Devoir maison n°12 : Première fois. Stabilité géométrique

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Première fois.

• Partie A: Une fonction agissant sur les nombres entiers naturels.

Soit une fonction $\Delta:\mathbb{N}\to\mathbb{N}$ possédant les propriétés :

- (1) $\Delta(0) = \Delta(1) = 0$
- (2) Pour tout entier premier p, $\Delta(p) = 1$
- (3) Pour tous entiers a et b: $\Delta(a \times b) = b\Delta(a) + a\Delta(b)$
- 1) Soit p un nombre premier, n un entier naturel. On cherche à prouver que $\Delta(p^n) = np^{n-1}$.

Initialisation:

Pour $n=0, \Delta(p^0)=\Delta(1)=0$ d'après (1). Ce qui correspond à la formule.

Pour n=1, $\Delta(p^1)=\Delta(p)=1$ d'après (2). Or avec la formule on obtient $p^0=1,$ ce qui est donc correct.

Hérédité:

On suppose que $\Delta(p^n)=np^{n-1}$, cherchons à prouver que $\Delta(p^{n+1})=(n+1)p^n$.

$$\Delta(p^{n+1}) = \Delta(p \times p^n) = p^n \Delta(p) + p \Delta(p^n) = p^n + pnp^{n-1} = (n+1)p^n$$

Par principe de récurrence, $\Delta(p^n) = np^{n-1}$.

- **2) a)** Soit p et q des nombres premiers distincts, m et n des entiers naturels supérieurs ou égaux à 1. $\Delta(p^m \times q^n) = q^n \Delta(p^m) + p^m \Delta(q^n)$ D'après la question précédente, on a alors : $mq^np^{m-1} + np^mq^{n-1} = (p^{m-1}q^{n-1})(mq + np)$
- **b)** $\Delta(10^n)=\Delta(2^n\times 5^n)$ Comme 2 et 5 sont premiers et distincts, n supérieur ou égal à 1, on a d'après la question précédente : $\Delta(2^n\times 5^n)=7n(2^{n-1}\times 5^{n-1})$. $\Delta(10^n)$ est donc un multiple de 7 quand $n\geq 1$.
- 3) a) On cherche à montrer que si $n\geq 2$ alors $\Delta(n)=\alpha_1q_1+\alpha_2q_2+\ldots+\alpha_kq_k$ avec $q_{1\ldots k}=\frac{n}{p_{1\ldots k}}.$

Soit $n\geq 2$, On a donc, $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ avec $p_{1...k}$ premier et $\alpha_{1...k}\in\mathbb{N}^*.$

Initialisations:

On suppose que k=1, que $n=p_1^{\alpha_1}$, alors $\Delta(n)=\alpha_1p_1^{\alpha_1-1}$ Or $q_1=\frac{n}{p_1}=p_1^{\alpha_1-1}$.

Donc $\Delta(n) = \alpha_1 q_1$

On suppose que k=2, que $n=p_1^{\alpha_1}p_2^{\alpha_2}$, alors d'après 2)a), $\Delta(n)=p_2^{\alpha_2}\alpha_1p_1^{\alpha_1-1}+p_1^{\alpha_1}\alpha_2p_2^{\alpha_2-1}=(p_1^{\alpha_1}p_2^{\alpha_2})\left(\frac{\alpha_1}{p_1}+\frac{\alpha_2}{p_2}\right)=\alpha_1q_1+\alpha_2q_2.$

Hérédité:

On suppose que $\Delta(m)=\alpha_1'q_1'+\alpha_2'q_2'+\ldots+\alpha_k'q_k'$ pour m pouvant s'écrire $m=p_1'^{\alpha_1'}\times p_2'^{\alpha_2'}\times\ldots\times p_k'^{\alpha_k'}$.

On cherche à prouver que $\Delta(n)=\alpha_1q_1+\alpha_2q_2+\ldots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ pour n pouvant s'écrire sous la forme $n=p_1^{\alpha_1}\times p_2^{\alpha_2}\times\ldots\times p_k^{\alpha_k}\times p_{k+1}^{\alpha_{k+1}}.$

$$\begin{split} &\Delta(n) = \Delta(p_1^{\alpha_1}) \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) \text{ d'après 2)a}) \\ &= \alpha_1 \Bigg(n \frac{p_1^{\alpha_1-1}}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\underbrace{p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k} \times p_{k+1}^{\alpha_{k+1}}}_{\text{est un nombre comme } m}\Bigg) \end{split}$$

En faisant correspondre $m=\frac{n}{p_1^{\alpha_1}},$ $p_1'=p_2,$..., $p_k'=p_{k+1}$ et $\alpha_1'=\alpha_2,$..., $\alpha_k'=\alpha_{k+1},$ on a

$$\begin{split} \Delta(n) &= \alpha_1 q_1 + p_1^{\alpha_1} \bigg(\alpha_2 \frac{m}{p_2} + \ldots + \alpha_k \frac{m}{p_k} + \alpha_{k+1} \frac{m}{p_{k+1}} \bigg) \\ &= \alpha_1 q_1 + \alpha_2 q_2 + \ldots + \alpha_k q_k + \alpha_{k+1} q_{k+1} \end{split}$$

Par principe de récurrence, nous avons prouvé que quelque soit $k \in \mathbb{N}^*$ et par conséquent quelque soit $n \in \mathbb{N}$ avec $n \geq 2$, $\Delta(n) = \alpha_1 q_1 + \ldots + \alpha_k q_k$.

b) Vérifions que $\Delta(n)=\alpha_1q_1+\ldots+\alpha_kq_k$ satisfait les propriétés (2) et (3) :

Pour p premier, $p=p^1:\Delta(p)=1 imes \frac{p}{p}=1$. Cela correspond bien à la propriété (1).

Pour a et b des entiers naturels : $a=p_1^{\alpha_1}...p_k^{\alpha_k}$ $b=p_1'^{\alpha_1'}...p_{k'}'^{\alpha_{k'}'}$ D'une part, $\Delta(a\times b)=\Delta(a)\times b+a\times \Delta(b)=b\alpha_1\frac{a}{p_1}+...+b\alpha_k\frac{a}{p_k}+a\alpha_1'\frac{b}{p_1'}+...+a\alpha_{k'}'\frac{b}{p_{k'}'}=\alpha_1\frac{a\times b}{p_1}+...+\alpha_k\frac{a\times b}{p_k}+\alpha_1'\frac{a\times b}{p_1'}+...+\alpha_{k'}'\frac{a\times b}{p_{k'}'}$

• Partie B : Étude de quelques images d'entiers par la fonction Δ .

4) a)

Calculons $\Delta(12)$. On a $12=2^2\times 3$

Donc d'après la formule, $\Delta(12)=2\frac{12}{2}+\frac{12}{3}=16$

Calculons $\Delta(56)$. On a $56=2^3\times 7$

Donc d'après la formule, $\Delta(56)=3\frac{56}{2}+\frac{56}{7}=92$

Calculons $\Delta(1001)$. On a $1001=7\times11\times13$

Donc d'après la formule, $\Delta(1001)=\frac{1001}{7}+\frac{1001}{11}+\frac{1001}{13}=311$

Preuves générés automatiquement (le script est sur Github).12

b) Cherchons les solutions de $\Delta(x) = 0$ avec $x \in \mathbb{N}$.

Si
$$x=0$$
 ou $x=1$ alors d'après (1), $\Delta(x)=0$.

Si $x\geq 2$, $\Delta(x)=\alpha_1q_1+\ldots+\alpha_kq_k$. Or $\alpha_{1\ldots k}\in\mathbb{N}^*$ et $q_{1\ldots k}=\frac{x}{p_{1\ldots k}}$, comme $x,p_{1\ldots k}\in\mathbb{N}^*$ alors $q_{1\ldots k}>0$. Ainsi comme somme de nombres tous strictements positifs, $\Delta(x)>0$.

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 0$ sont $\{0, 1\}$.

Nous avons également prouvé que pour tout $x \ge 2$ alors $\Delta(x) > 0$.

c) Cherchons les solutions de $\Delta(x) = 1$ avec $x \in \mathbb{N}$.

Si
$$x = 0$$
 ou $x = 1$ alors d'après (1), $\Delta(x) = 0$.

Si x est premier alors d'après (2), $\Delta(x) = 1$.

Si x n'est pas premier et différent de 0 et 1, alors on peut écrire x sous la forme $x=p\times b$ avec p premier et $b\in\mathbb{N},b\geq 2$. En effet si b=0 alors x=0 et si b=1 alors x est premier, ce qui n'est pas autorisé. D'après la question précédente, $\Delta(b)>0$. On a donc :

$$\Delta(x) = \Delta(p \times b) = b\Delta(p) + p\Delta(b) = \underbrace{b}_{\geq 2} + \underbrace{p}_{\geq 2} \underbrace{\Delta(b)}_{>0}$$

Par addition d'un nombre supérieur ou égal à 2 avec un nombre strictement supérieur à 0, $\Delta(x)>2$.

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 1$ sont donc l'ensemble des nombres premiers.

d) Cherchons à prouver que 2 ne possède pas d'antécédent par Δ . Soit $x \in \mathbb{N}$ -

$$Si-x = 0$$
-ou- $x = 1$ -alors- $\Delta(x) = 0$ -

Si x est premier alors $\Delta(x) = 1$.

 $\underbrace{\text{Si-}x \geq 2 \text{-et n'est pas premier, alors-}\Delta(x) = \alpha_1q_1 + \ldots + \alpha_kq_k, \text{avec-}\alpha_{1\ldots k} \in \mathbb{N}^* \text{-et-}q_{1\ldots k} = \frac{x}{p_{1\ldots k}} \cdot p_{1\ldots k} \text{-sont premiers.} }$

 $p_{1\dots k}\text{-divise-}x\text{-donc-}x\geq p_{1\dots k}\text{-Comme-}x\text{-n'est pas premier,}\ x>p_{1\dots k}\text{-donc-}q_{1\dots k}>1\text{-soit}\ q_{1\dots k}\geq 2$

Toujours dans ce cas, supposons que k=1, alors $\Delta(x)=\underbrace{\alpha_1\ q_1}_{>1}$. On a donc $\Delta(x)\geq 2$. Par $\underbrace{\alpha_1\ q_1}_{>1}$.

récurrence immédiate et par somme de nombres strictements positifs on a $\Delta(x) \geq 2$ -quelque soit k.

e) Calculons $\Delta(8)$. On a $8=2^3$

Donc d'après la formule, $\Delta(8)=3\frac{8}{2}=12$

Donc d'après la formule,
$$\Delta(987654321) = 2\frac{987654321}{3} + 2\frac{987654321}{17} + \frac{987654321}{379721} = 774633441$$

¹Par exemple : Calculons $\Delta(987654321)$. On a $987654321 = 3^2 \times 17^2 \times 379721$

 $^{^{2}(\}mbox{Pourquoi écrire les preuves à la main alors qu'on peut passer 5 fois plus de temps à coder le script qui le fait automatiquement ?)$

Nous avons donc $\Delta(8)>8.$ La propriété $\forall n\in\mathbb{N}, \Delta(n)\leq n$ est donc fausse.