Estructures de la Informació. Control parcial

Dept. de Ciències de la Computació E.P.S.E.V.G., 7 de novembre de 2014, 12:30-14:30

IMPORTANT: Resol els problemes en fulls separats.

1. (4 punts. 60 minuts) Estructures Lineals

Donada una classe llista genèrica que emmagatzema una llista doblement encadenada, no circular i amb element fantasma:

- a) Escriu la representació d'aquesta classe.
- b) Implementa un mètode d'aquesta classe que faci que cada element diferent de la llista aparegui a la llista n vegades (on $n \ge 0$). Per exemple,

```
L = [2, 2, 1, 3, 2, 5, 1] i n=3, el resultat seria L = [2, 2, 2, 1, 1, 1, 3, 3, 3, 5, 5, 5]

L = [2, 2, 1, 3, 2, 5, 1] i n=1, el resultat seria L = [2, 1, 3, 5]
```

Pots considerar que el tipus genèric del que està format la llista disposa de l'operador d'igualtat, el constructor per còpia i l'operador d'assignació. El resultat no necessàriament ha de mantenir l'ordre original dels elements.

NOTA: Cal que implementis els mètodes addicionals que utilitzis explícitament.

2. (4 punts. 40 minuts) Diccionaris

Donada aquesta classe dicc implementada com un arbre binari de cerca, la representació de la qual és la següent:

```
template <typename C, typename V>
class dicc {
    ...
    private:
        struct node {
            node *fesq;
            node *fdret;
            C clau;
            V valor;
        };
        node* _arrel;
        ...
};
```

fes un mètode d'aquesta classe que donades dues claus, retorni una llista amb els valors associats a les claus que siguin més grans que la primera clau i més petites que la segona clau. La classe llista és la classe list de la biblioteca STL.

NOTA 1: Suposa que el tipus C disposa dels operadors de comparació i el tipus V el constructor per còpia i operador assignació.

NOTA 2: Cal que implementis els mètodes addicionals que utilitzis explícitament.

3. (2 punts. 20 minuts) Eficiència algorísmica

Donat el següent codi, calcula l'ordre de creixement asimptòtic del cost en el cas pitjor en termes de la notació Θ de manera <u>raonada</u>. Si és necessari, pots utilitzar els teoremes adjunts.

```
void f(int i, int j) {
  if (i < j) {
    int m = (i + j) / 2;
    g(j - i + 1);
    f(i, m);
    f(m + 1, j);
  }
}
void g(int n) {
  int *b = new int[n]; // Cost(new[]): \Theta(1)
  for (int i = 0; i < n; ++i) {</pre>
    b[i] = random(5);
    for (int j = 0; j < n; ++j) {</pre>
      for (int k= j-b[i]; k <= j+b[i]; ++k) {</pre>
        fun(j, k);
    }
                                // Cost(delete[]): \Theta(1)
  delete[] b;
}
```

En concret:

- a) Quin és el cost en el cas pitjor de la funció g respecte de n? Assumeix que les crides a la funció random (a), que retorna un número enter a l'atzar entre 0 i a, i la funció fun (a,b) tenen cost constant.
- b) Quin és el cost en el cas pitjor de la crida a f (1, n) en funció de n?

Decreixement aritmètic

Teorema. Sigui T(n) el cost d'un algorisme recursiu descrit per la recurrència

$$T\left(n\right) = \begin{cases} f\left(n\right) & si \ 0 \leqslant n < n_{0} \\ a \cdot T\left(n-c\right) + g\left(n\right) & si \ n_{0} \leqslant n \end{cases}$$

on n_0 és una constant, $c\!\geqslant\!1$, f(n) és una funció arbitrària i $g(n)\!=\!\Theta\!\left(n^k\right)$ amb k constant. Llavors,

$$T\left(n
ight) = egin{cases} \Theta\left(n^k
ight) & si\,lpha \! < \! 1 \ \Theta\left(n^{k+1}
ight) & si\,lpha \! = \! 1 \ \Theta\left(a^{n/c}
ight) & si\,lpha \! > \! 1 \end{cases}$$

Decreixement geomètric

Teorema. Sigui T(n) el cost d'un algorisme recursiu descrit per la recurrència

$$T\left(n\right) = \begin{cases} f\left(n\right) & si \, 0 \leq n < n_0 \\ a \cdot T\left(n/b\right) + g\left(n\right) & si \, n_0 \leq n \end{cases}$$

on n_0 és una constant, b>1, f(n) és una funció arbitrària i $g(n)=\Theta\left(n^k\right)$ amb k constant. Llavors,

$$T(n) = egin{pmatrix} \Thetaig(n^kig) & si\,a \!<\! b^k \ \Thetaig(n^k\log nig) & si\,a \!=\! b^k \ \Thetaig(n^{\log_b a}ig) & si\,a \!>\! b^k \end{pmatrix}$$

Solució problema 1

```
a)
struct node {
  T info;
 node *seg;
 node *ant;
};
node * head; // apunta al fantasma
b)
template <typename T>
void llista<T>::repeteix diferents(int num) throw(error) {
 node *n = _head->seg;
  while (n != NULL) {
   repeteix(n, num);
   n = n->seg;
  }
}
template <typename T>
void llista<T>::repeteix(node *n, int num) throw(error) {
 node *ant = n->ant;
 node *p = n;
  int k = 0;
  while (p != NULL) {
    if (p->info == n->info) {
      ++k;
      // desencadenem el node de la llista
      node *aux = p;
      p = p->seg;
      aux->ant->seg = aux->seg;
      if (aux->seg != NULL) {
       aux->seg->ant = aux->ant;
      if (k > num) {
       // esborrem el node
        delete aux;
      else {
       // movem el node al principi
        inserir node(aux, ant);
    else {
     p = p->seg;
  } // end while
```

```
// repetim els nodes que falten per arribar a num
 while (k < num) {</pre>
   node *nou = new node(n->info);
    inserir node(nou, ant);
   ++k;
  }
}
template <typename T>
void llista<T>::inserir_node(node *qui, node *on) throw() {
 qui->seg = on->seg;
 if (on->seg != NULL) {
   on->seg->ant = qui;
 qui->ant = on;
 on->seg = qui;
template <typename T>
llista<T>::node::node(const T &valor) throw(error)
      : info(valor), seg(NULL), ant(NULL) {
}
```

Solució problema 2

```
template <typename C, typename V>
void dicc<Clau, Valor>::cerca_rang(const C &a, const C &b,
                                   list<V> &lst) throw(error) {
 cerca rang( arrel, a, b, lst);
}
Per tal d'implementar cerca rang es proposen dues opcions. La segona opció és la millor.
// Opció poc eficient i que no aprofita el fet que la classe estigui
// implementada com un abc
template <typename C, typename V>
void dicc<Clau, Valor>::cerca rang(node* n, const C &a, const C &b,
                                   list<V> &lst) throw(error) {
 if (n != NULL) {
    if (n->clau > a and n->clau < b) {</pre>
      lst.push_back(n->valor);
   cerca_rang(n->fesq, a, b, lst);
   cerca_rang(n->dret, a, b, lst);
  }
}
// Opció molt més bona
template <typename C, typename V>
void dicc<Clau, Valor>::cerca rang(node* n, const C &a, const C &b,
                                   list<V> &lst) throw(error) {
 if (n != NULL) {
    if (n->clau > a and n->clau < b) {</pre>
     lst.push back(n->valor);
    if (n->clau > a) {
     cerca rang(n->fesq, a, b, lst);
    if (n->clau < b) {
     cerca rang(n->dret, a, b, lst);
  }
}
```

Solució problema 3

a)

Càlcul del cost temporal de l'acció q ():

```
for (int k= i-b[i]; k <= i+b[i]; ++j)
fun(i, j);</pre>
```

Té cost constant $\Theta(1)$ doncs, com que b[i] conté un enter entres 0 i 5, s'executa com a molt 11 vegades un codi de cost constant: $11 \cdot \Theta(1) \in \Theta(1)$

```
for (int j = 0; j < n; ++j)
  for (int k= i-b[i]; k <= i+b[i]; ++k)
    fun(i, j);</pre>
```

Té cost lineal $\Theta(n)$ doncs s'executa n vegades un codi de cost constant.

```
for (int i = 0; i < n; ++i)
b[i] = random(5);
for (int j = 0; j < n; ++j)
for (int k= j-b[i]; k <= j+b[i]; ++k)
fun(j, k);</pre>
```

Té cost lineal $\Theta(n^2)$ doncs s'executa n vegades un doble bucle que té cost n. La instrucció b[i] = random(5); no afecta atès que té cost constant.

Per tant, l'acció g () té cost lineal $\Theta(n^2)$.

b)

Càlcul del cost temporal de l'acció f ():

Per resoldre el cost de la recursivitat de l'acció f () utilitzarem les equacions de recurrència pel cas de decreixement geomètric.

$$T(n) = \begin{cases} ctt & si0 \le n < 2 \\ a \cdot T(n/b) + \Theta(n^k) & si2 \le n \end{cases}$$

on a=2, b=2, k=2.

Llavors es compleix que $a < b^k$ i, per tant, el cost temporal de f () és $T_f(n) = \Theta(n^2)$