

国蒙

1. 数据集来源和回归问题

- 介绍数据集的来源、说明数据结构
- 介绍要解决的回归问题:多输出 回归(Multi-output Regression)

2. 探索性数据分析

数据可视化

4. 机器学习建模

- 随机森林回归器
- K近邻回归器
- 支持向量机回归器

5.总结与展望

- 内容总结
- 可以改进之处

3. 传统统计回归建模

- 因变量正态性检验
- 自相关性检验
- 连续型自变量共线性检验
- 连续型自变量因子分析/数据降维
- 自相关回归模型

前15名受试者的语音记录条数统计

subject_	频数	百分比	累积 频数	累积 百分比
1	149	2.54	149	2.54
2	145	2.47	294	5.00
3	144	2.45	438	7.46
4	137	2.33	575	9.79
5	156	2.66	731	12.44
6	156	2.66	887	15.10
7	161	2.74	1048	17.84
8	150	2.55	1198	20.39
9	152	2.59	1350	22.98
10	148	2.52	1498	25.50
11	138	2.35	1636	27.85
12	107	1.82	1743	29.67
13	112	1.91	1855	31.57
14	136	2.31	1991	33.89
15	143	2.43	2134	36.32

题語記憶

HTTPS://ARCHIVE.ICS.UCI.EDU/DATASET/189/PARKINSONS +TELEMONITORING

该数据集由一系列生物医学语音测量数据组成,这些数据来自 42 名早期帕金森病患者,他们参加了为期 6 个月的远程病情监测试验。录音是在患者家中自动采集的。

数据结构

表中各列包含受试者编号、 年龄、性别、与基线招募日期的时间间隔、运动型 UPDRS评分、UPDRS总评分和 16 项生物医学语音测量指标。每一行对应这些人的 5,875 份语音记录中的一份。

多输出回归任务

数据分析的主要任务是通过 16 项语音测量指标来 预测运动型UPDR和 UPDRS 总分 ("motor_UPDRS"和 "total_UPDRS")。

变量(组)名称 变量类型 数据类型 变量说明 subject# ID 整型 受试者编号 自变量 整型 年龄 age 0或1 性别 自变量 sex test time 自变量 连续型 基线招募日期的时间间隔 连续型 Jitter组(共5个) 自变量 语音基频变化的几种测量指标 Shimmer组(共6个) 自变量 连续型 语音振幅变化的几种测量指标 自变量 NHR,HNR 连续型 声音中噪音与音调成分比例的两种测量指标 **RPDE** 自变量 连续型 非线性动态复杂度指标 自变量 DFA 连续型 信号分形缩放指数 PPE 自变量 连续型 语音基频变化的非线性指标 因变量1 连续型 经过线性插值的临床运动UPDRS评分 motor UPDRS 连续型 经过线性插值的临床UPDRS总评分 total UPDRS 因变量2

愛量名称

42个受试者中的15人的 test_time在数据集中的排布

这样处理便于机器学习?

42个受试者的 motor_UPDRS评 分与test_time的散 点分布(点)以及回归 直线

数据存在自相关性

42个受试者的 total_UPDRS评分 与test_time的散点 分布(点)以及回归直 线

数据存在自相关性

各个自变量与 motor_UPD RS的简单回 归 数据异方差性 存在离群值

各个自变量与 total_UPDRS 的简单回归

数据异方差性 存在离群值

國變量正慈性檢驗

经检验,两个因变量motor_UPDRS和total_UPDRS在Kolmogorov-Smirnov 检验、Cramer-von Mises检验以及Anderson-Darling检验下都以显著度5% 不服从正态性假设。

数据具有长尾性短尾性

OLS纜塑解釋力不健

OLS模型-MOTOR_UPDRS为因变量

> REG 过程 模型: MODEL1 因变量: motor_UPDRS

读取的观测数 5863使用的观测数 5863

方差分析						
源	自由度	平方和	均方	F值	Pr > F	
模型	19	61159	3218.89009	57.58	<.0001	
误差	5843	326627	55.90058			
校正合计	5862	387786				

均方根误差	7.47667	R方	0.1577
因变量均值	21.28965	调整R方	0.1550
变异系数	35.11879		

OLS模型-TOTAL_UPDRS为因变量

> REG 过程 模型: MODEL1 因变量: total_UPDRS

读取的观测数 5863使用的观测数 5863

方差分析						
源	自由度	平方和	均方	F值	Pr > F	
模型	19	118998	6263.07871	66.13	<.0001	
误差	5843	553393	94.71036			
校正合计	5862	672391				

均方根误差	9.73192	R方	0.1770
因变量均值	29.01409	调整R方	0.1743
变异系数	33.54206		

遊變的更過幾態性诊斷

Motor_UPDRS为自变量的OLS回归模型参数估计							
变量	自由度	参数估计	标准误差	t 值	Pr > t	方差膨胀	
Intercept	1	30.34823	2.46317	12.32	<.0001	0	
age	1	0.19244	0.01158	16.61	<.0001	1.09646	
sex	1	-1.13734	0.24344	-4.67	<.0001	1.34902	
test_time	1	0.01176	0.00184	6.39	<.0001	1.01054	
Jitter(%)	1	294.83601	163.71514	1.80	0.0718	89.02176	
Jitter(Abs)	1	-64852	7598.73459	-8.53	<.0001	7.84759	
Jitter(RAP)	1	-37270	35980	-1.04	0.3003	1326587	
Jitter(DDP)	1	12541	11994	1.05	0.2958	1326817	
Jitter(PPQ5)	1	-329.24433	145.61196	-2.26	0.0238	31.00853	
Shimmer	1	149.19500	49.96792	2.99	0.0028	174.76617	
Shimmer(dB)	1	-6.83475	3.72046	-1.84	0.0663	76.99242	
Shimmer(APQ3)	1	-4007.94608	36133	-0.11	0.9117	23988032	
Shimmer(APQ5)	1	-123.34451	42.49779	-2.90	0.0037	52.64440	
Shimmer(APQ11)	1	71.83227	19.11867	3.76	0.0002	15.33525	
Shimmer(DDA)	1	1280.24191	12044	0.11	0.9154	23987906	
NHR	1	-10.56000	4.79059	-2.20	0.0275	8.58750	
HNR	1	-0.42441	0.05294	-8.02	<.0001	5.41629	
RPDE	1	0.55992	1.40100	0.40	0.6894	2.10066	
DFA	1	-23.60018	1.77409	-13.30	<.0001	1.66169	
PPE	1	17.65880	2.24881	7.85	<.0001	4.43940	

建立motor_UPDRS为因变量的单因变量线性回归模型,方差膨胀系数>5的连续型自变量为 Jitter组所有变量、Shimmer组所有变量、NHR 以及HNR

	Motor_UPDRS为自变量的OLS回归模型参数估计								
变量	自由度	参数估计	标准误差	t 值	Pr > t	方差膨胀			
Intercept	1	21.65183	0.12468	173.67	<.0001	0			
age	1	1.69877	0.10225	16.61	<.0001	1.09646			
sex	1	-1.13734	0.24344	-4.67	<.0001	1.34902			
test_time	1	0.62731	0.09817	6.39	<.0001	1.01054			
Jitter(%)	1	1.65930	0.92137	1.80	0.0718	89.02176			
Jitter(Abs)	1	-2.33473	0.27356	-8.53	<.0001	7.84759			
Jitter(RAP)	1	-116.50571	112.47426	-1.04	0.3003	1326587			
Jitter(DDP)	1	117.61281	112.48401	1.05	0.2958	1326817			
Jitter(PPQ5)	1	-1.22955	0.54378	-2.26	0.0238	31.00853			
Shimmer	1	3.85458	1.29096	2.99	0.0028	174.76617			
Shimmer(dB)	1	-1.57411	0.85686	-1.84	0.0663	76.99242			
Shimmer(APQ3)	1	-53.05225	478.28045	-0.11	0.9117	23988039			
Shimmer(APQ5)	1	-2.05643	0.70854	-2.90	0.0037	52.64440			
Shimmer(APQ11)	1	1.43679	0.38241	3.76	0.0002	15.33525			
Shimmer(DDA)	1	50.83883	478.27920	0.11	0.9154	23987914			
NHR	1	-0.63080	0.28617	-2.20	0.0275	8.58750			
HNR	1	-1.82181	0.22727	-8.02	<.0001	5.41629			
RPDE	1	0.05657	0.14153	0.40	0.6894	2.10066			
DFA	1	-1.67456	0.12588	-13.30	<.0001	1.66169			
PPE	1	1.61568	0.20575	7.85	<.0001	4.43940			

对各个连续型自变量做标准化处理后(模型解释能力不会发生改变,但自变量系数会发生改变),建立motor_UPDRS为因变量的单因变量线性回归模型,方差膨胀系数>5的连续型自变量为Jitter组所有变量、Shimmer组所有变量、NHR以及HNR

遊變遭自變量與鐵體诊斷

Total_UPDRS为自变量的OLS回归模型参数估计							
变量	自由度	参数估计	标准误差	t 值	Pr > t	方差膨胀	
Intercept	1	39.64493	3.20615	12.37	<.0001	0	
age	1	0.30349	0.01508	20.13	<.0001	1.09646	
sex	1	-2.77469	0.31687	-8.76	<.0001	1.34902	
test_time	1	0.01685	0.00240	7.03	<.0001	1.01054	
Jitter(%)	1	47.94391	213.09803	0.22	0.8220	89.02176	
Jitter(Abs)	1	-63980	9890.81005	-6.47	<.0001	7.84759	
Jitter(RAP)	1	-39583	46833	-0.85	0.3980	1326587	
Jitter(DDP)	1	13474	15612	0.86	0.3882	1326817	
Jitter(PPQ5)	1	-342.30022	189.53422	-1.81	0.0710	31.00853	
Shimmer	1	151.59631	65.04019	2.33	0.0198	174.76617	
Shimmer(dB)	1	-8.98377	4.84269	-1.86	0.0636	76.99242	
Shimmer(APQ3)	1	-16713	47032	-0.36	0.7223	23988032	
Shimmer(APQ5)	1	-62.15333	55.31679	-1.12	0.2612	52.64440	
Shimmer(APQ11)	1	52.60439	24.88561	2.11	0.0346	15.33525	
Shimmer(DDA)	1	5497.57778	15677	0.35	0.7258	23987906	
NHR	1	-15.40178	6.23561	-2.47	0.0135	8.58750	
HNR	1	-0.62630	0.06892	-9.09	<.0001	5.41629	
RPDE	1	4.00282	1.82359	2.20	0.0282	2.10066	
DFA	1	-31.52466	2.30923	-13.65	<.0001	1.66169	
PPE	1	17.63989	2.92714	6.03	<.0001	4.43940	

建立total_UPDRS为因变量的单因变量线性回归模型,方差膨胀系数>5的连续型自变量为Jitter组所有变量、Shimmer组所有变量、NHR以及HNR

	Total_UPDRS为自变量的OLS回归模型参数估计							
变量	自由度	参数估计	标准误差	t 值	Pr > t	方差膨胀		
Intercept	1	29.89765	0.16228	184.23	<.0001	0		
age	1	2.67913	0.13310	20.13	<.0001	1.09646		
sex	1	-2.77469	0.31687	-8.76	<.0001	1.34902		
test_time	1	0.89872	0.12778	7.03	<.0001	1.01054		
Jitter(%)	1	0.26982	1.19929	0.22	0.8220	89.02176		
Jitter(Abs)	1	-2.30333	0.35608	-6.47	<.0001	7.84759		
Jitter(RAP)	1	-123.73705	146.40089	-0.85	0.3980	1326587		
Jitter(DDP)	1	126.35686	146.41359	0.86	0.3882	1326817		
Jitter(PPQ5)	1	-1.27831	0.70781	-1.81	0.0710	31.00853		
Shimmer	1	3.91662	1.68037	2.33	0.0198	174.76617		
Shimmer(dB)	1	-2.06905	1.11532	-1.86	0.0636	76.99242		
Shimmer(APQ3)	1	-221.22792	622.54854	-0.36	0.7223	23988039		
Shimmer(APQ5)	1	-1.03624	0.92226	-1.12	0.2612	52.64440		
Shimmer(APQ11)	1	1.05219	0.49776	2.11	0.0346	15.33525		
Shimmer(DDA)	1	218.31065	622.54691	0.35	0.7258	23987914		
NHR	1	-0.92003	0.37249	-2.47	0.0135	8.58750		
HNR	1	-2.68839	0.29582	-9.09	<.0001	5.41629		
RPDE	1	0.40438	0.18423	2.20	0.0282	2.10066		
DFA	1	-2.23684	0.16385	-13.65	<.0001	1.66169		
PPE	1	1.61395	0.26782	6.03	<.0001	4.43940		

对各个连续型自变量做标准化处理后(模型解释能力不会发生改变,但自变量系数会发生改变),建立total_UPDRS为因变量的单因变量线性回归模型,方差膨胀系数>5的连续型自变量为Jitter组所有变量、Shimmer组所有变量、NHR以及HNR

各个连续型自变量标准化后的OLS模型中各个自变量的系数大小

自稠美燈诊斷

存在显著正自相关

REG 过程 模型: MODEL1 因变量: motor_UPDRS

Durbin-Watson D	0.141
Pr < DW	<.0001
Pr > DW	1.0000
观测数	5863
第一阶自相关	0.929

存在显著正自相关

REG 过程 模型: MODEL1 因变量: total_UPDRS

Durbin-Watson D	0.118
Pr < DW	<.0001
Pr > DW	1.0000
观测数	5863
第一阶自相关	0.941

遊變自变量因子分析

相关矩阵特征值大小

选择公共因子数为7.对初始因子按最大方差 旋转法进行旋转后得旋转因子。

最终的公因子方差估计: 总计 = 15.644363

%)		10117	DDF)	5)		dB)	
0.990	0.919	0.984	0.984	0.972	0.994	0.985	0.992
Shim Smer(rAPQ 75)	mer(APQ	mer(NHR	HNR	RPD E	DFA	PPE

每个因子已解释方差 0.984 0.957 0.992 0.945 0.964 0.998 0.997 0.986

Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7
6.3325680	5.3323259	1.4017181	1.1590722	0.8988385	0.2929683	0.2268718

Pearson 相关系数, N = 5863 Prob > |r|, H0: Rho=0

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7
Factor1	1.00000	0.00000 1.0000	0.00000 1.0000	0.00000 1.0000	0.00000 1.0000	-0.00000 1.0000	0.00000 1.0000
Factor2	0.00000 1.0000	1.00000	-0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	0.00000 1.0000	-0.00000 1.0000
Factor3	0.00000 1.0000	-0.00000 1.0000	1.00000	-0.00000 1.0000	-0.00000 1.0000	0.00000 1.0000	-0.00000 1.0000
Factor4	0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	1.00000	-0.00000 1.0000	0.00000 1.0000	-0.00000 1.0000
Factor5	0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	1.00000	0.00000 1.0000	-0.00000 1.0000
Factor6	-0.00000 1.0000	0.00000 1.0000	0.00000 1.0000	0.00000 1.0000	0.00000 1.0000	1.00000	0.00000 1.0000
Factor7	0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	-0.00000 1.0000	0.00000 1.0000	1.00000

	旋转因子模式							
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	
Shimmer(DDA)	0.91400	0.33330	0.12522	0.03780	0.07888	-0.06155	-0.13444	
Shimmer(APQ3)	0.91399	0.33330	0.12522	0.03780	0.07888	-0.06155	-0.13443	
Shimmer	0.90166	0.37673	0.15205	0.03198	0.11068	-0.05392	0.01219	
Shimmer(APQ5)	0.90140	0.36241	0.13843	0.03339	0.09508	-0.06711	0.07910	
Shimmer(dB)	0.88908	0.38264	0.15550	0.02135	0.14446	-0.04651	0.02736	
Shimmer(APQ11)	0.86457	0.28685	0.18870	0.09112	0.20248	0.04783	0.20085	
HNR	-0.61292	-0.34674	-0.39178	-0.17338	-0.31469	0.42929	0.02904	
Jitter(RAP)	0.34255	0.91343	0.10369	0.08465	0.10956	-0.01499	-0.04958	
Jitter(DDP)	0.34255	0.91343	0.10368	0.08466	0.10957	-0.01501	-0.04957	
Jitter(%)	0.36515	0.89475	0.14007	0.08819	0.16723	-0.02288	0.02554	
Jitter(PPQ5)	0.41552	0.86571	0.09074	0.04858	0.10447	-0.06499	0.15565	
Jitter(Abs)	0.31520	0.73223	0.29692	0.20168	0.30912	-0.07122	-0.23243	
NHR	0.54763	0.68261	0.14906	-0.15065	0.03720	-0.27327	0.24164	
RPDE	0.26032	0.19095	0.93151	0.07699	0.13617	-0.03380	0.00645	
DFA	0.03765	0.11222	0.07488	0.98327	0.10197	-0.01429	-0.00670	
PPE	0.33697	0.46694	0.28590	0.23382	0.71794	-0.05430	0.00982	

对Motor_UPDRS做自相关回归:

最大似然估计						
SSE	15243.9431	DFE	5850			
MSE	2.60580	均方根误差	1.61425			
SBC	22356.6364	AIC	22269.8429			
MAE	0.63691811	AICC	22269.9052			
MAPE	3.58149817	HQC	22300.0188			
对数似然	-11121.921	转换回归 R 方	0.0807			
Durbin-Watson	1.9976	总 R 方	0.9607			
		观测	5863			

	参数估计						
变量	自由度	估计	标准 误差	t 值	近似 Pr > 比		
Intercept	1	8.9012	1.5089	5.90	<.0001		
age	1	0.1762	0.0178	9.89	<.0001		
sex	1	-0.1626	0.4034	-0.40	0.6870		
test_time	1	0.0114	0.000581	19.55	<.0001		
Factor1	1	0.004258	0.0244	0.17	0.8616		
Factor2	1	-0.0399	0.0184	-2.17	0.0303		
Factor3	1	-0.0543	0.0227	-2.39	0.0167		
Factor4	1	-0.1918	0.0459	-4.18	<.0001		
Factor5	1	0.002556	0.0206	0.12	0.9013		
Factor6	1	-0.0175	0.0208	-0.84	0.4015		
Factor7	1	0.0183	0.0194	0.94	0.3459		
AR1	1	-0.9941	0.0131	-75.93	<.0001		
AR2	1	0.0161	0.0131	1.23	0.2178		

对Total_UPDRS做自相关回归:

最大似然估计						
SSE	22616.6972	DFE	5850			
MSE	3.86610	均方根误差	1.96624			
SBC	24669.7542	AIC	24582.9608			
MAE	0.75809535	AICC	24583.023			
MAPE	3.15783934	HQC	24613.1366			
对数似然	-12278.48	转换回归 R 方	0.1245			
Durbin-Watson	1.9991	总 R 方	0.9664			
		观测	5863			

	参数估计						
变量	自由度	估计	标准 估计 误差		近似 Pr > 比		
Intercept	1	11.6805	1.9449	6.01	<.0001		
age	1	0.2480	0.0217	11.41	<.0001		
sex	1	-1.1734	0.4928	-2.38	0.0173		
test_time	1	0.0180	0.000707	25.52	<.0001		
Factor1	1	-0.003056	0.0297	-0.10	0.9181		
Factor2	1	-0.0650	0.0224	-2.90	0.0038		
Factor3	1	-0.0697	0.0276	-2.53	0.0116		
Factor4	1	-0.2559	0.0559	-4.58	<.0001		
Factor5	1	0.001543	0.0251	0.06	0.9510		
Factor6	1	-0.0130	0.0253	-0.51	0.6066		
Factor7	1	0.0218	0.0237	0.92	0.3560		
AR1	1	-0.9955	0.0131	-76.01	<.0001		
AR2	1	0.0148	0.0131	1.13	0.2576		

随机森林将多个决策树结合起来,为回归任务提供准确的预测

选择数据集的80% 数据用于训练, 20%数据用于测试。 后同

```
from sklearn.ensemble import RandomForestRegressor

rdf = RandomForestRegressor()

rdf.fit(X_train,y_train)

showResults(y_test,rdf.predict(X_test))
```

R2 score: 0.9755004821148352

Mean squared error: 2.2051865736924983 Mean absolute error: 0.6268520034100593

	motor_UPDRS	total_UPDRS	motor_UPDRS_pred	total_UPDRS_pred
-	:	:	:	:
	18	26.968	17.9812	26.9323
	11.088	13.088	10.9872	13.0013
	22.178	25.904	21.687	25.8656
	34.012	42.81	33.9046	42.4597
	17.334	22.953	16.797	22.3716

随机森林对输入数据进行子样本替换,而 Extra Trees 则使用整个原始样本,并在建树过程中通过选择随机分割而不是最优分割来增加随机性。

```
from sklearn.ensemble import ExtraTreesRegressor
extra_reg = ExtraTreesRegressor()
extra_reg.fit(X_train,y_train)
showResults(y_test,extra_reg.predict(X_test))
```

R2 score: 0.9803894778750649

Mean squared error: 1.763386499573825 Mean absolute error: 0.6896817127024716

motor_UPDRS	total_UPDRS	motor_UPDRS_pred	total_UPDRS_pred
:	:	:	:
18	26.968	17.6719	26.5115
11.088	13.088	11.1589	13.1594
22.178	25.904	21.8516	26.0088
34.012	42.81	34.1386	42.8932
17.334	22.953	17.3433	23.1515

K近邻回归器根据邻近特征估算目标值,使其适用于多输出回归, 尤其是在特征存在局部模式的情况下, 该回归器效果显著

```
from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor()
knn.fit(X_train,y_train)
showResults(y_test,knn.predict(X_test))
```

R2 score: 0.5245197752322595

Mean squared error: 42.2538651662943 Mean absolute error: 4.767536947996586

motor_UPDRS	total_UPDRS	motor_UPDRS_pred	total_UPDRS_pred
:	:	:	:
18	26.968	14.4348	19.696
11.088	13.088	11.0874	13.0874
22.178	25.904	25.389	30.511
34.012	42.81	31.431	39.5766
17.334	22.953	15.2628	21.7472

SVR 最初是为单输出回归任务设计的,而 MultiOutputRegressor 就像是 SVR 的包装器,它扩展了 SVR 以有效处理多输出回归。

```
from sklearn.multioutput import MultiOutputRegressor
from sklearn.svm import SVR

svm_multi = MultiOutputRegressor(SVR(kernel="rbf", C=100, gamma=0.1, epsilon=0.1))
svm_multi.fit(X_train,y_train)
showResults(y_test,svm_multi.predict(X_test))
```

R2 score: 0.7988785418738004

Mean squared error: 17.79332672889405 Mean absolute error: 2.069184533999553

motor_UPDRS	total_UPDRS	motor_UPDRS_pred	total_UPDRS_pred
:	:	:	:
18	26.968	17.8662	26.8435
11.088	13.088	11.2619	13.454
22.178	25.904	23.45	27.6616
34.012	42.81	34.1	42.5883
17.334	22.953	12.7476	19.4979

模型名称	Random Forest	Extra Tree	K-nearest Neighbors	SVR
MSE	2.205	1.763	42.254	17.793
R^2	0.976	0.980	0.525	0.799

该数据集采用树模型+集成学习,能够有较好的预测能力

传统统计方法建模

本次大作业通过运用课程所 学OLS模型、验证OLS基本假 设、因子分析等内容,以实 际数据分析巩固了对知识点 的理解

传统统计方法V.S.机器学习

传统统计方法比机器学习方 法具有更高的解释性,并且 如果抓住了主要矛盾,传统 统计模型的解释力可以很强

总结和展望

改进方向1

使用传统统计方法建模时, 需要科学地对异常值进行检 测和剔除

改进方向2

深入了解机器学习模型,学习超参数调参中的贝叶斯优 化方法

