Общее содержание работы

В начале семестра мы исследовали игру с разорением, экспериментально оценив для $0<\tau<1$ вероятности следующего событий: за общее (лискретное) время игр $T\gg 1$ пребывать в состоянии положительного баланса время $\leqslant \tau T$ (и соответственно время $\geqslant (1-\tau)T$ с отрицательным балансом). Практически это было сделано через моделирование распределения τ случайной доли времени пребывания в состоянии положительного баланса. Важно, что при этом рассматривался случайный процесс xi(m) с дискретными целыми значениями и целочисленным же временим с $\Delta t=1$. На основании более общей терминологии это означает мы рассматривали процесс $\xi(m)$ со стационарными независимыми приращениями α_i , принимающими значения ± 1 , распределение всех приращений было одинаковым $P(\alpha_i=1)=P(\alpha_i=-1)=1/2$ (случай равных по силе игроков).

Контрольная работа состоит в исследовании вариантов случайного процесса $\xi(m)$ со стационарными, но уже зависимыми, приращениями $\eta(i)$. При этом процесса $\xi(m)$ принимает любые вещественные числа $y = \xi(m) \in \mathbb{R}$, а приращения $\eta(i)$ образуют стационарный гауссов случайный процесс с дискретным временем с $\Delta t = 1$ с выбранной формой ковариационной функции $k_{\eta}(t) = k(m)$. Процесс $\xi(m)$ строится из процесса приращений последовательным суммированием (то, что называется кумулятивной суммой).

Как и ранее рассматриваем случай равных по силе игроков, то есть математическое ожидание приращения равно нулю. Контрольная работа состоит в построении сначала траекторий стационарного процесса $\eta(i)$ с заданной формой ковариационной функции, а из них — траекторий самого процесса $\xi(m)$ в количестве M реализаций. Контрольная работа должна ответить на следующий вопрос: можно ли при данном целочисленном T с надежностью 0.95 утверждать, что распределение с.в. τ — доли времени пребывания в состоянии положительного баланса для стационарного процесса $\xi(m)$ стационарных приращений с ковариационной функцией $k_i(m)$ статистически — не отличается от распределения доли времени пребывания в состоянии положительного баланса при замене ковариационной функции на k(m)? Соответствующую проверку надо провести с использованием критерия Колмогорова-Смирнова. Кроме того, надо оценить $P(\tau < 0.05)$ путем рассмотрения M реализаций $\xi(m)$.

Варианты для параметра M

Во всех вариантах положим M = 5000

Варианты для параметра $T\gg 1$

- 1. T = 500
- 2. T = 1000
- 3. T = 2000

Варианты формы ковариационной функции процесса $\eta(i)$

- 1. $k_0(m) = \delta_0^m$, то есть приращения составляют стандартный гауссов белый шум, а искомый случайный процесс винеровский с дискретным временем.
- 2. $k_{[d,1]}(m) = \frac{d^2}{d^2 + m^2} = \frac{1}{1 + \left(\frac{m}{d}\right)^2}$ с точностью до постоянного множителя это плотность Коши с параметром d.
- 3. $k_{[d,2]}(m) = \exp\left(-\frac{1}{2}\cdot\frac{m^2}{d^2}\right)$ с точностью до постоянного множителя это гауссова плотность с дисперсией d^2
- 4. $k_{[d,3]}(m) = \begin{cases} 0 & |m| \geqslant d > 0 \\ 1 |\frac{m}{d}| & |m| < d \end{cases}$

Защита работы

На защите работы надо будет продемонстрировать вычисления со своим вариантом задания и с вариантом ковариационной функции $k_0(m) = \delta_0^m$, а также пояснить все понятия и термины.

Варианты параметров для конкретных заданий

В Таблице 1 надо найти свой вариант T и два варианта ковариационной функции. Метод построения приближенный, он основан на представлении ковариационной функции (с точностью до постоянного параметра) сверточным квадратом некоторой функции: k = S*S. Поскольку все приведенные формы взяты из знакомых плотностей распределений, то приближенное нахождение функции S(n) может быть реализовано с помощью аналитической формулы, выражающей данную плотность в виде плотности суммы двух независимых, одинаково распределенных случайных величин. Дальнейшее построение стационарного процесса $\eta(i)$ состоит в применении конструкции скользящего среднего с весами, совпадающими с обрезанной на некотором подходящем симметричном отрезке функцией S(n), например, можно положить функцию S(n) равной нулю вне отрезка [-10d,10d]— на уровне корреляций разница будет достаточно мала с учетом всех приближенных действий. Иллюстра-

Рис. 1: Сравнение форм ковариационных функций, красная— теоретическая, синияя— вычисленная по траекториям. Слева на графике масштаб линейный, справа— полулогарифмический

ция того, что построенный процесс действительно имеет ковариационную функцию близкой к заданной формы должна быть произведена (см. образец на Puc 1).

Фамилия	T	$k_{\eta}(m)$	$\widetilde{k_{\eta}}(m)$
Баранцев	500	$k_{[50,2]}(m)$	$k_{[100,2]}(m)$
Григолия	1000	$k_{[100,1]}(m)$	$k_{[200,1]}(m)$
Елизаров	2000	$k_{[100,1]}(m)$	$k_{[100,3]}(m)$
Ермилин	500	$k_{[50,2]}(m)$	$k_{[100,2]}(m)$
Иванова	500	$k_{[50,3]}(m)$	$k_{[100,3]}(m)$
Ковалишин	1000	$k_{[10,1]}(m)$	$k_{[50,3]}(m)$
Кузнецов	500	$k_{[50,1]}(m)$	$k_{[10,3]}(m)$
Мальцев	500	$k_{[50,1]}(m)$	$k_{[100,2]}(m)$
Морецкая	500	$k_{[50,3]}(m)$	$k_{[100,3]}(m)$
Скворцов	1000	$k_{[100,3]}(m)$	$k_{[100,2]}(m)$
Шальнов	500	$k_{[50,2]}(m)$	$k_{[50,3]}(m)$
Эрдэнэбилэг	1000	$k_{[100,3]}(m)$	$k_{[10,2]}(m)$
Хиссен	500	$k_{[10,2]}(m)$	$k_{[100,3]}(m)$
Луа	500	$k_{[50,3]}(m)$	$k_{[100,3]}(m)$
Ангарахаев	1000	$k_{[10,1]}(m)$	$k_{[100,2]}(m)$
Баймурзин	500	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Богод	1000	$k_{[50,1]}(m)$	$k_{[100,2]}(m)$
Бояринцева	500	$k_{[100,3]}(m)$	$k_{[100,2]}(m)$
Бучинчик	1000	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Важенцев	500	$k_{[10,1]}(m)$	$k_{[100,2]}(m)$
Галкин	2000	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Гончаров	500	$k_{[100,3]}(m)$	$k_{[100,1]}(m)$
Егоров	1000	$k_{[50,1]}(m)$	$k_{[50,3]}(m)$
Разоренов	1000	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Табаков	1000	$k_{[100,3]}(m)$	$k_{[100,2]}(m)$
Чахоян	1000	$k_{[200,1]}(m)$	$k_{[200,2]}(m)$
Чуванова	500	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Шевченко	1000	$k_{[100,3]}(m)$	$k_{[100,2]}(m)$
Яхновский	1000	$k_{[50,3]}(m)$	$k_{[50,2]}(m)$
Аксёнов	1000	$k_{[100,3]}(m)$	$k_{[200,3]}(m)$
Баранов	500	$k_{[100,1]}(m)$	$k_{[100,2]}(m)$
Дарбинян	1000	$k_{[100,1]}(m)$	$k_{[100,3]}(m)$
Ерёмин	500	$k_{[50,1]}(m)$	$k_{[100,3]}(m)$
Ларцев	1000	$k_{[100,1]}(m)$	$k_{[200,3]}(m)$
Позняк	500	$k_{[50,3]}(m)$	$k_{[100,3]}(m)$
Пономарёв	1000	$k_{[100,2]}(m)$	$k_{[200,2]}(m)$
Сагалаев	500	$k_{[50,3]}(m)$	$k_{[100,3]}(m)$
Ткачук	1000	$k_{[100,2]}(m)$	$k_{[200,3]}(m)$
Ушацкий	500	$k_{[100,3]}(m)$	$k_{[100,2]}(m)$
Ушакова	1000	$k_{[100,3]}(m)$	$k_{[200,3]}(m)$

Таблица 1: Варианты заданий