COVID-19 and its Economic Predictors

Joe Rodini

A Project for Data Analytics Bootcamp, University of Oregon, 2022

Project Overview

- Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, first identified in Wuhan, China in December 2019
- It spread to the level of a global pandemic by March 2020
- While a report often cited by the White House in May 2020 estimated a national death toll of 134,000 from the virus, current estimates of the US death toll is over 1,000,000

Economic Differences

- In 2021, the top 10 percent of Americans held nearly 70 percent of U.S. wealth, while the bottom 50 percent owned about 2.5 percent of wealth.
- Unemployment rate, defined as the percentage of people of the labor force that is not currently employed but could be, is an indicator of economic health and a signal of potential recession.
- Median Household Income is a well-recognized indicator of poverty, which can affect physical and mental health.
- These two measures will serve as my predictors

Research Question

- How well can the economic indicators of unemployment and median income, measured at the county level, predict COVID outcomes?
- COVID outcomes:
 - o Cases per 100,000
 - O Deaths per 100,000
 - Vaccination Rate

Technologies

- Coding
 - o Python, Pandas in Jupyter Notebook; SQLAlchemy
- Database
 - o PostgreSQL in PgAdmin
- Visualizations
 - o Tableau, Plotly

Working with Data

There were four main sources that comprised this analysis:

- Data on county vaccination rates from https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
- Data on county cases and deaths numbers from https://github.com/nytimes/covid-19-data
- Data on county economic factors from https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
- Data on county coordinates and population from https://simplemaps.com/data/us-counties

All four data sources were obtained as CSV files

Data Exploration: Cases/Deaths

Across the four datasets, I included a ST column for consistency. Here, doing so for the cases/deaths data.

```
## Replacing the "state" column with a "ST" column containing the state abbreviation
# 1 extract the old column
Latest_Deaths_df["state"]
         Alabama
94427
         Alabama
94428
94429
         Alabama
# 2 create the mapping series
# 3 Use series constructor
States s = pd.Series(
    Lat_Long_df["state_id"].values, index=Lat_Long_df["state_name"]).drop_duplicates
States s
state name
California
                 CA
Illinois
                 IL
# 4 adjust the code to add the new column to the DataFrame
# 5 Delete the old column from the dataframe
Latest_Deaths_df["ST"] = Latest_Deaths_df["state"].map(States_s)
Latest Deaths df.drop(columns="state", inplace=True)
Latest_Deaths_df
                              fips cases deaths ST
                    county
94427 2022-09-14
                                  18233
                                          226.0
94428 2022-09-14
                                          702.0 AL
                           1003.0 65088
                   Baldwin
```

Data Exploration: Vaccination Rate

I chose to only use data for the 50 states (territories had incomplete data). Here, dropping rows for Puerto Rico and Guam.

```
# Dropping counties that are not in Lat Long
Latest_Vax_df = Latest_Vax_df[Latest_Vax_df.ST != "PR"]
Latest_Vax_df = Latest_Vax_df[Latest_Vax_df.ST != "GU"]
Latest_Vax_df.drop([92], inplace = True)
Latest_Vax_df
```


Data Exploration: Latitude/Longitude

I ultimately joined the tables under the "fips" column, so here I first renamed the column across the datasets to be consistent.

```
### WORKING ON LAT/LONG dataframe
# Renaming "state_id" to "ST" and "county_fips" to "fips" to be consistent with other datasets
Lat_Long_df = Lat_Long_df.rename(columns={"state_id":"ST", "county_fips":"fips"})
Lat_Long_df
```


Commas had to be dropped from median income data in the economics data.

<pre># Converting median income to integer part 1 Econ_df.replace(",","", regex=True, inplace=True) Econ_df</pre>						
	fips	ST	Unemployment_rate_2021	Median_Household_Income_2020		
0	0	US	5.4	67340		
1	1000	AL	3.4	53958		
2	1001	AL	2.8	67565		
3	1003	AL	3.0	71135		
4	1005	AL	5.7	38866		

int32

Median_Household_Income_2020 dtype: object

Database

Entity Relationship Diagram (ERD)

Creating Tables in SQL

```
-- Creating tables for COVID-project
CREATE TABLE Lat_Long (
    fips INT NOT NULL,
    ST VARCHAR(2) NOT NULL,
    lat FLOAT(4) NOT NULL,
    lng FLOAT(4) NOT NULL,
    population INT NOT NULL,
    PRIMARY KEY (fips)
);
CREATE TABLE Latest_Vax (
    fips INT NOT NULL,
    Recip County VARCHAR(40) NOT NULL,
    ST VARCHAR(2) NOT NULL,
   Vax Pct FLOAT(1) NOT NULL,
    FOREIGN KEY (fips) REFERENCES Lat_Long (fips)
);
```

```
CREATE TABLE Latest_Deaths (
    date DATE NOT NULL,
    county VARCHAR(40) NOT NULL,
    fips INT NOT NULL,
    cases FLOAT(1) NOT NULL,
    deaths FLOAT(1) NOT NULL,
    ST VARCHAR(2) NOT NULL,
    FOREIGN KEY (fips) REFERENCES Lat_Long (fips)
);
CREATE TABLE Econ (
    fips INT NOT NULL,
    ST VARCHAR(2) NOT NULL,
    Unemployment_rate_2021 FLOAT(1) NOT NULL,
    Median_Household_Income_2020 INT NOT NULL,
    FOREIGN KEY (fips) REFERENCES Lat Long (fips)
);
```

Merging Tables in SQL

```
-- Create combined table
-- Joining lat_long and econ
SELECT lat_long.fips,
                                              -- Joining the above table with latest deaths
     lat_long.ST,
                                             SELECT lat long econ. fips,
      lat_long.lat,
                                                   lat_long_econ.ST,
     lat_long.lng,
                                                   lat_long_econ.lat,
     lat_long.population,
                                                   lat_long_econ.lng,
      econ.Unemployment_rate_2021,
                                                   lat_long_econ.population,
                                                   lat_long_econ.Unemployment_rate_2021,
      econ. Median Household Income 2020
                                                                                                      -- Combining above table with vax
                                                                                                      SELECT lat_long_econ_deaths.fips,
                                                   lat_long_econ.Median_Household_Income_2020,
INTO lat long econ
                                                                                                          lat_long_econ_deaths.ST,
                                                   latest_deaths.county,
FROM lat_long
                                                                                                          lat_long_econ_deaths.lat,
                                                   latest_deaths.cases,
LEFT JOIN econ
                                                                                                          lat_long_econ_deaths.lng,
                                                   latest_deaths.deaths
                                                                                                          lat_long_econ_deaths.population,
ON lat_long.fips = econ.fips;
                                                                                                          lat_long_econ_deaths.Unemployment_rate_2021,
                                              INTO lat long econ deaths
                                                                                                          lat_long_econ_deaths.Median_Household_Income_2020,
                                             FROM lat long econ
                                                                                                          lat long econ deaths.county,
                                              LEFT JOIN latest deaths
                                                                                                          lat_long_econ_deaths.cases,
                                                                                                          lat_long_econ_deaths.deaths,
                                             ON lat long econ.fips = latest deaths.fips;
                                                                                                          latest_vax.vax_pct
                                                                                                     INTO all_tables_merged
                                                                                                     FROM lat_long_econ_deaths
                                                                                                     LEFT JOIN latest_vax
```

ON lat_long_econ_deaths.fips = latest_vax.fips;

Creating Cases and Deaths per 100,000

To create a rate similar to vaccination rate, I used the population data to calculate cases and deaths per 100,000 people in the counties.

```
-- Creating cases and deaths per 100,000

ALTER TABLE all_tables_merged
   ADD cases_100000 FLOAT(2);

ALTER TABLE all_tables_merged
   ADD deaths_100000 FLOAT(2);

UPDATE all_tables_merged SET cases_100000 = (cases / population * 100000);

UPDATE all_tables_merged SET deaths_100000 = (deaths / population * 100000);
```


Data Analysis

Descriptive Statistics

	Unemployment	Median Income	Vaccination Percentage	Cases per 100,000	Deaths per 100,000
Mean	4.64	\$57,364.90	52.15%	28,296	395
SD	1.74	\$14,545.63	12.43%	7,711	164
Median	4.4	\$55,044.00	59.43%	28,025	390

Machine Learning: Logistic Regression

In order to perform logistic regressions, a median split was created for the following three variables: cases per 100,000 people, deaths per 100,000 people, and vaccination rate.

```
# Creating median split codes for cases, deaths, vax

df["median_split_cases"] = (df.cases_100000<df.cases_100000.quantile()).replace({True:0, False:1})

df["median_split_deaths"] = (df.deaths_100000<df.deaths_100000.quantile()).replace({True:0, False:1})

df["median_split_vax_pct"] = (df.vax_pct<df.vax_pct.quantile()).replace({True:0, False:1})</pre>
```


Logistic Regression: Case Rate

# Get accuracy score							
<pre>from sklearn.metrics import accuracy_score print("Accuracy score predicting case rate") print(accuracy_score(y_cases_test, y_cases_pred))</pre>							
Accuracy score predicting case rate 0.5558408215661104							
# Get confusion matrix from sklearn.metrics import confusion_matrix, classification_report cases_matrix = confusion_matrix(y_cases_test, y_cases_pred) # Create a DataFrame from the confusion matrix. matrix_cases_df = pd.DataFrame(cases_matrix,							
matrix_cases_df							
Predicted 0-low_cases							
Actual 0-low_ca	ises	211		172			
Actual 1-high_cases		174		222			
<pre># Classification report cases_report = classification_report(y_cases_test, y_cases_pred) print(cases_report)</pre>							
	precision	recall	f1-score	support			
0	0.55	0.55	0.55	383			
1	0.56	0.56	0.56	396			
accuracy			0.56	779			
macro avg	0.56			779			
weighted avg	0.56	0.56	0.56	779			
sa whan	1.			1			

Logistic Regression: Death Rate

The model was much more successful at predicting death rate.

Logistic Regression: Vaccination Rate

# Get accuracy score print("Accuracy score predicting vax pct") print(accuracy_score(y_vax_test, y_vax_pred)) Accuracy score predicting vax pct 0.6469833119383825											
						# Get confusi	on matrix				
						vax_matrix =	confusion_ma	trix(y_va	x_test, y_	vax_pred)	
# Create a Da	taFrame from	the conf	usion matr	iv							
matrix vax df											
maci ix_vax_ui	- pu.bacari	_		way" "A	Actual 1-high vax"],						
					(", "Predicted 1-high_vax"])						
matrix vax df				=							
matrix_vax_di											
	Predicted 0	-low_vax	Predicted 1-h	igh_vax							
Actual 0-low_va	x	271		117							
Actual 1-high_vax		158		233							
# Classificat	ion report										
<pre>vax_report = print(vax_rep</pre>		.on_report	(y_vax_tes	t, y_vax_p	pred)						
	precision	recall	f1-score	support							
0	0.63	0.70	0.66	388							
1	0.67	0.60	22772222222	391							
accuracy			0.65	779							
macro avg	0.65	0.65	0.65	779							
weighted avg	0.65	0.65	0.65	779							

And it was somewhere in the middle when predicting vaccination rate.

Comparison to Support Vector Machines

Outcome Variable	Accuracy score LG	Accuracy score SVM	
Cases per 100,000	55.6%	55.3%	
Deaths per 100,000	73.3%	72.9%	
Vaccination Rate	64.7%	65.0%	

Next, SVM models were created in the same manner of the logistic regressions. These models performed nearly identically to the regressions.

Visualizations with Tableau

Variable	Bin size
Vaccination Rate	15%
Median Income	\$10,000
Unemployment	2.5%

In order to make certain visualizations, bins were created for the continuous variables of vaccination rate, median income, and unemployment.

Visualizations can also be seen at https://public.tableau.com/app/profile/joe.rodini/viz/COVID-projectvisualizations/COVID-project#1

Economic Predictors of COVID Outcomes

Income and COVID outcomes

National Overview

Median Household Income

Deaths to Income Ratio

Income Scatterplots

Conclusions

Economic Predictors and COVID Outcomes

- Case rate was not well-predicted by economic indicators, meaning that the spread of COVID was fairly uniform across the country regardless of economic level.
- However, death rate was well predicted by economic indicators, demonstrating that counties with more economic resources were better able to mitigate the pernicious effects of the pandemic.
- Vaccination rate was somewhat well predicted by economic indicators, suggesting
 that counties with more economic resources did somewhat of a better job getting their
 populations vaccinated.

Next Steps

- Additional analysis would continue to shed light on this topic.
- Factors that might have obscured the relationship between economic predictors and COVID outcomes might include: population density, political affiliation, education level, and ethnicity
- Correlation is not necessarily causation—it could be that other variables, such as the ones above, cause the economic predictors and COVID outcomes to show a relationship

Thank You!

