089109 - CÁLCULO 1 - TURMA C QUARTA LISTA DE EXERCÍCIOS

Prof. Marcelo José Dias Nascimento

4 de abril de 2011

1. Seja f uma função contínua no ponto 3 com f(3)=10. Mostre que existe $\delta>0$ tal que para todo $x\in D_f$,

$$3 - \delta < x < 3 + \delta \Rightarrow f(x) > 9.$$

2. Se f é contínua em 1 e f(1)=4, mostre que existe r>0 tal que para todo $x\in D_f$,

$$1 - r < x < 1 + r \Rightarrow \frac{7}{2} < f(x) < \frac{9}{2}$$
.

- 3. Dê um exemplo de uma função f de maneira que $\lim_{x \to x_0} |f(x)|$ exista, mas $\lim_{x \to x_0} f(x)$ não exista.
- 4. Mostre que $f(x) = \cos x$ é contínua, para todo $x \in \mathbb{R}$. $\left[Sugestão: mostre e use a identidade <math>\cos x \cos x_0 = -2\sin\left(\frac{x+x_0}{2}\right)\sin\left(\frac{x-x_0}{2}\right) \right]$
- 5. Considere $f(x) = \frac{x^2 4}{x 2}$ e $h(x) = \begin{cases} 1, & \text{se } x \ge 6 \\ f(x), & \text{se } x < 6 \end{cases}$. Verifique se as afirmações abaixo são verdadeiras ou não.
 - (a) $\lim_{x \to 2} h(f(x)) = h(\lim_{x \to 2} f(x))$
 - (b) $\lim_{x \to 2} f(h(x)) = f(\lim_{x \to 2} h(x)).$
- 6. Mostre que existe um número real x_0 tal que $x_0^5 4x_0 + 1 = 7,21$.
- 7. (a) Se $f(x) = x^3 5x^2 + 7x 9$, mostre que existe $x_0 \in \mathbb{R}$ tal que $f(x_0) = 100$.
 - (b) Mostre que a equação $x^5 3x^4 2x^3 x + 1 = 0$ tem, pelo menos, uma raiz no intervalo [0,1].
- 8. Dada a função $f: [-2,7] \to \mathbb{R}$, definida por $f(x) = \begin{cases} 4 \frac{x^2}{2}, & \text{se } -2 \leqslant x < 4 \\ 2, & \text{se } 4 \leqslant x \leqslant 7 \end{cases}$, verifique se $f(x) = \begin{cases} 4 \frac{x^2}{2}, & \text{se } -2 \leqslant x < 4 \\ 2, & \text{se } 4 \leqslant x \leqslant 7 \end{cases}$, verifique se negativa, decida se isto contradiz o Teorema de Weirstrass e justifique sua resposta.
- 9. Um monge tibetano deixa o monastério às 7 horas da manhã e segue sua caminhada usual para o topo da montanha, chegando lá às 7 horas da noite. Na manhã seguinte, ele parte do topo às 7 horas da manhã, pega o mesmo caminho de volta e chega ao monastério às 7 horas da noite. Mostre que existe um ponto no caminho que o monge vai cruzar exatamente na mesma hora do dia em ambas as caminhadas.
- 10. Sejam $a, b, c \in \mathbb{R}$ e suponha que $|ax^2 + bx + c| \leq |x|^3$, para todo $x \in \mathbb{R}$. Prove que a = b = c = 0 necessariamente.

- 11. Seja $f(x) = x^5 + x + 1$. Mostre que f admite pelo menos uma raiz no intervalo [-1,0].
- 12. Mostre que a equação $x^3 \frac{1}{x^4 + 1} = 0$ admite pelo menos uma raiz real.
- 13. Seja $f:[-1,1] \to \mathbb{R}$ definida por $f(x) = \frac{x^2 + x}{x^2 + 1}$.
 - (a) Prove que o valor máximo de $f \in f(1)$.
 - (b) Mostre que existe $x_1 \in (-1,0)$ tal que $f(x_1)$ é o valor mínimo de f .
- 14. Seja $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$ contínua, com f(a) < f(b). Suponha que para quaisquer $s, t \in [a, b]$ com $s \neq t$, tem-se $f(s) \neq f(t)$. Prove que f é estritamente crescente.
- 15. Seja f uma função definida por $f(x) = 2x^3 \sqrt{x^2 + 3x}$.
 - (a) Determine o domínio de f.
 - (b) Verifique que f é contínua em $[0, +\infty)$.
 - (c) Mostre que 1 a única raiz de f em $(0, +\infty)$, que f(2) > 0 e que $f\left(\frac{1}{2}\right) < 0$.
 - (d) Conclua que f(x) > 0 em $(1, +\infty)$ e que f(x) < 0 em (0, 1).