Gravity and gravitas Course "Text-as-data analysis of international trade"

Dmitriy Skougarevskiy

The Institute for the Rule of Law, European University at Saint Petersburg

Saint Petersburg 18 April 2018

Course outline

- Preferential Trade Agreements and International Economic Order
- Gravity and Gravitas
- Text factorisation I: Bag-of-words methods
- Text factorisation II: Distributive semantics
- Welfare effects of Preferential Trade Agreements

Outline

- Gravity model
 - Tinbergen (1962)'s idea
 - Intellectual history of gravity
 - Micro-foundations
- 2 Gravity estimation
 - Beyond the naïve model

Outline

- Gravity model
 - Tinbergen (1962)'s idea
 - Intellectual history of gravity
 - Micro-foundations
- @ Gravity estimation
 - Beyond the naïve model

Gravity: from physics to economics

Newton's Law of Gravitation:

$$F_{i,j}=G\frac{m_im_j}{r_{i,j}^2},$$

where $F_{i,j}$ is gravitational force applied to object j by object i, m_i is the mass of object i, $r_{i,j}$ is distance between objects i and j, G is gravitational constant

• Tinbergen (1962):

$$X_{i,j} = G \frac{Y_i Y_j}{\phi_{i,i}},$$

where $X_{i,j}$ are exports of country i to country j, Y_i is GDP of country i, $\phi_{i,j}$ is trade costs between i and j (distance in the original rendition)

Gravity: from physics to economics

Newton's Law of Gravitation:

$$F_{i,j}=G\frac{m_im_j}{r_{i,j}^2},$$

where $F_{i,j}$ is gravitational force applied to object j by object i, m_i is the mass of object i, $r_{i,j}$ is distance between objects i and j, G is gravitational constant

Tinbergen (1962):

$$X_{i,j} = G \frac{Y_i Y_j}{\phi_{i,j}},$$

where $X_{i,j}$ are exports of country i to country j, Y_i is GDP of country i, $\phi_{i,j}$ is trade costs between i and j (distance in the original rendition)

Figure 1: Trade and economy size (Head and Mayer, 2014, fig. 1)
(a) Japan's exports to EU, 2006 (b) Japan's imports from EU, 2006

FRA ITABLE Japan's 2006 imports (GRC = 1) HUN POL PRT slope = 1.03 fit = .75 MLT GRC SVN LŢU

.5

GDP (GRC = 1)

5 10

.05

Figure 2: Trade and distance (Head and Mayer, 2014, fig. 2)
(a) France's exports (2006) (b) France's imports (2006)

Figure 3: % of single-region firms exporting in 1992 (Crozet and Koenig, 2010, fig. 2)

Importing country: Belgium Importing country: Switzerland

Gravity: from physics to economics

• Tinbergen (1962)'s:

$$X_{i,j} = G \frac{Y_i Y_j}{\phi_{i,j}}$$

can be written in terms of observables and parameters:

$$X_{i,j} = GY_i^{\alpha}Y_j^{\beta}\phi_{i,j}$$

$$\log X_{i,j} = g + \alpha \log Y_i + \beta \log Y_j - \phi_{i,j} (\log distance_{i,j} + other_{i,j}) + \varepsilon_{i,j}$$

(time index is dropped for the moment)

This is known as naïve gravity

Outline

- Gravity model
 - Tinbergen (1962)'s idea
 - Intellectual history of gravity
 - Micro-foundations
- 2 Gravity estimation
 - Beyond the naïve model

- "The [gravity] equation has <...> gone from an embarrassing poverty of theoretical foundations to an embarrassment of riches!" (Frankel et al., 1997, p. 53)
- Initial rejection in 1962–1995 by trade theorists
- McCallum (1995) border puzzle: in Canada-USA provinces intra-country trade is 22 times as large as inter-country trade
 surprisingly large international border effect given NAFTA
- Anderson and Van Wincoop (2003): border effect of McCallum (1995) is upward biased because it ignores the role of relative prices
- Melitz (2003)-inspired shift to studying firms and industries

- "The [gravity] equation has <...> gone from an embarrassing poverty of theoretical foundations to an embarrassment of riches!" (Frankel et al., 1997, p. 53)
- Initial rejection in 1962–1995 by trade theorists
- McCallum (1995) border puzzle: in Canada-USA provinces intra-country trade is 22 times as large as inter-country trade
 surprisingly large international border effect given NAFTA
- Anderson and Van Wincoop (2003): border effect of McCallum (1995) is upward biased because it ignores the role of relative prices
- Melitz (2003)-inspired shift to studying firms and industries

- "The [gravity] equation has <...> gone from an embarrassing poverty of theoretical foundations to an embarrassment of riches!" (Frankel et al., 1997, p. 53)
- Initial rejection in 1962–1995 by trade theorists
- McCallum (1995) border puzzle: in Canada-USA provinces intra-country trade is 22 times as large as inter-country trade
 - surprisingly large international border effect given NAFTA
- Anderson and Van Wincoop (2003): border effect of McCallum (1995) is upward biased because it ignores the role of relative prices
- Melitz (2003)-inspired shift to studying firms and industries

- "The [gravity] equation has <...> gone from an embarrassing poverty of theoretical foundations to an embarrassment of riches!" (Frankel et al., 1997, p. 53)
- Initial rejection in 1962–1995 by trade theorists
- McCallum (1995) border puzzle: in Canada-USA provinces intra-country trade is 22 times as large as inter-country trade
 - surprisingly large international border effect given NAFTA
- Anderson and Van Wincoop (2003): border effect of McCallum (1995) is upward biased because it ignores the role of relative prices
- Melitz (2003)-inspired shift to studying firms and industries

- "The [gravity] equation has <...> gone from an embarrassing poverty of theoretical foundations to an embarrassment of riches!" (Frankel et al., 1997, p. 53)
- Initial rejection in 1962–1995 by trade theorists
- McCallum (1995) border puzzle: in Canada-USA provinces intra-country trade is 22 times as large as inter-country trade
 - surprisingly large international border effect given NAFTA
- Anderson and Van Wincoop (2003): border effect of McCallum (1995) is upward biased because it ignores the role of relative prices
- Melitz (2003)-inspired shift to studying firms and industries

Outline

- Gravity model
 - Tinbergen (1962)'s idea
 - Intellectual history of gravity
 - Micro-foundations
- 2 Gravity estimation
 - Beyond the naïve model

- "Consider, for example, two small equal-size economies."
- "If they were located on Mars, able to trade with each other but separated from all other economies by near-prohibitive transport costs, half of each country's spending on tradeables should consist of imports from the other."
- "On the other hand, if the two countries were located in the middle of Europe, close to much larger countries offering competing products, then each would spend only a small fraction of its income on imports from the other."
- "Thus the trade between them would be much less, even if the distance between the two were the same."
- "Even in a one-industry world, the trade between two countries should depend not only on their incomes and the distance between them but on the sizes and distances of other economies."

- "Consider, for example, two small equal-size economies."
- "If they were located on Mars, able to trade with each other but separated from all other economies by near-prohibitive transport costs, half of each country's spending on tradeables should consist of imports from the other."
- "On the other hand, if the two countries were located in the middle of Europe, close to much larger countries offering competing products, then each would spend only a small fraction of its income on imports from the other."
- "Thus the trade between them would be much less, even if the distance between the two were the same."
- "Even in a one-industry world, the trade between two countries should depend not only on their incomes and the distance between them but on the sizes and distances of other economies."

- "Consider, for example, two small equal-size economies."
- "If they were located on Mars, able to trade with each other but separated from all other economies by near-prohibitive transport costs, half of each country's spending on tradeables should consist of imports from the other."
- "On the other hand, if the two countries were located in the middle of Europe, close to much larger countries offering competing products, then each would spend only a small fraction of its income on imports from the other."
- "Thus the trade between them would be much less, even if the distance between the two were the same."
- "Even in a one-industry world, the trade between two countries should depend not only on their incomes and the distance between them but on the sizes and distances of other economies."

- "Consider, for example, two small equal-size economies."
- "If they were located on Mars, able to trade with each other but separated from all other economies by near-prohibitive transport costs, half of each country's spending on tradeables should consist of imports from the other."
- "On the other hand, if the two countries were located in the middle of Europe, close to much larger countries offering competing products, then each would spend only a small fraction of its income on imports from the other."
- "Thus the trade between them would be much less, even if the distance between the two were the same."
- "Even in a one-industry world, the trade between two countries should depend not only on their incomes and the distance between them but on the sizes and distances of other economies."

- "Consider, for example, two small equal-size economies."
- "If they were located on Mars, able to trade with each other but separated from all other economies by near-prohibitive transport costs, half of each country's spending on tradeables should consist of imports from the other."
- "On the other hand, if the two countries were located in the middle of Europe, close to much larger countries offering competing products, then each would spend only a small fraction of its income on imports from the other."
- "Thus the trade between them would be much less, even if the distance between the two were the same."
- "Even in a one-industry world, the trade between two countries should depend not only on their incomes and the distance between them but on the sizes and distances of other economies."

CES demand-side derivation

- Let country $i = \{1, ..., N\}$ produce a unique product consumed in country j^1
- CES utility of consumer in country *j*:

$$U_{j} \equiv \left\{\sum_{i=1}^{N} q_{i,j}^{rac{\sigma-1}{\sigma}}
ight\}^{rac{\sigma}{\sigma-1}}$$

 Demand function for a product produced by country i and exported to country j:

$$q_{i,j} \equiv \frac{p_{i,j}^{-\sigma}}{\sum_{i=1}^{N} p_{i,i}^{1-\sigma}} Y_j$$

• Welfare-based price index:

$$P_{j} \equiv \left\{ \sum_{i=1}^{N} p_{i,j}^{1-\sigma} \right\}^{\frac{1}{1-\sigma}}$$

¹Slides follow Nicolas Berman's course International Trade I at IHEID

Deriving exports

• Exports of country *i* to country *j* are defined as

$$X_{i,j} \equiv q_{i,j}p_{i,j}$$

• Using the above,

$$X_{i,j} = \frac{p_{i,j}^{1-\sigma}}{P_j^{\sigma-1}} Y_j$$

Iceberg costs and phi-ness of trade

Further assume iceberg trade costs:

$$p_{i,j} = p_i \tau_{i,j}$$

(a fraction of the goods shipped "melts in transit", Samuelson (1954))

- Define phi-ness of trade $\phi_{i,j} = \tau_{i,j}^{1-\sigma}$.
 - $\phi_{i,j}=0$ is autarky, $\phi_{i,j}=1$ is full economic integration (Baldwin et al., 2011)
- Then export equation simplifies to

$$X_{i,j} = \frac{p_i^{1-\sigma}\phi_{i,j}}{P_i^{\sigma-1}}Y_j$$

whereas the price index becomes

$$P_j \equiv \left\{ \sum_{i=1}^N p_i \tau_{i,j}^{1-\sigma} \right\}^{\frac{1}{1-\sigma}}$$

• Anderson and Van Wincoop (2003) show that when $\tau_{i,j} = \tau_{j,i}$ (symmetric trade costs) export equation can be rewritten as

$$X_{i,j} = \left\{\frac{\tau_{i,j}}{P_j P_i}\right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}$$

where

$$P_{j} = \left\{ \sum_{i=1}^{N} P_{i}^{\sigma-1} \tau_{i,j}^{1-\sigma} \theta_{i} \right\}^{\frac{1}{1-\sigma}},$$

and θ_i is income share of country i

• This is structural gravity model

• Anderson and Van Wincoop (2003) show that when $\tau_{i,j} = \tau_{j,i}$ (symmetric trade costs) export equation can be rewritten as

$$X_{i,j} = \left\{\frac{\tau_{i,j}}{P_j P_i}\right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}$$

where

$$P_j = \left\{ \sum_{i=1}^N P_i^{\sigma-1} \tau_{i,j}^{1-\sigma} \theta_i \right\}^{\frac{1}{1-\sigma}},$$

and θ_i is income share of country i

• This is structural gravity model

Outline

- Gravity model
 - Tinbergen (1962)'s idea
 - Intellectual history of gravity
 - Micro-foundations
- Gravity estimation
 - Beyond the naïve model

Figure 4: Estimates of typical gravity variables (Head and Mayer, 2014, tab. 4)

_		All Gravity				Structural Gravity					
	Estimates:	median	mean	s.d.	#	median	mean	s.d.	#		
	Origin GDP	.97	.98	.42	700	.86	.74	.45	31		
	Destination GDP	.85	.84	.28	671	.67	.58	.41	29		
	Distance	89	93	.4	1835	-1.14	-1.1	.41	328		
	Contiguity	.49	.53	.57	1066	.52	.66	.65	266		
	Common language	.49	.54	.44	680	.33	.39	.29	205		
	Colonial link	.91	.92	.61	147	.84	.75	.49	60		
	RTA/FTA	.47	.59	.5	257	.28	.36	.42	108		
	EU	.23	.14	.56	329	.19	.16	.5	26		
	CUSA/NAFTA	.39	.43	.67	94	.53	.76	.64	17		
	Common currency	.87	.79	.48	104	.98	.86	.39	37		
	Home	1.93	1.96	1.28	279	1.55	1.9	1.68	71		

Note: 2508 estimates from 158 papers

- Naïve gravity can lead to opposite results
- But where to get the data on P_i and P_j in

$$X_{i,j} = \left\{ \frac{\tau_{i,j}}{P_j P_i} \right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}?$$

- ① GDP deflators or remoteness indices, e.g. $\sum_i \frac{Y_i}{dist_{i,j}}$
- 2 Iterative approach of Anderson and Van Wincoop (2003)
- Importer xyear and exporter xyear fixed effects

- Naïve gravity can lead to opposite results
- ullet But where to get the data on P_i and P_j in

$$X_{i,j} = \left\{ \frac{\tau_{i,j}}{P_j P_i} \right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}?$$

- ① GDP deflators or remoteness indices, e.g. $\sum_i \frac{Y_i}{dist_{i,j}}$
- 2 Iterative approach of Anderson and Van Wincoop (2003)
- Importer xyear and exporter xyear fixed effects

- Naïve gravity can lead to opposite results
- ullet But where to get the data on P_i and P_j in

$$X_{i,j} = \left\{ \frac{\tau_{i,j}}{P_j P_i} \right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}?$$

- **1** GDP deflators or remoteness indices, e.g. $\sum_i \frac{Y_i}{dist_{i,j}}$
- 2 Iterative approach of Anderson and Van Wincoop (2003)
- Importer xyear and exporter xyear fixed effects

- Naïve gravity can lead to opposite results
- But where to get the data on P_i and P_j in

$$X_{i,j} = \left\{ \frac{\tau_{i,j}}{P_j P_i} \right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}?$$

- **1** GDP deflators or remoteness indices, e.g. $\sum_i \frac{Y_i}{dist_{i,j}}$
- 2 Iterative approach of Anderson and Van Wincoop (2003)
- Importer xyear and exporter xyear fixed effects

- Naïve gravity can lead to opposite results
- ullet But where to get the data on P_i and P_j in

$$X_{i,j} = \left\{ \frac{\tau_{i,j}}{P_j P_i} \right\}^{1-\sigma} \frac{Y_i Y_j}{Y_{world}}?$$

- **1** GDP deflators or remoteness indices, e.g. $\sum_{i} \frac{Y_{i}}{dist_{i,j}}$
- 2 Iterative approach of Anderson and Van Wincoop (2003)
- Importer xyear and exporter xyear fixed effects

Figure 5: Do We Really Know That the WTO Increases Trade? (Rose, 2004, tab. 1)

	(0.05)	(0.07)	(0.07)	(0.05)	
One in GATT/WTO	-0.06	-0.20	-0.09	0.05	
	(0.05)	(0.06)	(0.07)	(0.04)	
GSP	0.86	0.04	0.84	0.70	
	(0.03)	(0.10)	(0.03)	(0.03)	
Log distance	-1.12	-1.23	-1.22	-1.31	
	(0.02)	(0.03)	(0.02)	(0.02)	
Log product real GDP	0.92	0.96	0.95	0.16	
	(0.01)	(0.02)	(0.01)	(0.05)	
Log product real GDP p/c	0.32	0.20	0.32	0.54	
	(0.01)	(0.02)	(0.02)	(0.05)	
Regional FTA	1.20	1.50	1.10	0.94	
	(0.11)	(0.15)	(0.12)	(0.13)	
Currency union	1.12	1.00	1.23	1.19	
	(0.12)	(0.15)	(0.15)	(0.12)	
Common language	0.31	0.10	0.35	0.27	
	(0.04)	(0.06)	(0.04)	(0.04)	
Land border	0.53	0.72	0.69	0.28	
	(0.11)	(0.12)	(0.12)	(0.11)	
Number landlocked	-0.27	-0.28	-0.31	-1.54	
	(0.03)	(0.05)	(0.03)	(0.32)	
Number islands	0.04	-0.14	0.03	-0.87	
	(0.04)	(0.06)	(0.04)	(0.19)	
Log product land area	-0.10	-0.17	-0.10	0.38	
	(0.01)	(0.01)	(0.01)	(0.03)	
Common colonizer	0.58	0.73	0.52	0.60	
	(0.07)	(0.07)	(0.07)	(0.06)	
Currently colonized	1.08	_	1.12	0.72	
	(0.23)		(0.41)	(0.26)	
Ever colony	1.16	-0.42	1.28	1.27	
	(0.12)	(0.57)	(0.12)	(0.11)	
Common country	-0.02	_	-0.32	0.31	
	(1.08)		(1.04)	(0.58)	

234,597

0.65

1.98

114,615

0.47

2.36

183,328

0.65

2.10

234,597

0.70

1.82

Observations

RMSE

(7)Parameters (1) (2) (3) (4) (5) (6) OLS w/o A-vW A-vW OLS with Fixed A-vW OLS with

MR terms effects NIS-2-a MR terms-a

-0.22

-0.04

n.a.

1511

-0.23

-0.35

0.60

1511

Figure 6: Solving McCallum (1995) puzzle? (Baier and Bergstrand, 2009, tab. 1)

MR terms NIS-2 NIS-3

-0.17

n.a.

1511

-0.05

CA-CA

US-CA

No. of obs.

 R^2

1.95

0.00

0.42

1511

	WIIN CETTIES	1120 2	TIES 3	WIIK CCITIIS	CITCUIS	11E0 E u	wire termis a
$-\rho(\sigma-1)$ for	-1.06	-0.79	-0.82	-0.82	-1.25	-0.92	-1.02
distance	(0.04)	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)
$-\alpha (\sigma - 1)$ for	-0.71	-1.65	-1.59	-1.11	-1.54	-1.65	-1.24
	(0.00)	(0.00)	(0.00)	(0.0=)	(0.00)	(0.0-)	(0.0=)

distance	(0.04)	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)	
$-\alpha (\sigma - 1)$ for	-0.71	-1.65	-1.59	-1.11	-1.54	-1.65	-1.24	
border	(0.06)	(80.0)	(80.0)	(0.07)	(0.06)	(0.07)	(0.07)	

$-\alpha (\sigma - 1)$ for	or -0.71	-1.65	-1.59	-1.11	-1.54	-1.65	-1.24	
border	(0.06)	(0.08)	(0.08)	(0.07)	(0.06)	(0.07)	(0.07)	
Avg. error terms								
HC HC	_0.21	0.06	0.06	0.20	0.00	0.05	0.27	

$-\alpha (\sigma - 1)$ for	-0.71	-1.65	-1.59	-1.11	-1.54	-1.65	-1.24	
border	(0.06)	(0.08)	(0.08)	(0.07)	(0.06)	(0.07)	(0.07)	
Avg. error terms								
HC HC	_0.21	0.06	0.06	0.30	0.00	0.05	0.27	

-0.02

-0.04

n.a.

1511

$-\alpha(\sigma-1)$ id	or -0./1	- 1.65	- 1.59	- 1.11	- 1.54	- 1.65	- 1.24	
border	(0.06)	(0.08)	(80.0)	(0.07)	(0.06)	(0.07)	(0.07)	
Avg. error terms								
US-US	-0.21	0.06	0.06	0.39	0.00	0.05	0.27	

-0.34

-0.50

0.36

1511

0.00

0.00

0.66

1511

- Gravity model is one of the most stable empirical regularities in Economics
- Until 2000s it was not theoretically founded, while 2000s witnessed convergence of theory around the gravity-based trade flows equation
- Estimation issues loomed large with the naïve model until Anderson and Van Wincoop (2003)'s contribution stressed the importance of multilateral resistance terms
- The main appeal of gravity for empirical economists is that it permits to examine policy variables and their impact in tractable fashion

- Gravity model is one of the most stable empirical regularities in Economics
- Until 2000s it was not theoretically founded, while 2000s witnessed convergence of theory around the gravity-based trade flows equation
- Estimation issues loomed large with the naïve model until Anderson and Van Wincoop (2003)'s contribution stressed the importance of multilateral resistance terms
- The main appeal of gravity for empirical economists is that it permits to examine policy variables and their impact in tractable fashion

- Gravity model is one of the most stable empirical regularities in Economics
- Until 2000s it was not theoretically founded, while 2000s witnessed convergence of theory around the gravity-based trade flows equation
- Estimation issues loomed large with the naïve model until Anderson and Van Wincoop (2003)'s contribution stressed the importance of multilateral resistance terms
- The main appeal of gravity for empirical economists is that it permits to examine policy variables and their impact in tractable fashion

- Gravity model is one of the most stable empirical regularities in Economics
- Until 2000s it was not theoretically founded, while 2000s witnessed convergence of theory around the gravity-based trade flows equation
- Estimation issues loomed large with the naïve model until Anderson and Van Wincoop (2003)'s contribution stressed the importance of multilateral resistance terms
- The main appeal of gravity for empirical economists is that it permits to examine policy variables and their impact in tractable fashion

Thank you for your attention!

References — I

- Anderson, J. and E. Van Wincoop (2003). Gravity with gravitas: A solution to the border puzzle. *American Economic Review 93*(1), 170–192.
- Baier, S. and J. Bergstrand (2009). Bonus vetus OLS: A simple method for approximating international trade-cost effects using the gravity equation. *Journal of International Economics* 77(1), 77–85.
- Baldwin, R., R. Forslid, P. Martin, G. Ottaviano, and F. Robert-Nicoud (2011). *Economic geography and public policy*. Princeton University Press.
- Crozet, M. and P. Koenig (2010). Structural gravity equations with intensive and extensive margins. *Canadian Journal of Economics 43*(1), 41–62.
- Frankel, J., E. Stein, and S.-J. Wei (1997). Regional trading blocs in the world economic system. Peterson Institute.

References — II

- Head, K. and T. Mayer (2014). Gravity equations: Workhorse, toolkit, and cookbook. In *Handbook of International Economics*, Volume 4, pp. 131–195. Elsevier.
- Krugman, P. (1995). *Handbook of International Economics*, Chapter Increasing returns, imperfect competition and the positive theory of international trade, pp. 1243–1277. Number 24. Elsevier.
- McCallum, J. (1995). National borders matter: Canada-US regional trade patterns. *American Economic Review 85*(3), 615–623.
- Melitz, M. (2003). The impact of trade on intra-industry reallocations and aggregate industry productivity. *Econometrica* 71(6), 1695–1725.
- Rose, A. (2004). Do we really know that the WTO increases trade? *American Economic Review 94*(1), 98–114.
- Samuelson, P. (1954). The transfer problem and transport costs, II: Analysis of effects of trade impediments. *Economic Journal* 64(254), 264–289.

References — III

Tinbergen, J. (1962). Shaping the World Economy. Suggestions for an International Economic Policy. Twentieth Century Fund.