Low power OTA on 28nm CMOS technology

Shubhang Srivastava Indian Institute of Technology Jammu Jammu,India 2019uee0117@iitjammu.ac.in

Abstract—Operational transconductance amplifiers are widely used in various applications like BGRs, VCO, VGA etc. In this abstract a power efficient two staged OTA has been proposed on 28nm technology based on miller compensation. It is targeted to have at least a Gain of 50dB and Gain Bandwidth Product of 100kHz with maximum power consumption of $100\mu W$.

I. REFRENCE CIRCUIT DETAILS

This OTA is made on 28nm bulk CMOS technology. It's a double stage OTA with a differential amplifier at input followed by a common source amplifier as a second gain stage. The targeted design specs are as follows:

S.no	Design Specifications	Target value/range
1	DC Gain (dB)	~50dB
2	GBW	>100KHz
3	Supply Voltage	~1V
4	Power consumption	< 100μW
5	Phase Margin	~60°
6	Slew Rate (SR)	>0.1 V/µs

II. REFRENCE CIRCUIT DESIGN

Fig 1: Reference circuit schematic

III. REFRENCE WAVEFORMS AND AREA ESTIMATE

Fig 2: Reference design frequency response

Area Estimation:

Number of Transistors used: 9

Maximum area estimate: $<100\mu m^2$.

REFERENCES

- J. Z. Yan, C. Zhang and M. Wang, "Low-Voltage Bandgap Reference Circuit in 28nm CMOS," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp. 14-17, doi: 10.1109/APCCAS.2018.8605676.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp. 68-73
 - M. H. Hamzah, A. B. Jambek and U. Hashim, "Design and analysis of a two-stage CMOS op-amp using Silterra's 0.13 µm technology," 2014 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), 2014, pp. 55-59, doi: 10.1109/ISCAIE.2014.7010209.
 - R. Nagulapalli, K. Hayatleh, S. Barker, B. N. K. Reddy and B. Seetharamulu, "A Low Power Miller Compensation Technique for Two Stage Op-amp in 65nm CMOS Technology," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, pp. 1-5, doi: 10.1109/ICCCNT45670.2019.8944553.
 - M. P. Sarma, N. Kalita and N. E. Mastorakis, "Design of an low power miller compensated two stage OP-AMP using 45 nm technology for high data rate communication," 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), 2017, pp. 463-467, doi: 10.1109/SPIN.2017.8049994.
 - E. Kargaran, H. Khosrowjerdi and K. Ghaffarzadegan, "A 1.5 v High Swing Ultra-Low-Power Two Stage CMOS OP-AMP in 0.18 μm Technology," 2010 2nd International Conference on Mechanical and Electronics Engineering, 2010, pp. V1-68-V1-71, doi: 10.1109/ICMEE.2010.5558594.
 - A. Boni, "Op-amps and startup circuits for CMOS bandgap references with near 1-V supply," in IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1339-1343, Oct. 2002, doi: 10.1109/JSSC.2002.803055.