22MAC260 Problem Sheet 2: Solutions

Week 2

Last updated February 19, 2024

1. In lectures we looked at the elliptic curve defined by the equation

$$Y^2Z = X^3 + Z^3$$

or in affine form by

$$y^2 = x^3 + 1$$
.

We saw that this curve contains the points P = (2,3) and Q = (-1,0).

(a) Calculate the point $P \oplus (P \oplus Q)$.

Solution: In the Week 2 lectures we showed that $P \oplus Q = (0, -1)$. For brevity let's call this point R; we want to find $P \oplus R$.

The line \overline{PR} has slope $\frac{-1-3}{0-2}=2$ so its equation has the form

$$y = 2x + c$$
;

plugging in the coordinates of P we find that c = -1. So the equation is

$$\overline{PR}$$
: $y = 2x - 1$.

Substituting into the equation of our curve $y^2 = x^3 + 1$ we get

$$(2x-1)^2 = x^3 + 1$$

$$\Leftrightarrow x^3 - 4x^2 + 4x = 0.$$

This cubic has a root x=0 corresponding to R and a **double** root at x=2 corresponding to P. This means that the line \overline{PR} is tangent to the curve at P. So P*R=P=(2,3) and hence $P\oplus R=(2,-3)$.

(b) Write down the equation of the tangent line to the curve at the point P.

Solution: We just saw that the line \overline{PR} is tangent to the curve at P. The equation of this line is

$$y = 2x - 1$$
.

(c) Use the previous part to calculate the point

$$2P := P \oplus P$$
.

(The definition of P * P was given in the Week 2 lectures.)

Solution: From the previous part we know that

$$P * P = R = (0, -1)$$

and hence

$$2P = (0, 1).$$

(d) Verify that $2P \oplus Q = P \oplus (P \oplus Q)$.

Solution: From the previous part we have

$$2P = (0, 1) = P * Q$$

hence

$$2P * Q = (P * Q) * Q$$

= P
= (2,3).

So

$$2P \oplus Q = (2, -3)$$

= $P \oplus (P \oplus Q)$.

(e) In general for positive integers a, we use the notation aP to mean the point P added to itself a times, and (-a)P to mean -P added to itself a times. Now compute as many points of the form $aP \oplus bQ$ (for $a, b \in \mathbf{Z}$) as you feel like.

Solution: Since Q = (-1,0) has y-coordinate equal to zero, we know that -Q = O * Q = Q, hence 2Q = 0.

Our calculations above show that

$$2P \oplus Q = (2, -3)$$
$$= -P.$$

Hence

$$3P \oplus Q = O$$
; that is,
$$3P = -Q$$

$$= Q.$$

In particular this shows that 6P = 2Q = O.

Hence can write down all the multiples of P:

$$P = (2,3)$$

$$2P = (0,1)$$

$$3P = Q = (-1,0)$$

$$4P = -2P = (0,-1)$$

$$5P = -P = (2,-3)$$

$$6P = O$$

and in general $\forall n \in \mathbf{Z}, nP = \overline{n}P$

where $\overline{n} = n \mod 6$. So for any $a, b \in \mathbf{Z}$, we have

$$aP \oplus bQ = (a+3b)P$$

= kP

where $k = (a + 3b) \mod 6$.

2. Let C be the curve defined in affine form by

$$y^2 = 8x^3 - 12x^2 + 6x.$$

(a) Show that C is an elliptic curve.

Solution: We need to show that the cubic $8x^3 - 12x^2 + 6x$ has 3 distinct roots. We can factorise it as

$$8x^{3} - 12x^{2} + 6x = 8x(x^{2} - \frac{3}{2}x + \frac{3}{4})$$

$$= 8x\left(x - \frac{3}{2} - \sqrt{-\frac{3}{4}}\right)\left(x - \frac{3}{2} + \sqrt{-\frac{3}{4}}\right)$$

So the cubic has 3 distinct roots (one real root at x = 0 and two complex conjugate roots), therefore it defines an elliptic curve.

(b) Show that the points

$$R = (0,0), \quad S = \left(\frac{3}{2},3\right)$$

lie on the curve C.

Solution: We simply substitute the coordinates of R and S into the equation of C and see that it is satisfied. For R this is very easy; for S we find

$$8\left(\frac{3}{2}\right)^3 - 12\left(\frac{3}{2}\right)^2 + 6\left(\frac{3}{2}\right) = 8 \cdot \frac{27}{8} - 12 \cdot \frac{9}{4} + 9$$
$$= 27 - 27 + 9$$
$$= 3^2$$

so the coordinates of S do satisfy the equation of C.

(c) Calculate $R \oplus S$ and as many other points of the form $\alpha R \oplus bS$ (for $\alpha, b \in \mathbf{Z}$) as you feel like.

Solution: To calculate $R \oplus S$ we first find the line \overline{RS} . This line has slope

$$m = \frac{3-0}{\frac{3}{2}-0} = 2$$

and since it passes through R=(0,0) its equation must be y=2x. Substituting this into the equation of C we get

$$(2x)^2 = 8x^3 - 12x^2 + 6x$$

$$\Leftrightarrow 8x^3 - 16x^2 + 6x = 0$$

$$\Leftrightarrow x^3 - 2x^2 + \frac{3}{4}x = 0$$

We know this cubic has roots at x=0 corresponding to R and $x=\frac{3}{2}$ corresponding to S, and the x-coordinate of R * S is the 3rd root. For a monic cubic, the sum of the roots is minus the coefficient of x^2 , so the 3rd root is $x=2-0-\frac{3}{2}=\frac{1}{2}$. Since the point R * S lies on the line y=2x, its y-coordinate must therefore be y=1. So we find

$$R * S = \left(\frac{1}{2}, 1\right)$$

and finally

$$R \oplus S = \left(\frac{1}{2}, -1\right).$$

To find further points of the form $aR \oplus bS$, we first compute $R \oplus 2S = S \oplus (R \oplus S)$. The line joining S to $R \oplus S$ has slope

$$m = \frac{3 - (-1)}{\frac{3}{2} - \frac{1}{2}}$$
$$= 4$$

while the tangent line to the curve at S has slope

$$\frac{dy}{dx}(S) = \frac{24x^2 - 24x + 6}{2y}(S)$$

$$= \frac{24 \cdot \frac{9}{4} - 24 \cdot \frac{3}{2} + 6}{2 \cdot 3}$$

$$= \frac{54 - 36 + 6}{6}$$

$$= 4$$

So both lines pass through S and have the same slope, hence they must be equal. This implies

$$S*(R\oplus S)=S \quad \text{ so }$$

$$S\oplus (R\oplus S)=-S \quad \text{ in other words}$$

$$R\oplus 2S=-S$$

This gives

$$3S = -R$$
.

As before, since the y-coordinate of R equals zero, we have 2R=O, therefore R=-R and 3S=R.

The final result is therefore exactly analogous to Question 1: we have

$$S = \left(\frac{3}{2}, 3\right), 2S = R * S = \left(\frac{1}{2}, 1\right), 3S = R,$$

$$4S = -2S = \left(\frac{1}{2}, -1\right), 5S = -S = \left(\frac{3}{2}, -3\right), 6S = O$$

and

$$aR \oplus bS = kS$$

where $k = 3a + b \mod 6$.

Remark: It is not an accident that the results of Questions 1 and 2 correspond so closely. In fact, there is an affine linear change of coordinates that transforms the curve in Question 2 to the curve in Question 1, and maps the points R and S to the points Q and P respectively. So one could say that Question 2 does the calculations of Question 1 again, in different coordinates.

3. Let C be the elliptic curve defined in affine form by

$$y^2 = x^3 - x - 1$$
.

(a) Show that the point P = (1, 1) lies on the point P.

Solution: This is a simple substitution.

(b) Caclulate 6P. (Hint: to do this you need to calculate 2P and 3P but not 4P or 5P.) **Solution:** We start by computing 2P. Remember that 2P is defined to be O*(P*P) where P*P means the third point of C that lies on the tangent line at P.

Let $f = y^2 - x^3 + x - 1$. Then the tangent line to C at P has slope

$$\frac{\partial y}{\partial x}(P) = \frac{\partial f/\partial x}{\partial f/\partial y}(P)$$
$$= \left(\frac{3x^2 - 1}{2y}\right)_{|P|}$$
$$= 1$$

so its equation is

$$y - 1 = 1 \cdot (x - 1)$$
 i.e. $y = x$.

Substituting this into the equation of C we get

$$x^2 = x^3 - x + 1$$
 i.e. $x^3 - x^2 - x + 1 = 0$

We know this has a double root at x=1 corresponding to P. This means that $(x-1)^2$ divides the above cubic; loooking at the constant term we see that the third root must then be x=-1. Substituting this into the equation of the tangent line we get y=-1 also, and so we have P*P=(-1,-1). As before, this gives 2P=(-1,1).

Next we compute $3P = 2P \oplus P$. The line joining 2P to P has slope 0 so its equation is y = 1. Substituting this into the equation of C gives

$$x^3 - x = 0$$

which has roots at $x=\pm 1$, corresponding to 2P and P respectively, and at x=0, corresponding to 2P*P. So we get 2P*P=(0,1) and hence 3P=(0,-1).

Finally we can compute 6P as 3P*3P (so no need to find 4P or 5P). The tangent line to C at 3P has slope

$$\left(\frac{3x^2 - 1}{2y}\right)_{|3P} = \frac{1}{2}$$

so its equation is

$$y + 1 = \frac{1}{2}x$$
 i.e. $y = \frac{1}{2}x - 1$.

Substituting this into the equation of C we get

$$\left(\frac{1}{2}x - 1\right)^2 = x^3 - x + 1$$
 i.e. $x^3 - \frac{1}{4}x^2 = 0$

This has a double root at x=0 corresponding to 3P, and the third root is at $x=\frac{1}{4}$. Putting $x=\frac{1}{4}$ into the equation of the tangent line we get $y=-\frac{7}{8}$, so $3P*3P=-\frac{7}{8}$ and hence finally

$$6P = \left(\frac{1}{4}, \frac{7}{8}\right).$$

Remark: This shows that even if we start with a curve like C whose equation has integer coefficients, and a point like P whose coordinates are integers, the addition process can give us points with non-integer coordinates. We will get a better understanding in Week 5 of what this tells us about P.

4. Let C be the elliptic curve defined in affine form by

$$y^2 = x^3 - x$$
.

- (a) Show there are exactly 3 points $\{R_1, R_2, R_3\}$ on C with y-coordinate equal to 0. **Solution:** The point $(x_0, 0)$ lies on C if and only if x_0 is a root of $x^3 x$, hence we get three such points $R_1 = (-1, 0)$, $R_2 = (0, 0)$, $R_3 = (1, 0)$.
- (b) For each of the points R_i found in the previous part, show that $2R_i = O$. Solution: For any i we know that the tangent line to the curve

is vertical, since if $f = y^2 - x^3 + x$ we get

$$\frac{\partial f}{\partial y}(R_i) = 2y(R_i) = 0.$$

Any vertical line intersects C again at O, hence $R_i*R_i=O$ and $R_i\oplus R_i=O*O=O$.

(c) Show that if R_i and R_j are two distinct points found in (a) then $R_i \oplus R_j = R_k$, the other one of the points.

Solution: For any distinct i and j, the line joining R_i to R_j is just the x-axis. This intersects the curve at the third point R_k .

(d) Conclude that the set $\{O, R_1, R_2, R_3\}$ is a **subgroup** of the set of points on C. **Solution:** There are 3 conditions to check: (i) the set is closed under the operation; (ii) the set contains the identity element; (iii) the set contains the inverse of each of its elements.

- (i) We showed that $R_i \oplus R_j = R_k$ for $i \neq j$ and $R_i \oplus R_i = O$ for each i. Finally $O \oplus O = O$ and $R_i \oplus O = R_i$ for each i. So the given set is closed under the operation \oplus .
- (ii) By definition the set contains the idenity element O.
- (iii) The identity element O is its own inverse. For each i we showed that $2R_i=O$, which is equivalent to $-R_i=R_i$. So every element in the set is its own inverse in particular, the set contains the inverse of each of its elements.

Remark: For concreteness we proved the above fact for a specific curve. But we didn't really use any special properties of the curve. In fact the same argument shows the following: for any elliptic curve E, its **2-torsion subgroup**

$$E[2] := \{ P \in E \mid 2P = O \}$$

is a group with 4 elements in which each element has order 1 or 2, hence E[2] is isomorphic to the Klein 4-group V_4 .

The following question is not examinable.

I. In this problem you will prove the Proposition on p.8 of the Week 2 notes:

Proposition: Let C be an irreducible cubic curve in \mathbf{P}^2 . Let C_1 be another cubic and suppose

$$C \cap C_1 = \{p_1, \dots, p_9\}.$$

If C_2 is any other cubic which contains p_1, \ldots, p_8 , then C_2 also contains p_9 . You can prove this via the following steps:

- (a) Let p_1, \ldots, p_5 be 5 distinct points in \mathbf{P}^2 . If no 4 of the points lie on a line, show there is a unique curve of degree 2 passing through all 5 points.
- (b) Let $p_1, ..., p_8$ be 8 distinct points in the plane such that no 4 of them lie on a line and no 7 lie on a curve of degree 2. Show that the space of cubic polynomial which are zero at all 8 points has dimension equal to 2.
- (c) Deduce the Proposition above.

(In your proof you may want to use **Bezout's Theorem:** if C and D are distinct irreducible curves of degree c and d repectively, then $C \cap D$ consists of at most cd points.)