Détaillez vos réponses, prouvez vos affirmations. Les étoiles marquent les questions difficiles.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 2h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Poser la multiplication suivante en base 5 :

$$1102 \times 12$$
.

Question 2

Mettre la formule suivante en forme normale prénexe

$$\neg \left(\neg \forall y. \Big(\big(\exists .x. A(x,y)\big) \to \big(\forall x. B(x,y)\big) \Big) \right)$$

Question 3

En utilisant exclusivement les symboles $+, -, \times, =, \leq$, les constantes $0, 1, 2, \ldots$ et le calcul des prédicats, écrire en langage logique l'affirmation « il existe des nombres pairs et divisibles par 11 ».

Question 4

Montrer par induction que $\sum_{k=0}^{n} (6k+3) = 3(n+1)^2$ pour tout $n \ge 0$.

Question 5

Pour chacune des fonctions suivantes dire si elle est injective et/ou surjective. Donner une justification dans le cas affirmatif, ou un contre-exemple dans le cas négatif.

- (a) La fonction $f: \mathbb{Z} \to \mathbb{Q}$ définie par f(x) = x/2,
- (b) La fonction $f: \mathbb{Z} \to \mathbb{N}$ définie par $f(x) = x^2$,
- (c) La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 3x.

Question 6

On considère des relations binaires sur l'ensemble $A = \{1, \ldots, 7\}$.

- (a) Écrire les relations suivantes comme des sous-ensembles de $A \times A$.
 - $x\mathcal{R}y$ si et seulement si x-y est divisible par 3;
 - xSy si et seulement si $x y \le 2$;
 - xTy si et seulement si x est un multiple de y;
- (b) Lesquelles de ces relations sont réflexives, symétriques, anti-symétriques, transitives?
- (c) Y a-t-il des relations d'équivalence? Donner la classe d'équivalence de 1?

Question 7

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 6 & 2 & 1 \end{pmatrix}.$$

- (a) Calculer $\sigma_1 \circ \sigma_2$ et σ_1^{-1} .
- (b) Calculer les décompositions en cycles de σ_1 , σ_2 , σ_1^{-1} et σ_2^{-1} .

Question 8

n couples hétérosexuels sont invités à un mariage. Les mariés veulent que les couples soient assis à table vis-à-vis, mais ils ne veulent imposer aucune autre contrainte. Par exemple, les configurations ci-dessous sont admissibles (et différentes) :

Amandine	Blandine	Amandine	Baptiste		Baptiste	Armand
Armand	Baptiste,	Armand	Blandine	,	Blandine	Amandine

mais pas celles-ci:

Amandine	Blandine	Amandine	Armand
Baptiste	Armand,	Blandine	Baptiste

(la ligne du milieu représente la table, et on adopte la convention d'avoir les membres de chaque couple commençant par la même lettre).

- (a) Combien de dispositions différentes y a-t-il pour n = 1, 2, 3?
- (b) On note D(n) le nombre de dispositions possibles, exprimer D(n+1) en fonction de D(n).

 Justifier.
- (c) Donner une formule close (i.e., non récursive) pour D(n).

Les couples s'assoient au fur et à mesure qu'ils arrivent dans la salle. Par galanterie, l'homme laisse toujours s'assoir d'abord la femme. Plusieurs couples peuvent arriver à peu près en même temps, auquel cas chaque homme s'assoit après sa propre femme, mais aucune autre contrainte est imposée. Ainsi, les ordres suivants sont valables :

- Amandine, Céline, Christian, Armand, Blandine, Baptiste;
- Blandine, Amandine, Céline, Armand, Christian, Baptiste; mais pas
 - Armand, Amandine, Baptiste, Blandine;
 - Amandine, Baptiste, Blandine, Armand.
- (d) Combien d'ordres possibles pour n = 1, 2, 3?
- (e) (*) On note O(n) le nombre d'ordres possibles. Exprimer O(n+1) en fonction de O(n). Justifier.
- (f) Donner une formule close pour O(n).