Brownian Motion: Problem Set 3

Q1. Let f be a smooth function and $\beta(\cdot)$ standard Brownian motion. Show that

$$f(t,\beta(t)) - \int_0^t (f_t + \frac{1}{2}\Delta f)(s,\beta(s)) ds,$$

is a Martingale. Use this to write a solution for

$$u_t = \frac{1}{2}\Delta u, \qquad t > 0, x \in \mathbb{R}^d$$

 $u(0, x) = f(x)$

Q2. Let a cylinder $\mathcal{C} := B(0;1) \times \mathbb{R}_+$, where B(0,1) is the unit disk centred at zero. Solve the problem

$$u_t = \frac{1}{2}\Delta u, \quad \text{in } \mathcal{C},$$

$$u(0, x) = f(x), \quad \text{on } B(0, 1),$$

$$u(i, x) = g(t, x) \quad \text{on } (0, 2\pi] \times \mathbb{R}_+.$$

Q3. Let $\beta(\cdot)$ be a d--dimensional standard Brownian motion. For which dimensions, does it hit a single point $x \in \mathbb{R}^d$, different than its starting location?

Q4. Let $f \geq 0$ be a function with compact support in the upper half plane of \mathbb{R}^d , i.e. $H = \{y \in \mathbb{R}^d : y_d \geq 0\}$. Show that

$$E_x \int_0^\tau f(\beta(t))dt = \int G(x,y)f(y)dy - \int G(x,\bar{y})f(y)dy,$$

where G(x, y) is the Green's function on \mathbb{R}^d , τ is the hitting time of the plane $y_d = 0$ and if $y = (y_1, ..., y_{d-1}, y_d)$ then $\bar{y} = (y_1, ..., y_{d-1}, -y_d)$. This shows that the Green's function in the upper half plane is given by $G(x, y) - G(x, \bar{y})$.

Use only probabilistic arguments for the derivation. You should also explain why τ is a.s. finite. i.e. the left hand side is well defined.