Retrieval Models: Probabilistic

Intelligent Information Retrieval

The Notion of Relevance

Probability Ranking Principle

[Robertson 77]

- Returning a ranked list of documents in descending order of probability that a document is relevant to the query is the optimal strategy under the following two assumptions:
- 1. The utility of a document to a user is independent of the utility of any other document.
- 2. A user would browse the results sequentially

According to the PRP, all we need is

"A relevance measure function f"

which satisfies

For all q, d_1, d_2 , $f(q, d_1) > f(q, d_2) \text{ iff } p(Rel|q, d_1) > p(Rel|q, d_2)$

The Basic Question

What is the probability that THIS document is relevant to THIS query?

Formally...

3 random variables: query Q, document D, relevance $R \in \{0,1\}$

Given a particular query q, a particular document d, p(R = 1|Q = q, D = d) = ?

Detour ...

Brief Review of Probability

Basic Concepts in Probability

- Random experiment: an experiment with uncertain outcome (e.g., tossing a coin, picking a word from text)
- Sample space: all possible outcomes, e.g.,
 - Tossing 2 fair coins, $S = \{HH, HT, TH, TT\}$
- Event: $E \subseteq S$, E happens iff outcome is in E, e.g.,
 - $-E = \{HH\}$ (all heads)
 - $-E = \{HH, TT\}$ (same face)
- Probability of Event : $1 \ge P(E) \ge 0$, s.t.
 - -P(S) = 1 (outcome always in S)
 - $-P(A \cup B) = P(A) + P(B)$ if $(A \cap B) = \emptyset$ (e.g., A=same face, B=different face)

Basic Concepts of Prob. (cont.)

- Conditional Probability: $P(B|A) = P(A \cap B)/P(A)$
 - $-P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
 - So, P(A|B) = P(B|A)P(A)/P(B) (Bayes' Rule)
 - For independent events, $P(A \cap B) = P(A)P(B)$, so P(A|B) = P(A)
- Total probability: If A_1, \dots, A_n form a partition of S, then
 - $-P(B) = P(B \cap S) = P(B \cap A_1) + \dots + P(B \cap A_n)$
 - So, $P(A_i|B) = P(B|A_i)P(A_i)/P(B)$ = $P(B|A_i)P(A_i)/[P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)]$
 - This allows us to compute $P(A_i|B)$ based on $P(B|A_i)$

Interpretation of Bayes' Rule

Hypothesis space: $H = \{H_1, ..., H_n\}$ Evidence: E

$$P(H_i|E) = \frac{P(E|H_i)P(H_i)}{P(E)}$$

If we want to pick the most likely hypothesis H^* , we can drop P(E)

Posterior probability of
$$H_i$$
 Prior probability of H_i
$$\downarrow \qquad \qquad \downarrow \qquad \qquad P(H_i|E) \propto P(E|H_i)P(H_i)$$

$$\uparrow \qquad \qquad \qquad \text{Likelihood of data/evidence}$$
 if H_i is true

End of Detour...

Now, let's go back to retrieval!

Probabilistic Retrieval Models: Intuitions

Suppose we have a large number of relevance judgments (e.g. clickthroughs: "1"=clicked; "0"=skipped)

Query(Q)	Doc(D)	Rel(R)?	We can score documents based on:
Q1	D1	1	f(a,d) –
Q1	D2	1	f(q,d) = count(q,d,R=1)
Q1	D3	0	$p(R = 1 d,q) = \frac{count(q,d,R = 1)}{count(q,d)}$
Q1	D4	0	count(q, a)
Q1	D5	1	P(R = 1 Q1, D1) = 1/2
•••			P(R = 1 Q1, D2) = 2/2
Q1	D1	0	P(R = 1 Q1, D3) = 0/2
Q1	D2	1	
Q1	D3	0	What if we don't have sufficient
Q2	D3	1	search log?
Q3	D1	1	Unseen documents/queries?
Q4	D2	1	onseen documents, quenes:
Q4	D3	0	We can approximate $P(R = 1 Q, D)$
•••			

11

Probability of Relevance

- Three random variables
 - Query Q
 - Document D
 - − Relevance $R \in \{0,1\}$
- Goal: rank D based on P(R = 1|Q, D)
 - Evaluate P(R = 1|Q, D)
 - Actually, only need to compare P(R=1|Q,D1) with P(R=1|Q,D2), i.e., rank documents
- Several different ways to refine P(R = 1|Q,D)

Refining P(R = 1|Q,D) Method 1: conditional models

- Basic idea: relevance depends on how well a query matches a document
 - Define features on $Q \times D$, e.g., #matched terms, the highest IDF of a matched term, doclen, or even score(Q, D) given any other retrieval function,...
 - $-P(R = 1|Q,D) = g(f_1(Q,D), f_2(Q,D), ..., f_n(Q,D), \theta)$
 - Using training data (known relevance judgments) to estimate parameter $\boldsymbol{\theta}$
 - Apply the model to rank new documents

Refining P(R = 1|Q,D) Method 2: generative models

- Basic idea
 - Define P(Q, D|R)
 - Compute O(R = 1|Q, D) using Bayes' rule

$$O(R = 1|Q,D) = \frac{P(R = 1|Q,D)}{P(R = 0|Q,D)} = \frac{P(Q,D|R = 1)}{P(Q,D|R = 0)} \times \frac{P(R = 1)}{P(R = 0)}$$

Special cases

Ignored for ranking D

- Document "generation": P(Q,D|R) = P(D|Q,R)P(Q|R)
- Query "generation": P(Q,D|R) = P(Q|D,R)P(D|R)

Document Generation

$$O(R = 1|Q,D) = \frac{P(R = 1|Q,D)}{P(R = 0|Q,D)} = \frac{p(Q,D|R = 1)P(R = 1)}{P(Q,D|R = 0)P(R = 0)}$$

$$\propto \frac{P(Q,D|R = 1)}{P(Q,D|R = 0)} = \frac{P(D|Q,R = 1)P(Q|R = 1)}{P(D|Q,R = 0)P(Q|R = 0)}$$

$$\propto \frac{P(D|Q,R=1)}{P(D|Q,R=0)} \longleftarrow \begin{array}{c} \text{Model of relevant docs for Q} \\ \hline \end{array}$$

Document Generation (cont'd)

- Assume independent attributes $A_1 \dots A_k$
- Let $D=d_1 ... d_k$, where $d_i \in \{0,1\}$ is the value of attribute A_i (Similarly $Q=q_1 ... q_k$)

...
$$\propto \frac{P(D|Q, R = 1)}{P(D|Q, R = 0)}$$

$$= \prod_{i=1}^{k} \frac{P(A_i = d_i|Q, R = 1)}{P(A_i = d_i|Q, R = 0)}$$

$$= \prod_{i=1,d_i=1}^k \frac{P(A_i = 1|Q, R = 1)}{P(A_i = 1|Q, R = 0)} \prod_{i=1,d_i=0}^k \frac{P(A_i = 0|Q, R = 1)}{P(A_i = 0|Q, R = 0)}$$

Document Generation (cont'd)

... =
$$\prod_{i=1,d_i=1}^k \frac{P(A_i = 1|Q, R = 1)}{P(A_i = 1|Q, R = 0)} \prod_{i=1,d_i=0}^k \frac{P(A_i = 0|Q, R = 1)}{P(A_i = 0|Q, R = 0)}$$

$$\times \prod_{i=1,d_i=1}^k \frac{P(A_i = 0 | Q, R = 1)}{P(A_i = 0 | Q, R = 0)} \times \prod_{i=1,d_i=1}^k \frac{P(A_i = 0 | Q, R = 0)}{P(A_i = 0 | Q, R = 1)}$$

$$= \prod_{i=1,d_i=1}^k \frac{P(A_i = 1|Q,R = 1)}{P(A_i = 1|Q,R = 0)} \cdot \frac{P(A_i = 0|Q,R = 0)}{P(A_i = 0|Q,R = 1)} \times \prod_{i=1}^k \frac{P(A_i = 0|Q,R = 1)}{P(A_i = 0|Q,R = 0)}$$

Ignore for ranking

Document Generation (cont'd)

• Assume $P(A_i = 1 | Q, R = 1) = P(A_i = 1 | Q, R = 0)$ if the term does not appear in the query $(q_i = 0)$

... =
$$\prod_{i=1,d_i=1}^k \frac{P(A_i = 1|Q, R = 1)}{P(A_i = 1|Q, R = 0)} \cdot \frac{P(A_i = 0|Q, R = 0)}{P(A_i = 0|Q, R = 1)} \times \prod_{i=1}^k \frac{P(A_i = 0|Q, R = 1)}{P(A_i = 0|Q, R = 0)}$$

Ignore for ranking

$$= \prod_{i=1,d_i=q_i=1}^k \frac{P(A_i=1|Q,R=1)}{P(A_i=1|Q,R=0)} \cdot \frac{P(A_i=0|Q,R=0)}{P(A_i=0|Q,R=1)}$$

Robertson-Sparck Jones Model

(Robertson & Sparck Jones 76)

$$\log O(R = 1|Q,D) \approx \sum_{i=1,d_i=q_i=1}^{k} \log \frac{p_i(1-q_i)}{q_i(1-p_i)}$$
 (RSJ model)

Two parameters for each term A_i :

$$p_i = P(A_i = 1 | Q, R = 1)$$
: prob. that term A_i occurs in a relevant doc $q_i = P(A_i = 1 | Q, R = 0)$: prob. that term A_i occurs in a non-relevant doc

How to estimate parameters? Suppose we have relevance judgments,

$$\widehat{p_i} = \frac{\#(rel.doc\ with\ A_i) + 0.5}{\#(rel.doc) + 1} \qquad \widehat{q_i} = \frac{\#(nonrel.doc\ with\ A_i) + 0.5}{\#(nonrel.doc) + 1}$$

RSJ Model: No Relevance Info

(Croft & Harper 79)

$$\log O(R = 1|Q,D) \approx \sum_{i=1,d_i=q_i=1}^{Rank} \log \frac{p_i(1-q_i)}{q_i(1-p_i)}$$
 (RSJ model)

How to estimate parameters?

Suppose we do not have relevance judgments,

- We will assume p_i to be a constant
- Estimate q_i by assuming all documents to be non-relevant

$$\log O(R = 1|Q, D) \approx \sum_{i=1, d_i = q_i = 1}^{Rank} \log \frac{N - n_i + 0.5}{n_i + 0.5}$$

N:# documents in collection n_i :# documents in which term A_i occurs

RSJ Model: Summary

- The most important classic prob. IR model
- Use only term presence/absence, thus also referred to as Binary Independence Model
- Essentially Naïve Bayes for doc ranking
- Most natural for relevance/pseudo feedback
- When without relevance judgments, the model parameters must be estimated in an ad hoc way
- Performance isn't as good as tuned VS model

Improving RSJ: Adding TF

Basic doc. generation model:
$$\frac{P(R=1\,|\,Q,D)}{P(R=0\,|\,Q,D)} \propto \frac{P(D\,|\,Q,R=1)}{P(D\,|\,Q,R=0)}$$

Let $D = d_1 \dots d_k$, where d_k is the frequency count of term A_k

$$\frac{P(R=1|Q,D)}{P(R=0|Q,D)} \propto \prod_{i=1}^{k} \frac{P(A_i=d_i|Q,R=1)}{P(A_i=d_i|Q,R=0)}$$

$$= \prod_{i=1,d_i\geq 1}^{k} \frac{P(A_i=d_i|Q,R=1)}{P(A_i=d_i|Q,R=0)} \prod_{i=1,d_i=0}^{k} \frac{P(A_i=0|Q,R=1)}{P(A_i=0|Q,R=0)}$$

$$\propto \prod_{i=1,d_i\geq 1}^{k} \frac{P(A_i=d_i|Q,R=1)P(A_i=0|Q,R=0)}{P(A_i=d_i|Q,R=0)P(A_i=0|Q,R=1)}$$

2-Poisson mixture model
$$p(A_i = f \mid Q, R) = p(E \mid Q, R) p(A_i = f \mid E) + P(\overline{E} \mid Q, R) p(A_i = f \mid \overline{E})$$

Many more parameters to estimate!

BM25/Okapi Approximation

(Robertson et al. 94)

- Idea: Approximate p(R = 1|Q,D) with a simpler function that shares similar properties
- Observations:
 - $-\log O(R=1|Q,D)$ is a sum of term weights W_i
 - $-W_{i} = 0$, if $TF_{i} = 0$
 - $-W_i$ increases monotonically with TF_i
 - $-W_i$ has an asymptotic limit
- The simple function is $W_i = \frac{TF_i(k_1+1)}{k_1+TF_i}\log\frac{p_i(1-q_i)}{q_i(1-p_i)}$

Adding Doc. Length & Query TF

- Incorporating doc length
 - "Carefully" penalize long doc
- Incorporating query TF
 - A similar TF transformation
- The final formula is called BM25, achieving top TREC performance

The BM25 Formula

$$\sum_{T \in \mathcal{Q}} w^{(1)} \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf}$$
"Okapi TF/BM25 TF"

where

Q is a query, containing terms T $w^{(1)}$ is the Robertson/Sparck Jones weight [5] of T in Q

$$\log \frac{(r+0.5)/(R-r+0.5)}{(n-r+0.5)/(N-n-R+r+0.5)}$$
 (2)

N is the number of items (documents) in the collection

n is the number of documents containing the term

R is the number of documents known to be relevant to a specific topic

r is the number of relevant documents containing the term

K is $k_1((1-b)+b.dl/avdl)$

 k_1 , b and k_8 are parameters which depend on the on the nature of the queries and possibly on the database; k_1 and b default to 1.2 and 0.75 respectively, but smaller values of b are sometimes advantageous; in long queries k_8 is often set to 7 or 1000 (effectively infinite)

tf is the frequency of occurrence of the term within a specific document

qtf is the frequency of the term within the topic from which Q was derived

dl and audl are respectively the document length and average document length measured in some suitable unit.

.

Extensions of "Doc Generation" Models

- Capture term dependence (Rijsbergen & Harper 78)
- Alternative ways to incorporate TF (Croft 83, Kalt96)
- Feature/term selection for feedback (Okapi's TREC reports)
- Estimate of the relevance model based on pseudo feedback [Lavrenko & Croft 01]

Questions?