# TEMA 1. Estructura de datos



OBJETIVO: El alumno conocerá los antecedentes de la representación de los datos y las estructuras de datos lineales fundamentales.

- La historia de la computación tiene sus orígenes en el inicio mismo de la civilización.
- La búsqueda de nuevos métodos para realizar cálculos ha evolucionado desde la antigüedad.







- Una computadora digital es un dispositivo electrónico, utilizado para procesar información y obtener resultados, capaz de ejecutar cálculos a velocidades considerablemente más rápidas de lo que pueden hacerlo los seres humanos.
- Componentes físicos:
  - > CPU
  - > DISPOSITIVOS E/S
  - > MEMORIA



- La computación como disciplina nace a principios de 1940 con base en la <u>teoría de algoritmos</u>, la <u>lógica matemática</u> y la aparición del concepto de <u>programa</u>.
- Un programa es un conjunto de instrucciones que una vez ejecutadas realizarán una o varias tareas en una computadora.



 John von Neumann propuso un esquema con una computadora con una memoria para almacenar datos y programas.

• Este modelo se conoce como arquitectura von Neumann y es el modelo que se sigue utilizando en las computadoras

actuales.



https://histinf.blogs.upv.es/2011/12/05/proyecto-eniac/

https://es.wikipedia.org/wiki/John\_von\_Neumann



- Un lenguaje de programación es un lenguaje artificial diseñado para expresar instrucciones que pueden ser llevadas a cabo por máquinas como las computadoras.
  - Lenguajes de alto nivel
  - Lenguajes de bajo nivel



#### Clasificaciones de Lenguajes de Programación

- Manera de Ejecutarse:
  - ✓ **Compilados**. Código fuente > código objeto > Programa ejecutable.
  - ✓ Interpretados. Un programa ejecuta las instrucciones de manera directa.

#### Clasificaciones de Lenguajes de Programación

- Manera de Abordar la tarea:
  - ✓ Imperativos. Indican cómo hay que hacer la tarea.
  - ✓ **Declarativos**. Indican qué tarea hay que hacer, sin embargo no indica cómo realizarla

#### Clasificaciones de Lenguajes de Programación

- De acuerdo al paradigma de Programación:
  - ✓ Procedural. Divide el problema en partes más pequeñas.
  - ✓ **Orientado a Objetos**. Sistema de clases y objetos siguiendo el mundo real.
  - ✓ Funcional. Evaluación de funciones.
  - ✓ **Lógica.** Tareas expresadas empleando lógica formal matemática.







- La información que se procesa en una computadora tiene diferentes tipos de datos.
- Para el manejo adecuado de datos en una computadora digital, se implementó una representación uniforme de los datos.
- Esta representación se conoce como Patrón de Bits.



- BIT: Es la unidad mínima de almacenamiento en las computadoras y representa dos estados.
- BYTE: Es un patrón de 8 bits mediante el cual se mide el tamaño de una memoria o de otros dispositivos de almacenamiento.

• ¿Cuántos bits se necesitan en un patrón para representar un símbolo?



| Longitud del patrón<br>de bits | Símbolos<br>representados |
|--------------------------------|---------------------------|
| 1                              | 2                         |
| 2                              | 4                         |
| 3                              | 8                         |
| 4                              | 16                        |
| •••                            | •••                       |
| 7                              | 128                       |
| 8                              | 256                       |
| •••                            | •••                       |
| 16                             | 65536                     |

- Existen diversas cadenas de bits que se establecen como secuencias de patrones para representar símbolos de texto, numéricos, etc.
- El proceso de representar los símbolos se conoce como codificación.

## 1.2.1 Representación de texto

• Los diferentes estándares para representar texto han evolucionado conforme a la necesidad de representar una mayor cantidad de símbolos.



## 1.2.1 Representación de texto

#### Código ASCII

- Código Norteamericano de Estándares para Intercambio de Información (American Standard Code for Information Interchange, 1967).
- Este código utiliza siete bits para cada símbolo.
- ASCII extendido: Para hacer que el tamaño de cada patrón sea de 1 byte (8 bits), a los patrones de bits ASCII se les aumenta un cero más a la izquierda.
- Cada patrón cabe fácilmente en un byte de memoria.

# Código ASCII

#### **USASCII** code chart

| _         |                                                                    |    |   |   |    |       |      |       |    |     |       |      |                  |
|-----------|--------------------------------------------------------------------|----|---|---|----|-------|------|-------|----|-----|-------|------|------------------|
| B 7 D 6 D | ; =                                                                |    |   |   | =_ | °°°   | °0 , | ٥ - ٥ | ۰, | 100 | ¹ o _ | 1 10 | 1 <sub>1 1</sub> |
|           | b <sub>4</sub> b <sub>3</sub> b <sub>2</sub> b <sub>1</sub> Column |    | 0 | 1 | 2  | 3     | 4    | 5     | 6  | 7   |       |      |                  |
| ` ]       | 0                                                                  | 0  | 0 | 0 | 0  | NUL . | DLE  | SP    | 0  | 0   | P     | `    | P                |
| 8         | 0                                                                  | 0  | 0 | - | _  | SOH   | DC1  | !     | 1  | Α.  | Ġ     | 0    | D                |
|           | 0                                                                  | 0  | - | 0 | 2  | STX   | DC2  |       | 2  | В   | R     | . b  | r                |
|           | 0                                                                  | 0  | - | _ | 3  | ETX   | DC3  | #     | 3  | C   | S     | С    | 8                |
|           | 0                                                                  | 1  | 0 | 0 | 4  | EOT   | DC4  | •     | 4  | D   | T     | đ    | 1                |
| 3         | 0                                                                  | _  | 0 | - | 5  | ENQ   | NAK  | %     | 5  | E   | ט     | e    | U                |
|           | 0                                                                  | 1  | - | 0 | 6  | ACK   | SYN  | 8     | 6  | F   | >     | f    | ٧                |
|           | 0                                                                  | 1  | - | - | 7  | BEL   | ETB  | •     | 7  | G   | w     | 9    | w                |
|           | -                                                                  | 0  | 0 | 0 | 8  | BS    | CAN  | (     | 8  | н   | X     | h    | ×                |
|           | -                                                                  | 0  | 0 | - | 9  | нТ    | EM   | )     | 9  | 1   | Y     | i    | У                |
| d.        | _                                                                  | 0  | _ | 0 | 10 | LF    | SUB  | *     | :  | J   | Z     | j    | Z                |
| J.        | -                                                                  | 0  | _ | - | 11 | VT    | ESC  | +     | :  | K   | C     | k.   | {                |
|           | 1                                                                  | 1  | 0 | 0 | 12 | FF    | FS   | •     | <  | L   | \     | 1    | 1                |
|           | 1                                                                  | 1  | 0 | 1 | 13 | CR    | GS   | ı     | =  | М   | נ     | E    | }                |
|           | •                                                                  | .1 | 1 | 0 | 14 | so    | RS   |       | >  | N   | ^     | n    | ~                |
|           | 1                                                                  | 1  | I | 1 | 15 | SI    | US   | /     | ?  | 0   |       | 0    | DEL              |

# Código ASCII Extendido

| 128 | Ç | 144 | É | 160 | á      | 176 |              | 193 | Τ | 209 | ₹ | 225 | ß      | 241 | ± |
|-----|---|-----|---|-----|--------|-----|--------------|-----|---|-----|---|-----|--------|-----|---|
| 129 | ü | 145 | æ | 161 | í      | 177 | *****        | 194 | т | 210 | π | 226 | Γ      | 242 | ≥ |
| 130 | é | 146 | Æ | 162 | ó      | 178 |              | 195 | F | 211 | ш | 227 | π      | 243 | ≤ |
| 131 | â | 147 | ô | 163 | ú      | 179 |              | 196 | _ | 212 | F | 228 | Σ      | 244 | ſ |
| 132 | ä | 148 | ö | 164 | ñ      | 180 | +            | 197 | + | 213 | F | 229 | σ      | 245 | J |
| 133 | à | 149 | ò | 165 | Ñ      | 181 | 4            | 198 | F | 214 | Г | 230 | μ      | 246 | ÷ |
| 134 | å | 150 | û | 166 | •      | 182 | $\mathbb{H}$ | 199 | ⊩ | 215 | # | 231 | τ      | 247 | æ |
| 135 | ç | 151 | ù | 167 | ۰      | 183 | П            | 200 | L | 216 | + | 232 | Φ      | 248 | ۰ |
| 136 | ê | 152 | _ | 168 | Ś      | 184 | Ŧ            | 201 | F | 217 | T | 233 | ◉      | 249 |   |
| 137 | ë | 153 | Ö | 169 | _      | 185 | 4            | 202 | ᇿ | 218 | Г | 234 | Ω      | 250 |   |
| 138 | è | 154 | Ü | 170 | $\neg$ | 186 |              | 203 | ī | 219 |   | 235 | δ      | 251 | V |
| 139 | ï | 156 | £ | 171 | 1/2    | 187 | ก            | 204 | ŀ | 220 | - | 236 | œ      | 252 | _ |
| 140 | î | 157 | ¥ | 172 | 1/4    | 188 | ī            | 205 | = | 221 | ı | 237 | ф      | 253 | 2 |
| 141 | ì | 158 | _ | 173 | i      | 189 | Ш            | 206 | # | 222 | ı | 238 | ε      | 254 |   |
| 142 | Ä | 159 | f | 174 | «      | 190 | 7            | 207 | ᆂ | 223 | - | 239 | $\cap$ | 255 |   |
| 143 | Å | 192 | L | 175 | >>     | 191 | ٦            | 208 | Т | 224 | α | 240 | ≡      |     |   |

#### Codificación EBCDIC

- Extended Binary Coded Decimal Interchange Code (EBCDIC).
- Representa caracteres alfanuméricos, controles y signos de puntuación.
- Cada carácter está compuesto por 8 bits, define un total de 256 caracteres.
- Es un código estándar usado por computadoras mainframe IBM.



# Codificación EBCDIC

| Bits<br>3210 | 7654<br>0000 | 0001 | 0010 | 0011 | 0100     | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|--------------|--------------|------|------|------|----------|------|------|------|------|------|------|------|------|------|------|------|
| 0000         | NUL          | DLE  | DS   | IRS  | SP       | &    | 16   | ø    | 0    |      | н    | p    | ä    | à    | E    | 0    |
| 0001         | SOH          | DCI  | sos  | ITB  | RSP      |      | 7    | 1    |      | ij   | ü    | £    | A    | 1    | ÷    | 1    |
| 0010         | STX          | DC2  | FS   | SYN  | á        | ė    | A.   | E    | ъ    | k    | s    | ¥    | В    | K    | S    | 2    |
| 0011         | ETX          | TM   | WUS  | IR.  | (        | ě    | *    | E    | · c  | 1    | t    | 3907 | С    | L    | Т    | 3    |
| 0100         | PF           | RES  | BYP  | PN   | à        | ė    | A    | E    | d    | m    | u    | c    | D    | M    | U    | 4    |
| 0101         | HT           | NL   | LF   | RS   | á        | i    | A    | 1    | a    | n    | v    | 1    | E    | N    | v    | 5    |
| 0110         | LC           | BS   | ETB  | UC   | ā        | i    | A    | 1    | f    | .0   | w    | 1    | F    | 0    | w    | 6    |
| 0111         | DEL          | IL   | ESC  | EOT  | }        | 1    | \$   | 1    | E    | р    | ×    | 14   | G    | P    | х    | 7    |
| 1000         | GE           | CAN  | SA   | SBS  | ę        | i    | ç    | 1    | h    | q    | У    | 16   | Н    | Q    | Y    | 8    |
| 1001         | SPS          | EM   | SFE  | IT   | ñ        | â    | N    | ė    | i    | r    | z    | 24   | 1    | R    | z    | 9    |
| 1010         | SMM          | cc   | SM   | RFF  | ŝ        | ×    | ŏ    | 3    | - 4  |      | 1    | -    | SHY  | 1    | \$   | 30   |
| 1011         | VI           | CUI  | CU2  | CU3  | ĵ. va. j | A    |      | A    | 36   | •    | i.   | 1    | ò    | û    | 0    | U    |
| 1100         | FF           | IFS  | MFA  | DC4  | 8        | *    | %    | 0    | ð    |      | Đ    | 200  | 0.0  |      | @    | U    |
| 1101         | CR.          | IGS  | ENQ  | NAK  | (        | )    | :=   | 14   | ý    | §#   | Y    | 1    | ò    | ŭ    | 0    | U    |
| 1110         | so           | IRS  | ACK  |      | *        |      | >    | =    | Þ    | Æ    | þ    | 1.60 | ó    | ů.   | 0    | U    |
| 1111         | SI           | IUS  | BEL  | SUB  | 1        | ٨    | ?    | 4    | ±    | 1    | 8    | К    | õ    | 9    | 0    | EO   |

#### UNICODE

- Este estándar es mantenido por el Unicode Technical Committee (UTC) mantiene estrecha relación con ISO/IEC, alcanzando el acuerdo de sincronizar sus estándares que contienen los mismos caracteres y puntos de código.
- En la actualidad soporta tres formatos para representar millones de caracteres.
  - UTF-8
  - UTF-16
  - UTF-32

https://unicode-table.com/es/

## 1.2.2 Representación de números enteros

- Los enteros de la computadora se representan mediante agrupaciones de dígitos binarios, se tienen las siguientes formas de representación:
  - SIN SIGNO
  - CON SIGNO
    - ✓ SIGNO Y MAGNITUD
    - ✓ COMPLEMENTO A 1
    - ✓ COMPLEMENTO A 2

## 1.2.2 Representación de números enteros

#### Enteros sin signo

• También conocido como <u>binario convencional o binario</u> <u>puro</u>, permite representar enteros positivos y el cero.

• El intervalo de números que puede representar depende del

número de bits disponibles.



## 1.2.2 Representación de números enteros

#### Enteros con signo y magnitud

- Se utiliza de la misma manera que la representación convencional, la diferencia radica en que en este tipo de representación se destina el primer bit para indicar el signo del número:
  - √ 0, número positivo;
  - √ 1, número negativo.
- Debido a que se utiliza un bit para identificar el signo, se reduce la cantidad de valores que se pueden representar.

#### 1.2.3 Números reales

- Debido a que las computadoras tienen un número finito de bits. No pueden almacenar los números reales en forma exacta, de forma similar a lo que ocurre con los números irracionales (pi, e, etc.) por lo tanto se utilizan aproximaciones.
  - ✓ Punto fijo
  - ✓ Punto flotante



#### 1.2.3 Números reales

#### Representación de Punto fijo

- Consiste en destinar una cantidad de dígitos para la parte entera y el resto para la parte fraccionaria.
- La cantidad de dígitos destinados a la parte fraccionaria indica la posición del punto dentro del número.
- La limitante es que dependiendo de los dígitos que se asignen a la parte fraccionaria disminuye el número máximo para la parte entera.