Chapter 5

Comparing one or two means

Please read Chapter 13 from *Learning Statistics with R* before starting these assignments.

Content		Page
Assignment 5.1: Hypothesis testing by hand using the z- and t-score		 58
Assignment 5.2: Generating and interpreting z-scores and t-scores		 63
Assignment 5.3: Independent two-sample t-test by hand and in R		 68
Assignment 5.4: Dependent two-sample t-test in R		 72

Chapter 5: Comparing one or two means

Learning objectives of this chapter:

- Hypothesis testing by hand using the z- and t-score
- Generating and interpreting z-scores and t-scores
- Independent two-sample t-test by hand and in R
- Dependent two-sample t-test in R

Assignment 5.1: Hypothesis testing by hand using the z- and t-score

The maximum allowed amount of PFAS chemicals in soil is 0.9 microgram per kg of dry soil. In a regular soil check, researchers take 49 soil **samples** in a town near a plastic factory and find a **mean** PFAS level of 0.918 microgram/kg with a **standard deviation** of 0.071. They want to show with 95% confidence that the PFAS levels in the town are significantly above the norm.

5.1 a) Write down the relevant information from this case.

Answer 5.1a:			

5.1 b) Write down the **null hypothesis** H_0 and the **alternative hypothesis** H_1 for the researchers' test of the **mean** PFAS level against the norm.

Answer 5.	1b:		
H_0 :		H_1 :	

The **critical z-value** for a one-sided 95% confidence interval is equal to 1.645 (see also Table 2 on page 141).

5.1 c) Calculate the lower bound of the one-sided confidence interval for the PFAS level population mean with 95% confidence.
Answer 5.1c: Lower bound: Calculation:
5.1 d) Draw the conclusion for the researchers. Include the following four elements: \square Show how μ_0 relates to the confidence interval . \square Discuss whether H_0 is rejected or not. \square Describe what this tells us about μ and μ_0 . \square Describe what type of error is relevant (type-I or type-II).
Answer 5.1d:

5.1 e) Calculate the **z-score** for this situation.

Hint 5.1: You can find the formula for the **z-score** in the formula sheet on page 138. Use μ_0 in this formula.

Answer 5.1e:	
z-score:	
Calculation:	
	J

5.1 f) Compare the calculated **z-score** with the **critical z-value**. What does this tell you about the p-value?

Hint 5.2: Use the absolute value of the calculated **z-score**.

Answe	er 5.1f:
5.1 g)	Draw the conclusion again, but now using the z-score , is it the same? Include the following elements:
	☐ Show how the calculated z-score relates to the critical z-score .
	\square Discuss whether H_0 is rejected or not.
	\square Describe what this tells us about μ and μ_0 .
	☐ Describe what type of error is relevant (type-I or type-II).
_	er 5.1g:

The researchers want to quickly check another town near the plastic factory, but have less time available. They take 16 samples in the second town and find a much higher mean PFAS level of 0.930 microgram/kg with a comparable standard deviation of 0.070.

5.1 h) Calculate the **t-score** for this situation.

Hint 5.3: You can find the formula for the **t-score** in the formula sheet on page 138. Use μ_0 in this formula.

Answer 5.1h:
t-score:
Calculation:
The critical t-value for a one-sided 95% confidence interval with 15 degrees of freedom is equal to 1.753. 5.1 i) Draw the conclusion for the researchers using the (absolute) t-score. Include the following elements:
\square Show how the calculated t-score relates to the critical t-score . \square Discuss whether H_0 is rejected or not. \square Describe what this tells us about μ and μ_0 .
\Box Describe what type of error is relevant (type-I or type-II).
Answer 5.1i:
5.1 j) Also calculate the lower bound of the one-sided confidence interval for the PFAS level population mean with 95% confidence.
Answer 5.1j:
Lower bound:
Calculation:

5.1 k) If you would draw the conclusion based on this **lower bound** would you get the same result? Explain why.

Answer 5.1k:
The conclusion would / would not be the same.
Explanation:

5.1 l) Why is it that even though the second town shows much higher PFAS level in the sample (0.930 vs 0.918) H_0 cannot be rejected?

Ar	swer 5.11:			

Assignment 5.2: Generating and interpreting z-scores and t-scores

In assignment 5.1 you have seen that to calculate a 95% one-sided **confidence interval** for a **sample** with $n \geq 30$ you need to use the correct **z-value**. Now you are going to find out how to get that number from R using the **qnorm()** function. The **qnorm()** function returns the **x**-value for a certain probability for a specified **normal distribution**, if you do not specify the **mean (mean)** and **standard deviation (sd)** arguments it returns the **z-value** for the **standard normal distribution**.

Run the following code in R:

```
qnorm(p = 0.95, mean = 0, sd = 1, lower.tail = TRUE)
# Or because the standard normal distribution is the default simply use:
qnorm(0.95)
```

5.2 a) Round the number to 3 decimals. Do you recognise this z-value?

Answer 5.2a:			
Result:			

In assignment 5.1 you have also seen that for the 95% two-sided **confidence interval** for a **sample** with $n \ge 30$ you can use z = 1.960. Now you are going to learn to reproduce that number in R

Run the following code in R:

5.2 b) Why do you have to use the 97.5 percentile to get the z-value for the 95% two-sided confidence interval?

Answer 5.2b:		
-		
[

Run the following code in R:

```
pnorm(q = 1.645, mean = 0, sd = 1)
pnorm(1.960)
```

5.2 c) Based on the results of this R code explain what the **pnorm()** function does.

In assignment 5.1 it was stated that the **critical t-value** for a one-sided 95% **confidence interval** with 15 **degrees of freedom** is equal to 1.753.

Run the following code in R:

```
qt(p = 0.95, df = 15)
```

5.2 d) Based on the results of this R code explain what the qt() function does.

Run the following code in R:

```
pt(q = 1.753, df = 15)
```

5.2 e) Based on the results of this R code explain what the pt() function does.

Ar	iswer 5.2e:			

5.2 f) For the situation where there are 19 degrees of freedom, use the qt() function to get the t-values (t_1, t_2, t_3, t_4) for the three situations shown in the picture above.

Hint 5.4: For the picture on the right keep in mind that the qt() function by default returns the value for the left tail of the distribution.

R code 5.2f:			

Answer 5	5.2f:		
t_1 :		t_2 :	
t ₃ :		t_4 :	

5.2 g) For the situation where there are 11 **degrees of freedom**, use the pt() function to get the probabilities p_1 , p_2 , and p_3 (area under the curve) for the three situations shown in the figures above.

Hint 5.5: For the picture in the middle and the right keep in mind that the pt() function by default uses the left tail and the total area under the curve is 1.

R code 5.2g:		

Answer 5	5.2g:			
p ₁ :		p_2 :	 p ₃ :	

When you test a value for a **population mean**, there exist three types of tests:

Two-tailed inequality test: One-tailed right sided test: One-tailed left sided test:

 $H_0: \mu = \mu_0$ $H_0: \mu \le \mu_0$ $H_0: \mu \ge \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$

5.2 h) Give a critical **t-value** for the three tests described above using a confidence of 98% and 28 **degrees of freedom**.

Hint 5.6: Use the qt() function in R.

R code 5.2h:		

Answer 5.2h:	
Two-tailed inequality test:	
One-tailed right sided test:	
One-tailed left sided test:	

Three n=29 samples were done on three different populations and the **t-score** based on these samples was calculated:

Two-tailed inequality test: One-tailed right sided test: One-tailed left sided test:

$$H_0: \mu = 50$$
 $H_0: \mu \le 0$ $H_0: \mu \ge 0$ $H_1: \mu > 0$ $H_1: \mu < 0$

$$t = 2.6$$
 $t = -2.3$ $t = 1.6$

5.2 i) Using a confidence of 98%, find out whether the **null hypothesis** H_0 is rejected for each of these three cases.

Hint 5.7: Use the **critical t-values** from the previous assignment and compare these with the sample **t-scores** to draw your conclusion for each of these outcomes.

Answer 5.2i:	
Two-tailed inequality test:	H_0 rejected / H_0 not rejected
Explanation:	
One-tailed right sided test: Explanation:	H_0 rejected $/$ H_0 not rejected
One-tailed left sided test:	H_0 rejected / H_0 not rejected
Explanation:	

Assignment 5.3: Independent two-sample t-test by hand and in R

To test the effect of caffeine on the respiratory exchange ratio (RER), 9 men get caffeine and 9 different men get a placebo, their RER is measured while doing sports¹:

RER measurement	n	Mean (\bar{x})	Standard deviation (s_x)
Caffeine	9	94.22	6.49
Placebo	9	101.22	8.14

Researchers want to use this experiment to show with 95% confidence that caffeine reduces the RER in men. They are going to evaluate the results by comparing the **mean** RER using a **two-sample t-test**.

5.3 a) Why is this test also called an independent samples t-test?

Answer 5.3a:			
-			

5.3 b) Write down the **null hypothesis** H_0 and the **alternative hypothesis** H_1 for a one-sided test where the researchers want to show that the placebo **mean** RER is higher than the caffeine **mean** RER.

Answer 5.3b:		
H_0 :	H_1 :	

In the formula sheet on page 138 you can see that for independent samples t-tests:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

5.3 c) Using the formula provided calculate the **pooled standard deviation** s_p .

¹This example is taken from http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1438

Now you will learn how to do the same independent t-test in R.

Run the following code in R:


```
# These are the values for the RER test data set
placebo <- c(97, 106, 120, 104, 96, 100, 93, 96, 99)
caffeine <- c(97, 92, 95, 100, 95, 88, 85, 106, 89)
```

5.3 f) Calculate the **mean** and **standard deviation** for the **placebo** and **caffeine** variables, confirm that your results match with the previous assignment.

```
R code 5.3f:
```

```
placebo
caffeine

Mean:
_____

Standard deviation:
_____

Standard deviation:
_____
```

Run the following code in R:

```
t.test(x = placebo, y = caffeine, alternative = 'greater', mu = 0,
    paired = FALSE, var.equal = TRUE, conf.level = 0.95)
```

5.3 g) Interpret the R code above and check if the results match your conclusion for assignment 5.3e.

Answer 5.3g:			

The **t-test** assumes equal **variances**. In this case the **standard deviations** are actually a bit different.

5.3	h)	_		argument in t . Check whe			oa Welc h	t-test	to account
R	code	e 5.3h:							
Δr	CW(O	er 5.3h:							
/\I	ISWE	1 3.311.							
5.3	i)	How can you	ı check if you	u need to do a	Welch	t-test in	stead of a	normal t-	-test ?
Ar	iswe	r 5.3i:							

Assignment 5.4: Dependent two-sample t-test in R

To test for a difference in blood pressure depending on their position, 14 people's blood pressure was measured twice, first standing up and then sitting down. Researchers want to use this experiment to show with 92.5% confidence that the blood pressure sitting is significantly higher than standing. They are going to evaluate the results by comparing the **mean** using a **two-sample t-test**.

5.4 a) Why is this	a dependent ((also called paired)	t-test?
-------	---------------	---------------	----------------------	---------

Ansı	wer 5.4a:			

Run the following code in R:

```
# These are the values for the blood pressure data set standing <- c(136, 144, 152, 133, 140, 129, 131, 133, 145, 134, 142, 140, 125, 135) sitting <- c(148, 159, 121, 151, 145, 139, 135, 144, 141, 148, 143, 161, 150, 151)
```

5.4 b) Calculate the **mean** of the **standing** and **sitting** data sets, also calculate the differences and the **mean** of the differences.

R code 5.4b:			

Answer 5.4b:				
		_		
Mean standing:				
Mean sitting:				
Mean difference:				

5.4	c)	Write down the null hypothesis H_0 and alter	rnative hypothesis	H_1 for	a one-
		sided test where the researchers want to show with 9	2.5% confidence that the	mean	blood
		pressure is higher sitting down than standing up.			

Answer 5.4c:	
H_0 : H_1 :	
Run the following code in R:	
Run the following code in R.	
<pre>t.test(x = standing, y = sitting, alternative = 'greater', mu = 0 ,</pre>	
5.4 d) Check the results of this test. The outcome is a bit strange, can you explain here?	ı what is wrong
Answer 5.4d:	
5.4 e) Fix the R code to do a correct test and draw the correct (four part) conclusion.	
R code 5.4e:	
Answer 5.4e:	