1 Definicje

Kopiec to drzewo binarne z porządkiem kopcowym.

Porządek kopcowy:

Niech d(v) będzie funkcją zwracającą wartość dla wierzchołka v. Wówczas zachodzi $d(v) \leq d(u)$ dla v będącego przodkiem u.

Przykłady poprawnych kopców:

Fakt: wysokość kopca o n elementach wynosi $h = \log n$

2 Reprezentacja kopca

Do pamiętania kopca możemy użyć tablicy.

Powyższe drzewo może być reprezentowane jako:

poziom	korzeń	1	1	2	2	2	2	3	3
element	2	4	19	6	7	21	37	9	27
indeks	1	2	3	4	5	6	7	8	9

Dla takiej reprezentacji synowie elementu v_i to v_{2i} oraz v_{2i+1} . Natomiast ojcem elementu v_i będzie element $v_{\frac{i}{2}}$.

3 Operacje na kopcu

3.1 minimum

return H[1] – zwracamy wartość w korzeniu. Złożoność czasowa takiej operacji to O(1).

3.2 *insert*

Doklejamy nowy liść. Dopóki następuje kolizja z ojcem $(v_{\frac{i}{2}} > v_i)$ zamieniamy ich miejscami. Złożoność czasowa takiej operacji to $O(\log n)$.

3.3 deletemin

W miejsce korzenia wstawiamy ostatni element kopca. Następnie sprawdzamy czy występuje kolizja z 'mniejszym' z dzieci. Jeśli tak, to dokonujemy zamiany elementów i rekurencyjnie powtarzamy czynność. Złożoność czasowa takiej operacji to $O(\log n)$.

Istnieje również drugie rozwiązanie problemu usuwania wierzchołka. Nadajmy korzeniowi wartość ∞ a następnie spychamy go w dół zamieniając miejscem z synem o mniejszej wartości. Kiedy zepchniemy korzeń do poziomu liści zamieniamy go miejscem z ostatnim liściem (najbardziej na prawo). W takim rozwiązaniu wykonamy mniejszą liczbę porównań (potrzebujemy jednego na zepchnięcie wierzchołka w dół zamiast dwóch).

3.4 *merge*

3.5 $decrease(k, i, \Delta)$

Pozwala zmienić wartość i-tego elementu o Δ

3.6 deletemax

Do usuwania elementów maksymalnych możemu użyć dwóch kopców, niech nazywają się L, H. W L umieścimy $\lfloor \frac{n}{2} \rfloor$ mniejszych elementów, a w $H \lceil \frac{n}{2} \rceil$ większych elementów, prowadząc jednocześnie krawędzie pomiędzy liśćmi obu kopców, tak aby na **każdej** ścieżce od korzenia L do H był zachowany porządek.

4 tworzenie kopca z tablicy

4.1

Wstawiamy po prostu elementy do kopca.

liczba operacji	liczba elementów
0	1
1	2
2	4
	•
	•
$\log n$	$\frac{n}{2}$

Daje nam to ostatecznie złożoność czasową $O(n \log n)$.

4.2

Druga metoda polega na tworzeniu kopca od dołu.

Wiemy, że liście są poprawnymi kopcami. Dokładamy więc elementy będące ojcami dla kolejnych liści, a jeśli nastąpi kolizja to poprawiamy tak jak w operacjach insert i deletemin.

liczba operacji	liczba elementów
0	$\frac{n}{2}$
$2 \cdot 1$	$\frac{\overline{n}}{4}$ $\frac{n}{8}$
$2 \cdot 2$	$\frac{\overline{n}}{8}$
	•
•	•
•	•
$2 \cdot \log n$	1

Daje nam to ostatecznie złożoność czasową O(n).

5 Heapsort

Używając kopca możemy posortować dane!

Procedura sortowania wygląda następująco, dla zadanej tablicy A o rozmiarze n:

Algorithm 1 Heapsort

```
1: make-heap(A)

2: for iteration = 1, 2, ..., n do

3: swap(A[1], A[n-iteration+1)

4: move-down(A, 1)

5: end for
```

Na koniec działania algorytmu otrzymamy tablicę posortowaną w sposób odwrotny (nie jest to jednak problemem, to my implementujemy kopiec, a zamiana operacji < na > jest prosta).

Kopce 27-02-2020

Powyższy algorytm wykonuje maksymalnie $2\log n$ porównań dla pojedynczej iteracji, dlatego ostateczna złożoność wynosi $O(n\log n)$.

Istnieje również drugie podejście do rozwiązania tego problemu, które ma jednak znacznie większą szansę na wykonanie mniejszej liczby porównań. Załóżmy, że funkcja move-down dodatkowo zwraca indeks elementu po zakończeniu spychania go w dół (jest to dość prosta modyfikacja).

Algorithm 2 Heapsort

```
1: \operatorname{make-heap}(A)
2: \operatorname{for} iteration = 1, 2, \dots, n \operatorname{do}
3: A[1] \leftarrow \infty
4: index \leftarrow \operatorname{move-down}(A, 1)
5: \operatorname{swap}(A[index], A[n - iteration + 1])
6: \operatorname{move-up}(A, index)
7: \operatorname{end} \operatorname{for}
```

6 Kolejki priorytetowe

Kolejka priorytetowa jest strukturą danych, która pamięta klucze i ma następujące operacje: *insert*, *min*, *deletemin*. Do ich implementacji możemy wykorzystać strukturę kopców.