Thermal Issues of 3D ICs

T. Fukushima, T. Tanaka and M. Koyanagi

Tohoku University, Japan Department of Bioengineering and Robotics

Outline

- 1. Background
- 2. 3D Integration Technology in Tohoku University
- 3. Thermal Characteristics Evaluation of 3D LSI by Simulation and Experiments
- 4. Summary

Advantages of 3D Integration Technology

- 1. Short interconnect length
- 2. High packing density
- 3. High-speed operation
- 4. Low power consumption

- 5. Parallel processing
- 6. New functionality
- 7. New applications

Cross-Sectional Structure of 3D LSI

3D Technology Based on Wafer-to-Wafer Bonding in Tohoku University

Completed LSI wafers with TSVs

First Proposal of Wafer-to-Wafer Bonding Technique (1989)

3D Projects in Tohoku Univ. (Koyanagi Group)

M. Koyanagi, Proc. 8th Symposium on Future Electron Devices, pp.50-60 (Oct. 1989)

H. Takata, M. Koyanagi et. al., Proc. Intern. Semiconductor Device Research Symposium, pp.327-330 (Dec. 1991)

Fabrication Sequence of 3D LSI

Scaling Capability of TSVs

a: TSV (W) length, b: microbump width

c: TSV diameter, d: insulator (SiO₂) thickness

SEM Cross Section of Poly-Si TSV

(a) Si deep trench etching

(b) Filling with Poly-Si

SEM Cross Section of Tungsten TSV

SEM Cross Section of Tungsten TSV with Smaller Diameter

3D LSI Test Chips Fabricated in Tohoku University

- *3-layer stacked image sensor chip (IEDM, 1999)
 Wafer bonding (Wafer non-transfer, Buried interconnection)
- •3-layer stacked memory chip (IEDM, 2000)
 Wafer bonding (Wafer non-transfer, Buried interconnection)
- •3-layer stacked artificial retina chip (ISSCC, 2001)
 Wafer bonding (Wafer non-transfer, Buried interconnection)
- *3-layer stacked microprocessor chip (Cool Chips, 2002)
 Wafer bonding (Wafer non-transfer, Buried interconnection)
- 10-layer stacked memory chip (IEDM, 2005) Chip-to-wafer bonding (Self assembly, Buried interconnection)

Shared Cache Memory with 3D Structure

SEM Cross-Sectional View of 3D Microprocessor Chip Fabricated by Wafer-to-Wafer Bonding

3D Microprocessor and 3D Multi-chip Module

SEM Cross Section of 3D Memory with 10 Layers

Comparing 3D Integration Technologies

Stacking methods	Wafer-to-wafer	Chip-to-wafer	Chip-to-chip
Production yield	Low	High (use of KGDs)	High
Production throughput	High	High or Low (limited by alignment/bonding)	Low
Applications	DRAM (High-yield memory)	Heterogeneous system (processor/memories, LSI and MEMS)	Packaging

3D Technology Based on Chip-to-Wafer Bonding in Tohoku University: Super-Chip Integration

Configuration of Super-Chip

Photomicrograph and SEM of 3-Layer Stacked Chips with Different Chip Size Fabricated Using Self-Assembly Method

Outline

- 1. Background
- 2. 3D Integration Technology in Tohoku University
- 3. Thermal Characteristics Evaluation of 3D LSI by Simulation and Experiments
- 4. Summary

Big Concerns in 3D LSI

3D Mesh Structure for Thermal Simulation Based on FEM Method

(a) Physical 3D structure

(b) Mesh structure

Simulation Results I of Isothermal Plane and Heat Flux

Isothermal plane (°C)

Heat flux (W/m²)

Simulation Results II of Isothermal Line and Heat Flux

(a) Contour map of isothermal lines

(b) Heat flow distribution

Distance between heat source and buried interconnection: 31.9μ m

Micro-bump size : 10μ m × 10μ m

Diameter of buried interconnection: 2.5μ m

Si thickness : 30μ m

Maximum Temperature Rise in Chip as a Function of Ratio of Total TSV Area to Chip Area

Maximum Temperature Rise in Chip as a Function of Ratio of Total Microbump Area to Chip Area

Ratio of total microbump area to chip area (%)

Maximum Temperature Rise in Chip as a Function of Si Substrate Thickness

Maximum Temperature Rise in Chip as a Function of Number of Stacked Layers

Simulation Results III: Sizes of 3D Structure Used in Thermal Simulation

Heat source size:

Cross-sectional view

Simulation Parameters

TSV pitch: 15μ m, 150μ m, 1500μ m

TSV diameter: 1 μ m, 2 μ m, 10 μ m, 50 μ m

Si thickness: 10μ m, 30μ m

Insulator thickness: 0.5 μ m., 1 μ m Bonding materials: adhesive, Cu, SiO₂

Heat transfer rate: 0.001, 0.01, 0.1 W·cm⁻²·K⁻¹

Number of Si layers: 3, 5, 10

Total chip power: 0.18W, 1.8W, 18W

Chip size: 9mm × 9mm Ambient temperature: 23°C

Planar view

Maximum Temperature of 3D Stacked Chip as a Function of TSV Pitch

Maximum Temperature of 3D Stacked Chip as a Function of Heat Transfer Rate

Layout Pattern of Test Devices for Heat Generation Measurement

Cross-Sectional View of Test Devices for Heat Generation Measurement

Temperature Dependence of Forward Bias Voltage Drop of P-N Diode for Heat Generation Measurement

Temperature Rise in Each Layer as a Function of Ratio of Total TSV Area to Chip Area

Summary

- 1. We explained about 3D integration technology in Tohoku University
- 2. We evaluated thermal characteristics of 3D LSI by simulation and experiments.

We confirmed,

- 1) The maximum temperature rise in chip can be suppressed by increasing the ratio of total TSV area and microbump area to a chip area.
- 2) Too thin Si substrate results in the increase of the maximum temperature rise.
- 3) The maximum temperature of 3D chip can be lowered by reducing TSV pitch.
- 4) Heat transfer rate should be increased to decrease the maximum temperature of 3D chip.