GDB [HA] zum 14. 11. 2013

Tim Dobert, Kai Sonnenwald, Arne Struck 28. November 2013

1.: IDName Beschreibung Taxonomie-ID Trivialname [1, *]1 Organismus Biomolekül besteht aus [1, *]veröffentlicht in Telefonnummer Mail-Adresse Kontaktinformationen Titel 1 [1, *]Artikel geschrieben Wissenschaftler Name Veröffentlichungsdatum Strang-Orientierung Nukleotidsequenz Chromosomennummer ist ein DNA-Molekül Domäne ID[1, *]Funktion $_{\rm HMM}$ Transskribiert enthält gehört zu Synthetisiert zu mRNA-Molekül Protein AS-Sequenz Molekulargewicht Vienna-String Nukleotidsequenz CATH-Klassifikation

1. Für die Generalisierung wurde das Hausklassenmodell verwendet.

Person (Name, DOB, Geschlecht)

Regisseur (Name, DOB, Geschlecht)

Schauspieler (Name, DOB, Geschlecht, Markenzeichen)

Charakter (CID, Name, Charakterbeschreibung)

Film (<u>Titel</u>, Zusammenfassung, 1. Drehtag, letzter Drehtag, Regisseur \rightarrow Regisseur.Name, G1 \rightarrow Genre.Name, G2 \rightarrow Genre.Name, G3 \rightarrow Genre.Name, G4 \rightarrow Genre.Name)

Genre (Name)

spielt (CID \rightarrow Charakter.CID, Titel \rightarrow Film.Titel, Drehbeginn, Drehende, Gage)

2. a) i. Gib die Nachnamen aller Rennfahrer, die auf dem Malaysia GP den 1. Platz erreicht haben.

Ergebnis: Ø

- ii. Gib Vor- und Nachnamen aller Rennfahrer deren Rennstall ein Budget < 350 hat. Ergebnis: {Louis Hamilton, Jensen Button, Kimi Raikönen}
- iii. Gib die Namen aller Rennställe, deren Fahrer auf dem Australien GP eine Platzierung geholt haben.

Ergebnis: {Sebastian Vettel, Fernando Alonso, Marc Webber, Lewis Hamilton, Jenson Button, Felipe Massa}

- b) i. Ausdruck: $\pi_{\text{Name}}(\sigma_{\text{Geburt}>1985-01-01}(\text{Rennfahrer} \bowtie_{\text{RSID} = \text{Rennstall}}))$ Ergebnis: {Sebastian Vettel, Louis Hamilton}
 - ii. Ausdruck: $\pi_{\text{Vorname, Nachname, Geburt}}((\sigma_{\text{Name} = \text{Australien GP}}(Rennort))$ $\bowtie \text{Platzierung}) \bowtie_{\text{RSID} = \text{Rennstall}} (\sigma_{\text{RSID} = 31} \text{ Rennfahrer}))$ Ergebnis: {Lewis Hamilton, Jenson Button}
 - iii. Ausdruck: Rennfahrer −π_{Vorname, Nachname, Geburt, Wohnort, Rennstall}(Rennfahrer⊠Platzierung))
 Ergebnis: {Kimi Raikkönen }
 - iv. Ausdruck: $\pi_{\text{Vorname, Nachname}}(\sigma_{\text{Rennstall}} = 31 \text{Rennfahrer})$ Ergebnis: {Lewis Hamilton}

- c) i. SELECT Vorname, Nachname, Geburt FROM Rennfahrer, Platzierung, Rennort WHERE Rennstall = 31 AND OID = 4
 - ii. SELECT Vorname, Nachname FROM Rennfahrer WHERE Rennstall = 31

4.: a) $\pi_{\text{Wohnort}}(\sigma_{\text{Name}=\text{"ChinaGP"}}(\sigma_{\text{Platz}<11}((\text{Rennfahrer}\bowtie \text{Platzierung})\bowtie \text{Rennort})))$ π_{Wohnort} $\sigma_{\text{Name}}=\text{"ChinaGP"}$ $\sigma_{\text{Platz}<11}$

Rennfahrer \bowtie Platzierung

Rennfahrer

b) $\pi_{Wohnort}(Rennfahrer\bowtie(\sigma_{Platz<11}Platzierung)\bowtie(\sigma_{Name}=\text{``ChinaGP''}Rennort))$ $Rennfahrer\bowtie(\sigma_{Platz<11}Platzierung)\bowtie(\sigma_{Name}=\text{``ChinaGP''}Rennort)$ Rennfahrer $\sigma_{Platz<11}$ $\sigma_{Name}=\text{``ChinaGP''}$ Platzierung Rennort

Platzierung

b) hat höheren Optimierungsgrad, da es in mehr Heuristiken umsetzt (I,III,VII) als a).

Rennort