

STATISTICA 1 - Analisi Bivariate

Riccardo Corradin, Andrea Gilardi

Introduzione

- Le metodologie statistiche presentate finora rientrano nella cosiddetta statistica descrittiva univariata: p caratteri sono rilevati in una popolazione ed essi vengono studiati separatamente uno alla volta.
- E' però ragionevole supporre che possano esistere delle **relazioni** tra le caratteristiche degli individui in una popolazione. Ad esempio, l'altezza ed il genere di una persona sono tipicamente legati al peso.
- L'obiettivo della statistica (descrittiva) multivariata è quello di esplorare tali relazioni per capire i pattern ed i nessi presenti nei dati.
- In queste corso ci concentreremo sulla statistica descrittiva bivariata, cioè analizzeremo i caratteri due alla volta.

Introduzione - esempio

Example

La seguente tabella^a riassume il *numero di interventi* e la *percentuale di soprav-vivenza a 30 giorni* per gli interventi effetts sui bambini di età minore di un anno negli ospedali britannici che, nel periodo 1991-95, avevano un reparto di cardiochirurgia infantile:

Ospedale	Num. Interventi	Perc. Sopravvivenza a 30 giorni
Birmingham	581	90%
Bristol	143	71.3
Brompton	301	89.7%
Great Ormond St.	482	89%
Guys	164	84.8%
Harefield	177	85.9%

^aFonte: D.J. Spiegelhalter et al., Commissioned Analysis of Surgical Performance Using Routine Data: Lessons from the Bristol Inquiry. Link.

Introduzione - esempio

Example

I seguenti istogrammi riassumono le due distribuzioni singolarmente:

Introduzione - esempio

Example

E' tuttavia interessante visualizzare il legame^a tra queste due variabili:

Cosa possiamo dedurre studiando le distribuzioni univariate? E quella bivariata?

^aQuesta rappresentazione grafica viene chiamata grafico a dispersione.

Notazione

Tabelle a doppia entrata

- Supponiamo di aver osservato un **primo** carattere X che assume modalità x_1, \ldots, x_r ed un **secondo** carattere Y che assume modalità y_1, \ldots, y_c .
- Tipicamente X e Y rappresenteranno due variabili *qualitative*.
- La distribuzione congiunta (i.e. la relazione) di X e Y può venire riassunta da una tabella a doppia entrata come segue:

$X \setminus Y$	<i>y</i> ₁		Уј		Уc	Totale
x_1	n ₁₁		n_{1j}		n_{1c}	n_1 .
:	:	:	:	:	:	:
Xi	n _{i1}		n _{ij}		n _{ic}	n _i .
:	:	:	:	:	:	:
Xr	n_{r1}		n _{rj}		n _{rc}	n _r .
	n. ₁		n.j		n. _c	N

- Il simbolo n_{ij} indica le frequenze assolute congiunte: quante unità statistiche presentano congiuntamente le modalità x_i e y_j .
- n_i indica la somma delle frequenze assolute congiunte poste sulla i-esima riga: $n_{i\cdot} = \sum_{j=1}^{c} n_{ij}$.
- $n_{\cdot j}$ indica la somma delle frequenze assolute congiunte poste sulla j-esima colonna: $n_{\cdot j} = \sum_{i=1}^{r} n_{ij}$.
- Le frequenze n_i e n_{ij} vengono denominate **frequenze assolute marginali**.
- Valgono le seguenti uguaglianze

$$\sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} = \sum_{i=1}^{r} n_{i\cdot} = \sum_{j=1}^{c} n_{\cdot j} = N$$

• E' anche possibile definire le frequenze relative congiunte (f_{ij}) e le frequenze relative marginali $(f_{i}$. e $f_{\cdot j})$ come segue:

$$f_{ij} = \frac{n_{ij}}{N};$$
 $f_{i\cdot} = \frac{n_{i\cdot}}{N};$ $f_{\cdot j} = \frac{n_{\cdot j}}{N}$

 Di conseguenza, una tabella a doppia entrata riassume tre distribuzioni: una distribuzione congiunta e due distribuzioni marginali.

$X \backslash Y$	<i>y</i> ₁		Уј		Уc	Totale
x_1	n ₁₁		n_{1j}		n_{1c}	<i>n</i> ₁ .
:	:	÷	:	÷	:	n_i n_i n_r
Xi	n _{i1}		n _{ij}		n _{ic}	n_i .
:	:	:	:	- 1	1	:
Xr	n_{r1}		n _{rj}		n _{rc}	n_r .
					n.c	

Notazione

- Oltre a queste, è possibile studiare altre r+c distribuzioni univariate ottenute esaminando **singolarmente** la *i*-esima riga o la *j*-esima colonna.
- Supponiamo di restringere le analisi alla prima riga della tabella. In tal
 caso, il totale è pari a n₁. diviso tra c gruppi: {n₁₁,...,n_{1j},...,n_{1c}}:

$X \setminus Y$	<i>y</i> ₁		Уј		Уc	Totale
<i>x</i> ₁	n ₁₁		n_{1j}		n_{1c}	n_1 .
:	:	:	:	:	:	:

 Tenendo fissa la prima riga, possiamo definire le frequenze relative del carattere Y condizionate a X = x1 come

$$f(y_j|x_1) = \frac{n_{1j}}{n_1}; \quad j = 1, \ldots c.$$

Esse rappresentano la proporzione di unità che cadono nella classe (i,j) condizionandoci al fatto che il carattere X sia pari a x_1 .

• Possiamo generalizzare tale definizione a qualsiasi riga i della tabella:

$$f(y_j|x_i)=\frac{n_{ij}}{n_{i}}; \qquad j=1,\ldots,c; i=1,\ldots r.$$

 Analogamente possiamo studiare singolarmente le colonne della tabella, definendo le frequenze relative del carattere X condizionate a Y = y_i:

$$f(x_i|y_j) = \frac{n_{ij}}{n_{ij}};$$
 $i = 1, ..., r; j = 1, ..., c$

- Esistono quindi r distribuzioni condizionate per il carattere Y (una per ogni possibile valore X condizionante) e c distribuzioni condizionate per il carattere X (una per ogni possibile valore Y condizionante).
- Vale¹ inoltre che

$$\sum_{j=1}^{c} f(y_j|x_i) = 1 \qquad \sum_{i=1}^{r} f(x_i|y_i) = 1$$

¹Si provi a dimostrare le due uguaglianze come esercizio.

Notazione

Example

Nel fantastico mondo di Flatlandia è tempo di eleggere il nuovo Presidente del Consiglio delle Forme. Gli abitanti sono divisi in: *Quadrati, Cerchi,* e *Rettangoli* e i tre candidati sono: *Archimede, Euclide,* e *Pitagora.* Da un campione casuale di N=120 elettori si ricava che:

- tra i Quadrati, 15 voteranno Archimede, 10 Euclide e 15 Pitagora;
- tra i Cerchi, 20 voteranno Archimede, 5 Euclide e 5 Pitagora;
- tra i Rettangoli, 10 voteranno Archimede, 15 Euclide e 25 Pitagora.

Dopo aver costruito un'opportuna tabella a doppia entrata ed aver brevemente elencato tutte le distribuzioni riassunte in essa, si risponda alle seguenti:

- 1. Qual è la frequenza assoluta congiunta della coppia (Cerchi, Archimede)?
- 2. Qual è la frequenza relativa marginale dei voti per Pitagora?
- 3. Quanto vale la freq. relativa marginale dei voti per Archimede e la freq. relativa dei voti per Archimede condizionata alla popolazione dei Cerchi?

Si interpretino i risultati ottenuti.

Notazione - Esercizio

Connessione

(Assenza di) Connessione

Un carattere X viene definito indipendente in distribuzione (o non-connesso) dal carattere Y se, per ogni j=1,...,c, tutte le frequenze relative condizionate di X dato $Y=y_j$ sono identiche fra loro:

$$f(x_i|y_1) = f(x_i|y_2) = \cdots = f(x_i|y_c) \quad \forall i = 1,\ldots,r$$

Example

La seguente tabella a doppia entrata

$X \setminus Y$	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
x_1	5	10	15	30
<i>X</i> 2	3	6	9	18
<i>X</i> ₃	2	4	6	12
	10	20	30	60

mostra un carattere X che è **indipendente in distribuzione** da Y. Infatti . . .

(Assenza di) Connessione - Proprietà

 Se X è indipendente in distribuzione da Y allora le sue frequenze relative condizionate sono pari alla corrispondente frequenza relativa marginale:

$$f(x_i|y_1) = f(x_i|y_2) = \cdots = f(x_i|y_c) = f_i$$
. $\forall i = 1, ..., r$

 Se X è indipendente in distribuzione da Y allora anche Y è indipendente in distribuzione da X. In altre parole, se

$$f(x_i|y_1) = f(x_i|y_2) = \cdots = f(x_i|y_c) = f_i, \quad \forall i = 1, ..., r$$

allora necessariamente vale anche che

$$f(y_j|x_1) = f(y_j|x_2) = \cdots = f(y_j|x_r) = f_{.j} \quad \forall j = 1, \ldots, c.$$

• Se X e Y sono indipendenti in distribuzione allora

$$n_{ij} = \frac{n_i.n_{.j}}{N}$$

NB: Cosa implica la terza proprietà sulla distribuzione degli 0 in una tabella a doppia entrata?

(Assenza di) Connessione - Proprietà

Example

Data la seguente tabella a doppia entrata (che è la medesima della slide 13)

$X \setminus Y$	<i>y</i> ₁	y 2	<i>y</i> 3	
<i>x</i> ₁	5	10	15	30
<i>X</i> ₂	3	6	9	18
<i>X</i> 3	2	4	6	12
	10	20	30	60

verifichiamo empiricamente le proprietà elencate in precedenza.

(Assenza di) Connessione - Proprietà

Massima Connessione

 Si parla di massima connessione unilaterale di un carattere X da un carattere Y la situazione in cui se di una unità statistica è nota la modalità di Y allora è univocamente determinata anche la sua modalità di X:

$X \setminus Y$	<i>y</i> ₁	y 2	<i>y</i> ₃	<i>y</i> ₄
x_1	0	3	0	0
<i>X</i> ₂	5	0	0	2
<i>X</i> ₃	0	0	4	0

 Si parla di massima connessione bilaterale la situazione in cui si ha massima connessione unilaterale di X da Y e, al contempo, massima connessione unilaterale di Y da X.

$X \setminus Y$	<i>y</i> ₁	y 2	<i>y</i> 3
<i>X</i> ₁	0	3	0
x_2	5	0	0
X3	0	0	4

Massima Connessione - Esercizio

Example

Consideriamo due caratteri X e Y aventi le seguenti distribuzioni marginali:

$X \setminus Y$	<i>y</i> ₁	y 2	<i>y</i> 3	
<i>x</i> ₁				10
x_2				8
<i>X</i> ₃				7
	8	7	10	25

Completare la tabella a doppia entrata nei due seguenti casi:

- 1. *X* e *Y* sono indipendenti in distribuzione;
- 2. X e Y sono massimamente connessi.

Contingenze

Data una tabella di frequenze, è sempre possibile calcolare le quantità

$$\hat{n}_{ij}=\frac{n_{i.}n_{.j}}{N}.$$

Esse rappresentano le frequenze assolute teoriche in caso di indipendenza in distribuzione.

Una eventuale discrepanza tra n_{ij} e n̂_{ij} è sintomo di connessione tra X e
 Y. Definiamo quindi le contingenze assolute come

$$C_{ij} = n_{ij} - \hat{n}_{ij}$$

e le contingenze relative come

$$\rho_{ij}=\frac{C_{ij}}{\hat{n}_{ij}}=\frac{n_{ij}-\hat{n}_{ij}}{\hat{n}_{ij}}.$$

- Interpretazione:
 - Se $C_{ij} \simeq 0$ allora X e Y sono indipendenti in distribuzione;
 - Se $C_{ij} > 0$ allora X e Y presentano una certa attrazione;
 - Se $C_{ij} < 0$ allora X e Y presentano una certa repulsione.

Contingenze

Example

Data la seguente tabella a doppia entrata

$X \setminus Y$	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₁	15	10	15	40
<i>X</i> ₂	20	5	5	30
<i>X</i> ₃	10	15	25	50
	45	30	45	120

si calcolino le contingenze relative ρ_{ij} .

Indice quadratico di connessione di Pearson

• L'indice quadratico di connessione di Pearson sintetizza le contingenze relative tramite una media quadratica con pesi pari alle frequenze teoriche in caso di indipendenza, \hat{n}_{ij} :

$$M_2(\rho) = \sqrt{\frac{1}{N} \sum_{j=1}^{c} \sum_{i=1}^{r} \hat{n}_{ij} \rho_{ij}^2} = \sqrt{\frac{1}{N} \sum_{j=1}^{c} \sum_{i=1}^{r} \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}}}$$

• E' possibile dimostrare che tale indice è anche esprimibile come $M_2(p)=\sqrt{rac{1}{N}\chi^2}$ dove

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2}}{\hat{n}_{ij}} - N.$$

Questa formulazione evita il calcolo delle differenze $n_{ij} - \hat{n}_{ij}$.

• E' inoltre possibile dimostrare che $M_2(\rho) \leq \sqrt{\min(r-1,c-1)}$, il che ci permette di definire un **indice normalizzato**:

$$ilde{M}_2(
ho) = rac{M_2(
ho)}{\sqrt{\min(r-1,c-1)}}$$

Indice quadratico di connessione di Pearson

Example

Calcolare **l'indice quadratico di connessione di Pearson** (nella sua versione standard e normalizzata) per la seguente tabella a doppia entrata

$X \setminus Y$	<i>y</i> ₁	y 2	<i>y</i> ₃	
<i>x</i> ₁	15	10	15	40
<i>X</i> ₂	20	5	5	30
<i>X</i> ₃	10	15	25	50
	45	30	45	120

- Gli strumenti presentati finora vengono solitamente usati quando i caratteri di interesse sono di tipo qualitativo (nominale o ordinale). Se almeno uno dei due è di tipo quantitativo abbiamo a disposizione anche altre analisi.
- Sia X un carattere **quantitativo** e sia Y un carattere **qualitativo** che assume valori y_1, \ldots, y_c con frequenze $n_{.1}, \ldots, n_{.j}, \ldots, n_{.c}$. Il carattere Y divide naturalmente le N osservazioni in c gruppi.

 Se esiste una connessione tra X e Y (i.e. se non sono indipendenti in distribuzione), possiamo studiare come varia la media di X rispetto ai gruppi definiti da Y. Per ciascun gruppo j possiamo definire

$$M_1(X|y_j) = \bar{x}_j = \frac{1}{n_{\cdot j}} \sum_{i=1}^r x_i \cdot n_{ij} = \sum_{i=1}^r x_i f(x_i|y_j).$$

Diciamo che X è indipendente in media da Y se

$$M_1(X|y_1) = M_1(X|y_2) = \cdots = M_1(X|y_c) = M_1(X)$$

dove $M_1(X) = \bar{x} = \frac{1}{N} \sum_{i=1}^r x_i n_i$. Se ciò non è verificato, diciamo che X dipende in media da Y.

Proprietà:

1 - La dipendenza in media non è l'unica forma di dipendenza tra variabili quantitative e qualitative. Possiamo anche parlare di dipendenza in mediana, dipendenza in varianza . . .

- 2 L'indipendenza in media non è una proprietà simmetrica. Infatti, data la loro natura, non ha senso chiedersi se Y dipende in media da X.
- 3 L'indipendenza in distribuzione implica l'indipendenza in media:

Indipendenza in Distribuzione \Rightarrow Indipendenza in media

Come mostra il seguente esempio, il viceversa non è vero.

Example

Si dimostri che nella seguente tabella vi è **indipendenza in media** tra X e Y:

$X \setminus Y$	A	В	С	D
4	2	0	3	3
8	4	4	1	3
12	4	4	1	3
16	2	0	3	3

E' possibile che X e Y siano **indipendenti in distribuzione**?

- Dopo aver stabilito che *X* e *Y* non sono indipendenti in media, potremmo anche essere interessati a misurare la *forza* di questa dipendenza.
- Il rapporto di correlazione di Pearson raggiunge questo scopo:

$$\eta_{(X|Y)}^2 = \frac{\text{Devianza fra i gruppi}}{\text{Devianza totale}}$$

dove

Devianza fra i gruppi
$$=\sum_{j=1}^c n_{\cdot j} (\bar{x}_j - \bar{x})^2$$

е

 ${\sf Devianza\ totale} = {\sf Devianza\ nei\ gruppi} + {\sf Devianza\ fra\ i\ gruppi}$

$$= \sum_{j=1}^{c} \left(\sum_{i=1}^{r} (x_i - \bar{x}_j)^2 \cdot n_{ij} \right) + \sum_{j=1}^{c} n_{\cdot j} (\bar{x}_j - \bar{x})^2$$

NB: Pensate alla *Devianza* come ad una *Varianza* che non viene divisa per *N*.

L'indice $\eta^2_{(X|Y)}$ gode di alcune proprietà.

• L'indice è naturalmente **normalizzato**, cioè $0 \le \eta_{(X|Y)}^2 \le 1$.

Analizziamo ora le due situazioni estreme.

• L'indice vale 0 se e solo se tutte le medie nei gruppi sono uguali a \bar{x} :

$$\sum_{j=1}^{c} n_{\cdot j} (\bar{x}_j - \bar{x})^2 = 0 \Longleftrightarrow \bar{x}_j = \bar{x} \quad \forall j = 1, \dots, c.$$

Questa è esattamente la definizione di indipendenza in media. Quindi

$$\eta^2_{(X|Y)} = 0 \Longleftrightarrow X$$
 e Y sono indipendenti in media

• L'indice vale 1 se e solo se la devianza nei gruppi è nulla, il che succede solamente quando tutte le distribuzioni condizionate di X assumono un solo valore che è forzatamente pari a \bar{x}_j . Di conseguenza

$$\eta^2_{(X|Y)} = 1 \iff X$$
 e Ysono massimamente connessi

Inoltre, come già detto,

$$M_2(\rho) = 0 \Rightarrow \eta_{(X|Y)}^2 = 0$$

$$\eta_{(X|Y)}^2 = 0 \Rightarrow M_2(\rho) = 0$$

$$\eta_{(X|Y)}^2 > 0 \Rightarrow M_2(\rho) > 0$$

Example

In uno studio di mineralogia si vogliono studiare tre tipi di roccia differenti (Y) misurandone il numero di cristalli per unità di volume standard (X). I dati raccolti sono riassunti nella seguente tabella:

Roccia	Misurazioni
Granito	15, 18, 14, 17
Basalto	8, 7, 9, 10
Calcare	4, 5, 6, 5

Si calcoli il coefficiente di correlazione parziale $\eta^2_{(X|Y)}$, commentandone il valore.

Correlazione

Correlazione

• Supponiamo ora che X e Y rappresentano due caratteri **quantitativi** rilevati **congiuntamente** su una popolazione di N unità. Siano

$$\{(x_1, y_1), \ldots, (x_N, y_N)\}$$

le coppie di osservazioni. Ad esempio:

Correlazione

 La covarianza tra X e Y è un indice che misura la forza della relazione tra X e Y ed è definita come