CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

9/22/11

Lexical Analysis

• Also called *scanning*, take input program string and convert into tokens

```
• Example:
                                         ("double")
                          T DOUBLE
                          T IDENT
                                         ("f")
                          T OP
                                         ("=")
                          T IDENT
                                         ("sqrt")
double f = sqrt(-1);
                          T LPAREN
                          T INTCONSTANT
                          T RPAREN
                                         (")")
                          T SEP
                                         (";")
```

9/22/11

Token Attributes

- Some tokens have attributes
 - T IDENT "sqrt"
 - T INTCONSTANT
- Other tokens do not
 - T WHILE
- Token=T IDENT, Lexeme="sqrt", Pattern
- Source code location for error reports

9/22/11 3

Lexical errors

- What if user omits the space in "doublef"?
 - No lexical error, single token T_IDENT ("doublef") is produced instead of sequence T_DOUBLE, T_IDENT("f")!
- Typically few lexical error types
 - E.g., illegal chars, opened string constants or comments that are not closed

Lexical errors

- Lexical analysis should not disambiguate tokens,
 - e.g. unary op + versus binary op +
 - Use the same token T PLUS for both
 - It's the job of the parser to disambiguate based on the context
- Language definition should not permit crazy long distance effects (e.g. Fortran)

9/22/11

Ad-hoc Scanners

Implementing Lexers: Loop and switch scanners

- Ad hoc scanners
- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering; Sentinels for push-backs; streams
- Can be error-prone, use only if
 - Your language's lexical structure is very simple
 - The tools do not provide what you need for your token definitions
- · Changing or adding a keyword is problematic
- Have a look at an actual implementation of an ad-hoc scanner

9/22/11

Implementing Lexers: Loop and switch scanners

- Another problem: how to show that the implementation actually captures all tokens specified by the language definition?
- How can we show correctness
- Key idea: separate the definition of tokens from the implementation
- Problem: we need to reason about patterns and how they can be used to define tokens (recognize strings).

9/22/11

Specification of Patterns using Regular Expressions

9/22/11

Formal Languages: Recap

- Symbols: a, b, c
- Alphabet : finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings { aⁿ bⁿ: n > 0 }

Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. { a<sup>m</sup> b<sup>n</sup>: m, n are +ve integers }
```

9/22/11

Regular Languages

- Defining the set of all regular languages:
 - The empty set and {a} for all a in Σ^ϵ are regular languages
 - If L_1 and L_2 and L are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)

 $L_1 \cup L_2$ (union)

 $L^* = \bigcup_{i=0}^{\infty} L^i$ (Kleene closure)

are also regular languages

- There are no other regular languages

Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a regular expression is a concise description of a regular language
 - (a|b)*abb: is the set of all strings over the alphabet $\{a, b\}$ which end in abb
- We will use regular expressions (regexps) in order to define tokens in our compiler,
 - e.g. lexemes for string tokens are \" $(\Sigma \")$ * \"

9/22/11

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{\epsilon\}$ is a regular expression
 - E.g. if $\Sigma = \{a,b\}$ then 'a', 'b' are regexps
- If r₁ and r₂ are regular expressions, then the core operators to combine two regexps are
 - Concatenation: r₁r₂, e.g. 'ab' or 'aba'
 - Alternation: r₁|r₂, e.g. 'a|b'
 - Repetition: r₁*, e.g. 'a*' or 'b*'
- No other core operators are defined
 - But other operators can be defined using the basic operators (as in lex regular expressions) e.g. a+ = aa*

9/22/11

Lex regular expressions

Expression	Matches	Example	Using core operators
c	non-operator character c	a	
\c	character c literally	*	
"s"	string s literally	"**"	
	any character but newline	a.*b	
Λ	beginning of line	^abc	used for matching
\$	end of line	abc\$	used for matching
[s]	any one of characters in string s	[abc]	(alblc)
[^s]	any one character not in string s	[^a]	(blc) where $\Sigma = \{a,b,c\}$
r*	zero or more strings matching r	a*	
r+	one or more strings matching r	a+	aa*
r?	zero or one r	a?	(ale)
r{m,n}	between m and n occurences of r	a{2,3}	(aalaaa)
r_1r_2	an r ₁ followed by an r ₂	ab	
$r_1 r_2$	an r ₁ or an r ₂	a b	
(r)	same as r	(a b)	
r_1/r_2	r ₁ when followed by an r ₂	abc/123	used for matching

9/22/11 15

Regular Expressions: Definition

- Note that operators apply recursively and these applications can be ambiguous
 - E.g. is aa|bc equal to a(a|b)c or ((aa)|b)c?
- Avoid such cases of ambiguity provide explicit arguments for each regexp operator
 - For convenience, for examples on this page, let us use the symbol '·' to denote the operator for concatenation
- Remove ambiguity with an explicit regexp tree
 - a(a|b)c is written as $(\cdot(\cdot a(|ab))c)$ or in postfix: $aab|\cdot c\cdot$
 - ((aa)|b)c is written as (·(|(·aa)b)c) or in postfix: aa·b|c·

9/22/11

16

Regular Expressions: Definition

- Remove ambiguity with an explicit regexp tree a(a|b)c is written as $(\cdot(\cdot a(|ab))c)$ or in postfix: aab|·c·
 - ((aa)|b)c is written as $(\cdot(|(\cdot aa)b)c)$ or in postfix: aa·b|c·
- Does the order of concatenation matter?

9/22/11

17

Equivalence of Regexps

•
$$(R|S) == (S|R)$$
 • $RR* == R*R$

•
$$R = R | R = R \varepsilon$$

9/22/11

18

Equivalence of Regexps

- 0(10)*1|(01)*
- (01)(01)*|(01)* RS == (RS) (01)(01)*|(01)(01)*| ϵ • R* == RR*| ϵ
- (01)(01)*|ε
- (01)*

- (RS)*R == R(SR)*

- R == R|R
- R* == RR*| ε

9/22/11 19

Regular Expressions

- To describe all lexemes that form a token as a pattern
 - -(0|1|2|3|4|5|6|7|8|9)+
- Need decision procedure: to which token does a given sequence of characters belong (if any)?
 - Finite State Automata
 - Can be deterministic (DFA) or nondeterministic (NFA)

9/22/11 20

Implementing Regular Expressions with Finite-state Automata

9/22/11 21

Deterministic Finite State Automata: DFA

- A set of states S
 - One start state $q_{\rm o}$, zero or more final states F
- ullet An alphabet \sum of input symbols
- A transition function:
 - $-\delta: S \times \Sigma \Rightarrow S$
- Example: $\delta(1, a) = 2$

9/22/11

DFA: Example

• What regular expression does this automaton accept?

9/22/11

23

DFA simulation

Input string: 00100

DFA simulation takes at most *n* steps for input of length *n* to return accept or reject

9/22/11

• Start state: A

- 1. $\delta(A,0) = B$
- 2. $\delta(B,0) = C$
- 3. $\delta(C,1) = A$
- 4. $\delta(A,0) = B$
- 5. $\delta(B,0) = C$

no more input and C is final state: **accept**

24

FA: Pascal Example

9/22/11 25

Building a Lexical Analyzer

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression ⇒ NFA
- NFA ⇒ DFA
- DFAs or NFAs for all the tokens ⇒ Lexical Analyzer
- Two basic rules to deal with multiple matching: greedy match + regexp ordering

9/22/11

Note that **greedy** means *longest leftmost match* | 26

0

Lexical Analysis using Lex

```
%{
#include <stdio.h>
#define NUMBER
#define IDENTIFIER 257
/* regexp definitions */
num [0-9]+
{num}
                     { return NUMBER; }
[a-zA-Z0-9]+
                  { return IDENTIFIER; }
int
main () {
   int token;
  while ((token = yylex())) {
   switch (token) {
   case NUMBER: printf("NUMBER: %s, LENGTH:%d\n", yytext, yyleng); break;
       case IDENTIFIER: printf("IDENTIFIER: %s, LENGTH:%d\n", yytext, yyleng); break;
default: printf("Error: %s not recognized\n", yytext);
  9/22/11
                                                                                                             27
```

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow$ 2^S
 - One state is chosen non-deterministically
 - Transitions can be labeled with ϵ , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

Thompson's construction

Converts regexps to NFA

Build NFA recursively from regexp tree

Build NFA with left-to-right parse of postfix string using a stack

Input = $aabl \cdot c \cdot$

- read a, push n1 = nfa(a)
- read a, push n2 = nfa(a)
- read b, push n3 = nfa(b)
- read I, n3=pop(); n2=pop(); push n4 = nfa(or, n2, n3)
- read ·, n4 = pop(); n1 = pop(); push n5 = nfa(cat, n1, n4)
- read c, push n6 = nfa(c)
- read ·, n6 = pop(); n5 = pop(); push n7 = nfa(cat, n5, n6)

Thompson's construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation $(r_1 \text{ followed by } r_2)$
 - Repetition (r,*)

Used by Ken Thompson for pattern-based search in text editor QED (1968) To keep things simple our version is more verbose

• For the empty language ϕ (optionally include a *sinkhole* state)

9/22/11 31

Thompson Rule 1

For each symbol x of the alphabet, there
is a NFA that accepts it (include a sinkhole
state)

 \bullet There is an NFA that accepts only ϵ

9/22/11 33

Thompson Rule 3

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

9/22/11 35

Thompson Rule 4

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

 Given two NFAs for r₁, r₂, there is a NFA that accepts r₁r₂

9/22/11 37

Thompson Rule 5

 Given a NFA for r₁, there is an NFA that accepts r₁*

 Given a NFA for r₁, there is an NFA that accepts r₁*

9/22/11 39

Example

- Set of all binary strings that are divisible by four (include o in this set)
- Defined by the regexp: ((0|1)*00) | 0
- Apply Thompson's Rules to create an NFA

Basic Blocks o and 1

• 0

(this version does not report errors: no sinkholes)

9/22/11 4

0|1

(0|1)*

9/22/11 43

(0|1)*00

Simulating NFAs

- Similar to DFA simulation
- But have to deal with ϵ transitions and multiple transitions on the same input
- Instead of one state, we have to consider sets of states
- Simulating NFAs is a problem that is closely linked to converting a given NFA to a DFA

NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are equivalent and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε-transitions?

9/22/11

ε-Closure

• Start state: q_o

• ϵ -closure(S): S is a set of states initialize: $S \leftarrow \{q_0\}$ $T \leftarrow S$ repeat $T' \leftarrow T$ $T \leftarrow T' \cup [\cup_{s \in T'} \mathbf{move}(s, \epsilon)]$ until T = T'

ε-Closure (T: set of states)

```
push all states in T onto stack initialize \epsilon-closure(T) to T while stack is not empty do begin pop t off stack for each state u with u \in move(t, \epsilon) do if u \notin \epsilon-closure(T) do begin add u to \epsilon-closure(T) push u onto stack end end
```

9/22/11 4

NFA Simulation

- After computing the ϵ -closure move, we get a set of states
- On some input extend all these states to get a new set of states

```
\mathbf{DFAedge}(T,c) = \epsilon\text{-}\mathbf{closure}\left(\cup_{q \in T}\mathbf{move}(q,c)\right)
```

NFA Simulation

```
• Start state: q_0
• Input: c_v, ..., c_k

T \leftarrow \epsilon\text{-closure}(\{q_0\})

for i \leftarrow 1 to k

T \leftarrow \mathbf{DFAedge}(T, c_i)
```

9/22/11

Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

Example: subset construction

ϵ -closure(q_o)

$move(\epsilon$ -closure(q_o), o)

9/22/11 55

ε -closure(move(ε -closure(q_o), o))

move(ε -closure(q_o), 1)

9/22/11

ϵ -closure(move(ϵ -closure(q_o), 1))

Subset Construction

```
add ε-closure(q₀) to Dstates unmarked
while ∃ unmarked T ∈ Dstates do begin
mark T;
for each symbol c do begin
U := ε-closure(move(T, c));
if U ∉ Dstates then
add U to Dstates unmarked
Dtrans[d, c] := U;
end
end
```

9/22/11

Subset Construction

59

60

```
states[0] = \epsilon\text{-closure}(\{q_0\})
p = j = 0
while j \le p \text{ do begin}
e = DFAedge(states[j], c)
if e = states[i] \text{ for some } i \le p
then \quad Dtrans[j, c] = i
else \quad p = p+1
states[p] = e
Dtrans[j, c] = p
j = j+1
end
9/22/11
```


Minimization of DFAs

Minimization of DFAs

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting

9/22/11

65

Minimization of DFAs

- Step 2: in each group, find a sub-group of states having property P
- P: The states have transitions on each symbol (in the alphabet) to the *same* group

A, 0: blue A, 1: yellow E, 0: blue E, 1: yellow D, 0: yellow D, 1: yellow

9/22/11

B, 0: blue

B, 1: yellow

C, 0: blue

C, 1: yellow

66

Minimization of DFAs

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4

Minimization of DFAs

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states

NFA to DFA

- Subset construction converts NFA to DFA
- Complexity:
 - For FSAs, we measure complexity in terms of initial cost (creating the automaton) and per string cost
 - Let r be the length of the regexp and n be the length of the input string
 - NFA, Initial cost: O(r); Per string: O(rn)
 - DFA, Initial cost: O(r²s); Per string: O(n)
 - DFA, common case, s = r, but worst case $s = 2^{r}$

9/22/11 69

NFA to DFA

- A regexp of size r can become a 2^r state DFA, an exponential increase in complexity
 - Try the subset construction on NFA built for the regexp A*aAⁿ⁻¹ where A is the regexp (a|b)
- Note that the NFA for regexp of size r will have r states
- Minimization can reduce the number of states
- But minimization requires determinization

NFA to DFA

9/22/11 71

NFA to DFA

NFA to DFA

NFA vs. DFA in the wild

Engine Type	Programs
DFA	awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA	GNU Emacs, Java, grep (most versions), less, more, .NET languages, PCRE library, Perl, PHP (pere routines), Python, Ruby, sed (most versions), vi
POSIX NFA	mawk, MKS utilities, GNU Emacs (when requested)
Hybrid NFA/DFA	GNU awk, GNU grep/egrep, Tcl

Extensions to Regular Expressions

- Most modern regexp implementations provide extensions:
 - matching groups; \1 refers to the string matched by the first grouping (), \2 to the second match, etc.,
 - e.g. ([a-z]+)\1 which matches abab where 1=ab
 - match and replace operations,
 - e.g. s/([a-z]+)/(1/g) which changes ab into abab where 1=ab
- These extensions are no longer "regular". In fact, extended regexp matching is NP-hard
 - Extended regular expressions (including POSIX and Perl) are called REGEX to distinguish from regexp (which are regular)
- In order to capture these difficult cases, the algorithms used even for simple regexp matching run in time 9/22/exponential in the length of the input

Converting Regular Expressions directly into DFAs

This algorithm was first used by Al Aho in egrep, and used in awk, lex, flex

Regexp to DFA: ((ab) | (ba)) *#

Regexp to DFA: followpos

- followpos(p) tells us which positions can follow a position p
- There are two rules that use the firstpos {} and lastpos () information

Regexp to DFA: ((ab) | (ba)) *#

Regexp to DFA: ((ab) | (ba)) *#

Converting an NFA into a Regular Expression

9/22/11 81

NFA to RegExp

What is the regular expression for this NFA?

NFA to RegExp

• A = a B

- D = a B | ε
- B = b D | b C
- C = a D

9/22/11

83

NFA to RegExp

- Three steps in the algorithm (apply in any order):
- Substitution: for B = X pick every A = B | T and replace to get A = X | T
- 2. Factoring: (RS)|(RT) = R(S|T) and (RT)|(ST) = (R|S)T
- Arden's Rule: For any set of strings S and T, the equation X = (S X) | T has X = (S*) T as a solution.

9/22/11

84

NFA to RegExp

$$B = b D | b C$$

$$D = a B \mid \varepsilon$$

$$C = a D$$

• Substitute:

$$A = a B$$

$$B = b D | b a D$$

$$D = a B \mid \epsilon$$

• Factor:

$$A = a B$$

$$B = (b|ba)D$$

$$D = a B \mid \varepsilon$$

• Substitute:

$$A = a(b|ba)D$$

$$D = a (b | b a) D | \varepsilon$$

9/22/11

85

NFA to RegExp

$$A = a(b|ba)D$$

$$D = a(b|ba)D|\epsilon$$

• Factor:

$$D = (ab | aba) D | \varepsilon$$

• Arden:

$$D = (ab | aba)* \epsilon$$

• Remove epsilon:

• Substitute:

$$A = (ab | aba)$$

• Simplify:

$$A = (ab | aba) +$$

9/22/11

86

NFA to Regexp using GNFAs

Generalized NFA: transition function takes state and regexp and returns a set of states

r2

Algorithm:

- 1. Add new start & accept state
- 2. For each state *s*: rip state *s* creating GNFA, consider each state *i* and *j* adjacent to *s*

9/22/11

3. Return regexp from start to accept state

NFA to Regexp using GNFAs

NFA to Regexp using GNFAs

Rip states 1, 2, 3 in that order, and we get: (a(aalb)*ablb) ((bala)(aalb)*ablbb)*((bala)(aalb)*lɛ)la(aalb)*

9/22/11 89

Implementing a Lexical Analyzer

Lexical Analyzer using NFAs

- For each token convert its regexp into a DFA or NFA
- Create a new start state and create a transition on ϵ to the start state of the automaton for each token
- For input $i_1, i_2, ..., i_n$ run NFA simulation which returns some final states (each final state indicates a token)
- If no final state is reached then raise an error
- Pick the final state (token) that has the longest match in the input,
 - e.g. prefer DFA #8 over all others because it read the input until i_{30} and none of the other DFAs reached i_{30}
 - If two DFAs reach the same input character then pick the one that is listed first in the ordered list

9/22/11

Lexical Analysis using NFAs

9/22/11

Lexical Analysis using NFAs

Lexical Analysis using NFAs

Lexical Analyzer using DFAs

- Each token is defined using a regexp r_i
- Merge all regexps into one big regexp
 R = (r₁ | r₂ | ... | r_n)
- Convert R to an NFA, then DFA, then minimize
 - remember orig NFA final states with each DFA state

9/22/11

Lexical Analyzer using DFAs

- The DFA recognizer has to find the *longest leftmost match* for a token
 - continue matching and report the last final state reached once DFA simulation cannot continue
 - e.g. longest match: <print> and not <pr>>, <int></pri>
 - e.g. leftmost match: for input string aabaaaaab the regexp a*b will match aab and not aaaaab
- If two patterns match the same token, pick the one that was listed earlier in R
 - e.g. prefer final state (in the original NFA) of r₂ over r₃

Lookahead operator

- Implementing r_1/r_2 : match r_1 when followed by r_2
- e.g. a*b+/a*c accepts a string bac but not abd
- The lexical analyzer matches r₁εr₂ up to position q in the input
- But remembers the position p in the input where r₁ matched but not r₂
- Reset to start state and start from position *p*

9/22/11 97

Efficient data-structures for DFAs

Implementing DFAs

- 2D array storing the transition table
- Adjacency list, more space efficient but slower
- Merge two ideas: array structures used for sparse tables like DFA transition tables
 - base & next arrays: Tarjan and Yao, 1979
 - Dragon book (default+base & next+check)

9/22/11 99

Implementing DFAs

	a	b	c	d
0	-	1	-	2
1	1	-	1	_
2	1	2	1	-

9/22/11

Implementing DFAs

		a	b	c	d				-	1	-	2	
	0	-	1	-	2						1	-	1
	1	1	-	1	_		1	2	1	-			
	2	1	2	1	-		1	2	1	1	1	2	1
						0	1	2	3	4	5	6	
ba	ase	0	2				2	2	2	0	1	0	1

nextstate(s, x):

L := base[s] + x

return next[L] if check[L] eq s

next

check

9/22/11

Implementing DFAs

Summary

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression ⇒ NFA
 - Thompson's Rules
- NFA ⇒ DFA
 - Subset construction
- DFA ⇒ minimal DFA
 - Minimization

⇒ Lexical Analyzer (multiple patterns)