Regresión Avanzada Proyecto Final

Alejandra Lelo de Larrea Ibarra 00012433 Laura López Santibañez Jácome 000144088 Dante Ruiz Martínez 000183340

10 de diciembre del 2018

Resumen

Agregar un resumen al final.

Índice

1.	Introducción								
	1.1. Problema								
	1.2. Objetivo								
	1.3. Hipótesis								
2.	Datos								
	2.1. Descripción de los datos								
	2.2. Análisis exploratorio de los datos								
3.	MRLMN								
4.	GLM Estático								
5.	GLM Dinámico								
6.	GLM Dinámico con intercepto estático								
7.	GLM Dinámico con suavizamiento								
8.	GLM Dinámico con Intercepto Estático y Suavizamiento								

1. Introducción

- 1.1. Problema
- 1.2. Objetivo
- 1.3. Hipótesis

2. Datos

2.1. Descripción de los datos

Tabla 1: Resumen de los Datos

Código	Variable	Unidades	Fuente	Ticker
WTI	West Texas Intermediate	Dólares por barril	Bloomberg	CL1 Comdty
JPM Dollar Index	JPM Dollar Index	Unidades	Bloomberg	FXJPEMCI Index
VIX	Chicago Board Options Exchange	Unidades	Bloomberg	VIX Index
	SPX Volatility Index			
Prod. OPEP	Producción Total de Petróleo de la	Millones de barriles	Bloomberg	OPCRTOTL Index
	OPEP	por día		
Dem. OPEP	Demanda Total de Petróleo de la	Millones de barriles	Bloomberg	OPCBRTOT Index
	OPEP	por dia		
TBILL-10YR	Tasa de Largo Plazo de Estados Uni-	Porciento	FRED	DGS10
	_dos			
TBILL-1YR	Tasa de Corto Plazo de Estados Uni-	Porciento	FRED	$\overline{\mathrm{DGS1}}$
	dos			

Se tienen observaciones mensuales del West Texas Intermediate (WTI), del JPM Dollar Index, del Chicago Board Options Exchange SPX Volatility Index, de la producción y demanda de petróleo por parte de la OPEP, así como las tasas de corto y largo plazo en Estados Unidos. La tabla 1 resume las fuentes de información de los datos a utilizar en este trabajo. La muestra contiene 225 observaciones que corresponden al periodo de enero del 2000 a septiembre del 2018. Para estimar los modelos se utiliza el periodo comprendido entre enero del 2000 y junio del 2018; mientras que el horizonte de pronóstico va de julio del 2018 a septiembre del 2018. La siguiente sección muestra una análisis exploratorio de los datos.

2.2. Análisis exploratorio de los datos

Serie de Tiempo del precio del West Texas Intermediate

Serie de Tiempo del precio del West Texas Intermediate

Tabla 2: Matriz de correlaciones de las variables de estudio

	WTI	JPM Dollar Ind.	VIX	Prod. OPEP	Dem. OPEP	TBILL-10YR	TBILL-1YR
WTI	1.00	0.38	-0.14	0.46	0.44	-0.42	-0.35
JPM Dollar Ind.	0.38	1.00	0.19	-0.34	-0.56	0.50	0.34
VIX	-0.14	0.19	1.00	-0.34	-0.37	0.16	-0.04
Prod. OPEP	0.46	-0.34	-0.34	1.00	0.82	-0.62	-0.23
Dem. OPEP	0.44	-0.56	-0.37	0.82	1.00	-0.84	-0.56
TBILL-10YR	-0.42	0.50	0.16	-0.62	-0.84	1.00	0.84
TBILL-1YR	-0.35	0.34	-0.04	-0.23	-0.56	0.84	1.00

Tabla 3: Estadísticas Descriptivas de las Variables de Estudio

	WTI	JPM Dollar Ind.	VIX	Prod. OPEP	Dem. OPEP	TBILL-10YR	TBILL-1YR
Mediana	60.57	92.05	17.47	29.95	86.20	3.56	1.24
Media	62.69	89.76	19.67	29.87	87.41	3.51	1.86
Moda	101.58	107.07	13.29	28.08	84.70	2.30	0.12
Varianza	726.88	163.02	64.80	4.38	52.46	1.53	3.40
Desv.Est.	26.96	12.77	8.05	2.09	7.24	1.24	1.84
Coef. Var.	0.43	0.14	0.41	0.07	0.08	0.35	0.99
Min	19.44	60.91	9.51	24.10	73.80	1.50	0.10
Max	140.00	112.43	59.89	34.14	101.30	6.66	6.33
Rango	120.56	51.52	50.38	10.04	27.50	5.16	6.23

3. MRLMN

PENDIENTE....

4. GLM Estático

Tabla 4: Coeficientes Estimados para el Modelo Estático

	Media	Mediana	Moda	2.5%	97.5%	Prob.
Intercepto	-183.08	-183.36	-199.75	-230.61	-133.62	0.00
JPM Dollar Ind.	1.84	1.84	1.76	1.67	2.00	0.00
VIX Ind	-0.29	-0.29	-0.07	-0.52	-0.06	0.01
Prod. OPEP	0.52	0.53	1.98	-1.15	2.18	0.27
Dem. OPEP	1.26	1.26	0.97	0.64	1.86	0.00
T-Bill 10YR	-10.75	-10.74	-10.43	-14.74	-6.92	0.00
T-Bill 1YR	-0.83	-0.84	-1.00	-2.90	1.29	0.22

[1] "DIC=1807.16039384582"

Regresores vs WTI: Modelo Estático Ajuste y Predicción: Modelo Estático

5. GLM Dinámico

- ## [1] 21501.05
- ## [[1]]
- ## [[1]]\$rect
- ## [[1]]\$rect\$w
- ## [1] 60.48327
- ##
- ## [[1]]\$rect\$h
- ## [1] 0.5505142
- ##
- ## [[1]]\$rect\$left
- ## [1] 170.3567
- ##
- ## [[1]]\$rect\$top

Figura 1: Regresores vs WTI: Modelo Dinámico

Figura 2: Ajuste y Predicción: Modelo Dinámico

Figura 3: Coeficientes Estimados: Modelo Dinámico

```
## [1] 1.325706
##
##
## [[1]]$text
## [[1]]$text$x
## [1] 188.5977 188.5977
## [[1]]$text$y
## [1] 1.1422008 0.9586961
##
##
##
## [[2]]
## [[2]]$rect
## [[2]]$rect$w
## [1] 60.48327
##
## [[2]]$rect$h
## [1] 0.7279053
## [[2]]$rect$left
## [1] 170.3567
##
## [[2]]$rect$top
## [1] 1.282303
##
## [[2]]$text
## [[2]]$text$x
## [1] 188.5977 188.5977
## [[2]]$text$y
## [1] 1.0396680 0.7970329
##
##
##
## [[3]]
## [[3]]$rect
## [[3]]$rect$w
## [1] 60.48327
## [[3]]$rect$h
## [1] 1.308685
##
## [[3]]$rect$left
## [1] 170.3567
## [[3]]$rect$top
## [1] 3.124749
##
##
## [[3]]$text
## [[3]]$text$x
## [1] 188.5977 188.5977
```

```
##
## [[3]]$text$y
## [1] 2.688520 2.252292
##
##
## [[4]]
## [[4]]$rect
## [[4]]$rect$w
## [1] 60.48327
## [[4]]$rect$h
## [1] 0.6472378
##
## [[4]]$rect$left
## [1] 170.3567
##
## [[4]]$rect$top
## [1] 0.9041587
##
##
## [[4]]$text
## [[4]]$text$x
## [1] 188.5977 188.5977
##
## [[4]]$text$y
## [1] 0.6884128 0.4726668
##
##
## [[5]]
## [[5]]$rect
## [[5]]$rect$w
## [1] 60.48327
## [[5]]$rect$h
## [1] 2.355903
##
## [[5]]$rect$left
## [1] 170.3567
## [[5]]$rect$top
## [1] 4.946386
##
## [[5]]$text
## [[5]]$text$x
## [1] 188.5977 188.5977
## [[5]]$text$y
## [1] 4.161085 3.375784
##
##
##
```


Figura 4: Regresores vs WTI: Modelo Dinámico con Intercepto Estático

```
## [[6]]
## [[6]]$rect
## [[6]]$rect$w
## [1] 60.48327
##
## [[6]]$rect$h
   [1] 6.121526
##
##
## [[6]]$rect$left
##
   [1] 170.3567
##
## [[6]]$rect$top
## [1] 12.37491
##
##
## [[6]]$text
## [[6]]$text$x
   [1] 188.5977 188.5977
##
## [[6]]$text$y
## [1] 10.334403 8.293895
```

6. GLM Dinámico con intercepto estático

```
## [1] "DIC=19833.7722540483"
```


Figura 5: Ajuste y Predicción: Modelo Dinámico

Figura 6: Coeficientes Estimados: Modelo Dinámico con Intercepto Estático

Figura 7: Regresores vs WTI: Modelo Dinámico con Suavizamiento

7. GLM Dinámico con suavizamiento

```
## [1] 26799.46
## [[1]]
## [[1]]$rect
## [[1]]$rect$w
## [1] 60.48327
##
## [[1]]$rect$h
   [1] 0.249953
##
## [[1]]$rect$left
## [1] 170.3567
##
## [[1]]$rect$top
  [1] 0.7856705
##
##
##
## [[1]]$text
## [[1]]$text$x
## [1] 188.5977 188.5977
##
## [[1]]$text$y
   [1] 0.7023529 0.6190352
##
##
##
## [[2]]
## [[2]]$rect
## [[2]]$rect$w
```


Figura 8: Ajuste y Predicción: Modelo Dinámico con Suavizamiento

Figura 9: Coeficientes Estimados: Modelo Dinámico con Suavizamiento

```
## [1] 60.48327
##
## [[2]]$rect$h
## [1] 0.2083303
## [[2]]$rect$left
## [1] 170.3567
## [[2]]$rect$top
## [1] 0.2765159
## [[2]]$text
## [[2]]$text$x
## [1] 188.5977 188.5977
##
## [[2]]$text$y
## [1] 0.2070725 0.1376291
##
##
##
## [[3]]
## [[3]]$rect
## [[3]]$rect$w
## [1] 60.48327
## [[3]]$rect$h
## [1] 0.1432355
## [[3]]$rect$left
## [1] 170.3567
##
## [[3]]$rect$top
## [1] 0.3949701
##
##
## [[3]]$text
## [[3]]$text$x
## [1] 188.5977 188.5977
##
## [[3]]$text$y
## [1] 0.3472249 0.2994798
##
##
## [[4]]
## [[4]]$rect
## [[4]]$rect$w
## [1] 60.48327
## [[4]]$rect$h
## [1] 0.185284
##
## [[4]]$rect$left
```

```
## [1] 170.3567
##
## [[4]]$rect$top
## [1] 0.4648223
##
## [[4]]$text
## [[4]]$text$x
## [1] 188.5977 188.5977
## [[4]]$text$y
## [1] 0.4030609 0.3412996
##
##
## [[5]]
## [[5]]$rect
## [[5]]$rect$w
## [1] 60.48327
## [[5]]$rect$h
## [1] 0.1246149
##
## [[5]]$rect$left
## [1] 170.3567
## [[5]]$rect$top
## [1] 0.2525852
##
##
## [[5]]$text
## [[5]]$text$x
## [1] 188.5977 188.5977
## [[5]]$text$y
## [1] 0.2110469 0.1695086
##
##
##
## [[6]]
## [[6]]$rect
## [[6]]$rect$w
## [1] 60.48327
##
## [[6]]$rect$h
## [1] 0.1472238
## [[6]]$rect$left
## [1] 170.3567
## [[6]]$rect$top
## [1] 0.2617059
##
##
```


Figura 10: Regresores vs WTI: Modelo Dinámico con Intercepto Estático y Suavizamiento

```
## [[6]]$text
## [[6]]$text$x
## [1] 188.5977 188.5977
##
## [[6]]$text$y
## [1] 0.2126313 0.1635567
```

8. GLM Dinámico con Intercepto Estático y Suavizamiento

```
## [1] 19833.77
## [[1]]
  [[1]]$rect
## [[1]]$rect$w
##
  [1] 60.48327
## [[1]]$rect$h
## [1] 0.5505142
##
## [[1]]$rect$left
   [1] 170.3567
##
   [[1]]$rect$top
##
   [1] 1.325706
##
##
##
  [[1]]$text
   [[1]]$text$x
   [1] 188.5977 188.5977
##
##
```


Figura 11: Ajuste y Predicción: Modelo Dinámico con Intercepto Estático y Suavizamiento

Figura 12: Coeficientes Estimados: Modelo Dinámico con Intercepto Estático y Suavizamiento

```
## [[1]]$text$y
## [1] 1.1422008 0.9586961
##
##
##
## [[2]]
## [[2]]$rect
## [[2]]$rect$w
## [1] 60.48327
##
## [[2]]$rect$h
## [1] 0.7279053
## [[2]]$rect$left
## [1] 170.3567
##
## [[2]]$rect$top
## [1] 1.282303
##
##
## [[2]]$text
## [[2]]$text$x
## [1] 188.5977 188.5977
## [[2]]$text$y
## [1] 1.0396680 0.7970329
##
##
##
## [[3]]
## [[3]]$rect
## [[3]]$rect$w
## [1] 60.48327
##
## [[3]]$rect$h
## [1] 1.308685
## [[3]]$rect$left
## [1] 170.3567
##
## [[3]]$rect$top
## [1] 3.124749
##
## [[3]]$text
## [[3]]$text$x
## [1] 188.5977 188.5977
##
## [[3]]$text$y
## [1] 2.688520 2.252292
##
##
##
## [[4]]
```

```
## [[4]]$rect
## [[4]]$rect$w
## [1] 60.48327
##
## [[4]]$rect$h
## [1] 0.6472378
## [[4]]$rect$left
## [1] 170.3567
##
## [[4]]$rect$top
## [1] 0.9041587
##
## [[4]]$text
## [[4]]$text$x
## [1] 188.5977 188.5977
## [[4]]$text$y
## [1] 0.6884128 0.4726668
##
##
##
## [[5]]
## [[5]]$rect
## [[5]]$rect$w
## [1] 60.48327
## [[5]]$rect$h
## [1] 2.355903
## [[5]]$rect$left
## [1] 170.3567
## [[5]]$rect$top
## [1] 4.946386
##
##
## [[5]]$text
## [[5]]$text$x
## [1] 188.5977 188.5977
##
## [[5]]$text$y
## [1] 4.161085 3.375784
##
##
## [[6]]
## [[6]]$rect
## [[6]]$rect$w
## [1] 60.48327
##
## [[6]]$rect$h
## [1] 6.121526
```

```
##
## [[6]]$rect$left
## [1] 170.3567
##
## [[6]]$rect$top
## [1] 12.37491
##
##
## [[6]]$text
## [[6]]$text
## [[6]]$text$x
## [1] 188.5977 188.5977
##
## [[6]]$text$y
## [1] 10.334403 8.293895
```