SPARK SUMMIT

Next CERN Accelerator Logging Service A road to Big Data

Jakub Wozniak, CERN

#SparkSummit

22 member states

echnology Education

Physics Lab since 1954

Detectors

CERN Complex On Map

Future Circular Collider (FCC)

Plans for 80-100 km tunnel under Geneva Lake and Alps

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Accelerator Timing

- Beam time shared per experiment in cycles
 - of 1.2 sec, 2.4 sec, 3.6 sec, ...

Accelerator Hardware

Magnets

- Dipoles end g
- Cusing
 Cusing
 Cusing
 Cusing
 Cusing

Range - to accelerate

- diagnostics (intensity, position)
- Timing & synchronization systems
- Orbit feedback & steering systems
- Radiation monitors
- Security systems
- Vacuum, cooling & ventilation
- High voltage electrical systems
- Specialized controls electronics

Hardware Controls

In practice

- Thousands of different devices
- Hundreds of properties each

the Add. time betterape Commands Custod Proplant

+10.1×

1,66

0.05

DOTT NAME

10,40

3 F

PSB:HULTIP OF - PSB-USER,LHC MO A

NAZ. SMEREJEL NAZ. SMEREJEL NAZ. SMEREJEL NAZ. SMEREJEL

POW

\$12,00046

\$82,000BL

883, 28812L

LEIR

Low Energy Ion Ring @CERN

Controls Data Logging

- Equipment readings (acquisitions or settings)
 - Not physics data from experiments!
 - Needed to operate the accelerators
- Online monitoring & ad-hoc queries
 - Alarms, device/system failures
 - Beam degradation or dumps
- Offline analytics & studies
 - Beam quality improvements
 - New beam types
 - Future experiments or machines

CERN Accelerator Logging Service

Old system (CALS) based on Oracle (2 DBs)

- ~20,000 devices (from ~120,000 devices)
- **1,500,000** signals
- 5,000,000 extractions per day
- 71,000,000,000 records per day
 - · 2 TB / day (unfiltered data, 2 DBs)
- 1 PB of total data storage (heavily filtered in 95%)

Current Issues With CALS

- Performance / scalability problems
 - Difficult to scale horizontally
 - "... to extract 24h of data takes 12h"

- CALS & tools not ready for Big Data!
 - Have to extract subsets of data to do analysis!

Upcoming Challenges

- Future big scientific projects
 - High Luminosity LHC (HL-LHC)
 - Future Circular Collider (FCC)

- Important increase of data loads
 - Data frequency increase (from 1Hz to 100Hz)
 - Much bigger vectors
 - Limited filtering

HL-LHC Luminosity Forecast

Current Controls Data Storage

Controls Data size in GB / day for filtered data

Query Performance Results

Python on Jupyter Platform

CERN

Data Science & Scientific Computing

CERN On-Premise Cloud

Total cores in IT OpenStack environment at CERN

NXCALS Architecture

Future Directions

- Visualization for Analytics
- Service for Web based Analysis (SWAN)
 - With NXCALS for Accelerator Controls data...
 - ...and Spark as first class citizen

- Unified Software Platform
 - **Interactive data analysis** in the cloud

Conclusions

- Technology has to answer scientific needs
- Big Data is present in Accelerator Controls
- CERN started a sector-wide joint effort
 - NXCALS (Controls Big Data Storage)
 - SWAN (Analysis & Visualization)
- To promote and support science

Spark is our choice for data extraction & analytics!

Links

- NXCALS https://gitlab.cern.ch/acc-logging-team/nxcals
 - Please come to the technical talk today afternoon!
- SWAN https://swan.web.cern.ch/
- Science, accelerators, experiments
 - https://greybook.cern.ch
 - https://home.cern/about/accelerators
 - PS virtual visit: https://goo.gl/1zqSTA
- Lectures from accelerator schools, summer courses
 - http://cas.web.cern.ch/previous-schools
 - https://indico.cern.ch/category/345/
- Beams Department, Controls Group https://be-dep-co.web.cern.ch/
- Accelerators state https://op-webtools.web.cern.ch/vistar/vistars.php?usr=SPS1
- Take Part: https://jobs.web.cern.ch/

