Section Four

Class COGS 9

Teaching Assistant: Matthew Feigelis

Background

- Spreadsheets and data frames are widely used for data entry, storage, and analysis
- Good spreadsheets are less error-prone, easier for computers to process, and easier to share with collaborators
- Standardized data storage allow for open source **analysis** tools that work on your data straight out of the box. **Huge time saver.**

Tidy Data

- **Tidy**: a standardized way to link the structure of a dataset (its physical layout) with its semantics (its meaning)
- This makes it easier to develop **tidy tools** for **data analysis**, regardless of technical domain, the application of the tools (e.g. plotting x vs y, or doing a regression) should be easy

What is a dataset?

- A dataset is a collection of values that can include numbers or words
- Each value in a dataset belongs to an observation, variable pair.
- What are variables?

	id	artist	track	time
	1	2 Pac	Baby Don't Cry	4:22
	2	2Ge $+$ her	The Hardest Part Of	3:15
	3	3 Doors Down	Kryptonite	3:53
	4	3 Doors Down	Loser	4:24
	5	$504 \; \mathrm{Boyz}$	Wobble Wobble	3:35
	6	98^0	Give Me Just One Nig	3:24
	7	A*Teens	Dancing Queen	3:44
	8	Aaliyah	I Don't Wanna	4:15
	9	Aaliyah	Try Again	4:03
	10	Adams, Yolanda	Open My Heart	5:30
	11	Adkins, Trace	More	3:05
	12	Aguilera, Christina	Come On Over Baby	3:38
	13	Aguilera, Christina	I Turn To You	4:00
	14	Aguilera, Christina	What A Girl Wants	3:18
_	15	Alice Deejay	Better Off Alone	6:50

• What are observations?

What about this dataset?

How many variables are in the dataset?

religion	<\$10k	\$10-20k	\$20–30k	\$30–40k	\$40–50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Three! This is in **wide** form, it's good for visualizing sometimes, but it's not easy to work with. We call it **messy**, instead of **tidy**.

Tidy Data

 If we make it Tidy. It looks like this. Now it's clear there is 3 variables. It's the same information but in a different form, and easier to do analysis on.

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
$\stackrel{\circ}{\mathrm{Agnostic}}$	>150 k	84
Agnostic	Don't know/refused	96

Tidy Data

• Tidy rules:

- Each variable forms a column
- Each observation forms a row
- Each type of observational unit forms a table

What about this dataset?

- This example violates #1: the column headers are values, rather than variables.
- We need to explicitly create the variable column (income)
- Then *melt* those values in the header into that column, thus turning the wide dataset, long (here, *molten*)

religion	<\$10k	\$10–20k	\$20–30k	\$30–40k	\$40–50k	\$50–75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

religion	income	freq
Agnostic	<\$10k	27
${f Agnostic}$	10-20k	34
${f Agnostic}$	\$20-30k	60
${f Agnostic}$	\$30-40k	81
${f Agnostic}$	\$40-50k	76
${f Agnostic}$	50-75k	137
${f Agnostic}$	75-100k	122
${f Agnostic}$	100-150k	109
${f Agnostic}$	>150k	84
Agnostic	Don't know/refused	96

Another common example of messy data: Multiple variables are stored in one column

Dataset: World Health
 Organization records on
 the counts of tuberculosis
 cases by country, year,
 and demographic

 Code Example of Melting and Tidying

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
\mathbf{AE}	2000	m014	2
\mathbf{AE}	2000	m1524	4
\mathbf{AE}	2000	m2534	4
\mathbf{AE}	2000	m3544	6
\mathbf{AE}	2000	m4554	5
\mathbf{AE}	2000	m5564	12
\mathbf{AE}	2000	m65	10
AE	2000	f014	3

(a) Molten data

Table 10: Tidying the TB dataset requires firs into two variables: sex and age.

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
AE	2000	f014	3
	/ \ 3 / 1/	1 4	

(a) Molten data

Table 10: Tidying the TB dataset requires firs into two variables: sex and age.

Discussion Question

Discuss amongst groups of 2-4 people the following. Take 5 minutes. Then we'll reconvene and make a list together.

1. What are 3 things we can do to clean this data up?

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax				_		_	_	
MX17004	2010	1	tmin				—		—	—	—
MX17004	2010	2	tmax		27.3	24.1	_		_	_	_
MX17004	2010	2	tmin		14.4	14.4	_		_	_	
MX17004	2010	3	tmax				—	32.1	—	—	—
MX17004	2010	3	tmin				_	14.2	_	_	_
MX17004	2010	4	tmax				_		_	—	—
MX17004	2010	4	tmin				_		_	_	_
MX17004	2010	5	tmax	_			_		_	_	_
MX17004	2010	5	tmin	—	_	_	—	_	—	—	_

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns d9 to d31 have been omitted to conserve space.

\overline{id}	date	element	value	id	date	tmax	$_{ m tmin}$
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010 - 03 - 05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	tmin	13.4	MX17004	2010 - 03 - 16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010 - 04 - 27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

(b) Tidy data

Attendance

• Enter your number and today's word into the attendance form

Todays word:

• Form: https://forms.gle/tx9GcpANHEMwj8Jv7

• https://tinyurl.com/cog9-spring-23