Algèbre

Espaces préhilbertiens

réels

Question 1/20

Caractérisation des isométrie vectorielle

Réponse 1/20

$$\forall (x,y) \in E^2, \langle u(x), u(y) \rangle = \langle x,y \rangle$$
$$u \in \mathcal{O}(E) \Leftrightarrow u \in \mathcal{GL}(E) \wedge u^* = u^{-1}$$
il existe une BON e telle que $u(e)$ est une BON

Question 2/20

Représentation des formes linéaires d'un espace euclidien

Réponse 2/20

Pour toute forme linéaire φ , il existe un unique $u \in E$ tel que $\varphi(\cdot) = \langle u, \cdot \rangle$

Question 3/20

Décomposition polaire de $A \in \mathcal{M}_n(\mathbb{R})$

Réponse 3/20

$$\exists (O, S) \in \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n(\mathbb{R}), A = OS$$

Il y a unicité si $A \in \mathrm{GL}_n(\mathbb{R})$

Question 4/20

 $\operatorname{im}(u^*)$

Réponse 4/20

$$\ker(u)^{\perp}$$

Question 5/20

$$R_{\theta}^{-1} = R_{\theta}^{\perp}$$

Réponse 5/20

 $R_{-\theta}$

Question 6/20

$$\ker(u^*)$$

Réponse 6/20

$$\operatorname{im}(u)^{\perp}$$

Question 7/20

$$u \in \mathcal{S}^{++}(\mathbb{R})$$

Réponse 7/20

$$\forall x \in E, \langle u(x), x \rangle > 0$$

Question 8/20

Réduction des isométries en BON

Réponse 8/20

Il existe une BON (ou pour toute) B telle que

$$\operatorname{Mat}_{\mathbb{B}}([)]u = \left(egin{array}{ccc} I_p & & & & & & & \\ & -I_q & & & & & & \\ & & R_{ heta_1} & & & & & \\ & & & \ddots & & & \\ & & & R_{ heta_r}
ight)$$

Question 9/20

Racine d'un endomorphisme

Réponse 9/20

$$\forall u \in S^+(E), \exists ! r \in S^+(E), r^2 = s$$

Question 10/20

Description de $O_n(\mathbb{R})$

Réponse 10/20

$$R_{\theta} = \begin{pmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$
$$S_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) - \cos(\theta) \end{pmatrix}$$

Question 11/20

Théorème spectral matriciel

Réponse 11/20

$$M \in \mathcal{S}_n(\mathbb{R}) \Leftrightarrow \exists (P, D) \in$$

 $O_n(\mathbb{R}) \times \mathcal{D}_n(\mathbb{R}), M = PDP^{\top}$

Question 12/20

Caractérisation spectrale de $S^+(\mathbb{R})$

Réponse 12/20

$$\operatorname{sp}(u) \subset \mathbb{R}_+$$

Question 13/20

Théorème spectral

Réponse 13/20

Sont équivalents : $u \in S(E)$

Il existe une BON de vecteurs propres de u

$$E = \bigoplus_{\lambda \in \operatorname{sp}(u)}^{\perp} (E_{\lambda}(u))$$

Question 14/20

$$S_{\theta}S_{ heta'}$$

Réponse 14/20

$$R_{\theta-\theta'}$$

Question 15/20

Caractérisation spectrale de $S^{++}(\mathbb{R})$

Réponse 15/20

$$\operatorname{sp}(u) \subset \mathbb{R}_+^*$$

Question 16/20

$$R_{ heta}R_{ heta'}$$

Réponse 16/20

$$R_{\theta'+\theta}$$

Question 17/20

Inégalité de Bessel

Réponse 17/20

Une projection p est orthogonale si et seulement si pour tout $x \in E$, $||p(x)|| \leq ||x||$

Question 18/20

Fromules de polarisation

Réponse 18/20

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x\|^2 - \|y\|^2}{2}$$
$$\langle x, y \rangle = \frac{\|x\|^2 + \|y\|^2 - \|x - y\|^2}{2}$$
$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}$$

Question 19/20

$$u \in \mathrm{S}^+(\mathbb{R})$$

Réponse 19/20

$$\forall x \in E, \langle u(x), x \rangle \geqslant 0$$

Question 20/20

Caractérisation matricielle de $u \in S(E)$

Réponse 20/20

Il existe une BON (ou pour toute)
$$\mathcal{B}$$

 $\mathrm{Mat}_{\mathbb{B}}([)]u \in \mathcal{S}_n(\mathbb{R})$