Homework 4

Return your answers by email to jaime.seguel@upr.edu on October 5th, 2018; no later than 4:30PM.

1. Given the NFSA $N = (\{a, b, c, d, e\}, \{0, 1\}, \delta, a, \{e\})$, where

δ	0	1	ε
a	{ <i>c</i> }	$\{b\}$	φ
b	ϕ	$\{a,d\}$	ϕ
c	ϕ	$\{d\}$	$\{b\}$
d	$\{b,c\}$	$\{d\}$	$\{e\}$
e	{ <i>a</i> }	$oldsymbol{\phi}$	ϕ

use the method discussed in class to find

- (a) the language of N;
- (b) a deterministic automaton that is equivalent to N.
- 2. Find a proof of the pumping lemma for regular languages based exclusively on regular expressions (**do not use automata**. The first sentence in your proof should be: *Since L is regular, there is a regular expression R representing L*).