de 13,76% e 8,56%, respectivamente. Caso deseje refinar a estimativa da raiz, é possível fazer iterações adicionais.

Embora o método da falsa posição geralmente tenha um melhor desempenho que a bissecção, há casos em que seu desempenho é deficiente ou inferior ao da bissecção, como no exemplo a seguir.

EXEMPLO 5.6 Um caso em que a bissecção é preferível à falsa posição

Use a bissecção e a falsa posição para localizar a raiz de

$$f(x) = x^{10} - 1$$

entre x = 0 e 1,3.

Solução. Usando a bissecção, os resultados podem ser resumidos por

Iteração	X_{j}	X_{μ}	X_{r}	ε, (%)	ε, (%)
1	0	1,3	0,65	100,0	35
2	0,65	1,3	0,975	33,3	2,5
3	0,975	1,3	1,1375	14,3	13,8
4	0,975	1,1375	1,05625	7,7	5,6
5	0,975	1,05625	1,015625	4,0	1,6

Depois de cinco iterações, o erro verdadeiro foi reduzido para menos de 2%. Na falsa posição é obtida uma saída muito diferente:

Iteração	X_{l}	X_{n}	X,	£, (%)	ε, (%)
1	0	1,3	0,09430		90,6
2	0,09430	1,3	0,18176	48,1	81,8
3	0,18176	1,3	0,26287	30,9	73,7
4	0,26287	1,3	0,33811	22,3	66,2
5	0,33811	1,3	0,40788	17,1	59,2

Depois de cinco iterações, o erro verdadeiro diminuiu para cerca de 59%. É possivel avaliar melhor tais resultados analisando-se o gráfico da função. Como na Figura 5.9, a curva viola a hipótese básica na qual a falsa posição está baseada – isto é, se $f(x_i)$ está muito mais próxima de zero do que $f(x_i)$, então a raiz está mais próxima de x_i do que de x_i (lembre-se da Figura 5.8). Devido à forma da função presente, o contrário é verdadeiro.

FIGURA 5.9 Gráfico de $f(x) = x^{10} - 1$, ilustrando a convergência lenta do método da falsa posição.

O exemplo anterior ilustra que, com relação aos métodos de localização de raízes, generalizações não costumam ser aceitas. Embora um método como a falsa posição seja quase sempre superior à bissecção, invariavelmente há casos que violam essas conclusões gerais. Portanto, além de se usar a Equação (5.5), os resultados deveriam sempre ser verificados substituindo a estimativa da raiz na equação original e verificando se o resultado está próximo de zero.

O exemplo também ilustra uma grande fraqueza do método da falsa posição: ele é unilateral, ou seja, conforme as iterações continuam, uma das extremidades do intervalo tenderá a permanecer fixa – o que pode levar à convergência insatisfatória, particularmente para funções com curvatura significativa. Possíveis soluções para essa desvantagem estão disponíveis em outras referências (Chapra e Canale, 2010).