20

25

30

BONDINGSYSTEM FÖR TANDFYLLNADSMATERIAL ELLER IMPLANTAT-MATERIAL, SAMT PULVERMATERIAL OCH HYDRATISERINGSVÄTSKA

TEKNISKT OMRÅDE

Föreliggande uppfinning avser ett system för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material. Uppfinningen avser också ett pulvermaterial respektive en hydratiseringsvätska för bondingsystemet.

10 TEKNIKENS STÅNDPUNKT

Föreliggande uppfinning relaterar till bindemedelssystem av typen hydratiserande cementsystem, särskilt cementbaserade system som innefattar kemiskt bundna keramer i gruppen som består av aluminater, silikater, fosfater, sulfater och kombinationer därav, med kalcium som huvudsaklig katjon. Uppfinningen har utvecklats speciellt för biomaterial för dentala och ortopediska tillämpningar, såväl fyllnadsmassor som implantat inklusive beläggningar.

För material, såsom tandfyllnadsmaterial och implantat, som skall interagera med den mänskliga kroppen är det en fördel att materialen görs så bioaktiva eller biokompatibla som möjligt. Beträffande keramiska material så kan man säga att apatit är kroppens egen keram, varför apatit ur denna aspekt borde vara utmärkt som tandfyllnadsmaterial eller implantat. Apatitmaterial som sådana uppvisar dock generellt inte övriga egenskaper som erfordras för tandfyllnadsmaterial och implantat, t.ex. god hanterbarhet med enkel applicerbarhet i kavitet, formning som medger god modellerbarhet, härdning/stelning som är tillräcklig snabb för fyllningsarbetet och med funktionsduglighet direkt efter tandläkarbesöket, hög hårdhet och hållfasthet, korrosionsbeständighet, god estetik och goda långtidsegenskaper vad avser dimensionsstabilitet. I syfte att erbjuda material som uppfyller åtminstone de flesta av dessa erfordrade egenskaper har det tagits fram material enligt det som presenteras i t.ex. SE 463 493, SE 502 987, WO 00/21489, WO 01/76534 och WO 01/76535. Det föreslås också i SE 463 493, SE 502 987 att dylika material kan innefatta ballast av apatit.

Då ett tandfyllnads/implantatmaterial appliceras mot en tand eller ett ben är det av yttersta vikt att en god bonding skapas mellan materialet och tanden/benet. Kända tandfyllnadsmaterial enligt ovan nämnda patentansökningar ger förvisso acceptabel bonding, men det finns utrymme för förbättringar.

REDOGÖRELSE ÖVER UPPFINNINGEN

Föreliggande uppfinning syftar till att erbjuda ett system för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material. 5 Bondingsystemet innefattar en vattenbaserad hydratiseringsvätska samt ett pulvermaterial vars bindefas huvudsakligen utgöres av ett kalciumbaserat cementsystem, vilket pulvermaterial uppvisar förmågan att efter genomdränkning med den med bindefasen reagerande hydratiseringsvätskan hydratisera till ett kemiskt bundet keramiskt material och enligt uppfinningen uppvisar bondingsystem dessutom förmåga att bilda apatit in-situ. Med förmåga att bilda apatit in-situ menas här att systemet 10 innefattar nödvändiga beståndsdelar för bildning av apatit, t.ex. hydroxyapatit eller fluorapatit (Ca₅(PO₄)₃OH respektive Ca₅(PO₄)₃F) och eventuellt annan biologiskt gynnsam fas, och att systemet medger att dylika faser bildas under och/eller efter hydratiseringsreaktionen. Det bildade materialet kan sägas utgöra en kemiskt bunden 15 keramisk komposit. Att apatit bildas i materialet är ett tecken på att materialet är bioaktivt och samverkar med kroppen. Fördelningen av apatit blir vidare homogen i materialet, även i kontaktzoner mot biologiskt material, ben- och tandvävnad. Att apatit bildas i dylika kontaktzoner är speciellt gynnsamt för bondingen. En annan fördel för apatitbildningen är att omgivningen är basisk. Eftersom apatit är ett kroppseget ämne så kommer bondingsystemet att ge utomordentliga bondingsegenskaper med mycket tät 20 anslutning mellan tandfyllnads/implantatmaterialet och tanden/benet. Integreringen med omgivning med apatitinnehåll är mycket viktigt, speciellt för tandfyllnadsmaterial, ortopediska massor och material som skikt på implantat. Det senare avser in-situpreparerade ytskikt av kemiskt bunden keramkomposit baserad på apatit som har stor 25 inverkan på benintegrering.

Enligt uppfinningen presenteras således ett bondingsystem för tandfyllnadsmaterial eller implantatmaterial, ett pulvermaterial samt en hydratiseringsvätska för bondingsystemet, enligt de efterföljande patentkraven.

30

35

Pulvermaterialet

Pulvermaterialet utgöres av ett kalciuminnehållande basiskt kerampulver av aluminater, silikater, fosfater, sulfater och kombinationer därav, företrädesvis aluminater. Enligt uppfinningen innefattar pulvermaterialet vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit.

Vidare gäller att:

10

15

20

30

35

- a. Sagda vattenlösliga fosfat kan utgöras av vattenlöslig fosfatinnehållande fas, t ex alkalifosfater. Fosfathalten är lämpligen hög, företrädesvis 1-90 % och än mer föredraget 5-60 %, ännu mer föredraget 10-30%.
 Effekt: höjning av fosfatandelen i materialet, ger högre halt av apatit (ej endast begränsat till fosfatinnehållet i lösningen),
- b. Materialet kan innefatta groddar av fosfatinnehållande fas, företrädesvis hydroxy- och fluorapatit,
 Effekt: styrning av utfällning av apatit,
- c. Materialet kan innefatta tillsats av kollagen, elastin eller andra högmolekylära protein som in-situ-beläggs eller förbeläggs med apatit ur mättad lösning. Effekt: för att styra utfällningen av apatit,
- d. Materialet kan innefatta tillsats av fluorinnehållande fas av icke svårlöslig karaktär, t.ex. fluorid-innehållande glas (glasjonomerglas) av icke svårlöslig karaktär, i halter understigande 10 %. Andra exempel på fluorinnehållande fas är kalciumfluorid (CaF₂) eller natriumfluorid (NaF), d.v.s. fluoridföreningar som är lösliga i vatten.
 - Effekt: ett sätt att få in fluor i materialet varvid det kan bildas fluorapatit.
- e. Bindefasen uppvisar lämpligen större molhalt kalcium än aluminium, varvid bindefasen företrädesvis innefattar eller huvudsakligen utgörs av 3CaO•Al₂O₃ (C3A). Kerampulvret är således företrädesvis modifierat för med förhöjd Ca-halt i aluminat (C₃A-CA-systemet). Vid utnyttjande av C3A eller annan fas som är rik på kalcium fås mera kalcium som kan reagera med fosfor och bilda apatit. Dessutom är C3A snabbhärdande vilket är bra för ett tunt skikt som skall appliceras på tanden/benet före fyllningen.
- f. Materialet kan innefatta karbonat eller biologiskt förekommande joner som kan bilda: oxalater, laktater, kalcit, aragonit. Till exempel kan karbonatjoner bilda kalcit och kalcium kan bilda svårlösliga biologiska salter med mjölksyrans anjon, laktat etc.
 - Effekt: genom att styra koncentrationen och sammansättningen av jonerna kan olika biologiska faser som innehåller Ca utfällas.

Det är speciellt föredraget att bondingsystemets huvudbindefas utgörs av kalciumaluminat (Ca-aluminat), eftersom:

1. Ca-aluminater ger basisk närmiljö till apatit, vilket gör denna fas stabil (ej upplösning, hinder för plaque-bildning och mjölksyrabildning)

- 2. Ca-aluminat finns i överskott och utbildas i alla porer i materialet bidrager till utfyllnad av materialet om enbart apatit skulle utnyttjas så omsätts för lite vatten för att vattenfylld porositet ska kunna fyllas med hydrat.
- 3. Ca-aluminat utfälls genom syra-bas reaktion, där vatten reagerar med pulvermaterialet, som börjar upplösas. I lösningen finns alla byggstenar som behövs för att bilda både kalciumaluminathydrat, gibbsit samt apatit (om fosfor tillförs i någon form) och eventuellt annan biologiskt gynnsam fas (kalcit, aragonit, laktat etc). När löslighetsprodukten för vart ämne nås börjar en utfällning. Utfällningen sker överallt, inkluderat i mikroutrymmen mellan fyllningsmaterialet och tandvägg. Småkristaller fälls ut i yt-topografin i tandväggen eller annan biologisk kontaktyta och bidrager till att kontaktzonen fyllningsmaterial-tand/ben helt försvinner innebärande mikrostrukturell integrering. I förstorningar upp till 20000 gånger kan ej någon spalt upptäckas.
- 15 Sammanfattningsvis: Ca-aluminat är fördelaktig vid apatitnärvaro för att
 - a. Skydda apatiten för kemisk upplösning vid lågt pH,
 - b. Tillse att en tät produkt föreligger/utbildas. (Pumpen i systemet är Ca-, aluminat- och OH- joner). Övriga tillsatta joner som fosfater, fluorider, karbonater etc. ger sekundär kompletterande rent biologisk fas,
 - c. Medverka till att helt tät kontaktzon utbildas (mikrostrukturell integrering)

Hydratiseringsvätskan

5

10

20

25

30

35

Hydratiseringsvätskan utgöres av en vattenbaserad vätska som enligt uppfinningen innefattar vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit.

Vidare gäller att:

- a) Sagda vattenlösliga fosfat bildar fosfatjoner i vätskan, företrädesvis PO₄³, HPO₄², H₂PO₄ eller annan fosforinnehållande jon,
- b) Vätskan kan innefatta karbonatjoner eller biologiskt förekommande joner som kan bilda: oxalater, laktater, kalcit, aragonit. Till exempel kan karbonatjoner bilda kalcit och kalcium kan bilda svårlösliga biologiska salter med mjölksyrans anjon, laktat etc.

Effekt: genom att styra koncentrationen och sammansättningen av jonerna kan olika biologiska faser som innehåller Ca utfällas,

10

15

20

25

30

c) Koncentration av fosfatjoner bör vara 0.01- 5 M, företrädesvis 0.5-4 M, mest föredraget 1-3 M. Lämpligen förekommer fosfatjoner i vätskan i koncentrationer nära mättnad. Genom att använda mycket höga halter kan det erhållas en ökad utfällning av apatit i zonen mellan tand/ben och material.

Effekt: Hög koncentration ger mer apatitfas,

- d) pH bör justeras till åtminstone 7, företrädesvis 7-12,5 och än mer föredraget 7-11,
 Effekt: pH styr jämvikt för utfällning av apatit och katoit (huvudfas i Caaluminat-hydratsystemet vid kroppstemperatur),
- e) Vätskan kan innefatta tillsats av fluoridjoner till en koncentration fluoridjoner i intervallet 0.01-5 M, företrädesvis 0.1-2 M, mest föredraget 0.5-1 M,

 Effekt: ger utbildning av fluorapatit jämte katoit. (Fluorapatit är ännu stabilare än hydroxyapatit),
- f) Vätskan kan innefatta suspenderad eller emulgerad icke hydratiserat eller delvis hydratiserat kalciumaluminatcement, till skapande av en basisk miljö för apatiten,
- g) Vätskan kan innefatta accelerator och/eller vätskereducerande medel.

Appliceringsmetoden

Före det att bondingsystemet appliceras på tandväggen/benet bör tandväggen/benet prepareras genom så kallad förgrovning, vilken i normalfallet utföres genom etsning och/eller mekanisk förgrovningsteknik, exempelvis mikroblästring. Olika lämpliga högkoncentrerade etsmedel kan utnyttjas, men mest föredraget utnyttjas fosfatinne-hållande etsmedel, företrädesvis ett etsmedel i gruppen som består av fosforsyra, fosforvätessyra, fosfatbuffert och citrater, som ger kvarvarande fosfatämnen på ytan som behandlas. Efter förgrovningen blandas hydratiseringsvätskan och pulvermaterialet för bondingsystemet och det sålunda bildade bondingsystemet appliceras som ett tunt skikt på tanden/benet, företrädesvis genom sprayning eller pensling. Därefter är det klart att fylla tanden med tandfyllnadsmaterialet eller att applicera/fästa implantatmaterialet mot benet.

Tandfyllnads- eller implantatmaterialet

För extra bra bonding till tanden/benet är det föredraget att tandfyllnadsmaterialet/implantatmaterialet utgöres av ett kemiskt bundet keramiskt material som är kompatibelt med bondingsystemet. Det är således föredraget att även tandfyllnadsmaterialet/im-

10

plantatmaterialet innefattar ett pulvermaterial vars bindefas huvudsakligen utgöres av ett kalciumbaserat cementsystem, vilket pulvermaterial uppvisar förmågan att efter genomdränkning med en med bindefasen reagerande hydratiseringsvätska hydratisera till ett kemiskt bundet keramiskt material, varvid sagda pulvermaterial och/eller sagda hydratiseringsvätska innefattar vattenlöslig fosfat, varigenom tandfyllnadsmaterialet/implantatmaterialet uppvisar förmåga att under hydratiseringen bilda apatit. Härigenom uppnås en utomordentlig integrering och bonding mellan själva bondingsystemet och tandfyllnadsmaterialet/implantatmaterialet. Det skall förstås att även andra aspekter som här beskrivits för bondingsystemet kan vara tillämpliga för tandfyllnadsmaterialet/implantatmaterialet lämpligen anpassat för bildning av lägre mängd apatit, varvid företrädesvis 0,01-30 volym-% apatit bildas i cementsystemet under hydratiseringen.

FIGURBESKRIVNING

15 , Fig. 1 visar en bild i 20000 gångers förstorning av övergångsområdet mellan en tandvägg och ett tandfyllnadsmaterial, på vilket övergångområde det applicerats ett bondingsystem enligt uppfinningen.

Av bilden framgår en utbildning av tät anslutning mellan fyllning och tandvägg genom utfällning/applicering av kemiskt bunden keramisk komposit i bondingsystemet. Denna utfällning sker överallt internt i porsystemet hos bondingsystemet men också i mikroutrymmen mellan fyllningsmaterialet och tandväggen. Småkristaller fälls ut i yttopografin i tandväggen och bidrager till att kontaktzonen fyllningsmaterial-tand helt försvinner genom mikrostrukturell integrering.

25

30

20

Uppfinningen är ej begränsad av till de föredragna utföringsformerna utan kan varieras inom patentkraven. Det skall speciellt inses att andra aspekter för systemet/pulver-materialet/hydratiseringsvätskan följa det som beskrivs i SE 463 493, SE 502 987, WO 00/21489, WO 01/76534, WO 01/76535, SE-A0- 0103189-7 eller SE-A0-0103190-5, vilka aspekter härmed inkorporeras genom referens. Det skall vidare förstås att pulvermaterialet respektive hydratiseringsvätskan kan användas i kombination men också var för sig och då tillsammans med konventionella hydratiseringsvätskor respektive pulvermaterial, t.ex. de som beskrivs i nyss nämnda äldre patentansökningar.

P1698 7

PATENTKRAV

5

10

15

20

25

30

35

1. System för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material, kännetecknat av att det innefattar en vattenbaserad hydratiseringsvätska samt ett pulvermaterial vars bindefas huvudsakligen utgöres av ett kalciumbaserat cementsystem, vilket pulvermaterial uppvisar förmågan att efter genomdränkning med den med bindefasen reagerande hydratiseringsvätskan hydratisera till ett kemiskt bundet keramiskt material, varvid sagda pulvermaterial och/eller sagda hydratiseringsvätska innefattar vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit.

- 2. System enligt krav 1, kännetecknat av att systemet uppvisar förmåga att under hydratiseringen bilda 0,01-60 volym-% apatit i systemet.
 - 3. System enligt krav 1 eller 2, kännetecknat av att systemet uppvisar ett pH av åtminstone 7, företrädesvis 7-12,5 och än mer föredraget 7-11, företrädesvis genom utnyttjande av buffertsystem av t.ex. fosfater eller karbonater.
 - 4. System enligt något av ovanstående krav, kännetecknat av att sagda tandfyllnads/implantatmaterial innefattar ett pulvermaterial vars bindefas huvudsakligen utgöres av ett kalciumbaserat cementsystem, vilket pulvermaterial uppvisar förmågan att efter genomdränkning med en med bindefasen reagerande hydratiseringsvätskan hydratisera till sagda kemiskt bundna keramiska material.
- 5. Pulvermaterial för ett bondingsystem för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material, kännetecknat av att det innefattar en bindefas som huvudsakligen utgöres av ett kalciumbaserat cementsystem, varigenom pulvermaterialet uppvisar förmågan att efter genomdränkning med en med bindefasen reagerande hydratiseringsvätska hydratisera till ett kemiskt bundet keramiskt material, och att pulvermaterialet innefattar vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit.

20

25

30

35

- 6. Pulvermaterial enligt krav 5, kännetecknat av att bondingsystemet uppvisar förmåga att under hydratiseringen bilda 0,01-60 volym-% apatit i bondingsystemet.
- 7. Pulvermaterial enligt något av kraven 5-6, kännetecknat av att sagda kalciumbaserade cementsystem utgöres av ett cementsystem i gruppen som består av aluminater, silikater, fosfater, sulfater och kombinationer därav, företrädesvis aluminater.
- 8. Pulvermaterial enligt krav 7, kännetecknat av att sagda kalciumbaserade cementsystem uppvisar större molhalt kalcium än aluminium, varvid cementsystemet företrädesvis innefattar 3CaO•Al₂O₃.
 - 9. Pulvermaterial enligt något av kraven 5-8, kännetecknat av att sagda vattenlösliga fosfat utgöres av ett alkalifosfat.
 - 10. Pulvermaterial enligt något av kraven 5-9, kännetecknat av att det även innefattar groddar av fosfatinnehållande fas, företrädesvis hydroxy- eller fluorapatit.
 - 11. Pulvermaterial enligt något av kraven 5-10, kännetecknat av att det även innefattar högmolekylära protein, företrädesvis kollagen eller elastin.
 - 12. Pulvermaterial enligt något av kraven 5-11, kännetecknat av att det även innefattar fluorinnehållande fas av icke svårlöslig karaktär, företrädesvis i halter av från 0,5 % och upp till 10 %.
 - 13. Pulvermaterial enligt något av kraven 5-12, kännetecknat av att det innefattar karbonatjoner eller biologiskt förekommande joner som uppvisar förmåga att bilda kalcit och/eller aragonit, oxalater, laktater, citrater.
 - 14. Vattenbaserad hydratiseringsvätska för ett bondingsystem för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material, kännetecknat av att sagda bondingsystem utgöres av ett kalciumbaserat cementsystem innefattande en bindefas som uppvisar förmågan att efter genomdränkning med den med bindefasen reagerande

10

15

20

25

30

hydratiseringsvätskan hydratisera till ett kemiskt bundet keramiskt material, varvid hydratiseringsvätskan innefattar vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit.

- 15. Hydratiseringsvätska enligt krav 14, kännetecknad av att sagda vattenlösliga fosfat föreligger i en mängd av åtminstone 0,01-5 M, företrädesvis 0.1-2 M och än mer föredraget 1.0-2 M, lämpligen nära mättnad.
 - 16. Hydratiseringsvätska enligt något av kraven 14-15, kännetecknad av att sagda vattenlösliga fosfat innefattar fosfatjoner i gruppen som består av PO₄³, HPO₄², H₂PO₄, ammoniumvätefosfat och andra fosforinnehållande joner.
 - 17. Hydratiseringsvätska enligt något av kraven 14-16, kännetecknad av att den uppvisar ett pH av åtminstone 7, företrädesvis 7-12,5 och än mer föredraget 7-11, företrädesvis genom utnyttjande av buffertsystem av t.ex. fosfater eller karbonater.
 - 18 Hydratiseringsvätska enligt något av kraven 14-17, kännetecknad av att den innefattar suspenderad eller emulgerad icke hydratiserat eller delvis hydratiserat kalciumaluminatcement, till skapande av en basisk miljö för apatiten.
 - 19. Hydratiseringsvätska enligt något av kraven 14-18, kännetecknad att den innefattar karbonatjoner eller biologiskt förekommande joner som uppvisar förmåga att bilda kalcit och/eller aragonit, oxalater, laktater, citrater.
 - 20. Hydratiseringsvätska enligt något av kraven 14-19, kännetecknad av att den innefattar fluoridjoner, företrädesvis i en halt av 0.01-5 M, än mer föredraget 0.1-2 M och mest föredraget 0.5-1 M.
 - 21. Hydratiseringsvätska enligt något av kraven 14-20, kännetecknad av att den innefattar en accelerator och/eller ett vätskereducerande medel.

SAMMANFATTNING

System för bonding mellan en tand eller ett ben och ett tandfyllnadsmaterial respektive ett implantatmaterial, vilket tandfyllnads/implantatmaterial innefattar ett kemiskt bundet keramiskt material. Enligt uppfinningen innefattar systemet en vattenbaserad hydratiseringsvätska samt ett pulvermaterial vars bindefas huvudsakligen utgöres av ett kalciumbaserat cementsystem, vilket pulvermaterial uppvisar förmågan att efter genomdränkning med den med bindefasen reagerande hydratiseringsvätskan hydratisera till ett kemiskt bundet keramiskt material, varvid sagda pulvermaterial och/eller sagda hydratiseringsvätska innefattar vattenlöslig fosfat, varigenom bondingsystemet uppvisar förmåga att under hydratiseringen bilda apatit. Uppfinningen avser också pulvermaterialet respektive hydratiseringsvätskan som sådana.