Problem Set 8

Daniel Halmrast

November 28, 2017

PROBLEM 1

Show that $\frac{\sin(x)}{x}$ is not in $L^1((0,\infty),\lambda^1)$.

Proof. We wish to evaluate

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^1(x)$$

and show that it diverges. To do so, we split the integral into half-cycles

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^{1}(x) = \sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{x} d\lambda^{1}(x)$$

Now, we know that on each half-cycle,

$$\frac{|\sin(x)|}{x} \ge \frac{|\sin(x)|}{(n+1)\pi}$$

so we have a lower bound for the integral:

$$\sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{x} d\lambda^{1}(x) \ge \sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{(n+1)\pi} d\lambda^{1}(x)$$

Now, since each half-cycle is either entirely positive or entirely negative, we know that

$$\int_{(n\pi,(n+1)\pi)} \frac{|\sin(x)|}{(n+1)\pi} d\lambda^{1}(x) = \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^{1}(x) \right|$$

And finally, we can evaluate the integral directly:

$$\sum_{n=0}^{\infty} \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^{1}(x) \right| = \sum_{n=0}^{\infty} \left| \frac{1}{(n+1)\pi} [\cos(x)]_{n\pi}^{(n+1)\pi} \right|$$
$$= \sum_{n=0}^{\infty} \frac{2}{(n+1)\pi}$$

Thus, since

$$\int_{(0,\infty)} \frac{|\sin(x)|}{x} d\lambda^1(x) \ge \sum_{n=0}^{\infty} \left| \int_{(n\pi,(n+1)\pi)} \frac{\sin(x)}{(n+1)\pi} d\lambda^1(x) \right| = \infty$$

the integral diverges, and $\frac{\sin(x)}{x}$ is not in $L^1((0,\infty),\lambda^1)$.

PROBLEM 2

Prove that L^p for $1 \leq p \leq \infty$ is complete. Note that case p = 1 has already been covered in class.

Proof. To begin with, let $p < \infty$. For this proof, we will show that an absolutely convergent series will converge to a function in L^p . So, let $\{f_n\}$ be such that

$$\sum_{n=1}^{\infty} \|f_n\|_p = M < \infty$$

So, let $g_n = \sum_{k=1}^n |f_k|$. We know by Minkowski's inequality that

$$||g_n||_p \le \sum_{k=1}^n ||f_n||_p \le M$$

Now, g_n converges pointwise to some g, since it's a monotonically increasing bounded sequence.

Now, we know that

$$\int g_n^p \le M^p$$

and by Fatou's lemma,

$$\int g^p \le M^p$$

as well.

Thus, the series

$$\sum_{n=1}^{\infty} |f_n(x)|$$

converges pointwise for μ -almost every x, so the series

$$\sum_{n=1}^{\infty} f_n$$

converges pointwise as well. Call the limit f.

Now, let $s_n(x)$ denote the n^{th} partial sum of $\sum_{n=1}^{\infty} f_n(x)$. We know that $|s_n(x)| \leq g_n(x)$ and thus $|f|(x) \leq g(x)$.

So, by the dominated convergence theorem, we have that

$$\lim \|s_n\|_p = \|\lim s_n\|_p = \|f\|_p$$

as desired.

Now, suppose $p = \infty$. Let $\{f_n\}$ be Cauchy in L^{∞} . Then, we know that for μ -almost every x, the sequence $\{f_n(x)\}$ is Cauchy as well, and by the completeness of \mathbb{R} , has a limit. Call this pointwise limit f(x).

Now, we know that $\forall \varepsilon > 0$, we have some N_{ε} such that $\forall x \ (\mu\text{-almost all } x)$,

$$|f_k(x) - f_i(x)| < \varepsilon$$

for $j, k > N_{\varepsilon}$. Thus, taking a limit as j goes to infinity, we have that

$$|f_k(x) - f(x)| < \varepsilon$$

for all x, as desired.

PROBLEM 3

Part 1: Notes 3.11

Prove that ℓ_n^p , ℓ^p , $1 \le p \le \infty$ are Banach. Prove that $\ell^{p_1} \subset \ell^{p_2}$ for $1 \le p_1 \le p_2 \le \infty$, and that

$$||x||_{p_2} \le ||x||_{p_1}$$

Proof. We first note that ℓ_n^p is isomorphic (as vector spaces) with \mathbb{R}^n , by the canonical identification $(x^i) \mapsto (x^i)$ (where x^i is the i^{th} point in the sequence, and the i^{th} component of the vector). Furthermore, since all norms on a finite dimensional vector space are equivalent, the ℓ^p norm applied to $\ell_n^p \cong \mathbb{R}^n$ is equivalent to the standard 2-norm on \mathbb{R}^n . Now, since \mathbb{R}^n is complete with this norm, it follows that ℓ_n^p is complete as well.

For the case of ℓ^p , we note that $\ell^p = L^p(\mathbb{N}, 2^{\mathbb{N}}, \mu_c)$. By Problem 2, we know that L^p spaces are complete, so it follows that ℓ^p is complete as well.

Now, we will prove the norm inequality. Without loss of generality, we will let $(x_n) \in \ell^{p_1}$ such that $\|(x_n)\|_{p_1} = 1$ (i.e. scale the sequence by its norm, which will not change the inequality).

Now, we wish to show that

$$\left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \le \left(\sum_{n=1}^{\infty} |x_n|^{p_1}\right)^{\frac{1}{p_1}} (=1)$$

We observe first that since $||(x_n||_{p_1} = 1 \text{ and } p_1 \ge 1)$, it must be that each x_n is less than 1. Thus, we have that for each n,

$$|x_n|^{p_2} \le |x_n|^{p_1}$$

since $p_2 \ge p_1$, and each term $x_n < 1$.

Thus, we have that

$$\sum_{n=1}^{\infty} |x_n|^{p_2} \le \sum_{n=1}^{\infty} |x_n|^{p_1}$$
= 1

$$\implies \left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \le 1$$

as desired.

Thus, if $(x_n) \in \ell^{p_1}$, we have that $\|(x_n)\|_{p_2} \leq \|(x_n)\|_{p_1} < \infty$, and so (x_n) is in ℓ^{p_2} as well. Thus, $\ell^{p_1} \subset \ell^{p_2}$ as desired.

Part 2: Notes 3.13

Prove that $L^{p_1}(\Omega,\mu) \subset L^{p_2}(\Omega,\mu)$ when $\mu(\Omega) < \infty$. To do so, establish the inequality for the average integral

$$||f||_{\bar{p_1}} \le ||f||_{\bar{p_2}}$$

where the barred norm is the average norm defined in the notes.

Furthermore, prove that this does not hold in the case $\mu(\Omega) = \infty$.

Proof. We first prove the average norm inequality.

$$\int |u|^{p_1} \frac{1}{\mu(\Omega)} d\mu \le \left(\int (|u|^{p_1})^{\frac{p_2}{p_1}} d\mu \right)^{p_1} p_2 \left(\int (\frac{1}{\mu(\Omega)})^{\frac{p_2}{p_2 - p_1}} d\mu \right)^{\frac{p_2 - p_1}{p_2}}$$

$$= \|u\|_{p_2}^{p_1} ((\frac{1}{\mu(\Omega)})^{\frac{p_2}{p_2 - p_1}} \mu(\Omega))^{\frac{p_2 - p_1}{p_2}}$$

$$\implies (\int |u|^{p_1} \frac{1}{\mu(\Omega)} d\mu)^{\frac{1}{p}} \le \|u\|_{p_2} (\frac{1}{\mu(\Omega)} \mu(\Omega)^{1 - \frac{p_1}{p_2}})^{\frac{1}{p_1}}$$

$$= \|u\|_{p_2} (\frac{1}{\mu(\Omega)})^{\frac{1}{p_2}}$$

as desired.

Now, it follows immediately from this inequality that if $||f||_{p_2} < \infty$, it must be that $||f||_{p_1} < \infty$ as well, and thus $f \in L^{p_2}$ implies $f \in L^{p_1}$.

However, for the measure space $\Omega=(0,\infty)$ with the Lebesgue measure, this fails. This is clear by considering the function $f(x)=\frac{1}{x^{\frac{1}{p_1}}}$, which is in L^{p_2} since $\frac{1}{x^{\frac{p_2}{p_1}}}$ is integrable $(\frac{p_2}{p_1}>1)$, but $\frac{1}{x}$ is not.

Part 3: Notes 3.15

Prove that ess $\sup f = \inf\{C : f \leq C\mu\text{-a.e.}$. Prove that inf can be replaced with min. Prove that ess $\sup |f| = M \iff |f| \leq M\mu\text{-a.e.}, \mu\{f > M - \varepsilon\} \neq 0 \forall \varepsilon > 0$.

Proof. The first statement to be proved follows immediately from the definitions, since the set definition is just a restatement of $\mu\{f > C\} = 0$. Thus, the sets the inf is taken over are the same, so the inf itself is the same.

The second statement follows immediately, since if $M = \inf\{C : \mu\{f > C\} = 0\}$, then there is some monotonically decreasing sequence C_n in the set that approaches M. Now, we have that $\{f > M\} = \lim\{f > C_n\}$ which is a monotonic limit of sets, which the measure preserves. So,

$$\mu\{f > M\} = \lim \mu\{f > C_n\} = \lim 0 = 0$$

and thus M is in the set the inf is taken from.

The last statement also follows immediately, since the first property states that M is an essential upper bound for |f|, and the second property says that M is the least of such upper bounds. That is, M is the inf of all upper bounds on |f|. This characterizes the essential supremum, so the definitions are equivalent.

Part 4: Notes 3.17

For a sequence $\{f_n\}$ of measurable functions, prove that $||f_j - f||_{\infty} \to 0$ if and only if $f_j \to f$ uniformly outside a set of measure zero.

Proof. We know that $\forall n > 0$, there is some A_n such that $\forall m > A_n$,

$$||f_m - f|| < \frac{1}{n}$$

or,

$$\mu\{|f_m - f| > \frac{1}{n}\} = 0$$

Define $E_{mn} = \{|f_m - f| > \frac{1}{n}\}$. Now, we know that

$$\sup |f_m - f| < \frac{1}{n}$$

on $\Omega \setminus \bigcup_{m=A_n}^{\infty} E_{mn}$. Thus, since $\mu(\bigcup_{n=1}^{\infty} \bigcup_{m=A_n}^{\infty} E_{mn}) = 0$, we know that

$$\sup |f_n - f| \to 0$$

on $\Omega \setminus \bigcup_{n=1}^{\infty} \bigcup_{m=A_n}^{\infty} E_{mn}$, as desired. Now, for the other direction, we know that $\sup_{n} |f_n - f| \to 0$ on a Ω minus a set E of measure zero, so change f_n and f to be zero on E, and thus

$$\sup |[f_n] - [f]| \to 0$$

on all of Ω , and thus $||f_j - f||_{\infty} \to 0$ as desired.

Part 5: Notes 3.19

Prove Holder and Minkowski inequalities. Prove that $L^{p_2} \subset L^{p_1}$ for finite measure spaces. Prove this does not hold for infinite measure spaces.

Proof. We begin by proving the lemma:

Lemma 1. For real numbers a, b,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

for p, q > 1.

Proof. We know that

$$ab = \exp(\log a + \log b)$$
$$= \exp\left(\frac{1}{p}\log a^p + \frac{1}{q}\log b^q\right)$$

Now, by the convexity of the exponential, we have that

$$\exp\left(\frac{1}{p}\log a^p + \frac{1}{q}\log b^q\right) \le \frac{1}{p}\exp(\log a^p)\frac{1}{q}\exp(\log b^q) = \frac{a^p}{p} + \frac{b^q}{q}$$

as desired.

Now, we are ready to prove Holder's inequality.

Let $f,g \in L^p$, and without loss of generality let $||f||_p = ||g||_q = 1$. Now, we have that

$$\int |fg|d\mu \le \int |\frac{f^p}{p} + \frac{g^q}{q}|d\mu$$

$$\le \frac{1}{p} \int |f^p|d\mu + \frac{1}{q} \int |g|^q d\mu$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

$$= ||f||_p ||g||_q$$

as desired.

Now, for the L^{∞} case, we have that

$$\int |fg| d\mu \le ||g||_{\infty} \int |f| d\mu = ||g||_{\infty} ||f||_{1}$$

as desired.

Now, we prove the Minkowski inequality. To do so, we will use the Holder inequality.

$$\int |f+g|^p d\mu = \int |f+g|^{p-1} |f+g| d\mu$$

$$\leq \left(\int (|f+g|^{p-1})^{\frac{p}{p-1}} d\mu \right)^{\frac{p-1}{p}} \left(\int (|f|+|g|)^p d\mu \right)^{\frac{1}{p}}$$

$$\leq \|f+g\|_p^{p-1} (\|f\|_p + \|g\|_p)$$

so we have that

$$||f+g||_p^p \le ||f+g||_p^{p-1}(||f||_p + ||g||_p)$$

and thus

$$||f + g||_p \le ||f||_p + ||g||_p$$

as desired.

The case p=1 falls out of the triangle inequality, and the linearity of the integral, and the case $p=\infty$ comes from the subadditivity of the supremum.

The second half of this problem is a restatement of Notes 3.13, which was proved earlier. \Box