Problem

Show that if $NP = P^{SAT}$, then NP = coNP.

Step-by-step solution

Step 1 of 1

If $NP = P^{SAT}$ is assumed then, there is only need to show that NP = coNP. It can be conclude directly from the assumption $NP = P^{SAT}$, that $P^{SAT} \subseteq NP$. As $coNP \subseteq P^{SAT}$ is already known, which result in $coNP \subseteq NP$.

• Now it is known that P is closed under the complement operation, so is P^{SMT} , because it can be just swap the reject and accept states. It can be concluded that:

$$L \in P^{SAT} \Longrightarrow \overline{L} \in P^{SAT}$$

- The given statement can be managed by using the prediction $NP = P^{SAT}$, because if this would be the case any language in P^{SAT} would be in NP and vice versa.
- For which NP also has to be closed under the complement operation $L \in NP \Rightarrow \overline{L} \in NP$, that is just the same as $L \in NP \Rightarrow L \in coNP$ from the definition of coNP.
- In other words, from the above explanation it can be said that $NP \subseteq coNP$. Hence NP = coNP

Comment