

Artificial Neural Networks

- A neural network can be defined as a model of reasoning based on the human brain.
- The brain consists of interconnected set of nerve cells, or basic information-processing units, called neurons.
- Signals are propagated from one neuron to another by complex electrochemical reactions.

- We know that the human brain has a highly complex, nonlinear, and parallel computer.
- Neural network is complex as well as nonlinear and massively parallel.
- Our brain has counted to have:
 - millions of nerve cells with
 - trillions of interconnections.

Humans are good at making sense of what our eyes show us.

 However, the difficulty of pattern recognition becomes obvious if we try to write a computer program to recognize objects.

- Normally, computer needs time to do the recognition task, however, we human do this task instantly.
- How are we going to do that very instantly?
- Let's compare processing speed of computer with a human:
 - IC processing speed: 1 nanosecond.
 - Human Neuron processing speed: 1 millisecond.
- As you can see human 4-5 orders is slower than computers. But, how can we faster in real problems?
- The answer of this question lies on the massively parallel networks on neurons. 10 billions Neurons & 60 trillions of interconnections.

- Is it possible to mimic the task using computer software?
- We can mimic neurons, but in different way that biological neurons work.
- In this manner, the term artificial neural networks can be used.
- Now lets compare biological neural networks with electrical model.

- The neurons are connected by weighted links passing signals from one neuron to another.
- Each neuron receives a number of input signals through its connections; however, it never produces more than a single output signal.

- Object Recognition images
- Biometric Recognition
- Web search
- Wind power prediction
- Speech Recognition
- Self-driving cars
- Language Translation

- Remember our house price example (Lab):
 - 100 house features, predict odds of a house being sold in the next 6 months
 - Here, if you included all the quadratic terms (second order)
 - There are lots of them $(x_1^2, x_1x_2, x_1x_4, ..., x_1x_{100})$
 - For the case of n = 100, you have about 5000 features
 - Number of features grows O(n²)
 - This would be computationally expensive to work with as a feature set

- A way around this to only include a subset of features
 - However, if you don't have enough features, often a model won't let you fit a complex dataset
- If you include the cubic terms
 - \circ e.g. $(x_1^2x_2, x_1x_2x_3, x_1x_4x_{23})$
 - There are even more features grows O(n³)
 - About 170 000 features for n = 100
- Not a good way to build classifiers when n is large

Example: Problems where n is large - computer vision

- Computer vision sees a matrix of pixel intensity values
 - Look at matrix explain what those numbers represent
- To build a car detector
 - Build a training set of
 - Not cars
 - Cars
 - Then test against a car
- How can we do this
 - Plot two pixels (two pixel locations)
 - Plot car or not car on the graph

Example: Problems where n is large - computer vision

Example: Problems where n is large - computer vision

- Need a non-linear hypothesis to separate the classes
- Feature space
 - \Box If we used 50 x 50 pixels --> 2500 pixels, so n = 2500
 - If RGB then 7500
 - If 100 x 100 RB then --> 50 000 000 features
- So simple logistic regression here is not appropriate for large complex systems
- Neural networks are much better for a complex nonlinear hypothesis even when feature space is huge

Artificial Neural Network

ANNs: Activation Functions

- Many activation functions have been proposed, but only a few have found practical applications.
- Four common choices the step, sign, sigmoid and linear.
- The step and sign activation functions, also called hard limit functions.
- Linear and sigmoid activation functions are soft limit functions.
- The functions are often used in decision-making neurons for classification and pattern recognition tasks.

ANNs: Activation Functions

Activation functions of a neuron

 Example: Use find y (output) for x=5 (input) and use four activation functions

$$y = +1$$
 (Step function)

$$y = +1$$
 (Sign function)

$$y = 1/1 + e^{-5} = 0.9933$$
 (Sigmoid function)

$$y = 5$$
 (Linear function)

ANNs- representation of a neuron with the Sigmoid Activation Function

And Function

- Can we get a one-unit neural network to compute this logical AND function? (probably...)
 - Add a bias unit
 - Add some weights for the networks
 - What are weights?
 - \Box Weights are the parameter values which multiply into the input nodes (i.e. θ)

- Sometimes it's convenient to add the weights into the diagram
 - These values are in fact just the θ parameters so
 - $\theta_{10}^{1} = -30$
 - $\theta_{11}^{1} = 20$
 - $\theta_{12}^{1} = 20$

 So, as we can see, when we evaluate each of the four possible input, only (1,1) gives a positive output

x_1	x_2	$h_{\Theta}(x)$
0	0	q (-30) % O
0	1	9(-10) 20
1	0	3(-10) %0
1	1	9(10) 21
ho	× % ×,	

Sigmoid function (reminder)

NOT Function

This is achieved by putting a large negative weight in front of the variable you want to be negative

- XNOR Function:
- So how do we make the XNOR function work?
 - XNOR is short for NOT XOR
 - So we want to structure this so the input which produce a positive output are:
 - AND (i.e. both true) or Neither
- So we combine these into a neural network as shown below:

- It is the simplest form of a neural network.
- It consists of a single neuron with adjustable synaptic weights and a hard limiter.
- A neuron receives several signals from its input links, computes a new activation level and sends it as an output signal through the output links.
- The input signal can be raw data or outputs of other neurons.
- The output signal can be either a final solution to the problem or an input to other neurons

Diagram of a neuron

Linearly Separable

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

Not Linearly Separable

- How does a perceptron learn its classification tasks?
- By updating weights
- By reducing the difference between the actual and desired outputs of the perceptron.
- Iteration based

.

- If at iteration p,
 - the actual output is Y(p) and the desired output is $Y_d(p)$, then the error is given by

$$e(p) = Y_d(p) - Y(p)$$
 for $p = 1, 2, 3 ...$

- If the error, e(p), is positive,
 - \Box we need to increase perceptron output Y(p),
- but if it is negative,
 - \square we need to decrease Y(p).

- Each perceptron input contributes $x_i(p) \times w_i(p)$ to the total input X(p),
- if input value $x_i(p)$ is positive, an increase in its weight $w_i(p)$ tends to increase perceptron output Y(p),
- whereas if $x_i(p)$ is negative, an increase in $w_i(p)$ tends to decrease Y(p).
- Thus, the following perceptron learning rule can be established:

$$w_i(p+1) = w_i(p) + \alpha \times x_i(p) \times e(p),$$

where α is the learning rate.

Step 1: Initialisation

Set initial weights $w_1, w_2, ..., w_n$ and threshold θ to random numbers in the range [-0.5, 0.5].

Step 2: Activation

Activate the perceptron by applying inputs $x_1(p), x_2(p), \dots, x_n(p)$ and desired output $Y_d(p)$. Calculate the actual output at iteration p = 1

$$Y(p) = step \left[\sum_{i=1}^{n} x_i(p) w_i(p) - \theta \right],$$

where n is the number of the perceptron inputs, and step is a step activation function.

Step 3: Weight training

Update the weights of the perceptron

$$w_i(p+1) = w_i(p) + \Delta w_i(p),$$

where $\Delta w_i(p)$ is the weight correction at iteration p.

The weight correction is computed by the delta rule:

$$\Delta w_i(p) = \alpha \times x_i(p) \times e(p)$$

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process until convergence.

Training basic logical operations

- The table presents all possible combinations of values for two variables, x_1 and x_2 , and the results of the operations.
- The perceptron must be trained to classify the input patterns

Truth tables for the basic logical operations

Input v	ariables	AND	OR	Exclusive-OR
X 1	<i>X</i> ₂	$x_1 \cap x_2$	$x_1 \cup x_2$	$x_1 \oplus x_2$
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Training basic logical operations

- Let us first consider the operation AND.
- After completing the initialisation step, the perceptron is activated by the sequence of four input patterns representing an epoch.
- The perceptron weights are updated after each activation. This process is repeated until all the weights converge to a uniform set of values.

iiiput v	anabios	7110
<i>x</i> ₁	<i>X</i> ₂	$x_1 \cap x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Example with one perceptron:

Step function

•
$$y = step(0x0.3+0x(-0.1) - 0.2) = step(-0.2) = 0$$

•
$$y = step(0x0.3+1x(-0.1) - 0.2) = step(-0.3) = 0$$

•
$$y = step(1x0.3+0x(-0.1) - 0.2) = step(0.1) = 1$$

•
$$y = step(1x0.3+1x(-0.1) - 0.2) = step(0) = 1$$

These results are not same with the desired results so it is necessary to update the weights using step 3 in the algorithm.

-0.1

Example with one perceptron:

Weight training

Update the weights of the perceptron

$$w_i(p+1) = w_i(p) + \alpha \times x_i(p) \times e(p)$$

Example of perceptron learning: the logical operation AND

	Inp	uts	Desired output		itial ights	Actual output	Error		nal ghts
Epoch	<i>x</i> ₁	<i>x</i> ₂	Yd	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0		
	0	1	0	0.3	-0.1	0	0		
	1	0	0	0.3	-0.1	1	-1		
	1	1	1	0.3	-0.1	1	0		

Example of perceptron learning: the logical operation AND

	Inputs		Inputs		Inputs Desired Initial weights			Actual output	Error	Final weights	
Epoch	<i>x</i> ₁	<i>x</i> ₂	Y _d	W ₁	W ₂	Y	e	W ₁	W ₂		
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1		
	0	1	0	0.3	-0.1	0	0	0.3	-0.1		
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1		
	1	1	1	0.3	-0.1	1	0	0.3	-0.1		

v -0 v -0

$$x_1=0, x_2=0$$

 $w1 = 0.3 + 0.1 \times 0 \times 0 = 0.3$
 $w2 = -0.1 + 0.1 \times 0 \times 0 = -0.1$

$$x_1=0$$
, $x_2=1$
w1 = 0.3 + 0.1 x 0 x 0 = 0.3
w2 = -0.1 + 0.1 x 1 x 0 = -0.1

$$x_1=1$$
, $x_2=0$
w1 = 0.3 + 0.1 x 1 x -1 = 0.2
w2 = -0.1 + 0.1 x 0 x -1 = -0.1

$$x_1$$
=1, x_2 =1
w1 = 0.3 + 0.1 x 1 x 0 = 0.3
w2 = -0.1 + 0.1 x 1 x 0 = -0.1

$$y = step(0x0.2+0x (-0.1) - 0.2) = step(-0.2) = 0$$

 $y = step(0x0.2+1x (-0.1) - 0.2) = step(-0.3) = 0$
 $y = step(1x0.2+0x (-0.1) - 0.2) = step(0) = 1$
 $y = step(1x0.2+1x (-0.1) - 0.2) = step(-0.1) = 0$

Example of perceptron learning: the logical operation AND

	Inputs		Desired output		itial ights	Actual output	Error		nal ghts
Epoch	<i>x</i> ₁	<i>X</i> ₂	Y _d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0		
	0	1	0	0.2	-0.1	0	0		
	1	0	0	0.2	-0.1	1	-1		
	1	1	1	0.2	-0.1	0	1		

Example with one perceptron:

$x_1=0, x_2=0$

$$w1 = 0.2 + 0.1 \times 0 \times 0 = 0.2$$

$$w2 = -0.1 + 0.1 \times 0 \times 0 = -0.1$$

$$x_1=0, x_2=1$$

$$w1 = 0.2 + 0.1 \times 0 \times 0 = 0.2$$

$$w2 = -0.1 + 0.1 \times 1 \times 0 = -0.1$$

$$x_1=1, x_2=0$$

$$w1 = 0.2 + 0.1 \times 1 \times -1 = 0.1$$

$$w2 = -0.1 + 0.1 \times 0 \times -1 = -0.1$$

$$x_1=1, x_2=1$$

$$w1 = 0.2 + 0.1 \times 1 \times 1 = 0.3$$

$$w2 = -0.1 + 0.1 \times 1 \times 1 = 0$$

Weight training

Update the weights of the perceptron

$$w_i(p+1) = w_i(p) + \alpha \times x_i(p) \times e(p)$$

Example of perceptron learning: the logical operation AND

	Inputs		Desired output		itial ights	Actual	Error		nal ghts
Epoch	<i>x</i> ₁	<i>X</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0		
	0	1	0	0.2	-0.1	0	0		
	1	0	0	0.2	-0.1	1	-1		
	1	1	1	0.2	-0.1	0	1		

Example of perceptron learning: the logical operation AND

Inp		uts	Desired output		itial ights	Actual output	Error		nal ghts
Epoch	<i>x</i> ₁	<i>x</i> ₂	Y _d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0	0.2	-0.1
	0	1	0	0.2	-0.1	0	0	0.2	-0.1
	1	0	0	0.2	-0.1	1	-1	0.1	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.

$$y = step(0x0.3+0x(0) - 0.2) = step(-0.2) = 0$$

$$y = step(0x0.3+1x(0) - 0.2) = step(-0.2) = 0$$

$$y = step(1x0.3+0x(0) - 0.2) = step(0.1) = 1$$

$$y = step(1x0.3+1x(0) - 0.2) = step(0.1)=1$$

Example of perceptron learning: the logical operation AND

	Inputs		output		Initial weights		Error	Final weights	
Epoch	X ₁	<i>x</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0	0.2	-0.1
	0	1	0	0.2	-0.1	0	0	0.2	-0.1
	1	0	0	0.2	-0.1	1	-1	0.1	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	Ο.
3	0	0	0	0.3	0.	0	0		
	0	1	0	0.3	0.	0	0		
	1	0	0	0.3	0.	1	-1		
	1	1	1	0.3	Ο.	1	0		

Step function

$$Y^{\text{step}} = \begin{cases} 1, & \text{if } X \ge 0 \\ 0, & \text{if } X < 0 \end{cases}$$

Example with one perceptron:

Weight training

Update the weights of the perceptron

$$w_i(p+1) = w_i(p) + \alpha \times x_i(p) \times e(p)$$

Example of perceptron learning: the logical operation AND

	Inputs		nputs Desired output		Initial weights		Error	Final weights	
Epoch	<i>x</i> ₁	<i>x</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0	0.2	-0.1
	0	1	0	0.2	-0.1	0	0	0.2	-0.1
	1	0	0	0.2	-0.1	1	-1	0.1	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	Ο.
3	0	0	0	0.3	0.	0	0		
	0	1	0	0.3	Ο.	0	0		
	1	0	0	0.3	0.	1	-1		
	1	1	1	0.3	Ο.	1	0		

Example of perceptron learning: the logical operation AND

	Inp	uts	Desired output		itial ights	Actual	Error		nal ights
Epoch	<i>x</i> ₁	<i>X</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0	0.2	-0.1
	0	1	0	0.2	-0.1	0	0	0.2	-0.1
	1	0	0	0.2	-0.1	1	-1	0.1	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.
3	0	0	0	0.3	0.	0	0	0.3	Ο.
	0	1	0	0.3	0.	0	0	0.3	Ο.
	1	0	0	0.3	Ο.	1	-1	0.2	0.
	1	1	1	0.3	Ο.	1	0	0.3	0.

$x_1=0, x_2=0$

$$w1 = 0.3 + 0.1 \times 0 \times 0 = 0.3$$

$$w2 = 0 + 0.1 \times 0 \times 0 = 0$$

$$x_1=0, x_2=1$$

$$w1 = 0.3 + 0.1 \times 0 \times 0 = 0.3$$

$$w2 = 0 + 0.1 \times 1 \times 0 = 0$$

$$x_1=1, x_2=0$$

$$w1 = 0.3 + 0.1 \times 1 \times -1 = 0.2$$

$$w2 = 0 + 0.1 \times 0 \times -1 = 0$$

$$x_1=1, x_2=1$$

$$w1 = 0.3 + 0.1 \times 1 \times 0 = 0.3$$

$$w2 = 0 + 0.1 \times 1 \times 0 = 0$$

Example with one perceptron:

Example of perceptron learning: the logical operation AND

	Inp	uts	Desired output		itial ights	Actual output	Error		nal ights
Epoch	<i>x</i> ₁	<i>x</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.3	-0.1	1	0	0.3	-0.1
2	0	0	0	0.2	-0.1	0	0	0.2	-0.1
	0	1	0	0.2	-0.1	0	0	0.2	-0.1
	1	0	0	0.2	-0.1	1	-1	0.1	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.
3	0	0	0	0.3	Ο.	0	0	0.3	Ο.
	0	1	0	0.3	Ο.	0	0	0.3	Ο.
	1	0	0	0.3	Ο.	1	-1	0.2	Ο.
	1	1	1	0.3	Ο.	1	0	0.3	Ο.
4	0	0	0	0.2	Ο.	0	0	0.2	0.
+	0	1	0	0.2	Ο.	0	0	0.2	Ο.
	1	0	0	0.2	Ο.	1	-1	0.1	Ο.
	1	1	1	0.2	0.	1	0	0.2	0.
5	0	0	0	0.1	Ο.	0	0	0.1	O
,	0	1	0	0.1	Ο.	0	0	0.1	Ο.
	1	0	0	0.1	Ο.	0	0	0.1	Ο.
	1	1	1	0.1	0.	Ο.	1	0.2	0.1
6	0	0	0	0.2	0.1	0	0	0.2	0.1
•	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.2	0.1	1	0	0.2	0.1
7	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0.	Ο.	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Example

- In a similar manner, the perceptron can learn the operation OR.
- However, a single-layer perceptron cannot be trained to perform the operation Exclusive-OR.

Multilayer Neural Networks

- A multilayer perceptron is a feedforward neural network with one or more hidden layers.
- Typically, the network consists of an input layer of source neurons, at least one middle or hidden layer of computational neurons, and an output layer of computational neurons.
- The input signals are propagated in a forward direction on a layer-by-layer basis.
- A multilayer perceptron with two hidden layers is shown in next slide.

Multilayer Neural Networks

- Each layer in a multilayer neural network has its own specific function.
- The input layer accepts input signals from the outside world and redistributes these signals to all neurons in the hidden layer.
- Actually, the input layer rarely includes computing neurons, and thus does not process input patterns.
- The output layer accepts output signals, or in other words a stimulus pattern, from the hidden layer and establishes the output pattern of the entire network.

Multilayer Neural Networks

- Neurons in the hidden layer detect the features; the weights of the neurons represent the features hidden in the input patterns.
- These features are then used by the output layer in determining the output pattern.

Hidden Layer

- Why is a middle layer in a multilayer network called a 'hidden' layer? What does this layer hide?
 - A hidden layer 'hides' its desired output.
 - Neurons in the hidden layer cannot be observed through the input/output behaviour of the network.
 - There is no obvious way to know what the desired output of the hidden layer should be.

Feedforward Neural Networks

- A feedforward neural network is an artificial neural network wherein connections between the units do not form a cycle.
- Data enters at the inputs and passes through the network, layer by layer, until it arrives at the outputs.
- During normal operation, that is when it acts as a classifier, there is no feedback between layers.
- This is why they are called feedforward neural networks.

