G3 de Álgebra Linear I-2012.2

Data: 1 de Dezembro de 2012.

Nome:	Matrícula:
Assinatura:	Turma:
	1 41 1114

Duração: 1 hora 50 minutos

Ques.	1.a	1.b	1.c	1.d	1.e	1.f	2.a	2. b	2.c	2.d	2.e	2.f	soma
Valor	1.5	0.5	0.5	1.0	0.5	0.5	2.0	0.5	1.0	1.0	0.5	0.5	10.0
Nota													

Instruções – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- Verifique, revise e confira cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- O desenvolvimento de cada questão deve estar a seguir **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- \bullet J<u>ustifique cuidadosamente</u> todas as respostas de forma completa, ordenada e coerente.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

fonte: mini-Aurélio

1) Considere a transformação linear $T:\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é :

$$[T]_{\varepsilon} = \begin{pmatrix} 31 & 2 & 5 \\ 2 & 34 & 10 \\ 5 & 10 & 55 \end{pmatrix} .$$

Sabendo que todos os vetores do plano

$$x + 2y + 5z = 0$$

são autovetores de T:

- a) Determine todos os autovalores de T.
- **b)** Calcule o determinante de $[T]_{\varepsilon}$.
- c) Determine uma base ortonormal β de \mathbb{R}^3 formada por autovetores de T.
- d) Determine explicitamente a matriz M de mudança de base da base canônica para a base β . Determine a primeira coordenada do vetor $\vec{u} = (1, 2, 0)$ (este vetor está escrito na base canônica) na base β .
- e) Determine se existe uma base γ onde a matriz de T nessa base seja

$$[T]_{\gamma} = \begin{pmatrix} 31 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 55 \end{pmatrix} .$$

f) Determine se existe uma base η onde a matriz de T nessa base seja

$$[T]_{\eta} = \begin{pmatrix} 60 & 1 & 0 \\ 1 & 34 & 2 \\ 4 & 1 & 5 \end{pmatrix} .$$

Observação: para resolver esta questão não é necessário fazer cálculos complicados e usar o polinômio característico. Obviamente, v. pode fazer esses cálculos.

Resposta:

2) Considere o plano

$$\pi: x - z = 0$$

e as transformações lineares $T:\mathbb{R}^3\to\mathbb{R}^3$ espelhamento no plano π e $P:\mathbb{R}^3\to\mathbb{R}^3$ projeção ortogonal no plano π . Lembre que

- $T(\bar{u}) = \bar{u}$ se \bar{u} pertence a π e $T(\bar{w}) = -\bar{w}$ se \bar{w} é perpendicular a π ,
- $P(\bar{u}) = \bar{u}$ se \bar{u} pertence a π e $P(\bar{w}) = \bar{0}$ se \bar{w} é perpendicular a π .

Denotaremos por $[T]_{\varepsilon}$ e $[P]_{\varepsilon}$ as matrizes de T e P na base canônica, respetivamente.

a) Determine explicitamente matrizes S, S^{-1}, D e E tais que

$$[T]_{\varepsilon} = S D S^{-1}$$
 e $[P]_{\varepsilon} = S E S^{-1}$,

onde S é ortogonal e D e E são diagonais.

- b) Determine a primeira coluna de $[T]_{\varepsilon}$ na base canônica.
- c) Determine a terceira coluna de $[P]_{\varepsilon}$ na base canônica.
- d) Encontre, se possível, uma base β tal que

$$[T]_{\beta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{array}\right) .$$

- e) Determine os autovalores e o traço da transformação linear $T^8 3T^2$.
- f) Determine as matrizes de $[T]_{\varepsilon}^{100}$ e $[T]_{\varepsilon}^{101}$ na base canônica.

Resposta: