Question

Do a regression for the model

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u$$

Code:

$$load\ WAGE1.raw$$

$$y = wage1(:,1);$$

$$[n,k] = size(wage1)$$

$$X = [ones(n,1), wage1(:,[2,3,4])];$$

$$[n,k] = size(X)$$

Estimation of model's parameters:

$$\beta = inv(X' * X) * X' * y$$

• Variance of residuals:

$$\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{n-k-1},$$

where n-k-1 is the number of degrees of freedom of the model

• Variance of the estimator:

$$Var(\hat{\beta}|x) = \hat{\sigma}^2 (x'x)^{-1}$$

Code:

$$u = y - X * \beta$$

$$sig2 = u' * u/(n - 4)$$

$$std = sqrt(diag(sig2 * inv(X' * X)))$$

Question

Draw histograms for wage model and for log(wage).

The second distribution is less skewed. The logarithmic transformation is recommended when the residuals have a "strongly" positively skewed distribution.

Code:

$$f = figure;$$

 $hist(u, 20)$
 $title('Distribution of residuals')$
 $xlabel('Residals')$
 $ylabel('Frequency')$

Regression with logarithmic transformation:

$$logy = log(y)$$

$$\beta = inv(X' * X) * X' * logy$$

$$u = logy - X * beta$$

$$f = figure;$$

$$hist(u, 20)$$

$$title('Distribution of the residuals')$$

$$xlabel('Residuals')$$

$$ylabel('Frequency')$$

Hypothesis testing

Redo regression:

$$log(y) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u$$

Code:

$$y = wage1(:,1);$$

$$logy = log(y)$$

$$[n,k] = size(wage1)$$

$$X = [ones(n,1), wage1(:,[2,3,4])];$$

$$[n,k] = size(X)$$

$$\beta = inv(X'*X)*X'*logy$$

$$u = logy - X*\beta$$

$$sig2 = u'*u/(n-4)$$

$$std_dv = sqrt(diag(sig2*inv(X'*X)))$$

• MLR1We consider linear equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

.

- MLR2: We have a sample consisting of n observations $\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$
- MLR3: $\mathbb{E}[u|x_1,\ldots,x_k]=0$.
- MLR4: In the sample (and thus in the population), none of the independent variables is constant, and there is no relationship between the independent variables.
- MLR5 (homoskedascity): $Var(u|x_1, x_2, ..., x_k) = \sigma^2$.
- MLR6:Error for the population u is independent of the explanatory variables x_1, \ldots, x_k and is distributed according to normal distribution with zero mean and variance σ^2 : $u \sim \mathcal{N}(0, \sigma^2)$.

Theorem 0.1 Under the hypotheses 1-4, $\mathbb{E}[\hat{\beta}_j] = \beta_j$ for $j = 0, 1, \dots, k$.

Theorem 0.2 Under the hypotheses 1-5, $Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1-R_j^2)}$ for j = 0, 1, ..., k, with $SST_j = \sum_{i=1}^n (x_{ij} - \bar{x_j})$ - the total variation of the variable j in the sample, and R_j^2 -the R-square of the regression of x_j for the other independent variables.

Theorem 0.3 Under the hypotheses 1-6, $(\hat{\beta}_j - \beta_j)/std(\hat{\beta}_j) \sim t_{n-k-1}$, where n-k-1 is the number of degrees of freedom.

Question

Test $H_0: \beta_{exper} = 0$.

In most of applications, we test the null hypothesis $H_0: \beta_j = 0$. Thus, it is natural to consider unbiased estimator β_j which we denote by $\hat{\beta}_j$. To test H_0 we use t-statistic $\hat{\beta}_j$ given by $t_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{std(\hat{\beta}_j)}$. Values of $t_{\hat{\beta}_j}$ too far from 0 result in rejecting H_0 .

Remark 0.1 Since $std(\hat{\beta}_j)$ is always positive, $t_{\hat{\beta}_j}$ has the same sign as $\hat{\beta}_j$.

We test H_0 : $\beta_{exper} = 0$. Thus, we want to test the hypothesis that the number of years of professional experience does not affect the hourly wage. We calculate:

$$t = beta./std_{dv}$$
$$t = t(3)$$

We obtain $t_{\hat{\beta}_{exper}} = 2.39$. According to the theorem, if H_0 is true, $t_{\hat{\beta}_j}$ has the t distribution with n - k - 1 degrees of freedom: $t_{\hat{\beta}_j} \sim t_{n-k-1}$.

One-sided test

In order to decide if we should accept or reject H_0 , we consider the alternative hypothesis H_1 of the following form $H_1: \beta_j > 0$. This means that we are not concerned with alternatives of H_0 of the form $H_1: \beta_j < 0$, for intuitive reasons, or coming from economic theory, for example. In order to test H_0 we need to choose significance level which is the probability of rejecting H_0 when it is in fact true.

We reject H_0 in favor of H_1 at the significance level 5% if: $t_{\hat{\beta}_j} > c$ where c is called the *critical value*, is the 95% percentile of t_{n-k-1} distribution. In order to obtain c, we need to calculate the number of degrees of freedom, here n-k-1=n-4 because we have 3 variables and intercept.

$$k0 = 4$$

$$c1 = tdis_inv(0.95, n - k)$$

We obtain c=1.6478. Thus, $t_{\hat{\beta}_{exper}} > c$ so we reject H_0 with 5%. We reject H_0 also with 1% significance level since in this case c=2.3335 and $t_{\hat{\beta}_{exper}}$ is greater than c.

Figure 1: One-sided test - Distribution t_{n-k-1} , 95% percentile c and rejection region.

Two-sided test

We test H_0 against the two-sided alternative $H_1: \beta_j \neq 0$, if the sign of β_j is not obvious or if we want to be more careful. In this case, the rule of rejecting H_0 is of the form: $|t_{\hat{\beta}_j}| > c$. As before, we choose the significance level, for example for a significance level 5%, c must be chosen such that the area of the two distribution tails is equal to 2.5.

Code:

$$c2 = tdis_{inv}(0.975, n - k0)$$

We obtain c=1.9645 so we have $|t_{\beta_{exper}}|=2.3914>c$, we reject H_0 in favor of H_1 with 5%.

Question

Test $H_0: \beta_{educ} = 0.6$.

We will test H_0 : One year of studies increases by 60 centimes the hourly wage. It is sufficient to modify the t statistic:

$$t = (beta - 0.6)./std_{dv}$$
$$t = t(2)$$
$$c = tdis_inv(0.95, n - k0)$$

We obtain $t_{\hat{\beta}_{educ}} = -69.3010$ and $c{=}1.6478$, thus we do not reject $H_0.$

Figure 2: Two-sided test

Question

Test $H_0: \beta_{educ} = 0.6$. Rather than testing a different significance levels, it is more informative to answer the following question: Given the observed value of the t statistic, what is the smallest level at which the null hypothesis would be rejected? We call this level *p-value* for the test.

In case of two-sided test $H_0: \beta_j = 0$ against alternative, the p value is given by $\mathbb{P}[|T| > |t|]$, where $\mathbb{P}[T > a]$ is the area under the right curve of the value a. Code to obtain p-value

$$tdis_prb(t, n-k0)$$

We find that p=0 so we reject stongly H_0 .

Question

Test $H_0: \beta_{educ} = \beta_{exper}$.

We want to test that a year of additional education has the same effect as a year of additional experience.

We define a new variable θ : $\beta_{educ} - \beta_{exper}$.

We test $H_0: \theta = 0$ versus $H_1: \theta < 0$. Code:

$$y = wage1(:,1);$$
$$logy = log(y)$$
$$test = X(:,2) + X(:,3)$$

$$X = [X(:,[1,2,4]), test];$$

$$[n,k] = size(X)$$

$$beta = inv(X'*X)*X'*logy$$

$$u = logy - X*beta$$

$$sig2 = u'*u/(n-4)$$

$$std_dv = sqrt(diag(sig2*inv(X'*X)))$$

$$t = (beta)./std_dv$$

$$t = t(2)$$

$$p = tdis_prb(t, n-k0).$$

The p-value is 0, thus we reject H_0 .