Lezione 02

Federico De Sisti 2025-02-28

0.1 Prima scheda informazioni

parte da recuperare

0.2 Misure

X insieme non vuoto

 $2^X=$ insieme delle parti di $X=\{$ sottoinsiemi $E\subseteq X\}$

$$\phi, X \in 2^X = \{\chi : X \to \{0, 1\}\}$$

$$\chi \leftrightarrow E = \{\chi = 1\}$$

$$\chi_E(x) = \begin{cases} 1 & \text{se } x \in E \\ 0 & \text{se } x \in X \setminus E \end{cases}$$

Definizione 1

Sia X non vuoto. Una misura è una funzione $\mu: 2^X \to [0, +\infty]$ che soddisfa le due proprietà:

1.
$$\mu(\emptyset) = 0$$

2. per ogni famiglia numerabile di sotto
insiemi $E, \{E_i\}_{i \in \mathbb{N}^+} \subseteq X$

$$E \subseteq \bigcup_{i=1}^{\infty} E_i \Rightarrow \mu(E) \le \sum_{i=1}^{\infty} \mu(E_i)$$

La seconda proprietà viene chiamata sub-additività numerabile

Commenti:

1) numerabile \Leftrightarrow al più numerabile

 $\{E_i\}_{i\in\mathbb{N}^+}$ possono essere finite: $\{E_1, E_2, \dots, E_n\}$ $\mathbb{N}^+ = \{1, 2, 3, \dots\}$

2) Proprietà di monotonia: $E \subset F \Rightarrow \mu(E) \leq \mu(F)$

Segue da (ii) prendendo $E_1 = F, E_2 = \emptyset, E_3 = \emptyset, \dots$

3) Gli insiemi $\{E_i\}$ non sono necessariamente disgiunti

4) In generale in (ii) non vale l'uguaglianza neanche se:

 $E = E_1 \cup E_2 \text{ con } E_1 \cap E_2 = \emptyset$

Può accadere che $E \cap F = \emptyset$

$$\mu(E \cup F) < \mu(E) + \mu(F)$$
.

5) Comunemente quello che noi chiamiamo misura sono dette misure esterne

Esempi di misure:

ullet La misura che conta: X

$$\mathbb{H}^0:2^X\to [0,+\infty]$$

$$\mathbb{H}^{0}(E) = \begin{cases} 0 & E = \emptyset \\ n & E \text{ ha n elementi} \\ +\infty & E \text{ infinito} \end{cases}$$

• Misura delta di Dirac:

$$X, x_0 \in X$$

$$\delta_{x_0} : 2^X \to [0, +\infty]$$

$$\delta_{x_0}(E) = \begin{cases} 1 & \text{se } x_0 \in E \\ 0 & \text{se } x_0 \notin E \end{cases}$$

Verifica

 δ_{X_0} è una misura

Osservazione

Se X è infinito allora $H^0(X)=+\infty$

Viceversa δ da finire

0.3 Insiemi misurabili

 $X \neq \emptyset, \mu$ misura su X

Osservazione

Possono esistere E, F t.c.

$$E \cap F = \emptyset$$
 ma $\mu(E \cup F) < \mu(E) + \mu(F)$.

Definizione 2 (Caratheodory)

Sia $X \neq \emptyset$ e μ misura su X

Un insieme $E \subseteq X$ si dice misurabile se vale:

$$\mu(A) = \mu(A \cap E) + \mu(A \setminus E) \quad \forall A \subseteq X.$$

Commenti:

1) A = X

$$\mu(X) = \mu(E) + \mu(E^c).$$

2) Vale sempre

$$\mu(A) \le \mu(A \cap E) + \mu(A \setminus E).$$

E è misurabile

1

$$\mu(A) \ge \mu(A \cap E) + \mu(A \setminus E)$$

Teorema 1

Sia $X \neq \emptyset$ e μ misura.

- 1. la classe degli insiemi misurabili è una σ -algebra:
 - 1) $\emptyset, X \in M$
 - 2) $E \in M \Rightarrow E^c \in M$
 - 3) $\{E_{ii}i \in \mathbb{N}^+ \subseteq M \Rightarrow \bigcup_{i=1}^{\infty} E_i \in M\}$
- 2. μ è numerabilmente additiva su M: se $\{E_i\}_{i\in N^+}$ sono disgiunti a coppie $(E_i \cap E_j = \emptyset \ \forall i \neq j)$ allora

$$\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i).$$

Commenti

1) M è chiuso anche per intersezioni numerabili: $E_i \in M$

$$\left(\bigcap_{i} E_{i}\right)^{c} = \bigcup_{i} E_{i}^{c} \in M \Rightarrow \bigcap_{i} E_{i} \in M.$$

2) $\lim \sup_{i \to \infty} E_i := \bigcap_{N \in \mathbb{N}} \bigcup_{i \ge N} E_i$ $\lim \inf_{i \to \infty} E_i := \bigcup_N \in \mathbb{N} \bigcap_{i \ge N} E_i$

Dimostrazione

Passo 1: M è un algebra

 $\cdot \emptyset \in M, X \in M$

 $Vado\ a\ verificare\ che\ \forall A\subseteq X\ vale$

$$\mu(A) = \mu(A \cap \emptyset) + \mu(A \setminus \emptyset) = \mu(\emptyset) + \mu(A).$$

dove sappiamo che $(\emptyset) = 0$

Per X:

$$\mu(A) = \mu(A \cap X) + \mu(A \setminus X) = \mu(A) + \mu(\emptyset).$$

$$\cdot E \in M \Rightarrow E^c \in M$$

Vado a verificare che per ogni $A \subseteq X$ vale le proprietà di Caratheodory: $\mu(A) = \mu(A \cap E^c) + \mu(A \setminus E^c) = \mu(A \setminus E) + \mu(A \cap E)$

 $\cdot E_2, E_2 \in M \Rightarrow E_1 \cup E_2 \in M$ Considero un insieme test $A \subseteq X$: $\mu(A) = \mu(A \cap E_1) + \mu(A \setminus E_1)$

1)
$$\mu(A) = \mu(A \cap E_1) + \mu(A \setminus E_1)$$

$$\mu(A \cap E_1) + \mu((A \setminus E_1) \cap E_2) + \mu((A \setminus E_1) \setminus E_2)$$

il risultato è ottenuto applicando Caratheodory al secondo termine della somma (1)

$$\geq \mu((A \cap E_1) \cup (A \setminus E_1) \cap E_2) + \mu(A \setminus (E_1 \cup E_2))$$

$$\mu(A) \geq \mu(A \cap (E_1 \cup E_2)) + \mu(A \setminus (E_1 \cup E_2)) \Rightarrow E_1 \cup E_2 \in M$$

Passo 2: finita additività di μ in M $E_1, E_2 \in M, E_1 \cap E_2 = \emptyset$ Per ogni $A \subseteq X$:

$$\mu(A \cap (E_1 \cup E_2)) = \mu(A \cap (E_1 \cup E_2) \cap E_1) + \mu(A \cap (E_1 \cup E_2) \setminus E_1)$$

Ottenuto sempre per Caratheodory

$$\mu(A \cap E_1) + \cap (A \cap E_2).$$

Iterando questo passaggio: $E_1, \ldots, E_n \in M$ allora:

$$\mu(A \cap \bigcup_{i=1}^{N} E_i) = \sum_{i=1}^{N} \mu(A \cap E_i).$$

 $Spiegazione\ passaggio\ precedente$

$$\mu(A \cap \bigcup_{i=1}^{N} E_i) = \mu(A \cap E_1) + \mu(A \cap \bigcup_{i=2}^{N} E_i) = \dots = \sum_{i=1}^{N} \mu(A \cap E_i).$$

Passo 3: mostriamo le proprietà di σ -algebra e numerabile additività Siano $\{E_i\}_{i\in\mathbb{N}^+}\subseteq M$

Consideriamo gli insiemi:

$$F_1 := E_1, \qquad F_2 = E_2 \setminus E_1$$

$$F_3 := E_3 \setminus (E_1 \cup E_2)$$

quindi definiamo ricorsivamente: $F_k := E_k \setminus \bigcup_{i=1}^{k-1}$

Allora F_i sono disgiunti a coppie

$$(F_i \cap F_i = \emptyset \ \forall i \neq j).$$

$$\bigcup_{i=1}^{\infty} F_i =_{i=1}^{\infty} E_i.$$

 $F_i \in M$

Fissiamo il test di Caratheodory $A \subseteq X$, $F_i \in M$, Passo 1: M algebra

$$\mu(A) = \mu(A \cap \bigcup_{i=1}^{N} F_i) + \mu(A \setminus \bigcup_{i=1}^{N} F_i).$$

Usando il passo 2: finita additività

$$= \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{N} F_i)$$

$$\geq \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i).$$

Passiamo al limite $N \to \infty$

$$\mu(A) \ge \lim_{N \to \infty} \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i) = \sum_{i=1}^{\infty} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i)$$

$$\ge \mu(A \cap \bigcup_{i=1}^{\infty} F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i)$$

$$= \mu(A \cap \bigcup_{i=1}^{\infty} E_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} E_i)$$

$$\Rightarrow \bigcup_{i=1}^{\infty} E_i \in M$$

Se prendiamo come test $A = \sum_{i=1}^{\infty} F_i$, allora $\mu(\bigcup_{i=1}^{\infty} F_i) \ge \sum_{i=1}^{\infty} \mu(E_i) \ge \mu(\bigcup_{i=1}^{\infty} F_i)$ $\Rightarrow \mu(\bigcup^{\infty} F_i) = \sum_{i=1}^{\infty} \mu(F_i) - F_i$ sono disgiunti a coppie