Санкт-Петербургский Политехнический Университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе N=5

Курс: «Администрирование компьютерных сетей»

Тема: «Создание макета сети в Cisco Packet Tracer»

Выполнил студент:

Волкова Мария Дмитриевна

Группа: 13541/2

Проверил:

Малышев Игорь Алексеевич

Содержание

1	Лабораторная работа №5					
	1.1	Цели работы				
	1.2	2 Построение компьютерной сети				
		1.2.1	Настройка адреса узла			
			Настройка сервисов			
		1.2.3	Настройка роутеров			
	1.3	.3 Проверка				
		1.3.1	Проверка команды ping по адресу			
		1.3.2	Проверка команды ping по доменному имени			
		1.3.3	Проверка доступа к web странице			
		1.3.4	Проверка ТFTР			

Лабораторная работа №5

1.1 Цели работы

- 1. Ознакомиться с Cisco Packet Tracer, и выполнить в нем:
 - Построение компьютерной сети(из прошлых работ);
 - Настроить сервисы DNS, DHCP, TFTP;
 - Выполнить тестирование сети.

1.2 Построение компьютерной сети

Средствами Cisco Packet Tracer была построена следующая схема: С помощью инструментов, были рас-

Рис. 1.1: Схема компьютерной сети

ставлены компьютеры, коммутаторы и роутеры типа **generic**, а также связаны между собой. По сравнению с работами в WMware, в данном случае:

- Вместо NetBSD и FreeBSD были использованы роутеры;
- Вместо интернета выступает сервер с http страницой.

Сегмент сети	Адрес узла	Описание
NET_1	192.168.32.1	Сервер, с DNS и HTTP сервисами.
NET_2	192.168.40.32	Компьютер, со статическим адресом.
NET_3	192.168.80.1	Сервер, с DHCP сервисом.
NET_3	192.168.80.3	Компьютер, адрес которого получен от DHCP сервера.
NET_3	192.168.80.128	Компьютер, со статическим адресом.
NET_4	192.168.120.1	Сервер, с ТГТР сервисом.
NET_4	192.168.120.15	Компьютер, со статическим адресом.

1.2.1 Настройка адреса узла

Для присвоения адреса какому-либо узлу, необходимо зайти в пункт IP Configuration и далее:

- Выбрать **DHCP**, если в сегменте сети имеется DHCP сервер;
- Выбрать Static, если адрес предполагается статическим, и далее заполнить следующие поля:
 - IP Address;
 - Subnet Mask;
 - Default Gateway;
 - DNS Server.

После насктройки узла, для применения последних изменений рекомендуется перезагрузить его.

1.2.2 Настройка сервисов

Настройка DNS сервиса была произведена на узле с адресом 192.168.32.1. Для настройки необходимо выбрать, в меню настройки узла, пункт **DNS**, включить сервис и добавить новую запись.

В данной работе была добавлена запись, со следующими параметрами:

- name www.mypage.com
- address 192.168.32.1

То есть в данном случае, настраиваемый узел и является конечным узлом для данного доменного имени. Также, для данного узла, был включен HTTP сервис, где уже имеется предварительно сгенерированная http-страница.

Настройка DHCP сервиса была произведена на узле с адресом 192.168.32.1. При которой были заполнены следующие поля:

- Interface FastEthernet0;
 - единственный интерфейс данного узла.
- **Default Gateway** 192.168.80.2;
 - шлюзом по умолчанию выступает интерфейс роутера, подключенный к данной(NET_3) подсети.
- **DNS Server** 192.168.32.1;
 - предварительно настроенный DNS серверс из подсети NET_1.
- Start IP Address 192.168.80.3;
 - начала диапазона по выдаче IP-адресов.
- Subnet Mask 255.255.255.0;
 - маска подсети.
- Maximun number of Users 100;
 - максимальное количество пользователей.

Настройка ТГТР сервиса была произведена на узле с адресом 192.168.120.15. Где его необходимо было включить, и для удобства удалить предварительно сгенерированные в нем файлы.

1.2.3 Настройка роутеров

В сети имеются два роутера(**Router 1** и **Router2**), которые выполняют функцию связующего звяна между подсетями.

Роутер	Сеть	Адрес интерфейса
Router 1	NET_1	192.168.32.128
Router 1	NET_2	192.168.40.57
Router 2	NET_2	192.168.40.2
Router 2	NET_3	192.168.80.2
Router 2	NET 2	192.168.120.2

Также, для корректной работы сети была добавлена маршрутизация. Для этого на Router 1, в настройках был выбран пункт **RIP Routing**, в который были добавлены следующие подсети:

- 192.168.32.0;
- 192.168.40.0.

И для Router 2 соответственно:

- 192.168.40.0;
- 192.168.80.0;
- 192.168.120.0.

1.3 Проверка

1.3.1 Проверка команды ріпд по адресу

Откроем на узле 192.168.40.32(сеть NET_2) утилиту **Command Prompt**, в которой введем команды **ipconfig** и **ping** в которой укажем адрес 192.168.120.15(сеть NET_4).

```
C: \ > ipconfig
  FastEthernetO Connection: (default port)
     Link-local IPv6 Address . . . . . . . FE80::2E0:A3FF:FEA3:7605

      IP Address
      : 192.168.40.32

      Subnet Mask
      : 255.255.255.0

     C:\> ping 192.168.120.15
  Pinging 192.168.120.15 with 32 bytes of data:
  Reply from 192.168.120.15: bytes=32 time=1ms TTL=127
Reply from 192.168.120.15: bytes=32 time=1ms TTL=127
  Reply from 192.168.120.15: bytes=32 time=1ms TTL=127
  Reply from 192.168.120.15: bytes=32 time<1ms TTL=127
13
  Ping statistics for 192.168.120.15:
15
      Packets: Sent = 4, Received = 4, Lost = 0 (0\% loss),
16
  Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Как видно из лога, команда пинг была успешна.

1.3.2 Проверка команды ping по доменному имени

Откроем на узле 192.168.80.3(сеть NET_3) утилиту **Command Prompt**, в которой введем команды **ipconfig** и **ping** в которой укажем доменное имя **www.mypage.com**.

```
C:\>ipconfig
FastEthernet0 Connection:(default port)

Link-local IPv6 Address....: FE80::201:42FF:FE0B:D82B

IP Address.....: 192.168.80.3

Subnet Mask....: 255.255.255.0

Default Gateway....: 192.168.80.2
```

```
_8 C:\>ping www.mypage.com
  Pinging 192.168.32.1 with 32 bytes of data:
  Reply from 192.168.32.1: bytes=32 time<1ms TTL=126
Reply from 192.168.32.1: bytes=32 time=10ms TTL=126
  Reply from 192.168.32.1: bytes=32 time=11ms TTL=126
12
  Reply from 192.168.32.1: bytes=32 time=13ms TTL=126
13
14
  Ping statistics for 192.168.32.1:
15
      Packets: Sent = 4, Received = 4, Lost = 0 (0\% loss),
16
  Approximate round trip times in milli-seconds:
17
      Minimum = 0ms, Maximum = 13ms, Average = 8ms
```

Как видно из лога, доменное имя было преобразовано в адрес, по которому и была произведена команда ping.

1.3.3 Проверка доступа к web странице

На узле, с адресом 192.168.80.3(сеть NET_3) была открыта утилита - браузер, в которой был введен адрес **www.mypage.com**. Как и ожидлось, страница была успешно загружена.

Рис. 1.2: Web Browser

1.3.4 Проверка TFTP

На Router 2 была открыта консоль, в которой были выполнены следующие команды:

```
Router>enable
  Router#show flash
  System flash directory:
       Length
                Name/status
  File
                pt1000-i-mz.122-28.bin
       5571584
   3
       28282
                sigdef-category.xml
                sigdef-default.xml
  [5827403 bytes used, 58188981 available, 64016384 total]
  63488K bytes of processor board System flash (Read/Write)
11
  Router#copy flash tftp
  Source filename []? pt1000-i-mz.122-28.bin
  Address or name of remote host []? 192.168.120.1
14
  Destination filename [pt1000-i-mz.122-28.bin]? temp.file
15
  17
  [OK - 5571584 bytes]
18
  5571584 bytes copied in 0.147 secs (8684467 bytes/sec)
```

Разберем действия:

- 1. Командой **enable** был совершен переход в привелегированный режим, можно заметить по символу решетки;
- 2. Командой **show flash** было выведено содержимое флеш-памяти, в данном случае это необходимо для тестовой загрузки по TFTP;
- 3. Командой **copy flash tftp** сообщаем о начале загрузке файла по tftp, где далее указывается файл(ы), tftp сервер для загрузки, а также новое имя файла(ов).

На TFTP сервере, в настройках TFTP появится выбранный ранее файл с указанным именем.

Вывод

В данной работе был получен опыт по работе в Cisco Packet Tracer.

По сравнению с прошлыми работами, где построение происходило с помощью WMware, в данном случае сеть была построена и настроена гораздо быстрее.

Построение и настройка были выполнены с помощью встроенных инструментов, которые в общем виде имитируют реальное оборудование. Если сравнивать с WMware, то в нем были рассмотрена настройка сети на конкретных системах(FreeBSD, NetBSD), в то время как в Cisco Packet Tracer это было сделано на лишь приближенных к реальности устройствах.

В общем случае Cisco Packet Tracer будет полезен при проектировании сети, но даст не так много опыта как WMware при настройке реальных систем.