ANÁLISIS DE SERIES TEMPORALES

1^{era} Parte: ANÁLISIS DETERMINISTA

TEMA 3.- ANÁLISIS DETERMINISTA II: Análisis de la Estacionalidad

Autora: prof. Helena Chuliá

- Este tema está dedicado al estudio de las series temporales que sí tienen componente estacional.
 - **SERIE TIPO 1**: Serie sin tendencia y sin componente estacional
 - SERIE TIPO 2: Serie sin tendencia y con componente estacional
 - SERIE TIPO 3: Serie con tendencia y sin componente estacional
 - SERIE TIPO 4: Serie con tendencia y con componente estacional

		Tenda	encia
		S	No
Componente	Sí	SERIETIPO4	SERIETIPO2
estacional	No	SERIETIPO3	SERIETIPO1

3.1. Métodos de previsión para series de tipo 2

- 3.1.1. Método ingenuo estacional
- 3.1.2. Método de las medias estacionales

3.2. Métodos de previsión para series de tipo 4

- 3.2.1. Método de descomposición
- 3.2.2. Método de Alisado exponencial de Holt-Winters

3.1. Métodos de previsión para series de tipo 2

- **SERIE TIPO 2:** Serie sin tendencia y con comp. estacional
- El **componente estacional** recogerá aquellos movimientos oscilatorios que se completan dentro del año y que pueden ser explicados por razones físicas, institucionales...
- <u>El componente estacional tiene la característica de que su</u> <u>aportación a lo largo de todos los periodos del año es cero</u>, compensándose la aportación de los unos con la realizada por los otros

$$S_{t+1} + S_{t+2} + S_{t+3} + \dots + S_{t+s} = 0$$

Por tanto, la serie tipo 2 toma la siguiente forma:

$$y_t = \beta_0 + S_t + u_t$$

y_t tiene:

- una **tendencia constante** e igual a β_0 (no crece ni decrece),
- un componente estacional S_t
- un componente irregular (u_t es el componente aleatorio)
- y sigue un esquema aditivo

Existen dos métodos de predicción que difieren en la forma de estimar β_0 y el componente estacional

3.1.1. Método ingenuo estacional

- Es una regla simple que consiste en <u>predecir el valor de una</u> serie en una estación de un año con el valor tomado por la serie en esa estación en el año anterior.
 - Periodo muestral:

$$\hat{y}_t(1) = \hat{y}_{t+1/t} = y_{t-s+1}$$

Periodo extramuestral:

$$\hat{y}_{T}(m) = y_{T-s+m}$$
 para $m = 1, 2, 3, ..., H$

Nótese que las s primeras observaciones no tienen predicción

OJO: es DIFERENTE al visto en tema 2.

3.1.1. Método ingenuo estacional

Ilustración: para una serie temporal semestral (s=2)

serie predicción

3.1.1. Método ingenuo estacional

Ejemplo: Obtener predicciones para esta serie temporal trimestral de tipo 2 utilizando el método ingenuo

	Serie 2
90-1	17,27
90-2	39,89
90–3	9,18
90–4	8,92
91–1	14,44
91–2	34,70
91–3	9,05
91–4	14,90
92–1	19,45
92–2	39,05
92–3	8,98
92–4	6,52
93–1	24,28
93–2	37,39
93–3	8,66
93–4	4,65
94–1	15,43
94-2	43,03
94-3	12,20
94–4	11,75
95–1	20,04
95–2	37,36
95–3	14,55
95–4	9,21
	-

3.1.1. Método ingenuo

	Serie 2	PREDICCIÓN	ERROR	EΑ	EC	
90-1	17,27					
90-2	39,89					EAM(m)
90-3	9,18					ECM(m)
90-4	8,92					EAM(extra-m)
91-1	14,44	17,27	-2,830	2,830	8,009	ECM(extra-m)
91-2	34,70	39,89	-5,190	5,190	26,936	,
91-3	9,05	9,18	-0,130	0,130	0,017	
91-4	14,90	8,92	5,980	5,980	35,760	
92-1	19,45	14,44	5,010	5,010	25,100	
92-2	39,05	34,70	4,350	4,350	18,922	
92-3	8,98	9,05	-0,070	0,070	0,005	
92-4	6,52	14,90	-8,380	8,380	70,224	
93-1	24,28	19,45	4,830	4,830	23,329	
9 3 – 2	37,39	39,05	-1,660	1,660	2,756	
93-3	8,66	8,98	-0,320	0,320	0,102	
9 3 – 4	4,65	6,52	-1,870	1,870	3,497	
94-1	15,43	24,28	-8,850	8,850	78,323	
94-2	43,03	37,39	5,640	5,640	31,810	
94-3	12,20	8,66	3,540	3,540	12,532	
94-4	11,75	4,65	7,100	7,100	50,410	
95-1	20,04	15,43	4,610	4,610	21,252	
95-2	37,36	43,03	-5,670	5,670	32,149	
95-3	14,55		2,350	-	5,523	
95-4	9,21	11,75			6,452	
	- , = =	==,	= , = = 0	-,	· ,	

3.1.1. Método ingenuo

3.1.2. Método de las medias estacionales

- Es un método que define la <u>predicción para cada periodo a</u> partir de la media muestral de los periodos con idéntico componente estacional.
 - La media muestral para cada estación i se calcula como:

$$\overline{y}_i = \frac{\sum_{t \in T_i} y_t}{T_i} \quad i = 1, 2, 3, ..., s$$

donde T_i es el total de observaciones de la estación i-ésima

3.1.2. Método de las medias estacionales

- Así, la predicción es:
 - Periodo muestral:

$$\hat{\mathbf{y}}_t(1) = \overline{\mathbf{y}}_i$$

considerando que el periodo t+1 se corresponde con la estación i-ésima.

Periodo extramuestral:

$$\hat{y}_T(m) = \overline{y}_i$$

considerando que el periodo t+m se corresponde con la estación i-ésima.

3.1.1. Método de las medias estacionales

t	Yt	Predicción	
1,00	3,60	3,03	
2,00	3,90	3,83	
3,00	3,00	3,03	
4,00	3,75	3,83	
5,00	2,50	3,03	
6,00	4,00	3,83	
7,00	3,25	3,03	

$$\overline{y}_1 = \frac{\sum_{t \in T_1} y_t}{T_1} = \frac{y_1 + y_3 + y_5}{3} = \frac{3.60 + 3.00 + 2.50}{3} = 3.03$$

$$\overline{y}_2 = \frac{\sum_{t \in T_2} y_t}{T_2} = \frac{y_2 + y_4}{2} = \frac{3.90 + 3.75}{2} = 3.83$$

$$\hat{y}_0(1) = \overline{y}_1$$

$$\hat{y}_1(1) = \overline{y}_2$$

$$\hat{y}_2(1) = \overline{y}_1$$

$$\hat{y}_3(1) = \overline{y}_2$$

$$\hat{y}_4(1) = \overline{y}_1$$

$$\hat{y}_5(1) = \overline{y}_2$$

$$\hat{y}_5(2) = \overline{y}_1$$

3.1.2. Método de las medias estacionales

Ejemplo: Obtener predicciones para esta serie trimestral de tipo 2 utilizando el método de medias estacionales

- · ·
Serie 2
17,27
39,89
9,18
8,92
14,44
34,70
9,05
14,90
19,45
39,05
8,98
6,52
24,28
37,39
8,66
4,65
15,43
43,03
12,20
11,75
20,04
37,36
14,55
9,21

3.1.2. Método de las medias estacionales

	Serie 2	1Trim	2Trim	3Trim	4Trim	PREDICCIÓN	ERROR	EA	EC		
90-1	17,27	17,27				18,17	-0,904	0,904	0,817	EAM(m)	2,346
90-2	39,89		39,89			38,81	1,078	1,078	1,162	ECM(m)	8,725
90-3	9,18			9,18		9,61	-0,434	0,434	0,188	<pre>EAM(extra-m)</pre>	2,098
90-4	8,92				8,92	9,35	-0,428	0,428	0,183	<pre>ECM(extra-m)</pre>	7,493
91-1	14,44	14,44				18,17	-3,734	3,734	13,943		
91-2	34,70		34,70			38,81	-4,112	4,112	16,909		
91-3	9,05			9,05		9,61	-0,564	0,564	0,318		
91-4	14,90				14,90	9,35	5,552	5,552	30,825		
92-1	19,45	19,45				18,17	1,276	1,276	1,628		
92-2	39,05		39,05			38,81	0,238	0,238	0,057		
92-3	8,98			8,98		9,61	-0,634	0,634	0,402		
92-4	6,52				6,52	9,35	-2,828	2,828	7,998		
93-1	24,28	24,28				18,17	6,106	6,106	37,283		
93-2	37,39		37,39			38,81	-1,422	1,422	2,022		
93-3	8,66			8,66		9,61	-0,954	0,954	0,910		
93-4	4,65				4,65	9,35	-4,698	4,698	22,071		
94-1	15,43	15,43				18,17	-2,744	2,744	7,530		
94-2	43,03		43,03			38,81	4,218	4,218	17,792		
94-3	12,20			12,20		9,61	2,586	2,586	6,687		
94-4	11,75				11,75	9,35	2,402	2,402	5,770	ı	
95-1	20,04					18,17	1,866	1,866	3,482		
95-2	37,36					38,81	-1,452	1,452	2,108		
95-3	14,55					9,61	4,936	4,936	24,364		
95-4	9,21					9,35	-0,138	0,138	0,019		
		18,17	38,81	9,61	9,35						_

3.1.2. Método de las medias estacionales

3.2. Métodos de previsión para series de tipo 4

- SERIE TIPO 4: Serie con tendencia y con comp. estacional
- La **estructura básica** de una serie temporal de tipo 4 es (suponiendo esquema aditivo):

$$y_t = T_t + S_t + u_t$$

- Puede seguir un esquema aditivo, multiplicativo o mixto.
- El componente estacional y el componente irregular se aplican como <u>factores correctores</u> de la tendencia.

3.2.1. Método de descomposición

- Es uno de los métodos más utilizados para la predicción.
- Se basa en desestacionalizar la serie (quitarle el componente estacional) para posteriormente estimar o predecir el componente tendencial en base a la serie desestacionalizada y añadirle posteriormente el componente estacional.

$$y_{t} = f\left(T_{t}, S_{t}, u_{t}\right)$$

$$S_{t}$$

- La predicción se obtiene tras un proceso que permite la identificación de los dos componentes con un patrón de conducta bien definido (tendencial y estacional), proyectando luego dicho patrón para dar lugar a la predicción.
- Este método consta de 5 etapas:

3.2.1. Método de descomposición

- 1 etapa: Primera estimación de la tendencia con el método de las medias móviles
 - Se calcula una serie igual al valor de la media móvil (MM) de longitud k (k=s); asignando cada valor de la media móvil al periodo que es el centro de la misma
 - Si la longitud es par, el centro no es un número entero y se calcula la media móvil centrada (MMC), que es la media móvil de longitud 2 de la media móvil calculada en primer lugar
 - Obtenemos una <u>primera estimación de la tendencia</u>:
 - kimpar $T_t^{(1)} = MM_t$
 - k par $T_{t}^{(1)} = MMC_{t}$

3.2.1. Método de descomposición

2 etapa: Estimar los componentes estacionales

 A partir de la primera estimación de la tendencia podemos estimar la aportación conjunta del componente estacional y el componente irregular:

$$S_t + u_t = y_t - T_t^{(1)}$$

 A continuación se calcula para cada estación i los valores medios de la aportación conjunta:

$$\overline{S}_{i}^{*} = \frac{\sum_{t \in T_{i}} S_{t} + u_{t}}{T_{i}} \qquad i = 1, 2, ..., s$$

T_i indica el número de observaciones de la estación i

3.2.1. Método de descomposición

Acto seguido se calcula la media de dichos valores:

$$\overline{S} = \frac{\sum_{i=1}^{3} \overline{S}_{i}^{*}}{S}$$

Y:

$$\hat{S}_i = \overline{S}_i^* - \overline{S}$$

Este paso elimina los componentes irregulares que introducen la variación dentro de cada estación respecto al resto de estaciones. Si la media es muy pequeña, se puede obviar.

 \hat{S}_i se denomina Índice de variación estacional neto corregido (IVEN) y se ha de cumplir que $\sum\limits_{i=1}^s \hat{S}_i = 0$

3.2.1. Método de descomposición

3 etapa: Obtención de la serie desestacionalizada

 Una vez estimados los componentes estacionales puede definirse una nueva serie en la que estos no aparezcan, restándoselos a la serie temporal:

$$T_t^{(2)} = y_t - \hat{S}_i$$
 OJO: a cada periodo t se le resta la estación i correspondiente

la nueva serie $T_t^{(2)}$ se llama **serie desestacionalizada**

 Generalmente, el objetivo de desestacionalización es la obtención de cifras que sean comparables entre si para poder analizar con mayor rigor la evolución del fenómeno a largo plazo

3.2.1. Método de descomposición

- 4 etapa: Estimación de la tendencia lineal
 - Es igual que en el método de tendencia lineal en series de tipo 3.
 - Para ello se especifica el modelo: $T_t^{(2)} = \beta_0 + \beta_1 t$

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{T} t \, T_{t}^{(2)} - \overline{T}_{t}^{(2)} \sum_{t=1}^{T} t}{\sum_{t=1}^{T} t^{2} - \frac{1}{T} \left(\sum_{t=1}^{T} t \right)^{2}} \qquad \qquad \hat{\beta}_{0} = \overline{T}_{t}^{(2)} - \hat{\beta}_{1} \overline{t}$$

3.2.1. Método de descomposición

5 etapa: Cálculo de las predicciones:

Periodo muestral:

$$\hat{y}_{t}(1) = \hat{T}_{t+1} + \hat{S}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} * (t+1) + \hat{S}_{i}$$

donde S_i es el componente de la estación que corresponde con el periodo t+1

Periodo extra-muestral:

$$\hat{y}_{T}(m) = \hat{T}_{T+m} + \hat{S}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} * (T+m) + \hat{S}_{i}$$

donde ahora S_i es el componente de la estación que corresponde con el periodo T+m

3.2.1. Método de descomposición

		•		1
			$T_t^{(1)}$	$y_t - T_t^{(1)}$
t	yt	MM(2)	MMC(2)	Estac
1	3,60			
2	3,90	3,75	3,80	0,10
3	3,80	3,85	3,93	-0,13
4	4,20	4,00	4,05	0,15
5	4,00	4,10	4,18	-0,18
6	4,50	4,25	4,33	0,18
7 8 9	4,30 5,00 4,60	4,40		$MMC_2 = \frac{MM_2 + MM_3}{2} = \frac{3.75 + 3.85}{2} = 3.80$
MN	$M_2 = \frac{y_1 + y_2}{2} =$	$=\frac{3.60+3.90}{2}$	$\frac{1}{2} = 3.75$	$MMC_3 = \frac{MM_3 + MM_4}{2} = \frac{3.85 + 4.00}{2} = 3.93$
	$M_3 = \frac{y_2 + y_3}{2} =$	_		$S_2 + u_2 = y_2 - MMC_2 = 3.90 - 3.80 = 0.10$ $S_3 + u_3 = y_3 - MMC_3 = 3.80 - 3.93 = -0.13$

3.2.1. Método de descomposición

			$T_t^{(1)}$	$y_t - T_t^{(1)}$
t	yt	MM(2)	MMC(2)	Estac
1	3,60			
2	3,90	3,75	3,80	0,10
3	3,80	3,85	3,93	-0,13
4	4,20	4,00	4,05	0,15
5	4,00	4,10	4,18	-0,18
6	4,50	4,25	4,33	0,18
7	4,30	4,40		
8	5,00			
9	4,60			

$$\overline{S}_{1}^{*} = \frac{-0.13 + (-0.18)}{2} = -0.155$$

$$\overline{S}_{2}^{*} = \frac{0.10 + 0.15 + 0.18}{3} = 0.143$$

$$\overline{S} = \frac{-0.155 + 0.143}{2} = -0.006$$

3.2.1. Método de descomposición

			$T_t^{(1)}$	$y_t - T_t^{(1)}$	$T_t^{(2)}$
t	yt	MM(2)	MMC(2)	Estac	Desestac
1	3,60				3,75
2	3,90	3,75	3,80	0,10	3,75
3	3,80	3,85	3,93	-0,13	3,95
4	4,20	4,00	4,05	0,15	4,05
5	4,00	4,10	4,18	-0,18	4,15
6	4,50	4,25	4,33	0,18	4,35
7	4,30	4,40			4,45
8	5,00				
9	4,60				

$$T_1^{(2)} = y_1 - \hat{S}_1 = 3.60 - (-0.15) = 3.75$$

$$T_2^{(2)} = y_2 - \hat{S}_2 = 3.90 - 0.15 = 3.75$$

$$T_3^{(2)} = y_3 - \hat{S}_1 = 3.80 - (-0.15) = 3.95$$

$$T_4^{(2)} = y_4 - \hat{S}_2 = 4.20 - 0.15 = 4.05$$

3.2.1. Método de descomposición

			$T_t^{(1)}$	$y_t - T_t^{(1)}$	$T_t^{(2)}$
t	yt	MM(2)	MMC(2)	Estac	Desestac
1	3,60				3,75
2	3,90	3,75	3,80	0,10	3,75
3	3,80	3,85	3,93	-0,13	3,95
4	4,20	4,00	4,05	0,15	4,05
5	4,00	4,10	4,18	-0,18	4,15
6	4,50	4,25	4,33	0,18	4,35
7	4,30	4,40			4,45
8	5,00				
9	4,60				

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{T} t T_{t}^{(2)} - \overline{T}_{t}^{(2)} \sum_{t=1}^{T} t}{\sum_{t=1}^{T} t^{2} - \frac{1}{T} \left(\sum_{t=1}^{T} t\right)^{2}} = \frac{117.14 - 4.07 * 28}{140 - \frac{1}{7} (28)^{2}} = 0.125$$

$$\hat{\beta}_{0} = \overline{T}_{t}^{(2)} - \hat{\beta}_{1} \overline{t} = 4.07 - 0.125 * 4 = 3.57$$

3.2.1. Método de descomposición

Ilustración: para una serie temporal semestral (s=2)

			$T_t^{(1)}$	$y_t - T_t^{(1)}$	$T_t^{(2)}$	
t	yt	MM(2)	MMC(2)	Estac	Desestac	Predicc
1	3,60				3,75	3,54
2	3,90	3,75	3,80	0,10	3,75	3,96
3	3,80	3,85	3,93	-0,13	3,95	3,79
4	4,20	4,00	4,05	0,15	4,05	4,21
5	4,00	4,10	4,18	-0,18	4,15	4,04
6	4,50	4,25	4,33	0,18	4,35	4,46
7	4,30	4,40			4,45	4,29
8	5,00					4,71
9	4,60					4,54

$$\hat{y}_{1}(1) = \hat{T}_{1+1} + \hat{S}_{2} = \hat{\beta}_{0} + \hat{\beta}_{1} * (1+1) + \hat{S}_{2} = 3.57 + 0.125 * 2 + 0.14 = 3.96$$

$$\hat{y}_{2}(1) = \hat{T}_{2+1} + \hat{S}_{1} = \hat{\beta}_{0} + \hat{\beta}_{1} * (2+1) + \hat{S}_{1} = 3.57 + 0.125 * 3 + (-0.15) = 3.79$$

$$\hat{y}_{3}(1) = \hat{T}_{3+1} + \hat{S}_{1} = 3.57 + 0.125 * 4 + 0.14 = 4.21$$

...

$$\hat{y}_7(1) = \hat{T}_{7+1} + \hat{S}_2 = \hat{\beta}_0 + \hat{\beta}_1 * (7+1) + \hat{S}_2 = 3.57 + 0.125 * 8 + 0.14 = 4.71$$

$$\hat{y}_7(2) = \hat{T}_{7+2} + \hat{S}_1 = \hat{\beta}_0 + \hat{\beta}_1 * (7+2) + \hat{S}_1 = 3.57 + 0.125 * 9 + (-0.15) = 4.54$$

3.2.1. Método de descomposición

Ejemplo: Obtener predicciones para esta serie temporal trimestral de tipo 4 utilizando el método de descomp. (K=4).

t		Serie 4
1	90-1	9,27
2	90-2	22,89
3	90-3	8,18
4	90-4	8,92
5	91-1	10,44
6	91-2	21,70
7	91-3	12,05
8	91-4	18,90
9	92-1	19,45
10	92-2	30,05
11	92-3	15,98
12	92-4	14,52
13	93-1	28,28
14	93-2	32,39
15	93-3	19,66
16	93-4	16,65
17	94-1	23,43
18	94-2	42,03
19	94-3	27,20
20	94-4	27,75
0.1	0 = 1	20.01
21	95-1	32,04
22	95-2	40,36
23	95-3	33,55
24	95-4	29,21

Tema 3. Análisis de Series Temporales: Análisis de la estacionalidad

Serie 4	MM	MMC	y-T	Q1	Q2	Q3	Q4	S	y-S	t	Pred.	Error	ABS	Quad
9.27								-0.33	9.60	1	9.67	-0.40	0.40	0.16
22.89								9.63	13.26	2	20.73	2.16	2.16	4.65
8.18	12.32	12.46	-4.28			-4.28		-4.52	12.70	3	7.68	0.50	0.50	0.25
8.92	12.61	12.46	-3.54				-3.54	-4.79	13.71	4	8.52	0.40	0.40	0.16
10.44	12.31	12.79	-2.35	-2.35				-0.33	10.77	5	14.09	-3.65	3.65	13.31
21.7	13.28	14.53	7.18		7.18			9.63	12.07	6	25.15	-3.45	3.45	11.92
12.05	15.77	16.90	-4.85			-4.85		-4.52	16.57	7	12.10	-0.05	0.05	0.00
18.9	18.03	19.07	-0.17				-0.17	-4.79	23.69	8	12.94	5.96	5.96	35.51
19.45	20.11	20.60	-1.15	-1.15				-0.33	19.78	9	18.51	0.94	0.94	0.89
30.05	21.10	20.55	9.50		9.50			9.63	20.42	10	29.57	0.48	0.48	0.23
15.98	20.00	21.10	-5.12			-5.12		-4.52	20.50	11	16.51	-0.53	0.53	0.29
14.52	22.21	22.50	-7.98				-7.98	-4.79	19.31	12	17.36	-2.84	2.84	8.06
28.28	22.79	23.25	5.03	5.03				-0.33	28.61	13	22.92	5.36	5.36	28.70
32.39	23.71	23.98	8.41		8.41			9.63	22.76	14	33.99	-1.60	1.60	2.55
19.66	24.25	23.64	-3.98			-3.98		-4.52	24.18	15	20.93	-1.27	1.27	1.62
16.65	23.03	24.24	-7.59				-7.59	-4.79	21.44	16	21.78	-5.13	5.13	26.28
23.43	25.44	26.39	-2.96	-2.96				-0.33	23.76	17	27.34	-3.91	3.91	15.29
42.03	27.33	28.72	13.32		13.32			9.63	32.40	18	38.40	3.63	3.63	13.14
27.2	30.10							-4.52	31.72	19	25.35	1.85	1.85	3.42
27.75								-4.79	32.54	20	26.19	1.56	1.56	2.42
32.04								-0.33		21	31.76	0.28	0.28	0.08
40.36								9.63		22	42.82	-2.46	2.46	6.06
33.55								-4.52		23	29.77	3.78	3.78	14.31
29.21								-4.79		24	30.61	-1.40	1.40	1.96

-0.359 9.601 -4.56 -4.819 **-0.03367** S1 S2 S3 S4 -0.325 9.635 -4.52 -4.785 0 B0 8.890932 B1 1.104387

3.2.1. Método de descomposición

EAM(m)	2,282
ECM(m)	8,442
EAM(ex)	1,982
ECM(ex)	5,603

3.2.1. Método de descomposición

Ejemplo: Obtener predicciones para esta serie temporal trimestral de tipo 4 utilizando el método de descomp. (K=4).

3.2.2. Método de Alisado exponencial de Holt-Winters

- Es un método basado en la reestimación a lo largo de todos los periodos muestrales de la tendencia, la pendiente y el componente estacional mediante unas ecuaciones de actualización.
- La predicción en un periodo se obtiene en términos de los valores estimados de estos tres términos en el periodo para el cual se formula la predicción

3.2.2. Método de Alisado exponencial de Holt-Winters

- Tres ecuaciones de actualización:
 - Estimación de la tendencia

$$\hat{T}_t = \alpha \left[y_t - \hat{S}_i(t-s) \right] + (1-\alpha) \left[\hat{T}_{t-1} + \hat{\beta}_1(t-1) \right]$$

Estimación de la pendiente

$$\hat{\beta}_1(t) = \gamma \left[\hat{T}_t - \hat{T}_{t-1} \right] + (1 - \gamma) \hat{\beta}_1(t - 1)$$

Estimación del componente estacional

$$\hat{S}_{i}(t) = \delta \left[y_{t} - \hat{T}_{t} \right] + (1 - \delta)\hat{S}_{i}(t - s)$$

donde α , γ , δ son constantes arbitrarias entre 0 y 1.

3.2.2. Método de Alisado exponencial de Holt-Winters

- La predicción se obtiene:
 - Periodo muestral:

$$\hat{y}_{t}(1) = \hat{T}_{t} + \hat{\beta}_{1}(t) + \hat{S}_{i}(t - s + 1)$$

Donde el periodo t+1 corresponde con la estación i-ésima

Periodo extra-muestral:

$$\hat{y}_{T}(m) = \hat{T}_{T} + \hat{\beta}_{1}(T) * m + \hat{S}_{i}(T - s + m)$$

Donde se escoge el componente estación acorde con la estación T+m

3.2.2. Método de Alisado exponencial de Holt-Winters

Illustración: Serie temporal semestral (s=2) con $\alpha = 0.2$ y $\gamma = \delta = 0.9$

t yt	Tend	Pendt	Estac
1 3,60	2,29	0,06	1,72
2 3,90	1,97	-0,28	2,08
3 5,20	2,05	0,04	3,01
4 6,40	2,54	0,44	3,68
7,50	3,29	0,72	4,09
5 8,20			
7 9,20			

$$\begin{split} \hat{S}_1(1) &= 0.9*[3.60 - 2.29] + (1 - 0.9)*5.43 = 1.72 \\ \hat{T}_2 &= 0.2*\left[y_2 - \hat{S}_2(0)\right] + (1 - 0.2)*\left[\hat{T}_1 + \hat{\beta}_1(1)\right] = 0.2*(3.90 - 3.43) + (1 - 0.2)*(2.29 + 0.06) = 1.97 \\ \hat{\beta}_1(2) &= 0.9*\left[\hat{T}_2 - \hat{T}_1\right] + (1 - 0.9)*\hat{\beta}_1(1) = 0.9*(1.97 - 2.29) + (1 - 0.9)*0.06 = -0.28 \\ \hat{S}_2(2) &= 0.9*\left[y_2 - \hat{T}_2\right] + (1 - 0.9)*\hat{S}_2(0) = 0.9*(3.90 - 1.97) + (1 - 0.9)*3.43 = 2.08 \\ \hat{T}_3 &= 0.2*\left[y_3 - \hat{S}_1(1)\right] + (1 - 0.2)*\left[\hat{T}_2 + \hat{\beta}_1(2)\right] = 0.2*(5.20 - 1.72) + (1 - 0.2)*(1.97 + (-0.28) = 2.05 \\ \hat{\beta}_1(3) &= 0.9*\left[\hat{T}_3 - \hat{T}_2\right] + (1 - 0.9)*\hat{\beta}_1(2) = 0.9*(2.05 - 1.97) + (1 - 0.9)*(-0.28) = 0.04 \\ \hat{S}_1(3) &= 0.9*\left[y_3 - \hat{T}_3\right] + (1 - 0.9)*\hat{S}_1(1) = 0.9*(5.02 - 2.05) + (1 - 0.9)*1.72 = 3.01...... \end{split}$$

3.2.2. Método de Alisado exponencial de Holt-Winters

Ilustración: Serie temporal semestral (s=2) con $\alpha = 0.2$ y $\gamma = \delta = 0.9$

t	yt	Tend	Pendt	Estac	PREDICCIÓN
1	3,60	2,29	0,06	1,72	
2	3,90	1,97	-0,28	2,08	5,78
3	5,20	2,05	0,04	3,01	3,42
4	6,40	2,54	0,44	3,68	4,17
5	7,50	3,29	0,72	4,09	5,99
6	8,20				7,68
7	9,20				8,81

$$\hat{y}_1(1) = \hat{y}_{2/1} = \hat{T}_1 + \hat{\beta}_1(1) + \hat{S}_2(0) = 2.29 + 0.06 + 3.43 = 5.78$$

$$\hat{y}_2(1) = \hat{y}_{3/2} = \hat{T}_2 + \hat{\beta}_1(2) + \hat{S}_1(1) = 1.97 + (-0.28) + 1.72 = 3.42$$

$$\hat{y}_3(1) = \hat{y}_{4/3} = \hat{T}_3 + \hat{\beta}_1(3) + \hat{S}_2(2) = 2.05 + 0.04 + 2.08 = 4.17$$

• • •

$$\hat{y}_5(1) = \hat{y}_{6/5} = \hat{T}_5 + \hat{\beta}_1(5) *1 + \hat{S}_2(4) = 3.29 + 0.72 *1 + 3.68 = 7.68$$

$$\hat{y}_5(2) = \hat{y}_{7/5} = \hat{T}_5 + \hat{\beta}_1(5) * 2 + \hat{S}_1(5) = 3.29 + 0.72 * 2 + 4.09 = 8.81$$

3.2.2. Método de Alisado exponencial de Holt-Winters

Ejemplo: Obtener predicciones para esta serie temporal

trimestral de tipo 4 con $\alpha = 0.2 \text{ y } \gamma = \delta = 0.9$

t		Serie 4
1	90-1	9,27
2	90-2	22,89
3	90-3	8,18
4	90-4	8,92
5	91-1	10,44
6	91-2	21,70
7	91-3	12,05
8	91-4	18,90
9	92-1	19,45
10	92-2	30,05
11	92-3	15,98
12	92-4	14,52
13	93-1	28,28
14	93-2	32,39
15	93-3	19,66
16	93-4	16,65
17	94-1	23,43
18	94-2	42,03
19	94-3	27,20
20	94-4	27,75
21	95-1	32,04
22	95-2	40,36
23	95-3	33,55
24	95-4	29,21
) J	27,21

Suponer:	
$\hat{S}_1(0) = -0.81$	[
$\hat{S}_2(0) = 9.83$	
$\hat{S}_3(0) = -4.37$	7
$\hat{S}_4(0) = -4.64$	4
$T_1 = 10.80$	
$\beta_1(1) = 0.84$	

3.2.2. Método de Alisado exponencial de Holt-Winters

	Serie 4	Tend	Pend	Estac	PREDICC.	ERROR	EA	EC		
90-1	9,27	10,80	0,84	-1,46					EAM(m)	4,294
90-2	22,89	11,92	1,10	10,85	21,46	1,43	1,426	2,033	ECM(m)	30,238
90-3	8,18	12,93	1,01	-4,71	8,65	-0,47	0,467	0,218	EAM(ex)	7,904
90-4	8,92	13,86	0,94	-4,91	9,30	-0,38	0,378	0,143	ECM(ex)	80,424
91-1	10,44	14,23	0,42	-3,55	13,35	-2,91	2,909	8,464	20112(011)	00,121
91-2	21,70	13,89	-0,26	8,12	25,50	-3,80	3,797	14,420		
91-3	12,05	14,25	0,30	-2,45	8,91	3,14	3,137	9,839		
91-4	18,90	16,40	1,97	1,76	9,64	9,26	9,261	85,774		
92-1	19,45	19,30	2,80	-0,22	14,82	4,63	4,630	21,440		
92-2	30,05	22,07	2,77	8,00	30,22	-0,17	0,168	0,028		
92-3	15,98	23,56	1,62	-7,06	22,39	-6,41	6,407	41,051		
92-4	14,52	22,69	-0,62	-7,18	26,93	-12,41	12,410	154,020		
93-1	28,28	23,36	0,54	4,40	21,86	6,42	6,421	41,231		
93-2	32,39	24,00	0,63	8,35	31,90	0,49	0,491	0,241		
93-3	19,66	25,05	1,01	-5,56	17,56	2,10	2,095	4,390		
93-4	16,65	25,61	0,61	-8,78	18,87	-2,22	2,224	4,944		
94-1	23,43	24,78	-0,69	-0,77	30,62	-7,19	7,189	51,685		
94-2	42,03	26,01	1,04	15,26	32,44	9,59	9,591	91,991		
94-3	27,20	28,19	2,07	-1,44	21,49	5,71	5,711	32,617		
94-4	27,75	31,51	3,20	-4,26	21,47	6,28	6,279	39,420	_	
95-1	32,04				33,93	-1,89	1,893	3,583		
95-2	40,36				53,16	-12,80	12,797	163,754		
95-3	33,55				39,65	-6,10	6,103	37,246		
95-4	29,21				40,03	-10,82	10,822	117,115		

3.2.2. Método de Alisado exponencial de Holt-Winters

Ejemplo: seleccionar un método para prever esta serie de tipo 4

3.2.1. Método de descomposición

$\mathbf{E} \mathbf{A} \mathbf{M}$	(\mathbf{m})	2,282
E C M	(m)	8,442
E A M	$(\mathbf{e} \mathbf{x})$	1,982
E C M	$(\mathbf{e} \mathbf{x})$	5,603

3.2.2. Método de Alisado exponencial de Holt-Winters

$\mathbf{E} \mathbf{A} \mathbf{M}$	(m)	4,294
E C M	(m)	30,238
$\mathbf{E} \mathbf{A} \mathbf{M}$	$(\mathbf{e} \mathbf{x})$	7,904
E C M	$(\mathbf{e} \mathbf{x})$	80,424

3.3. Esquema multiplicativo

- Esta sección está dedicado al estudio de las series temporales que siguen un esquema multiplicativo, dado que anteriormente hemos supuesto que el esquema es aditivo.
- Una serie temporal y_t que tiene tendencia T, componente estacional S_t y componente irregular (u_t) puede presentar diferentes esquemas de integración:
 - Esquema multiplicativo:

$$y_t = T_t * S_t * u_t$$

Esquema aditivo:

$$y_{t} = T_{t} + S_{t} + u_{t}$$

Cuestiones:

- 1. ¿Cómo averiguar si la serie responde a un esquema aditivo o a un esquema multiplicativo?
- 2. En el caso de que la serie siga un esquema multiplicativo, ¿cómo afecta a los métodos de predicción?

Nótese que <u>este problema solo puede presentarse en la</u> <u>serie tipo 4</u> que es la única que tiene simultáneamente tendencia y componente estacional.

3.3.1. Determinación del esquema de integración de una serie temporal

- 3.3.2. Variación de los métodos de previsión para <u>series de tipo 4</u> cuando sigue un esquema multiplicativo
 - 3.3.2.1. Variación en el Método de descomposición
 - 3.3.2.2. Variación en el Método de Alisado exponencial de Holt-Winters

3.3.1. Determinación del esquema de integración de una serie temporal

- Podemos determinar el esquema de la serie:
- 1. Analizando las fluctuaciones de la serie a partir de su representación gráfica:
- Si las fluctuaciones son <u>más o menos regulares</u> a lo largo de la serie, el esquema será **aditivo**.
- Por el contrario, si observamos que la amplitud <u>varía con la</u> tendencia, el esquema será multiplicativo.

2. Analizando el **gráfico media-desviación típica**:

Viviendas iniciadas

Nota: Miles. Periodo: 1990/01 a 2003/03 (mensual).

Fuente: DGPC (A Coyuntura).

2. Analizando el **gráfico media-desviación típica**:

Viviendas iniciadas

2. Analizando el **gráfico media-desviación típica**:

Diagrama media/desviación típica

Viviendas iniciadas

2. Analizando el gráfico media-desviación típica:

2. Analizando el gráfico media-desviación típica:

2. Analizando el **gráfico media-desviación típica**:

- 2. Analizando el **gráfico media-desviación típica**:
- Si los puntos están situados próximos a una recta horizontal (la estacionalidad y la tendencia son más o menos independientes), el esquema será **aditivo**.
- Por el contrario, si los puntos se encuentran alrededor de una recta con pendiente distinta de cero (la estacionalidad y la tendencia no son independientes), el esquema será multiplicativo

3.3.2. Variación de los métodos de previsión para series de tipo 4 cuando sigue un esquema multiplicativo

3.3.2.1. Variación en el Método de descomposición

ADITIVO

$$y_t = T_t + S_t + u_t$$

2 paso:

$$S_{t} + u_{t} = y_{t} - T_{t}^{(1)}$$

$$\overline{S}_{i}^{*} = \frac{\sum_{t \in T_{i}} S_{t} + u_{t}}{T_{i}}$$
 $i = 1, 2, ..., s$

$$\sum \hat{S}_i = 0$$

MULTIPLICATIVO

$$y_t = T_t * S_t * u_t$$

$$S_t * u_t = \frac{y_t}{T_t^{(1)}}$$

$$\overline{S}_{i}^{*} = \frac{\sum_{t \in T_{i}} S_{t} + u_{t}}{T_{i}} \qquad i = 1, 2, ..., s$$

$$\overline{S}_{i}^{*} = \frac{\sum_{t \in T_{i}} S_{t} * u_{t}}{T_{i}} \qquad i = 1, 2, ..., s$$

$$\overline{S} \approx 0 \qquad \hat{S}_{i} = \overline{S}_{i}^{*} \\
\overline{S} \neq 0 \qquad \hat{S}_{i} = \overline{S}_{i}^{*} - \overline{S}$$

$$\overline{S} = \frac{\sum_{i=1}^{s} \overline{S}_{i}^{*}}{S} \qquad \overline{S} \approx 0 \qquad \hat{S}_{i} = \overline{S}_{i}^{*} \\
\overline{S} \neq s \qquad \hat{S}_{i} = \overline{S}_{i}^{*} * \frac{S}{\sum_{i=1}^{s} \overline{S}_{i}^{*}} = \frac{\overline{S}_{i}^{*}}{\overline{S}}$$

$$\sum \hat{S}_{i} = S \qquad \sum_{i=1}^{s} \overline{S}_{i}^{*} = S \qquad \sum_{$$

- 3.3.2. Variación de los métodos de previsión para <u>series de tipo 4</u> cuando sigue un esquema multiplicativo
 - 3.3.2.1. Variación en el Método de descomposición

ADITIVO

$$y_t = T_t + S_t + u_t$$

3 paso:

$$T_t^{(2)} = y_t - \hat{S}_t$$

$$\hat{y}_{t}(1) = \hat{T}_{t+1} + \hat{S}_{i}$$

MULTIPLICATIVO

$$y_t = T_t * S_t * u_t$$

$$T_t^{(2)} = \frac{y_t}{\hat{S}_i}$$

$$\hat{y}_{t}(1) = \hat{T}_{t+1} * \hat{S}_{i}$$

3.3.2. Variación de los métodos de previsión para <u>series de tipo 4</u> cuando sigue un esquema multiplicativo

3.3.2.1. Variación en el M. Alisado exponencial Holt-Winters

ADITIVO

$$y_{t} = T_{t} + S_{t} + u_{t}$$

$$\hat{T}_{t} = \alpha \left[y_{t} - \hat{S}_{i}(t-s) \right] + (1-\alpha) \left[\hat{T}_{t-1} + \hat{\beta}_{1}(t-1) \right]$$

$$\hat{\beta}_1(t) = \gamma \left[\hat{T}_t - \hat{T}_{t-1} \right] + (1 - \gamma) \hat{\beta}_1(t-1)$$

$$\hat{S}_i(t) = \delta \left[y_t - \hat{T}_t \right] + (1 - \delta) \hat{S}_i(t - s)$$

$$\hat{y}_{t}(1) = \hat{T}_{t} + \hat{\beta}_{1}(t) + \hat{S}_{i}(t - s + 1)$$

MULTIPLICATIVO

$$y_t = T_t * S_t * u_t$$

$$\hat{T}_{t} = \alpha \left[\frac{y_{t}}{\hat{S}_{i}(t-s)} \right] + (1-\alpha) \left[\hat{T}_{t-1} + \hat{\beta}_{1}(t-1) \right]$$

$$\hat{\beta}_{1}(t) = \gamma \left[\hat{T}_{t} - \hat{T}_{t-1} \right] + (1 - \gamma) \hat{\beta}_{1}(t-1)$$

$$\hat{S}_{i}(t) = \delta \begin{bmatrix} y_{t} / \hat{T}_{t} \end{bmatrix} + (1 - \delta)\hat{S}_{i}(t - s)$$

$$\hat{y}_t(1) = \left[\hat{T}_t + \hat{\beta}_1(t)\right] * \hat{S}_t(t - s + 1)$$