COMP2611: Computer Organization

Introduction to Combinational Logic

□ You will learn about the combinational logic circuits
 □ Do not have internal states (i.e. memoryless),
 □ The output is solely determined by the present input and the circuit,
 □ Can be specified with a truth table or a logic equation (in Boolean algebra expression).
 □ Vs Sequential Logic circuits (the next tutorial)
 □ Have memory,
 □ The output depends on both the current input and the value stored in the memory of the circuits (called state).

Combinational logic

Boolean algebra

- review of the Boolean algebra
- the Sum of Product (SoP) representation
- from Boolean algebra to circuit
- PLA implementation
- K-Maps

Exercises

- ☐ The Input-Output relationship of any combinational logic circuit can be completely specified using either
 - □ a truth table,
 - □ or a Boolean algebra expression.
- ☐ When there are N inputs, the truth table would require as many as 2^N entries.
- ☐ The Boolean algebra expression does not have this "cardinality explosion" problem.

- Boolean algebra consists of
 - Boolean variables (with values equal to either '0' or '1'),
 - □ and binary operators AND ('•'), OR ('+'), NOT ('¯') or (''').
- ☐ The AND, OR, and NOT operations form a functionally complete set, as they can specify any logic function.

Identity laws:

$$A+0=A$$
 $A\cdot 1=A$

$$A \cdot 1 = A$$

■ Annihilator (or Zero and one) laws:

$$A+1=1$$
 $A \cdot 0 = 0$

$$A \cdot 0 = 0$$

□ Complement laws:

$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

$$A \cdot \overline{A} = 0$$

□ Commutativity laws:

$$A+B=B+A$$
 $A\cdot B=B\cdot A$

$$A \cdot B = B \cdot A$$

■ Associativity laws:

$$A+(B+C)=(A+B)+C$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributivity laws:

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C) \qquad A + (B \cdot C) = (A+B) \cdot (A+C)$$

□ Idempotence:

$$A+A=A$$
 $A\cdot A=A$

■ Absorption laws:

$$A + (A \cdot B) = A$$
 $A \cdot (A + B) = A$

■ De Morgan Laws:

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

- Any logic function can be expressed as a two-level representation, either as
 - □ the Sum-of-Products (SoP) representation,
 - □ or as the Product-of-Sums (PoS) representation.
- **□** Example: Assume the truth table for a circuit is given as:

Inp	uts	Outputs	
In0	In1	Out0	Out1
0	0	1	0
0	1	1	1
1	0	0	1
1	1	0	0

Express the truth table using SoP representations in Boolean Algebra.

- □ For each output (Out0, Out1),
 - I. Observe the rows that the output has a value of '1'.
 - \Box For Out0, the 1's are at the 1st and the 2nd rows.

In0	In1	Out0
0	0	1
0	1	1

- II. Write the minterms for the inputs such that the minterms will give 1's for the input patterns in the same rows.
 - For Out0, the two 1's correspond to the input patterns (in0=0,in1=0) and (in0=0,in1=1). The two minterms that will give 1's are $\overline{\text{in0}} \cdot \overline{\text{in1}}$ and $\overline{\text{in0}} \cdot \overline{\text{in1}}$
- III. Write the outputs as the OR operation of the minterms found in step two. For Out0, we have $out0 = \overline{in0} \cdot \overline{in1} + \overline{in0} \cdot \overline{in1}$

- By following the above steps. The required expressions for the two outputs (Out0, Out1) are $\overline{\text{out0}} = \overline{\text{in0}} \cdot \overline{\text{in1}} + \overline{\text{in0}} \cdot \overline{\text{in1}}$ and $\overline{\text{out1}} = \overline{\text{in0}} \cdot \overline{\text{in1}} + \overline{\text{in0}} \cdot \overline{\text{in1}}$ respectively.
- □ Could the expressions for Out0 and Out1 be further simplified using the laws on slide 6?

- ☐ The expression $out0 = \overline{in0} \cdot \overline{in1} + \overline{in0} \cdot in1$ can be viewed as performing the OR operation on two ANDed minterms $\overline{in0} \cdot \overline{in1}$ and $\overline{in0} \cdot \overline{in1}$.
- ☐ The circuit is as follows. Mind the two AND gates that correspond to the AND expressions and the single OR gate that corresponds to the OR expression.

□ What will be the impact on the circuit if we use the simplified expression (mentioned in the last slide) to build the circuit.

Using the same approach, the expression $out1 = \overline{in0} \cdot in1 + in0 \cdot \overline{in1}$ can also be drawn. Combine it with the previous figure we have the overall circuit:

☐ The same circuit can be equivalently represented by a programmable logic array (PLA) circuit.

- ☐ K-Map is a graphical representation of the truth table or logic function
- ☐ In a K-map each cell represents one possible minterm
- Cells are arranged following a Gray code i.e., two adjacent cells are such that the corresponding minterms differ in only one variable
- □ Simplify expression by finding largest size groups of adjacent cells at 1 in the K-Map
 - \Box Can only group 2ⁿ adjacent cells where n = 0, 1, 2, 3, 4, ...
 - □ Table is a toroid (i.e., rightmost cells are adjacent to the leftmost cells and topmost cells are adjacent to bottom cells)
- \Box Example: Simplify F = AB' + AB + A'B

A B	0	1
0	A'B'	A'B
1	AB'	AB

$$F = B + A$$

■ Example: Consider a 7-segment digital display which displays a hexadecimal digit. Each segment is represented by a logic function

- That is, 4 inputs i_3 , i_2 , i_1 , i_0 to represent values 0, ..., 9, a, b, c, d, e, f (to avoid confusion between 0, and 8 on one hand and D and B respectively, on the other hand, we use miniscule b and d representation)
- What is the truth table for segment C?
- Also, use a K-Map to simplify the equation

Truth Table for segment C:

	Inputs				Output
Hexadecimal Digit	i ₃	i ₂	i ₁	i _o	С
Ţ.	0	0	0	0	1
d d ,	0	0	0	1	1
Ç	0	0	1	0	0
G	0	0	1	1	1
L.	0	1	0	0	1
S	0	1	0	1	1
5	0	1	1	0	1
70	0	1	1	1	1
8	1	0	0	0	1
3	1	0	0	1	1
A	1	0	1	0	1
b	1	0	1	1	1
Ę.	1	1	0	0	0
ď	1	1	0	1	1
E	1	1	1	0	0
<u></u>	1	1	1	1	0

☐ K-Map:

i ₁ i ₀	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	0	1	0	0
10	1	1	1	1

$$\Box$$
 $C = i_3' i_1' + i_3' i_0 + i_3' i_2 + i_1' i_0 + i_3 i_2'$

Combinational logic

Boolean algebra

- review of the Boolean algebra
- the Sum of Product (SoP) representation
- from Boolean algebra to circuit
- PLA implementation
- K-maps

Exercises

Question 1: A decoder takes a single N-bit input and outputs 2^N 1-bit signals. The 1-bit output corresponds to the N-bit input bit pattern is true while all other outputs are false. The following figure shows a block diagram for a 2-to-4 decoder.

- Why a 2-bit input can generate 4 outputs in the decoder?
- If the input bits are 11, what will happen to the outputs of the decoder?
- Is it possible to have more than one outputs asserted?
- Name two potential uses of the decoder.
- Implement the decoder using Logisim

Question 2: A multiplexor is a devices that given the control signal, selects one of the inputs to be forwarded to the output. The following figure shows a 4-input multiplexor.

Exercises

- If the inputs A/B are 32-bit in width, what is the data width of the Output O?
- What is the maximum number of inputs if the control signal is 10-bit in width?
- What is the bit-width of the control signal for the multiplexor if there are 9 inputs?

- ☐ Today we have reviewed:
 - □ simple Boolean algebra and the related laws,
 - reducing truth table to the canonical Sum-of-Products form,
 - converting simple Boolean algebra expressions to circuits,
 - simple combinational logic circuits,
 - K-maps.