Final Capstone Assignment- Identification of Similar Cities for Restaurant Chain Expansion

ANKIT CHAUBAL

May 2020

Introduction

A famous Restaurant in Los Angeles wants to expand its business globally and is searching for locations across the globe for its expansion. The company has identified major cities across the globe and want to shortlist cities where they can explore expansion opportunities.

The company needs help in shortlisting initial set of cities to begin with. They want to identify cities which are similar to Los Angeles, so that the restaurant can be established without much changes to their core offerings.

The project would be mainly essential for the Strategy team of the Restaurant Chain, who will then, based on the output, do further detailed analysis of the cities and check on feasibility of business expansion in the cities.

Data Overview

The Restaurant chain has a list of 25 cities which will be the base data, for which we need to perform the cluster analysis. The base data will have only 2 columns- City and Country

For Example, Column A will be 'Toronto' and Column B will be 'Canada'

Data is present in a csv file.

Methodology

In order to generate latitude and longitude for these cities, we will first generate a new column called 'Address' which will combine the 2 available columns in format- CityName, CountryName

So the address column will have value like 'Toronto, Canada'

	Cities	Countries	Address
0	Mumbai	India	Mumbai, India
1	Delhi	India	Delhi, India
2	Madrid	Spain	Madrid, Spain
3	Los Angeles	USA	Los Angeles, USA
4	Las Vegas	USA	Las Vegas, USA

Once the Address is generated, we will use the geocoders package to generate the Lat/Long Details of the cities.

	Cities	Countries	Address	Latitude	Longitude
0	Mumbai	India	Mumbai, India	18.938771	72.835335
1	Delhi	India	Delhi, India	28.651718	77.221939
2	Madrid	Spain	Madrid, Spain	40.416705	-3.703582
3	Los Angeles	USA	Los Angeles, USA	34.053691	-118.242767
4	Las Vegas	USA	Las Vegas, USA	36.167256	-115.148516

We will also use the Foursquare API to get nearby locations of each of the cities by passing the co-ordinated generated Ultimately, we will have the city name, country name, address, city latitude, city longitude, venue details such as venue name, its location details and category which will be used for further processing

Venue Category	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	City	
Bar	72.833464	18.938550	Town House Cafe	72.835335	18.938771	Mumbai	0
Chinese Restaurant	72.832933	18.938715	Royal China	72.835335	18.938771	Mumbai	1
Indian Restaurant	72.837853	18.937944	Sher-E-Punjab	72.835335	18.938771	Mumbai	2
Café	72.833566	18.937701	Cafe Excelsion	72.835335	18.938771	Mumbai	3
Train Station	72.835257	18.940088	Chhatrapati Shivaji Maharaj Terminus	72.835335	18.938771	Mumbai	4

After getting the nearby venues for all cities, we will perform on hot encoding and get average scores for each venue type for each city.

	City	African Restaurant	Alsatian Restaurant	American Restaurant	Amphitheater		Argentinian Restaurant		Art Museum	& Crafts Store	 Resta
0	Mumbai	0	0	0	0	0	0	0	0	0	
1	Mumbai	0	0	0	0	0	0	0	0	0	
2	Mumbai	0	0	0	0	0	0	0	0	0	
3	Mumbai	0	0	0	0	0	0	0	0	0	
4	Mumbai	0	0	0	0	0	0	0	0	0	

Based on the score, we will identify top 10 most common category types and use only that data for k means clustering We will now have city along with the average score for top 10 most common venues, on which we will be performing the k means.

	City	African Restaurant	Alsatian Restaurant	American Restaurant	Amphitheater	Antique Shop	Argentinian Restaurant	Art Gallery	Art Museum	Arts & Crafts Store
0	Buenos Aires	0.000000	0.00	0.000000	0.04	0.000000	0.200000	0.000000	0.000000	0.000000
1	Cairo	0.000000	0.00	0.000000	0.00	0.000000	0.000000	0.020833	0.000000	0.000000
2	Dhaka	0.000000	0.00	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.166667
3	Dublin	0.000000	0.00	0.000000	0.00	0.000000	0.000000	0.250000	0.000000	0.000000
4	Hongkong	0.000000	0.00	0.000000	0.00	0.000000	0.000000	0.018519	0.000000	0.000000
5	Istanbul	0.000000	0.00	0.000000	0.00	0.014085	0.000000	0.000000	0.000000	0.014085
6	Las Vegas	0.000000	0.00	0.038462	0.00	0.000000	0.000000	0.000000	0.000000	0.000000
7	London	0.012821	0.00	0.000000	0.00	0.000000	0.000000	0.038462	0.012821	0.000000
8	Los Angeles	0.000000	0.00	0.037037	0.00	0.000000	0.000000	0.000000	0.000000	0.000000
9	Madrid	0.000000	0.00	0.000000	0.00	0.000000	0.022727	0.011364	0.034091	0.000000

K Means clustering will be performed on this dataset for cluster analysis to identify and group similar cities and results will be visualized and checked for observations. We use K means which is an unsupervised learning method for classification as we do not have output data for performing supervised learning.

Output for K Means-

Result

After running the cluster analysis for k=6, we get that the city of Los Angeles (the base location for the Client) is classified in the 5^{th} cluster with 13 other cities.

This is also the biggest cluster found for in the output. On analysing the cluster properties, we also observe that the Top 3 most visited venues are Hotels/Cafes/Coffee shops or Restaurants which will help in the final selection as these venues are more relevant to the Restaurant Business.

	Cities	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
2	Madrid	4	Hotel	Hostel	Plaza	Restaurant	Spanish Restaurant	Wine Bar	Gourmet Shop	Art Museum
3	Los Angeles	4	Museum	Shopping Mall	Pop-Up Shop	Sushi Restaurant	Sandwich Place	Candy Store	Bookstore	Noodle House
6	Hongkong	4	Hotel	Café	Lounge	Steakhouse	Cantonese Restaurant	Park	Dim Sum Restaurant	Chinese Restaurant
11	Perth	4	Coffee Shop	Hotel	Café	Korean Restaurant	Wine Bar	Sushi Restaurant	Vietnamese Restaurant	Restaurant
14	Melbourne	4	Coffee Shop	Café	Bar	Cocktail Bar	Dessert Shop	Shopping Mall	Toy / Game Store	Burger Joint
15	Washington DC	4	Garden	Hotel	Outdoor Sculpture	Bar	Government Building	Sandwich Place	Monument / Landmark	American Restaurant
16	Seol	4	Coffee Shop	Korean Restaurant	Chinese Restaurant	Hotel	Historic Site	Lounge	Café	Japanese Restaurant

Discussion

As we can observe from the results, the Restaurant Chain can shortlist the 13 cities from the cluster for further analysis on feasibility on expansion.

A City wise detailed analysis is recommended to further shortlist the cities and identify possible locations in cities where the restaurant can be established.

Conclusion

The study helps the Strategy team to identify possible candidate cities for the business expansion. The shortlisted cities need to be further analysed considering the Cost Analysis/Geo-Political factors and ease of doing business.