2017年7月25日微分積分学 I テスト解答例.

採点基準:数学がわかっているかどうかを見る. 4題を超えて答えた場合は点が最大になるように採点する.

- 1. (1) $a_n > 0$ だから相加平均 \geq 相乗平均より $a_{n+1} \geq \sqrt{a_n(2/a_n)} = \sqrt{2}$ である. よって $a_{n+1} a_n = \frac{2-a_n^2}{2a_n} \leq 0$ だから $(a_n)_{n=1}^\infty$ は単調減少である.下に有界な単調減少数列は収束するから $lpha=\lim_{n o\infty}a_n$ が在る.漸化式 より α は $\alpha=\frac{1}{2}(\alpha+\frac{2}{\alpha})$ の根であり $\forall a_n\geq \sqrt{2}$ より $\alpha>0$ だから $\alpha=\sqrt{2}$ である.
- (2) $a_1>0$ のとき $a_2=1+\frac{1}{a_1}$ に対し $a_1< a_2$ と仮定すると $a_3=1+\frac{1}{a_2}<1+\frac{1}{a_1}=a_2$ である. 一般に $a_{2n-1}< a_{2n}$, $a_{2n+1}< a_{2n}$ である. そこで隣接 2 項間の差の絶対値を較べてみると $a_{n+1}-a_n=(1+\frac{1}{a_n})-(1+\frac{1}{a_{n-1}})=\frac{a_{n-1}-a_n}{a_{n-1}a_n}$ となる。分母は $a_{n-1}a_n=a_{n-1}(1+\frac{1}{a_{n-1}})=1+a_{n-1}>1$ だから結局 $|a_{n+1}-a_n|<|a_n-a_{n-1}|$ である。こうして $(a_n)_{n=1}^\infty$ を奇偶に分けると,たとえば $a_1< a_3<\cdots< a_{2n-1}< a_{2n}<\cdots< a_4< a_2$ などとなる。したがって偶数番目、奇数番目だけは有界な単調数列になるから,それぞれ 収束する.漸化式から,収束先は両方とも $\alpha=1+\frac{1}{\alpha}$ の正の根である.したがって,問題の数列は $\alpha=\frac{1+\sqrt{5}}{2}$ に収束する.
- **2.** (1) $2.5 = 1 + 1 + \frac{1}{2} < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots = e, \ e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots < e$ $1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots = 3.$
- (2) 背理法. e が有理数と仮定する. 十分大きいすべての自然数 N に対して N!e は整数のはずである. N!e = 整数 + $\frac{1}{N+1}$ + $\frac{1}{(N+1)(N+2)}$ + \cdots は整数だから, $A:=\frac{1}{N+1}$ + $\frac{1}{(N+1)(N+2)}$ + \cdots も整数である.しかし $0 < A = \frac{1}{N+1}$ + $\frac{1}{(N+1)(N+2)}$ + \cdots < $\frac{1}{N+1}$ $\sum_{n=0}^{\infty} (\frac{1}{N+1})^n = \frac{1}{N+1} \frac{1}{1-\frac{1}{N+1}} = \frac{1}{N}$ だから N が十分大きいとき Aは整数になり得ない、これは矛盾である、したがって e は有理数ではない、
- 3. (1) $f'(x) = nx^{n-1}e^{-x} x^ne^{-x} = x^{n-1}e^{-x}(n-x)$ だから $x \ge 0$ のとき x < n で f(x) は単調増加,x > nで単調減少である. したがって f(x) $(x \ge 0)$ は x = n で最大値 $f(n) = n^n e^{-n}$ をとる.
- (2) $g(x)=x^{n+1}e^{-x}$ $(x\geq 0)$ は (1) より x=n+1 で最大値 g(n+1) をとる. したがつて $f(x)=x^ne^{-x}=rac{g(x)}{x}$ は $x \ge 0$ で不等式 $f(x) \le \frac{g(n+1)}{x}$ を満たす.したがって $\lim_{x \to \infty} f(x) = 0$ である. (4) $a_n = \int_0^\infty x^n e^{-x}$ とおくと $a_0 = 1$ であり,部分積分により $a_n = na_{n-1}$ である.よって $a_n = n!$.
- **4.** (1) $x=\frac{e^t+e^{-t}}{2}$, $y=\frac{e^t-e^{-t}}{2}$ のとき $x^2-y^2=1$ はすぐわかる. t が実数全体を動くとき y は実数全体を動 き,x は1以上の実数全体を動く.したがって問題の曲線は方程式 $x^2-y^2=1$ で表される曲線のうちx>0を満たす方である(これは双曲線 xy=1 の第1象限にある部分を $-rac{\pi}{4}$ 回転して原点を中心に全体を $rac{1}{\sqrt{2}}$ 倍に 縮小したものである).
- (2) 曲線 $x^2-y^2=1$ の第 1 象限にある弧は $x=\sqrt{y^2+1}$ $(y\geq 0)$ のグラフで,その"傾き" $\frac{\Delta x}{\Delta y}$ は"常に 1より大きく", "傾き"1 の直線 y=x は漸近線である。したがつて、 $0 \le t \le T$ のとき原点と $(\frac{e^t + e^{-t}}{2}, \frac{e^t - e^{-t}}{2})$ を結ぶ線分が掃く領域の面積は $\int_0^{\frac{e^T-e^{-T}}{2}} \sqrt{y^2+1} dy - \frac{1}{2} \times \frac{e^T-e^{-T}}{2} \times \frac{e^T+e^{-T}}{2}$ である。第1項を $y = \frac{e^t-e^{-t}}{2}$ とおいて置換積分すると $\int_0^T \frac{e^t+e^{-t}}{2} \cdot \frac{e^t+e^{-t}}{2} dt = \frac{e^{2T}-e^{-2T}}{8} + \frac{T}{2}$ となり,第2項は $-\frac{e^{2T}-e^{-2T}}{8}$ である。したがって求める面積は $\frac{T}{2}$ である。いま T=1 だから答えは $\frac{1}{2}$ である。
- 5. (1) $\arctan x = x \frac{x^3}{3} + \frac{x^5}{5} \cdots$ $\$ $\$ $\$ $\$ $\lim_{x \to 0} \frac{x \arctan x}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3} \frac{x^5}{5} + \cdots}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} + \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x \to 0} \frac{x (x \frac{x^3}{3} \frac{x^5}{5} \cdots)}{x^3} = \lim_{x$
- $(2) \lim_{x \to 0} \frac{(\sin x x)(\sin x + x)}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{(-\frac{x^3}{3!} + \frac{x^5}{5!} \cdots)(2x \frac{x^3}{3!} + \cdots)}{x^4} \frac{x^2}{\sin^2 x} = \lim_{x \to 0} (-\frac{1}{3!} + \frac{x^2}{5!} \cdots)(2 \frac{x^2}{3!} + \cdots) \frac{x^2}{3!} + \cdots$ $\cdots)\frac{x^2}{\sin^2 x} = -\frac{1}{3}.$
- $(3)\ t = x^{-1}$ とおくと $x \to \infty$ は $t \to 0$ におきかわる. $\log(1+t) = t rac{t^2}{2} + rac{t^3}{3} \cdots$ より $\lim_{x \to 0} x \log rac{x}{1+x} = t$ $\lim_{t\to 0} t^{-1} \log \frac{1}{1+t} = \lim_{t\to 0} t^{-1} \left(-t + \frac{t^2}{2} + \cdots \right) = -1.$
- **6.** (1) $\sqrt{x}=t$ とおくと dx=2tdt である. よって $\int_0^1 \sqrt{1+\sqrt{x}}dx=2\int_0^1 \sqrt{1+t}\,tdt=2([\frac{2}{3}(1+t)^{\frac{3}{2}}t]_0^1-t)$ $\int_0^1 \frac{2}{3} (1+t)^{\frac{3}{2}} dt) = 2(\frac{2}{3} 2^{\frac{3}{2}} - \frac{2}{3} [\frac{2}{5} (1+t)^{\frac{5}{2}}]_0^1) = 2(\frac{4\sqrt{2}}{3} - \frac{4}{15} (4\sqrt{2} - 1)) = \frac{8}{15} (\sqrt{2} - 1).$
- J_0 $\frac{1}{3}$ $(1-t)^2$ $wt) = 2(32^2 315)(2-t)$ (2) $\int_1^\infty (\log \frac{x}{x+1} + \frac{1}{x+1}) dx = \int_1^\infty (\log x \log(x+1) + \frac{1}{x+1}) dx = [x \log x x (x+1) \log(x+1) + (x+1) + \log(x+1)]_1^\infty = [x \log \frac{x}{x+1}]_1^\infty = \lim_{x \to \infty} x \frac{x}{x+1} \log \frac{1}{2} = -1 + \log 2$. 最後の等式は問題 5(3) による。テイラー公式により x > 0 のとき $\log \frac{x}{x+1} = \log(1 \frac{1}{x+1}) = -\frac{1}{x+1} \frac{1}{2}(\frac{1}{x+1})^2 \frac{1}{3}(\frac{1}{x+1})^3 \cdots$ である。よって サストン 日本 1 + $\log x$ のはまりまり、 ほかの値は色である。 被積分関数は負の値をとる。だから(または積分の結果 $-1 + \log 2$ が負だから)積分の値は負である。