Date	Topic	Assignment	Bishop Chapter
1/23	Course introduction Machine Learning framework overview Regression & Classification. Bias-Variance.		1
1/28	Linear Equations Lagrange multipliers. Over determined and underdetermined equations Dual formulations		
1/30	Principal Component Analysis Coordinate transformations. Eigen values.	Eigendigits classification	
2/4	Information Theory Motivation. Huffman codes. KL divergence. Mutual information.		1
2/6	Independent component Analysis Blind source separation	Audio De-mixing	
2/11	Basic Probability Theory Bayes rule		1
2/13	Probability distributions Multivariate Normal distributions. Exponential family		2
2/18	Sampling I Analytical approaches. Basic sampling methods		11
2/20	Sampling II MCMC. Gibbs sampling		11
2/25	Gaussian Process I Introduction and rationale		6
2/27	Gaussian Process II Learning controlling parameters		6
3/4	Support Vector Machines I Dual transformation. Kernel trick	Digits classification with SVMs	7
3/6	Support Vector Machines II Inequality constraints. Coordinate descent optimization		7
3/11	Machine Learning Theory		
3/13	MID-TERM EXAM		
3/18	BREAK		
3/20	BREAK		
3/25	Hidden Markov Models Basic algorithms		13

Date	Topic	Assignment	Bishop Chapter
3/27	Reinforcement Learning I Basic algorithms: Value learning, policy learning, Q learning	Reinforcement learning assignment	
4/1	Reinforcement Learning II Modular approaches		
4/3	Reinforcement Learning III Model-free policy learning		
4/8	Backpropagation Basic mathematics.Recurrent connection methods		5
4/10	Convolution networks	Deep Learning Assignment	
4/15	Deep Learning		
4/17	Deep Learning Advanced concepts		
4/122	Graphical Models I Basic notation and network constraints	Problem set	8
4/24	Graphical Models II Inference		8
4/29	Graphical Models III Conditional random fields		8
5/1	COURSE SUMMARY		
5/6	Exam Preparation		
5/8	FINAL EXAM		