PRÁCTICO 2

PROCESOS DE POISSON.

Ejercicio 1. Considere un proceso Poisson en el cual los eventos ocurren con intensidad de 0.3 por hora. ¿Cuál es la probabilidad de que ningún evento ocurra entre las 10 de la mañana y las 2 de la tarde?

Ejercicio 2.

Los desperfectos que se producen en un cable submarino siguen un proceso de Poisson con intensidad $\lambda=0.1$ por kilómetro.

- a) ¿Cuál es la probabilidad de que no se produzcan desperfectos en los primeros dos kilómetros?
- b) Sabiendo que no hay desperfectos en los dos primeros kilómetros, ¿cuál es la probabilidad de que no haya tampoco desperfectos en el tercer kilómetro?

Ejercicio 3. Cierta oficina pública mantiene registros del número de personas que van a realizar un determinado trámite durante la mañana (de 8 a 13 hs). Estos registros muestran que, en promedio, llegan 15 personas por hora, y que el número de personas que arriban constituye un proceso de Poisson homogéneo.

- a) ¿Cuál es la probabilidad de que lleguen más de 20 personas en la última hora de atención?
- b) ¿Cuál es la probabilidad de que durante la mañana lleguen exactamente 100 personas, sabiendo que desde las 9hs, hasta las 12hs, llegaron 80?

Ejercicio 4. Los autos pasan por cierto punto en la ruta de acuerdo con un proceso de Poisson de intensidad $\lambda = 3$ por minuto. Si Robin cruza corriendo la ruta sin mirar si vienen autos, ¿cuál es la probabilidad de que salga ileso si tarda s segundos en cruzarla? Asuma que si está sobre la ruta cuando pasa un auto, entonces saldrá herido. Calcule para s = 2, 5, 10 y 20.

Ejercicio 5. Suponga que, en el Ejercicio anterior, Robin es lo suficientemente ágil para esquivar un auto, pero si se encuentra con dos o más autos mientras intenta cruzar, entonces sale herido.

- a) ¿Cuál es la probabilidad que salga ileso si le toma s segundos cruzar la ruta? Calcule para s = 5, 10, 20 y 30.
- b) Si el primer auto aparece a los s_1 segundos,
 - i) ¿cuál es la probabilidad de que haya 2 autos en s segundos, con $s > s_1$?.
 - ii) ¿cuál es la probabilidad de que Robin salga ileso en este caso? Calcule para s = 10,20 y 30 y $s_1 = 5$.

Ejercicio 6. En una empresa electrónica se observa que el número de componentes que fallan en un período de tiempo *t* corresponde a un proceso Poisson. Además, se sabe que ocurren aproximadamente ocho fallos antes de cumplir 100 horas de funcionamiento.

- a) ¿Cual es la probabilidad de que un componente falle en 25 horas?.
- b) ¿y que fallen no más de dos componentes en 50 horas?
- c) ¿cual es la probabilidad de que fallen por lo menos diez componentes en 125 horas?

Ejercicio 7. Para un proceso Poisson con intensidad λ , determine $P(N(s) = k \mid N(t) = n)$, considerando dos casos: a) s < t y b) s > t.

Ejercicio 8. Los clientes llegan a un banco de acuerdo a un proceso de Poisson con intensidad constante λ (dada en horas). En la primera hora han llegado dos clientes. ¿Cuál es la probabilidad de que:

- a) ambos hayan llegado en los primeros 20 minutos?,
- b) al menos uno de ellos haya llegado en los primeros 20 minutos?.

Ejercicio 9. Ben, Max y Yolanda están al frente de tres colas separadas en la cafetería esperando a ser atendidos. Los tiempos de servicio de las tres colas siguen procesos de Poisson independientes con parámetros respectivos 1, 2 y 3.

- a) Hallar la probabilidad de que Yolanda sea atendida primero.
- b) Hallar la probabilidad de que Ben sea atendido antes que Yolanda.
- c) Hallar el tiempo de espera esperado para la primera persona atendida.

Ejercicio 10. A partir de las 6 de la mañana, los autos, colectivos y motos llegan a un peaje de autopista según procesos de Poisson independientes. Los autos llegan aproximadamente una vez cada 5 minutos. Los colectivos llegan aproximadamente una vez cada 10 minutos. Las motos llegan aproximadamente una vez cada 30 minutos.

- a) Hallar la probabilidad de que en los primeros 20 minutos lleguen a la cabina exactamente tres vehículos: dos autos y una moto.
- b) En el peaje, la probabilidad de que un conductor tenga el cambio exacto es de 1/4, independientemente del vehículo. Encuentre la probabilidad de que ningún vehículo tenga el cambio exacto en los primeros 10 minutos.

Ejercicio 11. Se tienen dos procesos de Poisson independientes, $N_1(t)$ y $N_2(t)$, con $t \ge 0$, y tasas $\lambda_1 = 1$ y $\lambda_2 = 2$, respectivamente. Sea N(t) la superposición de estos procesos: $N(t) = N_1(t) + N_2(t)$, $t \ge 0$.

- a) Calcular la probabilidad de que N(1) = 2 y N(2) = 5.
- b) Calcular la probabilidad de que $N_1(1) = 1$ dado que N(1) = 2.
- c) Calcular la probabilidad de que el segundo arribo en $N_1(t)$ ocurra antes que el tercer arribo en $N_2(t)$.

Ejercicio 12. Supongamos que a la caja de un supermercado llegan dos tipos de clientes. Los que pagan en efectivo y los que pagan con tarjeta. Los que pagan con tarjeta llegan de acuerdo a un proceso de Poisson $N_1(t)$ con tasa de llegada de 3 clientes por minuto, y los que pagan en efectivo llegan de acuerdo a un proceso de Poisson con tasa de llegada de 4 clientes por minuto, y ambos procesos son independientes. Calcular las probabilidades de los siguientes eventos:

- a) El primer cliente que llega a la caja pague en efectivo.
- b) Hayan llegado al menos 3 clientes que pagan en efectivo antes del 5to cliente que paga con tarjeta.
- c) Hayan llegado exactamente 20 clientes en los primeros 4 minutos.

Ejercicio 13. En una intersección con mucho tráfico los accidentes se producen según un proceso de Poisson a un ritmo de dos accidentes por semana. En tres de cada cuatro accidentes está implicado el consumo de alcohol.

- a) ¿Cuál es la probabilidad de que la próxima semana se produzcan tres accidentes en los que esté implicado el alcohol?
- b) ¿Cuál es la probabilidad de que mañana se produzca al menos un accidente?
- c) Si se producen seis accidentes en febrero (cuatro semanas), ¿cuál es la probabilidad de que en menos de la mitad de ellos esté implicado el alcohol?

Ejercicio 14. En una estación de servicio, los clientes llegan de acuerdo con un proceso de Poisson no homogéneo con función de intensidad

$$\lambda(t) = 3 + \frac{4}{t+1}$$
, $t > 0$, donde t se mide en horas.

- a) ¿Cuál es la probabilidad que lleguen 5 clientes en la primera hora?.
- b) Si llegaron 8 clientes en las dos primeras horas, ¿cuál es la probabilidad que hayan llegado 5 clientes en la segunda hora?.

Ejercicio 15. Los reclamos a una empresa se reciben de acuerdo a un proceso de Poisson no homogéneo N_t , $t \ge 0$ (t en horas), con intensidad

$$\lambda(t) = \begin{cases} \frac{1}{2}t & \text{para } 0 < t < 5\\ \frac{1}{4}t & \text{para } t \ge 5. \end{cases}$$

- a) Calcular la probabilidad de que hayan recibido exactamente 15 reclamos en las primeras 4 horas.
- b) Calcular la probabilidad de que hayan recibido exactamente 15 reclamos en (1,5].
- c) Dado que en las primeras 4 horas se recibieron 15 reclamos, calcular la probabilidad de que el número de reclamos ascienda a 16 a la hora 6.

Ejercicio 16. Sean N(t) y M(t) procesos estocásticos de Poisson homogéneos independientes con tasas λ_1 y λ_2 respectivamente por unidad de tiempo.

- a) Demuestre que el proceso Z(t) = N(t) + M(t) es un proceso de Poisson homogéneo con tasa instantánea $\lambda_1 + \lambda_2$.
- b) ¿Qué ocurriría con Z(t) = N(t) + M(t) si los procesos N(t) y M(t) fuesen no homogéneos?.