7. Konstrukční uspořádání PC

- typy zdrojů PC a jejich charakteristiky (zákl. parametry zdrojů PC, účinnost, značení, konektory...)
- BIOS a jeho součásti, UEFI
- typy pamětí v PC, jejich funkce, charakteristiky a parametry, použití jednotlivých typů v PC, přenosové rychlosti
- 35 čipové sady
- sockety a chlazení procesorů
- sběrnice a rozhraní, typy a charakteristiky
- popis jednotlivých součástí základní desky

Zdroj – napájí všechny části počítače (kdo by to čekal)

Převádí střídavých 230V na stejnosměrné těchto hodnot:

- +3,3V port AGP (accelerated graphics port)
- +5V řídící části diskových mechanik, napájení sběrnic ISA a PCI, chipset, některé části základní desky (klávesnice apod.)
- -5 V přístupné na sběrnici ISA
- +12 V pohony diskových mechanik, ventilátory, sériové porty, přístupné na sběrnici ISA a PCI
- -12 V sériové porty, přístupné na sběrnici ISA a PCI
- -obsahuje ventilátor, který odvádí teplo ze zdroje i ze skříně počítače důležitá je jeho hlučnost
- -důležitý parametr je max. výkon uváděný ve W
- -zdroje se nyní vyrábí ve formátu ATX, resp.BTX což mj. umožňuje softwarové vypnutí počítače
- -Impulsní(spínaný) zdroj nezapínat naprázdno!!! musí být zajištěn odběr.

Typy zdrojů:

<u>AT</u>

+-5V, +-12V

konektory: dva 6 pinové

ATX

+-5V, +-12V a 3,3V

konektory: 20 pinový main powet + 4 pinový PW + 12V AUX power

BTX

+-5V, +-12V a 3,3V

24pinový

Main Power

+6pinový PW + 12V(nebo 6+2, příp. 4+2,nebo 4+4 pin.)

Řídicí signály zdrojů:

 $5VSB-vodič vedoucí ze zdroje do základní desky, na kterém je napětí <math display="inline">\pm 5V$ i když jsou všechny ostatní napěťové okruhy vypnuty

-používá se k elektronickému zapnutí PC

✓ Udržuje zákl. desku neustále pod napětím, aby se dal PC softwarově zapnout

Účinnost zdroje:

- -poměr mezi výstupním výkonem a příkonem zdroje
- -Účinnost je vždy menší než 100%,
- -Čím vyšší je hodnota celkové účinnosti zdroje, tím menší množství "tepla" se v samotném zdroji vyprodukuje (vyzáří) do okolí
- -Účinnost zdrojů 80 Plus se pohybuje 80% až do 90% i při 20% zatížení

StandBy

- -Podle odhadů je celková roční spotřeba ve standby režimech je několik Twh (terrawat/hodin)
- -U nových zařízení by se měla pohybovat pod 1W
- -U starších obvykle kolem 5W (někdy i 12W)
- -v běžné domácnosti to činí součtem všech zapnutých zařízení cca 55W, ročně to je 80 kWh

Myslím že ke zdrojům je toho dost...

BIOS

BIOS základní desky

-uložen na (EPROM, Flash)

BIOS základní desky

- -Ovladače HW na zákl. desce (drivers),nutné v real mode (při startu PC)
- Stovky malých programů služeb, ovladačů pro jednotlivé části HW –klávesnice, HD, monitor
- -Jejich funkci po startu OS převezmou, drivers OS
- -POST (Power On Self Test)
- -SETUP utilities
- -Zavaděč (boot loader)

Někdy se také na základní desce objebuje dual bios, zvůvodu ochrany, kdyby jeden selhal

Zavaděč (boot loader)

- -Hledá na HD Master Boot Record
- -Zavede jej do (RAM) spustí v něm obsažený programový kód a předá mu řízení

SETUP

- -Program pro nastavení HW konfigurace a rychlostních parametrů HW
- -Aktivuje (spustí) se v průběhu začátku (nebo před) POST kombinací kláves
- -Program sám se nachází v EEPROM nebo Flash a edituje data uložená v CMOS
- -CMOS Setup Utility
- -Volba Load defaults přepíše doporučené hodnoty z EPROM do CMOS

Paměti RAM

- RAM Random Access Memory
- Paměti určené pro zápis i pro čtení dat
- Jedná se o paměti, které jsou energeticky závislé
- Podle toho, zda jsou dynamické nebo static-ké, jsou dále rozdělovány na:

DRAM – Dynamické RAM

SRAM – Statické RAM

DDR

Sockety a chlazení

- -patice (socket) = konektor pro připojení procesoru k základní desce
- slot = konektor, do kterého se procesor staví podobně jako přídavná deska (u starších typů)

Socket – patice ZIF(Zero input force) – zasouvání nulovou silou

Intel:

Používá plošky procesorů, dříve to byly plošky ve tvaru kruhu, ale kontakt mezi procesorem a socketem nebyl příliš dobrý, proto přešli na plošky ve tvaru oválů, kdy po použití ZIFu se procesor trochu posune, ale zároven se přesně napasuje na kontakty.

Chlazení procesorů:

-pasivní

-aktivní

pasivní: například chladící pasta, pasivní chladiče, které jen odvádějí teplo aktivní: ventilátory,heat-pipe (papiňák) – porézní materiál

Retenční mechanizmus:

Konektory pro připojení retenčního mechanizmu se základní deskou

Třípinové - které dodávají konstantní napětí

- V případě třípinového konektoru potřebujete dražší chladič, který si reguluje otáčky v záislosti na teplotě mikroprocesoru.
- Čtyřpinové (označované jako PWM pulse-width modulation).
- Ty jsou napojeny na elektroniku desky, která pulzně reguluje otáčky ventiláoru v závislosti na teplotě.
- Pak stačí jednodušší a levnější ventilátor princip PWM (pulzně šírková modulace) – jedná se o značnou energetickou úsporu, kdy měním periodu dodávní napětí, neměním velikost napětí

Heat-pipe

Sběrnice a rozhraní anebo letem světem:)

(protože mě to už nebaví)

Rozhraní PC

- -SCSI (Small Computer System Interface) vysokorychlostní paralerní rozhraní
- -IDE Zjednodušením SCSI pro 2 zařízení (potom EIDE)
- -ATA (Advanced Technology Attachment)- paralelní typ připojení pomocí 40pinového konektoru a 40 nebo 80 žilového kabelu, dnes už je téměř nahrazován sériovým
- -SATA a řadiče pomalu mizí ze základních desek
- -PATA (Paralel ATA) stejné jako ATA, označení se začalo používat s příchodem SATA
- -SATA (Serial ATA) sériové připojení, výhoda technologie je použití tenčích kabelů a vyšších rychlostí díky sériovému proudění dat

EIDE – master, slave většinou modrý jde na základní desku

Přenosová rychlost PATA=ATA

Např. ATA 100

- Datová šířka rozhraní 16b = 2B
- Frekvence 25 MHz (DDR)
- $25 \times 2 = 50 \text{ Mhz}$ (ef) $\times 2B = 100 \text{ MB/s}$
- Číslo za označením UltraATA, Ultra DMA udávámax. teoretickou přenosovou rychlost (100 =100 MB/s) Problém paralelních přenosů = vysokéfrekvence, délky kabelů a spojů.

Serial ATA (SATA)

- -odlišné kódování přenosu
- -10bitové, a proto můžeme také zmíněné přenosové rychlosti vyjádřit jako 150 MB/s (1,5 Gb/s)

300 MB/s (3 Gb/s)

přenosový režim	maximální rychlost	standard
SATA 1	150 MB/s	SATA/150
SATA 2	300 MB/s	SATA/300
SATA 3	600 MB/s	SATA/600

Technologie NCQ (Native Command Queuing)

-Přirozené řazení požadavků. Technologie ponechává rozhodování o pořádí čtení dat na logice disku a posloupnost čtení dat si seřadí tak, aby k tomu potřeboval co nejméně otáček a přesunů hlavy.

Další technologie SATA

Hot-Swap - dovoluje připojit a odpojit disk,za běhu počítače tak, aby je operační systém,rozpoznal Staggered Spin Up - dokáže po startu počítače minimalizovat energetické nároky na zdroj,dokáže řídit a ovládat postupný náběh všech pevných disků, které se tak nemusí,rozběhnout všechny najednou Port Selector - umožňuje připojit dva řadiče k jednomu disku kvůli zamezení výpadku v případě poruchy jednoho z nich

FireWire - IEEE1394

-vysokorychlostní sériová sběrnice vyvinutá společností Apple sloužící k připojení externích disků, rychlost dnes až 800 Mb/s (100 MB/s), pracuje se na 1600 Mb/s

Sériové rozhraní

-rychlost 1.5, 12, 480 Mb/s, 4.8Gb/s,připojení zařízení až na vzdálenost 5 m,možnost napájení z konektoru až 127 připojených zařízení

USB verze 1 a 2 mají 4 vodiče, +5V GND D+ a D- verze 3 jich má 5

ze 1 a 2 mají 4 vodiče, +5V GND D+ a D-	verze 3 jich má 5						
Verze USB							
1.1teoretická propustnost	Low Speed 1.5 Mb/s						
max. 12 Mb/s ■ 2.0	Full Speed	12 Mb/s					
 teoretická propustnost max. 480 Mb/s 	High Speed	480 Mb/s (60 MB/s)					
- 3.0		(001115/3)					
 Super Speed - teoretická propustnost max. 4.8 Gb/s (600 MB/s), 8 vodičů (6 datových + 2 napájecí) 							
Rychlost je závislá na limitech technologie, množství Hubů na cestě, délce kabelu a konstrukci samotného zařízení.							
Reálná přenosová rychlost bývá sotva MB/s)		0 MB/s, 3.0 – 60					

Sběrnice

<u>Paralelní:</u>

PCI, PCI-X

Sériové:

PCI-E

Externí:

USB,FireWare

PCI:

-PCI je paralelní a polo-duplexní – všechny vodiče slouží pro přenos dat oběma směry, ovšem nikoli oběma směry zároveň

Typy PCI a PCI - X														
Typ sběrnice	PCI	- 33	PCI	- 66	PCI-	X 66	PCI	-X 133	F	CI-X 2	:66	P	CI-X 5	33
Počet datových bitů	32	64	32	64	32	64	32	64	16	32	64	16	32	64
Počet pinů	49	81	49	81	50	82	50	82	36	50	82	36	50	82
Přenosová rychlost MB/s	133	266	266	533	266	533	533	1066	533	1066	2133	1066	2133	4266
Napájecí napětí	5V, :	3,3 V	5V, 3	3,3 V	3,3	3 V	3	,3 V	1,	5 V a 3	,3 V	1,5	5 V a 3,	3 V

AGP vzniklo zkrácením plného názvu Accelerated Graphics Port

- -port určený prakticky výhradně k připojení grafických adaptérů
- -technologie AGP vznikla úpravou sběrnice PCI
- -frekvence hodinového signálu se zvýšila na 66 Mhz

Označení	Hodinová frekvence	Režim přenosu	Úroveň signálů	Výsledná rychlost
AGP 1×	66 MHz	32 bitů za takt	3,3 V	266 MB.s ⁻¹
AGP 2×	66 MHz	2× 32 bitů za takt	3,3 V	533 MB.s ⁻¹
AGP 4×	66 MHz	4× 32 bitů za takt	1,5 V	1066 MB.s ⁻¹
AGP 8×	66 MHz	8× 32 bitů za takt	0,8 V	2133 MB.s ⁻¹

PCI – E

PCI Express používá pro přenos adres, dat i prakticky všech řídicích signálů

- -dva páry vodičů; každý pár vodičů přitom provádí přenos v jednom směru s rychlostí
- 2,525 Gigabitů za sekundu (u verze 2 je to dvojnásobek)
- -přenosová rychlost 250 MB/s v obou směrem => PCI-E x 1 verze 1

PCI Express x16 je lokální sběrnice určená pro grafické karty a speciální vysokorychlostní SSD v podobě přídavné karty.

PCI Express verze 1.x

Тур	Počet spojů (link)	Datová propustnost (pro každý směr)
PCI Express x1	1	250 MB/s
PCI Express x4	4	1000 MB/s
PCI Express x8	8	2000 MB/s
PCI Express x16	16	4000 MB/s

PCI Express verze 2.0

Тур	Počet spojů (link)	Datová propustnost (pro každý směr)
PCI Express x1	1	500 MB/s
PCI Express x4	4	2000 MB/s
PCI Express x8	8	4000 MB/s
PCI Express x16	16	8000 MB/s

PCI Express verze 3.0

Тур	Počet spojů (link)	Datová propustnost (pro každý směr)
PCI Express x1	1	1000 MB/s
PCI Express x4	4	4000 MB/s
PCI Express x8	8	8000 MB/s
PCI Express x16	16	16000 MB/s

Standard PCI Express 3.0 je zpětně kompatibilní se standardem PCI-Express 2.0, 1.1 a 1.0, u starších základních desek však nemusí být zajištěna dostatečná podpora.