

Efficient Optical Modeling of Graphene

in FDTD Solutions and MODE Solutions

LUMERICAL SOLUTIONS INC.

Outline

Introduction

- Lumerical's optical simulation products
- Physical properties of graphene

New Graphene Modeling Workflow

- New surface conductivity model
- New surface geometric primitive
- Simple example: transmission through a graphene sheet

Application Examples

- Tunable THz metamaterial (FDTD)
- Graphene waveguide modulator (FDTD and MODE)
- Exciting a surface plasmon mode (FDTD and MODE)

Summary

Lumerical Solutions

Lumerical empowers R&D professionals with best-in-class design tools and services to support the creation of better photonic technologies

Our Products

Lumerical's Optical Solvers

MODE Solutions

- Finite difference eigenmode solver (FDE)
- Bidirectional eigenmode expansion solver (EME)
- 2.5-D variational finite difference time domain solver (varFDTD)

FDTD Solutions

2-D and 3-D finite difference time domain solver (FDTD)

Graphene's Physics

What makes graphene different from other optical materials?

• It is a truly 2-D material:

[1] A.K. Geim and K.S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.

[2] S. Bae et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature Nanotechnology, vol. 5, pp. 574-578, 2010.

Graphene's Physics

Graphene is usually modeled using a surface conductivity:

$$\sigma(\omega, \Gamma, \mu_c, T) = -\frac{ie^2(\omega + i2\Gamma)}{\pi h^2} \left[\frac{1}{(\omega + i2\Gamma)^2} \int_0^\infty \epsilon \left(\frac{\partial f_d(\epsilon)}{\partial \epsilon} - \frac{\partial f_d(-\epsilon)}{\partial \epsilon} \right) d\epsilon - \int_0^\infty \frac{f_d(-\epsilon) - f_d(\epsilon)}{(\omega + i2\Gamma)^2 - 4(\epsilon/\hbar)^2} d\epsilon \right]$$

$$f_d(\epsilon) = \left(e^{(\epsilon - \mu_c)/(k_B T)} + 1 \right)^{-1}$$
intraband
interband

[3] G. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene", *Journal of Applied Physics*, vol. 103 (64302), 2008.

The new workflow is based on a surface conductivity model

- Two new components have been added to the UI in FDTD and MODE:
 - a new surface conductivity model,
 - and a new surface primitive.

Surface Conductivity of Graphene

New Surface Conductivity Model

Generating Conductivity Plots

Notes

- Brief demonstration: how to generate surface conductivity plots.
- Interband integral is computed numerically.

New Surface Conductivity Model in FDTD

FDTD Solutions needs a multi-coefficient material (MCM) model

- FDTD Solutions creates a multi-coefficient model of the surface conductivity.
- This model can be compared with the surface conductivity data.

New Surface Primitive

FDTD 2015B Release

- The new 2D rectangle was specifically created for modeling graphene.
- The surface normal vector must be parallel to one of the three coordinate axes.

New Graphene Modeling Workflow

A surface conductivity can be turned into a volumetric permittivity:

$$\varepsilon(\omega) = \varepsilon_0 \varepsilon_r + i \frac{\sigma(\omega)}{\omega \Delta}$$

A volumetric permittivity model is currently employed in FDTD and MODE.

The new workflow is based on a surface conductivity model:

New UI components: a surface conductivity model, and a surface primitive.

Plane Wave Transmission / Reflection

Tunable THz Metamaterial

Graphene ribbons deposited on a dielectric substrate:

- Chemical potential of the ribbons can be tuned using a voltage source.
- The FDTD solver can produce broadband results thanks to the MCM model.

[4] H. Chu and C. Gan, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Applied Physics Letters, vol. 102 (231107), 2013.

Tunable THz Metamaterial

Transmitted Power Without Substrate

method	min mesh size	time
new	2.5 nm	67s
old	0.1 nm	1h+7min

-FDTD model

Analytic data

 $\Gamma = 4.1 \text{meV}$

 $\mu_c = 0.4 \text{eV}$

T = 300 K

Tunable THz Metamaterial

Transmitted Power Without Substrate

Transmitted Power With Substrate

Electro-Optical Modulator

Based on the following waveguide configuration:

- Chemical potential of the graphene layer can be tuned using a voltage source.
- The shown waveguide mode was obtained using the FDE solver.

[5] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang and X. Zhang, "A graphene-based broadband optical modulator", Nature Letters, vol. 474, pp. 64-67, 2011.

Electro-Optical Modulator – Off State

 When the chemical potential is zero, the loss is high enough to attenuate the waveguide mode significantly.

Electro-Optical Modulator – On State

• When the chemical potential is 0.8 eV, the loss is low and there is virtually no attenuation of the waveguide mode.

Electro-Optical Modulator

FDTD Speed-up:

method	time
new	39 min
old	2h+15min

Prototype:

[5] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang and X. Zhang, "A graphene-based broadband optical modulator", Nature Letters, vol. 474, pp. 64-67, 2011.

Exciting a Surface Plasmon Mode

Light at 0.5 THz incident from a prism:

Exciting a Surface Plasmon Mode

Light at 0.5 THz incident from a prism:

Numerical vs. Analytic

• The SP mode can also be modeled using the FDE solver:

$$n_{\rm eff} = 2.5625 + i0.1202$$
 $\theta = \sin^{-1}(\text{Re}(n_{\rm eff})/5) \approx 30.8^{\circ}$

Summary

- Improved graphene workflow available in FDTD and MODE (2015B)
- Graphene is now treated as a 2-D material
 - A new surface conductivity model is being introduced.
 - A new geometric primitive specifically for graphene.
- Treating graphene as a 2-D material leads to faster simulations

www.lumerical.com

Connect with Lumerical

Contact Us

Questions? support@lumerical.com

Sales Inquiries: sales@lumerical.com

Contact your local <u>Lumerical representative</u>

Start your free 30 day trial today www.lumerical.com

