

Prof. Ja-Ling Wu

Department of Computer Science and Information Engineering National Taiwan University

1

 Definition: The Entropy H(X) of a discrete random variable X is defined by

$$H(x) = -\sum_{x \in X} P(x) \log P(x)$$

$$log : base 2 \rightarrow H(P) : bits$$

$$0\log 0 = 0$$
 (xlogx as $x \to 0$)

: adding terms of zero probability does not change the entropy

Information Theory

If (X, P(x)), then the expected value of the r.v. g(x)

is written as

$$E_{p}g(x) = \sum_{x \in X} g(x)P(x)$$
(Eg(x))

Remark: The entropy of $X \rightarrow$ the expected value of $\log \frac{1}{P(x)}$

$$H(x) = E\left[\log_{\frac{1}{P(x)}}\right]$$
Self-information

Information Theory

2

Definition: The joint entropy H(X, Y) of a pair of discrete random variables (X, Y) with a joint distribution P(x, y) is defined as

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(x,y)$$
or

$$H(X,Y) = -E \log P(X,Y)$$

Definition: The conditional entropy $H(Y|X)$ is defined as

$$H(Y \mid X) = \sum_{x \in X} P(x)H(Y \mid X = x) \text{ is defined as}$$

$$= -\sum_{x \in X} P(x) \sum_{y \in Y} P(y \mid x) \log P(y \mid x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x, y) \log P(y \mid x)$$

$$= -E_{P(x, y)} \log P(Y \mid X)$$

Information Theory

5

■ Theorem 1.1 (Chain Rule):

$$H(X,Y) = H(X) + H(Y \mid X)$$

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(x,y)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(x) P(y \mid x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(x) - \sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(y \mid x)$$

$$= -\sum_{x \in X} P(x) \log P(x) - \sum_{x \in X} \sum_{y \in Y} P(x,y) \log P(y \mid x)$$

$$=H(X)+H(Y|X)$$

or equivalently, we can write

$$\log P(X,Y) = \log P(X) + \log P(Y \mid X)$$

Information Theory

Relative Entropy and Mutual Information

- The entropy of a random variable is a measure of the <u>uncertainty</u> of the random variable; it is a measure of the amount of information required on the average to <u>describe</u> the random variable.
- The relative entropy is a measure of the distance between two distributions. In statistics, it arises as an expected logarithm of the likelihood ratio. The relative entropy D(p||q) is a measure of the inefficiency of assuming that the distribution is q when the true distribution is p.

Information Theory

Information Theory

9

Definition:

The relative entropy or Kullback Liebler distance between two probability mass functions p(x) and q(x) is defines as

$$D(p \parallel q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

$$= E_p \log \frac{p(x)}{q(x)} = E_p \left[\log \frac{1}{q(x)} - \log \frac{1}{p(x)} \right]$$

$$= E_p \left[\log \frac{1}{q(x)} \right] - E_p \left[\log \frac{1}{p(x)} \right]$$

Information Theory

Consider two r.v.'s X and Y with a joint probability mass function p(x,y) and marginal probability mass functions p(x) and p(y). The mutual information I(X;Y) is the relative entropy between the joint distribution p(x,y) and the product distribution p(x) p(y) i.e.,

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= D(p(x,y) \parallel p(x)p(y))$$
$$= E_{p(x,y)} \left[\log \frac{P(X,Y)}{P(X)P(Y)} \right]$$

Information Theory

11

Ex: Let $X = \{0, 1\}$ and consider two distributions p and q on X. Let p(0)=1-r, p(1)=r, and let q(0)=1-s, q(1)=s. Then

$$D(p || q) = p(0)\log \frac{p(0)}{q(0)} + p(1)\log \frac{p(1)}{q(1)}$$

$$= (1-r)\log \frac{1-r}{1-s} + r\log \frac{r}{s}$$
and
$$D(q || p) = q(0)\log \frac{q(0)}{p(0)} + q(1)\log \frac{q(1)}{p(1)}$$

$$= (1-s)\log \frac{1-s}{1-r} + s\log \frac{s}{r}$$

 \Rightarrow If r=s, then D(p||q)=D(q||p)=0 While, in general,

$$D(p||q) \neq D(q||p)$$

Relationship between Entropy and Mutual Information

Rewrite I(X;Y) as

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y)$$

$$= -\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x|y)\right)$$

$$= H(X) - H(X|Y)$$

Information Theory

13

Thus the mutual information I(X;Y) is the <u>reduction</u> in the uncertainty of X due to the knowledge of Y.

By symmetry, it follows that

$$I(X;Y) = H(Y) - H(Y|X)$$

→ X says much about Y as Y says about X

Since H(X;Y) = H(X) + H(Y|X)

$$\rightarrow$$
 I(X;Y) = H(X) + H(Y) – H(X,Y)

$$I(X;X) = H(X) + H(X|X) = H(X)$$

The mutual information of a r.v. with itself is the entropy of the r.v. ---> entropy: self-information

Chain Rules for Entropy, Relative Entropy and Mutual Information

• Theorem: (Chain rule for entropy)
Let $X_1, X_2, ..., X_n$, be drawn according to $P(x_1, x_2, ..., x_n)$.
Then $H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i \mid X_{i-1}, ..., X_1)$

(2) We write $P(x_{1}, x_{2}, \dots, x_{n}) = \prod_{i=1}^{n} P(x_{i} | x_{i-1}, \dots, x_{1})$ then $H(X_{1}, X_{2}, \dots, X_{n})$ $= -\sum_{X_{1}, X_{2}, \dots, X_{n}} P(x_{1}, x_{2}, \dots, x_{n}) \log P(x_{1}, x_{2}, \dots, x_{n})$ $= -\sum_{X_{1}, X_{2}, \dots, X_{n}} P(x_{1}, x_{2}, \dots, x_{n}) \log \prod_{i=1}^{n} P(x_{i} | x_{i-1}, \dots, x_{1})$ $= -\sum_{X_{1}, X_{2}, \dots, X_{n}} \prod_{i=1}^{n} P(x_{1}, x_{2}, \dots, x_{n}) \log P(x_{i} | x_{i-1}, \dots, x_{1})$ $= -\sum_{i=1}^{n} \sum_{X_{1}, X_{2}, \dots, X_{n}} P(x_{1}, x_{2}, \dots, x_{n}) \log P(x_{i} | x_{i-1}, \dots, x_{1})$ $= -\sum_{i=1}^{n} \sum_{X_{1}, X_{2}, \dots, X_{n}} P(x_{1}, x_{2}, \dots, x_{n}) \log P(x_{i} | x_{i-1}, \dots, x_{1})$ $= \sum_{i=1}^{n} H(X_{i} | X_{i-1}, \dots, X_{1})$ Information Theory

The conditional mutual information of rv's. X and Y given Z is defined by

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$= E_{p(x,y,z)} \log \frac{P(X,Y|Z)}{P(X|Z) \cdot P(Y|Z)}$$

Information Theory

19

Theorem: (chain rule for mutual-information)

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y \mid X_{i-1}, \dots, X_1)$$
 proof:

$$\begin{split} &I(X_{1}, X_{2}, \dots, X_{n}; Y) \\ &= H(X_{1}, X_{2}, \dots, X_{n}) - H(X_{1}, X_{2}, \dots, X_{n} \mid Y) \\ &= \sum_{i=1}^{n} H(X_{i} \mid X_{i-1}, \dots, X_{1}) - \sum_{i=1}^{n} H(X_{i} \mid X_{i-1}, \dots, X_{1}, Y) \\ &= \sum_{i=1}^{n} I(X_{i}; Y \mid X_{1}, X_{2}, \dots, X_{i-1}) \end{split}$$

The conditional relative entropy D(p(y|x) || q(y|x)) is the average of the relative entropies between the conditional probability mass functions p(y|x) and q(y|x)averaged over the probability mass function p(x).

$$D(p(y|x)||q(y|x)) = \sum_{x} p(x) \sum_{y} p(y|x) \log \frac{p(y|x)}{q(y|x)}$$
$$= E_{p(x,y)} \log \frac{p(Y|X)}{q(Y|X)}$$

■ Theorem: (Chain rule for relative entropy)

$$D(p(x,y)||q(x,y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x))$$

Information Theory

21

Jensen's Inequality and Its Consequences

Definition: A function is said to be convex over an interval (a,b) if for every x_1 , $x_2 \in (a,b)$ and $0 \le \lambda \le 1$, $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$ A function f is said to be strictly convex

if equality holds only if $0 < \lambda < 1$.

■ Definition: A function is concave if –f is convex.

Ex: convex functions: X^2 , |X|, e^X , $X \log X$ (for $X \ge 0$) concave functions: $\log X$, $X^{1/2}$ for $X \ge 0$

both convex and concave: ax+b; linear functions

If the function f has a second derivative which is non-negative (positive) everywhere, then the function is convex (strictly convex).

$$\int EX = \sum p(x)x \qquad : \qquad \text{discrete case}$$

$$\begin{cases} EX = \sum_{x \in X} p(x)x & : & \text{discrete case} \\ EX = \int p(x)xdx & : & \text{continuous case} \end{cases}$$

Information Theory

23

Theorem: (Jensen's inequality):

If f(x) is convex function and X is a random variable, then $Ef(X) \ge f(EX)$.

Proof: For a two mass point distribution, the inequality becomes

 $p_1f(x_1)+p_2f(x_2) \ge f(p_1x_1+p_2x_2), p_1+p_2=1$

which follows directly from the definition of convex functions.

Suppose the theorem is true for distributions with K-1 mass points.

Then writing $P'_i=P_i/(1-P_K)$ for i=1, 2, ..., K-1, we have

$$\sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} p_i' f(x_i)$$

$$\geq p_k f(x_k) + (1 - p_k) f(\sum_{i=1}^{k-1} p_i' x_i)$$

$$\geq f(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} p_i' x_i)$$

$$= f((1-p_k)p_k'x_k + (1-p_k)\sum_{i=1}^{k-1}p_i'x_i)$$

$$= f((1-p_k)\sum_{i=1}^k p_i' x_i)$$

$$= f(\sum_{i=1}^{k} (1 - p_k) p_i' x_i)$$

$$= f(\sum_{i=1}^k p_i x_i)$$

The proof can be extended to continuous distributions by continuity arguments. (Mathematical Induction) Information Theory

Let p(x), q(x) (x \in X), be two probability mass functions. Then $D(p||q) \geq 0 \label{eq:def}$

with equality iff p(x)=q(x) for all x.

Proof: Let $A=\{x:p(x)>0\}$ be the support set of p(x). Then

$$-D(p \parallel q) = -\sum_{x \in A} p(x) \log \frac{p(x)}{q(x)}$$

$$= \sum_{x \in A} p(x) \log \frac{q(x)}{p(x)} = E \left\{ \log \frac{q(x)}{p(x)} \right\} \le \left\{ \log E \left(\frac{q(x)}{p(x)} \right) \right\}$$

$$= \log \sum_{x \in A} p(x) \frac{q(x)}{p(x)} \qquad \text{(log t is concave)}$$

$$= \log \sum_{x \in A} q(x)$$

$$\leq \log \sum_{x \in X} q(x)$$

$$= \log 1 = 0$$
Information Theory

25

Corollary: (Non-negativity of mutual information):For any two rv's., X, Y,

$$I(X;Y) \ge 0$$

with equality iff X and Y are independent.

Proof:

 $I(X;Y) = D(p(x,y)||p(x)p(y)) \ge 0$ with equality iff p(x,y)=p(x)p(y), i.e., X and Y are independent

Corollary:

 $D(p(y|x)||q(y|x)) \ge 0$

with equality iff p(y|x)=q(y|x) for all x and y with p(x)>0.

Corollary:

$$I(X;Y|Z) \ge 0$$

with equality iff X and Y are conditionally independent given Z.

 $H(x) \le \log |X|$, where |X| denotes the number of elements in the range of X, with equality iff X has a uniform distribution over X.

Proof:

Let u(x)=1/|X| be the uniform probability mass function over X, and let p(x) be the probability mass function for X. Then

$$D(p \parallel u) = \sum p(x) \log \frac{p(x)}{u(x)} = \log |\mathbf{X}| - H(x)$$

Hence by the non - negativity of relative entropy

$$0 \le D(p \parallel u) = \log |\mathbf{X}| - H(x)$$

Information Theory

27

■Theorem: (conditioning reduces entropy):

$$H(X|Y) \leq H(X)$$

with equality iff X and Y are independent.

Proof:
$$0 \le I(X;Y)=H(X) - H(X|Y)$$

Note that this is true only on the average; specifically, H(X|Y=y) may be greater than or less than or equal to H(X), but on the average $H(X|Y)=\Sigma$ $p(y)H(X|Y=y) \le H(X)$.

X	1	2
1	0	3/4
2	1/8	1/8

Then,
$$H(X)=H(1/8, 7/8)=0.544$$
 bits $H(X|Y=1)=0$ bits

$$H(X|Y=2)=1$$
 bits > $H(X)$

However,
$$H(X|Y) = 3/4 H(X|Y=1)+1/4 H(X|Y=2)$$

= 0.25 bits < $H(X)$

Information Theory

29

Theorem: (Independence bound on entropy):

Let $X_1, X_2, ..., X_n$ be drawn according to $p(x_1, x_2, ..., x_n)$.

Then
$$H(X_1, X_2, \dots, X_n) \le \sum_{i=1}^n H(X_i)$$

with equality iff the Xi are independent.

Proof: By the chain rule for entropies,

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i \mid X_{i-1}, \dots, X_1)$$

$$\leq \sum_{i=1}^{n} H(X_i)$$

with equality iff the X_i 's are independent.

Theorem: (Log sum inequality)
For non-negative numbers, a₁, a₂, ..., a_n and b₁, b_{2..} b_n

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

with equality iff $a_i/b_i = constant$.

(some conventions: $0\log 0 = 0$, $a\log \frac{a}{0} = \infty$ if a > 0) $0\log \frac{0}{0} = 0$

Information Theory

31

Proof:

Assume w.l.o.g that $a_i>0$ and $b_i>0$. The function f(t)=tlogt is strictly convex, since $f''(t) = \frac{1}{1}\log e > 0$ for all positive t. Hence by Jensen's inequality, we have

$$\sum \alpha_i f(t_i) \ge f(\sum \alpha_i t_i)$$

for
$$\alpha_i \ge 0$$
, $\sum_i \alpha_i = 1$. Setting $\alpha_i = \frac{b_i}{\sum\limits_{i=1}^n b_i}$ and $t_i = \frac{a_i}{b_i}$,

we obtain $\sum \frac{b_i}{\sum_i b_i} \cdot \frac{a_i}{b_i} \log \frac{a_i}{b_i} \ge \sum \frac{b_i}{\sum_i b_i} \cdot \frac{a_i}{b_i} \log \left(\sum \frac{b_i}{\sum_i b_i} \cdot \frac{a_i}{b_i} \right)$

$$\sum \frac{b_i}{\sum_i b_i} \cdot \frac{a_i}{b_i} \log \frac{a_i}{b_i} \ge \sum \frac{a_i}{\sum_i b_i} \log \sum \frac{a_i}{\sum_i b_i} \qquad \text{(note that } \sum_i b_i = 1\text{)}$$

$$\Rightarrow \sum a_i \log \frac{a_i}{b_i} \ge \sum a_i \log \frac{\sum a_i}{\sum b_i}$$

which is the log sum inequality. (Sum bi greater than

$$D(p || q) = \sum p(x) \log \frac{p(x)}{q(x)}$$

$$\geq \left(\sum p(x)\right) \log \frac{\sum p(x)}{\sum q(x)} \qquad \text{(from log - sum inequality)}$$

$$= 1 \log \frac{1}{1} = 0$$

with equality iff p(x)/q(x)=c. Since both p and q are probability mass functions, $c=1 \Rightarrow p(x)=q(x)$, $\forall x$.

Information Theory

33

■ Theorem:

D(p||q) is convex in the pair (p,q), i.e., if (p_1, q_1) and (p_2, q_2) are two pairs of probability mass functions, then

$$D(\lambda p_1 + (1 - \lambda)p_2 \| \lambda q_1 + (1 - \lambda)q_2) \le \lambda D(p_1 \| q_1) + (1 - \lambda)D(p_2 \| q_2)$$
 for all $0 \le \lambda \le 1$

Proof:
$$D(\lambda p_1 + (1 - \lambda)p_2 \parallel \lambda q_1 + (1 - \lambda)q_2)$$

$$= \sum (\lambda p_1 + (1 - \lambda)p_2) \log \frac{\lambda p_1 + (1 - \lambda)p_2}{\lambda q_1 + (1 - \lambda)q_2} \cdots (1)$$
Let $a_1 = \lambda p_1$, $a_2 = (1 - \lambda)p_2$

$$b_1 = \lambda q_1$$
, $b_2 = (1 - \lambda)q_2$

$$then (1) ⇒ \sum \left(\sum_{i=1}^2 a_i\right) \log \frac{\left(\sum_{i=1}^2 a_i\right)}{\left(\sum_{i=1}^2 b_i\right)}$$

$$\leq \sum \left[\sum_{i=1}^2 a_i \log \frac{a_i}{b_i}\right] = \sum \left(\lambda p_1 \log \frac{\lambda p_1}{\lambda q_1} + (1 - \lambda)p_2 \log \frac{(1 - \lambda)p_2}{(1 - \lambda)q_2}\right)$$

$$= \lambda \sum p_1 \log \frac{p_1}{q_1} + (1 - \lambda) \sum p_2 \log \frac{p_2}{q_2}$$

$$= \lambda D(p_1 \parallel q_1) + (1 - \lambda)D(p_2 \parallel q_2)$$

Consider a conditional distribution

$$p_{\lambda}(y|x) = \lambda p_1(y|x) + (1-\lambda)p_2(y|x)$$

that is a mixture of $p_1(y|x)$ and $p_2(y|x)$. The corresponding joint distribution is also a mixture of the corresponding joint distributions,

$$p_{\lambda}(x,y) = \lambda p_1(x,y) + (1-\lambda)p_2(x,y) \quad \text{when p(x) is fixed,} \\ p_{\lambda}(x,y) \text{ is linear with p_i(y|x)}$$

and the distribution of Y is also a mixture $p_{\lambda}(y) = \lambda p_1(y) + (1-\lambda)p_2(y)$. Hence if we let $q_{\lambda}(x,y) = p(x)p_{\lambda}(y) \Rightarrow q_{\lambda}(x,y) = \lambda q_1(x,y) + (1-\lambda)q_2(x,y)$.

The product of the marginal distribution

 $q_{\lambda}(x,y)$ is also linear with $p_i(y|x)$ when p(x) is fixed.

 $I(X;Y) = D(p_{\lambda}||q_{\lambda}) \rightarrow \text{convex of } (p,q)$

 \Rightarrow the mutual information is a convex function of the conditional distribution. Therefore, the convexity of I(X;Y) is the same as that of the D(p_{\lambda}||q_{\lambda}) w.r.t. p_i(y|x) when p(x) is fixed.

Information Theory

37

Data processing inequality:

No clever manipulation of the data can improve the inferences that can be made from the data

Definition:

Rv's. X,Y,Z are said to form a Markov chain in that order (denoted by $X \rightarrow Y \rightarrow Z$) if the conditional distribution of Z depends only on Y and is conditionally independent of X. That is $X \rightarrow Y \rightarrow Z$ form a Markov chain, then

- (i) p(x,y,z)=p(x)p(y|x)p(z|y)
- (ii) p(x,z|y)=p(x|y)p(z|y): X and Z are conditionally independent given Y
- X→Y→Z implies that Z→Y→X If Z=f(Y), then X→Y→Z

if $X \rightarrow Y \rightarrow Z$, then $I(X;Y) \ge I(X;Z)$

No processing of Y, deterministic or random, can increase the information that Y contains about X.

Proof:

$$I(X;Y,Z) = I(X;Z) + I(X;Y|Z)$$
 : chain rule
= $I(X;Y) + I(X;Z|Y)$: chain rule

Since X and Z are independent given Y, we have I(X;Z|Y)=0. Since $I(X;Y|Z)\ge0$, we have $I(X;Y)\ge I(X;Z)$ with equality iff I(X;Y|Z)=0, i.e., $X\to Z\to Y$ forms a Markov chain. Similarly, one can prove $I(Y;Z)\ge I(X;Z)$

Information Theory

39

Corollary:

If $X \to Y \to Z$ forms a Markov chain and if Z=g(Y), we have $I(X;Y) \ge I(X;g(Y))$

: functions of the data Y cannot increase the information about X.

■ Corollary: If $X \rightarrow Y \rightarrow Z$, then $I(X;Y|Z) \le I(X;Y)$

Proof: I(X;Y,Z)=I(X;Z)+I(X;Y|Z)

$$=I(X;Y)+I(X;Z|Y)$$

By Markovity, I(X;Z|Y)=0

and $I(X;Z) \ge 0 \Rightarrow I(X;Y|Z) \le I(X;Y)$

⇒ The dependence of X and Y is decreased (or remains unchanged) by the observation of a "downstream" r.v. Z.

41

Fano's inequality:

Fano's inequality relates the probability of error in guessing the r.v. X to its conditional entropy H(X|Y).

Information Theory

Note that:

The conditional entropy of a r.v. X given another random variable Y is zero iff X is a function of Y.

proof: HW H(X|Y)=0 implies there is no uncertainty about X if we know Y \Rightarrow for all x with p(x)>0, there is only one possible value of y with p(x,y)>0

- \Rightarrow we can estimate X from Y with zero probability of error iff H(X|Y)=0.
- ⇒ we expect to be able to estimate X with a low probability of error only if the conditional entropy H(X|Y) is small.

Fano's inequality quantifies this idea.

Information Theory

$$P_e = P_r \left\{ \stackrel{\wedge}{X} \neq X \right\} = P_r \left\{ g(Y) \neq X \right\}$$

Information Theory

43

■ Theorem: (Fano's inequality)

For any estimator \hat{X} such that $X \to Y \to \hat{X}$ with $P_e = P_r(X \neq \hat{X})$, we have $H(P_e) + P_e \log(|X| - 1) \ge H(X|Y)$ $H(P_e) \le 1$, E: binary r.v. $\log(|X| - 1) \le \log|X|$ This inequality can be weakened to $1 + P_e \log(|X|) \ge H(X|Y)$ or $P_e \ge \frac{H(X|Y) - 1}{\log|X|}$ Remark: $P_e = 0 \Rightarrow H(X|Y) = 0$

Proof: Define an error rv.

$$E = \begin{cases} 1 & \text{, if } \hat{X} \neq X \\ 0 & \text{, if } \hat{X} = X \end{cases}$$

By the chain rule for entropies, we have $H(E,X|\hat{X}) = H(X|\hat{X}) + H(E|X,\hat{X})$

$$=0$$

$$=H(E|X) + H(X|E,X)$$

$$\leq H(P_e) \qquad \leq P_e \log(|X|-1)$$

Since conditioning reduces entropy, $H(E|\stackrel{\wedge}{X}) \leq H(E) = H(P_e)$. Now since E is a function of X and $\stackrel{\wedge}{X} \Rightarrow H(E|X,X) = 0$. Since E is a binary-valued r.v., $H(E) = H(P_e)$.

The remaining term, $H(X|E,\hat{X})$, can be bounded as follows: $H(X|E,\hat{X}) = P_r(E=0)H(X|\hat{X},E=0) + P_r(E=1)H(X|\hat{X},E=1)$ $\leq (1 - P_e)0 + P_e log(|X|-1),$

Information Theory

45

Since given E=0, $X=\hat{X}$, and given E=1, we can upper bound the conditional entropy by the log of the number of remaining outcomes (|X|-1).

 $H(P_e)+P_elog|X|\ge H(X|\hat{X})$. By the data processing inequality, we have $I(X;\hat{X})\le I(X;Y)$ since $X\to Y\to \hat{X}$, and therefore $H(X|\hat{X})\ge H(X|Y)$. Thus we have $H(P_e)+P_elog|X|\ge H(X|\hat{X})\ge H(X|Y)$.

Remark:

Suppose there is no knowledge of Y. Thus X must be guessed without any information. Let $\hat{X} \in \{1,2,\ldots,m\}$ and $P_1 \ge P_2 \ge \ldots \ge P_m$. Then the best guess of X is X=1 and the resulting probability of error is $P_e = 1 - P_1$.

Fano's inequality becomes

$$H(P_e) + P_e log(m-1) \ge H(X)$$

The probability mass function

$$(P_1, P_2,..., P_m) = (1-P_e, P_e/(m-1), ..., P_e/(m-1))$$

achieves this bound with equality.

Information Theory

Some Properties of the Relative Entropy

1. Let μ_n and μ'_n be two probability distributions on the state space of a Markov chain at time n, and let μ_{n+1} and μ'_{n+1} be the corresponding distributions at time n+1. Let the corresponding joint mass function be denoted by p and q.

That is,

$$p(x_n, x_{n+1}) = p(x_n) r(x_{n+1} | x_n)$$

$$q(x_n, x_{n+1}) = q(x_n) r(x_{n+1} | x_n)$$

where

 $r(\cdot \mid \cdot)$ is the probability transition function for the Markov chain.

Information Theory

47

Then by the chain rule for relative entropy, we have the following two expansions:

$$D(p(x_n, x_{n+1})||q(x_n, x_{n+1}))$$

$$= D(p(x_n)||q(x_n)) + D(p(x_{n+1}|x_n)||q(x_{n+1}|x_n))$$

$$= D(p(x_{n+1})||q(x_{n+1})) + D(p(x_n|x_{n+1})||q(x_n|x_{n+1}))$$

Since both p and q are derived from the same Markov chain, so

$$p(x_{n+1}|x_n) = q(x_{n+1}|x_n) = r(x_{n+1}|x_n),$$

and hence

$$D(p(x_{n+1}|x_n)) || q(x_{n+1}|x_n)) = 0$$

2. Relative entropy $D(\mu_n||\ \mu)$ between a distribution μ_n on the states at time n and a stationary distribution μ decreases with n. In the last equation, if we let μ 'n be any stationary distribution μ , then μ 'n+1 is the same stationary distribution. Hence $D(\mu_n||\ \mu) \geq D\ (\mu_{n+1}||\ \mu)$ \Rightarrow Any state distribution gets closer and closer to each stationary distribution as time passes. $\lim_{n\to\infty} D(\mu_n ||\ \mu) = 0$

3. Def:A probability transition matrix [Pii],

$$P_{ij} = P_r\{x_{n+1}=j|x_n=i\}$$
 is called doubly stochastic if

$$\Sigma_i P_{ij} = 1$$
, i=1,2,..., j=1,2,...

and

$$\Sigma_i P_{ii} = 1, i = 1, 2, ..., j = 1, 2, ...$$

The uniform distribution is a stationary distribution of P iff the probability transition matrix is doubly stochastic.

Information Theory

51

4. The conditional entropy $H(X_n|X_1)$ increase with n for a stationary Markov process.

If the Markov process is stationary, then $H(X_n)$ is constant. So the entropy is non-increasing. However, it can be proved that $H(X_n|X_1)$ increases with n. This implies that:

the conditional uncertainty of the future increases.

Proof:

$$H(X_n|X_1) \geq H(X_n|X_1,\,X_2)$$

(conditioning reduces entropy)

$$= H(X_n|X_2)$$

(by Markovity)

$$= H(X_{n-1}|X_1)$$

(by stationarity)

Similarly: $H(X_0|X_n)$ is increasing in n for any Markov chain.

Sufficient Statistics

Suppose we have a family of probability mass function $\{f_{\theta}(x)\}$ indexed by θ , and let X be a sample from a distribution in this family. Let T(X) be any statistic (function of the sample) like the sample mean or sample variance. Then

$$\theta \rightarrow X \rightarrow T(X)$$
,

And by the data processing inequality, we have

$$I(\theta;T(X)) \leq I(\theta;X)$$

for any distribution on θ . However, if equality holds, no information is lost.

A statistic T(X) is called sufficient for θ if it contains all the information in X about θ .

Information Theory

53

Def:

A function T(X) is said to be a sufficient statistic relative to the family $\{f_{\theta}(x)\}\$ if X is independent of θ give T(X), i.e., $\theta \rightarrow T(X) \rightarrow X$ forms a Markov chain.

or:

$$I(\theta;X) = I(\theta; T(X))$$

for all distributions on θ

Sufficient statistics preserve mutual information.

1. Let $X_1, X_2, ..., X_n, X_i \in \{0,1\}$ be an i.i.d. sequence of coin tosses of a coin with unknown parameter $\theta = Pr(X_i = 1)$.

Given n, the number of 1's is a sufficient statistics for θ .

Here
$$T(X_1, X_2, ..., X_n) = \sum_{i=1}^n X_i$$
. \Rightarrow

Given T, all sequences having that many 1's are equally likely and independent of the parameter θ .

Information Theory

55

$$\Pr \bigg\{ (X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n) \bigg| \sum_{i=1}^n x_i = k \bigg\}$$

$$= \begin{cases} 1 \\ n \\ k \end{cases}, & \text{if } \sum x_i = k \end{cases}$$

$$= \begin{cases} n \\ k \end{cases}, & \text{otherwise}$$

$$Thus, \theta \to \sum X_i \to (X_1, X_2, ..., X_n)$$

$$and T \text{ is a sufficient statistics for } \theta.$$
Information Theory

if
$$f_{\theta} = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\theta)^2}{2}} = N(\theta,1)$$

and X_1, X_2, \ldots, X_n are drawn independently according to f_θ , a sufficient statistic for θ is the sample mean $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$.

This can be verified that $P(X_1, X_2, ..., X_n | \overline{X_n}, n)$ is independent of θ .

Information Theory

57

The minimal sufficient statistics is a sufficient statistics that is a function of all other sufficient statistics.

Def:

A static T(X) is a minimal sufficient statistic related to $\{f_{\theta}(X)\}$ if it is a function of every other sufficient statistic $U:\theta \to T(X) \to U(X) \to X$

Hence, a minimal sufficient statistic maximally compresses the information about θ in the sample. Other sufficient statistics may contain additional irrelevant information.

The sufficient statistics of the above examples are minimal.

If T is a shuffle (permutation) of a deck of cards and X is the initial (random) position of the cards in the deck and if the choice of the shuffle T is independent of X, then

$$H(TX) \ge H(X)$$

where TX is the permutation of the deck induced by the shuffle T on the initial permutation X.

Proof:
$$H(TX) \ge H(TX|T)$$

= $H(T^{-1}TX|T)$ (why?)
= $H(X|T)$
= $H(X)$
if X and T are independent!

Information Theory

59

If X and X' are i.i.d. with entropy H(X), then $P_r(X=X') \geq 2^{-H(X)}$ with equality iff X has a uniform distribution. pf: suppose $X \sim p(x)$. By Jensen's inequality, we have $2^{\text{Elogp}(X)} \leq E2^{\text{logp}(X)}$ which implies that $2^{-H(X)} = 2^{\sum p(x) \log p(x)} \leq \sum p(x) 2^{\log p(x)} = \sum p^2(x) = P_r(X=X')$ (Let X and X' be two i.i.d. rv's with entropy H(X). The prob. at X=X' is given by $P_r(X=X') = \sum p^2(x)$)

Let X, X' be independent with $X \sim p(x)$, $X' \sim r(x)$, x, $x \in \chi$ Then $P_r(X=X') \geq 2^{-H(p)-D(p||r)}$ $P_r(X=X') \geq 2^{-H(r)-D(r||p)}$ pf: $2^{-H(p)-D(p||r)} = 2^{\sum p(x)\log p(x) + \sum p(x)\log r(x)/p(x)} = 2^{\sum p(x)\log r(x)} = \sum p(x)r(x) = P_r(X=X')$ Information Theory