PEDRO SADER AZEVEDO RA: 243245
LUNO SHILER LEVEDO RA: 293295
Pedeo Soder Ageredo
CORRIGIR A QUESTÃO 1
SEZA P(1) A PROPOSIÇÃO DE QUE VIEIN*, 115(1)
$PARA S(1) = 3 + 5 + 7 + \cdots + (2) + 1$
ANTES DE PROVAR P(1) PHOROSAMENTE, VEJAMOS ALGUNS EXEMPLOS DE S(1):
S(1) = 3, S(2) = 8, S(3) = 15
S(4) = 24, $S(5) = 35$, $S(6) = 48$
NOTE QUE OS RESULTADOS DE S(I) ATÉ AQUI PARECEM SER UM A MENTOS QUE
O QUADGADO DO MÍMERO SEGUINTE A I, ASSIM TEMOS A CONSECTURA ABAINTO:
$S(\lambda) = (\lambda + \xi)^2 - \xi = \lambda^2 + 2\lambda + 1 - \xi = \lambda(\lambda + 2)$
CONSIDERANDO QUE A VERACIDADE DESSA CONTECTURA POSSIBILITARIA UMA PROVA BEM
mais simples para P(n) e que podemos forminar uma hipótese de inducção mais
FOOTE QUE P(K) USANDO ESSA CONJECTURA, PROVÁ-LA-EMOS POR INDUÇÃO EM).
BASE: l=1
$5(1) = 2 \cdot 1 + 1 = 3$
l(l+2) = l(1+2) = 3, ENTÃO ESTÁ PROVADO O CASO BASE
HIPOTESE DE: $S(K) = K(K+2)$ GARA $K \ge 1$
INDUÇÃO PASSO DE: QUERRIAR QUE $S(K+1) = (K+1)((K+1)+8)$ E
INDUÇÃO SABELIOS PELA PECURSIVIDADE DE $S(K+1) = S(K+1) + 1 + S(K) - PELA HIPÓTESE DE INDUÇÃO$
S(K+1) = 2(K+1) + 1 + K(K+2)
$= 5K + 5 + 1 + K_5 + 5K = K_5 + 4K + 3 = (K+1)(K+3) = (K+1)((K+1)+5)$
Scanned with CamSca

AGORA ONE PROVINCE ONE S(L) = L(L+E) PODELLOS PROVIND P(L) FACILHENTE.
RECORDE-SE QUE A PROPOSIÇÃO 215(2) É LOGICAMENTE EQUIVARENTE À:
$\exists m \in \mathbb{Z}$, $S(l) = ml = \exists m \in \mathbb{Z}$, $l(l+2) = ml$
USANDO A TECNICA DE PREVA EXISTENCIÁC CONSTRUTIVA, ESCOLHEMOS M= 1+8 DE
FORTH OUR $L(1+2) = L(1+2) = T$. VALE OBJERVAR OUR TEMPS GARANTION
QUE (1+2) E Z POIS 1, 2 E N * E N * C Z.
2.) SETA P(n) A PROPOSIÇÃO DE QUE PODEMOS OBTER UMA SEGUÊNCIA DE VALORES
BOOLEANOS F APENAS APLICANDO AS CUCUAÇÕES (a.) E (b.) DEFINIDAS NO ENUNCIADO
A UMA SEQUÊNCIA ARBITRÁRIA DE VALORES BOOLEANOS S, DE TANANHO Y \$1
VAMOS PROURR P(n) con una inducção en n:
BASE: N = 1
SE A SEQUÊNCIA TEM APENAS UM VALOR, HÁ DOIS CASOS POSSÍVEIS:
caso 1: $S = \langle F \rangle$
NESSE CASO, MODOS OS EVENEUTOS DE S JÁ SÃO F
$caso 2: S = \langle T \rangle$
NESSE CASO, BASTA APLIERR A CRERAÇÃO (b)
$S = \langle T \rangle \xrightarrow{(b)} S' = \langle F \rangle$
ASSIM, OBTIVENOS UMA SEQUÊNCIA CUDOS EVENENOS ÑO TODOS F
HIPÓTESE DE INDUÇÃO: P(K)
PASSO DE INDUÇÃO: QUERENOS PROVAR P(K+L)
PARA 1550, CONSTRUIMOS UMA SEQUÊNCIA S GENÉRICA CON H+1 ELEMENTOS:
S= < 21, 22, 23, 24, 2 K+1)
RETIRANDO DESSA SEGUENCIA UM ELEMENTO AM OUNDOUR, EM POSIÇÃO M.
OBJENDO UMA SECUENCIA S' DE TAMANHO (K+1)-1 = K. PELA HIPÓTESE
DE INDUÇÃO, PODEMOS APLICAR AS OPERAÇÕES (a) E (b) ATÉ OBTER
UMA SECOLÊNCIA S" INTERPANENTE PREENCHIDA CON F
S" = < F, F, F, F F, F >
AGORA, DEVOLVENOS EM A SUA POSIÇÃO ERIGINAL OBTENDO 5"
A PARTIR DISTO, TEMOS DOIS CASOS, DEPENDENDO DO VACOR DE 2m
Scanned with CamSca

CASO 1: Am = F
NESSE CASO, TODOS OS ELEMENTOS DE SÃO F
caso 2: sm = T
NESSE CASO, PRECISAMOS DE UMA INDUÇÃO EM M (A POSIÇÃO DE 2m):
SEJA Q(m) O PREDICADO DA PROPOSIÇÃO DE QUE POTENOS OBTER UMA SEQUÊNCIA INTELIDAMENTE PREENCHIDA POR F A PRATIR DE UMA SEQUÊNCIA S" DE VALORES POCULANOS CUÃO ÚNICO EVEMENTO DEFEDENTE DE F ESTÁ NA POSIÇÃO M
BASE: $M = N$ BASIA APLICAR A CREPAÇÃO (b) $S''' = \langle FFF FT \rangle \xrightarrow{(b)} S'''' = \langle FFF FF \rangle$
HIPÓTESE DE INDUÇÃO: (GU(K) PARA K & M
PASSO DE INDUÇÃO: OUEDEMOS PROMOR (B(K-1)
BASIA APLICAR A COFCREDO (a) $S''' = \langle FFF \cdots TF \rangle \xrightarrow{(a)} S'''' = \langle FFF \cdots FT \rangle$
DEROIS A CRERAÇÃO (b)
S" = < FFF FT > (b) S" = < FFFFF>
E ASSIM OBTIVEMOS UMA SEQUÊNCIA DE F A PARTIR DE S'', ENTRO ESTÁ PROMADA GU(M)
E ASSIM OBTIKENOS UMA SEQUÊNCIA DE F A PARTIR DE UMA SEQUÊNCIA ARBITRÁRIA S. ENTÃO ESTÁ PROVADA P(n)

Scanned with CamSca

3) SEJA P(m) O PREDICADO DA PROPOSIÇÃO DE QUE POPEMOS COCORIR UMA PARTIÇÃO X
UM PLANO EN 17 & 1 PARÁBOLAS DE FAL MANEIRA QUE REGIÕES VIZINHAS TÊM CORES DI-
FERENTES E USANDO ADENAS DUAS CORES.
VANOS PROVAR P(n) COR INDUÇÃO EM n.
OBSERVAÇÃO: OS DESENHOS TÊM PROPÓSITO MEDAMENTE ILUSTRATIVO, ON SEJA,
ANDICIONAM APENAS EXPLICAR VISUALMENTE O RACIOCÍNIO POR TRÁS DA PROMA
CASO BASE: $N=1$
SE HÁ APENDO UMA PAPÁBORA NO PLANO, COROLINOS SUA PECÁPO INTERNA COM
THE COR E SUA PEGIPO EXTERNA CON OUTRA COR. ASSIM, COLORIMOS O
PLAND INTEIRO CON APENAS DUAS CORES.
MENAS WAS COVES.
HIPÓTESE DE INDUÇÃO; P(K)
PASSO DE INDUÇÃO: QUERENOS PROVAR P(K+L).
PARA ISSO, TOMANOS UMA PARTICADO TO GENÉRICA DE UM PLANO EM
K+1 PARAROLAS. VANOS PENEVER UMA PARÁBOXA OZ M, ASSIM
OBJENDO UMA PARTICAO TI) COM K PARÁBOLAS.
M' SAPRINOS, PELA HIPOTESE DE INDUCADO, QUE TI' PODE
SER COCCANION SOB AS COMPICÕES ENUNCIADAS ANTERICRMENTE.
ACCOPA, COU T' DEVIDONENTE COLORIO, DEVOLVENOS A PARÁ-
POLA QUE TÍNHAMOS PEMOVIDO E INVERTEMOS AS CORES NO SEU INTERIOR
E OBTEMOS TIPÉS CASOS PARA ANALISAR.
CASO I : REGIÕES EXTERNAS (INKLUNIOS TANGENTES) À PARÁPICIA
NÃO MUDICAM DE COR ENTRO AINDO ATENDEM A PORÓPICIA
CASO II : REGICES INTERVINE (MICE)
CASO II : REGIÕES INTERNAS (INCLUINDO TANGENTES) À PARÁBOLA
INVERTERAL DE COR ENTRO ANDA ATENDEM A D
CASO III. PRESICES CRUZADAS PELA PARÁBOLA
FORALL DIVIDIDAS ELL CORES OROSTAS ENTORO ALLORA ATENDEN A P
Scanned with CamSca