Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

26 Febbraio 2016

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	10	
problema 2	20	
totale	30	

1. (a) Si consideri la macchina a stati finiti seguente con ingressi $I=\{1,\bot\}$ e uscite $U=\{0,1,\bot\}$:

Macchina M:

- stati: $s_a, s_b, s_c, s_d \text{ con } s_a \text{ stato iniziale};$
- transizione da s_a a s_b : 1/1, transizione da s_b a s_c : 1/0, transizione da s_c a s_d : 1/1, transizione da s_d a s_a : 1/0.

Si risponda alle seguenti domande:

i. Si disegni il diagramma di transizione della macchina ${\cal M}.$

ii. Si definisca la nozione di relazione di bisimulazione tra due macchine a stati finiti.

Si ottenga una macchine a stati finiti \tilde{M} bisimile alla precedente con due soli stati.

Traccia di risposta.

Macchina \tilde{M} :

- stati: $s_A, s_B \text{ con } s_A \text{ stato iniziale};$
- transizione da s_A a s_B : 1/1, transizione da s_B a s_A : 1/0.

iii. Si scriva la relazione di bisimulazione B tra le due macchine M e \tilde{M} . Traccia di soluzione.

$$B = \{(s_a, s_A), (s_b, s_B), (s_c, s_A), (s_d, s_B), (s_A, s_a), (s_B, s_b), (s_A, s_c), (s_B, s_d)\}.$$

E' la relazione di bisimulazione massima.

iv. Si applichi a M l'algoritmo di minimizzazione che ottiene min(M), una macchina equivalente a M con un numero minimo di stati tra quelle bisimili a M.

Traccia di soluzione.

Si ottiene la macchina \tilde{M} .

v. Si confronti \tilde{M} con min(M).

Traccia di soluzione.

 $\min(M)$ e \tilde{M} sono la medesima macchina a meno di ridenominazione degli stati.

2. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{416} definita da:

- $P = \{p_1, p_2, p_3, p_4\}$
- $T = \{t_1, t_2, t_3, t_4\}$
- $A = \{(p_1, t_1), (p_1, t_2), (p_2, t_3), (p_3, t_1), (p_3, t_2), (p_4, t_4), (t_1, p_2), (t_2, p_4), (t_3, p_1), (t_3, p_3), (t_4, p_1), (t_4, p_3)\}$
- $\forall i, j \ w(p_i, t_j) = 1$, tranne che $w(p_3, t_2) = k$
- $\forall i, j \ w(t_i, p_j) = 1$, tranne che $w(t_4, p_3) = k$

Sia $x_0 = [k, 0, k, 0]$ la marcatura iniziale.

(a) Si disegni il grafo della rete di Petri P_{416} .

(b) Si disegni l'albero di raggiungibilita' della rete di Petri P_{416} . Traccia di soluzione. Si veda il foglio allegato.

(c) Si disegni l'albero di copertura della rete di Petri P_{416} .

(d) Si definisca la nozione di rete di Petri limitata.

Si argomenti se la rete di Petri P_{416} e' limitata.

Traccia di soluzione.

La rete di Petri e' limitata come e' dimostrato dal fatto che non ci sono ω nell'albero di copertura. k e' il massimo numero di gettoni che possono accumularsi in un posto.

(e) Sia data la definizione "Una rete di Petri con marcatura iniziale x_0 e' viva se da ogni transizione t e da ogni marcatura x_M raggiungibile da x_0 esiste una marcatura x_t raggiungibile da x_M dove t e' abilitata a scattare." Si argomenti se la rete di Petri P_{416} e' viva.

Traccia di soluzione.

Dall'albero precedente si vede che da ogni nodo dell'albero si puo' eventualmente far scattare qualsiasi transizione (da ogni marcatura si puo' ritornare alla marcatura iniziale e da li' far scattare qualsiasi transizione).

(f) Si definisca la nozione di rete di Petri conservativa. Si argomenti se la rete di Petri P_{416} e' conservativa. Traccia di soluzione.

La conservativita' corrisponde a

$$\sum_{i=1}^{b} \gamma_i x(p_i) = C$$

dove b sono i posti limitati (senza mai un ω), ci sono tante equazioni quante sono le marcature nell'albero di copertura e b+1 incognite (b coefficienti positivi γ_i e la costante C). I coefficienti dei posti con ω sono $\gamma_i=0$.

Il vettore che testimonia la conservativita' e': [1,2,1,k+1], cui corrisponde C=2k.