Progress Report

Kuei-Yueh (Clint) Ko

Drop-seq

Yesterday after asking Yoshi some details of drop seq analysis, I have finished set up the file directories to run the drop seq pipeline.

Drop-seq

Gland_10x.txt (normal lung)

Airway_3dpi_10x.txt (injured lung)

Yoshi has also send me the final gene count matrix using 10X genomics (cell ranger) and hisat2 alignment.

I can use it to compare the results of drop-seq pipeline and STAR alignment.

(There will be some differences because of different alignment software.)

Question: data visualization of drop seq results

Hi Kuei,

Here is the good example which we want to have: http://dropviz.org
The problem of this website is currently limited only for brain data set which they uploaded. But it looks like there are source code of this database here: https://github.com/broadinstitute/dropviz

I am guessing following this source code allows us to get to there quickly although I'm not sure if we can easily modify this codes for our purpose.

Best regards, Yoshi

HTS

```
Fastq -> trimmed fastq (using fastq-mcf)
Trimmed fastq -> aligned bam (using tophat2)
Aligned bam to sorted bam (using samtools)
Sorted bam to counts (using htseq)
```

The tools are not installed on Bubbles yet. (I have sent the list to Scott already; however, I did not know which versions or specific sources that should be installed.)

In order to give it a try first, I have installed the commands

- Fastq-mcf
- Tophat2
- Samtools
- Htseq-count

on my desktop (https://98.26.42.234:8000)

Question:

in the material, the scripts also includes bowtie. Is it required?

Another question is: I did not understand the files Korous sent in the email

- adapter_sequence.fastq
- GCF_000149245.1_CNA3_genomic.fna
- GCF_000149245.1_CNA3_genomic.gff
- Cryptococcus_neoformans.ASM9104v1.39.gff3
- Cryptococcus_neoformans.ASM9104v1.dna.toplevel.fa

I suggest that you do a few samples to start with. After review of the pipeline, you can process all of the files.

Annotation:

Option 1

wget

http://mirrors.vbi.vt.edu/mirrors/ftp.ncbi.nih.gov/genomes/refseq/fungi/Cryptococcus_neoformans/latest_assembly_versions/GCF_000149245.1_CNA3_genomic.fna.gz

wget

http://mirrors.vbi.vt.edu/mirrors/ftp.ncbi.nih.gov/genomes/refseq/fungi/Cryptococcus_neoformans/latest_assembly_versions/GCF_000149245.1_CNA3/GCF_000149245.1_CNA3_genomic.gff.gz

Option 2

wget ftp://ftp.ensemblgenomes.org/pub/fungi/release-39/gff3/cryptococcus_neoformans/Cryptococcus_neoformans.ASM9104v1.39.gff3.gz wget ftp://ftp.ensemblgenomes.org/pub/fungi/release-39/fasta/cryptococcus_neoformans/dna/Cryptococcus_neoformans.ASM9104v1.dna.toplevel.fa.g

Adapter sequence fasta (see attached)

Note: Discussion during the meeting on 180531

Project:

- Work on the parametric tSNE
- If everything works well, we will implement a parametric UMAP on Tensorflow

Data+

- Work on the tutorial files (Scikit Learn and Scanpy) for the undergrads
- The data visualization interface for tata's lab will be part of the project
- Learn the plotly dash

HTS

 Stop digging into constructing the pipeline. Wait until the meeting and see what jobs are assigned