Grado en Ingeniería en Tecnologías Industriales 1^{er} CURSO

AMPLIACIÓN DE FÍSICA

3. Capacidad. Dieléctricos

1. Hallar la capacidad equivalente entre los puntos a y b de la figura. Si la diferencia de potencial $V_{ab} = 48 V$ determinar la carga que hay en el condensador de capacidad C₃. (C₁=3 mF, C₂=6 mF, C₃=2 mF)

- 2. Calcular la capacidad de un condensador formado por dos superficies cilíndricas concéntricas de radios R_1 y R_2 ($R_1 < R_2$) y longitud L. (No considerar el efecto de los bordes en el campo eléctrico).
- 3. Un condensador de capacidad C_1 se carga hasta que tiene una diferencia de potencial ΔV_0 y luego se conecta en paralelo con un condensador descargado de capacidad C_2 , y se deja evolucionar el sistema formado por ambos hasta que se alcanza el equilibrio.
 - a) Calcular la carga final que adquiere cada uno de los condensadores.
 - b) Obtener la relación entre la energía inicial del condensador de capacidad C_I y la que tienen los dos condensadores en la situación final de equilibrio. ¿Se conserva la energía total almacenada en los condensadores?
- 4. Un condensador de capacidad C, con aire entre sus placas se carga conectándolo a una batería de fuerza electromotriz ΔV. Se introduce una lámina dieléctrica, de constante dieléctrica K, rellenando el espacio entre las placas, ¿Cuánta carga fluirá de la batería durante el proceso de introducción de la lámina?
- 5. Tenemos un condensador formado por dos placas plano paralelas de sección A separadas una distancia d. Este condensador se carga con una fuente de alimentación que produce una diferencia de potencial V y, una vez cargado, se desconecta de la fuente. Mediante la aplicación de una fuerza externa se separan las placas del condensador muy lentamente. Calcular:
 - a) La diferencia de potencial en función de la distancia entre las placas (x).
 - b) La variación de la energía acumulada en el condensador en función de esta distancia (x).
 - c) El trabajo realizado por la fuerza en función de dicha separación x. Discutir los resultados obtenidos desde el punto de vista energético.

Resolver el mismo problema suponiendo que está conectada la fuente al condensador durante todo el proceso, sustituyendo diferencia de potencial por carga en el punto a).

- 6. Un condensador de placas plano paralelas de sección A se carga con una carga Q. El espacio entre las placas se rellena introduciendo dos láminas dieléctricas de espesor d/2 (donde d es la distancia de separación entre las placas del condensador) y de permitividades ε_1 y ε_2 .
 - a) Obtener el campo eléctrico, la diferencia de potencial entre las placas del condensador, las densidades de carga ligada en las superficies de los dieléctricos y la relación C/C_0 entre la capacidad del condensador con los dieléctricos C y la capacidad sin dieléctricos C_0 .
 - b) Resolver el mismo problema suponiendo que los dieléctricos tienen una superficie A/2 y un espesor d.

Soluciones:

1.
$$C = 4 \text{ mF}$$
 $Q = 64 \text{ mC}$

$$2. \quad C = \frac{2\pi\varepsilon_0 L}{\ln(R_2 / R_1)}$$

3.
$$Q_1 = \frac{C_1^2 \Delta V_0}{C_1 + C_2}$$
 $Q_2 = \frac{C_1 C_2 \Delta V_0}{C_1 + C_2}$ $\frac{U_f}{U_i} = \frac{C_1}{C_1 + C_2}$

4.
$$\Delta Q = (K-1)C\Delta V$$

5. a)
$$\Delta V(x) = \frac{xV}{d}$$
 b),c) $\Delta E_P = W = \frac{\varepsilon_0 A V^2}{2d^2} (x - d)$

a')
$$Q(x) = \frac{A\varepsilon_0 V}{x}$$
 b') $\Delta U = \frac{\varepsilon_0 A V^2}{2} \left(\frac{d-x}{xd}\right)$, c') $W = \frac{\varepsilon_0 A V^2}{2} \left(\frac{x-d}{xd}\right)$

6. a)
$$\vec{E}_1 = \frac{Q}{A\varepsilon_1}\vec{i}$$
, $\vec{E}_2 = \frac{Q}{A\varepsilon_2}\vec{i}$
$$\Delta V = \frac{Qd}{2A}\left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2}\right)$$

$$\sigma_{b1} = \frac{Q}{A} \left(1 - \frac{\varepsilon_0}{\varepsilon_1} \right), \quad \sigma_{b2} = \frac{Q}{A} \left(1 - \frac{\varepsilon_0}{\varepsilon_2} \right) \qquad \qquad \frac{C}{C_0} = \frac{2}{\varepsilon_0} \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}$$

b)
$$\vec{E}_1 = \vec{E}_2 = \frac{2Q}{A(\varepsilon_1 + \varepsilon_2)}\vec{i}$$

$$\Delta V = \frac{2Qd}{A(\varepsilon_1 + \varepsilon_2)}$$

$$\sigma_{b1} = \frac{2Q(\varepsilon_1 - \varepsilon_0)}{A(\varepsilon_1 + \varepsilon_2)}, \quad \sigma_{b2} = \frac{2Q(\varepsilon_2 - \varepsilon_0)}{A(\varepsilon_1 + \varepsilon_2)} \qquad \frac{C}{C_0} = \frac{\varepsilon_1 + \varepsilon_2}{2\varepsilon_0}$$