DeCoupledDeepNeuralNetworkForSemiSupervise

Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

NeurIPS 2015

227+ citations

- Decouples classification and Segmentation
- First labels are identified by classification network and then binary segmentation is performed for each of the identified labels.
- Use of Heterogeneous annotations (strong annotations: segmentation masks and weak annotations: object class labels per image)
- Advantages:
 - Reduction in search space for segmentation by exploiting class-speicific activation maps.
- Common challenges in Semantic Segmentation:
 - Pose Variations.
 - · Scale changes.
 - Occlusion
 - Background clutter
- Semi and weakly-supervised approaches update the model of a supervised DNN by iteratively inferring and refining hypothetical segmentation labels.
- These methods rely on ad-hoc procedures and there is no guarantee convergence; implementation
 may be tricky and results may be difficult to reproduce.
- **BRIDGING-LAYERS:**Deliver class-specific information; enable segmentation network to focus on the single label for segmentation (causing a reduction in search space.)

Note:

- Training is performed on each network separately. Classification is trained on image-level annotations and Segmentation is trained on pixel-wise annotations.
- Semi-Supervised learning bridges the gap between fully- and weakly-supervised learning approaches.
- Architecture:

Classification Network:

- Takes an image x as its input, and outputs a normalized score vector $S(\mathbf{x}; \theta_c) \in \mathbf{R}^L$ representing scores of the input x based on trained classification model θ_c for predefined L categories.
- The objective of the Classification Network is:

$$\min_{ heta_{e}} \sum_{i} e_{c}\left(\mathbf{y}_{i}, S\left(\mathbf{x}_{i}; heta_{c}
ight)
ight)$$

- here $\mathbf{y}_i \in \{0,1\}^L$ denotes the ground-truth label vector of the i-th example; e_c represents the error/loss.
- VGG-16 is used for classification
- lacktriangleright The region in x_i corresponding to each label $l\in\mathcal{L}_i$ is predicted by the Segmentation Network.

Segmentation Network:

- ullet Input: class-specific activation map g_i^l of input image x_i , obtained from $\emph{bridging layers}$
- Output: 2 channel class-specific segmentation map $M\left(\mathbf{g}_{i}^{l};\theta_{s}\right)$, θ_{s} is the model parameter for segmentation network. It has foreground channel and background channel represented as: $M_{f}\left(\mathbf{g}_{i}^{l};\theta_{s}\right)$ and $M_{b}\left(\mathbf{g}_{i}^{l};\theta_{s}\right)$ respectively.
- Objective function:

$$\min_{ heta_s} \sum_{i} e_s \left(\mathbf{z}_i^l, M\left(\mathbf{g}_i^l; heta_s
ight)
ight)$$

- It is formulated as per-pixel regression to ground-truth segmentation and minimized the above objective.
- ullet here z_i^l represents the binary ground-truth segmentation mask for category l of the i-th image x_i .
- Deconvolution network is used for segmentation, which uses a sequence of unpooling, deconvolution and rectification.
- Unpooling is implemented by importing the switch variable from every pooling layer in the classification network.
- SWITCH VARIABLE is nothing but the pooling indices of the pooling layer.
- lacktriangle The objective is to minimize the pixel-wise *binary* classification; it infers whether each pixel belongs to the given class l or not.
- lacksquare Normally we try to classify each pixel to one of the L predefined classes.
- By decoupling classification and segmentation we have reduced the number of parameters to be optimized since it is a binary classification for segmenting each class label.
- This decoupling is helpful since we have only 5-10 fully annotated images per class.

o Bridging Layers:

lacksquare To construct the class specific activation map g_i^l for each identified label $l\in\mathcal{L}_i.$

- To encode spatial configuration of objects presented in image, we exploit outputs from and intermediate layer in the classification network.
- Outputs from the last pooling layer pool 5 since the activation patterns of convolution and pooling layers often preserve spatial information effectively.
- ullet Here we will represent the pool5 layer as $f_{spat}.$

Let $f^{(i)}$ be the output of the i-th layer (i=1,2,3..M) in the classification network. The relevance of activations in $f^{(i)}$ with respect to a specific class l is computed by chain rule of partial derivative, which is similar to error back-propagation in optimization, as

$$\mathbf{f}_{\mathrm{cls}}^{l} = rac{\partial S_{l}}{\partial \mathbf{f}^{(k)}} = rac{\partial \mathbf{f}^{(M)}}{\partial \mathbf{f}^{(M-1)}} rac{\partial \mathbf{f}^{(M-1)}}{\partial \mathbf{f}^{(M-2)}} \cdots rac{\partial \mathbf{f}^{(k+1)}}{\partial \mathbf{f}^{(k)}}$$

- lacksquare where f^l_{cls} denotes class-specific saliency map and S_l is the classification score of class l.
- ullet where ${f f}_{{
 m cls}}^l$ denotes class-specific saliency map and S_l is the classification score of class l.
- Intuitively, the above equation means that the values in $\mathbf{f}_{\mathrm{cls}}^l$ depend on how much the activation in $f^{(k)}$ are relevant to class l; this is measured by computing the partial-derivative of class score S_l with respect to the activations in $f^{(k)}$. We back-propagate the class-specific information until pool5 layer.
- lacksquare The class-specific activation map g_i^l is obtained by combining both f_{spat} and f_{cls}^l .
- We first concatenate $\mathbf{f}_{\mathrm{spat}}$ and $\mathbf{f}_{\mathrm{cls}}^l$ in their channel direction, and forward-propagate it through the fully-connected bridging layers, which discover the optimal combination of $\mathbf{f}_{\mathrm{spat}}$ and $\mathbf{f}_{\mathrm{cls}}^l$ using the trained weights.
- lacktriangledown The resultant class-specific activation map g_i^l that contains both spatial and class-specific information is given to segmentation network to produce a class-specific segmentation map.
- lacktriangle The changes in g_i^l depend only on f_{cls}^l since f_{spat} is fixed for all classes in an input image.

aeroplane	image				ţ,		Service .	*	med.		7		X	+	*	mark
	activation	数数	93	84	×	88	ä	Ž.	ij,	Ø	Ø	ä	8		ij,	8
boat	image	-		4		-†	(9)			1	-11	A			-	
	activation	20	ø,	Э,	Ů,	y,	y	Ŋ,	7	Þ.	Đ,	φ.	9	9	Þ.	7
train	image	11 at (2)	1	1			and the	Live	N.		Silver of				4	
	activation	$m_{\tilde{g}}$	100	Ø	Ŋ,	N.	W	Ø	ij.	M	Ø		Ø	Ø	Ø	Ø,

Figure 2: Examples of class-specific activation maps (output of bridging layers). We show the most representative channel for visualization. Despite significant variations in input images, the class-specific activation maps share similar properties.

- The activations from the images in the same class share similar patterns despite substantial appearance variations, which shows that the output of bridging layers capture class-specific informations effectively.
- It also reduces the variations of input distributions for segmentation network, which allows to achieve good generaliation performance in segmentation even with a small number of training examples.

o Inference:

- $\begin{tabular}{l} \blacksquare & \begin{tabular}{l} We compute a class-specific activation map g_i^l for each identified label $l\in L_i$ and obtaion class-specific segmenation maps $\left\{M\left(\mathbf{g}_i^l;\theta_s\right)\right\}_{\forall l\in\mathcal{L}_i}$. } \end{tabular}$
- We also obtain $M\left(\mathbf{g}_{i}^{*};\theta_{s}\right)$, where g_{i}^{*} is the activation map from the bridging layers for all identified labels.
- The final label estimation is given by identifying the label with the maximum score in each pixel out of $\left\{M_f\left(\mathbf{g}_i^l;\theta_s\right)\right\}_{\forall l\in\mathcal{L}_l}$ and $M_b\left(\mathbf{g}_i^*;\theta_s\right)$.

Figure 3: Input image (left) and its segmentation maps (right) of individual classes.

lacktriangle The above image illustrates the output segmentation map of each g_i^l for x_i , where each map identifies high response area given g_i^l successfully.