CS & IT ENGINEERING

Flow Control

Lecture No-11

By- Ankit Doyla Sir

TOPICS TO BE COVERED

Selective Repeat ARQ

Selective Repeat ARQ

Selective Repeat/ Selective Reject ARQ

- 1. In SR Protocol window sender size is equal to window receiver size. $(w_s = w_R)$
- SR Protocol uses independent acknowledgement, and acknowledgement number defines number of error free packet received
- SR receiver can receive out of order packet but packets are delivered to upper layer in order.
- 4. In SR protocol searching and sorting logic is required. Searching is done by sender and sorting is done by receiver.
- 5. Timer is maintained for each and every frame in the window at sender side

Impostant Point

- For 1st out of order delivery or if packet received is corrupted then NAK for respective packet is sent by receiver to sender.
- When sender receive NAK 3 then it will search in the window for packet 3 & immediately packet 3 is retransmitted even though its timer is not expired.

Note

O Dublicate Packet Problem can be solved by Increasing the sequence Number or Decreasing the sender window size

Duplicate Packet Problem can be solved by using the Following Formula Ws+WR ≤ A.S.N

$$\mathcal{D}$$
 Ws + $W_R \leq R \cdot S \cdot N$
Best $4 + 4 \leq 8$

(a)
$$W_{5} + W_{8} \leq A.5.N$$

 $5 + 3 \leq 8$

Note

According to Formula Ws+WR \le A.s.N, All the 3 Conditions are correct but First one is Bust and their is no maning For Last one

$$\frac{W_s}{8}$$
 $\frac{W_R}{8}$

$$\frac{\omega_{s}}{4\left[2^{3\cdot 1}\right]} \qquad \frac{\omega_{e}}{4\left[2^{3\cdot 1}\right]}$$

5 Se2No = 4 bit
Total Se2 No =
$$a^4 = 16(0-15)$$

Ws We
 $8[a^{4-1}]$ 8 $[a^{4-1}]$

7	Ws	WR	minimum seq. No. sequised
(1)	4	4	8
(ii)	8	8	16
(iii)	N	N	9N

minimum slawnce no required in SR Protocal= Ws+WR = N+N=aN[0-an-1]

502No=3bit, Total segume No=23=8(0-7)

We	WR
4	4 Best
5	3 /
3	5 /
6	2 /
5	1 X (WR>1) IN SR
1	1 X Stop & want
1	AZ (WS>1) in SR

Assume we need to design selective repeat protocol for a network in which bandwidth is 1 Mbps and average distance between sender and receiver is 5000 Km. Assume that average packet size is 5000 bits. Propagation speed in the media is 2 × 108 m/sec. If window sender size is 8 and process delay is 0.5 Msec and queuing delay is 2msec then what is the efficiency.

A 99%

B 57%

C 87%

D 70%

