1

DEFINIÇÃO

Denomina-se circunferência o conjunto de todos os pontos de um plano equidistantes de um ponto fixo C, denominado centro da circunferência.

Em que
$$\overline{CA} = \overline{CB} = \overline{CD} = r$$
 (raio da circunferência)

EQUAÇÃO DA CIRCUNFERÊNCIA

Considere o plano cartesiano e a circunferência de centro C (a, b) e raio r, conforme indica a figura.

O ponto P (x, y) pertence à circunferência se:

$$d(P,C) = r \implies \sqrt{(x-a)^2 + (y-b)^2} = r$$

$$(x-a)^2 + (y-b)^2 = r^2$$
Equação reduzida da circunferência

No caso particular de o centro da circunferência estar na origem, isto é, a=b=0, a equação será:

$$(x-0)^2 + (y-0)^2 = r^2 \implies x^2 + y^2 = r^2$$

EQUAÇÃO GERAL DA CIRCUNFERÊNCIA

A equação reduzida da circunferência é dada por $(x-a)^2 + (y-b)^2 = r^2$. Desenvolvendo os quadrados, obtemos:

$$x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}$$
$$x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} - r^{2} = 0$$

Fazendo
$$\alpha = -2a$$
, $\beta = -2b$ e $\gamma = a^2 + b^2 - r^2$, vem:

$$x^2 + y^2 + \alpha x + \beta y + \gamma = 0$$

Equação geral da circunferência

Toda circunferência pode ser representada por uma equação da forma $x^2 + y^2 + \alpha x + \beta y + \gamma = 0$, mas nem toda equação dessa forma representa uma circunferência.

Exemplos:

4) Determinar as coordenadas do centro e o raio da circunferência de equação $x^2 + y^2 - 6x + 2y + 6 = 0$.

- 5) Verificar se a equação $3x^2 + 3y^2 + 6x + 9y + 6 = 0$ representa uma circunferência.
 - 6) Determinar a forma geral da equação da circunferência com centro no ponto Q (-1, 2) e raio r=3.

EXERCÍCIOS

1) Em cada caso, obter as coordenadas do centro e a medida do raio da circunferência, caso a equação represente uma circunferência:

a)
$$x^2 + y^2 + x - \frac{2y}{3} = \frac{23}{36}$$

b)
$$16x^2 + 16y^2 - 8x - 31 = 0$$

c)
$$x^2 + y^2 + 10x - 4y - 7 = 0$$

d)
$$4x^2 + 4y^2 + 4x - 4y + 1 = 0$$

e)
$$3x^2 + y^2 - x - y = 0$$

- 2) Uma circunferência de raio r = 4 tem o centro no ponto Q (0, -2). Determine a equação dessa circunferência.
- 3) Dada a circunferência de equação $(x+5)^2 + (y-2)^2 = 7$, determine as coordenadas do centro C (a, b) e o raio r.
- Verifique entre os pontos A (3, 0), B (6, 3) e C (-2, -1), quais pertencem à circunferência de equação $(x-3)^2 + (y+1)^2 = 25$.
- 5) Determine a equação da circunferência com centro no ponto Q (1, -2) e que passa pelo ponto M (0, 3).
- **6**) Observando a circunferência da figura ao lado, determine a sua equação.

- 7) Verifique, analiticamente, se a equação $4x^2 + 4y^2 + 24x 16y + 62 = 0$ representa uma circunferência. Em caso afirmativo determine o centro e o raio e em caso negativo justifique sua resposta.
- 8) Por que a equação $2x^2 + 5y^2 2x 10y + 1 = 0$ não tem como gráfico uma circunferência?
- 9) Verifique se a equação $2x^2 + 2y^2 + 2x + 2y 4 = 0$ representa uma circunferência. Em caso afirmativo determine o centro e o raio e em caso negativo justifique sua resposta.

RESPOSTAS

1) a)
$$C(-\frac{1}{2}, \frac{1}{3})$$
 $e \ r = 1$

b)
$$C(\frac{1}{4}, 0)$$
 e $r = \sqrt{2}$

c)
$$C(-5,2)$$
 e $r=9$

d)
$$C(-\frac{1}{2}, \frac{1}{2})$$
 e $r = \frac{1}{2}$

e) Não representa circunferência . justifique.

2)
$$x^2 + y^2 + 4y - 12 = 0$$

3)
$$C(-5,2) e r = \sqrt{7}$$

5)
$$(x-1)^2 + (y+2)^2 = 26$$

6)
$$(x-3)^2 + (y-3)^2 = 8$$

POSIÇÕES RELATIVAS ENTRE PONTO E CIRCUNFERÊNCIA

Um ponto pode ser interno, externo ou pode pertencer a uma dada circunferência de raio r. Observe as figuras:

D(P, C) < r

P é interno

D(P, C) = r

P ∈ circunferência

P

 $D(P, C) \succ r$

P é externo

EXEMPLOS

- 7) Determinar a posição dos pontos A (2, 0), B (-1, 3) e C (4, 5) em relação à circunferência de equação $x^2 + y^2 + 8x 20 = 0$. Fazer solução gráfica e analítica
- Qual a condição que deve verificar o número m, para que o ponto A (4, 3) seja interno à circunferência de equação $x^2 + y^2 4x 2y + m = 0$?

POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA

Uma reta l e uma circunferência λ podem ocupar as seguintes posições relativas:

$$D(C, l) < r$$

$$D(C, l) = r$$

D (C,
$$l$$
) > r

- $l \in \lambda$ são secantes. A reta l intercepta a circunferência λ em dois pontos.
- $l \in \lambda$ são tangentes A reta l intercepta a circunferência λ em um ponto chamado ponto de tangência.
- $l \in \lambda$ são não-secantes ou exteriores. A reta l não intercepta a circunferência λ .

Observação:

Podemos, também, determinar a posição relativa de uma reta e uma circunferência procurando os pontos de intersecção da reta com a circunferência.

Isso se consegue resolvendo o sistema formado pelas equações da reta e da circunferência.

$$\begin{cases} ax + by + c = 0 \\ x^2 + y^2 + \alpha x + \beta y + \gamma = 0 \end{cases}$$

Como a resolução envolve uma equação do 2º grau, podemos ter:

 $\Delta > 0$ (2 pontos comuns) \Rightarrow a reta é *secante* à circunferência.

 $\Delta = 0$ (1 pontos comum) \Rightarrow a reta é *tangente* à circunferência.

 $\Delta < 0$ (nenhum pt comum) \Rightarrow a reta é *exterior* à circunferência.

EXEMPLOS

- 9) São dadas a reta l, de equação -x+y+2=0, e a circunferência λ , de equação $x^2+y^2+6x-8y=0$. Qual é a posição da reta l em relação à circunferência λ ?
- 10) Determinar a equação da circunferência com centro no ponto C(0, 3) e que é tangente à reta s de equação x+y+2=0.

EXERCÍCIOS

- 1) Qual a posição do ponto A (-3, 4) em relação a cada uma das circunferências definidas por:
 - (a) $2x^2 + 2y^2 + x + y 4 = 0$
 - **(b)** $x^2 + y^2 2x + 4y 3 = 0$
 - (c) $x^2 + y^2 8x 20y + 10 = 0$
 - 2) Qual a posição relativa entre a reta e a circunferência definida por:
 - (a) x+y+3=0 e $x^2+y^2-4x-2y-13=0$
 - **(b)** 3x+2y+10=0 e $x^2+y^2-2x-3=0$

(c)
$$y = x - 1 = 0$$
 $e\left(x + \frac{1}{2}\right)^2 + y^2 = \frac{9}{4}$

- 3) Determine os pontos de intersecção da reta l e da circunferência λ , nos seguintes casos:
 - (a) $l: y = x e x^2 + y^2 2x + 8y + 4 = 0$
 - **(b)** $l: 2x+y-5=x e x^2+y^2=5$
- 4) A reta s, de equação x+y-7=0, e a circunferência, de equação $x^2+y^2-6x-4y+9=0$, são secantes nos pontos A e B. Calcule o comprimento da corda AB.
- 5) Determine as coordenadas dos pontos de intersecção da circunferência de equação $x^2 + y^2 8x 9 = 0$ com os eixos das coordenadas.
- 6) A reta l de equação x = 3 é tangente à circunferência de equação $x^2 + y^2 + 4x 2y + k = 0$. Nessas condições, calcule o valor de k.
- 7) Uma circunferência tangencia o eixo *x* e tem o centro no ponto C (3, -2). Determine a equação dessa circunferência.
- 8) Determine a equação de uma circunferência tangente ao eixo y e à reta x = 4 e que tem o centro no eixo x.
- 9) A circunferência com centro no ponto C (1, 1) é tangente à reta de equação x+y-10=0. Calcule a equação da circunferência.
- 10) Qual é a equação de uma circunferência concêntrica à circunferência de equação $x^2 + y^2 8x 4y + 4 = 0$ e que é tangente à reta l de equação 4x + 3y + 13 = 0?
- 11) A circunferência de equação $x^2 + y^2 5x + 4y + 4 = 0$ intercepta o eixo dos x nos pontos A e B. Sabendo que C é o centro da circunferência, determine:
 - (a) As coordenadas dos pontos A, B e C;
 - (b) A área do triângulo ABC.
- 12) Uma circunferência de centro no ponto Q (2, 0) passa pelo ponto de intersecção das retas l_1 e l_2 , de equações x+y-6=0 e x-y-2=0, respectivamente. Determine a equação dessa circunferência.
- 13) Determine as coordenadas do centro da circunferência que contém os pontos A (5, 4), B (-2, 3) e C (5, 3).
- 14) Calcule a equação da circunferência que passa pela origem e pelos pontos de intersecção da reta $\frac{x}{6} + \frac{y}{8} = 1$ com os eixos coordenados.
- 15) Sendo C a circunferência $x^2 + y^2 = 4$ e s a reta x + y = 8.
 - (a) Determine uma equação da reta perpendicular a s e que passa pelo centro de C.
 - (b) Dentre os pontos equidistantes de C e s, determine aquele que está mais próximo de s.
- 16) Ache a equação da circunferência circunscrita ao triângulo de vértices (2, 0), (2, 3) e (1, 3).

- 17) Sabendo que uma circunferência passa pelas intersecções das retas definidas pelas equações x = y, y = 0 e x = 7, determine:
 - (a) A equação dessa circunferência;
 - (b) A área do círculo formado por essa circunferência.
- 18) Determine a equação da circunferência que passa pelos pontos M (0, 2) e N (2, 1) e tem o centro sobre a reta de equação -x+2y+7=0
- 19) Uma circunferência l passa pela origem dos eixos coordenados, intercepta o eixo das abscissas no ponto (6, 0) e tem o centro na reta y = 4. Determine a equação de l.

RESPOSTAS

- 1) (a) externo
- (b) pertence
- (c) interno
- 2) (a) tangentes
- (b)exteriores
- (c) secantes
- **3**) **(a)** (-1, -1) e (-2, -2)
- **(b)** (2, 1)
- **4)** $2\sqrt{2}$
- 5) eixo *x*: (9, 0) e (-1, 0) eixo *y*: (0, 3) e (0, -3)
- **6)** -20
- 7) $x^2 + y^2 6x + 4y + 9 = 0$
- $8) \quad x^2 + y^2 4x = 0$
- **9**) $(x-1)^2 + (y-1)^2 = 32$
- **10)** $x^2 + y^2 8x 4y 29 = 0$
- **11**) (a) A(1,0), B(4,0) $e \ C\left(\frac{5}{2},-2\right)$

- **(b)** 3
- **12)** $(x-2)^2 + y^2 = 8$
- **13**) $\left(\frac{3}{2}, \frac{7}{2}\right)$
- **14**) $(x-3)^2 + (y-4)^2 = 25$
- **15)** (a) y = x
- **(b)** $\left(\frac{4+\sqrt{2}}{2}, \frac{4+\sqrt{2}}{2}\right)$
- **16)** $x^2 + y^2 3x 3y + 2 = 0$
- **17**) **(a)** $x^2 + y^2 7x 7y = 0$
 - **(b)** $\frac{49\pi}{2}$
- **18**) $(x+2)^2 + \left(y + \frac{9}{2}\right)^2 = \frac{185}{4}$
 - 19) $x^2 + y^2 + 4x 6y 68 = 0$