

工業技術研究院

Industrial Technology Research Institute

設備預兆診斷技術

機械與機電系統研究所 智慧工廠系統整合技術組 品質智慧檢測應用部 許銘翔 經理

Tel: 03-5912267

E-mail: mh_hsu@itri.org.tw

期末小組作業說明

- 主題:針對講師群提供之數據及參數,進行故障的分析判讀,並製作簡報、推派 一位組員上台報告
- 不限定用何種工具來輔助分析,Excel、MATLAB、Python、LabVIEW、C#等等皆可,但須可以清楚表達
- 報告日期:2023/12/26(二),每組報告10分鐘,5分鐘Q&A
- 報告內容須包含:
 - 1. 檔案來源名稱
 - 2. 參數說明(含可用頻寬、頻譜解析度等講師群未提供之資訊)
 - 3. 故障判讀方法與結果說明
 - 4. 其他發現分享

期末小組作業範例

- (1) 檔案來源名稱:F_acc_fft.txt
- (2) XX故障
- (3) 參數說明

轉速: 1300

Samplerate: 10240

Length:8192

低截止頻率1000

高截止頻率5120

接觸角 0

軸承節徑 0.807

滾珠數 8 滾珠直徑 0.187

頻譜(加速度) 0.1 FFT頻譜須註明為為何種檔案 0.08 EX:加速度、速度、包絡 0.06 (b) 0.04 0.02 1800 2100 2700 3300 3600 4200 300 900 1200 1500 2400 3000 3900 4500 4800 5100 (Hz)

主軸不平衡

- 振動主頻率等於1X主軸轉速
- 徑向振動相對軸向更明顯

不平衡

不平衡

that the busines in General treatment of the contract of the property and interesting before the contract of t

主軸彎曲

- 振動主頻率等於<u>1X、2X</u>主 軸轉速
- 若彎曲處接近跨度中心,則 1X轉速頻率較明顯,反之亦 然
- 軸向振動相對徑向更明顯

軸彎曲

1000Hz內頻譜

不對中

角度不對中

- 振動主頻率等於<u>1X、2X、3X</u>主軸轉速
- 軸向振動相對徑向更明顯
- 通常屬於聯軸器問題

平行不對中

- 振動主頻率等於2X、3X主軸轉速
- 徑向振動相對軸向更明顯
- 2X通常會大於1X轉速頻率
- 通常屬於聯軸器問題

不對中

鬆動

- 振動主頻率等於**主軸轉速倍** 頻(可能會到30幾倍)
- 可由時域輔助判斷

鬆動

鬆動

限閱 RESTRICTED

故障診斷判斷方法

軸承損傷

• 由包絡譜判別是否有軸承損傷頻率出現

$$f_{in} = \frac{1}{2} f_a (1 + \frac{d}{D} \cos \alpha) Z$$

$$f_{out} = \frac{1}{2} f_a (1 - \frac{d}{D} \cos \alpha) Z$$

$$f_{roller} = \frac{D}{d} f_a \left[1 - \left(\frac{d}{D} \cos \alpha \right)^2 \right]$$

主軸旋轉頻率 f_a 為轉軸旋轉頻率,d為滾珠 直徑,D為軸承直徑,Z為滾珠數目, α 為 接觸角。

內環損傷

內環損傷

軸承損傷頻率

外環損傷

外環損傷

軸承損傷頻率

齒輪損傷

嚙合不良/齒隙問題

• <u>嚙合頻率GM</u>倍頻為<u>高低中</u>分布, GM1X和GM3X會有轉速邊頻

Gear Mesh frequency

嚙合頻率=轉速*齒數

fp:齒輪被動轉速

= fa*入力齒數/出力齒數

限閱

RESTRICTED

齒輪嚙合不良(入力齒31/出力齒26)

1X 79.38 Hz 0.01338 2X 158.12 Hz 0.04799 3X 237.50 Hz 0.02250 4X 316.25 Hz 0.01441 5X 395.62 Hz 0.02726 6X 475.00 Hz 0.04105 7X 554.38 Hz 0.01828 8X 633.75 Hz 0.00764

轉速倍頻

齒輪嚙合不良

限閱 RESTRICTED

(頻寬不足3倍嚙合頻率)

齒輪嚙合不良

齒輪不對中、斷齒

嚙合不對中

 <u>嚙合頻率GM</u>倍頻為<u>低高低</u>分布,GM2X 會有轉速邊頻

嚙合斷齒

- 以<mark>時間波型</mark>分析檢測,會出現一根一根 的波峰
- · GM1~3X都有可能有轉速邊頻,GM2X 和GM3X會比較明顯,邊頻主要成分為 異常齒輪的轉頻

齒輪嚙合不良 (入力齒8/出力齒40)

限閱

齒輪不對中、斷齒

齒輪不對中、斷齒

嚙合頻率2x頻叢

齒輪不對中、斷齒

嚙合頻率3x頻叢

12/19上課注意事項

- 1. 各組準備的筆電必須有網路孔
- 2. 各組須準備一條3米以上延長線、一條網路線

