1

Find the Euler-Lagrange equation associated with the functional

$$J[u(x, y, z)] = \int_{R} \sqrt{1 + u_x^2 + u_y^2 + u_z^2} \, dx \, dy \, dz,$$

where R is a region in three-dimensional space.

Solution. We will assume u(x, y, z) has explicit values on the boundary of R, ∂R . By the definition of the action,

$$J[u] = \int_{R} \mathcal{L} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \implies \mathcal{L} = \sqrt{1 + u_x^2 + u_y^2 + u_z^2}$$

In general, the Euler-Lagrange equation is

$$0 = \frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_y} - \frac{\partial}{\partial z} \frac{\partial \mathcal{L}}{\partial u_z}.$$
 (1)

Here,

$$\frac{\partial \mathcal{L}}{\partial u} = 0, \qquad \frac{\partial \mathcal{L}}{\partial u_x} = \frac{\partial \mathcal{L}}{\partial u_x^2} \frac{\partial u_x^2}{\partial u_x} = \frac{u_x}{\sqrt{1 + u_x^2 + u_y^2 + u_z^2}} = \frac{u_x}{\mathcal{L}} \qquad \frac{\partial \mathcal{L}}{\partial u_y} = \frac{u_y}{\mathcal{L}}, \qquad \frac{\partial \mathcal{L}}{\partial u_z} = \frac{u_z}{\mathcal{L}}.$$

For the $\partial/\partial x$ term of (1),

$$\frac{\partial}{\partial x}\frac{\partial \mathcal{L}}{\partial u_x} = \frac{\partial}{\partial x}\frac{u_x}{\mathcal{L}} = \frac{\partial u_x}{\partial x}\frac{\partial}{\partial u_x}\frac{u_x}{\mathcal{L}} + \frac{\partial u_y}{\partial x}\frac{\partial}{\partial u_y}\frac{u_x}{\mathcal{L}} + \frac{\partial u_z}{\partial x}\frac{\partial}{\partial u_z}\frac{u_x}{\mathcal{L}}$$

where

$$\frac{\partial}{\partial u_x} \frac{u_x}{\mathcal{L}} = \frac{1}{\mathcal{L}^2} \left(\frac{\partial u_x}{\partial u_x} \mathcal{L} - u_x \frac{\partial \mathcal{L}}{\partial u_x} \right) = \frac{1}{\mathcal{L}^2} \left(\mathcal{L} - u_x \frac{u_x}{\mathcal{L}} \right) = \frac{\mathcal{L}^2 - u_x^2}{\mathcal{L}^3},\tag{2}$$

$$\frac{\partial}{\partial u_y} \frac{u_x}{\mathcal{L}} = \frac{1}{\mathcal{L}^2} \left(\frac{\partial u_x}{\partial u_y} \mathcal{L} - u_x \frac{\partial \mathcal{L}}{\partial u_y} \right) = -\frac{u_x u_y}{\mathcal{L}^3},\tag{3}$$

$$\frac{\partial}{\partial u_z} \frac{u_x}{\mathcal{L}} = -\frac{u_x u_z}{\mathcal{L}^3},\tag{4}$$

Generalizing (2)-(4) to the $\partial/\partial y$ and $\partial/\partial z$ terms,

$$\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} = u_{xx} \frac{\mathcal{L}^2 - u_x^2}{\mathcal{L}^3} - u_{yx} \frac{u_x u_y}{\mathcal{L}^3} - u_{zx} \frac{u_x u_z}{\mathcal{L}^3},$$

$$\frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_y} = u_{yy} \frac{\mathcal{L}^2 - u_y^2}{\mathcal{L}^3} - u_{xy} \frac{u_x u_y}{\mathcal{L}^3} - u_{zy} \frac{u_y u_z}{\mathcal{L}^3},$$

$$\frac{\partial}{\partial z} \frac{\partial \mathcal{L}}{\partial u_z} = u_{zz} \frac{\mathcal{L}^2 - u_z^2}{\mathcal{L}^3} - u_{xz} \frac{u_x u_z}{\mathcal{L}^3} - u_{yz} \frac{u_y u_z}{\mathcal{L}^3}.$$

Then, assuming $u_{xy} = u_{yx}$, $u_{yz} = u_{zy}$, and $u_{xz} = u_{zx}$, (1) becomes

$$0 = u_{xx}(\mathcal{L}^4 - u_x^2) + u_{yy}(\mathcal{L}^4 - u_y^2) + u_{zz}(\mathcal{L}^4 - u_z^2) - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z$$

$$= (u_{xx} + u_{yy} + u_{zz})(1 + u_x^2 + u_y^2 + u_z^2) - u_{xx}u_x^2 - u_{yy}u_y^2 - u_{zz}u_z^2 - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z$$

$$= u_{xx}(1 + u_y^2 + u_z^2) + u_{yy}(1 + u_x^2 + u_z^2) + u_{zz}(1 + u_x^2 + u_y^2) - 2u_{xy}u_xu_y - 2u_{yz}u_yu_z - 2u_{xz}u_xu_z.$$

November 9, 2019 1

2

2 Plate vibrations (preliminaries)

Start from Green's theorem

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial R} (P dx + Q dy), \tag{5}$$

where R is the region in the xy plane spanned by the plate, and ∂R its boundary.

2.a Show that

$$\int_{R} \phi \frac{\partial^{2} \psi}{\partial x^{2}} \, \mathrm{d}x \, \mathrm{d}y = \int_{R} \psi \frac{\partial^{2} \phi}{\partial x^{2}} \, \mathrm{d}x \, \mathrm{d}y + \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) \mathrm{d}y \,.$$

Solution. In (5), let

$$Q = \phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x}, \qquad P = 0.$$

Then

$$\frac{\partial Q}{\partial x} = \frac{\partial \phi}{\partial x} \frac{\partial \psi}{\partial x} + \phi \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial \psi}{\partial x} \frac{\partial \phi}{\partial x} - \psi \frac{\partial^2 \phi}{\partial x^2} = \phi \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \phi}{\partial x^2}, \qquad P = 0.$$

Making these substitutions into (5) gives

$$\int_{R} \left(\phi \frac{\partial^{2} \psi}{\partial x^{2}} - \psi \frac{\partial^{2} \phi}{\partial x^{2}} \right) dx dy = \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) dy$$

$$\iff \int_{R} \phi \frac{\partial^{2} \psi}{\partial x^{2}} dx dy = \int_{R} \psi \frac{\partial^{2} \phi}{\partial x^{2}} dx dy + \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial x} - \psi \frac{\partial \phi}{\partial x} \right) dy$$

as desired.

2.b Work out analogous expressions for

$$\int_{R} \psi \frac{\partial^{2} \psi}{\partial x^{2}} \, \mathrm{d}x \, \mathrm{d}y \,, \tag{6}$$

$$\int_{R} \phi \frac{\partial^2 \psi}{\partial x \partial y} \, \mathrm{d}x \, \mathrm{d}y \,. \tag{7}$$

Solution. For (6), ???

$$\int_{R} \phi \frac{\partial^{2} \psi}{\partial y^{2}} dx dy = \int_{R} \psi \frac{\partial^{2} \psi}{\partial y^{2}} dx dy - \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y} \right) dx$$

For (7), let

$$2Q = \phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y}, \qquad \qquad 2P = \psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x}.$$

Then

$$\begin{split} 2\frac{\partial Q}{\partial x} &= \frac{\partial \phi}{\partial x}\frac{\partial \psi}{\partial y} + \phi\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial \psi}{\partial x}\frac{\partial \phi}{\partial y} - \psi\frac{\partial^2 \phi}{\partial x \partial y} = \phi\frac{\partial^2 \psi}{\partial x \partial y} - \psi\frac{\partial^2 \phi}{\partial x \partial y}, \\ 2\frac{\partial P}{\partial y} &= \frac{\partial \psi}{\partial y}\frac{\partial \phi}{\partial x} + \psi\frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial \phi}{\partial y}\frac{\partial \psi}{\partial x} - \phi\frac{\partial^2 \psi}{\partial x \partial y} = \psi\frac{\partial^2 \phi}{\partial x \partial y} - \phi\frac{\partial^2 \psi}{\partial x \partial y}. \end{split}$$

November 9, 2019

Substituting into (5), we have

$$\frac{1}{2} \int_{R} \left(\phi \frac{\partial^{2} \psi}{\partial x \partial y} - \psi \frac{\partial^{2} \phi}{\partial x \partial y} - \psi \frac{\partial^{2} \phi}{\partial x \partial y} + \phi \frac{\partial^{2} \psi}{\partial x \partial y} \right) dx dy = \frac{1}{2} \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x} \right) dx + \frac{1}{2} \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y} \right) dy \\
\iff \int_{R} \phi \frac{\partial^{2} \psi}{\partial x \partial y} dx dy = \int_{R} \psi \frac{\partial^{2} \phi}{\partial x \partial y} dx dy + \frac{1}{2} \int_{\partial R} \left(\psi \frac{\partial \phi}{\partial x} - \phi \frac{\partial \psi}{\partial x} \right) dx + \frac{1}{2} \int_{\partial R} \left(\phi \frac{\partial \psi}{\partial y} - \psi \frac{\partial \phi}{\partial y} \right) dy.$$

3 Plate vibrations

Start with the action for a vibrating plate whose potential energy is dominated by bending,

$$S[u(x,y,t)] = \epsilon \int_{t_0}^{t_1} \int_R \left\{ \rho u_t^2 - \kappa_1 \left[(u_{xx}^2 + u_{yy}^2) - 2(1-\mu)(u_{xx}u_{yy} - u_{xy}^2) \right] \right\} dx dy dz,$$
 (8)

where ρ is the mass density per unit area, κ_1 has the dimension of energy and is sometimes called flexural rigidity, and μ is a dimensionless material constant called Poisson's ratio. For isotropic material, $\rho = 1/4$. Notice that there is no external bending moment applied to the plate boundary. There is also no external forcing.

3.a Using the results of problem 2, show that the variation generated by going from a solution u_0 to $u_0 + \epsilon \psi$ has the form

$$\delta S = \epsilon \int_{t_0}^{t_1} \int_R \left(\rho u_{tt} - \kappa_1 \nabla^4 u \right) \psi \, dx \, dy \, dt + \epsilon \int_{t_0}^{t_1} \int_{\partial R} \left(P(u) \psi + M(u) \frac{\partial \psi}{\partial n} \right) dl \, dt.$$

Specify P(u) and M(u).

Solution. Define \mathcal{L} as the integrand in (8), and $\psi = \psi(x, y, t)$ as some variation of u. Then in general,

$$\delta S = \epsilon \int_{t_0}^{t_1} \int_{R} \left[\left(\frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial u_y} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial u_t} \right) \psi + \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial u_x} \psi \right) + \frac{\partial}{\partial y} \left(\frac{\partial \mathcal{L}}{\partial u_y} \psi \right) + \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial u_t} \psi \right) \right] dx dy dt$$

3.b Finally, derive the Euler-Lagrange equation and the associated boundary conditions.

4 Vibrations of a circular disk

The only scenario in which plate vibrations can be described analytically in terms of known functions is a circular disk. Work with polar coordinates (r, θ) , the Euler-Lagrange equation

$$u_{tt} - \lambda \nabla^4 u = 0, (9)$$

and the boundary conditions

$$u = 0,$$
 $\frac{\partial u}{\partial n} = 0.$

November 9, 2019 3

4.a Show that this problem reduces to an eigenvalue problem if we assume that $u(r, \theta, t)$ is separable:

$$u = v(r, \theta) g(t). \tag{10}$$

Write down the general form of g(t).

Solution. Substituting the ansatz (10) into (9), we have

$$v\frac{\partial^2 g}{\partial t^2} - \lambda g \, \nabla^4 v = 0 \implies \frac{1}{g} \frac{\partial^2 g}{\partial t^2} = \lambda \frac{1}{v} \nabla^4 v \equiv -\mu \tag{11}$$

where we have defined some constant μ . We may then separate (11) into two differential equations,

$$\lambda \nabla^4 v + \mu v = 0, (12)$$

$$\frac{\partial^2 g}{\partial t^2} + \mu g = 0. ag{13}$$

The eigenvalue problem is (12), which we may solve for the eigenvalues μ_n and obtain the eigenfunctions $v_n(r,\theta)$. Then we simply feed μ_n into (13) to obtain $g_n(t)$, which have the general form

$$g(t) = C_1 e^{\sqrt{\mu}x} + C_2 e^{-\sqrt{\mu}x},\tag{14}$$

where we note that $\sqrt{\mu}$ may be imaginary. If so, (14) may be written in terms of sines and cosines. Finally, the solutions to (9) are $u_n(r, \theta, t) = v_n(r, \theta) g_n(t)$.

4.b Now consider the eigenvalue problem

$$(\nabla^4 - k^4)v(r,\theta) = 0, (15)$$

with λ set to be k^4 . Notice that it factors into

$$(\nabla^2 - k^2)(\nabla^2 + k^2)v(r,\theta) = 0, (16)$$

with

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

Since the disk is circular, we expect the vibration modes to be periodic in θ . This suggests the ansatz

$$v = \sum_{n = -\infty}^{\infty} f_n(r) e^{in\theta}.$$
 (17)

Obtain the ODE governing $f_n(r)$.

Solution. Firstly, note that

$$\nabla^4 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)^2 = \frac{\partial^4}{\partial r^4} + \frac{2}{r}\frac{\partial^3}{\partial r^3} + \frac{1}{r^2}\frac{\partial^2}{\partial r^2} + \frac{2}{r^2}\frac{\partial^2}{\partial r^2}\frac{\partial^2}{\partial \theta^2} + \frac{2}{r^3}\frac{\partial}{\partial r}\frac{\partial^2}{\partial \theta^2} + \frac{1}{r^4}\frac{\partial^4}{\partial \theta^4}$$

Substituting the ansatz of (17) into (15) yields

$$\begin{split} k^4 f_n(r) \, e^{in\theta} &= -\nabla^4 f_n(r) \, e^{in\theta} \\ &= \left(\frac{\partial^4}{\partial r^4} + \frac{2}{r} \frac{\partial^3}{\partial r^3} + \frac{1}{r^2} \frac{\partial^2}{\partial r^2} + \frac{2}{r^2} \frac{\partial^2}{\partial r^2} \frac{\partial^2}{\partial \theta^2} + \frac{2}{r^3} \frac{\partial}{\partial r} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^4} \frac{\partial^4}{\partial \theta^4} \right) f_n(r) \, e^{in\theta} \\ &= e^{in\theta} \left(\frac{\partial^4}{\partial r^4} + \frac{2}{r} \frac{\partial^3}{\partial r^3} + \frac{1}{r^2} \frac{\partial^2}{\partial r^2} - \frac{2n^2}{r^2} \frac{\partial^2}{\partial r^2} - \frac{2n^2}{r^3} \frac{\partial}{\partial r} + \frac{n^4}{r^4} \right) f_n(r). \end{split}$$

Dividing out $e^{in\theta}$, we have

$$k^4 f_n(r) = \frac{\partial^4 f_n(r)}{\partial r^4} + \frac{2}{r} \frac{\partial^3 f_n(r)}{\partial r^3} + \frac{1 - 2n^2}{r^2} \frac{\partial^2 f_n(r)}{\partial r^2} - \frac{2n^2}{r^3} \frac{\partial f_n(r)}{\partial r} + \frac{n^4}{r^4} f_n(r)$$

as the ODE governing $f_n(r)$.

4.c What are the appropriate boundary conditions on $f_n(r)$?

Solution. Firstly, note that (15) may be separated into the two eigenvalue problems

$$0 = \nabla^4 v - k^2 v,\tag{18}$$

$$0 = \nabla^4 v + k^2 v. \tag{19}$$

Any k that corresponds to a nontrivial solution of (15) must also correspond to a nontrivial solution of (18) and of (19). We will proceed by solving (18) for k_m and (19) for k_p . Then, any $k_n \in k_m \cap k_p$ that nontrivially solves both (19) and (18) must also nontrivially solve (15).

Beginning with (18), we have

$$0 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)f_m(r)e^{im\theta} - k_m^2 f_m(r)e^{im\theta} = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right)f_m e^{im\theta} - \frac{1}{r^2}m^2 f_m e^{im\theta} - k_m^2 f_m e^{im\theta}$$

where we have substituted the ansatz (17), here $v_m = f_m(r) e^{im\theta}$. Dividing out $e^{im\theta}$, this becomes

$$0 = r^2 \frac{\partial^2 f_m}{\partial r^2} + r \frac{\partial f_m}{\partial r} - (k_m^2 r^2 + m^2) f_m, \tag{20}$$

which is the modified Bessel equation of order m. It has solutions

$$f_m(r) = C_1 I_m(kr) + C_2 K_p(kr),$$

where C_1 and C_2 are constants, I_m is the modified Bessel function of the first kind, and K_m is the modified Bessel function of the second kind. Both functions are of order m.

Proceeding similarly for (19), we obtain

$$0 = r^2 \frac{\partial^2 f_p}{\partial r^2} + r \frac{\partial f_p}{\partial r} + (k_m^2 r^2 - p^2) f_p, \tag{21}$$

which is the Bessel equation of order p, and has solutions

$$f_p(r) = D_1 J_p(kr) + D_2 Y_p(kr),$$

where D_1 and D_2 are constants, J_p is the Bessel function of the first kind, Y_p is the Bessel function of the second kind, and both are of order p.

Both Y_n and K_n diverge as $r \to 0$ for all n, so we do not want them in our solution.

In writing these solutions, I consulted Gelfand and Fomin's Calculus of Variations, Olmstead and Volpert's Differential Equations in Applied Mathematics.

November 9, 2019 5