ON THE BOUNDARY BEHAVIOR OF THE CURVATURE OF L^2 -METRICS

KEN-ICHI YOSHIKAWA

ABSTRACT. For one-parameter degenerations of compact Kähler manifolds, we determine the asymptotic behavior of the first Chern form of the direct image of a Nakano semi-positive vector bundle twisted by the relative canonical bundle, when the direct image is equipped with the L^2 -metric.

1. Introduction

Let X be a connected Kähler manifold of dimension n+1 with Kähler metric h_X and let $S=\{s\in \mathbf{C};\, |s|<1\}$ be the unit disc. Set $S^o:=S\setminus\{0\}$. Let $\pi\colon X\to S$ be a proper surjective holomorphic map with connected fibers. Let Σ_π be the critical locus of π . We assume that $\pi(\Sigma_\pi)=\{0\}$. We set $X_s=\pi^{-1}(s)$ for $s\in S$. Then X_s is non-singular for $s\in S^o$. Let $\omega_X=\Omega_X^{n+1}$ be the canonical bundle of X and let $\omega_{X/S}=\Omega_X^{n+1}\otimes(\pi^*\Omega_S^1)^{-1}$ be the relative canonical bundle of $\pi\colon X\to S$. The Kähler metric h_X induces a Hermitian metric $h_{X/S}$ on $TX/S=\ker\pi_*|_{X\setminus\Sigma_\pi}$, and $h_{X/S}$ induces a Hermitian metric $h_{\omega_{X/S}}$ on $\omega_{X/S}$.

Let $\xi \to X$ be a holomorphic vector bundle on X equipped with a Hermitian metric h_{ξ} . We write $\omega_{X/S}(\xi) = \omega_{X/S} \otimes \xi$. In this note, we assume that (ξ, h_{ξ}) is a Nakano semi-positive vector bundle on X. Namely, if R^{ξ} denotes the curvature form of (ξ, h_{ξ}) with respect to the holomorphic Hermitian connection, then the Hermitian form $h_{\xi}(\sqrt{-1}R^{\xi}(\cdot),\cdot)$ on the holomorphic vector bundle $TX \otimes \xi$ is semi-positive. Since dim S=1 and since (ξ, h_{ξ}) is Nakano semi-positive, all direct image sheaves $R^q \pi_* \omega_{X/S}(\xi)$ are locally free by [12]. By the fiberwise Hodge theory, $R^q \pi_* \omega_{X/S}(\xi)$ is equipped with the L^2 -metric h_{L^2} with respect to $h_{X/S}$ and $h_{\omega_{X/S}} \otimes h_{\xi}$. By Berndtsson [2] and Mourougane-Takayama [7], the holomorphic Hermitian vector bundle $(R^q \pi_* \omega_{X/S}(\xi), h_{L^2})$ is again Nakano semi-positive on S^o . By Mourougane-Takayama [8], h_{L^2} induces a singular Hermitian metric with semi-positive curvature current on the tautological quotient bundle over the projective-space bundle $\mathbf{P}(R^q \pi_* \omega_{X/S}(\xi))$. (We remark that there is no restrictions of the dimension of the base space S in the works [2], [7], [8].)

After these results, one of the natural problems to be considered is the quantitative estimates for the singularities of the L^2 -metric and its curvature. In [14], we gave a formula for the singularity of the L^2 -metric on $R^q\pi_*\omega_{X/S}(\xi)$ (cf. Sect. 2). As a consequence, if σ_q is a nowhere vanishing holomorphic section of det $R^q\pi_*\omega_{X/S}(\xi)$, then there exist a rational number $a_q \in \mathbf{Q}$, an integer $\ell_q \geq 0$ and a real number c_q such that (cf. [14, Th. 6.8])

$$\log \|\sigma_q(s)\|_{L^2}^2 = a_q \log |s|^2 + \ell_q \log(-\log |s|^2) + c_q + O(1/\log |s|) \qquad (s \to 0).$$

1

The author is partially supported by the Grants-in-Aid for Scientific Research (B) 19340016, JSPS.

In this note, we study the boundary behavior of the curvature of the holomorphic Hermitian vector bundle $(R^q \pi_* \omega_{X/S}(\xi), h_{L^2})$ as an application of the description of the singularity of the L^2 -metric h_{L^2} given in [14]. In this sense, this note is a supplement to the article [14].

Let us state our results. Let $\mathcal{R}(s) ds \wedge d\bar{s}$ be the curvature form of $R^q \pi_* \omega_{X/S}(\xi)$ with respect to the holomorphic Hermitian connection associated to h_{L^2} . By the Nakano semi-positivity [2], [7], $\sqrt{-1}\mathcal{R}(s)$ is a semi-positive Hermitian endomorphism on the Hermitian bundle $(R^q \pi_* \omega_{X/S}(\xi), h_{L^2})$ on S^o .

Theorem 1.1. The curvature form $\mathcal{R}(s) ds \wedge d\bar{s}$ has Poincaré growth near $0 \in S$. Namely, there exists a constant C > 0 such that the following inequality of Hermitian endomorphisms holds for all $s \in S^o$

$$0 \le \sqrt{-1}\mathcal{R}(s) \le \frac{C}{|s|^2 (\log|s|)^2} \operatorname{Id}_{R^q \pi_* \omega_{X/S}(\xi)}.$$

Moreover, the Chern form $c_1(R^q\pi_*\omega_{X/S}(\xi),h_{L^2})$ has the following asymptotic behavior as $s\to 0$:

$$c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) = \left\{ \frac{\ell_q}{|s|^2 (\log |s|)^2} + O\left(\frac{1}{|s|^2 (\log |s|)^3}\right) \right\} \sqrt{-1} \, ds \wedge d\bar{s}.$$

Considering the trivial example $X = M \times S$, $\xi = \mathcal{O}_X$, $\pi = \operatorname{pr}_2$, where M is a compact Kähler manifold, we can not expect any lower bound of $\sqrt{-1}\mathcal{R}(s)$ (resp. $c_1(R^q\pi_*\omega_{X/S}(\xi),h_{L^2})$) by a non-zero semi-positive Hermitian endomorphism (resp. real (1,1)-form). We remark that, when X_0 is reduced and has only canonical singularities, then we get a better estimate (cf. Sect. 5).

As an application of Theorem 1.1, we get an estimate for the complex Hessian of analytic torsion. Set $X_s := \pi^{-1}(s)$ and $\xi_s := \xi|_{X_s}$ for $s \in S$. Let ω_{X_s} be the canonical line bundle of X_s and let $h_{\omega_{X_s}}$ be the Hermitian metric on ω_{X_s} induced from h_X . For $s \in S^o$, let $\tau(X_s, \omega_{X_s}(\xi_s))$ be the analytic torsion [10], [3] of the holomorphic Hermitian vector bundle $(\xi_s \otimes \omega_{X_s}, h_{\xi}|_{X_s} \otimes h_{\omega_{X_s}})$ on the compact Kähler manifold $(X_s, h_X|_{X_s})$. Let $\log \tau(X/S, \omega_{X/S}(\xi))$ be the function defined as

$$\log \tau(X/S, \omega_{X/S}(\xi))(s) := \log \tau(X_s, \omega_{X_s}(\xi_s)), \qquad s \in S^o.$$

By Bismut-Gillet-Soulé [3], $\log \tau(X/S, \omega_{X/S}(\xi))$ is a C^{∞} function on S^o . Moreover, under certain algebraicity assumption of the family $\pi\colon X\to S$ and the vector bundle ξ , there exist by [14] constants $\alpha\in\mathbf{Q},\ \beta\in\mathbf{Z},\ \gamma\in\mathbf{R}$ such that

$$\log \tau(X/S, \omega_{X/S}(\xi))(s) = \alpha \log |s|^2 - (\sum_{q \ge 0} (-1)^q \ell_q) \log(-\log |s|^2) + \gamma + O(1/\log |s|)$$

as $s \to 0$. By this asymptotic expansion, it is reasonable to expect that the complex Hessian of analytic torsion has a similar behavior to the Poincaré metric on S^o .

Theorem 1.2. The complex Hessian $\partial_{s\bar{s}} \log \tau(X/S, \omega_{X/S}(\xi))$ has the following asymptotic behavior as $s \to 0$:

$$\partial_{s\bar{s}} \log \tau(X/S, \omega_{X/S}(\xi)) = \frac{\sum_{q \ge 0} (-1)^q \ell_q}{|s|^2 (\log |s|)^2} + O\left(\frac{1}{|s|^2 (\log |s|)^3}\right).$$

This note is organized as follows. In Sect. 2, we recall the structure of the singularity of the L^2 -metric h_{L^2} on $R^q \pi_* \omega_{X/S}(\xi)$. In Sect. 3, we prove some technical lemmas used in the proof of Theorem 1.1. In Sect. 4, we prove Theorems 1.1 and 1.2. In Sect. 5, we study the case where X_0 has only canonical singularities.

Throughout this note, we keep the notation and the assumptions in Sect. 1.

2. The singularity of the L^2 -metric

2.1. The structure of the singularity of the L^2 -metric. Let $\kappa_{\mathcal{X}}$ be the Kähler form of $h_{\mathcal{X}}$. In the rest of this note, we assume that (ξ, h_{ξ}) is Nakano semi-positive on X and that $(S,0) \cong (\Delta,0)$. By [12, Th. 6.5 (i)], $R^q \pi_* \omega_{X/S}(\xi)$ is locally free on S. By shrinking S if necessary, we may also assume that $R^q \pi_* \omega_{X/S}(\xi)$ is a free \mathcal{O}_S -module on S. Let $\rho_q \in \mathbb{Z}_{\geq 0}$ be the rank of $R^q \pi_* \Omega_X^{n+1}(\xi)$ as a free \mathcal{O}_S -module on S. Let $\{\psi_1, \ldots, \psi_{\rho_q}\} \subset H^0(S, R^q \pi_* \omega_{X/S}(\xi))$ be a free basis of the locally free sheaf $R^q \pi_* \omega_{X/S}(\xi)$ on S.

Let T be another unit disc. By the semistable reduction theorem [9, Chap II], there exists a positive integer $\nu > 0$ such that the family $X \times_S T \to T$ induced from $\pi \colon X \to S$ by the map $\mu \colon T \to S$, $\mu(t) = t^{\nu}$, admits a semistable model. Namely, there is a resolution $r \colon Y \to X \times_S T$ such that the family $f := \operatorname{pr}_2 \circ r \colon Y \to T$ is semistable, i.e., $Y_0 := f^{-1}(0)$ is a reduced normal crossing divisor of Y. We fix such an integer $\nu > 0$. Let $\operatorname{Herm}(r)$ be the set of $r \times r$ -Hermitian matrices.

Theorem 2.1. By choosing a basis $\{\psi_1, \ldots, \psi_{\rho_q}\}$ of $R^q \pi_* \omega_{X/S}(\xi)$ as a free \mathcal{O}_S -module appropriately, the $\rho_q \times \rho_q$ -Hermitian matrix

$$G(s) := (h_{L^2}(\psi_\alpha|_{X_s}, \psi_\beta|_{X_s}))$$

has the following expression

$$G(t^{\nu}) = D(t) \cdot H(t) \cdot \overline{D(t)}, \qquad D(t) = \operatorname{diag}(t^{-e_1}, \dots, t^{-e_{\rho_q}}).$$

Here $e_1, \ldots, e_{\rho_q} \geq 0$ are integers and the Hermitian matrix H(t) has the following structure: There exist $A_m(t) \in C^{\infty}(T, \operatorname{Herm}(\rho_q)), 0 \leq m \leq n$, with

$$H(t) = \sum_{m=0}^{n} A_m(t) (\log |t|^2)^m.$$

Moreover, by defining the real-valued functions $a_m(t) \in C^{\infty}(T)$, $0 \le m \le n\rho_q$ as

$$\det H(t) = \sum_{m=0}^{n\rho_q} a_m(t) (\log |t|^2)^m,$$

one has $a_m(0) \neq 0$ for some $0 \leq m \leq n\rho_q$.

Proof. See [14, Th. 6.8 and Lemmas 6.3 and 6.4].

Remark 2.2. The meaning of the Hermitian matrix H(t) and the diagonal matrix D(t) is explained as follows. Let $F\colon Y\to X$ be the map defined as the composition of $r\colon Y\to X\times_S T$ and $\operatorname{pr}_1\colon X\times_S T\to X$. Then $h_Y:=r^*(h_X+dt\otimes d\overline{t})$ is a Kähler metric on $Y\setminus Y_0$. There is a basis $\{\theta_1,\ldots,\theta_{\rho_q}\}$ of $R^qf_*\omega_{Y/Y}(F^*\xi)$ such that $H(t)=(H_{\alpha\bar{\beta}}(t)),\ H_{\alpha\bar{\beta}}(t)=(\mu^*h_{L^2})(\theta_\alpha,\theta_\beta)$, where $\mu^*h_{L^2}$ is the L^2 -metric on $R^qf_*\omega_{Y/T}(F^*\xi)$ with respect to h_Y and F^*h_ξ . By [8, Lemma 3.3], $R^qf_*\omega_{Y/T}(F^*\xi)$ is regarded as a subsheaf of $\mu^*R^qf_*\omega_{X/S}(\xi)$. Then the relation between the two basis $\{\theta_1,\ldots,\theta_{\rho_q}\}$ and $\{\mu^*\psi_1,\ldots,\mu^*\psi_{\rho_q}\}$ is given by D(t), i.e., $\theta_\alpha=t^{e_\alpha}\mu^*\psi_\alpha$. Moreover, by [8, Lemma 4.2], $\mu^*h_{L^2|T^o}$ is indeed the pull-back of the L^2 -metric $h_{L^2|S^o}$ via μ , where $T^o:=T\setminus\{0\}$, which implies the relation $G(\mu(t))=D(t)H(t)\overline{D(t)}$.

The proof of Theorem 2.1 heavily relies on a theorem of Barlet [1, Th. 4 bis.]. This is the major reason why we need the assumption $\dim S = 1$.

2.2. A Hodge theoretic proof of Theorem 2.1 for a trivial line bundle. Assume that (ξ, h_{ξ}) is a trivial Hermitian line bundle on X, that $\pi \colon X \to S$ is a family of polarized projective manifolds with unipotent monodromy and that the Kähler class of h_X is the first Chern class of an ample line bundle on X. We see that the expansion in Theorem 2.1 follows from the nilpotent orbit theorem of Schmid [11] in this case.

Let κ_X be the Kähler class of h_X . By assumption, there is a very ample line bundle L on X with $[\kappa_X] = c_1(L)/N$. Replacing κ_X by $N\kappa_X$ if necessary, we may assume that L is very ample. Let $H_1, \ldots, H_n \in |L|$ be sufficiently generic hyperplane sections such that the following hold for all $0 \le k \le n$ after shrinking S if necessary:

- (i) $X \cap H_1 \cap \cdots \cap H_k$ is a complex manifold of dimension n k + 1.
- (ii) The restriction of π to $X \cap H_1 \cap \cdots \cap H_k$ is a flat holomorphic map from $X \cap H_1 \cap \cdots \cap H_k$ to S.
- (iii) $X_s \cap H_1 \cap \cdots \cap H_k$ is a projective manifold of dimension n-k for $s \in S^o$. We set $X_s^{(k)} := (\pi^{(k)})^{-1}(s) = X_s \cap H_1 \cap \cdots \cap H_k$ for $s \in S$.

Let $\{\psi_1,\ldots,\psi_{\rho_q}\}\subset H^0(S,R^q\pi_*\omega_{X/S})$ be a free basis of the locally free sheaf $R^q\pi_*\omega_{X/S}$ on S. There exists $\Psi_1,\ldots,\Psi_{\rho_q}\in H^0(X,\Omega_X^{n+1-q})$ by [12, Th. 5.2] (after schrinking S if necessary) such that

$$\psi_{\alpha} = [(\Psi_{\alpha} \wedge \kappa_{X}^{q}) \otimes (\pi^{*}ds)^{-1}], \qquad \pi^{*}ds \wedge \Psi_{\alpha} = 0.$$

By the condition $\pi^*ds \wedge \Psi_{\alpha} = 0$, there exist relative holomorphic differentials $\psi'_{\alpha} \in H^0(X \setminus \Sigma_{\pi}, \Omega_{X/S}^{n-q})$ such that $\Psi_{\alpha} = \psi'_{\alpha} \wedge \pi^*ds$. Then the harmonic representative of the cohomology class $\psi|_{X_s}$ is given by $\psi'_{\alpha} \wedge \kappa_X|_{X_s}$. Since $\kappa_X = c_1(L)$, we get

$$h_{L^2}(\psi_\alpha,\psi_\beta)(s) = i^{(n-q)^2} \int_{X_s} \psi_\alpha' \wedge \overline{\psi'}_\beta \wedge \kappa_X^q |_{X_s} = i^{(n-q)^2} \int_{X_s^{(q)}} \psi_\alpha' \wedge \overline{\psi'}_\beta |_{X_s^{(q)}}.$$

Hence Theorem 2.1 is reduced to the case q = 0. In the case q = 0, Theorem 2.1 is a consequence of Fujita's estimate [4, 1.12] and the following:

Lemma 2.3. For $\varphi, \psi \in H^0(X, \Omega_X^{n+1})$, there exist $a_m(s) \in C^{\omega}(S)$, $0 \leq m \leq n$ such that

$$\pi_*(\varphi \wedge \overline{\psi})(s) = \sum_{m=0}^n (\log |s|^2)^m a_m(s) \, ds \wedge d\bar{s}.$$

In particular, $h_{L^2}(\varphi \otimes (\pi^*ds)^{-1}|_{X_s}, \psi \otimes (\pi^*ds)^{-1}|_{X_s}) = i^{n^2} \sum_{m=0}^n (\log |s|^2)^m a_m(s).$

Proof. Fix $\mathfrak{o} \in S^o$. Let $\gamma \in GL(H^n(X_{\mathfrak{o}}, \mathbf{C}))$ be the monodromy. By assumption, γ is unipotent. Set $\mathbf{H} := R^n \pi_* \mathbf{C} \otimes_{\mathbf{C}} \mathcal{O}_{S^o}$, which is equipped with the Gauss-Manin connection. Let $\{v_1, \ldots, v_m\}$ be a basis of $H^n(X_{\mathfrak{o}}, \mathbf{C})$. Since γ is unipotent, there exists a nilpotent $N \in \operatorname{End}(H^n(X_{\mathfrak{o}}, \mathbf{C}))$ such that $\gamma = \exp(N)$. Let $p \colon \widetilde{S^o} \ni z \to \exp(2\pi i z) \in S^o$ be the universal covering. Since \mathbf{H} is flat, v_k extend to flat sections $\mathbf{v}_k \in \Gamma(\widetilde{S^o}, p^*\mathbf{H})$, which induces an isomorphism $p^*\mathbf{H} \cong \mathcal{O}_{\widetilde{S^o}} \otimes_{\mathbf{C}} H^n(X_{\mathfrak{o}}, \mathbf{C})$. Under this trivialization, we have $\mathbf{v}_k(z+1) = \gamma \cdot \mathbf{v}_k(z)$. We define $\mathbf{s}_k(\exp 2\pi i z) := \exp(-z N) \mathbf{v}_k(z)$. Then $\mathbf{s}_1, \ldots, \mathbf{s}_m \in \Gamma(\widetilde{S^o}, p^*\mathbf{H})$ descend to single-valued holomorphic frame fields of \mathbf{H} . The canonical extension of \mathbf{H} is the locally free sheaf on S defined as $\overline{\mathbf{H}} := \mathcal{O}_S \mathbf{s}_1 \oplus \cdots \oplus \mathcal{O}_S \mathbf{s}_m$. Set $\mathbf{F}^n := \pi_* \Omega^n_{X/S}|_{S^o} \subset \mathbf{H}$. By [11, p. 235], \mathbf{F}^n extends to a subbundle $\overline{\mathbf{F}}^n \subset \overline{\mathbf{H}}$.

There exists $\varphi', \psi' \in H^0(X \setminus X_0, \Omega^n_{X/S}|_{X \setminus X_0})$ such that $\varphi = \pi^* ds \wedge \varphi'$ and $\psi = \pi^* ds \wedge \psi'$ on $X \setminus X_0$. Then φ' and ψ' are identified with $\varphi \otimes (\pi^* ds)^{-1}, \psi \otimes (\pi^* ds)^{-1} \in H^0(X, \omega_{X/S})$, respectively. Since $\mathbf{F}^n \subset \mathbf{H}$, there exist $b_k(t), c_k(t) \in \mathcal{O}(S^o)$ such that $[\varphi'|_{X_s}] = \sum_{k=1}^m b_k(s) \mathbf{s}_k(s)$ and $[\psi'|_{X_s}] = \sum_{k=1}^m c_k(s) \mathbf{s}_k(s)$. Since $\pi_* \omega_{X/S} = \overline{F}^n$ by Kawamata [5, Lemma 1], we get $b_k(s), c_k(s) \in \mathcal{O}(S)$. Then

$$\pi_*(\varphi \wedge \overline{\psi})(s) = \{ \int_{X_s} \varphi' \wedge \overline{\psi'} \} \, ds \wedge d\overline{s} = \{ \int_{X_s} \sum_{i=1}^m b_j(s) \mathbf{s}_j(s) \wedge \sum_{k=1}^m \overline{c_k(s)} \mathbf{s}_k(s) \} \, ds \wedge d\overline{s}.$$

Substituting $\mathbf{s}_k(s) = \exp(-z N) \mathbf{v}_k(z) = \sum_{0 \le m \le n} \frac{(-z)^m}{m!} N^m \mathbf{v}_k(z)$, we get

$$\pi_*(\varphi \wedge \overline{\psi})(s) = \{ \sum_{j,k=1}^m b_j(s) \overline{c_k(s)} \sum_{0 \le a,b \le n} \frac{(-1)^{a+b}}{a!b!} z^a \overline{z}^b C_{a,b}^{j,k} \} ds \wedge d\overline{s},$$

where $z = \frac{1}{2\pi i} \log s$ and $C_{a,b}^{j,k} = \int_{X_o} (N^a v_j) \wedge (N^b \overline{v_k})$. Since $\pi_*(\varphi \wedge \overline{\psi})$ is single-valued, so is the expression $\sum_{a+b=m} \frac{(-1)^{a+b}}{a!b!} z^a \overline{z}^b C_{a,b}^{j,k}$. As a result, there exists a constant $C_m^{j,k} \in \mathbf{C}$ such that $\sum_{a+b=m} \frac{(-1)^{a+b}}{a!b!} z^a \overline{z}^b C_{a,b}^{j,k} = C_m^{j,k} (\log |s|^2)^m$. Setting $a_m(s) := \sum_{j,k=1}^m C_m^{j,k} b_j(s) \overline{c_k(s)}$, we get the result.

Remark 2.4. In the proof of Theorem 2.1, the role of the nilpotent orbit theorem is played by Barlet's theorem [1, Th. 4bis.] on the asymptotic expansion of fiber integrals associated to the function $f(z) = z_0 \cdots z_n$ near the origin. See [14, Sects. 6.3 and 6.4] for more details.

3. Some technical lemmas

We denote by $C_{\mathbf{R}}^{\infty}(T)$ the set of real-valued C^{∞} functions on T.

Lemma 3.1. Let $\varphi(t) \in C^{\infty}_{\mathbf{R}}(T)$ and let $r \in \mathbf{Q}$ and $\ell \in \mathbf{Z}$. Set $h(t) := |t|^{2r} (\log |t|^2)^{\ell} \varphi(t)$. Then the following identities hold:

$$(1) \quad \partial_t h(t) = \left(\frac{r}{t} + \frac{\ell}{t(\log|t|^2)} + \frac{\partial_t \varphi(t)}{\varphi(t)}\right) h(t),$$

$$(2) \quad \partial_{t\bar{t}} h(t) = \left(-\frac{\ell}{|t|^2(\log|t|^2)} + \frac{\partial_{t\bar{t}} \varphi(t)}{\varphi(t)} - \frac{|\partial_t \varphi(t)|^2}{\varphi(t)^2} + \left|\frac{r}{t} + \frac{\ell}{t(\log|t|^2)} + \frac{\partial_t \varphi(t)}{\varphi(t)}\right|^2\right) h(t).$$

Proof. The proof is elementary and is left to the reader.

Lemma 3.2. Let I be a finite set. For $i \in I$, let $r_i \in \mathbf{Q}$, $\ell_i \in \mathbf{Z}$ and $\varphi_i(t) \in C^{\infty}_{\mathbf{R}}(T)$. Set $g_i(t) := |t|^{2r_i} (\log |t|^2)^{\ell_i} \varphi_i(t)$ for $i \in I$ and $g(t) := \sum_{i \in I} g_i(t)$.

(1) If g(t) > 0 on T^o , then the following equalities of functions on T^o hold:

$$\begin{split} \partial_t \log g &= \sum_{i \in I} \left(\frac{r_i}{t} + \frac{\ell_i}{t (\log |t|^2)} + \frac{\partial_t \varphi_i}{\varphi_i} \right) \frac{g_i}{g}, \\ \partial_{t\bar{t}} \log g &= -\frac{1}{2} \sum_{i,j} \frac{\ell_i + \ell_j}{|t|^2 (\log |t|^2)^2} \cdot \frac{g_i g_j}{g^2} + \frac{1}{2} \sum_{i,j} \left| \frac{r_i - r_j}{t} + \frac{\ell_i - \ell_j}{t (\log |t|^2)} \right|^2 \cdot \frac{g_i g_j}{g^2} \\ &+ \frac{1}{2} \sum_{i,j} \left(\frac{\partial_t \bar{t} \varphi_i}{\varphi_i} + \frac{\partial_t \bar{t} \varphi_j}{\varphi_j} \right) \frac{g_i g_j}{g^2} + \frac{1}{2} \sum_{i,j} \Re \left(\frac{\partial_t \varphi_i}{\varphi_i} \cdot \frac{\overline{\partial_t \varphi_j}}{\varphi_j} \right) \frac{g_i g_j}{g^2} \\ &+ \sum_{i < j} \Re \left\{ \left(\frac{r_i - r_j}{t} + \frac{\ell_i - \ell_j}{t (\log |t|^2)} \right) \cdot \left(\overline{\frac{\partial_t \varphi_i}{\varphi_i} - \frac{\partial_t \varphi_j}{\varphi_j}} \right) \right\} \frac{g_i g_j}{g^2}. \end{split}$$

(2) If $r_i \geq 0$ and $0 \leq \ell_i \leq N$ for all $i \in I$, then as $t \to 0$

$$\partial_{t\bar{t}} \log g = -\frac{1}{2} \sum_{i,j} \frac{\ell_i + \ell_j}{|t|^2 (\log|t|^2)^2} \cdot \frac{g_i g_j}{g^2} + \frac{1}{2} \sum_{i,j} \left| \frac{r_i - r_j}{t} + \frac{\ell_i - \ell_j}{t (\log|t|^2)} \right|^2 \cdot \frac{g_i g_j}{g^2} + O\left(\frac{(-\log|t|)^{2N}}{|t|g(t)^2}\right).$$

Proof. (1) The first equality of (1) follows from Lemma 3.1 (1). Since

$$\partial_{t\bar{t}}g(t) = \sum_{i \in I} \left(-\frac{\ell_i}{|t|^2 (\log|t|^2)} + \frac{\partial_{t\bar{t}}\varphi_i}{\varphi_i} - \frac{|\partial_t\varphi_i|^2}{\varphi_i^2} + \left| \frac{r_i}{t} + \frac{\ell_i}{t (\log|t|^2)} + \frac{\partial_t\varphi_i}{\varphi_i} \right|^2 \right) g_i$$

by Lemma 3.1 (2), we get

(3.1)

$$g\partial_{t\bar{t}}g = \sum_{i,j\in I} g_j \left(-\frac{\ell_i}{|t|^2 (\log|t|^2)} + \frac{\partial_{t\bar{t}}\varphi_i}{\varphi_i} - \frac{|\partial_t\varphi_i|^2}{\varphi_i^2} + \left| \frac{r_i}{t} + \frac{\ell_i}{t(\log|t|^2)} + \frac{\partial_t\varphi_i}{\varphi_i} \right|^2 \right) g_i$$

$$= \frac{1}{2} \sum_{i,j\in I} \left(-\frac{\ell_i + \ell_j}{|t|^2 (\log|t|^2)} + \frac{\partial_{t\bar{t}}\varphi_i}{\varphi_i} + \frac{\partial_{t\bar{t}}\varphi_j}{\varphi_j} - \frac{|\partial_t\varphi_i|^2}{\varphi_i^2} - \frac{|\partial_t\varphi_j|^2}{\varphi_j^2} \right)$$

$$+ \left| \frac{r_i}{t} + \frac{\ell_i}{t(\log|t|^2)} + \frac{\partial_t\varphi_i}{\varphi_i} \right|^2 + \left| \frac{r_j}{t} + \frac{\ell_j}{t(\log|t|^2)} + \frac{\partial_t\varphi_j}{\varphi_j} \right|^2 \right) g_i g_j.$$

By the first equality of Lemma 3.2 (1), we get

(3.2)

$$\begin{split} |\partial_t g|^2 &= \sum_{i,j \in I} \left(\frac{r_i}{t} + \frac{\ell_i}{t(\log|t|^2)} + \frac{\partial_t \varphi_i}{\varphi_i} \right) \left(\frac{\overline{r_j}}{t} + \frac{\ell_j}{t(\log|t|^2)} + \frac{\partial_t \varphi_j}{\varphi_j} \right) g_i g_j \\ &= \sum_{i,j \in I} \Re \left(\frac{r_i}{t} + \frac{\ell_i}{t(\log|t|^2)} + \frac{\partial_t \varphi_i}{\varphi_i} \right) \left(\frac{\overline{r_j}}{t} + \frac{\ell_j}{t(\log|t|^2)} + \frac{\partial_t \varphi_j}{\varphi_j} \right) g_i g_j. \end{split}$$

By (3.1) and (3.2), we get

(3.3)

$$\begin{split} g\partial_{t\bar{t}}g - |\partial_t g|^2 &= \frac{1}{2} \sum_{i,j \in I} \left(-\frac{\ell_i + \ell_j}{|t|^2 (\log|t|^2)} + \frac{\partial_{t\bar{t}} \varphi_i}{\varphi_i} + \frac{\partial_{t\bar{t}} \varphi_j}{\varphi_j} - \frac{|\partial_t \varphi_i|^2}{\varphi_i^2} - \frac{|\partial_t \varphi_j|^2}{\varphi_j^2} \right. \\ & + \left| \left(\frac{r_i}{t} + \frac{\ell_i}{t (\log|t|^2)} + \frac{\partial_t \varphi_i}{\varphi_i} \right) - \left(\frac{r_j}{t} + \frac{\ell_j}{t (\log|t|^2)} + \frac{\partial_t \varphi_j}{\varphi_j} \right) \right|^2 \right) g_i g_j. \end{split}$$

Since $\partial_{t\bar{t}} \log g = (g\partial_{t\bar{t}}g - |\partial_t g|^2)/g^2$, the second equality of Lemma 3.2 (1) follows from (3.3). This proves (1).

(2) By the definition of $g_i(t)$, we get

$$\left(\frac{\partial_{t\bar{t}}\varphi_{i}}{\varphi_{i}} + \frac{\partial_{t\bar{t}}\varphi_{j}}{\varphi_{j}}\right)\frac{g_{i}g_{j}}{g^{2}} = \frac{(\varphi_{i}\partial_{t\bar{t}}\varphi_{j} + \varphi_{j}\partial_{t\bar{t}}\varphi_{i}) \cdot |t|^{2(r_{i}+r_{j})}(\log|t|^{2})^{\ell_{i}+\ell_{j}}}{g^{2}}.$$

(3.5)
$$\left(\frac{\partial_t \varphi_i}{\varphi_i} - \frac{\partial_t \varphi_j}{\varphi_j} \right) \frac{g_i g_j}{g^2} = \frac{(\varphi_j \partial_t \varphi_i - \varphi_i \partial_t \varphi_j) \cdot |t|^{2(r_i + r_j)} (\log |t|^2)^{\ell_i + \ell_j}}{g^2},$$

$$(3.6) \qquad \left(\frac{\partial_t \varphi_i}{\varphi_i} \cdot \overline{\frac{\partial_t \varphi_j}{\varphi_j}}\right) \frac{g_i g_j}{g^2} = \frac{(\partial_t \varphi_i \cdot \overline{\partial_t \varphi_j}) \cdot |t|^{2(r_i + r_j)} (\log |t|^2)^{\ell_i + \ell_j}}{g^2}.$$

Since the functions $\varphi_i \partial_{t\bar{t}} \varphi_j + \varphi_j \partial_{t\bar{t}} \varphi_i$, $\varphi_j \partial_t \varphi_i - \varphi_i \partial_t \varphi_j$, $\partial_t \varphi_i \cdot \overline{\partial_t \varphi_j}$ are bounded near t = 0 and since $|t|^{2(r_i + r_j)} (-\log |t|^2)^{\ell_i + \ell_j} \leq (-\log |t|^2)^{2N}$ by the definition of N, we get (2) by the second equality of Lemma 3.2 (1) and (3.4), (3.5), (3.6). \square

Lemma 3.3. Let $\varphi_i \in C^{\infty}_{\mathbf{R}}(T)$ for $0 \le i \le N$ and set $g(t) = \sum_{i=0}^{N} (\log |t|^2)^i \varphi_i(t)$. Assume that g(t) > 0 on T^o and that $\varphi_i(0) \ne 0$ for some $0 \le i \le N$. Set

$$\ell := \max_{0 \le i \le N, \, \varphi_i(0) \ne 0} \{i\} \in \mathbf{Z}_{\ge 0}.$$

Then there exists a constant C > 0 such that the following inequalities hold

$$|\partial_t \log g(t)| \le \frac{C}{|t|(-\log|t|)}, \qquad \left|\partial_{t\bar{t}} \log g(t) + \frac{\ell}{|t|^2(-\log|t|)^2}\right| \le \frac{C}{|t|^2(-\log|t|)^3}.$$

Proof. Set $I = \{0, 1, ..., N\}$ and $g_i(t) := (-\log|t|)^i \varphi_i(t)$ for $i \in I$. Namely, we set $(r_i, \ell_i) = (0, i)$ in Lemma 3.2. Since $g(t) = \varphi_\ell(0)(-\log|t|)^\ell(1 + O(1/\log|t|))$ as $t \to 0$, we get for each $0 \le i \le N$ the following asymptotic behavior as $t \to 0$:

(3.7)
$$\left| \frac{g_i(t)}{g(t)} \right| = \begin{cases} O(|t|(-\log|t|)^i) & (i > \ell), \\ 1 + O(|t|(\log|t|)^n) & (i = \ell), \\ O((-\log|t|)^{-(\ell-i)}) & (i < \ell). \end{cases}$$

By the first equality of Lemma 3.2 (1) and (3.7), there are constants C, C' > 0 such that

$$|\partial_t \log g(t)| \le \frac{C}{|t|(-\log|t|)} \sum_{i=0}^N \left| \frac{g_i}{g} \right| \le \frac{C'}{|t|(-\log|t|)}.$$

This proves the first inequality. Since $g(t) = \varphi_{\ell}(0)(-\log|t|)^{\ell}(1 + O(1/\log|t|))$, there exists c > 0 such that $g(t) \ge c > 0$ on T^o . In particular O(1/g(t)) = O(1). This, together with Lemma 3.2 (2), yields that

(3.8)
$$\partial_{t\bar{t}} \log g = -\frac{\ell}{|t|^2 (\log|t|^2)^2} - \frac{1}{2} \sum_{(i,j) \neq (\ell,\ell)} \frac{i+j}{|t|^2 (\log|t|^2)^2} \left(\frac{g_i}{g}\right) \left(\frac{g_j}{g}\right) + \frac{1}{2} \sum_{i \neq j} \frac{(i-j)^2}{|t|^2 (\log|t|^2)^2} \left(\frac{g_i}{g}\right) \left(\frac{g_j}{g}\right) + O\left(\frac{(-\log|t|)^{2N}}{|t|}\right).$$

Since $|g_i(t)g_j(t)/g(t)^2| = O(1/\log|t|)$ when $i \neq j$ by (3.7), the second and the third term in the right hand side of (3.8) is bounded by $|t|^{-2}(-\log|t|)^{-3}$ as $t \to 0$. Similarly, it follows from (3.7) that the second term of the right hand side of (3.8) is bounded by $|t|^{-2}(-\log|t|)^{-3}$. The second inequality follows from (3.8).

4. The boundary behavior of the curvature of the L^2 -metric

In this section, we define $N, \ell_q \in \mathbf{Z}_{>0}$ as

$$N:=n\rho_q, \qquad \ell_q:=\max_{0\leq i\leq N,\, a_i(0)\neq 0}\{i\},$$

where $a_i(t) \in C^{\infty}(T)$, $0 \le i \le N$, are the functions in Theorem 2.1. Recall that the integer $\nu > 0$ was defined in Sect. 2.

4.1. The singularity of the first Chern form.

Theorem 4.1. The following formula holds as $s \to 0$:

$$c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) = \left\{ \frac{\ell_q}{|s|^2 (\log |s|)^2} + O\left(\frac{1}{|s|^2 (\log |s|)^3}\right) \right\} \sqrt{-1} \, ds \wedge d\bar{s}$$

Proof. Recall that T is another unit disc and that the map $\mu: T \to S$ is defined as $s = \mu(t) = t^{\nu}$. By Theorem 2.1, we get

$$\mu^* c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) = -\frac{\sqrt{-1}}{2\pi} \mu^* \partial \bar{\partial} \log \det G(s) = -\frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \det H(t)$$
$$= -\frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \left[\sum_{m=0}^{N} a_m(t) \left(\log |t|^2 \right)^m \right].$$

We set $g(t) = \det H(t) = \sum_{i=0}^{N} (\log |t|^2)^i a_i(t)$ in Lemma 3.3. Since $a_i(0) \neq 0$ for some $0 \leq i \leq N$ by Theorem 2.1, we deduce from Lemma 3.3 that (4.1)

$$\mu^* c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) = \ell_q \frac{\sqrt{-1} dt \wedge d\bar{t}}{|t|^2 (-\log|t|)^2} + O\left(\frac{\sqrt{-1} dt \wedge d\bar{t}}{|t|^2 (-\log|t|)^3}\right).$$

Since $\mu^* \{ \sqrt{-1} ds \wedge d\bar{s}/(|s|^2 (-\log|s|)^m \} = \nu^{2-m} \sqrt{-1} dt \wedge d\bar{t}/(|t|^2 (-\log|t|)^m)$, the desired inequality follows from (4.1).

Remark 4.2. The Hermitian metric $\mu^* \det h_{L^2}$ on the line bundle $\det R^q f_* \omega_{Y/T}(\xi)$ is good in the sense of Mumford [9]. Namely, the following estimates hold:

(1) There exist constants $C, \ell > 0$ such that

$$\det H(t) \le C(-\log |t|^2)^{\ell}, \qquad (\det H(t))^{-1} \le C(-\log |t|^2)^{\ell}.$$

(2) There exists a constant C > 0 such that

$$|\partial_t \log \det H(t)| \le \frac{C}{|t|(-\log |t|)}, \qquad |\partial_{t\bar{t}} \log \det H(t)| \le \frac{C}{|t|^2(-\log |t|)^2}.$$

The inequalities (1) follow from Theorem 2.1. By setting $g(t) = \det H(t)$ in Lemma 3.3, we get (2) because $\det H(t) = g(t) = \sum_{i=0}^N (\log |t|^2)^i a_i(t), \ a_i(t) \in C^\infty_{\mathbf{R}}(T)$ with $a_i(0) \neq 0$ for some $0 \leq i \leq N$ by Theorem 2.1.

We do not know if the L^2 -metric $\mu^* h_{L^2}$ on $R^q f_* \omega_{Y/T}(F^* \xi)$ is good in the sense of Mumford, because the estimates

$$\|\partial_t H \cdot H^{-1}\| \le \frac{C}{|t|(-\log|t|)}, \qquad \|\partial_{\bar{t}}(\partial_t H \cdot H^{-1})\| \le \frac{C}{|t|^2(-\log|t|)^2}$$

do not necessarily follow from Theorem 2.1; from Theorem 2.1, we have only the estimates $\|\partial_t H \cdot H^{-1}\| \le C(-\log|t|)^{\ell}/|t|$ and $\|\partial_{\overline{t}}(\partial_t H \cdot H^{-1})\| \le C(-\log|t|)^{\ell}/|t|^2$, where $\|A\| = \sum_{i,j} |a_{ij}|$ for a matrix $A = (a_{ij})$.

4.2. **Proof of Theorem 1.1.** Let $\lambda_1, \ldots, \lambda_{\rho_q}$ be the eigenvalues of the Hermitian endomorphism $\sqrt{-1}\mathcal{R}(s)$. By the Nakano semi-positivity of $(R^q\pi_*\omega_{X/S}(\xi), h_{L^2})$, we get $\lambda_{\alpha} \geq 0$ for all $1 \leq \alpha \leq \rho_q$. By Theorem 4.1, we have the following inequality on S^o

$$0 \le \sqrt{-1} \operatorname{Tr}[\mathcal{R}(s)] = \sum_{\alpha} \lambda_{\alpha} \le \frac{C}{|s|^2 (-\log|s|)^2}.$$

In particular, we get $\Lambda := \max_{\alpha} \{\lambda_{\alpha}\} \leq C/(|s|^2(-\log|s|)^2)$. We get the desired inequality for $\sqrt{-1}\mathcal{R}(s)$ from the inequality $\sqrt{-1}\mathcal{R}(s) \leq \Lambda \cdot \operatorname{Id}_{R^q\pi_*\omega_{X/S}(\xi)}$. The inequality for $c_1(R^q\pi_*\omega_{X/S}(\xi),h_{L^2})$ is already proved in Theorem 4.1. This completes the proof.

4.3. **Proof of Theorem 1.2.** By the curvature formula for Quillen metrics [3], the following equation of currents on S^o holds

(4.2)
$$-dd^{c} \log \tau(X/S, \omega_{X/S}) + \sum_{q \geq 0} (-1)^{q} c_{1}(R^{q} \pi_{*} \omega_{X/S}(\xi), h_{L^{2}})$$
$$= \left[\pi_{*} \{ \operatorname{Td}(TX/S, h_{X/S}) \operatorname{ch}(\omega_{X/S}(\xi)) \} \right]^{(2)},$$

where $[A]^{(p)}$ denotes the component of degree p of a differential form A. By [13, Lemma 9.2], there exists $r \in \mathbb{Q}_{>0}$ such that as $s \to 0$

(4.3)

$$[\pi_*\{\mathrm{Td}(TX/S, h_{X/S})\mathrm{ch}(\omega_{X/S}(\xi))\}]^{(2)}(s) = O\left(\frac{\sqrt{-1}\,|s|^{2r}(-\log|s|)^n ds \wedge d\bar{s}}{|s|^2}\right).$$

By Theorem 1.1, we get

(4.4)

$$\sum_{q\geq 0} (-1)^q c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) = \frac{\sum_{q\geq 0} (-1)^q \ell_q}{2\pi} \frac{\sqrt{-1} \, ds \wedge d\bar{s}}{|s|^2 (-\log|s|)^2} + O\left(\frac{\sqrt{-1} \, ds \wedge d\bar{s}}{|s|^2 (-\log|s|)^3}\right).$$

By (4.2), (4.3), (4.4), we get on S^o

$$\frac{\sqrt{-1}}{2\pi}\partial\bar{\partial}\log\tau(X/S,\omega_{X/S}) = \frac{\sum_{q\geq 0}(-1)^q\ell_q}{2\pi}\,\frac{\sqrt{-1}\,ds\wedge d\bar{s}}{|s|^2(-\log|s|)^2} + O\left(\frac{\sqrt{-1}\,ds\wedge d\bar{s}}{|s|^2(-\log|s|)^3}\right).$$

This completes the proof.

5. Canonical singularities and the curvature of L^2 -metric

In this section, we assume that the central fiber X_0 is reduced and irreducible and has only canonical (equivalently rational) singularities. Then $G(s) = (G_{\alpha\bar{\beta}}(s))$ is expected to have better regularity than usual. To see this, set

$$\mathcal{B}(S) := C^{\infty}(S) \oplus \bigoplus_{r \in \mathbf{Q} \cap (0,1]} \bigoplus_{k=0}^{n} |s|^{2r} (\log|s|)^k C^{\infty}(S) \subset C^0(S).$$

By [14, Th. 7.2], the L^2 -metric h_{L^2} on $R^q \pi_* \omega_{X/S}(\xi)$ is a continuous Hermitian metric lying in the class $\mathcal{B}(S)$. Namely, $G_{\alpha\bar{\beta}}(s) \in \mathcal{B}(S)$ for all $1 \leq \alpha, \beta \leq \rho_q$.

Proposition 5.1. If X_0 has only canonical singularities, then there exists $r \in \mathbb{Q}_{>0}$ and C > 0 such that the following inequality of real (1, 1)-forms on S^o holds

$$0 \le c_1(R^q \pi_* \omega_{X/S}(\xi), h_{L^2}) \le C \frac{\sqrt{-1} |s|^{2r} ds \wedge d\bar{s}}{|s|^2 (-\log |s|)^2}.$$

In particular, the curvature $i\mathcal{R}(s) ds \wedge d\bar{s}$ satisfies the following estimate:

$$0 \leq \sqrt{-1}\mathcal{R}(s) \leq \frac{C|s|^{2r}}{|s|^2(-\log|s|)^2} \mathrm{Id}_{R^q\pi_*\omega_{X/S}(\xi)}.$$

Proof. Since $G_{\alpha\bar{\beta}}(s)$ is continuous on S, we may assume by an appropriate choice of basis that $G_{\alpha\bar{\beta}}(0) = \delta_{\alpha\beta}$. Since $\det G(s) \in \mathcal{B}(S)$, there exist a finite set I and $(r_i, \ell_i) \in \mathbf{Q}_{>0} \times \mathbf{Z}_{>0}$ for each $i \in I$ such that

$$\det G(s) = 1 + \sum_{i \in I} |s|^{2r_i} (\log |s|^2)^{\ell_i} \varphi_i(s).$$

We set $r_0 = 0$, $\ell_0 = 0$ and $\varphi_0(s) = 1$. For $i \in \{0\} \cup I$, we set $g_i(s) := |s|^{2r_i} (\log |s|^2)^{\ell_i} \varphi_i(s)$. By Lemma 3.2 (2) applied to $\det G(s)$, we get

$$-\partial_{s\bar{s}}\log\det G(s)$$

$$\begin{split} &= \frac{1}{2} \sum_{i,j \in I \cup \{0\}} \frac{\ell_i + \ell_j}{|s|^2 (\log |s|^2)^2} \cdot \frac{g_i g_j}{g^2} - \frac{1}{2} \sum_{i,j \in I \cup \{0\}} \left| \frac{r_i - r_j}{s} + \frac{\ell_i - \ell_j}{s (\log |s|^2)} \right|^2 \frac{g_i g_j}{g^2} \\ &\quad + O\left(\frac{(-\log |t|)^{2N}}{|t|}\right) \\ &\leq C \sum_{i,j \in I \cup \{0\}} \frac{(\ell_i + \ell_j)|s|^{2(r_i + r_j)}}{|s|^2 (\log |s|^2)^2} + C \sum_{i,j \in I \cup \{0\}} \left| \frac{r_i - r_j}{s} + \frac{\ell_i - \ell_j}{s (\log |s|^2)} \right|^2 |s|^{2(r_i + r_j)} \\ &\quad + O\left(\frac{(-\log |t|)^{2N}}{|t|}\right). \end{split}$$

Set $r := \min_{i \in I} \{r_i\} > 0$. Since $r_i + r_j > r$ for all $(i, j) \in (I \cup \{0\}) \times (I \cup \{0\}) \setminus \{(0, 0)\}$, we get

$$-\partial_{s\bar{s}} \log \det G(s) \le C \frac{2\ell_0}{|s|^2 (\log |s|^2)^2} + C \sum_{(i,j) \ne (0,0)} \frac{|s|^{2(r_i + r_j)}}{|s|^2 (\log |s|^2)^2} \le \frac{C |s|^{2r}}{|s|^2 (\log |s|^2)^2}.$$

because $\ell_0 = 0$. Since $-\partial_{s\bar{s}} \log \det G(s) \geq 0$ by the Nakano semi-positivity of $(R^q \pi_* \omega_{X/S}(\xi), h_{L^2})$ by [2], [7], we get the first inequality. The proof of the second inequality is the same as that of the corresponding inequality of Theorem 1.1. \square

References

- Barlet, D. Développement asymptotique des fonctions obtenues par intégration sur les fibres, Invent. Math. 68 (1982), 129-174.
- [2] Berndtsson, B. Curvatures of vector bundles associated to holomorphic fibrations, Ann. of Math. 169 (2009) 531–560.
- [3] Bismut, J.-M., Gillet, H., Soulé, C. Analytic torsion and holomorphic determinant bundles I, II, III, Commun. Math. Phys. 115 (1988), 49-78, 79-126, 301-351.
- [4] Fujita, T. On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779–794.
- [5] Kawamata, Y. Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), 57–71.
- [6] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B. Toroidal Embeddings I, Lecture Notes Math. 339 (1973)
- [7] Mourougane, C., Takayama, S. Hodge metrics and the curvature of higher direct images, Ann. Sci. Éc. Norm. Sup. 41 (2008), 905–924.
- [8] Extension of twisted Hodge metrics for Kähler morphisms, J. Differential Geom. 83 (2009), 131–161.
- [9] Mumford, D. Hirzebruch's proportionality theorem in the non-compact case, Invent. Math. 42 (1977), 239-272.

- [10] Ray, D.B., Singer, I.M. Analytic torsion for complex manifolds, Ann. Math. 98 (1973), 154–177.
- [11] Schmid, W. Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211–319.
- [12] Takegoshi, K. Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), 389–416.
- [13] Yoshikawa, K.-I. On the singularity of Quillen metrics, Math. Ann. 337 (2007), 61-89.
- [14] _____Singularities and analytic torsion, preprint, (2010).

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, JAPAN

 $E ext{-}mail\ address: yosikawa@ms.u-tokyo.ac.jp}$

Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, KOREA