CS 330 - Operating Systems

Introduction

04-08-2025

Course details

Course Overview

- An introductory course to operating systems
 - OS concepts and principles
 - Prepare you for advanced systems courses
- Hands-on experience with OS
 - Create a version of our own operating system

Dear Santa...

Course Overview

- An introductory course to operating systems
 - OS concepts and principles
 - Prepare you for advanced systems courses
- Hands-on experience with OS
 - Programming assignments on a small OS
 - We will learn how an operating system works

Tentative Grading Policy

Quizzes/Exams : 50 %

Assignments/Labs : 50 %

The maximum grade awarded would be A- (will not be shared)

Tentative Grading Policy

- The maximum grade awarded would be A- (will not be shared)
 - o To obtain an A (A+), we will have a viva at the end of the semester
 - If you answer 100% of the questions satisfactorily, you will be upgraded twice
 - If you answer 95% of the questions satisfactorily, you will be upgraded
 - If you answer 25% of the questions incorrectly, you will be downgraded
 - Anywhere in between, you will retain your grade
- We may have some surprise elements; announced anytime!

Tentative Grading Policy

- You may skip the examinations/labs/assignments completely if you are building the following
 - An OS in Rust working with Pi5 (in groups of at most 2)
 - Minimal features will be discussed in person
 - If you complete half of the features, you can still take the final examination and complete remaining assignments
 - If you unable to finish half of the features, you can take the examinations and complete remaining assignments
 - The points will be given based on the functionality of the designed OS
 - Any code copied will lead to an F for all groups involved

Course Overview

- An introductory course to operating systems
 - OS concepts and principles
 - Prepare you for advanced systems courses
- Hands-on experience with OS
 - Programming assignments on a small OS
 - We will learn how an operating system works

Course Policies

- Lab (assignments/project) may be done in groups of at most 4 (no exceptions!)
- Include reference for code taken from elsewhere
- Everyone in the group must understand the code
- If you feel that someone/group has copied/obtained code from elsewhere and have not cited them, you can pseudo-anonymously report them
 - You receive points, if we are able to verify that (e.g., viva)
 - o If it is a spurious request, you lose points for misreporting!
- Assignments will require significant time commitment
 - So start early

Course Policies

- Write your code in a legible manner
 - Points for comments
 - Anything we can't make sense of does not get points
- Late submissions will incur penalty
 - 1 day late 25% penalty
 - 2 days late 50% penalty
 - 3 days late 75% penalty
 - > 3 days late 0 points
- Deadline extension requests will incur penalty for the requestor!

IT'S LIKE AN EE CUMMINGS

Textbooks

- Operating System Concepts by Silberschatz, Galvin and Gagne
- Operating Systems: Three Easy Pieces (available online)
 by Arpaci-Dusseau²

Teaching Assistants

- Gayatri Priyadarsini
- Aniket Asati
- Sreyashi Karmakar
- Krupa Rajani
- Sinngam Khaidem
- Irengbam Singh
- Smrutee Behera
- Utkarsh Agarwal
- Arjun Sekar

What is an OS?

Operating systems

What is an operating system?

- Layer between applications and hardware
 - Allows applications to "use" hardware
 - Abstracts the details of the hardware from the applications
 - Helps separate applications when using the hardware
- Kernel and system software

Operating system designs

- Early operating systems
 - Interface above device-drivers
 - Library of services
 - Some systems ran one program at a time or supported one user
 - Advantages and Problems?
- Modern operating systems
 - Multitasking
 - Blocked processes allow other processes to run
 - Advantages and Problems?
 - Multiple users
 - Simultaneously assist many users
 - Advantages and Problems?

- Resource Management
 - Allocation and sharing of resources
 - Finite memory and disk space
 - What happens in infinite loop? Concurrency?
 - Isolation
 - One application should not disturb other
 - What happens if a program uses other's memory?
 - In particular, we need fault isolation to prevent crashing our systems
 - Communication
 - Between different applications and users
 - What happens in a web server?
 - Crossing the isolated boundaries in a controlled fashion

- Abstraction and virtualization
 - Mask restrictions of the hardware
 - What happens when apps ask more resources than available?
 - Higher level objects files, folders, etc.

- Abstraction and virtualization
 - Mask restrictions of the hardware
 - What happens when apps ask more resources than available?
 - Higher level objects files, folders, etc.

- Abstraction and virtualization
 - Mask restrictions of the hardware
 - What happens when apps ask more resources than available?
 - Higher level objects files, folders, etc.
 - Virtualization
 - Infinite memory with no "other" application running
 - Virtual machines OS on an OS
 - Portability
 - Debug OS
 - Security

- Also, providing common services to applications
 - What happens when you copy some text from browser?
 - Simplify task of the application
 - Does not need to worry about how to do it
 - Provide different interfaces
 - Networking
 - Storage
 - Sensors
 - GUI Library

Dual-mode operation

- Kernel-mode
 - OS has full access to hardware
 - Initiate I/O request, network sends and receives, memory access
- User-mode
 - User applications
 - System calls to transfer control to kernel mode (traps)
 - Comes back to user mode (return-from-trap)

Operating systems are ...

 Abstractions to handle hardware, coordinate between resources, contain faults and simplify applications

Building blocks

- o Processes
- Threads, concurrency, scheduling, coordination
- Address spaces
- Protection, isolation, sharing and security
- Communication and protocols
- Storage, transactions, consistency and resilience
- Interfaces

Example

Complex OS!

Example: Mars Rover

- Pathfinder hardware limitations/complexity:
 - o 20Mhz processor, 128MB of DRAM, VxWorks OS
 - cameras, scientific instruments, batteries, solar panels, etc.
 - Many independent processes work together
 - Must reboot itself if necessary
 - Must always be able to receive commands from Earth
 - Do not crash antenna positioning software!
 - Need to stop before hitting something
 - Must track orbit of Earth for communication

What *really* is an Operating System?

An operating system is ...

An operating system is ...

- System that most likely performs
 - Memory management
 - CPU scheduling
 - I/O management
 - Communications
 - Multitasking

Some examples?