A Look at the Hardware: what can approximation buy us, and how can we cash in?

Naveen Verma

nverma@princeton.edu

April 3, 2016

Why are we talking about approximation?

A CONVERGENCE:

Applications are statistical... ...Devices are statistical Cumulative Probability (%) **RRAM Resistance** Variation [Wong, IEDM'11] increase reset pulse amplitude +3V/50ns -2.7 V/50ns -3V/50ns Resistance (Ω) **CNT Count Variations** [Zhang, TCAD] CNT count variations Oncology Advisor J(10N) / H(10N) 18.9% 20% 10% 3.6% 0.8% 0.6% m-CNT-induced CNT CNT CNT CNT 2 diameter alignment doping count variations variations variations variations

Why are we really talking about approximation?

Research questions:

- 0. What knobs/mechanisms actually give us such tradeoffs?
- 1. How can we enhance the tradeoffs, by exploiting attributes of applications?
- ³ 2. What architectures derive maximum leverage from such tradeoffs

There are knobs at all levels

Device level (e.g., TFET)

Circuit level (e.g., V_{DD} scaling)

Algorithmic level

Before going any further...

Ex. Energy breakdown of ADD instr (45nm):

- Instruction fetch and control consumes 90% of energy
- Programmable control does <u>NOT</u> benefit from statistical applications (directly)
- Think accelerators (fine-/coarse-grained?)...

Aside: approximate control flow

Statistical Applications Approximate control flow **Control-flow Approximate** protection/ computing instrumentation **Error-prone** control flow **Statistical Technological Fabric**

E.g., YMM, DATE'2013:

Formal guarantee of:

- 1. Progress
- 2. Ephemeral effect of errors
- 3. Execution of essential states

(courtesy S. Malik, A. Golnari)

Where is the beef: bit precision?

(Energy from 32nm CMOS, SQNR from uniformly distributed inputs)

Where is the beef: V_{DD} scaling?

Ex. Carry-lookahead adder (65nm):

8

V_{DD} scaling

1. Timing-path variation (65nm)

2. Noise-margin violations

Where is the beef: analog computation?

R. Sarpeshkar, Analog vs. Digital: extrapolating from electronics to neurobiology, 1998

Where is the beef: beyond Si CMOS?

So, where is the beef?

A: at the **SYSTEM** level

E.g., leverage points in system design:

- 1. Instrumentation & data conversion
 - E/ADC (12b, 45nm): ~200pJ
 - E/MAC (12b, 45nm): ~1pJ
- 2. Memory accessing
 - E/SRAM (32kB, 45nm): ~20pJ
- 3. General-purpose (vs. heterogeneous) computing
 - 100-1000× computational energy reduction

The job of architecture design is to get the most out of device/application attributes, at the <u>system level</u>

Before thinking about architectures...

Analyzing DDHR: enhancing the tradeoff

Ex. EEG-based Seizure Detector

Analyzing DDHR: enhancing the tradeoff

Ex. EEG-based Seizure Detector:

Ex. ECG-based Arrhythmia Detector:

Error-adaptive classifier boosting (EACB)

Training the error-aware model

Ex. EEG-based Seizure Detector (FPGA emulation): [z. wang, IEEE TCAS-I'15]

Low-memory, embedded trainer

AdaBoost Training – Same training data used for each iteration

Proposed Training – Different training data used for each iteration

Ex.: Seizure detector trained on OpenMSP core: 65x memory reduction (to 7kB); 10x energy reduction (to 5M clock cycles)

Architecture design: instrumentation & ADC

Motivation: E/ADC≈200pJ, E/MAC≈1pJ

EEG-based Seizure Detection

In-ADC feature extraction

	Ideal	Chip: baseline model	Chip: error- aware model
Sensitivity	5/5	5/5	5/5
Latency	2.0 sec.	3.6 sec.	3.4 sec.
False alarms	8	443	4

Feature Distributions

Mutual Information

Related work

Matrix-multiplying Successive Approximation ADC:

21

Applications	Conventional System	Proposed System	Savings
1. ECG arrhythmia detector	Mults: 109,056	Mults: 1,280	Mults: 85×
(N=256, J=256, S=170, K=5)	Adds: 108,630	Adds: 1,279	Adds: 85×
2. Image-pixel gender detector	Mults: 3,876,000	Mults: 19,200	Mults: 202×
(N=19200, J=200, S=180, K=1)	Adds: 3,859,620	Adds: 19,199	Adds: 201×

[J. Zhang, ISSCC'15]

Demo. 1: ECG-based Arrhythmia Detector

Demo. 2: Image-pixel-based gender detector

Architecture design: memory accessing

Motivation: E/SRAM≈20pJ, E/MAC≈1pJ

- DCU energy: ~10pJ/clock
- SRAM energy: 37pJ/clock
- CDA energy: 8.4pJ/clock

[K. H. Lee, VLSI Symp'13]

Compression/Decompression Accelerator (CDA)

- +) Simple algorithm (ADPCM) with low energy overhead
 - → 8.4pJ per comp./decomp. (memory access energy: 36.4pJ)
 - → 4x compression guaranteed
- -) Lossy; errors in low-order bits

22

→ Low impact thanks to the resilience of machinelearning frameworks against noise in low-order bits

Compression/decompression SRAM interface

Ex. 1: EEG-based seizure detection

	w/o compression		w/ compression	
	True Pos.	True Neg.	True Pos.	True Neg.
Patient #1	96.1%	98.1%	94.1%	98.9%
Patient #2	93.8%	99.7%	93.8%	99.9%
Patient #3	91.7%	98.7%	90.4%	99.4%

Ex. 2: Patient-adaptive arrhythmia detection

Architecture design: sensing (looking ahead)

Large-Area Electronics (LAE): a technology for SENSING

Thin-film Sensors

Thin-film Transistors

Hybrid Systems (LAE/Si-CMOS)

Embedded thin-film classifiers

(measured)

Sensor Bias V_s (V)

CMOS

WEIGHTED

VOTER

s =11V

 $V_{0.1}$

 $V_{O,N}$

(measured)

Weighting Bias V_B (V)

Large-area image-sensing pixels V_{S1} V_{536} **Error-Adaptive Classifier Boosting Trainer** VB1,36+1 Weak Classifier 1 Weak Classifier 1 Weak Classifier 2 Weak Classifier N Weak **Classifier N** Model Weight Range Sensor range M₄ V_B =15V M₂ 25 60 Current (µA) 15 10 Current (µA) 30 50 50 **Fitting errors** Non-idealities

Image-sensing/-detection system

But, we're at WAX...

Summary and conclusions

There is a (powerful?) convergence between attributes on APPLICATION level and TECHNOLOGICAL level

There are many mechanisms in systems by which we have a direct tradeoff between 'usefulness of results' and 'resources consumed'

→ BUT, direct tradeoff usually does not have much leverage

Top-down architectural choices can often be enabled by approximate computing (b/c statistical behaviors are so prominent/pervasive in system physics)

But, now application designers must consider statistics of applications AND systems

Note: All work is done by students (K. H. Lee, J. Liu, W. Rieutort-Louis, Z. Wang, J. Zhang) Acknowledgements: FCRP (GSRC), STARnet (SONIC, C-FAR), NSF, SRC, AFOSR, MOSIS.

EXTRAS

Playing with bit precision

E.g.: optimizing FIR filter SQNR

Represent filter coefficients as

$$h_l = l_l \times 2^{s_l} \times (1 + m_l)$$

Statistical optimization (I)

<u>Objective</u>: Find optimal α , to minimize error $\varepsilon_{\hat{y}} = \frac{|\sum_{l}(\alpha h_{l})x_{l}-\sum_{l}(\widehat{\alpha h_{l}})x_{l}|}{\alpha}$.

Approach:

1. Assume x_i drawn from random variable X_i (having some statistical distribution).

- 2. Compute distribution of output error $E_{\hat{Y}}$, and define cost function for minimization.
- 3. Minimize cost function to find optimal α .

Statistical optimization (II)

Ex.: FIR filtering EEG feature extraction

