

概述

TM1624 是LED(发光二极管显示)驱动控制专用电路,内部集成有MCU数字接口、数据锁存 器、LED 高压驱动等电路。本产品性能优良,质量可靠。主要应用于VCR、VCD、DVD 及家庭影院 等产品的显示屏驱动。采用SOP24、SDIP24的封装形式。

二、 特性说明

- 采用功率CMOS 工艺
- 多种显示模式 (11 段×7 位 ~ 14 段×4 位)
- 辉度调节电路(占空比8 级可调)
- 串行接口(CLK, STB, DIN, DOUT)
- 振荡方式: 内置RC 振荡 (450KHz+5%)
- 内置上电复位电路
- 封装形式: SOP24、SDIP24

三、 管脚定义:

1	DIN CLK STB VDD SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG6 SEG7 SEG8	GRID1	24
2		GRID2	23
3		GND	22
4		GRID3	21
5		GRID4	20
6		GND	19
7		SEG14/GRID5	18
8		SEG13/GRID6	17
9		SEG12/GRID7	16
10		SEG11	15
11		SEG10	14
12		SEG9	13

图 (1)

四、管脚功能定义:

符号	管脚名称	说明
DIN	数据输入	在时钟上升沿输入串行数据,从低位开始;
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略
CLK	时钟输入	在上升沿读取串行数据,下降沿输出数据
SEG1~SEG11	输出(段)	段输出,p管开漏输出
GRID1∼ GRID4	输出(位)	位输出,N管开漏输出
SEG12/GRID7 ~ SEG14/GRID5	输出(段/位)	段/位复用输出
VDD	逻辑电源	5V ± 10%
GND	逻辑地	接系统地

TM1624

五、 显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到TM1624 的数据,地址从00H-0DH共14字节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

	Х	X	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
)	可位	:HU(高	XX)	氏四位]	xxHL(1	2		高四位	xHU(高	X	()	氐四位	HL(作	XX
	В7	В6	В5	B4	В3	B2	B1	В0	В7	В6	В5	B4	В3	B2	B1	В0
GRID1		HU	011			.HL	01			HU	00			HL	00	
GRID2		HU	031			HL	03			HU	02			HL	02	
GRID3		HU	051			HL	05			HU	04			HL	04	
GRID4		HU	071			'HL	07			HU	06			HL	06	
GRID5		HU	091			HL	09			HU	08			HL	08	
GRID6		HU	0Bl			BHL	0B			HU	0A			HL	0A	
GRID7		HU	ODI			HL	OD			HU	00			HL	0C	

图 (2)

六、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的指令。

	В7	B6	指令
	0	0	显示模式设置
	0	1	数据命令设置
		0	显示控制命令设置
P	1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)。

(1) 显示模式设置:

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示模式
0	0					0	0	4位14段
0	0		无关项	i -		0	1	5位13段
0	0		儿大坝	, 埧 0		1	0	6位12段
0	0					1	1	7位11段

测试模式设置

(内部使用)

TM1624

普通模式

测试模式

该指令用来设置选择段和位的个数(4~7位,11~14段)。当指令执行时,显示被强制关闭。要送显示 控制命令开显示,原先显示的数据内容不会被改变,但当相同模式被设置时,则上述情况并不发生。上电时, 默认设置模式为7位11段。

(2) 数据命令设置:

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

0

MSB							LSB			
	В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
	0	1	·				0	0	数据读写模式 设置	写数据到显示寄存器
	0	1	无关	项,		0			地址增加模式	自动地址增加
	0	1	填	0		1			设置	固定地址

(3) 地址命令设设置:

0

1

	MSB							LSB					
	В7	В6	В5	B4	В3	B2	B1	ВО	显示地址				
	1	1			0	0	0	0	00Н				
	1	1							0	0	0	1	01H
	1	1			0	0	1	0	02H				
	1	1			0	0	1	1	03H				
	1	1			0	1	0	0	04H				
	1	1			0	1	0	1	05H				
	1	1	无关		0	1	1	0	06H				
	1	1	填	0	0	1	1	1	07H				
9	1	1			1	0	0	0	08Н				
	1	1		~	1	0	0	1	09Н				
	1	1			1	0	1	0	OAH				
	1	1			1	0	1	1	0BH				
	1	1			1	1	0	0	0CH				
	1	1			1	1	0	1	ODH				

该指令用来设置显示寄存器的地址。

如果地址设为OEH 或更高,数据被忽略,直到有效地址被设定。 上电时,地址默认设为00H。

(4) 显示控制:

۷I	5	D
	VI	NS.

LSB

В7	В6	В5	B4	ВЗ	B2	B1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0	-			0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关项, 填 0			1	0	0		设置脉冲宽度为 11/16
1	0				1	0	1		设置脉冲宽度为 12/16
1	0		1 1 0		设置脉冲宽度为 13/16				
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月大以且	显示开

七、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)

八、 显示:

(1) 显示:

1、驱动共阴数码管:

图 (7)

TM1624

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平的时候让SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平, SEG7为低电平,

查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00Н
В7	В6	В5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图8给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2,GRID3,GRID4,GRID5,GRID6为低电平的时候让SEG1为高电平,在GRID7为低电平的时候让SEG1为低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	08H
0	0	0	0	0	0	0	1	OAH
0	0	0	0	0	0	0	0	ОСН
В7	В6	B5	B4	В3	B2	B1	В0	

▲注意: SEG1-11为P管开漏输出, GRID1-7为N管开漏输出, 在使用时候, SEG1-11只能接LED的阳极, GRID只能接LED的阴极, 不可反接。

TM1624

九、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕,"STB"不需要置高紧跟着传数据,最多14BYTE,数据传送完毕才将"STB"置高。

CLK								—
DIO	Command1	Command2	Command3	Datal	Data2	 Datan	Command4	
STB								

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Datal~ n: 传输显示数据至Command3地址和后面的地址内(最多14 bytes)

Command4: 显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址,最多14BYTE数据传送完毕,"STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5:显示控制命令

(3) 采用地址自动加1的程序设计流程图:

(4) 采用固定地址的程序设计流程图:

十. 应用电路:

1624驱动共阴数码屏硬件电路图 (9):

TM1624驱动共阳数码屏硬件电路图(10):

图(10)

- ▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1624芯片放置,加强滤波效果。
 - 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
 - 3、因蓝光数码管的导通压降压约为3V,因此TM1624供电应选用5V。

十一、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +80	C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		V	-
高电平输入电压	VIH	0.7 VDD	3	VDD	V	-
低电平输入电压	VIL	0	_	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	-20	-25	-40	mA	Seg1~Seg11, Vo = vdd-2V
同电干制面电机	Ioh2	-20	-30	-50	mA	Seg1~Seg11, Vo = vdd-3V
低电平输出电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V

TM1624

低电平输出电流	Idout	4	ı	ı	mA	VO = 0.4V, dout
高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1∼Seg11
输出下拉电阻	RL		10		KΩ	K1~K3
输入电流	II	-	-	±1	μА	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL		İ	0. 3 VDD	V	CLK, DIN, STB
滞后电压	VH	_	0. 35		V	CLK, DIN, STB
动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位		测试条件
振荡频率	fosc	ı	500	-	KHz	F	R = 16.5 KΩ
	tPLZ	I	-	300	ns		CLK → DOUT
传输延迟时间	tPZL	-	X	100	ns	CL = 1	15pF, RL = 10K Ω
	TTZH 1	-	-	2	μѕ		Seg1~Seg11
上升时间	TTZH 2	-	-	0. 5	μς	CL = 300p F	Grid1∼Grid4 Seg12/Grid7∼ Seg14/Grid5
下降时间	TTHZ	-	-	120	μѕ	CL = 30	OOpF, Segn, Gridn
最大时钟频率	Fmax	1	-	_	MHz		占空比50%
输入电容	CI	-	_	15	pF		-

* 时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	I	I	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
CLK →STB 时间	tCLK STB	1	ı	ı	μs	CLK ↑ →STB ↑
等待时间	tWAIT	1	_	_	μѕ	CLK ↑ → CLK ↓

时序波形图:

十二、 IC 封装示意图:

S0P24

尺寸 标注	最 小(mm)	最 大(1000)	尺寸 标注	最 小(mm)	最 大(1000)
A	15. 28	15. 48	C4	0.8	6TYP
A1	0.40	6TYP	D	1.3	4TYP
A2	1. 27	TYP	D1	0.3	STYP
A3	0.50	OTYP	D2	0.70	0.90
В	9.90	10.50	R1	0.2	5TYP
B1	7. 42	7.62	R2	0.2	5TYP
B2	8. 7	TYP	θ 1	7°	TYP
C1	2. 13	2. 23	θ2	7°	TYP
C2	0.204	0.33	θ 3	4°	TYP
ಜ	0.10	0. 25	θ4	10°	TYP

SDIP24:

SYMBOL	MILLIMETER						
SIMBOL	MIN	NOM	MAX				
A	3.60	3.80	4.00				
A1	0.30	-	1 1000				
A2	3.20	3.30	3.40				
A3	1.47	1.52	1.57				
b	0.44		0.53				
bl	0.43	0.46	0.48				
BI	1.00BSC						
c	0.25		0.31				
c1	0.24	0.25	0.26				
D	22.70	22.90	23.10				
E1	6.40	6.60	6.80				
e	1.778BSC						
eA	7.62BSC						
eB	7.62	-	9.30				
eC	0	-	0.84				
L	3.00						

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)