CENG 222 HOMEWORK 4-5 REPORTS

Mustafa Kağan Yalım 270201090

Outputs:

```
(base) kaganyalim@Kagan-MBP Desktop % MoM estimate for the sample is 0.325 MLE estimate for the sample is 0.3 For N =1:
                                                                /Users/kaganyalim/opt/anaconda3/bin/python /Users/kaganyalim/Desktop/ceng222hw4.py
MoM estimate mean: 2.395487876380141
MLE estimate mean: 4.790975752760282
For N =2:
                                                                   MoM estimate std: 3.2940683308791643
MLE estimate std: 6.588136661758329
MoM estimate mean: 2.4034021516940163 MoM estimate std: 2.9970035557923724
MLE estimate mean: 3.1954609434346026 MLE estimate std: 1.1222191434778566
For N =3:
NoM estimate mean: 2.3857112615533143 MoM estimate std: MLE estimate mean: 2.879694427639117 MLE estimate std:
                                                                                                   1.9503478548721993
MoM estimate mean: 2.391257308192665
MLE estimate mean: 2.74234417464312
                                                                                                   1.69576455276499
                                                                   MoM estimate std:
                                                                   MLE estimate std:
MoM estimate mean: 2.4099237970134197 MoM estimate std: MLE estimate mean: 2.667366412158603 MLE estimate std:
                                                                                                   2.4308796345346955
0.2970916892577741
                                                                                                   1.2929105135616026
MoM estimate mean: 2.4060098560489442 MoM estimate std: MLE estimate mean: 2.5264925832816902 MLE estimate std:
                                                                                                   0.13325418454761043
MoM estimate mean: 2.399164544785514
MLE estimate mean: 2.424288862687439
For N =100:
                                                                  MoM estimate std: 0.5721769463296017
MLE estimate std: 0.024330900029065853
MoM estimate mean: 2.400094821570923 MoM estimate std: 0.42694190812395527 MLE estimate mean: 2.412108027178779 MLE estimate std: 0.012187220530715017 For N =500:
MoM estimate mean: 2.3990905415670767 MoM estimate std: MLE estimate mean: 2.4024083861053565 MLE estimate std:
                                                                                                   0.18060166580432271
                                                                                                   0.002408612622180012
For N =1000:
MoM estimate mean: 2.400092655573474
MLE estimate mean: 2.401209154645006
                                                                   MoM estimate std:
MLE estimate mean:
                                                                   MLE estimate std:
                                                                                                    0.001209696008710337
```

Figures:

Part b figure:

Part c figures:

Mathematical Calculations:

Mod estimot $\hat{E}(x) = \begin{cases} 2 \end{cases}$	10n= x	-20 ²	= 20=		×=0			
MLE estimate					0 = 0	349		
In (f(xi)) =	1	(x;)						
1(0): 5	1292 (292) = 5	1/2)	+25	1 10		E laxi	
= n,0,	693+21.	h 🗇 - 3	$ \frac{1}{2} \ln 2 $	(;				
d L (+)	20 =		(X is	minimu	m ek	ment in ar	700
hurse Tr	ens form	Metho	d:					
F(x)= \$ P(x)= X 2	32 dx=	-0 ²	41	7			
1-02-4	×=	91	F	-'(x):	V1-	-X		