ICC_SRE_EL2, Interrupt Controller System Register Enable Register (EL2)

The ICC SRE EL2 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL2.

Configuration

AArch64 System register ICC_SRE_EL2 is architecturally mapped to AArch32 System register ICC_HSRE.

This register is present only when FEAT_GICv3 is implemented and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to ICC SRE EL2 are undefined.

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ICC SRE EL2 is a 64-bit register.

Field descriptions

63626160595857565554535251504948474645444342414039383736444434241403938373644443424140393837364444342414039383736444434241403938373644443424140393837364444342414039383736444434241403938373644443424140393837364444342414039383736444434241403938373644443424140393837364444342414039383736444434241403938373644443424140393837364444342414039383736444434241403938373644443424140393837364444344444444444444444444444444444	35	34	33	32
RES0				
RES0	Enable	DIB	DFB	SRE
31302928272625242322212019181716151413121110 9 8 7 6 5 4	` 3	7	1	0

Bits [63:4]

Reserved, res0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC SRE EL1.

|--|

0b0	When EL2 is implemented and
	enabled in the current Security
	state, EL1 accesses to
	ICC_SRE_EL1 trap to EL2.
0b1	EL1 accesses to ICC SRE EL1
	do not trap to EL2.

If ICC_SRE_EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

DIB, bit [2]

Disable IRQ bypass.

DIB	Meaning		
0b0	IRQ bypass enabled.		
0b1	IRQ bypass disabled.		

If EL3 is implemented and <u>GICD_CTLR</u>.DS is 0, this field is a readonly alias of <u>ICC_SRE_EL3</u>.DIB.

If EL3 is implemented and <u>GICD_CTLR</u>.DS is 1, this field is a read/write alias of ICC_SRE_EL3.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB	Meaning		
0b0	FIQ bypass enabled.		
0b1	FIQ bypass disabled.		

If EL3 is implemented and <u>GICD_CTLR</u>.DS is 0, this field is a readonly alias of <u>ICC_SRE_EL3</u>.DFB.

If EL3 is implemented and <u>GICD_CTLR</u>.DS is 1, this field is a read/write alias of ICC_SRE_EL3.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SRE, bit [0]

System Register Enable.

SRE	Meaning
0b0	The memory-mapped interface
	must be used. Access at EL2 to
	any ICH_* or ICC_* register other
	than <u>ICC_SRE_EL1</u> or
	ICC_SRE_EL2, is trapped to EL2.
0b1	The System register interface to
	the ICH * registers and the EL1
	and EL2 ICC * registers is
	enabled for EL2.

If software changes this bit from 1 to 0, the results are unpredictable.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 this bit is RAZ/WI. If ICC_SRE_EL3.SRE is changed from zero to one, this bit becomes unknown.

If Realm Management Extension is implemented, this field is RAO/WI.

FEAT_GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI, but this is only allowed if ICC SRE EL3.SRE is also RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing ICC_SRE_EL2

Execution with <u>ICC_SRE_EL2</u>.SRE set to 0 might make some System registers unknown.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_SRE_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1100	0b1001	0b101

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0'
then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = ICC\_SRE\_EL2;
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        UNDEFINED;
    else
        X[t, 64] = ICC\_SRE\_EL2;
```

MSR ICC SRE EL2, <Xt>

op0	op1	CRn	CRm	op2	
0b11	0b100	0b1100	0b1001	0b101	

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
    && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
        UNDEFINED;
elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0'
```

```
then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ICC_SRE_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        UNDEFINED;
else
    ICC_SRE_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.