Foundations of Mathematics

Math 300H Section 970

Tenth Homework:

Due 15 November 2022

- 1. Let $A = \{a, b\}$. How many relations are there on A? If possible, do this without listing them.
- 2. Define a relation R on \mathbb{N} (the strictly positive integers) by aRb if $a/b \in \mathbb{N}$. For $c, d \in \mathbb{N}$, under what conditions do we have $cR^{-1}d$?
- 3. Let A be a set with four elements, |A| = 4. What is the maximum number of elements that a relation R on A can contain such that $R \cap R^{-1} = \emptyset$?
- 4. Let $A = \{p, q, r, s\}$. How many relations defined on A are reflexive, symmetric, and transitive and contain the ordered pairs (p, q), (q, r), and (r, s)?
- 5. Let $A = \{a, b, c, d\}$. Give an example of a relation on A that is:
 - (a) reflexive and symmetric but not transitive.
 - (b) reflexive and transitive but not symmetric.
 - (c) symmetric and transitive but not reflexive.
 - (d) reflexive but neither symmetric nor transitive.
 - (e) symmetric but neither reflexive nor transitive.
 - (f) transitive but neither reflexive nor symmetric
- 6. Let C be the set of all polynomials of degree at most 3. An element f of C can then be expressed as $f = ax^3 + bx^2 + cx + d$, where $a, b, c, d \in \mathbb{R}$. Define the relation R on C by pRq if p and q have a root in common. (For example, $p = (x 1)^2$ and $q = x^2 1$ have the root 1 in common so that pRq.) Determine which of the properties: reflexive, symmetric and transitive are possessed by R.
- 7. Let R be an equivalence relation on $A = \{a, b, c, d, e, f, g\}$ such that aRc, bRf, cRd, and dRg. If there are three distinct equivalence classes resulting from R, then determine these equivalence classes and determine all elements of R.