

Progettazione Elettronica Digitale

2024-2025 © Mario Casu, Mihai Lazarescu, Paolo Pasini

Introduzione ai circuiti logici

- → Segnali logici e natura elettrica
- →Funzioni logiche
- →Porte logiche
- →Circuiti logici
- →Richiami di algebra booleana

Zero (0) e Uno (1) come grandezze elettriche

- Consideriamo un interruttore (switch, S) con due stati: Aperto (0), Chiuso (1)
- Lo usiamo per accendere o spegnere una lampadina

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Zero (0) e Uno (1) come grandezze elettriche

- Consideriamo un interruttore (switch, S) con due stati: Aperto (0), Chiuso (1)
- Lo usiamo per accendere o spegnere una lampadina

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Zero (0) e Uno (1) come grandezze elettriche

- Consideriamo un interruttore (switch, S) con due stati: Aperto (0), Chiuso (1)
- Lo usiamo per accendere o spegnere una lampadina

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Corrispondenza tra livello di tensione e livello logico

Convenzione solitamente utilizzata

- Tensione alta ⇔ 1 logico
- Tensione bassa ⇔ 0 logico

Ma quanto alta (o bassa) dev'essere una tensione per rappresentare 1 (o 0) logico?

- Concetto di soglia (threshold) V_T
 - $V > V_T \Rightarrow 1$ logico
 - $V < V_T \Rightarrow 0$ logico
- Concetto di forma d'onda (waveform)

Inversione logica

- Consideriamo un interruttore (switch, S) con due stati: Aperto (0), Chiuso (1)
- Ora accendiamo quando è aperto (0) e lo spegniamo quando è chiuso (1)

(a) Two states of a switch

(b) Symbol for a switch

Inversione logica (NOT)

- Consideriamo un interruttore (switch, S) con due stati: Aperto (0), Chiuso (1)
- Ora accendiamo quando è aperto (0) e lo spegniamo quando è chiuso (1)

(a) Two states of a switch

(b) Symbol for a switch

- Y = NOT x
 - Varie notazioni: NOT $x = \overline{x} = x' = !x = \sim x = x^*$
- Cosa succede se R = 100 Ω?

Funzioni logiche AND e OR

- Due interruttori in serie o in parallelo
- Luce accesa (y=1) se
 - entrambi gli switch sono accesi (serie)
 - almeno uno è acceso (parallelo)
- $y = x_1 AND x_2$
 - Lo indichiamo come $y = x_1 \cdot x_2$
- $y = x_1 OR x_2$
 - \circ Lo indichiamo come y = $x_1 + x_2$

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

• Tabelle che riportano il valore logico di una funzione logica $y = f(x_1, x_2, ..., x_n)$ per tutte le possibili combinazioni logiche degli ingressi x₁, x₂, ..., x_n

NOT					
x	$f = \overline{x}$				
0	1				
1	0				

$$\begin{array}{c|ccccc} x_1 & x_2 & f = x_1 \cdot x_2 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

AND

OR

• Tabelle che riportano il valore logico di una funzione logica $y = f(x_1, x_2, ..., x_n)$ per tutte le possibili combinazioni logiche degli ingressi $x_1, x_2, ..., x_n$

NOT					
x	$f = \overline{x}$				
0	1				
1	0				

$$\begin{array}{c|ccccc} x_1 & x_2 & f = x_1 \cdot x_2 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

AND

$$\begin{array}{c|cccc} x_1 & x_2 & f = x_1 + x_2 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

NOR = NOT OR

OR

$$\begin{array}{c|ccccc}
x_1 & x_2 & f = \overline{x_1 \cdot x_2} \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

NAND = NOT AND

$$\begin{array}{c|cccc}
x_1 & x_2 & f = \overline{x_1 + x_2} \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}$$

- Tabelle che riportano il valore logico di una funzione logica $y = f(x_1, x_2, ..., x_n)$ per tutte le possibili combinazioni logiche degli ingressi $x_1, x_2, ..., x_n$
- Tutte le 16 possibili funzioni di due ingressi (16 = 2^(2^2))

_			•															
I_{x}	1	x_2	0	1	x_1	x_2	$\overline{x_1}$	$\overline{x_2}$	$x_1 \cdot x_2$	$x_1 + x_2$	$x_1 \cdot x_2$	$\overline{x_1 + x_2}$	$x_1 \oplus x_2$	$x_1 \oplus x_2$	$\overline{x_1} \cdot x_2$	$x_1 \cdot \overline{x}_2$	$\overline{x_1} \cdot x_2$	$\overline{x_1 \cdot \overline{x_2}}$
()	0	0	1	0	0	1	1	0	0	1	1	0	1	0	0	1	1
()	1	0	1	0	1	1	0	0	1	1	0	1	0	1	0	0	1
1	-	0	0	1	1	0	0	1	0	1	1	0	1	0	0	1	1	0
1	-	1	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	1
		ſ			ر							Ĺ)			
Costanti								>	OR /	XNOR								

- Tabelle che riportano il valore logico di una funzione logica $y = f(x_1, x_2, ..., x_n)$ per tutte le possibili combinazioni logiche degli ingressi $x_1, x_2, ..., x_n$
- AND e OR di 3 ingressi
 - Provare a scrivere le tabelle di altre funzioni di 3 ingressi (es. NAND, NOR, ecc.)

A	ND	OR
x_1 x_2 x_3	$x_1 \cdot x_2 \cdot x_3$	x_1 x_2 x_3 $x_1 + x_2 + x_3$
0 0 0	0	0 0 0 0
0 0 1	0	0 0 1 1
0 1 0	0	0 1 0 1
0 1 1	0	0 1 1 1
1 0 0	0	1 0 0 1
1 0 1	0	1 0 1 1
1 1 0	0	1 1 0 1
1 1 1	1	1 1 1 1

- Sono circuiti elettronici che contengono transistori opportunamente connessi per realizzare semplici funzioni logiche tra gli ingressi e l'uscita
 - o I transistori si comportano da switch nelle porte logiche, lo vedremo più avanti

- Sono circuiti elettronici che contengono transistori opportunamente connessi per realizzare semplici funzioni logiche tra gli ingressi e l'uscita
 - o I transistori si comportano da switch nelle porte logiche, lo vedremo più avanti

NOT anche detto INVERTER

$$B = \overline{A}$$

BUFFER (non invertente)

$$B = A$$

(c) Boolean expression

- Sono circuiti elettronici che contengono transistori opportunamente connessi per realizzare semplici funzioni logiche tra gli ingressi e l'uscita
 - I transistori si comportano da switch nelle porte logiche, lo vedremo più avanti

A	В	C
0	0	1
0	1	1
1	0	1
1	1	0

$$C = \overline{A \cdot B}$$

NOR
$$A \longrightarrow C$$

$$C = \overline{A + B}$$

e (c) Boolean expression

- Sono circuiti elettronici che contengono transistori opportunamente connessi per realizzare semplici funzioni logiche tra gli ingressi e l'uscita
 - o I transistori si comportano da switch nelle porte logiche, lo vedremo più avanti

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

$$C = A \oplus B$$

$$C = \overline{A \oplus B}$$

(a) Circuit symbol

(b) Truth table

(c) Boolean expression

Dalle porte alle Reti Logiche (o Circuiti Logici)

- Esistono porte logiche anche a più di due ingressi, ad esempio tre o quattro
- Di solito non si usano porte con troppi ingressi (es. non più di 4/5 ingressi)
- Combinazioni di porte semplici opportunamente collegate

possono essere usate per realizzare funzioni logiche più complesse

Chiamiamo una rete di porte logiche interconnesse **Rete Logica** o **Circuito Logico**

Analisi di un circuito logico

- Dato un circuito logico, possiamo analizzarne il comportamento per determinare la funzione logica che realizza (o le funzioni, se ha più uscite)
 - o Operazione inversa: sintesi logica (dal funzionamento al circuito), molto più complessa
- Per circuiti semplici basta considerare tutte le combinazioni degli ingressi
 - Per circuiti complessi non è possibile, es: 32 ingressi => 2^32 = 4.294.967.296 combinazioni!

Possiamo inoltre usare l'algebra booleana per determinare la funzione

Analisi di un circuito logico

- In un circuito logico di solito gli ingressi variano nel tempo: segnali logici
- Diagramma temporale con forme d'onda di ingressi, nodi interni e uscita

Analisi di un circuito logico

- In un circuito logico di solito gli ingressi variano nel tempo: segnali logici
- Diagramma temporale con forme d'onda di ingressi, nodi interni e uscita

Segnali logici vs segnali elettrici

- I segnali logici sono un'astrazione di segnali elettrici caratterizzati da
 - Livelli logici => tensioni corrispondenti a 0 e 1
 - Tempi di transizione => tempo di salita, tempo di discesa
 - Eventuale presenza di rumore

- Soglia V_T
- Fondamentale per passare dal segnale elettrico al segnale logico

Segnali logici vs segnali elettrici

- I segnali logici sono un'astrazione di segnali elettrici caratterizzati da
 - Livelli logici => tensioni corrispondenti a 0 e 1
 - Tempi di transizione => tempo di salita, tempo di discesa
 - Eventuale presenza di rumore

- Soglie 10% e 90% dell'escursione di tensione
- Necessarie per definire tempi di salita e di discesa

Segnali logici vs segnali elettrici

- I segnali logici sono un'astrazione di segnali elettrici caratterizzati da
 - Livelli logici => tensioni corrispondenti a 0 e 1
 - Tempi di transizione => tempo di salita, tempo di discesa
 - Eventuale presenza di rumore

- Fondamentale che rumore non causi superamento della soglia V_T
- Altrimenti errore logico

Tempi di transizione

- Tempi di transizione: salita (rise) e discesa (fall)
 - o definiti tramite soglie poste al 10% e al 90% della variazione del segnale
 - Variazione tra livello logico basso V_L e livello logico alto V_H e viceversa

Livelli logici e tensioni di alimentazione

- Stati logici (0/1, L/H) → grandezze elettriche (V_L/V_H)
- V_H e V_L sono ricavate risp. dalla tensione di alimentazione V_{AL} e dallo 0V (GND)
- V_o tensione di uscita di una porta logica

In prima approssimazione: $V_H = V_{AL} e V_L = 0V (GND)$

Ingressi di porte logiche e soglia V_T

 Una porta riconosce lo stato logico degli ingressi confrontando la tensione di ingresso V_I con la soglia V_T

- La soglia V_T non è definita con precisione: definiamo un range
- Soglia massima V_{IH} e soglia minima V_{IL}
 - \circ Tensione $V_{II} < V_{IH}$ non definita: ammessa solo in transitorio
 - Al livello alto (basso) tolleriamo tanto più rumore quanto più V_I è maggiore (minore) di V_{IH} (V_{IL})

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \, \overline{s} + x_2 \, s$

(a) Circuit

(b) Graphical symbol

- (c) Truth table
- (d) Compact truth table

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \, \overline{s} + x_2 \, s$

(a) Circuit

(b) Graphical symbol

- (c) Truth table
- (d) Compact truth table

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \, \overline{s} + x_2 \, s$

(a) Circuit

(b) Graphical symbol

- (c) Truth table
- (d) Compact truth table

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \, \overline{s} + x_2 \, s$

$s x_1 x_2$	<u>f</u>	
	0	
0 0 1	0	
	1	
0 1 1	1	
100	0	\boldsymbol{s}
1 0 1	1	0
1 1 0	0	1
1 1 1	1	1

(c) Truth table

(d) Compact truth table

Tempi di salita e discesa devono essere brevi per ridurre l'incertezza

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \overline{s} + x_2 \overline{s}$

Ritardi di propagazione

- Le uscite delle porte non cambiano istantaneamente
- I valori logici impiegano tempo a propagarsi tra ingressi e uscite
- Esempio: Inverter

- t_{PHL}: ritardo di propagazione con ingresso che sale (high, H) e uscita che scende (low, L)
- t_{PLH}: ritardo di propagazione con ingresso che scende (L) e uscita che sale (H)

Ritardi di propagazione

- Le uscite delle porte non cambiano istantaneamente
- I valori logici impiegano tempo a propagarsi tra ingressi e uscite
- Esempio: Inverter

Ritardi misurati da $V_I = (V_H + V_L)/2$ a $V_O = (V_H + V_L)/2$

- t_{PHL}: ritardo di propagazione con ingresso che sale (high, H) e uscita che scende (low, L)
- t_{PLH}: ritardo di propagazione con ingresso che scende (L) e uscita che sale (H)

Ritardi di propagazione

- Le uscite delle porte non cambiano istantaneamente
- I valori logici impiegano tempo a propagarsi tra ingressi e uscite
- Esempio: Inverter

Ritardi misurati da $V_I = (V_H + V_L)/2$ a $V_O = (V_H + V_L)/2$

- t_{PHL}: ritardo di propagazione con ingresso che sale (high, H) e uscita che scende (low, L)
- t_{PLH}: ritardo di propagazione con ingresso che scende (L) e uscita che sale (H)

In base al tipo di porta possono anche essere presenti t_{PLL} e t_{PHH}

Esempio: multiplexer 2:1 con ritardi

• Un MUX 2:1 seleziona uno tra due ingressi e lo manda in uscita: $f = x_1 \overline{s} + x_2 \overline{s}$

Circuiti logici combinatori

• Gli esempi visti finora sono circuiti combinatori

• In un circuito combinatorio, ad ogni istante t le uscite dipendono solo dal valore

logico degli ingressi in quell'istante

• Idealmente, trascurando i ritardi:

$$y(t) = f(x_1(t), x_2(t), ..., x_n(t))$$

- Se mettiamo insieme più circuiti combinatori creando un grafo aciclico, otteniamo sempre un circuito combinatorio
- Esempio: multiplexer 4:1 e 16:1
 "gerarchici"

• Per l'analisi e la sintesi di circuiti logici occorre conoscere bene l'algebra booleana

Assiomi:

$$0 \cdot 0 \cdot 0 = 0$$

$$01+1=1$$

$$0 \cdot 1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$01+0=0+1=1$$

$$\circ x = 0 \Longrightarrow \overline{x} = 1$$

$$\circ x = 1 \Longrightarrow \overline{x} = 0$$

• Per l'analisi e la sintesi di circuiti logici occorre conoscere bene l'algebra booleana

Assiomi:

$$\circ 0 \cdot 0 = 0$$

$$01+1=1$$

$$0.1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$\circ 0 \cdot 1 = 1 \cdot 0 = 0$$

$$01+0=0+1=1$$

$$\circ x = 0 \Longrightarrow \overline{x} = 1$$

$$\circ x = 1 \Longrightarrow \overline{x} = 0$$

Teoremi (una variabile)

$$\circ x \cdot 0 = 0$$

$$\circ x + 1 = 1$$

$$\circ x \cdot 1 = x$$

$$\circ x + 0 = x$$

$$\circ x \cdot x = x$$

$$\circ x + x = x$$

$$\circ x \cdot \overline{x} = 0$$

$$\circ x + \overline{x} = 1$$

$$\circ x = x$$

Per l'analisi e la sintesi di circuiti logici occorre conoscere bene l'algebra booleana

Assiomi:

$$\circ 0 \cdot 0 = 0$$

$$0.1+1=1$$

$$0 \cdot 1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$\circ 0 \cdot 1 = 1 \cdot 0 = 0$$

$$0 1+0=0+1=1$$

$$\circ x = 0 \Longrightarrow \overline{x} = 1$$

$$\circ x = 1 \Longrightarrow \overline{x} = 0$$

Teoremi (una variabile)

$$\circ x \cdot 0 = 0$$

$$0 x+1 = 1$$

$$\circ x \cdot 1 = x$$

$$0 x + 0 = x$$

$$\circ x \cdot x = x$$

$$\circ x + x = x$$

$$\circ x \cdot \overline{x} = 0$$

$$\circ x + \overline{x} = 1$$

$$\circ x = x$$

Proprietà (due variabili)

$$\circ x \cdot y = y \cdot x$$
 commutativa

$$\circ x + y = y + x$$
 //

$$\circ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associativa

$$x + (y+z) = (x+y)+z$$
 //

$$\circ x \cdot (y+z) = x \cdot y + x \cdot z$$
 distributiva

$$\circ x + y \cdot z = (x + y) \cdot (x + z)$$

$$\circ x + x \cdot y = x$$

$$\circ x \cdot (x+y) = x$$

$$\circ x + \overline{x} \cdot y = x + y$$

$$\circ x \cdot (\overline{x} + y) = x \cdot y$$

$$\circ x \cdot y + x \cdot \overline{y} = x$$
 adiacenza

$$\circ (x+y) \cdot (x+\overline{y}) = x$$

• Per l'analisi e la sintesi di circuiti logici occorre conoscere bene l'algebra booleana

Assiomi:

$$\circ 0 \cdot 0 = 0$$

$$01+1=1$$

$$0 \cdot 1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$\circ \ \theta + \theta = \theta$$

$$\circ \ \ 0 \cdot 1 = 1 \cdot 0 = 0$$

$$0 1+0=0+1=1$$

$$\circ x = 0 \Longrightarrow \overline{x} = 1$$

$$\circ x = 1 = > \overline{x} = 0$$

Teoremi (una variabile)

$$\circ x \cdot 0 = 0$$

$$\circ x + 1 = 1$$

$$\circ x \cdot 1 = x$$

$$\circ x + 0 = x$$

$$\circ x \cdot x = x$$

$$\circ x + x = x$$

$$\circ x \cdot \overline{x} = 0$$

$$\circ x + \overline{x} = 1$$

$$\circ x = x$$

Proprietà (tre variabili)

$$\circ x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

consenso

$$\circ (x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

Proprietà (due variabili)

$$\circ x \cdot y = y \cdot x$$
 commutativa

 $\circ x + y = y + x$

$$\circ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 associativa

$$\circ x + (y+z) = (x+y)+z$$
 //

 $\circ x \cdot (y+z) = x \cdot y + x \cdot z$ distributiva

$$\circ x + y \cdot z = (x + y) \cdot (x + z)$$

fattorizzazione

$$\circ x + x \cdot y = x$$

 $\circ x \cdot (x+y) = x$

$$x \cdot (x+y) = x$$

 $\circ x + \overline{x} \cdot y = x + y$

$$\circ x \cdot (\overline{x} + y) = x \cdot y$$

 $\circ x \cdot y + x \cdot \overline{y} = x$

$$\circ (x+y) \cdot (x+\overline{y}) = x$$

assorbimento (1)

assorbimento (2)

adiacenza

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$\circ (x+y)\cdot (x+z) = x\cdot x + x\cdot z + x\cdot y + y\cdot z = x + x\cdot z + x\cdot y + y\cdot z$$
 (idempotenza)

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$\circ (x+y) \cdot (x+z) = x \cdot x + x \cdot z + x \cdot y + y \cdot z = x + x \cdot z + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+z) + x \cdot y + y \cdot z$$

(idempotenza)

 $(x = x \cdot 1 \text{ e prop. associativa})$

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$\circ (x+y) \cdot (x+z) = x \cdot x + x \cdot z + x \cdot y + y \cdot z = x + x \cdot z + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+z) + x \cdot y + y \cdot z$$

$$\circ = x + x \cdot y + y \cdot z$$

(idempotenza)

$$(x = x \cdot 1 \text{ e prop. associativa})$$

$$(1 + z = 1)$$

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$\circ (x+y) \cdot (x+z) = x \cdot x + x \cdot z + x \cdot y + y \cdot z = x + x \cdot z + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+z) + x \cdot y + y \cdot z$$

$$\circ = x + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+y) + y \cdot z$$

(idempotenza)

 $(x = x \cdot 1 \text{ e prop. associativa})$

$$(1 + z = 1)$$

 $(x = x \cdot 1 \text{ e prop. associativa})$

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$\circ (x+y) \cdot (x+z) = x \cdot x + x \cdot z + x \cdot y + y \cdot z = x + x \cdot z + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+z) + x \cdot y + y \cdot z$$

$$\circ = x + x \cdot y + y \cdot z$$

$$\circ = x \cdot (1+y) + y \cdot z$$

$$\circ = x + y \cdot z$$

(idempotenza)

$$(x = x \cdot 1 \text{ e prop. associativa})$$

$$(1 + z = 1)$$

$$(x = x \cdot 1 \text{ e prop. associativa})$$

$$(1 + y = 1)$$

• Fattorizzazione: dimostrare che $(x+y) \cdot (x+z) = x + y \cdot z$

$$(x+y) \cdot (x+z) = x \cdot x + x \cdot z + x \cdot y + y \cdot z = x + x \cdot z + x \cdot y + y \cdot z$$

$$= x \cdot (1+z) + x \cdot y + y \cdot z$$

$$= x + x \cdot y + y \cdot z$$

$$= x \cdot (1+y) + y \cdot z$$

$$= x + y \cdot z$$

(idempotenza)

 $(x = x \cdot 1 \text{ e prop. associativa})$

(1+z=1)

 $(x = x \cdot 1 \text{ e prop. associativa})$

(1 + y = 1)

 Con il principio di induzione completa, ossia verificando tutte le combinazioni di x, y, z

х	у	Z	x + y	x + z	$(x+y)\cdot(x+z)$	<i>y · z</i>	$x + y \cdot z$
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Teorema di De Morgan

$$\bullet \quad \overline{x \cdot y} = \overline{x} + \overline{y}$$

Prova tramite induzione completa

x	у	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
	'	'	·	<u> </u>		
		LF	LHS		RH	S

Teorema di De Morgan

- $\bullet \quad \overline{x \cdot y} = \overline{x} + \overline{y}$
- Prova tramite induzione completa

x	у	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	1 0
						,

RHS

LHS

Teorema di De Morgan

- $\bullet \quad \overline{x \cdot y} = \overline{x} + \overline{y}$
- Prova tramite induzione completa

x	у	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0	0	0	1 1 1 0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
	'					

LHS

RHS

$$x_1$$
 x_2
 x_2
 x_2
 x_2
 x_2
 x_2

Conclusioni

- Valori e segnali logici come astrazione di livelli di tensione e loro variazioni
- Le porte logiche implementano funzioni logiche elementari
 - Per distinguere il valore logico usano una soglia di tensione (V_T) , la quale può variare in un range (tra V_{IL} e V_{IH})
 - o In condizioni statiche, per avere un valore logico corretto occorre una tensione abbastanza lontana dalla soglia ($V_I < V_{II}$, $V_H > V_{IH}$), in modo da avere maggiore robustezza al rumore
 - In condizioni dinamiche, occorre che le tensioni stiano per un tempo limitato nel range di variazione della soglia => tempi di salita e discesa brevi
- Le porte logiche impiegano tempo a propagare i valori logici verso l'uscita
 - Ritardi di propagazione
- Circuiti logici combinano porte logiche per eseguire funzioni logiche complesse
 - o Circuiti combinatori, uscita dipende dagli ingressi in un dato istante
 - o Circuiti sequenziali, uscita dipende dalla "storia", hanno memoria