1.1.5.14

EE24BTECH11018 - Durgi Swaraj Sharma

Question:

Points **P** and **Q** trisect the line segment joining the points **A** (-2,0) and **B** (0,8) such that **P** is nearer to **A**. Find the coordinates of points **P** and **Q**. (10, 2019) **Solution:**

Point	Description	Coordinates
A	One end of the line segment	$A = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$
В	Other end of line segment	$B = \begin{pmatrix} 0 \\ 8 \end{pmatrix}$
P	Point trisecting the line segment and closer to point A	$P = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$
Q	The other point trisecting the line segment	$Q = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$

TABLE 0

Using the section formula:

$$\mathbf{P} = \frac{1}{1 + \frac{1}{2}} \left(\begin{pmatrix} -2\\0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0\\8 \end{pmatrix} \right) = \begin{pmatrix} \frac{-4}{3}\\\frac{8}{3} \end{pmatrix} \tag{0.1}$$

$$\mathbf{Q} = \frac{1}{1 + \frac{1}{2}} \left(\begin{pmatrix} -2\\0 \end{pmatrix} + \frac{2}{1} \begin{pmatrix} 0\\8 \end{pmatrix} \right) = \begin{pmatrix} \frac{-2}{3}\\\frac{16}{3} \end{pmatrix}$$
 (0.2)

Thus, we have found the points of trisection to be $\mathbf{P} = \begin{pmatrix} \frac{-4}{3} \\ \frac{8}{3} \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} \frac{-2}{3} \\ \frac{16}{3} \end{pmatrix}$.

1

Finding the points of trisection of A and B

Fig. 0.1