ПЕРСПЕКТИВЫ СИСТЕМ ИНФОРМАТИКИ

УДК 519.681

КОМПАРАТИВНАЯ ТРАССОВАЯ СЕМАНТИКА ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ *

© 2015 г. Д.И. Бушин*, И.Б. Вирбицкайте* **,

*Институт систем информатики СО РАН, 630090 Новосибирск, пр. Ак. Лаврентьева, 6
**Новосибирский государственный университет, 630090 Новосибирск, ул. Пирогова, 2
E-mail: virb@iis.nsk.su, dima.bushin@gmail.com
Поступила в редакцию 01.12.2014

В данной работе определяется и исследуется семейство трассовых эквивалентностей в интерливинговой, шаговой, частично-упорядоченной и недетерминированной семантиках в контексте временных безопасных сетей Петри. Изучаемые эквивалентности основываются как на классическом понятии последовательностей срабатываний переходов, так и на временных процессах, т.е. временных расширениях сетей-процессов за счет сопоставления глобальных моментов времени срабатываниям переходов. Устанавливаются взаимосвязи эквивалентностей и строится иерархия классов эквивалентных временных сетей Петри.

1. ВВЕДЕНИЕ

Поведенческие эквивалентности обычно используются при спецификации и верификации систем с целью сравнения их поведения, а также упрощения их структуры. В теории параллельных систем и процессов известно большое разнообразие поведенческих эквивалентностей, взаимосвязи между которыми хорошо изучены в литературе (см., например, [1]). Трассовые эквивалентности являются базовыми и позволяют сравнивать поведения систем в терминах их языков. В интерливинговой семантике язык это множество последовательностей действий, выполняемых системой. Однако такое представление поведения не позволяет судить о степени параллелизма и недетерминизма, присущих системам. Было сделано много попыток выйти за пределы интерливингового подхода, что привело к появлению эквивалентностей, базирующихся на "истинно параллельной" и недетерминированной семантиках (см., например, [2, 3, 4]), которые позволяют лучше понять природу и установить закономерности процессов, протекающих в параллельных/распределенных системах.

Отправной точкой в исследованиях по неинтерливинговым семантикам в контексте моделей сетей Петри (СП) стала статья [5], где были показаны тесные взаимосвязи между моделями сетей-процессов и первичных структур событий. В 1980-х годах наиболее активно изучались особенности и свойства семантики сетейпроцессов различных подклассов СП (см., например, [6, 7]). В 1990-м году авторы статьи [8] показали, что такие семантические представления, как сети-процессы, трассы Мазуркевича, частично упорядоченные множества, первичные структуры событий, совпадают с точностью до изоморфизма в контексте безопасных СП. Семантика локальных структур событий, которые являются обобщением первичных структур событий и базируются на понятии шагов — множеств параллельно выполняемых действий — была разработана для С Π в статье [9]. Далее асимметричные структуры событий контекстных СП были построены в [10]. Кроме того, семантики решеток и структур событий были предложены в работе [11] в контексте СП с ингибиторными дугами. В статьях в [12, 13, 14, 15] представлены новые методы построения и изуче-

^{*}Данная работа частично финансируется DFG и РФФИ (проект CAVER, грант N BE 1267/14-1, грант No 14-01-91334).

ния семантики сетей-процессов на основе последовательностей шагов параллельных переходов для ${\rm C}\Pi$ и их ингибиторных обобщений.

Функционирование реальных параллельных систем в значительной степени зависит от временных параметров, поэтому многие модели СП были обогащены понятием времени, что позволило описывать и исследовать не только качественные, но и количественные аспекты поведения систем. Однако введение и изучение временных характеристик в более абстрактные (семантические) "истинно-параллельные" недетерминированные модели были Семантика настолько активными. моделей сетей-процессов, включающих события и условия, находящиеся в отношениях причинной зависимости и параллелизма, была предложена в работе [16] для временных ограниченных СП, где с каждым переходом связана длительность его срабатывания, а также в статье [17] для временных безопасных СП, где каждому переходу сопоставлен интервал временных задержек его срабатывания. В более поздних работах (см., например, [18]) была исследована семантика сетей-процессов, расширенных отношением недетерминированного выбора (конфликта), где с каждым событием связан временной интервал его выполнения, для временных ограниченных ординарных СП. Однако, насколько нам известно, в литературе не представлены исследования по семантике структур событий (моделей, в которых события находятся в отношениях причинной зависимости, параллелизма и конфликта) временных расширений СП. Кроме того, в контексте временных моделей также практически не изучались и поведенческие эквивалентности. Исключением является статья [19], где тестовые эквивалентности были введены и исследованы для СП с временными характеристиками, сопоставленными фишкам и с временными интервалами, связанными с дугами из мест в переходы.

В данной работе для временных безопасных СП определяется и исследуется семейство трассовых эквивалентностей в интерливинговой, шаговой, частично-упорядоченной и недетерминированной семантиках. Устанавливаются взаимосвязи эквивалентностей и строится

иерархия классов эквивалентных временных сетей Петри.

Оставшаяся часть статьи организована следующим образом. В разделе 2 вводятся основные понятия и обозначения, связанные со структурой и интерливинговой/шаговой семантикой, построенной на состояниях временных СП. Определения базовых семантических представлений — временных расширений частично упорядоченных множеств, структур событий и сетейпроцессов — приводятся в разделе 3. В разделе 4 данные семантики изучаются в контексте временных СП. Взаимосвязи трассовых эквивалентностей исследуются в заключительном разделе 5.

2. ВРЕМЕННЫЕ СЕТИ ПЕТРИ

Рассмотрим ряд понятий, связанных со структурой и поведением временной сети Петри (ВСП) [17]. Под ВСП понимается элементарная сетевая система, в которой с каждым переходом связан временной интервал, указывающий моменты времени, когда переход, готовый по наличию фишек в его входных местах, может сработать, только если достигнута нижняя граница интервала, и обязан сработать, если достигнута верхняя граница интервала.

Область $\mathbb T$ временных значений — множество натуральных чисел. Считаем, что $[\tau_1,\tau_2]$ — замкнутый интервал между двумя временными значениями $\tau_1,\tau_2\in\mathbb T$. Бесконечность может появляться как правая граница в открытых справа интервалах. Пусть Interv — множество всех таких интервалов. Кроме того, множество Act обозначает алфавит действий.

Определение 1. (Помеченная над Act) временная сеть Петри — это кортеж $T\mathcal{N} = ((P, T, F, M_0, L), D)$, где (P, T, F, M_0, L) — сеть Петри с множеством P мест, множеством T переходов $(P \cap T = \emptyset)$, отношением инцидентности $F \subseteq (P \times T) \cup (T \times P)$, начальной разметкой $\emptyset \neq M_0 \subseteq P$, помечающей функцией $L: T \to Act \ u \ D: T \to Interv$ — статическая временная функция, связывающая с каждым переходом временной интервал.

Введем ряд вспомогательных понятий и обозначений. Для элемента $x \in P \cup T$ пусть

 ${}^ullet x = \{y \mid (y,x) \in F\}$ и $x^ullet = \{y \mid (x,y) \in F\}$ – множества его входных и выходных элементов соответственно. Для подмножества $X \subseteq P \cup T$ определим множества $X \subseteq P \cup T$ определения интервала $X \subseteq P \cup T$ определения множества $X \subseteq P \cup T$ определения множества $X \subseteq P \cup T$ определения интервала $X \subseteq P \cup T$ определения множества $X \subseteq P \cup T$ определения интервала $X \subseteq T$ определен

Любое подмножество $M\subseteq P-$ разметка ВСП \mathcal{TN} . Переход t является готовым при разметке M, если ${}^{\bullet}t\subseteq M$. Пусть En(M)- множество готовых переходов при M. Тогда $\emptyset\neq U\subseteq T-$ шаг, готовый при разметке M, если $(\forall t\in U\diamond t\in En(M))$ и $(\forall t\neq t'\in U\diamond t\cap t'=\emptyset)$.

Рассмотрим поведение ВСП \mathcal{TN} . Состояние $BC\Pi \,\mathcal{TN}$ — это тройка (M,I,GT), где M — разметка, $I:En(M)\longrightarrow \mathbb{T}$ — динамическая временная функция и $GT\in \mathbb{T}$ — момент глобального времени. Начальное состояние $BC\Pi \,\mathcal{TN}$ — это тройка $S_0=(M_0,I_0,GT_0)$, где M_0 — начальная разметка, $I_0(t)=0$ для всех $t\in En(M_0)$ и $GT_0=0$.

Шаг $U\subseteq T$, готовый при разметке M, может выполниться из состояния S=(M,I,GT) после временной задержки $\theta\in\mathbb{T}$, если верно: $(\forall t\in U\diamond Eft(t)\leq I(t)+\theta)$ и $(\forall t'\in En(M)\diamond I(t')+\theta\leq Lft(t'))$. Пусть $Contact(S)=\{t\in U\mid \text{ шаг }U$ может выполниться из состояния S=(M,I,GT) после временной задержки $\theta\in\mathbb{T}$ и $(M\setminus {}^{\bullet}t)\cap t^{\bullet}\neq\emptyset)\}.$

Если шаг U может выполниться из состояния S = (M, I, GT) после временной задержки θ , то выполнение шага U приводит в состояние S' = (M', I', GT'), которое определяется следующим образом:

• $M' = (M \setminus {}^{\bullet}U) \cup U^{\bullet},$

•
$$\forall t' \in T \circ I'(t') = \begin{cases} I(t') + \theta, & \text{если } t' \in \\ En(M \setminus {}^{\bullet}U), \\ 0, & \text{если } t' \in En(M') \setminus \\ En(M \setminus {}^{\bullet}U), \\ \text{void}, & \text{иначе}, \end{cases}$$

• $GT' = GT + \theta$.

В этом случае будем писать $S \xrightarrow{(U,\theta)} S'$, а также $S \xrightarrow{(A,\theta)} S'$, если $A = L(U) = \sum_{t \in U} L(t)$. Конечная или бесконечная последовательность вида: $S = S^0 \xrightarrow{(U_1,\theta_1)} S^1 \xrightarrow{(U_2,\theta_2)} S^2 \dots -$ шаговая последовательность выполнений $BC\Pi \ \mathcal{TN}$ из состояния S. Тогда $(U_1,\theta_1) \ (U_2,\theta_2) \dots -$ шаго-

Рис. 1.

вое расписание выполнений ВСП \mathcal{TN} из S. Эта последовательность называется интерливинговым расписанием выполнений ВСП \mathcal{TN} из S, если $|U_i|=1$ для всех $i\geq 1$. Определим шаговый (интерливинговый) язык ВСП \mathcal{TN} следующим образом: $\mathcal{L}_{s(i)}(\mathcal{TN})=\{(A_1,\theta_1)\dots(A_k,\theta_k)\mid k\geq 0,\ (U_1,\theta_1)\dots(U_k,\theta_k)$ — шаговое (интерливинговое) расписание выполнений ВСП \mathcal{TN} из S_0 и $A_k=L(U_k)\}$.

Состояние S ВСП \mathcal{TN} является $\partial ocmu$ эcuмым, если оно присутствует в некоторой шаговой последовательности выполнений ВСП \mathcal{TN} из начального состояния S_0 . Пусть $RS(\mathcal{TN})$ обозначает множество достижимых состояний ВСП $\mathcal{T}\mathcal{N}$. Назовем ВСП $\mathcal{T}\mathcal{N}$ T-ограниченной, если для любого перехода $t \in T$ верно, что ${}^{\bullet}t \neq \emptyset \neq t^{\bullet}$; свободной от контактов, если для всех состояний $S \in RS(\mathcal{TN})$ верно, что $Contact(S) = \emptyset$; npoгрессирующей по времени, если в каждом бесконечном шаговом расписании выполнений (U_1, θ_1) (U_2, θ_2) (U_3, θ_3) ... ВСП \mathcal{TN} из некоторого $S \in$ $\in RS(TN)$ последовательность $\theta_1 + \theta_2 + \theta_3 + \dots$ дивергирует. В дальнейшем будем рассматривать только T-ограниченные, свободные от контактов и прогрессирующие по времени ВСП и называть их просто ВСП.

Пример 1. Рисунок 1 показывает пример ВСП \mathcal{TN} . Обе последовательности $\sigma = (\{t_1, t_4\}, 3)$ и $\sigma' = (\{t_1, t_4\}, 3)(\{t_2\}, 1)(\{t_3\}, 1)(\{t_5\}, 2)\dots$ являются шаговыми расписаниями выполнений ВСП \mathcal{TN} из начального состояния $S_0 = (M_0, I_0, GT_0)$, где $M_0 = \{p_1, p_2\}$, $I_0(t) = \left\{ \begin{array}{ll} 0, & \text{если } t \in \{t_1, t_3, t_4\}, \\ \text{void, unave,} \end{array} \right.$

Кроме того, $\widehat{\sigma} = (\{t_2\}, 1)(\{t_3\}, 1)(\{t_5\}, 2)\dots$ — шаговое расписание выполнений ВСП \mathcal{TN} из состояния S = (M, I, GT), где $M = \{p_3, p_5\}$, $I(t) = \begin{cases} 0, & \text{если } t = t_2, \\ \text{void, uhave,} \end{cases}$ и GT = 3. Легко видеть, что \mathcal{TN} действительно является T-ограниченной, свободной от контактов и прогрессирующей по времени.

3. ВРЕМЕННЫЕ СЕМАНТИЧЕСКИЕ МОДЕЛИ

В данном разделе вводятся определения временных расширений таких семантических моделей, как частично упорядоченные множества, структуры событий и сети-процессы, которые понадобятся в дальнейшем при разработке "истинно-параллельной" и недетерминированной семантик ВСП.

Сначала рассмотрим базовые определения, связанные с временными частично упорядоченными множествами.

Определение 2. (Помеченное над Act) временное частично упорядоченное множество (ВЧУМ) — это кортеж $\eta = (X, \prec, \lambda, \tau)$, состоящий из множества X элементов, транзитивного иррефлексивного отношения \prec , помечающей функции $\lambda: X \to Act$ и временной функции $\tau: X \to T$ такой, что $e \prec e' \Rightarrow \tau(e) \leq \tau(e')$. Будем писать $x \preceq y$, если $x \prec y$ или x = y. Часто \prec называется строгим частичным порядком, тогда как \preceq — просто частичным порядком, т.е. рефлексивным, антисимметричным и транзитивным отношением.

ВЧУМ $\eta = (X, \prec, \lambda, \tau)$ и $\eta' = (X', \prec', \lambda', \tau')$, помеченные над Act, являются изоморфными (обозначается $\eta \sim \eta'$), если существует биективное отображение $\beta: X \to X'$ такое, что: (a) $x \prec \chi \iff \beta(x) \prec' \beta(\widetilde{x})$ для всех $\chi, \widetilde{x} \in X$; (б) $\chi(x) = \chi'(\beta(x))$ и $\chi(x) = \chi'(\beta(x))$ для всех $\chi(x) \in X$. Класс изоморфизма ВЧУМ $\chi(x) \in X$, помеченного над $\chi(x) \in X$ называется временным частично упорядоченным мультимножеством (ВЧУММ), помеченным над $\chi(x) \in X$ и обозначается как $\chi(x) \in X$.

Теперь определим базовые понятия для моделей структур событий.

Определение 3. (Помеченная над Act) временная структура событий (ВСС) — это кортеж

 $\xi = (E, \prec, \#, l, \tau)$, включающий множество E событий, строгий частичный порядок $\prec \subseteq E \times E$ такой, что $|\downarrow e = \{e' \in E \mid e' \prec e\}| < \infty$ для всех $e \in E$, иррефлексивное симметричное отношение конфликта $\# \subseteq E \times E$ такое, что $(e \# e' \prec e'') \Rightarrow (e \# e'')$ для всех $e, e', e'' \in E$, помечающую функцию $l : E \to Act$ и временную функцию $\tau : E \to \mathbb{T}$ такую, что $e \prec e' \Rightarrow \tau(e) \leq \tau(e')$.

ВСС $\xi = (E, \prec, \#, l, \tau)$ и $\xi' = (E', \prec', \#', l', \tau')$, помеченные над Act, являются изоморфными (обозначается $\xi \sim \xi'$), если существует биективное отображение $\beta : E \to E'$ такое, что (а) $e \prec e' \Leftrightarrow \beta(e) \prec' \beta(e')$ и $e \# e' \Leftrightarrow \beta(e) \#' \beta(e')$ для всех $e, e' \in E$; (б) $l(e) = l'(\beta(e))$ и $\tau(e) = \tau'(\beta(e))$ для всех $e \in E$. Класс изоморфизма ВСС ξ , помеченной над Act, обозначается как $les(\xi)$.

Далее приведем базовые определения для временных сетей-процессов.

Определение 4. (Помеченная над Act) временная сеть (BC) — это финитарная ациклическая $cemb\ TN = (B, E, G, l, \tau)$, состоящая из множества B условий, множества E событий, отношения инцидентности $G \subseteq (B \times E) \cup (E \times B)$ такого, что $\{e \mid (e,b) \in G\} = \{e \mid (b,e) \in G\} = E$, помечающей функции $l : E \to Act$ и временной функции $\tau : E \to \mathbb{T}$ такой, что $e\ G^+\ e' \Rightarrow \tau(e) \le \le \tau(e')$.

ВС $TN = (B, E, G, l, \tau)$ и $TN' = (B', E', G', l', \tau')$, помеченные над Act, являются uso-морфными (обозначается $TN \simeq TN'$), если существует биективное отображение $\beta: B \cup E \to B' \cup E'$ такое, что (а) $\beta(B) = B'$ и $\beta(E) = E'$; (б) $x G y \iff \beta(x) G' \beta(y)$ для всех $x, y \in B \cup E$; (в) $l(e) = l'(\beta(e))$ и $\tau(e) = \tau'(\beta(e))$ для всех $e \in E$.

Рассмотрим вспомогательные понятия и обозначения для BC $TN = (B, E, G, l, \tau)$. Пусть $\prec = G^+, \ \preceq = G^*$ и $\tau(TN) = \sup\{\tau(e) \mid e \in E\}$. Для элемента $x \in B \cup E$ определим множества: $^\bullet x = \{y \mid (y, x) \in G\}$ и $x^\bullet = \{y \mid (x, y) \in G\}$, а также для подмножества $X \subseteq B \cup E - ^\bullet X = \bigcup_{x \in X} ^\bullet x$ и $X^\bullet = \bigcup_{x \in X} x^\bullet$, Кроме того, пусть $^\bullet TN = \{b \in B \mid ^\bullet b = \emptyset\}$ и $TN^\bullet = \{b \in B \mid b^\bullet = \emptyset\}$. Для событий $e, e' \in E$, элементов $x, x' \in (B \cup E)$ и подмножества $E' \subseteq E$ определим:

• $\downarrow e = \{x \mid x \leq e\}$ (предшественники);

- E' левозамкнутое подмножество множества E, если $\downarrow e' \cap (E \times E) \subseteq E'$ для всех $e' \in E'$. В этом случае назовем E' корректным по времени, если $\tau(e') \leq \tau(e)$ для всех $e' \in E'$ и $e \in E \setminus E'$, а также определим множество $Cut(E') = (E'^{\bullet} \cup {}^{\bullet}TN) \setminus {}^{\bullet}E'$;
- $Earlier(e) = \{e' \in E \mid \tau(e') < \tau(e)\};$
- $x \# x' \iff \exists e \neq e' \circ e \leq x, \land e' \leq x' \land \land e \cap e \cap e' \neq \emptyset$ (конфликт);
- E' свободное от конфликтов подмножество множества E, если $\neg (e' \# e'')$ для всех $e', e'' \in E'$;
- $E' \kappa o n \phi u s y p a u u s$ ВС TN, если E' конечное, левозамкнутое и свободное от конфликтов подмножество множества E;
- $x \smile x' \iff \neg((x \prec x') \lor (x' \prec x) \lor \lor (x \# x') \lor (x = x'))$ (параллелизм);
- $\emptyset \neq E' \text{шаг } BC \ TN$, если $e \smile e'$ и $\tau(e) = \tau(e')$ для всех $e \neq e' \in E'$. В этом случае считаем, что $\tau(E') = \tau(e)$, где $e \in E'$;
- конечная или бесконечная последовательность $\rho = V_1 V_2 \dots$ шагов BC TN s-линеаризация, если каждое событие BC TN включено в эту последовательность ровно один раз и верно: $(e_i \prec e_j \lor \tau(e_i) < \tau(e_j)) \Rightarrow i < j$ для всех $e_i \in V_i$ и $e_j \in V_j$ $(i,j \geq 1)$. В этом случае $\rho = V_1 V_2 \dots$ называется i-линеаризацией BC TN, если $|V_i| = 1$ для всех $i \geq 1$. Для s-линеаризации $\rho = V_1 V_2 \dots$ BC TN, определим $E_\rho^k = \bigcup_{1 \leq i \leq k} V_i$ $(k \geq 0)$. Ясно, что E_ρ^k левозамкнутое и корректное по времени подмножество множества E.
- TN называется временной C-сетью, если $| {}^{ullet} b | \leq 1$ \wedge $| b^{ullet} | \leq 1$ для всех $b \in B$; временной O-сетью, если $| {}^{ullet} b | \leq 1$ и $\neg (x \ \#_{TN} x)$ для всех $x \in B \cup E$. Ясно, что $\eta(TN) = (E_{TN}, \prec_{TN} \cap (E_{TN} \times E_{TN}), l_{TN}, \tau_{TN})$ ВЧУМ, если TN временная C-сеть, и $\xi(TN) = (E_{TN}, \prec_{TN} \cap (E_{TN} \times E_{TN}), l_{TN}, \tau_{TN})$ ВСС, если TN временная C-сеть.

Пемма 1. Каждая временная C-сеть TN имеет s-линеаризацию $\rho = V_1V_2\dots$ Кроме того, верно, что $Cut(E_{\rho}^k) = \left(Cut(E_{\rho}^{k-1}) \setminus {}^{\bullet}V_k\right) \cup V^{\bullet}_k$ и $\left(Cut(E_{\rho}^{k-1}) \setminus {}^{\bullet}e\right) \cap e^{\bullet} = \emptyset$ для всех $e \in V_k$ $(k \geq 1)$.

Для BC $TN = (B, E, G, l, \tau)$, $\widehat{TN} = (\widehat{B}, \widehat{E}, \widehat{G}, \widehat{l}, \widehat{\tau})$ и $TN' = (B', E', G', l', \tau')$ будем говорить, что $TN - npe \phi u \kappa c$ для TN' (обозначается $TN \longrightarrow TN'$), если $B' \subseteq B$, E — конечное, левозамкнутое и корректное по времени подмножество множества E', $G = G' \cap (B \times E \cup E \times B)$, $l = l' \mid_E$ и $\tau = \tau' \mid_E$; $\widehat{TN} - cy \phi \phi u \kappa c$ для TN' относительно TN, если $\widehat{E} = E' \setminus E$, $\widehat{B} = (B' \setminus B) \cup TN^{\bullet}$, $\widehat{G} = G' \cap (\widehat{B} \times \widehat{E} \cup \widehat{E} \times \widehat{B})$, $\widehat{l} = l' \mid_{\widehat{E}}$ и $\widehat{\tau} = \tau' \mid_{\widehat{E}}$. Будем писать $TN \xrightarrow{\widehat{TN}} TN'$, если $TN \longrightarrow TN'$ и \widehat{TN} — суффикс для TN' относительно TN.

Лемма 2. Если $TN \xrightarrow{\widehat{TN}} TN'$ и $\widehat{e} \in \widehat{E}$, то верно следующее:

$$(a) \ ^{\bullet}TN = {^{\bullet}TN'} \neq \emptyset \ u \ ^{\bullet}\widehat{TN} = TN^{\bullet} \neq \emptyset;$$

(6)
$$({}^{\bullet}\widehat{e} \setminus {}^{\bullet}\widehat{TN}) \subseteq ({}^{\bullet}\widehat{e} \setminus {}^{\bullet}TN');$$

(в) $Earlier(\hat{e})$ — левозамкнутое и корректное по времени подмножество множества \hat{E} .

Рис. 2.

Рис. 3.

Пример 2. Пример временной C-сети $TN' = (B', E', G', l', \tau')$ показан рис. 2, где сетевые элементы изображены вместе c их именами, а кроме того, около событий указаны соотвествующие значения функций l' и τ' . Построим временные C-сети $TN = (B, E, G, l, \tau)$, где $B = \{b_1, b_2, b_3, b_4\}$, $E = \{e_1, e_4\}$, $G = G' \cap (B \times E \cup E \times \times B)\}$, $l = l' \mid_E$, $\tau = \tau' \mid_E$, u $\widehat{TN} = (\widehat{B}, \widehat{E}, \widehat{G}, \widehat{l}, \widehat{\tau})$, где $\widehat{B} = (B' \setminus B) \cup \{b_3, b_4\}$, $\widehat{E} = E' \setminus E$, $\widehat{G} = G' \cap (\widehat{B} \times \widehat{E} \cup \widehat{E} \times \widehat{B})$, $\widehat{l} = l' \mid_{\widehat{E}}$, $\widehat{\tau} = \tau' \mid_{\widehat{E}}$. Легко видеть, что TN - npeфикс для TN', $\widehat{TN} - cy\phi$ фикс для TN' относительно TN, т.е. $TN \xrightarrow{\widehat{TN}} TN'$. Заметим, что $\rho_{TN'} = \{e_1, e_4\}\{e_2\}\{e_3\}\{e_5\} - s$ -линеаризация TN'.

Пример временной O-сети $\widetilde{TN}=(\widetilde{B},\,\widetilde{E},\,\widetilde{G},\,\widetilde{l},\,\widetilde{\tau})$ показан на puc. 3, где сетевые элементы изображены вместе с их именами, а кроме того около событий указаны соотвествующие значения функций \widetilde{l} и $\widetilde{\tau}$.

4. СЕМАНТИКА ВСП В ТЕРМИНАХ ВРЕМЕННЫХ СЕТЕЙ-ПРОЦЕССОВ

Для ВСП $\mathcal{TN}=((P,T,F,M_0,L),D)$ с некоторой разметкой M и ВС TN=(B,E,G,l, au)

будем говорить, что отображение $\varphi: B \cup E \to P \cup T$ — гомоморфизм из TN в TN относительно M, если выполнены следующие условия:

- $\varphi(B) \subseteq P$, $\varphi(E) \subseteq T$,
- ограничение отображения φ на множество ${}^{\bullet}e$ биекция между ${}^{\bullet}e$ и ${}^{\bullet}\varphi(e)$, и ограничение φ на e^{\bullet} биекция между e^{\bullet} и $\varphi(e)^{\bullet}$ для всех $e \in E$,
- $(\bullet e = \bullet e' \land \varphi(e) = \varphi(e')) \Rightarrow e = e',$
- ограничение отображения φ на множество ${}^{\bullet}TN$ биекция между множествами ${}^{\bullet}TN$ и M,
- $l(e) = L(\varphi(e))$ для всех $e \in E$.

4.1. Временные С-процессы ВСП

Определение 5. Временной C-процесс ВСП \mathcal{TN} относительно ее разметки M — это пара $\pi = (TN, \varphi)$, где TN — временная C-сеть, u φ — гомоморфизм из TN в \mathcal{TN} относительно M, при этом $\tau(\pi) = \tau(TN)$.

Пусть $\pi = (TN, \varphi)$ и $\pi' = (TN', \varphi')$ — временные C-процессы ВСП \mathcal{TN} относительно ее начальной разметки M_0 . Тогда $\pi \xrightarrow{\widehat{\pi} = (\widehat{TN}, \widehat{\varphi})} \pi'$, если $TN \xrightarrow{\widehat{TN}} TN'$, $\varphi = \varphi'|_{B \cup E}$ и $\widehat{\varphi} = \varphi'|_{\widehat{B} \cup \widehat{E}}$. Всякий раз, когда $\pi \xrightarrow{\widehat{\pi}} \pi'$, будем писать $\pi \xrightarrow{(a,\theta)} \pi'$, если $\widehat{E} = \{e\}$, $\widehat{\tau}(e) = \tau(\pi) + \theta$, $\widehat{l}(e) = a$, а также $\pi \xrightarrow{(A,\theta)} \pi'$, если $\widehat{\leq} \cap (\widehat{E} \times \widehat{E}) = \emptyset$, $\widehat{l}(\widehat{E}) = \sum_{e \in \widehat{E}} \widehat{l}(e) = A$, $\widehat{\tau}(e) = \tau(\pi) + \theta$ для всех $e \in \widehat{E}$.

Для временного C-процесса $\pi = (TN, \varphi)$ ВСП \mathcal{TN} относительно разметки M, состояния S = (M, I, GT) ВСП \mathcal{TN} и подмножества $B' \subseteq B_{TN}$ наиболее поздний момент времени, когда фишки появляются во всех входных местах перехода $t \in En(\varphi(B'))$, определяется следующим образом: $\mathbf{TOE}_{\pi,S}(B',t) = \max\left(\{\tau_{TN}(^{\bullet}b) \mid b \in B'_{[t]} \setminus ^{\bullet}TN\} \cup \{\overline{GT}\}\right)$, где $B'_{[t]} = \{b \in B' \mid \varphi_{TN}(b) \in ^{\bullet}t\}$, $\overline{GT} = GT - I(t)$, если $B'_{[t]} \subseteq ^{\bullet}TN$ и $\overline{GT} = GT$, иначе. Отметим, что данное определение является расширением соответствующего определения из [17] на случай временного C-процесса ВСП \mathcal{TN} относительно произвольной ее разметки, а не только начальной.

Определение 6. Временной C-процесс $\pi = (TN, \varphi)$ ВСП \mathcal{TN} относительно разметки M — временной C-процесс ВСП \mathcal{TN} относительно состояния S = (M, I, GT), если для всех $e \in E$ выполняется следующее:

- $\tau(e) \geq GT$,
- $\tau(e) \geq TOE_{\pi,S}(^{\bullet}e, \varphi(e)) + Eft(\varphi(e)),$
- $\forall t \in En(\varphi(C_e)) \diamond \tau(e) \leq TOE_{\pi,S}(C_e,t) + Lft(t), \ \partial e \ C_e = Cut(Earlier(e)).$

Временной C-процесс $\pi_0 = (TN_0 = (B_0, \emptyset, \emptyset, \emptyset, \emptyset), \varphi_0)$ ВСП \mathcal{TN} относительно начального состояния называется начальным временным C-процессом $BC\Pi$ \mathcal{TN} . Будем использовать $\mathcal{CP}(\mathcal{TN})$ ($\mathcal{CP}(\mathcal{TN}, S)$) для обозначения множества временных C-процессов ВСП \mathcal{TN} относительно начального состояния S_0 (состояния $S \in RS(\mathcal{TN})$).

Теперь мы намерены понять для ВСП взаимосвязи между ее расписаниями выполнений из достижимых состояний и ее C-процессами относительно этих состояний. Если ρ — s-линеаризация ВС TN, то будем говорить, что ρ — s-линеаризация в $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}, S)$.

Пемма 3. Пусть $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}, S),$ $\rho = V_1 V_2 \dots - s$ -линеаризация в π , $e \in V_k$, $C_e = Cut(Earlier(e))$ и $t \in En(\varphi(Cut(E_{\rho}^{k-1})))$ $(k \ge 1)$. Тогда верно:

- (a) $\varphi(e) \in En(\varphi(Cut(E_{\rho}^{k-1}))),$
- (6) $TOE_{\pi,S}(Cut(E_{\rho}^{k-1}), \varphi(e)) = TOE_{\pi,S}(^{\bullet}e, \varphi(e)),$
- (6) $TOE_{\pi,S}(Cut(E_{\rho}^{k-1}),t) \geq TOE_{\pi,S}(C_e,t), ecnut$ $t \in En(\varphi(C_e)),$
- (2) $TOE_{\pi,S}(Cut(E_{\rho}^{k-1}),t) = \tau(V_k), \text{ ecan } t \notin En(\varphi(C_e)),$
- (d) $TOE_{\pi,S}(Cut(E_{\rho}^{k-1}),t) = TOE_{\pi,S}(Cut(E_{\rho}^{k}),t),$ $ecnu\ t \in En(\varphi(Cut(E_{\rho}^{k}))),$
- (e) $TOE_{\pi,S}(Cut(E_{\rho}^{k}), t') = \tau(V_{k}),$ $ec_{\pi}u \ t' \notin En((\varphi(Cut(E_{\rho}^{k-1}))) \setminus {}^{\bullet}V_{k}).$

Определим для $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}, S)$ функцию $FS_{\pi,S}$, которая отображает произвольную s-линеаризацию $\rho = V_1V_2\dots$ в последовательность вида: $FS_{\pi,S}(\rho) = (\varphi(V_1), \tau(V_1) - GT)$ $(\varphi(V_2), \tau(V_2) - \tau(V_1))\dots$

Приведенная ниже теорема являются расширением теорем 19 и 21 из [17] на случай s-линеаризации временных C-процессов ВСП $T\mathcal{N}$ относительно произвольного достижимого состояния и шаговых расписаний выполнений ВСП $T\mathcal{N}$ из таких состояний.

Теорема 1. (а) Для любого временного C-процесса $\pi = (TN, \varphi) \in \mathcal{CP}(T\mathcal{N}, S = (M, I, GT))$ с s(i)-линеаризацией $\rho = V_1V_2 \dots FS_{\pi,S}(\rho)$ – шаговое (интерливинговое) расписание выполнений $BC\Pi \ T\mathcal{N}$ из состояния S.

(6) Для любого шагового (интерливингового) расписания выполнений σ ВСП TN из состояния $S \in RS(TN)$ существует единственный (с точностью до изоморфизма) временной C-процесс $\pi \in \mathcal{CP}(TN,S)$ с s(i)-линеаризацией ρ такой, что $FS_{\pi,S}(\rho) = \sigma$.

Доказательство.

(а) Пусть $\rho = V_1 V_2 \dots - s$ -линеаризация в $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}, S = (M, I, GT))$. Справедливость данного пункта будем доказывать индукцией по длине k s-линеаризации ρ .

k=0. Тогда верно, что $\rho_0=\epsilon$ и $FS_{\pi,S}(\rho_0)=\epsilon$. Следовательно, $E_\rho^0=\emptyset$, что означает $Cut(E_\rho^0)={}^{ullet}TN$. Согласно определению 5, имеем, что $\varphi({}^{ullet}TN)=M$. Строим S^0 следующим образом: $M^0=\varphi(Cut(E_\rho^0)),$ $I^0(t)=\tau(V_0)-\mathbf{TOE}_{\pi,S}(Cut(E_\rho^0),t),$ если $t\in En(M^0)$, и I^0 неопределено, иначе, а также $GT^0=\tau(V_0)$, где $\tau(V_0)=GT$. Значит, $S=S^0$. Таким образом, ϵ — шаговое расписание выполнений ВСП \mathcal{TN} из состояния S.

k>0. Необходимо показать, что $FS_{\pi,S}(\rho_k)$ — шаговое расписание выполнений ВСП \mathcal{TN} из состояния S. По индукционной гипотезе, $FS_{\pi,S}(\rho_{k-1})$ — шаговое расписание выполнений ВСП \mathcal{TN} из S. Кроме того, имеем, что $S^{k-1}=(M^{k-1},I^{k-1},GT^{k-1}),$ где $M^{k-1}=\varphi(Cut(E_{\rho}^{k-1})),\ I^{k-1}(t)=\begin{cases} \tau(V_{k-1})-\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t),\ \text{ если}\\ void, & \text{иначе} \end{cases}$ и $GT^{k-1}=\tau(V_{k-1}).$ Заметим, что $Contact(S^{k-1})=\emptyset$. Поскольку верно, что $FS_{\pi,S}(\rho_k)=FS_{\pi,S}(\rho_{k-1})(\varphi(V_k),\tau(V_k)-1)$

 $- au(V_{k-1})$), достаточно показать, что $S^{k-1} \stackrel{(U,\theta)}{\longrightarrow} S^k$, где $U = \varphi(V_k)$ и $\theta = \tau(V_k) - \tau(V_{k-1})$. Используя лемму 3(a), легко показать, что U — шаг, готовый при разметке $M^{k-1} = \varphi(Cut(E_{\rho}^{k-1}))$ в \mathcal{TN} , поскольку \mathcal{TN} — свободная от контактов ВСП.

Убедимся в том, что может выпол- S^{k-1} ниться в состоянии после времензадержки θ . Рассмотрим произвольсобытие $e \in$ V_k . Напомним, что $\tau(e) = \tau(V_k)$. В силу леммы 3(б), имеем, что $\mathbf{TOE}_{\pi,S}(^{\bullet}e,\varphi(e)) = \mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),\varphi(e)).$ Поскольку $\pi \in \mathcal{CP}(\mathcal{TN}, S)$ и $e \in E$, получаем, что $Eft(\varphi(e)) \leq \tau(e) - \mathbf{TOE}_{\pi,S}(Cut(E_o^{k-1}), \varphi(e)),$ по определению 6. Кроме того, верно, что $I^{k-1}(\varphi(e)) = \tau(V_{k-1}) - \mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}), \varphi(e)),$ $En(M^{k-1})$ по поскольку $\varphi(e)$ \in 3(a). Таким образом, имеем, $Eft(\varphi(e)) \le I^{k-1}(\varphi(e)) + \theta.$

Далее, рассмотрим произвольный переход $t' \in En(M^{k-1})$. Нужно показать, что верно $I^{k-1}(t') + \theta \leq Lft(t')$. Возьмем произвольное событие $e \in V_k$. Так как $\pi \in \mathcal{CP}(\mathcal{TN}, S)$, то получаем, что $\tau(e) - \mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}), t') \leq Lft(t')$, по определению 6. Заметим, что $C_e = C_{e'}$ для всех $e, e' \in V_k$. Возможны два случая.

 $-t' \in En(\varphi(C_e))$. Тогда имеем, что $\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t') = \mathbf{TOE}_{\pi,S}(C_e,t'),$ в силу леммы 3(в).

Поскольку верно, что

 $\tau(e) = \tau(V_k) = \theta + \tau(V_{k-1})$ и

 $\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t') = \tau(V_{k-1}) - I^{k-1}(t'),$ имеем, что $I^{k-1}(t') + \theta \leq Lft(t').$

 $-t'
otin En(\varphi(C_e))$. Тогда $\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t') =$ $= \tau(V_k)$, по лемме 3(г). Значит, $\theta + I^{k-1}(t') = 0$, потому что $\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t') = \tau(V_{k-1}) - I^{k-1}(t')$ и $\tau(V_k) = \theta + \tau(V_{k-1})$. Ясно, что $I^{k-1}(t') + \theta \le Lft(t')$.

Наконец, убедимся в том, что выполнение шага $U = \varphi(V_k)$ из состояния S^{k-1} после временной задержки θ приводит в состояние S^k .

Легко показать, что $M^k = M^{k-1} \backslash {}^{ullet} U \cup U^{ullet}$

Рассмотрим произвольный переход $t \in T$. Возможны три случая.

 $-t \in En(M^{k-1} \setminus {}^{ullet} U)$. Это означает, что $t \in En(M^k) \cap En(M^{k-1})$. В силу леммы $3(\mathfrak{A})$, имеем, что $\mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^k),t) = \mathbf{TOE}_{\pi,S}(Cut(E_{\rho}^{k-1}),t)$. Значит, верно, что

 $I^k(t) = I^{k-1}(t) + \theta.$ — $t \in En(M^k) \setminus En(M^{k-1} \setminus {}^{ullet} U)$. Тогда из леммы 3(e), следует, что $\mathbf{TOE}_{\pi,S}(Cut(E^k_{
ho}),t) = = au(V_k)$. Таким образом, имеем $I^k(t) = 0.$ — $t \not\in En(M^k_{
ho})$. Ясно, что значение $I^k(t)$ неопре-

Отметим, что $GT^k = GT^{k-1} + \theta$.

Таким образом, $S^k \in RS(\mathcal{TN})$. Заметим, что $Contact(S^k) = \emptyset$, в силу леммы 1 и определения 5.

- (б) Предположим, что $\sigma = (U_1, \theta_1), (U_2, \theta_2), \ldots$ шаговое расписание выполнений ВСП \mathcal{TN} из состояния $S = (M, I, GT) \in RS(\mathcal{TN})$. Без потери общности считаем, что $S = S^0 \stackrel{(U_1, \theta_1)}{\longrightarrow} S^1 \stackrel{(U_2, \theta_2)}{\longrightarrow} S^2 \ldots$, где $U_i = \{t_{(i,1)}, \ldots t_{(i,n_i)}\}$ $(i \geq 1)$, шаговая последовательность выполнений ВСП \mathcal{TN} из состояния S. Построим структуру $\pi = (TN = (B, E, G, L, \tau), \varphi)$, где
 - $E = \bigcup_{i>1} V_i = \{e_{(i,1)}, \dots, e_{(i,n_i)} \mid n_i = |U_i|\},$
 - $B = B_0 = \{b_{(0,0)}^p \mid p \in M\} \cup \bigcup_{i \ge 1} B_i = \{b_{(i,j)}^p \mid 1 \le j \le n_i, p \in t_{(i,j)}^{\bullet}\},$
 - $G = \{(e_{(i,j)}, b_{(i,j)}^p) \mid i \geq 1, e_{(i,j)} \in V_i, b_{(i,j)}^p \in B_i\} \cup \{(b_{(k,m)}^p, e_{(i,j)}) \mid i \geq 1, e_{(i,j)} \in V_i, b_{(k,m)}^p \in B_k, p \in {}^{\bullet}t_{(i,j)}, k = \max\{0 \leq l < i \mid b_{(l,m')}^p \in B_l\}\},$
 - $l(e_{(i,j)}) = L(t_{(i,j)})$ для всех $e_{(i,j)} \in E$,
 - $\tauig(e_{(i,j)}ig) = GT + \sum_{k=1}^i \theta_k$ для всех $e_{(i,j)} \in E,$
 - $\varphi(e_{(i,j)})=t_{(i,j)}$ для всех $e_{(i,j)}\in E$ и $\varphi(b_{(i,j)}^p)=p$ для всех $b_{(i,j)}^p\in B$.

Нетрудно показать индукцией по $i=|\sigma|,$ что $\pi=(TN,\varphi)\in\mathcal{CP}(\mathcal{TN},S)$ такой, что $FS_{\pi,S}(\rho)=\sigma,$ где $\rho=V_1,V_2,\ldots-s$ -линеаризация в $\pi.$

Рассуждения относительно единственности с точностью до изоморфизма временного C-процесса π аналогичны соответствующим рассуждениям в доказательстве теоремы 22 из [17]. \diamondsuit

Теорема 2. Для $\pi = (TN, \varphi), \quad \pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN}) \quad makux, \quad umo \quad \pi \xrightarrow{\widehat{\pi}} \quad \pi',$ верно, $umo \quad \widehat{\pi} = (\widehat{TN}, \widehat{\varphi}) \in \mathcal{CP}(\mathcal{TN}, S) = (\widehat{TN}, \widehat{\varphi})$

 $= (M, I, GT)), \quad \text{rde} \quad M = \varphi(TN^{\bullet}), \quad I(t) = \begin{cases} \tau(TN) - TOE_{\pi,S_0}(TN^{\bullet}, t), & \text{ecau } t \in En(M), \\ void, & \text{unaue} \end{cases}$ $u \ GT = \tau(TN).$

Доказательство. Используя введенные выше определения, нетрудно доказать, что $\widehat{\pi}$ — временной C-процесс ВСП \mathcal{TN} относительно разметки M. Покажем, что $\widehat{\pi}$ — временной C-процесс ВСП \mathcal{TN} относительно состояния S, т.е. условия определения 6 выполнены для $\widehat{\pi}$. Рассмотрим произвольное событие $\widehat{e} \in \widehat{E} = E' \setminus E$. Заметим, что $\widehat{\bullet}\widehat{e} \subseteq \widehat{B} = (B' \setminus B) \cup TN^{\bullet}$.

Сначала проверим, что верно $\widehat{\tau}(\widehat{e}) \geq GT$. Поскольку $TN \xrightarrow{\widehat{TN}} TN'$, т.е. E — конечное, корректное по времени подмножество множества E' и $\tau = \tau' \mid_E$, $\widehat{\tau} = \tau' \mid_{\widehat{E}}$, получаем, что $\widehat{\tau}(\widehat{e}) \geq T$ $\geq \tau(TN) = GT$.

Теперь убедимся в том, что верно: $\widehat{\tau}(\widehat{e}) \geq \mathbf{TOE}_{\widehat{\pi},S}(^{\bullet}\widehat{e},\widehat{\varphi}(\widehat{e})) + Eft(\widehat{\varphi}(\widehat{e})). \text{ Так как } \pi' \in \mathcal{CP}(\mathcal{TN}), \text{ то } \widehat{\tau}(\widehat{e}) \geq \mathbf{TOE}_{\pi',S_0}(^{\bullet}\widehat{e},\widehat{\varphi}(\widehat{e})) + \\ + Eft(\widehat{\varphi}(\widehat{e})), \text{ поскольку } \pi \xrightarrow{\widehat{\pi}} \pi', \text{ т.e. } \widehat{e} \in E', \text{ множества }^{\bullet}\widehat{e} \text{ в } \widehat{\pi} \text{ и }^{\bullet}\widehat{e} \text{ в } \pi' \text{ совпадают, } \widehat{\varphi} = \varphi' \mid_{\widehat{B} \cup \widehat{E}} \text{ и } \widehat{\tau} = \tau' \mid_{\widehat{E}}. \text{ Следовательно, достаточно показать, } \\ \text{что } \mathbf{TOE}_{\pi',S_0}(^{\bullet}\widehat{e},\varphi'(\widehat{e})) \geq \mathbf{TOE}_{\widehat{\pi},S}(^{\bullet}\widehat{e},\widehat{\varphi}(\widehat{e})).$

Возможны два случая. $- {}^{\bullet} \widehat{e} \not\subseteq {}^{\bullet} \widehat{TN}$. Используя первый пункт определе-

ния 6, легко видеть, что

 $\mathbf{TOE}_{\widehat{\pi},S}(\bullet\widehat{e},\widehat{\varphi}(\widehat{e})) = \max\left\{\widehat{\tau}(\bullet\widehat{b}) \mid \widehat{b} \in \in \bullet\widehat{e} \setminus \bullet\widehat{TN}\right\}$ и $\mathbf{TOE}_{\pi',S_0}(\bullet\widehat{e},\varphi'(\widehat{e})) = \max\left\{\tau'(\bullet b') \mid b' \in \in \bullet\widehat{e} \setminus \bullet TN'\right\}$. Из леммы 2(б) следует, что $(\bullet\widehat{e} \setminus \bullet\widehat{TN}) \subseteq (\bullet\widehat{e} \setminus \bullet TN')$. Значит, $\mathbf{TOE}_{\pi',S_0}(\bullet\widehat{e},\varphi'(\widehat{e})) \geq \mathbf{TOE}_{\widehat{\pi},S}(\bullet\widehat{e},\widehat{\varphi}(\widehat{e}))$.

— \widehat{e} \subseteq \widehat{TN} . Тогда $\mathbf{TOE}_{\widehat{\pi},S}(\widehat{e},\widehat{\varphi}(\widehat{e})) = GT - I(\widehat{\varphi}(\widehat{e}))$. В силу определения 5 и условий теоремы получаем, что $\widehat{\varphi}(\widehat{e}) \in En(M)$. Следовательно, имеем, что $\mathbf{TOE}_{\widehat{\pi},S}(\widehat{e},\widehat{\varphi}(\widehat{e})) = \mathbf{TOE}_{\pi,S_0}(TN^{\bullet},\widehat{\varphi}(\widehat{e}))$, вновь по условиям теоремы. Проверим справедливость факта: $\mathbf{TOE}_{\pi,S_0}(TN^{\bullet},\widehat{\varphi}(\widehat{e})) = \mathbf{TOE}_{\pi',S_0}(\widehat{e},\varphi'(\widehat{e}))$. Рассмотрим возможные случаи.

• • $\widehat{e} \not\subseteq {}^{\bullet}TN'$. Тогда, используя первый пункт определения 6, имеем: $\mathbf{TOE}_{\pi',S_0}({}^{\bullet}\widehat{e},\varphi'(\widehat{e})) = \max\{\tau({}^{\bullet}b) \mid b \in {}^{\bullet}\widehat{e} \setminus {}^{\bullet}TN'\}$, а также $\mathbf{TOE}_{\pi,S_0}(TN^{\bullet},\widehat{\varphi}(\widehat{e})) = \max\{\tau({}^{\bullet}b) \mid b \in {}^{\bullet}\widehat{e} \setminus {}^{\bullet}TN\}$, в силу того, что $\widehat{e} \subseteq {}^{\bullet}\widehat{TN} = TN^{\bullet}$ и ${}^{\bullet}\widehat{e} \not\subseteq {}^{\bullet}TN' = {}^{\bullet}TN$, согласно лем-

ме 2(a). Понятно, что $\mathbf{TOE}_{\pi,S_0}({}^{\bullet}\widehat{e}, \widehat{\varphi}(\widehat{e})) = \mathbf{TOE}_{\pi',S_0}({}^{\bullet}\widehat{e}, \varphi'(\widehat{e}))$, поскольку $\widehat{\varphi} = \varphi' \mid_{\widehat{B} \cup \widehat{E}}$.

• \widehat{e} \subseteq •TN'. Легко видеть, что $\mathbf{TOE}_{\pi',S_0}(\widehat{\bullet}\widehat{e},\varphi'(\widehat{e}))=0$. В силу леммы 2(a), • $\widehat{e}\subseteq {}^{\bullet}TN'={}^{\bullet}TN$. Значит, верно, что $\mathbf{TOE}_{\pi,S_0}(\widehat{\bullet}\widehat{e},\widehat{\varphi}(\widehat{e}))=0$.

Доказательство справедливости последнего пункта определения 6 аналогично доказательству предыдущего пункта.

Пример 3. Сначала определим отображение φ' из временной C-сети TN' (см. puc. 2) в $BC\Pi$ $\mathcal{T}\mathcal{N}$ (см. puc. 1) следующим образом: $\varphi'(b_i) = p_i \ (1 \le i \le 3), \ \varphi'(b_4) = p_5,$ $\varphi'(b_5) = p_1, \ \varphi'(b_6) = p_4, \ \varphi'(b_7) = p_6 \ u \ \varphi'(e_i) = t_i$ $(1 \le i \le 5)$. Теперь для временных C-сетей TN и \widehat{TN} , специфицированных в примере 2, yстановим соответственно $\varphi = \varphi' \mid_{E \cup B} u$ $\widehat{arphi} = arphi' |_{\widehat{E} \cup \widehat{B}}$. Понятно, что $\pi' = (TN', arphi')$ u $\pi = (T\widetilde{N}, \varphi)$ — временные С-процессы ВСП \mathcal{TN} относительно M_0 . Так как $TN \xrightarrow{\widehat{TN}} TN'$, получаем, что $\pi \overset{\widehat{\pi}=(\widehat{TN},\widehat{\varphi})}{\longrightarrow} \pi'$. Далее рассмотрим nodмножеество $\widetilde{B} = \{b_1, b_2\} \subseteq B'$, cocmoяние S' = (M', I', GT'), где $M' = \{p_1, p_2\}$, $I'(t) = \begin{cases} 0, & ecnu \ t \in \{t_1, t_3, t_4\}, \\ void, & unave, \end{cases}$ GT' = 3, u переход $t_1 \in En(\varphi'(B))$. Вычислим значение $TOE_{\pi',S'}(\widetilde{B},t_1) = \max \left(\{ \tau_{TN'}({}^{\bullet}b) \mid b \in \right) \right)$ $\in \widetilde{B}_{[t_1]} \setminus {}^{\bullet}TN' \} \cup \{\overline{GT}\} = \max (\emptyset \cup \{3-0\}) = 3.$ $Hempy \partial ho$ понять, что $\pi' = (TN', \varphi'),$ $\mathcal{CP}(\mathcal{TN}, S_0)$. Torda (TN,φ) \in $\widehat{\pi} \in \mathcal{CP}(\mathcal{TN}, S = (M, I, GT)), \ \textit{ide } M = \{p_3, p_5\},$ $\left\{ \begin{array}{lll} 0, & \textit{ecnu } t = t_2, \\ \textit{void}, & \textit{uhave} \end{array} \right. \quad u \quad GT \quad = \quad 3,$ в силу теоремы 2. Для s-линеаризации $\rho_{TN'} = \{e_1, e_4\}\{e_2\}\{e_3\}\{e_5\}\dots \quad e \quad \pi' \quad (c_M)$ nример 2) получаем, что $FS_{\pi',S_0}(\rho_{TN'}) =$ $= \sigma' = (\{t_1, t_4\}, 3)(\{t_2\}, 1)(\{t_3\}, 1)(\{t_5\}, 2) \dots$ (см. пример 1), в подтверждение теоремы 1.

4.2. Временные О-процессы $BC\Pi$

Определение 7. Временной О-процесс ВСП \mathcal{TN} относительно ее разметки M — это пара $\nu = (TN, \psi)$, где TN — временная О-сеть, и ψ — гомоморфизм из TN в \mathcal{TN} относительно M.

Вычисление временного O-npouecca $\nu = (TN = (B, E, G, l, \tau), \psi) \text{ BC}\Pi \mathcal{T}\mathcal{N}$ относительно ее разметки M — это конечный временной C-процесс $\pi = (TN' = (B', E',$ $G', l', \tau', \psi|_{B' \cup E'}$) ВСП \mathcal{TN} относительно M такой, что $E'\subseteq E$ — конфигурация BCTN. Временной O-процесс $\nu = (TN, \psi)$ ВСП $\mathcal{T}\mathcal{N}$ относительно разметки M — временной $O ext{-npoyecc}$ $BC\Pi$ $\mathcal{T}\mathcal{N}$ относительно состояния $S = (M, I, GT) \in RS(\mathcal{TN})$, если все вычисления ν принадлежат множеству $\mathcal{CP}(\mathcal{TN}, S)$. Через $\mathcal{OP}(\mathcal{TN})$ будем обозначать множество всех временных O-процессов ВСП \mathcal{TN} относительно начального состояния S_0 .

Пример 4. Поясним понятия, введенные выше. Сначала определим отображение ψ из временной O-сети TN (см. puc. 3) в $BC\Pi$ TN(см. рис. 1) следующим образом: $\psi(b_1) = \psi(b_5) =$ $=\psi(b_{11})=p_1, \ \psi(b_2)=p_2, \ \psi(b_3)=\psi(b_{10})=p_3,$ $\psi(b_4) = p_5, \ \psi(b_6) = \psi(b_8) = p_4, \ \psi(b_7) = \psi(b_9) =$ $= p_6 \ u \ \psi(e_1) = \psi(e_8) = t_1, \ \psi(e_2) = \psi(e_9) = t_2,$ $\psi(e_3) = \psi(e_6) = t_3, \ \psi(e_4) = t_4, \ \psi(e_5) = \psi(e_7) =$ $=t_5$. Тогда $\nu=(TN,\psi)$ — временной O-процесс $BC\Pi \mathcal{TN}$ относительно M_0 . Ясно, что временные C-процессы π и π' $BC\Pi$ \mathcal{TN} относительно начальной разметки M_0 , специфицированные в примере 3, — вычисления ν . Легко видеть, что все вычисления и принадлежат множе $cm ey \ \mathcal{CP}(\mathcal{TN})$. Тогда ν — временной O-процесс $BC\Pi \mathcal{TN}$ относительно S_0 .

5. ИЕРАРХИЯ ЭКВИВАЛЕНТНОСТЕЙ

Сначала рассмотрим трассовые эквивалентности ВСП, построенные на их расписаниях выполнений.

Определение 8. $BC\Pi \ \mathcal{TN} \ u \ \mathcal{TN}'$, помеченные над Act, являются шагово (интерливингово) трассово эквивалентными (обозначается $\mathcal{TN} \equiv_{s(i)} \mathcal{TN}'$), если $\mathcal{L}_{s(i)}(\mathcal{TN}) = \mathcal{L}_{s(i)}(\mathcal{TN}')$.

Для ВСП \mathcal{TN} введем вспомогательные понятия и обозначения:

• $Trace_{i-pr}(\mathcal{TN}) = \{(\{a_1\}, \theta_1) \dots (\{a_n\}, \theta_n) \in \{(2^{Act} \times \mathbb{T})^* \mid \pi_0 \xrightarrow{(a_1, \theta_1)} \pi_1 \dots \pi_{n-1} \xrightarrow{(a_n, \theta_n)} \pi_n (n \ge 0) \text{ B } \mathcal{TN}\},$

- $Trace_{s-pr}(\mathcal{TN}) = \{(A_1, \theta_1) \dots (A_n, \theta_n) \in (\mathbb{N}^{Act} \times \mathbb{T})^* \mid \pi_0 \xrightarrow{(A_1, \theta_1)} \pi_1 \dots \pi_{n-1} \xrightarrow{(A_n, \theta_n)} \pi_n (n \geq 0) \text{ B } \mathcal{TN}\},$
- $Trace_{pom-pr}(\mathcal{TN}) = \{pom(\eta(TN)) \mid \pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})\},$
- $Trace_{c-pr}(\mathcal{TN}) = \{ [TN]_{\simeq} \mid \pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}) \},$
- $Trace_{les-pr}(\mathcal{TN}) = \{les(\xi(TN)) \mid \nu = (TN, \psi) \in \mathcal{OP}(\mathcal{TN})\},$
- $Trace_{o-pr}(\mathcal{TN}) = \{ [TN]_{\simeq} \mid \nu = (TN, \psi) \in \mathcal{OP}(\mathcal{TN}) \}.$

Теперь можем определить трассовые эквивалентности на временных процессах ВСП.

Определение 9. * $\in \{i - pr, s - pr, pom-pr, c-pr, les-pr, o-pr\}$. ВСП \mathcal{TN} и \mathcal{TN}' , помеченные над Act, являются *-трассово эквивалентными (обозначается $\mathcal{TN} \equiv_* \mathcal{TN}'$), если $Trace_*(\mathcal{TN}) = Trace_*(\mathcal{TN}')$.

Лемма 4. $\Pi ycmv * \in \{i, s\}$. Тогда $\mathcal{TN} \equiv_* \equiv_* \mathcal{TN}' \iff \mathcal{TN} \equiv_{*-pr} \mathcal{TN}'$.

Установим взаимосвязи между трассовыми процессными эквивалентностями $BC\Pi$.

Теорема 3. Пусть $\star, * \in \{i-pr, s-pr, pom-pr, c-pr, les-pr, o-pr\}$. Тогда

$$T\mathcal{N} \equiv_{\star} T\mathcal{N}' \Rightarrow T\mathcal{N} \equiv_{\star} T\mathcal{N}'$$

если и только если существует направленный $nymb\ us \equiv_{\star} b \equiv_{*} na\ puc.\ 4.$

Доказательство. (⇐) Все импликации (стрелки) на рис. 4 следуют из определений, лемм, утверждений и теорем, приведенных выше.

(⇒) Продемонстрируем, что на рис. 4 из одной эквивалентности к другой нельзя провести ни

Рис. 5.

одной дополнительной стрелки такой, что не существует направленного пути из первой эквивалентности во вторую. Для этого рассмотрим ВСП, изображенные на рис. 5.

Во-первых, ВСП \mathcal{TN}_1 и $\mathcal{TN}_2 \equiv_{i-pr}$ эквивалентны, однако не являются \equiv_{s-pr} эквивалентными, поскольку, например, существует временной C-процесс ВСП \mathcal{TN}_2 относительно ее начального состояния, содержащий два параллельных события (с их входными и выходными условиями), которые помечены

действиями a и b и моментом времени 0, но это неверно для ВСП \mathcal{TN}_1 .

Во-вторых, ВСП \mathcal{TN}_2 и $\mathcal{TN}_3 \equiv_{s-pr}$ -эквивалентны, однако не являются \equiv_{pom-pr} -эквивалентными, потому что, например, существует временной C-процесс ВСП \mathcal{TN}_2 относительно ее начального состояния, содержащий два события (с их входными и выходными условиями), которые помечены действиями b и a и соответственно моментами времени 0 и 5, при этом действие b причинно предшествует действию a, но это не так в ВСП \mathcal{TN}_3 .

В-третьих, ВСП \mathcal{TN}_3 и $\mathcal{TN}_4 \equiv_{les-pr}$ эквивалентны, однако не являются \equiv_{c-pr} эквивалентными, так как, например, временные C-процессы ВСП \mathcal{TN}_3 и \mathcal{TN}_4 относительно их начальных состояний, содержащие по событию (с его входными и выходными условиями), которое помечено действием a и моментом времени 0, не изоморфны.

Наконец, ВСП \mathcal{TN}_4 и $\mathcal{TN}_5 \equiv_{c-pr}$ эквивалентны, однако не являются \equiv_{les-pr} эквивалентными, потому что легко видеть, что, например, ВСС, соответствующая временному O-процессу ВСП \mathcal{TN}_5 относительно ее начального состояния, содержему два конфликтных события (с их входными и выходными условиями), которые помечены действием b и моментом времени 0, не имеет изоморфных себе ВСС, соответствующих временным O-процессам ВСП \mathcal{TN}_4 .

СПИСОК ЛИТЕРАТУРЫ

- van Glabbeek R.J. Handbook of Process Algebras, chapter The linear time — branching time spectrum I: The Semantics of Concrete, Sequential Processes. Elsevier. 2001. P. 3–99.
- 2. van Glabbeek R.J., Goltz U. Refinement of actions and equivalence notions for concurrent systems // Acta Informatica. 2001. V. 37. P. 229–327.
- 3. Pomello L., Rozenberg G., Simone C. A Survey of Equivalence Notions for Net Based Systems // Lecture Notes in Computer Science. 1992. V. 609. P. 410–472.
- 4. Tarasyuk I.V. Equivalences for behavioural analysis of concurrent and distributed computing systems. 2007. "Geo" Publisher, Novosibirsk, 321 p. (in Russian).

- Nielsen M., Plotkin G.D., Winskel G. Petri Nets, Event Structures and Domains, Part I // Theoretical Computer Science. 1981. V. 13. № 1. P. 85–108.
- Goltz U., Reisig W. The Non-Sequential Behaviour of Petri Nets // Information and Control. 1983. V. 57. № 2/3. 1983. P. 125–147.
- Engelfriet J. Branching processes of Petri nets // Acta Informatica. 1991. V. 28. № 6. P. 575–591.
- 8. Nielsen M., Rozenberg G., Thiagarajan P.S. Behavioural notions for elementary net systems // Distributed Computing. 1990. V. 4. № 1. P. 45–57.
- 9. Hoogers P.W., Kleijn H.C.M., Thiagarajan P.S. An event structure semantics for general Petri nets // Theoretical Computer Science. 1996. V. 153. P. 129–170.
- Baldan P., Corradini A., Montanari U. Contextual Petri Nets, Asymmetric Event Structures, and Processes // Information and Computation. 2001. V. 171. № 1. P. 1–49.
- Baldan P., Busi N., Corradini A., Pinna G.M.
 Domain and event structure semantics for Petri
 nets with read and inhibitor arcs // Theoretical
 Computer Science. 2004. V. 323. P. 129–189.
- 12. Juhas G., Lorenz R., Mauser S. Complete Process Semantics for Inhibitor Nets // Fundamenta Informaticae. 2008. V. 87. № 3–4. P. 331–365.

- 13. Kleijn J., Koutny M. Causality in Structured Occurrence Nets // Lecture Notes in Computer Science. 2011. V. 6875. P. 283–297.
- 14. van Glabbeek R.J., Goltz U., Schicke J.-W.: Abstract Processes of Place/Transition Systems // Information Processing Letters. 2011. V. 111. № 13. 2011. P. 626–633.
- 15. van Glabbeek R.J., Goltz U., Schicke J.-W.: On causal semantics of Petri nets // Lecture Notes in Computer Science. 2011. V. 6901. P. 43–59.
- 16. Valero V., de Frutos D., Cuartero F. Timed processes of timed Petri nets. Lecture Notes in Computer Science. 1995. V. 935. P. 490–509.
- Aura T., Lilius J. Time Processes for Time Petri Nets. Lecture Notes in Computer Science. 1997. V. 1248. P. 136–155.
- Chatain T., Jard C. Time supervision of concurrent systems using symbolic unfoldings of time Petri nets. Lecture Notes in Computer Science. 2005. V. 3829. P. 196–210.
- 19. Bihler, E., Vogler W. Timed Petri Nets: Efficiency of asynchronous systems. Lecture Notes in Computer Science. 2004. V. 3185. P. 25–58.
- 20. Rozenburg G., Engelfriet J. Elementary Net Systems // Lecture Notes in Computer Science. 1998. V. 1491. P. 12–121.
- Winkowski J. Algebras of Processes of Timed Petri Nets. Lecture Notes in Computer Science. 1994. V. 480. P. 309–321.