Pochodne funkcji elementarnych

Funkcja $y = f(x)$	Pochodna dy/dx
$y = x^n$	$dy/dx = nx^{(n-1)}$
y = sinx	dy/dx = cosx
$y = \cos x$	$dy/dx = -\sin x$
y = lnx	dy/dx = 1/x
$y = log_a x$	$dy/dx = (log_a e)/x$
$y = e^x$	$dy/dx = e^x$
$y = a^x$	$dy/dx = a^x lna$
y = kf(x)	dy/dx = kdf/dx(x)
y = f(x) + g(x)	dy/dx = df/dx + dg/dx
y = f(x)g(x)	$dy/dx = df/dx \bullet g(x) + f(x)dg/dx$
y = f(x)/g(x)	$dy/dx = [df/dx \bullet g(x) - f(x)dg/dx]/g^{2}(x)$
y = f(g(x))	$dy/dx = df/dx(g(x)) \cdot dg/dx$