United College of Engineering and Research, Prayagraj Department of Computer Science

$\begin{array}{c} {\rm B.Tech(2020\text{-}21)} \\ {\rm Discrete~Structures~and~Theory~of~Logic(KCS~303)} \\ {\rm Assignment\text{-}1} \end{array}$

QNo.	Question	CO	Bloom's
		Type	level
1	Show that the relation R on the set Z of integers given by $R = \{(a,b): 3 \text{ divides } (a-b)\},\$	CO1	L3
	is an equivalence relation.		
2	Let R be a relation on the set of natural numbers N, as $R = \{(x,y) \mid x,y \in N, 3x+y = 0\}$	CO1	L2
	19}. Find the domain and range of R. Verify whether R is reflexive.		
3	Prove that $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n+1)} = \frac{n}{(n+1)}$	CO1	L4
4	If set A has 3 elements then find the number of symmetric relations defined on set A.	CO1	L3
5	If $f: A \to B$ is one-one onto mapping, then prove that $f^{-1}: B \to A$ will be also one-one	CO1	L4
	onto mapping.		

Bloom's Taxonomy levels (1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6- Creating)

\mathbf{CO} - Course Outcome

