## 大数据平台初探

阿里数据交换平台 强琦

#### 提纲

- 大数据与云计算的关系
- 平台的场景与技术构成
- 阿里巴巴数据交换平台及其关键技术
- 大数据下的技术与商业初探

#### 大数据与云计算的关系

- 大数据
  - 定义: Volume, Variety, Velocity, Value
  - 应用领域: 政府,科技,企业,社会。。。
  - -生态:受众,开发者,平台,数据供给
  - 风险: 开放与控制,个性化与隐私,。。。
  - 数据场景: 见后
  - -技术:云计算,数据仓库,数据开发,数据挖掘,。。见后

# 关系

|     | 中心    | 数据生命周期 | 轴  | 描述                                    |
|-----|-------|--------|----|---------------------------------------|
| 云计算 | 用户&计算 | 计算周期   | 纵向 | 强调计算能力,数据是操作对象;具备工具性;数据私有。            |
| 大数据 | 数据    | 数据本身   | 横向 | 数据作用到计算; 具备可运营性, 使数据可分享, 可加; 管理数据是重头。 |

### 大数据的数据场景

|          | 时效要求             | (对平台要求)<br>吞吐 | 成本要求 | 服务                                    | 备注                            |
|----------|------------------|---------------|------|---------------------------------------|-------------------------------|
| 数据服务     | 毫秒, 秒            | 极高            | 低    | 数据展示                                  | 各KV们,<br>Hbase<br>们,…         |
| 业务 (数据)  | 毫秒,秒             | 高             | 高    | 业务支撑                                  | OLTP (DB)                     |
| 数据应用     | 毫秒, 秒            | 高(重)/中<br>(轻) | 高    | Ad-hoc                                | 多场景(待<br>深度分析)                |
| 数据<br>分析 | 浅层(秒),<br>深层(分钟) | 小             | 中    | 在线/离线计算                               | 用来支撑<br>数据决策                  |
| 深度<br>分析 | 小时,天             | 高             | 低    | 离线计算<br>(MR, MPI, BSP, STREAM<br>ING) | 数据挖掘                          |
| 数据<br>决策 | 过程               | 小             | 高    | 决策平台<br>(算法平台)                        | 云端sas                         |
| 工具服务     | 毫秒,秒             | 高             | 高    | 分词, 地理服务等                             | 同步模式<br>或触发器<br>服务<br>(ifttt) |

#### 场景的技术说明

- 数据服务
  - 不同场景(写,读比例)
  - LSM-Tree
- 业务
  - OLTP, 关联, 事务
  - DB
- 数据应用
  - 全内存,成本敏感,compact,只读数据集
- 数据分析
  - 落地,以吞吐降成本,列存储, in process计算, dremel, impala
- 深度分析
  - 规模取胜,重在吞吐,容错机制(MR,BSP),错峰超卖,hive(开发成本)
- 备:场景决定技术方案,不同方案服务(云)化挑战不同,high点不同。(yarn?)

#### 技术

- 数据传输
  - 数据库日志,业务系统日志,埋点,批量同步方案,队列
- 存储
  - 块, 小, 大, 流, kv, 事务, 本地计算, 统一的接入层
- 计算
  - BSP (MR, HAMA), MPI, Streaming, OLTP, OLAP,
    AD-HOC(real-time computing), 统一的接入层
- 展现
  - 分析可视化,数据可视化

#### 技术

- 开发平台
  - -调度,元数据管理,数据建模,IDE
- 市场
  - -应用市场,数据市场,市场机制
- 数据管理
  - 预警, 质量监控, 元数据, 逻辑, ODS, 生命周期
- 开放
  - -安全,审计,计量,监控



http://www.gartner.com/technology/reprints.
 do?id=1-1BU465T&ct=120827#h-d2e182

#### 数据交换平台及其关键技术

|      | 阿里  | 腾讯 | 百度 | Faceboo<br>k | Google | Amazo<br>n |
|------|-----|----|----|--------------|--------|------------|
| 数据规模 | * * | ** | ** | * * *        | * * *  | * *        |
| 结构化  | * * | *  | *  | * * *        | *      | * * *      |
| 关联性  | * * | *  | *  | * * *        | **     | *          |
| 商业价值 | * * | ** | *  | * *          | * *    | * * *      |

#### 数据交换平台

- 交换
  - 只有平台
  - 只有数据
  - 有进有出
  - 做加法, 甚至乘法
  - 数据作为资产的数据银行(存款者,客户,金融服务,银行)
  - 开放

#### 数据交换平台

- 打通、整合集团数据
- 个性化服务
- 构建统一的大数据开发平台

#### Alibaba Map



#### 关键技术

#### ODPS

- 开放
- -服务化
- 离线数据分析服务(MR,MPI,DT...)

#### ODS

- 开放与共享
- 源头数据质量监控
- 元数据管理

# 实时

|          | 时效要求             | (对平台要求)<br>吞吐 | 成本要求 | 服务      | 备注                    |
|----------|------------------|---------------|------|---------|-----------------------|
| 数据<br>服务 | 毫秒,秒             | 极高            | 低    | 数据展示    | 各KV们,<br>Hbase<br>们,… |
| 业务 (数据)  | 毫秒, 秒            | 高             | 高    | 业务支撑    | OLTP (DB)             |
| 数据应用     | 毫秒,秒             | 高(重)/中<br>(轻) | 高    | Ad-hoc  | 多场景(待<br>深度分析)        |
| 数据<br>分析 | 浅层(秒),<br>深层(分钟) | 小             | 中    | 在线/离线计算 | 用来支撑<br>数据决策          |

#### 实时特点

- Ad-hoc computing: 计算不可枚举, 计算在query时发生。在线实时。这里的实时侧重query的实时计算。(数据的实时计算)
- Stream computing: 计算可枚举, 计算在数据 发生变化时发生。离线实时。这里的实时侧重 实时数据的处理。(实时数据的计算)
- Continuous Computing: 计算可加(增量), 大数据集的在线复杂实时计算。整体。
- 实时数据的实时计算

### 实时

- 数据服务
  - 重数据存储,轻计算(coprocessor)
- 业务(数据)
  - OLTP(DB),增删改查,事务,范式
- 数据应用
  - Memory, ssd; 只读场景; 复杂计算; SQL解析、成本优化器、计算引擎、存储引擎。。。

### 实时

- 深度分析
  - MR。以吞吐见长,简单有效的容错机制,使其可以得以线性扩展,使错峰超卖成为可能性,以规模取胜,数据传递以跨进程方式(数据)。
- 浅度分析
  - 数据只读(非oltp, 所以可对数据结构做紧凑的设计, 以对特定的查询优化);
  - 吞吐要求不高。(这类应用面向的是运营);
  - 时效性要求在秒到分钟级; in-process的计算; 列存储
  - 数据量巨大(要求低成本存储方案);
  - 非原始数据ODS。一般为加工过的宽表。
  - Dremel&impala

#### Garuda

- RT OLAP (Realtime OLAP)
  - -Real-Time Objects/Cube/Dimension
- 在线数据分析
  - -访问量低/半结构化/无需定义/低成本
- 在线数据应用
  - -高并发/预定义/高成本初始化/低成本复用

#### Garuda

- ['ga:ruda:]
- 印度神话 迦楼罗
- 中国神话 大鹏
- 最重的动物+最快的速度
- 大鹏一日同风起
- 扶摇直上九万里 —李白



#### 场景

- 实时计算定义:
  - 针对只读数据进行即时数据的获取和计算
  - 基于选择和基于扫描的结果集(候选集与全集比例)

- 相关:
- RTOLAP (Realtime OLAP)
- Grid Computing
- In-memory database

#### 特性

- □ Fixed/Free Schema (列存储)
- Partition/TableGroup
- □ 全索引
- □ 本地计算
- □ 迭代计算
- □ 大表Join
- □ 缓存
- □ 资源管理调度
- □可用性
- □ 滚动升级

#### Partition/TableGroup

- Parition
  - List
  - Range
  - Hash
  - TableGroup
    - Join
    - PartitionGroup



#### 选择

- □ 计算列/索引列(倒置)
  - 计算列 @ memory
  - 索引列 @ disk
- □ 索引
  - Hash
  - B+Tree
  - Skiplist
  - Bitmap
- □ 倒排
- □ 压缩
  - String?
  - PForDelta(11%)

| Index array(abstract)        |        |  |  |  |
|------------------------------|--------|--|--|--|
| tree <t,int[]></t,int[]>     | SSD    |  |  |  |
| skiplist <t,int[]></t,int[]> | SSD    |  |  |  |
| hashmap <t,int[]></t,int[]>  | SSD    |  |  |  |
| unique <t,int></t,int>       | memory |  |  |  |

### 本地计算

- mergeNode:
- ✓ SQL解析
- ✔ 路由分发
- ✓ 结果缓存合并
- ✔ 迭代计算
- Localnode
- ✓ SQL解析
- ✓ 索引查找
- ✓ 计算



#### • 带宽?

#### 缓存

- 本地节点缓存:
- LIRS
- Evicted Factor:
  - ✓ Object Type/Object Size
  - ✔ Object Domain 6 缓存

资源 层 高频小 索引

SATA 低频大 索引 Memory 数据 主键索引

高频索引缓存区

### 调度

- 动态规划算法
- Monitor 服务器分布式锁(主/备)
- 可运维
- 参数:
  - 可用内存、可用磁盘(Buffer阈值)
  - 每个表占用的内存、磁盘
  - 最小可用实例数
  - 最小Failover机器数
  - 每个分区最小可用份数
  - 每个表最多保留分区数
  - 表组信息
  - 虚拟机组
  - 滚动升级
  - 整理上线
  - **···**.



#### 可用性

- □ Failover Rotate
- □ 资源虚拟化(T4)
- ☐ Heartbeat
- □双机房
- □任务分布式锁
- □任务持久化
- ■任务跟踪JobID
- □执行时间监控



#### 重点

- 夯实基础
  - 存储引擎性能,成本,稳定性,运维
- 架构梳理
  - -分布式调度、SQL解析、成本优化器、计算引擎
  - 存储引擎: Memory行存储引擎、长周期引擎、 检索引擎、列存储引擎等
  - 离线build&load
- 业务功能

#### Stream computing特点

- -流(stream):由业务产生的有向(渠道)无界的数据流。
  - 不可控: 到达时机,相关数据顺序,质量(残缺), only once,规模,上游不可控(业务改变,渠道)
  - 时效性要求: 容错方案, 体系架构
- 处理粒度最小: 对架构影响决定性
- 处理算子对全局状态影响不同: 有状态, 无状态; 幂等, 顺序相关(偏序,全序)
- (多)输出性质不同: action, state(大多数节点为commit点,少数为commit点)

### 业务

- 淘宝双11直播间
  - 100亿数据
  - 多张大表join
  - 时序
  - 准确与效率
  - -消重
  - 可运营
- 移动

#### 三个层次

#### SQL

- CREATE STREAM stream\_name
- CREATE DIM TABLE dim\_name
- CREATE CACHE TABLE AS SELECT [ALL|[col1[udf(col2),...]]] from DIMTABLE WHERE conditions WITH(cache\_parameter=value[,.....])
- CREATE RESULT TABLE result name
- CREATE TMP TABLE tmp\_tablename
- SELECT [\* | expression ] [ [AS] output\_name ] [, ...] [ FROM from\_item [alias] with [window(...)] [ [left|full outer] join ...] on join\_condition] [ WHERE condition ] [ GROUP BY [group\_expr [, ...]] ] [ [ UNION ALL ] select ] [ TOP N by expression[ASC|DESC] [,.....] ] With(select\_parameter=value[,.....])
- UDF, UDAF, UDTF

#### 三个层次

- 语义层
  - Local function(udf, udtf, udaf)
  - Shuffle
  - Aggregate
  - Merge
- sourceCode
  - 复用组件(存储层)
  - Join, topk。。。

## 持续计算

|      | 批量     | 实时       |
|------|--------|----------|
| 冲击   | Volume | Velocity |
| 资源有利 | 累积     | 分摊       |
| 业务有利 | 覆盖     | 增量       |
| 延迟   | 高      | 低        |
| 成本   | 高      | 高        |
| 容错   | 相对简单   | 复杂       |
| 现有资源 | 多      | 少        |
| 计算   | 简单     | 复杂       |

### 持续计算

• Continuous Computing: 计算 可加(增量),大 数据集的在线复杂 实时计算。实时数 据的实时计算。



在线

#### 目标

- 一个开发IDE,一个入口
- 限制
  - 可加性(误差可控)
  - 局部无复杂操作
  - 局部节点无舍弃操作
  - 幂等, 非幂等要同步。
  - 同构数据

#### • 场景

- Compact数据集
- (近似)增量计算
- Read only
- 高性能存储计算

#### 大数据下的技术与商业初探



Redshift

## 己有Data-App

淘宝魔方

淘宝指数

个性化

金融

等待接入

数据交换平台

# DATA + APP

# 相信生态系统的力量 相信开放的力量 Thanks

http://www.alidata.org/ 和仲