Math 327 Homework 3

Chongyi Xu

April 24, 2017

- 1. Let c be a number with |c| < 1.
 - (a) Show that there exists a d > 0 such that $|c| = \frac{1}{1+d}$. Then, use the binomial theorem to show that

$$|c^n| \le \frac{1}{1+nd} \le \frac{1}{dn}$$
 for every integer $n \ge 1$.

- Assume d>0, then 1+d>1. So $0<\frac{1}{1+d}<1$. Therefore $\frac{1}{1+d}=|c|$ since 0<|c|<1.
- Obviously, $\frac{1}{1+nd} \le \frac{1}{nd}$ for any $n \ge 1$ and d > 0. And since $|c^n| = \frac{1}{(1+d)^n}$, prove $(1+d)^n \ge 1+nd$ by induction on n.
 - \circ Base Case(n=1).

$$(1+d)^1 = 1+d$$

o Inductive Step

Binomial Theorem tells that $\binom{(1+d)^n = \sum_{k=0}^n n}{k(nd)^k}$. So

$$(1+d)^{n+1} = (1+d)^n \cdot (1+d)$$

 $\geq (1+nd) \cdot (1+d)$ Inductive Hypothesis
 $= 1+d+nd+nd^2$

Since $n \ge 1$, $nd^2 > 0$. Therefore, $(1+d)^{n+1} \ge 1 + d + nd = 1 + (n+1)d$

So we have

$$(1+d)^n \ge 1 + nd \ge nd$$

$$\frac{1}{(1+d)^n} \ge \frac{1}{1+nd} \ge \frac{1}{nd}$$

$$|c^n| \ge \frac{1}{1+nd} \ge \frac{1}{nd}$$

Q.E.D.

- (b) Use the Sandwich Theorem to give an alternative proof of $c^n \to 0$.
 - $(c^n > 0)$. Let $a_n = 0$, then $a_n \to 0$.
 - Let $b_n = \frac{1}{nd}$. In part(a), it has been proved that $c^n \leq \frac{1}{dn}$. And $\frac{1}{dn} \to 0$ since d > 0 and $n \geq 1$.

So $a_n \leq c^n \leq b_n$ and $a_n \to 0$, $b_n \to 0$. Sandwich Theorem tells c^n also converges to 0.

• $(c^n < 0)$. Let $\alpha_n = -a_n$, $\beta_n = -b_n$.

Then $\beta_n \leq c^n \leq \alpha_n$. Sandwich Theorem tells c^n converges to 0. Q.E.D.

(c) Prove that $\sqrt{n}c^n \to 0$.

 $\sqrt{n}c^n$ is obviously monotonely decreasing. And c^n is bounded from part(b).

So there exists an M and m such that

$$m \le c^n \le M$$
$$\sqrt{n} < \sqrt{n}c^n < \sqrt{n}M$$

So $\sqrt{n}c^n$ is also bounded. Monotone Convergence Theorem tells if a monotone sequence is bounded, it converges. Claim $\sqrt{n}c^n$ converges to $\inf\{\sqrt{n}c^n\}=0$.

- (If 0 < c < 1) Since $c^n > 0$, and $\sqrt{n} \ge 1$, 0 is a lower bound. Assume 0 is not the greatest lower bound for a contradiction. Let r > 0 be the greatest lower bound, then $\sqrt{n}c^n = \frac{\sqrt{n}c^n}{c} \ge \frac{r}{c}$. Then $\frac{r}{c} > r$ is also a greatest lower bound, contradicting. So r is not the greatest lower bound. So $\sqrt{n}c^n$ converges to 0.
- (If -1 < c < 0) Similarly, 0 is the least upper bound. So $\sqrt{n}c^n$ converges to 0.

In both cases, $\sqrt{n}c^n$ converges to 0. Q.E.D.

- (d) Prove that if 0 < c < 1, then $nc^n \to 0$.
- 2. For a pair of positive numbers α and β , $\frac{\alpha+\beta}{2}$ is called the arithmetic mean and $\sqrt{\alpha\beta}$ is called the geometric mean.
 - (a) Prove that

$$\frac{\alpha+\beta}{2} \ge \sqrt{\alpha\beta}$$

(b) Let a, b > 0. Define sequences (a_n) and (b_n) recursively with $a_1 = 1, b_1 = b$,

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $b_{n+1} = \sqrt{a_n b_n}$.

Prove (a_n) and (b_n) are monotone and that they have the same limit. This limit is called the Gauss arithmetic-geometric mean on a and b.