Números Inteiros e Criptografia 2022.1[†]

Lista de Exercícios 1

Entregar as soluções das questões assinaladas com * até 19/5 no começo da aula.

A entrega pode ser feita em pessoa ou digitalmente por email para hugonobrega@ic.ufrj.br

Atualizada em 10/5, corrigindo o enunciado da Questão 2.

Questão 1. Sejam $a, b, c \in \mathbb{Z}$. Prove cada uma das afirmações abaixo:

- **a.** $a \mid a$;
- **b.** |a| é o maior divisor de a;
- * c. Se $a \mid b \in b \mid c$, então $a \mid c$;
- **d.** $a \mid b$ sse $(-a) \mid b$ sse $a \mid (-b)$ sse $(-a) \mid (-b)$ sse $|a| \mid |b|$;
- * e. Se $a \mid b$ e $a \mid c$, então para todos $x, y \in \mathbb{Z}$ temos $a \mid (bx + cy)$;
- **f.** Se $a \mid b$ então $|a| \leq |b|$;
- * g. Se a | b e b | a, então |a| = |b|;
- * h. Se $c \neq 0$, então: $a \mid b$ sse $ac \mid bc$ (o que acontece no caso c = 0?);
- i. $mdc(ca, cb) = c \cdot mdc(a, b)$.
- **j.** a é divisível por 6 sse a é divisível por 2 e por 3.
- * **k.** mdc(a, b) = mdc(b, a + bc).
- 1. mdc(a, ca) = |a|;
- **m.** Se $\operatorname{mdc}(a, c) = 1$ e $\operatorname{mdc}(b, c) = 1$ então $\operatorname{mdc}(ab, c) = 1$.
- * n. Não é verdade que para todos $x, y, z \in \mathbb{Z}$ temos:

$$x \mid (y \cdot z)$$
 sse $(x \mid y \text{ ou } x \mid z)$;

[†]Em qualquer solução de exercício, você pode usar tudo o que foi visto em sala ou os enunciados de outros exercícios de qualquer lista, desde que cite claramente o resultado que está usando e desde que você não crie dependências circulares entre os exercícios! Se você citar um exercício da lista atual que não resolveu, ganhará apenas alguma pontuação parcial.

o. Não é verdade que para todos $x, y, z \in \mathbb{Z}$ temos:

$$(x \cdot y) \mid z$$
 sse $(x \mid z \in y \mid z)$

* **p.** mdc(a, b) = mdc(|a|, |b|).

Questão 2. Prove as seguintes generalizações do Teorema da Divisão Euclidiana que vimos em sala.

a

Teorema. Sejam $a, b \in \mathbb{Z}$ com $b \neq 0$. Então existem únicos $q, r \in \mathbb{Z}$ tais que

$$\begin{cases} a = b \cdot q + r \\ 0 \le r < |b| \end{cases}$$

* b.

Teorema. Sejam $a,b,c\in\mathbb{Z}$ com $b\neq 0$. Então existem únicos $q,r\in\mathbb{Z}$ tais que

$$\begin{cases} a = b \cdot q + r \\ c \le r < c + |b| \end{cases}$$

Questão 3. Para cada par a,b de números inteiros abaixo, faça (manualmente) o teste de mesa do Algoritmo de Euclides com entradas a e b

- **a.** 14 e 35
- **b.** 252 e 180
- **c.** 6643 e 2873
- * **d.** 272828282 e 3242
- *Questão 4. Sejam n > m inteiros positivos. Mostre que se o resto da divisão de n por m é r então o resto da divisão de $2^n 1$ por $2^m 1$ é $2^r 1$.

Questão 5. O Algoritmo Euclidiano funciona tão bem que é razoavelmente difícil encontrar pares de números que o façam demorar muito.

- * a. Encontre dois números cujo mdc é 5, para os quais o Algoritmo Euclidiano efetua exatamente 4 divisões. (*Dica*. Experimente pensar nas divisões que algoritmo executa, mas em ordem contrária, começando pela última.)
- **b.** Encontre dois números cujo mdc é 5, para os quais o Algoritmo Euclidiano efetua exatamente 5 divisões. (Dica. Tente estender a ideia que você usou na letra **a**).
- * c. Descreva um método para resolver o seguinte problema: dado um natural k>0, encontrar dois números cujo mdc é 5, para os quais o Algoritmo Euclidiano efetua exatamente k divisões. Você deve fornecer alguma explicação de por que seu método funciona, mas não precisa provar terminação e corretude formalmente.