Matrices

6TH WEEK

Outline

- Definition
- Notation
- Vectors
- Equality of Matrices
- Addition
- Multiplication
- Transpose

Definition

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m \times n matrix. The plural of matrix is matrices.

$$\begin{bmatrix} 0.3 & 1 & -5 \\ 0 & -0.2 & 16 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$

$$\begin{bmatrix} e^{-x} & 2x^2 \\ e^{6x} & 4x \end{bmatrix}, \quad \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, \quad \begin{bmatrix} 4 \\ \frac{1}{2} \end{bmatrix}$$

The numbers are called entries or, less commonly, elements of the matrix.

Notation

- We shall denote matrices by capital letters A, B, C, ..., or by writing the general entry in brackets; thus $A = [a_{jk}]$ and so on.
- By an m × n matrix (read m by n matrix) we mean a matrix with m rows and n columns (rows always come first)
- m × n is called the size of the matrix.
- Thus an m × n matrix is of the form

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Notation

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

- Each entry has two subscripts. The first is the *row number* and the second is the *column number*. Thus a_{21} is the entry in Row 2 and Column 1.
- If m = n, we call **A** an $n \times n$ square matrix

Vectors

- A vector is a matrix with only one row or column.
- Its entries are called the **components** of the vector.
- We shall denote vectors by *lowercase* letters **a**, **b**, ... or by its general component in brackets, $\mathbf{a} = [a_i]$, and so on.
- A row vector is of the form

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
. For instance, $\mathbf{a} = \begin{bmatrix} -2 & 5 & 0.8 & 0 & 1 \end{bmatrix}$.

• A column vector is of the form

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}. \quad \text{For instance,} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 0 \\ -7 \end{bmatrix}.$$

Equality of Matrices

- Two matrices $\mathbf{A} = [a_{jk}]$ and $\mathbf{B} = [b_{jk}]$ are **equal**, written $\mathbf{A} = \mathbf{B}$, if and only if they have the same size and the corresponding entries are equal, that is, $a_{11} = b_{11}$, $a_{12} = b_{12}$, and so on.
- Matrices that are not equal are called **different**. Thus, matrices of different sizes are always different.

Addition of Matrices

- The **sum** of two matrices $\mathbf{A} = [a_{jk}]$ and $\mathbf{B} = [b_{jk}]$ **of the same size** is written $\mathbf{A} + \mathbf{B}$ and has the entries $a_{jk} + b_{jk}$ obtained by adding the corresponding entries of \mathbf{A} and \mathbf{B} .
- Matrices of different sizes cannot be added.

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}$$

Scalar Multiplication

The **product** of any $m \times n$ matrix $\mathbf{A} = [a_{jk}]$ and any **scalar** c (number c) is written $c\mathbf{A}$ and is the $m \times n$ matrix $c\mathbf{A} = [ca_{jk}]$ obtained by multiplying each entry of \mathbf{A} by c.

$$2 \cdot egin{bmatrix} 10 & 6 \ 4 & 3 \end{bmatrix} = egin{bmatrix} 2 \cdot 10 & 2 \cdot 6 \ 2 \cdot 4 & 2 \cdot 3 \end{bmatrix}$$

Matrix Multiplication

• The **product** $\mathbf{C} = \mathbf{A}\mathbf{B}$ (in this order) of an $m \times n$ matrix $\mathbf{A} = [a_{jk}]$ times an $r \times p$ matrix $\mathbf{B} = [b_{jk}]$ is defined if and only if r = n and is then the $m \times p$ matrix $\mathbf{C} = [c_{ik}]$ with entries

$$c_{jk} = \sum_{l=1}^{n} a_{jl} b_{lk} = a_{j1} b_{1k} + a_{j2} b_{2k} + \dots + a_{jn} b_{nk}$$

$$j = 1, \dots, m$$

$$k = 1, \dots, p.$$

Matrix Multiplication

$$\mathbf{A} \qquad \mathbf{B} = \mathbf{C}$$
$$[m \times n] \quad [n \times p] = [m \times p]$$

Matrix Multiplication

Here $c_{11} = 3 \cdot 2 + 5 \cdot 5 + (-1) \cdot 9 = 22$, and so on. The entry in the box is $c_{23} = 4 \cdot 3 + 0 \cdot 7 + 2 \cdot 1 = 14$

$$\mathbf{AB} = \begin{bmatrix} 3 & 5 & -1 \\ 4 & 0 & 2 \\ -6 & -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 5 & 0 & 7 & 8 \\ 9 & -4 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 22 & -2 & 43 & 42 \\ 26 & -16 & 14 & 6 \\ -9 & 4 & -37 & -28 \end{bmatrix}$$

Matrix Multiplication is Not Commutative

• The **product** $\mathbf{C} = \mathbf{A}\mathbf{B}$ (in this order) of an $m \times n$ matrix $\mathbf{A} = [a_{jk}]$ times an $r \times p$ matrix $\mathbf{B} = [b_{jk}]$ is defined if and only if r = n and is then the $m \times p$ matrix $\mathbf{C} = [c_{jk}]$ with entries

$$\begin{bmatrix} 1 & 1 \\ 100 & 100 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
but
$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 100 & 100 \end{bmatrix} = \begin{bmatrix} 99 & 99 \\ -99 & -99 \end{bmatrix}.$$

Transpose

- We obtain the transpose of a matrix by writing its rows as columns (or equivalently its columns as rows).
- This also applies to the transpose of vectors. Thus, a row vector becomes a column vector and vice versa.
- In addition, for square matrices, we can also "reflect" the elements along the main diagonal, that is, interchange entries that are symmetrically positioned with respect to the main diagonal to obtain the transpose. Hence a_{12} becomes a_{21} , a_{31} becomes a_{13} , and so forth.

Transpose

• If A is the given matrix, then we denote its transpose by A^T .

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Let A =
$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 4 & 6 \\ 1 & 1 & 3 & 7 \end{bmatrix}$$

- a) What size is A?
- b) What is the third column of A?
- c) What is the second row of A?
- d) What is $a_{3,2}$?
- e) What is A^{T} ?

Find A + B where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ -1 & 2 & 2 \\ 0 & -2 & -3 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -1 & 3 & 5 \\ 2 & 2 & -3 \\ 2 & -3 & 0 \end{bmatrix}$$

Find A + B where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 5 & 6 \\ -4 & -3 & 5 & -2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -3 & 9 & -3 & 4 \\ 0 & -2 & -1 & 2 \end{bmatrix}$$

Find A x B where

$$\mathbf{a)} \ \mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}.$$

b)
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 3 & -2 & -1 \\ 1 & 0 & 2 \end{bmatrix}.$$

c)
$$\mathbf{A} = \begin{bmatrix} 4 & -3 \\ 3 & -1 \\ 0 & -2 \\ -1 & 5 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -1 & 3 & 2 & -2 \\ 0 & -1 & 4 & -3 \end{bmatrix}$.

Find A x B where

$$\mathbf{a)} \ \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

b)
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}.$$

c)
$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 7 & 2 \\ -4 & -3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & -1 & 2 & 3 & 0 \\ -2 & 0 & 3 & 4 & 1 \end{bmatrix}.$$

Find A^T and B^T where

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

b)
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}.$$

c)
$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 7 & 2 \\ -4 & -3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & -1 & 2 & 3 & 0 \\ -2 & 0 & 3 & 4 & 1 \end{bmatrix}.$$