(Scribe: Dinithi Sumanaweera)

Question 2

Time complexity of divide-and-conquer based fast integer multiplication:

Recurrence to solve:

$$T(2\lambda) = 3T(\lambda) + C.d$$
 $= 3\left[3T(\frac{1}{4}) + C.\frac{1}{4}\right] + C.d = 3^{2}T(\frac{1}{4}) + (1 + \frac{3}{2}) c.d$
 $= 3\left[3T(\frac{1}{4}) + C.\frac{1}{4}\right] + (1 + \frac{3}{2}) c.d = 3^{2}T(\frac{1}{4}) + (1 + \frac{3}{2} + \frac{3}{2}) c.d$
 $= 3\left[3T(\frac{1}{4}) + C.\frac{1}{4}\right] + (1 + \frac{3}{2} + \frac{3}{2}) c.d = 3^{4}T(\frac{1}{4}) + (1 + \frac{3}{2} + \frac{3}{2}) c.d$

expanding with:

 $= 3^{4}\left[3T(1) + c.\frac{1}{4}\right] + (1 + \frac{3}{2} + \frac{3}{2}) c.d = 3^{4}T(\frac{1}{4}) + (1 + \frac{3}{2} + \frac{3}{2}) c.d$

Some we are halving each time from $d \Rightarrow \frac{1}{2} \Rightarrow \frac{1}{4} \Rightarrow \cdots$
 $= 3^{4}\left[3T(1) + c.\frac{1}{4}\right] + (1 + \frac{3}{2} + \frac{3}{4} + \cdots + \frac{3}{2} + \cdots +$

Question 3

Compute 7³³⁰ mod 13 by hand using the repeated squaring method

binary (330) = 101001010

330 = (2+2+2+2+2)

330 =
$$7^{2} \cdot 13^{2} \cdot 12^{2} \cdot 12^{2} \cdot 7^{2} \cdot 7^{2}$$

Only green highlighted Values are needed. $7^{330} \mod 13 = (7^{2} \times 7^{2^{3}} \times 7^{2^{4}} \times 7^{2^{5}}) \mod 13$ $= [(7^{2} \times 7^{2^{3}} \times 7^{2^{4}}) \mod 13] [7^{2^{5}} \mod 13] \mod 13$ $= [(7^{2} \times 7^{2^{3}} \times 7^{2^{4}}) \mod 13] [7^{2^{5}} \mod 13] \mod 13$ $= [(7^{2} \times 7^{2^{3}} \times 13) (7^{2^{4}} \times 13) \mod 13] [7^{2^{5}} \times 13] [7^{5}} [7^{5}} \times 13] [7^{$

= 90 1/13 = 12