Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2014

Further Mathematics

8360/1

Level 2

Paper 1 Non-Calculator

Monday 16 June 2014 9.00 am to 10.30 am

For this paper you must have:

mathematical instruments.

You may **not** use a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$b$$
 a
 A
 C
 B

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

3

1 A straight line has gradient -2 and passes through the point (-3, 10).

Work out the equation of the line. Give your answer in the form y = mx + c

[2 marks]

y=2x+c

10=-2×-3+c

C=4

.....

Answer y = -2x+4

2 $y = 4x^3 - 7x$

Work out $\frac{dy}{dx}$

[2 marks]

Ju = (2x2-7

Turn over for the next question

3 A transformation is given by the matrix **M**, where $\mathbf{M} = \begin{pmatrix} 1 & a \\ 0 & 2 \end{pmatrix}$

The image of the point (b, 5) under **M** is (5, b).

Work out the values of a and b.

[3 marks]

$$\begin{pmatrix}
 1 & a \\
 0 & 2
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 5
\end{pmatrix}
 =
 \begin{pmatrix}
 5 \\
 5
\end{pmatrix}
 =
 \begin{pmatrix}
 5 \\
 5
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 5
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 5
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 5 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 6 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 6 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 6 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 5 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 6 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 6 \\
 45
\end{pmatrix}
 =
 \begin{bmatrix}
 6 \\
 45
\end{pmatrix}
 \begin{pmatrix}
 6 \\$$

 $a = \dots, b = \dots$

4 Solve 20 + w < 3(w+2)

[3 marks]

20tw < 3w+6

14 < 2w

7< w

Answer

 $f(x) = 10 - x^2$ for all values of x. 5

> g(x) = (x + 2a)(x + 3)for all values of x.

Circle the correct value of f(-4)5 (a)

[1 mark]

26

36

16

196

Write down the range of f(x). 5 (b)

1 mark

Answer $f(x) \le 10$

5 (c) g(0) = 24

Show that a = 4

24 = (2a)(3)

5 (d)

10-x2= x2+ 11x+24

Answer $4, \frac{3}{2}$

		$2n^2 + 7$	=50x1-1 49
6	The n th term of a sequence is	$\frac{2n+7}{3n^2-2}$	=50,2-2 98
		Sh = Z	· 6×3-3 197

6 (a) Work out the 7th term.

Give your answer as a fraction in its simplest form.

 $= \frac{2 \times 49 + 7}{3 \times 99 - 2} = \frac{05}{145} = \frac{21}{29}$

21 29 Answer

6 (b) Show that the limiting value of $\frac{2n^2+7}{3n^2-2}$ as $n\to\infty$ is $\frac{2}{3}$

)
[2	ma	rks]

7 ABCD is a cyclic quadrilateral.

Work out the values of x and y.

@ 224y+20=180

$$3c + 6y + 80 = 360$$

$$3c + 5y + 6 = 180$$

x =, y = ...

8 (a)	Factorise fully	$3x^2 - 12$	
	<u> </u>	(,,2-4)	[2 marks]
	=3 ((x+2)(sc-2)	

8 (b)	Factorise	$5x^2 + 4xy - 12y^2$
0 (6)	i actorisc	3x + 4xy - 12y

[3 marks]

[3 marks]	= 5,2 + 4, (xc-3y)
رن ک	(5x + 64)(X + 24)
	(52-64) (sc,24)
	J

9 ABC is a straight line. BC is 20% of AC.

Work out the coordinates of B.

$$B_{3} = -9 + \frac{(16 - 9) \cdot 9}{5} = -9 + \frac{25 \times 9}{5} = -9420 = 11$$

$$B_{3} = 18 + \frac{(3 - 18) \times 9}{5} = 18 - \frac{15 \cdot 4}{5} = 18 - 12 = 6$$

[4 marks]

Turn over for the next question

Turn over ▶

10	Rationalise the denominator of $\frac{8}{3-\sqrt{5}}$
	Give your answer in the form $a+b\sqrt{5}$ where a and b are integers
	$= \frac{8}{3+\sqrt{5}} \frac{3+\sqrt{5}}{24+8\sqrt{5}} = \frac{4(6+2\sqrt{5})}{4}$ $= \frac{8}{3+\sqrt{5}} \frac{3+\sqrt{5}}{9-5} = \frac{4(6+2\sqrt{5})}{4}$
	3-55 3+55 9-5 9
	$6+2\sqrt{5}$

11 (a) Here is triangle ABC.

Not drawn accurately

Show that angle $B = 60^{\circ}$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$B=cos^{-1}\left(\frac{1}{2}\right)$$

[3 marks]

(B) A = \frac{6^2 \cdot 2^2 a^2}{2 bc}

$$638 = \frac{2+18-1t}{2ac} = \frac{6}{12} = \frac{1}{2}$$

= 2 × 332 × 1/2 = 12 = 2	/

11 (b) Hence work out the area of triangle ABC.

[3 marks]

Answer cm²

12 The line x = -9 is a tangent to the circle, centre C(8, 20)

12 (a) Show that the radius of the circle is 17.

[1 m/ark]

dist (-9,8)= 17

The circle intersects the y-axis at A and B. 12 (b)

Show that the length AB is 30.

[3 marks]

(x-8)2+ (y-20)2 = 172

(-8)2+	9 19 14	. 900=289

(-8)	2/4/4	(-50)	= (72
	0 ~	,		

$$y^{2} - 40y + 400 + 64 - 289 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

$$y^{2} - 40y + 275 = 0 (y^{2}05^{2} = 15^{2})$$

140270

13	A curve has equation	$y = x^3 - 3x^2 + 5$
. •	, tour to mad equation	, ,,

13 (a) Show that the curve has a minimum point when x = 2

[4 marks]

dy	2	S, 2-6>c	3 ₅₀ '-650
doc		,	3>((><-2)

d2y	6- عد 6

65-6, sc=2 = 12-6=6- Pos so min pt

13 (b) Show that the tangent at the minimum point meets the curve again when x = -1

[3 marks]

y = 0 + c y = 0 + c y = 0 + c y = 0 + c y = 1 y =

14	$(x-a)$ is a factor of $x^3 + 2ax$	$a^2 - a^2x - 16$	
14 (a)	Show that $a = 2$ Show that $a = 2$ Show that $a = 2$		[2 marks]
	a is a solution for y = 0		[E marks]
	0= a ³ + 2a ³ -a ³ -16		
	16 = 2 ³		
	a3=8		
	~=Z		
14 (b)	Solve $x^3 + 4x^2 - 4x - 16 = 0$		[/ marke]
	f(>1)=x3+4x2-4>1-16	(sc-2)a factor	[4 marks]
	F(1)=1+9-4-16 ≠0		
	f(2)=-8+16-8-16=6		
	(3c-5)(3c+ +8)=0	کُکُرُ	
	$(36-2)(36^2+6x+8)=0$		
	7-2-7		
	Anguar		
	Answer	······(·····	

15	Prove that $\frac{\sin\theta - \sin^3\theta}{\cos^3\theta} \equiv \tan\theta$	
	$\sin \theta - \sin^3 \theta$	marks]
	- 43θ	
	$= \sin \theta (1 - \sin^2 \theta)$	
	$= \sin\theta(1-\sin^2\theta)$ $\cos\theta(\cos^2\theta)$	
	= sin θ yor θ	
	430 430	
	= Tanf	
		• • • • • • • • • • • • • • • • • • • •

Turn over for the next question

1 5

Turn over ▶

16
$$2x^2 - 2bx + 7a \equiv 2(x-a)^2 + 3$$

Work out the two possible pairs of values of a and b.

2,2-2bx+7a=2(x2-2ax+a2)+3

2x2-26>c+7a=2>c2-4a>c+2a2+3

- 2b>c = -4a>c

26=4a

b=2a)

9-3,05

.....

$$a = \dots, b = \dots$$

and

END OF QUESTIONS

Copyright © 2014 AQA and its licensors. All rights reserved.