بسمه تعالى

هوش مصنوعی مسائل ارضاء محدودیتها - ۱

نيمسال اول ۱۴۰۴-۱۴۰۳

دکتر مازیار پالهنگ آزمایشگاه هوش مصنوعی دانشکدهٔ مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

مقدمه

- در یک م.ا.م. حالات بوسیلهٔ مقادیر مجموعه ای از متغیرها تعریف می شوند و آزمون هدف مجموعه ای از محدودیتهائی است که متغیرها باید ارضا کنند.
 - مثال:
 - ۸وزیر
- D_1, D_2, D_3, \dots متغیرها $X_1, X_2, X_3, X_3, \dots$ که هر یک از دامنه ای C_1, C_2, C_3, \dots انتخاب می شوند و مجموعه ای از محدودیتها C_1, C_2, C_3, \dots را باید ار ضا کنند.
 - مجموعهٔ X: متغیرها
 - مجموعهٔ D: دامنه ها
 - مجموعهٔ C: محدودیتها
 - هر محدودیت C_i بصورت <<mark>rel></mark>

مازيار پالهنگ

هوش مصنوعي

2

- یک حالت مسئله بوسیلهٔ **انتساب** مقادیر به همه یا برخی از متغیرها تعریف می شود.
 - یک انتساب که هیچ یک از محدودیتها را نمی شکند یک **انتساب سازگار** یا قانونی نامیده می شود.
 - انتساب کامل وقتی که همهٔ متغیرها مقدار گرفته اند.
 - **حل** یک انتساب کامل و ساز گار است.
 - انتساب جزئی هنگامی فقط برخی از متغیرها مقدار گرفته اند.

مثال - رنگ آمیزی نقشه

■ متغیرها: {WA،NT،SA،QL،NSW،V،T} متغیرها: و متغیرها: 4

مازيار پالهنگ

- دامنه ها: {قرمز، سبز، آبي}
- محدودیتها: هیچ دو ایالت مجاوری هم رنگ نباشند.

$$C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}.$$

- $\langle (WA,NT),WA \neq NT \rangle$ مثلاً $WA \neq NT$ مثلاً مثلاً
 - ا يا
- (WA،NT) در مجموعهٔ {(قرمز، سبز)،(سبز، قرمز)،}

یک حل

■ مى توان يك م.ا.م. را بوسيلهٔ يك **گراف محدوديت** به تصوير كشيد.

رئوس: متغیرها، یالها: محدودیتها

مازيار پالهنگ

- عمومی با یک م.ا.م. را می توان بصورت یک مسئلهٔ جستجوی عمومی با تدوین افزایشی بیان نمود:
 - حالت اوليه: انتساب تهي
- تابع تالی: انتساب مقداری به یک متغیر بی مقدار به شرطی که با متغیرهای مقدار گرفته برخورد نداشته باشد.
 - **ا** آزمون هدف: انتساب فعلی کامل و ساز گار باشد.
 - هزینهٔ مسیر: ثابت (مثلاً ۱) برای هر مرحله

- هر حل باید یک انتساب کامل باشد بنابر این در عمق n ظاهر خواهد شد اگر n متغیر و جود داشته باشد.
- چون عمق به 11 محدود است، بصورت امن می توان جستجوی عمق نخست را استفاده کرد.
- چون مسیر حل مهم نیست تدوین حالت کامل رامی توان استفاده کرد.
 - هر حالت یک انتساب کامل که سازگار هست یا نیست.
 - **-** جستجوهای محلی برای این روش مناسب است.

تنوع متغيرها

- متغيرها كسسته
- دامنهٔ محدود (رنگ آمیزی نقشه هشت وزیر)
- $O(d^n)$ عداد انتسابهای کامل $O(d^n)$ تعداد انتسابهای کامل $O(d^n)$
 - حالت خاص: م.ا.م. بولى
 - دامنه نامحدود (زمانبندی کارها)
 - مثلاً مجموعة اعداد صحيح
 - متغیرها زمان شروع/پایان هر کار
- نمی توان همهٔ ترکیبات مجاز را فهرست کرد. به یک زبان محدودیت نیاز است. بطور $StartJob_1 + 5 \leq StartJob_3$
 - متغيرها پيوسته
 - زمانهای شروع/پایان رصد کردن توسط تلسکوپ هابل

تنوع محدوديتها

- یکتائی مثلاً مردم یک استان از رنگ خاصی بدشان می آید: NT!=green
- ا با یک پیش پردازش می توان این مقدار را از دامنهٔ متغیر متناظر حذف نمود.
 - **دو تائی** بین دو متغیر NT=!WA!
 - بیشتر همانند معمای ریاضی
 - محدودیتی شامل تعدادی دلخواه متغیر، محدودیت جهانی نامیده می شود.

مثال محدودیت چندتائی – معماری ریاضی

$$\begin{array}{c|cccc}
T & W & O \\
+ & T & W & O \\
\hline
F & O & U & R
\end{array}$$

- $\{F,T,U,W,R,O,C_1,C_2,C_3\}$ متغیرها:
 - دامنه ها: {٠و ١ و ٢ و ٣ و ٩ و ٥ و ٩ و ٧ و ٨ و ٩ }
- محدو دیتها: Alldiff(F,T,U,W,R,O)

$$O + O = R + 10 \cdot C_1$$
 $C_1 + W + W = U + 10 \cdot C_2$ $C_2 + T + T = O + 10 \cdot C_3$ $C_3 = F$, T,F != 0

مازيار پالهنگ

هوش مصنوعي

12

- دقت نمائید که پاورپوینت ابزاری جهت کمک به یک ارائهٔ شفاهی می باشد و به هیچ وجه یک جزوهٔ درسی نیست و شما را از خواندن مراجع درس بی نیاز نمی کند.
 - لذا حتماً مراجع اصلى درس را مطالعه نمائيد.
 - در تهیهٔ اسلایدها از سایت کتاب استفاده شده است.
 - حضور فعال در کلاس دارای امتیاز است.