AD-A102 369	NEW JERSE DYNAMICS JUN 81 A	OF 180-01	TECH NE	WARK DEP	OF ELE	NG. (U)			6/16	
UNCLASSIFIED		- METER		AFO	SR-TR-E	1-0610	OSR-80	-0114 NL	_	
1 of 2 ADA 102389										

▲.

LEVEL

DYNAMICS OF TWO-DIMENSIONAL EYE-HEAD TRACKING

bу

Andrew U. Meyer

ELECTRICAL ENGINEERING DEPARTMENT

New Jersey Institute of Technology 323 High Street Newark, New Jersey 07102

June 1981

FINAL TECHNICAL REPORT Grant AFOSR-80-0114

for

Air Force Office of Scientific Research Bolling Air Force Base, D.C. 20332

Var 41242

Approved for public release; distribution unlimited.

81 8 03 003

THE COPY

9

AD A 10236

AFOSTS 767-4912, 11 3-6-12

CURITY CLASSIFICATION OF THIS PAUL (Hinn Deta Lintered) REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. FOUT ATCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Einal Report Cynamics of Two-dimensional Eye-Head Tracking 6. PERFORMING ORG. REPORT NUMBER S. CONTRACT OR GRANT NUMBER(#) 7. AUTHOR(a) AFOSR-80-0114 Andrew U./Meyer PROGRAM ELEMENT, PROJECT, AREA & WORK UNIT NUMBERS 9. PEPFORMING ORGANIZATION NAME AND ADDRESS New Jersey Institute of Technology & The Foundation at NJIT 323 gh Street, Newark, New Jersey 07102 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 15, 1981 Air Force Office of Scientific Research/NL 13. NUMBER OF PAGES AFOSR - Building 410 Bolling AFB D.C. 20332 125 15. SECURITY CLASS. (of this report) 11)25 Jun 12 Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If different from Report) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Tracking, Manual Modelling, human dynamics Human engineering Tracking, human Tracking, eye-head Human operator modelling Manual Control Electrooculography Oculometer Describing function models 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This research is concerned with two-dimensional target tracking, where eye and/

This research is concerned with two-dimensional target tracking, where eye and/ or head motion is used for control. Particular attention has been devoted to a tracking method involving electrooculagraphy (EOG) and to two tracking schemes using a Honey-well remote oculometer, one with and one without a visual feedback display. Each of these tracking methods involves eye-head coordination, but in different ways. During the Summer of 1979, experimental work was carried out at the tracking laboratory of the Aerospace Medical Research Laboratory at Wright-Patterson AFB. The tests, conducted with fifteen human subjects, involved tracking of targets in

DD 1 JAN 73 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

412460

two-dimensional quasi-random (sum-of-sines) motion. All tests were conducted at three different target amplitude (envelope) levels, in order to study possible nonlinear effects. From the recorded data, the frequency response spectrum and a statistical evaluation of the tracking performance were obtained for each tracking run. These data, in turn, were averaged in appropriate groups. For each of the tracking methods, average frequency responses, in the describing function sense, are presented for each of three different levels of maximum target field sizes. The relevant overall dynamic properties of the three tracking methods are represented in the compact form of describing function models whose parameters were identified from the average frequency responses. In terms of these parameters, the three methods are compared and the effect of targed field size discussed.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR-TR- 81 -0610	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED Final Report
Cynamics of Two-dimensional Eye-Head Tracking	1:c " ' ' '
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Andrew U. Meyer	AFOSR-80-0114
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
New Jersey Institute of Technology & The	61102 F
Foundation at NJIT 323 High Street, Newark, New Jersey 07102	23/3/09
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research/NL	June 45, 1981
AFOSR - Building 410	13. NUMBER OF PAGES
Bolling AFB, D.C. 20332 14. MONITORING AGENCY NAME & ADDRESS(If different from Controller: Office)	125
14. MONITORING ACENCY NAME & ADDRESS/IT different from Confictity	is seekill cease (or the report)
·	Unclassified
·	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Tracking, Manual

Modelling, human dynamics

Tracking, human

Human engineering

Tracking, eye-head

Human operator modelling

Electrooculography

Manual Control

Oculometer |

Describing function models

20. ABSTRACT (Continue on reverse elde if necessary and identify by bluck number)

This research is concerned with two-dimensional target tracking, where eye and/ or head motion is used for control. Particular attention has been devoted to a tracking method involving electrooculagraphy (EOG) and to two tracking schemes usin a Honey-well remote oculometer, one with and one without a visual feedback display. Each of these tracking methods involves eye-head coordination, but in different ways. During the Summer of 1979, experimental work was carried out at the tracking laboratory of the Aerospace Medical Research Laboratory at Wright-Patterson AFB. The tests, conducted with fifteen human subjects, involved tracking of targets in

DD 1 JAN 73 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

two-dimensional quasi-random (sum-of-sines) motion. All tests were conducted at three different target amplitude (envelope) levels, in order to study possible nonlinear effects. From the recorded data, the frequency response spectrum and a statistical evaluation of the tracking performance were obtained for each tracking run. These data, in turn, were averaged in appropriate groups. For each of the tracking methods, average frequency responses, in the describing function sense, are presented for each of three different levels of maximum target field sizes. The relevant overall dynamic properties of the three tracking methods are represented in the compact form of describing function models whose parameters were identified from the average frequency responses. In terms of these parameters, the three methods are compared and the effect of target field size discussed.

*ex =

- 1. .

DYNAMICS OF TWO-DIMENSIONAL EYE-HEAD TRACKING

bу

Andrew U. Meyer

ABSTRACT

This research is concerned with two-dimensional target tracking, where eye and/or head motion is used for control. Particular attention has been devoted to a tracking method involving electrooculagraphy (EOG) and to two tracking schemes using a Honey-well remote oculometer, one with and one without a visual feedback display. Each of these tracking methods involves eye-head coordination, but in different ways. During the Summer of 1979, experimental work was carried out at the tracking laboratory of the Aerospace Medical Research Laboratory at Wright-Patterson AFB. The tests, conducted with fifteen human subjects, involved tracking of targets in two-dimensional quasi-random (sum-of-sines) motion. All tests were conducted at three different target amplitude (envelope) levels, in order to study possible nonlinear effects. From the recorded data, the frequency response spectrum and a statistical evaluation of the tracking performance were obtained for each tracking run. These data, in turn, were averaged in appropriate groups. For each of the tracking methods, average frequency responses, describing function sense, are presented for each of three different levels of maximum target field sizes. The relevant overall dynamic properties of the three tracking mentods are represented in the compact form of describing function models whose parameters were identified from the averaged frequency responses. In terms of these parameters, the three methods are compared and the effect of targed field size discussed.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
A. D. BLOSE

Technical Information Officer

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to the Air Force Systems Command, Air Force Office os Scientific Research and the Southeastern Center of Electrical Engineering Education (SCEEE) for providing him the opportunity to spend the Summer of 1979 at the Aerospace Medical Research Laboratory (AMRL) at Wright-Patterson AFB, Ohio. The experimental work on which this project is based was carried out there under the auspices of the Crew Systems Effectiveness Branch of the Human Engineering Division, AMRL, Dr. Carroll N. Day, Chief and Mr. Maris M. Vickmanis, who directed this project and with whom the author had many relevant discussions.

Special acknowledgement belongs to the author's collaborators at the Tracking Laboratory, Messrs. Donald L. Monk, James L. Porterfield, Robert L. McMurry and Dr. Christopher J. Arbak, who have given much of their time not only in advise and discussions relating to the project but in active collaborations. The author wishes to express his thanks to them, as well as to colleagues at other branches at AMRL, especially Dr Daniel W. Repperger, for their help and advise.

At New Jersey Institute of Technology, the author was ably assisted by Mr. Stanley Kalinowski, who did the computer evaluations, including the parameter identification.

1. INTRODUCTION

Increasing demands on pilots for vehicle control and other functions have made it desirable to supplement the use of hands and feet for manual control by other means, especially for secondary tasks. Utilization of eye and head movement for this purpose has been considered for some time. $^{1-7}$ Potential applications may include not only navigational tasks and fire control, but also the selection of information displays or function switches.

In head pursuit tracking systems, 1-3 control is exerted from signals derived from head position sensors. Visual display of the positions of both target and controlled device enables the operator to reduce their difference by corrective head movement.

Target tracking by eye movement is also possible but practical only if the head is not constrained. The Honeywell Remote Oculometer, 4 based on corneal reflection, measures line-of-sight within one degree accuracy, permitting the head to be located anywhere within one cubic foot of a specified location. Thus, the tracking dynamics involve both eye and head motion. The accuracy of \pm 1 degree makes it possible to track without the need for visual feedback. Thus, the operator can track by simply looking at the target, relieving him from the task of conscious error correction. On the other hand, in its present state, the oculometer is rather sensitive in its operation. If operated without visual feedback, extensive calibration will be required.

A setup in the tracking laboratory of the Aerospace Medical Research Laboratory (AMRL) at Wright Patterson Air Force Base (WPAFB) incorporates the above tracking instrumentation. Displays of target and visual feedback are provided in the form of red spots, projected to a large cloth screen from two low-power lasers via pairs of x-y galvanometer-mirrors. The subject sits in a chair approximately 3 meters

away from the screen, which provides a visual field of approximately \pm 200 each in vertical and horizontal direction. In addition to computing equipment which is part of the tracking instruments, the laboratory features a PDP 11/34 minicomputer with associated A/D and D/A channels. The setup also contains analog computer equipment, signal generators, both deterministic and random, as well as relevant measuring equipment, which can all be appropriately connected, if and when needed, on a patch panel.

The PDP 11/34 minicomputer can be used both for target signal generation and for data analysis, for which programs have been developed by and for AMRL. Target motion can be provided from programs that calculate and generate quasi-random signals in the form of sum-cf-sine waves, 8,9 for given specifications. During a tracking run, the computer provides the signals driving the galvanometers for both target and visual feedback spots and receives the signals from the tracking instruments (e.g., oculometer). All signals, for both azimuth and elevation, are stored on disk for further analysis.

Data analysis capability includes programs for statistical evaluation and for computation of the frequency response of the subject's tracking performance. The statistical evaluation provides information on the portions of time during a run during which the tracking error remained within certain bounds; it also computes the 50% CEP (circular error probability), which defines the radius about the target within which the tracking error remained within 50% of the run-time. The frequency response analysis provides not only gain and phase spectra (in the describing function sense), but also prints out the spectra of correlated and remnant powers for target, control (response) and error signals.

The facility has been used in experiments involving head tracking by helmetmounted sight, 2,3,5 as well as eye-head tracking using the Honeywell remote oculometer. 4,5,6,7 For both methods, closed-loop gains have been reported that appear reasonably flat up to 1 Hz with half-power handwidths around $1.5 \, \text{Hz}.2,5,6,7$ These reports also show coherence functions* above 0.75 for frequencies up to $1.5 \, \text{Hz}$, except for one report on single-axis eye tracking, $6 \, \text{where}$ the coherence function lies between 0.5 and 0.82. High coherence function values (close to one) suggest linear behavior.

Of the above reports, one also deals with the effect of target angle size on (helmet) head tracking, 2 showing that an increase of target-angle envelope causes a large increase of closed-loop tracking gain. However, this effect appears to be limited to the gain-level itself, not its function of frequency nor the frequency responses of the closed-loop phase and of the coherence function (about 0.75) which all remain roughly the same. No explanation has been presented.

An increase of closed-loop gain with target-size suggests the possibility of nonlinear saturation in the feedback path of the tracking loop, perhaps in the human sensing mechanism. However, before attempting any such modelling, a thorough experimental investigation of the target size effect would be indicated (reference 2 presented preliminary data for helmet tracking on only 3 subjects). For eye-head tracking (using the remote oculometer) no previous data were available on the effect of target-level.

The results of the present project (see Sections 7 and 8) indicate a slight increase of closed-loop tracking gain with maximum target level for eye-head tracking using the oculometer. On the other hand, for another tracking scheme using electroculography (EOG) introduced in Section 3, a slight closed-loop gain decrease for increased target level was found. The present results also show that

^{*}The coherence function, $\gamma^2 = |$ cross power density between input and output $|^2/(|$ power-density of input | |power-density of output|) represents the proportion of input power contained in the output power. Its range is $0 \le \gamma^2 \le 1$.

an increased target-level will result in increased bandwidth for oculometer tracking and decreased bandwidth for EOG tracking.

2. SCOPE OF THE PROJECT

The objective of this research is to evaluate experimental data relevant for the development of a describing function model of eye-head tracking, including the effect of target-level. The data were obtained during the Summer of 1979 at the AMRL tracking laboratory.

Originally. this investigation was to concentrate on tracking with the Honeywell remote oculometer. However, due to unexpected delays and problems connected with a move of the tracking laboratory facility between buildings. that instrument did not become operational until August 8, 1979, near the end of the investigator's stay. When it became apparent that the oculometer could not be used in time to conduct a sufficient number of tracking experiments, the investigator proposed a different eye-head tracking method based upon electrooculography (EOG) and proceeded to conduct tracking tests on human subjects, using the target generating and data processing facility of the AMRL tracking laboratory. When the oculometer finally became operational, tracking tests were expanded to include both oculometer and EOG tracking.

The objective thus was to conduct tracking experiments with targets varying randomly in both horizontal and vertical direction, using different target angle envelopes in order to determine possible nonlinear behavior. The recorded data have been used to model both EOG tracking and oculometer tracking in terms of its describing function representation.

All oculometer tracking experiments were conducted with and without visual feedback, in order to compare performance of tracking by just looking at the target (without visual feedback) and tracking (with visual feedback) where the subject must consciously control the feedback image to align with the target image. EOG tracking is practical only with visual feedback.

EOG TRACKING

Electrooculography (EOG) is a method for measuring (both horizontal and vertical) eye orientation.^{9,10} Its chief advantage is its simplicity; other assets include its fast speed of response and the large angular range. On the negative side are problems with d-c drift of the EOG responses and inaccuracy.

It is not the intention here to claim EOG as a better alternative to existing transducer methods for tracking, but rather to examine some basic properties of EOG tracking. The EOG tracking scheme investigated in this research calls upon different tasks for the human operator than other methods. They involve eye-head coordination and EOG tracking tests may provide a tool for the study of their dynamics.

Since eye-position sensing by EOG is inherently inaccurate one may be tempted to dismiss EOG for use in target tracking. However, one should realize that the accuracy of any (eye-position) sensor will be of very little significance if its output is used to control the visual feedback display. It is the human operator who performs the measuring by perceptual means. This, of course, is true for any tracking scheme incorporating visual feedback including head-tracking. The sensor-inaccuracy will merely affect the open-loop gain. With relatively little effect on the (closed-loop) tracking performance. Likewise, the drift of the EOG potential does not affect the tracking accuracy and should be tolerable as long as it stays within a reasonable range in the visual field. Though the drift was tolerable for the EOG tracking experiments performed in the laboratory, it is believed that it can be reduced by careful choice of electrodes; even if not, its effect can be reduced by electronic means.

Electrooculography is based upon an electrical d-c potential difference between the front (positive) and back (negative) of the eye. Electrodes placed

across an eye will pick up a d-c potential roughly proportional to the eye orientation angle, with a sensitivity of the order of 20 microvolt per degree.

In the tracking experiments conducted during this research, vertical orientation (elevation) was picked up from electrodes placed above and below one eye, whereas horizontal orientation (azimuth) was picked up by electrodes placed outside of both eyes. An electrode placed on an ear lap was connected to the ground. The vertical and horizontal electrode pairs were connected to d-c amplifiers which, in turn, drove the mirror-galvanometers to provide the feedback display spots.

Depending on the polarity of the feedback connection, two different modes of EOG tracking are possible, which shall be called (a) eye control mode and (b) head control mode, to emphasize the dominant motion involved.

- (a) Eye Control Mode: Here, eye motion causes the feedback display spot to move in the same direction, when the head is fixed. However, when the eye line-of-sight is fixed, head motion will cause the display spot to move in the opposite direction. It will thus be natural for a human to try tracking by eye motion, while keeping the head as steady as possible, except for corrective control motion in the opposite direction.
- (b) Head Control Mode: Here, the display spot is moved in the same direction as the head motion (when the eye line-of-sight is fixed), or in the direction opposite to eye motion (when the head is fixed). In this mode, it turns out to be natural to use head motion for tracking, unconsciously using small eye motion for corrective control.

It was found that the head control mode is easier to perform, at least for tracking tasks requiring freedom of head position. It was therefore decided to devote the experimental work in this project to the head control mode.

Furthermore, it was decided to perform the experimental series with an overall open-loop gain of one. The gain adjustment is performed as follows: The subject is

asked to keep his head in a fixed position and to alternate his eye fixation between two locations on the screen (12 degrees apart from each other), while the amplifier gain is adjusted such that the display spot controlled by the eye movement alternates over the same distance (though in opposite direction for the head-control mode). The subject is instructed not to pay attention to the display spot during the calibration procedure. It is also possible to bias the display such that it is away from the subject's view during calibration.

The same procedure can be used to obtain any other gain value. The unity gain chosen for this experimental series appears to be a reasonable compromise between "loose control" (for toolow gain) and sensitivity to disturbances (for too much gain). However, more investigation will be required to determine the optimum choice of gain.

4. EXPERIMENTS CONDUCTED DURING THE SUMMER OF 1979

One hundred tracking runs were recorded for 15 subjects (9 female and 6 male) between the ages of 18 and 62, of which one subject was tested, in a preliminary series, for the effect of random target forcing functions of different break frequencies. Fourteen (14) subjects were tested for EOG tracking, each at three different target amplitude envelopes ($6^{\rm G}$, $9^{\rm O}$ and $12^{\rm O}$). Of these, 6 subjects were also tested for tracking with the Honeywell remote oculometer, also at the same three target amplitude envelopes. The 48 oculometer runs were all conducted with and without feedback display (24 each).

In order for the subject to be able to distinguish the target spot from the feedback display spot, the latter was smaller (approximate diameters were 12 mm and 3 mm respectively; the screen was about 3 meters away from the subject). The target was driven in both azimuth and elevation by sum-of-sine functions (10 frequencies), simulating random motion. 8 The frequency ranged between 0.1 and 3.0 Hertz. with a (6 dB) break frequency of 0.8 Hz in all runs for 12 subjects. Earlier EOG tracking runs on two subjects were performed with forcing functions of 1.0 Hz break

frequency; but it was found that 0.8 Hz would be more realistic. The specifications for the target forcing functions used in the experiments are presented in Table A-1, Appendix A.

EOG tracking, as described in Section 3, involves a certain amount of head-eye coordination and constitutes a somewhat more difficult task for the human operator than oculometer tracking (especially oculometer tracking without visual feedback). It therefore requires a certain amount of training. Among the 15 subjects, the time required to acquire a reasonable tracking skill varied between 10 and 30 minutes. Scheduling constraints did not permit any longer training periods which, perhaps, may have improved the tracking scores.

After the training period, each subject did seven tracking runs, each lasting 91 seconds. The first of these, considered a practice run, was performed at a target amplitude envelope of 6 degrees. The subsequent six runs consisted of two runs each with target amplitude envelopes of 6° , 9° and 12° , their sequence being permuted. Also permuted were three forcing functions with equal amplitude characteristics but different (randomly selected) phases (except for each initial [practice] run which used a forcing function differing from the others by its break frequency of 0.7 Hz). The record of the relevant EOG tracking runs is presented in Table A-2, Appendix A.

The tracking tests with the Honeywell remote oculometer were performed on six of the subjects. For each subject, eight oculometer runs were performed; four each without and with visual feedback. For each set of four runs, the first (practice) run had a target amplitude envelope of 6° , the other (regular) three runs were performed at 6° , 9° and 12° , the sequence being permuted, as was the (same) set of three target forcing functions used in the EOG experiments. The record of the relevant oculometer tracking runs is presented in Table A-3, Appendix A.

For the oculometer runs with visual feedback, an open-loop gain of one was used. achieved by calibrating the equipment such that the line-of-sight is aligned with the feedback spot (this is part of the normal oculometer calibration precedure).

5. ANALYSIS OF INDIVIDUAL TRACKING RUN DATA

The analysis of the individual tracking run data was done on the PDP 11/34 minicomputer at the AMRL Tracking Laboratory; namely (a) frequency response analysis, using program MODFRT and (b) statistical analysis, using program TR4.* These programs produced evaluations for each test run.

From each tracking run record, the frequency response program (MODFRT) computes spectra of correlated and remnant power for target, control (response) and the error (between target and control), each for both azimuth and elevation. It also provides gain and phase spectra, in the describing function sense. All spectral data are given for the same set of frequencies that generated the target motion by use of the sum-of-sine approach.

The data of interest in this study are the gain-phase spectra. In program MODFRT, the the gain and phase values are obtained from the power sectral data. Thus, for each frequency value, the reliability of the computed gain and phase must be assessed in terms of the correlated power (COR), as well as the ratio of the correlated power to remnant power (C/R). This was done by the classification presented in Table 5-1, which has been used to identify each data point in all of the individual frequency responses.

^{*}For some of the tracking runs, the analysis was performed during the summer 1979, the remaining computations were performed during August 1980.

TABLE 5-1

RELIABLILITY - LEVELS OF DATA POINTS IN GAIN - PHASE PLOTS

Marking	Condit	tions	Reliability	Weight
on Plot	<u>Correlated Power C </u> Remnant Power R		 Level 	Assigned
0	C/R > 6 dB	COR > -12 dB	GOOD	0
	C/R > 6 dB	COR < -12 dB	FAIR	1
Δ	C/R < 6 dB	COR > -12 dB	ACCEPTABLE	2
×	C/R < 6 dB	COR < - 12 dB	POOR	3

The individual gain and phase versus frequency plots for the tracking runs on 11 (of the 15) subjects, thus marked, are presented in Appendix A. For each tracking run. frequency response plots are presented for both the closed-loop [Control (output) / Target (input)] and the open-loop [Control (output) / Error (Target - Control)].* Also shown with the plots for each run is the 50% CEP ("circular error probability") which defines the radius, in degrees, within which the tracking error remains within 50% of the run time. It is presented both in reference to the target and in reference to the centroid (of the error motion). These data had been computed by Program TR4 for each tracking run.

^{*}Since the tracking schemes are not compensatory. the physical meaning of an "open-loop" transfer function is not clearly defined.

6. DATA EVALUATION

The results of the individual tracking runs have been classified and averaged in appropriate categories. All tracking runs for subjects 3 through 14 were performed with forcing functions of the same break frequencies of 0.8, Hertz (see Table A-1, Appendix A for forcing function specifications and Tables A-2 and A-3, Appendix A, for the record of the tracking runs for subjects 1-14). These tracking runs serve as the basis for analysis and model parameter estimation (see Section 7).

Excluded from averaging are the first runs in each series which were considered practice runs. Also excluded are the results of the tracking runs on Subjects 1 and 2 where the break frequency of the forcing function was 1.0 Hertz; these data are not considered reliable enough to warrant consideration for the establishment of models. The break frequency of 1.0 Hertz was evidently too high and subsequent tracking runs for Subjects 3 through 14 were performed with a forcing function break frequency of 0.8 Hertz. Nevertheless, the 12 EOG runs for Subjects 1 and 2 were averaged by themselves and the results are presented in Appendix C.

The results of the remaining 69 EOG and 36 oculometer tracking runs (on Subjects 3 to 14) were averaged in the following groups:

EOG TRACKING RUNS:

For 6 degrees max. target field: 24 runs on 12 subjects
" 9 " " " : 24 " " 12 "
" 12 " " 12 "

OCULOMETER WITHOUT VISUAL FEEDBACK:

6 runs on 6 subjects, each for 6, 9 and 12 deg. max. target field.

OCULOMETER WITH VISUAL FEEDBACK:

6 runs on 6 subjects, each for 6, 9 and 12 deg. max. target field.

Within every given group, for each frequency, averages, standard deviations as well as maxima and minima were obtained for the gain and phase values. Also averaged were their "reliability levels" in terms of the "weights" defined in Table 5-1. These "weights" were then discretized again by the rule defined in Table 6-1 into "reliability levels" of the averaged frequency response plots.

TABLE 6-1

RULE FOR DETERMINING RELIABILITY LEVELS
FOR AVERAGED GAIN AND PHASE PLOTS

MARKING ON PLOT	•	OF A		RELIABILITY LEVEL OF AV. GAIN/PHASE VALUES
0	0	AW	0.75	GOOD
	0.75	AW	1.50	FAIR
Δ	1.50	AW	2.25	ACCEPTABLE
×	2.25	AW	3.00	POOR

Also obtained were the averages and standard deviations of the 50% CEP ("circular error probability") both with respect to the target and to a centroid (of the error motion).

As a summary of the relevant results, Figures 6-1 to 6-9 present the frequency response statistics including the average value and standard deviation for each frequency as well as the average values and standard deviations of the 50% CEP for all runs. The details of this effort are presented in Appendix B. both in tabular form and in terms of frequency response plots.

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

Figure 6-9

7. DESCRIBING FUNCTION MODELS

From examination of the closed-loop frequency response results presented in Figures 6-1 to 6-9, the following linear models for the (closed-loop) transfer function between target angle (input) and control angle (output) have been chosen:

$$G(s) = \frac{K(1 - s/A)e}{(1 + s/B)(1 + s/C)}$$
 for EOG tracking (7-1)

$$G(s) = \frac{Ke}{(1 + s/A)}$$
 for oculometer tracking (7-2)

The parameter identification was performed from the averaged describing functions presented in Figures 6-1 to 6-9. They represent a total of 69 EOG runs and 36 oculometer runs on Subjects 3 through 14, all with forcing functions of 0.8 Hertz bandwidth, averaged in appropriate groups.

The results are presented in Tables 7-1 to 7-3. They are also presented in Figures 7-1(a) to 7-9(b) which show plots of the frequency responses of the models, together with the averaged measured frequency response points and their standard deviation ranges. Note that in all cases, the model response lies well within the standard deviation range of the measured data.

The parameter identification was carried out by means of a Gauss-Newton nonlinear least-square fit program. A two-step approach was used to first identify the parameters K. A. B. C (for the EOG model); or K. A (for the oculometer model) to fit the gain function and then to obtain the time-delay T from the phase function. The minimized root-mean-square difference between (average) measured and model data

are included in Tables 7-1 to 7-3, in a form suitable to serve as a measure of quality of the fit. They are presented, as "Sit ", both with respect to gain and phase.

TABLE 7-1:

SUMMARY OF MODEL PARAMETERS

	נ	<u>د</u> د	- -		, .	1	7		1	1	- s/	-s/A) Ke	_
	J J	E U U CIOSEG L	0000			Oop Iracking House : Gos	190061	်	1		/s +	+ s/B) (1+ s/C)	e /C>
Maxim	5-0		AZIP	IMUTH	エ			ELE	ELEVATION	NO		No. of	No. of
(degrees)	(30	×	A	В	၁	Ţ	К	A	В	၁	Ţ	Subjects	
ဖ		0.658	0.658 3.604 7		7.990	044 7.990 0.1310.617 1.872 2.602 15.61 0.112	219.0	1.872	2.602	15.61	0.112	12	24
တ		0.553	0.553 3.384	∞	7.634	.033 7.634 0.134 0.598 1.746 2.542 11.90 0.102	865.0	1.746	2.542	11.90	0.102	12	24
12		0.512	0.512 2.427	9	6.874	276 6.874 0.108 0.563 2.002 3.628 8.750 0.105	0.563	2.002	3,628	8.750	0.105	12	21
Fit Based on	sed	79	GAIN		d	PHASE	₽ 9	GAIN		4	PHASE		
7	09	-25.	-25.34 dB		12.240	C	-25.9	-25.98 dB		13.510	0		
fit for	90	1	-26.00 dB		7.950	O	-26.	-26.00 dB		15.00°	0		
	120		-30.47 dB		14.050	0	-26.	-26.54 dB		15.260	0		

[decibals]	[degrees]
28 log \(\frac{1}{10} \sum_{i=1} \frac{1}{2} \frac{1}	V 10 10 P P (f, Parameters)]2
	6 fit

 G_{1} and P_{1} are averaged gain and phase respectivly; obtained from measured data at frequency f_{1} . Where:

 $G_{i,\mathit{model}}$ and $F_{i,\mathit{model}}$ are gain and phase of model for frequency f_{i} .

TABLE 7-2:

SUMMARY OF MODEL PARAMETERS

Oculometer Without Feedback Closed Loop Tracking Model: G(s)= ____

Max inum Field	5-0	1	AZIMUTH		EI	ELEVATION	N	No. of	No. of
(dearees)	(30	¥	V	 -	¥	A	_	Subjects	
မ		0.793	9.928	0.191	0.864	0.864 10.501	0.206	9	9
တ		0.823	11.076	0.184	768.0	11.334	0.194	9	9
12		848.0	12.115	0.118	0.903	0.903 13.279	0.193	9	9
Fit Based on	sed	GAIN		PHASE	GAIN		PHASE		
١	09	-29.03 dB		4.630	-23.20 dB		6.74°		
o fit	06	-35.22 dB		3.430	-28.38 dB		5.400		
	120	-34.78 dB		1.770	-31.83 dB		2.01 ⁰		

[decibels]	[degrees]
20 109\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V 10 ∑ [P -P model (f , Parameters)] ²

 \mathbb{G}_1 and P_1 are averaged gain and phase respectivly; obtained from measured data at frequency f_1 . Ehere:

 $\mathsf{G}_{i,\mathrm{model}}$ and $\mathsf{P}_{i,\mathrm{model}}$ are gain and phase of model for frequency $\mathsf{f}_{i,\cdot}$

TABLE 7-3:

SUMMARY OF MODEL PARAMETERS

G(s)= Ke	(V/(+ -)
Model:	
Tracking	
Loop	
Closed	
Feedback	
With	
Oculometer	

Max i mum Field	م ج	8	AZIMUTH		E	ELEVATION	NC	No. of	No. of
(degrees.	(39)	ᅩ	A	-	¥	A	_	Subjects	
9		0.856	6.832	0.166	0.847	6.705	0.161	9	9
ග		0.820	7.381	0.175	878.0	8.527	0.177	9	9
12		0.843	8.617	0.186	658.0	909.71	0.208	9	9
Fit Based on	sed	GAIN		PHASE	GAIN		PHASE		
; ~	9	· -31.24 dB		6.240	-27.46 dB		11.78°		
for*	90	-28.88 dB		2.960	-29.83 dB		4.560		
	120	-27.88 dB		4.260	-22.70 dB		24.810		

 $G_{\rm i}$ and $P_{\rm i}$ are averaged gain and phase respectivly; obtained from measured data at frequency $f_{\rm i}$. Where:

 $\mathsf{G}_{i,\mathbb{G}}$ odel and $\mathsf{P}_{i,\mathsf{model}}$ are gain and phase of model for frequency $\mathsf{f}_{i,\bullet}$

Figure 7-1 (a)

E 0 G AZIMUTH CLOSED LOOP 6 Deg. Moximum Field For 12 Subjects, 24 Runs

=Standard
Deviation

FUNCTION:

$$G(x) = \frac{(1 - x/A) Ke^{-xT}}{(1 + x/B) (1 + x/C)}$$

Figure 7-1 (b)

E O G
ELEVATION CLOSED LOOP
6 Deg. Maximum Field
For 12 Subjects, 24 Runs

米 =Averaged Experimental Data Points

FUNCTION:

PARAMETERS:

$$G(s) = \frac{(1 - s/A) Ke^{-sT}}{(1 + s/B) (1 + s/C)}$$

K= 0.617 A= (0.298)2r= 1.872 B= (0.414)2r= 2.602 C= (2.485)2r=15.614 T= 0.112

Figure 7-2 (a)
E 0 G
AZIMUTH CLOSED LOOP
9 Deg. Maximum Field
For 12 Subjects, 24 Runs

≠Standard ✓ Deviation

FUNCTION:

$$G(s) = \frac{(1 - s/A) Ke^{-sT}}{(1 + s/B) (1 + s/C)}$$

PARAMETERS:

K= 0.553 A= (0.539)27= 3.384 B= (1.279)27= 8.033 C= (1.215)27= 7.634 T= 0.124

Figure 7-2 (b)

E O G ELEVATION CLOSED LOOP 9 Deg. Maximum Field For 12 Subjects, 24 Runs

↑ #Standard

✓ Deviation

FUNCTION:

PARAMETERS:

$$G(s) = \frac{(1 - s/A) K_0^{-sT}}{(1 + s/B) (1 + s/C)}$$

K= 0.598 A= (0.278)2T= 1.746 B= (0.405)2T= 2.542 C= (1.894)2T=11.901 T= 0.102

Figure 7-3 (a)

E 0 G AZIMUTH CLOSED LOOP 12 Deg. Maximum Field For 12 Subjects, 21 Runs

=Standard
Deviation

FUNCTION:

$$G(s) = \frac{(1 - s/A) Ke^{-sT}}{(1 + s/B) (1 + s/C)}$$

K= 0.512 A= (0.386)2T=2.427 B= (0.999)2T=6.276 C= (1.094)2T=6.874 T= 0.108

=Standard
Deviation

米 =Averaged Experimental Data Points

FUNCTION:

$$G(s) = \frac{(1 - s/A) Ke^{-sT}}{(1 + s/B) (1 + s/C)}$$

PARAMETERS:

K= 0.563 A= (0.319)27= 2.002 B= (0.577)27= 3.628 C= (1.393)27= 9.750 T= 0.105

Figure 7-4 (a)

OCCULOMETER WITHOUT FEEDBACK AZIMUTH CLOSED LOOP 6 Deg. Maximum Field For 6 Subjects, 6 Runs

2

(Hz)

FUNCTION:

-400 E

$$G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$$

.5

FREQUENCY

. 2

PARAMETERS:

5

K= 0.793 A= (1.580)2π= 9.928 T= 0.191

10

Figure 7-4 (b)

OCCULOMETER WITHOUT FEEDBACK
ELEVATION CLOSED LOOP
6 Deg. Maximum Field
For 6 Subjects, 6 Runs

=Standard

// Deviation

FUNCTION:

$$G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$$

PARAMETERS:

K= 0.864 A= (1.671)2f=10.501 T= 0.206

Figure 7-5 (a)

OCCULOMETER WITHOUT FEEDBACK AZIMUTH CLOSED LOOP 9 Deg. Maximum Fleid For 6 Subjects, 6 Runs

✓I\ =Standard ✓ Deviation

FUNCTION:

PARAMETERS:

 $G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$

K= 0.823 A= (1.763)2T=11.076 T= 0.184

Figure 7-5 (b)

OCCULOMETER WITHOUT FEEDBACK ELEVATION CLOSED LOOP 9 Deg. Maximum Field For 6 Subjects, 6 Runs

FUNCTION:

$$G(a) = \frac{Ke^{-aT}}{(1 + a/A)}$$

PARAMETERS:

K= 0.894 A= (1.804)27=11.334 T= 0.194

-37-Figure 7-6 (a)

OCCULOMETER WITHOUT FEEDBACK AZIMUTH CLOSED LOOP 12 Deg. Maximum Field For 6 Subjects, 6 Runs

≈Standard Deviation

FUNCTION:

$$G(a) = \frac{Ka^{-aT}}{C(1 + a/A)}$$

PARAMETERS:

K= 0.848 A= (1.928)2f=12.115 T= 0.188

Figure 7-6 (b)

OCCULOMETER WITHOUT FEEDBACK ELEVATION CLOSED LOOP 12 Deg. Maximum Field For 6 Subjects, 6 Runs

=Standard
Deviation

FUNCTION:

PARAMETERS:

$$G(a) = \frac{Ka^{-aT}}{(1 + a/A)}$$

K= 3.903 A= (2.113)21=13.279 T= 8.193

Figure 7-7 (a)

OCCULOMETER WITH FEEDBACK AZIMUTH CLOSED LOOP 6 Deg. Maximum Field For 6 Subjects, 6 Runs

=Standard |/ Deviation

FUNCTION:

$$G(a) = \frac{Ka^{-aT}}{(1 + a/A)}$$

Figure 7-7 (b)

OCCULOMETER WITH FEEDBACK ELEVATION CLOSED LOOP 6 Deg. Maximum Field For 6 Subjects, 6 Runs

=Averaged
Experimental
Data Points

FUNCTION:

$$G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$$

K= 0.847 A= (1.067)2T= 6.705 T= 0.161

Figure 7-8 (a)
OCCULOMETER WITH FEEDBACK
AZIMUTH CLOSED LOOP
9 Deg. Maximum Field
For 6 Subjects, 6 Runs

(Hz)

-200 -300 -400 -2 .5 1 2 5 10

FREQUENCY

FUNCTION:

$$G(a) = \frac{Ka^{-aT}}{(1 + a/A)}$$

PARAMETERS:

=Standard

Figure 7-8 (b)

OCCULOMETER WITH FEEDBACK
ELEVATION CLOSED LOOP

9 Deg. Maximum Field
For 6 Subjects, 6 Runs

=Standard
Deviation

FUNCTION:

$$G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$$

PARAMETERS:

Figure 7-9 (a)

OCCULOMETER WITH FEEDBACK AZIMUTH CLOSED LOOP 12 Deg. Maximum Field For 6 Subjects, 6 Runs

↑

Standard

Deviation

Output

Deviation

Devia

FUNCTION:

PARAMETERS:

$$G(s) = \frac{Ke^{-sT}}{(1 + s/A)}$$

K= 0.843 A= C1.371)21 = 8.617 T= 0.186

-44-Figure 7-9 (b)

OCCULOMETER WITH FEEDBACK ELEVATION CLOSED LOOP 12 Deg. Maximum Field For 6 Subjects, 6 Runs

=Standard
Deviation

FUNCTION:

K= 0.853 A= (2.802)21 = 17.606 T= 0.208

8. DISCUSSION

The describing function models for EOG and oculometer tracking presented in Section 7 are intended to describe, in compact form, the relevant overall dynamic properties of these tracking methods. Among the objectives of this project was the determination of the possible effect of maximum target field size on the (describing function) tracking model. Therefore, all the tests were performed at 6, 9 and 12 degrees maximum target field. From the parameter values of Tables 7-1 to 7-3, some relevant observations are summarized in Table 8-1.

For each of the three tracking schemes, Table 8-1 presents the percent changes of the model parameters as the result of maximum target field increase from 6 to 12 degrees. Such values are shown only when the increase or decrease is monotonic. For every case, the range is presented in terms of the percent maximum excursion from the average value, within which each parameter varies. Since the parameters may have different values for azimuth and elevation, the percent increases or decreases, as well as the percent excursions from average values had been obtained separately and then averaged between the two values for azimuth and elevation.

For EOG tracking, both gain K and bandwidth, in terms of model parameter C, decrease with increasing target field size. Typically, such an effect can be caused by an equivalent gain (describing function) in the open-loop that decreases with increasing input-signal strength. Indeed, this is true of the EOG sensing function whose characteristic exhibits saturation.

TABLE 8-1

EFFECT OF INCREASE IN MAXIMUM TARGET FIELD FROM 6 TO 12 DEGREES*

TRACKING METHOD	EOG	OCUL. W/O FB	OCUL. WITH FB
Low-Frequency Gain, K	15% decrease	6% increase	
	within 10%	within 3%	within 1.4%
	29% decrease	24% increase	95% increase
Pole Relevant for BW:#	within 19%	within 12%	within 37%
Transport Lag, T:	within 9.2%	 22% decrease within 16%	21% increase within 10%

*Average between % change of average value for azimuth and that for elevation. Also shown is the range, in terms of the average between azimuth and elevation, of the % maximum excursion from the average value of the results for different target field sizes.

#The pole relevant for the bandwidth is "C" for EOG and "A" for oculo- meter tracking, in eqs. (7-1) and (7-2) respectively.

For oculometer tracking, the gain remains fairly constant while the bandwidth, in terms of model parameter A, increases with increasing target field size. The bandwidth increase reflects a slight open-loop gain- enhancement for larger target excursions (see Figures 6-4 to 6-9 for open-loop, as well as closed-loop frequency responses). Interestingly, the relative bandwidth increase (with target field size) for oculometer tracking with visual feedback display (95%) is larger than that for oculometer tracking with visual feedback display (24%). However, from the values in Tables 7-2 and 7-3 it can be seen that the average values of model parameter A are higher for oculometer tracking without visual feedback (FB) display than for that with visual FB display. For all three target field sizes (6. 9 and 12 degrees), the average values are:

For oculometer without visual feedback display:

Azimuth: A = 11.04

Elevation: A = 11.70

For oculometer with visual feedback display:

Azimuth: A = 7.61

Elevation: A = 10.95

Apparently, the somewhat greater bandwidth of oculometer tracking without visual FB is related to the absence of the additional task for the subject to align the control display with that of the target. On the other hand, the tracking accuracy depends on the calibration of the oculometer, whereas in oculometer tracking with visual FB display, the error sensing is done by perceptual means. All oculometer tests were performed after careful calibration (with an estimated accuracy of $\pm 1^\circ$).

The tracking accuracy is reflected in the 50% CEP ("ciruclar error probability") which defines the radius about the target (or about a centroid of the error motion) within which the tracking response remained 50% of the run-time. Average values, standard deviations and ranges for the 50% CEP are presented in Figures 6-1 to 6-9, as well as in Tables B-1 to B-9, Figures B-1 to B-9, Appendix B. From these values, it is seen that the 50% CEP is fairly proportional with target field size. In other words, the ratio between 50% CEP (angle) and the maximum target angle is fairly constant. From the data obtained, the average 50% CEP ratio with respect to target angle is:

$$\frac{50\% \text{ CEP w.r. to Target (angle)}}{\text{Maximum Target Angle}} = \begin{cases} 0.541 & \frac{+}{8}\% \text{ for EOG} \\ 0.330 & \frac{+}{7}\% \text{ for oculometer w/o visual feedback} \\ 0.345 & \frac{+}{2}\% \text{ for oculometer with visual feedback} \end{cases}$$

Oculometer tracking without visual feedback has the best tracking performance (in terms of the lowest CEP-ratio); however, as mentioned before, this is based on accurate oculometer calibration, which may not be as essential in oculometer tracking with visual feedback. It would appear that for oculometer tracking without visual

the second s

feedback, miscalibration (of the oculometer) will introduce a tracking bias but not affect the bandwidth, whereas in oculometer tracking with visual feedback, perceptual error-correction will reduce the tracking bias, but probably at the expense of reduced bandwidth. (see recommendation (b) in Section 9).

9. RECOMMENDATIONS FOR FURTHER STUDY

- (a) Describing Function Models for Other Tracking Methods: In the present project, overall properties were established, in the compact form of describing function models, for three tracking methods. The experience gained in this project should serve useful in establishing describing function models for other tracking methods such as, for example, head (helmet) tracking.
- (b) Accuracy Requirements for Tracking Methods with Feedback Display: This applies not only to the oculometer tracking with feedback display or EOG tracking studied in this project, but to wider class of tracking methods, such as helmet tracking. Since the actual error-sensing is performed by the human operator, instruments (such as oculometer, helmet sensor or EOG sensor) merely serve as control actuators. Errors in instrument sensitivity affect the open-loop gain but may have little effect on the steady-state tracking error. Moverover, human adaptation may possibly have a compensating effect on the open-loop gain itself. Likewise, any instrument output bias including drift may not directly affect the steady-state tracking error. It would be desirable to investigate how accuracy and dynamic performance, e.g. bandwidth, of tracking (with feedback display) are affected by changes in instrument gain, as well as by bias and drift. Such a project will provide data needed to establish specifications for sensing instruments to be used in practical tracking schemes.

The AMRL tracking laboratory is ideally equipped to produce the data for such a project. Gains and outputs of a reasonably accurate head (helmet) sensor and/or line-of-sight sensor (oculometer) can be modified by constant or random errors.

the land of the la

- (c) Effect of Open Loop Gain in Tracking Methods with Feedback Display: Whereas Recommendation (b) above pertains to accuracy effects of instrument gain and bias, this recommended effort seeks to establish optimum open-loop gain for given tracking tasks. All experiments conducted in this project with EOG tracking and oculometer tracking with feedback display, involved unity open-loop gain. This choice appeared "reasonable" but may not necessarily result in optimal tracking performance.
- (d) Model Study of Eye-Head Tracking: The tracking schemes considered in this research, including oculometer with and without feedback display, as well as EOG tracking, all involve human eye-head coordination, though each in different ways. For eye tracking itself (with fixed head position), several models have been proposed 11,12,13,14; however, they may serve, at best, as guides in the search for a model of eye-head tracking, which must include the dynamics of eye-head coordination 15,16. An important property desired of a model is the identifiability of its element from data of properly chosen tracking experiments.
- (e) Reduction of Drift and its Effect in EOG Tracking: Though EOG tracking does not appear promising as a practical method it may be useful in research studies relevant to head-eye coordination. Even with presently available electrodes, drift may not be objectionable, as long as the subject can comfortably exert control. Electronic circuitry can be designed to compensate for drift or to automatically reset the d-c level when the drift exceeds a certain value. Another improvement can be obtained by a circuit that locks the feedback display in case of events such as blinking (such circuitry exists in the Honeywell remote oculometer). One of the problems of any tracking system involving feedback display is the temporary loss of the feedback display. This will cause the subject to go into searching motion. This happened during some of the experiments conducted during the summer, causing reduction of overall tracking performance. It is possible, however, to prevent this from happening by limiting the display such that it never leaves the boundaaries of the visual field.

The second secon

REFERENCES

- Chouet, B. A., L. R. Young, "Tracking with Head Position Using an Electrooptical Monitor", IEEE-Transactions on Systems, Man and Cybernetics, vol. SMC-4 No. 2, March 1974, pp. 192-204.
- Shirachi, D. K., D. L. Monk, J. H. Black, Jr., "Effects of Headgear and Visual Angle on Head Rotation Spectral Characteristics", Proc. 12th Annual Conference on Manual Control, May 1976, pp. 455-461; NASA TM X-73, 170.
- 3. Monk, D. L., J. L. Porterfield, J. P. Hornseth, R. L. McMurry, "Head Tracking at Large Angles from the Straight Ahead Position", Proc. 14th Annual Conf. on Manual Control, April, 1978.
- 4. Merchant, J., R. Morrissette, J. L. Porterfield, "Remote Measurement of Eye Motion over One Cubic Foot of Space", IEEE-Transaction on Biomedical Engineering, vol. BME-21 No. 4, July 1974, pp. 309-317.
- 5. Shirachi, D. K., J. H. Black, Jr., "Head-Eye Tracking in Two-Dimensional Pursuit Tasks", Proc. 11th Annual Conference on Manual Control, May 1975, pp. 204-216; NASA TM X-62, 464, 1975.
- 6. Hornseth, J., G. J. Stanley, Porterfield, P. Carson, "Eye Tracking: Horizontal vs. Vertical", Proc. 12th Annual Conference on Manual Control, May 1976, pp. 422-429; NASA TM X-73, 170.
- 7. Hornseth, J. P., D. L. Monk, J. L. Porterfield, R. L. McMurry, "Two Dimensional Eye Tracking: Sampling Rate of Forcing Function" Proc. 14th Annual Conf. on Manual Control, April 1978.
- 8. Levinson, W. H, "Techniques for Data Analysis and Input Waveform Generation for Manual Control Research", Technical Memorandum CSD-75-2, Bolt, Beranek and Newman, Inc., Cambridge, Ma., Revised May 8, 1975.
- 9. Kris, E. C., "A Technique for Electrically Recording Eye Position", Aero Medical Laboratory, Wright-Patterson AFB, Ohio, WADC Technical Report 58-660, December, 1958.
- Barber, H. O., C. W., Stockwell, "Manual of Electronystamography" (book),
 C. B. Mosby Co., 1976, 207 pp.
- 11. Stark, L., G. Vossius, L. R. Young, "Predictive Control of Eye Tracking Movements", IRE-Transactions on Human Factors in Electronics, vol. HFE-3, September 1962, pp. 52-57.
- 12. Dallos, P. J., R. W. Jones, "Learning Behavior of the Eye Fixation Control System", IEEE-Transactions on Automatic Control, vol. AC-8, July 1963, pp. 218-227.
- 13. Young, L. R., L. Stark, "Variable Feedback Experiments Testing a Sampled Data Model for Eye Tracking Movements", IEEE-Transactions on Human Factors in Electronics, vol. HFE-4, September 1963, pp. 38-51.

- Robinson, D. A., "Models of the Saccadic Eye Movement Control System", Kybernetik, vol. 14, 1973, pp. 71-83.
- 15. Sugie, N., M. Wakakuwa, "Visual Target Tracking with Active Head Rotation" IEEE-Transactions on Systems Science and Cybernetics, vol. SSC-6, April 1970, pp. 103-109.
- 16. Morasso, P., G. Sandini, V. Tagliasco, R. Zaccaria, "Control Strategies in the Eye-Head Coordination System", IEEE-Transactions on Systems, Man and Cybernetics, vol. SMC-7, No. 9, September 1977, 639-651.

APPENDIX A

INDIVIDUAL TRACKING RUN RESULTS

Presented in this appendix are the frequency response plots for the individual tracking runs on 11 (of the 15) subjects.* Also shown for each test run presented are the values of the 50% circular error probability (CEP - the radius within which the tracking error remains within 50% of the run time; both with reference to the target and to the centroid of the error motion.* Each plate represents a tracking run; for each azimuth and elevation, it shows the gain and phase versus frequency plots for

"Closed-Loop", meaning:

Control (output)

Target (output)

Control (output)

"Open - Loop", meaning:

Error (Target minus Control)

Table A-1 summarizes the relevant data on the target forcing function used for the tracking runs, whose results have been processed.

In total, 100 EOG tracking runs on 15 subjects and 48 oculometer runs (24 each with and without visual feedback display) on 6 (of the 15) subjects have been processed. For lack of space, this appendix shows individual frequency response plots for only 72 EOG tracking runs on 11 subjects and 24 oculometer tracking runs on 3 (of those 11) subjects. The remaining individual frequency response plots are quite similar but their data are, of course, incorporated in the computation of the average responses presented in the body of this report.

^{*}The frequency response data and the 50% CEP values were computed on the PDP-11/34 minicomputer at the AMRL Tracking Laboratory, using programs "MODFRT" and "TR4" respectively.

TABLE A-1
SPECIFICATION OF FORCING FUNCTIONS USED IN THE TRACKING RUNS

(
FREQUENCIES(Hertz) Azimuth Elevation		Sum-of-sines: 10 frequencies between (approx 0.1 Hertz and 3.0 Hertz as shown.					
0.09888	ļ j	or a field by and or of the the as shown.					
0.14282	0.12085	For a set of runs on a subject three forcing functions were used which were identical in every-					
0.20874	0.17578	thing except for different (randomly selected) phases of their sine-wave components; they are de-					
10.30762	0.25269	signated by forcing function (FF) numbers 1, 2 and 3 and their sequence in any series of tracking (
 0.45044	0.37354	runs was permuted as shown in Tables A-2 and A-3 for EOG and oculometer tracking respectively.					
0.65918	0.54932	Break Frequencies (6 dB Power):					
0.96680	0.80200	Subject 0 (5 EOG runs): Different break frequen-					
1.40625	1.16455	cies: 0.7, 0.8, 0.9 and 1.0 Hertz (4 FF's; 0.8 Hz was used twice).					
2.05444	1.70288	Practice Runs (On All Subjects 1-14): 0.7 Hertz;					
1 2.99927	2.48291 	One FF (FF number P).					
} ; ;	3.62549	Subjects 1 and 2: 1.0 Hertz; Three FF's (FF numbers 1,2,3).					
		Subjects 3 Through 14: 0.8 Hertz; Three FF's (FF numbers 1,2,3).					

The tracking runs on subject 0 represents test runs, using EOG tracking, all for 6 degree maximum target field but for different (6 dB power) break frequencies, namely 0.7, 0.8, 0.9 and 1.0 Hertz.

The tracking runs on Subjects 1 and 2 used forcing functions with a break frequency of 1.0 Hertz. However, it was found that the evaluated results may not be reliable. This may be seen by the markings of the data points in terms of the "reliability levels" defined in Table 5-1. It was therefore decided to lower the break frequency for all subsequent tracking runs to 0.8 Hertz for Subjects 3 through 14.

All data evaluations presented in Section 6 have been based on the tracking runs for Subjects 3 to 14, with a break frequency of 0.8 Hertz; namely 81 EOG runs on 12 subjects and 48 oculometer runs on 6 (of those 12) subjects.

For each subject, the first tracking run was performed with forcing function P (for practice), where the break frequency was 0.7 Hertz. This test run was performed with a maximum target field size of 6 degrees. The subsequent tracking runs were performed with maximum target field sizes of 6, 9 and 12 degrees, the sequence being permuted. Also permuted were the forcing functions which were the same except for the (randomly selected) phases (of the 10 different sine functions). The record of the tracking runs for subjects 1 to 14 is shown in Tables A-1 and A-2 for EOG and oculometer tracking respectively.

The average responses presented in the body of this report are based on the tracking runs on Subjects 3 through 14, for which the target forcing functions all had the same break frequency of 0.8 Hertz.

TABLE A-2
RECORD OF EOG RUNS

				Date	Maximum Field / Forcing Function Number* For Run							
No.	Subject	(Jge)	Sex	(1979)	8		2	3	4	5	6	
1	NM	(28)	F	8/6	6%P	12/2	9/3	6/1	9 /3	12/1	6/2	
2	DMF	(28)	F	8/7	6%P	6/2	6/3	1271	6/2	12/3	9/1	
3	WSS	(67)	М	8/8	6%P	971	6/3	12/2	12/2	6/1	9/3	
4	TAC	(24)	И	8/9	6%P	671	9/2	12/3	9 /1	6/2	** (1 2/3)	
5	MMP	(22)	F	8/9	6%P	(12/2)	6% t	9%3	1271	9 \$/3	6/2	
6	AMK	(36)	M	8/18	6%P	97/3	12/1	6/2	6/3	9/2	(12/1)	
7	MTe	(32)	H	8/12	6/P	6/3	12/2	971	1271	8/2	673	
8	AMN	(19)	F	8/13	6 % P	6/3	12/2	971	673	12/2	9 /1	
9	Ħ	(35)	F	8/13	6 / /P	6/1	9/3	12/2	6/2	9 71	12/3	
10	CJA	(39)	M	8/14	6 / /P	9/2	6/1	1273	973	6 % 1	12/2	
11	KRA	(18)	F	8/15	6%P	12/1	6/2	9/3	97 1	12/3	672	
12	DWR	(35)	Ħ	8/15	6%P	12/3	9 7 1	6/2	1272	673	971	
13	MRB	(25)	F	8/17	6%P	6/2	9/3	12/1	9 /3	12/1	6/2	
14	AK	(21)	F	8/17	6√P	9/1	6/3	12/2	12/2	6 ⁄1	9/3	

^{*}For example, $9^0/3$ means " 9 degrees max. field and forcing function (FF) number 3". See Table A-1 for specification of FF's and list of break frequencies of FF's.

^{**}Records lost or damaged during processing (three runs as indicated).

TABLE A-3
RECORD OF OCULOMETER RUNS

		4.		Date		For Ru	s Without Feedback		ng Function Number* For Runs With Visual Feedback				
lo.	Subject	(Ige)	Sex	(1979)			2	3		1	2	3	
8	AMW	(19)	F	8/13	6 ⁰ /P	9 ⁰ /3	12°/2	6 ⁰ /1	6 ⁰ /P	12%1	9°/2	6 ⁰ /3	
9	LL	(35)	F	8/13	6 ⁰ /P	6°/3	12%2	9 ⁰ /1	6 ⁰ /P	6°/3	12%2	9 ⁰ /1	
10	CJA	(30)	М	8/14	6 ⁰ /P	6 ⁰ /1	9 ⁰ /3	12 ⁰ /2	6 ⁰ /P	6°/2	9 ⁰ /1	12 %3	
11	KRH	(18)	F	8/15	6 ⁰ /P	9 ⁰ /2	6 ⁰ /1	12%3	6 ⁰ /P	9 ⁰ /3	6 ⁰ /1	12%2	
12	DWR	(35)	М	8/15	6 ⁰ /P	12%1	6 ⁰ /2	9 ⁰ /3	6°/P	9°/1	12%3	6 ⁰ /2	
13	MRB	(25)	F	8/17	6 ⁰ /P	1293	9 ⁰ /1	6 ⁰ /2	6 ⁰ /P	12%2	6°/3	9°/1	

^{*}See footnote under Table A-2.

Figure A-1

-58-Figure A-1 (cont.)

Figure A-2

Figure A-2 (cont.)

Figure A-3

Figure A-3 (cont.)

Figure A-4

Figure A-4 (cont.)

Figure A-5

Figure A-5 (cont.)

Figure A-6

Figure A-5 (cont.)

-73-Figure A-9

-75-Figure A-10

-76-Figure A-11

Figure A-12 (cont.)

Figure A-13

Figure A-14

Figure A-15 (cont.)

Figure A-16

Figure A-17

APPENDIX B

FREQUENCY RESPONSE STATISTICS FOR ALL RUNS WITH BREAK FREQUENCY OF 0.8 HERTZ

Presented are the results of the data evaluation for 69 EOG and 36 oculometer tracking runs on subjects 3-14 as described and summarized in Section 6.

Tables B-1 to B-9 present average values, standard deviations, as well as maxima and minima of both gain and phase angle for each frequency. Each of these tables represents an appropriate group of tracking runs of those considered in Section 6. Also shown are the average values and standard deviations of the 50% CEP.

Figures B-1 to B-9 present the plots corresponding to Tables B-1 to B-9 respectively.

AZIMUTH CLOSED LOOP

	 								-86	<u> </u>	
	MAX (DEG)	9.2	12.3	-12.5	-26.0	9.09-	-92.3	-117.9	-166.6	-226.3	-289.0
NOIL	AV+SD (DEG)	12.9	-8.7	-9.3	-45.0	-61.0	6.06-	-129.5	-192.1	-263.6	-317.4
FHASE-VARIATION	AV-SD (DEG)	-81.4	-90.5	-136.1	-129.6	-152,1	-189.1	-250.2	-296.7	-322,2	-369.4
FHAS	MIN (DEG)	-230.5	-180.1		-227.3	-275.0		-437.8	-456.7	-353.9	-379.4
	MAX IREL. (DB) LEV.	8.51FAIR	16.8 FAIR	7.7 FAIR	1.5:6000	10.4;G00D	11.6:6000	5,81600E	3.0!FAIR	16.5!FAIR	16.1!ACFT
TION	AV+SD (DB)	0.4	2.7	1.3	-1.0	9.0	1.9	3,1	1,5	2.6	1.7
GAIN-VARIATION	AV-SD AV+SD (BB) (DB)	-6.5	B.	-8.1	-7.6	-7.0	8.9~	5.3	J.8-	-10.2	-16.0
GAIN	MIN (DB)		-11,4						-11.1	-19.1	
DEV.	PHASE IREL. (DEG) ILEV.	47.2 FAIR	40.91FAIR	63.41FAIR	42.3 GOOD	45.6¦600D	49.11600D	60.41600D	52.31FAIR	29.31FAIR	26.0:ACPT
STAND. DE	!	3.5	5.6	4.7	3	3.8	4.3	4.5	4.7	6.4	8.9
	PHASE (DEG)	-34.2	-49.6	-72.7	-87.3	-106.5	-140.0	-189.8	-244.4	-292.9	-343.4
AVE	GAIN (DB)		-2.9	-3.4	-4.3	-3.2	-2.5	-1.1	-3,3	-3.8	-7.1
	FREQU.	0.100	0.143	0.209	0.308	0.450	0.659	0.967	1.406	2.055	3.000
	1 										

	:									
	MAX (DEG)		17.5		•	-119,8	-130.8	-147.1		-188.9
TION	AV+SD (DEG)		-47.5		-106.5	-131.4	-157.1		-217.9	-273,3
PHASE-VARIATION	AV-SE (DEG)	-124.5	-142.7	-150.2	-157.2	-173.0	-199.3	-238.6	-287.0	-377,5
FHAS	MIN (DEG)	-228.4	-197.7	-214.1	-197.2	-190.4	-220.0	-276.6	-345.5	-402.7
	REL.	ACFT	17.6 ACPT 9.0 FAIR	FAIR	-0.2:600b	1009 :	-0.21600D	-2.21FAIR	FAIR	15.4!ACFT
	MAX (DB)	23.1	17.6	7.1	-0.2	લ	-0.2	5,5	2.7	15.4
TION	AV+SD (DB)	11.3	N W N 0	8.0-	-3.1	-3.8	-3.9	-3.9	9.0	8.9
GAIN-VARIATION	AV-SD (DB)	-4.1	-6.9	-8.7	-7.8	-9.1	-8.9	6.6-	-9.1	-13.4
GAIN	MIN (DB)	6.9-	-9.8	-12.9	6.6-	-11.0	-12.5	-12.8	-19.7	-30.4
	HASE REL. DEG) LEV.	ACFT	47.6 ACFT 38.0 FAIR	FAIR	1009 P	; 600D	10009	FAIR	FAIR	1 ! ACFT
DEV.	PHASE (DEG)	53.9	47.6	29.5	25.3	20.8	21.1	27.3	34.5	52.1
STAND.	GAIN (EB)	7.7	5 P.	3.9	2.4	2.6	2.5	3.0	4.9	11.2
AVERAGE STAND.	PHASE (DEG)	-70.6	-95.1 -109.6	-120.7	-131.9	-152.2	-178.2	-211.3	-252.4	-325.4
AVE	9	3.6	-2.0	-4.7	4.3	-6.4	4.9-	6.9-	4.2	-2.3
	i⊥ ❤ i	0.100	0.143	0.308	0.450	0.659	296.0	1.406	2.055	3.000
	1 	: ::				 			 	

Table B-1 (b)

ELEVATION CLOSED LOOP

	<i>-</i>								
! ! !	MAX (DEG)	0 m	-24.7	-26.4	-80.0	-53.9	-31.9	-58.1	-26.5
TION	AV+SD (DEG)	11.0	-24.9	-60.8	-120.6	-156,7	-190.5	-243.8	-263.6
PHASE-VARIATION	AV-SD (DEG)	-154.5	-206.7	-128.4 -199.2	-239.2			-401.6	-470.8
PHAS	MIN (DEG)	-332.5	-347.3	-184.8	-344.8	-342+3	-355.2	-508.9	-490.3
	REL. LEV.			3.6 FAIR 1.2 FAIR	4.3!FAIR	SIFAIR	FAIR	6.7!ACFT	8,4;F00R
1	MAX (DB)	4.5	1.6	9 H	4.3	4	M M	6.7	8,4
TION	AV+SD (DB)	1.0	-0- -0-	10 14	2.9	2.6	3.1	0.4	0.4
GAIN-VARIATION	AV-SD (DB)	7.6						ı	-12.5
GAIÀ	MIN (DB)	-15.0	9.6-	-14.1 -8.8	-16,3	-19.4	-15.1	-18.1	-18.6
	REL.	FAIR	ACFT	FAIR	FAIR	FAIR	FAIR	ACFT	03.6!P00R
DEV.	FHASE (DEG)	82.7 FAIR 85.4 ACFT	6.06	33.8	59.3	10. 10.	0.69	78.9	103.6
STAND.	GAIN (UB)	44 No.							6.5 1
STAND.	PHASE (DEG)		-115.8	-94.6	-179.9	-211.2	-259.5	-322.7	-367.2
AVE	GAIN (DB)	1.8	4.5	4 (4 4 (4	C. C.	-3.5	2.5	S.	-6.0
AVE	FREQU.	0.121	0.253	0.374	0.802	1.165	1.703	2.483	3.626
						- -			

ELEVATION OPEN LOOP

ווסא	AV+SD MAX (:
PHASE-VARIATION	AV-SE (DEG)
	MAX KEL, MIN (DB) LEV. (DEG)
	AV-SD AV+SD MAX (DB) (DB) (DB)
GAIN-VARIATION	MIN AV-SD (DB) (DB)
_	FHASE REL. (DEG) LEV.
STAND.	ASE GAIN G) (DB)
AVERAGE	GAIN PHASE (DE) (DEG)
	FREGU.

14

10	٦
	٠
<u> </u>	1
	١
	п
B- 2	1
α	i
	ě
	٠
	,
\mathbf{a}	з
_	И
	ľ
<i>(</i> 2)	
·	Ų
_	ı
able	ľ
ab	
_	ŀ
~~	
,0	
1	3

		24KUNS		
RUNS AT 9 DEG MAX, FIELD		0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	DEG/ RANGE: 3.36.0 DEG	DEG, RANGE: 3.45.9 DEG
FREQUENCY RESPONSE STATISTICS FOR 24 E 0 G	SUBJECT NO: 3, 4, 5, 6, 7, 8, 9,12,10,11,13,14,	NUMBER OF RUNS; 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	50% CEP TARGET : AUG. 4.7 DEG, STD. DEU. = 0.6 DEG/ RANGE: 3.36.0 DEG	50% CFP CENTROID: AUG. = 4.7 DEG, STD. DEV. = 0.6

AZIMUTH CLOSED LOOP

	MAX (DEG)	116.0 -0.7 -0.7 -1.56.5 -1.68.1 -1.68.1 -1.68.1	-238.9
TION	AV+SD (DEG)	-118.1 -119.9 -147.9 -70.4 -133.1 -133.1	
PHASE-VARIATION	AV-SB (P56)	-59.0 -76.4 -80.1 -108.7 -135.0 -160.8 -205.1	-309.1
РНА	MIN (DEG)	-92.2 -123.7 -138.3 -153.6 -171.9 -205.9 -243.3	-329.2
	REL.		0.31600D -0.91FAIR
,,	MAX (DB)	04 0 0 4 4 W	0.0
TION	AV+SD (DB)	40 1010 11 10 8 10 4 V	-0.4
BAIN-VARIATION	AVSD (BB)	28 - 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
GAIN	MIN (DB)	113.6 113.6 114.0 116.1 10.7	
	REL. LEV.	20.4 GDDD 30.9 FAIR 30.1 FAIR 30.4 GDDD 32.3 GDDD 34.6 GDDD 26.0 GDDD	1600D 1FAIR
. DEV.	PHASE (DEG)	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.3
STAND.		48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.8
AVERAGE	PHASE (DEG)	- 138.6 - 102.7 - 126.2 - 126.1 - 126.1 - 126.1	-286.8
AVE	GAIN (DB)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-4.7
H AVERAGE STAND.	FREGU. (HERTZ)	0.100 0.143 0.209 0.308 0.450 0.967	2,055

** *			
	MAX (DEG)	-42.0 -1.6 3.0 -55.3	: : : :
TION	AV+SE (DEG)	-51.6 -35.7 -51.6 -85.1	-123.0 -151.7 -185.1 -225.1
PHASE-VARIATION	AV-SD (DEG)	-113.2 -113.7 -135.7 -152.7	-170.0 -123.0 -197.8 -151.7 -228.3 -185.1 -281.0 -225.1 -394.6 -254.0
FHA5	MIN (DEG)	8.1 FAIR -126.3 -99.6 -51.6 4.1 FAIR -144.8 -113.2 -35.7 7.3 FAIR -145.2 -113.7 -51.6 0.8 GOOD -162.5 -135.7 -85.1 -1.5 GOOD -174.4 -152.7 -104.1	-196.7 -225.1 -256.8 -318.2 -409.9
	MAX REL. (DB) LEV.	8.11FAIR 14.11FAIR 7.31FAIR 0.81600D	-1.6 600D -2.8 600D -4.0 600D -1.2 600D 11.0 ACFT
	MAX (DB)	144	1.2.E
TION	AV+SD (DB)	ы и и н н и и и и и и и и и и и и и и и	14.0 14.9 1.7
GAIN-VARIATION	AV-SD AV+SD (DB) (DB)	-3.0 -7.5 -7.9 -7.6	
GAIN	MIN (DB)	-10.5 -14.9 -10.8 -15.0	-17.1 -11.6 -13.0 -12.6 -16.6
	REL. LEV.	FAIR FAIR GOOD GOOD	6000 6000 6000 6000 ACFT
DEV.	PHASE REL. (DEG) LEV.	24.0 FAIR 38.7 FAIR 31.0 FAIR 25.3 G00D 24.3 G00D	23.51600D 23.01600D 21.61600D 27.91600D 70.31ACFT
STAND.		ង២២០០ 4២០៤២	00000 90000
AVERAGE	•	-75.6 -74.5 -82.7 -110.4 -128.4	-146.5 -174.8 -206.7 -253.1 -324.3
•		4.0 7.4 7.4 7.4	-6.8 -7.1 -6.8 -2.1
		0.100 0.143 0.209 0.308	0.659 0.967 1.406 2.055 3.000
	¹		

Table 8-2 (b)

ELEVATION CLOSED LOOP

	AVERAGE	AVERAGE	STAND. DEV.	DEV.	9	GAIN-VARIATION	ARIA	NOIL	 		PHA	PHASE-VARIATION	LION		
FREQU. (HERTZ)		PHASE (DEG)	GAIN (DB)	PHASE IREL. (DEG) ILEV.		MIN AU	AV-SD ((DB)	AV+SD (DB)	MAX (DB)	REL.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)	
0.121		-51.6	2.8	70.5;600D			9.9	-1.0	0.5	0.5!600D	-349.0	-122.1	18.8	18.4	
0.176	-2.9	-73.3	2.6	85.31FAIR			4.0	-0.3	2.6	FAIR	-382.9	-158.6	11.9	-3.8	
0.253	5.0	-91.6	3.3	72.71FF			8.3	-1.7	-0.7	-0.7!FAIR	-312.6	-164.3	-18.9	-18,8	
0.374	-2.8	-104.0	3.0	34.2160	G000 -10.7		-5.7	0.3	1.9	9:600b	-195.4	-138.2	8.69-	-58.9	
0.549	-2.7	-122.1	2.7	37.9160			5.4	0.0-	1.4	4 (G00D	-223.2	-160.0	-84.2	•	
0.802	-2.3	-164.4	3.7	44.81FF	FAIR -11		0.9	1.3	3,3	31FAIR	-266.1	L.1	-119.6	-70.6	
1.165	4.5-	-211.4	4.4	30.0166			8.9	2.0	3.3	316000	-287.9	-241.5	-181.4	-160.7	
1.703	-3,3	-271.1	4.8	42.51FAIR			8.1	1.5	4.6	FAIR	-377.1	9	-228.6	-176.9	
2.483	-6.2	-324.7	5,1	69.81AC		ł	1.3	-1.1	1.5	SIACFT	-412.9	-394.4	-254.9	-133.5	
3.626	-8.5	-364.1	7.0	81.0:PUOR		1	15.5	-1.4	2.7	2.71F00R	-454.7	-445.0	-283.1	-149.0	

ELEVATION OPEN LOOP

		AGE	STAN	DEV.:	GAIN	GAIN-VARIAȚION	NOIL			FHAS	FHASE-VARIATION	NOIL	
FREQU.	GAIN (DB)	i	GAIN (DB)	PHASE REL	MIN (DB)	AV-SD (DB)	AV+SD (DB)	MAX IR (DB) IL	REL. ILEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	4.0	-97.9	5.0	76.51FAIF	3 -10.8	-4.6	5.4	10.115	AIR	-337.7	-174.4	-21.4	30.5
0.176	0.1	-100.4	4.8	48.21ACF	T -7.8	-4.6	4.9	11.1!ACFT	CPT	-275.8	-148.7	-52.2	B.6-
0.253	-4.3	-119.0	4.4	56.6!FAIR		-8.7	0.1	4.31F	AIR	-277.5	-175.6	-62.5	-28.8
0.374	5.1	-135.5	2.8	22,61600		-7.9	-2.4	-1.716	000	-191.9	-158.1	-112.9	-97.4
0.549	-5.9	-144.9	2.3	26.21600	D -10.2	-8.2	-3.6	0.8;6000	000	-209.8	-171.2	-118.7	-85.8
0.802	-6.7	-171.5	2.1	29.61FAII		8.8	-4.7	-4.11F	AIR .	-239.9	-201.1	-141.9	-95.0
1,165	-7.0	-199.5	2.7	21.8:600			-4.3	-4.016	000	-259.3		-177.6	-168.9
1,703	-5.4	-242.0	3.1	47.71FAII			-2.3	-0.71F	AIR	-383,1	-289.7	-194.3	-178.4
2,483	-4.0	-294.3	6.3	92.5!ACP	T -14.0	-10.4	2,3	6.9!ACPT		-441.7	-386.8	-201.8	-62.5
3.626	-6.7	-338.5	10	129.0!POOR	_	0.81	1.7	11.A!P	300	C. 945-	-447.5	8.000-	-04.7

No. of the last of

Table B-3 (a)

AZIMUTH CLOSED LOOP

! ! ! !	MAX (DEG)	-13.3 -17.6 -17.6 -28.7 -56.1 -73.5 -118.0	-237.2 -324.3
TION	AV+SD (DEG)	-13.3 -70.4 -70.4 -134.4	-263.3 -337.0
FHASE-VARIATION	AV-SD (DEG)	-72.0 -112.5 -85.1 -109.2 -138.3 -168.4 -206.1	-305.5
PHAS	MIN (DEG)	-146.9 -238.4 -131.7 -153.7 -195.8 -203.1 -241.9	-323.6
	REL.	6000 6000 6000 6000 6000	GOOD
! ! !	MAX (DB)	0 + 0 0 0 0 4 w	1.7
NOIL	AV+SD (DB)	11200	0 0 0
GAIN-VARIATION	AV-SD (DB)	-111.1 -7.11.1 -6.7 -6.7 -5.7	
GAI	MIN (DB)		-17.6 -17.0
DEV. I	PHASE REL. (DEG) LEV.	29.4 GOOD 51.3 FAIR 26.4 FAIR 29.8 GOOD 33.9 GOOD 38.1 GOOD 35.9 GOOD	21.1:600D 21.6:FAIR
STAND.	GAIN (DB)	04000000 0400000 10	4 0 0 4
AVERAGE	PHASE (DEG)	-42.6 -61.2 -58.6 -79.4 -104.3 -130.3	-284.4
1	GAIN (DB)	0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.7
	FREGU.	0.100 0.143 0.209 0.308 0.450 0.967	3.000
			M 151

	AVE	AVERAGE	STAND.	. DEV.:	GAI	GAIN-VARIATION	ATION		PHA	FHASE-VARIATION	TION	
FREQU.	GAIN (DB)	PHASE (DEG)	GAIN (DE)	PHASE REL. (DEG) LEV.	MIN (DB)		AV-SD AV+SD (DB)	MAX REL.	. (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.100	-1.2	-75.1	S.	29.51600D	-11.1	6.4	1 #	6.21600	D -155.7	-104.6	1	-18.9
0.143	-3.8	-88.6	9.9	43.91FAIR	-19.7	-10.4		6.41FA]	R -231.6	-132.5	-44.8	-38.4
0.209	-2.9	-94.0	3,7	27.21FAIR	-12.1	9.9-		3.9!FAIR	-142.4	-121.1	8.99-	-27.
0.308	-4.6	-112.5	3.5	24.11600D	-9.3	-7.8		2.01600	0 - 162.5	-136.6		-48.7
0.450	-5.9	-131.0	2.3	25.6!G00D	-13.1	-8.2		-2.91600	ID -190.3	-156.6	-105.4	-88
0.659	-6.3	-150.7	2.1	23.6!G00D	8.6-	-8.5		-0.91600b	D -195.3	-174.3	-127.1	-113.3
0.967	-7.1	-175.2	1.7	22.21600p	-10.9		4.0-	-3.21600			-153.0	-136.3
1.406	-7.1	-206.0	ભ ભ	19.7:G00D	-12.4	-9.2	4.9	-4.0;G00D	0 -254.7	-225.7	-186.3	-175.8
2.055	-5.2	-250.2	4.0	24.11G00D			-1.2	-1.016000	ID -307.5	-274.3	-226.1	-221.5
3.000	-2.5	-350.9	8.9	39.51FAIR	-15.8	-11.4	4.9	9.41FAIR	R -426.8	-390.4	-311.3	-278.

Table B-3 (b)

ELEVATION CLOSED LOOP

	AVE		STAND.	_	GAI	GAIN-VARIATION	TION		PHA	FHASE-VARIATION	NOIL	
FREGU.	GAIN (DB)	ŧ	GAIN P	FHASE REL. (DEG) LEV.	MIN (DB)	AV-SD AV+SD (DB) (DB)	AV+SD (DB)	MAX REL.	MIN (BEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
		-51.2	2.7	71.2; G00D		-6.7	-1.3	0.81G00B	i	351.0 -122.5	20.0	6.9-
	-4.7	-65.4	3.0	56.21FAIR	-11.7		-1.7	0.6 FAIR		-121.6	-9.2	-10.6
		-81.9		55.31FAIR	-14.8	-8.4	-1.0	0.5:FAIR			-26.6	-26.1
		-92.8		27.51600D	-7.2		0.1	1.5:6000	3 - 163.2		-65.3	-48.7
		-118.8		35.916000	8.8		-0.1	1.7:6000			-83,0	-40.1
		-157.3	2.7	39.91600D	-7.1	-4.6	8.0	2.7:6000		-197.3	2 -117.5	-93.5
		-205.5	3.3	37.21600D	-10.0		9.0	2.316000	3 -274.7	-242.7	-168.3	-132.2
	-5.1	-271.4	8.9	33.91FAIR	-25,5	-11,8	1.7	4.0 ! FAIR		-305-3	-237.5	-190.1
		-324.9	50	47.51FAIR			-0.3	1.9:FAIR	8 -412.2	-372.4	-277.4	-184.3
	1	-379.5	6.3	100.8:F00R			-2.7	1.1; FOOR			-278.7	-130.2

ELEVATION OPEN LOOP

	AVER	AVERAGE	STAND. D	DEV.	GAI	GAIN-VARIATION	ATION		FHA	FHASE-VARIATION	TION	; ;
FREGU.	GAIN (DB)		GAIN (DB)	PHASE REL. (DEG) LEV.	MIN (DB)	AV-SD (DB)	AV+SE (BE)	MAX !REL. (DB)!LEV.	. (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	1.3	-86.2		63.51FAIR	-13.2		! !	16.0;FAI	345.1	-149.7	-22.7	-20.5
0.176	2.5	8.96-	ທ ທ	47.0 HACFT	-10.6			8.8:ACFT	T -260.0	-143.8	-49.8	-35.2
1 0.253	-4.0	-113.8	4.9	40.6:FAIR	-16.1			4.2:FAIR	3 -205.9	-154.3	-73.2	-55.1
1 0.374	-4.2	-128.7	2,3	18.3!6000	-8.8	-6.5	-1.9	1.0:6000	0 -170.8	-147.0	-110.3	-102.5
1 0.549	0.9-	-142.2	2.1	28.1;600D	-9.5	-8.1		-0.6;6000		-170.2	-114.1	-58.0
: 0.802	-6.5	-170.2	1.4	25.1:600D		6.4-		-4.4!GOOD	0 -228.5	-195,3	-145.1	-125.0
1.165	6.9-	-196.1	2.1	24.1;6000	-12.4			-4.6;G00D	0 -241.8	-220.2	-172.0	-148.1
1.703	-6.7	-243.0	м •	37.0:FAIR	-25.5	,		-0.8!FAI	1	-280.0	-206.0	-186,1
2.483	-1.6	-296.0	6.7	62.6!ACFT	-16.8	ı		32.6!ACPT	T -428.8	-358.6	-233.4	-182.6
3.626	0.8-	-315.2	7.3	155.1;P00R	-23.2	-15.3		5.1; FOOR	3 -509.5	-470.4	-160.1	-67.0

Figure B-1

Figure B-2

Figure B-3

Table B-4 (a)

6RUNS

AZIMUTH CLOSED LOOP

	MAX (DEG)	-2.7 -14.8	-14.5	-34.9	-56.9	-121.7 -163.3 -201.0
TION	AV+SD (DEG)	-14.9	-16.3	-36.4	0.06-	-128.5 -176.7 -226.5
PHASE-VARIATION	AV-SD (DEG)	-20.0	-35.3	-545.2	-81.0 -104.9	-151.5 -216.3 -299.4
PHA	MIN (DEG)	-25.0	-40.7	-58.8	-87.4	
	(!REL. 3)!LEV.	-0.51600D	-0.31600b	-0.6;600D -1.2;600D	-1.8;600D -1.9;600D	-0.7!600D -0.4!FAIR -5.5!ACPI
	MAX (DB)	9 7	9	0 7	77	0010
TION	AV+SD (DB)	-0.8		1-1.8	4 4	0 m 0
GAIN-VARIATION	AV-SD (DB)	2.5	4	-3.7	- 4.0°	,
GAI	MIN (DB)	-3.0	4.9	-3.0	-3.7	-6.2 -7.8 -14.7
	PHASE REL. (DEG) LEV.	7.516000	9.51600D	4.4;600D 4.7;600D	8.91600D 7.51600D	11.5;600D 19.8;FAIR 36.5;ACPT
. DEV.	1	7.5	6	4 4	8.9	11.5 19.8 36.5
STAND.	i	6.0	1.7	1.4	1.5	44.9
	· ·	-12.4	-25.8	-40.8 -50.1	-72.1	-140.0 -196.5 -262.9
AVE	GAIN (DB)	1.6	(N)	12.0 12.0	3.9	-4.1 -5.7 -9.6
	FREGU. GAIN (HERTZ) (DB)	0.100	0.209	0.308	0.659	1.406 2.055 3.000

:										
MAX (DEG)	-9.4	-52.0	-37.9	-68.4	-95.0	-97.3	-115.5	-140.7	-168.5	-194.3
AV+SD (DEG)	-25.2	-59.2	-54.5	-77.9	-95.2	-104.9	-120.0	-146.6	-177.5	-216.3
AV-SB (DEG)	-83.3	-85.6	-87.6	-104.5	-107.7	-120.8	-135,2	-163.3	-202.8	-277.0
MIN (DEG)				-108.3	-109.1	-121.5	-136.7	-167.0	-204.9	-276.7
REL. LEV.	FAIR	POOR	FAIR	G009	G005	GOOD	6000	0009	FAIR	ACPT
MAX (DB)	13.3	9.01	10.3	3.2	0.9	12.2	-4.8	0.9-	-5.8	-3.7!ACPT
AV+SD (DB)	11.8	8,7	8,3	(A	6.0	-2,3	4.9	-6.7	-7.6	-6.5
AV-SD (DB)	8.9	4.4	-0.1	-0.1	-0.5	-4.1	6.9-	-8.9	-10.8	-13.7
MIN (DB)	5.7	2.6	-1.5	-1.1	6.0-	15.0	-7.8	-9.3	-10.8	-14.4
HASE REL. DEG) LEV.	29.1 FAIR	13.2:F00R	16.6!FAIR	13.3!600D	6.3!600E	7.9;6000	7.61G00D	8.4:6000	12.6!FAIR	30,3!ACPT
GAIN P (DB) (2.5					6.0	1.0			3.6
PHASE (DEG)	-54.2	-72.4	-71.0	-91.2	-101.5	-112.8	-127.6	-155.0	-190.2	-246.6
GAIN (DB)	6.3	6.5	4.1	1.2	0.2	3.5	-5.9	-7.8	-9.2	-10.1
FREQU.	001100	0.143	0.209	1 0.308	0.450	1 0.659	1 0.967	1.406		!
	GAIN PHASE GAIN PHASE!REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD (DB) (DEG) (DEG) (DEG) (DEG) (DEG) (DEG)	GAIN PHASE GAIN PHASEIREL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD (DB) (DB) (DB) (LEV. (DEG)	GAIN PHASE GAIN PHASEIREL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD (DB) (DB) (DB) LEV. (DEG) (DEG	GAIN PHASE GAIN FHASEIREL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD (DB) (DB) (DE) (DEG)	GAIN PHASE GAIN PHASEIREL. MIN AV-SD AV+SD MAX IREL. MIN AV-SD AV+SD AV+SD AV+SD (DB) (DB) (LEV. (DEG)	GAIN PHASE GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD AV+S	GAIN PHASE GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD AV+S	GAIN PHASE GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD AV+SD (DB) (DB) (LEV, (DEG)	GAIN PHASE GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD AV+SD (DB) (DB) (LEV, (DEG)	GAIN PHASE GAIN PHASE!REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD (DB) (DB) LEV. (DEG) (DE

Table B-4 (b)

6RUNS

ELEVATION CLOSED LOOP

	MAX (DEG)	25.7	-33.3	-58.5	-156.0	-226.8
TION	AV+SD (DEG)	11.1	-37.3	-71.6	-161.5	-268.2
FHASE-VARIATION	AV-SD (DEG)	-21.0	-58.9	-151.8	-181.6	-398.5
FHAS	MIN (DEG)	-20.0	-63.3	-104.5	-186.4	-437.5
	REL.	0 600D 8 600D	700	4 G00D	<u> </u>	5 POOR
	MAX (DB)	-ii	000	1.21	000	, ci
TION	AV+SD (DB)	1.6	000	-1.0	10-1	1.8
GAIN-VARIATION	AV-SD (DB)	11.1	440	-4.3	6.01	-17.6
GAI	MIN (DB)	12.1	-5.1	0 4 0 0	-15.1	-19.8
	REL.	16.1 GOOD 14.0 GOOD	10.8 GOOD 14.7 GOOD	14.1:600D	10.01FAIR	POOR
DEV.	PHASE (DEG)	16.1	10.8	14.1	10.0	65.1
STAND.	GAIN (DB)	40 c	100 101	1.7	4 k	7.9
AVERAGE	PHASE (DEG)	-31.1	-48.1	-85.6 -132.1	-171.5	-333.4
AVEI	GAIN (DB)	900	1 4 0	-2.7	10.0 4.0	
	FREGU. (HERTZ)	0.121	0.374	0.802	1.703	3.626
:						

ELEVATION OPEN LOOP

	<u>i</u>	100	1	JEV.	CHI	TYHA	GAIN-VAKIAI IUN		Ē	FINDE-VANIALIUN) T C C	:
(HERTZ)	GAIN (DB)	PHASE (DEG)	[]	PHASE REL. (DEG) LEV.	MIN (DB)	AV-SD AV+SD (DB) (DB)	AV+SD (DB)	MAX REL.	L. MIN V. (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
	10.5	-106.6	3.9	80.3 F00R	6.9	6.5	14.4	18.6 F00R	:	245.4 -186.9	-26.3	7.6
0.176	5.1	-97.8	3,3	28.3!ACFT	0.4	1.9	8.4	9.5!ACFT		7 -126.1	-69.4	-57.7
0.253	5.0	-69.5	(J.	51.5!FAIR	-3.5	-2.4	8.2	11.9:FAIR	IR -132.() -121,1		23.4
0.374	-0.1	-96.4	2.0	17.9!6000	-3.8	-2.0	1.9	2.4 GOOD		2 -114.3		-63.0
0.549	-1.6	-112.0	2.6	12.11FAIR	-7.1	-4.2	1.0	0.9:FAIR	IR -125.8	3 -124.1		8 • 68-
0.802	-4.2	-122.6	1.0	14.9;600D	3. N	5.3	3.2	-2.9 GOOD			-107.7	-90.4
1,165	-6.2	-152.7	6.0	12.4:600D	-7.6	-7.1	-5.3	-4.91600D		3 -165.2	-140.3	-139.1
1,703	-9.1	-175.1	м Э•	5.5 FAIR		-12.6	9.5	-5.7!FAIR			-169.7	-168.1
2.483	0.8-	-212.9	3	25.1!ACFT	-13.7	-11.3	-4.7	-3.31AC		-238.0	-187.7	-159.0
3.626	9.6-	-275.3	7.0	78.8:F00R	-18.9	-16.5	-2.6	-0.9!FOOR	OR -378.1	-354.0	-196.5	-139.0

Table B-5 (a)

6RUNS

AZIMUTH CLOSED LOOP

AVERAGE STAND. DEV.! GAIN-VARIATION FHASE GAIN PHASE GAIN PHASE FEL. MIN AV-SD AV+SD MAX FEL. MIN (DB) (DB) (DB) (DB) (DB) (DB) (DB) (DB)
AVERAGE STAND. DEV.! GAIN-VARIATION GAIN-VARIATION GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. M M AV-SD MAX REL. M M AV-SD MAX REL. M M AV-SD MAX
AVERAGE STAND. DEV.! GAIN-VARIATION GAIN-VARIATION GAIN PHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD AV+SD AV+SD MAX REL. MIN AV-SD AV+SD AV+SD MAX REL. MIN AV-SD AV+SD A
AVERAGE STAND, DEV.! GAIN-VARIATION GAIN PHASE GAIN PHASE REL. MIN AV-SD AV+SD (DB) (DB) (DB) (DB) (DB) -1.8 -10.9 1.7 4.3;600D -5.3 -3.5 -0.1 -1.9 -13.8 2.1 4.9;600D -6.3 -3.9 0.2 -1.6 -22.0 1.8 4.8;600D -5.4 -3.4 0.1 -1.5 -36.2 0.7 11.0;600D -3.0 -2.2 -0.8
AVERAGE STAND. DEV.! GAIN-VARIATION GAIN PHASE GAIN FHASE!REL. MIN AV-SD AV+SD (DB) (DEG) [LEV. (DB) (DB) (DB) -1.8 -10.9 1.7 4.3 G00D -5.3 -3.5 -0.1 -1.9 -13.8 2.1 4.9 G00D -5.3 -3.9 0.2 -1.6 -22.0 1.8 4.8 G00D -5.4 -3.4 0.1 -1.5 -36.2 0.7 11.0 G00D -3.0 -2.2 -0.8
AVERAGE STAND. DEV.! GAIN-VARIA GAIN PHASE GAIN FHASE!REL. MIN AV-SD (DB) (DEG) (LEV. (DB) (DB) -1.8 -10.9 1.7 4.3 600D -5.3 -3.5 -1.9 -13.8 2.1 4.9 600D -6.3 -3.9 -1.6 -22.0 1.8 4.8 600D -5.4 -3.4 -1.5 -36.2 0.7 11.0 600D -3.0 -2.2
AVERAGE STAND, DEV.; GAIN PHASE GAIN PHASE!REL, M (DB) (DB) (DEG)!LEV. (C) -1.8 -10.9 1.7 4.3 GOOD -1.9 -13.8 2.1 4.9 GOOD -1.6 -22.0 1.8 4.8 GOOD -1.5 -36.2 0.7 11.0 GOOD -2.1 -42.7 1.1 5.6 GOOD
AVERAGE STAND. I GAIN FHASE GAIN FF (DB) (DEG) (DB) (I -1.8 -10.9 1.7 -1.9 -13.8 2.1 -1.6 -22.0 1.8 -1.5 -36.2 0.7 1
AVERAGE GAIN FHASE (DB) (DEG) -1.8 -10.9 -1.9 -13.8 -1.5 -36.2 -2.1 -42.7
AVERAGE FREGU. GAIN FHASE (HERTZ) (DB) (DEG) 0.100 -1.8 -10.9 0.143 -1.9 -13.8 0.209 -1.6 -22.0 0.308 -1.5 -36.2 0.450 -2.1 -42.7
FREGU. GAIN (HERIZ) (DB) (HERIZ) (DB) 0.100 -1.8 0.143 -1.9 0.209 -1.6 0.308 -1.5 0.308 -1.5
FREGU. (HERTZ) (HERTZ) 0.100 0.143 0.209 0.308

	MAX (DEG)	-11.1	-33.2	-66.1	-102.9 -112.8	-146.7	-160.6 -203.8
NOIL	AV+SD (DEG)	-27.9	-58.2	-80.9	-106.8 -120.0	-149.5	-169.6 -216.2
PHASE-VARIATION	AV-SD (DEG)	-83.2	-100.4	-106.5		-159.9	-199.2 -249.1
PHAS	MIN (DEG)	-91.7 -87.8	-95.3		-114.1 -135.2		-207.6 -251.4
1	1AX REL. (DB) LEV.	13.0 FAIR	G00D G00D			5.9;600b	-6.11FAIR -3.61FAIR
1 1	MAX (DB)	13.0	10.2:600D 7.1:600D	2.6	-0.1;600D -2.8;600D	-5.9	-6.1
TION	AV+SD (DB)	13.5	4.0	1.9	-0-6 -3-6	9.9-	-2.0
GAIN-VARIATION	AV~SD (DB)	5.7	0 80		7.0		-10.5
GAIN	MIN (DB)	1.5	0.4	0.1	-3.1	9.6-	-10.7 -17.2
	HASE!REL. DEG)!LEV.	27.2 FAIR	G00D G00D	GOOD	1600D 1600D	_	4.8 FAIR 6.4 FAIR
DEV.	1 <u>a</u> ~	27.7	21.11	12.8	7.3	छ ।	16.8
STAND.	GAIN (DB)	3.9	13 13 14 14 15	0.8	1.0	1.2	4.1
AVERAGE	PHASE (DEG)	-55.6	-79.3	-93.7	-111.1	-154.7	-184.4 -232.6
AVEI	1	9,6	36.2	1.1	-1.7	-7.8	-9.0
	FREQU.	0.100	0.209	0.450	0.659	1.406	3.000

Table B-5 (b)

6RUNS

ELEVATION CLOSED LOOP

		4	:: 9	:: 6	:- 8	6	:: o	= m	4	:: +	 0
! ! !	MAX (DEG)	-8.4	-10.	-16.	-35.	-44.	-75.	-105.3	-153.	-176.	-253.
TION	AV+SD (DEG)	-11.3	-10.8	-21.2	-37.1	-43.7	-76.2	-105.6	-155.3	-193,5	-288,5
PHASE-VARIATION	AV-SD (DEG)	-21.8	-38.4	-32.1	-46.1	-63.4	-88.0	-124.3	-167.5	-237.2	-360.5
PHAS	MIN (DEG)	-25.5	-53.5	-32.5	-49.2	-72.4	8.06-	-131.5	-168.6	-241.7	-357.5
	REL.	0.4:6000	1 : G00B	3 G00D	-0.3!600D	2 600D	1 1 GOOD	-0.11G00p	-0.5!G00D):FAIR	-3.6!ACFT
!	MAX (DB)	7.0		0	0	0	0	-0-1	9.0	-1,(-3.6
TION	AV+SD (DB)	0.3	0.7	0.2	-0.1	-0.3	-0.2	-1.0	-1.4	12.9	-5.1
GAIN-VARIATION	AV-SD (DB)	-1.5	-4 5	-2.1	-3.0	-2.6	-2.9	-2.7	-5.7	4.8	-11.0
GAI	MIN (DB)				-4.6	-3.4	-4.0	-2.9	9.9-	-8,3	-12.8
) 	ASE!REL. EG)!LEV.	5.2:600D	.8:600D	.5:600D	.5:600D	.9:6000	.916001	9.4 GOOD	.1 GOOD	.8:FAIR	6.0!ACFT
H.	£0	i)	13	i)	4	6	ស	6	•	21	36
STAND.	ļ	6.0	2.6	1.5	1,5	1.2	1.3	6.0	Ci Ci	8•	3.0
AVERAGE	3 ~ !	-16.6	-24.6	-26.7	-41.6	-53,5	-82.1	-114.9	-161.4	-215.4	-324.5
1	- 1	9.0-	-1.9	-1.0	-1.5	-1.4	-1.6	-1.8	-3.6	-5,6	-8.1
\$0 CF 040 040 040 040 040 040 040 040 040 04	FREQU. (HERTZ)	0.121	0.176	0.253	0.374	0.549	0.802	1.165	1.703	2,483	3,626

ELEVATION OPEN LOOP

	AVE		STAND.	. DEV. :	GAI	GAIN-VARIATION	NOIT		FHAS	FHASE-VARIATION	NOIT	
FREQU.	1	PHASE (DEG)	GAIN P	PHASE REL. (DEG) LEV.	MIN (DB)	AV-SD (DB)	AV+SD (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SE (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	10.6	-87.8 -80.1	000 000	11.5 FAIR	4.6	7.0	14.1	16.4)FAIR	-107.4	-99.3	-76.3	-72.4
0.253	0.9	-91.8	9.0	12.01600D		W. 4		9.9160010	-109.0	-103.8	-79.8	-76.4
0.374	1.9	6.86-	1.9	8.2;600D		-0.1		3.6 6001	-109.2	-107.0	-90.7	-85.0
0.549	0.1	-107.7	1.8	7.6!G00D		-1.7		2.1 6000	-118.9	-115.3	-100.2	-93.9
0.802	-3.2	-125.6	1.3	2.4:G00D		14.0		-1.9;600D	-129.1	-128.0	-123.2	-122.6
1,165	i L	-143.7	0.7	5.4 G00D		-6.2		-4.2;600D	-152.4	-149.0	-138,3	-135.5
1,703	6.7-	-168.7	1.3	4.1:G00D		-9.3		-6.2;600B	-173.6	-172.9	-164.6	-162.4
2,483	6.8-	-202.8	2.0	14.7:FAIR		-10.8		-5.4!FAIR	-225.7	-217.5	-188.0	-177.2
3.626		-309.5	M M	46.2!ACFT		-9.1		-1.1!ACPT	6.555-	-355.7	E-263.3	-230.1

-

AZIMUTH CLOSED LOOP

	MAX (DEG)	-9.5	-15.7	-29.1	-57.6	-85.1	-118.3	-155.0	-219.7
NOIL	AV+SD (DEG)	-9.9							
HASE-VARIATION	AV-SD (DEG)	-12.5							
PHAS	MIN (DEG)	-13.0	-28.1	-5/00	-70.1	-108.8	-145.1	-210.6	-297.2
	MAX KEL. (DB) LEV.	-0.81600D -0.41600D	0,816000	0.81600E	1.3 G00D	1.6 GOOD	1.8:6000	3,7;6000	5.0 FAIR
NOIL	AV+SD M	6.0-							
GAIN-VARIATION	AV-SD (DB)	-1.5 2.5	2.0	9 6	្ត	-2.7	-4.4	-6.7	-7.8
GAIN	MIN (DB)	-1.6	다 ! 다 !	9.6	 8	-3.2	-5,1	-7.8	-9.1
DEV.	FHASE REL. (DEG) LEV.	1.31600D 4.11600D	4.2!600b	2.8.6000 4.8.6000	3.91600D	8.516000	11.8; GDDD	17.81600D	26.01FAIR
STAND.	GAIN F	0.3	0 0	1.0	٠ د د	o 5	1.1	1.4	1. 3.
AVERAGE STAND.	SE	-11.2	-20.5	-33.8	-61.9	-93.2	-131.8	-184.7	-259.8
AVEF	GAIN (DB)	1.2	-1.4	-1.7	-1.9	5.5	- T	15.2	-6.3
AVERAGE	FREQU. (HERTZ)	0.100	0.209	0.450	0.659	0.967	1.406	2.055	3.000
			:			 -			

	AVE	AVERAGE	STAND.	. DEV.:	GAIN	GAIN-VARIATION	NOIL		PHAS	FHASE-VARIATION	NOIL	
FREGU.		PHASE (DEG)	GAIN (DB)	PHASE IREL. (DEG) ILEV.	MIN (DB)	AV-SD (DE)	AV+SB (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.100	11.8	-61.0	1.3	7.7 G00D 17.3 FAIR	10.5	10.5	13.1	14.0 GDOD 13.1 FAIR	-74.2	-68.7	-53.3	-52.3
0.209	7.3	-75.0	1.3	12.4;600D	4.0			8.9:6001	-88.8		-62.6	-56.2
0.308	3.4	6.68-	1.3	8.1:6000	0.7			5.1:600D	-100.8		-81.8	-76,1
0.450	1.1	-97.2	0.8	7.016000	-0.4			1.8:6000	-104.1		-90.2	-84.5
0.659	-1.4	-110.5	0.7	2.8;600D				-0.4!G00D	-114.1		-107.7	-105.6
0.967	4.4	-130.0	0.8	4.4:6000				-3.71600D	-137.0		-125,7	-124.7
1.406	-7.0	-151.1	0.8	7.616001				-6.21600D	-159.7		-143.5	-141,2
2.055	0.6-	-183.1	6.0	11.6:600D	-10.7			-7.9!600D	-200.6		-171.5	-163.8
3.000	-7.7	-237.8	1.0	22.9!FAIR	-9.2			-6.2!FAIR	-276.7		-214.9	-205.6

ELEVATION CLOSED LOOP

	AVE	AVERAGE	STAND.	DEV.!	GAIN	GAIN-VARIATION	NOIL		FHA	PHASE-VARIATION	NOIT	
FREQU.	GAIN (DB)	FREGU, GAIN PHASE (HERTZ) (DB) (DEG)	GAIN (DB)	PHASE REL. (DEG) LEV.	MIN (EB)	AV-SD (DB)	AV-SD AV+SD (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SB (DEG)	AV+SD (DEG)	MAX (DEG)
0.121 -0.9	6.0-	-13.0	ì	5.616000	-2.2	-1.8	0.0	0.7;600	n -18.9	!	-7.4	-1.1
176	-1.2	-20.3	6.0	4.716000	-3.1	-2.1	-0.3	-0.2!G00B	IB -29.0	-25.0	-15.5	-13.7
0.253	6.0-	-28.8	0.8	4.0:G00D	-2.0	-1.7	-0.1	0.41600	ID -33.7		-24.9	-22.1
374	-1.3	-36.8	1.2	2.7!G00D	.3.1	- N	-0.2	0.41600	ID -40.2		-34.1	-32.6
).549	-1.1	-52.0	8.0	3.1:6000	-2.1	-1.9	-0.3	-0.21600D	0 -56.5		-49.0	-48.5
0.802	-1.1	-75.6	8.0	4.3;600p	-2.5	-1.9	-0.3	0.01600			-71.3	-68.7
1.165	-1.7	-109.4	1.4	5.7;600D	-4.4	-3.1	-0.3	-0.1 GOOD			-103.7	-103.1
1.703	-2.9	-158.4	1.6	11.4;6000	-5.6	-4.S	-1.3	-0.8;600D	ID -172.0	-169.8	-147.0	-139.9
2.483	-4.5	-223.1	2.0	20.916000	-8.4	.6.5	-2.6	-2.616000		-244.1	-202.2	-188.5
3.626	-7.8	-309.7	5.9	21.1!ACFT	-12.0	-10.7	-4.8	-3.2!ACF		ſ	-288.7	-282.7

	AVE	AVERAGE	STAND. D	. DEV.	GAIN	GAIN-VARIATION	NOIL		РНА	PHASE-VARIATION	NOIL	
FREQU.	GAIN (DB)	FHASE (DEG)	GAIN (DB)	PHASE REL. (DEG) LEV.	MIN (DB)	AV-SD AV+SD (DB) (DB)	AV+SD (DB)	MAX REL. (DB):LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	10.5		1.3	33.4 6000	8.7		11.8	12,1,6000	-113.8	-104.2	-37.5	-5.0
0,176		-81,2	2.9	11,1,6000	3.9		10.8	12,3;600D	-91.6	-92.2	-70.1	-59.0
0.253		-94.2	1.6	9.316000	3.7		7.0	8.3:600E	-109.3	-103.5	-85.0	-81,1
0.374	5.9	-95.5	1.1	11.1:6000	1.6	1.8	4.0	.0 4.81600D -113.4 -106.7	-113.4	-106.7	-84.4	-77.3
0.549		-108.6	0.7	5.6.6000	-0.7		1.2	1.6 6000	-115.6	-114.2	-103.0	-101.2
0.802	•	-123.0	9.0	4.0:600p	-3.4		-1.8	-1.4:6000	-130.9	-127.0	-119.0	-118.4
1,165	•	-140.6	0.7	5.8:6000	9.9-		-4.5	-4.4 GOOD	-148.7	-146.4	-134.8	-130.4
1,703		-167.1	6.0	7.616000	-8.8		9.9-	-6.4;600D	-175.6	-174.7	-159.5	-153.4
2,483	•	-206.9	1.6	13.1:600B	-11.2		-6.3	-6.4 GOOD	-222.4	-220.0	-193.8	-186.2
3,626	•	-287.6	3.0	29.3! ACPT	2,11-		C . K	-2.0!ACPT	9,155-	-714.9	F. A. C.	-250.1

Figure B-4

Figure B-5

Figure B-6

Table B-7 (a)

(4) 2. 3 =. ;—.

6RUNS

AZIMUTH CLOSED LOOP

	AVE	AVERAGE	STAND. DE	DEV.	GAIA	GAIN-VARIATION	TION			PHAS	PHASE-VARIATION	NOIL		:
FREGU. GAIN PHASE (HERTZ) (DB) (DEG)	GAIN (DB)	PHASE (DEG)	: (MIN (DB)	AV-SB (DB)	AV+SB (DB)	MAX IRI (DB) ILE	REL.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)	
0.100	-0.9	í	6.0	2.316000		-1.8	-0.1	0.416		: .	-18.2	-7.5	-2.7	
0.143	-1.5	-22.9	8.0	7.1:G00D		12.3	-0.7	-0.716		_	-30.0	-15.9	-13.2	
0.209	-1.4	-29.5	1.6	7.5:600D	4.4	-3.0	0.5	0.616		_	-36.7	-21.7	-18.4	
0.308	-2.5	-36.7	1.2	7.21600D	-4.2	-3.4	6.0-	-0.716		_	-43.9	-29.5	-27.7	
0.450	-2.3	-56.4	9.0	11.816000	-2.9	-2.8	-1.7	-1.5;600D		-78.2	-68.2	-44.6	-40.3	
0.659	-2.8	-74.3	1.7	12.9:G00D	-6.3	4. 10.	-1.1	-0.916			-87.2	-61.3	-61.5	
0.967	-3.6	-105.1	1.4	14.11G00D	5.9	0.0	-2.5	-2,216		~	-119.2	-91.1	-85,5	
1.406	-6.1	-147.2	3.5	22.51FAIR	-13.6	7.6-		-3.61F		C.I			-113.9	10
2.055	-7.8	-185.0	1.8	22.4!ACPT	-10.0	-9.7		-4.2:A		-213.8		-162.5	-154.0	
3.000	6.6-	-240.1	8.4	33.7!FOOR	-17.5	-14.7		-2.9:P		_			-208.3	

		AVERAGE	RAGE	STAND. DE	STAND. DEV.!		GAIN	GAIN-VARIATION	ATION			PHA	PHASE-VARIATION	NOIT	
FRE (HE)	9	1	PHASE (DEG)	GAIN (DB)	SE :	REL. LEV.	MIN (DB)	AV-SD (DB)	AV+SD (DB)	MAX (DB)	REL.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.100	00 10	1	-72.1	2.1			8.2	!	1	14.5	ACPT	-108.4	-102.3	-42.0	-11.5
0.1			-77.7	2.4	14.2!FAIR		3			10.7	FAIR	-100.7		-63.6	-58,7
0.2			-88.2	2.8	•		8.0-		7.6	7.6	7.6:6000	-114.4	-104.0	-72.5	-67.8
0.30			-87.5	1.4	15.5160	GOOD	-0.3	0.8		4.0	6000	-104.8		-71.9	-60.1
0.4			-104.2	1.6	.6	0009	-3.7			0.8	G00D	-117.8		-94.6	-85.7
0.6			-115.2	1.7	3	_	-5.7			-1.216	G00D	-131.3		-104.0	-97.4
0.9	0.9- 75		-133.9	1.4	9.01600D		-8.6		-4.7	-4.7	-4.7:600D	-145.5	-142.9	-124.9	-121,1
1.4			-159.4	8	6	FAIR -	15.2	•		8.9-	FAIR	-187.6		-144.5	-138.7
0.0			-183.9	1.3	6		12.3	ı		-8.21	ACFT	-205.0		-168.0	-161,8
3.0			-228.3	3.8	30.8:FOOR		18,4	-15.3	-7.7	-7.1	FOOR	-271.9	-259.1	-197.5	-199.6

Table 8-7 (b)

6RUNS

ELEVATION CLOSED LOOP

PHASE-VARIATION
AV-SD AV+SD
REL. MIN
AUTON MAX IR
ביייייייייייייייייייייייייייייייייייייי

	AVE	RAGE	STAND. DEV.	DEV.	GAIN	GAIN-VARIATION	NOIT		FHA	FHASE-VARIATION	ATION	
FREGU.	GAIN (DB)	PHASE (DEG)	GAIN (DB)	PHASE REL. (DEG) LEV.	MIN (DB)	AV-SD (DB)	AV-SD AV+SD (DB) (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	!	1	i	.6 G00D	4.7	!	6.6	11.4:6000	-127.0		-58.1	-34.2
0.176	7.6	-79.0	6.7	.O!FAIR	-0.2	0.8	14.3	19.51FAIR	-100.7	-98.0	-59.9	-52.8
0.253		-85.8	2.0	.2!600D	0.0		i Ö	6.1 G00D			-70.6	-58.9
0.374	0.7	-86.1	1.6	.8:600D	-1.7		5	3.5:6000	-102.3	6.66-		-64.8
0.549		-110.7	2.3	5.5:6000	-6.7	-4.7	0.0-	0.016000	-121.7	-116.2	-105.3	-105.2
0.802		-125.3	о С	.4!G00D	0.8-		-2.8	-3.1:GOOD	-136.1	-132.7	-117.9	-115.8
1.165		-150.6	1.3	4 1 6000	-9.1		-6.1	-5.4:G00D	-166.4	-163.1	-138.2	-128.6
1.703	-10.3	-180.8	1.9	15.0!ACPT	-12.8	-12.2	-8.4	-7.7!ACPT	-201.7	-195.8	-165.8	-159.6
2.483		-185.1	5.7	.2!ACFT	-23.9	-17.1	-5.7	-6.7!ACFT	-248.2	-242.2	-127.9	-106.3
3.626		-268.5	7.7	. 2 ! POOR	-23.4	ł	C . E -	0.4:PODR	•			6.64

Table B-8 (a)

6RUNS

AZIMUTH CLOSED LOOP

	MAX (DEG)	-1.4	-20.7	-28.3	-42.2	-58,2	-81,3	-116.1	-157.0	-211.3
LION	AV+SD (DEG)	-5.7	-22.0	-30.3	-44.7	9.09-	-87.6	-117.8	-171.7	-225.4
FHASE-VARIATION	AV-SD (DEG)	-15.0 -19.5	-35.8	-38.5	8.09-	-82.2	-1111.5	-155.6	-218.0	-283.1
FHAS	MIN (DEG)	-15.9 -22.2	-42.3	-39.6	-61.7	-88.2	-118.6	-168.9	-221,1	-294.3
	X REL. B) LEV.	0.71600D -0.61600D	.6:G00D	.5 GOOD	.2 GOOD	.7!600D	.9:600D	.91600D	.3!ACFT	.1 !FAIR
	MAX (DB)	00	ij	Ö	T	-	7	(A	ΙŊ	9
TION	AV+SD (DB)	0.0	-1.7	-0.4	-1.3	-1.8	-2.5	-3.6	0.9-	-7.1
GAIN-VARIATION	AV-SD (DB)	-3.8								
GAIN	MIN (DB)	-4.4	-2.9	-3.7	-3.8	-3.7	-6.5	-8 5	-15.5	-13.3
	AASE REL. DEG) LEV.	4.61600b		4.1 GOOD		100011	1600D	16000	23.1 ACPT	FAIR
· DEV.	#2	44	5.9	4.1	8.0	10.8	12.0	18.5	23.1	28.5
STAND.	GAIN (DB)	1.8	0	1,3	0.8	0.7	1.4	1.9	3.7	2.3
AVERAGE	49	-10.4	-28.9	-34.4	-52.8	-71.4	2.66-	-136.7	-194.8	-254.2
AVE	GAIN PH (DB) (DE	1.6	ल ल ल	-1.7	-2.5	-2.6	-3.6	ត្ ម	-9.7	-9.4
	FREGU. (HERTZ)	0.100	0.209	0.308	0.450	0.659	0.967	1.406	2,055	3.000
									:-	

1	MAX (DEG)	-3.4			-106.6 -118.2	-134.7 -165.1 -201.1
TION	AV+SD (DEG)	-28.1	-72.3	-97.0	-108.0	-139.2 -175.3 -212.5
PHASE-VARIATION	AV-SD (DEG)	-98.2	-84.6	-108.2	-120.5	-164.2 -208.9 -267.1
PHAS	MIN (DEG)	-115.9	-90.1	-112.5	-122.9	-171.9 -209.9 -282.0
	MAX REL. (DB):LEV.	16.11G00D	7.0:600p	2.01600p	-0.8 600D -4.1 600D	-6.7:G00D -8.9:ACPT -9.3:FAIR
	MAX (DB	16.	7.4	ભ	-0-	.6- -8-
TION	AV+SD (DB)	14.7	6.4 5.4	1,3	1.4	19.0 19.0
GAIN-VARIATION	AV-SD (DB)	3.6 4.0	2.1	-1.9	14.7 5.8	-10.1 -14.9 -11.7
GAIN	MIN (DB)	D. 6	6.0	-2.8	-4.9	-11.3 - -16.8 - -12.7 -
	ASE REL. EG) LEV.	35.1 GOOD	6.11G00D 13.91G00D		6.31600D 6.21600D	12.5:600D 16.8:ACF: 27.3:FAIR
DEV.	PHASE (DEG)	35.1	13.9	5.6	6.6	12.5 16.8 27.3
STAND. D	GAIN (DB)	4.4 0.4	15.0	1.6	4.0	10 H
AVERAGE	PHASE (DEG)	-63.1	-78.5	-102.6	-114.3 -130.3	-151.7 -192.1 -239.8
	GAIN (DB)	10.1	4 W	-0.3	-2.8	-8.6 -12.1 -10.6
!	FREQU. (HERTZ)	0.100	0.209	0.450	0.659	1.406 2.055 3.000

ELEVATION CLOSED LOOP

! ! !	MAX (DEG)	-11.4				-66.9	ı	-136.4	-194.4	-198.7
TION	AV+SD (DEG)	-12.1	-18.5	-34.5	-46.2	-72.9	-107.4	-148.7	-200.6	-246.7
FHASE-VARIATION	AV-SD (DEG)	-15.2	-32.3	-48.0	-78.4	-101.2	-135.1	-182.9	-240.9	-337.7
FHAS	MIN (DEG)	-16.2	-39.0	-54.7	-96.7	-110.3	-138.1	-181.4	-245.1	-338.1
	REL.	1.2:6000	516000	61600D	2:6000	4 ; G00D	516000	1 ; G00D	BIFAIR	-4.0!FDDR
1	MAX (DB)	10	-	0	0	ċ	-	-1.	-4	14.
NOIL	AV+SD (DB)	0.0	0	-0.4	-0.4	D • O •	-2.0	12. 13.	15.4	-4.6
BAIN-VARIATION	AV-SD (DB)	-1.9	-3.6	-3.6	-4.1	-4.7	-4.7	-7.3	-12.2	-18.0
GAIN	MIN (DB)	-1.9								
; ;	REL.	1.6 600D	16000	6.81G00D	16000	1600D	GOOD	1600D	FAIR	FOOR
DEV.	PHASE (DEG)		6.9	8.9	16.1	14.1	13.9	17.1	20.2	45.5
STAND.	GAIN (DB)	- F	1.9	1.6	1.8	2.1	1.4	2.4	3.4	6.7
AVERAGE STAND.	PHASE (DEG)	-13.6 -17.8	-25.4	-41.2	-62.3	-87.0	-121.2	-165.8	-220.7	-292.2
AVE	_ (3 ~ !	-0.9	-1.7	-2.0	-2,3	-2.6	-3.4	4.9	-8.8	-11.3
	FREQU.	0.121	0.253	0.374	0.549	0.802	1.165	1,703	2,483	3.626
	:			 		 				

CATA DUACE			ה ב	STAND.	DEV.		GAIA	GAIN-VARIATION	TION			PHAS	PHASE-VARIATION	ATION	
(DB) (DEG) (DB)	! !	PHASE GAIN (DEG) (DB)	i	PHASE (DEG)		REL. LEV.	MIN (DB)	AV-5D AV+SD (DB) (DB)	AV+SE (DB)	MAX IREL. (DB) LEV.	REL. LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
10.5 -75.6 1.2	-75.6 1.2	1.2	l í	26.010		7	0.6	9.3	!	12.610		-125.8	-101.6	l	!
7.168.1	-68.1 2.0	2.0		21.81F	Ľ.		4.0	0 0		9.71FAIR		-94.7	8.68-		
5.2 -82.4 3.2 22.5	-82.4 3.2 22.5	3.2 22.5	22.5	22.516	Ü		-0.2	1.9		9.616000		-124.0	-104.9	-59.9	-47.3
1.5 -94.2 2.0 12.7	-94.2 2.0 12.7	2.0 12.7	12.7	12.7160	Ö		1.0	0.0		4.311	G00E	-113.6	-106.9		
-1.7 -111.5	-111.5 2.7	2.7		7.2160	8		-7.3	-4.3		1.0:1		-122.0	-118,7	-104.3	
0.802 -4.2 -125.4 2.2 7.81G00D	-125.4 2.2	2.2		7.816	3		-8.2	4.9-	-2.1	-1.7;600E	0000	-136.3	-133.2	-117.5	-115.0
-6.7 -144.8 1.3	-144.8 1.3	1.3		7.416	Ō		6.8	0.8-		-4.611	G005	-152.4	-152.2	-137.4	-133.0
-8.7 -171.2 1.6	-171.2 1.6	1.6		10.916	ō		-11.6	-10.3		6.3!(0000	-180.9	-182,1	-160.3	-150.7
-11.1 -210.9	-210.9 2.5	2.5		16.8!F	Œ		-15.6	-13.6		-8.61FAIR	FAIR	-233,2	-227.7	-194.1	-189,5
-10.2	-274.6 7.3	7.3		43.81F	ā		-24.4	-17.4		-3.0!F00R	FOOR	-330,7	-318.4	-230.8	-197.6

Table 8-9 (a)

6RUNS

AZIMUTH CLOSED LOOP

	MAX (DEG)	15.0	-18.0	-27.4	-41.3	-56.3	-85.8	-120.8	-174.5	-226.9
HION	AV+SD (DEG)		-20.5	-27.2	-42.4	-57.8	-89.1	-124.2	-183.7	-236.1
PHASE-VARIATION	AV-SD (DEG)	-15.2	-30.6	-47.5	-56.8	-79.0	-108.7	-162.2	-221.6	-280.7
PHAS	MIN (DEG)	-18.7	-34.1	-52,3	-63.2	-88.4		-177.3		-280.3
	1AX REL. (DB) LEV.	-0.21600D	-0.81G00D	-0.61G00D	1600D	-1.0;600b	-1.1:G00E			-5.5!ACPT
! ! !	MAX (DB)	0.0	9.0	9.0-	-1.1	-1.0	-1.1	-1.5	-3.9	-5.5
TION	AV+SD (DB)	-0.4	-1.3	-0.5	-1.3	4.0-	-1.2	-1,3	-4.7	-6.3
GAIN-VARIATION	AV-SD (DB)	12.6	-2.7		2.5		-4.2	-6.8	-11.5	-12.5
GAIN	MIN (DB)	-3.6	-2.7	-3.1	4.5	- 55 W	-4.9	2.6-	-14.0	-13.3
DEV.	PHASE REL. (DEG) LEV.	4.3;600B	5.1:6000	10.1!G00D		10.6 GOOD	9.816000	19.0!GOOD	18.91FAIR	22,3!ACPT
STAND	GAIN (DB)	15 	0.7	8.0	0.4	1 5	1.5	2.8	3.4	3.1
AVERAGE	PHASE (DEG)	-10.9	-25.5	-37.3	-49.6	-68.4	6.86-	-143.2	-202.6	-258.4
AVE			-210	-1,3	-1.7	-2.0	-2.7	-4.1	-8.1	-9.4
 	FREGU. (HERTZ)	0.100	0.209	0.308	0.450	0.659	0.967	1.406	2,055	3.000

	3) (DEG)						ı	a ia sua mis	10 6U3 m A	- 11 11
FHASE-VARIATION	AV-SD AV+SD (DEG) (DEG)	0.0 -29.9					1	1 1		1111
PHASE-V	MIN AU-	95.3 -80.0					1 1 1			
	MAX REL. (DB) LEV. (I	14.016000			0000	600B 600B 600B		6000 6000 6000 6000	6000 6000 6000 6000 6000	6000 6000 6000 6000 6000 6000 FAIR
TION	AV+SD (DB)					5.7				
GAIN-VARIATION	AV-SD (DB)									200 000 000 000 000 000 000 000 000 000
GAIA	MIN (EB)									2.2 -0.8 -1.4 -4.8 -7.2 -11.7
• DEV.1	PHASE!REL. (DEG)!LEV.	25.11600D	AA . T. T. T. T.	10.4;6000	10.4 GOOD 7.5 GOOD	10.4 G00D 7.5 G00D 5.2 G00D	10.4 (600D 7.5 (600D 5.2 (600D 8.4 (600D	10.4 G00D 7.5 G00D 5.2 G00D 8.4 G00D 5.3 G00D	10.4 G00D 7.5 G00D 5.2 G00D 8.4 G00D 5.3 G00D 11.9 G00D	10.4 G00D 7.5 G00D 5.2 G00D 8.4 G00D 5.3 G00D 11.9 G00D 13.7 FAIR
STAND. I	GAIN (DB)	50 C	, ,	1.7	1.7	1 2 1 7 2 2 4	1.2 1.2 1.8 1.8	10111 70111	101111 V 70 8 4 4 9	1011110 7008490
AVERAGE STAND. I	PHASE (DEG)	-54.9	0.001	-75.9	-75.9	-75.9 -95.7 -102.7	-75.9 -95.7 -102.7 -115.2	-75.9 -95.7 -102.7 -115.2	-75.9 -95.7 -102.7 -115.2 -132.3	-75.9 -95.7 -102.7 -115.2 -132.3 -157.0
AVE	GAIN (DB)		0	5.0	3 3 3 5	n wo	0 M O U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 3.00 1.00.11 1.00.00
	FREQU. (HERTZ)	0.100	0.143	0.208	0.209	0.209	0.209 0.308 0.450	0.209 0.308 0.450 0.659	0.209 0.308 0.450 0.659 1.406	0.209 0.308 0.450 0.659 1.406

ELEVATION CLOSED LOOP

SIAND. DEV.; ASE GAIN FHASE; REL. M 5) (DB) (DEG) LEV. (0.3 1.5 60.1 GOOD 1.8 1.9 49.5 GOOD 5.8 1.9 13.3 FAIR 5.4 1.6 9.2 GOOD 7.3 1.8 11.8 GOOD 7.1 1.6 18.2 GOOD 7.2 4.0 53.4 FAIR 7.3 2.0 53.4 FAIR 7.4 4.0 53.4 FAIR 7.5 4.0 53.4 FAIR 7.7 4.0 53.4 FAIR 7.8 3 36.2 ACFT 7.9 8.3 36.2 ACFT 7.9 8.3 47.2 FOOR 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
AVERGE SIAND. DEV. SAIN-VARIATION SA
AVERAGE STAND. DEV.: 3AIN-UARIATION GAIN PHASE GAIN FHASE REL. MIN AV-SD AV+SD MAX REL. MIN AV-SD MAX REL. MIN AV-SD AV+SD MAX
AVERAGE STAND. DEV.; 3AIN-VARIATION GAIN PHASE GAIN FHASE REL. MIN AV-SD AV+SD MAX REL. (DB) (DE) (DE) (DE) (LEV. (DB) (DE) (LEV. (DE) (DE) (DE) (DE) (DE) (DE) (DE) (DE)
AVERAGE STAND. DEV.; SAIN-VARIATION GAIN PHASE GAIN FHASE REL. MIN AV-SD AV+SD M (DB) (DEG) (DB) (DEG) LEV. (DB) (DB) (DB) (-0.9 -40.3 1.5 60.1 GOOD -2.8 -2.1 1.6 -2.9 -35.8 1.9 49.5 GOOD -2.8 -2.1 1.6 -1.1 -46.4 1.6 9.5 GOOD -4.4 -4.8 -1.1 - -1.2 -53.3 1.8 11.8 GOOD -4.4 -3.1 0.6 -2.5 -89.1 1.6 18.2 GOOD -5.6 -4.2 -0.9 -2.4 -144.3 2.0 53.4 FAIR -11.7 -7.6 0.3 -3.8 -203.2 6.3 36.2 ACT -13.0 -10.1 2.4 -4.7 -301.9 8.3 47.2 FOOR -16.4 -13.0 3.7
AVERAGE STAND. DEV.; 3AIN-UARIA GAIN PHASE GAIN FHASE REL. MIN AU-SD (DB) (DEG) LEV. (DB) (DB) (DB) (DB) (DB) (DB) (DB) (DB)
AVERAGE STAND. DEV.; GAIN PHASE GAIN FHASE; REL. M (DB) (DEG) (DB) (DEG) LEV. (-0.9 -40.3 1.5 60.1 GOOD - -2.9 -35.8 1.9 49.5 GOOD - -1.1 -46.4 1.6 9.2 GOOD - -2.5 -89.1 1.6 18.2 GOOD - -2.5 -89.1 1.6 18.2 GOOD - -2.5 -444.3 2.0 53.4 FAIR -1 -3.7 -203.7 4.0 53.4 FAIR -1 -3.8 -203.2 6.3 36.2 ACFT -1 -4.7 -301.9 8.3 47.2 FOOR -1
AVERAGE STAND. DEV.; GAIN PHASE GAIN FHASE; REL. M (DB) (DEG) (DB) (DEG) LEV. (-0.9 -40.3 1.5 60.1 GOOD - -2.9 -35.8 1.9 49.5 GOOD - -1.1 -46.4 1.6 9.2 GOOD - -2.5 -89.1 1.6 18.2 GOOD - -2.5 -89.1 1.6 18.2 GOOD - -2.5 -444.3 2.0 53.4 FAIR -1 -3.7 -203.7 4.0 53.4 FAIR -1 -3.8 -203.2 6.3 36.2 ACFT -1 -4.7 -301.9 8.3 47.2 FOOR -1
GAIN PHASE GAIN FF GAIN PHASE GAIN FF (DB) (DEG) (DB) (1 -0.2 -41.8 1.9 -1.1 -46.4 1.6 -1.2 -53.3 1.8 -2.5 -89.1 1.6 -2.4 -144.3 2.0 -3.7 -203.7 4.0 -3.8 -203.2 6.3 -4.7 -301.9 8.3
GAIN PHASE GAIN (DB) (DEG) (DB) -0.9 -40.3 1.5 -0.2 -41.8 1.9 -1.1 -46.4 1.6 -1.2 -53.8 1.8 -2.5 -89.1 1.6 -2.4 -144.3 2.0 -3.7 -203.7 4.0 -3.8 -203.2 6.3 -4.7 -301.9 8.3
AVER GAIN (EB) (12.19 1.11 1.11 1.11 1.11 1.11 1.11 1.11
FREGU. (HERTZ) 0.121 0.176 0.253 0.374 0.549 0.549 1.165 1.703 3.626

	AVE	AVERAGE	STAND. DEV.	DEV.	GAI	GAIN-VARIATION	ATION		PHA	PHASE-VARIATION	AT ION	
FREGU. (GAIN (DB)	-	GAIN (DB)	PHASE REL. (DEG) ILEV.	MIN (DB)	AV-SD (FB)	AV-SD AV+SD (PB) (DB)	MAX REL, (DB):LEV,	L, MIN V, (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.121	7.2	i i	9.9	48.0:FAIR	!	0.5	13.8	11.81FA	IR -177.0	-144.5	-48.5	!
0.176	4.0	-107.0	5.2	39.51FAIR		0	10.6	10.0!FA	IR -166.9	-146.6	-67.5	
0.253	1.9	-82.0	4.0	16.1:FAIR		-2.0	5.0	8.01FA	8.01FAIR -98.9	98.1	-65.8	-52.0
0.374	1.4	-104.5	2.0	12.6!G00D	6.0-	-0.7	3.4	4.4:6000		5 -117.1	-91.9	
0.549	0.3	-109.8	2.4	10.4 G00D		5.5	2.7	2.8160		-120.1		-96.6
0.802	-4.2	-126.6	2.1	10.5 G00D		-6.3		-1.4;600D			-116.1	-109.8
1,165	.5.9	-159.7	1.8	29.41FAIR		-7.7	-4.1	-3.8:FAIR	IR -224.6	5 -189.1	-130,3	-136.5
1,703	6.9-	-197.5	3.7	37.41FAIR	ī	-10.6	-3.3	-1.3!FAIR	i	-235.0	-160.1	-160.9
2.483	-8-2	-199.9	3.6	23.4!ACPT	-14.2	-11.8	4.6	-4.0!ACFT	PT -225.1	į	-176.5	-167.4
3,626	-6.1	-260.1	6.1	66.8:POOR	Į	1	0,0	3.3 POUR	OR 398.9	0.4CF- C	7.701-	-188.Z

Figure B-7

Figure B-9

APPENDIX C

AVERAGED RESULTS OF 12 EOG TRACKING RUNS WITH BREAK FREQUENCY OD 1.0 HERTZ

For Subjects 1 and 2, 12 EOG tracking runs were performed with a target forcing function of 1.0 Hz break frequency. As can be noted from the individual tracking results for Subjects 1 and 2 (in Appendix A), these data are not considered reliable (see markings on the plots in terms of reliability levels). The break frequency of 1.0 Hz was evidently too high and was therefore lowered for the subsequent tracking runs. Nevertheless, the results of these 12 EOG tracking runs were averaged in groups of 5, 3 and 4 tracking runs for maximum target angles of 6. 9 and 12 degrees respectively.

The results $\$ are $\$ shown in Tables C-1 to C-3 and Figures C-1 to C-3 respectively.

Table C-1 (a)

SRUNS

AZIMUTH CLOSED LOOP

	AVE	AVERAGE	STAND.	DEV.	GAIA	GAIN-VARIATION	TION		PHA9	FHASE-VARIATION	TION	
FREQU.	1	i	GAIN (DB)	FHASE REL. (DEG) LEV.	MIN (UB)	AV-SD (DB)	AV+SD (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.100	-9.2	-57.4	1.4	37.71F00R	-10.7	-10.6	:	-6.64 FOOR	-98.3	-95.1	:	6.1
0.143	4.6	-70.5	4.5	47.31F00R	-8.3	-7.0		-1.7:POOR	-133,1	-117.8	-23.1	1.2
0.209	5.3	-112.4	4.5	37.6! ACPT	-13.4	-9.5		-1,7!ACPT	-187,3	-150.0		
0.308	-7.7	-87.4	3.8	32.1!ACFT	-11.6	-11.5		-0.7!ACPT	-138.2	-119.5		-37.3
0.450	-4.1	-104.2	2.8	29.7;600D	-8.5 -6.9	6.9-	-1,3	0.016000	-141.6	-133.9	-74.5	-71.3
0.659	-4.6	-143.3	4.7	17.4!FAIR	-111.0	-9.3		2,31FAIR	-165.8	-160.7	-125.9	-122.5
0.967	-0.8	-187,7	1.4	9.7:600D	-2.9	-2.1		0.616000	-200.8	-197.4	-178.0	-172.6
1.406	-1.2	-248.2	1.8	8.216000	-3.4	-2.9		1.0:6000	-260.9	-256.4	-240.0	-236.2
2.055	-4.7	-298.3	1.3	16.91FAIR	-6.7	0.9-		-2.9!FAIR	-314.8		-281.4	-270.0
3.000	-5.9	-352,2	9.6	11.1!FAIR	-10.4	-8.5		-2.61FAIR	-361.9		-341,0	-330.5

 	MAX (DEG)	9.7 145.7 -120.8	-51.9 -93.3 -137.9	-176.3 -207.4 -241.3 -284.5
NIION	AV+SD (DEG)	50.8 50.8	-76.2 -103.6 -146.1	-179.0 -209.4 -247.9 -312.1
FHASE-VARIATION	AV-SD (DEG)	-117.9 -268.9 -162.7	-141.7 -154.5 -169.0	-189.2 -224.9 -279.1 -369.5
FHAS	MIN (DEG)	-116.1 -357.1 -186.0	-146.5 -141.7 -76.2 -158.8 -154.5 -103.6 -171.6 -169.0 -146.1 -	-191.5 -228.7 -288.7 -363.9
	MAX REL. (DB):LEV.	-4.7; FOOR 2.7; FOOR -4.0; ACET	-3.7.ACFT -4.9.GOOD -3.8.FAIR	-5.71600D -4.11600D -0.31FAIR 4.11FAIR
! ! !	MAX (DB)	2.57	- 2 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	-8.7 -0.3 -4.1
TION	AV+SD (DB)	1.1	n on	-14.0 4.0
BAIN-VARIATION	AV-SD (DB)	-10.2 -8.1	-11.4	-7.6 -7.1 -6.4 -5.8 -6.4 -5.8 -7.3 -4.1
GAI	MIN (EE)	-10.2	-13.2 -12.5	-7.6 -6.4 -7.3
	REL. LEV.	POOR POOR	ACFT GOOD FAIR	5.11600D 7.81600D 15.61FAIR 28.71FAIR
· DEV.	FHASE REL.	46.5 159.8	32.81ACFT 25.51600D 11.51FAIR	5.1 7.8 15.6 28.7
STAND.	GAIN (DB)	0.44	8 1 8 1 4 1	0.7 0.8 2.1 4.0
AVERAGE			-108.9 -129.1 -157.6	-184.1 -217.1 -263.5 -340.8
AVE	(i)		8- 6-4- 8-4-	-6.4 -3.0 -0.0
AVERAGE STAND.	FREGU. (HERTZ)	0.100	0.308 0.450 0.659	0.967 1.406 2.055 3.000

ELEVATION CLOSED LOOP

	MAX (DEG)	-40.5	-30.6 !!	11 8.89	13.9 !!	-127.7 !!	71.8 ::	51.8 ::	306.0 11	348.2 !!
	AV+SD (DEG) (-57.0 -		-132.4 -1			ł	-375.1 -3
FINDS: VENTAL FOR	AV-SD (DEG)	-75.6			•		-243.0 -		-365.0 -	-457.3 -
	MIN (DEG)	-79.4 -132.2	-136.6	-293.6	-192.8	-175.8			-376.1	-456.3
 	MAX REL. (DB) LEV.	-1.4!ACPT	-4.2; POOR	-1.8!ACFT	-1.0:FAIR	1.9!FAIR	3.9!ACPT	0.1:FAIR	-3.0:ACPT	-6.5!F00R
וומא	AV+SD (DB)					1.3			-3.8	•
GAIN-VARIATIUN	AV-SD (DB)	-7.5	-16.0	-14.9	9.9-	-7.1	-6.1	-7.7	-12.2	-13.7
GAIN	MIN (DB)	-7.4	-21.5	-21,9	-7.7	-10.5	-5.3	-9.2	-14.8	-16.2
	HASE!REL. DEG)!LEV.	13.3 ACFT 43.4 POOR	.51 FOOR	.9! ACFT	.O!FAIR	18.6!FAIR	.5! ACPT	.SIFAIR	25.7!ACPT	.1:F00R
Ë	PHA (DE	13 43	40	80	30	18	27	11	<u>М</u>	41
STAND.	GAIN (DB)	5.2			2.4	4.2	3.7	3.6	4	3.9
AGE		-62.3	6.98-	-137.9	-135.4	-151.0	-215.5	-268.8	-339.3	-416.2
	l	-5.3	-9.5	-7.5	-4.2	-2.9	4.5.	-4.1	0.8-	8.6-
		0.121	0.253	0.374	0.549	0.802	1,165	1.703	2,483	3.626
					••					

ELEVATION OPEN LOOF

MAX (DEG)	-76.8 -68.6 -64.2 -39.0 -68.5 -40.8 -93.9 -102.5 -135.3 -136.6 -153.5 -150.1 -182.6 -174.7 -227.0 -224.1 -297.5 -296.0
AV+SD (DEG)	-76.8 -68.5 -68.5 -93.9 -135.3 -153.5 -182.6 -227.0
AV-SD (DEG)	-112.8 -137.4 -226.7 -172.1 -173.4 -217.3 -243.5 -371.7
MIN (DEG)	-1115.5 -1148.2 -139.7 -189.0 -178.2 -245.6 -473.0
MAX REL. (DB):LEV.	1.4 ACFT 10.0 POOR -1.6 POOR -3.5 ACFT -5.1 FAIR -3.3 ACFT -1.6 FAIR 7.6 POOR
AV+SD (DB)	
(-7.0 -6.4 -15.4 -13.3 -22.0 -16.3 -21.7 -15.6 -10.6 -9.4 -12.7 -10.2 -9.1 -8.9 -10.1 -8.9 -14.0 -10.7
MIN (DB)	15.4 15.4 15.4 10.6 112.7 112.7 112.7 114.0
PHASE REL. (DEG) LEV.	18.0 ACF1 36.6 PODR 38.1 FODR 66.4 ACF1 9.9 FAIR 9.9 FAIR 8.3 FAIR 37.1 FOOR
GAIN (DB)	0074080874
PHASE (DEG)	-94.8 -100.8 -106.5 -160.3 -153.7 -153.7 -163.4 -199.9 -235.3
GAIN (DB)	44460000000000000000000000000000000000
FREGU.	0.121 0.121 0.176 0.253 0.374 0.549 0.802 1.165 1.703 3.626
	GAIN PHASE GAIN PHASE!REL, MIN AV-SD AV+SD MAX REL, MIN AV-SD AV+SD (DB) (DB) (DB) (DB) (DE) (DEG) (DEG) (DEG)

Table C-2 (a)

3RUNS

AZIMUTH CLOSED LOOP

	MAX (DEG)	1	-32.9	-86.6	-99.2	-122,8			-289.4	-334.1
TION	AV+SD (DEG)	-20.9 -121.0	-52.0			-125.5	-188,3	-253.0	-290.5	-337,7
PHASE-VARIATION	AV-SD (DEG)	-137.8 -188.3	-145.3	-166,4	-160.1	-156.8	-198.0	-261.1	-313,5	-355.9
FHAS	MIN (DEG)	-162.0 -137.8 -182.7 -188.3	-135.8	-180.3	-171.2	-161.0	-196.7	-262.8	-317.2	-354.9
	() REL.	-4.8!ACPT -8.5!POOR	-0.7!POOR	OIACFT	-2.1!ACFT	2.7:FAIR	71600D	-0.21600D	-2.61G00D	-5.41FAIR
] []	MAX (DB)	4-8	Ŷ	ÇÎ	ģ	લં	ó	o o	q	ហ៊ុ
LION	AV+SD (DB)	4.8 4.0							-1.9	
BAIN-VARIATION	AV-SD (DB)	-16.4 -14.2 -18.4 -16.9	-14.8	-9.5	-14.9	-8.3	-6.2	7.4-7	-10.2	-10.5
GAI	MIN (DB)	-16.4 -18.4	-16.7	-10.2	-17.8	-10.4	-7.6	-4.3	-11.9	-11.6
! ! !	REL.	ACPT POOR	FOOR	ACFT	ACFT	FAIR	G00D	GOOD	GOOD	9.1:FAIR
. DEV.	PHASE (DEG)	58.4!ACFT 33.7!FOOR	46.6	39.31	30.4	15.6	4.9	4.1:	11.516000	9.11
STAND.	GAIN (DB)	84 4.9	9.9	3.3	7.2	5.6	3.6	1.9	4.1	2.8
AVERAGE STAND.	PHASE (DEG)	-79.4 -154.6	-98.7	-127,1	-129.8	-141.1	-193.2	-257.1	-302.0	-346.8
	GAIN (DB)	1	8.3	-6.1	-7,7	-2.7	-2.6	-2.8	-6.1	7.7
	FREGU. (HERTZ)	0.100								
== =										

REL. LEV. CHEV. CH	MAX IR (DB) IL -1.01A -11.31F	(DB) (DB) (DB) (DB) (DB) (DB) (DB) (DB)	(DB) (DB) (DB) (DB) -14.4 1.0 -1.6 -15.1 -3.1 -4.1	MIN AU-SD AU+SD MAX (DB) (DB) (DB) (DB -17.6 -14.4 1.0 -1.4 -18.7 -17.6 -11.3 -11.7 -17.5 -15.1 -3.1 -4.1	HASE FEL. MIN AU-SD AU+SD MAX DEG) LEV. (DB) (DB) (DB) (DB 44.4 ACFT -17.6 -14.4 1.0 -1.0 30.7 FOOR -18.7 -17.6 -11.3 -11.	HASE KEL, MIN AU-SD AU+SD MAX DEG LEV. (DB) (DB) (DB) (DB 44.4 ACPT -17.6 -14.4 1.0 -1.0 30.7 FOOR -18.7 -17.6 -11.3 -11.0 44.6 FOOR -17.5 -15.1 -3.1 -4.	(DEG) (DB) (DEG) LEV. (DB) (DB) (DB) (DB) (DB) (DB) (DB) (DB)	GAIN FHASE GAIN FHASE REL, MIN AU-SD AU+SD MAK (DB) (DEG) (DB) (DEG) LEV. (DB) (DB) (DB) (DB) -6.7 -101.6 7.7 44.4 ACFT -17.6 -14.4 1.0 -1.0 -14.4 -156.9 3.1 30.7 FOOR -18.7 -17.6 -11.3 -11.1 -9.1 -114.4 6.0 44.6 FOOR -17.5 -15.1 -3.1 -4.
ACF1 F00F F00F ACF1	11:0	1 1	14.4	-17.6 -14.4 -18.7 -17.6 - -17.5 -15.1	-17.6 -14.4 -18.7 -17.6 - -17.5 -15.1	44.4 ACET -17.6 -14.4 30.7 FOOR -18.7 -17.6 - 44.6 FOOR -17.5 -15.1	-101.6 7.7 44.4 ACPT -17.6 -14.4 -156.9 3.1 30.7 POOR -18.7 -17.6 -114.4 6.0 44.6 POOR -17.5 -15.1	-6.7 -101.6 7.7 44.4 ACFT -17.6 -14.4 -156.9 3.1 30.7 F00R -18.7 -17.6 -9.1 -114.4 6.0 44.6 F00R -17.5 -15.1
3 F00F 1 F00F 5 F00F	111	-11.3	-17.6 -11.3 -15.1 -3.1	-18.7 -17.6 -11.3 -17.5 -15.1 -3.1	-18.7 -17.6 -11.3 -17.5 -15.1 -3.1	30.7!F00R -18.7 -17.6 -11.3 44.6!F00R -17.5 -15.1 -3.1	-156.9 3.1 30.7!F00R -18.7 -17.6 -11.3 -114.4 6.0 44.6!F00R -17.5 -15.1 -3.1	-14.4 -156.9 3.1 30.7!F00R -18.7 -17.6 -11.3 -9.1 -114.4 6.0 44.6!F00R -17.5 -15.1 -3.1
-4.1!POOR	4 11	-3.1	-15.1 -3.1	-17.5 -15.1 -3.1	-17.5 -15.1 -3.1	44.6!P00R -17.5 -15.1 -3.1	-114.4 6.0 44.6!PUDR -17.5 -15.1 -3.1	-9.1 -114.4 6.0 44.6!PUDR -17.5 -15.1 -3.1
.6!ACFT	i		1 1	1 1 1 1 1 1 CT		1		
)	-11.5	-11.5 -5.11-	C.O. D.TT. D.JT.	-12.5 -11.3 -5.3	Z/+4/ACF! "IZ:0 "11.6 "0.5	-145.5 3.0 27.4!ACFT -12.5 -11.3 -5.3	-8.3 -145.5 3.0 27.4!ACFT -12.5 -11.3 -5.3
SIACFI	Ą	-3.9	-16.3 -3.9	-18.9 -16.3 -3.9	-18.9 -16.3 -3.9	17.21ACFT -18.9 -16.3 -3.9	-149.4 6.2 17.2!ACPT -18.9 -16.3 -3.9	-10.1 -149.4 6.2 17.2!ACPT -18.9 -16.3 -3.9
.31FAIF	4	-4.2	-10.7 -4.2	-11.9 -10.7 -4.2	-11.9 -10.7 -4.2	15.11FAIR -11.9 -10.7 -4.2	-156.1 3.2 15.1!FAIR -11.9 -10.7 -4.2	-7.5 -156.1 3.2 15.11FAIR -11.9 -10.7 -4.2
. 4 GOOI	1	10.4	-9.7 -5.4	-10.5 -9.7 -5.4	-10.5 -9.7 -5.4	3.51600D -10.5 -9.7 -5.4	-187.7 2.1 3.51600D -10.5 -9.7 -5.4	-7.5 -187.7 2.1 3.51G00D -10.5 -9.7 -5.4
.2:600L	4-	4.6	4.6 -4.6	4.6 -4.6	4.6 -4.6	6.31G00D -6.6 -6.6 -4.6	-226.0 1.0 6.31G00D -6.6 -6.6 -4.6	-5.6 -226.0 1.0 6.31G00D -6.6 -6.6 -4.6
.7:600I	e I	-1.8	8.8 -1.8	8.8 -1.8	8.8 -1.8	25.2;600D -10.2 -8.8 -1.8	-270.4 3.5 25.2:600D -10.2 -8.8 -1.8	-5.3 -270.4 3.5 25.216000 -10.2 -8.8 -1.8
.OFFAIR			4.7-	4.7-	4.7-	4.7- 0.6-	-335.8 4.3 17.2!FAIR -9.0 -7.4	-3.1 -335.8 4.3 17.2!FAIR -9.0 -7.4
	-5.5!ACPT -4.3!FAIR -5.6!600D -4.2!600D -2.7!600D	1.18 1.18 1.18	-11.3 -5.3 -16.3 -3.9 -10.7 -4.2 -9.7 -5.4 -6.6 -4.6 -8.8 -1.8	-18.9 -16.3 -3.9 -11.9 -10.7 -4.2 -10.5 -9.7 -5.4 -6.6 -6.6 -4.6 -10.2 -8.8 -1.8	-12.5 -11.3 -5.3 -18.9 -16.3 -3.9 -11.9 -10.7 -4.2 -10.5 -9.7 -5.4 -6.6 -6.6 -4.6 -10.2 -8.8 -1.8 -9.0 -7.4 1.1	17.21ACF1 -12.5 -11.3 -5.3 17.21ACFT -18.9 -16.3 -3.9 15.11FAIR -11.9 -10.7 -4.2 3.51GOOD -10.5 -9.7 -5.4 6.31GOOD -6.6 -6.6 -4.6 25.21GOOD -10.2 -8.8 -1.8 17.21FAIR -9.0 -7.4 1.1	-145.5 3.0 27.4 ACFT -12.5 -11.3 -5.3 -149.4 6.2 17.2 ACFT -18.9 -16.3 -3.9 -156.1 3.2 15.1 FAIR -11.9 -10.7 -4.2 -187.7 2.1 3.5 G00D -10.5 -9.7 -5.4 -226.0 1.0 6.3 G00D -6.6 -6.6 -4.6 -270.4 3.5 25.2 G00D -10.2 -8.8 -1.8 -335.8 4.3 17.2 FAIR -9.0 -7.4 1.1	-12.5 -11.3 -5.3 -18.9 -16.3 -3.9 -11.9 -10.7 -4.2 -10.5 -9.7 -5.4 -6.6 -6.6 -4.6 -10.2 -8.8 -1.8 -9.0 -7.4 1.1

ELEVATION CLOSED LOOP

	MAX (DEG)	-35.9	-17.5	-63.5	-49.0	-174.1	-244.0	1
TION	AV+SD (DEG)	0:	-31.0	-61.3	-62.5	-180.1	-249.6	-396.0
PHASE-VARIATION	AV-SD (DEG)	-264.8	-140.9	-177.5	-150.7	-212.2	-282.3	-435.9
FHAS	MIN (DEG)	-319.7	-152.1	-199.5	-156.0		-283.3	-440,3
	MAX !REL. (DB):LEV.	1.4 G00D	-2.3!F00R	-1.0!ACFT	-3.0!ACPT	1.9.FAIR	-1.1:600D	-7.6!ACPT
	A I	- .	II	ī	1		1 1	1
TION	AV+SD (DB)	0.3		-2.6	-2.9		1.3	
GAIN-VARIATION	AV-SD AV+SD (DB) (DB)	6.4) () ()	-11.6	7.5	-11.4	-5.6	-10.3
GAIN	MIN (DB)	4.0	10.0	-11.7	B 0	-14.5	10 -6.3 -5.6 IR -9.5 -8.6	-10.8
DEV.	PHASE!REL. (DEG)!LEV.	132.516000	55.01F00R	58.1!ACFT	44.1:ACPT	16.0 FAIR	16.41600D 20.81FAIR	20.0!ACFT
STAND.	GAIN (DB)	9.0		4.5	64 100	. v . o	- M	1.4
AVERAGE	! !	-132.3	-86.0	-119.4	-106.6	-127.5	-265.9	-416.0
AVE	GAIN (DB)		4.4	-7.1	(N +	8.E	n n n n	6.8-
AVERAGE STAND. DEV.	FREQU. (HERTZ)	0.121	0.253	0.374	0.549	1.165	1.703	3.626

== :			 	 			:: ~			••
1	MAX (DEG)	-72.1							-303.3	-410.1
TION	AV+SD (DEG)	-53.1	-57.8	-88.4	-84.6	-96.4	-178.2	-223.9	-292.1	-415.8
FHASE-VARIATION	AV-SD (DEG)	-205.8 -162.1	-160.4	-183.1	-165.1	-186.6	-195.0	-240.7	-376.1	-454.1
FHAS	MIN (DEG)	-237.3 -183.8		-194.2	-165.9	-181.5	-194.7	-243.9	-393.5	-456.8
	REL.	3.71600D 0.61F00R	1.9; FOOR	ACFT	-6.4 ACFT	-4.91FAIR	FAIR	G00E	10.7!F00R	-4.2!ACPT
	MAX (DB)	3.7	1.9	-3.9	-6.4	6.4-	-5.0	-3.6	10.7	-4.2
TION	AV+SD (DB)	9.0 0.2	0.7	- 5.3	-6.5	ال د	-3.5	-3.0	យ ស	-4.6
GAIN-VARIATION	AV-SD (DB)	-0.9 -6.7	-8.4	-12.0	-7.5	-8	-13.9	-7.6	5.6	-10.0
GAIN	MIN (DB)	-0.7	-9.3	-11.2	-7.5	-8.6	-16.0	-8 5	.6.5	-10.8
	REL. LEV.	76.3 600D 60.5 F00R	FOOR	ACFT	ACPT	45.11FAIR				19.2!ACPT
. DEV.	PHASE REL. (DEG)!LEV.	76.3	51.3	47.3	40.2	45.1	8.4	8.4	42.0	19.2
STAND.	GAIN (DB)	3.5	4.6	3.4	٥. س	€	N Ci	N . CI	7.1	2.7
AVERAGE		-129.4	-109.1	-135.8	-124.9	-141.5	-186.6	-232.3	-334,1	-434.9
AVE	GAIN (DB)	1.0	3.9	-8.7	-7.0	-6.7	-8.7	-5.3	1.5	-7.3
HAVERAGE STAND.	FREQU. (HERTZ)	0.121	0.253	0.374	0.549	0.802	1,165	1.703	2,483	3.626
=======================================										

Table C-3 (a)

4RUNS

AZIMUTH CLOSED LOOP

				-110-
 	MAX (DEG)	-31.7 -30.1 -57.0	-74.3 -74.8 -97.6	-176.9 -243.8 -280.9 -340.4
NOIL	AV+SD (DEG)	-48.2 -36.4	-65.8 -85.6 -112.9	-180.6 -244.6 -288.7 -349.5
FHASE-VARIATION	AV-SD (DEG)	-145.2 -232.2 -147.9	-162.8 -186.9 -172.5	
FHAS	MIN (DEG)	-143.5 -288.9 -147.6		
	MAX REL. (DB):LEV.	-1.2; FAIR -0.1; ACPT -1.1; FOOR	-1.01ACFT -1.21FAIR -0.51G000	-0.91FAIR -1.01600D -2.91600D -5.41600D
! ! !	MAX (DB)	-1.2	0.11.0	-0.9 -1.0 -2.9
TION	AV+SD (DB)	1.1	13.0	111.0
GAIN-VARIATION	AV-SD AV+SD (DB) (DB)	-8.0 -14.3	-11.8 -11.8	-3.7 -6.4 -5.1
GAIN	MIN (DB)	-8.1 -19.1 -11.5	1221	-3.7 -7.5 -5.7 -12.0
DEV. I		48.51FAIR 97.91ACPT 36.31FDOR	48.5!ACFT 50.6!FAIR 29.8!GOOD	10.2:FAIR 4.7:600D 12.7:600D 13.0:600D
STAND. D	GAIN FH (DB) (D	7.7		2 1 2 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
AVERAGE	40	-96.7 -134.3 -111.5	-114.3 -136.2 -142.7	-190.8 -249.3 -301.3
AVER			5.4.5	12.6 13.8 14.1 18.4
	FREGU. (HERTZ)	0.100	0.450	0.967 1.406 2.055 3.000

AZIMUTH OFEN LOOF

4		AVERAGE	STAND.	· DEV.:	GAI	GAIN-VARIATION	ATION	 :	PHAS	PHASE-VARIATION	NOIT	
FREQU.	GAIN (DB)	PHASE (DEG)	GAIN FH (DB) (D	FHASE REL. (DEG) LEV.	MIN (DB)	AV-SD AV+SD (DB) (DB)	AV+SD (DB)	MAX REL. (DB) LEV.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
0.100	-5.9	-40.0 -155.1	3.6	117.7!FAIR 83.8!ACPT	-10.0 -9.6 -18.8 -14.1	-9.6 -14.1	-2.3	-0.1 FAIR	-160.4 -157.7 -282.7 -238.9	-157.7	77.7	154.3
1 0.209	-8.8	-133.7	5.1	18.9; FOOR	-13,3	-14.0		-0.21FOOR	-154.2	-152.6	-114.8	-112,1
: 0.308	6.9-	-140.2	4.2	33,1!ACPT	-14.0	-11.2		-2.9!ACFT	-192.4	-173.4	-107.1	-102.2
0.450	9.6-	-147.8	2.8	42.21FAIR	-12.9	-12.4		-6.2!FAIR	-205.6	-190.0	-105.6	-89.2
10.659	-8.4	-154.5	24 10	20.81600D	-12.7	-10.9		-6.3!GOOD	-179.5	-175.4	-133.7	-122.0
1 0.967	-7.4	-186.3	9.0	6.21FAIR	-7.8	0.8-		-6.4 ! FAIR	-195.5	-192.5	-180.2	-178.2
1.406	7.9-	-223.2	1.7	7,3;600B	-6.3	-8.4		-4.91600D	-231.0	-230.5	-215.9	-215.5
2.055	-2.8	-264.1	6.0	15.116000	-3.9	-3.7	-1.9	-1.4 GOOD	-284.6	-279.2	-249.0	-241.9
3.000	-4.3	-361.2	3,0	23.6:G00D	9.6-	-7.8		0.1:6000	-378.2	-384.8	-337.7	-320.6

4KUNS

ELEVATION CLOSED LOOP

	MAX (DEG)	31.0 -30.8 -107.8 -83.7 -122.2 -155.6 -176.5 -260.3 -311.8
TION	AV+SD (DEG)	-45.6 -95.6 -95.0 -77.5 -135.6 -184.2 -261.1 -314.8
PHASE-VARIATION	AV-SD (DEG)	-98.7 -187.6 -254.4 -188.9 -202.0 -178.2 -218.9 -279.3
PHA9	MIN (DEG)	-120.0 -309.3 -309.3 -225.8 -210.0 -181.0 -225.2 -281.2 -356.9
	MAX REL. (DB) LEV.	-3.4 ACFT -3.4 ACFT -3.0 POOR -4.1 ACFT -2.7 POOR -1.1 GOOD -3.2 GOOD -5.3 GOOD
	MAX (DB)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TION	AV+SD (DB)	4 1 1 4 1 1 1 1 1 4 1 4 1 4 1 4 1 4 1 4
GAIN-VARIATION	AV-SD AV+SD (DB)	-11.7 -11.5 -20.9 -19.1 -15.6 -12.6 -18.0 -16.8 -9.5 -8.2 -9.2 -7.2 -7.1 -6.0 -10.3 -9.7
GAIN	MIN (DB)	111.7 -10.8 -15.6 -15.6 -9.5 -10.3
DEV.	PHASE REL. (DEG) LEV.	53.4 ACFT -11.7 -11.5 71.0 FAIR -10.8 -10.5 79.7 POOR -20.9 -19.1 55.7 ACFT -15.6 -12.6 33.2 POOR -18.0 -16.8 9.1 GOOD -9.5 -8.2 17.4 GOOD -9.2 -7.2 9.1 FAIR -10.3 -9.7 11.1 FAIR -16.0 -14.3
STAND.		3.4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
AVERAGE STAND.	PHASE (DEG)	-45.3 -116.6 -174.7 -133.2 -168.8 -169.1 -201.6 -270.2 -331.1
AVE	GAIN (DB)	12.1 12.1 18.1 10.9 10.9 14.2 17.8
	FREQU.	0.121 0.121 0.253 0.374 0.549 0.802 1.165 1.703 3.626

RAGE STAND	EV.:	GAIN-	GAIN-VARIATION	TION		FHAS	FHASE-VARIATION	NOIL	
FHASE (DEG)		MIN A	AV-SD AV+SD (DB) (DB)	AV+SD (DB)	MAX IREL.	MIN (DEG)	AV-SD (DEG)	AV+SD (DEG)	MAX (DEG)
-46.6 5.1	7 -1(8.0	11.8		1.8:ACPT	-134.5	-120.5	27.3	70.3
-145.7 7.0	R -1;	2.5	13.0		5.81FAIR	-208.5	-185.2	-106.3	-101.7
-181.3 5.4	ငှု	1.1	19.0	-8.1	-6.61P00R -302.0 -253.4	-302.0	-253.4	-109.3	-112.5
	1,	- 9.9	13.8		-5.9!ACPT	-219.7	-191.8	-108.9	-112,5
-175.0 4.7	Ť	- 0.6	17.8	-8.4	-6.4!POOR			-152.3	-146.2
-172.6 1.7	-	2.0	11.0		-7.31600D	į	-178.7	-166.6	-163.6
-8.3 -193.3 2.0 10.4/GOOL	-1	1.7 -	10.3		-6.4:GOOD	-207.3	-203.7	-182.9	-178.0
-239.6 1.0	î	7.2	6.9-		-4.4 GOOD	,		-229.6	-230.2
-313.3 1.9	!	7.2	7.9-	-2.9	-2.8:GOOD	-355.6	-340.6	-286.0	-279.2
-405.6 4.9	•	< ·	*		C F 4 7		1 574	100	101

Figure C-1

Figure C-2

Figure C-3

