

ЗАНЯТИЕ 1.4 БАЗОВЫЕ АЛГОРИТМЫ МАШИННОГО ОБУЧЕНИЯ В SKLEARN

ДЕНИС КИРЬЯНОВ

Сбербанк

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ НАУЧИТЕСЬ:

- решать основные задачи машинного обучения при помощи реализованных в sklearn методах
- оценивать качество решения
- предобрабатывать данные и подбирать параметры моделей для улучшения качества решения

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Вспомним типы задач, решаемые ML
- 2. Обзорно познакомимся с различными методами, реализованными в sklearn
- 3. На практике используем несколько из них
- 4. Разберёмся, как можно **улучшить качество** решения при помощи sklearn
- 5. Отработаем это на практике

1. БИБЛИОТЕКА SCIKIT-LEARN

ТИПЫ ЗАДАЧ

ТИПЫ ЗАДАЧ

классификация

есть разметка: Х, у

кластеризация

нет разметки: Х

регрессия

есть разметка: Х, у

ТИПЫ ЗАДАЧ

классификация

есть разметка: Х, у

у - перечислимо

кластеризация

нет разметки: Х

у - перечислимо

регрессия

есть разметка: Х, у

у в непрерывном диапазоне

SKLEARN -

scikit-learn

Machine Learning in Python

Simple and efficient tools for data mining and data analysis

oogle Custom Search

- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition

Algorithms: SVM, nearest neighbors, random forest.... – Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

Example

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... – Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-

negative matrix factorization. - Example

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

metrics. — Examp

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

Exampl

Набор логически разделённых модулей

Единообразный API взаимодействия fit + transform + predict

Отличная документация с примерами и описанием работы алгоритмов

ЧТО ЕЩЁ НАДО ЗНАТЬ?

- ▶ Обученные модели можно сохранять
- Для обучения данные должны содержаться целиком в оперативной памяти
- ▶ Внутри python + cython, через pycharm, например, можно посмотреть, что внутри :)
- ▶ Для работы необходимы numpy / pandas

SKLEARN ALGO CHEATSHEET

2. МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ SCIKIT-LEARN

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

linear_model - линейные модели

- ▶ LinearRegression
- **LogisticRegression**

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

tree - дерево решений

- DecisionTreeClassifier
- DecisionTreeRegressor

ensemble - ансамбли решений: лес, бустинг

- RandomForestClassifier
- ▶ GradientBoostingClassifier

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

cluster - различные методы кластеризации

- KMeans, MiniBatchKMeans
- **DBSCAN**
- ▶ AffinityPropagation

ИСПОЛЬЗОВАНИЕ METOДOB ML

from sklearn.linear_model import LinearRegression X, y = ...

- 1. model = LinearRegression(fit_intercept=True)
- 2. model.fit(X, y)
- 3. a = model.predict(X) (если этоклассификация, тоесть также и predict_proba)

оценка а должна приближать у

3. ПРАКТИЧЕСКОЕ ЗАДАНИЕ - 1

ПРАКТИЧЕСКОЕ ЗАДАНИЕ - 1

- 1. Загрузить данные по недвижимости Бостона
- 2. Разделить их на 2 части: обучающую и тестовую выборки
- 3. Сделать предсказание по тестовой выборке
- 4. Сравнить реальные значения с предсказанием

4. ДРУГИЕ ПОЛЕЗНЫЕ ФУНКЦИИ SCIKIT-LEARN

ОЦЕНКА КАЧЕСТВА

metrics - различные метрики качества решений

- classification report
- mean squared error

ПОДБОР ПАРАМЕТРОВ МОДЕЛИ

model_selection - оценка качества + подбор гиперпараметров моделей

- GridSearchCV
- cross val score

ПРЕДОБРАБОТКА ДАННЫХ

preprocessing - нормировка

StandardScaler

feature_extraction.text - векторизация

- CountVectorizer
- **►** TfidfVectorizer
- HashingVectorizer

СНИЖЕНИЕ РАЗМЕРНОСТИ

decomposition - разложение матриц и снижение размерности

- **▶** PCA
- ▶ TruncatedSVD

СНИЖЕНИЕ РАЗМЕРНОСТИ

Пример:

РСА по векторам word2vec для визуализации: из 300-мерного пространства в 2-мерное

5. ПРАКТИЧЕСКОЕ ЗАДАНИЕ - 2

ПРАКТИЧЕСКОЕ ЗАДАНИЕ - 2

- 1. Взять данные со соревнования Титаник
- 2. Перевести всё в числовой вид
- 3. Заполнить пропуски и отсортировать данные
- 4. При помощи кросс-валидации найти оптимальный параметр для логистической регрессии
- 5. Лучшей выбранной моделью оценить качество на отложенной выборке
- 6. Сделать предсказание по тестовой выборке

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Scikit-learn open-source библиотека для решения задач машинного обучения, содержащая различные методы решения со схожим набором методов для работы
- 2. Также в ней содержится набор методов для предобработки выборки, подбора гиперпараметров модели и оценки качества построенного решения
- 3. Библиотека имеет хорошую документацию и удобна в использовании

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Документация sklearn
- 2. Sklearn cheatsheet

Спасибо за внимание!

НИКИТА КУЗНЕЦОВ

