МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Факультет инноваций и высоких технологий Кафедра «Алгоритмы и технологии программирования»

Курсовая работа по курсу «Базы данных»

Задача курсовой работы состоит в получении практических навыков использования промышленных СУБД. Выбор конкретной СУБД – на усмотрение студента. Основное условие – СУБД должна быть реляционной. (Без монги, редиса и хадупа, пожалуйста). Рекомендуется использовать PostgreSQL.

Задание:

- 1. Выбрать предметную область для моделирования, согласовать ее с семинаристом. В области должно быть 4-6 основных сущностей.
- 2. Спроектировать концептуальную, логическую и физическую модели базы данных. Проектировать можно в любом удобном редакторе (в том числе бумаге).
 - **а.** Концептуальная модель должна описывать все сущности, входящие в моделируемую область, без уточнения атрибутов и декомпозиции. **4-6 основных сущностей.**
 - *Подсказка*: рисунок с квадратами Склад-Товар и связью N-N между ними.
 - b. Логическая модель должна описывать таблицы, из которых состоит проектируемая база данных и атрибуты. Логическую модель требуется проектировать с учетом возможной декомпозиции таблиц. Проектируемая база должна находиться во 2НФ или 3НФ с обоснованием выбора НФ.

После нормализации ~10 сущностей.

Подсказка: ER-диаграмма с сущностями и атрибутами.

с. Физическая модель должна описывать, каким образом спроектированная база хранится в СУБД. Требуется описание каждого поля каждой таблицы: название и описание поля, тип данных, ограничения (constraint) наложенные на поле. По одной таблице на каждую сущность.

Приблизительный формат для описания каждой таблицы:

GOODS Товары				
Название	Описание	Тип данных	Ограничение	
GOOD_ID	Идентификатор	INTEGER	NOT NULL	
	товара			
EXTRA_DESC	Доп. Описание	VARCHAR(1000)		
	товара			

При желании можно добавить столбцы РК, FК. Ключи уже указаны в логической модели данных, но для удобства чтения спецификаций на каждую таблицу их можно добавить.

Подсказка: по таблице на каждую сущность из ER-диаграммы.

- 3. Написать DDL-скрипты для создания пустой БД.
- 4. Заполнить БД данными (~100 записей в сумме, по 5-10 записей в каждую таблицу). Для заполнения можно использовать как рукописные запросы (INSERT INTO.. SELECT UNION SELECT), так и внешние источники данных (XLS, CSV). На усмотрение студента.
- 5. Сформулировать 5 смысловых запросов к БД. Написать их на SQL.
- 6. Написать CRUD-запрос (подсказка 4 запроса) к одной любой таблице БД.
- 7. Создать по 1 представлению на каждую таблицу. В представлениях должен быть реализован механизм маскирования личных (секретных) данных и скрытия технических полей (суррогатных ключей и т.п.).

Подсказка: Список "секретных" атрибутов определяется студентом. Если, например, дата рождения пользователя — секретная, вместо реальной даты рождения при запросе из представления должна выводиться заглушка, например '5999-12-31'. При этом хранимые данные не должны меняться.

- 8. Создать 2 сложных представления (с джойном).
- 9. * Создать 2 триггера на любые таблицы БД. Логика работы обговаривается с семинаристом.
- 10. * Создать хранимую процедуру. Логика работы обговаривается с семинаристом.
- 11. ** Пообщаться с семинаристом при сдаче. Быть готовым написать какие-нибудь запросы руками, что-нибудь показать или объяснить. *Подсказка*: семинарист добрый.

Вес заданий:

Задание	Комментарий	Балл
1	Необходимое условие сдачи зачета	-
2	Необходимое условие сдачи зачета	-
3	Для сдачи продемонстрировать	1
	работу всех скриптов	
4	Если заполняется запросом –	1
	продемонстрировать запрос. Если из	
	файла – залить новые данные из	
	файла.	
5	По 0,5 за каждый запрос.	2,5
	«Смысловость» запроса	
	предварительно лучше согласовать	
	с семинаристом.	
6	Для сдачи продемонстрировать	0,5
	работу 4-х запросов SELECT,	
	INSERT, UPDATE, DELETE.	
7	Для сдачи продемонстрировать	1
	скрипты создания представлений и	
	селекты из этих представлений.	
8	Для сдачи каждое представление	1
	должно реализовывать некую	
	логику и иметь смысл.	
9	Обговаривается с семинаристом.	~1,5 (Отл(8) за 1 выполненную
		звездочку, отл(10) за 2)
10	Обговаривается с семинаристом.	~1,5 (Отл(8) за 1 выполненную
		звездочку, отл(10) за 2)
11	Супер необходимое условие сдачи	Понижающе-повышающий
	зачета.	коэффициент за качество ответа.