TOPOLOGICAL ENTROPY FOR THE CANONICAL ENDOMORPHISM OF CUNTZ-KRIEGER ALGEBRAS

FLORIN P. BOCA AND PAUL GOLDSTEIN

Let Σ be a finite set and let $A = (A(i,j))_{i,j \in \Sigma}$ such that $A(i,j) \in \{0,1\}$ and all rows and columns of A are non-zero. The Cuntz-Krieger algebra \mathcal{O}_A is the universal C^* -algebra generated by partial isometries $S_i \neq 0$, $i \in \Sigma$, with the property that their support projections $Q_i = S_i^* S_i$ and $P_i = S_i S_i^*$ satisfy the relations

$$P_i P_j = \delta_{ij} P_i, \qquad Q_i = \sum_{j \in \Sigma} A(i, j) P_j, \qquad i, j \in \Sigma.$$

The aim of this note is to compute the topological entropy of the canonical "endomorphism" $\phi_A : \mathcal{O}_A \to \mathcal{O}_A$, which is the ucp (unital completely positive) map defined as

$$\phi_A(X) = \sum_{j \in \Sigma} S_j X S_j^*, \qquad X \in \mathcal{O}_A.$$

The map ϕ_A plays a crucial rôle in the study of \mathcal{O}_A ([6]). It invariates the AF-part \mathcal{F}_A of \mathcal{O}_A and the abelian subalgebra \mathcal{D}_A generated by $\phi_A^k(P_i)$, $i \in \Sigma$, $k \in \mathbb{N}$. The restriction $\phi_A|_{\mathcal{D}_A}$ is an isometric endomorphism of \mathcal{D}_A . Actually \mathcal{D}_A identifies with $C(X_A)$, the commutative C^* -algebra of continuous functions on the compact space

$$X_A = \{(x_k)_{k \in \mathbf{N}} ; x_k \in \Sigma, A(x_k, x_{k+1}) = 1\}$$

and ϕ_A is the endomorphism induced on $C(X_A)$ by the one-sided subshift of finite type σ_A (see [6]) defined by

$$(\sigma_A x)_k = x_{k+1}, \qquad x = (x_k)_{k \in \mathbf{N}} \in X_A.$$

Therefore ϕ_A can be regarded as a non-commutative generalization of the one-sided subshift of finite type associated with the matrix A and the computation of its dynamical entropies is of some interest (see [4, Page 691]).

When A(i,i) = 1, $i \in \Sigma$, one gets the Cuntz algebra \mathcal{O}_N where N is the cardinality of Σ (see [5]). In this case $\phi_N = \sum_{j=1}^N S_j \cdot S_j^*$ is a genuine endomorphism (i.e. $\phi_N(XY) = \phi_N(X)\phi_N(Y)$, $X, Y \in \mathcal{O}_N$) which invariates the AF-part $\mathcal{F}_N = \bigotimes_1^\infty M_N(\mathbf{C})$ of \mathcal{O}_N and $\phi_N|_{\mathcal{F}_N}$ coincides with the noncommutative Bernoulli shift $\phi_N(X) = 1 \otimes X$, $X \in \mathcal{F}_N$. Furthermore, $\phi_N|_{\mathcal{D}_N}$ is the classical one-sided Bernoulli shift.

D. Voiculescu has introduced in [9] a notion of topological entropy for noncommutative dynamical systems (A, α) , where A is a unital nuclear C^* -algebra and α an automorphism (or endomorphism) of A which extends the classical commutative topological entropy. In the noncommutative framework partitions of unity are being replaced by ucp map ([4],[9]). As pointed out by N. Brown (see [1]), Voiculescu's definition carries on, with slight modifications, to the larger class of (not necessarily unital) exact C^* -algebras.

Date: June 30, 1999.

1991 Mathematics Subject Classification. 46L55.

Research supported by an EPSRC Advanced Fellowship and an EPSRC Research Assistanship.

M. Choda has computed in [2] the topological entropy $\operatorname{ht}(\phi_N)$ of the canonical endomorphism ϕ_N on \mathcal{O}_N , proving $\operatorname{ht}(\phi_N) = \log N$. The equality $\operatorname{ht}(\phi_A|_{\mathcal{F}_A}) = \log r(A)$ has been proved in [7]. In this note we extend these results and compute, under a suitable definition for the topological entropy of a cp map, the topological entropy $\operatorname{ht}(\phi_A)$, proving

Theorem. If A is irreducible and not a permutation matrix, then

$$\operatorname{ht}(\phi_A) = \log r(A).$$

Here r(A) denotes the spectral radius of A, which coincides by Perron-Frobenius with the largest (positive) eigenvalue of A.

One can associate to any matrix $A = (A(i,j))_{i,j\in\Sigma}$ with $A(i,j) \in \mathbf{Z}^+$ its dual matrix $A' = (A'(r,s))_{r,s\in\Sigma'}$ with $A'(r,s) \in \{0,1\}$ and define \mathcal{O}_A as $\mathcal{O}_{A'}$ (see [6]). Since A = ST and A' = TS for some matrices S and T, one has r(A') = r(A). Hence the topological entropy of the canonical endomorphism $\phi_{A'}$ on $\mathcal{O}_{A'} = \mathcal{O}_A$ equals r(A).

1. Proof of the main result

We first recall some basic definitions from [1] and [9]. In the sequel \mathcal{A} will be an exact C^* -algebra and $\mathcal{P}f(\mathcal{A})$ will denote the set of finite subsets of \mathcal{A} . For any faithful *-representation $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ one denotes by $CPA(\pi, \mathcal{A})$ the set of triples $(\phi, \psi, \mathcal{B})$, where \mathcal{B} is a finite-dimensional C^* -algebra and $\phi: \mathcal{A} \to \mathcal{B}$, $\psi: \mathcal{B} \to \mathcal{B}(\mathcal{H})$ are cp maps. One also considers for any $\omega \in \mathcal{P}f(\mathcal{A})$ the completely positive δ -rank

$$rcp(\pi,\omega;\delta) = \inf \left\{ \operatorname{rank} \mathcal{B} : (\phi,\psi,\mathcal{B}) \in CPA(\pi,\mathcal{A}), \|\psi\phi(a) - \pi(a)\| < \delta, \ a \in \omega \right\}. \tag{1}$$

By an important result of E. Kirchberg and S. Wassermann exact C^* -algebras are nuclearly embeddable (see [10]). Hence, there exists π faithful such that for all $\omega \in \mathcal{P}f(\mathcal{A})$ and $\delta > 0$, there is $(\phi, \psi, \mathcal{B}) \in CPA(\pi, \mathcal{A})$ with $\|\psi\phi(a) - \pi(a)\| < \delta$, $a \in \omega$. As noticed in [1], $rcp(\pi, \omega; \delta)$ is independent on the choice of π .

Assume also that $\Phi: \mathcal{A} \to \mathcal{A}$ is a cp map, let $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ and define

$$ht(\Phi,\omega;\delta) = \limsup_{n} n^{-1} \log rcp(\omega \cup \Phi(\omega) \cup \cdots \cup \Phi^{n-1}(\omega); \delta),$$

$$ht(\Phi,\omega) = \sup_{\delta>0} ht(\Phi,\omega;\delta), \qquad ht(\Phi) = \sup_{\omega\in\mathcal{P}f(\mathcal{A})} ht(\alpha,\omega).$$

As in the case of automorphisms or endomorphisms, $ht(\Phi)$ enjoys some basic properties which are collected in the next proposition. Proofs are similar to the corresponding ones from [1] and [9].

Proposition 1. (i) (Monotonicity) Let A_0 be a subalgebra of A such that $\Phi(A_0) \subset A_0$. Then

$$ht(\Phi|_{\mathcal{A}_0}) \le ht(\Phi).$$

(ii) (Kolmogorov-Sinai type property) Let $\omega_j \in \mathcal{P}f(\mathcal{A})$ such that $\omega_0 \subset \omega_1 \subset \ldots$ and the linear span of $\bigcup_{j,k \in \mathbb{N}} \Phi^k(\omega_j)$ is norm dense in \mathcal{A} . Then

$$ht(\Phi) = \sup_{j} ht(\Phi, \omega_j).$$

(iii) (Invariance to outer conjugacy) For any $\theta \in Aut(A)$ one has

$$ht(\theta\Phi\theta^{-1}) = ht(\Phi).$$

(iv) For any $k \in \mathbb{N}$, $\omega \in \mathcal{P}f(\mathcal{A})$ and $\delta > 0$ one has

$$ht(\Phi^k, \omega; \delta) \le k \, ht(\Phi, \omega; \delta).$$

(v) For any cp maps $\Phi_j: A_j \to A_j$, j = 1, 2, one has

$$\max (ht(\Phi_1), ht(\Phi_2)) \le ht(\Phi_1 \otimes \Phi_2) \le ht(\Phi_1) + ht(\Phi_2).$$

Next we turn to the Cuntz-Krieger C^* -algebra \mathcal{O}_A associated with an irreducible, non-permutation matrix A with entries in $\{0,1\}$. For any k-tuple $\mu = (\mu_1, \ldots, \mu_k)$, $\mu_j \in \Sigma$, we denote $o(\mu) = \mu_1$, $t(\mu) = \mu_k$, $S_{\mu} = S_{\mu_1} \ldots S_{\mu_k}$, $S_e = I$, o(e) = t(e) = I (e denotes the empty word) and $Q_{\mu} = S_{\mu}^* S_{\mu}$. For $\mu = (\mu_1, \ldots, \mu_k), \nu = (\nu_1, \ldots, \nu_l), \mu_i, \nu_j \in \Sigma$ we denote $\mu \nu = (\mu_1, \ldots, \mu_k, \nu_1, \ldots, \nu_l)$. The number of elements of a finite set F is denoted by #F. We set $A(\mu) = 1$ for k = 1 and

$$A(\mu) = A(\mu_1, \mu_2) A(\mu_2, \mu_3) \dots A(\mu_{k-1}, \mu_k)$$
 for $k \ge 2$

Then, for μ , ν with $|\mu| = |\nu|$ one has

$$S_{\mu}^* S_{\nu} = \delta_{\mu\nu} Q_{\mu} = \delta_{\mu\nu} A(\mu) Q_{t(\mu)},$$

$$Q_{\eta}S_{\alpha} = A(\eta o(\alpha))S_{\alpha}$$
 for $|\alpha| \ge 1$.

In particular $S_{\mu} \neq 0$, $|\mu| \geq 1$, is equivalent to $A(\mu) \neq 0$. It is clear that the number of elements of

$$L(k) = \{ \mu \, ; \, |\mu| = k, \, S_{\mu} \neq 0 \}$$

equals

$$w(k) = \#\{(i_1, \dots, i_k); i_j \in \Sigma, A(i_1, i_2)A(i_2, i_3) \dots A(i_{k-1}, i_k) = 1\}$$

$$= \sum_{i_1, \dots, i_k \in \Sigma} A(i_1, i_2)A(i_2, i_3) \dots A(i_{k-1}, i_k) = \sum_{i, j \in \Sigma} A^{k-1}(i, j)$$

$$= \langle A^{k-1}e, e \rangle, \qquad \text{where } e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$
(2)

Note also that if r(A) denotes the spectral radius of A, then

$$||A^{k-1}|| \le \sum_{i,j \in \Sigma} A^{k-1}(i,j) = w(k) \le ||A^{k-1}|| \cdot ||e||_2^2 = \#\Sigma \cdot ||A^{k-1}||,$$

which provides

$$\lim_{k} k^{-1} \log w(k) = \lim_{k} k^{-1} \log ||A^{k-1}|| = \log r(A).$$
(3)

We consider now a certain embedding of the Cuntz-Krieger algebra \mathcal{O}_A into $M_{w(m)}(\mathbf{C}) \otimes \mathcal{O}_A$. For each $m \geq 1$ we index the canonical matrix unit of $M_{w(m)}(\mathbf{C})$ as $\{e_{\mu\nu}\}_{\mu,\nu\in L(m)}$ and define a map $\rho_m: \mathcal{O}_A \to M_{w(m)}(\mathbf{C}) \otimes \mathcal{O}_A$ by

$$\rho_m(X) = \sum_{\mu,\nu \in L(m)} e_{\mu\nu} \otimes S_{\mu}^* X S_{\nu}. \tag{4}$$

Since $\sum_{\mu \in L(m)} S_{\mu} S_{\mu}^* = \sum_{|\mu|=m} S_{\mu} S_{\mu}^* = I$, it is easily seen that ρ_m is a *-morphism. Moreover, since \mathcal{O}_A is simple, it follows that $\rho_m : \mathcal{O}_A \to \rho_m(\mathcal{O}_A) \subset M_{w(m)}(\mathbf{C}) \otimes \mathcal{O}_A$ is a *-isomorphism. The map ρ_m is not unital in general. We only have $\rho_m(1) = \sum_{\mu \in L(m)} e_{\mu\mu} \otimes Q_{\mu} = \sum_{\mu \in L(m)} e_{\mu\mu} \otimes Q_{t(\mu)}$.

However, for Cuntz algebras this map is unital, multiplicative and onto, providing an explicit isomorphism between \mathcal{O}_N and $M_{N^m}(\mathbf{C}) \otimes \mathcal{O}_N$. To see that ρ_m is onto note that for $|\mu_0| = |\nu_0| = m$ we have $\rho_m(S_{\mu_0}S_{\nu_0}^*) = e_{\mu_0\nu_0} \otimes I$ and $\rho_m(S_{\mu_0}S_{\nu_0}^*) = e_{\mu_0\mu_0} \otimes S_{\nu_0}$. For m = 1 and N = 2 this map was used by M. D. Choi (see [3]) to prove the isomorphism between $M_2(\mathbf{C}) \otimes \mathcal{O}_2$ and \mathcal{O}_2 .

We return to the general case and note that for all $l \geq 1$

$$\phi_A^l(X) = \sum_{|\eta|=l} S_{\eta} X S_{\eta}^* = \sum_{\eta \in L(l)} S_{\eta} X S_{\eta}^*, \qquad X \in \mathcal{O}_A.$$
 (5)

Lemma 2. Let $n \ge 1$ and assume that $|\beta| \le |\alpha| \le n_0$ and $m \ge n + n_0$. Then, for all $i \in \Sigma$ and all $l \in \{0, 1, ..., n-1\}$ one has

$$\rho_m \phi_A^l(S_{\alpha} P_i S_{\beta}^*) = \begin{cases} \sum_{|\mu| = |\alpha| - |\beta|} X(\mu) \otimes S_{\mu} & \text{if } |\beta| < |\alpha|, \\ \sum_{j \in \Sigma} X_j \otimes Q_j & \text{if } |\beta| = |\alpha|, \end{cases}$$

for some partial isometries $X(\mu) = X(|\alpha|, |\beta|, i, l, \mu)$ and respectively $X_i = X(|\alpha|, i, l, j)$.

Proof. From (5) and (4) we get

$$\rho_{m}\phi_{A}^{l}(S_{\alpha}P_{i}S_{\beta}^{*}) = \sum_{\eta \in L(l)} \rho_{m}(S_{\eta\alpha}P_{i}S_{\eta\beta}^{*}) = \sum_{\eta \in L(l)} \sum_{\mu,\nu \in L(m)} e_{\mu\nu} \otimes S_{\mu}^{*}S_{\eta}S_{\alpha}P_{i}S_{\beta}^{*}S_{\eta}^{*}S_{\nu}$$

$$(with \ \mu = \eta\mu', \ \nu = \eta\nu') = \sum_{|\eta|=l} \sum_{\substack{|\mu'|=|\nu'|=m-l\\ \eta\mu',\eta\nu' \in L(m)}} e_{\eta\mu',\eta\nu'} \otimes S_{\mu'}^{*}Q_{\eta}S_{\alpha}P_{i}S_{\beta}^{*}Q_{\eta}S_{\nu'}.$$

$$(6)$$

For $|\beta| = |\alpha| \ge 1$ this yields

$$\rho_{m}\phi_{A}^{l}(S_{\alpha}P_{i}S_{\beta}^{*}) = \sum_{|\eta|=l} \sum_{|\mu'|=|\nu'|=m-l} A(\eta o(\alpha))A(\eta o(\beta))e_{\eta\mu',\eta\nu'} \otimes S_{\mu'}^{*}S_{\alpha}P_{i}S_{\beta}^{*}S_{\nu'}$$

$$(with \ \mu' = \alpha\mu'', \ \nu' = \beta\nu'') = \sum_{|\eta|=l} \sum_{|\mu''|=|\nu''|=m-l-|\alpha|} A(\eta o(\alpha))A(\eta o(\beta))e_{\eta\alpha\mu'',\eta\beta\nu''} \otimes S_{\mu''}^{*}Q_{\alpha}P_{i}Q_{\beta}S_{\nu''}$$

$$= \sum_{|\eta|=l} \sum_{|\mu''|=|\nu''|=m-l-|\alpha|} A(\eta ao(\mu''))A(\eta \beta o(\nu''))e_{\eta\alpha\mu'',\eta\beta\nu''} \otimes S_{\mu''}^{*}P_{i}S_{\nu''}$$

$$= \sum_{|\eta|=l} \sum_{|\mu''|=|\nu''|=m-l-|\alpha|} A(\eta \alpha i)A(\eta \beta i)e_{\eta\alpha\mu'',\eta\beta\nu''} \otimes S_{\mu''}^{*}S_{\nu''}$$

$$(with \ \nu'' = \mu'') = \sum_{|\eta|=l} \sum_{|\mu''|=m-l-|\alpha|,o(\mu'')=i} A(\eta \alpha i)A(\eta \beta i)A(\mu'')e_{\eta\alpha\mu'',\eta\beta\mu''} \otimes Q_{t(\mu'')}$$

$$= \sum_{|\eta|=l} \sum_{|\mu''|=m-l-|\alpha|,o(\mu'')=i} A(\eta \alpha i)A(\eta \beta i)A(\mu'')e_{\eta\alpha\mu'',\eta\beta\mu''} \otimes Q_{t(\mu'')}$$

$$= \sum_{|\eta|=l} \sum_{|\mu''|=m-l-|\alpha|,o(\mu'')=i} e_{\eta\alpha\mu'',\eta\beta\mu''} \otimes Q_{t(\mu'')}$$

where

$$X_{j} = \sum_{\substack{|\eta| = l}} \sum_{\substack{|\mu''| = m - l - |\alpha| \\ o(\mu'') = i, t(\mu'') = j \\ \eta \alpha \mu'', \eta \beta \mu'' \in L(m)}} e_{\eta \alpha \mu'', \eta \beta \mu''}$$

are partial isometries for all $j \in \Sigma$.

For $\beta = \alpha = e$ a similar computation yields $\rho_m \phi_A^l(P_i) = \sum_{j \in \Sigma} X_j \otimes Q_j$, with

$$X_{j} = \sum_{\substack{|\eta| = l \ |\mu'| = m - l, \, o(\mu') = i, \, t(\mu') = j \\ \eta \mu' \in L(m)}} e_{\eta \mu', \eta \mu'}.$$

For $1 \leq |\beta| < |\alpha|$ equality (6) yields

$$\rho_{m}\phi_{A}^{l}(S_{\alpha}P_{i}S_{\beta}^{*}) = \sum_{|\eta|=l} \sum_{\substack{|\mu'|=|\nu'|=m-l\\\eta\mu',\eta\nu'\in L(m)}} A(\eta o(\alpha))A(\eta o(\beta))e_{\eta\mu',\eta\nu'} \otimes S_{\mu'}^{*}S_{\alpha}P_{i}S_{\beta}^{*}S_{\nu'}$$

$$(with \ \mu' = \alpha\mu'', \ \nu' = \beta\nu'') = \sum_{|\eta|=l} \sum_{\substack{|\mu'|=m-l-|\alpha|\\|\nu''|=m-l-|\beta|\\\eta\alpha\mu'',\eta\beta\nu''\in L(m)}} A(\eta o(\alpha))A(\eta o(\beta))e_{\eta\alpha\mu'',\eta\beta\nu''} \otimes S_{\mu''}^{*}Q_{\alpha}P_{i}Q_{\beta}S_{\nu''}$$

$$= \sum_{|\eta|=l} \sum_{\substack{|\mu''|=m-l-|\alpha|\\|\nu''|=m-l-|\beta|\\\eta\alpha\mu'',\eta\beta\nu''\in L(m)}} A(\eta \alpha o(\mu''))A(\eta \beta o(\nu''))e_{\eta\alpha\mu'',\eta\beta\nu''} \otimes S_{\mu''}^{*}P_{i}S_{\nu''}$$

$$= \sum_{|\eta|=l} \sum_{\substack{|\mu''|=m-l-|\alpha|\\|\nu''|=m-l-|\beta|, o(\mu'')=i\\|\nu''|=m-l-|\beta|, o(\mu'')=i\\\eta\alpha\mu'',\eta\beta\nu''\in L(m)}} A(\eta\alpha\mu''o(\mu))A(\eta\beta i)e_{\eta\alpha\mu'',\eta\beta\mu''\mu} \otimes S_{\mu}$$

$$= \sum_{|\eta|=l} \sum_{\substack{|\mu''|=m-l-|\alpha|, o(\mu'')=i\\|\mu|=|\alpha|-|\beta|}} A(\eta\alpha\mu''o(\mu))A(\eta\beta i)e_{\eta\alpha\mu'',\eta\beta\mu''\mu} \otimes S_{\mu}$$

$$= \sum_{|\eta|=l} \sum_{\substack{|\mu''|=m-l-|\alpha|, o(\mu'')=i\\|\mu|=|\alpha|-|\beta|}} A(\eta\alpha\mu''o(\mu))A(\eta\beta i)e_{\eta\alpha\mu'',\eta\beta\mu''\mu} \otimes S_{\mu}$$

$$= \sum_{|\eta|=l} \sum_{\substack{|\mu''|=m-l-|\alpha|, o(\mu'')=i\\|\mu|=|\alpha|-|\beta|}} e_{\eta\alpha\mu'',\eta\beta\mu''\mu\in L(m)}$$

$$= \sum_{|\mu|=|\alpha|-|\beta|} X(\mu) \otimes S_{\mu},$$

where

$$X(\mu) = \sum_{\substack{|\eta|=l \\ \eta \alpha \mu'', \eta \beta \mu'' \mu \in L(m)}} e_{\eta \alpha \mu'', \eta \beta \mu'' \mu}$$

are partial isometries for all $\mu \in L(|\alpha| - |\beta|)$. One plainly checks that for $\beta = e$, $|\alpha| \ge 1$, the formula $\rho_m \phi_A^l(S_\alpha P_i) = \sum_{|\mu| = |\alpha|} X(\mu) \otimes S_\mu$ holds for the $X(\mu)$ above which corresponds to $\beta = e$.

For any $k \geq 1$ we put

$$\omega(k) = \{ S_{\alpha} P_i S_{\beta}^*; |\beta| \le |\alpha| \le k, \ i \in \Sigma \}.$$

Proposition 3. For all $n_0 \ge 1$ and $\delta > 0$ one has

$$\limsup_{n} n^{-1} \log rcp \left(\omega(n_0) \cup \phi_A \left(\omega(n_0) \right) \cup \cdots \cup \phi_A^{n-1} \left(\omega(n_0) \right); \delta \right) \leq \log r(A).$$

Proof. For $n \ge 1$ we let $m = m(n) = n + n_0$. Since \mathcal{O}_A is nuclear, there exists $(\phi_0, \psi_0, M_{m_0}(\mathbf{C})) \in CPA(id_A, \mathcal{O}_A)$, that is

such that

$$\|\psi_0\phi_0(Q_j) - Q_j\| + \|\psi_0\phi_0(S_\gamma) - S_\gamma\| < \frac{\delta}{\max(\#\Sigma, w(n_0))} \quad \text{for all } \gamma \in L(n_0) \text{ and } j \in \Sigma.$$
 (7)

Consider $\mathcal{B} = M_{w(m)}(\mathbf{C}) \otimes M_{m_0}(\mathbf{C})$ and let \mathcal{H} be a Hilbert space on which \mathcal{O}_A acts faithfully. The *-isomorphism $\rho_m^{-1}: \rho_m(\mathcal{O}_A) \to \mathcal{O}_A$ extends to a cp map $\Psi_m: M_{w(m)}(\mathbf{C}) \otimes \mathcal{O}_A \to \mathcal{B}(\mathcal{H})$ with $\|\Psi_m\| = 1$. We consider the cp maps $\phi = (id \otimes \phi_0)\rho_m: \mathcal{O}_A \to \mathcal{B}$ and $\psi = \Psi_m(id \otimes \psi_0): \mathcal{B} \to \mathcal{B}(\mathcal{H})$; see the following diagram

Let $a = S_{\alpha}P_iS_{\beta}^* \in \omega(n_0)$. By the previous lemma there exist partial isometries $X(\mu) = X(a, l, \mu)$ if $|\beta| < |\alpha|$ and $X_j = X(a, l, j)$ if $|\alpha| = |\beta|$ such that

$$\rho_m \phi_A^l(a) = \begin{cases} \sum_{|\mu| = |\alpha| - |\beta|} X(\mu) \otimes S_\mu & \text{for } |\beta| < |\alpha|, \\ \sum_{j \in \Sigma} X_j \otimes Q_j & \text{for } |\beta| = |\alpha|. \end{cases}$$
(8)

From (8) and (7) we gather

$$\|\psi\phi(\phi_{A}^{l}(a)) - \phi_{A}^{l}(a)\| = \|\Psi_{m}(id \otimes \psi_{0}\phi_{0})(\rho_{m}\phi_{A}^{l}(a)) - \phi_{A}^{l}(a)\|$$

$$= \|\Psi_{m}(id \otimes \psi_{0}\phi_{0})(\rho_{m}\phi_{A}^{l}(a)) - \Psi_{m}(\rho_{m}\phi_{A}^{l}(a))\| \leq \|(id \otimes \psi_{0}\phi_{0})(\rho_{m}\phi_{A}^{l}(a)) - \rho_{m}\phi_{A}^{l}(a)\|$$

$$= \begin{cases} \|\sum_{|\mu| = |\alpha| - |\beta|} X(\mu) \otimes (\psi_{0}\phi_{0}(S_{\mu}) - S_{\mu})\| & \text{for } |\beta| < |\alpha|, \\ \|\sum_{j \in \Sigma} X_{j} \otimes (\psi_{0}\phi_{0}(Q_{j}) - Q_{j})\| & \text{for } |\beta| = |\alpha|, \end{cases}$$

$$< \max(\#\Sigma, w(n_{0})) \cdot \frac{\delta}{\max(\#\Sigma, w(n_{0}))} = \delta.$$

Therefore

$$rcp\left(\omega(n_0)\cup\phi_A(\omega(n_0))\cup\cdots\cup\phi_A^{n-1}(\omega(n_0));\delta\right)\leq m_0w(m)=m_0w(n+n_0),$$

which we combine with (3) to get

$$\limsup_{n} n^{-1} \log \left(\omega(n_0) \cup \dots \cup \phi_A^{n-1} \left(\omega(n_0) \right); \delta \right) \le \limsup_{n} n^{-1} \log w(n) = \log r(A). \quad \Box$$

Proof of the main result. Since $\omega_n = \omega(n) \cup \omega(n)^*$ is an increasing sequence of finite subsets of \mathcal{O}_A and span $\bigcup_n \omega_n$ is dense in the uniform norm in \mathcal{O}_A , Proposition 1 (ii) and Proposition 3 provide

$$ht(\phi_A) \le \log r(A).$$
 (9)

For the opposite inequality, denote $\theta_A = \phi_A|_{\mathcal{D}_A = C(X_A)}$. By Proposition 1(i) $ht(\phi_A) \geq ht(\theta_A)$. Within the framework of [4], let σ be a probability measure on X_A such that $\sigma\theta_A = \sigma$. For any finite-dimensional algebra M and any ucp map $\gamma: M \to C(X_A)$, Proposition III.6 in [4] provides $H_{\sigma}(\gamma, \theta_A \gamma, \dots, \theta_A^{n+m-1} \gamma) \leq H_{\sigma}(\gamma, \theta_A \gamma, \dots, \theta_A^{n-1} \gamma) + H_{\sigma}(\gamma, \theta_A \gamma, \dots, \theta_A^{n-1} \gamma)$ for all $m, n \geq 1$, hence

$$h_{\sigma,\theta_A}(\gamma) = \lim_n n^{-1} H_{\sigma}(\gamma,\theta_A\gamma,\dots,\theta_A^{n-1}\gamma)$$

exists. Let $h_{\sigma}(\theta_A)$ be the supremum of $h_{\sigma,\theta_A}(\gamma)$ over all such M and γ . Arguing as in [9, Prop.4.8] one proves that for any $\gamma: M \to C(X_A)$ as above and any $\varepsilon > 0$, there exist $\omega \in \mathcal{P}f(C(X_A))$ and $\delta > 0$ such that

$$H_{\sigma}(\gamma, \theta_A \gamma, \dots, \theta_A^{n-1} \gamma) \le n\varepsilon + \log rcp \left(\omega \cup \theta_A(\omega) \cup \dots \cup \theta_A^{n-1}(\omega); \delta\right),$$

hence

$$h_{\sigma,\theta_A}(\gamma) \le ht(\theta_A).$$
 (10)

If \mathcal{P} is a finite partition into time-zero cylinder sets, $\mathcal{P}_n = \mathcal{P} \vee \sigma_A^{-1} \mathcal{P} \vee \cdots \vee \sigma_A^{-(n-1)} \mathcal{P}$, \mathcal{C} is the abelian finite-dimensional C^* -algebra generated by \mathcal{P}_n and $\gamma = i_{\mathcal{C}}$ the natural inclusion of \mathcal{C} into $C(X_A)$, then

$$-\sum_{E \in \mathcal{P}_n} \sigma(\chi_E) \log \sigma(\chi_E) = S(\sigma|_{\mathcal{P}_n}) = H_{\sigma}(\gamma, \theta_A \gamma, \dots, \theta_A^{n-1} \gamma), \tag{11}$$

the last equality following from [4, Remark III.5.2]. From (10) and (11) it follows that the classical measurable entropy $H_{\sigma}(\sigma_A)$ is $\leq ht(\theta_A)$. In the case when σ is the probability measure defined by a

probability eigenvector of A it is well-known (see e.g. [8]) that $H_{\sigma}(\sigma_A) = \log r(A)$. Hence one has $ht(\phi_A) \geq ht(\theta_A) \geq \log r(A)$, which completes the proof.

References

- 1. N. P. Brown, Topological entropy in exact C^* -algebras, Math. Annalen, to appear.
- 2. M. Choda, Endomorphisms of shift type (entropy for endomorphisms of Cuntz algebras), Operator Algebras and Quantum Field Theory (Rome, 1996), 469–475, International Press, Cambridge, MA.
- 3. M. D. Choi, A simple C*-algebra generated by two finite-order unitaries, Canad. J. Math. 31(1979), 867–880.
- A. Connes, H. Narnhofer, W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Comm. Math. Phys. 112(1987), 691–719.
- 5. J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173–185.
- J. Cuntz, W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268.
- 7. V. Deaconu, Entropy estimates for some C^* -endomorphisms, Proc. Amer. Math. Soc., to appear.
- 8. K. Petersen, Ergodic Theory, Cambridge University Press 1997.
- 9. D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170(1995), 249–281.
- 10. S. Wassermann, $Exact C^*$ -algebras and related topics, Lecture Notes Series no. 19, GARC, Seoul National University, 1994.

SCHOOL OF MATHEMATICS, CARDIFF UNIVERSITY, SENGHENNYDD ROAD, CARDIFF CF2 4YH, UK

EMAIL OF FPB: BOCAFP@CARDIFF.AC.UK, EMAIL OF PG: GOLDSTEINP@CARDIFF.AC.UK