

Poisoning Attacks in Federated Learning

Presenter:

Xin Fan

2020/11/25

◆ Introduction to Poisoning Attacks

♦ Data Poisoning Attacks

◆ Model Poisoning Attacks

◆ Discussions for Poisoning Attacks in FL over the air

- **◆** Introduction to Poisoning Attacks
- Data Poisoning Attacks
- Model Poisoning Attacks
- ◆ Discussions for Poisoning Attacks in FL over the air

Introduction to Poisoning Attacks

Passive attacks

- >Shallow (partial information)
 - Model Extraction Attacks
 - Membership Inference Attacks
 - Model Inversion Attacks
- > Deep (original training dataset)
 - Deep Leakage

Active attacks

- > Data Poisoning (targeted or untargeted)
 - Data sample tamper
 - Data label tamper
- Model Poisoning (targeted or untargeted)

◆ Introduction to Poisoning Attacks

◆ Data Poisoning Attacks

- 1. Data evasion attack
- 2. Data sample poisoning
 - 3. Data label poisoning

- Model Poisoning Attacks
- ◆ Discussions for Poisoning Attacks in FL over the air

Data Evasion Attack

Reference

➤ Goodfellow I J, Shlens J, Szegedy C. "Explaining and harnessing adversarial examples". arXiv preprint arXiv:1412.6572, 2014.

Data Evasion Attack v.s. Data Poisoning Attack

- > Data Evasion Attack
 - Happens at test time
 - Perturb **a test sample** so that the model makes a classification error
- > Data Poisoning Attack
 - Happens at training time
 - Add a poison sample (data sample poisoning) to the training or flip a label (data label poisoning).

Data sample poisoning attack

- $\triangleright \mathbf{x}_{\text{victim}}$: victim sample (an image not in the training set).
- \triangleright Add a perturbation δ^* to x so that $h(x + \delta^*) \approx h(x_{\text{victim}})$
- >Optimization:

$$\delta^* = \underset{\delta}{\operatorname{argmin}} \left| \left| \frac{h(x + \delta) - h(x_{\text{victim}})}{\delta} \right|_2^2 + \lambda \left| \frac{\delta}{\delta} \right|_2^2.$$
The feature vectors are similar. The perturbation is small.

- >x: input data
- \rightarrow **h**(**x**):feature vector

Data label poisoning attack

- >m% of benign participants to poison the global model for a certain number of FL rounds
- > The final global model M has high errors for particular classes
- ➤ Do not need to access or manipulate other participants' data or the model learning process, loss function, or server aggregation process
- > Just change a source class c_{src} to a target class c_{target} in label of the malicious participants' training datasets

Reference

➤ Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. "Data Poisoning Attacks Against Federated Learning Systems." *European Symposium on Research in Computer Security*. Springer, Cham, 2020.

Data label poisoning attack

c_{src}	\rightarrow	c_{target}	$m_cnt_{target}^{src}$	Percentage of Malicious Participants $(m\%)$						
				2	4	10	20	30	40	50
CIFAR-10										
0	\rightarrow	2	16	1.42%	2.93%	10.2%	14.1%	48.3%	73%	70.5%
1	\rightarrow	9	56	0.69%	3.75%	6.04%	15%	36.3%	49.2%	54.7%
5	\rightarrow	3	200	0%	3.21%	7.92%	25.4%	49.5%	69.2%	69.2%
Fashion-MNIST										
1	\rightarrow	3	18	0.12%	0.42%	2.27%	2.41%	40.3%	45.4%	42%
4	\rightarrow	6	51	0.61%	7.16%	16%	29.2%	28.7%	37.1%	58.9%
6	\rightarrow	0	118	-1%	2.19%	7.34%	9.81%	19.9%	39%	43.4%
79										

Data label poisoning attack

> Defend algorithm

```
Algorithm 1: Identifying Malicious Model Updates in FL
```

```
 \begin{array}{c|c} \operatorname{def} \ \operatorname{evaluate\_updates}(\mathcal{R}: \mathit{set} \ \mathit{of} \ \mathit{vulnerable} \ \mathit{train} \ \mathit{rounds}, \mathcal{P}: \mathit{participant} \ \mathit{set}) \text{:} \\ \mathcal{U} = \emptyset \\ \ \operatorname{for} \ \mathit{r} \in \mathcal{R} \ \operatorname{do} \\ \ \mid \ \mathcal{P}_r \leftarrow \operatorname{participants} \in \mathcal{P} \ \mathit{queried} \ \mathit{in} \ \mathit{training} \ \mathit{round} \ \mathit{r} \\ \ \mid \ \theta_{r-1} \leftarrow \operatorname{global} \ \mathit{model} \ \mathit{parameters} \ \mathit{after} \ \mathit{training} \ \mathit{round} \ \mathit{r} - 1 \\ \ \mid \ \mathit{for} \ \mathit{P}_i \in \mathcal{P}_r \ \mathit{do} \\ \ \mid \ \theta_{r,i} \leftarrow \operatorname{updated} \ \mathit{parameters} \ \mathit{after} \ \mathit{train\_DNN}(\theta_{r-1}, \ \mathit{D}_i) \\ \ \mid \ \theta_{\Delta,i} \leftarrow \theta_{r,i} - \theta_r \\ \ \mid \ \theta_{\Delta,i}^{\mathit{src}} \leftarrow \operatorname{parameters} \in \theta_{\Delta,i} \ \mathit{connected} \ \mathit{to} \ \mathit{source} \ \mathit{class} \ \mathit{output} \ \mathit{node} \\ \ \mid \ \mathit{Add} \ \theta_{\Delta,i}^{\mathit{src}} \ \mathit{to} \ \mathit{U} \\ \ \mathcal{U}' \leftarrow \operatorname{standardize}(\mathcal{U}) \\ \ \mathcal{U}'' \leftarrow \operatorname{PCA}(\mathcal{U}', \ \mathit{components=2}) \\ \ \mathit{plot}(\mathcal{U}'') \end{array}
```


Data label poisoning attack

> Defend algorithm

◆ Introduction to Poisoning Attacks

Data Poisoning Attacks

♦ Model Poisoning Attacks

1. Backdoor attack

2. Defense strategy

◆ Discussions for Poisoning Attacks in FL over the air

Backdoor Attack (targeted model poisoning)

- The attacker attempts to replace the whole model by sending a deliberately carefully designed gradient
- ➤ Backdoor the model without breaking its performance on the main task, but ensure it fails on some targeted tasks
- Assume the attacker has a set of training samples generated from the true distribution

Reference

> Sun, Z., Kairouz, P., Suresh, A. T., & McMahan, H. B. (2019). Can you really backdoor federated learning?. *arXiv preprint* arXiv:1911.07963.

Backdoor Attack (targeted model poisoning)

The server updates its model by aggregating the local gradients Δw_t^k 's, i.e.,

$$w_{t+1} = w_t + \eta \frac{\sum_{k \in S_t} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$$

The attacker attempts to replace the whole model by a backdoored model w^* by sending

$$\Delta w_t^1 = \beta (w^* - w_t)$$

where $\beta = \frac{\sum_{k \in S_t} n_k}{\eta n_k}$ is a boost factor. Then we have

$$\Delta w_{t+1} = w^* + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$$

At the PS:
$$w_{t+1} = w_t + \eta \frac{\sum_{k \in S_t} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$$

At the attacker:
$$\Delta w_t^1 = \beta(w^* - w_t)$$

$$\begin{split} w_{t+1} = & w_t + \eta \frac{\sum_{k \in S_t} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k} \\ = & w_t + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k} + \eta \frac{n_1}{\sum_{k \in S_t} n_k} \Delta w_t^1 \\ = & w_t + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k} + \eta \frac{n_1}{\sum_{k \in S_t} n_k} \beta(w^* - w_t) \\ = & w_t + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k} + \eta \frac{n_1}{\sum_{k \in S_t} n_k} \beta w^* - \eta \frac{n_1}{\sum_{k \in S_t} n_k} \beta w_t \\ = & \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k} + w^* \end{split}$$

$$\eta \frac{n_1}{\sum_{k \in S_t} n_k} \beta = 1 \Leftrightarrow \beta = \frac{\sum_{k \in S_t} n_k}{\eta n_1}$$

where $\beta = \frac{\sum_{k \in S_t} n_k}{nn_k}$ is a boost factor. Then we have

Original

 $\approx w^*$

$$\Delta w_{t+1} = w^* + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$$

Backdoor Attack (targeted model poisoning)

The server updates its model by aggregating the local gradients Δw_t^k 's, i.e.,

$$w_{t+1} = w_t + \eta \frac{\sum_{k \in S_t} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$$

The attacker attempts to replace the whole model by a backdoored model w^* by sending

$$\Delta w_t^1 = \beta (w^* - w_t)$$

where $\beta = \frac{\sum_{k \in S_t} n_k}{\eta n_k}$ is a boost factor. Then we have

Wrong in their original paper! $\Delta w_{t+1} = w^* + \eta \frac{\sum_{k \in S_t, k \neq 1} n_k \Delta w_t^k}{\sum_{k \in S_t} n_k}$

- Defense strategy
 - >Norm thresholding of updates
 - The following norm-clipping approach:

$$\Delta w_{t+1} = \sum_{k \in S_t} \frac{\Delta w_{t+1}^k}{\max(1, ||\Delta w_{t+1}^k||_2/M)}$$

- > (Weak) differential privacy
 - by first clipping updates (as above) and then adding Gaussian noise.

Experiments

(c) Attack frequency = 1/10 ($\epsilon = 0.33\%$)

(b) Number of attackers = 113 (ϵ = 3.3%)

(d) Number of attackers = 11 (ϵ = 0.33%)

Experiments

(a) Attack frequency = $1 (\epsilon = 3.3\%)$

(c) Attack frequency = 1/10 ($\epsilon = 0.33\%$)

(b) Number of attackers = 113 (ϵ = 3.3%)

(d) Number of attackers = 11 (ϵ = 0.33%)

- ◆ Introduction to Poisoning Attacks
- Data Poisoning Attacks
- ◆ Model Poisoning Attacks
- **◆** Discussions for Poisoning Attacks in FL over the air

Discussions for Poisoning Attacks in FL over the air

- Can these active or passive attacks be applied in FL over the air?
 - > Deep leakage can not be applied
 - ➤ Poisoning attacks can be applied, and it is more difficult to defend them than that in non-over-the air based FL

• How to defend them?

- ➤ **SignSGD:** a voting mechanism (for the scenarios that the attacker portion is lower than 50%)
- ➤ Random worker selection: a opportunistic defense mechanism

Questions?

