Lecture 6

Properties of Transience and recurrence

Recall:

Def: Let $f_i := P(X_n = i \text{ for some } n \ge 1 | X_0 = i)$. Then

- if $f_i = 1$, State s_i is recurrent, (abbreviated as i is recurrent)
- if $f_i < 1$, State s_i is <u>transient</u> (abbreviated as i is transient)

Number of (return) visits

Number of the n is visited in a trajectory
$$(X_n)$$
 this is a variable $N_i = \#\{n \geq 0: X_n = i\} \in \{0, 1, 2, 3, ...\} \cup \{\infty\}$ variable (it denoted so

Examples:

$$N_{I} = \infty$$

$$\infty$$

$$N_1 \mid X_0 = 1 \sim Geom \left(\frac{1}{2}\right)$$

Number of return visits

$$\left(\int_{\Gamma} - P\left(X_n = i \text{ for some } n > 1 \mid X_{o} = i\right)\right)$$

Proposition:

- If *i* is recurrent, then $P(N_i = \infty | X_0 = i) =$
- If i is transient, then $E[N_i|X_0=i]=\underbrace{1-\varphi_i}$

Proof: If i is recurrent we know in a fraite hime, the MC returns to i. After that the MC starts over ad returns to I again in fine time and so on

old transect
$$P(N_i = 1 | X_0 = i) = 1 - fi$$

 $P(N_i = 2 | X_0 = i) = fi. (1 - fi) = fr. (1 - fi)$
 $P(N_i = 2 | X_0 = i) = fi. (1 - fi) = fr. (Not revisiting i)$

end of the proof $N_i \mid X_{o=i} \sim \text{Geom}(1-f_i) \Rightarrow \mathbb{E}(N_i \mid X_{o=i}) = \frac{1}{1-f_i} \otimes \text{Expressing } N_i \text{ as a sum of indicators}$

$$N_{i} = \sum_{N=0}^{+\infty} \int \left[X_{n} = i \right]^{2} \begin{cases} 0 & \text{if } 1 \text{ see } X = i \text{ at time } n \end{cases}$$
Implication:

Implication:

$$E[N_i|X_0=i] = \underbrace{E\left(\underbrace{\xi}_{N=i}\right)}_{N=0} \underbrace{I_{X_N=i}}_{N=0} \underbrace{I_{X_N=$$

Proposition:

- If i is recurrent, then $\sum_{n=0}^{\infty} p_{i,i}^n =$
- If i is transient, then $\sum_{n=0}^{\infty} p_{i,i}^n$

Example: 1-d random walk (to be continued later) - for a pplication

$$\frac{\mathcal{E}_{X}}{\mathcal{E}_{X}} = \frac{1}{\sqrt{2}} = \frac{1}{$$

If icij, then they are both recornt or both transie

Proposition:

Recurrence and transience are class properties.

Proof: Assure i is recurrent, so & Pin = +00, and ies; so 3 1, n2 1 Pi, >0, Piz >0 $\sum_{N=0}^{4} P_{ij}^{N} > \sum_{N=0}^{4} P_{ii}^{N+N,+N} > \sum_{N=0}^{4} P_{ii}^{N} \cdot P_{ii}^{N} \cdot P_{ii}^{N} \cdot P_{ii}^{N}$ => ; is recorrect to

Summary

Proposition: Let f_i , N_i be as above. Then,

i is recurrent is equivalent to:

- $P(N_i = \infty | X_0 = i) = 1$
- $\sum_{n=0}^{\infty} p_{i,i}^n =$
- For any j in the same communicating class, $\frac{1}{2}$ is recurrent

i is transient is equivalent to:

- $E[N_i|X_0=i]=\underbrace{1}{}<+\infty$ $\sum_{n=0}^{\infty}p_{i,i}^n$
- For any j in the same communicating class, j is translet

Finite-state MC

Proposition: For a finite-state MC, at least one state is recurrent. Thus, for an irreducible, finite state MC, all states are recurrent.

Q: For a finite-state MC, can you characterize which states are recurrent based on graph properties?

