Harvey J. Stein

Outline

Market Kis

VaP avama

statistics

Estimation

Summary

Reference

MATH GR 5320 Financial Risk Management and Regulation

Lecture 4: Market Risk

Department of Mathematics Columbia University

Harvey J. Stein

Head, Quantitative Risk Analytics Bloomberg LP

Fall 2016

Compilation: September 7, 2016 at 13:41

If mistakes are found, please return them to histein@columbia.edu

Outline

Revie

Market Risk

Types of Va

VaR examp statistics

Estimation

Summan

Reference

- Review
- 2 Market Risk
- 3 Types of VaR
- 4 VaR example statistics
- **5** Estimation
- **6** Summary

Review

Market Ri

Types of Va

VaR examp

Estimation

Summar

Reference

Review

- 1 Review
- 2 Market Risk
- 3 Types of VaR
- 4 VaR example statistics
- **5** Estimation
- **6** Summary

VaR examp

statistics

Estimatio

Summary

Reference

Review

Risk measurement four questions:

- 1. What factors affect the value of the portfolio?
 - · Identify risk factors.
- 2. What is the behavior of these dependencies?
 - · Model behavior of risk factors:
 - Develop a model.
 - Fit model to data.
 - Use model to yield future distribution of risk factors.
- 3. What is the behavior of the P&L as a function of these factors?
 - Use structure of portfolio and pricing functions to compute distribution of V_T.
- 4. How do I summarize the behavior of the P&L?
 - Compute risk measures, which are statistics on V_T .

Market Kis

Types of Va

VaR examp statistics

Estimation

Summary

Reference

Review

Method varies depending on form of risk measures, factor models, and pricing models:

- Analytically.
- Semi-analytically.
- Using approximations.
- Making simplifying assumptions.
- Using Monte Carlo.

Outlin

Review

....

Types of Va

VaR examp

Estimation

Summan

Reference

Modeling examples:

- Direct modeling via fitted GBMs for stock portfolio.
- Factor model for stock portfolio.
- Option portfolio.

Risk measures:

- Common measures:
 - Variance
 - VaR
 - ES
 - Expectiles
- Compare based on:
 - Coherence
 - Elicitability/backtestability
 - Robustness
 - Ease of use
- Need large numbers of samples for accuracy!

Outline

Review

statistics

Estimatio

Summan

Referenc

Computations:

$$dS = \mu S dt + \sigma S dW$$

•
$$E[S_T] = S_0 e^{\mu T}$$

•
$$var[S_T] = S_0^2 (e^{\sigma^2 T} - 1)e^{2\mu T}$$

•
$$VaR(S,T,p) = S_0 - S_0 e^{\sigma\sqrt{T}\Phi^{-1}(1-p) + (\mu - \frac{\sigma^2}{2})T}$$

•
$$\mathsf{ES}(S,T,p) = \mathsf{homework}$$

Mostly easy to compute using martingale techniques.

Market Risk

statistics

Estimation

Summar

References

Market Risk

- 1 Review
- 2 Market Risk
- 3 Types of VaR
- 4 VaR example statistics
- 6 Estimation
- **6** Summary

Market Risk

VaR examp

statistics

Julilliary

Reference

Market Risk

Market risk - The impact of market moves.

We will discuss:

- Estimating potential losses due to market moves VaR.
- Practical issues of VaR computations.

References: Chen [Che13], Steele [Ste01]

Harvey J. Stein

Outline

Revie

Market Risk

7.1

statistics

Estimatio

Summary

Reference

Complications

For one stock, given the processes are known, the calculations are not too difficult.

But, there are complications:

- Intermediate events.
 - Dividends.
 - · Option maturities.
 - Option exercises.
 - Cash flows.
 - Barrier crossings.
 - Trading.
- No formulas in general.
- Backtesting.
- Assumed that we know the stock processes.

Harvey J. Stein

Outlin

Market Risk

VaR example

statistics

Estimatio

Summary

Reference

Intermediate events

Nothing much can really be done about the intermediate events!

- Cannot model trading.
- What to do with cash flows?
 - Reinvest in what?
 - · Carry cash?

Instead, compute impact on current portfolio!

- Consider changes.
- Apply to current portfolio.

Risks

- Risk of a frozen portfolio.
- Ignoring time decay.
- Ignoring trader behavior.

VaP avamn

statistics

Estimatio

Summar

Referen

Formulas

Formulas are not bad for one stock following GBM.

Consider a position in 2 stocks:

$$V_T = aS_T + bS_T'$$

 V_T is not lognormal.

It gets worse for a long-short portfolio:

- *a* is positive and *b* is negative.
- Portfolio can have negative values.

Harvey J. Stein

Outline

Market Risk

VaR examn

statistics

Estimation

Summar

Reference

Formulas example

Consider 1 lognormal vs sum of 10 lognormals ($S_0=100$, $\mu=0.05$, $\sigma=0.3$):

Harvey J. Stein

Outline

Review

Market Risk

VaR evami

statistics

Estimation

Summar

Reference

Formulas example

Sum of 10 independent lognormals:

Harvey J. Stein

Outline

Review

Market Risk

VaR examp

Formulas example

Sum of 10 dependent lognormals ($\rho=30\%$) :

Harvey J. Stein

Outline

Review

Market Risk

Types of V

VaR examp

Estimation

c.....

Reference

Formulas example

Difference of 2 lognormals:

Market Risk

VaR example

statistics

Estimatio

Summary

Reference

Formulas

What about a call option with strike K maturing at time T'?

$$egin{aligned} V_T &= \Phi(d_1) S_T - \Phi(d_2) K e^{-r(T'-T)} \ d_1 &= rac{1}{\sigma' \sqrt{T'-T}} (\log(S_T/K) + (r+\sigma'^2/2)(T'-T)) \ d_2 &= rac{1}{\sigma' \sqrt{T'-T}} (\log(S_T/K) + (r-\sigma'^2/2)(T'-T)) \end{aligned}$$

For a call option:

- Value is highly nonlinear.
- Need to consider joint distribution at time T of:
 - Implied volatility σ' .
 - Risk free rate from T to T'.
 - Stock price S_T.

Reference

Formulas

We don't have formulas for the distribution of V_T for

- Portfolios of log-normally distributed stocks
- Options
- Bonds
- ...

Approaches:

- Grossly oversimplify Assume normality everywhere!
 - Everything has normal or lognormal returns Parametric VaR.
 - Original Riskmetrics.
- Use numerical methods Monte Carlo:
 - Fit the complicated model and simulate Monte Carlo VaR.
 - Apply historical changes to current portfolio Historical VaR.

Outlin

Revie

Market Risk

Types of V

VaR examp

Estimatio

References

Backtesting

Standard deviation:

 If computed from history, then it should automatically pass back tests.

VaR:

 If 99% VaR is X, 1% of the time we should see losses exceeding X.

Simple VaR backtest:

- Each year, should have 2.5 VaR exceptions for the 1 day 99% VaR.
- Not a strong test What's the variance on the number of VaR exceptions?

Expected shortfall:

- Test VaR at a variety of levels?
- Harder to validate.

Market Ri

Types of VaR

VaR examp statistics

Estimation

.

Reference

Types of VaR

- Review
- 2 Market Risk
- 3 Types of VaR
- 4 VaR example statistics
- 6 Estimation
- **6** Summary

Harvey J. Stein

Outline

review

Types of VaR

VaR examp

Types of VaR

Three types of VaR:

- Parametric VaR.
- Historical VaR.
- Monte Carlo VaR.

Types of VaR

VaR examp

Estimatio

Summary

Reference

Parametric VaR

Parametric VaR – make simplifying assumptions so as to yield a formula for the VaR based on approximate mean and variance calculations.

- Not really a model or a type an approximation methodology applied to the problem.
- Accurate when positions and payoffs are linear, but then no different from a simple variance calculation.
- Inaccurate otherwise requires hacks (like quadratic approximation) to improve it.

Harvey J. Stein

Outlin

revie

Types of VaR

statistics

Estimatio

Summary

Reference

Parametric VaR example 1

Consider a portfolio V:

• Current value: 1,000,000

• Expected value in 1 week: 1,000,600

• 1 week std dev of V: 40,000

If V_t is assumed normal, what is the 1 week 99% VaR?

Harvey J. Stein

Outlin

Revie

Types of VaR

VaR examp statistics

Estimation

Summar

Reference

Parametric VaR example 1

Solution:

Normal distribution:

• 1% tail is 2.326 standard deviations out.

$$VaR(V) = V_0 - (E[V_t] - 2.326 \text{ sd}[V_t])$$

$$= 1,000,000 - (1,000,600 - 2.326 \times 40,000)$$

$$= 92,454.$$

THUIT TO THE

Types of VaR

statistics

Estimatio

Summan

Reference

Parametric VaR formulas

More commonly, our portfolio is expressed as a sum of positions:

$$V_t = aS_{1,t} + bS_{2,t}$$

 $dS_i = \mu_i S_i dt + \sigma_i S_i dW_i$
 $dW_1 dW_2 = \rho dt$

Assume V_t is normal (can be a big assumption).

• Then distribution is determined by mean and variance.

At a horizon t:

$$\begin{split} E[V_t] &= aE[S_{1,t}] + bE[S_{2,t}] \\ E[V_t^2] &= E[a^2S_{1,t}^2 + b^2S_{2,t}^2 + 2abS_{1,t}S_{2,t}] \\ \text{var}[V_t] &= E[V_t^2] - E[V_t]^2 \\ \text{sd}[V_t] &= \sqrt{\text{var}[V_t]} \end{split}$$

Know $E[S_{1,t}^2]$ and $E[S_{2,t}^2]$. Just need $E[S_{1,t}S_{2,t}]$.

Outlin

Revie

IVIAI NCC IXIS

Types of VaR

VaR exampl statistics

Estimatio

Summary

Parametric VaR formulas

Computing $E[S_{1,t}S_{2,t}]$. We know its formula:

$$S_{1,t}S_{2,t} = S_{1,0}S_{2,0} \exp((\mu_1 + \mu_2 - (\sigma_1^2 + \sigma_2^2)/2)t + \sigma_1 W_{1,t} + \sigma_2 W_{2,t})$$

 $\sigma_1 W_{1,t} + \sigma_2 W_{2,t}$ is normal with mean zero, so variance is given by:

$$E[(\sigma_1 W_{1,t} + \sigma_2 W_{2,t})^2] = E[\sigma_1^2 W_{1,t}^2 + \sigma_2^2 W_{2,t}^2 + 2\sigma_1 \sigma_2 W_{1,t} W_{2,t}]$$

= $\sigma_1^2 t + \sigma_2^2 t + 2\sigma_1 \sigma_2 E[W_{1,t} W_{2,t}]$

We compute $E[W_{1,t}W_{2,t}]$ using Ito's formula:

$$dW_1W_2 = W_1dW_2 + W_2dW_1 + dW_1dW_2$$

= $W_1dW_2 + W_2dW_1 + \rho dt$

SO

$$W_{1,t}W_{2,t} = \int_0^t W_1 dW_2 + \int_0^t W_2 dW_1 + \int_0^t \rho ds$$
= martingale + martingale + \rho t

SO

$$E[W_{1,t}W_{2,t}] = \rho t$$

$$E[(\sigma_1 W_{1,t} + \sigma_2 W_{2,t})^2] = (\sigma_1^2 + \sigma_2^2 + 2\sigma_1 \sigma_2 \rho)t$$

....

Types of VaR

VaR examp

Estimatio

Summany

Reference

Parametric VaR formulas

We have:

$$\begin{split} S_{1,t}S_{2,t} &= S_{1,0}S_{2,0}e^{(\mu_1+\mu_2-(\sigma_1^2+\sigma_2^2)/2)t+\sigma_1W_{1,t}+\sigma_2W_{2,t}}\\ \sigma_1W_{1,t} &+ \sigma_2W_{2,t} \sim \mathcal{N}\left(0,(\sigma_1^2+\sigma_2^2+2\rho\sigma_1\sigma_2)t\right) \end{split}$$

So, S_1S_2 is lognormal and we know the variance of the Brownian motion part, so we can use our formulas for the mean of a lognormal (or just factor out the martingale part):

$$\begin{split} E[S_{1,t}S_{2,t}] &= S_{1,0}S_{2,0}e^{(\mu_1+\mu_2+\rho\sigma_1\sigma_2)t} \\ E[V_t] &= aS_{1,0}e^{\mu_1t} + bS_{2,0}e^{\mu_2t} \\ E[V_t^2] &= a^2S_{1,0}^2e^{(2\mu_1+\sigma_1^2)t} + b^2S_{2,0}^2e^{(2\mu_2+\sigma_2^2)t} \\ &+ 2abS_{1,0}S_{2,0}e^{(\mu_1+\mu_2+\rho\sigma_1\sigma_2)t} \\ \mathrm{var}[V_t] &= E[V_t^2] - E[V_t]^2 \end{split}$$

Types of VaR

VaR examp

Estimatio

Summary

Reference

Parametric VaR example 2

Example:

$$V_t = 300S_{1,t} + 200S_{2,t}$$

$$S_{1,0} = 95$$

$$S_{2,0} = 105$$

$$dS_1 = 0.05S_1dt + 0.3dW_1$$

$$dS_2 = 0.03S_2dt + 0.2dW_2$$

$$dW_1dW_2 = 0.25dt$$

What is 99% 1 week VaR of V?

Outlin

Revie

Types of VaR

statistics

Estimation

Reference

Parametric VaR example 2

Solution:

Let t = 5/252. We can compute the mean and variance of V_t :

$$V_0 = 300 \times 95 + 200 \times 105 = 49,500$$

$$E[aS_{1,t}] = 300 \times 95 \times e^{0.05t} = 28,528.29$$

$$E[bS_{2,t}] = 200 \times 105 \times e^{0.03t} = 21,012.50$$

$$E[V_t] = E[a \times S_{1,t}] + E[b \times S_{2,t}] = 49,540.79$$

$$E[a^2S_{1,t}^2] = 300^2 \times 95^2 \times e^{(2 \times 0.05 + 0.3^2)t} = 815,317,833$$

$$E[b^2S_{2,t}^2] = 441,875,869$$

$$E[S_{1,t}S_{2,t}] = 95 \times 105 \times e^{(0.05 + 0.03 + 0.25 \times 0.3 \times 0.2)t}$$

$$= 9994$$

$$E[V_t^2] = E[a^2S_{1,t}^2] + E[b^2S_{2,t}^2] + 2abE[S_{1,t}S_{2,t}] = 2,456,452,079$$

$$\text{var}[V_t] = E[V_t^2] - E[V_t]^2 = 2,162,051$$

$$\text{sd}[V_t] = 1,470.39$$

Types of VaR

VaR examp

Statistics

Estimatio

Summai

Reference

Parametric VaR example

Summarizing:

$$V_0 = 300 \times 95 + 200 \times 105 = 49,500$$

 $E[V_t] = 49,540.79$
 $sd[V_t] = 1,470.39$

Normal distribution:

• The 1% tail is 2.326 standard deviations out.

Assuming V_t is normal:

$$VaR[V] = V_0 - (E[V_t] - 2.326 sd[V_t])$$

= 3,380

Types of VaR

VaR examp statistics

Estimation

Summary

Reference

Monte Carlo VaR

Monte Carlo VaR – simulate the risk factors and use the pricers to directly compute the VaR:

- Not really a model or type a numerical method applied to the problem.
- Straight forward to compute.
- Correct for nonlinear payoffs.
- Very slow to get high accuracy.
- If positions and payoffs are linear and normally distributed, then the same as parametric VaR.

Outlin

Revie

Types of VaR

VaR examp statistics

Estimatio

Summary

References

Monte Carlo VaR Example

Same parameters as before.

Generate 10,000,000 samples of $W_{1,t}$ and $W_{2,t}$ (e.g. with MVNRND() in matlab or octave).

Compute:

$$\begin{split} V_t &= \mathsf{aS}_{1,t} + \mathsf{bS}_{2,t} \\ &= \mathsf{aS}_{1,0} e^{(\mu_1 - \sigma_1^2/2)t + \sigma_1 W_{1,t}} + \mathsf{bS}_{2,0} e^{(\mu_2 - \sigma_2^2/2)t + \sigma_2 W_{2,t}} \end{split}$$

Compute losses:

$$V_0 - V_t$$

Select (1-p)th biggest loss.

Get a var of approximately 3,270 – quite close to the normal approximation of 3,380.

....

Types of VaR

VaR examp statistics

Estimatio

Summary

Reference

Historical VaR

Historical VaR – assume risk factors follow actual historical distributions:

- Don't make assumptions about distribution of historical changes (i.e. – no fitting of historical changes to a model).
- Assume: Today's distribution of market changes = historical distribution of market changes.
- For each day of history, apply that day's change to today.

Simple, but

Apply the absolute change or relative change?

Outlin

Revie

....

Types of VaR

VaR example statistics

Estimatio

.

References

HVaR change choice

Absolute changes or relative changes for HVaR?

- Low history and low values irrelevant.
- High history and high values irrelevant.
- Low history and high current values absolute would yield tiny changes. Relative would yield huge changes.
- High history and low current values absolute causes huge changes. Relative would yield tiny changes.
- Absolute crossing zero another problem.

Still need to pick a model!

- If we think a risk factor has constant absolute volatility (ABM), then absolute changes would be most representative.
- If we think a risk factor has constant relative volatility (GBM), then relative changes would be most representative.

In practice:

- Rates and prices relative changes.
- Spreads absolute changes.
- Be careful about crossing zero.

Harvey J. Stein

Outlin

Review

Market Ris

Types of VaR

VaR examp

Estimation

Summary

Reference

HVaR Example

Current Apple price: 108.29. Historical daily prices:

ID	Apple	
1	116.52	
2	108.60	
3	101.21	
4	112.11	
5	111.25	
6	105.81	
7	109.67	
8	109.43	
9	105.08	
10	116.58	
11	108.29	

What is 1 day historical 90% VaR?

Review

Market Ri

Types of VaR

VaR examp

Summanı

Reference

HVaR Example

Current Apple price: 108.29.

Apply 1 day log returns to current price and find 10% worst loss:

ID	Apple	log rtn	historical samples
1	116.52		
2	108.60	-0.07039	100.93
3	101.21	-0.07047	100.92
4	112.11	0.10228	119.95
5	111.25	-0.00770	107.46
6	105.81	-0.05013	102.99
7	109.67	0.03583	112.24
8	109.43	-0.00219	108.05
9	105.08	-0.04056	103.99
10	116.58	0.10386	120.14
11	108.29	-0.07376	100.59

- Current price = $S_{t_{11}} = 108.29$
- Log rtn = $I_i = \log(S_{t_i}/S_{t_{i-1}})$.
- Historical sample = $S_{t_{11}} \exp(I_i) = S_{t_{11}}(S_{t_i}/S_{t_{i-1}})$.

90% VaR = worst loss out of 10 = 108.29 - 100.59 = 7.70

Market R

Types of Va

VaR example statistics

_

Estimation

Summar

Reference

VaR example statistics

- Review
- 2 Market Risk
- Types of VaR
- 4 VaR example statistics
- 6 Estimation
- **6** Summary

Harvey J. Stein

Outlin

Revie

IVIAI KEL IVI

Types of Va

VaR example statistics

Statistics

Example VaR

For one stock currently priced at 100 following GBM, 30% volatility (σ) , 7% return (μ) , 1 month horizon

10 trials, 100 paths, daily steps. Sample mean and SD have substantial variance when using 100 samples, as do the VaRs.

mean	SD	99% VaR	98% VaR	97% VaR	96% VaR
99.6109	9.1659	21.1383	20.8379	16.7244	14.7811
99.9691	8.8731	22.2433	17.3749	16.9490	15.3527
100.5667	8.8222	17.4592	16.0440	15.1173	14.1633
100.4893	8.3405	19.9404	14.1496	13.7077	11.6792
100.5707	9.2033	16.3801	15.8131	13.0964	13.0946
100.5740	8.1757	16.8400	15.6773	14.4420	12.8950
99.6381	9.1630	19.9573	19.3267	17.7674	16.6342
100.2372	9.3863	18.4765	17.0683	16.9515	16.8807
100.7004	7.7344	17.7944	16.6895	14.2739	13.3346
100.4341	9.0694	21.6419	21.4432	18.1027	17.3739

Harvey J. Stein

Outlin

Review

Types of Va

VaR example statistics

Estimatio

Summary

Reference

Example ES

For one stock currently priced at 100 following GBM, 30% volatility (σ) , 7% return (μ) , 1 month horizon

10 trials, 100 paths, daily steps. ESs also have substantial variance.

	mean	SD	99% ES	98% ES	97% ES	96% ES
99	.6109	9.1659	21.1383	20.9881	19.5668	18.3704
99	.9691	8.8731	22.2433	19.8091	18.8557	17.9800
100	.5667	8.8222	17.4592	16.7516	16.2068	15.6959
100	.4893	8.3405	19.9404	17.0450	15.9326	14.8692
100	.5707	9.2033	16.3801	16.0966	15.0965	14.5960
100	.5740	8.1757	16.8400	16.2586	15.6531	14.9636
99	.6381	9.1630	19.9573	19.6420	19.0171	18.4214
100	.2372	9.3863	18.4765	17.7724	17.4988	17.3443
100	.7004	7.7344	17.7944	17.2420	16.2526	15.5231
100	.4341	9.0694	21.6419	21.5426	20.3960	19.6404

Market Risi

Types of Va

VaR examp

Estimation

Summan

Reference

Estimation

1 Review

- 2 Market Risk
- 3 Types of VaR
- 4 VaR example statistics
- **5** Estimation
- **6** Summary

Harvey J. Stein

Outlin

Market Kis

VaR examp

statistics

Estimation

Summary

Referenc

What's the model?

The biggest issue with what we've done so far:

- Where does the model come from?
- How do we know the parameters are right?

We need to estimate the model.

VaP ovamn

statistics

Estimation

Summary

Reference

Stock paths

History:

- One historical path for each risk factor.
- How do we determine overall behavior?

Statistics:

- Compute mean and variance.
- Of prices, or returns or what?
- What do they mean and how do we use them to project?
- Is past performance indicative of future returns?

We need a model.

Types of Va

VaR example

LStillatio

Summary

Reference

Mean estimation is hard:

- Mean return is essentially difference of end points.
- High uncertainty on a small number.
- Often assume mean = 0 when simulating.
- Assuming mean = 0 will throw off correlation calculations.

Consider:

- N daily samples.
- S_i , i = N is today, i = N 1 is yesterday, etc.
- Arithmetic returns: $a_i = S_{i+1} S_i$.
- Mean daily return = $\frac{1}{N} \sum a_i = \frac{S_N S_1}{N}$.
- Taking more samples in a time period does not improve confidence!
- Confidence only increases by taking a longer window.

V-D ----

statistics

Estimatio

Summary

Reference

Volatility

Variance estimation is easier:

- BM, all paths have the same quadratic variation.
- QV accrues as $\sigma^2 T$.
- Confidence is a function of the number of points more points, more confidence.

Estimates of variance are much better — sample variance works well, but there are issues.

Outlin

Market

Types of W

VaR example

statistics

LStilliati

Summary

References

Volatility estimation issues

Estimating volatility

- Still need substantial amounts of data.
- How much history to use?
 - Too much history variance is not representative of current market (too old).
 - Too little history variance is not representative of current market (too noisy).

Need to answer the questions:

- How long before a change in the markets is incorporated into estimates?
- How quickly should VaR adapt to the markets?

\/- D -----

statistics

.

Reference

Estimating Volatility

Volatility estimation is based on the sample variance:

- N daily samples
- S_i , i = N is today, i = N 1 is yesterday, etc.
- Arithmetic returns: $a_i = S_{i+1} S_i$
- Log returns: $I_i = \log(S_{i+1}/S_i)$
- Sample arithmetic return mean: $\bar{a} = \frac{S_N S_1}{N}$
- Sample SD: $\sqrt{\frac{1}{N}} \sum a_i^2 (\bar{a})^2$

Estimatio

Summary

References

Weighted variance

Consider weighting history so that recent history counts more:

- Adapts faster to current markets.
- Similar to using less data makes estimates noisier.

Weighted variance:

- Weights: w_i , with $w = \sum w_i$.
- Probabilities $p_i = w_i/w$.
- Arithmetic returns: $a_i = (S_{i+1} S_i)$.
- Sample weighted arithmetic return mean: $\bar{a} = \sum p_i a_i$.
- Sample SD: $\sqrt{\sum p_i a_i^2 (\bar{a})^2}$.

V-D ----

VaR examp statistics

LStilliati

Summary

Reference

Exponential weighting

One commonly used weighting scheme is exponential weighting:

- Daily updates are easier, which was important before computers.
- Used for maintaining vol estimates for bad quote detection in ticker plants.

Exponential weighting:

- On day N, weight $a_N = S_N S_{N-1}$ by 1, a_{N-1} by λ , a_{N-2} by λ^2 , ...
- Total weight $w = \sum_{i=0}^{\infty} \lambda^i = 1/(1-\lambda)$.
- Mean m_N estimated on day N: $m_N = (1 \lambda) \sum_{i=0}^{\infty} \lambda^i a_{N-i}$.
- Mean recurrence: $m_N = (1 \lambda)a_N + \lambda m_{N-1}$.
- 2nd moment recurrence: $r_N = (1 \lambda)a_N^2 + \lambda r_{N-1}$.
- Variance: $v_N = r_N m_N^2$.
- SD: $\sigma_N = \sqrt{v_N}$.

...

statistics

c.....

Reference

Correlation

Correlation is worse.

Consider 600 stocks, 1 year of daily data.

Appears easy - dot product of returns. But:

- 151,200 individual price observations.
- 179,700 individual correlations to solve for.

Not enough data - correlations are underspecified!

Even with 200 stocks:

- 50,400 individual price observations.
- 19,900 individual correlations to solve for.
- 2.5 data points for each correlation how accurate can that be?

Harvey J. Stein

Outline

revie

VaR examp

statistics

Estimation

Summary

References

Correlation tweaks

Fixes for correlations:

- Longer data series.
- Smoothing first:
 - Correlations of averages.
 - Filtering.
 - SSA.

VaR examp

statistics

Summan

Referenc

Complications

Complications

- What exactly should we compute the vol of?
 - Prices?
 - Changes in prices?
 - Log of price changes?
 - Something else?
- For that mater, is vol constant? No...
- Why exactly are we computing vol anyway?

Still haven't specified the model.

VaR examp

statistics

LStilliatio

Summary

Reference

Models

Easiest assumption:

- Nonnegative things follow GBM.
- Everything else follows ABM.
- Fit each model to historical data can derive based on statistics and calculations.
- Correlation is between BM drivers.

Once model is assumed and fit to data, we can proceed by:

- Estimating based on factors and assumptions (e.g. parametric VaR).
- Simulating changes on model and actual pricers (e.g. Monte Carlo VaR).

.....

IVIAI NCC I (ISI

VaR examp

statistics

Estimatio

Summarv

References

Fitting

How exactly do we fit GBM S to history? We need to relate the parameters of the model to statistics of the historical data.

$$\begin{split} dS &= \mu S dt + \sigma S dW \\ S_T &= S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W_T} \\ \log(S_{t_2}/S_{t_1}) &= \left(\mu - \frac{\sigma^2}{2}\right)(t_2 - t_1) + \sigma(W_{t_2} - W_{t_1}) \end{split}$$

With sample mean and variance of daily log returns being $\bar{\mu}$ and $\bar{\sigma}^2$:

$$ar{\mu} pprox E[\log(S_{t_2}/S_{t_1})] = \left(\mu - rac{\sigma^2}{2}
ight)(t_2 - t_1)$$
 $ar{\sigma}^2 pprox ext{var}[\log(S_{t_2}/S_{t_1})] = \sigma^2(t_2 - t_1)$

Solving for μ and σ yields:

$$t_2 - t_1 \approx 1/252$$

$$\sigma \approx \bar{\sigma}/\sqrt{t_2 - t_1} \approx \bar{\sigma}\sqrt{252}$$

$$\mu \approx \bar{\mu}/(t_2 - t_1) + \frac{\sigma^2}{2} \approx 252\bar{\mu} + \frac{\sigma^2}{2}$$

Estimation

Example 1

Consider the following weekly history of a stock:

Date	Stock	
1	116.52	
2	108.60	
3	101.21	
4	112.11	
5	111.25	
6	105.81	
7	109.67	
8	109.43	
9	105.08	
10	116.58	
11	108.29	

Fit GBM to this data.

Outlin

reviev

statistics

Estimation

Summary

Reference

Example 1 – unweighted

To fit GBM, we need the sample mean and variance of the log returns:

Date	Stock	Log rtn	(Log rtn) ²
11	108.29	-7.3765E-02	5.4413E-03
10	116.58	1.0386E-01	1.0786E-02
9	105.08	-4.0563E-02	1.6454E-03
8	109.43	-2.1908E-03	4.7995E-06
7	109.67	3.5831E-02	1.2838E-03
6	105.81	-5.0135E-02	2.5135E-03
5	111.25	-7.7006E-03	5.9299E-05
4	112.11	1.0228E-01	1.0462E-02
3	101.21	-7.0474E-02	4.9666E-03
2	108.60	-7.0392E-02	4.9550E-03
	Average	-0.00733	0.00423

- Log rtn = $\log(S_{t_i}/S_{t_{i-1}})$.
- dt = 5/252.
- $\bar{\mu} = \text{avg of log rtns} = -0.00733$.
- $\overline{\text{var}} = \text{avg of sq of log rtns}$ sq of avg = 0.00416.
- $\bar{\sigma} = \sqrt{\overline{\text{var}}} = 0.06448.$
- $\sigma = \bar{\sigma} / \sqrt{dt} = 0.4578$.
- $\mu = \bar{\mu}/dt + \sigma^2/2 = -0.2644$.

Outlin

Revie

Types of V

VaR examp statistics

Estimatio

Summary

Reference

Example 1 - weighted

GBM with geometric weight, $\lambda = .95$.

Date	Stock	Log rtn	(Log rtn) ²	weight	wgt In rtn	wgt (In rtn) ²
11	108.29	-7.3765E-02	5.4413E-03	1.0000E+00	-9.1916E-03	6.7802E-04
10	116.58	1.0386E-01	1.0786E-02	9.5000E-01	1.2294E-02	1.2768E-03
9	105.08	-4.0563E-02	1.6454E-03	9.0250E-01	-4.5616E-03	1.8503E-04
8	109.43	-2.1908E-03	4.7995E-06	8.5738E-01	-2.3405E-04	5.1275E-07
7	109.67	3.5831E-02	1.2838E-03	8.1451E-01	3.6366E-03	1.3030E-04
6	105.81	-5.0135E-02	2.5135E-03	7.7378E-01	-4.8339E-03	2.4235E-04
5	111.25	-7.7006E-03	5.9299E-05	7.3509E-01	-7.0535E-04	5.4317E-06
4	112.11	1.0228E-01	1.0462E-02	6.9834E-01	8.9004E-03	9.1036E-04
3	101.21	-7.0474E-02	4.9666E-03	6.6342E-01	-5.8258E-03	4.1057E-04
2	108.60	-7.0392E-02	4.9550E-03	6.3025E-01	-5.5281E-03	3.8913E-04
1	116.52					
	Sum				-0.00605	0.00423
	•	•		•		•

- Log rtn = $I_i = \log(S_{t_i}/S_{t_{i-1}})$.
- Weighted log rtn = $p_i l_i$.
- $p_i = w_i/(\sum w_i)$.
- $\bar{\mu}$ = wgt avg of log rtns = $\sum p_i l_i = -0.00605$.
- $\overline{\text{var}} = \text{wgt avg of sq of log rtns}$ sq of wgt avg = 0.00419.
- $\bar{\sigma} = \sqrt{\overline{\text{var}}} = 0.06474$.
- $\sigma = \bar{\sigma}\sqrt{252} = 0.4596$.
- $\mu = 252\bar{\mu} + \sigma^2/2 = -0.1993$.

Outlin

Market

Types of Va

VaR examp

Estimatio

Summary

Reference

VaR computation complications:

- Intermediate events.
- Formulas become impossible.
- Model selection and parameter estimation:
 - Mean hard to estimate.
 - Variance is easier.
 - Weighted averaging is useful.
 - Use GBM for nonnegative risk factors.
 - Use ABM for everything else.
 - Maybe factor models.

VaR examp

statistics

Estimatio

Summary

References

Summary

Types of VaR:

- Parametric Formulas for approximations.
- Historical Monte Carlo with historical perturbations. applied
- Monte Carlo Fit models to risk factors and calculate VaR by simulation.

Still to come:

- Credit risk.
- Counterparty risk.
- Regulation.
- Case studies.
- Guest lectures.

Harvey J. Stein

Outline

Market Ris

VaR examp

statistics

Estimation

Summary

References

References I

- [Che13] Ren-Raw Chen. Global Risk Management: A Quantitative Guide. Global Social Science Institute, 2013. URL: http://www.bnet.fordham.edu/rchen/grm.pdf.
- [Ste01] J. Michael Steele. Stochastic Calculus And Financial Applications. Vol. 45. Stochastic Modelling and Applied Probability. Springer-Verlag, 2001.