Basic Statistics

$$\begin{split} \operatorname{Var}(aX+bY) = & a^2 \ \operatorname{Var}(X) + b^2 \ \operatorname{Var}(Y) + 2ab \ \operatorname{Cov}(X,Y) \\ \operatorname{Var}(aX-bY) = & a^2 \ \operatorname{Var}(X) + b^2 \ \operatorname{Var}(Y) - 2ab \ \operatorname{Cov}(X,Y) \end{split}$$

European Put/Call

$$C_T = \max\{S_T - K, 0\}$$

$$P_T = \max\{K - S_T, 0\}$$

Risk free asset

$$dB(\tau) = r \cdot B(\tau)d\tau$$

$$B(t) = e^{-r(T-t)}B(T)$$

Binomial model

$$S_{T(\text{up})} = uS_0$$
 , $S_{T(\text{down})} = dS_0$

$$0 < d < 1 + r < u$$
 (Arbitrage free)

Trading Strategy is a pair $\Pi = \{\delta_0, \eta_0\}$ representing number of stocks and risk-free bonds. Value at t = 0 and t = T is:

$$\Pi_0 = S_0 \delta_0 + \eta_0 B_0$$

$$\Pi_T = S_T \delta_0 + \eta_0 B_T$$

An arbitrage strategy is a trading strategy:

$$\Pi_0 = 0$$
 and $\Pi_T > 0$ almost surely

$$\Pi_0 < 0 \; \text{ and } \Pi_T \geq 0 \text{ almost surely}$$

Pricing using replicating portfolio: Given arbitrage free market

if
$$\Pi_T = V_T$$
 almost surely $\Rightarrow \Pi_0 = V_0$

in general
$$\Pi_t = V_t$$
 for $t \in [0, T]$

Replicating portfolio period-1 Binomial model

$$\delta_0 S_T^u + \eta_0 B_T = V_T^u$$

$$\delta_0 S_T^d + \eta_0 B_T = V_T^d$$

$$\Rightarrow \delta_0 = \frac{V_T^u - V_T^d}{S_T^u - S_T^d}$$

Theorem (Put-Call Parity): Assume an arbitrage free market with risk free interest rate $r \geq 0$. Assume S_t doesn't pay dividends. Then at any time $t \in [0,T]$, then European call C_t and put P_t with same strike price K and same expiry T satisfy

$$C_t - P_t = S_t - Ke^{-r(T-t)}$$

Lemma (Risk neutral expected values): Consider an arbitrage free market

$$q^u = \frac{e^{rT} - d}{u - d}$$

and q^u satisfy $q^u \in (0,1)$. Then under probability measure \mathbb{Q} with $\mathbb{Q}(\text{up}) = q^u$ and $\mathbb{Q}(\text{down}) = 1 - q^u$ we have

$$S_0 = e^{-rT} \mathbb{E}^{\mathbb{Q}}(S_T)$$

$$V_0 = e^{-rT} \mathbb{E}^{\mathbb{Q}}(V_T)$$

Proposition: Under the N-period Binomial model with $0 < d < e^{r\Delta t} < u$. Suppose V_N is a random variable (derivative payout at maturity).

$$V_{n(\omega_1,\omega_2,\dots,\omega_n)} = e^{-r\Delta t} \mathbb{E}^{\mathbb{Q}}[V_{n+1} \mid \mathcal{F}_{n+1}]$$

$$e^{-r\Delta t \left(q^u V_{n+1}(\omega_1,\omega_2,\dots,\omega_n,\,\operatorname{up}) + (1-q^u) V_{n+1}(\omega_1,\omega_2,\dots,\omega_n,\,\operatorname{down})\right)}$$

Then V_0 is the fair value of the derivative at time 0

Algorithm: Given N, compute V_0

- 1. Compute all possible payouts $V_T(\omega_1,...,\omega_N)$
- 2. Go backwards. For $n = N 1, \ldots, 0$ • For all states $\omega \in \Omega$

 $V_n(\omega_1, \! ..., \! \omega_N) \! = \! e^{-r\Delta t} \big(q^u V_{n+1}(\mathrm{up}) \! + \! (1 \! - \! q^u) V_{n+1}(\mathrm{down}) \big)$

3. Return V_0

Definition (Log Normal Returns):

$$X_n = \log(S_n)$$

$$\Delta X_n = X_{n+1} - X_n = \log \left(\frac{S_{n+1}}{S_n}\right)$$

Definition (Standard Brownian Motion):

- 1. $W_0 = 0$ almost surely,
- 2. For any $s > t \ge 0$ the increment $W_s W_t$ satisfies

$$W_s - W_t \sim N(0, s-t)$$

- 3. For any $0 \le t_1 < t_2 \le t_3 < t_4$ the increments $W_{t_2} W_{t_1}, W_{t_4} W_{t_3}$ are independent
- 4. The sample paths (t, W_t) are continuous almost surely.

Definition: Let $(W_t)_{t \ge 0}$ be a Brownian Motion.

1. The process

$$X_t = \mu t + \sigma W_t, \ t \ge 0$$

is called a Brownian Motion with drift μ and volatility σ

2. The process $Y_t = Y_0 \exp(X_t)$ is called a geometric Brownian Motion.

Definition (Black Scholes Model): Under the Black Scholes Model we assume the random stock price process satisfies

$$dS_t = S_t \cdot \mu \cdot dt + S_t \cdot \sigma \cdot dW_t$$

Proposition (A solution of the BS SDE):

$$dS_t = S_t \cdot \mu \cdot dt + S_t \cdot \sigma \cdot dW_t$$

is given by

$$S_t = S_0 \exp \Biggl(\left(\mu - \frac{\sigma^2}{2} \right) t + \sigma W_t \Biggr)$$

Definition (Quantile function):

$$F^\leftarrow(y) = \inf\{x \in \mathbb{R} : F(x) \geq y\}, y \in [0,1]$$

Algorithm (Inversion method): Given a CDF F sample $X \sim F$ as follows

- 1. Sample $U \sim U(0,1)$
- 2. Return $X = F^{\leftarrow}(U)$

Monte Carlo estimator

$$\hat{\mu}_n^{\text{MC}} = \frac{1}{n} \sum_{i=0}^n g(\boldsymbol{X}_i)$$

$$\sigma^2 = \operatorname{Var}(g(\boldsymbol{X})) \Rightarrow \operatorname{Var}(\hat{\mu}_n^{\text{MC}}) = \frac{\sigma^2}{n}$$

$$1 - \alpha$$
 CI: $\hat{\mu}_n^{\text{MC}} \pm Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

$$1 - \alpha$$
 CI: (unknown σ) : $\hat{\mu}_n^{\text{MC}} \pm Z_{1-\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}}$

Where S_n is sample standard deviation.

Antithetic Variates

- Replace n independent observations with $\frac{n}{2}$ pairs of antithetic observations.
- $\bullet \quad \frac{g(\pmb{X_i}) + g\left(\widetilde{\pmb{X_i}}\right)}{2}$
- X_i, \widetilde{X}_i are negatively correlated.

$$\hat{\mu}_n^{\text{AV}} = \frac{1}{\left(\frac{n}{2}\right)} \sum_{i=1}^n \frac{g(\boldsymbol{X_i}) + g\left(\widetilde{\boldsymbol{X_i}}\right)}{2}$$

$$\mathrm{Var}\big(\widehat{\mu}_n^{\mathrm{AV}}\big) = \frac{\sigma^2}{n} + \frac{1}{n} \; \mathrm{Cov}\big(g(\boldsymbol{X_i}), g\Big(\widetilde{\boldsymbol{X_i}}\Big)\Big)$$

$$= \operatorname{Var}(\hat{\mu}_n^{\operatorname{MC}}) \left(1 + \operatorname{Cor} \left(g(\boldsymbol{X_i}) + g(\widetilde{\boldsymbol{X_i}}) \right) \right)$$

$$\mathrm{Var}\big(\hat{\mu}_n^{\mathrm{AV}}\big) \leq \mathrm{Var}\big(\hat{\mu}_n^{\mathrm{MC}}\big) \Leftrightarrow \mathrm{Cor}\big(g(\boldsymbol{X_i}) + g\Big(\widetilde{\boldsymbol{X_i}}\Big)\Big) \leq 0$$

$$\operatorname{res}_i = \frac{g(\boldsymbol{X_i}) + g\left(\widetilde{\boldsymbol{X_i}}\right)}{2}$$

$$1 - \alpha$$
 CI: $\hat{\mu}_n^{\text{AV}} \pm Z_{1-\frac{\alpha}{2}} \frac{\text{sd(res)}}{\sqrt{n}}$

Control Variates

$$\hat{\mu}_n^{\text{CV}} = \frac{1}{n} \sum_{i=1}^n (Y_i + \beta(\mu_c - C_i))$$

$$res_i = Y_i + \beta(\mu_c - C_i)$$

$$(1-\alpha) \text{ CI}: \hat{\mu}_n^{\text{CV}} \pm Z_{1-\frac{\alpha}{2}} \frac{\text{sd(res)}}{\sqrt{n}}$$

$$\mathbb{E}(C) = \mu_C$$
 is known

 $\operatorname{Var}(\hat{\mu}_n^{\text{CV}})$ is minimized when

$$\beta^* = \frac{\mathrm{Cov}(Y, C)}{\mathrm{Var}(C)}$$

To estimate β^* we can:

- 1. Use the same sample, resulting estimate $\hat{\mu}_n^{\text{CV}}$ not necessarily unbiased. For large n bias is negligible.
- 2. Use pilot study. For n^{pilot} sample (Y_i,C_i) and estimate $\hat{\beta}^*$
- The more correlated C and Y are, the better the improvement over crude MC.
- $\hat{\mu}_n^{\text{CV}}$ is asymptotically normal so CI can be estimated in normal way.

Brownian Bridge

• We can sample the path out of order using conditional distributions. This saves time since we may not need to sample the full path

Theorem (BM Conditional Distribution): If $(W_t)_{t \geq 0}$ is a standard BM, then for any u < v < w we have

$$\begin{split} X &= W_v \mid (W_u = a, W_v = b) \\ X &\sim N \bigg(\frac{w-v}{w-u} a + \frac{v-u}{w-u} b, \frac{(v-u)(w-v)}{w-u} \bigg) \end{split}$$

• We can sample the stock price $S_{t_1},...,S_{t_N}$ in any order using the conditional distributions.

Multivariate Normal Distribution

 ${\bf Definition} \ ({\rm Multivariate} \ {\rm Normal}) \colon$

$$\pmb{X} \sim N_d(\mu, \Sigma)$$

 $\begin{aligned} &\text{if} \ \ \pmb{X}=\mu+\pmb{A}Z, \ \text{where} \ \ Z=(z_1,z_2,...,z_d)\\ &\text{with} \ \ Z_j\sim N(0,1) \ \text{and} \ \ AA^T=\Sigma \end{aligned}$

Sampling from the multivariate normal

• Let A be the e Cholesky factor of Σ , which is a lower triangular

matrix so that $AA^T = \Sigma$

- 1. For i = 1...n
 - $\bullet \ \ \text{Sample} \ Z_1,...,Z_d \sim N(0,1)$
 - $X_i = \mu + AZ$

2. Return \boldsymbol{X}

Correlated assets

- Let $Z_1, Z_2 \sim N(0, 1), Z = (Z_1, Z_2)$
- $A = \begin{pmatrix} 1 & 0 \\ \rho & \sqrt{1-\rho^2} \end{pmatrix}$ and $\rho \in (-1,1)$
- X = AZ, then
- $X_1 = Z_1 + 0 \cdot Z_2, X_2 = \rho Z_1 + \sqrt{1 \rho^2} Z_2$
- $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$
- $Cov(X_1, X_2) = Cor(X_1, X_2) = \rho$

We can sample two correlated standard Brownian Motions $W^{(1)}, W^{(2)},$ $Cor(W^{(1)}, W^{(2)}) = \rho$

- 1. Sample $Z_1, Z_2 \sim N(0, 1)$
- 2. Set $W_{t_i}^{(1)} = W_{t_{i-1}}^{(1)} + \sqrt{\Delta t} Z_1$
- 3. Set $W_{t_{j}}^{(2)}=W_{t_{j-1}}^{(2)}+\sqrt{\Delta t} \Big(\rho Z_{1}+\sqrt{1-\rho^{2}}Z_{2}\Big)$

Common Random numbers

- Estimating $\mu_1 \mu_2 = \mathbb{E}(g_1(\boldsymbol{X})) \mathbb{E}(g_2(\boldsymbol{X}))$
- 1. **Method 1**: Estimate μ_1, μ_2 using two independent MC estimators $\mu_{n-1}^{\text{MC}}, \mu_{n-2}^{\text{MC}}$

$$\operatorname{Var}ig(\mu_n^{ ext{MC}}ig) = rac{1}{n}(\sigma_1^2 + \sigma_2^2)$$

2. **Method 2** Estimate using the *same* random numbers μ_n^{CRN}

$$\mathrm{Var}\big(\mu_n^{\mathrm{CRN}}\big) = \frac{1}{n} \big(\sigma_1^2 + \sigma_2^2 - 2\sigma_{1,2}\big)$$

$$\sigma_1 = \mathrm{Var}(g_1(\boldsymbol{U}))$$
 ,

$$\sigma_2 = \operatorname{Var}(g_2(\boldsymbol{U}))$$
,

$$\sigma_{1,2} = \mathrm{Cov}(g_1(\boldsymbol{U}), g_2(\boldsymbol{U}))$$

• CRN outperform the independent estimator $\iff \sigma_{1,2} > 0$

Lebesgue Integral

$$FV(G) = \lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} |G\left(t_{j+1}\right) - G\left(t_{j}\right)|$$

Definition (Lebesgue Stieltjes Integral): If $FV(G) < \infty$ then

$$\int_0^T f(t) dG(t) \! = \! \lim_{n \to \infty} \sum_{j=0}^{n-1} f\!\left(t_j\right) \! \left(G\!\left(t_{j+1}\right) \! - \! G\!\left(t_j\right)\right)$$

If G has a first derivative G' = g(t) then

$$\int_{0}^{T}f(t)dG(t)\!=\!\int_{0}^{T}f(t)g(t)dt$$

Definition (Expected Value): Suppose F is a distribution function of some r.v X then

$$\mathbb{E}(X) = \int x dF(X)$$

Definition (Quadratic Variation):

$$[f,f](T) = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} \left[f\!\left(t_{j+1}\right) - f\!\left(t_{j}\right) \right]^{2}$$

Proposition: If f has a continuous first derivative then by Taylor [f, f](T) = 0

Theorem: The Brownian Motion W(t) for $f \in [0,T]$ does not have finite first order variation almost surely

$$FV(W) = \infty$$
$$[W, W](T) = T$$

Theorem (Ito Formula for a BM): Let W(t) be a BM and f(t, w) be a function for which the partial derivatives $f_t, f_{w(t,w)}, f_{ww}(t,w)$ defined and continuous. Then for any T > 0

$$\begin{split} f(T,W(T)) &= f(0,W(0)) + \int_0^T f_t(t,W(t)) dt \\ &+ \int_0^T f_w(t,W(t)) dW(t) + \frac{1}{2} \int_0^T f_{ww}(t,W(t)) dt \end{split}$$

Definition (Ito Process):

$$X(t)=X(0)+\int_0^t a(u)du+\int_0^t b(u)dW(u)$$

also

$$dX(t) = a(t)dt + b(t)dW(t)$$

(Ito's formula for Ito processes): Let X(t) be an ito process, (suppose all appearing derivatives are continuous) then

$$\begin{split} f(T, &X(T)) \! = \! f(0, \! X(0)) \! + \! \int_0^T f_t(t, \! X(t)) dt \! + \\ &\int_0^T f_x(t, \! X(t)) dX(t) \! + \! \frac{1}{2} \int_0^t f_{xx}(t, \! X(t)) d[X, \! X](t) \end{split}$$

After simplification:

$$df(t,\!X(t))\!=\!\!\big(f_t\!+\!a(t)f_x\!+\!\!\tfrac{1}{2}f_{xx}b^2(t)\big)dt\!+\!f_xb(t)dW(t)$$

Definition (Euler Approximation):

$$dX(t) = a(X(t))dt + b(X(t))dW(t)$$

$$\hat{X}(0) = X(0)$$
 and

Where
$$Z_1, Z_2, ..., Z_N \sim N(0, 1)$$
 iid.

Definition (Value At Risk):

$$\mathbb{P} \big(X \leq \operatorname{VaR}_{\beta(X)} \big) = \int_{-\infty}^{\operatorname{VaR}_{\beta(X)}} f(x) dx = 1 - \beta$$

Value-at-risk is the $1-\beta$ quantile of the distribution.

Definition (Expected Shortfall):

$$\mathrm{ES}_\beta(X) = \mathbb{E}\big(X \mid X \le \mathrm{VaR}_\beta\big)$$

$$\mathrm{ES}_{\beta}(X) = \frac{1}{1-\beta} \int_{\beta}^{1} \mathrm{VaR}_{u} du$$

Note: The expected shortfall is sub-addi-

$$\mathrm{ES}_{\beta}(X+Y) \le \mathrm{ES}_{\beta}(X) + \mathrm{ES}_{\beta}(Y)$$

Algorithm (VaR and ES from sample): $X_1, X_2, ..., X_n$ is the sample data.

- Let $X_{(1)} < X_{(2)} < ... < X_{(n)}$ be the sorted data.
- $i_{\beta} = |(1-\beta)n|$
- $\widehat{\text{VaR}}_{\beta} = X_{(i_{\beta})}$ $\widehat{\text{ES}}_{\beta} = \frac{1}{i_{\beta}} (X_{(1)} + X_{(2)} + \dots + X_{(i_{\beta})})$

Definition (Jump process):

$$dS_t = \mu S_t dt + \sigma S_t dW_t + (J-1)dN(t)$$

Where where N(t) is a poisson process with rate λ . in a small interval of length Δt we have

$$dN(t) = \begin{cases} 1 \text{ with prob } \delta dt \\ 0 \text{ with prob } 1 - \delta dt \end{cases}$$