NSR Search Results Page 1 of 6

Visit the **Isotope Explorer** home page!

33 reference(s) found:

Keynumber: 1999HO26

Reference: Astrophys.J. 521, 735 (1999)

Authors: R.D.Hoffman, S.E.Woosley, T.A.Weaver, T.Rauscher, F.-K.Thielemann **Title:** The Reaction Rate Sensitivity of Nucleosynthesis in Type II Supernovae

Keyword abstract: NUCLEAR REACTIONS 32 S, 39 K, 45 , 46 Ca, 50 V, 69 , 70 Zn(n, γ), 33 S, 43 Ca, 44 Sc (p, γ), 33 S, 40 K, 45 Ti(n, α), 40 K, 45 Ti(n,p), 44 Ti(α ,p), 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca, 44 Ti(α , γ),E not given; analyzed stellar reactions rates. Several libraries compared.

Keynumber: 1998LI21

Reference: Nucl. Phys. A635, 43 (1998)

Authors: A.Likar, T.Vidmar

Title: Integrated Cross Sections in Fast Neutron Capture in Light Nuclei

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S, ⁴⁰Ca(n, γ),E=fast; calculated σ , σ (θ). Direct-

semidirect capture model. Comparison with data.

Keynumber: 1992KI03

Reference: Nucl.Phys. A536, 109 (1992)

Authors: H.Kitazawa, M.Igashira, Y.Achiha, N.Mukai, F.Uesawa, T.Andoh, S.Shibata **Title:** Core Polarization in the 203 keV $p_{1/2}$ -Wave Neutron Resonance Capture by 32 S

Keyword abstract: NUCLEAR REACTIONS 32 S(n,γ),E=203 keV; measured Eγ,Ιγ,σ(E,Eγ) at θ =125 0 . 33 S deduced resonance,Γγ. Natural target. Particle-vibrator coupling model.

Kevnumber: 1989KO53

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 2125 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.11,

63 (1989)

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova **Title:** Lifetimes of Highly Excited States of the Nuclei in $(n\gamma)$ Reactions with Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS ²⁸Si, ³²S (n,γ) ,E=thermal; measured $\gamma\gamma$ -coin. ²⁹Si, ³³S levels deduced T

levels deduced $T_{1/2}$.

T. 1000D

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1988KI02

Reference: J.Phys.(London) G14, Supplement S215 (1988)

Authors: H.Kitazawa, M.Igashira

Title: Mechanism of s-Wave and p-Wave Neutron Resonance Capture in Light and Medium-Weight

Nuclei

Keyword abstract: NUCLEAR REACTIONS 16 O, 28 Si, 32 S(n,γ),E ≈ resonance; measured Eγ,Iγ. 17 O, 29 Si, 33 S deduced resonance Γγ. Valence capture model.

NSR Search Results Page 2 of 6

Keynumber: 1985RA15

Reference: Phys.Rev. C32, 18 (1985)

Authors: S.Raman, R.F.Carlton, J.C.Wells, E.T.Jurney, J.E.Lynn

Title: Thermal Neutron Capture Gamma Rays from Sulfur Isotopes: Experiment and theory

Keyword abstract: NUCLEAR REACTIONS ³⁴, ³³, ³², ³⁶S(n,γ),E=thermal; measured Eγ,Iγ; deduced model dependent effects. ³³, ³⁴, ³⁵, ³⁷S deduced levels,γ-branching,J, π ,E1 transition. Potential capture theory.

Keynumber: 1985GU20

Reference: Chin.J.Nucl.Phys. 7, 50 (1985)

Authors: Guo Taichang, Shi Zongren, Zeng Xiantang, Li Guohua, Ding Dazhao

Title: The Study of Thermal Neutron Capture of ³²S

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ),E=thermal; measured E γ ,I γ ; deduced capture σ (E). 33 S deduced neutron separation energy,levels,E1 transitions, γ -branching ratios.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983RA04

Reference: Phys.Rev. C27, 1188 (1983)

Authors: S.Raman, E.T.Jurney, D.A.Outlaw, I.S.Towner

Title: ³⁴Cl Superallowed β Decay

Keyword abstract: RADIOACTIVITY $^{34}\text{Cl}(\beta^+)$ [from $^{33}\text{S}(p,\gamma)$]; $^{35}\text{S}(\beta^-)$; analyzed data. ^{34}Cl deduced Q(β^+ +EC),T $_{1/2}$,ft. ^{35}S deduced Q(β^-).

Keyword abstract: NUCLEAR REACTIONS 32 , 33 , 34 S(n,γ),E=thermal; measured Eγ. 33 , 34 , 35 S deduced neutron separation energy. 33 , 34 S(p,γ),E=0.9-1.4 MeV; measured Eγ. 34 Cl, 35 Cl deduced resonances,proton separation energy.

Keynumber: 1981BEZU

Reference: Tandem Accelerator Lab, Uppsala, Ann.Rept., p.36 (1981) **Authors:** I.Bergqvist, N.Olsson, R.Zorro, A.Lindholm, L.Nilsson, M.Saleem

Title: Neutron Capture in Spherical Nuclei

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S(n, γ),E=3-14 MeV; measured σ (E).

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸,

NSR Search Results Page 3 of 6

 49 , 50 Ti,V, 50 , 51 V,Cr, 50 , 52 , 53 , 54 Cr,Fe, 54 , 56 , 57 , 58 Fe, 59 Co,Ni, 58 , 59 , 60 , 61 , 62 , 64 Ni,Cu, 63 , 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron

binding energy.

Keynumber: 1980HA01

Reference: J.Phys.(London) G6, 59 (1980) **Authors:** D.Halderson, B.Castel, G.Aizer

Title: Non-Statistical Effects in Neutron Reactions on ³²S

Keyword abstract: NUCLEAR REACTIONS 32 S(n,γ),E ≈ 0-1.2 MeV; calculated cumulative Γ n

(E), $\Gamma \gamma$, reduced n-width. Shell model in continuum.

Keynumber: 1979CAZQ

Coden: JOUR BAPSA 24 818,AC9,Carlton

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ),E=thermal; measured E γ ,I γ . 33 S deduced

levels,S(n).

Keynumber: 1978MI14

Reference: Ann. Phys. (New York) 114, 452 (1978)

Authors: M.Micklinghoff, B.Castel

Title: Doorway Structures in the Radiative Capture of Neutrons by 28 Si and 32 S **Keyword abstract:** NUCLEAR REACTIONS 28 Si, 32 S(n, γ); calculated σ . K-matrix

formalism, microscopic treatment including single-particle resonances.

Kevnumber: 1978BEYD

Coden: REPT Uppsala, Tandem Accelerator Lab, 1978 Ann, p55, 7-4-2, Bergqvist

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S, ⁴⁰Ca, ⁸⁹Y, ¹⁴⁰Ce, ²⁰⁸Pb(n,γ),E=5-15 MeV;

measured σ . direct-semidirect, compound nuclear models.

Keynumber: 1974HAXW

Coden: REPT ORNL-4937 P185

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ),E=30-1100 keV; measured σ (E,E γ). 33 S

deduced resonances, n-width, \gamma-width.

Keynumber: 1974HAXD **Coden:** REPT ORNL-4976 P4

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ),E=25-1150 keV; measured σ (E,E γ). 33 S

deduced resonances, J, level-width.

Keynumber: 1974DA07

NSR Search Results Page 4 of 6

Reference: Yad.Fiz. 19, 3 (1974); Sov.J.Nucl.Phys. 19, 1 (1974)

Authors: M.M.Danilov, O.N.Ermakov, V.V.Vasilev, I.L.Karpikhin, V.K.Rissukhin

Title: Spins of Composite States in ¹³⁰Xe and ¹²⁴Te

Keyword abstract: NUCLEAR REACTIONS 32 S, 115 In, 113 Cd(polarized n, γ),E=2-10 MeV; 123 Te, 129 Xe(polarized n, γ),E=thermal; measured CP(γ). 116 In, 114 Cd levels deduced J. 124 Te, 130 Xe levels deduced J. $^{\pi}$.

Keynumber: 1973SP06

Reference: Nucl.Phys. A215, 260 (1973) **Authors:** A.M.J.Spits, J.A.Akkermans

Title: Investigation of the Reaction ${}^{37}Cl(n,\gamma){}^{38}Cl$

Keyword abstract: NUCLEAR REACTIONS ³⁷Cl, ³²S, ⁵⁰, ⁵², ⁵³Cr, ⁵⁶Fe(n,γ),E=thermal; measured

Eγ,Iγ; deduced Q. ³⁸Cl deduced levels,γ-branching.

Keyword abstract: RADIOACTIVITY 38 Cl; measured Εγ,Ιγ. Deduced β- branching, 38 Ar deduced

transitions. Natural, ³⁷Cl enriched target.

Keynumber: 1970JAZN **Coden:** REPT PH-7,J Jafar

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ³⁰Si, ³²S, ³⁴S, ³⁶Ar, ⁴⁰Ca, ²⁷Al

 (n,γ) , E=thermal; surveyed, analyzed E γ , I γ data. ²¹Ne, ²⁵Mg, ³¹Si, ³³, ³⁵S, ³⁷Ar, ⁴¹Ca, ²⁸Al deduced

levels, γ -branching.

Keynumber: 1970CV01

Reference: Nucl.Phys. A158, 251 (1970) **Authors:** F.Cvelbar, A.Hudoklin, M.Potokar

Title: Comparison between the Activation Cross Sections and Integrated Cross Sections for the

Radiative Capture of 14 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P, ³²S, ⁴⁰Ca, ⁵¹V, ⁵²Cr, ⁵⁵Mn,Fe,Cu,

Br,Se, 115 In, 127 I,Ba(n, γ),E=14 MeV; measured σ (E γ); deduced integrated σ .

Keynumber: 1969KO05

Reference: Nucl.Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS 32 S, 35 Cl, 48 Ti, 55 Mn, 56 Fe, 59 Co, 63 Cu(polarized n,γ), E = thermal; measured γ circular polarization. 33 S, 36 Cl, 49 Ti, 56 Mn, 57 Fe, 60 Co, 64 Cu levels deduced J, γ-

mixing. Natural targets.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal:

measured average γ multiplicity.

Keynumber: 1969EG01

NSR Search Results Page 5 of 6

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 33, 1259 (1969); Bull.Acad.Sci.USSR, Phys.Ser. 33, 1166

(1970)

Authors: S.Egri, B.Kardon, L.Pocs, Z.Seres, Z.Zamori

Title: Spectrum of the γRays Accompanying Thermal Neutron Capture in Sulfur Nuclei

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ), E=thermal; measured E γ , I γ . 33 S deduced

levels. Natural target, Ge(Li) detector.

Keynumber: 1969CV02

Reference: Nucl.Phys. A130, 413 (1969)

Authors: F.Cvelbar, A.Hudoklin, M.V.Mihailovic, M.Najzer, M.Petrisic

Title: Radiative Capture of Neutrons in the Region of the Dipole Giant Resonance (II). Calculation **Keyword abstract:** NUCLEAR REACTIONS 32 S, 52 Cr, 56 Fe(n, γ), E=14.1 MeV; calculated σ (E γ).

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal;

measured Eγ; deduced Q. Natural targets.

Kevnumber: 1967KE07

Reference: Nucl.Phys. A96, 658(1967)

Authors: T.J.Kennett, N.P.Archer, L.B.Hughes **Title:** Study of Thermal Neutron Capture in Sulphur

Keyword abstract: NUCLEAR REACTIONS 32 , 34 S(n, γ), E = thermal; measured E γ , I γ , $\gamma\gamma$ - coin. 33 S,

³⁵S deduced levels, branching, Q. Natural target, Ge(Li) detector.

Keynumber: 1967KA03

Reference: Nucl. Phys. A91, 44(1967)

Authors: B.Kardon, D.Kiss, Z.Seres, Z.Zamori

Title: Gamma-Gamma Angular Correlations in the ${}^{32}S(n,\gamma){}^{33}S$ Reaction

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ), E = thermal; measured $\gamma \gamma(\theta)$. 33 S levels

deduced J. Natural target.

Keynumber: 1967BE36

Reference: Phys.Rev. 158, 1049(1967)

Authors: I.Bergqvist, J.A.Biggerstaff, J.H.Gibbons, W.M.Good

Title: Gamma Rays from keV Resonance Neutron Capture in Some (2s-1d)-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS 19 F, 23 Na, 24 Mg, 27 Al, 32 S, 35 Cl(n, γ),E=20-120 keV;

measured Eγ,Iγ. ²⁰F, ²⁴Na, ²⁵Mg, ²⁸Al, ³³S, ³⁶Cl deduced resonances, level-width, J,π.

Keynumber: 1966VA10

Reference: Nucl. Phys. 80, 321(1966)

Authors: G.Van Middelkoop, H.Gruppelaar

NSR Search Results Page 6 of 6

Title: Investigation of the ${}^{32}S(n,\gamma){}^{33}S$ Reaction

Keyword abstract: NUCLEAR REACTIONS 32 S(n, γ), E = thermal; measured E γ , I γ , $\gamma\gamma$ -coin., $\gamma\gamma(\theta)$.

³³S deduced levels J, branching. Natural target.

Keynumber: 1965VA07

Reference: Nucl.Phys. 72, 1(1965) **Authors:** G.Van Middelkoop, P.Spilling

Title: Investigation of the Reactions $^{31}P(n,\gamma)^{32}P$ and $^{32}S(n,\gamma)^{33}S$

Keyword abstract: NUCLEAR REACTIONS ³¹P, ³²S(n, γ), E = thermal; measured γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$.

³²P, ³³S deduced levels, J, branching. Natural targets.
