Homework #5

Chapter 2, Section 3

12. Determine whether each of these functions from \underline{Z} to \underline{Z}

a)
$$f(n) = n - 1$$

c) $f(n) = n^3$

b)
$$f(n) = n^2 + 1$$

d) $f(n) = \lceil n/2 \rceil$

c)
$$f(n) = n^3$$

d)
$$f(n) = \lceil n/2 \rceil$$

Injective (one-to-one) Functions

Each Volve in the roose corresponding to exactly one element in the domina

a)
$$f(n) = n - 1$$

b)
$$f(n) = n^2 + 1$$

c)
$$f(n) = n^3$$

One-to-one

$$\mathbf{d}) \ f(n) = \lceil n/2 \rceil$$

13. Which functions in Exercise 12 are onto?

Surjective (onto) Functions

Every element in the <u>cadomain</u> maps to at least one element in the domain

a) f(n) = n - 1

on to

- because every introper in a law than some integer

b) $f(n) = n^2 + 1$

Not onto

- Become everything is possitive (ng), so the rouse const include any negotive integer

c) $f(n) = n^3$

d) $f(n) = \lceil n/2 \rceil$

22. Determine whether each of these functions is a bijection from ${\bf R}$ to ${\bf R}$.

a)
$$f(x) = -3x + 4$$

b)
$$f(x) = -3x^2 + 7$$

a)
$$f(x) = -3x + 4$$

b) $f(x) = -3x^2 + 7$
c) $f(x) = (x + 1)/(x + 2)$
d) $f(x) = x^5 + 1$

d)
$$f(x) = x^5 + 1$$

a)
$$f(x) = -3x + 4$$

b)
$$f(x) = -3x^2 + 7$$

c)
$$f(x) = (x+1)/(x+2)$$

d)
$$f(x) = x^5 + 1$$

- 26. a) Prove that a strictly increasing function from R to itself is one-to-one.
 b) Give an example of an increasing function from R to itself that is not one-to-one.

30. Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if

a)
$$f(x) = 1$$
.

b)
$$f(x) = 2x + 1$$

c)
$$f(x) = \lceil x/5 \rceil$$

a)
$$f(x) = 1$$
.
b) $f(x) = 2x + 1$.
c) $f(x) = \lceil x/5 \rceil$.
d) $f(x) = \lfloor (x^2 + 1)/3 \rfloor$.

- **33.** Suppose that g is a function from A to B and f is a function from B to C.
 - a) Show that if both f and g are one-to-one functions, then $f \circ g$ is also one-to-one.
 - **b)** Show that if both f and g are onto functions, then $f \circ g$ is also onto.

***34.** If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

***35.** If f and $f \circ g$ are onto, does it follow that g is onto? Justify your answer.

43. Let $g(x) = \lfloor x \rfloor$. Find **a)** $g^{-1}(\{0\})$. **c)** $g^{-1}(\{x \mid 0 < x < 1\})$.

a)
$$g^{-1}(\{0\})$$
.

b)
$$g^{-1}(\{-1,0,1\}).$$

c)
$$\sigma^{-1}(\{x \mid 0 < x < 1\})$$

- **4.** What are the terms a_0 , a_1 , a_2 , and a_3 of the sequence $\{a_n\}$, where a_n equals
 - a) $(-2)^n$?
- c) $7 + 4^n$?
- **b)** 3? **d)** $2^n + (-2)^n$?

- **9.** Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.

 - a) $a_n = 6a_{n-1}, a_0 = 2$ b) $a_n = a_{n-1}^2, a_1 = 2$ c) $a_n = a_{n-1} + 3a_{n-2}, a_0 = 1, a_1 = 2$ d) $a_n = na_{n-1} + n^2 a_{n-2}, a_0 = 1, a_1 = 1$ e) $a_n = a_{n-1} + a_{n-3}, a_0 = 1, a_1 = 2, a_2 = 0$

- **12.** Show that the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = -3a_{n-1} + 4a_{n-2}$ if **a)** $a_n = 0$. **b)** $a_n = 1$. **c)** $a_n = (-4)^n$. **d)** $a_n = 2(-4)^n + 3$.

- **19.** Suppose that the number of bacteria in a colony triples every hour.

 - a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
 b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

a)
$$\sum_{k=1}^{5} (k+1)$$

b)
$$\sum_{i=0}^{4} (-2)^{i}$$

c)
$$\sum_{i=1}^{10} 3$$

29. What are the values of these sums?
a)
$$\sum_{k=1}^{5} (k+1)$$
 b) $\sum_{j=0}^{4} (-2)^{j}$
c) $\sum_{i=1}^{10} 3$ **d)** $\sum_{j=0}^{8} (2^{j+1} - 2^{j})$