Oplossingen Lineaire Algebra 2013 TODO

September 27, 2013

Contents

1	Oefeningen	3
2	Opdrachten	8
3	Extra bewijzen	8

1 Oefeningen

oef 1

oef 2

oef 3

Echelonvorm

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

$$R2 \longmapsto R2 - 2 \cdot R1$$

$$R3 \longmapsto R3 - 3 \cdot R1$$

$$R4 \longmapsto R4 - 4 \cdot R1$$

$$R5 \longmapsto R5 - 5 \cdot R1$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & -2 & -4 & -11 & -13 \\ 0 & -3 & -11 & -14 & -17 \\ 0 & -9 & -13 & -17 & -21 \end{pmatrix}$$

$$R3 \longmapsto R3 - 2 \cdot R2$$

$$R4 \longmapsto R4 - 2 \cdot R2$$

$$R5 \longmapsto R5 - 2 \cdot R2$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & -5 & 5 & 10 \\ 0 & 0 & 5 & 10 & 60 \end{pmatrix}$$

$$R5 \longmapsto R5 + R4$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & 0 & -5 & -5 & 10 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 75 \end{pmatrix}$$

Rij-geredeuceerde vorm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

oef 4

oef 5

oef 6

a)

$$\begin{pmatrix} 1 & 2 & 4 & 6 \\ 3 & 8 & 14 & 16 \\ 2 & 6 & 11 & 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Antwoord:

$$V = \{(4, -3, 2)\}$$

b)

$$\begin{pmatrix} 3 & 2 & 4 & 5 \\ 1 & 1 & -3 & 2 \\ 4 & 3 & 1 & 7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 10 & 1 \\ 0 & 1 & -13 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1 - 10t, 1 + 13t, t) | t \in \mathbb{R}\}\$$

c)

$$\begin{pmatrix} 1 & 2 & -3 & -1 \\ 3 & -1 & 2 & 7 \\ 5 & 3 & -4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{7} & 0 \\ 0 & 1 & \frac{-11}{7} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

d)

$$\begin{pmatrix} 1 & 1 & -2 & 1 & 2 & 1 \\ 2 & -1 & 2 & 2 & 6 & 2 \\ 3 & 2 & -4 & -3 & -9 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1, 2a, a, -3b, b) | a, b \in \mathbb{R}\}\$$

oef 9

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 6 & -2 & 11 & b_2 \\ 2 & -1 & 3 & b_3 \end{pmatrix}$$

$$R2 \longmapsto R2 - 3 \cdot R1$$

$$R3 \longmapsto R3 - R1$$

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 0 & -5 & -10 & b_2 - 3b_1 \\ 0 & -2 & -4 & b_3 - b_1 \end{pmatrix}$$

$$R2 \longmapsto -\frac{1}{5}R2$$

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 0 & 1 & 2 & -\frac{1}{5}(b_2 - 3b_1) \\ 0 & -2 & -4 & b_3 - b_1 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 + 2 \cdot R2$$

$$\begin{pmatrix} 2 & 0 & 5 & b_1 + \frac{1}{5}(b_2 - 3b_1) \\ 0 & 1 & 2 & -\frac{1}{5}(b_2 - 3b_1) \\ 0 & 0 & (b_3 - b_1) - \frac{2}{5}(b_2 - 3b_1) \end{pmatrix}$$

Antwoord:

Als $(b_3 - b_1) - \frac{2}{5}(b_2 - 3b_1) = 0$ dan heeft het stelsel oneindig veel oplossingen. Als $(b_3 - b_1) - \frac{2}{5}(b_2 - 3b_1) \neq 0$ dan heeft het stelsel geen oplossingen $(V = \emptyset)$

oef 10

oef 11

oef 12

a)

Wissel R1 en R3, en daarna R2 en R1.

$$\begin{pmatrix} 1 & 1 & k & 1 \\ 1 & k & 1 & 1 \\ k & 1 & 1 & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 - R1$$

$$R3 \longmapsto R3 - k \cdot R1$$

$$\begin{pmatrix} 1 & 1 & k & 1 \\ 0 & k - 1 & 1 - k & 0 \\ 0 & 1 - k & 1 - k^2 & 1 - k \end{pmatrix}$$

Geval 1:
$$k = 1$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{ (1 - a - b, a, b) | a, b \in \mathbb{R} \}$$

Geval 2: $k \neq 1$

$$R2 \longmapsto \frac{1}{k-1}R2$$

$$R3 \longmapsto \frac{1}{1-k}R3$$

$$\begin{pmatrix} 1 & 1 & k & 1\\ 0 & 1 & -1 & 0\\ 0 & 1 & k+1 & 1 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 - R1$$

$$\begin{pmatrix} 1 & 0 & k+1 & 1\\ 0 & 1 & -1 & 0\\ 0 & 0 & k+2 & 1 \end{pmatrix}$$

Geval 2a: k = -2

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

Geval 2b: $k \neq -2$

$$R3 \longmapsto \frac{1}{k+2}R3$$

$$\begin{pmatrix} 1 & 0 & k+1 & 1\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix}$$

$$R1 \longmapsto R1 - (k+1) \cdot R3$$

$$R2 \longmapsto R2 + R3$$

$$\begin{pmatrix} 1 & 0 & 0 & \frac{3}{k+2}\\ 0 & 1 & 0 & \frac{1}{k+2}\\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix}$$

Antwoord:

$$V = \{(\frac{3}{k+2}, \frac{1}{k+2}, \frac{1}{k+2})\}$$

Samenvatting:

Als k = 1 dan heeft het stelsel oneindig veel oplossingen:

$$V = \{(1 - a - b, a, b) | a, b \in \mathbb{R}\}$$

Als k = -2 dan heeft het stelsel geen oplossingen:

$$V = \emptyset$$

Anders heeft het stelsel precies één oplossing:

$$V = \{(\frac{3}{k+2}, \frac{1}{k+2}, \frac{1}{k+2})\}$$

b)

Wissel R1 en R2

$$\begin{pmatrix} 1 & k & k+1 \\ k & 1 & 2 \end{pmatrix}$$

$$R2 \longmapsto R2 - k \cdot R3$$

$$\begin{pmatrix} 1 & k & k+1 \\ 0 & 1-k^2 & -k^2-k+2 \end{pmatrix}$$

Geval1: k = 1

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(2-t, t) | t \in \mathbb{R}\}$$

Geval2: k = -1

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

Geval3: $k \neq 1 \land k \neq -1$

$$R2 \longmapsto \frac{1}{1-k^2} \cdot R2$$

$$\begin{pmatrix} 1 & k & k+1 \\ 0 & 1 & -\frac{k+2}{k+1} \end{pmatrix}$$

$$R1 \longmapsto R1 - k \cdot R2$$

$$\begin{pmatrix} 1 & 0 & \frac{2k^2 + 4k + 1}{k + 1} \\ 0 & 1 & -\frac{k + 2}{k + 1} \end{pmatrix}$$

Antwoord:

$$V = \left\{ \left(\frac{2k^2+4k+1}{k+1}, -\frac{k+2}{k+1}\right) \right\}$$

Samenvatting:

Als k=1 dan heeft het stelsel one
indig veel oplossingen:

$$V = \{(2-t,t)|t \in \mathbb{R}\}$$

Als k = -1 dan heeft het stelsel geen oplossingen:

$$V=\emptyset$$

Anders heeft het stelsel precies één oplossing:

$$V = \left\{ \left(\frac{2k^2 + 4k + 1}{k+1}, -\frac{k+2}{k+1}\right) \right\}$$

c)

2 Opdrachten

opdracht 1.2

opdracht 1.23

opdracht 1.33

3 Extra bewijzen

- 1.10
- 1.44