MPEI 2018-2019

20 – Cadeias de Markov

?!

 O que esteve na origem do grande sucesso inicial da Google ?

- O que tem em comum esse sucesso com a capacidade de interagir por voz com computadores, robôs e smartphones ?
 - No reconhecimento de fala ?
 - Na síntese de fala ?

Exemplo 1

- Suponhamos que em cada dia que têm aulas de MPEI acordam e decidem se vêm ou não à aula.
- Se vieram à aula anterior, a probabilidade de virem é 70%; se faltaram à anterior, essa probabilidade é 80%.
- Algumas questões:
 - Se vieram à aula esta segunda, qual a probabilidade de virem na aula de SEGUNDA da próxima semana ?
 - Assumindo que o semestre tem duração infinita (que horror!), qual a percentagem aproximada de aulas a que estariam presentes ?

Exemplo 2

- Dividir a turma em 3 grupos A, B e C no início do semestre
- No final de cada aula:
- 1/3 do grupo A vai para o B e outro 1/3 do grupo A vai para o grupo C
- ¼ do grupo B vai para A e ¼ de B vai para C
- ½ do grupo C vai para o grupo B
- Como ficarão os grupos ao fim de n aulas ?

Exemplo 3 – "Pub Crawl"

Bares junto a uma conhecida Universidade:

Outro exemplo

Passeio aleatório (random walk)

Lançar moeda

Cara Coroa Coroa ... Cara ...

Muitas áreas de aplicação

- Muitas vezes estamos interessados na transição de algo entre certos estados.
- Exemplos:
 - Movimento de pessoas entre regiões
 - Estado do tempo
 - Movimento entre as posições num jogo de Monopólio
 - Pontuação ao longo de um jogo
 - Estado de Filas de atendimento

Princípios básicos

Processos estocásticos

- Lidam com a dinâmica da teoria de probabilidades
- O conceito de processo estocástico estende o conceito de variável aleatória
- Uma v.a. X mapeia um acontecimento $s \in \Omega$ num número X(s)
- O processo mapeia o evento para números diferentes em tempos diferentes
 - O que implica que em lugar de termos um número X(s) temos X(t,s)
 - Sendo t∈ T geralmente um conjunto de tempos

Processos estocásticos

- Se fixarmos s, X(t) é uma função real do tempo
- X(t,s) pode então ser vista como uma colecção de funções no tempo
- Se fixarmos t temos uma função X(s) que depende apenas de s, ou seja uma variável aleatória

Um nome alternativo é processos aleatórios

Classificação de processos estocásticos

- Podem ser classificados segundo o parâmetro t e os valores que X(t,s) pode assumir (estados do processo)
- Quanto a *t*:
 - Tempo contínuo: Se T é um intervalo contínuo
 - Tempo discreto: Se T é um conjunto contável
 - Também chamada sequência aleatória e representada por $\boldsymbol{X}[n]$
- Quanto ao conjunto de estados (E):
 - Contínuo
 - Discreto

Definição

 Um processo de Markov é um processo estocástico em que a probabilidade de o sistema estar num estado específico num determinado período de observação depende apenas do seu estado no período de observação imediatamente precedente

O futuro apenas depende do presente e não do passado

Tipos de processos de Markov

Discretas/contínuas

		Espaço de estados	
		Discreto	Contínuo
Tempo	Discreto	Cadeia de Markov tempo discreto	Processo de Markov em tempo discreto
	Contínuo	Cadeia de Markov tempo contínuo	Processo de Markov em tempo contínuo

 Focaremos a nossa atenção em cadeias de Markov de tempo discreto

Cadeias de Markov discretas

- X_n : estado após n transições
 - Pertence a um conjunto finito,
 - Em geral $\{1, 2, ..., m\}$
 - $-X_0$ é dado ou aleatório

Questões comuns relativas a cadeias de Markov

 Qual a probabilidade de transição entre dois estados em n observações ?

Existe algum equilíbrio ?

Existe uma estabilidade a longo prazo ?

Propriedade/Suposição de Markov

Probabilidade de transição do estado i para o estado j:

•
$$p_{ji} = P(X_{n+1} = j | X_n = i)$$

$$= P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

- Quando estas probabilidades p_{ji} não dependem de n a cadeia diz-se homogénea
 - Focaremos a nossa atenção neste tipo de cadeias de Markov

Propriedade/Suposição de Markov

• $P(X_0 = x_0, X_1 = x_1, X_2 = x_2 \dots) = ?$

$$= P(X_0 = x_0) P(X_1 = x_1 | X_0 = x_0) P(X_2 = x_2 | X_0 = x_0, X_1 = x_1) \dots$$

$$= P(X_0 = x_0) P(X_1 = x_1 | X_0 = x_0) P(X_2 = x_2 | X_1 = x_1) \dots$$

$$= x_1) \dots$$

- O futuro é independente do passado, dado o presente
- O processo "não tem memória"

Especificação de uma cadeia

Identificar os estados possíveis

Identificar as transições possíveis

Identificar as probabilidades de transição

Aplicando ao exemplo 1 – faltar ou não faltar à aula

Estados ?

Transições ?

Probabilidades de transição ?

Aplicando ao exemplo 1 – faltar ou não faltar à aula

- Estados ?
 - 2: {faltar, não faltar}

 Probabilidades de transição ?

- Transições ?
 - Faltar-> não faltar
 - Não faltar -> faltar
 - Faltar -> faltar
 - Não faltar -> não faltar

- Faltar-> não faltar : 0,8
- Não faltar -> faltar : 0,3
- Faltar -> faltar : 0,2
- Não faltar -> não faltar: 0,7

Matriz de transição

- É usual representar as probabilidades de transição através de uma matriz, chamada de matriz de transição
- Tendo o sistema n estados possíveis, para cada par i, j fazemos t_{ji} igual à probabilidade de mudar do estado i para o estado j.
- A matriz T cujo valor na posição linha = j, coluna = i é t_{ji} é a matriz de transição

$$T = \begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \cdots & t_{nn} \end{pmatrix}$$

• Nota: Alguns autores adoptam t_{ij} como a probabilidade de mudar do estado i para o estado j

•
$$T = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

· Considerando estado 1 "não faltar", temos

•
$$T = \begin{cases} n\tilde{a}o \ faltar \rightarrow \begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix}$$

$$A B C$$
 $T = A 1/3$
 $B 1/3$
 $C 1/3$

MPEI 2018-2019 MIECT/LEI

Futuro Estado

$$T = \begin{bmatrix} A & B & C \\ A & 1/3 & 1/4 & 0 \\ B & 1/3 & 1/2 & 1/2 \\ C & 1/3 & 1/4 & 1/2 \end{bmatrix}$$

Futuro Estado

Matriz T é estocástica

 A matriz de transição reflecte propriedades importantes das probabilidades:

- Todas as entradas são não-negativas
- Os valores em cada COLUNA somados d\u00e3o sempre resultado 1

 Devido a estas propriedades a matriz é denominada de matriz estocástica

Representação gráfica da cadeia

Apropriada e possível para número de estados pequeno

- Nós: representam todos os estados
- Setas: para todas as transições permitidas (one-step)
 - Ou seja, seta entre i e j apenas de $p_{ji}>0$

Representação gráfica da cadeia

• Exemplo:

Simulação / Visualização dinâmica

- Estão disponíveis online formas de visualizar as transições entre estados ao longo do tempo ...
- Um desses exemplos é Markov Chains A visual explanation by <u>Victor Powell</u>
 - http://setosa.io/blog/2014/07/26/markovchains/index.html

Que inclui:

- http://setosa.io/markov/index.html#%7B%22tm%22%3A% 5B%5B0.5%2C0.5%5D%2C%5B0.5%2C0.5%5D%5D%7D
- Para usar precisamos apenas de introduzir a matriz T
 - Que define o número de estados, quais as transições possíveis e as probabilidades associadas a essas transições

Simulando os nossos exemplos

Exemplo 1:

— Matriz: [[0.7, 0.3], [0.8, 0.2]]

http://setosa.io/markov/inde
 x.html#%7B%22tm%22%3A%
 5B%5B0.7%2C0.3%5D%2C%5
 B0.8%2C0.2%5D%5D%7D

Exemplo 2:

— Matriz:
[[0.33,0.33,0.34],
[0.25,0.5,0.25],
[0,0.5,0.5]]

Outro exemplo

```
[ [0,1,0,0],
 [0,0,1,0],
 [0,0,0,1],
 [0.2,0.3,0.3,0.2]]
```

- O que vamos ver ?
- Acesso directo:

http://setosa.io/markov/index.ht ml#%7B%22tm%22%3A%5B%5B0 %2C1%2C0%2C0%5D%2C%5B0%2 C0%2C1%2C0%5D%2C%5B0%2C0 %2C0%2C1%5D%2C%5B0.2%2C0. 3%2C0.3%2C0.2%5D%5D%7D

Estado da cadeia num determinado instante

• O estado de uma cadeia de Markov com n estados no tempo (time step) k é dado pelo vector estado

$$\mathbf{x}^{(k)} = \begin{pmatrix} p_1^{(k)} \\ p_2^{(k)} \\ p_n^{(k)} \end{pmatrix}$$

• Onde $p_j^{(k)}$ é a probabilidade de o sistema estar no estado j no tempo k

Vector estado/probabilidade

- Considerando o exemplo 1:
- Suponhamos que após 10 aulas a probabilidade de faltar e não faltar são iguais
- Então o vector representativo do estado (state vector) seria:

$$\mathbf{x}^{(10)} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

- Este vector também se designa por vector de probabilidade
 - Todos elementos não-negativos
 - Soma dos elementos igual a um

Exemplo 2

 Supondo que começávamos com 20 estudantes no grupo A e 10 estudantes nos outros dois grupos, o vector relativo ao estado inicial seria

•
$$\mathbf{x}^{(0)} = \begin{pmatrix} 0.5 \\ 0.25 \\ 0.25 \end{pmatrix}$$

Vector estado após uma transição

• Como obter $\mathbf{x}^{(k+1)}$?

- O vector de estado $\mathbf{x}^{(k+1)}$ no período de observação k+1 pode ser determinado a partir do vector $\mathbf{x}^{(k)}$ através de:
- $\bullet \ \mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)}$
- Que resulta da probabilidade condicional:
- P(estado j em t = k + 1)
- = $\sum_{i=1}^{n} P(transição do estado i para o j)P(estado i em t = k)$

Exemplo de aplicação – Exemplo 1

 De que forma depende a probabilidade de ir à aula seguinte da probabilidade de estar na aula actual ?

Estado após múltiplas transições

- Ataquemos agora problemas do "tipo":
 - Qual a probabilidade de transição entre dois estados em n observações/transições ?
- Exemplo 1:
 - Qual a probabilidade dos que estiveram na aula de uma segunda virem à aula na segunda seguinte
 - Assumindo as probabilidades do nosso exemplo!
 - Tendo em conta que temos aulas segunda e quinta (TP2) ou segunda e terça (TP1).

Equações de Chapman-Kolmogorov

• Definindo a transição em n passos p_{ji}^{n} como a probabilidade de um processo no estado i se encontrar no estado j após n transições adicionais. Ou seja:

•
$$p_{ji}^n = P(X_{n+k} = j | X_k = i), n \ge 0, i, j \ge 0$$

- Obviamente $p_{ji}^{1} = p_{ji}$
- As equações de Chapman-Kolmogorov permitem calcular estas probabilidades

$$p_{ii}^{n+m} = \sum_{k} p_{ki}^{n} p_{ik}^{m} \quad \forall n, m \geq 0, \forall i, j$$

Interpretação

- É fácil de compreender se tivermos em conta que $p_{ki}{}^n p_{jk}{}^m$ representa a probabilidade de:
 - Começando em i o processo ir para o estado j em n+m transições..
 - Através de um caminho que o leva ao estado k na transição n
- Logo, somando para todos os estados intermédios k obtém-se a probabilidade de estar no estado j ao fim de n+m transições

Interpretação

"Demonstração" Eqs. Chapman-Kolmogorov

•
$$p_{ji}^{n+m} = P(X_{n+m} = j | X_0 = i)$$

• =
$$\sum_{k} P(X_{n+m} = j, X_n = k | X_0 = i)$$

• =
$$\sum_{k} P(X_{n+m} = j | X_n = k) P(X_n = k | X_0 = i)$$

• $\sum_{k} p_{ik}^{m} p_{ki}^{n}$

Em termos de matrizes

 Se usarmos T⁽ⁿ⁾ para representar a matriz com as probabilidades de n transições, a equação anterior transforma-se em:

$$\mathbf{T}^{(n+m)} = \mathbf{T}^{(n)} \cdot \mathbf{T}^{(m)}$$

Em que o "." significa multiplicação de matrizes

Desta equação obtém-se facilmente:

$$T^{(2)} = T^{(1+1)} = T \cdot T = T^2$$

- E por indução $\mathbf{T}^{(n)} = \mathbf{T}^{(n-1+1)} = \mathbf{T}^{n-1}$, $\mathbf{T} = \mathbf{T}^n$
 - Ou seja, a matriz de transição relativa a n transições pode ser obtida multiplicando T por si própria n vezes

Aplicação ao Exemplo 1

 Voltando a uma questão colocada no início da aula ...

- Se vieram à aula esta segunda, qual a probabilidade de virem na aula de SEGUNDA da próxima semana ?
- Solução:
- Temos $\mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, significando "não faltar"
- Pretendemos $\mathbf{x}^{(2)}$, 0 = hoje

• • •

•
$$\mathbf{x}^{(2)} = T\mathbf{x}^{(1)} = T(T\mathbf{x}^{(0)}) = T^2\mathbf{x}^{(0)}$$

$$=\begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix} = \begin{pmatrix} 0.73 \\ 0.27 \end{pmatrix}$$

 Ou seja 73% de probabilidade de virem na próxima Segunda

Terminologia

Tipos de estados Tipos de matrizes de transição

. . .

Acessibilidade de um estado

 Possibilidade de ir do estado i para o estado j (existe caminho na cadeia de i para j).

Estados comunicantes

 Dois estados comunicam se ambos são acessíveis a partir do outro.

 Um sistema é não redutível (irreducible) se todos os estados comunicam

 Classe: conjunto de estados que comunicam entre si

Estado recorrente

• Um estado s_i é um estado recorrente se o sistema poder sempre voltar a ele (depois de sair dele).

• De uma forma mais formal: s_i é um estado recorrente se, para todos os estados s_j , a existência de um inteiro r_j tal que $p_{ji}^{(r_j)} > 0$ implica que existe um inteiro r_i tal que $p_{ij}^{(r_i)} > 0$

• Um estado não recorrente é transiente

Estados recorrentes?

Os 3 estados são recorrentes

Estado transiente

- Um estado é transiente se existe um outro estado qualquer para o qual o processo de Markov pode transitar, mas do qual o processo não pode retornar
- Ou seja, se existe um estado s_j e um inteiro l tal que $p_{ji}^{(l)} \neq 0$ e $p_{ij}^{(r)} = 0$ para r = 0,1,2,...
- A probabilidade destes estados tende para zero quando n tende para infinito
 - Pois apenas são visitados um número finito de vezes

Estado periódico

 Um estado é periódico se apenas se pode regressar a ele após um número fixo de transições superior a 1 (ou múltiplos desse número).

Formalizando:

– Um estado recorrente s_i diz-se periódico se existe um inteiro c>0 tal que $p_{ii}^{(r)}$ é igual a zero para todos os valores de r excepto r=c,2c,3c,...

Estado periódico

(1) (1) (1) (1)

Todos estados visitados em múltiplos de 3 iterações

Todos estados visitados em múltiplos de 3 iterações

- Um estado não periódico é aperiódico
 - Como era de esperar!

Estado absorvente

- Um estado absorvente é um estado do qual não é possível sair (ou seja transitar para outro estado)
- Uma cadeia é absorvente se tiver pelo menos um estado absorvente

Os estados 0 e 4 são absorventes

Aplicação dos conceitos

• Exemplo:

- Todos os pares de estados comunicam, formando um única classe recorrente
 - Os estados são aperiódicos
- Em consequência o processo é aperiódico e irredutível