Project Euler - Problem 103

Proloy Mishra

June 5, 2024

1 Definition

Definition 1.1 (The Problem). Let S(A) be the sum of a set A. Then the problem, given a natural number n, is to find a set A which minimizes S(A) s.t. |A| = n, and for any 2 disjoint subsets X and Y of it:

1. $S(X) \neq S(Y)$, and

2. $|X| > |Y| \implies S(X) > S(Y)$.

2 Getting a more generalized (and useful) requirement

Theorem 2.1. A satisfying 1.1 is equivalent to a similar set of requirements which don't require that X and Y be disjoint, merely distinct.

Proof. Let $X \neq Y$, where $X, Y \subseteq A$. Separate them out into pairwise disjoint sets X - Y, Y - X, and $X \cap Y$. By the requirement of $A, S(X - Y) \neq S(Y - X)$. Hence,

$$S(X - Y) + S(X \cap Y) \neq S(Y - X) + S(X \cap Y)$$

$$\implies S((X - Y) \cup (X \cap Y)) \neq S((Y - X) \cup (X \cap Y))$$

$$\implies S(X) \neq S(Y).$$

The converse is ez.

Similarly, requirement #2 can be generalized too.

Note since A satisfying #2 means that $|X| \neq |Y| \implies S(X) \neq S(Y)$, requirement #1's generality is actually redundant. Its only contribution is with same-length sets. so, now, a better definition is:

Definition 2.1 (The Problem - Definition 2). The problem, given a natural number n, is to find a set A which minimizes S(A) s.t. |A| = n, and for any 2 distinct subsets X and Y of it:

1. $|X| = |Y| \implies S(X) \neq S(Y)$, and

 $2. |X| > |Y| \implies S(X) > S(Y).$