AQUEOUS SOLUBILITY OF INORGANIC COMPOUNDS AT VARIOUS TEMPERATURES

The solubility of over 300 common inorganic compounds in water is tabulated here as a function of temperature. Solubility is defined as the concentration of the compound in a solution that is in equilibrium with a solid phase at the specified temperature. In this table the solid phase is generally the most stable crystalline phase at the temperature in question. An asterisk * on solubility values in adjacent columns indicates that the solid phase changes between those two temperatures (usually from one hydrated phase to another or from a hydrate to the anhydrous solid). In such cases the slope of the solubility vs. temperature curve may show a discontinuity.

All solubility values are expressed as mass percent of solute, $100 \cdot w_2$, where

$$w_2 = m_2/(m_1 + m_2)$$

and m_2 is the mass of solute and m_1 the mass of water. This quantity is related to other common measures of solubility as follows:

```
Molality: m_2 = 1000w_2/M_2(1-w_2)
Mole fraction: x_2 = (w_2/M_2)/\{(w_2/M_2) + (1-w_2)/M_1\}
Mass of solute per 100 g of H<sub>2</sub>O: r_2 = 100w_2/(1-w_2)
```

Here M_2 is the molar mass of the solute and $M_1 = 18.015$ g/mol is the molar mass of water.

The data in the table have been derived from the references indicated; in many cases the data have been refitted or interpolated in order to present solubility at rounded values of temperature. Where available, values were taken from the IUPAC *Solubility Data Series* (Reference 1) or the related papers in the *Journal of Physical and Chemical Reference Data* (References 2 to 5), which present carefully evaluated data.

The solubility of sparingly soluble compounds that do not appear in this table may be calculated from the data in the table "Solubility Product Constants". Solubility of inorganic gases may be found in the table "Solubility of Selected Gases in Water".

Compounds are listed alphabetically by chemical formula in the most commonly used form (e.g., NaCl, NH₄NO₃, etc.).

REFERENCES

- Solubility Data Series, International Union of Pure and Applied Chemistry. Volumes 1 to 53 were published by Pergamon Press, Oxford, from 1979 to 1994; subsequent volumes were published by Oxford University Press, Oxford. The number following the colon is the volume number in the series.
- 2. Clever, H.L., and Johnston, F.J., J. Phys. Chem. Ref. Data, 9, 751, 1980.
- 3. Marcus, Y., J. Phys. Chem. Ref. Data, 9, 1307, 1980.
- 4. Clever, H.L., Johnson, S.A., and Derrick, M.E., J. Phys. Chem. Ref. Data, 14, 631, 1985.
- 5. Clever, H.L., Johnson, S.A., and Derrick, M.E., J. Phys. Chem. Ref. Data, 21, 941, 1992.
- 6. Söhnel, O., and Novotny, P., Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam, 1985.
- 7. Krumgalz, B.S., Mineral Solubility in Water at Various Temperatures, Israel Oceanographic and Limnological Research Ltd., Haifa, 1994.
- 8. Potter, R.W., and Clynne, M.A., J. Research U.S. Geological Survey, 6, 701, 1978; Clynne, M.A., and Potter, R.W., J. Chem. Eng. Data, 24, 338, 1979.
- 9. Marshal, W.L., and Slusher, R., J. Phys. Chem., 70, 4015, 1966; Knacke, O., and Gans, W., Zeit. Phys. Chem., NF, 104, 41, 1977.
- 10. Stephen, H., and Stephen, T., Solubilities of Inorganic and Organic Compounds, Vol. 1, Macmillan, New York, 1963.

-2-

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
AgBrO ₂				0.193							1.32		7
AgClO ₂ AgClO ₃	0.17	0.31	0.47	0.55 15	0.64	0.82	1.02	1.22	1.44	1.66	1.88	2.11	7 7
AgClO ₄	81.6	83.0	84.2	84.8 0.413	85.3	86.3	86.9	87.5	87.9	88.3	88.6	88.8	6
$AgNO_2$ $AgNO_3$	0.155 55.9	62.3	67.8	70.1	72.3	76.1	79.2	81.7	83.8	85.4	86.7	87.8	7 6
Ag_2SO_4	0.56	0.67	0.78	0.83	0.88	0.97	1.05	1.13	1.20	1.26	1.32	1.39	7
AlCl ₃	30.84	30.91	31.03	31.10	31.18	31.37	31.60	31.87	32.17	32.51	32.90	33.32	7
$Al(ClO_4)_3$	54.9	50.71	31.03	31.10	31.10	31.37	31.00	31.07	32.17	32.31	64.4	33.32	7
AlF ₃	0.25	0.34	0.44	0.50	0.56	0.68	0.81	0.96	1.11	1.28	1.45	1.64	7
$Al(NO_3)_3$	37.0	38.2	39.9	40.8	42.0	44.5	47.3	50.4	53.8*			61.5*	6
$Al_2(SO_4)_3$	27.5			27.8	28.2	29.2	30.7	32.6	34.9	37.6	40.7	44.2	7
As_2O_3	1.19	1.48	1.80	2.01	2.27	2.86	3.43	4.11	4.89	5.77	6.72	7.71	10
BaBr ₂	47.6	48.5	49.5	50.0	50.4	51.4	52.5	53.5	54.5	55.5	56.6	57.6	6
$Ba(BrO_3)_2$	0.285	0.442	0.656	0.788	0.935	1.30	1.74	2.27	2.90	3.61	4.40	5.25	1:14
$Ba(C_2H_3O_2)_2$	37.0			44.2									7
$BaCl_2$	23.30	24.88	26.33	27.03	27.70	29.00	30.27	31.53	32.81	34.14	35.54	37.05	8
$Ba(ClO_2)_2$	30.5			31.3								44.7	7
$Ba(ClO_3)_2$	16.90	21.23	23.66	27.50	29.43	33.16	36.69	40.05	43.04	45.90	48.70	51.17	1:14
$Ba(ClO_4)_2$	67.30	70.96	74.30	75.75	77.05	79.23	80.92	82.21	83.16	83.88	84.43	84.90	7
BaF_2		0.158		0.161									7
BaI_2	62.5	64.7	67.3	68.8	69.1	69.5	70.1	70.7	71.3	72.0	72.7	73.4	6
$Ba(IO_3)_2$	0.0182	0.0262	0.0342	0.0396	0.045*	0.058*	0.073	0.090	0.109	0.131	0.156	0.182	1:14
$Ba(NO_2)_2$	31.1	36.6	41.8	44.3	46.8	51.6	56.2	60.5	64.6	68.5	72.1	75.6	10
$Ba(NO_3)_2$	4.7	6.3	8.2	9.3	10.2	12.4	14.7	17.0	19.3	21.5	23.5	25.5	6
Ba(OH) ₂	1.67	4.70	6.07	4.68	8.4	19	33	52	74	101	22.04	27.61	7
BaS	2.79	4.78	6.97	8.21	9.58	12.67	16.18	20.05	24.19	28.55	33.04	37.61	7
Ba(SCN) ₂				62.6 0.0011									7 1:26
BaSO ₃ BeCl ₂	40.5			41.7									1:26 7
$BeCl_2$ $Be(ClO_4)_2$	40.5			59.5									7
$Be(ClO_4)_2$ $BeSO_4$	26.69	27.58	28.61	29.22	29.90	31.51	33.39	35.50	37.78	40.21	42.72	45.28	7
CaBr ₂	55	56	59	61	63	68	71	73	37.76	40.21	42.72	43.20	10
CaCl ₂	36.70	39.19	42.13	44.83*	49.12*	52.85*	56.05*	56.73	57.44	58.21	59.04	59.94	8
Ca(ClO ₃) ₂	63.2	64.2	65.5	66.3	67.2	69.0	71.0	73.2	75.5*	77.4*	77.7	78.0	1:14
$Ca(ClO_4)_2$	03.2	01.2	03.3	65.3	07.2	07.0	71.0	73.2	73.3	,,	,,.,	70.0	7
CaF ₂	0.0013			0.0016									10
CaI ₂	64.6	66.0	67.6	68.3	69.0	70.8	72.4	74.0	76.0	78.0	79.6	81.0	7
$Ca(IO_3)_2$	0.082	0.155	0.243	0.305	0.384*	0.517*	0.590	0.652	0.811*	0.665*	0.668		1:14
$Ca(NO_2)_2$	38.6	39.5	44.5	48.6									7
$Ca(NO_3)_2$	50.1	53.1	56.7	59.0	60.9	65.4	77.8	78.1	78.2	78.3	78.4	78.5	6
CaSO ₃			0.0059	0.0054	0.0049	0.0041	0.0035	0.0030	0.0026	0.0023	0.0020	0.0019	1:26
CaSO ₄	0.174	0.191	0.202	0.205	0.208	0.210	0.207	0.201	0.193	0.184	0.173	0.163	9

Ļ

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
$CdBr_2$ CdC_2O_4	36.0	43.0	49.9	53.4 0.0060	56.4	60.3*	60.3*	60.5	60.7	60.9	61.3	61.6	6 5
CdCl ₂ Cd(ClO ₄) ₂	47.2	50.1	53.2	54.6 58.7	56.3*	57.3*	57.5	57.8	58.1	58.51	58.98	59.5 66.9	6 7
CdF_2		5.82	4.65	4.18	3.76								5
CdI ₂	44.1	44.9	45.8	46.3	46.8	47.9	49.0	50.2	51.5	52.7	54.1	55.4	6
$Cd(IO_3)_2$				0.091									5
$Cd(NO_3)_2$	55.4	57.1	59.6	61.0	62.8	66.5	70.6	86.1	86.5	86.8	87.1	87.4	6
$CdSO_4$	43.1	43.1	43.2	43.4	43.6	44.1	43.5	42.5	41.4	40.2	38.5	36.7	6
$CdSeO_4$	42.04	40.59	39.02	38.18	37.29	35.35	33.15	30.65	27.84	24.69	21.24	17.49	5
$Ce(NO_3)_3$	57.99	59.80	61.89	63.05	64.31*	67.0*	68.6	71.1*	74.9*	79.2	80.9	83.1	1:13
CoCl ₂	30.30	32.60	34.87	35.99	37.10	39.27	41.38	43.46	45.50	47.51	49.51	51.50	7
$Co(ClO_4)_2$	50.0			53.0									7
CoF_2				1.4									7
CoI_2	58.00	61.78	65.35	66.99	68.51	71.17	73.41	75.29	76.89	78.28	79.52	80.70	7
$Co(NO_2)_2$	0.076			0.49									7
$Co(NO_3)_2$	45.5	47.0	49.4	50.8	52.4	56.0	60.1	62.6	64.9	67.7			6
$CoSO_4$	19.9	23.0	26.1	27.7	29.2	32.3	34.4	35.9	35.5	33.2	30.6	27.8	6
$Co(SCN)_2$				50.7									7
CrO ₃	62.2	62.3	62.6	62.8	63.0	63.5	64.1	64.7	65.5	66.2	67.1	67.9	6
CsBr				55.2									7
CsBrO ₃	1.16	1.93	3.01	3.69	4.46	6.32	8.60	11.32	14.45	17.96	21.83	25.98	1:30
CsCl	61.83	63.48	64.96	65.64	66.29	67.50	68.60	69.61	70.54	71.40	72.21	72.96	1:47
CsClO ₃	2.40	3.87	5.94	7.22	8.69	12.15	16.33	21.14	26.45	32.10	37.89	43.42	1:30
CsClO ₄	0.79	1.01	1.51	1.96	2.57	4.28	6.55	9.29	12.41	15.80	19.39	23.07	7
CsI	30.9	37.2	43.2	45.9	48.6	53.3	57.3	60.7	63.6	65.9	67.7	69.2	6
CsIO ₃	1.08	1.58	2.21	2.59	3.02	3.96	5.06	6.29	7.70	9.20	10.79	12.45	1:30
$CsNO_3$	8.46	13.0	18.6	21.8	25.1	32.0	39.0	45.7	51.9	57.3	62.1	66.2	6
CsOH					75								7
Cs_2SO_4	62.6	63.4	64.1	64.5	64.8	65.5	66.1	66.7	67.3	67.8	68.3	68.8	6
CuBr ₂				55.8									7
CuCl ₂	40.8	41.7	42.6	43.1	43.7	44.8	46.0	47.2	48.5	49.9	51.3	52.7	6
$Cu(ClO_4)_2$	54.3				59.3								7
CuF ₂				0.075									7
$Cu(NO_3)_2$	45.2	49.8	56.3	59.2	61.1	62.0	63.1	64.5	65.9	67.5	69.2	71.0	6
CuSO ₄	12.4	14.4	16.7	18.0	19.3	22.2	25.4	28.8	32.4	36.3	40.3	43.5	6
$CuSeO_4$	10.6			16.0									7
$Dy(NO_3)_3$	58.79	59.99	61.49	62.35	63.29	65.43	68.04	71.58					1:13
$Er(NO_3)_3$	61.58	63.15	64.84	65.75	66.69	68.70	70.96	73.64	77.75				1:13
$Eu(NO_3)_3$	55.2	56.7	58.5	59.4	60.4	62.5	64.6						1:13
$FeBr_2$				54.6								64.8*	7
FeCl ₂	33.2*			39.4*								48.7*	7
FeCl ₃	42.7	44.9	47.9	47.7	51.6	74.8	76.7	84.6	84.3	84.3	84.4	84.7	6

4

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
Fe(ClO ₄) ₂	63.39			67.76									7
FeF ₃				5.59									7
$Fe(NO_3)_3$	40.15			46.57									7
$Fe(NO_3)_2$	41.44			46.67									7
$FeSO_4$	13.5	17.0	20.8	22.8	24.8	28.8	32.8	35.5	33.6	30.4	27.1	24.0	6
$Gd(NO_3)_3$	56.3	57.7	59.2	60.1	61.0	62.9	65.2	67.9	71.5				1:13
HIO_3	73.45	74.10	74.98	75.48	76.03	77.20	78.46	79.78	81.13	82.48	83.82	85.14	1:30
H_3BO_3	2.61	3.57	4.77	5.48	6.27	8.10	10.3	12.9	15.9	19.3	23.1	27.3	6
$HgBr_2$	0.26	0.37	0.52	0.61	0.72	0.96	1.26	1.63	2.08	2.61	3.23	3.95	4
$Hg(CN)_2$	6.57	7.83	9.33	10.2	11.1	13.1	15.5	18.2	21.2	24.6	28.3	32.3	6
$HgCl_2$	4.24	5.05	6.17	6.81	7.62	9.53	12.02	15.18	19.16	24.06	29.90	36.62	4
HgI_2			0.0041	0.0055	0.0072	0.0122	0.0199						4
$Hg(SCN)_2$				0.070									4
Hg_2Cl_2				0.0004									3
$Hg_2(ClO_4)_2$	73.8			79.8*								85.3*	7
Hg_2SO_4	0.038	0.043	0.048	0.051	0.054	0.059	0.065	0.070	0.076	0.082	0.088	0.093	4
$Ho(NO_3)_3$				63.8									1:13
KBF_4	0.28	0.34	0.45	0.55	0.75	1.38	2.09	2.82	3.58	4.34	5.12	5.90	10
KBr	35.0	37.3	39.4	40.4	41.4	43.2	44.8	46.2	47.6	48.8	49.8	50.8	6
$KBrO_3$	2.97	4.48	6.42	7.55	8.79	11.57	14.71	18.14	21.79	25.57	29.42	33.28	1:30
$KC_2H_3O_2$	68.40	70.29	72.09	72.92	73.70	75.08	76.27	77.31	78.22	79.04	79.80	80.55	7
KCl	21.74	23.61	25.39	26.22	27.04	28.59	30.04	31.40	32.66	33.86	34.99	36.05	1:47
KClO ₃	3.03	4.67	6.74	7.93	9.21	12.06	15.26	18.78	22.65	26.88	31.53	36.65	1:30
KClO ₄	0.70	1.10	1.67	2.04	2.47	3.54	4.94	6.74	8.99	11.71	14.94	18.67	6
KF	30.90	39.8	47.3	50.41	53.2					60.0			7
$KHCO_3$	18.62	21.73	24.92	26.6	28.13	31.32	34.46	37.51	40.45				6
$KHSO_4$	27.1	29.7	32.3	33.6	35.0	37.8	40.5	43.4	46.2	49.02	51.82	54.6	6
KH_2PO_4	11.74	14.91	18.25	19.97	21.77	25.28	28.95	32.76	36.75	40.96	45.41	50.12	1:31
KI	56.0	57.6	59.0	59.7	60.4	61.6	62.8	63.8	64.8	65.7	66.6	67.4	6
KIO_3	4.53	5.96	7.57	8.44	9.34	11.09	13.22	15.29	17.41	19.58	21.78	24.03	1:30
KIO_4	0.16	0.22	0.37	0.51	0.70	1.24	1.96	2.83	3.82	4.89	6.02	7.17	7
$KMnO_4$	2.74	4.12	5.96	7.06	8.28	11.11	14.42	18.16					6
KNO_2	73.7	74.6	75.3	75.7	76.0	76.7	77.4	78.0	78.5	79.1	79.6	80.1	6
KNO_3	12.0	17.6	24.2	27.7	31.3	38.6	45.7	52.2	58.0	63.0	67.3	70.8	6
KOH	48.7	50.8	53.2	54.7	56.1	57.9	58.6	59.5	60.6	61.8	63.1	64.6	6
KSCN	63.8	66.4	69.1	70.4	71.6	74.1	76.5	78.9	81.1	83.3	85.3	87.3	6
K_2CO_3	51.3	51.7	52.3	52.7	53.1	54.0	54.9	56.0	57.2	58.4	59.6	61.0	6
K_2CrO_4	37.1	38.1	38.9	39.4	39.8	40.5	41.3	41.9	42.6	43.2	43.8	44.3	6
$K_2Cr_2O_7$	4.30	7.12	10.9	13.1	15.5	20.8	26.3	31.7	36.9	41.5	45.5	48.9	6
K_2HAsO_4	48.5*			63.6*								79.8*	7
K_2HPO_4	57.0	59.1	61.5	62.7	64.1	67.7*		72.7*					1:31
K_2MoO_4				64.7							66.5		7
K_2SO_3	51.30	51.39	51.49	51.55	51.62	51.76	51.93	52.11	52.32	52.54	52.79	53.06	1:26

ψ

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70° C	80°C	90°C	100°C	Ref.
K_2SO_4	7.11	8.46	9.95	10.7	11.4	12.9	14.2	15.5	16.7	17.7	18.6	19.3	6
$K_2S_2O_3$	49.0*			62.3*							75.7*		7
$K_2S_2O_5$	22.1	26.7	31.1	33.1	35.2	39.0	42.6	46.0	49.1	52.0	54.6	50 Ft	1:26
K_2SeO_3	68.4*	52.02	52.15	68.5*	50.40	50.50	52.00	54.20	54.61	54.04	55.06	68.5*	7
K ₂ SeO ₄	52.70	52.93	53.17	53.30	53.43	53.70	53.99	54.30	54.61	54.94	55.26	55.60	7
K ₃ AsO ₄	51.5*	25.6	24.4	55.6*	24.2	25.2	20.5		40.5	45.0	4-4	73*	7
$K_3Fe(CN)_6$	23.9	27.6	31.1	32.8	34.3	37.2	39.6	41.7	43.5	45.0	46.1	47.0	6
K ₃ PO ₄	44.3	17.0	22.0	51.4	25.6	20.2	22.5	25.5	20.2	10.6	41.4	42.1	7
$K_4Fe(CN)_6$	12.5	17.3	22.0	23.9	25.6	29.2	32.5	35.5	38.2	40.6	41.4	43.1	6
LaCl ₃	49.0	48.5	48.6	48.9	49.3	50.5	52.1	54.0	56.3	58.9	61.7		6
$La(NO_3)_3$	55.0	56.9	58.9	60.0	61.1	63.6	66.3	69.9*	74.1*	70.7	71.7	72.0	1:13
LiBr	58.4	60.1	62.7	64.4	65.9	67.8	68.3	69.0	69.8	70.7	71.7	72.8	6
LiBrO ₃	61.03	62.62	64.44	65.44	66.51	68.90	71.68*	73.24*	74.43	75.66	76.93	78.32	1:30
LiC ₂ H ₃ O ₂	23.76	26.49	29.42	31.02	32.72	36.48	40.65	45.15	49.93	54.91	60.04	65.26	7
LiCl	40.45	42.46*	45.29*	45.81	46.25	47.30	48.47	49.78	51.27	52.98	54.98*	56.34*	1:47
LiClO ₃	73.2	75.6*	80.8*	82.1 37.0	83.4	85.9*	87.1*	88.2 49.2	89.6	91.3	93.4	95.7	1:30
LiClO ₄	30.1	32.6	35.5		38.6	41.9	45.5	49.2	53.2	57.2	61.3	71.4	6
LiF	0.120 55.8	0.126	0.131	0.134									7
LiH ₂ PO ₄ LiI	55.8 59.4	60.5	61.7	62.3	63.0	64.3	65.8	67.3	68.8	81.3	81.7	82.6	7 6
LiIO ₃	39.4	00.3	01.7	43.8	03.0	04.3	03.8	07.3	00.0	81.3	81.7	82.0	1:30
LiNO ₂	41	45	49	43.8 51	53	56	60	63	66	68			10
LiNO ₂ LiNO ₃	34.8	43 37.6	49	50.5	55 57.9	60.1	62.2	64.0	65.7	67.2	68.5	69.7	6
LiOH	10.8	10.8	11.0	11.1	11.3	11.7	12.2	12.7	13.4	14.2	15.1	16.1	6
LiSCN	10.6	10.6	11.0	54.5	11.3	11./	12.2	12.7	13.4	14.2	13.1	10.1	7
Li ₂ CO ₃	1.54	1.43	1.33	1.28	1.24	1.15	1.07	0.99	0.92	0.85	0.78	0.72	7
Li_2CO_3 $\text{Li}_2\text{C}_2\text{O}_4$	1.54	1.43	1.55	5.87	1.24	1.13	1.07	0.99	0.92	0.85	0.78	0.72	7
Li ₂ HPO ₃	9.07	8.40	7.77	7.47	7.18	6.64	6.16	5.71	5.30	4.91	4.53	4.16	7
Li ₂ SO ₄	26.3	25.9	25.6	25.5	25.3	25.0	24.8	24.5	24.3	24.0	23.8	23.6	6
Li ₂ SO ₄ Li ₃ PO ₄	20.3	23.7	23.0	0.027	23.3	23.0	24.0	24.3	24.3	24.0	23.0	23.0	1:31
$Lu(NO_3)_3$				71.1									1:13
MgBr ₂	49.3	49.8	50.3	50.6	50.9	51.5	52.1	52.8	53.5	54.2	55.0	55.7	6
$Mg(BrO_3)_2$	43.0	45.2	48.0	49.4	51.0	54.3	57.9	61.6	65.3	69.0*	70.9*	71.7	1:14
$Mg(C_2H_3O_2)_2$	36.18	37.55	38.92	39.61	31.0	54.5	31.7	01.0	05.5	07.0	70.5	/1./	7
MgC_2O_4	30.10	31.33	30.72	0.038									7
MgCl ₂	33.96	34.85	35.58	35.90	36.20	36.77	37.34	37.97	38.71	39.62	40.75	42.15	8
$Mg(ClO_3)_2$	53.35	54.40	56.81	58.66	60.91*	65.46*	67.33	69.27	71.01	72.44	73.48	12.13	1:14
$Mg(ClO_4)_2$	47.8	48.7	49.6	50.1	50.5	51.3	52.1	07.27	71.01	72.11	75.10		6
MgCrO ₄	32.06*		.,.0	35.39*	00.0	01.0	02.1						7
MgCr ₂ O ₇	22.00			58.9						67.0			7
MgF_2				0.013						00			7
MgI ₂	54.7	56.1	58.2	59.4	60.8	63.9	65.0	65.0	65.0	65.0	65.1	65.2	6
$Mg(IO_3)_2$	3.19*	6.70*	7.92	8.52	9.11	10.45	11.99	13.7	15.6	17.6	19.6	· -	1:14
O\ - 3/2													

÷

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
$Mg(NO_2)_2$				47									7
$Mg(NO_3)_2$	38.4	39.5	40.8	41.6	42.4	44.1	45.9	47.9	50.0	52.2	70.6	72.0	6
$MgSO_3$	0.32	0.37	0.46	0.52	0.61	0.87*	0.85*	0.76	0.69	0.64	0.62	0.60	1:26
$MgSO_4$	18.2	21.7	25.1	26.3	28.2	30.9	33.4	35.6	36.9	35.9	34.7	33.3	6
MgS_2O_3	30.7			34.1									7
$MgSeO_4$	31.4*			35.7*								47*	7
$MnBr_2$	56.00	57.72	59.39	60.19	60.96	62.41	63.75	65.01	66.19	67.32	68.42	69.50	7
$MnCl_2$	38.7	40.6	42.5	43.6	44.7	47.0	49.4	54.1	54.7	55.2	55.7	56.1	6
MnF_2	0.80*			1.01*								0.48	7
$Mn(IO_3)_2$				0.27							0.34		7
$Mn(NO_3)_2$	50.5			61.7									7
$MnSO_4$	34.6	37.3	38.6	38.9	38.9	37.7	36.3	34.6	32.8	30.8	28.8	26.7	6
NH_4Br	37.5	40.2	42.7	43.9	45.1	47.3	49.4	51.3	53.0	54.6	56.1	57.4	7
NH ₄ Cl	22.92	25.12	27.27	28.34	29.39	31.46	33.50	35.49	37.46	39.40	41.33	43.24	1:47
NH_4ClO_4	10.8	14.1	17.8	19.7	21.7	25.8	29.8	33.6	37.3	40.7	43.8	46.6	6
NH_4F	41.7	43.2	44.7	45.5	46.3	47.8	49.3	50.9	52.5	54.1			7
NH_4HCO_3	10.6	13.7	17.6	19.9	22.4	27.9	34.2	41.4	49.3	58.1	67.6	78.0	7
$NH_4H_2AsO_4$	25.2	29.0	32.7	34.5	36.3	39.7	43.1	46.2	49.3	52.2	55.0		7
$NH_4H_2PO_4$	17.8	22.0	26.4	28.8	31.2	36.2	41.6	47.2	53.0	59.2	65.7	72.4	7
NH_4I	60.7	62.1	63.4	64.0	64.6	65.8	66.8	67.8	68.7	69.6	70.4	71.1	6
NH_4IO_3				3.70	4.20	5.64	7.63						1:30
NH_4NO_2	55.7	59.0	64.9	68.8									7
NH_4NO_3	54.0	60.1	65.5	68.0	70.3	74.3	77.7	80.8	83.4	85.8	88.2	90.3	6
NH ₄ SCN				64.4					81.1				7
$(NH_4)_2C_2O_4$	2.31	3.11	4.25	4.94	5.73	7.56	9.73	12.2	15.1	18.3	21.8	25.7	7
$(NH_4)_2HPO_4$	36.4	38.2	40.0	41.0	42.0	44.1	46.2	48.5	50.9	53.3	55.9	58.6	7
$(NH_4)_2S_2O_5$	65.5	67.9	69.8	70.5	71.3	72.3	72.9	73.1					1:26
$(NH_4)_2S_2O_8$	37.00	40.45	43.84	45.49	47.11	50.25	53.28	56.23	59.13	62.00			7
$(NH_4)_2SO_3$	32.2	34.9	37.7	39.1	40.6	43.7	47.0	50.6	54.5	58.9			1:26
$(NH_4)_2SO_4$	41.3	42.1	42.9	43.3	43.8	44.7	45.6	46.6	47.5	48.5	49.5	50.5	6
$(NH_4)_2SeO_3$	49.0	51.1	53.4	54.7	56.0	58.9	62.0	65.4	69.1				7
$(NH_4)_2SeO_4$				54.02									7
$(NH_4)_3PO_4$				15.5									7
NaBr	44.4	45.9	47.7	48.6	49.6	51.6	53.7	54.1	54.3	54.5	54.7	54.9	6
$NaBrO_3$	20.0	23.22	26.65	28.28	29.86	32.83	35.55	38.05	40.37	42.52			1:30
$NaCHO_2$	30.8	37.9	45.7	48.7	50.6	52.0	53.5	55.0					6
$NaC_2H_3O_2$	26.5	28.8	31.8	33.5	35.5	39.9	45.1	58.3	59.3	60.5	61.7	62.9	6
NaCl	26.28	26.32	26.41	26.45	26.52	26.67	26.84	27.03	27.25	27.50	27.78	28.05	1:47
NaClO	22.7			44.4									7
NaClO ₂				97.0*				95.3*					7
NaClO ₃	44.27	46.67	49.3	50.1	51.2	53.6	55.5	57.0	58.5	60.5	63.3	67.1	1:30
NaClO ₄	61.9	64.1	66.2	67.2	68.3	70.4	72.5	74.1	74.7	75.4	76.1	76.7	6
NaF	3.52	3.72	3.89	3.97	4.05	4.20	4.34	4.46	4.57	4.66	4.75	4.82	6

-7-

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
NaHCO ₃	6.48	7.59	8.73	9.32	9.91	11.13	12.40	13.70	15.02	16.37	17.73	19.10	7
NaHSO ₄				22.2								33.3	10
NaH ₂ PO ₄	36.54	41.07	46.00	48.68	51.54	57.89*	61.7*	62.3*	65.9	68.7			1:31
NaI	61.2	62.4	63.9	64.8	65.7	67.7	69.8	72.0	74.7	74.8	74.9	75.1	6
NaIO ₃	2.43	4.40	7.78*	8.65*	9.60	11.67	13.99	16.52	19.25*	21.1*	22.9	24.7	1:30
NaIO ₄				12.62									7
NaNO ₂	41.9	43.4	45.1	45.9	46.8	48.7	50.7	52.8	55.0	57.2	59.5	61.8	6
NaNO ₃	42.2	44.4	46.6	47.7	48.8	51.0	53.2	55.3	57.5	59.6	61.7	63.8	6
NaOH	30	39	46	50	53	58	63	67	71	74	76	79	10
NaSCN		52.9	57.1	60.2	62.7	63.5	64.2	65.0	65.9	66.9	67.9	69.0	6
$Na_2B_4O_7$	1.23	1.71	2.50	3.07	3.82	6.02	9.7	14.9	17.1	19.9	23.5	28.0	6
Na ₂ CO ₃	6.44	10.8	17.9	23.5	28.7	32.8	32.2	31.7	31.3	31.1	30.9	30.9	6
$Na_2C_2O_4$	2.62	2.95	3.30	3.48	3.65	4.00	4.36	4.71	5.06	5.41	5.75	6.08	6
Na ₂ CrO ₄	22.6	32.3	44.6	46.7	46.9	48.9	51.0	53.4	55.3	55.5	55.8	56.1	6
Na ₂ Cr ₂ O ₇	62.1	63.1	64.4	65.2	66.1	68.0	70.1	72.3	74.6	77.0	79.6	80.7	6
Na ₂ HAsO ₄	5.6*			29.3*								67*	7
Na ₂ HPO ₄	1.66	4.19	7.51	10.55	16.34*	35.17*	44.64*	45.20	46.81	48.78	50.52	51.53	1:31
Na_2MoO_4	30.6	38.8	39.4	39.4	39.8	40.3	41.0	41.7	42.6	43.5	44.5	45.5	6
Na ₂ S	11.1	13.2	15.7	17.1	18.6	22.1	26.7	28.1	30.2	33.0	36.4	41.0	6
Na ₂ SO ₃	12.0	16.1	20.9	23.5	26.3*	27.3*	25.9	24.8	23.7	22.8	22.1	21.5	1:26
Na_2SO_4			16.13	21.94	29.22*	32.35*	31.55	30.90	30.39	30.02	29.79	29.67	8
$Na_2S_2O_3$	33.1	36.3	40.6	43.3	45.9	52.0	62.3	65.7	68.8	69.4	70.1	71.0	6
$Na_2S_2O_5$		38.4	39.5	40.0	40.6	41.8	43.0	44.2	45.5	46.8	48.1	49.5	1:26
Na ₂ SeO ₃				47.3*								45*	7
Na ₂ SeO ₄	11.7			36.9*								42.1*	7
Na_2WO_4	41.6	41.9	42.3	42.6	42.9	43.6	44.4	45.3	46.2	47.3	48.4	49.5	6
Na ₃ PO ₄	4.28	7.30	10.8	12.6	14.1	16.6	22.9	28.4	32.4	37.6	40.4	43.5	6
$Na_4P_2O_7$	2.23	3.28	4.81	6.62	7.00	10.10	14.38	20.07	27.31	36.03	32.37	30.67	6
NdCl ₃	49.0	49.3	49.7	50.0	50.4	51.2	52.2	53.3	54.5	55.8	57.1	58.5	6
$Nd(NO_3)_3$	55.76	57.49	59.37	60.38	61.43	63.69	66.27	69.47					1:13
NiCl ₂	34.7	36.1	38.5	40.3	41.7	42.1	43.2	45.0	46.1	46.2	46.4	46.6	6
$Ni(ClO_4)_2$	51.1			52.8									7
NiF ₂				2.50							2.52		7
NiI ₂	55.40	57.68	59.78	60.69	61.50	62.80	63.73	64.38	64.80	65.09	65.30		7
$Ni(NO_3)_2$	44.1	46.0	48.4	49.8	51.3	54.6	58.3	61.0	63.1	65.6	67.9	69.0	6
NiSO ₄	21.4	24.4	27.4	28.8	30.3*	32.0*	34.1	35.8	37.7	39.9	42.3	44.8	6
Ni(SCN) ₂				35.48									7
NiSeO ₄	21.6		26.2*									45.6*	7
PbBr ₂	0.449	0.620	0.841	0.966	1.118	1.46	1.89						2
PbCl ₂	0.66	0.81	0.98	1.07	1.17	1.39	1.64	1.93	2.24	2.60	2.99	3.42	2
$Pb(ClO_4)_2$				81.5									7
PbF_2		0.0603	0.0649	0.0670	0.0693								2
PbI_2	0.041	0.052	0.067	0.076	0.086	0.112	0.144	0.187	0.243	0.315			2

ģ

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
$Pb(IO_3)_2$				0.0025									7
$Pb(NO_3)_2$	28.46	32.13	35.67	37.38	39.05	42.22	45.17	47.90	50.42	52.72	54.82	56.75	2
$PbSO_4$	0.0033	0.0038	0.0042	0.0044	0.0047	0.0052	0.0058						2
PrCl ₃	48.0	48.1	48.6	49.0	49.5	50.8	52.3	54.1	56.1	58.3			6
$Pr(NO_3)_3$	57.50	59.20	61.16	62.24	63.40*	65.7*	67.8	70.2	73.4				1:13
RbBr	47.4	50.1	52.6	53.8	54.9	57.0	58.8	60.6	62.1	63.5	64.8	65.9	6
$RbBrO_3$	0.97	1.55	2.36	2.87	3.45	4.87	6.64	8.78	11.29	14.15	17.32	20.76	1:30
RbCl	43.58	45.65	47.53	48.42	49.27	50.86	52.34	53.67	54.92	56.08	57.16	58.15	1:47
RbClO ₃	2.10	3.38	5.14	6.22	7.45	10.35	13.85	17.93	22.53	27.57	32.96	38.60	1:30
$RbClO_4$	1			1.5								17	7
RbF			75										7
$RbHCO_3$			53.7										7
RbI	55.8	58.6	61.1	62.3	63.4	65.4	67.2	68.8	70.3	71.6	72.7	73.8	6
RbIO ₃	1.09	1.53	2.07	2.38	2.74	3.52	4.41	5.42	6.52	7.74	9.00	10.36	1:30
$RbNO_3$	16.4	25.0	34.6	39.4	44.2	53.1	60.8	67.2	72.2	76.1	79.0	81.2	6
RbOH					63.4								7
Rb_2CrO_4	38.27			43.26									7
Rb_2SO_4	27.3	30.0	32.5	33.7	34.8	36.9	38.7	40.3	41.8	43.0	44.1	44.9	6
SbCl ₃	85.7			90.8									7
SbF_3	79.4			83.1									7
$Sc(NO_3)_3$	57.0	59.3	61.6	62.8	63.9	66.2	68.5						1:13
$Sm(NO_3)_3$	54.83	56.33	58.08	59.05	60.08	62.38	65.05*	68.1*	70.8	74.2			1:13
SmCl ₃		48.0	48.2	48.4	48.6	49.2	50.0						6
SnCl ₂	46	64											7
SnI_2			0.97									3.87	7
SrBr ₂	46.0	48.3	50.6	51.7	52.9	55.2	57.6	59.9	62.3	64.6	66.8	69.0	6
$Sr(BrO_3)_2$	18.53	22.00	25.39	27.02	28.59	31.55	34.21	36.57	38.64*	40.2*	40.8	41.0	1:14
SrCl ₂	31.94	32.93	34.43	35.37	36.43	38.93	41.94	45.44*	46.81*	47.69	48.70	49.87	8
$Sr(ClO_2)_2$	13.0	13.6	14.1	14.3	14.5	14.9	15.3	15.6	15.9				7
$Sr(ClO_3)_2$	63.29	63.42	63.64	63.77	63.93	64.29	64.70	65.16	65.65	66.18	66.74	67.31	1:14
$Sr(ClO_4)_2$	70.04*			75.35*		78.44*							7
SrF ₂	0.011	62 0	<i>c</i> 2. z	0.021	c 4 5	65 O	67.0	60.0	70.0	72.7	7.4.7	70.2	7
SrI ₂	62.5	62.8	63.5	63.9	64.5	65.8	67.3	69.0	70.8	72.7	74.7	79.2	6
$Sr(IO_3)_2$	0.102	0.126	0.152	0.165	0.179	0.206	0.233	0.259	0.284	0.307	0.328	0.346	1:14
$Sr(MnO_4)_2$	2.5				41.0	44.2						50.6	7
$Sr(NO_2)_2$	20.2	24.6	41.0	44.5	41.9	44.3	47.0	40.4	40.0	40.5	50.1	58.6	7
Sr(NO ₃) ₂	28.2	34.6	41.0	44.5	47.0	47.4	47.9	48.4	48.9	49.5	50.1	50.7	6 7
Sr(OH) ₂	0.9			2.2 0.0015									1:26
SrSO ₃													1:26 7
SrSO ₄	00	13.2	17.7	0.0135	22.2	26.9							7
SrS ₂ O ₃	8.8	13.2	17.7	20.0	22.2	26.8							
$Tb(NO_3)_3$	2.65	250	60.6	61.02	5 00	7.00	0.10	0.80	11 22	10.77	14.10	15.52	1:13
Tl_2SO_4	2.65	3.56	4.61	5.19	5.80	7.09	8.46	9.89	11.33	12.77	14.18	15.53	6

Compound	0°C	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	Ref.
$Tm(NO_3)_3$				67.9									1:13
$UO_2(NO_3)_2$	49.52	51.82	54.42	55.85	57.55	61.59	67.07						1:55
$Y(NO_3)_3$	55.57	56.93	58.75	59.86	61.11*	63.3*	64.9	67.9	72.5				1:13
$Yb(NO_3)_3$				70.5									1:13
$ZnBr_2$	79.3	80.1	81.8	83.0	84.1	85.6	85.8	86.1	86.3	86.6	86.8	87.1	6
ZnC_2O_4		0.0010	0.0019	0.0026									5
$ZnCl_2$		76.6	79.0	80.3	81.4	81.8	82.4	83.0	83.7	84.4	85.2	86.0	6
$Zn(ClO_4)_2$	44.29*			46.27*			48.70						7
ZnF_2				1.53									5
ZnI_2	81.1	81.2	81.3	81.4	81.5	81.7	82.0	82.3	82.6	83.0	83.3	83.7	6
$Zn(IO_3)_2$			0.58	0.64	0.69	0.77	0.82						5
$Zn(NO_3)_2$	47.8	50.8	54.4	54.6	58.5	79.1	80.1	87.5	89.9				6
$ZnSO_3$			0.1786	0.1790	0.1794	0.1803	0.1812						5
$ZnSO_4$	29.1	32.0	35.0	36.6	38.2	41.3	43.0	42.1	41.0	39.9	38.8	37.6	6
$ZnSeO_4$	33.06	34.98	37.38	38.79	40.34								5

