Inf-KDDM: **Knowledge Discovery and Data Mining**

Winter Term 2019/20

Lecture 3: Frequent Itemsets and Association Rule Mining

Lectures: Prof. Dr. Matthias Renz

Exercises: Christian Beth

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Introduction

- Frequent patterns are patterns that appear frequently in a dataset.
 - Patterns: items, substructures, subsequences ...
- Typical example: Market basket analysis

transac	tions		items
		Customer transactions	
	Tid	Transaction items	
	1	Butter, Bread, Milk Sugar	
	2	Butter, Flour Milk, Sugar	
\checkmark	3	Butter, Eggs, Milk, Salt	
	4	Eggs	
	5	Butter, Flour, Milk, Salt, Sugar	

- We want to know: What products were often purchased together?
 - e.g.: beer and diapers?

The parable of the beer and diapers: http://www.theregister.co.uk/2006/08/15/beer_diapers/

- Applications:
 - Improving store layout, Sales campaigns, Cross-marketing, Advertising

Applications beyond marked basket data

- Market basket analysis
 - Items are the products, transactions are the products bought by a customer during a supermarket visit
 - □ Example: $\{"Diapers"\} \rightarrow \{"Beer\} (0.5\%, 60\%)$
- Similarly in an online shop, e.g. Amazon
 - Example: $\{\text{"Computer"}\} \rightarrow \{\text{"MS office"}\}\ (50\%, 80\%)$
- University library
 - Items are the books, transactions are the books borrowed by a student during the semester
 - Example: $\{\text{"Kumar book"}\} \rightarrow \{\text{"Weka book"}\} (60\%, 70\%)$
- University
 - Items are the courses, transactions are the courses that are chosen by a student
 - Example: $\{"CS"\} \land \{"DB"\} \rightarrow \{"Grade A"\} (1\%, 75\%)$
- ... and many other applications.
- Also, frequent patter mining is fundamental in other DM tasks.

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Homework
- Things you should know from this lecture

Basic concepts: Items, itemsets and transactions 1/2

- Items I: the set of items $I = \{i_1, ..., i_m\}$
 - e.g. products in a supermarket, books in a bookstore
- Itemset X: A set of items $X \subseteq I$
- Itemset size: the number of items in the itemset
- k-Itemset: an itemset of size k
 - e.g. {Butter, Bread, Milk, Sugar} is a 4-Itemset, {Butter, Bread} is a 2-Itemset
- Transaction T: $T = (tid, X_T)$
 - e.g. products bought during a customer visit to the supermarket
- Database DB: A set of transactions T
 - e.g. customers purchases in a supermarket during the last week
- Items in transactions or itemsets are lexicographically ordered
 - □ Itemset $X = (x_1, x_2, ..., x_k)$, such as $x_1 \le x_2 \le ... \le x_k$

Tid	Transaction items
1	Butter, Bread, Milk, Sugar
2	Butter, Flour, Milk, Sugar
3	Butter, Eggs, Milk, Salt
4	Eggs
5	Butter, Flour, Milk, Salt, Sugar

Basic concepts: Items, itemsets and transactions 2/2

Let X be an itemset.

Itemset cover: the set of transactions containing X:

$$cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$$

(absolute) Support/ support count of X: # transactions containing X

$$supportCount(X) = |cover(X)|$$

Tid	Transaction items
1	Butter, Bread, Milk, Sugar
2	Butter, Flour, Milk, Sugar
3	Butter, Eggs, Milk, Salt
4	Eggs
5	Butter, Flour, Milk, Salt, Sugar

(relative) Support of X: fraction of transactions containing X (or the probability that a transaction contains X)

$$support(X) = P(X) = supportCount(X) / |DB|$$

Frequent itemset: An itemset X is frequent in DB if its support is no less than a minSupport threshold s:

$$support(X) \ge s$$

- L_k: the set of frequent k-itemsets
 - □ L comes from "Large" ("large itemsets"), another term for "frequent itemsets"

Example: Itemsets

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Tid	Transaction items
1	Butter, Bread, Milk, Sugar
2	Butter, Flour, Milk, Sugar
3	Butter, Eggs, Milk, Salt
4	Eggs
5	Butter, Flour, Milk, Salt, Sugar

- support(Butter) = 4/5=80%
 - cover(Butter) = {1,2,3,4}
- support(Butter, Bread) = 1/5=20%
 - cover(Butter, Bread) =
- support(Butter, Flour) = 2/5=40%
 - cover(Butter, Flour) =
- support(Butter, Milk, Sugar) = 3/5=60%
 - Cover(Butter, Milk, Sugar)=

The Frequent Itemsets Mining (FIM) problem

Problem 1: Frequent Itemsets Mining (FIM)

- Given:
 - A set of items I
 - A transactions database DB over I
 - A minSupport threshold s
- Goal: Find all frequent itemsets in *DB*, i.e.:

$${X \subseteq I \mid support(X) \ge s}$$

transactionID	items
2000	A,B,C
1000	ĄC
4000	A,D
5000	B,E,F

Support of 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support of 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Support of 3-Itemsets:

(A, B, C), (B, E, F): 25%

Support of 4-Itemsets: -

Support of 5-Itemsets: -

Support of 6-Itemsets: -

Basic concepts: association rules, support, confidence

Let X, Y be two itemsets: $X,Y \subset I$ and $X \cap Y = \emptyset$.

Association rules: rules of the form

head or LHS (left-hand side) or antecedent of the rule

body or RHS (right-hand side) or consequent of the rule

Support s of a rule: the percentage of transactions containing $X \cup Y$ in the DB

$$support(X \rightarrow Y) = support(X \cup Y)$$

■ Confidence c of a rule: the percentage of transactions containing $X \cup Y$ in the set of transactions containing X. Or, in other words the conditional probability that a transaction containing X also contains Y

$$confidence(X \rightarrow Y) = P(E_Y | E_X) = \frac{P(E_X \cap E_Y)}{P(E_X)} = \frac{support(X \cup Y)}{support(X)}$$

- Support and confidence are measures of rules' interestingness.
- Rules are usually written as follows: $X \rightarrow Y$ (support, confidence)

 E_X := Event that itemset X appears in a transaction

- {Diapers} → {Beer} (0.5%, 60%)
- {Toast bread} → {Toast cheese}
 (50%, 90%)

Example: association rules

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Tid	Transaction items
1	Butter, Bread, Milk, Sugar
2	Butter, Flour, Milk, Sugar
3	Butter, Eggs, Milk, Salt
4	Eggs
5	Butter, Flour, Milk, Salt, Sugar

Sample rules:

- {Butter}→{Bread} (20%, 25%)
 - □ support(Butter ∪Bread)=1/5=20%
 - support(Butter)=4/5=80%
 - Confidence = 20%/80%=1/4=25%
- {Butter, Milk} → Sugar (60%, 75%)
 - □ support(Butter, Milk ∪ Sugar) = 3/5=60%
 - Support(Butter,Milk) = 4/5=80%
 - Confidence = 60%/80%=3/4=75%

The Association Rules Mining (ARM) problem

Problem 2: Association Rules Mining (ARM)

- Given:
 - A set of items I
 - A transactions database DB over I
 - □ A minSupport threshold s and a minConfidence threshold c
- Goal: Find all association rules $X \rightarrow Y$ in DB w.r.t. minimum support s and minimum confidence c, i.e.:

$$\{X \rightarrow Y \mid support(X \cup Y) \ge s, confidence(X \rightarrow Y) \ge c\}$$

These rules are called strong.

transactionID	items	— Association rules:
2000	A,B,C	
1000	ĄC	A \Rightarrow C (Support = 50%, Confidence= 66.6%)
4000	A,D	C \Rightarrow A (Support = 50%, Confidence= 100%)
5000	B,E,F	

Solving the problems

- Problem 1 (FIM): Find all frequent itemsets in DB, i.e.: $\{X \subseteq I \mid support(X) \ge s\}$
- Problem 2 (ARM): Find all association rules $X \to Y$ in DB, w.r.t. min support s and min confidence c, i.e.,: $\{X \to Y \mid support(X \cup Y) \ge s$, $confidence(X \to Y) \ge c$, $X, Y \subseteq I$ and $X \cap Y = \emptyset$
- Problem 1 is part of Problem 2:
 - Once we have support(X \cup Y) and support(X), we can check if X \rightarrow Y is strong.
- 2-step method to extract the association rules:
 - □ Step 1: Determine the frequent itemsets w.r.t. min support s:
 - "Naïve" algorithm: count the frequencies for all k-itemsets
 - □ Inefficient!!! There are $O(\binom{|I|}{k})$ such subsets
 - □ Total cost: O(2|/|)
 - => Apriori-algorithm and variants
 - Step 2: Generate the association rules w.r.t. min confidence c: from frequent itemsets X, generate $Y \rightarrow (X Y)$, $Y \subset X$, $Y \neq \emptyset$, $Y \neq X$

FIM problem

Step 1(FIM) is the most costly, so the overall performance of an association rules mining algorithm is determined by this step.

Itemset lattice complexity

- The number of itemsets can be really huge. Let us consider a small set of items: $I = \{A, B, C, D\}$
- **# 1-itemsets:** $\binom{4}{1} = \frac{4!}{(4-1)!*1!} = \frac{4!}{3!} = 4$
- **4** 2-itemsets: $\binom{4}{2} = \frac{4!}{(4-2)!*2!} = \frac{4!}{2!*2!} = 6$
- **a** #3-itemsets: $\binom{4}{3} = \frac{4!}{(4-3)!*3!} = \frac{4!}{3!} = 4$
- **4** 4-itemsets: $\binom{4}{4} = \frac{4!}{(4-4)!*4!} = 1$
- In the general case, for |/| items, there exist:

$$\binom{\mid I \mid}{1} + \binom{\mid I \mid}{2} + \dots + \binom{\mid I \mid}{k} = 2^{\mid I \mid} - 1$$

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Apriori algorithm [Agrawal & Srikant @VLDB'94]

Idea: First determine frequent 1-itemsets, then frequent 2-itemsets and so on

- Method overview:
 - Initially, scan DB once to get frequent 1-itemset
 - \Box Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB (one scan)
 - Terminate when no frequent or candidate set can be generated

Apriori property

- Naïve approach: Count the frequency of all k-itemsets X from I

 - for each candidate itemset X, the algorithm evaluates whether X is frequent
 - → To reduce complexity, the set of candidates should be as small as possible!!!
- Downward closure property / Monotonic property/Apriori property of frequent itemsets:
 - □ If X is frequent, all its subsets $Y \subseteq X$ are also frequent.
 - e.g., if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
 - similarly for {diaper, nuts}, {beer, nuts}

- On the contrary: When X is not frequent, all its supersets are not frequent and thus they should not be generated/tested!!! \rightarrow reduce the candidate itemsets set
 - e.g., if {beer, diaper} is not frequent, {beer, diaper, nuts} would not be frequent also

Illustration of the Apriori property

Figure 6.3. An illustration of the *Apriori* principle. If $\{c,d,e\}$ is frequent, then all subsets of this itemset are frequent.

Let us consider the following transaction database

Transaction Database {Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

and a minSupport threshold minSupp = 2

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

■ Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

Transaction Database {Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

minSupport s = 2

■ Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

■ Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

Frequent itemsets generation: From L_{k-1} to C_k to L_k L_k : frequent itemsets of size k; C_k : candidate itemsets of size k

A 2-step process:

- Join step: generate candidates C_k
 - L_k is generated by self-joining $C_k = L_{k-1} \bowtie L_{k-1}$, $C_k := Set$ of candidates in L_k
 - □ Two (k-1)-itemsets p, q are joined, if they agree in the first (k-2) items
- Prune step: prune C_k and return L_k
 - \Box C_k is superset of L_k
 - Naïve idea: count the support for all candidate itemsets in $C_k \dots |C_k|$ might be large!
 - □ Use Apriori property: a candidate k-itemset that has some non-frequent (k-1)-itemset cannot be frequent
 - Prune all those k-itemsets, that have some (k-1)-subset that is not frequent (i.e. does not belong to L_{k-1})
 - Due to the level-wise approach of Apriori, we only need to check (k-1)-subsets
 - \Box For the remaining itemsets in C_k , prune by support count (DB)

Example: Let L₃={abc, abd, acd, ace, bcd}

- Join step: C₄=L₃*L₃ C₄={abc*abd=abcd: acd*ace=acde}
- Prune step (apriori-based): acde is pruned since cde is not frequent
- Prune step (DB-based): check abcd support in the DB

Apriori algorithm (pseudo-code)

Subset function:

- For each transaction T in DB, the subset function must check all candidates in the candidate set C_k whether they are part of the transaction T
- Organize candidates C_k in a hash tree

Example

Apriori overview

- Advantages:
 - Apriori property
 - Easy implementation (in parallel also)
- Disadvantages:
 - □ It requires up to |/| database scans
 - It assumes that the DB is in memory
- Complexity depends on
 - minSupport threshold
 - Number of items (dimensionality)
 - Number of transactions
 - Average transaction length

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Association Rules Mining

- (Recall the) 2-step method to extract the association rules:
 - □ Determine the frequent itemsets w.r.t. min support s ← FIM problem (Apriori)
 - Generate the association rules w.r.t. min confidence c.
- Regarding step 2, the following method is followed:
 - For every frequent itemset X
 - of or every subset Y of X: $Y \neq \emptyset$, $Y \neq X$, the rule $Y \rightarrow (X Y)$ is formed
 - Remove rules that violate min confidence c

$$confidence(Y \rightarrow (X - Y)) = \frac{|support_count(X)|}{support_count(Y)}$$

- Store the frequent itemsets and their supports in a hash table
 - no database access!

Let *X*={1,2,3} be frequent There are 6 candidate rules that can be generated from *X*:

- {1,2}→3
- {1,3}→2
- {2,3}>1
- {1}→{2,3}
- {2}→{1,3}
- {3}→{1,2}

To identify strong rules, we can use the support counts (already computed during the FIM step)

Pseudocode

```
Input:
         //Database of transactions
      //Items
   L //Large itemsets
   s //Support
       //Confidence
   \alpha
Output:
           //Association Rules satisfying s and \alpha
   R
ARGen Algorithm:
   R = \emptyset;
   for each l \in L do
       for each x \subset l such that x \neq \emptyset and x \neq l do
           if \frac{support(l)}{support(x)} \ge \alpha then
              R = R \cup \{x \Rightarrow (l-x)\};
```

Confidence-based pruning

- How to efficiently generate rules from frequent itemsets?
- Confidence does not follow the monotonicity property
 - □ i.e., confidence $(X \rightarrow Y)$ can be >,<,= to confidence $(X' \rightarrow Y')$, $X' \subseteq X$, $Y' \subseteq Y$
 - \blacksquare e.g., confidence(ABC \rightarrow D) can be larger or smaller than confidence(AB \rightarrow D)
- But the confidence of rules generated from the same itemset does

If rule $X \rightarrow Y-X$ does not satisfy the minConfidence threshold, then any rule $X' \rightarrow Y-X'$, where $X' \subseteq X$, must not satisfy the minConfidence threshold as well.

- For example, for X={ABCD}, then
 - confidence(ABC \rightarrow D) \geq confidence(AB \rightarrow CD) \geq confidence(A \rightarrow BCD)

Confidence-based pruning

Example

tid	Χ _T	
1	{Bier, Chips, Wine}	
2	{Bier, Chips}	
3	{Pizza, Wine}	
4	{Chips, Pizza}	

Transaction database

I = {Bier, Ch	ps, Pizza,	Wine}
---------------	------------	-------

Itemset	Cover	Sup.	Freq.
{}	{1,2,3,4}	4	100 %
{Bier}	{1,2}	2	50 %
{Chips}	{1,2,4}	3	75 %
{Pizza}	{3,4}	2	50 %
{Wine}	{1,3}	2	50 %
{Bier, Chips}	{1,2}	2	50 %
{Bier, Wine}	{1}	1	25 %
{Chips, Pizza}	{4}	1	25 %
{Chips, Wine}	{1}	1	25 %
{Pizza, Wine}	{3}	1	25 %
{Bier, Chips, Wine}	{1}	1	25 %

Rule	Sup.	Freq.	Conf.
${Bier} \Rightarrow {Chips}$	2	50 %	100 %
{Bier} ⇒ {Wine}	1	25 %	50 %
$\{Chips\} \Rightarrow \{Bier\}$	2	50 %	66 %
$\{Pizza\} \Rightarrow \{Chips\}$	1	25 %	50 %
{Pizza} ⇒ {Wine}	1	25 %	50 %
{Wine} ⇒ {Bier}	1	25 %	50 %
$\{Wine\} \Rightarrow \{Chips\}$	1	25 %	50 %
{Wine} ⇒ {Pizza}	1	25 %	50 %
$\{Bier, Chips\} \Rightarrow \{Wine\}$	1	25 %	50 %
$\{Bier, Wine\} \Rightarrow \{Chips\}$	1	25 %	100 %
$\{Chips,Wine\} \Longrightarrow \{Bier\}$	1	25 %	100 %
$\{Bier\} \Rightarrow \{Chips, Wine\}$	1	25 %	50 %
$\{$ Wine $\}$ \Longrightarrow $\{$ Bier, Chips $\}$	1	25 %	50 %

Evaluating Association Rules 1/2

Interesting and misleading association rules

Example:

- Database on the behavior of students in a school with 5.000 students
- Itemsets:
 - 60% of the students play Soccer,
 - 75% of the students eat chocolate bars
 - 40% of the students play Soccer and eat chocolate bars
- Association rules: {"Play Soccer"} \rightarrow {"Eat chocolate bars"}, confidence = 40%/60%= 67%
 - □ The rule has a high confidence, however:
 - {"Eat chocolate bars"}, support= 75%, regardless of whether they play soccer.

Therefore, the rule {"Play Soccer"} \rightarrow {"Eat chocolate bars"} is misleading despite its high confidence

Evaluating Association Rules 2/2

Task: Filter out misleading rules

Let
$$\{A\} \rightarrow \{B\}$$

Measure of "interestingness"-score of a rule:

$$interest = \frac{support(A \cup B)}{support(A)} - support(B)$$

- the higher the value the more interesting the rule is
- Measure of dependent/correlated events:

$$lift = \frac{support(A \cup B)}{support(A)support(B)}$$

- the ratio of the *observed* support to that *expected* if X and Y were independent.
- □ Lift > 1 means that the rule is interesting, lift < 1 means that the presence of one item has negative effect on presence of other item and vice versa.

Measuring Quality of Association Rules

For a rule $A \rightarrow B$

- Support $support(A \cup B)$ $P(E_A \cap E_B)$ $E_X := Event that itemset X appears in a transaction$
 - e.g. support(milk, bread, butter)=20%, i.e. 20% of the transactions contain these
- Confidence $\frac{support(A \cup B)}{support(A)}$ $\frac{P(E_A \cap E_B)}{P(E_A)}$
 - e.g. confidence(milk, bread → butter)=50%, i.e. 50% of the times a customer buys milk and bread, butter is bought as well.
- Lift $\frac{support(A \cup B)}{support(A)support(B)}$ $\frac{P(EA \cap E_B)}{P(E_A)P(EB)}$
 - e.g. lift(milk, bread→ butter)=20%/(40%*40%)=1.25. the observed support is 20%, the expected (if they were independent) is 16%.