MAS242 해석학 II Notes

한승우

October 11, 2023

CONTENTS

CHAPTER		DIFFERENTIATION	PAGE 2	-
	1.1	Higher order partial derivatives	2	
	1.2	Extreme Values of differentiable Functions	3	
CHAPTER		Inverse Function Theorem	Page 5	_
	2.1	Jacobian	5	
	2.2	The Inverse Function Theorem	5	

Chapter 1

Differentiation

1.1 Higher order partial derivatives

Definition 1.1.1

Given $f: U \to \mathbb{R}$ where U is an open set in \mathbb{R}^m , define $\partial_{ij} \triangleq \partial_i(\partial_j f)(x)$ for each $i, j \in [m]$ to be *2nd order partial derivatives*. Any higher order partial derivatives can be defined inductively.

Definition 1.1.2: C^k -regularity

 $f: U \to \mathbb{R}$ is C^k -regular if all partial derivatives up to order k and they are continuous.

Theorem 1.1.1

 $f: U(\subseteq \mathbb{R}^2) \to \mathbb{R}$ is C^2 at a point $c \in U$, i.e., $\exists \delta > 0$, f is C^2 in $B_{\delta}(c)$. Then, $\partial_{12} f(c) = \partial_{21} f(c)$.

Proof. Let $|h| < \delta$. Define $A(h) \triangleq f(c_1 + h_1, c_2 + h_2) - f(c_1 + h_1, c_2) - f(c_1, c_2 + h_2) + f(c_1, c_2)$. Define $u(x_1) \triangleq f(x_1, c_2 + h_2) - f(x_1, c_2)$ and $v(x_2) \triangleq f(c_1 + h_1, x_2) - f(c_1, x_2)$. Note that u and v are differentiable.

Then, $A(h) = u(c_1 + h_1) - u(c_1)$ and $A(h) = v(c_2 + h) - v(c_2)$. By MVT, $\exists c_1^* \in (c_1, c_1 + h_1)$ and $c_2^* \in (c_2, c_2 + h_2)$ s.t. $A(h) = u'(c_1^*)h_1 = h_1(\partial_1 f(c_1^*, c_2 + h) - \partial_1 f(c_1^*, c_2)) = h_1 h_2 \partial_{21} f(c_1^*, c_2^*)$ Similarly, $\exists c_1^{**}, c_2^{**}$ such that $A(h) = h_1 h_2 \partial_{12} f(c_1^{**}, c_2^{**})$. $\partial_{21} f(c_1^*, c_2^*) = \partial_{12} f(c_1^{**}, c_2^{**})$. Hence, as $|h| \to 0$, due to the continuity, $\partial_{21}(c) = \partial_{12}(c)$.

Corollary 1.1.1

Suppose $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ is C^k at $c \in U$. Then $\partial_{j_1 j_2 \cdots j_k} f(c) = \partial_{j'_1 j'_2 \cdots j'_k}$ where $j'_1 \cdots$ are a permutation of $j_1 \cdots$.

1.2 Extreme Values of differentiable Functions

Definition 1.2.1: Hessian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ be C_2 in U. Suppose $p \in U$ is a critical point of f, i.e., $\nabla f(p) = 0$. Define

$$\mathcal{H}f(x) \triangleq \begin{pmatrix} \partial_{11}f(x) & \partial_{21}f(x) & \cdots & \partial_{m1}f(x) \\ \partial_{12}f(x) & \partial_{22}f(x) & \cdots & \partial_{m2}f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1m}f(x) & \partial_{2m}f(x) & \cdots & \partial_{mm}f(x) \end{pmatrix}.$$

(Sometimes $\mathcal{H}f(x) = D^2f(x)$.)

Define $D(x) = \det \mathcal{H}f(x)$. (Note that $\mathcal{H}f(x)$ is symmetric when f is C^2 by the theorem above.)

Theorem 1.2.1 2nd-order derivative test for two variable functions.

When m = 2 and f is C^2 , a critical point p is

- a local maximum if D(p) > 0 and $\partial_{11} f(p) > 0$ (or $\partial_{22} f(p) > 0$).
- a local minimum if D(p) > 0 and $\partial_{11} f(p) < 0$ (or $\partial_{22} f(p) < 0$).
- a saddle point if D(p) < 0.

The test fails when D(p) = 0.

Proof. Given a unit vector $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, $D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = u_1 \partial_1 f + u_2 \partial_2 f$, and thus

$$D_{\mathbf{u}}^2 f = (u_1 \partial_1 + u_2 \partial_2)(u_1 \partial_1 f + u_2 \partial_2 f) = u_1^2 \partial_{11} f + u_1 u_2 (2 \partial_{12} f) + u_2^2 \partial_{22} f.$$

WLOG, $u_1 \neq 0$. Set $z = u_2/u_1$. Then,

$$D_{\mathbf{u}}^{2}f(p) = u_{1}^{2}(\partial_{11}f(p) + 2\partial_{12}f(p)z + \partial_{22}f(p)z^{2}).$$

Note that, if D(p) > 0, $D_{\mathbf{u}}^2 f(p)$ has no real root.

- If D(p) > 0 and $\partial_{11} f(p) < 0$, Then, $D^2 \mathbf{u} < 0$ for all unit vector \mathbf{u} .
- If D(p) > 0 and $\partial_{11}f(p) > 0$, Then, $D^2\mathbf{u} > 0$ for all unit vector \mathbf{u} .
- If D(p) < 0, D_u²f(p) has different signs depending on u.
 For general m?

$$D_{\mathbf{u}}(D_{\mathbf{u}}f) = D_{\mathbf{u}} \sum_{j=1}^{m} \partial_{j} f u_{j} = \sum_{j=1}^{m} ((\nabla \partial_{j} f) \cdot \mathbf{u}) u_{j} = \sum_{j=1}^{m} \sum_{k=1}^{m} u_{k} u_{j} \partial_{kj} f.$$

Hence,

$$D_{\mathbf{u}}^{2}f(p) = \mathbf{u}^{\mathrm{T}} \cdot D^{2}f(p) \cdot \mathbf{u}$$

Since $D^2f(p)$ is symmetric, its eigenvalues $\lambda_1, \dots, \lambda_m$ exists and they are real numbers. Also, there exists an $m \times m$ orthogonal matrix \mathcal{O} such that $D^2f(p) = \mathcal{O}\Lambda(p)\mathcal{O}^T$ where $\Lambda(p)$ is the diagonal matrix with entries are the eigenvalues.

Then, we can write $D_{\mathbf{u}}^2 f(p) = \mathbf{u} \mathcal{O} \Lambda(p) \mathcal{O}^{\mathsf{T}} \mathbf{u}^{\mathsf{T}} = (\mathbf{u} \mathcal{O}) \Lambda(p) = (\mathbf{u} \mathcal{O})^{\mathsf{T}}$. Since \mathcal{O} is orthogonal, $\mathbf{u} \mathcal{O}$ is another arbitrary unit vector.

Theorem 1.2.2 Generalized 2nd order partial derivatives test

When f is C^2 , a critical point p is

• a local maximum if all eigenvalues of $D^2 f(p)$ are negative.

- a local minimum if all eigenvalues of D²f(p) are positive.
 a saddle point if there are both negative eigenvalues and positive eigenvalues.
 The test fails when there are zero eigenvalues.

Chapter 2

Inverse Function Theorem

Jacobian 2.1

Definition 2.1.1: Jacobian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}^n$ be differentiable. The function $J_f: U \to \mathbb{R}$ defined by

$$J_{\mathbf{f}}(\mathbf{x}) = \det \begin{bmatrix} \partial_1 f_1(\mathbf{x}) & \cdots & \partial_n f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_1 f_n(\mathbf{x}) & \cdots & \partial_n f_n(\mathbf{x}) \end{bmatrix}$$

is called the *Jacobian* of f at x.

Lemma 2.1.1

If $f: V(\subseteq \mathbb{R}^n) - \mathbb{R}$ and $g: U \to V$ are differentiable, then

$$J_{f \circ g}(\mathbf{x}) = J_f(\mathbf{g}(\mathbf{x})) \cdot J_{\mathbf{g}}(\mathbf{x}).$$

Note:-

The linear mapping df(c) is invertible if and only if $J_f(c)$ is nonzero.

2.2 The Inverse Function Theorem

Lemma 2.2.1 Contraction Mapping Principle

Let (X,d) be a complete metric space. Let $\varphi: X \to X$. Suppose that there exists $M \in$ [0,1) such that $d(\varphi(x_1),\varphi(x_2)) \leq Md(x_1,x_2)$. (We call it a contraction mapping.) Then, there uniquely exists $x_* \in X$ such that $\varphi(x_*) = x_*$.

Proof. Fix any $x_0 \in X$. Since $\{x_j\}_{j \in \mathbb{Z}_+}$, where $x_j = \varphi(x_{j-1})$ for each $j \in \mathbb{Z}_+$, is continuous. It converges to some x_* . As φ is continuous, we have $\varphi(x_*) = x_*$. The uniqueness follows trivially.

🛉 Note:- 🛉

- For each $v \in \mathbb{R}^n \setminus \{0\}$, $|Av| = |v| \cdot |A\frac{v}{|v|}| \le ||A||_L \cdot |v|$. The result is trivial when v = 0. For each $u \in \mathbb{R}^n$ with |u| = 1, $|ABu| \le ||A||_L ||Bu| \le ||A||_L ||B||_L$. Hence, $||AB||_L = ||A|| ||B||$.
- Given invertible $A \in L(\mathbb{R}^n.\mathbb{R}^n)$, $A^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is linear. Moreover, $||A||_L > 0$.

Lemma 2.2.2

Given two linear mappings $A, B : \mathbb{R}^n \to \mathbb{R}^n$ with invertibility of A,

$$||A - B||_L \cdot ||A^{-1}||_L < 1 \implies B$$
 is invertible.

Proof. Let $||A^{-1}||_L = 1/\alpha$ and $||B - A||_L = \beta$ so that $\beta < \alpha$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$\alpha |\mathbf{x}| = \alpha |A^{-1}A\mathbf{x}| \le \alpha ||A^{-1}|| \cdot |A\mathbf{x}|$$

= $|A\mathbf{x}| \le |(A - B)\mathbf{x}| + |B\mathbf{x}| \le \beta |\mathbf{x}| + |B\mathbf{x}|$;

hence $(\alpha - \beta)|\mathbf{x}| \leq |B\mathbf{x}|$ where $\mathbf{x} \in \mathbb{R}^n$ is arbitrary. As $\alpha > \beta$, it holds that $B\mathbf{x} = 0 \implies \mathbf{x} = 0$. \square

Corollary 2.2.1

The set $\Omega \subseteq L(\mathbb{R}^n, \mathbb{R}^n)$ of invertible linear transformations is open.

Lemma 2.2.3

The mapping from Ω onto Ω defined by $A \mapsto A^{-1}$ is continuous.

Proof. Let A and B be invertible linear transformations from \mathbb{R}^n to \mathbb{R}^n . Let $||A^{-1}|| = 1/\alpha$ and $||B-A||_L = \beta$. We have $(\alpha-\beta)|\mathbf{x}| \le |B\mathbf{x}|$ by the same reasoning as in the proof of Lemma 2.2.2. Hence, the following holds.

$$\forall \mathbf{v} \in \mathbb{R}^n, (\alpha - \beta)|B^{-1}\mathbf{v}| \leq |BB^{-1}\mathbf{v}| = |\mathbf{v}|$$

This shows that $||B^{-1}||_L \le (\alpha - \beta)^{-1}$.

Hence, we have

$$||B^{-1} - A^{-1}||_L \le ||B^{-1}||_L ||A - B||_L ||A^{-1}||_L \le \frac{\beta}{\alpha(\alpha - \beta)}.$$

This implies that $||B^{-1} - A^{-1}||_L \to 0$ as $B \to A$.

Theorem 2.2.1 Inverse Function Theorem

Let $\mathbf{f}: E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $\mathbf{c} \in E$. Suppose that $J_{\mathbf{f}}(\mathbf{c}) \neq 0$. Then, the following hold.

- (i) There exists a neighborhood U of **a** such that $\mathbf{f}|_{U}$ is bijective and $V \triangleq \mathbf{f}(U)$ is open.
- (ii) The inverse map of $\mathbf{f}|_{U}$ is C^{1} in V.

Proof. Let $A \triangleq d\mathbf{f}(\mathbf{c})$. Define $\lambda \in \mathbb{R}_+$ by $2\lambda \|A^{-1}\|_L = 1$. Since d**f** is continuous, there exists a neighborhood U of **c** such that $\|d\mathbf{f}(\mathbf{x}) - A\|_L < \lambda$ for each $\mathbf{x} \in U$.

Given a point $\mathbf{y} \in \mathbb{R}^n$, we define $\varphi(\cdot; \mathbf{y})$ by

$$\varphi(\cdot; \mathbf{y}) : B_{\delta}(\mathbf{c}) \longrightarrow \mathbb{R}^{n}$$
$$\mathbf{x} \longmapsto \mathbf{x} + A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x}))$$

Note that \mathbf{x} is a fixed point of $\varphi(\cdot; \mathbf{y})$ if and only if $A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})) = 0$, i.e., $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Note also that φ is differentiable and $d\varphi(\mathbf{x}; \mathbf{y}) = \mathrm{Id} - A^{-1} d\mathbf{f}(\mathbf{x}) = A^{-1}(A - d\mathbf{f}(\mathbf{x}))$ for each $\mathbf{x} \in U$.

Hence, for all $\mathbf{x} \in U$,

$$\|\operatorname{d}\varphi(\mathbf{x};\mathbf{y})\|_{L} = \|A^{-1}(A - \operatorname{d}\mathbf{f}(\mathbf{x}))\|_{L} \le \|A^{-1}\|_{L} \cdot \|A - \operatorname{d}\mathbf{f}(\mathbf{x})\|_{L} < 1/(2\lambda) \cdot \lambda = 1/2.$$

Thus, MVT gives

$$|\varphi(\mathbf{x}_1;\mathbf{y}) - \varphi(\mathbf{x}_2;\mathbf{y})| \le \frac{1}{2}|\mathbf{x}_1 - \mathbf{x}_2|$$

whenever $\mathbf{x}_1, \mathbf{x}_2 \in U$. Note that this implies there is at most one fixed point of $\varphi(\cdot; \mathbf{y})$ in U, i.e., $\mathbf{f}|_U$ is bijective.

Now, we shall show that $V = \mathbf{f}(U)$ is open. Take any $\mathbf{y}_0 \in V$. There (uniquely) exists $\mathbf{x}_0 \in U$ such that $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$. Fix any $r \in \mathbb{R}_+$ such that $\overline{B} \subseteq U$ where $B = B_r(\mathbf{x}_0)$. Take any $\mathbf{y} \in B_{\lambda r}(\mathbf{y}_0)$. Then,

$$|\varphi(\mathbf{x}_0; \mathbf{y}) - \mathbf{x}_0| = |A^{-1}(\mathbf{y} - \mathbf{y}_0)| < ||A^{-1}||_L \lambda r = \frac{r}{2}.$$

Moreover, for any $\mathbf{x} \in \overline{B}$,

$$|\varphi(\mathbf{x};\mathbf{y}) - \mathbf{x}_0| \le |\varphi(\mathbf{x};\mathbf{y}) - \varphi(\mathbf{x}_0;\mathbf{y})| + |\varphi(\mathbf{x}_0;\mathbf{y}) - \mathbf{x}_0| \le \frac{1}{2}|\mathbf{x} - \mathbf{x}_0| + \frac{r}{2} < r.$$

This directly implies that $\varphi(\overline{B}; \mathbf{y}) \subseteq B \subseteq \overline{B}$. Hence, $\varphi(\cdot, \mathbf{y})$ is a contraction mapping on a complete metric space \overline{B} . By Lemma 2.2.1, there exists a fixed point $\mathbf{x} \in \overline{B}$, which satisfies $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Thus, $\mathbf{y} \in f(\overline{B}) \subseteq f(U) = V$. Hence, $B \subseteq V$, V is open. This proves (i).

Now, let $\mathbf{g} \colon V \to U$ be the local inverse map of $\mathbf{f}|_U$. Take any $\mathbf{y} \in V$ and $\mathbf{y} + \mathbf{k} \in V$. There are unique $\mathbf{x} \in U$ and $\mathbf{x} + \mathbf{h} \in U$ such that $\mathbf{y} = \mathbf{f}(\mathbf{x})$ and $\mathbf{y} + \mathbf{k} = \mathbf{f}(\mathbf{x} + \mathbf{h})$. Then, we have

$$\varphi(x+h;y) - \varphi(x;y) = h + A^{-1}(f(x) - f(x+h)) = h - A^{-1}k,$$

which implies $|\mathbf{h} - A^{-1}\mathbf{k}| \le |h|/2$. Hence, $|A^{-1}\mathbf{k}| \ge |h|/2$ is obtained by the triangle inequality; $|\mathbf{h}| \le 2|A^{-1}|_L |\mathbf{k}| = \lambda^{-1} |\mathbf{k}|$.

Then, since $\| d\mathbf{f}(\mathbf{x}) - A \|_L \|A^{-1}\|_L < \lambda \cdot 1/(2\lambda) = 1/2$, Lemma 2.2.2 implies that $d\mathbf{f}(\mathbf{x})$ is invertible. Let $T \triangleq d\mathbf{f}(\mathbf{x})$. Then, we have

$$g(y+k)-g(y)-T^{-1}k = h-T^{-1}k = -T^{-1}(f(x+h)-f(x)-Th),$$

and thus

$$\frac{|\mathbf{g}(\mathbf{y}+\mathbf{k})-\mathbf{g}(\mathbf{y})-T^{-1}\mathbf{k}|}{|\mathbf{k}|} \leq \frac{\|T^{-1}\|_L}{\lambda} \cdot \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-T\mathbf{h}|}{|\mathbf{h}|}.$$

The equation implies that \mathbf{g} is differentiable on V, and that $d\mathbf{g}(\mathbf{y}) = T^{-1} = d\mathbf{f}(\mathbf{g}(\mathbf{y}))^{-1}$. Since $d\mathbf{g}$ is a composition of continuous functions, $d\mathbf{g}$ itself is continuous.

Corollary 2.2.2

Let $\mathbf{f}: E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $J_{\mathbf{f}}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. Then, for every open set $W \subseteq E$, $\mathbf{f}(W)$ is open.

Proof. This directly follows from (i) of Theorem 2.2.1.

Definition 2.2.1: C^1 -norm

Suppose $\varphi: \mathbb{R}^n \to \mathbb{R}$ is C^1 . Then,

$$\|\varphi\|_{C^0(\overline{\Omega})} \triangleq \sup_{\mathbf{x} \in \Omega} |\varphi(\mathbf{x})|$$

$$\|\varphi\|_{C^{1}(\overline{\Omega})} \triangleq \|\varphi\|_{C^{0}(\overline{\Omega})} + \sum_{i=1}^{n} \|\partial_{i}\varphi\|_{C^{0}(\overline{\Omega})}.$$

This is only for Example 2.2.1.

Example 2.2.1 (Level Sets)

Define $\Omega \triangleq \{(x_1, x_2) \in \mathbb{R}^2 \mid |x_2| \leq 1\}$. Given two constants, $a, b \in \mathbb{R}$ with a < b, define $\overline{\varphi}(x_1, x_2) = ax_1$ and $\overline{\psi}(x_1, x_2) = bx_1$. Then, $\Gamma_0 = \{\mathbf{x} \in \Omega \mid \overline{\varphi}(\mathbf{x}) - \overline{\psi}(\mathbf{x}) = 0\} = \{\mathbf{x} \in \Omega \mid x_1 = 0\}$.

Suppose that $\varphi, \psi \colon \Omega \to \mathbb{R}$ satisfy

$$\|\varphi - \overline{\varphi}\|_{C^1(\overline{\Omega})} + \|\psi - \overline{\psi}\|_{C^1(\overline{\Omega})} \le \frac{1}{4}|a - b|.$$

Then, what would be the expression for $\Gamma = \{ \mathbf{x} \in \Omega \mid \varphi(\mathbf{x}) - \psi(\mathbf{x}) = 0 \}$?

Observe that $(\varphi - \psi) = (\varphi - \overline{\varphi}) + (\overline{\varphi} - \overline{\psi}) + (\overline{\psi} - \psi)$ and thus $|(\varphi - \psi)(x_1, x_2) - (a - b)x_1| \le |a - b|/4$. This implies $\lim_{x_1 \to \pm \infty} (\varphi - \psi)(x_1, x_2) = \mp \infty$. Hence, for every $x_2 \in [-1, 1]$, there exists $x_1^* \in \mathbb{R}$ such that $(\varphi - \psi)(x_1^*, x_2) = 0$.

Moreover, $\partial_1(\varphi - \psi) = \partial_1(\varphi - \overline{\varphi}) + (a - b) + \partial_1(\overline{\psi} - \psi)$, and thus $|\partial_1(\varphi - \psi)| \ge \frac{3}{4}|a - b| > 0$. Hence, the x_1^* in the previous paragraph is unique. This means that $\Gamma = \{(f(x_2), x_2) \mid x_2 \in \mathbb{R}\}$ for some f.

 $(\varphi-\psi)(f(x_2),x_2)-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=(b-a)f(x_2).$ Hence,

$$f(x_2) = \frac{(\varphi - \overline{\varphi})(f(x_2), x_2) - (\psi - \overline{\psi})(f(x_2), x_2)}{b - a}.$$

This is the implicit representation of f. Moreover, $|f(x_2)| = \frac{|b-a|/4}{|b-a|} = 1/4$.

Example 2.2.2 (Lagrange's Method)

Given a constant r > 0, find the largest value of $f(x_1, \dots, x_n) = (x_1 \dots x_n)^2$ over the set $\Omega = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 = r^2\}.$