Introduction

개요

상상은 현실이 된다.

- Model을 구성하는 층
 - 하나 이상의 tensor을 입력 받아 하나 이상의 tensor를 출력 한다.

Graph에 비해 단순화된 모형

출처: https://gwoolab.tistory.com/46

Layer

y = f(x)

: 함수

: Convolution

: Max Pooling

- 데이터 변화
 - keras.layers.BatchNormalization

 - keras.layers.Conv2D
 - keras.layers.MaxPooling2D
- 데이터 가공
 - keras.layers.Dropout
 - keras.layers.Flatten

: 샘플링 (일부 데이터 삭제)

: 다 차원 데이터를 1차원으로 가공

: input data를 정규화. 학습 속도가 빨라짐

Layer 종류 : Dense, Conv, Pooling, RNN, LSTM

■ Layer ■ Dense : 1차원 벡터 처리

Dense : 밀집망

■ BatchNormalization : Input data를 정규화. 학습 속도가 빨라짐

Normalization

LayerNormalization

UnitNormalization

■ Dropout : 샘플링 (일부 데이터 삭제)

AlphaDropout

SpatialDropout1D

SpatialDropout2D

SpatialDropout3D

GaussianDropout

UpSampling1D

UpSampling2D

UpSampling3D

■ Flatten : 평탄화. 다 차원 데이터를 1차원으로 가공

Layer

Conv1D : Convolution 1D

Conv2D : Convolution 2D

Conv3D : Convolution 3D

- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv1D
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D

■ Conv : 공간 정보 추가

Layer

■ AveragePooling1D : 평균 Pooling 1D

■ AveragePooling2D : 평균 Pooling 2D

■ AveragePooling3D : 평균 Pooling 3D

■ MaxPooling1D : 최대 Pooling 1D

■ MaxPooling2D : 최대 Pooling 2D

■ MaxPooling3D : 최대 Pooling 3D

- GlobalAveragePooling1D
- GlobalAveragePooling2D
- GlobalAveragePooling3D
- GlobalMaxPooling1D
- GlobalMaxPooling2D
- GlobalMaxPooling3D

■ Pooling : 축소

- Layer
 - RNN
 - AbstractRNNCell
 - SimpleRNN
 - SimpleRNNCell
 - StackedRNNCells
 - LSTM
 - LSTMCell
 - ConvLSTM1D
 - ConvLSTM2D
 - ConvLSTM3D

- RNN : 과거 정보 반영
 - 시계열
- LSTM : RNN의 개선된 종류

- Layer
 - RandomBrightness
 - RandomContrast
 - RandomCrop
 - RandomFlip
 - RandomHeight
 - RandomRotation
 - RandomTranslation
 - RandomWidth
 - RandomZoom

■ Random : 생성기

- Layer
 - Add
 - add
 - Average
 - average
 - Concatenate
 - concatenate
 - Dot
 - dot
 - Maximum
 - maximum
 - Minimum
 - minimum
 - Multiply
 - multiply
 - Subtract
 - subtract

- Layer
 - LeakyReLU
 - Reshape
 - Activation
 - EinsumDense
 - Embedding
 - Lambda
 - Masking
 - LocallyConnected1D
 - LocallyConnected2D
 - CategoryEncoding
 - Discretization
 - Hashing
 - CenterCrop

- Layer
 - Rescaling
 - Resizing
 - IntegerLookup
 - StringLookup
 - TextVectorization
 - ActivityRegularization
 - GaussianNoise
 - Cropping1D
 - Cropping2D
 - Cropping3D
 - Permute
 - RepeatVector
 - Reshape
 - Wrapper
 - Bidirectional
 - GRU
 - GRUCell
 - TimeDistributed

Layer 종류 : keras.layers.Dense (밀집망)

Activation Functions (활성화 함수)

https://reniew.github.io/12/

relu

■ sigmoid : Sigmoid, [0, 1] : 이진 분류

■ tanh : TanH, [-1, 1] ← Sigmoid 개선 : 이진 분류
■ softmax : Softmax, Output의 총합은 1 (확률) : 다중 분류

: ReLU (Rectified Linear Unit), [0, x]

■ LeakyReLU : [0.01x, x] ← ReLU 개선

■ PReLU : [ax, x] ← Leakly ReLU 개선

■ elu : ELU (Exponential Linear Unit), [a(e^x -1), x] ← TanH + ReLU

■ linear : Linear, 입력값을 그대로 출력

: 연산이 빠름

- Activation Functions (활성화 함수)
 - exponential
 - gelu
 - hard_sigmoid
 - selu
 - softplus
 - softsign
 - swish
 - ThresholderdReLU

- Loss Functions (손실 함수)
 - binary_crossentropy
 - binary_focal_crossentropy
 - categorical_crossentropy
 - sparse_categorical_crossentropy
 - mean_squared_error : MSE : 예측시 사용

: 분류시 사용

- mean_squared_logarithmic_error : MSLE
- mean_absolute_error : MAE
- mean_absolute_percentage_error : MAPE
- categorical_hinge
- cosine_similarity
- hinge
- huber
- kl_divergence
- log_cosh
- log_cosh as logcosh
- poisson
- squared_hinge

- Optimizer (최적화)
 - experimental
 - legacy
 - schedules

adadelta : Adadelta

■ adagrad : Adagrad : 학습률을 조정하여 학습

• adam : Adam : 예측시 사용

adamax : Adamax

• ftrl : Ftrl

■ gradient_descent : SGD (Stochastic Gradient Descent, 확률적 경사 하강법)

nadam : Nadam

rmsprop : RMSprop

- Matric (척도)
 - https://ek-koh.github.io/data analysis/evaluation/
 - Accuracy : 정확도 (예측과 실제값이 같은 비율)
 - BinaryAccuracy
 - CategoricalAccuracy
 - binary_accuracy
 - categorical_accuracy
 - sparse_categorical_accuracy
 - sparse_top_k_categorical_accuracy
 - top_k_categorical_accuracy
 - SparseCategoricalAccuracy
 - SparseTopKCategoricalAccuracy
 - TopKCategoricalAccuracy
 - Precision : 정밀도 (예측이 a인 경우, 예측과 실제값이 a이 비율)
 - PrecisionAtRecall
 - Recall : 재현율 (실제값이 a인 경우, 예측과 실제값이 a이 비율)
 - RecallAtPrecision

- Matric (척도)
 - Mean
 - MeanMetricWrapper
 - MeanTensor
 - Metric
 - Sum
 - AUC
 - BinaryCrossentropy
 - BinaryloU
 - CategoricalCrossentropy
 - CategoricalHinge
 - CosineSimilarity
 - FalseNegatives
 - FalsePositives
 - Hinge
 - loU
 - KLDivergence

- Matric (척도)
 - LogCoshError
 - MeanAbsoluteError
 - MeanAbsolutePercentageError
 - MeanIoU
 - MeanRelativeError
 - MeanSquaredError
 - MeanSquaredLogarithmicError
 - OneHotIoU
 - OneHotMeanIoU
 - Poisson
 - RootMeanSquaredError
 - SensitivityAtSpecificity
 - SparseCategoricalCrossentropy
 - SpecificityAtSensitivity
 - SquaredHinge
 - TrueNegatives
 - TruePositives

Layer 종류 : keras.layers.Dense (밀집망)

- Input
 - 숫자 손글씨
 - **28 * 28**

3	8	6	٩	6	4	5	3	8	4	5	2	3	8	4	8
l	5	Ø	5	9	7	4	1	6	3	0	ها	2	g	9	4
1	3	6	:8	0	7	1	6	8	9	0	3	8	3	>	7
8	4	4	1	à	٩	4		1	٥	E	6	5	0	1	1
4	2	7	3	1	4	O	5	Ö	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	4	7	5	6	6)	7
2	8	6	9	7	0	9)	6	2	જ	3	6	4	9	5
8	6	8	7	8	8	6	9	1	7	6	0	9	6	7	0

출처: https://learnopencv.com/implementing-mlp-tensorflow-keras/

Layer 종류 : keras.layers.Dense (밀집망)

- 데이터 가공
 - Nomalization
 - Layer에서 데이터 가공과 다른 점은 "<u>한번만 실행된다</u>"는 것 이다.
- 훈련 데이터 : train
 - 훈련용 : train : 80% ■ 검증용 : validation : 20%
- 평가 데이터 : test

80%

20%

Train (훈련용 데이터)

Validation (검증용 데이터)

Test (평가 데이터)

20%

- ephochs
 - 훈련 집합 횟수
- batch size
 - 훈련 집합당 훈련 횟수

Layer 종류 : keras.layers.Dense (밀집망)

Model

Layer 종류 : keras.layers.Dense (밀집망)

Output

Model: "sequential"

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 10)	7850	# (28 * 28) * 10 + 10

Total params: 7,850

Trainable params: 7,850 Non-trainable params: 0

Layer 종류 : keras.layers.Dense (밀집망)

Output Epoch 1/35 val_loss: 0.7018 - val_accuracy: 0.8438 Epoch 2/35 val_loss: 0.4953 - val_accuracy: 0.8803 ... 생략 ... Epoch 34/35 val_loss: 0.2617 - val_accuracy: 0.9294 Epoch 35/35 val loss: 0.2627 - val accuracy: 0.9287 Test accuracy: 0.9269000291824341

Layer 종류 : keras.layers.Dense (밀집망)

Graph

60,000 이미지 100개 분류 분류당 600개 이미지

> = softmax(H(x))= softmax(wx + b)

H(x) = wx + b

wx = H(x) - b

x = (H(x) - b) / w

x = H(x) / w - b / w

(y = wx + b 형태)

학습 기능 없음

32 * 32 picels

생성기 y = f(x)

출처: https://www.cs.toronto.edu/~kriz/cifar.html

H(x) = wx + b

Hypothesis Weight Bias 출처: https://brunch.co.kr/@linecard/321

0

지

생

성

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

생성기

■ Encoder → Decoder

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

분류와 지역화

RNN

RNN (Recurrent Neural Network, 순환 신경망)

Layer 종류: keras.layers.Conv2D

▪ Convolution : 관계 정보를 활용하는 방법

■ Dense : 선형 (1차원 배열)

■ Convolution : n차원 부분 행열

■ 행열에 Convolution을 적용하여 특징맵을 생성

■ 2차원 : 이미지, 오디오, 텍스트

■ 3차원 : 비디오

1		11 2 2 1	300	7-16	-	K	ha to	h.h		긴출두	-선됨	710
1	1	1	0	0		1	0	1	- Br III	4	3	4
0	1	1	1	0		0	1	0		2	4	3
0	0	1	1	1		1	0	1		2	3	4
0	0	1	0	0				Feature				
0	1	1	0	0		(Cha			(특징)			

1	×1	1 _{×0}	1,	0	0
C) ×0	1,	1,0	1	0
C) ×1	0,×0	1,	1	1
C)	0	1	1	0
C)	1	1	0	0

Image

4	

Transpose Convolution

■ 입력과 출력을 반전

■ 전치 컨볼루션

Convolved Feature

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

Layer 종류 : keras.layers.Conv2D

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

Layer 종류 : keras.layers.Conv2D

- Convolution
 - Filter

Input Image

- Filter
 - 특정 효과를 가지는 <u>filter에 대</u> 한 학습이 가능 하다.
 - <u>특정 이미지만을 위한 filter</u>가 생성 된다.

Convoluted Image

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

Layer 종류: keras.layers.Conv2D

- 4개의 컨볼루션 레이어, 39x31x1 크기의 입력 데이터, 100개의 클래스로 분류
 - 20만개 parameter → Dense에 비해 학습이 쉽고 처리 속도가 빠르다.

출처: https://github.com/sooftware/Speech-Recognition-Tutorial/blob/master/seminar/CNN.pdf

- 4개의 dmsslrcmd, 1209x1(39x31x1) 크기의 입력 데이터, 100개의 클래스로 분류
 - 100만개 parameter. 은닉층이 깊어질 수록 급격히 늘어남

```
Input layer Layer 1 Layer 2 Layer 3 Layer 4 Output Layer (1209, 1) (600, 1) (300, 1) (300, 1) (150, 1) (100, 1)
```


출처: https://github.com/sooftware/Speech-Recognition-Tutorial/blob/master/seminar/CNN.pdf

Layer 종류 : keras.layers.MaxPooling2D

- Pooling
 - n차원 부분 행열을 사용하여 특징맵을 요약
 - 주로 <u>Max Pooling</u>을 사용 한다.

Max Pooling

Average Pooling

Take the **highest** value from the area covered by the kernel Calculate the **average** value from the area covered by the kernel

Example: Kernel of size 2 x 2; stride=(2,2)

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

Layer 종류 : keras.layers.MaxPooling2D

Pooling

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

■ 효과

Layer 종류: keras.layers.Conv2D, keras.layers.MaxPooling2D

- CNN (Convolutional Neural Networks, 합성곱 신경망)
 - DCNN (Deep CNN, 심층 합성곱 신경망)
 - Convolution layer
 - ReLU (Rectified Linear Unit)
 - Pooling layer
 - FC (Fully connected) layer

- 데이터 변환 계층
- Receptive field (로컬 수용 필드)
- 가중치 공유

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f Copyright 2017~2023 by OBCon Inc., All right reserved.

CNN (Convolutional Neural Networks, 합성곱 신경망)

- Input
 - 숫자 손글씨
 - **28 * 28**

3	8	6	٩	6	4	5	3	8	4	5	2	3	8	4	8
l	5	Ø	5	9	7	4	1	6	3	0	ها	2	g	9	4
1	3	6	:8	0	7	1	6	8	9	0	3	8	3	>	7
8	4	4	1	à	٩	4		1	٥	E	6	5	0	1	1
4	2	7	3	1	4	O	5	Ö	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	4	7	5	6	6)	7
2	8	6	9	7	0	9)	6	2	જ	3	6	4	9	5
8	6	8	7	8	8	6	9	1	7	6	0	9	6	7	0

출처: https://learnopencv.com/implementing-mlp-tensorflow-keras/

CNN (Convolutional Neural Networks, 합성곱 신경망)

- 데이터 가공
 - Nomalization
 - Layer에서 데이터 가공과 다른 점은 "<u>한번만 실행된다</u>"는 것 이다.
- 훈련 데이터 : train
 - 훈련용
 : train
 : 80%

 검증용
 : validation
 : 20%
- 평가 데이터 : test

- ephochs
 - 훈련 집합 횟수
- batch size
 - 훈련 집합당 훈련 횟수

CNN (Convolutional Neural Networks, 합성곱 신경망)

Model IMG ROWS, IMG COLS = 28, 28input shape = (IMG ROWS, IMG COLS, 1) model = keras.models.Sequential() model.add(keras.layers.Conv2D(20, (5, 5), activation='relu', input_shape=input_shape)) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Conv2D(50, (5, 5), activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dense(self.nb_classes, activation="softmax")) model.compile(optimizer=keras.optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy']

CNN (Convolutional Neural Networks, 합성곱 신경망)

Output

Model: "sequential"

```
Output Shape
                                            Param #
Layer (type)
conv2d (Conv2D)
                        (None, 24, 24, 20)
                                               520
max_pooling2d (MaxPooling2D) (None, 12, 12, 20)
                                                    0
                         (None, 8, 8, 50)
conv2d_1 (Conv2D)
                                         25050
max_pooling2d_1 (MaxPooling2D) (None, 4, 4, 50)
flatten (Flatten)
                     (None, 800)
dense (Dense)
                       (None, 500)
                                            400500
                        (None, 10)
dense 1 (Dense)
                                             5010
```

Total params: 431,080

Trainable params: 431,080 Non-trainable params: 0

CNN (Convolutional Neural Networks, 합성곱 신경망)

Output Epoch 1/5 2023-08-03 14:06:54.469518: I tensorflow/stream executor/cuda/cuda dnn.cc:384] Loaded cuDNN version 8600 val_loss: 0.4708 - val_accuracy: 0.8558 Epoch 2/5 val loss: 0.3250 - val accuracy: 0.9014 Epoch 3/5 val loss: 0.2305 - val accuracy: 0.9316 Epoch 4/5 val_loss: 0.1785 - val_accuracy: 0.9457 Epoch 5/5 val_loss: 0.1629 - val_accuracy: 0.9504

CNN (Convolutional Neural Networks, 합성곱 신경망)

Graph

Deep Learning 응용

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

(데이터 증식)

이미지를 생성하는 모델과 이미지를 판별하는 모델을 모두 학습 시킨다

Deep Learning 응용

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

https://gm-note.tistory.com/entry/머신러닝-Style-transfer스타일-변환

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

회 귀 x, y,

x, y, width, height

출처: https://pub.towardsai.net/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f

분류와 지역화

분 류

회 귀

■ 객체 탐지 (분류 + 회귀)

RNN

RNN (Recurrent Neural Network, 순환 신경망)

- 1D
- 2D
 - 이미지 (x, y)
- 3D

 - 동영상 (x, y, time) 컬러 이미지 (x, y, rgb)
- 4D
 - 컬러 동영상 (x, y, rgb, time)
- Word Embedding (단어 임베딩)
 - To 1D
 - To 2D : NLP (Natural Language Process)
- Music

분류

입력 데이터의 종류에 따른 모델의 적용 방안을 검토할 것

Model 구현 방식

■ Sequential API : 간단한 모델 구현

■ Functional API : 복잡한 모델 구현

Model Subclassing

■ Function API로 구현하기 힘든 모델 구현

■ 자유도가 제일 높은 모델 구축 방법

Input Layer Coutput

출처: https://wikidocs.net/106897

Sequential API

CNN

```
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(20, (5, 5), activation='relu', input_shape=input_shape))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(keras.layers.Dropout(self.dropout))
model.add(keras.layers.Conv2D(50, (5, 5), activation='relu'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(keras.layers.Dropout(self.dropout))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(self.nb_classes, activation="softmax"))
model.compile(
  optimizer=self.optimizer,
   loss=self.loss_function,
  metrics=[ self.metrics ]
```

Functional API

ppp

Model Subclassing

- AutoGraph
 - Graph: tensorflow.Operation 객체의 집합을 포함하고 있는 데이터 구조
 - 연산의 단위와 텐서 객체, 연산간에 흐르는 데이터의 단위

@tf.function

```
def dense_layer(x, w, b):
    return tf.matmul(x, w) + b
```

dense_layer.pyton_function(x, w, b)

: 원본 Python 함수 호출

Model Subclassing

■ Custom (사용자 정의)

```
class CustomModel(keras.Model):
class CustomLayer(keras.layers.Layer):
@tf.function
def CustomActivationFunction(x, axis=-1):
class CustomLossFunction(keras.losses.Loss):
class CustomOptimizer(keras.optimizers.Optimizer):
class CustomMetric(keras.metrics.Metric):
class CustomCallback(keras.callbacks.Callback):
```

Model Subclassing

Custom (사용자 정의) model = tf.keras.Sequential([]) model.save('my_model') keras.models.load_model("my_model", custom_objects={ "CustomModel": CustomModel }) with open('my_model.json', 'w') as json_file: json_file.write(model.to_json()) my_model = keras.models.model_from_json(open('my_model.json').read(), custom_objects={ "CustomModel": CustomModel }

- Application
 - Model + Weight
 - 최적화
 - AutoML
 - TFLite for TensorFlow Lite
 - tensorflow.js

```
json = model.to_json()
model keras.models.model_from_json(json)
model.save_weights('~.h5)
model.load_weights(filename)
```

```
json model
   class_name: 'Sequential',
   config: {
      name: 'sequential',
      layers: [
         { class_name: 'InputLayer', config: { 생략 } },
         { class_name: 'Conv2D', config: { 생략 } },
         { class_name: 'MaxPooling2D', config: { 생략 } },
         { class_name: 'Dropout', config: { 생략 } },
         { class_name: 'Dense', config: { 생략 } }
   keras_version: '2.10.0',
   backend: 'tensorflow'
```

Application

weight

dense/kernel:0 : Array<float32>
dense/bias:0 : Array<float32>

dense_1/kernel:0 : Array<float32>

dense_1/bias:0 : Array<float32>

dense_2/kernel:0 : Array<float32>

dense_2/bias:0 : Array<float32>

출처: https://brunch.co.kr/@linecard/321

60,000 이미지 100개 분류 분류당 600개 이미지

32 * 32 picels

출처: https://www.cs.toronto.edu/~kriz/cifar.html

ppp

분 류

기존 application 재활용 분류 종류 확대

$$y = softmax(H(x))$$

= $softmax(wx + b)$

$$H(x) = wx + b$$

wx = H(x) - bx = (H(x) - b) / w

난수를 발생시켜 H(x)로 사용하면 이미지(x)를 생성할 수 있음

- Application
 - resnet
 - resnet50
 - resnet_rs
 - resnet_v2
 - ResNet101
 - ResNet152
 - ResNet50
 - ResNetRS101
 - ResNetRS152
 - ResNetRS200
 - ResNetRS270
 - ResNetRS350
 - ResNetRS420
 - ResNetRS50
 - ResNet101V2
 - ResNet152V2
 - ResNet50V2

- Application
 - RegNetX002
 - RegNetX004
 - RegNetX006
 - RegNetX008
 - RegNetX016
 - RegNetX032
 - RegNetX040
 - RegNetX064
 - RegNetX080
 - RegNetX120
 - RegNetX160
 - RegNetX320

- Application
 - RegNetY002
 - RegNetY004
 - RegNetY006
 - RegNetY008
 - RegNetY016
 - RegNetY032
 - RegNetY040
 - RegNetY064
 - RegNetY080
 - RegNetY120
 - RegNetY160
 - RegNetY320

- Application
 - EfficientNetB0
 - EfficientNetB1
 - EfficientNetB2
 - EfficientNetB3
 - EfficientNetB4
 - EfficientNetB5
 - EfficientNetB6
 - EfficientNetB7
 - EfficientNetV2B0
 - EfficientNetV2B1
 - EfficientNetV2B2
 - EfficientNetV2B3
 - EfficientNetV2L
 - EfficientNetV2M
 - EfficientNetV2S

- Application
 - MobileNet
 - MobileNetV2
 - MobileNetV3Large
 - MobileNetV3Small
 - mobilenet
 - mobilenet_v2
 - mobilenet_v3
 - vgg16
 - vgg19
 - VGG16
 - VGG19

- Application
 - xception
 - Xception
 - inception_resnet_v2
 - inception_v3
 - InceptionResNetV2
 - InceptionV3
 - convnext
 - densenet
 - efficientnet
 - efficientnet_v2
 - imagenet_utils
 - nasnet
 - regnet

- Application
 - ConvNeXtBase
 - ConvNeXtLarge
 - ConvNeXtSmall
 - ConvNeXtTiny
 - ConvNeXtXLarge
 - DenseNet121
 - DenseNet169
 - DenseNet201
 - NASNetLarge
 - NASNetMobile

Model과 Application

- Application 전체를 재사용
 - Capsule : Application을 하나의 layout로 사용

Model과 Application

- Application 일부를 재활용
 - 유사한 문제를 해결하는데 기존에 존재하는 application을 재활용
 - model의 일부를 삭제 후 추가
 - weigh의 일부를 삭제 후 추가
 - 학습에 필요한 충분한 데이터가 없는 경우 사용 가능
 - 이미지를 100가지로 분류하는 application이 있는데 이를 재활용하여 200가지로 분류하는 application을 만들려고 하는 경우

Model과 Application

- Model과 Application
 - Model을 여러 개 결합

- x를 생성
 - GAN (Generative Adversarial Networks, 생성적 적대 신경망)
 - 생성기 (New) > 판별기
- y로 x를 생성
 - AutoEncoder : 인코더-디코더
 - x = f'(y) : 전치 함수
 - 인코더 **→ 디코더** (New)

최적화

- Optimizer : 방식, 매개변수 변동폭
- epochs * batch_size
- hidden 개수
- model

- 모델 선택 기준
 - Parameter 개수 최소화

- AutoML
 - HyperParameter
 - 좌측 항목 등
 - Loss Function

Logistic Regression

Logistic Regression

- Activation Functions
 - Y = A * W + b
 - W (Weight, 가중치)
 - b (Bias, 오차)
- Loss Functions
 - Least squares : 오차 제곱합
- Optimizers
 - 미분을 사용하여 W와 b를 추정
- Metrics
- Back Propagation (오차 역전파)

: 수식. X = A

Algorithms

layers 종류

- CNN (Convolutional Neural Network)
- LSTM (Long Short Term Memory Network)
- RNN (Recurrent Neural Network)
- GAN (Generative Adversarial Network)
- RBFN (Radial Basis Function Network)
- MLP (Multilayer Perceptron)
- SOM (Self Organizing Map)
- DBN (Deep Belief Network)
- RBM (Restricted Boltzmann Machine)
- AutoEncoder
- https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm
- https://www.projectpro.io/article/deep-learning-algorithms/443

CNN (Convolutional Neural Network)

- 이미지 처리
- 객체 탐지

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

LSTM (Long Short Term Memory Network)

- 시계열 예측
- 음악 작곡. 음성 인식

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

RNN (Recurrent Neural Network)

- 시계열 분석
- 자연어 처리
- 필기 인식
- 기계 번역
- 이미지 캡션

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

GAN (Generative Adversarial Network)

■ 이미지 생성

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

RBFN (Radial Basis Function Network)

■ 분류, 회귀, 시계열 예측

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

MLP (Multilayer Perceptron)

- 음성 인식
- 이미지 인식
- 기계 번역
- 소프트웨어 구축

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

SOM (Self Organizing Map)

- 고차원의 데이터를 저차원의 격자 형태로 변환
 - 입력 데이터의 분포를 보존하면서 비슷한 패턴이나 특징을 가진 데이터를 인접한 노드에 매핑

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

DBN (Deep Belief Network) ← RBM

- 이미지 인식
- 비디오 인식
- 모션 캡쳐

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

RBM (Restricted Boltzmann Machine): 생성 Al

- Boltzmann Distribution를 기반으로한 확률 모형
 - Visible units : 특징 데이터
 - Hidden units : 확률 분포
- 학습 : 샘플 데이터와 유사한 데이터 생성
 - 분류, 협업, 특징값 학습
 - 선형 회귀 분석, 협업 필터링, 주제 모델링
 - 차원 감소

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm

AutoEncoder : 생성 Al

- 입력 데이터의 분포를 학습하고, 분포에서 랜덤하게 샘플링하여 새로운 콘텐츠 생성
 - 이미지 복원과 생성. 이미지의 스타일 변경
 - 음악 생성. 텍스트 생성
 - 추천 시스템에서 상품을 추천

출처: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm