```
In [699]: import numpy as np
          import pandas as pd
          import matplotlib
          import matplotlib.pyplot as plt
          from sklearn.linear model import LogisticRegressionCV
          import sklearn.metrics as metrics
          from sklearn.metrics import r2 score
          from sklearn.preprocessing import PolynomialFeatures
          from sklearn.discriminant analysis import LinearDiscriminantAnalysis
          from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.model selection import cross val score
          from sklearn.model selection import cross val score
          from sklearn.metrics import accuracy score
          import sklearn.discriminant analysis as da
          import sklearn.neighbors as knn
          from sklearn.model selection import KFold
          from sklearn.linear model import LogisticRegression
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import confusion matrix
          from sklearn.metrics import roc curve, auc
          from sklearn.linear model import Ridge
          from sklearn.linear model import Lasso
          from sklearn.linear model import RidgeCV
          from sklearn.linear model import LassoCV
          from statsmodels.api import OLS
          from statsmodels.api import add constant
          import statsmodels.api as sm
          import datetime
          #import pydotplus
          #import io
          from sklearn.tree import export graphviz
          from IPython.display import Image
          from IPython.display import display
          %matplotlib inline
          from matplotlib import pyplot
          default dims = (13, 10)
          import seaborn.apionly as sns #sets up styles and gives us more plotting
           options
          sns.set style("whitegrid")
          sns.set context("poster")
          sns.reset orig()
```

```
In [701]: five_factor_df = pd.read_csv('F-
F_Research_Data_5_Factors_2x3_daily.CSV', index_col = 'Date')
    nan_rows = five_factor_df.isnull().T.any().T
    five_factor_df = five_factor_df[~nan_rows]
    print(np.shape(five_factor_df))
    five_factor_df.head()
```

(13657, 6)

Out[701]:

	Mkt-RF	SMB	HML	RMW	СМА	RF
Date						
19630701	-0.67	0.00	-0.32	0.01	0.15	0.012
19630702	0.79	-0.27	0.27	-0.08	-0.19	0.012
19630703	0.63	-0.17	-0.09	0.19	-0.33	0.012
19630705	0.40	0.08	-0.28	0.07	-0.33	0.012
19630708	-0.63	0.04	-0.17	-0.31	0.13	0.012

```
In [702]: five_factor_df.index = pd.to_datetime(five_factor_df.index,format='%Y%m%
d')
```

```
In [703]: three_factor_df = pd.read_csv('F-F_Research_Data_Factors_daily.CSV', ind
    ex_col = 'Date')
    nan_rows = three_factor_df.isnull().T.any().T
    three_factor_df = three_factor_df[~nan_rows]
    print(np.shape(three_factor_df))
    three_factor_df.head()
```

(24077, 4)

Out[703]:

	Mkt-RF	SMB	HML	RF
Date				
19260701	0.10	-0.24	-0.28	0.009
19260702	0.45	-0.32	-0.08	0.009
19260706	0.17	0.27	-0.35	0.009
19260707	0.09	-0.59	0.03	0.009
19260708	0.21	-0.36	0.15	0.009

```
In [705]: three_factors = [x for x in three_factor_df.columns if x != 'Date' and x
!= 'RF']
five_factors = [x for x in five_factor_df.columns if x != 'Date' and x !
= 'RF']
```

```
stocks_held = ['USAK', 'RHDGF', 'DXLG', 'NUSMF', 'LEE']

In [707]: # quantities = [180, 110, 1000, 8000, 425, 2000]
    quantities = [180, 110, 1000, 8000, 425]

In [708]: ptf_dict = {stocks_held[i]: quantities[i] for i in range(len(quantities))}

In [709]: dfs = []
    for stock in stocks_held:
        stock_df = pd.read_csv('{}.csv'.format(stock), index_col = None)
        stock_df['Stock'] = stock
        dfs.append(stock_df)

# Adds in last dataframe at the end to keep them in order
    df = pd.concat(dfs)
    df.head()
```

In [706]: # stocks held = ['USAK', 'RHDGF', 'DXLG', 'NUSMF', 'LEE', 'AXLE']

Out[709]:

	Date	Open	High	Low	Close	Adj Close	Volume	Stock
0	1992-03-19	7.5	7.5	7	7.125	7.125	1256400	USAK
1	1992-03-20	7.375	7.625	7.125	7.25	7.25	262800	USAK
2	1992-03-23	7.25	7.625	7.25	7.25	7.25	43800	USAK
3	1992-03-24	7.5	7.625	7.25	7.5	7.5	73600	USAK
4	1992-03-25	7.625	7.625	7.25	7.625	7.625	28000	USAK

```
In [710]: df['Date'] = pd.to_datetime(df['Date'])
```

In [711]: df = df.convert_objects(convert_numeric=True)

/anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWa rning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.
"""Entry point for launching an IPython kernel.

Out[712]:

	Date	Open	High	Low	Close	Adj Close	Volume	Stock
C	1992-03-19	1350.0	7.500	7.000	1282.5	7.125	1256400.0	USAK
1	1992-03-20	1327.5	7.625	7.125	1305.0	7.250	262800.0	USAK
2	1992-03-23	1305.0	7.625	7.250	1305.0	7.250	43800.0	USAK
3	1992-03-24	1350.0	7.625	7.250	1350.0	7.500	73600.0	USAK
4	1992-03-25	1372.5	7.625	7.250	1372.5	7.625	28000.0	USAK

```
In [776]: df['Returns'] = np.log(df['Close']) - np.log(df['Open'])
```

```
In [777]: df = df[df['Date'] >= datetime.datetime(2009, 9, 11)]
```

```
In [778]: three_factor_df = three_factor_df[three_factor_df.index >= datetime.date
    time(2009, 9, 11)]
```

```
In [779]: five_factor_df = five_factor_df[five_factor_df.index >= datetime.datetim
    e(2009, 9, 11)]
```

```
In [780]: grouped_by_stock = df.groupby('Stock')
```

```
In [781]: grouped_by_date = df.groupby('Date')
```

```
In [782]: portfolio_values = grouped_by_date.sum()
    portfolio_values.head()
```

Out[782]:

	Open	High	Low	Close	Adj Close	Volume	Returns
Date							
2009-09-11	15094.50	22.97	22.19	15479.95	21.855906	725882.0	0.118931
2009-09-14	15180.00	19.30	18.40	15461.35	19.030000	543800.0	0.111881
2009-09-15	15318.10	19.29	18.54	15476.15	18.930000	397800.0	0.032476
2009-09-16	15921.00	23.33	22.55	15816.60	22.315906	498060.0	-0.001339
2009-09-17	15350.55	19.50	18.86	15783.15	19.220000	393800.0	0.056506

```
In [783]: fig, ax = plt.subplots(figsize=default_dims)
    portfolio_values['Open'].plot();
    ax.set_xlabel('Time');
    ax.set_ylabel('Portfolio');
    ax.set_title('Value of Current Portfolio Since 2009');
```



```
In [784]: msk = [True if i % 100 ==0 else False for i in
    range(len(three_factor_df))]
    fig, ax = plt.subplots(figsize=default_dims)
    for factor in five_factors:
        five_factor_df[factor][msk].plot(legend = True);
    ax.set_xlabel('Time');
    ax.set_ylabel('Value');
    ax.set_title('Returns in Each Factor Over Time');
```



```
In [785]: for factor in five_factors:
    fig, ax = pyplot.subplots()
    plt.hist(five_factor_df[factor])
    ax.set_xlabel(factor);
    ax.set_ylabel('Returns');
```



```
In [786]: three_factors
```

Out[786]: ['Mkt-RF', 'SMB', 'HML']

In-sample evaluation

ner')

```
In [792]: three_factor_OLS = sm.OLS(y, x_three.values)
    three_factor_results = three_factor_OLS.fit()
    three_factor_results.summary(xname = three_factors)
```

Out[792]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.109
Model:	OLS	Adj. R-squared:	0.107
Method:	Least Squares	F-statistic:	82.16
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	3.67e-50
Time:	09:25:07	Log-Likelihood:	1945.8
No. Observations:	2028	AIC:	-3886.
Df Residuals:	2025	BIC:	-3869.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.0205	0.002	8.576	0.000	0.016	0.025
SMB	0.0343	0.004	8.001	0.000	0.026	0.043
HML	0.0074	0.004	1.703	0.089	-0.001	0.016

Omnibus:	1042.026	Durbin-Watson:	1.889
Prob(Omnibus):	0.000	Jarque-Bera (JB):	36476.619
Skew:	1.778	Prob(JB):	0.00
Kurtosis:	23.470	Cond. No.	2.32

```
In [793]: five_factor_OLS = sm.OLS(y, x_five.values)
    five_factor_results = five_factor_OLS.fit()
    five_factor_results.summary(xname = five_factors)
```

Out[793]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.116
Model:	OLS	Adj. R-squared:	0.114
Method:	Least Squares	F-statistic:	53.16
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	5.74e-52
Time:	09:25:08	Log-Likelihood:	1954.5
No. Observations:	2028	AIC:	-3899.
Df Residuals:	2023	BIC:	-3871.
Df Model:	5		_
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Mkt-RF	0.0234	0.003	9.105	0.000	0.018	0.028
SMB	0.0364	0.004	8.114	0.000	0.028	0.045
HML	-0.0055	0.006	-0.984	0.325	-0.016	0.005
RMW	0.0124	0.007	1.659	0.097	-0.002	0.027
СМА	0.0302	0.009	3.343	0.001	0.012	0.048

Omnibus:	1061.255	Durbin-Watson:	1.886
Prob(Omnibus):	0.000	Jarque-Bera (JB):	38251.625
Skew:	1.818	Prob(JB):	0.00
Kurtosis:	23.963	Cond. No.	4.98

Out[798]:

OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.099
Model:	OLS	Adj. R-squared:	0.098
Method:	Least Squares	F-statistic:	225.2
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	2.20e-48
Time:	09:25:16	Log-Likelihood:	1976.4
No. Observations:	2061	AIC:	-3951.
Df Residuals:	2060	BIC:	-3945.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Market	4.3173	0.288	15.006	0.000	3.753	4.882

Omnibus:	976.092	Durbin-Watson:	1.873
Prob(Omnibus):	0.000	Jarque-Bera (JB):	29296.292
Skew:	1.621	Prob(JB):	0.00
Kurtosis:	21.184	Cond. No.	1.00

Out-of-sample evaluation

```
In [803]: five_factor_OLS = sm.OLS(y_train, x_train_five.values)
    results_sm = five_factor_OLS.fit()
    print('Five factor test r2 of {}'.format(r2_score(y_test, results_sm.pre dict(x_test_five.values))))

    Five factor test r2 of 0.12595466382666898

In [804]: x_train_capm, x_test_capm, y_train_capm, y_test_capm = split(x_capm, y_c apm)

In [805]: capm_OLS = sm.OLS(y_train_capm, x_train_capm.values)
    results_sm = capm_OLS.fit()
    print('CAPM test r2 of {}'.format(r2_score(y_test_capm, results_sm.predict(x_test_capm.values))))

CAPM test r2 of 0.1306707400174345
```

EDA for Value Factor

```
In [810]: value_OLS = sm.OLS(y_value, x_value)
    value_results = value_OLS.fit()
    value_results.summary()
```

Out[810]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.079
Model:	OLS	Adj. R-squared:	0.078
Method:	Least Squares	F-statistic:	133.1
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	1.34e-29
Time:	09:25:34	Log-Likelihood:	1565.6
No. Observations:	1557	AIC:	-3129.
Df Residuals:	1556	BIC:	-3124.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Value	2.3535	0.204	11.536	0.000	1.953	2.754

Omnibus:	885.945	Durbin-Watson:	2.053
Prob(Omnibus):	0.000	Jarque-Bera (JB):	49205.855
Skew:	1.902	Prob(JB):	0.00
Kurtosis:	30.276	Cond. No.	1.00

```
In [811]: x_train_value, x_test_value, y_train_value, y_test_value =
    split(x_value, y_value)
    value_OLS = sm.OLS(y_train_value.values, x_train_value.values)
    results_sm = value_OLS.fit()
    print('Value factor test r2 of {}'.format(r2_score(y_test_value, results
    _sm.predict(x_test_value.values))))
```

Value factor test r2 of 0.0679348059461744

```
In [812]: x_value = df_five['SMB']
y_value = df_five['Returns']
```

```
In [813]: x_train_value, x_test_value, y_train_value, y_test_value =
    split(x_value, y_value)
    value_OLS = sm.OLS(y_train_value.values, x_train_value.values)
    results_sm = value_OLS.fit()
    print('Value factor test r2 of {}'.format(r2_score(y_test_value, results
    _sm.predict(x_test_value.values))))
```

Value factor test r2 of 0.07922111202152493

USAK

	12.278	Cond.	No.			
	-0.676	5 Prob(J	√В):			
	0.000) Jarque	e-Bera (JB):			
	362.835	5 Durbin	-Watson:			
=====						
0 0067	0 በሀ3	2 U38	0 042	0.000		
0.0043	0.003	1.590	0.112	-0.001		
0.0026	0.002	1.298	0.194	-0.001		
0.0125	0.002	7.596	0.000	0.009		
				0.002		
				-		
coef	std err	t.	p> t	[0.025		
=======				========		
e:	nonrobust	<u>:</u>				
	5	5				
	1518	BIC:				
,11 2 •						
ang.	1500	_				
	09:32:46	5 Log-Li	kelihood:			
Th	u, 16 Nov 2017	Prob (F-statistic):		
	Least Squares	s F-stat	istic:			
	OLS	S Adj. F	Adj. R-squared:			
	Recullis	K-squa	R-squarea:			
	coef 0.0034 0.0125 0.0026 0.0043 0.0067	Least Squares Thu, 16 Nov 2017 09:32:46 00:32:46	OLS Adj. F Least Squares F-state Thu, 16 Nov 2017 Prob (09:32:46 Log-Li ins: 1523 AIC: 1518 BIC: 5 ie: nonrobust coef std err t 0.0034 0.001 3.721 0.0125 0.002 7.596 0.0026 0.002 1.298 0.0043 0.003 1.590 0.0067 0.003 2.038 362.835 Durbin 0.000 Jarque -0.676 Prob(J	OLS Adj. R-squared: Least Squares F-statistic: Thu, 16 Nov 2017 Prob (F-statistic) 09:32:46 Log-Likelihood: 1523 AIC: 1518 BIC: 5 e: nonrobust coef std err t P> t 0.0034 0.001 3.721 0.000 0.0125 0.002 7.596 0.000 0.0026 0.002 1.298 0.194 0.0043 0.003 1.590 0.112 0.0067 0.003 2.038 0.042 362.835 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.676 Prob(JB):		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RHDGF

====== Dep. Variable: R-squared: Returns 0.004 Model: OLS Adj. R-squared: -0.000 Method: Least Squares F-statistic: 0.9121 Date: Thu, 16 Nov 2017 Prob (F-statistic): 0.472 Time: 09:32:46 Log-Likelihood: 2122.8 No. Observations: 1159 AIC: -4236. Df Residuals: BIC: 1154 -4210. Df Model: 5 nonrobust

Covariance Type:

=========		========		========	=======	====
======						
	coef	std err	t	P> t	[0.025	
0.975]					_	
 Mkt-RF	0.0015	0.001	1.030	0.303	-0.001	
0.004	0.0015	0.001	1.030	0.303	-0.001	
SMB	-0.0028	0.003	-1.092	0.275	-0.008	
0.002	-0.0020	0.003	-1.032	0.275	-0.000	
HML	-0.0049	0.003	-1.590	0.112	-0.011	
0.001						
RMW	0.0017	0.004	0.406	0.685	-0.006	
0.010						
CMA	0.0061	0.005	1.229	0.219	-0.004	
0.016						
========		=======		=======	======	====
Omnibus:		1697.6	SEE Durbin	-Watson:		
1.311		1097.0	ooo Dulbiii	-watson:		
Prob(Omnibus	=) •	0.0)00 Jarque	-Bera (JB):		968
012.439	<i>5</i>	0.	oo barqae	-Bela (BB):		500
Skew:		8.1	l30 Prob(J	B):		
0.00			`	,		
Kurtosis:		143.6	644 Cond.	No.		
4.72						
=========						====

======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

DXLG

Dep. Variable: R-squared: Returns

0.125

```
Model:
                           OLS
                               Adj. R-squared:
 0.122
Method:
                   Least Squares
                               F-statistic:
 43.40
Date:
                Thu, 16 Nov 2017
                               Prob (F-statistic):
6.46e-42
Time:
                       09:32:46
                               Log-Likelihood:
3239.8
No. Observations:
                         1523
                               AIC:
-6470.
Df Residuals:
                              BIC:
                         1518
-6443.
Df Model:
                            5
Covariance Type:
                     nonrobust
______
             coef std err t P>|t| [0.025]
0.9751
Mkt-RF
           0.0042
                    0.001
                            4.584 0.000
                                               0.002
 0.006
SMB
           0.0168
                     0.002 10.294 0.000 0.014
 0.020
                     0.002 1.937 0.053 -5.01e-05
           0.0039
_{
m HML}
 0.008
                     0.003 1.864
           0.0050
                                     0.063
                                              -0.000
RMW
 0.010
CMA
           0.0032 0.003 0.982 0.326 -0.003
 0.010
======
Omnibus:
                       216.195 Durbin-Watson:
 2.063
Prob(Omnibus):
                         0.000 Jarque-Bera (JB):
                                                       2
068.813
Skew:
                         0.313 Prob(JB):
  0.00
Kurtosis:
                         8.675 Cond. No.
  5.10
======
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
                            NUSMF
______
======
Dep. Variable:
                      Returns R-squared:
 0.011
Model:
                           OLS Adj. R-squared:
 0.008
Method:
                  Least Squares
                               F-statistic:
```

```
3.412
              Thu, 16 Nov 2017 Prob (F-statistic):
Date:
0.00453
Time:
                    09:32:46
                           Log-Likelihood:
2157.9
No. Observations:
                      1523
                           AIC:
-4306.
Df Residuals:
                      1518 BIC:
-4279.
Df Model:
                        5
Covariance Type: nonrobust
______
           coef std err t P>|t| [0.025]
0.975]
______
Mkt-RF
         0.0066 0.002 3.536 0.000 0.003
 0.010
         -0.0048 0.003 -1.437 0.151 -0.011
SMB
 0.002
         -0.0093
                 0.004 -2.254
                                0.024
HML
                                         -0.017
-0.001
         -0.0031 0.005 -0.570 0.569 -0.014
RMW
 0.008
         0.0132 0.007
                         1.983
                                0.048
CMA
                                         0.000
 0.026
______
Omnibus:
                    1483.355 Durbin-Watson:
 2.097
                      0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                              429
027.947
Skew:
                      3.903 Prob(JB):
  0.00
Kurtosis:
                     84.853 Cond. No.
  5.10
______
======
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
                         _{
m LEE}
Dep. Variable:
                    Returns R-squared:
 0.056
Model:
                       OLS
                           Adj. R-squared:
 0.053
Method:
              Least Squares F-statistic:
 18.00
Date:
              Thu, 16 Nov 2017 Prob (F-statistic):
2.21e-17
```

Time: 09:32:46 Log-Likelihood: 2663.8

No. Observations: 1523 AIC: -5318.

Df Residuals: 1518 BIC: -5291.

Df Model: 5

Covariance Type: nonrobust

=======		========				===
0.975]	coef	std err	t	P> t	[0.025	
 Mkt-RF 0.008	0.0055	0.001	4.103	0.000	0.003	
0.008 SMB 0.018	0.0132	0.002	5.516	0.000	0.008	
HML 0.007	0.0011	0.003	0.374	0.709	-0.005	
RMW 0.010	0.0021	0.004	0.521	0.602	-0.006	
CMA 0.015	0.0051	0.005	1.074	0.283	-0.004	
======		========			=======	===
Omnibus: 2.038		388.445	Durbin	n-Watson:		
Prob(Omnibus)):	0.000	Jarque	e-Bera (JB):		7
Skew:		0.707	Prob(J	ЈВ):		
Kurtosis: 5.10		13.420	Cond.	No.		

Warnings:

======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: