ORGANIC ELECTROLUMINESCENT ELEMENT

Patent number:

JP10095972

Publication date:

1998-04-14

Inventor:

NAKATSUKA MASAKATSU; KITAMOTO NORIKO

Applicant:

MITSUI PETROCHEMICAL IND

Classification:

- international:

C09K11/06; H05B33/14

- european:

Application number: JP19970196007 19970722

Priority number(s): JP19970196007 19970722; JP19960204613 19960802

Report a data error here

Abstract of JP10095972

PROBLEM TO BE SOLVED: To obtain the subject element having long emission lifetime, capable of developing excellent durability and useful as a panel type light source, sensor, etc., by nipping a layer containing a specific compound between a pair of electrodes. SOLUTION: This electroluminescent element is obtained by nipping a layer containing a compound of the formula [Ar1 to Ar4 are each a (substituted) aryl; X1 to X6 are each H, a halogen, a straight-chain, branched or cyclic alkyl (oxy) or (substituted) aryl; (m) is 0-1], e.g. 2-[N,N-di(3'-methylphenyl)amino]-9,9diphenylfluorene between a pair of electrodes. For example, the element has a layer structure of an anode/a positive hole-injecting and transporting layer containing a compound of the formula/a luminous layer/an electroninjecting and transporting layer/a cathode.

$$\begin{array}{c|c}
X_1 & X_2 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_1 & X_1 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_5 & X_5 \\
X_6 & X_6 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_5 & X_5 \\
X_6 & X_6 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_5 & X_5 \\
X_5 & X_5 \\
X_6 & X_7 \\
X_7 & X_7 \\
X_8 & X_7 \\
X_8 & X_8 \\
X_8 & X_8$$

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-95972

(43)公開日 平成10年(1998) 4月14日

(51) Int.Cl.6

識別記号

FΙ

C09K 11/06

Z

C09K 11/06 H05B 33/14

H 0 5 B 33/14

審査請求 未請求 請求項の数4 OL (全 23 頁)

(21)出願番号

特膜平9-196007

(22)出顧日

平成9年(1997)7月22日

(31) 優先権主張番号 特願平8-204613

(32) 優先日

平8 (1996) 8月2日

(33)優先権主張国

日本 (JP)

(71)出顧人 000003126

三井東圧化学株式会社

東京都千代田区麓が関三丁目2番5号

(72)発明者 中塚 正勝

神奈川県横浜市栄区笠間町1190番地 三井

東圧化学株式会社内

(72)発明者 北本 典子

神奈川県横浜市栄区笠間町1190番地 三井

東圧化学株式会社内

(54) 【発明の名称】 有機電界発光素子

(57)【要約】

【解決手段】 一対の電極間に、一般式(1)で表され る化合物を少なくとも1種含有する層を少なくとも一層 挟持してなる有機電界発光素子。

(式中、Ar, ~Ar, は置換または未置換のアリール 基を表し、X1、~X。は水素原子、ハロゲン原子、直 鎖、分岐または環状のアルキル基、直鎖、分岐または環 状のアルコキシ基、あるいは置換または未置換のアリー ル基を表す)

【効果】 発光寿命が長く、耐久性に優れた有機電界発 光素子を提供する。

【特許請求の範囲】

【請求項1】 一対の電極間に、一般式(1)(化1) で表される化合物を少なくとも1種含有する層を、少な* *くとも一層挟持してなる有機電界発光素子。 【化1】

$$\begin{array}{c|c}
X_1 & X_2 \\
X_2 & X_2 \\
X_3 & X_2 \\
X_4 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_4 & X_4 \\
X_5 & X_4 \\
X_5 & X_5 \\
X_5 & X_$$

(式中、Ar, $\sim Ar$, は置換または未置換のアリール基を表し、X, $\sim X$ 。は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、mは0または1を表す)

【請求項2】 一般式(1)で表される化合物を含有する層が、正孔注入輸送層である請求項1記載の有機電界発光素子。

【請求項3】 一対の電極間に、さらに、発光層を有する請求項1または2記載の有機電界発光素子。

【請求項4】 一対の電極間に、さらに、電子注入輸送 層を有する請求項1~3のいずれかに記載の有機電界発 光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機電界発光素子 に関する。

[0002]

【従来の技術】従来、無機電界発光素子は、例えば、バ ックライトなどのパネル型光源として使用されてきた が、該発光素子を駆動させるには、交流の高電圧が必要 である。最近になり、発光材料に有機材料を用いた有機 電界発光素子(有機エレクトロルミネッセンス素子:有 機EL素子)が開発された〔Appl. Phys. Lett., 51、 913 (1987)〕。有機電界発光素子は、蛍光性有機化合物 を含む薄膜を、陽極と陰極間に挟持された構造を有し、 **該薄膜に電子および正孔(ホール)を注入して、再結合** させることにより励起子 (エキシトン)を生成させ、こ の励起子が失活する際に放出される光を利用して発光す る素子である。有機電界発光素子は、数V~数十V程度 40 の直流の低電圧で、発光が可能であり、また蛍光性有機 化合物の種類を選択することにより、種々の色(例え ば、赤色、青色、緑色) の発光が可能である。 とのよう な特徴を有する有機電界発光素子は、種々の発光素子、

表示素子等への応用が期待されている。しかしながら、一般に、有機電界発光素子は、発光寿命が短く、耐久性 に乏しいなどの難点がある。

【0003】正孔注入輸送材料として、1、1-ビス (4'-[N,N-ジ(4"-メチルフェニル)アミノ]フェニル〕シクロヘキサンを用いることが提案されている〔Appl、Phys、Lett.,<u>51</u>、913 (1987)〕。また、正孔注入輸送材料として、4、4'-ビス〔N-フェニル-N-(3"-メチルフェニル)アミノ〕ビフェニルを用いることが提案されている〔Jpn、J.Appl、Phys.,<u>27</u>、L269 (1988)〕。しかしながら、これらの発光素子も発光寿命が短く、耐久性に乏しいなどの難点がある。現在では、一層改良された有機電界発光素子が望まれている。

[0004]

【発明が解決しようとする課題】本発明の課題は、発光 寿命の改良された有機電界発光素子を提供することであ る。

[0005]

(6) 【課題を解決するための手段】本発明者等は、有機電界 発光素子に関して鋭意検討した結果、本発明を完成する に至った。すなわち、本発明は、

●一対の電極間に、一般式(1)(化2)で表される化合物を少なくとも1種含有する層を、少なくとも一層挟持してなる有機電界発光素子、

②一般式(1)で表される化合物を含有する層が、正孔 注入輸送層である①記載の有機電界発光素子、

③一対の電極間に、さらに、発光層を有する前記①または②に記載の有機電界発光素子、

0 ④一対の電極間に、さらに、電子注入輸送層を有する前 記①~③のいずれかに記載の有機電界発光素子、に関す るものである。

[0006]

【化2】

7

$$\begin{array}{c|c}
X_{1} & X_{2} & X_{3} \\
X_{1} & X_{2} & X_{3} \\
Ar_{3} & X_{4} & X_{2} \\
Ar_{4} & X_{5} & X_{1} \\
Ar_{5} & X_{1} & X_{2} \\
Ar_{7} & X_{1} & X_{2} \\
Ar_{8} & X_{1} & X_{2} \\
Ar_{1} & X_{2} & X_{3} \\
Ar_{2} & X_{3} & X_{4} & X_{2} \\
Ar_{3} & X_{4} & X_{5} & X_{5} \\
Ar_{5} & X_{1} & X_{2} & X_{3} \\
Ar_{6} & X_{1} & X_{2} & X_{3} \\
Ar_{7} & X_{1} & X_{2} & X_{3} \\
Ar_{8} & X_{1} & X_{2} & X_{3} \\
Ar_{1} & X_{2} & X_{3} & X_{4} \\
Ar_{2} & X_{3} & X_{4} & X_{4} \\
Ar_{3} & X_{4} & X_{5} & X_{5} \\
Ar_{4} & X_{5} & X_{5} & X_{5} \\
Ar_{5} & X_{5} & X_{5} & X_{5} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7} & X_{7} \\
Ar_{7} & X_{7} & X_{7} & X_{7}$$

(式中、Ar, ~Ar, は置換または未置換のアリール 基を表し、X、~X。は水素原子、ハロゲン原子、直 状のアルコキシ基、あるいは置換または未置換のアリー ル基を表し、mは0または1を表す)

[0007]

【発明の実施の形態】以下、本発明に関して詳細に説明*

* する。本発明の有機電界発光素子は、一対の電極間に、 一般式(1)(化3)で表される化合物を少なくとも1 鎖、分岐または環状のアルキル基、直鎖、分岐または環 10 種含有する層を、少なくとも一層挟持してなるものであ [0008] 【化3】

$$\begin{array}{c|c}
X_1 & X_2 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_1 & X_1 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_5 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_5 & X_1 \\
X_6 & X_1 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_5 & X_4 \\
X_6 & X_1 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_3 \\
X_3 & X_4 \\
X_4 & X_2 \\
X_5 & X_4 \\
X_6 & X_1 \\
X_7 & X_1 \\
X_8 & X_1 \\
X_1 & X_1 \\
X_1 & X_2 \\
X_2 & X_1 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_2 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_2 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_2 \\
X_1 & X_2 \\
X_1 & X_2 \\
X_2 & X_2 \\
X_1 & X_2 \\
X_2 & X_2 \\
X_1 & X_$$

(式中、Ar、~Ar、は置換または未置換のアリール 基を表し、X、~X。は水素原子、ハロゲン原子、直 鎖、分岐または環状のアルキル基、直鎖、分岐または環 状のアルコキシ基、あるいは置換または未置換のアリー ル基を表し、mは0または1を表す)

【0009】一般式(1)で表される化合物において、 Ar、~Ar、は置換または未置換のアリール基を表 す。尚、アリール基とは、例えば、フェニル基、ナフチ ニル基、ビリジル基などの複素環式芳香族基を表す。A r, ~Ar, は、好ましくは、未置換、もしくは、置換 基として、例えば、ハロゲン原子、炭素数1~10のア ルキル基、炭素数1~10のアルコキシ基、あるいは炭 素数6~10のアリール基で単置換または多置換されて いてもよい総炭素数6~20の炭素環式芳香族基または 総炭素数4~20の複素環式芳香族基であり、より好ま しくは、未置換、もしくは、ハロゲン原子、炭素数1~ 6のアルキル基、炭素数1~6のアルコキシ基、あるい は炭素数6~10のアリール基で単置換または多置換さ れていてもよい総炭素数6~20の炭素環式芳香族基で あり、特に好ましくは、未置換、もしくは、ハロゲン原 子、炭素数1~6のアルキル基、炭素数1~6のアルコ キシ基、あるいは炭素数6~10のアリール基で単置換 または多置換されていてもよい総炭素数6~20のフェ ニル基または総炭素数10~20のナフチル基である。 【0010】Ar, ~Ar, の具体例としては、例え ば、フェニル基、1-ナフチル基、2-ナフチル基、2 - アントリル基、9 - アントリル基、4 - キノリル基、

- フリル基、2 - フリル基、3 - チエニル基、2 - チエ ニル基、2-オキサゾリル基、2-チアゾリル基、2-ベンゾオキサゾリル基、2-ベンゾチアゾリル基、2-ベンゾイミダゾリル基、4-メチルフェニル基、3-メ チルフェニル基、2-メチルフェニル基、4-エチルフ ェニル基、3-エチルフェニル基、2-エチルフェニル 基、4-n-プロビルフェニル基、4-イソプロビルフ ェニル基、2-イソプロピルフェニル基、4-n-ブチ ル基などの炭素環式芳香族基、例えば、フリル基、チエ 30 ルフェニル基、4~イソブチルフェニル基、4~sec ~ ブチルフェニル基、2-sec-ブチルフェニル基、4tert-ブチルフェニル基、3-tert-ブチルフェニル 基、2 - tert-ブチルフェニル基、4 - n - ペンチルフ ェニル基、4-イソペンチルフェニル基、2-ネオペン チルフェニル基、4-tert-ペンチルフェニル基、4n-ヘキシルフェニル基、4-(2'-エチルブチル) フェニル基、4-n-ヘプチルフェニル基、4-n-オ クチルフェニル基、4-(2'-エチルヘキシル)フェ ニル基、4-tert-オクチルフェニル基、4-n-デシ 40 ルフェニル基、4-シクロペンチルフェニル基、4-シ クロヘキシルフェニル基、4-(4'-メチルシクロヘ キシル)フェニル基、4-(4'-tert-ブチルシクロ ヘキシル)フェニル基、3-シクロヘキシルフェニル 基、2-シクロヘキシルフェニル基、4-エチル-1-ナフチル基、6-n-ブチル-2-ナフチル基、2,4 -ジメチルフェニル基、2.5-ジメチルフェニル基、 3, 4-ジメチルフェニル基、3,5-ジメチルフェニ ル基、2、6-ジメチルフェニル基、2、4-ジエチル フェニル基、2,3,5-トリメチルフェニル基、2, 4-ピリジル基、3-ピリジル基、2-ピリジル基、3 50 3、6-トリメチルフェニル基、3、4、5-トリメチ

ルフェニル基、2、6-ジエチルフェニル基、2、5-ジイソプロピルフェニル基、2,6-ジイソブチルフェ ニル基、2, 4 -ジ-tert-ブチルフェニル基、2, 5 -ジーtert-ブチルフェニル基、4、6-ジーtert-ブ チルー2-メチルフェニル基、5-tert-ブチルー2-メチルフェニル基、4-tert-ブチル-2、6-ジメチ ルフェニル基、

【0011】4-メトキシフェニル基、3-メトキシフ ェニル基、2-メトキシフェニル基、4-エトキシフェ ニル基、3-エトキシフェニル基、2-エトキシフェニ 10 2,5-ジブロモフェニル基、2,4,6-トリクロロ ル基、4-n-プロポキシフェニル基、3-n-プロポ キシフェニル基、4-イソプロポキシフェニル基、2-イソプロポキシフェニル基、4-n-ブトキシフェニル 基、4-イソプトキシフェニル基、2-sec -ブトキシ フェニル基、4-n-ペンチルオキシフェニル基、4-イソペンチルオキシフェニル基、2-イソペンチルオキ シフェニル基、4-ネオペンチルオキシフェニル基、2 -ネオペンチルオキシフェニル基、4-n-ヘキシルオ キシフェニル基、2-(2'-エチルブチル)オキシフ ェニル基、4-n-オクチルオキシフェニル基、4-n 20 3-クロロフェニル基、2-メチル-4-クロロフェニ - デシルオキシフェニル基、4 - シクロヘキシルオキシ フェニル基、2-シクロヘキシルオキシフェニル基、2 -メトキシ-1-ナフチル基、4-メトキシ-1-ナフ チル基、4-n-ブトキシー1-ナフチル基、5-エト キシー1-ナフチル基、6-エトキシー2-ナフチル 基、6-n-ブトキシ-2-ナフチル基、6-n-ヘキ シルオキシー2ーナフチル基、7ーメトキシー2ーナフ チル基、7-n-プトキシ-2-ナフチル基、2-メチ ルー4ーメトキシフェニル基、2ーメチルー5ーメトキ シフェニル基、3-メチル-5-メトキシフェニル基、 3-エチル-5-メトキシフェニル基、2-メトキシー 4-メチルフェニル基、3-メトキシ-4-メチルフェ ニル基、2、4-ジメトキシフェニル基、2、5-ジメ トキシフェニル基、2,6-ジメトキシフェニル基、 3, 4-ジメトキシフェニル基、3, 5-ジメトキシフ ェニル基、3、5-ジエトキシフェニル基、3、5-ジ - n - ブトキシフェニル基、2 - メトキシ-4 - エトキ シフェニル基、2-メトキシ-6-エトキシフェニル 基、3、4、5-トリメトキシフェニル基、4-フェニ ルフェニル基、3-フェニルフェニル基、2-フェニル 40 イソベンチル基、ネオベンチル基、tert-ベンチル基、 フェニル基、4-(4'-メチルフェニル)フェニル 基、4~(3'-メチルフェニル)フェニル基、4~ (4'-メトキシフェニル)フェニル基、4-(4'n-ブトキシフェニル)フェニル基、2-(2'-メト キシフェニル) フェニル基、4-(4'-クロロフェニ ル)フェニル基、3-メチル-4-フェニルフェニル 基、3-メトキシ-4-フェニルフェニル基、 【0012】4-フルオロフェニル基、3-フルオロフ

ェニル基、2-フルオロフェニル基、4-クロロフェニ

ル基、3-クロロフェニル基、2-クロロフェニル基、

4-プロモフェニル基、2-プロモフェニル基、4-ク ロロー1ーナフチル基、4ークロロー2ーナフチル基、 6-プロモ-2-ナフチル基、2,3-ジフルオロフェ ニル基、2,4-ジフルオロフェニル基、2,5-ジフ ルオロフェニル基、2、6-ジフルオロフェニル基、 3. 4-ジフルオロフェニル基、3. 5-ジフルオロフ ェニル基、2,3-ジクロロフェニル基、2,4-ジク ロロフェニル基、2、5-ジクロロフェニル基、3、4 - ジクロロフェニル基、3.5 - ジクロロフェニル基、 フェニル基、2、4-ジクロロ-1-ナフチル基、1、 6-ジクロロ-2-ナフチル基、2-フルオロ-4-メ チルフェニル基、2-フルオロ-5-メチルフェニル 基、3-フルオロ-2-メチルフェニル基、3-フルオ ロー4ーメチルフェニル基、2ーメチルー4ーフルオロ フェニル基、2-メチル-5-フルオロフェニル基、3 -メチル-4-フルオロフェニル基、2-クロロ-4-メチルフェニル基、2-クロロ-5-メチルフェニル 基、2-クロロ-6-メチルフェニル基、2-メチルー ル基、3-メチル-4-クロロフェニル基、2-クロロ -4,6-ジメチルフェニル基、2-メトキシ-4-フ ルオロフェニル基、2-フルオロ-4-メトキシフェニ ル基、2-フルオロ-4-エトキシフェニル基、2-フ ルオロー6-メトキシフェニル基、3-フルオロー4-エトキシフェニル基、3-クロロ-4-メトキシフェニ ル基、2-メトキシ-5-クロロフェニル基、3-メト キシー6-クロロフェニル基、5-クロロー2、4-ジ メトキシフェニル基などを挙げることができるが、これ

【0013】一般式(1)で表される化合物において、 X、~X。は水素原子、ハロゲン原子、直鎖、分岐また は環状のアルキル基、直鎖、分岐または環状のアルコキ シ基、あるいは置換または未置換のアリール基を表し、 好ましくは、水素原子、ハロゲン原子(例えば、フッ素 原子、塩素原子、臭素原子)、炭素数1~10の直鎖、 分岐または環状のアルキル基(例えば、メチル基、エチ ル基、n-プロピル基、イソプロピル基、n-ブチル 基、イソブチル基、tert-ブチル基、n-ペンチル基、 n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、 シクロヘキシルメチル基、n-オクチル基、tert-オク チル基、2-エチルヘキシル基、n-ノニル基、n-デ シル基など)、炭素数1~10の直鎖、分岐または環状 のアルコキシ基(例えば、メトキシ基、エトキシ基、n - プロポキシ基、イソプロポキシ基、n - ブトキシ基、 イソブトキシ基、sec ーブトキシ基、nーペンチルオキ シ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、 シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-50 オクチルオキシ基、2-エチルヘキシルオキシ基、n-

30 らに限定されるものではない。

ノニルオキシ基、n-デシルオキシ基など)、あるいは 炭素数6~10の置換または未置換のアリール基(例え ば、フェニル基、2-メチルフェニル基、3-メチルフ ェニル基、4-メチルフェニル基、4-エチルフェニル 基、4-n-プロピルフェニル基、4-tert-ブチルフ ェニル基、2-メトキシフェニル基、4-メトキシフェ ニル基、3-エトキシフェニル基、3-フルオロフェニ ル基、3-クロロフェニル基、4-クロロフェニル基、 1-ナフチル基、2-ナフチル基など)であり、より好 ましくは、水素原子、フッ素原子、塩素原子、炭素数 1 10 ル)アミノ]-9,9-ジフェニルフルオレン ~6のアルキル基、炭素数1~6のアルコキシ基または 炭素数6~10のアリール基であり、特に好ましくは、 水素原子、炭素数1~4のアルキル基または炭素数1~ 4のアルコキシ基である。一般式(1)で表される化合 物において、mは0または1を表す。

【0014】本発明に係る一般式(1)で表される化合 物の具体例としては、例えば、以下の化合物を挙げると とができるが、本発明はこれらに限定されるものではな

・例示化合物

番号

(A群)

A-1. 2-(N, N-ジフェニルアミノ)-9,9 -ジフェニルフルオレン

- 2. 2 (N 7x 1) N (4' x + y + y 7x 1)ル) アミノ] - 9、9 - ジフェニルフルオレン
- 2-[N-フェニル-N-(3'-メチルフェニ ル) アミノ] -9, 9-ジフェニルフルオレン
- 4. 2-[N-フェニル-N-(2'-メチルフェニ
- ル) アミノ] 9、9 ジフェニルフルオレン 5. 2-(N-フェニル-N-(4'-エチルフェニ
- ル) アミノ] 9、9 ジフェニルフルオレン
- 6. 2 (N 7x N (4) tert 7 + 7 + 1)フェニル) アミノ] -9, 9-ジフェニルフルオレン
- ミノ] - 9、9 - ジフェニルフルオレン
- 8. 2-(N-フェニル-N-(2'-ナフチル)ア ミノ] - 9、9 - ジフェニルフルオレン
- 2 (N-フェニル-N-(4'-ピリジル)ア ミノ] -9, 9-ジフェニルフルオレン
- 10. 2 (N 7x N (2' 7x N))アミノ) - 9、9 - ジフェニルフルオレン
- 【0015】11. 2-(N-(3'-メチルフェニ ル) -N-(4"-メチルフェニル) アミノ) -9,9-ジフェニルフルオレン
- (4"-シクロヘキシルフェニル)アミノ]-9,9-ジフェニルフルオレン
- 13. 2-(N, N-ジ(4'-メチルフェニル)ア ミノ) - 9, 9 - ジフェニルフルオレン。

14. 2-(N, N-ジ(3'-メチルフェニル)ア ミノ] - 9, 9 - ジフェニルフルオレン

2-(N, N-ジ(2'-メチルフェニル)ア ミノ] - 9、9 - ジフェニルフルオレン

2-(N, N-ジ(4'-エチルフェニル)ア ミノ] -9,9-ジフェニルフルオレン

2-(N, N-ジ(4'-tert-ブチルフェニ 17. ル) アミノ] - 9、9 - ジフェニルフルオレン

2-[N, N-ジ(4'-n-オクチルフェニ 18.

19. 2-(N-フェニル-N-(2', 4'-ジメ チルフェニル)アミノ]-9、9-ジフェニルフルオレ ン

2-(N-フェニル-N-(2', 6'-ジメ チルフェニル)アミノ]-9,9-ジフェニルフルオレ

21. 2-(N-フェニル-N-(3', 4'-ジメ チルフェニル) アミノ) -9, 9-ジフェニルフルオレ

20 22. 2-(N, N-ジ(2', 4'-ジメチルフェ ニル) アミノ] -9, 9-ジフェニルフルオレン 23. 2-(N, N-ジ(2', 5'-ジイソプロピ ルフェニル) アミノ) -9, 9-ジフェニルフルオレン 24. 2-[N, N-ジ(3', 5'-ジメチルフェ ニル)アミノ]-9,9-ジフェニルフルオレン 25. 2-(N, N-ジ(3', 4', 5'-トリメ チルフェニル)アミノ]-9,9-ジフェニルフルオレ

[0016]26. 2-[N-7x=N-N-(4]-メトキシフェニル) アミノ] -9, 9-ジフェニルフ ルオレン

27. 2-[N-フェニル-N-(3'-メトキシフ ェニル) アミノ] -9、9-ジフェニルフルオレン 28. 2- (N-フェニル-N-(2'-メトキシフ ェニル) アミノ] -9, 9-ジフェニルフルオレン 29. 2-[N-フェニル-N-(4'-n-プトキ シフェニル) アミノ] -9, 9-ジフェニルフルオレン 30. $2 - (N - (3' - \forall f) - N - (3' - \forall f) - N - (3' - \forall f) - N - (3' - \forall f)$

(4"-n-ヘキシルオキシフェニル)アミノ]-9, 40 9-ジフェニルフルオレン

31. 2-[N-(3'-メトキシフェニル)-N-(4"-メトキシフェニル)アミノ)-9, 9-ジフェ ニルフルオレン

32. 2-(N, N-ジ(3'-メトキシフェニル)アミノ〕-9、9-ジフェニルフルオレン

33. $2 - (N, N - \mathcal{Y})(4' - x + 2 \mathcal{Y})$ アミノ] - 9、9 - ジフェニルフルオレン

34. 2- (N-フェニル-N-(2', 4'-ジメ トキシフェニル) アミノ] -9、9-ジフェニルフルオ

50 レン

2-[N-フェニル-N-(3', 4'-ジメ トキシフェニル) アミノ] -9, 9-ジフェニルフルオ レン

9

36. 2-(N-フェニル-N-(3', 4', 5' -トリメトキシフェニル)アミノ)-9,9-ジフェニ ルフルオレン

37. 2-(N, N-ジ(2'-メトキシ-4'-エ トキシフェニル)アミノ]-9,9-ジフェニルフルオ レン

38. 2- [N-フェニル-N-(2'-メチル-4'-メトキシフェニル)アミノ]-9,9-ジフェニ ルフルオレン

39. 2 - (N - 7x - 1) - (3' - x + 1) - (3' - x + 1)5'-メトキシフェニル)アミノ]-9,9-ジフェニ ルフルオレン

40. 2-(N, N-ジ(2'-メチル-4'-メト キシフェニル)アミノ]-9、9-ジフェニルフルオレ

【0017】41. 2-[N, N-ジ(3'-メチル -5'-メトキシフェニル) アミノ) -9, 9-ジフェ 20 63. 2-(N. N-ジフェニルアミノ) -9, 9-ニルフルオレン

42. 2 - (N - 7x - 1) - (4' - 7) + 7ェニル) アミノ] - 9, 9 - ジフェニルフルオレン

43. 2-(N-フェニル-N-(3'-フルオロフ ェニル) アミノ] -9, 9-ジフェニルフルオレン

44. 2 - (N - 7x - N - (3' - 70007x)ニル) アミノ] -9, 9-ジフェニルフルオレン

45. 2-[N-フェニル-N-(2'-クロロフェ ニル)アミノ]-9,9-ジフェニルフルオレン

46. 2-[N, N-ジ(3'-フルオロフェニル) アミノ〕-9、9-ジフェニルフルオレン

47. 2-[N, N-ジ(2'-フルオロ-4'-メ チルフェニル)アミノ]-9,9-ジフェニルフルオレ

48. 2-(N, N-ジ(2'-フルオロ-4'-エ トキシフェニル) アミノ] -9, 9-ジフェニルフルオ レン

49. 2-{N, N-ジ(3'-メチル-4'-フル オロフェニル) アミノ] -9, 9-ジフェニルフルオレ

2-[N, N-ジ(2'-メトキシ-4'-フ ルオロフェニル)アミノ]-9,9-ジフェニルフルオ

[0018]51. 2-[N-7x=N-N-(4')]-フェニルフェニル) アミノ] -9, 9-ジフェニルフ ルオレン

52. 2-[N-フェニル-N-(2'-フェニルフ ェニル)アミノ]-9,9-ジフェニルフルオレン 53. 2-(N-7x-1)-N-(4'-[3"-1] ルフルオレン

(6)

54. 2-(N, N-ジフェニルアミノ)-9,9-ピス(4'-メチルフェニル)フルオレン

55. 2-(N, N-ジ(1'-ナフチル)アミノ) -9, 9-ビス (4'-×チルフェニル) フルオレン

56. 2-(N, N-ジ(2'-フリル)アミノ)-9, 9-ピス(4'-メチルフェニル)フルオレン

57. 2-(N, N-ジフェニルアミノ)-9,9-ビス (3' -メチルフェニル) フルオレン

10 58. 2-(N, N-ジフェニルアミノ)-9,9-ピス(2'-メチルフェニル)フルオレン

59. 2-(N. N-ジフェニルアミノ)-9.9-

ビス(4'-エチルフェニル)フルオレン 60. 2-(N. N-ジフェニルアミノ)-9.9-

ビス(3'-tert-ブチルフェニル)フルオレン

61. 2-(N, N-ジフェニルアミノ)-9,9-ピス(2', 4'-ジメチルフェニル)フルオレン

62. 2-(N, N-ジフェニルアミノ)-9, 9-

ビス(3',4'-ジェチルフェニル)フルオレン

ビス(3′,5′-ジメチルフェニル) フルオレン

64. 2-(N, N-ジ(4'-メチルフェニル)ア **ミノ〕-9,9-ビス(4"-メチルフェニル)フルオ** レン

2-(N, N-ジ(3'-メチルフェニル)ア 65. ミノ〕-9、9-ビス(4"-メチルフェニル)フルオ レン

66. 2-(N, N-ジ(4'-メチルフェニル)ア ミノ] - 9, 9 - ピス(3", 5" - ジメチルフェニ 30 ル)フルオレン

67. 2-[N, N-ジ(3'-メチルフェニル)ア ミノ] -9, 9-ビス(2", 4"-ジメチルフェニ ル)フルオレン

68. 2-(N, N-ジ(3'-メチルフェニル)ア ミノ〕-9, 9-ビス(3", 5"-ジ-tert-ブチル フェニル) フルオレン

[0019]69. 2-[N-7+2]N-N-(1'ーナフチル)アミノ] -9,9-ビス(4"ーメチルフ ェニル) フルオレン

70. 2 - (N - 7x - 1) - (3' - 7x - 1)アミノ 3 - 9 、 9 - ビス (4" - メチルフェニル) フル オレン

71. 2-(N-フェニル-N-(3'-フリル)ア ミノ〕-9,9-ピス(4"-メチルフェニル)フルオ レン

2-[N-フェニル-N-(3'-メチルフェ 72. ニル) アミノ] -9, 9-ビス(4"-メチルフェニ ル) フルオレン

73. 2 - (N - 7 + 2 + 1) - (3' - 4 + 1) - (3' - 4 + 1)**チルフェニル] フェニル) アミノ] - 9, g-ジフェニ 50 ニル) アミノ] - 9, g- ビス (4" - メチルフェニ**

ル) フルオレン

74. 2-(N. N-ジフェニルアミノ)-9-フェ ニル-9-(4'-メチルフェニル)フルオレン 75. 2-(N, N-ジフェニルアミノ)-9-フェ

11

ニルー9-(3'-エチルフェニル)フルオレン

76. 2 - (N, N-i) = 2 - (N, N-i) =ピス(4'-メトキシフェニル)フルオレン

77. 2-(N, N-ジフェニルアミノ)-9,9-ピス (4'-エトキシフェニル) フルオレン

78. 2-(N, N-ジフェニルアミノ)-9, 9- 10 レン ビス(4'-n-ペンチルオキシフェニル)フルオレン 79. 2-(N, N-ジフェニルアミノ)-9,9-

ビス(2', 4'-ジメトキシフェニル)フルオレン

80. 2-(N, N-ジフェニルアミノ)-9,9-ピス(3', 4'-ジメトキシフェニル) フルオレン

81. 2-(N, N-ジフェニルアミノ)-9,9-ピス(3', 4' -ジーn-プロポキシフェニル) フル オレン

82. 2-(N, N-ジフェニルアミノ)-9,9-ピス (3' -メトキシ-4' -ジ-n-ブトキシフェニ 20 99. 2- [N, N-ジ (4' -メチルフェニル) ア ル) フルオレン

ニル) アミノ) -9, 9-ビス(4"-メトキシフェニ ル)フルオレン

84. 2-[N-フェニル-N-(2'-メチルフェ ニル) アミノ〕-9, 9-ビス(4"-メトキシフェニ ル)フルオレン

85. 2- (N-フェニル-N-(4'-tert-ブチ ルフェニル) アミノ] -9, 9-ビス(4"-メトキシ フェニル) フルオレン

【0020】86. 2- [N, N-ジ(3'-メチル フェニル) アミノ] -9, 9-ビス(4"-メトキシフ ェニル) フルオレン

87. 2-[N, N-ジ(4'-エチルフェニル)ア ミノ] -9, 9-ビス(4"-メトキシフェニル)フル オレン

88. 2-(N, N-ジ(3'-メチルフェニル)ア ミノ] -9, 9-ビス(3", 5"-ジメトキシ-4" -エトキシフェニル) フルオレン

ェニル) アミノ) -9, 9-ビス(4"-メチルフェニ ル) フルオレン

90. 2-[N, N-ジ(3'-フルオロフェニル) オレン

91. 2-(N, N-ジ(3'-クロロフェニル)ア ミノ] - 9 - フェニル - 9 - (4" - メトキシフェニ ル)フルオレン

92. 2-(N, N-ジフェニルアミノ)-9-**(4'-メチルフェニル)-9-(4"-メトキシフェ 50 -プロポキシフェニル)フルオレン**

ニル) フルオレン

93. 2-(N, N-ジフェニルアミノ)-9-(4'-メトキシフェニル-9-(4"-エトキシフェ ニル) フルオレン

94. 2-(N, N-ジフェニルアミノ)-9, 9-ビス(3'-メチル-4'-メトキシフェニル)フルオ レン

95. 2-(N, N-ジフェニルアミノ)-9,9-ビス(2'-メチル-4'-エトキシフェニル)フルオ

96. 2-(N, N-ジフェニルアミノ)-9,9-ビス (3' -tert-ブチル-4' -メトキシフェニル) フルオレン

97. 2-(N, N-ジフェニルアミノ)-9,9-ピス(3',5'-ジメチル-4'-メトキシフェニ ル) フルオレン

ニル) アミノ] -9, 9-ビス(3"-メチル-4"-メトキシフェニル) フルオレン

ミノ] -9, 9-ビス(3", 5"-ジメチル-4"-エトキシフェニル) フルオレン

100. 2 - (N, N-5)(3'-3)アミノ〕-9-(3"-メチル-4"-エトキシフェニ ル) -9-(4"'-メトキシフェニル) フルオレン

【0021】101. 2-(N, N-ジフェニルアミ ノ) −9, 9−ビス(4'−フルオロフェニル)フルオ レン

102. 2-(N, N-i)30 -ビス(4'-クロロフェニル)フルオレン

103. 2-(N, N-ジフェニルアミノ)-9,9 -ビス(3', 5'-ジフルオロフェニル)フルオレン 104. 2-(N, N-ジ(4'-エチルフェニル) アミノ] - 9, 9 - ビス(3" - クロロフェニル)フル オレン

105. 2-(N, N-ジ(3'~メトキシフェニ ル) アミノ] -9, 9-ビス(4"-クロロフェニル) フルオレン

106. 2-(N, N-ジ(4'-メチルフェニル) 89. 2-[N-7] N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4) N-(3'-4)ル) フルオレン

> 107. 2 - (N, N-9)(4'-4)アミノ] -9, 9-ビス(2"-フルオロ-4"-エト キシフェニル) フルオレン

> 108. 2-(N, N-ジ(3'-メチルフェニル) アミノ] -9, 9-ビス(3"-クロロ-4"-エトキ シフェニル) フルオレン

> 109. 2-[N, N-ジ(3'-フルオロフェニ ル) アミノ] -9, 9-ビス(2"-クロロ-4"-n

(8)

110. 2-(N, N-ジフェニルアミノ)-9,9 -ビス(3', 5'-ジフルオロ-4'-メトキシフェ ニル) フルオレン

111. 2-(N, N-ジフェニルアミノ)-9, 9 -ビス(3', 5' -ジクロロ-4' -エトキシフェニ ル) フルオレン

112. 2-[N-フェニル-N-(3'-エチル-5'-メトキシフェニル)アミノ]-9,9-ビス (3"-フルオロー4"-メチルフェニル)フルオレン 113. 2-[N-フェニル-N-(2'-メチル- 10 ニル)アミノ]-9,9-ジフェニルフルオレン 4'-メトキシフェニル)アミノ)-9,9-ビス (3"-クロロ-4"-メトキシフェニル) フルオレン

114. 2-[N, N-ジ(3'-メトキシフェニ ル) アミノ] -9-(3"-メチルフェニル) -9-(3"'-メチル-4"'-クロロフェニル) フルオレン

115. 2-(N, N-ジフェニルアミノ)-9-フ ェニル-9-(4'-フルオロフェニル)フルオレン 116. 2-(N, N-ジ(3'-メチルフェニル)

アミノ〕-9-(4"-エトキシフェニル)-9-(3"'-クロロフェニル) フルオレン

117. 2-(N, N-ジフェニルアミノ)-9, 9 - ピス(3'-フェニル- 4'-メトキシフェニル)フ ルオレン

【0022】(B群)

B-1. 2. 7-UX (N. $N-UU_2=UV_2=U$) -9.9-ジフェニルフルオレン

2. 2, 7-ビス (N-フェニル-N-(4'-メチ ルフェニル)アミノ]-9,9-ジフェニルフルオレン 3. 2, 7-ビス (N-フェニル-N-(3'-メチ ルフェニル) アミノ〕 - 9、9 - ジフェニルフルオレン 30 4. 2, 7-ビス [N-フェニル-N-(2'-メチ ルフェニル) アミノ] -9, 9-ジフェニルフルオレン 5. 2, 7-ビス (N-フェニル-N-(4'-エチ ルフェニル) アミノ] -9, 9-ジフェニルフルオレン 6. 2, 7-ビス (N-フェニル-N-(4'-tert -ブチルフェニル)アミノ]-9,9-ジフェニルフル オレン

7. 2. 7-ビス (N-フェニル-N-(1'-ナフ チル) アミノ] -9, 9-ジフェニルフルオレン

8. 2, 7-ビス [N-フェニル-N-(2'-ナフ 40 チル) アミノ] -9, 9-ジフェニルフルオレン

9. 2, 7-ピス (N-フェニル-N-(2'-ピリ ジル)アミノ]-9,9-ジフェニルフルオレン

10. 2, 7-ピス (N-フェニル-N-(2'-フ リル) アミノ] -9, 9-ジフェニルフルオレン

11. 2, 7-ビス (N-(3'-メチルフェニル) -N-(4"-x+y)r=1)-9,9-9フェニルフルオレン

12. 2, 7-ビス (N-(2'-メチルフェニル)

9,9-ジフェニルフルオレン 【0023】13. 2, 7-ビス [N, N-ジ(4] -メチルフェニル)アミノ]-9、9-ジフェニルフル オレン

14. 2, 7-ビス (N, N-ジ(3'-メチルフェ ニル)アミノ]-9,9-ジフェニルフルオレン 15. 2, 7-ビス(N, N-ジ(2'-メチルフェ ニル)アミノ]-9,9-ジフェニルフルオレン 16. 2, 7-ビス(N, N-ジ(4'-エチルフェ

17. 2, 7-ビス (N, N-ジ(4'-tert-ブチ ルフェニル) アミノ] -9, 9-ジフェニルフルオレン 18. 2, 7-ビス (N, N-ジ(4'-n-オクチ ルフェニル) アミノ] -9, 9-ジフェニルフルオレン 19. 2, $7 - \forall \lambda (N - \lambda - \lambda - \lambda) - (2')$ 4'-ジメチルフェニル)アミノ]-9,9-ジフェニ ルフルオレン

20. 2, 7-ビス (N-フェニル-N-(2', 6'-ジメチルフェニル) アミノJ - 9, 9 - ジフェニ 20 ルフルオレン

21. 2. 7-ビス [N-フェニル-N-(3'. 4'-ジメチルフェニル)アミノ]-9,9-ジフェニ ルフルオレン

22. 2, 7-ピス[N, N-ジ(2', 4' -ジメ チルフェニル) アミノ] - 9、9 - ジフェニルフルオレ

2, 7-ビス(N, N-ジ(2', 5'-ジイ 23. ソプロピルフェニル)アミノ]-9.9-ジフェニルフ

24. 2, 7-ビス (N, N-ジ(3', 5' -ジメ チルフェニル) アミノ] - 9、9 - ジフェニルフルオレ

2, 7 - ビス [N, N-ジ(3', 4', 5' 25. -トリメチルフェニル)アミノ]-9,9-ジフェニル フルオレン

【0024】26. 2-(N, N-ジフェニルアミ ノ) -7- (N', N'-ジ(3'-メチルフェニル) アミノ] - 9、9 - ジフェニルフルオレン

27. 2-[N, N-ジ(3'-メチルフェニルアミ ノ)] - 7 - [N', N'-ジ(4"-メチルフェニ ル) アミノ] - 9、9 - ジフェニルフルオレン

28. 2-(N. N-ジフェニルアミノ)-7-

ミノ〕-9,9-ジフェニルフルオレン

29. 2-(N, N-ジフェニルアミノ)-7-

[N'-フェニル-N'-(3', 5'-ジメチルフェ ニル) アミノ] -9, 9-ジフェニルフルオレン

30. 2-[N-フェニル-N-(4'-メチルフェ (2n) r = (2n) - (2n)

-N-(4"-シクロヘキシルフェニル) アミノ) - 50 -メチルフェニル) アミノ) - 9 - 9 - 9 - - 2 - 2 - 2 - 3 - 4 - 3 - 4 - 5 - 6 - 7 - 9 -

(9)

オレン

31. 2, 7-ビス (N-フェニル-N-(4'-メ トキシフェニル) アミノ] -9, 9-ジフェニルフルオ

15

32. 2, 7-ビス(N-フェニル-N-(3'-メ トキシフェニル) アミノ] -9, 9-ジフェニルフルオ

33. 2. 7-ビス (N-フェニル-N-(2'-メ トキシフェニル) アミノ] -9, 9-ジフェニルフルオ レン

34. 2, 7-ピス (N-フェニル-N-(4'-n -ブトキシフェニル)アミノ]-9,9-ジフェニルフ ルオレン

35. 2, 7-ビス (N-(3'-メチルフェニル) $-N-(4"-n-\Lambda+\nu)$ -9,9-ジフェニルフルオレン

36. 2. 7-ビス (N-(3'-メトキシフェニ 9-ジフェニルフルオレン

37. 2, $7 - \forall \lambda \in N$, $N - \psi \in A' - \lambda \in A' = \lambda \in A'$ ェニル) アミノ] -9, 9-ジフェニルフルオレン 38. 2, 7-ビス(N, N-ジ(3'-メトキシフ

ェニル) アミノ] - 9、9 - ジフェニルフルオレン 39. 2、7-ビス [N-フェニル-N-(2'. 4'-ジメトキシフェニル)アミノ]-9,9-ジフェ

ニルフルオレン 40. 2, 7-ビス (N-フェニル-N-(3', 4'ージメトキシフェニル)アミノ]ー9、9ージフェ

- (3', 4', 5'-トリメトキシフェニル) アミ ノ】-9、9-ジフェニルフルオレン

ニルフルオレン

42. 2, 7-ビス (N, N-ジ(2'-メトキシー 4'-エトキシフェニル)アミノ]-9,9-ジフェニ ルフルオレン

43. 2, 7-ビス (N-フェニル-N-(2'-メ チルー4'ーメトキシフェニル)アミノ]-9,9-ジ フェニルフルオレン

44. 2, 7-ピス [N-フェニル-N-(3'-エ チル-5'-メトキシフェニル)アミノ]-9,9-ジ 40-9,9-ジフェニルフルオレン フェニルフルオレン

45. 2, 7-ピス (N, N-ジ(2'-メチルー 4'-メトキシフェニル)アミノ)-9,9-ジフェニ ルフルオレン

46. 2, 7-ピス(N, N-(3'-メチル-5' -メトキシフェニル)アミノ]-9.9-ジフェニルフ ルオレン

47. 2-(N, N-ジフェニルアミノ)-7-[N', N'-ジ(4'-シクロヘキシルオキシフェニ ル) アミノ) - 9、9 - ジフェニルフルオレン

48. 2-(N, N-ジ(3'-メチルフェニル)ア ミノ] - 7 - [N', N'-ジ(4"-メトキシフェニ ル) アミノ〕-9、9-ジフェニルフルオレン 2-(N, N-ジフェニルアミノ)-7-キシフェニル)アミノ]-9,9-ジフェニルフルオレ

ニル) アミノ) -7- [N'-フェニル-N'-(3" 10 -エトキシフェニル) アミノ) -9, 9-ジフェニルフ ルオレン

[0026]51. 2. 7-UX[N-Jy=N](4'-フルオロフェニル)アミノ]-9,9-ジフ ェニルフルオレン

52. 2, 7-ピス (N-フェニル-N-(3'-フ ルオロフェニル) アミノ] -9、9-ジフェニルフルオ レン

2. 7-ビス [N-フェニル-N-(3'-ク 53. ロロフェニル) アミノ) -9, 9-ジフェニルフルオレ

54. 2, $7 - \forall \lambda (N - \tau + \tau) - (2' - \tau)$ ロロフェニル)アミノ]-9,9-ジフェニルフルオレ ン

55. 2, 7-ビス (N, N-ジ(3'-フルオロフ ェニル) アミノ] -9、9-ジフェニルフルオレン 56. 2, 7-ピス[N, N-ジ(2'-フルオロー 4'-メチルフェニル)アミノ]-9,9-ジフェニル フルオレン

57. 2, 7-ビス (N, N-ジ(2'-フルオロー [0025]41. 2, 7-ビス[N-フェニル-N 30 4' -エトキシフェニル) アミノ]-9, 9-ジフェニ ルフルオレン

> 58. 2, 7-ビス[N, N-ジ(3'-メチルー 4'-フルオロフェニル) アミノ]-9, 9-ジフェニ ルフルオレン

> 59. 2, 7-ビス [N, N-ジ(2'-メトキシー 4'-フルオロフェニル)アミノ]-9,9-ジフェニ ルフルオレン

60. 2-(N, N-ジフェニルアミノ)-7-

(N', N' −ジ(4' −フルオロフェニル)アミノ)

61. 2-(N. N-ジフェニルアミノ)-7-

9.9~ジフェニルフルオレン

62. 2-(N, N-ジ(3'-メチルフェニル)ア ミノ) - 7 - (N', N' -ジ(3" - クロロフェニ

ル) アミノ] - 9、9 - ジフェニルフルオレン 63. $2 - \{N, N - \emptyset (4' - \lambda) + + \lambda \}$

アミノ) - 7 - [N', N'-ジ(3"-フルオロフェ ニル)アミノ]-9,9-ジフェニルフルオレン

50 64. 2-{N-フェニル-N-(4'-メチルフェ

ニル) アミノ) -7- (N-フェニル-N'-ジ(3" - クロロフェニル) アミノ) - 9, 9 - ジフェニルフル オレン

【0027】65. 2, 7-ビス(N-フェニル-N - (4'-フェニルフェニル)アミノ)-9,9-ジフ ェニルフルオレン

66. 2, 7-ビス (N-フェニル-N-(2'-フ ェニルフェニル)アミノ]-9,9-ジフェニルフルオ レン

3"-メチルフェニル]フェニル)アミノ]-9.9-ジフェニルフルオレン

68. 2-(N, N-ジフェニルアミノ)-7-[N'-フェニル-N'-(4'-[3"-メチルフェ ニル] フェニル) アミノ] -9, 9-ジフェニルフルオ レン

2-[N, N-ジ(4'-メチルフェニル)ア 69. ミノ] -7-{N'-フェニル-N'-(4"-フェニ ルフェニル) アミノ] -9, 9-ジフェニルフルオレン 70. 2-(N, N-ジ(3'-メチルフェニル)ア 20 ル)フルオレン [3] - 7 - [N' - (4' - x + y + y) - N']- (4'-[3"-メチルフェニル]フェニル)アミ ノ〕-9、9-ジフェニルフルオレン

71. 2-[N, N-ジ(4'-メチルフェニル)ア [3] - 7 - [N' - 7] = [N' - (1" - 7)]ル) アミノ] - 9, 9-ジフェニルフルオレン

72. 2, 7-ビス(N, N-ジフェニルアミノ)-9. 9-ビス(4'-メチルフェニル)フルオレン

73. 2, 7-ビス(N. N-ジフェニルアミノ) -9, 9-ビス(3'-メチルフェニル)フルオレン 74. 2, 7-ビス (N, N-ジフェニルアミノ) -

9、9-ビス(2'-メチルフェニル)フルオレン

75. 2, 7-ビス(N, N-ジフェニルアミノ)-9, 9-ビス(4'-エチルフェニル) フルオレン

【0028】76. 2, 7-ビス(N, N-ジフェニ ルアミノ) -9, 9-ビス(3'-tert-ブチルフェニ ル) フルオレン

77. 2, 7-ビス (N, N-ジフェニルアミノ) -9, 9-ビス(2', 4'-ジメチルフェニル) フルオ レン

2, 7-ビス(N, N-ジフェニルアミノ)-78. 9, 9-ビス(3', 4'-ジエチルフェニル) フルオ レン

79. 2, 7-ビス(N, N-ジフェニルアミノ)-9, 9-ビス(3', 5'-ジメチルフェニル)フルオ

80. 2, 7-ビス[N, N-ジ(4'-メチルフェ **ニル) アミノ) −9, 9−ビス (4" −メチルフェニ** ル) フルオレン

ニル) アミノ) -9, 9-ビス(4"-メチルフェニ ル) フルオレン

82. 2, 7-ビス(N, N-ジ(4'-メチルフェ ニル) アミノ) −9, 9−ピス(3", 5" −ジメチル フェニル) フルオレン

83. 2, 7-ビス (N, N-ジ(3'-メチルフェ **ニル) アミノ〕−9, 9−ピス(2", 4" −ジメチル** フェニル) フルオレン

84. 2, 7-ビス (N, N-ジ(3'-メチルフェ 67. 2, 7-ビス [N-フェニル-N-(4'-[10 ニル) アミノ] -9, 9-ビス(3", 5" -ジ-tert - ブチルフェニル) フルオレン

> 85. 2, 7-ビス (N-フェニル-N-(3'-メ チルフェニル) アミノ] -9, 9-ビス(4"-メチル フェニル) フルオレン

> 86. 2, 7-ビス [N-フェニル-N-(3'-エ チルフェニル) アミノ] -9、9-ピス(4"-メチル フェニル) フルオレン

87. 2, 7-ビス (N-フェニル-N-(1'-ナ フチル) アミノ] -9, 9-ビス(4"-メチルフェニ

88. 2, 7-ピス(N, N-ジフェニルアミノ)-9-フェニル-9-(4'-メチルフェニル)フルオレ

89. 2, 7-ピス(N, N-ジフェニルアミノ)-9-フェニル-9-(3'-エチルフェニル)フルオレ

90. 2, 7-ビス(N, N-ジフェニルアミノ)-9. 9-ピス(4'-メトキシフェニル)フルオレン 【0029】91. 2, 7-ピス(N, N-ジフェニ 30 ルアミノ) - 9, 9 - ピス (4' - エトキシフェニル) フルオレン

92. 2, 7-ピス(N, N-ジフェニルアミノ)-9, 9-ビス(4'-n-ペンチルオキシフェニル)フ ルオレン

93. 2, 7-ビス(N, N-ジフェニルアミノ)-9, 9-ビス(2', 4'-ジメトキシフェニル)フル オレン

94. 2, 7-ビス(N, N-ジフェニルアミノ)-9, 9-ビス(3', 4'-ジメトキシフェニル)フル 40 オレン

95. 2, 7-ビス(N, N-ジフェニルアミノ)-9、9-ビス(3'、4'-ジ-n-プロポキシフェニ ル)フルオレン

96. 2, 7-ビス(N, N-ジフェニルアミノ)-9, 9-ビス(3'-メトキシ-4'-ジ-n-ブトキ シフェニル) フルオレン

97. 2, 7-ビス (N-フェニル-N-(3'-メ チルフェニル)アミノ]-9,9-ビス(4"-メトキ シフェニル) フルオレン

81. 2, 7-ビス [N, N-ジ(3'-メチルフェ 50 98. 2, 7-ビス [N-フェニル-N-(2'-メ

チルフェニル) アミノ] -9、9-ビス(4"-メトキ シフェニル) フルオレン

99. 2, 7-ビス (N-フェニル-N-(4'-te rt-ブチルフェニル) アミノ] -9, 9-ビス (4" -メトキシフェニル) フルオレン

100. 2, 7-ビス(N, N-ジ(3'-メチルフ ェニル) アミノ] -9, 9-ビス(4"-メトキシフェ ニル) フルオレン

101. 2, 7-ビス(N, N-ジ(4'-エチルフ ニル)フルオレン

102. 2, 7-ビス(N, N-ジ(3'-メチルフ ェニル) アミノ] - 9、9 - ピス(3"、5" - ジメト キシー4"-エトキシフェニル)フルオレン

103. 2, 7-ビス(N-フェニル-N-(3'-メトキシフェニル) アミノ] -9, 9-ビス (4"-メ チルフェニル) フルオレン

104. 2, 7-ビス(N, N-ジ(3'-フルオロ フェニル) アミノ) -9, 9-ビス(4"-メチルフェ ニル) フルオレン

105. 2, 7-ビス (N, N-ジ(3'-クロロフ ェニル) アミノ] -9-フェニル-9-(4"-メトキ シフェニル) フルオレン

【0030】106. 2, 7-ビス(N, N-ジフェ ニルアミノ) - 9 - (4' -メチルフェニル) - 9 -(4"-メトキシフェニル)フルオレン

107. 2, 7-ビス(N, N-ジフェニルアミノ) -9-(4'-メトキシフェニル-9-(4"-エトキ シフェニル) フルオレン

108. 2, 7-ビス(N, N-ジフェニルアミノ) -9, 9-ビス(3'-メチル-4'-メトキシフェニ ル) フルオレン

109. 2, 7-ビス(N, N-ジフェニルアミノ) -9, 9-ビス(2'-メチル-4'-エトキシフェニ ル) フルオレン

110. 2, 7-ビス(N, N-ジフェニルアミノ) -9, 9-ビス(3'-tert-ブチル-4'-メトキシ フェニル) フルオレン

111. 2, 7-ビス(N, N-ジフェニルアミノ) -9.9-ピス(3'.5'-ジメチル-4'-メトキ 40 ピス(3"-クロロ-4"-メトキシフェニル)フルオ シフェニル) フルオレン

112. 2, 7-ビス(N-フェニル-N-(2'-メチルフェニル) アミノ] -9, 9-ビス (3"-メチ ルー4"-メトキシフェニル)フルオレン

113. 2, 7-ビス[N, N-ジ(4'-メチルフ ルー4"-エトキシフェニル) フルオレン

114. 2, 7-ビス[N, N-ジ(3'-メチルフ ェニル) アミノ] -9-(3"-メチル-4"-エトキ シフェニル)-9-(4"'-メトキシフェニル)フルオ 50 ェニル)アミノ]-9-(4"-エトキシフェニル)-

レン

115. 2. 7-ビス(N, N-ジフェニルアミノ) -9, 9-ビス(4'-フルオロフェニル)フルオレン 116. 2, 7-ビス(N, N-ジフェニルアミノ) -9.9-ビス(4'-クロロフェニル)フルオレン 117. 2, 7-ピス(N, N-ジフェニルアミノ) -9, 9-ビス(3', 5'-ジフルオロフェニル)フ ルオレン

118. 2, 7-ビス[N, N-ジ(4'-エチルフ ェニル) アミノ] - 9, 9-ビス (4" - メトキシフェ 10 ェニル) アミノ] - 9, 9-ビス (3" - クロロフェニ ル) フルオレン

> 119. 2. 7-ピス[N. N-ジ(3'-メトキシ フェニル) アミノ) -9, 9-ビス(4"-クロロフェ ニル) フルオレン

> 120. 2, 7-ビス (N, N-ジ(4'-メチルフ ェニル) アミノ) -9-フェニル-9-(4"-クロロ フェニル) フルオレン

【0031】121. 2, 7-ピス(N, N-ジ

(2"-フルオロ-4"-エトキシフェニル) フルオレ ン

122. 2, 7-ビス(N, N-ジ(3'-メチルフ ェニル) アミノ] -9, 9-ビス(3"-クロロ-4" -エトキシフェニル) フルオレン

123. 2. 7-ピス[N. N-ジ(3'-フルオロ フェニル) γ ミノ) -9, 9-ビス(2"-クロロー4"-n-プロポキシフェニル) フルオレン

124. 2.7-ビス(N.N-ジフェニルアミノ) -9, 9-ピス(3', 5'-ジフルオロ-4'-メト 30 キシフェニル) フルオレン

125. 2, 7-ビス(N, N-ジフェニルアミノ) -9, 9-ビス(3', 5'-ジクロロ-4'-エトキ シフェニル) フルオレン

126. 2, 7-ビス [N-フェニル-N-(3'-エチル-5'-メトキシフェニル)アミノ]-9,9-ピス(3"-フルオロ-4"-メチルフェニル)フルオ レン

127. 2, 7-ピス(N-フェニル-N-(2'-メチル-4'-メトキシフェニル)アミノ]-9,9-レン

128. 2, 7-ピス(N, N-ジ(3'-メトキシ フェニル) アミノ] -9-(3"-メチルフェニル) -9-(3"'-メチル-4"'-クロロフェニル)フルオレ ン

129. 2.7-ビス(N.N-ジフェニルアミノ) -9-フェニル-9-(4'-フルオロフェニル)フル オレン

130. 2, 7-ビス (N, N-ジ(3'-メチルフ

9-(3"'-クロロフェニル) フルオレン

131. 2, 7-ピス(N, N-ジフェニルアミノ) -9, 9-ビス(3'-フェニル-4'-メトキシフェ ニル) フルオレン

21

【0032】尚、一般式(1)で表される化合物のう ち、m=0で表される化合物、すなわち、A群の化合物 は、例えば、2-アミノ-9、9-ジフェニルフルオレ ン誘導体とハロゲン化アリール誘導体を、銅化合物の存 在下で反応(ウルマン反応)させて製造することができ る。また、例えば、2-ハロゲノ-9, 9-ジフェニル 10 フルオレン誘導体とN, N-ジアリールアミン誘導体 を、銅化合物の存在下で反応させて製造することもでき る。また、一般式(1)で表される化合物のうち、m= 1で表される化合物、すなわち、B群の化合物は、例え ぱ、2、7-ジアミノ-9、9-ジフェニルフルオレン 誘導体とハロゲン化アリール誘導体を、銅化合物の存在 下で反応(ウルマン反応)させて製造することができ る。また、例えば、2、7-ジハロゲノ-9、9-ジフ ェニルフルオレン誘導体とN、N-ジアリールアミン誘 導体を、銅化合物の存在下で反応させて製造することも 20 できる。

【0033】有機電界発光素子は、通常、一対の電極間 に、少なくとも1種の発光成分を含有する発光層を少な くとも一層挟持してなるものである。発光層に使用する 化合物の正孔注入および正孔輸送、電子注入および電子 輸送の各機能レベルを考慮し、所望に応じて、正孔注入 輸送成分を含有する正孔注入輸送層または/および電子 注入輸送成分を含有する電子注入輸送層を設けることも できる。例えば、発光層に使用する化合物の正孔注入機 能、正孔輸送機能または/および電子注入機能、電子輸 30 送機能が良好な場合には、発光層が正孔注入輸送層また は/および電子注入輸送層を兼ねた型の素子の構成とす ることができる。勿論、場合によっては、正孔注入輸送 層および電子注入輸送層の両方の層を設けない型の素子 (一層型の素子)の構成とすることもできる。また、正 孔注入輸送層、電子注入輸送層および発光層のそれぞれ の層は、一層構造であっても多層構造であってもよく、 正孔注入輸送層および電子注入輸送層は、それぞれの層 において、注入機能を有する層と輸送機能を有する層を 別々に設けて構成することもできる。

【0034】本発明の有機電界発光素子において、一般 式(1)で表される化合物は、正孔注入輸送成分または /および発光成分に用いることが好ましく、正孔注入輸 送成分に用いることがより好ましい。本発明の有機電界 発光素子においては、一般式(1)で表される化合物 は、単独で使用してもよく、あるいは複数併用してもよ いん

【0035】本発明の有機電界発光素子の構成として は、特に限定するものではなく、例えば、(A)陽極/ 正孔注入輸送層/発光層/電子注入輸送層/陰極型素子 50 は、例えば、金、白金、銀、銅、コバルト、ニッケル、

(図1)、(B)陽極/正孔注入輸送層/発光層/陰極 型素子(図2)、(C)陽極/発光層/電子注入輸送層 /陰極型素子(図3)、(D)陽極/発光層/陰極型素 子(図4)などを挙げることができる。さらには、発光 層を電子注入輸送層で挟み込んだ型の素子である(E) 陽極/正孔注入輸送層/電子注入輸送層/発光層/電子 注入輸送層/陰極型素子(図5)とすることもできる。

(D)型の素子構成としては、発光成分を一層形態で一 対の電極間に挟持させた型の素子は勿論であるが、さら には、例えば、(F)正孔注入輸送成分、発光成分およ び電子注入輸送成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図6)、(G)正孔注入輸送 成分および発光成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図7)、(H)発光成分およ び電子注入輸送成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図8)がある。

【0036】本発明の有機電界発光素子は、これらの素 子構成に限るものではなく、それぞれの型の素子におい て、正孔注入輸送層、発光層、電子注入輸送層を複数層 設けたりすることができる。また、それぞれの型の素子 において、正孔注入輸送層と発光層との間に、正孔注入 輸送成分と発光成分の混合層または/および発光層と電 子注入輸送層との間に、発光成分と電子注入輸送成分の 混合層を設けることもできる。より好ましい有機電界発 光素子の構成は、(A)型素子、(B)型素子、(E) 型素子、(F)型素子または(G)型素子であり、さら に好ましくは、(A)型素子、(B)型素子、(F)型 素子または(G)型素子である。

【0037】本発明の有機電界発光素子としては、例え は、(図1)に示す(A)陽極/正孔注入輸送層/発光 層/電子注入輸送層/陰極型素子について説明する。

(図1)において、1は基板、2は陽極、3は正孔注入 輸送層、4は発光層、5は電子注入輸送層、6は陰極、 7は電源を示す。

【0038】本発明の有機電界発光素子は、基板1に支 持されていることが好ましく、基板としては、特に限定 するものではないが、透明ないし半透明であることが好 ましく、例えば、ガラス板、透明プラスチックシート (例えば、ポリエステル、ポリカーボネート、ポリスル 40 フォン、ポリメチルメタクリレート、ポリプロピレン、 ポリエチレンなどのシート)、半透明プラスチックシー ト、石英、透明セラミックスあるいはこれらを組み合わ せた複合シートからなるものを挙げることができる。さ らに、基板に、例えば、カラーフィルター膜、色変換 膜、誘電体反射膜を組み合わせて、発光色をコントロー ルすることもできる。

【0039】陽極2としては、比較的仕事関数の大きい 金属、合金または電気電導性化合物を電極物質として使 用することが好ましい。陽極に使用する電極物質として

パラジウム、パナジウム、タングステン、酸化錫、酸化 亜鉛、1 T O (インジウム・ティン・オキサイド)、ポリチオフェン、ポリピロールなどを挙げることができる。これらの電極物質は、単独で使用してもよく、あるいは複数併用してもよい。陽極は、これらの電極物質を、例えば、蒸着法、スパッタリング法等の方法により、基板の上に形成することができる。また、陽極は一層構造であってもよく、あるいは多層構造であってもよい。陽極のシート電気抵抗は、好ましくは、数百 Q / □ 程度に設定する。陽極の厚みは、使用する電極物質の材料にもよるが、一般に、5~1000nm程度、より好ましくは、10~500nm程度に設定する。

23

【0040】正孔注入輸送層3は、陽極からの正孔(ホ ール)の注入を容易にする機能、および注入された正孔 を輸送する機能を有する化合物を含有する層である。正 孔注入輸送層は、一般式 (1) で表される化合物および /または他の正孔注入輸送機能を有する化合物 (例え ば、フタロシアニン誘導体、トリアリールメタン誘導 体、トリアリールアミン誘導体、オキサゾール誘導体、 ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導 体、ポリシラン誘導体、ポリフェニレンビニレンおよび その誘導体、ポリチオフェンおよびその誘導体、ポリー N-ビニルカルバゾール誘導体など)を少なくとも1種 用いて形成することができる。尚、正孔注入輸送機能を 有する化合物は、単独で使用してもよく、あるいは複数 併用してもよい。本発明の有機電界発光素子において は、正孔注入輸送層に一般式(1)で表される化合物を 含有していることが好ましい。

【0041】本発明において用いる他の正孔注入輸送機 30 能を有する化合物としては、トリアリールアミン誘導体 (例えば、4, 4'-ビス[N-フェニル-N-(4" ーメチルフェニル) アミノ] ピフェニル、4,4'ービ ス〔N-フェニル-N-(3"-メチルフェニル)アミ ノ) ピフェニル、4, 4'-ピス (N-フェニル-N-(3"-メトキシフェニル)アミノ]ビフェニル、4. 4'-ビス(N-フェニル-N-(1"-ナフチル)ア ミノ〕ビフェニル、3、3'ージメチルー4、4'ービ ス (N-フェニル- N- (3"-メチルフェニル) アミ ノ) ピフェニル、1, 1-ピス (4'-[N, N-ジ (4"-メチルフェニル) アミノ] フェニル] シクロへ キサン、9,10-ビス[N-(4'-メチルフェニ ル) -N-(4"-n-ブチルフェニル) アミノ) フェ ナントレン、3,8-ビス(N,N-ジフェニルアミ ノ) -6-フェニルフェナントリジン、4-メチルー N, N-ビス (4", 4"'-ビス [N', N'-ジ(4 -メチルフェニル) アミノ] ビフェニルー4'-イル) Pニリン、N, N' - Uス $\{4 - (ジフェニルアミノ)$ フェニル] - N, N' -ジフェニル-1, 3-ジアミノ ベンゼン、N, N' - ビス (4 - (ジフェニルアミノ)

フェニル】-N, N'-ジフェニル-1, 4-ジアミノ ベンゼン、5, 5" - ビス [4-(ビス[4-メチルフ ェニル] アミノ) フェニル] -2, 2':5', 2"-ターチオフェン、1、3、5-トリス(ジフェニルアミ ノ) ベンゼン、4, 4', 4"-トリス(N-カルパゾ リル) トリフェニルアミン、4,4',4"-トリス (N-(3"-メチルフェニル)-N-フェニルアミ. ノ] トリフェニルアミン、1,3,5-トリス(4-ジ フェニルアミノフェニル)フェニルアミノ]ベンゼンな 10 ど)、ポリチオフェンおよびその誘導体、ポリーN-ビ ニルカルバゾール誘導体がより好ましい。一般式(1) で表される化合物と他の正孔注入輸送機能を有する化合 物を併用する場合、正孔注入輸送層中に占める一般式 (1)で表される化合物の割合は、好ましくは、0.1 重量%以上、より好ましくは、0.1~99.9重量% 程度、さらに好ましくは、1~99重量%程度、特に好 ましくは、5~95重量%程度に調製する。

【0042】発光層4は、正孔および電子の注入機能、 それらの輸送機能、正孔と電子の再結合により励起子を 20 生成させる機能を有する化合物を含有する層である。発 光層は、一般式(1)で表される化合物および/または 他の発光機能を有する化合物(例えば、アクリドン誘導 体、キナクリドン誘導体、多環芳香族化合物〔例えば、 ルブレン、アントラセン、テトラセン、ピレン、ペリレ ン、クリセン、デカシクレン、コロネン、テトラフェニ ルシクロペンタジエン、ペンタフェニルシクロペンタジ エン、9、10-ジフェニルアントラセン、9、10-ビス (フェニルエチニル) アントラセン、1. 4-ビス (9'-エチニルアントラセニル)ベンゼン、4,4' -ビス(9"-エチニルアントラセニル)ビフェニ ル〕、トリアリールアミン誘導体〔例えば、正孔注入輸 送機能を有する化合物として前述した化合物を挙げると とができる〕、有機金属錯体〔例えば、トリス(8-キ ノリノラート) アルミニウム、ビス(10-ベンゾ[h] キノリノラート) ベリリウム、2-(2'-ヒドロキシ フェニル)ベンゾオキサゾールの亜鉛塩、2-(2'-ヒドロキシフェニル)ベンゾチアゾールの亜鉛塩、4-ヒドロキシアクリジンの亜鉛塩〕、スチルベン誘導体 〔例えば、1, 1, 4, 4-テトラフェニル-1, 3-40 ブタジエン、4、4'-ビス(2、2-ジフェニルビニ ル) ピフェニル]、クマリン誘導体 [例えば、クマリン 1、クマリン6、クマリン7、クマリン30、クマリン 106、クマリン138、クマリン151、クマリン1 52、クマリン153、クマリン307、クマリン31 1、クマリン314、クマリン334、クマリン33 8、クマリン343、クマリン500〕、ピラン誘導体 〔例えば、DCM1、DCM2〕、オキサゾン誘導体 〔例えば、ナイルレッド〕、ベンゾチアゾール誘導体、 ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導 50 体、ピラジン誘導体、ケイ皮酸エステル誘導体、ポリー

N-ビニルカルパゾールおよびその誘導体、ポリチオフ ェンおよびその誘導体、ポリフェニレンおよびその誘導 体、ポリフルオレンおよびその誘導体、ポリフェニレン ビニレンおよびその誘導体、ポリビフェニレンビニレン およびその誘導体、ポリターフェニレンビニレンおよび その誘導体、ポリナフチレンビニレンおよびその誘導 体、ポリチエニレンビニレンおよびその誘導体など)を 少なくとも1種用いて形成することができる。

【0043】本発明の有機電界発光素子においては、発 光層に一般式(1)で表される化合物を含有していると 10 とが好ましい。一般式(1)で表される化合物と他の発 光機能を有する化合物を併用する場合、発光層中に占め る一般式(1)で表される化合物の割合は、好ましく は、0.001~99.999重量%程度に調製する。 本発明において用いる他の発光機能を有する化合物とし ては、多環芳香族化合物、発光性有機金属錯体がより好 ましい。例えば、J. Appl. Phys., 65、3610 (1989)、 特開平5-214332号公報に記載のように、発光層 をホスト化合物とゲスト化合物(ドーパント)とより構 成することもできる。一般式(1)で表される化合物 を、ホスト化合物として発光層を形成することができ、 さらにはゲスト化合物として発光層を形成することもで きる。一般式(1)で表される化合物を、ホスト化合物 として発光層を形成する場合、ゲスト化合物としては、 例えば、前記の他の発光機能を有する化合物を挙げると とができ、中でも多環芳香族化合物は好ましい。この場 合、一般式(1)で表される化合物に対して、他の発光 機能を有する化合物を、0.001~40重量%程度、 好ましくは、より好ましくは、0.1~20重量%程度 使用する。

【0044】一般式(1)で表される化合物と併用する 多環芳香族化合物としては、特に限定するものではない が、例えば、ルブレン、アントラセン、テトラセン、ピ レン、ペリレン、クリセン、デカシクレン、コロネン、 テトラフェニルシクロペンタジエン、ペンタフェニルシ クロペンタジエン、9、10-ジフェニルアントラセ ン、9、10-ビス (フェニルエチニル) アントラセ ン、1、4-ビス(9'-エチニルアントラセニル)べ ンゼン、4,4'-ビス(9"-エチニルアントラセニ ル) ビフェニルなどを挙げることができる。勿論、多環 40 芳香族化合物は単独で使用してもよく、あるいは複数併 用してもよい。

【0045】一般式(1)で表される化合物を、ゲスト 化合物として用いて発光層を形成する場合、ホスト化合 物としては、発光性有機金属錯体が好ましい。との場 合、発光性有機金属錯体に対して、一般式(1)で表さ れる化合物を、好ましくは、0.001~40重量%程 度、より好ましくは、0.1~20重量%程度使用す る。一般式(1)で表される化合物と併用する発光性有 機金属錯体としては、特に限定するものではないが、発 50 (2,4,5,6-テトラメチルフェノラート)アルミ

光性有機アルミニウム錯体が好ましく、置換または未置 換の8-キノリノラート配位子を有する発光性有機アル ミニウム錯体がより好ましい。

【0046】好ましい発光性有機金属錯体としては、例 えば、一般式(a)~一般式(c)で表される発光性有 機アルミニウム錯体を挙げることができる。

 $(Q)_{3} - A1$

(式中、Qは置換または未置換の8-キノリノラート配 位子を表す)

(Q)2 -A1-O-L (b) (式中、Qは置換8-キノリノラート配位子を表し、O - Lはフェノラート配位子であり、Lはフェニル部分を

含む炭素数6~24の炭化水素基を表す)

ノラート) アルミニウム、

 $(Q)_2 - A1 - O - A1 - (Q)_2$ (式中、Qは置換8-キノリノラート配位子を表す) 発光性有機金属錯体の具体例としては、例えば、トリス (8-キノリノラート) アルミニウム、トリス (4-メ チル-8-キノリノラート) アルミニウム、トリス(5 - メチル-8-キノリノラート) アルミニウム、トリス (3,4-ジメチル-8-キノリノラート)アルミニウ ム、トリス(4、5-ジメチル~8-キノリノラート)

[0047] EX(2-xFN-8-47)(フェノラート) アルミニウム、ビス(2-メチル-8 -キノリノラート) (2-メチルフェノラート) アルミ ニウム、ビス(2-メチル-8-キノリノラート)(3 -メチルフェノラート) アルミニウム、ビス (2-メチ ル-8-キノリノラート) (4-メチルフェノラート) アルミニウム、ビス(2-メチル-8-キノリノラー

アルミニウム、トリス(4,6-ジメチル-8-キノリ

ト) (2-フェニルフェノラート) アルミニウム、ビス (2-メチル-8-キノリノラート) (3-フェニルフ ェノラート)アルミニウム、ビス(2-メチル-8-キ ノリノラート) (4-フェニルフェノラート) アルミニ ウム、ビス(2-メチル-8-キノリノラート)(2. 3-ジメチルフェノラート) アルミニウム、ピス (2-メチル-8-キノリノラート)(2,6-ジメチルフェ ノラート)アルミニウム、ピス(2-メチル-8-キノ リノラート) (3, 4-ジメチルフェノラート) アルミ ニウム、ビス(2~メチル-8-キノリノラート)

(3,5-ジメチルフェノラート) アルミニウム、ビス rt-ブチルフェノラート) アルミニウム、ビス (2-メ チル-8-キノリノラート)(2,6-ジフェニルフェ ノラート)アルミニウム、ピス(2-メチル-8-キノ リノラート)(2,4,6-トリフェニルフェノラー ト) アルミニウム、ビス(2-メチル-8-キノリノラ ート)(2,4,6-トリメチルフェノラート)アルミ ニウム、ビス(2-メチル-8-キノリノラート)

ニウム、ビス(2-メチル-8-キノリノラート)(1 -ナフトラート) アルミニウム、ビス(2-メチル-8 -キノリノラート) (2-ナフトラート) アルミニウ ム、ビス(2,4-ジメチル-8-キノリノラート) (2-フェニルフェノラート) アルミニウム、ビス (2, 4-ジメチル-8-キノリノラート) (3-フェ ニルフェノラート) アルミニウム、ビス(2,4-ジメ チル-8-キノリノラート)(4-フェニルフェノラー ト) アルミニウム、ビス(2,4-ジメチル-8-キノ リノラート) (3,5-ジメチルフェノラート) アルミ 10 ニウム、ビス(2,4-ジメチル-8-キノリノラー ト) (3, 5-ジ-tert-ブチルフェノラート) アルミ ニウム.

27

【0048】 ビス(2-メチル-8-キノリノラート) アルミニウム-μ-オキソ-ビス(2-メチル-8-キ ノリノラート)アルミニウム、ビス(2,4-ジメチル -8-キノリノラート) アルミニウム-u-オキソービ ス(2,4-ジメチル-8-キノリノラート)アルミニ ウム、ビス(2-メチル-4-エチル-8-キノリノラ 4-エチル-8-キノリノラート) アルミニウム、ビス (2-メチル-4-メトキシ-8-キノリノラート)ア ルミニウム-μ-オキソービス(2-メチル-4-メト キシ-8-キノリノラート) アルミニウム、ピス(2-メチル-5-シアノ-8-キノリノラート) アルミニウ ム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート) アルミニウム、ビス(2-メチル-5 - トリフルオロメチル - 8 - キノリノラート) アルミニ ウム-μ-オキソービス(2-メチル-5-トリフルオ ロメチル-8-キノリノラート)アルミニウムなどを挙 30 送層であり、より好ましくは、正孔注入輸送層である。 げることができる。勿論、発光性有機金属錯体は、単独 で使用してもよく、あるいは複数併用してもよい。

【0049】電子注入輸送層5は、陰極からの電子の注 入を容易にする機能、そして注入された電子を輸送する 機能を有する化合物を含有する層である。電子注入輸送 層に使用される電子注入輸送機能を有する化合物として は、例えば、有機金属錯体〔例えば、トリス(8-キノ リノラート) アルミニウム、ビス (10-ベンゾ[h] キ ノリノラート)ベリリウム〕、オキサジアゾール誘導 体、トリアゾール誘導体、トリアジン誘導体、ペリレン 誘導体、キノリン誘導体、キノキサリン誘導体、ジフェ ニルキノン誘導体、ニトロ置換フルオレノン誘導体、チ オピランジオキサイド誘導体などを挙げることができ る。尚、電子注入輸送機能を有する化合物は、単独で使 用してもよく、あるいは複数併用してもよい。

【0050】陰極6としては、比較的仕事関数の小さい 金属、合金または電気電導性化合物を電極物質として使 用することが好ましい。陰極に使用する電極物質として は、例えば、リチウム、リチウム-インジウム合金、ナ

グネシウム、マグネシウムー銀合金、マグネシウムーイ ンジウム合金、インジウム、ルテニウム、チタニウム、 マンガン、イットリウム、アルミニウム、アルミニウム - リチウム合金、アルミニウム - カルシウム合金、アル ミニウム-マグネシウム合金、グラファイト薄膜等を挙 げることができる。これらの電極物質は、単独で使用し てもよく、あるいは複数併用してもよい。陰極は、これ らの電極物質を、例えば、蒸着法、スパッタリング法、 イオン化蒸着法、イオンプレーティング法、クラスター イオンビーム法等の方法により、電子注入輸送層の上に 形成することができる。また、陰極は一層構造であって もよく、あるいは多層構造であってもよい。尚、陰極の シート電気抵抗は、数百Ω/□以下に設定するのが好ま しい。陰極の厚みは、使用する電極物質の材料にもよる が、一般に、5~1000nm程度、より好ましくは、 10~500nm程度に設定する。尚、有機電界発光素 子の発光を効率よく取り出すために、陽極または陰極の 少なくとも一方の電極が、透明ないし半透明であること が好ましく、一般に、発光光の透過率が70%以上とな ート) アルミニウム – μ – オキソービス (2 – メチルー 20 るように陽極の材料、厚みを設定することがより好まし

> 【0051】また、本発明の有機電界発光素子において は、その少なくとも一層中に、一重項酸素クエンチャー が含有されていてもよい。一重項酸素クエンチャーとし ては、特に限定するものではなく、例えば、ルブレン、 ニッケル錯体、ジフェニルイソベンゾフランなどが挙げ られ、特に好ましくは、ルブレンである。一重項酸素ク エンチャーが含有されている層としては、特に限定する ものではないが、好ましくは、発光層または正孔注入輸 尚、例えば、正孔注入輸送層に一重項酸素クエンチャー を含有させる場合、正孔注入輸送層中に均一に含有させ てもよく、正孔注入輸送層と隣接する層(例えば、発光 層、発光機能を有する電子注入輸送層) の近傍に含有さ せてもよい。一重項酸素クエンチャーの含有量として は、含有される層(例えば、正孔注入輸送層)を構成す る全体量の0.01~50重量%、好ましくは、0.0 5~30重量%、より好ましくは、0.1~20重量% である。

【0052】正孔注入輸送層、発光層、電子注入輸送層 の形成方法に関しては、特に限定するものではなく、例 えば、真空蒸着法、イオン化蒸着法、溶液塗布法(例え は、スピンコート法、キャスト法、ディップコート法、 バーコート法、ロールコート法、ラングミュア・プロゼ ット法など)により薄膜を形成することにより作製する ことができる。真空蒸着法により、各層を形成する場 合、真空蒸着の条件は、特に限定するものではないが、 10⁻¹ Torr 程度以下の真空下で、50~400℃程度 のボート温度(蒸着源温度)、-50~300℃程度の トリウム、ナトリウムーカリウム合金、カルシウム、マ 50 基板温度で、0.005~50nm/sec 程度の蒸着速

度で実施することが好ましい。この場合、正孔注入輸送 層、発光層、電子注入輸送層等の各層は、真空下で、連 続して形成する ことにより、諸特性に一層優れた有機電 界発光素子を製造することができる。真空蒸着法によ り、正孔注入輸送層、発光層、電子注入輸送層等の各層 を、複数の化合物を用いて形成する場合、化合物を入れ た各ボートを個別に温度制御して、共蒸着することが好 ましい。

29

【0053】溶液塗布法により、各層を形成する場合、 各層を形成する成分あるいはその成分とバインダー樹脂 10 合には、各成分の総量に対して)、5~99.9重量% 等を、溶媒に溶解、または分散させて塗布液とする。正 孔注入輸送層、発光層、電子注入輸送層の各層に使用し うるバインダー樹脂としては、例えば、ポリーN-ビニ ルカルバゾール、ポリアリレート、ポリスチレン、ポリ エステル、ポリシロキサン、ポリメチルアクリレート、 ポリメチルメタクリレート、ポリエーテル、ポリカーボ ネート、ポリアミド、ポリイミド、ポリアミドイミド、 ポリパラキシレン、ポリエチレン、ポリフェニレンオキ サイド、ポリエーテルスルフォン、ポリアニリンおよび その誘導体、ポリチオフェンおよびその誘導体、ポリフ ェニレンビニレンおよびその誘導体、ポリフルオレンお よびその誘導体、ポリチエニレンビニレンおよびその誘 導体等の高分子化合物が挙げられる。バインダー樹脂 は、単独で使用してもよく、あるいは複数併用してもよ

【0054】溶液塗布法により、各層を形成する場合、 各層を形成する成分あるいはその成分とバインダー樹脂 等を、適当な有機溶媒(例えば、ヘキサン、オクタン、 デカン、トルエン、キシレン、エチルベンゼン、1-メ チルナフタレン等の炭化水素系溶媒、例えば、アセト ン、メチルエチルケトン、メチルイソブチルケトン、シ クロヘキサノン等のケトン系溶媒、例えば、ジクロロメ タン、クロロホルム、テトラクロロメタン、ジクロロエ タン、トリクロロエタン、テトラクロロエタン、クロロ ベンゼン、ジクロロベンゼン、クロロトルエン等のハロ ゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチ ル、酢酸アミル等のエステル系溶媒、例えば、メタノー ル、プロパノール、ブタノール、ペンタノール、ヘキサ ノール、シクロヘキサノール、メチルセロソルブ、エチ ルセロソルブ、エチレングリコール等のアルコール系溶 40 媒、例えば、ジブチルエーテル、テトラヒドロフラン、 ジオキサン、アニソール等のエーテル系溶媒、例えば、 N, N-ジメチルホルムアミド、N, N-ジメチルアセ トアミド、1-メチル-2-ピロリドン、1、3-ジメ チル-2-イミダゾリジノン、ジメチルスルフォキサイ ド等の極性溶媒) および/または水に溶解、または分散 させて塗布液とし、各種の塗布法により、薄膜を形成す ることができる。

【0055】尚、分散する方法としては、特に限定する ものではないが、例えば、ボールミル、サンドミル、ペ 50 明するが、勿論、本発明はこれらに限定されるものでは

イントシェーカー、アトライター、ホモジナイザー等を 用いて微粒子状に分散することができる。塗布液の濃度 に関しては、特に限定するものではなく、実施する塗布 法により、所望の厚みを作製するに適した濃度範囲に設 定することができ、一般には、0.1~50重量%程 度、好ましくは、1~30重量%程度の溶液濃度であ る。尚、バインダー樹脂を使用する場合、その使用量に 関しては、特に限定するものではないが、一般には、各 層を形成する成分に対して(一層型の素子を形成する場 程度、好ましくは、10~99重量%程度、より好まし くは、15~90重量%程度に設定する。

【0056】正孔注入輸送層、発光層、電子注入輸送層 の膜厚に関しては、特に限定するものではないが、一般 に、5nm~5μm程度に設定することが好ましい。 尚、作製した素子に対し、酸素や水分等との接触を防止 する目的で、保護層(封止層)を設けたり、また素子 を、例えば、パラフィン、流動パラフィン、シリコンオ イル、フルオロカーボン油、ゼオライト含有フルオロカ ーボン油などの不活性物質中に封入して保護することが できる。保護層に使用する材料としては、例えば、有機 髙分子材料 (例えば、フッ素化樹脂、エポキシ樹脂、シ リコーン樹脂、エポキシシリコーン樹脂、ポリスチレ ン、ポリエステル、ポリカーボネート、ポリアミド、ポ リイミド、ポリアミドイミド、ポリパラキシレン、ポリ エチレン、ポリフェニレンオキサイド)、無機材料(例 えば、ダイヤモンド薄膜、アモルファスシリカ、電気絶 縁性ガラス、金属酸化物、金属窒化物、金属炭素化物、 金属硫化物)、さらには光硬化性樹脂などを挙げること 30 ができ、保護層に使用する材料は、単独で使用してもよ く、あるいは複数併用してもよい。保護層は、一層構造 であってもよく、また多層構造であってもよい。

【0057】また、電極に保護膜として、例えば、金属 酸化膜(例えば、酸化アルミニウム膜)、金属フッ化膜 を設けることもできる。また、例えば、陽極の表面に、 例えば、有機リン化合物、ポリシラン、芳香族アミン誘 導体、フタロシアニン誘導体から成る界面層(中間層) を設けることもできる。さらに、電極、例えば、陽極は その表面を、例えば、酸、アンモニア/過酸化水素、あ るいはプラズマで処理して使用することもできる。

【0058】本発明の有機電界発光素子は、一般に、直 流駆動型の素子として使用されるが、パルス駆動型また は交流駆動型の素子としても使用することができる。 尚、印加電圧は、一般に、2~30V程度である。本発 明の有機電界発光素子は、例えば、バネル型光源、各種 の発光素子、各種の表示素子、各種の標識、各種のセン サーなどに使用することができる。

[0059]

【実施例】以下、実施例により本発明をさらに詳細に説

ない。

実施例1

厚さ200nmのIT〇透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10⁻⁶ Torr に減圧した。 まず、ITO透明電極上に、2-[N, N'-ジ(3' -メチルフェニル)アミノ]-9,9-ジフェニルフル オレン (例示化合物番号A-14の化合物)を、蒸着速 10 度0.2nm/sec で75nmの厚さに蒸着し、正孔注 入輸送層とした。次いで、その上に、トリス(8-キノ リノラート)アルミニウムを、蒸着速度0.2nm/se c で50nmの厚さに蒸着し、電子注入輸送層を兼ねた 発光層とした。さらにその上に、マグネシウムと銀を蒸 着速度0.2nm/sec で200nmの厚さに共蒸着 (重量比10:1)して陰極とし、有機電界発光素子を 作製した。尚、蒸着は、蒸着槽の減圧状態を保ったまま 実施した。作製した有機電界発光素子に直流電圧を印加 し、乾燥雰囲気下、10mA/cm²の定電流密度で連続 駆動させた。初期には、6.5V、輝度420cd/m 2 の緑色の発光が確認された。輝度の半減期は530時 間であった。

31

【0060】実施例2~27

実施例1において、正孔注入輸送層の形成に際して、例 示化合物番号A-14の化合物を使用する代わりに、例 示化合物番号A-1の化合物(実施例2)、例示化合物 番号A-3の化合物(実施例3)、例示化合物番号A-6の化合物(実施例4)、例示化合物番号A-8の化合 物(実施例5)、例示化合物番号A-13の化合物(実 30 を作製した。各素子からは緑色の発光が確認された。さ 施例6)、例示化合物番号A-16の化合物(実施例 7)、例示化合物番号A-17の化合物(実施例8)、 例示化合物番号A-21の化合物(実施例9)、例示化

合物番号A-28の化合物(実施例10)、例示化合物 番号A-33の化合物(実施例11)、例示化合物番号 A-38の化合物(実施例12)、例示化合物番号A-43の化合物(実施例13)、例示化合物番号A-51 の化合物(実施例14)、例示化合物番号A-54の化 合物(実施例15)、例示化合物番号A-60の化合物 (実施例16)、例示化合物番号A-65の化合物(実 施例17)、例示化合物番号A-69の化合物 (実施例 18)、例示化合物番号A-77の化合物(実施例1

- 9)、例示化合物番号A-80の化合物(実施例2
- 0)、例示化合物番号A-86の化合物(実施例2
- 1)、例示化合物番号A-88の化合物(実施例2
- 2)、例示化合物番号A-93の化合物(実施例2
- 3)、例示化合物番号A-94の化合物(実施例2
- 4)、例示化合物番号A-97の化合物(実施例2
- 5)、例示化合物番号A-107の化合物(実施例2
- 6)、例示化合物番号A-113の化合物(実施例2
- 7)を使用した以外は、実施例1に記載の方法により有 機電界発光素子を作製した。各素子からは緑色の発光が 確認された。さらにその特性を調べ、結果を第1表(表 1、表2) に示した。

【0061】比較例1~2

実施例1において、正孔注入輸送層の形成に際して、例 示化合物番号A-14の化合物を使用する代わりに、 4, 4'-ビス (N-フェニル-N-(3"-メチルフ ェニル)アミノ〕ビフェニル(比較例1)、1、1-ビ ス〔4'-[N, N-ジ(4"-メチルフェニル) アミ ノ] フェニル〕シクロヘキサン(比較例2)を使用した 以外は、実施例1に記載の方法により有機電界発光素子 らにその特性を調べ、結果を第1表に示した。

[0062]

【表1】

第1表

有機電界	初期特性		
発光素子	輝度	電圧	半減期
	(cd/m²)	(V)	(h r)
実施例2	410	6. 6	5 2 0
実施例3	420	6. 5	540
実施例4	420	6.4	530
実施例 6	410	6. 5	520
実施例 6	410	6.5	530
実施例7	420	6.7	540
実施例8	420	6.5	540
実施例9	420	6.4	520
実施例10	430	6. 5	530
実施例11	420	6.8	510
実施例12	410	6. 5	520
実施例13	420	6.4	5 2 0
実施例14	410	6.6	5 1 0
実施例15	430	6. 5	540
実施例16	440	6.7	530
実施例17	420	6. 5	540
実施例18	430	6. 5	530

[0063]

*【表2】 第1表 (続き)

有機電界	初期特性		
発光素子	輝度	電圧	半減期
	(cd/m²)	(V)	(h·r)
実施例19	410	6. 4	5 3 0
実施例 2 0	420	6.5	520
実施例21	430	6.6	540
実施例22	440	6. 5	520
実施例23	420	6.6	530
実施例24	420	6. 5	520
実施例 2 5	410	6.4	540
実施例26	420	6.5	530
実施例27	430	6. 7	520
比較例1	300	5. 2	120
比較例2	360	8. 5	3

【0064】実施例28

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10゚゚ Torr に減圧した。 50 とした。次いで、その上に、トリス(8-キノリノラー

まず、ITO透明電極上に、ポリ(チオフェン-2,5 -ジイル)を蒸着速度 0. lnm/sec で、20nmの 厚さに蒸着し、第一正孔注入輸送層とした。次いで、例 示化合物番号A-14の化合物を、蒸着速度0.2nm /sec で55nmの厚さに蒸着し、第二正孔注入輸送層

ト) アルミニウムを、蒸着速度 0.2 n m/sec で 50 nmの厚さに蒸着し、電子注入輸送層を兼ねた発光層と した。さらにその上に、マグネシウムと銀を蒸着速度 0. 2 n m/sec で200 n mの厚さに共蒸着 (重量比 10:1)して陰極とし、有機電界発光素子を作製し た。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施し た。作製した有機電界発光索子に直流電圧を印加し、乾 燥雰囲気下、10mA/cm²の定電流密度で連続駆動さ せた。初期には、6.4V、輝度410cd/m'の緑 色の発光が確認された。輝度の半減期は1400時間で 10 2 の黄色の発光が確認された。輝度の半減期は2000 あった。

35

【0065】実施例29

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ ちにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6 Torr に減圧した。 まず、 I T O透明電極上に、4, 4', 4"-トリス (N-(3"-メチルフェニル)-N-フェニルアミ ノ〕トリフェニルアミンを蒸着速度0.1nm/sec で、50nmの厚さに蒸着し、第一正孔注入輸送層とし た。次いで、例示化合物番号A-54の化合物とルブレ ンを、異なる蒸着源から、蒸着速度0.2nm/secで 20 nmの厚さに共蒸着(重量比10:1)し、第二正 孔注入輸送層を兼ねた発光層とした。次いで、その上 に、トリス(8-キノリノラート)アルミニウムを蒸着 速度0.2nm/sec で50nmの厚さに蒸着し、電子 注入輸送層とした。さらにその上に、マグネシウムと銀 を蒸着速度0.2nm/sec で200nmの厚さに共蒸 着(重量比10:1)して陰極とし、有機電界発光素子 を作製した。尚、蒸着は、蒸着槽の減圧状態を保ったま ま実施した。作製した有機電界発光素子に直流電圧を印 加し、乾燥雰囲気下、10mA/cmの定電流密度で連 続駆動させた。初期には、6.2 V、輝度500 c d/ m¹の黄色の発光が確認された。輝度の半減期は150 0時間であった。

【0066】実施例30

厚さ200nmの1TO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10- Torr に減圧した。 まず、IT〇透明電極上に、ポリ (チオフェン-2, 5 -ジイル) を蒸着速度 0. 1 n m/sec で、20 n m の 厚さに蒸着し、第一正孔注入輸送層とした。蒸着槽を大 気圧下に戻した後、再び蒸着槽を3×10-6Torrに減圧 した。次いで、例示化合物番号A-14の化合物とルブ レンを、異なる蒸着源から、蒸着速度 0.2 nm/sec で55nmの厚さに共蒸着(重量比10:1)し、第二 正孔注入輸送層を兼ねた発光層とした。減圧状態を保っ 50 5)、例示化合物番号 B-75 の化合物 (実施例4

たまま、次いで、その上に、トリス(8-キノリノラー ト) アルミニウムを蒸着速度0.2 n m/sec で50 n mの厚さに蒸着し、電子注入輸送層とした。減圧状態を 保ったまま、さらにその上に、マグネシウムと銀を、蒸 着速度0.2nm/secで200nmの厚さに共蒸着 (重量比10:1) して陰極とし、有機電界発光素子を 作製した。作製した有機電界発光素子に直流電圧を印加 し、乾燥雰囲気下、10mA/cm²の定電流密度で連続 駆動させた。初期には、6.2V、輝度450cd/m

【0067】実施例31

時間であった。

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ ちにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10⁻⁶ Torr に減圧した。 まず、ITO透明電極上に、2, 7-ビス (N, N'-ジ(3'-メチルフェニル)アミノ)-9,9-ジフェ 20 ニルフルオレン (例示化合物番号B-14の化合物) を、蒸着速度0.2nm/sec で75nmの厚さに蒸着 し、正孔注入輸送層とした。次いで、その上に、トリス (8-キノリノラート)アルミニウムを、蒸着速度0. 2nm/sec で50nmの厚さに蒸着し、電子注入輸送 層を兼ねた発光層とした。さらにその上に、マグネシウ ムと銀を蒸着速度0.2nm/sec で200nmの厚さ に共蒸着(重量比10:1)して陰極とし、有機電界発 光素子を作製した。尚、蒸着は、蒸着槽の減圧状態を保 ったまま実施した。作製した有機電界発光素子に直流電 30 圧を印加し、乾燥雰囲気下、10mA/cm2の定電流密 度で連続駆動させた。初期には、6.5V、輝度430 cd/m²の緑色の発光が確認された。輝度の半減期は 550時間であった。

【0068】実施例32~57

実施例31において、正孔注入輸送層の形成に際して、 例示化合物番号B-14の化合物を使用する代わりに、 例示化合物番号B-1の化合物(実施例32)、例示化 合物番号B-3の化合物(実施例33)、例示化合物番 号B-6の化合物(実施例34)、例示化合物番号B-13の化合物(実施例35)、例示化合物番号B-16 の化合物 (実施例36)、例示化合物番号B-17の化 合物(実施例37)、例示化合物番号B-21の化合物 (実施例38)、例示化合物番号B-26の化合物(実 施例39)、例示化合物番号B-32の化合物(実施例 40)、例示化合物番号B-37の化合物(実施例4

- 1)、例示化合物番号B-43の化合物(実施例4
- 2)、例示化合物番号B-52の化合物(実施例4
- 3)、例示化合物番号B-65の化合物(実施例4
- 4)、例示化合物番号B-72の化合物(実施例4

- 6)、例示化合物番号B-81の化合物(実施例4
- 7)、例示化合物番号B-87の化合物(実施例4
- 8)、例示化合物番号B-91の化合物(実施例4
- 9)、例示化合物番号B-94の化合物(実施例5
- 0)、例示化合物番号B-100の化合物(実施例5
- 1)、例示化合物番号B-102の化合物(実施例5
- 2)、例示化合物番号B-107の化合物(実施例5
- 3)、例示化合物番号B-108の化合物(実施例5
- *5)、例示化合物番号B-121の化合物(実施例5 6)、例示化合物番号B-127の化合物(実施例5
- 7)を使用した以外は、実施例31 に記載の方法により 有機電界発光素子を作製した。各素子からは緑色の発光 が確認された。さらにその特性を調べ、結果を第2表

(表3、表4) に示した。 [0069]

【表3】

4)、例示化合物番号B-111の化合物(実施例5 *

有機電界	初期特性		
発光素子	輝度	電圧	半減期
ı	(cd/m²)	(V)	(h r)
実施例32	440	6. 6	580
実施例33	430	6. 5	540
実施例34	450	6.4	550
実施例35	420	6. 5	570
実施例36	440	6.7	560
実施例37	450	6. 5	540
実施例38	440	6.4	560
実施例39	430	6. 5	550
実施例40	440	6.8	540
実施例41	450	6. 5	530
実施例42	420	6.4	520
実施例43	450	6.6	550
実施例44	430	6. 5	540
実施例45	440	6.7	560
実施例46	450	6. 5	540
実施例47	440	6.4	530
実施例48	460	6. 5	570

[0070]

【表4】

第2表(続き)

有機電界 発光素子	初期特性		
	輝度 (cd/m²)	電圧 (V)	半減期 (hr)
実施例50	430	6.6	540
実施例 5 1	440	6. 5	550
実施例 5 2	440	6.6	560
実施例53	460	6.5	540
実施例54	430	6.4	550
実施例55	460	6.5	560
実施例 5 6	440	6. 7	550
実施例57	430	6. 5	540

【0071】実施例58

厚さ200mmのIT〇透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6 Torr に減圧した。 まず、IT〇透明電極上に、ポリ(チオフェン-2,5 -ジイル) を蒸着速度 0. lnm/sec で、20nmの 厚さに蒸着し、第一正孔注入輸送層とした。次いで、例 示化合物番号B-14の化合物を、蒸着速度0.2nm /sec で55nmの厚さに蒸着し、第二正孔注入輸送層 とした。次いで、その上に、トリス(8-キノリノラー ト) アルミニウムを、蒸着速度 0.2 n m/sec で 50 nmの厚さに蒸着し、電子注入輸送層を兼ねた発光層と 30 した。さらにその上に、マグネシウムと銀を蒸着速度 0. 2 n m/sec で200 n mの厚さに共蒸着 (重量比 10:1)して陰極とし、有機電界発光素子を作製し た。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施し た。作製した有機電界発光素子に直流電圧を印加し、乾 燥雰囲気下、10mA/cm2の定電流密度で連続駆動さ せた。初期には、6.4V、輝度400cd/m²の緑 色の発光が確認された。輝度の半減期は1400時間で あった。

【0072】実施例59

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ ちにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10⁻⁶ Torr に減圧した。 まず、IT〇透明電極上に、4,4',4"-トリス [N-(3"-メチルフェニル)-N-フェニルアミ ノ〕トリフェニルアミンを蒸着速度0.1nm/sec で、50nmの厚さに蒸着し、第一正孔注入輸送層とし

ンを、異なる蒸着源から、蒸着速度0.2nm/secで 20 n m の厚さに共蒸着 (重量比10:1) し、第二正 孔注入輸送層を兼ねた発光層とした。次いで、その上 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ 20 に、トリス(8-キノリノラート)アルミニウムを蒸着 速度0.2nm/sec で50nmの厚さに蒸着し、電子 注入輸送層とした。さらにその上に、マグネシウムと銀 を蒸着速度0.2nm/sec で200nmの厚さに共蒸 着(重量比10:1)して陰極とし、有機電界発光素子 を作製した。尚、蒸着は、蒸着槽の減圧状態を保ったま ま実施した。作製した有機電界発光索子に直流電圧を印 加し、乾燥雰囲気下、10mA/cmの定電流密度で連 続駆動させた。初期には、6.4V、輝度550cd/ m'の黄色の発光が確認された。輝度の半減期は170 0時間であった。

【0073】実施例60

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10⁻⁶ Torr に滅圧した。 まず、IT〇透明電極上に、ポリ(チオフェン-2,5 -ジイル) を蒸着速度 0. lnm/sec で、20nmの 厚さに蒸着し、第一正孔注入輸送層とした。蒸着槽を大 40 気圧下に戻した後、再び蒸着槽を3×10-6 Torrに減圧 した。次いで、例示化合物番号B-14の化合物とルブ レンを、異なる蒸着源から、蒸着速度0.2nm/sec で55nmの厚さに共蒸着(重量比10:1)し、第二 正孔注入輸送層を兼ねた発光層とした。減圧状態を保っ たまま、次いで、その上に、トリス(8-キノリノラー ト) アルミニウムを蒸着速度0.2 n m/sec で50 n mの厚さに蒸着し、電子注入輸送層とした。減圧状態を 保ったまま、さらにその上に、マグネシウムと銀を、蒸 着速度0.2nm/secで200nmの厚さに共蒸着 た。次いで、例示化合物番号B-14の化合物とルブレ 50 (重量比10:1)して陰極とし、有機電界発光素子を

作製した。作製した有機電界発光素子に直流電圧を印加し、乾燥雰囲気下、10mA/cm²の定電流密度で連続駆動させた。初期には、6.2V、輝度450cd/m²の黄色の発光が確認された。輝度の半減期は1800時間であった。

【0074】実施例61

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー 10 に固定した後、蒸着槽を3×10-6 Torr に減圧した。 まず、IT〇透明電極上に、例示化合物番号A-14の 化合物を、蒸着速度 0.2 n m/sec で 55 n m の 厚さ に蒸着し、正孔注入輸送層とした。次いで、その上に、 トリス (8-キノリノラート) アルミニウムと例示化合 物番号A-14の化合物を、異なる蒸着源から、蒸着速 度0.2 n m/sec で40 n mの厚さに共蒸着(重量比 10:1) し、発光層とした。 さらに、トリス(8-キ ノリノラート)アルミニウムを、蒸着速度0.2nm/ sec で30nmの厚さに蒸着し、電子注入輸送層とし た。さらにその上に、マグネシウムと銀を蒸着速度0. 2 n m/sec で200 n mの厚さに共蒸着(重量比1 0:1)して陰極とし、有機電界発光素子を作製した。 尚、蒸着は、蒸着槽の減圧状態を保ったまま実施した。 作製した有機電界発光素子に直流電圧を印加し、乾燥雰 囲気下、10mA/cm²の定電流密度で連続駆動させ た。初期には、6.2V、輝度460cd/m²の緑色 の発光が確認された。輝度の半減期は1800時間であ

【0075】実施例62

厚さ200mmのIT〇透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した。次に、ITO透明電極上 に、ポリカーボネート(重量平均分子量50000)、 と例示化合物番号B-14の化合物を、重量比100: 50の割合で含有する3重量%ジクロロエタン溶液を用 いて、ディップコート法により、40nmの正孔注入輸 送層とした。次に、この正孔注入輸送層を有するガラス 基板を、蒸着装置の基板ホルダーに固定した後、蒸着槽 を3×10⁻*Torrに減圧した。次いで、その上に、トリ ス(8-キノリノラート)アルミニウムを、蒸着速度 0.2nm/sec で50nmの厚さに蒸着し、電子注入 輸送層を兼ねた発光層とした。さらに、発光層の上に、 マグネシウムと銀を、蒸着速度0.2nm/sec で20 0 n mの厚さに共蒸着(重量比10:1)して陰極と し、有機電界発光素子を作製した。作製した有機電界発 光素子に、乾燥雰囲気下、10Vの直流電圧を印加した

ところ、 $95mA/cm^2$ の電流が流れた。輝度1030 cd/m^2 の緑色の発光が確認された。輝度の半減期は150時間であった。

【0076】実施例63

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した。次に、ITO透明電極上 に、ポリメチルメタクリレート(重量平均分子量250 00)、例示化合物番号B-14の化合物、トリス(8 -キノリノラート)アルミニウムを、それぞれ重量比1 00:50:0.5の割合で含有する3重量%ジクロロ エタン溶液を用いて、ディップコート法により、100 nmの発光層を形成した。次に、この発光層を有するガ ラス基板を、蒸着装置の基板ホルダーに固定した後、蒸 着槽を3×10-6 Torr に減圧した。さらに、発光層の 上に、マグネシウムと銀を、蒸着速度0.2nm/sec で200nmの厚さに共蒸着(重量比10:1)して陰 極とし、有機電界発光素子を作製した。作製した有機電 20 界発光素子に、乾燥雰囲気下、15 Vの直流電圧を印加 したところ、80mA/cm²の電流が流れた。輝度53 0 c d/m'の緑色の発光が確認された。輝度の半減期 は200時間であった。

[0077]

【発明の効果】本発明により、発光寿命が長く、耐久性 に優れた有機電界発光素子を提供することが可能になっ た

【図面の簡単な説明】

【図1】有機電界発光素子の一例の概略構造図である。

【図2】有機電界発光素子の一例の概略構造図である。

【図3】有機電界発光素子の一例の概略構造図である。

【図4】有機電界発光素子の一例の概略構造図である。

【図5】有機電界発光素子の一例の概略構造図である。

【図6】有機電界発光素子の一例の概略構造図である。

【図7】有機電界発光素子の一例の概略構造図である。

【図8】有機電界発光素子の一例の概略構造図である。 【符号の説明】

1 : 基板

2 : 陽極

3 : 正孔注入輸送層

3 a:正孔注入輸送成分

4 : 発光層

4 a:発光成分

5 :電子注入輸送層

5":電子注入輸送層

5 a:電子注入輸送成分

6 : 陰極 7 : 電源

