UN La

Universidad Nacional de Lanús

Departamento de Desarrollo Productivo y Tecnológico

Carrera: Licenciatura en Sistemas

Asignatura: Arquitectura de Computadoras

Alumno: Ramil Elías

Docentes: Roberto García

Miguel Lanzeni

<u>Año</u>: 2023

Cuatrimestre: 1º Año - 2º Cuatrimestre

Eiercicio 1:

; Configuración del PIC16F628A

list p=16F628A ; Lista de instrucciones del PIC16F628A #include <P16F628A.INC> ; Archivo de inclusión específico del PIC16F628A

__CONFIG 3F10

; Definición bloque de control

CBLOCK 0x20 COUNT1 COUNT2 ENDC

; Registros:

Ta equ 0x20 ; Pos Temperatura actual del agua en °C Ca equ 0x21 ; Pos Cantidad actual del agua en litros

Aux equ 0x22 ; Pos Auxiliar

; Constantes

#DEFINE CT d'110' ; Capacidad del Termotanque en litros #DEFINE Tm d'20' ; Temperatura mínima de trabajo en °C

#DEFINE TM d'45' ; Temperatura máxima donde debe dejar de calentar en °C #DEFINE MA d'50' ; Min de Agua en el termotanque para cerrar la canilla en

```
litros
#DEFINE Calculo_Agua d'10'; Para hacer los calculos del agua
#DEFINE Calculo_Temp d'5'; Para hacer los calculos de la Temperatura
; Luces de los leds
#DEFINE BA 0
                     ; Azul ---> Bomba de Agua
#DEFINE VT 1
                     ; Rojo ---> Verificando Temperatura del agua
                     ; Amarillo ---> Resistencia Trabajando
#DEFINE RT 2
#DEFINE RA 3
                     ; Verde ---> Resistencia Apagada
#DEFINE CA 4
                     ; Blanco ---> Canilla Abierta
  ORG 0x00
  GOTO Inicio
; Rutina de interrupción
  ORG 0x04
  RETFIE
; Subrutina para esperar 1 microsegundo
Esperar1ms:
       movlw d'250'
       movwf COUNT1
loop
       nop
       decfsz COUNT1, 1
       goto loop
       return
; Subrutina para esperar 250 microsegundos
Esperar250ms:
      movlw d'250'
       movwf COUNT2
loop2
       call Esperar1ms
       decfsz COUNT2, 1
       goto loop2
       return
; Subrutina para verificar si hay agua suficiente en el termotanque
Verificar Agua:
       ; Verificar si el termotanque tiene suficiente agua (si es menor de 110 litros)
  ; Si es menor, se enciende la bomba (BA) y se espera a que la cantidad de agua alcance el nivel
necesario.
loop_agua
       movlw CT
       movwf Aux
       movfw Ca
       subwf Aux, w
       btfsc STATUS, Z
```

```
goto tanque_full
      bsf PORTB, BA
      movlw Calculo_Agua
      addwf Ca, w
      movwf Ca
      goto loop_agua
tanque_full
      ; Apagar la bomba (BA)
  bcf PORTB, BA
      return ; Fin Verificar_Agua
;Subrutina para verificar la temperatura del agua
Verificar_Temperatura:
      bsf PORTB, VT
                           ; Led que indica que se esta verificando la temp
loop_temp
      movlw TM
      movwf Aux
      movfw Ta
      subwf Aux, w
      btfsc STATUS, Z
      goto agua_caliente
      bcf PORTB, RA
      bsf PORTB, RT
      call Esperar250ms
      bcf PORTB, RT
      movlw Calculo_Temp
      addwf Ta, w
      movwf Ta
      goto loop_temp
agua_caliente
      bcf PORTB, VT
      bsf PORTB, RA
      return ; Fin Verificar_Temperatura
; Subrutina para verificar si la canilla debe abrirse o cerrarse
Verificar Canilla:
loop_canilla
      movfw Ca
      movwf Aux
      movlw MA
      subwf Aux, w
      btfsc STATUS, Z
      goto cerrar_canilla
      bsf PORTB, CA
      movlw Calculo_Agua
      subwf Ca, w
```

```
movwf Ca
      goto loop_canilla
cerrar canilla
      bcf PORTB, CA
      movlw Tm
      movwf Ta
      return ; Fin Verificar_Canilla
Inicio:
       ; Configuración de puertos
  bsf STATUS, RP0
                           ; Seleccionar el banco 1 de registros
  clrf TRISB
                            ; Config TRISB
                            ; Deseleccionar el banco de registros 1 (volver al banco 0)
  bcf STATUS, RP0
                                   ; Resistencia apagada y termotanque prendido
      bsf PORTB, RA
      ; Inicializar valores:
      movlw d'25'
                            ; Temperatura actual del agua
      movwf Ta
      movlw d'90'
                            ; Cantidad actual de agua
      movwf Ca
Bucle_Principal
      call Verificar_Agua
      call Verificar_Temperatura
      call Esperar250ms
                                   ; Espera de 1 segundo
      call Esperar250ms
      call Esperar250ms
      call Esperar250ms
      call Verificar_Canilla
      goto Bucle_Principal
      end
                     ; Fin del programa
Ejercicio 2:
; Configuración del PIC16F628A
      list p=16F628A
                         ; Lista de instrucciones del PIC16F628A
      #include <P16F628A.INC>; Archivo de inclusión específico del PIC16F628A
      __CONFIG 3F10
; Definición de constantes, bloque de control
  CBLOCK 0x20
  COUNT1
  COUNT2
  ENDC
  ORG 0x00
  GOTO Inicio
```

```
; Rutina de interrupción
  ORG 0x04
  RETFIE
; Rutina para esperar 1 microsegundo
Esperar1ms:
      movlw d'250'
      movwf COUNT1
loop
      nop
      decfsz COUNT1, 1
      goto loop
      return
; Rutina para esperar 250 microsegundos
Esperar250ms:
      movlw d'250'
      movwf COUNT2
loop2
      call Esperar1ms
      decfsz COUNT2, 1
      goto loop2
      return
; Programa principal
Inicio:
  ; Configurar puertos
                                       ; Seleccionar el banco de registros 1
      BSF STATUS, RP0
  MOVLW 0x00
  MOVWF TRISB
      BCF STATUS, RP0
                                       ; Deseleccionar el banco de registros 1 (volver al
banco 0)
LOOP
  ; Punto 1: Encender todos los leds (RB0, RB1, RB2, RB3)
  MOVLW 0x0F
  MOVWF PORTB
  ; Esperar un segundo
  CALL Esperar250ms
  CALL Esperar250ms
  CALL Esperar250ms
  CALL Esperar250ms
  ; Punto 2: Encender y apagar todos los leds cada un segundo
  MOVLW 0x00
  MOVWF PORTB
  CALL Esperar250ms
  CALL Esperar250ms
  CALL Esperar250ms
```

CALL Esperar250ms MOVLW 0x0F **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms MOVLW 0x00 **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms ; Punto 3: Encender los leds durante un segundo y apagarlos leds durante medio segundo, repetir 4 veces MOVLW 0x0F **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms MOVLW 0x00 **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms MOVLW 0x0F **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms MOVLW 0x00 **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms MOVLW 0x0F **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms MOVLW 0x00 **MOVWF PORTB** CALL Esperar250ms CALL Esperar250ms MOVLW 0x0F **MOVWF PORTB** CALL Esperar250ms

CALL Esperar250ms CALL Esperar250ms CALL Esperar250ms MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

; Punto 4: Encender los LEDs de RB0 a RB3 con una demora de 500ms entre ellos

MOVLW 0x01

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x03

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x07

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

; Punto 5: Apagar los LEDs de RB3 a RB0 con una demora de 500ms entre ellos

MOVLW 0x07

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x03

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x01

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

GOTO LOOP

END

