Avatar Covers

by Sven Nilsen, 2020

In this paper I introduce Avatar Covers, which strengthens symmetric self-normal and adjoint paths.

An Avatar Cover is a boolean function that describes the "avatar cover pattern" of normal paths^[1] to themselves. This is used e.g. when working with binary operators for interpreting Avatar Graphs^[2]:

$$f[g_{i-n}]_a := \{(a : \mathbb{B}, b : \mathbb{B}) = \forall x, y \in g_n(f(x, y)) = f(if a \in g_0) \text{ else } \{id\}(x), if b \in g_1\} \text{ else } \{id\}(y)\}$$

 $\begin{array}{ll} f[g_{i \to n}]_a \colon \mathbb{B} \times \mathbb{B} \to \mathbb{B} & \text{Uses notation for normal paths `} f[g_{i \to n}] \text{`with an underscore `a`} \\ f \colon T \times T \to T & \text{A binary operator `f`} \\ g_{i \to n} \colon [T \to T] & \text{A list of unary operators `} g_{i \to n} \text{`} \end{array}$

Symmetric Avatar Cover is the avatar cover pattern of a symmetric normal path:

f[g]_a Underscore `a` after bracket stands for "avatar cover"

When the Symmetric Avatar Cover is `and`, it is the same as a symmetric normal path to itself:

$$f[g]_a \le and = f[g] \le f$$

This rule is called "Normal Symmetric Avatar Cover Transform" (NS-ACT) in theorem proving. One can use NS-ACT in reverse when NS-ACT holds, since no information is lost using the transform. For example, negation of addition has a symmetric avatar cover `and`:

- (a + b) = (-a) + (-b)
- \therefore neg(add(a, b)) = add(neg(a), neg(b))
- \therefore add[neg × neg \rightarrow neg] <=> add Using equational form of normal paths
- ∴ add[neg] <=> add Using notation for symmetric normal paths
- \therefore add[neg]_a <=> and Using reverse NS-ACT

When the Symmetric Avatar Cover is `xor`, it is the same as a self-adjoint path^[3] `f` of `g · f` by `g`.

This rule is called "Adjoint Symmetric Avatar Cover Transform" (AS-ACT) in theorem proving. One can use AS-ACT in reverse when AS-ACT holds, since no information is lost using the transform. For example, negation of multiplication has a symmetric avatar cover `xor`:

- $\therefore -(a \cdot b) = (-a) \cdot b = a \cdot (-b)$
- \therefore neg(mul(a, b)) = mul(neg(a), b) = mul(a, neg(b))
- \therefore mul[neg x id \rightarrow neg] <=> mul[id x neg \rightarrow neg]
- \therefore (neg · mul)[neg × id \rightarrow id] <=> (neg · mul)[id × neg \rightarrow id]
- \therefore mul[neg]_a <=> xor

Equational form

Adjoint path form

Reverse AS-ACT

References:

- [1] "Normal Paths"
 Sven Nilsen, 2019
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/normal-paths.pdf
- [2] "Avatar Graphs"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path semantics/blob/master/papers-wip/avatar-graphs.pdf
- [3] "Adjoint Paths"
 Adam Nemecek, Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/adjoint-paths.pdf