• The revision(95%) is really important

Chemical Names and Formulas

Chemical Formula : *ex: H₂O water

- The chemical formula tells us the number of atoms of each element present in a particle et a substance.

Group to *valency*:

•
$$\underline{1} = 1$$
; $\underline{2} = 2$; $\underline{3} = 3$; $\underline{4} = 4$; $\underline{5} = 3$; $\underline{6} = 2$; $\underline{7} = 1$; $\underline{8} = 0$

• You avoid +/- (of lons) in using the cross-over method.

Binary Ionic Compound	Binary Molecular(covalent) Compound	
 metal ⇒ non-metal 	non-metal ⇒ non-metal	
Ex : CaCl ₂ (Calcium Chloride)	Ex : PBr ₃ (Phosphorus Tribromide)	

Making a formula: *using the Cross-over Method

MAKING A FORMULA

Ex: CALCIUM CHLORIDE

Ca

Cross Over the Valencies

• The revision(95%) is really important

Oxidation Numbers

Oxidation Numbers:

- Shows distribution of electrons between atoms.

Rules:

- 1. Pure Elements Rule: The oxidation number of any pure element is always 0 $(O_2 = 0, Fe = 0)$.
- 2. Monatomic Ions Rule: The oxidation number of a monatomic ion equals its charge (Na^+ = +1, Cl^- = -1).
- 3. Fluorine Rule: Fluorine always has an oxidation number of -1 in compounds (HF: F = -1, NaF: F = -1).
- 4. Oxygen Rule: Oxygen usually has an oxidation number of -2, except in peroxides (-1) and with fluorine (+2) (H_2O : O = -2, H_2O_2 : O = -1, OF₂: O = +2).
- 5. **Hydrogen Rule**: Hydrogen is **+1** in compounds with nonmetals and **-1** in metal hydrides (**HCl: H = +1, NaH: H = -1**).
- 6. Group 1 & 2 Rule: Group 1 metals are always +1, and Group 2 metals are always +2 in compounds (NaCl: Na = +1, CaO: Ca = +2).
- 7. Neutral Compound Rule: The sum of oxidation numbers in a neutral compound must be $0 (H_2O: H_2 (+1 \times 2) + O (-2) = 0)$.
- 8. Polyatomic Ion Rule: The sum of oxidation numbers in a polyatomic ion must equal its charge (SO_4^{2-} : S (+6) + O_4 (-2 × 4) = -2).

Prefix System: *ex: Carbon Monoxide

- uses prefixes to declare the number of atoms, mainly for molecular compound
- does not apply to ionic compounds that include metals with <u>fixed charges</u>.
- **Prefixes**: mono(1), di(2), tri(3), tetra(4), penta(5), hexa(6)

Stock System: *ex: PI₃-> Phosphorus(III) Iodide

- Uses roman numerals to indicate the oxidation state(charge) of metal ions in ionic compounds.

• The revision(95%) is really important

Using Chemical Formulas

Formula Mass: *Ex: $H_2O \rightarrow 2(1)+16 = 18$ amu

- Formula mass of any molecule, formula unit, or ion is the sum of the average atomic masses of all atoms represented in its formula.
- Units: amu or u

Molar Mass:

- The molar mass of a substance is equal to the mass in grams de one male, or approximately $6.022 \mathrm{x} 10^{23}$ particles of the substance.
- Units: g/mol
- NOTE: Polyatomic Ions are only there for confusion (Ex: PO_4^{3-})

Percentage Composition

Percentage Composition:

- percentage by mass of each element in a compound.

Formula:

 $\frac{\text{mass of element in 1 mol of compound}}{\text{molar mass of compound}} \times 100$

• The revision(95%) is really important

Determining Chemical Formulas

Empirical Formula: *simplest form of the "actual" formula

- smallest whole-number mole ratio of the different atoms, in the compound.

Molecular Formula: *it's (double) of the Empirical Formula

- "Actual" formula of the compound.

•

Formula:

 $x \cdot (Empirical Formula mass) = Molecular Formula mass$

Examples:

Compound	Туре	Empirical Formula
C ₆ H ₁₂ O ₆	Molecular	CH ₂ O
CH₂O	Empirical	-
C ₂ H ₄	Molecular	CH ₂

• **Note**: practice solving the table question.

Describing Chemical Reactions

Chemical Reactions:

- is a process by which one or substances are changed into one or more different substances.
- The **reactant** is the original substance, and **product** is the resulting substance.

Indications of a chemical reaction:

- 1. Color Change
- 2. Gas Evolution
- 3. Formation of participate
- 4. Heat Change
- You can never change the subscripts of an equation: you can only change coefficients when simplifying/balancing a formula.

• The revision(95%) is really important

Types of Reactions

Synthesis Reactions:

- two or more substances combine to form a new compound.
- $\bullet \quad \mathsf{A} + \mathsf{X} \to \mathsf{A} \mathsf{X}$

Decomposition Reactions:

- a single compound undergoes a reaction that produces two or more simpler substances.
- $\bullet \quad \mathsf{AX} \to \mathsf{A} + \mathsf{X}$

Synthesis Reaction indications:

1. Reactions of elements with oxygen and sulfur

- Elements react with oxygen or sulfur, forming oxides or sulfides.
- Example: 2Mg + O₂ → 2MgO

2. Reactions of metals with halogens

- Metals combine with halogens, producing metal halides (ionic compounds)
- Example: $2Na + Cl_2 \rightarrow 2NaCl$

3. Synthesis reactions with oxides

- Oxides react with water or another compound, forming new substances.
- Example: CO₂ + H₂O → H₂CO₃

Decomposition Reaction indications:

1. Decomposition of binary compounds (electrolysis)

- A compound splits into elements using electricity.
- Example: 2H₂O → 2H₂ + O₂ (electrolysis)

2. Decomposition of metal carbonates

- Metal carbonates break into metal oxides and carbon dioxide.
- Example : CaCO₃ → CaO + CO₂ (heated)

3. Decomposition of metal hydroxides

- Metal hydroxides decompose into metal oxides and water.
- Example : Ca(OH)₂ → CaO + H₂O (heated)

4. Decomposition of metal chlorates

- Metal chlorates decompose into metal chlorides and oxygen.
- Example: 2KClO₃ → 2KCl + 3O₂ (heated)

5. Decomposition of acids

- Acids break into nonmetal oxides and water.
- Example: H₂CO₃ → CO₂ + H₂O

• The revision(95%) is really important

Single Displacement Reaction:

- one element replaces a simillar element in a compound.
- $A + BX \rightarrow AB + X$

Double Displacement Reaction:

- the ions in 2 compounds exchange places in an aques(dissolving) solution to form two new compounds.
- $AX + BY \rightarrow AY + BX$

Single Displacement Reactions

- Metal Displacement: A more reactive metal replaces a less reactive metal.
 - Example: $2AI+3Pb(NO_3)_2 \rightarrow 3Pb+2AI(NO_3)32AI+3Pb(NO_3)_2 \rightarrow 3Pb+2AI(NO_3)_3$
- Hydrogen Displacement from Water:
 - $\begin{array}{ll} \circ & \textit{Most-active metals}: \\ \text{Sorm hydroxides} \rightarrow \\ \text{2Na+2H}_2\text{O} \rightarrow \text{2NaOH+H}_2 \\ \text{Na+2H}_2\text{O} \rightarrow \text{2NaOH+H}_2 \\ \end{array}$
 - Less-active metals: Form oxides → 3Fe+4H₂O→Fe₃O₄e+4H₂₃Fe+4H₂O→Fe₃O₄+4H₂
- Hydrogen Displacement from Acid: Produces salt and hydrogen gas.
 - $\circ \quad \textit{Example:} \mathsf{Mg+2HCl} {\rightarrow} \mathsf{H_2+MgCl_2Mg+2HCl} {\rightarrow} \mathsf{H_2+MgCl_2}$
- Halogen Displacement: A more reactive halogen replaces a less reactive one.
 - Trend: F₂ > Cl₂ > Br₂ > I₂
 - Examples:
 - $Cl_2+2KBr\rightarrow 2KCl+Br_2Cl_2+2KBr\rightarrow 2KCl+Br_2$
 - F_2 +2NaCl \rightarrow 2NaF+Cl2 F_2 +2NaCl \rightarrow 2NaF+Cl2
 - $Br_2+KClBr_2+KCl \rightarrow No \ reaction$

Double Displacement Reactions

- Formation of a Precipitate : An insoluble compound forms.
 - $\circ \quad \textit{Example:} 2 \text{KI+Pb(NO}_3)_2 \rightarrow \text{PbI}_2(s) + 2 \text{KNO}_{32} \text{KI+Pb(NO}_3)_2 \rightarrow \text{PbI}_2(s) + 2 \text{KNO}_3$
- Formation of a Gas: A gas is released as a reaction product.
 - \circ Example: FeS+2HCl \rightarrow H₂S+FeCl₂FeS+2HCl \rightarrow H₂S+FeCl₂
- Formation of Water (Neutralization): An acid reacts with a base to form water and salt.
 - \circ *Example :* HCl+NaOH \rightarrow NaCl+H2OHCl+NaOH \rightarrow NaCl+H

Combustion Reaction:

- a substance combines with oxygen, releasing a large amount of energy in the form of light & heat.
- it's indicated when oxygen is combined in a compound in the reactants
 - $\circ \quad 2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

• The revision(95%) is really important

Single Displacement Reactions

- Metal Displacement: A more reactive metal replaces a less reactive metal.
 - $\circ \quad \textit{Example:} 2Al + 3Pb(NO_3)_2 \rightarrow 3Pb + 2Al(NO_3)32Al + 3Pb(NO_3)_2 \rightarrow 3Pb + 2Al(NO_3)_3$

0

- Hydrogen Displacement from Water:
 - Most-active metals: Form hydroxides →
 2Na+2H₂O→2NaOH+H₂₂Na+2H₂O→2NaOH+H₂
 - Less-active metals: Form oxides \rightarrow 3Fe+4H₂O \rightarrow Fe₃O₄e+4H₂Fe+4H₂O \rightarrow Fe₃O₄+4H₂

_

- Hydrogen Displacement from Acid: Produces salt and hydrogen gas.
 - o Example: Mg+2HCl→H₂+MgCl₂Mg+2HCl→H₂+MgCl₂

0

- Halogen Displacement: A more reactive halogen replaces a less reactive one.
 - o Trend: F₂ > Cl₂ > Br₂ > I₂
 - Examples:
 - $Cl_2+2KBr\rightarrow 2KCl+Br_2Cl_2+2KBr\rightarrow 2KCl+Br_2$
 - $F_2+2NaCl\rightarrow 2NaF+Cl2F_2+2NaCl\rightarrow 2NaF+Cl_2$
 - $Br_2+KClBr_2+KCl \rightarrow No \ reaction$

Double Displacement Reactions

- Formation of a Precipitate: An insoluble compound forms.
 - Example: $2KI+Pb(NO_3)_2 \rightarrow PbI_2(s)+2KNO_{32}KI+Pb(NO_3)_2 \rightarrow PbI_2(s)+2KNO_3$
- Formation of a Gas: A gas is released as a reaction product.
 - \circ Example: FeS+2HCl \rightarrow H₂S+FeCl₂FeS+2HCl \rightarrow H₂S+FeCl₂
- Formation of Water (Neutralization): An acid reacts with a base to form water and salt.
 - \circ *Example :* HCl+NaOH \rightarrow NaCl+H2OHCl+NaOH \rightarrow NaCl+H

• The revision(95%) is really important

Activity Series

Activity Series: *for single-displacement reactions

- is a list of elements organized according to the ease with which the elements undergo certain chemical reactions.
- metals are more reactive because of lesser "electronegativity", while non-metals are less reactive.

The Activity Series: *really important to memorize

• **Just remember**: when a reaction occurs, displacement takes place, and more reactive replace less reactive.

