Stochastic Calculus Steve Lalley

http://www.stat.uchicago.edu/ lalley/Courses/390/

Tonight —

- Foreign Exchange & Exchange Rate Fluctuations
- Linear Stochastic Differential Equations
- Cameron-Martin-Girsanov Formula

Foreign Exchange

- Stochastic Models for Exchange Rates
- Interest Rates and Exchange Rates
- Options on Currency Exchange

Basic Principles

- Share price processes of tradeable assets are martingales under any risk-neutral probability measure.
- Risk-neutrality of a probability measure depends on the numeraire.
- Currencies are not tradeable assets!
- Money market shares are!

Exchange Rate Model

Let Y_t denote the exchange rate at time t between US Dollars \$ and UK Pounds Sterling \pounds , i.e., the number of pounds that one dollar will buy. A simple model:

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t$$

where W_t is a standard Wiener process under the risk neutral measure for \pounds investors, and μ and σ are constants.

Exchange Rate Model

Let Y_t denote the exchange rate at time t between US Dollars \$ and UK Pounds Sterling £, i.e., the number of pounds that one dollar will buy. A simple model:

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t$$

where W_t is a standard Wiener process under the risk neutral measure for \pounds investors, and μ and σ are constants.

In a more realistic model, the drift and/or diffusion coefficients might be time-varying but deterministic:

$$dY_t = \mu_t Y_t dt + \sigma_t Y_t dW_t$$

Itô Processes

An Itô process is a stochastic process that satisfies a stochastic differential equation of the form

$$dZ_t = A_t dt + B_t dW_t$$

Itô Processes

An Itô process is a stochastic process that satisfies a stochastic differential equation of the form

$$dZ_t = A_t dt + B_t dW_t$$

Here W_t is a standard Wiener process (Brownian motion), and A_t , B_t are adapted process, that is, processes such that for any time t, the current values A_t , B_t are independent of the future increments of the Wiener process.

Itô Processes

An Itô process is a stochastic process that satisfies a stochastic differential equation of the form

$$dZ_t = A_t dt + B_t dW_t$$

Here W_t is a standard Wiener process (Brownian motion), and A_t , B_t are adapted process, that is, processes such that for any time t, the current values A_t , B_t are independent of the future increments of the Wiener process.

The local quadratic variation of the Itô process Z_t is defined by

$$d[Z, Z]_t = B_t^2 dt$$

Itô's Formula

If Z_t is an Itô process, and if f(x) is a smooth function, then $f(Z_t)$ is also an Itô process whose Itô SDE is

$$df(Z_t) = f'(Z_t) dZ_t + \frac{1}{2} f''(Z_t) d[Z, Z]_t$$

Itô's Formula

If Z_t is an Itô process, and if f(x) is a smooth function, then $f(Z_t)$ is also an Itô process whose Itô SDE is

$$df(Z_t) = f'(Z_t) dZ_t + \frac{1}{2} f''(Z_t) d[Z, Z]_t$$

Itô's formula has a number of important generalizations. Here is one which is sometimes useful in solving SDEs with time-dependent coefficients: If u(x,t) is a smooth function of two variables, then

$$du(Z_t, t) = u_t dt + u_x dZ_t + \frac{1}{2} u_{xx} d[Z, Z]_t$$

Solving the SDE

The idea is to guess a solution by applying the Itô formula to the right process. Assume that under the probability measure P the exchange rate Y_t satisfies

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Solving the SDE

The idea is to guess a solution by applying the Itô formula to the right process. Assume that under the probability measure P the exchange rate Y_t satisfies

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Try Itô with $f(x) = \log x$:

$$d\log(Y_t) = \mu dt + \sigma dW_t - (\sigma^2/2) dt$$

Solving the SDE

The idea is to guess a solution by applying the Itô formula to the right process. Assume that under the probability measure P the exchange rate Y_t satisfies

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Try Itô with $f(x) = \log x$:

$$d\log(Y_t) = \mu dt + \sigma dW_t - (\sigma^2/2) dt$$

Since μ and σ are constants, this is easily integrated to give the general solution to the SDE:

$$Y_t = Y_0 \exp\{(\mu - \sigma^2/2)t + \sigma W_t\}$$

Time-Dependent SDEs

A similar strategy works for equations with time-dependent coefficients, for example:

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Time-Dependent SDEs

A similar strategy works for equations with time-dependent coefficients, for example:

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Itô:

$$d\log(Y_t) = \mu_t dt + \sigma dW_t - (\sigma^2/2) dt$$

Time-Dependent SDEs

A similar strategy works for equations with time-dependent coefficients, for example:

$$dY_t = \mu Y_t \, dt + \sigma Y_t \, dW_t$$

Itô:

$$d\log(Y_t) = \mu_t dt + \sigma dW_t - (\sigma^2/2) dt$$

and so

$$Y_t = Y_0 \exp\{(\bar{\mu}_t - \sigma^2/2)t + \sigma W_t\}$$

where

$$\bar{\mu}_t = \frac{1}{t} \int_0^t \mu_s \, ds$$

Interest Rates

Assume that for each of the two currencies US Dollar and UK Pound Sterling there is a riskless Money Market. Let A_t and B_t be the "share prices" of US Money Market and UK Money Market, respectively, and for simplicity assume that the time-zero share prices are both 1.

Interest Rates

Assume that for each of the two currencies US Dollar and UK Pound Sterling there is a riskless Money Market. Let A_t and B_t be the "share prices" of US Money Market and UK Money Market, respectively, and for simplicity assume that the time-zero share prices are both 1.

Assume that the riskless rates of return r_A , r_B in the two currencies are constant, but not necessarily equal. Then

$$A_t = \exp\{r_A t\}$$
 dollars $B_t = \exp\{r_B t\}$ pounds

Exchange and Interest Rates

The asset US Money Market is riskless to a Dollar investor, but not to a Pound Sterling investor. Evaluated in Pounds Sterling, the share price of the US Money Market asset is

$$A_t Y_t = Y_0 \exp\{r_A t + \mu t - \sigma^2 t/2 + \sigma W_t\}$$

where W_t is a standard Wiener Process under the risk neutral probability measure Q_B for Pound investors.

Exchange and Interest Rates

The asset US Money Market is riskless to a Dollar investor, but not to a Pound Sterling investor. Evaluated in Pounds Sterling, the share price of the US Money Market asset is

$$A_t Y_t = Y_0 \exp\{r_A t + \mu t - \sigma^2 t/2 + \sigma W_t\}$$

where W_t is a standard Wiener Process under the risk neutral probability measure Q_B for Pound investors.

Theorem:
$$\mu = r_B - r_A$$
.

Since US Money Market is a tradeable asset, its share price Y_0 at time t=0 must be the expected value of its discounted share price A_tY_t (in \pounds) at time t, where

 \blacksquare the discount rate is r_B , and

Since US Money Market is a tradeable asset, its share price Y_0 at time t=0 must be the expected value of its discounted share price A_tY_t (in \mathcal{L}) at time t, where

- \blacksquare the discount rate is r_B , and
- \blacksquare the expectation is taken under Q_B .

Since US Money Market is a tradeable asset, its share price Y_0 at time t=0 must be the expected value of its discounted share price A_tY_t (in \mathcal{L}) at time t, where

- \blacksquare the discount rate is r_B , and
- \blacksquare the expectation is taken under Q_B .

$$Y_0 = E_{Q_B} e^{-r_B t} A_t Y_t$$

Since US Money Market is a tradeable asset, its share price Y_0 at time t=0 must be the expected value of its discounted share price A_tY_t (in \pounds) at time t, where

- \blacksquare the discount rate is r_B , and
- \blacksquare the expectation is taken under Q_B .

$$Y_0 = E_{Q_B} e^{-r_B t} A_t Y_t$$

= $E_{Q_B} e^{-r_B t} Y_0 \exp\{r_A t + \mu t - \sigma^2 t + \sigma W_t\}$

Since US Money Market is a tradeable asset, its share price Y_0 at time t = 0 must be the expected value of its discounted share price A_tY_t (in \mathcal{L}) at time t, where

- \blacksquare the discount rate is r_B , and
- \blacksquare the expectation is taken under Q_B .

$$Y_{0} = E_{Q_{B}} e^{-r_{B}t} A_{t} Y_{t}$$

$$= E_{Q_{B}} e^{-r_{B}t} Y_{0} \exp\{r_{A}t + \mu t - \sigma^{2}t + \sigma W_{t}\}$$

$$= Y_{0} \exp\{(r_{A} - r_{B} + \mu - \sigma^{2}/2)t\} E_{Q_{B}} \exp\{\sigma W_{t}\}$$

Since US Money Market is a tradeable asset, its share price Y_0 at time t = 0 must be the expected value of its discounted share price A_tY_t (in \mathcal{L}) at time t, where

- \blacksquare the discount rate is r_B , and
- \blacksquare the expectation is taken under Q_B .

$$Y_{0} = E_{Q_{B}}e^{-r_{B}t}A_{t}Y_{t}$$

$$= E_{Q_{B}}e^{-r_{B}t}Y_{0}\exp\{r_{A}t + \mu t - \sigma^{2}t + \sigma W_{t}\}$$

$$= Y_{0}\exp\{(r_{A} - r_{B} + \mu - \sigma^{2}/2)t\}E_{Q_{B}}\exp\{\sigma W_{t}\}$$

$$= Y_{0}\exp\{(r_{A} - r_{B} + \mu)t\}$$

Currency Options

Consider an option Call that gives the owner the right to buy \$1 for $\pounds K$ at time T. What is the arbitrage price at time 0?

Currency Options

Consider an option Call that gives the owner the right to buy \$1 for $\pounds K$ at time T. What is the arbitrage price at time 0?

Solution: The option is identical to a call on e^{-r_AT} shares of the US Money Market. To a \mathcal{L} investor, the US Money Market is a risky asset with price process $e^{-r_At}Y_t$. Thus, the call option may be priced using the Black-Sholes Formula.

Currency Options

Consider an option Call that gives the owner the right to buy \$1 for $\pounds K$ at time T. What is the arbitrage price at time 0?

Solution: The option is identical to a call on e^{-r_AT} shares of the US Money Market. To a \mathcal{L} investor, the US Money Market is a risky asset with price process $e^{-r_At}Y_t$. Thus, the call option may be priced using the Black-Sholes Formula.

Exercise: Do it! While you're at it, show how to hedge the option.

Risk-Neutral Measure for \$

Theorem: Let Q_A be the risk-neutral probability measure for the US Dollar investor, and Q_B the risk-neutral measure for the UK Pound Sterling investor. Unless $\sigma = 0$ (that is, unless the exchange rate is purely deterministic), it must be the case that

$$Q_A \neq Q_B$$

Risk-Neutral Measure for \$

Theorem: Let Q_A be the risk-neutral probability measure for the US Dollar investor, and Q_B the risk-neutral measure for the UK Pound Sterling investor. Unless $\sigma = 0$ (that is, unless the exchange rate is purely deterministic), it must be the case that

$$Q_A \neq Q_B$$

This is a special case of a more general phenomenon:

Numeraire Change

Suppose that a market has tradeable assets A, B with share price processes S_t^A and S_t^B (evaluated in a common numeraire C). Let Q^A and Q^B be risk-neutral measures for numeraires A, B, respectively.

Numeraire Change

Suppose that a market has tradeable assets A, B with share price processes S_t^A and S_t^B (evaluated in a common numeraire C). Let Q^A and Q^B be risk-neutral measures for numeraires A, B, respectively.

Theorem: $Q^A = Q^B$ if and only if S_t^A/S_t^B is a constant random variable. Furthermore, in general, for any finite time T,

$$\left(\frac{dQ^B}{dQ^A}\right)_{\mathcal{F}_T} = \left(\frac{S_T^B}{S_T^A}\right) \left(\frac{S_0^A}{S_0^B}\right)$$

Consequence

In the foreign exchange context, the riskless assets for the two numeraires are US Money Market and UK Money Market, with share prices (in \$)

$$A_t = \exp\{r_A t\}$$

$$B_t = \exp\{r_B t\}/Y_t$$

Consequence

In the foreign exchange context, the riskless assets for the two numeraires are US Money Market and UK Money Market, with share prices (in \$)

$$A_t = \exp\{r_A t\}$$

$$B_t = \exp\{r_B t\}/Y_t$$

Therefore, the likelihood ratio between the risk-neutral measures for \pounds and \$ investors is

$$\left(\frac{dQ^B}{dQ^A}\right)_{\mathcal{F}_T} = \left(\frac{Y_T}{Y_0}\right)^{-1} \exp\{(r_B - r_A)T\}$$

Consequence

In the foreign exchange context, the riskless assets for the two numeraires are US Money Market and UK Money Market, with share prices (in \$)

$$A_t = \exp\{r_A t\}$$

$$B_t = \exp\{r_B t\}/Y_t$$

Therefore, the likelihood ratio between the risk-neutral measures for \pounds and \$ investors is

$$\left(\frac{dQ^B}{dQ^A}\right)_{\mathcal{F}_T} = \left(\frac{Y_T}{Y_0}\right)^{-1} \exp\{(r_B - r_A)T\}$$

Let V_t^i be the time-t share price of any contingent claim in numeraire i=A,B,C. These share prices satisfy:

Let V_t^i be the time-t share price of any contingent claim in numeraire i = A, B, C. These share prices satisfy:

$$V_t^A = V_t^C / S_t^A$$
$$V_t^B = V_t^C / S_t^B$$

Let V_t^i be the time-t share price of any contingent claim in numeraire i = A, B, C. These share prices satisfy:

$$V_t^A = V_t^C / S_t^A$$
$$V_t^B = V_t^C / S_t^B$$

The time-zero share price is the discounted expected value of the time-t share price for each of the numeraires A, B. The discount factors are 1, so

Let V_t^i be the time-t share price of any contingent claim in numeraire i=A,B,C. These share prices satisfy:

$$V_t^A = V_t^C / S_t^A$$
$$V_t^B = V_t^C / S_t^B$$

The time-zero share price is the discounted expected value of the time-t share price for each of the numeraires A, B. The discount factors are 1, so

$$V_0^A = V_0^C / S_0^A = E^A V_t^C / S_t^A$$
$$V_0^B = V_0^C / S_0^B = E^B V_t^C / S_t^B$$

It follows that for every contingent claim V with share price V_t^C (in numeraire C),

$$S_0^A E^A (V_t^C / S_t^A) = S_0^B E^B (V_t^C / S_t^B)$$

It follows that for every contingent claim V with share price V_t^C (in numeraire C),

$$S_0^A E^A (V_t^C / S_t^A) = S_0^B E^B (V_t^C / S_t^B)$$

Apply this to the contingent claim with payoff $V_T^C S_T^B$ at time T to obtain the following identity, valid for all nonnegative random variables V_T^C measurable \mathcal{F}_T :

$$E^B V_T^C = E^A V_T^C \left(\frac{S_T^B S_0^A}{S_T^A S_0^B} \right)$$

It follows that for every contingent claim V with share price V_t^C (in numeraire C),

$$S_0^A E^A (V_t^C / S_t^A) = S_0^B E^B (V_t^C / S_t^B)$$

Apply this to the contingent claim with payoff $V_T^C S_T^B$ at time T to obtain the following identity, valid for all nonnegative random variables V_T^C measurable \mathcal{F}_T :

$$E^B V_T^C = E^A V_T^C \left(\frac{S_T^B S_0^A}{S_T^A S_0^B} \right)$$

This is the defining property of a likelihood ratio.

Let W_t be a standard Wiener process, wth Brownian filtration \mathcal{F}_t , and let θ_t be a bounded, adapted process. Define

$$Z_t = \exp\left\{\int_0^t \theta_s \, dW_s - \int_0^t \theta_s^2 \, ds/2\right\}$$

Let W_t be a standard Wiener process, wth Brownian filtration \mathcal{F}_t , and let θ_t be a bounded, adapted process. Define

$$Z_t = \exp\left\{ \int_0^t \theta_s \, dW_s - \int_0^t \theta_s^2 \, ds / 2 \right\}$$

Fact: Z_t is a positive martingale.

Let W_t be a standard Wiener process, wth Brownian filtration \mathcal{F}_t , and let θ_t be a bounded, adapted process. Define

$$Z_t = \exp\left\{ \int_0^t \theta_s \, dW_s - \int_0^t \theta_s^2 \, ds / 2 \right\}$$

Fact: Z_t is a positive martingale. Proof: Itô!

Let W_t be a standard Wiener process, wth Brownian filtration \mathcal{F}_t , and let θ_t be a bounded, adapted process. Define

$$Z_t = \exp\left\{\int_0^t \theta_s \, dW_s - \int_0^t \theta_s^2 \, ds/2\right\}$$

Fact: Z_t is a positive martingale. Proof: Itô!

$$dZ_{t} = Z_{t}\theta_{t} dW_{t} - Z_{t}\theta_{t}^{2} dt/2 + Z_{t}\theta_{t}^{2} dt/2$$

$$= Z_{t}\theta_{t} dW_{t} \Longrightarrow$$

$$Z_{t} = Z_{0} + \int_{0}^{t} Z_{s}\theta_{s} dW_{s}$$

Girsanov's Theorem

Because Z_t is a positive martingale under P with initial value $Z_0 = 1$, for every fixed time T the random variable Z_T is a likelihood ratio: that is,

$$Q(F) := E_P(I_F Z_T)$$

defines a new probability measure on the σ -algebra \mathcal{F}_T of events F that are observable by time T.

Girsanov's Theorem

Because Z_t is a positive martingale under P with initial value $Z_0 = 1$, for every fixed time T the random variable Z_T is a likelihood ratio: that is,

$$Q(F) := E_P(I_F Z_T)$$

defines a new probability measure on the σ -algebra \mathcal{F}_T of events F that are observable by time T.

Theorem: Under the measure Q, the process $\{W_t - \int_0^t \theta_s ds\}_{0 \le t \le T}$ is a standard Wiener process.

Exchange Rates

Consider again the \$ and £ currencies. Assume that each has a riskless Money Market, and that the rates of return r_A, r_B are constant. Assume that the exchange rate Y_t obeys

$$dY_t = (r_B - r_A)Y_t dt + \sigma Y_t dW_t$$

where W_t is a standard Wiener process under the risk-neutral probability Q^B for \mathcal{L} investors. Thus,

$$Y_t = Y_0 \exp\{(r_B - r_A - \sigma^2/2)t + \sigma W_t\}.$$

Exchange Rates

Since

$$\left(\frac{dQ^A}{dQ^B}\right)_{\mathcal{F}_T} = \left(\frac{Y_T}{Y_0}\right) \exp\{-(r_B - r_A)T\}$$

$$= \exp\{\sigma W_T - \sigma^2 T/2\}$$

Exchange Rates

Since

$$\left(\frac{dQ^A}{dQ^B}\right)_{\mathcal{F}_T} = \left(\frac{Y_T}{Y_0}\right) \exp\{-(r_B - r_A)T\}$$

$$= \exp\{\sigma W_T - \sigma^2 T/2\}$$

Girsanov implies that under Q^A the process W_t is a Wiener process with drift σ . Thus, to the \$ investor, it appears that the exchange rate obeys

$$dY_t = (r_B - r_A - \sigma^2)Y_t dt + \sigma Y_t d\tilde{W}_t$$

where \tilde{W}_t is a standard Wiener process under Q^A .

The statement that X is a standard Wiener process is an assertion that the increments of X are independent Gaussian random variables with the correct variances. Let's show that under Q, the distribution of $W_T - \Theta_T$ is gaussian with var T (where $\Theta_T = \int_0^T \theta_s \, ds$).

The statement that X is a standard Wiener process is an assertion that the increments of X are independent Gaussian random variables with the correct variances. Let's show that under Q, the distribution of $W_T - \Theta_T$ is gaussian with var T (where $\Theta_T = \int_0^T \theta_s \, ds$). For this, it suffices to show that for any real λ ,

$$E_Q \exp\{\lambda(W_T - \Theta_T)\} = \exp\{\lambda^2 T/2\}$$

The statement that X is a standard Wiener process is an assertion that the increments of X are independent Gaussian random variables with the correct variances. Let's show that under Q, the distribution of $W_T - \Theta_T$ is gaussian with var T (where $\Theta_T = \int_0^T \theta_s \, ds$). For this, it suffices to show that for any real λ ,

$$E_Q \exp\{\lambda(W_T - \Theta_T)\} = \exp\{\lambda^2 T/2\}$$

To evaluate the expectation, change measure:

$$E_Q \exp\{\lambda(W_T - \Theta_T)\} = E_P \exp\{\lambda(W_T - \Theta_T)\}Z_T$$

Objective: Show that $E_P H_T = 1$, where

$$H_t = \exp\{\lambda(W_t - \Theta_t) - \lambda^2 t/2\} Z_t$$

Objective: Show that $E_P H_T = 1$, where

$$H_t = \exp\{\lambda(W_t - \Theta_t) - \lambda^2 t/2\} Z_t$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s + \int_0^t (\lambda \theta_s - \theta_s^2/2 - \lambda^2/2) ds\}$$

Objective: Show that $E_P H_T = 1$, where

$$H_t = \exp\{\lambda(W_t - \Theta_t) - \lambda^2 t/2\} Z_t$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s + \int_0^t (\lambda \theta_s - \theta_s^2/2 - \lambda^2/2) ds\}$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s - \int_0^t (\theta_s + \lambda)^2 ds/2\}$$

Objective: Show that $E_P H_T = 1$, where

$$H_t = \exp\{\lambda(W_t - \Theta_t) - \lambda^2 t/2\} Z_t$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s + \int_0^t (\lambda \theta_s - \theta_s^2/2 - \lambda^2/2) ds\}$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s - \int_0^t (\theta_s + \lambda)^2 ds/2\}$$

Thus, H_t is an exponential martingale under P, and so its expectation is constant over time.

Objective: Show that $E_P H_T = 1$, where

$$H_t = \exp\{\lambda(W_t - \Theta_t) - \lambda^2 t/2\} Z_t$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s + \int_0^t (\lambda \theta_s - \theta_s^2/2 - \lambda^2/2) ds\}$$

$$= \exp\{\int_0^t (\theta_s + \lambda) dW_s - \int_0^t (\theta_s + \lambda)^2 ds/2\}$$

Thus, H_t is an exponential martingale under P, and so its expectation is constant over time. A similar calculation establishes the independence of the increments.