Development of an Electro-Oculography (EOG) Measurement System

Christopher Fabian, Mike Fuller, Bin Guo, Xiefan Lin and Mike Kavanagh

> BIOM 611 Project Presentation April 30, 2002

EOG Overview of Function

- Eye position:
 - Left, potential is positive
 - Right, potential is negative
 - Straight, EOG output is zero
- Approximately linear over 30 degree arc
- Accurate to 1 degree

Applications

- Sleep and dream research
- Reading ability and visual fatigue

La sorcière transforma la petite souris en princesse. Elle désirait lui faire épouser le prince me veilleux.

© Metrovision

Applications - Cont'd

- Retinal dysfunction
 - Some disorders of the retina exhibit abnormal or absent changes in the corneal-retinal potential during dark and light adaptation processes.
- Vestibular and balance dysfunction
 - Nystagmus: characteristic slow-phase/fast-phase eye movement measurable by EOG
 - prevent drunk drivers from taking to the road.

Actual EOG Circuit

Testing

- Left, right, left, right
- Left, center, right, center
- Visual pursuit
 - Sinusoid @ 0.1 Hz
 - Sinusoid @ 0.4 Hz
- Optokinetics
 - Rotating light bars
 - Evokes nystagmus

Brief Description of Nystagmus

Nystagmus is an involuntary eye movement characterized by a slow-phase and fast-phase.

Nystagmus – Cont'd

- ENG can be used to diagnose balance and dizziness problems
- Possible causes of nystagmus:
 - Vestibular-ocular reflex
 - Nervous system dysfunction (e.g. alcohol)
 - Visual Field stimulus
 - Optokinetics

© Micromedical Technologies

Test Result Summary

- Overall, worked very well!
- Measurement system exhibited linear behavior within the $\pm 30^{\circ}$ range of motion
- Drift was an issue, but resolved with periodic calibration
- Noise reduced while preserving required bandwidth

Cleaning up the Signal

- Calibration
 - The corneo-retinal potential is not stable and varies with a number of factors, in particular the level of light. Light source should be adjustable by the use of filters or other means.
- Anti-drift
 - DSP, calibration procedure, etc.

Cleaning up the Signal – Cont'd

- A masking cone
 - May be used to reduce electrical interference (actually provided by some manufacturers).
- Artifact rejection
 - Eliminates some of the obvious peaks or drifts in the distorted recorded waveforms due to blinks and other movement.

Making It Clinically Usable

- This simple design provides virtually good results, so there is not much left to do with the circuit itself.
- A/D conversion Ł Computer Program:
 - Artifact rejection
 - Robust control of lights.
 - Usually alternately illuminated for 1 second each, ten times per minute.
 - Waveform display & user interface
 - Data analysis
 - Decision-making procedures

DISCLAIMER:

No group members were (irreparably) harmed during the "testing" of this "device."

Acknowledgment

We would like to thank Jorge Gonzalez, M.S. of the UVA Vestibular and Balance Center for his assistance in the testing of our instrument.

