Zadanie 1.11.F

Łukasz Magnuszewski

Treść

Przeprowadzić następującą konstrukcję zbiori Vitali'ego: Dla $x,y\in[0,1)$, niech $x\sim y\iff x-y\in\mathbb{Q}$. Sprawdzić że \sim jest relacją równoważności. Niech Z będzie zbiorem który z każdej klasy abstrakcji tej relacji wbyiera dokładnie jeden element. Sprawdzić że $\bigcup_{q\in\mathbb{Q}}(Z\oplus q)=[0,1)$, gdzie \oplus oznacza dodawanie mod 1.

Rozwiązanie

Relacja równoważności

Sprawdźmy najpierw, czy \sim jest relacją równoważności.

Symetryczność

Ustalmy dowolne a,b takie że $a \sim b$ wtedy $\exists q \in \mathbb{Q}, a-b=q$. Ale wtedy $b-a=-q \in \mathbb{Q}$ czyli $b \sim a$.

Zwrotność

Astalmy dowolne a, wtedy $a - a = 0 \in \mathbb{Q}$ czyli $a \sim a$

Przechodniość

Ustalmy dowolne a, b, c takie że $a \sim b \sim c$. Wtedy $\exists p,q \in \mathbb{Q}$ że a-b=p,b-c=q Wtedy p-q=a-b-(b-c)=a-c. Czyli $a-c \in \mathbb{Q}$ czyli $a \sim c$.

Sprawdzenie

Weźmy selektor z rodziny klas abstrakcji ~, nazwijmy go Z. Sprawdźmy teraz czy $\bigcup_{q\in\mathbb{Q}}(Z\oplus q)=[0,1)$

 \subseteq

Ustalmy dowolny $x \in \bigcup_{q \in \mathbb{Q}} (Z \oplus q)$ wtedy $\exists q, x \in Z \oplus q$ Czyli $\exists z \in Z \subseteq [0,1), q \oplus z = x$ Wtedy $q \oplus z \in [0,1)$ z własności dodawania modulo 1.

 \supseteq

Ustalmy dowolny $x\in[0,1)$ Weźmy jego reprezentanta i oznaczmy go jako z. Jako że $z\sim x$ to $\exists q,x=z+p=z\oplus p\in Z$ Czyli $x\in\bigcup_{q\in\mathbb{Q}}(Z\oplus q)$

Niemierzalność Z

Lemat

Pokażmy że następująca suma jest rozłączna: $\bigcup_{q\in\mathbb{Q}\cap[0,1)}Z\oplus q$ Załóżmy niewprost że $\exists q,p\in\mathbb{Q}: q\neq p$ takie że $Z\oplus p\cap Z\oplus q\neq\emptyset$. Wtedy $\exists a:a\in Z\oplus p$ oraz $a\in Z\oplus q$. Ale to oznaczna że $\exists z_p,z_q\in Z$ takie że $z_p\oplus p=x=z_q\oplus q$. Ale to by znaczyło że $z_p=z_q$. Czyli p=q, co oznacza sprzecznośc i kończy dowód lematu.

Dowód niewprost

Załóżmy niewprost że Z jest mierzalne w sensie Lebesguea. Ustalmy dowolne $q \in \mathbb{Q} \cap [0,1)$. Wtedy $\lambda(Z \oplus q) = \lambda(Z)$ z niezmienniczności miary Lebesguea. Korzystając z lematu: $\lambda([0,1)) = \lambda(\bigcup_{x \in \mathbb{Q} \cap [0,1)} Z \oplus q) = \sum_{x \in \mathbb{Q} \cap [0,1)} \lambda(Z \oplus q) = \sum_{x \in \mathbb{Q} \cap [0,1)} \lambda(Z)$ Wtedy jeśli $\lambda(Z) > 1$ to cała suma wynosi nieskończoność. A w przeciwnym wypadku 0. A powinno wyjść 1. Czyli mamy sprzeczność z której wynika że Z nie jest mierzalne.