Ampliación de interpolación con Splines

Miguel Anguita Ruiz Pablo Baeyens Fernández Pablo David Medina Sánchez Ruben Morales Pérez Francisco Javier Morales Piqueras

${\bf \acute{I}ndice}$

1.	Splines cuadráticos	2
	1.1. Introducción a los splines	2
	1.2. Descripción del espacio de splines cuadráticos	2
	1.3. Interpolación con splines cuadráticos	2
	1.4. Error en los splines cuadráticos	2
	1.5. Ejemplos	3
2.	Splines cúbicos	4
	2.1. Construcción a partir de los valores de $s''(x)$ en los nodos $\{x_i\}$	4
	2.1.1. Splines cúbicos a partir de las segundas derivadas:	4
	2.2. Propiedades de minimización	5
	2.2.1. Cota de error en los splines cúbicos	6
	2.3. Ejemplos	6
3.	Implementación en ordenador: Octave	7
	3.1. Spline Lineal	7
	3.2. Splines cuadráticos	7
Δ	Definiciones y notación	8

1. Splines cuadráticos

1.1. Introducción a los splines

Definición. Sea [a,b] un intervalo, $P = \{x_i\}_{i=0...n} \in \mathcal{P}([a,b]), k,r \in \mathbb{N}, r < k$. Se dice que $s: [a,b] \to \mathbb{R}$ es un spline si $s \in C^r([a,b])$ y para todo $1 \le i \le n$, $s_{|[x_{i-1},x_i]} \in \mathbb{P}_k$. $S_k^r(P)$ es el espacio de dichas funciones.

.

1.2. Descripción del espacio de splines cuadráticos

Partimos de [a, b] un intervalo y $P = \{x_i\}_{i=0...n} \in \mathcal{P}([a, b])$. En esta primera sección nos centramos en los splines cuadráticos: los pertenecientes a $S_2^1(P)$.

Sus trozos son polinomios de grado menor o igual que 2 de la forma $ax^2 + bx + c$. Además son funciones de clase 1 (derivables en [a, b] con derivada continua), lo que nos proporcionará condiciones interesantes para resolver problemas de interpolantes con este tipo de splines.

Describamos a continuación este espacio.

Proposición. Sea [a,b] intervalo, $P = \{x_i\}_{i=0...n} \in \mathcal{P}([a,b])$, entonces $dim(S_2(P)) = n+2$.

Demostración. Sea $s \in S_2(P)$.

- Para cada intervalo $[x_{i-1}, x_i]$ $s_{|}[x_{i-1}, x_i](x) = ax^2 + bx + c$ para ciertos $a, b, c \in \mathbb{R}$. Por lo tanto cada trozo está determinado por 3 parámetros. Con n trozos tenemos 3n parámetros en total.
- Si imponemos la continuidad y derivabilidad en los extremos tenemos que:

$$s_i(x_i) = s_{i+1}(x_i)$$
 $s'_i(x_i) = s'_{i+1}(x_i)$

para todo i = 1...n - 1. De cada condición se obtienen n - 1 ecuaciones, por lo tanto obtendremos: n - 1 + n - 1 = 2n - 2 ecuaciones linealmente independientes.

Por lo tanto,
$$dim(S_2(P)) = 3n - (2n - 2) = n + 2.$$

Con el conocimiento de la dimensión del espacio podemos describir una base representativa del espacio de splines cuadráticos con el uso de potencias truncadas. Una **base del espacio** es: $\{1, x, x^2, (x - x_1)_+^2, ..., (x - x_{n-1})_+^2\}$.

1.3. Interpolación con splines cuadráticos

1.4. Error en los splines cuadráticos

Teorema. Sean $f \in C^2([a,b])$, $\{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$, $s \in S^1_2(\{x_i\}_{i=0...n})$ spline para f, $h = max\{x_i - x_{i-1}\}_{i=1...n}$, E = f - s. Además, sea M > 0 tal que:

$$M \ge Sup\{|f''(x) - f''(y)| : |x - y| \le h, x, y \in [a, b]\}$$

Entonces, se verifica, para todo $x \in [a,b]$:

$$E(x) \le \frac{h^2 M}{2} \tag{1}$$

La demostración, así como cotas para las derivadas y cotas más precisas en función de la localización de x puede encontrarse en $Quadratic\ Interpolatory\ Splines,\ W.\ Kammerer,\ G.\ Reddien\ y\ R.S.\ Varga,$ (1973).

1.5. Ejemplos

2. Splines cúbicos

Construcción a partir de los valores de s''(x) en los nodos $\{x_i\}$ 2.1.

2.1.1. Splines cúbicos a partir de las segundas derivadas:

Uno de los problemas de la interpolación polinomial es que, al ir aumentando los nodos (diferentes), el grado del polinomio aumenta (gr(p)) = n - 1). Esto conlleva unas fluctuaciones en los extremos de la interpolación. (1)

Sin embargo, si dividimos el intervalo en una partición $P = \{x_i\}_{i=0...n} \in \mathcal{P}([t_0, t_n])$, con un serie de subintervalos, podemos aproximar un polinomio en cada intervalo minimizando la cota de error.

Para no volver a tener el problema de las fluctuaciones, indeseables en la mayoría de las aplicaciones, se suelen utilizar polinomios interpolantes de grado ≤ 3 . Esta técnica se conoce como aproximación polinomial fragmentaria, donde:

Spline cúbicos: La aproximación más utilizada es la interpolación con splines cúbicos debido a que proporciona un excelente ajuste a los puntos tabulados y su cálculo no es excesivamente complejo.

Propiedades:

Dada una función definida en [a, b], una partición del intervalo $P = \{x_i\}_{i=0...n} \in \mathcal{P}([a, b])$:

- S es un polinomio cúbico denotado por S_i en el subintervalo de extremos x_i y x_{i+1} , para j = 0, 1, ... n - 1.
- $S_i(x_i) = f(x_i) y S_i(x_{i+1}) = f(x_{i+1})$
- $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ $S''_{j+1}(x_{j+1}) = S''_{j}(x_{j+1})$

Dentro de los cúbicos encontramos los de clase 1 y 2, denotados por:

1. Los splines cúbicos de clase 1 son continuos y derivables en su dominio. Son un espacio vectorial de dimensión 2*(n+1), cuya base es:.

Una desventaja de estos splines es que no se asegura que haya derivabilidad en los extremos, en un contexto geométrico eso significa que la función no es suave en los puntos de unión. Generalmente las condiciones físicas necesitan esa suavidad, y es aquí donde intervienen los splines cúbicos de clase 2.

2. Los splines cúbicos de clase 2 son continuos y 2 veces derivables. Como sabemos que la dimensión de un spline S_k^r es (k-r)n+r+1 la dimensión de este espacio vectorial es (3-2)n+2+1=n+3. Cuando k=r+1 el superíndice se omite.

Como tenemos n+1 variables, tenemos 2 libertades en la resolución.

2.2. Propiedades de minimización

Comenzamos planteando un problema de minimización sobre el espacio euclídeo $(C^2([a,b]), <\cdot,\cdot>)$, con la métrica y norma definida de la forma usual:

$$< f, g > = \int_{a}^{b} fg, \qquad ||f|| = \sqrt{\int_{a}^{b} f^{2}}$$

Planteamos el problema:

Problema. Sea $f \in C^2([a,b]), P \in \mathscr{P}([a,b])$. Sea $H \subset C^2([a,b])$ definido por:

$$H = \{g \in C^2([a,b]) : \forall p \in P \ g(p) = f(p) \ y \ g'(a) = f'(a), \ g'(b) = f'(b)\}$$

Hallar $u \in H$ tal que ||u''|| sea mínima.

Para resolver el problema, demostramos el siguiente teorema:

Teorema (Minimización). Sea $f \in C^2([a,b])$, $P \in \mathcal{P}([a,b])$, s spline sujeto para f. Se verifica:

$$\forall u \in H: ||s''|| \le ||u''||$$

Demostración. Sea $u \in H$, e = u - s. Tenemos:

$$||u''||^2 = ||e'' + s''||^2 = ||e''||^2 + ||s''||^2 + 2 < e'', s'' >$$

Dividimos $\langle e'', s'' \rangle$ en intervalos:

$$< e'', s'' > = \int_a^b e'' s'' = \sum_{1}^{n-1} \int_{x_i}^{x_{i+1}} e'' s''$$

En cada intervalo, integramos por partes:

$$\sum_{1}^{n-1} \int_{x_i}^{x_{i+1}} e'' s'' = \sum_{1}^{n-1} e'(x) s''(x) \Big|_{x_i}^{x_{i+1}} - \sum_{1}^{n-1} \int_{x_i}^{x_{i+1}} e' s'''$$

La primera sumatoria es una suma telescópica, por lo que conservamos el primer y último término:

$$\sum_{1}^{n-1} e'(x)s''(x)\big|_{x_i}^{x_{i+1}} = e'(b)s''(b) - e'(a)s''(a) = (u'(b) - s'(b))s''(b) - (u'(a) - s'(b))s''(a) = 0$$

ya que $u, s \in H$.

En cuanto a la segunda, $s'''|_{[x_i,x_{i+1}]}$ es constante, por lo que podemos sacarlo de la integral:

$$\sum_{1}^{n-1} s_i \int_a^b e'(x) = \sum_{1}^{n-1} s_i (e(b) - e(a)) = 0$$

Es decir, $\langle e'', s'' \rangle = 0$. Por tanto:

$$||u''||^2 = ||e''||^2 + ||s''||^2 + 2 < e'', s'' > = ||e''||^2 + ||s''||^2 \ge ||s''||^2$$

donde utilizamos que la norma siempre es positiva.

Así, podemos observar que el **spline cúbico sujeto** asociado a una función f tiene la menor norma de su segunda derivada de entre las que interpolan a f en una partición dada, por lo que resuelve nuestro problema.

2.2.1. Cota de error en los splines cúbicos

Teorema. Sea $f \in C^4([a,b])$, $n \in \mathbb{N}$, $P = \{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$ y $s \in S^1_3(P)$ spline para f. Además, sean $h = \max\{x_i - x_{i-1}\}_{i=1...n}$, M > 0 cota superior de $|f^{iv}|$ en [a,b] y E = f - s, $x \in [a,b]$. Se verifica:

$$|E(x)| \le \frac{5M}{384}h^4 \tag{2}$$

La demostración, así como cotas para las derivadas, puede consultarse en *Optimal Error Bounds for Cubic Spline Interpolation*, Charles Hall y Weston Meyer, (1976).

2.3. Ejemplos

3. Implementación en ordenador: Octave

Hemos implementado las siguientes funciones en Octave:

```
    SplineLineal: Calcula spline lineal. (Usado en los splines cúbicos)
    Spline31: Calcula spline de clase 1.
    SplineNat: Calcula spline natural.
    SplinePer: Calcula spline periódico.
    SplineSuj: Calcula spline sujeto.
    SplineCuad: Calcula spline cuadrático de clase 1.
```

3.1. Spline Lineal

La función que nos permite calcular un spline lineal es muy

```
function s = SplineLineal(x,y)
  p = diff(y)./diff(x);
  A = [p' y(1:end-1)'];
  s = mkpp(x,A);
end
```

3.2. Splines cuadráticos

Utilizando el sistema que vimos anteriormente, podemos definir fácilmente una función que calcule los coeficientes de un spline cuadrático de clase 1:

```
function s = coefsSplineCuad(x, y, d_k, k)
    # Número de intervalos
n = length(x) - 1;

# 1, x, x²
A(:,1) = [ones(n+1,1); 0];
A(:,2) = [x' ; 1];
A(:,3) = [x'.^2 ; 2.*x(k+1)];

# Potencias truncadas
for j = 4 : n + 2
    pot = @(t) (t > x(j-2)) .* (t - x(j-2));
    A(:,j) = [pot(x').^2; 2.*pot(x(k+1))];
end

# Resolución del sistema
s = A \ [y' ; d_k];
```

end

A. Definiciones y notación

Definición. Sea $I \subset \mathbb{R}$ un intervalo cerrado y acotado con extremos a, b:

- \blacksquare Una partición P de I es un subconjunto finito de I con $a,b\in P$.
- $\mathcal{P}(I)$ es el conjunto de todas las particiones de I.

Definición. Sea $a \in \mathbb{R}$, $n \in \mathbb{N}$. La **potencia truncada** en a de grado n, $(x-a)_+^n$ viene dada por:

$$(x-a)_+^n = \begin{cases} 0 & \text{si } x \le a \\ (x-a)^n & \text{si } x > a \end{cases}$$

Cualquier potencia truncada de grado n es de clase n-1, y su derivada de orden n presenta una discontinuidad en a. La derivada de $(x-a)^n_+$ en x es $n(x-a)^{n-1}_+$.

Su implementación en Octave es bastante sencilla: dados a y n, podemos definir la potencia truncada como función anónima de la siguiente forma:

$$pot = 0(x) (x > a) * (x - a)^n$$

Como Octave tiene tipos dinámicos convertirá (x > a) a 1 si x > a y a 0 en otro caso.