COMPUTER VISION HOMEWORK 1

NAME: RAJEEV KUMAR JEEVAGAN

SUBMISSION DATE: 09/29/2011

COLLOBORATED FOR EDGE DETECTION WITH PRAVEEN PICHAI

Question 2

J1 =

Columns 1 through 8

0.0163	0.0788	0.2263	0.3950	0.4825	0.4925	0.4750	0.4313
0.0788	0.1800	0.3275	0.4375	0.4688	0.4387	0.3775	0.2962
0.2262	0.3275	0.4238	0.4463	0.4100	0.3287	0.2188	0.1250
0.3937	0.4313	0.4363	0.4175	0.4075	0.3325	0.1837	0.0713
0.4688	0.4275	0.3537	0.3762	0.5213	0.5563	0.4125	0.2462
0.4212	0.3212	0.2100	0.2725	0.5337	0.7338	0.7275	0.5900
0.2737	0.1712	0.0800	0.1238	0.3438	0.6400	0.8425	0.8625
0.1213	0.0625	0.0175	0.0313	0.1575	0.4525	0.7875	0.9525

Columns 9 through 10

0.3700 0.3325

0.2100 0.1600

0.0625 0.0313

0.0225 0.0038

0.1250 0.0625

0.4200 0.3200

0.7750 0.7125

0.9650 0.9525

Columns 1 through 8

0.0163	0.0788	0.2263	0.3950	0.4825	0.4925	0.4750	0.4312
0.0788	0.1800	0.3275	0.4375	0.4687	0.4387	0.3775	0.2962
0.2263	0.3275	0.4237	0.4462	0.4100	0.3287	0.2188	0.1250
0.3937	0.4312	0.4362	0.4175	0.4075	0.3325	0.1838	0.0713
0.4687	0.4275	0.3538	0.3763	0.5212	0.5562	0.4125	0.2463
0.4212	0.3212	0.2100	0.2725	0.5337	0.7337	0.7275	0.5900
0.2738	0.1713	0.0800	0.1238	0.3438	0.6400	0.8425	0.8625
0.1213	0.0625	0.0175	0.0313	0.1575	0.4525	0.7875	0.9525

Columns 9 through 10

0.3700 0.3325

0.2100 0.1600

0.0625 0.0313

0.0225 0.0038

0.1250 0.0625

0.4200 0.3200

0.7750 0.7125

0.9650 0.9525

Verified J1=J2

$$G_{X} = \begin{bmatrix} 0.05 & 0.25 & 0.4 & 0.25 & 0.05 \end{bmatrix}$$

$$G_{Y} = \begin{bmatrix} 0.05 & 0.25 & 0.4 & 0.25 & 0.05 \end{bmatrix}$$

$$0.25 & 0.4 & 0.25 & 0.4 & 0.25 & 0.05 \end{bmatrix}$$

Some larly for vertical direction convolution.

I & Gry

egenerally convolving a vector of singe in with another vector of size n will give output of size m+n-1. Here after the output is so computed it is

tourcated to the image singe I

Each pixel ocequiver 5 multiplications 4 4 addition for convolving with Gx.

No. of pixels in I = 8×10 = 80 No. of multiplications for IDGx = 30x5 No. of additions for ID Gx = 80×4 For J, No. of mults: 400+400 = 800

Since convolve foist in x and they in Y dividen

No. of additions = 320+320 = 640

Note: This if the O/p shud be of same size as i/p.

For J2

Gx & Gy = 5 x 5 matrix

Each element with every element of the other Now each time this \$5.5x5 matrix has to be multiplied centred around pixel of interest

No of mults = 25 x 80 = 2000 No of additions = 24 x 80 = 1920

Total nult 5 = 2025 Total additions = 1920

Question 3

lx =

Columns 1 through 8

0.0625	0.1475	0.1687	0.0875	0.0100	-0.0175	-0.0438	-0.0612	
0.1013	0.1475	0.1100	0.0313	-0.0300	-0.0612	-0.0812	-0.0862	
0.1012	0.0963	0.0225	-0.0363	-0.0812	-0.1100	-0.0938	-0.0625	
0.0375	0.0050	-0.0187	-0.0100	-0.0750	-0.1487	-0.1125	-0.0488	
-0.0413	-0.0737	0.0225	0.1450	0.0350	-0.1437	-0.1663	-0.1213	
-0.1000	-0.1112	0.0625	0.2612	0.2000	-0.0062	-0.1375	-0.1700	
-0.1025	-0.0913	0.0437	0.2200	0.2962	0.2025	0.0200	-0.0875	
-0.0588	-0.0450	0.0137	0.1263	0.2950	0.3350	0.1650	0.0125	

Columns 9 through 10

-0.0375 -0.3325

-0.0500 -0.1600

-0.0312 -0.0313

-0.0188 -0.0038

-0.0625 -0.0625

-0.1000 -0.3200

-0.0625 -0.7125

-0.0125 -0.9525

Columns 1 through 8

 0.0625
 0.1013
 0.1012
 0.0425
 -0.0137
 -0.0538
 -0.0975
 -0.1350

 0.1475
 0.1475
 0.0963
 0.0088
 -0.0587
 -0.1100
 -0.1587
 -0.1712

 0.1675
 0.1038
 0.0125
 -0.0287
 -0.0025
 0.0038
 -0.0350
 -0.0537

 0.0750
 -0.0038
 -0.0825
 -0.0412
 0.1137
 0.2237
 0.2288
 0.1750

 -0.0475
 -0.1062
 -0.1437
 -0.1038
 0.0125
 0.1775
 0.3150
 0.3437

 -0.1475
 -0.1500
 -0.1300
 -0.1488
 -0.1900
 -0.0938
 0.1150
 0.2725

 -0.1525
 -0.1088
 -0.0625
 -0.0925
 -0.1863
 -0.1875
 -0.0550
 0.0900

 -0.1213
 -0.0625
 -0.0175
 -0.0313
 -0.1575
 -0.4525
 -0.7875
 -0.9525

Columns 9 through 10

- -0.1600 -0.1725
- -0.1475 -0.1288
- -0.0400 -0.0275
- 0.1025 0.0588
- 0.2950 0.2575
- 0.3550 0.3925
- 0.1900 0.2400
- -0.9650 -0.9525

Magnitude of image gradient

lg =

Columns 1 through 8

0.0078	0.0320	0.0387	0.0095	0.0003	0.0032	0.0114	0.0220
0.0320	0.0435	0.0214	0.0011	0.0044	0.0159	0.0318	0.0368
0.0383	0.0200	0.0007	0.0021	0.0066	0.0121	0.0100	0.0068
0.0070	0.0000	0.0072	0.0018	0.0186	0.0722	0.0650	0.0330
0.0040	0.0167	0.0212	0.0318	0.0014	0.0522	0.1269	0.1329
0.0318	0.0349	0.0208	0.0904	0.0761	0.0088	0.0321	0.1032
0.0338	0.0202	0.0058	0.0570	0.1225	0.0762	0.0034	0.0158
0.0182	0.0059	0.0005	0.0169	0.1118	0.3170	0.6474	0.9074

Columns 9 through 10

0.0270 0.1403

0.0243 0.0422

0.0026 0.0017

0.0109 0.0035

0.0909 0.0702

0.1360 0.2565

0.0400 0.5653

0.9314 1.8145