Teórico Prática nº7: Cinética Química

1) A equação cinética para a reação seguinte é dada por velocidade = $k[NH_4^+] \cdot [NO_2^-]$ sendo a constante de velocidade de 3,0 x 10^{-4} M $^{-1}$.s $^{-1}$ a 25 °C. Calcule a velocidade da reação a esta temperatura se $[NH_4^+] = 0,26$ M e $[NO_2^-] = 0,080$ M.

$$NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + H_2O(l)$$

2) Considere a reação:

$$A + B \rightarrow produtos$$

Determine a ordem da reação e calcule a constante de velocidade a partir dos seguintes resultados obtidos a uma dada temperatura:

[A] (M)	[B] (M)	velocidade (M.s ⁻¹)
1,50	1,50	3,20 x 10 ⁻¹
1,50	2,50	3,20 x 10 ⁻¹
3,00	1,50	6,40 x 10 ⁻¹

3) Considere a reação

$$A + B \rightarrow produtos$$

A velocidade da reação é $1,6 \times 10^{-2} \text{ M.s}^{-1}$ quando a concentração de A é 0,35 M. Calcule a constante de velocidade se a reação for:

- a) de 1ª ordem em relação a A.
- b) de 2ª ordem em relação a A.

4) Considere a reação

$$X + Y \rightarrow Z$$

Obtiveram-se os seguintes resultados a 360 K:

velocidade inicial de	[X] (M)	[Y] (M)
consumo de X (M.s ⁻¹)		
0,147	0,10	0,50
0,127	0,20	0,30
4,064	0,40	0,60
1,016	0,20	0,60
0,508	0,40	0,30

- a) Determine a ordem da reação.
- **b)** Calcule a velocidade inicial de desaparecimento de X se a concentração de X for 0,30 M e a de Y for 0,40 M.
- 5) A constante de velocidade da reação de 2ª ordem:

$$2 \text{ NOBr(g)} \rightarrow 2 \text{ NO(g)} + \text{Br}_2(g)$$

é 0,80 M⁻¹.s⁻¹ a 10 °C. Calcule a concentração de NOBr após 22 s de reação se a concentração inicial for de 0,086 M.

6) A reação seguinte é de 2º ordem em relação a A:

A uma determinada temperatura, a constante de velocidade de 2ª ordem é 1,46 M⁻¹.s⁻¹. Calcule o tempo de semi-transformação da reação se a concentração inicial de A for 0,86 M.