

TangerineSDR Clock Module Requirements and GPS Performance Testing

John Ackermann N8UR jra@febo.com http://www.febo.com

Clock Module Overview

- GPS Disciplined Oscillator with outputs:
 - 122.88 MHz for receiver ADC and transmitter DAC
 - 1 PPS for timestamping
 - TOD message
 - (Optional) 10 MHz for external use
 - (Optional) Synthesized outputs from 100 Hz to 1024 MHz
- FPGA serves as a switch matrix (among other things).
- PCB can be populated with components appropriate for required performance or functionality
- Usable separately from TangerineSDR via interface board

Clock Module Hardware Block Diagram

Dear Scientists: Please tell us what

(a) You Want(b) You Need

Thank you.

Sincerely, The Engineers

- Frequency Accuracy/Long Term Stability (vs. NIST)
 - How closely does the frequency follow USFS on average?
- Short-term Frequency Stability
 - How much does the signal wander over seconds/minutes/hours?
- Phase Noise
 - How much phase modulation is on the ADC/DAC clock source?
- Timestamp Accuracy (vs. USNO)
 - How closely does TangerineTime track USNO?
- Timestamp Stability
 - How much jitter does the timestamp have?

Frequency Accuracy/Long Term Stability

- In GPSDO, typically limited by GPS system capability but in freestanding system, XO aging is dominant
- Parts in 10¹³ realistic over 24 hours with GPS

Short-term Frequency Stability

- How much does the signal wander over seconds/minutes/hours?
- Dependent on quality of oscillators, (=\$\$\$)

What a GPSDO Does

Typical Oscillator Short Term Stability

Phase Noise

- Phase modulation imparted to the ADC/DAC
- Measured in dBc/Hz at offset frequencies from carrier
- For TangerineSDR, dominated by 122.88 MHz signal source (VCXO or synthesizer)
- Realistic targets are:
 - About -100 to -115 dBc/Hz @ 100 Hz
 - About -145 to -160 dBc/Hz @ 100 kHz

Timestamp Accuracy

- Using low-cost GPS, relative to USNO:
 - 100 ns is easy
 - 10 ns is hard but possible with user care
 - <10 ns is not practical in HamSci environment</p>

Timestamp Stability

- Raw GPS PPS has peak-to-peak, RMS, jitter ranging from about 4 to 20 ns (occasional excursions 10x that)
- GPSDO smoothed PPS can be <4 ns exclusive of logic and propagation delays, without larger excursions.
- See next chart.

Original Phase Difference

Averaging window: Per-pixel

Trace	Notes	Sample Interval	Duration	Acquired	Instrument
CNS-II	vs HP 5071A	1 s	1d 4h 10m 15s	101415 pts	multi-TICC
NEO-M8P (Unsaved)	vs HP 5071A	1 s	1d 4h 10m 37s	101437 pts	multi-TICC
NEO-M8T (Unsaved)	vs HP 5071A	1 s	1d 4h 10m 51s	101451 pts	multi-TICC
ZED-F9P (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 1s	101461 pts	multi-TICC
ZED-F9T (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 18s	101478 pts	multi-TICC
NEO-M8F (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 28s	101488 pts	multi-TICC
NEO-M9N (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 44s	101504 pts	multi-TICC
NEO-M8N (Unsaved)	vs HP 5071A	1 s	1d 4h 12m 2s	101522 pts	multi-TICC

Original Phase Difference

Averaging window: Per-pixel

Trace	Notes	Sample Interval	Duration	Acquired	Instrument
CNS-II	vs HP 5071A	1 s	1d 4h 10m 15s	101415 pts	multi-TICC
NEO-M8P (Unsaved)	vs HP 5071A	1 s	1d 4h 10m 37s	101437 pts	multi-TICC
NEO-M8T (Unsaved)	vs HP 5071A	1 s	1d 4h 10m 51s	101451 pts	multi-TICC
ZED-F9P (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 1s	101461 pts	multi-TICC
ZED-F9T (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 18s	101478 pts	multi-TICC
NEO-M8F (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 28s	101488 pts	multi-TICC
NEO-M9N (Unsaved)	vs HP 5071A	1 s	1d 4h 11m 44s	101504 pts	multi-TICC
NEO MBN (Unsaved)	vs HP 5071A	1 s	1d 4h 12m 2s	101522 pts	multi TICC