Answer the questions in the boxes provided on the question sheets. If you run out of room for an answer, add a page to the end of the document.

Related Readings: http://pages.cs.wisc.edu/~hasti/cs240/readings/

Name: _	Wisc id:
Log	gic
	g a truth table, show the equivalence of the following statements. $P\vee (\neg P\wedge Q)\equiv P\vee Q$
	Solution:
(b)	$\neg P \lor \neg Q \equiv \neg (P \land Q)$
	Solution:

(c) $\neg P \lor P \equiv \text{true}$

S	Solution:		

(d) $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

5	Solution:	

Sets

2. Based on the definitions of the sets A and B, calculate the following: |A|, |B|, $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

(a) $A = \{1, 2, 6, 10\}$ and $B = \{2, 4, 9, 10\}$

Solution:			

(b) $A = \{x \mid x \in \mathbb{N}\}$ and $B = \{x \in \mathbb{N} \mid x \text{ is even}\}$

Solution:		

Relations and Functions

- 3. For each of the following relations, indicate if it is reflexive, antireflexive, symmetric, antisymmetric, or transitive.
 - (a) $\{(x,y) : x \le y\}$

Solution:			

(b) $\{(x,y): x > y\}$

Solution:			

4.

5.

577	Assignment 1 – Discrete Keview Sprin	g 2023
(c)	$\{(x,y): x < y\}$	
	Solution:	
(d)	$\{(x,y): x=y\}$	
	Solution:	
	each of the following functions (assume that they are all $f : \mathbb{Z} \to \mathbb{Z}$), indicate if it is surjective (etive (one-to-one), or bijective.	(onto),
(a)	f(x) = x	
	Solution:	
(b)	f(x) = 2x - 3	
	Solution:	
(c)	$f(x) = x^2$	
	Solution:	
Shov	w that $h(x) = g(f(x))$ is a bijection if $g(x)$ and $f(x)$ are bijections.	
So	olution:	

Induction

6. Prove the following by induction.

(a)
$$\sum_{i=1}^{n} i = n(n+1)/2$$

Solution:

(b) $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$

Solution:

(c) $\sum_{i=1}^{n} i^3 = n^2(n+1)^2/4$

Solution:

Graphs and Trees

7. Give the adjacency matrix, adjacency list, edge list, and incidence matrix for the following graph.

8. How many edges are there is a complete graph of size n? Prove by induction.

Solution:

9.	Draw	all	possible	(unlabelled)	trees	with 4 nodes.
----	------	-----	----------	--------------	-------	---------------

Solution:	

10. Show by induction that, for all trees, |E| = |V| - 1.

Solution:	

Counting

11.	How	many	3	digit	pin	codes	are	there?
-----	-----	------	---	-------	-----	-------	-----	--------

Solution:

12. What is the expression for the sum of the *i*th line (indexing starts at 1) of the following:

Solution:

1
2 3
4 5 6
7 8 9 10
:

- 13. A standard deck of 52 cards has 4 suits, and each suit has card number 1 (ace) to 10, a jack, a queen, and a king. A standard poker hand has 5 cards. For the following, how many ways can the described hand be drawn from a standard deck.
 - (a) A royal flush: all 5 cards have the same suit and are 10, jack, queen, king, ace.

Solution:

(b) A straight flush: all 5 cards have the same suit and are in sequence, but not a royal flush.

Solution:

(c) A flush: all 5 cards have the same suit, but not a royal or straight flush.

Solution:

(d) Only one pair (2 of the 5 cards have the same number/rank, while the remaining 3 cards all have different numbers/ranks):

Solution:

Proofs

14. Show that 2x is even for all $x \in \mathbb{N}$.

	(a)]	By direct proof.
		Solution:
	(b) 1	By contradiction.
	(0)	
		Solution:
15. l	ا For a	Il $x, y \in \mathbb{R}$, show that $ x + y \le x + y $. (Hint: use proof by cases.)
ſ		
	So.	lution:
L		

Program Correctness (and Invariants)

16. For the following algorithms, describe the loop invariant(s) and prove that they are sound and complete.

Solution:		

Algorithm 2: InsertionSort

```
Input: a: A non-empty array of integers (indexed starting at 1)
         Output: a sorted from largest to smallest
         \mathbf{begin}
             for i \leftarrow 2 to len(a) do
                  val \leftarrow a[i]
                  for j \leftarrow 1 to i-1 do
                      if val > a[j] then
(b)
                           shift a[j..i-1] to a[j+1..i]
                           a[j] \leftarrow val
                          break
                      end
                  \mathbf{end}
              \quad \mathbf{end} \quad
             return a
         \quad \text{end} \quad
```


Recurrences

17. Solve the following recurrences.

(a) $c_0 = 1$; $c_n = c_{n-1} + 4$

Solution:	

(b) $d_0 = 4; d_n = 3 \cdot d_{n-1}$

Solution	:			

(c) T(1) = 1; T(n) = 2T(n/2) + n (An upper bound is sufficient.)

Solution:		

(d) f(1) = 1; $f(n) = \sum_{1}^{n-1} (i \cdot f(i))$ (Hint: compute f(n+1) - f(n) for n > 1)

Solution:
<u> </u>

Coding Question

Most assignments will have a coding question. You can code in C, C++, C#, Java, Python, or Rust. You will submit a Makefile and a source code file.

Makefile: In the Makefile, there needs to be a build command and a run command. Below is a sample Makefile for a C++ program. You will find this Makefile in assignment details. Download the sample Makefile and edit it for your chosen programming language and code.

```
#Build commands to copy:
#Replace g++ -o HelloWorld HelloWord.cpp below with the appropriate command.
#Java:
        javac source_file.java
#Pvthon:
#
        echo "Nothing to compile."
#C#:
#
        mcs -out:exec_name source_file.cs
#C:
        gcc -o exec_name source_file.c
#C++:
        g++ -o exec_name source_file.cpp
#Rust:
        rustc source_file.rs
build:
        g++ -o HelloWorld HelloWord.cpp
#Run commands to copy:
#Replace ./HelloWorld below with the appropriate command.
#Java:
        java source_file
#Python 3:
        python3 source_file.py
#C#:
        mono exec_name
#C/C++:
        ./exec_name
#Rust:
        ./source_file
run:
        ./HelloWorld
```

HelloWorld Program Details The input will start with a positive integer, giving the number of instances that follow. For each instance, there will be a string. For each string s, the program should output Hello, s! on its own line.

A sample input is the following:

3 World Marc Owen The output for the sample input should be the following:

Hello, World!

Hello, Marc!

Hello, Owen!