Each problem worths two points:

Consider the cryptosystem in which $\mathcal{P} = \{a, b, c\}$, $\mathcal{K} = \{k_1, k_2, k_3\}$, and $\mathcal{C} = \{1, 2, 3, 4\}$ with p[a] = 1/2, p[b] = 1/3, p[c] = 1/6 and the keys are chosen equiprobably, that is, $p[k_1] = p[k_2] = p[k_3] = 1/3$. The encryption matrix is given as follows:

	а	b	С
k_1	1	2	3
k_2	2	3	4
k ₃	3	4	1

- 1. Find *p*[1]
- 2. Find *p*[2]
- 3. Find *p*[3]
- 4. Find *p*[4]
- 5. Find the conditional probability p[3|b].
- 6. By using Bayes' theorem or directly, find the conditional probability p[b|3].
- 7. Find the joint probability p[b, 3]
- 8. By using the formula $H(X) = -\sum p[x] \log_2 p[x]$, compute H(P)
- 9. Compute H(K)
- 10. Compute H(C)