Linear Algebra Basics: Vectors

Foundations of Data Analysis

February 6, 2023

CIFAR-10

 $32 \times 32 \times 3 = 3,072$ dimensions

10 classes

Hand Feature Points

21 feature points = (21 x 2) dimensions 2D points with x, y coordinates.

Types of Data

- Categorical (outcomes come from a discrete set)
- ► Real-valued (outcomes come from R)
- Ordinal (outcomes have an order, e.g., integers)
- **Vector** (outcomes come from \mathbb{R}^d)

Most data is a combination of multiple types!

Vectors

A vector is a list of real numbers:

$$x = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^d \end{bmatrix}$$

Notation: $x \in \mathbb{R}^d$

Notation: We will use superscripts for coordinates, subscripts when talking about a collection of vectors, $x_1, x_2, ..., x_n \in \mathbb{R}^d$.

Geometry: Direction and Distance

A vector is the difference between two points:

Geometry: Direction and Distance

A vector is the difference between two points:

Points as Vectors

We will often treat points as vectors, although they are technically not the same thing.

Think of a vector being anchored at the origin: 0 =

Vector Addition

$$x + y = \begin{bmatrix} x^1 + y^1 \\ x^2 + y^2 \\ \vdots \\ x^d + y^d \end{bmatrix}$$

Vector Addition

$$x + y = \begin{bmatrix} x^1 + y^1 \\ x^2 + y^2 \\ \vdots \\ x^d + y^d \end{bmatrix}$$

Vector Addition

$$x + y = \begin{bmatrix} x^1 + y^1 \\ x^2 + y^2 \\ \vdots \\ x^d + y^d \end{bmatrix}$$

Scalar Multiplication

Multiplication between a vector $x \in \mathbb{R}^d$ and a scalar $s \in \mathbb{R}$:

$$sx = s \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^d \end{bmatrix} = \begin{bmatrix} sx^1 \\ sx^2 \\ \vdots \\ sx^d \end{bmatrix}$$

Statistics: Vector Mean

Given vector data $x_1, x_2, ..., x_n \in \mathbb{R}^d$, the mean is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i^1$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i^d$$

Notice that this is a vector of means in each dimension.

Vector Norm

The norm of a vector is its length:

$$||x|| = \sqrt{\sum_{i=1}^{d} (x^i)^2}$$

Statics: Total Variance

Remember, the equation for the variance of scalar data,

$$y_1, ..., y_n \in \mathbb{R}$$
:

$$var(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

For **total variance** for vector data, $x_1, x_2, ..., x_n \in \mathbb{R}^d$, is

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} ||x_i - \bar{x}||^2.$$

Dot Product

Given two vectors, $x, y \in \mathbb{R}^d$, their dot product is

$$\langle x, y \rangle = x^1 y^1 + x^2 y^2 + \dots + x^d y^d = \sum_{i=1}^d x^i y^i$$

Also known as the inner product.

Relation to norm:

Dot Product

Given two vectors, $x, y \in \mathbb{R}^d$, their dot product is

$$\langle x, y \rangle = x^1 y^1 + x^2 y^2 + \dots + x^d y^d = \sum_{i=1}^d x^i y^i$$

Also known as the inner product.

Relation to norm:

$$||x|| = \sqrt{\langle x, x \rangle}$$

In-class Exercise

Geometry: Angles and Lengths

The dot product tells us the angle θ between two vectors, $x, y \in \mathbb{R}^d$:

$$\langle x, y \rangle = ||x|| ||y|| \cos\theta$$
.

Or, writing to solve for
$$\theta$$
: $\theta = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}$

Geometry: Orthogonality

Two vectors at a 90 degree angle ($\frac{\pi}{2}$ radians) are called orthogonal.

There dot product is zero:

$$\langle x, y \rangle = ||x|| ||y|| \cos \frac{\pi}{2} = ||x|| ||y|| 0 = 0$$

Geometry: Projection

Equation for a Line

Line passing through the origin along vector $x \in \mathbb{R}^d$

$$L = \{tx : x \in \mathbb{R}\}$$

Linear Independence

Two vectors, $x_1, x_2 \in \mathbb{R}^d$, are linearly independent if they aren't scaled versions of each other:

 $sx_1 \neq x_2$ for all $s \in \mathbb{R}$.

Equation for a plane

Two linearly independence vectors, $x, y \in \mathbb{R}^d$, span a plane:

$$H = \{sx + ty : s \in \mathbb{R}, t \in \mathbb{R}\}$$

