Upboard Lab04

tags: Upobard Embedded

- <u>Upboard Lab04</u>
- <u>I. Introduction</u>
- <u>II. HTU21D</u>
 - HTU21D Output Conversion
- III. I²C
- IV. Serial port
- V. Serial/Parallel communication
 - Serial programming in Linux
 - Serial programming in x86 ASM
- VI. TTY
- VII. ANSI escape code
- VIII. Demonstration
 - o <u>PuTTY</u>
 - Connection diagram

I. Introduction

In this lab, we cover

- 1. Serial programming
- 2. Accessing sensors with over I2C

II. HTU21D

- Digital Relative Humidity sensor with Temperature output (datasheet)
- 以 I2C 控制
- UP board PIN:
 - DATA 3 (I2C1-SDA)
 - SCK 5 (I2C1-SCL)

N°	Function	Comment
1	DATA	Data bit-stream
2	GND	Ground
3	NC	Must be left unconnected
4	NC	Must be left unconnected
5	VDD	Supply Voltage
6	SCK	Serial clock input
PAD		Ground or unconnected

HTU21D – Output Conversion

The raw output (16 bits) need to be converted Relative humidity conversion

Temperature conversion

$$Temp = -46.85 + 175.72 \times \frac{S_{Temp}}{2^{16}}$$

RH: Relative Humidity (%)

 S_{RH} : RH signal output

Temp: Temperature (°C)

 S_{Temp} : Temp signal output

III. I²C

- I²C (Inter-Integrated Circuit, I-squared-C) (spec)
- 一種多主從的序列通信協定
- 使用兩條接上拉電阻的線 (open-drain/collector)
 - o SDA: serial data
 - SCL: serial clock
- 在埠上的裝置有一個 7-bit* 的位址
- master 以位址選取 slave 裝置後讀寫其資料

* 通常是 7-bit, 也有較罕見的 10-bit

IV. Serial port

- A serial communication interface
- Commonly exposed as an RS-232 DE-9 connector
- Commonly implemented with a UART
 - Universal Asynchronous Receiver/Transmitter
- Speed is determined by the Baud rate setting (bps)

V. Serial/Parallel communication

• Serial 序列: 一次一個 bit

• Parallel 平行:多條線同時傳

Serial programming in Linux

- 序列界面在 Linux 中以裝置檔案 /dev/ttyS[0-3] 呈現
- 往界面傳輸 = 寫東西到檔案
- 從界面取資料 = 從檔案讀資料
- 使用一般讀寫檔案的函式即可 (fprintf, read, write, ...)
- Serial Programming Guide for POSIX Operating Systems
- UP 上的 Serial Port 對應到裝置檔 /dev/ttyS0

Serial programming in x86 ASM

- Serial is port-mapped on x86
- Uses IN and OUT instructions
- Example code: Initialization (OSDev Wiki)

```
#define PORT 0x3f8
                                // COM1
static int init_serial() {
   outb(PORT + 1, 0x00); // Disable all interrupts
                             // Enable DLAB (set baud rate divisor)
// Set divisor to 3 (lo byte) 38400 baud
// (hi byte)
// 8 bits, no parity, one stop bit
// Enable FIFO, clear them, with 14-byte threshold
   outb(PORT + 3, 0 \times 80);
   outb(PORT + 0, 0 \times 03);
   outb(PORT + 1, 0x00);
   outb(PORT + 3, 0x03);
   outb(PORT + 2, 0xC7);
   outb(PORT + 4, 0x0B); // IRQs enabled, RTS/DSR set
   outb(PORT + 4, 0x1E); // Set in loopback mode, test the serial chip
   outb(PORT + 0, 0xAE);
                              // Test serial chip (send byte 0xAE and check if serial returns same byte)
   // Check if serial is faulty (i.e: not same byte as sent)
   if(inb(PORT + 0) != 0xAE) {
      return 1;
   // If serial is not faulty set it in normal operation mode
   // (not-loopback with IRQs enabled and OUT#1 and OUT#2 bits enabled)
   outb(PORT + 4, 0x0F);
   return 0;
}
```

I/O address and the register map can be found on the SoC's datasheet (vol1, vol2)

Table 16. Fixed I/O Ranges in the Platform Controller Unit (PCU)

Device	I/O Address	Comments	
8259 Master	20h-21h, 24h-25h, 28h-29h, 2Ch-2Dh, 30h-31h, 34h-35h, 38h-39-, 3Ch-3Dh		
8254s	40h-43h, 50h-53h		
PS2 Control	60h, 64h		
NMI Controller	61h, 63h, 65h, 67h		
RTC	70h-77h		
Port 80h	80h-83h		
INIT Register	92h		
8259 Slave	A0h-A1h, A4h-A5h, A8h- A9h, ACh-ADh, B0h-B1h, B4h-B5h, B8h-B9h, BCh- BDh, 4D0h-4D1h		
PCU UART	3F8h-3FFh		
Reset Control	CF9h	Overlaps PCI I/O registers	
Active Power Management	B2h-B3h		

Register Map V

Table 105. Register Access List

.5	100			undefined unden	
able 10	5. Register Acces	s List			
	Register Address (Offset to Base IO Address)	COM1_LCR.DLA B Value	Register Access Type	Register Accessed	
	Oh Oh	0b	RO	Receiver Buffer ¹	
	0h	0b	√ wo	Transmitter Holding ¹	
	0h	1b (10)	RW	Divisor Latch LSB (Lowest Significant Bit) ¹	
	1h	06	RW	Interrupt Enable ²	
	1h	1b	RW	Divisor Latch MSB (Most Significant Bit) ²	
	2h	xb	RO	Interrupt Identification ³	
	2h	xb	wo	FIFO Control ³	
	3h	xb	RW	Line Control	
	4h	xb	RW	Modern Control ⁴	
	5h	xb	RO	Line Status	
	6h	xb	RO	Modem Status ⁴	
	7h	xb _c	RW	Scratchpad	

man 3 termios

0

• The TTY demystified

Real teletypes in the 1940s.

- o tty一詞源於Teletypes,或者teletypewriters,原來指的是電傳打字機,是通過串行線用打印機鍵盤通過閱讀和發送信息的東西,後來這東西被鍵盤與顯示器取代,所以現在叫終端比較合適。
- o 終端是一種字符型設備,它有多種類型,通常使用tty來簡稱各種類型的終端設備。
- TTY 大概與 terminal 同義
- 每個 TTY 有 terminal attributes,用以設定這個 TTY 的行為,例如:
 - o ECHO: Echo input characters
 - o ICANON: Enable canonical mode
- Linux 裡·/dev/ttyS0 是一個 TTY·其 terminal attributes 可透過 tcgetattr, tcsetattr 等函數存取修改

VII. ANSI escape code

- 在 terminal 輸出某些特定字串時·terminal 會做出單純印出該字串以外的事情·如移動游標·改變顏色等
- 例:
 - o ^H (BS): 將游標向左移
 - ESC [A: 將游標向上移
 - 。 ESC [J: 將游標以後全部清空
- 在按某些按鍵時,terminal 收到的可能收到不只一個字
 - 例:按方向鍵下 會傳送 "ESC [B"
 - Why does the terminal show ^[[A? https://reurl.cc/gW2487 (https://reurl.cc/gW2487)

VIII. Demonstration

PuTTY

Connection diagram

DEV: <u>Virtualbox</u> dev environment HOST: Windows host