IN THE SPECIFICATION:

On page 4, amend the paragraph beginning with "Method A Decryption" as follows:

The expression $[c_1, c_2, c_3, c_4, c_5,..., c_n,...]$ represents ciphertext (encrypted message).

- i. Use a key to build a state generator, and a sequence of inverse permutations. (Subsection J.)
- ii. Apply the sequence of inverse permutations to the ciphertext so that the order is permuted: [c_{i1}, c_{i2}, c_{i3}, c_{i4}, c_{i5},..., c_{in},...]. (Subsections B and C.)
- iii. Use the state generator to create a sequence of states: $[\underline{s_{i1}}, \underline{s_{i2}}, \underline{s_{i3}}, \underline{s_{i4}}, \underline{s_{i5}}, \dots, \underline{s_{in_1}}, \underline{s_{in_1}}, \underline{s_{in_2}}, \underline{s_{in_3}}, \underline{s_{in_3}},$
- iv. Use state $\underline{s_{i1}}$ [[s₁]] to decrypt ciphertext element c_{i1} . Use state $\underline{s_{i2}}$ [[s₂]] to decrypt ciphertext element c_{i2} . Use state $\underline{s_{i3}}$ [[s₃]] to decrypt ciphertext element c_{i3} , and continue on, all the way up to use state $\underline{s_{in}}$ [[s_n]] to decrypt ciphertext element c_{in} . And so on.

On page 5, amend the paragraph beginning with "Comments on Method A" as follows:

In method A, step iii may precede ii or step ii may precede iii, or they can be executed simultaneously. There is an alternative way of decrypting in method A.

- <u>ii.</u> Use the state generator to create a sequence of states: $[s_1, s_2, s_3, s_4, s_5, ..., s_n, ...]$. (Subsections D, E, F, G, H, and I.)
- iii. Use state s₁ to decrypt ciphertext element c₁. Use state s₂ to decrypt ciphertext element c₂. Use state s₃ to decrypt ciphertext

- element c_3 , and continue on, all the way up to using state s_n to decrypt ciphertext element c_n . And so on.
- iv. Apply the sequence of inverse permutations to the scrambled plaintext [c_{i1}, c_{i2}, c_{i3}, c_{i4}, c_{i5},..., c_{in},...] so that the order is permuted back to the original plaintext message, [d₁, d₂, d₃,..., d_n,...].

 (Subsections B and C.)