1 PROOF

Let Σ be some alphabet and R be the set of regular expressions on Σ .

Theorem 1

$$\forall L_1, L_2 \in \mathcal{P}(\Sigma^*), L_1 \subseteq L_2 \longrightarrow L_1^* \cdot L_2^* = L_2^*$$

Theorem 2

$$\forall L_1, L_2 \in \mathcal{P}(\Sigma^*), L_1 \subseteq L_2 \longrightarrow L_2^* \cdot L_1^* = L_2^*$$

Corollary 1

$$\forall r_1, r_2 \in R, L[r_1] \subseteq L[r_2] \longrightarrow L[r_1^* r_2^*] = L[r_2^*]$$

Corollary 2

$$\forall r_1, r_2 \in R, L[r_1] \subseteq L[r_2] \longrightarrow L[r_2^* r_1^*] = L[r_2^*]$$

Proof of *Theorem 1*

Let $L_1, L_2 \in \mathcal{P}(\Sigma^*)$ be such that $L_1 \subseteq L_2$, we must show that $L_1^* \cdot L_2^* = L_2^*$:

Since $L_1 \subseteq L_2$ we get that $L_1^* \subseteq L_2^*$, and so $L_1^* \cdot L_2^* \subseteq L_2^* \cdot L_2^* = L_2^*$.

Now since $\{\varepsilon\}\subseteq L_1^*$ we get that $L_2^*=\{\varepsilon\}\cdot L_2^*\subseteq L_1^*\cdot L_2^*$.

By the two set inclusions we can conclude that $L_1^* \cdot L_2^* = L_2^*$ as was to be shown.

Q.E.D.

Proof of **Theorem 2**

Let $L_1, L_2 \in \mathcal{P}(\Sigma^*)$ be such that $L_1 \subseteq L_2$, we must show that $L_2^* \cdot L_1^* = L_2^*$:

Since $L_1 \subseteq L_2$ we get that $L_1^* \subseteq L_2^*$, and so $L_2^* \cdot L_1^* \subseteq L_2^* \cdot L_2^* = L_2^*$.

Now since $\{\varepsilon\}\subseteq L_1^*$ we get that $L_2^*=L_2^*\cdot\{\varepsilon\}\subseteq L_2^*\cdot L_1^*$.

By the two set inclusions we can conclude that $L_2^* \cdot L_1^* = L_2^*$ as was to be shown.

Q.E.D.

2 PROOF

Proof of Corollary 1

Let $r_1, r_2 \in R$ be such that $L[r_1] \subseteq L[r_2]$, we must show that $L[r_1^*r_2^*] = L[r_2^*]$:

Since $L[r_1] \subseteq L[r_2]$ we get by <u>Theorem 1</u> that $L[r_1]^* \cdot L[r_2]^* = L[r_2]^*$, and so $L[r_1^*r_2^*] = L[r_1^*] \cdot L[r_2^*] = L[r_1]^* \cdot L[r_2]^* = L[r_2]^* = L[r_2^*]$ as was to be shown.

Q.E.D.

Proof of Corollary 2

Let $r_1, r_2 \in R$ be such that $L[r_1] \subseteq L[r_2]$, we must show that $L[r_2^*r_1^*] = L[r_2^*]$:

Since $L[r_1] \subseteq L[r_2]$ we get by <u>Theorem 2</u> that $L[r_2]^* \cdot L[r_1]^* = L[r_2]^*$, and so $L[r_2^*r_1^*] = L[r_2^*] \cdot L[r_1^*] = L[r_2]^* \cdot L[r_1]^* = L[r_2]^* = L[r_2]^*$ as was to be shown.

Q.E.D.