COMP2022: Formal Languages and Logic

Assignment Project Exam Help

Joseph Godbehere

https://powcoder.com

30th August, 2018

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

Assignment Project Exam Help

This material has been reproduced and communicated to you by or on behit by the University of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be subject of copyright protect under the Act.

Do not remove this notice.

OUTLINE

Assignment Project Exam Help ε -transitions

- https://powcoder.com
- ► Minimal DFA Add WeChat powcoder

 Regular Languages and Closure properties
- Regular Expressions (introduction)

Non deterministic Finite Automata (NFA)

Ignment Project Exam Help

▶ no choice in the computation ⇒ deterministic

https://powcoder.com

NFA

OUTLINE

- ► can have any number of transitions per input from each state
- some seps to the compation print to condition in stice.
 can also have ε-transitions
- - ▶ i.e. transitions which the automaton can follow without scanning any input

Non-determinism

OUTLINE

Assignment Project Exam Help at the same time

- Transitions from a state given an input symbol is to a set of posterior.
- ► The string is accepted if at least one sequence of states leads to a final state
 - Aid if we we not least no accept state after reading all the
- ► Parallel computation

Assignment Project Exam Help der.com The corresponding DFA would be 0.1 powcoder q_1 q_2 q_3

NFA WITH ε -Transitions

Assignment Project Exam Help

- ► httsps:d/poweoder.com

 Remember that ε is the empty string

Add WeChat powcoder

Assignment Project Examina Help

O B C D From B, with a I:

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help

O B C D From B, with \(\varepsilon\)

From B, with \(\varepsilon\)

https://powcoder.com

Add WeChat powcoder

Assignment Project Examina Help

O B C D From B, with \(\epsilon\)

https://powcoder.com

Add WeChat powcoder

Assignment Project Examina Help

O B C D From B, with a I: E lp

https://powcoder.com

Add WeChat powcoder

Assignment Project From A, with a Help

O B C D From B, with \varepsilon: B and C

https://powcoder.com

Add WeChat powcoder

OUTLINE

FORMAL DEFINITION OF NFA

Definition: A non-deterministic finite automaton is a 5-tuple

Assignment Project Exam Help

- $ightharpoonup \Sigma$ is a finite set called the alphabet,
- https://powerouter.com
- q_0 is the start state, and
- ▶ $F \subseteq Q$ is the set of accept states.

*RecaAdd WeChat powcoder

- ▶ if $A = \{a, b, c\}$ then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Transition function for NFA

Assignment Project Exam Help

- I (qua) is a set/of states which is the union of all the states which can be reached roll cooled. Com
 - ► This could be the empty set ∅

Add WeChat powcoder

Note: when following epsilon transitions, you can also remain

Note: when following epsilon transitions, you can also remain in the same state (as if $q \in \delta(q, \varepsilon)$ for all $q \in Q$)

Assignment Project Exam Help

https://p

 $\Sigma = ?$

► The trickle Vie Ch

► The set of accept states is $\{q_4\}$

q_1	$\{q_1,q_2\}$	$\{q_1\}$	Ø
2	100V	V@O	CVC1
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

Some strings where N reaches the accept state: 01,0000001

 $ightharpoonup Q = \{q_1, q_2, q_3, q_4\}$

 $\Sigma = \{0,1\}$

► ThAt righte WieCh

► The set of accept states is $\{q_4\}$

	0	_		
q_1	$\{q_1,q_2\}$	$\{q_1\}$	Ø	
at	1000 V	V@O	CvC1	r
q_3	Ø	$\{q_4\}$	Ø	Г
q_4	$\{q_4\}$	$\{q_4\}$	Ø	

Some strings where N reaches the accept state: 01,0000001

NFA COMPUTATION: PARALLELISM

Several choices that exist can be seen as parallel computation or as a tree of the Several choices that exist can be seen as parallel computation or as

LANGUAGE OF AN NFA

Assignment Project Exam Help

- A string w is accepted by an NFA if at least one sequence of transitions starting from q_0 on input w leads to an accept p_0 input p_0 inpu
- The language recognised by an NFA (i.e. the set of strings it accept it is cave feet for nat powcoder

Examples of NFA (1)

Assignment Project Exam Help

https://powcoder.com

Examples of NFA (2)

Assignment Project Exam Help the substring ab

https://powcoder.com

Examples of NFA (3)

Assignment Project Exam Help L3: Strings over {0,1} with a 1 in the third last position

https://powcoder.com

OUTLINE

Assignment Free Automata (NEXam Help ε -transitions

- https://poweoder.com
- ► Minimal DFA Add WeChat powcoder

 Regular Languages and Closure properties
- Regular Expressions (introduction)

EQUIVALENCE OF NFAS AND DFAS

Assignment and the property of the property of

ightharpoonup \implies any DFA is a NFA (NFA more general)

https://powcoder.com

But are there languages that are recognised by some NFA but not by a DFA?

No. If a language is vectorised by a top the week and ways devise a DFA which recognises it.

Theorem: Every NFA has an equivalent DFA

REGULAR LANGUAGES AND FINITE AUTOMATA

A Stage New Melene 56):

Languages accepted by DFAs

Theolent Rapis & School WCO der. Com
The class of regular languages is exactly the same as the class of languages accepted by NFAs

And at least one NFA

Can we transform NFAs into DFAs?

TRANSFORMING A NFA INTO A DFA: INTRO

A Stable of the NFA pair it was a DFA and keep in memory similar to the levels of the decision tree example.)

Each state of the new project of the NFA charges (subset construction)

When we transition from a state X, with a given input symbol i, we must also consider if the M all with M and M before and after reading i

▶ i.e. We transition to the set of states reachable via paths using any number of ε transitions before and/or after i

EPSILON-CLOSURE

The Epsilon-closure of a state q, denoted E(q), is the set of all Assignment Project Examine Help

▶ If $p \in E(q)$ and there is an ε -transition from p to r, then $r \in E(q)$ /powcoder.com

Add WeChat powcoder

Epsilon-Closure

The Epsilon-closure of a state q, denoted E(q), is the set of all Assignment Project Examile Help

▶ If $p \in E(q)$ and there is an ε -transition from p to r,

 $\mathbf{http}^{then}_{\mathbf{S}}, \mathbf{f} \in \mathbb{R}^{(q)}_{\mathbf{powcoder.com}}$

EPSILON-CLOSURE

The Epsilon-closure of a state q, denoted E(q), is the set of all Assignment from q by 0 or q and q by 1 or q by 2 or q by 1 or q by 2 or q by

▶ If $p \in E(q)$ and there is an ε -transition from p to r,

 $\mathsf{http}^{\mathsf{hen}} \overset{r}{\underset{\mathsf{Example}:}{\mathsf{http}}} \overset{E(q)}{\underset{\mathsf{Example}:}{\mathsf{http}}} / \mathsf{powcoder.com}$

Epsilon-Closure

▶ If $p \in E(q)$ and there is an ε -transition from p to r,

 $\mathsf{http}^{\mathsf{hen}} \overset{r}{\overset{\mathsf{E}}{\overset{E}{\mathsf{P}}}} \overset{E(q)}{\overset{\mathsf{P}}{\overset{\mathsf{P}}{\mathsf{P}}}} \mathsf{powcoder.com}$

EPSILON-CLOSURE

▶ If $p \in E(q)$ and there is an ε -transition from p to r,

 $\mathsf{hen} \, r \in E(q) / \mathsf{powcoder.com}$

$$E(A) = \{A\}$$
power

$$E(E) = \{B, C, D, E\}$$

EPSILON-CLOSURE FOR SETS

Assignment Project Exam Help

The Epsilon-closure of a set of states S, denoted E(S), is the union of the property of the contraction $E(S \cup T) = E(S) \cup E(T)$

Add WeChat powcoder

Constructing epsilon-closures

https://powcoder-cor	
$q_1 \mid \emptyset \mid \emptyset \mid \{q_2\}$ $E(\{q_2\}) =$	
	1
$\frac{q_3}{q_4}$ $\frac{A}{\{q_5\}}$ $\frac{d}{\emptyset}$ $\frac{d}{\emptyset$	aer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

$$E(\{q_1, q_3, q_5\}) =$$

Constructing epsilon-closures

	b_t		MAN		• 00100
		JS ./	/ DEU V	vcodei	. =((q .) (p)] 1
q_1	Ø	Ø	$\{q_2\}$	$E(\{q_2\})$	=
q_2	$\{q_3, q_4\}$	Ø	Ø	$E(\lbrace q_3 \rbrace)$	
q_3	A	q_4		1 2 $1^{E}(3q_{0})$	wcoder
q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$	$E_{\mathbf{q}_{5}}$	W COUCI
q_5	Ø	Ø	Ø		

$$E(\{q_1, q_3, q_5\}) =$$

Constructing epsilon-closures

			~~ /	/40 O T		044 0 0 400	
			JS./	/ DOV		er-com	
	q_1	Ø	Ø	$\{q_2\}$	$E(\{$	$\{q_2\}) = \{q_2\}$	
	q_2	$\{q_3, q_4\}$	Ø	Ø		$\{q_3\})=$	
	q_3	Δ	$\neg [q_4]$		a $\mathbf{t}^{E}\mathbf{f}$	wcode1	~
•	q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$	mat_{E}		_
	q_5	Ø	Ø	Ø			

$$E(\{q_1, q_3, q_5\}) =$$

	htt t	DS:/	/DOV	vcoder-com	
$\overline{q_1}$	Ø	Ø	$\{q_2\}$	$E(\lbrace q_2 \rbrace) = \lbrace q_2 \rbrace$	
$\overline{q_2}$	$\{q_3, q_4\}$	Ø	Ø	$E(\{q_3\}) = \{q_2, q_3\}$	
q_3	Ad	q_4		$hat^{\scriptscriptstyle{E}}_{\scriptscriptstyle{E}} p_{\scriptscriptstyle{g}} \hat{p}_{\scriptscriptstyle{g}} \hat{\overline{\mathbf{y}}} \hat{\overline{\mathbf{y}}} \mathbf{code}$ 1	•
q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$		•
$\overline{q_5}$	Ø	Ø	Ø	-	

$$E(\{q_1, q_3, q_5\}) =$$

http://		140 O T		044 0 0 400	
		JS ./	/ DLO V		er-com
$\overline{q_1}$	Ø	Ø	$\{q_2\}$		$\{q_2\}) = \{q_2\}$
$\overline{q_2}$	$\{q_3, q_4\}$	Ø	Ø	$E(\{$	$\{q_3\}$) = $\{q_2, q_3\}$
q_3	Ad	q_4		hat E	o weder
q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$		
$\overline{q_5}$	Ø	Ø	Ø	_	

$$E(\{q_1, q_3, q_5\}) =$$

	http)S:/	/pov	VCOQ	er-com
$\overline{q_1}$	Ø	Ø	$\{q_2\}$		$\{q_2\}) = \{q_2\}$
$\overline{q_2}$	$\{q_3, q_4\}$	Ø	Ø	, ,	$\{q_3\}) = \{q_2, q_3\}$
q_3	Ad	$\neg [q_4]$		าว $\mathbf{t}^{E}\mathbf{t}^{E}$	
q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$	E_{E}	(q_5)
$\overline{q_5}$	Ø	Ø	Ø		

$$E(\{q_1, q_3, q_5\}) =$$

	_b44*		4001	voodon oom
		JS:/	/ DEU V	vcoder-com
$\overline{q_1}$	Ø	Ø	$\{q_2\}$	$E(\{q_2\}) = \{q_2\}$
$\overline{q_2}$	$\{q_3, q_4\}$	Ø	Ø	$E(\{q_3\}) = \{q_2, q_3\}$
$\overline{q_3}$	Ad	q_4		$hat^{\scriptscriptstyle{E}}_{\scriptscriptstyle{E}}(\mathfrak{g})$ $ar{\mathbf{v}}_{\scriptscriptstyle{E}}$
$\overline{q_4}$	$\{q_5\}$	Ø	$\{q_3,q_5\}$	$(\mathbf{I}_{\mathbf{q}_{5}}) \mathbf{v}_{\{q_{5}\}}$
$\overline{q_5}$	Ø	Ø	Ø	

$$E(\{q_1, q_3, q_5\})$$
= $E(\{q_1\}) \cup E(\{q_3\}) \cup E(\{q_5\})$
-

bttma./			~~ /	4000	1000	044 0 0 100	
			JS ./	/ DOV	V C O Q	er-com	
	q_1	Ø	Ø	$\{q_2\}$	` `	$\{q_2\}) = \{q_2\}$	
	q_2	$\{q_3, q_4\}$	Ø	Ø		$(q_3) = \{q_2, q_3\}$	
	q_3	Δ	$\overline{}$ q_4		าว $\mathbf{t}^{E}\mathbf{t}'$		f
	q_4	$\{q_5\}$	Ø	$\{q_3,q_5\}$	\mathbf{Iac}_{E}	(q_5)	١
	q_5	Ø	Ø	Ø			

$$E(\{q_1, q_3, q_5\})$$
= $E(\{q_1\}) \cup E(\{q_3\}) \cup E(\{q_5\})$
= $\{q_1, q_2, q_3, q_5\}$

NFA TO DFA ALGORITHM

- https://powcoder.com
- $ightharpoonup \Sigma$ does not change
- * & Ardd We Chat powcoder
- ▶ $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

NFA TO DFA ALGORITHM

Assign, entry Profession of the Profession of th

Algorithm the state is power of the NFA start state

- 2. If $R \subseteq \mathcal{P}(Q)$ is a DFA state and $a \in \Sigma$ then construct the following DFA state as a DFA table entry in either 2 ways: $A(R, a) = \bigcup_{r \in R} k \delta(r, a) \text{ union of closures}$
- 3. A DFA state is accepting if any of its elements are an NFA accept state.

Transtittps://powcoder.com

E(start) =

Add WeChat powcoder

Translittips://powcoder.com $E(start) = \{q_1, q_2\}$ Add WeChat powcoder

Translittibs://powcoder.com $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\}$ Add WeChat powcoder

Transtittes://powcoder.com $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\}$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\}$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\}$

Translittps://powcoder.com $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$

Translittibs://powcoder.com $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ $A = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$

Transtittes://powcoder.com $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ $A \begin{cases} \{q_2, q_3, q_4, q_5\} \\ \{q_3, q_4, q_5\} \end{cases} \quad \emptyset$ $A \begin{cases} \{q_3, q_4, q_5\} \\ \{q_4, q_3, q_4, q_5\} \\ \{q_4, q_3, q_4, q_5\} \end{cases}$

Transtictubes://powcoder.com

A $E(start) = \{q_1, q_2\} \quad \{q_2, q_3, q_4, q_5\} \quad \emptyset$ B $\{q_2, q_3, q_4, q_5\} \quad \{q_2, q_3, q_4, q_5\} \quad \{q_3, q_3, q_4, q_5\} \quad \{q_3, q_3, q_4, q_5\} \quad \{q_4, q_5, q_3, q_4, q_5\} \quad \{q_5, q_5, q_5, q_5\} \quad \{q_5, q$

Resulting DFA:

OUTLINE

From NFA to DFA: Example

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

 $\begin{array}{c} \stackrel{(q_1) \stackrel{\varepsilon}{\mapsto} (q_2) \stackrel{a}{\mapsto} (q_3) \stackrel{b}{\mapsto} (q_4)}{\text{https://powcoder.com}} \end{array}$

Assignment Project Exam Help

Assignment Project Exam Help

Assignment Project Exam Help

Assignment Project Exam Help

From NFA to DFA: Example

Assignment Project Exam Help

Assignment Project Exam Help

Transition table:

OUTLINE

From NFA to DFA: Example

Assignment Project Exam Help

Assignment Project Exam Help

Assignment Project Exam Help

Assignment Project Exam Help

Assignment Project Exam Help

Transition table:

OUTLINE

OUTLINE

Assignment Free Automata (NEXam Help ε -transitions

- https://powcoder.com
- Minimal DFA Add WeChat powcoder

 Regular Languages and Closure properties
- Regular Expressions (introduction)

MINIMISATION OF DFA (IDEA)

Every DFA has a unique equivalent minimal DFA

SSIGNMENT Project Exam Help

Definition: Two states s and t are equivalent if: for any string, the path from s leads to an accepting state if and only if the path from t does.

https://powcoder.com

To reduce an automaton, find all non-equivalent states:

1. If s is accepting and t non accepting, then they are not except we chat now coder

2. If, with input x, there is a transition from s to s' and from t to to t' and we know that s' and t' are not equivalent, then s and t are not equivalent

Then merge equivalent states.

MINIMISATION OF DFA: TABLE-FILLING ALGORITHM

Assignment by the same find all this s,t that are NOT lp

- $1.1 \ s$ is accepting and t is not or vice versa
- 1.2 with the same input x, s goes to a state s' and t to a state t' and you have already proven that s' and t' are NOT equivalent
- 2. When printed procedured and proven, then the remaining pairs can be merged respectively into one state.

Theorems dd We Chat powcoder

- 1. If two states are not distinguished by the table-filling algorithm, then the states are equivalent
- 2. The equivalence of states is transitive

EXAMPLE

Assignment Project Exam Help

Assignment Project Exam Help

https://powcoder.com

1. Cross out all the pairs of accept/non-accept states. $A,\,E$ are non-accepting and all the others are.

Assignment Project Exam Help

https://powcoder.com

- 1. Cross out all the pairs of accept/non-accept states. A, E are non-accepting and all the others are.
- 2. Add Provide Frat powcoder

ssignment Project Exam Help

1. Cross out all the pairs of accept/non-accept states. A, E are non-accepting and all the others are.

2. Lake each variety bright at powcoder $\delta(A,0)=A$ and $\delta(E,0)=C$, but $A\not\equiv C$, therefore $A\not\equiv E$

1. Cross out all the pairs of accept/non-accept states. A, E are non-accepting and all the others are.

- 2. LAkddol Weightat powcoder
 - $\theta(A,0) = A$ and $\theta(E,0) = C$, but $A \neq C$, therefore $A \neq E$
 - $lackbox{} \delta(B,0)=D \text{ and } \delta(C,0)=E \text{, but } D\not\equiv E \text{, therefore } B\not\equiv C$

ssignment Project Exam Help

1. Cross out all the pairs of accept/non-accept states. A, E are

- non-accepting and all the others are.
 - A characteristic properties and $\delta(E,0)=C$, but $A\not\equiv C$, therefore $A\not\equiv E$
 - $\delta(B,0) = D$ and $\delta(C,0) = E$, but $D \not\equiv E$, therefore $B \not\equiv C$
 - $\delta(D,0) \equiv D$ and $\delta(C,0) \equiv E$, but $D \not\equiv E$, therefore
 - ▶ We can't find a reason to claim $B \not\equiv D$ yet

signment Project Exam Help

https://powcoder.com

- 1. Cross out all the pairs of accept/non-accept states. A, E are non-accepting and all the others are.
- 2. Laker charmaining pair at $0 \le C$, therefore $A \not\equiv E$
 - $\delta(P,0) = P$ and $\delta(P,0) = C$, but $P \neq C$, therefore $P \neq C$
 - $lackbox{} \delta(B,0)=D \text{ and } \delta(C,0)=E \text{, but } D \not\equiv E \text{, therefore } B \not\equiv C$
 - ▶ We can't find a reason to claim $B \not\equiv D$ yet
 - $lackbox{} \delta(C,0)=E \text{ and } \delta(D,0)=B, \text{ and } E\not\equiv B, \text{ therefore } C\not\equiv D$

 B_{\bullet} X Project Exam Help Х EX Х Х Χ

#powcoder.com 1. Cross out all the pairs of accept/non-accept states. A, E are

- non-accepting and all the others are.
- Akatelich Whiaining pair at powcoder $\delta(A,0) = A$ and $\delta(E,0) = C$, but $A \not\equiv C$, therefore $A \not\equiv E$

 - $lackbox{} \delta(B,0)=D$ and $\delta(C,0)=E$, but $D\not\equiv E$, therefore $B\not\equiv C$
 - ightharpoonup We can't find a reason to claim $B \not\equiv D$ yet
 - lacktriangledown $\delta(C,0)=E$ and $\delta(D,0)=B$, and $E\not\equiv B$, therefore $C\not\equiv D$
- 3. Repeat step 2 until no changes are found

MERGING EQUIVALENT STATES

Theorem: If two states are not distinguished by the table-filling

SIGNITUMENT PROPERTY AND HELP

We can merge together equivalent states. The minimal DFA for the example becomes:

RESULTING DFA

Assignment Project Exam Help

- https://powcoder.com
 - Add WeChat powcoder

OUTLINE

Assignment Free Automata (NEXam Help ε -transitions

- https://powcoder.com
- ► Minimal DFA Add WeChat powcoder

 Regular Languages and Closure properties
- Regular Expressions (introduction)

REVISION

A Stangage is regular to and unique exists a single and the later to t

Mini.https://powcoder.com

- $ightharpoonup \emptyset$ is a regular language
- $\begin{array}{l} & \text{ is a regular language hateg power} \\ & \text{ For all } & \text{ } & \text{ } & \text{ } & \text{ } \\ & \text{ } \\ & \text{ } \\ \end{array}$

Think about how to make a DFA for each of these languages

CLOSURE PROPERTIES OF REGULAR LANGUAGES

Assignment Project Exam Help The regular operations are defined as follows:

- ▶ Union: $L_1 \cup L_2 = \{w | w \in L_1 \text{ or } w \in L_2\}$
- ▶ The true of Land Point Poi

Theor Asdd We Chat powcoder

- ► The union of two regular languages is regular
- ► The concatenation of two regular languages is regular
- ► The star closure of a regular language is regular

Union of two regular languages

Union of two regular languages

Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Assignment Project Exam Help

 $ightharpoonup q_0$ is the new start state

OUTLINE

- Transition function δ defined for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$ $\begin{array}{c} \text{Notice of the power of the powe$
- ightharpoonup Accepting set $F = F_1 \cup F_2$

M accepts if and only if M_1 or M_2 does i.e. $L(M) = \{w | w \in L_1 \text{ or } w \in L_2\} = L_1 \cup L_2$

CONCATENATION OF TWO REGULAR LANGUAGES

Assingenment Project Exam Help

we can construct an automaton M which recognises

Note that the accept states of M_1 are not accept states in M

OUTLINE

Concatenation of two regular languages

Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Assignment Project Exam Help

- $ightharpoonup q_1$ is start state (same as M_1)
- $lacktrians {f Trittips:://powcoder.com}^a \in \Sigma_{arepsilon}$

ightharpoonup Accepting set $F = F_2$ (same as M_2)

$$L(M) = \{w_1 w_2 | w_1 \in L_1 \text{ and } w_2 \in L_2\} = L_1 L_2$$

OUTLINE

STAR CLOSURE OF A REGULAR LANGUAGE

If L is regular, then a finite automaton M_1 exists which recognises

Assignment Project Exam Help we can construct an automaton M which recognises

 $L^* = \{w_1 w_2 ... w_k | k \ge 0 \text{ and } w_i \in L \text{ for } i = 1, ..., k\}$: https://powcoder.com

e.g. if $L = \{a, b\}$ then this automaton recognises $\{\varepsilon, a, b, aa, ab, bb, aaa, ...\} = L^*$

STAR CLOSURE OF A REGULAR LANGUAGE

Let
$$M_1=\left(\,Q_1,\Sigma,\delta_1,q_1,F_1
ight)$$

OUTLINE

Assignment Project Exam Help

 $ightharpoonup q_0$ is the new start state

Transition function δ defined for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$ $\begin{array}{c} \text{Nowcoder.com} \\ b_1(q,a) & \text{if } q \in Q_1 \text{ and } q \not \in F_1 \\ \delta_1(q,a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon \\ \end{array}$ $\begin{array}{c} \text{Add} \\ q_1 \end{array}$ if $q = q_0$ and $a \neq \varepsilon$

ightharpoonup Accepting set $F = F_1 \cup \{q_0\}$

$$L(M) = \{w_1 w_2 ... w_k | k \ge 0 \text{ and } w_i \in L \text{ for } i = 1, ..., k\} = L^*$$

EXAMPLE

Assignment Project Exam Help

Construction NFA recognising the pattern aaab or the strings composed of 0 or more sequences of ab

Example from construction to minimal DFA

Assignment Project Exam Help

Let $\Sigma = \{0, 1\}$

Let L_1 be the language of strings which do not contain consecutive

O's https://powcoder.com

Complement of a regular language

As The emplement of a language L is $\{x \mid x \notin L\}$

Example the state of the state

You will explore how to construct a suitable automata in this week's tutorial

Intersection of a regular language

If L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular.

Assignment o Project Exam Help

 $L_1 = \{x | x \in \{a, b\}^* \text{ and } x \text{ contains an odd number of } a's\}$ $L_2 = \begin{cases} x \mid x \in \{a,b\} \end{cases} \text{ and } x \text{ contains an 1dd number of } b \text{ is} \end{cases}$ M_1 a

Cross-product of DFAs

Assign, entropy $P_{\text{where ject Exam Help}}$

- $lackbox{ }Q=Q_1 imes Q_2$ (i.e. all ordered pairs (u,v) such that $u\in Q_1$ and $v\in Q_2$)
- $\begin{array}{l} \mathbf{a} \text{ and } v \in Q_2) \\ \mathbf{hetap Sate} / \mathbf{qp} \mathbf{Q} \text{ WhCodest.Com} \ Q_1 \text{ and} \\ Q_2 \end{array}$
- The transition function δ is defined as: $Add W_{\delta(u,v),x} = \underbrace{at_{(u,v),\delta(u,v)}}_{\delta(u,v),\delta(u,v)} \underbrace{at_{(u,v),\delta(u,v)}}_{\delta(u,v)} \underbrace{at_{(u,v),\delta(u,v$
- lacktriangle Accepting set $F = \{(u, v) | u \in F_1 \text{ and } v \in F_2\}$

Note that M is also deterministic

EXAMPLE CROSS-PRODUCT FOR INTERSECTION

Cross-product can be used for Union

OUTLINE

Assignment Free Automata (NEXam Help ε -transitions

- https://powcoder.com
- ► Minimal DFA Add WeChat powcoder

 Regular Languages and Closure properties
- Regular Expressions (introduction)

REGULAR EXPRESSIONS

Assignment Project Exam Help

 $(5+3) \times 4$ (value is 32)

https://powcoder.com

With regular languages, we use regular operations to build up expressions described languages and apowcoder

 $(0 \mid 1)0^*$ (strings starting with 0 or 1, then any number of 0's) $(ab)^*a$ (any number of ab's, followed by a)

REGULAR EXPRESSIONS VS FINITE AUTOMATA

Assignment description of the strings in a language Help

► RegEx serve as the input language for many systems which

https://powcoder.com

- ► UNIX grep
- Web browsers

- ► Lexical-analyser generators (Lex, Flex, etc.)
- ► Like FA, RegEx define exactly the class of regular languages

DEFINITION OF A REGULAR EXPRESSION (REGEX)

- Basic expressions and the language they describe Assignment between the language L(a) = 1
 - $\blacktriangleright \ \varepsilon \text{ is a RegEx and } L(\varepsilon) = \{\varepsilon\}$
 - ightharpoonup \emptyset is a RegEx and $L(\emptyset) = \mathring{\emptyset}$

https://powcoder.com

Definition of a Regular Expression (RegEx)

- ► Basic expressions and the language they describe Assigning its language L(a) = 1
 - ightharpoonup ε is a RegEx and $L(\varepsilon) = \{\varepsilon\}$
 - \emptyset is a RegEx and $L(\emptyset) = \emptyset$
 - - ▶ Union: $R \mid S$ (sometimes denoted R + S) is a RegEx

Concatenation: RS (sometimes denoted $R \circ S$) is a RegEx Add los We call that powcoder

OUTLINE

Definition of a Regular Expression (RegEx)

► Basic expressions and the language they describe

Assignment by Property Liveram Reffelp

- ightharpoonup ε is a RegEx and $L(\varepsilon) = \{\varepsilon\}$
- $ightharpoonup \emptyset$ is a RegEx and $L(\emptyset) = \emptyset$
- - ▶ Union: $R \mid S$ (sometimes denoted R + S) is a RegEx
 - Concatenation: RS (sometimes denoted $R \circ S$) is a RegEx

- \blacktriangleright Precedence of operators: $\star, \circ, |$ to avoid excessive parentheses
 - ightharpoonup e.g. $R \mid ST^* = (R \mid (S(T^*)))$, similar to how $8 + 21/3^2 = (8 + (21/(3^2)))$
 - ► Use parentheses to change the order of operations

OUTLINE

Language of a Regular Expression

Assignment-Project-Exam Help

https://powecoder.com
$$L(\emptyset) = \{\emptyset\}$$
Add Wechanterpowcoder
$$L(xy) = \{xy\}$$

Operators on RegEx: Union $R \mid S$

Assignment Project Exam Help

https://powcoder.com

Operators on RegEx: Union $R \mid S$

Assignment Project Exam Help

https://powcoder.com

Operators on RegEx: Union $R \mid S$

```
Assignment Project Exam Help L(b \mid a) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a,b\} Help L(b \mid a) = \frac{L(b \mid a)}{\text{https://powcoder.com}}
```

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a, b\} \cup \{b\} = \{a, b\} \cup \{b\} = \{a, b\} \cup \{a\} \cup \{a\}$$

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a, b\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b)$$

$$L(b \mid a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(b)$$

$$L(b \mid a) = L(b) \cup L(b)$$

$$L(b \mid a) = L(b) \cup L(b)$$

$$L(b \mid a) =$$

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a)$$

$$L(b \mid a$$

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a, b\} \cup \{b\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L(a) = L(b) \cup L(a)$$

$$L(b \mid a) = L(a) \cup L(a)$$

$$L(b \mid a) = L(b) \cup L$$

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{c\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{c\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{c\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{a\} \cup \{b\} \cup \{c\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a$$

OUTLINE

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a, b\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = \{a, b, c\}$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{a, b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{a\} \cup \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = \{b\} \cup \{a\} = L(a \mid b)$$

$$L(a \mid b) = L(a) \cup L(a) = L(a) \cup L(a)$$

$$L(a \mid b) = L(a) \cup L(a) = L(a) \cup L(a)$$

$$L(a \mid b) = L(a) \cup$$

OUTLINE

Assignment Project Exam Help
$$L(a \mid b) = L(a) \cup L(b) = \{a, b\} \cup \{b\} = \{a, b\}$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(b \mid a) = L(a \mid b) \cup L(a) = \{a, b\} \cup \{c\}$$

$$= \{a, b, c\}$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{a, b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{a, b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{a, b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$= \{a, b, c\}$$

$$L(a \mid b) = L(a \mid b) \cup L(a) = \{b\} \cup \{a\} = \{a, b\} = L(a \mid b)$$

$$= \{a, b, c\}$$

Because it is associative we can write $L(a \mid b \mid c)$

OPERATORS ON REGEX: CONCATENATION RS

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

```
Assignment Project Exam Help L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(S)\}
L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(b)\} = \{ab\}
```

https://powcoder.com

```
Assignment Project Exam Help L(ab) = \{rs \mid r \in L(B) \text{ and } s \in L(S)\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(b)\} = \{ab\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}
https://powcoder.com
```

```
Assignment Project Exam Help L(ab) = \{rs \mid r \in L(B) \text{ and } s \in L(S)\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(b)\} = \{ab\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}
L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}
```

```
Assignment Project Exam Help L(ab) = \{rs \mid r \in L(B) \text{ and } s \in L(S)\} 
L(ab) = \{rs \mid r \in L(B) \text{ and } s \in L(B)\} = \{ab\} 
L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(a)\} = \{ba\} 
L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(a)\} = \{ba\} 
L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(B)\} = \{ba\} 
L(ba) = \{rs \mid r \in L(B) \text{ and } s \in L(B)\} = \{ba\}
```

Definition:
$$L(RS) = \{rs \mid r \in L(R) \text{ and } s \in L(S)\}$$

$$\text{Assignment Project Exam}_{L(ab)} = \{rs \mid r \in L(s) \text{ and } s \in L(b)\} = \{ab\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$\text{https://power}_{=\{s \mid r \in \{ab\} \text{ and } s \in \{c\}\}}$$

$$= \{abc\}$$

$$\text{Add}^{L(C)} \text{WeChat powcoder}$$

Definition:
$$L(RS) = \{rs \mid r \in L(R) \text{ and } s \in L(S)\}$$

$$\text{Assignment Project Exam}_{L(ab)} = \{rs \mid r \in L(s) \text{ and } s \in L(b)\} = \{ab\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$\text{https://power_left}_{L(ab)} = \{ab\} \text{ and } s \in \{c\}\}$$

$$= \{abc\}$$

$$\text{Althebrity}_{L(ab)} = \{ab\} \text{ and } s \in L(bg)\} \text{ oder}_{L(bg)} = \{ab\} \text{ and } s \in L(bg)\} \text{ oder}_{L(bg)} = \{ab\} \text{ and } s \in L(bg)\} \text{ oder}_{L(bg)} = \{ab\} \text{ and } s \in L(bg)\} \text{ oder}_{L(bg)} = \{ab\} \text{ oder}_{L(bg)}$$

Definition:
$$L(RS) = \{rs \mid r \in L(R) \text{ and } s \in L(S)\}$$

$$\text{Assignment Project Exam} \\ \text{Project Exam} \\ \text{Help}$$

$$L(ab) = \{rs \mid r \in L(s) \text{ and } s \in L(s)\} = \{ab\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$\text{https://powtoder} \\ \text{follows:} \\ \text{follows:} \\ \text{help} \\ \text{$$

OUTLINE

OPERATORS ON REGEX: CONCATENATION RS

Definition:
$$L(RS) = \{rs \mid r \in L(R) \text{ and } s \in L(S)\}$$

$$\text{Assignment Project Exam} \\ \text{Project Exam} \\ L(ab) = \{rs \mid r \in L(s) \text{ and } s \in L(b)\} = \{ab\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$\text{https: } \text{power } \text{p$$

OUTLINE

Assignment Project Exam Help
$$L(ab) = \{rs \mid r \in L(a) \text{ and } s \in L(s)\} = \{ab\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$L(ba) = \{rs \mid r \in L(b) \text{ and } s \in L(a)\} = \{ba\}$$

$$L(ba) = \{rs \mid r \in \{ab\} \text{ and } s \in \{c\}\}$$

$$= \{abc\}$$

$$AL(ba) = \{rs \mid r \in \{a\} \text{ and } s \in \{bc\}\}$$

$$= \{abc\}$$

Because it is associative we can write L(abc)

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

Assignment Project Extan Help $= \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\}\}$

https://powcoder.com

Assignment
$$\{r \text{ProjectonExam} \\ = \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\} \}$$

$$= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\} \}$$

$$\text{https:/powcoder.com}$$

Assignment
$$\{r \text{ProjectorExtain} \\ = \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\} \}$$

$$= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\} \}$$

$$\text{https:/*powcoder.com}$$

Assignment
$$\{r \text{ProjectorExtain} \\ = \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\} \}$$

$$= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\} \}$$

$$\text{https:/*powcoder.com}$$

Assignment $\{r \text{ProjectonExtain} \\ = \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\} \}$ $= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\} \}$ https:/*powcoder.com

```
Assignment \{r \text{ProjectonExtain} \\ = \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\} \}
= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\} \}
\text{https:/*powcoder.com}
```

$$\begin{array}{c|c} \mathbf{A}^L \mathbf{G}^L \mathbf{b}^T & \mathbf{A}^L \mathbf{c}^T \mathbf{c}$$

OUTLINE

Assignment Project Exam Help $= \{rs \mid r \in (\{a\} \cup \{b\}) \text{ and } s \in \{c\}\}\}$ $= \{rs \mid r \in \{a,b\} \text{ and } s \in \{c\}\}\}$ https:/*powcoder.com

$$\begin{array}{l} \textbf{A}^L \textbf{(b)} | \textbf{W} \textbf{(c)} \textbf{(a)} & \textbf{(b)} | \textbf{(b)} \\ = \{rs \mid r \in L(a) \text{ and } s \in L(b)\} \cup L(c) \\ &= \{rs \mid r \in \{a\} \text{ and } s \in \{b\}\} \cup \{c\} \\ &= \{ab\} \cup \{c\} \\ &= \{ab, c\} \end{array}$$

Assignment Project Exam Help

 $\begin{array}{c} \text{https://powcoder.com} \\ L(\emptyset^{\star}) = \{\varepsilon, 01, 0101, 010101, ...\} \\ \text{Add WeChat powcoder} \end{array}$

Assignment Project Exam Help

$$\begin{array}{c} \text{https://poweder.com} \\ L(\emptyset^*) = \{\varepsilon\} \cup L(\emptyset) \cup ... = \{\varepsilon\} \\ \text{Add } {}^bWeChat \ powcoder \end{array}$$

Assignment Leroject Exam Help

Assignment Lerioject Exam Help

$$\begin{array}{c} \text{https://poweoder.com} \\ L((01)^*) = \{\varepsilon, 01, 0101, 010101, ...\} \\ L(\emptyset^*) = \{\varepsilon\} \cup L(\emptyset) \cup ... = \{\varepsilon\} \\ \text{Add blood example by e$$

Assignment Project Exam Help

$$\begin{array}{c} \text{https://poweoder.com} \\ L((01)^{\star}) = \{\varepsilon, 01, 0101, 010101, ...\} \\ L(\emptyset^{\star}) = \{\varepsilon\} \cup L(\emptyset) \cup ... = \{\varepsilon\} \\ \text{Add by expoweder} \\ L(a \mid (bc)^{\star}) = \{a, \varepsilon, bc, bcbc, bebcbc, ...\} \\ L((a \mid b)c^{\star}) = \{a, b, ac, bc, acc, bcc, accc, bccc, ...\} \end{array}$$

Some properties of RegEX

Let R, S, T be regular expressions

Assignment Project Exam Help $R \mid S = S \mid R$ (commutative)

- $R \mid S = S \mid R \text{ (cor)}$ $R \mid \emptyset = \emptyset \mid R = R$
- https://powcoder.com
- ► Concatenation properties:

Add WeChat powcoder

▶ Union and concatenation are distributive when combined:

Some properties of RegEX

Let R, S, T be regular expressions

Assignment Project Exam Help $R \mid S = S \mid R$ (commutative)

 $R \mid S = S \mid R \text{ (cor)}$ $R \mid \emptyset = \emptyset \mid R = R$

https://powcoder.com

► Concatenation properties:

▶ Union and concatenation are distributive when combined:

Some properties of RegEX

Let R, S, T be regular expressions

Assignment Project Exam Help $R \mid S = S \mid R$ (commutative)

 $R \mid \emptyset = \emptyset \mid R = R$

https://powcoder.com

► Concatenation properties:

- ▶ Union and concatenation are *distributive* when combined:
 - $ightharpoonup R(S \mid T) = RS \mid RT$
 - $\blacktriangleright (\hat{S} \mid \hat{T})\hat{R} = SR \mid TR$

Assignment Project Exam Help

Star Closure properties: https://powcoder.com

Assignmente Project Exam Help

Star Closure properties: $\underset{R}{\text{https://powcoder.com}} \underset{R}{\text{https://powcoder.com}}$

Assignmente Project Exam Help

- - $R^* = R R = (R) = R R$ $R^* = \varepsilon \mid R^* = (\varepsilon \mid R)^* = (\varepsilon \mid R)R^* = \varepsilon \mid RR^*$

Assignment Project Exam Help

Star Closure properties:

https://powcoder.com $R^* = R^*R^* = (R^*)^* = R \mid R^*$ $R^* = \varepsilon \mid R^* = (\varepsilon \mid R)^* = (\varepsilon \mid R)R^* = \varepsilon \mid RR^*$ Add WeChat powcoder

SOME PROPERTIES OF REGEX

Assignmente Project Exam Help

Star Closure properties:

https://powcoder.com $R^* = R^*R^* = (R^*)^* = R \mid R^*$ $R^* = \varepsilon \mid R^* = (\varepsilon \mid R)^* = (\varepsilon \mid R)R^* = \varepsilon \mid RR^*$ $R^* = R^*R$ Add **

SOME PROPERTIES OF REGEX

Assignmente Project Exam Help

Star Closure properties:

https://powcoder.com $R^* = R^*R^* - (R^*)^* = R \mid R^*$ $R^* = \varepsilon \mid R^* = (\varepsilon \mid R)^* = (\varepsilon \mid R)R^* = \varepsilon \mid RR^*$ $R^* = R^*R$ $R^* = R^*R$

SOME PROPERTIES OF REGEX

- - Add * Wechat poweoder *
 - $(R^*S)^* = \varepsilon \mid (R \mid S)^*S$

Assignment Project Exam Help

Star Closure properties:

$$\underset{R^*}{\text{https:/powcoder.com}}$$

 $R^* = \varepsilon \mid R^* = (\varepsilon \mid R)^* = (\varepsilon \mid R)R^* = \varepsilon \mid RR^*$

dd)*WeChat*powcoder)*

- $ightharpoonup (R^*S)^* = \varepsilon \mid (R \mid S)^*S$
- $ightharpoonup (RS^*)^* = \varepsilon \mid R(R \mid S)^*$

- Strings over {0, 1} which end with 91 powcoder.com
- Traffic lights? Add WeChat powcoder
- ► Identifiers for Java programs?

- Strings over {0, 1} which end with 61 nttps://powcoder.com
- Traffic lights? Add WeChat powcoder
- ► Identifiers for Java programs?

Assignithem Project Exam Help

- Strings over {0, 1} which end with {1} pS://powcoder.com
- Traffic lights? Add WeChat powcoder
- ► Identifiers for Java programs?

- Strings over {0, 1} which end with {1} pS://powcoder.com
- Traffic lights?

 Add a wrembnaten powcoder
- ► Identifiers for Java programs?

OUTLINE

Assignificant Project Exam Help

- Strings over {0, 1} which end with {1} powcoder.com
- Traffic lights?

 Add a wrembnaten powcoder
- ► Identifiers for Java programs? $(letter \mid \$ \mid _)(letter \mid digit \mid \$ \mid _)^*$

- https://powcoder.com
- ► ab*a | ba*b | a | b representsAdd WeChat powcoder
- ► $a^{\star}\emptyset$ represents

- https://powcoder.com
- ► ab*a | ba*b | a | b representsAdd WeChat powcoder
- ► $a^{\star}\emptyset$ represents

EXAMPLES OF REGEX

- ((a | b)(a | b))* represents

 1145981//powcoder.com
- $ightharpoonup ab^*a \mid ba^*b \mid a \mid b$ represents Add WeChat powcoder
- $ightharpoonup a^{\star}\emptyset$ represents

- ► $ab^*a \mid ba^*b \mid a \mid b$ represents

 Strings of a' starting and ending with b, or strings of b's starting odd ending with a' or strings of b's starting odd ending with a' of a' of
- ► $a^*\emptyset$ represents

EXAMPLES OF REGEX

- ((a | b)(a | b))* represents

 1115981//powcoder.com
- $ightharpoonup ab^*a \mid ba^*b \mid a \mid b$ represents Strings of a starting and ending with b, or strings of b's starting and ending with half si ploa w coder
- $ightharpoonup a^{\star}\emptyset$ represents The empty language, \emptyset

EQUIVALENCE OF REGEX AND FA

Assignment Projectar Examscribelp

Proof:

Show the equivalence of RegEx and FA (RegEx ⇔ FA)

- 1. Show that for each RegEx, there exists an NFA which recognises the same language
- 2. FA=RegExWeChat powcoder
 Show that for each NFA, there exists a RegEx which recognises the same language

EQUIVALENCE OF REGEX AND FA

Assignment a Projectar Exempser Help

Proof:

Show the equivalence of RegEx and FA (RegEx ⇔ FA)

- 1. Show that for each RegEx, there exists an NFA which recognises the same language
- 2. FA=RefExWeChat powcoder
 Show that for each NFA, there exists a RegEx which
 recognises the same language

Next week: proof

APPLICATION: PATTERN MATCHING

OUTLINE

Assignment Project Exam Help

text (e.g. web/document searching)

• Jone of the best known algorithms are based on Finite Power of the best known algorithms are based on Finite

► Constructing a NFA to recognise the strings containing the pattern is trivial.

► THE CONTROL THE PARTY OF THE PARTY CAN be matched efficiently

DFAs and NFAs

OUTLINE

- ► Each NFA can be transformed into a unique minimal DFA
- ► NFAs are often more intuitive to build and easier to **President State** 1/10 **President State 1/10 President State 1/10 Presid**
- ▶ DFA especially minimal DFA are more efficient to compute
 - despite the fact they often have far more states than the NFA
- Regular languages are closed under the union concatenation, standoure, intersection, and complement operations
 - We use these to build the NFA, before converting to a minimal DFA

REGULAR EXPRESSIONS

Assignment Project Exam Help

- What they are and how to use them to use the use them to use the u
- ► Equivalence with DFA/NFA