STAT 302 - Chapter 1 : Simple Linear Regression - Part 2

Harsha Perera

Assessing Conditions

- Linearity
- Constant Variance
- ► Normality

Linearity

- A scatterplot with the fitted regression line provides one visual method of checking linearity. Points will be randomly scattered above and below the line when the linear model is appropriate.
- Clusters of points above and below the line in a systematic fashion, indicate that the simple linear model is not appropriate.
- A more informative plot is a scatterplot of the residuals versus the fitted values.
- ▶ In this scatterplot the regression line is represented as a horizontal line through zero. This plot allows us to focus on the estimated errors and look for any clear patterns.

Constant Variance

- Use a scatterplot of the residuals versus the fitted values as before.
- ► The ideal pattern will be a random variation above and below zero in a band of relatively constant width.
- The figure below shows a typical residual versus fitted values scatterplot when both Linearity and Constant Variance conditions are satisfied.

Residuals versus Fitted Values Plots

The figure below shows some examples of residuals versus fitted values plots that exibit some typical patterns indicating a problem with **Linearity**, **Constant Variance**, or **both conditions**.

20 25

(c) Both nonlinear and nonconstant variance

Normality

- Normal Plots Different view of the data where an ideal pattern for a normal sample is a straight line. There are generally two common methods for constructing a normal plot. They are Normal Quantile Plot and Normal Probability Plot.
- Normal Quantile Plot Scatterplot of the ordered observed data versus values (the theoretical quantiles) that we would expect to see from a "perfect" normal sample of the same size. If the ordered data are coming from a normal sample the resulting scatterplot is a **straight line**. If the distribution of the data is skewed or has long tails due to some extreme outliers, then the **normal quantile plot** will bend away from a staright line.

Normal Quantile Plot - Examples

(c) Long-tailed residuals

Normality

- ▶ **Normal Probability Plot** Residuals are plotted on the horizontal axis (x-axis) while the vertical axis (y-axis) is the rate that normal probability grow.
- ► The interpretation is same as the normal quantile plot. A linear pattern indicates a good agreement with normality, and curvature or bending away from a straight line shows a departures from normality.

Normal Probability Plot - Examples

