Aprendizaje por refuerzo

Clase 18: RL Inverso

Antes de empezar...

- Dudas de
 - Tarea 4
 - Proyecto
 - Examen

Para el día de hoy...

• RL inverso

El contexto

- RL no necesita instrucciones detalladas
- Generar una señal de recompensa no depende del conocimiento de cuales deberían ser las acciones correctas
- El éxito depende de que tan bien las señales de recompensa marquen la tarea a realizar
- Y... que tan bien evalúen el progreso a la meta

Diseñando una recompensa

• Diseñar una parte del ambiente que calcule R_t en cada tiempo t

Algunos retos

- Encontrar una señal de recompensa tal que el agente aprenda el comportamiento que se desea
- El agente puede encontrar formas inesperadas de encontrar recompensa, pueden ser no deseadas o peligrosas
- Las recompensas pueden ser espaciadas

Una primera aproximación

- Prueba y error
 - Diseñamos una señal de recompensa
 - Probamos
 - Si el agente no aprende, es muy lento o aprende mal, cambiamos la recompensa e iteramos

Reward Shaping

- Cambiar la señal de recompensa mientras se aprende
- Iniciar con una señal de recompensa no esparza
- Gradualmente modificarla hacía la recompensa del problema original

¿Y si no tenemos idea de una señal?

- Podemos utilizar
 - Aprendizaje por imitación
 - Aprendizaje por demostración
 - Aprendizaje inverso
- La idea
 - Beneficiarse de un agente experto que haya aprendido con aprendizaje supervisado o extrayendo la señal de recomepensa

La perspectiva de imitación

- Aprendizaje por imitación
 - Copiar las acciones realizadas por los expertos
 - No hay razonamiento acerca de las acciones
- Imitación de humanos
 - Copiar la intención del experto
 - Se pueden tomar diferentes acciones

Aprendizaje por refuerzo inverso

Inferir la función de recompensa por medio de recompensas

Formalmente

- Aprendizaje por refuerzo
 - $s \in S, a \in A$
 - Transiciones p(s'|s,a)
 - Función de recompensa r(s, a)
 - Aprender $\pi^*(a|s)$
- Aprendizaje por refuerzo inverso
 - $s \in S, a \in A$
 - Transiciones p(s'|s,a)
 - Muestras $\{\tau_i\}$ muestreadas de $\pi^*(\tau)$
 - Aprender $r_{\psi}(s, a)$ y después $\pi^*(a|s)$

$$r_{\psi}(\mathbf{s}, \mathbf{a}) = \sum_{i} \psi_{i} f_{i}(\mathbf{s}, \mathbf{a}) = \psi^{T} \mathbf{f}(\mathbf{s}, \mathbf{a})$$

 $r_{\psi}(\mathbf{s}, \mathbf{a})$ parameters ψ

Pareo de características

- Función de recompensa lineal
 - $r_{\psi}(s, a) = \sum_{i} \psi_{i} f_{i}(s, a) = \psi^{T} f(s, a)$
- Si las características f son importantes, parear sus esperanzas
 - Sea $\pi^{r_{oldsymbol{\psi}}}$ la política óptima para $r_{oldsymbol{\psi}}$
 - Elegir ψ tal que $\mathbb{E}_{\pi^r \psi}[f(s, a)] = \mathbb{E}_{\pi^*}[f(s, a)]$
- Principio de máximo margen
 - $\max_{\psi,m} m$
 - Tal que
 - $\psi^T \mathbb{E}_{\pi^*}[f(s,a)] \ge \max_{\pi \in \Pi} \psi^T \mathbb{E}_{\pi}[f(s,a)] + m$

Una manipulación

• Transformar

- $\max_{\psi,m} m$
- Tal que

•
$$\psi^T \mathbb{E}_{\pi^*}[f(s,a)] \ge \max_{\pi \in \Pi} \psi^T \mathbb{E}_{\pi}[f(s,a)] + m$$

- En
 - $\max_{\psi} \frac{1}{2} ||\psi||^2$
 - Tal que
 - $\psi^T \mathbb{E}_{\pi^*}[f(s,a)] \ge \max_{\pi \in \Pi} \psi^T \mathbb{E}_{\pi}[f(s,a)] + D(\pi,\pi^*)$

Aprendiendo la variable de optimalidad

La función de partición

$$\max_{\psi} \frac{1}{N} \sum_{i=1}^{N} r_{\psi}(\tau_i) - \log Z \qquad \qquad Z = \int p(\tau) \exp(r_{\psi}(\tau)) d\tau$$

$$\nabla_{\psi} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\psi} r_{\psi}(\tau_{i}) - \frac{1}{Z} \int p(\tau) \exp(r_{\psi}(\tau)) \nabla_{\psi} r_{\psi}(\tau) d\tau$$
$$p(\tau | \mathcal{O}_{1:T}, \psi)$$

$$\nabla_{\psi} \mathcal{L} = E_{\tau \sim \pi^{\star}(\tau)} [\nabla_{\psi} r_{\psi}(\tau_{i})] - E_{\tau \sim p(\tau|\mathcal{O}_{1:T},\psi)} [\nabla_{\psi} r_{\psi}(\tau)]$$

estimate with expert samples soft optimal policy under current reward

Un algoritmo: MaxEnt IRL

- 1. Given ψ , compute backward message $\beta(\mathbf{s}_t, \mathbf{a}_t)$
- 2. Given ψ , compute forward message $\alpha(\mathbf{s}_t)$
- 3. Compute $\mu_t(\mathbf{s}_t, \mathbf{a}_t) \propto \beta(\mathbf{s}_t, \mathbf{a}_t) \alpha(\mathbf{s}_t)$
- 4. Evaluate $\nabla_{\psi} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\psi} r_{\psi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \sum_{t=1}^{T} \int \int \mu_{t}(\mathbf{s}_{t}, \mathbf{a}_{t}) \nabla_{\psi} r_{\psi}(\mathbf{s}_{t}, \mathbf{a}_{t}) d\mathbf{s}_{t} d\mathbf{a}_{t}$
- 5. $\psi \leftarrow \psi + \eta \nabla_{\psi} \mathcal{L}$

Notas

Maximizar el margen es arbitrario

No modela claramente la sub optimalidad del experto

Es un problema complejo de resolver

Otros problemas

- Aplicar a problemas grandes y espacios continuos de estados y acciones
- Trabajar con estados obtenidos solo por muestreo
- Dinámica desconocida

Otros enfoques

Utilizar Redes generativas antagónicas (GANs)

Guided Cost Learning Finn et al., ICML 2016

learns distribution $p(\tau)$ such that demos have max likelihood $p(\tau) \propto \exp(r(\tau))$ (MaxEnt model)

$$D(\tau) = \frac{\frac{1}{Z} \exp(r(\tau))}{\frac{1}{Z} \exp(r(\tau)) + \pi(\tau)}$$

Generative Adversarial Imitation Learning Ho & Ermon, NIPS 2016

 $D(\tau) = \text{probability } \tau \text{ is a demo}$ use $\log D(\tau)$ as "reward"

actually the
$$D(\tau)=\mathrm{some\ classifier}$$

Para saber más

• Classic Papers:

- Abbeel & Ng ICML '04 . Apprenticeship Learning via Inverse Reinforcement Learning. Good introduction to inverse reinforcement learning
- Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinfo. _____________________________ilistic method for inverse reinforcement learning

• Modern Papers :

- Finn et al. ICML '16. et al. Guided Cost Learning. Sampling based method for handles unknown dynamics and deep reward functions
- Wulfmeier arXiv '16 . Introduction MaxEnt IRL that Deep Maximum Entropy Inverse Reinforcement Learning.
 MaxEnt
- Ho & inverse RL using deep reward functions Ermon NIPS '16. Generative Adversarial Imitation Learning. using generative adversarial networks Inverse RL method
- Fu, Luo, Levine ICLR '18. Learning Robust Rewards with Adversarial Inverse Reinforcement Learning

Un ejemplo

Raw data	Price (€)	Customer review	Screen size (in)	Storage size (Gb)
SP1	429	4	4.65	32
SP2	649	4	3.5	64
SP3	459	5	4.3	32
SP4	419	3.5	4.3	16
SP5	519	4.8	4.7	16

 Supongamos que queremos comprar un celular. La decisión se realizará de acuerdo a precio, opiniones, tamaño de la pantalla y capacidad en memoria

Teoría de utilidad multi-atributo

- La intención del enfoque es construir una forma en la que cada alternativa aesté asociada con un número real V(a)
- Esto supone:
 - Las preferencias son completas: $a > b, b > a, a \sim b$
 - Las preferencias e indiferencias son transitivas

Los axiomas de racionalidad

- Ordenabilidad
 - $(A > B) \lor (B > A) \lor (A \sim B)$
- Transitividad

•
$$(A > B) \land (B > C) \Rightarrow (A > C)$$

- Continuidad
 - $A > B > C \Rightarrow \exists p[p, A; 1-p, C] \sim B$
- Sustituibilidad

•
$$A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C]$$

- Monotonicidad
 - $A > B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1 p, B] \ge [q, A; 1 q, B]$

Teoría de utilidad multi-atributo

• La forma más simple y más utilizada es el modelo aditivo

$$V(a) = \sum_{i=1}^{m} w_i v_i(a)$$

Donde

- V(a) es el valor de la alternativa a
- $v_i(a)$ es el puntaje que refleja la alternativa a en el criterio i
- w_i es el peso asignado que refleja la importancia del criterio i

Para la otra vez...

• Examen

