Max Freeman

max freeman@berkeley.edu | (607) 327-7804 | linkedin.com/in/maxfreeman | Berkeley, CA

Education

University of California, Berkeley

Master of Engineering in Mechanical Engineering, Concentration in Controls & Robotics

August 2024 - May 2025

GPA: 3.98

September 2020 - May 2024

Cornell University Bachelor of Science in Mechanical Engineering GPA: 3.77 | Magna Cum Laude

Skills

Embedded Systems: Sensors & Actuators | Communication Protocols (CAN, I2C, UART) | Oscilloscope Debugging

Prototyping & Design: CAD (SolidWorks) | 3D Printing & Rapid Prototyping | Manual Mill & Lathe Programming & Tools: Python | C++ | ROS2 | MATLAB | Simulink | Git | Linux | Bash | PCAN-View

Robotics & Controls: Feedback Control (PID, LQR, MPC) | State Estimation & Sensor Fusion | Dynamics & Kinematics

Highlighted Experience and Projects

System Integration Intern, Toyota Research Institute

July 2025 - Present

- Support cross-functional integration of mechanical, electrical, and software systems to enable rapid prototyping and testing of next-generation research vehicles.
- Integrate a steering wheel encoder into a prototype vehicle, taking ownership of CAN communication setup, wiring and connector fabrication, 3D-printed mount design in SolidWorks, and integration of sensor data into a ROS2 pipeline to enhance vehicle localization accuracy.
- Enable on-vehicle deployment of an NVIDIA Jetson for real-time monitoring and diagnostics by collaborating with research scientists to define interface requirements, designing custom sheet metal mounting brackets, and developing power and communication harnessing within the vehicle architecture.
- Reverse-engineered undocumented CAN signals by operating vehicle components while scanning logs in PCAN-View, isolating message patterns to identify key control signals.

Lead Robotics Engineer, Multimodal Autonomous Platform Design (MEng Capstone) **September 2024 - May 2025**

- Led a team of 4 engineers in developing a hybrid ground-aerial robot, owning full-stack system integration, hardware bring-up, and controls implementation across driving and flight modes.
- Built and deployed a ROS2-based flight controller in Python using a cascaded PID architecture with integrated safety checks; validated stability and responsiveness through iterative flight tests.
- Designed and executed a staged flight validation plan, leading 10+ tethered flight tests to verify subsystem functionality, capture debug logs, and identify failure modes while minimizing hardware risk.
- Performed simulation and hardware testing of both ground and aerial control systems, using custom logging and visualization pipelines to validate control strategies and accelerate iteration.

Control of Autonomous Flight Project, University of California, Berkeley

September 2024 - December 2024

- Developed a quadcopter flight controller in C++, achieving precise attitude, altitude, and position control.
- Implemented sensor fusion models in C++, utilizing data from optical flow, IMU, and Time-of-Flight sensors to improve sensor data accuracy and provide precise feedback for control.
- Diagnosed and resolved stability issues through targeted subsystem testing, sensor debugging, and PID controller tuning to validate fixes and improve system response.

Hardware Test & Integration Intern, Lit Motors

June 2024 - July 2024

- Contributed to test infrastructure development and subsystem design refinement at a fast-paced startup building a two-wheeled self-balancing vehicle actuated by Control Moment Gyroscopes (CMGs).
- Led development of a dual-plane dynamic balancing test rig for CMG evaluation, integrating structural hardware, sensors, and a belt-drive system to identify weight imbalances and reduce vibrations.

Embedded Autonomous Vehicle Project, Cornell University

January 2024 - May 2024

- Managed end-to-end development of an embedded autonomous RC robot, integrating sensors and motor drivers on an Arduino Nano and implementing control logic in C++ and Python.
- Interfaced with Time-of-Flight and IMU sensors over I2C, developing sensor fusion algorithms and software-based filters in C++ to minimize sensor output noise by over 50%, enhancing sensor accuracy.
- Implemented and tuned distance-based PID controllers to improve tracking, reducing settling time by 40%.
- Diagnosed hardware and sensing issues using oscilloscope traces and telemetry data, resolving integration faults, and improving system performance.