Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

•	Информационных технологий и управления
Кафедра	Интеллектуальных информационных технологий
	K защите допустит ϵ
	Заведующий кафедро
	Д.В. Шункеви
	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
	к расчетной работе
по ді	исциплине «Проектирование программного обеспеченя
	интеллектуальных систем»:
Найти	граф замыкания неориентированного графа
	БГУИР РР 1-40 03 01 64
Студент:	Д.В. Самута
Группа:	221703

Руководитель:

С. А. Никифоров

СОДЕРЖАНИЕ

1	Анализ подходов к нахождению графов замыкания	5
	1.1 Постановка задачи	5
	1.2 Основные определения	5
	1.3 Алгоритмы решения задачи	5
2	Проектирование	6
	Разработка	7
	3.1 Пример работы	7
	3.2 Тестирование	
\mathbf{C}	иисок использованных источников	13

1 АНАЛИЗ ПОДХОДОВ К НАХОЖДЕНИЮ ГРАФОВ ЗАМЫКАНИЯ

1.1 Постановка задачи

Разработать агент для нахождения графа-замыкания для данного графа

1.2 Основные определения

Граф [1] - геометрический объект, состоящий из точек (вершин) и линий, которые их соединяют (рёбер).

Петля [2] - ребро, инцидентное одной и той же вершине.

Замыкание или отождествление [3] - говорят, что пара вершин vi и vj в графе G замыкается (или отождествляется), если они заменяются такой новой вершиной, что все ребра в графе G, инцидентные vi и vj, становятся инцидентными новой вершине.

Граф замыкания [3] - граф, полученный в результате замыкания (отождествления) данного графа. Пример графа замыкания приведен на рисунке 1.1

Рисунок 1.1 – Исходный граф и полученный граф замыкания

1.3 Алгоритмы решения задачи

Для данной задачи алгоритмов нет, следовательно использован был мною придуманный алгоритм: замыкание двух любых вершин.

2 ПРОЕКТИРОВАНИЕ

На вход подается неориентированный граф.

Алгоритм:

- а) Берем одну любую вершину графа;
- б) Берем вторую вершину графа
- в) Создаем новую вершину(которая в дальнейшем заменит 1-ую и 2-ую вершину).
 - г) Находим соседей 1-ой вершины
 - д) Находим соседей 2-ой вершины
 - е) Проверяем наличие связи между первой и второй вершиной
 - 1) Если связи нет, то переходим к следующему пункту
 - 2) Если связь есть, создаем петлю у созданной вершины
- ж) Создаем ребра между новой вершиной и соседями 1-ой и 2-ой вершины
- з) Создаем граф, в котором заменены первая и вторая вершина на созданную

3 РАЗРАБОТКА

3.1 Пример работы

Для запуска агента необходимо:

Найти один из тестов в системе, отображение графов в поисковой выдаче придено на рисунке 3.1

Рисунок 3.1 – Нахождение тестовых графов

— Кликнуть ПКМ на один из тестов, список агентов приведен на рисунке 3.2

Рисунок 3.2 – Список всех агентов после нажатия ПКМ

- Нажимаем на "Граф замыкания для данного графа?"
- В результате получаем граф замыкания для графа, результат можно увидеть на картинке 3.3

Рисунок 3.3 – Граф замыкания для графа

3.2 Тестирование

а) Тест 1Граф, рисунок 3.4:

Рисунок 3.4 – 1-ый граф

Граф замыкания, рисунок 3.5:

Рисунок 3.5 – Граф замыкания для 1-го графа

б) Тест 2 Граф, рисунок 3.6:

Рисунок 3.6 – 2-ой граф

Граф замыкания, рисунок 3.7:

Рисунок 3.7 – Граф замыкания для 2-го графа

в) Тест 3 Граф, рисунок 3.8:

Рисунок 3.8 – 3-ий граф

Граф замыкания, рисунок 3.9:

Рисунок 3.9 – Граф замыкания для 3-го графа

г) Тест 4 Граф, рисунок 3.10:

Рисунок 3.10 – 4-ый граф

Граф замыкания, рисунок 3.11:

Рисунок $\it 3.11$ – Граф замыкания для 4-го графа

д) Тест 5 Граф, рисунок 3.12:

Рисунок 3.12-5-ый граф

Граф замыкания, рисунок 3.13:

Рисунок
 $\it 3.13$ — Граф замыкания для 5-го графа

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Habr.com Теория графов. Термины и определения в картинках. https://habr.com/ru/companies/otus/articles/568026/.
- [2] Qfaz12. Habr.com Теория Графов. Часть 2 Смежность, инцидентность, петли. https://habr.com/ru/articles/565998/.
- [3] Электронный учебно-методический комплекс по дисциплине дискретная математика Для студентов специальности 1-40~03~01.~2006. https://studfile.net/preview/1399244/.