[4]

Q.5	i.	What is gear train? Give the classification of gear train.	2
	ii.	State and derive the law of gearing with neat sketch.	3
	iii.	Sketch two teeth of a gear and show the following:	5
O.D.		Face, flank, top land, bottom land, addendum, dedendum, tooth thickness, space width, face width, and circular pitch.	_
OR	1V.	A pinion having 30 teeth derives a gear having 80 teeth. The profile of a gear is involutes with 20° pressure angle, 12mm module and 10mm addendum. Find the length of path of contact, arc of contact and contact ratio.	5
Q.6	i.	What do you mean by gyroscopic couple? Derive the relation for its magnitude with neat sketch.	2
	ii.	Explain the effect of gyroscopic couple on a naval ship during pitching and rolling with diagram.	3
	iii.	What do you mean by spin, precession and gyroscopic planes? Show all the planes with diagram.	5
OR	iv.	Explain in what way the gyroscopic couple affects the motion of aeroplanes while taking a turn.	5

Total No. of Questions: 6 Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2018

ME2CO06 Theory of Machines

Programme: Diploma Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

MCQ	s) shou	ald be written in full instead of only a	, b, c or d.				
Q.1	i.	The Grubler's criterion for determining the degree of freedom(n) of a mechanism having plane motion is:					
		(a) $n = (l-1)-j$ (b) $n = (l-1)-2j$					
		Where $l=$ No. of links and $j=$ No. of	f binary joints				
	ii.	A higher pair has		1			
		(a) Point contact	(b) Surface contact				
		(c) Area contact	(d) None of these				
	iii.	The component of acceleration par	allel to the velocity of the particle	1			
		at the given instant is called					
		(a) Radial component	(b) Tangential component				
		(c) Corioli's component	(d) None of these				
	iv.	Total number of instantaneous centre for a mechanism consisting of 4					
		links are					
		(a) 15 (b) 6	(c) 30 (d) 8				
	v.	The angle between the direction of	the follower motion and normal to	1			
		the pitch curve is called					
		(a) Pitch curve	(b) Prime angle				
		(c) Base angle	(d) Pressure angle				
	vi.	In radial cam, the follower moves in a direction					
	, 1,	(a) Perpendicular to the cam axis (b) Parallel to the cam axis					
		(c) Irrespective of the cam axis					
		(c) in espective of the cam axis	(a) Thong the cam axis				

P.T.O.

	vii.	The radial distance of a tooth from the pitch of circle to the bottom of						
		the tooth, is called						
		(a) Addendum (b) Dedendum (c) Clearance (d) Working depth						
	viii.	. The size of the gear is usually specified by						
		(a) Pressure angle (b) Circular pitch						
		(c) Diametral pitch (d) Pitch circle diameter						
	ix.	A disc is spinning with an angular velocity ω rad/s about the axis of	1					
		spin. The couple applied to the disc causing precession will be						
		(a) $\frac{1}{2} \operatorname{I}\omega^2$ (b) $\operatorname{I}\omega^2$ (c) $\frac{1}{2} \operatorname{I}\omega\omega_p$ (d) $\operatorname{I}\omega\omega_p$						
		Where, I= Mass moment of inertial of the disc, and						
		$\omega_{p=}$ Angular velocity of precession of the axis of spin						
	х.	In an automobiles, if the vehicle makes a left turn, the gyroscopic	1					
		torque						
		(a) Increases the force on the outer wheel						
		(b) Decreases the force on the outer wheel						
		(c) Does not affect the force on the outer wheel						
		(d) None of the above						
Q.2	i.	Define degree of freedom of a pair and determine the degree of	3					
2.2	1.	freedom of the following kinematic linkage:						
		C C						
		\mathbf{p}						
		$\mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T}$						
		A A A A A A A A A A A A A A A A A A A A						
		HA HA HA						
		Fig: (1) Fig: (2)						
	ii.	What do you mean by concept of inversion? Sketch and explain the	7					
		various inversions of slider crank mechanism with suitable	-					
		application of each inversion.						
OR	iii.	Explain different kinds of kinematic pairs with neat sketch.	7					
-11		PPPANO NAME OF MINISTER PANO NAME OF PANO	•					
Q.3	i.	State and prove the Aronhold Kennedy's Theorem of three	3					
		instantaneous centre with neat sketch?						

	[3]	
ii.	In a slider crank mechanism the crank is 480mm long and rotates at 20rad/s in the counter clockwise direction. The length of the connecting rod is 1.6m. When the crank turns 60° from the inner dead centre, determine (a) Velocity of slider	7
	(b) Velocity of point E located at a distance 450mm on the connecting rod extended.	
	(c) Angular velocity of the connecting rod.	
iii.	The crank of a slider crank mechanism rotates clockwise at a constant speed of 300rpm. The crank is 150mm and connecting rod is 600mm long. Determine	7
	(a) Linear velocity and acceleration of the mid-point of the connecting rod.	
	(b) Angular velocity and angular acceleration of connecting rod at a crank angle of 45° from inner dead centre.	
i.	Draw the displacement, velocity and acceleration diagram of follower when it moves with constant acceleration and deceleration.	3
ii.	Explain with neat sketch different types of cams.	7
iii.	A cam is to be designed for a knife edge follower with the following data,	7
	(a) Cam lift= 40mm during 90° of the cam rotation with simple harmonic motion	
	(b) Dwell to the next 30°	
	(c) During the next 60° of cam rotation, the follower returns to its original position with simple harmonic motion.	
	(d) Dwell during the remaining 180°.	
	Draw the profile of the cam when the line of stroke of the follower	
	passes through the axis of the cam shaft. The radius of the base circle	
	of the cam is 40mm. Determine the maximum velocity and	
	acceleration of the follower during its ascent and descent if the cam	
	rotates at 240rpm.	

OR

Q.4

OR

P.T.O.

Marking Scheme ME2CO06 Th

		Marking Scheme				11.	5 Space diagram 2 mark	•
		ME2CO06 Theory of Machine					• Velocity diagram 2 mark	
		1/1220000 Intoly of livedime					 Velocity of slider 1 mark 	
Q.1	i.	(c) $n=3(l-1)-2j$	1 mark				 Velocity of point E 1 mark 	
	ii.	(a) Point contact	1 mark				 Angular velocity of the connecting rod 1 mark 	
	iii.	(b) Tangential component	1 mark					
	iv.	(b) 6	1 mark		OR	iii.	• Space diagram 1 mark	7
		(d) Pressure angle	1 mark				• Velocity diagram 2 mark	
		(a) Perpendicular to the cam axis	1 mark				 acceleration diagram 2 mark 	
		(b) Dedendum	1 mark				 Linear velocity and acceleration of the mid-point 1 mark 	
		(d) Pitch circle diameter	1 mark				of the connecting rod.	
		(d) $I\omega\omega_p$ (a) Increases the force on the outer wheel	1 mark 1 mark				 Angular velocity and angular acceleration of 1 mark connecting rod at a crank angle of 45° from inner dead centre. 	
Q.2	i.	• Definition of degree of freedom: (1 mark)	1 mark	3	Q.4	i.	Displacement diagram 1 mark	3
		 Degree of freedom of kinematic linkage 	2 marks				Velocity diagram 1 mark	
		(1 mark each) : (1*2=2 marks)					Acceleration diagram 1 mark	
			1 1	-				
	ii.	• Concept of inversion (1 mark)	1mark	7		ii.		7
		 Four inversion of slider crank chain mechanism (1 mark each) (1 mark * 4) 	4 marks				• According to shape (any four) with diagram (0.5 3 marks mark each)	
		• Four application of each inversion (0.5 mark each)	2 marks				• According to follower movement (any three) (0.5 2 marks	
		(0.5 mark * 4)					marks each) 2 marks	
OR	iii.	 Classification of kinematic pairs according to shape (3 marks) 	3 marks	7			• According to manner of constraint of the follower (any three) (0.5 marks each)	
		 According to surface contact (i.e. higher and lower 	1+1=		OR	iii.	Displacement diagram 1 mark	7
		pair) (0.5 mark each) and diagram (0.5 marks each)	2 marks		OK	1111.	• Cam Profile 3 mark	,
		 According to types of closure (self closed and 	1+1=				Maximum velocity 1.5 mark	
		forced closed) (0.5 marks each) and diagram (0.5	2 marks				Maximum acceleration 1.5 mark	
		marks each)					Maximum deceleration	
					Q.5	i.	• Gear train 1 mark 2	2
0.2		Charles and of Americal IV and a decision	1 onle	2			• Classification of gear train 1 mark	
Q.3	i.	• Statement of Aronold Kennedy's theorem	1 mark	3				
		Designation / Prove	1 mark			ii.	• Statement of law of gearing 1 mark	3
		 Derivation/ Prove 	1 mark				• Diagram 0.5 mark	
							• Derivation 1.5 mark	

ii.

• Space diagram

2 mark

7

	iii.	• Each 0.5 marks	0.5*10=5	5
OR	iv.	• Length of path of contact(length of path approach and length of path of recess each 1 mark)	2 marks	5
		• Length of arc of contact(formula of arc of contact= 0.5 mark+ value of path of contact=1 mark)	1.5 marks	
		• Contact ratio (formula=0.5 mark+ value = 1 mark)	1.5 marks	
Q.6	i.	• Definition of gyroscopic couple	1 mark	2
		• Derivation and diagram (0.5 each)	1 marks	
	ii.	• Effect of gyroscopic couple on naval ship during rolling (1 mark) and diagram (0.5 mark)	1.5 marks	3
		• Effect of gyroscopic couple on naval ship during pitching (1 mark) and diagram (0.5 mark)	1.5 marks	
	iii.	• Diagram of showing all the plane and axis	2 marks	5
		• Spin, precession and gyroscopic plane (1 mark each)	3 marks	
	iv.	• Effect of gyroscopic couple if engine rotate clockwise and take left turn (1 mark) and taking right turn (1 mark)	2 marks	5
		 Effect of gyroscopic couple if engine rotate counter 	2 marks	
		clockwise and take left turn (1 mark) and taking		
		right turn (1 mark) • Diagram of each case (0.5 mark each)	1 marks	
		2 105 1011 01 0100 (0.0 1111111 01101)		
