# DN6851

Hall IC (Operating Supply Voltage Range  $V_{CC}$ =3.6 to 16V, Operating in Alternative Magnetic Field)

#### Overview

The DN6851 is an integrated circuit making use of Hall effects. It is designed particularly for operating at a low supply voltage in alternative magnetic field. It is suitable for various sensors and contactless switches.

#### ■ Features

- Wide range of supply; 3.6 to 16V
- Operating in alternative magnetic field.
- TTL and MOS ICs directly drivable by output
- Semipermanent service life because of no contact parts
- Drivable with a small magnet
- 3-pin SIL plastic package (3-SIP)

### Applications

- Speed sensors
- Position sensors
- Rotation sensors
- · Keyboard switches
- · Microswitches

Note) This IC is not suitable for car electrical equipments.



#### ■ Block Diagram



# ■ Absolute Maximum Ratings (Ta=25°C)

| Parameter                     | Symbol             | Symbol Rating |    |
|-------------------------------|--------------------|---------------|----|
| Supply voltage                | V <sub>CC</sub>    | 18            | V  |
| Supply current                | $I_{CC}$           | 8             | mA |
| Circuit current               | Io                 | 20            | mA |
| Power dissipation             | $P_{D}$            | 100           | mW |
| Operating ambient temperature | $T_{\mathrm{opr}}$ | -40 to +85    | °C |
| Storage temperature           | $T_{stg}$          | -55 to +125   | °C |

# ■ Electrical Characteristics (Ta=25°C)

| Parameter                    | Symbol                  | Condition                                                | min  | typ | max | Unit |
|------------------------------|-------------------------|----------------------------------------------------------|------|-----|-----|------|
| Operating flux density       | B <sub>1 (L to H)</sub> | V <sub>CC</sub> =12V                                     | -30  |     |     | mT   |
|                              | B <sub>2 (H to L)</sub> | V <sub>CC</sub> =12V                                     | _    |     | 30  | mT   |
| Low output voltage           | $V_{ m OL}$             | V <sub>CC</sub> =16V, I <sub>O</sub> =12mA,<br>B=30mT    |      |     | 0.4 | V    |
|                              |                         | V <sub>CC</sub> =3.6V, I <sub>O</sub> =12mA,<br>B=30mT   | _    | _   | 0.4 | V    |
| High output voltage          | V <sub>OH</sub>         | V <sub>CC</sub> =16V, I <sub>O</sub> =-30μA,<br>B=-30mT  | 14.6 |     |     | V    |
|                              |                         | V <sub>CC</sub> =3.6V, I <sub>O</sub> =-30μA,<br>B=-30mT | 2.2  |     |     | V    |
| Output short-circuit current | -I <sub>OS</sub>        | V <sub>CC</sub> =16V, V <sub>O</sub> =0V,<br>B=-30mT     | 0.4  |     | 0.9 | mA   |
| Supply current               | $I_{CC}$                | V <sub>CC</sub> =16V                                     |      |     | 6   | mA   |
|                              |                         | V <sub>CC</sub> =3.6V                                    |      |     | 5.5 | mA   |

Note 1) Operating supply voltage range  $V_{CC}$  (opr)= 3.6 to 16V

Note 2) For the operating flux density,  $\pm 20$  gauss is also available as Rank A.

# ■ Hall Element Position



# ■ Flux-Voltage Conversion Characteristics



#### ■ Precaution on Use

- 1. Change of the operation magnetic flux density dose not depend on the supply voltage, because the stabilization power supply is built-in. (only for the range;  $V_{\text{CC}}$ = 4.5 to 16V)
- 2. Change from "H" to "L" level increases the supply current by approx. 1 mA.