<u>Auteur</u> : Abdoulage DABO

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Déf	finitions	2
2	Rés	solution des équations différentielles homogènes	2
	2.1	Equations différentielles du premier ordre	2
	2.2	Equations différentielles du second ordre	2
3	Résolution des équations différentielles non homogènes		4
4	Exe	ercices	4

1 Définitions

Définition 1.1

Une équation différentielle est une équation faisant intervenir comme inconnue une fonction f et ses dérivées. L'inconnue f est en général notée y.

Définition 1.2

- On appelle ordre de l'équation différentielle, le plus grand ordre de dérivation apparaissant dans l'équation.
- On dit que l'equation différentielle est homogène si son second membre est égale à 0.

2 Résolution des équations différentielles homogènes

2.1 Equations différentielles du premier ordre

Forme

Soit a, b des nombres réels tels que a $\neq 0$. une équation différentielle du premier ordre est de la forme ay' + by = 0

Solutions

Les solutions de l'équation différentielle ay' + by = 0 sont les fonctions f_k définies sur \mathbb{R} par $f_k(x) = ke^{\frac{-b}{a}x}$ où k est une constante.

2.2 Equations différentielles du second ordre

Forme

Soit a, b, c des nombres réels, $a \neq 0$.

une equation différentielle du premier ordre est de la forme : ay'' + by' + cy = f(x) (1)

L'équation $r^2 + ar + b = 0$ est appelé **équation caractéristique** de l'équation différentielles.

Solutions

Si son équation caractéristique $ar^2 + br + c = 0$ admet :

- deux racines réelles distinctes r_1 et r_2 , alors alors les solutions de (1) sont les fonctions f définies sur \mathbb{R} par $f(x) = \alpha e^{r_1 x} + \beta e^{r_1 x}$ où α et β sont des nombres réels.
- une racine double r_0 alors les solutions de (1) sont les fonctions f définies sur \mathbb{R} par $f(x) = (\alpha x + \beta x)e^{r_0x}$ où α et β sont des nombres réels.

• deux racines complexes conjugués u + iv et u - iv, alors les solutions de (1) sont les fonctions f définies sur \mathbb{R} par $f(x) = e^{ux}(\alpha \cos vx + \beta \sin vx)$ où α et β sont des nombres réels.

3 Résolution des équations différentielles non homogènes

Technique de résolution

Pour résoudre un equation differentielle non homogene, on résout d'abord l'équation homogène. Notons S_1 sa solution

Puis on cherche une soultion S_2 particulière de l'équation non homogène.

La solution générale de l'équation différentielle est $S=S_1+S_2$

4 Exercices

Exercice 1

Résoudre sur \mathbb{R} les équations différentielles suivantes.

1.
$$y = y'$$

2.
$$y' = -\frac{y}{2}$$

3.
$$2y' - 3y = 0$$

4.
$$2y'' - 8y' + 16y = 0$$

5.
$$y'' + y' - 6y = 0$$

6.
$$y'' - 3y' + 13y = 0$$

7.
$$y'' - 2y = 0$$

8.
$$y'' + 2y = 0$$

Solution

1.
$$y = y'$$

$$y = y' \iff y - y' = 0$$

Les solutions de cette équations sont les fonctions f telles que $f(x) = ke^x$ avec k une constante.

2.
$$y' = -\frac{y}{2}$$

$$y' = -\frac{y}{2} \Longleftrightarrow 2y' + y = 0$$

Les solutions de cette équations sont les fonctions f telles que $f(x) = ke^{\frac{-1}{2}x}$ avec k une constante.

3.
$$2y' - 3y = 0$$

Les solutions de cette équations sont les fonctions f telles que $f(x)=ke^{\frac{3}{2}x}$ avec k une constante.

4. 2y'' - 8y' + 16y = 0

$$2y'' - 8y' + 16y = 0 \iff y'' - 4y' + 8y = 0$$

Soit $r^2 - 4r + 4$ l'équation caractéristique.

$$\triangle = 16 - 4(1 \times 4) = 0$$
, l'equation admet une solutions double $x_0 = \frac{1}{2}$.

Les solutions de cette équations sont les fonctions f telles que $f(x)=(\alpha x+\beta)e^{\frac{1}{2}x}$ avec α et β des constantes.

5. y'' + y' - 6y = 0

Soit $r^2 + r - 6$ son équations caractéristiques.

$$\triangle = 1 - 4(1 \times -6) = 25 > 0$$
, on a deux racines distinctes $x_1 = -3$ et $x_2 = 2$.

Les solutions de cette équations sont les fonctions f telles que $f(x) = \alpha e^{-3x} + \beta e^{2x}$ avec α et β des constantes.

6. y'' - 4y' + 13y = 0

Soit $r^2 - 4 + 13$ sont équations caractéristiques.

$$\triangle = 16 - 4(1 \times 13) = -36,$$

On a deux racines complexes consiguées $x_1 = \frac{4-i\sqrt{36}}{2} = 2-3i$ et $x_2 = \frac{4+i\sqrt{36}}{2} = 2+3i$

Les solutions de cette equations sont les fonctions f telles que $f(x) = e^{2x}(\alpha \cos(3x) + \beta \sin(3x))$ avec α et β des constantes.

7. y'' - y = 0

Soit $r^2 + 0 - 1$ sont équations caractéristiques.

$$\triangle = 0 - 4(1 \times -1) = 4$$
, on a deux solutions $x_1 = 1$ et $x_2 = -1$

Les solutions de cette équations sont les fonctions f telles que $f(x) = \alpha e^x + \beta e^{-x}$ avec α et β des constantes.

8. y'' + 2y = 0

Soit $r^2 + 0 - 1$ sont équations caractéristiques.

$$\triangle=0-4(1\times 2)=-8,$$
 on a deux solutions complexes conjuguées $x_1=i\frac{\sqrt{2}}{2}$ et $x_2=-i\frac{\sqrt{2}}{2}$

Les solutions de cette équations sont les fonctions f telles que $f(x) = e^{0 \times x} (\alpha \cos(\frac{\sqrt{2}}{2}x) + \beta \sin(\frac{\sqrt{2}}{2}x)) = \alpha \cos(\frac{\sqrt{2}}{2}x) + \beta \sin(\frac{\sqrt{2}}{2}x)$ avec α et β des constantes.

Exercice 2

Dans chacun des cas suivants résoudre sur \mathbb{R} l'équations différentielle et déterminer la solution vérifiant la condition initiale donnée.

1.
$$3y' + y = 0$$
 et $y(0) = e$

2.
$$y'' - 2y' + 2y = 0$$
, $y(0) = 1$ et $y'(0) = 0$

3.
$$y'' + 16y = 0$$
, $y(0) = 0$ et $y'(0) = -1$

Solution

1.
$$3y' + y = 0$$
 et $y(1) = e$

Les solutions de cette équations sont les fonctions y telles que $y(x) = ke^{\frac{-1}{3}x}, k \in \mathbb{R}$

$$y(0) = e \Rightarrow ke^{\frac{-1}{3} \times 0} = e \Rightarrow k = e$$

La solution vérifiant la condition initiale est $y(x)=e\times e^{\frac{-1}{3}x}=e^{\frac{-x}{3}+1}$

2.
$$y'' - 2y' + 2y = 0$$
, $y(0) = 1$ et $y'(0) = 0$

Soit $r^2 - 2r$ sont équations caractéristiques.

$$\triangle = 4 - 4(1 \times 2) = -4$$
, on a deux solutions complexes $x_1 = \frac{2-i2}{2} = 1 - i$ et $x_2 = 1 + i$

Les solutions de cette équations sont les fonctions y telles que $y(x) = e^x(\alpha \cos(x) + \beta \sin(x))$ avec α et β des constantes.

$$y(0) = 1 \Rightarrow \alpha = 1$$

$$y'(x) = e^x(\alpha\cos(x) + \beta\sin(x)) + e^x(-\alpha\sin(x) + \beta\cos(x))$$

$$y'(0) = 0 \Rightarrow \alpha + \beta = 0 \Rightarrow \beta = -\alpha = -1$$

La solution vérifiant la condition initiale est $y(x) = e^x(\cos(x) - \sin(x))$

Exercice 3

On considère l'équation différentielle (**E**) : $y' - 2y = e^{2x}$,

- 1) Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = xe^{2x}$ est une solution de \mathbf{E} .
- 2) Résoudre l'équation différentielle (**E**) : $y' 2y = e^{2x}$.

Solution

On considère l'équation différentielle (**E**) : $y' - 2y = e^{2x}$,

1. Montrons que $f(x) = xe^{2x}$ est une solution de **E**.

On a:
$$f'(x) = (xe^{2x})' = e^{2x} + x \times 2e^{2x} = e^{2x}(1+2x)$$

$$f'(x) - 2f(x) = e^{2x}(1+2x) - 2xe^{2x} = e^{2x}(1+2x-2x) = e^{2x}.$$

Donc $f(x) = xe^{2x}$ est bien une solution de **E**.

2. Résolvons l'équation différentielle $(\mathbf{E}): y' - 2y = e^{2x}$.

C'est une équation différentielle non homogène dont la solution particulière est donnée par la question (1).

Trouvons la solution de l'équation homogène y' - 2y = 0.

C'est une équation différentielle de premier ordre.

L'ensemble des solutions sont les fonstions f telles que $f(x) = ke^{2x}$ avec k une constante réelle.

Ainsi la solution de l'équation (\mathbf{E}') : $y' - 2y = e^{2x}$ est $f(x) = ke^{2x} + xe^{2x} = e^{2x}(k+x)$ avec avec k une constante réelle.

Merci de signaler toutes erreurs via WhatsApp : +221777426690