程式設計(二)

機器學習辨認鳶尾花

Ming-Hung Wang 王銘宏

tonymhwang@cs.ccu.edu.tw

Department of Computer Science and Information Engineering National Chung Cheng University

Spring Semester, 2022

本章目錄

- 1. 機器學習簡介
- 2. 資料集與方法
- 3. 程式實作

機器學習簡介

機器學習簡介

什麼是機器學習?

機器學習為人工智慧的分支,目的在於使電腦具有自動學習的能力,能從資料中尋找出規律,進而做出最佳的決策與預測。

機器學習分為哪些?

- 監督式學習 (Supervised learning)
- 非監督式學習 (unsupervised learning)
- 強化式學習 (Reinforcement learning)
- ...etc

監督式學習

具有標準答案 (Label)。 於訓練資料中學習、建立一個 learning model, 並藉由 learning model 去推測未知資料樣本。 常用於分類與迴歸問題。

監督式學習

常見演算法:

- 決策樹 (Decision tree)
- 支持向量機 (Support Vector Machine)
- 邏輯斯迴歸 (Logistic regression)
- 線性迴歸 (linear regression)
- ...etc

監督式學習

(a) Label: 猴子

(b) Label: 猴子跑山

非監督式學習

訓練資料內的資料樣本並無標準答案, 於訓練的根據資料樣本的相關性、相似度等進行建立模型的依據。 常用於分群 (cluster analysis)、關聯規則分析 (association rule analysis) 等等。

非監督式學習

常見演算法:

- k-平均演算法 (k-means clustering)
- Apriori
- FP-Growth
- ...etc

非監督式學習

(a) Label: 猴子

(b) Label: 猴子跑山

強化式學習

與上述兩種學習方式不同,強化式學習強調基於環境行動, 因此將有一個代理人 (Agent) 於環境中不斷嘗試各種行為 (Action), 並根據每個行為所帶來的回饋 (Reward) 不斷調整,以取得最大化的 利益。

強化式學習

常見演算法:

- Q-learning
- SARSA
- ...etc

強化式學習

鳶尾花資料集

此資料及共包含了 150 個資料樣本,每個樣本皆有 4 個特徵:

- 花萼長度
- 花萼寬度
- 花瓣長度
- 花瓣寬度

鳶尾花資料集

而其屬種(亦即 Label) 共分為三類:

- 山鳶尾 (setosa)
- 變色鳶尾 (versicolor)
- 維吉尼亞鳶尾 (virginica)

鳶尾花資料集

費雪鳶尾花卉資料集

花萼長度 ♦	花萼寬度 ♦	花瓣長度 ♦	花瓣寬度 ♦	屬種 ◆
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa

決策樹是一棵由多個規則建構而成的樹狀結構, 除了葉節點 (leaf node) 以外,每個節點都代表一個規則, 而選用規則的基準是根據當下能將樣本分的最乾淨的條件, 作為該節點的規則。

選用規則的方法:

- 熵 (Entropy)
- Gini 不純度 (Gini Impurity)

編號	點名	睡飽	心情	上課	點名?
1	有	有	好	去	有 沒有
2	有	有	好	去	去上課 睡飽?
3	有	無	不好	去	(1,2,3) 有 沒有
4	無	有	好	去	心情?
5	無	有	不好	不去	好 不好 (6,7)
6	無	無	好	不去	去上課不去上課
7	無	無	好	不去	(4) (5)

優點:

- 具有高度可解釋性
- 模型容易理解
- 計算時間複雜度低

缺點:

- 容易 Overfitting (過度擬合)
- Leabel 越多,樹狀結構越複雜

```
from sklearn import tree
  from sklearn.datasets import load_iris
  # load data
6 iris = load_iris()
7 clf = tree.DecisionTreeClassifier()
  clf = clf.fit(iris.data, iris.target)
  # get decision tree
  import pydotplus
  from IPython.display import Image
  dot_data = tree.export_graphviz(clf, out_file=None,
                   feature_names=iris.feature_names,
                   class_names=iris.target_names,
  graph = pydotplus.graph_from_dot_data(dot_data)
  Image(graph.create_png())
```



```
from sklearn import datasets
   from sklearn.model_selection import train_test_split
   import numpy as np
   from sklearn.tree import DecisionTreeClassifier
   # prepare data
7 iris = datasets.load iris()
9 iris data = iris.data
10 iris_label = iris.target
   train_data, test_data, train_label, test_label = train_test_split(iris_data, iris_label, test_size=0.2)
14 # Decision tree classifier with depth 3 #
15 clf1 = DecisionTreeClassifier(max_depth=3)
18 score2 = clf1.score(test data, test label)
   print('Results of decision tree with depth 3:')
   print('Training acc and test acc are', score1, score2)
```

```
# Decision tree classifier with depth 5 #
clf2 = DecisionTreeClassifier(max depth=5)
score2 = clf2.score(test_data, test_label)
print('Results of decision tree with depth 5:')
print('Training acc and test acc are', score1, score2)
# Decision tree classifier with depth 10 #
clf3 = DecisionTreeClassifier(max_depth=10)
score1 = clf3.score(train_data, train_label)
score2 = clf3.score(test_data, test_label)
print('Results of decision tree with depth 10:')
print('Training acc and test acc are', score1, score2)
```

```
# Print test label and true label #
lab1 = clf1.predict(test_data)
lab2 = clf2.predict(test_data)
lab3 = clf3.predict(test_data)

for n in range(len(test_label)):
print(n, ':', test_label[n], lab1[n], lab2[n], lab3[n])
```


END