TUTORATO LOGICA MATEMATICA A.A. 2022/2023

ESERCIZI 2022.10.27

Esercizio 1.

- (1) Esiste un'algebra di Boole di 16 elementi?
- (2) È vero che, per ogni $n \in \mathbb{N}$, esiste un'algebra di Boole di cardinalità n?
- (3) Esiste un'algebra di Boole di cardinalità del continuo?
- (4) Esiste un'algebra di Boole di cardinalità numerabile?
- (5) Si mostri che, per ogni cardinale infinito κ , esiste un'algebra di Boole di cardinalità κ .

Soluzione. (1) Sì. L'insieme delle parti di un insieme di quattro elementi.

- (2) No. Ad esempio, per n = 0 oppure per n = 3.
- (3) Sì. L'insieme delle parti di un insieme di cardinalità numerabile.
- (4) Sì. L'algebra dei finiti e cofiniti di un insieme numerabile.
- (5) Per ogni cardinale κ , si consideri l'algebra dei finiti e cofiniti di un insieme di cardinalità κ . Soluzione alternativa: si consideri l'algebra libera su κ generatori. Soluzione alternativa: si provi che esiste un'algebra di Boole numerabile e si applichi il teorema di Loweneim-Skolem.

Esercizio 2. Sia X un insieme, e sia Y un suo sottoinsieme.

(1) Si mostri che la funzione

$$\pi \colon \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$$

$$A \longmapsto A \cap Y$$

è un omomorfismo suriettivo di algebre di Boole. Inoltre, qual è il kernel di r?

(2) La funzione

$$\iota \colon \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$$
 $A \longmapsto A$

è un omomorfismo di algebre di Boole?

Soluzione. (1) È chiaramente suriettivo. Mostriamo che è un omomorfismo. Ad esempio, mostriamo che π preserva \cap , 1, \neg .

$$\pi(A \cap B) = A \cap B \cap Y = (A \cap Y) \cap (B \cap Y) = \pi(A) \cap \pi(B).$$

$$\pi(X) = X \cap Y = Y$$

$$\pi(X \setminus A) = (X \setminus A) \cap Y = Y \setminus A.$$

Il kernel è $\{A \subseteq X \mid Y \subseteq A\}$.

Date: 28 ottobre 2022.

¹Ne segue che ogni insieme infinito può essere dotato della struttura di algebra di Boole.

(2) In generale ι non è un omomorfismo, perché se $Y \neq X$ non preserva 1 (e neanche \neg).

Esercizio 3. Siano A e B due algebre di Boole, e sia $f: A \to B$ una funzione che preserva \vee e \neg . Si mostri che f è un omomorfismo.

Soluzione. Mostriamo che f preserva \wedge : $f(x \wedge y) = f(\neg(\neg x \vee \neg y)) = \neg(\neg f(x) \vee \neg f(y)) = f(x) \wedge f(y)$. \square

Esercizio 4. Sia $f: A \to B$ una funzione tra algebre di Boole che preserva \vee , \wedge , 0 e 1. Si mostri che f è un omomorfismo.

Soluzione. Dobbiamo mostrare che f preserva \neg . Si ricordi che $\neg x$ è l'unico elemento tale che $x \vee \neg x = 1$ e $x \wedge \neg x = 0$. Sia $x \in A$. Per mostrare che $f(\neg x) = \neg f(x)$ basta mostrare che $f(x) \vee f(\neg x) = 1$ e $f(x) \wedge f(\neg x) = 0$. Mostriamolo. Abbiamo $f(x) \vee f(\neg x) = f(x) \vee f(\neg x) = f(x) \wedge f(\neg x) = f(x) \wedge$

Esercizio 5. Una funzione $f: A \to B$ è detta monotona crescente se, per ogni $x, y \in A$, $x \le y$ implica $f(x) \le f(y)$.

- (1) Si stabilisca se la seguente affermazione è vera o falsa: Se $f:A\to B$ è una funzione monotona crescente tra algebre di Boole, allora f è un omomorfismo di algebre di Boole.
- (2) Si stabilisca se la seguente frase è vera o falsa: Se $f: A \to B$ è una funzione monotona crescente tra reticoli, allora per ogni $x, y \in A$ si ha $f(x \lor y) = f(x) \lor f(y)$ e $f(x \land y) = f(x) \land f(y)$.
- (3) Si stabilisca se la seguente frase è vera o falsa: Se $f: A \to B$ è una funzione monotona crescente tra algebre di Boole tale che f(0) = 0 e f(1) = 1, allora f è un omomorfismo di algebre di Boole.

Soluzione. (1) Falsa. Sia A l'algebra di Boole con un solo elemento. Sia B la catena di due elementi $\{0,1\}$. Si consideri la mappa che manda l'unico elemento di A in 0. Non è un omomorfismo perché non preserva 1.

(2) Falsa. Siano A e B, rispettivamente, i seguenti reticoli.

e sia f la mappa che manda a in a', b in b', c in c' e d in d'.

(3) Falsa. Si prendano sia A che B come la seguente algebra di Boole.

Sia f la mappa che manda 1 in 1, 0 in 0, a in a e b in a. f non è omomorfismo perché $f(a \lor b) = 1 \ne a = a \lor a = f(a) \lor f(b)$. (Questo poteva essere preso come controesempio anche per i due punti precedenti.)

Esercizio 6. Dimostra o confuta la seguente affermazione.

Siano A e B due algebre di Boole, e sia $f: A \to B$ un omomorfismo di algebre di Boole. Per ogni $x, y \in A$ si ha $x \leq y$ se e solo se $f(x) \leq f(y)$.

Soluzione. L'affermazione è falsa. Come controesempio, si prenda A come la seguente algebra di Boole.

e come B l'algebra di Boole singoletto. Sia $f: A \to B$ l'unica funzione da A a B. f è un omomorfismo. $f(1_A) \leq f(0_A)$ ma $1_A \nleq 0_A$.

Soluzione. Mostriamo che f preserva \land : $f(x \land y) = f(\neg(\neg x \lor \neg y)) = \neg(\neg f(x) \lor \neg f(y)) = f(x) \land f(y)$. Mostriamo che f preserva 0. Abbiamo $0 = f(0) \land \neg f(0) = f(0) \land f(\neg 0) = f(0) \land f(1) = f(0 \land 1) = f(0)$. Mostriamo che f preserva 1. Abbiamo $f(1) = f(\neg 0) = \neg f(0) = \neg 0 = 1$.

Esercizio 7. Mostrare che la funzione inversa di un isomorfismo di algebre di Boole è un isomorfismo di algebre di Boole.

Soluzione. Sia $f:A\to B$ un isomorfismo di algebre di Boole, e sia g la funzione inversa. g è biettiva, quindi basta mostrare che è un omomorfismo. Basta mostrare che g preserva \neg e \lor .

(1) Mostriamo che g preserva \neg . Sia $x \in B$. Poiché f è suriettiva, esiste $x' \in A$ tale che f(x') = x. Allora $g(\neg x) = g(\neg f(x')) = g(f(\neg x')) = \neg x'$. Inoltre $\neg g(x) = \neg g(f(x')) = \neg x'$. Perciò $g(\neg x) = \neg g(x)$.

Modo alternativo: Per mostrare che $g(\neg x) = \neg g(x)$ basta mostrare che $g(\neg x)$ e $\neg g(x)$ hanno la stessa immagine tramite f, poiché f è iniettiva. Mostriamolo. $f(g(\neg x)) = \neg x$, e $f(\neg g(x)) = \neg f(g(x)) = \neg x$.

(2) Mostriamo che g preserva \vee . Siano $x,y \in A$. Poiché f è suriettiva, esistono $x',y' \in A$ tali che f(x') = x e f(y') = y. Allora $g(x \vee y) = g(f(x') \vee f(y')) = g(f(x' \vee y')) = x' \vee y'$. Inoltre $g(x) \vee g(y) = g(f(x')) \vee g(f(y')) = x' \vee y'$.

Modo alternativo: Per mostrare che $g(x \lor y)$ e $g(x) \lor g(y)$ sono uguali basta mostrare che hanno la stessa immagine. Mostriamolo. $f(g(x \lor y)) = x \lor y$, e $f(g(x) \lor g(y)) = f(g(x)) \lor f(g(y)) = x \lor y$.

Esercizio 8. Siano $f, g: A \to B$ omomorfismi suriettivi di algebre di Boole tale che la congruenze \equiv_f e \equiv_g su A (definite da $x \equiv_f x'$ sse f(x) = f(x') e da $x \equiv_g x'$ sse g(x) = g(x'), si veda Def. 3.45) coincidono. Segue che f e g sono uguali?

Soluzione. No. Si prendano sia A che B come la seguente algebra di Boole.

Si prenda f come l'identità e g come la mappa che manda \top in \top , a in b, b in a e \bot in \bot .

Esercizio 9. Dimostrare o confutare la seguente affermazione:

Dati due omomorfismi $f, g: A \to B$ di algebre di Boole, la funzione

$$h: A \longrightarrow B$$

 $x \longmapsto f(x) \lor g(x)$

è un omomorfismo di algebre di Boole.

Soluzione. Falso. Si prendano sia A che B come la seguente algebra di Boole.

Si prenda f come l'identità e g come la mappa che manda \top in \top , a in b, b in a e \bot in \bot .

La funzione h non preserva \neg (e neanche \land). Un altro modo di vedere che h non è un omomorfismo è notare che la preimmagine di 0 e la preimmagine di 1 hanno cardinalità diverse.

Esercizio 10. Se un sottoinsieme B di un'algebra di Boole A contiene 0 e 1 ed è chiuso per \wedge e \vee , ne segue che B è una sottalgebra di A?

Soluzione. No. Si consideri l'algebra di Boole di quattro elementi e si prenda un sottoinsieme di tre elementi che contenga 0 e 1.

Esercizio 11. Sia $n \in \mathbb{N}$, e sia B un'algebra di Boole di n elementi. Quanti filtri ha B? Quante congruenze?

Soluzione. La soluzione è n ad entrambe le domande. Dimostriamolo.

Dimostriamo anzitutto la seguente cosa:

Lemma. Ogni filtro F in un algebra di Boole B finita è principale, cioè esiste un elemento x tale che $F = \uparrow x$ (dove $\uparrow x$ denota l'insieme $\{y \in B \mid x \leq y\}$).

Dimostrazione del lemma. Sia F un filtro dell'algebra di Boole finita B. Allora F è finito. Poiché i filtri sono chiusi per inf finiti, anche inf F appartiene a F, cioè inf F è il minimo di F. Quindi, $F \subseteq \uparrow$ (inf F). Poiché i filtri sono chiusi verso l'alto e inf $F \in F$, abbiamo \uparrow (inf F) $\subseteq F$. Perciò $F = \uparrow$ (inf F). \square

Concludiamo ora la soluzione dell'esercizio. Sia Filt(B) l'insieme dei filtri di B. La mappa

$$B \longrightarrow \operatorname{Filt}(B)$$
$$b \longmapsto \uparrow b$$

è ben definita (cioè $\uparrow b$ è un filtro per ogni b), iniettiva (perché l'ordine parziale \leq su B è, per definizione di ordine parziale, antisimmetrico) e suriettiva per il lemma sopra. Perciò Filt(B) ha la stessa cardinalità di B, cioè n.

Le congruenze sono in biezione con i filtri, perciò sono n anch'esse.

Esercizio 12. Dimostra o confuta la seguente affermazione.

Per ogni algebra di Boole B, ogni filtro di B è principale.

Soluzione. Falso. Si prenda un insieme X infinito e si consideri l'algebra di Boole $\mathcal{P}(X)$. L'insieme dei sottoinsiemi cofiniti di X è un filtro. Inoltre, non è principale perché non ha minimo: per ogni insieme cofinito A ne esiste uno più piccolo (basta togliere un elemento ad A).