Heat exchanger for cooling exhaust gas and method of manufacturing same

Patent number:

DE19540683

Publication date:

1997-05-07

Inventor:

DAMSOHN HERBERT DR (DE); KARBACH THOMAS

(DE); PFENDER CONRAD DR (DE); WENZELBURGER

JAN (DE)

Applicant:

BEHR GMBH & CO (DE)

Classification:

- international:

F28D7/16; F28D9/00; F28F1/04; F28F9/00; F28F9/04; F28F13/12; F28D7/00; F28D9/00; F28F1/02; F28F9/00; F28F9/04; F28F13/00; (IPC1-7): F01N5/02; F28D1/00;

F28D9/00; F28F13/06

- european:

F28D7/16H; F28D9/00F; F28F1/04; F28F9/00;

F28F9/04B; F28F13/12

Application number: DE19951040683 19951101 Priority number(s): DE19951040683 19951101 Also published as:

EP0772018 (A2) US6944947 (B1) JP9170891 (A) EP0772018 (A3) BR9605398 (A)

more >>

Report a data error here

Abstract not available for DE19540683

Abstract of corresponding document: US6944947

A heat exchanger for cooling exhaust gas, around which liquid cooling medium flows on the outside, including a bundle of rectangular tubes provided as ducts for the exhaust gas whose ends are welded into tube bottoms. The bundle of rectangular tubes is surrounded with a sheet metal jacket which follows the contour of the bundle and which is provided with a cooling medium inlet and a cooling medium outlet. The ends of the sheet metal jacket are provided with welded-on flange plates which are each open by means of a central opening with respect to the bundle of rectangular tubes and which are provided with fastening devices for fastening onto pipe sections of an exhaust pipe.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 195 40 683 A 1

(5) Int. Cl.⁵: F 01 N 5/02 F 28 D 1/00 F 28 D 9/00 F 28 F 13/06

DEUTSCHES PATENTAMT

2) Aktenzeichen: 195 40 683.4
 2) Anmeldetag: 1. 11. 95
 3) Offenlegungstag: 7. 5. 97

(7) Anmelder:

Behr GmbH & Co, 70469 Stuttgart, DE

(74) Vertreter:

Patentanwälte Wilhelm & Dauster, 70174 Stuttgart

@ Erfinder:

Damsohn, Herbert, Dr., 73773 Aichwald, DE; Karbach, Thomas, 70435 Stuttgart, DE; Pfender, Conrad, Dr., 74354 Besigheim, DE; Wenzelburger, Jan, 73732 Esslingen, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 41 41 556 A1 DE 94 06 197 U1 DD 2 69 073 A3 US 24 88 615 EP 02 45 022 A1

(4) Wärmeüberträger zum Kühlen von Abgas

Bei einem Wärmeübertrager zum Kühlen von Abgas, die außen mit einem flüssigen Kühlmedium umströmt sind, ist als Kanäle für das Abgas ein Bündel von Rechteckrohren vorgesehen, deren Enden in Rohrböden eingeschweißt sind. Das Bündel von Rechteckrohren ist mit einem Blechmantel umgeben, der der Kontur des Bündels folgt und der mit einem Kühlmediumeintritt und einem Kühlmediumaustritt versehen ist. Die Enden des Blechmantels sind mit angeschweißten Flanschblechen versehen, die jeweils mittels einer zentralen Öffnung zu dem Bündel von Rechteckrohren offen sind und die mit Befestigungsmitteln zum Befestigen an Rohrstücken einer Abgasleitung versehen sind.

Beschreibung

Die Erfindung betrifft einen Wärmeübertrager zum Kühlen von Abgas eines Verbrennungsmotors mit einer Vielzahl von Kanälen zum Führen des Abgases, die mit schräg zur Strömungsrichtung paarweise angeordneten, von wenigstens einer Wand der Kanäle abragenden Laschen versehen und außen mit einem flüssigen Kühlmedium umströmt sind.

Bei einem bekannten Wärmeübertrager der eingangs genannten Art sind die Kanäle aus scheibenförmigen Wärmetauschelementen gebildet, zwischen denen jeweils eine Turbulenzeinlage angeordnet ist, die die schräg zur Strömungsrichtung verlaufenden, paarweise angeordneten Laschen aufweist. Dieser aus dem DE-U 94 06 197.1 bekannte Wärmeübertrager erfüllt die an ihn gestellte Aufgabe in befriedigender Weise. Es erfordert jedoch einen erheblichen Aufwand, Wärmeübertrager unterschiedlicher Baugröße für verschiedene Fahrzeuge zu realisieren, da dann die einzelnen Elemente maßgenau in den unterschiedlichen Größen gefertigt werden müssen.

Der Erfindung liegt die Aufgabe zugrunde, einen Wärmeübertrager der eingangs genannten Art zu schaffen, der bei im wesentlichen gleichem Aufbau in unterschiedlichen Größen herstellbar ist, wobei für die einzelnen Bauelemente keine allzu hohen Maßtoleranzen eingehalten werden müssen.

Diese Aufgabe wird dadurch gelöst, daß als Kanäle für das Abgas ein Bündel von Rechteckrohren vorgesehen ist, deren Enden in gitterförmige Rohrböden eingeschweißt sind, daß das Bündel von Rechteckrohren mit einem Blechmantel umgeben ist, der der Kontur des Bündels folgt, der mit einem Kühlmediumeintritt und mit einem Kühlmediumaustritt versehen ist und der mit den Rohrböden verschweißt ist, und daß die Enden des Blechmantels mit angeschweißten Flanschblechen versehen sind, die jeweils mittels einer zentralen Öffnung zu dem Bündel von Rechteckrohren offen sind und die mit Befestigungsmitteln zum Befestigen an Rohrstücken einer Abgasleitung versehen sind.

Der erfindungsgemäße geschweißte Wärmeübertrager besteht im wesentlichen aus Blechbauteilen, die in einfacher Weise hergestellt werden können. Das Schweißen wird bevorzugt als Laserschweißen oder Mi- 45 kro-WIG-Schweißen durchgeführt. Die gitterförmigen Rohrböden, die aus Stahlblech von etwa 1 mm bis 3 mm Dicke gestanzt werden, weisen entsprechend der Anzahl und Anordnung der Rechteckrohre Durchbrüche auf. Die Abstände der Rechteckrohre und damit die 50 Stegbreite des Rohrbodens variiert je nach Massenstrom des Kühlmittels und liegt ebenfalls in der Größenordnung zwischen 1 mm und 3 mm. Die Außenkontur der Rohrböden ergibt sich aus der Anzahl und der Anordnung der Flachrohre. Der Blechmantel wird eben- 55 falls in einfacher Weise aus einem Stahlblech hergestellt, das eine den Rohrböden ähnliche Blechdicke aufweist. Der Blechmantel kann in Stufen entsprechend der Kontur der Rohrböden in einfacher Weise gekantet werden. Die mit Befestigungsmitteln versehenen Flanschbleche 60 erlauben in einfacher Weise eine Anordnung des Wärmetauschers zwischen zwei Rohrstücken einer Abgasleitung, beispielsweise in ähnlicher Weise wie die Anordnung eines Katalysators.

In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß die Rechteckrohre jeweils aus zwei miteinander verschweißten Rohrschalen gebildet werden. Die paarweise vorhandenen Laschen können unmittelbar an dem Rechteckrohr befestigt oder Bestandteil dieses Rechteckrohres sein. Sie können jedoch auch Bestandteil von in den Rechteckrohren angeordneten Einlagen sein.

In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß die Flanschbleche in einander im wesentlichen diametral gegenüberliegenden Bereichen mit Gewindehülsen versehen sind. Dadurch ist in einfacher Weise eine Verschraubung mit einem Gegenflansch eines Rohrstückes einer Abgasleitung möglich.

In vorteilhafter Ausgestaltung der Erfindung wird vorgesehen, daß der Blechmantel in der Nähe des in Strömungsrichtung des Abgases vorderen Flanschbleches mit einem Kühlmediumeintritt und in der Nähe des hinteren Flanschbleches mit einem Kühlmediumaustritt versehen ist. Damit wird zunächst erreicht, daß das Kühlmedium im Gleichstrom zum Abgas durch den Wärmeübertrager geleitet wird. Damit wird erreicht, daß die Gefahr der Dampfbildung an der Eintrittsseite des Abgases verringert ist, da hier das Kühlmedium die relativ niedrigste Temperatur aufweist.

In weiterer Ausgestaltung der Erfindung wird vorge-

sehen, daß der Kühlmediumeintritt und der Kühlmediumaustritt auf gegenüberliegenden Seiten des Blechmantels angeordnet sind. Aufgrund dieser Anordnung sind die Strömungswege der einzelnen Strompfade für das Kühlmedium um die Rechteckrohre herum im wesentlichen gleich lang, so daß eine gleichmäßige Umströmung dieser Rechteckrohre gewährleistet ist.

In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß der Blechmantel aus zwei vorgeformten Blechschalen zusammengesetzt ist, die mittels Fügeverbindungen an die Rohrböden anschließen. Die beiden Blechschalen ergeben nach dem Verschweißen ein steifes und druckfestes Gehäuse. Das Vorsehen von Fügeverbindungen hat den Vorteil, daß die zu verschweißen den Elemente bereits vor dem Schweißen einen gewissen Zusammenhalt aufweisen, so daß der Schweißvorgang relativ einfach durchgeführt werden kann.

Zu dem gleichen Zweck wird in weiterer Ausgestaltung der Erfindung vorgesehen, daß die Flanschbleche mittels Fügeverbindungen an dem Blechmantel anschließen. Ferner wird zu dem gleichen Zweck vorgesehen, daß die Gewindehülsen mittels einer Fügeverbindung an die Flanschbleche anschließen. Damit läßt sich der Schweißvorgang relativ einfach durchführen.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der in der Zeichnung dargestellten Ausführungsformen und den Unteransprüchen.

Fig. 1 zeigt eine Außenansicht eines erfindungsgemäßen Wärmeübertragers,

Fig. 2 eine Ansicht auf den Wärmeübertrager der Fig. 1 in axialer Richtung,

Fig. 3a bis Fig. 6 verschiedene Lösungen zum Anbringen von paarweise angeordneten Laschen im Inneren von Rechteckrohren,

Fig. 7 eine Axialansicht auf einen gitterförmigen Rohrboden mit nur angedeutetem Blechmantel, und

Fig. 8 einen axialen Schnitt durch eine Gewindehülse und ein Anschlußrohr für einen Kühlmediumeintritt oder einen Kühlmediumaustritt.

Der in Fig. 1 und 2 dargestellte Wärmeübertrager besitzt ein Bündel von Flachrohren (10), die eine Wandstärke in der Gegend von 0,3 mm bis 0,4 mm aufweisen. Die Enden der Rechteckrohre (10) sind in gitterförmige Rohrböden (11) eingesteckt und mit diesen verschweißt. Ein derartiger Rohrboden (11), der zur Aufnahme von

16 Rechteckrohren dient, ist beispielsweise in Fig. 7 dargestellt. Diese Rohrböden (11) sind aus einem Stahlblech gestanzt, das eine Blechdicke in der Größenordnung von 1 mm bis 3 mm aufweist. Die Stege zwischen den Durchbrüchen, die zur Aufnahme der Flachrohre dienen, besitzen eine Breite, die etwa der Wanddicke der Rechteckrohre (10) entspricht. Die Anordnung der Durchbrüche und damit der Stege der Rohrböden (11) ist so gewählt, daß in grober Annäherung ein kreisförmiger oder ovaler Querschnitt entsteht. Auch die die 10 außenliegenden Rechteckrohre umfassenden Stege besitzen die gleiche Stegbreite, so daß die Außenkontur der Rohrböden der Kontur des Rohrbündels - vergrö-Bert um die Stegbreite - entspricht.

Die Rohrböden (11) sind in die enden eines Blechmantels (12) eingeschweißt, der auch in Fig. 7 gestrichelt angedeutet ist. Der Blechmantel (12) besteht aus zwei Halbschalen aus Stahlblech, das eine im wesentlichen der Dicke der Rohrböden (11) entsprechende Dicke aufweist. Die Halbschalen sind entsprechend der Außen- 20 kontur der Rohrböden (11) geformt, beispielsweise gekantet oder mittels eines Hochdruckumformverfahrens. Die beiden Halbschalen des Blechmantels (12) sind mittels Längsschweißnähten (13) miteinander verbunden. Wie aus Fig. 7 zu ersehen ist, sind die Rohrböden (11) 25 mit insgesamt vier etwas verbreiterten Ansätzen (14) versehen, denen entsprechende Aussparungen am Ende der beiden Halbschalen des Blechmantels (12) zugeordnet sind, so daß hiermit eine Fügeverbindung geschaffen

An den beiden Enden des Blechmantels (12) sind Flanschbleche (15) angeschweißt, die ebenfalls aus Blech gestanzt sind und die eine Blechdicke ähnlich der Blechdicke der Rohrböden (11) aufweisen. Die Flanschbleche (15) stehen in zwei diametral gegenüberliegen- 35 den Bereichen seitlich über die Kontur des Blechmantels über. In diesem Bereich ist der Blechmantel (12) in axialer Richtung über die Rohrböden (11) hinaus verlängert und mit diesen verlängerten Ansätzen in schlitzförmige Aussparungen (17) der Flanschbleche (15) einge- 40 steckt. In diesem Bereich erfolgt eine Verschweißung von der Außenseite der Flanschbleche (15) her, während im übrigen Bereich eine Verschweißung von der anderen Seite her vorgesehen ist.

Wie insbesondere aus Fig. 2 zu ersehen ist, besitzen 45 die Flanschbleche (15) eine mittlere, vorzugsweise kreisförmige Aussparung (18), deren Abmessung den vorausgehenden und nachfolgenden, nicht dargestellten Rohrstücken einer Abgasanlage oder Auspuffanlage eines Fahrzeuges entspricht.

In den diametral gegenüberliegenden, nach außen über den Blechmantel (12) überstehenden Bereichen sind die Flanschbleche (15) mit Gewindehülsen (19, 20) versehen. Die Gewindehülsen (19) sind mit einem auf ihrer offenen Seite befindlichen Ringbund in Bohrungen 55 der Flanschbleche (15) eingesteckt und von der jeweiligen Außenseite der Flanschbleche (15) aus mit diesen verschweißt. Im Bereich ihrer geschlossenen Seite besitzen die Gewindehülsen (19) einen Ringbund, mit dem sie in einen Maltesteg (21) eingesteckt sind. Dieser Haltesteg (21) ist mit den Gewindehülsen (19) und dem Blechmantel (12) verschweißt.

Die in Fig. 8 dargestellten Gewindehülsen (20), die auf ihrer offenen, den Flanschblechen (15) zugeordneten auf ihrer geschlossenen Seite mit einem Ringbund (23) versehen, mit welchem sie jeweils in ein Anschlußrohr (24) eingesteckt sind. Das Anschlußrohr (24) und die

Gewindehülse (20) sind jeweils mit einer Schweißnaht (25) miteinander verschweißt. Die Außenseite der Schweißnaht (25) wird abgeschliffen. Danach wird in das Anschlußrohr (24) eine seitliche Aussparung (26) eingefräst. Die Gewindehülsen (20) werden mit ihrem Ringbund (23) in Aussparungen der Flanschbleche (15) eingeschweißt und mit den Flanschblechen (15) verschweißt. Die Anschlußrohre (24) sind zusätzlich mittels Haltestegen (27) an dem Blechmantel angeschweißt. Die jeweiligen Außenkanten der Haltestege (27) verlaufen tangential zu dem Anschlußrohr (24) zu einer ebenen Fläche des Blechmantels. Sie werden von angeschweißten Abdeckblechen (28) abgedeckt, die an dem Blechmantel (12), den Haltestegen (27), dem Anschlußrohr (24), den Gewindehülsen (20) und dem Flanschblech (15) angeschweißt sind. Damit wird im Bereich der Aussparungen (26) zwischen den Haltestegen (27) und den Flanschblechen (15) eine Art Wasserkasten gebildet, in dessen Bereich der Blechmantel mit einer Eintrittsöffnung versehen ist.

Wie aus Fig. 1 zu ersehen ist, liegen die Anschlußrohre (24) und die damit verbundenen Wasserkästen auf einander gegenüberliegenden Seiten des Blechmantels, so daß ein etwa Z-förmiger Strömungspfad für das mit den Pfeilen (29) angedeutete Kühlmedium geschaffen wird. Dieser Strömungspfad hat im Bereich aller Rechteckrohre (10) annähernd den gleichen Strömungsweg, so daß sich eine sehr gute und gleichmäßige Umströmung der Rechteckrohre (10) ergibt. Wie aus Fig. 1 weiter zu ersehen ist, ist der Kühlmitteleintritt (in Fig. 1 oben) auf der Seite angeordnet, auf der auch der Eintritt des mit dem Pfeil (30) angedeuteten Abgases liegt, während der Kühlmittelaustritt auf der mit dem Pfeil (31) angedeuteten Austrittsseite des Abgases liegt. Das Kühlmedium und das Abgas strömen somit im Gleichstrom innerhalb des Wärmeübertragers.

Wie in Fig. 1 zu ersehen ist und wie in Fig. 3 bis 6 näher erläutert werden wird, sind die Rechteckrohre mit paarweise angeordneten, nach innen jeweils von gegenüberliegenden Wänden abragenden Laschen (32) versehen, die schräg zur Strömungsrichtung des Abgases derart angeordnet sind, daß sie von einer engsten Stelle unter einem Winkel von etwa 40° auseinanderlaufen. Die Rechteckrohre werden jeweils aus zwei Rohrschalen (10') zusammengeschweißt, die an jeweils ihren Schmalseiten miteinander verschweißt sind. Die Rohrschalen haben eine Blechstärke von etwa 0,3 mm bis 0,4 mm. Die Laschen (32) haben annähernd die gleiche Stärke und eine Länge von etwa dem Zehnfachen ihrer Blechstärke. Sie laufen von einer engsten Stelle, an der sie einen Abstand von etwa 1,2 mm haben, unter einem Winkel von 40° auseinander. Die Höhe der Laschen (32) beträgt etwa ein Viertel bis ein Drittel der Gesamthöhe der Flachrohre. Bei dem Ausführungsbeispiel nach Fig. 3a, 3b sind die Rohrhälften (10') mit Schlitzen versehen, in welche die Laschen (32) eingesteckt und danach mit den Rohrhälften (10') verschweißt sind. Um das Dichtschweißen zu vermeiden, können die Laschen (32) auf ihrer den Rohrhälften (10') zugewandten Seite mit einer oder mehreren Erhöhungen versehen sein, so daß sie mit der bekannten Bolzenschweißtechnik an die Rohrhälften (10') angeschweißt sind, so daß das Dichtschweißen entfällt.

Bei dem dargestellten Ausführungsbeispiel nach Seite mit einem Ringbund (22) versehen sind, sind auch 65 Fig. 3a, 3b sind die Laschen (32) der beiden Rohrhälften einander gegenüberliegend angeordnet. Bei einer abgewandelten Ausführungsform wird vorgesehen, daß die Laschen (32) der beiden Rohrhälften (10') außermittig

6

derart angeordnet sind, daß die Laschen (32) der oberen Rohrhälfte und der unteren Rohrhälfte (10') in Querrichtung zueinander versetzt sind. Der Abstand der Laschen (32) in Strömungsrichtung des Abgases beträgt etwa 30mm.

Bei dem Ausführungsbeispiel nach Fig. 4a und 4b wird vorgesehen, daß die Laschen (32') durch Tiefziehen und Zusammendrücken jeweils aus der Rohrhälfte (10') herausgeformt sind. Damit entfällt ein Schweißvorgang, insbesondere auch ein Dichtschweißen im Bereich der Laschen (32'). In Fig. 4a ist weiter dargestellt, daß die Rohrhälfte (10') mit einer nach außen gerichteten knopfartigen Ausprägung (33) versehen ist. Diese Ausprägungen (33), die jeweils in Strömungsrichtung zwischen den aufeinanderfolgenden Paaren von Laschen (32') angeordnet sind, dienen als Abstandshalter oder Abstandmittel zu jeweils dem benachbarten Rechteckrohr. Eine derartige Anordnung von Abstandshaltern hat insbesondere bei längeren Wärmeübertragern Vorteile.

In Fig. 5a ist ein Bauelement dargestellt, das ein gekantetes Blechteil (34) ist, das Paare von Laschen (35) bildet. Dieses Bauteil (34) kann im Bereich des die Laschen (35) verbindenden Steges mittels Punktschweißen an den Rohrhälften (10') befestigt werden. Dadurch entfällt ebenfalls ein Dichtschweißen. Bei einer abgewandelten Ausführungsform ähnlich Fig. 5a und 5b wird vorgesehen, daß der die Laschen (35) verbindende Steg des Bauteils (34) mit zur gegenüberliegende Seite abgekanteten Laschen versehen ist, die in Schlitze der Rohrhälfte (10') eingesteckt und eingeschweißt werden und die nach außen abragen, um Abstandshalter zu den benachbarten Rechteckrohren (10) zu bilden.

In Fig. 6 ist ein Ausführungsbeispiel von Rechteckrohren dargestellt, die aus zwei in Längsrichtung im 35 Bereich der größeren Wände geteilten Rohrhälften (36) gebildet sind. In die beiden Rohrhälften (36) wird ein Blech (37) einlegt, das in S- und Z-förmige, aufeinanderfolgende Abschnitte verformt ist. Die jeweils parallel zu den längeren Wänden der Rohrhälfte (36) verlaufenden 40 Teile sind mit Paaren von Laschen (38) versehen, die entsprechend den Erläuterungen zu Fig. 3a und 3b angeordnet und ausgebildet sind. Die Rohrhälften (36) werden durch Laserschweißung oder Mikro-WIG-Schweißung miteinander verbunden, wobei das eingelegte Blech (37) mit Hilfe einer Durchschweißung fixiert wird.

Bei der Herstellung des erläuterten Wärmeübertragers werden zunächst die Rohrhälften (10') mit den Laschen (32, 32', 35 oder 38) versehen und dann zusam- 50 mengeschweißt. Die so gebildeten Rechteckrohre werden mit den gitterförmig ausgestanzten Rohrböden (11) versehen, wonach die Enden der Rechteckrohre (10) mit den Rohrböden verschweißt werden. Anschließend werden die zwei profilierten Blechschalen des Blechmantels (12), die mit vorbereiteten Eintrittsöffnungen und Austrittsöffnungen für das Kühlmedium versehen sind, an die Rohrböden (11) angesetzt und mit diesen verschweißt. Danach werden die Flanschbleche (15) angebracht und mit dem Blechmantel (12) verschweißt. 60 Anschließend werden die vorbereiteten Gewindehülsen (19, 20) an die Flanschbleche angesteckt und mit diesen verschweißt sowie mittels der Haltestege (21, 27) mit dem Blechmantel (12) verschweißt. Anschließend werden noch die Abdeckbleche (28) angebracht, die so mit 65 den Haltestegen (27), dem Blechmantel (12), den Anschlußrohren (24), den Gewindehülsen (20) und den Flanschblechen (15) verschweißt werden, daß eine Art

von Wasserkasten gebildet wird.

Patentansprüche

1. Wärmeübertrager zum Kühlen von Abgas eines Verbrennungsmotors mit einer Vielzahl von Kanälen zum Führen des Abgases, die mit schräg zur Strömungsrichtung paarweise angeordneten, von wenigstens einer Wand der Kanale abragenden Laschen versehen und außen mit einem flüssigen Kühlmedium umstromt sind, dadurch gekennzeichnet, daß als Kanäle für das Abgas ein Bündel von Rechteckrohren (10) vorgesehen ist, deren Enden in gitterförmige Rohrböden (11) eingeschweißt sind, daß das Bündel von Rechteckrohren mit einem Blechmantel (12) umgeben ist, der der Kontur des Bündels folgt, der mit einem Kühlmediumeintritt und einem Kühlmediumaustritt versehen ist und der mit den Rohrböden verschweißt ist, und daß die Enden des Blechmantels (12) mit angeschweißten Flanschblechen (15) versehen sind, die jeweils mittels einer zentralen Öffnung (18) zu dem Bündel von Rechteckrohren (10) offen sind und die mit Befestigungsmitteln (19, 20) zum Befestigen an Rohrstücken einer Abgasleitung versehen sind.

2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, daß die Rechteckrohre (10) jeweils aus zwei miteinander verschweißten Rohrhälften (10') gebildet sind.

3. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, daß wenigstens eine der Rohrhälften mit Laschen (32, 32', 35) versehen ist.

4. Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß die Laschen (32, 35) an die Rohrhälften (10') angeschweißt sind.

5. Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß die Laschen (32') mittels Tiefziehen und Pressen aus dem Material der Rohrhälften (10') herausgeformt sind.

6. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Laschen (38) Bestandteil von in den Rechteckrohren (10) angeordneten Einlagen (37) sind.

7. Wärmeübertrager nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rechteckrohre (10) mit jeweils benachbarten Rechteckrohren zugewandten Abstandselementen (33) versehen sind.

8. Wärmeübertrager nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Flanschbleche (15) in einander im wesentlichen diametral gegenüberliegenden Bereichen mit Gewindehülsen (19, 20) versehen sind.

9. Wärmeübertrager nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Blechmantel (12) in der Nähe des in Strömungsrichtung des Abgases vorderen Flanschbleches (15) mit einem Kühlmediumeintritt und in der Nähe des hinteren Flanschbleches mit einem Kühlmediumaustritt versehen ist

10. Wärmeübertrager nach Anspruch 9, dadurch gekennzeichnet, daß der Kühlmitteleintritt und der Kühlmittelaustritt auf gegenüberliegenden Seiten des Blechmantels (12) angeordnet sind.

11. Wärmeübertrager nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der Kühlmitteleintritt und der Kühlmittelaustritt jeweils ein Anschlußrohr (24) enthalten, die parallel zu den Rechteck-

rohren (10) ausgerichtet sind und die jeweils über eine seitliche Öffnung (26) mit einer Öffnung des Blechmantels (12) verbunden sind.

12. Wärmeübertrager nach Anspruch 11, dadurch gekennzeichnet, daß zwischen dem Flanschblech (15) und Haltestegen (27) im Bereich der Öffnungen (26) der Anschlußrohre (24) und des Blechmantels (12) jeweils eine Art Wasserkasten gebildet ist.

13. Wärmeübertrager nach Anspruch 12, dadurch gekennzeichnet, daß die Anschlußrohre (24) in Verlängerung jeweils einer an ihrem hinteren Ende geschlossenen Gewindehülse (20) angeordnet sind, und daß jeweils zwischen der Gewindehülse und dem Anschlußrohr mittels sich von den Flanschblechen (15) zu den Haltestegen (27) erstreckenden 15 Abdeckblechen (28) eine Art Wasserkasten gebildet ist.

14. Wärmeübertrager nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Blechmantel (12) aus zwei vorgeformten Blechschalen zusammengesetzt ist, die mittels Fügeverbindungen an die Rohrböden (11) anschließen.

15. Wärmeübertrager nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Flanschbleche (15) mittels Fügeverbindungen (17) an den 25 Blechmantel (12) anschließen.

16. Wärmeübertrager nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Gewindehülsen (19, 20) mittels einer Fügeverbindung an die Flanschbleche (15) anschließen.

Hierzu 4 Seite(n) Zeichnungen

35

40

45

50

55

60

- Leerseite -

•

Nummer: Int. Cl.⁶: Offenlegungstag: DE 195 40 683 A1 F 01 N 5/02 7. Mai 1997

30 - 4 15 Fig. 1 ,20 --25 28 21 - 27 -24 _12 29. 2,7 24-21 25 20 ₹31 415 28

702 019/138

Nummer: Int. Cl.6:

DE 195 40 683 A1 F 01 N 5/02

Offenlegungstag:

7. Mai 1997

Fig. 3a

Fig. 3b

Fig. 4a

Fig. 4b

Fig. 5a

Fig. 5b

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 40 683 A1 F 01 N 5/02 7. Mai 1997

Fig. 6

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 40 683 A1 F 01 N 5/02 7. Mai 1997

Fig. 7

Fig. 8

