Momentos y funciones generadoras 1

Definición 1 (Media) Sea X una variable aleatoria. La media de X o valor esperado de X, denotado por μ_X o E[X] es definida por:

- i) $E[X] = \sum_{k=1}^{\infty} x_k p_k$ si X es una variable discreta con función de masa de probabilidad
- $p_k = P([X = x_k]) \ y \sum_{k=1}^{\infty} |x_k| \ p_k < \infty.$ $ii) \ E[X] = \int_{-\infty}^{\infty} x f_X(x) dx \ si \ X \ es \ una \ variable \ continua \ con \ función \ densidad \ de \ probabilidad \ f_X \ y \int_{-\infty}^{\infty} |x| \ f_X(x) dx < \infty.$
- iii) $E[X] = \int_0^\infty [1 F_X(x)] dx \int_{-\infty}^0 F_X(x) dx$ para una variable aleatoria arbitraria con $\int_0^\infty [1 - F_X(x)] dx < \infty \ y \int_{-\infty}^0 F_X(x) dx < \infty.$

Nota; E/X] es el centro de gravedad de la masa unitaria que es determinada por la función de densidad de X.

Así la media de X es una medida de donde los valores de la variable X se centran.

Definición 1 (Media) Sea (Ω, S, P) un espacio probabilístico (espacio de medida).

- a) Si $A \in S$, se lama integral I_A respecto a P, y se denota $\int_{\Omega} I_A dP$, el número real P(A).
- b) Sea $X = \sum_{i=1}^{n} a_i I_{Ai}$ una función simple donde los A_i son sucesos dos a dos disjuntos y los a_i son números reales no negativos. Se define la integral de X respecto a P, y se denota por $\int_{\Omega} XdP$, como el número real $\sum_{i=1}^{n} a_i P(A_i)$.
- c) Si $X:\Omega\longrightarrow \bar{\mathbb{R}}$ es Borel-medible y no negativa, se define la integral de X respecto a $P \ por \int_{\Omega} X dP = \sup\{\int_{\Omega} s \ dP : s \ simple \ y \ 0 \le s \le X\}.$
- d) Si $X:\Omega\longrightarrow\mathbb{R}$ es Borel-medible, se dice que X es P-integrable si las integrales de sus partes positivas y negativas son finitas; se dice que existe la integral de X respecto a P si al menos una de ellas es finita. En ambos casos se define $\int_{\Omega} X dP = \int_{\Omega} X^+ dP - \int_{\Omega} X^- dP$. e) Si X es Borel-medible y $A \in S$, se detona $\int_{A} X dP = \int_{\Omega} (XI_A) dP$, si esta última integral

 $\underline{\textit{Notación}} \colon \int X(\omega) dP(\omega), \int X(\omega) P(d\omega) \ y \ \int_{\Omega} X(\omega) dP(\omega) \ \textit{significa lo mismo que} \ \int_{\Omega} X dP.$ Como P es una medida de probabilidad, entonces $\int_{\Omega} XdP$ se suele denotar por la forma $E_P(X)$ (o simplemente, E(X) o EX, si no hay confusión) y se llama esperanza o media de X.

 $Si\ X: \mathbb{R} \longrightarrow \mathbb{R}$ es una variable aleatoria, su integral respecto a la medida de Lebesgue (si existe) se denota usualmente por $\int X(x)dx$ o $\int X$, o $\int_{\mathbb{R}} X(x)dx$ o también $\int_{-\infty}^{\infty} X(x)dx$.

Teorema 1 Dado $X(w)=I_A(w)$ para algún $A \in S$. Entonces E[X]=P(A).

Teorema 2 Si X es una variable aleatoria y h(X)=|X| se tiene: E[X] existe si y sólo si E/|X|/ existe.

Definición 2 Una X es una variable simétrica sobre un punto α si $P(|X \ge \alpha + x|) =$ $P(X \leq \alpha - x)$ para todo $x \in \mathbb{R}$.

<u>Nota</u>: Una función distribución F de X es simétrica (o una variable aleatoria X es simétrica) con α como centro de simetría si

 $F(\alpha - x) = 1 - F(\alpha + x) + P([X = \alpha + x]) \text{ para todo } x \in \mathbb{R}.$

En particular, si X es una variable aleatoria continua y simetrica con centro en α si y sólo si satisface $f(\alpha - x) = f(\alpha + x)$ para todo $x \in \mathbb{R}$.

 $Si \alpha = 0, X es simetrica (o F es simétrica).$

Teorema 3 Si X es una variable aleatoria simétrica con α como centro de simetría y $E[|X|] < \infty$. Entonces $E[X] = \alpha$.

Teorema 4 Si a y b son constantes y X es una variable aleatoria con $E[|X|] < \infty$. Entonces $E[|aX+b|] < \infty$ y E[aX+b] = aE[X]+b. Nota: $E[X-\mu]=0$.

Teorema 5 Si X es una variable aleatoria acotada, es decir, $P([|X| \le M])=1$, $0 < M < \infty$. Entonces E[X] existe.

Teorema 6 Si X es una variable aleatoria con $P([X \ge 0])=1$ y E[X] existe. Entonces $E[X] \ge 0$.

Teorema 7 Sea X una variable aleatoria y g una función de Borel-medible sobre \mathbb{R} . Dado Y=g(X). Si X es una variable aleatoria discreta, entonces

$$E[Y] = \sum_{j=1}^{\infty} g(x_j) P([X = x_j])$$
 (1)

en el sentido que si cualquiera lado de (1) existe, también existe el otro lado, y los dos son iguales. Si X es una función continua con función de densidad de probabilidad f, entonces:

$$E[Y] = \int_{-\infty}^{\infty} g(x)f(x)dx \tag{2}$$

en el sentido que si cualquier de las dos integrales convergen absolutamente en (2), también converge el otro lado, y los dos son iguales.

<u>Nota</u>: Sea X una variable aleatoria discreta. Entonces el teorema 7 dice que:

$$\sum_{j=1}^{\infty} g(x_j) P([X = x_j]) = \sum_{k=1}^{\infty} y_k P([Y = y_k])$$

en el sentido que si cualquiera de las dos series converge absolutamente, también converge la otra y las dos sumas son iguales. Si X es una variable continua con función densidad de probabilidad f. Sea h(y) la función densidad de probabilidad de Y=g(X). Entonces segun el teorema 7,

$$\int_{-\infty}^{\infty} g(x)f(x)dx = \int_{-\infty}^{\infty} yh(y)dy$$

dado que $E/|g(X)|/<\infty$.

Se puede definir para otros tipos de variables aleatorias. E[g(X)] es definida como la integral Stieltjes $\int_{-\infty}^{\infty} g(x)dF_X(x)$ (dado que esta integral existe), donde $F_X(x)$ es la función de distribución acumulada de X.

Teorema 8 Sea X una variable aleatoria (discreta o continua), y g y h funciones de Borel-medible sobre \mathbb{R} . Entonces:

- i) E[cg(X)] = cE[g(X)] para c constante.
- ii) E[cg(X) + dh(x)] = cE[g(X)] + dE[h(X)] para c y d constantes.
- iii) $E[g(X)] \leq E[h(X)]$ si $g(x) \leq h(x)$ para todo x.

Definición 3 (Varianza) Sea X una variable aleatoria y sea $\mu_X = E[X]$ existe. La varianza de X, denotado por σ_X^2 o VAR[X], es defindo por:

- i) $VAR[X] = \sum_{k=1}^{\infty} (x_k \mu_X)^2 p_k$ si X es una variable discreta con función de masa de probabilidad $p_k = P([X=x_k])$.
- ii) $VAR[X] = \int_{-\infty}^{\infty} (x \mu_X)^2 f_X(x) dx$ si X es una variable continua con función densidad de probabilidad f_X .
- iii) $VAR[X] = \int_0^\infty 2x[1 F_X(x) + F_X(-x)] dx$ μ_X^2 para una variable aleatoria arbitraria. <u>Nota</u>: La VAR[X] es una medida de la dispersión.

Definición 4 (Desviación estándar) Si X es una variable aleatoria, la desviación estándar de X, denotada por σ_X es definida como $+\sqrt{VAR[X]}$.

Teorema 9 Si X es una variable aleatoria y $E[X^2]$ existe, entonces $VAR[X] = E[X^2] - (E[X])^2$.

Definición 5 Una variable aleatoria X es degenerada en el punto k si $P([X=x]) = \begin{cases} 1 & , & x=k \\ 0 & , & cualquier otro lugar \end{cases}$

Teorema 10 Si X es una variable aleatoria discreta y $E[X^2]$ existe. Entonces VAR(X)=0 si y sólo si X es degenerada.

Teorema 11 Sea X una variable aleatoria y $E[X^2]$ existe. Entonces $VAR(X) < E[(X-c)^2]$ para cualquier $c \neq E[X]$.

Teorema 12 Sea X una variable aleatoria y $E[X^2]$ existe. Entonces, $VAR[aX+b] = a^2 VAR[X]$ para cualquier a y b constantes.

Definición 6 Una variable aleatoria Z es estandarizada si E[Z]=0 y VAR[Z]=1. <u>Nota</u>: Sea una variable aleatoria X y $E[\mid X\mid^2]<\infty$. Se define $Z=\frac{X-E[X]}{\sqrt{VAR[X]}}=\frac{X-\mu}{\sigma}$. Se tiene que E[Z]=0 y VAR[Z]=1.

Definición 7 (Momentos) Si X es una variable aleatoria, el r-ésimo momento de X (sobre el origen) o el momento de orden r, denotado por m_r , es definido como $m_r = E[X^r]$ si el valor esperado existe.

Definición 8 (Momentos centrales) Si X es una variable aleatoria, el r-ésimo momento central de X sobre a es definido como $E[(X-a)^r]$. Si $a=\mu$, se tiene el r-ésimo momento central sobre μ (o la media), denotado por μ_r , el cual es $\mu_r=E[(X-\mu)^r]$. Nota: Si se conocen $m_1, m_2, ..., m_k$, se pueden calcular $\mu_1, \mu_2, ..., \mu_k$, y viceversa.

Se tiene
$$\mu_k = E[(X-\mu)^k] = m_k - \binom{k}{1} \mu m_{k-1} + \binom{k}{2} \mu^2 m_{k-2} - \dots + (-1)^k \mu^k y$$

$$m_k = E[(X-\mu+\mu)^k] = \mu_k + \binom{k}{1} \mu \mu_{k-1} + \binom{k}{2} \mu^2 \mu_{k-2} + \dots + \mu^k$$

Definición 9 (Momentos factoriales) Si X es una variable aleatoria, el r-ésimo momento factorial de X es definido como (r es un entero positivo): E[X(X-1)...(X-r+1)]. Nota: Para algunas variables aleatorias de valores enteros discretas cuya función de masa de probabilidad contiene factoriales o coeficientes binomiales, puede ser más conveniente calcular momentos factoriales.

Definición 10 (Cuantil) Un número x satisfaciendo $P([X \le x]) \ge p$, $P([X \ge x]) \ge 1$ - p. 0 , es llamado un cuantil de orden <math>p (or 100p-ésimo percentil) para la variable aleatoria X (o para la función distribución F de X) y se denota por $\xi_p(X)$. Nota: Si x es un cuantil de orden p para la variable aleatoria X con función distribución F, entonces

$$p \le F(x) \le p + P([X=x]).$$

Si X es una variable aleatoria continua, un cuantil de orden p es una solución de la ecuación F(x)=p ya que P([X=x])=0.

Si F es estrictamente creciente, la solución es única. De otra forma, pueden haber muchas (inclusive incontables) soluciones de F(x)=p, cada uno de los cuales es llamado un cuantil de orden p.

Definición 11 (Mediana) Sea una variable aleatoria con función distribución F. Un número que satisface $\frac{1}{2} \leq F(x) \leq \frac{1}{2} + P([X=x])$ o equivalentemente $P([X \leq x]) \geq \frac{1}{2}$ y $P([X \geq x]) \geq \frac{1}{2}$ es llamado la mediana de X (o F).

Teorema 13 Si el momento de orden t existe para una variable aleatoria X, momentos de orden 0 < s < t existen.

Teorema 14 Sea X una variable aleatoria no negativa con función distribución F. Entonces, $E[X] = \int_0^\infty (1-F(x))dx$, en el sentido que si cualquier lado existe, también el otro existe y los dos son iguales.

Definición 12 Sea X una variable aleatoria definida sobre (Ω, S, P) . La función

$$M(s) = E[e^{sX}] (3)$$

es conocida como la función generadora de momentos de la variable aleatoria X si el valor esperado del lado derecho de (3) existe en alguna vecindad del origen. Nota: M_X denota la función generadora de momentos de la variable aleatoria X.

Teorema 15 Sean X y Y dos variables aleatorias con funciones de densidad f_X y f_Y respectivamente.

- a) Si $M_X(s)$ y $M_Y(s)$ existen y son iguales para todo s en el intervalo -h < s < h para algún h > 0. Entonces, las dos funciones de distribución F_X y F_Y son iguales.
- b) Si $M_X(s)$ existe para todo s en el intervalo -h < s < h para algún h > 0 y las dos funciones de distribución F_X y F_Y son iguales, entonces $M_X(s)$ y $M_Y(s)$ son iguales para todo s en el intervalo -h < s < h para algún h > 0.

Teorema 16 Si la función generadora de momentos M(s) de una variable aleatoria X existe para s en $(-s_0,s_0)$ con $s_0 > 0$, entonces las derivadas de todos los órdenes existen en s=0 y pueden ser evaluadas bajo el signo de la integral, es decir,

$$M^{(k)}(s)|_{s=0} = E[X^k] \ para \ k=1,2,...$$

Nota: $M(s) = E[e^{sX}] = E[\sum_{i=0}^{\infty} \frac{1}{i!} (sX)^i] = \sum_{i=0}^{\infty} \frac{1}{i!} m_i s^i$

Teorema 17 Sea h(X) una función no negativa Borel medible de una variable aleatoria X. Si E[h(X)] existe, entonces para cualquier $\epsilon > 0$, $P([h(X) \ge \epsilon]) \le \frac{E[h(X)]}{\epsilon}$.

Teorema 18 Sea X una variable aleatoria, dado $h(X) = |X|^r$ y $\epsilon = K^r$, donde r > 0 y K > 0. Entonces $P([|X| \ge K]) \le \frac{E[|X|^r]}{K^r}$, la cual es la desigualdad de Markov.

En particular si $h(X)=(X-\mu)^2$ y $\epsilon=K^2\sigma^2$, se tiene la designaldad de Chebychev-Bienayme:

 $P([\mid X - \mu \mid \geq K\sigma]) \leq \frac{1}{K^2}, \ donde \ E[X] = \mu \ y \ VAR(X) = \sigma^2.$

Definición 13 (Función Convexa) Una función $g: \mathbb{R} \to \mathbb{R}$ es convexa si para cualquier $x,y \in \mathbb{R}$ y cualquier $t \in [0,1]$, $g(tx+(1-t)y) \leq tg(x)+(1-t)g(y)$. <u>Nota</u>: Geométricamente significa que en cada intervalor [x,y] la gráfica de g queda por debajo del segmento que va de (x,g(x)) a (y,g(y)).

Teorema 19 (Desigualdad de Jensen) Sea X una variable aleatoria con media E[X], y sea g una función convexa y continua. Entonces $E[g(X)] \ge g(E[X])$.

2 Bibliografía

• Rohatgi, V. y Saleh, A. (2001), An Introduction to Probability and Statistics. John Wiley and Sons, Inc.