Contents

1	Introduction	2
2	Solution Techniques 2.1 Separation of Variables	2 2 2
3	Gronwall's Inequality	3
4	Well-Posedness	4
5	Picard-Lindelof Theorem	4
6	Peano's Theorem	10
7	Existence Theorem for Systems of 1st Order ODEs	11
8	Uniqueness for System of 1st Order ODE's	12
9	Maximized Interval of Defintion for Solutions	13
10	Dependence of Initial Conditions	14
11	Systems of Linear 1st Order ODEs 11.1 Homogeneous Case	15 15 18
	Linear Systems with Constant Coefficients 12.1 Matrix Exponential	20 21 22
	13.0.1 Autonomous Systems	
	13.1 Lyapunov's Theorem	24

Math 123: Notes

Anisha Yeddanapudi

January 2, 2024

§1 Introduction

Consider $\vec{y}' = \vec{f}(t, \vec{y})$ denoted as (1):

Definition 1.1. If $\vec{f} = A(t) \cdot \vec{y}$ then (1) is linear and homogeneous.

Definition 1.2. If $\vec{f} = A(t) \cdot \vec{y} + g(t)$ then (1) is linear and inhomogeneous.

§2 Solution Techniques

§2.1 Separation of Variables

Consider

$$y' = g(t)h(y)$$

Then:

$$\frac{y'}{h(y)} = g(t) \Longrightarrow \int_{t_0}^t \frac{y'}{\ln(y)} dt = \int_{t_0}^t g(s) ds$$

Applying change of variables w = y then dw = y'dt:

$$\int_{y(t_0)}^{y(t_1)} \frac{dw}{h(w)} = \int_{t_0}^{t_1} g(s)ds$$

§2.2 Method of Integrating Factors

Consider where $a, b : \mathbb{R} \to \mathbb{R}$ are continuous:

$$y' = a(t)y + b(t)$$

We want to find I(t) such that (Iy)' = I(y' - a(t)y) = Ib(t).

$$I(t)'y + I'(t)y = I(y' + a(t)y)$$

$$\Rightarrow I'y = -Ta(t)y$$

$$\Rightarrow (\ln(I(t)))' = -a(t)I(t)$$

$$\Rightarrow I(t) = e^{-\int_{t_0}^{t_1} a(s)ds}$$

$$\Rightarrow (Iy)' = I(t)b(t)$$

Integrating both sides:

$$\int_{t_0}^t (Iy)' ds = \int_{t_0}^t I(s)b(s)ds \Longrightarrow I(t)y(t) - I(t_0)y(t_0) = \int_{t_0}^t I(s)b(s)ds$$
$$y(t) = y(t_0)e^{\int_{t_0}^t a(s)ds} + \int_{t_0}^t e^{\int_s^t a(w)dw}b(s)ds$$

Consider the following example:

$$y' = a(t)y + b(t)y^n$$

Dividing by y^n :

$$\frac{y'}{y^n} = a(t)y^{1-n} + b(t)$$

$$\Rightarrow (y^{-n+1})' = (-n+1)y^{-n}y' \Rightarrow y^{-n}y' = \frac{1}{1-n}(y^{-n+1})'$$

$$\Rightarrow \frac{1}{1-n}(y^{-n+1})' = a(t)y^{-n+1} + b(t)$$

Set $z = y^{-n+1}$ and proceed using method of integrating factor.

§3 Gronwall's Inequality

Theorem 3.1

Let f, g be continuous functions on I = [a, b] where $g \ge 0$. Suppose f is differentiable on (a, b) and that $f'(t) \le g(tf(t))$ for all $t \in (a, b)$. Then $f(t) \le f(a)e^{\int_a^t g(s)ds}$.

Proof. We know that $f'(t) - g(t)f(t) \leq 0$ for all $t \in I$. Let $H = e^G$ where $G = -\int_a^t g(s)ds$ then:

$$H(t)(f'(t) - g(t)f(t)) \le 0$$

Using H' = -g(t)H(t):

$$\Rightarrow (H(t)f(t))' \le 0$$

Claim 3.2 —
$$(f(t)H(t))' \le 0$$

Proof. We know that $f'H + fH' \le 0$. By defintion H' = -gH therefore $(fH)' = f'H - fgH = H(f' - fg) \le 0$. Integrating (fH)':

$$\int_{a}^{t} (H(s)f(s))'ds \le 0$$

By the Fundamental Thm of Calculus:

$$Hf - H(a)f(a) \le 0$$

$$\Rightarrow f(t) \le H^{-1}f(0)$$

$$H(a) = e^{\int_a^t g(s)ds} f(a)$$

Theorem 3.3

Let K > 0 where $K \in \mathbb{R}$ and f, g are continuous on I such that $f \leq K + \int_a^t f(s)g(s)ds$ for all $t \in I$ where $g \geq 0$. Then $f(t) \leq Ke^{\int_a^t g(s)ds}$.

Proof. Let $U(t) = K^{-1} \int_a^t f(s)g(s)ds$ then U' = f(t)g(t). Clearly:

$$U' \le g(t) \left(K + \int_a^t f(s)g(s)ds \right) = g(t)U(t)$$

Using U(a) = K by Gronwall's inequality in Differential Form:

$$U(t) < Ke^{\int_a^t g(s)ds}$$

§4 Well-Posedness

Lemma 4.1

Let $f: R \to R$ where $R = [t_0 - a, t_0 + a] \times [y_0 - b, y_0 + b]$. If f is continuous on R and $|\partial_y f(t,y)| \le K$ for all $(t,y) \in R$ then f is Lipschitz continuous with respect to y.

Proof. Suppose $y_2 \ge y_1$ then:

$$|f(t, y_2) - f(t, y_1)| \le \left| \int_{y_1}^{y_2} \partial_y f(t, \bar{y}) d\bar{y} \right|$$

$$\le \int_{y_1}^{y_2} |\partial_y f(t, \bar{y}) d\bar{y}|$$

$$\le \int_{y_1}^{y_2} K d\bar{y} = K|y_2 - y_1|$$

§5 Picard-Lindelof Theorem

Theorem 5.1

Consider the following initial value problem:

$$(**) \begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

Let $R = [t_0 - a, t_0 + a] \times [y_0 - b, y_0 + b]$. Assume that:

- (1) f is continuous in t and y on R, with $|f(t,y)| \leq M$ for any $(t,y) \in R$.
- (2) f is Lipschitz continuous with respect to y on R.

Then there exists an $\alpha > 0$ and a solution $\phi: I \to R$ of (**) where $I = (t_0 - \alpha, t_0 + \alpha)$.

Lemma 5.2

 ϕ is a solution to (**) iff ϕ is continuous and satisfies:

(1)
$$\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds$$

for all $t \in I$

Proof. Suppose ϕ is a solution to (**) then:

$$\int_{t_0}^t \phi'(s)ds = \phi(t) - \phi(t_0) = \phi(t) - y_0$$

$$\Rightarrow \phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds$$

Conversely define $\phi(t)$ by (1), then $\phi(t)$ is differentiable and:

$$\phi'(t) = \left(y_0 \int_{t_0}^t f(s, \phi(s)) ds\right)'$$
$$= f(s, \phi(s))\Big|_{t_0}^t = f(t, \phi(t))$$

Remark: $\alpha = \min \left\{ a, \frac{b}{M} \right\}$

Notice that the variation of $\phi(t)$ in I is at most:

$$|\phi(t_0) - \phi(t)| < M\alpha$$

And $M\alpha < b$ which implies that $\alpha < \frac{b}{M}$.

Proof. **Step 1**: It suffices to show that there exists a $\phi: I \to R$, where ϕ is continuous such that:

$$\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds$$

Step 2: Picard Iteration.

Construct a sequence of functions ϕ_j such that for all $j=0,1,\cdots$:

$$\begin{cases} \phi_0(t) = y_0 \\ \phi_{j+1}(t) = y_0 + \int_{t_0}^t f(s, \phi_j(s)) ds \end{cases}$$

Remark: Spoiler for the Proof

The solution to (**) will be found by $\phi(t) = \lim_{j\to\infty} \phi_j(t)$.

Before proceeding we need to check that the ϕ_j 's are defined on an interval independent of j. To do so we shall prove the following lemma:

Lemma 5.3

Let $\alpha = \min \left\{ a, \frac{b}{M} \right\}$ then $\phi_j : I \to R$ is well defined where $I = (t_0 - \alpha, t_0 + \alpha)$ and satisfies $(t, \phi_j(t)) \in R$ for any $j = 0, 1, \cdots$ and any $t \in I$.

Proof. We shall proceed using induction.

(1) Base Case: $\phi_0(t) \in R$ for any $t \in I$. This is true because $\alpha < a$ and $y_0 \in (y_0 - b, y_0 + b)$.

Remark: A Bit More Understanding

Consider the graph of ϕ_0 inside the rectangle of R over the interval I:

Notice that the constant line doesn't escape the rectangle over the interval I.

(2) **Inductive Step:** We want to show that if $(t, \phi_j(t)) \in R$ for any $t \in I$, then $(t, \phi_{j+1}(t)) \in R$ for any $t \in I$.

Compute (assuming $t > t_0$):

$$\begin{split} |\phi_{j+1}(t)-y_0| &= \left|\int_{t_0}^t f(s,\phi_j(s))ds\right| \\ &\leq \int_{t_0}^t |f(s,\phi_j(s))|ds \qquad \qquad \text{by Minkowski inequality} \\ &\leq \int_{t_0}^t Mds = M(t-t_0) \qquad \qquad \text{by assumption } f \leq M \\ &< M\alpha = \frac{b}{M} \cdot M = b \end{split}$$

This clearly implies that $(t, \phi_{j+1}(t)) \in R$ for any $t \in I$, completing the proof of this lemma. \square

Step 3: Show that the ϕ_j 's converge.

We shall use the following method to prove convergence.

Remark: Method for Proof of Convergence

Consider the summation:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n(n+1)} = \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{N \to \infty} \left(1 - \frac{1}{N+1} \right) = 1$$

Specifically $\sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \cdots$ is a telescoping series.

Consider that $\phi_j = \phi_j - \phi_{j-1} + \phi_{j-1} - \phi_{j-2} + \phi_{j-2} + \cdots + \phi_0$. We can represent this as a summation:

$$\phi_j = \phi_0 + \sum_{j'=1}^{j} (\phi_{j'} - \phi_{j'-1})$$

Our goal now is to study $\phi_{j'} - \phi_{j'-1}$. Consider the following:

$$\phi_{j'} = y_0 + \int_{t_0}^t f(s, \phi_{j'-1}(s)) ds \tag{1}$$

$$\phi_{j'-1} = y_0 + \int_{t_0}^t f(s, \phi_{j'-2}(s)) ds$$
 (2)

Subtracting (1)-(2):

$$\phi_{j'} - \phi_{j'-1} = \int_{t_0}^t (f(s, \phi_{j'-1}(s)) - f(s, \phi_{j'-2}(s))) ds$$

Taking absolute values, let us attempt to bound this difference:

$$\begin{aligned} |\phi_{j'} - \phi_{j'-1}| &= \left| \int_{t_0}^t (f(s, \phi_{j'-1}(s)) - f(s, \phi_{j'-2}(s))) ds \right| \\ &\leq \int_{t_0}^t |f(s, \phi_{j'-1}(s)) - f(s, \phi_{j'-2}(s))| ds \quad \text{by Minkowski inequality} \\ &\leq \int_{t_0}^t K|\phi_{j'-1} - \phi_{j'-2}| ds \quad \text{since } |f(t, y_1) - f(t, y_2)| \leq K|y_1 - y_2| \text{ by Lipschitz condition} \end{aligned}$$

Without loss of generality assume that $t > t_0$. Here we are a bit stick in how to proceed with the bounds. So, let us try to find a pattern in the difference, which we can represent as a summation, to better study $|\phi_{j'} - \phi_{j'-1}|$.

First, j' = 1

$$|\phi_1 - \phi_0| \le \int_{t_0}^t |f(s, \phi(s))| ds$$

$$\le \int_{t_0}^t M ds = M(t - t_0) \qquad \text{since } |f(t, y)| \le M \text{ for any } (t, y) \in R$$

Let us proceed with j'=2:

$$|\phi_2 - \phi_1| \le \int_{t_0}^t K|\phi_1(s) - \phi_0(s)| ds$$

$$\le \int_{t_0}^t MK(s - t_0) ds = \frac{MK(t - t_0)^2}{2}$$

And j' = 3:

$$|\phi_3 - \phi_2| \le MK^2 \frac{(t - t_0)^3}{2 \cdot 3}$$

Claim 5.4 —
$$I(j') = |\phi_{j'} - \phi_{j'-1}| \le M \cdot K^{j'-1} \frac{(t-t_0)^{j'}}{j'!}$$

We shall proceed to prove the remainder of this step using induction.

- (1) **Base Case:** We have already shown this above for j' = 1.
- (2) **Inductive Step:** Assume that I(j') holds and we shall prove the case for I(j'+1).

$$\begin{split} |\phi_{j'+1} - \phi_{j'}| &\leq \int_{t_0}^t K |\phi_{j'} - \phi_{j'-1}| ds \\ &\leq M K^{j'-1} K \int_{t_0}^t \frac{(s-t_0)^{j'}}{j'!} ds \\ &\leq M K^{j'} \frac{1}{j'} \cdot \frac{(t-t_0)^{j'+1}}{j'!} = \frac{M K^{j'} (t-t_0)^{j'+1}}{j'!} \end{split}$$
 Substituting in $I(j')$.

Now since we wnat a qualitative bound on ϕ_j we shall proceed to finish the proof of convergence by using the Comparison Test (even though we have already shown that the series is Cauchy). Recall that:

Remark: Comparison Test

If $\{a_n\}$ and $\{b_n\}$ are such that $|a_n| \leq |b_n|$ and $\sum_{n=0}^{\infty} b_n$ converges then $\sum_{n=0}^{\infty} a_n$ converges.

Applying this to ϕ_i :

$$\phi_j = \phi_0 + \sum_{j'=1}^{j} \phi_{j'} - \phi_{j'-1}$$

Taking absolute values:

$$\begin{split} |\phi_j| &= \left| \phi_0 + \sum_{j'=1}^j \phi_{j'} - \phi_{j'-1} \right| \\ &\leq |\phi_0| + \left| \sum_{j'=1}^j \phi_{j'} - \phi_{j'-1} \right| \qquad \text{by Triangle Inequality} \\ &\leq |y_0| + \sum_{j'=1}^j M K^{j'-1} \frac{(t-t_0)^{j'}}{j'!} \\ &= \frac{M}{K} (e^{K(t-t_0)} - 1)^{j'} \qquad \text{since } \sum^{\infty} j' = 0 \frac{B^{j'}}{j'!} = e^B \end{split}$$

The sequence of partial sums defining ϕ_j converges by the Comparison test for series.

A recap of what has been done so far:

Step 1: Reduction of the problem (**) to an integral form. Look for $\phi: I \to \mathbb{R}$ such that

 $\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds.$ **Step 2:** Set up Picard Iteration where:

$$\begin{cases} \phi_0(t_0) = y_0 \\ \phi_j(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds \text{ for all } j = 1, 2, \dots \end{cases}$$

Step 3: Proved that $\phi_i(t)$ is well-defined for $y \in \mathbb{R}$ and $t \in I$ such that $(t, \phi_i(t)) \in R$ for all

Step 4: Proved convergence of $\lim_{j\to\infty} \phi_j(t) = \phi(t)$.

• Estimate $\phi_j(t) - \phi_{j-1}(t)$:

$$|\phi_j - \phi_{j-1}| \le \frac{M}{K} \frac{K^j (t - t_0)^j}{j!} \text{ where } t - t_0 \le \alpha$$

$$\phi_j = \phi_0(t) + \sum_{j'=1}^j (\phi_{j'}(t) - \phi_{j'-1}(t))$$

• From the first bullet point, it follows that for fixed t, $\sum_{j'=1}^{j} |\phi_{j'}(t) - \phi_{j'-1}(t)| < \infty$ which means that the sum $\sum_{j'=1}^{j} (\phi_{j'}(t) - \phi_{j'-1}(t))$ must converge.

Now we shall proceed to prove that ϕ is continuous.

Proof. First consider the following rewrite:

$$\begin{aligned} |\phi - \phi_{j}| &= \left| \phi_{0} + \sum_{j'=1}^{\infty} r_{j'} - \left(\phi_{0} + \sum_{j'=1}^{j} r_{j'} \right) \right| & \text{where } r_{j'} = \phi_{j'} - \phi_{j'-1} \\ &= \left| \sum_{j' \leq j'+1}^{\infty} r_{j'} \right| \leq \sum_{j'=j'+1}^{\infty} |r_{j'}| \leq \sum_{j'=j'+1}^{\infty} \frac{M}{K} \frac{K^{j'} \alpha^{j'}}{j'!} \\ &= \sum_{n=0}^{\infty} \frac{M}{K} \frac{K^{n+j+1} \alpha^{n+j+1}}{(n+j+1)!} & \text{re-index } j' = j+1+n \\ &\leq \sum_{n=0}^{\infty} \frac{M}{K} \frac{k^{j+1} \alpha^{j+1}}{(j+1)!} \frac{K^{n} \alpha^{n}}{n!} & \text{since } (n+j+1)! \geq (j+1)! n! \\ &= \frac{M}{K} \frac{k^{j+1} \alpha^{j+1}}{(j+1)!} \sum_{n=0}^{\infty} \frac{K^{n} \alpha^{n}}{n!} \\ &= \frac{M}{K} \frac{k^{j+1} \alpha^{j+1}}{(j+1)!} e^{K\alpha} \end{aligned}$$

Let $\epsilon > 0$, we want to find some $\delta > 0$ such that $|t' - t| < \delta$ where $t, t' \in I$ for which $|\phi(t) - \phi(t')| < \epsilon$. We shall proceed to use $\frac{\epsilon}{3}$ argument. Consider:

$$|\phi(t) - \phi(t')| = |\phi(t) - \phi_j(t) + \phi_j(t) - \phi_j(t') + \phi_j(t') - \phi(t')|$$

$$\leq |\phi(t) - \phi_j(t)| + |\phi_j(t) - \phi_j(t')| + |\phi_j(t') - \phi(t')|$$

From here we use $|\phi - \phi_j| \leq \frac{M}{K} \frac{k^{j+1}\alpha^{j+1}}{(j+1)!} e^{K\alpha}$. We can choose and N_1 such that for $j \geq N_1$ $|\phi(t)-\phi_j(t)|\leq \frac{\epsilon}{3}$ since $\lim_{j\to\infty}\frac{c^j}{j!}=0$. And similarly we choose and N_2 such that for $j\geq N_2$ $|\phi_j(t) - \phi_j(t')| \le \frac{\epsilon}{3}$. And by continuity of ϕ_j there exists a $\delta > 0$ such that $|\phi_j(t) - \phi_j(t')| \le \frac{\epsilon}{3}$ for $|t - t'| < \delta$.

To complete the proof we wnat to show that $\phi(t)$ satisfies $\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds$.

Proof. We know $\phi_j(t) = y_0 + \int_{t_0}^t f(s, \phi_{j-1}(s)) ds$. Taking limits of both sides as $j \to \infty$. (1) LHS: $\phi_j(t) \to \phi$ by **Step 3** in the proof above.

- (2) RHS: Consider the following difference:

$$\left| \int_{t_0}^t f(s, \phi_{j-1}(s)) ds - \int_{t_0}^t f(s, \phi(s)) ds \right| \leq \int_{t_0}^t |f(s, \phi_{j-1}(s)) ds - f(s, \phi(s))| ds$$

$$\leq \int_{t_0}^t K |\phi_{j-1}(s) - \phi(s)| ds$$

$$\leq K \int_{t_0}^t \frac{M}{K} \frac{K^j \alpha^j e^{K\alpha}}{j!} ds$$

$$\leq \frac{MK^j \alpha^j e^{K\alpha}}{j!} \to 0 \text{ as } j \to \infty$$

Since the LHS=RHS limit it's clear that:

$$\phi(t) = \lim_{j \to \infty} \phi_j(t) = \lim_{j \to \infty} \left(y_0 + \int_{t_0}^t f(s, \phi(s)) ds \right) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds$$

§6 Peano's Theorem

Theorem 6.1

Suppose that f is continuous on $R = [t_0 - a, t_0 + a] \times [y_0 - b, y_0 + b]$. Suppose that there exists an $M \ge 0$ such that $|f(t,y)| \le M$ for all $(t,y) \in R$. Then there exists an $I = (t_0 - \alpha, t_0 + \alpha)$ and a solution $\phi: I \to R$ of (**).

Example of Peano's Theorem

Let $R = [-1, 1] \times [-1, 1]$ and $f : \mathbb{R} \to \mathbb{R}$ such that $f = y^{\frac{1}{3}}$ is continuous but not Lipschitz continuous with respect to y.

$$\begin{cases} y' = y^{\frac{1}{3}} \\ y(0) = 0 \end{cases}$$

This does not satisfy the hypothesis of Picard-Linderlof, however it satisfies the hypothesis of Peano's Theorem. We proceed to guess the solution of type $y = ct^a$ then:

$$\begin{cases} \phi(t) = 0 & \text{for all } t \in R \\ \phi(t) = \left(\frac{2}{3}\right)^{\frac{3}{2}} t^{\frac{3}{2}} & \text{for } t \ge 0 \end{cases}$$

These are both solutions to the ODE above. And we end up with a brush of different solutions.

§7 Existence Theorem for Systems of 1st Order ODEs

Definition 7.1. Let $\vec{x} \in \mathbb{R}^n$. Define

- $\bullet |x| = \sum_{j=1}^{n} |x_j|$
- $\bullet ||x|| = \sqrt{\sum_{j=1}^n x_j^2}$

Lemma 7.2

Let $\vec{x}, \vec{y} \in \mathbb{R}^n$ then:

$$|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$$

 $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$

Definition 7.3. Let $\vec{x} \in \mathbb{R}^n$ and let $s \in \mathbb{R}$ such that s > 0 then $R_s(\vec{a}) = \{\vec{x} \in \mathbb{R}^n : |\vec{x} - \vec{a}| < s\}$

In
$$n = 2$$
 $R_1(0) = \{(x, y); |x_1| + |y_1| = 1\}$

Definition 7.4. Let $\vec{a} \in \mathbb{R}^n$, let r > 0 then $B_r(\vec{a}) = \{\vec{x} \in \mathbb{R}^n : ||\vec{x} - \vec{a}|| \le r\}$

If $n = 2 B_1(0)$

Definition 7.5. A set $U \subseteq \mathbb{R}^n$ is said to be **open** if for any $\vec{x} \in U$ there exists an r > 0 such that $B_r(\vec{x}) \subseteq U$.

Definition 7.6. A set $U \subseteq \mathbb{R}^n$ is said to be **closed** if $\mathbb{R}^n \setminus U$ is open.

Definition 7.7. Let $D \subseteq \mathbb{R}^n$ be open $\vec{f}: D \to \mathbb{R}^n$ is **continuous** at $\vec{x}_0 \in D$. If for any $\epsilon > 0$ there exists a $\delta > 0$ such that for $|\vec{x} - \vec{x}_0| < \delta$ implies $|f(\vec{x}) - f(\vec{x}_0)| < \epsilon$.

Definition 7.8. Consider the IVP (Initial Value Problem) where $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ and $\vec{f} = \begin{bmatrix} f_1(t, \vec{y}) \\ \vdots \\ f_n(t, \vec{y}) \end{bmatrix}$:

$$\begin{cases} \vec{y}' = f(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

Let $D \subseteq \mathbb{R}^n$ be an open set. Suppose that $f: D \to \mathbb{R}$ is continuous on D.

We say that f is **Lipschitz continuous** with respect to \vec{y} if there exists a K > 0 such that $|f(t, \vec{y_1}) - f(t, \vec{y_2})| \le K|\vec{y_1} - \vec{y_2}|$ for all $(t, \vec{y_i}) \in D$.

Theorem 7.9

Let $R = [t_0 - a, t_0 + a] \times \{y \in \mathbb{R}^n : |\vec{y} - \vec{y}_0| < 0\}$. Suppose $f : \mathbb{R} \to \mathbb{R}^n$ is:

- (1) Continuous on R.
- (2) Lipschitz continuous on R with respect to \vec{y} .
- (3) There exists an M > 0 such that $|\vec{f}(t, \vec{y})| \leq M$ for all $(t, \vec{y}) \in R$.

Then there exists an $\alpha > 0$ and a solution $\vec{\phi}(t)$ of

$$(***) \begin{cases} \vec{y}' = f(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

on $I = (t_0 = \alpha, t_0 + \alpha)$ and $\alpha = \min\{a, \frac{b}{M}\}$

§8 Uniqueness for System of 1st Order ODE's

Theorem 8.1

Let R and f satisfy the assumptions of Thm 3.9. If $\vec{\phi}_1: J_1 \to \mathbb{R}^n$ and $\vec{\phi}_2: J_2 \to \mathbb{R}^{\ltimes}$ (where J_1, J_2 are open intervals) are both solutions for (***) then $\phi_1 = \phi_2$ for all $t \in J_1 \cap J_2$.

Proof. Let $J = J_1 \cap J_2$ then since both ϕ_1 and ϕ_2 are solutions we have that:

$$\begin{cases} \vec{\phi}_1' = \vec{f}(t, \vec{\phi}_1) \\ \vec{\phi}_2' = \vec{f}(t, \vec{\phi}_2) \end{cases}$$

Integrating

$$\begin{cases} \vec{\phi}_1 - \vec{y}_0 = \int_{t_0}^t \vec{f}(s, \vec{\phi}_1(s)) ds \\ \vec{\phi}_2 - \vec{y}_0 = \int_{t_0}^t \vec{f}(s, \vec{\phi}_2(s)) ds \end{cases}$$

Subtracting and taking the mod of the two expressions:

$$|\vec{\phi}_{2}(t) - \vec{\phi}_{1}(t)| = \left| \int_{t_{0}}^{t} \vec{f}(s, \vec{\phi}_{1}(s)) ds - \int_{t_{0}}^{t} \vec{f}(s, \vec{\phi}_{2}(s)) ds \right|$$

$$\leq \int_{t_{0}}^{t} |\vec{f}(s, \vec{\phi}_{1}(s)) ds - \vec{f}(s, \vec{\phi}_{2}(s)) ds|$$

$$\leq \int_{t_{0}}^{t} K |\vec{\phi}_{2}(s) - \vec{\phi}_{1}(s)| ds \qquad \text{by Lipschitz}$$

Let $G(t) = |\vec{\phi}_2(t) - \vec{\phi}_1(t)|$ then:

$$G(t) \le K \int_{t_0}^t G(s) ds$$

From here we apply Gronwall's inequality in intrgral form.

Gronwall in Integral Form

Let f, g be continuous on [a, b] and let $g \ge 0$ on [a, b] and let $A \ge 0$. Suppose:

$$f(t) \le A + \int_{t_0}^t g(s)f(s)ds$$

Then:

$$f(t) \le Ae^{\int_{t_0}^t g(s)ds}$$

Therefore $G(t) \leq 0$ which is only possible if $\phi_1 = \phi_2$.

§9 Maximized Interval of Defintion for Solutions

Theorem 9.1

Let D be an open set of \mathbb{R}^{n+1} , consider:

$$(*) \begin{cases} \vec{y}' = \vec{f}(t, \vec{y}) \\ \vec{y}(t_0) = 0 \end{cases}$$

Suppose that:

- (1) $\vec{f}: D \to \mathbb{R}^n$ is continuous on D.
- (2) $\partial_y \vec{f}$ is continuous on D.
- (3) There exists some M > 0 such that $|\vec{f}(t, \vec{y})| \leq M$ for all $(t, \vec{y}) \in D$.

Then the solution $\phi(t)$ given by Picard-Lindelof can be extended until items graph reaches ∂D (the boundary of D).

Boundary of D

Recall that $\partial D = \bar{D} \setminus D^o$ where $\bar{D} = \{x \in \mathbb{R}^n : \text{ there exists a sequence } x_j \in \mathbb{R}^n \text{ such that } x_j \in D \text{ and } \lim_{j \to \infty} x_j \to x\}.$

Equivalently, since D is open $\partial D = \{\vec{x} \in \mathbb{R}^n : \exists x_i \in D \text{ which tends to } x \notin D\}$

Lemma 9.2

Consider (*) assume (1) and (3). Then for any solution $\phi:(c,d)\to\mathbb{R}^n$ of (1) the limits $\lim_{t\to d^-}\phi(t)$ and $\lim_{t\to d^+}\phi(t)$ exist.

Remak

By Picard-Lindelof Thm we know that a solution $\phi(t)$ exists on $(t - \alpha, t + \alpha)$. The lemma is proving that $\lim_{t\to(t\pm\alpha)^{\pm}}\phi(t)$ exists.

Proof. Recall that the left limit $\lim_{t\to d^-}\phi(t)$ exists iff for any $\epsilon>0$ there exists a $\delta>0$ such that for $t_1,t_2\in (d-\delta,d)$ then $|\vec{\phi}(t_1)-\vec{\phi}(t_2)|<\epsilon$. And similarly for the RHS. Using $\vec{\phi}(t)=\vec{y_0}+\int_{t_0}^t\vec{f}(t,\vec{\phi}(s))ds$ then:

$$|\vec{\phi}(t_1) - \vec{\phi}(t_2)| = \left| \int_{t_0}^{t_1} \vec{f}(s, \vec{\phi}(s)) ds - \int_{t_0}^{t_2} \vec{f}(s, \vec{\phi}(s)) ds \right|$$

$$= \left| \int_{t_0}^{t_1} \vec{f}(s, \vec{\phi}(s)) ds \right| \le \int_{t_2}^{t_1} |f(s, \vec{\phi}(s))| ds$$

$$\le M(t_1 - t_2) \qquad \text{since } |f| \le M$$

$$\le M\delta$$

Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{M}$ then we obtain that:

$$|\vec{\phi}(t_1) - \vec{\phi}(t_2)| \le \epsilon$$

Use posted notes here for proof of the thm.

Definition 9.3. Let $\vec{\phi}: I \to \mathbb{R}^n$ be a solution to (*). We say that $\vec{\phi}$ is **maximal** if it does not admit a non-trivial extension of $\vec{\psi}$ which is also a solution to (*). Let $\phi: (T, T^*) \to \mathbb{R}^n$. If $\vec{\psi}: (S, S^*)$ is an extension of $\vec{\phi}$ and $\vec{\psi}$ is a solution to (*) then S = T, $S^* = T^*$ and $\phi = \psi$.

§10 Dependence of Initial Conditions

Theorem 10.1

Consider (*) from before. Let D is an open set of \mathbb{R}^n and suppose that:

- (1) $\vec{f}: D \to \mathbb{R}^n$ is continuous on D.
- (2) \vec{f} is Lipschitz with respect to \vec{y} .
- (3) There exists some M > 0 such that $|\vec{f}(t, \vec{y})| \leq M$ for all $(t, \vec{y}) \in D$.

Then if ϕ_1 and ϕ_2 are solitions to (*) defined on a common interval $[\alpha, \beta]$ then:

$$|\phi_1 - \phi_2| \le |\vec{y}_1 - \vec{y}_2|e^{K|t-t_0|}$$
 where $\vec{y}_i = \vec{\phi}_i(t_0)$

Proof. Integrating and subtracting as previously done:

$$|\vec{\phi}_{1} - \vec{\phi}_{2}| = \left| \vec{y}_{1} - \vec{y}_{2} + \int_{t_{0}}^{t} f(s, \vec{\phi}_{1}) - f(s, \vec{\phi}_{2}(s)) \right|$$

$$\leq |\vec{y}_{1} - \vec{y}_{2}| + \int_{t_{0}}^{t} -t_{0}^{t} |f(s, \vec{\phi}_{1}) - f(s, \vec{\phi}_{2}(s))| ds$$

$$\leq |\vec{y}_{1} - \vec{y}_{2}| + \int_{t_{0}}^{t} K|\phi_{1} - \phi_{2}| ds \qquad \text{by Lipschitz}$$

Define $F(t) = |\phi_1 - \phi_2|$ then $F(t) \leq |\vec{y}_1 - \vec{y}_2| + K \int_{t_0}^t F(s) ds$. Now applying Gronwall we obtain the desired result.

Definition 10.2. We say that solutions to (*) depend continuously on initial data if the map $y: H \to \mathcal{C}(I)$ is continuous where $H \subseteq \mathbb{R}^n$. H is open and $\mathcal{C}(I)$ is the space of continuous functions defined on I.

More precisely, let $a_0 \in H$, we say that y is continuous at a_0 if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|\vec{y}_0 - \vec{a}_0| < \delta$ then $d(\phi(y_0), \phi(a_0)) < \epsilon$. Here $d(\phi(y_0), \phi(y_f)) = \sup |\phi(y_0) - \phi(y_f)|$

§11 Systems of Linear 1st Order ODEs

Theorem 11.1

Consider:

$$(1) \begin{cases} \vec{y}' = A(t) \cdot \vec{y} + g(t) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

Suppose A(t) and g(t) are continuous on I then there exists a unique solution to (1) on I

Proof. Proof sketch:

(1) Show that f = Ay + g is continuous and (2) Lipschitz in terms of \vec{y} . Proceed to apply Picard Lindelof (continued in the book).

§11.1 Homogeneous Case

Theorem 11.2

The set of all solutions to:

(2)
$$\begin{cases} \vec{y}' = A(t) \cdot \vec{y} \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

is a n-dimensional vector space denoted as V.

Proof. Refer to notebook Thm 2.2

Definition 11.3. An n-tuple of solutions to (2) is a fundamental set of solutions of it is a basis for V.

Definition 11.4. A solutions matrix is a matrix whose columns are all the solutions of (2). Denoted as $\Phi = (\phi_1 | \cdots | \phi_n)$ where ϕ_j are the solutions to (2).

Definition 11.5. A fundamental matrix is a solution matrix whose columns are linearly independent.

We want to be able to detect whether a certain set of solutions is a fundamental set of solutions.

Theorem 11.6

Abel's Formula: Let $\Phi = (\phi_1 | \cdots | \phi_n)$ with ϕ_j solving (2) for all j. Let $t_0, t \in (a, b)$ then $\det \Phi(t) = \det \Phi(t_0) e^{\int_{t_0}^t \text{Tr}(A(s)) ds}$

Claim 11.7 — (Jacob's Formula): Let $\Phi(t): [a,b] \to \mathbb{R}^{n \times n}$. Assume $\Phi(t)$ is differentiable then $\det(\Phi(t))' = \det(\Phi(t)) \operatorname{Tr}(\Phi'(t)\Phi^{-1}(t))$

Proof. Proof. (Special Case) Assume further that $\Phi(t)$ has distinct (non-zero) eigenvalues equivalent for all $t \in [a,b]$. Then $\Phi(t) = L(t)D(t)L^{-1}(t)$ where L(t),D(t) and differentiable (need to prove D(t) is a differentiable matrix and L(t) is invertible).

In this case
$$D(t) = \begin{bmatrix} \lambda_1(t) & 0 & \cdots \\ & \vdots & \\ 0 & \cdots & \lambda_n(t) \end{bmatrix}$$
 where $\lambda_i(t) \in \mathbb{C}$. Then $\det(D(t)) = \lambda_1(t) \cdots \lambda_n(t)$ which

means:

$$(\det(D(t)))' = \det(L(t)D(t)L^{-1}(T))'$$

$$= \lambda'_1 \lambda_2 \cdots \lambda_n + \lambda_1 \lambda'_2 \cdots \lambda_n + \cdots + \lambda_1 \cdots \lambda'_n$$

$$= \frac{\lambda'_1}{\lambda_1} \cdot \lambda_1 \cdots \lambda_n + \cdots + \frac{\lambda'_n}{\lambda_n} \lambda_1 \cdots \lambda_n$$

$$= \det(D(t)) \cdot \left(\frac{\lambda'_1}{\lambda_1} + \cdots + \frac{\lambda'_n}{\lambda_n}\right)$$

$$= \det(\Phi(t)) \operatorname{Tr}(D'(t)D^{-1}(t))$$

The last step because
$$D'(t) = \begin{bmatrix} \lambda'_1(t) & 0 & \cdots \\ & \vdots & \\ 0 & \cdots & \lambda'_n(t) \end{bmatrix}$$
 and $(D(t)^{-1}) = \begin{bmatrix} \frac{1}{\lambda_1(t)} & 0 & \cdots \\ & \vdots & \\ 0 & \cdots & \frac{1}{\lambda_n(t)} \end{bmatrix}$. So
$$D'(t)D^{-1}(t) = \begin{bmatrix} \frac{\lambda'_1(t)}{\lambda_1(t)} & 0 & \cdots \\ & \vdots & \\ 0 & \cdots & \frac{\lambda_n(t)'}{\lambda_n(t)} \end{bmatrix}$$
. Finally we proceed to prove the claim:

$$D'(t)D^{-1}(t) = \begin{bmatrix} \frac{\lambda_1'(t)}{\lambda_1(t)} & 0 & \cdots \\ & \vdots & \\ 0 & \cdots & \frac{\lambda_n(t)'}{\lambda_n(t)} \end{bmatrix}.$$
 Finally we proceed to prove the claim:

$$\Phi'(t)\Phi^{-1}(t) = (L(t)D(t)L^{-1}(t))'(L(t)D(t)L^{-1}(t))$$

$$= L'DL^{-1}LD^{-1}L^{-1} + LD'L^{-1}LD^{-1}L^{-1} + LD(L^{-1})'LD^{-1}L^{-1}$$

$$= L'L^{-1} + LD'D^{-1}L^{-1} + LD(L^{-1})'LD^{-1}L^{-1}$$

This implies:

$$\begin{split} \operatorname{Tr}(\Phi'(t)\Phi^{-1}(t)) &= \operatorname{Tr}(L'L^{-1} + LD'D^{-1}L^{-1} + LD(L^{-1})'LD^{-1}L^{-1}) \\ &= \operatorname{Tr}(L'L^{-1}) + \operatorname{Tr}(L^{-1}L') + Tr(D'D^{-1}) \qquad \text{since } \operatorname{Tr}(ABCD) = \operatorname{Tr}(DABC) \\ &= \operatorname{Tr}(D'D^{-1}) \end{split}$$

For the final step
$$(LL^{-1})' = L'L^{-1} + L(L^{-1})' = 0$$

Using this claim we proceed to prove Abel's Formula. Assume that $\Phi'(t) = A(t)\Phi(t)$. From the Jacob's Formula $\det(\Phi'(t)) = \det(\Phi(t)) \operatorname{Tr}(\Phi'(t)\Phi^{-1}(t))$. Take $d(t) = \det(\Phi(t))$ then:

$$\Rightarrow d'(t) = d(t)\operatorname{Tr}(A(t)\Phi(t)\Phi^{-1}(t)) = d(t)\operatorname{Tr}(A(t))$$
$$\Rightarrow \frac{d}{dt}(\ln d(t)) = \operatorname{Tr}(A(t))$$

Integrating from t_0 to t:

$$\ln(d(t)) - \ln(d(t_0)) = \int_{t_0}^t \operatorname{Tr} A(s) ds$$
$$\Rightarrow d(t) = d(t_0) e^{\int_{t_0}^t \operatorname{Tr} A(s) ds}$$

And we obtain the desired result.

Theorem 11.8

 ϕ_1, \dots, ϕ_n is a fundamental set of solutions iff $\det \Phi(t) \neq 0$ at some $t \in [a, b]$.

Proof. Suppose det $\Phi(t_0) \neq 0$ then $(\Phi(t_0))^{-1}$ exists. Consider $\Psi \in V$. Then:

$$\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = (\Phi(t_0))^{-1} \Psi(t_0)$$

Define
$$\Psi_* = \Phi(t) \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
. Compute:

$$\Psi_*(t_0) = \Phi(t_0) \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \Phi(t_0) \cdot (\Phi(t_0))^{-1} \Psi(t_0) = \mathbb{I} \cdot \Psi(t_0) \cdot \Psi(t)$$

Therefore $\Psi(t) = \Psi_*(t)$ for all $t \in [a, b]$ therefore Ψ is a linear combination of ϕ_1, \dots, ϕ_n .

Consider again the problem:

$$\begin{cases} \vec{y}'(t) = A(t)\vec{y}(t) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

- (1) Find the fundamental matrix $\Phi(t)$. Make sure to use the criterion to check that it's a fundamental matrix.
- (2) Compute $\det(\Phi(t_0))$. If $\det(\Phi) \neq 0$ then Φ a fundamental matrix by the criterion and Φ^{-1} exists.
- (3) The solution to the problem above is $\phi(t) = \Phi(t)\Phi^{-1}(t_0) \cdot \vec{y_0}$ by the uniqueness of solution.

§11.2 Non-Homogeneous Case

Theorem 11.9

Consider systems of the form:

(*)
$$\begin{cases} \vec{y}' = A(t)\vec{y} + \vec{g}(t) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

Let $\vec{\phi}_p$ be a particular solution to (*). Then, any solution to (*) satisfies:

$$\vec{\phi} = \vec{\phi}_p + \vec{\phi}_h$$

where $\vec{\phi}_h$ solves the homogeneous equation:

$$\vec{\phi}_h' = A(t)\vec{\phi}_h$$

Proof. Let $\vec{\phi}$ be a solution to (*). Consider $\phi_h = \phi - \phi_p$ then:

$$\phi'_h = (\phi - \phi_p)' = \phi' - \phi'_p = A(t)\phi + g(t) - A(t)\phi_p - g(t) = A(t)(\phi - \phi_p) = A(t)\phi_h$$

Consider the 1D proof for the expression:

$$y' = a(t)y + g(t)$$

We know that:

$$y_h = Ce^{\int_{t_0}^t a(s)ds}$$

We guess that the solution is given by $\phi(t) = c(t)y_h(t)$ such that $\phi' = a(t)\phi + g(t)$. Thus:

(LHS:)
$$c'(t)y_h(t) + c(t)y'_h(t) = c'(t)y_h + c(t)a(t)y_h$$

(RHS:)
$$a(t)s(t)y_h + g(t) \Longrightarrow c'(t)y_h = g(t) \Longrightarrow c(t) = \int_{t_0}^t \frac{g(s)}{y_h(s)} ds$$

Theorem 11.10

Let $\Phi(t)$ be a fundamental matrix for the system:

$$\vec{y}' = A(t)\vec{y}$$

Then,

$$\vec{\phi}_p = \Phi(t) \int_{t_0}^t \Phi^{-1}(s) g(s) ds$$

is a particular solution to $\vec{y}' = A(t)\vec{y} + g(t)$.

§12 Linear Systems with Constant Coefficients

§12.1 Matrix Exponential

Consider the linear homogeneous system

(1)
$$\vec{y}' = A\vec{y}$$
 where $A \in \mathbb{R}^{n \times n}$

Theorem 12.1

Let $\Phi(t) = e^{tA}$, then $\Phi(t)$ is a fundamental matrix for (1)

§12.2 Jordan Canonical Form

Definition 12.2. Jordan block of size n with eigenvalue λ is the $n \times n$ matrix:

Suppose $A = \text{blockdiag}(M_1, \dots, M_n)$ then $e^{tA} = \text{blockdiag}(e^{tM_1}, \dots, e^{tM_n})$.

Lemma 12.3

$$e^{t\mathcal{J}_{n,\lambda}} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \dots & \frac{t^{n-1}}{(n-1)!} \\ 0 & 1 & t \cdots & \frac{t^{n-2}}{(n-2)!} \\ & \ddots & \ddots & \ddots & \vdots \\ & & & \frac{t^2}{2!} \\ & & & t \\ & & & 1 \end{bmatrix}$$

Proof. Prove using special cases.

If P is invertible and $A = P^{-1}JP$ for some matrix J, then $e^{tA} = P^{-1}e^{tJ}P$.

Theorem 12.4

(Jordan Canonical Form): For each $A \in \mathbb{C}^{n \times n}$ there exists k numbers where $k \leq n$ and $\lambda_1, \dots, \lambda_k \in \mathbb{C}$ and $n_1, \dots, n_k \in \mathbb{C}$ such that $A = P^{-1}JP$ where:

$$J = \begin{bmatrix} \mathcal{J}_{n_1,\lambda_1} & & & \\ & \ddots & & \\ & & \mathcal{J}_{n_k,\lambda_k} \end{bmatrix}$$

Definition 12.5. Let $A \in \mathbb{C}^{n \times n}$. λ is an eigenvalue of A if there exists a $\vec{v} \neq 0$ where $\vec{v} \in \mathbb{C}^n$ such that $A\vec{v} = \lambda \vec{v}$.

All eigenvalues are solutions to $P(\lambda) = 0$ where $P(\lambda) = \det(A - \lambda \mathbb{I})$.

If the eigenvalues are pairwise different, then A is diagonalizable where $A = P^{-1}DP$ ($P = (v_1|\cdots|v_n)$) and

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n & \end{bmatrix}$$

Definition 12.6. Let λ be an eigenvalue of A. Then it's algebraic multiplicity is the multiplicity of λ as a root of $P(\lambda)$.

Definition 12.7. Let λ be an eigenvalue of A. The geometric multiplicity of λ is $g(\lambda) = \dim(\ker(\lambda \mathbb{I} - A))$

§12.3 Linear Systems with Complex Eigenvalues

If $\vec{\phi}' = A\vec{\phi}$ where $\vec{\phi}: I \to \mathbb{C}^n$ then $\Re(\phi)$ and $\Im(\phi)$ are also solutions. Then

$$\vec{\phi}_1 = \Re(e^{\lambda_1 t} \vec{v}_1)$$
 where $\lambda_1 = \alpha + i\beta$ and $\vec{v}_1 = \Re \vec{v}_1 + i\Im \vec{v}_1$

Hence $\vec{\phi}_1(0) = \Re(\vec{v_1})$ and $\vec{\phi}_2 = \Im \vec{v_1}$:

$$\vec{\phi}_1 = \Re(e^{t(\alpha+i\beta)}(\Re \vec{v}_1 + i\Im \vec{v}_1))$$

$$= \Re(e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))(\Re \vec{v}_1 + i\Im \vec{v}_1))$$

$$= e^{\alpha t}(\cos(\beta t)\Re \vec{v}_1 - \sin(\beta t)\Im \vec{v}_1)$$

$$\vec{\phi}_2 = \Im(e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))(\Re \vec{v}_1 + i\Im \vec{v}_1))$$
$$= e^{\alpha t}(\cos(\beta t)\Im \vec{v}_1 - \sin(\beta t)\Re \vec{v}_1)$$

Thus the fundamental matrix is $\Phi(t) = (\phi_1 | \phi_2)$

§12.4 Asymptotic Behavior of Solutions

Theorem 12.8

Suppose that A has $\lambda_1, \dots, \lambda_n$ distinct eigenvalues and suppose that $P > \Re(\lambda_j)$ for all $j = 1, \dots, k$. Then there exists K > 0 such that $|e^{tA}| \leq Ke^{\rho t}$ for all $t \geq 0$.

Proof. Write $A = PJP^{-1}$ where $J = \operatorname{blockdaig}(J_{n_1,\lambda_1}, \cdots, J_{n_k,\lambda_k})$. Thus:

$$e^{tA} = e^{tP^{-1}JP} = P^{-1}e^{tJ}P$$

$$\Rightarrow |e^{tA}| = |Pe^{tJ}P^{-1}| \le |P||e^{tJ}||P^{-1}| \le K_1|e^{tJ}|$$
 where $K_1 = |P||P^{-1}|$

We know that:

$$|e^{tJ_{n_m,\lambda_m}}| = \begin{vmatrix} e^{\lambda_m} \begin{bmatrix} 1 & t & \cdots & \frac{t^{n_m-1}}{(n_m-1)!} \\ & \ddots & \ddots & \vdots \\ & & & 1 \end{bmatrix} \end{vmatrix} \le |e^{\lambda_m t}| \left(n_m + t(n_m-1) + \cdots + \frac{t^{n_m-1}}{(n_m-1)!} \right)$$

Notice that $s^k \leq k!e^s$ because $e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$ therefore if $s = \epsilon t$ then:

$$\epsilon^k t^k \le k! e^{st} \quad (*)$$

Using (*). We have that:

$$|e^{tJ_{n_m,\lambda_m}}| = |e^{\lambda_m t}| \left(n_m + t(n_m - 1) + \dots + \frac{t^{n_m - 1}}{(n_m - 1)!} \right)$$

$$\leq e^{t\Re(\lambda_m)} \left(n_m e^{\epsilon t} + \frac{(n_m - 1)}{\epsilon} e^{\epsilon t} + \dots + \frac{(n_m - 1)!}{(n_m - 1)!} \frac{e^{\epsilon t}}{\epsilon^{n_m - 1}} \right)$$

$$= e^{t\Re(\lambda_m)} e^{\epsilon t} \left(n_m + \frac{(n_m - 1)}{\epsilon} + \dots + \frac{1}{\epsilon^{n_m - 1}} \right)$$

$$= e^{t\Re(\lambda_m + \epsilon)} K_n$$

Therefore:

$$|e^{tA}| \le |P||P^{-1}||e^{tJ}| = |P||P^{-1}| \sum_{m=1}^{k} |e^{tJ_{n_m,\lambda_m}}|$$

$$\le |P||P^{-1}| \sum_{m=1}^{k} K_n e^{t\Re(\lambda_m) + \epsilon}$$

Let $P > \Re(\lambda_m)$ for all $m = 1, \dots, k$ then there exists a $\epsilon > 0$ such that $\rho > \Re(\lambda_m) + \epsilon$ thus $e^{t(\Re(\lambda_m))} \leq e^{t\rho}$. Finally:

$$|e^{tA}| \le |P||P^{-1}| \sum_{m=1}^{k} K_m e^{t\rho} = Ke^{t\rho}$$

§12.5 Autonomous First Order Systems

We shall be discussing systems of the form:

$$\vec{y}' = \vec{g}(\vec{y})$$
 where $\vec{g}: \mathbb{R}^n \to \mathbb{R}^n$ does not depend on t

Definition 12.9. \vec{y}_0 is a **critical point** if $\vec{g}(\vec{y}_0) = 0$ therefore $\phi(t) = \vec{y}_0$ is an equilibrium solution.

Consider the system $y'' = \sin(y)$ then take $y_1 = y$ and $y_2 = y'$:

$$\vec{y}' = \begin{bmatrix} y_2 \\ -\sin(y_1) \end{bmatrix} \vec{y}$$

The critical points of this system are $y_2 = 0$ and $y_1 = n\pi$ where $n \in \mathbb{Z}$. Suppose we want to study this system at the point (0,0). Then we can proceed to linearize the system. Notice that:

$$\sin(y_1) \approx y_1 - \frac{y_1^3}{3!} + \cdots$$

Therefore:

$$\begin{bmatrix} y_2 \\ \sin(y_1) \end{bmatrix} \approx \begin{bmatrix} y_2 \\ y_1 \end{bmatrix}$$

Therefore the system close to zero is the following solvable system:

$$\vec{y}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \vec{y}$$

Consider:

$$\vec{y}' = A\vec{y}$$
 where $A = PJP^{-1}$

Notice that if ϕ is a solition to $\phi' = J\phi$ then $\phi_1 = e^{tJ}\vec{y_0}$ and $\phi_2 = e^{At}\vec{y_0} = Pe^{Jt}P^{-1}\vec{y_0}$. Hence the phase portraits of $\vec{y}' = A\vec{y}$ is equivalent to $\vec{y}' = J\vec{y}$. Hence all of the possible phase portraits can be reduced to 6 cases (refer to notebook for drawings of these).

§13 Stability of Critical Points

§13.0.1 Autonomous Systems

Consider systems of the form:

$$(*) \quad \vec{y}' = \vec{g}(\vec{y})$$

Definition 13.1. Suppose \vec{y}_0 is a critical point such that $\vec{g}(y_0) = 0$. We say that \vec{y}_0 is **orbitally stable** if for any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|\eta_0 - y_0| < \delta$ then the solution $\vec{\phi}(t)$ to (*) with $\vec{\phi}(0) = \eta_0$ satisfies:

$$|\vec{\phi}(t) - \vec{y}_0| < \delta$$
 for all $t \ge 0$

Consider the following system

$$\begin{cases} y' = -y \\ y(0) = a \end{cases}$$

Proof. We shall proceed to show that the critical point $y_0 = 0$ is stable. We know that the solution to this ODE is $\phi(t) = ae^{-t}$. Let $\epsilon > 0$. Choose $\delta = \epsilon$ then $|a - y_0| < \delta = \epsilon$. Now consider the following:

$$|\phi(t) - 0| = |ae^{-t}| = |a||e^{-t}| \le |a| < \delta = \epsilon$$

Definition 13.2. We say that $\vec{y_0}$ is **asymptotically stable** if there exists $\delta > 0$ such that if $|\vec{\eta_0} - \vec{y_0}| < \delta$ then $\phi(t) \to \vec{y_0}$ as $t \to \infty$.

Definition 13.3. A point is **unstable** if it's not stable. For any $\delta > 0$ there exists a η_0 such that $|\vec{\eta}_0 - \vec{y}_0| < \delta$ and $\phi(t)$ is a solution with $\phi(0) = \eta_0$ such that $|\phi(t) - \vec{y}_0| > \epsilon$ for all $t \ge T_\delta$

Theorem 13.4

Consider the following linear system:

(1)
$$\vec{y}' = A\vec{y}$$
 where $A \in \mathbb{R}^{n \times n}$

where $\vec{y_0} = 0$ is a critical point. Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of A.

- (1) $\Re(\lambda_q) \leq 0$ for all $q = 1, \dots, n$ and the eigenvalues with $\Re(\lambda_q) = 0$ are simple (geometric multiplicity equivalent to algebraic multiplicity) then, $\vec{y}_0 = 0$ is a stable critical point.
- (2) If $\Re(\lambda_q) < 0$ for all $q = 1, \dots, m$ then \vec{y}_0 is asymptotically stable.
- (3) If there exists λ_h such that $\lambda_h > 0$ then $\vec{y_0}$ is unstable.

Proof. (3) Suppose that $\lambda_h \in \mathbb{R}$ since λ_h is an eigenvalue there exists some $\vec{v} \neq 0$ such that $A\vec{v} = \lambda_h \vec{v}$. Then $\phi(t) = e^{\lambda_h t} \vec{v}$ is a solution to (1). But $\lim_{t\to\infty} \phi(t) \to \infty$ since $\vec{v} \neq 0$ and $\lambda_h > 0$ then $\vec{y}_0 = 0$ is unstable.

§13.0.2 Non-Autonomous System

Now consider systems of the form:

(2)
$$\vec{y}' = \vec{f}(t, \vec{y})$$
 $\vec{f}: D \to \mathbb{R}^n$ where $D \subseteq \mathbb{R}_t \times \mathbb{R}_u^n$

We make the following:

- (1) \vec{f} is continuous on D.
- (2) \vec{f} is Lipschitz continuous in terms of \vec{y} on D.

Assume that $\vec{\phi}: I \to \mathbb{R}^n$ is a solution (of $\vec{y_0}$).

Definition 13.5. $\vec{\phi}$ is **stable** is for any $\epsilon > 0$ there exists a $\delta > 0$ such that for any $\vec{\eta}$ with $|\phi(0) - \vec{\eta}| < \delta$ the solution $\vec{\psi}(t, \vec{\eta})$ to (2) with $\psi(0, \vec{\eta}) = \vec{\eta}$ exists for all $t \in [0, \infty)$ and $|\psi(t, \vec{\eta}) - \phi(t)| < \epsilon$ for all $t \in [0, \infty)$.

Definition 13.6. $\vec{\phi}$ is asymptotically stable if ϕ is stable and there exists a $\delta_0 > 0$ such that if $|\vec{\eta} - \vec{\phi}(0)| < \delta_0$ then:

$$\lim_{t \to \infty} |\vec{\psi}(t, \vec{\eta}) - \vec{\phi}(0)| = 0$$

where $\vec{\psi}(t,\eta)$ is the solution to (2) with initial condition η .

Consider the following:

$$\vec{y}' = \left(-1 + \frac{1}{t+1}\right)y$$

Then $\phi_0(t) = 0$ is a solution. We take $y(0) = \eta$ and solve the equation to find:

$$y(t) = \eta e^{-t} (1+t)$$

Hence ϕ_0 is asymptotically stable.

Theorem 13.7

Consider a system of the form:

$$\vec{y}' = (A + B(t))\vec{y}$$
 where $A \in \mathbb{R}^{n \times n}$

where $B(t) \in \mathbb{R}^{n \times n}$ with continuous entries. And assume:

- (1) $\Re(\lambda_q) < 0$ for all λ_q eigenvalues of A.
- (2) $\lim_{t\to\infty} |B(t)| = 0.$

Then $\phi_0(t) = 0$ for all t is asymptotically stable.

Theorem 13.8

Consider a system of the type:

$$\vec{y}' = A\vec{y} + \vec{f}(t, \vec{y})$$

Assume the following:

- (1) All eigenvalues of A have negative real part.
- (2) \vec{f} is continuous and Lipschitz with respect to \vec{y} on $D = [0, \infty) \times \{|\vec{y}| \le K\}$ for K > 0.
- (3) $\lim_{\vec{y}\to 0} \sup_{t\in[0,\infty)} \frac{|\vec{f}(t,\vec{y})|}{|\vec{y}|} = 0.$

Then $\vec{y}_0 = 0$ is asymptotically stable.

§13.1 Lyapunov's Theorem

Consider two quantities $y'_j = p_j$ where $j = 1, \dots, d$ then:

$$\begin{cases} y_j' = p_j \\ p_j' = \partial_{y_j} U \end{cases}$$

where $U: \mathbb{R}^d \to \mathbb{R}$.

The conserved quantity here is defined as the Hamiltonian:

$$H = \frac{1}{2}||\vec{p}||^2 + U(\vec{y})$$

Proof.

$$H^* = \sum_{j=1}^{d} p_j \partial_{y_j} H + \sum_{j=1}^{d} (-\partial_{y_j} U) \partial_{p_j} H = \sum_{j=1}^{d} p_j \partial_{y_j} U + \sum_{j=1}^{d} (-\partial_{y_j} U) p_j = 0$$

Theorem 13.9

If $\vec{0}$ is a minimum of $H(\vec{y}, \vec{p})$ is a stable critical point for the system:

$$\begin{cases} y_j' = p_j \\ p_j' = \partial_{y_j} U \end{cases}$$

Theorem 13.10

If there exists a scalar function $V(\vec{y})$, V(0) = 0 such that V^* us either positive definite or negative definite on some region Ω containing the origin and if there exists in every neighborhood N of the origin, $N \subset \Omega$ at least one point $\vec{a} \neq 0$ such that $V(\vec{a})$ has the same sign as V^* , then the zero solution of $\vec{y}' = f(\vec{y})$ is unstable.

Theorem 13.11

If ther exists a scalar function V such that in a region Ω containing the origin $V^* = \lambda V + W$ where $\lambda > 0$ is a constant and W is either identically zero or W is a nonnegative or nonpositive function such that in ever neighborhood N of the origin, $N \subset \Omega$, there is at least one point \vec{a} such that $V(\vec{a}) \cdot W(\vec{a}) > 0$, then the zero solution of y' = f(y) is unstable.