

Machine Learning: A new toolbox for Theoretical Physics

Juan Rojo

VU Amsterdam & Theory group, Nikhef

D-ITP Advanced Topics in Theoretical Physics 18/11/2019

Juan Rojo

D-ITP Advanced Topics: Machine Learning

Reinforcement Learning

Reinforcement Learning

So far we have considered two main paradigms in Machine Learning problems

Supervised Learning: starting from a training dataset with labelled examples, $\{x_i, y_i\}_{i=1,N}$, produce a model f(x) that predicts and generalises the info in the training sample. The labels y_i can be continuous (underlying law is function) or discrete (classification)

Unsupervised Learning: starting from a training dataset with unlabelled examples, {x_i}_{i=1,N}, produce a model that takes a sample as input and as output produces the solution of a practical problem, such as clustering, dimensional reduction, or outlier detection

now we want to discuss a third ML paradigm

Reinforcement Learning: given a complex task in a complex environment (dynamic, non deterministic, only partly accessible) train an agent that carry out autonomous action in this environment and complete the requested task

Juan Rojo

Convolutional Neural Networks

Convolutional Neural Networks

Like physical systems, many datasets and supervised learning tasks also possess additional **symmetries and structure** what can (and should) be exploited

eg we want to train a classifier to identify pictures of cats. What **high-level features** must one learn first?

Convolutional Neural Networks

Like physical systems, many datasets and supervised learning tasks also possess additional **symmetries and structure** what can (and should) be exploited

eg we want to train a classifier to identify pictures of cats. What **high-level features** must one learn first?

- From The features that define ``cat" are local in the picture: whiskers, tail, paws ...: locality
- Cats can be anywhere in the image: translational invariance
- Relative position of features must be respected (eg whiskers and tail shoaled appear in opposite sides of ``cat"): rotational invariance

Our classifier should exhibit all these high-level features

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are architectures that take **advantage of this additional high-level structures** that all-to-all coupled networks fail to exploit

A CNN is a translationally invariant neural network that respects locality of the input data

7

Machine Learning and Quantum Computation