ORGANISCHE CHEMIE

Chemie der Kohlenwasserstoffverbindungen Lavoisier: Zusammensetzung der Naturstoffe aus den lebenden Organismen:

Kohlenstoff, Wasserstoff Sauerstoff, Stickstoff: organogene Elemente

Antoine Lavoisier 1743-1794

Es dauert nur Sekunden, um einen Kopf abzuhacken, aber hunderte Jahre dürften keinen ähnlichen hervorbringen können wie diesen Lavoisier. (Lagrange)

Berzelius (XVIII-XIX sz.): organische und anorganische Chemie

Jöns Jakob Berzelius (1779-1848)

Vis vitalis Prinzip: Naturstoffe aus den lebenden Organismen können nicht künstlich hergestellt werden

Wöhler (1828)

Sonderstellung der Verbindungen des Kohlenstoffs:

Die Vielzahl der Kohlenstoffverbindungen

Isomerie:

isomere Verbindungen weisen bei gleicher Summenformel verschidene chemische und physikalische Eigenschaften.

Konstitutionsisomerie:

die Isomerie beruht auf der unterschiedlichen Atomordnung (d.h. unterschidlichen Reihenfolge der Atome innerhalb des Moleküls).

Konstitutionsisomerie

Die Anzahl der Konstitutionsisomere nimmt mit steigender Anzahl der C-Atome sehr stark zu.

Summenformel	Nummer der
	Konstitutionsisomere
CII	-
C_6H_{14}	5
C_7H_{16}	9
C_8H_{18}	18
C_9H_{20}	35
$C_{10}H_{22}$	75
$C_{15}^{-1}H_{32}^{-1}$	4.347
$C_{20}^{10}H_{42}^{10}$	366.319
$C_{30}^{-3}H_{62}^{-1}$	4.111.846.763

KOHLENWASERSTOFFE

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

KOHLENWASSERSTOFFE

Gruppen der Kohlenwasserstoffe:

Gruppe	charact. Bindung	allg. Formel
•Alkane	-CH ₂ -CH ₂ -	C_nH_{2n+2}
•Cycloalkane	-CH ₂ -CH ₂ -	C_nH_{2n}
•Alkene	-CH=CH-	C_nH_{2n}
•Alkyne	-C≡C-	C_nH_{2n-2}
AromatischeKohlenwasserstoffe	Benzol und polycyc- lische Aromaten	C ₆ H ₆ , C ₁₀ H ₈ , etc

ALKANE C_nH_{2n+2}

Homologe Reihe der Alkane:

zwei aufeinanderfolgende Kohlenwasserstoffe differieren stets um eine –CH₂ Gruppe.

Methan	CH ₄	CH ₄
Ethan	CH ₃ -CH ₃	C_2H_6
Propan	CH ₃ -CH ₂ -CH ₃	C_3H_8
Butan	CH ₃ -CH ₂ -CH ₂ -CH ₃	C_4H_{10}
Pentan	CH ₃ -CH ₂ -CH ₂ -CH ₃	C ₅ H ₁₂
Hexan	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	C_6H_{14}
Heptan	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	C ₇ H ₁₆
Octan	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	C ₈ H ₁₈
Nonan	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	C_9H_{20}
Decan	CH ₃ -CH ₂ -CH ₃	$C_{10}H_{22}^{00000000000000000000000000000000000$

Grundlagen der Nomenklatur in der organischen Chemie

Namen der organischen Verbindungen:

- systematische Namen (oder IUPAC-Namen)
 IUPAC = International Union of Pure and Applied Chemistry
- Trivialnamen (z.B. Oxalsäure anstelle Ethandisäure).
 (Anwendung der Trivialnamen ist von IUPAC-Nomenklatur also genehmigt.)

Anwendung der IUPAC-Nomenklatur ("Substitutions-Nomenklatur")

Benennung der Alkane:

lateinische oder griechische **Vorsilbe** + -an Endsilbe (Suffix)

(Die Vorsilbe gibt die Anzahl der beteiligten C-Atome an.)

verzweigte Alkane = substituierte Derivate der unverzweigten (geradkettigen) Alkane Substitution = Ersetzen von H-Atomen eines Alkans durch Alkylgruppen

Alkylgruppen

Als **Alkylgruppen** bezeichnet man die Reste, die nach Entfernen eines H-Atoms aus den Alkanen zurückbleiben.

Die unverzweigte Alkylgruppen werden in der systematischen Nomenklatur durch die Änderung der Endung -an — -yl genannt.

Alkan → Alkyl

Nomenklatur

Beispiele:

Alkan	<u>Alkylgruppe</u>		
	Formel	Name	
CH ₄ (Methan)	CH ₃ -	Methyl-	
C ₂ H ₆ (Ethan)	CH ₃ CH ₂ -	Ethyl-	
C ₃ H ₈ (Propan)	CH ₃ CH ₂ CH ₂ -	Propyl-	

Benennung der verzweigten Alkane nach den IUPAC Regeln

1./ Die **längste C-Kette** (Hauptkette ohne Verzweigung) wird **durchnumeriert** und nach der Anzahl ihrer C-Atome als eine **geradkettige Verbindung** genannt.

2./ Jede **Verzweigung** wird gesondert **gekennzeichnet**, und zwar so, daß man die Zählung an dem Kettenende beginnt, das der Verzweigungsstelle am nächsten steht.

3./ Die **Alkylgruppen**, die an die Hauptkette gebunden sind, werden identifiziert. Die Position der Alkylgruppen wird durch Nummern angegeben. Für jeweilige Substituenten muss gesonderte Nummer verwendet werden. Wenn eine Gruppe mehrmals auftritt, wird die Vorsilbe (Prefix) *di-, tri-, tetra-*, usw. vorangelegt.

4./ Schreiben des Namens der Verbindung!Nummer(n) + Alkylgruppe(n) (ABC Reihenfolge!) + Hauptkette

Nomenklatur der Alkane

Unterschiedliche C-Atome in verzweigten Alkanen

(primäre, sekundäre, tertiäre und quartäre C-Atome)

Bindungsstruktur der Alkane

Die Elektronenkonfiguration des Kohlenstoffatoms

Das **sp**³ hybridisierte Kohlenstoffatom bildet 4 equivalente kovalente Bindungen pl.: CH₄, CH₃-CH₃

Struktur der Alkane

Methan

Überlappung von den 4 **sp**³ Hybridorbitalen des Kohlenstoffatoms mit den 4 **s** atomorbitalen der Wasserstoffatome

4 equvalente σ Bindungen (C-H)

Gleiche Bindungslängen (C-H 109 pm), und Bindungswinkel (109.5°)

Konformation der Alkane

Als **Konformation** eines Moleküls bezeichnet man die räumlichen Strukturen, die sich nur **durch Drehung um eine Einfachbindung** unterscheiden und nicht miteinander zur Deckung zu bringen sind.

Konformere (Konformationsisomere) sind im allgemeinen nicht isolierbar.

Konformationen des Ethans

perspektivische Darstellung: ("sawhorse" representation)

Newman-Projektion:

H H H

verdeckte (ekliptische) oder Atom-Atom-Konf.

anti-periplanare oder Atom-Lücke-Konf.

17

H-C-C-H Dieder-Winkel:

0°

60°

CYCLOALKANE C_nH_{2n}

Cycloalkane: gesättigte Kohlenwasserstoffe (*d.h.* nur C-C Einfachbindungen), mit einer cyclischen Struktur der C-Atome

- allgemeine Formel C_nH_{2n}, homologe Reihe

- IUPAC-Nomenklatur:

Vorsilbe (Präfix) "Cyclo" + Name des entsprechenden Alkans (z. B. Pentan → Cyclopentan).

Ethylcyclopentan 1,1,3-Trimethylcyclohexan

$$CH_{2}CH_{3}$$
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}

Raumstruktur (dreidimensionale structur) *i.e.* **Konformation** der Cycloalkane wird durch die Anzahl der C-Atome im Ring bestimmt.

Cyclopropan

- Molekül mit ebener, symmetrischer Struktur
- H-C-C-H Diederwinkel: 0° → Torsionsspannung (Pitzer-Spannung)
- C-C-C Bindungswinkel: 60° → Winkelspannung (Baeyer-Spannung)

- Cyclopropan ist existenzfähig und stabil, troztdem kann seiner Ring relativ leicht aufgespalten werden.

Gasförmig, Anästhetikum

Cyclobutan

- C-C-C Bindungswinkel 90°,
- •in einer hypothetischen planaren Konformation: alle C-H Bindungen sind in ekliptischen (verdeckten) Stellung *Torsionsspannung*,
- in einer multiplanaren Konformation:
 H-C-C-H Diederwinkel sind größer als zero
 energetisch günstigere Anordnung

planare Konformation

nicht-planare ("Hausdach") Konformation

Cyclopentan

gleichseitiger Fünfeck: 108°, sehr nahe dem Tetraederwinkel praktisch keine Baeyer-Spannung

5 ekliptische C-H Bindungen an beiden Seiten des Ringes! beträchtliche *Torsionsspannung* (Pitzer-Spannung)

wesentlich günstigere Anordnungen: *Briefumschlag* und *Twist Konformation* gegenseitige Umwandlung: Pseudorotation)

Twist-Konformation

Briefumschlag-Konformation

Cyclohexane

- gleichseitiger Sechseck (planar!): C-C-C Bindungwinkel 120° Winkel-Spannung (Baeyer-Spannung)
- non-planare Form:
 C-C-C Bindungwinkel 109,5°, d.h. Tetraederwinkel keine Winkel-Spannung

H-C-C-H Diederwinkel: 60°, *keine Torsionsspannung* sehr stabile, spannungsfreie Struktur: **Sessel-Konformation**

Sesselform

$$H$$
 CH_2
 H
 CH_2
 H
 CH_2
 H
 CH_2
 H
 CH_2
 H
 H
 H

günstige Anordnung der Bindungen in Sesselform

Sessel-Sessel-Ringumwandlung (Ringumklappen, -inversion)

(konformationelle Beweglichkeit des Cyclohexans)

Die Sesselform ist beweglich (mobil)

Vorgang des Umklappens,
 vorübergehend auftretende Anordnungen:
 Wannen- und Twist-Konformation

Wannenform

ekliptische Bindungen in Wannenform

energetisch ungünstige intramolekulare Wechselwirkungen (z.B. ekliptische Bindungen, Abstoßung zw. 1-H und 4-H Atomen)

$$E_{\text{Wannen}} - E_{\text{Sessel}} \approx 25 \text{ kJ/mol}$$

Axiale und äquatoriale Bindungen

Derjenige Substituent bzw. die H-Atome, die in der einen Konformation **axial** angeordnet sind, befinden sich nach dem Umklappen in **äquatorialer** Lage und umgekehrt.($a\rightarrow e$, und $e\rightarrow a$).

Umklappungsisomere der Cyclohexanderivate

Methylcyclohexan

energetisch günstigere Konformation

Physikalische Eigenschaften der Alkane

• unpolare Moleküle, schwache intermolekulare Wechselwirkungen (schwache Dispersionskräfte)

Schmelzpunkt und Siedepunkt : niedrig

gasförmig

 $-C_{1}-C_{4}$ $-C_{5}-C_{16}$ $->C_{16}$ flüssig

halbfest oder fest

•Löslichkeit: - wasserunlösliche Stoffe,

- gute Löslichkeit in organischen Lösungsmitteln

benzinänlicher Geruch

Schmelzpunkte und Siedepunkte der geradkettigen Alkane

<u>Verbindung</u>	Formel	Schmelzpunkt (Cº)	Siedepunkt (Cº)
Methan	CH_4	-183	-161
Ethan	C_2H_6	-183	-89
Propan	C_3H_8	-188	-42
Butan	C_4H_{10}	-139	-1
Pentan	C_5H_{12}	-130	36
Hexan	C_6H_{14}	-95	69
Heptan	$C_7 H_{16}$	-91	98
Octan	$C_8 H_{18}$	-57	126
Nonan	C_9H_{20}	-54	151
Decan	$C_{10}H_{22}$	-30	174
Heptadecan	$C_{17}H_{36}$	23	303
Oktadecan	$C_{18}H_{38}$	28	317
Ikosan	$C_{20}H_{42}$	37	205 ¹⁵ Hgmm
Triacontan	$C_{30}H_{62}$	66	258 ^{3 Hgram}

Chemische Reaktionen der Alkane

- Thermische Crackung (600 °C) Überführung von Mitteldestillaten und Destillationsrückständen in ein Gemisch niedrigsiedender Kohlenwasserstoffe

$$\mathsf{CH_3CH_2CH_2CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_2CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_2CH_2CH_3}$$

$$\mathsf{CH_3CH_3}$$

$$\mathsf{CH_3CH_3$$

Chemische Reaktionen der Alkane

- Halogenierung (Chlorierung, Bromierung)
- -Radikalische Substitution S_R

(Photohalogenierung nach radikalischem Mechanismus)

Reaktionen der Alkane

Substitutionen

- Sulfonierung

Natrium-Salze der höheren Alkansulfonsäuren: **Detergentien, synthetische Waschmittel, Tenside** (wichtige praktische Anwendung)

Reaktionen der Alkane

- Nitrierung

unter Einwirkung von Salpetersäure bei hoher Temperatur in Gasphase

R-H
$$\xrightarrow{\text{HNO}_3}$$
 R-NO₂ + H₂O Nitroalkan

- Verbrennung der Alkane (Oxidation)

stark exotherme Reaktionen (wichtige Energiequellen, Treibstoffe)

$$C_nH_{2n+2}$$
 + $(3n+1)/2 O_2$ _____ $n CO_2$ + $(n+1)H_2O$

Reaktionen der Alkane

György (George) Oláh (1927)

Nobel Preis (1994)

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Vorkommen der Alkane

Erdgas: hauptsächlich Methan und Ethan

Erdöl: Gemisch von unterschiedlichen Kohlenwasserstoffe Technische Verarbeitung des Rohöls: Fraktionierte Destillation – Fraktionen (Produkte)

<u>Sdp. Bereich</u> ,∘C	<u>Fraktion</u>	<u>Verwendung</u>
•30-200	C ₅ - C ₁₀	Benzin (Gasolin)
•200-325	$C_{10} - C_{15}$	Petroleum (Kerosin)
•325-400	$C_{15}^{15} - C_{18}^{10}$	Diesel-öl (Gasöl)
•über 400°C	>C ₁₈	Paraffin, Schmieröl
 Vakuumrückstand 	. •	Asphalt

Medizinische Anwendung:

- Ligroin (Desinfection der Körperoberfläche)
- Paraffinöl (Verw. in Dermathologie)
- Vaseline (Verw. in Fabrikation von Salben)

Alkene (Olefine)

Kohlenwasserstoffe, die eine C = C Doppelbindung enthalten

Summenformel: C_nH_{2n} R_1 -CH=CH- R_2

Benennung: -en Endsilbe

Homologe Reihe

Ethen CH₂=CH₂

Propen $^{1}_{CH_2}$ $\stackrel{2}{=}$ $^{3}_{CH}$ $\stackrel{3}{=}$ $^{3}_{CH_3}$

1-Buten 1 2 3 4 4 2 2 2 $^{-}$

Alkenyl - Gruppe

CH₂=CH— Ethenyl-, Vinyl-

CH₂=CH-CH₂ 2-Propenyl-, Allyl-

 CH_2 =CH- CH_2 - CH_2 -CH

Konstitutionsisomerie

$$CH_2 = CH - CH_2 - CH_3$$
 $CH_3 - CH = CH - CH_3$

1-Buten

2-Buten

Lage der Doppelbindung

4-Methyl-2-hepten

2-Methyl-2-hepten

Kettenverzweigung

3-Methyl-cyclohepten

Die C=C Doppelbindung

 σ : 347 kJ/mol

 σ +π: 610 kJ/mol

Ethen

Die cis-trans-Isomerie der Alkene

stabiler
$$CH_3$$
 H $C=C$ H_3 $C=C$ H_3 $C=C$ H_3 $C=C$ CH_3 $C=C$ C C C C C C C C C

CIP - (Cahn-Ingold-Prelog) System

Isomerie

Konstitutionsisomerie:

die Isomerie beruht auf der unterschiedlichen Atomordnung (d.h. unterschidlichen Reihenfolge der Atome innerhalb des Moleküls).

Als **Konformation** eines Moleküls bezeichnet man die räumlichen Strukturen, die sich nur **durch Drehung um eine Einfachbindung** unterscheiden und nicht miteinander zur Deckung zu bringen sind.

cis-trans Isomerie:

Stereoisomerie - Konfigurationsisomerie

Stereoisomere haben grundsätzlich die gleiche Struktur (Konstitution), unterscheiden sich aber durch die *räumliche Anordnung* der Atome.

Darstellung der Alkene

- durch thermische Dehydrierung (750 °C)

$$C_2H_6 \longrightarrow C_2H_4 + H_2$$

Im Labor

a./ aus Ethanol durch Dehydratisierung

b./ aus Alkylhalogeniden durch Dehydrohalogenierung

Eliminierungen

Reaktionen der Alkene

Addition:

$$c=c$$
 XY $-c-c$

Radikalmechanismus: XY — X• + Y•

Ionenmechanismus: $XY \longrightarrow X^+ + Y^-$

Hydrierung

Katalysatoren: Pt, Pd und Ni

Addition von Halogenwasserstoffsäuren

Addition von Halogenwasserstoffsäuren

R-CH=CH₂ + HX
$$R$$
-CH₂- E H₂⁺ + X⁻ \longrightarrow R-CH₂-CH₂X primäres Carbenium-ion

R-CH=CH
$$_2$$
 + HX \longrightarrow R-CHX-CH $_3$ secundares Carbenium-ion

Elektronendonatoren stabilisieren das Carbenium-Ion — Regioselektivität

$$R_2C=CH_2+HX \longrightarrow R_2CX-CH_3$$

Markownikow-Regel: besitzen die beiden C-Atome der Doppelbindung eine verschiedene Anzahl von H-Atomen, so wandert das Halogen vorzugsweise an das wasserstoffarmere C-Atom

Halogenaddition

1,2-Dibrom-ethan

Nachweis der Doppelbindungen

Wasseraddition der Alkene A_E

Markownikow-Regel

$$CH_{3} C = CH_{2}$$

$$CH_{3} C + CH_{3} C +$$

Spaltung von Alkenen

$$c=c$$
 $\xrightarrow{KMnO_4}$
 $c=o$ + $o=c$

Baeyer-Probe

Carbonylverbindungen (Aldehyde, Ketone)

Bei niedriger Temperatur, in neutralem oder basischem Milieu:

Verwendung der Alkene

Das größte organische Massenprodukt: Weltproduktion über 25 Millionen t pro Jahr *Ethylen kommt auch in der Natur vor*.

Ethylene Biosynthesis in Plants

Enzymes

- SAM synthetase
- 2 ACC synthase
- ACC oxidase
- ACC N-malonyl-transferase
- MTA nucleosidase
- 6 MTR kinase
- Transaminase
- Spontaneous reaction

Abbreviations

- ATP Adeninnucleotidtriphosphate
- ADP Adeninnucleotiddiphosphate
- ACC 1-Amminocyclopropane-carboxylate
- HCN Hydrocyanide acid
- MTA 5'-Methylthioadenosin
- MTR 5'-Methylthioribose
- PP_i Diphosphate (Pyrophosphate)
- P_i Phosphate
- SAM S-Adenosyl-L-methionine

Sources

Buchanan BB, Gruissem W, Jones RL (2000). Biochemistry and Molecular Biology of Plants. *Am Soc Plant Phys* (Rockville).

Wang K C-L, Li H, Ecker JR (2002). Ethylene Biosynthesis and Signalling Networks. *Plant Cell* (Supplement) S131-S151.

Pflanzenhormon (Phytohormon)

Verwendung der Alkene

Das größte organische Massenprodukt: Weltproduktion über 25 Millionen t pro Jahr *Ethylen kommt auch in der Natur vor*.

Polypropylen: Kunststoffdarstellung (Reifen, Verpackungsmaterialien)

n
$$CH_2$$
= CH_2 $\xrightarrow{200 \text{ MPa}}$ $-CH_2$ - CH_2 - $(CH_2$ - CH_2)_{n-2}- CH_2 - CH_2 -Polyethylen

Monomere Polymere 52

Akadiene

- Kohlenwasserstoffe mit zwei C = C Doppelbindungen - kurze Benennung: Diene

H₂C=C=CH-CH₂-CH₃ H₂C=CH-CH=CH-CH₃ 1,2-Pentadien 1,3-Pentadien

H₂C=CH-CH₂-CH=CH₂ 1,4-Pentadien

Kumulierte Diene

$H_2C=C=CH_2$

Allen Sdp. -34 °C

Umlagerung:

Bindungsstruktur der konjugierten Alkadiene

$$CH_2 = CH = CH = CH_2$$

auf Grund der Molekülorbital-Theorie

- *sp*² hybridisierte C-Atome
- nicht-hybridisierte p_{z} Atomorbitale

- seitliche Überlappung
- delokalisiertes ₅₅
 π-Bindungssystem

Molekülorbitale von 1,3-Butadien

Stabilität der konjugierten Diene

CH₂=CH-CH=CH₂
$$\xrightarrow{2H_2}$$
 CH₃-CH₂-CH₂-CH₃ Q(gemessen) = 238 kJ/mol
 $\triangle E = 253 - 238 = 15 \text{ kJ/mol}$ Q(berechnet) = 253 kJ/mol

Q(berechnet) = 253 kJ/mol

ΔE = Stabilisationsenergie

Bromaddition der konjugierten Diene

Diels-Alder Reaktion

1,4-Cycloaddition

konzertierte Reaktion

Isopren

Polyisoprene

Hevea Brasiliensis

Guttapercha

Acetylene (Alkin-Kohlenwasserstoffe)

Charakteristische Bindung:

$$c \equiv c$$

$$H-C \equiv C-H$$

Acetylen = Ethin

Allgemeine Formel: C_nH_{2n-2}

Nomenklatur: Alkan — ➤ Alkin

Endsilbe: -in

$$H_3C$$
— C \equiv CH

$$H_3C$$
— C \equiv CH H_3C — CH_2 — C \equiv CH

Ethin

Propin

1-Butin

Acetylen

$$H_2 \overset{1}{C} = \overset{2}{C} H - \overset{3}{C} = \overset{4}{C} H$$

1-Buten-3-in

Bindungsstruktur von Acetylen

sp Hybridzustand

 1σ und 2π Bindungen

Linear, Bindungswinkel: 180°, Bindungslänge: 120,3 pm

Physikalische Eigenschaften, Verwendung

Farblos, geruchlos, nicht giftig Sdp.: - 84 °C

Beim Inhalieren führt es zu Schwindel und Teilnahmlosigkeit

Beim Komprimieren explodiert

Kieselgur (Kieselerde) – Aceton, Acetylen: **Dissous-Gas** Schweißung (3200 °C)

Karbidlampe, Monomere in der Kunststoffherstellung, wichtige Ausgangsstoffe der chemischen Industrie

Acetylen

$$2 \text{ CH}_4$$
 $\frac{1500 \text{ oC}}{0,01 - 0,1 \text{ sec}}$ $\text{CH} = \text{CH} + 3\text{H}_2$

CaO + 3C
$$\stackrel{2500 \text{ oC}}{\longrightarrow}$$
 CaC $_2$ + CO

CaC $_2$ + H $_2$ O \longrightarrow CaO + CH $\stackrel{\blacksquare}{=}$ CH

Kalciumacetylid

Kalciumkarbid

$$\begin{array}{c|c}
R - CH - CH - R \\
\downarrow & \downarrow \\
X & X
\end{array}$$

$$\begin{array}{c}
KOH \\
\hline
-2HX
\end{array}$$

$$R - C = C - R$$

Chemische Eigenschaften

Acidität von Acetylen, Bildung von Acetylide

R—C
$$\equiv$$
C—H $pK_a = 25$
R—C \equiv C—H $\stackrel{\text{NaNH}_2 \text{ or NaH}}{\longrightarrow}$ R—C \equiv C: $\stackrel{\text{Na}^+}{\longrightarrow}$ Na $\stackrel{\text{NaNH}_2 \text{ or NaH}}{\longrightarrow}$ Na $\stackrel{\text{Na}^+}{\longrightarrow}$ Natriumacetylid

Polymerisierung von Acetylen

HC≡CH + HC≡CH →
$$H_2$$
C=CH—C≡CH HCI (Cu⁺) → H_2 C=CH-C=CH₂ CI 2-Chlorbutadiene synthetische Gummi-Herstellung

Polyethin

Isolator

Durch Dotierung mit Oxidationsmitteln elektrisch leitfähiges Polimer (1976)

KOHLENWASERSTOFFE

Aromatische Kohlenwasserstoffe

- im 19. Jahrhundert

Verbindungen, die aus Aromapflanzen in reiner kristallinen Form isoliert wurden.

moderne Interpretation des Begriffes "aromatisch":

 aromatische Verbindungen: Derivate des Benzols bzw. anderer aromatischen Kohlenwasserstoffe, unabhängig von den Aromaeigenschaften

Aromatische Kohlenwassestoffe = Arene

Stammverbindung: Benzol, C₆H₆

erste Isolierung: aus dem Leuchtgas (*Faraday*, 1825) erste Herstellung: aus Benzoesäure (*Mitscherlich*, 1834)

$$C_6H_5$$
-COOH + CaO \longrightarrow C_6H_6 + CaCO₃

Struktur des Benzols

erste Struktur-Hypothese von Kekulé (1866)

- sechs C-Atome in einem 6-Ring
- -- die C-H Gruppen abwechselnd durch C-C und C=C Bindungen verknüpft

Kekulé-Formel des Benzols

Argumente gegen die Kekulé-Formel

In 1,2-Stellung disubstituierte Isomere (*d.h.* I und II) sind nicht aufgefunden worden

$$X$$
 2
 H
 H
 H
 H
 H
 H
 H

- Oszillationstheorie: die Bindungen im Benzolkern sind nicht fixiert
- (schneller Platzwechsel)

$$H$$
 H
 H
 H
 H
 H
 H

Struktur des Benzols

Weitere Besonderheiten des Verhaltens von Benzol:

- Benzol ist relativ reaktionsträg,

keine Reaction mit Br₂ und HBr, mit Kaliumpermanganat (KMnO₄)

Das Benzol-Molekül enthält keine Doppelbindungen von Alken-Typ.

- Das Benzol-Molekül muss sehr stabil sein.

Orbitalhybridisierungs-Modell des Benzols

Ergebnisse der modernen Strukturaufklärung (z.b. Röntgen-strahlbeugung):

- Bindungslänge der Kohlenstoff-Kohlenstoff-Bindungen: 140 pm (C-C 154 pm, C=C 134 pm)
 - jedes C-Atom bildet Bindungen mit drei benachbarten Atomen, die in einer Ebene liegen,
 - C-C-C Bindungswinkel: 120°

- -sp² hybridisierte C-Atome
- Die Hybridorbitale sind an **drei kovalenten Bindungen von** σ **Typ** (zwei C-C und eine C-H) beteiligt.
- **planare Anordnung** der C-Atome in einem ebenen gleichseitigen Sechseck (σ-Gerüst)

Orbitalhybridisierungs-Modell des Benzols

Nicht-hybridisierte $2p_{\tau}$ Orbitale:

- parallele Anordnung zueinender
- senkrechte Orientierung zur Ringebene

Überlappen der 6 Atomorbitale: 6 Molekülorbitale (3π und $3\pi^*$), die sich über das gesamte System der 6 C-Atome erstrecken

Bereiche von Maxima der π -Elektronendichte: oberhalb und unterhalb der Ringebene

Orbitalhybridisierungs-Modell des Benzols

Aromarischer Charakter

- Planare Ringstruktur
- Die Anzahl der delokalisierten Elektronen 4n+2; n=1,2,3... (Hückel-Regel)
- Alle Ringatome verfügen über ein p_z Atomorbital (kontinuierliche Konjugation)

Elektrophile Substitution (S_E)

Reaktionen der aromatischen Kohlenwasserstoffe Halogenierung

Nitrierung

$$HNO_3 + H_2SO_4 \longrightarrow HSO_4 + H_2O + NO_2^+$$

$$+$$
 HNO₃ $+$ H₂O

Nitrobenzol

Sulfonierung

Benzolsulfonsäure

Alkylierung

Acylierung

Alkyl-phenyl-keton

Mehrfache elektrophile Substitution am Benzolkern

Eintritt eines zweiten Substituenten

Orientierung und **Geschwindigkeit** hängt in erster Linie von der Natur des schon vorhandenen ersten Substituenten ab.

Höhere Elektronendichte an den Ringatomen

schnellere Reaktion (S_E)

Niedrigere Elektronendichte an den Ringatomen

langsamere Reaktion (S_E)

Induktive Effekte

Induktiver Effekt (Verschiebung der σ-Elektronen)

Elektronendichte im Ring:

Elektronendichte im Ring:

Mesomere Effekte

Mesomerieeffekt (Verschiebung der π -Elektronen)

+ M-Effekt:

Elektronendichte im Ring:

- M-Effekt:

Elektronendichte im Ring:

Orientierung der Substituenten

Orto- und para- Orientierung Aktivierung	Orto- und para- Orientierung Desaktivierung	Meta-Orientierung Desaktivierung
-NH ₂ , -NHR, -NR ₂	-F	-СНО
-OH, -OR	-C1	-COOH, -COOR
Alkyl	-Br	-COR
Phenyl	-I	-CN
		-NO ₂
		-N ⁺ R ₃

Hydrierung von Arenen

Photohalogenierung

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Oxidation der Alkylbenzol-Derivate mit KMnO₄

$$CH_2R$$
 COOH
$$(H_2SO_4)$$

Benzoesäure

Photochlorierung

Vertreter der aromatischen Kohlenwasserstoffe

Vertreter der aromatischen Kohlenwasserstoffe

Styrol (Vinylbenzol) CH=CH₂ Sdp. 146 °C Darstellung: katalytische Dehydrierung von Ethylbenzol Verwendung: Polystyrol

Polycyclische aromatische Kohlenwasserstoffe

Hydrierung von Naphtalin

Naphtalin

cis-Decalin

trans-Decalin

Sulphonierung von Naphtalin

Krebserregende chemische Agenzien

Carcinoge Verbindungen: chemische Stoffe, die Krebsentstehung hervorrufen können, z. B. Benzpyren.

Substituierte Benzolderivate

Aromatische Gruppen

