Solução numérica de equações diferenciais ordinárias

MÉTODO DE EULER PARA SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS

Equação diferencial de primeira ordem

$$y'=f(x,y)$$

f é uma função de duas variáveis

yé uma função da variável x

Solução para esse tipo de equação

Encontrar uma função

$$y = y(x)$$

tal que

$$y'(x) = f(x, y(x))$$

Exemplo fácil

Equação:

$$y'=y$$

Solução:

$$y(x) = Ce^x$$

Uma condição inicial é importante

Equação:

$$\left\{egin{array}{l} y'=y\ y(0)=1 \end{array}
ight.$$

Solução:

$$y = 1.e^{x}$$

Problema de valor inicial

$$\left\{egin{array}{l} y'=f(x,y)\ y(x_0)=y_0 \end{array}
ight.$$

Solução numérica

Usando um método numérico, não vamos encontrar a função y(x) diretamente

Ao invés disso, vamos encontrar uma série de pontos que aproximam essa função em um intervalo

Exemplo não-fácil

$$\left\{egin{array}{l} y'=-y+x+2\ y(0)=2 \end{array}
ight.$$

$$0 \le x \le 0.3$$
$$h = 0.1$$

$$y_n$$
 é a estimativa para $y(x_n)$ $f_n = f(x_n, y_n)$

Método de Euler

$$y_{n+1} = y_n + hf_n$$

Solução do exemplo

x_n	y_n
0	2
0.1	2
0.2	2.01
0.3	2.029

Exercício

$$\left\{ egin{aligned} y' &= y^2 + 1 \ y(0) &= 0 \end{aligned}
ight.$$

 $0 \le x \le 1$

h = 0.2

Solução do exercício

x_n	y_n
0	O
0.2	0.2
0.4	0.408
0.6	0.6412928
0.8	0.9235441
1	1.2941308

