599 O Forrest para as árvores

Um grafos G é um conjunto de pontos V (G), juntamente com um conjunto de arestas E (G), onde cada elemento de E (G) é um par não ordenado de pontos de V (G).

Exemplo 1: Seja G um grafo onde V (G) = {a, b, c, d} e E (G) = {(a, b), (b, c), (c, d), (d, b)}. A figura (imagem ao lado) dá uma representação de G.

Uma representação do gráfico de G

Observe que G contém o "ciclo", {(b, c), (c, d), (d, b)}. Um g grafo desprovido de ciclos é chamado de árvore. Um caminho em um grafo G é um sequência alternada de pontos e arestas, (início e fim com um ponto) tal que todos os pontos do caminho são distintos. No grafo do exemplo 1, {a, (a, b), b, (b, c), c, (c, d), d} é um caminho.

Fato: Cada dois pontos de uma árvore são unidos por um caminho único.

Um grafo é chamado conectado se cada par de pontos for unido por um caminho. O grafo do exemplo 1 é conectado. Se um grafo não estiver conectado, então ele é composto de "subgrafos". Cada um destes subgrafos é chamado de um componente conectado do grafo G.

Um grafo para o qual cada componente conectado é uma árvore é chamado de floresta, veja a figura abaixo.

Um caso extremo que vale a pena mencionar é o caso quando uma das árvores componentes tem um ponto mas nenhuma aresta. Esta árvore é do tipo ponto isolado. E vamos chamar-la de vértice isolado (acorn). Estamos prontos para definir o problema.

Problema: Dada a floresta você deve escrever um programa que conte o número de árvores e vértices isolados (acorn).

Entrada

A primeira linha do arquivo de entrada contém o número de casos de teste que seu programa deve processar. Cada caso de teste é uma descrição de floresta que consiste em duas partes:

- 1. Uma lista de arestas da árvore, (uma por linha, dada como um par não ordenado de letras maiúsculas delimitadas por uma fila de asteriscos).
- 2. Uma lista de pontos na árvore (estes serão dados em uma linha com um máximo no 26 correspondências para as letras maiúsculas do alfabeto, A..Z).

Saída

Para cada caso de teste, o programa deve imprimir o número de árvores e o número de vértice isolado (acorn), em um sentença, por exemplo:

Há x árvore (s) e y bolota (s).

Onde x e y são os números de árvores e bolotas, respectivamente.

Notas: Uma floresta pode não ter árvores e só vértices isolados (acorn), ter árvores e nenhum vértice isolado (acorn), ou algo entre isso, então tenha atenção para não perder a floresta entre as árvores!

Exemplo 2: Seja G um grafo cujas arestas e pontos são dados pelo primeiro caso de teste na amostra entrada. Uma representação deste grafo é dada na figura seguinte.

Entrada de amostra 2 (A,B) (B,C) (B,D) (D,E) (E,F) (B,G) (G,H) (G,I) (J,K) (K,L) (K,M)

A,B,C,D,E,F,G,H,I,J,K,L,M,N

(A,B)

(A,C)

(C,F)

**

A,B,C,D,F

Saída da Amostra

Há 2 árvore (s) e 1 vértice isolado (s) (acorn). Existem 1 árvore (s) e 1 vértice isolado (s)(acorn).