Laboratorium 7

Słowa kluczowe: transformata falkowa, wielorozdzielczość, filtracja.

Zadanie 1:

- Wczytaj sygnał znajdujący się w pliku signal.npy.
- Wykonaj wielopoziomową dyskretną transformatę falkową tego sygnału, wykorzystując funkcję wavedec z biblioteki *PyWavelets* (pywt).
 - wykorzystaj do tego falkę db7 z rodziny Daubechies.
 - o sprecyzuj poziom (level) na wysokość 7.
- Na wykresie przedstaw:
 - o sygnał oryginalny,
 - współczynniki przybliżone (approximation coefficient) pierwszy obiekt zwracany przez funkcję wavedec,
 - współczynniki szczegółowe (detail coefficient) z 7 kolejnych poziomów.
- Zadbaj o stylowanie wykresu:
 - ustaw siatkę (grid),
 - podpisz sygnały na osi y (set_ylabel),
 - wykorzystaj spójne kolory
 np. próbkowanie colormapy:
 plt.cm.coolwarm(parametry z zakresu 0-1) ,
 - ukryj oś po prawej stornie i nad wykresem (spines['top'].set_visible(False)),
 - wyrównaj podpisy osi (align_ylabels),
 - zastosuj tight_layout.

Efekt zadania 1:

Laboratorium 7

Zadanie 2:

W tym zadaniu zajmiemy się już sygnałem *wielowymiarowym* — znanym już obrazem chelsea. Każdy z Państwa będzie filtrować ten sygnał *osobistą falką* utworzoną na podstawie numeru indeksu.

- Opracuj osobistą falkę dwuwymiarową:
 - \circ Utwórz prototyp falki na podstawie numeru indeksu. Dla numeru indeksu abcdef utwórz wektor: w=[0,0,a,b,c,-d,-e,-f,0,0].
 - o Znormalizuj wektor tak, aby suma wartości wynosiła 1.
 - Opracuj złożenie tego prototypu do dwóch wymiarów: w[:,None]*w[None,:]. Wynik powinien być dwuwymiarowy o kształcie (10,10).
 - Zmień rozmiar otrzymanego prototypu na (20,20) wykorzystując funkcję resize z biblioteki scikitimage.
 - Wykonaj filtrację za pomocą filtra gaussowskiego z parametrem sigma równym 2. Wykorzystaj w tym celu gotową funkcję gaussian_filter z biblioteki scipy.
- Na wykresie (3 wiersze, 2 kolumny) przestaw kolejno:
 - o oryginalny prototyp jednowymiarowy na podstawie numeru indeksu,
 - o znormalizowany prototyp jednowymiarowy,
 - złożenie dwuwymiarowe prototypu,

- otrzymaną dwuwymiarową falkę prototyp dwuwymiarowy po powiększeniu i filtracji.
- W końcu przejdźmy do filtracji obrazu.
 - o Wczytaj obraz chelsea, uśrednij kanały barwne.
 - Oblicz korelację obrazu chelsea z opracowaną falką, wykorzystując w tym celu gotową funkcję
 correlate z biblitoeki scipy.
 - W ostatnim wierszu wykresu przestaw obraz po uśrednieniu kanałów oraz po filtracji falkowej.

Efekt zadania 2:

Zadanie 3:

Typowe dla transformaty falkowej jest *skalowanie* falki, aby odszukać różnorodne cechy częstotliwościowe obrazu. W tym zadaniu będziemy wyszukiwać składowe na 16 poziomach.

- Wykorzystaj w tym zadaniu obraz *chelsea* z poprzedniego zadania (po uśrednieniu kanałów barwnych, ale przed filtracją) oraz *osobistą falkę* 2D (tą o rozmiarze 20,20).
- Przygotuj wykres (4 wiersze, 4 kolumny). Tutaj przyda się funkcja np. ravel do zmiany kształtu listy ax.
- Zadeklaruj rozmiary falek będzie to 16 wartości typu całkowitoliczbowego, równo próbkowanych od 2 do 32.
- Dla każdego zadanego rozmiaru s falki:
 - o zmień rozmiar falki do rozmiaru s (funkcja resize),
 - wykonaj filtrację (correlate) obrazu oryginalnego za pomocą przekształconej falki.
 - $\circ~$ wynik zaprezentuj w odpowiedniej komórce wykresu. W opisie komórki umieść aktualny rozmiar s.
- Opcjonalnie: odszukaj najciekawszą colormapę dla otrzymanych efektów filtracji.

Efekt zadania 3:

Laboratorium 7 4