Summary

- 1. The current practice of "End Market" classification fails because "Market 1" makes up >98% of all customers
- 2. By segmenting customers based on purchasing behavior (e.g., how much, how often, when, where) we can identify like-groupings of customers
- 3. Underperforming customers (compared to their segment) can be targeted for incremental revenue and cost improvement
- 4. Back-of-the-envelope analysis suggests:
 - \$2.4B in potential revenue headroom at 10% under-performer lift rate
 - \$3.5B in potential COGS reduction at 10% under-performer lift rate
- 5. Additional areas for exploration:
 - Plant optimization / redundancy
 - Seasonality of purchasing (consolidation, targeting)
 - Implementing a targeted sales-service (as opposed to engineering staff being solely responsible)
 - How sensitive are customers to price increases?
 - Which customers/markets are most influenced by regulations?
 - Target customers based on likelihood of incremental gain

"End Market" Segmentation Fails because all customers are in "Market 1"

Characterizations:

Targeting Customers for Interventions

Process:

- Assign cluster to each customer along with information about common cluster behavior (e.g., average profit)
- Identify customers that are under-performing relative to their cluster
- Target customers in order of potential upside (delta from group mean)
- For future exploration: Target customers based on *likelihood of incremental gain*

Example: Top 10 Customers by difference from cluster mean:

Customer	Ave	erage Quarterly Profit	Qua	rterly_Profit_cluster_mean_	Qua	arterly_Profit_delta
Customer 2243	\$	3,346,865	\$	147,017,951	\$	(143,671,087)
Customer 2424	\$	12,763,173	\$	147,017,951	\$	(134,254,778)
Customer 2578	\$	7,186,739	\$	147,017,951	\$	(139,831,212)
Customer 3939	\$	14,007,406	\$	147,017,951	\$	(133,010,546)
Customer 4077	\$	1,736,164	\$	147,017,951	\$	(145,281,787)
Customer 4865	\$	16,478,070	\$	147,017,951	\$	(130,539,882)
Customer 518	\$	14,749,410	\$	147,017,951	\$	(132,268,541)
Customer 573	\$	4,847,317	\$	147,017,951	\$	(142,170,634)
Customer 577	\$	12,863,103	\$	147,017,951	\$	(134,154,849)
Customer 734	\$	9,650,885	\$	147,017,951	\$	(137,367,066)

Potential Upside: Increasing Revenues

If 10%-50% of underperformers could be moved to the mean, how much would that be worth?

\$2.4B in potential cost savings at 10% increase

Potential Upside: Decreasing COGS

If 10%-50% of underperformers could be moved to the mean, how much would that be worth?

\$3.5B in potential cost savings at 10% reduction

Appendix

Future Topics:

- Employ predictive modeling to target customers based on things like:
 - Predicted sensitivity to increased prices
 - Likelihood of attrition
 - Likelihood to consolidate plants/products
 - Additional data needed: Price of eventual goods sold by customers using our parts
- Non-linear optimization of product mix / manufacturing output
 - What is the exact right mix of products to produce so as to:
 - Maximize revenue
 - Minimize cost
 - Maximize LTV of customer
- Plant optimization
 - Redundancy in plants
 - Consolidation
 - Logistics optimization

Appendix

Why choose 8 clusters?

- "Elbow" method reveals 8 clusters is optimal
- Few enough to be understandable, and increasing group size incrementally decreases the Sum of Squared Errors within clusters

SSE of kmedians across different k

