

Sheet 1 Laplace Transform

1. Solve the following homogeneous differential equation using:

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 0$$

- a) Laplace transform
- b) Conventional Techniques

2. Solve the following differential equations:

a) $\dot{y}(t) + 3\dot{y}(t) + 2y(t) = u(t) = unit step$, assume the initial conditions:

$$y(0) = -1, \dot{y}(0) = 2$$

- b) $\dot{y}(t) + 3\dot{y}(t) + 2\dot{y}(t) = \dot{x}(t) + 3\dot{x}(t)$, assume the initial conditions:
 - $\sqrt{y}(0) = 1$, $\dot{y}(0) = 0$ and the input is given by: $x(t) = e^{-4t}$.

3. Test the linearity of the systems described by the following i/p - o/p relations:

- a) y(t) = au(t), where 'a' is a constant.
- b) $y(t) = u^3(t)$
- c) $y(t) = e^{u(t)}$
- e) $\dot{y}(t) + a\dot{y}(t) + y(t) = u(t)$, $\dot{y}(0) = \dot{y}(0) = 0$

4. Find the Transfer Function of the following systems: initial conditions = 0

a)
$$\dot{y}(t) + 3\dot{y}(t) + 2\dot{y}(t) = \dot{x}(t) + 3\dot{x}(t)$$

b)
$$y(t) + y(t) = x(t - T)$$