Group Theory

Paolo Bettelini

Contents

1	Gro	pups	2
	1.1	Binary operations	2
	1.2	Cayley tables	2
		Definition	

Groups 1

Binary operations

Let G be a set. A binary operation \circ on G is a map

$$G \times G \to G$$

$$G \times G \to G,$$
 $(x,y) \to x \circ y$

Cayley tables 1.2

A binary operation \circ on a finite set G can be visualized using a Cayley table.

Example:
$$G = \{0, 1\}$$
 and $\circ \equiv$ multiplication.

0	0	1
0	0	0
1	0	1

1.3 Definition

A group (G, \circ) is a tuple containing a set G and a binary operation \circ .