Лабораторная работа №1.4.8 Измерение модуля Юнга методом акустического резонанса

Каспаров Н.М.

5 ноября 2023 г.

1 Цель работы

- 1. Исследовать явление акустического резонанса в тонком стержне.
- 2. Измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров.
- 3. Измерить модули Юнга различных материалов.

2 В работе используется

- 1. Генератор звуковых частот.
- 2. Частотомер.
- 3. Осциллограф.
- 4. Электромагнитные излучатель и приёмник колебаний.
- 5. Набор стержней из различных материалов.
- 6. Линейка, штангенциркуль, микрометр.
- 7. Весы.

3 Введение

Акустическая волна, распространяющаяся в стержне конечной длины L, испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел.

4 Уравнение волны в тонком стержне

Направим ось X вдоль геометрической оси стержня (рис. 1). Разобьём исходно недеформированный стержень на тонкие слои толщиной Δx . При продольной деформации среды границы слоёв сместятся в некоторые новые положения. Пусть плоскость среды, находящаяся исходно в точке x, сместилась к моменту t на расстояние $\xi(x,t)$. Тогда слой, занимавший исходно отрезок $[x;x+\Delta x]$, изменил свой продольный размер на величину $\Delta \xi = \xi(x+\Delta x,t) - \xi(x,t)$.

$$\varepsilon = \frac{\partial \xi}{\partial x} \tag{1}$$

Далее, согласно закону Гука, имеем:

$$\sigma = \varepsilon E = E \frac{\partial \xi}{\partial x} \tag{2}$$

Здесь напряжение равно $\sigma = \frac{F}{S}$, где

F — продольная сила, действующая на элементарный участок Δx ,

S - площадь поперечного сечения стержня.

Напряжения, действующие на стенки рассматриваемого элемента в сечениях x и $x+\Delta x$, будут различными. Из-за этого возникнет результирующая возвращающая сила, стремящаяся вернуть элемент стержня в исходное (недеформированное и несмещённое) состояние:

$$\Delta F = S\sigma(x + \Delta x) - S\sigma(x) = \frac{\partial \sigma}{\partial x} S\Delta x = \frac{\partial^2 \xi}{\partial^2 x} ES\Delta x \tag{3}$$

Эта сила вызовет ускорение движение элемента стержня массой $\Delta m = S \rho \Delta x$ вдоль оси X. Ускорение рассматриваемого элемента — это вторая производная по времени от смещения его границ:

$$a = \frac{\partial^2 \xi}{\partial t^2} \tag{4}$$

Тогда, используя 2-й закон Ньютона:

$$\Delta m \cdot a = \Delta F \tag{5}$$

и соотношения (1) - (4), получим уравнение движения среды:

$$S\rho\Delta x \frac{\partial^2 \xi}{\partial t^2} = ES\Delta x \frac{\partial^2 \xi}{\partial x^2}$$
 (6)

Скорость u распространения продольной акустической волны в простейшем случае длинного тонкого стержня определяется соотношением:

$$u = \sqrt{\frac{E}{\rho}} \tag{7}$$

Теперь, используя соотношения (6) - (7), мы можем записать волновое уравнение:

$$\frac{\partial^2 \xi}{\partial t^2} = u^2 \frac{\partial^2 \xi}{\partial^2 x} \tag{8}$$

Оно имеет универсальный характер и описывает волны самой разной природы: акустические волны в твёрдых телах, жидкостях и газа, волны на струне, электромагнитные волны и т.п. Величина u в уравнении (6) имеет смысл скорости распространения волны.

5 Собственные колебания стержня. Стоячие волны

В случае гармонического возбуждения колебаний с частотой f продольная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу гармонических волн:

$$\xi(x,t) = A_1(\sin \omega t - kx + \phi_1) + A_2(\sin \omega t - kx + \phi_2), \tag{9}$$

где $\omega=2\pi f$ — циклическая частота. Коэффициент $k=\frac{2\pi}{\lambda}$ называют волновым числом или пространственной частотой волны.

Пусть концы стержня не закреплены. Тогда напряжения в них должны равняться нулю. Положим координаты торцов равными x=0 и x=L. Тогда, используя связь напряжения и деформации (2), запишем граничные условия для свободных (незакреплённых) концов стержня:

$$x = 0: \sigma(0) = 0 \to \frac{\partial \xi}{\partial x} = 0 \tag{10}$$

$$x = L : \sigma(L) = 0 \to \frac{\partial \xi}{\partial x} = 0$$
 (11)

Нетрудно видеть, что это соотношение будет выполняться при любом t, если только у «падающей» и «отражённой» волн одинаковы амплитуды

$$A_1 = A_2 \tag{12}$$

и фазы.

$$\phi_1 = \phi_2 \tag{13}$$

Далее, перепишем исследуемую функцию (9), используя граничные условия (12) и (13) и формулу суммы синусов:

$$\xi(x,t) = 2A\cos(kx)\sin(\omega t + \phi) \tag{14}$$

Колебания вида (14) называют гармоническими стоячими волнами.

Наконец, воспользуемся вторым граничным условием (9) применительно к функции (12). В результате придём к уравнению $\sin(kL) = 0$, решения которого определяют набор допустимых значений волновых чисел k:

$$k_n L = \pi n, \quad n = 1, 2, 3, ...,$$
 (15)

или, выражая (13) через длину волны $\lambda = \frac{2\pi}{k}$,, получим

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N} \tag{16}$$

Таким образом, для возбуждения стоячей волны на длине стержня должно укладываться целое число полуволн.

Допустимые значения частот:

$$f_n = \frac{u}{\lambda_n} = n \frac{u}{2L}, \quad n \in \mathbb{N}$$
 (17)

называют собственными частотами колебаний стержня длиной L. Именно при совпадении внешней частоты с одной из частот f_n в стержне возникает акустический резонанс.

Рис. 2. Собственные продольные колебания стержня с незакреплёнными концами (для наглядности изображение дано не в масштабе, реальные смещения малы по сравнению с длиной стержня, $\xi \ll L$)

Зависимость амплитуды смещения от координаты для собственных колебаний стержня с незакреплёнными концами при n=1,2,3 представлена на рис. 2.

6 Схема

Экспериментальная установка

Рис. 3. Схема установки: 1 – генератор звуковой частоты, 2 – частотомер, 3 – осциллограф, 4 – электромагнит-возбудитель, 5 – образец, 6 – электромагнит-приёмник, 7 – усилитель звуковой частоты, 8 – блок питания усилителя, 9, 11 – стойки крепления электромагнитов, 10 – стойка крепления образца, 12 – направляющая

Схема экспериментальной установки приведена на рис. 3. Исследуемый стержень **5** размещается на стойке **10**. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями **4** и **6**, расположенными рядом с торцами стержня. Крепления **9**, **11** электромагнитов дают возможность регулировать их расположение по высоте, а также перемещать вправо-влево по столу **12**.

Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электромагнита ток создаёт пропорциональное ему магнитное поле, вызывающее периодическое воздействие заданной частоты на торец стержня (к торцам стержней из немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электромагнитный датчик 6, который служит для преобразования механических колебаний в электрические. Принцип работы электромагнитных датчиков описан подробнее ниже.

Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электромагните 6, пропорциональная амплитуде колебаний торца стержня, усиливается усилителем 7 и подаётся на вход канала Y осциллографа.

Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне. Наблюдения в режиме $\mathbf{X} - \mathbf{Y}$ позволяют сравнить сигналы генератора и датчика, а также облегчает поиск резонанса при слабом сигнале.

7 Ход работы

7.1 Измерение геометрических параметров стержня

Используя металлическую линейку и микрометр измерим длину и диаметр данных стержней. Для измерения диаметра проведем множество измерений на всей протяженности стержня. Занесем данные в таблицу 1.

	l, cm	σ_l , cm	ε_l	d, mm	σ_d , MM	ε_d
Медь	60.5	0.1	$2 \cdot 10^{-3}$	11.96	0.01	$8 \cdot 10^{-4}$
Сталь	60.4	0.1	$2\cdot 10^{-3}$	11.98	0.01	$8 \cdot 10^{-4}$
Дюраль	60.5	0.1	$2 \cdot 10^{-3}$	12.23	0.01	$8 \cdot 10^{-4}$

Таблица 1: Измерения геометрических показателей стержней

Заметим, что действительно $\frac{R}{d} \ll 1$, значит стержень можно назвать тонким. Все измерения диаметра дали одинаковые результаты, поэтому будем считать диаметр стержней постоянным.

7.2 Измерение плотности материалов

Используя штангенциркуль и микрометр, определим геометрические параметры цилиндрических образцов, а с помощью весов определим массу. Занесем данные в таблицу 2.

	l, mm	σ_l , MM	$arepsilon_l$	d, mm	σ_d , mm	ε_d	m, гр	σ_m , гр	ε_m
Медь	30.05	0.05	$2 \cdot 10^{-3}$	11.85	0.01	$8 \cdot 10^{-4}$	29.450	0.001	$3 \cdot 10^{-5}$
Сталь	40.00	0.05	$1 \cdot 10^{-3}$	11.99	0.01	$8 \cdot 10^{-4}$	35.185	0.001	$3 \cdot 10^{-5}$
Дюраль	30.00	0.05	$2 \cdot 10^{-3}$	12.04	0.01	$8 \cdot 10^{-4}$	9.484	0.001	$1 \cdot 10^{-5}$

Таблица 2: Измерения для определения плотности образцов

Чтобы найти плотность материала, воспользуемся формулой:

$$\rho = \frac{4m}{\pi d^2 \cdot l} \tag{18}$$

Погрешностью ε_m можно пренебречь. Учитывая это, формула для рассчета погрешности измерения плотности:

$$\varepsilon_q = \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2} \tag{19}$$

Проведем расчет и занесем результаты в таблицу 3.

	ρ , rp/cm^3	σ_{ρ} , гр/см ³	$\varepsilon_{ ho}$
Медь	8.89	0.02	$2 \cdot 10^{-3}$
Сталь	7.79	0.02	$2 \cdot 10^{-3}$
Дюраль	2.78	0.01	$2 \cdot 10^{-3}$

Таблица 3: Результаты расчета плотности материалов

7.3 Измерение резонансных частот стержней

Будем менять частоту генератора в пределах ожидаемых значений резонанса. Оценить её можно по формуле

 $f_1 = \frac{u}{2L},\tag{20}$

воспользовавшись табличным значением скорости продольных волн.

После нахождения значения первого резонанса, умножим его на n и уже в новой окресности ищем значения n-ной резонансной частоты.

Результаты внесем в таблицу 4:

n	Медь	Сталь	Дюраль	
1	32,501	41,277	42,498	
2	65,002	82,504	84,995	
3	97,516	124,01	127,64	
4	130,02	165,20	170,3	
5	162,19	206,52	212,82	
6	194,87	247,73	255	
7	226,83	289,12	297,26	
	$f_n, 10^2 \cdot \Gamma$ ц			

Таблица 4: Результаты измерения резонантных частот стержней

Представим результаты в виде графика $f_n(n)$ и убедимся, что получатся прямые, проходящие через начало координат $(f_n = f_1 \cdot n)$ (рис. 1)

Рис. 1: График зависимости $f_n(n)$

Найдём f_1 по формуле:

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} \tag{21}$$

Систематическая погрешность мала по сравнению со случайной, поэтому ей можно пренебречь.

Значит, погрешность будет определяться случайной составляющей. Найдем её по формуле:

$$\sigma_k = \sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (22)

Результаты занесём в таблицу 5:

	Медь	Сталь	Дюраль
f_1 , Гц	3241	4130	4248
σ_{f_1} , Гц	3	1	3
ε_{f_1}	$9 \cdot 10^{-4}$	$2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$

Таблица 5: Результаты расчета первой резонантной частотой

7.4 Расчет скорости продольных волн в тонком стержне

Рассчитаем скорость звука u в тонких стержнях.

Из формулы (20) получим:

$$u = 2f_1L (23)$$

Погрешность найдем по соотношению:

$$\varepsilon_u = \sqrt{\left(\frac{\sigma_{f_1}}{f_1}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2} \tag{24}$$

Данные внесем в таблицу:

	Медь	Сталь	Дюраль
u, м/с	3922	4989	5140
σ_u , M/C	7	8	9
ε_u ,	$2 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-3}$

Таблица 6: Результаты расчета скорости звука в тонких стержнях

7.5 Расчет модуля Юнга различных материалов

Найдем модуль Юнга материалов стержней. Сравним их с табличными данными. Из формулы (7) выразим модуль Юнга E:

$$E = \rho * u^2 \tag{25}$$

Погрешность модуля Юнга можно посчитать по данной формуле:

$$\varepsilon = \sqrt{\varepsilon_{\rho}^2 + 4\varepsilon_u^2} \tag{26}$$

Результаты расчета представим в таблице 7:

	Медь	Сталь	Дюраль
$E, \Gamma\Pi a$	137	194	73
$\sigma_E, \Gamma \Pi a$	7	9	4
ε_u , %	5	5	5
$E_{\text{табл}}, \Gamma \Pi a$	129	200	74

Таблица 7: Результаты расчета модуля Юнга и их табличные значения.

Как мы видим, значения совпали в пределах погрешности.

8 Вывод

В данной работе мы экспериментально показали, что отношение резонантной частоты к номеру гармоники f_n/n остается постоянным. Мы также вычислили значения скорости продольных волн в тонких стержнях, провели расчеты модуля Юнга для меди, стали и дюралюминия, которые совпали с табличными значениями в пределах погрешности:

$$E_{\scriptscriptstyle \mathrm{M}} = (137 \pm 7) \Gamma \Pi \mathrm{a}$$
 $E_{\scriptscriptstyle \mathrm{C}} = (194 \pm 9) \Gamma \Pi \mathrm{a}$ $E_{\scriptscriptstyle \mathrm{M}} = (73 \pm 4) \Gamma \Pi \mathrm{a}$

Для дальнейшего повышения точности измерений, необходимо увеличить точность измерения длин стержней, поскольку погрешность в их измерении в значительной степени определяет окончательные погрешности.