Consumes and Conneum motion of Corporations Galleds

1 253 555

(11) (A) No.

(45) ISSOND 890502

(52) CLASS 309-6 C.R. CL. 309-85

- (51) INT. CL. 8218 36/04, 11058 3/56
- (19) (CA) CANADIAN PATENT (12)
- (54) Resting Rate Variant Blongsted Blectrical Resistance Usater
- (72) Van Bomond, Cornelis P.H.; Vanmeurs, Peter, 0.6.A.
- (73) Granted to Shell Canada Limited Canada
- (21) APPLICATION No.

495,853

(22) FILED

851121

ſ. No. OF CLAIMS

Canada

CHIN SARES BY AND MAISTE OFFICE, OTTAKE COMPTAINTERS

Patent Dynts Street Begger

多多 经资格的 医骨部

1253555

63293-2601

This invention relates to a method and apparatus for heating an elongated space or a location containing an elongated heator. Kors particularly, the invention relates to an electrical resistance heater for heating an elongated subterrance hereby at the borebyle.

It is known to be beneficial to use clongated heaters such as well heaters, for heating intervals of subterranean earth formations, pipo interiors, or other clongated spaces. In various situations, it is desirable to heat such spaces at relatively high temperatures for relatively long times. Buneficial results obtained by such heating may include pyrolizing oil shale formations, coking oil to consolidate unconsolidated reservoir formations, coking oil to form electrically conductive carbonized zones capable of operating as electrodes within a reservoir formation, thermally displacing hydrocarbons derived from oils or term into production locations, preventing formation of hydrates, precipitates, or the like in fluids which are being produced from wells and/or transmitted through pipes, or the like.

The invention sime to provide a heating apparatus which is capable of generating heat at different rates at different depths in a well.

In accordance with the invention there is provided in a process in which subterranean earth formations within an interval more than 100 feet long are heated to a temperature of were than 600°C., so that heat is injected substantially uniformly into that interval, an improvement for constructing and installing a heater

1253555

60290-2601

having an electrical cable heating section which is free of aplices, comprising; constructing said heating cablo section by compressively awaging at least one portion of a junotion-tree electrical heating cable to reduce its size at said at least one portion, said cable is at least as long as the earth formation interval to be heated and comprises an axially sligned, malleable, electrically conductive core surrounded by granular mineral insulation within a metal sheath, so that swaged portion generates heat at a rate higher than the unswaged portion; correlating the location of said swaging with the pattern of heat conductivity in the earth formation interval so that at least one compressively swaged portion of the cabla is located along the cubic in a position such that, when the cable is extended along the earth formation interval to be heated, the compressively swaged portion is adjacent to a portion of the earth formation interval in which the heat conductivity is relatively high; connecting said soluctively swaged heating cable section to at least one power supply cable and spooling the interconnected cables; and unspecting the interconnected cables into a wellhore along with a weight-supporting metal conduit while periodically attaching the cables to the conduit and extending the cables and conduit to a depth at which the compressively swaged portions of the cable are positioned adjacent to the earth formations having a relatively high thermal conductivity.

The invention will now be explained in more detail with reference to the accompanying drawings, in which:

2

3

63293-2601

Figure 1 is a three-dimensional illustration of an electrically conductive cable containing swaged and unawaged portions suitable for use in the present invention.

Figure 2 sohematically illustrates the installing of an electrical resistance heater within the well in accordance with the present invention.

12

to:

1253555

- 3 -

Figure 3 shows a splice between a metal-sheathed insulated power supply cable and a metal-sheathed insulated cable suitable as a heating element of the present invention.

Figures 4 and 5 illustrate splices for electrically interconnecting the conductive comes of a pair of metal-sheathed mineralinsulated heating cables suitable as body cables in the present invention.

Figure 6 shows an electrical power supply circuit suitable for use in the present invention.

The present invention is at least in part premised on a discovery that the properties of an electrical conductor (such as a metal-shoathed solid material-insulated electrically conductive cable containing a single copper core) are such that results of an application of compressive swaging to the outside of the metal sheath are transmitted through the insulation to the core of the cable in a manner such that each of these components are substantially simultaneously reduced in cross-sectional area by the same relative amounts. The reductions in the cable core cross-sectional area can be controlled to cause the swaged portion of the cable to generate a significantly higher amount of heat per unit time than that which would have been generated without the swaging, even at a substantially lower temperature.

In a proferred embodiment of the invention, such a swaging is done by a process of rotary swaging, amounting to compressing the cable with many blows applied by rotating dies. Rotating swaging devices and techniques are known and connectially available. Such machines commonly contain two dies which reciprocate rapidly as a spirale in which they are mounted is rotated. A compressive rotary swaging operation involves a hammering action which has the same beneficial material on metal as forging. It produces a desirable grain structure resulting in an increased tensile strength and elasticity. The cold (in temperature) swaging tends to work harden most metallic materials. If desired, such a hardening can be made more flexible by annealing.

1253555

- 4 -

In a rotory swaging operation, the extent to which the swaged material is reduced in cross-sectional area can be controlled very accourately. For example, since a metal-ebeuthed solid materialinsulated exper-cored electrically-conductive cable believes as a solid material during a rotary swaging operation, such a cable having a diameter of from about 0.68 to 1.25 cm can be swaged to a reduced diameter with an accuracy of about plus or mimus 0.0025 cm.

Figure 1 illustrates swaged and unawaged portions of a cable preferred for use in the present invention. In the cable shown, a stainless steel sheath 2 surrounds a mineral insulation 3 consisting of highly compressed grains of magnesium oxide and a solid conductive core 4 of substantially pure copper is concentrically surrounded by the insulation and sheath. In a cable of the type shown, where the inner and outer diameters of the 15 wheath 2 and 7.25 and 9 mm and the diameter of the core 4 is 3 mm, in the unawaged portion, the cable may quarate a temperature of about 600 °C when conducting 180 superes of alternating current. However, in a swaged portion of the cable having a diameter reduced by 16%, a temperature of about 850 °C is generated when the cable is conducting the same current in the same environment.

In a proferred exhadiment, the present invention can be utilised for providing a formation-tailored method and apparatus for uniformly heating long intervals of subterranean earth formations at high temporature. According to this method subterranean intervals are heated with an electric heater containing at least one speciable steel-sheather mineral-insulated cable having a solid central core of high electrical conductivity. Such a cuble can be arranged to heat the earth formations so that heat is transmitted into the formations at a substantially uniform rate, even when the hosting involves more than about 330 watta per metre at bemperatures between about 600 and 1000 °C. The uniformity of the heat trunsmission is ensured by providing the heater with a pattern of electrical rosistances with dapth within the well

- 5 -

correlated with the pattern of heat conductivity with depth within the surrounding earth formations.

Figure 2 shows a preferred submiment of a wall heater of the present towartion being installed within a well. As shown, a pair of selectively swayed heater cables with swaged and unawaged portions of the type shown in Figure 1 are being unspooled into a woll from spooling means 5 and 6 while a support member 7, such as a wire line or speciable metal conduit, is concurrently unappoled into the well from a spooling means (not shown). The lower end of 10 the support means 7 is attached to a motor mosts 0, such as a sinker bar for a vertical well or a cumpable or other motor means for a substantially horizontal well. The lower ends of the heating osble, awaged portions 1b, are mechanically attached to a cable junction or end-connector 9 in which the conductive cores are elactrically interconnected (as shown in more detail in Figure 4). The jurction 9 is also mechanically connected to the support member 7, for example by a strapping means 12. The lower ends of the cable portions, which are swaged for increased heating, are electrically interconnected in the end connector 9 and positioned to extend through the zone eslected for receiving the increased heating.

The unsweged portions la of the heating cables, designed for minimal heating along the sone to be heated, are positioned to extend above the swaged portions 1b for a distance sufficient to reach a zone which is end enough for an intercorrection of the heating cable portions Is with power supply cables 10 by means of joints or splices 11 for electrically and mechanically interconnecting the power supplying and beating cables. The power supply cables 10 are arranged for carrying a selected amount of current while generating only a minimal amount of beat. The details of suitable mechanical and electrical cable connecting joints for use with metal-sheathed mineral-insulated power supplying cables are illustrated in Figure 3.

As the heating and power supply cables 1 and 10 are run into the wall, along with the weight-supporting strand 1, the cables are

-6-

periodically attached to the strond 7 by means of clamps or atrapping means 12. Such clamps are arranged for creating a friction between the cables and strand which is sufficient to support the weight of the lengths of the cables which are located botween the clamps.

Figure 3 illustrates details of preferred arrangements of splices 11. As shown, the power supply cable 10 has a metal steath 14, such as a copper sheath, surrounding an insulated electrically conductive core 13 having a combination of cross-sectional area and 10 electrical resistance per unit of length adapting it to carry the current to be used in the heating operation while generating only an insignificant amount of heat. As shown, the power cable shoath 14 as well as a power cable core 13 are larger than the sheath 2 and core 4 of the unswaged portion of heating cable la. The 15 conductive cores of the cable are electrically interconnected, preferably by welding. In general, the power cable can emprise substantially any type of electrically conductive cable which is adequately heat stable at the temperature generated by the minimum heating portion of a heating cable such as in. Where the maximum 20 selected heating temperature is sufficiently low and/or the distance between the power supply and zone to be beated is adequately short, the power supply cable can comprise a motalsheathed miteral-insulated solid-cored cable which is soldctively swaged to provide the selected heating temperature so that no 25 splices such as aplices 11 are needed.

As shown in Figure 3, a relatively short sleeve 15, such as a steel sleeve, is fitted around and welded or brazed, or otherwise mechanically attached, to the abeath 14 of the power cable 10. The sleeve 15 is preferably selected to have an inner diameter forming an anumber speed between it and abeath 2 large enough to accommodate a shorter strel sleeve 16 fitted around the sheath of the cable 1a. In a preferred assembling probability, before inserting the short sleeve 16, substantially all of the annular egges between the cable core members 4 and 13 and sleeve 15 is filled with a

1250555

powdered mineral insulating material such as magnesium oxide. The insulating material is preferably deposited within both the annular space between the cable cores and the sleeve 15 as well as the space between the sleave 15 and the sheath 2 of the cable 1a, and vibrated to compact the mass of particles. Sheave 16 can then be driven into the space between the sleeve 15 and sheath 2 so that the mass of minera), insulating particles is compacted by the driving force. Sleeves 15 and 16 and sheath 2 are then welded or brazei together.

Figure 4 illustrates details of an end connector or splice 9. As shown, cables in are extended through holes in a steel block 9 so that short sections to extend into a cylindrical opening in the central portion of the block. The electrically conductive works of the cables are welded together at weld 17 and the cable sheaths are 15 weided to block 9 at welds 18. Preferably, the central conductors of the cables are surrounded by a heat stable electrical insulation such as a mass of compacted powdered mineral particles and/or by disce of ceramic materials (not shown), after which the central opening is sealed, for example, by welding-on pieces of steel (not 20 shown). Where the heater is supported, as shown in Figure 2, by attaching it to an elongated cylindrical structural member 7, a groove 19 is preferably formed along an exterior portion of end splios 9 to mate with the structural member and facilitate the attaching of the end place bo that member, for example, by a strapping maxms 12.

Piqure 5 shows a proferred type of end connector which climinates the need for outting and walding a heater cuble to form a pair of heater cables, such as cables 16. The heater cable is simply bent into a U-turn and mechanically clamped to block 20 by a 30 bolted-on clamping plate 21. The block 20 is preferably provided with groove 22 to facilitate the clamping of it to a cylindrical structural member such as the cylindrical member 7 shown in Figure 2.

1253555

In general, the power supplying elements can comprise substantially any NC or DC system capable of causing a hauter of the present type so heat at the selected relatively high rate. Such a heating rate can be about 330 watts par metre or more.

Figure 6 is a diagram of a preferred arrangement of alternating current electrical power supplying elements suitable for the present type of heater. This arrangement includes two inverse, parallel, milicon-controlled rectifiers (SCRs) in the circuits of both elements of a two-element heater. In such a 10 balanced system the heater lugs should be of equal resistance so that the cuble core junction, point A, (within end connector 9) can remain at zero voltage or virtual ground potential. The sheaths of the heater cables are connected to the grounded centre tap of the transformer secondary. Since point A represents the welded connection within the end piece 9, the potential difference between the connection and the housing will be zero for all practical purposes. These points could be in electrical contact without any conduction of current. At points advancing upward along the lege of the heater, the potential difference between the sheaths and the 20 central conductor can increase and finally reach meximums such as plus or minus 240 V.

In various situations in which an elongated space is to be heated, the in situ thermal conduction way vary significantly within various layers or locations along that space. A more host conductive layer will carry off the host generated by a heater faster than a less conductive layer. As a result, the temperature maintained by an electrical resistance hoster carrying a given amount of current will be lower opposite a more conductive layer. In situations in which it is desired to maintain a flat or uniform 30 heating rate along the space being heated, it is desirable to reduce the heater core cross-sactional area in order to gamerate heat at the same rate as that in other portions of the heater which are liotter.

_ Q ...

An electrical resistance heater can be exceed to generate selected heating rates at different locations along the heater by installing heater sections containing conductors of varying cuess-sections. The smaller come or conductor cross-sections exhibit name resistance to the electrical current flow and thus generate heat at a rate higher than would be generated by a thickor cone at the same temperature. For example, it can heat at a selected rate at lower temperature existing along a relatively more heat conductive layer or some within the space being heated.

The present invention provides a method of cousing a heater having an electrically conductive core which is continuous and unitary to generate constant and/or selected amounts of heat along one or a multiplicity of different partions of the heater without requiring a multitude of heating cable splices. Farticularly where the heating is to be conducted as relatively high temperatures for long times, welding problems and apportunities for leakage are inherent in any cutting and splicing of electrical heating cables.

In respect to an electrical resistance heater comprising a pair of electrically intercommented metal-sheathed solid material-insulated cobles each containing a maileable metal electrically-conductive cors, four sets of rotary switching dies can be arranged for providing percentages of diametrical reductions of 5, 12, 18 and 24 in the initial overall diameter of each cable and its conductive cors. By reducing one portion of the cable diameter by 6% and another by 12%, the overall reduction is 9%. By such percedures, the overall cross-sectional reductions for both legs of the heater can be provided in eight steps of roughly 10% each. For example, see the following table:

- 10 -

LAMBTRICAL REDUCTION (%)		CROSS—HECTIONAL REDUCTION (%)
LSG 1	LEG 2	DOM LEGS
0	6	11.6
6	6	23.3
6	12	34,2
12	12	45,1
12	1.8	55.3
18	19	65.5
1.8	24	75.0
24	24	84.5

In such a procedure, if the showe-described preferred power supply is to be used, it is necessary that each leg of the heater after reductions in its core diameter have an overall resistance equalling that of the other leg after reductions in its core diameter. This is necessary to ensure the zero voltage potential of the interconnected conductors in the end piece. Thus, it is necessary to divide the overall extents of electrical core reductions evenly over both lengths of the heater.

Substantially any compressive swaying procedure which is or is substantially equivalent to rotary swaying can suitably be used in practising the present invention. Examples of swaying mechines and/or techniques which can suitably be used are inclusive of disclosing swaying machines, such as those minufactured by The Torrington Cumpany, or Abbey Natha Machine Company of Form
15 Manufacturing, etc.

Error supply cubics capable of transmitting the amount of current selected to be used while generating only a relatively insignificant amount of heat and having sufficient thermal stability for electrical and mochanical attachment to the motal

- 11 -

sheathed cable selected for generating a minimum amount of heat can suitably be used in this invention. Examples of such cables include those available as BICC/Pyrotenac (41 cables.

In general, in a situation in which an electrical conductor

need not be insulated, the present invention can be gractised with
substantially any electrical conductor which is continuous and
unitary (i.e. is a continuous body from of interconnected segments
or strands) and has a core or conductor thickness (i.e. a crosssectional area of the electrically conductive material) which is
different in different locations along the length of the electrical
conductor. Preferred electrical conductors comprise simple
conductive cores of malleable metals or allows surrounded by a heat
stable solid insulated material within a beat stable metal sheath
such as refractory powder or solid fibre insulating materials
within copper or stool sheaths. A copper core surrounded by
powdered magnesium exide within a copper sheath for use at moderate
temperatures, or a stainless steel sheath for use at high
temperatures, is particularly preferred.

In general, the present invention can be utilized to initiate and maintain a substantially uniform rate of heating along a space containing at least one portion having a relatively low rate of heat conductivity and/or to establish and maintain a relatively high rate of heating along selected portions along a space throughout which the rate of heat conductivity is nearly uniform. The variations in heat conductivity with distance along an elongated path can be determined by means of numerous known and available devices and techniques.

In a particularly preferred procedure for utilizing the present invention for heating along a path along which the heat conductivity is non-uniform, a selection is made of the rate of heating to be provided when an electrical conductor baving the composition to be used is conducting the amount of current to be used within a homogeneous medium having the lowest heat conductivity to be encountered along the path to be heated. The

- 12 -

maximum thickness for the electrical conductor to be used is then
the thickness which provides that rate of heating in that
situation. The thickness of particles of the conductor to be
positioned along particles of the path which have higher teat
conductivities are then made thirmer to an extent substantially
compensating for the more rapid conducting-away of the heat by
those higher heat conductivities.

Alternatively, where it is desirable to generate heat at relatively rapid rates along portions of a path to be banted (for example, along top and bottom portions of a subterrance coarth formation) such an arrangement can be made, although the heat conductivity may be substantially uniform all along the path to be heated. The conductor thickness and resistance to be used along most of the cable conductor are selected to provide the selected rate of heating along a homogeneous material having the lust conductivity common to most of the interval to be heated. Then, the more rapid heating rate along selected portions of the path can be obtained by thinning the portions of the conductor to be extended along those portions of the path.

http://patentsl.ic.gc.ca/fcgi-bin/any2html

63293-2601

THE AMBODINGHTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS COLINES.

In a process in which subterraneau earth formatious within an interval more than 100 feet long are beaud to a temperature of more than 600°C., so that heat is injected substantially uniformly into that interval, an improvement for constructing and installing a heater having an electrical cable heating section which is free of splices, comprising, constructing said heating cable section by compressively swaging at least one portion of a junction-free electrical heating cable to reduce its \$126 At said at least one portion, said cable is at least as long as the earth formation interval to be heated and comprises an axially aligned, malleable, electrically conductive core surrounded by granular mineral insulation within a metal sheath, so that awaged portion generates heat at a rate higher than the unswaged portion; correlating the location of said swaging with the pattern of heat conductivity in the earth formation interval so that at least one compressively swaged portion of the cable is incated along the cable in a position such that, when the cable is extended along the marth formation interval to be heated, the compronsively swaged portion is adjacent to a portion of the earth formation interval in which the heat conductivity is relatively high; connecting said selectively awaged heating cable section to at least one power supply cable and spooling the interconnected cables; and unappoling the interconnected cables into a wellbore along with a weight-supporting metal conduit while periodically

63293-2601

autaching the cables to the conduit and extending the cables and conduit to a double at which the compressively awaged portions of the cable are positioned adjacent to the earth formations having a relatively high thermal conductivity.

SMART & BIGGAR OTTAWA, CANADA PATENT AGENTS

ABSTRACT

HEATING RATE VARIANT ELONGATED ELECTRICAL RESIGNANCE HEATER

An electrical resistance leater capable of generating leat at different rates at different locations along its length comprises a continuous and unitary electrical conductor having a thickness which is different at different locations along its length.

CTRH04

in server the entropy of the letter