Component — Paytable (r, p, simplex)

September 26, 2025

Purpose

Define outcome multipliers (payout vector) and their probabilities as the state to optimize.

Objects and Domain

Let $r \in \mathbb{R}^{k+1}_{\geq 0}$ be the payout (multiplier) vector and $p \in \Delta^k$ the probability vector, where the simplex is

$$\Delta^{k} := \left\{ p \in \mathbb{R}^{k+1} \mid \sum_{i=0}^{k} p_{i} = 1 \right\}.$$
 (1)

Define the win-mask $w_i := \mathbf{1}[r_i > 0]$ so that the hit-rate is $h(p) = \sum_i w_i p_i$.

Invariants (Guardrails)

With bands on RTP and Hit-rate,

$$L_{\mu} \le \mu(p) := \sum_{i} r_{i} p_{i} \le U_{\mu}, \qquad L_{h} \le h(p) := \sum_{i} w_{i} p_{i} \le U_{h},$$
 (2)

and any hard cap encoded by the support of r.

Inputs / Outputs / Tests

- Inputs: r, initial $p^{(0)} \in \Delta^k$, bands $[L_{\mu}, U_{\mu}], [L_h, U_h]$. Outputs: updated $p^{(t)} \in \Delta^k$ respecting bands (post-projection). Tests: $\sum_i p_i = 1, \ p_i \ge 0; \ \mu, h$ inside bands; index alignment between r and p.