Concours blanc. Épreuve de mathématiques

Documents et matériel électronique interdits

Énoncé de quatre pages

Problème d'algèbre

Préambule

On rappelle que la base canonique de $\mathcal{M}_n(\mathbb{R})$ est $(E_{11}, E_{12}, \dots, E_{nn})$ où E_{ij} désigne la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf celui situé en *i*-ème ligne et *j*-ème colonne qui vaut 1.

Si $A = (a_{ij})_{1 \leq i,j \leq n}$ est une matrice de $\mathcal{M}_n(\mathbb{R})$, on appelle **coefficients diagonaux** de A les réels a_{ii} où $i \in [1,n]$. On dit que A est une matrice diagonale si on a $a_{ij} = 0$ pour tous $i \neq j$.

L'homothétie (de rapport $\lambda \in \mathbb{R}$) sur un \mathbb{R} -espace vectoriel E est l'endomorphisme $\lambda \mathrm{id}_E : x \mapsto \lambda x$.

Partie A : Application φ_A

Dans cette partie, on fixe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et on considère l'application φ_A suivante :

$$\varphi_A: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM - MA \end{array} \right.$$

- 1. Montrer que φ_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que φ_A n'est pas injective.
- 3. Est-elle surjective?

Partie B: Exemple

On se place, dans cette partie, dans le cas particulier n=2 et $A=\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

- 4. (a) Déterminer des conditions nécessaires et suffisantes sur les coefficients d'une matrice M de $\mathcal{M}_2(\mathbb{R})$, pour qu'elle appartienne au noyau de φ_A .
 - (b) Déterminer une base et la dimension de $Ker(\varphi_A)$.
- 5. (a) Déterminer la dimension de l'image de φ_A .
 - (b) Déterminer une base de $\operatorname{Im}(\varphi_A)$.
- 6. Déterminer la matrice qui représente φ_A dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Partie C: Lemme de Schur

On considère un endomorphisme u d'un \mathbb{R} -espace vectoriel E de dimension finie n.

- 7. (a) Montrer que si u est une homothétie, alors pour tout $x \in E$, la famille (x, u(x)) est liée.
 - (b) Montrer que si pour tout $x \in E$, la famille (x, u(x)) est liée, alors u est une homothétie.

Partie D : Centre de $\mathcal{M}_n(\mathbb{R})$

On note $Z_n = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid \forall M \in \mathcal{M}_n(\mathbb{R}) \ AM = MA \}.$

- 8. Montrer que Z_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
- 9. Dans cette question, on se place dans le cas n=2.
 - (a) Montrer l'équivalence $A \in \mathbb{Z}_2 \iff \forall (i,j) \in [1,2]^2 A E_{ij} = E_{ij}A$.
 - (b) Montrer que Z_2 est l'ensemble des matrices de la forme $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{R}$.
- 10. On considère un endomorphisme u de \mathbb{R}^n vérifiant $u \circ v = v \circ u = 0$ pour tout endomorphisme v de \mathbb{R}^n .
 - (a) Soit $x \in \mathbb{R}^n \setminus \{0\}$. Justifier l'existence d'un supplémentaire F de $\mathrm{Vect}(x)$ dans \mathbb{R}^n .
 - (b) À l'aide de la projection p sur F parallèlement à Vect(x), montrer que la famille (x, u(x)) est liée.
 - (c) Déterminer Z_n .

Partie E: Matrices diagonales

- 11. On suppose dans cette question que A est une matrice de $\mathcal{M}_2(\mathbb{R})$ diagonale à coefficients diagonaux distincts : $A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ avec $\alpha \neq \beta$.
 - (a) Montrer que $M \in \text{Ker}(\varphi_A)$ si et seulement si M est diagonale.
 - (b) Calculer $\dim(\operatorname{Ker}(\varphi_A))$ et $\dim(\operatorname{Im}(\varphi_A))$.
 - (c) Soit $B \in \mathcal{M}_2(\mathbb{R})$. Montrer que $B \in \operatorname{Im}(\varphi_A)$ si et seulement si ses coefficients diagonaux sont nuls.
- 12. On suppose dans cette question que $A=(a_{ij})$ est une matrice de $\mathcal{M}_n(\mathbb{R})$ diagonale, avec $a_{ii}=\alpha$ pour $1 \leq i \leq p$, et $a_{ii}=\beta$ pour $p+1 \leq i \leq n$, où α et β sont des réels distincts et $p \in [1, n-1]$. On note f l'endomorphisme de \mathbb{R}^n canoniquement associé à A. On note $E_{\alpha} = \text{Ker}(f \alpha \text{id}_{\mathbb{R}^n})$ et $E_{\beta} = \text{Ker}(f \beta \text{id}_{\mathbb{R}^n})$.
 - (a) Montrer que E_{α} et E_{β} sont des sous-espaces vectoriels de \mathbb{R}^n .
 - (b) Déterminer E_{α} et E_{β} et donner leurs dimensions.
 - (c) Montrer que E_{α} et E_{β} sont supplémentaires dans \mathbb{R}^n .
 - (d) Montrer que si g est un endomorphisme de \mathbb{R}^n , on a $f \circ g = g \circ f$ si et seulement si les espaces vectoriels E_{α} et E_{β} sont stables par g (i.e. si $x \in E_{\alpha}$, alors $g(x) \in E_{\alpha}$, de même pour β).
 - (e) Déterminer $\dim(\operatorname{Ker}(\varphi_A))$.

Partie F: Matrices de trace nulle

- 13. Montrer que l'ensemble V_n des matrices de $\mathcal{M}_n(\mathbb{R})$ de trace nulle est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ dont on déterminera la dimension.
- 14. Déterminer une base de V_2 .
- 15. Soit u un endomorphisme de \mathbb{R}^2 de trace nulle.
 - (a) Montrer que si $u \neq 0_{\mathcal{L}(\mathbb{R}^2)}$, il existe un vecteur x de \mathbb{R}^2 tel que la famille (x, u(x)) est libre.
 - (b) Montrer qu'il existe une base \mathscr{B} de \mathbb{R}^2 telle que la matrice représentative de u dans la base \mathscr{B} a ses deux coefficients diagonaux nuls.

- 16. Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que $\operatorname{tr}(M) = 0$ si et seulement si il existe deux matrices A et B dans $\mathcal{M}_2(\mathbb{R})$ telles que M = AB BA.
- 17. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\operatorname{tr}(M) = 0$ si et seulement si il existe deux matrices A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que M = AB BA.

Problème d'analyse

Préambule

Soit $I =]-\infty, 1[$. On considère la fonction f définie sur $I \setminus \{0\}$ par :

$$\forall x \in I \setminus \{0\} \quad f(x) = \frac{-1}{x} \ln(1 - x).$$

On note $\mathscr C$ la courbe représentative de f dans un repère orthonormé du plan.

Remarque : les parties B et C sont indépendantes.

Partie A : Étude de f

- 1. (a) Soit $n \in \mathbb{N}$. Déterminer un développement limité de f en 0 à l'ordre n.
 - (b) En déduire que f peut se prolonger en une fonction continue sur I. On notera encore f ce prolongement. Préciser la valeur de f(0).
 - (c) Justifier que f est dérivable en 0 et donner la valeur de f'(0).
 - (d) Déterminer une équation de la tangente $\mathcal T$ à $\mathcal C$ en 0 et les positions relatives de $\mathcal C$ et de $\mathcal T$ au voisinage de 0.
- 2. Montrer que f est de classe \mathscr{C}^{∞} sur $I \setminus \{0\}$.
- 3. (a) Vérifier que f est dérivable sur I et que :

$$\forall x \in I \quad xf'(x) = \frac{1}{1-x} - f(x).$$

- (b) Déterminer le développement limité de f' en 0 à l'ordre 1.
- (c) En déduire que f est de classe \mathcal{C}^1 sur I.
- (d) En déduire aussi que f est deux fois dérivable en 0 et préciser la valeur de f''(0).
- 4. (a) Montrer que $\forall t \geq 0 \ t \ln(t) \geq t 1$.
 - (b) En déduire que f est croissante sur I et déterminer les limites de f aux bornes de I.
 - (c) Montrer que $\mathscr C$ admet une asymptote en $-\infty$ et préciser les positions relatives de $\mathscr C$ et de cette asymptote. Tracer sur une même figure l'allure de $\mathscr C$ et la tangente $\mathscr T$ en 0.

Partie B : Une autre expression de f

- 5. (a) Soit $h: x \mapsto -\ln(1-x)$. Justifier que h est \mathscr{C}^{∞} sur I et calculer $h^{(n)}(x)$ pour tout $x \in I$ et tout $n \in \mathbb{N}^*$.
 - (b) En déduire que : $\forall n \in \mathbb{N}^* \ \forall x \in \left[0, \frac{1}{2}\right[\ \left|h^{(n)}(x)\right| \leq 2^n(n-1)!$
 - (c) En appliquant l'inégalité de Taylor-Lagrange à la fonction h, montrer que :

$$\forall x \in \left[0, \frac{1}{2}\right[\quad f(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k+1}.$$

Partie C: Dérivées successives de f

Pour tout $n \in \mathbb{N}^*$, on considère la fonction φ_n définie sur $I \setminus \{0\}$ par

$$\forall x \in I \setminus \{0\} \quad \varphi_n(x) = \frac{(-1)^n n!}{x^n} \left(f(x) - \sum_{k=0}^{n-1} \frac{x^k}{k+1} \right).$$

- 6. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que φ_n possède une limite finie en 0, que l'on calculera.
 - (b) Montrer que φ_n est dérivable sur $I \setminus \{0\}$ et montrer que

$$\forall x \in I \setminus \{0\} \quad \varphi'_n(x) = \varphi_{n+1}(x) + \frac{(-1)^n n!}{1 - x}.$$

7. (a) En utilisant la question précédente, montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, il existe un polynôme P_n tel que

$$\forall x \in I \setminus \{0\} \quad f^{(n)}(x) = \varphi_n(x) + \frac{P_n(x)}{(1-x)^n}.$$

- (b) Démontrer l'unicité de la suite (P_n) définie à la question précédente.
- (c) Pour un entier $n \in \mathbb{N}$, déterminer le degré et le coefficient dominant de P_n .
- (d) En déduire que f est de classe C^{∞} sur I.

 Indication: on pourra montrer par récurrence que f est de classe C^n sur I pour tout $n \in \mathbb{N}$.
- 8. Déterminer la valeur de $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.

fin du sujet