Last updated: August 15, 2022

In $\triangle ABC$, let P be the foot of perpendicular from A onto BC.

Case $1 \angle C < 90^{\circ}$

Case $2 \angle C > 90^{\circ}$

When $\angle C = 90^{\circ}$, the formula $a = c \cos B + b \cos C$ is true obviously.

Similarly, $b = c \cos A + a \cos C$ (2)

 $c = a\cos B + b\cos A \qquad \dots (3)$

From (1) $\cos B = \frac{a - b \cos C}{c}$ (4)

From (2) $\cos A = \frac{b - a \cos C}{c}$ (5)

Substitute (4) and (5) into (3),

$$c = a \cdot \frac{a - b \cos C}{c} + b \cdot \frac{b - a \cos C}{c}$$

$$c^2 = a^2 + b^2 - 2ab \cos C.$$

Since a, b and c are symmetric variables, we can derive the similar formulae:

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 and $a^2 = b^2 + c^2 - 2bc \cos A$.

Second proof: In $\triangle ABC$, let *P* be the foot of perpendicular from *A* onto *BC*. Let CP = x, AP = h Case $1 \angle C < 90^{\circ}$ Case $2 \angle C > 90^{\circ}$

$$BP = a - x, x = b \cos C$$

$$h^2 = b^2 - x^2 = c^2 - (a - x)^2$$

$$b^2 - x^2 = c^2 - a^2 + 2ax - x^2$$

$$c^2 = a^2 + b^2 - 2ax$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

$$BP = a + x, x = b \cos(180^{\circ} - C) = -b \cos C$$

$$h^{2} = b^{2} - x^{2} = c^{2} - (a + x)^{2}$$

$$b^{2} - x^{2} = c^{2} - a^{2} - 2ax - x^{2}$$

$$c^{2} = a^{2} + b^{2} + 2ax$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

When $\angle C = 90^{\circ}$, the formula $c^2 = a^2 + b^2 - 2ab \cos C$ is true obviously.

We can also change cosine as the subject of the formula:

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab};$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} \quad \text{and}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}.$$

Third proof: vector dot product method.

$$c^{2} = \overrightarrow{AB} \cdot \overrightarrow{AB} = (\overrightarrow{OB} - \overrightarrow{OA}) \cdot (\overrightarrow{OB} - \overrightarrow{OA})$$
$$= |\overrightarrow{OB}|^{2} + |\overrightarrow{OA}|^{2} - 2\overrightarrow{OB} \cdot \overrightarrow{OA}$$
$$= a^{2} + b^{2} - 2ab \cos C$$

Example 1 (SAS) Given a = 6, b = 5, $C = 60^{\circ}$, find c.

$$c^2 = 6^2 + 5^2 - 2 \times 6 \times 5 \times \cos 60^\circ$$

$$c = \sqrt{31}$$

Example 2 (SSS) Given that a = 6, b = 5, c = 7, find C.

$$\cos C = \frac{6^2 + 5^2 - 7^2}{2 \times 6 \times 5} = \frac{1}{5}$$

$$C = 78.5^{\circ}$$

Example 3 (SSA) Given that a = 8, b = 5, $B = 30^{\circ}$, find c.

$$5^2 = 8^2 + c^2 - 2 \times 8 \times c \cos 30^\circ$$

$$c^2 - 8\sqrt{3} c + 39 = 0$$
, a quadratic equation in c.

$$c = 4\sqrt{3} \pm 3$$

Please see the right figure for reference.

Example 4

In
$$\triangle ABC$$
, if $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, prove that $\frac{\sin A}{7} = \frac{\sin B}{6} = \frac{\sin C}{5}$ and $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.

$$b + c = 11k \cdot \cdot \cdot \cdot (1), c + a = 12k \cdot \cdot \cdot \cdot (2), a + b = 13k \cdot \cdot \cdot \cdot (3)$$

$$(2) + (3) - (1)$$
: $2a = 14k \Rightarrow a = 7k$

Sub.
$$a = 7k$$
 into (3): $7k + b = 13k \Rightarrow b = 6k$

Sub.
$$a = 7k$$
 into (2): $c + 7k = 12k \Rightarrow c = 5k$

By sine rule,
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow \frac{\sin A}{7k} = \frac{\sin B}{6k} = \frac{\sin C}{5k} \Rightarrow \frac{\sin A}{7} = \frac{\sin B}{6} = \frac{\sin C}{5}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{(6k)^2 + (5k)^2 - (7k)^2}{2(6k)(5k)} = \frac{1}{5}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{(7k)^2 + (5k)^2 - (6k)^2}{2(7k)(5k)} = \frac{19}{35}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(7k)^2 + (6k)^2 - (5k)^2}{2(7k)(6k)} = \frac{5}{7}$$

$$\cos A : \cos B : \cos C = \frac{1}{5} : \frac{19}{35} : \frac{5}{7} = 7 : 19 : 25$$

$$\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$$

Cosine formula

Created by Mr. Francis Hung

Last updated: August 15, 2022

В

Example 5 In $\triangle ABC$, D is the mid-point of BC. Prove that $\sin \angle ADB = \frac{20 \text{ sm C}}{\sqrt{2b^2 + 2c^2 - a^2}}$

Produce AD with its own length to E so that AD = DE. ABEC is a parallelogram (diagonal bisect each other)

Let
$$\angle ADB = \theta$$
, $BD = DC = \frac{a}{2}$

BE = b, CE = c (opp. sides of //-gram)

Apply sine rule on $\triangle ADC$

$$\frac{AD}{\sin C} = \frac{b}{\sin \theta}$$

$$\sin C \quad \sin \theta$$

$$\therefore \sin \theta = \frac{b \sin C}{AC}$$

$$= \frac{2b \sin C}{AE}$$

$$= \frac{2b \sin C}{\sqrt{b^2 + c^2 - 2bc \cos \angle ACE}} \quad \text{(cosine rule on } \Delta ACE\text{)}$$

$$= \frac{2b \sin C}{\sqrt{b^2 + c^2 - 2bc \cos (180^\circ - A)}} \quad (\because ABEC \text{ is a //-gram})$$

$$= \frac{2b \sin C}{\sqrt{b^2 + c^2 + \left(b^2 + c^2 - a^2\right)}} \quad \text{(cosine rule on } \Delta ABC\text{)}$$

$$= \frac{2b \sin C}{\sqrt{a^2 + a^2 + a^2}}$$

 $[1:\sqrt{3}:2]$

Classwork 1 In $\triangle ABC$, if $\angle A: \angle B: \angle C=1:2:3$, find a:b:c. **Classwork 2** If (b + c): (c + a): (a + b) = 5: 6: 7, find $\sin A$: $\sin B$: $\sin C$ and $\cos A$: $\cos B$: $\cos C$. [4:3:2,-4:11:14]

Classwork 3 In $\triangle ABC$, if $\angle A = 36^{\circ}$, b = 2, $a = \sqrt{5} - 1$, find c.

[2 or $\sqrt{5}-1$ (=1.236)]

Classwork 4 Let a, b, c be the 3 sides of $\triangle ABC$ such that $a^2 - a - 2b - 2c = 0$ and a + 2b - 2c + 3 = 0. Find the greatest angle of the triangle. [120°]

Classwork 5 In the figure, $AB = \sqrt{2}$, $BC = \sqrt{3} + 1$, $CD = \sqrt{6}$, $AD = \sqrt{3} - 1$, find $\angle A$, $\angle D$.

 $[\angle A = 135^{\circ}, \angle D = 105^{\circ}]$

Page 3

Cosine formula

Created by Mr. Francis Hung

Last updated: August 15, 2022

Solution to classwork 1

$$\angle A: \angle B: \angle C=1:2:3$$

 $\angle A=k, \angle B=2k, \angle C=3k$
 $\angle A+\angle B+\angle C=k+2k+3k=180^{\circ}$ (\angle sum of Δ)
 $k=30^{\circ}$
 $\angle A=30^{\circ}, \angle B=60^{\circ}, \angle C=90^{\circ}$
By sine formula, $a:b:c=\sin A:\sin B:\sin C$
 $=\sin 30^{\circ}:\sin 60^{\circ}:\sin 90^{\circ}$
 $=\frac{1}{2}:\frac{\sqrt{3}}{2}:1$

 $=1:\sqrt{3}:2$

Solution to classwork 2

$$(b+c)$$
: $(c+a)$: $(a+b) = 5$: 6 : 7

$$\frac{b+c}{5} = \frac{c+a}{6} = \frac{a+b}{7} = k$$

$$b + c = 5k \cdots (1)$$

$$c + a = 6k \cdots (2)$$

$$a+b=7k\cdots(3)$$

$$(2) + (3) - (1)$$
: $2a = 8k \Rightarrow a = 4k$

Sub.
$$a = 4k$$
 into (3): $4k + b = 7k \Rightarrow b = 3k$

Sub.
$$a = 4k$$
 into (2): $c + 4k = 6k \Rightarrow c = 2k$

$$\sin A : \sin B : \sin C = a : b : c = 4 : 3 : 2$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{(3k)^2 + (2k)^2 - (4k)^2}{2(3k)(2k)} = \frac{-1}{4}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{(4k)^2 + (2k)^2 - (3k)^2}{2(4k)(2k)} = \frac{11}{16}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\left(4k\right)^2 + \left(3k\right)^2 - \left(2k\right)^2}{2\left(4k\right)\left(3k\right)} = \frac{7}{8}$$

$$\cos A : \cos B : \cos C = \frac{-1}{4} : \frac{11}{16} : \frac{7}{8} = \frac{-4}{16} : \frac{11}{16} : \frac{14}{16} = -4 : 11 : 14$$

Cosine formula

Created by Mr. Francis Hung

Solution to classwork 3

Find cos 36° without using triple angle formula.

Consider the following triangle $\triangle ABC$.

Given AB = AC = 1. D is a point lying on AC such that AD = BD = BC = x.

Let
$$\angle A = \theta$$
, $CD = 1 - x$.

Then $\angle ABD = \theta$, (base \angle s isos. Δ)

$$\angle BDC = 2\theta \text{ (ext. } \angle \text{ of } \Delta)$$

$$\angle ACB = 2\theta$$
 (base \angle s isos. Δ)

$$\angle ABC = 2\theta$$
 (base \angle s isos. Δ)

$$\angle CBD = 2\theta - \theta = \theta$$

 $\triangle ABC \sim \triangle BCD$ (equiangular)

In
$$\triangle ABC$$
, $\theta + 2\theta + 2\theta = 180^{\circ}$ (\angle sum of \triangle)

$$\theta = 36^{\circ}$$

$$\frac{AB}{BC} = \frac{BC}{CD}$$
 (corr. sides, $\sim \Delta$'s)

$$\frac{1}{x} = \frac{x}{1-x}$$
$$1 + x = x^2$$

$$\lambda = 1 - \lambda$$
 $1 \perp v = v$

$$x^2 - x - 1 = 0$$

$$x = \frac{1+\sqrt{5}}{2} \quad \text{or} \quad \frac{1-\sqrt{5}}{2} \quad (<0, \text{ rejected})$$

Draw $DE \perp AB$ as shown. Then $\triangle ADE \cong \triangle BDE$ (R.H.S.)

$$AE = ED = \frac{1}{2}$$
 (corr. sides, $\cong \Delta s$)

$$\cos 36^{\circ} = \frac{AE}{AD} = \frac{\frac{1}{2}}{x} = \frac{\frac{1}{2}}{\frac{1+\sqrt{5}}{2}} = \frac{1}{1+\sqrt{5}} = \frac{1}{1+\sqrt{5}} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{1+\sqrt{5}}{4}$$

In $\triangle ABC$, if $\angle A = 36^{\circ}$, b = 2, $a = \sqrt{5} - 1$, find c.

$$a^2 = b^2 + c^2 - 2bc \cos 36^\circ$$

$$\left(\sqrt{5} - 1\right)^2 = 2^2 + c^2 - 2(2)c \cdot \frac{\sqrt{5} + 1}{4}$$

$$5-2\sqrt{5}+1=4+c^2-(\sqrt{5}+1)c$$

$$c^{2} - (\sqrt{5} + 1)c + 2(\sqrt{5} - 1) = 0$$

$$(c-2)\left\lceil c - \left(\sqrt{5} - 1\right) \right\rceil = 0$$

$$c = 2 \text{ or } \sqrt{5} - 1 \text{ (=1.236)}$$

Last updated: August 15, 2022

Created by Mr. Francis Hung

Solution to classwork 4

$$\begin{cases} b+c = \frac{1}{2}(a^2-a)\cdots(1) \\ b-c = -\frac{1}{2}(3+a)\cdots(2) \end{cases}$$

$$\frac{(1)+(2)}{2} : b = \frac{1}{4}(a^2-a-3-a) = \frac{1}{4}(a^2-2a-3)$$

$$\frac{(1)-(2)}{2} : c = \frac{1}{4}(a^2-a+3+a) = \frac{1}{4}(a^2+3)$$

$$\cos \angle C = \frac{a^2+b^2-c^2}{2ab} = \frac{a^2+\frac{1}{16}(a^2-2a-3)^2-\frac{1}{16}(a^2+3)^2}{2a\times\frac{1}{4}(a^2-2a-3)}$$

$$= \frac{a^2+\frac{1}{16}(a^2-2a-3+a^2+3)(a^2-2a-3-a^2-3)}{\frac{1}{2}a(a^2-2a-3)}$$

$$= \frac{a^2+\frac{1}{16}(2a^2-2a)(-2a-6)}{\frac{1}{2}a(a^2-2a-3)}$$

$$= \frac{a^2-\frac{1}{4}(a^2-a)(a+3)}{\frac{1}{2}a(a^2-2a-3)}$$

$$= \frac{4a^2-(a^3-a^2+3a^2-3a)}{2a(a^2-2a-3)}$$

$$= \frac{4a^2-(a^3-a^2+3a^2-3a)}{2a(a^2-2a-3)}$$

$$= \frac{-(a^3-2a^2-3a)}{2(a^3-2a^2-3a)} = -\frac{1}{2}$$

The largest angle = $\angle C = 120^{\circ}$

Solution to Classwork 5

Classwork 5 In the figure, $AB = \sqrt{2}$, $BC = \sqrt{3} + 1$, $CD = \sqrt{6}$, $AD = \sqrt{3} - 1$, find $\angle A$, $\angle D$.

$$[\angle A = 135^{\circ}, \angle D = 105^{\circ}]$$

$$BD^{2} = (\sqrt{3} - 1)^{2} + (\sqrt{2})^{2} - 2(\sqrt{3} - 1)(\sqrt{2})\cos A = (\sqrt{3} + 1)^{2} + (\sqrt{6})^{2} - 2(\sqrt{3} + 1)(\sqrt{6})\cos C$$

$$\angle A + \angle C = 180^{\circ} \text{ (opp. } \angle \text{s cyclic quadrilateral)} \therefore \cos C = \cos(180^{\circ} - A) = -\cos A$$

$$3 - 2\sqrt{3} + 1 + 2 - 2(\sqrt{6} - \sqrt{2})\cos A = 3 + 2\sqrt{3} + 1 + 6 + 2(3\sqrt{2} + \sqrt{6})\cos A$$

$$-4\sqrt{3} - 4 = 4(\sqrt{6} + \sqrt{2})\cos A$$

$$\cos A = -\frac{\sqrt{3} + 1}{\sqrt{6} + \sqrt{2}} = -\frac{\sqrt{3} + 1}{\sqrt{2}(\sqrt{3} + 1)} = -\frac{1}{\sqrt{2}}$$

$$\angle A = 135^{\circ}$$

$$A = 135^{\circ}$$

$$AC^{2} = (\sqrt{3} - 1)^{2} + (\sqrt{6})^{2} - 2(\sqrt{3} - 1)(\sqrt{6})\cos D = (\sqrt{3} + 1)^{2} + (\sqrt{2})^{2} - 2(\sqrt{3} + 1)(\sqrt{2})\cos B$$

$$\angle B + \angle D = 180^{\circ} \text{ (opp. } \angle \text{s cyclic quadrilateral)} \therefore \cos B = \cos(180^{\circ} - D) = -\cos D$$

$$3 - 2\sqrt{3} + 1 + 6 - 2(3\sqrt{2} - \sqrt{6})\cos D = 3 + 2\sqrt{3} + 1 + 2 + 2(\sqrt{6} + \sqrt{2})\cos D$$

$$-4\sqrt{3} + 4 = 8\sqrt{2}\cos D$$
$$\cos D = -\frac{\sqrt{3} - 1}{2\sqrt{2}} = -\frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\angle D = 105^{\circ}$$