Математическая логика

Метод резолюций в логике предикатов

Куценко Дмитрий Александрович

14 июля 2011 г.

Приводятся сведения, отсутствующие в [4], касающиеся реализации метода резолюций в логике предикатов. Введены необходимые определения, рассмотрены такие понятия, как подстановки, их композиции, нахождение множества несогласованности для множества выражений, приведён алгоритм унификации множества выражений. Далее подробно рассматривается нахождение резольвент и сам метод резолюций. Для иллюстрации изложенного приведено множество примеров.

Материал основан на работах [1], [6], [8].

Содержание

1. Метод резолюций в логике предикатов	2
1.1. Основные определения	2
1.2. Подстановки	3
1.3. Композиция подстановок	3
1.4. Множество несогласованности	
1.5. Унификация	4
1.6. Склейки и резольвенты	6
1.7. Алгоритм метода резолюций	7
1.8. Стратегии метода резолюций	8
1.8.1. Стратегия насыщения уровня	8
1.8.2. Линейная стратегия	10
1.8.3. Стратегия предпочтения более коротких дизъюнктов	10
Литература	10

1. Метод резолюций в логике предикатов

1.1. Основные определения

Введём рекурсивное определение терма логики предикатов:

- 1) любая предметная переменная x является термом;
- 2) любая предметная константа a является термом;
- 3) если f-n-местный функциональный символ, а t_1, \ldots, t_n —термы, то $f(t_1, \ldots, t_n)$ является термом;
- 4) других термов не существует.

Фундаментальным будем называть терм, в котором нет переменных.

Пример 1.1. Следующие записи являются термами:

$$f(b, x, g(x, y)), \quad f(a, a, b), \quad b, \quad x, \quad g(b, f(x, y, g(x, y))),$$

где f — трёхместный, g — двухместный функциональные символы, x, y — предметные переменные, a, b — предметные константы. Термы f(a, a, b) и b являются фундаментальными.

Далее будем использовать следующие определения. Если P-n-местный предикатный символ и t_1, \ldots, t_n —термы, то $P(t_1, \ldots, t_n)$ является атомом. Литерой будем называть атом или отрицание атома. Дизъюнкция литер образует дизъюнкт. Множество литер для удобства также будем рассматривать как дизъюнкт.

Пример 1.2. Дизъюнкт
$$P(x) \vee P(a) \vee R(f(x), y) \vee \overline{Q(y)}$$
 можно представить в виде множества литер $\{P(x), P(a), R(f(x), y), \overline{Q(y)}\}.$

Дизъюнкт, содержащий n литер, называется n-литерным дизъюнктом. Однолитерный дизъюнкт — это дизъюнкт, состоящий из одной литеры. Дизъюнкт, не содержащий литер, назовём nycmыm дизъюнктом (обозначается « \square »). Будем рассматривать множество дизъюнктов как конъюнкцию соответствующих дизъюнктов.

Пример 1.3. Множеству дизъюнктов

$$\{\overline{P(x,f(x))}, P(x,y) \vee \overline{R(x,g(y))}, Q(x) \vee P(x,a)\}$$

соответствует формула

$$\overline{P\big(x,f(x)\big)} \ \& \ \Big(P(x,y) \vee \overline{R\big(x,g(y)\big)}\Big) \ \& \ \big(Q(x) \vee P(x,a)\big).$$

Под выражением будем понимать терм, множество термов, множество атомов, литеру, дизъюнкт, множество дизъюнктов. Φ ундаментальным выражением будем называть такое выражение, в котором нет никаких переменных.

1.2. Подстановки

 Π одстановка — это конечное (возможно, пустое) множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, запись $*(t_i/v_i)$ называется nодстановочной компонентой и означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных. В этом случае v_i называют nеременной компоненты t_i/v_i , а t_i — mермом t_i/v_i . Подстановки будем обозначать строчными греческими буквами (α,\ldots,ω) . Подстановку, не содержащую элементов, будем называть n0 и обозначать буквой $*(\epsilon)$ у каждой непустой подстановки 00 = 01 имеется множество 01 и множество 02 и множество 03 и множество 04 и обозначать бундаментальной, если все термы из её множества термов являются фундаментальными.

Пример 1.4. Следующие множества являются подстановками:

$$\theta = \{ f(z)/x, y/z \}, \quad \sigma = \{ a/x, g(y)/y, f(g(b))/z \}, \quad \varepsilon = \{ \}.$$

Пусть даны подстановка $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ и выражение \mathfrak{E} . Конкретизацией \mathfrak{E} посредством θ называется операция, состоящая в замене одновременно всех вхождений переменных v_1, \dots, v_n на термы t_1, \dots, t_n соответственно. Получившееся выражение \mathfrak{E}^{θ} называется θ -примером \mathfrak{E} .

Пример 1.5. Рассмотрим подстановку $\theta = \{a/x, f(b)/y, c/z\}$ и выражение $\mathfrak{E} = P(x,y,z)$. В результате конкретизации выражения \mathfrak{E} посредством подстановки θ получим θ -пример этого выражения, имеющий вид

$$\mathfrak{E}^{\theta} = P(a, f(b), c).$$

 \mathfrak{E}^{θ} будет называться $\phi y n \partial a m e n m a n b n m n p n m e p o m <math>\mathfrak{E}$, если θ — ϕ ундаментальная подстановка.

1.3. Композиция подстановок

Пусть $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ и $\lambda = \{u_1/y_1, \dots, u_1/y_m\}$ — две подстановки. Композицией θ и λ называют подстановку $\theta \circ \lambda$, которая получается из множества

$$\{t_1^{\lambda}/x_1,\ldots,t_n^{\lambda}/x_n,\,u_1/y_1,\ldots,u_m/y_m\}$$

вычёркиванием всех подстановочных компонент t_j^{λ}/x_j , для которых $t_j^{\lambda}=x_j$, а также всех подстановочных компонент u_i/y_i , таких, что $y_i\in\{x_1,\ldots,x_n\}$.

Пример 1.6. Пусть даны подстановки

$$\begin{split} \theta &= \{t_1/x_1,\,t_2/x_2\} = \{f(y)/x,\,z/y\},\\ \lambda &= \{u_1/y_1,\,u_2/y_2,\,u_3/y_3\} = \{a/x,\,b/y,\,y/z\}. \end{split}$$

Тогда их композиция образуется из следующего множества подстановочных компонент:

$$\{t_1^{\lambda}/x_1, t_2^{\lambda}/x_2, u_1/y_1, u_2/y_2, u_3/y_3\} = \{f(b)/x, y/y, a/x, b/y, y/z\}.$$

Мы вычеркнули подстановочную компоненту $t_2^{\lambda}/x_2 = y/y$, так как терм этой компоненты равен её переменной $(t_2^{\lambda} = x_2, \text{ т. e. } y = y)$, затем вычеркнули подстановочные компоненты $u_1/y_1 = a/x$ и $u_2/y_2 = b/y$, так как переменные y_1 и y_2 содержатся среди множества переменных $\{x_1, x_2\} = \{x, y\}$ подстановки θ . В итоге получаем

$$\theta \circ \lambda = \{f(b)/x, y/z\}.$$

Легко убедиться, что $\varepsilon \circ \theta = \theta \circ \varepsilon = \theta$ для любой подстановки θ . Кроме того, композиция подстановок *ассоциативна*, т. е. $(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu)$ для любых подстановок θ , λ и μ , поэтому можно опускать скобки при записи кратных композиций подстановок. Также отметим, что для любых подстановок θ и σ справедливо следующее: если для каждого выражения \mathfrak{E} имеет место равенство $\mathfrak{E}^{\theta} = \mathfrak{E}^{\sigma}$, то $\theta = \sigma$.

Сущность композиции операций подстановки состоит в том, что если \mathfrak{E} — некоторое выражение, а $\sigma = \theta \circ \lambda$, то $\mathfrak{E}^{\sigma} = \mathfrak{E}^{\theta \circ \lambda} = (\mathfrak{E}^{\theta})^{\lambda}$, т. е. \mathfrak{E}^{σ} — это λ -пример \mathfrak{E}^{θ} .

1.4. Множество несогласованности

Если $\mathscr E$ — множество выражений, то *множеством несогласованности* множества $\mathscr E$ называется множество всех тех подвыражений элементов множества $\mathscr E$, которые начинаются с того места, где не все выражения из $\mathscr E$ имеют один и тот же символ.

Пример 1.7. Рассмотрим множество выражений

$$\mathscr{E} = \left\{ P(x, h(x, y), y), P(x, k(y), y), P(x, a, b) \right\}.$$

Множество несогласованности для $\mathscr E$ есть $\{h(x,y),\ k(y),\ a\}$.

Ясно, что если множество выражений $\mathscr E$ содержит более одного элемента, то множество несогласованности множества $\mathscr E$ также содержит более одного элемента.

1.5. Унификация

Пусть $\mathscr{E} = \{\mathfrak{E}_1, \mathfrak{E}_2, \dots, \mathfrak{E}_n\}$ — множество выражений, а θ — подстановка. Подстановка θ является унификатором \mathscr{E} (иначе говоря, θ унифицирует \mathscr{E}) тогда и только тогда, когда

$$\mathfrak{E}_1^{\theta} = \mathfrak{E}_2^{\theta} = \ldots = \mathfrak{E}_n^{\theta}.$$

В этом случае будем считать, что множество \mathscr{E}^{θ} состоит из одного (уникального) элемента (можно записать, что $\mathscr{E}^{\theta} = \{\mathfrak{E}^{\theta}_1\}$).

Множество выражений унифицируемо, если для него существует унификатор.

Пример 1.8. Множество выражений $\{P(a,y), P(x,f(b))\}$ унифицируемо, так как существует подстановка $\theta = \{a/x, f(b)/y\}$, являющаяся его унификатором.

Унификатор σ для множества выражений будет наиболее общим унификатором (HOV) тогда и только тогда, когда для каждого унификатора θ для этого множества существует такая подстановка λ , что $\theta = \sigma \circ \lambda$.

Для поиска НОУ для конечного унифицируемого множества *W* непустых выражений разработан *алгоритм унификации*, который можно записать следующим образом:

- *Шаг 1.* Положить k=0, $\mathcal{W}_0=\mathcal{W}$, $\sigma_0=\varepsilon$ и перейти к шагу 2.
- *Шаг 2.* Если \mathcal{W}_k состоит из одного элемента (т.е. $|\mathcal{W}_k| = 1$), то выдать « σ_k НОУ для \mathcal{W} » и окончить работу; в противном случае найти множество несогласованности \mathcal{D}_k для \mathcal{W}_k и перейти к шагу 3.
- *Шаг 3.* Если в \mathcal{D}_k существуют такие два элемента v_k и t_k , что v_k переменная, не входящая в терм t_k , то обозначить $\lambda_k = \{t_k/v_k\}$ и перейти к шагу 4; в противном случае выдать « \mathcal{W} неунифицируемо» и окончить работу.

- Uаг 5. Увеличить значение k на 1 и возвратиться к шагу 2.

Если σ —HOУ для множества выражений \mathscr{E} , то говорят, что \mathscr{E} является общеунифицируемым множеством.

Пример 1.9. Найдём НОУ для множества выражений

$$\mathcal{W} = \left\{ P(a, x, f(g(y))), P(z, f(z), f(u)) \right\}.$$

- 1. Положим $\sigma_0 = \varepsilon$ и $\mathscr{W}_0 = \mathscr{W}$.
- 2. Так как $|\mathcal{W}_0| \neq 1$, то σ_0 не является НОУ для \mathcal{W} . Поэтому находим множество несогласованности $\mathcal{D}_0 = \{a, z\}$.
- 3. В \mathcal{D}_0 имеется переменная $v_0=z$, которая не встречается в $t_0=a$. Пусть $\lambda_0=\{t_0/v_0\}=\{a/z\}$.
- 4. Пусть $\sigma_1 = \sigma_0 \circ \lambda_0 = \varepsilon \circ \{a/z\} = \{a/z\},$

$$\mathcal{W}_1 = \mathcal{W}_0^{\lambda_0} = \left\{ P\left(a, x, f\left(g(y)\right)\right), P\left(z, f(z), f(u)\right) \right\}^{\{a/z\}} =$$

$$= \left\{ P\left(a, x, f\left(g(y)\right)\right), P\left(a, f(a), f(u)\right) \right\}.$$

- 5. Так как $|\mathcal{W}_1| \neq 1$, то σ_1 не является НОУ для \mathcal{W} . Поэтому находим множество несогласованности $\mathcal{D}_1 = \{x, f(a)\}.$
- 6. В \mathcal{D}_1 имеется переменная $v_1=x$, которая не встречается в $t_1=f(a)$. Пусть $\lambda_1=\{t_1/v_1\}=\{f(a)/x\}$.
- 7. Пусть $\sigma_2 = \sigma_1 \circ \lambda_1 = \{a/z\} \circ \{f(a)/x\} = \{a/z, f(a)/x\},\$

$$\mathcal{W}_2 = \mathcal{W}_1^{\lambda_1} = \left\{ P\Big(a, x, f\Big(g(y)\Big)\Big), P\Big(a, f(a), f(u)\Big) \right\}^{\{f(a)/x\}} =$$

$$= \left\{ P\Big(a, f(a), f\Big(g(y)\Big)\Big), P\Big(a, f(a), f(u)\Big) \right\}.$$

- 8. Так как $|\mathscr{W}_2| \neq 1$, то σ_2 не является НОУ для \mathscr{W} . Поэтому находим множество несогласованности $\mathscr{D}_2 = \{g(y), u\}$.
- 9. В \mathcal{D}_2 имеется переменная $v_2=u$, которая не встречается в $t_2=g(y)$. Пусть $\lambda_2=\{t_2/v_2\}=\{g(y)/u\}$.
- 10. Пусть $\sigma_3 = \sigma_2 \circ \lambda_2 = \{a/z, f(a)/x\} \circ \{g(y)/u\} = \{a/z, f(a)/x, g(y)/u\},\$

$$\begin{split} \mathscr{W}_3 &= \mathscr{W}_2^{\lambda_2} = \left\{ P\Big(a, f(a), f\big(g(y)\big)\Big), \ P\Big(a, f(a), f(u)\big) \right\}^{\{g(y)/u\}} = \\ &= \left\{ P\Big(a, f(a), f\big(g(y)\big)\Big), \ P\Big(a, f(a), f\big(g(y)\big)\Big) \right\} = \\ &= \left\{ P\Big(a, f(a), f\big(g(y)\big)\Big) \right\}. \end{split}$$

11. Так как $|\mathcal{W}_3| = 1$, то $\sigma_3 = \{a/z, f(a)/x, g(y)/u\}$ — НОУ для \mathcal{W} .

Итак, подстановка $\{a/z,\,f(a)/x,\,g(y)/u\}$ является НОУ для множества выражений $\mathscr{W}=\Big\{P\Big(a,x,f\big(g(y)\big)\Big),\,P\big(z,f(z),f(u)\big)\Big\}.$

Пример 1.10. Определим, унифицируемо ли множество выражений

$$\mathscr{W} = \left\{ Q(f(a), g(x)), Q(y, y) \right\}.$$

- 1. Положим $\sigma_0 = \varepsilon$ и $\mathcal{W}_0 = \mathcal{W}$.
- 2. Так как $|\mathscr{W}_0| \neq 1$, то σ_0 не является НОУ для \mathscr{W} . Поэтому находим множество несогласованности $\mathscr{D}_0 = \{f(a), y\}$.
- 3. В \mathscr{D}_0 имеется переменная $v_0 = y$, которая не встречается в $t_0 = f(a)$. Пусть $\lambda_0 = \{t_0/v_0\} = \{f(a)/y\}$.
- 4. Пусть $\sigma_1 = \sigma_0 \circ \lambda_0 = \varepsilon \circ \{f(a)/y\} = \{f(a)/y\},\$

$$\begin{split} \mathscr{W}_1 &= \mathscr{W}_0^{\lambda_0} = \left\{ Q \big(f(a), g(x) \big), \; Q \big(y, y \big) \right\}^{\{f(a)/y\}} = \\ &= \left\{ Q \big(f(a), g(x) \big), \; Q \big(f(a), f(a) \big) \right\}. \end{split}$$

- 5. Так как $|\mathcal{W}_1| \neq 1$, то σ_1 не является НОУ для \mathcal{W} . Поэтому находим множество несогласованности $\mathcal{D}_1 = \{g(x), f(a)\}.$
- 6. В \mathscr{D}_1 нет элемента, который был бы переменной. Следовательно, \mathscr{W} неунифицируемо. Итак, множество выражений $\mathscr{W} = \{Q(f(a), g(x)), Q(y, y)\}$ неунифицируемо.

Отметим, что алгоритм унификации всегда завершает работу для любого конечного непустого множества выражений, так как иначе породилась бы бесконечная последовательность $W^{\sigma_0}, W^{\sigma_1}, W^{\sigma_2}, \ldots$ конечных непустых множеств, обладающая тем свойством, что каждое последующее множество содержит на одну переменную меньше, чем предыдущее (а именно, W^{σ_k} содержит v_k , а $W^{\sigma_{k+1}}$ её уже не содержит). Но это невозможно, так как W содержит только конечное число различных переменных.

1.6. Склейки и резольвенты

Если две или более литер (с одинаковым знаком) дизъюнкта $\mathfrak C$ имеют НОУ σ , то $\mathfrak C^{\sigma}$ называется склейкой $\mathfrak C$. Если склейка $\mathfrak C^{\sigma}$ — однолитерный дизъюнкт, то она называется единичной склейкой.

Пример 1.11. Пусть
$$\mathfrak{C} = P(x) \vee P(f(y)) \vee \overline{Q(x)}$$
. Тогда литеры $P(x)$ и $P(f(y))$ имеют НОУ $\sigma = \{f(y)/x\}$. Следовательно, $\mathfrak{C}^{\sigma} = P(f(y)) \vee \overline{Q(f(y))}$ есть склейка \mathfrak{C} .

Пусть \mathfrak{C}_1 и \mathfrak{C}_2 —два дизъюнкта¹⁾ (называемые *дизъюнктами-посылками*), которые не имеют никаких общих переменных. Пусть \mathfrak{L}_1 и \mathfrak{L}_2 — две литеры в \mathfrak{C}_1 и \mathfrak{C}_2 соответственно (т. е. $\mathfrak{L}_1 \in \mathfrak{C}_1$, $\mathfrak{L}_2 \in \mathfrak{C}_2$). Если \mathfrak{L}_1 и $\overline{\mathfrak{L}_2}$ имеют НОУ σ , то дизъюнкт

$$\left(\mathfrak{C}_{1}^{\sigma}\setminus\left\{\mathfrak{L}_{1}^{\sigma}\right\}\right)\cup\left(\mathfrak{C}_{2}^{\sigma}\setminus\left\{\mathfrak{L}_{2}^{\sigma}\right\}\right)$$

называется (бинарной) резольвентой \mathfrak{C}_1 и \mathfrak{C}_2 . Литеры \mathfrak{L}_1 и \mathfrak{L}_2 называются отрезаемыми литерами.

Пример 1.12. Найдём бинарную резольвенту дизъюнктов

$$\mathfrak{C}_1 = P(x) \vee Q(x), \quad \mathfrak{C}_2 = \overline{P(a)} \vee R(x).$$

Так как переменная x входит и в \mathfrak{C}_1 , и в \mathfrak{C}_2 , то мы заменим переменную x на y в \mathfrak{C}_2 , и тогда $\mathfrak{C}_2 = \overline{P(a)} \vee R(y)$. Выбираем литеры $\mathfrak{L}_1 = P(x)$ и $\mathfrak{L}_2 = \overline{P(a)}$. Так как $\overline{\mathfrak{L}_2} = P(a)$, то \mathfrak{L}_1 и $\overline{\mathfrak{L}_2}$ имеют НОУ $\sigma = \{a/x\}$. Следовательно,

$$\begin{split} \left(\mathfrak{C}_1^{\sigma} \setminus \left\{\mathfrak{L}_2^{\sigma}\right\}\right) \cup \left(\mathfrak{C}_2^{\sigma} \setminus \left\{\mathfrak{L}_2^{\sigma}\right\}\right) &= \left(\left\{P(a), Q(a)\right\} \setminus \left\{P(a)\right\}\right) \cup \left(\left\{\overline{P(a)}, R(y)\right\} \setminus \left\{\overline{P(a)}\right\}\right) = \\ &= \left\{Q(a)\right\} \cup \left\{R(y)\right\} = \left\{Q(a), R(y)\right\} = Q(a) \vee R(y). \end{split}$$

 $^{^{1)}}$ Дизъюнкты \mathfrak{C}_1 и \mathfrak{C}_1 далее рассматриваются как множества литер, поэтому над ними можно выполнять такие операции, как вычитание «\» и объединение «\» множеств (см. пример 1.2 на с. 2).

Таким образом, $Q(a) \vee R(y)$ — бинарная резольвента дизъюнктов \mathfrak{C}_1 и \mathfrak{C}_2 , а P(x) и $\overline{P(a)}$ — отрезаемые литеры.

Резольвентой дизъюнктов-посылок \mathfrak{C}_1 и \mathfrak{C}_2 может быть одна из следующих резольвент:

- 1) бинарная резольвента дизъюнктов \mathfrak{C}_1 и \mathfrak{C}_2 ;
- 2) бинарная резольвента дизъюнкта \mathfrak{C}_1 и склейки \mathfrak{C}_2 ;
- 3) бинарная резольвента дизъюнкта \mathfrak{C}_2 и склейки \mathfrak{C}_1 ;
- 4) бинарная резольвента склейки \mathfrak{C}_1 и склейки \mathfrak{C}_2 .

Пример 1.13. Пусть $\mathfrak{C}_1 = P(x) \vee P(f(y)) \vee R(g(y))$ и $\mathfrak{C}_2 = \overline{P(f(g(a)))} \vee Q(b)$. Склейкой \mathfrak{C}_1 является $\mathfrak{C}_1' = P(f(y)) \vee R(g(y))$. Бинарной резольвентой \mathfrak{C}_1' и \mathfrak{C}_2 является $R(g(g(a))) \vee Q(b)$. Следовательно, $R(g(g(a))) \vee Q(b)$ есть резольвента \mathfrak{C}_1 и \mathfrak{C}_2 .

1.7. Алгоритм метода резолюций

Основной идеей метода резолюций является проверка того, содержит ли множество дизъюнктов \mathscr{K} пустой дизъюнкт \square . Если это так, то \mathscr{K} невыполнимо. Если \mathscr{K} не содержит \square , то следующие шаги заключаются в выводе новых дизъюнктов до тех пор, пока не будет получен \square (что всегда будет иметь место для невыполнимого \mathscr{K}). Таким образом, принцип резолюции рассматривается как правило вывода, с помощью которого из \mathscr{K} порождаются новые дизъюнкты.

Сформулируем алгоритм метода резолюций для логики предикатов. Исходным данным для него является множество дизъюнктов \mathcal{K} , противоречивость которого нужно доказать.

- *Шаг 1.* Если в \mathscr{K} есть пустой дизъюнкт ($\square \in \mathscr{K}$), то выдать « \mathscr{K} противоречиво» и завершить работу. В противном случае перейти к шагу 2.
- Шаг 2. Найти в \mathcal{K} такие дизъюнкты или склейки дизъюнктов \mathfrak{C}_1 и \mathfrak{C}_2 , которые содержат унифицируемые литеры \mathfrak{L}_1 и $\overline{\mathfrak{L}_2}$ соответственно. Если таких дизъюнктов нет, то выдать « \mathcal{K} непротиворечиво» и завершить работу. В противном случае перейти к шагу 3.
- *Шаг 3.* Вычислить резольвенту \mathfrak{C}_1 и \mathfrak{C}_2 , добавить её в \mathscr{K} и возвратиться к шагу 1.

Пример 1.14. Пусть задано множество дизъюнктов

$$\mathscr{K} = \{ \overline{S(y)} \vee P(y), \ S(b), \ Q(a,b), \ \overline{P(z)} \vee \overline{Q(a,z)} \}.$$

Докажем его противоречивость с помощью метода резолюций.

- 1. Так как $\square \notin \mathcal{K}$, то находим в \mathcal{K} дизъюнкты-посылки $\mathfrak{C}_1 = \overline{S(y)} \vee P(y)$ и $\mathfrak{C}_2 = S(b)$. В этом случае отрезаемыми литерами являются $\mathfrak{L}_1 = \overline{S(y)}$ и $\mathfrak{L}_2 = S(b)$, их $HOV \{b/y\}$.
- 2. Резольвентой \mathfrak{C}_1 и \mathfrak{C}_2 является P(b). Добавляем её в \mathscr{K} .
- 3. Так как $\square \notin \mathcal{K}$, то находим в \mathcal{K} дизъюнкты-посылки $\mathfrak{C}_1 = P(b)$ и $\mathfrak{C}_2 = \overline{P(z)} \vee \overline{Q(a,z)}$. Отрезаемыми литерами являются $\mathfrak{L}_1 = P(b)$ и $\mathfrak{L}_2 = \overline{P(z)}$, их $\mathrm{HOY} \{b/z\}$.
- 4. Резольвентой \mathfrak{C}_1 и \mathfrak{C}_2 является $\overline{Q(a,b)}$. Добавляем её в \mathscr{K} .

- 5. Так как $\square \notin \mathcal{H}$, то находим в \mathcal{H} дизъюнкты-посылки $\mathfrak{C}_1 = Q(a,b)$ и $\mathfrak{C}_2 = \overline{Q(a,b)}$. Отрезаемые литеры $\mathfrak{L}_1 = Q(a,b)$ и $\mathfrak{L}_2 = \overline{Q(a,b)}$, их $\mathrm{HOY} \varepsilon$.
- 6. Резольвента \mathfrak{C}_1 и \mathfrak{C}_2 есть \square . Добавляем её в \mathscr{K} .
- 7. Так как $\square \in \mathcal{K}$, то \mathcal{K} противоречиво, что и требовалось доказать.

Вывод пустого дизъюнкта может быть наглядно представлен с помощью depeaa вывода, вершинами которого являются или исходные дизъюнкты, или резольвенты, а корнем—пустой дизъюнкт.

Пример 1.15. Дерево вывода для примера 1.14 изображено на рис. 1.1. Рядом с резольвентами указан НОУ их дизъюнктов-посылок.

Рис. 1.1. Дерево вывода для примера 1.14

1.8. Стратегии метода резолюций

В множестве дизъюнктов существует, как правило, не одна пара дизъюнктов, к которым можно применить правило резолюций, поэтому при автоматическом доказательстве теорем методом резолюций бо́льшая часть вычислений приходится на поиск дизъюнктов-посылок. Неограниченное применение правила резолюций может вызвать порождение большого количества излишних дизъюнктов.

Реализация процедуры выбора дизъюнктов-посылок из множества дизъюнктов называется стратегией метода резолюций.

Стратегии можно разделить на два класса:

- 1) *полные стратегии* гарантируют нахождение доказательства теоремы, если оно существует (в их основе лежит полный перебор);
- 2) неполные стратегии могут в некоторых случаях не находить доказательства, но они работают быстрее, чем полные.

Рассмотрим следующие полные стратегии.

1.8.1. Стратегия насыщения уровня

Пусть \mathcal{K} — исходное множество дизъюнктов. Обозначим \mathcal{K}_0 само множество дизъюнктов и назовём его уровнем нулевого порядка. Уровень первого порядка \mathcal{K}_1 — объединение \mathcal{K} с множеством всех резольвент, непосредственно порождённых от дизъюнктов \mathcal{K} . Тогда

уровень i-го порядка \mathcal{K}_i состоит из объединения множества \mathcal{K}_{i-1} и множества резольвент, порождённых из \mathcal{K}_{i-1} . Значение i называется уровнем опровержения.

Стратегия насыщения уровня предполагает последовательное порождение всех резольвент уровня 1-го порядка, затем уровня 2-го порядка и т. д. до получения пустого дизъюнкта.

Таким образом, данная стратегия является стратегией поиска в ширину.

Пример 1.16. Докажем с помощью метода резолюций противоречивость множества дизъюнктов

$$\mathcal{K} = \{ X \vee Y, \ \overline{X} \vee \overline{Y}, \ X \vee Z, \ \overline{X} \vee Z, \ \overline{Z} \},$$

используя стратегию насыщения уровня.

Уровень нулевого порядка \mathscr{K}_0 составляют дизъюнкты

```
\mathfrak{D}_1 = X \vee Y,
```

$$\mathfrak{D}_2 = \overline{X} \vee \overline{Y},$$

$$\mathfrak{D}_3 = X \vee Z$$
,

$$\mathfrak{D}_4 = \overline{X} \vee Z.$$

$$\mathfrak{D}_5 = \overline{Z}$$
.

Уровень первого порядка \mathcal{K}_1 будут составлять дизъюнкты из \mathcal{K}_0 , а также

$$\mathfrak{D}_6 = Y \vee \overline{Y}$$
 (резольвента \mathfrak{D}_1 и \mathfrak{D}_2),

$$\mathfrak{D}_7 = X \vee \overline{X}$$
 (резольвента \mathfrak{D}_1 и \mathfrak{D}_2),

$$\mathfrak{D}_8 = \overline{Y} \vee Z$$
 (резольвента \mathfrak{D}_2 и \mathfrak{D}_3),

$$\mathfrak{D}_9 = Y \vee Z$$
 (резольвента \mathfrak{D}_1 и \mathfrak{D}_4),

$$\mathfrak{D}_{10} = Z$$
 (резольвента \mathfrak{D}_3 и \mathfrak{D}_4),

$$\mathfrak{D}_{11} = X$$
 (резольвента \mathfrak{D}_3 и \mathfrak{D}_5),

$$\mathfrak{D}_{12} = \overline{X}$$
 (резольвента \mathfrak{D}_4 и \mathfrak{D}_5).

Уровень второго порядка \mathcal{K}_2 будут составлять дизъюнкты из \mathcal{K}_1 , а также

```
\mathfrak{D}_{13} = X \vee Y (резольвента \mathfrak{D}_1 и \mathfrak{D}_6),
```

$$\mathfrak{D}_{14} = \overline{X} \vee \overline{Y}$$
 (резольвента \mathfrak{D}_2 и \mathfrak{D}_6),

$$\mathfrak{D}_{15} = X \vee Y$$
 (резольвента \mathfrak{D}_1 и \mathfrak{D}_7),

$$\mathfrak{D}_{16} = \overline{X} \vee \overline{Y}$$
 (резольвента \mathfrak{D}_2 и \mathfrak{D}_7),

$$\mathfrak{D}_{17} = X \vee Z$$
 (резольвента \mathfrak{D}_3 и \mathfrak{D}_7),

$$\mathfrak{D}_{18} = \overline{X} \vee Z$$
 (резольвента \mathfrak{D}_4 и \mathfrak{D}_7),

$$\mathfrak{D}_{19} = X \vee Z$$
 (резольвента \mathfrak{D}_1 и \mathfrak{D}_8),

$$\mathfrak{D}_{20} = \overline{Y} \vee Z$$
 (резольвента \mathfrak{D}_6 и \mathfrak{D}_8),

$$\mathfrak{D}_{21} = \overline{X} \vee Z$$
 (резольвента \mathfrak{D}_2 и \mathfrak{D}_9),

$$\mathfrak{D}_{22} = Y \vee Z$$
 (резольвента \mathfrak{D}_6 и \mathfrak{D}_9),

$$\mathfrak{D}_{23} = Z$$
 (резольвента \mathfrak{D}_8 и \mathfrak{D}_9), $\mathfrak{D}_{24} = \square$ (резольвента \mathfrak{D}_5 и \mathfrak{D}_{10}).

В итоге получили пустой дизъюнкт. Противоречивость ${\mathscr K}$ доказана (за 19 шагов).

Как видно из примера 1.16, порождено множество лишних дизъюнктов. Так, \mathfrak{D}_6 и \mathfrak{D}_7 тождественно истинные дизъюнкты. Удаление или добавление тождественно истинного дизъюнкта не влияет на выполнтмость множества дизъюнктов, поэтому такие дизъюнкты должны быть удалены из вывода. Далее, некоторые дизъюнкты порождаются неоднократно, например, $X \vee Y$, $\overline{X} \vee \overline{Y}$, $Y \vee Z$. Это делает стратегию насыщения уровня неприменимой на практике.

1.8.2. Линейная стратегия

1.8.3. Стратегия предпочтения более коротких дизъюнктов

Заметим, что резольвентой двух однолитерных дизъюнктов может быть только пустой дизъюнкт. Верно и обратное утверждение. Значит, для наискорейшего получения пустого дизъюнкта необходимо обрабатывать в первую очередь короткие дизъюнкты.

В стратегии предпочтения более коротких дизъюнктов перебор дизъюнктов-посылок выполняется в порядке возрастания их длины. Вначале делается попытка построить резольвенты между однолитерными дизъюнктами. Если это удаётся, то сразу получается пустой дизъюнкт. В противном случае ищутся резольвенты для пар «однолитерный дизъюнкт — двулитерный дизъюнкт — двулитерный дизъюнкт — двулитерный дизъюнкт», затем «двулитерный дизъюнкт — двулитерный дизъюнкт — т. д. Перебор пар дизъюнктов в данной стратегии должен выполняться таким образом, чтобы сумма длин родительских дизъюнктов в процессе перебора не убывала.

Пример 1.17. Для решения задачи из примера 1.16 воспользуемся стратегией предпочтения более коротких дизъюнктов.

В начале имеем следующие дизъюнкты:

```
\mathfrak{D}_1 = X \vee Y,
\mathfrak{D}_2 = \overline{X} \vee \overline{Y},
\mathfrak{D}_3 = X \vee Z,
\mathfrak{D}_4 = \overline{X} \vee Z.
```

 $\mathfrak{D}_5 = \overline{Z}$.

Далее последовательно получаем следующие резольвенты, которые добавляем в ${\mathscr K}.$

```
\mathfrak{D}_6 = X (резольвента \mathfrak{D}_5 и \mathfrak{D}_3), \mathfrak{D}_7 = \overline{X} (резольвента \mathfrak{D}_5 и \mathfrak{D}_4), \mathfrak{D}_8 = \square (резольвента \mathfrak{D}_6 и \mathfrak{D}_7),
```

В итоге получили пустой дизъюнкт. Противоречивость ${\mathscr K}$ доказана (за 3 шага).

Литература

- 1. Вагин, В. Н. Достоверный и правдоподобный вывод в интеллектуальных системах / В. Н. Вагин, Е. Ю. Головина, А. А. Загорянская, М. В. Фомина; под ред. В. Н. Вагина, Д. А. Поспелова. М.: Физматлит, 2004. 704 с. ISBN 5-9221-0474-8.
- 2. Γ ринченков, Д. В. Математическая логика и теория алгоритмов для программистов: учеб. пособие / Д.В. Гринченков, С. И. Потоцкий. М. : КноРус, 2010. 208 с. ISBN 978-5-406-00120-2.

- 3. $\Gamma y u$, A. K. Математическая логика и теория алгоритмов : учеб. пособие / A. K. $\Gamma y u$. Омск : Наследие. Диалог-Сибирь, 2003. 108 с. ISBN 5-8239-0126-7.
- 4. Куценко, Д. А. Математическая логика и теория алгоритмов : учеб. пособие / Д. А. Куценко, Д. В. Терехов. Белгород : Изд-во БГТУ, 2009. 64 с.
- 5. *Новиков*, Φ . *А*. Дискретная математика для программистов : учебник для вузов / Φ . А. Новиков. 3-е изд. СПб. : Питер, 2008. 384 с. ISBN 978-5-91180-759-7.
- 6. *Робинсон, Дэк.* Машинно-ориентированная логика, основанная на принципе резолюции / Дж. Робинсон // Кибернетический сборник. Н. С. М. : Мир, 1970. Вып. 7. С. 194-218.
- 7. Ручкин, В. Н. Универсальный искусственный интеллект и экспертные системы / В. Н. Ручкин, В. А. Фулин. СПб. : БХВ-Петербург, 2009. 240 с. ISBN 978-5-9775-0460-7.
- 8. Чень, Ч. Математическая логика и автоматическое доказательство теорем / Ч. Чень, Р. Ли; под ред. С. Ю. Маслова. М. : Наука. Гл. ред. физ.-мат. лит., 1983. 360 с.