Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

SHORTEST-JOB-FIRST (SJF) SCHEDULING

SJF Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time.

Two schemes:

- Non-preemptive once CPU given to the process it cannot be preempted until completes its CPU burst.
- Preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF).
- SJF is optimal gives minimum average waiting time for a given set of processes

NON-PREEMPTIVE SJF SCHEDULING

Non-Preemptive SJF Question

Process	Arrival Time	Burst Time
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{_{\mathcal{A}}}$	5.0	4

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , and P_4 .

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

Non-Preemptive SJF Question: Solution_{1/2}

Waiting Time

- > P1wt=0 unit time
- ➤ P2wt=(8-2)=6 unit time
- ➤ P3wt=(7-4)=3 unit time
- > P4wt=(12-5)=7 unit time

Average Waiting Time

- ➤ AWT=(P1wt+P2wt+P3wt+P4wt)/4
- > AWT=(0+6+3+7)/4=16/4=4 unit time

Process	Process Arrival Time	
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{4}	5.0	4

Non-Preemptive SJF Question: Solution_{2/2}

Turnaround Time

Average Turnaround Time

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

Non-Preemptive SJF Homework Question

Process	Arrival Time	Burst Time
P_{1}	0.0	8
P_2	2.0	5
P_3	4.0	6
P_4	6.0	7

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , and P_{4} .

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

PREEMPTIVE SJF SCHEDULING

Preemptive SJF Question

Process	Arrival Time	Burst Time
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{_{\mathcal{A}}}$	5.0	4

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , and P_{4} .

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

Preemptive SJF Question: Solution_{1/3}

Process	Arrival Time	Burst Time
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

Process	Arrival	Burst	Burst	Burst	Burst	Burst	Burst	Burst
	Time	Time	Time	Time	Time	Time	Time	Time
P1	0.0	7	5	5	5	5	5	0
P2	2.0	4	4	2	2	0	0	0
Р3	4.0	1	1	1	0	0	0	0
P4	5.0	4	4	4	4	4	0	0

Preemptive SJF Question: Solution_{2/3}

Waiting Time

- > P3wt=0 unit time
- ➤ P4wt=(7-5)=2 unit time

Average Waiting Time

- ➤ AWT=(P1wt+P2wt+P3wt+P4wt)/4
- > AWT=(9+1+0+2)/4=12/4=3 unit time

Process Arrival Time		Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

Preemptive SJF Question: Solution_{3/3}

Turnaround Time

- > P1tt=(16-0)=16 unit time
- ➤ P2tt=(7-2)=5 unit time
- > P3tt=(5-4)=1 unit time
- > P4tt=(11-5)=6 unit time

Average Turnaround Time

- > ATT=(P1tt+P2tt+P3tt+P4tt)/4
- > ATT=(16+5+1+6)/4=28/4=7 unit time

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{4}	5.0	4

Preemptive SJF Homework Question

Process	Arrival Time	Burst Time
P_{1}	0.0	8
P_2	2.0	5
P_3	4.0	6
$P_{_{\mathcal{A}}}$	6.0	7

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 , and P_4 .

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

