Arquitetura e Organização de Computadores

Evolução e Desempenho de Computadores

Prof. Tiago G. Botelho Material adaptado do livro de Willian Stallings

ENIAC - passado

- **XIntegrador Numérico eletrônico e Computador**
 - △17.468 válvulas, 1.500 relês. No total, 30 Ton.

 - Universidade da Pennsylvania
- **X**Tabelas de trajetórias para armas (balística)
- Iniciado em 1943

 High proposition de la companya de la compan
- ★Terminado em 1946
- **#**Usado até 1955

ENIAC – mais detalhes

- ☑ Decimal (não binário)
- ☑ Programado manualmente por interruptores

von Neumann/Turing

- **#** Conceito de programa armazenado
- **X** Memória principal que armazena programas e dados
- **X** ALU operando em dados binários
- **X** Unidade de controle interpretando instruções de memória e executando
- # Equipamentos de entrada e saída operados pela unidade de controle
- ★ Completado em 1952

Arquitetura da Máquina de von Neumann

IAS - detalhes

- # Palayras 1000 x 40 bit
 - Número binário
 - ✓ Instruções 2 x 20 bit
- **X** Conjunto de registradores (armazenamento na CPU)
 - □ Registrador de buffer de memória (MBR)
 - ☑ Registrador de endereço de memória (MAR)
 - □ Registrador de instrução (IR)
 - □ Registrador de buffer de instrução (IBR)

 - △Acumulador (AC)
 - Multiplicador de quociente (MQ)

Transistores

- **#**Tubos à vácuo substituídos
- **#**Menor
- **#**Mais barato
- **#**Menor dissipação de calor
- **#**Dispositivo de estado sólido
- #Feito de silício (areia)
- **XInventado em 1947 nos Laboratórios Bell**
- ****Permitiu o surgimento do microchip**

Computadores em Base de Transistores

- **#**Segunda Geração de Máquinas
- Redução muito significativa no tamanho e no preço dos computadores
- **#IBM** 7000
- **#DEC** (Digital Equipment Corporation) 1957
 □ Produziu PDP-1

Microelectrônica

- **XLiteralmente "eletrônica pequena"**
- **X**Um computador é composto de portas, células de memória e interconexões
- **#**Estes podem ser fabricados em um semicondutor
- **#**Exemplo: silicon wafer

Geração de Computadores

- **X** Tubo à vácuo − 1946 − 1957
- # Transistor 1958 1964

Geração de Computadores

Geração	Dadas Aprox.	Tecnologia	Velocidade (Operações por segundo)
1	1946-1957	Válvula	40.000
2	1958-1964	Transistor	200.000
3	1965-1971	Integração em baixa e média escalas	1.000.000
4	1972-1977	Integração em grande escala	10.000.000
5	1978	Integração em escala muito grande	100.000.000

Lei de Moore

- # Densidade aumentada dos componentes em um chip
- **₩** Gordon Moore co-fundador da Intel
- X Número de transistores por chip dobrará a cada ano
- ★ Desde 1970 o desenvolvimento diminuiu um pouco
 Número de transistores dobra a cada 18 meses
- **X** Custo de um chip permaneceu quase que inalterado
- # Densidade de empacotamento mais alta significa caminhos elétricos mais curtos, tendo um desempenho mais alto
- **X** Tamanho menor aumenta flexibilidade
- **X** Exigências menores
- **#** Poucas interconexões aumentam a confiabilidade

Crescimento no número de transistores no chip do processador

Séries IBM 360

- **#** 1964
- # Substituiu a (& não compatível com) série 7000
- # Primeira "família" de computadores planejada
 - □ Conjuntos de instrução semelhantes ou idênticos

 - △Aumento do número de portas de E/S (mais terminais)

Memória de Semicondutor

- **3**1970
- #Fairchild produziu a primeira memória de semicondutor
- **X**Tamanho de um único núcleo
 - Ex.: 1 bit de armazenamento magnético
- **#256** bits
- **#**Leitura não-destrutiva
- ******Muito mais rápido que um núcleo
- *****Capacidade dobra aproximadamente a cada ano
- #Preço por bit cai continuamente

Intel

- Seguido em 1972 pelo 8008

 Seguido em 1972 pelo 8008
 - △8 bit
 - Ambos desenhados para aplicações específicas
- **#**1974 8080
 - Primeiro microprocessador da Intel com propósito geral

#1971, Intel 4004

△4 bits, 740 KHz

#1972, Intel 8080

△8 bits, 2 MHz

#Altair

Considerado o primeiro computador pessoal

Modelo básico: placas, luzes, chips, gabinete, chaves e fonte de alimentação

△256 bytes de SRAM

#Altair

- #1976, Steve Jobs e Steve Wozniak
 - ✓ Fundação da Apple, com o Apple I
- **#**Apple I
 - ✓Vendido "já montado"

 - □ Fitas K7 eram utilizadas para armazenamento

#Curiosidade

- □ Rádios "transmitiam" softwares ao vivo
- □ Primeira rede de pirataria de softwares ;-)

%Apple I

From Computer Desktop Encyclopedia Reproduced with permission. © 1996 Apple Computer, Inc.

#Apple II

- Comercializado em um gabinete plástico com teclado incorporado
- △ Aproximadamente 10.000 dólares atuais

☑Utilizava memórias DRAM, enquanto o Altair utilizava SRAM

#Atari 800

- □ Final da década de 70
- △16 KB de memória
- △Atari-OS

#IBM PC Original

- △1981, a IBM, especializada em mainframes, lança seu primeiro computador pessoal
- △Até 1 MB de memória, 4,77 MHz
- #Primeiro PC com arquitetura aberta
- **Nessa época, os HDs ainda eram raros e muito caros

#1984

△PC AT

☑Processador 286 de 6 MHz até 16 MHz, HD de 10 MB, monitor (64 cores), disquetes de 5 ¼ de 1.2 MB, 256 KB a 2 MB de memória

⊠Totalmente em 16 bits

⊠Slots ISA

- ⊯Em outubro de 1985, a Intell lança o 386
 - △32 bits, interna e externamente
 - △Até 4 MB de memória
 - △16 MHz a 20 MHz
 - Primeiro processador a utilizar memória cache
- **#**Um pouco antes, em 1983, a Apple lança o LISA
 - Sistema com interface gráfica e mouse
 - △5 MHz, 1 MB RAM, HD de 5 MB
 - Não obteve sucesso, era muito caro.

 □ Não obteve sucesso, era muito caro.
 - Serviu de base para o Macintosh

#Macintosh

- Esse sim um grande sucesso da Apple
- №8 MHz, 128 KB RAM e rodava o MacOS
- #Processadores 386 + Windows 3.1
 - Os PCs voltam a recuperar o terreno perdido para o macintosh

3486

- △1,2 milhões de transístores, contra 275.000 do 386
- Co-processador aritmético integrado
- △8 KB de cache integrada (caches L1 e L2)
- ☑Introduziu ainda o pipeline de instruções (5 estágios)

#Pentium

- △Aumento da quantidade de cache L1 (dados e instruções)
- Primeiro processador superescalar

#Pentium, Athlon

- △As mudanças se limitaram a:
 - **⊠**Aumento de transistores
 - **⊠**Aumento de clock e de cache
 - ☑Aumento de instruções: MMX e 3D-Now

***Processadores Dual Core**

- □ Dois núcleos de processamento em uma pastilha de silício

Acelerando

- **X** Com a queda de preços, os computadores passaram a ser utilizados para as mais diversas aplicações
- ****** Aplicações que exigiam mais poder de processamento
- # Formas de "acelerar":

 - On board cache
 - On board L1 & L2 cache
 - ☑ Previsão de desvios
 - △Análises do fluxo de dados
 - Execução Especulativa

Balanceamento do Desempenho

- ****Velocidade do processador aumentada**
- *****Capacidade de memória aumentada
- **XA** velocidade da memória "fica para trás" em relação à velocidade do processador

DRAM e Características do Processador

Soluções

- X Aumento do número de bits obtidos em cada acesso à memória
 - □ Faz a DRAM "mais larga" ao invés de "mais funda"
- **#** Mudança da Interface DRAM
 - **△**Cache
- Reduz a frequência de acesso à memória
 - □ Cache mais complexa e cache "no chip"
- **X** Aumento da largura da banda de interconexões
 - △Alta velocidade dos barramentos

Recursos na Internet