```
[Exercise 1]
(=>) First, let's show that the First statement implies
  the second. To do that, assume the first statement is true.
 If we look into the definition of lime, then we will see that what we actually want to prove is that for
 every E, I m(E), s.t. for all mell greater than m(E),
    if is frue that [ [LD(A(S))] = E
         brings we assume that the first statement is true, consider of
       Let's fix export some & >0. Since we assume that the
first statement is true, consider m(\frac{\varepsilon}{z}, \frac{\varepsilon}{z}), s.t. \forall m \geq m(\frac{\varepsilon}{z}, \frac{\varepsilon}{z}),
     \Pr_{S \sim b^m} \left[ L_o(A(s)) > \frac{\varepsilon}{2} \right] = \frac{\varepsilon}{2}.
             Let [[Lb(A(S)) | Lo(A(S)) = E] denote the expectation of all Lo(A(S)) smaller
than E over samples S of size m. Then, Ymzm(\(\frac{\xi}{z},\frac{\xi}{z}\):

\mathbb{E}\left[L_{o}(A(S))\right] = \mathbb{P}\left(L_{o}(A(S)) \leqslant \frac{\varepsilon}{2}\right) \mathbb{E}\left[L_{o}(A(S))|L_{o}(A(S)) \leqslant \frac{\varepsilon}{2}\right] + \mathbb{P}\left(L_{o}(A(S)) \gtrsim \frac{\varepsilon}{2}\right) \bullet

\mathbb{E}\left[L_{o}(A(S))|L_{o}(A(S)) \gtrsim \frac{\varepsilon}{2}\right] < \mathbb{E}\left[L_{o}(A(S))|L_{o}(A(S)) \lesssim \frac{\varepsilon}{2}\right] + \mathbb{P}\left(L_{o}(A(S)) \gtrsim \frac{\varepsilon}{2}\right) \bullet

       =\mathbb{P}\left(L_{o}(A(s)) \in \frac{\varepsilon}{2}\right) \cdot \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \mathbb{E}\left[L_{o}(A(s)) \middle| L_{o}(A(s)) > \frac{\varepsilon}{2}\right] < \varepsilon
      \leq \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} =  (since both probability) and the loss function are not grader than
       We have shown that \tero, \( \frac{1}{2} m(\varepsilon) \) s.t. \text{m>m(e)},
   mEN, it is done that Enom [Ly (A(5))7 < E
```

Hence, lim E [Lo(A(s))] = 0.

Now, let's assume that the second statement is
Live and show that it implies that the first statement
1,5, also Evae.
Let's fix some ε , $\delta > 0$. Now, consider $m(\varepsilon, \delta)$, s.t.
$\forall m \ge m(\epsilon, \delta), m \in \mathbb{N}, [L_n(A(s))] < \epsilon \delta (we can do this be constant)$
because we assume that lim [[lol4(s)] = 0)
Then, for all $m \ge m(\epsilon, \delta)$:
ε δ $\supset \sqsubseteq [L_n(A(s))] = $
Jan
$ = \mathbb{P}\left(L_{b}(A(S)) \in \mathcal{E}\right) \mathbb{E}\left[L_{o}(A(S)) \middle L_{o}(A(S)) \leqslant \mathcal{E}\right] + \mathbb{P}\left(L_{o}(A(S)) > \mathcal{E}\right) \mathbb{E}\left[L_{o}(A(S)) \middle L_{o}(A(S)) > \mathcal{E}\right] > $
J-DM (2011-C) [[DO(4(3))] [Co(4(3))] E] (Since probability) My Marghe Mandelly)
• > \mathbb{D} $\mathbb{C}L_{p}(Acs))> \varepsilon \cdot \mathbb{T} \cdot \varepsilon$
Hence, Hm7, m(E, S), S>P [Lo(A(S))> E]
We have shown that it the 2nd statement is correct, than
$\forall \varepsilon, \delta > 0$, $\exists m(\varepsilon, \delta)$, $s. \varepsilon. \forall m \ge m(\varepsilon, \delta)$, $D [L_n(A(s)) > \varepsilon] = \delta$.
\$~pm = (((\)), \)
Made From [=] and [=] , we get that both statements
Mark From [=] and [=], we get that both statements are equivalent.
9. le. d.
TOTAL CARRIED AND A CONTROL OF THE C

Exercise 2 Fix some E, 5 > 0. We want to show that I Mx(E, S), S.t. for all m=mx(E,5) it holds that $D^{m}(VS: VheH, |L_{S}(h)-L_{n}(h)| \leq \epsilon b) \geq 1-5$ and that such $m_{H}(\epsilon, \delta)$ is smaller or expand to $\frac{2\log(\frac{2|N|}{\sigma})(b-a)^{2}}{\epsilon^{2}}$ $D^{m}(ds: \forall he \mathcal{H}, |L_{s}(h) - L_{n}(h)| \leq \epsilon)) \geq 1-\delta$ is equivalent to $D^{m}(ds: \exists heH, |L_s(h)-L_p(h)| > es) \leq \delta$. Note that. Dm (ds: 3heH, | Ls(h) - Lb(h) | > Eb) = = Dm (18 : U d S: | Ls(h)-Lo(h) > E) < = Z Dm (dS: | Ls(h)-Lb(h) |>E}) (Union Bound Lemma) = \(\begin{array}{c} D[| \frac{1}{m} \begin{array}{c} \begin{array}{c} \left(\h, \pm; \right) - \mu | > \eqrig] \left(\he \text{resident} \text{\$\frac{1}{2}}, \left. \frac{7}{m} \right) \right\}
\[\he \text{\$\tex{

 $= \sum_{h \in \mathbb{Z}} \mathbb{E}_{a} \exp\left(-2m \epsilon^{2}/(b-a)^{2}\right) \quad \text{(nsing Hoeffdins's Inequality)}$ $= 2|\mathcal{H}| \exp\left(\frac{-2m \epsilon^{2}}{(b-a)^{2}}\right) \leftarrow \text{we want this to be} \leq S$ $\text{Therefore, if we choose } m \geq \frac{\log(2|\mathcal{H}|/\sigma)(b-a)^{2}}{\epsilon^{2}}$ $\text{Therefore, if we choose } m \geq \frac{\log(2|\mathcal{H}|/\sigma)(b-a)^{2}}{\epsilon^{2}}$ $\text{Therefore, if we choose } m \geq \frac{\log(2|\mathcal{H}|/\sigma)(b-a)^{2}}{\epsilon^{2}}$

greater or equal to 1-5

q. c. d.

Exercise 3

We want to prove that:

ELDIERMA(S)) - LS(ERMX(S)] > 0

By linearity of expectation this is equivolent to:

For [Lo(ERMx(S))] > [Enclar (S))]

Note that the H;

 $\mathbb{E}_{s\sim pm}\left[L_{s}(h)\right] = \mathbb{E}_{s\sim pm}\left[\Re \frac{1}{m} \frac{\hat{z}}{\hat{z}_{i=1}} \left(\left(h,z_{i}\right)\right)\right] \quad \left(\text{where } z_{i} \in S = \Re z_{i} - Z_{m} \right)\right)$

= [[(h, Z:)] (by linearlity of expectation)

 $= \mathbb{E}\left[\ell(h,z)\right] = L_b(h)$

Consider a random sample Sta Si. Then for that sample it is true that:

 $L_{p} [ERM_{\mathcal{H}}(S_{j})] = \mathbb{E}_{s \sim pm} [L_{s}(ERM(S_{j}))] = \mathbb{E}_{s \sim pm} [L_{s}(ERM(S))]$

(Since for a random sample Sk, Lsk(ERM(S;)) > Lsk(ERM(Sk)))

There f

Since this holds for all samples from D', we get that, it also holds for expected value of those samples:

E [Lo (ERMn(S))] > E [Lo (ERMn(S))]

9. e.d.