Experiment 11: Heart Disease Prediction using different Machine Learning Models

```
In [ ]: #libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.impute import SimpleImputer
        from sklearn.metrics import accuracy score, classification report
        from sklearn.linear model import LinearRegression
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.metrics import (
            confusion matrix, classification report, roc curve, roc auc score
        import matplotlib.pyplot as plt
        import seaborn as sns
```

```
In [74]: # Load the dataset
df = pd.read_csv('heart_disease.csv')
df
```

Out[74]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slc
	0	52	1	0	125	212	0	1	168	0	1.0	
	1	53	1	0	140	203	1	0	155	1	3.1	
	2	70	1	0	145	174	0	1	125	1	2.6	
	3	61	1	0	148	203	0	1	161	0	0.0	
	4	62	0	0	138	294	1	1	106	0	1.9	
	1020	59	1	1	140	221	0	1	164	1	0.0	
	1021	60	1	0	125	258	0	0	141	1	2.8	
	1022	47	1	0	110	275	0	0	118	1	1.0	
	1023	50	0	0	110	254	0	0	159	0	0.0	
	1024	54	1	0	120	188	0	1	113	0	1.4	

1025 rows × 14 columns

\cap		4	г	7		1	
U	u	L	L	/	J	J	ē

	age	sex	ср	trestbps	chol	
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.0
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.1
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.3
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.0
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.0
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.0
75 %	61.000000	1.000000	2.000000	140.000000	275.00000	0.0
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.0

In [76]: sns.pairplot(df, hue='target')
 plt.show()


```
for name, model in models.items():
    print(f"Training {name}...")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"{name} Accuracy: {accuracy:.2f}")
    print(classification_report(y_test, y_pred))
```

Training Logi Logistic Regr	_		f1-score	support
0 1	0.86 0.76	0.75 0.87	0.80 0.81	159 149
accuracy macro avg weighted avg	0.81 0.81	0.81 0.81	0.81 0.80 0.80	308 308 308
Training Deci Decision Tree			f1-score	support
0 1	0.95 1.00	1.00 0.94	0.97 0.97	159 149
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	308 308 308
Training Rand Random Forest			f1-score	support
0 1	0.96 1.00	1.00 0.96	0.98 0.98	159 149
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	308 308 308
Training SVM. SVM Accuracy:		recall	f1-score	support
0 1	0.92 0.86	0.86 0.92	0.89 0.89	159 149
accuracy macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89 0.89	308 308 308
Training KNN. KNN Accuracy:		recall	f1-score	support
0 1	0.87 0.82	0.82 0.87	0.84 0.84	159 149
accuracy macro avg weighted avg	0.84 0.84	0.84 0.84	0.84 0.84 0.84	308 308 308

Training Naive Bayes...

```
Naive Bayes Accuracy: 0.81
            precision
                     recall f1-score
                                        support
         0
                0.88
                         0.74
                                  0.81
                                           159
         1
                0.76
                         0.89
                                  0.82
                                           149
                                  0.81
                                           308
   accuracy
  macro avg
                0.82
                         0.82
                                  0.81
                                           308
weighted avg
                0.82
                         0.81
                                  0.81
                                           308
```

```
In [85]: for name, model in models.items():
    print(f"Training {name}...")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"{name} Accuracy: {accuracy:.2f}")
    print(classification_report(y_test, y_pred))
    print("\n")
```

Training Logistic Regression... Logistic Regression Accuracy: 0.81 precision recall f1-score support 0 0.86 0.75 0.80 159 1 0.76 0.87 0.81 149 accuracy 0.81 308 0.81 0.81 0.80 308 macro avq weighted avg 0.81 0.81 0.80 308 Training Decision Tree... Decision Tree Accuracy: 0.97 precision recall f1-score support 0 0.95 1.00 0.97 159 1 1.00 0.94 0.97 149 0.97 308 accuracy macro avg 0.97 0.97 0.97 308 weighted avg 0.97 0.97 0.97 308 Training Random Forest... Random Forest Accuracy: 1.00 precision recall f1-score support 0 1.00 1.00 1.00 159 1 1.00 1.00 1.00 149 1.00 308 accuracy 1.00 1.00 1.00 308 macro avg 1.00 weighted avg 1.00 1.00 308 Training CVM

SVM Accur					
	,	precision	recall	f1-score	support
	0	0.92	0.86	0.89	159
	1	0.86	0.92	0.89	149
accur	асу			0.89	308
macro	avg	0.89	0.89	0.89	308
weighted	avg	0.89	0.89	0.89	308

Training KNN...
KNN Accuracy: 0.84

precision recall f1-score support

0	0.87	0.82	0.84	159
1	0.82	0.87	0.84	149
accuracy			0.84	308
macro avg	0.84	0.84	0.84	308
weighted avg	0.84	0.84	0.84	308

Training Naive Bayes...
Naive Bayes Accuracy: 0.81

	precision	recall	f1-score	support
Θ	0.88	0.74	0.81	159
1	0.76	0.89	0.82	149
accuracy			0.81	308
macro avg	0.82	0.82	0.81	308
weighted avg	0.82	0.81	0.81	308

```
In [121... # Definitions for the accuracy variables
         LRA = 0.81 # Logistic Regression accuracy
         KNNA = 0.84 # K-Nearest Neighbour accuracy
         SVMA = 0.89 # Support Vector Machine accuracy
         GNBA = 0.81 # Gaussian Naive Bayes accuracy
         DTA = 0.97 # Decision Tree accuracy
         RFA = 1.00 # Random Forest accuracy
         # Create the DataFrame with defined accuracy values
         compare = pd.DataFrame({
             'Model': ['Logistic Regression', 'K-Nearest Neighbour', 'Support Vector
                       'Gaussian Naive Bayes', 'Decision Tree', 'Random Forest'],
             'Accuracy': [LRA * 100, KNNA * 100, SVMA * 100, GNBA * 100, DTA * 100, F
         })
         # --- Create Accuracy Comparison Table ---
         styled_compare = compare.style.set_properties(**{'font-family': 'Segoe UI'})
         styled compare
```

Out[121... Model Accuracy

I a wistin Dawnsoin	01 000000
Logistic Regression	81.000000
K-Nearest Neighbour	84.000000
Support Vector Machine	89.000000
Gaussian Naive Bayes	81.000000
Decision Tree	97.000000
Random Forest	100.000000

```
In [111... # Dictionary for model abbreviations
         model abbreviations = {
             'Decision Tree': 'DT',
             'Logistic Regression': 'LR',
             'Random Forest': 'RF',
             'SVM': 'SVM',
             'KNN': 'KNN',
             'Naive Bayes': 'NB'
         }
         # Plot ROC Curve
         plt.figure(figsize=(10, 6))
         for model name, model in models.items():
             # Fit the model
             model.fit(X train, y train)
             # Predictions
             y pred = model.predict(X test)
             y prob = model.predict proba(X test)[:, 1] # Probability estimates
             # Metrics
             accuracy = accuracy score(y test, y pred) # Calculate accuracy
             cm = confusion matrix(y test, y pred)
             report = classification_report(y_test, y_pred, output_dict=True)
             f1 = report['1']['f1-score']
             precision = report['1']['precision']
             sensitivity = report['1']['recall'] # also known as True Positive Rate
             specificity = cm[0][0] / (cm[0][0] + cm[0][1]) # True Negative Rate
             roc auc = roc auc score(y test, y prob)
             # Store results with abbreviation
             short name = model abbreviations.qet(model name, model name) # Get abbr
             results[short name] = {
                  'Accuracy': round(accuracy, 3),
                 'Precision': round(precision, 3),
                 'F1 Score': round(f1, 3),
                  'Sensitivity': round(sensitivity, 3),
                 'Specificity': round(specificity, 3),
                 'ROC AUC': round(roc auc, 3)
             }
             # ROC Curve
             fpr, tpr, = roc curve(y test, y prob)
             plt.plot(fpr, tpr, label=f'{short name} (AUC = {roc auc:.3f})')
         # Plot ROC Curve
         plt.plot([0, 1], [0, 1], 'k--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver Operating Characteristic')
         plt.legend()
         plt.show()
```


This notebook was converted with convert.ploomber.io