

APPLIED TIME SERIES ANALYSIS

Assignment 1

Group Number: 07

Group Member:

 He Guanzhou
 A0153091M

 Hu Hao
 A0152988L

 Hu Jiongyi
 A0153190M

 Jiang Zeyu
 A0152953B

 Ye Rong
 A0153626E

Exercise 1 (Electricity Forecast)

```
1. Load the data and use the command ts(...) to convert it into a time series object:
electricity_load <- read.table("E:/StatSoft/electricity_load.dat", quot
e="\"", comment.char="")
head(electricity_load)

## V1
## 1 1087
## 2 1032
## 3 1018
## 4 1031
## 5 1057
## 6 1024
electricity_ts<-ts(electricity_load$V1, start = 1, frequency = 24*7)
head(electricity_ts)
## [1] 1087 1032 1018 1031 1057 1024</pre>
```

2. Display the time series:

```
plot(electricity_ts, ylab="Electricity Demand", xlab = "Time (Weekly)",
main="Electricity Demand in Poland 1997")
```

Electricity Demand in Poland 1997

As we can see in the graph, an appropriate seasonal period is ONE unit on the Y-axis. Because we choose "24 * 7" as the frequency, the period should be ONE WEEK according to the data.

3. Decompose the time series into the superposition of a trend / seasonal / remainder pattern:

```
## Loading required package: forecast
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: timeDate
## This is forecast 7.1
## Loading required package: fma
## Loading required package: tseries
## Loading required package: expsmooth
## Loading required package: lmtest
```

We use package "fpp" to decompose the time series.

```
fit<-stl(electricity_ts, s.window="periodic", robust=T)
plot(fit, main="The Decomposition of Electricity Demond")</pre>
```

The Decomposition of Electricity Demond

4. Display the seasonal pattern:

```
library(forecast)
seasonplot(electricity_ts, s=24*7,col=1:23,type="l", main="Seasonal Pat
tern of Electricity Demand")
```

Seasonal Pattern of Electricity Demand

seasonplot(electricity_ts-fit\$time.series[,"trend"], s=24*7,col=1:23,ty
pe="1", main="Seasonal Pattern (Remove Trend)")

Seasonal Pattern (Remove Trend)

In the remainder pattern, we can see there are some huge residual value at some point. Thus, the time series is not perfectly seasonal.

plot(fit\$time.series[,"remainder"], main="Remainder Pattern of Electric
ity Demand", ylab="Remainder", xlab="Time (Weekly)")

Remainder Pattern of Electricity Demand

5. Make a forecast for the next 3 weeks:
ele_optim<-hw(electricity_ts, initial = "simple", seasonal = "additive
", h=24*7*3)
plot(electricity_ts, main="Prediction of Electricity Demand", ylab="Electricity Demand", xlab="Time (Weekly)", xlim=c(0,27))
lines(ele_optim\$mean,col="red", type="l", lwd=1)</pre>

Prediction of Electricity Demand

Exercise 2 (Bootstrap Estimate)

1. The MA(2) Process is invertible. This is because all the roots of the characteristic polynomial are greater than one.

```
library(shape)
plot(polyroot(c(1,-5/6,1/6)), pch=17, col="red", xlim=c(-2,4), ylim=c(-
1,1))
plotcircle(r=1, mid=c(0,0), lwd=2)
```


2. Simulate a trajectory and double check:

```
MA2<-arima.sim(n=1000, list(ma=c(-5/6,1/6)), sd=1)
MA2_test<-arima(MA2, order=c(0,0,2))
summary(MA2_test)
##
## Call:
## arima(x = MA2, order = c(0, 0, 2))
##
## Coefficients:
##
                     ma2
                           intercept
             ma1
##
         -0.8588
                  0.1915
                              0.0071
          0.0309
                  0.0305
## s.e.
                              0.0106
## sigma^2 estimated as 1.014: log likelihood = -1426.35, aic = 2860.
71
##
## Training set error measures:
##
                                   RMSE
                                              MAE
                                                         MPE
                                                                 MAPE
                            ME
  MASE
## Training set -9.175537e-05 1.007037 0.8061325 -82.80622 355.2077 0.4
182559
##
                         ACF1
## Training set -0.002422805
```

The coefficients of MA1 and MA2 are closed to -5/6 and 1/6, so the estimation procedure provides a good estimate.

3. Estimate the accuracy of the estimation procedure for short time series:

```
beta<-c()
for (i in 1:1000)
{
    MA2_short_time<-arima.sim(n=40, list(ma=c(-5/6,1/6)), sd=1)
    MA2_st_test<-arima(MA2_short_time, order=c(0,0,2))
    beta[i]<-MA2_st_test$coef[2]
}
head(beta)
## [1]    0.240748317    0.183289360    0.144419602    0.578006280    -0.006454145
## [6]    0.102763945</pre>
```

4. Summary of the Estimates of Beta:

```
hist(beta, nclass=50, probability = T, col="steelblue", xlab="Beta", ma
in="Estimates of the Distribution of Beta")
```

Estimates of the Distribution of Beta


```
mean(beta)
## [1] 0.1497037
var(beta)
## [1] 0.04911213
```

5. Estimate of Alpha:

```
MA1 \leftarrow arima.sim(n=10000, list(ma=c(3)), sd=1)
MA1 test<-arima(MA1, order=c(0,0,1))
summary(MA1_test)
##
## Call:
## arima(x = MA1, order = c(0, 0, 1))
## Coefficients:
##
            ma1 intercept
         0.3312
##
                   -0.0061
## s.e. 0.0094
                    0.0400
## sigma^2 estimated as 9.013: log likelihood = -25183.04, aic = 5037
2.08
##
## Training set error measures:
                                 RMSE
                                           MAE
                                                     MPE
                                                             MAPE
                                                                        MA
##
                         ME
SE
## Training set 3.98034e-05 3.002244 2.397005 70.78541 202.8658 0.80733
23
##
                        ACF1
## Training set 0.001553553
```

That is because we use the Autocorrelation Function to estimate the coefficient Alpha, and the model with Alpha = 3 and Alpha=1/3 have the same ACF. However, only the model with Alpha = 1/3 is invertible. So the "arima" function in R shows that Alpha is closed to 1/3.

Exercise 3 (Sale Forcast)

1. Get the data and generate the time series: We download the data for Google Trend. The data starts in 2004, counting monthly.

```
aircon_data<-read.csv("E:/StatSoft/air_con.csv", header = FALSE, skip=
3)
head(aircon_data)

## V1 V2
## 1 2004-01 13
## 2 2004-02 18
## 3 2004-03 16
## 4 2004-04 44
## 5 2004-05 34
## 6 2004-06 28

aircon_ts<-ts(aircon_data$V2, start = c(2004,1), frequency = 12)
head(aircon_ts)
## [1] 13 18 16 44 34 28</pre>
```

2. Plot the time series and decompose it:

plot(aircon_ts, main="Number of Queries Containing 'aircon'", ylab="Num
ber", xlab="Time (Monthly)")

Number of Queries Containing 'aircon'

fit_aircon<-stl(aircon_ts, s.window = "periodic", robust=T)
plot(fit_aircon, main="The Decomposition of Aircon")</pre>

The Decomposition of Aircon

As we can see in the graph, the time series has a trend and seasonal pattern. Therefore, we choose the Triple Exponential Smoothing method.

3. Fit and predict the time series:

```
aircon_optim<-hw(aircon_ts, initial = "optimal", seasonal = "additive",
h=20)
plot(aircon_ts, lwd=2, xlim=c(2011.6,2018), main="Prediction of the Air
con")
lines(fitted(aircon_optim), col="blue", type="l", lwd=2)
lines(aircon_optim$mean, col="red", type="l", lwd=2)</pre>
```

Prediction of the Aircon

Then we find the number in June 2016, and the prediction in June 2017:

```
aircon_ts
##
         Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                                28
                                    25
                                             22
## 2004
         13
              18
                   16
                       44
                           34
                                         13
                                                  25
                                                      24
                                                           22
## 2005
         15
              23
                   18
                       21
                           32
                                31
                                    27
                                         29
                                             30
                                                  19
                                                      26
                                                           24
## 2006
         17
              22
                   25
                       27
                           24
                                32
                                    30
                                         28
                                             24
                                                  34
                                                      21
                                                           24
## 2007
          24
              23
                   27
                       31
                           30
                                35
                                    26
                                         24
                                             21
                                                  28
                                                      20
                                                           21
## 2008
         21
              19
                   19
                       31
                           41
                                31
                                    21
                                         21
                                             20
                                                  23
                                                      20
                                                           21
## 2009
          18
              19
                   22
                       30
                           31
                                44
                                    26
                                         28
                                             25
                                                  30
                                                      21
                                                           21
## 2010
                       34
                                34
                                    30
                                         27
                                             29
                                                  34
                                                           26
         18
              30
                   32
                           43
                                                      28
## 2011
                       34
                           52
                                38
                                         35
                                                  33
                                                           32
          24
              28
                   29
                                    40
                                             37
                                                      30
## 2012
                                                           32
         32
              34
                   36
                       42
                           52
                                56
                                    40
                                         37
                                             40
                                                  42
                                                      34
## 2013
                                                  43
         37
              33
                   51
                       55
                           58 100
                                    58
                                         44
                                             44
                                                      37
                                                           38
## 2014
          34
              42
                   51
                       58
                           67
                                83
                                    67
                                         48
                                             52
                                                  53
                                                      46
                                                           46
## 2015
         43
              39
                   52
                       67
                           74
                                81
                                    69
                                         56
                                             62
                                                  64
                                                      53
                                                           54
## 2016
          61
              55
                   70
                       93
                           84
                                68
                                    76
                                         63
                                             58
                                                  71
aircon_optim
##
             Point Forecast
                                 Lo 80
                                            Hi 80
                                                      Lo 95
                                                                 Hi 95
## Nov 2016
                    64.16361 55.74601
                                         72.58121 51.29000
                                                              77.03723
## Dec 2016
                    64.63915 56.17921
                                         73.09909 51.70079
                                                              77.57751
## Jan 2017
                    63.41915 54.91170
                                         71.92659 50.40813
                                                              76.43016
## Feb 2017
                    65.09782 56.53746
                                         73.65819 52.00587
                                                              78.18977
## Mar 2017
                    71.10588 62.48697
                                         79.72480 57.92440
                                                              84.28737
```

```
## Apr 2017
                 79.28684 70.60355 87.97014 66.00689
                                                       92.56679
## May 2017
                 84.47146 75.71776
                                    93.22516 71.08384
                                                       97.85909
## Jun 2017
                 90.08184 81.25155
                                    98.91213 76.57707 103.58660
## Jul 2017
                 78.31734 69.40412 87.23057 64.68574
                                                       91.94894
## Aug 2017
                 72.88235 63.87973 81.88498 59.11402
                                                       86.65068
## Sep 2017
                 74.50885 65.41024 83.60747 60.59372 88.42398
## Oct 2017
                 76.47316 67.27176 85.67457 62.40083
                                                       90.54550
## Nov 2017
                 71.10176 61.79093 80.41258 56.86208
                                                       85.34143
## Dec 2017
                 71.57729 62.15024 81.00435 57.15986
                                                       85.99473
## Jan 2018
                 70.35729 60.80716
                                    79.90743 55.75163
                                                       84.96296
## Feb 2018
                 72.03597 62.35588
                                    81.71605 57.23155
                                                       86.84038
## Mar 2018
                 78.04403 68.22711
                                    87.86096 63.03034
                                                       93.05772
## Apr 2018
                 86.22499 76.26435
                                    96.18563 70.99151 101.45847
## May 2018
                 91.40961 81.29840 101.52082 75.94585 106.87337
## Jun 2018
                 97.01998 86.75138 107.28859 81.31551 112.72446
```

So the number of queries in June 2016 is 68, and the prediction in June 2017 is 90.08, with the 95% prediction interval [76.58,103.59].

We know that the retailer sold 51 devices in June 2016, so the demand in June 2017 could be 51 / 68 * 90.08 = 67.56, with the 95% prediction interval [57.435,77.69].

Exercise 4

1. Estimate the first three autocorrelation coefficients.

First of all, we load the data and generate the time series.

```
asg_1_AR3 <- read.table("E:/StatSoft/asg_1_MA3.dat", quote="\"", commen
t.char="")
AR3<-ts(asg_1_AR3$V1)
ACFAR3<-acf(AR3)</pre>
```

Series AR3

head(ACFAR3\$acf)
[1] 1.00000000 0.41980461 0.37193302 0.16221226 0.13283237 0.0594732
7

So the first three autocorrelation coefficients are 0.4198, 0.3719, 0.1622.

2. The associated Yule-Walker equations:

$$\rho(k) = \alpha \rho(k-1) + \beta \rho(k-2) + \gamma \rho(k-3)$$

3. Solve the Yule-Walker equations:

$$\begin{pmatrix} \rho(2) & \rho(1) & \rho(0) \\ \rho(1) & \rho(0) & \rho(1) \\ \rho(0) & \rho(1) & \rho(2) \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \rho(3) \\ \rho(2) \\ \rho(1) \end{pmatrix}$$

```
coeffi<-matrix(c(0.3719,0.4198,1,0.4198,1,0.4198,1,0.4198,0.3719),nrow
= 3)
rightside<-matrix(c(0.1622,0.3719,0.4198),nrow=3)
solution<-solve(coeffi)%*%rightside; solution

## [,1]
## [1,] 0.33736780
## [2,] 0.26081680
## [3,] -0.07275798</pre>
```

Thus, $\hat{\alpha} = 0.34$, $\hat{\beta} = 0.26$, $\hat{\gamma} = -0.07$.