



Equation of line segment AB is

$$y - 0 = \frac{3 - 0}{1 + 1} (x + 1)$$

$$y = \frac{3}{2}(x+1)$$

:. Area (ALBA) = 
$$\int_{-1}^{1} \frac{3}{2}(x+1) dx = \frac{3}{2} \left[ \frac{x^2}{2} + x \right]_{-1}^{1} = \frac{3}{2} \left[ \frac{1}{2} + 1 - \frac{1}{2} + 1 \right] = 3$$
 units

Equation of line segment BC is

$$y-3=\frac{2-3}{3-1}(x-1)$$

$$y = \frac{1}{2}(-x+7)$$

$$\therefore \text{ Area (BLMCB)} = \int_{1}^{3} \frac{1}{2} (-x+7) dx = \frac{1}{2} \left[ -\frac{x^{2}}{2} + 7x \right]_{1}^{3} = \frac{1}{2} \left[ -\frac{9}{2} + 21 + \frac{1}{2} - 7 \right] = 5 \text{ units}$$

Equation of line segment AC is

$$y-0=\frac{2-0}{3+1}(x+1)$$

$$y = \frac{1}{2}(x+1)$$

$$\therefore \text{Area}(\text{AMCA}) = \frac{1}{2} \int_{-1}^{9} (x+1) dx = \frac{1}{2} \left[ \frac{x^2}{2} + x \right]_{-1}^{3} = \frac{1}{2} \left[ \frac{9}{2} + 3 - \frac{1}{2} + 1 \right] = 4 \text{ units}$$

Therefore, from equation (1), we obtain

Area ( $\triangle$ ABC) = (3 + 5 - 4) = 4 units

### Question 5:

Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

### Answe

The equations of sides of the triangle are y = 2x + 1, y = 3x + 1, and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C(4, 9).



It can be observed that,

Area ( $\triangle$ ACB) = Area (OLBAO) -Area (OLCAO)

$$= \int_0^1 (3x+1) dx - \int_0^1 (2x+1) dx$$
$$= \left[ \frac{3x^2}{2} + x \right]_0^4 - \left[ \frac{2x^2}{2} + x \right]_0^4$$

$$=(24+4)-(16+4)$$

=28-20

#### Question 6:

Smaller area enclosed by the circle  $x^2 + y^2 = 4$  and the line x + y = 2 is

**D.** 
$$2(n + 2)$$

#### Answer

The smaller area enclosed by the circle,  $x^2+y^2=4$ , and the line, x+y=2, is represented by the shaded area ACBA as



It can be observed that,

Area ACBA = Area OACBO - Area (ΔΟΑΒ)

$$= \int_{0}^{2} \sqrt{4 - x^{2}} \, dx - \int_{0}^{2} (2 - x) \, dx$$

$$= \left[ \frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{0}^{2} - \left[ 2x - \frac{x^{2}}{2} \right]_{0}^{2}$$

$$= \left[ 2 \cdot \frac{\pi}{2} \right] - \left[ 4 - 2 \right]$$

$$= (\pi - 2) \text{ units}$$

Thus, the correct answer is B.

### Question 7:

Area lying between the curve  $y^2 = 4x$  and y = 2x is

**A.** 
$$\frac{2}{3}$$

**B.** 
$$\frac{1}{3}$$

**D.** 
$$\frac{3}{4}$$

# Answer

The area lying between the curve,  $y^2 = 4x$  and y = 2x, is represented by the shaded area OBAO as



The points of intersection of these curves are O (0,0) and A (1,2). We draw AC perpendicular to x-axis such that the coordinates of C are (1,0).

∴ Area OBAO = Area ( $\Delta$ OCA) - Area (OCABO)

$$= \int_{0}^{1} 2x \, dx - \int_{0}^{1} 2\sqrt{x} \, dx$$

$$= 2\left[\frac{x^{2}}{2}\right]_{0}^{1} - 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}$$

$$= \left|1 - \frac{4}{3}\right|$$

$$= 1$$

$$=\frac{1}{3}$$
 units

Thus, the correct answer is B.

**Miscellaneous Solutions** 

## Question 1:

Find the area under the given curves and given lines:

(i) 
$$y = x^2$$
,  $x = 1$ ,  $x = 2$  and  $x$ -axis

(ii) 
$$y = x^4$$
,  $x = 1$ ,  $x = 5$  and  $x$  -axis

Answer

i. The required area is represented by the shaded area ADCBA as



Area ADCBA = 
$$\int_{1}^{2} y dx$$
= 
$$\int_{1}^{2} x^{2} dx$$
= 
$$\left[ \frac{x^{3}}{3} \right]_{1}^{2}$$
= 
$$\frac{8}{3} - \frac{1}{3}$$
= 
$$\frac{7}{3}$$
 units

ii. The required area is represented by the shaded area ADCBA as



Area ADCBA = 
$$\int_{1}^{5} x^{4} dx$$
  
=  $\left[\frac{x^{5}}{5}\right]_{1}^{5}$   
=  $\frac{(5)^{5}}{5} - \frac{1}{5}$   
=  $(5)^{4} - \frac{1}{5}$   
=  $625 - \frac{1}{5}$   
=  $624.8$  units

## Question 2:

Find the area between the curves y = x and  $y = x^2$ 

Answer

The required area is represented by the shaded area OBAO as  $% \left\{ 1,2,\ldots ,n\right\}$ 



The points of intersection of the curves, y = x and  $y = x^2$ , is A (1, 1).

\*\*\*\*\*\*\* END \*\*\*\*\*\*\*