Exercícios de fixação - Aula 019

- R21. Compare e aponte as diferenças entre os algoritmos de roteamento de estado de enlace e por vetor de distâncias.
- R22. Discuta como a organização hierárquica da Internet possibilitou estender seu alcance para milhões de usuários.
- R23. É necessário que todo sistema autônomo use o mesmo algoritmo de roteamento intra-AS? Justifique sua resposta.
- P28. Considere a rede mostrada a seguir e admita que cada nó inicialmente conheça os custos até cada um de seus vizinhos. Considere o algoritmo de vetor de distâncias e mostre os registros na tabela de distâncias para o nó z.

Respostas dos Exercícios de fixação - Aula 019

- R21. Algoritmos de estados de enlaces: calcula o caminho de menor custo entre a origem e o destino usando conhecimento global completo sobre a rede. Algoritmo de vetor de distâncias: o cálculo do caminho de menor custo é realizado de forma iterativa e distribuída. Um nó conhece apenas o vizinho para o qual deve encaminhar um pacote para alcançar determinado destino pelo caminho de menor custo, e o custo desse caminho de si mesmo ao destino.
- R22. Os roteadores são organizados em sistemas autônomos (ASs). Dentro de um AS, todos os roteadores executam o mesmo protocolo de roteamento intra-AS. O problema de escala foi resolvido, pois um roteador em um AS precisa apenas saber sobre os roteadores em seu AS e as sub-redes que se conectam ao AS. Para rotear entre ASes, o protocolo inter-AS é utilizado, e este não leva em consideração roteadores individuais.
- R23. Não. Cada AS tem autonomia administrativa para roteamento dentro de um AS.

Respostas dos Exercícios de fixação - Aula 019

• P28.

t1)	Custo para o nó:						t3)		Custo para o nó:				
		u	V	X	У	Z	O i		u	V	X	У	Z
De:	V	∞	∞	∞	∞	∞		V	1	0	3	3	5
	X	∞	∞	∞	∞	∞	De:	X	4	3	0	3	2
	Z	∞	6	2	∞	0		Z	6	5	2	5	0
t2)		Custo para o nó:					t4)		Custo para o nó:				
		u	v	X	y	Z			u	V	X	У	Z
De:	v	1	0	3	∞	6		V	1	0	3	3	5
	X	∞	3	0	3	2	De:	X	4	3	0	3	2
	7	7	5	2	5	0		Z	6	5	2	5	0