

Physical Properties of Novel Two-dimensional Materials and Their Modifications From first-principles studies

Yierpan Aierken

Supervisor: Prof. François M. Peeters

Advisor: Dr. Ortwin Leenaerts

Dr. Deniz Çakır

Department of Physics, University of Antwerp

This dissertation is submitted for the degree of Doctor of Philosophy

I would like to dedicate this thesis

to my loving parents Arkin and Perwin,

to my beloved wife Adila Dilshat,

to my cherished sons Efran and Wildan.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures.

Yierpan Aierken April 2017

Acknowledgements

And I would like to acknowledge ...

Abstract

This is where you write your abstract \dots

Table of contents

Li	st of	figures	i,	XV
Li	st of	tables		xvii
1	Intro	oductio	on	1
	1.1	Graph	ene	. 3
		1.1.1	History	. 3
		1.1.2	Physical properties	. 5
		1.1.3	Physical properties	. 7
	1.2	Post-g	graphene Materials	. 7
		1.2.1	Functionized Graphene	. 7
		1.2.2	Boron Nitride	. 7
		1.2.3	Silicene and Germanene	. 7
		1.2.4	Transition Metal Dichalcogenides	. 7
	1.3	0D an	d 1D from 2D: buckyballs, nanotubes and nanoribbons	. 7
	1.4	Synthe	esis methods	. 7
2	Con	nputati	onal methods	9
	2.1	Theor	y	. 9
		2.1.1	Density Functional Theory	. 9
		2.1.2	Exchange-correlation functional	. 9
		2.1.3	Jocob's ladder	. 9
	2.2	Impler	mentation	9
		2.2.1	Basis set, Plane wave energy cut-off, K-points	. 9
		2.2.2	Software Packages	. 9
3	Gen	eral ph	nysical properties 2D materials	11
	3.1	Struct	ural properties	12
		3.1.1	Layer structure	12

χij				Table of conter	nts
		3.1.2	sp hybirdization		10
		3.1.2	• •		
		3.1.4	Isotropic v.s. Anisotropic monolayer		
	3.2	_	Multiphase allotropes		
	3.2	3.2.1	onic properties		
		_	Polar bond		
		3.2.2	Importance of crystal symmetry		
			Importance of interlayer interaction		
	2.2	3.2.4	Accurate description from DFT		
	3.3		ional properties		
		3.3.1	Phonon dispersion of 2D materials		
	0.4	3.3.2	Dynamic stability from phonon dispersion		
	3.4		anical properties		
		3.4.1	Elastic and engineering constants		
		3.4.2	Mechanical stability: Born stability criteria		12
4	Res	ults of	Physical Properties Calculations in Novel 2D ma	aterials	13
	4.1	Thern	nal properties		14
		4.1.1	Thermal expansion and anharmonic oscillations .		14
		4.1.2	Quasi-harmonic approximation		14
		4.1.3	Helmholtz free energy and specific heat		14
	4.2	Piezo	electric properties		14
		4.2.1	Piezoelectric constants		14
		4.2.2	Importance of internal relaxation		14
	4.3	Carrie	er transport properties		14
		4.3.1	Carrier mobility		14
		4.3.2	Deformation potential theory: non-polar materials.		14
		4.3.3	Deformation potential theory: polar materials		14
	4.4	Magn	etic properties		14
		4.4.1	Magnetic ordering		14
	4.5	Batter	ry related properties		14
		4.5.1	Principle of Lithium battery		14
		4.5.2	Key quantities and their modelling		14
5	Res	ulte of	Physical Properties Modification in Novel 2D ma	nterials	15
9	5.1		er of layers and types of stackings		16
	J. 1	5.1.1	Electronic properties		16
		_	Vibrational properties		16

Ta	Table of contents xii					
	5.2	Mecha	anical strain	. 16		
		5.2.1	Carrier mobility	. 16		
		5.2.2	Magnetic properties	. 16		
	5.3	Adato	m adsorption	. 16		
		5.3.1	Electronic properties	. 16		
	5.4	Heter	ostructures	. 16		
		5.4.1	Electronic properties	. 16		
		5.4.2	Li difusion	. 16		
	5.5	Defec	t induction	. 16		
		5.5.1	Structural properties	. 16		
		5.5.2	Electronic properties	. 16		
		5.5.3	Magnetic properties	. 16		
6	Con	clusio	ns	17		
Re	efere	nces		19		
Αŗ	pend	dix A	Appendix	21		

List of figures

1.1	Graphene publications	2
1.2	Relation of graphite, graphene, fullerene and nanotube. Image source:	
	the Nobel prize in physics 2010 [4].	4
1.3	The formation of Sp^2 hybridized orbitals with unhydridized p_z orbital.	
	Image source: [19]	6
1.4	Graphene lattice and its Brillion zone. Image source: [14].	6

List of tables

2

15

16

19

20

Chapter 1

Introduction

A new field of research in material science and condensed matter physics was formed after the synthesis of graphene in 2004 [1, 2]. This field is named Two-dimensional (2D) material due to the fact that graphene is a single atomic-layer crystal. The synthesis itself together with the phenomenal properties of graphene has leaded to a Nobel Price in physics rewarded to A. K. Geim and K. S. Novoselov [3]. Since then, the field is expanding with the involvement of researcher not only from young community, but also from experts who have been working on materials like graphite, fullerenes and carbon nanotubes which are strongly graphene related. In the last several years, researches focused on graphene and related topics increasing rapidly, see Fig. 1.1. While a part of these effects have been making to explore more on the graphene itself and its applications, some other parts were put on discovering new 2D materials. It has been evidenced from graphene, same material having different dimensionality can have different properties. Therefore, many materials with hidden properties which will only manifest itself at other dimensions yet to be discovered.

On the other hand, with the advent of powerful supercomputer facilities, calculations that seems impossible to finish in a reasonable time now has been made accessible. At the same time, given the accuracy of the calculations is the most crucial aspect of computational physics, especially when the results are related to the prediction the real properties of materials, researchers and programmers have been making important progress to make sure theories and its implementation are correct and the results they yield are within acceptable precision. Equipped with these tools, theoretical predictions on the structure and the properties of material have served well on discovering unexplored features. Moreover, detailed characterizations at atomic

2 Introduction

Fig. 1.1 Graphene related publications during the last decade. Data source: ISI Web of Science. ¹

scale benefits the experimental results to make it more convincing, or even sometimes to explain the unexpected results.

Considering all mentioned, it is a sound approach to apply the state-of-the-art computational methods that accompanied with high-performance supercomputer facilities to investigate the physical properties of novel 2D materials. This thesis is a summary of several works which has accomplished during my PhD study and were initiated to this end. The thesis is organized as followed: For the rest of this chapter, I will first introduce graphene and some post-graphene materials that discovered right after graphene and, briefly, methods used to synthesis 2D materials. The following chapter 2 will present the computational methods, the theory behind and the implementations of them. In chapter 3, I will discuss several general properties of 2D materials. The next two chapters will be the main results from my works. Starting from specific properties targeting at specific novel 2D materials in chapter 4, and followed by modification of physical properties of 2D materials in chapter 5. Conclusions for the thesis will be given in the last chapter.

¹This result is obtained by searching for "graphene" in the topic field of Web of Science.

13

14

18

19

20

23

24

29

31

1.1 Graphene

Graphene is composed of carbon (C) atoms arranged on a hexagonal lattice. Each C atoms bond to three neighbouring C atoms. Graphene is one single atomic layer of graphite, see Fig. 1.2. These layers in graphite are stacked on top of another through weak physical bonding, whereas within each layer C atoms are hold together by strong chemical bonding. As a result, it is possible to just isolate single layer from graphite without damaging the layer itself.

1.1.1 History

The story of graphene can be trace back to the discover of graphite around 1564 in England[5]. Ever since, people have been using the graphite, the tip of a pencil, for writing and drawing. The black trace left behind by pencil they are actually stacks of graphite and graphene, by chance even a single layer graphene can present. Apart from being a part of a pencil, graphite certainly has been holding a important position in technology and industry due to its rich chemistry, low friction, high electrical and thermal conductivity etc.. On the other hand, the synthesis of single layer graphene seems to be discouraged by both experimental and theoretical limitation. On the experiments, there are have been attempts[6, 7, 8, 9] to isolate graphene or ever grow it. However, they were mostly failed on control of the number of layers and identifying graphene itself. Addition to these experimental difficulties, on the theory, it was believed that strictly 2D material should not exist due to a divergence in the thermal fluctuation in 2D materials that will make them not stable [10, 11, 12]. Nevertheless, graphene was still considered as theoretical model. for example, Wallace [13] was the first one to study the band structure of graphene [14] and found some of the interesting properties like semimetallic band structure.

Although not in the form of graphene, the single atomic layer of graphite has been already seen and studied in other forms although includes certain type of characteristic defect that differ it from graphite, e.g. fullerene and nanotube, see Fig. 1.2. Flulerene is a C modelue has a quasispherical hollow ball shape. It is composed of both six- and five-folded C rings, where the latter give positive curvature and made closed surface possible which resemble a football[15, 16]. The Nobel prize in chemstry of year 1996 was award to Harold W. Kroto, Robert F. Curl and Richard E. Smalley for their discovery of fullerene. The method to produce a large quantity of fullerene, i.e. arc-discharge method[16], also results in another important carbon allotrope: carbon nanotubes[17].

4 Introduction

Fig. 1.2 Relation of graphite, graphene, fullerene and nanotube. Image source: the Nobel prize in physics 2010 [4].

Despite sharing similar production method with fullerene, carbon nanotubes are more close to graphene in a sense that it can be construct by rolling up finite graphene sheet into a hollow tube as its name suggested, and more importantly, these two both free of pentagonal C rings while fullerene must have a certain number. Carbon nanotubes are observed to have micrometer in lengths and nanometer in diameters and having either metallic or semiconducting nature depending on its edges. Individual nanotube has a Young's modulus of 0.64 TPa and it is 56 times stronger than steel wire[18].

In 2004, the situation has changed completely for graphene with the successfully isolated single layer graphene from graphite by A. K. Geim and K. S. Novoselov at Manchester University using a simple micromechanical cleavage method. The key ingredient, except for sophisticated experimental control, as compared to the previous failures[6, 7] in this case is that the Si wafer under the graphene made it easier to identify graphene[3]. The synthesis of graphene itself already is a ground-breaking achievement, however, what excited the researcher the most is the extraordinary properties of graphene. In the following section, I will summarized some of them to illustrate this point.

1.1.2 Physical properties

As mentioned previously, graphene is the single atomic layer of graphite. It is made of three-folded C atoms that are arranged in a honeycomb lattice², or a hexagonal bravais lattice with two atoms per site, see Fig. 1.4. graphene has uniform bond lengths and bond angles which are 1.42 Å and 120°, respectively. The bonds in graphene are sp^2 σ bonds and p_z π bonds.

Every atom has same local environment, however, adjacent atoms are not equivalent. They belong to different hexagonal sublattices A and B as indicated with blue and yellow colors in Fig. 1.4. a_1 and a_2 are the basis vectors in real space connecting equivalent sites. b_1 and b_2 are the basis vectors in reciprocal space connecting equivalent k-points. The hexagon in the reciprocal space is the first Brillouin zone where all inequivalent k-points are contained.

²honeycomb lattice is not a bravais lattice.

6 Introduction

Fig. 1.3 The formation of Sp^2 hybridized orbitals with unhydridized p_z orbital. Image source: [19].

Fig. 1.4 Graphene lattice and its Brillion zone. Image source: [14].

1.2 Po	st-graphene Materials 7	
1.1.3	Physical properties	1
1.2	Post-graphene Materials	2
1.2.1	Functionized Graphene	3
Graph	ane	4
Fluoro	ographene	5
1.2.2	Boron Nitride	6
1.2.3	Silicene and Germanene	7
1.2.4	Transition Metal Dichalcogenides	8
1.3	0D and 1D from 2D: buckyballs, nanotubes and nanoribbons	9
1.4	Synthesis methods	11

Cha	apter 2	
Co	mputational methods	
2.1	Theory	;
2.1.1	Density Functional Theory	
2.1.2	Exchange-correlation functional	
2.1.3	Jocob's ladder	
2.2	Implementation	
2.2.1	Basis set, Plane wave energy cut-off, K-points	
222	Software Packages	

Chapter 3

General physical properties 2D materials

4 3.1 Structural properties

- 5 3.1.1 Layer structure
- ₆ 3.1.2 sp hybirdization
- 7 Coulson's theorem
- 8 3.1.3 Isotropic v.s. Anisotropic monolayer
- 9 3.1.4 Multiphase allotropes
- **3.2** Electronic properties
- 11 3.2.1 Polar bond
- 3.2.2 Importance of crystal symmetry
- 13 Clar's theory
- 3.2.3 Importance of interlayer interaction
- 15 3.2.4 Accurate description from DFT
- **3.3 Vibrational properties**
- 17 3.3.1 Phonon dispersion of 2D materials
- 3.3.2 Dynamic stability from phonon dispersion
 - 2.4 Machanical properties

Chapter 4

Results of Physical Properties Calculations in Novel 2D materials

4.1 Thermal properties

- 5 4.1.1 Thermal expansion and anharmonic oscillations
- 6 4.1.2 Quasi-harmonic approximation
- 7 4.1.3 Helmholtz free energy and specific heat

4.2 Piezoelectric properties

- 4.2.1 Piezoelectric constants
- **4.2.2** Importance of internal relaxation

4.3 Carrier transport properties

- 4.3.1 Carrier mobility
- 4.3.2 Deformation potential theory: non-polar materials
- 4.3.3 Deformation potential theory: polar materials

4.4 Magnetic properties

- 16 4.4.1 Magnetic ordering
- 17 Stoner criterion of ferromagnetism

4.5 Battery related properties

Chapter 5

Results of Physical Properties Modification in Novel 2D materials

- 4 5.1 Number of layers and types of stackings
- 5 5.1.1 Electronic properties
- 6 5.1.2 Vibrational properties
- ₇ 5.2 Mechanical strain
- **5.2.1 Carrier mobility**
- 5.2.2 Magnetic properties
- 5.3 Adatom adsorption
- 5.3.1 Electronic properties
- 5.4 Heterostructures
- 5.4.1 Electronic properties
- 14 5.4.2 Li difusion
- 5.5 Defect induction
- 5.5.1 Structural properties
- 5.5.2 Electronic properties
- 18 5.5.3 Magnetic properties

Thursday	20 th	April,	2017	-22	2:50
----------	------------------	--------	------	-----	------

	\Box	raft	_	V	1		0
--	--------	------	---	---	---	--	---

Chapter 6

Conclusions

6

8

12

13

15

19

21

24

26

28

29

30

31

34

35

References

- [1] K. S. Novoselov et al. "Electric Field Effect in Atomically Thin Carbon Films". In: *Science* 306.5696 (2004), pp. 666–669. DOI: 10.1126/science.1102896 (cit. on p. 1).
- [2] K. S. Novoselov et al. "Two-dimensional atomic crystals". In: *Proceedings of the National Academy of Sciences of the United States of America* 102.30 (2005), pp. 10451–10453. DOI: 10.1073/pnas.0502848102 (cit. on p. 1).
- [3] A. K. Geim and K. S. Novoselov. "The rise of graphene". In: *Nat. Mater.* 6.3 (Mar. 2007), pp. 183–191. DOI: 10.1038/nmat1849 (cit. on pp. 1, 5).
- [4] The Royal Swedish Academy of Sciences. *The Nobel Prize in Physics 2010 Information for the public.* 2010. URL: https://www.nobelprize.org/nobel_prizes/physics/laureates/2010/popular-physicsprize2010.pdf (visited on 04/14/2017) (cit. on p. 4).
- [5] H. Petroski. *The Pencil: A History of Design and Circumstance*. Knopf, 1990 (cit. on p. 3).
- [6] A. Krishnan et al. "Graphitic cones and the nucleation of curved carbon surfaces". In: *Nature* 388.6641 (July 1997), pp. 451–454. DOI: 10.1038/41284 (cit. on pp. 3, 5).
- [7] Y. Ohashi et al. "Size Effect inthe In-plane Electrical Resistivity of Very Thin Graphite Crystals". In: *TANSO* 1997.180 (1997), pp. 235–238. DOI: 10.7209/tanso.1997.235 (cit. on pp. 3, 5).
- [8] M. S. Dresselhaus and G. Dresselhaus. "Intercalation compounds of graphite". In: *Advances in Physics* 51.1 (2002), pp. 1–186. DOI: 10.1080/00018730110113644 (cit. on p. 3).
- [9] H. Shioyama. "Cleavage of graphite to graphene". In: *Journal of Materials Science Letters* 20.6 (2001), pp. 499–500. DOI: 10.1023/A:1010907928709 (cit. on p. 3).
- [10] R. Peierls. "Quelques propriétés typiques des corps solides". fre. ln: *Annales de l'institut Henri Poincaré* 5.3 (1935), pp. 177–222 (cit. on p. 3).
- [11] Lev Davidovich Landau. "On the theory of phase transitions. I." In: *Phys. Z. Sowjet.* 11 (1937), p. 26 (cit. on p. 3).
- [12] N. D. Mermin. "Crystalline Order in Two Dimensions". In: *Phys. Rev.* 176 (1 Dec. 1968), pp. 250–254. DOI: 10.1103/PhysRev.176.250 (cit. on p. 3).
- [13] P. R. Wallace. "The Band Theory of Graphite". In: *Phys. Rev.* 71 (9 May 1947), pp. 622–634. DOI: 10.1103/PhysRev.71.622 (cit. on p. 3).

20 References

a. H. Castro Neto et al. "The electronic properties of graphene". In: *Rev. Mod. Phys.* 81.1 (Jan. 2009), pp. 109–162. DOI: 10.1103/RevModPhys.81.109 (cit. on pp. 3, 6).

- [15] H. W. Kroto et al. "C60: Buckminsterfullerene". In: *Nature* 318.6042 (Nov. 1985),
 pp. 162–163. DOI: 10.1038/318162a0 (cit. on p. 3).
- 6 [16] W. Krätschmer et al. "Solid C60: a new form of carbon". In: *Nature* 347.6291 (Sept. 1990), pp. 354–358. DOI: 10.1038/347354a0 (cit. on p. 3).
- Sumio lijima and Toshinari Ichihashi. "Single-shell carbon nanotubes of 1-nm diameter". In: *Nature* 363.6430 (June 1993), pp. 603–605. DOI: 10.1038/363603a0 (cit. on p. 3).
- Ray H. Baughman, Anvar A. Zakhidov, and Walt A. de Heer. "Carbon Nanotubes—the Route Toward Applications". In: *Science* 297.5582 (2002), pp. 787–792. DOI: 10.1126/science.1060928 (cit. on p. 5).
- L. G. Wade. *Organic Chemistry:Chapter 2:sp2 Hybrid Orbitals*. 2010. URL: http://wps.prenhall.com/wps/media/objects/340/348272/Instructor_Resources/Chapter_02/Text_Images/FG02_14.JPG (visited on 04/20/2017) (cit. on p. 6).

Thursday	20 th	April,	2017	-22:50
----------	------------------	--------	------	--------

ra	ft	_	V	1	()
			-		

Ap	pen	dix	A
<i>-</i> - -			

Appendix