6 The Representations of $sl(3; \mathbb{C})$

(6.13)

or, explicitly,

independent notion of a weight.

156

$$(\pi, V)$$
 be a representation of $sl(3; \mathbb{C})$. An element λ of \mathfrak{h} is called a **weight** for π if there exists a nonzero vector v in V such that
$$\pi(H)v = \langle \lambda, H \rangle v$$

 $\langle H, H' \rangle = \operatorname{trace}(H^*H'),$

 $\langle \operatorname{diag}(a, b, c), \operatorname{diag}(d, e, f) \rangle = \bar{a}d + \bar{b}e + \bar{c}f,$

where diag (\cdot,\cdot,\cdot) is the diagonal matrix with the indicated diagonal entries. If ϕ is a linear functional on \mathfrak{h} , there is (Proposition A.11) a unique vector λ in \mathfrak{h} such that ϕ may be represented as $\phi(H) = \langle \lambda, H \rangle$ for all $H \in \mathfrak{h}$. If we represent the linear functional in the previous paragraph in this way, we arrive at a new, basis-

Definition 6.21. Let \mathfrak{h} be the subspace of $\mathfrak{sl}(3;\mathbb{C})$ spanned by H_1 and H_2 and let

for all H in \mathfrak{h} . Such a vector v is called a **weight vector** with weight λ .

If λ is a weight in our new sense, the ordered pair (m_1, m_2) in Definition 6.1 is given by

 $m_1 = \langle \lambda, H_1 \rangle; \quad m_2 = \langle \lambda, H_2 \rangle.$ It is easy to check that for all $U \in N$, the adjoint action of U on h preserves the inner product in (6.13). Thus, the action of the Weyl group on \mathfrak{h} is unitary: $\langle w \cdot H, w \cdot H' \rangle = \langle H, H' \rangle$. Since the roots are just the nonzero weights of the

adjoint representation, we now also think of the roots as elements of \mathfrak{h} . **Theorem 6.22.** Suppose that (Π, V) is a finite-dimensional representation of

SU(3) with associated representation (π, V) of $SI(3; \mathbb{C})$. If $\lambda \in \mathfrak{h}$ is a weight for V then $w \cdot \lambda$ is also a weight of V with the same multiplicity. In particular, the roots are invariant under the action of the Weyl group. *Proof.* Suppose that λ is a weight for V with weight vector v. Then for all $U \in N$

Proof. Suppose that
$$\lambda$$
 is a weight for V with weight vector v . Then for all U and $H \in \mathfrak{h}$, we have
$$\pi(H)\Pi(U)v = \Pi(U)(\Pi(U)^{-1}\pi(H)\Pi(U))v$$
$$= \Pi(U)\pi(U^{-1}HU)v$$

Here, we have used that U is in N, which guarantees that $U^{-1}HU$ is, again, in \mathfrak{h} . Thus, if w is the Weyl group element represented by U, we have

 $=\langle \lambda, U^{-1}HU\rangle \Pi(U)v.$