$$E_{\text{thermal}} = \frac{3NkT}{2}$$

$$E_{\text{thermal}} = \frac{3nRT}{2}$$

'thermal

$$l = l_0(1 + \alpha \Delta T)$$

$$R_T = R_{ref}[1 + \alpha(T - T_{ref})]$$

$$R_T = 100 \Omega[1 + (0.00392)(35^{\circ} \text{ C} - 0^{\circ} \text{ C})]$$

$$R_T = 100 \,\Omega[1 + 0.1372]$$

$$R_T = 100 \Omega[1.1372]$$

 $R_T = 113.72 \,\Omega$

$$R_T = R_{ref}(1 + AT + BT^2 - 100CT^3 + CT^4)$$

$$R_T = R_{ref}(1 + AT + BT^2)$$

$$V_{RTD} = V_{\text{meter(A)}} - V_{\text{meter(B)}}$$

$$V_{RTD} + V_{error}$$

$$V_{error} + V_{RTD} + V_{error}$$

Incorrect way to use a 3-wire transmitter on a 3-wire RTD

Correct way to use a 4-wire transmitter on a 3-wire RTD Loop pwr 4-wire cable

$$P = I^2 R$$

$$V_{meter} = V_{J1} - V_{J2}$$

$$V_{J1}-V_{J2}$$

$$V_{meter} = V_{J1} - V_{J2}$$

Type	Positive wire	Negative wire	Plug	Temp. range
	characteristic	characteristic		
Т	Copper (blue)	Constantan (red)	Blue	-300 to 700 $^o\mathrm{F}$
	$yellow\ colored$	silver colored		
J	Iron (white)	Constantan (red)	Black	32 to 1400 °F
	$magnetic,\ rusty?$	$non ext{-}magnetic$		
Е	Chromel (violet)	Constantan (red)	Violet	32 to 1600 °F
	$shiny\ finish$	$dull\ finish$		
K	Chromel (yellow)	Alumel (red)	Yellow	32 to 2300 °F
	$non ext{-}magnetic$	magnetic		
N	Nicrosil (orange)	Nisil (red)	Orange	32 to 2300 °F
S	Pt90% - Rh10% (black)	Platinum (red)	Green	32 to 2700 °F
В	Pt70% - Rh30% (grey)	Pt94% - Rh6% (red)	Grey	32 to 3380 °F

$$V_{J1} = V_{J2} + V_{meter}$$

$$V_{rjc} = V_{J2}$$

$$V_{meter} = V_{J1} - V_{J2} + V_{rjc}$$

$$V_{meter} = V_{J1} + 0 \qquad (\text{If } V_{rjc} = V_{J2})$$

$$V_{meter} = V_{J1}$$

Example values:

$$T_{J1}$$
 = 570 °F (type J) V_{J1} = 16.266 mV
 T_{J2} = 69 °F (type J) V_{J2} = 1.048 mV V_{rjc} = 1.048 mV V_{meter} = V_{J1} - V_{J2} + V_{rjc} V_{meter} = 16.266 mV - 1.048 mV + 1.048 mV V_{meter} = 16.266 mV (equivalent to 570 °F)

$$V_{meter} = V_{J1} + 0$$

$$V_{input} = V_{J1} - V_{J2}$$

Compensated total = $V_{input} + V_{rjc}$

Compensated total = $(V_{J1} - V_{J2}) + V_{rjc}$

Compensated total = V_{J1} - $V_{J2} + V_{rjc}$ Compensated total = $V_{I1} + 0$

Compensated total =

$$V_{meter} = 0 + V_{rjc}$$

$$V_{meter} = V_{rjc}$$

SOURCE

TC Type S

2650.0°F

Int. Ref. 70.8°F ITS-90 14.910mV=

dl

Two designs of non-contact pyrometer

Target temperature (K)	Millivolt output
4144 K	34.8 mV
3866 K	26.6 mV
3589 K	19.7 mV
3311 K	14.0 mV
3033 K	9.9 mV
$2755~\mathrm{K}$	6.6 mV
2478 K	4.2 mV
2200 K	2.5 mV
1922 K	1.4 mV
1644 K	$0.7~\mathrm{mV}$

$$\frac{4144 \text{ K}}{3033 \text{ K}} = 1.3663$$

$$\left(\frac{4144 \text{ K}}{3033 \text{ K}}\right)^4 = 1.3663^4 = 3.485$$

$$(3.485)(9.9 \text{ mV}) \approx 34.8 \text{ mV}$$

Relative power received at sensors 100% 25% 11.1% Point-source of radiation

$$A = \frac{\pi D^2}{4}$$

$$\frac{1}{2\tan\left(\frac{\theta}{2}\right)} \qquad \theta = 2\tan^{-1}\theta$$

 $\sqrt{2D}$

Distance	Angle
ratio	(approximate)
1:1	53°
2:1	30^{o}
3:1	19°
5:1	11°
7:1	80
10:1	6°

$$\tan\left(\frac{\theta}{2}\right) = \frac{d/2}{D} = \frac{d}{2D}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{d}{2D}$$

$$\frac{D}{d} = \frac{1}{2\tan\left(\frac{\theta}{2}\right)}$$

tan

tan

2D

.an

2 tan

$$PV = nRT$$

$$\frac{dQ}{dt} = e\sigma AT^4$$