

Iot Driven Vertical Farming Using Deep Learning For Cultivation of Medicinal Plants

Github Link

Supervisor Rana Mudassir Co-Supervisor Qadeer Yaseen Projected By Mehvish Kiani

(Bcs212010)

Introduction

This project presents a smart, IoT-enabled vertical farming system integrated with Deep Learning (DL) models for crop name and cultivation optimization. By leveraging environmental sensors and AI-driven analytics, the system provides real-time monitoring and prediction of crop health, enabling sustainable urban agriculture

SYSTEM ARCHITECTURE

RESULTS / ACHIEVEMENTS

Achieved real-time crop monitoring with

ML/DL-based prediction accuracy > 85% for Medicinal Plant Cultivation.

Functional dashboard for farmers with live data.

Successfully integrated IoT + AI + Automation for sustainable farming.

PROJECT IMAGES

	Neem	Predi	ct Features
edicted Feature	s for Neem	Real-time Sensor Data	
Feature	Value	Feature	Value
Nitrogen	59.946166460535515	Nitrogen	66.0 ppm
hosphorus	49.843447063569144	Phosphorus	198.0 ppm
otassium	65.03631983355985	Potassium	192.0 ppm
Femperature	29.922798104232875	Temperature	28.2 °C
Humidity	59.94347596699515	Humidity	27.9 %
Rainfall	655.2393074765309	Soil pH	9.0
		Predicted Crop (Sensor)	
		Rainfall	200.0 mm

★ KEY FEATURES

IoT Sensor Integration
Temperature & Humidity Sensors
Soil pH & Nutrient Sensors

★ Light Intensity (PAR)
CO₂ & Oxygen Sensors
Water EC Sensors
Airflow Sensors

AI / ML & DL Models

Random Forest, SVM, Decision Tree, kNN
Deep Learning Models (CNN, RNN, FCNN,FCDNN)

Growth monitoring & approximation

Smart Farming Automation Automated irrigation & lighting control

Nutrient distribution based mDL predictions

Real-time monitoring via web & mobile dashboard
Visualization & Control
Live sensor data dashboard
Prediction charts for crop

TECHNOLOGY USED

CONCLUSION

The system demonstrates how IoT-driven smart farming with ML/DL can revolutionize agriculture. By predicting crop name and automating resource distribution, it enhances crop yield, resource efficiency, and sustainability. This scalable prototype can be deployed in real-world urban vertical farming systems.