CS 101, Assignment 1

Christopher Huynh, Oliver Rene April 2016

1 Question 1

1.1

```
\begin{aligned} \text{Let } n &= A. \text{length} \\ \text{For } i &= 1 \text{ to } n; \\ \text{For } j &= 0 \text{ to } n\text{-}1; \\ \text{if } A[j] &\geq A[j\text{+}1]; \\ \text{Swap } A[j] \text{ and } A[j\text{+}1] \end{aligned}
```

1.2

```
Bubble Sort runs \frac{n(n+1)}{2} times

Prove \frac{n(n+1)}{2} = \theta(n^2)

Need to show that there exists c_1, c_2, and n_0 such that 0 \le c_1 \cdot n^2 \le \frac{n(n+1)}{2} \le c_2 \cdot n^2 for all n \ge n_0

Let c_1 = \frac{1}{2} and c_2 = 1 and n_0 = 1

Therefore, \frac{n(n+1)}{2} = \theta(n^2)

Bubble Sort time complexity is \theta(n^2)
```

1.3

Loop invariant: At the end of each iteration of i of the for loop, the subarray A[(n-i)..n] consists of the largest i elements originally in A[1..n] except in sorted order.

Base case/Initialization: i = 1, algorithm does nothing in the first loop. A[1] is trivially in sorted order.

Induction/Maintenance: Set i > 2. Assume loop invariant is true for i - 1. Thus, at the end of the (i - 1) loop (which is the beginning of the ith loop), A[(n - (i - 1))..n] is the sorted version of the largest (i-1) elements originally in A[1..n].

Observe that the index j tracks the position of the ith largest number. The j for loop effectively pushes the ith largest number to the A[n-i] position of the sorted array A[n-(i-1)..n]. So A[(n-i)..n] is sorted.

2 Question 2

subsets that do have element a.

Hypothesis: Let $n \in N$. For a set of n elements, there are 2^{n-1} subsets that have an odd number of elements.

Base case: n=1. set is 1. There should be $2^{(1)-1}=1$ subsets. There is only one subset of 1 which with an odd number of elements which is 1

Inductive Hypothesis: Let $k \in N$. Let $P(k) = 2^{k-1}$ be the statement that a set of k elements has 2^{k-1} subsets that have an odd number of elements.

Inductive Step: We need to prove that $P(k+1) = 2^{(k+1)-1}$ or simply $P(k+1) = 2^k$. Let there be a set A and an element a that is in set A. Now let $A' = A - \{a\}$, therefore A' has k elements. Lets split the subsets of A into two groups. Group X has subsets that do not have element a and Group Y has

The subsets in Group A are exactly the subsets of A'. Because A' has k elements, the statement P(k) is true for A'. This means that Group A contains 2^{k-1} subsets that have an odd number of elements. Now, let there be a set B = A' + {a} - {}. The subsets in Group B are exactly the subsets of B. Because the empty set {} does not have element a, the empty set is removed from A'. Because an element is removed but the element a is included in its place, the total elements of set B is k. This means that Group B contains 2^{k-1} subsets that have an odd number of elements.

If we combine Group A and Group B, there are $2^{k-1} + 2^{k-1} = 2^k$ subsets that have an odd number of elements. Therefore, the statement $P(k+1) = 2^k$ is true, completing the inductive step.

3 Question 3

Let $f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_k n^k$ be a degree-k polynomial, where every $a_i > 0$.

3.1

Show that $f(n) \in \theta(n^k)$.

We have the definition that $f(n) = \theta(n^k) \implies c_1 \le \lim_{n \to \infty} \frac{f(n)}{n^k} \le c_2$, where c_1 and c_2 are positive non-zero constants.

If we find $\lim_{n\to\infty}\frac{f(n)}{n^k}$, we get $\lim_{n\to\infty}\frac{f(n)}{n^k}=\lim_{n\to\infty}\frac{a^kn^k}{n^k}=a^k$. Therefore, we can find some c_1 and c_2 such that $c_1\leq a^k\leq c_2$. Therefore, $f(n)\in\theta(n^k)$.

3.2

Show that $f(n) \notin O(n^{k'})$, for all k' < k. Lets say that $f(n) \in O(n^{k'})$, for all k' < k.

We have the defintion that $f(n) = O(n^{k'}) \implies \lim_{n \to \infty} \frac{f(n)}{n^{k'}} \le c_1$, where c_1 is a positive non-zero constant.

If we find $\lim_{n\to\infty} \frac{f(n)}{n^{k'}}$, we get $\lim_{n\to\infty} \frac{f(n)}{n^{k'}} = \lim_{n\to\infty} \frac{n^k}{n^{k'}} = \lim_{n\to\infty} n^k = \infty$. Because $\lim_{n\to\infty} \frac{f(n)}{n^{k'}} = \infty$, then there exists no possible c_1 such that $\lim_{n\to\infty} \frac{f(n)}{n^{k'}} \le c_1.$

Therefore, by proof by contradiction, $f(n) \notin O(n^{k'})$, for all k' < k.

Question 4 $\mathbf{4}$

4.1

Prove $\log_2 n = O(\sqrt{n})$ Need to show that there exists c_1 and n_0 such that $0 \leq \log_2 n \leq c_1 \cdot \sqrt{n}$, for all $n \geq n_0$ Let $c_1=1$ and $n_0=16$. Therefore, $\log_2 n = O(\sqrt{n})$.

4.2

Show that $\log_2 n \notin \Omega(\sqrt{n})$. Lets say $\log_2 n \in \Omega(\sqrt{n})$.

We have the definition that $\log_2 n = \Omega(\sqrt{n}) \implies \lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} \ge c_1$, where c_1 is a positive non-zero constant.

If we find $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}}$, then we get $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$. Because $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$, we cannot find any positive non-zero c_1 , such that $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} \ge c_1.$

Therefore, by proof of contradiction, $\log_2 n \notin \Omega(\sqrt{n})$.

5 Question 5

Suppose the input array A is in sorted order, except for k elements. In other words, there are n - k elements of A that are already in sorted order, and the remaining k elements are out of order.

Prove that Insertion-Sort on A runs in O(nk) time.

The pseudocode of Insertion-Sort is as follows:

```
n = A.length
for i = 1 to n
    j = i
    while j > 1 and A[j-1] > A[j]
        Swap A[j-1] and A[j]
        j = j - 1
```

When Insertion-Sort is performed on A, Insertoin-Sort from A[1..(n-k)] runs n-k times because the while loop is never entered. Insertion-Sort from A[(n-k)]k)..n] then runs at most $\frac{k(n-1)}{2}$ times. If we add these too run times together,

we get $n+\frac{k(n-1)}{2}=\frac{2n+nk-k}{2}$. Therefore, Insertion-Sort on A runs at most $\frac{2n+nk-k}{2}$ times. Now to prove that Insertion-Sort on A runs in O(nk) time, we need to show that $\lim_{n\to\infty}\frac{\frac{2n+nk-k}{2}}{nk}\leq c$, where c is a positive non-zero constant. If we find $\lim_{n\to\infty}\frac{\frac{2n+nk-k}{2}}{nk}$ we get $\lim_{n\to\infty}\frac{\frac{2n+nk-k}{2}}{nk}=\lim_{n\to\infty}\frac{2n+nk-k}{2nk}=\lim_{n\to\infty}\frac{2n+nk-k}{2nk}=\lim_{n\to\infty}\frac{n(2+k)-k}{2nk}=\lim_{n\to\infty}\frac{n(2+k)-k}{2nk}=\lim_{n\to\infty}\frac{n(2+k)-k}{2nk}=\frac{2+k}{2k}$. Because $\lim_{n\to\infty}\frac{2n+nk-k}{2nk}=\frac{2+k}{2k}$, we can find a c so that $\lim_{n\to\infty}\frac{2n+nk-k}{2nk}\leq c$. Therefore, $\frac{2n+nk-k}{2}=O(nk)$. Therefore, Insertion-Sort on A runs in O(nk) time.