9. Decision Tree Clarifier (DTG)

Consider the simple detant shown, comprises of beignts and weights of lemons and oranges.

Below DTC is built using the given dataset.

Advantages

- interpretable, intuitive
- Popular in medical diagnosis applications

How to choose the best attribute ?

One can use principles of information theory for this.

ENTROPY.

Consider a source y with symbols y; and probabilities $p(y_i)$.

The Entropy H(y) of this source is defined as $H(y_i) = \sum_{i=1}^{n} p(y_i) \log_2 \frac{1}{p(y_i)}$

Example:
$$p(0) = \frac{1}{4}, p(1) = \frac{3}{4}, H(y) = ?$$

$$H(V) = \frac{1}{4} \log_2 4 + \frac{3}{4} \log_2 \frac{4}{3}$$

$$= \frac{1}{2} + \frac{3}{4} \left(\frac{\ln(\frac{4}{3})}{\ln(2)} \right)$$

= 0.811 bits/symbol

DTC example

ticl so or of or rech

Cshines.

				/		/		/		/	V
Example			V	V	Input Attributes			1		Goal	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	5	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$

Consider the table shown above.

customer decisions to wait or not at restaurants

Table columns

2.

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
 - Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai or Burger).
 - WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Problem 1.

10.

what is the entropy of the decision $Y \in \{Yes, No\}$? $P(Y = Yes) = \frac{1}{2}, P(Y = No) = \frac{1}{2}.$ $H(Y) = H(\frac{1}{2}, \frac{1}{2})$ $= \frac{1}{2} \log_2 2 + \frac{1}{2} \log_2 2$

CONDITIONAL ENTROPY

comider two sources: Y with symbols y;

x with symbols z;

= 1 bits/symbol.

The conditional Entropy H(Y|X) is defined as $\sum_{i=1}^{m} p(x_i) H(Y|X = x_i)$

Example: Cricket

WT - Winning Toss | WG - Winning Game

LT - Losing Toss | LG - Losing Game.

WT =
$$\frac{1}{4}$$
 [WG = $\frac{5}{6}$, LG = $\frac{1}{6}$]

LT = $\frac{3}{4}$ [WG = $\frac{1}{5}$, LG = $\frac{4}{5}$]

 $\Rightarrow \frac{1}{4} \times \left[\frac{5}{6} \log_2 \frac{6}{5} + \frac{1}{6} \log_2 6\right]$
 $\Rightarrow \frac{1}{4} \times \left[\frac{5}{6} \log_2 \frac{6}{5} + \frac{1}{6} \log_2 6\right]$

Problem 2

What is the conditional entropy of the TYPE feature?

$$= \left(\frac{2}{12} \times 1\right) + \left(\frac{2}{12} \times 1\right) + \left(\frac{4}{12} \times 1\right) + \left(\frac{4}{12} \times 1\right)$$

= 1.

What is the conditional entropy of the PATRONS feature ?

P(None) \star H(Y | None) + P(Some) \star H(Y | Some) + P(Full) \star H.(Y | Full)

= $\left(\frac{2}{12} \times 0\right) + \left(\frac{4}{12} \times 0\right) + \left(\frac{1}{2} \times H\left(\frac{1}{3}, \frac{2}{3}\right)\right)$

= 0.459

INFORMATION GAIN

The Information Gain (IG) is defined on

IG (x) = H(y) - H(y/x)

Choose the feetwee that maximizes the IG!

. Example:

- IG for the PATRONS feature is given as
$$IG(PATRONS) = H(Y) - H(Y|X = PATRONS)$$

$$= 1 - 0.459 = 0.541.$$

