

Doc. Number:

■ Tentative Specification
☐ Preliminary Specification
☐ Approval Specification

MODEL NO.: N133HSG SUFFIX: DJ1

Customer:	
APPROVED BY	SIGNATURE
Name / Title	
Note	
Please return 1 copy for your confisignature and comments.	irmation with your

A	Approved By	Checked By	Prepared By

Version 0.0 10 July 2012 1 / 26

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)	
3.3 ELECTRICAL ABSOLUTE RATINGS(OPEN CELL)	7
3.3.1 TFT LCD MODULE	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	10
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2 LED CONVERTER SPECIFICATION	12
4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION	14
4.4.1 DISPLAY PORT INTERFACE	14
4.5 DISPLAY TIMING SPECIFICATIONS	15
4.6 POWER ON/OFF SEQUENCE	16
5. OPTICAL CHARACTERISTICS	18
5.1 TEST CONDITIONS	18
5.2 OPTICAL SPECIFICATIONS	
6. PACKING	21
6.1 CMI OPEN CELL LABEL	21
6.2 PACKAGE RELIABILITY	22
6.3 CARTON	22
6.4 PALLET	23
7. PRECAUTIONS	24
7.1 HANDLING PRECAUTIONS	24
7.2 STORAGE PRECAUTIONS	24
7.3 OPERATION PRECAUTIONS	24
Appendix. EDID DATA STRUCTURE	25
Appendix. OUTLINE DRAWING	25

Version 0.0 10 July 2012 2 / 26

REVISION HISTORY

Version	Date	Page	Description
0.0	Jul.10, 2012	All	Spec. Ver. 0.0 was first issued.

Version 0.0 10 July 2012 3 / 26

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N133HSG-DJ1 is a 13.3" TFT Liquid Crystal Display with 30 pins eDP interface. This product supports 1920 x 1080 FHD mode and can display 16,7M colors. The backlight unit is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	13.3 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.1529 (H) x 0.1529 (V)	mm	-
Pixel Arrangement	RGB vertical stripe		-
Display Colors	16,777,216 (8 bit)	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-

Version 0.0 10 July 2012 4 / 26

2. MECHANICAL SPECIFICATIONS

item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H) with PCB	301.77	301.97	302.17	mm	
	Vertical (V) with PCB	186.44	187.44	188.44	mm	
Size	Vertical (V) w/o PCB	174.99	175.19	175.39	mm	
	Thickness (T) with PCB	-	ı	2.0	mm	(1) (2)
	Thickness (T) w/o PCB	-	0.87	0.95-	mm	
Weight (with polarizer release paper)		-	115	125	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-12 or equivalent

User's connector Part No: IPEX-20453-030T-01 or equivalent

2.1.2 LED Light-Bar Connector

Connector Part No.: STM MSK24022P10A or equivalent

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 $^{\circ}$ C min. and 60 $^{\circ}$ C max.

3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C. Storage humidity range: 50±10%RH.

blorage numbers range. 30±10 /61111.

Shelf life: 30days

3.3 ELECTRICAL ABSOLUTE RATINGS(OPEN CELL)

3.3.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note	
Rom	Cymbol	Min.	Max.	Offic	14010	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
System PWM signal input for dimming	PWM_IN	-0.3	5	V		
Color Engine	CE_EN	-0.3	5	V		
Dynamic backlight control	CABC_EN	-0.3	5	V		

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 0.0 10 July 2012 7 / 26

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

PIN ASS	SIGNIVIENT		
Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved)	
2	H_GND	High Speed Ground	
3	LANE1_N	Complement Signal Link Lane 1	
4	LANE1_P	True Signal Link Lane 1	
5	H_GND	High Speed Ground	
6	LANE0_N	Complement Signal Link Lane 0	
7	LANE0_P	True Signal Link Lane 0	
8	H_GND	High Speed Ground	
9	AUX_CH_P	True Signal Auxiliary Channel	
10	AUX_CH_N	Complement Signal Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	BIST	LCD Panel Self Test Enable	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	Backlight Ground	
19	BL_GND	Backlight Ground	

Version 0.0 10 July 2012 8 / 26

20	BL_GND	Backlight Ground	
21	BL_GND	Backlight Ground	
22	LED_EN	Backlight Enable Signal of LED Converter	
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved)	
25	NC	No Connection (Reserved)	
26	LED_VCCS	Backlight Power	
27	LED_VCCS	Backlight Power	
28	LED_VCCS	Backlight Power	
29	LED_VCCS	Backlight Power	
30	LOGO_VCCS	LOGO LED Power Supply +5V, (typical)	

Note (1) The first pixel is odd as shown in the following figure.

Version 0.0 10 July 2012 9 / 26

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parameter		Symbol	Value			Unit	Note	
		Syllibol	Min.	Тур.	Max.	Offic	Note	
Power Supply Voltage	ge		VCCS	3.0	3.3	3.6	٧	(1)-
HPD	High Level			3.0	-	3.6	V	
	Low Level			0	-	0.4	V	
Ripple Voltage			V_{RP}	-	50	-	mV	(1)-
Inrush Current		I _{RUSH}	-	-	1.5	Α	(1),(2)	
Dower Supply Curre	nt	Mosaic	loo		(343)	(376)	mA	(3)a
Power Supply Curre	:111	White	lcc		(408)	(448)	mA	(3)b

Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

 $\ensuremath{I_{\text{IS}}}\xspace$ the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

VCCS rising time is 0.5ms

Version 0.0 10 July 2012 10 / 26

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern

Active Area

b. White Pattern

Active Area

Version 0.0 10 July 2012 11 / 26

4.3.2 LED CONVERTER SPECIFICATION

Parameter		Cumbal		Value	Unit	Noto	
Parai	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	LED_Vccs	(7.0)	12.0	21.0	V		
Converter Inrush Current		ILED _{RUSH}	-	-	1.5	Α	(1)
EN Control Lovel	Backlight On		2.3	-	5.0	V	
EN Control Level	Backlight Off		0	-	0.5	V	
DWM Control Lovel	PWM High Level		2.3	-	5.0	V	
PWM Control Level	PWM Low Level		0	-	0.5	V	
DWM Control Duty	Datio		10	-	100	%	
PWM Control Duty F	Ralio		5	5 - 100		%	(2)
PWM Control F Voltage	VPWM_pp	-		100	mV		
PWM Control Frequ	f _{PWM}	190		2K	Hz	(3)	
LED Power Current	ILED	(293)	(329)	(429)	mA	(4)	

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

 $\ensuremath{\mathsf{ILED}_{\mathsf{IS}}}\!$: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Version 0.0 10 July 2012 12 / 26

VLED rising time is 0.5ms

- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- Note (3) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range
$$(N+0.33)*f \leq f_{\text{PWM}} \leq (N+0.66)*f$$

$$N: \text{Integer} \ \ (N\geq 3)$$

$$f: \text{Frame rate}$$

Note (4) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION

4.4.1 DISPLAY PORT INTERFACE

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	٧	(1)(3)
AUX AC Coupling Capacitor	C_{AUX}	75		200	nF	(2)

- Note (1) Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.1.
 - (2) The AUX AC Coupling Capacitor should be placed on Source Devices.
 - (3)The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

Version 0.0 10 July 2012 14 / 26

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	(87.9)	(138.5)	(145.4)	MHz	-
	Vertical Total Time	TV	(1104)	(1112)	(1120)	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	(32)	TV-TVD	TH	-
	Horizontal Total Time	TH	(2040)	(2080)	(2120)	Тс	-
	Horizontal Active Display Period	THD	1920	1920	1920	Tc	-
	Horizontal Active Blanking Period	THB	TH-THD	(160)	TH-THD	Tc	-

INPUT SIGNAL TIMING DIAGRAM

4.6 POWER ON/OFF SEQUENCE

Version 0.0 16 / <u>26</u> 10 July 2012

Timing Specifications:

Parameter	Description	Reqd.	Val	Value		Notes	
raiametei	•	Ву	Min	Max	Unit	Notes	
t1	Power rail rise time, 10% to 90%	Source	0.5	10	ms	-	
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	-	
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	-	
t4	Delay from HPD high to link training initialization	Source	-	-	ms	-	
t5	Link training duration	Source	-	-	ms		
t6	Link idle	Source	-	-	ms	-	
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	-	
t8	Delay from valid video data from Source to backlight on	Source	-	-	ms	-	
t9	Delay from backlight off to end of valid video data	Source	-	-	ms	-	
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	-	
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-	
t12	VCCS Power off time	Source	500	-	ms	-	
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-	
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-	
t _C	Delay from LED power rising to LED dimming signal	Source	10	-	ms	-	
t _D	Delay from LED dimming signal to LED power falling	Source	10	-	ms	-	
t _E	Delay from LED dimming signal to LED enable signal	Source	10	-	ms	-	
t _F	Delay from LED enable signal to LED dimming signal	Source	10	-	ms	-	

- Note (1) Please don't plug or unplug the interface cable when system is turned on.
- Note (2) Please avoid floating state of the interface signal during signal invalid period.
- Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Та	25±2	°C	
Ambient Humidity	На	50±10	%RH	
Supply Voltage	V _{CC} 3.3		V	
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"	
LED Light Bar Input Current	Ι _L		mA	

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (6).

Iten	Item		Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			(0.664)		-	
	Neu	Rcy			(0.327)		İ	(0),(2),
	Green	Gcx			(0.304)		İ	
Color	Green	Gcy	θ_x =0°, θ_Y =0° CS-2000T	Тур -	(0.591)	Typ +	i	
Chromaticity	Rlue	Blue Bcx Standard light source "C" 0.03 (0.142)	0.03	i	(5),(8)			
	Dide	Bcy	Standard light source C	(0.088	(0.088)		i	
	White	Wcx	Wcx		(0.333)]	i	
	vviile	Wcy			(0.363)		İ	
Center Transmittance		Т%	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	4.0	4.5			(1),(2), (5),(7)
Contrast Ratio		CR	CS-2000T, CMO BLU	500	700		•	(2), (3)
Response Time		T_R	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		14	19	ms	(4)
response nine		T_F	θ _χ -υ , θγ -υ		11	16	ms	(4)
Transmittance uniformity		δΤ%	θ_x =0°, θ_Y =0° BM-5A		1.25	1.43	ı	(2),(6)
Viewing Angle	θ_{y} Vertical	θ_x +		80	89			
		θ_{x} -	CR≥10	80	89			(2), (5)
		θ _Y +	BM-5A	80	89			(2), (3)
		θ_{Y} -		80	89			

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

- 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMI.
- 2. Calculate cell's spectrum.

Version 0.0

3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

Note (1) Light source is the BLU which is supplied by CMI and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. Spec is judged by CMI's golden sample.

10 July 2012

18 / 26

Note (2) Definition of Viewing Angle (θx , θy):

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (4) Definition of Response Time (T_R, T_F):

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement

should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 5 points

Note (7) Definition of Transmittance (T%):

 δ T% =

Module is without signal input.

BLU is supplied by CMI.

Note (8) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 0.0 10 July 2012 20 / 26

6. PACKING

6.1 CMI OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMI internal control.

(a) Model Name: N133HSG - DJ1

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: $1\sim9$, $A\sim C$, for Jan. \sim Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

6.2 PACKAGE RELIABILITY

(1) Carton Packing should have no failure in the following reliability test items

Test Item	Test Conditions	Note
	ISTA STANDARD	
Dooking	Random, Frequency Range: 1 – 200 Hz	
Packing Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	-
	Back & Forth 10 minutes (Y)	

6.3 CARTON

Figure. 6-3 Packing method

6.4 PALLET

Figure. 6-4 Packing method

Version 0.0 10 July 2012 23 / 26

7. PRECAUTIONS

7.1 HANDLING PRECAUTIONS

- (1) The open cell should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the open cell.
- (2) While assembling or installing open cell, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the open cell from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the open cell.
- (10) Pins of I/F connector should not be touched directly with bare hands.

7.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of open cell. Please store open cell within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the open cell, because the moisture may damage open cell when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly.

7.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the open cell is operating.
- (2) Always follow the correct power on/off sequence when open cell is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.

Version 0.0 10 July 2012 24 / 26

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

TBD

Appendix. OUTLINE DRAWING

Version 0.0 10 July 2012 25 / 26

NDTES:
1.GENERAL TOLERANCE: ±0.2MM.
2.EDP CONNECTOR: IPEX 20455-030E-12.
3.LED CONNECTOR: STM MSK24022P10A.
4.LDGD CONNECTOR: ACES 50696-060M-001.
5.COMPONENT HEIGHT: REAR SIDE 1.2MM MAX.

Version 0.0 10 July 2012 26 / 26