

Data preparation check-list

I. Profile, visualize and identify:

- structure and distribution
- format and consistency
- issues and deficiencies

II. Cleanse and repair:

- data values: (convert, map, etc.)
- missing values: (convert, remove, impute)
- rare values: (combine, remove, ?)

III. Organize structure for better modelling

detect outliers

https://towardsdatascience.com/data-cleaning-in-r-made-simple-1b77303b0b17 https://statisticsglobe.com/data-cleaning-r

Data dictionary cohort data/ clinical research data

item_name	item_description	options_tex	xt	options_values
		Select One,	No Neurological disease, Pre-motor	
		parkinsonia	an syndrome (One motor sign and a	
		non-motor	sign or 2 non-motor	
		signs),Parkii	nson's disease, a.Progressive	
		Supranuclea	ar Palsy,b.Multisystem	
		Atrophy,c.S	Striatonigral	
		degeneratio	on, d. Corticobasal	
		degeneratio	on, e. Unsure of specific type, Diffuse	
		Lewy body o	disease, Alzheimer's disease, Other	
		form of dem	nentia, Essential tremor, Vascular	
		parkinsonis	sm,Psychogenic illness,Drug induced	,1,2,3,4,5,6,7,8,9,10,11,12,
clin_dx_question4	clin_dx_question4a	parkinsonis	sm, Dystonia, Other diagnosis	13,14,15,16,17
clin_dx_question4a	clin_dx_question4a	text		text
clin_dx_question5	clin_dx_question5	No,Yes		0,1

Data dictionary

variables and variable-details sheets (Canadian Community Health Survey (CCHS))

variable	ro label	labelLong	section	subject	variableType	units	Ī
ADL_01	in Help preparing meals	Needs help - preparing meals	Health status	ADL	Categorical	N/A	ŀ

variable	dummyVariable	typeEnd	(\typeStart	recEnd	numValidCat	catLabel	c units	variableStartShortLabel
ADL_01	ADL_01_cat2_1	cat	ccat	1	2	Yes	YN/A	Help preparing meals
ADL_01	ADL_01_cat2_2	cat	ccat	2	2	No	r N/A	Help preparing meals
ADL_01	ADL_01_cat2_NA::a	cat	ccat	NA::a	2	not applicable	r N/A	Help preparing meals
ADL_01	ADL_01_cat2_NA::b	cat	(cat	NA::b	2	missing	r N/A	Help preparing meals

https://github.com/Big-Life-Lab/cchsflow/tree/master

Data dictionary

survival::lung

inst: Institution code

time: Survival time in days

status: censoring status 1=censored, 2=dead

age: Age in years

sex: Male=1 Female=2

ECOG performance score as rated by the physician.

0=asymptomatic, 1= symptomatic but completely

ph.ecog: ambulatory, 2= in bed <50% of the day, 3= in bed > 50% of

the day but not bedbound, 4 = bedbound

ph.karno: Karnofsky performance score (bad=0-good=100) rated by

physician

pat.karno: Karnofsky performance score as rated by patient

meal.cal: Calories consumed at meals

wt.loss: Weight loss in last six months (pounds)

Data cleansing tips:

- 1. Learn the data: find what the data presents using simple methods of interrogation
- 2. look for structural errors (data types)
- 3. look for data irregularities (values)
- 4. decide how to deal with missing values (remove, substitute, impute, etc.)
- 5. keep records of changes you make

The lung cancer data set

inst: Institution code

time: Survival time in days

status: censoring status 1=censored, 2=dead

age: Age in years

sex: Male=1 Female=2

ECOG performance score as rated by the physician.

ph.ecog: 0=asymptomatic, 1= symptomatic but completely

ambulatory, 2= in bed <50% of the day, 3= in bed > 50% of

the day but not bedbound, 4 = bedbound

ph.karno: Karnofsky performance score (bad=0-good=100) rated by

physician

pat.karno: Karnofsky performance score as rated by patient

meal.cal: Calories consumed at meals

wt.loss: Weight loss in last six months (pounds)

- Describes survival in patients with advanced lung cancer.
- To load the data:

```
## first install the epi7913A package
lung <- epi7913::lung</pre>
```


View(lung)
head(lung)
str(lung)

Simple summary statistics

> summary(lung) inst Min. : 1.00 1st Qu.: 3.00 Median :11.00 Mean :11.09 3rd Qu.:16.00 Max. :33.00 NA's :1	time Min. : 5.0 1st Qu.: 166.8 Median : 255.5 Mean : 305.2 3rd Qu.: 396.5 Max. :1022.0	Median :2.000 Medi Mean :1.724 Mean 3rd Qu.:2.000 3rd Max. :2.000 Max.	Qu.:56.00 an :63.00 :62.45 Qu.:69.00	sex ph.ecog ph.karno Min. :1.000 Min. :0.0000 Min. :50.00 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.: 75.00 Median :1.000 Median :1.0000 Median : 80.00 Mean :1.395 Mean :0.9515 Mean :81.94 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.: 90.00 Max. :2.000 Max. :3.0000 Max. :100.00 NA's :1 NA's :1
pat.karno Min. : 30.00 1st Qu.: 70.00 Median : 80.00	meal.cal Min. : 96.0 1st Qu.: 635.0 Median : 975.0	1st Qu.: 0.000	status: sex:	censoring status 1=censored, 2=dead Male=1 Female=2
Mean : 79.96 3rd Qu.: 90.00 Max. :100.00 NA's :3	Mean : 928.8 3rd Qu :1150.0 Max. :2600.0 NA's :47	Mean : 9.832 3rd Qu.: 15.750	ph.ecog:	ECOG performance score as rated by the physician. 0=asymptomatic, 1= symptomatic but completely ambulatory, 2= in bed <50% of the day, 3= in bed > 50% of the day but not bedbound, 4 = bedbound
			ph.karno:	Karnofsky performance score (bad=0-good=100) rated by physician

- Status is a categorical variable that is encoded by a numeric value
- Sex also needs to be converted to categorical values
- meal.cal has the most missing values
- a balanced distribution is evident in continuous data when mean is close to median (time?)

^	inst 🗦	time [‡]	status [‡]	age 🗦	sex [‡]	ph.ecog [‡]	ph.karno 🏺	pat.karno 🗦	meal.cal ‡	wt.loss = 💂	status.category	sex.categor
1	3	306	2	74	1	1	90	100	1175	VA	dead	Male
2	3	455	2	68	1	0	90	90	1225	15	dead	Male
3	3	1010	1	56	1	0	90	90	NA	15	censored	Male
4	5	210	2	57	1	1	90	60	1150	11	dead	Male
5	1	883	2	60	1	0	100	90	NA	0	dead	Male
6	12	1022	1	74	1	1	50	80	513	0	censored	Male
7	7	310	2	68	2	2	70	60	384	10	dead	Female
8	11	361	2	71	2	2	60	80	538	1	dead	Female
9	1	218	2	53	1	1	70	80	825	16	dead	Male
10	7	166	2	61	1	2	70	70	271	34	dead	Male
11	6	170	2	57	1	1	80	80	1025	27	dead	Male
12	16	654	2	68	2	2	70	70	NA	23	dead	Female
13	11	728	2	68	2	1	90	90	NA	5	dead	Female
14	21	71	2	60	1	NA	60	70	1225	32	dead	Male
15	12	567	2	57	1	1	80	70	2600	60	dead	Male
16	1	144	2	67	1	1	80	90	NA	15	dead	Male
17	22	613	2	70	1	1	90	100	1150	-5	dead	Male
18	16	707	2	63	1	2	50	70	1025	22	dead	Male
19	1	61	2	56	2	2	60	60	238	10	dead	Female
20	21	88	2	57	1	1	90	80	1175	VA	dead	Male
21	11	301	2	67	1	1	80	80	1025	17	dead	Male
22	6	81	2	49	2	0	100	70	1175	8	dead	Female

Convert the numeric values with categorical values?

```
lung <- within(lung, { status.category <- NA; #initialize a new column
    status.category[status==1] <- "censored"
    status.category[status==2] <- "dead" } )

lung <- within(lung, { sex.category <- NA
    sex.category[sex==1] <- "Male"
    sex.category[sex==2] <- "Female" } )</pre>
```


- check column names:
 - are the names intuitive (easy to understand)?
 - do they follow a convention? What is it?
 - change them as you see fit
 - for example, is lung\$time intuitive to represent "Survival"?

```
# Modify Column names - these are case sensitive!
names(lung) < c("Inst", "Time", "Status", "Age", "Sex", "PH.ecog", "PH.karno", "Meal.cal", "WT.loss", "Status.category", "Sex.category")
# change a specific column (col 2) name
colnames(lung)[2] <- "time"</pre>
```

consider using a separate csv file like the variable sheet

variable	baseline	: 72FU	9
MDS.UPDRS.1.11	MDS UPDRS 2008: 1.11: Constipation Problems	I d_MDS_UPDRS_1.11	
SCOPA.AUT.05	SCOPA AUT 2004: 05. In The Past Month, Have You Had Problems With Constipation?	! d_Scopa_AUT_5	•
SCOPA.AUT.06	SCOPA AUT 2004: 06. In The Past Month, Did You Have To Strain Hard To Pass Stools?	d_Scopa_AUT_6	

- check column names:
 - are the names intuitive (easy to understand)?
 - do they follow a convention? What is it?
 - change them as you see fit
 - for example, is lung\$time intuitive to represent "Survival"?

```
# Modify Column names - these are case sensitive!
names(lung) < c("Inst", "Time", "Status", "Age", "Sex", "PH.ecog", "PH.karno", "Meal.cal", "WT.loss", "Status.category", "Sex.category")
# change a specific column (col 2) name
colnames(lung)[2] <- "time"</pre>
```

do the columns have proper data types?

```
# check the class of the data set (data types of the columns)
sapply(lung, class)
# alternatively
str(lung)
```


Are there any missing values? If yes, what are they?

```
# Replace empty cells with NAs
lung[lung == ""] <- NA

is.na(lung) # returns TRUE or FALSE for each cell
which(is.na(lung)) # returns the positions in the entire data set
which(is.na(lung$time)) # returns the positions of NA in lung$time
sum(is.na(lung)) # get the count of how many NAs in the data</pre>
```

How is "empty" represented? (" ", "9999", 9999, NA, NIL)

```
# replace ONLY Surve.time with NA for those rows where time is 9999
lung[(lung$time == 9999) & !is.na(lung$time),2] <- NA

# replace ONLY Surve.time with NA for those rows where time is "9999"
lung[(lung$time == "9999") & !is.na(lung$time),2] <- NA

# Replace negative "time" with NA
lung[lung$time < 0 !is.na(lung$time), 2] <- NA

# PLEASE BE CAEFUL!
# replace the ENTIRE ROW with NAs for those rows where time is 9999
lung[(lung$time == 9999) & !is.na(lung$time),] <- NA</pre>
```


Simple summary statistics

> summary(lung) inst Min. : 1.00 1st Qu.: 3.00 Median :11.00 Mean :11.09 3rd Qu.:16.00 Max. :33.00 NA's :1 pat.karno	time Min. : 5.0 1st Qu.: 166.8 Median : 255.5 Mean : 305.2 3rd Qu.: 396.5 Max. :1022.0 meal.cal	Median :2.000 Media Mean :1.724 Mean	Qu.:56.00 an :63.00 :62.45 Qu.:69.00	1st Qu.:1.000	ph.karno Min. : 50.00 1st Qu.: 75.00 Median : 80.00 Mean : 81.94 3rd Qu.: 90.00 Max. :100.00 NA's :1
Min. : 30.00	Min. : 96.0	Min. :-24.000	status:	censoring status 1=censored, 2	=dead
1st Qu.: 70.00 Median : 80.00	1st Qu.: 635.0 Median : 975.0	1st Qu.: 0.000 Median : 7.000	sex:	Male=1 Female=2	
Mean : 79.96 3rd Qu.: 90.00 Max. :100.00 NA's :3	Mean : 928.8 3rd Qu :1150.0 Max. :2600.0 NA's :47	Mean : 9.832 3rd Qu.: 15.750 Max. : 68.000 NA's :14	ph.ecog:	ECOG performance score as raphysician. 0=asymptomatic, 1=but completely ambulatory, 2= ir the day, 3= in bed > 50% of the bedbound, 4 = bedbound	symptomatic n bed <50% of
			ph.karno:	Karnofsky performance score (b good=100) rated by physician	oad=0-

- Status is a categorical variable that is encoded by a numeric value
- Sex also needs to be converted to categorical values
- meal.cal has the most missing values
- a balanced distribution is evident in continuous data when mean is close to median (time?)


```
# try this ...
str(lung)
lung[1,4] <- "9999"
str(lung)
# get the mean of survival time (NAs will cause error)
mean(lung$time)
# get mean survival time by removing NAs
mean(lung$time, na.rm = TRUE)
# retrieve all rows with complete values (no NAs)
lung[complete.cases(lung),]
# retrieve all rows with incomplete values
lung[! complete.cases(lung),]
# load data from class package epi7913A for practice
epi7913A::lung junk
epi7913A::lung na
```


Available tools

Univariate visualizations:

- Categorical plots (bar plots, pie charts, tree maps)
- Quantitative plots: (histograms, density functions, dot charts).

Bivariate visualizations:

- Categorical vs. categorical: (stacked and grouped bar plots)
- Quantitative vs. Quantitative: (scatter plots, best fit)
- Quantitative vs. categorical: (boxplots, line plots, other)
- Multivariant visualizations: (grouping)

Tabulations:

- Frequencies and contingency tables
- Tests of independence: (Chi-square test, Fisher exact test)

A useful book

https://clauswilke.com/dataviz/

Univariate visualizations: frequency by bar plots

Status Category

Univariate visualizations: frequency in a pie chart


```
mytable <- table(lung$sex.category)
pie(mytable, col=c("maroon", "darkorange"))</pre>
```


Univariate visualizations: frequency in a simple treemap (visualize proportions)


```
mytable <- data.frame(table(lung$status.category))
treemap(mytable, index =c("Var1"), vSize = "Freq")</pre>
```


Univariate visualizations: histograms

Univariate visualizations: box plots

Source: https://www.kdnuggets.com/2019/11/understanding-boxplots.html

Univariate visualizations: kernel density

Kernel density of Survival Time

kernel smoothing for probability density estimation

d <- density(lung\$time)
plot(d, main="Kernel density of Survival Time")
polygon(d, col="red", border="blue")</pre>

Univariate visualizations: violin plots

a box plot with a rotated kernel density plot on either side
vioplot(lung\$time/365, ylab="Survival (Years)", col="red")

Univariate visualizations: dot plots

Bivariate visualization: frequency per group (stacked vs groups)

Bivariate visualization

https://clauswilke.com/dataviz/nested-proportions.html

Bivariate visualization: scatter plots

Filtering for extreme cases

Tmp

•	inst $^{\scriptsize \scriptsize $	Surv.time [‡]	status [‡]	age [‡]	sex ÷	ph.ecog [‡]	ph.karno [‡]	pat.karno [‡]	meal.cal [‡]	wt.loss [‡]	sex.category [‡]	status.category [‡]
113	10	283	2	80	1	1	80	100	1030	6	Male	dead
120	15	363	2	80	1	1	80	90	346	11	Male	dead
182	1	284	1	39	1	0	100	90	1225	-5	Male	censored
225	13	191	1	39	1	0	90	90	2350	-5	Male	censored

```
# Patients over 80 years old who survived more than 100 days
lung[lung$time > 100 & lung$age >= 80,]

# Patients younger than 40 years old who survived more than 100 days
lung[lung$time > 100 & lung$age < 40,]

# Filter both in one statement
Tmp <- lung[lung$time > 100 & (lung$age >= 80 | lung$age < 40),]</pre>
```


Bivariate visualization: scatter plots / group


```
plot(lung[lung$sex.category == "Female", ]$time/365,
    xlim=c(0,3), ylim=c(45,85),
    lung[lung$sex.category == "Female", ]$age, pch=16, cex=2,
    col="blue", ylab="Age", xlab="Survival")
points(lung[lung$sex.category == "Male", ]$time/365,
    lung[lung$sex.category == "Male", ]$age, pch=17, col="red", cex=2)
legend("topright",c("Female", "Male"),
    col=c("blue","red"),pch=c(16,17), cex=1.5)
```


Bivariate visualization: best fit line

x <- c(1, 2, 3, 4, 5, 6, 7, 8)
y <- c(2, 5, 6, 7, 9, 12, 16, 19)

#create scatter plot of x vs. y
plot(x, y, pch=19)

#add line of best fit to scatter plot
abline(lm(y ~ x))</pre>

Bivariate visualization: survival / group (box plots & violin plots)

Bivariate visualization: survival / group (estimation plot)

Bivariate visualization: survival / group (estimation plot)

Histogram of survival time for females only **Outlier?** 9 Count 2 0.0 0.5 1.0 1.5 2.0 2.5 Years

	inst	Surv.time	status	age	sex	ph.ecog	ph.karno "	pat.karno	meal.cal	wt.loss	sex.category	status.category "
38	15	965	1	66	2	1	70	90	875	4	Female	censored

```
# plot a histogram for survival only female patients
```

retrieve data for female patients who survived more than 2.5 years

lung[lung\$sex.category == "Female"& lung\$time/365 > 2.5,]

Outlier detection

More reading: https://www.simplypsychology.org/boxplots.html

lung <- lung[! lung\$time %in% boxplot.stats(lung\$time)\$out,]</pre>

Multivariate visualization: grouping

```
# build the groups for every year of survival for either males or females
# males that survived no more than 1 year
mg1 <- lung[lung$sex.category == "Male" & lung$time/365 <= 1,]
# males that survived more than 1 year but no more than 2 years
mg2 <- lung[lung$sex.category == "Male" & lung$time/365 > 1 & lung$time/365 <= 2,]
# males that survived more than 2 years but no more than 3 years
mg3 <- lung[lung$sex.category == "Male" & lung$time/365 > 2 & lung$time/365 <= 3,]
# females that survived no more than 1 year
fq1 <- lung[lung$sex.category == "Female" & lung$time/365 <= 1,]
# females that survived more than 1 year but no more than 2 years
fg2 <- lung[lung$sex.category == "Female" & lung$time/365 > 1 & lung$time/365 <= 2,]
# females that survived more than 2 years but no more than 3 years
fg3 <- lung[lung$sex.category == "Female" & lung$time/365 > 2 & lung$time/365 <= 3,]
```


Multivariate visualization: scatter plot of age vs. survival for the groups


```
plot(mg1$time/365, mg1$age, xlim=c(0,3), ylim=c(35,85), pch=16,
    col = "red", cex=2, xlab="Survival Time (Years)", ylab="Age")
points(mg2$time/365, mg2$age, pch=17, col = "coral3", cex=2)
points(mg3$time/365, mg3$age, pch=18, col = "coral4", cex=3)
```

plot(fg1\$time/365, fg1\$age, xlim=c(0,3), ylim=c(35,85), pch=16,
 col = "blue", cex=2, xlab="Survival Time (Years)", ylab="Age")
points(fg2\$time/365, fg2\$age, pch=17, col = "cornflowerblue", cex=2)
points(fg3\$time/365, fg3\$age, pch=18, col = "cyan4", cex=3)

Multivariate visualization: scatter plot of age vs. survival for the groups -- together

first group plot

plot(mg1\$time/365, mg1\$age, xlim=c(0,3), ylim=c(35,85), pch=16,

col = "red", cex=2, xlab="Survival Time (Years)", ylab="Age")

subsequent additions to the plot

points(mg2\$time/365, mg2\$age, pch=16, col = "coral3", cex=2)
points(mg3\$time/365, mg3\$age, pch=16, col = "coral4", cex=2)
points(fg1\$time/365, fg1\$age, pch=17, col = "blue", cex=2)
points(fg2\$time/365, fg2\$age, pch=17, col = "cornflowerblue", cex=2)
points(fg3\$time/365, fg3\$age, pch=17, col = "cyan4", cex=2)
legend("topright", c("Male", "Female"), pch=c(16,17), cex=1)

Multivariate visualization: grouping

_	inst [‡]	time [‡]	status [‡]	age [‡]	sex [‡]	ph.ecog [‡]	ph.karno [‡]	pat.karno [‡]	meal.cal [‡]	wt.loss [‡]	status.category [‡]	sex.category [‡]	new
1	3	306	2	74	1	1	90	100	1175	NA	dead	Male	Group_m
2	3	455	2	68	1	0	90	90	1225	15	dead	Male	Group_m
3	3	1010	1	56	1	0	90	90	NA	15	censored	Male	Group_m
4	5	210	2	57	1	1	90	60	1150	11	dead	Male	Group_m
5	1	883	2	60	1	0	100	90	NA	0	dead	Male	Group_m
6	12	1022	1	74	1	1	50	80	513	0	censored	Male	Group_m
7	7	310	2	68	2	2	70	60	384	10	dead	Female	Group_f1
8	11	361	2	71	2	2	60	80	538	1	dead	Female	Group_f1

Showing 1 to 8 of 228 entries, 13 total columns

u Ottawa

```
# build the groups for every year of survival for either males or females
# by adding a new column into lung and creating new group labels
lung$new <- NA; # new column filled with NAs</pre>
# males that survived no more than 1 year
lung[lung$sex.category=="Male" & lung$time/365<=1,]$new <- "Group m1 "</pre>
# males that survived more than 1 year but no more than 2 years
lung[lung$sex.category=="Male" & lung$time/365>1 & lung$time/365<=2,]$new <- "Group m2"</pre>
# males that survived more than 2 years but no more than 3 years
lung[lung$sex.category=="Male" & lung$time/365>2 & lung$time/365<=3,]$new <- "Group m3"</pre>
# females that survived no more than 1 year
lung[lung$sex.category=="Female" & lung$time/365<=1,]$new <- "Group f1"</pre>
# females that survived more than 1 year but no more than 2 years
lung[lung$sex.category=="Female" & lung$time/365>1 & lung$time/365<=2,]$new <- "Group f2"</pre>
# females that survived more than 2 years but no more than 3 years
lung[lung$sex.category=="Female" & lung$time/365>2 & lung$time/365<=3,]$new <- "Group f3"</pre>
```

Multivariate visualization: scatter plot of age vs. survival for the groups – together (easy)

plot(lung\$time/365, lung\$age, pch=19, col=factor(lung\$new), xlim=c(0,3), ylim=c(35,85), xlab="Survival Time (Years)", ylab="Age") legend("bottomright", legend = levels(factor(lung\$new)), pch = 19, col = factor(levels(factor(x\$new)))) # More: https://r-charts.com/correlation/scatter-plot-group/

Multivariate visualization: estimation plot for multiple comparison

Tabulation: frequencies

Tabulation: contingency tables (2-way)

```
> mytable <- table(lung$status.category,lung$sex.category)</pre>
> mytable
                Female
                          Male
                   37
                           2.6
     censored
     dead
                   53
                           112
> margin.table(mytable, 1) # sum along rows
censored
            dead
      63
            165
> margin.table(mytable, 2) # sum along columns
Female Male
    90 138
> prop.table(mytable) # percentages of each cell
            Female
                       Male
censored 0.1622807 0.1140351
dead 0.2324561 0.4912281
> prop.table(mytable, 1) # row percentages
            Female
                       Male
censored 0.5873016 0.4126984
dead 0.3212121 0.6787879
> prop.table(mytable, 2) # column percentages
            Female
                       Male
censored 0.4111111 0.1884058
dead 0.5888889 0.8115942
```

•	Var1 [‡]	Var2 [‡]	Freq [‡]
1	censored	Female	37
2	dead	Female	53
3	censored	Male	26
4	dead	Male	112

mytable1

Tabulation: contingency tables (3-way)

- > mytable1 <- table(lung\$status.category,lung\$sex.category,lung\$new)
- > ftable(mytable1)

		Group_fl	Group_i2	Group_i3	Group_ml	Group_m2	Group_m3
Censore	d Female	24	10	3	0	0	0
	Male	0	0	0	18	4	4
Dead	Female	36	14	3	0	0	0
	Male	0	0	0	85	24	3

Independence test: Chi-square test

- the sample is large enough (in this case
- the p-value is an approximation (becomes exact with infinite sample size)

```
> mytable <- table(lung$status.category,lung$sex.category) # 2-way</pre>
> mytable
             Female
                        Male
                 37
                          26
 censored
     dead
                 53
                         112
> mytable <- table(lung$status.category,lung$sex.category)</pre>
> summary(mytable)
Number of cases in table: 228
Number of factors: 2
Test for independence of all factors:
         Chisq = 13.511, df = 1, p-value = 0.0002371
> mytable1 <- table(lung$status.category,lung$sex.category,lung$new)</pre>
> ftable(mytable1)
                   Group f1 Group f2 Group f3 Group m1 Group m2 Group m3
                         24
                                   10
Censored Female
          Male
                                                     18
                          ()
                                  0
         Female
                        36
Dead
                               14
                                                     \cap
                                                                         \cap
                                                     8.5
          Male
                        \cap
                                  0
                                                               2.4
> summary(mytable)
Number of cases in table: 228
Number of factors: 2
Test for independence of all factors:
         Chisq = 13.511, df = 1, p-value = 0.0002371
```


Independence Test: Fisher's exact test

- For small sample size
- The p-value is exact, not an approximation.

```
> mytable <- table(lung$status.category,lung$sex.category) # 2-way</pre>
> mytable
             Female
                         Male
                 37
                          26
 censored
     dead
                 53
                          112
> fisher.test(mytable)
               Fisher's Exact Test for Count Data
data: mytable
p-value = 0.0004349
alternative hypothesis: true
odds ratio is not equal to 1
95 percent confidence interval:
1.583762 5.727861
sample estimates:
odds ratio
2.991585
Further reading:
```

u Ottawa

https://statsandr.com/blog/fisher-s-exact-test-in-r-independence-test-for-a-small-sample/