Най-близък общ предшественик на два върха в дърво. Минимален елемент в отрез от масив.

(част 2)

23.10.2020 г.

(Lowest Common Ancestor (LCA) and Range Minimum Query (RMQ))

Стъпка І:

Алгоритъма от предишната лекция:

```
time \leftarrow 0
visited[0...2|V|]
depth[0...2|V|]
start[0...|V|-1]
end[0...|V|-1]
time \leftarrow time + 1
                                           (Vertex)
procedure DFS(T, v) {
       for each u in p(v) = u do
              DFS(T, u)
              depth[time] \leftarrow d(v)
              visited[time] \leftarrow v
              time \leftarrow time + 1
                                           (Edge)
       end[v] \leftarrow time - 1
}
procedure LCA(u, v) { // start[u] \le start[v]
       k \leftarrow RMQ(depth, start[u], start[v])
       return visited[k]
}
```

Коректност:

- 1. За всеки два върха u и v с условието $start[u] \leq start[v]$ е в сила точно едно от двете:
 - или $T_v \subseteq T_u$ и тогава $\left[start[v], end[v] \right] \subseteq \left[start[u], end[u] \right]$
 - или $T_u \cap T_v = \emptyset$ и тогава $\left[start[u], end[u] \right] \cap \left[start[v], end[v] \right] = \emptyset$

При DFS(T,v), time нараства за всеки връх (\mathbf{Vertex}) $\rightarrow |V_{T_v}|$ пъти, както и за всяко ребро (\mathbf{Edge}) $\rightarrow |E_{T_v}| = |V_{T_v}| - 1$ пъти. Следователно $end[v] - start[v] = 2(|V_{T_v}| - 1)$

В интервала (start[v], end[v]] е записан върха v толкова пъти, колкото са синовете children(v) на v.

От тук с индукция по $|V_{T_v}|$ може да видим, че в интервала [start[v], end[v]] се срещат само върхове от T_v .

- 1) База: $|V_{T_{v}}|=1$.
- 2) Нека $|V_{T_v}|>1$ и $c_1,\,c_2,\,\ldots,\,c_s$ са синовете на v, в който са обходетни във for цикъла. Тогава от индуктивното предположение имаме, че в интервала $\begin{bmatrix}start[c_i],\,end[c_i]\end{bmatrix}$ има върхове само от T_{c_i} .

От цикъла се вижда, че $end[c_i] < start[c_{i+1}] < end[v]$. Тоест това са непресичащи се интервали в [start[v], end[v]].

Остана да забележим, че:

$$\begin{split} &end[v] - start[v] = 2(|V_{T_v}| - 1) = 2\sum_{i=1}^s \left(|V_{T_{c_i}}|\right) = 2\bigg(\sum_{i=1}^s \left(|V_{T_{c_i}}| - 1 + 1\right)\bigg) = \\ &= 2\sum_{i=1}^s \left(|V_{T_{c_i}}| - 1\right) + 2s = \sum_{i=1}^s \left(end[c_i] - start[c_i]\right) + 2s = \sum_{i=1}^s \left(end[c_i] - start[c_i] + 1\right) \underbrace{-s}_{\text{брой записи на върха } v \text{ в отворения интервал}_{(start[v], end[v]]} \end{split}$$

Това показва, че други елементи освен v и върховете от T_{c_i} в $\left[start[v], end[v]\right]$ няма.

Сега, ако $\underline{T_u \cap T_v} = \emptyset$, то в интервала $\begin{bmatrix} start[u], end[u] \end{bmatrix}$ се срещат само елементи на T_u , а в интервала $\begin{bmatrix} start[v], end[v] \end{bmatrix}$ се срещат само елементи на T_v . Ако двата интервала имаха общ елемент k, то $visited[k] \in T_u \cap T_v$, което е **противоречие** t с условието $T_u \cap T_v = \emptyset$.

Обратно: В интервала $\begin{bmatrix} start[u], end[u] \end{bmatrix}$ са записани всички върхове от T_u и T_v . Тогава без ограничение на общността T_v е поддърво на T_u ($T_v \subseteq T_u$) и елементите на T_v са записани в интервала $\begin{bmatrix} start[v], end[v] \end{bmatrix}$, а извън този интервал няма елементи на T_v и следователно $\begin{bmatrix} start[v], end[v] \end{bmatrix} \subseteq \begin{bmatrix} start[u], end[u] \end{bmatrix}$.

- 2. Нека u и v са два върха, такива че $start[u] \leq start[v]$ и нека $k = arg \min \ depth[l]$, където $start[u] \leq l \leq start[v]$ и w = visited[k]. Тогава твърдим, че w = LCA(u, v).
- 2.1. сл. $T_v\subseteq T_u$. Тогава в интервала $\begin{bmatrix} start[u], end[u] \end{bmatrix}$ са записани върхове само от дървото T_u , в което всички дълбочини са \geq от тази на върха u и единственият връх с дълбочина d(u) е u. На позиция t=start[u] в масива depth имаме, че $depth[t]=d(u)\Rightarrow$ min $depth[k]=d(u), start[u]\leq k\leq start[v]$. От първата част visited[k]=u. От друга страна от това, че $T_v\subseteq T_u$ е ясно, че LCA(u,v)=u=visited[k].

Освен това $T_{\tilde{u}} \cap T_{\tilde{v}} = \emptyset$, от където следва, че $\begin{bmatrix} start[\tilde{u}], end[\tilde{u}] \end{bmatrix} \cap \begin{bmatrix} start[\tilde{v}], end[\tilde{v}] \end{bmatrix} = \emptyset$.

Сега: $start[\tilde{u}] \leq start[u] < start[v] \leq end[\tilde{v}]$. Ако $start[\tilde{v}] \leq start[\tilde{u}]$, то $\begin{bmatrix} start[\tilde{v}], end[\tilde{u}] \end{bmatrix}$ има общи елементи с $\begin{bmatrix} start[u], end[u] \end{bmatrix} \Rightarrow u \in T_v$, но $v \in T_{\tilde{v}} \Rightarrow \tilde{v}$ е предшественик на u и v, който е по-дълбоко от $\tilde{u} \Rightarrow start[\tilde{u}] < start[\tilde{v}] \Rightarrow end[\tilde{u}] < start[\tilde{v}]$. Тоест разположението на интервалите е следното:

 $start[u] \le end[\tilde{u}] < end[\tilde{u}] + 1 \le start[\tilde{v}] \le start[v]$

Тъй като \tilde{u} е син на \tilde{w} :

$$\begin{cases} depth[t] = d(\tilde{w}) \\ visited[t] = \tilde{w} \end{cases} \Rightarrow \min_{start[u] < l \le start[v]} depth[l] \le d[\tilde{w}]$$

Накрая $T_u, T_v \subseteq T_{\tilde{w}} \Rightarrow start[\tilde{w}] \leq start[u] \leq start[v] \leq end[\tilde{w}]$, следователно:

$$\min_{start[u] \le l \le start[v]} depth[l] \ge \min_{start[\tilde{w}] \le l \le end[\tilde{w}]} depth[l] = d(\tilde{w}) \quad !$$

$$\Rightarrow d(\tilde{w}) = depth[t]$$
 е минимумът в $\begin{bmatrix} start[u], start[v] \end{bmatrix}$ и тъй като $t \in \begin{bmatrix} start[\tilde{w}], end[\tilde{w}] \end{bmatrix}$, то $visited[t] = \tilde{w} \Rightarrow \min_{start[u] \leq l \leq start[v]} depth[l] \leq d(\tilde{w})$.

$$\ \ \, \left| depth[t] - depth[t+1] \right| = 1 \$$
 за всяко $t < 2 \big(\left| V \right| - 1 \big).$

Дефиниция: Проблема $\pm 1~RMO$ е следния казус:

<u>Дадено</u>: Масив $A[0 \dots n-1]$ от естествени (може и цели) числа, така че

$$|A[i] - A[i+1]| = 1$$
, sa $i < n-1$.

Вход: $0 \le i \le j < n$

Изход:
$$k = \arg \min_{i \le l \le j} A[l]$$

Следствие: Ако имаме решение (f(n), g(n)) за $\pm 1\ RMQ$ проблема, то имаме решение (n+f(2n), g(2n)) за LCA-проблема.

Стъпка I беше свеждането на LCA-проблема към RMQ-проблема

<u>Стъпка II</u>: Решение на RMQ-проблема за $O(n \log n, 1)$ времева сложност.

<u>Дадено</u>: Масив $A[0 \dots n-1] \subset \mathbb{Z}$

Вход: $0 \le i \le j < n$

Изход:
$$k = \arg \min_{i \le l \le j} A[l]$$

Идея:


```
1. Построяване на индекс \mathcal{A}_I.
table[i][k] = arg min A[i...i + 2^k - 1]
(table[i][0] = i за всяко i)
for i = 0 to n - 1 do
        table[i][0] = i
k \leftarrow 1
pow \leftarrow 1
while 2 * pow \le n do
       for i = 0 to (n - 1) - (2 * pow - 1) do
               l \leftarrow table[i][k-1]
                r = table[i + pow][k - 1]
               if A[l] \leq A[r] then
                       table[i][k] \leftarrow l
                else
                       table[i][k] \leftarrow r
        done
        pow \leftarrow 2*pow
        k \leftarrow k + 1
}
Естествено преди това трябва да сме си преизчислили логаритмите закръглени надолу на
всички числа от 2 до n и степените на двойката неревишаващи n:
log[0 \dots n-1]
pow1[0...log[n-1]]
pow \leftarrow 1, j \leftarrow 0 // 2^j = pow
for i = 0 to n - 1 do
        if i = pow - 1 then // i = 2^{j} - 1
               pow1[j] \leftarrow i
               \log[i] \leftarrow j
       if i + 1 = 2 * pow then
               pow \leftarrow pow * 2
               j \leftarrow j + 1
}
procedure RMQ(i, j) \{ // i \le j \}
        d \leftarrow j - 1 + 1
        k \leftarrow \log[d]
       pow \leftarrow pow1[k] // 2^k \le d \le 2^{k+1}
        l \leftarrow table[i][k]
        r \leftarrow table[j - pow][k]
        if A[l] \leq A[r] then return l
        return r
}
```

Коректност:

$$d = j - i + 1$$

 $2^k \le j - i + 1 < 2^{k+1}$, T.E.
 $\Rightarrow j - pow \ge i$

От друга страна $i + 2^{k+1} - 1 \ge j + 1 \Rightarrow i + 2^k - 1 \ge j - 2^k + 1 \Rightarrow j - pow$

III. Решение на ± 1 RMQ-проблема за O(n, 1)

За всеки един от тези блокове може да намерим минимума $c_i = \min C_i$

$$I_i = arg; \min C_i \in [Bi \dots B(i+1) - 1]$$

За всеки блок $c_i \longmapsto$ (съпоставяме) масив от стойности au $[j] = C_i[j] - C_i[0] \in [-B \dots B]$, като разликата на всеки два последователни type type

Анализ:

Двете части на решението имат сложност:

$$f_1(n) = \left(\frac{n}{B}\log\frac{n}{B}, 1\right)$$
 и $f_2(n) = \left(2^BB^2, 1\right)$, т.е. общото време за индексиране ще е $f(n) = f_1(n) + f_2(n) = \frac{n}{B}\log\frac{n}{B} + 2^BB^2 \stackrel{?}{\in} O(n)$

$$B \sim c \log n$$

$$2^{c \log_2 n} c^2 \log_2^2 n = n^c \cdot c^2 \log_2 n \in O(n) \Leftrightarrow c < 1.$$

Сега може да изберем
$$c=\frac{1}{2}\Rightarrow B=\left\lfloor \frac{\log_2 n}{2}\right\rfloor$$

```
procedure FindBlockType(A, i, B) {
       type \leftarrow 0 / / - 1 \sim 0, 1 \sim 1
       c \leftarrow A[B_i]
       I \leftarrow B_i
       for j = 1 to B - 1 do
               b \leftarrow A[Bi+j] - A[Bi+j-1]
               if b = = -1 then
                       type \leftarrow 2*type
               else
                       type \leftarrow 2*type + 1
               if A[Bi+j] < c then
                       I \leftarrow Bi + j
                       c \leftarrow A[Bi+j]
       done
       return (type, c, I)
}
```



```
procedure initTypes()
      for t = 0 to 2^B - 1 do
             Types[t] \leftarrow -1
procedure SetType(A, i, B, type) {
      if Types[type] \neq -1 then
             return
      c \leftarrow currentSize(Tables)
      for k = 0 to B - 1 then
             for l = 0 to k - 1 do
                    Tables[s+l.B+l] \leftarrow -1
             m \leftarrow A[Bi+k], Tables[s+Bk+k] \leftarrow k
             for l = k + 1 to B - 1 do
                    if A[Bi+l] < A[Tables[s+kBi+l-1]] then
                           Tables[s+kB+l] \leftarrow l
                    else
                           Tables[s+kB+l] \leftarrow s+lB+l-1
             done
      done
}
```



```
procedure RMQ(A, l, r) {
                                     l_0 \leftarrow [l/B] + 1
                                     r_0 \leftarrow [r/B] - 1
                                     if l_0 \le r_0 then
                                                            mid \leftarrow logRMQ(C[0 \dots n/B - 1], l_0, r_0)
eise  m \leftarrow -1 
3:  \begin{cases} m \leftarrow -1 \\ \text{if } l_0 - 1 = r_0 - 1 \text{ then} \\ k \leftarrow RMQTable(type[l_0 - 1], l - B[l/B], r - B[l/B]) \end{cases} 
 \text{return } k + B[l/B] 
 \text{if } l_0 = r_0 + 1 \text{ then} \\ lk \leftarrow RMQTable(type[l_0 - 1], l - B[l/B], B - 1) \\ rk \leftarrow RMQTable(type[l_0], 0, r - B[r/B]) \end{cases} 
 2: \begin{cases} lk1 \leftarrow lk + B[l/B] \\ rk1 \leftarrow rk + B[r/B] \\ \text{if } A[lk1] \leq A[rk1] \text{ then} \\ \text{return } lk1 \end{cases} 
                                                            m \leftarrow I[mid]
                                                            else
       \textbf{if } l_0 \leq r_0 \textbf{ and } m \neq -1 \textbf{ then} \\ lk \leftarrow RMQTable(type[l_0-1], l-B[l/B], B-1) \\ lk1 \leftarrow lk + B[l/B] \\ rk \leftarrow RMQTable(type[r_0+1], 0, r-B[l/B]) \\ rk1 \leftarrow rk + B[r/B] \\ \textbf{if } A[lk1] \leq A[m] \textbf{ then} \\ \textbf{return } m 
                                                                                   return rk1
                                                                                   return rk1
```