

What is claimed:

1 *SB
B1* 1. A method for use in communications, the method comprising the steps of:
 2 receiving an incoming call, the incoming call representing one of a plurality of call
 3 types comprising voice calls, and non-voice calls that can use a facility; and
 4 admitting the incoming call for using the facility as a function of the call type of the
 5 incoming call.

1 2. The method of claim 1 wherein the admitting step includes the steps of:
 2 (a) associating with each call type a call bandwidth; and
 3 (b) admitting the incoming call if the call bandwidth of the incoming call is not
 4 greater than a spare bandwidth that is associated with the facility for use by the incoming
 5 call.

1 2. The method of claim 2 further comprising the step of identifying the call type of
 2 the incoming call prior to performing step (b).

1 2. The method of claim 2 further comprising the step of blocking the incoming call
 2 if the incoming call is not admitted.

1 2. The method of claim 2 wherein step (b) further includes the step of reducing
 2 the spare bandwidth by an amount equal to the call bandwidth of the admitted incoming
 3 call.

1 2. The method of claim 2 further comprising the step of increasing the spare
 2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call when
 3 the admitted incoming call departs.

1 2. The method of claim 1 further comprising the step of updating a count of a
 2 number of voice calls currently admitted, when the admitted incoming call is a voice call.

1 2. The method of claim 1 further comprising the step of:
 2 determining an amount of bandwidth available for voice as a function of a number
 3 of non-voice admitted calls;

4 setting a value of at-least-one parameter as a function of the determined amount of
 5 bandwidth, wherein the at-least-one parameter is associated with a buffer for holding voice
 6 call traffic; and

7 performing block dropping on the held voice call traffic as a function of the set
 8 value of the at-least-one parameter value.

1 *GWD* 9. A method for use in a packet communications system, which provides access to
 2 at least one virtual circuit, the method comprising the steps of:

3 determining a call type of an incoming call; each call type having an associated
4 bandwidth;

5 admitting the incoming call to use the virtual circuit if the associated bandwidth of
6 the incoming call is not greater than a spare bandwidth that is associated with the virtual
7 circuit.

1 10. The method of claim 9 further comprising the step of blocking the incoming
2 call if the incoming call is not admitted.

1 11. The method of claim 9 wherein step of admitting the call further includes the
2 step of reducing the spare bandwidth by an amount equal to the call bandwidth of the
3 admitted incoming call.

1 12. The method of claim 9 further comprising the step of increasing the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call when
3 the admitted incoming call departs.

1 13. The method of claim 9 further comprising the step of updating a count of a
2 number of voice calls currently admitted, when the admitted incoming call is a voice call.

1 14. The method of claim 9 further comprising the step of:
2 determining an amount of bandwidth available for voice as a function of a number
3 of non-voice admitted calls on the virtual circuit;

4 setting a value of at-least-one parameter as a function of the determined amount of
5 bandwidth, wherein the at-least-one parameter is associated with a buffer for holding voice
6 call traffic for transmission over the virtual circuit; and

7 performing block dropping on the held voice call traffic as a function of the set
8 value of the at-least-one parameter value.

1 *Sub B3* 15. A method for use in a packet communications system, which provides access
2 to at least one virtual circuit, the method comprising the steps of:

3 determining a call type of an incoming call; each call type having an associated
4 bandwidth;

5 admitting the incoming call to use the virtual circuit if the associated bandwidth of
6 the incoming call is not greater than a spare bandwidth that is associated with the virtual
7 circuit;

8 responsive to the admitted call, providing a stream of ATM Adaptation Layer 2
9 (AAL2) packets for conveying information associated with the admitted call; and

10 responsive to the stream of AAL2 packets, providing a respective stream of ATM
11 cells for transmission over the virtual circuit.

1 16. The method of claim 15 further comprising the step of blocking the incoming
2 call if the incoming call is not admitted.

1 17. The method of claim 15 wherein the admitting step includes the step of
2 reducing the spare bandwidth by an amount equal to the call bandwidth of the admitted
3 incoming call.

1 18. The method of claim 15 further comprising the step of increasing the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call when
3 the admitted incoming call departs.

1 19. The method of claim 15 further comprising the step of updating a count of a
2 number of voice calls currently admitted, when the admitted incoming call is a voice call.

1 20. The method of claim 15, further comprising the steps of
2 determining an amount of bandwidth available for voice as a function of a number
3 of non-voice admitted calls on the virtual circuit;

4 setting a value of at-least-one parameter as a function of the determined amount of
5 bandwidth, wherein the at-least-one parameter is associated with a buffer for holding
6 AAL2 voice call traffic for transmission over the virtual circuit; and

7 performing block dropping on the held AAL2 packets as a function of the set value
8 of the at-least-one parameter value.

1 21. The method of claim 15, further comprising the steps of
2 determining an amount of bandwidth available for voice as a function of a number
3 of non-voice admitted calls on the virtual circuit;

4 setting a value of at-least-one parameter as a function of the determined amount of
5 bandwidth, wherein the at-least-one parameter is associated with a buffer for holding
6 ATM cells conveying AAL2 voice call traffic for transmission over the virtual circuit; and

7 performing block dropping on the held ATM cells as a function of the set value of
8 the at-least-one parameter value.

1 22. Apparatus for use in communications, the apparatus comprising:
2 a call processor for receiving an incoming call, the incoming call representing one
3 of a plurality of call types comprising voice calls, and non-voice calls that can use a
4 facility;

5 wherein the call processor admits the incoming call for using the facility as a
6 function of the call type of the incoming call.

1 23. The apparatus of claim 22 wherein the call processor (a) identifies the call type
2 of the incoming call, (b) associates with each call type a call bandwidth; and (b) admits the
3 incoming call if the call bandwidth of the incoming call is not greater than a spare
4 bandwidth that is associated with the facility for use by the incoming call.

1 24. The apparatus of claim 23 wherein the call processor blocks the incoming call
2 if the incoming call is not admitted.

1 25. The apparatus of claim 23 wherein the call processor reduces the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call.

1 26. The apparatus of claim 23 wherein the call processor increases the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call when
3 the admitted incoming call departs.

1 27. The apparatus of claim 22 wherein the call processor (a) determines an
2 amount of bandwidth available for voice as a function of a number of non-voice admitted
3 calls; (b) sets a value of at-least-one parameter as a function of the determined amount of
4 bandwidth, wherein the at-least-one parameter is associated with a buffer for holding voice
5 call traffic, and (c) performs block dropping on the held voice call traffic as a function of
6 the set value of the at-least-one parameter value.

1 28. Apparatus for use in a packet communications system, which provides access
2 to at least one virtual circuit, the apparatus comprising:

3 a call classifier for determining a call type of an incoming call; each call type having
4 an associated bandwidth and for admitting the incoming call to use the virtual circuit if the
5 associated bandwidth of the incoming call is not greater than a spare bandwidth that is
6 associated with the virtual circuit;

7 a processor responsive to the admitted call for providing a stream of ATM
8 Adaptation Layer 2 (AAL2) packets for conveying information associated with the
9 admitted call; and

10 a processor responsive to the stream of AAL2 packets for providing a respective
11 stream of ATM cells for transmission over the virtual circuit.

1 29. The apparatus of claim 28 wherein the call classifier blocks the incoming call if
2 the incoming call is not admitted.

1 30. The apparatus of claim 28 wherein the call classifier reduces the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call.

1 31. The apparatus of claim 28 wherein the call classifier increases the spare
2 bandwidth by an amount equal to the call bandwidth of the admitted incoming call when
3 the admitted incoming call departs.

1 32. The apparatus of claim 28 wherein the call classifier updates a count of a
2 number of voice calls currently admitted, when the admitted incoming call is a voice call.

1 33. The apparatus of claim 28 wherein the call classifier further (a) determines an
2 amount of bandwidth available for voice as a function of a number of non-voice admitted
3 calls on the virtual circuit; and (b) sets a value of at-least-one parameter as a function of
4 the determined amount of bandwidth, wherein the at-least-one parameter is associated
5 with a buffer for holding voice call traffic for transmission over the virtual circuit; and
6 wherein the processor for providing the stream of AAL2 packets performs block dropping
7 on the held voice call traffic as a function of the set value of the at-least-one parameter
8 value.

1 34. The apparatus of claim 28 wherein the call classifier further (a) determines an
2 amount of bandwidth available for voice as a function of a number of non-voice admitted
3 calls on the virtual circuit; and (b) sets a value of at-least-one parameter as a function of
4 the determined amount of bandwidth, wherein the at-least-one parameter is associated
5 with a buffer for holding voice call traffic for transmission over the virtual circuit; and
6 wherein the processor for providing the stream of ATM cells performs block dropping on
7 the held voice call traffic as a function of the set value of the at-least-one parameter value.