www.qconferences.com www.qconbeijing.com www.qconshanghai.com

伦敦 | 北京 | 东京 | 纽约 | 圣保罗 | 上海 | 旧金山

London · Beijing · Tokyo · New York · Sao Paulo · Shanghai · San Francisco

QCon全球软件开发大会

International Software Development Conference

nfo Q

个性化的天猫

张奇(得福)天猫推荐算法团队

2014.04.20

天猫 TMALL.COM

个人&团队介绍

张奇

中国科学技术大学,本科(2005),博士(2010),方向:信息检索 2010年-2012年,阿里云搜索与广告团队

2012年-现在,天猫推荐算法团队(10个人、15@7月)

目录

天猫推荐业务介绍/推荐系统架构历程

双11个性化会场案例

阿里巴巴大数据竞赛/天猫推荐算法大赛

我们的工作

成交:22%

去年同期: 15%

成交:6%

去年同期: 0%

我们的工作 - On Mobile

天猫 TMALL.COM

超过60+的推荐实例,每日点击用户近1干万UV

我们面对的业务

RecSystem 1.0

数据层:数据层与业务脱离,尽量通用

逻辑层: 召回与排序分离

用户意图:独立的用户意图挖掘模块

推荐业务持续增长,成交占比提升47% 1

在线存储的使用量比去年同期下降32%

开发时间成本是原来的1/5

总体的一些工作方向

1. Online Learning

2. 集成图像技术

3. 选品

目录

天猫推荐业务介绍/推荐系统架构历程

双11个性化会场案例

阿里巴巴大数据竞赛/天猫推荐算法大赛

推荐产品双11总体贡献-成交

双11当天点击推荐产品的用户数: 36m

双11当天推荐引导的成交金额:82.3亿

最近两年推荐引导成交的金额趋势图(单位:亿)

双11当天,推荐引导的成交约占天猫总体的30%

具体案例

无线双11个性化会场

具体案例:

无线用户的特点

双11-无线个性化会场

为什么要个性化:

女装分会场200多个品牌,在手机上要展示近100排。

点击衰减情况:

流量衰减情况

双11-无线个性化会场

 $prob_buy(brand_j|user_i, context)$

会场个性化算法-综述

双11-无线个性化会场-CTR 预估

我们尝试把它转化为一个点击率预估问题

Training Stage

	f ₁	f ₂	•••	f _n	if-click
			•••		0
User _i -Brand _j	1	0	•••	2	1
•••					

Prediction Stage

	f_1	f ₂	•••	f _n	Click prob
User _i -Brand _x	1	1		0	?

Feature Engineering

Explore the Unknown 偏好品牌集合 for user x b_3 b_6 b_5 相似品牌 主品牌 相似品牌 ItemBaseCF算法: b₁₁; b₁₂; b₁₃; ...; b_{1h} b_1 bi b_{21} ; b_{22} ; b_{23} ; ...; b_{2k} b_3 sim b_i b_5 b₆₁; b₆₂; b₆₃; ...; b_{6k} b_6

新品牌 for user x

Models: Learning To Rank

Point-Wise

LR

Random Forest

GBDT

Pair-Wise

Rank-SVM

无线双11案例效果

女装会场,成交金额提升27%

男装会场,成交金额提升15%

双11购物狂欢节

是一个促销的节日: 9.4亿, 52亿, 132亿, 250亿

是一个工程的奇迹: Detail 访问次数16亿次/当天,峰值吞吐率: 6.9万次/秒

今年,开放的算法嘉年华:**开放双11的产品与算法**

目录

天猫推荐业务介绍/推荐系统架构历程

双11个性化会场案例

阿里巴巴大数据竞赛/天猫推荐算法大赛

阿里巴巴大数据竞赛

天猫推荐算法大挑战

大赛名	举办时间	队伍数	奖金数	数据
Netflix 推荐大赛	2006-2009	2000	1百万美金	48万 User ; 1.7万 Movie ; 1亿 Rating
KDD CUP 2012 腾讯资助	2012	658	8000美金	2百万微博用户; 6千 Items; 3亿曝光
Baidu 电影推荐大赛	2013	100多支	1万人民币	1.4万电影评分数据
品友互动	2013	300多支	100万人民币	

天猫推荐算法竞赛: 7200支队伍, 10,000多同学, 4000多支提交结果

大赛题目

品牌是联接商家与消费者的纽带

根据消费者的行为,计算他们对天猫品牌的偏好程度

赛题抽象

开放数据	天猫用户在2011年4月-8月的品牌行为数据:对品牌的点击、购买、收藏、加入购物车等。
预测数据	同样这些用户在2011年9月购买的品牌

阿里巴巴大数据竞赛-内部赛

天猫推荐算法大挑战

内部赛: 120多支队伍,超过300多名内部工程师参与

阿里巴巴大数据竞赛-赛程安排

赛季一(淘汰赛)

时间区间: 3月18日 - 4月20日

数据规模: 可下载数据,小规模,包含800多个用户、10多万条记录

奖项: 无奖项, 从近7000支队伍中, 海选最优的500支进入下一轮

赛季二(大数据离线赛)

时间区间: 4月25日 - 7月30日

数据规模: 1千多万的用户、5.7亿条记录

评奖时间: 8月20日(一等奖20万,二等奖5万,三等奖2万)

赛季三 (共创双11)

时间区间: 9月01日 - 11月11日

大奖 100万人民币

第一赛季参赛情况

×	4.2报名数		
中国大陆		5645	
港澳台		161	
	美国	48	
	英国	7	
	加拿大	6	
	德国	5	
	新加坡	4	
	法国	4	
	日本	3	
海外	比利时	2	
	荷兰	2	
	芬兰	2	
	爱尔兰	1	
	澳大利亚	1	
	韩国	1	
	瑞士	1	
	小计	87	

截止到4月20日:7280支

清华大学 香港科技大学 中国科学技术大学 中科院大学 北邮、西交等学校做了十多次算法沙龙

比赛进展

今天, TOP 500 队伍正式开始第二赛季

访问 5.7亿 用户购物行为记录 @飞天

致谢

Q&A

微博:2014阿里大数据竞赛技术交流

邮箱: john.zhangq@tmall.com

特别感谢合作伙伴

特别感谢媒体伙伴(部分)

