Cvičení 5

Nejkratší cesty

Úloha 1: Jak upravit Bellman-Fordův algoritmus, aby uměl detekovat záporné cykly? Uměli byste takový cyklus vypsat?

Úloha 2: Mějme mapu města v podobě orientovaného grafu. Každou hranu ohodnotíme maximální výškou kamionu, který může projet po příslušné ulici. Po cestě tak projede maximálně tak vysoký kamion, jaké je minimum z ohodnocení jejích hran. Jak pro dva zadané body najít cestu, po níž projede co nejvyšší kamion?

Úloha 3: Směnárna obchoduje s n měnami 1 až n (koruna má číslo 1) a vyhlašuje matici kurzů K. Kurz K_{ij} říká, kolik za jednotku i-té měny dostaneme jednotek té j-té. Jak zjistit, zda existuje posloupnost směn, která začne s jednou korunou a skončí s více korunami?

Úloha 4: Chceme si napsat vyhledávač spojů MHD. Máme k dispozici časy odjezdů a příjezdů všech městských linek na zastávky a naše aplikace by měla umět říct, jak se z libovolné zastávky dostat do libovolné jiné, když se na ní ocitneme v zadaný čas. Co když místo času odjezdu chceme zadávat čas příjezdu?

Úloha 5: Nechť délky hran leží v množině $\{0, \ldots, L\}$. Navrhněte datovou strukturu, s níž Dijkstrův algoritmus poběží v čase $\mathcal{O}(nL+m)$. Stačí na to paměť $\mathcal{O}(n+m+L)$.

Bonusy pro rychlé

Úloha 6: Mějme RAM pracující s reálnými čísly a konstantní cenou operací $+, *, /, <, >, \le$, \ge . Jak rychle v tomto modelu dokážete pro zadané $x \in \mathbb{R}$ najít jeho dolní celou část $\lfloor x \rfloor$?

Úloha 7: Je dána posloupnost celých čísel x_1, \ldots, x_n . Jak v ní najít úsek (souvislou podposloupnost) s maximálním součtem?

Úloha 8: Je dána posloupnost *kladných* celých čísel x_1, \ldots, x_n a číslo s. Jak najít indexy $i \leq j$, tž. $x_i + x_{i+1} + \ldots + x_j = s$ (nebo poznat, že taková dvojice není)?

Úloha 9: Co když v předchozí úloze povolíme i záporná čísla?