# **EDA** checklist

and introduction to Bokeh

# **Bokeh**

Bokeh is an interactive visualization library for modern web browsers

## Why Bokeh?

- The more libraries you know, the better equipped you will be to use the right visualization tool for the task.
- Bokeh is slightly faster and integrates better than Plotly

#### Notebook Demo

# **EDA Journey**

# Asking the question



Source: The data analytic question

#### Types of analysis

- Descriptive(eg. Census data)
- Exploratory(eg. Discovery of Four Planet System)
- Inferential(eg. Air pollution vs Life expectancy)
- Prediction(eg. Match data in Sports)
- Causal(eg. Clinical Drug tests)
- Mechanistic(eg. Better wing design in decreased drag)

#### Question checklist

- 1. Did you specify the type of data analytic question (e.g. exploration, association causality) before touching the data?
- 2. Did you define the metric for success before beginning?
- 3. Did you understand the context for the question and the scientific or business application?
- 4. Did you consider whether the question could be answered with the available data?

#### Tidying the data

- 1. Is each variable one column?
- 2. Is each observation one row?
- 3. Do different data types appear in each table?
- 4. Did you record the recipe for moving from raw to tidy data?
- 5. Did you create a code book?
- 6. Did you record all parameters, units, and functions applied to the data?

#### Checking the data

- 1. Did you plot univariate and multivariate summaries of the data?
  - There is no such thing as too many plots
  - Important to check clear coding errors, label switching, units are in scale, etc
- 2. Did you check for outliers?
- 3. Did you identify the missing data code?

# Exploratory analysis

- Plot as much of the actual data as you can
- Plots are better than summaries



Source: The data analytic question

## Exploratory analysis

- For large data sets, subsample before plotting
- Use log transforms
- Use color and size to check for confounding





Source: The data analytic question

## Exploratory analysis

- 1. Did you identify missing values?
- 2. Did you make univariate plots (histograms, density plots, boxplots)?
- 3. Did you consider correlations between variables (scatterplots)?
- 4. Did you check the units of all data points to make sure they are in the right range?
- 5. Did you try to identify any errors or miscoding of variables?
- 6. Did you consider plotting on a log scale?
- 7. Would a scatterplot be more informative?

#### Inference

- 1.Did you identify what large population you are trying to describe?
- 2. Did you clearly identify the quantities of interest in your model? Do you care about it?
- 3. Did you consider potential confounders?
- 4. Did you calculate a measure of uncertainty for each estimate on the scientific scale?

TIP: When possible, perform exploratory and confirmatory analysis on separate data sets

#### **Prediction**

- 1. Did you identify in advance your error measure?
- 2. Did you immediately split your data into training and validation?
- 3. Did you use cross validation, resampling, or bootstrapping only on the training data?
- 4. Did you create features using only the training data?
- 5. Did you fix all features, parameters, and models before applying to the validation data?
- 6. Did you apply only one final model to the validation data and report the error rate?

#### Prediction is about tradeoffs

- Interpretability versus accuracy
- Speed versus accuracy
- Simplicity versus accuracy
- Scalability versus accuracy

#### Written analyses

- 1. Did you describe the question of interest?
- 2. Did you describe the data set, experimental design, and question you are answering?
- 3. Did you specify the type of data analytic question you are answering?
- 4. Did you specify in clear notation the exact model you are fitting?
- 5. Did you explain on the scale of interest what each estimate and measure of uncertainty means?
- 6. Did you report a measure of uncertainty for each estimate on the scientific scale?

## Figures

- 1 .Does each figure communicate an important piece of information or address a question of interest?
- 2. Do all your figures include plain language axis labels?
- 3. Does every figure have a detailed caption that explains all axes, legends, and trends in the figure?

Bonus: <u>Top 10 worst graphs</u>

#### Reproducibility

- 1.Did you avoid doing calculations manually?
- 2. Did you create a script that reproduces all your analyses?
- 3. Did you save the raw and processed versions of your data?
- 4. Did you record all versions of the software you used to process the data?
- 5. Did you try to have someone else run your analysis code to confirm they got the same answers?

#### Study Jam Activity

You have been hired as Data Scientist by the "EFA(Europe Football Association) They have shared with you all the <u>data</u> about their matches.

As a data scientist, you need to:

- Figure out the right question

Perform EDA

# Helpful Resources

- The elements of data analytic style

- European soccer database notebooks