# Accumulated local effects

Intervals



## **ALE – Estimation**



Within each interval, the ALE estimation is linear.

The ALE estimation over several intervals, is then a linear approximation of the real, "unknown" function.



## **ALE – Estimation**



The smaller the interval (the greater the number of intervals), the better the approximation.

For a stable or trustworthy approximation, we should have enough observations within each interval.

## Interval effect





More intervals helps us better understand the shape of the ALE distribution.

More intervals better explain the effect of the variable on the prediction.



# Interval effect





How we create those intervals also affects the ALE distribution.

If we use equi-distant plots, we can't trust higher values of the function.

If we use quantiles, we collapse greater values with smaller ones.

