- 1. 求函数 $y = \frac{3x-1}{x+1}$ 的值域.
- 2. 求函数 $y = \frac{4x+3}{2x-1}$ 的值域.
- 3. 求函数 $y = \frac{x^2 1}{x^2 + 2}$ 的值域.
- 4. 求函数 $y = \frac{x^2 x + 1}{2x^2 2x + 3}$ 的值域.
- 5. 求函数 $y = \frac{x^2 + 4x + 3}{x^2 + x 6}$ 的值域.
- 6. 若实数 x, y 满足 $x^2 + 4y^2 = 4x$, 求 $S = x^2 + y^2$ 的值域.
- 7. 已知函数 $y = f(x) = x^2 + ax + 3$ 在区间 $x \in [-1, 1]$ 上的最小值为-3, 求实数 a 的值.
- 8. 求函数 $y = 3x^2 12x + 18\sqrt{4x x^2} 23$ 的值域.
- 9. 求函数 y = |x-2| |x+1| 的值域.
- 10. <math><math><math>f $(x-1) = 2x^2 + 1, <math>$ <math><math>f(x).
- 11. 已知定义域为 R 的函数 f(x) 满足: ① $f(x+y) = f(x) \cdot f(y)$ 对任何实数 x, y 都成立; ② 存在实数 x_1, x_2 , 使 $f(x_1) \neq f(x_2)$. 求证: (1)f(0) = 1. (2)f(x) > 0. 【训练题】(一) 映射
- 12. 设映射 $f: X \to Y$, 其中 X, Y 是非空集合, 则下列语句中正确的是 ().

A. Y 中每一个元素必有 B. Y 中的各元素只能有 C. X 中的不向元素在 Y D. Y 中至少存在一个元 原像 中的像也不同 \$, 它有原像

13. 集合 $M = \{a, b, c\}$ 与 $P = \{x, y, z\}$ 之间建立起四种对应关系 (如图),则下列结论中正确的是 ().

A. 只有 f_2, f_3 是从 M 到 B. 只有 f_2, f_4 是从 M 到 C. 只有 f_3, f_4 是从 M 到 D. f_1, f_2, f_3, f_4 都是从 M P 的映射 P 的映射 P 的映射 P 的映射

14. 设 (x,y) 在映射 f 下的像是 $(\frac{x+y}{2},\frac{x-y}{2})$,则在 f 下 (-5,2) 的原像是 ().

A. (-10,4) B. (-3,-7) C. (-6,-4) D. $(-\frac{3}{2},-\frac{7}{2})$

15. 在给定的映射 $f:(x,y)\to (2x+y,xy)(x,y\in {\bf R})$ 下, 点 $(\frac{1}{6},-\frac{1}{6})$ 的原像是 ().

A. $(\frac{1}{6}, -\frac{1}{36})$ B. $(\frac{1}{3}, -\frac{1}{2})$ $\stackrel{\bigcirc}{\boxtimes}$ $(-\frac{1}{4}, \frac{2}{3})$ C. $(\frac{1}{36}, -\frac{1}{6})$ D. $(\frac{1}{2}, -\frac{1}{3})$ $\stackrel{\bigcirc}{\boxtimes}$ $(-\frac{2}{3}, \frac{1}{4})$

16. 已知集合 $M = \{x | 0 \le x \le 6\}$, $P = \{0 \le y \le 3\}$, 则下列对应关系中, 不能行作从 M 到 P 的映射的是 ().

A. $f: x \to y = \frac{1}{2}x$ B. $f: x \to y = \frac{1}{3}x$ C. $f: x \to y = x$ D. $f: x \to y = \frac{1}{6}x$

17. 设 M = R, 从 M 到 P 的映射 $f: x \to y = \frac{1}{x^2 + 1}$, 则像集 P 为 ().

A. $\{y|y \in \mathbf{R}\}$ B. $\{y|y \in \mathbf{R}\}$ C. $\{y|0 \le y \le 2\}$ D. $\{y|0 < y \le 1\}$

18.	若映射 $f:A\to B$ 的像都	集是 Y , 原像的集合是 X , !	则 X 与 A 的关系是 $_{___}$, Y 和 B 的关系
	是			
19.	(1) 若 (x,y) 在映射 f 下的	引像是 $(2x - y, x + 2y)$, 则 (-1,2) 在 f 下的原像是	(2) 已知 (a,b)
), 则 (2,3) 的原像是		
		† ,则 M 重的元素 1 在 R 中	的原像是	的元素 $t(t>0)$ 在 R 中
	的原像是			
20.	(1) 从集合 $\{a\}$ 到 $\{b,c\}$ 的	不同映射有个. (2) 从集合 {1	,2} 到 {5,6} 的不同映射有4	> .
21.		$=2n+1, n \in \mathbf{Z}\}, C=R, \; \underline{\mathbb{H}}$	从 A 到 B 的映射是 $x \to 2x$	-1, 从 B 到 C 的映射
	是 $x \to \frac{1}{3x+1}$, 则从 A 到 α	C 的映射是		
22.	f 是集合 $X = \{a, b, c\}$ 到集	合 $Y = \{d, e\}$ 的一个映射,原	则满足映射条件的" f "共有().
	A. 5 个	B. 6 个	C. 7 个	D. 8 个
23.	若 $f: y = 3x + 1$ 是从集合	$A = \{1, 2, 3, k\}$ 到集合 $B = \{1, 2, 3, k\}$	$\{4,7,a^4,a^2+3a\}$ 的一个映象	f, 求自然数 a,k 的值及
	集合 A,B. (二) 函数			
24.	函数 $f(x) = \frac{\sqrt{x^2 - 5x + 6}}{x - 2}$	的定义域是 ().		
	A. $\{x 2 < x < 3\}$	B. $\{x x < 2x > 3\}$	C. $\{x x \le 2x \ge 3\}$	D. $\{x x < 2x \ge 3\}$
25.	若函数 $f(x)$ 的定义域是 $[-$	[1,1], 则函数 $f(x+1)$ 的定义	以 域是 ().	
	A. [-1, 1]	B. [0, 2]	C. $[-2,0]$	D. [0, 1]
26.	在"① $y = x$ 与 $y = \sqrt{x^2}$,	② $y = \sqrt{x^2} - y = (\sqrt{x})^2$,		$y = x - y = \sqrt{x^2}, \ 5$
	$y=x^0$ 与 $y=1$ "这五组函数	数中, 表示同一函数的组数是	().	
	A. 0	B. 1	C. 2	D. 3
27.	函数 $y = -x^2 - 2x + 3(-5)$	$\leq x \leq 0$) 的值域是 ().		
	A. $(-\infty, 4]$	B. [3, 12]	C. $[-12, 4]$	D. [4, 12]
28.	已知镭经过 100 年后剩下原		_	
	A. $y = (\frac{0.9576}{100})^x$	B. $y = (0.9576)^{100x}$	C. $y = (0.9576) \frac{x}{100}$	D. $y = 1 - \frac{1}{x}$
	100			$(1 - 0.9576) \frac{x}{100}$
29.	函数 $y = x + \frac{ x }{x}$ 的图象是	().		
30.	求下列函数的定义域: (1)3	$y = \sqrt{1 - x^2} + \sqrt{x + 1}$:	$(2)y = \frac{1}{\sqrt{2}}$	=: (3) $y =$
	$\frac{x+5}{2(2x+2)}$:	$y = \sqrt{1 - x^2} + \sqrt{x + 1}$:(4) $y = \sqrt{6x - x^2 - 9}$:	$\sqrt{2x^2 + 3}$ (5) $y = \sqrt{4 - x^2} + \frac{1}{1}$	$\frac{1}{1}$: (6) $y =$
	$\frac{3x^2 - 2x - 1}{x^3 - 1}.$ (7)2.	$\frac{1}{ x - x^2}$: (8) $y =$	$ x - \sqrt{1 - (\frac{x-1}{x})^2}$	$(9)u = \frac{\sqrt{x^2 - 2x - 15}}{}.$
	x+ x ·	$ x -x^2$. (6) y	$\sqrt{x+1}$	x+3 - 8

- 31. 求下列函数的值域: $(1)y = 1 \frac{1}{x+2}$:______. $(2)y = \frac{3}{2x}$:______. $(3)y = \frac{x+3}{x-3}$:_____. $\sqrt{-x^2+x+2}$:_______. (8) $y=\frac{2x^2+2x+3}{x^2+x+1}$:______. 2l.(1) 若函数 f(x) 满足 $f(2x)=(1-\sqrt{2}x)(1+x+2)$ $\sqrt{2}x$),则 f(x) =_______. (2) 若函数 f(x) 满足 $f(\sqrt{x}+1) = x + 2\sqrt{x}$,则 f(x) =______. (3) 若 函数 f(x) 满足 $f(\frac{1}{x}) = \frac{x}{1-x^2}$,则 f(x) =________. (4) 若函数 f(x) = 2x+1, $g(x) = x^2+2$,满足 f(g(x)) = g(f(x)), 则 x =_____. (5) 若函数 f(x) 满足 $f(x+1) = 2x^2 + 1$, 则 f(x-1) =____. (6) 若一次函数 f(x) 满足 f(f(x)) = 1 + 2x, 则 f(x) =______. (7) 若 $f(x^2 - x) = x^4 - 2x^3 + x^2 + 1$,
- 32. 若 -b < a < 0, 且函数 d(x) 的定义域是 [a,b], 则函数 F(x) = f(x) + f(-x) 的定义域是 ().

A. [a,b]

B. [-b, -a]

C. [-b, b]

D. [a, -a]

33. 若 f(x) 的定义域是 [0,1], 且 f(x+m)+f(x-m) 的定义域是 \varnothing , 则正数 m 的取值范围是 ().

B. $0 < m \le \frac{1}{2}$

C. $0 < m < \frac{1}{2}$

D. $m > \frac{1}{2}$

34. 函数 $y = \frac{x^2 - 1}{x^2 + 1}$ 的值域是 (

A. (-1,1)

B. [-1, 1]

C. [-1,1)

D. (-1,1]

35. 若 $2x^2 - 3x \le 0$, 则函数 $f(x) = x^2 + x + 1$).

A. 有最小值 $\frac{3}{4}$, 但无最大 B. 有最小值 $\frac{3}{4}$, 有最大值

C. 有最小值 1 有最大值 D. 既无最小值, 也无最大

值

36. 函数 $f(x) = |1 - x| - |x - 3| (x \in \mathbf{R})$ 的值域是 ().

A. [-2, 2]

B. [-1, 3]

C. [-3, 1]

D. [0, 4]

- 37. (1) 若函数 f(x) 的定义域是 [0,1], 分别求函数 f(1-2x) 和 f(x+a)(a>0) 的定义域. (2) 若函数 f(x+1)的定义域是 [-2,3),求函数 $f(\frac{1}{x}+2)$ 的定义域.
- 38. 求下列函数的值域: $(1)y = \frac{2x}{x^2 + x + 1}$. $(2)y = \frac{x^2 + x 1}{x^2 + x + 1}$. $(3)y = \frac{x^2 1}{x^2 5x + 4}$
- 39. (1) 若实数 x,y 满足 $3x^2+2y^2=6x$, 分别求 x 与 x^2+y^2 的取值范围. (2) 若实数 x,y 满足 $x^2+y^2=2x$, 求 $x^2 - y^2$ 的取值范围.
- 40. 求下列函数的值域: $(1)y = 3x 2 + \sqrt{3 2x}$. $(2)y = 2x + \sqrt{2x 1}$. (3)y = (x 1)(x 2)(x 3)(x 4) + 15.
- 41. (1) 已知函数 $f(x) = x^2 2x + 3$ 在 [0, m] 上有最大值 3, 最小值 2, 求正数 m 的取值范围. (2) 已知函数 $y = x^2 + mx - 1$ 在区间 [0,3] 上有最小值-2, 求实数 m 的值. (3) 当 $x \ge 0$ 时, 求函数 $f(x) = x^2 + 2ax$ 的最 小值.
- 42. 已知函数 $f(x) = \frac{ax}{2x+3} (x \neq -\frac{3}{2})$ 满足 f(f(x)) = x, 求实数 a 的值.

- 43. (1) 已知 f(x) 是二次函数, 且满足 $f(2x) + f(3x+1) = 13x^2 + 6x 1$, 求 f(x) 的表达式. (2) 已知函数 f(x)的定义域是一切非零实数, 且满足 $3f(x) + 2f(\frac{1}{x}) = 4x$, 求, f(x) 的表达式
- 44. (l) 作 (画) 出下列函数的图象: ① $y = 1 + \frac{|x|}{x}$; ② y = x |1 x|; ③ $y = |x^2 4x + 3|$; ④ $y = \frac{x^3 + x}{|x|}$; ⑤ $y = \frac{\left(x + \frac{1}{2}\right)^0}{|x| - x}$. (2) 已知 $f(x) = -x^2 + 2x + 3$, 画出函数 $y = \frac{1}{2}[f(x) + |f(x)|]$ 的图象. (3) 已知 f(x) = |x|, $x \in [-1, 1]$, 作出函数 y = f(x+1) + 1 的图象
- 45. (1) 将进货单价为 40 元的商品按每件 50 元出售时, 每月能卖出 500 个, 已知这批商品在销售单价的基础上 每涨价 1 元, 其月销售数就减少 10 个, 为了每月赚取最大利润, 销售单价应定为多少?(2) 飞机飞行 1 时的 耗费由两部分组成: 固定部分 4900 元, 变动部分 P 与飞机飞行速度 v(千米/H) 的函数关系是 $P=0.01v^2$. 已知甲、乙两地相距为一常数 a(fix),试写出飞机从甲地飞到乙地的总耗费 y 与飞机速度 v 的函数关系式, 并写出耗费最小时飞机的飞行速度. 二、幂函数
- 46. 求证: 函数 $f(x) = x^3$ 在 $x \in \mathbf{R}$ 上是增函数.
- 47. 已知奇函数 y = f(x) 在 x < 0 时是减函数, 求证: y = f(x) 在 x > 0 时也是减函数.
- 48. 已知 f(x) 是奇函数, 且当 x > 0 时 f(x) = x(1-x), 求 f(x) 在 x < 0 时的表达式.
- 49. 已知函数 y = f(x) 满足 $f(x) = f(4-x)(x \in \mathbf{R})$, 且 f(x) 在 x > 2 时为增函数, 记 $a = f(\frac{3}{5})$, $b = f(\frac{6}{5})$, c = f(4),则 a, b, c 之间的大小关系是 ().

A. c > a > b

B. c > b > a

C. b > a > c D. a > c > d

- 50. 画出函数 $y = x^2 2|x| 1$ 的图象.
- 51. 求函数 $y = \frac{x-2}{2x+1}$ 的值域.
- 52. 已知函数 $f(x) = (x-1)^2 (x \le 1)$, 又 f(x) 和 $\varphi(x)$ 的图象关于直线 y = x 对称, 求 $\varphi(x)$ 的表达式.
- 53. 求实数 m 的范围, 使关于 x 的方程 $x^2 + 2(m-1)x + 2m + 6 = 0$: (1) 有两个实数根, 且一个比 2 大, 另一个 比 2 小. (2) 有两个实数根, 且都比 1 大. (3) 有两个实数根 α, β , 且满足 $0 < \alpha < 1 < \beta < 4$. (4) 至少有一个 正根.
- 54. 就参数 m 讨论方程 $x^2-2|x|-m=0$ 的解的情况. 【训练题】(一) 分数指数幂与根式
- 55. 下列记数中, 符合科学记数法的是().

A. 35.6×10^{-25}

B. 0.356×10^{-23}

C. 3.56×10^{-24}

D. 356×10^{-26}

56. 计算 $3^{-1} \times 2^{-2} \div 4^{-2}$ 的结果是 (

A. $\frac{1}{102}$

B. $\frac{4}{3}$

C. $\frac{1}{12}$

D. $-\frac{4}{2}$

57. 下列各式中, 正确的是().

A. $(-1)^0 = -1$ B. $(-1)^{-1} = 1$ C. $3a^{-2} = \frac{1}{3a^2}$ D. $(-x)^5 \div (-x)^3 = x^2$

58. 下列各式中, 计算正确的是 ().

A.
$$(-0.125) \div (-0.5)^{-3} = B.\ 10^{-4} (\sqrt{5})^0 = -10000$$
 C. $(\frac{1}{3})^0 \div 3^{-1} = 3$

B.
$$10^{-4}(\sqrt{5})^0 = -10000$$

C.
$$(\frac{1}{3})^0 \div 3^{-1} = 3$$

D.
$$(\sqrt{3} - \sqrt{2})^0 - (\sqrt{3})^2 - (-\sqrt{2})^2 = 1 - 3 + 2 = 0$$

59. 化简 $\frac{1}{3}x\sqrt{9x} - x^2\sqrt{\frac{1}{x}}$ 的结果是 ().

A.
$$\sqrt{x}$$

B.
$$x(1-x^2)\sqrt{x}$$

C.
$$x^2(1 - x\sqrt{x})$$

60. 化简 $\frac{a^{-2}-b^{-2}}{a^2-b^2}$ 的结果是 ().

B.
$$-\frac{1}{a^2b^2}$$

C.
$$a^{-1} + b^{-1}$$

D.
$$\frac{1}{a^2b^2}$$

61. 已知 $x = 1 - 2^s$, $y = 1 - 2^{-s}$, 则 y 等于 ().

A.
$$\frac{x-1}{x}$$

B.
$$\frac{2-x}{1-x}$$

C.
$$\frac{x}{x-1}$$

D.
$$\frac{x-2}{x-1}$$

62. 计算 $\sqrt{(3-\pi)^2}$ 的结果是 ().

A.
$$3 - \pi$$
 B. $\pi - 3$

B.
$$\pi - 3$$

C.
$$\pi + 3$$

D.
$$-\pi - 3$$

63. 若 $(\sqrt[n]{-3})^n$ 有意义, 则 n 一定是 ().

- D. 整数
- 64. 在"① $\sqrt[4]{(-4)^{2n}}$, ② $\sqrt[4]{(-4)^{2n+1}}$, ③ $\sqrt[5]{-x^2}$, ④ $\sqrt[5]{-x^2}$ ($n \in \mathbb{N}$)" 这四个式子中, 有意义的 ().

D. 只有④

65. 若 $\sqrt[4]{4a^2 - 4a + 1} = \sqrt[3]{1 - 2a}$, 则实数 a 的取值范围是 ().

A.
$$a < 2$$

B.
$$a = \frac{1}{2} \neq 0$$
 C. $a > \frac{1}{2}$

C.
$$a > \frac{1}{2}$$

- D. R
- 66. 在 "① 0^{-1} , ② $0^{-\frac{1}{2}}$, ③ 0^{0} , ④ $0^{0.2}$ " 这四个式子中,有意义的个数是().

D. 3

67. 下列各式中正确的是().

A.
$$-4^0 = 1$$

A.
$$-4^0 = 1$$
 B. $(5^{-\frac{1}{2}})^2 = 5$

C.
$$(-3^{m-n})^2 = 9^{m-n}$$
 D. $(-2)^{-1} = \frac{1}{2}$

D.
$$(-2)^{-1} = \frac{1}{2}$$

 $\frac{1}{68}$. 计算 $[(-3)^2]^{\frac{1}{2}} - (-10)^0$ 的值等于 ().

69. 下列计算中正确的是().

$$\frac{8}{4}$$
 $\frac{3}{48}$ $\frac{3}{8}$

$$\frac{8}{8} \cdot a^{-\frac{8}{3}} = 0$$

$$\frac{8}{6} \cdot \frac{1}{a^3} = a^8$$

70. 下列计算中正确的是(

$$\frac{3}{4} \cdot a = \frac{4}{3} = a$$
 B. $a = \frac{3}{4} \div a = a$ C. $a^{-4} \div a^{4} = 0$

$$B. \ a^{\frac{3}{4}} \div a^{\frac{3}{4}} = a$$

C.
$$a^{-4} \div a^4 = 0$$

$$D. (a^{\frac{3}{4}})^{\frac{3}{3}} = a$$

71. 化简 $(a^{\frac{2}{3}}b^{\frac{1}{2}})(-3a^{\frac{1}{2}}b^{\frac{1}{3}}) \div (\frac{1}{3}a^{\frac{1}{6}}b^{\frac{5}{6}})$ 的结果是 ().

C. -9a

D. 9a

72. 将 $\sqrt[3]{-2\sqrt{2}}$ 化成不含根号的式子是 ().

A. $-2\overline{2}$

- C. $-2\overline{3}$

D. $-2\bar{3}$

73. 将 $(a^{\frac{1}{n}}+b^{\frac{1}{n}})^{\frac{1}{3}}$ 表示成根式的形式是 ().

A. $\sqrt[3]{a^{\frac{1}{n}} + b^{\frac{1}{n}}}$ B. $(\sqrt[n]{a} + \sqrt[n]{b})^{\frac{1}{3}}$

- C. $\sqrt[3]{\sqrt[n]{a} + \sqrt[n]{b}}$
- D. $(\sqrt[n]{a} + \sqrt[n]{b})^3$
- 74. 计算下列各式: $(1)\sqrt{12}-\sqrt{3}\div(2+\sqrt{3})=$ ______. $(2)(\sqrt{12}-\sqrt{\frac{1}{2}}-2\sqrt{\frac{1}{3}})-(\sqrt{\frac{1}{8}}-\sqrt{18})=$ _____.
 - $(3)(\sqrt{3}+2)^{1997} \times (\sqrt{3}-2)^{1988} = \underbrace{\qquad \qquad } (4)\frac{2\sqrt{10}-5}{4-\sqrt{10}} = \underbrace{\qquad \qquad } (5)4\sqrt{\frac{2}{5}}-\sqrt{1000}+2\sqrt{10} = \underbrace{\qquad \qquad } (6)\frac{1}{(2+\sqrt{3})^2} + \frac{1}{(2-\sqrt{3})^2} = \underbrace{\qquad \qquad } (7)\frac{1}{1+\sqrt{2}+\sqrt{3}} + \frac{1}{1-\sqrt{2}+\sqrt{3}} = \underbrace{\qquad \qquad } .$
- 75. 将下列各式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $(1)3x^{-\frac{3}{2}} =$ ______. $(2)a^{\frac{1}{2}} \cdot b^{-\frac{1}{2}} =$ _____. $(3)(a+b)^{\frac{1}{2}} \cdot (a-b)^{-\frac{4}{3}} =$ _____.
- 76. 将下列根式改写成分数指数幂的形式: $(1)\sqrt[4]{a^3} =$ _____. $(2)\sqrt[5]{b^8} =$ ____. $(3)\sqrt[4]{x^2+y^2} =$ ___. $(4)\frac{\sqrt{x}}{\sqrt[3]{y^4}} =$ ____. $(5)\sqrt{2\sqrt{2}} =$ ___. $(6)-\frac{1}{\sqrt{27x}} =$ ___. $(7)\sqrt{\frac{4}{3ab^3}} =$ ___. $(8)2\sqrt[6]{(m-n)^{-2}} =$ __.
- 77. 判断下列命题是否正确: $(1)2^{\frac{3}{2}} \cdot 2^{\frac{2}{3}} = 2$:______. $(2)(\frac{1}{8})^{-\frac{1}{2}} = -2\sqrt{2}$:_____. (3) 若 $a \in \mathbf{R}$, 则 $(a-1)^0 = 1$:______. $(4)a^x + a^y = a^{x+y}$:_____. $(5)\sqrt[3]{-5} = \sqrt[6]{(-5)^2} = \sqrt[6]{25}$:_____.
- 78. 计算下列各式: $(1)(\frac{81}{625})^{-\frac{3}{4}} =$ ______. $(2)(0.064)^{-\frac{1}{3}} =$ _____. $(3)(2\sqrt{2})^{-\frac{1}{3}} =$ _____. $(4)[(-3)^2]^{\frac{3}{2}} =$ _____.
 - $(5)(-0.027)^{-\frac{2}{3}} = \underline{\qquad} . (6)(-0.001)^{-\frac{4}{3}} = \underline{\qquad} . (7)5^{\frac{4}{5}} \times 125 \times 25^{-0.4} = \underline{\qquad} . (8)(8+2\times15^{\frac{1}{2}})^{\frac{1}{2}}$
 - $(9)(4-12^{\frac{1}{2}})^{\frac{1}{2}} = \underline{\qquad} (10)(0.25)^{-0.5} + (\frac{1}{27})^{-\frac{1}{3}} 625^{0.25} = \underline{\qquad}.$
- 79. 化简下列各式: $(1)2x^{-\frac{1}{3}}(\frac{1}{2}x^{\frac{1}{3}}-2x^{-\frac{2}{3}})-(-3.5)^0=$ ______. $(2)(x^{\frac{1}{3}}+y^{\frac{1}{3}})(x^{\frac{2}{3}}-x^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}})=$ _____. $(3)(\frac{b^3}{2a^2}) \div (-\frac{4b^3}{a^{-7}}) \times (-\frac{b^2}{a})^3 = \underline{\hspace{1cm}} (4)(2a^{\frac{1}{4}}b^{-\frac{1}{3}})(-3a^{-\frac{1}{2}}b^{\frac{2}{3}}) \div (-\frac{1}{4}a^{-\frac{1}{4}}b^{-\frac{2}{3}}) = \underline{\hspace{1cm}} .$
- 80. 若 $a = 1.5^{-\frac{1}{2}}$, $b = 0.5^{-\frac{1}{2}}$, c = 1, 则它们的大小顺序是 ().

A. a < c < b

- B. a < b < c
- C. c < b < a
- D. b < c < a

81. (1) 若
$$a = \frac{1}{\sqrt{2}}$$
, $b = \frac{1}{\sqrt[3]{2}}$, 则 $\left[a^{-\frac{3}{2}}b(ab^{-2})^{-\frac{1}{2}}(a^{-1})^{-\frac{2}{3}}\right]^3 = \underline{\qquad}$. (2) 若 $a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 2$, 则: ① $a + a^{-1} = 3$; ② $a^2 + a^{-2} = 3$; ③ $a^4 + a^{-4} = \underline{\qquad}$. (3) 若 $10^\alpha = 2^{-\frac{1}{2}}$, $10^\beta = \sqrt[3]{32}$, 则 $10^{2\alpha - \frac{3}{4}\beta} = \underline{\qquad}$.

82. 计算下列各式:
$$(1)(\frac{1}{125})^{-\frac{1}{3}} + (-2)^{-2} + (-2)^{0}$$
. $(2)(2\frac{7}{9})^{\frac{1}{2}} - (-0.027)^{-\frac{1}{3}} - (-\sqrt{3})^{-2} + \pi^{0}$. $(3)5 - 3 \times [(-3\frac{3}{8})^{-\frac{1}{3}} + 1031 \times (0.25 - 2^{-2})] \div 9^{0}$. $(4)(0.027)^{\frac{1}{3}} - (-\frac{1}{6})^{-2} + 256^{0.75} - |-3^{-1}| + (-5.555)^{0}$. $(5)(2.25)^{0.5} + (-3\frac{3}{8})^{-\frac{1}{3}} + (-3\frac{3}{125})^{-\frac{1}{3}} + (-3\frac{3}{1$

$$(-4.3)^{0} - (3\frac{3}{8})^{-\frac{2}{3}} + \frac{3^{-2} - 2^{-2}}{3^{-1} - 2^{-1}}. (6)(0.25)^{-2} + (\frac{8}{27})^{\frac{1}{3}} + (\frac{1}{8})^{-\frac{2}{3}} - (\frac{1}{16})^{-0.75}.$$

83. 计算或化简下列各式:
$$(1)$$
 $\sqrt[3]{m^{\frac{9}{2}} \cdot \sqrt{m^{-3}}} \div \sqrt[3]{m^{-7}} \cdot \sqrt[3]{m^{13}} (m > 0)$. $(2)(x-y) \div (x^{\frac{1}{2}} + y^{\frac{1}{2}}) - (x+y-2x^{\frac{1}{2}}y^{\frac{1}{2}}) \div (x+y-2x^{\frac{1}{2}}y^{\frac{1}{2}})$

$$(x^{\frac{1}{2}} - y^{\frac{1}{2}})(x > y > 0). (3)(8y^{-\frac{1}{3}}\sqrt{x^{-\frac{1}{3}}y\sqrt{x^{\frac{4}{3}}}})^{\frac{3}{3}}. (4)\frac{x + y}{\sqrt{x} + \sqrt{y}} + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) \div \frac{1}{2}(x + y) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y} + y\sqrt{x}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{15}) + \frac{2xy}{x\sqrt{y}}. (5)(5 + \sqrt{6} + \sqrt{10} + \sqrt{$$

84. 化简下列各式:
$$(1)\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}$$
. $(2)(x^{\frac{a+b}{c-a}})^{\frac{1}{b-c}}$. $(x^{\frac{x+a}{b-c}})^{\frac{1}{a-b}}$. $(x^{\frac{b+c}{a-b}})^{\frac{1}{c-a}}$. $(x^{\frac{a-b}{a-b}})^{\frac{p-c}{a-b}}$. $(x^{\frac{a-b}{a-b}})^{\frac{p-c}{a-b}}$. $(x^{\frac{a-b}{a-b}})^{\frac{p-c}{a-b}}$. $(x^{\frac{a-b}{a-b}})^{\frac{p-c}{a-b}}$. $(x^{\frac{a-b}{a-b}})^{\frac{p-c}{a-b}}$.

85. 当
$$a = 0.001$$
 时,求
$$\frac{a^{\frac{4}{3}} - 8a^{\frac{1}{3}}b}{2a^{\frac{3}{3}} + 2\sqrt[3]{ab} + 4b^{\frac{3}{3}}} \div (1 - 2\sqrt[3]{\frac{b}{a}})$$
 的值.

86. 求证:
$$\frac{1}{1+x^{a-b}+x^{a-c}} + \frac{1}{1+x^{b-c}+x^{b-a}} + \frac{1}{1+x^{c-a}+x^{c-b}} = 1.$$
 (二) 幂函数

87. 已知幂函数
$$f(x)$$
 的图象经过点 $(2, \frac{\sqrt{2}}{2})$, 则 $f(4)$ 的值等于 $($ $)$.

B.
$$\frac{1}{16}$$

C.
$$\frac{1}{2}$$

88. 下列幂函数中, 定义域为
$$\{x|x>0\}$$
 的是 ().

A.
$$y = x^{\frac{2}{3}}$$

$$B. \ u = x^{\frac{3}{2}}$$

$$C \ u = x^{-\frac{2}{3}}$$

D.
$$y = x^{-\frac{3}{2}}$$

89. 幂函数
$$y = x^n (n \in \mathbf{Z})$$
 的图象一定不经过 ().

*71. 函数
$$f(x) = x^{\frac{2}{3}}$$
 的图象是 ().

90. 幂函数
$$y=x^m$$
 和 $y=x^n$ 在第一象限内的图象 C_1 和 C_2 图象所示,则 m,n 之间的关系是 ().

	A. $n < m < 0$	B. $m < n < 0$	C. $n > m > 0$	D. $m > n > 0$
	*73. 图中, C_1, C_2, C_3 为幂函	为数 $y=x^a$ 在第一象限的图象	lpha,则解析式中的指数 $lpha$ 依次	可以取 ().
	A. $\frac{4}{3}$, -2 , $\frac{3}{4}$	B. $-2, \frac{3}{4}, \frac{4}{3}$	C. $-2, \frac{4}{3}, \frac{3}{4}$	D. $\frac{3}{4}, \frac{4}{3}, -2$
	*74. 求下列函数的定义域与	值域: $(1)y = x^{\frac{1}{6}}x \in _{}$	$u \in _{5}$. (2) y	$x = x^{\frac{1}{5}}x \in \underline{\hspace{1cm}},$
	$u \in \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$x \in \underline{\hspace{1cm}}, u \in \underline{\hspace{1cm}}_2$	$(4)y = x^{-\frac{3}{4}}x \in $, $u \in $
	$(5)y = x^{-3}x \in \underline{\hspace{1cm}},$	$u \in \underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$x \in \underline{\hspace{1cm}}, u \in \underline{\hspace{1cm}}$	$(7)y = -2(x+5)^{-\frac{1}{4}}x \in $
	$u \in $ $(8)y = 5(2x)$	$(x-1)^{\frac{3}{4}}x \in \underline{\qquad}, u \in \underline{\qquad}$	·	
91.	将下列函数图象的标号,填	在相应函数后面的横线上: *	$f(1)y = x^{\frac{2}{3}} $	$y)y = x^{-2}$
	1		1	,
	$(3)y = x^{\overline{2}}$: $(4)y$	•		$2:$ $\uparrow (7)y =$
	$x\overline{3}$: (8) $y = x^{-2}$: *(9) $y = x\overline{3}$:		
	A.	В.	С.	D. (E) (F)
	(G) (H) (I) (第 75 题)			
92.	(1) 若幂函数 $y = x^n$ 的图象	.在 $0 < x < 1$ 时位于直线 y	=x 的下方, 则 n 的取值范围	围是 (2) 若
	幂函数 $y = x^n$ 的图象在 0	< x < 1 时位于直线 $y = x$	的上方, 则 n 的取值范围是	*(3) 函数
	$f(x) = x^{k^2 - 2k - 3} (k \in \mathbf{Z})$ 的图	图象如图所示, 则 $k=$	(第 76(3) 题)	
93.	幂函数 $y = x^p$ 与 $y = x^q$ 的	」图象都通过定点	它们在第一象限部分关于直	[线 $y = x$ 对称, 则 p, q
	应满足的条件是			
94	确定实数 a 的取值范围: (1)	$2.4^{a} > 2.5^{a} (2)(\frac{3}{2})^{-a} > (\frac{4}{2})^{-a}$	a^{-a} (3) $a^{-2} > 3^{-2}$ (4)0.01 ⁻³	$> a^{-3}$
		9 9 1	2 2	9
95.	将下列各组数从小到大排列: $(3)0.16^{-\frac{3}{4}}, 0.5^{-\frac{3}{2}}, 6.25^{\frac{3}{8}}$:	$: (1)2.5\overline{3}, (-1.4)\overline{3}, (-3)\overline{3}:$	$(2)4.1\frac{2}{5}, 3.8^{-\frac{2}{3}}$	$, (-1.9)^{\frac{3}{5}}$:
	$(3)0.16^{-\frac{3}{4}}, 0.5^{-\frac{3}{2}}, 6.25^{\frac{3}{8}}$:			
	已知函数 $y = x^{n^2-2n-3} (n \in$			
50.	应的函数图象. (Ξ) 函数的单		六 \mathbb{A} ,且共国家人 \mathbb{F} \mathcal{Y} \mathcal{Y}	小,不 10 10 11 11 11 11 11 11 11 11 11 11 11
	应的函数图象:(二)图数的=	F 1/10 II		
97.	函数 $y = \sqrt{x^2 + 2x - 3}$ 为减	(函数的区间是 ()		
	A. $(-\infty, -3]$.	B. $[-1, +\infty)$.	C. $(-\infty, -1]$.	D. $[1, +\infty)$.
98.	若函数 $y = (2k+1)x + b$ 在	$(-\infty, +\infty)$ 上是减函数, 则	()	
	A. $k > \frac{1}{2}$.	B. $k < \frac{1}{2}$.	C. $k > -\frac{1}{2}$.	D. $k < -\frac{1}{2}$.
99	芸 承数 $f(r) = 4r^2 - mr + 5$	5 在区间[_2 +~) F 早增函	数 在区间 (-∞ -9] 上早ば	(家数 则 f(1) 笑干 ()

C. 17

D. 25

B. 1

A. -7.

100.	若函数 $y = x^2 + 2(a-2)x +$	5 在区间 $(4,+\infty)$ 上是增函	数,则实数 a 的取值范围是	()			
	A. $a \le -2$.	B. $a \ge -2$.	C. $a \le -6$.	D. $a \ge -6$.			
101.	下列函数中,在区间(0,2)上	为增函数的是 ()					
	A. $y = -3x + 1$.	B. $y = \sqrt[3]{x}$.	C. $y = x^2 - 4x + 3$.	D. $y = \frac{4}{x}$.			
102.	R. 若函数 $f(x)$ 在定义域 R 上为增函数, 且 $f(x) < 0$, 则下列函数在 R 上为增函数的是 ()						
	A. $y = f(x) $.	$B. y = \frac{1}{f(x)}$	C. $y = [f(x)]^2$.	D. $y = [f(x)]^3$.			
	(1) 函数 $y=\frac{1}{\sqrt{x^2-4x+5}}$ $\frac{1}{\sqrt{3+2x-x^2}}$ 为增函数的区 $y= x^2-2x-3 $ 为增函数的	间是 (3) 函数 y	= 3x - 5 为减函数的区间是	是 (4) 函数			
			1 ω				
	4. 定义在 $[1,3]$ 上的函数 $f(x)$ 为减函数, 求满足不等式 $f(1-a)-f(3-a^2)>0$ 的解集.						
105.	5. (1) 已知 $f(x) = -x^3 - x + 1(x \in \mathbf{R})$,求证 $y = f(x)$ 在定义域上为减函数. (2) 求证: 函数 $f(x) = x + \frac{1}{x}$ 在 $(0, 1)$ 上是减函数,在 $(1, +\infty)$ 上是增函数. (3) 求证: $f(x) = \sqrt{x} - \frac{1}{x}$ 在定义域上是增函数. (4) 已知常数 m, n 满足 $mn < 2$,求证: 函数 $f(x) = \frac{mx + 1}{2x + n}$ 在 $(-\frac{n}{2}, +\infty)$ 上为减函数.						
106.	. 已知 $f(x)=x^2+1,g(x)=x^4+2x^2+2,$ 是否存在实数 $\lambda,$ 使得 $F(x)=g(x)-\lambda f(x)$ 在 $(-\infty,-1)$ 上是减函数, 在 $(-1,0)$ 上是增函数?						
107.	. 已知函数 $f(x)$ 在区间 $(-\infty, +\infty)$ 上是增函数, 又实数 a,b 满足 $a+b \geq 0$, 求证: $f(a)+f(b) \geq f(-a)+f(-b)$.						
108.	. $f(x)$ 是定义在 \mathbf{R}^+ 的增函数,且 $f(\frac{x}{y})=f(x)-f(y)$. (1) 求 $f(1)$ 的值. (2) 若 $f(6)=1$,解不等式 $f(x+3)-f(\frac{1}{x})<2$. (\Box) 函数的奇偶性						
109.	若 $f(x) = (m-1)x^2 + 3mx$	+3 为偶函数, 则 $f(x)$ 在区	间 (-4, 2) 上 ()				
	A. 是增函数	B. 是减函数	C. 先是增函数后是减函数	D. 先是减函数后是增函 数			
	1 - x(x > 0),						
110.	函数 $f(x) = 0(x=0)$,	则该函数 ()					
	1 + x(x < 0),						
	A. 是奇函数, 但不是偶函数	B. 是偶函数, 但不是奇函数	C. 既是奇函数, 也是偶函数	D. 既不是奇函数, 也不是 偶函数			
111.	下列函数中既是奇函数,又在	定义域上为增函数的是 ()					
	A. $f(x) = 3x + 1$.	$B. f(x) = \frac{1}{x}.$	C. $f(x) = 1 - \frac{1}{x}$.	D. $f(x) = x^3$.			

112.	若 $f(x)$	为定义在区间	[-6, 6]	上的偶函数,	且满足	f(3) >	f(1),	则恒成立的是())
------	----------	--------	---------	--------	-----	--------	-------	----------	---

- A. f(-1) < f(3). B. f(0) < f(6). C. f(3) > f(2). D. f(2) > f(0).

113. 函数
$$f(x) = \frac{\sqrt{1-x^2}}{2-|x+2|}$$
()

- A. 是奇函数, 但不是偶函 B. 是偶函数, 但不是奇函 C. 既是奇函数, 又是偶函 D. 既不是奇函数, 也不是 偶函数

114. 已知
$$f(x)$$
 是奇函数,则下列各点中在函数 $y = f(x)$ 的图象上的点的是 ()

A. (a, f(-a)).

数

- B. (-a, -f(a)).
- C. $(\frac{1}{a}, -f(\frac{1}{a}))$.
 - D. $(-\sin a, -f(-\sin a))$.
- 115. (1) 若 f(x) 是定义在 R 上的偶函数, 且当 x < 0 时, f(x) = 2x 3, 则当 x > 0 时, $f(x) = ______.$ (2) 若奇函数 f(x) 的定义域是 R, 则 f(0) =_____.
- 或 "减"), 且最小值等于_______. (2) 设 f(x) 为定义在 R 上的偶函数, 且 f(x) 在 $[0,+\infty)$ 上是增函数, 则 f(-4), f(-2), f(3) 由小到大的排列顺序为_____.