WHAT IS CLAIMED:

- 1. A synthetic polynucleotide comprising a DNA sequence encoding an HCV protein selected from the group consisting of HCV core protein, HCV E1 protein, HCV E1+E2 protein, HCV NS5a protein, HCV NS5b protein and fragments thereof, the DNA sequence comprising codons optimized for expression in a vertebrate host.
- A plasmid vector comprising the polynucleotide of
 Claim 1, the plasmid vector being suitable for immunization of a vertebrate host.
 - 3. The polynucleotide of Claim 1 which is HCV genotype I/Ia core.

15

5

4. The polynucleotide of Claim 1 having the sequence access to the control of th

GATATTGGCT ATTGGCCATT GCATACGTTG TATCCATARC ATAAATGTA CATTTATATT
GGCTCATGTC CAACATTACC GCCATGTTGA CATTGATATC ATAAATGTA CATTTATATT
GGCTCATGTC CAACATTACC GCCATGTTGA CATTGATATC ATAAATAGTA CAATTAAATGTA
CAATTACG GGTAAATGGC CGCCTGGCTG ACCGCCCAC GACCCCCGCC CATTGACGTC AATAATGACG
GTAAATGGCC CGCCTGGCTG ACCGCCCAAC GACCCCCGCC CATTGACGTC AATAATGACG
TATGTTCCCA TAAATGGGAC TTCCATTGAG GTCAATGTGA GCCCCATTT
GACGTCAATG ACCGCTATAT GACCCCATTATTAA TGCCAAGTAC CCCCATTTTAGGGAC
TTTCCTACTT GGCAGTACTA CTACGTATTA TGCATGCCA GTTAACTGAG CTTATTGGGAC
TTTCCTACTT GGCAGTACTA CTACGTATTA TGCATGCCA TAACCGGATTTCCAATGCGAC
TTCTACTATTGACATCAATGGGAG TTTTGATTGGAC GACCAAAATCA AACGGGATTTC CAAATGCAC
CCCATTGAGG TCAAATGGGAG TTTTGTTTTGG CACCAAAATCA AACGGGATTT TCCAAAATGCA

5. The plasmid vector of Claim 2 having the sequence

40 сселтиваес тельтовая титотитися сассальние дасовает тесльалитот дасовает дасовае

	CCCTTGGCTT	CTTATGCATG	CTATACTGTT	TTTGGCTTGG	GGTCTATACA	CCCCCGCTTC
	CTCATGTTAT	AGGTGATGGT	ATAGCTTAGC	CTATAGGTGT	GGGTTATTGA	CCATTATIGA
	CCACTCCCCT	ATTGGTGACG	ATACTTTCCA	TTACTAATCC	ATAACATGGC	TCTTTGCCAC
_	AACTCTCTTT	ATTGGCTATA	TGCCAATACA	CTGTCCTTCA	GAGACTGACA	CGGACTCTGT
5	ATTTTTACAG	GATGGGGTCT	CATTTATTAT	TTACAAATTC	ACATATACAA	CACCACCGTC
	CCCAGTGCCC	GCAGTTTTTA	TTAAACATAA	CGTGGGATCT	CCACGCGAAT	CTCGGGTACG
	TGTTCCGGAC	ATGGGCTCTT	CTCCGGTAGC	GGCGGAGCTT	CTACATCCGA	GCCCTGCTCC
	CATGCCTCCA	GCGACTCATG	GTCGCTCGGC	AGCTCCTTGC	TCCTAACAGT	GGAGGCCAGA
10	CTTAGGCACA	GCACGATGCC	CACCACCACC	AGTGTGCCGC	ACAAGGCCGT	GGCGGTAGGG
10	TATGTGTCTG	AAAATGAGCT	CGGGGAGCGG	GCTTGCACCG	CTGACGCATT	TGGAAGACTT
	AAGGCAGCGG	CAGAAGAAGA	TGCAGGCAGC	TGAGTTGTTG	TGTTCTGATA	AGAGTCAGAG
	GTAACTCCCG	TTGCGGTGCT	GTTAACGGTG	GAGGGCAGTG	TAGTCTGAGC	AGTACTCGTT
	GCTGCCGCGC	GCGCCACCAG	ACATAATAGC	TGACAGACTA	ACAGACTGTT	CCTTTCCATG.
	GGTCTTTTCT	GCAGTCACCG	TCCTTAgatc	taccATGAGC	ACCAACCCCA	AGCCCCAGAG
15	GAAGACCAAG	AGGAACACCA	ACAGGAGGCC	CCAGGATGTG	AAGTTCCCTG	GGGGAGGCCA
	GATTGTGGGA	GGGGTCTACC	TGCTGCCCAG	GAGGGGCCCC	AGGCTGGGGG	TGAGGGCTAC
	CAGGAAGACC	TCTGAGAGGT	CCCAGCCCAG	GGGCAGGAGG	CAGCCCATCC	CCAAGGCCAG
	GAGGCCTGAG	GCCCCTCCT	GGGCCCAGCC	TGGCTACCCC	TGGCCCCTGT	ATGGCAATGA
20	AGGCTTTGGC	TGGGCTGGCT	GGCTGCTGTC	CCCCAGGGGC	TCCAGGCCCT	CCTGGGGCCC
20	CACAGACCCC	AGGAGGAGGT	CCAGGAACCT	GGGCAAGGTG	ATTGACACCC	TGACCTGTGG
	CTTTGCTGAC	CTGATGGGCT	ACATCCCCCT	GGTGGGGGCT	CCTGTGGGAG	GGGTGGCTAG
	GGCTCTGGCT	CATGGGGTGA	GGGTGCTGGA	GGATGGGGTG	AACTATGCTA	CTGGCAACCT
	GCCTGGCTGC	TCCTTCTCCA	TCTTCCTGCT	GGCCCTGCTC	TCCTGCCTGA	CAGTGCCTGC
~ -	TTCTGCCgaa	ttcgcttcca	atgagaacat	ggagaccatg	aaccagccct	accacatctg
25	ccgcggcttc	acctgcttca	agaagtaaac	ccgggaattc	taaagtcgaC	AGCGGCCGCG
	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	CCCTCCCCCG	TGCCTTCCTT
	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	TTCCTAATAA	AATGAGGAAA	TTGCATCGCA
	TTGTCTGAGT	AGGTGTCATT	CTATTCTGGG	GGGTGGGGTG	GGGCAGCACA	GCAAGGGGGA
20	GGATTGGGAA	GACAATAGCA	GGCATGCTGG	GGATGCGGTG	GGCTCTATGG	GTACGGCCGC
30	AGCGGCCTTA	ATTAAGGCCG	CAGCGGCCGT	ACCCAGGTGC	TGAAGAATTG	ACCCGGTTCC
	TCGACCCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	CCCTGACGAG
	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	ATAAAGATAC
	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC
25	GGATACCTGT	CCGCCTTTCT	CCCTTCGGGA	AGCGTGGCGC	TTTCTCAATG	CTCACGCTGT
35	AGGTATCTCA	GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC
	GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	CCCGGTAAGA
	CACGACTTAT	CGCCACTGGC	AGCAGCCACT	GGTAACAGGA	TTAGCAGAGC	GAGGTATGTA
	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	CCTAACTACG	GCTACACTAG	AAGGACAGTA
40	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA
40	TCCGGCAAAC	AAACCACCGC	TGGTAGCGGT	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG
	CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	TTGATCTTTT	CTACGTGATC	CCGTAATGCT
	CTGCCAGTGT	TACAACCAAT	TAACCAATTC	TGATTAGAAA	AACTCATCGA	GCATCAAATG
	AAACTGCAAT	TTATTCATAT	CAGGATTATC	AATACCATAT	TTTTGAAAAA	GCCGTTTCTG
	TAATGAAGGA	GAAAACTCAC	CGAGGCAGTT	CCATAGGATG	GCAAGATCCT	GGTATCGGTC
45	TGCGATTCCG	ACTCGTCCAA	CATCAATACA	ACCTATTAAT	TTCCCCTCGT	CAAAAATAAG
	GTTATCAAGT	GAGAAATCAC	CATGAGTGAC	GACTGAATCC	GGTGAGAATG	GCAAAAGCTT
	ATGCATTTCT	TTCCAGACTT	GTTCAACAGG	CCAGCCATTA	CGCTCGTCAT	CAAAATCACT
	CGCATCAACC	AAACCGTTAT	TCATTCGTGA	TTGCGCCTGA	GCGAGACGAA	ATACGCGATC
	GCTGTTAAAA	GGACAATTAC	AAACAGGAAT	CGAATGCAAC	CGGCGCAGGA	ACACTGCCAG
50	CGCATCAACA	ATATTTTCAC	CTGAATCAGG	ATATTCTTCT	AATACCTGGA	ATGCTGTTTT
	CCCGGGGATC	GCAGTGGTGA	GTAACCATGC	ATCATCAGGA	GTACGGATAA	AATGCTTGAT
	GGTCGGAAGA	GGCATAAATT	CCGTCAGCCA	GTTTAGTCTG	ACCATCTCAT	CTGTAACATC
	ATTGGCAACG	CTACCTTTGC	CATGTTTCAG	AAACAACTCT	GGCGCATCGG	GCTTCCCATA
	CAATCGATAG	ATTGTCGCAC	CTGATTGCCC	GACATTATCG	CGAGCCCATT	TATACCCATA
55	TAAATCAGCA	TCCATGTTGG	AATTTAATCG	CGGCCTCGAG	CAAGACGTTT	CCCGTTGAAT

15

ARGESTATA ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA TGATATATTT TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CGTGGCTTTC C

- 6. The polynucleotide of Claim 4 from which the PAb sequence has been removed.
 - 7. The plasmid vector of Claim 5 from which the PAb sequence has been removed.

sequence has been removed.

10

8. A method for inducing immune responses in a

- 8. A method for inducing immune responses in a vertebrate against HCV epitopes which comprises introducing between 1 ng and 100 mg of the polynucleotide of Claim 1 into the tissue of the vertebrate.
- 9. A method for inducing immune responses against infection or disease caused by HCV which comprises introducing into the tissue of a vertebrate the polynucleotide of Claim 1.
- 20 10. A vaccine for inducing immune responses against HCV infection which comprises the polynucleotide of Claim 1 and a pharmaceutically acceptable carrier.
- 11. A method for inducing anti-HCV immune responses 25 in a primate which comprises introducing the polynucleotide of Claim 1 into the tissue of said primate and concurrently administering interleukin-12 parenterally.
- 12. A method of inducing an antigen presenting cell to 30 stimulate cytotoxic and helper T-cell proliferation an effector functions including lymphokine secretion specific to HCV antigens which comprises exposing cells of a vertebrate <u>in vivo</u> to the polynucleotide of Claim 1.

13. A method of treating a patient in need of such treatment comprising administering to the patient the polynucleotide of Claim 1 in combination with interferon-alpha, Ribavirin, Zidovudine, or other pharmaceutically acceptable antiviral agents..

5

- 14. A pharmaceutical composition comprising the polynucleotide of Claim 1.
- 15. A method of inducing an immune response comprising administering the polynucleotide of Claim 1 to a patient, the administration of the polynucleotide antedating or coinciding or following administration to the patient of a subunit, recombinant, recombinant live vector, inactivated, recombinant inactivated vector, or live attenuated HCV vaccine.

15

16. A method for inducing immune responses in a vertebrate against HCV epitopes which comprises introducing between 1 ng and 100 mg of the polynucleotide of Claim 2 into the tissue of the vertebrate.

20

- 17. A method for inducing immune responses against infection or disease caused by HCV which comprises introducing into the tissue of a vertebrate the polynucleotide of Claim 2.
- 25 18. A vaccine for inducing immune responses against HCV infection which comprises the polynucleotide of Claim 2 and a pharmaceutically acceptable carrier.
- 19. A method for inducing anti-HCV immune responses 30 in a primate which comprises introducing the polynucleotide of Claim 2 into the tissue of said primate and concurrently administering interleukin 12 parenterally.

5

25

- 20. A method of inducing an antigen presenting cell to stimulate cytotoxic and helper T-cell proliferation an effector functions including lymphokine secretion specific to HCV antigens which comprises exposing cells of a vertebrate <u>in vivo</u> to the polynucleotide of Claim 2.
- 21. A method of treating a patient in need of such treatment comprising administering to the patient the polynucleotide of Claim 2 in combination with interferon-alpha, Ribavirin, Zidovudine,
 or other pharmaceutically acceptable antiviral agents..
 - 22. A pharmaceutical composition comprising the polynucleotide of Claim 2.
- 23. A method of inducing an immune response comprising administering the polynucleotide of Claim 2 to a patient, the administration of the polynucleotide antedating or coinciding or following administration to the patient of a subunit, recombinant, recombinant live vector, inactivated, recombinant inactivated vector, or
 20 live attenuated HCV vaccine.
 - 24. The vector of Claim 2 which is selected from V1Ra.HCV1CorePAb, Vtpa.HCV1CorePAb, VUb.HCV1CorePAb, V1Ra.HCV1Core, Vtpa.HCV1Core and VUb.HCV1Core.
 - ${\bf 25.} \quad {\bf A} \ pharmaceutical \ composition \ comprising \ the \ vector \ of \ Claim \ {\bf 21.}$
- 26. The DNA sequence of Claim 1 selected from the group consisting of a nucleotide sequence shown in Figure 5, Figure 9, Figure 10. Figure 11. Figure 12 and Figure 13.