By: Austin Owens

4 Degree of Freedom **Kinematics**

DH Table

i	α _{i-1}	a _{i-1}	θi	d _i
1	0	0	θ_1	0
2	-90°	0	θ_2	0
3	180°	a_1	θ ₃ +90°	0
4	90°	0	θ_4	0
EE	0	0	90°	a_2

Earward Kinamatics

Forward Kinemati	CS	3,	-	~ 20, ~ 1
$\begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$				1
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-90^{\circ}) & -\sin(-90^{\circ}) \\ 0 & \sin(-90^{\circ}) & \cos(-90^{\circ}) \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} * \begin{bmatrix} c_2 & -s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_2 & -s_2 \\ 0 & 0 \\ -s_2 & -c_2 \\ 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} $	
$\begin{bmatrix} 2\\3\\T = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & \cos(180^\circ) & -\sin(180^\circ) & 0\\0 & \sin(180^\circ) & \cos(180^\circ) & 0\\0 & 0 & 0 & 1 \end{bmatrix} *$	$\begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \cos(\theta_3 + \theta_3) \\ \sin(\theta_3 + \theta_3) \\ 0 \\ 0 \end{bmatrix}$	-90°) $-\sin(\theta_3 + 90^{\circ})$ -90°) $\cos(\theta_3 + 90^{\circ})$ 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -6 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} * \begin{bmatrix} c_4 & -s_4 \\ s_4 & c_4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} c_4 \\ 0 \\ s_4 \\ 0 \end{bmatrix}$	$-s_4$ (0 $-c_4$ (0 (0)	
$\begin{vmatrix} {}_{4} \\ {}_{EE}T = \begin{bmatrix} \cos(90^\circ) & -\sin(90^\circ) & 0 \\ \sin(90^\circ) & \cos(90^\circ) & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$ \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	
$\int_{EE}^{0} T = {}_{1}^{0} T * {}_{2}^{1} T * {}_{3}^{2} T * {}_{4}^{3} T * {}_{EE}^{4} T =$	$\begin{bmatrix} -c_1 s_{2-3} s_4 + s_1 c_4 & -c_1 s_{2-3} s_4 - c_1 c_4 \\ -c_{2-3} s_4 & 0 \end{bmatrix}$	$-c_{1}c_{4}s_{2-3} - s_{1}s_{4}$ $c_{1}s_{4} - s_{1}s_{2-3}c_{4}$ $-c_{2-3}c_{4}$ 0	$ \begin{array}{ccc} c_1c_{2-3} & a_1c_{3-3} \\ s_1c_{2-3} & a_1s_{3-3} \\ -s_{2-3} & -s_{2-3} \end{array} $	$c_{1}c_{2} + a_{2}c_{1}c_{2-3}$ $c_{1}c_{2} + a_{2}s_{1}c_{2-3}$ $a_{1}s_{2} - a_{2}s_{2-3}$ 1

Inverse Kinematics

$$X = a_1 c_1 c_2 + a_2 c_1 c_{2-3}$$
 $Y = a_1 s_1 c_2 + a_2 s_1 c_{2-3}$ $Z = -a_1 s_2 - a_2 s_{2-3}$

$$\begin{array}{c|c} X \\ \hline c_1 = a_1c_2 + a_2c_{2-3} \\ -Z = a_1s_2 + a_2s_{2-3} \end{array} \qquad \begin{array}{c|c} \overline{X} = \frac{X}{c_1} \boxed{\overline{Z} = -Z} \\ \hline & a_2c_{2-3} = \overline{X} - a_1c_2 \\ \hline & a_2s_{2-3} = \overline{Z} - a_1s_2 \end{array}$$

$$\Rightarrow s_2 \overline{Z} + c_2 \overline{X} = \frac{\overline{X}^2 + \overline{Z}^2 + a_1^2 - a_2^2}{2a_1} \xrightarrow{b_1 = \frac{\overline{X}^2 + \overline{Z}^2 + a_1^2 - a_2^2}{2a_1}} \Rightarrow s_2 \overline{Z} + c_2 \overline{X} = b_1$$

$$\xrightarrow{\text{Vector}\begin{bmatrix} \overline{Z} \\ \overline{X} \end{bmatrix} & \begin{bmatrix} \sigma_1 \\ b_1 \end{bmatrix} \text{ are the} } \overline{Z}^2 + \overline{X}^2 = \sigma_1^2 + b_1^2 \longrightarrow \overline{\sigma}_1 = \pm \sqrt{\overline{Z}^2 + \overline{X}^2 - b_1^2}$$

$$\frac{\text{Angle between}\begin{bmatrix} \overline{Z} \\ \overline{X} \end{bmatrix} \& \begin{bmatrix} \sigma_{\mathbf{i}} \\ b_{\mathbf{i}} \end{bmatrix}}{\longrightarrow} \theta_{2}^{(1)} = \arctan 2(b_{\mathbf{i}}, |\sigma_{\mathbf{i}}|) - \arctan 2(\overline{X}, \overline{Z}) \longrightarrow \boxed{\theta_{2}^{(1)} = \arctan 2(\overline{Z}, \overline{X}) - \arctan 2(\sigma_{\mathbf{i}}, b_{\mathbf{i}})}$$

4 Degree of Freedom Kinematics

DH Table

i	α _{i-1}	a _{i-1}	θ ;	d _i
1	0	0	θ_1	0
2	-90°	0	θ_2	0
3	180°	a_1	θ ₃ +90°	0
4	90°	0	θ_4	0
EE	0	0	90°	a ₂

$$X = a_1c_1c_2 + a_2c_1c_{2-3}$$
 $Y = a_1s_1c_2 + a_2s_1c_{2-3}$ $Z = -a_1s_2 - a_2s_{2-3}$

$$\frac{Y}{s_{1}} = a_{1}c_{2} + a_{2}c_{2-3} \qquad \boxed{\overline{Y} = \frac{Y}{s_{1}}} \boxed{\overline{Z} = -Z}
Z = -a_{1}s_{2} - a_{2}s_{2-3} \qquad a_{2}c_{2-3} = \overline{Y} - a_{1}c_{2}
a_{2}s_{2-3} = \overline{Z} - a_{1}s_{2}$$

Same procedures as first derivation except replace \overline{X} with \overline{Y}

$$b_2 = \frac{\overline{Y}^2 + \overline{Z}^2 + a_1^2 - a_2^2}{2a_1}$$

$$\sigma_2 = \pm \sqrt{\overline{Z}^2 + \overline{Y}^2 - b_2^2}$$

$$\theta_2^{(2)} = \arctan 2(\overline{Z}, \overline{Y}) - \arctan 2(\sigma_2, b_2)$$

4

$$X = a_1c_1c_2 + a_2c_1c_{2-3}$$
 $Y = a_1s_1c_2 + a_2s_1c_{2-3}$ $Z = -a_1s_2 - a_2s_{2-3}$

$$\frac{Y}{s_{1}} = a_{1}c_{2} + a_{2}c_{2-3}
Z = -a_{1}s_{2} - a_{2}s_{2-3}$$

$$\overline{Y} = \frac{Y}{s_{1}} | \overline{Z} = -Z
\Rightarrow a_{1}c_{2} = \overline{Y} - a_{2}c_{2-3}
\Rightarrow a_{1}s_{2} = \overline{Z} - a_{2}s_{2-3}$$

Same procedures as first derivation except replace \overline{X} with \overline{Y} , a_2 with a_1 , and a_1 with a_2

$$b_4 = \frac{\overline{Y}^2 + \overline{Z}^2 + a_2^2 - a_1^2}{2a_2}$$

$$\sigma_4 = \pm \sqrt{\overline{Z}^2 + \overline{Y}^2 - b_4^2}$$

6

$$\theta_{2-3} = \theta_2 - \theta_3 = \arctan 2(\overline{Z}, \overline{Y}) - \arctan 2(\sigma_4, b_4) \longrightarrow \boxed{\theta_3^{(2)} = \arctan 2(\sigma_4, b_4) - \arctan 2(\sigma_2, b_2)}$$

$$X = a_1 c_1 c_2 + a_2 c_1 c_{2-3}$$
 $Y = a_1 s_1 c_2 + a_2 s_1 c_{2-3}$ $Z = -a_1 s_2 - a_2 s_{2-3}$

$$\begin{array}{c|c} \frac{X}{c_1} = a_1 c_2 + a_2 c_{2-3} & \boxed{\overline{X} = \frac{X}{c_1}} \boxed{\overline{Z} = -Z} \\ Z = -a_1 s_2 - a_2 s_{2-3} & a_1 s_2 = \overline{Z} - a_2 s_{2-3} \end{array}$$

Same procedures as first derivation except replace $\,a_2\,_{
m With}\,\,a_1\,_{
m and}\,\,a_1\,_{
m With}\,\,a_2$

$$b_{3} = \frac{\overline{X}^{2} + \overline{Z}^{2} + a_{2}^{2} - a_{1}^{2}}{2a_{2}}$$

$$\sigma_{3} = \pm \sqrt{\overline{Z}^{2} + \overline{X}^{2} - b_{3}^{2}}$$

$$\theta_{2-3} = \theta_2 - \theta_3 = \arctan 2(\overline{Z}, \overline{X}) - \arctan 2(\sigma_3, b_3) \longrightarrow \theta_3^{(1)} = \arctan 2(\sigma_3, b_3) - \arctan 2(\sigma_1, b_1)$$

5

Solution # σ_1 σ_3 $\theta_2^{(1)}$ $\theta_3^{(1)}$ 1 + + $a(\bar{z}, \bar{x}) - a(|\sigma_1|, b_1)$ $a(|\sigma_3|, b_3) - a(|\sigma_1|, b_1)$ 2 + - $a(\bar{z}, \bar{x}) - a(|\sigma_1|, b_1)$ $-a(|\sigma_3|, b_3) - a(|\sigma_1|, b_1)$ 3 - + $a(\bar{z}, \bar{x}) + a(|\sigma_1|, b_1)$ $a(|\sigma_3|, b_3) + a(|\sigma_1|, b_1)$ 4 - - $a(\bar{z}, \bar{x}) + a(|\sigma_1|, b_1)$ $-a(|\sigma_3|, b_3) + a(|\sigma_1|, b_1)$ Solution # σ_3 σ_4 σ_4 σ_2 σ_4 σ_3 σ_4 σ_4

Solution #	σ_2	σ_4	$\theta_2^{(2)}$	$\theta_3^{(2)}$
			$a(\bar{7}, \bar{V}) a(\alpha b)$	2(z b) 2(z b)
5			$a(\bar{Z}, \bar{Y})-a(\sigma_2 , b_2)$	$a(\sigma_4 ,b_4)-a(\sigma_2 ,b_2)$
6			$a(\bar{Z}, \bar{Y})-a(\sigma_2 , b_2)$	-a(σ ₄ , b ₄)-a(σ ₂ , b ₂)
7			$a(\bar{Z}, \bar{Y})+a(\sigma_2 , b_2)$	$a(\sigma_4 , b_4)+a(\sigma_2 , b_2)$
0			- (₹ ∇) : - (! - ! b)	
0			$a(\bar{Z}, \bar{Y})+a(\sigma_2 , b_2)$	$-a(\sigma_4 ,b_4)+a(\sigma_2 ,b_2)$

Suppose $a_1=a_2$, then $b_1=b_3$, $\sigma_1=\sigma_3$, $b_2=b_4$, and $\sigma_2=\sigma_4$. Consequently solutions 1, 4, 5, and 8 would give $\theta_3=0$ for all \bar{X} , \bar{Y} , and \bar{Z} which is not possible. Therefore we keep only 4 solutions, 2, 3, 6, 7 which we rename as solutions 1, 2, 3, and 4.

Where:

$$a = \arctan 2() \quad \overline{X} = \frac{X}{c_1} \quad \overline{Y} = \frac{Y}{s_1} \quad \overline{Z} = -Z$$

$$b_1 = \frac{\overline{X}^2 + \overline{Z}^2 + a_1^2 - a_2^2}{2a_1}$$

$$\sigma_1 = \pm \sqrt{\overline{Z}^2 + \overline{X}^2 - b_1^2}$$

$$b_2 = \frac{\overline{Y}^2 + \overline{Z}^2 + a_1^2 - a_2^2}{2a_1}$$

$$\sigma_2 = \pm \sqrt{\overline{Z}^2 + \overline{Y}^2 - b_2^2}$$

$$b_3 = \frac{\overline{X}^2 + \overline{Z}^2 + a_2^2 - a_1^2}{2a_2}$$

$$\sigma_3 = \pm \sqrt{\overline{Z}^2 + \overline{X}^2 - b_3^2}$$

$$b_4 = \frac{\overline{Y}^2 + \overline{Z}^2 + {a_2}^2 - {a_1}^2}{2a_2}$$

$$\sigma_4 = \pm \sqrt{\overline{Z}^2 + \overline{Y}^2 - {b_4}^2}$$

Summary

$$\theta_1 = \arctan 2(Y, X)$$

In the cases where θ_1 = 0° or θ_1 =180°, \bar{Y} is undefined making solution 3 and 4 incorrect. In the cases where θ_1 = 90° or θ_1 =270°, \bar{X} is undefined making solution 1 and 2 incorrect. If θ_1 does not equal 0°, 90°, 180°, or 270°, solution 1 and 3 will be the same value and solution 2 and 4 will be the same value.

θ₄=All Real Values