Zadatak: Na slici ispod je data natpisna pločica jedne električne mašine:

- a). O kojoj vrsti mašine je reč? Dokazati!
- b). Kojoj podvrsti pripada ova električna mašina? Dokazati!
- c). Koliki je nominalni napon na koji se priključuje dati uređaj?
- d). Koliko pari polova ima razmatrana mašina? Dokazati!
- e). Koliko iznosi faktor snage mašine u nazivnom režimu rada?
- f). Koliko iznosi klizanje ove mašine u nazivnom režimu rada? Kako ste ovo zaključili?
- g). Za koji režim rada je mašina projektovana pri nominalnim uslovima napajanja? Dokazati!
- h). Izračunati nazivni razvijeni momenat razmatrane mašine?
- i). Izračunati nazivni stepen iskorišćenja razmatrane mašine? Koliko iznose gubici u nazivnom režimu rada?
- j). Koliko iznosi aktivna a koliko reaktivna snaga mašine u nazivnom režimu rada?
- k). Navesti NOMINALNE PODATKE mašine?

RADE KONČAR				
mot	3 ~	Br.	50)5993
Tipa	3A2	Z	13	7-4
Δ/Y	220/38	80 V	5,	,2/3 A
1,1	kW	cos	sφ	0,75
1395	º/min	5	0	Hz

RADE KONČAR			
ZRK ≩	3 ~	Br. 7593	
Tipa	2AKMd 132 M		
Δ/Υ	380/660 V	210/121 A	
110	kW	cosφ 0,87	
740	º/min	50 Hz	
Rotor: 720 V 92 A			

RADE KONČAR			
mot	3 ~	Br.	505993
Tipa	3A2	7	137-4
Δ/Y	220/380 V 5,2/3 A		5,2/3 A
1,1	kW	cos	sφ 0,75
1395	º/min	5	0 Hz

a). O kojoj vrsti mašine je reč? Dokazati!

Trofazna asinhrona mašina.

Dokaz: Ima podatak o brzini obrtanja rotora (1395 o/min, nije transformator), ima podataka o frekvenciji i faktoru snage (nije MJS) pa je u pitanju mašina naizmenične struje.

$$n_n = 1395 \ o/min, n_s = \frac{60f}{p} = 1500 \ o/min$$

pošto je:

$$n_n \neq n_s$$

u pitanju je asinhrona mašina.

b). Kojoj podvrsti pripada ova električna mašina? Dokazati!

U pitanju je kavezna asinhrona mašina jer ne postoje podaci za napon i struju rotorskog namotaja!

c). Koliki je nominalni napon na koji se priključuje dati uređaj?

Nominalni napon na koji se priključuje statorski namotaj iznosi $U_{sn} = 220 V$ u sprezi trougao dok je u sprezi zvezda $U_{sn} = 380 V$.

d). Koliko pari polova ima razmatrana mašina? Dokazati!

$$n_s = \frac{60f}{p} = \frac{3000}{p} = 1500 \text{ o/min} \Rightarrow p = 2$$

e). Koliko iznosi faktor snage mašine u nazivnom režimu rada?

$$\cos \varphi_n = 0.75$$

f). Koliko iznosi klizanje ove mašine u nazivnom režimu rada? Kako ste ovo zaključili?

$$s_n = \frac{n_s - n}{n_s} = \frac{1500 - 1395}{1500} = 0.07 \Rightarrow s_n[\%] = 7\%$$

g). Za koji režim rada je mašina projektovana pri nominalnim uslovima napajanja? Dokazati! Pošto je $n_s > n_n$ asinhrona mašina je predviđena da radi u režimu rada motora.

Takođe iz analize energija može se dokazati tvrdnja!

$$P_{eln} = \sqrt{3}U_n I_n \cos \varphi_n = \sqrt{3} \cdot 220 \cdot 5.2 \cdot 0.75 = 1.48 kW > P_{izln} = 1.1 kW$$

h). Izračunati nazivni razvijeni momenat razmatrane mašine?

$$M_n = \frac{P_{izln}}{\omega_n} = 9.55 \frac{P_{izln}}{n_n} = 7.53 Nm$$

i). Izračunati nazivni stepen iskorišćenja razmatrane mašine? Koliko iznose gubici u nazivnom režimu rada?

$$\eta_n=\frac{P_{izln}}{P_{uln}}=\frac{P_{mehn}}{P_{eln}}=\frac{1.1}{1.48}=0.743, \eta_n[\%]=74.3\%$$

$$P_{gubn}=P_{uln}-P_{izln}=0.38kW$$
j). Koliko iznosi aktivna a koliko reaktivna snaga mašine u nazivnom režimu rada?

$$P_{eln} = \sqrt{3}U_n I_n \cos \varphi_n = \sqrt{3} \cdot 220 \cdot 5.2 \cdot 0.75 = 1.48kW$$

$$Q_n = \sqrt{3}U_n I_n \sin \varphi_n = \sqrt{3} \cdot 220 \cdot 5.2 \cdot 0.66 = 1.31kVAr$$

k). Navesti NOMINALNE PODATKE mašine?

220V/380 V, 5.2 A/3A – nazivni napon i struja statorskog namotaja u spregu trougao/zvezda 1395 o/min – nazivna brzina obrtanja rotora

1.1 kW – nazivna izlazna snaga mašine

 $\cos \varphi_n = 0.75$ – nazivni faktor snage

50 Hz – nazivna frekvencija napajanja

RADE KONČAR			
₹K ₹	3 ~	Br. 7593	
Tipa	2AKMd 132 M		
Δ/Y	380/660 V	210/121 A	
110	kW	cosφ 0,87	
740	º/min	50 Hz	
	Rotor: 720 V	92 A	

a). O kojoj vrsti mašine je reč? Dokazati!

Trofazna asinhrona mašina.

Dokaz: Ima podatak o brzini obrtanja rotora (740 o/min, nije transformator), ima podataka o frekvenciji i faktoru snage (nije MJS) pa je u pitanju mašina naizmenične struje.

$$n_n = 740 \ o/min, n_s = \frac{60f}{p} = 750 \ o/min$$

pošto je:

$$n_n \neq n_s$$

u pitanju je asinhrona mašina.

b). Kojoj podvrsti pripada ova električna mašina? Dokazati!

U pitanju je kliznokolutna asinhrona mašina jer postoje podaci za napon i struju rotorskog namotaja! – pobuda 720 V, 92 A.

c). Koliki je nominalni napon na koji se priključuje dati uređaj?

Nominalni napon na koji se priključuje statorski namotaj iznosi $U_{sn} = 380 V$ u sprezi trougao dok je u sprezi zvezda $U_{sn} = 660 V$.

d). Koliko pari polova ima razmatrana mašina? Dokazati!

$$n_s = \frac{60f}{p} = \frac{3000}{p} = 750 \text{ o/min} \Rightarrow p = 4$$

e). Koliko iznosi faktor snage mašine u nazivnom režimu rada?

$$\cos \varphi_n = 0.87$$

f). Koliko iznosi klizanje ove mašine? Kako ste ovo zaključili?

$$s_n = \frac{n_s - n}{n_s} = \frac{750 - 740}{750} = 0.013 \Rightarrow s_n[\%] = 1.3\%$$

g). Za koji režim rada je mašina projektovana pri nominalnim uslovima napajanja? Dokazati!

Pošto je $n_s>n_n$ asinhrona mašina je predviđena da radi u režimu rada motora.

Takođe iz analize energija može se dokazati tvrdnja!

$$P_{eln} = \sqrt{3}U_n I_n \cos \varphi_n = \sqrt{3} \cdot 380 \cdot 210 \cdot 0.87 = 120 kW > P_{izln} = 110 kW$$

h). Izračunati nazivni razvijeni momenat razmatrane mašine?

Pretpostavka:

$$M_n = \frac{P_{mehn}}{\omega_n} = 9.55 \frac{P_{izln}}{n_n} = 1420 Nm$$

i). Izračunati nazivni stepen iskorišćenja razmatrane mašine? Koliko iznose gubici u nazivnom režimu rada?

$$\eta_n = \frac{P_{izln}}{P_{uln}} = \frac{P_{mehn}}{P_{eln}} = \frac{110}{120} = 0.916, \eta_n [\%] = 91.6\%$$

$$P_{gubn} = P_{uln} - P_{izln} = 10kW$$
iyyna a koliko reaktiyna spaga mašine u paziynom režimi

j). Koliko iznosi aktivna a koliko reaktivna snaga mašine u nazivnom režimu rada?

$$P_{eln} = \sqrt{3}U_n I_n \cos \varphi_n = 120kW$$

$$Q_n = \sqrt{3}U_n I_n \sin \varphi_n = \sqrt{3} \cdot 380 \cdot 210 \cdot 0.493 = 68kVAr$$

k). Navesti NOMINALNE PODATKE mašine?

380V/660 V, 115 A – nazivni napon i struja statorskog namotaja u spregu trougao/zvezda

740 o/min – nazivna brzina obrtanja rotora

110 kW – nazivna izlazna snaga mašine

720 V, 92 A – nazivni napon i struja rotorskog namotaja

 $\cos \varphi_n = 0.87 - \text{nazivni faktor snage}$

50 Hz – nazivna frekvencija napajanja

ZADACI ZA VEŽBU:

KONČA	AR .		
Code		A14330	No 117050
3 ~		Туре	5AZ80B-8 B3
ΔM	220/380	V	1.9/1.1 A
(0.22	kW	0.6 cos φ
50 Hz		HP	660 min-1
t _o '	°C	Isol F	
IP 54 S	IP 54 S1 IEC34-1, VDE0530		