## Department of Physics Indian Institute of Technology Guwahati

- 1. A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity  $\omega$  about the z axis.
  - (a) What is the magnetic dipole moment of the sphere?
  - (b) Find the magnetic field at a point  $(r, \theta)$  inside the sphere.
  - (c) Using the results of (b) find the average magnetic field within the sphere. Hint: Average magnetic field is defined as

$$\vec{B}_{\rm avg} = \frac{1}{\frac{4}{3}\pi R^3} \int \vec{B} d\tau$$

Compare this result with the result of (a) and show that the average magnetic field is related to the magnetic dipole moment as

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3}$$

- 2. Suppose the field inside a large piece of magnetic material is  $\vec{B_0}$ , so that  $\vec{H_0} = \vec{B_0}/\mu_0 \vec{M}$ .
  - (a) Now a small spherical cavity is hollowed out of the material (as shown in figure 1). Find the field at the centre of the cavity, in terms of  $\vec{B_0}$ ,  $\vec{M}$ . Also find  $\vec{H}$  at the centre of the cavity in terms of  $\vec{H_0}$ ,  $\vec{M}$ .
  - (b) Do the same for a long needle-shaped cavity running parallel to  $\vec{M}$ .
  - (c) Do the same for a thin wafer-shaped cavity perpendicular to  $\vec{M}$ .
- 3. Given that  $\vec{H_1} = -2\hat{i} + 6\hat{j} + 4\hat{k}$  A/m in the region  $y x 2 \le 0$ , where  $\mu_1 = 5\mu_0$ . Calculate
  - (a)  $\vec{M_1}$  and  $\vec{B_1}$ .
  - (b)  $\vec{M}_2$  and  $\vec{B}_2$  in the region  $y-x-2 \geq 0$ , where  $\mu_2 = 2\mu_0$ .
- 4. A short circular cylinder of radius a and length L carries a "frozen-in" uniform magnetisation  $\vec{M}$  parallel to its axis. Find the bound current and sketch the magnetic field of the cylinder: one for  $L \gg a$ , one for  $L \langle a \rangle$  and one for  $L \approx a$ .
- 5. (a) Find the magnetic dipole moment of a spherical shell, of radius R, carrying a uniform surface charge  $\sigma$  which is set to spin at angular velocity  $\vec{\omega}$ .
  - (b) Consider a charge of 3pC being distributed over a sphere of radius 1cm and having a uniform surface charge density  $\sigma$ . If this sphere is rotated about its diameter with



Figure 1: Figure for take home problem 2.

angular velocity  $\omega=10^6$  radians per second, find the magnetic dipole moment of the sphere.

6. A circular loop of radius a is at a distance D above a tiny magnetic dipole of infinitesimal area dS carrying a current  $I_1$ , as shown in figure 2. Assume current through the circular loop  $I_2 = 0$ , for the time being. Also, the distance D and loop radius a are related as  $D = \sqrt{3}a$ . Write your final answers only in terms of  $I_1, dS, a$  and fundamental constants.



Figure 2: Figure for problem 6

- (i) What is the vector potential due to the dipole at all points on the circular loop.
- (ii) Consider the loop to be carrying a current  $I_2 \neq 0$ . The relation between D and a remains same as before  $D = \sqrt{3}a$ . What is the magnetic field due to  $I_2$  at the position of the tiny dipole? What is the force on the magnetic dipole? What is the torque on the magnetic dipole?