

Winning Space Race with Data Science

Done by: Geetha Shashank Pericherla Submitted on: 14th Oct,2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection
- Data wrangling
- Data Analysis using SQL
- EDA with data visualization
- Visual Analytics with Folium
- Predictive analysis (Classification)

Summary of all results

- Interactive Visual Analytics
- Exploratory Data Analysis using SQL
- Predictive analysis using a machine learning model

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars, other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if you can accurately predict the likelihood of the first stage rocket landing successfully, you can determine the cost of a launch. With the help of your Data Science findings and models, the competing start-up you have been hired by can make more informed bids against SpaceX for a rocket launch.

Problems you want to find answers

- Determined the price of each launch.
- Predict if the Falcon 9 first stage will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - Rest API and Web Scraping
- Perform data wrangling
 - Data are clean of null values, and irrelevant columns and transformed into one Hot Encoding to be applied to Machine Learning.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Use RL, KNN, SVM, DT models have been built and evaluated for the best classifier.

Data Collection

- •Data that is collected launch data from SpaceX REST API.
- The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.

Data Collection - SpaceX API

1) Request the Falcon9 Launch Wiki page from its URL

2) Extract all column/variable names from the HTML table header

In [15]: # # Use the find_all function in the BeautifulSoup object, with element type "table"
Assign the result to a list called html_tables html_tables = BeautifulSoup.findAll('table')
html_tables

Check the extracted column names

In [29]: M print(column_names)

['Flight No.', 'Date and time ()', 'Launch site', 'Payload', 'Payload mass', 'Orbit', 'Customer', 'Launch outcome']

3) Create a data frame by parsing the launch HTML tables

Remove an irrelvant column
del launch_dict['Date and time ()']

Do [111] M contracted, row of Market State of the Contract of

4) Convert to dataframe then to csv

In [32]: M dfmpd,DataFrase(Launch_dict)
df

Cut[92]: Flight Launch Peyload Payload Orbit Customer Launch Outcome Blooder landing Date Time

| Description |

Data Collection - Scraping

1) Request the Falcon9 Launch Wiki page from its URL

response = requests.get(static_url)

Creade a BeautifulSoup object from the HTML response

In [9]: M # Use BeautifulSoup() to create a BeautifulSoup object from a response text content

BeautifulSoup = BeautifulSoup(response.content)

Print the page title to verify if the BeautifulSoup object was present properly

In [11]: M # Use Soup.firit attribute
BeautifulSoup.title

Out[11]:
Cut[11]:

Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11]:
Cut[11

2) Extract all column/variable names from the HTML table header

In [15]: # We the find_all function in the BeautifulSoup object, with element type "table"
Assign the result to a list called "html_tables"
html_tables = BeautifulSoup.findAll('table')
html_tables

Check the extracted column names

In [29]: M print(column_names)

['Flight No.', 'Date and time ()', 'Launch site', 'Payload', 'Payload mass', 'Orbit', 'Customer', 'Launch outcome']

3) Create a data frame by parsing the launch HTML tables

e]: M launch_dict= dict.fromkeys(column_names)

Remove an irretvant column
del launch dict['Date and time ()']

In [11] W software the state of the source of the source of the state of the source of

4) Convert to dataframe then to csv

The [32]: H df-spd.DataFrame(launch_dict)
df

Gut[52]: Flight Launch Peyload Payload Orbit Customer Launch Version Booster Israeling Date Time

8 1 CCAFS Dregon Spacecraft Customer Customer Space Space Version Booster Israeling Date Time

9 1 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Booster Israeling Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Version Booster Unit 0 LEO Space Version Version Version Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Version Date Time

1 2 CCAFS Dregon Spacecraft Customer Unit 0 LEO Space Version Version Version Version Date Version Version Version Version Date Version Versio

Data Wrangling

EDA with Data Visualization

EDA with SQL

SQL queries you performed include:

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- · List the date when the first successful landing outcome in ground pad was acheived
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- · List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Build an Interactive Map with Folium

By using Marker Cluster, I'm able to add the markers having the same coordinate for launch outcomes to each site.

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

- Load the Dataset
- Standardize the data
- Split the data into training and testing data
- Create a model with a GridSearchCV object
- Calculation of accuracy on test data using method score
- Calculation confusion matrix
- Find the best accuracy with a model

Results

- •After analysis data the CCAFS SLC-40 site and KSCLC-39A site are has most successful launches from all the sites.
- Orbit GEO,HEO,SSOES L1 has the best Success Rate.
- •Decision Tree model are the best in terms of prediction accuracy for this dataset.

Flight Number vs. Launch Site

Visualize the relationship between Flight Number and Launch Site

We see that different launch sites have different success rates. But as we increase the number of flights the success rate increase.

Payload vs. Launch Site

Visualize the relationship between Payload and Launch Site

As well, if increase the number of we Pay Load Mass (kg) the success rate increase.

Success Rate vs Orbit Type

Visualize the relationship between success rate of each orbit type

• AS we can see ES-L1, GEO, HEO and SSO have a success rates 100%.

Flight Number vs. Orbit Type

Visualize the relationship between FlightNumber and Orbit type

Payload vs. Orbit Type

Visualize the relationship between Payload and Orbit type

There is a connection between ISSand payload in the range of 2000 to 3000. Also between GTE and Payload at 4000 to 8000.

Launch Success Yearly Trend

Visualize the launch success yearly trend

We can note in the figure that the launch sites begin to increase in success rate from 2013 to approximately 2018, decreases slightly, and then returns to increase with the passage of the year

All Launch Site Names

%sql SELECT DISTINCT(launch_site) FROM Spacex

Launch Site names beginning with "CCA"

• %sql SELECT * FROM Spacex WHERE launch_site LIKE'CCA%' LIMIT 5

landing_outcon	mission_outcome	customer	orbit	payload_masskg_	payload	launch_site	booster_version	timeutc_	DATE
Failure (parachut	Success	SpaceX	LEO	0	Dragon Spacecraft Qualification Unit	CCAFS LC- 40	F9 v1.0 B0003	18:45:00	2010- 04-06
Failure (parachut	Success	NASA (COTS) NRO	LEO (ISS)	0	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	CCAFS LC- 40	F9 v1.0 B0004	15:43:00	2010- 08- 1 2
No attem	Success	NASA (CRS)	LEO (ISS)	500	SpaceX CRS-1	CCAFS LC- 40	F9 v1.0 B0006	00:35:00	2012- 08-10
No attem	Success	NASA (CRS)	LEO (ISS)	677	SpaceX CRS-2	CCAFS LC- 40	F9 v1.0 B0007	15:10:00	2013- 01-03
No attem	Success	SES	GT0	3170	SES-8	CCAFS LC- 40	F9 v1.1	22:41:00	2013- 03-12

Total Payload Mass

%sql SELECT SUM(payload_mass__kg_) FROM Spacex WHERE customer='NASA (CRS)'

Average Payload Mass by F9 v1.1

 %sql SELECT AVG(payload_mass__kg_) FROM Spacex WHERE
 booster_version='F9 v1.1'

First Successful Ground Landing Date

 %sql SELECT MIN(DATE) FROM Spacex WHERE landing_outcome='Success (ground pad)'

1 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql SELECT booster_version FROM Spacex WHERE landing_outcome='Success (drone ship)'
 AND payload_mass_kg_BETWEEN 4000 AND 6000

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

• %sql SELECT COUNT(MISSION_OUTCOME) AS missionoutcomes FROM Spacex WHERE mission_outcome LIKE 'Success%'

%sql SELECT COUNT(MISSION_OUTCOME) AS missionoutcomes FROM Spacex WHERE mission_outcome LIKE 'Failure

Boosters Carried Maximum Payload

%sql SELECT booster_version AS Maxboosterversion FROM Spacex WHERE payload_mass__kg_=(SELECT MAX(payload_mass__kg_) FROM Spacex)

maxboosterversion
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1051.4
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

%sql SELECT landing__outcome,booster_version,launch_site,DATE FROM Spacex WHERE landing__outcome='Failure (drone ship)' AND EXTRACT(YEAR FROM DATE)='2015'

landing_outcome	booster_version	launch_site	DATE
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40	2015-10-01
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40	2015-04-14

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT landing__outcome , COUNT(landing__outcome) FROM Spacex WHERE DATE BETWEEN
 '2010-06-04' AND '2017-03-20' GROUP BY landing__outcome ORDER BY COUNT(landing__outcome)
 DESC

landing_outcome	2
No attempt	10
Success (drone ship)	6
Failure (drone ship)	5
Success (ground pad)	5
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	1
Precluded (drone ship)	1

All launch sites on the site map

launch sites by using Marker Cluster

Marker distance between the coastline point and the launch site

Total Success Launches

Launches for Hight site Score

Payload vs. All Launch

Classification Accuracy

As we can see Decision Tree has the highest accuracy with almost 0.89, then comes the remaining models with almost the same accuracy of 0.84.

Confusion Matrix

Measure	Derivations	Result
Precision	PPV = TP / (TP + FP)	0.67
Accuracy	ACC = (TP + TN) / (P + N)	0.89
F1 Score	F1 = 2TP / (2TP + FP + FN)	0.80

Conclusions

- After analysis data the CCAFS SLC-40 site and KSC LC-39A site are has most successful launches from all the sites.
- Orbit GEO, HEO, SSOES L1 has the best Success Rate.
- The payload of O kg to 5000 kg was more diverse than 6000 kg to 10000
- The Decision Tree model is the best in terms of prediction accuracy for this dataset.

References

- Confusion Matrix : https://onlineconfusionmatrix.com/
- Matplotlib Bar Plot : https://www.tutorialspoint.com/matplotlib/matplotlib bar plot.htm
- https://towardsdatascience.com/7-points-to-create-better-histograms-with-seaborn-5fb542763169
- https://www.researchgate.net/figure/Bar-chart-showing-the-performance-evaluation-in-our-data-loading-tests_fig4_268150621

