

LOONGSON

LS8T41505 时钟芯片

数据手册

V1.2

2024 年 09 月

龙芯中科(南京)技术有限公司

版权声明

本文档版权归龙芯中科(南京)技术有限公司所有,并保留一切权利。未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科 (南京) 技术有限公司

地址:南京市江北新区星火路 19 号 11 栋 电话(Te1): 025-58600707

版本信息

	文档名	LS8T41505 时钟芯片数据手册		
版本信息	版本号	V1. 2		
	创建人	芯片研发二部		

更新历史

序号	版本号	更新内容
1	V1.0	内部试用版
2	V1. 03	初版发布
3	V1.04	删除了第二章输出频率路数; 修订了第三章表 1 管脚说明。
4	V1. 1	第二章工作温度变更为-40℃~+105℃; 第三章表 1 管脚说明中 VDD00 修订为支持 1.8V 或 3.3V 供电, XIN 输入更改为支持晶振(1.8V); 第五章增加表 2 中 θ J _c 为 42℃/W,表 3VDD00 推荐电压值新增 1.8V; 第六章表 4 中锁定时间新增从使能上电到 PLL 锁定时间; 第八章表 5 增加对 0UT0B 同相位的描述; 第十一章更新订购信息表。
5	V1. 2	修订第一章概述的描述内容; 第二章 ESD 信息改到第四章; 第三章管脚说明 13、14、36、39、40 脚进行了修订; 第四章优化了图 2 典型应用电路; 第五章修改了表 3 输入时钟的推荐值; 第七章纠正了功能框图; 第八章更新了上电时序图; 第十一章《订购信息》中修改了 LS8T41505 的工作温度范围; 第十二章增加对湿度敏感等级要求描述; 附件 A 回流焊接温度更改为 245℃; 新增附件 B PCB 封装尺寸。

技术支持

可通过邮箱或问题反馈网站向我司提交芯片产品使用的问题,并获取技术支持。

售后服务邮箱: service@loongson.cn

目 录

1.	概述	1
2.	产品特性	1
3.	引出端排列图	1
4.	典型应用	4
5.	最大额定值与推荐工作条件	5
6.	电气特性	6
7.	原理框图	7
8.	功能描述	8
9.	封装形式图、封装尺寸1	0
10.	产品标识1	1
11.	订购信息1	.1
12.	使用操作规程及注意事项1	1
13.	运输与储存1	2
14.	开箱与检查1	2
附付	件 A 焊接温度1	.3
附有	件 B PCB 封装尺寸1	4

1. 概述

LS8T41505 时钟芯片支持 25MHz 时钟晶体输入接口,输出兼容 LVDS、LVCMOS 和 LPHCSL 不同输出模式的时钟生成器,其中 LVCMOS 最大可支持传输 100MHz 的时钟信号,LVDS 最大可支持传输 200MHz 的时钟信号,LPHCSL 最大可支持传输 100MHz 的时钟信号。自主可控设计,针对龙芯平台时钟需求可提供 4 种配置模式输出不同频率组合,灵活应对多种需求。可应用于 PC 及工控主板,支持 PCIE2. 0。

2. 产品特性

- 支持输入电压为 3.3V、1.8V;
- 兼容 LVCMOS, LPHCSL 和 LVDS 标准模式的输出;
- 支持输出频率模式选配:
 - OUTO: 25MHz/100MHz LVCMOS;
 - OUT1: 33.33MHz LVCMOS/100MHz LP-HCSL/25MHz LP-HCSL;
 - OUT2: 100MHz LVCMOS/100MHz LP-HCSL/200MHz LVDS/156.25MHz LP-HCSL;
 - OUT3, 5-11: 100MHz LP-HCSL;
 - OUT4: 100MHz/200MHz LVDS/100MHz LP-HCSL;
- 25MHz 晶体作为输入参考;
- 工作温度-40℃~+105℃。

3. 引出端排列图

图 1 为 LS8T41505 时钟芯片管脚排列图,表 1 为 LS8T41505 时钟芯片的管脚说明。

图1管脚排列图

表 1 管脚说明

引脚名	信号名	输入输出	功能
1	OUT10B	Output	Output Clock10 的反相时钟,输出 100MHz LP-HCSL 信号
2	XOUT	Input	晶体振荡器接口输出
3	XIN/REF	Input	25MHz 晶体振荡器,或单端 25MHz 基准时钟、晶振接口输入(1.8V)
4	VDDA	Power	模拟功能电源引脚, 1.80V
5	VDDO	Power	OUT3, OUT5~11/OUT3B, OUT5B~11B 的电源引脚, 1.80V
6	OUT9	Output	Output Clock9,输出 100MHz LP-HCSL 信号
7	OUT9B	Output	Output Clock9 的反相时钟,输出 100MHz LP-HCSL 信号
8	OUT8	Output	Output Clock8,输出 100MHz LP-HCSL 信号
9	OUT8B	Output	Output Clock8 的反相时钟,输出 100MHz LP-HCSL 信号
10	OUT7	Output	Output Clock7,输出 100MHz LP-HCSL 信号
11	OUT7B	Output	Output Clock7的反相时钟,输出 100MHz LP-HCSL 信号
12	OE	Input	所有输出使能,低电平有效
13	SEL1	Input	配置选择引脚,进行输出频率模式选配,详见表 5,默认内部上拉
14	SEL0	Input	配置选择引脚,进行输出频率模式选配,详见表 5,默认内部上拉
15	VDD	Power	1.80V
16	VDDO	Power	OUT3, OUT5~11/OUT3B, OUT5B~11B 的电源引脚, 1.80V
17	OUT6	Output	Output Clock6,输出 100MHz LP-HCSL 信号

引脚名	信号名	输入输出	功能
18	OUT6B	Output	Output Clock6 的反相时钟,输出 100MHz LP-HCSL 信号
19	OUT5	Output	Output Clock5,输出 100MHz LP-HCSL 信号
20	OUT5B	Output	Output Clock5 的反相时钟,输出 100MHz LP-HCSL 信号
21	VDD04	Power	OUT4 的电源, 3.30V
22	OUT4	Output	Output Clock4,输出 100MHz LP-HCSL 或 100MHz/200MHz LVDS 信号
23	OUT4B	Output	Output Clock4 的反相时钟,输出 100MHz LP-HCSL 或 100MHz/200MHz LVDS 信号
24	NC	NC	空脚,悬空处置
25	NC	NC	空脚,悬空处置
26	NC	NC	空脚,悬空处置
27	VDDO	Power	OUT3, OUT5~11/OUT3B, OUT5B~11B 的电源引脚, 1.80V
28	OUT3B	Output	Output Clock3 的反相时钟,输出 100MHz LP-HCSL 信号
29	OUT3	Output	Output Clock3,输出 100MHz LP-HCSL 信号
30	VDD_Core	Power	模拟电源, VCO 单独供电, 1.80V
31	VDD	Power	1.80V
32	NC	NC	空脚,悬空处置
33	NC	NC	空脚,悬空处置
2.4	OUTOD	0	Output Clock2 的反相时钟,输出 100MHz LVCMOS 或 100MHz LP-HCSL
34	OUT2B	Output	或 200MHz LVDS 信号或 156. 25MHz LP-HCSL 信号
35	OUT2	Output	Output Clock2,输出 100MHz LVCMOS 或 100MHz LP-HCSL 或 200MHz LVDS 信号或 156. 25MHz LP-HCSL 信号
36	VDD02	Power	OUT2/OUT2B 的电源, PLL 的供电, 3.30V
37	OUT1B	Output	Output Clock1 的反相时钟,输出 33. 33MHz LVCMOS 时为同相位,输出 100MHz LP-HCSL 或 25MHz LP-HCSL 差分信号
38	OUT1	Output	Output Clock1,输出 33.33MHz LVCMOS 或 100MHz LP-HCSL 或 25MHz LP-HCSL 信号
39	VDD01	Power	OUT1/OUT1B 的电源, OSC 的电源, 3.30V
40	TEST_OUT	Output	模拟信号观察口,预留测试点位
41	OUT11	Output	Output Clock11,输出 100MHz LP-HCSL 信号
42	OUT11B	Output	Output Clock11 的反相时钟 ,输出 100MHz LP-HCSL 信号
43	VDDO	Power	OUT3, OUT5~11/OUT3B, OUT5B~11B 的电源引脚, 1.80V
44	VDD	Power	1.80V
45	OUTOB	Output	Output ClockOB, 输出 25MHz/100MHz LVCMOS 同相位信号
46	VDD00	Power	OUTO/OUTOB 的电源,支持 1.80V 或 3.30V
47	OUT0	Output	Output ClockO,输出 25MHz/100MHz LVCMOS 信号
48	OUT10	Output	Output Clock10,输出 100MHz LP-HCSL 信号
ePAD	GND	GND	地

4. 典型应用

LS8T41505 时钟芯片满足龙芯 CPU 的时钟应用需求,主要搭配 7A1000、7A2000 等使用。 典型应用如下图:

图 2 典型应用电路

注意事项:

1) 41505 引脚匹配电阻的选择:

刊冊早	引脚号 引脚功能	引脚类型		脚阻抗/図	欠姆	匹配电阻/欧姆			备
기사		71脚矢垒	最小	标准	最大	最小	标准	最大	注
45	OUTOB	LVCMOS	30		45	5		20	
47	OUT0	LVCMOS	20		40	10		30	
37, 38	OUT1/	LVCMOS	20		30	20	24	30	
	OUT1B	LP-HCSL	13		19	31	33	37	
34, 35	OUT2/	LVCMOS	20		30	20	24	30	

		LP-HCSL	13	19	31	33	37	
		LVDS	70	90	10		30	
28, 29	OUT3/ OUT3B	LP-HCSL	13	19	31	33	37	
00.00	OUT4/	LP-HCSL	13	19	31	33	37	
22, 23	OUT4B	LVDS	70	90	10		30	
19, 20, 17, 18, 1	OUT5-OUT11							
0, 11, 8, 9, 6, 7,	/OUT5B-OUT	LP-HCSL	13	19	31	33	37	
1, 48, 41, 42	11B							

- 2) 匹配电阻尽可能靠近芯片引脚,减少匹配电阻到芯片引脚这段线上阻抗变化带来的 影响;
- 3) 时钟信号线走线需要满足相应协议的要求,同时控制其特征阻抗,减少这段线上阻 抗变化带来的影响;
- 4) OUT1 和 OUT1B, OUT2 和 OUT2B, OUT3 和 OUT3B, OUT4 和 OUT4B, OUT5 和 OUT5B, OUT6 和 OUT6B, OUT7 和 OUT7B, OUT8 和 OUT8B, OUT9 和 OUT9B, OUT10 和 OUT10B, OUT11 和 OUT11B 为差分信号时,需要等长;
 - 5) 建议 epad 底部过孔矩阵尽可能多以提高 PCB 板散热能力。

5. 最大额定值与推荐工作条件

绝对最大额定值如下:

表 2 绝对最大额定值

人。	
数字电源电压 VDD	0V∼2. 7V
数字内核电压 VDD_CORE	0V∼2.7V
模拟电源电压 VDDA	0V∼2. 7V
输出驱动供电电压 VDDO	0V∼2. 7V
输出驱动供电电压 VDD00	0V∼5. 0V
输出驱动供电电压 VDD01	0V∼5. 0V
输出驱动供电电压 VDD02	0V∼5. 0V
输出驱动供电电压 VDD04	0V∼5. 0V
贮存温度	-65°C ~150°C
最大工作电流	200mA
θ Јс	42℃/W
ESD HBM	1000V

推荐工作条件如下:

表 3 推荐工作条件

数字电源电压 VDD	1.8V ± 5%
数字内核电压 VDD_CORE	1.8V ± 5%

模拟电源电压 VDDA	1.8V±5%
输出驱动供电电压 VDDO	1.8V±5%
输出驱动供电电压 VDD00	1.8V±5%或 3.3V±5%
输出驱动供电电压 VDD01	3.3V±5%
输出驱动供电电压 VDD02	3.3V±5%
输出驱动供电电压 VDD04	3.3V±5%
输入时钟	25MHz ± 20ppm
工作温度	-40°C∼+105°C

6. 电气特性

除另有规定外, 电特性应按表 4 的规定, 并适用于全温度范围。

表 4 电特性

		条件 VDD00=VDD01=VDD02=VDD04=3.3V×		极限值		
特性	符号	$ \begin{array}{c} (1\pm10\%) \text{ ,} \\ \text{VDDO=VDDA=VDD_CORE=VDD=1.8V} \times (1\\ \pm10\%) \text{ , } -40\% \leqq T_{\text{A}} \leqq 105\% \\ \end{array} $	最小	典型	最大	単位
输入低电平	$V_{\scriptscriptstyle \mathrm{IL}}$	适用于 OE	-0.3		0.5	V
输入高电平	V_{IH}	适用于 SEL0、SEL1	1.2	1.8	2.1	V
	IVDD			7. 5		mA
	IVDDA			1		mA
	IVDD_CORE			1		mA
电源电流	IVDDO	VDD00=VDD01=VDD02=VDD04=3.63V,		80		mA
电极电机	IVDD00	VDDO=VDDA=VDD_CORE=VDD=1.98V		4. 5		mA
	IVDD01			23		mA
	IVDD02			65		mA
	IVDD04			20		mA
上电时间	$t_{\scriptscriptstyle{ ext{PU}}}$		0.05		5	ms
晶体特性						
振荡模式			Fı	ındamenta	1	
频率	REF			25. 00		MHz
等效串联电阻	ESR			10	100	Ω
并联电容	Co			3. 1	7	рF
晶体负载电容	$C_{\scriptscriptstyle L}$		6	6.8	10	рF
最大晶体驱动能力					100	μW
输出负载电容	$C_{\scriptscriptstyle LOAD_OUT}$	3.3V LVCMOS			15	pF
LVCMOS 模式						
输出高电平	V_{OH}		2.4		3.3	V
输出低电平	V_{ol}	VDDO0=VDD01=VDD02=VDD04=3.3V, VD			0.4	V
输入高电平	V_{IH}	DO=VDDA=VDD_CORE=VDD=1.8V	1.2	1.5	1.8	V
输入低电平	$V_{\scriptscriptstyle \mathrm{IL}}$		0		0.2	V

LVDS 模式						
LVDS 峰峰值	V _{ot}		240		460	mV
LVDS 峰峰值变化	Δ V _{OD}				50	mV
LVDS 共模电平	V _{os}	VDD00=VDD01=VDD02=VDD04=3.3V, VD	1.12	1.3	1.40	V
LVDS 共模电平变化	ΔV_{os}	DO=VDDA=VDD_CORE=VDD=1.8V			50	mV
LVDS 共模电流	I_{os}			12	24	mA
LVDS 共模电平变化	$I_{ ext{OSD}}$			6.8	24	uA
LP-HCSL 模式						
LPHCSL 高电平	V_{OH}	VDD00=VDD01=VDD02=VDD04=3.3V, VD	0.60		0.85	V
LPHCSL 低电平	$V_{\scriptscriptstyle OL}$	DO=VDDA=VDD_CORE=VDD=1.8V	-0. 15		0.15	V
上升/下降沿时间	$\mathrm{t_{\scriptscriptstyle R}}/\mathrm{t_{\scriptscriptstyle F}}$	VDDO0=VDD01=VDD02=VDD04=3. 3V, VD D0=VDDA=VDD_CORE=VDD=1. 8V	1		3	ns
压摆率	$t_{\mathtt{RF}}$		0.22		0.85	V/ns
电气特性					,	<u>'</u>
输入频率	$\mathbf{f}_{\scriptscriptstyle \mathrm{IN}}$			25.00		MHz
输出频率	$\mathbf{f}_{ ext{out}}$		25		200	MHz
VCO 频率	$\mathrm{f}_{ ext{vco}}$	VCO 工作频率范围		2000/ 2500		MHz
鉴相器频率	$\mathrm{f}_{ ext{ iny PFD}}$	鉴相器工作频率		25		MHz
环路带宽	${ m f}_{\scriptscriptstyle {BW}}$	输入频率为 25MHz	0.05		0.3	MHz
输入占空比	$t_{\scriptscriptstyle 2}$		45		55	%
输出占空比	t_3		40		60	%
压摆率	$t_{\scriptscriptstyle{4}}$	3.3V LVCMOS 输出时间和上升时间 (负载=5pF)	1.2		2.7	V/ns
上升时间/下降时间	$t_{\scriptscriptstyle{5}}$	LVDS	0.5	1	3	ns
		RMS 相位 jitter, 参考频率时钟 (OUTO), 25MHz LVCMOS 输出	0.5	1	3	ps
时钟 jitter	$\mathbf{t}_{\scriptscriptstyle{6}}$	RMS 相位 jitter,差分输出,100MHz LP-HCSL 输出		1	3	ps
総会財富	+	从电源上电到 PLL 锁定时间		10		ms
锁定时间	$t_{\scriptscriptstyle{7}}$	从使能上电到 PLL 锁定时间		2	4	ms
		PCB 走线长度(LVCMOS)			30	cm
输出驱动能力		PCB 走线长度(LVDS)			30	cm
		PCB 走线长度(LP-HCSL)			30	cm

7. 原理框图

器件功能框图见图 3。

图 3 功能框图

8. 功能描述

本器件是一款时基电路,支持 25MHz 时钟晶体输入接口,可灵活配置反馈分频比,输出兼容 LVDS、LVCMOS 和 LPHCSL 不同输出模式的时钟生成器,能够产生相对于参考输入时钟频率不同倍率的时钟。输出频率模式可选配,其中 LVCMOS 可支持传输 100MHz 的时钟信号,LVDS可支持传输 200MHz 的时钟信号,LPHCSL 可支持传输 100MHz 的时钟信号。可通过 SEL1、SEL0管脚进行输出频率模式选配,SEL1 和 SEL0 默认为 1。详见下表:

SEL1/SEL0 10 00 25MHz LVCMOS OUTO 100MHz LVCMOS 100MHz LVCMOS 100MHz LVCMOS 100MHz LVCMOS 同 100MHz LVCMOS 同 100MHz LVCMOS 同相 **OUTOB** 25MHz LVCMOS 同相位 相位 相位 位 33.33MHz LVCMOS 同 OUT1/OUT1B 25MHz LP-HCSL 25MHz LP-HCSL 相位 100MHz LVCMOS 200MHz LVDS OUT2/OUT2B 156.25MHz LP-HCSL 180 度相位 100MHz LP-HCSL OUT4/OUT4B 200MHz LVDS 100MHz LVDS 100MHZ LVDS OUT3, OUT5~11/ 100MHZ LP-HCSL 100MHZ LP-HCSL 100MHZ LP-HCSL OUT3B, OUT5~11B

表 5 输出频率配置说明

PLL 特性:

PLL 环路滤波器带宽范围取决于输入的参考频率,可以设置的范围如下表:

输入参考频率(MHz)	环路带宽最小值(KHz)	环路带宽最大值(KHz)
25	50	400

晶体输入 (XIN/REF):

所使用的晶体应该是基模石英晶体,不能采用谐波晶体。晶体制造商将晶体校准到具有特定负载电容值的标称频率,具体的负载电容值可参考晶体手册。当振荡器负载电容与晶体负载电容匹配时,振荡频率将是准确的,当振荡器负载电容低于晶体负载电容时,振荡频率将高于标称值,反之亦然,需要确保振荡器负载电容与晶体负载电容匹配。设置振荡器负载电容,有两种调谐方式,一个在 XIN,一个在 XOUT。他们可独立调整,但通常两个电容器使用相同的值。也可支持单端 25MHz 基准时钟或晶振输入(1.8V)。

OE 端口和功能:

管脚号	管脚名称	描述	功能
12	OE	全部输出使能, 需下拉处置	低电平有效

输出驱动器:

OUT1, OUT2, OUT4 时钟输出可以兼容 LVCMOS、LP-HCSL 和 LVDS 三种模式的输出驱动器; OUT3, 5-11 时钟输出是 LP-HCSL 输出模式。每个输出驱动器都采用同一个使能控制端 OE, 当使能端口信号无效时,输出为高阻态。

上电顺序:

上电顺序要求先上电 1.8V,再上电 3.3V, 1.8V 与 3.3V 上电间隔时间至少 1ms,所有电源端口上电时必须是线性的、单调的。

图 4 上电时序图

9. 封装形式图、封装尺寸

器件尺寸为 6.00 mm×6.00 mm×0.60 mmMAX,器件封装形式为塑封 QFN48,芯片下方有散热焊盘,外形尺寸见图 5。主要材料包括金属框架、键合丝、粘片胶和塑封料。

单位为毫米

尺寸	MIN	NOM	MAX	尺寸	MIN	NOM	MAX
A	0.50	0. 55	0.60	b	0. 15	0.20	0. 25
A1	_	0.02	0.05	С	0. 12	0.15	0.18
D	5. 90	6.00	6. 10	h	0.30	0.35	0.40
D1	4. 10	4. 20	4. 30	е	_	0.40	-
Е	5. 90	6.00	6. 10	Ne	_	4.40	_
E1	4. 10	4. 20	4. 30	Nd	_	4.40	-
L	0.35	0.40	0.45				

图 5 外形尺寸图

10. 产品标识

器件为激光打标,标识如图6所示。

图 6 器件标志图

每一器件应标志下列内容:

- a) 定位点: ●;
- b)第一行:器件型号"LS8T41505-A"; A 为器件等级:空白为商业级,-i、-H 为工业级:
 - c) 第二行: B 为识别号,前4位年周号,后5位为系统生成识别号;
- d)第三行: C 为器件序列号,每批每颗不同,从 00001 开始;二维码与第二行和第三行内容一致。

11. 订购信息

表 6 LS8T41505 订购信息

芯片型号	封装	工作温度
LS8T41505	塑封	0°C~+70°C
LS8T41505-i	塑封	-40°C~+85°C
LS8T41505-H	塑封	-40°C~+105°C

12. 使用操作规程及注意事项

器件必须采取防静电措施进行操作。取用芯片时应佩戴防静电手套,防止人体电荷对器件的静电冲击,损坏器件。将器件取出时,应注意施力方向以确保芯片管脚均匀受力。不要因为用力过猛,损坏芯片管脚,导致无法使用。

推荐下列操作措施:

- a) 器件应在防静电的工作台上操作,或带指套操作;
- b) 试验设备和器具应接地;
- c) 不能触摸器件引线;
- d) 器件应存放在 ESD 防护托盘和防静电袋中;
- e) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物;
- f) 相对湿度尽可能保持在 45%~75%;
- g) 器件湿度敏感等级为 MSL3, 开包装后, 器件允许暴露在空气中的累积时间应不超过 168 小时。

13. 运输与储存

器件存储环境温度是: 10℃~30℃。

使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保芯片不要与外物发生碰撞。

14. 开箱与检查

开箱使用芯片时,请注意观察芯片管壳上的产品标识。确定产品标识清晰,无污迹,无 擦痕。同时,注意检查芯片管壳及引脚。确定管壳无损坏,无伤痕,管脚整齐,无缺失,无 变形。

附件 A 焊接温度

芯片的回流焊焊接温度: 245℃。手动焊接时使用 300℃~360℃热风枪进行焊接。

附表 A.1 无铅工艺的封装回流最大温度表

Package Thickness	Volume mm³ < 350	Volume mm³ 350 - 2000	Volume mm³ > 2000
< 1.6 mm	260 ° C *	260 ° C *	260 ° C *
1.6 mm - 2.5 mm	260 ° C *	250 ° C *	245 ° C *
> 2.5 mm	250 ° C *	245 ° C *	245 ° C *

^{*} Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature at the rated MSL level

附表 A. 2 回流焊接温度分类表

Profile Feature		Pb-Free Assembly
Average ramp-up rate (Tsmax to Tp)		3° C/second max.
	Temperature Min (Tsmin)	150 ° C
Preheat	Temperature Max (Tsmax)	200 ° C
	Time (Tsmin to Tsmax) (ts)	60-180 seconds
Time maintained above	Temperature (TL)	217 ° C
	Time (tL)	60-150 seconds
Peak Temperature (Tp)		245° C
Time within 5°C of actual Peak Temperature (tp)2		20-40 seconds
Ramp-down Rate		6 ° C/second max.
Time 25°C to Peak Temperature		8 minutes max.

附图 A.1 焊接回流曲线

附件 B PCB 封装尺寸

EPAD 4.5mm SQ

附图 B. 1 PCB 封装尺寸图