2016-XE-'14-26'

EE24BTECH11050 - Pothuri Rahul

- 4) Which of the following is a quasi-linear partial differential equation?
 - a) $\frac{\partial^2 u}{\partial x^2} + u^2 = 0$
 - b) $\left(\frac{\partial u}{\partial t}\right)^2 + \frac{\partial u}{\partial x} = 0$

 - c) $\left(\frac{\partial u}{\partial t}\right)^2 \left(\frac{\partial u}{\partial x}\right)^2 = 0$ d) $\left(\frac{\partial u}{\partial t}\right)^4 \left(\frac{\partial u}{\partial x}\right)^3 = 0$
- 5) Let P(x) and Q(x) be the polynomials of degree 5, generated by Lagrange and Newton interpolation methods respectively, both passing through given six distinct points on the xy – plane. Which of the following is correct?
 - a) P(x) = O(x)
 - b) P(x) Q(x) is a polynomial of degree 1
 - c) P(x) Q(x) is a polynomial of degree 2
 - d) P(x) Q(x) is a polynomial of degree 3
- 6) The Laurent series of $f(x) = 1/(z^3 z^4)$ with center at z = 0 in the region |z| > 1 is
 - a) $\sum_{n=0}^{\infty} z^{n-3}$
- b) $-\sum_{n=0}^{\infty} \frac{1}{z^{n+4}}$ c) $\sum_{n=0}^{\infty} z^n$ d) $\sum_{n=0}^{\infty} \frac{1}{z^n}$

1

- 7) The value of the surface integral $\iint \bar{F} \cdot nds$ over the sphere Γ given by $x^2 + y^2 + z^2 = 1$ where $\bar{F} = 4x\hat{i} - z\hat{k}$, and *n* denotes the outward unit normal, is
 - a) π

b) 2π

- c) 3π
- d) 4π

O.8 - O.11 carry two marks each

- 8) A diagnostic test for a certain disease is 90% accurate. That is, the probability of a person having (respectively, nothaving) the disease tested positive (respectively, negative) is 0.9. Fifty percent of the population has the disease. What is the probability that a randomly chosen person has the disease given that the person tested negative?
- 9) Let $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Which of the following is correct?
 - a) Rank of M is 1 and M is not diagonalizable
 - b) Rank of M is 2 and M is diagonalizable
 - c) 1 is the only eigenvalue and M is not diagonalizable
 - d) 1 is the only eigenvalue and M is diagonalizable
- 10) Let $f(x) = 2x^3 3x^2 + 69, -5 \le x \le 5$. Find the point at which f attains the global maximum.
- 11) Calculate $\int_{c_1} \bar{F} \cdot dr \int_{c_2} \cdot dr$, where $c_1 : \bar{r}(t, t^2)$ and $c_1 : \bar{r}(t, \sqrt{t})$, t varying from 0 to 1

B.Fluid Mechanics

Q.1-Q.9 carry one mark each.

1) In the parallel-plate configuration shown, steady-flow of an incompressible Newtonian fluid is established by moving the top plate with a constant speed, $U_0 = 1m/s$. If the force required on the top plate to support this motion is 0.5 per unit area (in m_2) of the plate then the viscosity of the fluid between the plates is $N - s/m^2$

- 2) For a newly designed vehicle by some students, volume of fuel consumed per unit distance travelled $(q_f inm^3/m)$ depends upon the vicosity (μ) and density (ρ) of the fuel and, speed (U) and size (L) of the vehicle as $q_f = c \frac{\rho U^2 L^2}{2}$ where C is a constant. The dimensions of the constant C are
 - a) $M^0L^0T^0$
- b) $M^2L^{-1}T^{-1}$ c) $M^2L^{-5}T^{-1}$ d) $M^{-2}L^1T^1$
- 3) A semicircular gate of radius 1m is placed at the bottom of a water reservoir as shown in the figure below. The hydrostatic force per unit width of the cylindrical gate in y-direction is _____ kN. The gravitational acceleration, $g = 9.8m/s^2$ and density of the water = $1000kg/m^3$.

4) Velocity vector in m/s for a 2-D flow is given in Cartesian coordinate (x, y) as $\bar{V} = (\frac{x^2}{4}\hat{i} - \frac{xy}{2}\hat{j})$. Symbols bear usual meaning. At a point in the flow, the x-component and y-component of the acceleration vector are given as $1m/s^2$ and $-0.5m/s^2$, respectively. The velocity magnitude at that points is $\underline{\hspace{1cm}}$ m/s.

5) If $\phi(x, y)$ is velocity potential and $\psi(x, y)$ is stream function for a 2-D, steady, incompressible and irrotational flow, which of the followings is correct?

a)
$$\left(\frac{dy}{dx}\right)_{\phi=const} = -\frac{1}{\left(\frac{dy}{dx}_{\psi=const}\right)}$$

b) $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$

b)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

c)
$$\left(\frac{dy}{dx}\right)_{\phi=const} = \frac{1}{\left(\frac{dy}{dx}\right)_{\phi=const}}$$

d) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$

d)
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$