第2节 垂直关系证明思路大全(★★☆)

强化训练

1. (2023・成都模拟・★★) 如图,在三棱锥 P - ABC 中,AB 是 $\triangle ABC$ 的外接圆直径,PC 垂直于圆所在的平面,D,E 分别是棱 PB,PC 的中点,证明:DE ⊥平面 PAC.

证明: (D, E 都是中点,联想到中位线,故可借助 DE//BC 把结论转化为证 $BC \perp$ 平面 PAC)

由题意, $PC \perp$ 平面 ABC, $BC \subset$ 平面 ABC,所以 $BC \perp PC$,又 AB 是 ΔABC 的外接圆直径,所以 $BC \perp AC$,因为 PC, $AC \subset$ 平面 PAC, $PC \cap AC = C$,所以 $BC \perp$ 平面 PAC,

又 D, E 分别是棱 PB, PC 的中点, 所以 DE //BC, 故 $DE \perp$ 平面 PAC.

2. (2022 • 昆明模拟 • $\star\star$)如图,在直三棱柱 $ABC - A_1B_1C_1$ 中,侧面 ACC_1A_1 为正方形, $\angle CAB = 90^\circ$, AC = AB = 2 , M , N 分别为 AB 和 BB_1 的中点, D 为棱 AC 上的点,证明: $A_1M \perp DN$.

证明: (观察发现 A_1M 在面 ABB_1A_1 内,DN 在该面的投影好找,即为 AN,故由三垂线定理想到只需证 $A_1M \perp AN$)

如图,连接 AN,因为 $\angle CAB = 90^\circ$,所以 $DA \perp AB$,又 $ABC - A_lB_lC_l$ 为直三棱柱,所以 $AA_l \perp$ 平面 ABC,而 $DA \subset \text{平面 }ABC$,所以 $DA \perp AA_l$,结合 AB, AA_l 是平面 ABB_lA_l 内的相交直线可得 $DA \perp \text{平面 }ABB_lA_l$, 因为 $A_lM \subset \text{平面 }ABB_lA_l$,所以 $DA \perp A_lM$ ①,(再证 $AN \perp A_lM$,可在面 ABB_lA_l 内分析)由题意, $AB = AA_l = 2$,所以 ABB_lA_l 为正方形,故 BN = AM = 1,

所以
$$\tan \angle NAB = \frac{BN}{AB} = \frac{1}{2}$$
, $\tan \angle AA_1M = \frac{AM}{AA_1} = \frac{1}{2}$, 故 $\angle NAB = \angle AA_1M$,

又 $\angle AA_1M + \angle AMA_1 = 90^\circ$,所以 $\angle NAB + \angle AMA_1 = 90^\circ$,故 $AN \perp A_1M$ ②,

由①②结合 DA,AN 是平面 DAN 内的相交直线可得 A_1M 上平面 DAN,又 DN \subset 平面 DAN,所以 A_1M \perp DN.

3. $(2020 \cdot 新课标 I 卷 \cdot ★★)$ 如图,D 为圆锥的顶点,O 是圆锥底面的圆心, $\triangle ABC$ 是底面的内接正三角形,P 为 DO 上一点, $\angle APC = 90^\circ$,证明:平面 PAB ⊥ 平面 PAC.

证法 1:(要证面面垂直,又已知交线,故只需在一个面内找与交线垂直的直线,它必垂直于另一个面,由 $\angle APC = 90^{\circ}$ 可发现应选 PC,证 $PC \perp PC$ 平面 PAB 即可,而要证这一结果,还需证 $PC \vdash AB$ 或 PB 垂直,下面先考虑证 $PC \perp AB$,注意到 PC 在面 ABC 内的射影是 CO,故只需证 $AB \perp CO$)

如图 1,连接 CO 并延长,交AB 于点 G,则 G 为 AB 中点,且 $AB \perp CG$,

由题意, $PO \perp$ 平面 ABC, $AB \subset$ 平面 ABC,所以 $AB \perp PO$,又 CG,PO 是平面 POC 内的相交直线,所以 $AB \perp$ 平面 POC,因为 $PC \subset$ 平面 POC,所以 $AB \perp PC$,

由题意, $\angle APC = 90^{\circ}$,所以 $PA \perp PC$,又PA, $AB \subset \text{平面 } PAB$, $PA \cap AB = A$,所以 $PC \perp \text{平面 } PAB$,因为 $PC \subset \text{平面 } PAC$,所以平面 $PAB \perp \text{平面 } PAC$.

证法 2: (也可通过证 $PC \perp PB$ 来证 $PC \perp$ 平面 PAB,只需证 $\Delta PAC \subseteq \Delta PBC$,观察发现又只需证 PA = PB,要证这一结果,可通过证 $\Delta POA \subseteq \Delta POB$ 来完成)

如图 2,连接 OA, OB,则 OA = OB,由题意, $PO \bot$ 平面 ABC, OA, $OB \subset$ 平面 ABC,

所以 $PO \perp OA$, $PO \perp OB$,故 $\angle POA = \angle POB = 90^{\circ}$,结合PO = PO 可得 $\Delta POA \cong \Delta POB$,所以PA = PB,

又 $\triangle ABC$ 是正三角形,所以 AC = BC ,结合 PC = PC 可得 $\triangle PAC \cong \triangle PBC$,所以 $\angle BPC = \angle APC = 90^{\circ}$,

故 $PC \perp PB$, $PC \perp PA$,又PA, $PB \subset \mathbb{P}$ 面PAB, $PA \cap PB = P$,所以 $PC \perp \mathbb{P}$ 面PAB,

因为PC \subset 平面PAC,所以平面PAB \bot 平面PAC.

4. $(2023 \cdot 榆林一模 \cdot \star \star)$ 如图,在四棱锥 P-ABCD 中,平面 $PAD \perp$ 平面 ABCD, AB // CD, $\angle DAB = 60^\circ$, $PA \perp PD$,且 $PA = PD = \sqrt{2}$, AB = 2CD = 2,证明: $AD \perp PB$.

证明:(条件中有面 PAD \bot 面 ABCD,可构造线面垂直,找到 PB 在平面 ABCD 内的投影,结合三垂线定理,我们发现只需证 AD 与该投影垂直即可)

如图,取 AD 中点 O,连接 OP, OB,因为 $PA = PD = \sqrt{2}$,所以 $PO \perp AD$,又 $PA \perp PD$,所以 AD = 2,因为 AB = 2, $\angle DAB = 60^{\circ}$,所以 ΔADB 是正三角形,故 $AD \perp OB$,

因为 OP, $OB \subset$ 平面 POB, $OP \cap OB = O$, 所以 $AD \perp$ 平面 POB, 又 $PB \subset$ 平面 POB, 所以 $AD \perp PB$.

5.(2023•吉林模拟•★★★)如图,在多面体 ABCDEF 中,四边形 ABCD 为菱形,且 $\angle DAB = 60^{\circ}$,四边形 BDEF 为矩形, BD = 2BF = 2, AC = BD 交于点 O, FA = FC,证明: $DE \perp$ 平面 ABCD.

ABCD.

6. (★★★) 如图, 三棱台 DEF - ABC 中, 面 ADFC 上面 ABC, $\angle ACB = \angle ACD = 45^{\circ}$, DC = 2BC, 证明: $EF \bot DB$.

证明:(看到条件中有面 ADFC上面 ABC,马上想到作交线的垂线,构造线面垂直,不妨试试过 D 作 AC 的垂线)

过D作 $DG \bot AC$ 于G,连接BG,因为面 $ADFC \bot$ 面ABC,面 $ADFC \cap$ 面ABC = AC, $DG \subset \text{面} ADFC$,所以 $DG \bot \text{面} ABC$,故 $DG \bot BG$,

(观察发现 EF//BC,故可将要证的结论转化为证 $BC \perp BD$,于是考虑证 ΔBCD 满足勾股定理,题干给了一个长度关系,可由此设未知数分析)

设 BC=a,则 DC=2a,因为 $\angle ACD=45^\circ$,所以 ΔCDG 为等腰直角三角形,故 $CG=DG=\sqrt{2}a$,在 ΔBCG 中, $\angle BCG=45^\circ$,由余弦定理, $BG^2=CG^2+BC^2-2CG\cdot BC\cdot \cos \angle BCG=a^2$,所以 $BD^2=DG^2+BG^2=3a^2$,故 $BC^2+BD^2=4a^2=CD^2$,所以 $BC\perp BD$,

由三棱台结构特征可得 EF//BC,所以 $EF \perp BD$.

