Linear Regression: Ordinary Least Square

Xiang Zhou

School of Data Science Department of Mathematics City University of Hong Kong

Ordinary Linear Regression

Review of linear regression (univariate and multivariate)

- Least-square: is usually credited to Carl Friedrich Gauss (1795), but it
 was first published by Adrien-Marie Legendre (1805). history note.
 The approach was first successfully applied to problems in astronomy.
- Loss function: squared error loss $\ell(y, \hat{y}) = |y \hat{y}|^2$
- Many "fancy" machine learning algorithms *today* in literature are still based on this simple least square method.
- Hypothesis space (model class): linear function (affine function with intercept)

History note : "method of least squares" by Gauss and Legendre

Based on d'Alembert's principle, Gauss derived Principle of least constraint:

$$Z = \sum_{i=1}^{N} \frac{1}{2m_i} (\mathbf{F}_i - m_i \mathbf{A}_i)^2$$

 ${m F}_i$ and ${m A}_i$ are the forces and accelerations, respectively. For free particles, it recovers the classic Newton's motion ${m F}_i = m_i {m A}_i$. If constraints prevent the free choice of the ${m A}_i$, we can still minimize Z under the given auxiliary conditions. The solution obtained yields the actual motion of the system realized in nature.

Example

A particle is forced to stay on the surface z=c(x,y) by the action of the force \pmb{F} . Find the motion of the equation. Hint: $\dot{z}=c_x\dot{x}+c_y\dot{y}$ and $\ddot{z}=c_x\ddot{x}+c_{xx}\dot{x}^2+c_{yy}\ddot{y}+c_{yy}\dot{x}^2\approx c_x\ddot{x}+c_y\ddot{y}$. The constraint for $\pmb{A}=(\ddot{x},\ddot{y},\ddot{z})$ is the linear equation $\ddot{z}=c_x\ddot{x}+c_y\ddot{y}$.

Simple linear regression

Data $(x_1, y_1), \ldots, (x_n, y_n)$.

The linear regression model assumes a specific linear form for f,

$$f(x) = \beta_0 + \beta x,$$

which is usually thought of as an approximation to the truth.

The loss is also called residual sum of square (RSS)

$$\mathcal{E}(f) = L(\beta_0, \beta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

with the prediction $\hat{y}_i = \beta_0 + \beta x_i$

Least squared fitting

Minimize:

$$(\hat{\beta}_0, \hat{\beta}) = \underset{\beta_0, \beta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \beta x_i)^2.$$

Solution is:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}.$$

- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}x_i$ are the fitted values
- $r_i = y_i \hat{y}_i$ are the residuals

Standard errors and confidence intervals

Assume further that

$$y_i = \beta_0 + \beta x_i + \epsilon_i,$$

where $E(\epsilon_i)=0$ and ${\sf Var}(\epsilon_i)=\sigma^2.$ Then the standard deviation of $\hat{\beta}$ is

$$se(\hat{\beta}) = \left(\frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)^{1/2},$$

where σ^2 can be estimated by

$$\hat{\sigma}^2 = \sum (y_i - \hat{y})^2 / (n - 2).$$

Under additional normality assumption of ϵ_i 's, a $(1-\alpha)100\%$ confidence interval of β is

$$\hat{\beta} \pm z_{\alpha/2} \widehat{se}(\hat{\beta}).$$

Ordinary Least Square (OLS)

• The predictor variable $x=(x_0\equiv 1,x_1,\ldots,x_p)$ and Design Matrix

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ & & \dots & & \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \in \mathbb{R}^{n \times (p+1)}.$$

n is the number of samples. The first column $x_{i0} \equiv 1$.

- Response vector : $Y = [y_1, y_2, \dots, y_n]^T$.
- Linear model $\mathcal{H} = \left\{ f : f(x) = \beta^\intercal x, \beta = (\beta_0, \beta_1, \dots, \beta_p) \in \mathbb{R}^{p+1} \right\}.$
- Risk minimization:

$$\hat{\beta} = \operatorname*{argmin}_{\beta} \|Y - \mathbf{X}\beta\|_{2}^{2} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y.$$

• Model-based interpretation:

$$Y = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2).$$

Standarlization of Data

The standarlization processing is helpful in many cases:

- Centering
 - $ightharpoonup x_{ij}
 ightharpoonup x_{ij} \bar{x}_{.j}$, where $\bar{x}_{.j} = \frac{1}{n} \sum_i x_{ij}$
 - $y_i \rightarrow y_i \bar{y}$

Then $\sum_i x_{ij} = \sum_i y_i = 0$. the intercept in OLS β_0 vanishes.

- For centered data: the sample means of the predictor variable x and the response variable y are both zero;
- The (j,k)-th entry of $\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$ is $\frac{1}{n}\sum_{i=1}^n(x_{ij}x_{ik})\approx \mathrm{cov}(X_j,X_k)$. So $\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$ the (sample) variance-covariance matrix of the predictor variable x.
- Standardization (after centering):

$$x_{ij} o \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_i x_{ij}^2}}.$$

Then $\frac{1}{n}\sum_{i} x_{ij}^2 \equiv 1, \ \forall j.$

- ▶ For standardized data, the variance of each factor X_i is unit.
- ▶ It follows that $Trace(\mathbf{X}^\mathsf{T}\mathbf{X}) = \sum_{ij} (x_{ij}^2) = n^2$

Check the linear regression assumption !!!

- The true relationship is linear
- Errors are normally distributed
- Homoscedasticity of errors (or, equal variance around the line).
- Independence of the observations

```
Read https://towardsdatascience.com/
how-do-you-check-the-quality-of-your-regression-model-in-pytho
```

Theories on OLS

1

- Understanding OLS from the perspective of MLE and Bayes
- **②** Understanding uncertainty in $\hat{\beta}$: variance analysis
- Understanding OSL as the minimum variance <u>unbiased estimator</u> of the response: Gauss-Markov theorem
- Understanding OLS from the perspective of linear algebra: orthogonal project, pseudo-inverse, Gram-Schmidt procedure; QR, SVD

CityU

Maximize log-likelihood function

 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ leads to the log-likelihood function

$$\begin{split} \log \mathcal{L}(\beta; x_i, y_i) &= \log \prod_{i=1}^n p(y_i | x_i) p(x_i) = \sum_{i=1}^n \log p(y_i | x_i) + \sum_{i=1}^n \log p(x_i) \\ &= \sum_{i=1}^n \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \beta^\mathsf{T} x_i)^2}{2\sigma^2}} \right] + \sum_{i=1}^n \log p(x_i) \\ &= -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \beta^\mathsf{T} x_i \right)^2 + \text{terms not depend on } \beta. \end{split}$$

Therefore $\hat{\beta}^{MLE} = \hat{\beta}^{OLS}$.

Assume the measurement error ε follows other distribution, the other type of loss function ¹ instead of sum of square errors will arise.

¹In statistics, it is called "deviance". e.g., the Tweedie deviance Xiang Zhou

OLS prediction as the orthogonal projection

The optimal prediction

$$\hat{Y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y =: \operatorname{Proj}_{\mathsf{X}}Y$$
 (1)

is the orthogonal projection of the vector Y onto the column space of the matrix $\mathbf X$ in $\mathbb R^n$

$$\mathsf{X} = \mathsf{span}\{X_0, X_1, \dots, X_p\}$$

- \hat{Y} is the point in \mathbb{R}^n with the shortest Euclidian distance to this subspace X.
- It would be nice if we have a set of p+1 orthonormal basis vector of X. This can be done by Gram-Schmidt procedure (Sec. 3.2.3. in [ESL] under the name "sequential linear regression") .
- In addition, one can use QR, SVD decomposition of $\mathbf{X}^\mathsf{T}\mathbf{X}$. To efficiently find the orthogonal projection of the vector Y onto a subspace spanned by X_i in \mathbb{R}^n is a classic topic in numerical linear algebra.

Properties of Projection matrix

Other names used in statistics literature for the projection matrix Proj_{X}

- influence matrix;
- hat matrix

$$P = \operatorname{Proj}_{\mathsf{X}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$

satisfies

- symmetric: $P = P^{\mathsf{T}}$;
- idempotent: $P^2 = \mathbf{I}_n$ identity matrix;
- $\operatorname{rank} = \dim(\mathsf{X}) = p + 1$
- ullet eigenvalues: p+1 ones and n-(p+1) zeros;
- trace = $\dim(X)$.

Singular Value Decomposition

- Assume $\mathbf{X} = UDV^{\mathsf{T}}$ is a SVD of the design matrix \mathbf{X} , then $D = \operatorname{diag} \{d_0, \dots, d_p\}$, d_i is the singular value of \mathbf{X} .
- The column vectors of U, $\{U_i, 0 \le i \le p\}$, is a set of orthonormal basis of X.
- Then $\mathbf{X}^\mathsf{T}\mathbf{X} = VD^2V^\mathsf{T}$, and $\operatorname{Proj}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T} = (UDV^\mathsf{T})VD^{-2}V^\mathsf{T}VDU^\mathsf{T} = UU^\mathsf{T}.$

•

$$\hat{Y} = \operatorname{Proj}_{\mathsf{X}} Y = UU^{\mathsf{T}} Y = \sum_{i=0}^{p} \alpha_i U_i, \quad \text{where} \quad \alpha_i = U_i \cdot Y.$$

Decomposition of Total Sum of Squares

notations

 (x_i,y_i) are the data and \hat{y} are the predicted response. For any regression method, define

• SST= total sum of squares for the response variable (proportional to the variance of the response)

$$SST = \sum_{i} (y_i - \bar{y})^2$$

SSReg = sum of squares explained by regression

$$SSReg = \sum_{i} (\hat{y}_i - \bar{y})^2$$

SSE = sum of squares of errors ¹

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

 $^{^{1}}$ [ISL] [ESL] name this as RSS= residual sum of squares $^{\text{CityU}}$

coefficient of determination R^2

Definition (coefficient of determination)

$$R^2 = 1 - \frac{SSE}{SST}$$

For OLS with the optimal prediction $\hat{Y} = \mathbf{X}\hat{\beta}$, we have ¹

$$SST = SSReg + SSE$$

For OLS, the coefficient of determination ² is

$$R^2 = \frac{SSReg}{SST} = \frac{\sum_i (\hat{y}_i - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = \frac{\text{explained sum of squares by regression}}{\text{total sum of square}}$$

¹proof: https://en.wikipedia.org/wiki/Explained_sum_of_squares# Partitioning_in_the_general_ordinary_least_squares_model

²https:

^{//}scikit-learn.org/stable/modules/model_evaluation.html#r2-score
Xiang Zhou
CityU

The distribution of the OLS coefficient $\hat{\beta}$

Since $Y = \mathbf{X}\beta + \varepsilon$, then

$$\hat{\beta} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} Y = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \beta + \varepsilon)$$
$$= \beta + (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \varepsilon$$

Note that $\varepsilon \sim N(0, \sigma^2 I_n)$, thus

$$\mathbb{E}\,\hat{\beta} = \beta \qquad \text{(unbiased estimator)}$$

$$\mathbb{V}(\hat{\beta}) = \mathbb{V}((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\varepsilon)$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbb{V}(\varepsilon)(\mathbf{X}^{\mathsf{T}}\mathbf{X}^{-1}\mathbf{X}^{\mathsf{T}})^{\mathsf{T}}$$

$$= \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}I_{n}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}.$$

Therefore.

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}),$$

from which the confidence interval of $\hat{\beta}$ can be calculated.

Xiang Zhou CityU

20

Consistency of $\hat{\beta}$

Assume that

$$\lim_{n \to \infty} \left(\frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{n} \right) = \Delta$$

exists as a nonstochastic and nonsingular matrix (for example, $|x_{ji}| \leq c$ is bounded). Then

$$\lim_{n \to \infty} \mathbb{E} |\hat{\beta} - \beta|^2 = \lim_{n \to \infty} \mathbb{V}(\hat{\beta})$$

$$= \sigma^2 \lim_{n \to \infty} \frac{1}{n} \left(\frac{X^\mathsf{T} X}{n} \right)^{-1}$$

$$= \sigma^2 \lim_{n \to \infty} \frac{1}{n} \Delta^{-1}$$

$$= 0$$

This implies that OLSE $\hat{\beta}$ converges to true β in quadratic mean. Thus OLSE $\hat{\beta}$ is a consistent estimator of β .

- The distribution of $\hat{Y} = X\hat{\beta}$ is then $\mathcal{N}(\mathbf{X}\beta, \sigma^2 X (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T})$
- When a new data of input x arrives, taking value $x_i = a_i, i = 1, \ldots, p$, with $a = (1, a_1, a_2, \ldots, a_p)^\mathsf{T} \in \mathbb{R}^{p+1}$, then the prediction from the regression equation is

$$\hat{y} := a^{\mathsf{T}} \hat{\beta} \sim \mathcal{N}(a^{\mathsf{T}} \beta, \ \sigma^2 a^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1}) a)$$

which can give the confidence interval of $\hat{y} = a^{\mathsf{T}} \hat{\beta}$.

• But remember that in our model $Y=X\beta+\varepsilon$, it is assumed that the data you *observe* inevitably is contaminated by the measurement error ε . By including this measurement error, the predicted value at this new input x=a is

$$\hat{y} + \varepsilon_a = a^{\mathsf{T}} \hat{\beta} + \varepsilon_a$$

where ε_a is $\mathcal{N}(0, \sigma_a^2)$ and independent of the training data you used to build the regression equation.

It is clear that the distribution of $\hat{y} + \varepsilon_a$ is

$$\mathcal{N}(a^{\mathsf{T}}\beta, \ \sigma^2 a^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}) a + \sigma_a^2),$$

which gives the prediction interval.

Gauss-Markov theorem (Rao, 1973)

- Recall that given a training dataset D for supervised learning, the regression function $\hat{f}_{\mathsf{D}} \in \mathcal{H}$. In OLS, we assumed that $\hat{f}_{\mathsf{D}}(x)$ is a linear function of x.
- Now, if we fix a test input x=a, $\hat{f}_{\mathbb{D}}(a)$ then is a mapping (statistics) from D to \mathcal{Y} . What if we assume this mapping is linear and consider the \mathbf{MVU} (minimum variance unbiased) estimator of the ground truth $\beta^{\mathsf{T}}a$ at x=a?
- Fix the design matrix X, then this estimator takes the linear form in the response of training examples Y:

$$Y \to c^{\mathsf{T}} Y$$

with the coefficient $c \in \mathbb{R}^n$.

Theorem (Gauss-Markov Theorem)

Let u be an unbiased estimate of the ground truth response $a^T\beta$ at the new input x=a, and u is in the space of linear transformations from the response training data $Y=\mathbf{X}\beta+\varepsilon$, where $\varepsilon\sim N(0,\sigma^2I_n)$. This is to say that $u=c^TY$ for some vector $c\in\mathbb{R}^n$ satisfying $\mathbb{E}\,u=a^T\beta$ for any β in \mathbb{R}^{p+1} . Prove

$$Var(u) \ge Var(\hat{y}) = \sigma^2 a^T (\mathbf{X}^T \mathbf{X})^{-1} a$$

where $\hat{y} = a^T \hat{\beta}^{OLS} = a^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$. (see Exercise 3.3 in [ESL].)

Proof.

 $\mathbb{E} u = c^{\mathsf{T}} \mathbb{E} Y = c^{\mathsf{T}} \mathbf{X} \beta$ must equal $a^{\mathsf{T}} \beta$ for any β , then

$$\mathbf{X}^{\mathsf{T}}c=a.$$

To minimize $\operatorname{Var}(u) = c^{\mathsf{T}} \, \mathbb{V}(Y) c = \sigma^2 \|c\|_2^2$, the optimal c is the L_2 -minimal solution of the linear system $\mathbf{X}^{\mathsf{T}} c = a$ (which is exactly the "pseudo-inverse" of \mathbf{X}^{T}). The remaining is left as an exercise.

Cramer-Rao low bound

This exercise is optional. If you know Cramer-Rao bound, it is worth trying.

Exercise

Find the Fisher information matrix I, which is the covariance matrix of the parameter-gradient of the log likelihood function $I(\beta) := \mathbb{V}(\partial_{\beta} \log p(Y; \beta))$ and show that the variance matrix of $\hat{\beta}^{OLS} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^TY$ is the lower bound $I^{-1}(\beta)$