

T16, 1

F	Α	С	1	FCS	F
---	---	---	---	-----	---

Eield Name Flag Field (F) Address Field(A)

Control Field (C)

Information Field (I) Frame Check Sequence (FCS) 16 or 32 bits

Size (bits)

8 bits 8 bits

8 or 16 bits

Variable

FIG. 2

	Packet Overhead (assuming max size FOH = 8B)			
	FOH	SOH	PS	% OH
No Stuffing, min sized packet	8	0	40	20%
Max Stuffing, min sized packet	8	8	40	40%
No Stuffing, max sized packet	8	0	9600	0.08%
Max Stuffing, max sized packet	8	1920	9600	20%

Assumptions:

- a) Packet Size (PS): 40 - 9600 bytes
- b) Worst-case HDLC bit stuffing overhead (SOH) 20% of (a) = 8 1920 bytes
- c) HDLC Frame Overhead (FOH) 5 - 8 bytes

FIG. 3

F16. 4

FIG, 5

F16, 6

F16, 7

F16, 8

	Parameter	Definitions
R _{FILL} :	Nominal data rate of a PLD HDLC channel corresponding to an EQ. Data input (equeue) rate of PLD EQ. Data output (dequeue) rate of PLD EQ. Flow control latency.	 D_{MTU}: Delay due to transmission of an MTU-sized packet from LLD CoS queue. D_{LLD}: Worst-case classification delay of LLD. D_{PIPE}: Output pipeline delay of LLD. D_{PLD}: PLD delay in transmitting IBFC message.
В	$Buff = R_{FILL} - R_{DRAIN} * FCL$ $ R_{FILL} - R_{DRAIN} = R_{PORT} - 0.8R_{PORT} = 0$ $FCL = D_{MTU} + D_{LLD} + D_{PIPE} + D_{PLD}^{\ddagger}$).2 * R _{PORT} †
٠.	Use the following facts and worst $D_{MTU-L} = MTU \div (0.8 * R_{PORT}) \cdot D_{LLD} \le 20 \ \mu sec \cdot D_{PIPE} \le 6 \ \mu sec \cdot D_{PLD} \le 1 \$	D _{MTU-U} = MTU ÷ R _{PORT} ##

=
$$(0.2 * R_{PORT}) * ([MTU / (0.8 * R_{PORT})] + 27 \mu s)$$

= $R_{PORT} * ([0.25 * MTU / R_{PORT})] + 5.4 \mu s)$
= $(0.25 * MTU) + (R_{PORT} * 5.4 \mu s)$

Buff _{OVER} =
$$(0.2 * R_{PORT}) * ([MTU / R_{PORT}] + 20 \mu s + 6 \mu s + 1 \mu s)$$

= $(0.2 * R_{PORT}) * ([MTU / R_{PORT}] + 27 \mu s)$
= $R_{PORT} * ([0.2 * MTU / R_{PORT})] + 6.75 \mu s)$
= $(0.2 * MTU) + (R_{PORT} * 6.75 \mu s)$

[†] HDLC R_{DRAIN} is at most 20% greater or less than scheduler R_{FILL}

Flow Control Latency is equal to the sum of the delays (D) shown

th W.C. delay of the flow control message through classification to the traffic shaper

^{‡‡} LLD output pipeline delay

[§] W.C. delay from flow control message generation in PLD to transmission on the SPI-3 ingress interface

HDLC Channel Size	HDLC Channel Rate (in Kbps)	MTU (in bytes)	Buff _{UNDER} (in bytes)	Buff _{over} (in bytes)	Lower bound EQ Size (in bytes)	Worst-case EQ Size (in bytes)
DS0	64	576	145	. 116	261	586
	64	1518	380	304	684	1432
	64	9600	2401	1921	4322	8708
DS1	1544	576	146	117	263	590
	1544	1518	381	305	686 ·	1436
	1544	9600	2402	1922	4324	- 8712
8 x DS1	12352	576	153	126	279	622
	12352	1518	388	315	703	1470
	12352	9600	2409	1931	4340	8744

F16, 10