DNA Dataset Creation and Fusion Methodology

1. Data Sources Used

- 1.1 Sequences Dataset ('sequences.csv'):
- Source: Custom generated synthetic sequences mimicking random 100-nucleotide DNA sequences.
- Contribution: Provided the genomic base sequences.
- Reference: [Synthetic DNA Generator

Tools](https://www.bioinformatics.org/sms2/random_dna.html)

- 1.2 Parameters Dataset ('parameters.csv'):
- Source: Synthetic parameters generated to mimic mutation rates, GC content bias, and sequence variability.
- Contribution: Provided mutation rate, GC content bias, and variation rates per sequence.
- Reference: [Nucleotide Composition & Mutations

Studies](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030807/)

- 1.3 Region/City Dataset (Manually defined synthetic regions like Asia, Europe, Africa, etc.):
- Contribution: Provided contextual regional tags to sequences.
- Simulated known regional disease risks and mutation prevalence.
- Reference: [Global DNA Variation

Studies](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408841/)

2. Technical Methodology for Combining Datasets

2.1 Objective:

To create a region-aware DNA dataset that embeds region-specific variations and mutation rates, supporting models that predict disease risks with awareness of genomic and regional diversity.

2.2 Combination Strategy

Component Purpose How It Was Integrated

Sequences (`sequences.csv`) Base DNA sequences Each row provided a unique containing motifs and 100-nucleotide sequence

	random regions.	forming the genomic base.
Parameters ('parameters.csv')	Provided mutation rates, GC content bias, and variation rates per sequence.	Parameters were applied to each sequence to introduce synthetic but controlled mutations.
Cities (Regions)	To simulate region-specific disease risk and mutation patterns.	Each sequence was tagged with a synthetic region and adjusted based on corresponding parameter variations.

2.3 Technical Logic of Fusion

- Controlled Variability Per City:

Different cities/regions were linked to specific mutation and GC content patterns (from `parameters.csv`). This models the real-world observation that environmental and genetic backgrounds vary by region.

- Synthetic Diversity Injection:

Based on the mutation rates from `parameters.csv`, sequences from `sequences.csv` were mutated per city. Regions with higher simulated mutation rates had more nucleotide variations injected. GC-rich or AT-rich biases were enforced as per the parameter bias.

- Epidemiological Mimicking:

Diseases were associated probabilistically to regions, ensuring that some diseases are overrepresented or underrepresented based on known epidemiological patterns.

2.4 Example Workflow

For each city:

For each sequence:

Apply mutations as per 'parameters.csv' for that city Adjust GC/AT content based on parameter bias

Assign disease label based on city-specific disease prevalence

Add city, mutated sequence, parameters, and label to final 'dna_dataset.csv'

2.5 Technical Benefits

- Simulation of real-world data complexity.
- Model testing on region-specific bias handling.

- Controlled and reproducible generation process.
- Supports advanced models like region-aware classifiers or federated learning scenarios.