One-way Analysis Of Variance (ANOVA)

- One-way ANOVA is a statistical method to test the claim that the means of two or more (k) samples x_i with sample size n_i (i=1 ... k) are equal.
- The test makes the following assumptions:
 - the shape of the population from which the samples are drawn should be normal
 - · all samples have equal variance
 - · all samples should be drawn independently
- Again there are two hypothesis:
 - The null hypothesis H_0 states that the means \overline{x}_i with $i=1\dots k$ are equal.
 - The alternative hypothesis H_1 states that the means \bar{x}_i with $i=1\dots k$ are not equal.
- One-way ANOVA is a generalization of the two sample t-test.

One-way ANOVA is a generalization of the two sample t-test.

• One-way ANOVA is a generalization of the two sample t-test.

```
n = 9
geneA = np.random.normal(size=n,loc=0.26,scale=0.01)
geneB = np.random.normal(size=n,loc=0.28,scale=0.01)
print "two sample t-test:"
print stats.ttest_ind(geneA,geneB)
print "one-way ANOVA:"
print stats.f_oneway(geneA,geneB)

two sample t-test:
Ttest_indResult(statistic=-4.022327404376181, pvalue=0.0009847119072361069)
one-way ANOVA:
F_onewayResult(statistic=16.179117747995637, pvalue=0.0009847119072361058)
```

ne-way Analysis Of Variance (ANOVA)	,	treatment	expression_level
	0	control	0.276610
	1	control	0.268073
	2	control	0.256852
	3	control	0.249141
	4	T1	0.252675
n = 4	5	T1	0.247875
sample_control = np.random.normal(size=n,loc=0.26,scale=0.05) sample_T1 = np.random.normal(size=n,loc=0.26,scale=0.05) sample T2 = np.random.normal(size=n,loc=0.26,scale=0.05)	6	T1	0.280871
	7	T1	0.261644
sample_T3 = np.random.normal(size=n,loc=0.26,scale=0.05)	8	T2	0.281502
	9	T2	0.257326
	10	T2	0.271810
	11	T2	0.281779
	12	Т3	0.256650
	13	Т3	0.270311
	14	Т3	0.249154
	15	Т3	0.246365

One-way Analysis Of Variance (ANOVA)

- ANOVA computes a **F-statistic** that is simply a ratio of two variances.
- Where the two sample t-test T-statistic looks at the difference in mean between two samples, the ANOVA F-statistics looks at the ratio of two variances.
- The first variance in the F-statistic is the variation between the *k*=4 sample means. It is computed as what is known as the treatment sum of squares SST:

$$SST = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x}_{total})$$

 The second variation is the variation within the sample. This is computed as the sum of squares of the error SSE:

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)$$

One-way Analysis Of Variance (ANOVA)

• The variance of the expression level in the dataset (not taking treatment into account) is computed by the total sum of squares TSS:

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_{total})^2$$

- So, ANOVA partitions the total variance (TSS) into a part caused by the treatment (SST) and a part the is not explained (SSE), i.e. TSS = SST + SEE.
- · explained / unexplained
- · between group / within group

One-way Analysis Of Variance (ANOVA)

• The F-statistic computed by ANOVA is the ratio of SST and SSE (with some variance normalization):

$$F = \frac{SST/(k-1)}{SSE/(n_t - k)}$$

- So, ANOVA partitions the total variance (TSS) into a part caused by the treatment (SST) and a part that is with unknown source (SSE).
- (explained / unexplained) or (between group / within group)
- If the null hypothesis is true then the F-statistic follows an F-distribution with df₁=k-1 and df₂=n_t-k degrees of freedom.

Two-way Analysis Of Variance (ANOVA) treatment sex expression level mod = ols('expression_level ~ treatment', 0 control female 0.276610 data=df).fit() 0.268073 male control aov_table = sm.stats.anova_lm(mod, typ=2) control 0.256852 print aov_table 3 control male 0.249141 0.252675 T1 female PR(>F) df F sum_sq treatment 0.001384 3.0 5.945948 0.001702 5 T1 male 0.247875 Residual 0.003413 44.0 ${\tt NaN}$ NaN 6 female 0.280871 T1 7 0.261644 8 0.281502 T2 female mod = ols('expression_level ~ sex', 9 0.257326 T2 male data=df).fit() 10 T2 female 0.271810 aov_table = sm.stats.anova_lm(mod, typ=2) 11 0.281779 T2 male print aov_table 12 T3 0.256650 0.270311 13 T3 male df F PR(>F) sum sq 0.249154 14 Т3 female 0.000003 1.0 0.033092 0.85645 Residual 0.004793 46.0 NaN NaN15 Т3 male 0.246365

Two-way Analysis Of Variance (ANOVA)

• In two-way ANOVA both factors are taken into account when computing the F-statistic:

$$TSS = SS_{treatment} + SS_{sex} + SSE$$

	sum_sq	df	F	PR(>F)
treatment	0.001384	3.0	5.816689	0.001986
sex	0.000003	1.0	0.043488	0.835794
Residual	0.003410	43.0	NaN	NaN

	treatment	sex	expression_level
0	control	female	0.276610
1	control	male	0.268073
2	control	female	0.256852
3	control	male	0.249141
4	T1	female	0.252675
5	T1	male	0.247875
6	T1	female	0.280871
7	T1	male	0.261644
8	T2	female	0.281502
9	T2	male	0.257326
10	T2	female	0.271810
11	T2	male	0.281779
12	Т3	female	0.256650
13	Т3	male	0.270311
14	Т3	female	0.249154
15	Т3	male	0.246365

Two-way Analysis Of Variance (ANOVA)

• A large effect of factor "sex" on the gene expression level is added:

370.284849

NaN

9.454352e-23

Two-way Analysis Of Variance (ANOVA)

sex

Residual

0.029360

0.003410

1.0

43.0

 The main difference with one-way ANOVA is the computation of the sum of squares of the error SSE which is computed in two-way ANOVA as

$$SSE = \sum_{l=1}^{r} \sum_{j=1}^{k_s} \sum_{i=1}^{k_t} (x_{ijl} - \overline{x}_{ij})^2$$

Two-way Analysis Of Variance (ANOVA)

• If there is an interaction effect we should be very critical about the conclusions we make.

two-way ANOVA without interaction term:

sum_sq	df	F	PR(>F)
0.000575	1.0	1.464674	0.232507
0.001612	1.0	4.109628	0.048588
0.017653	45.0	NaN	NaN
	0.000575 0.001612	0.000575 1.0	0.000575 1.0 1.464674 0.001612 1.0 4.109628

two-way ANOVA with interaction term:

	sum_sq	df	F	PR(>F)
treatment	0.000575	1.0	6.116762	1.732354e-02
sex	0.001612	1.0	17.162605	1.532358e-04
treatment:sex	0.013520	1.0	143.928763	1.823620e-15
Residual	0.004133	44.0	NaN	NaN

Power analysis

- The **power** of a hypothesis test is defined as the probability of rejecting the null hypothesis in case the alternative hypothesis is true.
- In power analysis the power is defined as 1θ where θ is the probability of accepting the null hypothesis even though the alternative hypothesis is true.
- The **effect size**. It is the minimum size of the difference between the null hypothesis and the alternative hypothesis that we hope to detect.

Power analysis: population variance

```
m = 1000
alpha = 0.01
n = 9
diff = 0.02
for sigma in [0.01,0.015,0.02,0.025,0.03,0.04,0.05]:
    power = 0
    for i in range(m):
        geneA = np.random.normal(size=n,loc=0.26,scale=sigma)
        geneB = np.random.normal(size=n,loc=0.26+diff,scale=sigma)
        pvalue = stats.ttest_ind(geneA,geneB).pvalue
        if pvalue < alpha:</pre>
            power += 1.
    print "sample size: %i / effect size: %.2f / population std: %.3f / power: %.2f" % \
    (n,diff,sigma,power/m)
sample size: 9 / effect size: 0.02 / population std: 0.010 / power: 0.88
sample size: 9 / effect size: 0.02 / population std: 0.015 / power: 0.52
sample size: 9 / effect size: 0.02 / population std: 0.020 / power: 0.26
sample size: 9 / effect size: 0.02 / population std: 0.025 / power: 0.13
sample size: 9 / effect size: 0.02 / population std: 0.030 / power: 0.10
sample size: 9 / effect size: 0.02 / population std: 0.040 / power: 0.06
sample size: 9 / effect size: 0.02 / population std: 0.050 / power: 0.03
```

Power analysis: sample size

```
sigma = 0.01
diff = 0.02
for n in range(2,15):
    power = 0.
    for i in range(m):
        geneA = np.random.normal(size=n,loc=0.26,scale=sigma)
        geneB = np.random.normal(size=n,loc=0.26+diff,scale=sigma)
        pvalue = stats.ttest_ind(geneA,geneB).pvalue
        if pvalue < alpha:</pre>
            power += 1.
    print "sample size: %i / effect size: %.2f / population std: %.3f / power: %.2f" % \
    (n,diff,sigma,power/m)
sample size: 2 / effect size: 0.02 / population std: 0.010 / power: 0.05
sample size: 3 / effect size: 0.02 / population std: 0.010 / power: 0.16
sample size: 4 / effect size: 0.02 / population std: 0.010 / power: 0.33
sample size: 5 / effect size: 0.02 / population std: 0.010 / power: 0.47
sample size: 6 / effect size: 0.02 / population std: 0.010 / power: 0.65
sample size: 7 / effect size: 0.02 / population std: 0.010 / power: 0.73
sample size: 8 / effect size: 0.02 / population std: 0.010 / power: 0.84
sample size: 9 / effect size: 0.02 / population std: 0.010 / power: 0.91
sample size: 10 / effect size: 0.02 / population std: 0.010 / power: 0.93
sample size: 11 / effect size: 0.02 / population std: 0.010 / power: 0.96
sample size: 12 / effect size: 0.02 / population std: 0.010 / power: 0.98
sample size: 13 / effect size: 0.02 / population std: 0.010 / power: 0.99
sample size: 14 / effect size: 0.02 / population std: 0.010 / power: 0.99
```

Power analysis: effect size

```
sigma = 0.01
n=9
for diff in [0.001,0.005,0.01,0.02,0.03,0.04]:
    power = 0.
    for i in range(m):
        geneA = np.random.normal(size=n,loc=0.26,scale=sigma)
        geneB = np.random.normal(size=n,loc=0.26+diff,scale=sigma)
        pvalue = stats.ttest_ind(geneA,geneB).pvalue
        if pvalue < alpha:</pre>
           power += 1.
    print "sample size: %i / effect size: %.2f / population std: %.3f / power: %.2f" % \
    (n,diff,sigma,power/m)
sample size: 9 / effect size: 0.00 / population std: 0.010 / power: 0.01
sample size: 9 / effect size: 0.01 / population std: 0.010 / power: 0.06
sample size: 9 / effect size: 0.01 / population std: 0.010 / power: 0.24
sample size: 9 / effect size: 0.02 / population std: 0.010 / power: 0.89
sample size: 9 / effect size: 0.03 / population std: 0.010 / power: 1.00
sample size: 9 / effect size: 0.04 / population std: 0.010 / power: 1.00
```

Power analysis

- The power of a hypothesis test depends on these four numbers:
 - · the effect size
 - the population variance
 - the sample size
 - · the significance level
- Given the effect size, the population variance, the significance level and the expected minimum power we can compute the minimum samples size required to reach that power.

Sample size calculations

• Sample size calculation for unpaired t-test:

Suppose you want to compare the mean in one group to the mean in another (i.e. carry out an unpaired t-test). The number, n, required in each group is given by

$$n = f(lpha,eta) \cdot rac{2s^2}{\delta^2}$$

Where:

 α is the significance level (using a two-sided test) — i.e. your cut-off for regarding the result as statistically significant.

 $1-\beta$ is the power of your test.

 $f(\alpha, \beta)$ is a value calculated from α and β

 δ is the $\underline{\text{smallest}}$ difference in means that you regard as being important to be able to detect.

s is the standard deviation of whatever it is we're measuring — this will need to be estimated from previous studies.

 $f(\alpha,\beta)$ for the most commonly used values for α and β

	β			
α	0.05	0.1	0.2	0.5
0.05	13.0	10.5	7.9	3.8
0.01	17.8	14.9	11.7	6.6

Power analysis

Power analysis

```
n = 11
power = 0.
for i in range(m):
    geneA = np.random.normal(size=n,loc=0.26,scale=0.01)
    geneB = np.random.normal(size=n,loc=0.26+diff,scale=0.01)
    pvalue = stats.ttest_ind(geneA,geneB).pvalue
    if pvalue < alpha:
        power += 1.
print "Power for sample size %i, mean difference %f and population sigma %f: %f" % \(n,diff,sigma,power/(float(m)))</pre>
```

Power for sample size 11, mean difference 0.020000 and population sigma 0.010000: 0.956000

