# Problemas lineares Problema de Transporte

Fundamentos em Pesquisa Operacional Marcelo Antonio Marotta



Departamento de Ciência da Computação Universidade de Brasília



### Exercício da última aula

Implementar no ORTools o problema de menor caminho





Origem

### Implemente um problema de shortest path no ORTools

Para validar o modelo considere a instância:

```
N = 5
S = 0
T = N-1
Aij = [[9999, 0.2, 9999, 9999, 9999],
     [9999, 9999, 0.4, 0.5, 9999],
     [0.2, 9999, 9999, 0.6, 0.2],
     [9999, 9999, 9999, 0.3],
     [9999, 9999, 9999, 9999]]
```

```
Solucao:
Valor objetivo = 0.8
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 0 1 ]
[ 0 0 0 0 0 ]
[ 0 0 0 0 0 ]
```

## Problema de Transporte



#### Livro

- Problema de Transporte
- Exemplo 1.4
  - Capítulo 2 (Assignment problem)
  - Capítulo 4 (Min cost flow problem)

### Network Optimization: Continuous and Discrete Models

Dimitri P. Bertsekas

Massachusetts Institute of Technology

WWW site for book information and orders http://www.athenasc.com



Athena Scientific, Belmont, Massachusetts



### **Problemas lineares**

#### Problemas lineares inteiros binários

- The assignment problem (problema de associação)
- The shortest path (problema do menor caminho)

#### **Problemas lineares**

The transportation problem (problema de transporte)



# The Transportation problem - Exemplo 1.4 (Bertsekas, 1998)

Suponha que um produtor de milho possui 4 fazendas de produção localizadas em cidades diferentes. O produtor precisa escoar o milho produzido utilizando caminhões. Os caminhões são preenchidos e encaminhados a 5 armazéns em diferentes localizações. Deslocar um caminhão de uma determinada fazenda para um armazém gera um custo em R\$/Kg de milho escoado. Cada armazém suporta um valor máximo de Kg de milho. Para não haver desperdícios, o produtor só escoa seu produto quando a soma de toda a produção das 4 fazendas totaliza a capacidade de armazenamento dos armazéns. Minimize o custo de escoamento do produtor.



# The transportation problem - Exemplo 1.4 (Bertsekas, 1998)

O problema do transporte é importante em muitos contextos práticos

- Logística
- Uso de recursos em sistemas computacionais





#### Fazendas (i)









#### Armazéns

(j)

1

2

3

4

5



Fazendas (i)

1

2

3

4

Armazéns

(j)

1

2

3

4

5

M = 4 (Fazendas)

M = {1,...,M} (Conjunto de fazendas)

N = 5 (Armazéns)

N = {1,...,N} (Conjunto de Armazéns)





M = 4 (Fazendas)
 M = {1,...,M} (Conjunto de fazendas)
 N = 5 (Armazéns)
 N = {1,...,N} (Conjunto de Armazéns)





M = 4 (Fazendas)
 M = {1,...,M} (Conjunto de fazendas)
 N = 5 (Armazéns)
 N = {1,...,N} (Conjunto de Armazéns)



#### **Grafo Bipartido**



M = 4 (Fazendas)
 M = {1,...,M} (Conjunto de fazendas)
 N = 5 (Armazéns)
 N = {1,...,N} (Conjunto de Armazéns)



#### **Grafo Bipartido**



M = 4 (Fazendas)
 M = {1,...,M} (Conjunto de fazendas)
 N = 5 (Armazéns)
 N = {1,...,N} (Conjunto de Armazéns)

#### Matriz de transporte

| (A <sub>M×N</sub> ) |   |   |   |    |          |  |  |  |  |  |
|---------------------|---|---|---|----|----------|--|--|--|--|--|
| 5                   | 6 | 4 | 6 | 8  |          |  |  |  |  |  |
| 6                   | 6 | 5 | 8 | 4  | N        |  |  |  |  |  |
| 4                   | 3 | 3 | 2 | 1  | $\omega$ |  |  |  |  |  |
| 5                   | 7 | 2 | 9 | 13 | 4        |  |  |  |  |  |
| 1                   | 2 | 3 | 4 | 5  |          |  |  |  |  |  |

#### Grafo Bipartido

**Fazendas** 

(i)

3

P<sub>i</sub> (Kg)

Max prod.

2

3

4

Armazéns

(j)

5

M = 4 (Fazendas)

 $M = \{1,...,M\}$  (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

 $Aij = A_{MxN}$  (Matriz de transporte)



#### **Grafo Bipartido**

**Fazendas** 

(i)

l.

Max prod. P<sub>i</sub> (Kg)







 $\left(\begin{array}{c}4\end{array}\right)$  P<sub>4</sub>=21

Armazéns

(j)

1

2

3

4

5

M = 4 (Fazendas)

 $M = \{1,...,M\}$  (Conjunto de fazendas)

N = 5 (Armazéns)

*N* = {1,...,N} (Conjunto de Armazéns)

 $Aij = A_{MxN}$  (Matriz de transporte)

#### **Grafo Bipartido**

#### **Fazendas**

(i)

Max prod. P<sub>i</sub> (Kg)

P<sub>1</sub>=62

P<sub>2</sub>=50

3  $P_{3} = 40$ 

P<sub>4</sub>=21

#### Armazéns

(j)

2

3

4

5

M = 4 (Fazendas)

M = {1,...,M} (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

Aij = A<sub>MXN</sub> (Matriz de transporte) Pi = P<sub>M</sub> (Vetor de produção)



#### **Grafo Bipartido**

**Fazendas** 

(i)

Max armaz. S<sub>i</sub> (Kg)







Armazéns

(j)



3

5

M = 4 (Fazendas)

 $M = \{1,...,M\}$  (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

Aij = A<sub>MxN</sub> (Matriz de transporte) Pi = P<sub>M</sub> (Vetor de produção)



#### **Grafo Bipartido**

#### **Fazendas**

(i)

Max armaz. S<sub>i</sub> (Kg)









#### Armazéns

(j)

$$|S_3| = 30$$

M = 4 (Fazendas)

 $M = \{1,...,M\}$  (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

Aij =  $A_{M\times N}$  (Matriz de transporte) Pi =  $P_{M}$  (Vetor de produção)



#### **Grafo Bipartido**

#### **Fazendas**

(i)

Max armaz. S<sub>i</sub> (Kg)







#### Armazéns

(j)

$$3 \quad S_3=30$$

M = 4 (Fazendas)

 $M = \{1,...,M\}$  (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

Aij = A<sub>MxN</sub> (Matriz de transporte) Pi = P<sub>M</sub> (Vetor de produção) Si = S<sub>N</sub> (Vetor de armazenamento)



#### **Grafo Bipartido**

#### Fazendas

(i)





$$\left(\begin{array}{c}3\end{array}\right)$$
 P<sub>3</sub>=40

$$\left(\begin{array}{c}4\end{array}\right)$$
 P<sub>4</sub>=21

#### Armazéns

(j)

$$1 \quad S_1 = 52$$

$$S_{2}=40$$

$$S_3=30$$

$$S_{5}=30$$

M = 4 (Fazendas)

M = {1,...,M} (Conjunto de fazendas)

N = 5 (Armazéns)

 $N = \{1,...,N\}$  (Conjunto de Armazéns)

 $Aij = A_{MxN}$  (Matriz de transporte)

 $Pi = P_M$  (Vetor de produção)

 $Si = S_N^{(i)}$  (Vetor de armazenamento)

Propriedade dos dados

$$\sum_{i \in M} P_i = \sum_{j \in N} S_i$$





#### **Grafo Bipartido**



O que seria uma solução válida para o problema?



#### **Grafo Bipartido**



O que seria uma solução válida para o problema?

Qualquer quantidade de produto escoado entre fazendas e armazéns





#### **Grafo Bipartido**



O que seria uma solução válida para o problema?

Qualquer quantidade de produto escoado entre fazendas e armazéns

Utilizaremos uma matriz de variáveis numéricas para representar os valores de produto escoado entre fazendas e armazéns

X<sub>MxN</sub>



#### **Grafo Bipartido**



O que seria uma solução válida para o problema?

Qualquer quantidade de produto escoado entre fazendas e armazéns

Utilizaremos uma matriz de variáveis numéricas para representar os valores de produto escoado entre fazendas e armazéns

| MxN |   |   |   |   |   |     |  |  |  |  |
|-----|---|---|---|---|---|-----|--|--|--|--|
|     | 0 | 6 | 0 | 0 | 8 |     |  |  |  |  |
|     | 4 | 0 | 0 | 0 | 0 | N   |  |  |  |  |
|     | 0 | 0 | 6 | 0 | 0 | ω   |  |  |  |  |
|     | 0 | 0 | 0 | 5 | 0 | (4) |  |  |  |  |
|     | 1 | 2 | 3 | 4 | 5 |     |  |  |  |  |



#### **Grafo Bipartido**





Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;





#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}$ =6;  $x_{15}$ =8;  $x_{21}$ =4;  $x_{33}$ =6;  $x_{44}$ =5;



#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}$ =6;  $x_{15}$ =8;  $x_{21}$ =4;  $x_{33}$ =6;  $x_{44}$ =5;

Todo o produto precisa ser escoado

#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;

Todo o produto precisa ser escoado

$$\sum_{j \in N} x_{ij} = P_i; \;\; orall i \in M$$



#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}$ =6;  $x_{15}$ =8;  $x_{21}$ =4;  $x_{33}$ =6;  $x_{44}$ =5;

Todo armazém deve ser preenchido

#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;

Todo armazém deve ser preenchido

$$\sum_{i \in M} x_{ij} = S_j; \;\;\; orall j \in N$$



#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;

Um armazém nunca pode receber mais do que comporta

Uma fazenda nunca conseguirá encaminhar mais do que produz

$$egin{aligned} 0 & \leq x_{ij} \leq min(P_i; S_j); \ orall i \in M; orall j \in N \end{aligned}$$



#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;

Um armazém nunca pode receber mais do que comporta

Uma fazenda nunca conseguirá encaminhar mais do que produz

$$egin{aligned} 0 & \leq x_{ij} \leq min(P_i; S_j); \ orall i \in M; orall j \in N \end{aligned}$$

#### Mas não precisamos dessa restrição

As restrições de conservação realizarão esse ajuste



# Função objetivo



### Modelando o problema - Função objetivo

#### **Grafo Bipartido**



Nesse exemplo:  $x_{12}=6$ ;  $x_{15}=8$ ;  $x_{21}=4$ ;  $x_{33}=6$ ;  $x_{44}=5$ ;

Se multiplicarmos às variáveis pelos custos de transporte

Nesse exemplo

x12\*A12 + x15 \* A15 + x21 \* A21 + x33 \*
 A33 + x44 \* A44

Teremos o custo de se tranportar todo o milho entre as fazendas e os armazéns

Generalizando, queremos o menor custo Ou seja, a combinação de menor custo para escoar os produtos da fazenda para armazéns, resultando em uma minimização

$$\min \sum_{i \in M} \sum_{j \in N} A_{ij} X_{ij}$$



## Modelagem final



### Modelagem final do problema

#### **Grafo Bipartido**



$$\min \sum_{i \in M} \sum_{j \in N} A_{ij} x_{ij}$$

s.t.

$$egin{aligned} \sum_{j \in N} x_{ij} &= P_i; & orall i \in M \ \sum_{i \in M} x_{ij} &= S_j; & orall j \in N \ 0 &\leq x_{ij} &\leq min(P_i; S_j); \ orall i &\in M; orall j \in N \end{aligned}$$



### Implemente o problema de transporte

#### **Grafo Bipartido**



$$\min \sum_{i \in M} \sum_{j \in N} A_{ij} x_{ij}$$

s.t.

$$egin{aligned} \sum_{j \in N} x_{ij} &= P_i; & orall i \in M \ \sum_{i \in M} x_{ij} &= S_j; & orall j \in N \ 0 &\leq x_{ij} &\leq min(P_i; S_j); \ orall i &\in M; orall j \in N \end{aligned}$$



### Implemente o problema de transporte

Considere a instância abaixo para validar seu modelo

```
M=4
N=5
Producao(Pi): [ 3. 9. 7. 11.]
Armazens(Sj): [9. 5. 7. 1. 8.]
Custo de escoamento R$/Kg (Aij):
[ 0.50 0.95 0.16 0.14 0.31 ]
[ 0.04 0.08 0.04 0.28 0.84 ]
[ 0.84 0.46 0.01 0.89 0.07 ]
[ 0.21 0.23 0.63 0.15 0.89 ]
```

```
Solucao:
Valor objetivo = 3.8300000000000005
[ 0.00 0.00 2.00 0.00 1.00 ]
[ 4.00 0.00 5.00 0.00 0.00 ]
[ 0.00 0.00 0.00 0.00 7.00 ]
[ 5.00 5.00 0.00 1.00 0.00 ]
```

