ALGORITMO HÍBRIDO GRASP/VND/ILS APLICADO AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS COM COLETA E ENTREGA SIMULTÂNEAS

ISSN 2175-6295

074/2009 - ALGORITMO HÍBRIDO GRASP/VND/ILS APLICADO AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS COM COLETA E ENTREGA SIMULTÂNEAS

Vinícius Wellington Coelho de Morais

Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM Rua da Glória, 187, Centro, Diamantina, MG, 39.100-000 vinicius.si.ufvjm@gmail.com

Luciana Assis

Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM Rua da Glória, 187, Centro, Diamantina, MG, 39.100-000 lpassis@ufvjm.edu.br

Luiz Felipe Vasconcelos Caires

Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM Rua da Glória, 187, Centro, Diamantina, MG, 39.100-000 lfelipevc@gmail.com

Alessandro Vivas

Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM Rua da Glória, 187, Centro, Diamantina, MG, 39.100-000 alessandrovivas@ufvjm.edu.br

RESUMO

Neste trabalho abordamos o Problema de Roteamento de Veículos com Coleta e Entrega Simultâneas (PRVCES). Dado um conjunto de clientes, o problema consiste em definir rotas de menor custo que atenda, simultaneamente, suas respectivas demandas de coleta e entrega, respeitando a capacidade dos veículos. Sob essa perspectiva o presente trabalho propõe um algoritmo híbrido com base nas metaheurísticas GRASP, VND e ILS. O algoritmo utiliza três tipos de movimentos para explorar a vizinhança inter-rota: cruzamento, realocação e eliminação de rota. O movimento 2-opt é utilizado para exploração de vizinhança intra-rota. Em todos os movimentos utiliza-se a estratégia melhor-aprimorante. Os testes ao qual o algoritmo proposto foi submetido apresentaram resultados satisfatórios.

Palavras-Chaves: Problemas de Roteamento de Veículos; GRASP; VND; ILS.

ABSTRACT

This paper deals the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). The objective is define optimized routes, given a set of customers, that satisfy simultaneous their respective pickup and delivery demands and respect the capacity of the vehicles. Under this perspective, this paper we develop a hybrid algorithm that combines the GRASP, VND and ILS metaheuristics. This algorithm uses three types of movements to explore the inter-route neighborhood: crossover, reallocation and route elimination. The 2-opt movement is applied to explore intra-route neighborhood. All movements use best-improve strategy. The results were satisfactory in the tests to which the proposed algorithm was subjected.

Keywords: Vehicle Routing Problem; GRASP; VND; ILS;

1. INTRODUÇÃO

Hoje, com aplicação de diversas tecnologias, a indústria e agricultura vêm superando anualmente seus índices de produção. A forma como esses produtos são remetidos ao consumidor final ainda é um obstáculo a ser superado, contrariando os recordes de produção.

No Brasil, a extensa malha rodoviária e as condições precárias em que elas se encontram elevam os custos finais dos produtos. Além disso, outros fatores como o preço dos combustíveis, manutenção da frota de veículos e impostos, também contribuem para o elevado preço que os produtos chegam ao consumidor final.

O custo do transporte de uma mercadoria corresponde a cerca de 10% do valor final de um produto, quantia que é paga pelo consumidor (Alvarenga, 2005). Outro fator que vem se tornando relevante é a preocupação da sociedade com as questões ambientais, ou seja, além de produzir em maior quantidade, com qualidade e menor custo, deve-se atentar também ao impacto que a atividade industrial causa ao meio ambiente.

As organizações, em alguns dos casos, além de distribuir seus produtos também devem captar no mercado os produtos já comercializados por ela. Com o intuito de reaproveitá-los, seja para atender legislações ambientais, seja para maximizar seus lucros evitando desperdício de matéria prima. Essa prática caracteriza o problema de logística reversa.

As empresas que conseguem adequar soluções tecnológicas de logística ao escoamento de sua produção, além de conseguir bons rendimentos, se destacam no meio competitivo por aumentarem o valor agregado do seu produto.

O estudo do Problema de Roteamento de Veículos (PRV) vem então, tomando grande proporção neste contexto. Na literatura verifica-se uma grande quantidade de problemas originados a partir de variantes do PRV, sendo um deles o Problema de Roteamento de Veículos com Coleta e Entrega Simultânea (PRVCES).

O PRVCES foi inicialmente proposto por Min (1989) e pode ser definido como: dado uma frota com k veículos de capacidade Q, estes devem atender simultaneamente às

demandas de coleta e entrega de cada cliente de uma rede com n consumidores. Na prática, o problema pode ser visto nas cervejarias, empresas aéreas e transportadoras em geral.

Nesta década, trabalhos que tratam do PRVCES tem se destacado na literatura e diversas heurísticas para o problema podem se encontradas. Dethloff (2001) apresenta heurísticas baseada em inserção, Montané e Galvão (2002) propuseram heurísticas de particionamento de rota, e Assis (2007) apresenta três heurísticas construtivas baseadas no método Dividir e Rotear.

Freitas, *et al.* (2008), propõem dois algoritmos híbridos (VNS-VND e GRASP-VND) para o PRVCES. Montané e Galvão (2006) apresentam uma solução baseada na metaheurística Busca-Tabu. Hoff (2009) trabalha com a metaheurística Busca Tabu para resolver o Problema de Roteamento de Veículo com Coleta e Entrega (PRVCE), com base em estratégia de distribuição da rota Lasso, este último apresenta ainda duas estruturas de vizinhança *MoveOne* e *MoveTwo*.

Os trabalhos de Subramanian, *et al.* (2008) apresentam um procedimento híbrido com base na metaheurística ILS para o PRVCES. Gribkovskaia *et al.* (2007) propõe algoritmo com base na metaheurística Busca Tabu para resolver uma variação do PRVCES.

Gjpal e Abad (2009) apresentam um algoritmo baseado na metaheurística Colônia de Formigas para solucionar o Problema de Roteamento de Veículos com Coleta e Entrega Simultâneas.

A motivação para trabalhar com o PRVCES se deve ao fato de ser um problema com crescente aplicação e também pode ser considerado um problema da classe NP - Difícil (Dethloff, 2001).

Neste contexto, apresentamos neste artigo resultados e conclusões obtidos a partir do trabalho realizado com um Algoritmo Híbrido, envolvendo os procedimentos *Greedy Randomized Adaptive Search Procedures* (GRASP), *Variable Neighborhood Descent* (VND) e *Iterated Local Search* (ILS) para resolver o PRVCES. Na Sessão 2 descrevemos os mecanismos GRASP, VND e ILS, os mecanismos de perturbação e Buscas Locais utilizadas. Na Sessão 3 apresentamos os resultados obtidos e na Sessão 4 as conclusões e projeções quanto aos trabalhos futuros.

2. ALGORITMO HÍBRIDO GRASP-VND-ILS

O GRASP (*Greedy Random Adaptive Search Procedure*) é uma metaheurística multistart para problemas de combinatórias. Este método interativo foi proposto por Feo, T. e Resende, M. (1995). Ele é composto por duas fases: a Fase de Construção e a Fase de Busca Local. Na primeira fase busca-se uma solução viável aleatória para o problema. Provavelmente, as soluções da fase de construção não são localmente ótimas, então as buscas locais são utilizadas para explorar a vizinhança da solução.

Neste trabalho, na primeira fase do GRASP, utilizou-se a heurística Divisão com Kruskal proposto em (Assis, 2007). A segunda fase, a fase de Busca Local, foi aplicada um algoritmo híbrido VND-ILS.

O VND (*Variable Neighborhood Decent*) é um método de refinamento que explora por meio de trocas sistêmicas o conjunto de soluções vizinhas (P. Hansen e N. Mladenovic (2003)). Esse mecanismo realiza movimentações sistemáticas no conjunto de soluções vizinhas à solução corrente (Subramanian, *et al.*, 2008), aplicando a estratégia melhoraprimorante. As estruturas de vizinhança implementadas no presente trabalho são:

• Eliminação de Rotas: movimento inter-rota que tenta eliminar rotas da solução corrente e inserir os vértices destas rotas em outras rotas. O objetivo é minimizar o

custo e o número de rotas. Este processo é repetido para todas as rotas, caso ocorra uma melhoria então atualiza-se a nova rota.

- **Realocação:** outro movimento inter-rota onde vértices são removidos aleatoriamente de rota e inseridos em outra em uma posição viável.
- **Cruzamento:** dadas duas rotas *ri* e *rj*, são escolhidos aleatoriamente uma elemento de cada rota, posteriormente é feito o cruzamento dessas rotas tendo como parâmetro os nós escolhidos das rotas.
- **2-Opt:** movimentos intra-rotas onde são feitas sistêmicas trocas de arestas em uma rota testando todos os nós em diferentes posições, a melhor configuração da rota e mantida.

O ILS (*Iterated Local Search*) descrito em H. R. Lourenço *et al.* (2003), onde dada uma solução inicial, realiza o procedimento de Busca Local para encontrar uma solução ótima local. Essa solução, então, passa por uma série de perturbações buscando-se diversificar a busca no espaço de soluções. Neste trabalho, utilizou-se o VND na fase de Busca Local do ILS.

Por meio dos mecanismos de perturbação novas soluções de partida são geradas a partir de solução ótima local. Uma função de perturbação dita eficiente é aquela capaz de realizar movimentos fracos o suficiente para evitar um reinicio aleatório e forte para possibilitar se explorar diferentes soluções tidas como ótimas locais.

O Algoritmo 1 apresenta o pseudocódigo do método proposto onde foram aplicados dois mecanismos de perturbação encontrados na literatura (Subramanian, *et al.*, 2008) o *Swap* (1,1) e *Ejection Chain*. Para evitar ciclagem o mecanismo de aceitação é usado ao fim de cada busca local sempre armazenado a melhor solução num dado estado corrente.

Algoritmo 1. GRASP_VND_ILS

```
1: Procedimento GRASP_VND_ILS
2:
        s^* \leftarrow \emptyset:
3:
        f(s^*) \leftarrow \infty;
        Para i←1 até numIteraçõesGRASP
4:
5:
                s' ← DivisãoComKruskal();
6:
                Para j←1 até numIteraçõesILS
7:
                         s'' \leftarrow VND(s');
                         Se f(s'') < f(s^*)
8:
9:
                                 s^* \leftarrow s'':
10:
                                 i \leftarrow 0;
11:
                         Fim Se
                         s''' ← Perturbação
12:
13:
                Fim Para
14:
        Fim Para
        return s*
15:
16: Fim Procedimento
```

3. RESULTADOS

O algoritmo foi implementado em Java (jdk 1.6) e executado em uma máquina com processador Intel Core 2 duo T7250, 2.0 GHz, com 2 GB de RAM e Sistema Operacional Microsoft Windows XP. O algoritmo hibrido proposto foi testado executando-se 150 iterações em 14 instâncias propostas por Salhi e Nagy (1999) com o número de clientes variando entre 50 a 199 clientes, apresentado resultados satisfatórios conforme Tabela 1, a se avaliar pelos resultados encontrados nos trabalhos de Montané e Galvão (2006).

		GRASP/VND/ILS			TS - Montané e Galvão			gap (%)
Instâncias	Nº Clientes	Nº Veículos	Custo	Tempo *	Nº Veículos	Custo	Tempo **	Proposto/TS
CMT01X	50	3	455	2,26	3	472	3.73	3,60
CMT01Y	50	3	480	2,65	3	470	4.37	-2,13
CMT02X	75	5	690	9,81	7	695	6.91	0,72
CMT02Y	75	5	677	10,94	7	700	7.61	3,29
CMT03X	100	4	734	18,98	5	721	11.04	-1,80
CMT03Y	100	4	736	16,70	5	719	12.01	-2,36
CMT04X	150	6	919	56,06	7	880	24.60	-4,43
CMT04Y	150	6	892	51,04	7	878	29.07	-1,59
CMT05X	199	8	1123	135,61	11	1098	51.50	-2,28
CMT05Y	199	8	1103	135,90	10	1083	56.21	-1,85
CMT11X	120	4	805	7,94	4	900	18.17	10,56
CMT11Y	120	4	820	7,39	5	910	18.04	9,89
CMT12X	100	6	702	5,84	6	675	12.23	-4,00
CMT12Y	100	5	681	5,48	6	689	12.80	1,16
MÉDIA			772,64			777,9		0,67

^{*}CPU segundos em um processador Intel Core 2 duo T7250, 2.0 GHz

Tabela 1. Comparação Algoritmo híbrido GRASP/VND/ILS e algoritmo proposto por Montané e Galvão(2006), utilizando as instâncias propostas por Salhi e Nagy(1999).

A Tabela 1 mostra que em aproximadamente 42.8% das instâncias testadas o algoritmo proposto obteve melhor êxito, calculando a média do custo encontrado entre os trabalhos por meio do calculo (%gap = (((TS-Montané e Galvão – GRASP/VND/ILS) *100) / TS-Montané e Galvão), o algoritmo GRASP/VND/ILS obteve uma melhoria de 0.67% em relação ao algoritmo baseado na Busca Tabu proposto por Montané e Galvão (2006) ao se avaliar todas as instâncias testadas.

4. CONCLUSÃO

Neste trabalho foi proposto um algoritmo híbrido com base nas metaheurísticas GRASP, VND e ILS. O objetivo dessa combinação é verificar ao máximo um conjunto de

^{**}CPU segundos em um Athlon 2.0 GHz PC.

soluções, por meio de perturbação e buscas locais na solução dada inicialmente pela fase de construção do GRASP.

Esta solução foi então explorada pelos mecanismos de perturbação e buscas descritos no corpo do presente artigo, esses procedimentos são executados em 150 iterações, porém, testes foram feitos variando esse valor. Acima deste número de iterações o algoritmo estabilizou não apresentando melhorias nos resultados.

O algoritmo proposto obteve bons resultados mostrando uma formação interessante dos métodos heurísticos encontrados na literatura. Esses resultados são motivadores para um estudo mais aprofundado destes métodos para resolver o Problema de Rotemanento de Veículos com Coleta e Entrega Simultâneas. Trabalhos futuros poderão explorar novas estruturas de vizinhança e outros mecanismos de perturbação.

Agradecimentos:

Agradecemos à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pelo apoio financeiro.

5. REFERÊNCIAS BIBLIOGRÁFICAS

Alvarenga, G. B., (2005) Um Algoritmo Híbrido para o Problemas de Roteamento de Veículos Estático e Dinâmico com Janela de Tempo, PhD thesis, Universidade Federal de Minas Gerais.

Assis, L., (2007) Algoritmos para o Problema de Roteamento de Veículos com Coleta e Entrega Simultâneas, Master's thesis, Universidade Federal de Minas Gerais.

Hoff, A.; Gribkovskaia, I.; Laporte G.; Lokketangen, A. (2009). Lasso Solution Strategies for the Vehicle Routing Problem with Pickups and Deliveries. European Journal of Operational Research 192 755-766, 2006, Montréal, Canada.

Subramanian, A.; Ochi, L. S.; Cabral, L.A.F. (2008) An efficient ILS heuristic for the Vehicle Routing Problem with Simultaneus Pickup and Delivery.

Dethloff, J. (2001). Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up. OR Spectrum, 23(1):79–96.

Feo, T. e Resende, M. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133.

Gajpal, Y. e Abad, P. (2009), An ant colony system (acs) for vehicle routing problem with simultaneous delivery and pickup, Computers & Operations Research.

H.R. Lourenço, O. Martin, and T. Stützle. (2003) Iterated Local Search. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic Publishers, Norwell, MA.

Montané, F. A. T. e Galvão, R. D. (2002), Vehicle routing problem with simultaneous pickup and delivery service, Journal of the Operational Research Society of India (OPSEARCH), 39:19–33.

- **Montané, F. A. T. e Galvão, R. D.** (2006), A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service, Computers and Operations Research, 33(3):595–619.
- **P. Hansen and N. Mladenovic**. (2003) Variable Neighborhood Search: Methods and Recent Applications. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic Publishers, Norwell, MA.
- Nagy, G. e Salhi, S. (2005), Heuristic algorithms for single and multiple depot vehicle routing problems with
- **Freitas, Lia Mara Borges; Montané, F. A. T.** (2008). Metaheurísticas VNS-VND e GRASP-VND para Problemas de Roteamento de Veículos com Coleta e Entrega Simultânea. XI Simpósio de Pesquisa Operacional e Logística da Marinha, Rio de Janeiro.
- **Gribkovskaia, I.; Halskau , O.; Laporte, G.; Vlček M.** (2007). General Solution to the Single Vehicle Routing Problem with Pickup and Deliveries. European Journal of Operational Resarch 180 568-584, 2006, Montréal, Canada.
- **Min, H.,** (1989) The multiple vehicle routing problem with simultaneous delivery and pickup points, Transportation Research-A, 23A(5):377–386.
- **Salhi, S. and G. Nagy** (1999). A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. Journal of Operational Research Society 50, 345–355.