Lambda Calculus Cheat Sheet

CSC 131

September 12, 2006

1 Lambda calculus syntax

Lambda calculus terms are variables, function applications, or function definitions:

$$M ::= v \mid (M M) \mid \lambda v. M$$

where "v" represents a variable symbol.

Computation takes place by substituting in actual parameters for *free occur*rences of formal parameters, which are defined by induction on the structure of lambda calculus terms as follows:

Definition 1.1 If M is a term, then FV(M), the collection of free variables of M, is defined as follows:

- 1. $FV(x) = \{x\}$
- 2. $FV(M N) = FV(M) \cup FV(N)$
- 3. $FV(\lambda v. M) = FV(M) \{v\}$

Definition 1.2 We write [N/x]M to denote the result of replacing all free occurrences of identifier x by N in expression M.

- 1. $[N/x]x \stackrel{\Delta}{=} N$,
- 2. $[N/x] y \stackrel{\triangle}{=} y$, if $y \neq x$,
- 3. $[N/x](L M) \stackrel{\Delta}{=} ([N/x]L)([N/x]M)$,
- 4. $[N/x](\lambda y. M) \stackrel{\Delta}{=} \lambda y. ([N/x] M)$, if $y \neq x$ and $y \notin FV(N)$,
- 5. $[N/x](\lambda x. M) \stackrel{\Delta}{=} \lambda x. M.$

2 Rules of Computation

Definition 2.1 The reduction rules for the lambda calculus are given by:

- $(\alpha) \ \lambda x. \, M \xrightarrow{\alpha} \lambda y. \, ([y/x] \, M), \ \ \textit{if} \ \ y \not \in FV(M).$
- (β) ($\lambda x. M$) $N \xrightarrow{\beta} [N/x] M.$
- $(\eta) \lambda x. (M x) \xrightarrow{\eta} M.$