Efficient Computation with Dedekind Reals

Andrej Bauer (joint work with Paul Taylor)

Department of Mathematics and Physics University of Ljubljana, Slovenia

MAP, Trieste, August 2008

In this talk

We present a mathematical language which is powerful enough to let us talk about real analysis, but also simple enough to be an efficient programming language.

Foundations: Abstract Stone Duality

- ▶ Our language is based on *Abstract Stone Duality* (ASD) by Paul Taylor.
- ▶ ASD is a variant of λ -calculus which directly axiomatizes spaces and continuous maps.
- We use a fragment of ASD which can be understood on its own.
- Further material: http://www.paultaylor.eu/ASD/

A language for real analysis

- ▶ Number types \mathbb{N} , \mathbb{Q} , \mathbb{R}
- ightharpoonup Arithmetic +, -, ×, /
- ▶ Decidable equality = and decidable order < on \mathbb{N} and \mathbb{Q}
- ▶ General recursion on N
- ▶ Semidecidable order relation < on \mathbb{R}
- ► Logic:
 - truth \top and falsehood \bot
 - ▶ connectives ∧ and ∨
 - existential quantifiers:

$$\exists x : \mathbb{R}, \quad \exists x : [a, b], \quad \exists x : (a, b), \quad \exists n : \mathbb{N}, \quad \exists q : \mathbb{Q}$$

▶ universal quantifier: $\forall x : [a, b]$

Axioms for real numbers

The real numbers \mathbb{R} are:

- an ordered field,
- with Archimedean property,
- Dedekind complete,
- overt Hausdorff space,
- ightharpoonup and [0,1] is compact.

Dedekind cuts

A cut is a pair of rounded, bounded, disjoint, and located open sets.

Lower and upper reals

By taking the lower rounded sets we obtain the *lower reals*, and similarly for *upper reals*. These are more fundamental than reals.

Examples of cuts

▶ A number *a* determines a cut, which determines *a*:

$$a = \operatorname{cut} x \operatorname{left} x < a \operatorname{right} a < x$$

 $ightharpoonup \sqrt{a}$ is the cut

cut
$$x$$
 left $(x < 0 \lor x^2 < a)$ right $(x > 0 \land x^2 > a)$

► Exercise:

cut
$$x$$
 left $(x < -a \lor x < a)$ right $(-a < x \land a < x)$

▶ The full notation for cuts is

cut
$$x : [a, b]$$
 left $\phi(x)$ right $\psi(x)$

This means that the cut determines a number in [a, b].

"Topologic"

- ▶ A logical formula $\phi(x)$ where x : A has two readings:
 - ▶ *logical*: a predicate on *A*
 - topological: an open subset of A
- ▶ In particular, a closed formula ϕ is
 - logically, a truth value
 - *topologically*, an element of Sierpinski space Σ
- We use this to express topological and analytic notions logically.

Example: \mathbb{R} is locally compact

▶ Classically: for open $U \subseteq \mathbb{R}$ and $x \in \mathbb{R}$,

$$x \in U \iff \exists d, u \in \mathbb{Q} . x \in (d, u) \subseteq [d, u] \subseteq U$$

▶ Topologically: for $\phi : \mathbb{R} \to \Sigma$ and $x : \mathbb{R}$,

$$\phi(x) \iff \exists d, u \in \mathbb{Q} . d < x < u \land \forall y \in [d, u] . \phi(y)$$

Example: [0,1] is connected

▶ Classically: for open $U, V \subseteq [0, 1]$,

$$U\cap V=\emptyset \wedge U\cup V=[0,1] \implies U=[0,1]\vee V=[0,1]$$

▶ (Topo)logically: for $\phi, \psi : [0, 1] \to \Sigma$, if

$$\perp \iff \phi(x) \land \psi(x)$$

then

$$\forall x \in [0,1] . (\phi(x) \lor \psi(x)) \implies (\forall x \in [0,1] . \phi(x)) \lor (\forall x \in [0,1] . \psi(x))$$

Example: \mathbb{R} is connected

▶ Classically: for open $U, V \subseteq \mathbb{R}$,

$$U \cup V = \mathbb{R} \land U \neq \emptyset \land V \neq \emptyset \implies U \cap V \neq \emptyset$$

▶ (Topo)logically: for $\phi, \psi : \mathbb{R} \to \Sigma$, if

$$\top \iff \phi(x) \lor \psi(x)$$

then

$$(\exists x \in \mathbb{R} . \phi(x)) \land (\exists x \in \mathbb{R} . \psi(x)) \implies \exists x \in \mathbb{R} . \phi(x) \land \psi(x).$$

The maximum of $f : [0,1] \to \mathbb{R}$

$$\mathsf{cut} \ x \ \mathsf{left} \ (\exists \, y \in [0,1] \, . \, x < f(y))$$

$$\mathsf{right} \ (\forall \, z \in [0,1] \, . \, f(z) < x)$$

Cauchy completeness

▶ A *rapid* Cauchy sequence $(a_n)_n$ satisfies

$$|a_{n+1}-a_n|<2^{-n}$$
.

▶ Its limit is the cut

cut
$$x$$
 left $(\exists n \in \mathbb{N} . x < a_n - 2^{-n+1})$
right $(\exists n \in \mathbb{N} . a_n + 2^{-n+1} < x)$

From mathematics to programming

- We would like to compute with our language.
- ▶ We limit attention to logic and \mathbb{R} , and leave recursion and \mathbb{N} for future work.
- Not surprisingly, we compute with intervals.
- ► The prototype is written in OCaml and uses the MPFR library for fast dyadic rationals.

The interval lattice *L*

- ▶ The lattice of pairs [a, b], where a is upper and b lower real.
- ▶ Ordered by $[a,b] \sqsubseteq [c,d] \iff a \le c \land d \le b$.
- ▶ The lattice contains \mathbb{R} .

Extending arithmetic to *L*

- ▶ We extend arithmetic operations from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ to $L \times L \to L$.
- ▶ The interesting case is *Kaucher multiplication*.
- ▶ Given an arithmetical expression e we compute its *lower* and *upper* approximants e^- and e^+ in L:

$$e^- \sqsubseteq e \sqsubseteq e^+$$
.

▶ We also extend < to $L \times L \rightarrow \Sigma$:

$$[a,b] < [c,d] \iff b < c$$

Lower and upper approximants

▶ For each sentence ϕ we define a *lower* and *upper* approximants $\phi^-, \phi^+ \in \{\top, \bot\}$ such that

$$\phi^- \implies \phi \implies \phi^+.$$

- ► The approximants should be easy to compute.
- ▶ If $\phi^- = \top$ then $\phi = \top$, and if $\phi^+ = \bot$ then $\phi = \bot$.
- Easy cases:

Approximants for cuts and quantifiers

► Cuts:

$$(\operatorname{cut} x : [a,b] \operatorname{left} \phi(x) \operatorname{right} \psi(x))^{-} = [a,b]$$

$$(\operatorname{cut} x : [a,b] \operatorname{left} \phi(x) \operatorname{right} \psi(x))^{+} = [b,a]$$

Quantifiers:

$$\phi([a,b]) \Longrightarrow \forall x \in [a,b] \cdot \phi(x) \Longrightarrow \phi(\frac{a+b}{2})$$

$$\phi(\frac{a+b}{2}) \Longrightarrow \exists x \in [a,b] \cdot \phi(x) \Longrightarrow \phi([b,a])$$

Refinement

- ▶ If $\phi^- = \bot$ and $\phi^+ = \top$ we cannot say much about ϕ .
- ▶ To make progress, we *refine* ϕ to an equivalent formula in which quantifers range over smaller intervals.
- ► A simple strategy is to split quantified intervals in halves:
 - ▶ \forall *x* ∈ [*a*, *b*] . ϕ (*x*) is refined to

$$(\forall x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \wedge (\forall x \in [\frac{a+b}{2}, b] \cdot \phi(x))$$

▶ $\exists x \in [a, b] . \phi(x)$ is refined to

$$(\exists x \in [a, \frac{a+b}{2}] \cdot \phi(x)) \lor (\exists x \in [\frac{a+b}{2}, b] \cdot \phi(x))$$

▶ This amounts to searching with *bisection*.

Refinement of cuts

▶ To refine a cut

$$\mathsf{cut}\ x:[a,b]\ \mathsf{left}\ \phi(x)\ \mathsf{right}\ \psi(x)$$

we try to move $a \mapsto a'$ and $b \mapsto b'$.

- ▶ If $\phi^-(a') = \top$ then move $a \mapsto a'$.
- ▶ If $\psi^-(b') = \top$ then move $b \mapsto b'$.
- One or the other endpoint moves eventually because cuts are located.

Evaluation

- ▶ To evaluate a sentence ϕ :
 - if $\phi^- = \top$ then output \top ,
 - if $\phi^+ = \bot$ then output \bot ,
 - otherwise refine ϕ and repeat.
- ▶ Evaluation may not terminate, but this is expected, as ϕ is only *semi*decidable.
- ▶ Is the procedure *semicomplete*, i.e., if ASD proves ϕ then ϕ evaluates to \top ?

Speeding up the computation

Estimate an inequality f(x) < 0 on [a, b] by approximating f with a linear map from above and below.

This is essentially Newton's interval method.

Future

- ▶ Incorporate \mathbb{N} and recursion.
- ▶ Extend Newton's method to multivariate case.
- Write a more efficient interpreter.
- Can we do higher-type computations?
- Can this be implemented as a *library* for a standard language, rather than a specialized language?