Split Bregman and Linearized Split Bregman for Tuning Neural Network

Ruohan Zhan, Peking University

October 14, 2016

Preliminaries and Reviews

Model and Algorithms

Numerical Results

Open Questions

Architecture of Feedforward Neural Network

 W_L Output: z_L Input: a_0

 z_{L-1} a_{L-1}

Figure: Feedforward Neural Network

For each layer I, input: z_I , output: $a_I = h(z_I)$, weight W_I and bias b_I : $z_I = W_I a_{I-1} + b_I$.

a_1

z_1

Backpropagation(BP)

- to use chain rule to calculate all outputs, intermediates and inputs' gradients of loss function backforward.
- ▶ loss function: ℓ

$$\frac{\partial \ell}{\partial a_{l}(i)} = \sum_{j} \frac{\partial \ell}{\partial z_{l+1}(j)} \frac{\partial z_{l+1}(j)}{\partial a_{l}(i)}$$
$$= \sum_{j} \frac{\partial \ell}{\partial z_{l+1}(j)} W_{l+1}(j,i)$$

Problems of BP

- computational burden;
- saturation effects: fails at gradient near 0.

Vanishing Moments:

$$\frac{\partial \ell}{\partial a_1} = \partial h(z_1) W_2 \partial h(z_2) W_3 \frac{\partial \ell}{\partial z_3} \tag{1}$$

Zero Gradient often can not be good

- nonconvex
- random initialization

Optimization Perspective

Variable Splitting: denote

$$X = (a_{1}, ..., a_{L-1}, z_{1}, ..., z_{L}, W_{1}, ..., W_{L}, b_{1}, ..., b_{L})$$

$$\text{minimize}_{X} \quad \ell(z_{L}, Y) + \sum_{l} \mathcal{R}(W_{l})$$

$$\text{subject to} \quad \begin{aligned} z_{l} &= W_{l} a_{l-1} + b_{l}, \\ a_{l} &= h_{l}(z_{l}). \end{aligned} \qquad l = 1, ..., L$$

$$(2)$$

Normally, the regulation term: $\mathcal{R}(W_I) = \frac{\lambda}{2} ||W_I||^2$.

Differences from Goldstein's paper[1]

- ▶ We try to extend it to multi-class cases, while [1] only with binary cases;
- Our loss function: data fidelity and regulation; Theirs: data fidelity
- Our loss function adds bias terms.
- ▶ We give more insights into the potential of SBI not only on the scalable capability but also the ability to avoid saturation.
- We extend SBI into the Linearized SBI.

Bregman Formulation

$$\begin{split} X^{(k+1)} &= \mathsf{argmin}_{X} \quad \ell(z_{L}, Y) - \langle z_{L} - z_{L}^{(k)}, p^{(k)} \rangle \\ &+ \sum_{I} \left[\mathcal{R}(W_{I}) - \langle W_{I} - W_{I}^{(k)}, q_{I}^{(k)} \rangle \right] \\ &+ \sum_{I} \left[\frac{\gamma}{2} \|a_{I} - h_{I}(z_{I})\|^{2} + \frac{\beta}{2} \|z_{I} - W_{I} a_{I-1}\|^{2} \right] \end{split}$$

where $p^{(k)} \in \partial \ell(z_L^{(k)}, Y)$ and $q_I^{(k)} \in \partial \mathcal{R}(W_I^{(k)})$

Another Interpretation, **Augmented Lagrangian**(similar to formulation in [3])

$$\begin{split} X^{(k+1)} = & \mathsf{argmin}_{X} \quad \ell(z_{L}, Y) + \sum_{l} \mathcal{R}(W_{l}) \\ + \sum_{l} \left[\frac{\gamma}{2} \|a_{l} - h_{l}(z_{l}) + \xi_{l}^{(k)}\|^{2} + \frac{\beta}{2} \|z_{l} - W_{l}a_{l-1} + \eta_{l}^{(k)}\|^{2} \right] \end{split}$$

Split Bregman Iteration(SBI)

$$\begin{split} z_{L}^{(k+1)} &= \operatorname{argmin}_{z_{L}} \ell_{1}(z_{L}, Y) - \langle p^{(k)}, z_{L} - z_{L}^{(k)} \rangle + \frac{\beta}{2} \| W_{L}^{(k)} a_{L-1}^{(k)} + b_{l}^{(k)} - z_{L} \|^{2} \\ p^{(k+1)} &= p^{(k)} + \beta (W_{L}^{(k)} a_{L-1}^{(k)} - z_{L}^{(k+1)}) \\ b_{L}^{(k+1)} &= \operatorname{argmin}_{b_{L}} \frac{\beta}{2} \| W_{L}^{(k)} a_{L-1}^{(k)} + b_{L} - z_{L}^{(k+1)} \|^{2} \\ W_{L}^{(k+1)} &= \operatorname{argmin}_{W_{L}} \mathcal{R}(W_{L}) - \langle W_{L} - W_{L}^{(k)}, q_{L}^{(k)} \rangle + \frac{\beta}{2} \| W_{L} a_{L-1}^{(k)} + b_{L}^{(k+1)} - z_{L}^{(k+1)} \|^{2} \\ q_{L}^{(k+1)} &= q_{L}^{(k)} + \beta (z_{L}^{(k+1)} - (W_{L}^{(k+1)} a_{L-1}^{(k)} + b_{L}^{(k+1)})) (a_{L-1}^{(k)})^{T} \\ \text{For } I &= L - 1, \dots, 2, 1, \text{ updating order matters} \\ \begin{cases} a_{I}^{(k+1)} &= \operatorname{argmin}_{a_{I}} \frac{\gamma}{2} \| a_{I} - h(z_{I}^{(k)}) \|^{2} + \frac{\beta}{2} \| W_{I+1}^{(k+1)} a_{I} + b_{I+1}^{(k+1)} - z_{I+1}^{(k+1)} \|^{2} \\ z_{I}^{(k+1)} &= \operatorname{argmin}_{a_{I}} \frac{\gamma}{2} \| a_{I}^{(k+1)} - h(z_{I}) \|^{2} + \frac{\beta}{2} \| W_{I}^{(k)} a_{I-1}^{(k)} + b_{I}^{(k)} - z_{I} \|^{2} \\ b_{I}^{(k+1)} &= \operatorname{argmin}_{b_{I}} \frac{\beta}{2} \| W_{I}^{(k)} a_{I-1}^{(k)} + b_{I} - z_{I}^{(k+1)} \|^{2} \\ W_{I}^{(k+1)} &= \operatorname{argmin}_{W_{I}} \mathcal{R}(W_{I}) - \langle W_{I} - W_{I}^{(k)}, q_{I}^{(k)} \rangle + \frac{\beta}{2} \| W_{I} a_{I-1}^{(k)} + b_{I}^{(k+1)} - z_{I}^{(k+1)} \|^{2} \\ q_{I}^{(k+1)} &= q_{I}^{(k)} + \beta (z_{I}^{(k+1)} - (W_{I}^{(k+1)} a_{I-1}^{(k)} + b_{I}^{(k+1)})) (a_{I-1}^{(k)})^{T} \end{cases}$$

Updating Order

Numerical experiments show that, for multi-class cases, backward updating converges faster than forward updating. Therefore, in our later experiments, we use backward updating.

Figure: Results shown on a 5-test average

Split Bregman Algorithm

Algorithm 1: Split Bregman for Neural Nets

Input: training feature $\{a_0\}$, and labels $\{y\}$,

Initialize: initialize a_l, z_l with Gaussian distribution, set $b_l^{(0)} = 0$ and solve out the W_l explicitly.

repeat

$$z_{L}^{(k+1)} : \nabla \ell_{1}(z_{L}, Y) + \beta z_{L} = \beta(W_{L}^{(k)} a_{L-1}^{(k)} + b_{L}^{(k)}) + p^{(k)}$$

$$p^{(k+1)} = p^{(k)} + \beta(W_{L}^{(k)} a_{L-1}^{(k)} + b_{L}^{(k)} - z_{L}^{(k+1)})$$

$$b_{L}^{(k+1)} = \operatorname{mean}_{i}(z_{L}^{(k+1)}(i) - W_{L}^{(k)} a_{L-1}^{(k)}(i))$$

$$W_{L}^{k+1} = (\beta(z_{L}^{(k+1)} - b_{L}^{(k+1)}) + \lambda W_{L}^{(k)})(\beta a_{L-1}^{(k)} + \lambda I)^{-1}$$

$$(4)$$

for l=L-1...,2,1 do

Inverse Calculation

$$a_{l}^{k+1} = \underbrace{\left(\gamma l + \beta (W_{l+1}^{(k+1)})^{T} W_{l+1}^{(k+1)}\right)^{-1}} \left(\gamma h(z_{l}^{k}) + \beta (W_{l+1}^{(k+1)})^{T} (z_{l+1}^{(k+1)} - b_{l+1}^{(k+1)})\right)} z_{l}^{(k+1)} : \gamma (h(z_{l}^{k+1}) - a_{l}^{(k+1)}) \partial h(z_{l}) + \beta (z_{l} - W_{l}^{(k)} a_{l-1}^{(k)} - b_{l}^{(k)}) = 0$$

$$b_{l}^{(k+1)} = \text{mean}_{i} (z_{l}^{(k+1)}(i) - W_{l}^{(k)} a_{l-1}^{(k)}(i))$$

$$W_{l}^{(k+1)} = (\beta (z_{l}^{(k+1)} - b_{l}^{(k+1)}) + \lambda W_{l}^{(k)}) \left(\beta a_{l-1}^{(k)} + \lambda I\right)^{-1}$$
(5)

Until converged

Linearized Split Bregman Iteration(L-SBI)

At each updating, linearize the relaxation term with first Taylor expansion plus a quadratic regulation.

$$\begin{cases} \textit{SBI}: \textit{z}_{L}^{(k+1)} = & \text{argmin}_{\textit{z}_{L}} \ell_{1}(\textit{z}_{L}, \textit{Y}) - \langle \textit{p}^{(k)}, \textit{z}_{L} - \textit{z}_{L}^{(k)} \rangle + \frac{\beta}{2} \| \textit{W}_{L}^{(k)} \textit{a}_{L-1}^{(k)} + \textit{b}_{I}^{(k)} - \textit{z}_{L} \|^{2} \\ \textit{L} - \textit{SBI}: \textit{z}_{L}^{(k+1)} = & \text{argmin}_{\textit{z}_{L}} \ell_{1}(\textit{z}_{L}, \textit{Y}) - \langle \textit{p}^{(k)}, \textit{z}_{L} - \textit{z}_{L}^{(k)} \rangle \\ & + \beta \langle \textit{z}_{L} - \textit{z}_{L}^{(k)}, \textit{z}_{L}^{(k)} - \textit{W}_{L}^{(k)} \textit{a}_{L-1}^{(k)} \rangle + \frac{\beta}{2} \| \textit{z}_{L}^{(k)} - \textit{W}_{L}^{(k)} \textit{a}_{L-1}^{(k)} - \textit{b}_{L}^{(k)} \|^{2} \\ & + \frac{1}{2\kappa} \| \textit{z}_{L} - \textit{z}_{L}^{(k)} \|^{2} \end{cases}$$

The same idea for updating other variables.

No Inverse Calculation!!

A More Reasonable Linearization

The linearization motivates from dropping inverse calculation terms and thus speeding up. Note that in SBI, we only need to calculate inverse for updating a_I , W_I , thus we can only linearize these two. Take a_I as an example:

$$a_{l}^{(k+1)} = \operatorname{argmin}_{a_{l}} \langle \gamma(a_{l} - h(z_{l}^{(k)})) + \beta(W_{l+1}^{(k+1)})^{T} (W_{l+1}^{(k+1)} a_{l}^{(k)} + b_{l+1}^{(k+1)} - z_{l+1}^{(k+1)}), a_{l} - a_{l}^{(k)} \rangle + \frac{1}{2\kappa} ||a_{l} - a_{l}^{(k)}||^{2}$$

$$(6)$$

Warm Start

Any algorithm needs a good initialization...

In the warm start period, we do not update the subgradient, or in other words, the dual Lagrangian, which allows the algorithm to search on a broader field not only on the manifold with equality constraints.

Warm Start for Split Bregman Algorithm

Algorithm 2: Warm Start for Split Bregman

Input: training feature $\{a_0\}$, and labels $\{y\}$,

Initialize: initialize a_l, z_l with Gaussian distribution, set $b_l^{(0)} = 0$ and solve out the W_l explicitly.

repeat

$$z_{L}^{(k+1)}: \nabla \ell_{1}(z_{L}, Y) + \beta z_{L} = \beta (W_{L}^{(k)} a_{L-1}^{(k)} + b_{L}^{(k)})$$

$$b_{L}^{(k+1)} = \text{mean}_{i}(z_{L}^{(k+1)}(i) - W_{L}^{(k)} a_{L-1}^{(k)}(i))$$

$$W_{L}^{(k+1)} = \beta (z_{L}^{(k+1)} - b_{L}^{(k+1)})(\beta a_{L-1}^{(k)} + \lambda I)^{-1}$$
(7)

for l=L-1,...,2,1 do

$$a_{l}^{k+1} = (\gamma I + \beta (W_{l+1}^{(k+1)})^{T} W_{l+1}^{(k+1)})^{-1} (\gamma h(z_{l}^{k}) + \beta (W_{l+1}^{(k+1)})^{T} (z_{l+1}^{(k+1)} - b_{l+1}^{(k+1)}))$$

$$z_{l}^{(k+1)} : \gamma (h(z_{l}^{k+1}) - a_{l}^{(k+1)}) \nabla h(z_{l}) + \beta (z_{l} - W_{l}^{(k)} a_{l-1}^{(k)} - b_{l}^{(k)}) = 0$$

$$b_{l}^{(k+1)} = \operatorname{mean}_{i}(z_{l}^{(k+1)}(i) - W_{l}^{(k)} a_{l-1}^{(k)}(i))$$

$$W_{l}^{(k+1)} = \beta (z_{l}^{(k+1)} - b_{l}^{(k+1)}) (\beta a_{l-1}^{(k)} + \lambda I)^{-1}$$
(8)

Until converged

Warm Start for Linearized Split Bregman Iteration

Just Omit the subgradient terms.

At each updating, linearize the relaxation term with first Taylor expansion plus a quadratic regulation.

$$\begin{split} z_{L}^{(k+1)} = & \mathsf{argmin}_{z_{L}} \ell_{1}(z_{L}, Y) + \beta \langle z_{L} - z_{L}^{(k)}, z_{L}^{(k)} - W_{L}^{(k)} a_{L-1}^{(k)} \rangle \\ & + \frac{\beta}{2} \| z_{L} - W_{L}^{(k)} a_{L-1}^{(k)} - b_{L}^{(k)} \|^{2} + \frac{1}{2\kappa} \| z_{L} - z_{L}^{(k)} \|^{2} \end{split}$$

The same idea for updating other variables.

No Inverse Calculation!!

Numerical Results

$$\begin{split} X &= (a_1,...,a_{L-1},z_1,...,z_L,W_1,...,W_L,b_1,...,b_L). \\ \text{Denote } F(X) &= \sum_i \frac{\beta}{2} \|W_l a_{l-1} + b_l - z_l\|^2 + \frac{\gamma}{2} \|a_l - h(z_l)\|^2. \end{split}$$

The learning includes two parts:

- ▶ Warm start: coordinately minimize $\ell_1(z_L, Y) + \sum_l \mathcal{R}(W_l) + F(X)$.
- Bregman Iteration: Split Bregman or Linearized Split Bregman

Experiment One: Simple data binary classification I

Training set: 800; Testing set: 200. $y \in \{1, -1\}$: target, z: output.

All results are shown based on an average of 10 experiments.

Experiment One: Simple data binary classification II

Run warm start for different times, then run SBI for 1000 times.

Figure: Split Bregman Iteration: errorbars of training data and testing data in both warm start period and SBI period.

Experiment One: Simple data binary classification III

Run warm start for different times, then run L-SBI for 1000 times.

Figure: Linearized Split Bregman Iteration: errorbars of training data and testing data in both warm start period and L-SBI period.

Experiment One: Simple data binary classification IV

Figure: A comparison of Error with respect to time in seconds for SBI and L-SBI

Experiment Two: Mnist data binary classification between 0,1 I

Test two algorithms on MNIST sub-datasets (0, 1). Use hinge loss (SVM classification). Use Nesterov Acceleration for Linearized split bregman.

Nesterov Acceleration:

$$\begin{cases} y_k = x_{k-1} - \nu \nabla f(x_{k-1}) \\ x_k = y_k + \frac{k-1}{k+2} (y_k - y_{k-1}). \end{cases}$$
(9)

Experiment Two: Mnist data binary classification between 0,1 II

Experiment Three: Mnist data classification-Ten classes I

 $784 \rightarrow 30 \rightarrow 10$

Results of testing SBI on MNIST dataset based on 8 experiments average.

Experiment Four: Saturation? I

$$784 \rightarrow 30 \rightarrow 10$$

One hidden layer: even if the output changes little, the hidden nodes change greatly: potential for a jump in accuracy.

Figure: SBI on MNIST: One hidden layer, speed of learning

Experiment Four: Saturation? II

$$784 \rightarrow 30 \rightarrow 30 \rightarrow 10$$

Two hidden layers: hidden layers change rate are comparable

Figure: SBI on MNIST: Two hidden layers, speed of learning

Experiment Four: Saturation? III

$$784 \rightarrow 30 \rightarrow 30 \rightarrow 10$$

Let's look at the learning speed of BP[2]: early hidden layers learn much more slowly than later hidden layers

y-coordinate has been taken logarithm on.

Figure: BP on MNIST[2]: Two hidden layers, speed of learning

Technical issue: more discussion on loss function I

In split bregman iteration, one important step is to solve the following subproblem:

solve
$$z$$
,
 $s.t.$ $p + \frac{1}{\kappa}z = v$, $p \in \partial \ell(z)$.

Three common data fidelity terms in loss function: square loss, hinge loss and cross entropy loss.

Technical issue: more discussion on loss function II

Figure: A comparison of square loss and hinge loss.

Open Questions I

- ► L-SBI: computational efficiency, but hard for parameter choosing.
- the potential of L-SBI to replace SBI?
- Saturation: DNN? RNN?

Bibliography

- [1] Taylor G, Burmeister R, Xu Z, et al. Training Neural Networks Without Gradients: A Scalable ADMM Approach [J]. arXiv preprint arXiv:1605.02026, 2016.
- [2]Deep Learning, draft book in preparation, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.01
- [3]Zhang Z, Chen Y, Saligrama V. Efficient Training of Very Deep Neural Networks for Supervised Hashing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1487-1495.

Numerical Details for SVM Loss I

It's clear that in all four algorithms above, one common nontrivial step is to solve the following PDE:

find z s.t.
$$p + \frac{1}{\kappa}z = \frac{1}{\kappa}v$$
 (10)

where κ , ν are given, $p \in \partial L(z)$.

Numerical Details for SVM Loss II

This problem 10 can be formulated into a first order optimal condition of a strongly convex problem:

fix
$$i$$
, $\min_{z \in \mathbb{R}^n} \frac{1}{2\kappa} ||z - v||^2 + \sum_{j \neq i} \max(0, 1 - z_i + z_j),$ (11)

which is equivalent to the following problem with constraints:

$$\min_{z,\xi \in \mathbb{R}^n} \frac{1}{2\kappa} ||z - v||^2 + \mathbf{1}^T \xi, \quad s.t.\xi \succeq 0, \xi \succeq Az + b, \tag{12}$$

where $A = I - \mathbf{1}e_i^T$ and $b = \mathbf{1} - e_i = -Ae_i$.

Numerical Details for SVM Loss III

The Lagrangian is as follows:

$$L(z,\xi,\lambda,\mu) = \frac{1}{2\kappa} \|z - v\|^2 + \mathbf{1}^T \xi - \mu^T \xi + \lambda^T (Az + b - \xi), \quad \mu \succeq 0, \lambda \succeq 0.$$
(13)

Therefore, the dual problem of problem 12 is

$$\min_{\lambda \in \mathbf{R}^n} \quad \frac{\kappa}{2} \lambda^T A A^T \lambda - \lambda^T (b + A \nu), \text{ s.t. } 1 \succeq \lambda, \lambda \succeq 0.$$
 (14)

which can be roughly solved by penalty method.