Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 19

- 1. Пусть $z=\frac{3}{2}-\frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{\sqrt{3}+i}$ имеет аргумент $\frac{7\pi}{6}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-8+14i) + y(2+6i) = 10 - 246i \\ x(-12-11i) + y(4-15i) = 350 + 340i \end{cases}$$

- 3. Найти корни многочлена $-3x^6-3x^5-15x^4-477x^3-1284x^2-258x+2040$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=3-5i, x_2=-2-i, x_3=1.$
- 4. Даны 3 комплексных числа: 8-3i, -23-i, 21+14i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\sqrt{3} i$, $z_2 = -1 \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3+3i| < 3\\ |arg(z+i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (4, -1, 2), b = (-1, 0, 4), c = (-4, 1, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(11,4,-7) и плоскость P:30x-10y+4z+246=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-2,6,14), $M_1(1,-1,6)$, $M_2(0,-2,6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 27x - 7y + 13z + 203 = 0 \\ 15x - 10y + 17z + 400 = 0 \end{cases} \qquad L_2: \begin{cases} 12x + 3y - 4z + 817 = 0 \\ 16x - 3y + 6z + 1023 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.