Stochastic Financial Models 21

Michael Tehranchi

November 23, 2022

1 Properties of Brownian motion

Theorem (Wiener 1923). Brownian motion exists.

Remark. A Brownian motion is called a Wiener process in the US.

Theorem. Brownian motion is a martingale in its filtration $\mathcal{F}_t = \sigma(W_s : 0 \le s \le t)$.

Proof. Brownian motion is integrable, adapted and

$$\mathbb{E}[W_t - W_s | \mathcal{F}_s] = \mathbb{E}[W_t - W_s] = 0$$

for $0 \le s \le t$ by the independence of $W_t - W_s$ and \mathcal{F}_s .

Theorem. Brownian motion is a Markov process.

Proof. Since W_s is \mathcal{F}_s measurable and $W_t - W_s$ is independent of \mathcal{F}_s for $0 \le s \le t$, we have

$$\mathbb{E}[g(W_t)|\mathcal{F}_s] = \mathbb{E}[g(W_t - W_s + W_s)|\mathcal{F}_s]$$
$$= \mathbb{E}[g(W_t - W_s + x)]\big|_{x = W_s}$$
$$= \mathbb{E}[g(W_t)|W_s]$$

Definition. A process $(X_t)_{t\geq 0}$ is Gaussian iff the random variables X_{t_1}, \ldots, X_{t_n} are jointly normal for all $0 \leq t_1 \leq \ldots \leq t_n$, i.e. the random variable $\sum_{i=1}^n a_i X_{t_i}$ is normally distributed for all constants a_1, \ldots, a_n .

Theorem. The following are equivalent

- 1. $(W_t)_{t\geq 0}$ is a Brownian motion
- 2. $(W_t)_{t\geq 0}$ is a Gaussian process such that
 - $t \mapsto W_t$ is continuous

- $\mathbb{E}[W_t] = 0$ for all $t \ge 0$
- $\mathbb{E}[W_s W_t] = s \text{ for all } 0 \le s \le t$

Proof. Suppose $(W_t)_{t\geq 0}$ is a Brownian motion. Fix $0=t_0\leq t_1\leq \ldots \leq t_n$ and a_1,\ldots,a_n . Note

$$\sum_{i=1}^{n} a_i W_{t_i} = \sum_{i=1}^{n} b_i (W_{t_i} - W_{t_{i-1}})$$

where $b_k = \sum_{i=k}^n a_i$. Since $W_{t_1} - W_{t_0}, \dots, W_{t_n} - W_{t_{n-1}}$ are independent normals, and the linear combination of independent normals is normal, we have that $(W_t)_{t\geq 0}$ is Gaussian with $\mathbb{E}[W_t] = \mathbb{E}[W_0] = 0$ and

$$\mathbb{E}[W_s W_t] = \mathbb{E}[W_s^2] + \mathbb{E}[W_s (W_t - W_s)]$$

$$= \operatorname{Var}(W_s) + \mathbb{E}(W_s) \mathbb{E}(W_t - W_s)$$

$$= 0.$$

for $0 \le s \le t$, since W_s and $W_t - W_s$ are independent.

Conversely, suppose $(W_t)_{t\geq 0}$ is a continuous Gaussian process such that $\mathbb{E}[W_t]=0$ and $\mathbb{E}[W_sW_t]=s$ for all $0\leq s\leq t$. Then for $0\leq u\leq s\leq t$ we have

$$Cov(W_u, W_t - W_s) = \mathbb{E}[W_u W_t] - \mathbb{E}[W_u W_s]$$
$$= u - u = 0$$

By normality, the increment $W_t - W_s$ is independent of W_u . By Gaussianity, the increment is independent of $(W_u)_{0 \le u \le s}$.

Theorem. Let $(W_t)_{t\geq 0}$ be a Brownian motion. Then each of the following processes are also Brownian motions.

- 1. $\tilde{W}_t = cW_{t/c^2}$, for any constant $c \neq 0$.
- 2. $\tilde{W}_t = W_{t+T} W_T$ for any constant $T \ge 0$.
- 3. $\tilde{W}_0 = 0$ and $\tilde{W}_t = tW_{1/t}$ for t > 0.

Proof. Check that each process is a continuous mean-zero Gaussian process with the correct covariance. [For 3, we technically need the Brownian law of large number $\frac{W_s}{s} \to 0$ as $s \to \infty$ to prove continuity of \tilde{W} at t = 0.]

2 Reflection principle

Theorem. Let $(W_t)_{t\geq 0}$ be a Brownian motion, and $T_a = \inf\{t \geq 0 : W_t = a\}$. Then $T_a < \infty$ almost surely.

Proof. Consider the case a > 0. (The case a < 0 is similar.) We must show

$$\sup_{t>0} W_t > a \text{ almost surely}$$

By Brownian scaling, for any c > 0 and 0 < a < b, we have

$$\mathbb{P}(a < \sup_{t \ge 0} W_t < b) = \mathbb{P}(a < \sup_{t \ge 0} cW_{t/c^2} < b)$$
$$= \mathbb{P}(a/c < \sup_{s \ge 0} W_s < b/c) \quad \text{letting } t/c^2 =$$
$$\to 0$$

by sending $c \uparrow \infty$. Since $Z = \sup_{t \geq 0} W_t \geq W_0 = 0$, we have shown that $Z \in \{0, +\infty\}$ almost surely.

Let $\hat{Z} = \sup_{t \geq 1} (W_t - W_1)$. Note Z and \hat{Z} have the same distribution, so $\hat{Z} \in \{0, +\infty\}$ almost surely.

Note that $\{\hat{Z} = \infty\} = \{Z = \infty\}$ since $\sup_{0 \le t \le 1} W_t$ is finite by the continuity of Brownian motion. Hence

$$\begin{split} p &= \mathbb{P}(Z=0) = \mathbb{P}(Z=0, \hat{Z}=0) \\ &\leq \mathbb{P}(W_1 \leq 0, \hat{Z}=0) \ \text{ as Z = 0 implies W_t <= 0 for all t} \\ &= \frac{1}{2}\mathbb{P}(\hat{Z}=0) = \frac{1}{2}p \end{split}$$

so p = 0. Hence $\sup_{t > 0} W_t = \infty$ almost surely.

Theorem. Let $(W_t)_{t\geq 0}$ be a Brownian motion and T a finite stopping time. The process $W_{t+T} - W_T$ is also a Brownian motion independent of $(W_t)_{0\leq t\leq T}$

Proof. Omitted. The idea is Brownian motion is a strong Markov process. \Box

Applying this with the finite stopping time T_a together with the symmetry of Brownian motion, we have

Theorem (Reflection principle). Let $(W_t)_{t\geq 0}$ be a Brownian motion and let

$$\tilde{W}_t = \begin{cases} W_t & \text{if } 0 \le t < T_a \\ 2a - W_t & \text{if } t \ge T_a \end{cases}$$

Then $(\tilde{W}_t)_{t\geq 0}$ is a Brownian motion.

Reflection principle: Key formula

$$\boxed{\mathbb{P}(\max_{0 \le s \le t} W_s \ge a, W_t \le b) = \mathbb{P}(W_t \ge 2a - b) \text{ for } a \ge 0, b \le a}$$

Proof. We have

$$\mathbb{P}(\max_{0 \le s \le t} W_s \ge a, W_t \le b) = \mathbb{P}(\tilde{W}_t \ge 2a - b)$$
$$= \mathbb{P}(W_t \ge 2a - b)$$