Problem 1

Answer: 3

There are three decision variables, one for each type of product.

Problem 2

Answer:

$$\max \quad Z = 75x_1 + 50x_2 + 35x_3$$

The profit per TV set is \$75. Since x_1 TVs are produced, the profit related to this product is $75x_1$. The same logic allows us to determine the profit related to stereos and speakers. The stereos generate a profit of $50x_2$, and the speakers generate a profit of $35x_3$. Therefore, the total profit can be expressed as

$$Z = 75x_1 + 50x_2 + 35x_3. (1)$$

For this problem, this is the objective function. Since it represents profit, we obviously want to maximize this function. In other words, we want to find $\max Z$.

Problem 3

Answer: $x_1 + x_2 \le 450$

Each TV set requires 1 chassis. The same is true for each stereo. On the other hand, speakers don't require a chassis. Then the total number of chassis the company needs is given by $x_1 + x_2$. Since it's not possible to use more than 450 chassis, the following must hold:

$$x_1 + x_2 \le 450. \tag{2}$$

Problem 4

Answer: $2x_1 + x_2 + x_3 \le 600$

Each TV set requires 2 electronic parts. For each stereo/speaker, we need a single electronic part. Then the total number of such parts the company needs is given by $2x_1 + x_2 + x_3$. Since it's not possible to use more than 600 electronic parts, the following must hold:

$$2x_1 + x_2 + x_3 \le 600. (3)$$

Problem 5

Answer: SUMPRODUCT(\$D\$5:\$F\$5,D7:F7)

Problem 6

Answer: SUMPRODUCT (D5:F5, D12:F12)

Problem 7

Answer: 200 units of TV sets, 200 units of stereos, and none of speakers

Problem 8

Answer: Chassis, Picture tubes, and Power supply

Problem 9

Answer: \$25000

Problem 10

Answer: All of the above.