Foundation models for spatial-time series

Week 1

In December 2024, a NeurlPS workshop Foundational Models for Science

completely reflected our course "Functional Data Analysis" in September 2024

- Foundation Models for Science: Progress, Opportunities, and Challenges URL
- 2. Foundation Models for the Earth system UPL, no paper
- 3. Foundation Methods for foundation models for scientific machine learning URL, no paper
- 4. Al-Augmented Climate simulators and emulators URL, no paper
- 5. Provable in-context learning of linear systems and linear elliptic PDEs with transformers NIPS
- 6. VSMNO: Solving PDE by Utilizing Spectral Patterns of Different Neural Operators NIPS

March 2025 Physics problem Simulations

- 1. The Well: a Large-Scale Collection of Diverse Physics Simulations for ML ArXiv, Code
- 2. Polymatic Advancing Science through Multi-Disciplinary Al blog
- 3. Long Term Memory: The Foundation of Al Self-Evolution ArXiv

Multistability of viscoelastic fluids in a 2D channel flow

Multistability in viscoelastic flows, i.e. four different attractors (statistically stable states) are observed for the same set of parameters depending on the initial conditions.

$$egin{aligned} Re(\partial_t \mathbf{u}^* + (\mathbf{u}^* \cdot
abla) \mathbf{u}^*) +
abla p^* &= eta \Delta \mathbf{u}^* + (1 - eta)
abla \cdot \mathbf{T}(\mathbf{C}^*), \ \partial_t \mathbf{C}^* + (\mathbf{u}^* \cdot
abla) \mathbf{C}^* + \mathbf{T}(\mathbf{C}^*) &= \mathbf{C}^* \cdot
abla \mathbf{u}^* + (
abla \mathbf{u}^*)^T \cdot \mathbf{C}^* + \epsilon \Delta \mathbf{C}^*, \
abla \mathbf{u}^* &= 0, \end{aligned}$$

$$egin{aligned} ext{with} \quad \mathbf{T}(\mathbf{C}^*) &= rac{1}{ ext{Wi}} (f(ext{tr}(\mathbf{C}^*)) \mathbf{C}^* - \mathbf{I}), \ ext{and} \quad f(s) &:= \left(1 - rac{s-3}{L_{max}^2}
ight)^{-1}. \end{aligned}$$

Magnetohydrodynamics (MHD) compressible turbulence

This is an MHD fluid flows in the compressible limit (subsonic, supersonic, sub-Alfvenic, super-Alfvenic).

$$egin{aligned} rac{\partial
ho}{\partial t} +
abla \cdot (
ho \mathbf{v}) &= 0 \ & rac{\partial
ho \mathbf{v}}{\partial t} +
abla \cdot (
ho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) +
abla p &= 0 \ & rac{\partial \mathbf{B}}{\partial t} -
abla imes (\mathbf{v} imes \mathbf{B}) &= 0 \end{aligned}$$

where ρ is the density, ${\bf v}$ is the velocity, ${\bf B}$ is the magnetic field, ${\bf I}$ the identity matrix and p is the gas pressure.

Gray-Scott reaction-diffusion equations

Stable Turing patterns emerge from randomness, with drastic qualitative differences in pattern dynamics depending on the equation parameters.

$$egin{aligned} rac{\partial A}{\partial t} &= \delta_A \Delta A - A B^2 + f(1-A) \ rac{\partial B}{\partial t} &= \delta_B \Delta B - A B^2 - (f+k) B \end{aligned}$$

Functional Data Analysis

m1p.org/fda

- 1. Multimodal data
- 2. Continuous time and space models
- 3. State spaces and convolution
- 4. Physics-informed models
- 5. Multilinear models
- 6. Riemannian spaces

The paradigm

The paradox of time series forecasting is that a simple model and a complex model (like SSA and LSTM) deliver the same or better accuracy of forecasting. An LLM-class model delivers poor accuracy. So the foundation model shall process the optimal pair (data, local model), acting as a mixture of experts for various models.

The problem and a possible architecture

- 1. For a
 - a. set of time series and a context, we have to return
 - b. an optimal mathematical model,
 - c. an optimal local model with
 - the optimal state space, and
 - e. the accuracy of forecasting.
- The architecture of the foundation model is a collection of the local models.
- 3. It constructs various phase spaces, learn the operator parameters, and compares the models
- 4. It learns relations or links between the operators.

Physics-informed learning is a type of mixture of experts. Since there are a number of vector field transformations, we learn not only the operations, but as a sequence the transformations between the operators.

Assumptions on the time series

- 1. There is a set of time series
- 2. This set is carried by a single timeline
- 3. This set is declared as a spatial time series
- 4. There is a relation between time series expressed by a metric tensor
- 5. Time series transforms to its phase trajectory
- 6. We forecast targets $y_{t+1} = f(x_t, y_t)$ there are two different phase spaces: for x and for y
- 7. There is a context of time series, unchanged in time

Initial models

- Models
 - a. Direct models: AR, ARIMA, GRU, LSTM
 - b. Metric models: LLE, DM, GH, RBF
 - c. Non-parametric: GPR
- 2. Ways to construct state spaces
 - a. SSM models: S4, S5, Hippo
 - b. Kalman
 - c. SSA, SSM
- 3. Ways to transform state spaces
 - a. FT, OL, ODE
 - b. CCA, CCM

The time series has two domains: the time domain and the frequency domain. The spatial time series also has a metric space or metric tensor that changes in time.

Crawler and Language

Datasets: any that fit the assumptions below

Models: any model mentioning the interface of FM-wrappers

Context: for data and the models

- 1. BNCI Horizon 2020: open access BCI data sets
- 2. Climate Prediction Center: wind, sea level, and sea temperature for years
- 3. NFDA Book time series: satellite, spectrometric, phoneme, electricity consumption, El Niño

The plan and the scoring system

- 1. Form your group and select a large model you will modify
- 2. Deploy the code without modification
- 3. Present the strategy of modification (group evaluation)
- 4. Modify and run examples
- 5. Present the intermediate model (group evaluation)
- 6. Select a physics-informed model, run the code
- 7. Present the math and the source code (personal evaluation)
- 8. Embed the model and present the test (personal evaluation)
- 9. Present the workflow (group evaluation)

Comparative scoring (expert estimation of the idea quality and code evaluation)

Deliveries for the next

- 1) a comparative analysis of the foundation models (as a paper),
- 2) computational experiments with the foundation model comparison (.ipynb),
- 3) a selected foundation model of optimal architecture (described in a paper),
- 4) the model is developed as a software (pytorch or jax pipeline),
- 5) a basic database of the time series to train the foundation model,
- 6) a deployment setup (flask, aws),
- 7) use cases and examples (.ipynb), and
- 8) theoretical research of the model properties (a submitted paper).

References

- Mahoney, M.W. (2024). Foundation Models for Science: Progress, Opportunities, and Challenges. Advances in Neural Information Processing Systems (NeurIPS).
- 2. Perdikaris, P. (2024). Foundation models for the Earth system. Advances in Neural Information Processing Systems (NeurIPS).
- 3. Zanna, L. (2024). Al-Augmented Climate Simulators and Emulators. Advances in Neural Information Processing Systems (NeurIPS).
- 4. Ohana, R. et al (2025). The Well: A Large-Scale Collection of Diverse Physics Simulations for Machine Learning. arXiv.
- 5. Cole, F. (2024). Provable in-context learning of linear systems and linear elliptic PDEs with transformers. Advances in Neural Information Processing Systems (NeurIPS).
- 6. Jing F. et. al. (2024). VSMNO: Solving PDE by Utilizing Spectral Patterns of Different Neural Operators. Advances in Neural Information Processing Systems (NeurIPS).

Method	Training Needed?	Modular Tool Add?	Industry Use	Best For
ToolkenGPT	Train embeddings	✓ Yes	Research	Modular, low-cost tool use
Toolken+	Train embeddings	Yes	Research	More robust tool selection
Toolformer	Self-supervised	× No	Research	Multi-tool API calls
ReAct	No (prompting)	✓ Yes	Academic + Frameworks	Reasoning + acting
Function Calling	Light fine-tune	✓ Yes	Widely used	Structured API calls
Agent Frameworks	No	✓ Yes	Industry + OSS	Multi-step planning
RAG	No	Yes	Very common	Knowledge injection
Code-as-Tool	No	✓ Yes	Niche use	Math, logic, execution

Name / Project	Туре	Open Weights?	External Code Execution in Pipeline?	How Execution Works
LLaMA 2 / 3 (Meta)	Base/general LLM	V	×	Pure transformer inference
Falcon (TII)	Base/general LLM	V	×	Pure inference
MPT (MosaicML)	Base/general LLM	V	×	Pure inference
Mistral / Mixtral	Base/general LLM	V	×	Pure inference
OPT (Meta)	Base/general LLM	V	×	Pure inference
Pythia / GPT-NeoX / GPT-J (EleutherAl)	Base/general LLM	V	×	Pure inference
StarCoder / SantaCoder (BigCode)	Code LLM	V	Only if wrapped	Model itself just generates code; execution comes from eval harness or agent

smol-developer / GPT Engineer	Code agent framework	V	LLM generates code, runs locally, feeds errors/output back
OpenDevin	Agent framework	V	Executes Python + shell commands in controlled env
AutoGPT / BabyAGI / AgentGPT	Agent frameworks	V	Model proposes actions (Python, shell, API), host executes
LangChain Agents (open LLM backends)	Orchestration framework	V	Supports Python REPL, retrievers, APIs
LlamaIndex Agents	Orchestration framework	V	Similar: allows retrieval + code execution
Haystack Agents	Orchestration framework	V	Open agent system, Python + tool execution
Toolformer (reimplementations)	Research agent model	V	Augmented LLaMA-style models that can call APIs/tools
SymPy + LLM integrations (research demos)	Hybrid math agents	V	LLM delegates algebra/calculus to SymPy

- 1- 1- - -