Route Dim — Dimensionality Selection from Parity Depth

A conditional uniqueness argument for 3+1 dimensions via Pin⁺ AHSS growth and least action

Evan Wesley, with Octo, Claude, Gemini and O3

August 5, 2025

Abstract

We formulate and prove conditional statements showing that 3+1 spacetime dimensions are singled out by the parity-depth mechanism. For a d-dimensional Lorentz-invariant QFT with internal symmetry $G_{\rm int}$, anomalies are classified by $\Omega_{d+1}^{\rm Pin^+}(BG_{\rm int})$. We combine (i) monotone growth of the \mathbb{Z}_2 -primary anomaly rank along the p+q=d+1 diagonal of the AHSS with (ii) the monotonicity of the decade index $\mathcal{I}_{10}(m)=2^m-1-m+3$ to show that d=4 is the unique dimension compatible with the observed suppression 10^{123} , under minimal and explicit assumptions.

Contents

1	Setup and notation	1
2	Assumptions	1
3	Lower bounds on $m(d)$	2
4	Dimensionality selection	2
5	Falsifiability	2

1 Setup and notation

Let $d \geq 2$ be the spacetime dimension of the boundary QFT (Lorentzian signature), coupled to non-orientable probes (Pin⁺). Internal symmetry is fixed to $G_{\text{int}} = (SU(3) \times SU(2) \times U(1))/\mathbb{Z}_6$. Anomaly inflow places invertible phases in d+1 dimensions, classified by $\Omega_{d+1}^{\text{Pin}^+}(BG_{\text{int}})$. The AHSS reads

$$E_2^{p,q} = H^p(BG_{\text{int}}; \ \Omega_q^{\text{Pin}^+}) \ \Rightarrow \ \Omega_{p+q}^{\text{Pin}^+}(BG_{\text{int}}). \tag{1}$$

Define $m(d) := \operatorname{rank}_2 \Omega_{d+1}^{\operatorname{Pin}^+}(BG_{\operatorname{int}})$, the \mathbb{Z}_2 -primary parity depth in dimension d. The decade index is $\mathcal{I}_{10}(m(d)) = 2^{m(d)} - 1 - m(d) + 3$.

2 Assumptions

Assumption 2.1 (Low-degree bordism). $\Omega_q^{\mathrm{Pin}^+}$ contains a \mathbb{Z}_2 summand for q=0,1,2,3 and at least one \mathbb{Z}_2 summand for each q in an unbounded subset of $\mathbb{Z}_{\geq 0}$ ("Z₂-recurrence").

Assumption 2.2 (Cohomology fingerprint stability). The low-degree mod-2 cohomology ranks of BG_{int} in degrees ≤ 5 are as in the SM fingerprint used for d=4; in particular, dim $H^2=2$, dim $H^3=1$, dim $H^4=2$, and a degree-5 cup a_2z_3 is nonzero.

Assumption 2.3 (Naturality of differentials). Differentials that would kill classes detected by restrictions to BU(1), BSO(3), BSU(2), BSU(3) are absent (vanishing-source/target under those restrictions).

3 Lower bounds on m(d)

Lemma 3.1 (Persistence bound). For all $d \ge 4$, $m(d) \ge m(4) = 7$.

Proof. For d=4, the seven-witness pattern occupies p+q=5. For d'>4, the E_2 page on p+q=d'+1 contains a copy of the d=4 diagonal embedded at higher q via the Z_2 -recurrence of Ω_q and the same H^p in degrees $p\leq 5$. Naturality prevents annihilation of those seven classes.

Lemma 3.2 (Increment bound). Suppose there exists $q_{\star} \geq 4$ with a \mathbb{Z}_2 summand in $\Omega_{q_{\star}}^{\text{Pin}^+}$. Then for all $d \geq q_{\star} + 1$, $m(d) \geq m(4) + \lfloor (d-4)/(q_{\star} - 3) \rfloor$.

Proof. Each time d+1 increases by $(q_{\star}-3)$, one can form a new p+q=d+1 class by pairing the existing degree- $p \leq 5$ SM cohomology with the $\Omega_{q_{\star}}$ summand; Künneth and naturality arguments ensure survival/independence.

4 Dimensionality selection

Theorem 4.1 (Uniqueness of d = 4 under least action). Assume 2.1–2.3. Then:

- 1. For d < 4, $m(d) \le 6$ (insufficient parity depth to reach $\mathcal{I}_{10} = 123$).
- 2. For d = 4, m(4) = 7 and $\mathcal{I}_{10}(m(4)) = 123$.
- 3. For $d \ge 5$, $m(d) \ge 8$ and hence $\mathcal{I}_{10}(m(d)) \ge \mathcal{I}_{10}(8) = 250$.

Therefore, under the least-action selector that matches the observed decade index, d = 4 is uniquely singled out.

Proof. (1) For d < 4, the diagonal is $p+q \le 4$, which cannot accommodate the seven-witness pattern relying on p+q=5 and a nonzero a_2z_3 in degree 5; hence $m(d) \le 6$. (2) Established in the d=4 analysis. (3) Lemma 3.1 gives $m(d) \ge 7$, and Lemma 3.2 with any $q_* \ge 4$ forces $m(d) \ge 8$ for $d \ge 5$.

Remark 4.2 (Macro-fold corroboration). In the macro-fold variational picture, increasing d increases the phase-growth exponent α_d (more modes per decade), which decreases the optimal decade step $q_d^* = 1/(\alpha_d \ln 10)$ and conflicts with the observed $q^* = 4$. Conversely, d < 4 yields too small α_d and $q^* > 4$, overproducing macro layers. Thus d = 4 is the only integer dimension consistent with both the AHSS parity depth and the geometric optimization.

5 Falsifiability

Any proof that $\Omega_{d+1}^{\text{Pin}^+}(BG_{\text{int}})$ has rank₂ = 7 for some $d \neq 4$, or that $m(4) \neq 7$, would falsify the selection. Conversely, a rigorous table of $\Omega_q^{\text{Pin}^+}$ up to q = 8 verifying Z₂-recurrence would complete the unconditional proof.