CS358 Computer Networks

Software defined networking

Data, Control, and Management Planes

Timescales

	Data	Control	Management
Time- scale	Packet (nsec)	Event (10 msec to sec)	Human (min to hours)
Tasks	Forwarding, buffering, filtering, scheduling	Routing, circuit set-up	Analysis, configuration
Location	Line-card hardware	Router software	Humans or scripts

Data and Control Planes

Data Plane

- Streaming algorithms on packets
 - Matching on some bits
 - Perform some actions
- Wide range of functionality
 - Forwarding
 - Access control
 - Mapping header fields
 - Traffic monitoring
 - Buffering and marking
 - Shaping and scheduling
 - Deep packet inspection

Switch: Match on Destination MAC

- MAC addresses are location independent
 - Assigned by the vendor of the interface card
 - Cannot be aggregated across hosts in LAN

Router: Match on IP Prefix

- IP addresses grouped into common subnets
 - Allocated by ICANN, regional registries, ISPs, and within individual organizations
 - Variable-length prefix identified by a mask length

Forwarding vs. Routing

- Forwarding: data plane
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table
- Routing: control plane
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Individual router *creating* a forwarding table

Example: Shortest-Path Routing

- Compute: path costs to all nodes
 - From a source u to all other nodes
 - Cost of the path through each link
 - Next hop along least-cost path to s

	link
٧	(u,v)
W	(u,w)
X	(u,w)
У	(u,v)
Z	(u,v)
S	(u,w)
†	(u,w) ⁹

Distributed Control Plane

- Link-state routing: OSPF, IS-IS
 - Flood the entire topology to all nodes
 - Each node computes shortest paths

- Dijkstra's algorithm

	v 2 y
	$3 \longrightarrow 1$
u	x 4
	2 1
	5 t
	w 4
	S

	link
٧	(u,v)
W	(u,w)
X	(u,w)
У	(u,v)
Z	(u,v)
S	(u,w)
†	(u,w)10

Distributed Control Plane

- Distance-vector routing: RIP, EIGRP
 - Each node computes path cost
 - ... based on each neighbors' path cost
 - Bellman-Ford algorithm

Traffic Engineering Problem

- Management plane: setting the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?

Traffic Engineering: Optimization

- Inputs
 - Network topology
 - Link capacities
 - Traffic matrix
- Output
 - Link weights
- Objective
 - Minimize max-utilized link
 - Or, minimize a sum of link congestion

Transient Routing Disruptions

- Topology changes
 - Link weight change
 - Node/link failure or recovery
- Routing convergence
 - Nodes temporarily disagree how to route
 - Leading to transient loops and blackholes

Management Plane Challenges

- Indirect control
 - Changing weights instead of paths
 - Complex optimization problem
- Uncoordinated control
 - Cannot control which router updates first
- Interacting protocols and mechanisms
 - Routing and forwarding
 - Naming and addressing
 - Access control
 - Quality of service

— ...

Software Defined Networking (high level view)

Control/Data Separation

(Logically) Centralized Controller

Protocols - Applications

- 1. What are Software Defined Networks?
- 2. Why SDN?
- 3. The Consequences
 - For industry
 - For research
 - For standards and protocols

Vertically integrated Closed, proprietary Slow innovation Small industry

Horizontal
Open interfaces
Rapid innovation
Huge industry

Vertically integrated Closed, proprietary Slow innovation

Horizontal
Open interfaces
Rapid innovation

- Vertically integrated, complex, closed, proprietary
- Networking industry with "mainframe" mind-set

The network is changing

Software Defined Network (SDN)

Network OS

Network OS: distributed system that creates a consistent, up-to-date network view

- Runs on servers (controllers) in the network
- NOX, ONIX, Trema, Beacon, Maestro, ... + more

Uses forwarding abstraction to:

- Get state information from forwarding elements
- Give control directives to forwarding elements

Software Defined Network (SDN)

Control Program

- Control program operates on view of network
 - Input: global network view (graph/database)
 - Output: configuration of each network device
- Control program is not a distributed system
 - Abstraction hides details of distributed state

Forwarding Abstraction

Purpose: Abstract away forwarding hardware

- Flexible
 - Behavior specified by control plane
 - Built from basic set of forwarding primitives
- Minimal
 - Streamlined for speed and low-power
 - Control program not vendor-specific

OpenFlow is an example of such an abstraction

OpenFlow Basics

- 3/2
- □ Primitive is < *Match*, *Action*>
- Match arbitrary bits in headers:

Header Data

Match: 1000x01xx0101001x

- Match on any header, or new header
- Allows any flow granularity
- □ Action
 - Forward to port(s), drop, send to controller
 - Overwrite header with mask, push or pop
 - Forward at specific bit-rate

General Forwarding Abstraction

Small set of primitives "Forwarding instruction set"

Protocol independent Backward compatible

Switches, routers, WiFi APs, basestations, TDM/WDM

Example 1: OSPF and Dijkstra

- **OSPF**
 - RFC 2328: 245 pages
- Distributed System
 - Builds consistent, up-to-date map of the network: 101 pages
- Dijkstra's Algorithm
 - Operates on map: 4 pages

- 1. What are Software Defined Networks?
- 2. Why SDN?
- 3. The Consequences
 - For industry
 - For research
 - For standards and protocols

GREAT TALK BY SCOTT SHENKER

HTTP://WWW.YOUTUBE.COM/WATCH?V=WVS7 PC99S7W

(Story summarized here)

Networking

- Networking is
 - "Intellectually Weak"
 - behind other fields
 - about the mastery of complexity

Good abstractions tame complexity

Interfaces are instances of those abstractions

No abstraction => increasing complexity

We are now at the complexity limit

By comparison: Programming

- Machine languages: no abstractions
 - Had to deal with low-level details
- Higher-level languages: OS and other abstractions
 - File system, virtual memory, abstract data types, ...
- Modern languages: even more abstractions
 - Object orientation, garbage collection,...

Programming Analogy

- What if programmers had to:
 - Specify where each bit was stored
 - Explicitly deal with internal communication errors
 - Within a programming language with limited expressibility
- Programmers would redefine problem by:
 - Defining higher level abstractions for memory
 - Building on reliable communication primitives
 - Using a more general language

Specification Abstraction

- Network OS eases implementation
 - E.g., Helps manage distributed state
- Next step is to ease <u>specification</u>
 - E.g., How do you specify what the system should do?

- Key goals
 - Provide abstract view of network map
 - Control program operates on abstract view
 - Develop means to simplify specification

Software Defined Network (SDN)

- 1. What are Software Defined Networks?
- 2. Why SDN?
- 3. The Consequences
 - For industry
 - For research
 - For standards and protocols

SDN in development

Domains

- Data centers
- Enterprise/campus
- Cellular backhaul
- Enterprise WiFi
- WANs

Products

- Switches, routers:About 15 vendors
- Software: About 6vendors and startups

New startups (6 so far). Lots of hiring in networking.

Cellular industry

- Recently made transition to IP
- Billions of mobile users
- Need to securely extract payments and hold users accountable
- □ IP is bad at both, yet hard to change

SDN enables industry to customize their network

Telco Operators

- Global IP traffic growing 40-50% per year
- End-customer monthly bill remains unchanged
- Therefore, CAPEX and OPEX need to reduce 40-50% per Gb/s per year
- But in practice, reduces by ~20% per year

SDN enables industry to reduce OPEX and CAPEX ...and to create new differentiating services

Example: New Data Center

Cost

200,000 servers
Fanout of 20 → 10,000 switches
\$5k vendor switch = \$50M
\$1k commodity switch = \$10M

Savings in 10 data centers = \$400M

Control

More flexible control
Tailor network for services
Quickly improve and innovate

Consequences for research

Ease of trying new ideas

- Existing tools: NOX, Beacon, switches, Mininet
- More rapid technology transfer
- GENI, Ofelia and many more

A stronger foundation to build upon

- Provable properties of forwarding
- New languages and specification tools

Standards will define the interfaces

The role of standards will change:

- Network owners will define network behavior
- Features will be adopted without standards

Programming world

Good software is adopted, not standardized

Summary

- Networks becoming
 - More programmatic
 - Defined by owners and operators, not vendors
 - Faster changing, to meet operator needs
 - Lower opex, capex and power
- Abstractions
 - Will shield programmers from complexity
 - Make behavior more provable
 - Will take us places we can't yet imagine

Administravia ...

- Assignment 4 due December 13
- Internet in the News (10% of final grade)
 - Due next Monday Dec. 1 on Piazza
 - Reading/commenting on others' Internet in the News part of participation mark
 - Recent news: http://www.newsweek.com/china-could-shut-down-us-power-grid-cyber-attack-says-nsa-chief-286119
 - Lots of topics, pick something you find interesting
- □ No class Wednesday!
- □ Next Monday → Mobile networks!