IFT 608 / IFT 702 Planification en intelligence artificielle

Planification symbolique déterministe par recherche heuristique dans l'espace d'états

Froduald Kabanza

Département d'informatique

Université de Sherbrooke

Contenu

Rappels

 Architecture d'un planificateur utilisant comme solveur une recherche dans un espace d'états

Rappel – un planificateur est un solveur de modèle

IFT608/IFT702

Rappel – Hypothèses sur le domaine

Les hypothèses du domaine à considérer sont:

- Un seul agent au lieu de plusieurs agents
- **Déterministe** au lieu de stochastique
- Complétement observable au lieu de partiellement observable
- **Séquencement d'actions** ayant des liens de causalité

Un algorithme défini avec ces hypothèses peut dans une certaine mesure être appliqué dans un environnement ne satisfaisant pas les deux premières hypothèses:

- Un planificateur déterministe centralisé peut planifier pour plusieurs agents
- L'incertitude est gérée par l'architecture décisionnelle en re-planifiant

Architecture d'un planificateur symbolique déterministe par recherche dans un espace d'états

- Le modèle ne décrit pas les capteurs puisque l'environnement est déterministe.
- Le modèle est transformé en fonction de transition pour un graphe d'états.

IFT608/IFT702

Prérequis IFT615

- IFT 615 (Recherche heuristique avec A*)
 - Algorithme A*
 - Rôle de la function heuristique dans A*

Exemple 1: Monde des blocs

Un robot doit empiler des blocs dans une configuration indiquée.

Monde des blocks (Blocksworld en anglais)

Micro-environnement didactique, couramment utilisé en IA.

Exemple 1: Empiler des blocs

- Étant donné un **modèle d'actions** primitives (prendre un block, relâcher un bloc, etc.), **trouver un plan** pour attendre le but.
- Le problème est transformé en un problème de trouver un chemin dans un graphe dirigé.

Exemple 2: Livraison de colis

Un robot doit recevoir des commandes de livraisons de colis et les exécuter.

Exemple 2 : Livrer des colis

État initial

But

- Étant donné un **modèle d'actions** primitives (prendre un colis, relâcher un bloc, se déplacer d'une pièce à l'autre), **trouver un plan** pour attendre le but.
- Le problème est transformé en un problème de trouver un chemin dans un graphe dirigé.

IFT608/IFT702

Planification par recherche dans un graphe

- Non informé: Largeur, profondeur, iterative deepening, Dijkstra, etc.
 - Ces algorithmes ne sont pas efficaces pour des problèmes qui nous intéressent. Ils n'ont aucun sens d'orientation; aucune intuition.
- A*
 - Dijkstra + une direction de recherche donnée par une **heuristique**.
 - Défi: apprendre l'heuristique
- Plusieurs autres approches. Exemple: PlanSys (https://plansys2.github.io/)
 - N'utilise pas A*
 - Il utilise une recherche dans un graphe différente
 - Le concept fondamental demeure le même.

IFT608/IFT702 12