Progetto DM

Importazione dati

Il dataset considerato contiene dati relativi a 4238 soggetti.

L'outcome binario è TenYearCHD e indica la presenza o meno di malattie cardiache dopo 10 anni dalla rilevazione dei dati.

Le variabili indipendenti indicano alcune caratteristiche degli individui (sesso, età, educazione,...) e sono sia continue che fattori (binari o su più livelli).

Si procede con delle analisi preliminari e con il fit di alcuni modelli sul dataset di training.

STEP1: FIT MODELLI

Controllo e sistemazione variabili

##		vaniahla	a zonoc	n 70006	a no	n na	a inf	n inf	tuno	uniquo
##		variable	q_zeros	p_zeros	q_11a	р_па	4 _±111	Р_тііі	суре	unique
##	1	glucose	0	0.00	388	9.16	0	0	numeric	143
##	2	education	0	0.00	105	2.48	0	0	factor	4
##	3	BPMeds	4061	95.82	53	1.25	0	0	factor	2
##	4	totChol	0	0.00	50	1.18	0	0	numeric	248
##	5	cigsPerDay	2144	50.59	29	0.68	0	0	numeric	33
##	6	BMI	0	0.00	19	0.45	0	0	numeric	1363

Sono state modificate le variabili non importate correttamente.

Non è stata eliminata alcuna variabile perchè nessuna presenta più del 20/30% di valori mancanti.

Distribuzione del target

```
## 0 1
## 0.8480415 0.1519585
```


Solo il 15% circa dei soggetti (644) ha TenYearCHD pari a 1 (evento).

Si considera quindi il dataset non bilanciato.

Grafico correlazioni e conteggio valori mancanti

L'unica correlazione bivariata discretamente alta (0.78) è quella tra sysBP e diaBP.

Solo alcune variabili presentano valori mancanti.

##	male	age	education	currentSmoker	cigsPerDay
##	0	0	105	0	29
##	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol
##	53	0	0	0	50
##	sysBP	diaBP	BMI	heartRate	glucose
##	0	0	19	1	388
##	TenYearCHD				
##	0				

Imputazione

Sono stati imputati i valori mancanti delle covariate numeriche sfruttando la funzione mice, mentre quelli relativi ai fattori con il comando impute.

Collinearità

## [1] "sysBP"									
X1 <fctr></fctr>	Row <fctr></fctr>	Column <fctr></fctr>	Chi.Square <dbl></dbl>	df <int></int>	p.value <dbl></dbl>	n <int></int>	u1 <dbl></dbl>	u2 <dbl></dbl>	nMinu1u2 <dbl></dbl>	Chi.Square.norr <dbl< th=""></dbl<>
1	male	education	88.440	3	0.000	4238	1	3	4238	0.020868325977286262401522165532696
2	male	currentSmoker	164.673	1	0.000	4238	- 1	1	4238	0.0388561831377291777567251074287924
3	male	BPMeds	10.650	1	0.001	4238	1	1	4238	0.002513079865416394022975543620646
4	male	prevalentStroke	0.009	1	0.926	4238	- 1	1	4238	0.000002055415371584771437813224381
5	male	prevalentHyp	0.098	1	0.755	4238	1	1	4238	0.0000230227720708079624340955393613
6	male	diabetes	0.855	1	0.355	4238	1	1	4238	0.000201702749311603028075159937948
7	education	currentSmoker	18.764	3	0.000	4238	3	1	4238	0.0044274676270551127296726257043247
8	education	BPMeds	0.726	3	0.867	4238	3	1	4238	0.0001713630754807319407032745184338
9	education	prevalentStroke	4.778	3	0.189	4238	3	1	4238	0.0011274117722798228120179020450564
10	education	prevalentHyp	33.565	3	0.000	4238	3	1	4238	0.0079199166273846606511899182123670
11	education	diabetes	9.980	3	0.019	4238	3	1	4238	0.0023548975509290158425468320047003
12	currentSmoker	BPMeds	9.345	1	0.002	4238	- 1	1	4238	0.0022050786779875615646606679121078
13	currentSmoker	prevalentStroke	3.790	1	0.052	4238	- 1	1	4238	0.0008943849888956820507954215138113
14	currentSmoker	prevalentHyp	44.743	1	0.000	4238	- 1	1	4238	0.010557511080111161086425575206249
15	currentSmoker	diabetes	7.765	1	0.005	4238	- 1	1	4238	0.0018322171827976484626693265411745
16	BPMeds	prevalentStroke	47.141	1	0.000	4238	1	1	4238	0.011123301389373474803989871873000
17	BPMeds	prevalentHyp	280.316	1	0.000	4238	1	1	4238	0.066143480806711771324835069663095
18	BPMeds	diabetes	9.351	1	0.002	4238	1	1	4238	0.0022063675856389729570961044657906
19	prevalentStroke	prevalentHyp	21.666	1	0.000	4238	1	1	4238	0.005112254811570511418838957951038
20	prevalentStroke	diabetes	0.000	1	1.000	4238	- 1	1	4238	0.000000000000000000000000000515073
21	prevalentHyp	diabetes	24.606	1	0.000	4238	1	1	4238	0.0058060837940963998249355171310526

Per quanto riguarda le covariate numeriche, quella che causa collinearità è sysBP (come già osservato), mentre le coppie di fattori non restituiscono alcun Chi-quadro normalizzato maggiore di 0.9.

SysBP non viene eliminata poichè la correlazione non è eccessivamente elevata, il pre-processing è diverso per ogni modello e verrà fatto in seguito.

Zero variance / near zero variance

```
##
                   freqRatio percentUnique zeroVar
                                                   nzv
## y
                    5.580745
                               0.04719207
                                            FALSE FALSE
## age
                    1.049451
                               0.92024540
                                            FALSE FALSE
## cigsPerDay
                    2.929444
                               0.77866918
                                            FALSE FALSE
## totChol
                    1.197183
                               5.85181689
                                            FALSE FALSE
## sysBP
                    1.049020
                               5.52147239
                                            FALSE FALSE
## diaBP
                    1.723684
                             3.44502124
                                            FALSE FALSE
## BMI
                    1.000000
                             32.16139689
                                            FALSE FALSE
                                            FALSE FALSE
## heartRate
                   1.462338
                              1.72251062
## glucose
                   1.152174
                               3.37423313
                                            FALSE FALSE
## male
                               0.04719207
                                            FALSE FALSE
                   1.329852
## education
                   1.456504
                               0.09438414
                                            FALSE FALSE
## currentSmoker
                   1.023878
                               0.04719207
                                            FALSE FALSE
## BPMeds
                   33.177419
                               0.04719207
                                            FALSE TRUE
## prevalentStroke 168.520000
                               0.04719207
                                            FALSE TRUE
                               0.04719207
## prevalentHyp
                  2.220365
                                            FALSE FALSE
## diabetes
                   37.880734
                               0.04719207
                                            FALSE TRUE
```

Nessuna variabile ha varianza pari a 0, mentre BPMeds, prevalentStroke e diabetes soffrono di near zero variance.

Anche in questo caso, il relativo pre-processing verrà fatto in seguito.

Divisione training dataset e testing dataset

Il dataset di partenza viene suddiviso in training, test e score (campionamento stratificato).

In seguito, vengono fittati diversi modelli sul dataset di training.

Ognuno viene tunato in modo da massimizzare la specificity, in quanto l'evento di interesse è il verificarsi della malattia, quindi si vogliono massimizzare i TP e minimizzare i FN, ma R considera come evento la classe del target più frequente (sani).

Inoltre, ogni volta viene applicato un diverso pre-processing in base al modello che si considera.

Glm senza model selection

```
ctrl <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
glm <- train(r~., data=train imputed, method="glm", metric="Spec",</pre>
          trControl=ctrl, tuneLength=5, trace=TRUE, na.action=na.pass,
preProcess=c("corr", "nzv", "BoxCox"))
##
     ROC
                Sens
                           Spec
##
     0.7211134 0.995605
                          0.05165165
##
             Reference
## Prediction r0
           r0 84.4 14.4
##
##
           r1 0.4 0.8
##
## Accuracy (average): 0.8522
```

Nonostante l'accuracy sia abbastanza elevata (0.85 circa), la percentuale di FN è piuttosto alta (specificity=0.05 circa).

Knn con model selection (da modello logistico)

```
glm2 <- glm(y~., data=train_imputed, family=binomial(link="logit"))</pre>
## Model:
## y ~ age + cigsPerDay + totChol + sysBP + diaBP + BMI + heartRate +
       glucose + male + education + currentSmoker + BPMeds + prevalentStroke +
       prevalentHyp + diabetes
##
##
                  Df Deviance
                                  AIC
                                                        Pr(>Chi)
## <none>
                        1803.3 1839.3
## age
                       1861.7 1895.7 58.459 0.000000000000002076 ***
## cigsPerDay
                    1 1806.8 1840.8 3.531
                                                       0.0602245 .
                    1 1806.7 1840.7 3.398
## totChol
                                                       0.0652937 .
## <mark>sysBP</mark>
                    1 1815.6 1849.6 12.297
                                                       0.0004538 ***
                  1 1803.7 1837.7 0.444
## diaBP
                                                       0.5049995
## BMI
                  1 1803.3 1837.3 0.086
                                                       0.7691767
## heartRate
## glucose
                    1 1803.3 1837.3 0.084
                                                       0.7721974
                    1 1807.9 1841.9 4.642
                                                       0.0312040 *
## male
                                                       0.0003294 ***
                    1 1816.2 1850.2 12.895
## education 3 1806.7 1836.7 3.469
## currentSmoker 1 1804.0 1838.0 0.687
                                                       0.3248273
                                                       0.4070969
## BPMeds
                  1 1804.2 1838.2 0.935
                                                       0.3334884
## prevalentStroke 1 1807.7 1841.7 4.455
                                                       0.0348047 *
## prevalentHyp
                    1 1804.2 1838.2 0.938
                                                       0.3328447
## diabetes
                    1 1803.8 1837.8 0.490
                                                       0.4840745
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ctrl <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
grid <- expand.grid(k=seq(5,20,3))</pre>
knn <-
train(r~age+cigsPerDay+totChol+sysBP+glucose+male+prevalentStroke,data=train imputed,
method="knn", metric="Spec",
          trControl=ctrl, tuneLength=5, na.action=na.pass,tuneGrid=grid,
preProcess=c("scale", "corr", "nzv"))
##
     k
       ROC
                    Sens
                               Spec
                               0.12492492
##
        0.6465292 0.9604615
##
      8 0.6614651 0.9746222 0.08701201
##
     11 0.6772318 0.9868173 0.06516517
     14 0.6789196 0.9897441 0.04894895
##
     17 0.6800711 0.9951100 0.04354354
##
##
     20 0.6783720 0.9941320 0.02447447
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
```



```
## Reference
## Prediction r0 r1
## r0 81.5 13.3
## r1 3.4 1.9
##
## Accuracy (average) : 0.8336
```

K=5 massimizza la specificity (0.12 circa), mentre l'accuracy è pari a 0.83 circa.

Lasso

```
ctrl <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
grid <- expand.grid(.alpha=1, .lambda=seq(0, 1, by = 0.01))</pre>
lasso <- train(r~., data=train imputed, method="glmnet", metric="Spec", trControl=ctrl,</pre>
tuneLength=5, na.action=na.pass,
            tuneGrid=grid)
##
     lambda
             ROC
                         Sens
                                    Spec
##
     0.00
             0.7265227
                        0.9907269
                                    0.095270270
##
     0.01
             0.7267783
                        0.9975586
                                    0.046246246
             0.7214943
     0.02
                                    0.016291291
##
                         0.9995122
     0.03
##
             0.7142528
                        1.0000000
                                    0.005405405
##
     0.04
             0.7133991
                        1.0000000
                                    0.002702703
##
     0.05
             0.7128220
                        1.0000000
                                    0.000000000
##
     0.06
             0.7112470
                        1.0000000
                                    0.000000000
##
     0.07
             0.7071104
                        1.0000000
                                    0.000000000
##
     0.08
             0.6939221
                        1.0000000
                                    0.000000000
##
     0.09
             0.5246598
                        1.0000000
                                    0.000000000
##
     0.10
             0.5000000
                                    0.000000000
                        1.0000000
     0.11
             0.5000000
                        1.0000000
                                    0.000000000
##
                                    0.000000000
##
     0.12
             0.5000000 1.0000000
## Tuning parameter 'alpha' was held constant at a value of 1
  Spec was used to select the optimal model using the largest value.
## The final values used for the model were alpha = 1 and lambda = 0.
```



```
## Reference
## Prediction r0 r1
## r0 84.0 13.7
## r1 0.8 1.4
##
## Accuracy (average) : 0.8547
```

Lambda=0 massimizza la specificity (0.09 circa), mentre l'accuracy è pari a 0.85 circa.

Naive Bayes

```
ctrl <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
naivebayes <- train(r~.,data=train_imputed, method="naive_bayes", metric="Spec",</pre>
            trControl=ctrl, tuneLength=5, na.action=na.pass, preProcess=c("corr", "nzv"))
##
     usekernel
                ROC
                           Sens
                                       Spec
                           0.9033668
##
     FALSE
                0.7150953
                                      0.27462462
      TRUE
                0.7076367 0.9863343 0.06238739
##
##
## Tuning parameter 'laplace' was held constant at a value of 0
## Tuning parameter 'adjust' was held constant at a value of 1
## Spec was used to select the optimal model using the largest value.
## The final values used for the model were laplace = 0, usekernel = FALSE and adjust = 1.
```



```
## Reference
## Prediction r0 r1
```

```
## r0 76.6 11.0
## r1 8.2 4.2
##
## Accuracy (average) : 0.8079
```

Usekernel=FALSE massimizza la specificity (0.27 circa), mentre l'accuracy è pari a 0.81 circa.

PIs

```
Control <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
pls <- train(r~.,data=train_imputed, method="pls", metric="Spec",trControl=Control,</pre>
tuneLength=5)
##
     ncomp ROC
                       Sens
                                   Spec
##
            0.6643055 0.9995122 0.008183183
##
     2
            0.6889822 0.9980488 0.024474474
##
     3
            0.7126952 0.9995122
                                  0.021696697
##
     4
            0.7186795 0.9980488 0.024399399
##
            0.7218648 0.9980488 0.027177177
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 5.
```



```
## Reference

## Prediction r0 r1

## r0 84.6 14.8

## r1 0.2 0.4

##

## Accuracy (average) : 0.8506
```

Ncomp=5 massimizza la specificity (0.03 circa), mentre l'accuracy è pari a 0.85 circa.

Tree

```
cvCtrl <- trainControl(method="cv", number=10, search="grid", classProbs = TRUE,</pre>
summaryFunction=twoClassSummary, savePredictions=TRUE)
tree <- train(r~.,data=train_imputed, method="rpart", metric="Spec",tuneLength=10,</pre>
trControl=cvCtrl, na.action=na.pass)
##
                   ROC
                              Sens
                                          Spec
##
     0.0009082652
                   0.6295340 0.9253228
                                          0.14444444
##
     0.0013623978 0.6476412 0.9336155
                                          0.14166667
##
     0.0021798365 0.6729780 0.9409374 0.13333333
```

```
##
    0.0027247956 0.6710081
                              0.9424008
                                         0.13055556
##
    0.0031140522
                   0.6468250
                              0.9560665
                                         0.11966967
##
    0.0038147139
                   0.6450320
                              0.9565543
                                         0.11966967
##
    0.0040871935
                   0.6498376
                              0.9580177
                                         0.11696697
##
    0.0054495913
                   0.6341489
                              0.9760808
                                         0.09512012
##
    0.0068119891
                   0.6347224
                              0.9770564
                                         0.08971471
##
    0.0127157130
                   0.5857075
                              0.9882807
                                         0.04076577
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0009082652.
```



```
## Reference

## Prediction r0 r1

## r0 78.5 13.0

## r1 6.3 2.2

##

## Accuracy (average) : 0.8067
```

Cp=0.0009082652 massimizza la specificity (0.14 circa), mentre l'accuracy è pari a 0.81 circa.

Importanza variabili albero

Si considerano come importanti le variabili la cui importanza relativa è superiore al 20% di quella più importante (sysBP).

Si escludono quindi cigsPerDay, diabetes, prevalentStroke, education, BPMeds e currentSmoker.

Knn con model selection (da albero)

```
ctrl <- trainControl(method="cv", number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
grid <- expand.grid(k=seq(5,20,3))</pre>
knn2 <- train(r~., data=train_tree, method="knn", metric="Spec", trControl=ctrl,
tuneLength=5, na.action=na.pass,
              tuneGrid=grid, preProcess=c("scale", "corr", "nzv"))
##
         ROC
                               Spec
##
     5
        0.6026974 0.9585175
                               0.06509009
##
     8 0.6202987 0.9755978 0.06246246
##
     11 0.6451585 0.9897513 0.03521021
##
     14 0.6593986
                    0.9902367
                               0.03528529
##
     17
        0.6632814
                    0.9936561 0.03265766
##
       0.6723769 0.9941416 0.01358859
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
```



```
## Reference
## Prediction r0 r1
## r0 81.5 13.3
## r1 3.4 1.9
##
## Accuracy (average) : 0.8336
```

K=5 massimizza la specificity (0.06 circa), mentre l'accuracy è pari a 0.83 circa.

Glm con model selection (da albero)

```
## Reference
## Prediction r0 r1
## r0 84.6 14.7
## r1 0.2 0.5
##
## Accuracy (average) : 0.851
```

Anche in questo caso, nonostante l'accuracy sia abbastanza elevata (0.85 circa), la percentuale di FN è piuttosto alta (specificity=0.03 circa).

PLS con model selection (da albero)

```
Control <- trainControl(method="cv",number=10, classProbs = TRUE,</pre>
summaryFunction=twoClassSummary)
pls2 <- train(r~., data=train_tree, method="pls", metric="Spec",trControl=Control,
tuneLength=5)
##
     ncomp ROC
                       Sens
                                  Spec
##
            0.6633362 0.9995122 0.008183183
##
     2
            0.6864394 0.9980488 0.021771772
##
     3
            0.7043362 0.9995122 0.019069069
##
     4
            0.7097068 0.9980488 0.024474474
##
     5
            0.7119393 0.9980488 0.024474474
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 4.
```



```
## Reference

## Prediction r0 r1

## r0 84.6 14.8

## r1 0.2 0.4

##

## Accuracy (average) : 0.8502
```

Ncomp=4 massimizza la specificity (0.02 circa), mentre l'accuracy è pari a 0.85 circa.

Random forest

```
##
     mtry
           ROC
                      Sens
                                  Spec
##
     1
           0.6839798
                      1.0000000
                                  0.00000000
##
     2
           0.6938821
                      0.9946270
                                  0.02169670
##
     3
           0.6899173
                      0.9873051
                                  0.04339339
##
     4
           0.6799142
                      0.9858417
                                  0.06253754
                      0.9809613 0.05983483
##
     5
           0.6815047
##
## Spec was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 4.
```



```
## Reference
## Prediction r0 r1
## r0 83.6 14.2
## r1 1.2 1.0
##
## Accuracy (average) : 0.8456
```

Mtry=4 massimizza la specificity (0.06 circa), mentre l'accuracy è pari a 0.85 circa.

Rete neurale

```
ctrl <- trainControl(method="cv", number=10, search="grid",</pre>
summaryFunction=twoClassSummary, classProbs=T)
rete <- train(r~., data=train_imputed, method="nnet",
preProcess=c("range","corr","nzv"),metric="Spec", trControl=ctrl,
              trace=TRUE, maxit=300, na.action=na.pass)
##
     size
           decay
                   ROC
                              Sens
                                         Spec
           0.0000 0.6996444
                                         0.06816817
##
     1
                              0.9926758
##
     1
           0.0001 0.7275263 0.9921879
                                         0.08438438
##
     1
           0.1000
                  0.7276079
                              0.9960928
                                         0.06539039
##
     3
           0.0000
                   0.6764977
                              0.9838905
                                         0.06816817
##
     3
           0.0001
                   0.6860053
                              0.9853491
                                         0.04602102
##
     3
           0.1000
                   0.7025519
                              0.9892563
                                         0.07079580
##
     5
           0.0000
                   0.6511845
                              0.9824199
                                         0.07905405
##
                   0.6542794
                              0.9717073
     5
           0.0001
                                         0.06786787
##
                   0.6870414
                                         0.08978979
           0.1000
                              0.9858393
##
## Spec was used to select the optimal model using the largest value.
## The final values used for the model were size = 5 and decay = 0.1.
```


Size=5 e decay=0.1 massimizza la specificity (0.09 circa), mentre l'accuracy è pari a 0.85 circa.

Si procede con il confronto dei modelli fittati utilizzando il dataset di validation.

STEP2: ASSESSMENT

Comparazione risultati crossvalidati (no vero assessment)

Il modello naivebayes è quello con specificity più elevata, ma è anche il più instabile (maggiore variabilità).

Curve ROC

Poichè le curve ROC si sovrappongono, procediamo analizzando le curve lift dei modelli che sembrano avere ROC migliore.

Lift

Tenendo conto del 20% della popolazione e osservando le curve lift, si sceglie come modello vincente il lasso (lift=2.15 e cumulative gain=43%).

In seguito, si fissa la soglia che massimizza la misura di interesse (specificity), si ricavano i valori previsti del target e si valuta la metrica classificativa scelta sulla matrice di confusione considerando i dati di validation.

STEP3: SCELTA SOGLIA

Misure rispetto alle soglie

```
soglia prop true M prop true S true M true S fn M
##
## 1
        0.00
               1.0000000 0.000000000
                                                    0
                                          244
                                                         0
## 2
        0.01
               1.0000000 0.000000000
                                          244
                                                    0
                                                         0
## 3
        0.02
               0.9959016 0.008791209
                                          243
                                                   12
                                                         1
## 4
                                                         3
        0.03
               0.9877049 0.049816850
                                          241
                                                   68
## 5
        0.04
               0.9836066 0.117948718
                                          240
                                                  161
                                                         4
                                                         9
## 6
        0.05
               0.9631148 0.192673993
                                          235
                                                  263
## 7
        0.06
               0.9303279 0.260073260
                                          227
                                                  355
                                                        17
## 8
        0.07
               0.9139344 0.322344322
                                          223
                                                  440
                                                        21
## 9
        0.08
               0.8770492 0.364102564
                                          214
                                                  497
                                                        30
## 10
        0.09
               0.8524590 0.423443223
                                          208
                                                  578
                                                        36
```

Come già detto, la metrica di interesse è la specificity (prop_true_S, dove S=sani).

Grafico con sensitivity, specificity e altre misure

La soglia che consente di avere una specificity soddisfacente e al tempo stesso una discreta sensibility è 0.2.

Predetti sul validation e matrice di confusione

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                r0
##
                    123
           r0 1073
##
           r1 292
                    121
##
##
                  Accuracy : 0.7421
##
                     95% CI: (0.72, 0.7633)
##
       No Information Rate: 0.8484
##
       P-Value [Acc > NIR] : 1
##
##
               Sensitivity: 0.4959
##
```

```
## Specificity : 0.7861
##
## 'Positive' Class : r1
```

Con la soglia considerata, si ottiene una specificity pari all'80% circa, una sensitivity pari al 50% circa e un'accuracy pari al 74% circa.

Poiché il modello è abbastanza soddisfacente, si procede con la classificazione di nuovi soggetti.

STEP4: SCORE NUOVE OSSERVAZIONI

Score dataset e previsione

```
##
            r0
## 1 0.8061843 0.19381566
## 2 0.9133995 0.08660045
## 3 0.8581781 0.14182194
## 4 0.7765300 0.22346997
## 5 0.8004077 0.19959228
## 6 0.7844270 0.21557298
##
       age cigsPerDay totChol sysBP diaBP
                                            BMI heartRate glucose male education
## 7
                                                       60
       63
                  0
                          205 138.0
                                     71 33.11
                                                               85
                                     102 25.45
## 60
       40
                  20
                          205 158.0
                                                       75
                                                               87
                                                                     0
                                                                               4
## 100 56
                  15
                          269 121.0
                                      75 22.36
                                                       50
                                                               66
                                                                     0
                                                                               1
## 147
       59
                  1
                          259 141.0
                                       86 25.97
                                                       70
                                                               86
                                                                     0
                                                                               1
## 209
       67
                   0
                          249 128.0
                                       68 25.81
                                                       70
                                                               87
                                                                     0
                                                                               2
## 216 45
                   43
                          191 139.5
                                       75 22.30
                                                       77
                                                               71
                                                                     1
                                                                               1
       currentSmoker BPMeds prevalentStroke prevalentHyp diabetes
##
                                                                    prob.r0
## 7
                   0
                          0
                                                       0
                                                                0 0.8061843
## 60
                   1
                          0
                                          0
                                                       0
                                                                0 0.9133995
                   1
                          0
                                                       0
## 100
                                          0
                                                                0 0.8581781
## 147
                   1
                          0
                                          0
                                                       1
                                                                0 0.7765300
                   0
                          0
                                          0
## 209
                                                       0
                                                                0 0.8004077
## 216
                   1
                          0
                                          0
                                                       1
                                                                0 0.7844270
##
          prob.r1 pred_y
       0.19381566
## 7
      0.08660045
                       S
## 60
                       S
## 100 0.14182194
## 147 0.22346997
                       Μ
## 209 0.19959228
                       S
## 216 0.21557298
```