Introduction to Topology

Group Theory, Lecture 7,8

Haoming Wang

02 July 2019

This is the Lecture Note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

CONTENT:

- 1. Subgroup
- 2. Group actions

Subgroup

Definition 1 (Cyclic Subgroup). Given a group (G, \square) , for any $g \in G$, and $k \in \mathbb{Z}$, we define

$$g^{k} := \begin{cases} \underbrace{g \square \cdots \square g}_{k}, & k > 0 \\ e, & k = 0 \\ \underbrace{g^{-1} \square \cdots \square g^{-1}}_{k}, & k < 0. \end{cases}$$

 $\{g^k|k\in\mathbb{Z}\}$ constructs a subgroup of (G,\square) . We call $\{g^k|k\in\mathbb{Z}\}$ is a cyclic subgroup generated by g, denote as $\langle g\rangle$.

Given $g \in G$, for any g^{k_1} , $g^{k_2} \in \langle g \rangle$, $g^{k_1} \square g^{k_2} = g^{k_1 + k_2} \in \langle g \rangle$, $e \in \langle g \rangle$ and for any $g^k \in \langle g \rangle$, $(g^k)^{-1} = g^{-k} \in \langle g \rangle$, thus $\langle g \rangle$ constructs a subgroup of (G, \square) .

Example 1. Given $g \in G$, suppose $g^k \neq e(k = \{1, 2, 3, 4, 5, 6\})$, and $g^7 = e$. Then $g^7 = g^6 \Box g = g \Box g^6 = e$, thus $g^6 = g^{-1}$.

It is easy to check that $\langle g \rangle = \{g, g^2, g^3, g^4, g^5, g^6, e\}$. For any other element such as $g^9 = g^7 \Box g^2 = g^2$, thus $\langle g \rangle$ has at most 7 elements. If $g^3 = g^5$, then $g^3 = g^3 \Box g^2 = g^2 \Box g^3 \Rightarrow g^2 = e$, it is a contradiction, thus $\langle g \rangle$ has at least 7 elements.

So if $\exists k \in \mathbb{Z}$, such that $g^k = e$, then $\langle g \rangle$ is finite and $\langle g \rangle = \{g, g^2, \dots, g^k\}$, otherwise $\langle g \rangle$ is infinite.

There would be two occasions of $\langle g \rangle$:

- 1. $\exists a, b \in \mathbb{Z}, a < b$, s.t. $g^a = g^b$. In this case, $g^a = g^b = g^a \Box g^{b-a} = g^{b-a} \Box g^a$, thus $g^{b-a} = e$, we say $\min\{b-a\}$ is the degree of g, denote as $|\langle g \rangle|$.
- 2. $\forall a, b \in \mathbb{Z}, a < b, g^a \neq g^b$ In this case, we say $|\langle g \rangle| = \infty$.

Given a finite group (G, \square) , $g \in G$, $\langle g \rangle$ is a subgroup of G. Thus $\langle g \rangle$ is a finite group, which means $\exists a < b$, s.t. $g^a = g^b \Rightarrow g^{b-a} = e$.

Note 1. The concept of cyclic subgroup provide a method to construct a subgroup of (G, \square) .

Thus $\langle g \rangle$ has total $|\langle g \rangle| = \min\{b - a\}$ elements, and $g^{|\langle g \rangle|} = e$. Notice that $\langle g \rangle$ is the subgroup of (G, \square) , thus $|\langle g \rangle| ||G| (\exists g \in \mathbb{Z}, \text{ s.t. } |G| =$ $q|\langle g\rangle|$). Thus for a finite group (G,\Box) , $\forall g\in G, g^{|G|}=e$.

Definition 2 (Equivalence Class). Given a set *X*, an equivalence relation *R* on *X* and $\forall x \in X$, we say $\{x' \in X | x'Rx\}$ the equivalence class of x under R, denote as R(x).

Definition 3 (Quotient Set). We say the set whose elements are all equivalence class of the elements in X, that is $\{R(x)|\forall x\in X\}$, the quotient set of X under R, denote as X/R.

Example 2. Define an equivalence relation $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \}$ $\mathbb{Z}|x \equiv y \pmod{5}$. The equivalence class of 1 under *R* is R(1) = $\{1+q\cdot 5|q\in\mathbb{Z}\}$, and the Quotient set of \mathbb{Z} under R is $\mathbb{Z}/R=$ ${R(1), R(2), R(3), R(4), R(5)}.$

Given a set *X* and an equivalence relation *R*, for $\forall x \in X, x \in R(x)$; for $\forall x_1, x_2 \in X$, either $R(x_1) = R(x_2)$ or $R(x_1) \cap R(x_2) = \emptyset$ (this can be proved by transitivity). Collectively,

- 1. *X* is the union of all equivalence classes;
- 2. different equivalence classes are disjoined.

Conversely, if we can divide a set *X* into many blocks, then the disjoined blocks(subsets) define an equivalence relation.

Group actions

Given a set X, a group (G, \square) and a map $G \times X \xrightarrow{\alpha} X$, for any $g \in$ $G, x \in X$, we denote $\alpha(g, x)$ as g * x for simplifying the notations. You can view g and x as a driver and an item respectively. So the map $G \times X \xrightarrow{\alpha} X$ means the process where a driver drives an old item into a new item.

Definition 4 (Left group actions). We call the map α is a (left) group action on (G, \square) if

- 1. for $\forall g, g' \in G, x \in X, g * (g' * x) = (g \Box g') * x$;
- 2. for $\forall x \in X, e * x = x$.

Example 3. Given a set X, for $g \in Perm(X)$ and $x \in X$, g * x = g(x) is a group action on X.

Definition 5 (Orbit). Given a group (G, \square) which actions on a set X, for $x \in X$, we call the set $G(x) = \{g * x | g \in G\}$ is the orbit of x.

Example 4. Group $(\mathbb{Z},+)$ actions on \mathbb{R} as for $\forall t \in \mathbb{Z}, (x,y) \in \mathbb{R}^2$, let t*(x,y)=(x+2t,y-t), then the orbits of $x_1,x_2,x_3,x_4\in\mathbb{R}^2$ are like the margin figure.

Figure 1: Orbits of x_1, x_2, x_3, x_4

Exercise 1. Suppose a group (G, \square) actions on a set X, define a relation $R := \{(x, x') \in X \times X | \exists g \in G, \text{ s.t. } x' = g * x\}$, that is $R := \{(x, x') \in X \times X | x' \in G(x)\}$. Show that R is an equivalence relation.

Proof. All we need to prove is:

1. $x \in G(x)$;

2.
$$x' \in G(x) \Rightarrow x \in G(x')$$
;

3.
$$x' \in G(x), x'' \in G(x') \Rightarrow x'' \in G(x)$$
.

1. Since $e \in G$, and x = e * x, thus $x \in G(x)$; 2. $x' \in G(x)$, thus $\exists g \in G$, s.t.

$$x' = g * x$$

$$\Rightarrow g^{-1} * x' = g^{-1} * (g * x)$$

$$\Rightarrow g^{-1} * x' = (g^{-1} \square g) * x$$

$$\Rightarrow g^{-1} * x' = e * x = x$$

since $g^{-1} \in G$, $x \in G(x')$; 3. $x' \in G(x)$, $x'' \in G(x')$, thus $\exists g_1, g_2 \in G(x')$ *G*, s.t.

$$x'' = g_2 * x'$$

$$= g_2 * (g_1 * x)$$

$$= (g_2 \square g_1) * x$$

$$g_1, g_2 \in G$$
, thus $g_2 \square g_1 \in G$, and $x'' \in G(x)$.

This exercise shows the orbit of *x* is an equivalence class of *x*, thus the difference orbits are disjoin, and the union of all orbits is *X*.

Definition 6 (Stablizer). Suppose a group (G, \square) actions on a finite set *X*, for any $x \in X$, we call $G_x = \{g \in G | g * x = x\}$ the stablizer of

Exercise 2. Show that G_x constructs a subgroup of (G, \square) .

Proof. All we need to prove is 1) G_x is enclosed; 2) (G_x, \square) is a group.

1. for $\forall x \in X, \forall g_1, g_2 \in G_x$:

$$(g_1 \square g_2) * x = g_1 * (g_2 * x)$$
$$= g_1 * x$$
$$= x,$$

thus $g_1 \square g_2 \in G_x$, similarly, $g_2 \square g_1 \in G_x$.

2. since $\forall g_1, g_2, g_3 \in G_x \subseteq G$, the associative follows; 3. since e * x = x, $e \in G_x$; 4. for $\forall x \in X$, $\forall g \in G_x$:

$$g^{-1} * x = g^{-1} * (g * x)$$

$$= (g^{-1} \square g) * x$$

$$= e * x$$

$$= x,$$

thus $g^{-1} \in G_x$. The first proof shows G_x is enclosed, the last 3 proofs show (G_x, \square) is a group, thus (G_x, \square) is a subgroup of (G, \square) .

Definition 7 (Orbit Map). Suppose a group (G, \square) actions on a finite set X, given $x \in X$, we say the map $G \xrightarrow{o_x} G(x)$ with $g \mapsto g * x$ is the orbit map of x.

Note 2. o_x is a surjection.

Exercise 3. For $\forall g, g' \in G$, show that $o_x(g) = o_x(g') \Leftrightarrow g \square G_x =$ $g'\Box G_x$.

Proof. \Rightarrow :

$$(g^{-1} \Box g') * x = g^{-1} * (g' * x)$$

$$= g^{-1} * (g * x)$$

$$= (g^{-1} \Box g) * x$$

$$= e * x$$

$$= x,$$

thus $g^{-1}\Box g' \in G_x \Rightarrow g\Box G_x = g'\Box G_x$. $\Leftarrow: g \square G_x = g' \square G_x \Rightarrow \forall h \in G_x \text{ s.t. } g \square h = g' \square h. \text{ Thus}$

$$g * x = g * (h * x)$$

$$= (g \square h) * x$$

$$= (g' \square h) * x$$

$$= g' * (h * x)$$

$$= g' * x.$$

-G(x) G_x $\Rightarrow g \Box x$ $g\square G_x$ $\Rightarrow g' \Box x$ $g'\Box G_x$

So if $\exists g, g' \in G$, s.t. $g' \Box x = g \Box x$ then g, g' come from the same coset of G_x ; conversely, if g, g' are from the same coset of G_x , then $g'\Box x = g\Box x$. That means o_x is a **bijection** from the quotient set G/G_x to the orbit G(x). Thus for finite group (G, \square) actioning on X, and $x \in X$, have

$$|G/G_x| = |G|/|G_x| = |G(x)|.$$

Note 3. Remember that the cosets of G_x have the same cardinality.

Theorem 1 (Burnside). *Suppose a finite group* (G, \square) *actions on a finite* set X, then X has

$$\frac{1}{|G|} \cdot \sum_{g \in G} |\{x \in X | g * x = x\}|$$

orbits.

Proof. Denote the number of orbits as τ . We now compute δ $|\{(g,x)\in G\times X|g*x=x\}|$ in two orders. The meaning of these operations is like the right margin figure.

Figure 2: $|\{(g,x) \in G \times X | g * x = x\}|$

1. Fix *x*: so

$$\delta = \sum_{x \in X} |\{g \in G | g * x = x\}|$$

$$= \sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|G(x)|}$$

$$= |G| \cdot \sum_{x \in X} \frac{1}{|G(x)|}$$

$$= |G| \cdot \tau.$$

Notice the last equation, remember that *X* is the disjoin union of the all orbits. So the sum of $\frac{1}{|G(x)|}$ where xs are in the same orbit is 1. And the sum of $\frac{1}{|G(x)|}$ of all $x \in X$ is the number of orbits τ .

2. Fix *g*: so

$$\delta = \sum_{g \in G} |\{x \in X | g * x = x\}|.$$

Simultaneous equations, we have

$$|G| \cdot \tau = \sum_{g \in G} |\{x \in X | g * x = x\}|,$$

thus
$$\tau = \frac{1}{|G|} \cdot \sum_{g \in G} |\{x \in X | g * x = x\}|.$$

Example 5. Color four vertices of a square in black or white, allowing rotation, How many different coloring methods are there?

Solution. Let X be the all coloring method without rotation, so |X| = $2^4 = 16$. Let G be the set that are all rotations of X, let r represents rotate 90 degrees in clockwise, then $G = \{e, r, r^2, r^3\} = \langle r \rangle$. Now the question is how many orbits of *X* under *G* are there?

Fix g = e, then $|\{x \in X | e * x = x\}| = 16$, these are the all element if X; Fix g = r, then $|\{x \in X | r * x = x\}| = 2$; Fix $g = r^2$, then $|\{x \in X | r * x = x\}| = 4$; Fix $g = r^3$, then $|\{x \in X | r * x = x\}| = 2$.

Thus the number of the orbits is

$$\tau = \frac{1}{|G|} \cdot \sum_{g \in G} |\{x \in X | g * x = x\}|$$

$$= \frac{1}{4} \cdot (16 + 2 + 4 + 2)$$

$$= \frac{24}{4} = 6.$$

So there are totally 6 coloring methods.

