Звіт

про виконання завдання з самостійної роботи

з курсу «**Теорія ймовірностей та математична статистика**»

тема «Числові характеристики дискретних випадкових величин»

студентом Попов А. А. (група КС-231)

в 2024-2025 навчальному році

за індивідуальним варіантом даних №17

Завдання 1. Дано закони розподілу незалежних дискретних випадкових величин X та У:

X	X_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅
P	а	а	5 <i>a</i>	а	2 a

Y	y_1	y_2	y_3	y_4
P	0,4	0,3	0,1	0,2

Розв'язання:

Знайти:

Знайти M(X), D(X), $\sigma(X)$ для законів розподілу 2X, X+Y, XY, X-Y.

Для виконання цього завдання скористаємося результатами обрахунку, які ми отримали в попередній роботі, а саме для законів розподілу 2X, X+У, XУ та X-У.

б) закони розподілу випадкових величин 2X, X+Y, XY, X-У.

X	-3	-2	-1	0	1
P	0,1	0,1	0,5	0,1	0,2

Y	1	2	3	4
P	0,4	0,3	0,1	0,2

Спочатку знайдемо M(X), D(X), $\sigma(X)$ для закону розподілу $\underline{2X}$:

Математичним сподіванням дискретної випадкової величини X називають суму добутків всіх її можливих значень x_i на їх ймовірності p_i

$$M(X) = x_1 \cdot p_1 + x_2 \cdot p_2 + ... + x_n \cdot p_n = \sum_{i=1}^n x_i p_i$$

Математичне сподівання характеризує середнє значення, біля якого зосереджені всі можливі значення випадкової величини. Перелічимо основні властивості математичного сподівання:

2X	-6	-4	-2	0	2
P	0,1	0,1	0,5	0,1	0,2

Тепер знайдемо математичне сподівання:

$$M(2X) = -6 * 0.1 - 4 * 0.1 - 2 * 0.5 + 0 * 0.1 + 2 * 0.2 = -1.6.$$

Далі, обчислимо дисперсію.

Означення. Дисперсією (розсіянням) випадкової величини називається математичне сподівання квадрата відхилення цієї величини від її математичного сподівання, тобто

Так як, у нас випадкова величина дискретна, скористаємося формулою обрахунку дисперсії для дискретних величин:

$$D[X] = \sum_{i=1}^{n} x_i^2 * p_i - m_x^2.$$

Математичне сподівання обраховане, тому знову його обраховувати не потрібно. $M_x = M(2X) = -1,6$.

Тепер складаємо ряд розподілу для випадкової величини $2X^2$.

$2X^2$	36	16	4	0	4
P	0,1	0,1	0,5	0,1	0,2

I обчислимо:

$$M(2X^2) = 36 * 0.1 + 16 * 0.1 + 4 * 0.5 + 0 * 0.1 + 4 * 0.2 = 8.$$

Тепер скористаємося формулою для обчислення дисперсії:

$$D(2X) = 8 - (-1.6)^{2} = 8 - 2.56 = 5.44.$$

Дисперсія додатна значить обрахунок правильний.

Обрахуємо середнє квадратичне відхилення $\sigma(X)$. Формула середнього квадратичного відхилення:

$$\sigma[X] = \sqrt{D[X]}$$
.

Обраховуємо:

$$\sigma[2X] = \sqrt{D[X]} = \sqrt{5,44} = 2,3323.$$

Знаходження M(X), D(X), $\sigma(X)$ для закону розподілу 2X, завершено.

$$X+Y$$

Знайдемо M(X), D(X), $\sigma(X)$ для закону розподілу X+Y:

X+	-2	-1	0	1	1	0	1	2	0	1	2	3	1
Y													
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04
2	3	4	2	2	3	4							
0,03	0,01	0,02	0,08	0,06	0,02	0,04							

Обраховуємо математичне сподівання за формулою:

$$M[X] = \sum_{i=1}^{n} x_i * p_i.$$

$$M(X + Y) = -2 * 0.04 - 1 * 0.03 + 0 * 0.01 + 1 * 0.02 + 1 * 0.04 + 0 * 0.03 + 0 * 0.01 + 2 * 0.02 + 0 * 0.2 + 1 * 0.15 + 2 * 0.05 + 3 * 0.1 + 1 * 0.04 + 2 * 0.03 + 3 * 0.01 + 4 * 0.02 + 2 * 0.08 + 2 * 0.06 + 3 * 0.02 + 4 * 0.04 = -0.08 - 0.03 + 0 + 0.02 + 0.04 + 0 + 0.01 + 0.04 + 0 + 0.15 + 0.1 + 0.3 + 0.04 + 0.06 + 0.03 + 0.08 + 0.16 + 0.12 + 0.06 + 0.16 = 1.2$$

Далі, обчислимо дисперсію.

$$D[X] = \sum_{i=1}^{n} x_i^2 * p_i - m_x^2.$$

$$m_x = M(X) = 1, 2.$$

Складаємо ряд розподілу для випадкової величини $(X+Y)^2$.

(X+	4	1	0	1	1	0	1	4	0	1	4	9	1
Y) ²													
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04
4	9	16	4	4	9	16							
0,03	0,01	0,02	0,08	0,06	0,02	0,04							

$$M(X + Y)^{2} = 4 * 0,04 + 1 * 0,03 + 0 * 0,01 + 1 * 0,02 + 1 * 0,04 + 0 * 0,03 + 1$$

$$* 0,01 + 4 * 0,02 + 0 * 0,2 + 1 * 0,15 + 4 * 0,05 + 9 * 0,1 + 1 * 0,04 + 4 * 0,03 + 9 *$$

$$0,01 + 16 * 0,02 + 4 * 0,08 + 4 * 0,06 + 9 * 0,02 + 16 * 0,04 =$$

$$0.16 + 0.03 + 0 + 0.02 + 0.04 + 0 + 0.01 + 0.08 + 0 + 0.15 + 0.2 + 0.9 + 0.04 + 0.12 + 0.09 + 0.32 + 0.32 + 0.$$

$$24 + 0.18 + 0.64 = 3.74$$

$$D[X + Y] = 3.74 - 1.2^{2} = 3,74 - 1,4884 = 2,5516.$$

Обрахуємо середнє квадратичне відхилення $\sigma(X)$.

$$\sigma[X] = \sqrt{D[X]}.$$

$$\sigma[X] = \sqrt{2,5516} = 1,5973.$$

Знаходження M(X), D(X), $\sigma(X)$ для закону розподілу X+Y, завершено.

<u>XY</u>

Знайдемо M(X), D(X), $\sigma(X)$ для закону розподілу \underline{XY} :

	XY	-3	-6	-9	-12	-2	-4	-6	-8	-1	-2	-3	-4	0
•	P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

2	3	4	1	2	3	4
0,03	0,01	0,02	0,08	0,06	0,02	0,04

Обраховуємо математичне сподівання за формулою:

$$M[X] = \sum_{i=1}^{n} x_i * p_i.$$

$$M(XY) = -3 * 0.04 - 6 * 0.03 - 9 * 0.01 - 12 * 0.02 - 2 * 0.04 - 4 * 0.03 - 6 * 0.01$$

$$-8 * 0.02 - 1 * 0.2 - 2 * 0.15 - 3 * 0.05 - 4 * 0.1 + 0 * 0.04 + 2 * 0.03 + 3 * 0.01 + 4 *$$

$$0.02 + 1 * 0.08 + 2 * 0.06 + 3 * 0.02 + 4 * 0.04 = -1.49.$$

Далі, обчислимо дисперсію.

$$D[X] = \sum_{i=1}^{n} x_i^2 * p_i - m_x^2.$$

$$m_x = M(XY) = -1,49.$$

Складаємо ряд розподілу для випадкової величини $(XY)^2$.

(XY) ²	9	36	81	144	4	16	36	64	1	4	9	16	0
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

$$M(XY)^2 = 9 * 0.04 + 36 * 0.03 + 81 * 0.01 + 144 * 0.02 + 4 * 0.04 + 16 * 0.03$$

+ 36 * 0.01 + 64 * 0.02 + 1 * 0.2 + 4 * 0.15 + 9 * 0.05 + 16 * 0.1 + 0 * 0.04 + 4 * 0.03 + 9 * 0.01 + 16 * 0.02 + 1 * 0.08 + 4 * 0.06 + 9 * 0.02 + 16 * 0.04 = 11.45.

$$D[(XY)^2] = 11,45 - (-1,49)^2 = 9,23.$$

Обрахуємо середнє квадратичне відхилення $\sigma(X)$.

$$\sigma[X] = \sqrt{D[X]}.$$

 $\sigma[(XY)^2] = \sqrt{9,23} = 3,03.$

Знаходження M(X), D(X), $\sigma(X)$ для закону розподілу X+Y, завершено.

 ${f X-Y}$ Знайдемо M(X), D(X), $\sigma(X)$ для закону розподілу X-У:

X-Y	-4	-5	-6	-7	-3	-4	-5	-6	-2	-3	-4	-5	-1
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

-2	-3	-4	0	-1	-2	-4
0,03	0,01	0,02	0,08	0,06	0,02	0,04

Знаходимо математичне сподівання M(X-Y).

$$M(X-Y) = -4 * 0.04 - 5 * 0.03 - 6 * 0.01 - 7 * 0.02 - 3 * 0.04 - 4 * 0.03 - 5 * 0.01 - 6 * 0.02 - 2 * 0.2 - 3 * 0.15 - 4 * 0.05 - 5 * 0.1 - 1 * 0.04 - 2 * 0.03 - 3 * 0.01 - 4 * 0.02 + 0 * 0.08 - 1 * 0.06 - 2 * 0.02 - 4 * 0.04 = -2.73.$$

Знаходимо дисперсію D(X-Y):

Складаємо ряд розподілу для випадкової величини X-Y .

X-Y	16	25	36	49	9	16	25	36	4	9	16	25	1
P	0,04	0,03	0,01	0,02	0,04	0,03	0,01	0,02	0,2	0,15	0,05	0,1	0,04

4	9	16	0	1	4	16
0,03	0,01	0,02	0,08	0,06	0,02	0,04

$$M(X-Y)^2 = 16 * 0.04 + 25 * 0.03 + 36 * 0.01 + 49 * 0.02 + 9 * 0.04 + 16 * 0.03 + 25$$

* 0.01 + 36* 0.02 + 4 * 0.2 + 9 * 0.15 + 16 * 0.05 + 25* 0.1 + 1 * 0.04 + 4* 0.03 + 9
* 0.01 + 16* 0.02 + 0 * 0.08 + 1 * 0.06 + 4 * 0.02 + 16 * 0.04 = 10.26.

D [
$$(X - Y)^2$$
]= 10,26 - $(-2,73)^2$ = 2,8.

Обрахуємо середнє квадратичне відхилення $\sigma(X)$.

$$\sigma[X] = \sqrt{D[X]}.$$

$$\sigma[X-Y^{\square}]=\sqrt{2.8}=1.67.$$

Знаходження M(X), D(X), $\sigma(X)$ для закону розподілу X-Y, завершено.

Відповідь: Результати знаходження M(X), D(X), $\sigma(X)$ для законів розподілу 2X, X+Y, XY, X-Y:

$$\sigma[2X] = 2,3323.$$

M[2X] = -1,6.

$$M[X + Y] = 1,2.$$

 $D[X + Y] = 2,5516.$
 $\sigma[X + Y] = 1,5973.$

$$M[X*Y] = -1,49.$$

 $D[X*Y] = 9,23.$
 $\sigma[X*Y] = 3,03.$

$$M[X - Y] = -2,73.$$

 $D[X - Y] = 2,8.$
 $\sigma[X - Y] = 1,67.$

Завдання 2. Для дискретної випадкової величини відомий ряд розподілу. Знайти числові характеристики цієї випадкової величини: M(X), D(X), $\sigma(X)$.

X	-2	-1	0	2	4
p_i	0,33	0,13	0,2	0,13	0,2

Формули для обчислення M(X), D(X), $\sigma(X)$, подано в першому завданні, тому будемо обчислювати по ним.

Знайдемо M(X), D(X), $\sigma(X)$ для закону розподілу $\underline{\textbf{\textit{X}}}$:

$$M[X] = -2 * 0.33 - 1 * 0.13 + 0 * 0.2 + 2 * 0.13 + 4 * 0.2 = 0.27.$$

Далі, обчислимо дисперсію.

Так як, у нас випадкова величина дискретна, скористаємося формулою обрахунку дисперсії для дискретних величин:

$$D[X] = \sum_{i=1}^{n} x_i^2 * p_i - m_x^2.$$

Математичне сподівання обраховане, тому знову його обраховувати не потрібно M(X) = 0.27.

Тепер складаємо ряд розподілу для випадкової величини $X^{\!\scriptscriptstyle 2}$.

X	4	1	0	4	16
p_i	0,33	0,13	0,2	0,13	0,2

I обчислимо:

$$M(X^2) = 4 * 0.33 + 1 * 1.13 + 0 * 0.2 + 4 * 0.13 + 16 * 0.2 = 6.17.$$

Тепер скористаємося формулою для обчислення дисперсії:

$$D[X] = 6,17 - 0,27^2 = 6,1$$

Дисперсія додатна значить обрахунок правильний.

Обрахуємо середнє квадратичне відхилення $\sigma(X)$. Формула середнього квадратичного відхилення:

$$\sigma[X] = \sqrt{D[X]}$$
.

Обраховуємо:

$$\sigma[X] = \sqrt{D[X]} = \sqrt{6,1} = 2,47.$$

Знаходження M(X), D(X), $\sigma(X)$ для закону розподілу X, завершено.

Відповідь: Результати знаходження M(X), D(X), $\sigma(X)$ для закону розподілу X:

$$M(X) = 0.27.$$

 $D[X] = 6.1.$
 $\sigma[X] = 2.47.$