Lecture 2

Qiong Wang

Formulation

Financing
Management

MAD-based Portfolio Management

Softwar

Lecture 2

Linear Programming: Examples, Formulations, Software

Qiong Wang

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

August 28 - August 30, 2023

Linear Programming (LP) in Standard Form

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Managemen

Softwar

$$\max_{\substack{x_1,\ldots,x_n\\ \text{subject to}}} \quad \left\{ c_1x_1+\ldots +c_nx_n \right\}$$
 subject to
$$a_{11}x_1+\ldots +a_{1n}x_n \leq b_1, \\ \ldots \\ a_{k1}x_1+\ldots +a_{kn}x_n \leq b_k, \\ x_1 \geq 0,\ldots,x_n \geq 0.$$

- all decision variables take non-negative real values;
- the objective is to maximize a linear function of decision variables;
- all constraints are linear inequalities of decision variables;
 variables are on the LHS and the constant is on the RHS
 LHS < RHS.

Corporate Financing Problem

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Managemen

Software

1-10/+

short-term cash flow:

Month	Jan	Feb	Mar	Apr	May	Jun
Net cash flow	-150	-100	200	-200	-50	300

accumulated balance:

Month	Jan	Feb	Mar	Apr	May	Jun
cash balance	-150	-250	-50	-250	-300	0

outside financing is needed: credit line or commercial paper.

Short-term Financing: Credit Line

Lecture 2

Qiong Wang

Formulatio

Cash Flow and Financing Management

MAD-based Portfolio Managemer

Softwar

MEGABANK
1234 4967 7408 0143
45410 FWA E
155,000
PHISCHARCHART
18.9%

r: interest rate,

L: limit

month	balance	interest	net change
1	<i>X</i> ₁		<i>x</i> ₁
2	<i>x</i> ₂	rx ₁	$x_2 - x_1$
t	Xt	rx_{t-1}	$x_t - x_{t-1}$
		• • • •	

- $x_t x_{t-1} > 0$: borrow, more cash and interest payment
- $x_t x_{t-1} < 0$: return, less cash and interest payment.
- creditline limit: $x_t \leq L$ for all t.

Short-term Financing: Commercial Papers

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Managemen

Softwar

L		. 4 1		
-100+	paying	inteest	even	month
bı	it we ge	discoun :	4	
	, ,		,	

				v	
	P	romissory note			
For value received	l, the undersigned prom	nises to pay to the ord	ler of BancZo	one, Inc.	
the sum of:	*****Ten-Thousan	nd and no/100 Dollars	****	(\$10,000.00)	_
Along with annual interest of 8% on the unpaid balance. This note shall mature and be payable, along with accrued interest, on June 30, 20X8.					
	y 1, 20%8 e Date			<i>liva Zavala</i> ker signatur	_

- issuing date (τ_i) : 01/01/2008
- amount (y_i) : \$ 10,000
- maturity date (m_i) : 06/30/2008
- interest rate (δ_i) : (8%)

Cash Position

Lecture 2

Qiong Wang

Cash Flow and Financing Management

short-term, cash flow: f_t ($t = 1, \dots T$).

• start from a "clean slate", the net cash position in month 1

$$z_1 = x_1 + \sum_{i:\tau_i=1} y_i + f_1,$$

• in month 2,

pointh 2,
$$z_{2} = z_{1} + (x_{2} - x_{1}) - rx_{1} + \sum_{i:\tau_{i}=2}^{2} y_{i} + i_{1},$$

$$z_{2} = z_{1} + (x_{2} - x_{1}) - rx_{1} + \sum_{i:\tau_{i}=2}^{2} y_{i} - \sum_{i:m_{i}=2}^{2} (1 + \delta_{i})y_{i} + f_{2},$$

$$z_{1} = z_{2} + (z_{2} - z_{1}) - rx_{2} + \sum_{i:\tau_{i}=2}^{2} y_{i} - \sum_{i:m_{i}=2}^{2} (1 + \delta_{i})y_{i} + f_{2},$$

• similarly, in any other month t ($z_t \ge 0$ for all t to avoid backruptcy).

$$z_t = z_{t-1} + \underbrace{(x_t - x_{t-1})}_{\text{pay all my } c \text{ red it } card} \underbrace{(1 + \delta_i)y_i + f_t}_{\text{indicated}}.$$

• the net value in the end $(x_T = 0)$:

$$V = z_T - \sum_{i:mi>T} (1 + \delta_i) y_i.$$

Linear Programming Formulation

Lecture 2

Qiong Wang

Cash Flow and Financing Management

$$\max_{x_t, y_i, z_t, V} \{V\}$$

subject to:

$$x_1 + \sum_{i:\tau_i=1} y_i - z_1 = -f_1,$$

$$(z_{t-1}) + x_t - (1+r)x_{t-1} + \sum_{i:\tau_i=t} y_i - \sum_{i:m_i=t} (1+\delta_i)y_i - z_t = -f_t, \quad t=2,...,T$$

$$V = z_T - \sum_{i:m_i > T} (1 + \delta_i) y_i$$

$$x_T = 0, \quad x_t \le L, \quad x_t \ge 0, \quad y_i \ge 0, \quad z_t \ge 0, \quad t = 1, ..., T$$

if the surplus cash also generates interest income with rate r', then:

replace
$$z_{t-1}$$
 with $(1+r')z_{t-1}$, $t=1,\dots,T$ in the above

replace
$$z_{t-1}$$
 with $(1+r^{\prime})z_{t-1}$, $t=1,\cdots,T$ in the above.

Example (C&T)

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Softwa

credit line: interest r=1% per month, limit, L=100; commercial paper $(i=1,2,3,(\tau_i,m_i,\delta_i))$: (1,4,2%), (2,5,2%), (3,6,2%). surplus cash generates an income of 0.3% per month

subject to:
$$\begin{aligned} \max_{x_1,y_i,z_t,V} \left\{ V \right\} & \text{ (in this case, } V = z_6) \\ 1.003z_1 + x_2 + y_2 - 1.01x_1 = z_2 = 100, \\ 1.003z_2 + x_3 + y_3 - 1.01x_2 - z_3 = -200, \\ 1.003z_4 + x_5 - 1.01x_3 - 1.02y_1 - z_4 = 200 \\ 1.003z_5 - 1.01x_5 - 1.02y_3 - V = -300 \\ x_t \leq 100, x_t \geq 0 \ y_i \geq 0 \ z_t \geq 0, \quad i = 1, 2, 3, t = 1, \cdots, 6. \end{aligned}$$

Related Problem: Financing Long-term Project

Lecture 2

Qiong Wang

Formulatio

Cash Flow and Financing Management

MAD-based Portfolio Managemen

Softwa

• project lasts from year 1 to year T, expenses L_t ($t = 1, \dots, T$).

- a set of bonds $(i = 1, \dots, n)$ available now, face value 100. price: p_i , coupon rate: c_i , maturity date: m_i
- fund available to cover expenses, the target is to minimize the spending (by using income from the bond).

 z_t : cash in year t (z_0 : initial investment, no new cash injection)

 x_i : the amount of bond i invested $(i = 1, \dots, n)$.

$$\begin{aligned} \min_{x_i, z_t} \left\{ z_0 + \sum_{i=1}^n p_i x_i \right\} \\ \text{subject to:} \quad z_{t-1} + \sum_{i: m_i \geq t} c_i x_i + \sum_{i: m_i = t} 100 x_i - z_t = L_t \\ x_i \geq 0 \ (i = 1, n), \quad z_t \geq 0 \ (t = 0, \cdots, T). \end{aligned}$$

A Portfolio Management Problem

Lecture 2

Qiong Wang

Formulation

Financing
Management

MAD-based Portfolio Management

Software

n assets with historical returns $R_i(t)$ $(1 \le i \le n)$, t = 1, ..., T. estimated rate of return of each asset

$$r_i = \frac{R_i(1) + \dots + R_i(T)}{T}, \quad 1 \leq i \leq n.$$

Problem: invest a fixed investment budget into these assets.

- decision: x_i be % invested in asset i (i = 1, ..., n),
- objective:

$$\max_{x_1,...,x_n} \{ r_1 x_1 + r_2 x_2 + + r_n x_n \}$$

constraints:

$$x_1 + x_2 + \dots + x_n \le 1$$
, and $x_1 \ge 0$, $x_2 \ge 0, \dots$, $x_n \ge 0$.

and more importantly

 $Risk \leq some threshold$

MAD as a Risk Measure

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Softwar

• average return over T years: $r_1x_1 + + r_nx_n$

• actual return in year t: $x_1R_1(t) + x_2R_2(t) + + x_nR_n(t)$, where

$$\frac{1}{T}\sum_{t=1}^{T}\left(\sum_{i=1}^{n}R_{i}(t)x_{i}\right)=\sum_{i=1}^{n}r_{i}x_{i}$$

i.e.,

$$\frac{1}{T}\sum_{t=1}^{T}\left(\sum_{i=1}^{n}(R_i(t)-r_i)x_i\right)=0$$

yearly deviation from the mean

$$\sum_{i=1}^{n} (R_i(t) - r_i)x_i \quad t = 1, \dots T.$$

• Mean Absolute Deviation (MAD) as the risk measure:

$$\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{n} (R_i(t) - r_i) x_i \right|$$

Mean-Risk Model

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Software

let \bar{m} be the upper bound of the MAD that you can accept:

$$\max_{x_1,...,x_n} \left\{ r_1 x_1 + \dots + r_n x_n \right\}$$
 subject to
$$x_1 + x_2 + \dots + x_n \le 1,$$

$$\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{n} (R_i(t) - r_i) x_i \right| \le \bar{m}.$$

$$x_1 \ge 0, \ x_2 \ge 0, \dots, \ x_n \ge 0.$$
 issue:
$$\sum_{t=1}^{T} \left| \sum_{i=1}^{n} (R_i(t) - r_i) x_i \right|$$

is not an linear function of x_1, \dots, x_n .

but, in this case, we can transform the problem and solve it as a LP.

Transformation Technique

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Software

a is a number and x is a variable, let

$$x \ge a$$
 and $x \ge -a$.

then

$$\left. \begin{array}{lll} a \geq 0 & \longrightarrow & x \geq a \geq -a. \\ a \leq 0 & \longrightarrow & x \geq -a \geq a. \end{array} \right\} \quad \longrightarrow \quad x \geq |a|$$

similarly, introduce variables z_t ($t = 1, \dots, T$), and let

$$z_t \geq \sum_{i=1}^n (R_i(t)-r_i)x_i$$
 and $z_t \geq -\sum_{i=1}^n (R_i(t)-r_i)x_i$.

then

Solving the Problem as an LP

Lecture 2

Qiong Wang

Formulation

Financing
Management

MAD-based Portfolio Management

Software

$$\max_{\hat{x}_1, \dots, \hat{x}_n} \left\{ r_1 \hat{x}_1 + \dots + r_n \hat{x}_n \right\}$$
subject to:
$$\hat{x}_1 + \dots + \hat{x}_n \leq 1,$$

$$\hat{x}_1 \geq 0, \dots, \hat{x}_n \geq 0,$$

$$\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{n} (R_i(t) - r_i) \hat{x}_i \right| \leq \overline{m},$$

$$\frac{1}{T} \left(z_1 + \dots + z_T \right) \leq \overline{m},$$

$$z_t \geq \sum_{i=1}^{n} (R_i(t) - r_i) \hat{x}_i \ (t = 1, \dots T),$$

$$z_t \geq -\sum_{i=1}^{n} (R_i(t) - r_i) \hat{x}_i \ (t = 1, \dots T).$$

This is an LP, and we will show it is equivalent to the original problem by making two comparisons.

Comparison 1

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Software

$$\Pi_{1} = \max_{x_{1}, \dots, x_{n}} \{r_{1}x_{1} + \dots + r_{n}x_{n}\} \qquad \Pi_{2} = \max_{\hat{x}_{1}, \dots, \hat{x}_{n}} \{r_{1}\hat{x}_{1} + \dots + r_{n}\hat{x}_{n}\}
\sum_{i=1}^{n} x_{i} \leq 1, \quad x_{1} \geq 0, \dots, x_{n} \geq 0, \qquad \sum_{i=1}^{n} \hat{x}_{i} \leq 1, \quad \hat{x}_{1} \geq 0, \dots, \hat{x}_{n} \geq 0,
\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{n} (R_{i}(t) - r_{i})x_{i} \right| \leq \bar{m}. \qquad \frac{1}{T} (z_{1} + \dots + z_{T}) \leq \bar{m},
z_{t} \geq \sum_{i=1}^{n} (R_{i}(t) - r_{i})\hat{x}_{i} \ (t = 1, \dots, T),
z_{t} \geq -\sum_{i=1}^{n} (R_{i}(t) - r_{i})\hat{x}_{i} \ (t = 1, \dots, T).$$

If (x_1^*, \dots, x_n^*) is the optimal solution to problem 1, then

$$\hat{x}_1 = x_1^*, \cdots, \hat{x}_n = x_n^* \quad z_t = \left| \sum_{i=1}^n (R_i(t) - r_i) x_i^* \right| (t = 1, \cdots, T)$$

is a solution to problem 2, so $\Pi_1 \leq \Pi_2$.

nonlinear

Lecture 2

MAD-based Portfolio Management

$$= \max_{x_1, \dots, x_n} \{r_1 x_1 + \dots + r_n x_n\}$$

$$\Pi_1 = \max_{x_1, \dots, x_n} \left\{ r_1 x_1 + \dots + r_n x_n \right\}$$

$$\sum_{i=1}^n x_i \leq 1, \quad x_1 \geq 0, \cdots, x_n \geq 0,$$

$$\frac{1}{T}\sum_{i=1}^{T}\left|\sum_{i=1}^{n}(R_{i}(t)-r_{i})x_{i}\right|\leq \bar{m}.$$

$$\Pi_2 = \max_{\hat{x}_1, \cdots, \hat{x}_n} \left\{ r_1 \hat{x}_1 + \cdots + r_n \hat{x}_n \right\}$$

$$\sum_{i=1}^n \hat{x}_i \leq 1, \quad \hat{x}_1 \geq 0, \cdots, \hat{x}_n \geq 0,$$

$$\frac{1}{T}(z_1+\cdots+z_T)\leq \bar{m},$$

$$z_t \geq \sum_{i=1}^{n} (R_i(t) - r_i)\hat{x}_i \ (t = 1, ...T),$$

$$z_t \geq -\sum_{i=1} (R_i(t) - r_i)\hat{x}_i \ (t = 1, ..., T).$$

If $(\hat{x}_1^*, \dots, \hat{x}_n^*, z_1^*, \dots, z_T^*)$ is the optimal solution to problem 2, then

$$\frac{1}{T}\sum_{t=1}^{I}\left|\sum_{i=1}^{n}(R_{i}(t)-r_{i})\hat{x}_{i}^{*}\right|\leq\frac{1}{T}\sum_{t=1}^{I}z_{t}^{*}\leq\bar{m},$$

so $(\hat{x}_1^*, \dots, \hat{x}_n^*)$ is a solution to problem 1, and $\Pi_1 \geq \Pi_2$.

Optimization Solver and Modeling Language

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

Portfolio Managemen

Software

LP solvers: avoid repetitive developments and use best expertise available. we will use gurobi (https://www.gurobi.com/)

AMPL: a modeling language that facilitates translation and analysis

- teaching copy (incl. gurobi for Windows or MacOS) on Canvas.
- online resources: http://ampl.com/
- book: http://ampl.com/resources/the-ampl-book/chapter-downloads/

Using AMPL

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Managemen[:]

Software

teaching copy in "software" folder on Canvas course site, expires on Dec 31.

installation guide:

https://ampl.com/try-ampl/ampl-for-courses/ampl-course-install/

Windows: download ampl_mswin64 from Canvas

- extract files to a program folder (e.g., you may named the folder ampl).
- create a user folder for your files and programs.
- create an ampl program and store it in the user folder.
- locate ampl.exe or amplide.exe and run.

Mac OS X: download ampl_macos64, click ampl and then amplide. If amplide.exe does not run because it is not from Mac App store (google to find a solution):

- macOS Catalina and macOS Mojave:
 - System Preferences > Security & Privacy,
 - ② under the General tab. Click Open Anyway to confirm your intent to open or install the app.
 - you can open it in the future by double-clicking it.
- older macOS: control-click the program icon and choose open.
- if it says the file is damaged, reboot the machine.

Problem Example

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Software

A fund wants to allocate no more that 1m into two bonds:

- corporate bond: yield 4%, 3-year maturity, and rating A (score 2).
- government bond: yield 3%, 4-year maturity, and rating Aaa (score 1).

Question: how to maximize the yield, while keeping the average maturity below 3.6 years and the rating score no more than 1.2.

LP Formulation:

 x_1 : investment in corporate bond,

x₂: investment in government bond.

$$\max_{x_1, x_2} \{4x_1 + 3x_2\}$$
 subject to:
$$3x_1 + 4x_2 \le 3.6,$$

$$2x_1 + x_2 \le 1.2,$$

$$x_1 + x_2 \le 1,$$

$$x_1 > 0, x_2 > 0.$$

Example: Direct Translation

Lecture 2

Qiong Wang

Formulation

Financing
Management

Portfolio Managemen

Software

model (translate into a model file)

subject to:

 $\max_{x_1, x_2} \{4x_1 + 3x_2\}$

 $3x_1 + 4x_2 \le 3.6$,

 $2x_1 + x_2 \le 1.2$,

 $x_1+x_2\leq 1,$

 $x_1\geq 0, x_2\geq 0.$

steps:

reset to start

set path and load model

6 choose solver

solve

display outputs

Example: Better Implementation, Reusable Model

separate model and data into different files;

Software

• impose structure and naming in the model: set, parameter, variable, obj., and constraints.

Example: Use of Command Script

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Managemen

Software

- set path;
- load model and data files;
- display input parameters;
- choose the solver and solve;
- display outcomes.

What Else Can You Do with a Script

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

MAD-based Portfolio Management

Software

```
reset;
options ampl_include "C:\AMPLcode_class":
model Bondexample.mod;
data Bondexample.dat:
options solver gurobi:
solve:
printf "\n\n----\n":
printf "opt. obj:\t%0.3f\n",total_yield;
printf "-----\n":
printf "\n\n\tmat.\tscore\tvield\t|opt allo.\n":
printf "-----\n":
for {i in BOND} {
       printf "%s\t%0.2f\t%0.2f\t%0.2f\t|%0.2f\n",
              i.maturitv[i],rating[i],yield[i],allo[i];
printf ".,Report, \n,allo, mat.,score,vield\n" >Report.csv;
for {i in BOND} {
       printf "%s, %0.2f, %0.2f, %0.2f, %0.2f\n",
              i.allo[i]. maturitv[i].rating[i].vie]d[i]>Report.csv:
printf "
                -----\n"> Report.csv;
printf "total,%0.2f,%0.2f,%0.2f,%0.2f,\mu", sum{i in BOND} allo[i],
              sum{i in BOND} allo[i]*maturity[i],
sum{i in BOND} allo[i]*rating[i],
              sum{i in BOND} allo[i]*vield[i] > Report.csv:
```

Screen and File Outputs

Lecture 2

Qiong Wang

Formulation

Financing
Management

Portfolio Managemen

Software

ampl: include Bondexampleformat.spt; Gurobi 7.0.0: optimal solution; objective 3.12 3 simplex iterations

----Optimization Output -----opt. obj: 3.120

	mat.	score	yield	opt_allo.
cor	3.00	2.00	4.00	0.24
gov	4.00	1.00	3.00	0.72

What Else Can You Do with a Script: Analysis

Lecture 2

Qiong Wang

Formulation

Cash Flow and Financing Management

Portfolio
Management

Software

what happens to the optimal allocation, what is the optimal yield, when the constraint on the rating changes:

