Московский государственный университет имени М. В. Ломоносова

Физический факультет

Кафедра физики частиц и космологии

Курсовая работа «Дискретная теорема Нётр»

Выполнил студент 2 курса, 213 группы Бобров Дмитрий Денисович

Научный руководитель д.ф.-м.н., профессор Белокуров Владимир Викторович

Содержание

1	Введение	2
2	Дискретная симметрия	4
3	Квазимомент импульса	6
\mathbf{C}_{1}	писок используемой литературы	11

1 Введение

В классической механике симметрии в уравнениях Лагранжа и законы сохранения связывает теорема Нетер [1]. Преобразование $t, q \longleftrightarrow \widehat{t}, \widehat{q}$ является преобразованием симметрии, если оно связано с лагранжевой системой следующим образом:

$$L\left(\widehat{t},\widehat{q},\frac{d\widehat{q}}{dt}\right)\frac{d\widehat{t}}{dt} = L\left(t,q,\frac{dq}{dt}\right)$$

Теорема Нетер Пусть однопараметрическое преобразование $\hat{t} = \hat{t}(t, q, \tau)$, $\hat{q} = \hat{q}(t, q, \tau)$ - преобразование симметрии для лагранжевой системы, определенной функцией $L(t, q, \dot{q})$. Тогда у системы есть первый интеграл

$$I = \sum p_i \eta_i - \xi H,$$

где

$$\xi(t,q) = \frac{\partial \widehat{t}(t,q,\tau)}{\partial \tau} \bigg|_{\tau=0}, \quad \eta_i(t,q) = \frac{\partial \widehat{q}_i(t,q,\tau)}{\partial \tau} \bigg|_{\tau=0},$$

а p_i и H - обобщенный импульс и функция Гамильтона:

$$p_i = \frac{\partial L}{\partial \dot{q}_i}, \quad H(t, q, p) = \sum p_i \dot{q}_i - L(t, q, \dot{q}).$$

В квантовой механике оператор, не зависящий от времени явно, сохраняется, если коммутирует с гамильтонианом. Для свободной частицы движущейся вдоль оси х $\widehat{H} = \frac{\widehat{p}_x^2}{2m}$. Видно что такой гамильтониан не меняется при трансляциях \widehat{T}_s на любое число s по координате x. Данной симметрии соответствует сохраняющийся оператор - импульс \widehat{p}_x , собственные состояния которого, соответствующие собственному значению p, имеют вид:

$$\psi = Ae^{ipx} \tag{1}$$

В случае движения частицы в периодическом потенциале U(x) = U(x+a), гамильтониан $\widehat{H} = \frac{\widehat{P}_x^2}{2m} + U(x)$ обладает симметрией относительно сдвигов на a. Периодические потенциалы такого рода возникают в физике твердого тела. Например, в задаче о поведении электрона в поле кристалической решетки, которая описывается пространственно-периодическим внешнем электрическим полем.

Теорема Блоха [2, гл. 8] отвечает на вопрос о поведении собственных функций гамильтониана в таком периодическом потенциале U(x):

Теорема Блоха Собственные состояния одночастичного гамильтониана $\widehat{H} = \frac{\widehat{p}_x^2}{2m} + U(x)$ могут быть выбраны так, чтобы их волновые функции имели вид плоской волны умноженной на функцию с периодом a, т.е.

$$\psi_k = e^{ikx} u_k(x), \quad u_k(x+a) = u_k(x) \tag{2}$$

Смысл k в том, что он определяет поведение волновой функции при трансляциях: преобразование умножает ее на e^{ika} ,

$$\psi_k(x+a) = e^{ika}\psi_k(x)$$

Отсюда следует, что k неоднозначна: значения отличающиеся на $\frac{2\pi}{a}$ физически эквивалентны, так как приводят к одинаковому поведению волновых функций.

Функции (2) схожи с волновыми функциями свободной частицы (1) - плоскими волнами $\psi = Ae^{ipx}$; при этом число k, которое называется квазиимпульсом, играет роль сохраняющегося импульса соотвествующего дискретной симетрии на a, и служит естественным обобщением импульса на случай периодического потенциала.

Помимо трансляционных симметрий у гамильтониана свободной частицы движущейся в 2 мерном пространстве присутствует вращательная симметрия по полярному углу φ . Соответствующая сохрняющаяся величина - оператор момента импульса $\hat{l}=\widehat{x}\widehat{p}_y-\widehat{y}\widehat{p}_x$, с собственными состояниями при энергии E:

$$\psi = e^{il\varphi} J_l(\sqrt{2mE}\rho), \quad \forall l \in \mathbb{Z}$$
(3)

где $J_n(x)$ - функции Бесселя первого рода порядка $n, (\varphi, \rho)$ - полярные координаты.

В данной работе рассматривается возможность ввести понятие квазиимпульса для случая когда гамильтониан периодичнен по произвольной координате. Для частного случая, когда в роли координаты выступает полярный угол, находятся собственые состояния квазимомента импульса.

2 Дискретная симметрия

Обобщим теперь выше изложенный подход на случай, когда потенциал U какой-либо системы периодичен по одной из координат q с периодом τ : $U(q+\tau)=U(q)$. Из этого следует что \widehat{T}_{τ} , унитарный оператор трансляции по координате q на τ , коммутирует с потенциалом:

$$\widehat{T}_{\tau}U(\widehat{q})\widehat{T}_{\tau}^{-1} = U(\widehat{q} + \tau) = U(\widehat{q}) \Rightarrow \widehat{T}_{\tau}U(\widehat{q}) = U(\widehat{q})\widehat{T}_{\tau}$$

Гамильтониан $\widehat{H} = \frac{\widehat{p}^2}{2m} + U(\widehat{q})$ будет коммутировать с \widehat{T}_{τ} только при условии $[\widehat{p}^2, \widehat{T}_{\tau}] = 0$. В координатном представлении $\widehat{p}^2 = -\Delta$, поэтому мы будем рассматривать только такие системы координат в которых оператор Лапласа Δ не зависит явно от q, так как в этом случае $[\widehat{p}^2, \widehat{T}_{\tau}] = 0$. Среди декартовой, цилиндрической и сферической системами координат таким свойством обладают только декартовы коодинаты x, y, z и полярный угол φ :

Декартова
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 Цилиндрическая $\Delta = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$ Сферическая $\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin(\theta)} \frac{\partial^2}{\partial \varphi^2}$

Пусть \widehat{H} коммутирует с \widehat{T}_{τ} , тогда собственные состояния гамильтониана можно выбрать таким образом, что они являются собственными и для для оператора \widehat{T}_{τ} :

$$\widehat{H}\psi = E\psi$$

$$\widehat{T}_{\tau}\psi(q) = \lambda\psi(q) = \psi(q+\tau)$$

В силу нормированности волновых функций $|\lambda|=1$, по аналогии с квазиимульсом, можно записать собственное значение в виде: $\lambda=e^{ik\tau}$, а волновые функии относящиеся к этому собственному значению обозначить как $\psi_k(q)$

$$\psi_k(q+\tau) = e^{ik\tau}\psi_k(q) \Rightarrow \psi_k(q)e^{-ikq} = \psi_k(q+\tau)e^{-ik(q+\tau)} = U_k(q), \quad U_k(q+\tau) = U_k(q) \quad \Rightarrow$$

$$\psi_k(q) = e^{ik\tau}U_k(q) \tag{4}$$

Так как U_k периодична, то ψ можно представить в виде ряда Фурье:

$$\psi_k(q) = \sum_{n = -\infty}^{\infty} u_{kn} e^{i(k + \frac{2\pi}{\tau}n)q}$$
(5)

, то есть ψ_k есть суперпозиция собственных состояний импульса, соответствующих собственным значениям $k+\frac{2\pi}{\tau}n, n\in\mathbb{Z}.$

Множество $\{\widehat{T}_{n\tau}\}$ образует группу дискретных симметрий гамильтониана \widehat{H} по коордтнате q. Мы хотим построить такой сохраняющийся оператор квазиимпульса \widehat{k} , что он связан с группой дискретных трансляции $\{\widehat{T}_{n\tau}\}$ также, как и в случае непрерывной симметрии обычный импульс связан с оператором трансляций. То есть \widehat{k} должен удовлетворять 2 условиям:

- 1) \widehat{k} коммутирует с гамильтонианом \widehat{H}
- 2) $\widehat{T}_{n\tau} = e^{i\widehat{k}n\tau}$.

Для удовлетворения 1 условия разумно искать оператор \hat{k} как функцию от \hat{T}_{τ} , потому что тогда из $[\hat{T}_{\tau}, \hat{H}] = 0$ следует $[\hat{k}, \hat{H}] = 0$. При этом из 2 условия \hat{T}_{τ} есть функция \hat{k} , следовательно между \hat{T}_{τ} и \hat{k} будет взаимооднозначное соответствие.

Функция от оператора в квантовой механике оперделяется рядом Тейлора это функции по оператору. Следовательно функция от оператора есть оператор с теми же собственными векторами, у которых собственные значения получаются путем действием этой функции на соответсвующие собственные значения изначального оператора. Поэтому каждая собственная функция оператора \widehat{T}_{τ} с собственным значением λ будет собственной и для \widehat{k} с собственным значением k удовлетворяющем уравнению: $\lambda = e^{ik\tau}$. Получаем, что для данного λ значение k должно быть одним из множества $\frac{\text{Ln}(\lambda)}{i\tau} = \{k + \frac{2\pi}{\tau}n \mid n \in \mathbb{Z}\}$. Все эти значения соответствуют одному и тому же состоянию.

Для определение оператора \hat{k} нужно однозначно определить его действие на собственные вектора, то есть выбрать конкретные значения $k + \frac{2\pi}{\tau}n$ для всех собственных векторов. Таким образом полученные операторы будут отличаться только собственными значениями для одних и тех же собственных векторов, то есть являтся функциями друг друга. Можно рассмотреть один из них таких операторов, например, с наименьшими неотрицательными из возможных собственных значений:

$$\widehat{k}\psi_k = [k]_{\frac{2\pi}{\tau}}\psi_k$$
, где $[b]_a = \min\{x \ge 0 \mid x = b \pmod{a}\}$

При этом видно, что сохранение квазиимпульса \hat{k}_t соответствующего периодичности на t включает в себя и сохранение \hat{k}_{τ} соответствующее периоду $\tau > t$, а в переделе $t \to 0$ переходит в сохранение обычного импульса.

Общие собственные функции гамильтониана и квазиимпульса (5): $\psi_k(q) = \sum_{n=-\infty}^{\infty} U_{kn} e^{i(k+\frac{2\pi}{\tau}n)q}$,

не являются собственными для оператора импульса. Однако, для оператора $[\widehat{p}_q]_{\frac{2\pi}{\tau}}$, получающегося из оператора импульса соответсвующего координате q путем замены каждого собственного значения p на его остаток от деления на $\frac{2\pi}{\tau}$, они являются собственными, так как все функции вида $e^{i(k+\frac{2\pi}{\tau}n)q}, n \in \mathbb{Z}$ соответсвуют отдному и тому же собственному значению $[k]_{\frac{2\pi}{\tau}}$:

$$[\widehat{p}_q]_{\frac{2\pi}{\tau}}\psi_k = [\widehat{p}_q]_{\frac{2\pi}{\tau}}\sum_{n=-\infty}^{\infty} e^{i(k+\frac{2\pi}{\tau}n)q}U_{kn} = \sum_{n=-\infty}^{\infty} \underbrace{[k+\frac{2\pi}{\tau}n]_{\frac{2\pi}{\tau}}}_{[k]_{\frac{2\pi}{\tau}}} e^{i(k+\frac{2\pi}{\tau}n)q}U_{kn} = \sum_{n=-\infty}^{\infty} [k]_{\frac{2\pi}{\tau}} e^{i(k+\frac{2\pi}{\tau}n)q}U_{kn} = \underbrace{\sum_{n=-\infty}^{\infty} [k]_{\frac{2\pi}{\tau}}}_{[k]_{\frac{2\pi}{\tau}}} e^{i(k+\frac{2\pi}{\tau}n)q}U_{kn} = \underbrace{\sum_{n=-\infty}^{\infty} [k]_{\frac{2\pi}{\tau}}}_{[k]_{\frac{2\pi}{\tau}}}}_{[k]_{\frac{2\pi}{\tau}}} e^{$$

$$= [k]_{\frac{2\pi}{\tau}} \sum_{n=-\infty}^{\infty} e^{i(k + \frac{2\pi}{\tau}n)q} U_{kn} = [k]_{\frac{2\pi}{\tau}} \psi_k = \hat{k} \psi_k$$

Таким образом мы получили, что оператор $[\widehat{p}_q]_{\frac{2\pi}{\tau}}$ действует на собственные функции гамильтониана ψ_k также как и \widehat{k} , а значит $\widehat{k}=[\widehat{p}_q]_{\frac{2\pi}{\tau}}$. Можно явно показать сохранение такого оператора:

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + V(\widehat{q}), \quad V(\widehat{q}) = \sum_{n = -\infty}^{\infty} e^{i\frac{2\pi}{\tau}nq} V_n$$

$$[\widehat{p}_q]_{\frac{2\pi}{\tau}} V(\widehat{q}) \psi = [\widehat{p}_q]_{\frac{2\pi}{\tau}} \sum_{n = -\infty}^{\infty} e^{i\frac{2\pi}{\tau}nq} V_n \int dp \, e^{ipq} \psi_p = \sum_{n = -\infty}^{\infty} \int dp \, \underbrace{[p + \frac{2\pi}{\tau}n]_{\frac{2\pi}{\tau}}}_{=[p]_{\frac{2\pi}{\tau}}} e^{i(p + \frac{2\pi}{\tau}n)q} V_n \psi_p =$$

$$= \sum_{n=-\infty}^{\infty} e^{i\frac{2\pi}{\tau}nq} V_n \int dp \, [p]_{\frac{2\pi}{\tau}} e^{ipq} \psi_p = V(\widehat{q}) [\widehat{p}_q]_{\frac{2\pi}{\tau}} \psi \quad \Rightarrow \left[[\widehat{p}_q]_{\frac{2\pi}{\tau}}, V(\widehat{q}) \right] = 0$$

$$\left[[\widehat{p}_q]_{\frac{2\pi}{\tau}}, \widehat{H} \right] = \underbrace{\left[[\widehat{p}_q]_{\frac{2\pi}{\tau}}, \frac{\widehat{p}^2}{2m} \right]}_{=0} + \left[[\widehat{p}_q]_{\frac{2\pi}{\tau}}, V(\widehat{q}) \right] = 0$$

Коммутаторы \widehat{q} и \widehat{p} с \widehat{k}

Так как $\widehat{k}=[\widehat{p}_q]_{\frac{2\pi}{-}}$, т.е. функция от \widehat{p}_q , то $[\widehat{k},\widehat{p}_q]=0$.

Для вычисления $[\widehat{q}, \widehat{k}]$ понадобится следующая формула [4, 3.22]:

$$e^{tA}Be^{-tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} \underbrace{[A, [A, \dots, [A, B] \dots]}_{k}$$

$$\tag{6}$$

Из общих соображений можно найти результат действия преобразования $\widehat{T}_{n\tau}$ на некоторые наблюдаемые \widehat{A} , т.е. мы знаем оператор $\widehat{T}_{n\tau}\widehat{A}\widehat{T}_{n\tau}^{\dagger}$. Далее, с помощью формулы (6) получается связь между известным оператором $\widehat{T}_{n\tau}\widehat{A}\widehat{T}_{n\tau}^{\dagger}$ и коммутатором $[\widehat{k},\widehat{A}]$ посредством следующего рядя:

$$\widehat{T}_{n\tau}\widehat{A}\widehat{T}_{n\tau}^{\dagger} = e^{i\widehat{k}n\tau}\widehat{A}e^{-i\widehat{k}n\tau} = \sum_{m=0}^{\infty} \frac{(in\tau)^m}{m!} \underbrace{\left[\widehat{k}, \left[\widehat{k}, \dots, \left[\widehat{k}, \widehat{A}\right] \dots\right], \quad \forall n \in \mathbb{Z}\right]}$$
(7)

из которого в некоторых частных случая можно найти $[\widehat{k},\widehat{A}].$

Так как \widehat{T}_{τ} - оператор трансляции по координате q на τ , то $\widehat{T}_{\tau}\widehat{q}\widehat{T}_{\tau}^{\dagger}=\widehat{q}+\tau$. \widehat{k} коммутирует с \widehat{T}_{τ} , следовательно

$$\widehat{T}_{\tau}[\widehat{k},\widehat{q}]\widehat{T}_{\tau}^{\dagger} = [\widehat{k},\widehat{T}_{\tau}\widehat{q}\widehat{T}_{\tau}^{\dagger}] = [\widehat{k},\widehat{q}+\tau] = [\widehat{k},\widehat{q}] \Rightarrow [\widehat{T}_{\tau},[\widehat{k},\widehat{q}]] = 0$$

Если \hat{k} есть функция \hat{T}_{τ} , то $[\hat{T}_{\tau}, [\hat{k}, \hat{q}]] = 0 \Rightarrow [\hat{k}, [\hat{k}, \hat{q}]] = 0$. Подставляя это в ряд (7) для сдвинутового \hat{q} , получаем что все кроме первого коммутатора сокращается:

$$\widehat{q} + \tau = \widehat{T}_{\tau}\widehat{q}\widehat{T}_{\tau}^{\dagger} = \widehat{q} + i\tau[\widehat{k}, \widehat{q}] + \underbrace{\frac{(i\tau)^2}{2}}_{=0} \underbrace{[\widehat{k}, [\widehat{k}, \widehat{q}]]}_{=0} + \underbrace{\frac{(i\tau)^3}{6}}_{=0} [\widehat{k}, \underbrace{[\widehat{k}, [\widehat{k}, \widehat{q}]]}_{=0}] + \cdots = \widehat{q} + i\tau[\widehat{k}, \widehat{q}] \Rightarrow \underbrace{[\widehat{q}, \widehat{k}]}_{=0} = i$$

Этот результат полностью совпадает с соотношениями для обычных импульсов: $[\widehat{x},\widehat{p}_x]=i,\ [\widehat{y},\widehat{p}_y]=i,\ [\widehat{z},\widehat{p}_z]=i,\ [\widehat{\varphi},\widehat{m}_z]=i$

3 Квазимомент импульса

Пусть теперь в роли координаты q будет полярный угол φ , а система будет симметрична относительно поворота на ϕ , которому соответствует оператор \hat{R}_{ϕ} . Так как само пространство всегда периодично на 2π , то 2π должно быть кратно ϕ , т.е. $\phi = \frac{2\pi}{t}, t \in \mathbb{N}$, а для того чтобы волновые функции были однозначными, необходимо, чтобы $\psi(\varphi) = \psi(\varphi + 2\pi)$, отсюда находим возможные собственный значения квазимомента

$$\forall l \ \psi_l(\varphi) = \psi_l(\varphi + 2\pi) = e^{il\varphi + il2\pi} U_l(\varphi + 2\pi) = e^{il\varphi} U_l(\varphi) e^{il2\pi} = \psi_l(\varphi) e^{il2\pi} \Rightarrow l \in \mathbb{Z}$$

Значения \hat{l} определены с точность до $\frac{2\pi}{\phi} = \frac{2\pi}{\frac{2\pi}{t}} = t$. В итоге получаем что квазимомент может принимать t подряд идущих целых значения: $l = 0, 1, \cdots, t-1$.

Рассмотрим 2 мерное пространство с периодическим потенциалом $V(\varphi) = V(\varphi + \phi)$. Собственные состояния \hat{l} имеют вид $\psi_l = e^{il\varphi}u_l(\varphi)$ и удовлетворяют стационарному уравнению Шредингера:

$$\left(-\frac{\Delta}{2m} + V(\varphi)\right)\psi_l = -\frac{1}{2m}\left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho}\frac{\partial}{\partial \rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial \varphi^2}\right)\psi_l(\rho, \varphi) + V(\varphi)\psi_l = E\psi_l \tag{8}$$

$$\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \left(-l^2 u + 2il \frac{\partial u}{\partial \varphi} + \frac{\partial^2 u}{\partial \varphi^2} \right) - 2mVu = -2mEu \tag{9}$$

Численные расчеты

Мы хотим получить решение уравнения (8) в виде собственного состояния оператора квазимомента импульса, т.е. в виде $\psi_l = e^{il\varphi}u_l(\varphi)$. В силу одинакового периода ϕ у функций $u_l(\varphi)$ и $V(\varphi)$ разумно искать численное решение в области $D = \{(\varphi, \rho) | \varphi \in [0, \phi) \ \rho \in [0, R]\}$, удовлетворяющее граничному условию: $u_l(\phi) = u_l(0)$. Введем в области D сетку

$$\{(\varphi_m, \rho_n) \mid \varphi_m = ma, m = \overline{0, M-1}, \ \rho_n = nh, n = \overline{1, N}\}$$

 $u_{n,m}$ - сеточные знаения функции u. Заменим уравнение (9), на соответствующее разностное уравнение:

$$\frac{u_{n+1,m} - 2u_{n,m} + u_{n-1,m}}{h^2} + \frac{1}{\rho_n} \frac{u_{n+1,m} - u_{n-1,m}}{2h} - 2mV_{n,m}u_{n,m} + \frac{1}{\rho_n^2} \left(-l^2 u_{n,m} + 2il \frac{u_{n,m+1} - u_{n,m-1}}{2a} + \frac{u_{n,m+1} - 2u_{n,m} + u_{n,m-1}}{a^2} \right) = -2mEu_{n,m}$$

Которое преобразуется к виду

$$\left(\underbrace{\frac{1}{h^2} + \frac{1}{2\rho_n h}}_{\alpha}\right) u_{n+1,m} - \left(\underbrace{\frac{2}{h^2} + \frac{2}{a^2 \rho_n^2} + \frac{l^2}{\rho_n^2} + 2mV_{n,m}}_{c_{n,m}}\right) u_{n,m} + \left(\underbrace{\frac{1}{h^2} - \frac{1}{2\rho_n h}}_{\beta}\right) u_{n-1,m} + \underbrace{\frac{1}{\rho^2} \left(\frac{1}{a^2} + \frac{il}{a}\right) u_{n,m+1} + \frac{1}{\rho^2} \left(\frac{1}{a^2} - \frac{il}{a}\right) u_{n,m-1}}_{c_{n,m}} = -2mEu_{n,m}$$

Запишем значения $u_{n,m}$ в виде столбца $x_{mN+n}=u_{n,m}$, тогда полученна система преобразуется к виду $Ax=\lambda x$

$$A = \begin{pmatrix} -C_0 & B & \dots & 0 & B^{\dagger} \\ B^{\dagger} & -C_1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -C_{M-1} & B \\ B & 0 & \dots & B^{\dagger} & -C_{M-1} \end{pmatrix},$$

$$C_m = \begin{pmatrix} c_{0,m} & -\alpha & 0 & \dots \\ -\beta & c_{1,m} & -\alpha & \dots \\ 0 & -\beta & c_{2,m} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, B = \left(\frac{1}{a^2} + \frac{il}{a}\right) \begin{pmatrix} \frac{1}{\rho_0^2} & 0 & 0 & \dots \\ 0 & \frac{1}{\rho_1^2} & 0 & \dots \\ 0 & 0 & \frac{1}{\rho_2^2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \lambda = -2mE$$

Таким образом, необходимо найти собственный вектор x матрицы A с собственные значением -2mE. Для поиска применим метод итераций Рэлея. Итеративный алгоритм:

$$x_{i+1} = \frac{(A - \lambda_i)^{-1} x_i}{||(A - \lambda_i)^{-1} x_i||}, \quad \lambda_{i+1} = \frac{x_{i+1}^{\dagger} A x_{i+1}}{x_{i+1}^{\dagger} x_{i+1}}, \quad \lambda_0 = -2mE$$

Для нахождения вектора $y = (A - \lambda)^{-1} x$ будем решать систему

$$(A - \lambda)y = x$$

с блочной трехдиагональной матрицей $(A-\lambda)$ модифицированным методом прогонки для периодических граничных условий [5].

Проверим реализацию численного метода на известном аналитическом решении для свободной частицы (3)

$$V(\rho,\varphi) = 0 \quad \Rightarrow \quad \psi = Ae^{il\varphi}J_l(\sqrt{2mE}\rho) \quad \Rightarrow \quad u = J_l(\sqrt{2mE}\rho)$$

Далее приводятся численные решения для трех видов потенциалов с квази моментом l=1, которые сравниваются с решением для $V(\rho,\varphi)=0.$

$$V_1(\rho,\varphi) = \cos(4\varphi)$$

$$V_1(\rho,\varphi) = \cos(20\varphi)$$

$$V_2(\rho,\varphi) = \frac{100\cos(4\varphi)}{\rho^2}$$

Список литературы

- [1] Яковенко Г. Н., "Лекции по теоретической механике": М.: МФТИ, 1998
- [2] Ашкрофт Н. У., Мермин Н. Д. "Физика твердого тела. Том 1": М.: Мир, 1979
- [3] Лифшиц Е. М. Питаевский Л. П. "Теоретическая физика. Том 9. Статистическая физика. Часть II. Теория конденсированного состояния": М.: Наука, 1978
- [4] Исаев А. П., Рубаков В. А. "Теория групп и симметрий"
- [5] Абрамов А. А., Андреев В. Б. "О применении метода прогонки к нахождению периодических решений дифференциальных и разностных уравнений": Ж. вычисл. матем. и матем. физ., 1963, том 3, номер 2, 377–381