

Работа на транзитора като усилвател

Полупроводникови елементи

Въведение

Усилвател е електронна схема, която увеличава амплитудата на сигнала. Усилвателите управляват високоговорителите на стерео системи, за да се възпроизведе достатъчно силен звуков сигнал, усилват видео сигнала за да се подобри контраста и яркостта на телевизионния образ, усилват управляващи сигнали в системи за контрол и др.

Какво е усилвател?

Транзисторът работи като усилвател, ако при осигурен подходящ постоянно токов режим, към входа му е свързан **източник на променлив сигнал**, а в изхода – **товар**, върху който се получава усиленият променлив сигнал.

Цели и предпоставки

Разглеждат се основите на транзисторните усилватели с биполярни транзистори.

Познавате

Разбирате

Анализирате

След изучаване на материала вие би трябвало да:

- 🛾 Различни конфигурации на транзисторни усилватели
- Схемите за постоянно токово захранване
- Променливо токовите еквивалентни схеми
- Граничните честоти на транзистора
- 💖 Как се получава изходния променлив сигнал
- 😍 Важността на товарната права и работната точка
- 🛾 Влиянието на честоттата на сигнала върху усилването
- Токовете и напреженията в усилвателни схеми
- Амплитудата на изходния сигнал

Предпоставки: биполярни транзистори

Схеми на включване

В зависимост от това, кой от електродите на транзистора е общ за входната и изходната верига по отношение на променливата съставка на сигнала се различават схеми ОЕ, ОБ и ОК.

Схема ОЕ дефазира изходния сигнал на 180° спрямо входния. При схеми ОБ и ОК сигналите са във фаза.

Установяване на работна точка

Биполярният транзистор трябва да е включен в **активен нормален режим**. Постоянните съставки U_B , U_C , U_E се определят, както е показано по-горе.

Недостатък на схемата – силна зависимост на I_C от параметъра β , който има големи производствени толеранси.

Установяване на работна точка

Стойността на I_C в работната точка не зависи от параметъра β , което гарантира повишена стабилност.

Примери

Да се изчислят указаните величини за посочените по-горе схеми.

Товарна права по постоянен ток

$$E_C = I_C(R_C + R_E) + U_{CE}$$

Уравнение на товарната права

Товарната права по постоянен ток може да се построи с отрезите си от осите.

Положение на товарната права

Положението на товарната права и нейният наклон не зависят от типа на транзистора, а само от захранващото напрежение и стойността на товарното съпротивление.

За определени захранващо напрежение и товарно съпротивление, товарната права е еднозначно определена в полето на характеристиките.

Работна точка

Пресечната точка на товарната права с характеристика на транзистора определя постояннотоковата работна точка със стойности I_{BQ} , I_{CQ} , U_{CEQ} .

При промяна на потояннотоковия режим (нови стойности на I_B , I_C , U_{CE}) работната точка се движи само по товарната права.

Съставки на базовото напрежение

Графичен анализ

Променливото входно напрежение предизвиква появата на променлив ток в базата, което довежда до промяна в колекторния ток и съответно до промяна в изходното напрежение.

Графичен анализ – пример

Графика на входния и изходния променливи сигнали

Сравнението на амплитудите на променливите съставки на входния и изходен сигнал показва, че изходният сигнал е усилен 10 пъти.

Товарна права по променлив ток

Разделителните кондензатори представляват отворена верига по отношение на постоянния сигнал и късо съединение по отношение на променливата съставка.

Влияние на работната точка

Основно изискване на усилвателите е да осигуряват лиейност на усилването, т.е. да не променят формата на сигнала, а само амплитудата му. Нежелателни изкривявания се получават, когато работната точка се избере в близост до областта на насищане или на отсечка.

За максимално неизкривена амплитуда на сигнала работната точка се избира в средата на товарната права по постоянен ток.

Примерни схеми на усилватели

Усилвател ОЕ

 A_I — висок

 A_U - висок

Усилвател ОБ

 $A_I < 1$ A_U - висок Усилвател ОК

 A_I - висок $A_U < 1$

Динамични параметри

Динамичните параметри характеризират поведението на транзисторните усилватели по променлив ток. Дефинират се:

$$A_U = \frac{u_{out}}{u_{in}}$$

$$A_I = \frac{i_{out}}{i_{in}}$$

$$A_P = A_U A_I$$

$$r_{in} = \frac{u_{in}}{i_{in}}$$

$$r_{out} = \frac{u_{out}}{i_{out}}$$

За изчислението им се използват еквивалентни схеми на транзисторите по променлив ток.

Система h-параметри

За анализ на усилвателни стъпала при **ниски честоти** и **малки променливи сигнали** се използват четириполюсни *h*-параметри.

$$\begin{vmatrix} u_1 = h_{11}i_1 + h_{12}u_2 \\ i_2 = h_{21}i_1 + h_{22}u_2 \end{vmatrix}$$

Система с *h*-параметри – хибридна (смесена) система

h – параметрите имат **различни стойности** за различни схеми на свързване на транзистора.

h-параметри – дефиниции

h – параметрите са реални числа, които стойности могат лесно да се измерят

$$h_{11} = \frac{u_1}{i_1} \bigg|_{u_2 = 0}$$

 $h_{11} = rac{u_1}{i_1}igg|_{u_2 = 0}$ Входно съпротивление при късо съединение в изхода по променлив ток

$$h_{12} = \frac{u_1}{u_2} \bigg|_{i_I = 0}$$

Коефициент на обратна връзка по напрежение при отворена входна верига по променлив ток

$$h_{21} = \frac{i_2}{i_1} \bigg|_{u_2 = 0}$$

Коефициент на предаване (усилване) по ток при късо съединение в изхода по променлив ток

$$h_{22} = \frac{i_2}{u_2} \bigg|_{i_1 = 0}$$

 $h_{22} = rac{i_2}{u_2}igg|_{i_I = 0}$ Изходна проводимост при отворена входна верига по променлив ток

Еквивалентна схема с h-параметри

Обикновено в каталозите се дават *h*-параметрите за схема ОЕ, за конкретни стойности на постоянните напрежения и токове (т.е за фиксирана работна точка), при определена температура. За други случаи в каталозите се дават нормирани криви на относителните *h*-параметри при различни токове, напрежения и температури.

Изчисление на динамични параметри

h-система параметри

$$u_1 = u_s - i_1 R_s$$
$$u_2 = -i_2 R_L$$

$$i_2 = h_{21}i_1 + h_{22}u_2$$

$$\mathbf{u}_2 = -\mathbf{i}_2 \mathbf{R}_{\mathrm{L}}$$

$$i_2 = h_{21}i_1 - h_{22}i_2R_L$$

$$i_2 (1 + h_{22} R_L) = h_{21} i_1$$

$$A_I = \frac{i_2}{i_1} = \frac{h_{11}}{1 + R_L h_{22}}$$

Сравнение на динамични параметри

$$A_{I_{OK}} > A_{I_{OE}} >> A_{I_{OB}}$$

 $A_{I_{OB}} < 1$

$$r_{in_{OK}} > r_{in_{OE}} > r_{in_{OB}}$$

$$A_{U_{OB}} > A_{U_{OE}} >> A_{U_{OK}}$$

$$A_{U_{OK}} < 1$$

$$r_{out_{OB}} > r_{out_{OE}} > r_{out_{OK}}$$

Физични параметри – екв. схема

Най-често се използва малосигналната нискочестотна еквивалентна схема на транзистора в схема ОЕ с физични параметри.

Физичните параметри са свързани с принципа на действие на транзистора. Съществува връзка между физичните и *h*-параметри.

Физични параметри – дефиниции

$$\beta = \frac{i_c}{i_b} \mid_{u_{ce} = 0}$$

 $\beta = \frac{i_c}{i_b}$ Диференциален коефициент на усилване по ток при късо съединение в изхода по променлив ток

$$g_m = \frac{i_c}{u_{be}} \bigg|_{u_{ce} = 0}$$

 $g_m = rac{i_c}{u_{be}} igg|_{u_{co} = 0}$ Стръмност на транзистора при късо съединение в изхода по променлив ток

$$r_{be} = \frac{u_{be}}{i_b} \mid_{u_{ce} = 0}$$

 $r_{be} = rac{u_{be}}{i_b} igg|_{u_{ce} = 0}$ Диференциално входно съпротивление при късо съединение в изхода по променлив ток

$$r_{ce} = \frac{u_{ce}}{i_c} \bigg|_{i_b = 0}$$

 $r_{ce} = rac{u_{ce}}{i_c} igg|_{i_b=0}$ Изходно съпротивление при отворена входна верига по променлив ток

Работа при високи честоти

При високи честоти върху поведението на транзистора започват да оказват влияние:

- инерционността на процесите на пренасяне на токоносителите от емитерния до колекторния преход
- капацитетите на преходите
- паразитните капацитети на корпуса и индуктивности на изводите

В резултат се наблюдава намаляване на амплитудата на изходния сигнал и изоставането му по фаза (закъсняване) спрямо входния.

За оценка на усилвателните свойства на транзистора при високи честоти се използват граничните честоти.

Гранична честота f_в

 f_{β} — гранична честота на коефициента на усилване по ток в схема ОЕ

$$\dot{\beta} = \frac{\beta_0}{1 + j\frac{f}{f_{\beta}}}$$

$$\beta = \frac{\beta_0}{\sqrt{1 + \left(\frac{f}{f_\beta}\right)^2}}$$

$$\varphi = -arctg \, \frac{f}{f_{\beta}}$$

Граничната честота f_{β} е честотота, при която модулът на диференциалния коефициент на усилване по ток в схема ОЕ β намалява $\sqrt{2}$ пъти спрямо стойността си при ниски честоти β_0 .

Tранзитна честота f_T

 f_T — транзитна честота. Тя се измерва лесно при честота $f>>f_{eta}$.

При честота $f > (2 - 5) f_{\beta}$ произведението на модула на диференциалния коефициент на усилване β и текущата честота е константа и се нарича транзитна честота f_{T} .

$$\beta f = \text{const} = f_T$$

Ако
$$f = f_T$$
, $\beta \approx 1$

Транзитната чесота f_T може да се дефинира и като честотата, при която модулът на коефициента β става приблизително единица.

Гранична честота f_a

 f_{a} — гранична честота на коефициента на усилване по ток в схема ОБ

$$\dot{\alpha} = \frac{\alpha_0}{1 + j\frac{f}{f_\alpha}}$$

$$\alpha = \frac{\alpha_0}{\sqrt{1 + \left(\frac{f}{f_\alpha}\right)^2}}$$

$$\varphi = -arctg \frac{f}{f_{\alpha}}$$

Граничната честота f_{α} е честотота, при която модулът на диференциалния коефициент на предаване по ток в схема ОБ α намалява $\sqrt{2}$ пъти спрямо стойността си при ниски честоти α_0 .

Връзка между граничните честоти

$$f_{\alpha} = (1, 2 - 2). f_{T}$$
$$f_{T} = \beta_{0}. f_{\beta}$$

Граничната чесота f_T се измерва лесно и от нея се определят останалите честоти.

Други гранични честоти

Други характерни честоти за транзистора са:

- **Гранична честота на стръмността** f_{gm} честотата, при която модулът на стръмността g_m спада $\sqrt{2}$ пъти спрямо стойността си при ниски честоти.
- Макимална честота при генериране f_{max} честотата, при която коефициентът на усилване по мощност за схема ОЕ става единица –

 $k_p = 1$. Над тази честота транзисторът престава да бъде активен елемент.

• Гранична честота на шума f_N – честотата, при която собствените шумове на транзистора намаляват 2 пъти.

Граничните честоти се подреждат по големина, както следва:

$$f_{\beta} < f_{gm} < f_N < f_T < f_{\alpha} < f_{\text{max}}$$

Система у-параметри

За анализ на усилвателни стъпала при високи честоти и малки променливи сигнали се използват четириполюсни *у*-параметри.

$$\begin{vmatrix} i_1 = y_{11}u_1 + y_{12}u_2 \\ i_2 = y_{21}u_1 + y_{22}u_2 \end{vmatrix}$$

Система с у-параметри

у – параметрите имат различни стойности за различни схеми на свързване на транзистора. Използват се за анализ на схеми при честоти до 300 MHz.

у-параметри – дефиниции

$$y_{11} = \frac{i_1}{u_1} \mid u_2 = 0$$

 $y_{11} = rac{i_1}{u_1} igg|_{u_2 = 0}$ Входна проводимост при късо съединение в изхода по променлив ток

$$y_{12} = \frac{i_1}{u_2} \bigg|_{u_I = 0}$$

 $y_{12} = \frac{i_1}{u_2} igg|_{u_I = 0}$ Обратна проходна проводимост при късо съединение на входа по променлив ток

$$y_{21} = \frac{i_2}{u_1} \bigg|_{u_2 = 0}$$

 $y_{21} = rac{i_2}{u_1}igg|_{u_2=0}$ Права проходна проводимост (стръмност) при късо съединение в изхода по променлив ток

$$y_{22} = \frac{i_2}{u_2} \bigg|_{u_1 = 0}$$

 $y_{22} = rac{i_2}{u_2} igg|_{u_I = 0}$ Изходна проводимост при късо съединение на входа по променлив ток

Съществува връзка между *у*- и *h*-параметри.

Еквивалентна схема с у-параметри

Еквивалентна схема на транзистора с у - параметри при **високи честоти** и **малък променлив** входен сигнал

Недостатък – у- параметрите зависят от честотата.

Еквивалентна схема на Джиаколето

 $r_{h'h}$ – обемно съпротивление на базата

 $C_{b^{\,\prime}e}$ — дифузен капацитет на емитерния преход

 $C_{b^{\,\prime}c}$ – бариерен капацитет на колекторния преход

 $r_{h'c}$ – отчита ефента на Ърли

 r_{ce} — изходно съпротивление

 g_m — стръмност на транзитора

В.ч. еквивалентна схема за ОБ

Еквивалентна схема на транзистора в схема ОБ с физични параметри при високи честоти и малък променлив входен сигнал

Тези еквивалентни схеми се използват за анализ на усилвателни стъпала при честоти не превишаващи половината от транзитната честота на използвания транзистор.