Intelligent Systems Principles and Programming

Xiaoqing Zheng zhengxq@fudan.edu.cn

Introduction

- Classical *Bivalent* or *two-valued* logic.
- L. A. Zadeh's *fuzzy* set.
- Pawlak's *Rough* set.

Information table

$oldsymbol{U}$	a	b	С	d	e
(1)	1	2	2	1	2
(2)	3	2	2	2	1
(3)	3	2	3	3	3
(4)	2	1	3	1	2
(5)	2	3	2	1	3
(6)	1	2	2	2	3
(7)	2	1	2	1	2
(8)	3	3	1	1	1

Rough set

- Let I = (U, A) be an *information system* (attribute-value system), where U is a non-empty set of finite objects (the universe) and A is a non-empty, finite set of attributes such that $a: U \rightarrow V_a$ for every $a \in A$. V_a is the set of values that attribute a may take.
- The information table assigns a value in V_a to each attribute a of each object in universe U.

Universe $U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$

Associated equivalence relation R:

$$E_{1} = \{x_{1}, x_{4}\}$$

$$E_{2} = \{x_{3}, x_{8}\}$$

$$E_{3} = \{x_{2}, x_{5}, x_{7}\}$$

$$E_{4} = \{x_{6}\}$$

Partition U/R = $\{E_1, E_2, E_3, E_4\}$, and $X = \{x_1, x_4, x_2\}$ **Lower approximation** $R_*(X) = \{x_1, x_4\}$ **Upper approximation** $R_*(X) = \{x_1, x_4, x_2, x_5, x_7\}$

Universe
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

Associated equivalence relation R:

$$E_{1} = \{x_{1}, x_{4}\}$$

$$E_{2} = \{x_{3}, x_{8}\}$$

$$E_{3} = \{x_{2}, x_{5}, x_{7}\}$$

$$E_{4} = \{x_{6}\}$$

Partition U/R = $\{E_1, E_2, E_3, E_4\}$, and $X = \{x_1, x_4, x_2\}$ **Lower approximation** $R_*(X) = \{x_1, x_4\}$

Upper approximation $R_*(X) = \{x_1, x_4, x_2, x_5, x_7\}$

Universe $U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$

Associated equivalence relation R:

$$E_1 = \{x_1, x_4\}$$

$$E_2 = \{x_3, x_8\}$$

$$E_3 = \{x_2, x_5, x_7\}$$

$$E_4 = \{x_6\}$$

Partition U/R = $\{E_1, E_2, E_3, E_4\}$, and $X = \{x_1, x_4, x_2\}$ **Lower approximation** $R_*(X) = \{x_1, x_4\}$ **Upper approximation** $R_*(X) = \{x_1, x_4, x_2, x_5, x_7\}$

Membership function

$$\mu_X^R(x) = card(X \cap R(x)) / card(R(x))$$

$$\mu_X^R(x_1) = 2 / 2 = 1.00$$
 $\mu_X^R(x_2) = 1 / 3 = 0.33$
 $\mu_X^R(x_3) = 0 / 2 = 0.00$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_{R}(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_{R}(S) = \{x_{1}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation § (Decision Attribute)

$$U/S = \{ \{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\} \}$$

$$POS_{R}(S) = \{x_{1}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(\mathbf{R}) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation § (Decision Attribute)

$$U/S = \{ \{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\} \}$$

$$POS_{R}(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_{R}(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then $U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_{R}(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}$$

Then
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{ \{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\} \}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

Information table

$oldsymbol{U}$	а	b	С	d	e
(1)	1	0	2	1	1
(2)	2	1	0	1	0
(3)	2	1	2	0	2
(4)	1	2	2	1	1
(5)	1	2	0	0	2

$$a_1b_0c_2 \to d_1e_1$$
$$a_2b_1c_0 \to d_1e_0$$

$$a_2b_1c_2 \to d_0e_2$$

$$a_1b_2c_2 \to d_1e_1$$

$$a_1b_2c_0 \to d_0e_2$$

Problem

- An interesting question is whether there are attributes in the information system which are more *important* to the knowledge represented in the equivalence class structure than other attributes.
- We wonder whether there is a subset of attributes which can, by itself, fully characterize the knowledge in the database; such an attribute set is called a *reduct*.

$oldsymbol{U}$	b	С	d	e	Legitimate
(1)	0	2	1	1 (reduct
(2)	1	0	1		
(3)	1	2		2	$a_2v_1c_2$ d_0e_2
(4)	2	2	1	1	$a_1b_2c_2 \to d_1e_1$
(5)	2	0	0	2	$a_1 b_2 c_0 \rightarrow d_0 e_2$

$oldsymbol{U}$	а	С	d	e	Legitimate
(1)	1	2	1	1 (reduct
(2)	2	0	1		
(3)	2	2	9	2	$a_2v_1c_2$ d_0e_2
(4)	1	2	1	1	$a_1b_2c_2 \to d_1e_1$
(5)	1	0	0	2	$a_1 b_2 c_0 \rightarrow d_0 e_2$

$oldsymbol{U}$	а	b	d	e
(1)	1	0	1	1
(2)	2	1	1	0
(3)	2	1	0	2
(4)	1	2	1	1
(5)	1	2	0	2

$$a_1b_0c_2 \rightarrow d_1e_1$$

$$a_2b_1c_0 \rightarrow d_1e_0$$

$$a_2b_1c_2 \rightarrow d_0e_2$$

$$a_1b_2c_2 \rightarrow d_1e_1$$

$$a_1b_2c_0 \rightarrow d_0e_2$$

$oldsymbol{U}$	a	b	d	e	Causing
(1)	1	0	1	1 (collapse
(2)	2	1	1		
(3)	2	1		2	$a_2v_1c_2$ d_0e_2
(4)	1	2	1	1	$a_1 b_2 c_2 \rightarrow d_1 e_1$
(5)	1	2	0	2	$a_1 b_2 c_0 \rightarrow d_0 e_2$

$oldsymbol{U}$	a	b	d	e	Causing
(1)	1	0	1	1	collapse
(2)	2	1	1		
(3)	2	1		2	$a_2v_1c_2$ d_0e_2
(4)	1	2	1	1	$a_1b_2c_2 \to d_1e_1$
(5)	1	2	0	2	$a_1b_2c_0 \to d_0e_2$

Information table after removing a

$oldsymbol{U}$	b	С	d	e
(1)	0	2	1	1
(2)	1	0	1	0
(3)	1	2	0	2
(4)	2	2	1	1
(5)	2	0	0	2

$$b_0 c_2 \to d_1 e_1$$

$$b_1c_0 \rightarrow d_1e_0$$

$$b_1c_2 \rightarrow d_0e_2$$

$$b_2c_2 \rightarrow d_1e_1$$

$$b_2 c_2 \rightarrow d_1 e_1$$
$$b_2 c_0 \rightarrow d_0 e_2$$

Information table after removing b

$oldsymbol{U}$	а	С	d	e
(1)	1	2	1	1
(2)	2	0	1	0
(3)	2	2	0	2
(4)	1	2	1	1
(5)	1	0	0	2

$$a_1c_2 \to d_1e_1$$

$$a_2c_0 \to d_1e_0$$

$$a_2c_2 \rightarrow d_0e_2$$

$$a_1c_2 \rightarrow d_1e_1$$

$$a_1c_0 \rightarrow d_0e_2$$

Information table after removing b

$oldsymbol{U}$	а	С	d	e
(1)	1	2	1	1
(2)	2	0	1	0
(3)	2	2	0	2
(4)	1	2	1	1
(5)	1	0	0	2

$$a_1c_2 \rightarrow d_1e_1$$

$$a_2c_0 \rightarrow d_1e_0$$

$$a_2c_2 \rightarrow d_0e_2$$

$$a_1c_2 \rightarrow d_1e_1$$

$$a_1c_0 \rightarrow d_0e_2$$

Information table after removing b

$oldsymbol{U}$	а	С	d	e
(1)	1	2	1	1
(2)	2	0	1	0
(3)	2	2	0	2
(5)	1	0	0	2

$$a_1c_2 \rightarrow d_1e_1$$

$$a_2c_0 \rightarrow d_1e_0$$

$$a_2c_2 \rightarrow d_0e_2$$

$$a_2c_2 \to d_0e_2$$
$$a_1c_0 \to d_0e_2$$

Records

序号	住宅区名	地段	房型	面积 (m²)	结构	价格 (元/ m²)
1	站前路小区	站前路	2/2, 3/2	90~140	一般	10000
2	高新区	高新区	2/2, 3/2, 4/2	83~170	框架	7000
3	远东花园	洪城路	3/2, 4/2	120以上	复式	7800
4	曙光小区	洪都南大道	3/2	103以上	一般	9000
5	怡鑫花园	洪都中大道	2/1, 2/2, 3/2, 4/2	87~230	一般	12000
6	文化大楼	沿江路	2/1, 3/1, 3/2, 2/2	99~180	框架	18000
7	玉达住宅	二七北路	2/2	97~107	一般	9800
8	洪都新村	洛阳东路	2/1, 3/1, 3/2, 1/1	53~123	一般	7000

Discretization

- □ 地段分类:站前路和沿江路被数字化为1;洪都大道和二七路被数字化为2;洪城路、高新区和洛阳东路被数字化为3。
- □ 房型分类:房型单一被数字化为1;房型中等被数字化为2; 房型多样化被数字化为3。
- □ 面积分类:80m²以下面积被数字化为1;80~120m²为中等面积,被数字化为2;120m²以上为大面积,被数字化为3。
- □ 结构分类:一般结构被数字化为1;框架结构被数字化为2; 复式结构被数字化为3。
- □ 价格分类:9000元/m²以下被数字化为1;9000~12000元/m²被数字化为2;12000元/m²被数字化为3。

Information table

$oldsymbol{U}$	а	b	С	d	e
(1)	1	2	2	1	2
(2)	3	2	2	2	1
(3)	3	2	3	3	3
(4)	2	1	3	1	2
(5)	2	3	2	1	3
(6)	1	2	2	2	3
(7)	2	1	2	1	2
(8)	3	3	1	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

$oldsymbol{U}$	b	С	d	e
(1)	2	2	1	2
(2)	2	2	2	1
(3)	2	3	3	3
(4)	1	3	1	2
(5)	3	2	1	3
(6)	2	2	2	3
(7)	1	2	1	2
(8)	3	1	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

$oldsymbol{U}$	b	С	d	e
(1)	2	2	1	2
(2)	2	2	2	1
(3)	2	3	3	3
(4)	1	3	1	2
(5)	3	2	1	3
(6)	2	2	2	3
(7)	1	2	1	2
(8)	3	1	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

$oldsymbol{U}$	а	С	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	3	3	3
(4)	2	3	1	2
(5)	2	2	1	3
(6)	1	2	2	3
(7)	2	2	1	2
(8)	3	1	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

$oldsymbol{U}$	а	С	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	3	3	3
(4)	2	3	1	2
(5)	2	2	1	3
(6)	1	2	2	3
(7)	2	2	1	2
(8)	3	1	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

$oldsymbol{U}$	а	b	d	e	egitimate
(1)	1	2	1		educt
(2)	3	2	2		
(3)	3	2	3	3	$a_3 b_2 c_3 d_3 \rightarrow e_3$
(4)	2	1	1	2	$a_2b_1c_3 d_1 \rightarrow e_2$
(5)	2	3	1	3	$a_2b_3c_2\ d_1 \to e_3$
(6)	1	2	2	3	$a_1b_2c_2\ d_2 \to e_3$
(7)	2	1	1	2	$a_2b_1c_2\ d_1 \to e_2$
(8)	3	3	1	1	$a_3b_3c_1\ d_1 \to e_1$

$oldsymbol{U}$	а	b	С	e
(1)	1	2	2	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	3	2
(5)	2	3	2	3
(6)	1	2	2	3
(7)	2	1	2	2
(8)	3	3	1	1

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

Remove attribute d

$oldsymbol{U}$	a	b	С	e
(1)	1	2	2	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	3	2
(5)	2	3	2	3
(6)	1	2	2	3
(7)	2	1	2	2
(8)	3	3	1	1

Rules:

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

Information table after removing C

$oldsymbol{U}$	а	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(7)	2	1	1	2
(8)	3	3	1	1

Information table after removing C

$oldsymbol{U}$	а	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(7)	2	1	1	2
(8)	3	3	1	1

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [1]_{a} = \{1, 6\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [1]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [1]_{d} = \{1, 4, 5, 8\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [1]_{e} = \{1, 4\}$$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [1]_{a} = \{1, 6\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [1]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [1]_{d} = \{1, 4, 5, 8\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [1]_{\{a, b\}} = [1]_{a} \cap [1]_{b} = \{1, 6\} \not\subset [1]_{e}$$

$$d_{1} \text{ can not be removed.}$$

$$a_{1}b_{2}d_{2} \rightarrow e_{3}$$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_1b_2d_1 \rightarrow e_2$$
 [1]_a = {1, 6},
 $a_3b_2d_2 \rightarrow e_1$ [1]_b = {1, 2, 3, 6},
 $a_3b_2d_3 \rightarrow e_3$ [1]_d = {1, 4, 5, 8},
[1]_e = {1, 4}
 $a_2b_1d_1 \rightarrow e_2$ [1]_{a, d} = [1]_a \cap [1]_d = {1}\cdot \subseteq [1]_e
 b_2 can be removed.
 $a_1b_2d_2 \rightarrow e_3$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_1b_2d_1 \rightarrow e_2$$
 [1]_a = {1, 6},
 $a_3b_2d_2 \rightarrow e_1$ [1]_b = {1, 2, 3, 6},
 $a_3b_2d_3 \rightarrow e_3$ [1]_d = {1, 4, 5, 8},
[1]_e = {1, 4}
 $a_2b_1d_1 \rightarrow e_2$ [1]_e = {1, 4}
 $a_2b_3d_1 \rightarrow e_3$ [1]_e = [1]_b \cap [1]_d = {1} \subseteq [1]_e
 a_1 can be removed.
 $a_1b_2d_2 \rightarrow e_3$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_1b_2d_1 \rightarrow e_2$$
 $[1]_a = \{1, 6\},$
 $a_3b_2d_2 \rightarrow e_1$ $[1]_b = \{1, 2, 3, 6\},$
 $a_3b_2d_3 \rightarrow e_3$ $[1]_d = \{1, 4, 5, 8\},$
 $[1]_e = \{1, 4\}$
 $a_2b_1d_1 \rightarrow e_2$ $d_1 \text{ is core value, then we get}$
 $a_2b_3d_1 \rightarrow e_3$ $a_1d_1 \rightarrow e_2$
 $a_1b_2d_2 \rightarrow e_3$ $b_2d_1 \rightarrow e_2$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

$$a_1b_2d_1 \rightarrow e_2$$
 [2]_a = {2, 3, 8},
 $a_3b_2d_2 \rightarrow e_1$ [2]_b = {1, 2, 3, 6},
 $a_3b_2d_3 \rightarrow e_3$ [2]_d = {2, 6},
 $a_2b_1d_1 \rightarrow e_2$ [2]_e = {2, 8}
 $a_2b_3d_1 \rightarrow e_3$
 $a_1b_2d_2 \rightarrow e_3$
 $a_2b_3d_1 \rightarrow e_3$

$oldsymbol{U}$	а	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [2]_{\{a,b\}} = [2]_{a} \cap [2]_{b} = \{2, 3\} \not\subset [1]_{e}$$

$$d_{2} \text{ can not be removed.}$$

$$a_{1}b_{2}d_{2} \rightarrow e_{3}$$

$$[2]_{\{a, b\}} = [2]_a \cap [2]_b = \{2, 3\} \not\subset [1]_e$$
 d_2 can not be removed.

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [2]_{e} = [2]_{a} \cap [2]_{d} = \{2\} \subseteq [1]_{e}$$

$$b_{2} \text{ can be removed.}$$

$$a_{1}b_{2}d_{2} \rightarrow e_{3}$$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_1b_2d_2 \rightarrow e_3$

 $a_3b_3d_1 \rightarrow e_1$

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [2]_{e} = \{2, 6\} \not\subset [1]_{e}$$

$$a_{3} \text{ can not be removed.}$$

$oldsymbol{U}$	a	b	d	e
(1)	1	2	1	2
(2)	3	2	2	1
(3)	3	2	3	3
(4)	2	1	1	2
(5)	2	3	1	3
(6)	1	2	2	3
(8)	3	3	1	1

Rules:

 $a_3b_3d_1 \rightarrow e_1$

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad a_{3} \text{ and } d_{2} \text{ is core, then we get}$$

$$a_{3}d_{2} \rightarrow e_{1}$$

$$a_{3}d_{2} \rightarrow e_{1}$$

U	a	b	d	e
(1)	1	1	1	2
(1')	_	2	1	2
(2)	3		2	1
(3)	_		3	3
(4)	_	1	_	2
(5)	2	3	_	3
(6)	1	_	2	3
(8)	3	_	1	1
(8')	3	3	_	1

Rules:

$$a_1d_1 \rightarrow e_2 \text{ or } b_2d_1 \rightarrow e_2$$

$$a_{3}d_{2} \rightarrow e_{1}$$

$$d_{3} \rightarrow e_{3}$$

$$b_{1} \rightarrow e_{2}$$

$$a_{2}b_{3} \rightarrow e_{3}$$

$$a_{1}d_{2} \rightarrow e_{3}$$

$$a_{3}d_{1} \rightarrow e_{1} \text{ or } a_{3}b_{3} \rightarrow e_{1}$$

Rules:

$$a_{1}d_{1} \rightarrow e_{2} \text{ or } b_{2}d_{1} \rightarrow e_{2}$$

$$a_{3}d_{2} \rightarrow e_{1}$$

$$d_{3} \rightarrow e_{3}$$

$$b_{1} \rightarrow e_{2}$$

$$a_{2}b_{3} \rightarrow e_{3}$$

$$a_{1}d_{2} \rightarrow e_{3}$$

$$a_{3}d_{1} \rightarrow e_{1} \text{ or } a_{3}b_{3} \rightarrow e_{1}$$

Rules:

$$a_{1}d_{1} \rightarrow e_{2} \text{ or } b_{2}d_{1} \rightarrow e_{2}$$

$$a_{3}d_{2} \rightarrow e_{1}$$

$$d_{3} \rightarrow e_{3}$$

$$b_{1} \rightarrow e_{2}$$

$$a_{2}b_{3} \rightarrow e_{3}$$

$$a_{1}d_{2} \rightarrow e_{3}$$

$$a_{3}d_{1} \rightarrow e_{1} \text{ or } a_{3}b_{3} \rightarrow e_{1}$$

Final Rules:

$$a_3d_2 \lor a_3d_1 \lor a_3b_3 \rightarrow e_1$$

$$a_1d_1 \lor b_2d_1 \lor b_1 \rightarrow e_2$$

$$d_3 \lor a_2b_3 \lor a_1d_2 \rightarrow e_3$$

Rules:

$$a_{1}d_{1} \rightarrow e_{2} \text{ or } b_{2}d_{1} \rightarrow e_{2}$$

$$a_{3}d_{2} \rightarrow e_{1}$$

$$d_{3} \rightarrow e_{3}$$

$$b_{1} \rightarrow e_{2}$$

$$a_{2}b_{3} \rightarrow e_{3}$$

$$a_{1}d_{2} \rightarrow e_{3}$$

$$a_{3}d_{1} \rightarrow e_{1} \text{ or } a_{3}b_{3} \rightarrow e_{1}$$

Final Rules:

$$a_3 d_2 \lor a_3 d_1 \lor a_3 b_3 \rightarrow e_1$$

$$a_1 d_1 \lor b_2 d_1 \lor b_1 \rightarrow e_2$$

$$d_3 \lor a_2 b_3 \lor a_1 d_2 \rightarrow e_3$$

自然语言解释:

- (1)3类地段框架结构或3类地段一般结构或3类地段房型多样的地产价格便宜;
- (2)1类地段一般结构或房型中等一般结构或房型单一的地产价格适中;
- (3)复式结构或2类地段房型多样或1类地段框架结构的地产价格昂贵

Any question?

Xiaoqing Zheng Fundan University