Data Science Expectation-Maximization for Density Modelling

Latent factor estimation

Stéphane Marchand-Maillet

Department of Computer Science

Master en Sciences Informatiques - Autumn semester

Table of contents

Motivation

Data modeling

Gaussian mixture

EM algorithm

Modeling

What is the lecture about?

- Understand unsupervised conditional modeling as latent factor estimation
- Develop the example of density estimation by Gaussian Mixture models (GMM)
- * Practice Maximum Likelihood Estimation (MLE)
- Understand the alternating principle of Expectation-Maximization for the discovery of latent factors

Reading: [1] (chap 9) and [2] (chap 8.7)

Data modeling

- ★ Up until now, we have used an implicit model for the data
 - $^{\circ}$ Component models \rightarrow Variance as a criterion on centered data (Normal distribution)
 - \circ Discriminant models \to Variance of projected data for within- and between-class models
- \Rightarrow The distribution is fixed (essentially normal) and we look for its parameters θ (e.g $\theta = [\mu, \Sigma]$)
 - * Alternatively we can search a model for data density
 - \star Let $\mathbf{f}_{\theta}(\mathbf{x}): \Omega \to \mathbb{R}$ be the data density

Density estimation

Methods

- Nearest neighbor methods (KNN)
- Parzen windows, RBF networks
- * Histograms
- * Mixture models

Density estimation: perspective plot

Mixture models

Definition

* The density f(x) is generated by c "basis" functions ϕ (components), from a family \mathbb{F}

$$f(x) = \sum_{j=1}^{c} \pi_{j} \phi(x, \theta_{j})$$

- $\star \ \pi_i \in \mathbb{R}$ are the mixture parameters
- $\star~\varphi(x,\theta_{j})\in\mathbb{F}$ are functions controlled by parameters θ_{j}

Assumptions

- 1. The number of components $(c \in \mathbb{N}^*)$ is known
- 2. The family of functions \mathbb{F} is known
- 3. Labels (class labels) are unknown

Probabilistic reading

* Density f(x) represents a random process where x is drawn from a set of states ω_j with prior probability $\mathbb{P}(\omega_j)$

$$f(x) = \sum_{j=1}^{c} \pi_{j} \varphi(x, \theta_{j})$$

$$f(x) = \mathbb{P}(x|\theta) = \sum_{i=1}^{c} \mathbb{P}(\omega_{i}) \mathbb{P}(x|\omega_{i}, \theta_{i})$$

We get (by identification):

- $\star \ \pi_j = \mathbb{P}(\omega_j)$ so that $\sum_j \pi_j = 1$
- * $\phi(x, \theta_j) = \mathbb{P}(x|\omega_j, \theta_j)$ is the conditional probability that x is generated by state ω_j

Reminder: Maximum log-likelihood (MLE)

- * Given $\mathcal{X} = \{x_1, \dots, x_N\}$ unlabeled samples generated by the mixture $\mathbf{f}(\mathbf{x}) = \mathbb{P}(\mathbf{x}|\mathbf{\theta})$.
- \star $\theta \stackrel{\text{here}}{=} [\pi_j, \theta_j]_{j \in [\![c]\!]}$ are the parameters to infer
- * Likelihood:

$$\mathbb{P}(\mathcal{X}|\theta) \stackrel{\text{i.i.d}}{=} \prod_{i}^{N} \mathbb{P}(x_{i}|\theta)$$

- \Rightarrow Likelihood estimate : $\hat{\theta} = \operatorname{argmax}_{\theta} \mathbb{P}(\mathcal{X}|\theta)$
 - * Log-likelihood

$$\mathbb{L}(\boldsymbol{\theta}, \boldsymbol{\mathfrak{X}}) = \sum_{i=1}^{N} log \mathbb{P}(\boldsymbol{x}_i | \boldsymbol{\theta}) \overset{\text{here}}{=} \sum_{i=1}^{N} log \left[\sum_{j=1}^{c} \pi_j \boldsymbol{\varphi}(\boldsymbol{x}_i, \boldsymbol{\theta}_j) \right]$$

 \Rightarrow Maximum log-likelihood estimate (MLE): $\hat{\theta} = \operatorname{argmax}_{\theta} \mathbb{L}(\theta, \mathfrak{X})$

Gaussian mixture

 Φ is a probability density function \rightarrow choosing the (agnostic) normal density family as basis $(\phi \in \mathbb{F} = \{\mathcal{N}(\mu, \Sigma)\})$ seems reasonable:

$$f(x) = \sum_{j=1}^c \pi_j \mathcal{N}(x|\mu_j, \Sigma_j) \quad \text{ i.e} \quad \varphi_j(x) \stackrel{\text{def}}{=} \varphi(x, \theta_j) = \mathcal{N}(x|\mu_j, \Sigma_j)$$

- → Can approximate any density
- → Enables a linear system of its parameters when maximizing the log-likelihood (MLE)

Basic case : 1 component, c = 1

$$\star \ \theta = [\mu, \Sigma]$$

$$\hat{\theta} = \underset{\theta}{\mathsf{argmax}} \sum_{i} \log e^{-(x_i - \mu)^\mathsf{T} \Sigma^{-1} (x_i - \mu)}$$

$$\longleftrightarrow$$

$$\hat{\theta} = \underset{\theta}{\mathsf{argmin}} \sum_{i} (x_i - \mu)^\mathsf{T} \Sigma^{-1} (x_i - \mu)$$

$$\Rightarrow \hat{\mu} = \frac{1}{N} \sum_{i} \chi_{i}$$

$$\Rightarrow \hat{\Sigma} = \frac{1}{N} \sum_{i} (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$$

A bit more complex: 2 components

$$\begin{split} \theta &= [\pi_1, \theta_1, \pi_2, \theta_2] \\ &= [\pi_1, [\mu_1, \Sigma_1], \pi_2, [\mu_2, \Sigma_2]] \\ \text{with} \quad \pi_1 + \pi_2 &= 1 \end{split}$$

$$\mathbb{L}(\boldsymbol{\theta}, \boldsymbol{\mathcal{X}}) = \sum_{i}^{N} \log \left[\pi_1 \boldsymbol{\phi}(\boldsymbol{x}_i, \boldsymbol{\theta}_1) + \pi_2 \boldsymbol{\phi}(\boldsymbol{x}_i, \boldsymbol{\theta}_2) \right]$$

- ⇒ difficult to maximize because of the sum inside the log!
- ⇒ Solution : iterative 2 steps (E-M) algorithm to maximize L
- → Expectation-Maximization (E-M) algorithm

Estimation (2 components)

- * What is missing here is the assignment of x_i to one of the 2 components φ_i
- ⇒ If we knew it, we would treat the problem as twice 1 component
- \Rightarrow We introduce (unobserved) latent variables : the (binary) assignment $\delta_{ij} \in \{\texttt{true}, \texttt{false}\}\$ of every x_i to component ϕ_j :

$$egin{aligned} x_i \sim \varphi_1 \Rightarrow \delta_{i1} = \mathtt{true}, \delta_{i2} = \mathtt{false} \ x_i \sim \varphi_2 \Rightarrow \delta_{i1} = \mathtt{false}, \delta_{i2} = \mathtt{true} \end{aligned}$$

 \triangle But we can only estimate $\delta_{ij} \Rightarrow EM$ strategy

Expectation (E-step)

$$\boldsymbol{\theta} = [\pi_1, \theta_1, \pi_2, \theta_2] = [\pi_1, [\mu_1, \Sigma_1], \pi_2, [\mu_2, \Sigma_2]]$$

- \star Assume we know an initial value for $\theta^0 = [\pi^0_1, \theta^0_1, \pi^0_2, \theta^0_2]$
- * We can infer the (statistical) contribution γ_{ij} of every data x_i to every component ϕ_j (parameterized by θ_j^0):

$$\begin{split} \gamma_{ij}(\theta^0) &= \mathbb{P}[\delta_{ij} = \mathtt{true}|\theta^0, \mathcal{X}] \\ \gamma_{i1}(\theta^0) &= \frac{\pi_1^0 \varphi(x_i, \theta_1^0)}{\pi_1^0 \varphi(x_i, \theta_1^0) + \pi_2^0 \varphi(x_i, \theta_2^0)} \end{split}$$

- * γ_{ij} is the responsibility.
- * It is the likelihood that x_i is (purely) modeled by component ϕ_i
- $\Rightarrow \gamma_{ij}$ represents the part of x_i that is modeled (generated) by component φ_i

Responsibility and soft-assignment

- \Rightarrow We can use γ_{ij} to determine δ_{ij} \Rightarrow x_i can be assigned to either ϕ_1 or ϕ_2 (maximum vote \rightarrow binarization)
- \Rightarrow K-means-type hard-assignment \rightarrow each data is assigned to one and only one component (cluster)

EM is "softer": a data contributes (via γ_{ij}) to several components (density modes). EM computes a soft-assignment with

$$\sum_{i} \gamma_{ij} = 1 \quad \forall i$$

Maximization (M-step)

- * Note: $\gamma_{i1} + \gamma_{i2} = 1$
- * Given the responsibility of every data (γ_{ij}) , we can estimate the parameters of every component by (weighted) maximum likelihood:

$$\begin{split} \hat{\mu}_1 &= \sum_{i=1}^{N} \frac{\gamma_{i1}}{\sum_{k=1}^{N} \gamma_{k1}} x_i \qquad \hat{\Sigma}_1 = \sum_{i=1}^{N} \frac{\gamma_{i1}}{\sum_{k=1}^{N} \gamma_{k1}} (x_i - \hat{\mu}_1) (x_i - \hat{\mu}_1)^T \\ \hat{\mu}_2 &= \sum_{i=1}^{N} \frac{\gamma_{i2}}{\sum_{k=1}^{N} \gamma_{k2}} x_i \qquad \hat{\Sigma}_2 = \sum_{i=1}^{N} \frac{\gamma_{i2}}{\sum_{i=1}^{N} \gamma_{i2}} (x_i - \hat{\mu}_2) (x_i - \hat{\mu}_2)^T \end{split}$$

* Weight for mixture j: $\pi_i = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ij}$

* True parameters

π_1	μ_1	Σ_1	μ_2	Σ_2
0.75	2	2	8	1

* Estimated parameters

Iterations

Alternate cycle Expectation-Maximization \rightarrow increases the likelihood of the data w.r.t mixture model

The process is iterated until convergence, i.e when the likelihood of the data does not change (much)

Limitations

- ★ Hill-climbing ⇒ depends on initial parameters
- ⇒ sensitive to local maxima
- \Rightarrow Initialization strategies (e.g K-means or K-means ++)

* Potential slow convergence, depending on the distributions

c-component mixtures

Generalization with:

$$\delta_{i1}, \delta_{i2}, \ldots, \delta_{ij}, \ldots, \delta_{ic}$$

 $\delta_{ij} = \text{true}$ if data x_i is generated by component ϕ_j ($\delta_{ij} = \text{false}$ otherwise)

 \Rightarrow Responsibility γ_{ij} : expectation of δ_{ij} over all the components Parameters $\theta = [\pi_j, \theta_j]_{j \in [\![c]\!]} = [\pi_j, [\mu_j, \Sigma_j]]_j$ to estimate

EM algorithm, c components

- 1. Initial $\boldsymbol{\theta}^0 = \{\pi_j^0, \boldsymbol{\mu}_j^0, \boldsymbol{\Sigma}_j^0\}_{j \in [\![c]\!]}$
 - ° In general: $\pi_j = 1/c$, μ_j is chosen at random and $\Sigma_k = \text{Id}$
 - Alternative: use K-means as initialization
- 2. E-step : compute responsibilities for every data $i \in [\![N]\!]$ and every component $j \in [\![c]\!]$

$$\gamma_{ij} = \frac{\pi_j \phi(x_i, \theta_j)}{\sum_{k=1}^{c} \pi_k \phi(x_i, \theta_k)}$$

3. M-step Estimations of mixture parameters

$$\mu_j = \frac{\sum_{i=1}^N \gamma_{ij} x_i}{\sum_{i} \gamma_{ij}}; \quad \Sigma_j = \frac{X_j \Gamma_j X_j^T}{Tr(\Gamma_i)}; \quad \pi_j = \frac{\sum_{i} \gamma_{ij}}{N}$$

with $\Gamma_i = \text{diag}(\gamma_{1i}, \dots, \gamma_{Ni}), X_i$ centered on μ_i

4. Iterate 2. and 3. until convergence

Modeling

- * The a priori parametrization of the mixture changes the convergence
- ⇒ Parameters
 - 1. c: number of components
 - 2. Σ_i : the shape of covariance matrices (diagonal, full, parameterized)

- * Too flexible or too rigid models mean wrong or no convergence...
- * Number of variables : $D\times D\times c + 2\times c$: if N low, D large and c large \to over-parameterized

Shape of the covariance matrix

Over-parameterized problem

- * $\Sigma \in \mathbb{R}^{D \times D}$
- * e.g. character recognition $\mathbf{x}_{i} \in \mathbb{R}^{256}$
- \Rightarrow Needs to estimate $256^2 \times c$ parameters for the covariance (given about 7000 data points)!

Matrix parameterization

- * Spherical models $\Sigma = \sigma Id$
- * Diagonal models $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_D)$
- * Full models $\Sigma \in \mathbb{R}^{D \times D}$

 $\rightarrow 1$ parameter

 \rightarrow D parameters

Character recognition

More complex models \rightarrow no convergence since p is too large

Pre-processing: using PCA to reduce the dimension

Recall : 50 principal components reconstruct 90% of the signal EM within the space of the 50 first PC $\,$

Pre-processing: using PCA to reduce the dimension

Recall : 50 principal components reconstruct 90% of the signal EM within the space of the 10 first PC $\,$

Pre-processing: using PCA to reduce the dimension

Recall : 50 principal components reconstruct 90% of the signal EM within the space of the 2 first PC $\,$

Number of components

Parsimony

- * The larger c, the less points may be assigned to every component (in average)
- * Search for parsimonious models, i.e small number of parameters to estimate

Bayesian Information Criterion (BIC)

- * The larger c is, the better the estimate of l
- ★ Trade likelihood against complexity

$$\mathsf{BIC}(\theta, \mathfrak{X}) = -2\mathbb{L}(\theta, \mathfrak{X}) + |\theta| \log(\mathbb{N}) \qquad \quad \hat{\theta} \stackrel{\mathsf{here}}{=} \mathsf{argmin} \, \mathsf{BIC}(\theta, \mathfrak{X})$$

Example (contd)

- Need to test all models
- * Depends on convergence
- * Fine tuning by hand!

Summary

Gaussian mixtures

- * The Gaussian mixture model generalizes the assumption underlying PCA and LDA
- Explicit density modeling and estimation
- * Also MLE classification (unsupervised): if components are classes, data x_i is associated to class j for which $\mathbb{P}(C=j|x_i)\approx \pi_j \varphi_j(x_i)$ is maximized among all classes

EM algorithm

- ★ Iterative algorithm to maximize the (log-)likelihood
- * Principle used in many other scenarios
- * Based on the definition of unobserved (latent) variables (δ_{ij})
- ★ Probabilistic Latent Semantic Analysis (pLSA) → EM where the hidden variables are the latent concepts

Example questions [mostly require formal – mathematical – answers]

- ★ What is a Gaussian Mixture model (GMM)?
- * Why can it be viewed as conditional modeling?
- ★ How can we use it for generating data?
- * What is the responsibility? How to interpret it?
- ⋆ Why is EM for GMM a MLE?
- * How to interpret the E-step?
- ★ How to interpret the M-step?
- ⋆ Discuss the relationship betwen GMM and K-means
- * What are hard- and soft-assignments?

It is strongly adviced to develop the algebra contained in this chapter

References I

- [1] Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer-Verlag, Berlin, Heidelberg, 2006. (available online).
- [2] Kevin P. Murphy. *Probabilistic Machine Learning: an Introduction*. MIT Press, 2022. (available online).