Séries numériques

I. Généralités

I.1. Séries convergentes

Définition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à termes réels ou complexes; pour tout $n\in\mathbb{N}$, soit $S_n = \sum_{k=0}^n u_k$. On dit que la série de terme général u_n (ou la série $\sum u_n$) converge, si la **suite** (S_n) converge.

Dans ce cas, la limite S de la suite (S_n) est appelée **somme** de la série, et notée $S = \sum_{k=0}^{+\infty} u_k$.

Proposition I.1. Si la série $\sum u_n$ converge, alors, pour tout $n_0 \in \mathbb{N}$, le nombre

$$R_{n_0} = \lim_{p \to +\infty} \sum_{k=n_0+1}^p u_k$$
 est bien défini. On note $R_{n_0} = \sum_{k=n_0+1}^{+\infty} u_k$, et R_{n_0} est appelé

le **reste** de rang n_0 de la série.

On a alors, avec les notations précédentes, $S=S_n+R_n$ pour tout n, et donc $\lim_{n\to+\infty}R_n=0.$

I.2. Premières propriétés

Théorème I.2. Si la série $\sum u_n$ converge, alors la suite (u_n) a pour limite θ .

Si la suite (u_n) ne tend pas vers 0, alors la série $\sum u_n$ diverge; on dit dans ce cas qu'elle diverge **grossièrement**.

Théorème I.3. Si les séries
$$\sum a_n$$
 et $\sum b_n$ convergent, et si $(\lambda, \mu) \in \mathbb{C}^2$, alors la série $\sum (\lambda a_n + \mu b_n)$ converge, et $\sum_{k=0}^{+\infty} (\lambda a_k + \mu b_k) = \lambda \sum_{k=0}^{+\infty} a_k + \mu \sum_{k=0}^{+\infty} b_k$.

I.3. Suites et séries

Théorème I.4. La suite (u_n) converge si et seulement si la série de terme général $(u_{n+1}-u_n)$ converge; dans ce cas, en notant L la limite de la suite, on a

pour tout
$$n : L - u_n = \sum_{k=n}^{+\infty} (u_{k+1} - u_k).$$

II. Séries à termes positifs

II.1. Convergence par comparaison

Proposition II.1. Soit (a_n) une suite à termes réels **positifs**; pour tout n, on pose $A_n = \sum_{k=0}^n a_k$.

La série $\sum a_n$ converge si et seulement si la suite (A_n) est majorée; dans ce cas, on a pour tout n $A_n \leqslant \sum_{k=0}^{+\infty} a_k$.

Proposition II.2. Soient (a_n) et (b_n) deux suites réelles. On suppose que :

- pour tout $n \in \mathbb{N}$, $0 \leqslant a_n \leqslant b_n$;
- la série $\sum b_n$ converge.

Alors, la série $\sum a_n$ converge, et $\sum_{k=0}^{+\infty} a_k \leqslant \sum_{k=0}^{+\infty} b_k$.

Théorème II.3. Soient (a_n) et (b_n) deux suites réelles. On suppose que :

- $a_n \underset{n \to +\infty}{\sim} b_n$;
- $\forall n \in \mathbb{N} \quad b_n \geqslant 0.$

Alors, la série $\sum a_n$ converge si et seulement si la série $\sum b_n$ converge.

II.2. Comparaison à une intégrale

Si f est continue par morceaux et décroissante sur $[n_0, +\infty[$, et $n \ge n_0 + 1$, alors $f(n+1) \le \int_n^{n+1} f(t) dt \le f(n)$ d'où $\int_n^{n+1} f(t) dt \le f(n) \le \int_{n-1}^n f(t) dt$. En sommant ces encadrements, on en déduit des encadrements des sommes

En sommant ces encadrements, on en déduit des encadrements des sommes partielles de la série $\sum f(n)$, ou de ses restes en cas de convergence.

II.3. Séries de Riemann

Théorème II.4. Soit $\alpha \in \mathbb{R}$; la série $\sum n^{\alpha}$ converge si et seulement si $\alpha < -1$.

III. Séries à termes quelconques

III.1. Séries à termes complexes

Théorème III.1. Soient (a_n) et (b_n) deux suites réelles, et $(z_n) = (a_n + ib_n)$. La série $\sum z_n$ converge si et seulement si les séries $\sum a_n$ et $\sum b_n$ sont toutes deux convergentes.

III.2. Convergence absolue

Définition. On dit que la série à termes complexes $\sum a_n$ converge **absolument** si la série $\sum |a_n|$ converge.

Théorème III.2. Si la série $\sum a_n$ converge absolument, alors elle converge, et

$$\left| \sum_{k=0}^{+\infty} a_k \right| \leqslant \sum_{k=0}^{+\infty} |a_k|.$$

III.3. Convergence par comparaison

Théorème III.3. Soient (a_n) et (b_n) deux suites complexes. On suppose que :

- pour tout n, b_n est réel et $b_n \geqslant 0$;
- la série $\sum b_n$ converge;
- $a_n = O(b_n)$ au voisinage de $+\infty$.

Alors, la série $\sum a_n$ converge.

Théorème III.4 (règle de d'Alembert). Soient (a_n) une suite complexe. On suppose que $|a_{n+1}/a_n|$ tend vers une limite ℓ éventuellement infinie. Alors :

- \triangleright si $\ell < 1$, la série $\sum a_n$ converge absolument;
- $\triangleright si \ \ell > 1$, la série $\sum a_n$ diverge grossièrement;
- \triangleright si $\ell = 1$, cela ne suffit pas pour conclure.

III.4. Séries alternées

Théorème III.5. Soient (u_n) une suite réelle décroissante de limite 0. Alors :

- la série $\sum (-1)^n u_n$ converge; $si\ R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$ pour tout n, alors, pour tout n, R_n est du signe de $(-1)^{n+1}$ (donc du signe de son premier terme) et $|R_n| \leq u_{n+1}$ (qui est le module de son premier terme).

IV. Sommation de relations de comparaison

IV.1. Cas d'une série convergente

Théorème IV.1. Soient (a_n) et (b_n) deux suites complexes. On suppose que, pour tout $n, b_n \geqslant 0$, et que la série $\sum b_n$ converge. Alors: $\Rightarrow si \ a_n = O(b_n)$, alors $\sum_{k=n}^{+\infty} a_k = O(\sum_{k=n}^{+\infty} b_k)$; $\Rightarrow si \ a_n = o(b_n)$, alors $\sum_{k=n}^{+\infty} a_k = o(\sum_{k=n}^{+\infty} b_k)$; $\Rightarrow si \ a_n \sim b_n$, alors $\sum_{k=n}^{+\infty} a_k \sim \sum_{k=n}^{+\infty} b_k$.

IV.2. Cas d'une série divergente

Théorème IV.2. Soient (a_n) et (b_n) deux suites complexes. On suppose que, pour tout $n, b_n \ge 0$, et que la série $\sum b_n$ diverge. Alors : $\triangleright si \ a_n = O(b_n)$, alors $\sum_{k=0}^n a_k = O(\sum_{k=0}^n b_k)$;

$$\triangleright \ si \ a_n = O(b_n), \ alors \ \sum_{k=0}^n a_k = O(\sum_{k=0}^n b_k),$$

$$> si \sum_{k=0}^{n} a_k = o(\sum_{k=0}^{n} b_k);$$

$$> si \ a_n \sim b_n, \ alors \sum_{k=0}^{n} a_k \sim \sum_{k=0}^{n} b_k.$$

V. Familles sommables

V.1. Familles sommables de réels positifs

Définition. Soit I un ensemble d'indices, et $(a_i)_{i\in I}$ une famille de réels positifs ou nuls, indexée par I. On dit que cette famille est sommable si l'ensemble des sommes $\sum_{i \in F} a_i$, où F décrit l'ensemble des parties finies de I, est majoré.

La borne supérieure de ces sommes est alors appelée somme de la famille, et notée $\sum_{i \in I} a_i$.

Théorème V.1 (Sommation par paquets, cas positif). On suppose que I = $\bigcup_{i \in I} I_i$, où les parties I_i sont deux à deux disjointes. La famille de réels posi $tifs(a_i)_{i\in I}$ est alors sommable si et seulement si elle vérifie les deux conditions :

- pour tout $j \in J$, la famille $(a_i)_{i \in I_j}$ est sommable, de somme $S_j = \sum_{i \in I_i} a_i$;
- la famille $(S_i)_{i\in I}$ est sommable.

Dans ce cas,
$$\sum_{i \in I} a_i = \sum_{j \in J} S_j = \sum_{j \in J} \left(\sum_{i \in I_j} a_i \right).$$

En particulier:

- \circ avec $I = \mathbb{Z} = \mathbb{N} \cup \mathbb{Z}_{-}^*$, la famille $(a_i)_{i \in \mathbb{Z}}$ de réels positifs est sommable si et seulement si les séries $\sum_{n=0}^{+\infty} a_n$ et $\sum_{n=1}^{+\infty} a_{-n}$ convergent; • avec $I = \mathbb{N}^2 = \bigcup_{p \in \mathbb{N}} I_p$ où, pour tout $p_0, I_{p_0} = \{(p_0, q); q \in \mathbb{N}\}$: la famille
- $(a_{p,q})_{(p,q)\in\mathbb{N}^2}$ de réels positifs est sommable si et seulement si :
- pour tout $p \in \mathbb{N}$, la série $\sum_{q=0}^{+\infty} a_{p,q}$ converge, de somme $S_p = \sum_{q=0}^{+\infty} a_{p,q}$;
- la série $\sum_{p=0}^{+\infty} S_p$ converge

Dans ce cas, $\sum_{(p,q)\in\mathbb{N}^2} a_{p,q} = \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} a_{p,q}$. Les rôles de p et q sont interchangeables.

V.2. Familles sommables de nombres complexes

Définition. Soit $(a_i)_{i\in I}$ une famille de nombres complexes. On dit que la famille $(a_i)_{i\in I}$ est sommable si la famille de réels positifs $(|a_i|)_{i\in I}$ l'est.

Si la famille est sommable et si les a_i sont réels, la famille de réels positifs $(|a_i|+a_i)_{i\in I}$ est sommable; on pose $\sum_{i\in I}a_i=\sum_{i\in I}(|a_i|+a_i)-\sum_{i\in I}|a_i|$.

Si la famille est sommable et si les a_i sont complexes, les familles de réels $\left(\operatorname{Re}(a_i)\right)_{i\in I}$ et $\left(\operatorname{Im}(a_i)\right)_{i\in I}$ sont sommables ; on pose $\sum_{i\in I}a_i=\sum_{i\in I}\operatorname{Re}(a_i)+i\sum_{i\in I}\operatorname{Im}(a_i)$.

Dans le cas $I = \mathbb{N}$, la famille de complexes $(a_n)_{n \in \mathbb{N}}$ est sommable si et seulement si la série $\sum a_n$ est **absolument** convergente; sa somme est alors la somme de la série.

Théorème V.2 (Sommation par paquets, cas général). On suppose que $I = \bigcup_{j \in J} I_j$, où les parties I_j sont deux à deux disjointes. Si la famille $(a_i)_{i \in I}$ de complexes est sommable, alors :

- pour tout $j \in J$, la famille $(a_i)_{i \in I_j}$ est sommable, de somme $S_j = \sum_{i \in I_i} a_i$;
- la famille $(S_j)_{j\in J}$ converge;
- $\sum_{i \in I} a_i = \sum_{j \in J} S_j = \sum_{j \in J} \left(\sum_{i \in I_j} a_i\right).$

Proposition V.3. Si les famille de complexes $(a_i)_{i\in I}$ et $(b_j)_{j\in J}$ sont sommables, alors la famille $(a_ib_j)_{(i,j)\in I\times J}$ l'est aussi, et

$$\sum_{(i,j)\in I\times J} a_i b_j = \left(\sum_{i\in I} a_i\right) \left(\sum_{j\in J} b_j\right)$$

Proposition V.4. Si les famille de complexes $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ sont sommables, et $si\ (\lambda,\mu)\in\mathbb{C}^2$, alors la famille $(\lambda a_i + \mu b_i)_{i\in I}$ est sommable et

$$\sum_{i \in I} (\lambda a_i + \mu b_i) = \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i$$

Proposition V.5. Soient $(a_i)_{i\in I}$ une familles de complexes, et $(b_i)_{i\in I}$ une famille de réels positifs. Si la famille $(b_i)_{i\in I}$ est sommable, et si $|a_i| \leq b_i$ pour tout i, alors $(a_i)_{i\in I}$ est sommable, et $\left|\sum_{i\in I} a_i\right| \leq \sum_{i\in I} b_i$.

En particulier, $si(a_i)_{i \in I}$ est sommable, alors $\left| \sum_{i \in I} a_i \right| \leqslant \sum_{i \in I} |a_i|$.

V.3. Applications

Théorème V.6 (Théorème de Fubini). Soit $(a_{p,q})_{(p,q)\in\mathbb{N}^2}$ une famille de complexes. Si la somme $\sum_{p=0}^{+\infty}\sum_{q=0}^{+\infty}|a_{p,q}|$ est définie, alors les deux sommes $\sum_{p=0}^{+\infty}\sum_{q=0}^{+\infty}a_{p,q}$

et
$$\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} a_{p,q}$$
 le sont aussi, et ont la même valeur.

Définition. Soient (a_n) et (b_n) deux suites complexes. On appelle **produit de** Cauchy des séries $\sum a_n$ et $\sum b_n$, la série $\sum c_n$ dont le terme général est défini par $c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n b_k a_{n-k}$ pour tout $n \in \mathbb{N}$.

Théorème V.7. Soient (a_n) et (b_n) deux suites complexes. Si les deux séries $\sum a_n$ et $\sum b_n$ sont absolument convergentes, alors la série produit de Cauchy de ces deux séries converge absolument, et, en utilisant les notations précédentes, $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$.