(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 October 2002 (24.10.2002)

PCT

(10) International Publication Number WO 02/083953 A1

(51) International Patent Classification⁷: C12Q 1/68, C07H 21/02, G01N 27/26

(21) International Application Number: PCT/US02/11757

(22) International Filing Date: 11 April 2002 (11.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/282,965 11 April 2001 (11.04.2001) US

(71) Applicant (for all designated States except US): PTC THERAPEUTICS, INC. [US/US]; 100 Corporate Court, Middlesex Business Center, South Plainfield, NJ 07080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RANDO, Robert [US/US]; 3 Brown Court, Annandale, NJ 08801 (US). WELCH, Ellen [US/US]; 33 Hollow Brook Road, Califon, NJ 07830 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3953

(54) Title: METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

(57) Abstract: The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid ("RNA"). Direct, non-competitive binding assays are advantageously used to screen libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.

METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

This application claims the benefit of U.S. Provisional Application No. 60/282,965, filed April 11, 2001, which is incorporated herein by reference in its entirety.

5

1. INTRODUCTION

The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid ("RNA"). Direct, non-competitive binding assays are advantageously used to screen libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.

2. BACKGROUND OF THE INVENTION

Protein-nucleic acid interactions are involved in many cellular functions, including transcription, RNA splicing, mRNA decay, and mRNA translation. Readily accessible synthetic molecules that can bind with high affinity to specific sequences of single- or double-stranded nucleic acids have the potential to interfere with these interactions in a controllable way, making them attractive tools for molecular biology and medicine. Successful approaches for blocking function of target nucleic acids include using duplex-forming antisense oligonucleotides (Miller, 1996, Progress in Nucl. Acid Res. & Mol. Biol. 52:261-291; Ojwang & Rando, 1999, Achieving antisense inhibition by oligodeoxynucleotides containing N₇ modified 2'-deoxyguanosine using tumor necrosis factor receptor type 1, METHODS: A Companion to Methods in Enzymology 18:244-251) and peptide nucleic acids ("PNA") (Nielsen, 1999, Current Opinion in Biotechnology 10:71-75), which bind to nucleic acids via Watson-Crick base-pairing. Triplex-forming anti-gene oligonucleotides can also be designed (Ping et al., 1997, RNA 3:850-860; Aggarwal et al., 1996, Cancer Res. 56:5156-5164; U.S. Patent No. 5,650,316), as well as pyrrole-imidazole polyamide oligomers (Gottesfeld et al., 1997, Nature 387:202-205; White et al., 1998, Nature 391:468-471), which are specific for the major and minor grooves of a double helix, respectively.

5

30

In addition to synthetic nucleic acids (i.e., antisense, ribozymes, and triplexforming molecules), there are examples of natural products that interfere with deoxyribonucleic acid ("DNA") or RNA processes such as transcription or translation. For example, certain carbohydrate-based host cell factors, calicheamicin oligosaccharides, interfere with the sequence-specific binding of transcription factors to DNA and inhibit transcription in vivo (Ho et al., 1994, Proc. Natl. Acad. Sci. USA 91:9203-9207; Liu et al., 1996, Proc. Natl. Acad. Sci. USA 93:940-944). Certain classes of known antibiotics have been characterized and were found to interact with RNA. For example, the antibiotic thiostreptone binds tightly to a 60-mer from ribosomal RNA (Cundliffe et al., 1990, in The Ribosome: Structure, Function & Evolution (Schlessinger et al., eds.) American Society for Microbiology, Washington, D.C. pp. 479-490). Bacterial resistance to various antibiotics often involves methylation at specific rRNA sites (Cundliffe, 1989, Ann. Rev. Microbiol. 43:207-233). Aminoglycosidic aminocyclitol (aminoglycoside) antibiotics and peptide antibiotics are known to inhibit group I intron splicing by binding to specific regions of the RNA (von Ahsen et al., 1991, Nature (London) 353:368-370). Some of these same aminoglycosides have also been found to inhibit hammerhead ribozyme function (Stage et al., 1995, RNA 1:95-101). In addition, certain aminoglycosides and other protein synthesis inhibitors have been found to interact with specific bases in 16S rRNA (Woodcock et al., 1991, EMBO J. 10:3099-3103). An oligonucleotide analog of the 16S rRNA has also been shown to interact with certain aminoglycosides (Purohit et al., 1994, Nature 370:659-662). A molecular basis for hypersensitivity to aminoglycosides has been found to be located in a single base change in mitochondrial rRNA (Hutchin et al., 1993, Nucleic Acids Res. 21:4174-4179). Aminoglycosides have also been shown to inhibit the interaction between specific structural RNA motifs and the corresponding RNA binding protein. Zapp et al. (Cell, 1993, 74:969-978) has demonstrated that the aminoglycosides neomycin B, lividomycin A, and tobramycin can block the binding of Rev, a viral regulatory protein required for viral gene expression, to its viral recognition element in the IIB (or RRE) region of HIV RNA. This blockage appears to be the result of competitive binding of the antibiotics directly to the RRE RNA structural motif.

Single stranded sections of RNA can fold into complex tertiary structures consisting of local motifs such as loops, bulges, pseudoknots, guanosine quartets and turns (Chastain & Tinoco, 1991, Progress in Nucleic Acid Res. & Mol. Biol. 41:131-177; Chow & Bogdan, 1997, Chemical Reviews 97:1489-1514; Rando & Hogan, 1998, Biologic activity of guanosine quartet forming oligonucleotides in "Applied Antisense Oligonucleotide Technology" Stein. & Krieg (eds) John Wiley and Sons, New York, pages

335-352). Such structures can be critical to the activity of the nucleic acid and affect functions such as regulation of mRNA transcription, stability, or translation (Weeks & Crothers, 1993, Science 261:1574-1577). The dependence of these functions on the native three-dimensional structural motifs of single-stranded stretches of nucleic acids makes it difficult to identify or design synthetic agents that bind to these motifs using general, simple-to-use sequence-specific recognition rules for the formation of double- and triple-helical nucleic acids used in the design of antisense and ribozyme type molecules. Approaches to screening generally involve competitive assays designed to identify compounds that disrupt the interaction between a target RNA and a physiological, host cell factor(s) that had been previously identified to specifically interact with that particular target RNA. In general, such assays require the identification and characterization of the host cell factor(s) deemed to be required for the function of the target RNA. Both the target RNA and its preselected host cell binding partner are used in a competitive format to identify compounds that disrupt or interfere with the two components in the assay.

5

15

20

Citation or identification of any reference in Section 2 of this application is not an admission that such reference is available as prior art to the present invention.

3. SUMMARY OF THE INVENTION

The present invention relates to methods for identifying compounds that bind to preselected target elements of nucleic acids including, but not limited to, specific RNA sequences, RNA structural motifs, and/or RNA structural elements. The specific target RNA sequences, RNA structural motifs, and/or RNA structural elements are used as targets for screening small molecules and identifying those that directly bind these specific sequences, motifs, and/or structural elements. For example, methods are described in which a preselected target RNA having a detectable label is used to screen a library of test compounds, preferably under physiologic conditions. Any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the altered physical property of the target RNA bound to a test compound. In particular, the present invention relates to methods for using a target RNA having a detectable label to screen a library of test compounds free in solution, in labeled tubes or microtiter plate, or in a microarray. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. The detectably labeled complex can then be identified and removed from the uncomplexed, unlabeled test compounds in the library, and from uncomplexed, labeled target RNA, by a variety of methods, including but not limited to, methods that differentiate changes in the electrophoretic, chromatographic, or thermostable

properties of the complexed target RNA. Such methods include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation. The structure of the test compound attached to the labeled RNA is then determined. The methods used will depend, in part, on the nature of the library screened. For example, assays or microarrays of test compounds, each having an address or identifier, may be deconvoluted, e.g., by cross-referencing the positive sample to original compound list that was applied to the individual test assays. Another method for identifying test compounds includes de novo structure determination of the test compounds using mass spectrometry or nuclear magnetic resonance ("NMR"). The test compounds identified are useful for any purpose to which a binding reaction may be put, for example in assay methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as probes, as sequestering agents and the like. In addition, small organic molecules which interact specifically with target RNA molecules may be useful as lead compounds for the development of therapeutic agents.

The methods described herein for the identification of compounds that directly bind to a particular preselected target RNA are well suited for high-throughput screening. The direct binding method of the invention offers advantages over drug screening systems for competitors that inhibit the formation of naturally-occurring RNA binding protein:target RNA complexes; *i.e.*, competitive assays. The direct binding method of the invention is rapid and can be set up to be readily performed, *e.g.*, by a technician, making it amenable to high throughput screening. The method of the invention also eliminates the bias inherent in the competitive drug screening systems, which require the use of a preselected host cell factor that may not have physiological relevance to the activity of the target RNA. Instead, the methods of the invention are used to identify any compound that can directly bind to specific target RNA sequences, RNA structural motifs, and/or RNA structural elements, preferably under physiologic conditions. As a result, the compounds so identified can inhibit the interaction of the target RNA with any one or more of the native host cell factors (whether known or unknown) required for activity of the RNA *in vivo*.

The present invention may be understood more fully by reference to the detailed description and examples, which are intended to illustrate non-limiting embodiments of the invention.

5

3.1. Definitions

As used herein, a "target nucleic acid" refers to RNA, DNA, or a chemically modified variant thereof. In a preferred embodiment, the target nucleic acid is RNA. A target nucleic acid also refers to tertiary structures of the nucleic acids, such as, but not limited to loops, bulges, pseudoknots, guanosine quartets and turns. A target nucleic acid also refers to RNA elements such as, but not limited to, the HIV TAR element, internal ribosome entry site, "slippery site", instability elements, and adenylate uridylate-rich elements, which are described in Section 5.1. Non-limiting examples of target nucleic acids are presented in Section 5.1 and Section 6.

5

10

15

As used herein, a "library" refers to a plurality of test compounds with which a target nucleic acid molecule is contacted. A library can be a combinatorial library, *e.g.*, a collection of test compounds synthesized using combinatorial chemistry techniques, or a collection of unique chemicals of low molecular weight (less than 1000 daltons) that each occupy a unique three-dimensional space.

As used herein, a "label" or "detectable label" is a composition that is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes (e.g., 32P, 35S, and 3H), dyes, fluorescent dyes, electron-dense reagents, enzymes and their substrates (e.g., as commonly used in enzyme-linked immunoassays, e.g., alkaline phosphatase and horse radish peroxidase), biotin-streptavidin, digoxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available. Moreover, a label or detectable moiety can include a "affinity tag" that, when coupled with the target nucleic acid and incubated with a test compound or compound library, allows for the affinity capture of the target nucleic acid along with molecules bound to the target nucleic acid. One skilled in the art will appreciate that a affinity tag bound to the target nucleic acids has, by definition, a complimentary ligand coupled to a solid support that allows for its capture. For example, useful affinity tags and complimentary partners include, but are not limited to, biotin-streptavidin, complimentary nucleic acid fragments (e.g., oligo dT-oligo dA, oligo T-oligo A, oligo dG-oligo dC, oligo G-oligo C), aptamers, or haptens and proteins for which antisera or monoclonal antibodies are available. The label or detectable moiety is typically bound, either covalently, through a linker or chemical bound, or through ionic, van der Waals or hydrogen bonds to the molecule to be detected.

As used herein, a "dye" refers to a molecule that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means.

As used herein, a "visible dye" refers to a molecule having a chromophore that absorbs radiation in the visible region of the spectrum (i.e., having a wavelength of between about 400 nm and about 700 nm) such that the transmitted radiation is in the visible region and can be detected either visually or by conventional spectroscopic means. As used herein, an "ultraviolet dye" refers to a molecule having a chromophore that absorbs radiation in the ultraviolet region of the spectrum (i.e., having a wavelength of between about 30 nm and about 400 nm). As used herein, an "infrared dye" refers to a molecule having a chromophore that absorbs radiation in the infrared region of the spectrum (i.e., having a wavelength between about 700 nm and about 3,000 nm). A "chromophore" is the network of atoms of the dye that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means. One of skill in the art will readily appreciate that although a dye absorbs radiation in one region of the spectrum, it may emit radiation in another region of the spectrum. For example, an ultraviolet dye may emit radiation in the visible region of the spectrum. One of skill in the art will also readily appreciate that a dye can transmit radiation or can emit radiation via fluorescence or phosphorescence.

The phrase "pharmaceutically acceptable salt(s)," as used herein includes but is not limited to salts of acidic or basic groups that may be present in test compounds identified using the methods of the present invention. Test compounds that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that can be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to sulfuric, citric, maleic, acetic, oxalic, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Test compounds that include an amino moiety may form pharmaceutically or cosmetically acceptable salts with various amino acids, in addition to the acids mentioned above. Test compounds that are acidic in nature are capable of forming base salts with various pharmacologically or cosmetically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium lithium, zinc, potassium, and iron salts.

By "substantially one type of test compound," as used herein, is meant that the assay can be performed in such a fashion that at some point, only one compound need be used in each reaction so that, if the result is indicative of a binding event occurring between the target RNA molecule and the test compound, the test compound can be easily identified.

4. DESCRIPTION OF DRAWINGS

- FIG. 1. Gel retardation analysis to detect peptide-RNA interactions. In 20 μl reactions containing increasing concentrations of Tat₄₇₋₅₈ peptide (0.1 μM, 0.2 μM, 0.4 μM, 0.8 μM, 1.6 μM) 50 pmole TAR RNA oligonucleotide was added in TK buffer. The reaction mixture was then heated at 90 °C for 2 min and allowed to cool slowly to 24 °C. 10 ml of 30% glycerol was added to each sample and applied to a 12% non-denaturing polyacrylamide gel. The gel was electrophoresed using 1200 volt-hours at 4 °C in TBE Buffer.

 Following electrophoresis, the gel was dried and the radioactivity was quantitated with a phosphorimager. The concentration of peptide added is indicated above each lane.
- FIG. 2. Gentamicin interacts with an oligonucleotide corresponding to the 16S rRNA. 20 μl reactions containing increasing concentrations of gentamicin (1 ng/ml, 10 ng/ml, 100 ng/ml, 1 μg/ml, 10 μg/ml, 50 μg/ml, 500 μg/ml) were added to 50 pmole RNA oligonucleotide in TKM buffer, heated at 90°C for 2 min and allowed to cool slowly to 24°C. Then 10 μl of 30% glycerol was added to each sample and the samples were applied to a 13.5% non-denaturing polyacrylamide gel. The gel was electrophoresed using 1200 volt-hours at 4°C in TBE Buffer. Following electrophoresis, the gel was dried and the radioactivity was quantitated using a phosphorimager. The concentration of gentamicin added is indicated above each lane.
- FIG. 3. The presence of 10 pg/ml gentamicin produces a gel mobility shift in the presence of the 16S rRNA oligonucleotide. 20 μl reactions containing increasing concentrations of gentamicin (100 ng/ml, 10 ng/ml, 1 ng/ml, 100 pg/ml, and 10 pg/ml) were added to 50 pmole RNA oligonucleotide in TKM buffer were treated as described for Figure 2.
 - FIG. 4. Gentamicin binding to the 16S rRNA oligonucleotide is weak in the absence of MgCl₂. Reaction mixtures containing gentamicin (1 mg/ml, 100 μg/ml,

5

> 10 μg/ml, 1 μg/ml, 0.1 μg/ml, and 10 ng/ml) were treated as described in Figure 2 except that the TKM buffer does not contain MgCl₂.

FIG. 5. Gel retardation analysis to detect peptide-RNA interactions. In reactions containing increasing concentrations of Tat₄₇₋₅₈ peptide (0.1 µM, 0.2 µM, 0.4 5 μM, 0.8 μM, 1.6 μM) 50 pmole TAR RNA oligonucleotide was added in TK buffer. The reaction mixture was then heated at 90°C for 2 min and allowed to cool slowly to 24°C. The reactions were loaded onto a SCE9610 automated capillary electrophoresis apparatus (SpectruMedix; State College, Pennsylvania). The peaks correspond to the amount of free TAR RNA 10 ("TAR") or the Tat-TAR complex ("Tat-TAR"). The concentration of

15

peptide added is indicated below each lane.

5. <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The present invention relates to methods for identifying compounds that bind to preselected target elements of nucleic acids, in particular, RNAs, including but not limited to preselected target RNA sequencing structural motifs, or structural elements. Methods are described in which a preselected target RNA having a detectable label is used to screen a library of test compounds. Any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the altered physical property of the target RNA bound to a test compound. Changes in the physical property of the RNA-test compound complex relative to the target RNA or test compound can be measured by methods such as, but not limited to, methods that detect a change in mobility due to a change in mass, change in charge, or a change in thermostability. Such methods 25 include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation. In particular, the present invention relates to methods for using a target RNA having a detectable label to screen a library of test compounds free in solution, in labeled tubes or microtiter plate, or in a microarray. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. The detectably labeled complex can then be identified and removed from the unlabeled, uncomplexed test compounds in the library by a variety of methods capable of differentiating changes in the physical properties of the complexed target RNA. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. For example, assays or microarrays of test compounds,

each having an address or identifier, may be deconvoluted, *e.g.*, by cross-referencing the positive sample to an original compound list that was applied to the individual test assays. Another method for identifying test compounds includes *de novo* structure determination of the test compounds using mass spectrometry or nuclear magnetic resonance ("NMR").

5

15

30

Thus, the methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of test compounds, in which the test compounds of the library that specifically bind a preselected target nucleic acid are easily distinguished from non-binding members of the library. The structures of the binding molecules are deciphered from the input library by methods depending on the type of library that is used. The test compounds so identified are useful for any purpose to which a binding reaction may be put, for example in assay methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as probes, as sequestering agents and lead compounds for development of therapeutics, and the like. Small organic compounds that are identified to interact specifically with the target RNA molecules are particularly attractive candidates as lead compounds for the development of therapeutic agents.

The assay of the invention reduces bias introduced by competitive binding assays which require the identification and use of a host cell factor (presumably essential for modulating RNA function) as a binding partner for the target RNA. The assays of the present invention are designed to detect any compound or agent that binds to the target RNA, preferably under physiologic conditions. Such agents can then be tested for biological activity, without establishing or guessing which host cell factor or factors is required for modulating the function and/or activity of the target RNA.

Section 5.1 describes examples of protein-RNA interactions that are important in a variety of cellular functions and several target RNA elements that can be used to identify test compounds. Compounds that inhibit these interactions by binding to the RNA and successfully competing with the natural protein or host cell factor that endogenously binds to the RNA may be important, *e.g.*, in treating or preventing a disease or abnormal condition, such as an infection or unchecked growth. Section 5.2 describes detectable labels for target nucleic acids that are useful in the methods of the invention. Section 5.3 describes libraries of test compounds. Section 5.4 provides conditions for binding a labeled target RNA to a test compound of a library and detecting RNA binding to a test compound using the methods of the invention. Section 5.5 provides methods for separating complexes of target RNAs bound to a test compound from an unbound RNA. Section 5.6 describes methods for identifying test compounds that are bound to the target RNA. Section 5.7 describes a secondary, biological screen of test compounds identified by

the methods of the invention to test the effect of the test compounds *in vivo*. Section 5.8 describes the use of test compounds identified by the methods of the invention for treating or preventing a disease or abnormal condition in mammals.

5

5.1. Biologically Important RNA-Host Cell Factor Interactions

Nucleic acids, and in particular RNAs, are capable of folding into complex tertiary structures that include bulges, loops, triple helices and pseudoknots, which can provide binding sites for host cell factors, such as proteins and other RNAs. RNA-protein and RNA-RNA interactions are important in a variety cellular functions, including transcription, RNA splicing, RNA stability and translation. Furthermore, the binding of such host cell factors to RNAs may alter the stability and translational efficiency of such RNAs, and according affect subsequent translation. For example, some diseases are associated with protein overproduction or decreased protein function. In this case, the identification of compounds to modulate RNA stability and translational efficiency will be useful to treat and prevent such diseases.

The methods of the present invention are useful for identifying test compounds that bind to target RNA elements in a high throughput screening assay of libraries of test compounds in solution. In particular, the methods of the present invention are useful for identifying a test compound that binds to a target RNA elements and inhibits the interaction of that RNA with one or more host cell factors *in vivo*. The molecules identified using the methods of the invention are useful for inhibiting the formation of a specific bound RNA:host cell factor complexes *in vivo*.

In some embodiments, test compounds identified by the methods of the invention are useful for increasing or decreasing the translation of messenger RNAs ("mRNAs"), e.g., protein production, by binding to one or more regulatory elements in the 5' untranslated region, the 3' untranslated region, or the coding region of the mRNA. Compounds that bind to mRNA can, *inter alia*, increase or decrease the rate of mRNA processing, alter its transport through the cell, prevent or enhance binding of the mRNA to ribosomes, suppressor proteins or enhancer proteins, or alter mRNA stability. Accordingly, compounds that increase or decrease mRNA translation can be used to treat or prevent disease. For example, diseases associated with protein overproduction, such as amyloidosis, or with the production of mutant proteins, such as Ras, can be treated or prevented by decreasing translation of the mRNA that codes for the overproduced protein, thus inhibiting production of the protein. Conversely, the symptoms of diseases associated with decreased protein function, such as hemophelia, may be treated by increasing

- 10 -

translation of mRNA coding for the protein whose function is decreased, e.g., factor IX in some forms of hemophilia.

5

The methods of the invention can be used to identify compounds that bind to mRNAs coding for a variety of proteins with which the progression of diseases in mammals is associated. These mRNAs include, but are not limited to, those coding for amyloid protein and amyloid precursor protein; anti-angiogenic proteins such as angiostatin, endostatin, METH-1 and METH-2; apoptosis inhibitor proteins such as survivin, clotting factors such as Factor IX, Factor VIII, and others in the clotting cascade; collagens; cyclins and cyclin inhibitors, such as cyclin dependent kinases, cyclin D1, cyclin E, WAF1, cdk4 10 inhibitor, and MTS1; cystic fibrosis transmembrane conductance regulator gene (CFTR); cytokines such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17 and other interleukins; hematopoetic growth factors such as erythropoietin (Epo); colony stimulating factors such as G-CSF, GM-CSF, M-CSF, SCF and thrombopoietin; growth factors such as BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2, KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF-β, TGF-α and VEGF; antiviral cytokines such as interferons, antiviral proteins induced by interferons, TNF-α, and TNF-β; enzymes such as cathepsin K, cytochrome P-450 and other cytochromes, farnesyl transferase, glutathione-S transferases, heparanase, HMG CoA synthetase, N-acetyltransferase, phenylalanine hydroxylase, phosphodiesterase, ras carboxyl-terminal protease, telomerase and TNF converting enzyme; glycoproteins such as cadherins, e.g., N-cadherin and E-cadherin; cell adhesion molecules; selectins; transmembrane glycoproteins such as CD40; heat shock proteins; hormones such as 5-α reductase, atrial natriuretic factor, calcitonin, corticotrophin releasing factor, diuretic hormones, glucagon, gonadotropin, gonadotropin releasing hormone, growth hormone, growth hormone releasing factor, somatotropin, insulin, leptin, luteinizing hormone, luteinizing hormone releasing hormone, parathyroid hormone, thyroid hormone, and thyroid stimulating hormone; proteins involved in immune responses, including antibodies, CTLA4, hemagglutinin, MHC proteins, VLA-4, and kallikrein-kininogen-kinin system; ligands such as CD4; oncogene products such as sis, hst, protein tyrosine kinase receptors, ras, abl, mos, myc, fos, jun, H-ras, ki-ras, c-fms, bcl-2, L-myc, c-myc, gip, gsp, and HER-2; receptors such as bombesin receptor, estrogen receptor, GABA receptors, growth factor receptors including EGFR, PDGFR, FGFR, and NGFR, GTP-binding regulatory proteins, interleukin receptors, ion channel receptors, leukotriene receptor antagonists, lipoprotein receptors, opioid pain receptors, substance P receptors, retinoic acid and retinoid receptors, steroid receptors, T-cell receptors, thyroid hormone receptors, TNF receptors; tissue

plasminogen activator; transmembrane receptors; transmembrane transporting systems, such as calcium pump, proton pump, Na/Ca exchanger, MRP1, MRP2, P170, LRP, and cMOAT; transferrin; and tumor suppressor gene products such as *APC*, *brca1*, *brca2*, *DCC*, *MCC*, *MTS1*, *NF1*, *NF2*, *nm23*, *p53* and *Rb*. In addition to the eukaryotic genes listed above, the invention, as described, can be used to define molecules that interrupt viral, bacterial or fungal transcription or translation efficiencies and therefore form the basis for a novel anti-infectious disease therapeutic. Other target genes include, but are not limited to, those disclosed in Section 5.1 and Section 6.

10

The methods of the invention can be used to identify mRNA-binding test compounds for increasing or decreasing the production of a protein, thus treating or preventing a disease associated with decreasing or increasing the production of said protein, respectively. The methods of the invention may be useful for identifying test compounds for treating or preventing a disease in mammals, including cats, dogs, swine, horses, goats, sheep, cattle, primates and humans. Such diseases include, but are not limited to, amyloidosis, hemophilia, Alzheimer's disease, atherosclerosis, cancer, giantism, dwarfism, hypothyroidism, hyperthyroidism, inflammation, cystic fibrosis, autoimmune disorders, diabetes, aging, obesity, neurodegenerative disorders, and Parkinson's disease. Other diseases include, but are not limited to, those described in Section 5.1 and diseases caused by aberrant expression of the genes disclosed in Example 6. In addition to the eukaryotic genes listed above, the invention, as described, can be used to define molecules that interrupt viral, bacterial or fungal transcription or translation efficiencies and therefore form the basis for a novel anti-infectious disease therapeutic.

In other embodiments, test compounds identified by the methods of the invention are useful for preventing the interaction of an RNA, such as a transfer RNA ("tRNA"), an enzymatic RNA or a ribosomal RNA ("rRNA"), with a protein or with another RNA, thus preventing, *e.g.*, assembly of an *in vivo* protein-RNA or RNA-RNA complex that is essential for the viability of a cell. The term "enzymatic RNA," as used herein, refers to RNA molecules that are either self-splicing, or that form an enzyme by virtue of their association with one or more proteins, *e.g.*, as in RNase P, telomerase or small nuclear ribonuclear protein particles. For example, inhibition of an interaction between rRNA and one or more ribosomal proteins may inhibit the assembly of ribosomes, rendering a cell incapable of synthesizing proteins. In addition, inhibition of the interaction of precursor rRNA with ribonucleases or ribonucleoprotein complexes (such as RNase P) that process the precursor rRNA prevent maturation of the rRNA and its assembly into ribosomes. Similarly, a tRNA:tRNA synthetase complex may be inhibited by test

compounds identified by the methods of the invention such that tRNA molecules do not become charged with amino acids. Such interactions include, but are not limited to, rRNA interactions with ribosomal proteins, tRNA interactions with tRNA synthetase, RNase P protein interactions with RNase P RNA, and telomerase protein interactions with telomerase RNA.

In other embodiments, test compounds identified by the methods of the invention are useful for treating or preventing a viral, bacterial, protozoan or fungal infection. For example, transcriptional up-regulation of the genes of human immunodeficiency virus type 1 ("HIV-1") requires binding of the HIV Tat protein to the HIV trans-activation response region RNA ("TAR RNA"). HIV TAR RNA is a 59-base stem-loop structure located at the 5'-end of all nascent HIV-1 transcripts (Jones & Peterlin, 1994, Annu. Rev. Biochem. 63:717-43). Tat protein is known to interact with uracil 23 in the bulge region of the stem of TAR RNA. Thus, TAR RNA is a potential binding target for test compounds, such as small peptides and peptide analogs that bind to the bulge region of TAR RNA and inhibit formation of a Tat-TAR RNA complex involved in HIV-1 upregulation (see Hwang *et al.*,1999 Proc. Natl. Acad. Sci. USA 96:12997-13002). Accordingly, test compounds that bind to TAR RNA are useful as anti-HIV therapeutics (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Hamy *et al.*, 1998, Biochemistry 37:5086-5095; Mei *et al.*, 1998, Biochemistry 37:14204-14212), and therefore, are useful for treating or preventing AIDS.

10

20

30

The methods of the invention can be used to identify test compounds to treat or prevent viral, bacterial, protozoan or fungal infections in a patient. In some embodiments, the methods of the invention are useful for identifying compounds that decrease translation of microbial genes by interacting with mRNA, as described above, or for identifying compounds that inhibit the interactions of microbial RNAs with proteins or other ligands that are essential for viability of the virus or microbe. Examples of microbial target RNAs useful in the present invention for identifying antiviral, antibacterial, antiprotozoan and anti-fungal compounds include, but are not limited to, general antiviral and anti-inflammatory targets such as mRNAs of INFα, INFγ, RNAse L, RNAse L inhibitor protein, PKR, tumor necrosis factor, interleukins 1-15, and IMP dehydrogenase; internal ribosome entry sites; HIV-1 CT rich domain and RNase H mRNA; HCV internal ribosome entry site (required to direct translation of HCV mRNA), and the 3'-untranslated tail of HCV genomes; rotavirus NSP3 binding site, which binds the protein NSP3 that is required for rotavirus mRNA translation; HBV epsilon domain; Dengue virus 5' and 3' untranslated regions, including IRES; INFα, INFβ and INFγ; plasmodium falciparum mRNAs; the 16S

ribosomal subunit ribosomal RNA and the RNA component of RNase P of bacteria; and the RNA component of telomerase in fungi and cancer cells. Other target viral and bacterial mRNAs include, but are not limited to, those disclosed in Section 6.

One of skill in the art will appreciate that, although such target RNAs are functionally conserved in various species (e.g., from yeast to humans), they exhibit nucleotide sequence and structural diversity. Therefore, inhibition of, for example, yeast telomerase by an anti-fungal compound identified by the methods of the invention might not interfere with human telomerase and normal human cell proliferation.

5

10

15

20

25

Thus, the methods of the invention can be used to identify test compounds that interfere with one or more target RNA interactions with host cell factors that are important for cell growth or viability, or essential in the life cycle of a virus, a bacterium, a protozoa or a fungus. Such test compounds and/or congeners that demonstrate desirable biologic and pharmacologic activity can be administered to a patient in need thereof in order to treat or prevent a disease caused by viral, bacterial, protozoan, or fungal infections. Such diseases include, but are not limited to, HIV infection, AIDS, human T-cell leukemia, SIV infection, FIV infection, feline leukemia, hepatitis A, hepatitis B, hepatitis C, Dengue fever, malaria, rotavirus infection, severe acute gastroenteritis, diarrhea, encephalitis, hemorrhagic fever, syphilis, legionella, whooping cough, gonorrhea, sepsis, influenza, pneumonia, tinea infection, candida infection, and meningitis.

Non-limiting examples of RNA elements involved in the regulation of gene expression, *i.e.*, mRNA stability, translational efficiency via translational initiation and ribosome assembly, *etc.*, include the HIV TAR element, internal ribosome entry site, "slippery site", instability elements, and adenylate uridylate-rich elements, as discussed below.

5.1.1. HIV TAR Element

Transcriptional up-regulation of the genes of human immunodeficiency virus type 1 ("HIV-1") requires binding of the HIV Tat protein to the HIV trans-activation response region RNA ("TAR RNA"), a 59-base stem-loop structure located at the 5' end of all nascent HIV-1 transcripts (Jones & Peterlin, 1994, Annu. Rev. Biochem. 63:717-43). Tat protein is known to interact with uracil 23 in the bulge region of the stem of TAR RNA. Thus, TAR RNA is a useful binding target for test compounds, such as small peptides and peptide analogs that bind to the bulge region of TAR RNA and inhibit formation of a Tat-TAR RNA complex involved in HIV-1 up-regulation (see Hwang *et al.*,1999 Proc. Natl. Acad. Sci. USA 96:12997-13002). Accordingly, test compounds that bind to TAR RNA

can be useful as anti-HIV therapeutics (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Hamy *et al.*, 1998, Biochemistry 37:5086-5095; Mei *et al.*, 1998, Biochemistry 37:14204-14212), and therefore, are useful for treating or preventing AIDS.

5

10

15

5.1.2. Internal Ribosome Entry Site ("IRES")

Internal ribosome entry sites ("IRES") are found in the 5' untranslated regions ("5' UTR") of several mRNAs, and are thought to be involved in the regulation of translational efficiency. When the IRES element is present on an mRNA downstream of a translational stop codon, it directs ribosomal re-entry (Ghattas *et al.*, 1991, Mol. Cell. Biol. 11:5848-5959), which permits initiation of translation at the start of a second open reading frame.

As reviewed by Jang et al., a large segment of the 5' nontranslated region, approximately 400 nucleotides in length, promotes internal entry of ribosomes independent of the non-capped 5' end of picornavirus mRNAs (mammalian plus-strand RNA viruses whose genomes serve as mRNA). This 400 nucleotide segment (IRES), maps approximately 200 nt down-stream from the 5' end and is highly structured. IRES elements of different picornaviruses, although functionally similar in vitro and in vivo, are not identical in sequence or structure. However, IRES elements of the genera entero- and rhinoviruses, on the one hand, and cardio- and aphthoviruses, on the other hand, reveal similarities corresponding to phylogenetic kinship. All IRES elements contain a conserved Yn-Xm-AUG unit (Y, pyrimidine; X, nucleotide) which appears essential for IRES function. The IRES elements of cardio-, entero- and aphthoviruses bind a cellular protein, p57. In the case of cardioviruses, the interaction between a specific stem-loop of the IREs is essential for translation in vitro. The IRES elements of entero- and cardioviruses also bind the cellular protein, p52, but the significance of this interaction remains to be shown. The function of p57 or p52 in cellular metabolism is unknown. Since picornaviral IRES elements function in vivo in the absence of any viral gene products, is speculated that IRES-like elements may also occur in specific cellular mRNAs releasing them from cap-dependent translation (Jang et al., 1990, Enzyme 44(1-4):292-309).

5.1.3. "Slippery Site"

Programmed, or directed, ribosomal frameshifting, when ribosomes shift from one translation reading frame to another and synthesize two viral proteins from a single viral mRNA, is directed by a unique site in viral mRNAs called the "slippery site." The slippery site directs ribosomal frameshifting in the -1 or +1 direction that causes the

ribosome to slip by one base in the 5' direction thereby placing the ribosome in the new reading frame to produce a new protein.

Programmed, or directed, ribosomal frameshifting is of particular value to viruses that package their plus strands, as it eliminates the need to splice their mRNAs and 5 reduces the risk of packaging defective genomes and regulates the ratio of viral proteins synthesized. Examples of programmed translational frameshifting (both +1 and -1 shifts) have been identified in ScV systems (Lopinski et al., 2000, Mol. Cell. Biol. 20(4):1095-103, retroviruses (Falk et al., 1993, J. Virol. 67:273-6277; Jacks & Varmus, 1985, Science 230:1237-1242; Morikawa & Bishop, 1992, Virology 186:389-397; Nam et al., 1993, J. Virol. 67:196-203); coronaviruses (Brierley et al., 1987, EMBO J. 6:3779-3785; Herold & Siddell, 1993, Nucleic Acids Res. 21:5838-5842); giardiaviruses, which are also members of the Totiviridae (Wang et al., 1993, Proc. Natl. Acad. Sci. USA 90:8595-8599); two bacterial genes (Blinkowa & Walker, 1990, Nucleic Acids Res., 18:1725-1729; Craigen & Caskey, 1986, Nature 322:273); bacteriophage genes (Condron et al., 1991, Nucleic Acids Res. 19:5607-5612); astroviruses (Marczinke et al., 1994, J. Virol. 68:5588-5595); the yeast EST3 gene (Lundblad & Morris, 1997, Curr. Biol. 7:969-976); and the rat, mouse, Xenopus, and Drosophila ornithine decarboxylase antizymes (Matsufuji et al., 1995, Cell 80:51-60); and a significant number of cellular genes (Herold & Siddell, 1993, Nucleic Acids Res. 21:5838-5842). 20

Drugs targeted to ribosomal frameshifting minimize the problem of virus drug resistance because this strategy targets a host cellular process rather than one introduced into the cell by the virus, which minimizes the ability of viruses to evolve drug-resistant mutants. Compounds that target the RNA elements involved in regulating programmed frameshifting should have several advantages, including (a) any selective pressure on the host cellular translational machinery to adapt to the drugs would have to occur at the host evolutionary time scale, which is on the order of millions of years, (b) ribosomal frameshifting is not used to express any host proteins, and (c) altering viral frameshifting efficiencies by modulating the activity of a host protein minimizing the likelihood that the virus will acquire resistance to such inhibition by mutations in its own genome.

5.1.4. Instability Elements

"Instability elements" may be defined as specific sequence elements that promote the recognition of unstable mRNAs by cellular turnover machinery. Instability

elements have been found within mRNA protein coding regions as well as untranslated regions.

Altering the control of stability of normal mRNAs may lead to disease. The alteration of mRNA stability has been implicated in diseases such as, but not limited to, cancer, immune disorders, heart disease, and fibrotic disorders.

5

30

There are several examples of mutations that delete instability elements which then result in stabilization of mRNAs that may be involved in the onset of cancer. In Burkitt's lymphoma, a portion of the c-myc proto-oncogene is translocated to an Ig locus, producing a form of the c-myc mRNA that is five times more stable (see, e.g., Kapstein et al., 1996, J. Biol. Chem. 271(31):18875-84). The highly oncogenic v-fos mRNA lacks the 3' UTR adenylate uridylate rich element ("ARE") that is found in the more labile and weakly oncogenic c-fos mRNA (see, e.g., Schiavi et al., 1992, Biochim Biophys Acta. 1114(2-3):95-106). Differences between the benign cervical lesions brought about by nonintegrated circular human papillomavirus type 16 and its integrated form, that lacks the 3' UTR ARE and correlates with cervical carcinomas, may be a consequence of stabilizing the E6/E7 transcripts encoding oncogenic proteins. Integration of the virus results in deletion of the ARE instability element, resulting in stabilizion of the transcripts and overexpression of the proteins (see, e.g., Jeon & Lambert, 1995, Proc. Natl. Acad. Sci. USA 92(5):1654-8). Deletion of AREs from the 3' UTR of the IL-2 and IL-3 genes promotes increased stabilization of these mRNAs, high expression of these proteins, and leads to the formation of cancerous cells (see, e.g., Stoecklin et al., 2000, Mol. Cell. Biol. 20(11):3753-63).

Mutations in trans-acting factors involved in mRNA turnover may also promote cancer. In monocytic tumors, the lymphokine GM-CSF mRNA is specifically stabilized as a consequence of an oncogenic lesion in a trans-acting factor that controls mRNA turnover rates. Furthermore, the normally unstable IL-3 transcript is inappropriately long-lived in mast tumor cells. Similarly, the labile GM-CSF mRNA is greatly stabilized in bladder carcinoma cells. *See, e.g.*, Bickel *et al.*, 1990, J. Immunol. 145(3):840-5.

The immune system is regulated by a large number of regulatory molecules that either activate or inhibit the immune response. It has now been clearly demonstrated that stability of the transcripts encoding these proteins are highly regulated. Altered regulation of these molecules leads to mis-regulation of this process and can result in drastic medical consequences. For example, recent results using transgenic mice have shown that mis-regulation of the stability of the important modulator $TNF\alpha$ mRNA leads to diseases

such as, but not limited to, rheumatoid arthritis and a Crohn's-like liver disease. *See, e.g.*, Clark, 2000, Arthritis Res. 2(3):172-4.

Smooth muscle in the heart is modulated by the β-adrenergic receptor, which in turn responds to the sympathetic neurotransmitter norepinephrine and the adrenal hormone epinephrine. Chronic heart failure is characterized by impairment of smooth muscle cells, which results, in part, from the more rapid decay of the β-adrenergic receptor mRNA. *See*, *e.g.*, Ellis & Frielle, 1999, Biochem. Biophys. Res. Commun. 258(3):552-8.

A large number of diseases result from over-expression of collagen. For example, cirrhosis results from damage to the liver as a consequence of cancer, viral infection, or alcohol abuse. Such damage causes mis-regulation of collagen expression, leading to the formation of large collagen deposits. Recent results indicate that the sizeable increase in collagen expression is largely attributable to stabilization of its mRNA. *See*, *e.g.*, Lindquist *et al.*, 2000, Am. J. Physiol. Gastrointest. Liver Physiol. 279(3):G471-6.

15

5

5.1.5. Adenylate Uridylate-rich Elements ("ARE")

Adenylate uridylate-rich elements ("ARE") are found in the 3' untranslated regions ("3' UTR") of several mRNAs, and involved in the turnover of mRNAs, such as but not limited to transcription factors, cytokines, and lymphokines. AREs may function both as stabilizing and destabilizing elements. ARE mRNAs are classified into five groups, depending on sequence (Bakheet *et al.*, 2001, Nucl. Acids Res. 29(1):246-254). An ongoing database at the web site http://rc.kfshrc.edu.sa/ared contains ARE-containing mRNAs and their cluster groups, which is incorporated by reference in its entirety. The ARE motifs are classified as follows:

25	Group I Cluster	(AUUUAUUUAUUUAUUUA)	SEQ ID NO: 1
	Group II Cluster	(AUUUAUUUAUUUA) stretch	SEQ ID NO: 2
	Group III Cluster	(WAUUUAUUUAW) stretch	SEQ ID NO: 3
	Group IV Cluster	(WWAUUUAUUUAWW) stretch	SEQ ID NO: 4
30	Group V Cluster	(WWWWAUUUAWWWW) stretch	SEQ ID NO: 5

The ARE-mRNAs were clustered into five groups containing five, four, three and two pentameric repeats, while the last group contains only one pentamer within the 13-bp ARE pattern. Functional categories were assigned whenever possible according to NCBI-COG functional annotation (Tatusov *et al.*, 2001, Nucleic Acids Research, 29(1): 22-28), in addition to the categories: inflammation, immune response, development/differentiation, using an extensive literature search.

Group I contains many secreted proteins including GM-CSF, IL-1, IL-11, IL-12 and Gro-β that affect the growth of hematopoietic and immune cells (Witsell & Schook, 1992, Proc. Natl Acad. Sci. USA, 89:4754–4758). Although TNFα is both a pro-inflammatory and anti-tumor protein, there is experimental evidence that it can act as a growth factor in certain leukemias and lymphomas (Liu *et al.*, 2000, J. Biol. Chem. 275:21086–21093).

5

Unlike Group I, Groups II–V contain functionally diverse gene families comprising immune response, cell cycle and proliferation, inflammation and coagulation, angiogenesis, metabolism, energy, DNA binding and transcription, nutrient transportation and ionic homeostasis, protein synthesis, cellular biogenesis, signal transduction, and apoptosis (Bakheet *et al.*, 2001, Nucl. Acids Res. 29(1):246-254).

Several groups have described ARE-binding proteins that influence the ARE-mRNA stability. Among the well-characterized proteins are the mammalian homologs of ELAV (embryonic lethal abnormal vision) proteins including AUF1, HuR and He1-N2 (Zhang *et al.*, 1993, Mol. Cell. Biol. 13:7652–7665; Levine *et al.*, 1993, Mol. Cell. Biol. 13:3494–3504: Ma *et al.*, 1996, J. Biol. Chem. 271:8144–8151). The zinc-finger protein tristetraprolin has been identified as another ARE-binding protein with destabilizing activity on TNFα, IL-3 and GM-CSF mRNAs (Stoecklin *et al.*, 2000, Mol. Cell. Biol. 20:3753–3763; Carballo *et al.*, 2000, Blood 95:1891–1899).

Since ARE-containing genes are clearly important in biological systems, including but not limited to a number of the early response genes that regulate cell proliferation and responses to exogenous agents, the identification of compounds that bind to one or more of the ARE clusters and potentially modulate the stability of the target RNA can potentially be of value as a therapeutic.

5.2. Detectably Labeled Target RNAs

Target nucleic acids, including but not limited to RNA and DNA, useful in the methods of the present invention have a label that is detectable via conventional spectroscopic means or radiographic means. Preferably, target nucleic acids are labeled with a covalently attached dye molecule. Useful dye-molecule labels include, but are not limited to, fluorescent dyes, phosphorescent dyes, ultraviolet dyes, infrared dyes, and visible dyes. Preferably, the dye is a visible dye.

Useful labels in the present invention can include, but are not limited to,
spectroscopic labels such as fluorescent dyes (e.g., fluorescein and derivatives such as
fluorescein isothiocyanate (FITC) and Oregon GreenTM, rhodamine and derivatives (e.g.,

Texas red, tetramethylrhodimine isothiocynate (TRITC), bora-3a,4a-diaza-s-indacene (BODIPY®) and derivatives, *etc.*), digoxigenin, biotin, phycoerythrin, AMCA, CyDyeTM, and the like), radiolabels (*e.g.*, ³H, ¹²⁵I, ³⁵S, ¹⁴C, ³²P, ³³P, *etc.*), enzymes (e.g., horse radish peroxidase, alkaline phosphatase *etc.*), spectroscopic colorimetric labels such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads, or nanoparticles – nanoclusters of inorganic ions with defined dimension from 0.1 to 1000 nm. Useful affinity tags and complimentary partners include, but are not limited to, biotin-streptavidin, complimentary nucleic acid fragments (e.g., oligo dT-oligo dA, oligo T-oligo A, oligo dG-oligo G-oligo C), aptamer-streptavidin, or haptens and proteins for which antisera or monoclonal antibodies are available. The label may be coupled directly or indirectly to a component of the detection assay (*e.g.*, the detection reagent) according to methods well known in the art. A wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

5

In one embodiment, nucleic acids that are labeled at one or more specific locations are chemically synthesized using phosphoramidite or other solution or solid-phase methods. Detailed descriptions of the chemistry used to form polynucleotides by the phosphoramidite method are well known (see, e.g., Caruthers et al., U.S. Pat. Nos.

4,458,066 and 4,415,732; Caruthers et al., 1982, Genetic Engineering 4:1-17; Users Manual Model 392 and 394 Polynucleotide Synthesizers, 1990, pages 6-1 through 6-22, Applied Biosystems, Part No. 901237; Ojwang, et al., 1997, Biochemistry, 36:6033-6045). The phosphoramidite method of polynucleotide synthesis is the preferred method because of its efficient and rapid coupling and the stability of the starting materials. The synthesis is performed with the growing polynucleotide chain attached to a solid support, such that excess reagents, which are generally in the liquid phase, can be easily removed by washing, decanting, and/or filtration, thereby eliminating the need for purification steps between synthesis cycles.

The following briefly describes illustrative steps of a typical polynucleotide synthesis cycle using the phosphoramidite method. First, a solid support to which is attached a protected nucleoside monomer at its 3' terminus is treated with acid, *e.g.*, trichloroacetic acid, to remove the 5'-hydroxyl protecting group, freeing the hydroxyl group for a subsequent coupling reaction. After the coupling reaction is completed an activated intermediate is formed by contacting the support-bound nucleoside with a protected nucleoside phosphoramidite monomer and a weak acid, *e.g.*, tetrazole. The weak acid protonates the nitrogen atom of the phosphoramidite forming a reactive intermediate.

Nucleoside addition is generally complete within 30 seconds. Next, a capping step is performed, which terminates any polynucleotide chains that did not undergo nucleoside addition. Capping is preferably performed using acetic anhydride and 1-methylimidazole. The phosphite group of the internucleotide linkage is then converted to the more stable phosphotriester by oxidation using iodine as the preferred oxidizing agent and water as the oxygen donor. After oxidation, the hydroxyl protecting group of the newly added nucleoside is removed with a protic acid, e.g., trichloroacetic acid or dichloroacetic acid, and the cycle is repeated one or more times until chain elongation is complete. After synthesis, the polynucleotide chain is cleaved from the support using a base, e.g., ammonium hydroxide or t-butyl amine. The cleavage reaction also removes any phosphate protecting groups, e.g., cyanoethyl. Finally, the protecting groups on the exocyclic amines of the bases and any protecting groups on the dyes are removed by treating the polynucleotide solution in base at an elevated temperature, e.g., at about 55°C. Preferably the various protecting groups are removed using ammonium hydroxide or t-butyl amine.

10

20

30

Any of the nucleoside phosphoramidite monomers can be labeled using standard phosphoramidite chemistry methods (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002; Ojwang *et al.*, 1997, Biochemistry. 36:6033-6045 and references cited therein). Dye molecules useful for covalently coupling to phosphoramidites preferably comprise a primary hydroxyl group that is not part of the dye's chromophore. Illustrative dye molecules include, but are not limited to, disperse dye CAS 4439-31-0, disperse dye CAS 6054-58-6, disperse dye CAS 4392-69-2 (Sigma-Aldrich, St. Louis, MO), disperse red, and 1-pyrenebutanol (Molecular Probes, Eugene, OR). Other dyes useful for coupling to phosphoramidites will be apparent to those of skill in the art, such as fluoroscein, cy3, and cy5 fluorescent dyes, and may be purchased from, *e.g.*, Sigma-Aldrich, St. Louis, MO or Molecular Probes, Inc., Eugene, OR.

In another embodiment, dye-labeled target RNA molecules are synthesized enzymatically using *in vitro* transcription (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). In this embodiment, a template DNA is denatured by heating to about 90°C and an oligonucleotide primer is annealed to the template DNA, for example by slow-cooling the mixture of the denatured template and the primer from about 90°C to room temperature. A mixture of ribonucleoside-5'-triphosphates capable of supporting template-directed enzymatic extension of the primed template (*e.g.*, a mixture including GTP, ATP, CTP, and UTP), including one or more dye-labeled ribonucleotides (Sigma-Aldrich, St. Louis, MO), is added to the primed template. Next, a polymerase enzyme is added to the mixture under conditions where the polymerase enzyme

is active, which are well-known to those skilled in the art. A labeled polynucleotide is formed by the incorporation of the labeled ribonucleotides during polymerase-mediated strand synthesis.

5

20

25

35

In yet another embodiment of the invention, nucleic acid molecules are endlabeled after their synthesis. Methods for labeling the 5'-end of an oligonucleotide include but are by no means limited to: (i) periodate oxidation of a 5'-to-5'-coupled ribonucleotide, followed by reaction with an amine-reactive label (Heller & Morisson, 1985, in Rapid Detection and Identification of Infectious Agents, D.T. Kingsbury and S. Falkow, eds., pp. 245-256, Academic Press); (ii) condensation of ethylenediamine with 5'-phosphorylated polynucleotide, followed by reaction with an amine reactive label (Morrison, European Patent Application 232 967); (iii) introduction of an aliphatic amine substituent using an aminohexyl phosphite reagent in solid-phase DNA synthesis, followed by reaction with an amine reactive label (Cardullo et al., 1988, Proc. Natl. Acad. Sci. USA 85:8790-8794); and (iv) introduction of a thiophosphate group on the 5'-end of the nucleic acid, using 15 phosphatase treatment followed by end-labeling with ATP-?S and kinase, which reacts specifically and efficiently with maleimide-labeled fluorescent dyes (Czworkowski et al., 1991, Biochem. 30:4821-4830).

A detectable label should not be incorporated into a target nucleic acid at the specific binding site at which test compounds are likely to bind, since the presence of a covalently attached label might interfere sterically or chemically with the binding of the test compounds at this site. Accordingly, if the region of the target nucleic acid that binds to a host cell factor is known, a detectable label is preferably incorporated into the nucleic acid molecule at one or more positions that are spatially or sequentially remote from the binding region.

After synthesis, the labeled target nucleic acid can be purified using standard techniques known to those skilled in the art (see Hwang et al., 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). Depending on the length of the target nucleic acid and the method of its synthesis, such purification techniques include, but are not limited to, reverse-phase high-performance liquid chromatography ("reverse-phase HPLC"), fast performance liquid chromatography ("FPLC"), and gel purification. After purification, the target RNA is refolded into its native conformation, preferably by heating to approximately 85-95°C and slowly cooling to room temperature in a buffer, e.g., a buffer comprising about 50 mM Tris-HCl, pH 8 and 100 mM NaCl.

In another embodiment, the target nucleic acid can also be radiolabeled. A radiolabel, such as, but not limited to, an isotope of phosphorus, sulfur, or hydrogen, may be

incorporated into a nucleotide, which is added either after or during the synthesis of the target nucleic acid. Methods for the synthesis and purification of radiolabeled nucleic acids are well known to one of skill in the art. See, e.g., Sambrook et al., 1989, in Molecular Cloning: A Laboratory Manual, pp 10.2-10.70, Cold Spring Harbor Laboratory Press, and the references cited therein, which are hereby incorporated by reference in their entireties.

5

In another embodiment, the target nucleic acid can be attached to an inorganic nanoparticle. A nanoparticle is a cluster of ions with controlled size from 0.1 to 1000 nm comprised of metals, metal oxides, or semiconductors including, but not limited to Ag₂S, ZnS, CdS, CdTe, Au, or TiO₂. Nanoparticles have unique optical, electronic and catalytic properties relative to bulk materials which can be adjusted according to the size of the particle. Methods for the attachment of nucleic acids are well know to one of skill in the art (see, e.g., Niemeyer, 2001, Angew. Chem. Int. Ed. 40: 4129-4158, International Patent Publication WO/0218643, and the references cited therein, the disclosures of which are hereby incorporated by reference in their entireties).

5.3. <u>Libraries of Small Molecules</u>

Libraries screened using the methods of the present invention can comprise a variety of types of test compounds. In some embodiments, the test compounds are nucleic acid or peptide molecules. In a non-limiting example, peptide molecules can exist in a phage display library. In other embodiments, types of test compounds include, but are not limited to, peptide analogs including peptides comprising non-naturally occurring amino acids, e.g., D-amino acids, phosphorous analogs of amino acids, such as α -amino phosphoric acids and α -amino phosphoric acids, or amino acids having non-peptide linkages, nucleic acid analogs such as phosphorothioates and PNAs, hormones, antigens, synthetic or naturally occurring drugs, opiates, dopamine, serotonin, catecholamines, thrombin, acetylcholine, prostaglandins, organic molecules, pheromones, adenosine, sucrose, glucose, lactose and galactose. Libraries of polypeptides or proteins can also be used.

In a preferred embodiment, the combinatorial libraries are small organic molecule libraries, such as, but not limited to, benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, and diazepindiones. In another embodiment, the combinatorial libraries comprise peptoids; random bio-oligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; or carbohydrate libraries.

Combinatorial libraries are themselves commercially available (see, e.g., Advanced ChemTech Europe Ltd., Cambridgeshire, UK; ASINEX, Moscow Russia; BioFocus plc, Sittingbourne, UK; Bionet Research (A division of Key Organics Limited), Camelford, UK; ChemBridge Corporation, San Diego, California; ChemDiv Inc, San Diego, California.; ChemRx Advanced Technologies, South San Francisco, California; ComGenex Inc., Budapest, Hungary; Evotec OAI Ltd, Abingdon, UK; IF LAB Ltd., Kiev, Ukraine; Maybridge plc, Cornwall, UK; PharmaCore, Inc., North Carolina; SIDDCO Inc, Tucson, Arizona; TimTec Inc, Newark, Delaware; Tripos Receptor Research Ltd, Bude, UK; Toslab, Ekaterinburg, Russia).

In one embodiment, the combinatorial compound library for the methods of the present invention may be synthesized. There is a great interest in synthetic methods directed toward the creation of large collections of small organic compounds, or libraries, which could be screened for pharmacological, biological or other activity (Dolle, 2001, J. Comb. Chem. 3:477-517; Hall et al., 2001, J. Comb. Chem. 3:125-150; Dolle, 2000, J. Comb. Chem. 2:383-433; Dolle, 1999, J. Comb. Chem. 1:235-282). The synthetic methods applied to create vast combinatorial libraries are performed in solution or in the solid phase, i.e., on a solid support. Solid-phase synthesis makes it easier to conduct multi-step reactions and to drive reactions to completion with high yields because excess reagents can be easily added and washed away after each reaction step. Solid-phase combinatorial synthesis also tends to improve isolation, purification and screening. However, the more traditional solution phase chemistry supports a wider variety of organic reactions than solid-phase chemistry. Methods and strategies for the synthesis of combinatorial libraries can be found in A Practical Guide to Combinatorial Chemistry, A.W. Czarnik and S.H. Dewitt, eds., American Chemical Society, 1997; The Combinatorial Index, B.A. Bunin, Academic Press, 1998; Organic Synthesis on Solid Phase, F.Z. Dörwald, Wiley-VCH, 2000; and Solid-Phase Organic Syntheses, Vol. 1, A.W. Czarnik, ed., Wiley Interscience, 2001.

15

Combinatorial compound libraries of the present invention may be synthesized using apparatuses described in US Patent No. 6,358,479 to Frisina *et al.*, U.S. Patent No. 6,190,619 to Kilcoin *et al.*, US Patent No. 6,132,686 to Gallup *et al.*, US Patent No. 6,126,904 to Zuellig *et al.*, US Patent No. 6,074,613 to Harness *et al.*, US Patent No. 6,054,100 to Stanchfield *et al.*, and US Patent No. 5,746,982 to Saneii *et al.* which are hereby incorporated by reference in their entirety. These patents describe synthesis apparatuses capable of holding a plurality of reaction vessels for parallel synthesis of multiple discrete compounds or for combinatorial libraries of compounds.

5

In one embodiment, the combinatorial compound library can be synthesized in solution. The method disclosed in U.S. Patent No. 6,194,612 to Boger *et al.*, which is hereby incorporated by reference in its entirety, features compounds useful as templates for solution phase synthesis of combinatorial libraries. The template is designed to permit reaction products to be easily purified from unreacted reactants using liquid/liquid or solid/liquid extractions. The compounds produced by combinatorial synthesis using the template will preferably be small organic molecules. Some compounds in the library may mimic the effects of non-peptides or peptides. In contrast to solid phase synthesize of combinatorial compound libraries, liquid phase synthesis does not require the use of specialized protocols for monitoring the individual steps of a multistep solid phase synthesis (Egner *et al.*, 1995, J.Org. Chem. 60:2652; Anderson *et al.*, 1995, J. Org. Chem. 60:2650; Fitch *et al.*, 1994, J. Org. Chem. 59:7955; Look *et al.*, 1994, J. Org. Chem. 49:7588; Metzger *et al.*, 1993, Angew. Chem., Int. Ed. Engl. 32:894; Youngquist *et al.*, 1994, Rapid Commun. Mass Spect. 8:77; Chu *et al.*, 1995, J. Am. Chem. Soc. 117:5419; Brummel *et al.*, 1994, Science 264:399; Stevanovic *et al.*, 1993, Bioorg. Med. Chem. Lett. 3:431).

Combinatorial compound libraries useful for the methods of the present invention can be synthesized on solid supports. In one embodiment, a split synthesis method, a protocol of separating and mixing solid supports during the synthesis, is used to synthesize a library of compounds on solid supports (*see* Lam *et al.*, 1997, Chem. Rev. 97:41-448; Ohlmeyer *et al.*, 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926 and references cited therein). Each solid support in the final library has substantially one type of test compound attached to its surface. Other methods for synthesizing combinatorial libraries on solid supports, wherein one product is attached to each support, will be known to those of skill in the art (see, e.g., Nefzi et al., 1997, Chem. Rev. 97:449-472 and US Patent No. 6,087,186 to Cargill *et al.* which are hereby incorporated by reference in their entirety).

As used herein, the term "solid support" is not limited to a specific type of solid support. Rather a large number of supports are available and are known to one skilled in the art. Solid supports include silica gels, resins, derivatized plastic films, glass beads, cotton, plastic beads, polystyrene beads, alumina gels, and polysaccharides. A suitable solid support may be selected on the basis of desired end use and suitability for various synthetic protocols. For example, for peptide synthesis, a solid support can be a resin such as pmethylbenzhydrylamine (pMBHA) resin (Peptides International, Louisville, KY), polystyrenes (e.g., PAM-resin obtained from Bachem Inc., Peninsula Laboratories, etc.), including chloromethylpolystyrene, hydroxymethylpolystyrene and

aminomethylpolystyrene, poly (dimethylacrylamide)-grafted styrene co-divinyl-benzene (e.g., POLYHIPE resin, obtained from Aminotech, Canada), polyamide resin (obtained from Peninsula Laboratories), polystyrene resin grafted with polyethylene glycol (e.g., TENTAGEL or ARGOGEL, Bayer, Tubingen, Germany) polydimethylacrylamide resin (obtained from Milligen/Biosearch, California), or Sepharose (Pharmacia, Sweden).

5

10

15

30

In one embodiment, the solid phase support is suitable for *in vivo* use, *i.e.*, it can serve as a carrier or support for administration of the test compound to a patient (*e.g.*, TENTAGEL, Bayer, Tubingen, Germany). In a particular embodiment, the solid support is palatable and/or orally ingestable.

In some embodiments of the present invention, compounds can be attached to solid supports via linkers. Linkers can be integral and part of the solid support, or they may be nonintegral that are either synthesized on the solid support or attached thereto after synthesis. Linkers are useful not only for providing points of test compound attachment to the solid support, but also for allowing different groups of molecules to be cleaved from the solid support under different conditions, depending on the nature of the linker. For example, linkers can be, *inter alia*, electrophilically cleaved, nucleophilically cleaved, photocleavable, enzymatically cleaved, cleaved by metals, cleaved under reductive conditions or cleaved under oxidative conditions.

In another embodiment, the combinatorial compound libraries can be assembled *in situ* using dynamic combinatorial chemistry as described in European Patent Application 1,118,359 A1 to Lehn; Huc & Nguyen, 2001, Comb. Chem. High Throughput. Screen. 4:53-74; Lehn and Eliseev, 2001, Science 291:2331-2332; Cousins *et al.* 2000, Curr. Opin. Chem. Biol. 4: 270-279; and Karan & Miller, 2000, Drug. Disc. Today 5:67-75 which are incorporated by reference in their entirety.

Dynamic combinatorial chemistry uses non-covalent interaction with a target biomolecule, including but not limited to a protein, RNA, or DNA, to favor assembly of the most tightly binding molecule that is a combination of constituent subunits present as a mixture in the presence of the biomolecule. According to the laws of thermodynamics, when a collection of molecules is able to combine and recombine at equilibrium through reversible chemical reactions in solution, molecules, preferably one molecule, that bind most tightly to a templating biomolecule will be present in greater amount than all other possible combinations. The reversible chemical reactions include, but are not limited to, imine, acyl-hydrazone, amide, acetal, or ester formation between carbonyl-containing compounds and amines, hydrazines, or alcohols; thiol exchange between disulfides; alcohol

exchange in borate esters; Diels-Alder reactions; thermal- or photoinduced sigmatropic or electrocyclic rearrangements; or Michael reactions.

In the preferred embodiment of this technique, the constituent components of the dynamic combinatorial compound library are allowed to combine and reach equilibrium in the absence of the target RNA and then incubated in the presence of the target RNA, preferably at physiological conditions, until a second equilibrium is reached. The second, perturbed, equilibrium (the so-called "templated mixture") can, but need not necessarily, be fixed by a further chemical transformation, including but not limited to reduction, oxidation, hydrolysis, acidification, or basification, to prevent restoration of the original equilibrium when the dynamical combinatorial compound library is separated from the target RNA.

In the preferred embodiment of this technique, the predominant product or products of the templated dynamic combinatorial library can separated from the minor products and directly identified. In another embodiment, the identity of the predominant product or products can be identified by a deconvolution strategy involving preparation of derivative dynamic combinatorial libraries, as described in European Patent Application 1,118,359 A1, which is incorporated by reference in their entirety, whereby each component of the mixture is, preferably one-by-one but possibly group-wise, left out of the mixture and the ability of the derivative library mixture at chemical equilibrium to bind the target RNA is measured. The components whose removal most greatly reduces the ability of the derivative dynamic combinatorial library to bind the target RNA are likely the components of the predominant product or products in the original dynamic combinatorial library.

25

30

35

20

5

10

5.4. Library Screening

After a target nucleic acid, such as but not limited to RNA or DNA, is labeled and a test compound library is synthesized or purchased or both, the labeled target nucleic acid is used to screen the library to identify test compounds that bind to the nucleic acid. Screening comprises contacting a labeled target nucleic acid with an individual, or small group, of the components of the compound library. Preferably, the contacting occurs in an aqueous solution, and most preferably, under physiologic conditions. The aqueous solution preferably stabilizes the labeled target nucleic acid and prevents denaturation or degradation of the nucleic acid without interfering with binding of the test compounds. The aqueous solution can be similar to the solution in which a complex between the target RNA and its corresponding host cell factor (if known) is formed *in vitro*. For example, TK

buffer, which is commonly used to form Tat protein-TAR RNA complexes *in vitro*, can be used in the methods of the invention as an aqueous solution to screen a library of test compounds for TAR RNA binding compounds.

5

10

15

20

25

35

The methods of the present invention for screening a library of test compounds preferably comprise contacting a test compound with a target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions. The aqueous solution optionally further comprises non-specific nucleic acids, such as, but not limited to, DNA; yeast tRNA; salmon sperm DNA; homoribopolymers such as, but not limited to, poly IC, polyA, polyU, and polyC; and non-specific RNA. The non-specific RNA may be an unlabeled target nucleic acid having a mutation at the binding site, which renders the unlabeled nucleic acid incapable of interacting with a test compound at that site. For example, if dye-labeled TAR RNA is used to screen a library, unlabeled TAR RNA having a mutation in the uracil 23/cytosine 24 bulge region may also be present in the aqueous solution. Without being bound by any theory, the addition of unlabeled RNA that is essentially identical to the dye-labeled target RNA except for a mutation at the binding site might minimize interactions of other regions of the dye-labeled target RNA with test compounds or with the solid support and prevent false positive results.

The solution further comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant. The pH of the solution typically ranges from about 5 to about 8, preferably from about 6 to about 8, most preferably from about 6.5 to about 8. A variety of buffers may be used to achieve the desired pH. Suitable buffers include, but are not limited to, Tris, Mes, Bis-Tris, Ada, Aces, Pipes, Mopso, Bis-Tris propane, Bes, Mops, Tes, Hepes, Dipso, Mobs, Tapso, Trizma, Heppso, Popso, TEA, Epps, Tricine, Gly-Gly, Bicine, and sodium-potassium phosphate. The buffering agent comprises from about 10 mM to about 100 mM, preferably from about 25 mM to about 75 mM, most preferably from about 40 mM to about 60 mM buffering agent. The pH of the aqeuous solution can be optimized for different screening reactions, depending on the target RNA used and the types of test compounds in the library, and therefore, the type and amount of the buffer used in the solution can vary from screen to screen. In a preferred embodiment, the aqueous solution has a pH of about 7.4, which can be achieved using about 50 mM Tris buffer.

In addition to an appropriate buffer, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. Without

being bound by any theory, Applicant has found that a combination of KCl, NaCl, and $MgCl_2$ stabilizes the target RNA such that most of the RNA is not denatured or digested over the course of the screening reaction. The optional concentration of each salt used in the aqueous solution is dependent on the particular target RNA used and can be determined using routine experimentation.

5

15

25

30

35

The solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant. Without being bound by any theory, a small amount of detergent or surfactant in the solution might reduce non-specific binding of the target RNA to the solid support and control aggregation and increase stability of target RNA molecules. Typical detergents useful in the methods of the present invention include, but are not limited to, anionic detergents, such as salts of deoxycholic acid, 1-heptanesulfonic acid, Nlaurylsarcosine, lauryl sulfate, 1-octane sulfonic acid and taurocholic acid; cationic detergents such as benzalkonium chloride, cetylpyridinium, methylbenzethonium chloride, and decamethonium bromide; zwitterionic detergents such as CHAPS, CHAPSO, alkyl betaines, alkyl amidoalkyl betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1propanesulfonate, and phosphatidylcholine; and non-ionic detergents such as n-decyl a-Dglucopyranoside, n-decyl \(\beta - \)D-maltopyranoside, n-dodecyl \(\beta - \)D-maltoside, n-octyl \(\beta - \)Dglucopyranoside, sorbitan esters, n-tetradecyl \(\beta - D-maltoside, \) octylphenoxy polyethoxyethanol (Nonidet P-40), nonylphenoxypolyethoxyethanol (NP-40), and tritons. Preferably, the detergent, if present, is a nonionic detergent. Typical surfactants useful in the methods of the present invention include, but are not limited to, ammonium lauryl sulfate, polyethylene glycols, butyl glucoside, decyl glucoside, Polysorbate 80, lauric acid, myristic acid, palmitic acid, potassium palmitate, undecanoic acid, lauryl betaine, and lauryl alcohol. More preferably, the detergent, if present, is Triton X-100 and present in an amount of about 0.1% (w/v).

Non-specific binding of a labeled target nucleic acid to test compounds can be further minimized by treating the binding reaction with one or more blocking agents. In one embodiment, the binding reactions are treated with a blocking agent, *e.g.*, bovine serum albumin ("BSA"), before contacting with to the labeled target nucleic acid. In another embodiment, the binding reactions are treated sequentially with at least two different blocking agents. This blocking step is preferably performed at room temperature for from about 0.5 to about 3 hours. In a subsequent step, the reaction mixture is further treated with unlabeled RNA having a mutation at the binding site. This blocking step is preferably performed at about 4°C for from about 12 hours to about 36 hours before addition of the dye-labeled target RNA. Preferably, the solution used in the one or more blocking steps is

substantially similar to the aqueous solution used to screen the library with the dye-labeled target RNA, e.g., in pH and salt concentration.

5

10

15

20

25

30

Once contacted, the mixture of labeled target nucleic acid and the test compound is preferably maintained at 4°C for from about 1 day to about 5 days, preferably from about 2 days to about 3 days with constant agitation. To identify the reactions in which binding to the labeled target nucleic acid occurred, after the incubation period, bound from free compounds are determined using an electrophoretic technique (see Section 5.5.1), or any of the methods disclosed in Section 5.5 *infra*. In another embodiment, the complexed target nucleic acid does not need to be separated from the free target nucleic acid if a technique (*i.e.*, spectrometry) that differentiates between bound and unbound target nucleic acids is used.

The methods for identifying small molecules bound to labeled nucleic acid will vary with the type of label on the target nucleic acid. For example, if a target RNA is labeled with a visible of fluorescent dye, the target RNA complexes are preferably identified using a chromatographic technique that separates bound from free target by an electrophoretic or size differential technique using individual reactions. The reactions corresponding to changes in the migration of the complexed RNA can be cross-referenced to the small molecule compound(s) added to said reaction. Alternatively, complexed target RNA can be screened *en masse* and then separated from free target RNA using an electrophoretic or size differential technique, the resultant complexed target is then analyzed using a mass spectrometric technique. In this fashion the bound small molecule can be identified on the basis of its molecular weight. In this reaction *a priori* knowledge of the exact molecular weights of all compounds within the library is known. In another embodiment, the test compounds bound to the target nucleic acid may not require separation from the unbound target nucleic acid if a technique such as, but not limited to, spectrometry is used.

5.5. Separation Methods for Screening Test Compounds

Any method that detects an altered physical property of a target nucleic acid complexed to a test compound from the unbound target nucleic acid may be used for separation of the complexed and non-complexed target nucleic acids. Methods that can be utilized for the physical separation of complexed target RNA from unbound target RNA include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography,

and nanoparticle aggregation.

5

10

15

25

30

5.5.1. Electrophoresis

Methods for separation of the complex of a target RNA bound to a test compound from the unbound RNA comprises any method of electrophoretic separation, including but not limited to, denaturing and non-denaturing polyacrylamide gel electrophoresis, urea gel electrophoresis, gel filtration, pulsed field gel electrophoresis, two dimensional gel electrophoresis, continuous flow electrophoresis, zone electrophoresis, agarose gel electrophoresis, and capillary electrophoresis.

In a preferred embodiment, an automated electrophoretic system comprising a capillary cartridge having a plurality of capillary tubes is used for high-throughput screening of test compounds bound to target RNA. Such an apparatus for performing automated capillary gel electrophoresis is disclosed in U.S. Patent Nos. 5,885,430; 5,916,428; 6,027,627; and 6,063,251, the disclosures of which are incorporated by reference in their entireties.

The device disclosed in U.S. Patent No. 5,885,430, which is incorporated by reference in its entirety, allows one to simultaneously introduce samples into a plurality of capillary tubes directly from microtiter trays having a standard size. U.S. Patent No. 5,885,430 discloses a disposable capillary cartridge which can be cleaned between electrophoresis runs, the cartridge having a plurality of capillary tubes. A first end of each capillary tube is retained in a mounting plate, the first ends collectively forming an array in the mounting plate. The spacing between the first ends corresponds to the spacing between the centers of the wells of a microtiter tray having a standard size. Thus, the first ends of the capillary tubes can simultaneously be dipped into the samples present in the tray's wells. The cartridge is provided with a second mounting plate in which the second ends of the capillary tubes are retained. The second ends of the capillary tubes are arranged in an array which corresponds to the wells in the microtiter tray, which allows for each capillary tube to be isolated from its neighbors and therefore free from cross-contamination, as each end is dipped into an individual well.

Plate holes may be provided in each mounting plate and the capillary tubes inserted through these plate holes. In such a case, the plate holes are sealed airtight so that the side of the mounting plate having the exposed capillary ends can be pressurized. Application of a positive pressure in the vicinity of the capillary openings in this mounting plate allows for the introduction of air and fluids during electrophoretic operations and also can be used to force out gel and other materials from the capillary tubes during

reconditioning. The capillary tubes may be protected from damage using a needle comprising a cannula and/or plastic tubes, and the like when they are placed in these plate holes. When metallic cannula or the like are used, they can serve as electrical contacts for current flow during electrophoresis. In the presence of a second mounting plate, the second mounting plate is provided with plate holes through which the second ends of the capillary tubes project. In this instance, the second mounting plate serves as a pressure containment member of a pressure cell and the second ends of the capillary tubes communicate with an internal cavity of the pressure cell. The pressure cell is also formed with an inlet and an outlet. Gels, buffer solutions, cleaning agents, and the like may be introduced into the internal cavity through the inlet, and each of these can simultaneously enter the second ends of the capillaries.

5

15

25

30

35

In another preferred embodiment, the automated electrophoretic system can comprise a chip system consisting of complex designs of interconnected channels that perform and analyze enzyme reactions using part of a channel design as a tiny, continuously operating electrophoresis material, where reactions with one sample are going on in one area of the chip while electrophoretic separation of the products of another sample is taking place in a different part of the chip. Such a system is disclosed in U.S. Patent Nos. 5,699,157; 5,842,787; 5,869,004; 5,876,675; 5,942,443; 5,948,227; 6,042,709; 6,042,710; 6,046,056; 6,048,498; 6,086,740; 6,132,685; 6,150,119; 6,150,180; 6,153,073; 6,167,910; 6,171,850; and 6,186,660, the disclosures of which are incorporated by reference in their entireties.

The system disclosed in U.S. Patent No. 5,699,157, which is hereby incorporated by reference in its entirety, provides for a microfluidic system for high-speed electrophoretic analysis of subject materials for applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other areas. The system has a channel in a substrate, a light source and a photoreceptor. The channel holds subject materials in solution in an electric field so that the materials move through the channel and separate into bands according to species. The light source excites fluorescent light in the species bands and the photoreceptor is arranged to receive the fluorescent light from the bands. The system further has a means for masking the channel so that the photoreceptor can receive the fluorescent light only at periodically spaced regions along the channel. The system also has an unit connected to analyze the modulation frequencies of light intensity received by the photoreceptor so that velocities of the bands along the channel are determined, which allows the materials to be analyzed.

The system disclosed in U.S. Patent No. 5,699,157 also provides for a

method of performing high-speed electrophoretic analysis of subject materials, which comprises the steps of holding the subject materials in solution in a channel of a microfluidic system; subjecting the materials to an electric field so that the subject materials move through the channel and separate into species bands; directing light toward the channel; receiving light from periodically spaced regions along the channel simultaneously; and analyzing the frequencies of light intensity of the received light so that velocities of the bands along the channel can be determined for analysis of said materials. The determination of the velocity of a species band determines the electrophoretic mobility of the species and its identification.

5

10

15

20

25

30

resolution.

U.S. Patent No. 5,842,787, which is hereby incorporated by reference in its entirety, is generally directed to devices and systems employ channels having, at least in part, depths that are varied over those which have been previously described (such as the device disclosed in U.S. Patent No. 5,699,157), wherein said channel depths provide numerous beneficial and unexpected results such as but not limited to, a reduction in sample perturbation, reduced non-specific sample mixture by diffusion, and increased

In another embodiment, the electrophoretic method of separation comprises polyacrylamide gel electrophoresis. In a preferred embodiment, the polyacrylamide gel electrophoresis is non-denaturing, so as to differentiate the mobilities of the target RNA bound to a test compound from free target RNA. If the polyacrylamide gel electrophoresis is denaturing, then the target RNA:test compound complex must be cross-linked prior to electrophoresis to prevent the disassociation of the target RNA from the test compound during electrophoresis. Such techniques are well known to one of skill in the art.

In one embodiment of the method, the binding of test compounds to target nucleic acid can be detected, preferably in an automated fashion, by gel electrophoretic analysis of interference footprinting. RNA can be degraded at specific base sites by enzymatic methods such as ribonucleases A, U₂, CL₃, T₁, Phy M, and B. cereus or chemical methods such as diethylpyrocarbonate, sodium hydroxide, hydrazine, piperidine formate, dimethyl sulfate,

[2,12-dimethyl-3,7,11,17-tetraazacyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaenato] nickel(II) (NiCR), cobalt(II)chloride, or iron(II) ethylenediaminetetraacetate (Fe-EDTA) as described for example in Zheng *et al.*, 1999, Biochem. 37:2207-2214; Latham & Cech, 1989, Science 245:276-282; and Sambrook *et al.*, 2001, in Molecular Cloning: A Laboratory Manual, pp 12.61-12.73, Cold Spring Harbor Laboratory Press, and the references cited therein, which are hereby incorporated by reference in their entireties. The

specific pattern of cleavage sites is determined by the accessibility of particular bases to the reagent employed to initiate cleavage and, as such, is therefore is determined by the three-dimensional structure of the RNA.

The interaction of small molecules with a target nucleic acid can change the accessibility of bases to these cleavage reagents both by causing conformational changes in the target nucleic acid or by covering a base at the binding interface. When a test compound binds to the nucleic acid and changes the accessibility of bases to cleavage reagents, the observed cleavage pattern will change. This method can be used to identify and characterize the binding of small molecules to RNA as described, for example, by Prudent *et al.*, 1995, J. Am. Chem. Soc. 117:10145-10146 and Mei *et al.*, 1998, Biochem. 37:14204-14212.

In the preferred embodiment of this technique, the detectably labeled target nucleic acid is incubated with an individual test compound and then subjected to treatment with a cleavage reagent, either enzymatic or chemical. The reaction mixture can be preferably be examined directly, or treated further to isolate and concentrate the nucleic acid. The fragments produced are separated by electrophoresis and the pattern of cleavage can be compared to a cleavage reaction performed in the absence of test compound. A change in the cleavage pattern directly indicates that the test compound binds to the target nucleic acid. Multiple test compounds can be examined both in parallel and serially.

Other embodiments of electrophoretic separation include, but are not limited to urea gel electrophoresis, gel filtration, pulsed field gel electrophoresis, two dimensional gel electrophoresis, continuous flow electrophoresis, zone electrophoresis, and agarose gel electrophoresis.

25

30

5

10

15

20

5.5.2. Fluorescence Spectroscopy

In a preferred embodiment, fluorescence polarization spectroscopy, an optical detection method that can differentiate the proportion of a fluorescent molecule that is either bound or unbound in solution (*e.g.*, the labeled target nucleic acid of the present invention), can be used to read reaction results without electrophoretic separation of the samples. Fluorescence polarization spectroscopy can be used to read the reaction results in the chip system disclosed in U.S. Patent Nos. 5,699,157; 5,842,787; 5,869,004; 5,876,675; 5,942,443; 5,948,227; 6,042,709; 6,042,710; 6,046,056; 6,048,498; 6,086,740; 6,132,685; 6,150,119; 6,150,180; 6,153,073; 6,167,910; 6,171,850; and 6,186,660, the disclosures of which are incorporated by reference in their entireties. The application of fluorescence

polarization spectroscopy to the chip system disclosed in the U.S. Patents listed *supra* is fast, efficient, and well-adapted for high-throughput screening.

5

10

15

20

25

30

In another embodiment, a compound that has an affinity for the target nucleic acid of interest can be labeled with a fluorophore to screen for test compounds that bind to the target nucleic acid. For example, a pyrene-containing aminoglycoside analog was used to accurately monitor antagonist binding to a prokaryotic 16S rRNA A site (which comprises the natural target for aminoglycoside antibiotics) in a screen using a fluorescence quenching technique in a 96-well plate format (Hamasaki & Rando, 1998, Anal. Biochem. 261(2):183-90).

In another embodiment, fluorescence resonance energy transfer (FRET) can be used to screen for test compounds that bind to the target nucleic acid. FRET, a characteristic change in fluorescence, occurs when two fluorophores with overlapping emission and excitation wavelength bands are held together in close proximity, such as by a binding event. In the preferred embodiment, the fluorophore on the target nucleic acid and the fluorophore on the test compounds will have overlapping excitation and emission spectra such that one fluorophore (the donor) transfers its emission energy to excite the other fluorophore (the acceptor). The acceptor preferably emits light of a different wavelength upon relaxing to the ground state, or relaxes non-radiatively to quench fluorescence. FRET is very sensitive to the distance between the two fluorophores, and allows measurement of molecular distances less than 10 nm. For example, U.S. Patent 6,337,183 to Arenas et al., which is incorporated by reference in its entirety, describes a screen for compounds that bind RNA that uses FRET to measure the effect of test compounds on the stability of a target RNA molecule where the target RNA is labeled with both fluorescent acceptor and donor molecules and the distance between the two fluorophores as determined by FRET provides a measure of the folded structure of the RNA. Matsumoto et al. (2000, Bioorg. Med. Chem. Lett. 10:1857-1861) describe a system where a peptide that binds to HIV-1 TAR RNA is labeled on one end with a fluorescein fluorophore and a tetramethylrhodamine on the other end. The conformational change of the peptide upon binding to the RNA provided a FRET signal to screen for compounds that bound to the TAR RNA.

In the preferred embodiment, both the target nucleic acid and a compound that has an affinity for the target nucleic acid of interest are labeled with fluorophores with overlapping emission and excitation spectra (donor and acceptor), including but not limited to fluorescein and derivatives, rhodamine and derivatives, cyanine dyes and derivatives, bora-3a,4a-diaza-s-indacene (BODIPY®) and derivatives, pyrene, nanoparticles, or

non-fluorescent quenching molecules. Binding of a labeled test compound to the target nucleic acid can be identified by the change in observable fluorescence as a result of FRET.

If the target nucleic acid is labeled with the donor fluorophore, then the test compounds is labeled with the acceptor fluorophore. Conversely, if the target nucleic acid is labeled with the acceptor fluorophore, then the test compounds is labeled with the donor fluorophore. A wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions. The fluorophore on the target nucleic acid must be in close proximity to the binding site of the test compounds, but should not be incorporated into a target nucleic acid at the specific binding site at which test compounds are likely to bind, since the presence of a covalently attached label might interfere sterically or chemically with the binding of the test compounds at this site.

5

15

20

30

35

In yet another embodiment, homogeneous time-resolved fluorescence ("HTRF") techniques based on time-resolved energy transfer from lanthanide ion complexes to a suitable acceptor species can be adapted for high-throughput screening for inhibitors of RNA-protein complexes (Hemmilä, 1999, J. Biomol. Screening 4:303-307; Mathis, 1999, J. Biomol. Screening 4:309-313). HTRF is similar to fluorescence resonance energy transfer using conventional organic dye pairs, but has several advantages, such as increased sensitivity and efficiency, and background elimination (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356).

Fluorescence spectroscopy has traditionally been used to characterize DNA-protein and protein-protein interactions, but fluorescence spectroscopy has not been widely used to characterize RNA-protein interactions because of an interfering absorption of RNA nucleotides with the intrinsic tryptophan fluorescence of proteins (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356.). However, fluorescence spectroscopy has been used in studying the single tryptophan residue within the arginine-rich RNA-binding domain of Rev protein and its interaction with the RRE in a time-resolved fluorescence study (Kwon & Carson, 1998, Anal. Biochem. 264:133-140). Thus, in this invention, fluorescence spectroscopy is less preferred if the test compounds or peptides or proteins possess intrinsic tryptophan fluorescence. However, fluorescence spectroscopy can be used for test compounds that do not possess intrinsic fluorescence.

5.5.3. Surface Plasmon Resonance ("SPR")

Surface plasmon resonance (SPR) can be used for determining kinetic rate constants and equilibrium constants for macromolecular interactions by following the

association project in "real time" (Schuck, 1997, Annu. Rev. Biophys. Biomol. Struct. 26:541-566).

5

15

20

25

30

35

The principle of SPR is summarized by Xavier et al. (Trends Biotechnol., 2000, 18(8):349-356) as follows. Total internal reflection occurs at the boundary between two substances of different refractive index. The incident light's electromagnetic field penetrates beyond the interface as an evanescent wave, which extends a few hundred nanometers beyond the surface into the medium. Insertion of a thin gold foil at the interace produced SPR owing to the absorption of the energy from the evanescent wave by free electron clouds of the metal (plasmons). As a result of this absorbance, there is a drop in the intensity of the reflected light at a particular angle of incidence. The evanescent wave profile depends exquisitely on the refractive index of the medium it probes. Thus, the angle at which absorption occurs is very sensitive to the refractive changes in the external medium. All proteins and nucleic acids are known to change the refractive index of water by a similar amount per unit mass, irrespective of their amino acid or nucleotide composition (the refractive index change is different for proteins and nucleic acids). When the protein or nucleic acid content of the layer at the sensor changes, the refractive index also changes. Typically, one member of a complex is immobilized in a dextran layer and then the other member is introduced into the solution, either in a flow cell (Biacore AB, Uppsala, Sweden) or a stirred cuvette (Affinity Sensors, Santa Fe, New Mexico). It has been determined that there is a linear correlation between the surface concentration of protein or nucleic acid and the shift in resonance angle, which can be used to quantitate kinetic rate constants and/or the equilibrium constants.

In the present invention, the target RNA may be immobilized to the sensor surface through a streptavidin-biotin linkage, the linkage of which is disclosed by Crouch *et al.* (Methods Mol. Biol., 1999, 118:143-160). The RNA is biotinylated either during synthesis or post-synthetically via the conversion of the 3' terminal ribonucleoside of the RNA into a reactive free amino group or using a T7 polymerase incorporated guanosine monophosphorothioate at the 5' end. SPR has been used to determine the stoichiometry and affinity of the interaction between the HIV Rev protein and the RRE (Van Ryk & Venkatesan, 1999, J. Biol. Chem. 274:17452-17463) and the aminoglycoside antibiotics with RRE and a model RNA derived from the 16S ribosomal A site, respectively (Hendrix *et al.*, 1997, J. Am. Chem. Soc. 119:3641-3648; Wong *et al.*, 1998, Chem. Biol. 5:397-406).

In one embodiment of the present invention, the target nucleic acid can be immobilized to a sensor surface (e.g., by a streptavidin-biotin linkage) and SPR can be used

to (a) determine whether the target RNA binds a test compound and (b) further characterize the binding of the target nucleic acids of the present invention to a test compound.

5.5.4. Mass Spectrometry

5

15

25

35

An automated method for analyzing mass spectrometer data which can analyze complex mixtures containing many thousands of components and can correct for background noise, multiply charged peaks and atomic isotope peaks is described in U.S. Patent No. 6,147,344, which is hereby incorporated by reference in its entirety. The system disclosed in U.S. Patent No. 6,147,344 is a method for analyzing mass spectrometer data in which a control sample measurement is performed providing a background noise check. The peak height and width values at each m/z ratio as a function of time are stored in a memory. A mass spectrometer operation on a material to be analyzed is performed and the peak height and width values at each m/z ratio versus time are stored in a second memory location. The mass spectrometer operation on the material to be analyzed is repeated a fixed number of times and the stored control sample values at each m/z ratio level at each time increment are subtracted from each corresponding one from the operational runs, thus producing a difference value at each mass ratio for each of the multiple runs at each time increment. If the MS value minus the background noise does not exceed a preset value, the m/z ratio data point is not recorded, thus eliminating background noise, chemical noise and false positive peaks from the mass spectrometer data. The stored data for each of the multiple runs is then compared to a predetermined value at each m/z ratio and the resultant series of peaks, which are now determined to be above the background, is stored in the m/z points in which the peaks are of significance.

One possibility for the utilization of mass spectrometry in high throughput screening is the integration of SPR with mass spectrometry. Approaches that have been tried are direct analysis of the analyte retained on the sensor chip and mass spectrometry with the eluted analyte (Sonksen *et al.*, 1998, Anal. Chem. 70:2731-2736; Nelson & Krone, 1999, J. Mol. Recog. 12:77-93). Further developments, especially in the interfacing of the sensor chip with the mass spectrometer and in reusing the sensor chip, are required to make SPR combined with mass spectroscopy a high-throughput method for biomolecular interaction analysis and the screening of targets for small molecule inhibitors (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356).

In one embodiment of the present invention, the target nucleic acid complexed to a test compound can be determined by any of the mass spectrometry processed described *supra*. Furthermore, mass spectrometry can also be used to elucidate

the structure of the test compound.

5

10

15

25

30

35

5.5.5. Scintillation Proximity Assay ("SPA")

Scintillation Proximity Assay ("SPA") is a method that can be used for screening small molecules that bind to the target RNAs. SPA would involve radiolabeling either the target RNA or the test compound and then quantitating its binding to the other member to a bead or a surface impregnated with a scintillant (Cook, 1996, Drug Discov. Today 1:287-294). Currently, fluorescence-based techniques are preferred for high-throughput screening (Pope *et al.*, 1999, Drug Discov. Today 4:350-362).

Screening for small molecules that inhibit Tat peptide: TAR RNA interaction has been performed with SPA, and inhibitors of the interaction were isolated and characterized (Mei *et al.*, 1997, Bioorg. Med. Chem. 5:1173-1184; Mei *et al.*, 1998, Biochemistry 37:14204-14212). A similar approach can be used to identify small molecules that directly bind to a preselected target RNA element in accordance with the invention can be utilized.

SPA can be adapted to high throughput screening by the availability of microplates, wherein the scintillant is directly incorporated into the plastic of the microtiter wells (Nakayama *et al.*, 1998, J. Biomol. Screening 3:43-48). Thus, one embodiment of the present invention comprises (a) labeling of the target nucleic acid with a radioactive or fluorescent label; (b) contacted the labeled nucleic acid with test compounds, wherein each test compound is in a microtiter well coated with scintillant and is tethered to the microtiter well; and (c) identifying and quantifying the test compounds bound to the target nucleic acid with SPA, wherein the test compound is identified by virtue of its location in the microplate.

5.5.6. Structure-Activity Relationships ("SAR") by NMR Spectroscopy

NMR spectroscopy is a valuable technique for identifying complexed target nucleic acids by qualitatively determining changes in chemical shift, specifically from distances measured using relaxation effects, and NMR-based approaches have been used in the identification of small molecule binders of protein drug targets (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). The determination of structure-activity relationships ("SAR") by NMR is the first method for NMR described in which small molecules that bind adjacent subsites are identified by two-dimentional ¹H-¹⁵N spectra of the target protein (Shuker *et al.*, 1996, Science 274:1531-1534). The signal from the bound molecule is monitored by employing line broadening, transferred NOEs and pulsed field gradient

diffusion measurements (Moore, 1999, Curr. Opin. Biotechnol. 10:54-58). A strategy for lead generation by NMR using a library of small molecules has been recently described (Fejzo *et al.*, 1999, Chem. Biol. 6:755-769).

In one embodiment of the present invention, the target nucleic acid complexed to a test compound can be determined by SAR by NMR. Furthermore, SAR by NMR can also be used to elucidate the structure of the test compound.

5

10

15

25

5.5.7. Size Exclusion Chromatography

In another embodiment of the present invention, size-exclusion chromatography is used to purify test compounds that are bound to a target nucleic from a complex mixture of compounds. Size-exclusion chromatography separates molecules based on their size and uses gel-based media comprised of beads with specific size distributions. When applied to a column, this media settles into a tightly packed matrix and forms a complex array of pores. Separation is accomplished by the inclusion or exclusion of molecules by these pores based on molecular size. Small molecules are included into the pores and, consequently, their migration through the matrix is retarded due to the added distance they must travel before elution. Large molecules are excluded from the pores and migrate with the void volume when applied to the matrix. In the present invention, a target nucleic acid is incubated with a mixture of test compounds while free in solution and allowed to reach equilibrium. When applied to a size exclusion column, test compounds free in solution are retained by the column, and test compounds bound to the target nucleic acid are passed through the column. In a preferred embodiment, spin columns commonly used for "desalting" of nucleic acids will be employed to separate bound from unbound test compounds (e.g., Bio-Spin columns manufactured by BIO-RAD). In another embodiment, the size exclusion matrix is packed into multiwell plates to allow high throughput separation of mixtures (e.g., PLASMID 96-well SEC plates manufactured by Millipore).

5.5.8. Affinity Chromatography

In one embodiment of the present invention, affinity capture is used to purify test compounds that are bound to a target nucleic acid labeled with an affinity tag from a complex mixture of compounds. To accomplish this, a target nucleic acid labeled with an affinity tag is incubated with a mixture of test compounds while free in solution and then captured to a solid support once equilibrium has been established; alternatively, target nucleic acids labeled with an affinity tag can be captured to a solid support first and then allowed to reach equilibrium with a mixture of test compounds.

The solid support is typically comprised of, but not limited to, cross-linked agarose beads that are coupled with a ligand for the affinity tag. Alternatively, the solid support may be a glass, silicon, metal, or carbon, plastic (polystyrene, polypropylene) surface with or without a self-assembled monolayer (SAM) either with a covalently attached ligand for the affinity tag, or with inherent affinity for the tag on the target nucleic acid.

Once the complex between the target nucleic acid and test compound has reached equilibrium and has been captured, one skilled in the art will appreciate that the retention of bound compounds and removal of unbound compounds is facilitated by washing the solid support with large excesses of binding reaction buffer. Furthermore, retention of high affinity compounds and removal of low affinity compounds can be accomplished by a number of means that increase the stringency of washing; these means include, but are not limited to, increasing the number and duration of washes, raising the salt concentration of the wash buffer, addition of detergent or surfactant to the wash buffer, and addition of non-specific competitor to the wash buffer.

In one embodiment, the test compounds themselves are detectably labeled with fluorescent dyes, radioactive isotopes, or nanoparticles. When the test compounds are applied to the captured target nucleic acid in a spatially addressed fashion (e.g., in separate wells of a 96-well microplate), binding between the test compounds and the target nucleic acid can be determined by the presence of the detectable label on the test compound using fluorescence.

Following the removal of unbound compounds, bound compounds with high affinity for the target nucleic acid can be eluted from the immobilized target nucleic acids and analyzed. The elution of test compounds can be accomplished by any means that break the non-covalent interactions between the target nucleic acid and compound. Means for elution include, but are not limited to, changing the pH, changing the salt concentration, the application of organic solvents, and the application of molecules that compete with the bound ligand. In a preferred embodiment, the means employed for elution will release the compound from the target RNA, but will not effect the interaction between the affinity tag and the solid support, thereby achieving selective elution of test compound. Moreover, a preferred embodiment will employ an elution buffer that is volatile to allow for subsequent concentration by lyophilization of the eluted compound (e.g., 0 M to 5 M ammonium acetate).

30

5

10

15

20

25

5.5.9. Nanoparticle Aggregation

In one embodiment of the present invention, both the target nucleic acid and the test compounds are labeled with nanoparticles. A nanoparticle is a cluster of ions with controlled size from 0.1 to 1000 nm comprised of metals, metal oxides, or semiconductors including, but not limited to Ag₂S, ZnS, CdS, CdTe, Au, or TiO₂. Methods for the attachment of nucleic acids and small molecules to nanoparticles are well know to one of skill in the art (reviewed in Niemeyer, 2001, Angew. Chem. Int. Ed. 40:4129-4158. The references cited therein are hereby incorporated by reference in their entireties). In particular, if multiple copies of the target nucleic acid are attached to a single nanoparticle and multiple copies of a test compound are attached to another nanoparticle, then interaction between the test compound and target nucleic acid will induce aggregation of nanoparticles as described, for example, by Mitchel *et al.* 1999, J. Am. Chem. Soc. 121:8122-8123. The aggregate can be detected by changes in absorbance or fluorescence spectra and physically separated from the unbound components through filtration or centrifugation.

5

15

25

30

5.6. Methods for Identifying or Characterizing the Test Compounds Bound to the Target Nucleic Acids

If the library comprises arrays or microarrays of test compounds, wherein each test compound has an address or identifier, the test compound can be deconvoluted, e.g., by cross-referencing the positive sample to original compound list that was applied to the individual test assays.

If the library is a peptide or nucleic acid library, the sequence of the test compound can be determined by direct sequencing of the peptide or nucleic acid. Such methods are well known to one of skill in the art.

A number of physico-chemical techniques can be used for the de novo characterization of test compounds bound to the target.

5.6.1. Mass Spectrometry

Mass spectrometry (e.g., electrospray ionization ("ESI") and matrix-assisted laser desorption-ionization ("MALDI"), Fourier-transform ion cyclotron resonance ("FT-ICR")) can be used both for high-throughput screening of test compounds that bind to a target RNA and elucidating the structure of the test compound. Thus, one example of mass spectroscopy is that separation of a bound and unbound complex and test compound structure elucidation can be carried out in a single step.

MALDI uses a pulsed laser for desorption of the ions and a time-of-flight analyzer, and has been used for the detection of noncovalent tRNA:amino-acyl-tRNA synthetase complexes (Gruic-Sovulj *et al.*, 1997, J. Biol. Chem. 272:32084-32091). However, covalent cross-linking between the target nucleic acid and the test compound is required for detection, since a non-covalently bound complex may dissociate during the MALDI process.

5

10

20

25

35

ESI mass spectrometry ("ESI-MS") has been of greater utility for studying non-covalent molecular interactions because, unlike the MALDI process, ESI-MS generates molecular ions with little to no fragmentation (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). ESI-MS has been used to study the complexes formed by HIV Tat peptide and protein with the TAR RNA (Sannes-Lowery *et al.*, 1997, Anal. Chem. 69:5130-5135).

Fourier-transform ion cyclotron resonance ("FT-ICR") mass spectrometry provides high-resolution spectra, isotope-resolved precursor ion selection, and accurate mass assignments (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). FT-ICR has been used to study the interaction of aminoglycoside antibiotics with cognate and noncognate RNAs (Hofstadler *et al.*, 1999, Anal. Chem. 71:3436-3440; Griffey *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96:10129-10133). As true for all of the mass spectrometry methods discussed herein, FT-ICR does not require labeling of the target RNA or a test compound.

An advantage of mass spectroscopy is not only the elucidation of the structure of the test compound, but also the determination of the structure of the test compound bound to the preselected target RNA. Such information can enable the discovery of a consensus structure of a test compound that specifically binds to a preselected target RNA.

5.6.2. NMR Spectroscopy

As described above, NMR spectroscopy is a technique for identifying binding sites in target nucleic acids by qualitatively determining changes in chemical shift, specifically from distances measured using relaxation effects. Examples of NMR that can be used for the invention include, but are not limited to, one-dimentional NMR, two-dimentional NMR, correlation spectroscopy ("COSY"), and nuclear Overhauser effect ("NOE") spectroscopy. Such methods of structure determination of test compounds are well known to one of skill in the art.

Similar to mass spectroscopy, an advantage of NMR is the not only the elucidation of the structure of the test compound, but also the determination of the structure

of the test compound bound to the preselected target RNA. Such information can enable the discovery of a consensus structure of a test compound that specifically binds to a preselected target RNA.

5

10

15

20

25

30

5.6.3. <u>Vibrational Spectroscopy</u>

Vibrational spectroscopy (e.g. infrared (IR) spectroscopy or Raman spectroscopy) can be used for elucidating the structure of the test compound on the isolated bead.

Infrared spectroscopy measures the frequencies of infrared light (wavelengths from 100 to 10,000 nm) absorbed by the test compound as a result of excitation of vibrational modes according to quantum mechanical selection rules which require that absorption of light cause a change in the electric dipole moment of the molecule. The infrared spectrum of any molecule is a unique pattern of absorption wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Infrared spectra can be measured in a scanning mode by measuring the absorption of individual frequencies of light, produced by a grating which separates frequencies from a mixed-frequency infrared light source, by the test compound relative to a standard intensity (double-beam instrument) or pre-measured ('blank') intensity (single-beam instrument). In a preferred embodiment, infrared spectra are measured in a pulsed mode (FT-IR) where a mixed beam, produced by an interferometer, of all infrared light frequencies is passed through or reflected off the test compound. The resulting interferogram, which may or may not be added with the resulting interferograms from subsequent pulses to increase the signal strength while averaging random noise in the electronic signal, is mathematically transformed into a spectrum using Fourier Transform or Fast Fourier Transform algorithms.

Raman spectroscopy measures the difference in frequency due to absorption of infrared frequencies of scattered visible or ultraviolet light relative to the incident beam. The incident monochromatic light beam, usually a single laser frequency, is not truly absorbed by the test compound but interacts with the electric field transiently. Most of the light scattered off the sample with be unchanged (Rayleigh scattering) but a portion of the scatter light will have frequencies that are the sum or difference of the incident and molecular vibrational frequencies. The selection rules for Raman (inelastic) scattering require a change in polarizability of the molecule. While some vibrational transitions are observable in both infrared and Raman spectrometry, must are observable only with one or

34

the other technique. The Raman spectrum of any molecule is a unique pattern of absorption wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Raman spectra are measured by submitting monochromatic light to the sample, either passed through or preferably reflected off, filtering the Rayleigh scattered light, and detecting the frequency of the Raman scattered light. An improved Raman spectrometer is described in US Patent No. 5,786,893 to Fink *et al.*, which is hereby incorporated by reference.

5

10

15

20

Vibrational microscopy can be measured in a spatially resolved fashion to address single beads by integration of a visible microscope and spectrometer. A microscopic infrared spectrometer is described in U.S. Patent No. 5,581,085 to Reffner *et al.*, which is hereby incorporated by reference in its entirety. An instrument that simultaneously performs a microscopic infrared and microscopic Raman analysis on a sample is described in U.S. Patent No. 5,841,139 to Sostek *et al.*, which is hereby incorporated by reference in its entirety.

In the preferred embodiment, test compounds can be identified by matching the IR or Raman spectra of a test compound to a dataset of vibrational (IR or Raman) spectra previously acquired for each compound in the combinatorial library. By this method, the spectra of compounds with known structure are recorded so that comparison with these spectra can identify compounds again when isolated from RNA binding experiments.

5.7. Secondary Biological Screens

The test compounds identified in the binding assay (for convenience referred to herein as a "lead" compound) can be tested for biological activity using host cells containing or engineered to contain the target RNA element coupled to a functional readout system. For example, the lead compound can be tested in a host cell engineered to contain the target RNA element controlling the expression of a reporter gene. In this example, the lead compounds are assayed in the presence or absence of the target RNA. Alternatively, a phenotypic or physiological readout can be used to assess activity of the target RNA in the presence and absence of the lead compound.

In one embodiment, the lead compound can be tested in a host cell engineered to contain the target RNA element controlling the expression of a reporter gene, such as, but not limited to, β -galactosidase, green fluorescent protein, red fluorescent protein, luciferase, chloramphenicol acetyltransferase, alkaline phosphatase, and β -

lactamase. In a preferred embodiment, a cDNA encoding the target element is fused upstream to a reporter gene wherein translation of the reporter gene is repressed upon binding of the lead compound to the target RNA. In other words, the steric hindrance caused by the binding of the lead compound to the target RNA repressed the translation of the reporter gene. This method, termed the translational repression assay procedure ("TRAP") has been demonstrated in *E. coli* and *S. cerevisiae* (Jain & Belasco, 1996, Cell 87(1):115-25; Huang & Schreiber, 1997, Proc. Natl. Acad. Sci. USA 94:13396-13401).

5

10

15

25

In another embodiment, a phenotypic or physiological readout can be used to assess activity of the target RNA in the presence and absence of the lead compound. For example, the target RNA may be overexpressed in a cell in which the target RNA is endogenously expressed. Where the target RNA controls expression of a gene product involved in cell growth or viability, the *in vivo* effect of the lead compound can be assayed by measuring the cell growth or viability of the target cell. Alternatively, a reporter gene can also be fused downstream of the target RNA sequence and the effect of the lead compound on reporter gene expression can be assayed.

Alternatively, the lead compounds identified in the binding assay can be tested for biological activity using animal models for a disease, condition, or syndrome of interest. These include animals engineered to contain the target RNA element coupled to a functional readout system, such as a transgenic mouse. Animal model systems can also be used to demonstrate safety and efficacy.

Compounds displaying the desired biological activity can be considered to be lead compounds, and will be used in the design of congeners or analogs possessing useful pharmacological activity and physiological profiles. Following the identification of a lead compound, molecular modeling techniques can be employed, which have proven to be useful in conjunction with synthetic efforts, to design variants of the lead that can be more effective. These applications may include, but are not limited to, Pharmacophore Modeling (cf. Lamothe, et al. 1997, J. Med. Chem. 40: 3542; Mottola et al. 1996, J. Med. Chem. 39: 285; Beusen et al. 1995, Biopolymers 36: 181; P. Fossa et al. 1998, Comput. Aided Mol.

Des. 12: 361), QSAR development (*cf.* Siddiqui *et al.* 1999, J. Med. Chem. 42: 4122; Barreca *et al.* 1999 Bioorg. Med. Chem. 7: 2283; Kroemer *et al.* 1995, J. Med. Chem. 38: 4917; Schaal *et al.* 2001, J. Med. Chem. 44: 155; Buolamwini & Assefa 2002, J. Mol. Chem. 45: 84), Virtual docking and screening/scoring (*cf.* Anzini *et al.* 2001, J. Med. Chem. 44: 1134; Faaland *et al.* 2000, Biochem. Cell. Biol. 78: 415; Silvestri *et al.* 2000, Bioorg. Med. Chem. 8: 2305; J. Lee *et al.* 2001, Bioorg. Med. Chem. 9: 19), and Structure

Prediction using RNA structural programs including, but not limited to mFold (as described

by Zuker *et al.* Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide in RNA Biochemistry and Biotechnology pp. 11-43, J. Barciszewski & B.F.C. Clark, eds. (NATO ASI Series, Kluwer Academic Publishers, 1999) and Mathews *et al.* 1999 J. Mol. Biol. 288: 911-940); RNAmotif (Macke *et al.* 2001, Nucleic Acids Res. 29: 4724-4735; and the Vienna RNA package (Hofacker *et al.* 1994, Monatsh. Chem. 125: 167-188).

5

35

Further examples of the application of such techniques can be found in several review articles, such as Rotivinen et al., 1988, Acta Pharmaceutical Fennica 97:159-166; Ripka, 1998, New Scientist 54-57; McKinaly & Rossmann, 1989, Annu. Rev. 10 Pharmacol. Toxiciol. 29:111-122; Perry & Davies, QSAR: Quantitative Structure-Activity Relationships in Drug Design pp. 189-193 (Alan R. Liss, Inc. 1989); Lewis & Dean, 1989, Proc. R. Soc. Lond. 236:125-140 and 141-162; Askew et al., 1989, J. Am. Chem. Soc. 111:1082-1090. Molecular modeling tools employed may include those from Tripos, Inc., St. Louis, Missouri (e.g., Sybyl/UNITY, CONCORD, DiverseSolutions), Accelerys, San 15 Diego, California (e.g., Catalyst, Wisconsin Package {BLAST, etc.}), Schrodinger, Portland, Oregon (e.g., QikProp, QikFit, Jaguar) or other such vendors as BioDesign, Inc. (Pasadena, California), Allelix, Inc. (Mississauga, Ontario, Canada), and Hypercube, Inc. (Cambridge, Ontario, Canada), and may include privately designed and/or "academic" software (e.g. RNAMotif, mFOLD). These application suites and programs include tools 20 for the atomistic construction and analysis of structural models for drug-like molecules, proteins, and DNA or RNA and their potential interactions. They also provide for the calculation of important physical properties, such as solubility estimates, permeability metrics, and empirical measures of molecular "druggability" (e.g., Lipinski "Rule of 5" as described by Lipinski et al. 1997, Adv. Drug Delivery Rev. 23: 3-25). Most importantly, 25 they provide appropriate metrics and statistical modeling power (such as the patented CoMFA technology in Sybyl as described in US Patents 6,240,374 and 6,185,506) to develop Quantitative Structural Activity Relationships (QSARs) which are used to guide the synthesis of more efficacious clinical development candidates while improving desirable physical properties, as determined by results from the aforementioned secondary screening protocols.

5.8. Use of Identified Compounds That Bind RNA to Treat/Prevent Disease

Biologically active compounds identified using the methods of the invention or a pharmaceutically acceptable salt thereof can be administered to a patient, preferably a mammal, more preferably a human, suffering from a disease whose progression is

associated with a target RNA:host cell factor interaction *in vivo*. In certain embodiments, such compounds or a pharmaceutically acceptable salt thereof is administered to a patient, preferably a mammal, more preferably a human, as a preventative measure against a disease associated with an RNA:host cell factor interaction *in vivo*.

5

10

20

25

35

In one embodiment, "treatment" or "treating" refers to an amelioration of a disease, or at least one discernible symptom thereof. In another embodiment, "treatment" or "treating" refers to an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient. In yet another embodiment, "treatment" or "treating" refers to inhibiting the progression of a disease, either physically, *e.g.*, stabilization of a discernible symptom, physiologically, *e.g.*, stabilization of a physical parameter, or both. In yet another embodiment, "treatment" or "treating" refers to delaying the onset of a disease.

In certain embodiments, the compound or a pharmaceutically acceptable salt thereof is administered to a patient, preferably a mammal, more preferably a human, as a preventative measure against a disease associated with an RNA:host cell factor interaction *in vivo*. As used herein, "prevention" or "preventing" refers to a reduction of the risk of acquiring a disease. In one embodiment, the compound or a pharmaceutically acceptable salt thereof is administered as a preventative measure to a patient. According to this embodiment, the patient can have a genetic predisposition to a disease, such as a family history of the disease, or a non-genetic predisposition to the disease. Accordingly, the compound and pharmaceutically acceptable salts thereof can be used for the treatment of one manifestation of a disease and prevention of another.

When administered to a patient, the compound or a pharmaceutically acceptable salt thereof is preferably administered as component of a composition that optionally comprises a pharmaceutically acceptable vehicle. The composition can be administered orally, or by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal, and intestinal mucosa, etc.) and may be administered together with another biologically active agent. Administration can be systemic or local. Various delivery systems are known, e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc., and can be used to administer the compound and pharmaceutically acceptable salts thereof.

Methods of administration include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, by inhalation, or topically, particularly to the ears, nose, eyes, or skin. The mode of administration is left to

the discretion of the practitioner. In most instances, administration will result in the release of the compound or a pharmaceutically acceptable salt thereof into the bloodstream.

In specific embodiments, it may be desirable to administer the compound or a pharmaceutically acceptable salt thereof locally. This may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, *e.g.*, in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

5

10

15

20

25

30

35

In certain embodiments, it may be desirable to introduce the compound or a pharmaceutically acceptable salt thereof into the central nervous system by any suitable route, including intraventricular, intrathecal and epidural injection. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.

Pulmonary administration can also be employed, *e.g.*, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant. In certain embodiments, the compound and pharmaceutically acceptable salts thereof can be formulated as a suppository, with traditional binders and vehicles such as triglycerides.

In another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat *et al.*, in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, *ibid.*, pp. 317-327; see generally *ibid.*).

In yet another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a controlled release system (see, *e.g.*, Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in the review by Langer, 1990, Science 249:1527-1533) may be used. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald *et al.*, 1980, Surgery 88:507 Saudek *et al.*, 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy *et al.*, 1985, Science

228:190; During *et al.*, 1989, Ann. Neurol. 25:351; Howard *et al.*, 1989, J. Neurosurg. 71:105). In yet another embodiment, a controlled-release system can be placed in proximity of a target RNA of the compound or a pharmaceutically acceptable salt thereof, thus requiring only a fraction of the systemic dose.

5

10

15

20

25

30

35

Compositions comprising the compound or a pharmaceutically acceptable salt thereof ("compound compositions") can additionally comprise a suitable amount of a pharmaceutically acceptable vehicle so as to provide the form for proper administration to the patient.

In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, mammals, and more particularly in humans. The term "vehicle" refers to a diluent, adjuyant, excipient, or carrier with which a compound of the invention is administered. Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical vehicles can be saline, gum acacia, gelatin, starch paste, tale, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents may be used. When administered to a patient, the pharmaceutically acceptable vehicles are preferably sterile. Water is a preferred vehicle when the compound of the invention is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid vehicles, particularly for injectable solutions. Suitable pharmaceutical vehicles also include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Compound compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.

Compound compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. In one embodiment, the pharmaceutically acceptable vehicle is a capsule (see *e.g.*, U.S. Patent No. 5,698,155). Other examples of suitable pharmaceutical vehicles are described in Remington's Pharmaceutical Sciences, Alfonso R. Gennaro, ed., Mack Publishing Co. Easton, PA, 19th ed., 1995, pp. 1447 to 1676, incorporated herein by reference.

In a preferred embodiment, the compound or a pharmaceutically acceptable salt thereof is formulated in accordance with routine procedures as a pharmaceutical composition adapted for oral administration to human beings. Compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions may contain one or more agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions. In these later platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time delay material such as glycerol monostearate or glycerol stearate may also be used. Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. Such vehicles are preferably of pharmaceutical grade. Typically, compositions for intravenous administration comprise sterile isotonic aqueous buffer. Where necessary, the compositions may also include a solubilizing agent.

In another embodiment, the compound or a pharmaceutically acceptable salt thereof can be formulated for intravenous administration. Compositions for intravenous administration may optionally include a local anesthetic such as lignocaine to lessen pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the compound or a pharmaceutically acceptable salt thereof is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the compound or a pharmaceutically acceptable salt thereof is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

5

10

15

20

25

30

5

15

20

25

30

35

The amount of a compound or a pharmaceutically acceptable salt thereof that will be effective in the treatment of a particular disease will depend on the nature of the disease, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed will also depend on the route of administration, and the seriousness of the disease, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for oral administration are generally about 0.001 milligram to about 200 milligrams of a compound or a pharmaceutically acceptable salt thereof per kilogram body weight per day. In specific preferred embodiments of the invention, the oral dose is about 0.01 milligram to about 100 milligrams per kilogram body weight per day, more preferably about 0.1 milligram to about 75 milligrams per kilogram body weight per day, more preferably about 0.5 milligram to 5 milligrams per kilogram body weight per day. The dosage amounts described herein refer to total amounts administered; that is, if more than one compound is administered, or if a compound is administered with a therapeutic agent, then the preferred dosages correspond to the total amount administered. Oral compositions preferably contain about 10% to about 95% active ingredient by weight.

Suitable dosage ranges for intravenous (i.v.) administration are about 0.01 milligram to about 100 milligrams per kilogram body weight per day, about 0.1 milligram to about 35 milligrams per kilogram body weight per day, and about 1 milligram to about 10 milligrams per kilogram body weight per day. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight per day to about 1 mg/kg body weight per day. Suppositories generally contain about 0.01 milligram to about 50 milligrams of a compound of the invention per kilogram body weight per day and comprise active ingredient in the range of about 0.5% to about 10% by weight.

Recommended dosages for intradermal, intramuscular, intraperitoneal, subcutaneous, epidural, sublingual, intracerebral, intravaginal, transdermal administration or administration by inhalation are in the range of about 0.001 milligram to about 200 milligrams per kilogram of body weight per day. Suitable doses for topical administration are in the range of about 0.001 milligram to about 1 milligram, depending on the area of administration. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems. Such animal models and systems are well known in the art.

The compound and pharmaceutically acceptable salts thereof are preferably assayed *in vitro* and *in vivo*, for the desired therapeutic or prophylactic activity, prior to use

in humans. For example, *in vitro* assays can be used to determine whether it is preferable to administer the compound, a pharmaceutically acceptable salt thereof, and/or another therapeutic agent. Animal model systems can be used to demonstrate safety and efficacy.

A variety of compounds can be used for treating or preventing diseases in mammals. Types of compounds include, but are not limited to, peptides, peptide analogs including peptides comprising non-natural amino acids, e.g., D-amino acids, phosphorous analogs of amino acids, such as α -amino phosphonic acids and α -amino phosphinic acids, or amino acids having non-peptide linkages, nucleic acids, nucleic acid analogs such as phosphorothioates or peptide nucleic acids ("PNAs"), hormones, antigens, synthetic or naturally occurring drugs, opiates, dopamine, serotonin, catecholamines, thrombin, acetylcholine, prostaglandins, organic molecules, pheromones, adenosine, sucrose, glucose, lactose and galactose.

6. EXAMPLE: THERAPEUTIC TARGETS

The therapeutic targets presented herein are by way of example, and the present invention is not to be limited by the targets described herein. The therapeutic targets presented herein as DNA sequences are understood by one of skill in the art that the sequences can be converted to RNA sequences.

20

25

30

35

15

5

6.1. Tumor Necrosis Factor Alpha ("TNF-α")

GenBank Accession # X01394:

1 geagaggace agetaagagg gagagaagea actacagace ecceetgaaa acaaceetca

61 gaegeeacat eccetgacaa getgeeagge aggttetett eeteteacat aetgaeeeac

121 ggetecacce teteteceet ggaaaggaca ceatgageae tgaaageatg ateegggaeg

181 tggagetgge egaggaggeg etececaaga agacaggggg geeccaggge tecaggeggt

241 gettgtteet eageetette teetteetga tegtggeagg egeeaceaeg etettetgee

301 tgctgcactt tggagtgatc ggccccaga gggaagagtt ccccagggac ctctctctaa

361 teagecetet ggeceaggea gteagateat ettetegaac eeegagtgae aageetgtag

421 cccatgttgt agcaaaccct caagctgagg ggcagctcca gtggctgaac cgccgggcca

481 atgecetect geceaatgee gtggagetga gagataacca getggtggtg ceatcagagg

541 geetgtacet eatetaetee eaggteetet teaagggeea aggetgeece teeacecatg

601 tgeteeteac ecacaccate ageegeateg eegteteeta ecagaccaag gteaacetee

661 tetetgecat caagageeee tgecagaggg agaeeecaga gggggetgag gecaageeet

721 ggtatgagcc catctatctg ggaggggtct tccagctgga gaagggtgac cgactcagcg

781 etgagateaa teggeeegae tatetegaet ttgeegagte tgggeaggte taetttggga

	841 teattgeect gtgaggagga egaacateca acetteecaa aegeeteece tgeeceaate
	901 cctttattac cccctccttc agacaccctc aacctcttct ggctcaaaaa gagaattggg
	961 ggettagggt eggaacccaa gettagaact ttaagcaaca agaccaccac ttegaaacct
5	1021 gggattcagg aatgtgtggc ctgcacagtg aattgctggc aaccactaag aattcaaact
J	1081 ggggcctcca gaactcactg gggcctacag ctttgatccc tgacatctgg aatctggaga
	1141 ccagggagec tttggttctg gccagaatge tgcaggaett gagaagaect cacctagaaa
	1201 ttgacacaag tggaccttag gcetteetet etecagatgt ttecagaett eettgagaca
	1261 eggageceag ecetececat ggagecaget ecetetattt atgtttgeae ttgtgattat
10	1321 ttattattta tttattattt atttatttac agatgaatgt atttatttgg gagaccgggg
10	1381 tateetgggg gacceaatgt aggagetgee ttggeteaga catgttttee gtgaaaaegg
	1441 agetgaacaa taggetgtte ecatgtagee ecetggeete tgtgeettet tttgattatg
	1501 ttttttaaaa tatttatetg attaagttgt etaaacaatg etgatttggt gaccaactgt
	1561 cactcattge tgagectetg etecceaggg gagttgtgte tgtaategee etactattea
15	1621 gtggcgagaa ataaagtttg ctt (SEQ ID NO: 6)
_	
	General Target Regions:
	(1) 5' Untranslated Region - nts 1 - 152
	(2) 3' Untranslated Region - nts 852 - 1643
20	
	Initial Specific Target Motif:
	Group I AU-Rich Element (ARE) Cluster in 3' untranslated region
	5' AUUUAUUUAUUUAUUUA 3' (SEQ ID NO: 1)
25	6.2. Granulocyte-macrophage Colony Stimulating Factor ("GM-CSF")
	GenBank Accession # NM_000758:
	1 getggaggat gtggetgeag ageetgetge tettgggeae tgtggeetge ageatetetg
	61 caccegoog ctegeceage eccageaege agecetggga geatgtgaat gecateeagg
	121 aggcccggcg teteetgaac etgagtagag acaetgetge tgagatgaat gaaacagtag
30	181 aagteatete agaaatgttt gaceteeagg ageegacetg cetacagace egeetggage
	241 tgtacaagca gggcctgegg ggcagcctca ccaagctcaa gggccccttg accatgatgg
	301 ccagccacta caagcagcac tgccctccaa ccccggaaac ttcctgtgca acccagacta
	361 teacetttga aagttteaaa gagaacetga aggaetttet gettgteate eeetttgaet
	421 getgggagee agtecaggag tgagacegge cagatgagge tggecaagee ggggagetge
35	481 teteteatga aacaagaget agaaacteag gatggteate ttggagggae caaggggtgg
	541 gecacageca tggtgggagt ggeetggace tgeeetggge cacaetgace etgatacagg

	601 catggcagaa gaatgggaat attttatact gacagaaatc agtaatattt atatatttat	
	661 atttitaaaa tatttattta tttatttatt taagtteata tteeatattt atteaagatg	
	721 ttttaccgta ataattatta ttaaaaatat gettet (SEQ ID NO: 7)	
5		
5	GenBank Accession # XM_003751:	
	1 tetggaggat gtggetgeag ageetgetge tettgggeae tgtggeetge ageatetet	g
	61 caccegeceg etegeceage eccageaege agecetggga geatgtgaat gecate	cagg
	121 aggeceggeg teteetgaac etgagtagag acaetgetge tgagatgaat gaaaca	gtag
10	181 aagteatete agaaatgttt gaceteeagg ageegaeetg eetacagaee egeetgg	agc
	241 tgtacaagca gggcctgcgg ggcagcctca ccaagctcaa gggccccttg accatg	gatgg
	301 ccagecacta caagcagcae tgeeetecaa ecceggaaac tteetgtgea acceag	acta
	361 teacetttga aagttteaaa gagaacetga aggaetttet gettgteate eeetttgaet	
	421 getgggagee agteeaggag tgagacegge eagatgagge tggeeaagee gggg	gagetge
15	481 teteteatga aacaagaget agaaacteag gatggteate ttggagggae caagggg	gtgg
	541 gecacageca tggtgggagt ggcetggace tgccetggge cacactgace etgata	ıcagg
	601 catggcagaa gaatgggaat attttatact gacagaaatc agtaatattt atatatttat	
	661 atttttaaaa tatttattta tttatttatt taagtteata tteeatattt atteaagatg	
	721 ttttaccgta ataattatta ttaaaaatat gcttct (SEQ ID NO: 8)	
20		
	General Target Regions:	
	(1) 5' Untranslated Region - nts 1 - 32	
	(2) 3' Untranslated Region - nts 468 - 789	
	Initial Specific Toront Metifi	
25	Initial Specific Target Motif: Group I AU-Rich Element (ARE) Cluster in 3' untranslated regi	0.12
	5' AUUUAUUUAUUUAUUUAUUUA 3' (SEQ ID NO: 1)	OII
	J ACCORCUCACCOACCOAT (SEQ ID NO. 1)	
	6.3. <u>Interleukin 2 ("IL-2")</u>	
30	GenBank Accession # U25676:	
50	1 atcactetet ttaateaeta etcacattaa eetcaactee tgecacaatg tacaggatge	
	61 aacteetgte ttgeattgea etaattettg eacttgteae aaacagtgea eetaetteaa	
	121 gttegacaaa gaaaacaaag aaaacacage tacaactgga gcatttactg etggatti	tac
	181 agatgatttt gaatggaatt aataattaca agaateecaa acteaceagg atgeteaca	t
25	241 ttaagtttta catgcccaag aaggccacag aactgaaaca getteagtgt etagaaga	ag

301 aactcaaacc tetggaggaa gtgetgaatt tageteaaag caaaaacttt caettaagac

35

- 361 ccagggactt aatcagcaat atcaacgtaa tagttetgga actaaaggga tetgaaacaa
- 421 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga
- 481 ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa
- 541 aacatatcag geettetatt tatttattta aatatttaaa ttttatattt attgttgaat
- 601 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt
- 661 ttatgattet ttttgtaage eetagggget etaaaatggt ttacettatt tateecaaaa
- 721 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta
- 781 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa (SEQ ID NO: 9)

10 General Target Regions:

5

30

- (1) 5' Untranslated Region nts 1 47
- (2) 3' Untranslated Region nts 519-825

Initial Specific Target Motifs:

Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAN 3' (SEQ ID NO: 10)

6.4. Interleukin 6 ("IL-6")

- 20 GenBank Accession # NM_000600:
 - 1 ttctgccctc gagcccaccg ggaacgaaag agaagctcta tctcgcctcc aggagcccag
 - 61 ctatgaactc cttctccaca agegeetteg gtecagttge cttctccctg gggetgetee
 - 121 tggtgttgcc tgctgccttc cctgccccag tacccccagg agaagattcc aaagatgtag
 - 181 cegececaca cagacageca etcacetett cagaacgaat tgacaaacaa atteggtaca
- 241 tectegaegg cateteagee etgagaaagg agacatgtaa caagagtaac atgtgtgaaa
 - 301 gcagcaaaga ggcactggca gaaaacaacc tgaaccttcc aaagatggct gaaaaagatg
 - 361 gatgetteea atetggatte aatgaggaga ettgeetggt gaaaateate aetggtettt
 - 421 tggagtttga ggtataccta gagtacctcc agaacagatt tgagagtagt gaggaacaag
 - 481 ccagagetgt gcagatgagt acaaaagtee tgatecagtt cetgcagaaa aaggcaaaga
 - 541 atctagatge aataaceaee eetgaceeaa eeacaaatge eageetgetg aegaagetge
 - 601 aggeacagaa ceagtggetg eaggacatga caacteatet eattetgege agetttaagg
 - 661 agttcctgca gtccagcctg agggctcttc ggcaaatgta gcatgggcac ctcagattgt
 - 721 tgttgttaat gggcatteet tettetggte agaaacetgt ceaetgggea cagaacttat
 - 781 gttgttctct atggagaact aaaagtatga gcgttaggac actattttaa ttatttttaa
- 35 841 tttattaata tttaaatatg tgaagctgag ttaatttatg taagtcatat ttatattttt
- 901 aagaagtacc acttgaaaca ttttatgtat tagttttgaa ataataatgg aaagtggcta

- 961 tgcagtttga atateetttg tttcagagee agateattte ttggaaagtg taggettace
- 1021 teaaataaat ggetaaetta taeatatttt taaagaaata tttatattgt atttatataa
- 1081 tgtataaatg gtttttatac caataaatgg cattttaaaa aattc (SEQ ID NO: 11)

5 General Target Regions:

- (1) 5' Untranslated Region nts 1 62
- (2) 3' Untranslated Region nts 699 1125

Initial Specific Target Motifs:

Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAN 3' (SEQ ID NO: 10)

6.5. Vascular Endothelial Growth Factor ("VEGF")

GenBank Accession # AF022375:

20

25

30

35

1 aagageteea gagagaagte gaggaagaga gagaeggggt cagagagage gegegggegt

61 gcgagcagcg aaagcgacag gggcaaagtg agtgacctgc ttttgggggt gaccgccgga

121 gegeggegtg ageeeteece ettgggatee egeagetgae eagtegeget gaeggaeaga

181 cagacagaea cogococcag coccagttae caecteetee coggeoggeg goggacagtg

301 gteggagete geggegtege aetgaaaett ttegteeaae ttetgggetg ttetegette

361 ggaggagccg tggtccgcgc gggggaagcc gagccgagcg gagccgcgag aagtgctagc

481 agggggccgc agtggcgact cggcgctcgg aagccgggct catggacggg tgaggcggcg

541 gtgtgcgcag acagtgctcc agcgcgcgcg ctccccagcc ctggcccggc ctcgggccgg

601 gaggaagagt agetegeega ggegeegagg agagegggee geeceacage eegageegga

661 gagggacgcg ageegegege eeeggteggg eeteegaaac eatgaacttt etgetgtett

721 gggtgcattg gagccttgcc ttgctgctct acctccacca tgccaagtgg tcccaggctg

781 cacccatgge agaaggagga gggcagaate atcacgaagt ggtgaagtte atggatgtet

841 atcagegeag etactgecat ceaategaga ceetggtgga catettecag gagtaceetg

901 atgagatega gtacatette aagceateet gtgtgeecet gatgegatge gggggetget

961 ccaatgacga gggcctggag tgtgtgccca ctgaggagtc caacatcacc atgcagatta

1021 tgeggateaa aceteaceaa ggecageaca taggagagat gagetteeta cageacaaca

1141 cagagoggag aaagcatttg tttgtacaag atccgcagac gtgtaaatgt tcctgcaaaa

1201 acacacacte gegttgeaag gegaggeage ttgagttaaa egaaegtaet tgeagatgtg

	1261 acaagccgag gcggtgagcc gggcaggagg aaggagcctc cctcagggtt tcgggaacca
	1321 gatetetete eaggaaagae tgatacagaa egategatae agaaaccaeg etgeegeeae
	1381 cacaccatca ccatcgacag aacagtcctt aatccagaaa cctgaaatga aggaagagga
5	1441 gactetgege agageaettt gggteeggag ggegagaete eggeggaage atteeeggge.
5	1501 gggtgaccca gcacggtccc tettggaatt ggattegcca ttttattttt ettgetgeta
	1561 aatcaccgag ceeggaagat tagagagttt tatttetggg atteetgtag acacaccac
	1621 ecacatacat acatttatat atatatatat tatatata
	1681 ttatatatat aaaatatata tattettttt ttaaattaac agtgetaatg ttattggtgt
10	1741 etteaetgga tgtatttgae tgetgtggae ttgagttggg aggggaatgt teceaeteag
	1801 atcetgacag ggaagaggag gagatgagag actetggcat gatettttt ttgtcccact
	1861 tggtggggce agggtcetet eeeetgeeca agaatgtgea aggecaggge atgggggeaa
	1921 atatgaccca gttttgggaa caccgacaaa cccagccctg gegetgagec tetetacccc
	1981 aggteagaeg gacagaaaga caaatcacag gtteegggat gaggacaeeg getetgaeea
15	2041 ggagtttggg gagettcagg acattgctgt getttgggga ttccctccac atgetgcacg
	2101 egcatetege ecceagggge actgeetgga agatteagga geetgggegg cettegetta
	2161 eteteacetg ettetgagtt geeeaggagg eeactggeag atgteeegge gaagagaaga
	2221 gacacattgt tggaagaage agcccatgae agcgcccett cetgggacte gecetcatee
	2281 tetteetget eecetteetg gggtgeagee taaaaggace tatgteetea eaceattgaa
20	2341 accactagtt ctgtcccccc aggaaacctg gttgtgtgtg tgtgagtggt tgacettect
	2401 ceatecectg gteetteeet teeetteeeg aggeacagag agacagggea ggateeaegt
	2461 geccattgtg gaggeagaga aaagagaaag tgttttatat aeggtaetta tttaatatee
	2521 ctttttaatt agaaattaga acagttaatt taattaaaga gtagggtttt ttttcagtat
	2581 tettggttaa tatttaattt caactattta tgagatgtat ettttgetet etettgetet
25	2641 cttatttgta ccggtttttg tatataaaat tcatgtttce aatctetete teeetgateg
	2701 gtgacagtca ctagettate ttgaacagat atttaatttt getaacacte agetetgece
	2761 teccegatee cetggeteee cageacacat teetttgaaa gagggtttea atatacatet
	2821 acatactata tatatattgg gcaacttgta tttgtgtgta tatatatata tatatgttta
	2881 tgtatatatg tgateetgaa aaaataaaca tegetattet gtttttata tgtteaaace
30	2941 aaacaagaaa aaatagagaa ttetacatae taaatetete teetttttta attttaatat
-	3001 ttgttatcat ttatttattg gtgctactgt ttatccgtaa taattgtggg gaaaagatat
	3061 taacatcacg tetttgtete tagtgeagtt tttegagata tteegtagta catatttatt
	3121 tttaaacaac gacaaagaaa tacagatata tcttaaaaaa aaaaaa (SEQ ID NO: 12)

General Target Regions:

(1) 5' Untranslated Region - nts 1 - 701

(2) 3' Untranslated Region - nts 1275 - 3166

Initial Specific Target Motifs:

(2) Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAUUUAN 3' (SEQ ID NO: 10)

15

20

25

30

35

6.6. Human Immunodeficiency Virus I ("HIV-1")

GenBank Accession # NC_001802:

1 ggtctctctg gttagaccag atctgagcct gggagctctc tggctaacta gggaacccac

61 tgettaagee teaataaage ttgeettgag tgetteaagt agtgtgtgee egtetgttgt

121 gtgactetgg taactagaga teeetcagae eettttagte agtgtggaaa atetetagea

181 gtggcgcccg aacagggacc tgaaagcgaa agggaaacca gaggagctct ctcgacgcag

241 gacteggett getgaagege geaeggeaag aggegaggg eggegaetgg tgagtaegee

301 aaaaattttg actageggag getagaagga gagagatggg tgegagageg teagtattaa

361 gegggggaga attagatega tgggaaaaaa tteggttaag gecaggggga aagaaaaaat

421 ataaattaaa acatatagta tgggcaagca gggagctaga acgattcgca gttaatcctg

481 geetgttaga aacateagaa ggetgtagae aaataetggg acagetacaa eeateeette

541 agacaggate agaagaactt agateattat ataatacagt ageaaceete tattgtgtge

601 atcaaaggat agagataaaa gacaccaagg aagctttaga caagatagag gaagagcaaa

661 acaaaagtaa gaaaaaagca cagcaagcag cagctgacac aggacacagc aatcaggtca

721 gecaaaatta eectatagtg cagaacatee aggggcaaat ggtacateag gecatateae

781 ctagaacttt aaatgcatgg gtaaaagtag tagaagagaa ggctttcagc ccagaagtga

841 tacccatgtt ttcagcatta tcagaaggag ccaccccaca agatttaaac accatgctaa

901 acacagtggg gggacatcaa gcagccatgc aaatgttaaa agagaccatc aatgaggaag

961 etgeagaatg ggatagagtg catecagtge atgeagggee tattgeacea ggeeagatga

1021 gagaaccaag gggaagtgac atagcaggaa ctactagtac cettcaggaa caaataggat

1081 ggatgacaaa taatccacct atcccagtag gagaaattta taaaagatgg ataatcctgg

	1141 gattaaataa aatagtaaga atgtatagee etaceageat tetggacata agacaaggae
*	1201 caaaggaace etttagagac tatgtagace ggttetataa aactetaaga geegageaag
	1261 etteacagga ggtaaaaaat tggatgacag aaacettgtt ggtecaaaat gegaacecag
5	1321 attgtaagac tattttaaaa gcattgggac cagcggctac actagaagaa atgatgacag
	1381 catgtcaggg agtaggagga cccggccata aggcaagagt tttggctgaa gcaatgagcc
	1441 aagtaacaaa ttcagctacc ataatgatgc agagaggcaa ttttaggaac caaagaaaga
	1501 ttgttaagtg tttcaattgt ggcaaagaag ggcacacagc cagaaattgc agggccccta
	1561 ggaaaaaggg ctgttggaaa tgtggaaagg aaggacacca aatgaaagat tgtactgaga
10	1621 gacaggetaa ttttttaggg aagatetgge etteetacaa gggaaggeea gggaatttte
	1681 ttcagagcag accagagcca acagccccac cagaagagag cttcaggtct ggggtagaga
	1741 caacaactee ceeteagaag eaggageega tagacaagga actgtateet ttaactteee
	1801 tcaggtcact ctttggcaac gacccetcgt cacaataaag ataggggggc aactaaagga
	1861 agetetatta gatacaggag cagatgatac agtattagaa gaaatgagtt tgccaggaag
15	1921 atggaaacca aaaatgatag ggggaattgg aggttttatc aaagtaagac agtatgatca
10	1981 gatacteata gaaatetgtg gacataaage tataggtaca gtattagtag gacetacace
	2041 tgteaacata attggaagaa atctgttgac teagattggt tgcactttaa atttteccat
	2101 tagecetatt gagaetgtae eagtaaaatt aaageeagga atggatggee eaaaagttaa
	2161 acaatggcca ttgacagaag aaaaaataaa agcattagta gaaatttgta cagagatgga
20	2221 aaaggaaggg aaaatttcaa aaattgggee tgaaaateea tacaatacte cagtatttge
_ `	2281 cataaagaaa aaagacagta ctaaatggag aaaattagta gatttcagag aacttaataa
	2341 gagaactcaa gacttetggg aagtteaatt aggaatacca cateeegeag ggttaaaaaa
	2401 gaaaaaatca gtaacagtac tggatgtggg tgatgcatat ttttcagttc ccttagatga
	2461 agacttcagg aagtatactg catttaccat acctagtata aacaatgaga caccagggat
25	2521 tagatateag tacaatgtge ttccacaggg atggaaagga tcaccagcaa tattccaaag
	2581 tagcatgaca aaaatettag agcettttag aaaacaaaat ccagacatag ttatetatca
	2641 atacatggat gatttgtatg taggatctga cttagaaata gggcagcata gaacaaaaat
	2701 agaggagetg agacaacate tgttgaggtg gggacttace acaccagaca aaaaacatca
	2761 gaaagaacct ccattccttt ggatgggtta tgaactccat cctgataaat ggacagtaca
30	2821 gcctatagtg ctgccagaaa aagacagctg gactgtcaat gacatacaga agttagtggg
-	2881 gaaattgaat tgggcaagte agatttacce agggattaaa gtaaggcaat tatgtaaact
	2941 cettagagga accaaagcac taacagaagt aataccacta acagaagaag cagagctaga
	3001 actggcagaa aacagagaga ttctaaaaga accagtacat ggagtgtatt atgacccatc
	3061 aaaagactta atagcagaaa tacagaagca ggggcaaggc caatggacat atcaaattta
35	3121 tcaagagcca tttaaaaatc tgaaaacagg aaaatatgca agaatgaggg gtgcccacac
-	3181 taatgatgta aaacaattaa cagaggcagt gcaaaaaata accacagaaa gcatagtaat

	3241 atggggaaag actoctaaat ttaaactgcc catacaaaag gaaacatggg aaacatggtg
	3301 gacagagtat tggcaagcca cctggattcc tgagtgggag tttgttaata cccctcctt
	3361 agtgaaatta tggtaccagt tagagaaaga acccatagta ggagcagaaa ccttctatgt
5	3421 agatggggca gctaacaggg agactaaatt aggaaaagca ggatatgtta ctaatagagg
3	3481 aagacaaaaa gttgtcaccc taactgacac aacaaatcag aagactgagt tacaagcaat
	3541 ttatctagct ttgcaggatt cgggattaga agtaaacata gtaacagact cacaatatgc
	3601 attaggaate atteaageae aaceagatea aagtgaatea gagttagtea ateaaataat
	3661 agagcagtta ataaaaaagg aaaaggteta tetggcatgg gtaccagcac acaaaggaat
10	3721 tggaggaaat gaacaagtag ataaattagt cagtgctgga atcaggaaag tactattttt
10	3781 agatggaata gataaggccc aagatgaaca tgagaaatat cacagtaatt ggagagcaat
	3841 ggctagtgat tttaacetge cacetgtagt agcaaaagaa atagtageca getgtgataa
	3901 atgtcagcta aaaggagaag ccatgcatgg acaagtagac tgtagtccag gaatatggca
	3961 actagattgt acacatttag aaggaaaagt tatcetggta geagtteatg tageeagtgg
15	4021 atatatagaa gcagaagtta ttccagcaga aacagggcag gaaacagcat attttctttt
10	4081 aaaattagca ggaagatggc cagtaaaaac aatacatact gacaatggca gcaatttcac
	4141 cggtgctacg gttagggccg cctgttggtg ggcgggaatc aagcaggaat ttggaattcc
	4201 ctacaateee caaagteaag gagtagtaga atetatgaat aaagaattaa agaaaattat
	4261 aggacaggta agagatcagg ctgaacatct taagacagca gtacaaatgg cagtattcat
20	4321 ccacaatttt aaaagaaaag gggggattgg ggggtacagt gcaggggaaa gaatagtaga
20	4381 cataatagca acagacatac aaactaaaga attacaaaaa caaattacaa aaattcaaaa
	4441 ttttcgggtt tattacaggg acagcagaaa tccactttgg aaaggaccag caaagctcct
	4501 ctggaaaggt gaaggggcag tagtaataca agataatagt gacataaaag tagtgccaag
	4561 aagaaaagca aagatcatta gggattatgg aaaacagatg gcaggtgatg attgtgtggc
25	4621 aagtagacag gatgaggatt agaacatgga aaagtttagt aaaacaccat atgtatgttt
	4681 cagggaaage taggggatgg ttttatagac atcactatga aagccetcat ccaagaataa
	4741 gttcagaagt acacatccca etaggggatg ctagattggt aataacaaca tattggggtc
	4801 tgcatacagg agaaagagac tggcatttgg gtcagggagt ctccatagaa tggaggaaaa
	4861 agagatatag cacacaagta gaccetgaac tagcagacca actaatteat etgtattact
30	4921 ttgactgttt ttcagactct gctataagaa aggcettatt aggacacata gttageceta
	4981 ggtgtgaata tcaagcagga cataacaagg taggatetet acaatacttg gcactagcag
	5041 cattaataac accaaaaaag ataaagccac ctttgcctag tgttacgaaa ctgacagagg
	5101 atagatggaa caagccccag aagaccaagg gccacagagg gagccacaca atgaatggac
	5161 actagagett ttagaggage ttaagaatga agetgttaga eatttteeta ggatttgget
35	5221 ccatggctta gggcaacata tctatgaaac ttatggggat acttgggcag gagtggaagc
	5281 cataataaga attetgeaac aactgetgtt tateeatttt cagaattggg tgtegacata

	5341 gcagaatagg cgttactcga cagaggagag caagaaatgg agccagtaga tcctagacta
	5401 gagecetgga ageateeagg aagteageet aaaactgett gtaccaattg etattgtaaa
	5461 aagtgttget tteattgeea agtttgttte ataacaaaag eettaggeat eteetatgge
5	5521 aggaagaage ggagacageg acgaagaget catcagaaca gtcagactca tcaagettet
,	5581 ctatcaaagc agtaagtagt acatgtaatg caacctatac caatagtagc aatagtagca
	5641 ttagtagtag caataataat agcaatagtt gtgtggtcca tagtaatcat agaatatagg
	5701 aaaatattaa gacaaagaaa aatagacagg ttaattgata gactaataga aagagcagaa
	5761 gacagtggca atgagagtga aggagaaata tcagcacttg tggagatggg ggtggagatg
10	5821 gggcaccatg ctccttggga tgttgatgat ctgtagtgct acagaaaaat tgtgggtcac
	5881 agtetattat ggggtacetg tgtggaagga ageaaceace actetatttt gtgcateaga
	5941 tgetaaagea tatgatacag aggtacataa tgtttgggee acacatgeet gtgtacceae
	6001 agaccccaac ccacaagaag tagtattggt aaatgtgaca gaaaatttta acatgtggaa
	6061 aaatgacatg gtagaacaga tgcatgagga tataatcagt ttatgggatc aaagcctaaa
15	6121 gecatgtgta aaattaacce cactetgtgt tagtttaaag tgeactgatt tgaagaatga
	6181 tactaatacc aatagtagta gegggagaat gataatggag aaaggagaga taaaaaactg
	6241 ctctttcaat atcagcacaa gcataagagg taaggtgcag aaagaatatg catttttta
	6301 taaacttgat ataataccaa tagataatga tactaccagc tataagttga caagttgtaa
	6361 caceteagte attacacagg cetgtecaaa ggtateettt gagecaatte ceatacatta
20	6421 ttgtgeceeg getggttttg egattetaaa atgtaataat aagaegttea atggaacagg
20	6481 accatgtaca aatgtcagca cagtacaatg tacacatgga attaggccag tagtatcaac
	6541 tcaactgetg ttaaatggca gtctagcaga agaagaggta gtaattagat ctgtcaattt
	6601 caeggacaat getaaaacca taatagtaca getgaacaca tetgtagaaa ttaattgtac
	6661 aagacccaac aacaatacaa gaaaaagaat cegtatccag agaggaccag ggagagcatt
25	6721 tgttacaata ggaaaaatag gaaatatgag acaagcacat tgtaacatta gtagagcaaa
	6781 atggaataac actttaaaac agatagctag caaattaaga gaacaatttg gaaataataa
	6841 aacaataate tttaagcaat eeteaggagg ggaceeagaa attgtaaege acagttttaa
	6901 ttgtggaggg gaatttttct actgtaattc aacacaactg tttaatagta cttggtttaa
	6961 tagtacttgg agtactgaag ggtcaaataa cactgaagga agtgacacaa tcaccetccc
30	7021 atgcagaata aaacaaatta taaacatgtg gcagaaagta ggaaaagcaa tgtatgcccc
	7081 teccateagt ggacaaatta gatgtteate aaatattaca gggetgetat taacaagaga
	7141 tggtggtaat agcaacaatg agtccgagat cttcagacct ggaggaggag atatgaggga
	7201 caattggaga agtgaattat ataaatataa agtagtaaaa attgaaccat taggagtagc
	7261 acccaccaag gcaaagagaa gagtggtgca gagagaaaaa agagcagtgg gaataggagc
35	7321 tttgtteett gggttettgg gageageagg aageactatg ggegeageet eaatgaeget
	7381 gacggtacag gccagacaat tattgtctgg tatagtgcag cagcagaaca atttgctgag

	7441 ggctattgag gegeaacage atetgttgea acteacagte tggggcatea ageageteea
	7501 ggcaagaatc ctggctgtgg aaagatacct aaaggatcaa cagctcctgg ggatttgggg
	7561 ttgetetgga aaacteattt geaceaetge tgtgeettgg aatgetagtt ggagtaataa
5	7621 atetetggaa cagatttgga ateacaegae etggatggag tgggacagag aaattaacaa
5	7681 ttacacaage ttaatacact cettaattga agaategcaa aaccagcaag aaaagaatga
	7741 acaagaatta ttggaattag ataaatgggc aagtttgtgg aattggttta acataacaaa
	7801 ttggctgtgg tatataaaat tattcataat gatagtagga ggcttggtag gtttaagaat
	7861 agtttttget gtacttteta tagtgaatag agttaggeag ggatatteae eattategtt
10	7921 tcagacccac ctcccaaccc cgaggggacc cgacaggccc gaaggaatag aagaagaagg
10	7981 tggagagaga gacagagaca gatccattcg attagtgaac ggatccttgg cacttatctg
	8041 ggacgatetg eggageetgt geetetteag etaceaeege ttgagagaet taetettgat
	8101 tgtaacgagg attgtggaac ttctgggacg cagggggtgg gaagccctca aatattggtg
	8161 gaateteeta eagtattgga gteaggaaet aaagaatagt getgttaget tgeteaatge
15	8221 cacagocata geagtagetg aggggacaga tagggttata gaagtagtac aaggagettg
	8281 tagagetatt egecacatae etagaagaat aagacaggge ttggaaagga ttttgetata
	8341 agatgggtgg caagtggtca aaaagtagtg tgattggatg gcctactgta agggaaagaa
	8401 tgagacgage tgagccagca geagataggg tgggagcage atetegagae etggaaaaae
	8461 atggagcaat cacaagtagc aatacagcag ctaccaatgc tgcttgtgcc tggctagaag
20	8521 cacaagagga ggaggaggtg ggttttccag tcacacctca ggtaccttta agaccaatga
	8581 cttacaagge agetgtagat ettageeaet ttttaaaaga aaagggggga etggaaggge
	8641 taattcacte ccaaagaaga caagatatee ttgatetgtg gatetaccac acacaagget
	8701 acttecetga ttageagaac tacacacag ggecaggggt cagatateca etgacetttg
	8761 gatggtgcta caagctagta ccagttgagc cagataagat agaagaggcc aataaaggag
25	8821 agaacaccag ettgttacac eetgtgagee tgeatgggat ggatgaeeeg gagagagaag
	8881 tgttagagtg gaggtttgac agccgcctag catttcatca cgtggcccga gagctgcatc
	8941 eggagtaett eaagaaetge tgacategag ettgetacaa gggaetttee getggggaet
	9001 ttccagggag gcgtggcctg ggcgggactg gggagtggcg agccctcaga tcctgcatat
	9061 aagcagetge tttttgeetg taetgggtet etetggttag accagatetg agcetgggag
30	9121 etetetgget aactagggaa eccaetgett aageeteaat aaagettgee ttgagtgett
	9181 c (SEQ ID NO: 14)

Initial Specific Target Motifs:

35

(1) Trans-activation response region/Tat protein binding site - TAR RNA - nts 1
 - 60
 "Minimal" TAR RNA element

5' GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 3' (SEO ID NO: 15)

(2) Gag/Pol Frameshifting Site - "Minimal" frameshifting element 5'

> UUUUUUAGGGAAGAUCUGGCCUUCCUACAAGGGAAGGCCAGG GAAUUUUCUU 3' (SEQ ID NO: 16)

6.7. Hepatitis C Virus ("HCV" - Genotypes 1a & 1b)

GenBank Accession # NC 001433:

5

35

1 ttggggggga cactecacca tagateacte ceetgtgagg aactactgte tteaegeaga 10 61 aagegtetag ceatggegtt agtatgagtg ttgtgeagee teeaggaeee eeeeteeegg 121 gagagecata gtggtetgeg gaaceggtga gtacacegga attgccagga egacegggte 181 etttettgga teaaceeget eaatgeetgg agatttggge gtgeeeege gagaetgeta 241 geogagtagt gttgggtege gaaaggeett gtggtaetge etgatagggt gettgegagt 301 geecegggag gtetegtaga eegtgeatea tgageacaaa teetaaacet caaagaaaaa 15 361 ccaaacgtaa caccaaccgc cgccacagg acgttaagtt cccgggcggt ggtcagatcg 421 ttggtggagt ttacctgttg ccgcgcaggg gccccaggtt gggtgtgcgc gcgactagga 481 agaetteega geggtegeaa eetegtggaa ggegacaace tateeceaag getegeegge 541 cogagggtag gacctggget cagcccgggt accettggec cetetatgge aacgagggta 601 tggggtgggc aggatggctc ctgtcacccc gtggctctcg gcctagttgg ggccccacag 20 661 accccggcg taggtcgcgt aatttgggta aggtcatcga tacccttaca tgcggcttcg 721 ccgacctcat ggggtacatt ccgcttgtcg gcgcccccct agggggggct gccagggccc 781 tggcacatgg tgtccgggtt ctggaggacg gcgtgaacta tgcaacaggg aatctgcccg 841 gttgetettt etetatette etettagett tgetgtettg tttgaceate eeagetteeg 901 cttacgaggt gcgcaacgtg tccgggatat accatgtcac gaacgactgc tccaactcaa 25 961 gtattgtgta tgaggcageg gacatgatca tgcacacccc egggtgegtg ecetgegtee 1021 gggagagtaa tttctcccgt tgctgggtag cgctcactcc cacgctcgcg gccaggaaca 1081 geageatece caccacgaca atacgacge acgtegattt getegttggg geggetgete 1141 tetgtteege tatgtaegtt ggggatetet geggateegt ttttetegte teeeagetgt 1201 teacettete acetegeegg tatgagaegg tacaagattg caattgetea atetateeeg 30 1261 gecaegtate aggteacege atggettggg atatgatgat gaactggtea cetacaaegg 1321 ccctagtggt atcgcageta ctccggatcc cacaagccgt cgtggacatg gtggcggggg 1381 cccactgggg tgtcctagcg ggccttgcct actattccat ggtggggaac tgggctaagg 1441 tettgattgt gatgetaete tttgetggeg ttgaegggea eaceeaegtg acagggggaa

1501 gggtagecte cageacceag agectegtgt eetggetete acaaggecea teteagaaaa

1561 tecaactegt gaacaccaac ggeagetgge acateaacag gaccgetetg aattgeaatg

1621 actocotoca aactgggtto attgctgcgc tgttctacgc acacaggtto aacgcgtccg 1681 ggtgcccaga gcgcatggct agctgccgcc ccatcgatga gttcgctcag gggtggggtc 1741 ccatcactca tgatatgcct gagagetegg accagaggec atattgctgg cactacgege 1801 ctegacegtg egggategtg eetgegtege aggtgtgtgg teeagtgtat tgetteaete 5 1861 cgagccetgt tgtagtgggg acgaccgate gttteggege teetaegtat agetgggggg 1921 agaatgagac agacgtgctg ctacttagca acacgcggcc gcctcaaggc aactggtttg 1981 ggtgcacgtg gatgaacagc actgggttca ccaagacgtg cgggggccct ccgtgcaaca 2041 teggggggt eggcaacaac acettggtet geeceaegga ttgetteegg aagcaeeeeg 2101 aggecactta cacaaagtgt ggetegggge eetggttgac acceaggtge atggttgact 10 2161 acccatacag getetggeae tacccetgea etgttaactt taccgtettt aaggteagga 2221 tgtatgtggg gggcgtggag cacaggctca atgctgcatg caattggact cgaggagagc 2281 getgtgactt ggaggacagg gataggteag aacteageec getgetgetg tetacaacag 2341 agtggcagat actgccctgt teetteacea cectaeegge eetgteeact ggettgatee 2401 atetteaceg gaacategtg gaegtgeaat acetgtaegg tatagggteg geagttgtet 15 2461 cetttgcaat caaatgggag tatateetgt tgetttteet tettetggeg gaegegegeg 2521 tetgtgeetg ettgtggatg atgetgetga tageeeagge tgaggeeace ttagagaace 2581 tggtggtcct caatgcggcg tctgtggccg gagcgcatgg ccttctctcc ttcctcgtgt 2641 tettetgege egeetggtae ateaaaggea ggetggteee tggggeggea tatgetetet 2701 atggcgtatg gccgttgctc ctgctcttgc tggccttacc accacgagct tatgccatgg 20 2761 accgagagat ggctgcatcg tgcggaggcg cggtttttgt aggtctggta ctcttgacct 2821 tgtcaccata ctataaggtg ttcctcgcta ggctcatatg gtggttacaa tattttatca 2881 ccagagccga ggcgcacttg caagtgtggg teceeetet caatgttegg ggaggeegeg 2941 atgccatcat ceteettaca tgegeggtee atccagaget aatetttgae atcaccaaac 3001 teetgetege catacteggt eggeteatgg tgeteeagge tggeataact agagtgeegt 25 3061 actttgtacg cgctcagggg ctcatccgtg catgcatgtt agtgcggaag gtcgctggag 3121 gecactatgt ecaaatggee tteatgaage tggeegeget gaeaggtaeg taegtatatg 3181 accatettae teeactgegg gattgggeee aegegggeet aegagaeett geggtggeag 3241 tagagecegt egtettetet gacatggaga etaaacteat eacetggggg geagacaceg 3301 eggegtgtgg ggacateate tegggtetae eagteteege eegaaggggg aaggagatae 30 3361 ttctaggace ggccgatagt tttggagage aggggtggeg gctccttgeg cctatcaegg 3421 cctattccca acaaacgcgg ggcctgcttg gctgtatcat cactagcctc acaggtcggg 3541 cgacctgcgt caatggcgtg tgttggaccg tctaccatgg tgccggctcg aagaccctgg 3601 ccggcccgaa gggtccaatc acccaaatgt acaccaatgt agaccaggac ctcgtcggct 35 3661 ggccggcgcc ccccggggcg cgctccatga caccgtgcac ctgcggcagc tcggaccttt

3721 acttggtcac gaggcatgct gatgtcgttc cggtgcgccg gcggggggac agcaggggga 3781 geetgettte eeceaggeee ateteetaee tgaagggete etegggtgga eeaetgettt 3841 gcccttcggg gcacgttgta ggcatcttcc gggctgctgt gtgcacccgg ggggttgcga 3901 aggeggtgga etteataece gttgagteta tggaaactae catgeggtet eeggtettea 5 3961 cagacaacte ateceeteeg geegtacege aaacatteea agtggeacat ttacaegete 4021 ccactggcag cggcaagagc accaaagtgc cggctgcata tgcagcccaa gggtacaagg .4081 tgetegteet aaaeeegtee gttgeegeea eattgggett tggagegtat atgteeaagg 4141 cacatggcat cgagcctaac atcagaactg gggtaaggac catcaccacg ggcggccca 4201 teacgtacte eacetattge aagtteettg eegaeggtgg atgeteeggg ggegeetatg 10 4261 acateataat atgtgatgaa tgccactcaa etgactcgac taccatettg ggcateggca 4321 cagteetgga teaggeagag aeggetggag egeggetegt egtgetegee aeegeeaege 4381 ctccgggatc gatcaccgtg ccacacccca acatcgagga agtggccctg tccaacactg 4441 gagagattee ettetatgge aaagecatee ceattgagge cateaagggg ggaaggeate 4501 teatettetg ceatteeaag aagaagtgtg aegagetege egeaaagetg aeaggeeteg 15 4561 gactcaatgc tgtagcgtat taccggggtc tcgatgtgtc cgtcataccg actagcggag 4621 acgtcgttgt cgtggcaaca gacgctctaa tgacgggttt taccggcgac tttgactcag 4681 tgategactg caacacatgt gtcacccaga cagtegattt cagcttggat cccaccttca 4741 ccattgagac gacaacgctg ccccaagacg cggtgtcgcg tgcgcagcgg cgaggtagga 4801 ctggcagggg caggagtggc atctacaggt ttgtgactcc aggagaacgg ccctcaggca 20 4861 tgttcgactc ctcggtcctg tgtgagtgct atgacgcagg ctgcgcttgg tatgagctca 4921 cgcccgctga gacctcggtt aggttgcggg cttacctaaa tacaccaggg ttgcccgtct 4981 gecaggacca cetagagtte tgggagageg tetteacagg ceteacecae atagatgece 5041 acttettete ceagaceaaa eaggeaggag acaaceteee etacetegta geataceaag 5101 ccacagtgtg cgccagggct caggctccac ctccatcgtg ggaccaaatg tggaagtgtc 25 5161 tcatacggct aaagcccaca ctgcatgggc caacgcccct gctgtacagg ctaggagccg 5221 ttcaaaatga ggtcactctc acacaccca taaccaaata catcatggca tgcatgtcgg 5281 ctgacctgga ggtcgtcact agcacctggg tgctagtagg cggagtcctt gcggctctgg 5341 cegegtactg cetgaegaca ggeagegtgg teattgtggg eaggateate ttgteeggga 5401 ggccagctgt tattcccgac agggaagtcc tctaccagga gttcgatgag atggaagagt 30 5461 gtgetteaca cetecettae ategageaag gaatgeaget egeegageaa tteaaacaga 5521 aggegetegg attgetgeaa acageeacea ageaagegga ggetgetget eeegtggtgg 5581 agtecaagtg gegageeett gaggtettet gggegaaaca eatgtggaac tteateageg 5641 ggatacagta ettggcagge etatecacte tgeetggaaa eeeegegata geateattga 5701 tggettttae ageetetate accageeege teaceaceea aaataceete etgtttaaca 35 5761 tettgggggg atgggtgget geceaacteg etceeceag egetgetteg getttegtgg

5821 gegeeggeat tgeeggtgeg geegttggea geataggtet egggaaggta ettgtggaca 5881 ttctggcggg ctatggggcg ggggtggctg gcgcactcgt ggcctttaag gtcatgagcg 5941 gegagatgee etceaetgag gatetggtta atttacteee tgeeateett teteetggeg 6001 ccctggttgt cggggtcgtg tgcgcagcaa tactgcgtcg gcacgtgggc ccgggagagg 5 6061 gggctgtgca gtggatgaac cggctgatag cgttcgcttc gcggggtaac cacgtctccc 6121 ccacgcacta tgtgcccgag agcgacgccg cggcgcgtgt tactcagatc ctctccagcc 6181 ttaccatcac teagttgetg aagaggette ateagtggat taatgaggae tgeteeaege 6241 cttgttccgg ctcgtggcta aaggatgttt gggactggat atgcacggtg ttgagtgact 6301 teaagacttg geteeagtee aageteetge egeggttace gggacteeet tteetgteat 10 6361 gccaacgcgg gtacaaggga gtctggcggg gggatggcat catgcaaacc acctgcccat 6421 gtggagcaca gatcaccgga catgtcaaaa atggctccat gaggattgtt gggccaaaaa 6481 cetgeageaa caegtggeat ggaacattee ceateaaege atacaceaeg ggeecetgea 6541 cgccctcccc agegeegaac tattccaggg cgctgtggcg ggtggctgct gaggagtacg 6601 tggaggttac gegggtgggg gatttccact acgtgacggg catgaccact gacaacgtga 15 6661 aatgeceatg eeaggtteea geeeetgaat tttteaegga ggtggatgga gtaeggttge 6721 acaggtatgc tecagtgtgc aaacctetee tacgagagga ggtegtatte eaggteggge 6781 teaaccagta cetggteggg teacagetee catgtgagee egaaceggat gtggeagtge 6841 teaetteeat geteaeegae eeetteteata ttacageaga gaeggeeaag egtaggetgg 6901 ccagggggtc tececetec ttggecaget etteagetag ccagttgtet gegeettett 20 6961 tgaaggegae atgtactace cateatgact eeeggaege tgaceteate gaggeeaace 7021 teetgtggeg geaggagatg ggegggaaca teaccegtgt ggagteagaa aataaggtgg 7081 taateetgga etetttegat eegatteggg eggtggagga tgagagggaa atateegtee 7141 eggeggagat cetgegaaaa eecaggaagt teeceecage gttgeecata tgggeaegee 7201 eggattacaa ecetecaetg etagagteet ggaaggacee ggaetaegte eeeeeggtgg 25 7261 tacacgggtg ccctttgcca tctaccaagg ccccccaat accacctcca cggaggaaga 7321 ggacggttgt cetgacagag tecacegtgt ettetgeett ggeggagete getaetaaga 7381 cctttggcag ctccgggtcg tcggccgttg acageggcac ggcgactggc cctcccgatc 7441 aggecteega egaeggegae aaaggateeg aegttgagte gtacteetee atgeceeeee 7501 togagggaga gecaggggac cocgacetea gegacgggte ttggtetace gtgagegggg 30 7561 aagetggtga ggaegtegte tgetgeteaa tgteetatae atggaeaggt geettgatea 7621 egecatgege tgeggaggag ageaagttge ceateaatee gttgageaac tetttgetge 7681 gteaceaeag tatggtetae teeacaaeat etegeagege aagtetgegg eagaagaagg 7741 teacetttga cagaetgeaa gteetggaeg accaetaceg ggaegtgete aaggagatga 7801 aggcgaaggc gtccacagtt aaggctaggc ttctatctat agaggaggcc tgcaaactga 35 7861 egececaca tteggecaaa tecaaatttg getaegggge gaaggaegte eggageetat

7921 ccagcagggc cgtcaaccac atccgctccg tgtgggagga cttgctggaa gacactgaaa 7981 caccaattga taccaccatc atggcaaaaa atgaggtttt ctgcgtccaa ccagagaaag 8041 gaggeegeaa geeagetege ettategtat teeeagaeet gggggtaegt gtatgegaga 8101 agatggccct ttacgacgtg gtctccaccc ttcctcaggc cgtgatgggc ccctcatacg 5 8161 gattecagta eteteetggg eagegggteg agtteetggt gaatacetgg aaateaaaga 8221 aatgeeetat gggettetea tatgaeaeee getgetttga eteaaeggte aetgagaatg 8281 acateegtae tgaggaatea atttaceaat gttgtgaett ggeeceegaa geeaggeagg 8341 ccataaggte geteacagag eggetttatg tegggggtee cetgaetaat tegaagggge 8401 agaactgegg ttategeegg tgeegegaa gtggegtget gaegaetage tgeggeaaca 10 8461 ccctcacatg ttacttgaag gccactgegg cctgtcgagc tgcaaagctc caggactgca 8521 cgatgctcgt gaacggagac gaccttgtcg ttatctgtga gagtgcggga acccaggagg 8581 atgeggegge cetaegagee tteaeggagg etatgaetag gtatteegee eeceeegggg 8641 accegecca accagaatac gaettggage tgataaegte atgeteetee aatgtgtegg 8701 tegegeacga tgeateegge aaaagggtgt actaceteae eegtgaceee accaeeeeee 15 8761 tegeaegge tgegtgggag acagttagae acaeteeagt caacteetgg etaggeaata 8821 teateatgta tgegeceaec etatgggega ggatgattet gatgaeteat ttetteteta 8881 teettetage teaggageaa ettgaaaaag eeetggattg teagatetae ggggeetgtt 8941 actecattga gecaettgac etaceteaga teattgaaeg actecatggt ettagegeat 9001 tttcactcca cagttactct ccaggtgaga tcaatagggt ggcttcatgc ctcaggaaac 20 9061 ttggggtacc gcctttgcga gtctggagac atcgggccag aagtgtccgc gctaagctac 9121 tgtcccaggg ggggagggct gccacttgcg gcaagtacct cttcaactgg gcagtaaaga 9181 ccaagettaa acteaeteea ateeeggetg egteeeaget agaettgtee ggetggtteg 9241 ttgctggtta caacggggga gacatatatc acagcctgtc tcgtgcccga ccccgttggt 9301 teatgttgtg cetaeteeta etttetgtag gggtaggeat etaectgete eecaaceggt 25 9361 gaacggggag ctaaccacte caggecaata ggccatteee ttttttttt tte (SEQ ID NO: 17)

General Target Region:

5' Untranslated Region - nts 1 - 328 - Internal Ribosome Entry Site (IRES):

5'UUGGGGGCGACACUCCACCAUAGAUCACUCCCCUGUGAGGAACUACUGUCU
UCACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUUGUGCAGCCUC
CAGGACCCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGGUGAGUAC
ACCGGAAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGC
CUGGAGAUUUGGGCGUGCCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGU

CGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGG
AGGUCUCGUAGACCGUGCAU3' (SEQ ID NO: 18)

(1) Subdomain IIIc within HCV IRES - nts 213 - 226 5'AUUUGGGCGUGCCC3' (SEQ ID NO: 19)

(2) Subdomain IIId within HCV IRES - nts 241-267
5'GCCGAGUAGUGUUGGGUCGCGAAAGGC3' (SEQ ID NO: 20)

6.8. Ribonuclease P RNA ("RNaseP")

5

15

X15624 Homo sapiens RNaseP H1 RNA:

- 1 atgggcggag ggaageteat eagtggggee acgagetgag tgegteetgt eactecacte
- 61 ccatgtccct tgggaaggtc tgagactagg gccagaggcg gccctaacag ggctctccct
- 121 gagetteagg gaggtgagtt eecagagaac ggggeteege gegaggteag aetgggeagg
- 181 agatgccgtg gaccccgccc ttcggggagg ggcccggcgg atgcctcctt tgccggagct
- 241 tggaacagac tcacggccag cgaagtgagt tcaatggctg aggtgaggta ccccgcaggg
- 301 gacctcataa cccaattcag accactctcc tccgcccatt (SEQ ID NO: 21)

U64885 Staphylococcus aureus RNaseP (rrnB) RNA:

- 1 gaggaaagte egggeteaca eagtetgaga tgattgtagt gttegtgett gatgaaacaa
 - 61 taaatcaagg cattaatttg acggcaatga aatatcctaa gtctttcgat atggatagag
 - 121 taatttgaaa gtgccacagt gacgtagett ttatagaaat ataaaaggtg gaacgcggta
 - 181 aacccctcga gtgagcaatc caaatttggt aggagcactt gtttaacgga attcaacgta
 - 241 taaacgagac acacttegeg aaatgaagtg gtgtagacag atggttatca cetgagtace
- 301 agtgtgacta gtgcacgtga tgagtacgat ggaacagaac gcggcttat (SEQ ID NO: 22)

M17569 Escherichia coli RNA component (M1 RNA) of ribonuclease P (rnpB) gene:

- 1 gaagetgace agacagtege egettegteg tegteetett egggggagae gggeggaggg
- 61 gaggaaagte egggeteeat agggeagggt geeaggtaae geetgggggg gaaacceaeg
 - 121 accagtgeaa cagagageaa accgccgatg gcccgcgeaa gcgggateag gtaagggtga
 - 181 aagggtgcgg taagagcgca ccgcgcggct ggtaacagtc cgtggcacgg taaactccac
 - 241 ceggagcaag gccaaatagg ggttcataag gtacggceg tactgaacce gggtaggetg
 - 301 cttgagecag tgagegattg ctggectaga tgaatgactg tecaegacag aaceeggett
- 35 361 ateggteagt tteacet (SEQ ID NO: 23)

Z70692 Mycobacterium tuberculosis RNaseP (rnpB) RNA: 1 ccaccggtta cgatcttgcc gaccatggcc ccacaatagg gccggggaga cccggcgtca 61 gtggtgggeg geaeggteag taaegtetge geaacaeggg gttgaetgae gggeaatate 121 ggctccatag cgtcggccgc ggatacagta aaggagcatt ctgtgacgga aaagacgccc 5 181 gacgacgtct tcaaacttgc caaggacgag aaggtcgaat atgtcgacgt ccggttctgt 241 gacctgcctg gcatcatgca gcacttcacg attccggctt cggcctttga caagagcgtg 301 tttgacgacg gettggeett tgacggeteg tegattegeg ggttecagte gatecacgaa 361 teegaeatgt tgettettee egateeegag aeggegegea tegaeeegtt eegegegee 421 aagacgetga atateaaett etttgtgeae gaeeegttea eeetggagee gtacteeege 10 481 gacccgcgca acategcccg caaggccgag aactacctga teagcactgg categccgac 541 acceptatact teggegeega georgagtte tacatttteg atteggtgag ettegacteg 601 cgcgccaacg gctccttcta cgaggtggac gccatctcgg ggtggtggaa caccggcgcg 661 gcgaccgagg ccgacggcag tcccaaccgg ggctacaagg tccgccacaa gggcgggtat 721 ttcccagtgg cccccaacga ccaatacgtc gacctgcgcg acaagatgct gaccaacctg 15 781 atcaacteeg getteateet ggagaaggge eaceaegagg tgggeagegg eggacaggee 841 gagatcaact accagttcaa ttcgctgctg cacgccgccg acgacatgca gttgtacaag 901 tacatcatca agaacaccgc ctggcagaac ggcaaaacgg tcacgttcat gcccaagccg 961 ctgttcggcg acaacgggtc cggcatgcac tgtcatcagt cgctgtggaa ggacggggcc 1021 ccgctgatgt acgacgagac gggttatgcc ggtctgtcgg acacggcccg tcattacatc 20 1081 ggcggcetgt tacaccaege geegtegetg etggcettea ecaaccegae ggtgaactee 1141 tacaagegge tggtteeegg ttacgaggee cegateaace tggtetatag eeagegeaac 1201 eggteggeat gegtgegeat eeegateace ggeageaace egaaggeeaa geggetggag 1261 ttccgaagec ccgactegte gggcaaceeg tatetggegt teteggecat getgatggea 1321 ggcctggacg gtatcaagaa caagatcgag ccgcaggcgc ccgtcgacaa ggatctctac 25 1381 gagetgeege eggaagagge egegagtate eegeagacte egaceeaget gteagatgtg 1441 ategacegte tegaggeega ecacgaatac etcacegaag gaggggtgtt cacaaaegae 1501 ctgatcgaga cgtggatcag tttcaagcgc gaaaacgaga tcgagccggt caacatccgg 1561 cegeatecet aegaattege getgtaetae gaegtttaag gaetettege agteegggtg 1621 tagagggage ggegtgtegt tgeeagggeg ggegtegagg tttttegatg ggtgaeggtg 30 1681 geoggeaacg gegegegae cacegetgeg aagageeegt ttaagaacgt teaaggaegt 1741 ttcagecggg tgccacaacc cgcttggcaa tcatctcccg accgecgage gggttgtctt 1801 tcacatgcgc cgaaactcaa gccacgtcgt cgcccaggcg tgtcgtcgcg gccggttcag 1861 gttaagtgte ggggattegt egtgegggeg ggegteeaeg etgaceaaeg gggeagteaa 1921 ctcccgaaca ctttgcgcac taccgccttt gcccgccgcg tcacccgtag gtagttgtcc 35 1981 aggaatteec eacegtegte gtttegeeag eeggeegga eeggaeege attgagetgg

2041 cgcccgggtc ccggcagctg gtcggtgggc ttgccgcgca ccaacaccag cgcgttgcgg 2101 gecegggtgg eggteageca ggeetgaegg ageageteca egteggetge gggaaccaga 2161 teggeggeeg egatgacate eagggattge agegtegagg tgttgtgeag ggegggaace 2221 tggtgcgcat gctgtagctg cagcaactgc acggtccatt cgatgtcggc cagtccgccg 5 2281 eggeceagtt tggtgtgtgt gttggggteg geaecgegeg geaacegete ggactegata 2341 egggeettga tgeggegaat etegegeace gagteagegg acacacegte gggeggatae 2401 egegttttgt egaccateeg taggaatege tgacceaact eggeategee ggeaacegeg 2461 tgtgcgcgta gcagggcctg gatctcccat ggctgtgccc actgctcgta gtatgcggcg 2521 taggacccca gggtgcggac cagcggaccg ttgcggccct cgggtcgcaa attggcgtcg 10 2581 agetecageg geggategae getgggtgte eccageageg eccgaaceeg eteggegate 2641 gatgtegace attteacege eegtgeateg tegacgeegg tggeeggete acagacgaac 2701 atcacgtcgg catccgaccc gtagcccaac tcggcaccac ccagccgacc catgccgatg 2761 accgcgatgg ccgccggggc gcgatcgtcg tcgggaaggc tggcccggat catgacgtcc 2821 agegeggeet geageacege eacceacace gaegteaaeg eeeggeacac eteggtgaee 15 2881 tegageagge egageaggte egeegaaceg atgegggeea getetegaeg aegeagegtg 2941 egegegeegg egatggeeeg eteegggteg gggtagegge tegeegagge gateagegee 3001 cgagecaegg eggegggete ggtetegage agetteggge eegeaggeee gteetegtae 3061 tgetggatga eeegeggege gegeateaac agateeggea cataegeega ggtaceeaag 3121 acatgcatga gccgcttggc caccgcgggc ttgtcccgca gcgtggccag gtaccagctt 20 3181 teggtggeca gegeeteact gageegeegg taggecagea gteegeegte gggategggg 3241 gcatacgaca tecagtecag cageetggge ageageaceg aetgeaceeg teegegeegg 3301 ccgctttgat tgaccaacge cgacatgtgt ttcaacgegg tctgcggtcc ctcgtagccc 3361 agegeggeea geeggegeee egeggeetee aaegteatge egtgggegat etecaaeeeg 3421 gtcgggccga tcgattccag cagcggttga tagaagagtt tggtgtgtaa cttcgacacc 25 3481 egeacettet gettettgag tteeteeege ageaceegg eegeategtt teggeeateg 3541 ggccggatgt gggccgcgc cgccagccag cgcactgcct cctcgtcttc gggatcggga 3601 agcaggtggg tgcgcttgag ccgctgcaac tgcagtcggt gctcgagcag cctgaggaac 3661 teatacgaeg eggteatgtt egeegegtee teaegeeega tgtageegee ttegeeeaac 3721 geogecaatg egtecaeegt ggaegecaee egtaaegaet egtegetaeg ggeatgaaee 30 3781 agetgeagta getgtaegge gaacteeaeg tegegeaate egeegetgee gagtttgage 3841 tegeggeege ggacategge gggeaceage tgetecaeee geegeegeat ggeetgeaee 3901 tegaceacaa agtettegeg etegeagget egecacacea teggeateaa ggeggteagg 3961 taacgetege caagtteege gtegecaaeg aetggeegtg ettteageaa egeetgaaae 4021 teccaggtet tggeccageg etggtagtag gegatgtgeg aetegagegt aeggaecage 35 4081 teccegttge geceeteegg aegeagggeg gegteeacet egaaaaagge egeegaggee

4141 accegeatea tetegetgge eaeggegeg ttgegegggt eggagegete ggeaacgaat 4201 atgacatega egtegetgac gtagtteagt tegegegeae egeaettgee eategegatg 4261 accgccagge geggtggcgg gtgctcgccg cacacgctcg cetcggccac gcgcagcgcc 4321 geogecagag eggegteege ggegteegee aggegtgegg eeaceaeggt gaatggeage 5 4381 accggttegt cetegacegt egeggecagg tegagagegg ceagcattag cacgtagteg 4441 eggtaetggg ttegeaateg gtgeaegage gageeeggea taeceteega tteetegaeg 4501 caetegaega acgaeegetg cagetggtea tgggaeggea gtgtgaeett geeeegeage 4561 aatttccagg actgcggatg ggcgaccagg tgatcgccca acgccagcga cgagcccagc 4621 accgagaaca gccgccgcg cagactgcgt tcgcgcagca gagccgcgtt gagctcgtcc 10 4681 catcoggtgt etggattete egacageegg ateaaggege geagegegge ateggegtee 4741 ggagcgcgtg acagcgacca cagcaggtcg acgtgcgcct gatcctcgtg ccgatcccac 4801 cccagctgag ccagacgctc accagcaggg gggtcaacta atccgagccg gccaacgctg 4861 ggcaacttcg gccgctgcgt ggcgagtttg gtcacgacca cgacggtagc gcaaagcgcg 4921 teggegtegg atcaaceggt agatetggge tacagegaca ggtaggtgeg eagetegtat 15 4981 ggcgtgacgt ggctgcggta gttcgcccac tccgtgcgct tgttgcgcaa gaaaaagtca 5101 ctatecaaac tggacggcaa tteteggtae eccategete ggegtteete gggtgtgagg 5161 teceataegt tgteetegge etgegggeee ageaegtaae eettetetae aeeeegeaat 5221 cccgcggcca gcagcacggc gaatgtcaga tagggattgc acgccgaatc agggctgcgt 20 5281 acttegacce geogegacga ggtettgtge ggegtgtaca teggeacceg caetagggeg 5341 gateggttgg eggececca egaegeggee gtgggegett egeegeeetg eaceageege 5401 ttgtaagagt tgacccactg atttgtgacc gegetgatet egeaagegtg eteeaggate 5461 ccggcgatga acgatttacc cacttccgac agctgcagcg gatcatcagc gctgtggaac 5521 gegttgacat caccetegaa caggeteatg tgggtgtgca tegeogagee egggtgetgg 25 5581 cegaatgget tgggeatgaa egaegeeegg gegeeetett eeagegegae ttetttgatg 5641 acgtagegga aggteateae gttgteagee ategacagag egteggeaaa eegcaggteg 5701 atctcctgct ggccgggtgc gccttcgtga tggctgaact ccaccgagat gcccatgaat 5761 tecagggeat egategegtg geggegaaag tteaaggegg agtegtgeae egettggteg 5821 aaatageegg egttgtegae egggaeggge aeegaeeegt eetegggtee gggettgage 30 5881 aggaagaact cgattteggg atgeaegtag eaggagaage egagttegee ggeettegte 5941 agetgeegee geaacaegtg eegegggtee geecaegaeg gegageegte eggeatggtg 6001 atgtegeaaa acateegege tgagtggtgg tggeeggaac tggtggeeca gggeageace 6061 tggaaggteg aegggteegg gtgegeeace gtateggatt eegagaeeeg egeaaageee 6121 tegategagg atcegtegaa geegatgeet teetegaagg egeectegag tteggetggg 35 6181 gcgatggcga ccgacttgag gaaaccgagc acgtctgtga accacagccg gacgaagcgg

	6241	atgtegegtt etteeagggt acgaagaacg aatteettet gteggteeat acetegaaca
	6301	gtatgcactg tetgttaaaa eegtgttaee gatgeeegge eagaagegtt geggggegge
5	6361	ccgcaagggg agtgcgcggt gagttcaggg cgcgcaccgc agactcgtcg gcggcaaggt
	6421	cccgtcgaga aaatagtgca tcaccgcaga gtccacacac tggttgccat cgaacaccgc
J	6481	agtgtgttgg gtgccgtcga aggtgatcag cggtgcgccc agctggcggg ccaggtctac
	6541	cccggactga tacggagtgg ccgggtcgtg ggtggtggac accacgacga ccttgccagc
	6601	cccggccggc gccgcgggt gcggcgtcga cgttgccggc accggccaca gcgcgcacag
	6661	ategeggggg geggateegg tgaaetgeee gtagetaagg aaeggggega eetgaeggat
10	6721	ccgttggtcg gcggccaccc aggccgctgg atcggccggt gtgggcgcat cgacgcaccg
10	6781	gaccgcgttg aacgcgtcct ggtcgttgct gtagtgcccg tctgcatccc ggccgtcata
	6841	gtegteggea ageaceagea agtegeegge gtegetgeeg egetgeagee eeageagaee
	6901	actggtcagg tacttccagc gctgagggct gtacagcgcg ttgatggtgc ccgtcgtcgc
	6961	gteggegtag eteaggeeae gtggateega egtettaeee ggettetgea eeagegggte
15	7021	aaccagggcg tggtagcggt tgacccactg ggccgagtcg gtgcccagag ggcaggccgg
15	7081	cgagcgggcg cagtcggcgg cgtagtcatt gaaagcggtc tgaaatcccg ccatttggct
	7141	gatgetttee tegattggge taaeggetgg ategatageg eegtegagga eeategeeeg
	7201	cacatgagta cegaacegtt ceaggtaage ggtgeecaac teggtgeegt agetgtatee
	7261	gaggtagttg atctgategt cacetaaege ttggegaace atgteeatgt eeegtgegae
20	7321	ggacgeggta cegatattgg ceaagaaget gaageecate eggteaacae agteetggge
20	7381	caactgccgg tagacctgtt cgacgtgggt gacaccggcc ggactgtagt cggccatcgg
	7441	ategegeegg taegegtega aeteggegte ggtgegaeae egeaaegeag gggtegagtg
	7501	geegaeeeet etegggtega ageeeaeeag gtegaagtgg eggagaatgt eggtgtegge
	7561	gategegggt gecatagegg egaceatgte gacegeegae geeeegggte eeceaggatt
25	7621	gaccagcagt geteegaate getgteeegt egeggggaeg eggateaceg ecaacttege
	7681	ttgtgtccca ccgggttggt cgtagtcgac ggggacggac accgtcgcgc agcgtgcagt
	7741	gegaattteg etggtgtegg egatgaacte geggeagetg tteeaactet gttgeggege
	78 01	cacgacegge geaceegggg tttggeegge geegggttet teagtegege eggeeaaegg
	7861	gggegetget aggggeagte egeegageag eaaccegaag gacageageg eegageteaa
30	7921	eggtetgegg egecacatgg eegecategt etcaceggeg aatacetgtg aeggegegaa
	7981	atgateaeae ettegtttet tegeeeeget ageaettgge geegetggge ggegtggtge
	8041	egeegattaa ataegeegte aegtaetegt eaatgeaget gtegeeetgg aataecaeeg
	8101	tgtgctgggt tccgtcgaag gtcagcaacg aaccgcgaag ctggttcgcc aggtcgaccc
	8161	eggeettgta eggegtegee gggteatggg tggtggatae caccaccgte ggeaetagge
35	8221	egggegeega gaeggeatgg ggetgaettg tgggtggeae eggeeagaae gegeaggtge
	8281	ccapeggege ateaceggtg aactteeegt ageteatgaa eggtgegate teeegggege

8341 ggcggtcttc gtcgatgacc ttgtcgcgat cggtaaccgg gggctgatcg acgcaattga 8401 tegecaceeg egegteaceg gaattgttgt ageggeegtg egagteeega egeatgtaca 8461 tgteggeeag ageeageagg gtgteteege gattgtegae eageteegae ageeegtegg 8521 tcaagtgttg ccacagattc ggtgagtaca gcgccataat ggtgcccacg atggcgtcgc 5 8581 tataactcag cccgcgcga tccttcgtgc gcgccggcct gctgatcctc gggttgtccg 8641 ggtcgaccaa cggatcgacc aggctgtggt agacctcgac ggctttggcc gggtcggcgc 8701 ccagegggea gecegegtte ttggegeagt eggeggeata gttgttgaac gegteetgga 8761 agccettgge etggegeage teegeetega tgggategge attggggteg aeggeaeegt 8821 cgagaateat tgcccgcacc cgctgcggaa attcctcggc atacgcggag ccgatccggg 10 8881 tgccgtacga gtagcccagg taggtcagct tgtcgtcgcc caacgccgcg cgaatggcat 8941 ccaggtcctt ggcgacgttg accgtcccga catgggccag aaagttcttg cccatcttgt 9001 ccacacageg acegacgaat tgettggtet egttetegat gtgegecaea eceteeegge 9061 tgtagtcaac ctgcggctcg gcccgcagcc ggtcgttgtc ggcatcggag ttgcaccaga 9121 tegeoggeeg ggaegaegee acceegeggg ggtegaacee aaccaggteg aacetttegt 15 9181 geaccegett eggeaatgte tggaagaege eeaaggegge etegataeeg gattegeegg 9241 gtccaccggg atttatgacc agcgaaccga tcttgtctcc cgtcgccgga aagcgaatca 9301 gegecagege egecaegtea ceategggge ggtegtagte gaeeggtaea gegagettge 9361 egcataaege geegeegggg atetttaett gegggtttga egaeeggeae ggtgteeaet 9421 ccaccggetg geccagette ggeteegeea tacgagegeg teeccegace aegeggatge 20 9481 ageceacaag aaccaaegee aeggeggega gegeggeeca gateaacage atgegegega 9541 tettgtegeg gegagacage etcatgecea caatgetgee agageagace egagateetg 9601 gecageggee accepteggee gactaacegg eegetgecag eagteetgee ategeegatg 9661 gegaactegt eggecatece ceatacgtee ggtaacagat eegggeaaga cacegaceeg 9721 tegaceggat ceggeaeggg egegteggee teggeggtge acaactgega cateaggttg 25 9781 gegetggeac eccgtecaeg eeggeatggt geacettgge eategeega gggegateee 9841 cgatgccgtc caccccttcg acgaacccat ctcccacggc ggtcgccggc agcgacgcga 9901 tgtggccgca gatctccgag agttcggccc gcccgcccgg cgacggcaac ccgatgccgt 9961 gcaagtgacg atcgatgtga ggttcaaggt tcagcgcact gctggcaagc tttttccgaa 10021 accgeggeet egeettgate tggagteaga acgegteaeg eageeggtea aaggegtaac 30 10081 ccatgctega gcaaacatgc atgggctgag tggacgtttc cagacacagc aactggcgtc 10141 caggocactg agocgotgca tgcgcgatgg tatgccgatg ggggccccgg gcgcgtctga 10201 ggggaagaag tggcagactg tcagggtccg acgaacccgg ggaccctaac gggccacgag 10261 gategaceeg accaccatta gggacagtga tgtetgagea gactatetat ggggecaata 10321 cccccggagg ctccgggccg cggaccaaga tccgcaccca ccacctacag agatggaagg 35 10381 cegacggcca caagtgggcc atgctgacgg cetacgacta ttcgacggcc cggatetteg

10441 acgaggccgg catcccggtg ctgctggtcg gtgattcggc ggccaacgtc gtgtacggct 10501 acgacaceae egtgeegate tecategaeg agetgateee getggteegt ggegtggtge 10561 ggggtgecce geacgeactg gtegtegeeg acetgeegtt eggeagetae gaggeggge 10621 ceacegeege gttggeegee gecaceeggt teeteaagga eggeggegea eatgeggtea 5 10681 agetegaggg eggtgagegg gtggeegage aaategeetg tetgaeegeg gegggeatee 10741 eggtgatgge acacategge tteacecege aaagegteaa eacettggge ggetteeggg 10801 tgcagggccg cggcgacgcc gccgaacaaa ccatcgccga cgcgatcgcc gtcgccgaag 10861 ccggagcgtt tgccgtcgtg atggagatgg tgcccgccga gttggccacc cagatcaccg 10921 gcaagettae catteegaeg gtegggateg gegetgggee caactgegae ggeeaggtee 10 10981 tggtatggca ggacatggcc gggttcagcg gcgccaagac cgcccgcttc gtcaaacggt 11041 atgccgatgt cggtggtgaa ctacgccgtg ctgcaatgca atacgcccaa gaggtggccg 11101 geggggtatt eccegetgae gaacacagtt tetgaccaag eegaatcage eegatgegeg 11161 ggcattgegg tggegecetg gatgeegteg aegeeggatt geeggeggg aegegeeage 11221 gggacccatc ggcgtcgcgt tcgccggttg agcccggggt gagcccagac attcgatgtg 15 11281 cccaacacca teegecacag eccaattgat gtggeactet atgeatgeet ateeeegace 11341 aaccaccacc geggegaege atcatgaeeg gaggegaaga tgccagtaga ggegeceaga 11401 ccagegegee atetggaggt egagegeaag ttegaegtga tegagtegae ggtgtegeeg 11461 tegttegagg geategeege ggtggttege gtegageagt egeegaeeca geagetegae 11521 geggtgtact tegacacace gtegeaegac etggegegea accagateae ettgeggege 20 11581 egeaceggeg gegeegaege eggetggeat etgaagetge eggeeggaee egacaagege 11641 accgagatge gagcaccget gtccgcatca ggcgacgetg tgccggccga gttgttggat 11701 gtggtgctgg cgatcgtccg cgaccagccg gttcagccgg tcgcgcggat cagcactcac 11761 cgcgaaagcc agatcctgta cggcgccggg ggcgacgcgc tggcggaatt ctgcaacgac 11821 gacgtcaccg catggtcggc cggggcattc cacgccgctg gtgcagcgga caacggccct 25 11881 geegaacage agtggegega atgggaactg gaactggtea ceaeggatgg gaeegeegat 11941 accaagetae tggacegget agecaaeegg etgetegatg eeggtgeege acetgeegge 12001 cacggeteca aactggegeg ggtgeteggt gegacetete eeggtgaget geceaaegge 12061 cegeageege eggeggatee agtacacege geggtgteeg agcaagtega geagetgetg 12121 ctgtgggatc gggccgtgcg ggccgacgcc tatgacgccg tgcaccagat gcgagtgacg 30 12181 accegcaaga teegcagett getgaeggat teecaggagt egtttggeet gaaggaaagt 12241 gegtgggtca tegatgaact gegtgagetg geegatgtee tgggegtage eegggaegee 12301 gaggtactcg gtgaccgcta ccagcgcgaa ctggacgcgc tggcgccgga gctggtacgc 12361 ggccgggtgc gcgagcgct ggtagacggg gcgcggcggc gataccagac cgggctgcgg 12421 cgatcactga tegeattgeg gtegeagegg taetteegte tgetegaege tetagaegeg 35 12481 ettgtgteeg aacgegeeca tgecaettet ggggaggaat eggeaceggt aaceategat

12541 geggeetace ggegagteeg caaageegea aaageegeaa agaeegeegg egaeeaggeg 12601 ggcgaccacc accgcgacga ggcattgcac ctgatccgca agcgcgcgaa gcgattacgc 12661 tacaccgcgg cggctactgg ggcggacaat gtgtcacaag aagccaaggt catccagacg 12721 ttgctaggeg atcatcaaga cagegtggte ageegggaac atctgateea geaggeeata 5 12781 geogegaaca eegeeggega ggacacette acetaeggte tgetetacea acaggaagee 12841 gacttggccg agcgctgccg ggagcagctt gaagccgcgc tgcgcaaact cgacaaggcg 12901 gtccgcaaag cacgggattg agcccgccag gggcggacga gttggcctgt aagccggatt 12961 etgtteegeg eegecacage caagetaaeg geggeaegge ggegaecate eatetggaea 13021 caccettace gggtgeeteg ageggeetac eegeaggete gggegageaa eeeteaageg 10 13081 cctgcgcggc cgcactttcg gtgcggcctt cttggccttg cttcgggtgg ggtttgccta 13141 gecaecegg teaceeggaa tgetggtgeg etettaeege aeegttteae eettgeeaee 13201 acgaggatgg cggtctgttt tctgtggcac tttcccgcga gtcacctcgg attgccgtta 13261 gcaatcaccc tgctctgtga agtccggact ttcctcgact cgacgctgaa cctcgtgaat 13321 ccacacaage cctacgegag ccgcggccgc ccagccaact catccgcgac gaccacgcta 15 13381 eccegetggg eggtgtegeg gecagtgtga eegetggaeg acaeggetag teggaeagee 13441 gateeggegg geagteetta tegtggaetg gtgacaeggt gggacaaaeg egtegaetee 13501 ggcgactggg acgccatcgc tgccgaggtc agcgagtacg gtggcgcact gctacctcgg 13561 ctgatcacce ceggegagge egeceggetg egeaagetgt aegeegaega eggeetgttt 13621 cgctcgacgg tcgatatggc atccaagcgg tacggcgccg ggcagtatcg atatttccat 20 13681 gececetate eegagtgate gagegtetea ageaggeget gtateecaaa etgetgeega 13741 tagegegeaa etggtgggee aaactgggee gggaggegee etggeeagae ageettgatg 13801 actggttggc gagetgteat geegeeggee aaaccegate cacagegetg atgttgaagt 13861 acggcaccaa cgactggaac gecetacacc aggateteta eggcgagttg gtgttteege 13921 tgcaggtggt gatcaacctg agcgatccgg aaaccgacta caccggcggc gagttcctgc 25 13981 ttgtcgaaca gcggcctcgc gcccaatccc ggggtaccgc aatgcaactt ccgcagggac 14041 atggttatgt gttcacgacc cgtgatcggc cggtgcggac tagccgtggc tggtcggcat 14101 ctccagtgcg ccatgggctt tcgactattc gttccggcga acgctatgcc atggggctga 14161 tettteaega egeageetga ttgeaegeea tetatagata geetgtetga tteaecaate 14221 gcaccgacga tgccccatcg gcgtagaact cggcgatgct cagcgatgcc agatcaagat 30 14281 gcaaccgata taggacgccc gacccggcat ccaacgccag ccgcaacaac attttgatcg 14341 gegtgacatg tgacaccacc ageaccgteg egeettegta gecaacgatg atecgateac 14401 gtccccgccg aacccgccgc agcacgtcgt cgaagctttc cccacccggg ggcgtgatgc 14461 tggtgtcctg cagccagcga cggtgcagct cgggatcgcg ttctgcggcc tccgcgaacg 14521 teagececte ceaggegeeg aagteggtet egaceaggte gteategaeg accaegteea 35 14581 gggccagggc tetggeggeg gtcacegegg tgtegtaage eegetgtage ggegaggaga

14641 ccacegeage gatecegeeg egeegegea gataceegge egeegeacea acetggegee 14701 accecacete gttcaacece gggttgeege geecegaata geggegttge teegacaget 14761 ccgtctgccc gtggcgcaac aaaagtagtc gggtgggtgt accgcgggcg ccggtccagc 14821 egggagatgt eggtgaeteg gtegeaaega ttttggeagg ateegeatee geegeageeg 5 14881 attgegegge ggegteeate gegteattgg ceaaceggte tgeataegtg tteegggeac 14941 geggaaceca etegtagttg ateetgegaa aetgggaege caaegeetga geetggaeat 15001 agagetteag eagateeggg tgettgacet teeacegeee ggacatetge teeaceacea 15061 gettggagte cateageace geggeetegg tggeacetag ttteaeggeg tegtecaaac 15121 eggetateag geogeggtat teggegaegt tgttegtege eeggeegate geetgettgg 10 15181 actoggocag caeggtggag tgateggegg tecacaccae egegeegtat eeggeeggte 15241 egggattgcc eegegateeg eegteggett egatgacaac ttteacteet caaateette 15301 gageegeaac aagategete egeatteegg geagegeace aetteateet eggeggeege 15361 egagatetgg gecagetege egeggeegat etegateegg eaggeaceae ategatgaee 15421 ttgcaaccgc ceggeceetg geoegeetee ggeoegetgt etttegtaga geoegeaag 15 15481 ctcgggatca agtgtcgccg tcagcatgtc gcgttgcgat gaatgttggt gccgggcttg 15541 gtcgatttcg gcaagtgcct cgtccaaagc ctgctgggcg gcggccaggt cggcccgcaa 15601 cgcttggage geeegegaet eggeggtetg ttgageetge ageteetege ggegtteeag 15661 cacctecage agggeatett ceaaactgge ttgacggegt tgeaagetgt egagetegtg 15721 etgeagatea gecaattget tggegteegt tgeaceegaa gtgageaaeg aeeggteeeg 20 15781 gtegecaege ttacgeaecg categatete egaeteaaaa egegaeaect ggeegteeaa 15841 gtcctccgcc gcgattcgca gggccgccat cctgtcgttg gcggcgttgt gctcggcctg 15901 cacctgctgg taagccgccc gctgcggcag atgggtagcc cgatgcgcga tccgggtcag 15961 etcageatec agettegeca attecagtag egacegttge tgtgecacte eggettteat 16021 geetgatete teeeagttte gtgategagg tteeaegggt eggtgeagat ggtgeacaca 25 16081 cgcaccggca gcgacgcgcc gaaatgagac cgcaacactt cggcggcctg gccgcaccac 16141 gggaattcgc ttgcccaatg cgcgacgtcg atcagggcca cttgcgaagc tcggcaatgc 16201 tegteggetg gatgatgteg cagateggee gtaacgtacg ettgeaegte egeggeggee 16261 acggtggcaa gcaacgagte cccggcgccg ccgcagaccg cgacccgcga caccagcagg 16321 tegggatece eggeggegeg caeaeeggte geagteggeg geaaegegge etceagaegg 30 16381 gcaacaaagg tgcgcagcgg ttcgggtttt ggcagtctgc caatccggcc taacccgctg 16441 ccgaccggcg gtggtaccag cgcgaagatg tcgaatgccg gctcctcgta agggtgcgcg 16501 gegegeateg eegecaacae eteggegege getegtgegg gtgegaegae etegaeeegg 16561 tecteggeea ecegttegae ggtacegaeg etgeetatgg egggegaege ecegtegtge 16621 gecaggaact geceggtace egegacacte eagetgeagt gegagtagte gecgatatgg 35 16681 ceggeacegg ceteaaagae egetgeeege acegeetetg agttetegeg eggeacatag

16741 atgacccact tgtcgagatc ggccgctccg ggcaccgggt cgagaacggc gtcgacggtc 16801 agaccaacag cgtgtgccag cgcgtcggac acacccggcg acgccgagtc ggcgttggtg 16861 tgegeggtaa acaacgageg aceggteegg ateaggeggt geaceageae accetttgge 16921 gtgttggccg cgaccgtatc gaccccacgc agtaacaacg ggtggtgcac caatagcagt 5 16981 ccggcctggg gaacctggtc caccaccgcc ggcgtcgcgt ccaccgcaac ggtcaccgaa 17041 tecaccaegt egteggggte geegeacaec agaeceaecg aateceaega etgggeaage 17101 egeggeggt aggeetggte eageaegteg atgacategg ceageegeae acteategge 17161 gteeteeaeg etttgeeeae teggegateg eegeeaeeag eaegggeeae teegggegea 17221 ccgccgccg caggtaccgc gcgtccaggc cgacgaaggt gtcaccgcgg cgcaccgcaa 10 17281 ttcctttgct ctgcaaatag tttcgtaatc cgtcagcatc ggcgatgttg aacagtacga 17341 aaggggeege accategace aceteggeae ceaeegatet eagteeggee accateteeg 17401 cgcgcagege cgtcaaccgc accgcategg ctgcggcage ggcgaccgcc cgggggggcgc 17461 ageaageage gatggeegte agttgeaatg tteecaaegg ceagtgeget egetgeaegg 17521 teaacegage cageacgtet ggegageega gegegtagee caceggaat eeggecageg 15 17581 accaegtttt egteaageta eggageacea geacateggg eagegagtea teggeeaaeg 17641 attgeggete geegggaace caateagega aegeetegte gaccaecagg atgegteeeg 17701 geoggegtaa etegageage tgetegegga ggtgeageae egaggtgggg ttggteggat 17761 tacccacgac gacaaggteg gegtegteag geaegtgege ggtgteeage acgaaeggeg 17821 getttaggac aacatggtge geegtgatte eggeageget caaggetatg geeggetegg 20 17881 tgaacgcggg cacgacgatt gctgcccgca ccggacttag gttgtgcagc aatgcgaatc 17941 cctccgccgc cccgacgagc gggagcactt cgtcacgggt tctgccatga cgttcagcga 18001 cegegtettg egeceggtge acategtegg tgeteggata gegggeeage teeggeagea 18061 gegeggegag etgeeggace aaccatteeg ggggeeggte atggeggaeg ttgaeggega 18121 agtecageae geegggegeg acateetgat caeegtggta gegegeegeg geaageggge 25 18181 tagtgtctag actcgccaca gcgtcaaaca gtagtgggcc ggtgtgcggg ccaagaatcc 18241 agagcaccgc cgacgcgttg tctacgcggc gacaaccgcg acatcacagg cagctaacag 18301 ggcgtcggcg gtgatgatcg tcaggccaag cagctgtgcc tgggcgatga gcacacggtc 18361 gaatggatgt cgatggtgat ccggaagete tgcggtgcgc agtgtgtgcg tggtcaactg 18421 acageggega egtgeegeag eggegeatte gategggeae gtaagaagee gatggetegg 30 18481 geggegggag ettgeegagg eggtagttga tegegatete eeaggeactg geggeegaca 18541 agagaatget gttgeggaeg teetgaacaa tegeeegtgt ttegttgaeg geateegeag 18601 ccaaacgtgg gtgtcgatga ggtagcgctt caccggtgaa agcgttcgag cacgtcgtct 18661 gacaacggag cgtccaaatc gtcgggcacg cggtacacgc catggtcaat gcctaaccgc 18721 cgagteteat gaggatgeag eggeaeaage tttgetaceg getegeegeg gegggeaate 35 18781 teaacetetg eeegeegtag aegageegea geagetegga eaggegtgte ttegeetegt

18841 gaacgccgac ccgcttcgca ggcgcccaga ctttcgcgtc gaccacctgc tcaccaaact 18901 tegegateat egeetgatae eacagegeea aegggtageg gtttgteeaa eegettegte 18961 aacgacaatg ggatcgtgac cgacacgacc gcgagcggga ccaattgccc gcctcctcca 19021 egegeegeeg eaeggegege ategtegeeg ggtgaatege egeagetggt gatettegat 5 19081 etggacggca egetgacega eteggegege ggaategtat eeagetteeg acaegegete 19141 aaccacateg gtgeeceagt accegaagge gacetggeea etcacategt eggeeegeec 19201 atgcatgaga egetgegege catggggete ggegaateeg eegaggagge gategtagee 19261 taccgggccg actacagcgc ccgcggttgg gcgatgaaca gcttgttcga cgggatcggg 19321 ccgctgctgg ccgacctgcg caccgccggt gtccggctgg ccgtcgccac ctccaaggca 10 19381 gagccgaccg cacggcgaat cctgcgccac ttcggaattg agcagcactt cgaggtcatc 19441 gegggegega geaeegatgg etegegagge ageaaggteg aegtgetgge eeaegegete 19501 gegeagetge ggeegetace egageggttg gtgatggteg gegaeegeag ceaegaegte 19561 gacggggggg ccgcgcacgg catcgacacg gtggtggtcg gctggggcta cgggcgcgcc 19621 gactttateg acaagacete caccacegte gtgacgeatg cegecacgat tgacgagetg 15 19681 agggaggege taggtgtetg atccgetgea egteacatte gtttgtaegg geaacatetg 19741 ccggtcgcca atggccgaga agatgttcgc ccaacagctt cgccaccgtg gcctgggtga 19801 cgcggtgcga gtgaccagtg cgggcaccgg gaactggcat gtaggcagtt gcgccgacga 19861 gegggeggee ggggtgttge gageceaegg etaceetace gaecaeeggg eegeacaagt 19921 eggeacegaa eacetggegg eagacetgtt ggtggeettg gacegeaace aegetegget 20 19981 gttgeggeag eteggegteg aageegeeeg ggtaeggatg etgeggteat tegaeeeaeg 20041 ctogggaacc catgogeteg atgtegagga tecetactat ggegateact cegaettega 20101 ggaggtette geegteateg aateegeeet geeeggeetg eacgaetggg tegaegaacg 20161 tetegegegg aacggacega gttgatgece egectagegt teetgetgeg geeeggetgg 20221 ctggcgttgg ccctggtcgt ggtcgcgttc acctacctgt gctttacggt gctcgcgccg 25 20281 tggcagctgg gcaagaatgc caaaacgtca cgagagaacc agcagatcag gtattccctc 20341 gacaccccgc eggtteeget gaaaaccctt etaccacage aggattegte ggegeeggac 20401 gegeagtgge geegggtgae ggeaacegga eagtacette eggaegtgea ggtgetggee 20461 cgactgcgcg tggtggaggg ggaccaggcg tttgaggtgt tggccccatt cgtggtcgac 20521 ggcggaccaa ccgtcctggt cgaccgtgga tacgtgcggc cccaggtggg ctcgcacgta 30 20581 ccacegatee ecceetigee ggtgeagaeg gtgaceatea ecgegegget gegtgactee 20641 gaaccgagcg tggcgggcaa agacccattc gtcagagacg gcttccagca ggtgtattcg 20701 atcaataccg gacaggtcgc cgcgctgacc ggagtccagc tggctgggtc ctatctgcag 20761 ttgatcgaag accaaccegg egggetegge gtgeteggeg tteegeatet agateeeggg 20821 ccgttcctgt cctatggcat ccaatggatc tcgttcggca ttctggcacc gatcggcttg 35 20881 ggctatttcg cetacgccga gatccgggcg cgccgccggg aaaaagcggg gtcgccacca

20941 ccggacaage caatgacggt cgagcagaaa ctcgctgacc gctacggccg ccggcggtaa 21001 accaacatca eggecaatac egeageceee geetggacea eeegegacag caccaeggeg 21061 eggegeagat eggecacett gggegaeegg eegtegeeea aggtgggeeg gatetgeaac 21121 teatggtggt accgggtggg cocacccage egcacgteaa gegeeccage aaacgeegee 5 21181 tegacgacac eggegttggg getgggatgg egggeggegt egegeegca ggecegtace 21241 geacegeggg gegacecace gaccacegge gegeagatea ceaceageac egeegtegee 21301 egtgegecaa catagttgge ceagteatee aategtgetg eageceaace gaateggaga 21361 taacgcggcg agcggtagcc gatcatcgag tccagggtgt tgatggcacg atatcccagc 21421 accgcaggea egcegetega agccgccac agcageggea ccacetggge gteggeggtg 10 21481 tttteggeca eegacteeag egeggeaege gteaggeeeg ggeegeeeag etgggeeggg 21541 teacgeeege acagegaegg cageageegt egegeegeet egacategte gegeteeaac 21601 aggteegata tetggeggee ggtgegegee agegaagtte egeceagege tgeecaggtg 21661 geogtegegg tggeegeeac gggeeaggae etgeegggta geogetgeag tgeegegeeg 21721 agcaagecca eegegeegae eageaggeeg aegtgtaeeg eaeeggegae eeggeegtea 15 21781 cggtaggtga tetgetecag ettggeggee geeegaeega acagggeeae eggatgaeet 21841 cgtttggggt cgccgaacac gacgtcgagc aggcagccga tcagcacgcc gacggccctg 21901 gtctgccagg tcgatgcaaa cactccggca gcgtcgcaca cgtggtctac gctcagctat 21961 ttatgacete atacggeage tatecaegat gaageggeea getaeeeggg ttgeegaeet 22021 gttgaacccg geggeaatgt tgttgeegge agegaatgte ateatgeage tggeagtgee 20 22081 gggtgteggg tatggegtge tggaaagece ggtggaeage ggeaaegtet aeaageatee 22141 gttcaagegg geeeggacea eeggeaceta eetggeggtg gegaceateg ggaeggaate 22201 cgaccgagcg ctgatccggg gtgccgtgga cgtcgcgcac cggcaggttc ggtcgacggc 22261 ctcgagccca gtgtcctata acgccttcga cccgaagttg cagctgtggg tggcggcgtg 22321 tetgtacege taettegtgg accageaega gtttetgtae ggeceaeteg aagatgeeae 25 22381 cgccgacgcc gtctaccaag acgccaaacg gttagggacc acgctgcagg tgccggaggg 22441 gatgtggccg ccggaccggg tcgcgttcga cgagtactgg aagcgctcgc ttgatgggct 22501 gcagatcgac gcgccggtgc gcgagcatct tcgcggggtg gcctcggtag cgtttctccc 22561 gtggccgttg cgcgcggtgg ccgggccgtt caacctgttt gcgacgacgg gattcttggc 22621 accggagtte egegegatga tgeagetgga gtggteaeag geceageage gtegettega 30 22681 gtggttactt teegtgetae ggttageega eeggetgatt eegeateggg eetggatett 22741 cgtttaccag ctttacttgt gggacatgcg gtttcgcgcc cgacacggcc gccgaatcgt 22801 ctgatagage ceggeegagt gtgageetga cageeegaca eeggeggegt gtgtegegte 22861 gecaggttea egeteggega tetagageeg eegaaaaeet aettetgggt tgeeteeega 22921 atcaacgtgc tgatctgctc gagcagctca cgcatatcgg cgcgcatcgc atccaccgcg 35 22981 gcatacaggt eggeettggt egeeggeage tggteegaeg teattggeeg eaeeggeggt

23041 getgtetgte gegeegeget gtegetttga aaeceaggte geteacecae gaceaegaea 23101 ctgccatatc cggcgccccg ccgacaacga agcacagcta gccggtgggc gcggacggga 23161 tegaacegee gacegetggt gtgtaaaace agagetetae egetgageta egegeecatg 23221 accgeegeag getacaegee ttgeggeeaa geacceaaaa eettaggeeg taagegeege 5 23281 cagagegteg gtecacagee getgategeg aactteacee ggetgettea teteggegaa 23341 cegaatgate cetgacegat egaceacaaa ggtgeecegg ttagegatge eggeetgete 23401 gttgaagacg ccgtaggect gactgaccgc gccgtgtggc cagaagtccg acaacagcgg 23461 aaacgtgaat ccgctctgcg tcgcccagat cttgtgagtg ggtggcgggc ccaccgaaat 23521 egetagegeg gegetgtegt egtteteaaa etegggeagg tgateaegea aetggteeag 10 23581 etegecetgg cagatgeeeg tgaacgeeaa eggaaagaac accaacagca egttetttge 23641 accccggtag ccgcgcaggg tgacaagctg ctgattctgg tcgcgcaacg tgaagtcagg 23701 ggcggtggct cegacgttca gcatcagcgc ttgccagccc gcgatttcgg ctgtaccaat 23761 etgetggege tecagttgee eagattgace gaegaggteg geateageee agetgtggge 23821 geogeotegg caatetegge gggcaataca tggceggget ggeeggtett gggegteace 15 23881 acceaaatea eacegteete ggegageggg cegategeat eeateagggt gteeaceaaa 23941 tegeogtege cateacgeca ceacaacagg acgacatega tgacetegte ggtgtettea 24001 tegageaact eteecegea egettetteg atggeegege ggatgtegte gteggtgtet 24061 tegteceage eccatteetg gataagttgg tetegttgga tgeceaattt gegggegtag 24121 ttegaggegt gateegeege gaccacegtg gaaccteett eagteteege gggeeatgtg 20 24181 cacacegteg egatgggeat tategtegea cagecagaac eggtecacee gecegeetea 24241 gaaggeggee aegeacattg teaatgeett tgtettggtg tegttgagee gateaaeeeg 24301 ccggttgaat tccgctgtcg acgcgtgcgc accgatggca tttgccaccg cgcgggccgc 24361 gtegacatat gegttgageg catececeag ttgegeggae agegeggege teagactgee 24421 tgagaccgtc gaggeactgt tgttgagege gtegatggee ggaecttegg teggeeeggt 25 24481 gttgeggeec tgattgaaeg eggeeaegta ggegtteaec ttgtegatgg egteettget 24541 ggtggccgcc agcgcgtcac acgaggtgcg aatcgccttg gtcgtcagcg attgttggcg 24601 etgegaetee eggatgeteg acgtegeege egaageegae acegaegeg acacegaega 24661 geggtaggee ggtgegaegt tggtgteggg catggeegta eegteggtga cagtggtaca 24721 tecgaegate eccateagea geagegegat geageegage geeagggege etegeetggg 30 24781 gageteecee cogtgeetge gaggeaegge gegecateeg atgageaegg eatgtgaggt 24841 tacctggtcg cagcgcgacc gcgctggccg tggtgtgtcg cgcatccgca gaaccgagcg 24901 gagtgegget atcegeegee gaegeeggtg eggeaegata gggggaegae catetaaaca 24961 gcacgcaage ggaagecege cacetacagg agtagtgegt tgaccacega tttegecege 25021 cacgatetgg eccaaaacte aaacagegea agegaaceeg acegagtteg ggtgateege 35 25081 gagggtgtgg cgtcgtattt gcccgacatt gatcccgagg agacctcgga gtggctggag

25141 teetttgaca egetgetgea aegetgegge eegtegeggg eeegetaeet gatgttgegg 25201 ctgctagage gggceggega geagegggtg gccatecegg cattgaegte taeegactat 25261 gtcaacacca teeegacega getggageeg tggtteeeeg gegacgaaga egtegaaegt 25321 cgttatcgag cgtggatcag atggaatgcg gccatcatgg tgcaccgtgc gcaacgaccg 5 25381 ggtgtgggcg tgggtggcca tatetegace taegegtegt eegeggeget etatgaggte 25441 ggtttcaacc acttetteeg eggeaagteg caeeegggeg geggegatea ggtgtteate 25501 cagggccacg cttccccggg aatctacgcg cgcgccttcc tcgaagggcg gttgaccgcc 25561 gagcaacteg aeggatteeg eeaggaacae agceatgteg geggegggtt geegteetat 25621 cegeaceege ggeteatgee egaettetgg gaatteecea eegtgtegat gggttttggge 10 25681 cogeteaacg ceatetacea ggeaeggtte aaceaetate tgeatgaceg eggtateaaa 25741 gacaceteeg atcaacaegt gtggtgtttt ttgggegaeg gegagatgga egaaceegag 25801 agccgtgggc tggcccacgt cggcgcgctg gaaggcttgg acaacttgac cttcgtgatc 25861 aactgcaate tgcagegact cgaeggeeeg gtgcgeggea acggcaagat catecaggag 25921 ctggagtcgt tetteegegg tgeeggetgg aaegteatea aggtggtgtg gggeegegaa 15 25981 tgggatgccc tgctgcacgc cgaccgcgac ggtgcgctgg tgaatttaat gaatacaaca 26041 cccgatggcg attaccagac ctataaggcc aacgacggcg gctacgtgcg tgaccactte 26101 tteggeegeg acceaegeae eaaggegetg gtggagaaca tgagegaeca ggatatetgg 26161 aaceteaaac ggggeggeea egattacege aaggtttaeg eegectaeeg egeegeegte 26221 gaccacaagg gacagccgac ggtgatcctg gccaagacca tcaaaggcta cgcgctgggc 20 26281 aagcattteg aaggaegeaa tgecaccae eagatgaaaa aaetgaeeet ggaagaeett 26341 aaggagttte gtgacaegea geggatteeg gteagegaeg eecagettga agagaateeg 26401 tacctgccgc cctactacca ccccggcctc aacgccccgg agattcgtta catgctcgac 26461 cggcgccggg ccctcggggg ctttgttccc gagcgcagga ccaagtccaa agcgctgacc 26521 etgeegggte gegacateta egegeegetg aaaaaggget etgggeaeca ggaggtggee 25 26581 accaccatgg cgacggtgcg cacgttcaaa gaagtgttgc gcgacaagca gatcgggccg 26641 eggatagtee egateattee egacgaggee egeacetteg ggatggaete etggtteeeg 26701 tegetaaaga tetataaceg caatggecag etgtataceg eggttgaege egacetgatg 26761 etggeetaca aggagagega agtegggeag ateetgeacg agggeateaa egaageeggg 26821 teggtggget egtteatege ggeeggeace tegtatgega egeacaaega acegatgate 30 26881 cccatttaca tettetaete gatgttegge tteeagegea eeggegatag ettetgggee 26941 geggeegace agatggeteg agggttegtg eteggggeea eegeegggeg eaccaceetg 27001 accggtgagg gcctgcaaca cgccgacggt cactcgttgc tgctggccgc caccaacccg 27061 geggtggttg cetacgacce ggcettegee tacgaaateg cetacategt ggaaagegga 27121 etggecagga tgtgegggga gaaceeggag aacatettet tetacateae egtetacaae 35 27181 gageegtaeg tgeageegee ggageeggag aacttegate eegagggegt getgeggggt

27241 atetaceget ateaegegge cacegageaa egeaceaaca aggegeagat eetggeetee 27301 ggggtagega tgecegegge getgegggea geaeagatge tggeegeega gtgggatgte 27361 geogeogacg tgtggteggt gaccagttgg ggegagetaa accgegacgg ggtggceate 27421 gagaccgaga ageteegeea eccegategg eeggegggeg tgeeetaegt gaegagageg 5 27481 ctggagaatg ctcggggccc ggtgatcgcg gtgtcggact ggatgcgcgc ggtccccgag 27541 cagateegae egtgggtgee gggeacatae eteaegttgg geaeegaegg gtteggettt 27601 tecgacacte ggeeegeege tegeegetae tteaacaceg aegeegaate eeaggtggte 27661 geggttttgg aggegttgge gggegaegge gagategaee eateggtgee ggtegeggee 27721 gcccgccagt accggatcga cgacgtggcg gctgcgcccg agcagaccac ggatcccggt 10 27781 cccggggcct aacgccggcg agccgaccgc ctttggccga atcttccaga aatctggcgt 27841 agettttagg agtgaacgac aatcagttgg etceagttge eegeegagg tegeegeteg 27901 aactgetgga eactgtgeee gattegetge tgeggeggtt gaageagtae tegggeegge 27961 tggccaccga ggcagtttcg gccatgcaag aacggttgcc gttcttcgcc gacctagaag 28021 cgtcccagcg cgccagcgtg gcgctggtgg tgcagacggc cgtggtcaac ttcgtcgaat 15 28081 ggatgcacga cccgcacagt gacgtcggct ataccgcgca ggcattcgag ctggtgcccc 28141 aggatetgae gegaeggate gegetgegee agacegtgga eatggtgegg gteaceatgg 28201 agttettega agaagtegtg eccetgeteg eccetteega agageagttg accecetea 28261 eggtgggeat tttgaaatac ageegegace tggeatteae egeegeeaeg geetaegeeg 28321 atgcggccga ggcacgaggc acctgggaca gccggatgga ggccagcgtg gtggacgcgg 20 28381 tggtacgegg egacaceggt eeegagetge tgteeeggge ggeegegetg aattgggaca 28441 ccaccgcgcc ggcgaccgta ctggtgggaa ctccggcgcc cggtccaaat ggctccaaca 28501 gcgacggcga cagcgagcgg gccagccagg atgtccgcga caccgcggct cgccacggcc 28561 gegetgeget gacegacgtg caeggeacet ggetggtgge gategtetee ggecagetgt 28621 cgccaaccga gaagtteete aaagacetge tggcagcatt egeegaegee eeggtggtea 25 28681 teggececae ggegeceatg etgacegegg egeacegeag egetagegag gegateteeg 28741 ggatgaacge egtegeegge tggegeggag egeegeggee egtgetgget agggaacttt 28801 tgcccgaacg cgccctgatg ggcgacgcct cggcgatcgt ggccctgcat accgacgtga 28861 tgeggeeect ageegatgee ggaeegaege teategagae getagaegea tatetggatt 28921 gtggcggcgc gattgaaget tgtgccagaa agttgttegt teatecaaac acagtgeggt 30 28981 accggeteaa geggateace gaetteaceg ggegegatee cacceageea egegatgeet 29041 atgtcctteg ggtggcggcc accgtgggtc aactcaacta teegacgccg cactgaagca 29101 tegacageaa tgeegtgtea tagatteeet egeeggteag agggggteea geaggggeee 29161 cggaaagata ccaggggcgc cgtcggacgg aaagtgatcc agacaacagg tcgcgggacg 29221 ateteaaaaa eatagettae aggeeegttt tgttggttat atacaaaaac etaagaegag 35 29281 gttcataate tgttacaeeg egcaaaaeeg tetteaeagt gttetettag acaegtgatt

29341 gcgttgctcg cacceggaca gggttcgcaa accgagggaa tgttgtcgcc gtggcttcag 29401 ctgcccggcg cagcggacca gatcgcggcg tggtcgaaag ccgctgatct agatcttgcc 29461 eggetgggea ecacegeete gaeegaggag ateaeegaea eegeggtege eeageeattg 29521 ategtegeeg egactetget ggeecaceag gaactggege geegatgegt getegeegge 5 29581 aaggacgtca tegtggeegg ecaeteegte ggegaaateg eggeetaege aategeeggt 29641 gtgatagccg ccgacgacgc cgtcgcgctg gccgccaccc gcggcgccga gatggccaag 29701 geetgegeea eegageegae eggeatgtet geggtgeteg geggegaega gaeegaggtg 29761 etgagtegee tegageaget egaettggte eeggeaaace geaacgeege eggecagate 29821 gtcgctgccg gccggctgac cgcgttggag aagctcgccg aagacccgcc ggccaaggcg 10 29881 egggtgegtg caetgggtgt egeeggageg ttecacaceg agtteatgge geeegcaett 29941 gacggctttg cggcggccgc ggccaacatc gcaaccgccg accccaccgc cacgctgctg 30001 tecaacegeg aegggaagee ggtgacatee geggeegegg egatggacae eetggtetee 30061 cageteacce aaceggtgeg atgggacetg tgeacegega egetgegega acacacagte 30121 acggcgatcg tggagttccc ccccgcgggc acgcttagcg gtatcgccaa acgcgaactt 15 30181 eggggggtte eggeaegege egteaagtea eeegeagaee tggaegaget ggeaaaceta 30241 taaccgcgga ctcggccaga acaaccacat acccgtcagt tcgatttgta cacaacatat 30301 tacgaaggga agcatgctgt gcctgtcact caggaagaaa tcattgccgg tatcgccgag 30361 atcategaag aggtaacegg tategageeg teegagatea eeeeggagaa gtegttegte 30421 gacgacetgg acategacte getgtegatg gtegagateg eegtgeagae egaggacaag 20 30481 taeggegtea agateceega egaggaeete geeggtetge gtaeegtegg tgaegttgte 30541 gcctacatcc agaagctcga ggaagaaaac ccggaggcgg ctcaggcgtt gcgcgcgaag 30601 attgagtegg agaacceega tgeegttgee aacgtteagg egaggettga ggeegagtee 30661 aagtgagtca geetteeace getaatggeg gttteeecag egttgtggtg aeegeegtea 30721 cagegaegae gtegateteg eeggacateg agageaegtg gaagggtetg ttggeeggeg 25 30781 agageggeat ceaegeacte gaagaegagt tegteaceaa gtgggateta geggteaaga 30841 teggeggtea ceteaaggat eeggtegaca gecacatggg eegactegae atgegaegea 30901 tgtcgtacgt ccagcggatg ggcaagttgc tgggcggaca gctatgggag tccgccggca 30961 gcccggaggt cgatccagac cggttcgccg ttgttgtcgg caccggtcta ggtggagccg 31021 agaggattgt cgagagctac gacctgatga atgcgggcgg cccccggaag gtgtccccgc 30 31081 tggccgttca gatgatcatg cccaacggtg ccgcggcggt gatcggtctg cagcttgggg 31141 cccgcgccgg ggtgatgacc ccggtgtcgg cctgttcgtc gggctcggaa gcgatcgccc 31201 acgcgtggcg tcagatcgtg atgggcgacg ccgacgtcgc cgtctgcggc ggtgtcgaag 31261 gacccatega ggegetgece ategeggegt tetecatgat gegggecatg tegaccegea 31321 acgacgagec tgagcgggcc tcccggccgt tcgacaagga ccgcgacggc tttgtgttcg 35 31381 gcgaggccgg tgcgctgatg ctcatcgaga cggaggagca cgccaaagcc cgtggcgcca

31441 agccgttgge cegattgetg ggtgeeggta teacetegga egeettteat atggtggege 31501 ccgcggccga tggtgttcgt gccggtaggg cgatgactcg ctcgctggag ctggccgggt 31561 tgtcgccggc ggacatcgac cacgtcaacg cgcacggcac ggcgacgcct atcggcgacg 31621 ccgcggaggc caacgccatc cgcgtcgccg gttgtgatca ggccgcggtg tacgcgccga 5 31681 agtetgeget gggceaeteg ateggegegg teggtgeget egagteggtg eteaeggtge 31741 tgacgctgcg cgacggcgtc atcccgccga ccctgaacta cgagacaccc gatcccgaga 31801 tegacettga egtegtegee ggegaacege getatggega ttacegetae geagteaaca 31861 actogttogg gttoggogge cacaatgtgg egettgeett egggegttae tgaagcaega 31921 categegggt egegaggeec gaggtggggg teeeceeget tgegggggeg agteggaeeg 10 31981 atatggaagg aacgttcgca agaccaatga cggagctggt taccgggaaa gcctttccct 32041 acgtagtcgt caccggcatc gccatgacga ccgcgctcgc gaccgacgcg gagactacgt 32101 ggaagttgtt getggaeege caaageggga teegtaeget egatgaeeca ttegtegagg 32161 agttegacet geeagttege ateggeggae atetgettga ggaattegae caccagetga 32221 cgcggatcga actgcgccgg atgggatacc tgcagcggat gtccaccgtg ctgagccggc 15 32281 gcctgtggga aaatgccggc tcacccgagg tggacaccaa tcgattgatg gtgtccatcg 32341 geaceggeet gggtteggee gaggaactgg tetteagtta egacgatatg egegetegeg 32401 gaatgaagge ggtetegeeg etgacegtge agaagtacat geecaaeggg geegeegegg 32461 eggtegggtt ggaaeggeae gecaaggeeg gggtgatgae geeggtateg gegtgegeat 32521 ccggcgccga ggccatcgcc cgtgcgtggc agcagattgt gctgggagag gccgatgccg 20 32581 ccatctgcgg cggcgtggag accaggatcg aagcggtgcc catcgccggg ttcgctcaga 32641 tgcgcatcgt gatgtccacc aacaacgacg accccgccgg tgcatgccgc ccattcgaca 32701 gggaccgcga cggctttgtg ttcggcgagg gcggcgccct tctgttgatc gagaccgagg 32761 agcacgccaa ggcacgtggc gccaacatcc tggcccggat catgggcgcc agcatcacct 32821 ccgatggett ccacatggtg gccccggacc ccaacgggga acgcgccggg catgcgatta 25 32881 egegggegat teagetggeg ggeetegeee eeggegacat egaceaegte aatgegeaeg 32941 ccaccggcac ccaggtcggc gacctggccg aaggcagggc catcaacaac gccttgggcg 33001 gcaaccgacc ggcggtgtac gccccaagt ctgccctcgg ccactcggtg ggcgcggtcg 33061 gegeggtega ategatettg aeggtgeteg egttgegega teaggtgate eegeegacae 33121 tgaatctggt aaacctcgat cccgagatcg atttggacgt ggtggcgggt gaaccgcgac 30 33181 cgggcaatta ccggtatgcg atcaataact cgttcggatt cggcggccac aacgtggcaa 33241 tegeettegg aeggtaetaa aeeeeagegt taegegacag gagacetgeg atgacaatea 33301 tggcccccga ggcggttggc gagtcgctcg acccccgcga tccgctgttg cggctgagca 33361 acttettega egaeggeage gtggaattge tgeaegageg tgaeegetee ggagtgetgg 33421 ccgcggcggg caccgtcaac ggtgtgcgca ccatcgcgtt ctgcaccgac ggcaccgtga 35 33481 tgggcggcgc catgggcgtc gaggggtgca cgcacatcgt caacgcctac gacactgcca

33541 tegaagaeea gagteeeate gtgggeatet ggeatteggg tggtgeeegg etggetgaag 33601 gtgtgcgggc gctgcacgcg gtaggccagg tgttcgaagc catgatccgc gcgtccggct 33661 acatecegea gateteggtg gtegteggtt tegeegeegg eggegeegee taeggaeegg 33721 cgttgaccga cgtcgtcgtc atggcgccgg aaagccgggt gttcgtcacc gggcccgacg 5 33781 tggtgegeag egteacegge gaggaegteg acatggeete geteggtggg eeggagaece 33841 accacaagaa gtccggggtg tgccacatcg tcgccgacga cgaactcgat gcctacgacc 33901 gtgggggcg gttggtcgga ttgttctgcc agcaggggca tttcgatcgc agcaaggccg 33961 aggccggtga caccgacate cacgcgctge tgccggaate etcgcgacgt gcctacgacg 34021 tgegteegat egtgaeggeg atectegatg eggaeaeaee gttegaegag tteeaggeea 10 34081 attgggcgcc gtcgatggtg gtcgggctgg gtcggctgtc gggtcgcacg gtgggtgtac 34141 tggccaacaa cccgctacgc ctgggcggct gcctgaactc cgaaagcgca gagaaggcag 34201 egegtttegt geggetgtge gaegegtteg ggatteeget ggtggtggtg gtegatgtge 34261 egggetatet geeeggtgte gaeeaggagt ggggtggegt ggtgegeegt ggegeeaagt 34321 tgctgcacgc gttcggcgag tgcaccgttc cgcgggtcac gctggtcacc cgaaagacct 15 34381 acggcggggc atacattgcg atgaactccc ggtcgttgaa cgcgaccaag gtgttcgcct 34441 ggccggacgc cgaggtcgcg gtgatgggcg ctaaggcggc cgtcggcatc ctgcacaaga 34501 agaagttgge egeegeteeg gageaegaae gegaageget geaegaeeag ttggeegeeg 34561 agcatgageg categoogge ggggtegaca gtgegetgga categgtgtg gtegaegaga 34621 agategacee ggegeatact egeageaage teacegagge getggegeag geteeggeae 20 34681 ggcgcggccg ccacaagaac atcccgctgt agttctgacc gcgagcagac gcagaatcgc 34741 acgcgcgagg tccgcgccgt gcgattctgc gtctgctcgc cagttatccc cagcggtggc 34801 tggtcaacgc gaggcgctcc tcgcatgctc ggacggtgcc taccgacgcg ctaacaattc 34861 togagaagge eggeggtte gecaceaceg egeaattget eaeggteatg accegecaac 34921 agetegaegt ecaagtgaaa aacggeggee tegttegegt ttggtaeggg gtetaegegg 25 34981 cacaagagcc ggacctgttg ggccgcttgg cggctctcga tgtgttcatg ggggggcacg 35041 ccgtcgcgtg tctgggcacc gccgccgcgt tgtatggatt cgacacggaa aacaccgtcg 35101 ctatecatat getegatece ggagtaagga tgeggeecae ggteggtetg atggteeaec 35161 aacgcgtcgg tgcccggctc caacgggtgt caggtcgtct cgcgaccgcg cccgcatgga 35221 ctgccgtgga ggtcgcacga cagttgcgcc gcccgcgggc gctggccacc ctcgacgccg 30 35281 cactacggtc aatgcgctgc gctcgcagtg aaattgaaaa cgccgttgct gagcagcgag 35341 geogeogagg categtegeg gegegegaac tettaceett egeogaegga egegeggaat 35401 eggecatgga gagegagget eggetegtea tgategacea egggetgeeg ttgeeegaac 35461 ttcaataccc gatacacggc cacggtggtg aaatgtggcg agtcgacttc gcctggcccg 35521 acatgcgtct cgcggccgaa tacgaaagca tcgagtggca cgcgggaccg gcggagatgc 35 35581 tgcgcgacaa gacacgctgg gccaagctcc aagagctcgg gtggacgatt gtcccgattg

35641 tegtegaega tgteagaege gaaceeggee geetggegge eegeategee egecaeeteg 35701 accgegegeg tatggeegge tgacegetgg tgageagaeg eagagtegea etgeggeegg 35761 cgcagtgcga ctctgcgtct gctcgcgctc aacggctgag gaactcctta gccacggcga 35821 ctacgcgctc gcgatcccgt ggcaccagac cgatccgggt ccggcggtcg aggatatcgt 5 35881 ccacatecag egececetea tgggteaeeg egtattegaa eteegeeegg gteaegtega 35941 tgccgtcggc gaccggctcg gtgggccgct cacatgtggc ggcggcagcg acgttggccg 36001 ceteggeece gtacegegee accagegact egggeaatee ggegeecgat eegggggeeg 36061 geocagggtt egeeggtgeg eegateageg geaggttgeg agtgeggeae ttegeggete 36121 geaggtgteg eagegtgatg gegegattea geacatecte tgecatgtag eggtatteeg 10 36181 tcagcttgcc gccgaccaca ctgatcacgc ccgacggcga ttcaaaaaca gcgtggtcac 36241 gegaaaegte ggeggtgegg eeetggacae cagcacegee ggtgtegatt ageggeegea 36301 atcccgcata ggcaccgatg acatccttgg tgccgaccgc cgtccccaat gcggtgttca 36361 cegtatecag caggaacgtg atctetteeg aagaeggttg tggeacateg ggaateggge 36421 cgggtgcgtc ttcgtcggtc agcccgagat agatccggcc cagctgctcg ggcatggcga 15 36481 acacgaageg gttcagetca ceggggateg gaatggtcag egeggeagte ggattggcaa 36541 acgacttcgc gtcgaagacc agatgtgtgc cgcggctggg gcgtagcctc agggacgggt 36601 egateteace egeceacaeg eeegeeget tgatgaegge aegegeegae agegegaaeg 36661 actgccgggt gcgccggtcg gtcaactcca ccgaagtgcc ggtgacattc gacgcgccca 36721 cgtaagtgag gatgcgggcg ccgtgctggg ccgcggtgcg cgcgacggcc atgaccagcc 20 36781 gggcgtcgtc gatcaattgc ccgtcgtacg cgagcagacc accgtcgagg ccgtcccgcc 36841 gaacggtggg agcaatetee accaecegtg acgeegggat teggegegat eggggeaacg 36901 tegeogeegg egtaceeget ageaeeegea aagegtegee ggeeaggaaa eeggeaegea 37021 geacgagatg aggagegttg egtgteatea ggatteegeg ttegaeggeg etgegeeggg 25 37081 cgatgcccac gttgccgctg gccagatagc gcagaccgcc gtgcaccaac ttcgagctcc 37141 ageggetggt geegaaegee agateatget tttecaceaa ggeeaeegte agaeegeggg 37201 tggcagcatc taaggcaatg ccaacaccgg taatgccgcc gcctatcacg atgacgtcga 37261 gtgcgccacc gtcggccagt gcggtcaggt cggcggagcg acgcgccgcg ttgagtgcag 37321 ccgagtgggg catcagcaca aatatccgtt cagtgcgtgg gtaagttcgg tggccagcgc 30 37381 ggcggaatcg aggatcgaat cgacgatgtc cgcggactgg atggtcgact gggcgatcag 37441 caacaccatg gtcgccagtc gacgagcgtc gccggagcgc acactgcccg accgctgcgc 37501 caetgteage egggeggeea acceetegat eaggacetge tggetggtge egaggegete 37561 ggtgatgtac accetggeca geteegagtg eatgacegae atgateagat egteaceeg 37621 caaccggtcg gccaccgcga caatctgctt taccaacgct tcccggtcgt ccccgtcgag 35 37681 gggcacetee egeageaegt eggegatatg getggteage atggaegeea tgategaeeg

37741 ggtgteegge cagegaeggt atacggtegg geggeteacg eeeggegee gggegatete
37801 ggeaagtgte acceggteea egeegtaate gaegaegeag etegeegetg eeegeaggat
37861 acgaecaeeg gtateegege ggteattaet eattgaeage atgtgtaata etgtaaegeg
37921 tgaeteaeeg egaggaaete etteeaeega tgaaatggga egegtgggga gateeegeg
37981 eggeeaagee actttetgat ggegteeggt egttgetgaa geaggttgtg ggeetagegg
38041 acteggagea geeegaaete gaeeeegege aggtgeaget gegeeegtee geeetgtegg
38101 gggeagaeea (SEQ ID NO: 24)

6.9. X-linked Inhibitor of Apoptosis Protein ("XIAP")

GenBank Accession # U45880:

5

10

1 gaaaaggtgg acaagtccta ttttcaagag aagatgactt ttaacagttt tgaaggatct 61 aaaacttgtg tacctgcaga catcaataag gaagaagaat ttgtagaaga gtttaataga 121 ttaaaaactt ttgctaattt tccaagtggt agtcctgttt cagcatcaac actggcacga 181 geagggttte tttataetgg tgaaggagat accgtgeggt getttagttg teatgeaget 15 241 gtagatagat ggcaatatgg agactcagca gttggaagac acaggaaagt atccccaaat 301 tgcagattta tcaacggctt ttatcttgaa aatagtgcca cgcagtctac aaattctggt 361 atccagaatg gtcagtacaa agttgaaaac tatctgggaa gcagagatca ttttgcctta 421 gacaggecat etgagacaca tgeagactat ettttgagaa etgggeaggt tgtagatata 481 teagacacea tataceegag gaaceetgee atgtattgtg aagaagetag attaaagtee 20 541 tttcagaact ggccagacta tgctcaccta accccaagag agttagcaag tgctggacte 601 tactacacag gtattggtga ccaagtgcag tgcttttgtt gtggtggaaa actgaaaaat 661 tgggaacett gtgategtge etggteagaa eacaggegae aettteetaa ttgettettt 721 gttttgggcc ggaatettaa tattegaagt gaatetgatg etgtgagtte tgataggaat 781 ttcccaaatt caacaaatet tecaagaaat ceatecatgg cagattatga agcaeggate 25 841 tttacttttg ggacatggat atactcagtt aacaaggagc agettgcaag agetggattt 901 tatgctttag gtgaaggtga taaagtaaag tgctttcact gtggaggagg gctaactgat 961 tggaagccca gtgaagaccc ttgggaacaa catgctaaat ggtatccagg gtgcaaatat 1021 ctgttagaac agaagggaca agaatatata aacaatatte atttaactea tteacttgag 1081 gagtgtetgg taagaactae tgagaaaaca eeateactaa etagaagaat tgatgataee 30 1141 atcttccaaa atcctatggt acaagaagct atacgaatgg ggttcagttt caaggacatt 1201 aagaaaataa tggaggaaaa aattcagata tctgggagca actataaatc acttgaggtt 1261 etgettgeag atetagtgaa tgeteagaaa gacagtatge aagatgagte aagteagaet 1321 teattacaga aagagattag taetgaagag eagetaagge geetgeaaga ggagaagett 1381 tgcaaaatct gtatggatag aaatattgct atcgtttttg ttccttgtgg acatctagtc 35 1441 acttgtaaac aatgtgetga ageagttgac aagtgteeca tgtgetacac agteattact

	1501 ttcaagcaaa aaatttttat gtettaatet aactetatag taggcatgtt atgttgttet
	1561 tattaccctg attgaatgtg tgatgtgaac tgactttaag taatcaggat tgaattccat
	1621 tagcatttgc taccaagtag gaaaaaaaat gtacatggca gtgttttagt tggcaatata
5	1681 atetttgaat ttettgattt tteagggtat tagetgtatt ateeattttt tttaetgtta
5	1741 tttaattgaa accatagact aagaataaga agcatcatac tataactgaa cacaatgtgt
	1801 atteatagta taetgattta atttetaagt gtaagtgaat taateatetg gattttttat
	1861 tetttteaga taggettaae aaatggaget ttetgtatat aaatgtggag attagagtta
	1921 atetececaa teacataatt tgttttgtgt gaaaaaggaa taaattgtte eatgetggtg
10	1981 gaaagataga gattgttttt agaggttggt tgttgtgttt taggattetg tecattttet
•	2041 tgtaaaggga taaacacgga cgtgtgcgaa atatgtttgt aaagtgattt gccattgttg
	2101 aaagegtatt taatgataga atactatega gecaacatgt aetgacatgg aaagatgtea
	2161 gagatatgtt aagtgtaaaa tgcaagtggc gggacactat gtatagtctg agccagatca
	2221 aagtatgtat gttgttaata tgcatagaac gagagatttg gaaagatata caccaaactg
15	2281 ttaaatgtgg tttctcttcg gggagggggg gattggggga ggggccccag aggggtttta
	2341 gaggggcett tteaettteg aettttttea ttttgttetg tteggatttt ttataagtat
	2401 gtagaccccg aagggtttta tgggaactaa catcagtaac ctaacccccg tgactatcct
	2461 gtgetettee tagggagetg tgttgtttee cacceaceae cetteeetet gaacaaatge
	2521 ctgagtgctg gggcactttg (SEQ ID NO: 25)
20	
	General Target Region:
	Internal Ribosome Entry Site (IRES) in 5' untranslated region:
	5'AGCUCCUAUAACAAAGUCUGUUGCUUGUGUUUCACAUUUUGGAUU
	UCCUAAUAUAAUGUUCUCUUUUUAGAAAAGGUGGACAAGUCCUAUUU
25	UCAAGAGAAG3' (SEQ ID NO: 26)
	Tuikini Gunai Ga Tanana Mari G
	Initial Specific Target Motif: DND core hinding site within YIAD IDES
	RNP core binding site within XIAP IRES
	5'GGAUUUCCUAAUAUAUGUUCUCUUUUU3' (SEQ ID NO: 27)
30	6.10. <u>Survivin</u>
	GenBank Accession # NM 001168:
	1 cegecagatt tgaategegg gaccegttgg cagaggtgge ggeggeggea tgggtgeece
	61 gacgttgccc cetgcetggc agccetttet caaggaccae egcateteta catteaagaa
٥	121 etggecette ttggaggget gegeetgeae eeeggagegg atggeegagg etggetteat
35	181 ceaetgeece actgagaaeg agecagaett ggeeeagtgt ttettetget teaaggaget

	241 ggaaggetgg gagecagatg acgaecccat agaggaacat aaaaagcatt egteeggttg
	301 egettteett tetgteaaga ageagtttga agaattaace ettggtgaat ttttgaaact
	361 ggacagagaa agagccaaga acaaaattgc aaaggaaacc aacaataaga agaaagaatt
5	421 tgaggaaact gcgaagaaag tgcgccgtgc catcgagcag ctggctgcca tggattgagg
	481 cetetggeeg gagetgeetg gteeeagagt ggetgeacea etteeagggt ttatteeetg
	541 gtgccaccag cetteetgtg ggcccettag caatgtetta ggaaaggaga teaacatttt
	601 caaattagat gtttcaactg tgctcctgtt ttgtcttgaa agtggcacca gaggtgcttc
	661 tgcctgtgca gcgggtgctg ctggtaacag tggctgcttc tctctctct tctctttttt
10	721 gggggctcat ttttgctgtt ttgattcccg ggcttaccag gtgagaagtg agggaggaag
	781 aaggeagtgt eeettttget agagetgaca getttgtteg egtgggeaga geetteeaca
	841 gtgaatgtgt ctggacctca tgttgttgag gctgtcacag tcctgagtgt ggacttggca
	901 ggtgcctgtt gaatctgage tgcaggttce ttatctgtca cacctgtgce tcctcagagg
	961 acagtttttt tgttgttgtg tttttttgtt ttttttttt
15	1021 gtgatgagag aatggagaca gagtccctgg ctcctctact gtttaacaac atggctttct
	1081 tattttgttt gaattgttaa ttcacagaat agcacaaact acaattaaaa ctaagcacaa
	1141 agccattcta agtcattggg gaaacggggt gaacttcagg tggatgagga gacagaatag
	1201 agtgatagga agegtetgge agatacteet tttgecaetg etgtgtgatt agacaggeee
	1261 agtgageege ggggeacatg etggeegete eteecteaga aaaaggeagt ggeetaaate
20	1321 etttttaaat gacttggete gatgetgtgg gggactgget gggetgetge aggeegtgtg
	1381 tetgteagee caacetteac atetgteacg ttetecacae gggggagaga egeagteege
	1441 ccaggtcccc gctttctttg gaggcagcag ctcccgcagg gctgaagtct ggcgtaagat
	1501 gatggatttg attegecete etecetgtea tagagetgea gggtggattg ttacagette
	1561 getggaaacc tetggaggte ateteggetg tteetgagaa ataaaaagce tgteattte (SEQ ID NO: 28)

7. EXAMPLE: IDENTIFICATION OF A DYE-LABELED TARGET RNA
BOUND TO SMALL MOLECULAR WEIGHT COMPOUNDS

25

35

The results presented in this Example indicate that gel mobility shift assays can be used to detect the binding of small molecules, such as the Tat peptide and gentamicin, to their respective target RNAs.

7.1. Materials and Methods

7.1.1. <u>Buffers</u>

Tris-potassium chloride (TK) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100, and 0.5mM MgCl₂. Tris-borate-EDTA (TBE) buffer is

composed of 45 mM Tris-borate pH 8.0, and 1 mM EDTA. Tris-Potassium chloride-magnesium (TKM) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100 and 5mM MgCl₂.

5

7.1.1. Gel retardation analysis

RNA oligonucleotides were purchased from Dharmacon, Inc., Lafayette, CO). 500 pmole of either a 5' fluorescein labeled oligonucleotide corresponding to the 16S rRNA A site (5'-GGCGUCACACCUUCGGGUGAAGUCGCC-3' (SEO ID NO: 29); Moazed & Noller, 1987, Nature 327:389-394; Woodcock et al., 1991, EMBO J. 10:3099-3103; Yoshizawa et al., 1998, EMBO J. 17:6437-6448) or a 5' fluorescein labeled oligonucleotide corresponding to the HIV-1 TAR element TAR RNA (5'-GGCGUCACACCUUCGGGUGAAGUCGCC-3' (SEQ ID NO: 30); Huq et al., 1999, Nucleic Acids Research. 27:1084-1093; Hwang et al., 1999, Proc. Natl. Acad. Sci. USA 96:12997-13002) was 3' labeled with 5'-32P cytidine 3', 5'-bis(phosphate) (NEN) and T4 15 RNA ligase (NEBiolabs) in 10% DMSO as per manufacturer's instructions. The labeled oligonucleotides were purified using G-25 Sephadex columns (Boehringer Mannheim). For Tat-TAR gel retardation reactions the method of Huq et al. (Nucleic Acids Research, 1999, 27:1084-1093) was utilized with TK buffer containing 0.5mM MgCl₂ and a 12-mer Tat peptide (YGRKKRRQRRRP (SEQ ID NO: 31); single letter amino acid code). For 20 16S rRNA-gentamicin reactions, the method of Huq et al. was used with TKM buffer. In 20 μl reaction volumes 50 pmoles of ³²P cytidine-labeled oligonucleotide and either gentamicin sulfate (Sigma) or the short Tat peptide (Tat₄₇₋₅₈) in TK or TKM buffer were heated at 90°C for 2 minutes and allow to cool to room temperature (approximately 24°C) over 2 hours. Then 10 µl of 30% glycerol was added to each reaction tube and the entire 25 sample was loaded onto a TBE non-denaturing polyacrylamide gel and electrophoresed at 1200-1600 volt-hours at 4°C. The gel was exposed to an intensifying screen and radioactivity was quantitated using a Typhoon phosporimager (Molecular Dynamics).

30

35

7.2. Background

One method used to demonstrate small molecule interactions with natural occurring RNA structures such as ribosomes is by a method called chemical footprinting or toe printing (Moazed & Noller, 1987, Nature 327:389-394; Woodcock *et al.*, 1991, EMBO J. 10:3099-3103; Yoshizawa *et al.*, 1998, EMBO J. 17:6437-6448). Here the use of gel mobility shift assays to monitor RNA-small molecule interactions are described. This approach allows for rapid visualization of small molecule-RNA interactions based on the

difference between mobility of RNA alone versus RNA in a complex with a small molecule. To validate this approach, an RNA oligonucleotide corresponding to the well-characterized gentamicin binding site on the 16S rRNA (Moazed & Noller, 1987, Nature 327:389-394) and the equally well-characterized HIV-1 TAT protein binding site on the HIV-1 TAR element (Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093) were chosen. The purpose of these experiments is to lay the groundwork for the use of chromatographic techniques in a high throughput fashion, such as microcapillary electrophoresis, for drug discovery.

10

15

5

7.3. Results

A gel retardation assay was performed using the Tat₄₇₋₅₈ peptide and the TAR RNA oligonucleotide. As shown in Figure 1, in the presence of the Tat peptide, a clear shift is visible when the products are separated on a 12% non-denaturing polyacrylamide gel. In the reaction that lacks peptide, only the free RNA is visible. These observations confirm previous reports made using other Tat peptides (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093).

Based on the results of Figure 1, it was hypothesized that RNA interactions with small organic molecules could also be visualized using this method. As shown in Figure 2, the addition of varying concentrations of gentamicin to an RNA oligonucleotide corresponding to the 16S rRNA A site produces a mobility shift. These results demonstrate that the binding of the small molecule gentamicin to an RNA oligonucleotide having a defined structure in solution can be monitored using this approach. In addition, as shown in Figure 2, a concentration as low as 10ng/ml gentamicin produces the mobility shift.

25

30

35

20

To determine whether lower concentrations of gentamicin would be sufficient to produce a gel shift, similar experiment was performed, as shown in Figure 2, except that the concentrations of gentamicin ranged from 100 ng/ml to 10 pg/ml. As shown in Figure 3, gel mobility shifts are produced when the gentamicin concentration is as low as 10 pg/ml. Further, the results shown in Figure 3 demonstrate that the shift is specific to the 16S rRNA oligonucleotide as the use of an unrelated oligonucleotide, corresponding to the HIV TAR RNA element, does not result in a gel mobility shift when incubated with 10 µg/ml gentamicin. In addition, if a concentration as low as 10 pg/ml gentamicin produces a gel mobility shift then it should be possible to detect changes to RNA structural motifs when small amounts of compound from a library of diverse compounds is screened in this fashion.

Further analysis of the gentamicin-RNA interaction indicates that the interaction is Mg- and temperature dependent. As shown in Figure 4, when MgCl₂ is not present (TK buffer), 1mg/ml of gentamicin must be added to the reaction to produce a gel shift.

5

15

20

30

Similarly, the temperature of the reaction when gentamicin is added is also important. When gentamicin is present in the reaction during the entire denaturation/renaturation cycle, that is, when gentamicin is added at 90°C or 85°C, a gel shift is visualized (data not shown). In contrast, when gentamicin is added after the renaturation step has proceeded to 75°C, a mobility shift is not produced. These results are consistent with the notion that gentamicin may recognize and interact with an RNA structure formed early in the renaturation process.

8. EXAMPLE: IDENTIFICATION OF A DYE-LABELED TARGET RNA BOUND TO SMALL MOLECULAR WEIGHT COMPOUNDS BY CAPILLARY ELECTROPHORESIS

The results presented in this Example indicate that interactions between a peptide and its target RNA, such as the Tat peptide and TAR RNA, can be monitored by gel retardation assays in an automated capillary electrophoresis system.

8.1. Materials and Methods

8.1.1. Buffers

Tris-potassium chloride (TK) buffer is composed of 50 mM Tris-HCl pH

7.4, 20mM KCl, 0.1%Triton X-100, and 0.5mM MgCl₂. Tris-borate-EDTA (TBE) buffer is composed of 45 mM Tris-borate pH 8.0, and 1 mM EDTA. Tris-Potassium chloride-magnesium (TKM) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100 and 5mM MgCl₂.

8.1.1. Gel Retardation Analysis Using Capillary Electrophoresis

RNA oligonucleotides were purchased from Dharmacon, Inc, Lafayette, CO). 500 pmole of a 5' fluorescein labeled oligonucleotide corresponding to the HIV-1 TAR element TAR RNA (5'-GGCGUCACACCUUCGGGUGAAGUCGCC-3' (SEQ ID NO: 30); Huq *et al.*, 1999, Nucleic Acids Research. 27:1084-1093; Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96:12997-13002) was used. For Tat-TAR gel retardation reactions the method of Huq *et al.* (Nucleic Acids Research, 1999, 27:1084-1093) was

utilized with TK buffer containing 0.5mM MgCl₂ and a 12-mer Tat peptide (YGRKKRRQRRP (SEQ ID NO: 31); single letter amino acid code). In 20 µl reaction volumes 50 pmoles of labeled oligonucleotide and the short Tat peptide (Tat₄₇₋₅₈) in TK or TKM buffer were heated at 90°C for 2 minutes and allow to cool to room temperature (approximately 24°C) over 2 hours. The reactions were loaded onto a SCE9610 automated capillary electrophoresis apparatus (SpectruMedix; State College, Pennsylvania).

8.2. Results

As presented in the previous Example in Section 7, interactions between a peptide and RNA can be monitored by gel retardation assays. It was hypothesized that interactions between a peptide and RNA could be monitored by gel retardation assays by an automated capillary electrophoresis system. To test this hypothesis, a gel retardation assay by an automated capillary electrophoresis system was performed using the Tat₄₇₋₅₈ peptide and the TAR RNA oligonucleotide. As shown in Figure 5 using the capillary electrophoresis system, in the presence of the Tat peptide, a clear shift is visible upon the addition of increasing concentrations of Tat peptide. In the reaction that lacks peptide, only a peak corresponding to the free RNA is observed. These observations confirm previous reports made using other Tat peptides (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093).

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

30

5

10

15

20

25

The invention can be illustrated by the following embodiments enumerated in the numbered paragraphs that follow:

- 1. A method for identifying a test compound that binds to a target RNA molecule, comprising the steps of (a) contacting a detectably labeled target RNA molecule with a library of test compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of test compounds so that a detectably labeled target RNA:test compound complex is formed; (b) separating the detectably labeled target RNA:test compound complex formed in step(a) from uncomplexed target RNA molecules and test compounds; and (c) determining a structure of the test compound bound to the RNA in the RNA:test compound complex.
- 2. The method of paragraph 1 in which the target RNA molecule contains an HIV TAR element, internal ribosome entry site, "slippery site", instability element, or adenylate uridylate-rich element.
 - 3. The method of paragraph 1 in which the RNA molecule is an element derived from the mRNA for tumor necrosis factor alpha ("TNF-α"), granulocytemacrophage colony stimulating factor ("GM-CSF"), interleukin 2 ("IL-2"), interleukin 6 ("IL-6"), vascular endothelial growth factor ("VEGF"), human immunodeficiency virus I ("HIV-1"), hepatitis C virus ("HCV" genotypes 1a & 1b), ribonuclease P RNA ("RNaseP"), X-linked inhibitor of apoptosis protein ("XIAP"), or survivin.
- 4. The method of paragraph 1 in which the detectably labeled RNA is labeled with a fluorescent dye, phosphorescent dye, ultraviolet dye, infrared dye, visible dye, radiolabel, enzyme, spectroscopic colorimetric label, affinity tag, or nanoparticle.
- 5. The method of paragraph 1 in which the test compound is selected from a combinatorial library comprising peptoids; random bio-oligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; and small organic molecule libraries, including but not limited to, libraries of benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.

6. The method of paragraph 1 in which screening a library of test compounds comprises contacting the test compound with the target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions.

7. The method of paragraph 6 in which the aqueous solution optionally further comprises non-specific nucleic acids comprising DNA, yeast tRNA, salmon sperm DNA, homoribopolymers, and nonspecific RNAs.

10

15

5

- 8. The method of paragraph 6 in which the aqueous solution further comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant. In another embodiment, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. In another embodiment, the solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant.
- 9. Any method that detects an altered physical property of a target

 nucleic acid complexed to a test compound from the unbound target nucleic acid may be
 used for separation of the complexed and non-complexed target nucleic acids in the method
 of paragraph 1. In a preferred embodiment, electrophoresis is used for separation of the
 complexed and non-complexed target nucleic acids. In a preferred embodiment, the
 electrophoresis is capillary electrophoresis. In other embodiments, fluorescence
 spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay,
 structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion
 chromatography, affinity chromatography, and nanoparticle aggregation are used for the
 separation of the complexed and non-complexed target nucleic acids.
- 10. The structure of the test compound of the RNA:test compound complex of paragraph 1 is determined, in part, by the type of library of test compounds. In a preferred embodiment wherein the combinatorial libraries are small organic molecule libraries, mass spectroscopy, NMR, or vibration spectroscopy are used to determine the structure of the test compounds.

WHAT IS CLAIMED IS:

	1.	A met	hod for identifying a test compound that binds to a target RNA					
5	molecule, comprising the steps of:							
_		(a)	contacting a detectably labeled target RNA molecule with a					
			library of test compounds under conditions that permit direct					
			binding of the labeled target RNA to a member of the library					
10			of test compounds so that a detectably labeled target					
			RNA:test compound complex is formed;					
		(b)	separating the detectably labeled target RNA:test compound					
			complex formed in step(a) from uncomplexed target RNA					
			molecules and test compounds by capillary gel					
			electrophoresis; and					
15		(c)	determining a structure of the test compound bound to the					
			RNA in the RNA:test compound complex by mass					
			spectroscopy.					
20								
25								
30								

AMENDED CLAIMS

[received by the International Bureau on 17 September 2002 (17.09.02); Claims 1 to 10 replaced by new claims 1 to 19. (3 sheets)]

5 1. A method for identifying a test compound that binds to a target RNA molecule, comprising the steps of:

10

- (a) contacting a detectably labeled target RNA molecule with a library of test compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of test compounds so that a detectably labeled target RNA:test compound complex is formed;
- (b) separating the detectably labeled target RNA:test compound complex formed in step (a) from uncomplexed target RNA molecules and test compounds; and
- (c) determining a structure of the test compound bound to the RNA in the RNA:test compound complex.
- 2. The method of claim 1 in which the target RNA molecule contains an HIV TAR element, internal ribosome entry site, "slippery site", instability element, or adenylate uridylate-rich element.
- The method of claim 1 in which the RNA molecule is an element derived from the mRNA for tumor necrosis factor alpha ("TNF-α"), granulocytemacrophage colony stimulating factor ("GM-CSF"), interleukin 2 ("IL-2"), interleukin 6
 ("IL-6"), vascular endothelial growth factor ("VEGF"), human immunodeficiency virus I ("HIV-1"), hepatitis C virus ("HCV" genotypes 1a & 1b), ribonuclease P RNA ("RNaseP"), X-linked inhibitor of apoptosis protein ("XIAP"), or survivin.
- 4. The method of claim 1 in which the detectably labeled RNA is
 30 labeled with a fluorescent dye, phosphorescent dye, ultraviolet dye, infrared dye, visible dye, radiolabel, enzyme, spectroscopic colorimetric label, affinity tag, or nanoparticle.
- The method of claim 1 in which the test compound is selected from a combinatorial library comprising peptoids; random bio-oligomers; diversomers such as
 hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal

peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; or small organic molecule libraries.

- 6. The method of claim 5 in which the small organic molecule libraries are libraries of benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.
- 7. The method of claim 1 in which screening a library of test compounds comprises contacting the test compound with the target nucleic acid in the presence of an aqueous solution wherein the aqueous solution comprises a buffer and a combination of salts.
- 15 8. The method of claim 7 wherein the aqueous solution approximates or mimics physiologic conditions.
- 9. The method of claim 7 in which the aqueous solution optionally further comprises non-specific nucleic acids comprising DNA, yeast tRNA, salmon sperm 20 DNA, homoribopolymers, and nonspecific RNAs.
 - 10. The method of claim 7 in which the aqueous solution further comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant.
- 25 11. The method of claim 10 in which the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂.
- The method of claim 11 wherein the combination of salts is about 30 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂.
 - The method of claim 10 wherein the solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant.

15. The method of claim 1 in which separating the detectably labeled target RNA:test compound complex formed in step (a) from uncomplexed target RNA and test compounds is by electrophoresis.

- 16. The method of claim 15 in which the electrophoresis is capillary electrophoresis.
- 17. The method of claim 1 in which separating the detectably labeled target RNA:test compound complex formed in step (a) from uncomplexed target RNA and test compounds is by fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, or nanoparticle aggregation.
 - 18. The method of claim 1 in which the library of test compounds are small organic molecule libraries.
- 20 19. The method of claim 18 in which the structure of the test compound is determined by mass spectroscopy, NMR, or vibration spectroscopy.

Figure 1
Sheet 1/5
Attorney Docket No. 10589-007

Figure 2
Sheet 2/5
Attorney Docket No. 10589-007

Figure 3
Sheet 3/5
Attorney Docket No. 10589-007

Figure 4
Sheet 4/5
Attorney Docket No. 10589-007

Figure 5
Sheet 5/5
Attorney Docket No. 10589-007

SEQUENCE LISTING

<110> PTC Therapeutics, Inc.

<120> METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

- <130> 10589-007-228
- <140> To be assigned
- <141> 2002-04-11
- <150> 60/282,965
- <151> 2001-04-11
- <160> 31
- <170> PatentIn version 3.0
- <210> 1
- <211> 21
- <212> RNA
- <213> Homo sapiens
- <400> 1

21 auuuauuuau uuauuuauuu a

- <210> 2
- <211> 17
- <212> RNA
- <213> Homo sapiens
- <400> 2 auuuauuuau uuauuua

<210>	3					
<211>	15					
<212>	RNA					
<213>	Homo sapiens					
<400> wauuuau	3 uuua uuuaw					15
<210>	4					
<211>	13					
<212>	RNA					
<213>	Homo sapiens					
<400>	4 auuu aww					13
wwauuu	audu aww					
<210>	5					
<211>	13					
<212>	RNA					
<213>	Homo sapiens					
<400>	5 uaw www					13
<210>	6					
<211>	1643					
<212>	DNA					
<213>	Homo sapiens					
<400> gcagag	6 gacc agctaagagg	gagagaagca	actacagacc	ccccctgaaa	acaaccctca	60
gacgcc	acat cccctgacaa	gctgccaggc	aggttctctt	cctctcacat	actgacccac	120
ggctcc	accc tototoccct	ggaaaggaca	ccatgagcac	tgaaagcatg	atccgggacg	180
tggagc	tggc cgaggaggcg	ctccccaaga	agacaggggg	gccccagggc	tccaggcggt	240
acttat	test cassetetts	tccttcctga	tcataacaaa	coccaccaco	ctcttctacc	300

tgctgcactt tggagtgatc	ggcccccaga	gggaagagtt	ccccagggac	ctctctctaa	360
tcagecetet ggeceaggea	gtcagatcat	cttctcgaac	cccgagtgac	aagcctgtag	420
cccatgttgt agcaaaccct	caagctgagg	ggcagctcca	gtggctgaac	cgccgggcca	480
atgccctcct ggccaatggc	gtggagctga	gagataacca	gctggtggtg	ccatcagagg	540
gcctgtacct catctactcc	caggtcctct	tcaagggcca	aggctgcccc	tccacccatg	600
tgctcctcac ccacaccatc	agccgcatcg	ccgtctccta	ccagaccaag	gtcaacctcc	660
tctctgccat caagagcccc	tgccagaggg	agaccccaga	gggggctgag	gccaagccct	720
ggtatgagcc catctatctg	ggaggggtct	tccagctgga	gaagggtgac	cgactcagcg	780
ctgagatcaa tcggcccgac	tatctcgact	ttgccgagtc	tgggcaggtc	tactttggga	840
tcattgccct gtgaggagga	cgaacatcca	accttcccaa	acgcctcccc	tgccccaatc	900
cctttattac cccctccttc	agacaccctc	aacctcttct	ggctcaaaaa	gagaattggg	960
ggcttagggt cggaacccaa	gcttagaact	ttaagcaaca	agaccaccac	ttcgaaacct	1020
gggattcagg aatgtgtggc	ctgcacagtg	aattgctggc	aaccactaag	aattcaaact	1080
ggggcctcca gaactcactg	gggcctacag	ctttgatccc	tgacatctgg	aatctggaga	1140
ccagggagcc tttggttctg	gccagaatgc	tgcaggactt	gagaagacct	cacctagaaa	1200
ttgacacaag tggaccttag	gccttcctct	ctccagatgt	ttccagactt	ccttgagaca	1260
cggagcccag ccctccccat	ggagccagct	ccctctattt	atgtttgcac	ttgtgattat	1320
ttattattta tttattattt	atttatttac	agatgaatgt	atttatttgg	gagaccgggg	1380
tatcctgggg gacccaatgt	aggagctgcc	ttggctcaga	catgttttcc	gtgaaaacgg	1440
agctgaacaa taggctgttc	ccatgtagcc	ccctggcctc	tgtgccttct	tttgattatg	1500
ttttttaaaa tatttatctg	attaagttgt	ctaaacaatg	ctgatttggt	gaccaactgt	1560
cactcattgc tgagcctctg	ctccccaggg	gagttgtgtc	tgtaatcgcc	ctactattca	1620
gtggcgagaa ataaagtttg	ctt				1643

<210> 7

<211> 756

<212> DNA

<213> Homo sapiens

<400> 7
gctggaggat gtggctgcag agcctgctgc tcttgggcac tgtggcctgc agcatctctg 60
cacccgccg ctcgccagc cccagcacgc agccctggga gcatgtgaat gccatccagg 120
aggcccggcg tctcctgaac ctgagtagag acactgctgc tgagatgaat gaaacagtag 180

aagtcatctc	agaaatgttt	gacctccagg	agccgacctg	cctacagacc	cgcctggagc	240
tgtacaagca	gggcctgcgg	ggcagcctca	ccaagctcaa	gggccccttg	accatgatgg	300
ccagccacta	caagcagcac	tgccctccaa	ccccggaaac	ttcctgtgca	acccagacta	360
tcacctttga	aagtttcaaa	gagaacctga	aggactttct	gcttgtcatc	ccctttgact	420
gctgggagcc	agtccaggag	tgagaccggc	cagatgaggc	tggccaagcc	ggggagctgc	480
tctctcatga	aacaagagct	agaaactcag	gatggtcatc	ttggagggac	caaggggtgg	540
gccacagcca	tggtgggagt	ggcctggacc	tgccctgggc	cacactgacc	ctgatacagg	600
catggcagaa	gaatgggaat	attttatact	gacagaaatc	agtaatattt	atatatttat	660
atttttaaaa	tatttattta	tttatttatt	taagttcata	ttccatattt	attcaagatg	720
ttttaccgta	ataattatta	ttaaaaatat	gcttct			756

<210> 8

<211> 756

<212> DNA

<213> Homo sapiens

<400> 8 60 tctggaggat gtggctgcag agcctgctgc tcttgggcac tgtggcctgc agcatctctg 120 cacceqeeeq etequecage eccageaege agecetggga geatgtgaat gecatecagg aggcccggcg tctcctgaac ctgagtagag acactgctgc tgagatgaat gaaacagtag 180 240 aagtcatctc agaaatgttt gacctccagg agccgacctg cctacagacc cgcctggagc 300 tgtacaagca gggcctgcgg ggcagcctca ccaagctcaa gggccccttg accatgatgg ccagccacta caagcagcac tgccctccaa ccccggaaac ttcctgtgca acccagacta 360 420 tcacctttga aagtttcaaa gagaacctga aggactttct gcttgtcatc ccctttgact qctqqqaqcc agtccaggag tgagaccggc cagatgaggc tggccaagcc ggggagctgc 480 tototoatga aacaagagot agaaactcag gatggtcatc ttggagggac caaggggtgg 540 600 qccacaqcca tggtgggagt ggcctggacc tgccctgggc cacactgacc ctgatacagg catggcagaa gaatgggaat attttatact gacagaaatc agtaatattt atatatttat 660 atttttaaaa tatttattta tttatttatt taagttcata ttccatattt attcaagatg 720 756 ttttaccgta ataattatta ttaaaaatat gcttct

<210> 9

<211> 825

```
<212> DNA
```

<213> Homo sapiens

```
<400> 9
atcactotot ttaatcacta ctcacattaa cctcaactoc tgccacaatg tacaggatgc
                                                                      60
                                                                     120
aactcctqto ttqcattqca ctaattcttq cacttgtcac aaacagtgca cctacttcaa
gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac
                                                                     180
agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat
                                                                     240
                                                                     300
ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag
aactcaaacc tctggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac
                                                                     360
ccaqqqactt aatcaqcaat atcaacqtaa taqttctgga actaaaqgga tctgaaacaa
                                                                     420
cattcatqtq tqaatatqca qatqaqacaq caaccattqt agaatttctq aacagatqqa
                                                                     480
ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa
                                                                     540
aacatatcag goottotatt tatttattta aatatttaaa ttttatattt attgttgaat
                                                                     600
qtatgqttqc tacctattqt aactattatt cttaatctta aaactataaa tatggatctt
                                                                     660
ttatgattct ttttgtaagc cctaggggct ctaaaatggt ttaccttatt tatcccaaaa
                                                                     720
atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta
                                                                     780
                                                                     825
tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa
```

<210> 10

<211> 15

<212> RNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1)..(1)

<223> N = A, U, G, OR C

<220>

<221> misc_feature

<222> (15)..(15)

 $\langle 223 \rangle$ N = A, U, G, OR C

<400> 10 nauuuauuua uuuan	15
<210> 11	
<211> 1125	
<212> DNA	
<213> Homo sapiens	
<400> 11 tettgecete gageceaeeg ggaacgaaag agaageteta tetegeetee aggageceag	60
ctatgaactc cttctccaca agegeetteg gtccagttge cttctccctg gggetgetee	120
tggtgttgcc tgctgccttc cctgccccag tacccccagg agaagattcc aaagatgtag	180
ccgccccaca cagacagcca ctcacctctt cagaacgaat tgacaaacaa attcggtaca	240
tectegaegg cateteagee etgagaaagg agacatgtaa caagagtaae atgtgtgaaa	300
gcagcaaaga ggcactggca gaaaacaacc tgaaccttcc aaagatggct gaaaaagatg	360
gatgetteca atetggatte aatgaggaga ettgeetggt gaaaateate aetggtettt	420
tggagtttga ggtataceta gagtacetee agaacagatt tgagagtagt gaggaacaag	480
ccagagetgt gcagatgagt acaaaagtcc tgatccagtt cctgcagaaa aaggcaaaga	540
atctagatgc aataaccacc cctgacccaa ccacaaatgc cagcctgctg acgaagctgc	600
aggcacagaa ccagtggctg caggacatga caactcatct cattctgcgc agctttaagg	660
agttectgca gtecageetg agggetette ggcaaatgta gcatgggcae etcagattgt	720
tgttgttaat gggcattcct tcttctggtc agaaacctgt ccactgggca cagaacttat	780
gttgttctct atggagaact aaaagtatga gcgttaggac actattttaa ttattttaa	840
tttattaata tttaaatatg tgaagctgag ttaatttatg taagtcatat ttatatttt	900
aagaagtacc acttgaaaca ttttatgtat tagttttgaa ataataatgg aaagtggcta	960
tgcagtttga atatcctttg tttcagagcc agatcatttc ttggaaagtg taggcttacc	1020
tcaaataaat ggctaactta tacatatttt taaagaaata tttatattgt atttatataa	1080
tgtataaatg gtttttatac caataaatgg cattttaaaa aattc	1125
<210> 12	
<211> 3166	
<212> DNA	
<213> Homo sapiens	

<400> 12 aagagctcca	gagagaagtc	gaggaagaga	gagacggggt	cagagagagc	gcgcgggcgt	60
gcgagcagcg	aaagcgacag	gggcaaagtg	agtgacctgc	ttttgggggt	gaccgccgga	120
gcgcggcgtg	agccctcccc	cttgggatcc	cgcagctgac	cagtcgcgct	gacggacaga	180
cagacagaca	ccgcccccag	ccccagttac	cacctcctcc	ccggccggcg	gcggacagtg	240
gacgcggcgg	cgagccgcgg	gcaggggccg	gagcccgccc	ccggaggcgg	ggtggagggg	300
gtcggagctc	geggegtege	actgaaactt	ttcgtccaac	ttctgggctg	ttctcgcttc	360
ggaggagccg	tggtccgcgc	gggggaagcc	gagccgagcg	gagccgcgag	aagtgctagc	420
tcgggccggg	aggagccgca	gccggaggag	ggggaggagg	aagaagagaa	ggaagaggag	480
agggggccgc	agtggcgact	cggcgctcgg	aagccgggct	catggacggg	tgaggcggcg	540
gtgtgcgcag	acagtgctcc	agcgcgcgcg	ctccccagcc	ctggcccggc	ctcgggccgg	600
gaggaagagt	agctcgccga	ggcgccgagg	agagegggee	gccccacagc	ccgagccgga	660
gagggacgcg	agccgcgcgc	cccggtcggg	cctccgaaac	catgaacttt	ctgctgtctt	720
gggtgcattg	gagccttgcc	ttgctgctct	acctccacca	tgccaagtgg	tcccaggctg	780
cacccatggc	agaaggagga	gggcagaatc	atcacgaagt	ggtgaagttc	atggatgtct	840
atcagcgcag	ctactgccat	ccaatcgaga	ccctggtgga	catcttccag	gagtaccctg	900
atgagatcga	gtacatcttc	aagccatcct	gtgtgcccct	gatgcgatgc	gggggctgct	960
ccaatgacga	gggcctggag	tgtgtgccca	ctgaggagtc	caacatcacc	atgcagatta	1020
tgcggatcaa	acctcaccaa	ggccagcaca	taggagagat	gagcttccta	cagcacaaca	1080
aatgtgaatg	cagaccaaag	aaagatagag	caagacaaga	aaatccctgt	gggccttgct	1140
cagagcggag	aaagcatttg	tttgtacaag	atccgcagac	gtgtaaatgt	tcctgcaaaa	1200
acacacactc	gcgttgcaag	gcgaggcagc	ttgagttaaa	cgaacgtact	tgcagatgtg	1260
acaagccgag	gcggtgagcc	gggcaggagg	aaggagcctc	cctcagggtt	tcgggaacca	1320
gatctctctc	caggaaagac	tgatacagaa	cgatcgatac	agaaaccacg	ctgccgccac	1380
cacaccatca	ccatcgacag	aacagtcctt	aatccagaaa	cctgaaatga	aggaagagga	1440
gactctgcgc	agagcacttt	gggtccggag	ggcgagactc	cggcggaagc	attcccgggc	1500
gggtgaccca	gcacggtccc	tcttggaatt	ggattcgcca	ttttatttt	cttgctgcta	1560
aatcaccgag	cccggaagat	tagagagttt	tatttctggg	attcctgtag	acacacccac	1620
ccacatacat	acatttatat	atatatatat	tatatatata	taaaaataaa	tatctctatt	1680
ttatatatat	aaaatatata	tattcttttt	ttaaattaac	agtgctaatg	ttattggtgt	1740
cttcactgga	tgtatttgac	tgctgtggac	ttgagttggg	aggggaatgt	tcccactcag	1800

atcctgacag ggaagaggag	gagatgagag	actctggcat	gatcttttt	ttgtcccact	1860
tggtggggcc agggtcctct	cccctgccca	agaatgtgca	aggccagggc	atgggggcaa	1920
atatgaccca gttttgggaa	caccgacaaa	cccagccctg	gcgctgagcc	tctctacccc	1980
aggtcagacg gacagaaaga	caaatcacag	gttccgggat	gaggacaccg	gctctgacca	2040
ggagtttggg gagcttcagg	acattgctgt	gctttgggga	ttccctccac	atgctgcacg	2100
cgcatctcgc ccccaggggc	actgcctgga	agattcagga	gcctgggcgg	ccttcgctta	2160
ctctcacctg cttctgagtt	gcccaggagg	ccactggcag	atgtcccggc	gaagagaaga	2220
gacacattgt tggaagaagc	agcccatgac	agcgcccctt	cctgggactc	gccctcatcc	2280
tetteetget eccetteetg	gggtgcagcc	taaaaggacc	tatgtcctca	caccattgaa	2340
accactagtt ctgtccccc	aggaaacctg	gttgtgtgtg	tgtgagtggt	tgaccttcct	2400
ccatcccctg gtccttccct	tcccttcccg	aggcacagag	agacagggca	ggatccacgt	2460
gcccattgtg gaggcagaga	aaagagaaag	tgttttatat	acggtactta	tttaatatcc	2520
ctttttaatt agaaattaga	acagttaatt	taattaaaga	gtagggtttt	ttttcagtat	2580
tcttggttaa tatttaattt	caactattta	tgagatgtat	cttttgctct	ctcttgctct	2640
cttatttgta ccggtttttg	tatataaaat	tcatgtttcc	aatctctctc	tccctgatcg	2700
gtgacagtca ctagcttatc	ttgaacagat	atttaatttt	gctaacactc	agctctgccc	2760
teccegatee eetggeteee	cagcacacat	tcctttgaaa	gagggtttca	atatacatct	2820
acatactata tatatattgg	gcaacttgta	tttgtgtgta	tatatatata	tatatgttta	2880
tgtatatatg tgatcctgaa	aaaataaaca	tcgctattct	gttttttata	tgttcaaacc	2940
aaacaagaaa aaatagagaa	ttctacatac	taaatctctc	tcctttttta	attttaatat	3000
ttgttatcat ttatttattg	gtgctactgt	ttatccgtaa	taattgtggg	gaaaagatat	3060
taacatcacg tctttgtctc	tagtgcagtt	tttcgagata	ttccgtagta	catatttatt	3120
tttaaacaac gacaaagaaa	tacagatata	tcttaaaaaa	aaaaaa		3166

<210> 13

<211> 249

<212> RNA

<213> Homo sapiens

<400> 13 cogggcucau ggacgguga ggcgggggg ugcgcagaca gugcuccagc gcgcgcgcuc 60 cccagcccug gcccggccuc gggccggag gaagaguagc ucgccgaggc gccgaggaga 120 gcggggccgc ccacagcccg agccggagag ggacgcgagc cgcgcgccc ggucgggccu 180

ccgaaa	ccau	gaacuuucug	cugucuuggg	ugcauuggag	ccuugccuug	cugcucuacc	240
uccacca	aug						249
<210>	14						
<211>	9181						
<212>	DNA						
<213>	Homo	sapiens					

<400> 14 60 ggtctctctg gttagaccag atctgagect gggagetete tggetaacta gggaacceae 120 tgcttaagcc tcaataaagc ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt gtgactctgg taactagaga tccctcagac ccttttagtc agtgtggaaa atctctagca 180 240 gtggcgcccg aacagggacc tgaaagcgaa agggaaacca gaggagctct ctcgacgcag 300 gactoggott gotgaagogo goacggoaag aggogagggg oggogactgg tgagtacgco 360 aaaaattttg actageggag gctagaagga gagagatggg tgegagageg teagtattaa gcgggggaga attagatcga tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat 420 ataaattaaa acatatagta tgggcaagca gggagctaga acgattcgca gttaatcctg 480 540 gcctgttaga aacatcagaa ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt agatcattat ataatacagt agcaaccctc tattgtgtgc 600 660 atcaaaggat agagataaaa gacaccaagg aagctttaga caagatagag gaagagcaaa 720 acaaaagtaa gaaaaaagca cagcaagcag cagctgacac aggacacagc aatcaggtca 780 gccaaaatta ccctatagtg cagaacatcc aggggcaaat ggtacatcag gccatatcac 840 ctagaacttt aaatgcatgg gtaaaagtag tagaagagaa ggctttcagc ccagaagtga tacccatgtt ttcagcatta tcagaaggag ccaccccaca agatttaaac accatgctaa 900 960 acacagtggg gggacatcaa gcagccatgc aaatgttaaa agagaccatc aatgaggaag 1020 ctgcagaatg ggatagagtg catccagtgc atgcagggcc tattgcacca ggccagatga gagaaccaag gggaagtgac atagcaggaa ctactagtac ccttcaggaa caaataggat 1080 1140 ggatgacaaa taatccacct atcccagtag gagaaattta taaaagatgg ataatcctgg gattaaataa aatagtaaga atgtatagcc ctaccagcat tctggacata agacaaggac 1200 1260 caaaggaacc ctttagagac tatgtagacc ggttctataa aactctaaga gccgagcaag 1320 cttcacagga ggtaaaaaat tggatgacag aaaccttgtt ggtccaaaat gcgaacccag 1380 attgtaagac tattttaaaa gcattgggac cagcggctac actagaagaa atgatgacag catgtcaggg agtaggagga cccggccata aggcaagagt tttggctgaa gcaatgagcc 1440

aagtaacaaa	ttcagctacc	ataatgatgc	agagaggcaa	ttttaggaac	caaagaaaga	1500
ttgttaagtg	tttcaattgt	ggcaaagaag	ggcacacage	cagaaattgc	agggccccta	1560
ggaaaaaggg	ctgttggaaa	tgtggaaagg	aaggacacca	aatgaaagat	tgtactgaga	1620
gacaggctaa	ttttttaggg	aagatctggc	cttcctacaa	gggaaggcca	gggaattttc	1680
ttcagagcag	accagagcca	acagccccac	cagaagagag	cttcaggtct	ggggtagaga	1740
caacaactcc	ccctcagaag	caggagccga	tagacaagga	actgtatcct	ttaacttccc	1800
tcaggtcact	ctttggcaac	gacccctcgt	cacaataaag	ataggggggc	aactaaagga	1860
agctctatta	gatacaggag	cagatgatac	agtattagaa	gaaatgagtt	tgccaggaag	1920
atggaaacca	aaaatgatag	ggggaattgg	aggttttatc	aaagtaagac	agtatgatca	1980
gatactcata	gaaatctgtg	gacataaagc	tataggtaca	gtattagtag	gacctacacc	2040
tgtcaacata	attggaagaa	atctgttgac	tcagattggt	tgcactttaa	attttcccat	2100
tagccctatt	gagactgtac	cagtaaaatt	aaagccagga	atggatggcc	caaaagttaa	2160
acaatggcca	ttgacagaag	aaaaaataaa	agcattagta	gaaatttgta	cagagatgga	2220
aaaggaaggg	aaaatttcaa	aaattgggcc	tgaaaatcca	tacaatactc	cagtatttgc	2280
cataaagaaa	aaagacagta	ctaaatggag	aaaattagta	gatttcagag	aacttaataa	2340
gagaactcaa	gacttctggg	aagttcaatt	aggaatacca	catcccgcag	ggttaaaaaa	2400
gaaaaaatca	gtaacagtac	tggatgtggg	tgatgcatat	ttttcagttc	ccttagatga	2460
agacttcagg	aagtatactg	catttaccat	acctagtata	aacaatgaga	caccagggat	2520
tagatatcag	tacaatgtgc	ttccacaggg	atggaaagga	tcaccagcaa	tattccaaag	2580
tagcatgaca	aaaatcttag	agccttttag	aaaacaaaat	ccagacatag	ttatctatca	2640
atacatggat	gatttgtatg	taggatctga	cttagaaata	gggcagcata	gaacaaaaat	2700
agaggagctg	agacaacatc	tgttgaggtg	gggacttacc	acaccagaca	aaaaacatca	2760
gaaagaacct	ccattccttt	ggatgggtta	tgaactccat	cctgataaat	ggacagtaca	2820
gcctatagtg	ctgccagaaa	aagacagctg	gactgtcaat	gacatacaga	agttagtggg	2880
gaaattgaat	tgggcaagtc	agatttaccc	agggattaaa	gtaaggcaat	tatgtaaact	2940
ccttagagga	accaaagcac	taacagaagt	aataccacta	acagaagaag	cagagctaga	3000
actggcagaa	aacagagaga	ttctaaaaga	accagtacat	ggagtgtatt	atgacccatc	3060
aaaagactta	atagcagaaa	tacagaagca	ggggcaaggc	caatggacat	atcaaattta	3120
tcaagagcca	tttaaaaatc	tgaaaacagg	aaaatatgca	agaatgaggg	gtgcccacac	3180
taatgatgta	aaacaattaa	cagaggcagt	gcaaaaaata	accacagaaa	gcatagtaat	3240
atggggaaag	actcctaaat	ttaaactgcc	catacaaaag	gaaacatggg	aaacatggtg	3300
gacagagtat	tggcaagcca	cctggattcc	tgagtgggag	tttgttaata	cccctccctt	3360

agtgaaatta	tggtaccagt	tagagaaaga	acccatagta	ggagcagaaa	ccttctatgt	3420
agatggggca	gctaacaggg	agactaaatt	aggaaaagca	ggatatgtta	ctaatagagg	3480
aagacaaaaa	gttgtcaccc	taactgacac	aacaaatcag	aagactgagt	tacaagcaat	3540
ttatctagct	ttgcaggatt	cgggattaga	agtaaacata	gtaacagact	cacaatatgc	3600
attaggaatc	attcaagcac	aaccagatca	aagtgaatca	gagttagtca	atcaaataat	3660
agagcagtta	ataaaaaagg	aaaaggtcta	tctggcatgg	gtaccagcac	acaaaggaat	3720
tggaggaaat	gaacaagtag	ataaattagt	cagtgctgga	atcaggaaag	tactattttt	3780
agatggaata	gataaggccc	aagatgaaca	tgagaaatat	cacagtaatt	ggagagcaat	3840
ggctagtgat	tttaacctgc	cacctgtagt	agcaaaagaa	atagtagcca	gctgtgataa	3900
atgtcagcta	aaaggagaag	ccatgcatgg	acaagtagac	tgtagtccag	gaatatggca	3960
actagattgt	acacatttag	aaggaaaagt	tatcctggta	gcagttcatg	tagccagtgg	4020
atatatagaa	gcagaagtta	ttccagcaga	aacagggcag	gaaacagcat	attttctttt	4080
aaaattagca	ggaagatggc	cagtaaaaac	aatacatact	gacaatggca	gcaatttcac	4140
cggtgctacg	gttagggccg	cctgttggtg	ggcgggaatc	aagcaggaat	ttggaattcc	4200
ctacaatccc	caaagtcaag	gagtagtaga	atctatgaat	aaagaattaa	agaaaattat	4260
aggacaggta	agagatcagg	ctgaacatct	taagacagca	gtacaaatgg	cagtattcat	4320
ccacaatttt	aaaagaaaag	gggggattgg	ggggtacagt	gcaggggaaa	gaatagtaga	4380
cataatagca	acagacatac	aaactaaaga	attacaaaaa	caaattacaa	aaattcaaaa	4440
ttttcgggtt	tattacaggg	acagcagaaa	tccactttgg	aaaggaccag	caaagctcct	4500
ctggaaaggt	gaaggggcag	tagtaataca	agataatagt	gacataaaag	tagtgccaag	4560
aagaaaagca	aagatcatta	gggattatgg	aaaacagatg	gcaggtgatg	attgtgtggc	4620
aagtagacag	gatgaggatt	agaacatgga	aaagtttagt	aaaacaccat	atgtatgttt	4680
cagggaaagc	taggggatgg	ttttatagac	atcactatga	aagccctcat	ccaagaataa	4740
gttcagaagt	acacatccca	ctaggggatg	ctagattggt	aataacaaca	tattggggtc	4800
tgcatacagg	agaaagagac	tggcatttgg	gtcagggagt	ctccatagaa	tggaggaaaa	4860
agagatatag	cacacaagta	gaccctgaac	tagcagacca	actaattcat	ctgtattact	4920
ttgactgttt	ttcagactct	gctataagaa	aggccttatt	aggacacata	gttagcccta	4980
ggtgtgaata	tcaagcagga	cataacaagg	taggatctct	acaatacttg	gcactagcag	5040
cattaataac	accaaaaaag	ataaagccac	ctttgcctag	tgttacgaaa	ctgacagagg	5100
atagatggaa	caagccccag	aagaccaagg	gccacagagg	gagccacaca	atgaatggac	5160
actagagctt	ttagaggagc	ttaagaatga	agctgttaga	cattttccta	ggatttggct	5220
ccatggctta	gggcaacata	tctatgaaac	ttatggggat	acttgggcag	gagtggaagc	5280

cataataaga	attctgcaac	aactgctgtt	tatccatttt	cagaattggg	tgtcgacata	5340
gcagaatagg	cgttactcga	cagaggagag	caagaaatgg	agccagtaga	tcctagacta	5400
gagccctgga	agcatccagg	aagtcagcct	aaaactgctt	gtaccaattg	ctattgtaaa	5460
aagtgttgct	ttcattgcca	agtttgtttc	ataacaaaag	ccttaggcat	ctcctatggc	5520
aggaagaagc	ggagacagcg	acgaagagct	catcagaaca	gtcagactca	tcaagcttct	5580
ctatcaaagc	agtaagtagt	acatgtaatg	caacctatac	caatagtagc	aatagtagca	5640
ttagtagtag	caataataat	agcaatagtt	gtgtggtcca	tagtaatcat	agaatatagg	5700
aaaatattaa	gacaaagaaa	aatagacagg	ttaattgata	gactaataga	aagagcagaa	5760
gacagtggca	atgagagtga	aggagaaata	tcagcacttg	tggagatggg	ggtggagatg	5820
gggcaccatg	ctccttggga	tgttgatgat	ctgtagtgct	acagaaaaat	tgtgggtcac	5880
agtctattat	ggggtacctg	tgtggaagga	agcaaccacc	actctatttt	gtgcatcaga	5940
tgctaaagca	tatgatacag	aggtacataa	tgtttgggcc	acacatgcct	gtgtacccac	6000
agaccccaac	ccacaagaag	tagtattggt	aaatgtgaca	gaaaatttta	acatgtggaa	6060
aaatgacatg	gtagaacaga	tgcatgagga	tataatcagt	ttatgggatc	aaagcctaaa	6120
gccatgtgta	aaattaaccc	cactctgtgt	tagtttaaag	tgcactgatt	tgaagaatga	6180
tactaatacc	aatagtagta	gcgggagaat	gataatggag	aaaggagaga	taaaaaactg	6240
ctctttcaat	atcagcacaa	gcataagagg	taaggtgcag	aaagaatatg	cattttttta	6300
taaacttgat	ataataccaa	tagataatga	tactaccagc	tataagttga	caagttgtaa	6360
cacctcagtc	attacacagg	cctgtccaaa	ggtatccttt	gagccaattc	ccatacatta	6420
ttgtgccccg	gctggttttg	cgattctaaa	atgtaataat	aagacgttca	atggaacagg	6480
accatgtaca	aatgtcagca	cagtacaatg	tacacatgga	attaggccag	tagtatcaac	6540
tcaactgctg	ttaaatggca	gtctagcaga	agaagaggta	gtaattagat	ctgtcaattt	6600
cacggacaat	gctaaaacca	taatagtaca	gctgaacaca	tctgtagaaa	ttaattgtac	6660
aagacccaac	aacaatacaa	gaaaaagaat	ccgtatccag	agaggaccag	ggagagcatt	6720
tgttacaata	ggaaaaatag	gaaatatgag	acaagcacat	tgtaacatta	gtagagcaaa	6780
atggaataac	actttaaaac	agatagctag	caaattaaga	gaacaatttg	gaaataataa	6840
aacaataatc	tttaagcaat	cctcaggagg	ggacccagaa	attgtaacgc	acagttttaa	6900
ttgtggaggg	gaatttttct	actgtaattc	aacacaactg	tttaatagta	cttggtttaa	6960
tagtacttgg	agtactgaag	ggtcaaataa	cactgaagga	agtgacacaa	tcaccctccc	7020
atgcagaata	aaacaaatta	taaacatgtg	gcagaaagta	ggaaaagcaa	tgtatgcccc	7080
tcccatcagt	ggacaaatta	gatgttcatc	aaatattaca	gggctgctat	taacaagaga	7140
tggtggtaat	agcaacaatg	agtccgagat	cttcagacct	ggaggaggag	atatgaggga	7200

caattggaga	agtgaattat	ataaatataa	agtagtaaaa	attgaaccat	taggagtagc	7260
acccaccaag	gcaaagagaa	gagtggtgca	gagagaaaaa	agagcagtgg	gaataggagc	7320
tttgttcctt	gggttcttgg	gagcagcagg	aagcactatg	ggcgcagcct	caatgacgct	7380
gacggtacag	gccagacaat	tattgtctgg	tatagtgcag	cagcagaaca	atttgctgag	7440
ggctattgag	gcgcaacagc	atctgttgca	actcacagtc	tggggcatca	agcagctcca	7500
ggcaagaatc	ctggctgtgg	aaagatacct	aaaggatcaa	cagctcctgg	ggatttgggg	7560
ttgctctgga	aaactcattt	gcaccactgc	tgtgccttgg	aatgctagtt	ggagtaataa	7620
atctctggaa	cagatttgga	atcacacgac	ctggatggag	tgggacagag	aaattaacaa	7680
ttacacaagc	ttaatacact	ccttaattga	agaatcgcaa	aaccagcaag	aaaagaatga	7740
acaagaatta	ttggaattag	ataaatgggc	aagtttgtgg	aattggttta	acataacaaa	7800
ttggctgtgg	tatataaaat	tattcataat	gatagtagga	ggcttggtag	gtttaagaat	7860
agtttttgct	gtactttcta	tagtgaatag	agttaggcag	ggatattcac	cattatcgtt	7920
tcagacccac	ctcccaaccc	cgaggggacc	cgacaggccc	gaaggaatag	aagaagaagg	7980
tggagagaga	gacagagaca	gatccattcg	attagtgaac	ggatccttgg	cacttatctg	8040
ggacgatctg	cggagcctgt	gcctcttcag	ctaccaccgc	ttgagagact	tactcttgat	8100
tgtaacgagg	attgtggaac	ttctgggacg	cagggggtgg	gaagccctca	aatattggtg	8160
gaatctccta	cagtattgga	gtcaggaact	aaagaatagt	gctgttagct	tgctcaatgc	8220
cacagccata	gcagtagctg	aggggacaga	tagggttata	gaagtagtac	aaggagcttg	8280
tagagctatt	cgccacatac	ctagaagaat	aagacagggc	ttggaaagga	ttttgctata	8340
agatgggtgg	caagtggtca	aaaagtagtg	tgattggatg	gcctactgta	agggaaagaa	8400
tgagacgagc	tgagccagca	gcagataggg	tgggagcagc	atctcgagac	ctggaaaaac	8460
atggagcaat	cacaagtagc	aatacagcag	ctaccaatgc	tgcttgtgcc	tggctagaag	8520
cacaagagga	ggaggaggtg	ggttttccag	tcacacctca	ggtaccttta	agaccaatga	8580
cttacaaggc	agctgtagat	cttagccact	ttttaaaaga	aaagggggga	ctggaagggc	8640
taattcactc	ccaaagaaga	caagatatcc	ttgatctgtg	gatctaccac	acacaaggct	8700
acttccctga	ttagcagaac	tacacaccag	ggccaggggt	cagatatcca	ctgacctttg	8760
gatggtgcta	caagctagta	ccagttgagc	cagataagat	agaagaggcc	aataaaggag	8820
agaacaccag	cttgttacac	cctgtgagcc	tgcatgggat	ggatgacccg	gagagagaag	8880
tgttagagtg	gaggtttgac	agccgcctag	catttcatca	cgtggcccga	gagctgcatc	8940
cggagtactt	caagaactgc	tgacatcgag	cttgctacaa	gggactttcc	gctggggact	9000
ttccagggag	gcgtggcctg	ggcgggactg	gggagtggcg	agccctcaga	tcctgcatat	9060
aagcagctgc	tttttgcctg	tactgggtct	ctctggttag	accagatctg	agcctgggag	9120

ctctctg	ggct	aactagggaa	cccactgctt	aagcctcaat	aaagcttgcc	ttgagtgctt	9180
С							9181
<210>	15						
<211>	29						
<212>	RNA						
<213>	Homo	sapiens					
<400> ggcagat	15 ucug	agccugggag	cucucugec				29
<210>	16						
<211>	52						
<212>	RNA						
<213>	Homo	sapiens					
<400> uuuuuu	16 aggg	aagaucuggc	cuuccuacaa	gggaaggcca	gggaauuuuc	uu	52
<210>	17						
<211>	9413	3					
<212>	DNA	,					
<213>		sapiens					
1220	22022	2 2 2 1					
<400> ttgggg	17 gcga	cactccacca	tagatcactc	ccctgtgagg	aactactgtc	ttcacgcaga	60
aagcgt	ctag	ccatggcgtt	agtatgagtg	ttgtgcagcc	tccaggaccc	cccctcccgg	120
gagagc	cata	gtggtctgcg	gaaccggtga	gtacaccgga	attgccagga	cgaccgggtc	180
ctttct	tgga.	tcaacccgct	caatgcctgg	agatttgggc	gtgcccccgc	gagactgcta	240
gccgag	tagt	gttgggtcgc	gaaaggcctt	gtggtactgc	ctgatagggt	gcttgcgagt	300
gccccg	ggag	gtctcgtaga	ccgtgcatca	tgagcacaaa	tcctaaacct	caaagaaaaa	360
ccaaac	gtaa	caccaaccgc	cgcccacagg	acgttaagtt	cccgggcggt	ggtcagatcg	420
ttggtg	gagt	ttacctgttg	ccgcgcaggg	gccccaggtt	gggtgtgcgc	gcgactagga	480
agactt	ccga	geggtegeaa	cctcgtggaa	ggcgacaacc	tatccccaag	gctcgccggc	540
ccgagg	gtag	gacctgggct	cagcccgggt	acccttggcc	cctctatggc	aacgagggta	600

tggggtgggc	aggatggctc	ctgtcacccc	gtggctctcg	gcctagttgg	ggccccacag	660
accccggcg	taggtcgcgt	aatttgggta	aggtcatcga	tacccttaca	tgcggcttcg	720
ccgacctcat	ggggtacatt	ccgcttgtcg	gegeeecet	agggggcgct	gccagggccc	780
tggcacatgg	tgtccgggtt	ctggaggacg	gcgtgaacta	tgcaacaggg	aatctgcccg	840
gttgctcttt	ctctatcttc	ctcttagctt	tgctgtcttg	tttgaccatc	ccagcttccg	900
cttacgaggt	gcgcaacgtg	tccgggatat	accatgtcac	gaacgactgc	tccaactcaa	960
gtattgtgta	tgaggcagcg	gacatgatca	tgcacacccc	cgggtgcgtg	ccctgcgtcc	1020
gggagagtaa	tttctcccgt	tgctgggtag	cgctcactcc	cacgctcgcg	gccaggaaca	1080
gcagcatccc	caccacgaca	atacgacgcc	acgtcgattt	gctcgttggg	gcggctgctc	1140
tctgttccgc	tatgtacgtt	ggggatctct	gcggatccgt	ttttctcgtc	tcccagctgt	1200
tcaccttctc	acctcgccgg	tatgagacgg	tacaagattg	caattgctca	atctatcccg	1260
gccacgtatc	aggtcaccgc	atggcttggg	atatgatgat	gaactggtca	cctacaacgg	1320
ccctagtggt	atcgcagcta	ctccggatcc	cacaagccgt	cgtggacatg	gtggcggggg	1380
cccactgggg	tgtcctagcg	ggccttgcct	actattccat	ggtggggaac	tgggctaagg	1440
tcttgattgt	gatgctactc	tttgctggcg	ttgacgggca	cacccacgtg	acagggggaa	1500
gggtagcctc	cagcacccag	agcctcgtgt	cctggctctc	acaaggccca	tctcagaaaa	1560
tccaactcgt	gaacaccaac	ggcagctggc	acatcaacag	gaccgctctg	aattgcaatg	1620
actccctcca	aactgggttc	attgctgcgc	tgttctacgc	acacaggttc	aacgcgtccg	1680
ggtgcccaga	gcgcatggct	agctgccgcc	ccatcgatga	gttcgctcag	gggtggggtc	1740
ccatcactca	tgatatgcct	gagagctcgg	accagaggcc	atattgctgg	cactacgcgc	1800
ctcgaccgtg	cgggatcgtg	cctgcgtcgc	aggtgtgtgg	tccagtgtat	tgcttcactc	1860
cgagccctgt	tgtagtgggg	acgaccgatc	gtttcggcgc	tcctacgtat	agctgggggg	1920
agaatgagac	agacgtgctg	ctacttagca	acacgeggee	gcctcaaggc	aactggtttg	1980
ggtgcacgtg	gatgaacagc	actgggttca	ccaagacgtg	cgggggccct	ccgtgcaaca	2040
tcgggggggt	cggcaacaac	accttggtct	gccccacgga	ttgcttccgg	aagcaccccg	2100
aggccactta	cacaaagtgt	ggctcggggc	cctggttgac	acccaggtgc	atggttgact	2160
acccatacag	gctctggcac	tacccctgca	ctgttaactt	taccgtcttt	aaggtcagga	2220
tgtatgtggg	gggcgtggag	cacaggctca	atgctgcatg	caattggact	cgaggagagc	2280
gctgtgactt	ggaggacagg	gataggtcag	aactcagccc	gctgctgctg	tctacaacag	2340
agtggcagat	actgccctgt	tccttcacca	ccctaccggc	cctgtccact	ggcttgatcc	2400
atcttcaccg	gaacatcgtg	gacgtgcaat	acctgtacgg	tatagggtcg	gcagttgtct	2460
cctttgcaat	caaatgggag	tatatcctgt	tgcttttcct	tcttctggcg	gacgcgcgcg	2520

tctgtgcctg	cttgtggatg	atgctgctga	tagcccaggc	tgaggccacc	ttagagaacc	2580
tggtggtcct	caatgcggcg	tctgtggccg	gagcgcatgg	ccttctctcc	ttcctcgtgt	2640
tettetgege	cgcctggtac	atcaaaggca	ggctggtccc	tggggcggca	tatgctctct	2700
atggcgtatg	gccgttgctc	ctgctcttgc	tggccttacc	accacgagct	tatgccatgg	2760
accgagagat	ggctgcatcg	tgcggaggcg	cggtttttgt	aggtctggta	ctcttgacct	2820
tgtcaccata	ctataaggtg	ttcctcgcta	ggctcatatg	gtggttacaa	tattttatca	2880
ccagagccga	ggcgcacttg	caagtgtggg	tccccctct	caatgttcgg	ggaggccgcg	2940
atgccatcat	cctccttaca	tgcgcggtcc	atccagagct	aatctttgac	atcaccaaac	3000
tectgetege	catactcggt	ccgctcatgg	tgctccaggc	tggcataact	agagtgccgt	3060
actttgtacg	cgctcagggg	ctcatccgtg	catgcatgtt	agtgcggaag	gtcgctggag	3120
gccactatgt	ccaaatggcc	ttcatgaagc	tggccgcgct	gacaggtacg	tacgtatatg	3180
accatcttac	tccactgcgg	gattgggccc	acgcgggcct	acgagacctt	gcggtggcag	3240
tagagcccgt	cgtcttctct	gacatggaga	ctaaactcat	cacctggggg	gcagacaccg	3300
cggcgtgtgg	ggacatcatc	tegggtetae	cagtctccgc	ccgaaggggg	aaggagatac	3360
ttctaggacc	ggccgatagt	tttggagagc	aggggtggcg	gctccttgcg	cctatcacgg	3420
cctattccca	acaaacgcgg	ggcctgcttg	gctgtatcat	cactageete	acaggtcggg	3480
acaagaacca	ggtcgatggg	gaggttcagg	tgctctccac	cgcaacgcaa	tctttcctgg	3540
cgacctgcgt	caatggcgtg	tgttggaccg	tctaccatgg	tgccggctcg	aagaccctgg	3600
ccggcccgaa	gggtccaatc	acccaaatgt	acaccaatgt	agaccaggac	ctcgtcggct	3660
ggccggcgcc	ccccggggcg	cgctccatga	caccgtgcac	ctgcggcagc	teggacettt	3720
acttggtcac	gaggcatgct	gatgtcgttc	cggtgcgccg	gcggggcgac	agcaggggga	3780
gcctgctttc	ccccaggccc	atctcctacc	tgaagggctc	ctcgggtgga	ccactgcttt	3840
gcccttcggg	gcacgttgta	ggcatcttcc	gggctgctgt	gtgcacccgg	ggggttgcga	3900
aggcggtgga	cttcataccc	gttgagtcta	tggaaactac	catgcggtct	ccggtcttca	3960
cagacaactc	atcccctccg	gccgtaccgc	aaacattcca	agtggcacat	ttacacgctc	4020
ccactggcag	cggcaagagc	accaaagtgc	cggctgcata	tgcagcccaa	gggtacaagg	4080
tgctcgtcct	aaacccgtcc	gttgccgcca	cattgggctt	tggagcgtat	atgtccaagg	4140
cacatggcat	cgagcctaac	atcagaactg	gggtaaggac	catcaccacg	ggcggcccca	4200
tcacgtactc	cacctattgc	aagttccttg	ccgacggtgg	atgctccggg	ggcgcctatg	4260
acatcataat	atgtgatgaa	tgccactcaa	ctgactcgac	taccatcttg	ggcatcggca	4320
cagtcctgga	tcaggcagag	acggctggag	cgcggctcgt	cgtgctcgcc	accgccacgc	4380
ctccgggatc	gatcaccgtg	ccacacccca	acatcgagga	agtggccctg	tccaacactg	4440

gagagattcc	cttctatggc	aaagccatcc	ccattgaggc	catcaagggg	ggaaggcatc	4500
tcatcttctg	ccattccaag	aagaagtgtg	acgagetege	cgcaaagctg	acaggcctcg	4560
gactcaatgc	tgtagcgtat	taccggggtc	tcgatgtgtc	cgtcataccg	actagcggag	4620
acgtcgttgt	cgtggcaaca	gacgctctaa	tgacgggttt	taccggcgac	tttgactcag	4680
tgatcgactg	caacacatgt	gtcacccaga	cagtcgattt	cagcttggat	cccaccttca	4740
ccattgagac	gacaacgctg	ccccaagacg	cggtgtcgcg	tgcgcagcgg	cgaggtagga	4800
ctggcagggg	caggagtggc	atctacaggt	ttgtgactcc	aggagaacgg	ccctcaggca	4860
tgttcgactc	ctcggtcctg	tgtgagtgct	atgacgcagg	ctgcgcttgg	tatgagctca	4920
cgcccgctga	gacctcggtt	aggttgcggg	cttacctaaa	tacaccaggg	ttgcccgtct	4980
gccaggacca	cctagagttc	tgggagagcg	tcttcacagg	cctcacccac	atagatgccc	5040
acttcttgtc	ccagaccaaa	caggcaggag	acaacctccc	ctacctggta	gcataccaag	5100
ccacagtgtg	cgccagggct	caggetecae	ctccatcgtg	ggaccaaatg	tggaagtgtc	5160
tcatacggct	aaagcccaca	ctgcatgggc	caacgcccct	gctgtacagg	ctaggagccg	5220
ttcaaaatga	ggtcactctc	acacacccca	taaccaaata	catcatggca	tgcatgtcgg	5280
ctgacctgga	ggtcgtcact	agcacctggg	tgctagtagg	cggagtcctt	gcggctctgg	5340
ccgcgtactg	cctgacgaca	ggcagcgtgg	tcattgtggg	caggatcatc	ttgtccggga	5400
ggccagctgt	tattcccgac	agggaagtcc	tctaccagga	gttcgatgag	atggaagagt	5460
gtgcttcaca	cctcccttac	atcgagcaag	gaatgcagct	cgccgagcaa	ttcaaacaga	5520
aggcgctcgg	attgctgcaa	acagccacca	agcaagcgga	ggctgctgct	cccgtggtgg	5580
agtccaagtg	gcgagccctt	gaggtcttct	gggcgaaaca	catgtggaac	ttcatcagcg	5640
ggatacagta	cttggcaggc	ctatccactc	tgcctggaaa	ccccgcgata	gcatcattga	5700
tggcttttac	agcctctatc	accagcccgc	tcaccaccca	aaataccctc	ctgtttaaca	5760
tcttgggggg	atgggtggct	gcccaactcg	ctccccccag	cgctgcttcg	gctttcgtgg	5820
gcgccggcat	tgccggtgcg	gccgttggca	gcataggtct	cgggaaggta	cttgtggaca	5880
ttctggcggg	ctatggggcg	ggggtggctg	gcgcactcgt	ggcctttaag	gtcatgagcg	5940
gcgagatgcc	ctccactgag	gatctggtta	atttactccc	tgccatcctt	tctcctggcg	6000
ccctggttgt	cggggtcgtg	tgcgcagcaa	tactgcgtcg	gcacgtgggc	ccgggagagg	6060
gggctgtgca	gtggatgaac	cggctgatag	cgttcgcttc	gcggggtaac	cacgtctccc	6120
ccacgcacta	tgtgcccgag	agcgacgccg	cggcgcgtgt	tactcagatc	ctctccagcc	6180
ttaccatcac	tcagttgctg	aagaggcttc	atcagtggat	taatgaggac	tgctccacgc	6240
cttgttccgg	ctcgtggcta	aaggatgttt	gggactggat	atgcacggtg	ttgagtgact	6300
tcaagacttg	gctccagtcc	aagctcctgc	cgcggttacc	gggaċtccct	ttcctgtcat	6360

gccaacgcgg	gtacaaggga	gtctggcggg	gggatggcat	catgcaaacc	acctgcccat	6420
gtggagcaca	gatcaccgga	catgtcaaaa	atggctccat	gaggattgtt	gggccaaaaa	6480
cctgcagcaa	cacgtggcat	ggaacattcc	ccatcaacgc	atacaccacg	ggcccctgca	6540
cgccctcccc	agcgccgaac	tattccaggg	cgctgtggcg	ggtggctgct	gaggagtacg	6600
tggaggttac	gcgggtgggg	gatttccact	acgtgacggg	catgaccact	gacaacgtga	6660
aatgcccatg	ccaggttcca	gcccctgaat	ttttcacgga	ggtggatgga	gtacggttgc	6720
acaggtatgc	tccagtgtgc	aaacctctcc	tacgagagga	ggtcgtattc	caggtcgggc	6780
tcaaccagta	cctggtcggg	tcacagetee	catgtgagcc	cgaaccggat	gtggcagtgc	6840
tcacttccat	gctcaccgac	ccctctcata	ttacagcaga	gacggccaag	cgtaggctgg	6900
ccagggggtc	tccccctcc	ttggccagct	cttcagctag	ccagttgtct	gcgccttctt	6960
tgaaggcgac	atgtactacc	catcatgact	ccccggacgc	tgacctcatc	gaggccaacc	7020
tcctgtggcg	gcaggagatg	ggcgggaaca	tcacccgtgt	ggagtcagaa	aataaggtgg	7080
taatcctgga	ctctttcgat	ccgattcggg	cggtggagga	tgagagggaa	atatccgtcc	7140
cggcggagat	cctgcgaaaa	cccaggaagt	tececceage	gttgcccata	tgggcacgcc	7200
cggattacaa	ccctccactg	ctagagtcct	ggaaggaccc	ggactacgtc	ccccggtgg	7260
tacacgggtg	ccctttgcca	tctaccaagg	ccccccaat	accacctcca	cggaggaaga	7320
ggacggttgt	cctgacagag	tccaccgtgt	cttctgcctt	ggcggagctc	gctactaaga	7380
cctttggcag	ctccgggtcg	teggeegttg	acagcggcac	ggcgactggc	cctcccgatc	7440
aggcctccga	cgacggcgac	aaaggatccg	acgttgagtc	gtactcctcc	atgccccccc	7500
tcgagggaga	gccaggggac	cccgacctca	gcgacgggtc	ttggtctacc	gtgagcgggg	7560
aagctggtga	ggacgtcgtc	tgctgctcaa	tgtcctatac	atggacaggt	gccttgatca	7620
cgccatgcgc	tgcggaggag	agcaagttgc	ccatcaatcc	gttgagcaac	tctttgctgc	7680
gtcaccacag	tatggtctac	tccacaacat	ctcgcagcgc	aagtctgcgg	cagaagaagg	7740
tcacctttga	cagactgcaa	gtcctggacg	accactaccg	ggacgtgctc	aaggagatga	7800
aggcgaaggc	gtccacagtt	aaggctaggc	ttctatctat	agaggaggcc	tgcaaactga	7860
cgcccccaca	ttcggccaaa	tccaaatttg	gctacggggc	gaaggacgtc	cggagcctat	7920
ccagcagggc	cgtcaaccac	atccgctccg	tgtgggagga	cttgctggaa	gacactgaaa	7980
caccaattga	taccaccatc	atggcaaaaa	atgaggtttt	ctgcgtccaa	ccagagaaag	8040
gaggccgcaa	gccagctcgc	cttatcgtat	tcccagacct	gggggtacgt	gtatgcgaga	8100
agatggccct	ttacgacgtg	gtctccaccc	ttcctcaggc	cgtgatgggc	ccctcatacg	8160
gattccagta	ctctcctggg	cagcgggtcg	agttcctggt	gaatacctgg	aaatcaaaga	8220
aatgccctat	gggcttctca	tatgacaccc	gctgctttga	ctcaacggtc	actgagaatg	8280

acatccgtac	tgaggaatca	atttaccaat	gttgtgactt	ggcccccgaa	gccaggcagg	8340
ccataaggtc	gctcacagag	cggctttatg	tcgggggtcc	cctgactaat	tcgaaggggc	8400
agaactgcgg	ttatcgccgg	tgccgcgcaa	gtggcgtgct	gacgactagc	tgcggcaaca	8460
ccctcacatg	ttacttgaag	gccactgcgg	cctgtcgagc	tgcaaagctc	caggactgca	8520
cgatgctcgt	gaacggagac	gaccttgtcg	ttatctgtga	gagtgcggga	acccaggagg	8580
atgcggcggc	cctacgagcc	ttcacggagg	ctatgactag	gtattccgcc	cccccgggg	8640
acccgcccca	accagaatac	gacttggagc	tgataacgtc	atgctcctcc	aatgtgtcgg	8700
togogoacga	tgcatccggc	aaaagggtgt	actacctcac	ccgtgacccc	accacccccc	8760
togcacgggc	tgcgtgggag	acagttagac	acactccagt	caactcctgg	ctaggcaata	8820
tcatcatgta	tgcgcccacc	ctatgggcga	ggatgattct	gatgactcat	ttcttctcta	8880
tccttctagc	tcaggagcaa	cttgaaaaag	ccctggattg	tcagatctac	ggggcctgtt	8940
actccattga	gccacttgac	ctacctcaga	tcattgaacg	actccatggt	cttagcgcat	9000
tttcactcca	cagttactct	ccaggtgaga	tcaatagggt	ggcttcatgc	ctcaggaaac	9060
ttggggtacc	gcctttgcga	gtctggagac	atcgggccag	aagtgtccgc	gctaagctac	9120
tgtcccaggg	ggggagggct	gccacttgcg	gcaagtacct	cttcaactgg	gcagtaaaga	9180
ccaagcttaa	actcactcca	atcccggctg	cgtcccagct	agacttgtcc	ggctggttcg	9240
ttgctggtta	caacggggga	gacatatatc	acagcctgtc	tcgtgcccga	ccccgttggt	9300
tcatgttgtg	cctactccta	ctttctgtag	gggtaggcat	ctacctgctc	cccaaccggt	9360
gaacggggag	ctaaccactc	caggccaata	ggccattccc	tttttttt	ttc	9413

<210> 18

<211> 328

<212> RNA

<213> Homo sapiens

<400> 18 uuggggggga cacuccaca uagaucacuc cccugugagg aacuacuguc uucacgcaga 60 aagcgucuag ccauggcguu aguaugagug uugugcagcc uccaggaccc ccccucccgg 120 gagagccaua guggucugcg gaaccgguga guacaccgga auuugcagga cgaccggguc 180 cuuucuugga ucaaccegcu caaugccugg agauuugggc gugcccccgc gagacugcua 240 gccgaguagu guugggucgc gaaaggccuu gugguacugc cugauagggu gcuugcgagu 300 gecccgggag gucucguaga ccgugcau

<210>	19					
<211>	14					
<212>	RNA					
<213>	Homo sapiens					
<400>	19 gegu gece					14
aaaaggg	,094 g000					
<210>	20					
<211>	27					
<212>	RNA					
<213>	Homo sapiens					
<400>	20					0.7
gccgagı	agu guugggucgc	gaaaggc				27
<210>	21					
<211>	340					
<212>	DNA					
<213>	Homo sapiens					
<400>	21					6.0
	ggag ggaagctcat					60
	ccct tgggaaggtc					120
	cagg gaggtgagtt					180
	cgtg gaccccgccc					240
tggaac	agac tcacggccag	cgaagtgagt	tcaatggctg	aggtgaggta	ccccgcaggg	300
gacctc	ataa cccaattcag	accactctcc	teegeceatt			340
<210>	22					
<211>	349					
<212>	DNA					
<213>	Homo sapiens					
	_					
<400>	22					

gaggaaagtc cgggctcaca ca	gtctgaga tgattgtagt	gttcgtgctt	gatgaaacaa	60
taaatcaagg cattaatttg ac	ggcaatga aatatcctaa	gtctttcgat	atggatagag	120
taatttgaaa gtgccacagt ga	cgtagctt ttatagaaat	ataaaaggtg	gaacgcggta	180
aacccctcga gtgagcaatc ca	aatttggt aggagcactt	gtttaacgga	attcaacgta	240
taaacgagac acacttcgcg aa	atgaagtg gtgtagacag	atggttatca	cctgagtacc	300
agtgtgacta gtgcacgtga tg	agtacgat ggaacagaac	gcggcttat		349
<210> 23				
<212> DNA				
<213> Homo sapiens				
<400> 23 gaagetgaee agaeagtege eg	gettegteg tegteetett	cgggggagac	gggcggaggg	60
gaggaaagtc cgggctccat ag	gggcagggt gccaggtaac	gcctgggggg	gaaacccacg	120
accagtgcaa cagagagcaa ac	ccgccgatg gcccgcgcaa	gcgggatcag	gtaagggtga	180
aagggtgcgg taagagcgca cc	gegegget ggtaaeagte	cgtggcacgg	taaactccac	240
ccggagcaag gccaaatagg gg	gttcataag gtacggcccg	tactgaaccc	gggtaggctg	300
cttgagccag tgagcgattg ct	ggcctaga tgaatgactg	tccacgacag	aacccggctt	360
atcggtcagt ttcacct				377
<210> 24				
<211> 38110				
<212> DNA				
<213> Homo sapiens				
<400> 24 ccaccggtta cgatcttgcc ga	accatggcc ccacaatagg	gccggggaga	cccggcgtca	60
gtggtgggcg gcacggtcag ta				120
ggetecatag egteggeege gg				180
gacgacgtct tcaaacttgc ca				240
gacctgcctg gcatcatgca gc				300
				360
tttgacgacg gcttggcctt tg				
teegaeatgt tgettettee eg	gatecegag aeggegegea	tcgacccgtt	ccgcgcggcc	420

aagacgctga atatcaactt ctttgtgcac gacccgttca ccctggagcc gtactcccgc	480
gacccgcgca acatcgcccg caaggccgag aactacctga tcagcactgg catcgccgac	540
accgcatact tcggcgccga ggccgagttc tacattttcg attcggtgag cttcgactcg	600
cgcgccaacg gctccttcta cgaggtggac gccatctcgg ggtggtggaa caccggcgcg	660
gcgaccgagg ccgacggcag tcccaaccgg ggctacaagg tccgccacaa gggcgggtat	720
ttcccagtgg cccccaacga ccaatacgtc gacctgcgcg acaagatgct gaccaacctg	780
atcaactccg gcttcatcct ggagaagggc caccacgagg tgggcagcgg cggacaggcc	840
gagatcaact accagttcaa ttcgctgctg cacgccgccg acgacatgca gttgtacaag	900
tacatcatca agaacaccgc ctggcagaac ggcaaaacgg tcacgttcat gcccaagccg	960
ctgtteggeg acaaegggte eggeatgeae tgteateagt egetgtggaa ggaeggggee	1020
ccgctgatgt acgacgagac gggttatgcc ggtctgtcgg acacggcccg tcattacatc	1080
ggeggeetgt tacaccaege geegtegetg etggeettea ecaaecegae ggtgaactee	1140
tacaagegge tggtteeegg ttaegaggee eegateaace tggtetatag eeagegeaac	1200
cggtcggcat gcgtgcgcat cccgatcacc ggcagcaacc cgaaggccaa gcggctggag	1260
ttccgaagcc ccgactcgtc gggcaacccg tatctggcgt tctcggccat gctgatggca	1320
ggeetggaeg gtatcaagaa caagategag eegeaggege eegtegacaa ggatetetae	1380
gagetgeege eggaagagge egegagtate eegeagaete egaceeaget gteagatgtg	1440
ategacegte tegaggeega ecaegaatae eteaeegaag gaggggtgtt cacaaaegae	1500
ctgatcgaga cgtggatcag tttcaagcgc gaaaacgaga tcgagccggt caacatccgg	1560
cogcatecet acgaattege getgtactae gaegtttaag gaetettege agteegggtg	1620
tagagggage ggcgtgtcgt tgccagggcg ggcgtcgagg tttttcgatg ggtgacggtg	1680
geoggeaacg gegegeegae caeegetgeg aagageeegt ttaagaaegt teaaggaegt	1740
ttcagccggg tgccacaacc cgcttggcaa tcatctcccg accgccgagc gggttgtctt	1800
tcacatgogo ogaaactcaa gocaogtogt ogocoaggog tgtogtogog googgttoag	1860
gttaagtgte ggggattegt egtgegggeg ggegteeaeg etgaeeaaeg gggeagteaa	1920
ctcccgaaca ctttgcgcac taccgccttt gcccgccgcg tcacccgtag gtagttgtcc	1980
aggaatteee cacegtegte gtttegeeag eeggeegega eegegaeege attgagetgg	2040
cgcccgggtc ccggcagctg gtcggtgggc ttgccgcgca ccaacaccag cgcgttgcgg	2100
gecegggtgg eggteageea ggeetgaegg ageageteea egteggetge gggaaceaga	2160
teggeggeeg egatgaeate cagggattge agegtegagg tgttgtgeag ggegggaace	2220
tggtgcgcat gctgtagctg cagcaactgc acggtccatt cgatgtcggc cagtccgccg	2280
cggcccagtt tggtgtgtgt gttggggtcg gcaccgcgcg gcaaccgctc ggactcgata	2340

cgggccttga	tgcggcgaat	ctcgcgcacc	gagtcagcgg	acacaccgtc	gggcggatac	2400
cgcgttttgt	cgaccatccg	taggaatcgc	tgacccaact	cggcatcgcc	ggcaaccgcg	2460
tgtgcgcgta	gcagggcctg	gatctcccat	ggctgtgccc	actgctcgta	gtatgcggcg	2520
taggacccca	gggtgcggac	cagcggaccg	ttgcggccct	cgggtcgcaa	attggcgtcg	2580
agctccagcg	gcggatcgac	gctgggtgtc	cccagcagcg	cccgaacccg	ctcggcgatc	2640
gatgtcgacc	atttcaccgc	ccgtgcatcg	tcgacgccgg	tggccggctc	acagacgaac	2700
atcacgtcgg	catccgaccc	gtagcccaac	tcggcaccac	ccagccgacc	catgccgatg	2760
accgcgatgg	ccaccaaaac	gcgatcgtcg	tcgggaaggc	tggcccggat	catgacgtcc	2820
agcgcggcct	gcagcaccgc	cacccacacc	gacgtcaacg	cccggcacac	ctcggtgacc	2880
tcgagcaggc	cgagcaggtc	cgccgaaccg	atgcgggcca	gctctcgacg	acgcagcgtg	2940
cgcgcgccgg	cgatggcccg	ctccgggtcg	gggtagcggc	tcgccgaggc	gatcagcgcc	3000
cgagccacgg	cggcgggctc	ggtctcgagc	agcttcgggc	ccgcaggccc	gtcctcgtac	3060
tgctggatga	cccgcggcgc	gcgcatcaac	agatccggca	catacgccga	ggtacccaag	3120
acatgcatga	gccgcttggc	caccgcgggc	ttgtcccgca	gcgtggccag	gtaccagctt	3180
teggtggcca	gcgcctcact	gagccgccgg	taggccagca	gtccgccgtc	gggatcgggg	3240
gcatacgaca	tccagtccag	cagcctgggc	agcagcaccg	actgcacccg	teegegeegg	3300
ccgctttgat	tgaccaacgc	cgacatgtgt	ttcaacgcgg	tetgeggtee	ctcgtagccc	3360
agcgcggcca	gccggcgccc	cgcggcctcc	aacgtcatgc	cgtgggcgat	ctccaacccg	3420
gtcgggccga	tcgattccag	cagcggttga	tagaagagtt	tggtgtgtaa	cttcgacacc	3480
cgcacgttct	gcttcttgag	ttcctcccgc	agcaccccgg	ccgcatcgtt	tcggccatcg	3540
ggccggatgt	gggccgcgcg	cgccagccag	cgcactgcct	cctcgtcttc	gggatcggga	3600
agcaggtggg	tgcgcttgag	ccgctgcaac	tgcagtcggt	gctcgagcag	cctgaggaac	3660
tcatacgacg	cggtcatgtt	cgccgcgtcc	tcacgcccga	tgtagccgcc	ttcgcccaac	3720
gccgccaatg	cgtccaccgt	ggacgccacc	cgtaacgact	cgtcgctacg	ggcatgaacc	3780
agctgcagta	gctgtacggc	gaactccacg	tcgcgcaatc	cgccgctgcc	gagtttgagc	3840
tegeggeege	ggacatcggc	gggcaccagc	tgctccaccc	gccgccgcat	ggcctgcacc	3900
tcgaccacaa	agtcttcgcg	ctcgcaggct	cgccacacca	tcggcatcaa	ggcggtcagg	3960
taacgctcgc	caagttccgc	gtcgccaacg	actggccgtg	ctttcagcaa	cgcctgaaac	4020
tcccaggtct	tggcccagcg	ctggtagtag	gcgatgtgcg	actcgagcgt	acggaccagc	4080
tccccgttgc	gcccctccgg	acgcagggcg	gcgtccacct	cgaaaaaggc	cgccgaggcc	4140
acccgcatca	tctcgctggc	cacgcgcgcg	ttgcgcgggt	cggagcgctc	ggcaacgaat	4200
atgacatcga	cgtcgctgac	gtagttcagt	tcgcgcgcac	cgcacttgcc	catcgcgatg	4260

accgccaggc	gcggtggcgg	gtgctcgccg	cacacgctcg	cctcggccac	gcgcagcgcc	4320 -	
gccgccagag	cggcgtccgc	ggcgtccgcc	aggcgtgcgg	ccaccacggt	gaatggcagc	4380	
accggttcgt	cctcgaccgt	cgcggccagg	tcgagagcgg	ccagcattag	cacgtagtcg	4440	
cggtactggg	ttcgcaatcg	gtgcacgagc	gagcccggca	taccctccga	ttcctcgacg	4500	
cactcgacga	acgaccgctg	cagctggtca	tgggacggca	gtgtgacctt	gccccgcagc	4560	
aatttccagg	actgcggatg	ggcgaccagg	tgatcgccca	acgccagcga	cgagcccagc	4620	
accgagaaca	geegeeegeg	cagactgcgt	tcgcgcagca	gagccgcgtt	gagetegtee	4680	
catccggtgt	ctggattctc	cgacagccgg	atcaaggcgc	gcagcgcggc	atcggcgtcc	4740	
ggagcgcgtg	acagcgacca	cagcaggtcg	acgtgcgcct	gatcctcgtg	ccgatcccac	4800	
cccagctgag	ccagacgctc	accagcaggg	gggtcaacta	atccgagccg	gccaacgctg	4860	
ggcaacttcg	gccgctgcgt	ggcgagtttg	gtcacgacca	cgacggtagc	gcaaagcgcg	4920	
teggegtegg	atcaaccggt	agatctgggc	tacagcgaca	ggtaggtgcg	cagctcgtat	4980	
ggcgtgacgt	ggctgcggta	gttcgcccac	teegtgeget	tgttgcgcaa	gaaaaagtca	5040	
aaaacgtgct	cccccaaggc	ctccgcgacg	agttcggagg	cctccatggc	gcgcagcgca	5100	
ctatccaaac	tggacggcaa	ttctcggtac	cccatcgctc	ggcgttcctc	gggtgtgagg	5160	
tcccatacgt	tgtcctcggc	ctgcgggccc	agcacgtaac	ccttctctac	accccgcaat	5220	
cccgcggcca	gcagcacggc	gaatgtcaga	tagggattgc	acgccgaatc	agggctgcgt	5280	
acttcgaccc	gccgcgacga	ggtcttgtgc	ggcgtgtaca	tcggcacccg	cactagggcg	5340	
gatcggttgg	cggcccccca	cgacgcggcc	gtgggcgctt	cgccgccctg	caccagccgc	5400	
ttgtaagagt	tgacccactg	atttgtgacc	gcgctgatct	cgcaagcgtg	ctccaggatc	5460	
ccggcgatga	acgatttacc	cacttccgac	agctgcagcg	gatcatcagc	gctgtggaac	5520	
gcgttgacat	caccctcgaa	caggctcatg	tgggtgtgca	togoogagoo	cgggtgctgg	5580	
ccgaatggct	tgggcatgaa	cgacgcccgg	gcgccctctt	ccagcgcgac	ttctttgatg	5640	
acgtagcgga	aggtcatcac	gttgtcagcc	atcgacagag	cgtcggcaaa	ccgcaggtcg	5700	
atctcctgct	ggccgggtgc	gccttcgtga	tggctgaact	ccaccgagat	gcccatgaat	5760	
tccagggcat	cgatcgcgtg	gcggcgaaag	ttcaaggcgg	agtcgtgcac	cgcttggtcg	5820	
aaatagccgg	cgttgtcgac	cgggacgggc	accgacccgt	cctcgggtcc	gggcttgagc	5880	
aggaagaact	cgatttcggg	atgcacgtag	caggagaagc	cgagttcgcc	ggccttcgtc	5940	
agctgccgcc	gcaacacgtg	ccgcgggtcc	gcccacgacg	gcgagccgtc	cggcatggtg	6000	
atgtcgcaaa	acatccgcgc	tgagtggtgg	tggccggaac	tggtggccca	gggcagcacc	6060	
tggaaggtcg	acgggtccgg	gtgcgccacc	gtatcggatt	ccgagacccg	cgcaaagccc	6120	
tcgatcgagg	atccgtcgaa	gccgatgcct	tcctcgaagg	cgccctcgag	ttcggctggg	6180	

gcgatggcga	ccgacttgag	gaaaccgagc	acgtctgtga	accacagccg	gacgaagcgg	6240
atgtcgcgtt	cttccagggt	acgaagaacg	aattccttct	gtcggtccat	acctcgaaca	6300
gtatgcactg	tctgttaaaa	ccgtgttacc	gatgcccggc	cagaagcgtt	gcggggcggc	6360
ccgcaagggg	agtgcgcggt	gagttcaggg	cgcgcaccgc	agactcgtcg	gcggcaaggt	6420
cccgtcgaga	aaatagtgca	tcaccgcaga	gtccacacac	tggttgccat	cgaacaccgc	6480
agtgtgttgg	gtgccgtcga	aggtgatcag	cggtgcgccc	agctggcggg	ccaggtctac	6540
cccggactga	tacggagtgg	ccgggtcgtg	ggtggtggac	accacgacga	ccttgccagc	6600
cccggccggc	gccgcggggt	gcggcgtcga	cgttgccggc	accggccaca	gcgcgcacag	6660
atcgcggggg	gcggatccgg	tgaactgccc	gtagctaagg	aacggggcga	cctgacggat	6720
ccgttggtcg	geggeeacce	aggccgctgg	atcggccggt	gtgggcgcat	cgacgcaccg	6780
gaccgcgttg	aacgcgtcct	ggtcgttąct	gtagtgcccg	tctgcatccc	ggccgtcata	6840
gtcgtcggca	agcaccagca	agtcgccggc	gtagatgaag	cgctgcagcc	ccagcagacc	6900
actggtcagg	tacttccagc	gctgagggct	gtacagcgcg	ttgatggtgc	ccgtcgtcgc	6960
gtcggcgtag	ctcaggccac	gtggatccga	cgtcttaccc	ggcttctgca	ccagcgggtc	7020
aaccagggcg	tggtagcggt	tgacccactg	ggccgagtcg	gtgcccagag	ggcaggccgg	7080
cgagcgggcg	cagtcggcgg	cgtagtcatt	gaaagcggtc	tgaaatcccg	ccatttggct	7140
gatgctttcc	tegattggge	taacggctgg	atcgatagcg	ccgtcgagga	ccatcgcccg	7200
cacatgagta	ccgaaccgtt	ccaggtaagc	ggtgcccaac	tcggtgccgt	agctgtatcc	7260
gaggtagttg	atctgatcgt	cacctaacgc	ttggcgaacc	atgtccatgt	cccgtgcgac	7320
ggacgcggta	ccgatattgg	ccaagaagct	gaagcccatc	cggtcaacac	agtcctgggc	7380
caactgccgg	tagacctgtt	cgacgtgggt	gacaccggcc	ggactgtagt	cggccatcgg	7440
atcgcgccgg	tacgcgtcga	actcggcgtc	ggtgcgacac	cgcaacgcag	gggtcgagtg	7500
gccgacccct	ctcgggtcga	agcccaccag	gtcgaagtgg	cggagaatgt	cggtgtcggc	7560
gatcgcgggt	gccatagcgg	cgaccatgtc	gaccgccgac	gccccgggtc	ccccaggatt	7620
gaccagcagt	gctccgaatc	gctgtcccgt	cgcggggacg	cggatcaccg	ccaacttcgc	7680
ttgtgtccca	ccgggttggt	cgtagtcgac	ggggacggac	accgtcgcgc	agcgtgcagt	7740
gcgaatttcg	ctggtgtcgg	cgatgaactc	gcggcagctg	ttccaactct	gttgcggcgc	7800
cacgaccggc	gcacccgggg	tttggccggc	gccgggttct	tcagtcgcgc	cggccaacgg	7860
gggcgctgct	aggggcagtc	cgccgagcag	caacccgaag	gacagcagcg	ccgagctcaa	7920
cggtctgcgg	cgccacatgg	ccgccatcgt	ctcaccggcg	aatacctgtg	acggcgcgaa	7980
atgatcacac	cttcgtttct	tegeceeget	agcacttggc	geegetggge	ggcgtggtgc	8040
cgccgattaa	atacgccgtc	acgtactcgt	caatgcagct	gtcgccctgg	aataccaccg	8100

tgtgctgggt	tccgtcgaag	gtcagcaacg	aaccgcgaag	ctggttcgcc	aggtcgaccc	8160
cggccttgta	cggcgtcgcc	gggtcatggg	tggtggatac	caccaccgtc	ggcactaggc	8220
cgggcgccga	gacggcatgg	ggctgacttg	tgggtggcac	cggccagaac	gcgcaggtgc	8280
ccagcggcgc	atcaccggtg	aacttcccgt	agctcatgaa	cggtgcgatc	tecegggege	8340
ggcggtcttc	gtcgatgacc	ttgtcgcgat	cggtaaccgg	gggctgatcg	acgcaattga	8400
tegecaceeg	cgcgtcaccg	gaattgttgt	agcggccgtg	cgagtcccga	cgcatgtaca	8460
tgtcggccag	agccagcagg	gtgtctccgc	gattgtcgac	cagctccgac	agcccgtcgg	8520
tcaagtgttg	ccacagattc	ggtgagtaca	gcgccataat	ggtgcccacg	atggcgtcgc	8580
tataactcag	cccgcgcgga	tccttcgtgc	gcgccggcct	gctgatcctc	gggttgtccg	8640
ggtcgaccaa	cggatcgacc	aggctgtggt	agacctcgac	ggctttggcc	gggtcggcgc	8700
ccagcgggca	gcccgcgttc	ttggcgcagt	cggcggcata	gttgttgaac	gcgtcctgga	8760
agcccttggc	ctggcgcagc	teegeetega	tgggatcggc	attggggtcg	acggcaccgt	8820
cgagaatcat	tgcccgcacc	cgctgcggaa	attcctcggc	atacgcggag	ccgatccggg	8880
tgccgtacga	gtagcccagg	taggtcagct	tgtcgtcgcc	caacgccgcg	cgaatggcat	8940
ccaggtcctt	ggcgacgttg	accgtcccga	catgggccag	aaagttcttg	cccatcttgt	9000
ccacacagcg	accgacgaat	tgcttggtct	cgttctcgat	gtgcgccaca	ccctcccggc	9060
tgtagtcaac	ctgcggctcg	gcccgcagcc	ggtcgttgtc	ggcatcggag	ttgcaccaga	9120
tegeeggeeg	ggacgacgcc	accccgcggg	ggtcgaaccc	aaccaggtcg	aacctttcgt	9180
gcacccgctt	cggcaatgtc	tggaagacgc	ccaaggcggc	ctcgataccg	gattcgccgg	9240
gtccaccggg	atttatgacc	agcgaaccga	tattgtataa	cgtcgccgga	aagcgaatca	9300
gcgccagcgc	cgccacgtca	ccatcggggc	ggtcgtagtc	gaccggtaca	gcgagcttgc	9360
cgcataacgc	gccgccgggg	atctttactt	gcgggtttga	cgaccggcac	ggtgtccact	9420
ccaccggctg	gcccagcttc	ggctccgcca	tacgagcgcg	tcccccgacc	acgcggatgc	9480
agcccacaag	aaccaacgcc	acggcggcga	gcgcggccca	gatcaacagc	atgcgcgcga	9540
tcttgtcgcg	gcgagacagc	ctcatgccca	caatgctgcc	agagcagacc	cgagatcctg	9600
gccagcggcc	accgtcggcc	gactaaccgg	ccgctgccag	cagtcctgcc	atcgccgatg	9660
gcgaactcgt	cggccatccc	ccatacgtcc	ggtaacagat	ccgggcaaga	caccgacccg	9720
tcgaccggat	ccggcacggg	cgcgtcggcc	teggeggtge	acaactgcga	catcaggttg	9780
gcgctggcac	cccgtccacg	ccggcatggt	gcaccttggc	categeeega	gggcgatccc	9840
cgatgccgtc	caccccttcg	acgaacccat	ctcccacggc	ggtcgccggc	agcgacgcga	9900
tgtggccgca	gatctccgag	agttcggccc	gcccgcccgg	cgacggcaac	ccgatgccgt	9960
gcaagtgacg	atcgatgtga	ggttcaaggt	tcagcgcact	gctggcaagc	tttttccgaa	10020

accgcggcct	cgccttgatc	tggagtcaga	acgcgtcacg	cagccggtca	aaggcgtaac	10080
ccatgctcga	gcaaacatgc	atgggctgag	tggacgtttc	cagacacagc	aactggcgtc	10140
caggccactg	agccgctgca	tgcgcgatgg	tatgccgatg	ggggccccgg	gcgcgtctga	10200
ggggaagaag	tggcagactg	tcagggtccg	acgaacccgg	ggaccctaac	gggccacgag	10260
gatcgacccg	accaccatta	gggacagtga	tgtctgagca	gactatctat	ggggccaata	10320
ccccggagg	ctccgggccg	cggaccaaga	tccgcaccca	ccacctacag	agatggaagg	10380
ccgacggcca	caagtgggcc	atgctgacgg	cctacgacta	ttcgacggcc	cggatcttcg	10440
acgaggccgg	catcccggtg	ctgctggtcg	gtgattcggc	ggccaacgtc	gtgtacggct	10500
acgacaccac	cgtgccgatc	tccatcgacg	agctgatccc	gctggtccgt	ggcgtggtgc	10560
ggggtgcccc	gcacgcactg	gtcgtcgccg	acctgccgtt	cggcagctac	gaggcggggc	10620
ccaccgccgc	gttggccgcc	gccacccggt	tcctcaagga	cggcggcgca	catgcggtca	10680
agctcgaggg	cggtgagcgg	gtggccgagc	aaatcgcctg	tctgaccgcg	gcgggcatcc	10740
cggtgatggc	acacatcggc	ttcaccccgc	aaagcgtcaa	caccttgggc	ggcttccggg	10800
tgcagggccg	cggcgacgcc	gccgaacaaa	ccatcgccga	cgcgatcgcc	gtcgccgaag	10860
ccggagcgtt	tgccgtcgtg	atggagatgg	tgcccgccga	gttggccacc	cagatcaccg	10920
gcaagcttac	cattccgacg	gtcgggatcg	gcgctgggcc	caactgcgac	ggccaggtcc	10980
tggtatggca	ggacatggcc	gggttcagcg	gcgccaagac	cgcccgcttc	gtcaaacggt	11040
atgccgatgt	cggtggtgaa	ctacgccgtg	ctgcaatgca	atacgcccaa	gaggtggccg	11100
gcggggtatt	ccccgctgac	gaacacagtt	tctgaccaag	ccgaatcagc	ccgatgcgcg	11160
ggcattgcgg	tggcgccctg	gatgccgtcg	acgccggatt	gccggcgcgg	acgcgccagc	11220
gggacccatc	ggcgtcgcgt	tegeeggttg	agcccggggt	gagcccagac	attcgatgtg	11280
cccaacacca	teegecacag	cccaattgat	gtggcactct	atgcatgcct	atccccgacc	11340
aaccaccacc	gcggcgacgc	atcatgaccg	gaggcgaaga	tgccagtaga	ggcgcccaga	11400
ccagcgcgcc	atctggaggt	cgagcgcaag	ttcgacgtga	tcgagtcgac	ggtgtcgccg	11460
tcgttcgagg	gcatcgccgc	ggtggttcgc	gtcgagcagt	cgccgaccca	gcagctcgac	11520
gcggtgtact	togacacaco	gtcgcacgac	ctggcgcgca	accagatcac	cttgcggcgc	11580
cgcaccggcg	gcgccgacgc	cggctggcat	ctgaagctgc	cggccggacc	cgacaagcgc	11640
accgagatgc	gagcaccgct	gtccgcatca	ggcgacgctg	tgccggccga	gttgttggat	11700
gtggtgctgg	cgatcgtccg	cgaccagccg	gttcagccgg	tegegeggat	cagcactcac	11760
cgcgaaagcc	agatcctgta	cdacdccddd	ggcgacgcgc	tggcggaatt	ctgcaacgac	11820
gacgtcaccg	catggtcggc	cggggcattc	cacgccgctg	gtgcagcgga	caacggccct	11880
gccgaacagc	agtggcgcga	atgggaactg	gaactggtca	ccacggatgg	gaccgccgat	11940

accaagctac	tggaccggct	agccaaccgg	ctgctcgatg	ccggtgccgc	acctgccggc	12000
cacggctcca	aactggcgcg	ggtgctcggt	gcgacctctc	ccggtgagct	gcccaacggc	12060
ccgcagccgc	cggcggatcc	agtacaccgc	gcggtgtccg	agcaagtcga	gcagctgctg	12120
ctgtgggatc	gggccgtgcg	ggccgacgcc	tatgacgccg	tgcaccagat	gcgagtgacg	12180
acccgcaaga	tccgcagctt	gctgacggat	tcccaggagt	cgtttggcct	gaaggaaagt	12240
gcgtgggtca	tcgatgaact	gcgtgagctg	gccgatgtcc	tgggcgtagc	ccgggacgcc	12300
gaggtactcg	gtgaccgcta	ccagcgcgaa	ctggacgcgc	tggcgccgga	gctggtacgc	12360
ggccgggtgc	gcgagcgcct	ggtagacggg	gegeggegge	gataccagac	cgggctgcgg	12420
cgatcactga	tcgcattgcg	gtcgcagcgg	tacttccgtc	tgctcgacgc	tctagacgcg	12480
cttgtgtccg	aacgcgccca	tgccacttct	ggggaggaat	cggcaccggt	aaccatcgat	12540
geggeetace	ggcgagtccg	caaagccgca	aaagccgcaa	agaccgccgg	cgaccaggcg	12600
ggcgaccacc	accgcgacga	ggcattgcac	ctgatccgca	agcgcgcgaa	gcgattacgc	12660
tacaccgcgg	cggctactgg	ggcggacaat	gtgtcacaag	aagccaaggt	catccagacg	12720
ttgctaggcg	atcatcaaga	cagcgtggtc	agccgggaac	atctgatcca	gcaggccata	12780
gccgcgaaca	ccgccggcga	ggacaccttc	acctacggtc	tgctctacca	acaggaagcc	12840
gacttggccg	agcgctgccg	ggagcagctt	gaagccgcgc	tgcgcaaact	cgacaaggcg	12900
gtccgcaaag	cacgggattg	agcccgccag	gggcggacga	gttggcctgt	aagccggatt	12960
ctgttccgcg	ccgccacagc	caagctaacg	gcggcacggc	ggcgaccatc	catctggaca	13020
caccgttacc	gggtgcctcg	agcggcctac	ccgcaggctc	gggcgagcaa	ccctcaagcg	13080
cctgcgcggc	cgcactttcg	gtgcggcctt	cttggccttg	cttcgggtgg	ggtttgccta	13140
gccaccccgg	tcacccggaa	tgctggtgcg	ctcttaccgc	accgtttcac	ccttgccacc	13200
acgaggatgg	cggtctgttt	tctgtggcac	tttcccgcga	gtcacctcgg	attgccgtta	13260
gcaatcaccc	tgctctgtga	agtccggact	ttcctcgact	cgacgctgaa	cctcgtgaat	13320
ccacacaagc	cctacgcgag	ccgcggccgc	ccagccaact	catccgcgac	gaccacgcta	13380
ccccgctggg	cggtgtcgcg	gccagtgtga	ccgctggacg	acacggctag	teggacagee	13440
gatccggcgg	gcagtcctta	tcgtggactg	gtgacacggt	gggacaaacg	cgtcgactcc	13500
ggcgactggg	acgccatcgc	tgccgaggtc	agcgagtacg	gtggcgcact	gctacctcgg	13560
ctgatcaccc	ccggcgaggc	cgcccggctg	cgcaagctgt	acgccgacga	cggcctgttt	13620
cgctcgacgg	tcgatatggc	atccaagcgg	tacggcgccg	ggcagtatcg	atatttccat	13680
gccccctatc	ccgagtgatc	gagegtetea	agcaggcgct	gtatcccaaa	ctgctgccga	13740
tagcgcgcaa	ctggtgggcc	aaactgggcc	gggaggcgcc	ctggccagac	agccttgatg	13800
actggttggc	gagctgtcat	gccgccggcc	aaacccgatc	cacagcgctg	atgttgaagt	13860

acggcaccaa	cgactggaac	gccctacacc	aggatctcta	cggcgagttg	gtgtttccgc	13920
tgcaggtggt	gatcaacctg	agcgatccgg	aaaccgacta	caccggcggc	gagttcctgc	13980
ttgtcgaaca	geggeetege	gcccaatccc	ggggtaccgc	aatgcaactt	ccgcagggac	14040
atggttatgt	gttcacgacc	cgtgatcggc	cggtgcggac	tagccgtggc	tggtcggcat	14100
ctccagtgcg	ccatgggctt	tcgactattc	gttccggcga	acgctatgcc	atggggctga	14160
tctttcacga	cgcagcctga	ttgcacgcca	tctatagata	gcctgtctga	ttcaccaatc	14220
gcaccgacga	tgccccatcg	gcgtagaact	cggcgatgct	cagcgatgcc	agatcaagat	14280
gcaaccgata	taggacgccc	gacccggcat	ccaacgccag	ccgcaacaac	attttgatcg	14340
gcgtgacatg	tgacaccacc	agcaccgtcg	cgccttcgta	gccaacgatg	atccgatcac	14400
gtccccgccg	aacccgccgc	agcacgtcgt	cgaagctttc	cccacccggg	ggcgtgatgc	14460
tggtgtcctg	cagccagcga	cggtgcagct	cgggatcgcg	ttctgcggcc	tccgcgaacg	14520
tcagcccctc	ccaggcgccg	aagtcggtct	cgaccaggtc	gtcatcgacg	accacgtcca	14580
gggccagggc	tctggcggcg	gtcaccgcgg	tgtcgtaagc	ccgctgtagc	ggcgaggaga	14640
ccaccgcagc	gatcccgccg	cgccgcgcca	gatacccggc	cgccgcacca	acctggcgcc	14700
accccacctc	gttcaacccc	gggttgccgc	gccccgaata	gcggcgttgc	tccgacagct	14760
ccgtctgccc	gtggcgcaac	aaaagtagtc	gggtgggtgt	accgcgggcg	ccggtccagc	14820
cgggagatgt	cggtgactcg	gtcgcaacga	ttttggcagg	atccgcatcc	gccgcagccg	14880
attgcgcggc	ggcgtccatc	gcgtcattgg	ccaaccggtc	tgcatacgtg	ttccgggcac	14940
gcggaaccca	ctcgtagttg	atcctgcgaa	actgggacgc	caacgcctga	gcctggacat	15000
agagcttcag	cagateeggg	tgcttgacct	tccaccgccc	ggacatctgc	tccaccacca	15060
gcttggagtc	catcagcacc	geggeetegg	tggcacctag	tttcacggcg	tcgtccaaac	15120
cggctatcag	gccgcggtat	teggegaegt	tgttcgtcgc	ccggccgatc	gcctgcttgg	15180
actcggccag	cacggtggag	tgatcggcgg	tccacaccac	cgcgccgtat	ccggccggtc	15240
cgggattgcc	ccgcgatccg	ccgtcggctt	cgatgacaac	tttcactcct	caaatccttc	15300
gagccgcaac	aagatcgctc	cgcattccgg	gcagcgcacc	acttcatcct	cggcggccgc	15360
cgagatctgg	gccagctcgc	cgcggccgat	ctcgatccgg	caggcaccac	atcgatgacc	15420
ttgcaaccgc	ccggcccctg	gcccgcctcc	ggcccgctgt	ctttcgtaga	gccccgcaag	15480
ctcgggatca	agtgtcgccg	tcagcatgtc	gcgttgcgat	gaatgttggt	gccgggcttg	15540
gtcgatttcg	gcaagtgcct	cgtccaaagc	ctgctgggcg	gcggccaggt	cggcccgcaa	15600
cgcttggagc	gcccgcgact	cggcggtctg	ttgagcctgc	agctcctcgc	ggcgttccag	15660
cacctccagc	agggcatctt	ccaaactggc	ttgacggcgt	tgcaagctgt	cgagctcgtg	15720
ctgcagatca	gccaattgct	tggcgtccgt	tgcacccgaa	gtgagcaacg	accggtcccg	15780

gtcgccacgc	ttacgcaccg	catcgatctc	cgactcaaaa	cgcgacacct	ggccgtccaa	15840
gtcctccgcc	gcgattcgca	gggccgccat	cctgtcgttg	gcggcgttgt	gctcggcctg	15900
cacctgctgg	taagccgccc	gctgcggcag	atgggtagcc	cgatgcgcga	tccgggtcag	15960
ctcagcatcc	agcttcgcca	attccagtag	cgaccgttgc	tgtgccactc	cggctttcat	16020
gcctgatctc	tcccagtttc	gtgatcgagg	ttccacgggt	cggtgcagat	ggtgcacaca	16080
cgcaccggca	gcgacgcgcc	gaaatgagac	cgcaacactt	cggcggcctg	gccgcaccac	16140
gggaattcgc	ttgcccaatg	cgcgacgtcg	atcagggcca	cttgcgaagc	tcggcaatgc	16200
tcgtcggctg	gatgatgtcg	cagatcggcc	gtaacgtacg	cttgcacgtc	cgcggcggcc	16260
acggtggcaa	gcaacgagtc	cccggcgccg	ccgcagaccg	cgacccgcga	caccagcagg	16320
tcgggatccc	cggcggcgcg	cacaccggtc	gcagtcggcg	gcaacgcggc	ctccagacgg	16380
gcaacaaagg	tgcgcagcgg	ttcgggtttt	ggcagtctgc	caatccggcc	taacccgctg	16440
ccgaccggcg	gtggtaccag	cgcgaagatg	tcgaatgccg	gctcctcgta	agggtgcgcg	16500
gcgcgcatcg	ccgccaacac	ctcggcgcgc	gctcgtgcgg	gtgcgacgac	ctcgacccgg	16560
tcctcggcca	cccgttcgac	ggtaccgacg	ctgcctatgg	cgggcgacgc	cccgtcgtgc	16620
gccaggaact	gcccggtacc	cgcgacactc	cagctgcagt	gcgagtagtc	gccgatatgg	16680
ccggcaccgg	cctcaaagac	cgctgcccgc	accgcctctg	agttctcgcg	cggcacatag	16740
atgacccact	tgtcgagatc	ggccgctccg	ggcaccgggt	cgagaacggc	gtcgacggtc	16800
agaccaacag	cgtgtgccag	cgcgtcggac	acacccggcg	acgccgagtc	ggcgttggtg	16860
tgcgcggtaa	acaacgagcg	accggtccgg	atcaggcggt	gcaccagcac	accctttggc	16920
gtgttggccg	cgaccgtatc	gaccccacgc	agtaacaacg	ggtggtgcac	caatagcagt	16980
ccggcctggg	gaacctggtc	caccaccgcc	ggcgtcgcgt	ccaccgcaac	ggtcaccgaa	17040
tccaccacgt	cgtcggggtc	gccgcacacc	agacccaccg	aatcccacga	ctgggcaagc	17100
cgcggcgggt	aggcctggtc	cagcacgtcg	atgacatcgg	ccagccgcac	actcatcggc	17160
gtcctccacg	ctttgcccac	tcggcgatcg	ccgccaccag	cacgggccac	tccgggcgca	17220
ccgccgcccg	caggtaccgc	gcgtccaggc	cgacgaaggt	gtcaccgcgg	cgcaccgcaa	17280
ttcctttgct	ctgcaaatag	tttcgtaatc	cgtcagcatc	ggcgatgttg	aacagtacga	17340
aaggggccgc	accatcgacc	acctcggcac	ccaccgatct	cagtccggcc	accatctccg	17400
cgcgcagcgc	cgtcaaccgc	accgcatcgg	ctgcggcagc	ggcgaccgcc	cgggggggcgc	17460
agcaagcagc	gatggccgtc	agttgcaatg	ttcccaacgg	ccagtgcgct	cgctgcacgg	17520
tcaaccgagc	cagcacgtct	ggcgagccga	gcgcgtagcc	cacccgcaat	ccggccagcg	17580
accacgtttt	cgtcaagcta	cggagcacca	gcacatcggg	cagcgagtca	tcggccaacg	17640
attgcggctc	gccgggaacc	caatcagcga	acgcctcgtc	gaccaccagg	atgcgtcccg	17700

gccggcgtaa ctcgagcagc	tgctcgcgga	ggtgcagcac	cgaggtgggg	ttggtcggat	17760
tacccacgac gacaaggtcg	gcgtcgtcag	gcacgtgcgc	ggtgtccagc	acgaacggcg	17820
gctttaggac aacatggtgc	gccgtgattc	cggcagcgct	caaggctatg	gccggctcgg	17880
tgaacgcggg cacgacgatt	gctgcccgca	ccggacttag	gttgtgcagc	aatgcgaatc	17940
cctccgccgc cccgacgagc	gggagcactt	cgtcacgggt	tctgccatga	cgttcagcga	18000
ccgcgtcttg cgcccggtgc	acatcgtcgg	tgctcggata	gcgggccagc	tccggcagca	18060
gcgcggcgag ctgccggacc	aaccattccg	ggggccggtc	atggcggacg	ttgacggcga	18120
agtecageae geegggegeg	acatcctgat	caccgtggta	gcgcgccgcg	gcaagcgggc	18180
tagtgtctag actcgccaca	gcgtcaaaca	gtagtgggcc	ggtgtgcggg	ccaagaatcc	18240
agagcaccgc cgacgcgttg	tctacgcggc	gacaaccgcg	acatcacagg	cagctaacag	18300
ggcgtcggcg gtgatgatcg	tcaggccaag	cagctgtgcc	tgggcgatga	gcacacggtc	18360
gaatggatgt cgatggtgat	ccggaagctc	tgcggtgcgc	agtgtgtgcg	tggtcaactg	18420
acageggega egtgeegeag	cggcgcattc	gatcgggcac	gtaagaagcc	gatggctcgg	18480
geggeggag ettgeegagg	cggtagttga	tcgcgatctc	ccaggcactg	gcggccgaca	18540
agagaatgct gttgcggacg	tcctgaacaa	tegecegtgt	ttcgttgacg	gcatccgcag	18600
ccaaacgtgg gtgtcgatga	ggtagcgctt	caccggtgaa	agcgttcgag	cacgtcgtct	18660
gacaacggag cgtccaaatc	gtcgggcacg	cggtacacgc	catggtcaat	gcctaaccgc	18720
cgagtctcat gaggatgcag	cggcacaagc	tttgctaccg	gctcgccgcg	gcgggcaatc	18780
tcaacctctg cccgccgtag	acgagccgca	gcagctcgga	caggcgtgtc	ttcgcctcgt	18840
gaacgccgac ccgcttcgca	ggcgcccaga	ctttcgcgtc	gaccacctgc	tcaccaaact	18900
tegegateat egeetgatae	cacagcgcca	acgggtagcg	gtttgtccaa	ccgcttcgtc	18960
aacgacaatg ggatcgtgac	cgacacgacc	gcgagcggga	ccaattgccc	gcctcctcca	19020
cgcgccgccg cacggcgcgc	atcgtcgccg	ggtgaatcgc	cgcagctggt	gatcttcgat	19080
ctggacggca cgctgaccga	ctcggcgcgc	ggaatcgtat	ccagcttccg	acacgcgctc	19140
aaccacatcg gtgccccagt	acccgaaggc	gacctggcca	ctcacatcgt	cggcccgccc	19200
atgcatgaga cgctgcgcgc	catggggctc	ggcgaatccg	ccgaggaggc	gatcgtagcc	19260
taccgggccg actacagcgc	ccgcggttgg	gcgatgaaca	gcttgttcga	cgggatcggg	19320
ccgctgctgg ccgacctgcg	caccgccggt	gtccggctgg	ccgtcgccac	ctccaaggca	19380
gagccgaccg cacggcgaat	cctgcgccac	ttcggaattg	agcagcactt	cgaggtcatc	19440
gcgggcgcga gcaccgatgg	ctcgcgaggc	agcaaggtcg	acgtgctggc	ccacgcgctc	19500
gegeagetge ggeegetace	cgagcggttg	gtgatggtcg	gcgaccgcag	ccacgacgtc	19560
gacggggcgg ccgcgcacgg	catcgacacg	gtggtggtcg	gctggggcta	cgggcgcgcc	19620

gactttatcg	acaagacctc	caccaccgtc	gtgacgcatg	ccgccacgat	tgacgagctg	19680
agggaggcgc	taggtgtctg	atccgctgca	cgtcacattc	gtttgtacgg	gcaacatctg	19740
ccggtcgcca	atggccgaga	agatgttcgc	ccaacagctt	cgccaccgtg	gcctgggtga	19800
cgcggtgcga	gtgaccagtg	cgggcaccgg	gaactggcat	gtaggcagtt	gcgccgacga	19860
gegggeggee	ggggtgttgc	gagcccacgg	ctaccctacc	gaccaccggg	ccgcacaagt	19920
cggcaccgaa	cacctggcgg	cagacctgtt	ggtggccttg	gaccgcaacc	acgctcggct	19980
gttgcggcag	ctcggcgtcg	aagccgcccg	ggtacggatg	ctgcggtcat	tcgacccacg	20040
ctcgggaacc	catgcgctcg	atgtcgagga	tccctactat	ggcgatcact	ccgacttcga	20100
ggaggtcttc	gccgtcatcg	aatccgccct	gcccggcctg	cacgactggg	tcgacgaacg	20160
tetegegegg	aacggaccga	gttgatgccc	cgcctagcgt	tcctgctgcg	gcccggctgg	20220
ctggcgttgg	ccctggtcgt	ggtcgcgttc	acctacctgt	gctttacggt	gctcgcgccg	20280
tggcagctgg	gcaagaatgc	caaaacgtca	cgagagaacc	agcagatcag	gtattccctc	20340
gacaccccgc	cggttccgct	gaaaaccctt	ctaccacagc	aggattcgtc	ggcgccggac	20400
gcgcagtggc	gccgggtgac	ggcaaccgga	cagtaccttc	cggacgtgca	ggtgctggcc	20460
cgactgcgcg	tggtggaggg	ggaccaggcg	tttgaggtgt	tggccccatt	cgtggtcgac	20520
ggcggaccaa	ccgtcctggt	cgaccgtgga	tacgtgcggc	cccaggtggg	ctcgcacgta	20580
ccaccgatcc	cccgcctgcc	ggtgcagacg	gtgaccatca	ccgcgcggct	gcgtgactcc	20640
gaaccgagcg	tggcgggcaa	agacccattc	gtcagagacg	gcttccagca	ggtgtattcg	20700
atcaataccg	gacaggtcgc	cgcgctgacc	ggagtccagc	tggctgggtc	ctatctgcag	20760
ttgatcgaag	accaacccgg	cgggctcggc	gtgctcggcg	ttccgcatct	agatcccggg	20820
ccgttcctgt	cctatggcat	ccaatggatc	tcgttcggca	ttctggcacc	gatcggcttg	20880
ggctatttcg	cctacgccga	gatccgggcg	cgccgccggg	aaaaagcggg	gtcgccacca	20940
ccggacaagc	caatgacggt	cgagcagaaa	ctcgctgacc	gctacggccg	ccggcggtaa	21000
accaacatca	cggccaatac	cgcagccccc	gcctggacca	cccgcgacag	caccacggcg	21060
cggcgcagat	cggccacctt	gggcgaccgg	ccgtcgccca	aggtgggccg	gatctgcaac	21120
tcatggtggt	accgggtggg	cccacccagc	cgcacgtcaa	gcgccccagc	aaacgccgcc	21180
tcgacgacac	cggcgttggg	gctgggatgg	cgggcggcgt	cgcgccgcca	ggcccgtacc	21240
gcaccgcggg	gcgacccacc	gaccaccggc	gcgcagatca	ccaccagcac	cgccgtcgcc	21300
cgtgcgccaa	catagttggc	ccagtcatcc	aatcgtgctg	cagcccaacc	gaatcggaga	21360
taacgcggcg	agcggtagcc	gatcatcgag	tccagggtgt	tgatggcacg	atatcccagc	21420
accgcaggca	cgccgctcga	agccgcccac	agcagcggca	ccacctgggc	gtcggcggtg	21480
ttttcggcca	ccgactccag	cgcggcacgc	gtcaggcccg	ggccgcccag	ctgggccggg	21540

tcacgcccgc acagcgacgg	cagcagccgt	cgcgccgcct	cgacatcgtc	gcgctccaac	21600
aggtccgata tctggcggcc	ggtgcgcgcc	agcgaagttc	cgcccagcgc	tgcccaggtg	21660
gccgtcgcgg tggccgccac	gggccaggac	ctgccgggta	gccgctgcag	tgccgcgccg	21720
agcaagccca ccgcgccgac	cagcaggccg	acgtgtaccg	caccggcgac	ccggccgtca	21780
cggtaggtga tctgctccag	cttggcggcc	gcccgaccga	acagggccac	cggatgacct	21840
cgtttggggt cgccgaacac	gacgtcgagc	aggcagccga	tcagcacgcc	gacggccctg	21900
gtctgccagg tcgatgcaaa	cactccggca	gcgtcgcaca	cgtggtctac	gctcagctat	21960
ttatgacctc atacggcagc	tatccacgat	gaagcggcca	gctacccggg	ttgccgacct	22020
gttgaacccg gcggcaatgt	tgttgccggc	agcgaatgtc	atcatgcagc	tggcagtgcc	22080
gggtgtcggg tatggcgtgc	tggaaagccc	ggtggacagc	ggcaacgtct	acaagcatcc	22140
gttcaagcgg gcccggacca	ccggcaccta	cctggcggtg	gcgaccatcg	ggacggaatc	22200
cgaccgagcg ctgatccggg	gtgccgtgga	cgtcgcgcac	cggcaggttc	ggtcgacggc	22260
ctcgagccca gtgtcctata	acgccttcga	cccgaagttg	cagctgtggg	tggcggcgtg	22320
tetgtacege tacttegtgg	accagcacga	gtttctgtac	ggcccactcg	aagatgccac	22380
cgccgacgcc gtctaccaag	acgccaaacg	gttagggacc	acgctgcagg	tgccggaggg	22440
gatgtggccg ccggaccggg	tcgcgttcga	cgagtactgg	aagcgctcgc	ttgatgggct	22500
gcagatcgac gcgccggtgc	gcgagcatct	togoggggtg	gcctcggtag	cgtttctccc	22560
gtggccgttg cgcgcggtgg	ccgggccgtt	caacctgttt	gcgacgacgg	gattcttggc	22620
accggagttc cgcgcgatga	tgcagctgga	gtggtcacag	gcccagcagc	gtcgcttcga	22680
gtggttactt tccgtgctac	ggttagccga	ccggctgatt	ccgcatcggg	cctggatctt	22740
cgtttaccag ctttacttgt	gggacatgcg	gtttcgcgcc	cgacacggcc	gccgaatcgt	22800
ctgatagagc ccggccgagt	gtgagcctga	cagcccgaca	ccggcggcgt	gtgtcgcgtc	22860
gccaggttca cgctcggcga	tctagagccg	ccgaaaacct	acttctgggt	tgcctcccga	22920
atcaacgtgc tgatctgctc	gagcagctca	cgcatatcgg	cgcgcatcgc	atccaccgcg	22980
gcatacaggt cggccttggt	cgccggcagc	tggtccgacg	tcattggccg	caccggcggt	23040
gctgtctgtc gcgccgcgct	gtcgctttga	aacccaggtc	gctcacccac	gaccacgaca	23100
ctgccatatc cggcgccccg	ccgacaacga	agcacagcta	gccggtgggc	gcggacggga	23160
togaacogec gaeegetggt	gtgtaaaacc	agagctctac	cgctgagcta	cgcgcccatg	23220
accgccgcag gctacacgcc	: ttgcggccaa	gcacccaaaa	ccttaggccg	taagcgccgc	23280
cagagegteg gtecacaged	gctgatcgcg	aacttcaccc	ggctgcttca	tctcggcgaa	23340
ccgaatgatc cctgaccgat	cgaccacaaa	ggtgccccgg	ttagcgatgc	cggcctgctc	23400
gttgaagacg ccgtaggcct	. gactgaccgc	gccgtgtggc	cagaagtccg	acaacagcgg	23460

aaacgtgaat ccgctctgcg	tcgcccagat	cttgtgagtg	ggtggcgggc	ccaccgaaat	23520
cgctagcgcg gcgctgtcgt	cgttctcaaa	ctcgggcagg	tgatcacgca	actggtccag	23580
ctcgccctgg cagatgcccg	tgaacgccaa	cggaaagaac	accaacagca	cgttctttgc	23640
acceeggtag cegegeaggg	tgacaagctg	ctgattctgg	tcgcgcaacg	tgaagtcagg	23700
ggcggtggct ccgacgttca	gcatcagcgc	ttgccagccc	gcgatttcgg	ctgtaccaat	23760
ctgctggcgc tccagttgcc	cagattgacc	gacgaggtcg	gcatcagccc	agctgtgggc	23820
geegeetegg caatetegge	gggcaataca	tggccgggct	ggccggtctt	gggcgtcacc	23880
acccaaatca caccgtcctc	ggcgagcggg	ccgatcgcat	ccatcagggt	gtccaccaaa	23940
tcgccgtcgc catcacgcca	ccacaacagg	acgacatcga	tgacctcgtc	ggtgtcttca	24000
tegageaact cteceegea	cgcttcttcg	atggccgcgc	ggatgtcgtc	gtcggtgtct	24060
tcgtcccagc cccattcctg	gataagttgg	tctcgttgga	tgcccaattt	gcgggcgtag	24120
ttcgaggcgt gatccgccgc	gaccaccgtg	gaacctcctt	cagtctccgc	gggccatgtg	24180
cacaccgtcg cgatgggcat	tatcgtcgca	cagccagaac	cggtccaccc	gcccgcctca	24240
gaaggeggee aegeacattg	tcaatgcctt	tgtcttggtg	tcgttgagcc	gatcaacccg	24300
ccggttgaat tccgctgtcg	acgcgtgcgc	accgatggca	tttgccaccg	cgcgggccgc	24360
gtcgacatat gcgttgagcg	catcccccag	ttgcgcggac	agcgcggcgc	tcagactgcc	24420
tgagaccgtc gaggcactgt	tgttgagcgc	gtcgatggcc	ggaccttcgg	teggeeeggt	24480
gttgcggccc tgattgaacg	cggccacgta	ggcgttcacc	ttgtcgatgg	cgtccttgct	24540
ggtggccgcc agcgcgtcac	acgaggtgcg	aatcgccttg	gtcgtcagcg	attgttggcg	24600
ctgcgactcc cggatgctcg	acgtcgccgc	cgaagccgac	accgacgcgg	acaccgacga	24660
gcggtaggcc ggtgcgacgt	tggtgtcggg	catggccgta	ccgtcggtga	cagtggtaca	24720
tecgaegate cecateagea	gcagcgcgat	gcagccgagc	gccagggcgc	ctcgcctggg	24780
gagetecece cegtgeetge	gaggcacggc	gcgccatccg	atgagcacgg	catgtgaggt	24840
tacctggtcg cagcgcgacc	gcgctggccg	tggtgtgtcg	cgcatccgca	gaaccgagcg	24900
gagtgegget ateegeegee	gacgccggtg	cggcacgata	gggggacgac	catctaaaca	24960
gcacgcaagc ggaagcccgc	cacctacagg	agtagtgcgt	tgaccaccga	tttcgcccgc	25020
cacgatetgg cccaaaactc	aaacagcgca	agcgaacccg	accgagttcg	ggtgatccgc	25080
gagggtgtgg cgtcgtattt	gcccgacatt	gatcccgagg	agacctcgga	gtggctggag	25140
teetttgaca egetgetgea	acgctgcggc	ccgtcgcggg	cccgctacct	gatgttgcgg	25200
ctgctagagc gggccggcga	gcagcgggtg	gccatcccgg	cattgacgtc	taccgactat	25260
gtcaacacca tcccgaccga	gctggagccg	tggttccccg	gcgacgaaga	cgtcgaacgt	25320
cgttatcgag cgtggatcag	atggaatgcg	gccatcatgg	tgcaccgtgc	gcaacgaccg	25380

ggtgtgggcg	tgggtggcca	tatctcgacc	tacgcgtcgt	ccgcggcgct	ctatgaggtc	25440
ggtttcaacc	acttcttccg	cggcaagtcg	cacccgggcg	gcggcgatca	ggtgttcatc	25500
cagggccacg	cttccccggg	aatctacgcg	cgcgccttcc	tcgaagggcg	gttgaccgcc	25560
gagcaactcg	acggattccg	ccaggaacac	agccatgtcg	gcggcgggtt	gccgtcctat	25620
ccgcacccgc	ggctcatgcc	cgacttctgg	gaattcccca	ccgtgtcgat	gggtttgggc	25680
ccgctcaacg	ccatctacca	ggcacggttc	aaccactatc	tgcatgaccg	cggtatcaaa	25740
gacacctccg	atcaacacgt	gtggtgtttt	ttgggcgacg	gcgagatgga	cgaacccgag	25800
agccgtgggc	tggcccacgt	cggcgcgctg	gaaggcttgg	acaacttgac	cttcgtgatc	25860
aactgcaatc	tgcagcgact	cgacggcccg	gtgcgcggca	acggcaagat	catccaggag	25920
ctggagtcgt	tcttccgcgg	tgccggctgg	aacgtcatca	aggtggtgtg	gggccgcgaa	25980
tgggatgccc	tgctgcacgc	cgaccgcgac	ggtgcgctgg	tgaatttaat	gaatacaaca	26040
cccgatggcg	attaccagac	ctataaggcc	aacgacggcg	gctacgtgcg	tgaccacttc	26100
ttcggccgcg	acccacgcac	caaggcgctg	gtggagaaca	tgagcgacca	ggatatctgg	26160
aacctcaaac	ggggcggcca	cgattaccgc	aaggtttacg	ccgcctaccg	cgccgccgtc	26220
gaccacaagg	gacagccgac	ggtgatcctg	gccaagacca	tcaaaggcta	cgcgctgggc	26280
aagcatttcg	aaggacgcaa	tgccacccac	cagatgaaaa	aactgaccct	ggaagacctt	26340
aaggagtttc	gtgacacgca	gcggattccg	gtcagcgacg	cccagcttga	agagaatccg	26400
tacctgccgc	cctactacca	ccccggcctc	aacgccccgg	agattcgtta	catgctcgac	26460
cggcgccggg	ccctcggggg	ctttgttccc	gagcgcagga	ccaagtccaa	agcgctgacc	26520
ctgccgggtc	gcgacatcta	cgcgccgctg	aaaaagggct	ctgggcacca	ggaggtggcc	26580
accaccatgg	cgacggtgcg	cacgttcaaa	gaagtgttgc	gcgacaagca	gatcgggccg	26640
cggatagtcc	cgatcattcc	cgacgaggcc	cgcaccttcg	ggatggactc	ctggttcccg	26700
tcgctaaaga	tctataaccg	caatggccag	ctgtataccg	cggttgacgc	cgacctgatg	26760
ctggcctaca	aggagagcga	agtcgggcag	atcctgcacg	agggcatcaa	cgaagccggg	26820
tcggtgggct	cgttcatcgc	ggccggcacc	tcgtatgcga	cgcacaacga	accgatgatc	26880
cccatttaca	tcttctactc	gatgttcggc	ttccagcgca	ccggcgatag	cttctgggcc	26940
gcggccgacc	agatggctcg	agggttcgtg	ctcggggcca	ccgccgggcg	caccaccctg	27000
accggtgagg	gcctgcaaca	cgccgacggt	cactcgttgc	tgctggccgc	caccaacccg	27060
gcggtggttg	cctacgaccc	ggccttcgcc	tacgaaatcg	cctacatcgt	ggaaagcgga	27120
ctggccagga	tgtgcgggga	gaacccggag	aacatcttct	tctacatcac	cgtctacaac	27180
	tacaaccacc	павассаава	aacttcgatc	ccgagggcgt	gctgcggggt	27240
gagccgtacg	egoagoogoo	9949005945	-	3 3 3 3	0 2 2222	

ggggtagcga	tgcccgcggc	gctgcgggca	gcacagatgc	tggccgccga	gtgggatgtc	27360
gccgccgacg	tgtggtcggt	gaccagttgg	ggcgagctaa	accgcgacgg	ggtggccatc	27420
gagaccgaga	agctccgcca	ccccgatcgg	ccggcgggcg	tgccctacgt	gacgagagcg	27480
ctggagaatg	ctcggggccc	ggtgatcgcg	gtgtcggact	ggatgcgcgc	ggtccccgag	27540
cagateegae	cgtgggtgcc	gggcacatac	ctcacgttgg	gcaccgacgg	gttcggcttt	27600
tccgacactc	ggcccgccgc	tcgccgctac	ttcaacaccg	acgccgaatc	ccaggtggtc	27660
gcggttttgg	aggcgttggc	gggcgacggc	gagatcgacc	catcggtgcc	ggtcgcggcc	27720
gcccgccagt	accggatcga	cgacgtggcg	gctgcgcccg	agcagaccac	ggatcccggt	27780
cccggggcct	aacgccggcg	agccgaccgc	ctttggccga	atcttccaga	aatctggcgt	27840
agcttttagg	agtgaacgac	aatcagttgg	ctccagttgc	ccgcccgagg	tagaagatag	27900
aactgctgga	cactgtgccc	gattcgctgc	tgcggcggtt	gaagcagtac	tcgggccggc	27960
tggccaccga	ggcagtttcg	gccatgcaag	aacggttgcc	gttcttcgcc	gacctagaag	28020
cgtcccagcg	cgccagcgtg	gcgctggtgg	tgcagacggc	cgtggtcaac	ttcgtcgaat	28080
ggatgcacga	cccgcacagt	gacgtcggct	ataccgcgca	ggcattcgag	ctggtgcccc	28140
aggatctgac	gcgacggatc	gcgctgcgcc	agaccgtgga	catggtgcgg	gtcaccatgg	28200
agttcttcga	agaagtcgtg	cccctgctcg	cccgttccga	agagcagttg	accgccctca	28260
cggtgggcat	tttgaaatac	agccgcgacc	tggcattcac	cgccgccacg	gcctacgccg	28320
atgcggccga	ggcacgaggc	acctgggaca	gccggatgga	ggccagcgtg	gtggacgcgg	28380
tggtacgcgg	cgacaccggt	cccgagctgc	tgtcccgggc	ggccgcgctg	aattgggaca	28440
ccaccgcgcc	ggcgaccgta	ctggtgggaa	ctccggcgcc	cggtccaaat	ggctccaaca	28500
gcgacggcga	cagcgagcgg	gccagccagg	atgtccgcga	caccgcggct	cgccacggcc	28560
gcgctgcgct	gaccgacgtg	cacggcacct	ggctggtggc	gatcgtctcc	ggccagctgt	28620
cgccaaccga	gaagttcctc	aaagacctgc	tggcagcatt	cgccgacgcc	ccggtggtca	28680
teggeeceae	ggcgcccatg	ctgaccgcgg	cgcaccgcag	cgctagcgag	gcgatctccg	28740
ggatgaacgc	cgtcgccggc	tggcgcggag	cgccgcggcc	cgtgctggct	agggaacttt	28800
tgcccgaacg	cgccctgatg	ggcgacgcct	cggcgatcgt	ggccctgcat	accgacgtga	28860
tgcggcccct	agccgatgcc	ggaccgacgc	tcatcgagac	gctagacgca	tatctggatt	28920
gtggcggcgc	gattgaagct	tgtgccagaa	agttgttcgt	tcatccaaac	acagtgcggt	28980
accggctcaa	geggateace	gacttcaccg	ggcgcgatcc	cacccagcca	cgcgatgcct	29040
atgtccttcg	ggtggcggcc	accgtgggtc	aactcaacta	tccgacgccg	cactgaagca	29100
tcgacagcaa	tgccgtgtca	tagattccct	cgccggtcag	agggggtcca	gcaggggccc	29160
cggaaagata	ccaggggcgc	cgtcggacgg	aaagtgatcc	agacaacagg	tcgcgggacg	29220

atctcaaaaa	catagcttac	aggcccgttt	tgttggttat	atacaaaaac	ctaagacgag	29280
gttcataatc	tgttacaccg	cgcaaaaccg	tcttcacagt	gttctcttag	acacgtgatt	29340
gcgttgctcg	cacccggaca	gggttcgcaa	accgagggaa	tgttgtcgcc	gtggcttcag	29400
ctgcccggcg	cagcggacca	gatcgcggcg	tggtcgaaag	ccgctgatct	agatettgee	29460
cggctgggca	ccaccgcctc	gaccgaggag	atcaccgaca	ccgcggtcgc	ccagccattg	29520
atcgtcgccg	cgactctgct	ggcccaccag	gaactggcgc	gccgatgcgt	gctcgccggc	29580
aaggacgtca	tcgtggccgg	ccactccgtc	ggcgaaatcg	cggcctacgc	aatcgccggt	29640
gtgatagccg	ccgacgacgc	cgtcgcgctg	gccgccaccc	gcggcgccga	gatggccaag	29700
gcctgcgcca	ccgagccgac	cggcatgtct	gcggtgctcg	gcggcgacga	gaccgaggtg	29760
ctgagtcgcc	tcgagcagct	cgacttggtc	ccggcaaacc	gcaacgccgc	cggccagatc	29820
gtcgctgccg	gccggctgac	cgcgttggag	aagctcgccg	aagacccgcc	ggccaaggcg	29880
cgggtgcgtg	cactgggtgt	cgccggagcg	ttccacaccg	agttcatggc	gcccgcactt	29940
gacggctttg	cggcggccgc	ggccaacatc	gcaaccgccg	accccaccgc	cacgctgctg	30000
tccaaccgcg	acgggaagcc	ggtgacatcc	gcggccgcgg	cgatggacac	cctggtctcc	30060
cagetcacce	aaccggtgcg	atgggacctg	tgcaccgcga	cgctgcgcga	acacacagtc	30120
acggcgatcg	tggagttccc	ccccgcgggc	acgcttagcg	gtatcgccaa	acgcgaactt	30180
cggggggttc	cggcacgcgc	cgtcaagtca	cccgcagacc	tggacgagct	ggcaaaccta	30240
taaccgcgga	ctcggccaga	acaaccacat	acccgtcagt	tcgatttgta	cacaacatat	30300
tacgaaggga	agcatgctgt	gcctgtcact	caggaagaaa	tcattgccgg	tatcgccgag	30360
atcatcgaag	aggtaaccgg	tatcgagccg	tccgagatca	ccccggagaa	gtcgttcgtc	30420
gacgacctgg	acatcgactc	gctgtcgatg	gtcgagatcg	ccgtgcagac	cgaggacaag	30480
tacggcgtca	agatccccga	cgaggacctc	gccggtctgc	gtaccgtcgg	tgacgttgtc	30540
gcctacatcc	agaagctcga	ggaagaaaac	ccggaggcgg	ctcaggcgtt	gcgcgcgaag	30600
attgagtcgg	agaaccccga	tgccgttgcc	aacgttcagg	cgaggcttga	ggccgagtcc	30660
aagtgagtca	gccttccacc	gctaatggcg	gtttccccag	cgttgtggtg	accgccgtca	30720
cagcgacgac	gtcgatctcg	ccggacatcg	agagcacgtg	gaagggtctg	ttggccggcg	30780
agagcggcat	ccacgcactc	gaagacgagt	tcgtcaccaa	gtgggatcta	gcggtcaaga	30840
teggeggtea	cctcaaggat	ccggtcgaca	gccacatggg	ccgactcgac	atgcgacgca	30900
tgtcgtacgt	ccagcggatg	ggcaagttgc	tgggcggaca	gctatgggag	teegeeggea	30960
gcccggaggt	cgatccagac	cggttcgccg	ttgttgtcgg	caccggtcta	ggtggagccg	31020
agaggattgt	cgagagctac	gacctgatga	atgcgggcgg	ccccggaag	gtgtccccgc	31080
tggccgttca	gatgatcatg	cccaacggtg	ccgcggcggt	gatcggtctg	cagcttgggg	31140

cccgcgccgg ggtgatgacc	ccggtgtcgg	cctgttcgtc	gggctcggaa	gcgatcgccc	31200
acgcgtggcg tcagatcgtg	atgggcgacg	ccgacgtcgc	cgtctgcggc	ggtgtcgaag	31260
gacccatcga ggcgctgccc	atcgcggcgt	tctccatgat	gcgggccatg	tcgacccgca	31320
acgacgagcc tgagcgggcc	tcccggccgt	tcgacaagga	ccgcgacggc	tttgtgttcg	31380
gcgaggccgg tgcgctgatg	ctcatcgaga	cggaggagca	cgccaaagcc	cgtggcgcca	31440
agccgttggc ccgattgctg	ggtgccggta	tcacctcgga	cgcctttcat	atggtggcgc	31500
ccgcggccga tggtgttcgt	gccggtaggg	cgatgactcg	ctcgctggag	ctggccgggt	31560
tgtcgccggc ggacatcgac	cacgtcaacg	cgcacggcac	ggcgacgcct	atcggcgacg	31620
ccgcggaggc caacgccatc	cgcgtcgccg	gttgtgatca	ggccgcggtg	tacgcgccga	31680
agtctgcgct gggccactcg	atcggcgcgg	teggtgeget	cgagtcggtg	ctcacggtgc	31740
tgacgctgcg cgacggcgtc	atcccgccga	ccctgaacta	cgagacaccc	gatcccgaga	31800
tegacettga egtegtegee	ggcgaaccgc	gctatggcga	ttaccgctac	gcagtcaaca	31860
actcgttcgg gttcggcggc	cacaatgtgg	cgcttgcctt	cgggcgttac	tgaagcacga	31920
categegggt egegaggeee	gaggtggggg	tececeeget	tgcgggggcg	agtcggaccg	31980
atatggaagg aacgttcgca	agaccaatga	cggagctggt	taccgggaaa	gcctttccct	32040
acgtagtcgt caccggcatc	gccatgacga	ccgcgctcgc	gaccgacgcg	gagactacgt	32100
ggaagttgtt gctggaccgc	caaagcggga	tccgtacgct	cgatgaccca	ttcgtcgagg	32160
agttcgacct gccagttcgc	atcggcggac	atctgcttga	ggaattcgac	caccagctga	32220
cgcggatcga actgcgccgg	atgggatacc	tgcagcggat	gtccaccgtg	ctgagccggc	32280
gcctgtggga aaatgccggc	tcacccgagg	tggacaccaa	tcgattgatg	gtgtccatcg	32340
gcaccggcct gggttcggcc	gaggaactgg	tcttcagtta	cgacgatatg	cgcgctcgcg	32400
gaatgaagge ggtetegeeg	ctgaccgtgc	agaagtacat	gcccaacggg	gccgccgcgg	32460
cggtcgggtt ggaacggcac	gccaaggccg	gggtgatgac	gccggtatcg	gcgtgcgcat	32520
ccggcgccga ggccatcgcc	cgtgcgtggc	agcagattgt	gctgggagag	gccgatgccg	32580
ccatctgcgg cggcgtggag	accaggatcg	aagcggtgcc	catcgccggg	ttcgctcaga	32640
tgcgcatcgt gatgtccacc	aacaacgacg	accccgccgg	tgcatgccgc	ccattcgaca	32700
gggaccgcga cggctttgtg	ttcggcgagg	geggegeeet	tctgttgatc	gagaccgagg	32760
agcacgccaa ggcacgtggc	gccaacatcc	tggcccggat	catgggcgcc	agcatcacct	32820
ccgatggctt ccacatggtg	gccccggacc	ccaacgggga	acgcgccggg	catgcgatta	32880
cgcgggcgat tcagctggcg	ggcctcgccc	ccggcgacat	cgaccacgtc	aatgcgcacg	32940
ccaccggcac ccaggtcggc	gacctggccg	aaggcagggc	catcaacaac	gccttgggcg	33000
gcaaccgacc ggcggtgtac	gcccccaagt	ctgccctcgg	ccactcggtg	ggcgcggtcg	33060

gcgcggtcga	atcgatcttg	acggtgctcg	cgttgcgcga	tcaggtgatc	ccgccgacac	33120
tgaatctggt	aaacctcgat	cccgagatcg	atttggacgt	ggtggcgggt	gaaccgcgac	33180
cgggcaatta	ccggtatgcg	atcaataact	cgttcggatt	cggcggccac	aacgtggcaa	33240
tcgccttcgg	acggtactaa	accccagcgt	tacgcgacag	gagacctgcg	atgacaatca	33300
tggcccccga	ggcggttggc	gagtcgctcg	accccgcga	tccgctgttg	cggctgagca	33360
acttcttcga	cgacggcagc	gtggaattgc	tgcacgagcg	tgaccgctcc	ggagtgctgg	33420
ccgcggcggg	caccgtcaac	ggtgtgcgca	ccatcgcgtt	ctgcaccgac	ggcaccgtga	33480
tgggcggcgc	catgggcgtc	gaggggtgca	cgcacatcgt	caacgcctac	gacactgcca	33540
tcgaagacca	gagtcccatc	gtgggcatct	ggcattcggg	tggtgcccgg	ctggctgaag	33600
gtgtgcgggc	gctgcacgcg	gtaggccagg	tgttcgaagc	catgatccgc	gcgtccggct	33660
acatcccgca	gatctcggtg	gtcgtcggtt	tegeegeegg	cggcgccgcc	tacggaccgg	33720
cgttgaccga	cgtcgtcgtc	atggcgccgg	aaagccgggt	gttcgtcacc	gggcccgacg	33780
tggtgcgcag	cgtcaccggc	gaggacgtcg	acatggcctc	gctcggtggg	ccggagaccc	33840
accacaagaa	gtccggggtg	tgccacatcg	tegeegaega	cgaactcgat	gcctacgacc	33900
gtgggcgccg	gttggtcgga	ttgttctgcc	agcaggggca	tttcgatcgc	agcaaggccg	33960
aggccggtga	caccgacatc	cacgcgctgc	tgccggaatc	ctcgcgacgt	gcctacgacg	34020
tgcgtccgat	cgtgacggcg	atcctcgatg	cggacacacc	gttcgacgag	ttccaggcca	34080
attgggcgcc	gtcgatggtg	gtcgggctgg	gtcggctgtc	gggtcgcacg	gtgggtgtac	34140
tggccaacaa	cccgctacgc	ctgggcggct	gcctgaactc	cgaaagcgca	gagaaggcag	34200
cgcgtttcgt	gcggctgtgc	gacgcgttcg	ggattccgct	ggtggtggtg	gtcgatgtgc	34260
cgggctatct	gcccggtgtc	gaccaggagt	ggggtggcgt	ggtgcgccgt	ggcgccaagt	34320
tgctgcacgc	gttcggcgag	tgcaccgttc	cgcgggtcac	gctggtcacc	cgaaagacct	34380
acggcggggc	atacattgcg	atgaactccc	ggtcgttgaa	cgcgaccaag	gtgttcgcct	34440
ggccggacgc	cgaggtcgcg	gtgatgggcg	ctaaggcggc	cgtcggcatc	ctgcacaaga	34500
agaagttggc	cgccgctccg	gagcacgaac	gcgaagcgct	gcacgaccag	ttggccgccg	34560
agcatgagcg	catcgccggc	ggggtcgaca	gtgcgctgga	catcggtgtg	gtcgacgaga	34620
agatcgaccc	ggcgcatact	cgcagcaagc	tcaccgaggc	gctggcgcag	gctccggcac	34680
ggcgcggccg	ccacaagaac	atcccgctgt	agttctgacc	gcgagcagac	gcagaatcgc	34740
acgcgcgagg	teegegeegt	gcgattctgc	gtctgctcgc	cagttatccc	cageggtgge	34800
tggtcaacgc	gaggcgctcc	togcatgete	ggacggtgcc	taccgacgcg	ctaacaattc	34860
tcgagaaggc	cggcgggttc	gccaccaccg	cgcaattgct	cacggtcatg	acccgccaac	34920
agctcgacgt	ccaagtgaaa	aacggcggcc	tegttegegt	ttggtacggg	gtctacgcgg	34980

cacaagagcc	ggacctgttg	ggccgcttgg	cggctctcga	tgtgttcatg	ggggggcacg	35040
ccgtcgcgtg	tctgggcacc	gccgccgcgt	tgtatggatt	cgacacggaa	aacaccgtcg	35100
ctatccatat	gctcgatccc	ggagtaagga	tgcggcccac	ggtcggtctg	atggtccacc	35160
aacgcgtcgg	tgcccggctc	caacgggtgt	caggtcgtct	cgcgaccgcg	cccgcatgga	35220
ctgccgtgga	ggtcgcacga	cagttgcgcc	gcccgcgggc	gctggccacc	ctcgacgccg	35280
cactacggtc	aatgcgctgc	gctcgcagtg	aaattgaaaa	cgccgttgct	gagcagcgag	35340
gccgccgagg	catcgtcgcg	gcgcgcgaac	tcttaccctt	cgccgacgga	cgcgcggaat	35400
cggccatgga	gagcgaggct	cggctcgtca	tgatcgacca	cgggctgccg	ttgcccgaac	35460
ttcaataccc	gatacacggc	cacggtggtg	aaatgtggcg	agtcgacttc	gcctggcccg	35520
acatgcgtct	cgcggccgaa	tacgaaagca	tcgagtggca	cgcgggaccg	gcggagatgc	35580
tgcgcgacaa	gacacgctgg	gccaagctcc	aagagctcgg	gtggacgatt	gtcccgattg	35640
tcgtcgacga	tgtcagacgc	gaacccggcc	gcctggcggc	ccgcatcgcc	cgccacctcg	35700
accgcgcgcg	tatggccggc	tgaccgctgg	tgagcagacg	cagagtcgca	ctgcggccgg	35760
cgcagtgcga	ctctgcgtct	gctcgcgctc	aacggctgag	gaactcctta	gccacggcga	35820
ctacgcgctc	gcgatcccgt	ggcaccagac	cgatccgggt	ccggcggtcg	aggatatcgt	35880
ccacatccag	cgccccctca	tgggtcaccg	cgtattcgaa	ctccgcccgg	gtcacgtcga	35940
tgccgtcggc	gaccggctcg	gtgggccgct	cacatgtggc	ggcggcagcg	acgttggccg	36000
cctcggcccc	gtaccgcgcc	accagegaet	cgggcaatcc	ggcgcccgat	ccgggggccg	36060
gcccagggtt	cgccggtgcg	ccgatcagcg	gcaggttgcg	agtgcggcac	ttcgcggctc	36120
gcaggtgtcg	cagcgtgatg	gcgcgattca	gcacatcctc	tgccatgtag	cggtattccg	36180
tcagcttgcc	gccgaccaca	ctgatcacgc	ccgacggcga	ttcaaaaaca	gcgtggtcac	36240
gcgaaacgtc	ggcggtgcgg	ccctggacac	cagcaccgcc	ggtgtcgatt	ageggeegea	36300
atcccgcata	ggcaccgatg	acatccttgg	tgccgaccgc	cgtccccaat	gcggtgttca	36360
ccgtatccag	caggaacgtg	atctcttccg	aagacggttg	tggcacatcg	ggaatcgggc	36420
cgggtgcgtc	ttcgtcggtc	agcccgagat	agateeggee	cagctgctcg	ggcatggcga	36480
acacgaagcg	gttcagctca	ccggggatcg	gaatggtcag	cgcggcagtc	ggattggcaa	36540
acgacttcgc	gtcgaagacc	agatgtgtgc	cgcggctggg	gcgtagcctc	agggacgggt	36600
cgatctcacc	cgcccacacg	cccgccgcgt	tgatgacggc	acgcgccgac	agcgcgaacg	36660
actgccgggt	gcgccggtcg	gtcaactcca	ccgaagtgcc	ggtgacattc	gacgcgccca	36720
cgtaagtgag	gatgcgggcg	ccgtgctggg	ccgcggtgcg	cgcgacggcc	atgaccagcc	36780
gggcgtcgtc	gatcaattgc	ccgtcgtacg	cgagcagacc	accgtcgagg	ccgtcccgcc	36840
gaacggtggg	agcaatctcc	accacccgtg	acgccgggat	tcggcgcgat	cggggcaacg	36900

tegeegeegg e	gtacccgct	agcacccgca	aagcgtcgcc	ggccaggaaa	ccggcacgca	36960
ccaacgcccg c	ttggtgtga	cccatcgacg	gcaacaacgg	gaccagttgc	ggcatggcat	37020
gcacgagatg a	ggagcgttg	cgtgtcatca	ggattccgcg	ttcgacggcg	ctgcgccggg	37080
cgatgcccac g	ttgccgctg	gccagatagc	gcagaccgcc	gtgcaccaac	ttcgagctcc	37140
agcggctggt g	ccgaacgcc	agatcatgct	tttccaccaa	ggccaccgtc	agaccgcggg	37200
tggcagcatc t	aaggcaatg	ccaacaccgg	taatgccgcc	gcctatcacg	atgacgtcga	37260
gtgcgccacc g	tcggccagt	gcggtcaggt	cggcggagcg	acgcgccgcg	ttgagtgcag	37320
ccgagtgggg c	atcagcaca	aatatccgtt	cagtgcgtgg	gtaagttcgg	tggccagcgc	37380
ggcggaatcg a	ggatcgaat	cgacgatgtc	cgcggactgg	atggtcgact	gggcgatcag	37440
caacaccatg g	tcgccagtc	gacgagcgtc	gccggagcgc	acactgcccg	accgctgcgc	37500
cactgtcage c	gggcggcca	acccctcgat	caggacctgc	tggctggtgc	cgaggcgctc	37560
ggtgatgtac a	ccctggcca	gctccgagtg	catgaccgac	atgatcagat	cgtcaccccg	37620
caaccggtcg g	ccaccgcga	caatctgctt	taccaacgct	tcccggtcgt	ccccgtcgag	37680
gggcacctcc c	gcagcacgt	cggcgatatg	gctggtcagc	atggacgcca	tgatcgaccg	37740
ggtgtccggc c	agcgacggt	atacggtcgg	gcggctcacg	cccgcgcgcc	gggcgatctc	37800
ggcaagtgtc a	cccggtcca	cgccgtaatc	gacgacgcag	ctcgccgctg	cccgcaggat	37860
acgaccaccg g	tatccgcgc	ggtcattact	cattgacagc	atgtgtaata	ctgtaacgcg	37920
tgactcaccg c	gaggaactc	cttccaccga	tgaaatggga	cgcgtgggga	gatecegeeg	37980
cggccaagcc a	ctttctgat	ggcgtccggt	cgttgctgaa	gcaggttgtg	ggcctagcgg	38040
acteggagea g	rcccgaactc	gaccccgcgc	aggtgcagct	gegeeegtee	gccctgtcgg	38100
gggcagacca						38110

<210> 25

<211> 2540

<212> DNA

<213> Homo sapiens

<400> 25
gaaaaggtgg acaagtccta ttttcaagag aagatgactt ttaacagttt tgaaggatct 60
aaaacttgtg tacctgcaga catcaataag gaagaagaat ttgtagaaga gtttaataga 120
ttaaaaactt ttgctaattt tccaagtggt agtcctgttt cagcatcaac actggcacga 180
gcagggtttc tttatactgg tgaaggagat accgtgcggt gctttagttg tcatgcagct 240
gtagatagat ggcaatatgg agactcagca gttggaagac acaggaaagt atccccaaat 300

tgcagattta	tcaacggctt	ttatcttgaa	aatagtgcca	cgcagtctac	aaattctggt	360
atccagaatg	gtcagtacaa	agttgaaaac	tatctgggaa	gcagagatca	ttttgcctta	420
gacaggccat	ctgagacaca	caa agttgaaaac tatctgggaa gcagagatca ttttgcctta 420 aca tgcagactat cttttgagaa ctgggcaggt tgtagatata 480 gag gaaccctgcc atgtattgtg aagaagctag attaaagtcc 540 cta tgctcaccta accccaagag agttagcaag tgctggactc 600 tga ccaagtgcag tgcttttgtt gtggtggaaa actgaaaaat 660 tgc ctggtcagaa cacaggcgac actttcctaa ttgcttcttt 720 taa tattcgaagt gaatctgatg ctgtgagttc tgataggaat 780 tct tccaagaaat ccatccatgg cagattatga agcacggatc 840 gat atactcagtt aacaaggagc agcttgcaag agctggattt 900 tga taaagtaaag tgctttcact gtggaggagg gctaactgat 960				
tcagacacca	tatacccgag	gaaccctgcc	atgtattgtg	aagaagctag	attaaagtcc	540
tttcagaact	ggccagacta	tgctcaccta	accccaagag	agttagcaag	tgctggactc	600
tactacacag	gtattggtga	ccaagtgcag	tgcttttgtt	gtggtggaaa	actgaaaaat	660
tgggaacctt	gtgatcgtgc	ctggtcagaa	cacaggcgac	actttcctaa	ttgcttcttt	720
gttttgggcc	ggaatcttaa	tattcgaagt	gaatctgatg	ctgtgagttc	tgataggaat	780
ttcccaaatt	caacaaatct	tccaagaaat	ccatccatgg	cagattatga	agcacggatc	840
tttacttttg	ggacatggat	atactcagtt	aacaaggagc	agcttgcaag	agctggattt	900
tatgctttag	gtgaaggtga	taaagtaaag	tgctttcact	gtggaggagg	gctaactgat	960
tggaagccca	gtgaagaccc	ttgggaacaa	catgctaaat	ggtatccagg	gtgcaaatat	1020
ctgttagaac	agaagggaca	agaatatata	aacaatattc	atttaactca	ttcacttgag	1080
gagtgtctgg	taagaactac	tgagaaaaca	ccatcactaa	ctagaagaat	tgatgatacc	1140
atcttccaaa	atcctatggt	acaagaagct	atacgaatgg	ggttcagttt	caaggacatt	1200
aagaaaataa	tggaggaaaa	aattcagata	tctgggagca	actataaatc	acttgaggtt	1260
ctggttgcag	atctagtgaa	tgctcagaaa	gacagtatgc	aagatgagtc	aagtcagact	1320
tcattacaga	aagagattag	tactgaagag	cagctaaggc	gcctgcaaga	ggagaagctt	1380
tgcaaaatct	gtatggatag	aaatattgct	atcgtttttg	ttccttgtgg	acatctagtc	1440
acttgtaaac	aatgtgctga	agcagttgac	aagtgtccca	tgtgctacac	agtcattact	1500
ttcaagcaaa	aaattttat	gtcttaatct	aactctatag	taggcatgtt	atgttgttct	1560
tattaccctg	attgaatgtg	tgatgtgaac	tgactttaag	taatcaggat	tgaattccat	1620
tagcatttgc	taccaagtag	gaaaaaaaat	gtacatggca	gtgttttagt	tggcaatata	1680
atctttgaat	ttcttgattt	ttcagggtat	tagctgtatt	atccattttt	tttactgtta	1740
tttaattgaa	accatagact	aagaataaga	agcatcatac	tataactgaa	cacaatgtgt	1800
attcatagta	tactgattta	atttctaagt	gtaagtgaat	taatcatctg	gattttttat	1860
tcttttcaga	taggcttaac	aaatggagct	ttctgtatat	aaatgtggag	attagagtta	1920
atctccccaa	tcacataatt	tgttttgtgt	gaaaaaggaa	taaattgttc	catgctggtg	1980
gaaagataga	gattgttttt	agaggttggt	tgttgtgttt	taggattctg	tccattttct	2040
tgtaaaggga	taaacacgga	cgtgtgcgaa	atatgtttgt	aaagtgattt	gccattgttg	2100
aaagcgtatt	taatgataga	atactatcga	gccaacatgt	actgacatgg	aaagatgtca	2160
gagatatgtt	aagtgtaaaa	tgcaagtggc	gggacactat	gtatagtctg	agccagatca	2220

aagtatgtat gttgttaata tgcatagaac gagagatttg gaaagatata caccaaactg	2280
ttaaatgtgg tttctcttcg gggagggggg gattggggga ggggccccag aggggtttta	2340
gaggggcctt ttcactttcg actttttca ttttgttctg ttcggatttt ttataagtat	2400
gtagaccccg aagggtttta tgggaactaa catcagtaac ctaacccccg tgactatcct	2460
gtgctcttcc tagggagetg tgttgtttcc cacccaccac ccttccctct gaacaaatgc	2520
ctgagtgctg gggcactttg	2540
<210> 26	
<211> 103	
<212> RNA	
<213> Homo sapiens	
(213) HOMO Sapiens	
<400> 26	
agcuccuaua acaaaagucu guugcuugug uuucacauuu uggauuuccu aauauaaugu	60
ucucuuuuua gaaaaggugg acaaguccua uuuucaagag aag	103
<210> 27	
<211> 28	
<212> RNA	
<213> Homo sapiens	
1010 Captons	
<400> 27	
ggauuuccua auauaauguu cucuuuuu	28
<210> 28	
<210> 28 <211> 1619	
<211> 1619 <212> DNA	
<211> 1619 <212> DNA	
<211> 1619 <212> DNA <213> Homo sapiens <400> 28	
<211> 1619 <212> DNA <213> Homo sapiens	60
<211> 1619 <212> DNA <213> Homo sapiens <400> 28 ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc ggcggcggca tgggtgcccc gacgttgccc cctgcctggc agcccttct caaggaccac cgcatctcta cattcaagaa	120
<211> 1619 <212> DNA <213> Homo sapiens <400> 28 ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc ggcggcggca tgggtgcccc	120 180
<211> 1619 <212> DNA <213> Homo sapiens <400> 28 ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc ggcggcggca tgggtgcccc gacgttgccc cctgcctggc agcccttct caaggaccac cgcatctcta cattcaagaa	120

cgctttcctt	tctgtcaaga	agcagtttga	agaattaacc	cttggtgaat	ttttgaaact	360
ggacagagaa	agagccaaga	acaaaattgc	aaaggaaacc	aacaataaga	agāaagaatt	420
tgaggaaact	gcgaagaaag	tgcgccgtgc	catcgagcag	ctggctgcca	tggattgagg	480
cctctggccg	gagetgeetg	gtcccagagt	ggctgcacca	cttccagggt	ttattccctg	540
gtgccaccag	ccttcctgtg	ggccccttag	caatgtctta	ggaaaggaga	tcaacatttt	600
caaattagat	gtttcaactg	tgctcctgtt	ttgtcttgaa	agtggcacca	gaggtgcttc	660
tgcctgtgca	gcgggtgctg	ctggtaacag	tggctgcttc	tatatata	tctcttttt	720
gggggctcat	ttttgctgtt	ttgattcccg	ggcttaccag	gtgagaagtg	agggaggaag	780
aaggcagtgt	cccttttgct	agagctgaca	gctttgttcg	cgtgggcaga	gccttccaca	840
gtgaatgtgt	ctggacctca	tgttgttgag	gctgtcacag	tcctgagtgt	ggacttggca	900
ggtgcctgtt	gaatctgagc	tgcaggttcc	ttatctgtca	cacctgtgcc	tcctcagagg	960
acagttttt	tgttgttgtg	tttttttgtt	ttttttttt	ggtagatgca	tgacttgtgt	1020
gtgatgagag	aatggagaca	gagtccctgg	ctcctctact	gtttaacaac	atggctttct	1080
tattttgttt	gaattgttaa	ttcacagaat	agcacaaact	acaattaaaa	ctaagcacaa	1140
agccattcta	agtcattggg	gaaacggggt	gaacttcagg	tggatgagga	gacagaatag	1200
agtgatagga	agcgtctggc	agatactcct	tttgccactg	ctgtgtgatt	agacaggccc	1260
agtgagccgc	ggggcacatg	ctggccgctc	ctccctcaga	aaaaggcagt	ggcctaaatc	1320
ctttttaaat	gacttggctc	gatgctgtgg	gggactggct	gggctgctgc	aggccgtgtg	1380
tctgtcagcc	caaccttcac	atctgtcacg	ttctccacac	gggggagaga	cgcagtccgc	1440
ccaggtcccc	gctttctttg	gaggcagcag	ctcccgcagg	gctgaagtct	ggcgtaagat	1500
gatggatttg	attegeeete	ctccctgtca	tagagctgca	gggtggattg	ttacagcttc	1560
gctggaaacc	tctggaggtc	atctcggctg	ttcctgagaa	ataaaaagcc	tgtcatttc	1619

<210> 29

<211> 27

<212> RNA

<213> Homo sapiens

<400> 29 ggcgucacac cuucggguga agucgcc

27

<210> 30

<211> 27

<212> RNA

<213> Homo sapiens

<400> 30

ggcgucacac cuucggguga agucgcc

27

<210> 31

<211> 12

<212> PRT

<213> Homo sapiens

<400> 31

Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm}$

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/11757

A. CLASSIFICATION OF SUBJECT MATTER							
IPC(7) : C12Q 1/68; C07H 21/02; G01N 27/26 US CL : 435/6: 536/23.1: 204/451							
	: 435/6; 536/23.1; 204/451 International Patent Classification (IPC) or to both	national classification and IDC					
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/6; 536/23.1; 204/451							
Documentati	on searched other than minimum documentation to the	ne extent that such documents are include	d in the fields searched				
Electronic de STN, EAST	ata base consulted during the international search (na	me of data base and, where practicable, s	search terms used)				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
Y	US 6329146 B1 (Crooke et al) 11 December 2001	(11.12.2001), column 40, example 11.	1				
Y	US 5,807,682 A (Grossman et al.) 15 September 19	98 (15.09.1998), column 19, lines 2-	1				
Y	US 6,355,428 (Schroth et al) 12 March 2002 (12.0	3.2002), column 8, lines 64-67.	1				
Y	US 6,320,040 B1 (Cook et al) 20 November 2001 ((20.11.2001), column 11, lines 14-22	1				
Y	1						
			·				
			l				
	documents are listed in the continuation of Box C.	See patent family annex.					
* S	pecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the applic	mational filing date or priority				
"A" document of particu	defining the general state of the art which is not considered to be lar relevance	principle or theory underlying the inve					
"E" carlier ap	claimed invention cannot be red to involve an inventive step						
"L" document which may throw doubts on priority claim(s) or which is cited to cstablish the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot specified) when the document is taken alone when the document is taken alone document of particular relevance; the claimed invention cannot specified)							
combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art							
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed							
	Date of the actual completion of the international search Date of mailing of the international search						
	22 June 2002 (22.06.2002) Name and mailing address of the ISA/US Authorized officer						
	Buing address of the ISA/US unissioner of Patents and Trademarks	Authorized officer	myou				
Box	PCT	Jyothsna Venkat	va venkat Ph.D				
	hington, D.C. 20231 D. (703)305-3230	Telephone No. (703) 308-1235	EXAMINER				
Form PCT/ISA/210 (second sheet) (July 1998)							