Übungsblatt 5

O. Junge, D. Karrasch

29. Mai 2023

In dieser Woche finden wegen des Feiertags am Pfingstmontag keine Tutorien statt. Fragen zum Übungsblatt können selbstverständlich in der folgenden Woche (mit eigenem Übungsblatt) gestellt werden.

Übung 14

Zeigen Sie (a) per direkter Minimierung, (b) mit den Normalengleichungen, und (c) mit der QR-Zerlegung, dass die Lösung für das lineare Ausgleichsproblem für den Parameter $\theta \in \mathbb{R}$ für die Messungen

$$\beta_j = \theta + \varepsilon_j \qquad (j = 1, 2, \dots, m)$$

gegeben ist durch $\frac{1}{m} \sum_{j=1}^{m} \beta_j$.

Übung 15 (Widerstands-Temperatur-Kennlinie eines Thermistors)

Die Abhängigkeit des Widerstands R eines Thermistors von der Temperatur T sei modelliert durch

$$R(T) = C \exp(-E/T).$$

Zu gegebenen Messungen (R_j, T_j) sollen die zwei Parameter E und C geschätzt werden. Dafür wird das *nichtlineare* Modell

$$R_j = C \exp(-E/T_j) + \mathcal{E}_j$$

verwendet. Hierbei sind \mathcal{E}_j unabhängig und normalverteilte Zufallsvariablen mit Standardabweichung $\Delta \mathcal{E}_j$. Außerdem gilt $|\Delta \mathcal{E}_j/R_j| \ll 1$.

In der Datei kennlinien-daten.txt sind die Messdaten in der Form $(T_j, R_j, \Delta \mathcal{E}_j)$ gegeben.

- (a) Schreiben Sie eine Funktion, die die Messdaten visualisiert.
- (b) Zeigen Sie: Das Modell kann in die folgende Form transformiert werden

$$\ln(R_j) = \ln(C) - \frac{1}{T_j} \cdot E + \epsilon_j;$$

dieses ist nun linear in $\ln(C)$ und E. Zeigen sie außerdem: Die Standardabweichung der ϵ_j beträgt $\delta_j = \Delta \mathcal{E}_j / R_j$.

- (c) Schreiben Sie eine Funktion, welche
 - (a) die Messdaten aus der gegebenen Datei lädt,
 - (b) die Transformation in (b) benutzt um ein lineares Ausgleichsproblem zu formulieren $||Ax b||_2 = \min!$,
 - (c) das lineare Ausgleichsproblem löst, und
 - (d) die Schätzungen für C und E zurückgibt.
- (d) Erweitern Sie Ihre Visualisierung aus (a): Zeigen Sie zusätzlich den Graphen R(T) mit den geschätzten Parametern.

Hinweis: Zum Laden der Daten können Sie folgende zwei Zeilen verwenden:

using DelimitedFiles

A = readdlm("Blatt04/kennlinien-daten.txt", '', Float64, '\n')

Damit haben Sie den Dateiinhalt in der Matrix A gespeichert.