Lenses

https://github.com/heptagons/lenses

2024/1/8

Abstract

Lenses are equilateral hexagons resembling concave and convex optical lenses. Lenses consecutive six internal angles are $(\theta_1, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3)$ where $\theta_1 = x\theta_0$, $\theta_2 = y\theta_0$, and $\theta_3 = z\theta_0$ where $\theta_0 = 2\pi/m$ is the base angle of symmetry m = x + y + z. Lenses can be formed adding and substracting rhombi or by intersecting equi-stars with others.

1 Equi-stars

Equi-stars are equilateral polygons with an even number of sides and vertices of at most two different angles. These stars can be defined with only two numbers: A symmetry integer m and a minimum angle integer a so the star is defined as S(m, a). Here we are interested only in symmetries of the form m = 2n+1 for n = 1, 2, 3... Every symmetry m = 2n+1 has exactly n different stars: S(m, n), S(m, n-1), ..., S(m, 1). Stars of the form S(m, n) correspond to the regular polygons of 2m sides.

Figure 1: Equi-stars of symmetries $m = \{3, 5, 7, 9\}$.

Figure 1 show the stars for the smaller symmetries in translucent colors and intersecting with others of the same symmetry. At (i) we have for the symmetry 3 the only star in red $S_A \equiv S(3,1)$ which is the regular hexagon. At (ii) we have for the symmetry 5 the regular decagon in red $S_B \equiv S(5,2)$ and the star $S_C \equiv S(5,1)$ in yellow; the region in orange is the intersection of the two stars. At (iii) for symmetry 7 we have three stars: The regular 14-gon $S_D \equiv S(7,3)$ in red, the star $S_E \equiv S(7,2)$ in yellow and the star $S_F \equiv S(7,1)$ in green. At (iv) we have for the symmetry 9 four stars: The regular 18-gon $S_G \equiv S(9,4)$ in red, the star $S_H \equiv S(9,3)$ in yellow, the star $S_I \equiv S(9,2)$ in green and the star $S_J \equiv S(9,1)$ in blue.

1.1 Lenses

Figure 2: Lenses build from the intersection of two types of stars: S(m, n) and S(m, n - 1) for symmetries $m = \{3, 5, 7, 9\}$.

Figure 2 show how to dispose several stars to build all the lenses for symmetries $m = \{3, 5, 7, 9\}$ but the process works for greater symmetries. For every symmetry m = 2n + 1 we obtain n different lenses, using 2n - 1 stars S(m, n) and using n - 1 stars S(m, n - 1). Both stars can be dissected with the lenses.

Figure 3: First lenses from the intersection of red stars S(m, n) and yellow stars S(m, n-1) for ymmetries $m = \{3, 5, 7, 9\}$. Here the lenses appear once and after dissecting the areas remaining red and yellow.

Figure ?? show the first lenses produced by the intersections of three stars: One S(m, n) in pink at the top, one S(m, n-1) in orange at the center and another S(m, n) in pink at the bottom. The intersections

produce five regions: α congruent with ϵ , β congruent with δ and γ . The lenses emerge after dissecting regions α and β . For every symmetry m = 2n + 1 we get n distinct lenses.

At (i) for symmetry m=3 we have the single lense (\boldsymbol{A}) equivalent to the regular hexagon. Lense \boldsymbol{A} is congruent with S_A . At (ii) for symmetry m=5 we have the two lenses (\boldsymbol{B} , \boldsymbol{C}). The α region of S_B area equals $2\boldsymbol{B}$. The β region area equals \boldsymbol{C} . At (iii) for symmetry m=7 we have the three lenses (\boldsymbol{D} , \boldsymbol{E} , \boldsymbol{F}). The region α area equals $2\boldsymbol{D} + \boldsymbol{F}$ and the region β area equals $2\boldsymbol{E}$. At (iv) for symmetry m=9 we have the four lenses (\boldsymbol{G} , \boldsymbol{H} , \boldsymbol{I} , \boldsymbol{J}). The α region area equals $2(\boldsymbol{G} + \boldsymbol{I})$ and the β region area equals $2\boldsymbol{H} + \boldsymbol{J}$.

Next we are going to show the regions δ for any symmetry $m \geq 5$ can be dissected with the lenses.

2 Crowns

Figure 4: Crowns.

3 Symmetry 5

Symmetry 5 is based in angle $\beta = \frac{2\pi}{5}$ and produces the two rhombi $(\boldsymbol{b}, \boldsymbol{c})$ and the two lenses $(\boldsymbol{B}, \boldsymbol{C})$.

3.1 Rhombi (b,c)

Figure 5: Rhombi $(\boldsymbol{b}, \boldsymbol{c})$ from dissecting stars S_{10} .

Figure 5 show the rhombi $(\boldsymbol{b}, \boldsymbol{c})$. Inspecting the stars we get the areas simply adding their rhombi. At (i) the star $S_{10}(1,8)$ with area $A=10\boldsymbol{b}$. At (ii) the star $S_{10}(2,6)=S_5(1,3)$ with area $A=5\boldsymbol{c}$. At (iii) the regular decagon equivalent to stars $S_{10}(4,4)=S_5(2,2)$ with area $A=5\boldsymbol{b}+5\boldsymbol{c}$. Table 1 show the rhombi $(\boldsymbol{b},\boldsymbol{c})$ internal angles in terms of angle $\beta=2\pi/5$ and areas for side equals to 1. Dividing areas we find $\frac{\boldsymbol{c}}{\boldsymbol{b}}=2\cos\left(\frac{\pi}{5}\right)=\frac{\sqrt{5}+1}{2}$.

Rhombus	θ_1	θ_2	Area
b	$\beta/2$	$4\beta/2$	$\sin(2\beta) = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$
c	$2\beta/2$	$3\beta/2$	$\sin(eta) = rac{\sqrt{10 + 2\sqrt{5}}}{4} = oldsymbol{b}\cos\left(rac{\pi}{5} ight) = oldsymbol{b}\left(rac{\sqrt{5} + 1}{2} ight)$

Table 1: Rhombi (b, c) internal angles and areas. $\theta_1 + \theta_2 = \pi$ and $\beta = 2\pi/5$.

3.2 Regular pentagon and star |5/2|

Figure 6: Regular pentagon |5/1| at (i). Star |5/2| at (ii). Double pentagon at (iii).

Figure 6 show regular pentagon and isotoxal star |5/2| dissected with rhombi $(\boldsymbol{b}, \boldsymbol{c})$ plus concave pentagons (in gray). Let \boldsymbol{x} be the area of such gray piece. By inspection the area of regular pentagon at (i) is $A_1 = \boldsymbol{c} + \boldsymbol{x}$ and the area of regular pentagon at (ii) is $P_2 = \boldsymbol{b} + 5\boldsymbol{c} + 2\boldsymbol{x}$. Since the side of A_2 is the double

of A_1 its area is four times so we can get the value of \boldsymbol{x} in terms of $(\boldsymbol{b}, \boldsymbol{c})$

$$4P_1 = P_4$$

$$4(\mathbf{c} + x) = \mathbf{b} + 5\mathbf{c} + 2x$$

$$x = \frac{\mathbf{b} + \mathbf{c}}{2}$$
(1)

We use the value of x to get the areas of pentagon (i) and star (ii):

$$A|5/1| = c + x$$

$$= \frac{b+3c}{2}$$

$$A|5/2| = b+2x$$

$$= 2b+c$$
(3)

3.3 Lenses (B,C)

Figure 7: Lenses (B, C) build with rhombi (b, c).

Figure 7 show lenses $(\boldsymbol{B}, \boldsymbol{C})$ construction and two stars formed with them. At (i) we form the lense \boldsymbol{B} with perimeter $\overline{B_1...B_6}$ adding two rhombi \boldsymbol{b} $(\overline{B_1B_2B_3O})$ and $\overline{B_1OB_5B_6}$ and adding one rhombus \boldsymbol{c} $(\overline{OB_3B_4B_5})$ so its area is $2\boldsymbol{b}+\boldsymbol{c}$. Lense \boldsymbol{B} is equivalent to the hexagon $H_5(1,2,2)$. At (ii) we form the lense \boldsymbol{C} with perimeter $\overline{C_1...C_6}$ adding two rhombi \boldsymbol{c} $(\overline{OC_1C_2C_3})$ and $\overline{OC_3C_4C_5}$ and substracting one rhombus \boldsymbol{b} $(\overline{OC_1C_6C_5})$ so its area is $2\boldsymbol{c}-\boldsymbol{b}$. Lense \boldsymbol{C} is equivalent to the hexagon $H_5(1,1,3)$. Table 2 show the lenses $(\boldsymbol{B},\boldsymbol{C})$ internal angles and areas.

Lense	θ_1	θ_2	θ_3	Area
B	β	2β	2β	2b + c
C	β	β	3β	-b + 2c

Table 2: Lenses $(\boldsymbol{B}, \boldsymbol{C})$ internal angles and areas in terms of rhombi $(\boldsymbol{b}, \boldsymbol{c})$. $\theta_1 + \theta_2 + \theta_3 = 2\pi$ where $\beta = 2\pi/5$.

Figure 8: Two stars dissected with lenses (B, C).

Figure 8 show two stars dissected with lenses (B, C). At (i) the star $S_5(1,3)$ dissection implies its area is A = B + 2C = 5c. At (ii) the regular decagon or star $S_5(2,2)$ dissection implies its area is A = 3B + C = 5(b + c).

4 Symmetry 7

Symmetry 7 is based in angle $\gamma = \frac{2\pi}{7}$ and produces the three rhombi $(\mathbf{d}, \mathbf{f}, \mathbf{e})$ and the three lenses $(\mathbf{D}, \mathbf{E}, \mathbf{F})$.

4.1 Rhombi (d, e, f)

Figure 9: Rhombi (d, e, f) from dissected stars S_{14} .

Figure 9 show rhombi $(\mathbf{d}, \mathbf{e}, \mathbf{f})$. Inspecting the stars we get the areas simply adding their rhombi. At (i) the star $S_{14}(1, 12)$ with area $A = 14\mathbf{d}$. At (ii) the star $S_{14}(2, 10) = S_7(1, 5)$ with area $A = 7\mathbf{e}$. At (iii) the star $S_{14}(4, 8) = S_7(2, 4)$ with area $A = 7(\mathbf{e} + \mathbf{f})$. At (iv) the regular 14-gon equivalent to stars $S_{14}(6, 6) = S_7(3, 3)$ with area $A = 7(\mathbf{d} + \mathbf{e} + \mathbf{f})$. Table 3 show the symmetry 7 lenses internal angles based in angle $\gamma = 2\pi/7$ and the areas.

Rhombus	θ_1	θ_2	Area
d	$\gamma/2$	$6\gamma/2$	$\sin(3\gamma)$
e	$2\gamma/2$	$5\gamma/2$	$\sin(\gamma)$
f	$3\gamma/2$	$4\gamma/2$	$\sin(2\gamma)$

Table 3: Rhombi (d, e, f) internal angles. $\theta_1 + \theta_2 = \pi$ and $\gamma = 2\pi/7$.

4.2 Regular heptagon and stars |7/3| and |7/2|

Figure 10: Heptagon |7/1| at (i). Star |7/3| at (ii). Star |7/2| at (iii). Double heptagon at (iv).

Figure 10 show regular heptagon and heptagrams dissected with rhombi (c, d, e) plus equilateral concave heptagons (in gray). Let y be the area of such gray piece. By inspection the area of regular heptagon at (i) is $A_1 = e + 2f + y$ while the area of regular heptagon at (iv) is $A_2 = d + 7(e + f) + 2y$. Since the side of A_2 is the double of A_1 its area is four times so we can get the value of y in terms of (d, e, f):

$$4A_1 = A_2$$

$$4(\mathbf{e} + 2\mathbf{f} + \mathbf{y}) = \mathbf{d} + 7(\mathbf{e} + \mathbf{f}) + 2\mathbf{y}$$

$$\mathbf{y} = \frac{\mathbf{d} + 3\mathbf{e} - \mathbf{f}}{2}$$
(4)

We use the value of y to calculate the areas of heptagon (i) and stars (ii) and (iii) in terms of (d, e, f):

$$A|7/1| = e + 2f + y$$

$$= \frac{d + 5e + 3f}{2}$$

$$A|7/3| = d + 2y$$

$$= 2d + 3e - f$$

$$A|7/2| = A\{7/3\} + 7f$$

$$= 2d + 3e + 6f$$
(5)
$$(5)$$

$$(6)$$

$$(7)$$

4.3 Lenses (D,E,F)

Figure 11: Lenses (D, E, F) build from rhombi (d, e, f).

Figure 11 show lenses $(\boldsymbol{B}, \boldsymbol{C})$ construction. At (i) we form the lense \boldsymbol{D} with perimeter $\overline{D_1...D_6}$ adding two rhombi \boldsymbol{d} $(\overline{D_1D_2D_3O}$ and $\overline{D_1OD_5D_6})$ and adding one rhombus \boldsymbol{e} $(\overline{OD_3D_4D_5})$ so its area is $2\boldsymbol{d} + \boldsymbol{e}$. Lense \boldsymbol{D} is equivalent to the hexagon $H_7(1,3,3)$.

At (ii) we form the lense \mathbf{E} with perimeter $\overline{E_1...E_6}$ adding one rhombus \mathbf{e} ($\overline{E_1E_2OE_6}$) adding one rhombus \mathbf{f} ($\overline{OE_4E_5E_6}$) and substracting one rhombus \mathbf{d} ($\overline{E_2OE_4E_3}$) so its area is $-\mathbf{d} + \mathbf{e} + \mathbf{f}$. Lense \mathbf{E} is equivalent to the hexagon $H_7(1,2,4)$.

At (iii) we form the lense \mathbf{F} with perimeter $\overline{F_1...F_6}$ adding two rhombi $\mathbf{f}(\overline{F_1F_2F_3O})$ and $\overline{F_3F_4F_5O})$ and adding one rhombus $\mathbf{d}(\overline{F_1OF_5F_6})$ so its area is $\mathbf{d}+2\mathbf{f}$. Lense \mathbf{F} is equivalent to the hexagon $H_7(2,2,3)$. Table 4 show the lenses $(\mathbf{D},\mathbf{E},\mathbf{F})$ internal angles and areas.

Lense	θ_1	θ_2	θ_3	Area
D	γ	3γ	3γ	2d + e
$oldsymbol{E}$	γ	2γ	4γ	-d+e+f
F	2γ	2γ	3γ	-d+2f

Table 4: Lenses $(\boldsymbol{D}, \boldsymbol{E}, \boldsymbol{F})$ internal angles and areas in terms of rhombi $(\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f})$. $\theta_1 + \theta_2 + \theta_3 = 2\pi$ and $\gamma = 2\pi/7$.

Figure 12: Stars dissected with only lenses (D, E, F).

Figure 12 show stars $S_7(2,4)$ and $S_7(3,3)$ dissected with lenses $(\mathbf{D},\mathbf{E},\mathbf{F})$. At (i) we have star $S_7(2,4)$ and by inspection we deduce its area is $A = 2\mathbf{D} + 5\mathbf{E} + \mathbf{F}$. At (ii) we have regular 14-gon (or star $S_7(3,3)$) and by inspection we deduce its area is $4\mathbf{D} + 3\mathbf{E} + 2\mathbf{F}$. Both stars have in common an area in green resembling a tree leaf. The star at (i) also contains two regions in yellow resembling crowns while the star at (ii) contains a region in cyan resembling a moon phase.

Figure 13: Stars dissected with octagons O_7 (in blue) and lenses (D,E,F).

Figure 13 show Stars $S_7(1,5)$, $S_7(2,4)$ and $S_7(3,3)$ dissected with octagons O_7 (in blue) and lenses $(\mathbf{D},\mathbf{E},\mathbf{F})$. At (i) we have the star $S_7(1,5)$ and by inspection we deduce its area is $A = \mathbf{D} + 2O_7$. At (ii) we have the star $S_7(2,4)$ and we can conclude its area is $\mathbf{E} + 3\mathbf{F} + 2O_7$. Similarly the area of the 14-gon at (iii) is $3\mathbf{D} + \mathbf{E} + 3\mathbf{F} + O_7$. Comparing the areas of the two 14-gons of figures 12 and 13 we can find the area of O_7 in terms of $(\mathbf{E},\mathbf{F},\mathbf{G})$:

$$4D + 3E + 2F = 3D + E + 3F + O_7$$

 $O_7 = D + 2E - F$ (8)

So we can calculate the area of star $S_7(1,5)$ in terms of (E, F, G):

$$S_7(1,5) = \mathbf{D} + 2(\mathbf{D} + 2\mathbf{E} - \mathbf{F})$$

= $3\mathbf{D} + 4\mathbf{E} - 2\mathbf{F}$ (9)