Section 13: Use Case 1

Attitude Control Motor

Distribution authorized to Sandia National Laboratories Personnel only (IllinoisRocstar Proprietary Information). Other requests for this document shall be referred to IllinoisRocstar LLC (mdbrandy@illinoisrocstar.com)

Problem Description

- Small (2 inch) Attitude Control Motor (ACM)
- Regressing burning surface
- Fluid-combustion coupling
- Rocflo model blockstructured hexahedral grid
- Goal: assemble and run moving-boundary fluid-combustion coupled run with Rocflo

File Checklist

- Rocstar
 - RocstarControl.txt
- Rocman
 - RocmanControl.txt
- RocburnAPN
 - RocburnAPNControl.txt

- Rocflo
 - RocfloControl.txt
 - ACM.inp
 - ACM.bc
 - ACM-COBALT.bcmp
 - ACM-COBALT.bc
 - ACM-COBALT.inp

- Gridgen
 - ACM.gg
 - ACM.dba

Rocstar does not use these files directly

Preparing Rocflo Input

Outline

- Produce CAD model
 - Pro/Engineer exports IGES format
 - Can make simple geometries in Gridgen
- Generate meshes, set BC flags
 - Gridgen block-structured Hex meshes for Rocflo
- Set up NDA with grids and input files
 - Choose a "casename"; ACM for this example
 - Grid, boundary condition map file
 - Basic input, boundary conditions, control
- Preprocess and partition
 - Use Rocprep on NDA
- Check input again!

Database

- Made with Pro-Engineer; exported as iges
- Import into Gridgen
 - Almost always significant cleanup necessary; spurious surfaces, lines that don't connect
 - DB to the right has many extraneous elements

Assemble Block System

- Once DB is clean, assemble connectors, domains, and blocks
- Some blocking restrictions
 - Core block with four quarters
 - Can't combine quarter "wrap" blocks

Rocflo Boundary Conditions

- Make sure Analysis Software is set to generic (Plot3D) _____
 - Can't fix after setting BCs!
- Make sure all external surfaces have a BC
- Make sure no internal inter-block surfaces do (all Type -1)
- Make note of BC numbers, as they will be needed for the .bcmp file
 - Custom BC numbers are accurate
 - Pre-set BC numbers are off by one (low)

	generic BCs
	Create Custom BC c
Will be 2 when output	No Boundary Condition 0
iiii 23 2 iiiioii aatpat -	Solid Surface 1
	Symmetry 2
MULL - Frank are surfaced	Farfield 3
Will be 5 when output -	Inflow 4
	Outflow 5
	Pole 6
	Generic #1 7
	Generic #2 8
	Generic #3 9
Will be 11 when output -	SlideInX 11
•	Abort esc
	Help ?

Boundary Conditions Complete

Export Rocflo Grid

- Export files:
 - Block volumes: <casename>-PLOT3D.grd example: ACM-PLOT3D.grd
 - BC file <casename>-PLOT3D.inp example: ACM-PLOT3D.inp
- If working on Windows, run dos2unix on them once on Linux
 - Fortran doesn't like cross-platform line endings

Boundary Condition Map

- Must map Gridgen BC numbers to Rocflo BC numbers
 - Form text file <casename>-PLOT3D.bcmp

```
# This file is line-oriented.
#A'#' begins a comment line.
# Other lines define a boundary condition, with the format:
# <gridgen bc number> <rocfloMP bc number> <coupled flag>
#Gridgen type 2-- "solid surface-slip wall, fixed"; last zero means non-interacting
2 62 0
# Gridgen type 5-- "inflow"
# This is an ignition boundary-- a burning surface; last 1 means interacting
5 90 1
# Gridgen type 6-- "outflow"
# This is a supersonic/subsonic exit
6 20 0
# Gridgen type 11-- "SlideInX"
# Internal Communication BC
11 63 0
# Unspecified condition (default)
0 999 0
```


Rocflo Boundary Condition Numbers

http://www.csar.illinois.edu/CSARdocs/DocumentsPub/uguides/rocflo_ug.pdf

- 10 inflow
- 20 outflow
- 30 block boundary (continuous grid)
- 60 slip wall, grid freely moved on fixed surface by Rocflo
- 61 slip wall, grid freely moved on fixed surface by Rocprop
- 62 slip wall, grid and surface fixed
- 63 slip wall, surface may slide or stretch in x-direction by Rocprop
- 64 slip wall, surface may slide or stretch in y-direction by Rocprop
- 65 slip wall, surface may slide or stretch in z-direction by Rocprop
- 66 slip wall, surface may slide in plane by Rocprop
- 70 noslip wall
- 80 far field
- 90 injection
- 100 symmetry
- 110 translational periodicity
- 120 rotational periodicity

Set up NDA

Steps in Setting Up NDA

- Produce the following directory hierarchy:
 - mkdir ACM; cd ACM
 - mkdir Rocstar; mkdir Rocflo
 - cd Rocstar
 - mkdir RocburnAPN; mkdir Rocman; cd ../Rocflo
 - mkdir Grid1; mkdir Datasets; cd Datasets; mkdir Data1
 - od ../../Grid1; ln -s ../Datasets/Data1 Data1
- Go to directory where tutorial files for ACM have been placed
- Place files in NDA:
 - Place RocstarControl.txt in the Rocstar directory
 - Place RocburnControl.txt in the Rocstar/RocburnAPN directory
 - Place RocmanControl.txt in the Rocstar/Rocman directory
 - Place RocfloControl.txt, ACM.inp and ACM.bc in the Rocflo/Datasets/Data1 directory
 - Place ACM-PLOT3D.bcmp, ACM-PLOT3D.bc and ACM-PLOT3D.inp in the Rocflo/Grid1 directory

Run Rocprep on NDA

rocprep -A -o 1 1 -b -d /IR/NDAs/ACM -t ./ACM34 -n 34 [-p ~/build/bin/] Target dir for dataset **Optional Extract from** path to pre-Number of NDA and **Root directory** processing partitions to for NDA problem preprocess to make tools make full to be processed Rocstar dataset [mdbrandy@taubh1 Modin] \$ ~/Rocprep/Rocprep.pm First switch must be mode switch -A|C|E|P|U, not: ************************* Usage: /home/mdbrandy/Rocprep/Rocprep.pm -A|C|E|P [OPTION]...

-x, --ignore

Process Data1 and Grid1 for Rocflo

Extract Rocburn

Execute *Rocprep* with no arguments for help screen:

```
Major modes of operation:
 -A, --all
                   extract and preprocess
                   check an existing dataset at -d <path>
 -E. --extract
                   copy NDA files to target at -t <path>
  -P, --preprocess run module preptools on data at -d <path>
Physics module selection:
  -o [m] [n]
                Rocflo preprocessing, optional NDA Data<m> & Grid<n> dirs
  -u [m] [n]
                Rocflu preprocessing, optional NDA Data<m> & Grid<n> dirs
 -f [m] [n]
                Rocfrac preprocessing, optional NDA Data<m> & Grid<n> dirs
 -s [m] [n]
                Rocsolid preprocessing, optional NDA Data<m> & Grid<n> dirs
                Rocburn preprocessing
Module-specific flags:
                 specify <m> regions (rocflu only), default is -n value
 -splitaxis <n> force split along n=0,1, or 2 axis (rocflo only)
                convert model units to meters (rocfrac only)
General options:
  -i <0|u|f|s> surfdive interface meshes, default infers from physics options
  -d <path>
                path to source data, default is current working directory
 -h, --help
              print this help message and terminate
                specify <m> processors/partitions
 -t <path>
                 target path for new rocstar dataset
                 path to preptool binaries, default will use shell path
```

ignore RocprepControl.txt control file

Resulting Rocstar Dataset

Examine RocfloControl.txt

- Note: Casename is critical. It is used for Rocprep and Rocflo to know what other files are called. Make sure it is used consistently.
- Normally the other three lines will always be the same

Examine ACM.bc

Boundary condition definitions that will be used by Rocflo

Don't forget space...

```
# BC INJECT
                                   ! This is BC 90 in *.bcmp file
                 BLOCK
                                   ! applies to block ... (0 0 = to all)
                                   ! applies to patch ... (0 0 = to all patches of BLOCK)
                 PATCH
                                   ! order of extrapolation to dummy cells (0 or 1)
                 EXTRAPOL
                                   ! single value (=0) or distribution (=1)
                 DISTRIB
                                                                                   Ignored when
                           5.7429 ! mass flow rate [kg/(m^2*s)] (if distrib=0)
                 MFRATE
                 MAXCHANGE 0.2
                                                                                   Rocburn used;
                           2855.0 ! injection temperature [K] (if distrib=0)
                 TEMP
                                                                                   But must be
                                                                                   here
                                   ! This is BC 20 in *.bcmp file
                 # BC_OUTFLOW
                                   ! applies to block (0 0 = to all)
               → BLOCK
                                   ! applies to patch (0 0 = to all patches from range of blocks)
                 PATCH
Almost always
                 TYPE
                                   ! 0=supersonic only, 1=subsonic only, 2=mixed
0 0, but can have
                 DISTRIB
                                   ! single value (=0) or distribution (=1)
Multiple BCs with
                                   ! 0=standard model, 1=partly non-reflecting
                 MODEL
Different blocks
                           1.0E+5 ! static pressure [Pa] (if type=1 or 2)
                 PRESS
                                   ! non-reflecting coefficient (default=1.)
                 NRCOEF
                           1.0
                 # BC SLIPW
                                   ! This is BC 62 and 63 in *.bcmp file
                                   ! applies to block ... (0 0 = to all)
                 BLOCK
                                   ! applies to patch ... (0 0 = to all patches of BLOCK)
                 PATCH
                                   ! order of extrapolation to dummy cells (0 or 1)
                 EXTRAPOL
                 MAXCHANGE 0.2
```

Examine ACM.inp(1)

```
Always the same for Rocstar
Always the same for Rocstar
                          GRID 0 ! 0 - PLOT3D ASCII,
SOLUTION 2 ! 0 - ROCFLO ASCII,
                          # FLOWMODEL
                          BLOCK
These change
                         >MOVEGRID 1
depending on
whether you want
a viscous flow or not,
and whether the grid
should move or not
```

- Problem definition file: physical and numeric parameters
- Can get complex for multiphysics simulations
- Delimited (#...#) blocks can be in any order

```
! 0 - Euler, 1 - Navier-Stokes
! 0 - static grid, 1 - moving grid
```

! 0 - ROCFLO ASCII, 1 - ROCFLO binary, 2 -

ACM.inp (2)

Number of ghost cell layers: can't be changed after pre-processing! INITFLOW BLOCK **NDUMMY** Initial velocities in simulation. 0.0 VELX Care should be taken not 0.0 VELY to set values that will not change too abruptly VELZ 0.0 1.0E + 5PRESS Initial simulation pressure 1.16 **DENS** And density. Care should be taken to ensure that these are consistent with the desired simulation temperature since Rocflo will calculate the temperature. Inconsistent values will cause instabilities.

ACM.inp (3)

Probe and thrust files have text data that can be processed in spreadsheets, Tecplot, etc.

```
# REFERENCE
                                          ! Ratio of specific heats
                GAMMA
                        1.2259
                        1905.849
                                          ! Specific heat at constant pressure
                CP
 Initial zero
                                             This line generates ACM.prb_0001 in Modout
 indicates using
               # PROBE
X, Y, Z
               NUMBER 2
 location
              <sup>→</sup>0 0.015 0.0 0.0 ~
                                   !0 x y z. Alternative: Block# i j k
               0 0.0495735 0.0 0.0 <
                                            This line generates ACM.prb_0002 in Modout
               WRITIME 0.000005 ← How often to write probe file (seconds)
               OPENCLOSE 1
                                       Whether to open and close every write (1=yes, 0=no)
               # THRUST
                                  ! 0=none, 1=momentum thrust only, 2=momentum and pressure thrust
                TYPE
                                   ! 1: x=const, 2: y=const, 3: z=const. plane
               PLANE
                COORD
                           0.0495735
                                         ! coordinate of the plane
Generates
                           1.E+5 ! ambient pressure (only if TYPE=2)
                PAMB
ACM.thr
               WRITIME
                           1.E-5 ! time offset [s] to store thrust history
in Rocflo/Modout
               WRIITER
                                   ! offset between iterations to store thrust history
                OPENCLOSE
                                   ! open & close file with thrust every time (0=no, 1=yes)
```

ACM.inp (4)

Use global-WgLaplacian for motion where blocks need to move relative to each other

```
# GRIDMOTION
                 ! 0=block-TFI, 1=block-WgLaplacian 2=global-WgLaplacian
TYPE
        2
                 ! 3=global-NuLaplacian 4=block-Elliptic 5=global-Elliptic
                 ! number Laplacian iterations (TYPE>0)
NITER
        0
                 ! number volume elliptic PDE iterations (TYPE=4,5)
VITER
                   number surface elliptic PDE iterations (TYPE=4,5)
       20
SITER
                 ! power of inverse node distance in frame gm (TYPE=1,2,4,5)
POWER
                 ! 1.5 amplification factor for frame motion (TYPE=2,3,5)
AMPLITEX 1.20
AMPLIFY 1.0
                 ! 1.2 amplification factor for frame motion (TYPE=2,3,5)
AMPLIFZ 1.0
                 ! 1.2 amplification factor for frame motion (TYPE=2,3,5)
                 ! 12 number of closest block-corner neighbours <=26 (TYPE=2,3,5)
NETCHBOR 48
                 ! number iteration for block interface matching >=2 (TYPE=2,3)
NSURFMATCH 3
                 ! orthogonality direction: 0=all, 1=I, 2=J, 3=K (TYPE=2,3,5)
ORTHODIR
ORTHOWGHTX 0.0
                 ! x-wghting factor for block lvl orthogonality (TYPE=2,3,5)
                 ! y-wghting factor for block lvl orthogonality (TYPE=2,3,5)
ORTHOWGHTY 0.0
ORTHOWGHTZ 0.0
                 ! z-wghting factor for block lvl orthogonality (TYPE=2,3,5)
           0.5
                 ! weighting factor for cell center averaging (TYPE=3)
WEIGHT
ORTHOCELL 0.5
                 ! weighting factor for cell level orthogonality (TYPE=3)
```

ACM.inp (5)

- Numerics parameters critical to stability
 - CFL normally 1. Can be less. Can be higher but stability lessened
 - Order normally 2 in Rocflo. Will run with order 1; rarely needed
 - DISCR changes the discretization method. Central generally suffices.
 - K2 & 1/K4 numeric dissipation parameters. Ramp for turbulence simulations. K2=0 and 1/K4 = large (>20000) are desirable if stable
 - Other parameters normally not changed

```
# NUMERICS
BLOCK
         0 0
                 ! coefficient of implicit residual smoothing (<0 - no smooth.)
SMOOCF
         -0.7
         1.0
CFL
                 ! CFL number
                 ! Type of space discretization (0 - central, 1 - Roe, 2 - MAPS)
DISCR
         0
ORDER
                 ! Order of accuracy (1 - first, 2 - second)
K2
         0.1
1/K4
         128
                 ! 0=standard pressure switch, 1=TVD type (if discr=0)
PSWTYPE
          1
                 ! blending coefficient for PSWTYPE=1 (if discr=0)
PSWOMEGA 0.1
                 ! limiter coefficient (if discr=1)
LIMFAC
         5.0
ENTROPY
         0.05
                 ! Entropy correction coefficient (if DISCR=1)
```


Examine Rocstar Control Files for ACM

RocstarControl.txt

CouplingScheme = FluidBurnAlone FluidModule = "Rocflo" BurnModule = "RocburnAPN" OutputModule = "Rocout" MaximumTime = 0.016CurrentTimeStep = 1.0E-06 OutputIntervalTime = 1.0E-04 ZoomFactor = 1.0MaxWallTime = ProfileDir ≠ "Rocman/Profiles"

Must be 1.0 to allow boundary regression

RocmanControl.txt

Verbose = 0InterpolationOrder = 1 TractionMode = 1 P ambient = 1.0E+05Rhoc = 1703.0 <Pressure = 6.8d6 BurnRate = 0.01RFC verb = 1RFC order = 2RFC iteration = 100 RFC tolerance = 1.e-6/ Face-offsetting = T^{V} AsyncInput = F AsyncOutput = F

Important

RocburnAPN for ACM

Careful with units when setting

```
a in rb=a*P^n, rb in cm/sec and P in atm, a_p (cm/sec)

n in rb=a*P^n, rb in cm/sec and P in atm, n_p

Maximum_number_of_spatial_nodes,_nxmax

adiabatic flame temperature, Tf_adiabatic (K)

initial temperature , To_read (K)

Rocburn_2D_Output/Rocburn_APN
```

Burn rate is one of the only places in *Rocstar* that is not strictly SI units (meters)

Run ACM problem

```
#!/bin/tcsh
#
# Requst 5 nodes, 7 procs each (i.e. 35 procs)
#PBS -1 nodes=5:ppn=7
# For this long:
#PBS -1 walltime=10:00:00
#
#PBS -N ACM
# Join the stdout and stderr into the output file
#PBS -j oe
# cd to the directory from which the job was submitted
cd ${PBS_O_WORKDIR}
mpirun -np 34 ./rocstar
```

- Need to set up a batch-system specific job script for your system.
- Example for our system below for ACM

ACM Expected Results

■ This motor burns out in about 14 ms, and the *Rocflo* grid motion can handle most of the burnback

Monitor Standard out/err

Large amounts of information is written to standard out/err

Monitor Probe File(s)

- Depending upon your setup, you can "watch" the probe files to monitor progress
- cd Rocflo/Modout; tail -f ACM.prb_0001

```
# probe data (iteration/time, density, u, v, w, p, T)
# region
           14, icell
                         3, jcell
                                      9, kcell
\# x = 0.14856E-01, y = 0.21521E-07, z = -0.14945E-07
 2.7035969E-07 1.16000E+00 -1.06085E-14 -4.21347E-14 2.29825E-14 1.00000E+05
                                                                              2.45467E+02
 5.0000000E-06 1.18107E+00 -4.35562E-02 -1.10686E-03 -1.55134E-03 1.02232E+05 2.46470E+02
 1.0000000E-05 2.60138E+00 -2.43497E+01 -2.06613E-03 -6.09490E-03 2.73136E+05 2.98969E+02
 1.5000000E-05 2.21299E+00 -2.76699E+01 -9.98801E-03 3.66079E-02
                                                                  2.24079E+05
                                                                              2.88318E+02
 2.0000000E-05 3.72242E+00 -7.31183E+01 8.72279E-03 -2.65008E-02
                                                                 4.25827E+05
                                                                              3.25730E+02
 2.5000000E-05 4.24793E+00 -1.10089E+02 1.99342E-02 9.96979E-03
                                                                 5.02469E+05 3.36808E+02
 3.0000000E-05 4.82351E+00 -1.38443E+02 -3.53893E-02 -7.66165E-02
                                                                  5.87183E+05
                                                                              3.46625E+02
 3.5000000E-05 3.51547E+00 -1.72720E+02 1.88846E-02 4.85104E-02
                                                                 3.98075E+05 3.22427E+02
 4.0000000E-05 4.88654E+00 -1.98719E+02 -9.84630E-03 -2.71287E-02
                                                                 5.96106E+05 3.47354E+02
 4.5000000E-05 5.91230E+00 -1.71383E+02 -1.23496E-02 -4.90376E-02
                                                                  7.56641E+05
                                                                              3.64404E+02
 5.0000000E-05 4.86712E+00 -1.91427E+02 2.05179E-03 5.82279E-02
                                                                 5.95716E+05
                                                                              3.48512E+02
 5.5000000E-05 6.42790E+00 -1.81320E+02 9.75009E-03 -2.17876E-02 8.41403E+05 3.72722E+02
 6.000000E-05
               1.19800E+01 -1.42908E+02 -4.73421E-02 -2.96886E-02
                                                                 1.83861E+06 4.37002E+02
 6.5000000E-05
               1.30104E+01 -1.60689E+02 -2.81673E-02 9.27011E-03
                                                                 2.05774E+06 4.50351E+02
 7.000000E-05
               9.95572E+00 -1.67150E+02 4.40584E-03 1.54315E-02
                                                                 1.52269E+06 4.35500E+02
 7.500000E-05
               1.05171E+01 -1.55261E+02 -5.44063E-02 -1.11832E-04
                                                                 1.71412E+06 4.64082E+02
               1.45618E+01 -1.37359E+02 -1.81264E-02 -2.33013E-02 2.67457E+06 5.22986E+02
 8.000000E-05
```

The location of this probe is defined in ACM.inp

```
# PROBE
NUMBER 2
0 0.015 0.0 0.0
0 0.0495735 0.0 0.0
#
```


Visualize HDF Output

- Can use Rocketeer to visualize output
- Can also translate to Tecplot format
- Need to learn to read output file naming
- d Rocflo/Rocout; ls
- Once a checkpoint has occurred, there will be one HDF file per processor per checkpoint
- **Example:**
 - fluid_06.100000_0000.hdf: processor 0, 0.10ms time

Means 0.10E06 nanoseconds, Or 0.10 ms, or 0.0001 seconds

- fluid_xx.xxxxx_xxx.hdf are 3-D volume grid files
- ifluid_y_xx.xxxxx_xxxx.hdf are surface grid files
 - Y: ni=non-interacting, b=burning

Pre-run Visualization Files

- For Rocflo ACM, pre-run visualization files are available for 0ms, 5 ms, 10 ms, 14 ms
- Load these into Rocketeer from the VizData directory (see tutorial in next lesson)

Transfer to Rocketeer Tutorial

