Topic Compositional Neural Language Model

Wang et al 2018
AISTATS
Presenter Robert Thorstad

Problem: What Does Magical Mean?

1) Salaman Rushdie uses **magical** realism.

Context: fiction book

2) I watched Calvin Harris and it was magical

Context: music performance

3) Herbs have enormous magical power.

Context: book on wizardry

Need to know context!

Traditional Language Models Lack Long-Range Context

was magical

(Sutskever, Vinyals, & Le, 2012)

Insight: Context Mostly Semantic

1) Salaman Rushdie uses magical realism.

Context: fiction book

2) I watched Calvin Harris and it was magical

Context: music performance

3) Herbs have enormous **magical** power.

Context: book on wizardry

Idea: Add Context using Topic Model

(Ghosh et al, 2016; similar idea by Mikolov et al, 2012)

Adding Topics Tells us Something About Psychology

Topics as models of semantic knowledge base

(Griffiths, Steyvers, & Tenenbaum, 2007)

Adding Topics Tells us Something About Psychology

People who can't remember past events:

"What did you do yesterday?"

Can't imagine future events:

"What are you going to do tomorrow?"

But can:

"What will be an important issue facing planet in next 10 years?"

Wait for future rewards

"I believe a day should be planned ahead"

Using preserved semantic knowledge?

Klein et al 2002: Kwan et al 2013

Really Want Topics Integrated in Model

Learned before training from a different corpus 😊

(Ghosh et al, 2016)

Proposal: Learn Topics using VAE...

...Then Add Topics to Language Model

	Торіс	Proportion
	Law	0.36
	Art	0.03
•	Market	0.10
	Travel	0.07
	Company	0.09
	Politics	0.15
	Sport	0.01
	Education	0.11
	Medical	0.02
	Army	0.06

Learns Qualitatively Good Topics

Dataset	army	animal	medical	\mathbf{market}	
	afghanistan	animals	patients	zacks	
	veterans	dogs	drug	cents	
APNEWS	soldiers	ZOO	$_{ m fda}$	earnings	
	brigade	bear	disease	keywords	
	infantry	wildlife	virus	share	
	horror	action	family	children	
	zombie	martial	rampling	$_{ m kids}$	
IMDB	slasher	kung	relationship	snoopy	
пирь	massacre	li	binoche	santa	
	chainsaw	$_{ m chan}$	marie	cartoon	
	gore	fu	mother	parents	
	environment	education	politics	business	
	pollution	courses	elections	corp	
BNC	emissions	training	economic	turnover	
DNO	nuclear	students	minister	unix	
	waste	medau	political	net	
	environmental	education	democratic	profits	

Topics Generate Reasonable Sentences

Seed RNN with a topic or mixture (!) of topics:

horror action

family

children war

horror+negative

sci-fi+children

- the killer is a guy who is n't even a zombie.
- the action is a bit too much, but the action is n't very good.
- \bullet the film is also the story of a young woman whose <code><unk></code> and <code><unk></code> and <code>very ye</code> and palestine being equal , and the old man , a <code><unk></code> .
- i consider this movie to be a children 's film for kids .
- the documentary is a documentary about the war and the <unk> of the war.
- if this movie was indeed a horrible movie i think i will be better off the film.
- paul thinks him has to make up when the <unk> eugene discovers defeat in order and then finds his wife and boys .

Topics Competitive with Existing Models

Perplexity

Dataset	LSTM	basic-LSTM*	LDA+LSTM*		LCLM*	Topic-RNN		$TDLM^*$			TCNLM				
Dataset	\mathbf{type}		50	100	150	LCLIVI	50	100	150	50	100	150	50	100	150
APNEWS	small	64.13	57.05	55.52	54.83	54.18	56.77	54.54	54.12	53.00	52.75	52.65	52.75	52.63	52.59
AFNEWS	large	58.89	52.72	50.75	50.17	50.63	53.19	50.24	50.01	48.96	48.97	48.21	48.07	47.81	47.74
IMDB	small	72.14	69.58	69.64	69.62	67.78	68.74	67.83	66.45	63.67	63.45	63.82	48.21 48.07 47.81 47.74 63.82 63.98 62.64 62.59		
IMDB	large	66.47	63.48	63.04	62.78	67.86	63.02	61.59	60.14	58.99	59.04	58.59	57.06	56.38	56.12
BNC	small	102.89	96.42	96.50	96.38	87.47	94.66	93.57	93.55	87.42	85.99	86.43	87.98	86.44	47.74 62.59 56.12 86.21
BNC	large	94.23	88.42	87.77	87.28	80.68	85.90	84.62	84.12	82.62	81.83	80.58	80.29	80.14	80.12

Topics Competitive with Existing Models

Coherence

<i>"</i>	26.11	Coherence			
# Topic	Model	APNEWS	IMDB	BNC	
	LDA^*	0.125	0.084	0.106	
	NTM^*	0.075	0.064	0.081	
50	$TDLM(s)^*$	0.149	0.104	0.102	
90	TDLM(l)*	0.130	0.088	0.095	
	Topic-RNN(s)	0.134	0.103	0.102	
	Topic-RNN(l)	0.127	0.096	0.100	
	TCNLM(s)	0.159	0.106	0.114	
	TCNLM(l)	0.152	0.100	0.101	
	LDA*	0.136	0.092	0.119	_
	NTM^*	0.085	0.071	0.070	
100	$TDLM(s)^*$	0.152	0.087	0.106	
	$TDLM(l)^*$	0.142	0.097	0.101	
	Topic-RNN(s)	0.158	0.096	0.108	
	Topic-RNN(l)	0.143	0.093	0.105	
	TCNLM(s)	0.160	0.101	0.111	
	TCNLM(l)	0.152	0.098	0.104	
	LDA*	0.134	0.094	0.119	_
	NTM^*	0.078	0.075	0.072	
150	TDLM(s)*	0.147	0.085	0.100	_
150	TDLM(l)*	0.145	0.091	0.104	
	Topic-RNN(s)	0.146	0.089	0.102	
	Topic-RNN(l)	0.137	0.092	0.097	
	TCNLM(s)	0.153	0.096	0.107	
	TCNLM(l)	0.155	0.093	0.102	

Interestingly Absent:

Does adding topics make a better language model?

Need this...

to do this?

