Aeronautics & Mechanics AENG11301 Lecture 3

Aerofoils (known as Airfoils in the real world)

30/1/18 Dr Ben Woods

Department of Aerospace Engineering University of Bristol

Reminder! Matlab lab

- First one is this Friday 11am-1pm
- MVB 1.07
- 3 lab sessions, two exercises to be completed during lab
- 1 coursework to be done after

Outline for today

- Aerodynamic coefficients
- Aerofoil characteristics
 - Lift
 - -Stall
- High lift devices

Aims for today

- Be able to interpret the lift coefficient and define what factors effect it.
- Be able to read a lift curve and understand how it changes with:
 - Wing thickness
 - -Chamber
 - Flap extension
 - Leading edge devices

Review - Aerodynamic Forces

- Pressure distribution + friction give:
 - 1. **Lift** (L) acting *perpendicular* to the flow
 - 2. **Drag** (D) acting *parallel* to the flow
 - 3. Pitching Moment (M) acting about a defined axis

 usually the leading-edge or the quarter-chord point

 Forces determined primarily by the incidence or angle of attack

angle (α) between chord line and flow direction

Equation for Lift

- From last lecture: $L \propto \alpha \rho_{\infty} V_{\infty}^2$
- Lift (L) is also proportional to a measure of area, which for airplanes is taken as the wing area (S)
- Taking these relationships we get the equation for lift:

$$L = \frac{1}{2} \rho_{\infty} V_{\infty}^2 SC_L$$

Where:

 $ho_{\infty} =$ free stream air density $V_{\infty} =$ free stream velocity S = wing area

• But what is C_L ?

Aerodynamic Coefficients (1)

- engineers like to work in non-dimensional equations
 - Allows for more meaningful comparisons
- aerodynamic forces found to be proportional to:
 - velocity squared V^2
 - density ρ
 - $-\hspace{0.1cm}$ wing area S
- leads to non-dimensional coefficients:
 - 1. Lift Coefficient (C_I)
 - 2. Drag Coefficient (C_D)
 - 3. Pitching Moment Coefficient (C_M)
 - with additional reference length (c)

$$C_L = \frac{L}{\frac{1}{2} \rho_{\infty} V_{\infty}^2 S}$$

$$C_D = \frac{D}{\frac{1}{2} \rho_{\infty} V_{\infty}^2 S}$$

$$C_{M} = \frac{M}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} Sc}$$

- coefficients ~ independent of aircraft size and speed
- factor of ½ added for consistency with dynamic pressure $q = \frac{1}{2}\rho V^2$

Aerodynamic Coefficients (2)

- coefficients are then functions of three further nondimensional parameters
 - 1. Incidence angle (a.k.a. angle of attack) (α)
 - governs basic changes in flow pattern
 - 2. Mach Number (M_{∞})
 - $-M_{\infty}=V_{\infty}/a$, where (a) is speed of sound
 - compressibility effects at high speed only $(M_{\infty} > \sim 0.4)$
 - 3. Reynolds Number (Re)
 - ratio of inertia forces to viscous forces
 - effect of viscosity (μ) on flow pattern
 - important below a critical value $(Re < Re_{crit})$

$$Re = \frac{\rho V_{\infty} c}{\mu}$$

- Re important for low speed, M_{∞} for high speed
- matching both M_{∞} and Re in wind tunnel tests rather difficult

Typical Aerofoil Lift Characteristics (1)

Lift Curve

N. A.C. A.

Flow about the same airfoil section in the small smoketunnel at approximately onesixth of the Reynolds Number of the flow shown previously

Onset of Stall

Stall

Let's work through a problem together...

At cruise, an airplane weighs 3500kg The wing area is 12 m² Speed is 600 km/hr Altitude is 12,000 m (ρ = 0.31 kg/m³)

What is the lift coefficient, C_L ? What angle of attack does it fly at?

Answer:

$$L = \frac{1}{2} \rho_{\infty} V_{\infty}^2 SC_L \qquad \qquad L = W$$

$$C_L = \frac{2W}{\rho SV^2}$$

$$= \frac{2 * 3500 \text{kg} * 9.81 \text{m/s}^2}{0.31 \text{kg/m}^3 * 12m^2 * [600 \text{km/hr} * 0.278 (\text{km/hr} \rightarrow \text{m/s})]^2}$$

$$= 0.663$$

For angle of attack, we can use the lift graph...

Lift Curve

Typical Aerofoil Lift Characteristics (2)

- aircraft usually operate in linear part of lift-curve
 - constant slope $dC_L/d\alpha$
 - − lift-curve slope $a \approx 2\pi/\text{rad}$ (or $\approx 0.11/\text{deg}$) for 2D aerofoil
 - slope less for 3D wing (more later ...)
 - linear region extends into negative incidence range
- positive camber gives constant increment in lift
 - corresponds to negative **zero-lift incidence** α_0
- maximum lift C_{Imax} limited by **stall** onset
 - fundamental limit to flight envelope
 - due to occurrence of flow separation
- C_{Imax} and post-stall lift loss very dependent on:
 - aerofoil section 'thick' vs 'thin' governs type of separation
 - Reynolds Number governs onset of separation
 - Mach Number shock-induced separation at high speed

Stall

Stall Characteristics

Blunt Aerofoil

Effect of Camber

Note difference in zero-lift angle of incidence $lpha_0$

Reynolds Number

$$Re = \frac{\rho V_{\infty} c}{\mu}$$

Relates inertial forces to viscous forces

747-400 2 x 10^8

PA-16 5×10^6

Eagle 1×10^5

House Fly 8,000

Where μ is dynamic viscosity and for air at sea level = 1.7894 x 10⁻⁵ kg/(ms)

Stall Characteristics

Reynolds Number Re

thickness (t/c)

Why is C_{Lmax} Important?

- the lift coefficient ${\cal C}_L$ required to support an aircraft of weight W varies with speed V
- for steady level flight

$$W = L = \frac{1}{2} \rho V^2 S C_L \qquad \qquad V = \sqrt{\frac{W}{\frac{1}{2} \rho S C_L}}$$

- and hence minimum flight speed $V_{min} \propto 1/\sqrt{C_{Lmax}}$
- low minimum speed needed for take-off & landing
 - approach speed typically $\sim 1.3 V_{min}$
- cambered high lift aerofoils inefficient in cruise
 - need variable geometry vast array of complex devices used
 - leading-edge devices and trailing-edge flaps

Flaps

What do flaps do?

Increases camber and effective angle of attack, which increases lift

Leading Edge Devices

Drooped leading edge

Krueger flap

What do leading edge devices do?

Increases angle at which stall occurs

Flaps & Slats

 trailing-edge flaps increase camber

- increased lift
- lower stall angle
- increased C_{Lmax}

 leading-edge devices delay onset of separation

- reduced lift
- much later stall
- increased C_{Lmax}
- both increase drag

Is there a better way?!

Fish Bone Active Camber morphing aerofoil Tested here at UoB as part of a 4th year FYP

That drag though...

- While traditional flaps and slats are very effective and reliable, using them creates a significant drag penalty
- What if we could do the same thing, but more efficiently?

Wind tunnel data shows the FishBAC provides a 20-25% increase in C_L/C_D

Summary

- Lift coefficient determined by:
 - Shape
 - Angle of attack
 - Reynolds number
 - Mach number

$$Re = \frac{\rho V_{\infty} c}{\mu}$$

$$C_L = a(\alpha - \alpha_0)$$

$$C_{L} = \frac{L}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S}$$

$$C_{D} = \frac{D}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S}$$

$$C_{M} = \frac{M}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S c}$$

Lift curve effected by: wing thickness, chamber, + high lift devices

Follow-up materials

To help with exam:

Introduction to Flight – 5.3-5.4

Airfoil at Mach 0.8

Different pressure distributions

Airfoil at Critical Mach

Air is subsonic below wing

In this example the critical Mach number is 0.7

Airfoil above Critical Mach

F-4 Phantom

Supercritical Airfoils

significant lower surface curvature

- rather similar to modern laminar flow sections
 - good structural shape!

