Caleidoscoop Hoofdstuk 2

2 Volledige Inductie

2.1 Bewijs met volledige inductie

a) $\forall n \in \mathbb{Z}_{\geq 1} : 3^{2n+1} + 2^{n-1}$ is een 7-voud.

Bewijs. Basis: Voor n = 1:

$$3^{2(1)+1} + 2^{(1)-1} = 3^3 + 2^0 = 28 = 7 \cdot 4$$

Inductiestap: Stel de uitspraak is waar voor n=k, en bewijs voor n=k+1. Gebruik $3^{2k-1}+2^{k-1}=7p$ voor een zeker $p\in\mathbb{Z}$.

$$\begin{split} 3^{2(k+1)+1} + 2^{(k+1)-1} &= 3^2 \cdot 3^{2k+1} + 2 \cdot 2^{k-1} \\ &= 9 \cdot (7p - 2^{k-1}) + 2 \cdot 2^{k-1} \quad \text{(Vervang } 3^{2n+1} = 7p - 2^{n-1}\text{)} \\ &= 9 \cdot 7p - 9 \cdot 2^{k-1} + 2 \cdot 2^{k-1} \\ &= 9 \cdot 7p + 2^{k-1} (-9 + 2) \\ &= 7 \cdot 9p + 7 \cdot 2^{k-1} \\ &= 7(9p + 2^{k-1}) \end{split}$$

De uitspraak geldt dus ook voor n = k + 1 en daarmee is het bewijs voltooid.

b) Iedere $n \in \mathbb{Z}_{>1}$ is deelbaar door een priemgetal.

Bewijs. Basis: Voor n=2 dan 2|2 en 2 is priem. Inductiestap: Stel de bewering geldt voor alle $2 \le k < n$, en bewijs voor n. Als n priem is dan p=n, dus p|n. Als n niet priem dan nemen we $a,b \in \mathbb{Z}$ zodanig dat $n=ab \land 1 < a,b < n$. Echter aangezien a < n geldt $\exists p \in \mathbb{P} : p|a$ en uit a|n volgt p|n.

c)