

Predicting Electricity Usage: Deliverable 1

Data Extraction, Processing and Initial Modeling

Agenda

Introduction

Data

Variables

Pre-Modeling

Modeling

Results

Tuesday, February 14, 2023

Introduction

Problem

What will energy consumption look like after 2014?

Objective

Predict energy consumption after 2014 using data from 2011-2014

From:

Raw uncleaned dataset 'LD2011 2014.txt'

To:

Trained SARIMA model with performance analysis

Value Creation

Evaluate the accuracy of a forecasting model on the data

Predict post-2014 energy consumption

Clean raw dataset so it is usable for other forecasting models

Data

Data Extraction

- Source: https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014#
 - Dataset is in a .zip file; extraction yields a .txt file
 - Text file delimited by ";"
 - Decimal values encoded as 0.00
 - Values in kW per 15 minutes to convert to kWh, values must be divided by 4
 - Missing values ie) accounts created during the timeframe are encoded with zeros
 - Biannual time change results in either one hour of zeros or aggregation, depending on the season
- Shape of (140256, 370), or 140,256 rows and 371 columns (one for Datetime, 370 accounts)
- Head of raw data:

Data Processing

- Data Extraction Process
 - Read entire dataset delimited by ";" into pandas DataFrame object
- Data Diagnostics
 - Dataset is clean (i.e. no duplicates, missing values, etc.)
 - Time change assumed not to affect overall trend (occurs every year)
- Modeling Preprocessing
 - Transform data into long pivot form
 - Divide all values by 4 to arrive at kWh, a unit of energy
 - Aggregate the dataset by account ID, year and week

Variables

Variables Overview

 Variable that is predicted in the forecasting model Weekly usage of electricity in kWh is our "y" Denoted in DataFrame as value Organized into direct or derived variables Direct variable: Directly from dataset Derived variable: Created by manipulating direct variables All variables are direct 	Target Variables	Predictive Variables
	Weekly usage of electricity in kWh is our "y"	 Organized into direct or derived variables Direct variable: Directly from dataset Derived variable: Created by manipulating direct variables

Predictive Variables Overview

- Initial model fit (SARIMA) does not use any exogenous variables
- SARIMA components (Autoregressive, Moving Average) use target variables at different lags, and weighted average forecast errors, as predictor variables, as well as a seasonal component.
- Future models ie) SARIMAX will use exogenous variables
 - ie) Holiday Week indicator, additional seasonality component ie) quarterly, monthly

Pre-Modeling

Pre-Modeling

- Exploratory Data Analysis
 - Identify trend and seasonality in the data for initial modeling
 - Perform this exercise on all accounts aggregated, then apply the chosen model to each individual account
- Pre-Modeling Utility Functions
 - o Create utility functions for train-test split, MAPE, walk-forward validation, etc.

Pre-Modeling

Trend / Seasonality

Average Energy Use (kWh) - All Accounts

Time series plot and PSD indicate a first-order downward trend and yearly seasonality

Maximum power corresponds to a period of 51.75

Pre-Modeling Seasonal Decomposition

- First order-trend indicates first-order differencing / integration component will be required
- Seasonal component has a yearly period
- Model parameters: SARIMA(0, 1, 1)(0, 1, 1)₅₂

Modeling

Modeling

- Algorithmic Solution Design
 - Fit an initial model with SARIMA
 - Evaluate MAPE on complete dataset and individual accounts
- Evaluation Metric
 - Mean Absolute Percentage Error (MAPE)
- Algorithmic Solution Finalization
 - Compare Predictions vs. Actual data to test the SARIMA model, MAPE calculations by account
- Future Modeling Work
 - Exogenous variables, development of SARIMAX model
 - Hyperparameters Selection of Algorithms
 - GridSearch to find the best parameters

Results

Results: All Accounts Combined

First Pass at SARIMA(0, 1, 1)(0, 1, 1)₅₂

- Train-Test Split
 - Training Set: First 80% of Timeframe
 - Test Set: Last 20% of Timeframe
- Test Set MAPE = 4.5%

Results: Individual Accounts

First Pass at SARIMA(0, 1, 1)(0, 1, 1)₅₂

- Train-Test Split (Each Account)
 - Training Set: First 80% of Timeframe
 - Test Set: Last 20% of Timeframe
- Test Set MAPE varies greatly

SARIMA Prediction MAPE: All Accounts

Results: Individual Accounts

Test Set MAPE varies greatly

Account MT_127 MAPE = 1700%*

*Skewed due to actual values close to zero, but not equal to zero

Results: Individual Accounts

Total MAPE: Assume n total accounts, each with m predictions

$$M = \frac{1}{n^* m} \sum_{i=1}^{n} \sum_{j=1}^{m} \left| \frac{A_{ij} - F_{ij}}{A_{ij}} \right|$$

For this MAPE calculation, total test set MAPE = 15.6% Using the median instead of the mean, median MAPE = 6.5%

Team

Kevin TaylorMS Data Science Student

Nathaniel Ho
MS Data Science Student

Kelly DuMS Data Science Student