Bonjur

Question (Élodia): Si E muni d'un produit saloure Si F de demension finie (sour-expace vectoriel de E)

alou E=FBF1. (comme T est de dimension finie, on peut trouver (e1-ep) base or Honormée de F Sow $P_F: E \rightarrow E$ $\chi \mapsto \sum_{k=1}^{p} \langle e_k, \chi \rangle \cdot e_k \qquad \qquad P_F \text{ project reur}$ $(P_F \circ P_F = P_F)$

danc E = Ver(PF) & Im (PF). Il reste à dinomhrer que Im (PF) = Ver (PF) 1. Sodr y & Im (pp), 2 E Kr (pp). Sou 2 (5, clarote WE Ker(A) er y EE, n = w + Pr (y). donc Pr (x) = Pr (y) (x = p (x) + x - p(x) toyours Vrai quand p projecteur) Objectel: <x-P=(x), P=(y)> ∀ (x,y) ∈ E. < x - \(\frac{\x}{\x} < \en. x> \cross \frac{\x}{\x} < \eg. y> \cross \(\frac{\x}{\x} \rightarrow \text{Vator} \) $\frac{\mathcal{E}}{\mathcal{E}} < e_{y}, y > \langle e_{y}, x \rangle - \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle = 0$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{x}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{y}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{y}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{y}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{y}, e_{y} \rangle$ $= \mathcal{E} < e_{y}, x > \langle e_{y}, y \rangle < e_{y}, e_{y} \rangle$

Theoreme spectral: il existe (e1-en) Dose or Howrmen de E

leposte (21-2n) ERM,

v (- 4+(E))

Per de ne sout pas necessairement distrindis

Pour y E [[18],] 2 (E, u (x) = dj. x) = Ker (u-dj. ide) = E; Analyse: siveriste U/Ej = dj. idej (Romothétie). Mar non=vou car v=u2 (nov=nov=u3-vou=vou). et v(Ej) C Ej (sour 20 Eg, alors u(n)=dj. 2 et Nou(x) = dj. V(x) uor(x) = u(v(x)) $donc v(x) \in \xi$ N/E, Ej) cleriteure base (bi-br.) de Ej. (g=dm Ej) ex (M, -Mg) E Pro

Python: set ([2,-2,]) = {d,-,dp} (6,+), di+di)

One of
$$E_{g}$$
 (bx) = M_{K} . bx $Y_{K} \in I_{1} P_{S}I_{1}$. ($M_{K} \neq 0$)

(Case von (bx) = M_{K}^{2} . bx or bx E_{g} ;

 $M(p_{K}) = A_{g}$. bx. donc $M_{K}^{2} = A_{g}$;

 $M(p_{K}) = A_{g}$. bx. $M_{K} = A_{g}$;

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M_{K} = M_{K}$:

 $M(p_{K}) = M_{K}$. bx. $M(p_{K}) = M_{K}$.

donc v daternine de mamiere unique

Or g_1 se diagonalise dans une base orthonormée (b_1, \ldots, b_p) de vecteurs propres de E_1 , et il existe des réels positifs (μ_1, \ldots, μ_p) tels que

$$\forall k \in [1, p], \ g(b_k) = \mu_k.b_k$$

N'oublions cependant pas que $f = g \circ g$, donc

$$\forall x \in E_1, \ f(x) = \lambda_k . x = \lambda_k. \left(\sum_{j=1}^p \langle b_j, x \rangle . b_j \right)$$

et

$$g(g(x)) = \sum_{j=1}^{p} \mu_j^2 \langle b_j, x \rangle . b_j$$

Donc

$$\forall j \in \llbracket 1,p \rrbracket \,,\; \mu_j^2 = \lambda_k$$

Or, les μ_i sont ≥ 0 , il n'y a qu'une possibilité $\mu_i = \sqrt{\lambda_k}$, qui est indépendant de j. Finalement

$$g_1 = \sqrt{\lambda_k}$$
. id_{E_1} et, donc $g(e_k) = \sqrt{\lambda_k} \cdot e_k$

Notation 2.1

Nous noterons

1. $S_p(\mathbb{R})$ l'ensemble des matrices symétriques (vérifiant $M = {}^tM$), si nous sommes en base orthonormée, elles représentent les endomorphismes auto-adjoints.

2. Nous noterons donc aussi $S_p^+(\mathbb{R})$ pour les matrices symétriques M vérifiant de plus

$$\forall X \in \mathcal{M}_{p,1}(\mathbb{R}), \ ^tX \cdot M \cdot X \geq 0$$

ces matrices sont dites sym'etriques positives, elles représentent en base orthonorm\'ee les endomorphismes auto-adjoints positifs.

3. Et de même $S_p^{++}(\mathbb{R})...$

Remarque 2.3

On peut traduire les résultats sur les matrices symétriques en termes matriciels. Par exemple

1. Le théorème spectral

$$\forall M \in \mathcal{S}_p(\mathbb{R}), \ \exists P \in \mathcal{O}_p(\mathbb{R}), \ \underbrace{P^{-1}}_{=^t P} \cdot M \cdot P \in \mathcal{D}_p(\mathbb{R})$$

2. Ou encore

$$\forall M \in \mathcal{S}_p^+(\mathbb{R}), \ \exists ! N \in \mathcal{S}_p^+(\mathbb{R}), M = N \cdot N$$

Exercice(s) 2.2

2.2.1 Soit E un espace vectoriel euclidien de dimension $n \ge 2$, $a \in E$, $\|a\| = 1$ et $k \in \mathbb{R} \setminus \{-1\}$. On considère l'endomorphisme f de E défini par

$$x \mapsto x + k \langle a, x \rangle . a$$

Que devient tout cela en termer de matriar? Sn (IR) = { A ∈ Th(IR), EA = A} (notricer synétriquer). + Si u + & (E), A= For (4, (en-en)) LEYCE) (IR) ((ar (u(x),y) = (A.X).Y où X= (ar (ar (e,-en)) ((ar (u(x),y) = (A.X).Y où X= (ar (br (e,-en))où [a] Nora)

* [u & y+ (E) (=) [Y & F \(\Pi_n, (R)\) 6 \(\pi_n \times_X \times_0\)]

(Now for ye So)

Or Koromeé

[u Eytr(E)] = [rat (u, (e,-e,1) & Str (R)]

Theorem spectrol:
$$\forall A \in S_n (R), \exists P \in O_n (R), \exists (h_1-h_n) \in R^n, P^!A.P = P.A.P = Dug (h_1-h_n) = [O \setminus h_n]$$

P= P(e,-e) Corbonneé

Q: Deroke

St (R) and AES (IR), YXER (IR) EX. A.X > 0}

[u ∈ y+(E)] ([Tor (u, (e,-e)) ∈ Sn+(R)]

 $S_n^{++}(R) \stackrel{\text{del}}{=} \{ A \in S_n^{++}(R), \forall x \in \Pi_{n,i}(R), (x \neq 0_{\Pi_{n,i}(R)}) \Rightarrow [\forall x \cdot A \cdot x > 0] \}$

$$(46.1) \in \mathbb{Z}_{-n} \mathbb{Z}^2 \times (2.1) = 5.3$$

$$P = [(3.1) \in \mathbb{Z}_{-n} \mathbb{Z}^2] \times (2.1) = [(3.1) \times (2.1) \times$$

 $\left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{ik} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] \right) \qquad \left(\left[\alpha_{i} y \right] - \left[\sum_{k} \alpha_{i} b_{k} y$

Rauni correé: Sour
$$A \in S_n^+(R)$$
, cleans te une unique $B \in S_n^+(R)$

$$A = B \cdot B = B^2$$

Quel est l'intéret de l'opener $v \in \mathcal{Y}^{t}(E)$, $u = vor (u \in \mathcal{Y}^{t}(E))$? (u(u), y) = (vor(u), y) = (v(u), r(y))expression synétrique.

- (a) Montrer que f est auto-adjoint.
- (b) Montrer que f est un automorphisme.
- (c) Préciser les vecteurs propres et les valeurs propres de f.
- 2.2.2 Soit E un espace vectoriel euclidien. Trouver les $f \in \mathcal{L}(E)$ tels que $f^* \circ f = f$.
- 2.2.3 Soit E un espace vectoriel euclidien et (e_1, \ldots, e_n) une base quelconque de E. Montrer que l'endomorphisme défini par

$$x \mapsto \sum_{k=1}^{n} \langle e_k, x \rangle . e_k$$
 est auto-adjoint

- 2.2.4 Soit E un espace vectoriel euclidien de dimension n.
 - (a) Soit $(u, v) \in \mathcal{S}(E)^2$, montrer que

$$\left[u\circ v=v\circ u\right]\iff \left[\exists (e_1,\ldots,e_n)\text{ base orthonormée de vecteurs propres de }u\text{ et }v\right]$$

(b) Soit $(u_i)_{i\in I}\in\mathcal{S}(E)^I$, montrer que

$$\left[\forall (i,j) \in I^2, \ i \neq j \implies u_i \circ u_j = u_j \circ u_i \right] \Longleftrightarrow$$

$$\left[\exists (e_1, \dots, e_n) \text{ base orthonorm\'ee de vecteurs propres communs à tous les } u_i \right]$$

2.2.5 Soit E un espace vectoriel euclidien et $f \in \mathcal{L}(E)$, montrer qu'il existe une base orthonormée (e_1, \dots, e_n) de E telle que

$$\forall (i,j) \in [1,n]^2, [i \neq j] \Longrightarrow [\langle f(e_i), f(e_j) \rangle = 0]$$

- 2.2.6 Soit u un endomorphisme auto-adjoint, défini positif d'un espace vectoriel euclidien E.
 - (a) Montrer que u est un automorphisme.
 - (b) Soit $y \in E$, montrer que

$$\sup_{x \in E} \left(\langle x, y \rangle - \frac{1}{2} \langle u(x), x \rangle \right) = \frac{1}{2} \langle u^{-1}(y), y \rangle$$

2.2.7 Dans $\mathscr{S}(E)$, on dit que $f \leq g$ si $g - f \in \mathscr{S}^+(E)$. On dit qu'une suite $(f_p)_{p \in \mathbb{N}} \in \mathscr{S}(E)^{\mathbb{N}}$ est *croissante* si elle vérifie

$$\forall p \in \mathbb{N}, f_n \leqslant f_{n+1}$$

on dit qu'elle est majorée si

$$\exists \phi \in \mathscr{S}(E), \ \forall p \in \mathbb{N}, \ f_p \leqslant \phi$$

Soit $(f_p)_{p\in\mathbb{N}}$ une suite croissante, majorée de $\mathscr{S}(E)$, montrer qu'elle est convergente, c'est-à-dire

$$\exists f \in \mathscr{S}(E), \ \forall x \in E, \ \|f(x) - f_p(x)\| \xrightarrow[n \to +\infty]{} 0$$

- 2.2.8 Soit E un espace vectoriel euclidien et p_1 et p_2 deux projecteurs orthogonaux de E.
 - (a) Montrer que $p_1 + p_2$ est auto-adjoint.
 - (b) À quelle condition nécessaire et suffisante a-t-on $p_1 \circ p_2 \in \mathscr{S}(E)$?
 - (c) Montrer que l'on peut décomposer E sous la forme

$$E = \bigoplus_{k=1}^{p} E_k, \text{ où } \forall k \in [1, p], \begin{cases} \dim(E_k) \in \{1, 2\} \\ p_1(E_k) \subset E_k \\ p_2(E_k) \subset E_k \end{cases}$$

(d) Montrer que l'on peut trouver une base (e_1, \ldots, e_n) non nécessairement orthonormée, adaptée à la décomposition en somme directe précédente, telle que a

$$\forall k \in [1, n], \exists \lambda_k \in \mathbb{R}, p_1 \circ p_2(e_k) = \lambda_k.e_k$$

- 2.2.9 Soit E un espace vectoriel euclidien, et soit $f \in \mathcal{S}(E)$. On suppose que ses valeurs propres sont ordonnées sous

2.2.9 Soft
$$E$$
 un espace vectoriel eucliden, et soft $f \in \mathcal{S}(E)$. On suppose que ses valeurs propres sont ordonnées soft la forme $\lambda_1 \leqslant \cdots \leqslant \lambda_n$, associés aux vecteurs propres (e_1, \dots, e_n) (donc, pour tout $k \in [1, n]$, $f(e_k) = \lambda_k \cdot e_k$).

(a) Montrer que (Quotients de Rayleigh)

$$\forall k \in [1, n], \ \lambda_k = \max_{x \in \text{Vect}(\{e_1, \dots, e_k\})}, \ \frac{\langle x, f(x) \rangle}{\|x\|^2} = \min_{x \in \text{(Vect}(\{e_1, \dots, e_{k-1}\}))^{\perp}}, \ \frac{\langle x, f(x) \rangle}{\|x\|^2}$$

$$M_k = \{F \text{ sous-espace vectoriel de } E, \dim(F) = k\}$$

(b) Soit, pour
$$k \in [\![1,n]\!]$$
,
$$M_k = \{F \text{ sous-espace vectoriel de } E, \dim(F) = k\}$$
 Montrer que
$$\forall k \in [\![1,n]\!], \ \lambda_k = \min_{F \in M_k} \max_{x \in F \setminus \{0_E\}} \frac{\langle x, f(x) \rangle}{\|x\|^2} = \max_{F \in M_{k-1}} \min_{x \in F \setminus \{0_E\}} \frac{\langle x, f(x) \rangle}{\|x\|^2}$$

a. Autrement dit, $p_1 \circ p_2$ est diagonalisable.

On new obvour P qui revisée P'=P. $P = Pe^{(e_1-e_2)}$ Transporant que $P = Rat(u, (c_1-c_2))$ P'=P elevent $u'=u^*$

Définition: Soit Eun espace euclidern u E JK (E) auto norphime de E on du pue u est un automorphisme orthogonal s'il verifie u'= u*

On note $O(E) = du \in YK(E)$, $u' = u^{\dagger}$ $O(E) = du \in K(E)$, u'ou = ide O(E) s'appelle le groupe orthogonal de E

((e) a dure: 1) & (u,v) & O(E), now & O(E) 2) Vued(E), wied(E). (1) Son (u,v) EO(E) (von) o vov = vou o vov = vov = ide 2) $(u^{-1})^{4} = (u^{-1})^{-1} donc$ $(u^{-1})^{4} \circ u^{-1} = (u^{-1})^{-1} \circ u^{-1} = (u^{-1})^{-1} = (u^{$ Remarque: si vou= (de, u= u' donc vou= (de din E finie)
(2(E)) Problème avec le not «orthogenet».

projeteur orthogenet: p#p et pop=p. (en'extrac dent

projeteur orthogenet: p#p et pop=p.)

(En'extrac dent

2.3 Automorphismes orthogonaux

Autonorphire = endomorphire +

Of (F)

Dyechif

Définition 2.2 – Automorphisme orthogonal d'un espace euclidien

Soit E un espace vectoriel euclidien, on appelle automorphisme orthogonal tout automorphisme $f \in \mathscr{GL}(E)$ qui vérifie

$$f^{\star} \circ f = f \circ f^{\star} = \mathrm{id}_{\scriptscriptstyle E}$$

On note $\mathcal{O}(E)$ l'ensemble des automorphismes orthogonaux, on l'appelle groupe orthogonal de E.

Remarque 2.4

 $\mathscr{O}(E)$ n'est pas stable par + et ., mais, en revanche, il est stable par $(f,g)\mapsto f\circ g$ et par $f\mapsto f^{-1}$. Nous dirons plus tard que c'est un sous-groupe de $(\mathscr{GL}(E),\circ)$.

Exemple 2.4

- 1. Les projecteurs orthogonaux ne sont pas des automorphismes (sauf id_E !), et donc pas des automorphismes orthogonaux.
- 2. Quand on a un projecteur orthogonal p, on peut lui associer une sym'etrie orthogonale (sym\'etrie par rapport à

Im(p)) sous la forme

— un automorphisme orthogonal,

 $s=2.p-\mathrm{id}_{\scriptscriptstyle E},$ en ce cas, s est à la fois

— un endomorphisme auto-adjoint.

Démonstration

On a

$$E = \operatorname{Ker}(p) \stackrel{\perp}{\oplus} \operatorname{Im}(p)$$
 qui traduit $\forall x \in E, \ x = (x - p(x)) + p(x)$

Calculons $s^{\star}.$ On a

$$s^{\star} = (2.p - \mathrm{id}_E)^{\star} = 2.p^{\star} - \mathrm{id}_E^{\star} = 2.p - \mathrm{id}_E$$

Car, p est auto-adjoint (projecteur orthogonal). Donc $s^* = s, \ s \in \mathscr{S}(E)$. Calculons maintenant a

$$s^{\star} \circ s = s \circ s^{\star} = s \circ s = \mathrm{id}_{\scriptscriptstyle E}, \ \mathrm{car} \ p^2 = p$$

Donc $s \in \mathcal{O}(E)$.

 $\overline{a}.$ Toutes les symétries s orthogonales ou non, vérifient bien sûr $s\circ s=\mathrm{id}_E.$

Remarque 2.5

Réciproquement, soit $f \in \mathcal{S}(E) \cap \mathcal{O}(E)$, alors f est une symétrie orthogonale. En effet, posons

$$p = \frac{1}{2} \cdot (f + \mathrm{id}_E)$$
, alors on a $p \circ p = p$ et $p^* = p$

Remarque: Si p projetient orthoponal (p*=p) 5=5

alors S= 2.p-ide est la synitarie orthoponale associace

[Imp et (0) S err un automorphome
orthoponal.

$$\left(S^{\bigstar}S = SoS = idE\right)$$

Définition 2.3 – Symétrie orthogonale

Soit E un espace vectoriel euclidien, on appelle $sym\acute{e}trie$ orthogonale tout élément de $s\in\mathscr{S}(E)\cap\mathscr{O}(E)$, son projecteur associé $(s=2.p-\mathrm{id}_E)$ est un projecteur orthogonal.

Lorsque le projecteur est une projection orthogonale sur un hyperplan, on dit que s est une réflexion de E.

Proposition 2.4 – Caractérisation des automorphismes orthogonaux

Soit E un espace vectoriel euclidien et $f \in \mathcal{L}(E)$, alors les propriétés suivantes sont équivalentes

- 1. $f \in \mathcal{O}(E)$.
- 2. $\forall x \in E, ||f(x)|| = ||x||$ (conservation de la norme). (Cometrie)
- 3. $\forall (x,y) \in E, \langle f(x), f(y) \rangle = \langle x,y \rangle$ (conservation du produit scalaire).
- 4. Quelle que soit la base orthonormée de E (e_1, \ldots, e_n)

$$(f(e_1),\ldots,f(e_n))$$
 est encore une base orthonormée

5. Il existe une base orthonormée de $E(e_1, \ldots, e_n)$ telle que

$$(f(e_1),\ldots,f(e_n))$$
 soit encore une base orthonormée

$$(1 \Rightarrow 2) \text{ Sou } u \in \mathcal{F}(E), \quad 2 \in E$$

$$\|(u(x))\|^{2} = \langle u(x), u(x) \rangle = ||x||^{2}$$

$$(2 \Rightarrow 3). \text{ On } u \in \mathcal{X}(E), \quad \forall x \in E, ||u(x)|| = ||x||$$

Sour
$$(x,y) \in \mathbb{R}^2$$
 Reserve: didoublement der vermer $||u(x+y)||^2 = ||x+y||^2 - ||x+y||^2$

u 68 (E)

(u(e) - u(ex)) une boxe orthonomie
Sour
$$x \in E$$
 $V \circ u(x) - x = 0 \in ??$

(5=) 1) Sour (e1-en) la bose orthonomée telle pu

Solvey
$$(E < u^{5}u(x)-z,y>=< u^{5}u(x),y>-< x,y>.$$

= $< u(x),u(y)>-< x,y>=0$

$$Car = \sum_{k=1}^{\infty} (e_k, x) \cdot e_k, y = \sum_{k=1}^{\infty} \langle e_k, y \rangle \cdot e_k \qquad \langle a, y \rangle = \sum_{k=1}^{\infty} \langle e_k, x \rangle \langle e_k, y \rangle$$

(ar
$$x = \xi(e_{k}, x) \cdot e_{k}, y = \xi(e_{k}, y) \cdot e_{k}$$
 (2, y) = $\xi(e_{k}, x) \cdot (e_{k}, y)$ (lineaire) $u(x) = \xi(e_{k}, x) \cdot u(e_{k})$ $u(x) = \xi(e_{k}, x) \cdot u(e_{k})$

$$(2r) = \frac{2}{k}(e_{K,x}) \cdot e_{K,y} = \frac{2}{k} \langle e_{K,y} \rangle \cdot e_{K} \qquad (2/y) = \frac{2}{k} \langle e_{K,x} \rangle \langle e_{K,y} \rangle \cdot e_{K,y}$$

$$= \frac{2}{k} \langle e_{K,x} \rangle \cdot e_{K,y} \cdot e_{K,y} \rangle \cdot e_{K,y} \cdot e_{K,y} \cdot e_{K,y} \rangle \cdot e_{K,y} \cdot e_{K,y} \rangle \cdot e_{K,y} \cdot e_{K,y} \rangle \cdot e_{$$

Démonstration

$$(1 \Rightarrow 2) \text{ Soit } x \in E,$$

$$\|f(x)\|^2 = \langle f(x), f(x) \rangle = \langle f^* \circ f(x), x \rangle = \langle x, x \rangle = \|x\|^2$$

— $(2 \Rightarrow 3)$ Dédoublement des termes dans le cas d'une égalité. Soit $(x,y) \in E^2$,

$$\underbrace{\|f(x+y)\|^2}_{=\|x+y\|^2} = \underbrace{\|f(x)\|^2}_{=\|x\|^2} + 2\left\langle f(x), f(y) \right\rangle + \underbrace{\|f(y)\|^2}_{=\|y\|^2}$$

d'où, en développant le terme de gauche et en simplifiant

$$\langle f(x), f(y) \rangle = \langle x, y \rangle$$

— $(3 \Rightarrow 4)$ Soit (e_1, \ldots, e_n) une base orthonormée de E, alors

$$\forall (i,j) \in [1,n]^2, \langle f(e_i), f(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{i,j}$$

- $(4 \Rightarrow 5)$ Évident.
- (5 \Rightarrow 1) On a

$$\forall (i,j) \in [1,n]^2, \ \delta_{i,j} = \langle f(e_i), f(e_j) \rangle = \langle f^{\star} \circ f(e_i), e_j \rangle$$

donc $f^* \circ f(e_i) = e_i$. Ce qui montre (par linéarité) que $f^* \circ f = \mathrm{id}_E$ (et donc, $f \circ f^* = \mathrm{id}_E$ aussi).

Propriété 2.6 – Décomposition polaire

Soit E un espace vectoriel euclidien, alors

$$\forall f \in \mathscr{GL}(E), \ \exists ! (\rho, \theta) \in \mathscr{S}^{++}(E) \times \mathscr{O}(E), \ f = \rho \circ \theta$$

 $3 \mapsto e^{t} 3$ (rotehoù d'angle t) autonorphine ordiginel $2 \mapsto p 3$ (honoffétie)

Proposition: Sout $u \in \mathcal{Y}(E)$, il existe un unique $(p, \Phi) \in \mathcal{Y}^{t+}(E) \times \mathcal{O}(E)$ $u = p \circ \theta$

Vémonstrador! Analyse: si (p, 0) existent dors u= pod u= 00 p* = 00 p donc uou = p2 =0 & x E Ker 1.

Or uou*
$$E$$
\$+(E). $\langle uou^*(x), x \rangle = ||u^*(x)||^2 > 0$
 $\langle e^{+} (uou^{+})^{\frac{1}{2}} u^{\frac{1}{2}} u^{\frac{1}{2}} = uou^{\frac{1}{2}} = \langle uou^{\frac{1}{2}} \rangle$
Then $u \in \mathcal{Y}_{\mathcal{A}}(E)$, done uou* $\in \mathcal{Y}_{\mathcal{A}}(E)$, done uou* $\in \mathcal{Y}_{\mathcal{A}}(E)$.

donc p existe et est unique. (source carrée de vout) $\theta = \rho' \circ u \quad \theta' = u \circ (\rho'') = u \circ (\rho'') = u \circ \rho''$

et $\rho \in \mathcal{I}^{\text{these}}$: $\rho : \mathcal{I}^{\text{these$