Geocodificación

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Geocodificación

- Es el proceso de referenciar un objeto en el espacio geográfico en función de su dirección.
- Por lo general, la geo codificación se refiere a una asignación específica de coordenadas geográficas (latitud, longitud) a una dirección individual.
- Dos tipos típicos de geo codificación
 - Geo codificación lineal: Supone que las direcciones varían linealmente a lo largo de una entidad (línea)
 - Geo codificación de área: Asigna ubicación geo codificada a toda el área (polígono)

Ubicación estimada (180 – 100) / (200 – 100) = 0,8 = 80 %

80% hacia abajo de la longitud de la calle

180

100 Calle Fácil 200

Geo codificación o geo referenciación

Geo codificación

• Una operación GIS para convertir direcciones de calles en datos espaciales que se pueden mostrar como características en un mapa

Geo referenciación

 Alinear datos geográficos con un sistema de coordenadas conocido para que se puedan analizar, ver y consultar con otros datos geográficos

Jerarquías espaciales

Esquema de código

Recopilación directa de datos

- Digitalización a partir de mapas topográficos disponibles
- Recogida directa mediante técnicas de campo (ej.GPS)

Digitalización a partir de un mapa topográfico

Sistema de Posicionamiento Global (GPS)

Enfoque de coincidencia

- Uso de una base de datos de localizador de direcciones y una base de datos de red de calles en un SIG
- Unir una base de datos de direcciones a una base de datos espacial existente para el área de interés

Mantenimiento de los datos

- Limpieza de direcciones
- Conservar solo los elementos clave de la dirección
- Establecer un Código de asociación (indicador de qué elementos de la dirección determinarán la geocodificar)

Record	Street Address	City	State	ZIPcode	Latitude	Longitude	Areakey	MatchCode
1	344 East 63rd	New York	NY	10023	40.47	73.58	3502508100	AS0

- Eliminando caracteres extraños
- Estandarizar la ortografía

Geo codificación inversa

• Busca encontrar direcciones en base a un par de coordenadas

Utiliza la misma data que el enfoque de geo referenciación por

coincidencia

Observaciones finales

- Las tecnologías son accesibles y permiten la delimitación independientemente de la existencia de la dirección.
- Es necesario llegar a un acuerdo sobre una definición de geo codificación para fines censales.
- Existen muchos métodos y tecnologías disponibles para admitir marcos de geo codificación precisos
- El sistema de geo codificación es un valor agregado para el análisis espacial basado en GIS de datos estadísticos

Geocodificación

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

GPS

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Sistemas de Posicionamiento Global (GPS)

- Tecnología que ha revolucionado el mapeo de terreno en los últimos años
- Los precios de los receptores GPS han bajado
- Los métodos GPS se han integrado en muchas aplicaciones.
- Los grupos de usuarios están muy extendidos
- Las coordenadas se pueden descargar o ingresar manualmente en un sistema de mapeo digital o GIS, y se pueden combinar con información georreferenciada existente

Cómo funciona el GPS

- Los receptores GPS recogen las señales transmitidas desde más de 24 satélites—21 satélites activos y tres de repuesto.
- El sistema se llama NAVSTAR, y es mantenido por el Departamento de Defensa de EE. UU
- Los satélites giran alrededor de la tierra en seis planos orbitales a una altitud de aproximadamente 20.000 kilómetros.
- En cualquier momento, de cinco a ocho satélites GPS se encuentran dentro del "campo de visión" de un usuario en la superficie terrestre.
- La posición en la superficie terrestre está determinada por la distancia de varios satélites
- Los satélites GPS dan la vuelta a la Tierra dos veces al día

Cómo determina el GPS las coordenadas de una ubicación

Precisión GPS

- Dentro de 15 a 100 metros para aplicaciones civiles.
- El GPS diferencial reduce a
 ún más el error
- Se puede lograr una precisión de alrededor de 3-10 m con un hardware bastante económico y tiempos de observación más cortos.
- Los sistemas más costosos y la recopilación de datos más prolongada para cada lectura de coordenadas pueden producir una precisión inferior al metro.

Fuentes de errores de señal GPS

- Buena visibilidad y mala visibilidad de satélites por obstáculos
- Multi trayecto de señal
- Retrasos en la atmósfera
- Errores de reloj del receptor
- Errores orbitales
- En entornos urbanos densos el error puede ser mayor por interferencia de señales

Selección de una unidad GPS

- Los receptores GPS disponibles comercialmente varían en precio y capacidades
- Las especificaciones técnicas determinan la precisión con la que se pueden lograr las posiciones
- Cuanto más potente sea un receptor, más caro será
- En muchas aplicaciones cartográficas, la precisión de los sistemas estándar es suficiente
- Los receptores también varían en términos de facilidad de uso, capacidades de seguimiento que son útiles en la navegación.

Ventajas y desventajas del GPS

Ventajas

- Recopilación de datos de campo bastante económica y fácil de usar
- Las unidades modernas requieren muy poca capacitación para su uso adecuado
- Los datos recopilados se pueden leer directamente en las bases de datos GIS, lo que minimiza la entrada de datos intermedios o los pasos de conversión de datos.
- Disponibilidad mundial
- Precisión suficiente para muchas aplicaciones de mapeo de censos: alta precisión alcanzable con corrección diferencial

Desventajas

- La señal puede estar obstruida en áreas urbanas densas o boscosas
- La precisión del GPS estándar puede requerir técnicas diferenciales
- El GPS diferencial es más costoso, requiere más tiempo en la recopilación de datos de campo y un procesamiento posterior más complejo para obtener información más precisa
- Es posible que se requiera una gran cantidad de unidades de GPS solo para un período corto de recopilación de datos.

GPS

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Geoprocesos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Geoprocesos

- Existen una gran variedad de análisis específicos que se pueden realizar sobre objetos espaciales
- Estos se pueden clasificar en:
 - Operaciones algebraicas
 - Operaciones geométricas
 - Operaciones unitarias
 - Operaciones binarias
 - Operaciones lógicas
 - Operaciones complejas

Procesos vectoriales

- Todos los procesos varían dependiendo del tipo de geometría
- La mayoría de los set de datos se componen con múltiples geometrías, como multipuntos, multilíneas o multipoligonos
- Cuando hay mas de un tipo de define como una colección de geometrías

Parámetros de geometrías

- Operaciones espaciales mas sencillas
- Calculan algunos parámetros de posición de las geometrías, de cualquier tipo
- Algunos ejemplos son:
 - Fronteras
 - Centroides
 - Inversa

Buffer

- Crea polígonos de un radio determinado alrededor de las geometrías de entrada
- Los polígonos resultantes pueden fusionarse, o superponerse
- Permite agregar margen de error a las comparaciones de geometrías

Operaciones lógicas

- Relaciones espaciales entre entidades
- ¿Se superponen?
- ¿Está uno contenido por el otro?
- ¿Uno cruza al otro?
- Las geometrías se pueden relacionar espacialmente de diferentes maneras
- Las comparaciones suelen retornar respuestas del tipo binario

Equals A is the same as B	(A B)
Touches A touches B	AB
Overlaps A and B have multiple points in common	AB
Contains A contains B	AB
Disjoint A shares nothing with B	AB
Covers A covers B (or vice versa)	AB
Crosses A and B have at least one point in common	B

Contacto

- Es la comparación mas sencilla
- Evalúa si una geometría esta en contacto con otra
- Existen variantes como:
 - Contacto: hay al menos un punto de contacto
 - Cruce: operación entre líneas, evalúa si se cruzan
 - Cercanía: evalúa si 2 geometrías están a una cierta distancia

Touch

Disyunción

- Es el inverso de contacto
- Evalúa si 2 geometrías no se tocan
- Si existe 1 sola geometría (punto por ejemplo) en contacto, entonces la comparación no es nula

Disjoint

Intersectan

- Evalúa si 2 geometrías tienen una intersección
- Similar a contacto, pero evalúa también el grado en que ambas geometrías se intersectan.
- Tiene una operación espacial homologa

Intersects

Contención

- Evalúa si una geometría esta contenida en otra
- Esta comparación, a diferencia de las anteriores, no es simétrica
- Existen algunas variantes:
 - Dentro
 - Contiene
 - Contiene apropiadamente

Within/Contains

Superposición

- Evalúa si dos geometrías de un mismo tipo están superpuestas
- Es un caso especial de intersección
- No aplica si las geometrías son de diferente naturaleza

Overlap

Multipoint & Multipoint

Equivale

- Evalúa si ambas geometrías son iguales
- Existen variantes:
 - Equivalencia: admite algún margen de tolerancia
 - Equivalencia exacta: requiere que ambas geometrías sean idénticas
- Es un caso particular de superposición
- Solo aplica para geometrías de un mismo tipo

Equals

Distancia y relación

- Se puede calcular la matriz de distancia más corta entre geometrías
- También se puede calcular una matriz con las relaciones DE9-IM entre cada par de geometrías:
 - Ixly IxBy IxEy
 - Bxly BxBy BxEy
 - Exly ExBy ExEy
- Donde I se refiere al interior, B al borde y E al exterior
- Por ejemplo, BxIy la dimensionalidad de la intersección del límite B de x y el limite I de y,
- Valores de relación puede ser 0, 1, 2 indicando intersección cero, una, dos dimensiones

Operaciones generativas

- Permite modificar o generar nuevas geometrías a partir de geometrías de entrada
- A diferencia de las comparaciones, generan como resultado geometrías, no valores binarios
- Datos de salida que son la derivada del análisis realizado en los datos de entrada.

Intersección (operación)

- Similar a la comparación de intersección
- Devuelve una geometría correspondiente a la superficie de intersección
- Las características de entrada deben ser punto, multipunto, línea o polígono
- La clase de entidad de salida contendrá todos los atributos de las características de entrada mas simple

Diferencias

- Es la operación inversa a intersección
- Retorna las secciones de geometría que no se intersectan o superponen.
- Operación no es simétrica en su caso mas sencillo
- Existe una variante de diferencia simétrica.

Combinar / unir

- Permite unir diversas geometrías en una mas sencilla
- Para tener algún efecto requiere que las geometrías se toquen o intersecten
- Existen algunas variantes:
 - Combinar: junta geometrías en un objeto mas complejo (por ejemplo puntos en multipuntos)
 - Unión: fusiona geometrías en una geometría mayor

Casco convexo

- Calcula el polígono convexo de menor tamaño que cubra toda el área de una geometría
- Si las geometrías son independientes se requiere unirlas previo a esta operación.
- Permite sintetizar rápidamente áreas de estudio que contienen muchas geometrías.

Circunferencia inscrita

- Similar al casco convexo, pero en lugar de generar un polígono de mínima área, genera una circunferencia
- Circunferencia también es un polígono, pero con puntos espaciados regularmente
- Se usa para los mismos casos que el caso convexo, pero genera un área de estudio regular.

Simplificar

- Permite reducir la complejidad de las geometrías de un conjunto de datos
- Aplica el algoritmo de Douglas-Peucker que permite mantener las formas en la medida de lo posible
- Operación da la posibilidad de preservar la topología original además de la simplifica
- Recibe un parámetro de tolerancia que permite evaluar si algún punto de la curva es redundante

Segmentar

- Agrega puntos a líneas existentes
- Complejizar las geometrías
- Permite preservar formas en los casos que existan transformaciones entre diferentes proyecciones cartográficas

extra-points have been added between all points distant by more than X in longitude

Acoplar (Snap)

- Permite unir geometrías que no estaban unidas en su origen
- Recibe como parámetro 2 geometrías y un umbral de tolerancia
- Cada vértice de la geometría 1 se acopla al vértice mas cercano de la geometría 2
- Este acople solo ocurre si la distancia mínima es inferior al umbral de tolerancia señalado
- Permite eliminar espacios en blanco dentro del espacio geográfico que se esta analizando.

Poligonizar

- Permite transformar un conjunto de puntos o de líneas en polígonos
- En caso de tener múltiples geométricas que no conforman un circulo cerrado, el polígono resultante es el casco convexo
- Para evitar errores de implementación debería asegurarse que el input corresponda a líneas cerradas.

Triangular

- Genera un conjunto de polígonos triangulares a partir cualquier tipo de geometría vectorial.
- Existen diversos algoritmos para triangular, donde la mas utilizada es la Delaunay
- Las triangulaciones de Delaunay optimiza el ángulo medio de todos los triángulos del sistema
- Esto general triángulos regulares
- Se utiliza para transformar un conjunto de puntos en un conjunto de polígonos que cubran todo el espacio
- También se utilizan para fragmentar un polígono complejo en subpolígonos convexos.

Polígonos de Voronoi

- Genera una teselación de Voronoi para un conjunto de puntos
- Como resultados se obtienen polígonos de Voronoi
- Las aristas representan las fronteras euclidianas entre un punto y su punto mas cercano.
- Al igual que las teselaciones triangulares, permiten representar todo el espacio geográfico a partir de un conjunto de puntos

¿Operaciones sobre raster?

- Hasta ahora solo hemos hablado de operaciones vectoriales
- En rasters existen menos operaciones, dada la naturaleza de grilla de los datos
- Las principales operaciones tienen que ver con modificar la escala de análisis, o la resolución.
- Este problema se da cuando uno quiere modificar un raster, o cuando se quieren comparar 2 rasters de diferentes resoluciones

Resolución

- La resolución espacial de una imagen es una indicación del tamaño de un píxel en términos de dimensiones del suelo.
- Una resolución espacial de 30 metros significa que un píxel representa un área de 30 metros por 30 metros en el suelo.
- Alta resolución: las características se parecen más a las características del mundo real; se pueden detectar objetos pequeños
- Baja resolución: características simplificadas o no mostradas en absoluto; solo las funciones grandes son visibles

Disminuir resolución

- Los pixeles resultantes se superpondrán con mas de un pixel de origen
- Los pixeles de origen se superpondrán con uno o mas pixeles de destino.
- Requiere especificar como ponderar los datos en casos que un pixel de origen se superponga con mas de un pixel de destino
- La operación también requiere especificar que función se utilizara para la agregación (suma, promedio, max, min, etc.)
- El proceso reduce la cantidad de información contenida en la imagen
- Este problema se puede resolver de la misma manera que achicando fotos

Aumentar resolución

- Los pixeles resultantes se superpondrán con uno o mas pixeles de origen
- Requiere especificar como ponderar los datos en casos que un pixel de origen se superponga con mas de un pixel de destino
- El proceso aumenta la resolución, pero no es posible aumentar de información contenida en la imagen
- Para aumentar la información habría que implementar algún método de interpolación.

Mosaicos

- Un mosaico es una combinación o fusión de dos o más imágenes, para el caso práctico
- NDWI

Geoprocesos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Analisis de redes

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Análisis de redes

- Un grafo es una estructura matemática que describe un conjunto de nodos y las relaciones entre ellos
- El problema de encontrar el camino mas corto entre 2 nodos en un grafo con pesos no es trivial, pero el mundo de las matemáticas ya encontró una solución suficientemente buena (**Dijkstra, 1959**)
- Estos problemas suelen buscar minimizar la distancia (horizontal), pero a veces hay otras variables relevantes como terreno o elevación

Modelos gravitacionales

Mide la accesibilidad una oportunidad (servicios, actividades, destinos, etc.)

Se puede abordar de diferentes maneras

- Cost to closest
- Cumulative opportunities

Accesibilidad

La accesibilidad debe comprenderse como la facilidad con la cual una oportunidad (servicios, actividades, destinos, etc.) puede ser alcanzada.

El acceso depende de 4 tipos de variables de decisión descritas por Geurs y van Wee (2004):

Land-use (Uso del suelo)

Transportation (Transporte)

Temporal (Relacionado al tiempo)

Individual (Individual)

Cada una tienen sus propias restricciones de espacio-tiempo, llamadas impedancias.

Está compuesto por la oferta de las oportunidades, la cual contiene; sus tamaños, cantidades y ubicaciones (distribución).

Y la impedancia de la oferta tanto como de la demanda es la competencia por oportunidades: ofertas de trabajo, matrículas escolares, etc.

Land-use (Uso del suelo)

Es el medio que utiliza el demandante para alcanzar una oportunidad desde su ubicación u origen (caminar, transporte público, automóvil, encomienda, etc.).

Las impedancias del medio corresponden al impedimento de alcanzar una oportunidad desde un origen al destino: tiempo de traslado, distancia, costo monetario, riesgos, desnivel de altura, conectividad, etc.

Transportation (Transporte)

Es la disponibilidad en el tiempo de las oportunidades, es decir, el tiempo necesario para las actividades.

Las impedancias temporales son: horarios de apertura o cierre, horarios de trabajo o libre, etc.

Temporal (Relacionado al tiempo)

Son las necesidades, habilidades y capacidades de los demandantes.

Las impedancias de los individuos corresponde a la segregación de la demanda con el fin de calcular una demanda potencial: propósito (hacer, libre), percepción, condición física, niveles educacionales (para exigencias de trabajos), etc.

Individual (Individual)

INTEGRACIÓN DE DIMENSIONES

Todas las variables tienen su importancia en el cálculo de la accesibilidad, algunas más que otras dependiendo de su planteamiento y peso asignado.

Eso sí, a mayor restricciones...
mayor complejidad tendrá la
construcción del modelo. En la
práctica es difícil integrar todas las
variables y restricciones a la vez.

K.T. Geurs, B. van Wee | Journal of Transport Geography 12 (2004) 127-140

Imagen 1: Relación entre variables que componen la accesibilidad. (Geurs y van Wee, 2004, p. 129)

Imagen 10: Ejemplo gráfico de distintas funciones de decaimiento. (Pereira y Herszenhut, 2022)

IMPEDANCIA

Las funciones de impedancia que utilizan los modelos de Gravity-based para el cálculo de la accesibilidad, integran la probabilidad de un suceso al costo de desplazamiento (distancia, tiempo, dinero, etc.) para ponderar las oportunidades. La cual, a un mayor costo de desplazamiento brinda influencias decrecientes sobre la accesibilidad

Distancias (km)									
	Clientes								
Desde	C1	C2	C3	C4	C 5	C6	C 7	C 8	C9
Fábrica	15	10	20	18	22	20	10	9	24
C1	0	12	10	12	25	24	20	21	30
C2		0	13	11	18	15	12	15	20
C3			0	7	22	23	22	25	28
C4				0	18	18	18	22	16
C5					0	7	17	23	12
C6						0	13	19	10
C7							0	9	15
C8								0	22
Pedidos (ton)	2,5	2,0	2,5	4,6	3,0	3,0	1,5	2,5	5,5

Isócronas

- Una isócrona se define como una línea en que algo ocurre o llega a la misma hora
- Se utilizan en la planificación del transporte y planificación urbana
- El mapa de isócronas muestra las áreas relacionadas con isócronos entre diferentes puntos
- Esto permite construir áreas de servicio de acuerdo a el tiempo que un usuario este dispuesto a viajar por este servicio.

Analisis de redes

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2