

Competitive Programming From Problem 2 Solution in O(1)

Linear Algebra

Gaussian Elimination - 1

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Systems of linear equations

- System = Consider ALL equations (NOT individually)...each equation is constraint
- Linear Equ = Each term => Coefficient * var
 - E.g. 2x, -y NOT x^2 or log(x) or sin(x)...etc
- Solution Variables can be real values

$$3x + 2y - z = 1$$
 $x = 1$
 $2x - 2y + 4z = -2$ $y = -2$
 $-x + \frac{1}{2}y - z = 0$ $z = -2$

System Independence

- System is independent if none of the equations can be derived algebraically from the others
 - E.g. by scaling one of them
 - E.g. by adding some of them
- 3x + 2y = 6 and 6x + 4y = 12
 - 2nd equation is 2 * first equation
- x 2y = -13x + 5y = 84x + 3y = 7
 - Third equation is the sum of the other two

Free Variables

- Some variables are free to take any value
 - E.g. variable has coefficient zero in all equations
 - E.g. x = -7z 1 and y = 3z + 2.
 - Put value for z, then x and y are computed
- These variables cause system to have infinite solutions..because equations don't force strict constraints on them

Systems of linear equations

1 solution

$$1X + 2Y = 6$$
 $1X + -4Y = -3$

$$-9X + -9Y = -9$$
 , $-7X + -8Y = -8$

Infinite solutions

$$0X + 0Y = 0$$
 $0X + 0Y = 0$

$$2X + 3Y = 9$$
 , $-2X + -3Y = -9$

$$1X + 1Y = 1$$
 , $0X + 0Y = 0$

No solutions

$$0X + 0Y = 0$$
 $0X + 0Y = 4$

$$-6X + 67 = -7$$
 , $-1X + 1Y = -6$

$$1X + 3Y = 1$$
 $2X + 6Y = -1$

Solving 2 equations

```
pair<int, int> prepareFraction(int n, int d)
    int div = gcd(n, d);
    n /= div, d /= div;
    if(d < 0) n *= -1, d*= -1:
    return make pair(n, d);
pair<string, vector<int> > solve2Equations( int ax, int ay, int az,
                                            int bx, int by, int bz)
    if( (!ax && !ay && az) || (!bx && !by && bz) )
        return make pair("NO SOLUTIONS", vector<int>(4) );
    if( (!ax && !ay && !az) || (!bx && !by && !bz) )
        return make pair("INFINITE SOLUTIONS", vector<int>(4) );
    if( ax*by == ay*bx && ax*bz==az*bx && ay*bz==by*az )
        return make pair("INFINITE SOLUTIONS", vector<int>(4) );
    if( ax*by == ay*bx )
        return make pair("NO SOLUTIONS", vector<int>(4) );
    pair<int, int> X = prepareFraction(by*az-ay*bz, by*ax-bx*ay);
    pair<int, int> Y = prepareFraction(bx*az-ax*bz, bx*ay-by*ax);
    int sol[] = {X.first, X.second, Y.first, Y.second };
    return make pair("SOLVED", vector<int>(sol, sol+4) );
```

System Representation

- One way to do that: augmented matrix:
 - Every row is an equation including its right side
 - Left part is equation and right value = right hand side

$$x + 3y - 2z = 5$$
$$3x + 5y + 6z = 7$$
$$2x + 4y + 3z = 8$$

ſ	1	3	-2	5	
	3	5	6	7	.
	2	4	3	8	

Elementary row operations

- Three operations don't change system constraints
- Swap the positions of two rows.
 - Swap (Eq1, Eq2)
- Multiply a row by a nonzero scalar.
 - Eq2 *= 4
- Add to one row a scalar multiple of another.
 - E.g. Eq2 -= 3 Eq1

Unknown Variables Elimination

- Can we use first equation to **eliminate** x in the
 - other 2 equations?
- Eq2 += -2 Eq1
- Eq3 += 1 Eq1

Src: Todo

- Algorithm eliminates unknowns from the equations using the 3 operations
- Iterate over every row:
- For ith row, make matrix diagonal element 1
- Eliminate this variable from other equations
- By end of that, right matrix will turn to an identity matrix, and left one is the answer
 - The popular variation converts system to triangular one then do back substitution

3 major steps

2	1	-1	8
-3	-1	2	-11
-2	1	2	-3

1	1/2	-1/2	4
-3	-1	2	-11
-2	1	2	-3

1	1/2	-1/2	4
0	1/2	1/2	1
-2	1	2	-3

1	1/2	-1/2	4
0	1/2	1/2	1
0	2	1	5

Convert M(1, 1) = 2 to 1 => Eq1 / 2

Convert M(1, 2) = -3 to 0Eq2 -= -3 Eq1

Convert M(1, 3) = -2 to 0Eq3 -= -2 Eq1

1	1/2	-1/2	4
0	1/2	1/2	1
0	2	1	5

1	1/2	-1/2	4
0	1	1	2
0	2	1	5

1	0	-1	3
0	1	1	2
0	2	1	5

1	0	-1	3
0	1	1	2
0	0	-1	1

Convert M(2, 2) = 1/2 to 1 => Eq2 / (1 / 2)

Convert M(1, 2) = 1/2 to 0 Eq1 -= 1/2 Eq2

Convert M(3, 2) = 2 to 0Eq3 -= 2 Eq2

1	0	-1	3
0	1	1	2
0	0	-1	1

1	0	-1	3
0	1	1	2
0	0	1	-1

1	0	0	2
0	1	1	2
0	0	1	-1

1	0	0	2
0	1	0	3
0	0	1	-1

Convert M(3, 3) = -1 to 1 => Eq3 / -1

Convert M(1, 3) = -1 to 0Eq1 -= -1 Eq3

Convert M(2, 3) = 1 to 0Eq2 -= 1 Eq3

$$\begin{bmatrix} 3 & 3 & 12 & 21 & 18 \\ 2 & 4 & 10 & 14 & 16 \\ -2 & 0 & -8 & -18 & -10 \\ 3 & 0 & 11 & 28 & 11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 7 & 6 \\ 2 & 4 & 10 & 14 & 16 \\ -2 & 0 & -8 & -18 & -10 \\ 3 & 0 & 11 & 28 & 11 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 4 & 7 & 6 \\ 0 & 2 & 2 & 0 & 4 \\ 0 & 2 & 0 & -4 & 2 \\ 0 & -3 & -1 & 7 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 7 & 6 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 2 & 0 & -4 & 2 \\ 0 & -3 & -1 & 7 & -7 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 3 & 7 & 4 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & -2 & -4 & -2 \\ 0 & 0 & 2 & 7 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 7 & 4 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 7 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Src: http://linearalgebra4fun.blogspot.ca/2015_06_01_archive.html

- In the ith step, we may notice all the column of ith variable are zeros!
 - So we can't make diagonal 1, even with swap operation
 - Then this variable is free, and system has infinite solution
- We may notice equation is invalid, so no solution (equation e.g. 0x + 0y = 5)
- Generally, we can have Equations !=
 Unknowns..but we can solve it

Gauss-Jordan elimination: Pivot

- Partial pivoting = more stable solution
 - What if current equation has 0 value in diagonal element?
 - What if current equation is small (e.g. 0.00001)
- Swap current equation with another one such that |diagonal element| is maximum
- E.g. current diagonal value 3, but other row is
 -7...so swap the 2 rows
- However, for some matrices still may give inaccurate computations..out of scope

2	1	-1	8
-3	-1	2	-11
-2	1	2	-3

-3	-1	2	-11
2	1	-1	8
-2	1	2	-3

1	1/3	-2/3	11/3
2	1	-1	8
-2	1	2	-3

What max |M(?, 1)|? Eq2 has 3 Swap Eq2 with Eq1

Now do normal processing

Convert M(1, 1) = -3 to 1 => Eq1 / -3

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ