

Rec'd PCT/PCT 18 FEB 2005

URAD REPUBLIKE SLOVENIJE ZA INTELEKTUALNO LASTNINO

P o t r d i l o

REC'D 01 APR 2004
WIPO PCT

C e r t i f i c a t e

10/525182

Urad Republike Slovenije za intelektualno lastnino potrjuje, da je priloženi dokument istoveten z izvirnikom patentne prijave, kot sledi:

Slovenian Intellectual Property Office hereby certifies that the document annexed hereto is a true copy of the patent application, as follows:

(22) Datum prijave (*Application Date*):

30.1.2003 (30.jan.2003)

(21) Številka prijave (*Application No.*):

P-200300025

(54) Naziv (*Title*):

Priprava novih farmacevtsko uporabnih oblik losartana z novimi metodami čiščenja in izolacije

Ljubljana, 2.2.2004

Janez Milač
svetovalec direktorja

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

ZAHTEVA ZA PODELITEV PATENTA

1. Naslov za obveščanje:

Lek farmacevtska družba, d.d.

Sektor intelektualna lastnina

Verovškova 57, SI – 1526 Ljubljana, Slovenija

tel.: 580 20 05

faks: 568 21 23

šifra: pš/ 13 J

Potrdilo o prejemu prijave
(izpolni urad)

Datum vložitve prijave: 30.1.2003

Številka prijave: P- 200300025

Žig urada in podpis:

2. Prijavitelj (priimek, ime in naslov, za pravne osebe firma in sedež):

Lek farmacevtska družba, d.d.

Verovškova 57

SI - 1526 Ljubljana

Slovenija

3. Zastopnik:

Registerska številka:

4. Izumitelj (priimek, ime in naslov):

Ljubo Antončič, Podmiljščakova 43 SI-1000 Ljubljana

5. Naziv izuma:

Priprava novih farmacevtsko uporabnih oblik losartana z novimi metodami čiščenja in izolacije

6. Podatki o zahtevani prednostni pravici in podlagi zanjo:

7. Dodatne zahteve:

- prijava je za patent s skrajšanim trajanjem
- predhodna objava patenta po preteku ____ mesecev
- prijava je izločena iz prijave številka:

REPUBLIKA SLOVENIJA	
MINISTRSTVO ZA GOSPODARSTVO	
URAD HS ZA INTELEKTUALNO LASTNINO	
Prejeto dne:	30-01-2003
Osebna oddaja:	<input type="checkbox"/>
Podpis:	
Oddano priporočeno dne:	
Ime:	Postava Številka:
	19/7

8. Izjava:

- izjava o skupnem predstavniku:

9. Priloge:

- opis izuma, ki ima 30 strani
- patentni zahtevek (zahtevki), ki ima(jo) 4 strani; število zahtevkov: 26
- skice (če so zaradi opisa izuma potrebne); število listov: 20
- povzetek
 - potrdilo o plačilu prijavne pristojbine
 - potrdilo o deponiraju biološkega materiala, če gre za izum, ki ga ni mogoče drugače opisati
 - pooblastilo zastopniku
 - generalno pooblastilo zastopniku je deponirano pri uradu pod št.: _____
 - potrdilo o razstavni prednostni pravici
 - podatki o drugih prijaviteljih
 - podatki o drugih izumiteljih
 - prikaz zaporedja nukleotidov ali aminokislín v opisu
 - prijava je bila predhodno posredovana po faksu ali v elektronski obliki
 - podatek o drugem izumitelju

A. Košak
Priimek in ime ter podpis prijavitelja (zastopnika)

*Urad RS za intelektualno lastnino
Kotnikova 6, 1000 Ljubljana*

*Verovškova 57
1526 Ljubljana*

*Telefon: 01/580 21 11
Telefaks: 01/568 35 17*

*Sektor intelektualna
lastnina*

*Telefon: 01/534 89 63
01/580 20 05
Telefaks: 01/568 21 23*

29-1-2003

Naš znak:

Vaš znak:

Priloga k zahtevi za podelitev patenta

Podatek o drugem izumitelju patentu:

**PRIPIRAVA NOVIH FARMACEVTSKO UPORABNIH OBLIK LOSARTANA Z NOVIMI
METODAMI ČIŠČENJA IN IZOLACIJE**

Anton Čopar, Staretov trg 1 SI-1275 Šmartno pri Litiji

Priprava novih farmacevtsko uporabnih oblik losartana z novimi metodami čiščenja in izolacije

Področje tehnike, v katero spada izum

(IPC⁷ A 61 K, A 61 K 9/19)

Pričujoči izum spada v področje kemije heterocikličnih spojin in farmacevtske industrije ter se nanaša na nov način priprave farmacevtsko uporabnih kristaliničnih in amorfni alkalijskih in zemljoalkalijskih soli 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazola, znanega pod generičnim imenom losartan, in nov postopek izolacije in čiščenja teh soli za zagotovitev visoke čistoče.

Tehnični problem

2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol deluje na zadnjo stopnjo kaskadnega sistema renin-angiotenzin in sicer tako, da se veže na receptor za angiotenzin II. Izkorisčajoč ta biokemijski učinek se losartan v splošnem uporablja kot učinkovito antihipertenzivno sredstvo v obliki kalijeve soli (od tu naprej losartan kalij).

Obstaja potreba po losartanu oziroma losartan kaliju visoke čistoče in po novem postopku za njegovo pripravo, po katerem bi dobili želeno snov na enostavno izvedljiv in robusten način ter z visokim dobitkom in visoko čistočo. Prav tako je zaželeno imeti učinkovino v takšni obliki, da se jo enostavno vgradi v farmacevtsko formulacijo, ki zagotovi visoko biološko razpoložljivost. Za vgradnjo v farmacevtsko obliko morajo imeti učinkovine določene želene fizikalno-kemijske lastnosti.

Stanje tehnike

Substituirani imidazoli z delovanjem na renin-angiotenzinski sistem regulacije krvnega pritiska, med katere spada tudi losartan, so bili razkriti v patentih EP 2533310 in US 5138069.

Vlagatelji patenta EP 2533310 so na splošno zaščitili različne substituirane imidazole in njihove soli, med njimi so na splošno našteli amonijeve, kalcijeve, kalijeve in natrijeve soli, specifično pa so opisali reakcije, ki vodijo do kalijevih in natrijevih soli nekaterih substituiranih imidazolov in karakterizirali njihove produkte. Presenetljivo je, da je spojina 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol, ki so jo kasneje poimenovali losartan, v eksperimentalnem delu opisana le v nesolni, to je amfoterni oblik. Eksperimentalni del tega patentata tako navaja, da pri sintezi losartana iz cianobifenilnega intermediata (to je iz 2-n-butil-4-kloro-1-[(2'-cianobifenil-4-il)-metil]-5-(hidroksimetil)imidazola) z natrijevim azidom izpade losartan v obliki rahlo rumenih kristalov. Patentna prijava omenja tudi, da so primerjali učinkovitost zniževanja krvnega pritiska natrijeve soli 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazola pred in po dajanju furosemida živalim, vendar spojina v patentu ali kaki drugi objavi ni karakterizirana, niti ni vnesena v register Chemical Abstracts.

Chemical Abstracts register med spojinami z losartanovo strukturno formulo oziroma njihovimi solmi navaja losartan v osnovni, to je amfoterni, oblik; spojini s tetrahidrofuranom in s piridinom; zmes z hidroklorotiazidom, kislinska adicijska kompleksa hidroklorid in hidrobromid, od soli pa *p*-toluensulfonat in kalijevo sol ter hidroklorid kalijeve soli. To nakazuje, da ostale alkalijske in zemljoalkalijske soli losartana niso bile karakterizirane in s tem tudi ne znane njihove uporabne lastnosti.

Za vgradnjo v farmacevtsko obliko morajo imeti farmacevtske aktivne učinkovine določene želene fizikalno-kemijske lastnosti, kot so na primer: topnost v vodi in nekaterih topilih, primerna velikost delcev, stabilnost, nehigroskopnost; ki jih lahko

reguliramo z izborom prave soli, adukta, kompleksa in oblike, s tem pa dosežemo učinkovito biorazpoložljivost.

Alkalijske ali zemljoalkalijske soli losartana je možno pripraviti zaradi kislega vodikovega atoma na tetrazolskem obroču, ki ga lahko odcepimo z dovolj močno bazo, to je s takšno, s katero dosežemo pH vodne raztopine pri ekvivalentni točki, ki je glede na US 5310928 okoli pH = 10. EP 324377 je podal postopek za tvorbo kalijeve soli losartana s kalijevim hidroksidom, nakar je bila kalijeva sol privzeta kot najprikladnejša oblika molekule za farmacevtsko uporabo.

Podoben postopek priprave kristaliničnega losartan kalija podaja patentna prijava WO 02094816, kjer pa za razliko od navedenega postopka ne uporabijo vodne raztopine kalijevega hidroksida ampak dodajo trden kalijev hidroksid alkoholni raztopini losartana.

Po postopku sinteze opisanem v patentih US 5130439 in US 5310928 preko substituiranih borovih soli nastane s hidrolizo 2-n-butil-4-kloro-5-hidroksimetil-1-[2'-(2-trifenilmethyl-2H-tetrazol-5-il)][1,1'-bifenil-4-il]metil]-1H-imidazola z žvepleno kislino v tetrahidrofuranu in kasnejšim spiranjem na koloni z dikalijevim hidrogenfosfatom ter s koncentriranjem sprane vodne raztopine ob dodatku *i*-propanola kristaliničen losartan kalij. Ta patent omenja tudi postopek priprave losartan kalija s sušenjem z razprševanjem, vendar nikjer ne navaja, da naj bi tako dobljena substanca ne bila kristalinična.

Iz napisanega je razvidno, da se običajno kot baza pri pretvorbi losartana v losartan kalij uporablja kalijev hidroksid in dikalijev hidrogenfosfat. V brezvodnih pogojih je na splošno možno pripraviti soli nekaterih heterocikličnih spojin tudi z alkalijskimi ali zemljoalkalijskimi alkoholati, kar je pri nekaterih tetrazolskih spojinah glede na EP 495626 že znano, ne pa pri samem losartanu.

Ugotovljeno je bilo, da losartan kalij nastopa v dveh polimorfnih oblikah [Pharm. Res. 10 (1993), 900]. Avtorji patenta US 5608075 navajajo, da polimorfna oblika I, ki je karakterizirana z DSC endotermo pri 229.5 °C pri segrevanju prehaja v

polimorfno obliko II, ki je karakterizirana z endoternnim maksimumom taljenja pri 273.2°.

Iz opisa patenta US 5859258 je razvidno, da zgolj določena oblika polimorfa ne zagotavlja nujno primernih fizikalno-kemijskih lastnosti. Ugotovljeno je bilo, da lahko nekontrolirana kristalizacija privede do tvorbe velikih trodimenzionalnih skupkov, ki so neprimerni za vgradnjo v farmacevtsko obliko, v smislu izuma pa navajajo zelo strogo kontroliran proces, v katerem je presenetljivo treba izpolniti kar 14 različnih pogojev, da zagotovijo primerno obliko delcev za farmacevtsko uporabo. Potreba po tako strogo kontroliranem procesu zaradi svoje nerobustnosti lahko v pogojih industrijske proizvodnje vodi do večjega števila napak, ki lahko bistveno vplivajo na končni produkt.

Avtorji patenta US 5128355 so pripravili in karakterizirali nekatere spojine, ki so strukturno zelo podobne losartanu. Presenetljivo je, da sta bromo in jodo analoga losartana: 2-n-butil-4-bromo-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol in 2-n-butil-5-hidroksimetil-4-jodo-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol amorfni substanci, medtem ko je 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol (losartan) kristaliničen. Prav tako je presenetljivo, da je spojina 2-n-propil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazol, opisana v tem patentu, ki se od losartana razlikuje le po eni stranski verigi, amorfna.

Presenetljivo je, da po sedanjem stanju tehnike ni bilo mogoče pripraviti amorfne oblike samega losartan kalija. Losartan je v vseh pripravljenih oblikah nastopal kot kristaliničen produkt [Egypt. J. Pharm. Sci. 40, (1999), 49]. Znano je, da se v nekaterih slučajih, ko se čistih spojin ne da dobiti v amorfni obliki, doda farmacevtsko sprejemljive primesi, da se učinkovina izloči v trdno stanje brez tvorbe ponavljajoče se kristalne rešetke, kar je značilno za amorfno stanje. Tako je iz WO 0142221 znano, da so celekoksib, ki je sicer poznan v več polimorfnih oblikah, uspeli dobiti v amorfni obliki samo z dodajanjem inhibitorjev kristalizacije kot so polivinilpirolidon ali hidroksipropilmetylceluloza, dobljeni kompoziti pa so imeli zaradi amorfne narave spojine povečano biološko razpoložljivost. V patentu

US 6284277 so opisane farmacevtske formulacije pripravljene z liofilizacijo, kjer gre za kombinacijo amorfne in kristalinične faze in v katerih so pretežno amorfne aktivne učinkovine in manitol kombinirali s pretežno kristaliničnim alaninom. Med številnimi aktivnimi učinkovinami, ki jih našteva imenovan patent, je imenovan tudi losartan, ni pa naveden v nobenem izvedbenem primeru, niti ni navedeno, če gre za kalijevo sol.

Kristalne oblike identificiramo s fizikalno-kemijskimi metodami, ki merijo parametre, ki so odvisni od molekulske soseščine. Najbolj uporabljane metode so diferencialna termična analiza, infrardeča spektroskopija, jedrska magnetna resonanca trdnih vzorcev in rentgenska difrakcija.

Infrardeča spektroskopija je metoda, ki na podlagi absorbkcije IR svetlobe detektira nizkoenergetske prehode predvsem na ravni vezi, ki so posledice molekulskih vibracij in nihanj. Te so predvsem odvisna od narave molekule in njenih vezi, nanje pa lahko vpliva tudi soseščina molekule. Zato je postala široko sprejeta metoda za karakterizacijo polimorfov. Ni pa vedno nujno, da se različne kristalne oblike izražajo tudi v različnih IR spektri. Razlike se lahko kažejo v prisotnosti ali odsotnosti določenih nihanj oziroma vibracij, v ojačanih ali oslabelih trakovih in v premikih valovnih dolžin pri posameznih nihanjih oziroma vibracijah. Tudi za amorfno snov velja, da ni nujno da se IR spekter razlikuje od kristalne oblike, običajno pa gre za odsotnost nekaterih trakov, ki so funkcija medmolekulskih vezi, prisotnih zaradi urejenosti v kristalu.

Jedrska ^{13}C magnetna resonanca trdnih vzorcev je primerna metoda za določevanje struktur trdnih vzorcev. Tako lahko določimo posamezne polimorfne modifikacije. Na enostaven način lahko določimo solvate, na preprost način pa lahko študiramo tudi konformacijske polimorfe. Spektre z visokimi resolucijami in signale z dobrimi intenzitetami dobimo s CP/MAS (cross-polarization / magic angle spinning spectrum) tehniko snemanja [Sedon K.R. in al, Crystal Engineering: The Design and Application of Functional Solids, Kluwer Academic Publishers, 1999]. Pri merjenju dveh različnih polimorfov bi pričakovali, da bomo dobili dva enaka spektra, saj sta dva ogljika v obeh primerih povezana na enak način. Razlika pa se

v resnici pokaže, ker se sicer enaki spojini nahajata v različnih kemijskih okoljih [Bugay D.E.: Magnetic Resonance Spectrometry v: Brittain H.G., Physical Characterization of Pharmaceutical Solids]. Najlaže določimo strukturo vzorcem, ki so čisti in vsebujejo le eno kristalno obliko. V primeru, da imamo zmes različnih oblik, pa dobimo kemijske premike, ki se lahko medsebojno prekrivajo in nas zavedejo pri določevanju kristalne strukture. Tako lahko napačno zaključimo, da imamo novo polimorfno modifikacijo. Spekter amorfne oblike je običajno bolj enostaven zaradi odsotnosti nekaterih informacij, ki so bile v kristalnih oblikah funkcija specifičnega okolja, v katerem se nahajajo jedra, to okolje pa je pri amorfni obliki neponavljajoče, vrhovi pa so pri amorfnih oblikah ponavadi širši.

Bistveno bolj natančno, kot z infrardečo spektroskopijo in NMR metodami za trdne vzorce, pri katerih spremembe detektiramo le na tistih atomih in vezeh, ki neposredno interferirajo s sosednjimi molekulami, lahko definiramo kristalno rešetko z rentgensko difrakcijo. Iz rentgenske uklonske slike dobro urejenega velikega kristala lahko natančno definiramo prostorsko sliko molekule, pri merjenju praškovnega vzorca pa lahko odkrijemo razlike med različnimi kristalnimi rešetkami, položaja posameznih atomov pa ne moremo natančno določiti. Poleg identifikacije drugačnega urejanja molekul v kristal, kar je znak za drugačno kristalno obliko, lahko iz praškovnega difraktograma dobimo tudi informacijo o stopnji urejenosti oziroma kristaliničnosti, pri čemer se slabša urejenost kaže v razširitvi trakov v difraktogramu. Skrajna oblika neurejenosti trdne snovi je amorfno stanje, ki ne kaže ponavljanja vzorca molekularne usmeritve v trdni snovi, zato pride do difuzne razpršitve rentgenske svetlobe, kar se kaže v zveznem uklanjanju v difraktogramu v celotenem merjenem območju. Z opisano metodo lahko odkrijemo, da je v snovi več različnih kristalnih oblik, lahko jim celo določimo njihovo masno razmerje. Rentgenska praškovna difrakcija je ključna metoda za razlikovanje različnih kristalnih oblik in razlikovanje amorfne od kristalne oblike tudi v primerih, ko ostale metode, na primer IR in ^{13}C CP/MAS NMR spektroskopija, ne pokažejo nobenih razlik med vzorci.

Rentgenska difrakcija je, potem ko smo snov karakterizirali z različnimi analitskimi tehnikami, ključna metoda za razlikovanje amorfne od kristalne oblike, saj lahko

sнов opredelimo kot amorfno na podlagi odsotnosti odklonov pri vseh kotih v njenem rentgenskem praškovnem difraktogramu.

Znano je, da zaradi vnosa v telo, za farmacevtske aktivne učinkovine, zahtevamo še posebno čiste snovi, da ne pride do nezaželenih in toksičnih učinkov. Substance čistimo po različnih metodah, kot so za trdne snovi, med drugim toplotne in druge prekristalizacije, preobarjanja s topili ali reagenti, ekstrakcije in spiranja, regulacije pH, kromatografske metode. Vlagatelji patentna EP 2533310 so končni produkt čistili s prekristalizacijo amfotera iz acetonitrila. Kasnejše objave kot na primer WO 9310106 in WO 9517396 navajajo bolj komplikirane in daljše postopke za zagotovitev visoke čistoče losartan kalija, ki zajemajo toplotne kristalizacije amfotera in kalijeve soli, uporabo kolonske kromatografije in uporabo adsorbcijskih nosilcev. Vlagatelji patentov EP 1106611 in US 6350880 navajajo, da so te metode nezadovoljive in predlagajo čiščenje preko soli losartana z enobaznimi kislinami kot so kloridi, bromidi in *p*-toluensulfonati. Vendar gre v končni fazi za enostopenjsko prekristalizacijo iz kislinske soli v alkalijsko sol s kalijevim hidroksidom, pri čemer pride do tvorbe večjih količin kalijeve soli anionskega dela soli losartana, ki se lahko koprecipitira na losartan kalij kot nečistoča, sama kristalizacija pa se vrši v acetonitrilu, ki za zadnjo stopnjo ni priporočljivo topilo zaradi toksičnosti.

EP 324377 opisuje farmacevtske pripravke v katerih se od 1 do 500 mg losartana dnevno kombinira z drugimi substancami, na primer diuretiki ter navaja indikacijo hipertenzijo. Patentna prijava WO 9219228 pa opisuje optimizirane sestave tablet, primerne za direktno stiskanje.

Opis slik

Slika 1: DSC krivulja kristalinične kalijeve soli losartana

Slika 2: DSC krivulja amorfne kalijeve soli losartana

Slika 3: DSC krivulja kristalinične natrijeve soli losartana

Slika 4: DSC krivulja amorfne natrijeve soli losartana

Slika 5: DSC krivulja magnezijeve soli losartana

Slika 6: DSC krivulja kalcijeve soli losartana

Slika 7: IR spekter kristalinične kalijeve soli losartana

Slika 8: izsek IR spektra prikazanega na Sliki 7

Slika 9: IR spekter amorfne kalijeve soli losartana

Slika 10: izsek IR spektra prikazanega na Sliki 9

Slika 11: IR spekter kristalinične natrijeve soli losartana

Slika 12: izsek IR spektra prikazanega na Sliki 11

Slika 13: IR spekter amorfne natrijeve soli losartana

Slika 14: izsek IR spektra prikazanega na Sliki 13

Slika 15: IR spekter magnezijeve soli losartana

Slika 16: IR spekter kalcijeve soli losartana

Slika 17: ^{13}C CP/MAS NMR meritev vzorca kristalinične kalijeve soli losartana

Slika 18: ^{13}C CP/MAS NMR meritev vzorca amorfne kalijeve soli losartana

Slika 19: rentgenski praškovni difraktogram kristalinične kalijeve soli losartana – oblika I

Slika 20: rentgenski praškovni difraktogram amorfne kalijeve soli losartana

Slika 21: rentgenski praškovni difraktogram kristalinične natrijeve soli losartana

Slika 22: rentgenski praškovni difraktogram amorfne natrijeve soli losartana

Slika 23: rentgenski praškovni difraktogram magnezijeve soli losartana

Slika 24: rentgenski praškovni difraktogram kalcijeve soli losartana

Opis rešitve tehničnega problema z izvedbenimi primeri

Predloženi izum opisuje tvorbo popolnoma amorfnih oblik alkalijskih oziroma zemljoalkalijskih soli losartana brez dodatnih farmacevtsko sprejemljivih primesi. Pri našem raziskovalnem delu smo namreč presenetljivo ugotovili, da z liofilizacijo vodne raztopine alkalijske ali zemljoalkalijske soli losartana dobimo učinkovino v obliki finega amornega prahu, torej do sedaj še nepoznano obliko. S to kratko in dokaj robustno metodo, brez dolgega in strogo kontroliranega procesa kristalizacije, smo enostavno dobili losartan kalij s primernimi fizikalno-kemijskimi lastnostmi za vgradnjo v farmacevtsko obliko. Amorfna oblika ima mnogokrat boljšo biološko razpoložljivost kot kristalinične oblike, kot je razvidno že omenjenih primerov za celekoksib [WO 0142221] in nekaterih drugih primerov opisanih v US 6284277. S tem, da je v končni fazi izolacije voda kot topilo, pa smo rešili tudi problem nezaželenih ostankov topil.

Za pripravo kakovostnih amorfnih soli za farmacevtsko uporabo rabimo amfoterni losartan visoke čistoče, saj z liofilizacijo kot metodo amorfizacije snovi ne moremo dodatno očistiti. Pri pripravi kakovostnega losartana oziroma losartan kalija visoke čistoče za vstop v liofilizacijo se je presenetljivo izkazalo, da se doseže učinkovito očiščenje že s samim prehodom amfoter – alkalijska ali zemljoalkalijska sol – amfoter, ne da bi te intermediate še posebej čistili s kristalizacijo. Postopki preko konkretnih soli dajo različne obsege očiščenja, najbolj učinkovita pa sta postopka preko natrijeve in kalijeve soli, ki iz topil izpadeta kot kristalinični soli.

Postopek priprave losartan kalija, ki je predmet našega izuma ima glede na znano stanje tehnike bistveno prednost, saj se je losartan kalij očiščen preko teh dveh soli izkazal za bolj čistega kot losartan kalij, ki je bil pripravljen po opisu iz WO 9310106, kateri ne dosega farmacevtske kvalitete, ni pa v tem viru navedenega nobenega postopka, ki bi ta produkt dodatno očistil. Kot je razvidno iz izvedbenih primerov, se je kot učinkovita metoda izkazalo čiščenje tako preko natrijeve soli kot preko kalijeve soli, saj smo dobili zelo čist amfoteren losartan iz katerega smo lahko pripravili čistejši losartan kalij kot po postopku opisanem v stanju tehnike. Presenetljivo je postopek preko natrijeve soli bolj robusten, saj je vpliv sprememb

pH na izkoristek bistveno manjši kot pri pripravi kalijeve soli, pa tudi sam izkoristek je boljši pri pripravi natrijeve soli kot pri pripravi kalijeve soli kot podaja Tabela 1.

čiščenje	preko Na soli		preko K soli		preko Ca soli	
faza	čistoča	izkoristek	čistoča	izkoristek	čistoča	izkoristek
izh. losartan	98,44%		98,44%		98,44%	
sol	99,42%	82%	99,67%	77%	98,16%	91,9%
losartan	99,74%	94%	99,82%	93%	98,98%	91,0%
losartan kalij	99,91%	94%	99,88%	96%	99,81%	88,9%

Tabela 1: Primerjava izkoristkov in čistoč losartana očiščenega preko različnih soli

Ta pretvorba snov učinkovito očisti, tako da ima dobljeni amfoterni losartan nizek nivo nečistoč in je primeren ne samo za pripravo amorfne kalijeve soli za farmacevtsko uporabo, ampak tudi za pripravo kristalinične kalijeve soli za farmacevtsko uporabo, iz takšnega amfoternega losartana pa lahko pripravimo tudi ostale visoko kvalitetne alkalijske in zemljoalkalijske soli losartana.

V skladu s predmetom našega izuma smo iz surovega losartana pripravili kalijevo sol losartana v amorfni obliki po naslednjem postopku: losartan smo najprej očistili po postopku v naslednjih korakih: v alkoholu raztopljen losartan smo pretvorili v kalijevo ali natrijevo sol losartana, dobljeno sol izolirali v kristalni obliki, dobljeno izolirano sol raztopili v vodi ali zmesi vode in organskega topila, dobljeni raztopini dodali anorgansko kislino do pH med okoli 3,6 in okoli 3,8, dobljeno raztopino ohladili pod okoli 10° C pri čemer se je losartan oboril ali pa smo ga izkristalizirali in tako dobljen losartan nadalje digerirali z organskim topilom; nato pa smo pripravili losartan kalij v amorfni obliki, tako da smo očiščen losartan suspendirali v vodi, dobljeno suspenzijo raztopili z dodajanjem vodne raztopine kalijevega hidroksida pri temperaturi 0 do 30 °C dokler pH raztopine ni dosegel najmanj 9,3; zamrznili dobljeno raztopino in v zadnjem koraku dobljeno zamrznjeno raztopino liofilizirali.

Pri postopku čiščenju losartana s prehodom amfoter – alkalijska sol oziroma zemljoalkalijska sol – amfoter gre za dva podprocesa in sicer za pripravo soli in njeno izolacijo in za nadaljnjo pripravo amfotera iz te soli.

Priprava alkalijske oziroma zemljoalkalijske soli losartana in njena izolacija:

Ugotovili smo, da lahko, v skladu s prvim delom postopka, pripravimo alkalijske ali zemljoalkalijske soli losartana, če losartan raztopimo v primerem topilu, na primer v alkoholu ali zmesi alkohola in neprotičnega topila, prednostno v *i*-propanolu, tako da znaša koncentracija losartana okoli 170 g/l in pri temperaturi med okoli 38°C in okoli 40°C, dodajamo vodno raztopino hidroksida alkalijske ali zemljoalkalijske kovine do pH med okoli 9 in okoli 12,5, prednostno do pH okoli 10, tekom okoli 15 min do okoli 1 ure, prednostno tekom pol ure, nakar destiliramo, dokler ne odstranimo vse azeotropne zmesi.

Postopek priprave zemljoalkalijskih soli losartana smo podrobnejše raziskali in jih pripravili tako, da smo raztopini losartana v primerem topilu ali mešanici topil, na primer v *i*-propanolu, pripravljeni tako, da je znašala koncentracija losartana okoli 170 g/l, dodali brezvoden alkoholat zemljoalkalijske kovine ali hidroksid zemljoalkalijske kovine in reakcijsko zmes mešali pri povišani temperaturi med okoli 40°C in okoli 85°C, prednostno pri temperaturi refluksa.

V vseh primerih smo tako pripravljene alkalijske ali zemljoalkalijske soli losartana iz raztopin *i*-propanola oborili z nepolarnim topilom, prednostno z *n*-heptanom pri nizki temperaturi, prednostno pri temperaturi pod okoli 10°C ter jih izolirali po klasičnih postopkih. Rezultat takšne priprave sta kristalinični kalijeva in natrijeva sol in presenetljivo amorfni magnezijeva in kalcijeva sol. Kristalinična kalijeva sol je po sedanjem stanju tehnika znana oblika losartana in smo jo dokazali kot kristalno obliko I, medtem ko natrijeva sol še ni bila karakterizirana. Presenetljivo se je izkazalo, da so kristali losartan natrija večji in lepše oblikovani, če zmes topil, iz katerih izpadejo, vsebuje nekaj vode. Soli losartana v skladu s predmetom našega izuma lahko pripravimo tudi v obliki s vezano vodo, na kar lahko vplivamo z izbiro pogojev, na primer pH. Kristaliničen losartan natrij pripravljen pri pH okoli

12 zadrži med okoli 3,5% in okoli 4,5% vode tudi po sušenju in odpušča vodo šele nad okoli 100 °C.

Priprava magnezijeve soli z magnezijevim alkoholatom, na primer z magnezijevim etoksidom je prednostna, saj je uporaba magnezijevega hidroksida zaradi slabe topnosti in prevladujoče pretvorbe v netopni magnezijev oksid zelo nepraktična. Presenetljivo pa smo ugotovili, da boljše rezultate, tako glede izkoristka kot kvalitete, dobimo tudi z uporabo natrijevih ali kalijevih alkoholatov v nevodnih medijih, na primer v alkoholu, namesto uporabe vodne raztopine natrijevega ali kalijevega hidroksida, sam postopek pa je tudi manj zamuden, saj ne zahteva izganjanja vode z azeotropno destilacijo. Samo raztopino natrijevega in kalijevega alkoholata najlažje dobimo z raztopljanjem komercialno dostopnega natrijevega ali kalijevega *t*-butoksida, lahko pa tudi z dodatkom kovinskega natrija v alkohol, vendar je treba to raztopino pripraviti pred dodatkom losartana, medtem ko lahko kalijev *t*-butoksid dodamo kar v raztopino losartana v alkoholu. Izkoristek je pri znani metodi s hidroksidom občutljiv na pH in prisotnost vode, vpliv teh dveh faktorjev pa je pri tej metodi skoraj izničen, kar je posebej razvidno pri pripravi kalijeve soli.

Najprikladnejši postopek za pripravo losartan kalija je takšen, da losartan raztopimo v primernem topilu, na primer v alkoholu, prednostno v *i*-propanolu, tako da znaša koncentracija okoli 370 g/l in nakar se po dodatku kalijevega *t*-butoksida izloča kalijeva sol losartana, z dodatkom nepolarnega topila, na primer ogljikovodika, prednostno *n*-heptana pa izkoristek izločanja soli iz raztopine še povečamo. Losartan kalij izoliramo z enostavnim filtriranjem in sušenjem. Analogno pripravimo po tej metodi tudi natrijevo sol losartana, le da pri tej pretvorbi uporabimo natrijev *t*-butoksid.

Priprava losartana iz njegove zemljoalkalijske ali alkalijiske soli

V skladu s postopkom čiščenju losartana s prehodom amfoter – alkalijska sol oziroma zemljoalkalijska sol – amfoter smo nadalje izbrano sol, pripravljeno po enem od opisanih postopkov, raztopili v okoli 5 do okoli 20 kratni količini vodi,

prednostno, da je znašala koncentracija okoli 100 g/l, pri temperaturi od okoli 5°C do okoli 25°C, prednostno v intervalu med 21°C in 25 °C, dodali organsko topilo, prednostno etilacetat, ter nakisalj z anorgansko kislino, prednostno s koncentrirano anorgansko kislino, še posebej prednostno z žvepleno (VI) kislino do pH med okoli 3,6 in okoli 3,8, prednostno do pH okoli 3,7, nakar smo reakcijsko zmes ohladili na temperaturo okoli 0°C do okoli 15°C , prednostno pod 10°C in losartan izolirali po klasičnih postopkih.

Priprava amorfnih oblik alkalijskih ali zemljoalkalijskih soli losartana

Ugotovili smo, da sta iz zgoraj opisanih postopkov priprave soli losartana magnezijeva in kalcijeva sol amorfni, kar smo dokazali z rentgensko praškovno analizo. Na drugi strani pa se je izkazalo, da je bila tako izolirana kalijeva sol v kristalni obliki I, ki je znana iz stanja tehnike, medtem ko smo za doslej nepoznano natrijevo sol ugotovili, da je tudi kristalinična. Zato metoda kristalizacije soli losartana iz alkoholov ali zmesi alkohola in drugega organskega topila ne more biti splošna metoda za pripravo amorfnih soli.

Pri iskanju bolj splošne metode za pripravo amorfnih soli losartana smo ugotovili, da lahko pripravimo amorfne oblike alkalijskih ali zemljoalkalijskih soli losartana z liofilizacijo po naslednjem postopku. Losartan, ki je na primer dobljen po opisanem postopku, smo suspendirali v vodi, tako da smo dodali od okoli 5 do okoli 20 kratno maso vode, prednostno 10 kratno maso vode, ter pri temperaturi od okoli 5°C do okoli 25°C prednostno pri sobni temperaturi, dodajali vodno raztopino hidroksida alkalijske ali zemljoalkalijske kovine, prednostno pri pripravi kalijeve soli 10% vodno raztopino kalijevega hidroksida, do pH med okoli 9 in okoli 10, prednostno do pH okoli 9,3, pri čemer se je reakcijska zmes zbistrla, raztopino smo filtrirali, zamrznili ter liofilizirali, to je zamrznjeno sušili pod znižanim pritiskom med okoli 0,1 in okoli 0,01 bar.

Če pa imamo na voljo že za farmacevtsko uporabo primerne in dovolj čiste alkalijske ali zemljoalkalijske soli losartana se da njihove amorfne oblike pripraviti z liofilizacijo njihovih zamrznjenih vodnih raztopin.

Predmet predloženega izuma so tudi farmacevtski pripravki, ki vsebujejo alkalijsko ali zemljoalkalijsko sol, prednostno kalijevo sol, losartana v amorfni obliki. Farmacevtski pripravek je lahko v obliki primerni za peroralno oziroma parenteralno uporabo in je indiciran na primer za zdravljenje hipertenzije, farmacevtski pripravek, ki je predmet tega izuma je lahko tako na primer v obliki tablet, kapsul, pelet, granul in supozitorijev. Trdne farmacevtske oblike so lahko obložene, na primer z namenom povečanja peletibilnosti ali uravnavanja razpadnosti oziroma absorpcije.

V skladu s predmetom našega izuma smo pripravili filmsko obložene tablete po postopku direktne suhe zmesi. Losartan kalij smo zmešali z laktozo, mikrokristalno celulozo, škrobom in aerosilom in zmes presejali. Dodali smo magnezijev stearat in vse skupaj ponovno zmešali. Tabletrali smo jedra z maso 160 mg. Na jedra smo nanesli filmsko oblogo pripravljeno kot vodno suspenzijo vsebujočo naslednje bistvene sestavine: hidroksipropilmetylcelulozo, hidroksipropilcelulozo, polietilenglikol in titanov dioksid, ter filmsko obložene tablete polirali s smukcem. Farmacevtske pripravke, ki vsebujejo amorfne alkalijske ali zemljoalkalijske soli losartana se da pripraviti tudi z drugimi primernimi postopki, na primer po postopku suhe granulacije.

Experimentalni del

Pripravljeno amorfno obliko kalijeve soli losartana smo, primerjajoč izmerjene lastnosti z literaturno dostopnimi podatki, oziroma s karakteristikami kristalinične kalijeve soli losartana, pripravljene po patentu US 5608075 ali kot je opisano v poskusih, opisali in določili z naslednjimi fizikalno-kemijskimi metodami:

- merjenje tališča
- diferencialna termična kalorimetrija
- NMR spektroskopija
- IR spektroskopija

- rentgenska praškovna difrakcija

Kristalinična kalijeva sol, ki je bila pripravljena po postopkih iz izuma skozi postopek pretvorbe amfoter – kalijeva sol – amfoter je bila prepoznana kot oblika I. in je bila enaka tisti, ki je bila pripravljena po patentu US 5608075. Amorfno spojino smo z omenjenimi fizikalno-kemijskimi metodami primerjali z literurnimi navedbami za kristalne oblike [US 5608075, Pharm. Res. 10, (1993), 900], ravno tako smo jo primerjali s kristalinično kalijevo soljo losartana, pripravljeno po patentu US 5608075.

Natrijeve, magnezijeve in kalcijeve soli, ki so glede na sedanje stanje tehnike nepoznane, smo tudi okarakterizirali z omenjenimi fizikalno-kemijskimi metodami. Ugotovili smo, da losartan natrij, ki smo ga pripravili po zgoraj navedenih postopkih, ki so podrobnejše opisani v izvedbenih primerih, obstaja v kristalni in amorfni obliki, losartan kalcij in magniezij pa sta bila identificirana samo v amorfni obliki.

1. Tališče

Za merjenje tališča smo uporabljali metodo vizualnega spremljanja na mikroskopu z ogrevalno mizico in metodo po Thieleju.

Izmerjeno tališče amorfнega losartan kalija se ne razlikuje bistveno od tališča kristaliničnega losartan kalija, vzorci se taliijo med 265 in 275 °C, le vizualni procesi so nad 200 °C na amorfni soli bolj zvezni in bolj izraziti v smislu zlivanja in barvanja vzorca, medtem ko je pri kristaliničnem znatnejša vidna sprememba le okrog 230 °C, to pa je temperatura, ki je iz literature znana kot pretvorbeno območje v obliko II.

Razlika med tališči kristaliničnega in amorfнega losartan natrija pa je bolj razpoznavna. Kristalinična oblika ima tališče 191-196 °C, amorfna pa 171-177 °C.

Taljenja kalcijeve in magnezijeve soli pod 300 °C nismo zaznali.

2. Diferencialna termična analiza

Uporabili smo diferenčni dinamični kalorimeter Perkin Elmer Pyris 1 DSC.

Kristaliničen losartan kalij ima prvo endotermno spremembo nad 230 °C kar bi se skladalo s temperaturo prehod oblike I v obliko II, kar je znano iz literature. Amorfna kalijeva sol tega prehoda nima, vendar so opazne bistvene spremembe že pri nižji temperaturi, tako lahko zaznamo obširnejši eksotermni prehod med 190 in 210 °C. Nad to temperaturo vzorci že precej razpadejo in so vidno spremenjeni.

Kristaliničen losartan natrij ima tališče po DSC metodi pri 195 °C, kar se ujema z meritvijo na Koflerjevem mikroskopu. Vendar lahko zaznamo večjo endotermno spremembo že na območju okrog 110 °C, sklepamo pa na izgubo kristalne vode. Amorfni losartan natrij nima teh sprememb, pretvorbe nad 240 °C pa zaznamujejo razkroj vzorcev. Že nad 150 °C pa je kmaj opazen zelo raztegnjen prehod, ki ga na Koflerjevem mikroskopu opazimo kot taljenju podobno vidno spremembo med 170 in 180 °C.

DSC termogrami vzorcev losartan kalcija in losartan magnezija so pri temperaturah nad 200 °C podobni termogramom amorfnega losartan natrija, opazimo le razkroj vzorcev na približno enakem temperturnem območju z nekoliko različnimi dinamikami toplotnih tokov.

DSC termogrami so prikazani v Slikah 1 do 6.

3. ^{13}C CP/MAS NMR spektroskopija trdne snovi

Za snemanje vzorcev po ^{13}C -NMR spektrov s CP-MAS metodo smo uporabljali Varianov spektrometer INOVA 600 pri 150 kHz. Vzorci so bili pomerjeni s TOSS-om pri vrtenju 10 kHz, pulzu (90) 4,4 μ s.

Posneli smo dve obliki kalijeve soli losartana. Kristalinična kalijeva sol kaže ostre vrhove, amorfno obliko pa zaznamujejo širši signali pri čemer so nekateri izmed

njih zliti s sosednjim vrhom ali so odsotni. Spektra sta prikazana na Slikah 17 in 18, popis kemijskih premikov je v Tabeli 2.

Kristalinični losartan kalij (ppm)	Amorfni losartan kalij (ppm)
14,1	13,8
17,1	/
21,0	22,3
27,8	26,8
30,4	29,0
/	47,1 (širok)
50,0 (širok)	52,0 (širok)
123,8	/
126,5	127,4
130,3	129,2
131,7	zlit
134,6	/
136,1	135,6
141,7	140,9
146,6	/
148,1	148,7
163,0	162,4

Tabela 2: Kemijski premiki trdnih vzorcev losartan kalija posnet po NMR metodi CP/MAS

Iz tabele je razvidno, da amorfno obliko označuje odsotnost vrhov 146,6, 134,6 in 17,1 ppm ter prisotnost širokega vrha pri 47,1 ppm, pri ostalih vrhovih gre za manjše premike v obe smeri, razširitev linij in za zliti več vrhov v skupino.

4. IR (infrardeča) spektroskopija

Uporabili smo infrardeči spektrometer »Bio-Rad FTS-60, Digilab-Division«.

Posneti IR spektri so razvidni iz Slik 7 do 14, najizrazitejši absorpcijski maksimumi med 1510 in 700 cm⁻¹ pa so navedeni še v naslednjem tabelaričnem zapisu, pri čemer so vrednosti za obliko II kristalne kalijeve soli prevzete iz literature [Pharm. Res. 10 (1993), 900]:

krist. losartan kalij (oblika I.)	krist. losartan kalij (oblika II.)	amorfen losartan kalij	krist. losartan natrij	amorfen losartan natrij	losartan magnezij	losartan kalcij
1507		1506	1507	1507	1507	1508
1497		1495	1498	1494	1495	1494
1472		/	1474	/	/	/
1460		1459	1461	1460	1461	1461
1423		1424	1426	1425	1426	1426
1406		1408	1408	1408	1409	1409
1378		1380	šibek	1380	1380	1380
1358	1357	1356	1360	1358	1359	1358
1342	/	/	1342	/	/	/
1260		1255	1264	1256	1258	1258
/		1144	1140	1144	1150	1148
1133		1126	1132	zlit	zlit	zlit
1113		1107	1109	1108	1108	1108
1074		1073	1080	1074	1075	1075
/		1011	1011	1013	1014	1014
1008		1005	1008	1006	1006	1006
996		/	/	/	/	/
954	/	954	958	954	953	954
/		/	949	/	/	/
934	940	933	937	933	934	934
886	/	879	/	šibek	šibek	878
844		/	/	/	/	/
841		/	839	/	/	/
826		825	820	824	824	824
789		786	785	787	787	786
763	754	760	753	761	760	760
zlit s763		742	740	743	zlit s 760	743
713	/	715	šibek	šibek	714	714

Tabela 3: Značilni trakovi [cm^{-1}] v IR spektrih raznih soli losartana na območju med 1550 in 700 cm^{-1}

IR spektra amorfne in kristalinične kalijeve soli se bistveno razlikujeta in to bolj ali manj po celotni skali predvsem v oblikah absorpcijskih trakov in manjših zamikih vrednosti absorpcijskih maksimumov. Vendar je pri amorfni kalijevi sol najbolj izrazita značilnost v IR spektru odsotnost absorpcijskih maksimumov pri 1472 ± 5 , 1342 ± 5 in med 835 in 845 cm^{-1} . Po drugi strani pa se od oblike II. amorfna oblika

razlikuje po prisotnosti trakov, ki pa nima ta kristalna oblika nima, to pa so območja 954 ± 5 , 949 ± 5 , $870\text{-}890$ in $715 \pm 5 \text{ cm}^{-1}$.

IR spekter kristaliničnega losartan natrija je bolj podoben losartan kaliju kristalne oblike I, kot pa amorfemu losartanu natriju, vendar se evidentno razlikuje od kalijeve soli z odsotnostjo vrhov pri intervalih valovnih števil $995\text{-}1000$ in $870\text{-}890 \text{ cm}^{-1}$ ter spremembami na območju med 820 in 850 cm^{-1} , identificiranimi s prisotnostma vrhov 839 ± 1 in $820 \pm 1 \text{ cm}^{-1}$. Amorfen losartan natrij se od kristaliničnega losartanu natrija razlikuje po odsotnosti vrhov na območjih valovnih števil 1472 ± 5 , 1342 ± 5 in med 835 in 845 cm^{-1} .

Vse amorfne oblike soli losartana, tako kalijeva, natrijeva, magnezijeva kot kalcijeva imajo enak IR spekter, razlike so znotraj napake analitike in softverske zaznave vrednosti valovnega števila vrha traku in se razlikujejo od ostalih kristaliničnih soli po odsotnosti absorpcijskih trakov na območjih valovnih števil 1472 ± 5 , 1342 ± 5 in med 835 in 845 cm^{-1} . To lahko razložimo tako, da v spektru ni nobenih specifičnih trakov, ki bi bili rezultat vpliva kationa na energetska stanja vezi, ostali trakovi pa so le rezultat znotraj molekularnih dogajanj, saj so medmolekularni vplivi zaradi neurejenega amorfnegata razpršeni in zato nezaznavni v IR spektru.

5. Rentgenska praškovna analiza

Vzorci so bili posneti na aparaturi Philips PW1710 z refleksijsko tehniko pri pogojih: CuK α radiacija, območje od 2° do $37^\circ 2\theta$, korak $0.04^\circ 2\theta$, integracijski čas 1 sekunda).

Rentgenski praškovni difraktogrami losartan kalija kažejo pri amorfem losartan kaliju odsotnost diskretnih uklonov značilnih za kristalne oblike in zvezno uklanjanje v celotnem merjenem območju, kar je nedvomno potrditev amorfnosti materiala, za razliko od kristaliničnega vzorca, ki kaže izrazite trakove pri kotih, ki so iz stanka tehnike značilni za polimorfnou obliko I. Oba difraktograma sta prikazana na priloženih Slikah 19 in 20.

Rentgenski praškovni difraktogrami losartan natrija kažejo pri amorfнем losartan natriju odstotnost uklonov in nedvomno amornost materiala, za razliko od kristaliničnega vzorca, ki kaže ostre vrakove, ki kažejo na visoko kristaliničnost. Oba difraktograma sta prikazana na priloženih Slikah 21 in 22.

Rentgenski praškovni difraktogrami losartan magnezija in kalcija kažejo očitno amorfno strukturo vzorcev, ne glede na to na kakšen način so bili le-ti pripravljeni. Difraktograma tipičnih vzorcev magnezijeve in kalcijeve soli sta prikazana na priloženih Slikah 23 in 24.

V naslednjih izvedbenih primerih, ki pojasnjujejo, vendar v ničemer ne omejujejo našega izuma, podajamo nam znane najboljše načine priprave novih farmacevtsko uporabnih oblik losartana z novimi metodami čiščenja in izolacije v skladu s predloženim izumom.

Poskus 1

Losartan surovi (2-n-butil-4-kloro-5-hidroksimetil-1-[2'-(1H-tetrazol-5-il)-bifenil-4-il]metil]-1H-imidazol)

Zmes 129,80 g 5-[2-(4'-bromometilbifenil)]-2-trifenilmetil-2H-tetrazola, 43,4 g 2-n-butil-4-kloro-5-hidroksimetil-1H-imidazola in 38,27 g kalijevega karbonata v 550 ml N,N-dimetilacetamida mešamo pri temperaturi 0 - 5 °C 8 ur ter pri sobni temperaturi preko noči. Zmesi dodamo 8,02 g NaBH₄ in 18 ml vode. Hladimo na sobno temperaturo in mešamo 3 ure. Reakcijsko zmes zlijemo med intenzivnim mešanjem v 1,1 l vode, filtriramo in oborno speremo z 550 ml vode. Vakuumsko sušimo čez noč pri sobni temperaturi nad silikagelom.

Dobimo 2-n-butil-4-kloro-5-hidroksimetil-1-[2'-(trifenilmetil-2H-tetrazol-5-il)[1,1'bifenil-4-il] metil]imidazol, ki ga prenestaliziramo iz klorobutana in etilacetata s končnim dobitkom reakcije in čiščenja po sušenju 66,77 g.

Raztopini 67,77 g 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(trifenilmethyl-2H-tetrazol-5-il)[1,1'bifenil-4-il]metil]imidazola v 310 ml tetrahidrofurana (THF) dodamo med mešanjem 105,9 g 12 % HCl pri temperaturi 23°C tekom ene ure. Zmes mešamo pri sobni temperaturi čez noč. Dodajamo 30% NaOH pri temperaturi do 22°C tekom ene ure, dokler ne dosežemo pH 12,5 (cca 100 ml). Uparimo THF pri temperaturi do 60°C ter dodamo demineralizirano vodo do prvotnega volumna. Izpadlo oborino odfiltriramo, speremo z 2 x 50 ml demineralizirane vode in zavrzemo. Vodno fazo ekstrahiramo z 2 x 50 ml toluena. Organsko plast ločimo in vodni fazi dodamo 124 ml etilacetata. Reakcijsko zmes med intenzivnim mešanjem nakisamo s koncentrirano H_2SO_4 pri temperaturi 21-25°C do pH 3,6-3,8. Ohladimo pod 10°C in mešamo pol ure. Izpadlo oborino filtriramo, digeriramo s 130 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C čez noč, pri čemer dobimo 40,8 g losartana v amfoterni obliki.

Poskus 2

Tvorba natrijeve soli losartana – metoda 1

K 40,81 g losartana iz Poskusa 1 v 230 ml *i*-propanola dodajamo raztopino 5,5 g natrijevega hidroksida v 5,7 ml vode pri temperaturi 38 - 40° C do pH 12 tekom pol ure. Oddestiliramo približno 35 ml azeotropne zmesi *i*-propanol / voda. Dodamo 140 ml *n*-heptana in mešamo pri sobni temperaturi dokler ne izpade bela oborina. Redčimo s 55 ml *n*-heptana, filtriramo, izpiramo s 110 ml *n*-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 35,0 g natrijeve soli losartana.

Tališče: 191-196 °C

Voda po Karl-Fisherju: 4,2 %.

Vsebnost natrija 4,4 % (5,0 % na suho snov)

Poskus 3

Tvorba natrijeve soli losartana – metoda 2

K 40,81 g losartana iz Poskusa 1 v 235 ml *i*-propanola dodajamo raztopino 5,5 g natrijevega hidroksida v 5,7 ml vode pri temperaturi 38 - 40° C do pH 10 tekom pol ure. Oddestiliramo približno 35 ml azeotropne zmesi *i*-propanol / voda. Dodamo 140 ml *n*-heptana in mešamo pri sobni temperaturi dokler ne izpade bela oborina. Redčimo s 55 ml *n*-heptana, filtriramo in izpiramo s 110 ml *n*-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 37,0 g natrijeve soli losartana.

Tališče: 190-198 °C

Voda po Karl-Fisherju: 0,3 %.

Poskus 4

Tvorba natrijeve soli losartana – metoda 3

K 40,81g losartana iz Poskusa 1 v 120 ml *i*-propanola dodamo 9,28 g natrijevega *t*-butoksida. Reakcijska zmies se zbistri. Dodamo 145 ml *n*-heptana ter mešamo pri sobni temperaturi dokler ne izpade bela oborina. Filtriramo in izpiramo s 165 ml *n*-heptana. Sušimo pri 40°C v vakuumu pri čemer dobimo 37,0 g natrijeve soli losartana.

Tališče: 191-196 °C

Vsebnost natrija 4,7 % (5,2 % na suho snov)

Poskus 5

Tvorba kalijeve soli losartana – metoda 1

K 40,81 g losartana iz Poskusa 1 v 235 ml i-propanola dodajamo raztopino 5,5 g kalijevega hidroksida v 5,7 ml vode pri temperaturi 38-40°C do pH 12 tekom pol ure. Oddestiliramo približno 35 ml azeotropne zmesi i-propanol / voda. Dodamo 141,5 ml n-heptana in mešamo pri sobni temperaturi dokler ne izpade bela oborina. Redčimo z 54 ml n-heptana, filtriramo, izpiramo z 108 ml n-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 21,36 g losartan kalija.

Poskus 6

Tvorba kalijeve soli losartana – metoda 2

K 10,2 g losartana iz Poskusa 1 raztopljenega v 59 ml i-propanola dodajamo raztopino 1,4 g kalijevega hidroksida v 5 ml vode pri temperaturi 38-40°C do pH 10 tekom pol ure. Oddestiliramo približno 19 ml azeotropne zmesi i-propanol/voda. Dodamo 36 ml n-heptana in mešamo pri sobni temperaturi dokler ne izpade bela oborina. Redčimo z 14 ml n-heptana, filtriramo, izpiramo z 26 ml n-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 8,57 g losartan kalija.

Poskus 7

Tvorba kalijeve soli losartana – metoda 3

K 40,81 g losartana iz Poskusa 1 v 110 ml i-propanola dodamo 10,86 g kalijevega t-butoksida pri temperaturi med 10°C in 25°C. Reakcijska zmes se zbistri, nakar izpade gosta, bela oborina. Dodamo 150 ml n-heptana ter mešamo pri sobni temperaturi 1 uro. Filtriramo in izpiramo z 75 ml n-heptana. Vakuumsko sušimo pri temperaturi 50°C čez noč, pri čemer dobimo 43,25 g losartan kalija

Poskus 8

Tvorba magnezijeve soli losartana

K 40,81 g losartana iz Poskusa 1 v 235 ml *i*-propanola dodamo 6,07 g magnezijevega etoksida in mešamo pri temperaturi refluksa preko noči. Vroče filtriramo, dodamo 650 ml *n*-heptana in hladimo na sobno temperaturo, da se izobori produkt. Filtriramo in spiriramo z 110 ml *n*-heptana. Sušimo v vakuumu pri 50°C, pri čemer dobimo 37,9 g magnezijeve soli losartana.

Tališče: nad 300 °C

Vsebnost magnezija 2,9 % (3,2 % na suho snov).

Poskus 9

Tvorba kalcijeve soli losartana

K 40,81 losartana iz Poskusa 1 v 235 ml *i*-propanola dodamo 3,92 g kalcijevega hidroksida. Mešamo pri temperaturi refluksa 1 uro in vroče filtriramo. Filtratu dodamo 410 ml *n*-heptana in hladimo na sobno temperaturo. Topilo oddekantiramo od smolnatega preostanka in dodamo 820 ml *n*-heptana. Mešamo pri 10°C dokler ne izkristalizira beli praporin. Filtriramo, izpiramo z 110 ml *n*-heptana ter sušimo v vakuumu pri 50°C, pri čemer dobimo 39,2 g kalcijeve soli losartana.

Tališče: nad 300°C.

Vsebnost kalcija 4,0 % (4,7 % na suho snov).

Poskus 10

Losartan čiščen – metoda 1

35 g natrijeve soli losartana raztopimo v 350 ml vode, dodamo 106 ml etilacetata in nakisamo pri temperaturi 21-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10°C in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 120 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, pri čemer dobimo 29,3 g losartana.

Poskus 11

Losartan čiščen – metoda 2

42,66 g kalijeve soli losartana raztopimo v 430 ml vode, dodamo 130 ml etilacetata in nakisamo pri temperaturi 21°C-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10°C in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 145 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, da dobimo 36,6 g losartana.

Poskus 12

Losartan čiščen – metoda 3

37,9 g magnezijeve soli losartana topimo v 388 ml demineralizirane vode, dodamo 120 ml etilacetata in nakisamo pri temperaturi 21°-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10°C in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 130 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, da dobimo 32,3 g losartana.

Poskus 13

Losartan čiščen – metoda 4

38,0 g kalcijeve soli losartana topimo v 360 ml vode, dodamo 115 ml etilacetata in nakisamo pri temperaturi 21°-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10°C in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 130 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, da dobimo 36,2 g losartana.

Poskus 14

Priprava farmacevtsko uporabnega losartan kalija preko kristalnega losartan natrija

K 20,4 g surovega losartana (kromatografska čistost 98,73 %) v 120 ml i-propanola dodajamo raztopino 2,75 g natrijevega hidroksida v 2,9 ml vode pri temperaturi 38-40°C do pH 10 temeljno pol ure. Oddestiliramo približno 18 ml azeotropne zmesi i-propanol / voda. Dodamo 70 ml n-heptana in mešamo pri sobni temperaturi dokler ne izpadne oborina. Redčimo z 28 ml n-heptana, filtriramo, izpiramo s 55 ml n-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 18,5 g kristalinične natrijeve soli losartana (izkoristek 87 %, kromatografska čistost 99,42 %).

Dobljeno substanco raztopljam v 135 ml vode, dodamo 56 ml etilacetata in nakisamo pri temperaturi 21-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10° in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 64 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, pri čemer dobimo 16,5 g losartana (izkoristek faze 94 %, kromatografska čistost 99,74 %).

Dobljeni produkt raztopimo v 45 ml i-propanola dodamo 4,39 g kalijevega *t*-butoksida pri temperaturi med 10°C in 25°C. Reakcijska zmes se zbistri, nakar izpade gosta, bela oborina. Dodamo 20 ml *n*-heptana ter mešamo pri sobni temperaturi 1 uro. Filtriramo in izpiramo z 30 ml *n*-heptana. Vakuumsko sušimo pri temperaturi 50°C čez noč, pri čemer dobimo 16,9 g losartan kalija (izkoristek faze je 94 %, kromatografska čistost 99,91%, celokupen izkoristek je 77%).

Poskus 15

Priprava farmacevtsko uporabnega losartan kalija preko kristalnega losartan kalija

Kot je že opisano v poskusu 4 k 10,2 g losartana iz Poskusa 1 (kromatografska čistost 98,73 %) v 59 ml i-propanola dodajamo raztopino 1,4 g kalijevega hidroksida v 1,5 ml vode pri temperaturi 38-40°C do pH 10 tekom pol ure. Oddestiliramo približno 19 ml azeotropne zmesi i-propanol / voda. Dodamo 36 ml *n*-heptana in mešamo pri sobni temperaturi dokler ne izpade bela oborina. Redčimo z 14 ml *n*-heptana, filtriramo in izpiramo z 26 ml *n*-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 8,37 g losartan kalija. (izkoristek: 77 %, kromatografska čistost 99,67%).

Dobljeno kalijevo sol losartana raztopimo v 36 ml vode, dodamo 26 ml etilacetata in nakisamo pri temperaturi 21°-25°C do pH 3,6-3,8 s koncentrirano žveplovo kislino. Ohladimo pod 10°C in mešamo 1 uro. Izpadlo oborino filtriramo, digeriramo s 29 ml etilacetata, ponovno filtriramo in vakuumsko sušimo pri temperaturi 50°C preko noči, da dobimo 7,35 g losartana (izkoristek faze 93%, kromatografska čistost 99,82%).

Dobljeni produkt raztopimo v 20 ml i-propanola dodamo 1,96 g kalijevega *t*-butoksida pri temperaturi med 10°C in 25°C. Reakcijska zmes se zbistri, nakar izpade gosta, bela oborina. Dodamo 27 ml *n*-heptana ter mešamo pri sobni temperaturi 1 uro. Filtriramo in izpiramo z 36 ml *n*-heptana. Vakuumsko sušimo pri

temperaturi 50°C čez noč, pri čemer dobimo 7,66 g losartan kalija (izkoristek faze je 96 %, kromatografska čistost 99,88%, celokupen izkoristek je 69%).

Poskus 16

Primerjalni poskus priprave kalijeve soli s poznanim stanju tehnike

K 40,81 g losartana (kromatografska čistost 98,73%) v 153 ml i-propanola dodajamo zmes 10 g kalijevega hidroksida, 5,1 ml vode in 100 ml i-propanola pri temperaturi 38-40°C do pH 10-11 (n-kompol ure). Oddestiliramo približno 140 ml topila (zmes i-propanol / voda) in dodamo 92 ml n-heptana. Mešamo pri sobni temperaturi dokler ne izпадne bela očotina. Redčimo z 54 ml n-heptana, filtriramo, izpiramo z 70 ml n-heptana in sušimo v vakuumu pri 50°C, pri čemer dobimo 38,4 g losartan kalija (izkoristek: 86 %, kromatografska čistost: 99,67%).

Poskus 17

Amorfna kalijeva sol losartana – metoda A

29,3 g čiščenega losartana iz enega od preizkusov 8 do 11 suspendiramo v 293 ml vode. Pri sobni temperaturi naravnimo pH na 9,3 z 10% vodno raztopino kalijevega hidroksida. Reakcijska zavetje se zbistri. Raztopino filtriramo in liofiliziramo. Dobimo bel, popolnoma amorfni produkt losartan kalij v količini 31,8 g.

Poskus 18

Amorfna kalijeva sol losartana – metoda B

20,0 g kristalne kalijeve soli losartana topimo v 200 ml destilirane vode. Bistro raztopino filtriramo in liofiliziramo. Dobimo amorfno kalijevo sol losartana v količini 20,0 g.

Poskus 19

Amorfna natrijeva sol losartana – metoda 1

5,0 g čiščenega losartana iz enega posusa 8 suspendiramo v 50 ml vode. Pri sobni temperaturi naravnamo pripravo z 10% vodno raztopino natrijevega hidroksida. Reakcijska zmese se zavrstimo v bistro raztopino filtriramo in liofiliziramo. Dobimo amorfno natrijevo sol losartana v količini 2,2 g.

Poskus 20

Amorfna natrijeva sol losartana – metoda 2

3,10 g kristalne natrijeve soli losartana popimo v 31 ml vode. Bistro raztopino filtriramo in liofiliziramo. Dobimo amorfno natrijevo sol losartana v količini 3,10 g.

Tališče: 171-177 °C

Poskus 21

Trden farmacevtski pripravek, ki vsebuje amorfno sol losartana

Pripravili smo filmsko obložene tablete, ki v sredu vsebujejo:

losartan kalij	50,00
laktoza monohidrat	28,50
mikrokristalna celuloza	60,00
preželatiniran škrob	20,00
aerosil	0,43
magnezijev stearat	1,00

za oblogo smo uporabili:

hidroksipropilmetylceluloza	1,93
hidroksipropilceluloza	0,495
polietilenglikol	0,400

titanov dioksid

smukc

Tablete smo pripravili po postopku zgranične suhe zmesi. Učinkovino smo zmešali z laktozo, mikrokristalno celulozo, aerosilom in aerosilom in zmes presejali. Dodali magnezijev stearat in vse skupaj zmešali. Tabletirali smo jedra z maso 160 mg. Na jedra smo nanesli filmsko oblogo pripravljeno iz naštetih sestavin kot suspenzijo v demineralizirani vodi. Filmko obložene tablete smo polirali s smukcem.

Poskus 22

Trden farmacevtski pripravek, ki vsebuje kalijev sol losartana in hidroklorotiazid

Tablete vsebujoče v jedru naslednje sestavine:

losartan kalij	50,00
hidroklorotiazid	12,50
laktoza monohidrat	26,00
mikrokristalna celuloza	60,00
preželatiniran škrob	23,00
aerosil	0,50
magnezijev stearat	1,00

ter v oblogi:

hidroksipropilmetylceluloza	1,00
hidroksipropilceluloza	1,00
titanov dioksid	1,00
železov oksid E 172	0,30

smo pripravili po postopku suhe granulacije, to je z briketiranjem. Učinkovini losartan kalij in hidroklorotiazid smo našli zmešali s škrobom in aerosilom in zmes presejali. Dodali laktozo, mikrokristalno celulozo in preostalo količino aerosila, presejali in zmes briketirali. Brikete so pomleli, dodali magnezijev stearat in granulat homogenizirali. Tabletirali smo jedra z maso 175 mg. Na jedra smo nanesli filmsko oblogo pripravljeno iz naštetih sestavin kot suspenzijo v demineralizirani vodi. Filmsko obložene tablete smo polirali s smukcem.

Patentni zahtevki

1. Soli alkalijskih ali zemljoalkalijskih elementov losartana v amorfni oblikri.
2. Alkalijska sol losartana po zahtevu 1, označena s tem, da je izbrana izmed natrijeve soli losartana v amorfni oblikri ali kalijeve soli losartana v amorfni oblikri.
3. Kalijeva sol losartana v amorfni oblikri po zahtevku 2, karakterizirana s tem, da njen rentgenskem praškovnem difraktogramu nima diskretnih uklonov na območju 2θ od 2° do 37° .
4. Kalijeva sol losartana v amorfni oblikri po zahtevku 2, karakterizirana z zveznostjo uklanjanja v njenem rentgenskem praškovnem difraktogramu prikazanem na *Sliki 20.*
5. Kalijeva sol losartana v amorfni oblikri po zahtevku 2, karakterizirana s tem, da njen IR spekter ne kaže značilnih absorpcij alkalijskih trakov pri valovnih številih okoli $1472 \pm 5 \text{ cm}^{-1}$, okoli $1342 \pm 5 \text{ cm}^{-1}$, okoli 835 cm^{-1} ter okoli 845 cm^{-1} .
6. Postopek priprave alkalijskih ali zemljoalkalijskih soli losartana v amorfni oblikri.
7. Postopek po zahtevku 6, označen s tem, da je alkalijska sol losartana v amorfni oblikri izbrana izmed natrijeve soli losartana v amorfni oblikri ali kalijeve soli losartana v amorfni oblikri; zemljoalkalijska sol losartana v amorfni oblikri je izbrana izmed magnezijeve soli losartana v amorfni oblikri ali kalcijeve soli losartana v amorfni oblikri.
8. Postopek po zahtevku 6 in/ali 7, označen s tem, da je zadnji korak postopka liofilizacija zamrznjene vodne raztopine alkalijske ali zemljoalkalijske soli losartana.
9. Postopek po zahtevku 6 in/ali 7, označen s tem, da vključuje naslednja koraka:
 - a) da se zamrzne raztopina alkalijske ali zemljoalkalijske soli losartana;
 - b) da se dobljena zamrznjena raztopina liofilizira.

10. Postopek po zahtevku 9, označen s tem, da je alkalijska sol losartana v amorfni obliki kalijeve soli losartana v anorganskih oblikih in da je raztopina alkalijske soli losartana vodna raztopina kalijeve soli losartana.
11. Postopek po zahtevku 10, označen s tem, da priprava vodne raztopine kalijeve soli losartana obsega naslednje korake:
 - a) da se losartan suspendira v vodi;
 - b) da se dobljena suspenzija raztopi z dodajanjem vodne raztopine kalijevega hidroksida pri teploti med 10 do 30 °C dokler pH raztopine ne doseže najmanj okoli 9,3.
12. Postopek po kateremkoli od zahtevkov do 11, označen s tem, da se pripravijo alkalijske ali zemljoalkalijske soli losartana v amorfni obliki iz losartana, ki je bil očiščen po postopku, ki obsega naslednje korake: pretvorbo losartana v sol; nadaljnjo izolacijo te soli; pretvorbo izolirane soli v losartan.
13. Postopek po kateremkoli od zahtevkov do 11, označen s tem, da se alkalijske ali zemljoalkalijske soli losartana v amorfni oblik pripravijo iz losartana, ki je bil očiščen po postopku, ki obsega naslednje korake:
 - a) da se losartan pretvori v alkalijsko ali zemljoalkalijsko sol losartana;
 - b) da se dobljena sol losartana izolira;
 - c) da se dobljena izolirana sol raztopi v vodi ali zmesi vode in organskega kislina v organskem topilu.
14. Postopek po kateremkoli od zahtevkov do 9, označen s tem, da se alkalijske ali zemljoalkalijske soli losartana v amorfni oblik pripravijo iz losartana, ki je bil očiščen po postopku, ki obsega naslednje korake:
 - a) da se losartan pretvori v kalijevo in natrijevo sol losartana;
 - b) da se dobljena sol losartana izolira v kristalni oblik;
 - c) da se dobljena izolirana sol raztopi v vodi ali zmesi vode in organskega topila;
 - d) da se dobljeni raztopini doda anorganska kislina do pH med okoli 3,6 in okoli 3,8;

- e) da se dobljena raztopina očisti med okoli 10° C pri čemer se losartan obori;
 - f) da se tako dobljen oborjen material nadalje digerira z organskim topilom.
15. Postopek pa zahtevkih 10 in/ali 11 označen s tem, da se kalijeva sol losartana v amorfni obliki pripravi iz losartana v amorfni obliki očiščen po postopku ki obsega naslednje korake:
- a) da se losartan pretvori v kalijev natrijevo sol losartana;
 - b) da se dobljena sol losartana izolira v kristalni obliki;
 - c) da se dobljena izolirana sol losartana vodi ali zmesi vode in organskega topila;
 - d) da se dobljeni raztopini dodate organska kislina do pH med 3,6 in 3,8;
 - e) da se dobljena raztopina očisti med okoli 10° C pri čemer se losartan obori;
 - f) da se tako dobljen oborjen material nadalje digerira z organskim topilom.
16. Postopek po zahtevkih 14 in/ali 15 označen s tem, da sta pretvorba losartana v kalijev sol in njena izolacija v postopek očiščenja označena z naslednjimi koraki:
- a) da se raztopini losartana v alkoholu ali zmesi alkohola in neprotičnega topila doda kalijev alkoholat;
 - b) da se dobljena sol obori ali izolira;
 - c) da se dobljena oborina ali izolirana sol izolira s filtriranjem ali centrifugiranjem.
17. Postopek po zahtevkih 14 in/ali 15 označen s tem, da sta pretvorba losartana v natrijevo sol in njena izolacija v postopek očiščenja označena z naslednjimi koraki:
- a) da se raztopini losartana v alkoholu ali zmesi alkohola in neprotičnega topila doda natrijev alkoholat in natrijev hidroksid do pH med okoli 9 in okoli 12;
 - b) da se dobljena sol obori ali izolira;
 - c) da se dobljena oborina ali izolirana sol izolira s filtriranjem ali centrifugiranjem.

18. Postopek po kateremkoli od zahtevkov 13 do 15, označen s tem, da je anorganska kislina žveplova (Metformin).
19. Postopek po kateremkoli od zahtevkov 13 do 15, označen s tem, da je organsko topilo etilacetat.
20. Uporaba kristalne alkalijske ali zemljoalkalijske soli losartana v postopku priprave alkalijske ali zemljoalkalijske soli losartana v amorfni obliki po kateremkoli od zahtevkov 12 do 19.
21. Uporaba kristalne natrijeve soli losartana v postopku priprave kalijeve soli losartana v amorfni obliki po kateremkoli od zahtevkov 12, 13, 14, 15, 17, 18, 19.
22. Farmacevtski pripravek, ki vsebuje aktivno učinkovino alkalijsko ali zemljoalkalijsko sol losartana v amorfni oblici ter farmacevtsko sprejemljive pomožne snovi.
23. Farmacevtski pripravek po zahtevi 22, označen s tem, da je aktivna učinkovina izbrana izmed kalijeve soli losartana v amorfni oblici ali natrijeve soli losartana v amorfni oblici.
24. Uporaba alkalijske ali zemljoalkalijske soli losartana v amorfni oblikih za pripravo zdravila.
25. Uporaba alkalijske ali zemljoalkalijske soli losartana v amorfni oblikih za pripravo zdravila za zdravljenje hipertenzije.
26. Uporaba alkalijske ali zemljoalkalijske soli losartana v amorfni oblikih za pripravo zdravila za zdravljenje hipertenzije, na zahtevo 25, označena s tem da je imenovana sol kalijeva sol losartana v amorfni oblikih.

Lek farmaceutska družba d.d.

Priprava novih farmacevtsko uporabnih oblik losartana z novimi metodami čiščenja in izolacije

Izvleček

Farmacevtsko uporabne amorfne alkalijске in zemljoalkalijске soli 2-n-butil-4-kloro-5-hidroksimetil-1-[[2'-(1H-tetrazol-5-il)[1,1'-bifenil]-4-il]metil]-1H-imidazola so bile pripravljene z liofilizacijo vodne raztopine njegove soli, pripravljene iz losartana, ki se lahko učinkovito očisti s prehodom amfoter – alkalijska ali zemljoalkalijsa sol – amfoter.

Normaliziran topotni tok (W/g)

Normaliziran topotni tok (V/g)

Temperatura ($^{\circ}\text{C}$)

Normaliziran topotni tok (W/g)

Normaliziran toplotni tok (W/g)

14
12
10
8
6

50 100

200 250 300

Satura ($^{\circ}$ C)

Slika 5

Slika 6

7/20

Slika 7

Slika 8

8/20

Slika 9

Slika 10

9/20

Slika 11

Slika 12

Slika 13

Slika 14

Slika 15

Slika 16

3/20

Silka.17

4/20

Slika 18

100 200 300 400

15/20

Intenziteta

Slika 19

Intenziteta

Silika 20

Intenziteta

Sika 21

2-Θ

Intenziteta

2-θ

8/20

S 13 22

Intenziteta

S 23

2-Θ

Intenziteta

20/20

2-θ

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.