实验小作业-作业3

梁峻滔 PB19051175

1. 分别使用 SMT 和 pure SAT 求解 N-Queen 问题

SMT

由于每行都要求恰有一个皇后,因此可以使用每行皇后的列位置来表示一个布局,添加变量取值约束 val_c 表示。同时要求一列也恰有一个皇后,因此添加列约束 col_c。最后是要求对角线方向上也最多只有一个皇后,添加对角线约束 diag_c。最后使用 Z3 求解。

SAT

采用一个8 x 8二维数组 p 来表示布局, 当 p[i][j] == True 时表示第 i 行第 j 列位置上放置一个皇后。在此基础上添加行约束 row_c1 和 row_c2 ,列约束 col_c1 和 col_c2 ,以及对角线约束 diag_c ,然后使用 Z3 求解。

使用 timeit.default_timer 来对两种方法的求解过程计时(不包括约束建立过程),比对 n 从8增加到40时,两者求解所费时间(单位为秒):

n	SMT Time	SAT Time
8	0.04619	0.00614
9	0.01489	0.00442
10	0.01087	0.00521
11	0.02291	0.00541
12	0.01933	0.00599
22	0.43354	0.02070
23	0.12790	0.02295
24	1.54494	0.02779
25	0.91701	0.03081
26	0.32301	0.03397
36	11.59893	0.08651
37	3.15988	0.09133
38	9.48723	0.10826
39	14.81084	0.13409
40	17.12309	0.31495

从比对结果看来,随着 n 的增大,整体规律是两者的运行时间差别越来越显著,pure SAT的求解速度显著快于 SMT的求解速度。以下附上源码,使用python运行即可,如需查看求解结果,则需修改源码中的 print result 字段为 True。

```
from z3 import *
from timeit import default_timer as timer
def Solve_SMT(n, print_result):
   使用SMT求解n皇后问题,print_result设置为True时输出求解结果,否则不输出结果
   Q = [Int('Q\%i' \% (i+1)) \text{ for } i \text{ in } range(n)]
   val_c = [And(Q[i] >= 1, Q[i] <= n) \text{ for } i \text{ in } range(n)]
   col_c = [Distinct(Q)]
   diag_c = [If(i == j, True, And(i+Q[i] != j+Q[j], i+Q[j] != j+Q[i]))
              for i in range(n) for j in range(i)]
   s = Solver()
   s.add(val_c)
   s.add(col_c)
   s.add(diag_c)
   tic = timer()
   s.check()
    toc = timer()
   print('SMT Solver for %d queens Time(sec): '%n, end='')
   print(toc - tic)
   if print_result:
        print(s.model())
def Solve_SAT(n, print_result):
   使用SAT求解n皇后问题,print_result设置为True时输出求解结果,否则不输出结果
   p = [[] for i in range(n)]
   for i in range(n):
        for j in range(n):
            p[i].append(Bool('p_%i%i' % (i+1, j+1)))
   row c1 = []
    for i in range(n):
        bool_vector = []
        for j in range(n):
            bool_vector.append(p[i][j])
        row_c1.append(Or(bool_vector))
   row c2 = []
   for i in range(n):
        for k in range(2, n):
            for j in range(k):
                row c2.append(Or(Not(p[i][j]), Not(p[i][k])))
   col_c1 = []
    for j in range(n):
        bool vector = []
        for i in range(n):
            bool_vector.append(p[i][j])
        col_c1.append(Or(bool_vector))
```

```
col_c2 = []
    for j in range(n):
        for k in range(2, n):
            for i in range(k):
                col_c2.append(Or(Not(p[i][j]), Not(p[k][j])))
    diag_c = []
   for i in range(n-1):
        for i1 in range(i+1, n):
            for j in range(n):
                for j1 in range(n):
                    if i+j == i1+j1 or i-j == i1-j1:
                        diag_c.append(Or(Not(p[i][j]), Not(p[i1][j1])))
   s = Solver()
    s.add(row_c1)
   s.add(row_c2)
   s.add(col_c1)
   s.add(col_c2)
   s.add(diag c)
   tic = timer()
   s.check()
   toc = timer()
   print('SAT Solver for %d queens Time(sec): '%n, end='')
   print(toc - tic)
   if print_result:
        for i in range(n):
            for j in range(n):
                print(s.model().eval(p[i][j]), end=' ')
            print('')
# main
for n in range(8, 40):
   Solve_SMT(n, False)
   Solve SAT(n, False)
   print('')
```

2. 使用 pure SAT 求解 d = a - b(a, b为正整数且a > b)

先把输入的 a 和 b 转换成二进制数,使用0-1数组表示,将它们零扩展成相同的长度,并在最高位前再补一个0,由于要实现减 b 计算,所以再将 b 的二进制表示转换成补码表示,再使用将两者相加的 SAT 方法。添加以下约束:

```
(1) 对i=1,\ldots,n,要求d_i\leftrightarrow(a_i\leftrightarrow(b_i\leftrightarrow c_i))
(2) 对i=1,\ldots,n,要求c_{i-1}\leftrightarrow((a_i\wedge b_i)\lor(a_i\wedge c_i)\lor(b_i\wedge c_i))
```

- (3) 从最右边开始计算,最右边的进位应为0,所以有 $\neg c_n$
- (4) 需要注意的是,加法中最高位的进位要求为0,即要求有 $\neg c_0$,但是在补码计算中可能会有溢出,不能有这个约束
- (5) 对于a的二进制表示的每一位 a_i ,如果 $a_i=1$,就将 a_i 加入到合取式中,否则将 $\neg a_i$ 加入到合取式中

- (6) 对于b的二进制补码表示的每一位 b_i ,如果 $b_i=1$,就将 b_i 加入到合取式中,否则将 $\neg b_i$ 加入到合取式中
- (7) 将(1)~(3)的合取式作为 ϕ ,再与(5)(6)做一个合取,得到要求解的 SAT 问题,最后使用 Z3 求解该问题,将求解结果中的 $d_i(i=1,\ldots,n)$ 再转换成十进制数表示然后输出

以下附上源码,求解过程由函数 subtraction(a, b) 实现,参数 a, b 即为被减数和减数,设置参数使用 python运行后就会输出减法计算结果。

```
from z3 import *
from timeit import default_timer as timer
def subtraction(a, b):
   输入被减数a和减数b,使用SAT方法计算a-b后输出计算结果
   if a < b:
       print("a < b, try again")</pre>
        return
   Abit = []
   while True:
       bit = a % 2
       Abit.append(bit)
       a = a // 2
       if a == 0:
            break
   Abit.append(0)
   Abit.reverse()
   Bbit = []
   while True:
       bit = b % 2
       Bbit.append(bit)
       b = b // 2
       if b == 0:
            break
   Bbit.append(0)
   Bbit.reverse()
   if len(Abit) > len(Bbit):
        Bbit.reverse()
        while len(Bbit) < len(Abit):
            Bbit.append(0)
        Bbit.reverse()
    elif len(Bbit) > len(Abit):
       Abit.reverse()
        while len(Abit) < len(Bbit):
            Abit.append(0)
       Abit.reverse()
   print(Abit)
    print(Bbit)
   # 取B的补码
   for i in range(len(Bbit)):
        Bbit[i] = 1 - Bbit[i]
   c = 1
```

```
Bbit.reverse()
           for i in range(len(Abit)):
                      temp = Bbit[i]
                      Bbit[i] = (Bbit[i] + c) \% 2
                       c = (temp + c) // 2
           Bbit.reverse()
           print(Bbit)
           n = len(Abit)
           A = [Bool('a\%i'\%i) \text{ for } i \text{ in } range(n+1)]
           B = [Bool('b\%i'\%i) \text{ for i in } range(n+1)]
           C = [Bool('c%i'%i) for i in range(n+1)]
           D = [Bool('d%i'%i) for i in range(n+1)]
           cons1 = True
           for i in range(1, n+1):
                      cons1 = And(cons1, D[i] == (A[i] == (B[i] == C[i])))
           cons2 = True
           for i in range(1, n+1):
                      cons2 = And(cons2, C[i-1] == (Or(And(A[i], B[i]), And(A[i], C[i]), And(B[i], And(B[i]), And(B[i]), And(B[i]), And(B[i], And(B[i], B[i]), And(B[i]), And(B[i], B[i]), And(B[i], B[i], B[i
C[i]))))
           cons3 = Not(C[n])
           \# cons4 = Not(C[0])
           cons5 = True
           for i in range(1, n+1):
                     if Abit[i-1] == 1:
                                  cons5 = And(cons5, A[i])
                                  cons5 = And(cons5, Not(A[i]))
           cons6 = True
           for i in range(1, n+1):
                      if Bbit[i-1] == 1:
                                  cons6 = And(cons6, B[i])
                       else:
                                  cons6 = And(cons6, Not(B[i]))
           s = Solver()
           # cons = [cons1, cons2, cons3, cons4, cons5, cons6]
           cons = [cons1, cons2, cons3, cons5, cons6]
           s.add(cons)
           tic = timer()
           s.check()
           toc = timer()
           print(toc - tic)
           result_bit = []
           for i in range(1, n+1):
                      if s.model().eval(D[i]) == True:
                                  result_bit.append(1)
                       else:
                                  result_bit.append(0)
           exp = 1
```

```
result = 0
for i in range(n-1, -1, -1):
    result += exp * result_bit[i]
    exp *= 2
print(result)

subtraction(186, 23)
```