

Pedagogical Color Chart

Mechanics and Thermodynamics

Some Physical Constants

Quantity	Symbol	Value ^a
Atomic mass unit	u	$1.660~538~782~(83) \times 10^{-27} \mathrm{kg}$ $931.494~028~(23)~\mathrm{MeV}/c^2$
Avogadro's number	$N_{\! m A}$	$6.022~141~79~(30) \times 10^{23}~\mathrm{particles/mol}$
Bohr magneton	$\mu_{ m B} = rac{e\hbar}{2m_e}$	$9.274\ 009\ 15\ (23) \times 10^{-24} \text{J/T}$
Bohr radius	$a_0 = rac{\hbar^2}{m_e e^2 k_e}$	$5.291\ 772\ 085\ 9\ (36) \times 10^{-11}\ \mathrm{m}$
Boltzmann's constant	$k_{ m B}=rac{R}{N_{ m A}}$	$1.380\ 650\ 4\ (24) \times 10^{-23}\ \mathrm{J/K}$
Compton wavelength	$\lambda_{_{ m C}} \; = \; rac{h}{m_e c}$	$2.426\ 310\ 217\ 5\ (33) \times 10^{-12}\ \mathrm{m}$
Coulomb constant	$k_{_{e}}~=~rac{1}{4\pi\epsilon_{0}}$	$8.987\ 551\ 788\ldots \times 10^9\ N\cdot m^2/C^2$ (exact)
Deuteron mass	m_d	$3.34358320(17) \times 10^{-27} \mathrm{kg}$
Electron mass	m_e	2.013 553 212 724 (78) u 9.109 382 15 (45) \times 10 ⁻³¹ kg 5.485 799 094 3 (23) \times 10 ⁻⁴ u 0.510 998 910 (13) MeV/ c^2
Electron volt	eV	$1.602\ 176\ 487\ (40) \times 10^{-19} \mathrm{J}$
Elementary charge	e	$1.602\ 176\ 487\ (40) \times 10^{-19}\ \mathrm{C}$
Gas constant	R	8.314 472 (15) J/mol·K
Gravitational constant	G	$6.674~28~(67) \times 10^{-11}~\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2$
Neutron mass	m_n	$1.674\ 927\ 211\ (84) \times 10^{-27}\ \mathrm{kg}$ $1.008\ 664\ 915\ 97\ (43)\ \mathrm{u}$ $939.565\ 346\ (23)\ \mathrm{MeV}/c^2$
Nuclear magneton	$\mu_n = rac{e\hbar}{2m_p}$	$5.05078324(13) \times 10^{-27} \text{J/T}$
Permeability of free space	μ_0	$4\pi \times 10^{-7} \mathrm{T\cdot m/A}$ (exact)
Permittivity of free space	$\epsilon_0 = rac{1}{\mu_0 c^2}$	$8.854\ 187\ 817\ldots\times 10^{-12}\ C^2/N\cdot m^2\ (exact)$
Planck's constant	h	$6.626\ 068\ 96\ (33) \times 10^{-34}\mathrm{J\cdot s}$
	$\hbar = \frac{h}{2\pi}$	$1.054571628~(53) \times 10^{-34} \text{J}\cdot\text{s}$
Proton mass	$m_{ ho}$	$1.672~621~637~(83) \times 10^{-27}~{ m kg}$ $1.007~276~466~77~(10)~{ m u}$ $938.272~013~(23)~{ m MeV}/c^2$
Rydberg constant	$R_{ m H}$	$1.097\ 373\ 156\ 852\ 7\ (73) \times 10^7\ \mathrm{m^{-1}}$
Speed of light in vacuum	c	$2.997\ 924\ 58 \times 10^8\ \text{m/s}\ \text{(exact)}$

Note: These constants are the values recommended in 2006 by CODATA, based on a least-squares adjustment of data from different measurements. For a more complete list, see P. J. Mohr, B. N. Taylor, and D. B. Newell, "CODATA Recommended Values of the Fundamental Physical Constants: 2006." Rev. Mod. Phys. 80:2, 633–730, 2008.

^aThe numbers in parentheses for the values represent the uncertainties of the last two digits.

Solar System Data

	Mean Radius			Mean Distance from
Body	Mass (kg)	(m)	Period (s)	the Sun (m)
Mercury	3.30×10^{23}	$2.44 imes 10^6$	7.60×10^{6}	$5.79 imes 10^{10}$
Venus	$4.87 imes10^{24}$	$6.05 imes 10^6$	1.94×10^{7}	$1.08 imes 10^{11}$
Earth	$5.97 imes 10^{24}$	6.37×10^{6}	3.156×10^{7}	1.496×10^{11}
Mars	6.42×10^{23}	3.39×10^{6}	5.94×10^{7}	2.28×10^{11}
Jupiter	1.90×10^{27}	6.99×10^{7}	3.74×10^{8}	7.78×10^{11}
Saturn	5.68×10^{26}	5.82×10^{7}	9.29×10^{8}	$1.43 imes 10^{12}$
Uranus	$8.68 imes 10^{25}$	2.54×10^{7}	2.65×10^{9}	$2.87 imes10^{12}$
Neptune	1.02×10^{26}	2.46×10^{7}	5.18×10^{9}	$4.50 imes10^{12}$
Pluto ^a	1.25×10^{22}	1.20×10^{6}	7.82×10^{9}	$5.91 imes10^{12}$
Moon	7.35×10^{22}	1.74×10^{6}	_	_
Sun	1.989×10^{30}	$6.96 imes 10^8$	_	_

^aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as a "dwarf planet" (like the asteroid Ceres).

Physical Data Often Used

•	
Average Earth–Moon distance	$3.84 imes 10^8 \mathrm{m}$
Average Earth–Sun distance	$1.496 imes 10^{11} \mathrm{\ m}$
Average radius of the Earth	$6.37 imes 10^6 \mathrm{m}$
Density of air (20°C and 1 atm)	$1.20~\mathrm{kg/m^3}$
Density of air (0°C and 1 atm)	$1.29~\rm kg/m^3$
Density of water (20°C and 1 atm)	$1.00 imes 10^3 \mathrm{kg/m^3}$
Free-fall acceleration	$9.80~\mathrm{m/s^2}$
Mass of the Earth	$5.97 imes10^{24}\mathrm{kg}$
Mass of the Moon	$7.35 imes10^{22}\mathrm{kg}$
Mass of the Sun	$1.99 imes 10^{30}~\mathrm{kg}$
Standard atmospheric pressure	$1.013 imes 10^5 \mathrm{Pa}$
Note: These values are the ones used in the text.	

Some Prefixes for Powers of Ten

Power	Prefix	Abbreviation	Power	Prefix	Abbreviation
10^{-24}	yocto	y	10^{1}	deka	da
10^{-21}	zepto	Z	10^{2}	hecto	h
10^{-18}	atto	a	10^{3}	kilo	k
10^{-15}	femto	f	10^{6}	mega	M
10^{-12}	pico	p	10^{9}	giga	G
10^{-9}	nano	n	10^{12}	tera	T
10^{-6}	micro	μ	10^{15}	peta	P
10^{-3}	milli	m	10^{18}	exa	E
10^{-2}	centi	c	10^{21}	zetta	Z
10^{-1}	deci	d	10^{24}	yotta	Y

Physics

for Scientists and Engineers with Modern Physics

NINTH EDITION

Raymond A. Serway

Emeritus, James Madison University

John W. Jewett, Jr.

Emeritus, California State Polytechnic University, Pomona

With contributions from Vahé Peroomian, University of California at Los Angeles

About the Cover

The cover shows a view inside the new railway departures concourse opened in March 2012 at the Kings Cross Station in London. The wall of the older structure (completed in 1852) is visible at the left. The sweeping shell-like roof is claimed by the architect to be the largest single-span station structure in Europe. Many principles of physics are required to design and construct such an open semicircular roof with a radius of 74 meters and containing over 2 000 triangular panels. Other principles of physics are necessary to develop the lighting design, optimize the acoustics, and integrate the new structure with existing infrastructure, historic buildings, and railway platforms.

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States