Name: Goutami Padmanabhan UTA ID: 1001669338

Section 002

Homework 1

Q1 a) Time Complexity

for(i = 1; i <= N; i=i+1)
 for(k = 1; k <= i; k = 2*k)
 for(t = 1; t <= N; t = 2*t)
 printf("C");</pre>

Let's assume that $N=2^p$ and $lgN=Log_2N$

Itera	Val	Val	Itera	Values of t	Iterati	total
tion	ues	ues	tions		on	repetitions of
	of	of	count		count	k and t for
	i	k	for k		for t	one i
1	1	1	1	1,2,4,8,,2^p (or) 2^0,2^1,2^2,2^ 3,,2^p 1,2,4,8,,2^p	lgN	lgN
2	2	2	2	_	lgN	2 lgN
	3	1	2	1,2,4,8,,2 ^p	lgN	0 1 17
3	3			1,2,4,8,,2 ⁿ p	lgN	2 lgN
		2		1,2,4,8,,2 ^p	lgN	
4	4	1	3	1,2,4,8,,2 ^p	lgN	3 lgN
		2		1,2,4,8,,2 ^p	lgN	
		4		1,2,4,8,,2 ^p	lqN	
•			•			•
•			•	•	•	•
i	i	1	i	1,2,4,8,,2 ^p	lgN	jlgN
		2		1,2,4,8,,2 ^p	lgN	
		4		1,2,4,8,,2 ^p	lgN	

		2^j		1,2,4,8,,2 ^p	· lgN	
•				•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
N	N	1	N	1,2,4,8,,2 ^p	lgN	plgN
		2		1,2,4,8,,2 ^p	lgN	
		4		1,2,4,8,,2 ^p	lgN	
		2^p		1,2,4,8,,2 ^p	lgN	

Summation : T(N) = lgN+2lgN+2lgN+3lgN+...+jlgN+...+plgN

where j and p are the number of times k loop has executed for one i.

Q1 b) Summation, Closed form, dominant term and Θ

Iter atio n	Valu es of i	Value s of k	Iterations count for k	Values of t	Iteratio n count for t	total repetitions due to k for k and for t loops for one i
1	1	1 2 3 •	S	1 1 1	1 1 1	S
2	2	1 2 3 •	S	1,2 1,2 1,2	2 2 2	28

•	•	•	•	•		•
		•	•	•		•
i	i	1	S	1,2,3,,i	i	iS
		2		1,2,3,,i	i	
		3		1,2,3,,i	i	
		•		•		
		•		•	•	
		S		1,2,3,,i	i	
•			•	•	•	•
			•	•		•
N	N	1	S	1,2,3,,N	N	NS
		2		1,2,3,,N	N	
		3		1,2,3,,N	N	
		•		•		
		•				
		S		1,2,3,,N	N	

Summation: T(N,S) = S+2S+3S+...+iS+...+NS

= S(1+2+3+...+i+...+N)

= S[N(N+1)/2] \rightarrow Closed Form

 $= S[(N^2+N)/2]$

Dominant Term : S and \mathbf{N}^2

Theta : Θ (SN²)

Q1 c) Summation, Closed form, dominant term and $\boldsymbol{\Theta}$

```
for(i = 1; i <= N; i=i+1) {
    for(k = 1; k <= N; k++)
        for(t = 1; t <= k; t++)
            printf("E");
    for(k = 1; k <= M; k++)
        for(t = 1; t <= k; t++)
            printf("F");</pre>
```

Summation table for first 4 lines of code (first 3 nested loops):

Assu med valu e of N	Itera tion	Values of i	Values of k	Iterati ons count for k	Values of t	Iteratio n count for t	total repetitions due to k for k and for t loops for one i
1	1	1	1	1	1	1	1
2	1	1	1 2	2	1 1,2	1 2	6
	2	2	1 2	2	1 1,2	1 2	
3	1	1	1 2 3	3	1 1,2 1,2,3	1 2 3	18
	2	2	1 2 3	3	1 1,2	1 2 3	
	3	3	1 2 3	3	1,2,3 1 1,2 1,2,3	1 2 3	
N	2	1	1 2 N 1 2	N	1,2,3 1,2,,N 1,2,,N 1,2	1 2 N 1 2	N(1+2++N)
	3		N 1 2	N	1,2,,N 1 1,2	N 1 2	

	N	N	1,2,,N	N	
•	•	•	•	•	
•	•	•	•	•	
N	1		1	1	
	2		1,2	2	
	•		•	•	
	•		•	•	
	N	N	1,2,,N	N	

Summation :
$$T_1(N)$$
 = $N(1+2+...+N)$
= $N[N(N+1)/2]$
= $N[(N^2+N)/2]$
= $(N^3+N^2)/2$

Summation table for the remaining lines of code (remaining nested loops):

Assu med valu e of N	Assum ed value of M	Itera tion	Values of i	Valu es of k	Iterat ions count for k	Values of t	Itera tion count for t	total repetit ions due to k for k and for t loops for one i
1	1	1	1	1	1	1	1	1
2	3	1	1	1		1	1	2 (1+2+3
				2		1,2	2)
		2	2	3	3	1,2,3	3	
				1		1	1	
				2		1,2	2	
				3	3	1,2,3	3	
3	5	1	1	1		1	1	3 (1+2+3
				2		1,2	2	+4+5)
				3		1,2,3	3	
				4		1,2,3,4	4	
				5	5	1,2,3,4,5	5	
			2	1		1	1	
				2		1,2	2	
				3		1,2,3	3	

				4		1,2,3,4	4	
				5	5	1,2,3,4,5	5	
			3	1 2 3		1	1	
				2		1,2	2 3	
				3		1,2,3	3	
				4		1,2,3,4	4	
				5	5	1,2,3,4,5	5	
N	M	1	1	1 2		1	1	N(1+2+3
				2		1,2	2	++M)
							•	
							•	
				М	M	1,2,,M	M	
		2	2	1		1	1	
				2		1,2	2	
						•	•	
						•	•	
				М	M	1,2,,M	M	
		3	3	1		1	1	
				2		1,2	2	
							•	
							•	
				М	M	1,2,,M	M	
						•	•	
						•	•	
		N	N	1 2		1	1 2	
				2		1,2	2	
							•	
							•	
				М	M	1,2,,M	M	

Summation : $T_2(N, M) = N(1+2+3+...+M)$

= N[M(M+1)/2]

 $= N[(M^2+M)/2]$

 $= (NM^2 + NM) / 2$

Summation for the entire code: $T_1(N) + T_2(N,M)$

= $[(N^3+N^2)/2]+[(NM^2+NM)/2]$

= $\frac{1}{2}$ (N³+N²+NM²+NM) -> Closed Form

Dominant terms : N^3 and NM^2

Theta : $\Theta(N^3+NM^2)$

Q2) for $(i=1; i \le N; i=i+7)$;

Let's assume number of values of i=p

Iteration	Values of i	Total no.of loop
		iterations
1	1	1
2	8	1
3	15	1
4	22	1
•	•	•
•	•	
t	i	1
•	•	•
•	•	•
р	N	1

For 4^{th} iteration, N=22, total no. of for loop iterations so far is 4 times which is 22/7=4 (approx.)

For 5^{th} iteration, N=29, total no. of for loop iterations so far is 5 times which is 29/7=5 (approx.)

For p^{th} iteration, N, total no. of for loop iterations so far is N/7 times.

Summation : T(N) = 1+1+1+...+1

= (N/7)1

= N/7

Dominant term : N/7

Theta : $\Theta(N/7)$

Q3) Theta time complexity

```
i = 0;
while (i<=N) {
    for(t=0, k=1; k<N; t=t+1, k=2*k)
        printf("G");
    i=i+t;
}</pre>
```

Assumed value of N	Iterati on of i			tions count	Values of t inside and outside for loop	total repetitions due to k for t loop for one i
1	1	0	1	0	0	0

Let's assume the value of N=1.

Since i and t will always be 0, we will run into an infinite loop where G will not be printed even once.

If N>1, 'G' will not go into infinite loop. But we are going into an infinite loop for N=1, hence we are not discussing that.

Ιf	N>1,	then	below	is	the	summation	table.	Let	lqN=Loq2N
----	------	------	-------	----	-----	-----------	--------	-----	-----------

Assu med valu e of N	Iter atio n of i	Value s of i	Values of k	Iter atio ns coun t for k	Values of t inside for loop	Values of t outside for loop/in side while loop	total repetitions due to k for k loop and t loop for one i
2	1	0	1	1	0	1	3
	2	1	1	1	0	1	
	3	2	1	2	0	1	
3	1	0	1	1	0		4
			2	2	1	2	
	2	2	1	1	0		
			2	2	1	2	
N>1	1	0	1	lgN	0	1	N
	2		1,2,4, ,N-1		, N-1	1,2,,N	N
	•	i+t	1,2,4,	Jan	0.1.2.	1.2. N	
			, N-1			1,2,,N	N
			•	_	•	• • •	

N	N	1,2,3, ,N-1	lgN	0,1,2, N-1	1,2,,N	· N
		, N I	1911	, 11 _	1,2,,1	14

Value of i depends on the value of t (i=i+t) and t depends on k (t iterates until k iterates), whereas k depends on N (k<N).

Summation: T(N) = NlgN

For the value of N, there is a lot of ambiguity in the values of i, k and t. Hence this code is highly susceptible to a lot of errors.

Q4) $T(n) = 1+3^1+3^2+3^3+ ... +3^n$

Code for the above time complexity is

for(i = 1; i <= N; i=i*3) for (k = 1; k <= i; k++);

Let's assume N is a multiple of 3

For the mth iteration : Value of i=i

For the t^{th} iteration : Value of i=N

Iteration of i	Values of i	Values of k	total repetitions due to k for k loop for one i
1	1	1	1=30
2	3	1,2,3	3=31
3	9	1,2,3,4,5,6,7,8,9	9=32
•	•	•	
•	•	•	•
m	i	1,2,3,,i	3 ^{m-1}
•	•	•	
•	•	•	•
t	N	1,2,3,,i,,N	3 ^{t-1} =3 ⁿ

Summation : $T(N) = 3^0+3^1+3^2+3^3+ ... +3^n = 1+3^1+3^2+3^3+ ... +3^n$

Closed Form $: (3^{n+1}-1)/2$

Dominant Term : 3ⁿ/2

Theta : $\Theta(3^n/2)$

05) Dominant term and Theta

$N^3 + 500N^2 + NM + 106$

Dominant term : N³ and NM

Theta : $\Theta(N^3+NM)$

$100N^3 + 20N^2 + 15M + 5N$

Dominant term : N³ and M

Theta : $\Theta(N^3+M)$

- Q6) how long they take for N=10, N=100, N=300. (Also try N=1000)
- the runtime effect of replacing the 'res = res+1' with the 'print...' instruction for runtime_increment and runtime_print.
- how the runtime depends on the value of N for runtime increment.
- how much faster (i.e. for smaller values of N) the runtime_pow becomes too slow.

For N = 10

Runtime: It's super fast. Time taken is **less than a second** (in microseconds).

For N = 100

Runtime: It's also super fast. Time taken is less than a second (in microseconds).

For N = 1000

Runtime: Approximately 0.293 seconds. Less than a second.

As the value of **N** increases, the runtime of the loop also increases for runtime_increment. But the rate of increase of runtime is slow when compared to increase in value of N.

```
When 'res = res+1' is replaced with the 'print...', then
```

For N = 10

Runtime: Approximately 0.007 seconds. Time taken is less than a second. A gets printed 550 times.

For N = 100

Runtime: Approximately 2.5 to 3 seconds. Time taken is just little more than 3 seconds. A gets printed 505000 times.

For N = 300

Runtime: Approximately 83 to 85 seconds. Time taken is little less than a minute and a half. A gets printed 13545000 times.

For N = 1000

Runtime: Approximately 1 hour 35 mins (5695.366 seconds). A gets printed 500500000 times.

It took too much time to give the result. But I was patient enough for the program to complete execution.

By replacing 'res = res+1' with the 'print...', we infer that the time taken for 'print...' is slower or longer than the execution time of 'res = res+1'. The runtime of 'res = res+1' is much faster than runtime of 'print...'.

```
// run for N = 10, N = 15, N = 20, N = 25, N = 30
void runtime_pow(int N) {
int i, res = 0;
for(i = 1; i <= pow(2.0, (double)N); i=i+1)
res = res + 1;
}</pre>
```

For N = 10

Runtime: It's super fast. Time taken is **less than a second**(in few microseconds).

For N = 15

Runtime: It's also fast. Time taken is less than a second. Approximately 0.004 seconds.

For N = 20

Runtime: It's also fast. Time taken is less than a second. Approximately 0.015 seconds.

For N = 25

Runtime: It's also fast. Time taken is less than a second. Approximately 0.069 seconds.

For N = 30

Runtime: It's also fast. Time taken is a little more than a second. Approximately 2 seconds.

As the value of **N** increases, the runtime of the loop also increases for runtime_pow. But the rate of increase of runtime is fast for higher values of N.

Example: For N=30, it took two seconds. For N=40, I had to wait for a very long time, so I stopped execution.

```
Q6 b) Time complexity 'closer' to that of the runtime rec
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void runtime rec(int N, char * str){
     if (N==0) {
          //printf("%s\n", str);
     return;
}
     str[N-1] = 'L';
     runtime_rec(N-1, str);
     str[N-1] = 'R';
     runtime rec(N-1, str);
}
int main(int argc, char** argv) {
     int N = 0;
     char ch;
     char str[100];
     printf("run for: N = ");
     scanf("%d", &N);
     str[N] = '\0'; //to use it as a string of length N.
     printf("runtime rec(%d)\n", N);
     runtime rec(N, str);
}
For N=10
Runtime: It is very fast. Time taken is less than a second.
Approximately 0.001 seconds.
For N=15
Runtime: It is also fast. Time taken is less than a second.
Approximately 0.222 seconds.
For N=20
Runtime: It took some time. Approximately 7.299 seconds.
For N=25
Runtime: It took a long time. Approximately 250 seconds.
```

As the value of ${\bf N}$ increases, the runtime of the program also increases.

Moreover, we are printing the values of runtime_rec. From question 6a, we infer that printing values(runtime_print) take longer time than just calculating(runtime increment).

Rate of increase of runtime is drastically fast for higher values of N.

Hence, time complexity of runtime_print is closer to that of runtime rec.