Yifan Yuan

Email: yifany3@illinois.edu Website: https://yifanyuan3.github.io

Education

• MS/PhD, Department of Electrical and Computer Engineering, UIUC

August 2017 - Present

- Major: Computer Architecture and Systems
- Advisor: Prof. Nam Sung Kim
- Bachelor, Institute of VLSI Design, Zhejiang University

September 2014 - June 2018

- Major: Electronic Information Engineering

Research Interests

- Networking hardware and system software for datacenter
- Hardware-software co-design for distributed systems acceleration

Publications

- Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. K. Ports, A. Sapio, M. Canini, N. S. Kim. Unlocking the Power of Inline Floating-Point Operations on Programmable Switches, NSDI'22
- Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, N. S. Kim. Don't Forget the I/O When Allocating Your LLC, ISCA'21 full paper, NSDI'20 poster

 Code to appear in Intel official RDT (pgos) library
- Y. Yuan, Y. Wang, R. Wang, R. Chowdhury, C. Tai, N. S. Kim. QEI: Query Acceleration Can be Generic and Efficient in the Cloud, HPCA'21
- M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, N. S. Kim. Data Direct I/O Characterization for Future I/O System Exploration, ISPASS'20
- Y. Yuan, Y. Wang, R. Wang, J. Huang. HALO: Accelerating Flow Classification for Scalable Packet Processing in NFV, ISCA'19
- Y. Li, I. Liu, Y. Yuan, D. Chen, A. Schwing, J. Huang. Accelerating Distributed Reinforcement Learning with In-Switch Computing, ISCA'19 full paper, NSDI'19 poster
- X. Wang, Y. Yuan, Y. Zhou, C. C. Coats, J. Huang. Project Almanac: A Time-Traveling Solid-State Drive, EuroSys'19
- Y. Li, J. Park, M. Alian, Y. Yuan, Q. Zheng, P. Pan, R. Wang, A. Schwing, H. Esmaeilzadeh, N. S. Kim. A Network-Centric Hardware/Algorithm Co-Design to Accelerate Distributed Training of Deep Neural Networks, *MICRO'18*

Patents

- R. Wang, T.-Y. C. Tai, Y. Wang, Y. Yuan, S. Paul, M. M. Khellah, S. Gobriel, C. Augustine, M. Ganguli, J.-S. Tsai, E. Verplanke, P. Autee, A. Layek, S. Narayana, B. Ganesh, J. B. Timbadiya, S. K. Muthukumar, R. Iyer, N. Jain, N. D. McDonnell, M. A. Goldschmidt, R. M. Sankaran, N. Ranganathan. Hardware Assisted Lookup Operations, US Patent App. 63/130,663, filed Dec. 2020
- R. Wang, Y. Yuan, Y. Wang, T.-Y. C. Tai, T. Hurson. Data Consistency and Durability over Distributed Persistent Memory Systems, US Patent App. 62/986,094, filed Aug. 2020
- Y. Wang, R. Wang, T.-Y. C. Tai, Y. Yuan, P. Pathak, S. Vedantham, C. Macnamara. Workload Scheduler for Memory Allocation, US Patent App. 16/799,745, filed Feb. 2020
- R. Wang, A. J. Herdrich, T.-Y. C. Tai, Y. Wang, R. Kondapalli, A. Bachmutsky, Y. Yuan. Offload of Data Lookup Operations, US Patent App. 16/207,065, filed Nov. 2018

Work Experience

• Microsoft Research

June 2020 - August 2020

- Research Intern at Systems Research Group, Redmond, WA
- Collaborators: Dan Ports and Jacob Nelson
- Explored and evaluated new application areas and architectures of modern programmable switch.

- Research Intern at Networking Performance Lab, Hillsboro, OR
- Collaborators: Ren Wang and Yipeng Wang
- Conducted research on next-generation high-performance network platform and I/O system.

Professional Services

• Shadow program committee member at EuroSys'22

Research Experience

- Fine-grained Accelerator Design for Network/Application Dataplane Operations 2018 Present Tackling the "datacenter tax" problem and the "killer microsecond" problem, We design accelerator architecture, programming models, and integration schemes to accelerate a wide range of fine-grained but costly operations in datacenter's software stacks and applications. The results have been published in HPCA'21 and ISCA'19.
- I/O Subsystem Design and Optimization for Modern Server CPU

 2018 2021

 High-speed I/O devices can exert significant pressure on the CPU's cache/memory system. We study the I/O-host interaction behavior in the real system, and build realistic and accurate I/O subsystem models for gem5 simulator. We also propose multiple solutions in both real systems and simulation models to optimize the data transfer, notification, and interference in the I/O subsystem. The results have been published in ISCA'21 and ISPASS'20.
- In-network Computing for Distributed ML Training Acceleration 2017 2021 Distributed ML training is notoriously time- and resource-consuming. We propose to leverage the networking devices, including NICs (for in-network gradient compression) and switches (for in-network gradient aggregation), to facilitate the inter-machine communication, which is the most expensive portion in distributed training. We also explore the new potential for P4 programmable switch to process more complicated (floating-point) operations. The results have been published in NSDI'22, ISCA'19, and MICRO'18.

Teaching Experience

• ECE 411: Computer Organization and Design (SP 2021)

Skills and Techniques

- Programming languages: C/C++, Verilog HDL, VHDL, Python, P4, Shell script, LaTeX, Matlab, etc.
- Development skills: Unix/Linux, FPGA, DPDK, RDMA, programmable switch, CUDA, gem5 simulator, sniper simulator, etc.

Selected Courses

• Computer Architecture; High-speed and Programmable Networks; Advanced Memory and Storage System; Distributed System; Advanced Computer Networks; Applied Parallel Programming; Computer Security; System-on-Chip Design; Introduction to VLSI Design; Digital System Design; Embedded System; Artificial Intelligence

Awards and Honors

• OSDI'21 Student Travel Grant	2021
• NSDI'20 Student Travel Grant	2020
• OSDI'18 Student Travel Grant	2018
• Scholarship for Academic Excellence	2016
• Third Prize in University Robot Contest	2016
• Scholarship for Academic Excellence	2015