convexity in complex networks

Lovro Šubelj University of Ljubljana Faculty of Computer and Information Science joint work with

Tilen Marc University of Ljubljana Institute of Mathematics, Physics and Mechanics

LCN2 '17

definitions of convexity

convex/non-convex real functions, sets in \mathbb{R}^2 & subgraphs

 $\mathsf{disconnected} \supseteq \mathsf{connected} \supseteq \mathsf{induced} \supseteq \mathsf{isometric} \supseteq \mathsf{convex} \ \mathsf{subgraphs}$

connected subgraphs induced on simple undirected graph ightarrow

convexity in networks?

```
(sna) k-clubs/k-clans are convex k-cliques
(cd) community often defined as "convex" subgraph

— subset S is convex if it induces convex subgraph

— convex hull \mathcal{H}(S) is smallest convex subset including S
```

 $\operatorname{hull} \ \operatorname{number} = \min \{ |S| \colon \mathcal{H}(S) \ \operatorname{includes} \ n \ \operatorname{nodes} \}$ (Everett & Seidman, 1985)

↑ hull number measures how quickly convex subsets can grow
↓ how slowly randomly grown convex subsets expand

expansion of convex subsets

grow subset S by one node & expand S to convex hull $\mathcal{H}(S)$

- $S = \{\text{random node } i\}$
- until *S* contains *n* nodes:
 - 1. select $i \notin S$ by random edge
 - 2. expand $S = \mathcal{H}(S \cup \{i\})$

S quantifies (locally) **tree-like/clique-like** structure of graphs

convex expansion in graphs

s(t) = average fraction of nodes in S after t expansion steps $s(t) = (t+1)/n \text{ in convex } \& s(t) \gg (t+1)/n \text{ in non-convex graphs}$

s(t) quantifies (locally) **tree-like/clique-like** structure of graphs

convex expansion in networks

s(t) = average fraction of nodes in S after t expansion steps $s(t) = (t+1)/n \text{ in convex } \& s(t) \gg (t+1)/n \text{ in non-convex networks}$

s(t) quantifies (locally) tree-like/clique-like structure of networks

convex expansion in networks

convex infrastructure and collaboration & non-convex food web

random graphs fail to reproduce convexity in empirical networks

when/why sudden expansion?

(why) steps $t \approx \text{diameter } D(t) > \text{distance } \langle \ell \rangle$ (when)

random graphs **convex** for $< \mathcal{O}(\ln n)$ & **non-convex** for $> \mathcal{O}(\ln^2 n)$

when/why expansion settles?

(when) S extends to c-core (why) smallest convex subset $\supseteq S$

core-periphery networks have convex periphery & non-convex c-core

global measure c-convexity

$$X_c = 1 - \sum_{t=1}^{n-1} \sqrt[c]{\max(\Delta s(t) - 1/n, 0)}$$
 $X_c \ge X_c^{\mathrm{RW}} \ge X_c^{\mathrm{ER}}$

 X_c highlights tree-like/clique-like networks (cliques connected tree-like)

	X_1	X_1^{RW}	X_1^{ER}	$X_{1.1}$	$X_{1.1}^{\mathrm{RW}}$	$X_{1.1}^{\mathrm{ER}}$
Western US power grid*	0.95	0.32	0.24	0.91	0.10	0.01
European highways*	0.66	0.23	0.27	0.44	-0.02	0.06
Networks coauthorships	0.91	0.09	0.06	0.83	-0.05	-0.09
Oregon Internet map	0.68	0.36	0.06	0.53	0.20	-0.09
Caenorhabditis elegans	0.57	0.54	0.07	0.43	0.40	-0.13
US airports connections	0.43	0.24	0.00	0.30	0.16	-0.07
Scientometrics citations	0.24	0.16	0.02	0.04	0.00	-0.13
US election weblogs	0.17	0.12	0.00	0.06	0.04	-0.08
Little Rock food web	0.03	0.03	0.02	-0.06	-0.02	-0.02

 X_c measures **global** & **regional** (periphery) convexity in networks

local measure of convexity

$$L_c = 1 + \max\{ t \mid s(t) < (t+c+1)/n \}$$
 $L_1 \le L_1^{\mathrm{ER}} \approx \ln n / \ln \langle k \rangle$

L_c highlights locally tree-like/clique-like networks & random graphs

	L_t	L_t^{ER}	L_1	$L_1^{ m ER}$	$\ln n / \ln \langle k \rangle$
Western US power grid	14	9	6	9	8.66
European highways	16	7	7	7	7.54
Networks coauthorships	17	4	7	4	3.77
Oregon Internet map	3	4	3	4	4.40
Caenorhabditis elegans	2	5	2	5	5.79
US airports connections	2	3	2	3	2.38
Scientometrics citations	3	4	3	4	4.30
US election weblogs	2	2	2	2	2.15
Little Rock food web	2	2	2	2	1.59

 L_c measures **local** & **absolute** (tree/clique) convexity in networks

probability of convex subgraphs

 $P = \text{probability that random } G_{1-8} \text{ convex}$

$$P \leq P^{\rm ER}$$

P highlights locally tree-like/clique-like networks & random graphs

	Р	$P^{ m ER}$	$\ln n / \ln \langle k \rangle$	A O Ø
Western US power grid	77.0%	99.4%	8.66	YI
European highways	83.2%	97.6%	7.54	$\varphi \diamond \qquad \downarrow \diamond \qquad \diamond$
Networks coauthorships	53.3%	71.3%	3.77	
Oregon Internet map	56.0%	86.4%	4.40	φ <u>φ</u> '
Caenorhabditis elegans	77.8%	97.6%	5.79	9999
US airports connections	5.5%	12.9%	2.38	$G_3 \bigcirc G_4 \bigcirc G_5 \bigcirc$
Scientometrics citations	30.5%	89.2%	4.30	
US election weblogs	2.7%	6.0%	2.15	\triangle
Little Rock food web	2.2%	0.3%	1.59	G_6 G_7 G_8

P measures local (up to 4 nodes) convexity in networks

types of network convexity

c-convexity \neq standard measures & c-core \neq *k*-cores robustness, navigation, optimization, abstraction, comparison etc.

to be continued...

arXiv:1608.03402v3

Lovro Šubelj University of Ljubljana ro.subelj@fri.uni-lj.

lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si Tilen Marc

University of Ljubljana tilen.marc@imfm.si http://www.imfm.si

convex skeletons of networks

Lovro Šubelj University of Ljubljana

University of Ljubljana Faculty of Computer and Information Science

LCN2 '17

corrected measure of convexity

$$Xs = s - \sum_{t=1}^{sn-1} \sqrt[c]{\max(s\Delta s(t) - 1/n, 0)}$$
 $s = \text{fraction of nodes in LCC}$

Xs highlights tree-like/clique-like networks & synthetic graphs

	n	$\langle k \rangle$	Xs		n	$\langle k \rangle$	Xs
Jazz musicians	198	27.70	0.12		2500	10.00	0.00
Network scientists	379	4.82	0.85	Random graphs	1000	10.00	0.01
Computer scientists	239	4.75	0.64		225	10.00	0.03
Plasmodium falciparum	1158	4.15	0.43	Triangular lattice	225	5.48	0.23
Saccharomyces cerevisiae	1458	2.67	0.68	Rectangular lattice	225	3.73	0.13
Caenorhabditis elegans	3747	4.14	0.56	Core-periphery graph	3747	4.48	0.39
AS (January 1, 1998)	3213	3.50	0.66		2500	5.97	1.00
AS (January 1, 1999)	531	4.58	0.49	Convex graphs	1000	5.97	1.00
AS (January 1, 2000)	3570	3.94	0.59		225	6.01	1.00
Little Rock Lake	183	26.60	0.02				
Florida Bay (wet)	128	32.42	0.03	convex graphs are i	random tr	ees of cliq	ues
Florida Bay (dry)	128	32 01	0.03				

Xs measures **global** & **regional** convexity in (disconnected) networks

convexity under randomization

$$X \ge s_1$$
 $s_1 = \text{fraction of pendant nodes}$

Xs under degree-preserving/full randomization by edge rewiring

Xs very sensitive to random perturbations of network structure

convex skeletons of networks

convex skeleton = largest high-Xs subnetwork (every S is convex)

spanning tree & convex skeleton of network scientists coauthorships

convex skeleton is tree of cliques extracted by edge removal

extraction of convex skeletons

$$c_i = \sum_{j \in \Gamma_i} p_j - \sum_{j \in \Gamma_i} 1 - p_j$$
 $p_i = ext{probability that } i \in ext{c-core}$

Xs under removal of edges $\{i,j\}$ based on c-centrality $c_i + c_j$

c-centrality $c_i + c_j$ for **core-periphery** & clustering $\Delta C_i + \Delta C_j$ for **others**

statistics of convex skeletons

$$\langle C \rangle = \frac{1}{n} \sum_{i} \frac{2t_{i}}{k_{i}(k_{i}-1)} \qquad \langle \sigma \rangle = \frac{2}{n(n-1)} \sum_{i < j} \sigma_{ij} \qquad Xs = \dots$$

statistics of convex skeletons & spanning trees of networks

	clustering $\langle C \rangle$		geo	geodesics $\langle \sigma \rangle$			convexity Xs		
	N	CS	ST	N	CS	ST	N	CS	ST
Jazz musicians	0.62	0.81	0.00	9.71	1.97	1.00	0.12	0.84	1.00
Network scientists	0.74	0.75	0.00	2.66	1.47	1.00	0.85	0.95	1.00
Computer scientists	0.48	0.54	0.00	4.08	1.42	1.00	0.64	0.95	1.00
Plasmodium falciparum	0.02	0.07	0.00	3.71	1.77	1.00	0.43	0.95	1.00
Saccharomyces cerevisiae	0.07	0.10	0.00	2.58	1.19	1.00	0.68	0.88	1.00
Caenorhabditis elegans	0.06	0.12	0.00	6.79	3.03	1.00	0.56	0.85	1.00
AS (January 1, 1998)	0.18	0.21	0.00	3.87	2.32	1.00	0.66	0.91	1.00
AS (January 1, 1999)	0.18	0.27	0.00	3.54	2.05	1.00	0.49	0.95	1.00
AS (January 1, 2000)	0.20	0.25	0.00	4.81	3.07	1.00	0.59	0.90	1.00
Little Rock Lake	0.32	0.69	0.00	22.13	4.32	1.00	0.02	0.82	1.00
Florida Bay (wet)	0.33	0.79	0.00	9.17	1.37	1.00	0.03	0.92	1.00
Florida Bay (dry)	0.33	0.82	0.00	9.37	1.65	1.00	0.03	0.93	1.00

convex skeleton is generalization of spanning tree retaining clustering

distributions of convex skeletons

node distributions of convex skeletons & spanning trees of networks

convex skeletons retain distributions in contrast to spanning trees

convex skeletons of coauthorships

convex skeleton \sim network abstraction technique

convex skeleton of Slovenian computer scientists coauthorships

computer theory (\spadesuit) , information systems (\blacksquare) , intelligent systems (\blacktriangle) , programming technologies (\lozenge) & other (\bullet)

network backbones of coauthorships

convex skeleton ≫ high-betweenness & high-salience skeletons

properties of backbones of Slovenian computer scientists coauthorships

convex skeletons increase properties in contrast to other backbones

convex skeletons of networks

convex skeleton ≫ backbones & **c-centrality** ≠ centralities abstraction, sampling, sparsification, modeling, dynamics etc.

thank you!

arXiv:1709.00255v2

Lovro Šubelj University of Ljubljana lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si