4) Détermination les coefficients d'une fonction affine

Propriété:

Si $A(x_A;y_A)$ et $B(x_B;y_B)$ sont deux points distincts de la droite $\mathscr D$ représentant la fonction f définie sur $\mathbb R$ par f(x)=ax+b alors, le coefficient directeur $a=\frac{y_B-y_A}{x_B-x_A}$

Démonstration:

$$y_B - y_A = f(x_B) - f(x_A) = (a\,x_B + b) - (a\,x_A + b) = a\,x_B - a\,x_A = a(x_B - x_A)$$

On a supposé que la droite (d) n'est pas verticale : $x_A \neq x_B$. On a $a = \frac{y_B - y_A}{x_B - x_A}$.

Méthode: Déterminer l'expression d'une fonction affine

Déterminer par calcul une expression de la fonction f telle que f(-2) = 4 et f(3) = 1.

❖ Calcul de a :

La représentation graphique correspondant à la fonction affine f passe donc par les points A(-2; 4) et B(3; 1).

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{1 - 4}{3 - (-2)} = -\frac{3}{5}$$

* Calcul de b :

Comme A est un point de la droite, on a : f(-2) = 4 (c'est la **donnée numérique**).

De plus : $f(x) = -\frac{3}{5}x + b$ selon la **formule**

d'une fonction affine avec $a = -\frac{3}{5}$.

Donc on a :
$$f(-2) = -\frac{3}{5} \times (-2) + b$$

Puis, $4 = -\frac{3}{5} \times (-2) + b$. C'est une équation dont l'inconnue est b .

D'où :
$$b = 4 + \frac{3}{5} \times (-2) = 4 - \frac{6}{5} \times = \frac{14}{5}$$

♦ Conclusion :
$$f(x) = -\frac{3}{5}x + \frac{14}{5}$$