Análise de algoritmos

Ordenação em tempo linear

Conteúdo

Limites inferiores para ordenação por comparações

Ordenação por contagem

Radix sort

Bucket sort

Exercícios

Referências

- ► Em um algoritmo de ordenação por comparação, a ordem dos elementos é determinada usando apenas comparações entre os elementos
- Supondo que não existem elemento iguais na entrada, todas as operações de comparação fornecem a mesma informação, e portanto podemos usar um único operador de comparação
- lacktriangle Vamos supor que todas as comparações têm a forma $a_i \leq a_j$

- As ordenações por comparações podem ser vistas de modo abstrato em termos de árvores de decisão
- Uma árvore de decisão é uma árvore binária cheia que representa as comparações executadas por um algoritmo de ordenação por comparação quando ele opera em uma entrada de um tamanho dado.

Exemplo

Exemplo

 $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$

Exemplo

 $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$

• (3,1,2) indica $a_3 = 5 \le a_1 = 6 \le a_2 = 8$

Exemplo

 $\triangleright \langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$

 \triangleright (3,1,2) indica $a_3 = 5 \le a_1 = 6 \le a_2 = 8$

FIGURA 8.1 A árvore de decisão para ordenação por inserção, operando sobre três elementos. Um nó interno anotado por i:j indica uma comparação entre a_i e a_j . Uma folha anotada pela permutação $\langle \pi(1), \pi(2), \dots, \pi(n) \rangle$ indica a ordenação $a_{\pi(1)} \le a_{\pi(2)} \le \dots \le a_{\pi(n)}$. O caminho sombreado indica as decisões tomadas durante a ordenação da seqüência de entrada $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; a permutação $\langle 3, 1, 2 \rangle$ na folha indica que a seqüência ordenada é $a_3 = 5 \le a_1 = 6 \le a_2 = 8$. Existem 3! = 6 permutações possíveis dos elementos de entrada; assim, a árvore de decisão deve ter no mínimo 6 folhas

- ▶ Cada nó é anotado por i:j para algum i e j no intervalo $1 \le i, j \le n$
- ► Cada folha é anotada por uma permutação $\langle \pi(1), \pi(2), \dots, \pi(3) \rangle$
- A execução de um algoritmo de ordenação corresponde a traçar um caminho desde a raiz até a folha
- Cada algoritmo de ordenação correto deve ser capaz de produzir cada permutação da entrada
- ► Cada uma das n! permutações sobre os n elementos deve aparecer como uma das folhas
- O tamanho do caminho mais longo da raiz a uma folha corresponde ao número de comparações do pior caso
- Um limite inferior sobre as alturas de todas as árvores de decisão é um limite inferior sobre o tempo de execução de qualquer algoritmo de ordenação por comparação

Teorema 8.1

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

Teorema 8.1

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

- ► Considere um árvore de decisão com altura *h* com *l* folhas
- ► Cada uma das n! permutações da entrada aparecem como alguma folha, portanto n! ≤ I

Teorema 8.1

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

- ► Considere um árvore de decisão com altura *h* com *l* folhas
- ► Cada uma das n! permutações da entrada aparecem como alguma folha, portanto n! ≤ I
- ▶ Como uma árvore binária de altura h não tem mais que 2^h folhas, temos $n! \le l \le 2^h$

Teorema 8.1

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

- ► Considere um árvore de decisão com altura *h* com *l* folhas
- ► Cada uma das n! permutações da entrada aparecem como alguma folha, portanto n! ≤ I
- Como uma árvore binária de altura h não tem mais que 2^h folhas, temos n! ≤ l ≤ 2^h
- ▶ Aplicando logaritmo, obtemos $h \ge \lg(n!)$

Teorema 8.1

Qualquer algoritmo de ordenação por comparação exige $\Omega(n \lg n)$ comparações no pior caso.

- ► Considere um árvore de decisão com altura *h* com *l* folhas
- ► Cada uma das n! permutações da entrada aparecem como alguma folha, portanto n! ≤ I
- Como uma árvore binária de altura h não tem mais que 2^h folhas, temos n! < l < 2^h
- ▶ Aplicando logaritmo, obtemos $h \ge \lg(n!)$
- Pela aproximação de Stirling (equação 3.18), $n! > (n/e)^n$, e portanto $h = \Omega(n \lg n)$

- Cada elemento da entrada é um inteiro no intervalo de 0 a k
- ▶ Quando k = O(n), a ordenação é executada no tempo $\Theta(n)$
- Ideia
 - ▶ Determinar, para cada elemento *x* da entrada, o número de elementos menores que *x*
 - Esta informação é utilizada para inserir o elemento diretamente em sua posição no arranjo de saída
 - Por exemplo, existem 17 elementos menores que x, então x é colocado na posição de saída 18
- ▶ A entrada do algoritmo é um array A[1..n], a saída é dada em um array B[1..n], e um array C[0..k] é utilizado para armazenamento de trabalho

FIGURA 8.2 A operação de COUNTING-SORT sobre um arranjo de entrada A[1...8], onde cada elemento de A é um inteiro não negativo não maior que k=5. (a) O arranjo A e o arranjo auxiliar C após a linha 4. (b) O arranjo C após a linha 7. (c)—(e) O arranjo de saída B e o arranjo auxiliar C após uma, duas e três iterações do loop nas linhas 9 a 11, respectivamente. Apenas os elementos levemente sombreados do arranjo B foram preenchidos. (f) O arranjo de saída final ordenado B

```
counting-sort(A, B, k)
   n = A.comprimento
 1 \text{ for } i = 0 \text{ to } k
 2 \quad C[i] = 0
 3 \text{ for } j = 1 \text{ to } n
 4 \quad C[A[j]] = C[A[j]] + 1
 5 // agora C[i] contém o número de elementos
       iguais a i
 6 \text{ for } i = 1 \text{ to } k
 7 C[i] = C[i] + C[i - 1]
 8 // agora C[i] contém o número de elementos
       menores que o iguais a i
 9 for j = n downto 1
10 B[C[A[j]]] = A[j]
11 C[A[j]] = C[A[j]] - 1
```

Quanto tempo a ordenação por contagem exige?

- Quanto tempo a ordenação por contagem exige?
 - ▶ O loop das linhas 1 e 2 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 3 e 3 demora o tempo $\Theta(n)$
 - ▶ O loop das linhas 6 e 7 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 9 e 11 demora o tempo $\Theta(n)$

- Quanto tempo a ordenação por contagem exige?
 - ▶ O loop das linhas 1 e 2 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 3 e 3 demora o tempo $\Theta(n)$
 - ▶ O loop das linhas 6 e 7 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 9 e 11 demora o tempo $\Theta(n)$
 - ▶ Portanto, o tempo total é $\Theta(k+n)$

- Quanto tempo a ordenação por contagem exige?
 - ▶ O loop das linhas 1 e 2 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 3 e 3 demora o tempo $\Theta(n)$
 - ▶ O loop das linhas 6 e 7 demora o tempo $\Theta(k)$
 - ▶ O loop das linhas 9 e 11 demora o tempo $\Theta(n)$
 - ▶ Portanto, o tempo total é $\Theta(k+n)$
 - ▶ Quando k = O(n), o tempo de execução é $\Theta(n)$

- Algoritmo usado pelas máquina de ordenação de cartões
- Ideia
 - Ordenar as chaves pelos dígitos, começando com o menos significativo
- ► É essencial que o algoritmo de ordenação dos dígitos seja estável
- É utilizado para ordenar registros cuja a chave é constituída de vários campos

					R-	
329		720		720		329
457		355		329		355
657		436		436		436
839	····}l»	457	····}b·	839	}]1>	457
436		657		355		657
720		329		457		720
355		839		657		839

FIGURA 8.3 A operação de radix sort sobre uma lista de sete números de 3 dígitos. A primeira coluna é a entrada. As colunas restantes mostram a lista após ordenações sucessivas sobre posições de dígitos cada vez mais significativas. As setas verticais indicam a posição do dígito sobre o qual é feita a ordenação para produzir cada lista a partir da anterior

329 457	····}II•	720 355	····]jı-	720 329]Js-	329 355
657 839		436 457		436 839		436 457
436 720		657 329		355 457		657 720
355		839		657		839

FIGURA 8.3 A operação de radix sort sobre uma lista de sete números de 3 dígitos. A primeira coluna é a entrada. As colunas restantes mostram a lista após ordenações sucessivas sobre posições de dígitos cada vez mais significativas. As setas verticais indicam a posição do dígito sobre o qual é feita a ordenação para produzir cada lista a partir da anterior

```
radix-sort(A, d)
1 for i = 1 to d
2  usar uma ordenação estável para ordenar
  o arranjo A sobre o dígito i
```

Análise

- Suponha que a ordenação por contagem é utilizada como ordenação intermediária
- ▶ $\Theta(n+k)$ por passagem (dígitos estão no intervalo $0,\ldots,k$)
- d passagens
- ▶ Total de $\Theta(d(n+k))$
- ▶ Se k = O(n) e d constante, obtemos $\Theta(n)$

- ▶ A entrada é gerada por um processo aleatório que distribui os elementos uniformemente sobre o intervalo [0,1)
- Ideia
 - ightharpoonup Dividir o intervalo [0,1) em n baldes do mesmo tamanho
 - ▶ Distribuir os *n* valores de entrada nos baldes
 - Ordenar cada balde
 - Juntar os elementos de todos os baldes

FIGURA 8.4 A operação de BUCKET-SORT. (a) O arranjo de entrada $A[1\dots 10]$. (b) O arranjo $B[0\dots 9]$ de listas ordenadas (baldes) depois da linha 5 do algoritmo. O balde i contém valores no intervalo [i/10,(i+1)/10). A saída ordenada consiste em uma concatenação em ordem das listas B[0], B[1], ..., B[9]

- ▶ Entrada: A[1..n], onde $0 \le A[i] < 1$ para todo i
- Auxiliar: array B[0..n-1] de listas ligadas, cada lista começa vazia

```
bucket-sort(A)
1 n = A.comprimento
2 for i = 1 to n
3   inserir A[i] na lista B[floor(n * A[i])]
4 for i = 1 to n - 1
5   insertion-sort(B[i])
6 concatenar as listas B[0], B[1], ..., B[n - 1]
   em ordem
```

Análise

- Cada balde não deve ter muitos valores
- Todas as linhas do algoritmo, exceto a do ordenação por inserção, demoram Θ(n)
- ► Intuitivamente, cada balde terá um número constante, já que a média é um elemento por balde
- ▶ Portanto, cada balde é ordenado em O(1)
- ▶ O tempo para ordenar todos os baldes é O(n)
- ▶ O tempo esperado de execução do algoritmo é $\Theta(n)$

Exercícios

- 8.1-1 Qual é a menor profundidade possível de uma folha em uma árvore de decisão para uma ordenação por comparação?
- 8.2-1 Usando a figura 8.2 como modelo, ilustre a operação de counting-sort sobre o array $A = \langle 6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2 \rangle$
- 8.2-4 Descreva um algoritmo que, dados n inteiros no intervalo de 0 a k, realiza o pré-processamento de sua entrada e depois responde a qualquer consulta sobre quantos dos n inteiros recaem em um intervalo [a..b] no tempo O(1). Seu algoritmo deve utilizar o tempo de pré-processamento $\Theta(n+k)$.
- 8.3-1 Usando a figura 8.3 como modelo, ilustre a operação de radix-sort sobre a seguinte lista de palavras em inglês: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOE, FOX.
- 8.3-2 Quais dos seguintes algoritmos de ordenação são estáveis: ordenação por inserção, ordenação por intercalação, heapsort e quicksort? Forneça um esquema simples que torne estável qualquer algoritmo de ordenação. Quanto tempo e espaço adicional seu esquema requer?
- 8.4-1 Usando a figura 8.4 como modelo, ilustre a operação de bucket-sort no arranjo $A = \langle 0, 79; 0, 16; 0, 64; 0, 39; 0, 20; 0, 89; 0, 53; 0, 71; 0, 42 \rangle$
- 8.4-2 Qual é o tempo de execução do pior caso para o algoritmo de bucket sort? Que alteração simples no algoritmo preserva seu tempo de execução esperado linear e torna seu tempo de execução no pior caso igual a $O(n \lg n)$.

Referências

► Thomas H. Cormen et al. Introdução a Algoritmos. 2ª edição em português. Capítulo 8.