НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи №1 із дисципліни «Вступ до баз даних та інформаційних систем» на тему

Створення таблиць. Виконання простих запитів на мові SQL та за допомогою алгебри Кодда. Використання вбудованих функцій мови SQL

Виконав: Керівник:

студент групи КМ-93 ст. викладач Бай Ю. П.

Торба С.О.

3MICT

ЗавданняОшибка! Закладка не определена.	
Завдання 10шибка! Закладка не определена.	
Завдання 20шибка! Закладка не определена.	
Завдання Зошибка! Закладка не определена.	
Список літератури1	10

ЗАВДАННЯ

Варіант №18

Завдання 1. Згенерувати базу даних з книги Б. Форта (*create.txt*, *populate.txt*), та виконати запити (*6 балів*):

- 1а) Яка назва проданого найдорожчого товару?
- 1b) Вивести імена покупців, що мають поштову адресу та живуть в USA, назвавши це поле client_name.
- 1c) Вивести ім'я та пошту покупця, як єдине поле client_name, для тих покупців, що не мають замовлення.
- **Завдання 2.** Виконати запити 1a), 1b), використовуючи операції реляційної алгебри Кодда та агрегатні функції мови SQL (*4 бали*)

Завдання 3. За допомогою команд мови SQL створити таблиці, згідно з умовою:

Людина танцює під музику.

Визначити поля та типи. Головні та зовнішні ключі створювати окремо від таблиць, використовуючи команду ALTER TABLE. (5 балів)

Завдання 1

Згенерувати базу даних з книги Б. Форта (create.txt, populate.txt), та виконати запити ($6 \, балів$):

1а) Яка назва проданого найдорожчого товару?

В запиті використані агрегатні функції MAX() та SUM() для підрахунку максимуму та суми відповідно. Аргументами даних функцій є окремі стовпчики

Визначимо максимальну вартість проданого товару

SELECT MAX(item_price) FROM orderitems

Результат виконання:

Використаємо отримане значення у вигляді вкладеного запиту:

SELECT (prod_name) FROM products WHERE prod_price = (SELECT MAX(item_price) FROM orderitems)

Результат виконання:

1b) Вивести імена покупців, що мають поштову адресу та живуть в USA, назвавши це поле client_name.

Отримаємо імена усіх покупців за допомогою запиту

SELECT (cust_name) AS client_name FROM customers WHERE cust_country='USA' and cust_email IS NOT NULL

1c) Вивести ім'я та пошту покупця, як єдине поле client_name, для тих покупців, що не мають замовлення.

В запиті використана операція поєднання таблиць NATURAL JOIN та конкатенація рядків (операція «||»). Для обчислення різниці між таблицями застосовується операція EXCEPT.

Отримаємо імена та пошти усіх покупців:

SELECT (cust_name ||' || COALESCE(cust_email, ")) AS client_name FROM customers;

В даному запиті використана функція COALESCE(cust_email, "), яка повертає

cust_email, якщо він не NULL, в іншому випадку повертається пустий рядок.

Результат виконання:

Визначимо імена та пошти покупців, що зробили замовлення:

SELECT (cust_name ||' '|| COALESCE(cust_email, ")) AS client_name FROM (customers NATURAL JOIN orders)

Результат виконання

За допомогою віднімання таблиць, визначимо покупців, що не мають замовлень:

SELECT(cust_name ||' || COALESCE(cust_email, ")) AS client_name FROM customers

EXCEPT

SELECT (cust_name ||' || COALESCE(cust_email, ")) AS client_name FROM (customers NATURAL JOIN orders)

Результат виконання:

Завдання 2. Виконати запити 1a), 1b), використовуючи операції реляційної алгебри Кодда та агрегатні функції мови SQL

1а) Введемо допоміжне значення максимальної ціни товару:

$$Mp = MAX(\pi_{item_price} \quad (orderitems));$$

Визначимо назву найдорожчого проданого товару

$$(\pi_{prod_name}(\sigma_{prod_{price}} = Mp(products));$$

16) $\rho_{S(client_name)}(\sigma_{cust_country} = USA \land cust_email != NULL(customers))$

Завдання 3. За допомогою команд мови SQL створити таблиці, згідно з умовою:

Людина танцює під музику.

Визначити поля та типи. Головні та зовнішні ключі створювати окремо від таблиць, використовуючи команду ALTER TABLE.

ER схема:

Для реалізації зв'язку "M:N" створимо додаткову сутність Human_Music , де додамо атрибути — "зовнішні ключі".

```
CREATE TABLE Humans

(
hum_id int UNIQUE NOT NULL,
hum_name char(50) NOT NULL,
hum_bdate date NOT NULL
);
```

Команди створення таблиць:

CREATE TABLE Musics

```
mus_id int UNIQUE NOT NULL,
mus_name char(50) NOT NULL,
mus_creator char(50) NOT NULL,
```

```
Додаток 1 mus_crdate date NOT NULL
);

CREATE TABLE Humans_Musics
(
hum_id int NOT NULL,
mus_id int NOT NULL
);
```

Команди налаштування первинних та зовнішніх ключів

ALTER TABLE Humans ADD CONSTRAINT PK_Humans PRIMARY KEY (hum_id);

ALTER TABLE Musics ADD CONSTRAINT PK_Musics PRIMARY KEY (mus_id);

ALTER TABLE Humans_Musics

ADD CONSTRAINT FK_Human_ID FOREIGN KEY (hum_id) REFERENCES Humans (hum_id);

ALTER TABLE Humans_Musics

ADD CONSTRAINT FK_Music_ID FOREIGN KEY (mus_id) REFERENCES Musics (mus_id);

Таблиця Humans:

Таблиця Musics:

Таблиця Humans_Musics:

Список літератури

- 1. Дейт К. Введение в системы баз данных. Пер. с англ. 8-е изд. –
- К.: Изд. дом «Вильямс», 2006. 1326 с.
- 2. Берко А.Ю., Верес О.М., Пасічник В.В. Системи баз даних та знань. Книга 1. Організація баз даних та знань: Навчальний посібник. – Львів: «Магнолія 2006», 2008. – 456 с.
- 3. Конноли Т. Базы данных. Проектирование, реализация и сопровождение. Теория и практика / Т. Конноли, К. Бегг. 3-е изд. М.: Изд. дом «Вильямс», 2003. 1440 с.
- 4. Теория и практика построения баз данных / Д. Крёнке. 8-е изд. СПб: Питер, 2003. 800 с.
- 5. Форта Б. Освой самостоятельно SQL. 3-е изд.: Пер. с.англ. М.: Изд. дом «Вильямс», 2006. 288 с.