Observing the Electric Field Using Simulation Lab

PSI Physics	Name

OBJECTIVE: As a class, observe and understand the factors that affect electric field

RESOURCES:

Simulation: http://phet.colorado.edu/simulations/sims.php?sim=Charges_and_Fields

Dubson, M. PhET Charges and Fields - Electric Charges, Electric Field, Electric Potential. Retrieved 12/18, 2009, from http://phet.colorado.edu/simulations/sims.php?sim=Charges_and_Fields Sokolowski, A. (2008). Using Gravitational Analogies to Introduce Electric Field Theory Concepts --- A response. Phys.Teach., 46(3), 132-133.

BACKGROUND:

The electric field is a vector, having both magnitude and direction. The direction of the electric field is defined as the direction that a positive test charge would accelerate. The electric field, E is defined as: $E=kQ/r^2$. The electric field is measured in either N/C (Newtons per Coulomb) or V/m (Volts per meter).

PROCEDURE:

- 1. Your teacher will open the simulation.
- 2. Turn on the grid by clicking on the box next to "grid".
- 3. Click on the box next to "show e-field" to show the electric field.
- 4. Pull a positive charge onto the grid.
- 5. Draw the direction of the electric field below.

- 6. Put the positive charge back on the pile where it came from and place a negative charge onto the grid.
- Draw the direction fo the electric field below.

- 8. How does charge affect the direction of the electric field?
- 9. Explain how the electric field direction and the direction of electric force are related. Reminder: F=qE.
- 10. Press the "Clear All" button.
- 11. Turn off "show e-field" and keep the grid on
- 12. Pull out a positive charge and put it on a major axis (solid orange line).
- 13. Pull out an "e-field sensor". The red arrow represents the electric field vector.
- 14. Move the sensor around the screen. Describe what happens to the magnitude of the electric field.

- 15. Click the box next to "show numbers". This displays the strength of the electric field in V/m.
- 16. Place the "e-field sensor" on the same major axis as the positive charge. Note that the scale at the bottom left of the screen.
- 17. Move the "e-field sensor" to the distances shown in the table. Record the electric field strength at each distance.

18. Make a graph of	Electric Field vs. Distance.
Draw a line of be	est fit.

Distance (m)	Electric Field (V/m)
0.5	
1.0	
1.5	
2.0	
3.0	

19. Describe the relationship between distance and electric field.

ectric field sensor to a distance ajor axis.	of 1 meter away from	n the positive charge on
r positive charge on top of the fi ange?	rst positive charge.	How did the field
vo negative charges on top of th h?	ne positive charges.	What happened to the
e relationship between charge e	electric field.	
rea v	ajor axis. positive charge on top of the finge? o negative charges on top of the finge.	positive charge on top of the first positive charge. Inge? To negative charges on top of the positive charges.

