Guía de ejercicios # 4 Rutinas

Organización de Computadoras 2014

UNQ

Arquitectura Q3

Características

- Tiene 8 registros de uso general de 16 bits: R0..R7.
- La memoria utiliza direcciones son de 16 bits.
- Tiene un contador de programa (*Program counter*) de 16 bits.
- Stack Pointer de 16 bits. Comienza en la dirección FFEF.

Instrucciones de dos operandos

Formato de Instrucción				
CodOp	Modo Destino	Modo Origen	Destino	Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Tabla de códigos de operaciones		
Operación	Cod Op	Efecto
MUL	0000	$Dest \leftarrow Dest * Origen $ ¹
MOV	0001	$Dest \leftarrow Origen$
ADD	0010	$Dest \leftarrow Dest + Origen$
SUB	0011	$Dest \leftarrow Dest - Origen$
DIV	0111	$Dest \leftarrow Dest \% Origen^2$

Instrucciones de un operando origen

Formato de Instrucción			
CodOp	Relleno	Modo Origen	Operando Origen
(4b)	(000000)	(6b)	(16b)

Tabla de códigos de operaciones		
Operación	Cod Op	Efecto
CALL	1011	$ \begin{aligned} [SP] \leftarrow PC; & SP \leftarrow SP - 1; \\ PC \leftarrow Origen \end{aligned} $

Instrucciones sin operandos

Formato de Instrucción			
CodOp	Relleno		
(4b)	(000000000000)		

Tabla de códigos de operaciones			
Operación	CodOp	Efecto	
RET	1100	$SP \leftarrow SP + 1; PC \leftarrow [SP]$	

Modos de direccionamiento

Modo	Codificación
Inmediato	000000
Directo	001000
Registro	100rrr ³

Ejercicios

- 1. ¿Que relación existe entre los registros IR y PC?
- 2. Escriba una rutina mulPorDos, que multiplique por 2 el contenido de R1 y guarde el resultado en R1 Documente la rutina especificando:
 - ¿Qué requiere? (dónde recibe los parámetros y cuáles son sus precondiciones)
 - ¿Que modifica? (qué variables auxiliares utiliza)
 - ¿Qué retorna? (dónde devuelve el resultado)
- 3. Utilice la rutina anterior para escribir un **programa** que calcule 2 elevado a la 5.
- 4. Escriba una rutina mulPorCinco, que multiplique por 5 el contenido de R1 y guarde el resultado en R1. Documente la rutina.
- 5. Utilice la rutina anterior para escribir un **programa** que calcule 5 elevado a la 3.
- 6. Escriba una rutina $\mathtt{mulPorSiete}$, que multiplique por 7 el contenido de R1 y guarde el resultado en R1 . **Documente la rutina**.
- 7. Utilice la rutina anterior para escribir un **programa** que calcule 7 elevado a la 2.
- 8. Escriba una rutina mulPorCuatro, que multiplique por 4 el contenido de R1 y guarde el resultado en R1. Documente la rutina.
- 9. Utilice la rutina anterior para escribir un **programa** que calcule 4 elevado a la 4.
- 10. Sabiendo que la rutina mulPorCuatro se encuentran ensamblada a partir de la celda 2000, el programa anterior está ensamblado a partir de la celda F000, y que la pila está vacía, simule los cambios que ocurren en el PC, en el SP y en el contenido de la pila durante la ejecución del mismo.

- 11. Escribir una rutina swapROR1 que intercambie los valores de los registros R0 y R1. Documente su rutina.
- 12. Escribir un programa que utilice la rutina anterior para intercambiar los valores de las celdas consecutivas entre la 3000 y la 3009. Esto es: intercambiar el valor de x con el valor de x+1, siendo x una celda cuya dirección es par, en el rango [3000, 3009].
- Escribir una rutina avg que calcule el promedio entre R1 y R2, guardando el calculo en R3, Documente su rutina
- 14. Sabiendo que en R1, R2, R4 y R5 se encuentran almacenadas las edades de los profes de Orga, calcular el promedio total utilizando la rutina anterior.
- 15. Sabiendo que las rutinas avg se encuentran ensamblada a partir de la celda 2000, el programa anterior está ensamblado a partir de la celda F000, y que la pila está vacía, simule los cambios que ocurren en el PC, en el SP y en el contenido de la pila durante la ejecución del programa.
- 16. Explique detalladamente como funciona el CALL y el RET
- 17. Considere la siguiente rutina:

rutina1: MOV R1, R0

y el siguiente programa:

programa: CALL rutina1 CALL rutina1

Sabiendo que:

- rutina1 está ensamblada a partir de la celda 00E0
- el programa está ensamblado a partir de la celda 1000
- PC=1000
- la pila está vacía⁴

simule los cambios que ocurren en el PC, en el SP y en el contenido de la pila durante la ejecución del programa.

18. Considere las siguientes rutinas:

rutina1: MOV R1, R0

RET

rutina2: RET

y el siguiente programa:

programa: CALL rutina1 CALL rutina2

Sabiendo que:

- rutina1 está ensamblada a partir de la celda 00E0
- rutina2 está ensamblada a partir de la celda 00A1
- el programa está ensamblado a partir de la celda 1000
- PC=1000
- la pila está vacía

simule los cambios que ocurren en el PC, en el SP y en el contenido de la pila durante la ejecución del programa.

19. Considere las siguientes rutinas:

rutina1: MOV R1, R0

CALL rutina2

RET

rutina2: CALL rutina3

RET

rutina3: MOV R2, R1

RET

y el siguiente programa:

programa: CALL rutina1

CALL rutina2 CALL rutina3

Sabiendo que:

- rutina1 está ensamblada a partir de la celda 00E0
- rutina2 está ensamblada a partir de la celda 00A1
- rutina3 está ensamblada a partir de la celda 0101
- el programa está ensamblado a partir de la celda 1000
- PC=1000
- la pila está vacía

simule los cambios que ocurren en el PC, en el SP y en el contenido de la pila durante la ejecución del programa.

- 20. Escribir una rutina sumaDos que dados dos valores almacenados en R1 y R2 sume su contenido.
- 21. Se cuenta con la siguiente documentación de la rutina aplicarDescuento:

; REQUIERE: El precio unitario en la celda A000

El porcentaje a aplicar

en la celda A001

; MODIFICA: RO

; RETORNA: El precio con el descuento

; aplicado en RO.

⁴Es decir, el valor de SP es FFEF

Utilizando las rutinas aplicarDescuento y sumaDos, escriba un programa que calcule el precio final a pagar por una persona que compra dos productos, cuyos precios unitarios están almacenados en R6 y R7 y se le debe aplicas un descuento del 10 %.

- 22. Dada la siguiente secuencia de números 2, 4, 6, 8 ,10 escribir un programa que calcule la sumatoria utilizando la rutina sumaDos.
- 23. Se cuenta con la subrutina \max Int que calcula el maximo entre los valores BSS(16) de R6 y R7, dejando el resultado en R6.

Escribir un programa que calcule el maximo de los registros R1 al R7.

24. Ensamblar el siguiente programa a partir de la celda FF0E

SUB RO, 0x0001 CALL swap MOV R3, [OAOA] MOV R3, 0xffff

sabiendo que swap se encuentra ensamblado a partir de la celda 1000.