Advanced Calculus Exam

Friday. January 12, 2007 (12:00 - 2:00)

choose 5 problems out of 6

Please show all work. To get full credit you must clearly describe your calculations.

1. (20 points) A broken wine bottle sits on the xy plane as shown. The bottle consists of a portion of a cylinder of radius 1 along the z axis, with the unit disc in the xy plane at the bottom (see the figure below). Let C be the path along the broken edge oriented counterclockwise when viewed from above. If F is the vector field $F = \langle -y, 2x, 10z \rangle$, what is the value of $\oint F \cdot dr$?

2. (20 points) Inconspicuously, James Bond put a drop of cyanide into a glass of whiskey that he saw the double agent X was drinking. The drop started to spread. Let C(x,y,z,t) denote the concentration of cyanide in the whiskey. Fick's law states that the flux \mathbf{q} of cyanide is negatively proportional to the gradient of C (the cyanide spreads from points of high concentration to points of low concentration), i.e. $\mathbf{q} = -k\nabla C$. Show that C satisfies the equation $\frac{\partial C}{\partial t} = k\nabla^2 C$.

3. (20 points)

- (a) For what values of α is the force field $\mathbf{F} = (e^x \sin y y) \mathbf{i} + \alpha (e^x \cos y x 2) \mathbf{j}$ conservative? For each such value of α find a potential ϕ such that $\mathbf{F} = \nabla \phi$.
- (b) Consider a force field F derivable from a potential U, $F = -\nabla U$. The work done by F on a particle moving from point A to point B is defined as $W = \int_A^B \mathbf{F} \cdot d\mathbf{r}$.
- (c) Show that W = U(A) U(B).
- (d) Let the particle move according to the Newton's Second law of motion, $F = m d^2 \mathbf{r}/dt^2$, where m is the mass of the particle and \mathbf{r} is its position. Show that the sum of the potential and the kinetic energy, $U + m v^2/2$, where $v = |\mathbf{v}|$, $\mathbf{v} = d\mathbf{r}/dt$, is conserved (therefore such a force field is called conservative).
- 4. (20 points) Find the mass of the plane region R in the first quadrant of the (x, y)-plane bounded by the hyperbolas xy = 1, xy = 2, $x^2 y^2 = 3$, $x^2 y^2 = 5$. Assume the density at the point (x, y) is $\rho(x, y) = x^2 + y^2$.

- 5. (20 points) A function y(x) is given in implicit form F(x, y) = 0. Find dy/dx and d^2y/dx^2 in terms of $\partial F/\partial x$ and $\partial F/\partial y$.
- 6. (20 points) Consider the force field $F = v_0 k$, where k is the unit vector along the +z-direction.
 - a) By direct computation find the flux of the vector field F across the hemispherical surface $|\mathbf{r}| = a$, z > 0 in the direction pointing away from the origin.
 - b) Find the flux of the vector field F across the disk $\{x^2+y^2=a^2,\ z=0\}$ in the k direction.
 - c) Without appealing to Stokes theorem, present an argument showing why the fluxes in a) and b) must be equal.