

Anno scolastico 2017-18 Lavoro Professionale Individuale

Nome Cognome:	Naoki Pross
Professione:	Elettronico
Titolo del progetto:	Spectrum Analyzer

Azienda:	CPT Bellinzona Centro Professionale Tecnico Viale S. Franscini 25 6500 Bellinzona				
Formazione approfondita:	S.2 Sviluppare prototipi				
Formatore:	Rinaldo Geiler, Daniele Kamm				
Data d'inizio:	12.04.2018	Ore a disposizione:	83 UD		
Data file lavoro:	15.05.2018	Ore effettive:	– UD		

Indice

1	Intro	Introduzione 2								
	1.1	Contesto	2							
	1.2	Requisiti	2							
	1.3	Concetti matematici	2							
	1.4	Norme di progetto	2							
2	Hard	ardware 3								
	2.1	Schema a blocchi	3							
	2.2	Selezione delle entrate	3							
	2.3	Circuito di amplificazione	3							
	2.4	Microcontroller	3							
	2.5	Visualizzazione	3							
3	Soft	tware	4							
_	3.1	Campionamento	4							
	3.2	Interfaccia al Computer	4							
	3.3	Interfaccia al Display	4							
	3.4	Fast Fourier Transform	4							
4	Con	nclusioni	5							
•	4.1	Problemi riscontrati	5							
	4.2	Commento	5							
	4.3	Certificazione	5							
5	Trac	sformata di Fourier	7							
3	5.1	Nozioni preliminarie	7							
	5.1	5.1.1 Regressione lineare con il metodo dei minimi quadrati	7							
		5.1.2 Funzione armonica	7							
		5.1.3 Proprietà di ortogonalità del seno e del coseno	8							
	5.2	Polinomio Trigonometrico	8							
	5.3	Serie di Fourier	9							
	5.4	Trasformata di Fourier discreta	9							
	5.5	Trasformata di Fourier	9							
	5.6	Fast Fourier Transform	9							
		5.6.1 Motivazioni e Complessità temporale	9							
		5.6.2 Proprietà dei numeri complessi	9							

1 Introduzione

1.1 Contesto

Per portare a termine il percorso formativo per un attestato di capacità federale presso la Scuola Arti e Mestieri di Bellinzona è richiesto lo sviluppo individuale di un progetto di produzione di un prodotto. Per interesse personale nella matematica della trasformata di Fourier mi è stato assegnato di sviluppare un analizzatore spettrale.

1.2 Requisiti

È richiesto di sviluppare circuito per analizzare lo spettro dei segnali di frequenza fino a 10 kHz. Il dispositivo dovrà avere 3 possibili sorgenti: RCA/Cinch e 2 Audio Jack per un microfono e per una sorgente di audio generica. È inoltre richiesto che il calcolo dei dati dello spettrogramma sia eseguito da un microcontroller della Microchip, collegato a due altri dispositivi quali, una display e ad un computer in RS232, per poter visualizzare lo spettrogramma computato.

1.3 Concetti matematici

Il circuito realizzato si appoggia sul concetto matematico di importanza fondamentale nelle discipline come la fisica e l'elettrotecnica della Trasformata di Fourier. Questa operazione matematica è fondata su su un principio dimostrato da Joseph Fourier che asserisce che è possibile rappresentare una qualsiasi funzione periodica, in alcuni casi anche non periodica, con una serie di sinusoidi di frequenze multiple ad una di base. L'operazione di Trasformata dunque è uno strumento per osservare le frequenze di queste armoniche, esso trasforma una funzione in funzione del tempo f(t) in una funzione rispetto alla frequenza o alla pulsazione $\hat{f}(\omega)$.

Secondariamente, il progetto usufruisce anche di un altro strumento chiamato Fast Fourier Transform (FFT) scoperto inizialmente nel 1965 dai matematici J. Cooley e J. Tukey. La FFT è un algoritmo con molte implementazioni che riduce la complessità computazionale della trasformata di fourier discreta da $\mathcal{O}(n^2)$ a $\mathcal{O}(n\log n)$. Questo è necessario perchè le operazioni matematiche da eseguire sono dei prodotti tra numeri complessi, i quali causerebbero dei severi cali di performance.

Tutti i concetti descritti saranno approfonditi nei capitoli seguenti.

1.4 Norme di progetto

2 Hardware

- 2.1 Schema a blocchi
- 2.2 Selezione delle entrate
- 2.3 Circuito di amplificazione
- 2.4 Microcontroller
- 2.5 Visualizzazione

3 Software

- 3.1 Campionamento
- 3.2 Interfaccia al Computer
- 3.3 Interfaccia al Display
- 3.4 Fast Fourier Transform

4 Conclusioni

- 4.1 Problemi riscontrati
- 4.2 Commento
- 4.3 Certificazione

II sottoscritto	dichiara di aver	redatto e prodotto	o individualmente	il lavoro di produzione.	
Data:			Firma:		
				Naoki Pross	

Bibliografia

[1] Example item title, (online), Author and other informations, https://www.example.com

5 Trasformata di Fourier

5.1 Nozioni preliminarie

5.1.1 Regressione lineare con il metodo dei minimi quadrati

La regressione lineare è un'approssimazione di una serie di dati ad una funzione lineare. Questa retta di approssimazione può essere calcolata in molteplici modi, per questo progetto è di interesse utilizzare il $metodo\ dei\ minimi\ quadrati$. Sarà dunque esplicato come trovare i coefficienti di una retta a m+1 termini partendo da N punti di riferimento.

$$r(x, a_0, \dots, a_m) = a_0 + x \sum_{i=1}^m a_i$$
 (5.1.1.1)

Consideriamo di avere gli insiemi X e Y entrambi con N termini di cui si prende le coppie ordinate di valori (x_k,y_k) $x_k\in X,$ $y_k\in Y$, ossia i punti dato di cui eseguire la regressione. Il metodo dei minimi quadrati trova i coefficienti della retta minimizzando il quadrato della differenza tra il valore stimato dalla retta $r(x_k)$ e il valore reale y_k .

$$\min((r(x_k) - y_k)^2) \quad \forall x_k \in X, y_k \in Y$$

Definiamo quindi la funzione da minimizzare arepsilon

$$\varepsilon(a_0, \dots, a_m) = \sum_{k=1}^{N} \left[r(x_k, a_0, \dots, a_m) - y_k \right]^2$$
(5.1.1.2)

Da cui si computa le derivati parziali rispetto ai coefficienti ricercati, ottenendo un sistema di equazioni lineare. Ciò corrisponde anche ad affermare che il gradiente di ε è un vettore $\in \mathbb{R}^{m+1}$ con tutte le componenti a 0.

$$\nabla \varepsilon = \langle 0, \dots, 0 \rangle$$

A questo punto si può procedere risolvendo il sistema con l'algebra lineare definendo la matrice di trasformazione ${\bf A}$ e il vettore dei termini noti \vec{u}

$$\nabla \varepsilon = \mathbf{A} \langle a_0, \dots, a_m \rangle + \vec{u} \iff \langle a_0, \dots, a_m \rangle = \mathbf{A}^{-1}(-\vec{u})$$

5.1.2 Funzione armonica

Una funzione armonica, sinusoidale, può essere descritta in molteplici modi. Iniziamo dunque osservando le forme più semplici, ossia la forma trigonometrica.

$$f(x) = a \cdot \sin(\omega x + \varphi) \tag{5.1.2.1}$$

$$f(x) = b \cdot \cos(\omega x + \vartheta) \tag{5.1.2.2}$$

Conoscendo la formula di Eulero (5.1.2.3)

$$e^{i\varphi} = \cos(\varphi) + i \cdot \sin(\varphi) \tag{5.1.2.3}$$

possiamo riscrivere f(x) nei seguenti modi

$$f(x) = \frac{a}{2i} \cdot \left(e^{i(x\omega + \varphi)} - e^{-i(x\omega + \varphi)}\right) \tag{5.1.2.4}$$

$$f(x) = \frac{b}{2} \cdot \left(e^{i(x\omega + \vartheta)} + e^{-i(x\omega + \vartheta)}\right) \tag{5.1.2.5}$$

5.1.3 Proprietà di ortogonalità del seno e del coseno

Per avere delle fondamenta solide prima dell'introduzione dell'argomento principale, saranno dimostrate le proprietà di ortogonalità del seno e coseno. Considerando il periodo T, dunque di frequenza $2\pi/T$.

Intuizione geometrica

Dimostrzioni algebriche

1.

$$\int_0^T \sin(\frac{m2\pi x}{T}) dx = 0 \quad \forall m \in \mathbb{Z}$$

$$\int_0^T \sin(\frac{m2\pi x}{T}) dx = \left[-\frac{T}{2\pi m} \cdot \cos\left(\frac{2\pi}{T}mx\right) \right]_0^T$$

$$= -\frac{T}{2\pi m} \cdot \cos\left(2\pi m\right) + \frac{T}{2\pi m} \cdot \cos\left(0\right)$$

$$= 0$$

2.

$$\int_0^T \cos(\frac{m2\pi x}{T}) dx = 0 \quad \forall m \in \mathbb{Z}^*$$

$$\int_0^T \cos(\frac{m2\pi x}{T}) dx = \left[\frac{T}{2\pi m} \cdot \sin\left(\frac{2\pi}{T} mx\right)\right]_0^T$$

$$= \frac{T}{2\pi m} \cdot \sin\left(2\pi m\right) + \frac{T}{2\pi m} \cdot \sin\left(0\right)$$

 $\mathsf{Nota} \colon \mathsf{Se} \; m = 0$

$$\int_0^T \cos(\frac{m2\pi x}{T}) \, \mathrm{d}x = T$$

3.

5.2 Polinomio Trigonometrico

Analogamente a come è definito un polinomio P "normale" di grado N, è possibile definire anche un polinomio trigonometrico T.

$$P_N(x) = \sum_{n=0}^{N} a_n x^n \qquad a_n \in \mathbb{R}, \ a_N \neq 0$$

$$T_N(x) = \sum_{n=0}^{N} c_n e^{i\omega nx}$$
 $c_n \in \mathbb{C}, \ \omega \in \mathbb{R}, \ c_N \neq 0$

Questo polinomio è detto trigonometrico perchè utilizzando la formula di eulero $e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)$ si può espandere nel seguente modo.

$$T_N(x) = \sum_{n=0}^{N} \left[a_n \cdot \cos(\omega nx) + ib_n \cdot \sin(\omega nx) \right] \qquad a_n, b_n \in \mathbb{C}$$

È definito inoltre il polinomio trogonometrico reale come

$$T_N(x) = \sum_{n=0}^{N} \left[a_n \cdot \cos(\omega nx) + b_n \cdot \sin(\omega nx) \right] \qquad a_n, b_n \in \mathbb{R}$$

Quest'ultimo mediante delle identità trigonometriche può essere riscritto anche nel modo seguente.

$$T_N(x) = \sum_{n=0}^{N} A_n \cdot \cos(\omega nx - \varphi)$$

In tutti i casi possiamo osservare che il polinomio trogonometrico è una somma di sinusoidi di frequenze multiple ad una base $\omega=2\pi f$. Se descritto mediante la terminologia dell'algebra lineare, si può anche osservare che un polinomio trigonometrico è una combinazione lineare nello spazio funzionale ortonormato dalle basi $\sin(\omega nx)$ e $\cos(\omega nx)$.

- 5.3 Serie di Fourier
- 5.4 Trasformata di Fourier discreta
- 5.5 Trasformata di Fourier
- 5.6 Fast Fourier Transform
- 5.6.1 Motivazioni e Complessità temporale
- 5.6.2 Proprietà dei numeri complessi