Part Ⅲ 触发器与时序逻辑OK

Lecture 10 同步时序逻辑电路设计 1

一般步骤:

- ①逻辑抽象:作出原始状态图和原始状态表;
- ②状态化简: 求得最小化状态表;
- ③状态编码:得到二进制状态表;
- ④选定触发器的类型,并求出激励函数和输

出函数最简表达式;

- ⑤检查自启动能力;
- ⑥画出逻辑电路图。

一、逻辑抽象

原始状态图和原始状态表是对设计要求的最原始的抽象,建立正确的原始状态图和状态表是 同步时序电路设计中最关键的一步。 建立原始状态图的一般思路:

1) 确定电路模型

设计成 Mealy 型? Moore 型?

将电路设计成哪种模型?有的问题已由设计要求规定,有的问题可由设计者选择。不同的模型对应的电路结构不同,设计者在选择时,应根据问题中的信号形式、电路所需器件的多少等综合考

虑。

2) 设立初始状态

时序逻辑电路在输入信号开始作用之前的状态称为初始状态。

在建立原始状态图时,应首先设立初始状态,然后从初始状态出发考虑在各种输入作用下的状态转移和输出响应。

3)根据需要记忆的信息增加新的状态

同步时序电路中状态数目的多少取决于需要记忆和区分的信息量。

一般来说,若在某个状态下出现的输入信号能用已有状态表示,则应转向已有状态。仅当某个状态下出现的输入信号不能用已有状态表示时, 状态下出现的输入信号不能用已有状态表示时, 才令其转向新的状态。

4) 确定各时刻电路的输出

在建立原始状态图时,必须确定各时刻的输出值。

在 Moore 型电路中,应指明每种状态下对应的输出;在 Mealy 型电路中应指明从每一个状态出发,在不同输入作用下的输出值。

注意: 在描述一个逻辑问题的原始状态图和

原始状态表中,状态数目不一定能达到最少,这一点无关紧要,因为可以对它再进行状态化简。设计者应把清晰、正确地描述设计要求放在第一位。

【例 1】某序列检测器有一个输入端x和一个输出端z。

输入端x输入一串随机的二进制位,当输入序列中出现"011"时,输出z产生一个"1"输出,平时z输出"0"。

典型输入、输出序列如下:

输入x: 101011100110

输出z: 000001000010

方案1采用 Mealy 型电路,设:

状态 A-----电路的初始状态;

状态 B-----表示收到了目标序列"011"中的第一位"0":

状态 C------表示收到了目标 表示收到了目标 序列"011"中的 前面两位"01";

状态 D-------表示收到了完整 的 目 标 序 列 "011"。

原始状态图和原始状态表如下:

Mealy型状态表

现态	次态/输出		
	x =0	x =1	
A B C D	B/0 B/0 B/0 B/0	A/0 C/0 D/1 A/0	

方案 2 如果采用 Moore 型电路

由于电路输出完全取决于状态,而与输入无直接联系。在作状态图时,应将输出标记在代表各 状态的圆圈内。

设电路初始状态为 A,并用状态 B、C、D 分别表示收到了输入x送来的 0、01、011。

显然,仅当处于状态 D 时电路输出为 1,其他

状态下输出均为O。

原始状态图和原始状态表如下:

Moore 型状态表

т 大	次	輸出	
现 态	x =0	x =1	Z
A B C D	B B B	A C D A	0 0 0 1

【例 2】模 5 加 1、加 2 计数器有一个输入x和一个输出z。

输入x为加 1、加 2 控制信号,当x=0时,计数器在时钟脉冲作用下进行加 1 计数;当x=1时,计数器在时钟脉冲作用下进行加 2 计数。

当电路计满 5 个状态后,输出z产生一个 1 信号作为进位输出,平时z输出为 0。

下面建立该计数器的 Mealy 型原始状态图和 状态表。

假设模 5 计数器的 5 个状态分别用 0、1、2、3、4 表示,其中 0 为初始状态。

根据题意可作出原始状态图和原始状态表如下:

原始状态表

现态	次态 /输出 Z		
-76 AS	x =0	x =1	
0	1/0	2/0	
1	2/0	3/0	
2	3/0	4/0	
3	4/0	0/1	
4	0/1	1/0	

【例 3】设计一个代码检测器,该同步时序电路用于检测串行输入的 8421 码,其输入的顺序是先低位后高位,当出现非法数字(1010,1011,1100,1011,1101)时,电路的输出为 1。

下面建立该时序电路的 Mealy 型原始状态图和状态表。

由于输入的 8421 码是先低位后高位,因此, 判断输入是否为非法数字时,应从低位到高位查 看各位输入值。

设: 状态 A 表示起始状态;

状态 B 和 C 分别表示最低一位代码的两种不同取值 0 和 1;

状态 D, E, F, G 分别表示低两位的码的四种不同取值 00~11;

状态H、I、J、K、L、M、N、P分别表示低三

位代码的八种取值 000~111。

当*x*输入的第四位代码到来时,即可对输入代码进行判断,若出现非法数字,电路的输出为 1,否则为 0,并返回到起始状态 A。

根据以上分析,可以得到原始状态图和状态表如下:

Mealy模型原始状态图

TH 大	次态/输出		# ★	次态/输出		
现态		x =0	x =1	现态	x =0	x =1
	A	B/0	C/0			
	В	D/0	E/0	I	A/0	A/1
	С	F/0	G/0	J	A/0	A/1
	D	H/0	I/0	K	A/0	A/1
	E	J/0	K/0	L	A/0	A/0
	F	L/0	M/0	M	A/0	A/1
	G	N/0	P/0	N	A/0	A/1
	H	A/0	A/0	P	A/0	A/1

注意:图中,当4位代码检测完后,应转向初始状态A,以便检查下一组代码。

思考:代码检测器与序列检测器的主要区别是什么?

二、状态化简

状态化简:是指采用某种化简技术从原始状态表中消去多余状态,得到一个既能正确地描述给定的逻辑功能,又能使所包含的状态数目达到最少的状态表,通常称这种状态表为最小化状态表。

目的: 简化电路结构。状态数目的多少直接决定电路中所需触发器数目的多少。

设状态数目为n,所需触发器数目为m,则应满足如下关系: $2^m \ge n > 2^{m-1}$ 。

为了降低电路的复杂性和电路成本,应尽可能状态表中包含的状态数达到最少。

方法: 隐含表法。

1、基本概念

等效状态: 设状态 S_i 和 S_j 是状态表中的两个状

态,若对于所有可能的输入序列,分别从状态 S_i 和状态 S_j 出发,所得到的输出响应序列完全相同,则状态 S_i 和 S_j 是等效的,记作 (S_i,S_j) ,又称状态 S_i 和 S_i 为等效对。

判断方法: 若状态 S_i 和 S_j 是原始状态表中的两个现态,则 S_i 和 S_j 等效的条件可归纳为在输入的各种取值组合下满足如下两条:

第一,输出相同;

第二,次态属于下列情况之一:

a. 次态相同;

b. 次态交错或为各自的现态;

c. 次态循环或为等效对。

问题: 什么叫交错、循环呢?

例如,在下表中: 当X=0时,现态A、B的次

也一人		次态/输出		态相同,现态 C、D的次
现态	X=0	X=1	大文 出	
	A	B/0	C/1	- 态交错; 当 $X=1$ 时, 现态
	В	B /0	D /1	A、B的次态为C、D,而
	C	D /0	A /0	
	D	C /0	B /0	现态 C、D 的次态为 A、
				B,构成次态循环,即

性质: 等效状态具有**传递性**,即假若 S_1 和 S_2 等效, S_2 和 S_3 等效,那么,一定有 S_1 和 S_3 等效。

等效类:由若干彼此等效的状态构成的集合。在同一个等效类中的任意两个状态都是等效的。

例如:由 (S_1,S_2) 和 (S_2,S_3) 可以推出 (S_1,S_3) ,进而可知 S_1 、 S_2 、 S_3 属于同一等效类,记作 $\{S_1,S_2,S_3\}$ 。

等效类是一个广义的概念,两个状态或多个

状态均可以组成一个等效类,甚至一个状态也可以称为等效类,因为任何状态和它自身必然是等效的。

最大等效类: 是指不被任何别的等效类所包含的等效类。

注意:这里所指的最大,并不是指包含的状态最多,而是指它的独立性,即使是一个状态,只要它不被包含在别的等效类中,也是最大等效类。换

而言之,如果一个等效类不是任何其他等效类的子集,则该等效类为最大等效类。

说明: 状态等效是状态之间的一种等价关系!

原始状态表的化简过程,就是寻找出表中的 所有最大等效类,然后将每个最大等效类中的所 有状态合并为一个新的状态,从而得到最小化状 态表。 简化后的状态数等于最大等效类的个数!

2、状态化简

一般步骤:

①作隐含表

隐含表是一个直角三角形阶梯网格,表中每个方格代表一个状态对。

②寻找等效对

顺序比较:按照隐含表中从上至下、从左至右的顺序,对照原始状态表依次对所有"状态对"进行逐一检查和比较,并将检查结果标注在隐含表中的相应方格内。

比较结果标注如下:

等效 ----- 在相应方格内填上"\";

不等效----- 在相应方格内填上"×";

与其他状态对相关 ---- 在相应方格内填上相关的状态对。

关联比较:指对那些在顺序比较时尚未确定 是否等效的状态对作进一步检查,直到判别出状 态对等效或不等效为止。

③求出最大等效类

在找出原始状态表中的所有等效对之后,可

利用等效状态的传递性, 求出各最大等效类。

④状态合并,作出最小化状态表

将每个最大等效类中的全部状态合并为一个状态,即可得到和原始状态表等价的最小化状态表。

【例1】化简下表所示原始状态表:

原始状态表

现态	次态/输出			
+9E 7EF	x=0	x=1		
A	C/0	B/1		
В	F/0	A/1		
С	F/0	G/0		
D	D/1	E/0		
E	C/0	E/1		
F	C/0	G/0		
G	C/1	D/0		

①作隐含表

给定原始状态表具有 7 个状态,根据画隐含表的规则,可画出隐含表框架如下:

原始状态表

现る	b.	次态/输出		
-19E 76		x=0	x=1	
A		C/0	B/1	
В		F/0	A/1	
C		F/0	G/0	
D		D/1	E/0	
E		C/0	E/1	
F		C/0	G/0	
G		C/1	D/0	

原始状态表

production in the second control of the seco				
五川 - 大·	次态/输出			
地心	x=0	x =1		
Α	C/0	B/1		
В	F/0	A/1		
C	F/0	G/0		
D	D/1	E/0		
E	C/0	E/1		
F	C/0	G/0		
G	C/1	D/0		

原始状态表

现态	次态/输出		
地元	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

②寻找等效对

根据等效状态的判断标准,

依次检查每个状态对,可得到顺 序比较结果如上图(左)和关联比 较结果如上图(右)。

由判断结果可知,原始状态表中的 7 个状态共有四个等效对: (A,B)、(A,E)、(B,E)、(C,F)

③求出最大等效类

由所得到的等效对和最大等效类的定义可知,

原始状态表中的7个状态共构成四个最大等效类:

$${A,B,E}, {C,F}, {D}, {G}$$

④状态合并,作出最小化状态表

令
$$\{A,B,E\}\rightarrow a$$
、 $\{C,F\}\rightarrow b$ 、 $\{D\}\rightarrow c$ 、 $\{G\}\rightarrow d$,并代入原始状态表中,即可得到化简后

的状态表如下边右表:

原始状态表

现态	次态/输出	
现态	x =0	x =1
A	C/0	B/1
В	F/0	A/1
С	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

最小化状态表

现态	次态/输出	
	x =0	r =1
a b c	b/0 b/0 c/1	a/1 d/0 a/0 c/0
	b/1	C/U

$$\{A,B,E\} \rightarrow a$$
, $\{C,F\} \rightarrow b$, $\{D\} \rightarrow c$, $\{G\} \rightarrow d$

三、状态编码

状态编码: 也称状态分配, 是指给最小化状态表中用字母或数字表示的状态, 指定一个二进制代码, 形成二进制状态表。

状态编码的任务是:

①确定状态编码的长度(即二进制代码的位数,或者说所需触发器个数);

②寻找一种最佳的或接近最佳的状态分配方案,以便使所设计的时序电路最简单。

1、确定二进制代码的位数

二进制代码的位数是由<mark>最小化状态表中</mark>的状态个数来确定的。

设最小化状态表的状态数为 N, 状态编码的长度为 m, 则状态数 N 与状态编码长度 m 的关系为

 $2^{m-1} < N \leq 2^m$

例如: 若某状态表的状态数 N=7,则状态分配时,二进制代码的位数应为 m=3,或者说状态变量个数为 3。

2、确定状态分配方案

状态与代码之间的对应关系可以有许多种。

一般说来,用 m 位二进制代码的2^m种组合来对 N

个状态进行分配时,可能出现的状态分配方案数 K_s 为: $K_s = P_{2^m}^N$ 。

例如: 当 N = 4, m= 2 时, $K_s = P_{2^2}^4 = 24$

随着状态数目的增加,分配方案的数目急剧增加。

问题:如何从众多的分配方案中寻找出一种最佳方案?

在实际工作中,工程技术人员通常按照一定的原则、凭借设计的经验去寻找相对最佳的编码方案。

一种常用方法称为<mark>相邻分配法</mark>,其基本思想是:在选择状态编码时,尽可能使激励函数和输出函数在卡诺图上的"1"方格处在相邻位置,从而有利于激励函数和输出函数的化简。

相邻分配法的状态编码原则如下:

- ①次态相同,现态相邻。在相同输入条件下, 具有相同次态的现态应尽可能分配相邻的二进制 代码:
- ②同一现态,次态相邻。在相邻输入条件下,同一现态的次态应尽可能分配相邻的二进制代码;
 - ③输出相同,现态相邻。在每一种输入取值下

均具有相同输出的现态应尽可能分配相邻的二进制代码。

某些状态表常常出现不能同时满足 3 条原则的情况。此时,可按从①至③的优先顺序考虑。

此外,从电路实际工作状态考虑,一般将初始 状态分配"0"状态。 【例如】对如下状态表进行状态编码(设A为初始状态)。

现态。	次态/输出。	
	x=0.	x=1.
A	C /1.	B /0.
B₊	A / 0 _°	A /1.
C.	A /1.	D /1.
D .	D/1.	C /0.

所示状态表中,状态数 N = 4,故状态编码的长度应为 m=2。 即实现该状态表的功能需要两个触发器。

根据相邻法的编码原则,4个状态的相邻关系如下:

现态。	次态/输出。	
	x=0.	x=1.
A	C /1.	B /0.
\mathbf{B}_{e}	A /0.	A /1.
C ₀	A /1.	D /1.
D _e	D /1.	C /0.

根据原则①, 状态 B 和 C 应分配相邻的二进制代码;

根据原则②,状态B和C、A和D、C和D应分配相邻的

二进制代码;

根据原则③, 状态 A 和 D 应分配相邻的二进制代码。

综合①一③可知,状态分配时要求满足 B 和 C、A 和 D、C 和 D 相邻。

在进行状态分配时,为了使状态之间的相邻 关系一目了然,通常将**卡诺图**作为状态分配的工 具。

假定状态变量用 y_2y_1 表示,并将 A 分配"0",一种满足上述相邻关系的分配方案如下:

状态A、B、C、D的状态编码依次为yzyi的取值

00, 01, 11, 10.

将状态表中的状态A、B、C、D分别用编码00、

01、11、10 代替,即可得到该状态表的二进制状

态表如右上表所示。

注意:满足分配原则的方案通常可以有多种,设计者可从中任选一种。