MSDS 422 Assignment 3

May 8, 2022

0.1 Part 1

```
import os
import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
%matplotlib inline
```

```
[68]: #Import the Data
train = pd.read_csv("titanic_train.csv")
test = pd.read_csv("titanic_test.csv")
```

```
[69]: #Separate ID column to use for predictions
train_ID = train['PassengerId']
test_ID = test['PassengerId']

#Drop ID column
train.drop("PassengerId", axis = 1, inplace = True)
test.drop("PassengerId", axis = 1, inplace = True)
```

0.1.1 EDA from Assignment 2

```
#Fill embarked NAs with the mode
      train["Embarked"].fillna(train['Embarked'].value_counts().idxmax(),__
      →inplace=True)
      #Encode Categorical Variables
      df_embarked = pd.get_dummies(train['Embarked'],
                                          prefix='embarked')
      df_sex = pd.get_dummies(train['Sex'],
                                      prefix='sex')
      df_plcass = pd.get_dummies(train['Pclass'],
                                         prefix='pclass')
      #Add encoded variables back to data
      train_encod = pd.concat([train,
                              df_embarked,
                              df sex,
                              df_plcass], axis=1)
      train_encod.head()
      # Drop the original categorical columns because they have been encoded
      train = train_encod.drop(['Pclass', 'Sex', 'Embarked'], axis=1)
      train.head()
[70]:
        Survived
                  Age SibSp Parch
                                         Fare embarked_C embarked_Q embarked_S \
               0 22.0
      0
                             1
                                   0 7.2500
                                                         0
                                                                    0
                                                                                 1
      1
                1 38.0
                             1
                                   0 71.2833
                                                         1
                                                                     0
                                                                                 0
      2
                1 26.0
                                   0 7.9250
                                                                     0
                                                                                 1
                             0
                                                         0
      3
                1 35.0
                             1
                                   0 53.1000
                                                         0
                                                                     0
                                                                                 1
                0 35.0
                                   0 8.0500
        sex_female sex_male pclass_1 pclass_2 pclass_3
      0
                            1
                 1
                           0
                                                0
                                                          0
      1
                                      1
      2
                                     0
                  1
                           0
                                                0
                                                          1
                 1
                           0
                                     1
                                                          0
      3
                                                0
      4
                                     0
                                                          1
[71]: #Split Data into Training/Test Sets
      np.random.seed(42)
      Y = train["Survived"]
      X = train.drop("Survived",axis=1)
```

0.1.2 Random Forest Model

```
[72]: #Create model instance
    rfc=RandomForestClassifier(random_state=42)

#Parameter Grid for tuning
param_grid = {
        'n_estimators': [100,200,300,400,500],
        'max_features': ['auto', 'sqrt', 'log2'],
        'max_depth' : [4,5,6,7,8],
        'criterion' : ['gini', 'entropy'],
        'min_samples_split': [2,4,8,12,16,20],
        'bootstrap' : [True, False]
}
```

```
[73]: #Initiate gridsearch and fit model

#gs_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5)

#gs_rfc.fit(X_train, Y_train)
```

```
[74]: #Best Params #gs_rfc.best_params_
```

After using GridSearch for Hyperparameter tuning, the optimal values for the 6 chosen hyperparameters were:

'bootstrap': False, 'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_split': 8, 'n_estimators': 200

```
[75]: #Create new RF model using tuned hyperparameters

rfc_final = □

→RandomForestClassifier(random_state=42,bootstrap=False,criterion='gini',max_depth=6,

→max_features='auto',min_samples_split=8,n_estimators=200)

rfc_final.fit(X_train, Y_train)

#Predictions

rfc_pred_train = rfc_final.predict(X_train)

rfc_pred_val = rfc_final.predict(X_val)
```

[76]: #Accuracy Score for RF Classifier using the average of 5-fold cross validation rfc_score = cross_val_score(rfc_final, X_train, Y_train, cv=5).mean() print("Accuracy Score of Random Forest: ",rfc_score)

Accuracy Score of Random Forest: 0.8272234807446075

[77]: #Confusion Matrix

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
cm = confusion_matrix(Y_val,rfc_pred)
matrix = ConfusionMatrixDisplay(confusion_matrix=cm)
matrix.plot()
plt.show()

[78]: #Precision/Recall

support	f1-score	recall	precision	
105	0.85	0.90	0.81	0
74	0.76	0.69	0.84	1
179	0.82			accuracy
179	0.80	0.80	0.82	macro avg

weighted avg 0.82 0.82 0.81 179

Even with extensive hyperparameter tuning, our results are about the same as the ones from last week's assignment using Logistic Regression/LDA/KNN. The model has good metrics for predicting passengers that did not survive but struggles with predicting passengers that did survive. Hopefully we will see improved results using Gradient Boosted Trees.

0.1.3 Gradient Boosted Tree Classifier

```
[79]: from sklearn.ensemble import GradientBoostingClassifier

#Initiate GBC model
gbc = GradientBoostingClassifier(random_state=42)

#Parameter grid for gradient boosted trees
#Include hyperparameter for learning rate
gbc_param_grid = {
    'n_estimators': [100,200,300,400,500],
    'learning_rate' : [0.05, 0.1, 0.25, 0.5, 0.75, 1],
    'max_depth' : [4,5,6,7,8],
    'min_samples_split': [4,6,8,10]
}
```

```
[80]: #gs_gbc = GridSearchCV(estimator=gbc, param_grid=gbc_param_grid, cv=5) #gs_gbc.fit(X_train, Y_train)
```

```
[81]: #Best Params #gs_gbc.best_params_
```

After using GridSearch for Hyperparameter tuning, the optimal values for the 4 hyperparameters were:

{'learning_rate': 0.05, 'max_depth': 4, 'min_samples_split': 8, 'n_estimators': 300}

```
[83]: #Accuracy Score for GBT Classifier using the average of 5-fold cross validation gbc_score = cross_val_score(gbc_final, X_train, Y_train, cv=5).mean() print("Accuracy Score of Gradient Boosted Trees: ",gbc_score)
```

Accuracy Score of Gradient Boosted Trees: 0.8230670737712991

[84]: #Confusion Matrix from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay cm = confusion_matrix(Y_val,gbc_pred) matrix = ConfusionMatrixDisplay(confusion_matrix=cm) matrix.plot() plt.show()

[85]: from sklearn.metrics import classification_report, plot_confusion_matrix,

→accuracy_score, precision_score, recall_score, f1_score

print(classification_report(Y_val,gbc_pred))

	precision	recall	f1-score	support
0	0.83	0.91	0.87	105
1	0.86	0.74	0.80	74
accuracy			0.84	179
macro avg	0.85	0.83	0.83	179
weighted avg	0.84	0.84	0.84	179

The gradient boosted tree classifier model performs slightly better than the RF model, but barely so. After browsing through a few Kaggle notebookes using similar modeling techniques, I see that most people are expeiencing similar problems and struggling to increase the F1 score for 'survived'

above the 0.80-0.85 range. Perhaps more hyperparameter tuning or data preprocessing is required since the results have been largely unchanged in the combined 5 models used in assignment 2 and this assignment.

0.1.4 Model Comparison

```
[86]: #Function that computes model metrics
      def modMetrics(modName,predTrain,yTrain,predVal,yVal):
          metDict={'model':modName,
                    'F1 Score (Train)':f1_score(yTrain,predTrain),
                    'F1 Score (Val)':f1 score(yVal,predVal),
                    'Precision (Train)':precision score(yTrain,predTrain),
                    'Precision (Val)':precision_score(yVal,predVal),
                    'Recall (Train)':recall score(yTrain,predTrain),
                    'Recall (Val)':recall_score(yVal,predVal)
                  }
          return metDict
[87]: RF_metrics = modMetrics("Random_
       →Forest",rfc_pred_train,Y_train,rfc_pred_val,Y_val)
      GBC metrics = modMetrics("Gradient Boosted"
       →Trees",gbc_pred_train,Y_train,gbc_pred_val,Y_val)
[88]: #Create comparison table
      modList=[]
      modList.append(RF_metrics)
      modList.append(GBC_metrics)
      pd.DataFrame(modList)
[88]:
                          model F1 Score (Train) F1 Score (Val)
                  Random Forest
                                         0.800000
                                                          0.755556
      0
        Gradient Boosted Trees
                                         0.923679
                                                          0.797101
         Precision (Train) Precision (Val) Recall (Train) Recall (Val)
                                                   0.708955
      0
                  0.917874
                                   0.836066
                                                                  0.689189
      1
                  0.971193
                                   0.859375
                                                   0.880597
                                                                  0.743243
```

This comparison table clearl shows that the Gradient Boosted Trees model performs better than the Random Forest model on both the training and validation sets. There is a greater difference in values between training and test sets for the Gradient boosted model which could indicate some minor overfitting, but the performance drop-off is not enough to claim that the model will not generalize well. We will use the Gradient Boosted Trees model for the test set kaggle predictions.

0.2 Test Set Kaggle Predictions

```
[89]: #Transform Test Set
      #Fill Age NAs with median of each class
      test['Age'] = test['Age'].fillna(test.groupby('Pclass')['Age'].
      ⇔transform('median'))
      #Drop the Cabin, Name, Ticket variable
      test = test.drop(columns = ["Cabin", "Name", "Ticket"], axis=1)
      #Fill embarked NAs with the mode
      test["Embarked"].fillna(test['Embarked'].value_counts().idxmax(), inplace=True)
      #Fill fare NAs with median
      test["Fare"] = test["Fare"].fillna(test["Fare"].median())
      #Encode Categorical Variables
      df_embarked = pd.get_dummies(test['Embarked'],
                                           prefix='embarked')
      df sex = pd.get dummies(test['Sex'],
                                      prefix='sex')
      df_plcass = pd.get_dummies(test['Pclass'],
                                         prefix='pclass')
      #Add encoded variables back to data
      test_encod = pd.concat([test,
                              df_embarked,
                              df_sex,
                              df_plcass], axis=1)
      test_encod.head()
      # Drop the original categorical columns because they have been encoded
      test = test_encod.drop(['Pclass', 'Sex', 'Embarked'], axis=1)
      test.head()
```

```
[89]:
        Age SibSp Parch
                             Fare embarked_C embarked_Q embarked_S \
     0 34.5
                          7.8292
                 0
                                           0
                                                       1
                                                                  0
     1 47.0
                        0 7.0000
                                            0
                                                       0
                 1
                                                                  1
     2 62.0
                 0
                        0
                           9.6875
                                           0
                                                       1
     3 27.0
                 0
                        0
                           8.6625
                                            0
                                                       0
                                                                  1
     4 22.0
                 1
                        1 12.2875
        sex_female sex_male pclass_1 pclass_2 pclass_3
     0
                          1
                                   0
                1
                          0
     1
                                   0
                                            0
                                                      1
```

```
2
                                                  0
           0
                     1
                               0
3
                     1
                                         0
           0
                               0
                                                  1
4
           1
                     0
                               0
                                         0
                                                  1
```

```
[90]: #GBC Test PRedictions
gbc_predictions = gbc_final.predict(test)

gbc_df = pd.DataFrame()
gbc_df["PassengerId"] = test_ID
gbc_df["Survived"] = gbc_predictions
```

```
[91]: #Export to CSV gbc_df.to_csv("GBC Predictions.csv",index=False)
```