

Funktionale Programmierung Primitiv-Rekursive Funktionen

WS 2019/20

Prof. Dr. Margarita Esponda

Äquivalenz vieler Berechnungsmodelle

Kurt Gödel (1906-1978) und Rózsa Péter (1905-1977) haben sich mit der Theorie der rekursiven Funktionen auseinandergesetzt sowie diese stark geprägt.

Was kann alles mit primitiv-rekursiven Funktionen berechnet werden?

Gibt es ein allgemeines Schema zur Definition beliebiger berechenbarer Funktionen?

Der Begriff primitiv-rekursive Funktion wurde von Rózsa Péter geprägt.

Rózsa Péter

- Ungarische Mathematikerin (1905-1977)
- 1951, Buch "Rekursive Funktionen"
- 1955, Vereinfachung der Ackermann-Funktion
 "Ackermann-Péter-Funktion"

Fast alle Beispiele, die wir in die Vorlesungen diskutiert haben, sind Beispiele aus der Menge der sogenannten primitiv-rekursiven Funktionen PR.

Die primitiv-rekursiven Funktionen sind die einfachste Klasse von rekursiven Funktionen.

Die PR-Funktionen sind eine Untermenge der Effektiv

Berechenbaren Funktionen. Das bedeutet, es gibt rekursive

Funktionen, die berechenbar sind aber nicht primitiv-rekursiv sind.

Das Schema zur Definition beliebiger primitiv-rekursiver Funktionen besteht aus folgenden drei Hauptteilen:

- 1. Eine Reihe von Grundfunktionen.
- Ein Ersetzungsmechanismus zur Definition von Funktionen ohne Rekursion (Funktionskomposition).
- 3. Ein Mechanismus zur Definition von primitivrekursiven Funktionen mit Rekursion (PR).

Die Klasse der PR-Funktionen $N^m \rightarrow N$ wird wie folgt induktiv definiert.

I Grundfunktionen

- 1. Die Nullfunktion $Z: N^m \rightarrow N$ ist primitiv rekursiv $Z(x_1,...,x_m) = 0$
- 2. Die Nachfolgerfunktion $S: N \rightarrow N$ ist primitiv rekursiv S(n) = n+1
- 3. Die Projektionsfunktionen $\pi_i^m: N^m \to N$ definiert durch $\pi_i^m(x_1, ..., x_i, ..., x_m) = x_i$, mit $1 \le i \le m$ sind primitiv-rekursiv Beispiel: π_2^3 (a, b, c) = b

II Kompositionsschema

Die Funktionskomposition ist primitiv-rekursiv.

Das bedeutet, für alle primitiv-rekursiven Funktionen

$$f: \mathbb{N}^m \to \mathbb{N}$$
 und $g_1, \dots, g_m: \mathbb{N}^n \to \mathbb{N}$

ist die Funktion $C: \mathbb{N}^n \to \mathbb{N}$, definiert durch

$$C(x_1,...,x_n) = f(g_1(x_1,...,x_n),...,g_m(x_1,...,x_n))$$

auch primitiv rekursiv.

III Rekursionsschema

Jede Funktion, die sich durch primitive Rekursion (Induktion) aus primitiv-rekursiven Funktionen definieren lässt, ist auch primitiv-rekursiv.

Das bedeutet:

Wenn $g: \mathbb{N}^m \to \mathbb{N}$ und $h: \mathbb{N}^{m+2} \to \mathbb{N}$ primitiv-rekursive Funktionen sind, dann ist die folgende (induktiv definierte)

Funktion $R: \mathbb{N}^{m+1} \to \mathbb{N}$

$$R(0, x_1,...,x_m) = g(x_1,...,x_m)$$

$$R(S(n), x_1,...,x_m) = h(R(n, x_1,...,x_m), n, x_1,...,x_m)$$

ebenfalls primitiv rekursiv.

mit S = Nachfolgerfunktion

Eine Funktion heißt primitiv rekursiv, wenn sie zu den Grundfunktionen gehört oder aus diesen durch endliche viele Anwendungen von Komposition und primitiver Rekursion definiert werden kann.

Beispiele:

add2 = (+2) ist primitiv rekursiv:

$$c(x_1) = f(g_1(x_1), ..., g_n(x_1))$$

$$add 2(x_1) = (S \circ S)(\pi_1^1(x_1))$$
 ... aus II Kompositionsschema

Eine konstante Funktion, die eine beliebige Zahl n in der Konstante 3 abbildet, sieht wie folgt aus:

*k*3 : *N*→*N*

aus I: S und Z sind primitiv-rekursiv

aus II: $(S \circ S \circ S \circ Z)$ ist primitiv-rekursiv

$$k3 (m) = S(S(S(Z(m)))) = 3$$

Alle n-stellige konstante Funktion mit Wert k sind primitiv-rekursive Funktionen.

$$C_k^n(x_1,x_2,...,x_n) = k \quad \text{mit} \quad x_i, \ k \in \mathbb{N}$$

Hierbei lassen wir auch die 0-stelligen Konstanten C_k^0 zu, die man mit der Zahl $m{k}$ identifizieren kann.

Die Identitätsfunktion kann wie folgt definiert werden:

$$id: N \rightarrow N$$

id (m) =
$$\pi_1^1$$
 (m) = m

Können wir die Additionsfunktion auf eine Definition, die nur aus primitiv-rekursiven Funktionen besteht, zurückführen?

add: $N^2 \rightarrow N$

Wir müssen g und h (primitiv-rekursive Funktionen) finden.

III:

add (0, m) =
$$g(m)$$

add (S(n), m) = $h(add (n, m), n, m)$

wir wählen $g = \pi_1^1$ und $h = S \circ \pi_1^3$

I, II und III:

add (0, m) =
$$\pi_1^1$$
 (m)
add (S(n), m) = $(S \circ \pi_1^3)$ (add (n, m), n, m))

Vorgänger-Funktion: $pred : N \rightarrow N$

Weil die primitiv-rekursiven Funktionen nur über die natürlichen Zahlen definierbar sind, wird der Vorgänger von 0 als gleich 0 definiert.

haskell:
$$pred 0 = 0$$

 $pred (n+1) = n$

primitiv-rekursiv:

pred (0) =
$$C_0^0$$

pred (S(n)) = π_2^2 (pred (n), n)

Die Multiplikation kann rekursiv über die Addition definiert werden.

mult(S(n), m) = h(mult(n, m), n, m)

mult (0, m) =
$$C_0^1$$

mult(S(n), m) = add (π_1^3 (mult(n, m),n,m), π_3^3 (mult (n,m),n,m))

$$g = Z$$
 $h = add \circ \left[\pi_1^3, \pi_3^3\right]$ $R = mult$ I Grundfunktionen II Kompositionsschema III Rekursionsschema

mult (0, m) = Z (m)
mult(S(n), m) =
$$\left(add \circ \left[\pi_1^3, \pi_3^3\right]\right)$$
 (mult(n, m),n,m))

Eine primitiv-rekursive Definition der Subtraktion sieht wie folgt aus:

```
haskell: sub m 0 = m

sub m (n+1) = pred (sub m (pred (n+1)))
```

```
sub 2 1 \Rightarrow pred (sub 2 (pred 1))

\Rightarrow pred (sub 2 0)

\Rightarrow pred 2

\Rightarrow 1
```

```
sub 1 3 \Rightarrow pred (sub 1 (pred 3))
              \Rightarrow pred (sub 1 2)
              \Rightarrow pred (pred (sub 1 (pred 2)))
              \Rightarrow pred (pred (sub 1 1))
              \Rightarrow pred (pred (pred (sub 1 (pred 1)))
              \Rightarrow pred (pred (pred (sub 1 0)))
              \Rightarrow pred (pred (pred 1))
              \Rightarrow pred (pred 0)
              \Rightarrow pred 0
              \Rightarrow 0
```



```
haskell: sub m 0 = m

sub m (n+1) = pred (sub m (pred (n+1)))
```

Eine primitiv-rekursive Definition der Subtraktion sieht wie folgt aus:

$$sub\ (m,n) = sub'\ (\pi_2^2(m,n),\ \pi_1^2(m,n))$$

$$sub'(0,m) = \pi_1^1(m)$$

 $sub'(S(n),m) = pred(\pi_1^3(sub'(n,m),n,m))$

... weitere Beispiele an der Tafel . . .