IRF640, IRF640S

FEATURES

- 'Trench' technology
- Low on-state resistance
- Fast switching
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$V_{DSS} = 200 \text{ V}$$
 $I_D = 16 \text{ A}$
 $R_{DS(ON)} \le 180 \text{ m}\Omega$

GENERAL DESCRIPTION

N-channel, enhancement mode field-effect power transistor using **Trench** technology, intended for use in off-line switched mode power supplies, T.V. and computer monitor power supplies, d.c. to d.c. converters, motor control circuits and general purpose switching applications.

The IRF640 is supplied in the SOT78 (TO220AB) conventional leaded package. The IRF640S is supplied in the SOT404 (D²PAK) surface mounting package.

PINNING

PIN	DESCRIPTION	
1	gate	
2	drain ¹	
3	source	
tab	drain	

SOT78 (TO220AB)

SOT404 (D²PAK)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DSS}	Drain-source voltage	T _i = 25 °C to 175°C	-	200	V
	Drain-gate voltage	$T_i = 25 ^{\circ}\text{C}$ to 175 $^{\circ}\text{C}$; $R_{GS} = 20 \text{k}\Omega$	-	200	V
V_{GS}	Gate-source voltage	,	-	± 20	V
I _D	Continuous drain current	$T_{mb} = 25 ^{\circ}C; V_{GS} = 10 V$	-	16	Α
		$T_{mb} = 100 ^{\circ}C; V_{GS} = 10 V$	-	11	Α
I _{DM}	Pulsed drain current	$T_{mb} = 25 ^{\circ}C$	-	64	Α
P _D	Total power dissipation	T _{mb} = 25 °C	-	136	W
T_{j} , T_{stg}	Operating junction and storage temperature	2	- 55	175	°C

¹ It is not possible to make connection to pin:2 of the SOT404 package

Philips Semiconductors Product specification

N-channel TrenchMOSTM transistor

IRF640, IRF640S

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
E _{AS}	Non-repetitive avalanche energy	Unclamped inductive load, $I_{AS} = 6.2 \text{ A}$; $t_p = 720 \mu\text{s}$; T_j prior to avalanche = 25°C; $V_{DD} \le 25 \text{ V}$; $R_{GS} = 50 \Omega$; $V_{GS} = 10 \text{ V}$; refer to fig;14	-	580	mJ
I _{AS}	Peak non-repetitive avalanche current		-	16	Α

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{\text{th j-mb}}$	Thermal resistance junction to mounting base		1	1	1.1	K/W
R _{th j-a}	Thermal resistance junction to ambient	SOT78 package, in free air SOT404 package, pcb mounted, minimum footprint	1 1	60 50	-	K/W K/W

ELECTRICAL CHARACTERISTICS

T_i= 25°C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.25 \text{ mA};$ $T_i = -55 ^{\circ}\text{C}$	200 178	-	-	V
$V_{GS(TO)}$	Gate threshold voltage	$V_{DS} = V_{GS}$; $I_{D} = 1 \text{ mA}$		3	4	ľv
• GS(10)	Cato importora voltago	$T_i = 175^{\circ}C$	2 1	-	-	ľ
		$T_{j} = 175^{\circ}C$ $T_{i} = -55^{\circ}C$	-		6	V
$R_{DS(ON)}$	Drain-source on-state	$V_{GS} = 10 \text{ V}; I_D = 8 \text{ A}$	-	130	180	mΩ
	resistance	$T_{j} = 175^{\circ}C$	-	-	522	mΩ
I _{GSS}	Gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	100	nA
DSS	Zero gate voltage drain	$V_{DS} = 200 \text{ V}; V_{GS} = 0 \text{ V};$	-	0.05	10	μΑ
	current	$V_{DS} = 160 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175^{\circ}\text{C}$	-	-	250	μΑ
$Q_{g(tot)}$	Total gate charge	$I_D = 18 \text{ A}; V_{DD} = 160 \text{ V}; V_{GS} = 10 \text{ V}$	-	-	63	nC
Q_{gs}	Gate-source charge		-	-	12	nC
Q_{gd}	Gate-drain (Miller) charge		-	-	35	nC
$t_{d on}$	Turn-on delay time	$V_{DD} = 100 \text{ V}; R_D = 5.6 \Omega;$	-	12	-	ns
t_r	Turn-on rise time	$V_{GS} = 10 \text{ V}; R_G = 5.6 \Omega$	-	45	-	ns
$t_{d off}$	Turn-off delay time	Resistive load	-	54	-	ns
t _f	Turn-off fall time		-	38	-	ns
L_d	Internal drain inductance	Measured tab to centre of die	-	3.5	-	nH
L_d	Internal drain inductance	Measured from drain lead to centre of die	-	4.5	-	nΗ
		(SOT78 package only)				
L _s	Internal source inductance	Measured from source lead to source bond pad	-	7.5	-	nH
C _{iss}	Input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	_	1850	_	pF
C _{oss}	Output capacitance	1 65 6 1, 105 25 1, 1 111112	_	170	-	pF
C _{rss}	Feedback capacitance		-	91	-	pF

IRF640, IRF640S

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS

T_i = 25°C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _S	Continuous source current (body diode)		-	-	16	Α
I _{SM}	Pulsed source current (body diode)		-	-	64	Α
V_{SD}	Diode forward voltage	$I_F = 18 \text{ A}; V_{GS} = 0 \text{ V}$	•	1.0	1.5	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	$I_F = 18 \text{ A}; -dI_F/dt = 100 \text{ A}/\mu\text{s};$ $V_{GS} = 0 \text{ V}; V_R = 25 \text{ V}$	1 1	130 0.8	-	ns μC

IRF640, IRF640S

IRF640, IRF640S

Fig. 9. Normalised drain-source on-state resistance. $R_{DS(ON)}/R_{DS(ON)25\ C} = f(T_j)$ Fig. 12. Typical capacitances, C_{iss} , C_{oss} , C_{rss} . $C = f(V_{DS})$; conditions: $V_{GS} = 0\ V$; $f = 1\ MHz$

IRF640, IRF640S

Fig.14. Maximum permissible non-repetitive avalanche current (I_{AS}) versus avalanche time (t_{AV}); unclamped inductive load

IRF640, IRF640S

MECHANICAL DATA

Notes

- 1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
- 2. Refer to mounting instructions for SOT78 (TO220AB) package.
- 3. Epoxy meets UL94 V0 at 1/8".

IRF640, IRF640S

MECHANICAL DATA

Notes

- 1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
- 2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.
- 3. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

N-channel TrenchMOSTM transistor

IRF640, IRF640S

MOUNTING INSTRUCTIONS

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published				
Product specification This data sheet contains final product specifications.				

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1999

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.