Experiment 3: Email Spam or Ham Classification

Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering Semester		V
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:

Aim

To classify emails as spam or ham using three classification algorithms—Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—and evaluate their performance using accuracy metrics and K-Fold cross-validation.

Libraries Used

- numpy, pandas, seaborn, matplotlib, scikit-learn
- sklearn.model_selection
- sklearn.preprocessing, sklearn.metrics
- sklearn.naive_bayes, sklearn.neighbors
- sklearn.svm

Theoretical Description

1. Naive Bayes Classifier

Naive Bayes is a **probabilistic classifier** based on **Bayes' Theorem**, assuming **feature independence**.

$$P(C_k \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid C_k) \cdot P(C_k)}{P(\mathbf{x})}$$

$$P(\mathbf{x} \mid C_k) = \prod_{i=1}^n P(x_i \mid C_k) \implies P(C_k \mid \mathbf{x}) \propto P(C_k) \prod_{i=1}^n P(x_i \mid C_k)$$

Types:

- Gaussian NB (continuous)
- Multinomial NB (discrete counts)
- Bernoulli NB (binary features)

2. K-Nearest Neighbors (KNN)

KNN is a non-parametric, instance-based algorithm. It classifies data by majority vote among the k nearest neighbors using a distance metric like Euclidean distance.

$$d(\mathbf{x}, \mathbf{x}^{(i)}) = \sqrt{\sum_{j=1}^{n} (x_j - x_j^{(i)})^2}$$

$$\hat{C} = \arg\max_{C_k} \sum_{\mathbf{x}^{(i)} \in \mathcal{N}_k(\mathbf{x})} \mathbb{I}(y^{(i)} = C_k)$$

3. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning method used for classification and regression. Its main goal is to find the best boundary (called a hyperplane) that separates different classes of data with the largest possible margin.

The decision boundary is defined by the hyperplane:

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

where \mathbf{w} is the weight vector and b is the bias. The margin is maximized by solving the following optimization problem:

$$\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, $\forall i$

If the data is not linearly separable, SVM uses the *kernel trick* to map input features into a higher-dimensional space via a function $\phi(\mathbf{x})$, enabling a linear separation in this new space:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

Common kernels include:

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$
- Polynomial: $K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^{\top} \mathbf{x}_j + r)^d$
- Radial Basis Function (RBF): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2)$

4. Ensemble Techniques

Ensemble methods combine multiple models to improve prediction accuracy by reducing errors like variance or bias.

• Bagging (Bootstrap Aggregating): Trains multiple models on different random samples of the data and averages their predictions (for regression) or uses majority voting (for classification):

$$\hat{f}_{bag}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \hat{f}_{m}(\mathbf{x})$$

where \hat{f}_m is the prediction from the m-th model and M is the number of models.

- **Boosting:** Builds models sequentially, where each model focuses on correcting the errors of the previous one.
 - AdaBoost: Adjusts weights on training samples to focus on harder cases. The final prediction is a weighted sum of weak learners:

$$F(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m h_m(x)\right)$$

where h_m is the m-th weak learner and α_m its weight.

 Gradient Boosting: Models the residual errors by fitting a new model to the gradient of the loss function:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$$

where h_m fits the negative gradient of the loss at step m, and γ_m is a step size.

 XGBoost: An optimized gradient boosting algorithm that minimizes a regularized objective to prevent overfitting and improve speed:

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

where l is the loss function and Ω is a regularization term on the complexity of the trees f_k .

Python Code (Bernoulli Naive Bayes)

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion

```
from google.colab import drive
drive.mount('/content/drive')
df = pd.read_csv("/content/spambase_csv.csv")
df.head()
for col in df.select_dtypes(include='object'):
    df[col].fillna(df[col].mode()[0], inplace=True)
for col in df.select_dtypes(include=['float64', 'int64']):
    df[col].fillna(df[col].mean(), inplace=True)
label_encoder = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if df[col].nunique() == 2]
for col in binary_cols:
    df[col] = label_encoder.fit_transform(df[col])
multi_cols = [col for col in df.select_dtypes(include='object') if col not in binary_cols]
df = pd.get_dummies(df, columns=multi_cols, drop_first=True)
target_col = 'class' # CHANGE THIS
X = df.drop(target_col, axis=1)
y = df[target_col]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=4:
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
from sklearn.naive_bayes import BernoulliNB
model = BernoulliNB()
model.fit(X_train, y_train)
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
   print("Recall :", recall_score(y_true, y_pred, average='weighted'))
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
   print("\nClassification Report:\n", classification_report(y_true, y_pred))
evaluate_classifier(model, X_val, y_val, "Validation")
evaluate_classifier(model, X_test, y_test, "Test")
```

```
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
# Print results
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap='Blues')
plt.title("Confusion Matrix - Test Set")
plt.show()
from sklearn.metrics import roc_curve, auc
# Predict probabilities
y_pred_proba = model.predict_proba(X_test)[:, 1]
# Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
roc_auc = auc(fpr, tpr)
# Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```

Python Code (Multinomial Naive Bayes)

df = pd.read_csv("/content/spambase_csv.csv")

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion
from google.colab import drive
#drive.mount('/content/drive')
```

```
df.head()
for col in df.select_dtypes(include='object'):
    df[col].fillna(df[col].mode()[0], inplace=True)
for col in df.select_dtypes(include=['float64', 'int64']):
    df[col].fillna(df[col].mean(), inplace=True)
label_encoder = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if df[col].nunique() == 2]
for col in binary_cols:
    df[col] = label_encoder.fit_transform(df[col])
multi_cols = [col for col in df.select_dtypes(include='object') if col not in binary_cols]
df = pd.get_dummies(df, columns=multi_cols, drop_first=True)
target_col = "class" # CHANGE THIS
X = df.drop(target_col, axis=1)
y = df[target_col]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=4:
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()
model.fit(X_train, y_train)
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
   print("Recall
                   :", recall_score(y_true, y_pred, average='weighted'))
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
   print("\nClassification Report:\n", classification_report(y_true, y_pred))
evaluate_classifier(model, X_val, y_val, "Validation")
evaluate_classifier(model, X_test, y_test, "Test")
evaluate_classifier(model, X_train, y_train, "Train")
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
```

```
# Print results
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap='Blues')
plt.title("Confusion Matrix - Test Set")
plt.show()
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Get predicted probabilities for the test set
y_pred_proba = model.predict_proba(X_test)[:, 1]
# Compute ROC curve and AUC
fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
roc_auc = auc(fpr, tpr)
# Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

Python code Gaussian Naive Bayes

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion

df = pd.read_csv("/content/spambase_csv.csv")

for col in df.select_dtypes(include='object'):
    df[col].fillna(df[col].mode()[0], inplace=True)

for col in df.select_dtypes(include=['float64', 'int64']):
```

```
df[col].fillna(df[col].mean(), inplace=True)
label_encoder = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if df[col].nunique() == 2]
for col in binary_cols:
    df[col] = label_encoder.fit_transform(df[col])
multi_cols = [col for col in df.select_dtypes(include='object') if col not in binary_cols]
df = pd.get_dummies(df, columns=multi_cols, drop_first=True)
target_col = 'class' # CHANGE THIS
X = df.drop(target_col, axis=1)
y = df[target_col]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=4:
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
from sklearn.Naive_Bayes import GaussianNb
model = GaussianNb()
model.fit(X_train, y_train)
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
                  :", recall_score(y_true, y_pred, average='weighted'))
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
   print("\nClassification Report:\n", classification_report(y_true, y_pred))
evaluate_classifier(model, X_val, y_val, "Validation")
evaluate_classifier(model, X_test, y_test, "Test")
# Apply 5-fold cross-validation
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
# Print results
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap='Blues')
plt.title("Confusion Matrix - Test Set")
plt.show()
```

```
from sklearn.metrics import RocCurveDisplay
RocCurveDisplay.from_estimator(model, X_test, y_test)
plt.title("ROC Curve - Test Set")
plt.show()
```

Python Code KNN

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import time
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_
from sklearn.neighbors import KNeighborsClassifier
# Read dataset
df = pd.read_csv('/content/spambase_csv.csv')
# Fill missing values
for col in df.select_dtypes(include='object'):
    df[col].fillna(df[col].mode()[0], inplace=True)
for col in df.select_dtypes(include=['float64', 'int64']):
    df[col].fillna(df[col].mean(), inplace=True)
# Encode binary columns
label_encoder = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if df[col].nunique() == 2]
for col in binary_cols:
    df[col] = label_encoder.fit_transform(df[col])
# One-hot encode remaining categorical columns
multi_cols = [col for col in df.select_dtypes(include='object') if col not in binary_cols]
df = pd.get_dummies(df, columns=multi_cols, drop_first=True)
# Split features and target
target_col = 'class'
X = df.drop(target_col, axis=1)
y = df[target_col]
# Feature scaling
```

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train-Validation-Test split
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=4:
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
# Evaluation function
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
   print("Recall :", recall_score(y_true, y_pred, average='weighted'))
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
# Set k values
k_{values} = [1, 3, 5, 7, 9, 11]
# -----
# Algorithm = 'auto'
# -----
print(f"Training KNeighborsClassifier with algorithm = 'auto'")
for k in k_values:
   print(f'' \setminus Training with k = \{k\}'')
   model = KNeighborsClassifier(n_neighbors=k, algorithm='auto', metric='manhattan')
   model.fit(X_train, y_train)
   evaluate_classifier(model, X_val, y_val, f"Validation (k={k}, algorithm='auto')")
# Confusion matrix on test set
ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap='Blues')
plt.title("Confusion Matrix - Test Set")
plt.show()
# -----
# Cross-Validation: 'ball_tree'
# -----
print(f"\nCross-validation with algorithm = 'ball_tree'")
for k in k_values:
   print(f'' \setminus nTraining with k = \{k\}'')
   model = KNeighborsClassifier(n_neighbors=k, algorithm='ball_tree')
   start_time = time.time()
   scores = cross_val_score(model, X_scaled, y, cv=5, scoring='accuracy')
   end_time = time.time()
   print("Cross-validation scores:", scores)
```

```
print("Mean accuracy:", scores.mean())
   print("Training + Cross-validation time: {:.4f} seconds".format(end_time - start_time))
# Cross-Validation: 'kd_tree'
# -----
print(f"\nCross-validation with algorithm = 'kd_tree'")
for k in k_values:
   print(f'' \setminus nTraining with k = \{k\}'')
   model = KNeighborsClassifier(n_neighbors=k, algorithm='kd_tree')
   start_time = time.time()
    scores = cross_val_score(model, X_scaled, y, cv=5, scoring='accuracy')
    end_time = time.time()
   print("Cross-validation scores:", scores)
   print("Mean accuracy:", scores.mean())
   print("Training + Cross-validation time: {:.4f} seconds".format(end_time - start_time))
   param_grid = {
    'n_neighbors': [1, 3, 5, 7, 9, 11],
    'algorithm': ['auto', 'ball_tree', 'kd_tree']
}
knn = KNeighborsClassifier()
grid_search = GridSearchCV(knn, param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
print(" Best Hyperparameters:", best_params)
print(" Best Model:", best_model)
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
   print("Recall :", recall_score(y_true, y_pred, average='weighted'))
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
```

```
ConfusionMatrixDisplay.from_estimator(model, X_data, y_true, cmap='Blues')
plt.title(f"Confusion Matrix - {name}")
plt.show()

evaluate_classifier(best_model, X_test, y_test, name="Test Set (Best Model)")
```

Python Code (SVM)

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import time
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_
from sklearn.svm import SVC
\begin{figure}
    \centering
    \includegraphics[width=0.5\linewidth]{svmlinear.png}
    \caption{Enter Caption}
    \label{fig:placeholder}
\end{figure}
# Read dataset
df = pd.read_csv('/content/spambase_csv.csv')
# Handle missing values
for col in df.select_dtypes(include='object'):
    df[col].fillna(df[col].mode()[0], inplace=True)
for col in df.select_dtypes(include=['float64', 'int64']):
    df[col].fillna(df[col].mean(), inplace=True)
# Encode categorical columns
label_encoder = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if df[col].nunique() == 2]
for col in binary_cols:
    df[col] = label_encoder.fit_transform(df[col])
multi_cols = [col for col in df.select_dtypes(include='object') if col not in binary_cols]
df = pd.get_dummies(df, columns=multi_cols, drop_first=True)
# Features and target
target_col = 'class'
X = df.drop(target_col, axis=1)
y = df[target_col]
```

```
# Scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=4:
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
# Kernels to evaluate
kernels = {
    "Linear": {"kernel": "linear", "C": 1},
    "Polynomial": {"kernel": "poly", "degree": 3, "C": 1, "gamma": "scale"},
    "RBF": {"kernel": "rbf", "C": 1, "gamma": "scale"},
    "Sigmoid": {"kernel": "sigmoid", "C": 1, "gamma": "scale"}
}
# Evaluation function
def evaluate_classifier(model, X_data, y_true, name="Set"):
   y_pred = model.predict(X_data)
   print(f"--- {name} ---")
   print("Accuracy :", accuracy_score(y_true, y_pred))
   print("Precision:", precision_score(y_true, y_pred, average='weighted'))
                  :", recall_score(y_true, y_pred, average='weighted'))
   print("Recall
   print("F1 Score :", f1_score(y_true, y_pred, average='weighted'))
   print("\nConfusion Matrix:\n", confusion_matrix(y_true, y_pred))
# Train and evaluate SVM models
for name, params in kernels.items():
   print(f"\n---- {name} Kernel ----")
   model = SVC(**params, probability=True, random_state=42)
   start = time.time()
   model.fit(X_train, y_train)
    end = time.time()
    evaluate_classifier(model, X_val, y_val, f"Validation ({name})")
   evaluate_classifier(model, X_test, y_test, f"Test ({name})")
   # Cross-validation
    scores = cross_val_score(model, X_scaled, y, cv=5, scoring='accuracy')
   print("Cross-validation scores:", scores)
   print("Mean accuracy:", scores.mean())
   print(f"Training Time: {end - start:.2f} seconds")
   # ROC curve
   y_pred_proba = model.predict_proba(X_test)[:, 1]
   fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
```

```
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, lw=2, label=f'{name} (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC Curve - {name} Kernel')
plt.legend(loc="lower right")
plt.show()
```

Ensemble Techniques: Bagging and Boosting

ensemble_results.append((name, metrics))

Table 5: Ensemble Method Performance Comparison

for name, metrics in ensemble_results:

print("\nTable 5: Ensemble Method Performance Comparison")
print("{:<25} {:<10} {:<10} {:<10} {:<10}".format(</pre>

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClass # Try importing XGBoost try: from xgboost import XGBClassifier xgb_available = True except ImportError: print(" XGBoost not installed. Skipping XGBoost.") xgb_available = False ensemble_models = { 'Random Forest (Bagging)': RandomForestClassifier(n_estimators=100, random_state=42), 'AdaBoost': AdaBoostClassifier(n_estimators=100, learning_rate=1.0, random_state=42), 'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, randor } if xgb_available: ensemble_models['XGBoost'] = XGBClassifier(n_estimators=100, learning_rate=0.1, use_label_. ensemble_results = [] for name, model in ensemble_models.items(): print(f"\n{name}") metrics = evaluate_model(model, X_train, y_train, X_test, y_test, name)

```
name, metrics['accuracy'], metrics['precision'],
metrics['recall'], metrics['f1'], metrics.get('roc_auc', 0)))
```

print("{:<25} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f} ".format(

"Model", "Accuracy", "Precision", "Recall", "F1 Score", "ROC AUC"))

Table 1: Ensemble Method Performance Comparison

Model	Accuracy	Precision	Recall	F1 Score	ROC AUC
Random Forest (Bagging)	0.9555	0.9755	0.9179	0.9458	0.9857
AdaBoost	0.9370	0.9486	0.9000	0.9237	0.9810
Gradient Boosting	0.9457	0.9620	0.9077	0.9340	0.9842
XGBoost	0.9566	0.9679	0.9282	0.9476	0.9876

SVM Performance with Different Kernels

Table 2: SVM Performance with Different Kernels and Parameters

Kernel	Hyperparameters	Accuracy	F1 Score
Linear	C=1	0.9054	0.9021
Polynomial	C=1, degree=3, gamma=scale	0.8982	0.8955
RBF	C=1, gamma=scale	0.9126	0.9102
Sigmoid	C=1, gamma=scale	0.8723	0.8704

K-Fold Cross-Validation Results

Table 3: Cross-Validation Scores for Each Model (K = 5)

Fold	Naïve Bayes Accuracy	KNN Accuracy	SVM Accuracy
Fold 1	0.8806	0.8958	0.9349
Fold 2	0.8935	0.9043	0.9337
Fold 3	0.8891	0.9293	0.9228
Fold 4	0.8870	0.9033	0.9359
Fold 5	0.8902	0.9098	0.9304
Average	0.8881	0.9085	0.9315

Performance Comparison

Table 4: Performance Comparison of Naive Bayes Variants

Metric	GaussianNB	MultinomialNB	BernoulliNB
Accuracy	0.8219	0.8719	0.8806
Precision	0.7233	0.9503	0.9046
Recall	0.9385	0.7359	0.8026
F1 Score	0.8170	0.8295	0.8505
ROC AUC	0.9269	0.9591	0.9569

KNN: Varying k Values

Table 5: KNN Performance for Different k Values

k	Accuracy	Precision	Recall	F1 Score
1	0.8898	0.8900	0.8898	0.8893
3	0.8942	0.8954	0.8942	0.8934
5	0.8884	0.8912	0.8884	0.8871
7	0.9014	0.9049	0.901	0.8999

KNN: KDTree vs BallTree

Table 6: KNN Comparison: KDTree vs BallTree

Metric	KDTree	BallTree
Accuracy	0.8806	0.8837
Precision	0.8823	0.8853
Recall	0.8806	0.8837
F1 Score	0.8808	0.8836
Training Time (s)	5.6s	5.9s

Plots

Ensemble Techniques

Learning Outcomes

- Understood the working principles of different classification algorithms such as Naïve Bayes, KNN, SVM, and Ensemble methods.
- Gained practical experience in applying machine learning models on a dataset and evaluating them using metrics such as Accuracy, Precision, Recall, F1-score, and ROC-AUC.
- Learned to visualize model performance using confusion matrices and ROC curves for better interpretability.
- Compared the effectiveness of various models and kernel functions in SVM to identify suitable approaches for classification tasks.
- Improved skills in presenting experimental results through structured LaTeX reports with tables, figures, and analysis.

Figure 1: Bernoulli Confusion Matrix

Figure 2: Bernoulli ROC Curve

Figure 3: Gaussian Confusion Matrix

Figure 4: Gaussian ROC Curve

Figure 5: Multinomial Confusion Matrix

Figure 7: KNN (Fold 1) Confusion Matrix

Figure 9: KNN (Fold 3) Confusion Matrix

Figure 6: Multinomial ROC Curve

Figure 8: KNN (Fold 1) ROC Curve

Figure 10: KNN (Fold 3) ROC Curve

Figure 11: KNN (Fold 5) Confusion Matrix

Figure 13: KNN (Fold 7) Confusion Matrix

Figure 15: SVM (Linear) Confusion Matrix

Figure 12: KNN (Fold 5) ROC Curve

Figure 14: KNN (Fold 7) ROC Curve

Figure 16: SVM (Linear) ROC Curve

Figure 17: SVM (RBF) Confusion Matrix

Figure 19: SVM (Polynomial) Confusion Matrix

Figure 21: SVM (Sigmoid) Confusion Matrix

Figure 18: SVM (RBF) ROC Curve

Figure 20: SVM (Polynomial) ROC Curve

Figure 22: SVM (Sigmoid) ROC Curve

Figure 23: Random Forest Confusion Matrix

Figure 24: Random Forest ROC Curve

Figure 25: AdaBoost Confusion Matrix

Figure 26: AdaBoost ROC Curve

Figure 27: Gradient Boosting Confusion Matrix

Figure 28: Gradient Boosting ROC Curve

Figure 29: XGBoost Confusion Matrix

Figure 30: XGBoost ROC Curve