Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 6 Abgabe auf Moodle bis zum 5. Juni

Bearbeiten Sie bitte nur zwei der vier Aufgaben. Jede Aufgabe ist vier Punkte wert.

- **23.** Aufgabe: Sei $P \in \mathbb{R}[X]$ ein reelles Polynom in einer Variablen.
 - (a) Ist $z \in \mathbb{C}$ eine Nullstelle von P, dann auch \overline{z} .
 - (b) Ist P irreduzibel in $\mathbb{R}[X]$, dann ist P linear oder quadratisch.

Hinweis: Verwenden Sie den Fundamentalsatz der Algebra.

Lösung: Sei $P(X) = \sum_{n=0}^{N} a_n X^n$. Für jede Nullstelle z gilt

$$P(\overline{z}) = \sum_{n=0}^{N} a_n \overline{z}^n = \sum_{n=0}^{N} \overline{a_n z^n} = \overline{P(z)} = \overline{0} = 0 ,$$

also ist auch \overline{z} eine Nullstelle. Hier benutzen wir, dass die Koeffizienten a_n reell sind. Sei nun P irreduzibel, insbesondere ist dann P nicht konstant, hat also mindestens Grad $N \geq 1$. Nach Fundamentalsatz der Algebra ist $P(X) = \prod_{n=1}^N (X-z_n)$ mit komplexen Nullstellen z_n . Wenn eine dieser Nullstellen $z=z_n\in\mathbb{R}$ reell ist, dann wird P über \mathbb{R} vom Linearfaktor R(X)=(X-z) geteilt. Da P irreduzibel ist, ist es linear und stimmt bis auf Einheiten mit R überein, also N=1. Angenommen, P hat eine komplexe nichtreelle Nullstelle $z=z_n$. Dann ist nach a) auch \overline{z} eine Nullstelle. Das Polynom $Q(X)=(X-z)(X-\overline{z})=X^2-2\mathrm{Re}(z)X+|z|^2$ hat reelle Koeffizienten und teilt P. Da P irreduzibel ist, stimmt es bis auf Einheiten mit Q überein und damit quadratisch, also N=2.

- **24.** Aufgabe: Sei $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Funktion. Zeigen Sie zwei der drei Aussagen:
 - (a) Ist f nicht konstant, dann hat f dichtes Bild in \mathbb{C} .
 - (b) Wenn f(z) = f(z+1) = f(z+i), dann ist f konstant.
- (c)* Sei $g: \mathbb{C} \to \mathbb{C}$ eine weitere holomorphe Funktion mit höchstens einer Nullstelle. Wenn $|f(z)| \leq |g(z)|$ für alle $z \in \mathbb{C}$, dann gilt $f = c \cdot g$ mit einer Konstante $c \in \mathbb{C}$.

Hinweis: Verwenden Sie jeweils den Satz von Liouville.

Lösung:

(a) Angenommen das Bild ist nicht dicht, dann gibt es einen Punkt $c \in \mathbb{C}$ und ein $\epsilon > 0$ sodass die offene Kugel $B_{\epsilon}(c)$ nicht von f getroffen wird, also disjunkt zum Bild ist. Die Funktion $g(w) = \frac{1}{w-c}$ ist holomorph in $w \in \mathbb{C} \setminus \{c\}$, damit ist $g \circ f$ holomorph auf ganz \mathbb{C} . Aber $|f(z) - c| \geq \epsilon$ für alle z, also $|g \circ f(z)| = |\frac{1}{f(z)-c}| \leq \epsilon^{-1}$. Damit ist $g \circ f$ beschränkt und ganz, also nach dem Satz von Liouville konstant.

- (b) Nach Annahme ist f(z) = f(z+n+mi) für alle ganzzahligen n,m. Damit ist das Bild $f(\mathbb{C}) = f(Q)$ für das Quadrat $Q = \{x+iy \mid 0 \le x, y \le 1\}$. Aber Q ist kompakt, also ist das Bild f(Q) der stetigen Funktion f beschränkt. Nach Satz von Liouville ist f konstant.
- (c) Die Funktion h(z) = f(z)/g(z) ist definiert für z mit $g(z) \neq 0$. Nach Annahme gilt $|h(z)| \leq 1$. Nach Annahme hat g höchstens eine Nullstelle z_0 in $\mathbb C$ und h ist beschränkt, lässt sich also nach dem (schwachen) Riemanschen Hebbarkeitssatz fortsetzen zu einer holomorphen ganzen Funktion \tilde{h} , deren Einschränkung auf $\mathbb C \setminus \{z_0\}$ mit h übereinstimmt. Wegen Stetigkeit gilt $f(z) = \tilde{h}(z)g(z)$ für alle $z \in \mathbb C$ und damit $|\tilde{h}(z)| \leq 1$. Nach Satz von Liouville ist $\tilde{h}(z)$ konstant, setze also $c := \tilde{h}(z)$.
- **25.** Aufgabe: Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = \frac{1}{1+x^2}$. Bestimmen Sie jeweils den Konvergenzradius der Taylorreihe von f in den Punkten $x_0 = 0$ und $x_1 = 4\sqrt{3}$. Hinweis: Setzen Sie f fort zu einer holomorphen Funktion auf einem geeigneten Definitionsbereich. Verwenden Sie dann die Abschätzung des Konvergenzradius.

Lösung: Wir setzen f fort zu einer holomorphen Funktion $f(z) = \frac{1}{1+z^2}$ für $z \in D = \mathbb{C} \setminus \{\pm i\}$. Nach Eigenschaft E7 und Korollar 4 lässt sich f in eine Potenzreihe

$$P_a(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (z - a)^n$$

entwickeln, die in jeder offenen Kugel $B_{\epsilon}(a)$ um $a \in D$ konvergiert, welche vollständig im Definitionsbereich D enthalten ist. Mit anderen Worten, der Konvergenzradius R_a der Taylorreihe um $a \in D$ ist $R_a \geq r_a := \sup\{r > 0 \mid B_r(a) \subseteq D\}$. Innerhalb von B_{r_a} konvergiert die Taylorreihe $P_a(z)$ gegen eine holomorphe Funktion, die mit f(z) übereinstimmt. Warum ist der Konvergenzradius nicht größer als r_a ?

Erster Teil: Für $a=x_0$ gilt offenbar $r_a=1$. Wenn $R_a>r_a$, dann wäre $P_a(z)$ auf dem Kompaktum $\overline{B_{r_a}(a)}=\{|z-a|\leq r_a\}$ konvergent und durch eine Konstante C beschränkt. Insbesondere wäre f(z) in der offenen Kugel $B_{r_a}(a)$ durch die Konstante C beschränkt. Widerspruch, da $f(i(1-1/n))\to\infty$ für $n\to\infty$. Alternativ kann man die Koeffizienten bestimmen durch die geometrische Reihe $f(z)=\sum_{n=0}^{\infty}(-z^2)^n$. Diese konvergiert für $|-z^2|<1$, also |z|<1, also $R_a=1$.

Zweiter Teil: Für $a = x_1 = 4\sqrt{3}$ argumentiert man ähnlich und erhält

$$R_a = r_a = |a - \pm i| = \sqrt{\text{Re}(a)^2 + \text{Im}(\pm i)^2} = \sqrt{48 + 1} = 7$$
.

26. Aufgabe: Seien D und E offene nichtleere Teilmengen von \mathbb{C} und $b:D\to E$ eine Bijektion, sodass b und b^{-1} holomorph sind. Sei E sternförmig. Zeigen Sie: Jede holomorphe Funktion $f:D\to\mathbb{C}$ hat eine Stammfunktion.

Lösung: Wir zeigen zuerst, dass b' keine Nullstellen hat. In der Tat, wegen $b \circ b^{-1} = \mathrm{id}_E$ folgt mit Kettenregel $(b' \circ b^{-1}) \cdot (b^{-1})' = \mathrm{id}'_E = 1$, insbesondere ist $b' \circ b^{-1}(e) \neq 0$ für alle $e \in E$. Weil aber b eine Bijektion ist, folgt $b'(d) \neq 0$ für alle $d \in D$. Mit dem gleichen Argument zeigt man, dass $(b^{-1})'$ keine Nullstellen hat.

Sei jetzt f beliebige holomorphe Funktion auf D. Als Zusammensetzung holomorpher Funktionen ist die Funktion $g = \frac{f}{b'} \circ b^{-1}$ holomorph auf E. Da E sternförmig ist, hat g eine Stammfunktion

G. Jetzt setzen wir $F:=G\circ b$. Als Zusammensetzung holomorpher Funktionen ist F holomorph. Mit Kettenregel und Produktregel zeigt man

$$F' = (G' \circ b) \cdot b' = (g \circ b) \cdot b' = \frac{f}{b'} \cdot b' = f.$$

Bonusaufgabe (keine Wertung): Sei $D\subseteq\mathbb{C}$ offen und nichtleer. Sei $\gamma:[0,1]\to D$ ein stetiger Weg und $f:D\to\mathbb{C}$ eine holomorphe Funktion. Wie kann man ein Wegintegral $\int_{\gamma}f(z)\mathrm{d}z$ sinnvoll definieren? Hinweis: Verwenden Sie Aufgabe 23.