Exercícios Introdução a Programação

Objetivos de Aprendizagem

Resolução de exercícios similares a primeira avaliação

Agenda

- Exercício 1
- Exercício 2
- Primeira avaliação

Exercício 1

Análise de crédito

Um banco usa um sistema automático para pré-selecionar clientes para empréstimo com base em três critérios binários:

R (Renda estável): $1 = \text{Renda estável} \ge R\$ 2000, 0 = \text{Caso contrário}.$

D (Sem dívidas): 1 = Não possui dívidas em atraso, 0 = Possui dívidas.

E (Empregado): 1 = Está empregado atualmente, 0 = Desempregado.

Análise de crédito

Projete um circuito lógico que ative um sinal A (Aprovado para análise) sempre que:

- O cliente tiver Renda estável E estiver Empregado;
- OU se estiver Sem dívidas E com Renda estável, independente de estar empregado ou não.

Análise de crédito (Solução)

- 1. Compreender o enunciado. Entender o problema;
- 2. Observar as condições exigidas. Esboçar a tabela verdade;
- 3. A partir da TV, extrair a expressão que representa a solução através de mintermos ou maxtermos;
- 4. Simplificar a expressão, se possível;
- 5. Desenhar o circuito que representa a a expressão obtida
- 6. Simular no Circuit Verse
- 7. A TV da simulação é idêntica a TV da interpretação do problema?

Análise de crédito (**Solução**) + Tabela Verdade obtida pela interpretação do problema

R	D	E	A
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	

I Análise de crédito (**Solução**) + TV obtida pela interpretação do problema

R	D	E	A_i
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1

1 Análise de crédito (**Solução**) + Mintermos da expressão

R	D	Е	A_i
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1 ($R \cdot \overline{D} \cdot E$)
1	1	0	1 ($R \cdot D \cdot \overline{E}$)

Análise de crédito (Solução) + Simplificação da Expressão usando mintermos

$$egin{aligned} A &= (R \cdot \overline{D} \cdot E) + (R \cdot D \cdot \overline{E}) + (R \cdot D \cdot E) \ &= R \cdot (\overline{D}E + D\overline{E} + DE) \ &= R \cdot (\overline{D}E + D(\overline{E} + E)) \ &= R \cdot (\overline{D}E + D(1)) \ &= R \cdot (\overline{D}E + D) \ &= R \cdot (D + E) \end{aligned}$$

Análise de crédito (Solução) + Simulação

Circuit Verse

Análise de crédito (**Solução**) + Simulação

Circuit Verse

1 Análise de crédito (**Solução**) + TV obtida da simulação

0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1	R	D	Е	A_s
0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1	0	0	0	0
0 1 0 1 0 0 1 0 1 1 0 1	0	0	1	0
1 0 0 1 0 1 1 1	0	1	0	0
1 0 1 1	0	1	1	0
	1	0	0	0
1 0 1	1	0	1	1
	1	1	0	1

Análise de crédito (**Solução**) + Conclusão

A partir do entendimento do problema foi obtida a TV e a expressão da interpretação. Foi realizada a simulação a partir do circuito obtido na expressão e a TV da simulação do circuito coincide com a TV da interpretação.

Rio+Bomba+Tanque

A figura mostra um sistema de abastecimento de água composto de uma bomba B e um tanque. A função da bomba é levar água do rio, quando estiver disponível. O reservatório possui dois sensores, um para monitorar o nível inferior, L, e outro para o nível superior, H. Os sensores funcionam da seguinte forma:

- lacksquare Quando o nível da água está baixo, H=L=0
- lacksquare Quando o nível da água está acima do sensor, H=1 ou L=1

Rio+Bomba+Tanque

Projete um circuito digital que utilize os sensores para realizar o acionamento de ${\cal B}$ mantendo o reservatório com água sempre que houver disponibilidade.

Z
Rio+Bomba+Tanque (**Solução**) - TV da interpretação problema

L	Н	R	В
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	

2 Rio+Bomba+Tanque (**Solução**) - TV da interpretação problema

0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	0
1 0 1	1
1 0	0

2

Rio+Bomba+Tanque (**Solução**) - TV com mintermos

L	Н	R	B_i
0	0	0	0
0	0	1	1 ($\overline{L}\cdot\overline{H}\cdot R$)
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1 ($L\cdot\overline{H}\cdot R$)
1	1	0	0

Rio+Bomba+Tanque (Solução) - Expressão a partir dos mintermos

$$egin{aligned} B_i &= (\overline{L} \cdot \overline{H} \cdot R) + (L \cdot \overline{H} \cdot R) \ &= \overline{H}R(L + \overline{L}) \ &= \overline{H}R(1) \ &= \overline{H}R \end{aligned}$$

Rio+Bomba+Tanque (**Solução**) - Simulação

Circuit Verse

Rio+Bomba+Tanque (**Solução**) -Simulação

Circuit Verse

Rio+Bomba+Tanque (Solução) - TV da simulação

L	Н	R	B_s
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0

Rio+Bomba+Tanque (**Solução**) - Conclusão

Ambas TVs, da interpretação e da simulação, são coincidentes e mostram que solução para o problema.

O problema poderia ser ainda mais simplificado utilizando apenas o sensor superior, H, e o sensor do rio, R, conforme mostra a expressão simplificada.

Perguntas

Alarme automotivo

Um carro possui 3 sensores:

- Nas portas: Quando alguma porta estiver aberta este sensor envia nível lógico alto;
- Na ignição: Quando a ignição está ligada este sensor envia nível lógico alto;
- Nos faróis: Quando algum farol está ligado esse sendor enviar 1;

Projete um circuito lógico que faça acionar uma luz vermelha no painel do carro sempre que:

- As portas estiverem abertas com a ignição acionada;
- Os faróis estiverem acesos com a ignição desligadas.

Alarme automotivo

Apresentar as seguintes etapas de desenvolvimento.

- 1. Tabela Verdade da interpretação do problema;
- 2. Equação que representa a TV, simplificada;
- 3. Circuito digital que implementa a equação (printscreen do Circuit Verse ou imagem do circuito);
- 4. Tabela Verdade obtida a partir da simulação do circuito e comparada com a TV do ítem 1.

Alarme automotivo

50% da nota da N1

Prazo de entrega: 19/10/2025

Dúvidas

Referências

Simulador Circuit Verse

José Roberto Bezerra

■ jbroberto@ifce.edu.br

(7) jbroberto76

Powered by Slidev

Cover image by harkei