Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra

Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso

Introducción

- Definir los sujetos que van a ser medidos y delimitar la población
- Elegir el tipo de muestra (probabilística, no probabilística)
- Definir el tamaño de la muestra
- Obtener la muestra

1. Muestra y población

Definir unidad de análisis (personas, periódicos, etc), ejemplo:

- Pregunta de investigación: Discriminan a las mujeres en los anuncios de televisión?
- Unidad de análisis ERRONEA: Mujeres que aparecen en los anuncios de televisión (ERROR: no hay comparación)
- Unidad de análisis CORRECTA: Mujeres y hombres que aparecen en los anuncios de televisión

Delimitar población

- La población es el conjunto de todos los casos que concuerdan con una serie de especificaciones dadas por la investigación.
- Ejemplo:
 "Todos los niños del área metropolitana que cursen 4to básico en escuelas públicas"

1. Muestra y población

Seleccionar la muestra

- Difícilmente se puede medir toda la población, por lo tanto se utilizan muestras.
- La muestra es un subgrupo de la población.
- La muestra pretende ser fiel reflejo del conjunto población.
- Todas las muestras deben ser representativas (por ende: inútil el término "muestra representativa").

1. Muestra y población

Tipos de muestra

- Probabilística: Todos los elementos de la población tienen la MISMA PROBABILIDAD de ser seleccionados
- No probabilística: La elección de los elementos NO DEPENDE DE LA PROBABILIDAD, sino de causas relacionadas con las características del investigador o del que hace la muestra

La elección se realiza en base a los objetivos de estudio, el esquema de investigación y el alcance de sus contribuciones.

2. Muestras probabilísticas

- Las muestras probabilísticas son esenciales en los diseños de investigación en donde se pretende hacer estimaciones de variables en la población y analizarlas con pruebas estadísticas.
- Los elementos muestrales tendrán valores muy parecidos a los de la población, de manera que las mediciones en el subconjunto, nos darán estimados precisos del conjunto mayor.
- Que tan preciso son dichos estimados depende del error en el muestreo, el cual se puede calcular.

Muestra probabilística simple

- N: tamaño de la población
- n: tamaño de la muestra
- p: proporción de la población que posee las características de estudio (Cuando no es conocido se considera p=0,5).
- q: (1-p)
- e: error estándar

$$n_0 = pq/e^2$$
 $n = n_0/(1 + (n_0/N))$

Ej: Estudio de los directores de empresas con ventas superiores a los 100 millones. Calcular muestra para una población de 1176 directores considerando un error estándar de 4.5 %.

Muestra probabilística simple

- N: tamaño de la población
- n: tamaño de la muestra
- p: proporción de la población que posee las características de estudio (Cuando no es conocido se considera p=0,5).
- q: (1-p)
- e: error estándar

$$n_0 = \rho q/e^2$$
 $n = n_0/(1 + (n_0/N))$

Ej: Estudio de los directores de empresas con ventas superiores a los 100 millones. Calcular muestra para una población de 1176 directores considerando un error estándar de 4,5 %.

$$n_0 = 0, 5*0, 5/0, 045^2$$

$$n_0 = 0, 25/0, 002025 = 123, 45$$

$$n = 123, 45/(1 + (123, 45/1176)) = 111, 72 \approx 112$$

Muestra probabilística estratificada

- Cuando no basta que cada uno de los elementos muestrales tengan la misma probabilidad de ser escogidos.
- Además es necesario estratificar la muestra en relación a categorías que se presentan en la población y que aparte son relevantes para los objetivos del estudio.
- f: fracción del estrato
- N e: población del estrato
- n_e: muestra del estrato

$$f = n_e/N_e$$

Ej: Estudio de los directores de empresas con ventas superiores a los 100 millones. Calcular muestra para una población de 1176 directores considerando un error estándar de 4,5 %, estratificados por giro de empresa.

$$f = 112/1176 = 0,095$$

 $N_e * f = n_e$

	Directores por giro empresa	población (N _e)	muestra (n _e)
1	Extractivo y Siderúrgico	53	6
2	Alimentos	109	11
3	Textiles	81	9
4			

4. Obtención de la muestra

- Tómbola
- Números aleatorios

5. Muestras no probabilísticas

- Las muestras no probabilísticas suponen un procedimiento de selección informal y un poco arbitrario.
- Al no ser probabilísticas, no podemos saber con qué nivel de confianza hacemos una estimación.
- Utilidad para un determinado diseño de estudio, que requiere de una cuidadosa y controlada elección de sujetos con ciertas características especificadas previamente en el planteamiento del problema.

5. Muestras no probabilísticas

Ejemplo

El objetivo de la investigación es documentar las experiencias de viaje, de vida y de trabajo. Se seleccionó una muestra de personas extranjeras que por diversas razones -económicas, políticas, fortuitas- hubieran llegado a México entre 1900 y 1960. Las personas se seleccionaron a través de conocidos, de asilos, de referencias.