

ТРАНСИВЕР ДЛЯ FAST ETHERNET. ИНТЕРФЕЙС MII.

Трансиверы для работы в сети Ethernet 10/100 производят довольно много фирм. На сегодняшний день параметры таких трансиверов довольно близки, и они отличаются только уровнем сервиса и возможностью работы в режиме «сокращенного интерфейса».

Именно к таким трансиверам и относится трансивер KS8001 фирмы Micrel. Этот трансивер для Ethernet 10/100, он выполнен по «классической» структуре. Блок-схема трансивера KS8001 фирмы Micrel приведена на рис. 1

Трансивер подключается к физической линии через трансформатор или к оптическому кабелю через оптопреобразователь. Со стороны линии сигналы подаются на пары выводов ТХ и RX.Другими своими выводами трансивер подключается к MAC-контроллеру. Со стороны контроллера есть интерфейс МІІ и интерфейс МІІ-МІ. Кроме этих сигналов трансивер имеет также сигналы для управления светодиодами и вспомогательные цепи.

В этой статье будет рассмотрен интерфейс MII. Кроме варианта работы в режиме стандартного MII, трансивер KS8001 может работать в режиме сокращенного MII – RMII, а также в режиме последовательного интерфейса – SMII. «Сокращение» интерфейса – это уменьшение линий связи, что позволяет упростить конструкцию печатной платы.

Интерфейс MII

Интерфейс МІІ предназначен для связи МАС-контроллера с трансивером и состоит из двух частей: собственно канала приема-передачи данных (МІІ) и служебного канала управления (МІІ_МІ). Все операции интерфейса МІІ, выполняются в синхронном режиме. Передача данных ведется под отрицательные фронты импульсов синхронизации. Прием данных ведется под положительные фронты импульсов синхронизации.

Канал передачи данных (MII) содержит следующие сигналы:

Transmit Data: TXD[3.. 0] - группа параллельных сиг-

Иосиф Каршенбойм. E-mail: iosifk@eltech.spb.ru

налов данных, которые поступают в трансивер из MAC. Они выдаются синхронно относительно TXC.

TXEN: Transmit Enable. MAC устанавливает этот сигнал, когда установлены достоверные данные на TXD. Этот сигнал должен быть синхронизирован с TXC.

TXER: Transmit Error. Сообщает о том, что в передаваемом потоке данных произошла ошибка. Этот сигнал должен быть синхронизирован с ТХС. Трансивер имеет возможность передавать в линию сигнал ошибки TXER. получаемый от МАС.

Когда МАС устанавливает TXER, трансивер установит кодовую комбинацию «Н» на выводах ТХ. Типичная ситуация для установления сигнала ошибки по передаче такова: хост не успел заполнить буфер передачи данными, и кадр еще не закончен, а буфер считан весь. Передача еще не остановлена и в линию передаются «пустые» данные, которые не будут соответствовать кадру верхнего уровня. Если не устанавливать сигнал TXER, то неправильно сформированный кадр уйдет в линию и будет принят приемником.

Далее приемник, произведя проверку кадра по контрольной сумме, все же отбракует принятый кадр. Но если установить сигнал TXER, то на приемной стороне кадр будет отбракован еще до конца приема кадра, т.е. в момент получения сигнала ошибки.

TXC Transmit Clock. TXC – вырабатывается в трансивере и передается в MAC. TXC = $2.5 \, \text{М}\Gamma$ ц для операций 10 Мбит/с, TXC = $25 \, \text{M}\Gamma$ ц для операций 100 Мбит/с.

Канал приема данных (MII) содержит следующие сигналы:

Receive Data:. RXD [3.. 0] - группа параллельных сигналов данных, выдаются из трансивера в MAC синхронно, относительно RXC.

Receive Data Valid: RXDV. Трансивер устанавливает этот сигнал, когда он получает достоверный пакет данных и, соответственно, выдает достоверные данные на RXD. Сигнал на этом выводе синхронный с RXC. Изменения сигнала по времени зависят от того, какой режим по быстродействию используется в линии:

– Для режима 100TX, RXDV устанавливается с первым нибблом Start of Frame Delimiter (SFD) «5D», и остается установленным до последнего ниббла пакета данных.

Для режима 10ВТ, полная преамбула усечена.

RXER: Receive Error. Трансивер сообщает о том, что в приемном потоке данных произошла ошибка. Сигнал на этом выводе синхронный с RXC. На приемной стороне, когда KS8721 находится в режиме 100 Мбит/с и получает недопустимый символ из сети, он устанавливает RXER и код «1110» на выводах RXD.

RXC: Receive Clock. RXC – вырабатывается в трансивере и передается в MAC. RXC = $2.5 \text{ M}\Gamma\text{ц}$ для операций 10 Мбит/с, RXC = $25 \text{ M}\Gamma\text{ц}$ для операций 100 Мбит/с.

Канал данных (MII) содержит дополнительные сигналы:

COL: Collision Detected. Трансивер устанавливает этот вывод, когда обнаружено столкновение на линии. Этот вывод остается высоким во время столкновения

на линии. Этот сигнал асинхронный и неактивен в течение дуплексной операции.

CRS: CARRIER SENSE. Опрос несущей - асинхронный вывод. В течение полудуплексной операции (бит 0.8 = 0), трансивер устанавливает этот вывод, когда передаёт или принимает пакеты данных. В течение дуплексной операции, CRS устанавливается при приеме. Установка бита CRS производится асинхронно относительно RXC. CRS сбрасывается при потере несущей частоты, синхронной с RXC.

Служебный канал (МІ) содержит следующие сигналы:

MDC: Management Data Clock. Частота для последовательного канала данных MDIO. Для трансивера KS8001 тактовая частота — 12,5 МГц.

MDIO: Management Data. Двунаправленный последовательный канал данных для связи с регистром STA трансивера.

INTRPT: interrupt line. Опциональный выход.

Сигналы связи с линией:

ТХ: Выводы для подключения к витой паре, Положительный и Отрицательный.

При работе в 100BASE-TX или 10BASE-T, TPOP/N выдают в линию импульсы, соответствующие 802.3.

RX: Выводы для подключения к витой паре, Положительный и Отрицательный.

При работе в 100BASE-TX или 10BASE-T, TPOP/N получают из линии дифференциальные импульсы, соответствующие 802.

ОПИСАНИЕ РАБОТЫ ТРАНСИВЕРА

Интерфейс Данных MII

Трансивер KS8001 поддерживает стандартный Media Independent Interface (MII). MII состоит из интерфейса данных и интерфейса управления (Management Interface). Интерфейс Данных MII передает данные между KS8001 и Media Access Controller (MAC). Для передачи и для приема данных предусмотрены отдельные параллельные шины.

Этот интерфейс работает и в режиме 10 Мбит/с и в 100 Мбит/с. Быстродействие устанавливается автоматически, как только эксплуатационные режимы сетевой связи будут определены. В течение операции 100BASE-X, KS8001 передает и получает 5-битовые символы из линии связи, а в МІІ данные передаются и принимаются в виде 4х битных нибблов.

Такая кодировка данных позволяет передавать и принимать сигналы управления синхронно с сигналами данных. При отсутствии данных на передачу, при старте пакета, при окончании пакета и при ошибках в линии, в поток данных, передаваемых в линию, трансивер вставляет соответствующие управляющие кодовые комбинации.

Конфигурация через аппаратный интерфейс управления

Трансивер KS8001 позволяет выполнить настройки своих рабочих режимов в соответствии с теми значениями сигналов, которые установлены на аппаратном интерфейсе управления. Этот интерфейс используется для тех применений, где управление трансивером по интерфейсу MDIO нежелательно.

Для аппаратного интерфейса управления задействуются выводы трансивера RXD[0..3] и INT#. К данным выводам подключаются их «штатные» сигналы, но еще дополнительно к этим выводам подключаются резисторы одним своим выводом, а другим выводом либо на GND, либо на 3.3 В. При старте — при подаче напряжения питания или после сброса, трансивер опрашивает состояние своих выводов RXD[0..3] и запоминает их состояние как PHYAD[4:1], и аналогично - вывод INT# запоминается как PHYAD0. Благодаря этому, трансиверы фирмы Micrel имеют возможность получить адрес (PHYAD) от 0 и до 31. Процесс приема кода адреса при старте показан на рис.2. Далее эти выводы используются для выдачи из трансивера сигналов RXD[0..3] и INT#.

Конфигурация через Management Interface

Конфигурация трансивера KS8001 обеспечивается, как через интерфейс MDIO, так и через аппаратный интерфейс управления.

MDIO - Management Interface

Трансивер KS8001 поддерживает IEEE 802.3 MII Management Interface также известный, как интерфейс Management Data Input/Output (MDIO). Этот интерфейс позволяет устройствам верхнего уровня контролировать и управлять состоянием трансивера KS8001.

Интерфейс MDIO состоит из физического подключения, определенного протокола, который требуется для работы данных устройств, и определенного набора регистров, которые требуются по стандарту IEEE 802.3. Регистры [0:6] являются обязательными по стандарту. Формат регистров управления установлен одинаковым для всех трансиверов. Это упрощает переносимость проектов с одной элементной базы на другую.

Дополнительные регистры позволяют расширить функции, выполняемые трансивером. Все регистры имеет разрядность 16 бит. Определенные биты регистра описываются, используя форму записи «X.Y.», где X - номер (0-31) регистра, и Y - номер (0-15) бита.

Физический интерфейс состоит из линии данных (MDIO) и линии синхрочастоты (MDC).

Структура кадра MDIO

Физический интерфейс состоит из линии данных

(MDIO) и линии частоты (MDC). Структура кадра показана на рис. 3 (чтение и запись).

Кадр начинается с преамбулы, состоящей из 32-х «1» (возможно передавать «1» постоянно и это будет исходное состояние до начала кадра), затем передается стартовая комбинация, соответствующая передаче двух битов «01», затем передаются два бита, соответствующие коду операции- «10» для чтения и «01» для записи данных, далее передается физический адрес трансивера А[4..0] и регистра трансивера R[4..0]. Таким образом, возможно обслуживание нескольких трансиверов по интерфейсу МІ.

Физически интерфейс управления может быть подключен ко всем трансиверам устройства, если их число не более 32-х. Каждый трансивер должен иметь свой уникальный адрес. Для этого используется способ задания адресов при старте.

Вернемся к рассмотрению работы интерфейса MDIO. После передачи адреса, в цикле записи данных передается код «10» и, после него, передатчик передает 16-ти битное слово данных. Далее передатчик приходит в исходное состояние.

В цикле чтения данных, после передачи адреса, передатчик переводит свой выход в третье состояние и, после задержки в 2 бита, необходимых для завершения переходного процесса на шине, начинает прием 16-ти битного слова данных. Адресуемая микросхема после приема адреса подключается к шине и,

Таблица 1. Описание сигналов для интерфейса RMII.

после задержки в 2 бита, начинает передавать требуемые данные.

После передачи данных микросхема переводит свои выходы в третье состояние и отключается от шины. Передатчик приходит в исходное состояние после приема данных от микросхемы.

ИНТЕРФЕЙС «СОКРАЩЕННЫЙ» MII - RMII (REDUCED MII)

Трансивер имеет возможность работать с сокращенным набором сигналов интерфейса МІІ. Это оказывается особенно полезно при работе с FPGA. В таком режиме работы разрядность шин RXD и TXD сокращается вдвое, но соответственно вдвое поднимается частота синхронизации МАС. Такое решение позволяет упростить конструкцию печатной платы. В ряде случаев такое решение позволяет использовать единую частоту синхронизации для МАС и PHY.

Интерфейс RMII имеет сокращенный набор сигналов и полностью совместим с IEEE 802.3u. Он позволяет работать в режимах 10 Мбит/с и 100 Мбит/с. Имеет частоту синхронизации 50 МГц. Описание сигналов для интерфейса RMII приведено в табл.1.

Диаграммы сигналов по передаче и по приему для RMII аналогичны диаграммам для MII.

ИНТЕРФЕЙС «ПОСЛЕДОВАТЕЛЬНЫЙ» MII - SMII (SERIAL MII)

Интерфейс SMII имеет сокращенный набор сигналов и полностью совместим с IEEE 802.3u. Он поддерживает режимы работы 10 Мбит/с and 100 Мбит/с.

Интерфейс SMII состоит из сигнала для приема данных от MAC по SMII, из сигнала для передачи данных в MAC по SMII, сигнала синхронизации, и глобальной опорной синхрочастоты. Описание сигналов для интерфейса SMII приведено в табл.2.

Все сигналы синхронизированы под синхрочастоту 125 МГц. Опорная синхрочастота также имеет номинал 125 МГц.

Последовательный интерфейс SMII удовлетворяет следующим требования:

- Передает полную информацию МІІ между 10/100
 РНУ и МАС, используя только два сигнала на порт.
- Позволяет многопортовому МАС/РНУ работать с одной системной синхрочастотой.
 - Работает и в дуплексе и в полудуплексе.

Название сигнала	Направление передачи данных по отношению к РНҮ	Направление передачи данных по отношению к МАС	Использование сигнала
REF_CLK	Вход	Вход или Выход	Synchronous clock reference for receive, transmit and control
CRS_DV	Выход	Вход	Carrier Sense/Receive Data Valid
RXD[1:0]	Выход	Вход	Receive Data
TX_EN	Вход	Выход	Transit Enable
TXD[1:0]	Вход	Выход	Transit Data
RX_ER	Выход	Вход (не требуется)	Receive Error

Примечание: Когда используется интерфейс RMII, неиспользуемые сигналы интерфейса MII - TXD[3:2], TXER должны быть подключены к GND.

Таблица 2. Описание сигналов для интерфейса SMII.

Название сигнала	Источник сигнала	Приемник сигнала	Назначение сигнала
RX	PHY	MAC	Receive Data and Control
TX	MAC	PHY	Transmit Data and Control
SYNC	MAC	PHY	Synchronization
Clock	System	MAC&PHY	Synchronization

- Осуществляет переключение между пакетами со скорости 10 Мбит/с на скорость 100 Мбит/с и обратно. Позволяет подключить напрямую MAC - MAC. Диаграммы сигналов по приему приведены на рис. 4. Диаграммы сигналов по передаче приведены на рис. 5.

Тракт приема

Информация, принимаемая на входе RX соответствует всему спектру информации, принимаемой по интерфейсу MII на стороне приема данных, см. табл 3.

Таблица 3. Назначение битов при приеме по интерфейсу SMII.

Биты	Назначение			
CRS	Carrier Sense – идентична аналогичному сигналу в			
	MII, за исключением того, что теперь это			
	синхронный сигнал.			
RX DV	Receive Data Valid – идентично аналогичному			
_	сигналу в MII			
RXD7-0	Encoded Data, см. табл. 4			

Поскольку тактовая частота для режима SMII выбрана 125 МГц, а не 100 МГц, то появилась дополнительная возможность получить и декодировать значение состояния трансивера, см. табл 4.

ных по RX. Бит RX ER должен быть установлен в том случае, если, в течение приема кадра, буферное FIFO переполняется или производится попытка чтения из пустого буфера (underflow).

Через FIFO должны быть пропущены только сигналы RXD и RX DV. Сигнал CRS нельзя пропускать через FIFO, поскольку сигнал CRS должен быть установлен в течение всего времени, когда идет прием кадра данных.

Тракт передачи

В режиме передачи для SMII данные для передачи и сигналы управления информацией, поступают последовательном коде в виде 10-ти битового слова. В режиме «100 МБит», в каждом слове передается один байт данных. В режиме «10 МБит», в каждом слове данные повторяется десять раз, поэтому, каждые десять посылок передают только один новый байт данных. РНҮ может произвести выборку любой из каждых 10 посылок в 10 Мбит режиме.

По каналу передачи из МАС в трансивер передаются данные. Но в паузах между передачей данных есть возможность передать в трансивер слово управления. Например, если используется режим соединения двух трансиверов, для перехода «медь-оптоволокно» или для ретрансляции сигналов, то передающий трансивер может в паузе между данными вставлять слово управления.

Таблица 4. Назначение битов при приеме слова состояния трансивера по интерфейсу SMII.

CRS	RX_DV	RXD0	RXD1	RXD2	RXD3	RXD4	RXD5	RXD6	RXD7
X	0	RX_ER	Speed	Duplex	Link	Jabber	Upper	False	1
		from	0=10Mbit	0=Half	0=Down	0=OK	Nibble	Carrier	
		previous	1=100Mbit	1=Full	1=Up	1=Error	0=invalid	Detected	
		frame			·		1=valid		
X	1	One Data Byte (Two MII Data Nibble)							

Бит состояния, определяющий состояние во время приема кадра, RXD5 указывает на достоверность верхнего ниббла из байта предыдущего кадра. Бит состояния, определяющий состояние во время приема кадра, RXD0 указывает, действительно ли PHY обнаружил ошибку где-то в предыдущем кадре. Оба эти бита должны быть достоверны на следующем такте сразу после принятого кадра, и должны оставаться достоверными, пока первый такт данных следующего кадра не начался.

Если бит состояния RXD6 установлен, то такое состояние указывает, что РНҮ обнаружил неправильное состояние несущей.

Чтобы посылать принятые из сети данные в МАС синхронно с опорной синхрочастотой, РНҮ должен передать данные через эластичный буфер - FIFO, таким образом данные, принимаемые из сети? будут гарантированно синхронизированы с опорной синхрочастотой.

Спецификация Ethernet требует, чтобы данные пакета были привязаны к синхрочастоте, имеющей разброс по частоте не более 100 ppm (0.01 %), однако в сети Ethernet могут быть и такие устройства, у которых синхрочастота имеет ошибки до 0.1 %. Поэтому, глубина FIFO должна быть не менее чем на 27 битов, и он должен заполняться не более чем до половины, при передаче достоверных дан-

Таблица 5. Назначение битов при передаче по интерфейсу SMII.

Биты	Назначение
TX_EN	Transmit Enable – идентичен аналогичному
	сигналу в MII, это синхронный сигнал.
TX_ER	Transmit Error – идентичен аналогичному сигналу
	в MII, это синхронный сигнал.
TXD7-0	Encoded Data, см. табл. 6

Сигнал Collision Detection

Сигнал Collision Detection сообщает о том, что в линии произошли столкновения данных. Если сигнал TX EN установлен, то это значит, что передачу ведет данный трансивер. Следовательно, для данного трансивера, условием столкновения данных при передаче, будет такое состояние, когда одновременно установлены сигналы CRS и TX EN.

Операции 100 Мбит/с

Как было сказано выше, трансивер работает и в режиме 10 Мбит/с и в 100 Мбит/с. Работу трансивера в режиме 10 Мбит/с здесь описывать не будем. Рассмотрим более подробно режим работы 100 Мбит/с. Данные между трансивером и МАС-контроллером передаются кадрами в соответствии с IEEE 802.3.

В течение операции 100BASE-X, трансивер передает и получает 5-битовые символы из линии связи. На рис. 6 показана структура стандартного пакета. Ког-

Таблица 6. Назначение битов при передаче слова состояния трансиверу по интерфейсу SMII.

TX_ER	TX_EN	TXD0	TXD1	TXD2	TXD3	TXD4	TXD7-5
X	0	Use to force an error in a	1	1	1	0	1
		direct MAC to	100MBit	Full Duplex	Link Up	No Jabber	
		MAC connection					
X	1	One Data Byte (Two MII Data Nibbles)					

да МАС не передает данные, трансивер выдает в линию символы Idle. В режиме 100TX, трансивер производит скремблирование и передачу данных, используя кодирование MLT-3.

Данные, полученные из сети в коде MLT-3 дескремблируются, декодируются, и передаются в MII MAC. Более подробно об этом можно прочесть в Л[1], Л[2].

Как показано на рис. 6, МАС-контроллер начинает каждую передачу с преамбулы. Как только трансивер обнаруживает начало преамбулы, которую он получает из MAC-контроллера, он передает в линию Start-of-Stream Delimiter (SSD, символы J и K). Затем он кодирует и передает остальную часть пакета, включая остальную часть преамбулы, SFD, данные пакета, и CRC.

Как только пакет из МАС-контроллера закончился, трансивер передает End-of Stream-Delimiter (ESD, символы T и R) и, затем, возвращается к передаче символов Idle. Когда трансивер получает недопустимые символы от линии, он устанавливает RXER.

В следующей статье данного цикла будет описано подключение трансивера к оптоволоконному кабелю.

Литература:

- 1. Н. Олифер, В. Олифер. Высокоскоростная технология Fast Ethernet (IEEE 802.3u) Центр Информационных Технологий.
- 2. KS8001-ds.pdf. KS8001 1.8V, 3.3V 10/100BASETX/ FX Physical Layer Transceiver DATASHEET V 1.01. micrel.com

www.iosifk.narod.ru

ОДО "БелНИК

Импортные и отечественные компоненты:

- Разъемы (ШР, СНО, СНП, ГРППМ, СР, ОПП, РС и др.);
- Микросхемы;
- Транзисторы;
- Модули:
- Диоды;
- Тиристоры;
- Резисторы (МЛТ 0,125; 0,25; 0,5; 1; 2 Вт; ПЭВ; ПЭВР; СП и др.);
- Конденсаторы электролитические, танталовые и др.;
- Электромеханические, твердотельные реле;
- Автоматические выключатели (А, АЕ, АП);
- Оптоэлектроника;
- Симисторы;
- Пускатели (ПМЕ, ПМА, ПМЛ).

Импортные электронные компоненты известных мировых производителей: BB, IR, PII, AD, TI, AMD, DALLAS, ATMEL, MOTOROLA, MAXIM, INTEL и др.

220036, г. Минск, Бетонный проезд, 21, к. 10. Отдел сбыта: тел/факс: (017) 208-74-93, 208-57-44, 259-64-39. Отдел снабжения: (017) 286-26-70, 259-64-39. E-mail: belnik@infonet.by

