My Project consists of two parts. In the first part, I used Gibbs Sampling to get samples from a Normal Distribution. In the second part of the project I explored the applications of Gibbs Sampling in **Topic Modelling specifically Latent Dirichilet Allocation (LDA) where** we used Gibbs Sampling for generating samples from complex distributions. I explored a computionally optimized way of Gibbs Sampling technique also known as Collapsed Gibbs Sampler.

OVERVIEW

- GIBBS SAMPLING
- USING GIBBS SAMPLING TO FIND SOLUTION TO LINEAR SYSTEM OF EQUATIONS (GIBBS SAMPLING FOR GUASSIAN DISTRIBUTION)
- USING GIBBS SAMPLING IN TOPIC MODELLING AND LATENT DIRICHLET ALLOCATION (GIBBS SAMPLING FOR DIRICHLET AND OTHER DISTRIBUTIONS)
- DERIVING GIBBS SAMPLER FOR LDA
- COLLAPSED GIBBS SAMPLER

- We used Gibbs Sampling to sample from a Multivariate
 Normal distribution iteratively and checked whether the
 samples are converging to the expected distribution and the
 samples were converging to expected distribution.
- The following are the plots of the convergence metrics for a 1225 x 1225 sparse matrix with both L2 Norm and Max Norm.
 We can clearly observe that the norm difference is very less.

- Latent Dirichlet Allocation is one of Topic Modelling techniques where we classify a document into a particular topic.
- Graphical Representation of LDA Model:

Notations:

```
D: Number of Documents K: Number of topics V: Number of words in the vocabulary N_d: Number of words in document d or Length of document d \theta_d: <\theta_{d,t} for t\in\{1,2,...K\}> Topic distribution for document d \psi_k: <\psi_{k,v} for k\in\{1,2,...V\}> Word distribution over Vocabulary V for topic k z_{d,n}: Latent topic assignment to the n^{th} word in document d w_{d,n}: n^{th} word in document d Z:\{z_{d,n}\}, W:\{w_{d,n}\}, \theta:\{\theta_d\}, \phi:\{\psi_k\} n_{d,k,v}: Number of \{i: w_{d,i} = v, Z_{d,i,k} = 1\} n_{d,k,:}:[n_{d,k,1},...,n_{d,k,V}] n_{d,k,:}:\sum_v n_{d,k,v} = \text{Number of times Document d has topic k in it } n_{.k,v}:\sum_d n_{d,k,v} = \text{Number of times word v has topic k in all documents}
```

LDA Model can be described in the following way where *Dir* is nothing but dirichilet distribution.

Model

```
\psi_k \sim Dir(\beta) for i \in \{1, 2...K\}

\theta_d \sim Dir(\alpha) for d \in \{1, 2...D\}

z_{d,n} \mid \theta_d \sim Discrete(\theta_d)

w_{d,n} \mid z_{d,n}, \phi_{z_{d,n}} \sim Discrete(\phi_{z_{d,n}})
```

Our Primary Task in LDA is to find the following posterior

$$P(Z, \theta, \phi \mid W) = \frac{P(Z, \theta, \phi, W)}{P(W)}$$

From the above model detals joint can be further simplified as the following

Joint Probability:

$$P(Z, \theta, \phi, W) = \prod_{d=1}^{D} p(\theta_d \mid \alpha_d) \prod_{d=1}^{D} \prod_{i=1}^{N_d} p(z_{d,i} \mid \theta_d) \prod_{d=1}^{D} p(\psi_k \mid \beta_k) \prod_{d=1}^{D} \prod_{i=1}^{N_d} p(w_{d,i} \mid z_{d,i}, \phi)$$

$$P(Z, \theta, \phi, W) = \prod_{d=1}^{D} D(\theta_d; \alpha_d) \prod_{d=1}^{D} \prod_{i=1}^{N_d} (\prod_{k=1}^{K} \theta_{d,k}^{Z_{d,i,k}}) \prod_{d=1}^{D} D(\psi_k; \beta_k) \prod_{d=1}^{D} \prod_{i=1}^{N_d} (\prod_{k=1}^{K} \psi_{k,w_{d,i}}^{Z_{d,i,k}})$$
(1)

$$P(Z, \theta, \phi, W) = \prod_{d=1}^{D} \frac{\prod_{K} \tau(\alpha)}{\tau(\sum_{K} \alpha)} \prod_{k=1}^{K} \theta_{d,k}^{\alpha + n_{d,k,.} - 1} \prod_{k=1}^{K} \frac{\prod_{V} \tau(\beta)}{\tau(\sum_{V} \beta)} \prod_{v=1}^{V} \psi_{d,k}^{\beta + n_{.,k,v} - 1}$$
(2)

Marginalizing above intergral with respect to Z is difficult. So we calculate the posterior by using Gibbs Sampling. Where we conditionally update each variable iteratively.

$$P(\Theta) \sim P(\Theta \mid Z, W, \phi)$$

$$P(\phi) \sim P(\phi \mid Z, W, \theta)$$

$$P(Z) \sim P(Z \mid \Theta, W, \phi)$$

 We can integrate out the remaining parameters and update the hidden variable Z.This is called Collapsed Gibbs Sampling

$$\psi_{k,t} = \frac{n_{.,k,v} + \beta}{\sum_{v=1}^{V} (n_{.,k,v} + \beta)}$$

$$\theta_{d,k} = \frac{n_{d,k,.} + \alpha}{\sum_{k=1}^{K} (n_{d,k,.} + \alpha)}$$

 Collapsed Gibbs Sampler is faster than Normal Gibbs Sampler as we need not take all parameters into consideration

Sampler	Number of iterations	Training Time(in sec)
Gibbs Sampler	500	1137
Collapsed Gibbs Sampler	500	830

Table 1: Traing times

Gibbs Sampler Vs Collapsed Gibbs Sampler

Topics classified by Gibbs Sampler

```
Topic #0: com space new available data 20 information use 10 aids
Topic #1: just know like people don year years car use time
Topic #2: server support edu supported os joseph david file readme vga
Topic #3: edu graphics pub mail ray send ftp objects server files
Topic #4: section firearm license military shall weapon person following means u
se
Topic #5: like know think problem windows use don just good does
Topic #6: like just key don good government people think encryption use
Topic #7: people god just don think like time good know israel
Topic #8: edu navy vote votes health mil misc car hp thomas
Topic #9: goal game finnish shot puck roger peter sweden good slave
```

Topics classified by Collapsed Gibbs Sampler

```
Topic #0: god people good brothers work did like jews just 12
Topic #1: just like don use people time good does want right
Topic #2: people just like don know use think time edu good
Topic #3: like people time just know good space use think don
Topic #4: bibles zyxel enjoy engine engineer engineered engineering engineers en
gines england
Topic #5: edu just graphics like people pub know new don mail
Topic #6: space like people don good does use just chip live
Topic #7: people seek order religion philosophy mail users like said bit
Topic #8: edu graphics like good think don just know time mail
Topic #9: zyxel eng engine engineer engineered engineering engineers engines eng
land english
```

Querying:

Estimating topic proportions of unseen or a new document. We do this by updating Z using Gibbs Sampling and then update the topic proportions of the new document according to our new sampled Z vector.

 Topic proportions of a new set of words classified by Collapsed Gibbs Sampler.

FURTHER SCOPE

 Implementing Topic Modelling using mixture models and doing inference using Gibbs Sampling. Comparing the inference results over Mixture Models and LDA.

Analysis of our topic model for similarity checking.

WHAT DID I LEARN

- Methods like Steepest Descent, Conjugate Gradient
- Multivariate Normal Distributions, Sampling stratagies from a Multivariate Normal.
- Gibbs Sampling
- MLE, MAP and Bayesian Estimators
- Conjugate Priors and Exponential Family Distributions mainly Dirichilet distribution
- Topic Modelling specifically LDA

THANK YOU