Package 'NMR phasing'

December 17, 2024

Type Package
Fitle Phase Error Correction and Baseline Correction for One Dimensional ('1D') 'NMR' Data
Version 1.0.6
Maintainer Aixiang Jiang <aijiang@bccrc.ca></aijiang@bccrc.ca>
Depends R (>= $4.3.0$)
Suggests knitr, rmarkdown, ggpubr, conflicted
VignetteBuilder knitr
Imports stats, baseline, splines, MassSpecWavelet, signal
Description There are three distinct approaches for phase error correction, they are: a single linear model with a choice of optimization functions, multiple linear models with optimization function choices and a shrinkage-based method. The methodology is based on our new algorithms and various references (Binczyk et al. (2015) <doi:10.1186 1475-925x-14-s2-s5="">,Chen et al. (2002) <doi:10.1016 s1090-7807(02)00069-1="">, de Brouwer (2009) <doi:10.1016 j.jmr.2009.09.017="">, Džakula (2000) <doi:10.1006 jmre.2000.2123="">, Ernst (1969) <doi:10.1046 9)0003-1="">, Liland et al. (2010) <doi:10.1366 000370210792434350="">).</doi:10.1366></doi:10.1046></doi:10.1006></doi:10.1016></doi:10.1016></doi:10.1186>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no
Author Aixiang Jiang [aut, cre, cph] (https://orcid.org/0000-0002-6153-7595)
Repository CRAN
Date/Publication 2024-12-17 22:10:11 UTC
Contents
fdat 2 MPC_AAM 2 MPC_ADSM 3

2 MPC_AAM

	MPC_DANM	4
	MPC_DSM	5
	MPC_EMP	6
	NLS	7
	NMRphasing	8
	SPC_AAM	9
	SPC_ADSM	10
	SPC_DANM	11
	SPC_DSM	12
	SPC_EMP	13
Index		15

fdat

This is an example data in NMRphasing

Description

This dataset contains sample data for NMR phasing.

Usage

fdat

Format

A data frame with two columns, one is for NMR data in complex format, the other one is ppm

Author(s)

Aixiang Jiang

 $\mathsf{MPC}_\mathsf{AAM}$

 MPC_AAM

Description

Multiple single linear models that minimize absolute area.

Usage

```
MPC\_AAM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

MPC_ADSM 3

Details

This function is used to process phase error correction through multiple single linear models that minimize absolute area, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_aam_phased1 <- MPC_AAM(fdat$frequency_domain)</pre>
```

MPC_ADSM

MPC_ADSM

Description

Multiple single linear models that minimize the absolute total dispersion.

Usage

```
MPC_ADSM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is used to process phase error correction through multiple single linear models that minimize the absolute total dispersion, followed by polynomial baseline correction when necessary.

4 MPC_DANM

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_dsm_phased1 <- MPC_ADSM(fdat$frequency_domain)</pre>
```

MPC_DANM

MPC DANM

Description

Multiple linear models that minimize the difference between absolute area and net area.

Usage

```
MPC_DANM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection.

Details

This function processes phase error correction through multiple linear models that minimize the difference between absolute area and net area, followed by polynomial baseline correction when necessary.

MPC_DSM 5

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_danm_phased1 <- MPC_DANM(fdat$frequency_domain)</pre>
```

MPC_DSM

 MPC_DSM

Description

Multiple single linear models that minimize the total dispersion.

Usage

```
MPC_DSM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is used to process phase error correction through multiple single linear models that minimize the total dispersion, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

6 MPC_EMP

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_dsm_phased1 <- MPC_DSM(fdat$frequency_domain)</pre>
```

MPC_EMP

 MPC_EMP

Description

Multiple single linear models based on entropy minimization with negative peak penalty.

Usage

```
MPC_EMP(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is used to process phase error correction through multiple single linear models with entropy minimization with negative peak penalty, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

NLS 7

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_emp_phased1 <- MPC_EMP(fdat$frequency_domain)</pre>
```

NLS

NLS

Description

Non-linear shrinkage

Usage

```
NLS(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is used to process phase error correction through non-linear shrinkage, followed by Polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

NMRphasing NMRphasing

Examples

```
data("fdat")
nls_phased1 <- NLS(fdat$frequency_domain)</pre>
```

NMRphasing

NMRphasing

Description

Phase error correction wrap up function

Usage

Arguments

specDatIn Input spectrum data, which can be one of the four formats: a vector of absorption

spectrum; a complex vector; a data matrix or a data frame with two columns of spectrum data, which 1st column is for absorption spectrum, and 2nd column is

for dispersion spectrum

absorptionOnly A logical variable to tell us if specDatIn is a a vector of absorption specrtrum,

default is false

method One of phase correction and baseline correction methods. There are eleven avail-

able choices, which are "NLS", "MPC_DAOM", "MPC_EMP", "MPC_AAM",

"MPC_DSM", "MPC_ADSM", "SPC_DAOM", "SPC_EMP", "SPC_AAM", "SPC_DSM",

"SPC_ADSM", with "NLS", non-linear shrinkage as default.

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This is a wrap function to process phase error correction and baseline correction with eleven different choices.

Value

A numeric vector of phase corrected absorption spectrum

SPC_AAM 9

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

Chen L, Weng Z, Goh L, Garland M (2002) An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J Magn Reson 158:164–168.

de Brouwer H (2009) Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson 201:230–238.

Džakula Ž (2000) Phase Angle Measurement from Peak Areas (PAMPAS). J Magn Reson 146:20–32.

Ernst RR (1969) Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. J Magn Reson 1969 1:7–26.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
nls_phased <- NMRphasing(specDatIn = fdat$frequency_domain, method = "NLS")</pre>
```

SPC_AAM

SPC_AAM

Description

A single linear model with minimization on absolute area.

Usage

```
SPC_AAM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is to process phase error correction through a single linear model with minimization on absolute area, followed by polynomial baseline correction if necessary

10 SPC_ADSM

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_aam_phased1 <- SPC_AAM(fdat$frequency_domain)</pre>
```

SPC_ADSM

 SPC_DSM

Description

A single linear model with absolute dispersion summation minimization.

Usage

```
SPC_ADSM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is to process phase error correction through a single linear model with absolute dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

SPC_DANM 11

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26 Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_dsm_phased1 <- SPC_ADSM(fdat$frequency_domain)</pre>
```

SPC_DANM

SPC_DANM

Description

A single linear model with Minimization of difference between absolute area and net area

Usage

```
SPC_DANM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is to process phase error correction through a single linear model with minimization of difference between absolute area and net area, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

12 SPC_DSM

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_danm_phased1 <- SPC_DANM(fdat$frequency_domain)</pre>
```

SPC_DSM

 SPC_DSM

Description

A single linear model with dispersion summation minimization.

Usage

```
SPC_DSM(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is to process phase error correction through a single linear model with dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

SPC_EMP 13

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
spc_dsm_phased1 <- SPC_DSM(fdat$frequency_domain)</pre>
```

SPC_EMP

SPC_EMP

Description

A single linear model with entropy minimization with negative peak penalty

Usage

```
SPC_EMP(specdat, withBC = TRUE)
```

Arguments

specdat A complex number vector of observed frequency domain data

withBC A logical parameter that enables/disables baseline correction after baseline cor-

rection

Details

This function is to process phase error correction through a single linear model with entropy minimization with negative peak penalty, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

SPC_EMP

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

```
data("fdat")
mpc_emp_phased1 <- SPC_EMP(fdat$frequency_domain)</pre>
```

Index

```
\ast datasets
     fdat, 2
*\ phase\ correction
     MPC_AAM, 2
     MPC_ADSM, 3
     MPC_DANM, 4
    MPC_DSM, 5
     MPC\_EMP, 6
     NLS, 7
     SPC_AAM, 9
     SPC_ADSM, 10
     SPC_DANM, 11
     SPC_DSM, 12
     SPC_EMP, 13
\ast phase error correction
     NMRphasing, 8
fdat, 2
MPC_AAM, 2
MPC_ADSM, 3
MPC_DANM, 4
MPC_DSM, 5
MPC_EMP, 6
NLS, 7
NMRphasing, 8
SPC_AAM, 9
SPC_ADSM, 10
SPC_DANM, 11
SPC_DSM, 12
\mathsf{SPC\_EMP},\, \textcolor{red}{13}
```