

Introduction

ESG has become a popular term since it was first coined in 2005. ESG investing attracts socially responsible investors who want to see their investing result in a positive social impact. In 2021, US sustainable fund assets value was seven times the value of 2013, growing from under \$100 billion to \$357 billion. 51% of the growth happens between December 2020 and December 2021.

ESG includes three non-financial factors: Environmental, Social, and Governance. The environmental aspect concerns whether the firm is environmentally friendly by evaluating whether a firm takes action to conserve natural resources. The Social factor considers a firm's social responsibility, such as labor standards. Governance is a way to measure the structure of a firm in terms of incentivizing, compensation, etc. All three factors combined to convey the idea of sustainable investing. Firms with higher ESG scores are perceived to be more healthy and could survive longer in the financial market since they are less likely to be involved in negative social impacts.

Now that ESG attracts more and more investment inflows, we would like to see whether using ESG as a stock selection criterion could generate positive alpha. We would like to test whether a firm disclosing its ESG activities will affect its return, how much variation in stocks' return could be explained by the Environmental, Social, and Governance factors individually and mutually, and whether an upgrading or degrading in ESG score will lead to changes in stock returns.

Data

Bloomberg, CRSP, Kenneth French are the three major data resources that we use. We also collect search interests data about ESG from 2015 to 2022 on Google Trends.

Bloomberg provides its proprietary Environmental, Social, and Governance scores and their subdivision scores from 2015 to the present based on the extent of a company's data disclosure.

The score ranges from 0 to 10 evaluating the company's aggregated Environmental, Social or Governance performance. We collect the respective Environmental, Social, and Governance scores for each component in the S&P 500 index from 2015 to October 2022. However, we cannot get general ESG scores from Bloomberg since it does not provide historical data for such entries. Therefore, we combine the individual Environmental, Social, and Governance scores by taking average to get a representative for the general ESG score.

Since we are evaluating the relationship between ESG scores and securities' returns, we also download the monthly return of each security in the S&P 500 index between 2015 and 2022 from CRSP in WRDS. We could use Bloomberg to extract such data for consistency, but we are afraid that such behavior could result in more than the Bloomberg data limit. To test whether the alpha generated by our trading strategy is indeed brought by the ESG factors or by other embedded factors such as Fama-French three factors, we also gather the Fama-French three factors data and risk-free rate from Kenneth French data library.

To avoid selection bias, we only download the ESG scores and returns of a company in a particular year if the company is in the S&P 500 of that year. For example, if company A is included in the S&P 500 index in 2017, only its 2017 ESG scores and returns are downloaded.

Data for company A in time periods between 2015 and 2022, excluding 2017, are not provided.

In the eight years data range, we use the first six years (2015 - 2020) as our training data to select our trading strategy. The following two years (2021 and 2020) will be used as a test set where we apply our strategy and get the return and alpha.

Methodology

To find the model relevant to ESG that could explain the most variation in stock returns, we first conduct seven simple regressions. We use the yearly stock returns for stocks in the S&P 500 index from 2015 to 2020 as the response variable in our regressions.

The first regression's explanatory variable is an indicator variable that equals 0 if the company does not provide any data on the Environmental, Social, and Governance score and one if all three scores are disclosed. We use this regression to test whether disclosing the ESG-related activities or not has an effect on the stock returns. Then we conduct regressions of each of the three scores to see how much variation could be explained by each score individually. We also test the average of the three scores' relationship with stock return and the rank of the average scores' relationship with the return.

The last regression is called ESG momentum, which uses the difference of average ESG cores between two adjacent years. In our expectation, if a company gets involved in certain events that significantly improve or decrease its ESG scores, this would be reflected in its stock return.

The formulas for all simple regression equations are listed below:

 $r_{i,t} = \alpha + \beta * I_{i,t} + \varepsilon$, using the indicator variable as X;

 $r_{i,t} = \alpha + \beta * E_{i,t} + \varepsilon$, using the Environmental Pillar Score as X;

 $r_{i,t} = \alpha + \beta * S_{i,t} + \varepsilon$, using the Social Pillar Score as X;

 $r_{i,t} = \alpha + \beta * G_{i,t} + \varepsilon$, using the Governance Pillar Score as X;

 $r_{i,t} = \alpha + \beta * ESG_{i,t} + \varepsilon$, using the average ESG score as X;

 $r_{i,t} = \alpha + \beta * Rank_{i,t} + \varepsilon$, using the rank of average ESG score as X;

 $r_{i,t}=\alpha+\beta*Diff_{i,t}+\varepsilon$, using the difference of average ESG score between two adjacent years as X.

We also examined how much variations in stock return could be attributed to the three factors mutually by conducting a multiple linear regression which contains Environmental, Social, and Governance Pillar Sore as regressors. The formula for such multiple regression is provided as follows:

 $r_{i,t} = \alpha + \beta_1 * E_{i,t} + \beta_2 * S_{i,t} + \beta_3 * G_{i,t} + \varepsilon$, using the Environmental Pillar Score, Social Pillar Score and Governance Pillar Score as \underline{X} .

Among all the models, we choose the model with the highest R-squared and relatively significant factors as our trading model. We run a regression again using a two-year window (t0, t1), select stocks based on the ESG score of the next year (t2), and plot the ESG weighted average return of our selected stocks. In our strategy, we long the stocks with the top one-third ESG scores and short the bottom one-third.

Regression analysis

All the regressions' r-squared are not very significant since most of them are not different from 0. The most significant r-squared 0.01 is obtained from the multi-regression model with all three factors as independent variables. Even in the best model, only 1% of the change in stock returns could be explained by the ESG scores. It seems that ESG scores do not perform well in

explaining the variations in stock returns because the ESG score related information does not capture most of the events that change returns.

In the first regression with the indicator variable, the r-squared is 0.001, and only the indicator is significant at a 10% significance level. This indicates that the regression with only the dummy variable is not a very good model in predicting stock returns.

OLS Regression Re	sults						
Dep. Variable	:	Re	turn	R-	squared:	0.	.001
Model	:		OLS	Adj. R∹	squared:	0.	.001
Method	: L	east Squ	ares	F-	statistic	3.	.341
Date	: Tue,	29 Nov 2	2022 P	rob (F-s	statistic):	0.0	677
Time	:	14:0	9:15	Log-Lil	celihood:	-66	12.2
No. Observations	:	2	2978		AIC:	1.323e	+04
Df Residuals	:	2	2976		BIC	1.324e	+04
Df Model	:		1				
Covariance Type	:	nonro	bust				
	coef	std err	t	P> t	[0.025	0.975]	
const 0	.1005	0.142	0.710	0.478	-0.177	0.378	
ESG_Indicator 0	.2702	0.148	1.828	0.068	-0.020	0.560	
Omnibus:	5018.7	14 D ı	urbin-W	atson:		1.999	
Prob(Omnibus):	0.0	00 Jaro	μe-Ber	a (JB):	2906516	6.254	
Skew:	11.5	30	Pro	b(JB):		0.00	
Kurtosis:	154.3			d. No.		6.79	

Regression results for $r_{i,t} = \alpha + \beta * I_{i,t} + \varepsilon$

Among the Environmental Pillar Score, Social Pillar Score, and Governance Pillar Score, Governance plays the best role in explaining the variations in return since the regression with only the Governance Pillar score has the highest r-squared value (0.007) and both the intercept and the variable are significant with P-values almost equal to 0. However, the other two regressions have a very low r-squared, and the independent variable is not substantial (P-value near 0.2).

								0100							
OLS Regression Res	sults							OLS Regression Re	suits						
Dep. Variable:	:	Return		R-squa	red:	0.001		Dep. Variable	:	Return	1	R-squ	ared:	0.00)1
Model		OLS	Adj. I	R-squa	red:	0.000		Model	:	OLS	Adj	. R-squ	ared:	0.00)0
Method	: Least	Squares		F-stati:	stic:	1.648		Method	: Lea	st Squares	3	F-stat	tistic:	1.76	6
Date	: Tue, 29 N	Nov 2022	Prob (F	-statis	stic):	0.199		Date	: Tue, 29	Nov 2022	Prob	(F-stat	istic):	0.18	34
Time	:	14:09:15	Log-	Likelih	ood:	-6177.9		Time		14:09:15	Log	g-Likelil	nood:	-6177	.9
No. Observations:	:	2731			AIC:	1.236e+04		No. Observations	:	2731			AIC:	1.236e+0)4
Df Residuals:	:	2729			BIC:	1.237e+04		Df Residuals	:	2729)		BIC:	1.237e+0)4
Df Model		1						Df Model		1					
Covariance Type:	: n	onrobust						Covariance Type	:	nonrobust	t				
		_													
		coef	std err	t	P> t	[0.025	0.975]		coef	std err	t	P> t	[0.02	5 0.975]	
	const	0.3020	0.070	4.341	0.000	0.166	0.438	const	0.4535	0.077	5.921	0.000	0.303	0.604	
ENVIRONMENTAL	_SCORE	0.0281	0.022	1.284	0.199	-0.015	0.071	SOCIAL_SCORE	-0.0325	0.024	-1.329	0.184	-0.08	0.015	
Omnibus:	4510.048	Durbir	ı-Watsor	ı:	2.0	04		Omnibus:	4510.453	Durbi	n-Watse	on:	2.0	005	
Prob(Omnibus):	0.000	Jarque-	Bera (JB)	: 226	3725.0	22		Prob(Omnibus):	0.000	Jarque-	·Bera (J	B): 22	60050.2	205	
Skew:	11.079		Prob(JB)):	0.	00		Skew:	11.082		Prob(J	B):	0	.00	
Kurtosis:	142.293	(Cond. No		5.	28		Kurtosis:	142.176		Cond. I	•	5	.76	

Regression results for $r_{i,t} = \alpha + \beta * E_{i,t} + \varepsilon$

Regression results for $r_{i,t} = \alpha + \beta * S_{i,t} + \varepsilon$

OLS Regression Results

OLS Regression Resi	JILS								
Dep. Variable:		Ret	urn		R-sq	uared:	C	.007	
Model:		С	LS	Ad	lj. R-sq	uared:	C	.007	
Method:	Le	east Squa	res		F-sta	atistic:	2	1.16	
Date:	Tue,	29 Nov 20)22 I	Prob	(F-sta	tistic):	4.40	e-06	
Time:		14:09	:15	Lo	g-Likel	ihood:	-64	35.7	
No. Observations:		28	882			AIC:	1.288	e+04	
Df Residuals:		28	880			BIC:	1.289	e+04	
Df Model:			1						
Covariance Type:		nonrob	ust						
		coef	std (err	t	P> t	[0.02	25 0	.975]
c	onst	2.1914	0.4	01	5.470	0.000	1.40)6 2	2.977
GOVERNANCE_SC	ORE	-0.2573	0.0	56	-4.600	0.000	-0.36	37 -0	0.148
Omnibus: 4	804.69	92 D ui	bin-V	Vats	on:	2.	010		
Prob(Omnibus):	0.00	00 Jarq ı	іе-Ве	ra (JB): 20	315545.	955		
Skew:	11.28	33	Pr	ob(JB):	C	0.00		
Kurtosis:	148.84	19	Co	nd.	No.	6	9.5		
D		1.	c						

Regression results for $r_{i,t} = \alpha + \beta * G_{i,t} + \varepsilon$

We also compare the regression results between models using average ESG scores and using the rank of the average score. The regression results are almost identical. Both models

have near 0 r-squared values and only have significant intercepts. The p-values for the models use rank or not are 26.1% and 34.5%, respectively. They cannot be used as a reliable model for predicting returns.

OLS Regression Re	esults						
Dep. Variable):	Retur	1	R-squ	ared:	C	0.000
Mode	l:	OLS	Adj	j. R-squ	ared:	-0	0.000
Method	l: Leas	st Square:	3	F-sta	tistic:	0.	8926
Date	: Tue, 29	Nov 2022	2 Prob	(F-stat	istic):	C	0.345
Time):	14:09:1	5 Log	g-Likelil	hood:	-61	76.6
No. Observations	s :	2730)		AIC:	1.236	e+04
Df Residuals	s:	2728	3		BIC:	1.237	e+04
Df Mode	l:		I				
Covariance Type):	nonrobus	t				
	coef	std err	t	P> t	[0.02	5 0.97	75]
const	0.5197	0.164	3.173	0.002	0.19	9 0.8	41
ESG_Score_Avg	-0.0369	0.039	-0.945	0.345	-0.11	3 0.0	40
Omnibus:	4507.512	Durbi	n-Wats	on:	2.	.004	
Prob(Omnibus):	0.000	Jarque	Bera (J	B): 22	54742.	493	
Skew:	11.076		Prob(J	B):	(0.00	
Kurtosis:	142.037						

Dep. Variable:		Retu	'n	R-squ	ared:	0.0	00
Model:		OL	S Adj	j. R-squ	ared:	0.0	00
Method:	Leas	st Square	es	F-sta	tistic:	1.2	67
Date:	Tue, 29	Nov 202	2 Prob	(F-stat	istic):	0.2	61
Time:		14:09:1	5 Lo g	g-Likeli	nood:	-6176	5.4
No. Observations:		273	80		AIC:	1.236e+	04
Df Residuals:		272	!8		BIC:	1.237e+	04
Df Model:			1				
Covariance Type:		nonrobu	st				
		coef	std err	t	P> t	[0.025	0.975
	const	0.2809	0.091	3.075	0.002	•	
ESG_Score_Ranki	ng_Avg	0.0005	0.000	1.125	0.261	-0.000	0.001
Omnibus:	4507.651	Durb	oin-Wats	on:	2.0	005	
Prob(Omnibus):	0.000	Jarque	e-Bera (J	B): 22	55300.	413	
Skew:	11.076		Prob(J	B):	0	.00	
Kurtosis:	142.054		Cond. I	No.	4	69.	

Regression results for $r_{i,t} = \alpha + \beta * ESG_{i,t} + \varepsilon$ Regression results for $r_{i,t} = \alpha + \beta * Rank_{i,t} + \varepsilon$

The final simple regression is the one that we expect would work best, however, the result is not inline with our expectation. The p-value for the coefficient of the ESG momentum model is 30.9%, which is not significant. Also, the r-squared is still near 0.

OLS Regression Results

Dep. Variab	le:	F	Return	R	l-square	d: 0	.000
Mod	el:		OLS	Adj. R	-square	d: -0	.000
Metho	d:	Least Sc	quares	F	-statisti	i c: 0.9	235
Dat	te: We	d, 30 Nov	2022	Prob (F	-statistic	c): 0	.337
Tim	ne:	13:	:40:49	Log-L	ikelihoo	d: -48	19.8
No. Observation	ıs:		2197		Al	C: 9	644.
Df Residua	ls:		2195		ВІ	C: 9	655.
Df Mod	el:		1				
Covariance Typ	e:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]	
const	0.3382	0.051	6.595	0.000	0.238	0.439	
ESG_Diff_Avg	0.0879	0.091	0.961	0.337	-0.091	0.267	
Omnibus:	3569.	000 D	urbin-V	Vatson:		0.402	
Prob(Omnibus):	0.0	000 Jar	que-Be	ra (JB):	150126	80.544	
Skew:	10.	702	Pr	ob(JB):		0.00	
Kurtosis:	129.	260	Co	nd. No.		2.12	

Regression results for $r_{i,t} = \alpha + \beta * Diff_{i,t} + \varepsilon$

As we mentioned above, the multi-regression model gives the best result in predicting return changes. It has the highest r-squared value among all the models (0.01). And this higher r-squared value is not only brought by adding more factors compared with the previous models, since the adjusted r-squared is 0.009, still the highest among all the models. The intercept, Environmental Pillar Score, and Governance Pillar Score are all significant at a 5% significance level. The only concern about this model is that the Social Pillar Score has a non-significant P-value of 19.1%.

OLS Regression Results

Dep. Variable:		Return	F	t-square	d:	0.010	
Model:		OLS	Adj. F	t-square	d:	0.009	
Method:	Leas	t Squares	F	-statist	ic:	9.000	
Date:	Tue, 29	Nov 2022	Prob (F	-statisti	c): 6.	27e-06	
Time:		14:09:15	Log-L	.ikelihoo	d: -	6163.5	
No. Observations:		2730		Al	C: 1.2	34e+04	
Df Residuals:		2726		ВІ	C: 1.23	36e+04	
Df Model:		3					
Covariance Type:	r	nonrobust					
		coef	std err	t	P> t	[0.025	0.975]
	const	coef 2.3174	std err 0.423	t 5.478	P> t 0.000	[0.025 1.488	0.975] 3.147
ENVIRONMENTAL				-	• • •		
		2.3174	0.423	5.478	0.000	1.488	3.147
	_SCORE	2.3174	0.423	5.478 2.390	0.000	1.488	3.147 0.102
SOCIAL	_SCORE	2.3174 0.0562 -0.0346 -0.2802	0.423 0.024 0.026 0.060	5.478 2.390 -1.308 -4.644	0.000 0.017 0.191	1.488 0.010 -0.086	3.147 0.102 0.017
SOCIAL	_SCORE	2.3174 0.0562 -0.0346 -0.2802	0.423 0.024 0.026	5.478 2.390 -1.308 -4.644	0.000 0.017 0.191	1.488 0.010 -0.086	3.147 0.102 0.017
SOCIAL	_SCORE	2.3174 0.0562 -0.0346 -0.2802	0.423 0.024 0.026 0.060	5.478 2.390 -1.308 -4.644	0.000 0.017 0.191 0.000	1.488 0.010 -0.086	3.147 0.102 0.017
SOCIAL GOVERNANCE Omnibus:	SCORE SCORE	2.3174 0.0562 -0.0346 -0.2802 Durbing	0.423 0.024 0.026 0.060	5.478 2.390 -1.308 -4.644 :	0.000 0.017 0.191 0.000 2.022	1.488 0.010 -0.086	3.147 0.102 0.017

Regression results for $r_{i,t} = \alpha + \beta_1 * E_{i,t} + \beta_2 * S_{i,t} + \beta_3 * G_{i,t} + \varepsilon$

The p-values and adjusted r-squared values for each model are provided in the table below for easier comparison.

	Independent Variable	P-value	Adjusted R-squared
	$I_{i,t}$	0.068	0.001
	$E_{i,t}$	0.199	0.000
	$S_{i,t}$	0.184	0.000
Simple Regression	$G_{i,t}$	0.000	0.007
	$\textit{ESG}_{i,t}$	0.345	-0.000
	$Rank_{i,t}$	0.261	0.000
	$Diff_{i,t}$	0.337	-0.000
	$E_{i,t}$	0.017	
Multiple Regression	$S_{i,t}$	0.191	0.009
	$G_{i,t}$	0.000	

Strategy

Since we know the multiple regression model could explain the stock return variations best among all the models, we build our strategy based on this model. We use a two-year window (t0, t1) of yearly Environmental, Social, and Governance scores and the annual returns of stocks in the S&P 500 to conduct regression and get the regression coefficients. Combining these coefficients with ESG scores of the following year (t2), we calculate the weighted ESG scores and use them as a criterion for stock selection (The weighted ESG scores calculation formula is provided below). Then in the following year (t3), we long the stocks whose weighted ESG scores are in the top one-third in t2 and short the stocks whose weighted ESG scores are in

the bottom one-third in t2. There is a year lag because we cannot get the ESG scores at the beginning of each year since those scores are normally published in the latter half of each year.

Weighted ESG score formula:

$$r_{i,t_{0/1}} = \alpha + \beta_1 * E_{i,t_{0/1}} + \beta_2 * S_{i,t_{0/1}} + \beta_3 * G_{i,t_{0/1}} + \varepsilon$$

$$ESG_{weighted,i,t_2} = \alpha + \beta_1 * E_{i,t_2} + \beta_2 * S_{i,t_2} + \beta_3 * G_{i,t_2}$$

We believe the transaction cost is negligible in our strategy because we only trade those stocks listed in the S&P 500 index. These stocks are highly liquid, making them easy to buy and borrow. Many brokers offer free commission services for trading them.

Strategy performance

We plotted the monthly return and the cumulative monthly return of our strategy from 2018 to 2022. 2018 is the first year that we can get our strategy return using the historical data in 2015 and 2016 for regression coefficients and 2017's ESG score. Then we calculate the returns using a rolling window of 1 year. Therefore, we can back-test our strategy returns for 2018, 2019, and 2020. We also tested our strategy in 2021 and 2022. The combined plots for the training and validating period return are shown below:

We can see that the monthly return ranges from -0.1 to 0.1, and the cumulative return ranges from -0.1 to 0.3. During the year 2021, the cumulative return dramatically increases with a considerable return jump of 0.2. Both the monthly and cumulative returns achieved their lowest value in March 2020, following a rapid decrease within three months.

The annualized return and volatility are calculated below. Only the returns of 2018 and 2022 are slightly negative. We also compute the mean return, volatility, monthly and annually sharpe ratio over the period of training, testing and whole dataset. The strategy performs better over the training period since this period has higher mean return and Sharpe ratio compared with that of the testing period.

	Annualized total return	Annualized volatility
2018	-0.0125	0.0618
2019	0.0878	0.051
2020	0.1191	0.1842
2021	0.0995	0.0507
2022	-0.0593	0.1045

	Mean	Vol	SR(mth)	SR(annual)
Train	0.0044	0.0332	0.1338	0.4634
Validation	0.0014	0.0235	0.0607	0.2102
Full	0.0033	0.0297	0.111	0.3845

Testing alpha by CAPM and Fama-French models

Using our selected stocks' returns as dependent variables, we run regressions using market and Fama-French factors. We want to confirm whether our returns are really generated by the strategy, or they are driven by the whole market and other factors.

The regression results are shown below:

								Dep.	Variable	exces	s_strateg	_return	- 1	R-squared:	0.920
Dep.	Variable	exces	s_strateg	y_return	1	R-square	d: 0.886		Mode	l:		OLS	Adj. l	R-squared:	0.915
	Model			OLS	Adj.	R-square	d: 0.884		Method	l:	Least S	Squares		F-statistic:	206.8
	Method	:	Least 9	Squares		F-statisti	c: 436.3		Date	e: \	Ved, 30 N	ov 2022	Prob (F	-statistic):	1.42e-29
	Date	· v	Ved, 30 N	ov 2022	Prob (I	F-statistic): 4.15e-28		Time):	0	0:14:32	Log-	Likelihood:	195.4
	Time		0	0:12:19	Log-	Likelihoo	d: 185.26	No. Obse	ervations	5 :		58		AIC:	-382.9
No. Obse	ervations			58		AIG	-366.5	Df R	esiduals	i:		54		BIC:	-374.6
Df R	tesiduals:	:		56		ВІС	C: -362.4	ı	Of Mode	l:		3			
ı	Df Model:	:		1				Covaria	nce Type	:	no	nrobust			
Covaria	nce Type:		no	nrobust					coef	std en	· t	P> t	[0.025	0.975]	
	coef	std err	t	P> t	[0.025	0.975]		const	-0.0004	0.001	-0.367	0.715	-0.003	0.002	
const	-0.0007	0.001		•	-0.003	0.002		Mkt-RF	0.4719	0.022	21.572	0.000	0.428	0.516	
Mkt-RF	0.4992	0.024			0.451	0.547		SMB	0.1309	0.043	3.046	0.004	0.045	0.217	
								HML	0.0722	0.026	2.746	0.008	0.020	0.125	
	nnibus:	8.809		-Watsor		958				4 705			0.000		
Prob(Om	nibus):	0.012	Jarque-E	Bera (JB): 20.	122			nnibus:		Durbin-				
	Skew:	-0.010		Prob(JB): 4.27e	e-05		Prob(Om	,		Jarque-B				
Κι	urtosis:	5.885	c	ond. No). ·	18.0			Skew:				0.154		
								Ku	ırtosis:	3.449	C	ond. No.	39.4		

CAPM regression

Fama-French 3 factor model

Dep. \	/ariahle							
	rai iabio	: exces	s_strategy	_return	В	-square	ed: 0.92	0
	Model	:		OLS	Adj. R	-square	ed: 0.91	3
	Method	:	Least S	quares	F	-statist	tic: 120.	.0
	Date	: V	Ved, 30 No	v 2022	Prob (F	i c): 2.65e-2	?7	
	Time	:	0	0:15:46	Log-L	ikelihoo	od: 195.5	5
No. Obser	No. Observations:			58		A	IC: -379.	.1
Df Re	Df Residuals:			52		В	IC: -366.	.7
D	Df Model:			5				
Covarian	Covariance Type		nor	nrobust				
	coef	std err	t	P> t	[0.025	0.975]		
const	-0.0004	0.001	-0.355	0.724	-0.003	0.002		
Mkt-RF	0.4675	0.024	19.338	0.000	0.419	0.516		
SMB	0.1377	0.052	2.664	0.010	0.034	0.241		
HML	0.0742	0.040	1.844	0.071	-0.007	0.155		
RMW	0.0224	0.060	0.372	0.711	-0.098	0.143		
CMA -	-0.0144	0.062	-0.233	0.817	-0.138	0.109		
Omi	nibus:	5.857	Durbin-\	Watson:	2.389			
Prob(Omn	ibus):	0.053	Jarque-Be	era (JB):	4.870			
;	Skew:	0.652	Pi	rob(JB):	0.0876			
Kur	tosis:	3.561	Co	nd. No.	68.0			

Fama-French 5 factor model

The above three regressions show quite high r-squared values, indicating that over 88.6% of variations in our strategy returns could be explained by the market and other factors. Also, the constant coefficients are all negative, which means that our strategy did not perform better than the CAPM and Fama-French models. However, the above conclusion should be built on a hypothesis that the P-value of these three regressions' constant coefficients should be small and significant, which is not the case in our regressions. Therefore, we cannot conclude that the alphas are significantly different from 0, or our strategy can generate higher or lower returns compared with CAPM and Fama.

Further exploration

Based on our previous strategy, we want to test a more aggressive method. Since the ESG topic is gaining popularity year by year, we would like to know whether the public's attention will contribute to ESG stocks' return. Google Trends provides data showing the search interests of a specific topic. "A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 means there was not enough data for this term." We find that the general trend of our previous strategy's cumulative return and ESG search time in google are similar. The graph is provided below.

Based on our previous strategy, we added constraints. If the growth rate of search time's maximum over a certain year is larger than 0.4, we add two times leverage to our strategy (the return of our chosen stocks doubled). If the growth rate of search time's maximum over a certain year is larger than 0.3, we add 1.5 times leverage to our strategy (the return of our chosen stocks doubled). In our examination, we find that the lowest value among the five years (2018 - 2022)

maximum growth rate is 0.25. Therefore, the aggressive strategy almost adds leverage every year.

We plotted the new strategy's return and calculated the mean, volatility, monthly Sharpe ratio, and annualized Sharpe ratio for the previous strategy.

Because of the effect of leverage, the returns' range expanded from [-0.1,0.3] to [-0.2,0.6], and the extreme low and high returns were all doubled.

	Annualized total return_l	Annualized volatility_l
2018	-0.02	0.0927
2019	0.1334	0.0764
2020	0.2122	0.3685
2021	0.2051	0.1014
2022	-0.0905	0.1567

	Mean_l	Vol_l	SR(mth)_I	SR(annual)_I
Train	0.0091	0.0637	0.142	0.492
Validation	0.0045	0.0385	0.1171	0.4057
Full	0.0073	0.0552	0.1328	0.4601

The most significant change to our previous conservative strategy is that the difference of performance between training period and testing period is narrower. The performance during the validation period greatly improved with an increase of annualized sharpe ratio from 0.21 to 0.41.

We also conduct the CAPM regression and Fama-French models to test the alphas. The regression results are provided below:

CAPM regression

Fama-French 3 factor model

Dep. Variable:		: lev_e	xcess_stra	tegy_ret	urn	R-sq	uared:	0.867
Model:		:		С	LS A	dj. R-sq	uared:	0.855
	Method	:	Lea	ast Squa	res	F-sta	atistic:	68.08
	Date	:	Wed, 3	0 Nov 20)22 Pr	ob (F-sta	tistic):	1.32e-21
Time:		:		13:40	:52 L	.og-Likel	ihood:	144.85
No. Observations:		:			58		AIC:	-277.7
Df Residuals:		:			52		BIC:	-265.3
Df Model:		:			5			
Covaria	nce Type	:		nonrob	ust			
	coef	std er	r t	P> t	[0.025	0.975]		
const	0.0006	0.003	0.196	0.845	-0.005	0.006		
Mkt-RF	0.8239	0.058	3 14.217	0.000	0.708	0.940		
SMB	0.2997	0.124	2.419	0.019	0.051	0.548		
HML	0.1518	0.096	1.574	0.122	-0.042	0.345		
RMW	0.0939	0.144	0.652	0.517	-0.195	0.383		
CMA	-0.0225	0.148	3 -0.152	0.880	-0.319	0.274		
Omnibus: 7		7.470	Durbin-\	Watson:	2.37	6		
Prob(Om	nibus):	0.024	Jarque-Be	era (JB):	6.80	7		
	Skew:	0.665	P	rob(JB):	0.033	3		
Kı	urtosis:	4.024	Co	nd. No.	68.0	ס		

Fama-French 5 factor model

The results are not quite different from our previous strategy. All three regressions have high r-squared values and non-significant alphas. However, this time the alphas are positive rather than negative.

Conclusion

Both our aggressive and conservative trading strategies cannot produce a significant alpha over CAPM and Fama-French models. The r-squared values generated by regressions using ESG-related factors are always low. Therefore, we believe ESG alone cannot be used as a solid trading criterion. Combining it with other factors may work better.

References

- 1. Google trends. (n.d.). Retrieved November 30, 2022, from https://trends.google.com/trends/explore?q
- 2. Can esg add alpha? MSCI. (n.d.). Retrieved November 30, 2022, from https://www.msci.com/www/blog-posts/can-esg-add-alpha-/0182820893