Lecture 1

Statistical Machine Learning CSE 342/542 – Winter 2022

Slides from Bishop and Duda

Statistical Learning vs. Machine Learning

Classical Statistics Infer information from small datasets (Not enough data)

- time complexity, convergence

Machine Learning
Infer information from large datasets (Too many data)

Applications

- Search and recommendation (e.g. Google)
 - Represent a query using a feature and then match
- Automatic speech recognition and speaker verification
 - Convert speech to text. Match if two voices samples belong to same speaker

- Automatic speech recognition and speaker verification
 - Convert speech to text.
 - Match if two voices samples belong to same speaker

Facial recognition tool 'could help boost pigs' wellbeing'

Contd.

- Object re-id
 - Given a query sample, retrieve all instances of the same object
 - Potential use in surveillance and industrial application where multiple robots operate on same object and need to re-identify

Classification

Classification:

Predicting a discrete random variable Y from another random variable X.

Classification

Consider data $(X_1, Y_1), \ldots, (X_n, Y_n)$ where

$$X_i = (X_{i1}, \dots, X_{id}) \in \mathcal{X} \subset \mathbb{R}^d$$

is a d-dimensional vector and Y_i takes values in some finite set \mathcal{Y} . A **classification rule** is a function $h: \mathcal{X} \to \mathcal{Y}$. When we observe a new X, we predict Y to be h(X).

Age, height, weight, grades of 2022 SML as train set Test on students for 2023 whether or not they will take SML

Note:

Distribution is same as still the students are from IIITD and not from say some arbitrary primary school or from similar university but Law/Medical/Management school.

Test and train samples do not overlap.

PhD defense – pre-processing of entire set.

Data

Features (X)

Features and labels

Classification (Newpoint)

Classification (Newpoint)

Classification

Classification

Polynomial Curve Fitting Research.

Suppose we observe a real-valued input variable x and we wish to use this observation to predict the value of a real-valued target variable t.

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Closed form solution

$$\int_{0}^{\infty} dx = \alpha x_{1}^{2} + b x_{1} + c$$

$$\int_{0}^{\infty} dx = \alpha x_{2}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = \alpha x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = \alpha x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = \alpha x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + b x_{2} + c$$

$$\int_{0}^{\infty} dx = x_{1}^{2} + c$$

$$\int_{0}^{\infty} dx = c$$

$$\int_{0$$

Other way

We want the prediction to be close to true value. What can we do?

.

Other way

We want the prediction to be close to true value. What can we do?

- Create a model as a function of variables and inputs
- Define an error function distance, cost, loss, between prediction and true value
- Minimize error to learn variables
- Use the learnt variables to predict for unseen points

Gasos fruction: Q(M)

<u>Given</u>

Now suppose that we are given a training set comprising N observations of x, written $\mathbf{x} \equiv (x1, ..., xN)'$, together with corresponding observations of the values of t,denoted $\mathbf{t} \equiv (t1,...,tN)'$.

N = 10 data points.

The input data set \mathbf{x} was generated by choosing values of xn, for n=1,...,N, spaced uniformly in range [0,1], and the target data set \mathbf{t} was obtained by first computing the corresponding values of the function $\sin(2\pi x)$ and then adding a small level of random noise having a Gaussian distribution

<u>Goal</u>

Our goal is to exploit this training set in order to make predictions of the value t of the target variable for some new value x of the input variable.

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Data Set Size: N=15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Regularization

As large coefficients lead to huge change with a very small change in x, what should we do?

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization: $\ln \lambda = -18$

Regularization: $\ln \lambda = 0$

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Example

Handwritten Digit Recognition

Unsupervised Learning (Only data, no labels)

A canonical dimensionality reduction problem from visual perception. The input consists of a sequence of 64-dimensional vectors, representing the brightness values of 8 pixel by 8 pixel images of digits 2 and 3. Applied to n=400 raw images. A two-dimensional projection is shown, with the original input images.

Clustering

Organizing data into clusters such that there is

- high intra-cluster similarity
- low inter-cluster similarity
- •Informally, finding natural groupings among objects.

Tentative topics

- Feature extraction (FDA, PCA)
- Bayes Decision theory and Error bounds (Chernoff, Bhattacharya, Hoeffding)
- Parameter estimation (MLE/MAP)
- Linear classifier (Discriminant analysis, LDA, QDA)
- Gaussian processes (Regression)
- Neural networks (FFNN, weight decay, regularization)
- Deep Learning
- Bagging (reducing var)
- Boosting (reducing bias) AdaBoost, Gradient Boosting
- Clustering (spectral clustering, min/ratio cut)

Reference books

- The recommended books that cover the similar material are:
- Hastie, Tibshirani, Friedman
 Elements of Statistical Learning.
- Bishop

Pattern Recognition and Machine Learning.

Murphy

Machine Learning: a Probabilistic Perspective

Duda

Pattern Classification

Prereq

Prob and Stats
Python/Matlab
Vector calculus (desirable)

COs

- Students will be able to understand the various key paradigms for machine learning and pattern classification
- Students will be able to apply suitable feature extraction and classification technique to solve a given pattern classification problem
- Students will be able to design a complete machine learning/pattern classification algorithm and evaluate the performance

Evaluation

- Assignment (50%) (5)
- Quiz 20% (3)
- Midsem 15%
- Endsem 15%
- All mandatory

Further Reading

- Theoretical: AISTATS, ICML, JMLR, NeurIPS
- Systems + theory: CVPR, ICCV, ECCV, AAAI, IEEE Transactions
- 91-100 A/A+
- 81-90 A-
- 71-80 B

• <30 F

Probability Theory

Apples and Oranges

Let X and Y be random variables.

Let their be N trial during which we sample both of variables X and Y.

Let the number of times X=xi and Y=yj occur is nij.

Probability Theory

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Probability Theory

Sum Rule

$$\begin{cases} r_j & p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij} \\ = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \end{cases}$$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

Ex. Consider red and blue boxes

$$p(B = r) = 4/10 \text{ and } p(B = b) = 6/10$$

 $p(F = a | B = r) = 1/4$
 $p(F = o | B = r) = 3/4$
 $p(F = a | B = b) = 3/4$
 $p(F = o | B = b) = 1/4$.

Contd.

We are told that a piece of fruit has been selected and it is an orange, and we would like to know which box it came from. Bayes: p(B=r|F=o) = p(F=o|B=r) p(B=r) / p(F=o)

$$p(F = o) = p(F = o | B = r)p(B = r) + p(F = o | B = b)p(B = b)$$

Probability Densities

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

$$\mathbb{E}_{x}[f|y] = \sum_{x} p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Ex. A uniform pdf in (-a,a).