

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАМНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.03 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

По лабораторной работе № 1

Дисциплина:	<u>Моделирование</u>		
Студент	ИУ7-62Б 		Н.А. Гарасев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			В.М. Градов
		(Подпись, дата)	(И.О. Фамилия)

Тема: программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы: получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (РунгеКутта).

Входные данные:

$$u'(x)=x^2+u^2,$$

 $u(0)=0$

Ход работы:

Для **метода Пикара** необходимо вычислить многочлены приближения. Процедура последовательных приближений **метода Пикара** реализуется

 $y_{s}(x) = v_{0} + \int_{x_{0}}^{x} \varphi(t, y_{s-1}(t)) dt$ согласно следующей схеме:

Данная процедура реализована автоматически в Листинге 1.

Листинг 1. Приближения Пикара.

```
class Polynom:
    def __init__ (self, k, d):
        self.k = k
        self.d = d

def integration(self):
        self.d += 1
        self.k /= self.d

def __mul__ (self, other):
        if isinstance(other, Polynom):
            return Polynom(k=other.k * self.k, d=other.d + self.d)
        else:
            return Polynom(k=other * self.k, d=self.d)

def __str__ (self):
        return f'k = {self.k}, d = {self.d} \n'

def cop(self):
        return self.k, self.d
```

```
def opt(poly):
    poly.sort(key=lambda x: x.d, reverse=True)
    i = 0
    while i < len(poly) - 1:</pre>
        if poly[i].d == poly[i + 1].d:
            poly[i].k += poly[i + 1].k
            del poly[i + 1]
            i -= 1
        i += 1
def integration(poly):
    for i in poly:
        i.integration()
def f(poly):
    tmp = []
    for i in range(len(poly) - 1):
        for j in range(i + 1, len(poly)):
            tmp.append(poly[i] * poly[j] * 2)
    for i in range(len(poly)):
        poly[i].d *= 2
        poly[i].k = poly[i].k ** 2
        tmp.append(poly[i])
    return tmp
def cop(poly):
    tmp = []
    for i in poly:
        k, d = i.cop()
        tmp.append(Polynom(k, d))
    return tmp
def init_pickard():
    pool = []
    pol = [Polynom(1, 2)]
    integration(pol)
    pool.append(cop(pol))
    for i in range(3):
        pol = f(pol)
        pol.append(Polynom(1, 2))
        integration(pol)
        opt(pol)
        pool.append(cop(pol))
    return pool
def calc poly(pol, x, acc=3):
    res = 0
    for i in pol:
        res += i.k * (x ** i.d)
    return round(res, acc)
```

 $Init_pickar()$ — функция, с которой начинается метод. Первоначально создаем полином (x^2), от которого берем интеграл и запоминаем как метод

Пикара с первым приближением. Затем прибавляем к нему (x^2) и повторяем предыдущие действия. Тем самым получаем метод Пикара с 4мя приближениями. Для вычисления значения приближения есть функция calc_poly, которая принимает полином и точку x, в которой мы ищем значение. Остальные функции являются вспомогательными для оптимизации вычисления полиномов Пикара n-ого приближения.

Задачу Коши можно решить другими методами, такие как метод Эйлера и метод Рунге-Кутта.

Метод Эйлера.

$$y_{n+1} = y_n + hf(x_n, y_n)$$

Листинг 2. Метод Эйлера

```
def func(x, y):
    return x * x + y * y

def euler():
    y = [0]
    for i in range(1, len(x)):
        y.append(y[i - 1] + step * func(x[i - 1], y[i - 1]))
    return y
```

Метод Рунге-Кутта

$$y_{n+1}=y_n+h[(1-lpha)k_1+lpha k_2]$$
 , где $k_1=f(x_n,y_n)$ $k_2=f(x_n+rac{h}{2lpha},y_n+rac{h}{2lpha}k_1)$, $lpha=rac{1}{2}$ или 1

Листинг 3. Метод Рунге-Кутта

```
def runge(a=0.5):
    y = [0]
    for i in range(1, len(x)):
        k1 = func(x[i - 1], y[i - 1])
        k2 = func(x[i - 1] + step / (2 * a), y[i - 1] + step / (2 * a) * k1)
        y.append(y[i - 1] + step * ((1 - a) * k1 + a * k2))
    return y
```

Листинг 4. Вывод результатов.

```
step = 10 ** -5
x min = 0
```

```
x max = 2.01
skip = 100
i = x min
n = int((x max - x min) / step) + 1
x = [x min + i * step for i in range(n)]
y euler = euler()
y_runge_1 = runge(a=0.5)
y_runge_2 = runge(a=1)
for i in range(n):
    if i % skip:
       continue
    tmp = f' | \{ round(i * step, 3) : <5 \} | '
    for pol in pool:
       tmp += f'{output(calc poly(pol, i * step))}''
    tmp += f'{output(y euler[int(i)])}'
    tmp += f'{output(y runge 1[int(i)])}'
    tmp += f'{output(y_runge_2[int(i)])}''
    print(tmp)
```

Результат программы:

Программа выводит таблицу, содержащую значения аргумента с заданным шагом в интервале [0, хтах] и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала хтах выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.

Пример вывода.

+	+	+					
X	Пикар 1	Пикар 2	Пикар 3	Пикар 4	Эйлер	Рунге а=0.5	Рунге а=1
+	+	+	++	+		+	+
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.01	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.996	2.651	4.654	7.116	10.262	138.949	139.902	139.902
11.997				10.317			162.663
11.998				10.372			194.267
11.999				10.428			241.111
2.0				10.484			317.720
2.001			7.245	10.540			465.678
2.002			7.271	10.597			871.516
2.003				10.654			6764.096
2.004			7.324	10.711			nan
2.005			7.351	10.769	inf		nan

Вопросы.

1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Каждое приближение Пикара вычисляет значение все точнее и точнее. А значит, что n-ое приближение вычисляет значения ближе к истинному, чем (n-1)-ое приближение.

Первое приближение: от 0 до 0,665

0.664	0.098	0.098
0.665	0.098	0.099
0.666	0.098	0.099
0.667	0.099	0.100
0.668	0.099	0.100

Второе приближение: от 0 до 0,92

0.919	0.259	0.268	0.268
0.92	0.260	0.268	0.269
0.921	0.260	0.269	0.270
0.922	0.261	0.270	0.271

Третье приближение: от 0 до 1,184

1.183	0.552	0.603	0.610	0.610
1.184	0.553	0.605	0.611	0.612
1.185	0.555	0.607	0.613	0.614
1.186	0.556	0.608	0.615	0.616

Для четвертого приближения Пикара нам необходимо знать пятое приближение Пикара, либо можно воспользоваться численными методами.

1.357	0.833	0.967	0.997	1.002	1.002	1.002	1.002
1.358	0.835	0.970	1.000	1.005	1.005	1.005	1.005
1.359	0.837	0.973	1.002	1.007	1.008	1.008	1.008
1.36	0.838	0.975	1.005	1.010	1.011	1.011	1.011
1.361	0.840	0.978	1.008	1.013	1.014	1.014	1.014
1.362	0.842	0.980	1.011	1.016	1.017	1.017	1.017

Четвертое приближение: от 0 до 1,359

Все вычисления производились для шага 10^-6

2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Численные методы зависят от шага. Возьмем точку x=2. Посмотрим, как меняются значения в этой точке в зависимости от численных методов.

Шаг = 10^-3

Эйлер: 126.597

Рунге-Кутта (а=0.5): 305.208

Рунге-Кутта (а=1): 300.663

 $\coprod a_{\Gamma} = 10^{-4}$

Эйлер: 270.068

Рунге-Кутта (а=0.5): 317.566

Рунге-Кутта (а=1): 317.490

 \coprod аг = 10^-5

Эйлер: 312.061

Рунге-Кутта (а=0.5): 317.721

Рунге-Кутта (а=0.5): 317.720

Шаг = 10^-6

Эйлер: 317.145

Рунге-Кутта (а=0.5): 317.722

Рунге-Кутта (а=1): 317.722

 $Ша\Gamma = 10^{-7}$

Эйлер: 317.665

Рунге-Кутта (а=0.5): 317.722

Рунге-Кутта (а=1): 317.722

Получается, что для метода Рунге-Кутта для значения x=2 достаточно шага 10^{-5} . Для метода Эйлера для значения x=2 при шаге $=10^{-7}$ ответ с точностью до 2x знаков после запятой отличается от метода Рунге-Кутта. При попытке вычисления с шагом $=10^{-8}$ программа выдает ошибку памяти.

Вывод:

При уменьшении шага точность увеличивается, однако компьютер работает с ограниченной разрядной сеткой, а значит нельзя знак бесконечно приближать к нулю.

3. Каково значение функции при x = 2, т.е. привести значение u(2).

При шаге = 10^-7

Эйлер: u(2) = 317.665

Рунге-Кутта (a=0.5): u(2) = 317.722

Рунге-Кутта (a=1): u(2) = 317.722