MATA37 Week 12

Kevin Santos

July 29, 2022

Definition 1. A sequence is **bounded** if

$$\exists c \in \mathbb{R}^+ \ s.t. \ |a_n| \le c \quad \forall n \in \mathbb{N}$$
 (1)

Note that $|a_n| \le c$ equivalently means $-c \le a_n \le c$.

Theorem 1. Convergent sequences are bounded

IF $\{a_n\}$ converges

THEN $\{a_n\}$ is bounded.

1 Bounded Monotone Convergence Theorem

Definition 2. A sequence $\{a_n\}$ is **monotone** if it is either decreasing or increasing $\forall n \in \mathbb{N}$.

- $\{a_n\}$ is decreasing when $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$
- $\{a_n\}$ is increasing when $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$

Theorem 2. Bounded Monotone Convergence Theorem

IF $\{a_n\}$ is bounded and monotone

THEN $\{a_n\}$ converges.

In particular, there are two cases:

- (1) If $\{a_n\}$ is increasing and bounded above, then $\{a_n\}$ converges.
- (2) If $\{a_n\}$ is decreasing and bounded below, then $\{a_n\}$ converges.

Example 1. Consider the following sequence, defined recursively:

$$a_1 = 1$$

$$a_{n+1} = 3 - \frac{1}{a_n}$$

Prove that the function is bounded above and increasing, then conclude that it converges using BMCT. As a challenge, try finding the limit of $\{a_n\}$.

2 Series

Let $\{a_n\}$ be a sequence.

A sequence can be used to define an **infinite series**, in which you add up all possible terms of the sequence:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$$

The general term of the series $\sum a_n$ is a_n .

The convergence of an infinite series is defined using the partial sums of its general term.

Definition 3. For each $n \in \mathbb{N}$, the *nth partial sum* is the finite sum

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

Definition 4. A series $\sum a_n$ converges to some $s \in \mathbb{R}$ if the sequence of partial sums $\{S_n\} = \{S_1, S_2, S_3, ...\}$ converges to some real number s. i.e.

$$\lim_{n\to\infty} S_n = s$$

If a series doesn't converge (i.e. if this limit doesn't exist) we say it diverges.

2.1 Geometric Series

Definition 5. A **geometric series** is a series of the form

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n} + \dots = \sum_{n=0}^{\infty} ar^{n}$$

r is the **common ratio** of the series.

To show that a series is a geometric series, show that it can be written in the form $\sum_{n=0}^{\infty} ar^n$ and identify what a (the first term in the series) and the common ratio r is.

2.2 Geometric Series Test

Let $\sum ar^n$ be a geometric series.

- If |r| < 1, $\sum ar^n$ converges and $\sum ar^n = \frac{a}{1-r}$
- If $|r| \ge 1$, $\sum ar^n$ diverges

2.3 Properties of convergent series

Let $\sum a_n$ and $\sum b_n$ be infinite series. Suppose both $\sum a_n = s$ and $\sum b_n = t$ (i.e. $\sum a_n$ and $\sum b_n$ both converge). Then the following properties hold:

• For any $c \in \mathbb{R}$, $\sum ca_n$ converges and $\sum ca_n = cs$

- $\sum (a_n \pm b_n)$ converges with sum $s \pm t$
- (Vanishing Condition) $\lim_{n\to\infty} a_n = 0$

2.3.1 Divergence Test

Note the Vanishing Condition above:

$$\sum a_n$$
 converges $\Longrightarrow \lim_{n\to\infty} a_n = 0$

The contrapositive of this statement gives a criterion for a series diverging:

$$\lim_{n\to\infty} a_n \neq 0 \implies \sum a_n \text{ diverges}$$

That is, to show that sum $\sum a_n$ diverges, you can show that $\lim_{n\to\infty} a_n \neq 0$.

Note that the **converse** of the Vanishing Condition is **not necessarily true**.

$$\lim_{n\to\infty} a_n = 0 \iff \sum a_n \text{ converges}$$

For example, $\sum \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n} = 0$.

Example 1. Determine whether the following series converge or diverge. If the series is convergent find its sum.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{12}{(-5)^n} \right)$$

(b)
$$20 - 4 + 0.8 - 0.16 + \dots$$

(c)
$$\sum_{n=1}^{\infty} a_n$$
 where $S_n = a_1 + a_2 + ... + a_n = \frac{n^2 + 1}{4n^2 + 1}$

$$(d) \quad \sum_{n=1}^{\infty} \frac{n}{n+1}$$

$$(e) \quad \sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

(f)
$$\sum_{n=1}^{\infty} \pi \frac{5^{n-1}(-1)^n}{6^{n+1}}$$

Example 2. Prove by definition of convergent series that if $\sum a_n$ and $\sum b_n$ converge and $\sum a_n = s$ and $\sum b_n = t$ then $\sum (a_n + b_n) = s + t$

Example 3.

True or false? If $\sum a_n$ converges and $\sum b_n$ diverges then $\sum (a_n b_n)$ diverges.

Example 4.

Suppose $\sum a_n$ is convergent and $\sum b_n$ is divergent. Prove that $\sum a_n + b_n$ is divergent. (Hint: Do a proof by contradiction.)

Example 5. Use a geometric series to prove that $0.33333... = \frac{1}{3}$.

3 Answers to selected examples

Example 1. Consider the following sequence, defined recursively:

$$a_1 = 1$$

$$a_{n+1} = 3 - \frac{1}{a_n}$$

Prove that the function is bounded above and increasing, then conclude that it converges using BMCT. As a challenge, try to find the limit of $\{a_n\}$.

Sol. Use induction to prove both hypotheses. Bounded above:

We can guess that each term in the sequence will be < 3 since each subsequent term is formed by subtracting from 3.

Base case:

$$n = 1$$
: $a_1 = 1 < 3$

Inductive hypothesis:

Suppose $a_k < 3$ for some $k \in \mathbb{N}$.

WTS $a_{k+1} < 3$, which is equivalent to $3 - \frac{1}{a_k} < 3$.

$$\begin{aligned} a_k &< 3 \quad \text{by I.H.} \\ &\iff \frac{1}{a_k} > \frac{1}{3} \quad \text{(take reciprocal of both sides)} \\ &\iff -\frac{1}{a_k} < -\frac{1}{3} \quad \text{multiply both sides by -1} \\ &\iff 3 - \frac{1}{a_k} < 3 - \frac{1}{3} < 3 \end{aligned}$$

Hence
$$3 - \frac{1}{a_k} = a_{k+1} < 3$$
. \checkmark

By induction, a_n is bounded above by 3.

Increasing:

Base case:

$$n = 1$$
: $a_1 = 1 < a_2 = 2$ \checkmark

Inductive hypothesis:

Suppose $a_k < a_{k+1}$ for some $k \in \mathbb{N}$.

WTS $a_{k+1} < a_{k+2}$

$$\begin{aligned} &a_k < a_{k+1} & \text{by I.H.} \\ &\iff \frac{1}{a_k} > \frac{1}{a_{k+1}} & \text{(take reciprocal of both sides)} \\ &\iff -\frac{1}{a_k} < -\frac{1}{a_{k+1}} & \text{(multiply both sides by -1)} \\ &\iff 3 - \frac{1}{a_k} < 3 - \frac{1}{a_{k+1}} & \text{(add 3 to both sides)} \end{aligned}$$

$$\iff a_{k+1} < a_{k+2}$$
 by def. of $a_n \checkmark$

By induction, a_n is increasing.

Therefore, since a_n is bounded above and increasing, a_n converges by BMCT.

Example 2. Determine whether the following series converge or diverge. If the series is convergent find its sum.

$$(a) \quad \sum_{n=0}^{\infty} \left(\frac{12}{(-5)^n} \right)$$

(b) 20-4+0.8-0.16+...

(c)
$$\sum_{n=1}^{\infty} a_n$$
 where $S_n = a_1 + a_2 + ... + a_n = \frac{n^2 + 1}{4n^2 + 1}$

$$(d) \quad \sum_{n=1}^{\infty} \frac{n}{n+1}$$

(e)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

(f)
$$\sum_{n=1}^{\infty} \pi \frac{5^{n-1}(-1)^n}{6^{n+1}}$$

Sol. (a)

$$\sum_{n=0}^{\infty} \left(\frac{12}{(-5)^n} \right) = \sum_{n=0}^{\infty} \left(12 \frac{1}{(-5)^n} \right)$$
$$= \sum_{n=0}^{\infty} \left(12 \left(\frac{(1)^n}{(-5)^n} \right) \right)$$
$$= \sum_{n=0}^{\infty} \left(12 \left(-\frac{1}{5} \right)^n \right)$$

This is a geometric series with $r = -\frac{1}{5}$ and first term $a = 12\left(-\frac{1}{5}\right)^0 = 12$. Since |r| < 1, by GS test, the sum converges and has value $\frac{12}{1-(-1/5)} = 10$.

(b)
$$20-4+0.8-0.16+...$$

This is a geometric series with first term a=20 and common ratio r=-1/5. Since |r|<1, by GS test, the sum converges and has value $\frac{20}{1-(-1/5)}=\frac{50}{3}$.

(c)
$$\sum_{n=0}^{\infty} a_n \text{ where } S_n = a_1 + a_2 + ... + a_n = \frac{n^2 + 1}{4n^2 + 1}$$

Evaluating $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{n^2+1}{4n^2+1} = \frac{1}{4}$. (NOTE: on an assignment, you should try proving this using the $\epsilon-N$ definition of a sequence, just to be thorough.) Hence, by definition of series convergence, $sum_{n=1}^{\infty} a_n$

converges with sum $\frac{1}{4}$. (d)

$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

Let $a_n = \frac{n}{n+1}$. Since $\lim_{n\to\infty} a_n = 1 \neq 0$, the series diverges by divergence test. (Note: again, on an assignment, you should try proving $\lim_{n\to\infty} a_n = 1$ using the def. of a sequence, just to be thorough.)

One way to see intuitively why this series diverges is to write $\frac{n}{n+1} = 1 - \frac{1}{n+1}$. $\sum 1$ and $\sum \frac{1}{n+1}$ both diverge, so you can guess that the original series also diverges.

(e)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

One of the first tests you should try is the divergence test, which will immediately tell you whether the series diverges. However, in this case, $\lim_{n\to\infty} \ln\left(\frac{n}{n+1}\right) = 0$, so we can't use the divergence test and we don't know yet whether the series converges or diverges.

Writing $\ln\left(\frac{n}{n+1}\right) = \ln(n) - \ln(n+1)$, we can see that the series is actually made up of telescoping sums, so we can try evaluating the series by definition using the partial sums.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

$$= (\ln(1) - \ln(2)) + (\ln(2) - \ln(3)) + (\ln(3) - \ln(4)) + \dots + (\ln(n) - \ln(n+1))$$

$$= \ln(1) - \ln(n+1)$$

$$= -\ln(n+1)$$

 $\lim_{n\to\infty} S_n = \lim_{n\to\infty} -\ln(n+1)$ does not exist since it goes to $-\infty$, hence by definition of series, the original series diverges.

(f)

$$\begin{split} \sum_{n=1}^{\infty} \pi \frac{5^{n-1}(-1)^n}{6^{n+1}} &= \sum_{n=1}^{\infty} \pi \frac{5^n 5^{-1}(-1)^n}{6^n 6} \\ &= \sum_{n=1}^{\infty} \pi \frac{5^n (-1)^n}{6^n \cdot 6 \cdot 5} \\ &= \sum_{n=1}^{\infty} \pi \left(-\frac{5}{6} \right)^n \left(\frac{1}{30} \right) \end{split}$$

This is a geometric series with common ratio $r = -\frac{5}{6}$. The first term in the series is the n = 1 term, so $a = \pi(-5/6)^1(1/30) = -\pi/36$. Since |r| < 1, the series converges with sum $\frac{\pi/36}{1-(-5/6)} = \frac{\pi}{66}$

Example 3. Use a geometric series to prove that $0.33333... = \frac{1}{3}$.

0.333... can be written as a series:

$$0.3333... = 0.3 + 0.03 + 0.003 + 0.0003 + 0.00003 +$$

Equivalently,

$$0.3333... = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10000} +$$

This is a geometric series with ratio $r=\frac{1}{10}$ and first term $a=\frac{3}{10}$. Since |r|<1, the series converges and the sum is $\frac{3/10}{1-1/10}=\frac{3/10}{9/10}=\frac{1}{3}$.