## Lecture 4

# CS436/536: Introduction to Machine Learning

**Zhaohan Xi Binghamton University** 

zxi1@binghamton.edu

## Two Step Approach to "Real" Learning ( $E_{out} \approx 0$ )

For Fixed N,  $\delta$ :

Step 1: Ensure  $E_{out} \approx E_{in}$ 

Step 2: Make  $E_{in}$  small

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$
generalization error bar



## The complexity of f

More complex target functions are harder to learn

- Simple  $f \Rightarrow \text{can use small } \mathcal{H} \text{ to get } E_{in}(g) \approx 0 \text{ using smaller } N$
- Complex  $f \Rightarrow$  need large  $\mathcal{H}$  to get  $E_{in}(g) \approx 0$  and need larger N

#### The Issue of Noise

- Measurement error: When  $y_n \neq f(x_n)$
- Non-deterministic target function: the target is a distribution P(y|x)

$$f(x_n)$$

Data points (x, y) drawn from joint distribution P(x, y) = P(x)P(y|x)

Our theory works for non-deterministic target functions!

- Applies to any particular random realization of the target function
- Can learn the target P(y|x) so long as data points are drawn from P(x) i.i.d.

## Learning Problem with Error Measure, Noisy Target



#### Linear Models for Three Learning Problems



- Fundamental: Building block for more complex models
- First model to try!

#### Linear Models: The Linear Signal

$$h(x) = \mathbf{w}^T x$$
, where  $\mathbf{w} \in \mathbb{R}^d$ ,  $\mathbf{x} \in 1 \times \mathbb{R}^d$ 

## Linear Models: The Linear Signal



#### Linear Model for Classification

$$\mathcal{H} = \{h: h(x) = sign(w^T x)\}\$$

Classification error on point x:  $e(h(x), f(x)) = [h(x) \neq f(x)]$ Overall error is average value of point-wise error

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\mathbf{x}_n), f(\mathbf{x}_n))$$

$$E_{out}(h) = \mathbb{E}_{\mathbf{x}}[e(h(\mathbf{x}), f(\mathbf{x}))]$$

Ultimate Goal: Minimize  $E_{out}(h)$ 

Typical Learning Algorithm Goal: Minimize  $E_{in}(h)$ 

## How to Learn a Final Hypothesis g from $\mathcal{H}$ ?

- Want: Select g from  $\mathcal{H}$  so that  $g \approx f$
- Certainly want  $g \approx f$  on the dataset  $\mathcal{D}$ , i.e.,  $g(\mathbf{x}_n) = y_n$  for each  $(x_n, y_n)$  in  $\mathcal{D}$
- But  $\mathcal H$  is uncountably infinite (more on this later) How to find g in the infinite hypothesis set  $\mathcal H$ ?
- O

Start with some weights and improve it iteratively



Income

## The Perceptron Learning Algorithm (PLA)

#### A simple iterative algorithm

- 1. w(0) = 0 Start at some weights
- 2. **for** iteration t = 1, 2, 3, ... **do**
- 3. the weight vector is w(t)
- 4. from  $(x_1, y_1)$ ,  $(x_2, y_2)$ , ..., $(x_N, y_N)$  pick any misclassified example
- let  $(x_*, y_*)$  be the misclassified example Observe a misclassification  $sign(\mathbf{w}(t) \cdot \mathbf{x}_*) \neq y_*$
- 6. update the weights

$$\boldsymbol{w}(t+1) = \boldsymbol{w}(t) + \boldsymbol{y}_* \boldsymbol{x}_*$$

The update rule: Correct a misclassification

7. 
$$t \leftarrow t+1$$

"incremental learning" one example at a time

#### The Perceptron Update Rule

$$\bullet w(t+1) = w(t) + y_* x_*$$

Mistake when  $y_* = +1$ : Increase the score of  $\mathbf{x}_*$   $\mathbf{w}^T(t+1)\mathbf{x}_* = (\mathbf{w}^T(t) + \mathbf{x}_*^T)\mathbf{x}_* = \mathbf{w}^T(t)\mathbf{x}_* + \mathbf{x}_*^T\mathbf{x}_*$   $> \mathbf{w}^T(t)\mathbf{x}_*$ 

Mistake when 
$$y_* = -1$$
: Decrease the score of  $\mathbf{x}_*$ 

$$\mathbf{w}^T(t+1)\mathbf{x}_* = (\mathbf{w}^T(t) - \mathbf{x}_*^T)\mathbf{x}_* = \mathbf{w}^T(t)\mathbf{x}_* - \mathbf{x}_*^T\mathbf{x}_*$$

$$< \mathbf{w}^T(t)\mathbf{x}_*$$

$$sign(w_1x_1 + w_2x_2 + \dots + w_dx_d - threshold)$$
  
 $sign(w_1x_1 + w_2x_2 + \dots + w_dx_d + w_0)$ 

## The Perceptron Update Rule



obtuse angle



## The Perceptron Update Rule





#### Does PLA Work?

Theorem: If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one



## Pocket Algorithm (for Linear Classification)

#### The Pocket Algorithm:

- Run the Perceptron Learning Algorithm  $w(t+1) = w(t) + x_*y_*$ Here,  $x_*$  is any data point misclassified due to w(t)
- In each round, record  $E_{in}$  (and w) if it is the best  $E_{in}$  observed so far

#### Other approaches:

- Linear regression (coming soon)
- Logistic regression (coming soon)
- Linear Programming

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d+1}} \frac{1}{N} \sum_{n=1}^{N} 1 - y_n(\boldsymbol{w}^T \boldsymbol{x}_n)$$

## **Evaluating Classifiers**

Class:

Bat first= 'yes'

Bat first = 'no'



| Outlook  | Temperature | Humidity | Wind  | Bat First |
|----------|-------------|----------|-------|-----------|
| Rainy    | Hot         | High     | False | No        |
| Rainy    | Hot         | High     | True  | No        |
| Overcast | Hot         | High     | False | Yes       |
| Sunny    | Mild        | High     | False | Yes       |
| Sunny    | Cool        | Normal   | False | Yes       |
| Sunny    | Cool        | Normal   | True  | No        |
| Overcast | Cool        | Normal   | True  | Yes       |
| Rainy    | Mild        | High     | False | No        |
| Rainy    | Cool        | Normal   | False | Yes       |
| Sunny    | Mild        | Normal   | False | Yes       |
| Rainy    | Mild        | Normal   | True  | Yes       |
| Overcast | Mild        | High     | True  | Yes       |
| Overcast | Hot         | Normal   | False | Yes       |
| Sunny    | Mild        | High     | True  | No        |
| Rainy    | Hot         | High     | False | No        |

#### Classifier Evaluation Metrics: Confusion Matrix

#### • Confusion Matrix (CM):

| Actual class\Predicted class | $C_1$                | ¬ C <sub>1</sub>     |
|------------------------------|----------------------|----------------------|
| $C_{\mathtt{1}}$             | True Positives (TP)  | False Negatives (FN) |
| ¬ C <sub>1</sub>             | False Positives (FP) | True Negatives (TN)  |

- In a confusion matrix with m classes,  $CM_{i,j}$  indicates # of tuples in class i that were labeled by the classifier as class j
  - May have extra rows/columns to provide totals

#### Example of Confusion Matrix:

| Actual class\Predicted class | Bat first = yes | Bat first = no | Total |
|------------------------------|-----------------|----------------|-------|
| Bat first = yes              | 6954            | 46             | 7000  |
| Bat first = no               | 412             | 2588           | 3000  |
| Total                        | 7366            | 2634           | 10000 |

## Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity



- Classifier accuracy, or recognition rate
  - Percentage of test set tuples that are correctly classified
     Accuracy = (TP + TN)/All
- Error rate: 1 accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
  - One class may be rare
    - E.g., fraud, or HIV-positive
  - Significant majority of the negative class and minority of the positive class
  - Handling the class imbalance problem
    - Sensitivity (recall): True positive recognition rate
      - Sensitivity = TP/P
    - **Specificity**: True negative recognition rate
      - Specificity = TN/N

#### Classifier Evaluation Metrics: Precision and Recall, and F-measures

| A\P | С  | ¬C |     |
|-----|----|----|-----|
| С   | TP | FN | Р   |
| ¬C  | FP | TN | N   |
|     | P' | N' | All |

• **Precision** (exactness): what % of tuples that the classifier labeled as positive are actually positive?

$$P = Precision = \frac{TP}{TP + FP}$$



Recall =

• **Recall** (completeness): what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN}$$

• Range: [0, 1]



https://en.wikipedia.org/wiki/Precision\_and\_recall

#### Classifier Evaluation Metrics: Precision and Recall, and F-measures

- The "inverse" relationship between precision & recall
- We want one number to say if a classifier is good or not
- F measure (or F-score): harmonic mean of precision and recall
  - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)P * R}{\beta^2 P + R}$$
 Assigning  $\beta$  times as much weight to recall as to precision

- F1-measure (balanced F-measure)
  - That is, when  $\beta = 1$ ,

$$F_1 = \frac{2P * R}{P + R}$$

#### Classifier Evaluation Metrics: Example

• Use the same confusion matrix, calculate the measure just introduced

| Actual Class\Predicted class | cancer = yes | cancer = no | Total |
|------------------------------|--------------|-------------|-------|
| cancer = yes                 | 90           | 210         | 300   |
| cancer = no                  | 140          | 9560        | 9700  |
| Total                        | 230          | 9770        | 10000 |

