	EE 207 (MBP): Question Set 3
1.	For a silicon pnp transistor, the base doping density is $N_{dB}=10^{16}\mathrm{cm}^{-3}$, the width of the neutral base region is $W=1.2\mu\mathrm{m}$, $\mu_p=300\mathrm{cm}^2/\mathrm{V}$ -s, $\tau_p=0.1\mu\mathrm{s}$, and cross-sectional area is $A=5\times10^{-4}\mathrm{cm}^2$. The transistor is biased in the active region with $V_{BE}=0.65\mathrm{V}$ at $300\mathrm{K}$. What is Δp in the base region at the edge of the B-E depletion region? $(n_i=1.5\times10^{10}\mathrm{cm}^{-3})$
	(A) $2.23 \times 10^{16} \text{ cm}^{-3}$ (B) $7.85 \times 10^{16} \text{ cm}^{-3}$ (C) $9.60 \times 10^{15} \text{ cm}^{-3}$ (D) $1.87 \times 10^{15} \text{ cm}^{-3}$
2.	For the conditions given in Q-1, assume Δp in the neutral base region to be linear. What is I_C ?
	(A) 1.5 mA (B) 4.6 mA (C) 9.7 mA (D) 13.3 mA
3.	For the conditions given in Q-1, what is the base transport factor α_T ?
	(A) 0.991 (B) 0.956 (C) 0.936 (D) 0.982

4. If the injection efficiency of the BJT in Q-1 is 0.985 (for the same bias conditions), what

5. An npn silicon transistor has the following parameters: $N_{dE} = 10^{18} \, \mathrm{cm}^{-3}$, $N_{aB} = 5 \times 10^{16} \, \mathrm{cm}^{-3}$, $N_{dC} = 5 \times 10^{15} \, \mathrm{cm}^{-3}$, $\mu_{nB} = 1000 \, \mathrm{cm}^2/\mathrm{V}$ -s, $\tau_{nB} = 0.1 \, \mu \mathrm{s}$, area

 $A=5\times 10^{-4}\,\mathrm{cm^2}$. The metallurgical base width is $1.2\,\mu\mathrm{m}$. The BJT is biased in the active mode, with $V_{BE}=0.65\,\mathrm{V}$ and $V_{CE}=5\,\mathrm{V}$ at 300 K. What is the width of the B-E

(C) $0.0528 \ \mu m$

6. In the BJT described in Q-5 (for the same bias conditions), what is the width of the

7. In the BJT described in Q-5 (for the same bias conditions), what is the width of the

8. In the BJT described in Q-5 (for the same bias conditions), what is the base transport

(D) 0.985

(C) $1.02 \ \mu m$

(D) $0.142 \ \mu m$

(D) $0.90 \ \mu m$

(D) $0.65 \ \mu m$

is the transistor β ?

depletion region?

B-C depletion region?

neutral base region?

(A) 1.2 μ m

(A) $0.92 \ \mu m$

factor α_T ?

(A) 0.992

(B) 90

 $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3} \,\mathrm{at}\,300 \,\mathrm{K.})$

(C) 73

(B) $0.0744 \ \mu m$

(B) $0.76 \ \mu m$

(B) 0.998

(B) $0.76 \ \mu \text{m}$ (C) $0.57 \ \mu \text{m}$

(C) 0.989

(D) 40

(A) 116

9.	In the BJT described in Q-5 (for the same bias conditions), $\mu_{pE} = 250 \mathrm{cm^2/V}$ -s, and $\tau_{pE} = 0.2 \mu\mathrm{s}$. What is the emitter injection efficiency γ ?.
	(A) 0.9924 (B) 0.9971 (C) 0.9896 (D) 0.9988
10.	Consider a pnp silicon transistor at 300 K with $N_{aE}=10^{18}\mathrm{cm}^{-3}$, $N_{dB}=2\times10^{16}\mathrm{cm}^{-3}$, $N_{aC}=2\times10^{15}\mathrm{cm}^{-3}$. The BJT is biased in the active mode, with $V_{EB}=0.68\mathrm{V}$. The other device parameters are $\mu_{pB}=400\mathrm{cm}^2/\mathrm{V}$ -s, area $A=20\times10^{-4}\mathrm{cm}^2$, and the metallurgical base width is $1.2\mu\mathrm{m}$. What is the excess hole concentration at the B-E

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3} \,\mathrm{at} \,300 \,\mathrm{K.})$$

depletion region edge on the base side?

- (A) $1.5 \times 10^{16} \text{ cm}^{-3}$
- (B) $6.7 \times 10^{16} \text{ cm}^{-3}$
- (C) $3.0 \times 10^{15} \text{ cm}^{-3}$
- (D) $8.5 \times 10^{15} \text{ cm}^{-3}$
- 11. For the BJT described in Q-10, what is W, the width of the neutral base region, for $V_{EC} = 5 \text{ V}$?
 - (A) 1.02 μm (B) 0.78 μm (C) 0.81 μm (D) 0.93 μm
- 12. For the BJT described in Q-10 with $V_{EC} = 5 \text{ V}$, what is I_C as given by the straight line approximation for $\Delta p(x)$ in the neutral base region?
 - (A) 106 mA (B) 54 mA (C) 125 mA (D) 71 mA
- 13. For a silicon npn transistor operating in the active mode at 300 K, $N_{dE} = 5 \times 10^{18} \, \mathrm{cm}^{-3}$, $\mu_{pE} = 250 \, \mathrm{cm}^2/\mathrm{V}$ -s, $\mu_{nB} = 1000 \, \mathrm{cm}^2/\mathrm{V}$ -s, $\tau_{pE} = 0.1 \, \mu\mathrm{s}$, $\tau_{nB} = 0.05 \, \mu\mathrm{s}$, and the width of the neutral base region is $W = 0.8 \, \mu\mathrm{m}$. For an injection efficiency γ of 0.998, what value of N_{aB} is required?
 - (A) $1.5 \times 10^{16} \text{ cm}^{-3}$
 - (B) $6.7 \times 10^{16} \text{ cm}^{-3}$
 - (C) $4.0 \times 10^{17} \text{ cm}^{-3}$
 - (D) $8.5 \times 10^{17} \text{ cm}^{-3}$
- 14. For the BJT described in Q-13, what is the base transport factor α_T ?
 - (A) 0.991 (B) 0.9827 (C) 0.9934 (D) 0.9975
- 15. For the BJT described in Q-13, what is β ?
 - (A) 223 (B) 120 (C) 186 (D) 260