Topology

K

April 27, 2022

Contents

1	Topological Space	ļ
2	Connected Spaces and Sets	7
3	Trennungsaxiome	ę

4 CONTENTS

Chapter 1

Topological Space

Definition 1.1 (Topological Space). A topological space is an ordered pair (X, τ) , where X is a set and τ is a collection of subsets that satisfies the following axioms.

- 1. The empty set \varnothing and the entire set X belongs to τ .
- 2. Any **arbitary** union of members of τ belongs to τ .
- 3. The intersection of finite number of members of τ belongs to τ .

The collection τ is called a topology on X and the elements of τ are called open sets. A subset $A \subset X$ is said to be closed if its complement $X \setminus A$ is open.

Example 1.1.1. Let X be a set.

- 1. $\tau = \mathcal{P}(X)$ is called the discrete topology. In this case, (X, τ) is called the discrete space. It is the finest topology that can be defined on a set. (The set of all possible topologies on a given set forms a partially ordered set.)
- 2. $\tau = \{\emptyset, \mathcal{P}(X)\}$ is called the trivial topology.
- 3. Let (X, d) be a metric space. Set

$$\tau_d := \{ U \in X \mid U \text{ is a open subset in the metric space } (X, d) \}. \tag{1.1}$$

Recall that U being an open subset in the metric space (X, d) means that for all $x \in U$ there is an r > 0 such that $B_d(x, r)$ is contained in U.

Here, τ is a topology. In other words, a metric induces a topology.

(Proof as homework.)

4. The Zariski-topology.

Definition 1.2 (Continuous Maps). Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \longrightarrow Y$ is said to be continuous if the preimage of an open subset is again open, i.e.

for all
$$U \in \tau_Y$$
 it is $f^{-1}(U) \in \tau_X$. (1.2)

Lemma 1.2.1. The different definitions of continuity in a topological space and a metric space are equivalent, i.e. if X and Y are metric spaces, then $f: X \longrightarrow Y$ is ϵ - δ -continuous if and only if f is continuous.

Definition 1.3 (Homeomorphism). Let X and Y be topological spaces.

- 1. A map $f: X \longrightarrow Y$ is a homeomorphism if it has the following properties.
 - (a) f is bijective.
 - (b) f and the inverse map f^{-1} is continuous.
- 2. Two topological spaces X and Y are said to be homeomorphic if a homeomorphism exists
- 3. We denote the set of all homeomorphisms from X to Y by $\operatorname{Homeo}(X,Y)$. If Y=X we also write $\operatorname{Homeo}(X)$.

Remark. The set of all homeomorphisms of X to itself $\operatorname{Homeo}(X)$ is a group with composition as its operation.

Definition 1.4. Let (X, τ) a topological space.

- 1. $\mathcal{B} \subset \mathcal{O}$ is a basis of the topology, if any member of \mathcal{O} is the union of subsets from \mathcal{B} .
- 2. $S \subset \mathcal{O}$ is a subbasis of the topology, if any member of \mathcal{O} is the union of finite intersections of subsets from S.

We say that \mathcal{B} and \mathcal{S} generates \mathcal{O} and write $\overline{\mathcal{S}} = \overline{\mathcal{B}} = \mathcal{O}$.

Lemma 1.4.1. Let $S \subset \mathcal{P}(X)$, then there exists exactly one topology $\mathcal{O} \subset \mathcal{P}(X)$ of X such that $1. S \subset \mathcal{O}$

Note about product topology: $\{U \times V \mid U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$; often $W \subset X \times Y \iff \forall (x,y) \in W \exists U_X \in \mathcal{O}_X, V_Y \in \mathcal{O}_Y, x \in U_X, y \in V_Y$

Chapter 2

Connected Spaces and Sets

Definition 2.1 (Def 9). A topological space X is said to be connected, if one of the following equivalent conditions is met.

- 1. X is **not** a union of two disjoint sets.
- 2. The **only** subsets of X that are **both** open and closed (clopen) are the emptyset \varnothing and the entire set X.

Lemma 2.1.1. Any interval $I \subset \mathbb{R}$ is connected.

Proof. Let $I = A \cup B$ with A and B being nonempty disjoint sets in \mathbb{R} that are open, and let $a \in A$ and $b \in B$. Without loss of generality, assume a < b. If we set

$$s := \inf \left\{ x \in B \mid a < x \right\} \tag{2.1}$$

then $s \in [a, b] \subset I$ because I is an interval.

Example 2.1.1. The general linear group $\mathrm{GL}_n(K)$ for a field K and $n \in \mathbb{N}$ is not connected for $K = \mathbb{R}$ and $K = \mathbb{C}$.

Definition 2.2. A connected component of a topological space is a maximally connected subset $X_0 \subseteq X$, i.e. X_0 connected and for all $X_0 \subsetneq X_1$ then X_1 is not connected.

Remark. Let $f: X \longrightarrow Y$ be continuous and X be connected, then $f(X) \subset Y$ is connected.

Proof. Let $f(X) = A \sqcup B$ with A and B being two open disjoint sets. $f^{-1}(A)$ and $f^{-1}(B)$ are open since f is continuous. We also have $f^{-1}(A) \cap f^{-1}B = f^{-1}(A \cap B) = \emptyset$ so $f^{-1}(A) = \emptyset$ or $f^{-1}(B) = \emptyset$, so $A = \emptyset$ or $B = \emptyset$ and we are done.

Proposition 2.2.1. Connected components are closed subsets.

$$\square$$

Example 2.2.1. For $\mathbb{Q} \subset \mathbb{R}$ the connected components are points and those are not open.

Lemma 2.2.1 (Lemma 11). Let X be connected and $f: X \longrightarrow Y$ and locally constant, i.e. for all $x \in X$ there exists a $U_x \in \mathcal{O}_X$, $x \in U_x$ such that f restricted on U_x is identical to f(x)., then f is constant.

Proof. Locally constant implies continuous with regards to the discrete topology on Y. Let $x \in X$, $X = f^{-1}(f(x)) \cup f^{-1}(Y \setminus \{f(x)\})$ is a disjoint union and since X is connected $f^{-1}(Y \setminus \{f(x)\}) = \emptyset$. Conclude f is identical to f(x).

Application: $f: X \longrightarrow \{0,1\}$, X is connected, f locally constant, there is a $x \in X$ such that f(x) = 1, then f is identical to 1.

Definition 2.3. X is said to be path connected, if for every pair of points x and x_0 in X there is a continuous map (called path) $\gamma:[0,1]\longrightarrow X$ with $\gamma(0)=x_0$ and $\gamma(1)=x$.

Lemma 2.3.1. If X is path connected, then it is also connected.

Proof. Let A and B two disjoint open sets such that $A \sqcup B = X$, and let $a \in A$ and $b \in B$. Let $\gamma : [0,1] \longrightarrow X$ be continuous path with $\gamma(0) = x_0$ and $\gamma(1) = x_1$. We have that γ^{-1}

Remark. The converse statement is not true in general.

Example 2.3.1. $X = \{(x, \sin(\frac{1}{x})) \mid x > 0\} \cup \{0\} \times [-1, 1] \subset \mathbb{R}^2 \text{ is connected but not path connected.}$

Proof. Homework

Remark. missing

Chapter 3

Trennungsaxiome

Literature: Groessere Liste in Sten, Seibeck

Definition 3.1. (X, τ) fullfills

- 1. For all $x \in X$ and $y \in X$ with $x \neq y$ there is a subset $U \in X$ open such that $y \in U$ but $x \notin U$.
- 2. Hausdorff

Lemma 3.1.1. 1. X is from type 1 if and only if $\{x\}$ is closed.

Remark. The type 1 and type 2 properties are inherited to subspaces, topological sums and products. Metric spaces are from type 2.