Statistical Models in R

Yebelay Berehan

Biostatistician

yebelay.ma@gmail.com

2022-06-19

Introduction

- Linear regression models (also known as "Ordinary Least Squares" model) allow us to determine if changing the values on a variable is associated with the values of another variable.
- In other words, if I make a 1-unit change in X, how much does Y change?
- We use linear regression models to test the association between two or more variables where the outcome is a continuous data type.
- linear regression model is called the "Ordinary Least Squares" or OLS model because it minimizes the squared errors (e.g., distance from the best-fit line).

- 1. Assumptions about the form of the model:
 - The linearity assumption. examining the scatter plot of Y versus X.
- 2. Assumptions about the errors: $e \sim Niid(0,\sigma^2)$.
 - normality assumption.
 - The errors have mean zero.
 - the constant variance assumption.
 - The independent-errors assumption. the autocorrelation problem.
- 3. Assumptions about the predictors:
 - nonrandom (assumed fixed).
 - measured without error.
 - linearly independent of each other; collinearity problem.
- 4. Assumptions about the observations:
 - equally reliable and have approximately equal role in determining the regression results and in influencing conclusions.
- diagnostic methods to check the violation of regression assumption are based on the study of model residuals with the help of various types of graphics.

Simple linear regression

The structural form of a linear regression model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon$$

- Typical notations of the linear regression include:
- ullet Y_i denotes the outcome (or dependent) variable for subject i
- ullet X_{1i} denotes the predictor of interest (X_1) for subject i
- ullet eta_0 denotes the Y-intercept when X is zero
- ullet eta_1 denotes the slope or the change in Y with a 1-unit change in X
- ϵ denotes the error or residuals

Diabets data

```
library(readr)
diabetes1 <- read_csv("diabetes.data.csv")</pre>
```

- The following variables are included in the data
- Pregnancies: Number of times pregnant
- Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- BloodPressure: Diastolic blood pressure (mm Hg)
- SkinThickness: Triceps skin fold thickness (mm)
- Insulin: 2-Hour serum insulin (mu U/ml)
- BMI: Body mass index (weight in kg/(height in m)^2)
- DiabetesPedigreeFunction: Diabetes pedigree function
- Age: Age (years)
- Outcome: Class variable (0 = no diabetes or 1 = diabetes)

Correlation

- Correlation analysis is concerned with measuring whether two variables are associated with each other.
 - If two variables tend to change together in the same direction, they are said to be positively correlated.
 - If they tend to change together in opposite directions, they are said to be negatively correlated.

```
diabetes1 %>%
  select(- ...1,- Outcome,-Pregnancies,-DiabetesPedigreeFunction) %>%
  correlate() %>% shave(upper = TRUE) %>%
  fashion(decimals = 2, na_print = ".")
```

```
term Glucose BloodPressure SkinThickness Insulin BMI Age
##
         Glucose
  2 BloodPressure
                     .15
  3 SkinThickness
                     .06
                                 .21
         Insulin .33
## 4
                                 .09
                                 .28
             BMI
                 .22
                     .26
                                             -.11
                                                    -.04 .04
             Age
                                  .24
```

6/39

Visualize the association using scatter plot

- Let's look at how Age is related to Glucose level by plotting their relationship.
- As Age increases, the Glucose level also increases. There appears to be a positive relationship between Age and Glucose level.

```
ggplot(diabetes1, aes(x = Age, y = Glucose)) +
  geom_point() + stat_smooth()
```


• Then, we update our linear regression model's structural form:

$$Glucose_i = \beta_0 + \beta_1 Age_i + \epsilon,$$

- where $Glucose_i$ denotes the expected Glucose level for subject i given the Age of subject i.
- We will use the lm() function with Glucose level as the Y variable and Age as the X variable.
- By using the lm() function, we can construct the linear regression model: lm(Glucose ~ Age, data = diabetes.data).

Here is how we put all of this together in R:

```
linear.model1 <- lm(Glucose ~ Age, data = diabetes1)</pre>
summary(linear.model1)
##
## Call:
## lm(formula = Glucose ~ Age, data = diabetes1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -126.453 -20.849 -3.058 18.304 86.159
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 97.08016 3.34095 29.06 < 2e-16 ***
## Age 0.71642 0.09476 7.56 1.15e-13 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.86 on 766 degrees of freedom
## Multiple R-squared: 0.06944, Adjusted R-squared: 0.06822
## F-statistic: 57.16 on 1 and 766 DF, p-value: 1.15e-13
```

- β_1 coefficient is in the linear regression output as Age, which is 0.71642.
- The lm() function does not generate 95% CI, so you will need to use the confint() function.

```
### Generate the 95% CI
confint(linear.model1)

## 2.5 % 97.5 %
## (Intercept) 90.5216601 103.6386585
## Age 0.5304001 0.9024361
```

Interpret the linear regression output

• We are interested in the coefficients. To make interpreting the output easier, we can create a table to visualize the critical elements using gtsummary package.

```
model1 <- tbl_regression(linear.model1, intercept = TRUE)
as_gt(model1) %>%
  gt::tab_header("Table 2. Linear regression model") %>%
  gt::tab_options(table.align='center')
```

Table 2. Linear regression model							
Characteristic	Beta	95% CI ¹	p-value				
(Intercept)	97	91, 104	<0.001				
Age	0.72	0.53, 0.90	<0.001				
¹ CI = Confidence Interval							

- The Intercept denotes the Y intercept when X is equal to zero. In this case, it would be where Glucose level would be on the linear plot when Age is equal to zero, which is 97.08-units of Glucose.
- The Age coefficient denotes the change in Glucose level for a one-unit increase in Age. In other words, a 1-year increase in Age is associated with a 0.72-unit increase in Glucose level.
- Since the 95% CI is between 0.53-units and 0.90-units of Glucose, it does not include zero, so this association is statistically significant. We can also look a the p-value of the Age coefficient to determine whether this is statistically significant (<0.0001).
 - \circ However, it is preferable to present the 95% CI when describing the association between X and Y.
- The Adjusted R squared denotes the amount of data that are explained by the linear regression model.
- In other words, the current linear regression model explains 6.8% of the data.

Visualize predicted model

• We can plot the linear form of the model against the actual data using the ggPredict() function.

• Here is a version without the scatter plot.

Multiple regression: Adding a confounder

```
# Generate groups based on pregnancy history
diabetes1$pregnancy.history <- ifelse(diabetes1$Pregnancies == 0, 0,1)
table(diabetes1$pregnancy.history)</pre>
```

```
##
## 0 1
## 111 657
```

- We see that there are 657 women who a history of pregnancy and 111 women with no history of pregnancy.
- We need to include a confounder pregnancy.history in our linear regression model:

$$Glucose_i = eta_0 + eta_1 Age_i + eta_2 Pregnancy History_i + \epsilon,$$

where $Glucose_i$ denotes the expected Glucose level for subject i given the Age of subject i controlling for Pregnancy History of subject i.

linear.model2 <- lm(Glucose ~ Age + pregnancy.history, data = diabetes1)
summary(linear.model2)</pre>

```
##
## Call:
## lm(formula = Glucose ~ Age + pregnancy.history, data = diabetes1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -125.715 -20.546 -2.991 17.316 87.734
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.00752 3.95100 25.818 < 2e-16 ***
              0.76050 0.09638 7.891 1.04e-14 ***
## Age
## pregnancy.history -7.47264 3.22137 -2.320 0.0206 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.77 on 765 degrees of freedom
## Multiple R-squared: 0.07594, Adjusted R-squared: 0.07352
## F-statistic: 31.43 on 2 and 765 DF, p-value: 7.592e-14
```

• We can present the model output into a table.

```
#### Present the output in a table
model2 <- tbl_regression(linear.model2, intercept = TRUE)
as_gt(model2) %>%
  gt::tab_header("Table 3. Multiple regression model") %>%
  gt::tab_options(table.align='center')
```

Table 3. Multiple regression model								
Characteristic	Beta	95% CI ¹	p-value					
(Intercept)	102	94, 110	<0.001					
Age	0.76	0.57, 0.95	<0.001					
pregnancy.history	-7.5	-14, -1.1	0.021					
¹ CI = Confidence Interval								

• You can see that the Age coefficient is slightly different from our first model. It is 0.76 with a 95% CI of 0.57, 0.95. Compare this to the previous model's result, which was 0.72; 95% CI: 0.53, 0.90.

Table 4. Comparison between regression models								
	Model 1		Model 2					
Characteristic	Beta	95% CI ¹	p-value	Beta	95% CI ¹	p-value		
(Intercept)	97	91, 104	<0.001	102	94, 110	<0.001		
Age	0.72	0.53, 0.90	<0.001	0.76	0.57, 0.95	<0.001		
pregnancy.history				-7.5	-14, -1.1	0.021		
¹ CI = Confidence Interval								

- Model 1 is considered the crude model or the unadjusted model.
- Model 2 is the adjusted model because it is adjusting based on the Pregnancy History confounder.

- Notice that the $\beta_{1,unadjusted}$ is 0.72 which is lower than the $\beta_{1,adjusted}$ result which is 0.76.
- Additionally, the Adjusted R squared is higher in model 2 (7.35%) compared to model 1, which was 6.82%.
- This means that Model 2 does a better job of explaining the data than Model 1.
- Let's plot Model 2's results.

- We can see that the group that had a history of pregnancy is lower than the group that did not have a history of pregnancy.
- This makes sense when you look at the pregnancy.history coefficient.
- It is -7.5, which means that a subject with a history of pregnancy is associated with a 7.5 decrease in Glucose level (95% CI: -13.80, -1.15) compared to a subject without a history of pregnancy controlling for age.
- Therefore, for all ranges of Age, the group with a history of pregnancy will have Glucose levels that are 7.5-unit lower than a group without a history of pregnancy.
- You can visualize this on the plot; the linear lines do not cross and remain constant across all ranges of Age.
- But there is a positive correlation betwteen Age and Glucose level.

Evaluate residual plots

- It is good practice to look at the residuals of the regression model to make sure that the assumptions hold.
- We need to check whether the residual are correlated with fitted or predicted values of Glucose.
- If there is an association, then we have heteroscedasticity, which is a violation of the linear regression model assumption.

```
plot(linear.model1$res ~ linear.model1$fitted)
```

- Upon visual inspection, there doesn't appear to be any evidence of heteroskedasticity. we can see that the residuals are uniform across the "fitted" values.
- We can verify this visual inspection by performing the Breusch-Pagan test of heteroskedasticity.
- We will need to install and load the lmtest package and use the bptest()
 function.

```
bptest(linear.model1)
```

```
##
## studentized Breusch-Pagan test
##
## data: linear.model1
## BP = 2.4585, df = 1, p-value = 0.1169
```

• The p-value is 0.1169, we fail to reject the null that the variance of the residuals are constant.

- We can also evaluate if the residuals are normally distributed.
- We can generate a histogram and a Q-Q plot.
- The historgram has a slight left skew and the Q-Q plot has its tails deviate from the neutral line.

```
par(mfrow = c(1, 2))
hist(linear.model1$res); qqnorm(linear.model1$res);
qqline(linear.model1$res, col = "2", lwd = 1, lty = 1)
```


You only need to use one of these tests. They will generally give the same results.

- We can also test for the normality of the residuals.
- Common tests of normality include the Shapiro-Wilk's test, and the Kolmogorov-Smirnov test.

```
shapiro.test(linear.model1$res)
##
##
       Shapiro-Wilk normality test
##
## data: linear.model1$res
## W = 0.97467, p-value = 2.838e-10
lillie.test(linear.model1$res)
##
       Lilliefors (Kolmogorov-Smirnov) normality test
##
##
## data: linear.model1$res
## D = 0.065397, p-value = 2.941e-08
```

 Despite not being normally distributed, the linear regression model is pretty robust to violations of this assumption.

Logistic regression model

The structural form of the logistic regression model:

$$logit(p_i) = ln(rac{p_i}{1-p_i}) = eta_0 + eta_1 X_{1i}$$

- ullet Y_i denotes the outcome (or dependent) variable for subject i; this is a binary variable
- X_{1i} denotes the predictor of interest or the independent variable (\$X_1\$) for subject i
- ullet eta_0 denotes the Y-intercept when X is zero; this is not informative for logistic regression models
- ullet eta_1 denotes the slope or the change in Y with a 1-unit change in X
- ullet p_i denotes the probability of the event occurring

- The logistic regression model is a predictive model for binary data.
- Hence, the logistic regression model can generate probabilities that a sample will have the discrete outcome given an input variable(s).
- The logistic regression model uses maximum likelihood estimation (MLE) which is a conditional probability that classifies the outcome if a certain threshold is met (e.g., > 0.50).
- Hence, the probability range of a logistic regression model is between 0 and 1.
- Additionally, the logistic regression can include multiple predictors which can be controlled or adjusted in a multivariable logistic regression model.

```
library(LaplacesDemon)
x <- -10:10
prob <- invlogit(x)
plot(x, prob, type = "l",
    main = "Logistic regression plot",
    ylab = "Probability", xlab = "Values of X")</pre>
```

Logistic regression plot

Example - Logistic regression

• We'll use the mtcar data to build our logistic regression model.

Odds ratio calculation

```
oddsratio(data1$vs, data1$am, conf.level = 0.95, method = "wald")
## $data
##
           Outcome
## Predictor automatic manual Total
##
                    12
                                18
##
                              14
                                32
##
   Total
                   19
                          13
##
## $measure
           odds ratio with 95% C.I.
##
## Predictor estimate lower
                                  upper
##
                            NA
                                      NA
##
                   2 0.4764466 8.395484
##
  $p.value
            two-sided
##
## Predictor midp.exact fisher.exact chi.square
##
                     NA
                                  NA
             0.3718521
                        0.4726974
                                     0.3409429
##
```

• Using the odds ratio, vehicles with a "V" engine had a 2 times higher odds of having an automatic transmission (95% CI: 0.47, 8.40) compared to vehicles with a straight engine.

Logistic regression in R

- We can create a crude logistic regression model to estimate the odds ratio.
- We set the transmission type am as the dependent variable and the engine type
 vs as the independent variable.
- The glm() command generates coefficients that are interpreted as the log odds of the event occurring.
- We need to exponentiate this to get the odds ratio using the exp() command.

```
logit1<- glm(formula = am ~ vs, data = data1,</pre>
            family = "binomial"(link = "logit"))
summary(logit1)
##
## Call:
## glm(formula = am ~ vs, family = binomial(link = "logit"), data = data1)
##
## Deviance Residuals:
## Min 10 Median 30 Max
## -1.1774 -0.9005 -0.9005 1.1774 1.4823
##
## Coefficients:
##
       Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6931 0.5000 -1.386 0.166
## vsS 0.6931 0.7319 0.947 0.344
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.230 on 31 degrees of freedom
## Residual deviance: 42.323 on 30 degrees of freedom
## AIC: 46.323
##
```

• According to the logistic regression model, vehicles with an "V" engine had a 2.0 times higher odds of having an automatic transmission (95% CI: 0.48, 8.76) compared to vehicles with a straight engine; this is not statistically significant since the odds ratio crosses the null or OR = 1.

```
confint(logit1)### Generate the 95% CI
##
                 2.5 % 97.5 %
## (Intercept) -1.7483158 0.2526876
## vsS -0.7334126 2.1696774
exp(coef(logit1)) ### Odds ratio
## (Intercept) vsS
         0.5
             2.0
##
exp(confint(logit1)) ### 95% CI (odds ratio)
##
                2.5 % 97.5 %
## (Intercept) 0.1740669 1.287481
## vsS 0.4802672 8.755459
```

Multivariable logistic regression model

• The structural form of the multivariable logistic regression model (this example uses two X variables):

$$logit(p_i) = ln(rac{p_i}{1-p_i}) = eta_0 + eta_1 X_{1i} + eta_2 X_{2i}$$

• Since the logistic regression model can include both continuous and categorical predictors, we can add the engine type vs (V versus straight engine) and vehicle weight wt.

$$logit(p_i) = ln(rac{p_i}{1-p_i}) = eta_0 + eta_1(vs)_i + eta_2(wt)_i.$$

where vs is the engine type and wt is the vehicle weight.

```
logit2 <- glm(formula = am ~ vs + wt, data = data1,</pre>
             family = "binomial"(link = "logit"))
summary(logit2)
##
## Call:
## glm(formula = am ~ vs + wt, family = binomial(link = "logit"),
## data = data1)
##
## Deviance Residuals:
      Min 10 Median 30 Max
##
## -1.72025 -0.25387 -0.04841 0.13220 1.90889
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.143 9.134 2.424 0.0153 *
## vsS -4.496 2.641 -1.703 0.0887 .
## wt -6.664 2.640 -2.524 0.0116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
```

- In this multivariable logistic regression model, the association between engine type vs and transmission type am is much lower (OR = 0.01; 95% CI: 0.000005, 0.048) controlling for vehicle weight wt.
- Controlling for the vehicle's weight reduced odds of the association between engine type vs and transmission type am.

```
### Exponentiate the coefficients
exp(coef(logit2)) ### Odds ratio
  (Intercept) vsS
##
                                   wt
## 4.136804e+09 1.114894e-02 1.276657e-03
exp(confint(logit2)) ### 95% CI (odds ratio)
                   2.5 % 97.5 %
##
  (Intercept) 1.358356e+04 1.439659e+21
## vsS 5.472656e-06 4.898832e-01
## wt 6.028539e-07 5.011505e-02
```

Comparison between models

• We compare the odds ratio between the crude and adjusted logistic regression models.

example -- diabetes dataset

• There was a total of 657 (85.5%) subjects with a history of pregnancies and 111 (14.5%) subjects with no history of pregnancy.

Crude Logistic Regression Model

• We create a crude logistic regression model to evaluate the association of the subject's age Age on history of pregnancy pregnancy.history.

```
logit3 <- glm(pregnancy.history ~ Age, data = data2,</pre>
            family = "binomial"(link = "logit"))
summary(logit3)
##
## Call:
## glm(formula = pregnancy.history ~ Age, family = binomial(link = "logit"),
##
   data = data2)
##
## Deviance Residuals:
  Min 10 Median 30
##
                                     Max
## -2.9478 0.2902 0.4966 0.6630 0.7500
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.33970 0.39173 -0.867 0.386
                                                                37 / 39
        ## Age
```

Multivariable logistic regression model

```
logit3 <- glm(pregnancy.history ~ Age + BMI + Glucose + SkinThickness,</pre>
             data = data2, family = "binomial"(link = "logit"))
summary(logit3)
##
## Call:
## glm(formula = pregnancy.history ~ Age + BMI + Glucose + SkinThickness,
      family = binomial(link = "logit"), data = data2)
##
##
## Deviance Residuals:
## Min 10 Median 30 Max
## -3.3549 0.2632 0.4737 0.6239 1.2282
##
## Coefficients:
##
        Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.516255 0.626257 2.421 0.015472 *
## Age 0.083301 0.014808 5.625 1.85e-08 ***
## BMI -0.053471 0.015487 -3.453 0.000555 ***
## Glucose -0.005492 0.003615 -1.519 0.128700
## SkinThickness 0.007768 0.007413 1.048 0.294694
```

Models comparisons

- Baesd on the crude logistic regression model, a 1-unit increase in age was associated with a 7% increase in the odds of having a history of pregnancy (95% CI: 1.05, 1.10), which is statistically significant.
- The odds ratio describing the association between Age and History of pregnancy did not change much between the crude and adjusted logistic regression model.