Fonction polynôme de degré 3 1ère STMG

Table des matières

1	Définition et représentation graphique							
	1.1	Définition : Fonction polynôme de degré 3	2					
	1.2	Propriétés: Variations	2					
	1.3	Représentation grapghique	2					
2 Forme factorisée d'une fonction polynôme de degré 3								
	2.1	Définition : Forme factorisée d'une fonction polynôme de degré 3	3					
	2.2	Propriété : Racines d'une fonction polynôme de degré 3	3					
	2.3	Méthode : Étudier le signe d'un polynôme de degré 3	4					
3	•	ation de la forme $x^3=c$	5					
		Propriété : Solution de l'équation $x^3 = c \dots \dots \dots \dots \dots \dots$						
	3.2	Méthode : Résoudre une équation du type $x^3 = c \dots \dots \dots \dots \dots \dots \dots \dots$	5					

1 Définition et représentation graphique

1.1 Définition : Fonction polynôme de degré 3

Les fonctions définies sur \mathbb{R} par $x \mapsto ax^3$ ou $x \mapsto ax^3 + b$ sont des fonctions polynômes de degré 3.

Exemples et contre-exemples

- $f(x) = 4x^3 + 1$ fonctions polynômes de degré 3
- $-g(x) = x^3 2$ fonctions polynômes de degré 3
- $h(x) = 1 + x^2 2x^3$ fonctions polynômes de degré 3
- -m(x) = -x + 4 fonction polynôme de degré 1 (fonction affine).
- $-n(x) = 2x^5 x^3 + 5x 1$ fonction polynôme de degré 5.

Les coefficients a et b sont des réels donnés avec $a \neq 0$.

1.2 Propriétés : Variations

Soit f une fonction polynôme de degré 3, telle que $f(x) = ax^3 + b$.

- Si a est **positif**, f est **croissante**.
- Si a est négatif, f est décroissante.

1.3 Représentation grapghique

Voici les représentation grapphique des fonctions polynôme $x \longmapsto ax^3$ et $x \longmapsto ax^3 + b$ en fonction du signe de a

FIGURE 1 – Répresentation de ax^3 (à gauche) et $ax^3 + b$ (à droite) en fonction du signe de a

2 Forme factorisée d'une fonction polynôme de degré 3

2.1 Définition : Forme factorisée d'une fonction polynôme de degré 3

Les fonctions définies sur \mathbb{R} par

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)$$

sont des fonctions polynômes de degré 3.

Les coefficients a, x_1, x_2 et x_3 sont des réels avec $a \neq 0$.

Exemple

La fonction f définie par f(x) = 5(x-4)(x-1)(x+3) est une **fonction polynôme de degré 3** sous sa forme factorisée.

Si on développe l'expression de f à l'aide d'un logiciel de calcul formel, on obtient bien l'expression d'une fonction polynôme de degré 3:

$$f(x) = 5x^3 - 10x^2 - 55x + 60$$

$$Développer(5(x-4)(x-1)(x+3))$$

$$\rightarrow$$
 5 x³ - 10 x² - 55 x + 60

FIGURE 2 – Développement de f(x) à l'aide d'un logiciel de calcul formel

2.2 Propriété : Racines d'une fonction polynôme de degré 3

Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$.

L'équation f(x) = 0 possède trois solutions (éventuellement égales) : $x = x_1$, $x = x_2$ et $x = x_3$ appelées les racines de la fonction polynôme f.

Exemple

Soit la fonction f définie par f(x) = 5(x-4)(x-1)(x+3).

On a vu, dans l'exemple précédent que : $f(x) = 5x^3 - 10x^2 - 55x + 60$

En partant de l'expression développée, on peut vérifier que 4, 1 et -3 sont des racines du polynôme f.

$$f(4) = (5 \times 4^{3}) - (10 \times 4^{2}) - (55 \times 4) + 60$$

$$= 320 - 160 - 220 + 60$$

$$= 0$$

$$f(1) = (5 \times 1^{3}) - (10 \times 1^{2}) - (55 \times 1) + 60$$

$$= 5 - 10 - 55 + 60$$

$$= 0$$

$$f(-3) = (5 \times (-3)^{3}) - (10 \times (-3)^{2}) - (55 \times (-3)) + 60$$

$$= -135 - 90 + 165 + 60$$

$$= 0$$

4, 1 et -3, solutions de l'équation f(x) = 0, sont donc des **racines** de f.

2.3 Méthode : Étudier le signe d'un polynôme de degré 3

Étudier le signe de la fonction polynôme f définie sur $\mathbb R$ par :

$$f(x) = 2(x+1)(x-2)(x-5)$$

2 étant un nombre positif, le signe de 2(x+1)(x-2)(x-5) dépend du signe de chaque facteur : (x+1), (x-2) et (x-5).

On étudie ainsi le signe de chaque facteur et on présente les résultats dans un tableau de signes.

$$x+1>0$$

$$\Leftrightarrow x>-1$$

$$x - 2 > 0$$
$$\Leftrightarrow x > 2$$

$$x - 5 > 0$$

$$\Leftrightarrow x > 5$$

En appliquant la règle des signes dans le tableau, on peut en déduire le signe du produit f(x)2(x+1)(x-2)(x-5).

x	$-\infty$		-1		2		5	$+\infty$
2					+			
(x+1)		_	0			+		
(x-2)			_		0		+	
(x-5)				_			0	+
f(x)		_	0	+	0	_	0	+

On en déduit que :

- $\begin{array}{ll} -- & f(x) \geq 0 \text{ pour } x \in [-1\ ; 2] \cup [5\ ; \ +\infty[\\ -- & f(x) \leq 0 \text{ pour } x \in]-\infty\ ; \ -1] \cup [2\ ; 5]. \end{array}$

La représentation de la fonction f à l'aide d'un logiciel permet de confirmer les résultats établis précédemment.

FIGURE 3 – Répresentation graphique de 2(x+1)(x-2)(x-5)

3 Équation de la forme $x^3 = c$

3.1 Propriété : Solution de l'équation $x^3=c$

L'équation $x^3 = c$, avec c positif, possède une unique solution $\sqrt[3]{c}$.

Cette solution peut également se noter $c^{\left(\frac{1}{3}\right)}$.

3.2 Méthode : Résoudre une équation du type $x^3 = c$

Résoudre dans $\mathbb R$ les équations :

a)
$$x^3 = 27$$

b)
$$2x^3 - 6 = 16$$

(a) On cherche le nombre qui, élevé au cube, donne 27.

Ce nombre est égal à la racine cubique de 27, soit : $x=\sqrt[3]{27}=3$.

(b)
$$2x^3 - 6 = 16$$

$$2x^3 - 6 = 16$$

$$2x^3 = 22$$

$$x^3 = 11$$

L'équation admet donc une unique solution $x = \sqrt[3]{11} \approx 2,223$.