

Solutions to Plane Coordinate Geometry by S L Loney

G V V Sharma*

CONTENTS

1	Pair of Straight Lines		1
	1.1 Coordinates		1
	1.2	13	1
2	General Equation. Tracing of Curves		27
	2.1	40	27
	2.2	41	44

Abstract—This book provides a vector approach to analytical geometry. The content and exercises are based on S L Loney's book on Plane Coordinate Geometry.

1 Pair of Straight Lines

1.1 Coordinates

1.1.1. The coordinates of the vertices of a triangle are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . The line joining the first two is divided in the ratio l: k, and the line joining his point of division to the opposite angular point is then divided in the ratio m: k+l. Find the coordinates of the latter point of section.

Solution: From elementary analysis of coordinate geometry and in view of Fig.1.1.1.1, as **D** divides the line AB in the ratio AD : DC = l : k, we have:

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\mathbf{D} = \frac{l\mathbf{B} + k\mathbf{A}}{l+k} \tag{1.1.1.1}$$

The position vector **E** which divides CD in the ratio DE : EC = m : l + k, is clearly obtained by setting $l = m, k = l + k, \mathbf{A} = \mathbf{D}, \mathbf{B} = \mathbf{C}$ and is given by:

$$\mathbf{E} = \frac{m\mathbf{C} + (l+k)\mathbf{D}}{m+l+k}$$
(1.1.1.2)

Using Eq.1.1.1.1 into Eq.1.1.1.2 and simplifying yields:

$$\mathbf{E} = \frac{m\mathbf{C} + l\mathbf{B} + k\mathbf{A}}{m+l+k} \tag{1.1.1.3}$$

Where,
$$\mathbf{A} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$

In Fig.1.1.1, the solution obtained from the Python code is depicted for a particular choice of input viz. l = 1, m = 1, k = 1 and A(0,0), B(3,3) & C(6,0). Using, Eq.1.1.1.3 and the above mentioned input, we have:

$$\mathbf{E} = \begin{pmatrix} x_E \\ y_E \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

1.2 13

1.2.1. Prove that the following equations represent two straight lines, find also their point of intersection and the angle between them. $6y^2 - xy - x^2 + 30y + 36 = 0$.

Solution:

Fig. 1.1.1.1: For l = 1, m = 1, k = 1 and A(0,0), B(3,3) & C(6,0), the solution E(3,1) is obtained using Python

The given equation can be written as:

$$-x^2 - xy + 6y^2 + 30y + 36 = 0 (1.2.1.1)$$

 $\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix}$ of (1.2.1.1) becomes

$$\begin{vmatrix} -1 & -\frac{1}{2} & 0\\ \frac{-1}{2} & 6 & 15\\ 0 & 15 & 36 \end{vmatrix} = 0 \tag{1.2.1.2}$$

Expanding equation (1.2.1.2), we get zero. Hence given equation represents a pair of straight lines.

The general equation second degree is given by

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$
 (1.2.1.3)

Let (α, β) be their point of intersection, then

$$\begin{pmatrix} a & h \\ h & b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -d \\ -e \end{pmatrix}$$
 (1.2.1.4)

Given equation is

$$-x^2 - xy + 6y^2 + 30y + 36 = 0 (1.2.1.5)$$

Substituting in (1.2.1.4)

$$\begin{pmatrix} -1 & \frac{-1}{2} \\ \frac{-1}{2} & 6 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ -15 \end{pmatrix}$$
 (1.2.1.6)

$$\implies \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{6}{5} \\ \frac{-12}{5} \end{pmatrix} \tag{1.2.1.7}$$

Hence, the intersection point is $\left(-\frac{\frac{6}{5}}{\frac{12}{5}}\right)$

Also, Verified using python code from

codes/Assignment 5.py

From, Spectral decomposition,

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{1.2.1.8}$$

$$\mathbf{V} = \begin{pmatrix} -1 & \frac{-1}{2} \\ \frac{-1}{2} & 6 \end{pmatrix} \tag{1.2.1.9}$$

$$\mathbf{P} = \begin{pmatrix} 7 - 5\sqrt{2} & 7 + 5\sqrt{2} \\ 1 & 1 \end{pmatrix} \tag{1.2.1.10}$$

$$\mathbf{D} = \begin{pmatrix} \frac{5+5\sqrt{2}}{2} & 0\\ 0 & \frac{5-5\sqrt{2}}{2} \end{pmatrix}$$
 (1.2.1.11)

P and D are also verified using python code from

codes/diagonalize1.py

Using, (1.2.1.7), (1.2.1.10) and (1.2.1.11) in,

$$u_1(x - \alpha) + u_2(y - \beta) = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1(x - \alpha) + v_2(y - \beta))$$
(1.2.1.12)

$$\Rightarrow \left(7 - 5\sqrt{2}\right) \left(x - \frac{30}{23}\right) + \left(y + \frac{60}{23}\right)$$

$$= \pm \sqrt{-\frac{\frac{5 - 5\sqrt{2}}{2}}{\frac{5 + 5\sqrt{2}}{2}}} \left(\left(7 - 5\sqrt{2}\right)\left(x - \frac{6}{5}\right) + \left(y + \frac{12}{5}\right)\right)$$
(1.2.1.13)

simplifying 1.2.1.13, we get:

$$-x + 2y + 6 = 0$$
 and $x + 3y + 6 = 0$

(1.2.1.14)

$$\implies (-x + 2y + 6)(x + 3y + 6) = 0$$
(1.2.1.15)

$$\therefore -x + 2y = -6$$
 , $x + 3y = -6$ (1.2.1.16)

Angle between two lines, θ can be given by

$$n_1 = (-2, -1) \tag{1.2.1.17}$$

$$n_2 = (-3, 1) \tag{1.2.1.18}$$

$$\cos \theta = \frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|}$$
 (1.2.1.19)

$$\cos \theta = \frac{\left(-2 - 1\right) \left(-3\right)}{\sqrt{(-2)^2 + (-1)^2} \times \sqrt{+(-3)^2 + 1}} = \frac{1}{\sqrt{2}}$$
(1.2.1.20)

$$\implies \theta = 45^{\circ} \tag{1.2.1.21}$$

Fig. 1.2.1.1: plot showing intersection of lines.

1.2.2. Prove that the following equations represent two straight lines; and also find their point of intersection and the angle between them

$$x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$$

Solution: Proving that given equation represents two straight lines The given equation is

$$x^{2} - 5xy + 4y^{2} + x + 2y - 2 = 0 (1.2.2.1)$$

Comparing this to the standard equation,

$$\mathbf{V} = \begin{pmatrix} 1 & \frac{-5}{2} \\ \frac{-5}{2} & 4 \end{pmatrix} \tag{1.2.2.2}$$

$$\mathbf{u} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} \tag{1.2.2.3}$$

$$f = -2 (1.2.2.4)$$

$$\implies \mathbf{x}^T \begin{pmatrix} 1 & \frac{-5}{2} \\ \frac{-5}{2} & 4 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{1}{2} & 1 \end{pmatrix} \mathbf{x} - 2 = 0$$
(1.2.2.5)

Equation (1.2.2.1) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.2.6}$$

$$\delta = \begin{vmatrix} 1 & \frac{-5}{2} & \frac{1}{2} \\ \frac{-5}{2} & 4 & 1 \\ \frac{1}{2} & 1 & -2 \end{vmatrix}$$
 (1.2.2.7)
= 0 (1.2.2.8)

Hence, proved that given equation represents two straight lines. Finding point of intersection between the straight lines

$$\det V = \begin{vmatrix} 1 & \frac{-5}{2} \\ \frac{-5}{2} & 4 \end{vmatrix}$$
 (1.2.2.9)
= $\frac{-9}{4} < 0$ (1.2.2.10)

Thus, the two straight lines intersect. Let the equation of the straight lines be given as

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{1.2.2.11}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{1.2.2.12}$$

with their slopes as \mathbf{m}_1 and \mathbf{m}_2 respectively. Then the equation of the pair of straight lines is

$$(\mathbf{n}_1^T \mathbf{x} - c_1)(\mathbf{n}_2^T \mathbf{x} - c_2) = 0 (1.2.2.13)$$

Using (1.2.2.5) and (1.2.2.13),

$$(\mathbf{n}_1^T \mathbf{x} - c_1)(\mathbf{n}_2^T \mathbf{x} - c_2) = \mathbf{x}^T \begin{pmatrix} 1 & \frac{-5}{2} \\ \frac{-5}{2} & 4 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{1}{2} & 1 \end{pmatrix} \mathbf{x} - 2$$

$$(1.2.2.14)$$

Comparing both sides,

$$c_2 \mathbf{n}_1 + c_1 \mathbf{n}_2 = -2 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$
 (1.2.2.15)

$$c_1 c_2 = -2 \tag{1.2.2.16}$$

Slopes of the lines are roots of the equation

$$cm^2 + 2bm + a = 0 (1.2.2.17)$$

$$\implies m_i = \frac{-b \pm \sqrt{-|\mathbf{V}|}}{c} \tag{1.2.2.18}$$

$$\mathbf{n}_i = k_i \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{1.2.2.19}$$

Substituting (1.2.2.1) in (1.2.2.17),

$$4m^2 - 5m + 1 = 0 (1.2.2.20)$$

$$\implies m_i = \frac{\frac{5}{2} \pm \frac{3}{2}}{4} \tag{1.2.2.21}$$

$$\implies m_1 = 1, m_2 = \frac{1}{4}$$
 (1.2.2.22)

Therefore,

$$\mathbf{n}_1 = k_1 \begin{pmatrix} -1\\1 \end{pmatrix} \tag{1.2.2.23}$$

$$\mathbf{n}_2 = k_2 \begin{pmatrix} \frac{-1}{4} \\ 1 \end{pmatrix} \tag{1.2.2.24}$$

We know that

$$\mathbf{n}_1 * \mathbf{n}_2 = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{1.2.2.25}$$

$$k_1 \begin{pmatrix} -1\\1 \end{pmatrix} * k_2 \begin{pmatrix} \frac{-1}{4}\\1 \end{pmatrix} = \begin{pmatrix} 1\\-5\\4 \end{pmatrix}$$
 (1.2.2.26)

$$\implies k_1 k_2 = 4$$
 (1.2.2.27)

Taking $k_1 = 1$, $k_2 = 4$, we get

$$\mathbf{n}_1 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$\mathbf{n}_2 = \begin{pmatrix} -1\\4 \end{pmatrix} \tag{1.2.2.28}$$

For verifying values of \mathbf{n}_1 and \mathbf{n}_2 , we compute the convolution by representing \mathbf{n}_1 as Toeplitz matrix,

$$\mathbf{n}_1 * \mathbf{n}_2 = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ 4 \end{pmatrix} \quad (1.2.2.29)$$

Now, obtaining c_1 and c_2 using (1.2.2.28) and

(1.2.2.15)

$$\begin{pmatrix} \mathbf{n}_1 & \mathbf{n}_2 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} \qquad (1.2.2.30)$$

$$\implies \begin{pmatrix} -1 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \qquad (1.2.2.31)$$

Row reducing the augmented matrix,

$$\begin{pmatrix} -1 & -1 & -1 \\ 1 & 4 & -2 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & -2 \end{pmatrix} (1.2.2.32)$$

$$\xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & -3 \end{pmatrix} (1.2.2.33)$$

$$\xrightarrow{R_1 \leftarrow R_1 - R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix} (1.2.2.34)$$

$$\implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$c_1 = -1 \qquad (1.2.2.35)$$

$$c_2 = 2 \qquad (1.2.2.36)$$

Thus, equation of lines can be written as

$$(-1 \quad 1)\mathbf{x} = -1 \tag{1.2.2.37}$$

$$(-1 \quad 4)\mathbf{x} = 2 \qquad (1.2.2.38)$$

Augmented matrix for these set of equations is

$$\begin{pmatrix} -1 & 1 & -1 \\ -1 & 4 & 2 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 4 & 2 \end{pmatrix}$$
 (1.2.2.39)

$$\stackrel{R_2 \leftarrow R_2 + R_1}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 3 & 3 \end{pmatrix} \stackrel{R_2 \leftarrow \frac{R_2}{3}}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} (1.2.2.40)$$

$$\stackrel{R_1 \leftarrow R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

Thus, the point of intersection is $\mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Using (1.2.2.28) and (1.2.2.36) in (1.2.2.13), equation of the pair of straight lines is

$$(x - y - 1)(x - 4y + 2) = 0 (1.2.2.42)$$

Angle between lines Angle between pair of lines is,

$$\theta = \cos^{-1}\left(\frac{\mathbf{n}_1^T \mathbf{n}_2}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|}\right)$$
(1.2.2.43)

Fig. 1.2.2.1: Intersection of pair of original pair of straight lines and the pair of straight lines after affine transform

$$\mathbf{n}_1^T \mathbf{n}_2 = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} = 5$$
 (1.2.2.44)

$$\|\mathbf{n}_1\| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$
 (1.2.2.45)

$$\|\mathbf{n}_2\| = \sqrt{(-1)^2 + 4^2} = \sqrt{17}$$
 (1.2.2.46)

Substituting these values (1.2.2.43)

$$\theta = 30.9^{\circ} \tag{1.2.2.47}$$

Hence, angle between the given pair of straight lines is 30.9° Affine Transformation and Eigen Value decomposition First, verifying if $\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 0$. To do this, finding V^{-1} by augmenting with identity matrix and row reducing as follows:

$$\begin{pmatrix} 1 & \frac{-5}{2} & 1 & 0 \\ \frac{-5}{2} & 4 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{5}{2}R_1} \begin{pmatrix} 1 & \frac{-5}{2} & 1 & 0 \\ 0 & \frac{-9}{4} & \frac{5}{2} & 1 \end{pmatrix}$$

$$(1.2.2.48)$$

$$\stackrel{R_2 \leftarrow \frac{-4}{9}R_2}{\longrightarrow} \begin{pmatrix} 1 & \frac{-5}{2} & 1 & 0 \\ 0 & 1 & \frac{-10}{9} & \frac{-4}{9} \end{pmatrix}$$

$$(1.2.2.49)$$

$$\stackrel{R_1 \leftarrow R_1 + \frac{5}{2}R_2}{\longrightarrow} \begin{pmatrix} 1 & 0 & \frac{-16}{9} & \frac{-10}{9} \\ 0 & 1 & \frac{-10}{9} & \frac{-4}{9} \end{pmatrix}$$

$$(1.2.2.50)$$

$$\Longrightarrow \mathbf{V}^{-1} = \begin{pmatrix} \frac{-16}{9} & \frac{-10}{9} \\ \frac{-10}{9} & \frac{-4}{9} \end{pmatrix}$$

$$u^{T}V^{-1}u - f = \begin{pmatrix} \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} \frac{-16}{9} & \frac{-10}{9} \\ \frac{-10}{9} & \frac{-4}{9} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} - (-2)$$

$$= 0 \qquad (1.2.2.52)$$

The characteristic equation of V is given as:

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda - 1 & \frac{5}{2} \\ \frac{5}{2} & \lambda - 4 \end{vmatrix} = 0 \quad (1.2.2.54)$$

$$\implies (\lambda - 1)(\lambda - 4) - \frac{25}{4} = 0 \qquad (1.2.2.55)$$

$$\implies 4\lambda^2 - 20\lambda - 9 = 0 \qquad (1.2.2.56)$$

The roots of (1.2.2.56), i.e. the eigenvalues of \mathbf{V} are

$$\lambda_1 = \frac{5 + \sqrt{34}}{2}, \lambda_2 = \frac{5 - \sqrt{34}}{2}$$
 (1.2.2.57)

The eigen vector \mathbf{p} is defined as,

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \qquad (1.2.2.58)$$

$$\implies (\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{1.2.2.59}$$

For
$$\lambda_1 = \frac{5 + \sqrt{34}}{2}$$

$$(\lambda_1 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{3+\sqrt{34}}{2} & \frac{5}{2} \\ \frac{5}{2} & \frac{-3+\sqrt{34}}{2} \end{pmatrix}$$
 (1.2.2.60)

To find \mathbf{p}_1 , let's look at Augmented form of $(\lambda_1 \mathbf{I} - \mathbf{V})$

$$\begin{pmatrix} \frac{3+\sqrt{34}}{2} & \frac{5}{2} & 0\\ \frac{5}{2} & \frac{-3+\sqrt{34}}{2} & 0 \end{pmatrix}$$
 (1.2.2.61)

$$\stackrel{R_1 \leftarrow \frac{2}{3+\sqrt{34}}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-3+\sqrt{34}}{5} & 0\\ \frac{5}{2} & \frac{-3+\sqrt{34}}{2} & 0 \end{pmatrix}$$
 (1.2.2.62)

$$\stackrel{R_2 \leftarrow \frac{2}{5}R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-3 + \sqrt{34}}{5} & 0\\ 0 & 0 & 0 \end{pmatrix} \qquad (1.2.2.63)$$

So we get

$$x_1 + \left(\frac{-3 + \sqrt{34}}{5}\right) x_2 = 0 \tag{1.2.2.64}$$

Thus, our eigenvector corresponding to λ_1

$$\mathbf{p}_1 = \begin{pmatrix} \frac{3 - \sqrt{34}}{5} \\ 1 \end{pmatrix} \tag{1.2.2.65}$$

For
$$\lambda_2 = \frac{5 - \sqrt{34}}{2}$$

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} \frac{3 - \sqrt{34}}{2} & \frac{5}{2} \\ \frac{5}{2} & \frac{-3 - \sqrt{34}}{2} \end{pmatrix} \qquad (1.2.2.66)$$

To find \mathbf{p}_2 , let's look at Augmented form of $(\lambda_2 \mathbf{I} - \mathbf{V})$

$$\begin{pmatrix} \frac{3-\sqrt{34}}{2} & \frac{5}{2} & 0\\ \frac{5}{2} & \frac{-3-\sqrt{34}}{2} & 0 \end{pmatrix}$$
 (1.2.2.67)

$$\stackrel{R_1 \leftarrow \frac{2}{3-\sqrt{34}}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-3-\sqrt{34}}{5} & 0\\ \frac{5}{2} & \frac{-3-\sqrt{34}}{2} & 0 \end{pmatrix} \qquad (1.2.2.68)$$

$$\stackrel{R_2 \leftarrow \frac{2}{5}R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-3 - \sqrt{34}}{5} & 0\\ 0 & 0 & 0 \end{pmatrix} \tag{1.2.2.69}$$

So we get

$$x_1 + \left(\frac{-3 - \sqrt{34}}{5}\right) x_2 = 0 \tag{1.2.2.70}$$

Thus, our eigenvector corresponding to λ_2

$$\mathbf{p}_2 = \begin{pmatrix} \frac{3+\sqrt{34}}{5} \\ 1 \end{pmatrix} \tag{1.2.2.71}$$

We know $V = PDP^T$, where **P** and the diagonal matrix **D** are given as:

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{1.2.2.72}$$

$$= \begin{pmatrix} \frac{5+\sqrt{34}}{2} & 0\\ 0 & \frac{5-\sqrt{34}}{2} \end{pmatrix} \tag{1.2.2.73}$$

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix} \tag{1.2.2.74}$$

$$= \begin{pmatrix} \frac{3-\sqrt{34}}{5} & \frac{3+\sqrt{34}}{5} \\ 1 & 1 \end{pmatrix} \tag{1.2.2.75}$$

So, the equation of the pair of straight lines is

given by:

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |\mathbf{V}| \neq 0$$

(1.2.2.76)

$$\mathbf{y}^{T} \begin{pmatrix} \frac{5+\sqrt{34}}{2} & 0\\ 0 & \frac{5-\sqrt{34}}{2} \end{pmatrix} \mathbf{y} = 0$$

$$(1.2.2.77)$$

$$\implies (y_1 \quad y_2) \begin{pmatrix} \frac{5+\sqrt{34}}{2} & 0\\ 0 & \frac{5-\sqrt{34}}{2} \end{pmatrix} \begin{pmatrix} y_1\\ y_2 \end{pmatrix} = 0$$
(1.2.2.78)

$$\implies (5 + \sqrt{34})y_1^2 + (5 - \sqrt{34})y_2^2 = 0$$
(1.2.2.79)

So we get the equation of the pair of straight lines, as we can see this passes through the origin (0,0). The corresponding image is shown in Fig. 1.2.2.2

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |\mathbf{V}| \neq 0 \quad (1.2.2.80)$$

$$\implies \mathbf{c} = -\begin{pmatrix} \frac{-16}{9} & \frac{-10}{9} \\ \frac{-10}{9} & \frac{-4}{9} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad (1.2.2.81)$$

And,

$$\mathbf{P}^T = \begin{pmatrix} \frac{3 - \sqrt{34}}{5} & 1\\ \frac{3 + \sqrt{34}}{5} & 1 \end{pmatrix} \quad (1.2.2.82)$$

Using affine transformation, we can express the equation as

$$x = Py + c$$
 (1.2.2.83)

$$\implies \mathbf{x} = \begin{pmatrix} \frac{3 - \sqrt{34}}{5} & \frac{3 + \sqrt{34}}{5} \\ 1 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad (1.2.2.84)$$

The corresponding image is shown in Fig. 1.2.2.1

1.2.3. Prove that the following equations represent two straight lines. Also find their point of intersection and the angle between them

$$3y^2 - 8xy - 3x^2 - 29x + 3y - 18 = 0$$
(1.2.3.1)

Fig. 1.2.2.2: Pair of straight lines passing through origin after eigenvalue decomposition

Solution: $\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix}$ of (1.2.3.1) becomes

$$\begin{vmatrix}
-3 & -4 & -\frac{29}{2} \\
-4 & 3 & \frac{3}{2} \\
-\frac{29}{2} & \frac{3}{2} & -18
\end{vmatrix}$$
 (1.2.3.2)

Expanding equation (1.2.3.2), we get zero. Hence given equation represents a pair of straight lines. Slopes of the individual lines are roots of equation

$$cm^2 + 2bm + a = 0 ag{1.2.3.3}$$

$$\implies 3m^2 - 8m - 3 = 0 \tag{1.2.3.4}$$

Solving,
$$m = 3, -\frac{1}{3}$$
 (1.2.3.5)

The normal vectors of the lines then become

$$\mathbf{n_1} = \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \tag{1.2.3.6}$$

$$\mathbf{n_2} = \begin{pmatrix} -3\\1 \end{pmatrix} \tag{1.2.3.7}$$

Equations of the lines can therefore be written

as

represents the equation specified in (1.2.3.1) Comparing the equations, we have

$$\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 29 \\ -3 \end{pmatrix}$$
 (1.2.3.12)
 (1.2.3.13)

Row reducing the augmented matrix

$$\begin{pmatrix}
1 & -3 & 29 \\
3 & 1 & -3
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 - 3 \times R_1}
\begin{pmatrix}
1 & -3 & 29 \\
0 & 10 & -90
\end{pmatrix}$$

$$(1.2.3.14)$$

$$\xrightarrow{R_2 \leftarrow R_2 \times \frac{1}{10}}
\begin{pmatrix}
1 & -3 & 29 \\
0 & 1 & -9
\end{pmatrix}$$

$$(1.2.3.15)$$

$$\xrightarrow{R_1 \leftarrow R_1 + 3 \times R_2}
\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & -9
\end{pmatrix}$$

$$(1.2.3.16)$$

$$\implies c_2 = 2 \text{ and } c_1 = -9$$

$$(1.2.3.17)$$

The individual line equations therefore become

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = -9, \tag{1.2.3.18}$$

$$(-3 1)\mathbf{x} = 2 (1.2.3.19)$$

Note that the convolution of the normal vectors, should satisfy the below condition

$$\binom{1}{3} * \binom{-3}{1} = \binom{a}{2b}$$
 (1.2.3.20)

The LHS part of (1.2.3.20) can be rewritten using toeplitz matrix as

$$\begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -8 \\ 3 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix}$$
 (1.2.3.21)

The augmented matrix for the set of equations

represented in (1.2.3.18), (1.2.3.19) is

$$\begin{pmatrix} 1 & 3 & -9 \\ -3 & 1 & 2 \end{pmatrix} \tag{1.2.3.22}$$

Row reducing the matrix

$$\begin{pmatrix} 1 & 3 & -9 \\ -3 & 1 & 2 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 + 3 \times R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 3 & -9 \\ 0 & 10 & -25 \end{pmatrix}$$

$$(1.2.3.23)$$

$$\stackrel{R_1 \leftarrow R_1 - \frac{3}{10} \times R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 10 & -25 \end{pmatrix}$$

$$(1.2.3.24)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{10}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -\frac{3}{2} \end{pmatrix}$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{10}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -\frac{5}{2} \end{pmatrix}$$
 (1.2.3.25)

Hence, the intersection point is $\begin{pmatrix} -\frac{3}{2} \\ -\frac{5}{2} \end{pmatrix}$ (1.2.3.26)

Angle between two lines θ can be given by

Fig. 1.2.3.1: plot showing intersection of lines

$$\cos \theta = \frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|}$$
 (1.2.3.27)

$$\cos \theta = \frac{\left(1 \quad 3\right) {\binom{-3}{1}}}{\sqrt{(3)^2 + 1} \times \sqrt{(-3)^2 + 1}} = 0$$

$$(1.2.3.28)$$

$$\implies \theta = 90^{\circ}$$

$$(1.2.3.29)$$

1.2.4. Prove that the following equations represents two straight lines also find their point of inter-

section and angle between them.

$$y^2 + xy - 2x^2 - 5x - y - 2 = 0$$
 (1.2.4.1)

Solution:

$$\mathbf{V} = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} -2 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \tag{1.2.4.2}$$

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} = \begin{pmatrix} \frac{-5}{2} \\ \frac{-1}{2} \end{pmatrix} \tag{1.2.4.3}$$

$$f = -2 (1.2.4.4)$$

$$\begin{vmatrix} -2 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 1 & \frac{-1}{2} \\ \frac{-5}{2} & \frac{-1}{2} & -2 \end{vmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{vmatrix} 0 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{-1}{2} \\ \frac{-5}{2} & \frac{-1}{2} & -2 \end{vmatrix} = 0$$
(1.2.4.5)

Hence it represents the pair of straight lines. Now two intersecting lines are obtained when

$$|V| < 0 \implies \begin{vmatrix} -2 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} = \frac{-9}{4} < 0 \quad (1.2.4.6)$$

Let the pair of straight of lines be given by

$$\mathbf{n_1}^T \mathbf{x} = c_1 \tag{1.2.4.7}$$

$$\mathbf{n_2}^T \mathbf{x} = c_2 \tag{1.2.4.8}$$

The slopes of the lines are given by the roots of the polynomial

$$cm^2 + 2bm + a = 0 ag{1.2.4.9}$$

$$m_1, m_2 = \frac{-\frac{1}{2} \pm \sqrt{\frac{9}{4}}}{1}$$
 (1.2.4.10)

$$m_1 = 1, m_2 = -2$$
 (1.2.4.11)

$$\implies$$
 $\mathbf{n_1} = \begin{pmatrix} -1\\1 \end{pmatrix} and \mathbf{n_2} = \begin{pmatrix} 2\\1 \end{pmatrix}$ (1.2.4.12)

$$(\mathbf{n_1}^T \mathbf{x} - c_1)(\mathbf{n_2}^T \mathbf{x} - c_2) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f$$
(1.2.4.13)

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2\mathbf{u} \tag{1.2.4.14}$$

$$c_2 \begin{pmatrix} -1\\1 \end{pmatrix} + c_1 \begin{pmatrix} 2\\1 \end{pmatrix} = -2 \left(\frac{-5}{2} \frac{-1}{2} \right)$$
 (1.2.4.15)

$$\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (1.2.4.16)

Using row reduction we get

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 5 \end{pmatrix} \tag{1.2.4.17}$$

$$\xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
 (1.2.4.18)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix} \tag{1.2.4.19}$$

$$C = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{1.2.4.20}$$

The convolution of the normal vectors, should satisfy the below condition

$$\binom{-1}{1} * \binom{2}{1} = \binom{a}{2b}$$
 (1.2.4.21) 1.2.5. Prove that the equation

The LHS part of equation(2.0.20) can be rewritten using toeplitz matrix as

$$\begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix}$$
 (1.2.4.22)

Therefore the equation of lines is given by

$$(-1 \quad 1)\mathbf{x} = 2 \qquad (1.2.4.23)$$

$$(2 1) \mathbf{x} = -1 (1.2.4.24)$$

consider the augmented matrix

$$\begin{pmatrix} -1 & 1 & 2 \\ 2 & 1 & -1 \end{pmatrix} \tag{1.2.4.25}$$

$$\stackrel{R_1 \leftarrow -R_1}{\underset{R_2 \leftarrow R_2 - 2R_1}{\longleftrightarrow}} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
(1.2.4.26)

$$\xrightarrow[R_1 \leftarrow R_1 + R_2]{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \tag{1.2.4.27}$$

Therefore point of intersection is $\mathbf{A} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Angle between two lines θ can be given by

$$\cos \theta = \frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|}$$
 (1.2.4.28)

$$\cos \theta = \frac{\begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}}{\sqrt{(1)^2 + 1} \times \sqrt{(2)^2 + 1}}$$
 (1.2.4.29)

$$\theta = \cos^{-1}(\frac{-1}{\sqrt{10}}) \implies \theta = \tan^{-1}3 \quad (1.2.4.30)$$

Fig. 1.2.4.1: plot showing intersection of lines

$$x^{2} + 6xy + 9y^{2} + 4x + 12y - 5 = 0$$
 (1.2.5.1)

represents two parallel lines.

Solution: The given equation (1.2.5.1) can be written as

$$\mathbf{x}^{T} \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 2 & 6 \end{pmatrix} \mathbf{x} - 5 = 0$$
 (1.2.5.2)

$$\mathbf{V} = \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} \quad f = -5 \quad (1.2.5.3)$$

Equation (1.2.5.1) represents pair of straight line as,

$$D = \begin{vmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & -5 \end{vmatrix} = 0 \tag{1.2.5.4}$$

Vector form of straight lines,

$$\mathbf{n_1}^T \mathbf{x} = \mathbf{c_1} \tag{1.2.5.5}$$

$$\mathbf{n_2}^T \mathbf{x} = \mathbf{c_2} \tag{1.2.5.6}$$

Equating their product with (1.2.5.2)

$$(\mathbf{n_1}^T \mathbf{x} - \mathbf{c_1})(\mathbf{n_2}^T \mathbf{x} - \mathbf{c_2}) = \mathbf{x}^T \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 2 & 6 \end{pmatrix} \mathbf{x} - 5$$
(1.2.5.7)

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 1 \\ 6 \\ 9 \end{pmatrix} \tag{1.2.5.8}$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2 \begin{pmatrix} 2 \\ 6 \end{pmatrix} \tag{1.2.5.9}$$

$$c_1 c_2 = -5 \tag{1.2.5.10}$$

The slopes of the lines can be given by roots of the equation,

$$cm^2 + 2bm + a = 0 ag{1.2.5.11}$$

$$m_i = \frac{-b \pm \sqrt{-\left|\mathbf{V}\right|}}{c} \tag{1.2.5.12}$$

$$\mathbf{n_i} = k_i \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{1.2.5.13}$$

From (1.2.5.2) equation (1.2.5.11) becomes

$$9m^2 + 6m + 1 = 0 (1.2.5.14)$$

Using (1.2.5.3),

$$\begin{vmatrix} \mathbf{V} \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 3 & 9 \end{vmatrix} = 0 \tag{1.2.5.15}$$

Substituting the values in (1.2.5.12),

$$m_i = \frac{-3 \pm 0}{9} \tag{1.2.5.16}$$

$$m_1 = m_2 = \frac{-1}{3} \tag{1.2.5.17}$$

Substituting values in (1.2.5.13)

$$\mathbf{n_1} = k_1 \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \tag{1.2.5.18}$$

$$\mathbf{n_2} = k_2 \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \tag{1.2.5.19}$$

Using the above values in (1.2.5.8),

$$k_1 k_2 = 9 \tag{1.2.5.20}$$

Taking $k_1 = 3$ and $k_2 = 3$ we get

$$\mathbf{n_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{1.2.5.21}$$

$$\mathbf{n}_2 = \begin{pmatrix} 1\\3 \end{pmatrix} \tag{1.2.5.22}$$

Verifying n_1 and n_2 by computing the convolution by representing n_1 as Toeplitz matrix,

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 9 \end{pmatrix}$$
 (1.2.5.23)

Finding the Angle between the lines,

$$\theta = \cos^{-1} \left(\frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|} \right)$$
 (1.2.5.24)

$$\mathbf{n_1}^T \mathbf{n_2} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 10$$
 (1.2.5.25)

$$\|\mathbf{n_1}\| = \sqrt{10} \quad \|\mathbf{n_2}\| = \sqrt{10} \quad (1.2.5.26)$$

Substituting (1.2.5.25) and (1.2.5.26) in (1.2.5.24) we get,

$$\theta = \cos^{-1}(1) \tag{1.2.5.27}$$

$$\theta = 0^{\circ} \tag{1.2.5.28}$$

From (1.2.5.17) and (1.2.5.28) shows the given equation (1.2.5.1) represents two parallel lines. Hence proved.

Fig. 1.2.5.1: Pair of straight lines plot generated using python

(1.2.5.22) 1.2.6. **Solution:** Find the value of k such that

$$6x^{2} + 11xy - 10y^{2} + x + 31y + k = 0$$
(1.2.6.1)

represent pairs of straight lines.

From (1.2.6.1) we get,

$$\mathbf{V} = \begin{pmatrix} 6 & \frac{11}{2} \\ \frac{11}{2} & -10 \end{pmatrix} \tag{1.2.6.2}$$

$$\mathbf{u} = \begin{pmatrix} \frac{1}{2} \\ \frac{51}{2} \end{pmatrix} \tag{1.2.6.3}$$

$$f = k \tag{1.2.6.4}$$

Compute the slopes of lines given by the roots

of the polynomial $-10m^2 + 11m + 6$

$$i.e., m_i = \frac{-b \pm \sqrt{-|\mathbf{V}|}}{c}$$
 (1.2.6.5)

$$\implies m = \frac{\frac{-11}{2} \pm \frac{19}{2}}{-10} \tag{1.2.6.6}$$

$$\implies m_1 = \frac{-2}{5}, m_2 = \frac{3}{2} \tag{1.2.6.7}$$

Let the pair of straight lines be given by

$$\mathbf{n}_1^T \mathbf{x} = c_1 \tag{1.2.6.8}$$

$$\mathbf{n}_2^T \mathbf{x} = c_2 \tag{1.2.6.9}$$

Here,

$$\mathbf{n}_1 = k_1 \begin{pmatrix} -m_1 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} \frac{2}{5} \\ 1 \end{pmatrix}$$
 (1.2.6.10)

$$\mathbf{n}_2 = k_2 \begin{pmatrix} -m_2 \\ 1 \end{pmatrix} = k_2 \begin{pmatrix} \frac{-3}{2} \\ 1 \end{pmatrix}$$
 (1.2.6.11)

We know that,

$$\mathbf{n}_1 * \mathbf{n}_2 = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{1.2.6.12}$$

Substituting (1.2.6.10) and (1.2.6.11) in the above equation, we get

$$k_1 \begin{pmatrix} \frac{2}{5} \\ 1 \end{pmatrix} * k_2 \begin{pmatrix} \frac{-3}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 11 \\ -10 \end{pmatrix}$$
 (1.2.6.13)

$$\implies k_1 k_2 = -10$$
 (1.2.6.14)

By inspection, we get the values, $k_1 = 5$, $k_2 = -2$. Substituting the values of k_1 and k_2 in (1.2.6.10) and (1.2.6.11) respectively, we get

$$\mathbf{n}_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \tag{1.2.6.15}$$

$$\mathbf{n}_2 = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{1.2.6.16}$$

Using Teoplitz matrix representation, the convolution of \mathbf{n}_1 with \mathbf{n}_2 , is as follows:

$$\begin{pmatrix} 2 & 0 & 5 \\ 5 & 2 & 0 \\ 0 & 5 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 11 \\ -10 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix}$$
 (1.2.6.17)

Hence, \mathbf{n}_1 and \mathbf{n}_2 satisfies (1.2.6.12). We have,

$$c_2 \mathbf{n}_1 + c_1 \mathbf{n}_2 = -2\mathbf{u} \tag{1.2.6.18}$$

Substituting (1.2.6.15), (1.2.6.16) in (1.2.6.18), we get

$$\begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2 \begin{pmatrix} \frac{1}{2} \\ \frac{31}{2} \end{pmatrix}$$
 (1.2.6.19)

Solving for c_1 and c_2 , the augmented matrix is,

$$\begin{pmatrix} 2 & 3 & -1 \\ 5 & -2 & -31 \end{pmatrix} \xrightarrow[R_2 \leftarrow R_2 - 5R_1]{R_1 \leftarrow \frac{R_1}{2}} \begin{pmatrix} 1 & \frac{3}{2} & \frac{-1}{2} \\ 0 & \frac{-19}{2} & \frac{-57}{2} \end{pmatrix}$$
(1.2.6.20)

$$\xrightarrow{R_2 \leftarrow \frac{R_2}{-19/2}} \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{pmatrix}$$

$$(1.2.6.21)$$

Hence we obtain,

$$c_1 = 3, c_2 = -5$$
 (1.2.6.22)

We know that,

$$f = k = c_1 c_2 \tag{1.2.6.23}$$

$$\implies \boxed{k = -15} \tag{1.2.6.24}$$

Hence the solution. Using (1.2.6.8) and (1.2.6.9), the equation of pair of straight lines is given by,

$$(2 5) \mathbf{x} = 3 (1.2.6.25)$$

$$(3 -2)\mathbf{x} = -5$$
 (1.2.6.26)

See Fig. 1.2.6.1

Fig. 1.2.6.1: Plot of two straight lines.

1.2.7. Find the value of k so that following equation

may represent pairs of straight lines,

$$12x^{2} - 10xy + 2y^{2} + 11x - 5y + k = 0$$
(1.2.7.1)

Solution: The general equation of second degree is given by,

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(1.2.7.2)

In vector from the equation (1.2.7.2) can be expressed as,

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.2.7.3}$$

where,

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{1.2.7.4}$$

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} \tag{1.2.7.5}$$

Now, comparing (1.2.7.2) to (1.2.7.1) we get, a =12, b=-5, c = 2, d = $\frac{11}{2}$,e = $-\frac{5}{2}$, f = k. Hence, substituting these values in (1.2.7.4) and (1.2.7.5) we get,

$$\mathbf{V} = \begin{pmatrix} 12 & -5 \\ -5 & 2 \end{pmatrix} \tag{1.2.7.6}$$

$$\mathbf{u} = \begin{pmatrix} \frac{11}{2} \\ -\frac{5}{2} \end{pmatrix} \tag{1.2.7.7}$$

(1.2.7.1) represents pair of straight lines if,

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.7.8}$$

$$\begin{vmatrix} 12 & -5 & \frac{11}{2} \\ -5 & 2 & -\frac{5}{2} \\ \frac{11}{2} & -\frac{5}{2} & k \end{vmatrix} = 0 \tag{1.2.7.9}$$

$$\implies k = 2 \tag{1.2.7.10}$$

Lines Intercept if

$$|\mathbf{V}| < 0 \tag{1.2.7.11}$$

$$|\mathbf{V}| = -1 < 0 \tag{1.2.7.12}$$

Hence Line intercept.

Let (α, β) be their point of intersection, then

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -d \\ -e \end{pmatrix} \tag{1.2.7.13}$$

Substituting in (1.2.7.13)

$$\begin{pmatrix} 12 & -5 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -\frac{11}{2} \\ \frac{5}{2} \end{pmatrix}$$
 (1.2.7.14)

$$\implies \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} \\ -\frac{5}{2} \end{pmatrix} \tag{1.2.7.15}$$

Spectral Decomposition of V is given as

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{1.2.7.16}$$

$$\mathbf{V} = \begin{pmatrix} 12 & -5 \\ -5 & 2 \end{pmatrix} \tag{1.2.7.17}$$

$$\mathbf{P} = \begin{pmatrix} -1 - \sqrt{2} & -1 + \sqrt{2} \\ 1 & 1 \end{pmatrix}$$
 (1.2.7.18)

$$\mathbf{D} = \begin{pmatrix} 7 + 5\sqrt{2} & 0\\ 0 & 7 - 5\sqrt{2} \end{pmatrix} \tag{1.2.7.19}$$

Using Spectral decomposition concept and substution

$$u_1(x - \alpha) + u_2(y - \beta) = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1(x - \alpha) + v_2(y - \beta))$$
(1.2.7.20)

Substituting (1.2.7.15), (1.2.7.18) and (1.2.7.19) in (1.2.7.20)

$$(-1 - \sqrt{2}) \left(x - \frac{-3}{2} \right) + \left(y - \frac{-5}{2} \right)$$

$$= \pm \sqrt{-\frac{7 + 5\sqrt{2}}{7 - 5\sqrt{2}}} \left(\left(-1 + \sqrt{2} \right) \left(x - \frac{-3}{2} \right) + \left(y - \frac{-5}{2} \right) \right)$$

$$(1.2.7.21)$$

Simplifying (1.2.7.21),

$$-6x + 2y - 4 = 0 \text{ and } -2x + y - \frac{1}{2} = 0$$

$$(1.2.7.22)$$

$$\implies (-6x + 2y - 4)\left(-2x + y - \frac{1}{2}\right) = 0$$

Thus the equation of lines are

$$(-6 2)\mathbf{x} = 4 (1.2.7.24)$$

(1.2.7.23)

$$(-2 \quad 1)\mathbf{x} = \frac{1}{2} \tag{1.2.7.25}$$

Hence, Plot is shown below

1.2.8. Find the value of k so that the following

Fig. 1.2.7.1: Pair of lines

equation may represent pair of straight lines:

$$12x^{2} + kxy + 2y^{2} + 11x - 5y + 2 = 0$$
(1.2.8.1)

Solution:

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} 12 & \frac{k}{2} \\ \frac{k}{2} & 2 \end{pmatrix}$$
 (1.2.8.2)

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} = \begin{pmatrix} \frac{11}{2} \\ -\frac{5}{2} \end{pmatrix} \tag{1.2.8.3}$$

The equation (1.2.8.1) represents pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.8.4}$$

$$\Rightarrow \begin{vmatrix} 12 & \frac{k}{2} & \frac{11}{2} \\ \frac{k}{2} & 2 & -\frac{5}{2} \\ \frac{11}{2} & -\frac{5}{2} & 2 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 24 & k & 11 \\ k & 4 & -5 \\ 11 & -5 & 4 \end{vmatrix} = 0$$
(1.2.8.5)

$$\implies \begin{vmatrix} 24 & k & 11 \\ k & 4 & -5 \\ 11 & -5 & 4 \end{vmatrix} = 0 \tag{1.2.8.6}$$

$$\implies 24 \begin{vmatrix} 4 & -5 \\ -5 & 4 \end{vmatrix} - k \begin{vmatrix} k & -5 \\ 11 & 4 \end{vmatrix} + 11 \begin{vmatrix} k & 4 \\ 11 & -5 \end{vmatrix} = 0$$
(1.2.8.7)

$$\implies 2k^2 + 55k + 350 = 0 \tag{1.2.8.8}$$

$$\implies$$
 (10 + k)(2k + 35) = 0 (1.2.8.9)

$$\implies k = -10$$

$$k = -\frac{35}{2} \qquad (1.2.8.10)$$

Therefore, for k = -10 and $k = -\frac{35}{2}$ the given

equation represents pair of straight lines.

Now Lets find equation of lines for k = -10. Substitute k = -10 in (1.2.8.1). We get equation of pair of straight lines as:

$$12x^{2} - 10xy + 2y^{2} + 11x - 5y + 2 = 0$$
(1.2.8.11)

From (1.2.8.1), (1.2.8.2), (1.2.8.3) we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 12 & -5 \\ -5 & 2 \end{pmatrix} \tag{1.2.8.12}$$

$$\mathbf{u} = \begin{pmatrix} \frac{11}{2} \\ -\frac{5}{2} \end{pmatrix} \tag{1.2.8.13}$$

If $|\mathbf{V}| < 0$ then two lines will intersect.

$$\begin{vmatrix} \mathbf{V} \end{vmatrix} = \begin{vmatrix} 12 & -5 \\ -5 & 2 \end{vmatrix} \tag{1.2.8.14}$$

$$\implies |\mathbf{V}| = -1 \tag{1.2.8.15}$$

$$\implies |\mathbf{V}| < 0 \tag{1.2.8.16}$$

Therefore the lines will intersect.

The equation of two lines is given by

$$\mathbf{n_1}^T \mathbf{x} = c_1 \tag{1.2.8.17}$$

$$\mathbf{n_2}^T \mathbf{x} = c_2 \tag{1.2.8.18}$$

Equating their product with (1.2.8.1)

$$(\mathbf{n_1}^T \mathbf{x} - c_1)(\mathbf{n_2}^T \mathbf{x} - c_2)$$

= $\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$ (1.2.8.19)

$$\implies \mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} = \begin{pmatrix} 12 \\ -10 \\ 2 \end{pmatrix} \qquad (1.2.8.20)$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2\mathbf{u} = -2\left(\frac{\frac{11}{2}}{-\frac{5}{2}}\right)$$
 (1.2.8.21)

$$c_1 c_2 = f = 2 \tag{1.2.8.22}$$

The slopes of the lines are given by roots of

equation

$$cm^2 + 2bm + a = 0 (1.2.8.23)$$

$$\implies 2m^2 - 10m + 12 = 0 \qquad (1.2.8.24)$$

$$m_i = \frac{-b \pm \sqrt{-\left|\mathbf{V}\right|}}{c} \tag{1.2.8.25}$$

$$\implies m_i = \frac{5 \pm \sqrt{1}}{2} \qquad (1.2.8.26)$$

$$\implies m_1 = 3 \qquad (1.2.8.27)$$

$$m_2 = 2$$
 (1.2.8.28)

The normal vector for two lines is given by

$$\mathbf{n_i} = k_i \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{1.2.8.29}$$

$$\implies \mathbf{n_1} = k_1 \begin{pmatrix} -3\\1 \end{pmatrix} \tag{1.2.8.30}$$

$$\mathbf{n_2} = k_2 \begin{pmatrix} -2\\1 \end{pmatrix} \tag{1.2.8.31}$$

Substituting (1.2.8.30),(1.2.8.31) in (1.2.8.20). we get

$$k_1 k_2 = 2 \tag{1.2.8.32}$$

The possible combinations of (k_1,k_2) are (1,2), (2,1), (-1,-2) and (-2,-1).

lets assume $k_1 = 1, k_2 = 2$ we get

$$\implies \mathbf{n_1} = \begin{pmatrix} -3\\1 \end{pmatrix} \tag{1.2.8.33}$$

$$\mathbf{n_2} = \begin{pmatrix} -4\\2 \end{pmatrix} \tag{1.2.8.34}$$

We verify obtained n_1, n_2 using Toeplitz matrix

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} -3 & 0 \\ 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ -10 \\ 2 \end{pmatrix} \quad (1.2.8.35)$$

$$\implies \mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 12 \\ -10 \\ 2 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \quad (1.2.8.36)$$

Therefore the obtained $\mathbf{n_1}, \mathbf{n_2}$ are correct. Substitute (1.2.8.33), (1.2.8.34) in (1.2.8.21) and calculate for c_1 and c_2

$$c_2 \begin{pmatrix} -3\\1 \end{pmatrix} + c_1 \begin{pmatrix} -4\\2 \end{pmatrix} = \begin{pmatrix} -11\\-5 \end{pmatrix}$$
 (1.2.8.37)

Solve using row reduction technique.

$$\implies \begin{pmatrix} -4 & -3 & -11 \\ 2 & 1 & -5 \end{pmatrix} \qquad (1.2.8.38)$$

$$\xrightarrow{R_2 \leftarrow 2R_2 + R_1} \begin{pmatrix} -4 & -3 & -11 \\ 0 & -1 & -21 \end{pmatrix}$$
 (1.2.8.39)

$$\xrightarrow{R_1 \leftarrow R_1 - 3R_2} \begin{pmatrix} -4 & 0 & 52 \\ 0 & -1 & -21 \end{pmatrix}$$
 (1.2.8.40)

$$\implies \begin{pmatrix} 1 & 0 & -13 \\ 0 & 1 & 21 \end{pmatrix} \qquad (1.2.8.41)$$

$$\implies c_1 = -13$$
 (1.2.8.42)

$$c_2 = 21$$
 (1.2.8.43)

Substituting (1.2.8.33),(1.2.8.34),(1.2.8.42),(1.2.8.43) in (1.2.8.17) and (1.2.8.18). We get equation of two straight lines.

$$(-3 1)\mathbf{x} = -13 (1.2.8.44)$$

$$(-4 \ 2)\mathbf{x} = 21$$
 (1.2.8.45)

The plot of these two lines is shown in Fig. 1.2.8.1.

Fig. 1.2.8.1: Pair of straight lines for k = -10

Now Lets find equation of lines for $k = -\frac{35}{2}$. Substitute $k = -\frac{35}{2}$ in (1.2.8.1). We get equation of pair of straight lines as:

$$12x^{2} - \frac{35}{2}xy + 2y^{2} + 11x - 5y + 2 = 0$$
(1.2.8.46)

From (1.2.8.1), (1.2.8.2), (1.2.8.3) we get

$$\mathbf{V} = \mathbf{V}^{T} = \begin{pmatrix} 12 & -\frac{35}{4} \\ -\frac{35}{4} & 2 \end{pmatrix}$$
 (1.2.8.47)
$$\mathbf{u} = \begin{pmatrix} \frac{11}{2} \\ -\frac{5}{2} \end{pmatrix}$$
 (1.2.8.48)

If $|\mathbf{V}| < 0$ then two lines will intersect.

$$\left| \mathbf{V} \right| = \begin{vmatrix} 12 & -\frac{35}{4} \\ -\frac{35}{4} & 2 \end{vmatrix} \tag{1.2.8.49}$$

$$\implies |\mathbf{V}| = -\frac{841}{16} \tag{1.2.8.50}$$

$$\implies |\mathbf{V}| < 0 \tag{1.2.8.51}$$

Therefore the lines will intersect. Now from (1.2.8.20),

$$\implies \mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} = \begin{pmatrix} 12 \\ -\frac{35}{2} \\ 2 \end{pmatrix} \qquad (1.2.8.52)$$

The slopes of the lines are given by roots of equation (1.2.8.23)

$$\implies 2m^2 - \frac{35}{2}m + 12 = 0 \qquad (1.2.8.53)$$

$$m_i = \frac{-b \pm \sqrt{-\left|\mathbf{V}\right|}}{c} \tag{1.2.8.54}$$

$$\implies m_i = \frac{\frac{35}{4} \pm \sqrt{\frac{841}{16}}}{2} \qquad (1.2.8.55)$$

$$\implies m_1 = 8 \qquad (1.2.8.56)$$

$$m_2 = \frac{3}{4} \qquad (1.2.8.57)$$

The normal vector for two lines is given by (1.2.8.29)

$$\implies \mathbf{n_1} = k_1 \begin{pmatrix} -8\\1 \end{pmatrix} \tag{1.2.8.58}$$

$$\mathbf{n_2} = k_2 \begin{pmatrix} -\frac{3}{4} \\ 1 \end{pmatrix} \tag{1.2.8.59}$$

Substituting (1.2.8.58),(1.2.8.59) in (1.2.8.52). we get

$$k_1 k_2 = 2 \tag{1.2.8.60}$$

The possible combinations of (k_1,k_2) are (1,2), 1.2.9. Find the value of k so that the following (2,1), (-1,-2) and (-2,-1).

lets assume $k_1 = 1, k_2 = 2$ we get

$$\implies \mathbf{n_1} = \begin{pmatrix} -8\\1 \end{pmatrix} \tag{1.2.8.61}$$

$$\mathbf{n_2} = \begin{pmatrix} -\frac{3}{2} \\ 2 \end{pmatrix} \tag{1.2.8.62}$$

We verify obtained n_1, n_2 using Toeplitz matrix

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} -8 & 0 \\ 1 & -8 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ -\frac{35}{2} \\ 2 \end{pmatrix} \quad (1.2.8.63)$$

$$\implies \mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 12 \\ -\frac{35}{2} \\ 2 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \quad (1.2.8.64)$$

Therefore the obtained n_1, n_2 are correct. Substitute (1.2.8.61), (1.2.8.62) in (1.2.8.21) we get

$$c_2 \begin{pmatrix} -8\\1 \end{pmatrix} + c_1 \begin{pmatrix} -\frac{3}{2}\\2 \end{pmatrix} = \begin{pmatrix} -11\\-5 \end{pmatrix}$$
 (1.2.8.65)

Solve using row reduction technique.

$$\implies \begin{pmatrix} -\frac{3}{2} & -8 & -11\\ 2 & 1 & -5 \end{pmatrix} \quad (1.2.8.66)$$

$$\stackrel{R_1 \leftarrow 2R_1}{\longleftrightarrow} \begin{pmatrix} -3 & -16 & -22 \\ 2 & 1 & -5 \end{pmatrix} \quad (1.2.8.67)$$

$$\xrightarrow{R_2 \leftarrow 3R_2 + 2R_1} \begin{pmatrix} -3 & -16 & -22 \\ 0 & -29 & -59 \end{pmatrix} \quad (1.2.8.68)$$

$$\stackrel{R_1 \leftarrow 29R_1 - 16R_2}{\longleftrightarrow} \begin{pmatrix} -87 & 0 & 306 \\ 0 & -29 & -59 \end{pmatrix} \quad (1.2.8.69)$$

$$\implies \begin{pmatrix} 1 & 0 & -\frac{102}{29} \\ 0 & 1 & \frac{59}{29} \end{pmatrix} \quad (1.2.8.70)$$

$$\implies c_1 = -\frac{102}{29} \quad (1.2.8.71)$$

$$c_2 = \frac{59}{29} \quad (1.2.8.72)$$

Substituting (1.2.8.61),(1.2.8.62),(1.2.8.71),(1.2.8.72) in (1.2.8.17) and (1.2.8.18), we get equation of two straight lines.

$$(-8 \quad 1)\mathbf{x} = -\frac{102}{29} \tag{1.2.8.73}$$

$$\left(-\frac{3}{2} \quad 2\right)\mathbf{x} = \frac{59}{29}$$
 (1.2.8.74)

equation may represent a pair of straight lines

_

$$6x^2 + xy + ky^2 - 11x + 43y - 35 = 0$$
(1.2.9.1)

Solution: The given second degree equation is, Comparing coefficients of (1.2.9.1) we get,

$$\mathbf{V} = \begin{pmatrix} 6 & \frac{1}{2} \\ \frac{1}{2} & k \end{pmatrix} \tag{1.2.9.2}$$

$$\mathbf{u} = \begin{pmatrix} -\frac{11}{2} \\ \frac{45}{2} \end{pmatrix} \tag{1.2.9.3}$$

$$f = -35 \tag{1.2.9.4}$$

The given second degree equation (1.2.9.1) will represent a pair of straight line if,

$$\begin{vmatrix} 6 & \frac{1}{2} & -\frac{11}{2} \\ \frac{1}{2} & k & \frac{43}{2} \\ -\frac{11}{2} & \frac{43}{2} & -35 \end{vmatrix} = 0$$
 (1.2.9.5)

Expanding the determinant,

$$k + 12 = 0 \tag{1.2.9.6}$$

$$\implies k = -12 \tag{1.2.9.7}$$

Hence, from (1.2.9.7) we find that for k = -12, the given second degree equation (1.2.9.1) represents pair of straight lines. For the appropriate value of k, (1.2.9.1) becomes,

$$6x^2 + xy - 12y^2 - 11x + 43y - 35 = 0$$
(1.2.9.8)

Let the pair of straight lines in vector form is given by

$$\mathbf{n_1}^T \mathbf{x} = c_1 \tag{1.2.9.9}$$

$$\mathbf{n_2}^T \mathbf{x} = c_2 \tag{1.2.9.10}$$

The pair of straight lines is given by,

$$(\mathbf{n_1}^T \mathbf{x} - c_1)(\mathbf{n_2}^T \mathbf{x} - c_2) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$
(1.2.9.11)

Putting the values of V and u we get,

$$\mathbf{x}^{T} \begin{pmatrix} 6 & \frac{1}{2} \\ \frac{1}{2} & -12 \end{pmatrix} \mathbf{x} + 2 \left(-\frac{11}{2} & \frac{43}{2} \right) \mathbf{x} - 35 = 0$$
(1.2.9.12)

Hence, from (1.2.9.12) we get,

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 6\\1\\-12 \end{pmatrix} \tag{1.2.9.13}$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2 \begin{pmatrix} -\frac{11}{2} \\ \frac{45}{2} \end{pmatrix}$$
 (1.2.9.14)

$$c_1 c_2 = -35 \tag{1.2.9.15}$$

The slopes of the pair of straight lines are given by the roots of the polynomial,

$$cm^2 + 2bm + a = 0 (1.2.9.16)$$

$$\implies m_i = \frac{-b \pm \sqrt{-\det(V)}}{c} \qquad (1.2.9.17)$$

$$\mathbf{n_i} = k \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{1.2.9.18}$$

Substituting the values in above equations (1.2.9.16) we get,

$$-12m^2 + m + 6 = 0 (1.2.9.19)$$

$$\implies m_i = \frac{-\frac{1}{2} \pm \sqrt{-(-\frac{289}{4})}}{-12} \qquad (1.2.9.20)$$

Solving equation (1.2.9.20) we get,

$$m_1 = -\frac{2}{3} \tag{1.2.9.21}$$

$$m_2 = \frac{3}{4} \tag{1.2.9.22}$$

Hence putting the values of m_1 and m_2 in (1.2.9.18) we get

$$\mathbf{n_1} = k_1 \begin{pmatrix} \frac{2}{3} \\ 1 \end{pmatrix} \tag{1.2.9.23}$$

$$\mathbf{n_2} = k_2 \begin{pmatrix} -\frac{3}{4} \\ 1 \end{pmatrix} \tag{1.2.9.24}$$

Putting values of $\mathbf{n_1}$ and $\mathbf{n_2}$ in (1.2.9.13) we get,

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} -\frac{3k_2}{4} & 0 \\ k_2 & -\frac{3k_2}{4} \\ 0 & k_2 \end{pmatrix} \begin{pmatrix} \frac{2k_1}{3} \\ k_1 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ -12 \end{pmatrix}$$

$$(1.2.9.25)$$

$$\implies \begin{pmatrix} -\frac{1}{2}k_1k_2 \\ -\frac{1}{12}k_1k_2 \\ k_1k_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ -12 \end{pmatrix}$$

$$(1.2.9.26)$$

Thus, from (1.2.9.26), $k_1k_2 = -12$. Possible

combinations of (k_1, k_2) are (6,-2), (-6,2), (3,-4), (-3,4) Lets assume $k_1 = 3$, $k_2 = -4$, then we get,

$$\mathbf{n_1} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{1.2.9.27}$$

$$\mathbf{n_2} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \tag{1.2.9.28}$$

From equation (1.2.9.14) we get

$$\begin{pmatrix} 2 & 3 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2 \begin{pmatrix} -\frac{11}{2} \\ \frac{43}{2} \end{pmatrix}$$
 (1.2.9.30)

Hence we get the following equations,

$$2c_2 + 3c_1 = 11 \tag{1.2.9.31}_{1}$$

$$3c_2 - 4c_1 = -43 \tag{1.2.9.32}$$

The augmented matrix of (1.2.9.31), (1.2.9.32) is,

$$\begin{pmatrix} 2 & 3 & 11 \\ 3 & -4 & -43 \end{pmatrix} \underbrace{R_1 = \frac{1}{2} R_1 \begin{pmatrix} 1 & \frac{3}{2} & \frac{11}{2} \\ 3 & -4 & -43 \end{pmatrix}}_{(1.2.9.33)}$$

$$\underbrace{R_2 = R_2 - 3R_1 \begin{pmatrix} 1 & \frac{3}{2} & \frac{11}{2} \\ 0 & -\frac{17}{2} & -\frac{119}{2} \end{pmatrix}}_{(1.2.9.34)}$$

$$\underbrace{R_2 = -\frac{2}{17} \begin{pmatrix} 1 & \frac{3}{2} & \frac{11}{2} \\ 0 & 1 & 7 \end{pmatrix}}_{(1.2.9.35)}$$

$$\underbrace{R_1 = R_1 - \frac{3}{2} R_2 \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 7 \end{pmatrix}}_{(1.2.9.36)}$$

Hence we get,

$$c_1 = -5 \tag{1.2.9.38}$$

(1.2.9.37)

$$c_2 = 7$$
 (1.2.9.39)

Hence (1.2.9.9), (1.2.9.10) can be modified as follows,

$$(2 \ 3)\mathbf{x} = -5 \tag{1.2.9.40}$$

$$(3 -4)\mathbf{x} = 7 \tag{1.2.9.41}$$

The figure below corresponds to the pair of straight lines represented by (1.2.9.40) and

(1.2.9.41).

Fig. 1.2.9.1: Pair of Straight Lines

(1.2.9.31) (1.2.9.32) 1.2.10. Find the value of k so that following equation may represent pairs of straight lines,

$$kxy - 8x + 9y - 12 = 0$$
 (1.2.10.1)

Solution: The general equation of second degree is given by,

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(1.2.10.2)

In vector from the equation (1.2.10.2) canb be expressed as,

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.2.10.3}$$

where,

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{1.2.10.4}$$

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} \tag{1.2.10.5}$$

Now, comparing equation (1.2.10.2) to (1.2.10.1) we get, a = c = 0, $b = \left(\frac{k}{2}\right)$, d = -4, $e = \left(\frac{9}{2}\right)$, f = -12. Hence, substituting these values in equation (1.2.10.4) and (1.2.10.5) we get,

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 0 & \frac{k}{2} \\ \frac{k}{2} & 0 \end{pmatrix} \tag{1.2.10.6}$$

$$\mathbf{u} = \begin{pmatrix} -4\\ \frac{9}{2} \end{pmatrix} \tag{1.2.10.7}$$

Now equation (1.2.10.1) represents pair of

straight lines if,

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.10.8}$$

$$\begin{vmatrix} 0 & \frac{k}{2} & -4 \\ \frac{k}{2} & 0 & \frac{9}{2} \\ -4 & \frac{9}{2} & -12 \end{vmatrix} = 0 \tag{1.2.10.9}$$

$$\implies k = 0, k = 6$$
 (1.2.10.10)

Substituting (1.2.10.10) in (1.2.10.1) we get,

$$6xy - 8x + 9y - 12 = 0$$
 (1.2.10.11)

$$-8x + 9y - 12 = 0 (1.2.10.12)$$

Hence value of k = 6 represents pair of straight lines. Also it can be verified that the pair of lines intersect as,

$$\left|\mathbf{V}\right| = \begin{vmatrix} 0 & 3 \\ 3 & 0 \end{vmatrix} < 0 \tag{1.2.10.13}$$

Let the pair of straight lines is given by,

$$\mathbf{n_1}^T \mathbf{x} = c1 \tag{1.2.10.14}$$

$$\mathbf{n_2}^T \mathbf{x} = c2 \tag{1.2.10.15}$$

Now equating the product of equation (1.2.10.14) and (1.2.10.15) with (1.2.10.3) we get,

$$(\mathbf{n_1}^T \mathbf{x} - c1)(\mathbf{n_2}^T \mathbf{x} - c2) = (1.2.10.16)$$

$$\mathbf{x}^{T} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -4 & \frac{9}{2} \end{pmatrix} \mathbf{x} - 12$$
 (1.2.10.17)

$$\implies n_1 * n_2 = \{0, 6, 0\}$$
 (1.2.10.18)

$$c_1 n_1 + c_2 n_2 = \begin{pmatrix} 8 \\ -9 \end{pmatrix} \tag{1.2.10.19}$$

$$c_1c_2 = -12.$$
 (1.2.10.20)

Now the slopes of line is given by roots of polynomial,

$$cm^2 + 2bm + a = 0 (1.2.10.21)$$

$$\implies 2bm = 0 \tag{1.2.10.22}$$

$$\implies m = 0 \tag{1.2.10.23}$$

Also

$$m_i = \frac{-b \pm \sqrt{-|V|}}{c} \tag{1.2.10.24}$$

$$\implies m_i = \frac{-0 \pm \sqrt{9}}{0} \tag{1.2.10.25}$$

$$m_1 = 0$$
 (1.2.10.26)

$$m_2 = \infty \tag{1.2.10.27}$$

The normal vector to the two lines is given by,

$$n_i = k_i \binom{-m_i}{1} \tag{1.2.10.28}$$

$$\implies n_1 = k_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{1.2.10.29}$$

$$n_2 = k_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1.2.10.30}$$

Also,

$$k_1 k_2 = 6 \tag{1.2.10.31}$$

Let $k_1 = 2$ and $k_2 = 3$

$$\implies n_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \tag{1.2.10.32}$$

$$n_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \tag{1.2.10.33}$$

We verify obtained n_1 and n_2 using Toeplitz matrix,

$$n_1 * n_2 = \begin{pmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$$
 (1.2.10.34)

Hence (1.2.10.18) and (1.2.10.34) are same. Hence verified.

Now substituting it in (1.2.10.19) we get,

$$c_2 \begin{pmatrix} 0 \\ 2 \end{pmatrix} + c_1 \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ -9 \end{pmatrix}$$
 (1.2.10.35)

Solve using Row reduction Technique we get,

$$\implies \begin{pmatrix} 3 & 0 & 8 \\ 0 & 2 & -9 \end{pmatrix} \tag{1.2.10.36}$$

$$\stackrel{R_1 \leftarrow R_1/3}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 8/3 \\ 0 & 2 & -9 \end{pmatrix} \tag{1.2.10.37}$$

$$\stackrel{R_2 \leftarrow R_2/2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 8/3 \\ 0 & 1 & -9/2 \end{pmatrix} \tag{1.2.10.38}$$

$$\implies c_1 = \frac{8}{3} \tag{1.2.10.39}$$

$$c_2 = \frac{-9}{2} \tag{1.2.10.40}$$

substituting the values of c_1 , c_2 and equa-

Fig. 1.2.10.1: Intersection of 2 lines

tion (1.2.10.32) and (1.2.10.33) to equation (1.2.10.14) and (1.2.10.15) we get equation of two straight lines.

$$\implies \begin{pmatrix} 0 & 2 \end{pmatrix} \mathbf{x} = \frac{8}{3} \tag{1.2.10.41}$$

$$(3 \quad 0) \mathbf{x} = \frac{-9}{2} \tag{1.2.10.42}$$

Hence the equation of pair of straight lines are,

$$\left(\begin{pmatrix} 0 & 2 \end{pmatrix} \mathbf{x} - \frac{8}{3} \right) \left(\begin{pmatrix} 3 & 0 \end{pmatrix} \mathbf{x} - \frac{-9}{2} \right) = 0$$
(1.2.10.43)

Hence, Plot of the equation (1.2.10.43) is shown in Figure 1.2.10.1 Now for value of k =

0 does not represent pair of straight lines.as,

$$\begin{vmatrix} \mathbf{V} \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} \not< 0 \tag{1.2.10.44}$$

Hence, Plot of the equation (-8 9)x = 12 is shown in figure 1.2.10.2,

Fig. 1.2.10.2: Intersection of 2 lines

1.2.11. Find the value of k such that

$$x^{2} + \frac{10}{3}(xy) + y^{2} - 5x - 7y + k = 0$$
 (1.2.11.1)

represent pairs of straight lines.

Solution: From (1.2.11.1),

$$\mathbf{V} = \begin{pmatrix} 1 & \frac{5}{3} \\ \frac{5}{3} & 1 \end{pmatrix} \tag{1.2.11.2}$$

$$\mathbf{u}^T = \begin{pmatrix} \frac{-5}{2} & \frac{-7}{2} \end{pmatrix} \tag{1.2.11.3}$$

and

$$\begin{vmatrix} 1 & \frac{5}{3} & \frac{-5}{2} \\ \frac{5}{3} & 1 & \frac{-7}{2} \\ \frac{-5}{2} & \frac{-7}{2} & k \end{vmatrix} = 0 \quad (1.2.11.4)$$

$$\implies \left(k - \left(\frac{49}{4}\right)\right) - \frac{5}{3} \left(\frac{5}{3}k - \frac{35}{4}\right)$$

$$-\frac{5}{2} \left(\frac{-35}{6} + \frac{5}{2}\right) = 0 \quad (1.2.11.5)$$

$$\implies \frac{64}{k} 36 - \frac{128}{12} = 0 \quad (1.2.11.6)$$

$$\implies \boxed{k = 6} \quad (1.2.11.7)$$

Substituting (1.2.11.7) in (1.2.11.1), we get

$$x^{2} + \frac{10}{3}(xy) + y^{2} - 5x - 7y + 6 = 0$$
 (1.2.11.8)

Hence value of k=6 represents pair of straight lines. Substituting value of k=6 in (1.2.11.4)

$$\delta = \begin{vmatrix} 1 & \frac{5}{3} & \frac{-5}{2} \\ \frac{5}{3} & 1 & \frac{-7}{2} \\ \frac{-5}{2} & \frac{-7}{2} & 6 \end{vmatrix}$$
 (1.2.11.9)

Simplyfying the above determinant, we get

$$\delta = 0 \tag{1.2.11.10}$$

(1.2.11.8) represents two straight lines

$$\det(V) = \begin{vmatrix} 1 & \frac{5}{3} \\ \frac{5}{3} & 1 \end{vmatrix} < 0 \tag{1.2.11.11}$$

Since det(V) < 0 lines would intersect each other

Fig. 1.2.11.1: Pair of straight lines

$$\mathbf{n_1} * \mathbf{n_2} = \{1, \frac{10}{3}, 1\}$$
 (1.2.11.12)

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2 \begin{pmatrix} \frac{-5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.11.13)

$$c_1 c_2 = 6 \tag{1.2.11.14}$$

The slopes of the lines are given by the roots of the polynomial

$$cm^2 + 2bm + a = 0$$
 (1.2.11.15)

$$\implies m_i = \frac{-b \pm \sqrt{-\det(V)}}{c} \qquad (1.2.11.16)$$

$$\mathbf{n_i} = k \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{1.2.11.17}$$

Substituting in above equations (1.2.11.15) we

get,

$$m^2 + \frac{10}{3}m + 1 = 0 ag{1.2.11.18}$$

$$\implies m_i = \frac{\frac{-10}{3} \pm \sqrt{-(\frac{-16}{9})}}{1} \qquad (1.2.11.19)$$

Solving equation (1.2.11.19) we have,

$$m_1 = \frac{-1}{3} \tag{1.2.11.20}$$

$$m_2 = -3 \tag{1.2.11.21}$$

$$\mathbf{n_1} = k_1 \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \tag{1.2.11.22}$$

$$\mathbf{n_2} = k_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1.2.11.23}$$

Substituting equations (1.2.11.22), (1.2.11.23) in equation (1.2.11.12) we get

$$k_1 k_2 = 1 \tag{1.2.11.24}$$

Possible combination of (k_1, k_2) is (1,1) Lets assume $k_1 = 1$, $k_2 = 1$, we get

$$\mathbf{n_1} = \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \tag{1.2.11.25}$$

$$\mathbf{n_2} = \begin{pmatrix} 3\\1 \end{pmatrix} \tag{1.2.11.26}$$

we have:

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{1.2.11.27}$$

Convolution of $\mathbf{n_1}$ and $\mathbf{n_2}$ can be done by converting $\mathbf{n_1}$ into a teoplitz matrix and multiplying with $\mathbf{n_2}$

From equation (1.2.11.25) and (1.2.11.26)

$$\mathbf{n_1} = \begin{pmatrix} \frac{1}{3} & 0\\ 1 & \frac{1}{3}\\ 0 & 1 \end{pmatrix} \mathbf{n_2} = \begin{pmatrix} 3\\ 1 \end{pmatrix} \quad (1.2.11.28)$$

$$\implies \begin{pmatrix} \frac{1}{3} & 0\\ 1 & \frac{1}{3}\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ \frac{10}{3}\\ 1 \end{pmatrix} = \begin{pmatrix} a\\ 2b\\ c \end{pmatrix} \quad (1.2.11.29)$$

 c_1 and c_2 can be obtained as,

$$\begin{pmatrix} \mathbf{n_1} & \mathbf{n_2} \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2\mathbf{u} \tag{1.2.11.30}$$

$$(\mathbf{n_1} \quad \mathbf{n_2})\begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2\begin{pmatrix} \frac{-5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.11.31)

Substituting (1.2.11.25) and (1.2.11.26) in (1.2.11.31), the augmented matrix is,

$$\begin{pmatrix} \frac{1}{3} & 3 & 5 \\ 1 & 1 & 7 \end{pmatrix} \xrightarrow{R_1 \leftarrow 3 \times R_1} \begin{pmatrix} 1 & 9 & 15 \\ 1 & 1 & 7 \end{pmatrix} \quad (1.2.11.32)$$

$$\begin{pmatrix} 1 & 9 & 15 \\ 1 & 1 & 7 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 9 & 15 \\ 0 & -8 & -8 \end{pmatrix}$$

$$(1.2.11.33)$$

$$\begin{pmatrix} 1 & 9 & 15 \\ 0 & -8 & -8 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 \div -8} \begin{pmatrix} 1 & 9 & 15 \\ 0 & 1 & 1 \end{pmatrix}$$
(1.2.11.34)

$$\begin{pmatrix} 1 & 9 & 15 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - 9 \times R_2} \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & 1 \end{pmatrix} (1.2.11.35)$$

From above we get

$$c_1 = 1 \tag{1.2.11.36}$$

$$c_2 = 6 \tag{1.2.11.37}$$

Hence pair of straight lines are

$$\left(\frac{1}{3} \quad 1\right)\mathbf{x} = 1$$
 (1.2.11.38)

$$(3 \ 1)\mathbf{x} = 6$$
 (1.2.11.39)

1.2.12. Prove that the equation

$$12x^2 + 7xy - 10y^2 + 13x + 45y - 35 = 0$$
(1.2.12.1

represents two straight lines and find the angle between the lines.

Solution: The above equation can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.2.12.2}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 12 & \frac{7}{2} \\ \frac{7}{2} & -10 \end{pmatrix}$$
 (1.2.12.3)

$$\mathbf{u} = \begin{pmatrix} \frac{13}{2} \\ \frac{45}{2} \end{pmatrix} \tag{1.2.12.4}$$

$$f = -35 \tag{1.2.12.5}$$

(1.2.12.2) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \qquad (1.2.12.6)$$

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = \begin{vmatrix} 12 & \frac{7}{2} & \frac{13}{2} \\ \frac{7}{2} & -10 & \frac{45}{2} \\ \frac{13}{2} & \frac{45}{2} & -35 \end{vmatrix}$$

$$(1.2.12.7)$$

$$\implies 12 \begin{vmatrix} -10 & \frac{45}{2} \\ \frac{45}{2} & -35 \end{vmatrix} - \frac{7}{2} \begin{vmatrix} \frac{7}{2} & \frac{45}{2} \\ \frac{13}{2} & -35 \end{vmatrix} + \frac{13}{2} \begin{vmatrix} \frac{7}{2} & -10 \\ \frac{13}{2} & \frac{45}{2} \end{vmatrix} = 0$$
(1.2.12.8)

The lines intercept if

$$\left|\mathbf{V}\right| < 0 \tag{1.2.12.10}$$

$$\left| \mathbf{V} \right| = -\frac{529}{4} < 0 \tag{1.2.12.11}$$

From (1.2.12.8) and (1.2.12.11) it can be concluded that the given equation represents a pair of intersecting lines. Let the equations of lines be

$$\mathbf{n_1}^T \mathbf{x} = c_1 \tag{1.2.12.12}$$

$$\mathbf{n_2}^T \mathbf{x} = c_2 \tag{1.2.12.13}$$

Since (1.2.12.2) represents a pair of straight lines it must satisfy

$$(\mathbf{n_1}^T \mathbf{x} - c_1)(\mathbf{n_1}^T \mathbf{x} - c_1) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$
(1.2.12.14)

where

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} = \begin{pmatrix} 12 \\ 7 \\ -10 \end{pmatrix} \tag{1.2.12.15}$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2\mathbf{u} \tag{1.2.12.16}$$

$$c_1 c_2 = f \tag{1.2.12.17}$$

Slopes of the lines can be obtained by solving

$$cm^2 + 2bm + a = 0$$
 (1.2.12.18)

$$-10m^2 + 7m + 12 = 0 (1.2.12.19)$$

$$\implies m_1 = \frac{-4}{5}, m_2 = \frac{3}{2}$$
 (1.2.12.20)

The normal vectors can be expressed in terms

of corresponding slopes of lines as

$$\mathbf{n} = k \begin{pmatrix} -m \\ 1 \end{pmatrix} \tag{1.2.12.21}$$

$$\implies$$
 $\mathbf{n_1} = k_1 \begin{pmatrix} \frac{4}{5} \\ 1 \end{pmatrix}$ (1.2.12.22)

$$\mathbf{n_2} = k_2 \begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix} \tag{1.2.12.23}$$

Substituing (1.2.12.22) and (1.2.12.23) in (1.2.12.15) we get

$$k_1 k_2 = -10 \tag{1.2.12.24}$$

Assuming $k_1 = 5$ and $k_2 = -2$

$$\mathbf{n_1} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \mathbf{n_2} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{1.2.12.25}$$

Verification using Toeplitz matrix

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 4 & 0 \\ 5 & 4 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 12 \\ 7 \\ -10 \end{pmatrix} \quad (1.2.12.26)$$

From (1.2.12.16) we have

$$c_2 \begin{pmatrix} 4 \\ 5 \end{pmatrix} + c_1 \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -13 \\ -45 \end{pmatrix}$$
 (1.2.12.27)

Solving the augmented matrix

$$\begin{pmatrix} 4 & 3 & -13 \\ 5 & -2 & -45 \end{pmatrix} \xrightarrow{R_2 \leftarrow 4R_2 - 5R_1} \begin{pmatrix} 4 & 3 & -13 \\ 0 & -23 & -115 \end{pmatrix}$$
(1.2.12.28)

$$\xrightarrow{R_2 \leftarrow -\frac{R_2}{23}} \begin{pmatrix} 4 & 3 & -13 \\ 0 & 1 & 5 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - 3R_2} \begin{pmatrix} 4 & 0 & -28 \\ 0 & 1 & 5 \end{pmatrix}$$

$$(1.2.12.29)$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{4}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -7 \\ 0 & 1 & 5 \end{pmatrix}$$

$$(1.2.12.30)$$

$$\implies$$
 $c_1 = -7, c_2 = 5$ (1.2.12.31)

Thus the equation of lines are

$$(4 5) \mathbf{x} = 5 (1.2.12.32)$$

$$(3 -2)\mathbf{x} = -7$$
 (1.2.12.33)

The angle between the lines can be expressed interms of normal vectors

$$\mathbf{n_1} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \quad \mathbf{n_2} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{1.2.12.34}$$

as

$$\cos \theta = \frac{{\mathbf{n_1}^T \mathbf{n_2}}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}$$
(1.2.12.35)

$$\implies \theta = \cos^{-1}(\frac{2}{\sqrt{533}}) = \tan^{-1}(\frac{23}{2})$$
(1.2.12.36)

Fig. 1.2.12.1

1.2.13. Find the value of k so that the following equation may represent the pair of staright lines:

$$2x^2 + xy - y^2 + kx + 6y - 9 = 0 (1.2.13.1)$$

Solution: We need to find the value of k for which (1.2.13.1) represents a pair of straight lines.

Converting (1.2.13.1) into vector form, we get

$$\mathbf{x}^{T} \begin{pmatrix} 2 & 1/2 \\ 1/2 & -1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} k/2 \\ 3 \end{pmatrix} \mathbf{x} - 9 = 0$$
(1.2.13.2)

Here, we have

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 2 & 1/2 \\ 1/2 & -1 \end{pmatrix}$$
 (1.2.13.3)

$$\mathbf{u} = \begin{pmatrix} k/2 \\ 3 \end{pmatrix} \tag{1.2.13.4}$$

$$f = -9 \tag{1.2.13.5}$$

The above represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{1.2.13.6}$$

Since (1.2.13.1) represents a pair of straight lines, then by (1.2.13.6), we have

$$\begin{vmatrix} 2 & 1/2 & k/2 \\ 1/2 & -1 & 3 \\ k/2 & 3 & -9 \end{vmatrix} = 0$$
 (1.2.13.7)

By solving, above determinant we get

$$2(9-9) + \frac{-1}{2}(\frac{-9}{2} + \frac{-3k}{2}) + \frac{k}{2}(\frac{3}{2} + \frac{k}{2}) = 0$$
(1.2.13.8)

$$\frac{(9+3k)}{4} + \frac{k(3+k)}{4} = 0 ag{1.2.13.9}$$

$$k^2 + 6k + 9 = 0 (1.2.13.10)$$

$$(k+3)^2 = 0 (1.2.13.11)$$

$$k = -3 \tag{1.2.13.12}$$

Hence by (1.2.13.12), we have

$$2x^2 + xy - y^2 - 3x + 6y - 9 = 0$$
 (1.2.13.13)

represents family of straight lines for k = -3. To find the staright lines, we write each of thrm in their vector form as

$$\mathbf{n_1}^T \mathbf{x} = c_1 \tag{1.2.13.14}$$

$$\mathbf{n_2}^T \mathbf{x} = c_2 \tag{1.2.13.15}$$

Equating the product of above with (1.2.13.2), we have

$$(\mathbf{n_1}^T \mathbf{x} - c_1) (\mathbf{n_2}^T \mathbf{x} - c_2) = \mathbf{x}^T \begin{pmatrix} 2 & 1/2 \\ 1/2 & -1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} k/2 \\ 3 \end{pmatrix} \mathbf{x} - 9 \quad (1.2.13.16)$$

$$\Longrightarrow \mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \tag{1.2.13.17}$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_1} = -2 \begin{pmatrix} -3/2 \\ 3 \end{pmatrix}$$
 (1.2.13.18)

$$c_1 c_2 = -9 \tag{1.2.13.19}$$

Here, the slope of these lines are given by the

roots of the polynomial

$$-m^2 + m + 2 = 0 ag{1.2.13.20}$$

$$m^2 - m - 2 = 0 (1.2.13.21)$$

$$m = \frac{1 \pm \sqrt{1+8}}{2} \tag{1.2.13.22}$$

$$m_1 = \frac{1+3}{2} = 2 \tag{1.2.13.23}$$

$$m_2 = \frac{1-3}{2} = -1 \tag{1.2.13.24}$$

$$n_1 = k_1 \begin{pmatrix} -2\\1 \end{pmatrix} \tag{1.2.13.25}$$

$$n_2 = k_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.2.13.26}$$

Substituing (1.2.13.25) and (1.2.13.26) in (1.2.13.17), we get

$$k_1 k_2 = -1 \tag{1.2.13.27}$$

Taking $k_1 = -1$ and $k_2 = 1$, we get

$$n_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{1.2.13.28}$$

$$n_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.2.13.29}$$

Substituting in (1.2.13.18) for above values of n_1 and n_2

$$(n_1 n_2) \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 (1.2.13.30)

$$\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \end{pmatrix} \tag{1.2.13.31}$$

Solving (1.2.13.31),

$$\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \end{pmatrix} \iff \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \end{pmatrix} \iff \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \quad (1.2.13.32)$$

$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \Leftrightarrow \xrightarrow{r_2 = r_2/3} \Rightarrow$$

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \quad (1.2.13.33)$$

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \Leftrightarrow \xrightarrow{r_1 = r_1 - r_2}$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix} \quad (1.2.13.34)$$

Hence, we found out

$$c_1 = -3 \tag{1.2.13.35}$$

$$c_2 = 3 \tag{1.2.13.36}$$

Thus, pair of staright lines are

$$(2 -1)\mathbf{x} = -3 \tag{1.2.13.37}$$

$$(1 \quad 1)\mathbf{x} = 3 \tag{1.2.13.38}$$

where

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \tag{1.2.13.39}$$

The plot of above is shown below

Fig. 1.2.13.1: Pair of Straight Lines

1.2.14. Prove that the equation $12x^2+7xy-10y^2+13x+45y-35=0$ represents two straight lines and find the angle between them.

Solution: The general second order equation is given by ,

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(1.2.14.1)

Given,

$$12x^{2} + 7xy - 10y^{2} + 13x + 45y - 35 = 0$$
(1.2.14.2)

The above equation can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1.2.14.3}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 12 & \frac{7}{2} \\ \frac{7}{2} & -10 \end{pmatrix}$$
 (1.2.14.4)

$$\mathbf{u} = \begin{pmatrix} \frac{13}{2} \\ \frac{45}{2} \end{pmatrix} \tag{1.2.14.5}$$

$$f = -35 \tag{1.2.14.6}$$

(1.2.14.3) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \qquad (1.2.14.7)$$

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = \begin{vmatrix} 12 & \frac{7}{2} & \frac{13}{2} \\ \frac{7}{2} & -10 & \frac{45}{2} \\ \frac{13}{2} & \frac{45}{2} & -35 \end{vmatrix}$$

$$(1.2.14.8)$$

$$\implies 12 \begin{vmatrix} -10 & \frac{45}{2} \\ \frac{45}{2} & -35 \end{vmatrix} - \frac{7}{2} \begin{vmatrix} \frac{7}{2} & \frac{45}{2} \\ \frac{13}{2} & -35 \end{vmatrix} + \frac{13}{2} \begin{vmatrix} \frac{7}{2} & -10 \\ \frac{13}{2} & \frac{45}{2} \end{vmatrix} = 0$$

The lines intercept if

$$\left|\mathbf{V}\right| < 0 \tag{1.2.14.10}$$

$$\left|\mathbf{V}\right| = -\frac{529}{4} < 0\tag{1.2.14.11}$$

From (1.2.14.9) and (1.2.14.11) it can be concluded that the given equation represents a pair of intersecting lines.

Let (α, β) be their point of intersection, then

$$\begin{pmatrix} 12 & \frac{7}{2} \\ \frac{7}{2} & -10 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{-13}{2} \\ -\frac{45}{2} \end{pmatrix}$$
 (1.2.14.12)

$$\implies \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \tag{1.2.14.13}$$

From Spectral theorem, $V = PDP^T$ (1.2.14.14)

$$\mathbf{V} = \begin{pmatrix} 12 & \frac{7}{2} \\ \frac{7}{2} & -10 \end{pmatrix} \tag{1.2.14.15}$$

$$\mathbf{P} = \begin{pmatrix} \frac{-\sqrt{533} - 22}{2} & \frac{-22 + \sqrt{533}}{2} \\ 1 & 1 \end{pmatrix}$$
 (1.2.14.16)

$$\mathbf{D} = \begin{pmatrix} 1 + \frac{\sqrt{533}}{2} & 0\\ 0 & 1 - \frac{\sqrt{533}}{2} \end{pmatrix}$$
 (1.2.14.17)

Using Spectral decomposition of matrix we can

express equation as

$$u_1(x - \alpha) + u_2(y - \beta) = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1(x - \alpha) + v_2(y - \beta))$$
(1.2.14.18)

Substituting values in above equation we get;

$$\frac{\sqrt{533} - 22}{2}(x+1) + (y-2)$$

$$= \pm \sqrt{-\frac{1 - \frac{\sqrt{533}}{2}}{1 + \frac{\sqrt{533}}{2}}} \left(\frac{-22 - \sqrt{533}}{2}(x+1) + (y-2)\right)$$
(1.2.14.19)

Simplifying (1.2.14.19),

$$3x - 2y + 7 = 0$$
 and $4x + 5y - 5 = 0$

$$(1.2.14.20)$$

$$\implies (3x - 2y + 7)(4x + 5y - 5) = 0$$

$$(1.2.14.21)$$

Thus the equation of lines are

$$(4 5) \mathbf{x} = 5$$
 (1.2.14.22)
 $(3 -2) \mathbf{x} = -7$ (1.2.14.23)

$$(3 -2)\mathbf{x} = -7$$
 (1.2.14.23)

Angle between the straight lines: The angle

Fig. 1: Pair of straight lines

between the lines can be expressed in terms of normal vectors

$$\mathbf{n_1} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \quad \mathbf{n_2} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{1.2.14.24}$$

$$\cos \theta = \frac{{\mathbf{n_1}^T \mathbf{n_2}}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}$$
(1.2.14.25)

$$\implies \theta = \cos^{-1}(\frac{2}{\sqrt{533}}) = \tan^{-1}(\frac{23}{2})$$
(1.2.14.26)

1.2.15. Find the value of h so that the equation

$$6x^2 + 2hxy + 12y^2 + 22x + 31y + 20 = 0$$
(1.2.15.1)

may represent two straight lines.

Solution: The general equation second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
 (1.2.15.2)

(1.2.15.2) represents pair of straight lines if

$$\begin{vmatrix} a & h & d \\ h & c & e \\ d & e & f \end{vmatrix} = 0 \tag{1.2.15.3}$$

From (1.2.15.3), given equation represents pair of straight lines if

$$\begin{vmatrix} 6 & h & 11 \\ h & 12 & \frac{31}{2} \\ 11 & \frac{31}{2} & 20 \end{vmatrix} = 0 \tag{1.2.15.4}$$

$$\implies h = \frac{17}{2} \text{ or } h = \frac{171}{20}$$
 (1.2.15.5)

Verify (1.2.15.5) using python code from

https://github.com/shreeprasadbhat/matrixtheory/tree/master/assignment5/codes/ solve determinant.py

The general equation second degree is given

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$
 (1.2.15.6)

Let (α, β) be their point of intersection, then

$$\begin{pmatrix} a & h \\ h & b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -d \\ -e \end{pmatrix}$$
 (1.2.15.7)

Under Affine transformation,

$$\mathbf{x} = \mathbf{M}\mathbf{v} + c \tag{1.2.15.8}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 (1.2.15.9)

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} X + \alpha \\ Y + \beta \end{pmatrix}$$
 (1.2.15.10)

(1.2.15.6) under transformation (1.2.15.10) will become,

$$aX^2 + 2bXY + cY^2 = 0 (1.2.15.11)$$

$$\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} a & h \\ h & b \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = 0 \tag{1.2.15.12}$$

$$(X Y) \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} u_1 & u_2 \\ v_1 & v_2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = 0$$

$$(1.2.15.13)$$

$$(X' Y') \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} = 0$$

$$(1.2.15.14)$$

where $X' = Xu_1 + Yu_2$ and $Y' = Xv_1 + Yv_2$

$$\implies \lambda_1(X')^2 + \lambda_2(Y')^2 = 0$$
 (1.2.15.15)

This is called Spectral decomposition of matrix

$$X' = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} Y'$$

$$(1.2.15.16)$$

$$u_1 X + u_2 Y = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1 X + v_2 Y)$$

$$(1.2.15.17)$$

$$u_1 (x - \alpha) + u_2 (y - \beta) = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1 (x - \alpha) + v_2 (y - \beta))$$

(1.2.15.18)

Given equation is

$$6x^2 + 17xy + 12y^2 + 22x + 31y + 20 = 0$$
(1.2.15.19)

Substituting in (1.2.15.7)

$$\begin{pmatrix} 6 & \frac{17}{2} \\ \frac{17}{2} & 12 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -11 \\ -\frac{31}{2} \end{pmatrix}$$
 (1.2.15.20)

$$\implies \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{1.2.15.21}$$

Verify (1.2.15.21) using python code from

https://github.com/shreeprasadbhat/matrix—theory/tree/master/assignment5/codes/find_intersection.py

Taking $h = \frac{17}{2}$

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{1.2.15.22}$$

$$\mathbf{V} = \begin{pmatrix} 6 & \frac{17}{2} \\ \frac{17}{2} & 12 \end{pmatrix} \tag{1.2.15.23}$$

$$\mathbf{P} = \begin{pmatrix} \frac{-5\sqrt{13} - 6}{17} & \frac{-6 + 5\sqrt{13}}{17} \\ 1 & 1 \end{pmatrix}$$
 (1.2.15.24)

$$\mathbf{D} = \begin{pmatrix} 9 - \frac{5\sqrt{13}}{2} & 0\\ 0 & 9 + \frac{5\sqrt{13}}{2} \end{pmatrix}$$
 (1.2.15.25)

Verify (1.2.15.24) and (1.2.15.25) using python code from

https://github.com/shreeprasadbhat/matrix theory/tree/master/assignment5/codes/ diagonalize1.py

Substituting (1.2.15.21), (1.2.15.24) and (1.2.15.25) in (1.2.15.18),

$$\frac{-5\sqrt{13} - 6}{17}(x+1) + (y-2)$$

$$= \pm \sqrt{-\frac{9 + \frac{5\sqrt{13}}{2}}{9 - \frac{5\sqrt{13}}{2}}} \left(\frac{-6 + 5\sqrt{13}}{17}(x+1) + (y+2)\right)$$
(1.2.15.26)

Simplifying (1.2.15.26),

$$2x + 3y + 4 = 0$$
 and $3x + 4y + 5 = 0$

(1.2.15.27)

$$\implies (2x + 3y + 4)(3x + 4y + 5) = 0$$
(1.2.15.28)

Verify (1.2.15.27) using python code from

https://github.com/shreeprasadbhat/matrix—theory/tree/master/assignment5/codes/calculate1.py

Taking $h = \frac{171}{20}$

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{1.2.15.29}$$

$$\mathbf{V} = \begin{pmatrix} 6 & \frac{171}{2} \\ \frac{171}{2} & 12 \end{pmatrix} \tag{1.2.15.30}$$

$$\mathbf{P} = \begin{pmatrix} \frac{-\sqrt{3649} - 20}{57} & \frac{-20 + \sqrt{3649}}{57} \end{pmatrix}$$
 (1.2.15.31)

$$\mathbf{D} = \begin{pmatrix} 9 - \frac{3\sqrt{3649}}{20} & 0\\ 0 & 9 + \frac{3\sqrt{3649}}{20} \end{pmatrix} \quad (1.2.15.32)$$

Verify (1.2.15.31) and (1.2.15.32) using python code from

2x + 3y + 4 = 0

5x + 8y + 10 = 0 $-4x + 5y + \frac{20}{3} = 0$ 2 0 -2 -4-8

Fig. 1: Pair of straight lines 3x + 4y + 5 = 0 and Fig. 1: Pair of straight lines $4x + 5y + \frac{20}{3} = 0$ and 5x + 8y + 10 = 0

https://github.com/shreeprasadbhat/matrixtheory/tree/master/assignment5/codes/ diagonalize2.py

Substituting (1.2.15.21),(1.2.15.31)and (1.2.15.32) in (1.2.15.18),

$$\frac{-\sqrt{3649} - 20}{57}(x+1) + (y-2)$$

$$= \pm \sqrt{-\frac{9 + \frac{3\sqrt{3649}}{20}}{9 - \frac{3\sqrt{3649}}{20}}}$$

$$\left(\frac{-20 + \sqrt{3649}}{57}(x+1) + (y+2)\right) \quad (1.2.15.33)$$

Simplifying (1.2.15.32),

$$2x + 3y + 4 = 0$$
 and $3x + 4y + 5 = 0$

$$(1.2.15.34)$$

$$\implies (2x + 3y + 4)(3x + 4y + 5) = 0$$

$$(1.2.15.35)$$

Verify (1.2.15.33) using python code from

https://github.com/shreeprasadbhat/matrixtheory/tree/master/assignment5/codes/ calculate2.py

2 General Equation. Tracing of Curves

2.1 40

2.1.1. What conics do the following equation represent? When possible, find the centres and also their equations referred to the centre

$$12x^2 - 23xy + 10y^2 - 25x + 26y = 14$$
(2.1.1.1)

Solution: The given equation (2.1.1.1) can be expressed as

$$\mathbf{x}^{T} \begin{pmatrix} 12 & \frac{-23}{2} \\ \frac{-23}{2} & 10 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{-25}{2} & 13 \end{pmatrix} \mathbf{x} - 14 = 0$$
(2.1.1.2)

where

$$\mathbf{V} = \begin{pmatrix} 12 & \frac{-23}{2} \\ \frac{-23}{2} & 10 \end{pmatrix} \tag{2.1.1.3}$$

$$\mathbf{u} = \begin{pmatrix} \frac{-25}{2} \\ 13 \end{pmatrix} \tag{2.1.1.4}$$

$$f = -14 \tag{2.1.1.5}$$

$$\det(\mathbf{V}) = \begin{vmatrix} 12 & \frac{-23}{2} \\ \frac{-23}{2} & 10 \end{vmatrix}$$
 (2.1.1.6)

$$\implies \det(\mathbf{V}) = \frac{-49}{4} \tag{2.1.1.7}$$

$$\implies \det(\mathbf{V}) < 0 \tag{2.1.1.8}$$

Since det(V) < 0 the given equation (2.1.1.2) represents the hyperbola The characteristic equation of V is obtained by evaluating the determinant

$$\mid V - \lambda \mathbf{I} \mid = 0 \tag{2.1.1.9}$$

$$\begin{vmatrix} 12 - \lambda & \frac{-23}{2} \\ \frac{-23}{2} & 10 - \lambda \end{vmatrix} = 0 \tag{2.1.1.10}$$

$$\implies 4\lambda^2 - 88\lambda - 49 = 0 \qquad (2.1.1.11)$$

The eigenvalues are the roots of equation 2.1.1.11 is given by

$$\lambda_1 = \frac{22 + \sqrt{533}}{2} \tag{2.1.1.12}$$

$$\lambda_2 = \frac{22 - \sqrt{533}}{2} \tag{2.1.1.13}$$

The eigenvector **p** is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.1.14}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.1.1.15}$$

For $\lambda_1 = \frac{22 - \sqrt{533}}{2}$

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} \frac{\sqrt{553} + 2}{2} & \frac{-23}{2} \\ \frac{-23}{2} & \frac{\sqrt{533} - 2}{2} \end{pmatrix}$$
 (2.1.1.16)

By row reduction,

$$\begin{pmatrix} \frac{\sqrt{533}+2}{2} & \frac{-23}{2} \\ \frac{-23}{2} & \frac{\sqrt{533}-2}{2} \end{pmatrix}$$
 (2.1.1.17)

$$\stackrel{R_1 = \frac{R_1}{\sqrt{533} + 2}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2 - \sqrt{533}}{23} \\ \frac{-23}{2} & \frac{\sqrt{533} - 2}{2} \end{pmatrix}$$
(2.1.1.18)

$$\stackrel{R_2=R_2+\frac{23}{2}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2-\sqrt{533}}{23} \\ 0 & 0 \end{pmatrix} \tag{2.1.1.19}$$

Substituting equation 2.1.1.19 in equation 2.1.1.15 we get

$$\begin{pmatrix} 1 & \frac{2-\sqrt{533}}{23} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.1.20)

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$v_1 = \frac{-t(2 - \sqrt{533})}{23} \tag{2.1.1.21}$$

Eigen vector $\mathbf{p_1}$ is given by

$$\mathbf{p_1} = \begin{pmatrix} \frac{-t(2-\sqrt{533})}{23} \\ t \end{pmatrix} \tag{2.1.1.22}$$

Let t = 1, we get

$$\mathbf{p_1} = \begin{pmatrix} \frac{\sqrt{533} - 2}{23} \\ 1 \end{pmatrix} \tag{2.1.1.23}$$

For $\lambda_2 = \frac{22 + \sqrt{533}}{2}$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} \frac{2 - \sqrt{553}}{2} & \frac{-23}{2} \\ \frac{-23}{2} & \frac{-2 - \sqrt{533}}{2} \end{pmatrix}$$
 (2.1.1.24)

By row reduction,

$$\begin{pmatrix} \frac{2-\sqrt{533}}{2} & \frac{-23}{2} \\ \frac{-23}{2} & \frac{-2-\sqrt{533}}{2} \end{pmatrix}$$
 (2.1.1.25)

$$\stackrel{R_1 = \frac{R_1}{2 - \sqrt{533}}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2 + \sqrt{533}}{23} \\ \frac{-23}{2} & \frac{-2 - \sqrt{533}}{2} \end{pmatrix}$$
(2.1.1.26)

$$\stackrel{R_2=R_2+\frac{23}{2}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2-\sqrt{533}}{23} \\ 0 & 0 \end{pmatrix} \tag{2.1.1.27}$$

Substituting equation 2.1.1.27 in 2.1.1.15 we get

$$\begin{pmatrix} 1 & \frac{2+\sqrt{533}}{23} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.1.28)

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Let $v_2 = t$

$$v_1 = \frac{-t(2+\sqrt{533})}{23} \tag{2.1.1.29}$$

Eigen vector $\mathbf{p_2}$ is given by

$$\mathbf{p_2} = \begin{pmatrix} \frac{-t(2+\sqrt{533})}{23} \\ t \end{pmatrix}$$
 (2.1.1.30)

Let t = 1, we get

$$\mathbf{p_2} = \begin{pmatrix} \frac{-\sqrt{533} - 2}{23} \\ 1 \end{pmatrix} \tag{2.1.1.31}$$

By eigen decompostion V can be represented by

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.1.32}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} \tag{2.1.1.33}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{2.1.1.34}$$

Substituting equations 2.1.1.23, 2.1.1.31 in

(2.1.1.49)

equation 2.1.1.33 we get

$$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{533} - 2}{23} & \frac{-\sqrt{533} - 2}{23} \\ 1 & 1 \end{pmatrix}$$
 (2.1.1.35)

Substituting equations 2.1.1.12, 2.1.1.13 in 2.1.1.34 we get

$$\mathbf{D} = \begin{pmatrix} \frac{22 - \sqrt{533}}{2} & 0\\ 0 & \frac{22 + \sqrt{533}}{2} \end{pmatrix}$$
 (2.1.1.36)

Centre of the hyperbola is given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \tag{2.1.1.37}$$

$$\implies \mathbf{c} = -\begin{pmatrix} \frac{-40}{49} & \frac{-46}{49} \\ \frac{-46}{49} & \frac{-48}{49} \end{pmatrix} \begin{pmatrix} \frac{-25}{2} \\ 13 \end{pmatrix}$$
 (2.1.1.38)

$$\implies \mathbf{c} = \begin{pmatrix} \frac{40}{49} & \frac{46}{49} \\ \frac{46}{49} & \frac{49}{49} \\ \end{pmatrix} \begin{pmatrix} \frac{-25}{2} \\ 13 \end{pmatrix} \tag{2.1.1.39}$$

$$\implies \mathbf{c} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{2.1.1.40}$$

Since,

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 26 > 0 \tag{2.1.1.41}$$

there isn't a need to swap axes In hyperbola,

$$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} \\ \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} \end{cases}$$
 (2.1.1.42)

From above equations we can say that,

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \frac{2\sqrt{13}}{\sqrt{22 + \sqrt{533}}} \quad (2.1.1.43)$$

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \frac{2\sqrt{13}}{\sqrt{\sqrt{533} - 22}} \quad (2.1.1.44)$$

Now (2.1.1.2) can be written as,

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.1.1.45}$$

where,

$$\mathbf{y} = \mathbf{P}^T (\mathbf{x} - \mathbf{c}) \tag{2.1.1.46}$$

To get y,

$$\mathbf{y} = \mathbf{P}^{T} \mathbf{x} - \mathbf{P}^{T} \mathbf{c}$$

$$\mathbf{y} = \begin{pmatrix} \frac{\sqrt{533} - 2}{23} & 1\\ -\frac{\sqrt{533} - 2}{23} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{\sqrt{533} - 2}{23} & 1\\ -\frac{\sqrt{533} - 2}{23} & 1 \end{pmatrix} \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

$$(2.1.1.48)$$

$$\mathbf{y} = \begin{pmatrix} \frac{\sqrt{533} - 2}{23} & 1\\ -\frac{\sqrt{533} - 2}{23} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{2(\sqrt{533} - 2)}{23} + 1\\ \frac{2(-\sqrt{533} - 2)}{23} + 1 \end{pmatrix}$$

Substituting the equations (2.1.1.41), (2.1.1.36) in equation (2.1.1.45)

$$\mathbf{y}^T \begin{pmatrix} \frac{22+\sqrt{533}}{2} & 0\\ 0 & \frac{22-\sqrt{533}}{2} \end{pmatrix} \mathbf{y} - 26 = 0 \quad (2.1.1.50)$$

Fig. 2.1.1.1: Hyperbola when origin is shifted

The figure 2.1.1.1 verifies the given equation (2.1.1.2) as hyperbola with centre $\begin{pmatrix} 2\\1 \end{pmatrix}$

2.1.2. What conic does the following equation represent.

$$13x^{2} - 18xy + 37y^{2} + 2x + 14y - 2 = 0$$
(2.1.2.1)

Find the center.

Solution: The general second degree equation can be expressed as follows,

$$\mathbf{x}^{\mathbf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathbf{T}}\mathbf{x} + f = 0 \tag{2.1.2.2}$$

From the given second degree equation we get,

$$\mathbf{V} = \begin{pmatrix} 13 & -9 \\ -9 & 37 \end{pmatrix} \tag{2.1.2.3}$$

$$\mathbf{u} = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \tag{2.1.2.4}$$

$$f = -2 (2.1.2.5)$$

Expanding the determinant of V we observe,

$$\begin{vmatrix} 13 & -9 \\ -9 & 37 \end{vmatrix} = 400 > 0 \tag{2.1.2.6}$$

Hence from (2.1.2.6) we conclude that given equation is an ellipse. The characteristic equation of **V** is given as follows,

$$\begin{vmatrix} \lambda \mathbf{I} - \mathbf{V} \end{vmatrix} = \begin{vmatrix} \lambda - 13 & 9 \\ 9 & \lambda - 37 \end{vmatrix} = 0 \quad (2.1.2.7)$$

$$\implies \lambda^2 - 50\lambda + 400 = 0 \quad (2.1.2.8)$$

Hence the characteristic equation of V is given by (2.1.2.8). The roots of (2.1.2.8) i.e the eigenvalues are given by

$$\lambda_1 = 10, \lambda_2 = 40 \tag{2.1.2.9}$$

The eigen vector **p** is defined as,

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.2.10}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \,\mathbf{p} = 0 \tag{2.1.2.11}$$

for $\lambda_1 = 10$,

$$(\lambda_1 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} -3 & 9 \\ 9 & -27 \end{pmatrix} \xrightarrow{R_2 = R_2 + 3R_1} \begin{pmatrix} -1 & 3 \\ 0 & 0 \end{pmatrix}$$
(2.1.2.12)

$$\implies \mathbf{p_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{2.1.2.13}$$

Again, for $\lambda_2 = 40$,

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} 27 & 9 \\ 9 & 3 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & \frac{1}{3} \\ 0 & 0 \end{pmatrix}$$
(2.1.2.14)

$$\implies \mathbf{p_2} = \begin{pmatrix} -1\\3 \end{pmatrix} \tag{2.1.2.15}$$

Again, Hence from the equation

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$$

$$(2.1.2.16)$$

$$\mathbf{D} = \begin{pmatrix} 10 & 0 \\ 0 & 40 \end{pmatrix}$$

$$(2.1.2.17)$$

Now (2.1.2.2) can be written as,

$$\mathbf{y}^{\mathbf{T}}\mathbf{D}\mathbf{y} = \mathbf{u}^{\mathbf{T}}\mathbf{V}^{-1}\mathbf{u} - f \qquad |\mathbf{V}| \neq 0 \quad (2.1.2.18)$$

And,

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |\mathbf{V}| \neq 0 \tag{2.1.2.19}$$

$$\mathbf{y} = \mathbf{P}^{\mathbf{T}} \left(\mathbf{x} - \mathbf{c} \right) \tag{2.1.2.20}$$

The centre/vertex of the conic section in (2.1.2.2) is given by \mathbf{c} in (2.1.2.19). We compute \mathbf{V}^{-1} as follows,

$$\begin{pmatrix} 13 & -9 & 1 & 0 \\ -9 & 37 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 = R_2 + \frac{9}{13}R_1} \begin{pmatrix} 13 & -9 & 1 & 0 \\ 0 & 1 & \frac{9}{400} & \frac{13}{400} \end{pmatrix}$$

$$(2.1.2.21)$$

$$R_1 = \frac{1}{2}R_1, \quad \begin{pmatrix} 1 & 0 & \frac{37}{4} & \frac{9}{4} \end{pmatrix}$$

$$\stackrel{R_1 = \frac{1}{13}R_1}{\underset{R_1 = R_1 + \frac{9}{13}R_2}{\longleftrightarrow}} \begin{pmatrix} 1 & 0 & \frac{37}{400} & \frac{9}{400} \\ 0 & 1 & \frac{9}{400} & \frac{13}{400} \end{pmatrix}$$
(2.1.2.22

Hence V^{-1} is given by,

$$\mathbf{V}^{-1} = \begin{pmatrix} \frac{37}{400} & \frac{9}{400} \\ \frac{9}{400} & \frac{13}{400} \end{pmatrix} \tag{2.1.2.23}$$

Now $\mathbf{u}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{u}$ is given by,

$$\mathbf{u}^{\mathbf{T}}\mathbf{V}^{-1}\mathbf{u} = \frac{1}{400} \begin{pmatrix} 1 & 7 \end{pmatrix} \begin{pmatrix} 37 & 9 \\ 9 & 13 \end{pmatrix} \begin{pmatrix} 1 \\ 7 \end{pmatrix} = 2$$
(2.1.2.24)

And, $V^{-1}u$ is given by,

$$\mathbf{V}^{-1}\mathbf{u} = \frac{1}{400} \begin{pmatrix} 100\\100 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad (2.1.2.25)$$

By putting the value of (2.1.2.25), the center of the ellipse is given by (2.1.2.19) as follows,

$$\mathbf{c} = -\frac{1}{4} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ -\frac{1}{4} \end{pmatrix}$$
 (2.1.2.26)

Also the semi-major axis (a) and semi-minor

Fig. 2.1.2.1: Graphical representation of the ellipse

axis (b) of the ellipse are given by,

$$a = \sqrt{\frac{\mathbf{u}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{1}}} = \frac{\sqrt{10}}{5}$$
 (2.1.2.27)

$$b = \sqrt{\frac{\mathbf{u}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{2}}} = \frac{\sqrt{10}}{10}$$
 (2.1.2.28)

Finally from (2.1.2.18), the equation of ellipse is given by,

$$\mathbf{y}^{\mathbf{T}} \begin{pmatrix} 10 & 0 \\ 0 & 40 \end{pmatrix} \mathbf{y} = 4 \tag{2.1.2.29}$$

The following figure 2.1.2.1 is the graphical representation of the ellipse in (2.1.2.29),

2.1.3. What conic does the following equation represent?

$$y^2 - 2\sqrt{3}xy + 3x^2 + 6x - 4y + 5 = 0$$
 (2.1.3.1)

Find the center.

Solution: The general second degree equation can be expressed as follows,

$$\mathbf{x}^{\mathbf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathbf{T}}\mathbf{x} + f = 0 \tag{2.1.3.2}$$

From the given second degree equation we get,

$$\mathbf{V} = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \tag{2.1.3.3}$$

$$\mathbf{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \tag{2.1.3.4}$$

$$f = 5 (2.1.3.5)$$

Expanding the determinant of V we observe,

$$\begin{vmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{vmatrix} = 0 \tag{2.1.3.6}$$

Also

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = \begin{vmatrix} 3 & -\sqrt{3} & 3 \\ -\sqrt{3} & 1 & -2 \\ 3 & -2 & 5 \end{vmatrix} \neq 0 \quad (2.1.3.7)$$

Hence from (2.1.3.6) and (2.1.3.7) we conclude that given equation is a parabola. The characteristic equation of V is given as follows,

$$\left|\mathbf{V} - \lambda \mathbf{I}\right| = \begin{vmatrix} 3 - \lambda & -\sqrt{3} \\ -\sqrt{3} & 1 - \lambda \end{vmatrix} = 0 \qquad (2.1.3.8)$$

$$\implies \lambda^2 - 4\lambda = 0 \qquad (2.1.3.9)$$

Hence the characteristic equation of V is given by (2.1.3.9). The roots of (2.1.3.9) i.e the eigenvalues are given by

$$\lambda_1 = 0, \lambda_2 = 4 \tag{2.1.3.10}$$

The eigen vector \mathbf{p} is defined as,

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{2.1.3.11}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I}) \,\mathbf{p} = 0 \tag{2.1.3.12}$$

for $\lambda_1 = 0$,

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \xrightarrow{R_2 = R_1 + R_2} \begin{pmatrix} \sqrt{3} & -1 \\ 0 & 0 \end{pmatrix}$$

$$(2.1.3.13)$$

Substituting equation 2.1.3.13 in equation 2.1.3.12 and upon normalizing we get we get

$$\implies \mathbf{p_1} = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \end{pmatrix} \tag{2.1.3.14}$$

Again, for $\lambda_2 = 4$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & -3 \end{pmatrix} \xrightarrow{R_2 = -\sqrt{3}R_1 + R_2} \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 0 \end{pmatrix}$$

$$(2.1.3.15)$$

Substituting equation 2.1.3.15 in equation 2.1.3.12 and upon normalizing we get

$$\mathbf{p_2} = \begin{pmatrix} -\sqrt{3}/2 \\ 1/2 \end{pmatrix} \tag{2.1.3.16}$$

The matrix **P**,

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \quad (2.1.3.17)$$

$$\mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} \tag{2.1.3.18}$$

$$\eta = 2\mathbf{p_1}^T \mathbf{u} = 3 - 2\sqrt{3}$$
(2.1.3.19)

The focal length of the parabola is given by:

$$\left| \frac{\eta}{\lambda_2} \right| = \left| \frac{3 - 2\sqrt{3}}{4} \right| = 0.116$$
 (2.1.3.20)

When $|\mathbf{V}| = 0$, (2.1.3.2) can be written as

$$\mathbf{y}^{\mathrm{T}}\mathbf{D}\mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y}$$
(2.1.3.21)

And the vertex c is given by

$$\begin{pmatrix} \mathbf{u}^{\mathbf{T}} + \frac{\eta}{2} \mathbf{p}_{1}^{\mathbf{T}} \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \frac{\eta}{2} \mathbf{p}_{1} - \mathbf{u} \end{pmatrix}$$
(2.1.3.22)

Substituting the found values

$$\mathbf{u}^{T} + \frac{\eta}{2} \mathbf{p_{1}}^{T} = \begin{pmatrix} 3 & -2 \end{pmatrix} + \frac{3 - 2\sqrt{3}}{2} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

$$(2.1.3.23)$$

$$\implies \mathbf{u}^{T} + \frac{\eta}{2} \mathbf{p_{1}}^{T} = \begin{pmatrix} \frac{15 - 2\sqrt{3}}{4} & \frac{-14 + 3\sqrt{3}}{4} \end{pmatrix}$$

$$(2.1.3.24)$$

$$\frac{\eta}{2} \mathbf{p_{1}} - \mathbf{u} = \begin{pmatrix} \frac{-9 - 2\sqrt{3}}{4} \\ \frac{2 + 3\sqrt{3}}{4} \end{pmatrix}$$

$$(2.1.3.25)$$

using equations (2.1.3.4),(2.1.3.5),(2.1.3.14),(2.1.3.24),(2.1.3.25) and (2.1.3.14) in (2.1.3.22)

$$\begin{pmatrix} \frac{15-2\sqrt{3}}{4} & \frac{-14+3\sqrt{3}}{4} \\ 3 & -\sqrt{3} & 1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -5 \\ \frac{-9-2\sqrt{3}}{4} \\ \frac{2+3\sqrt{3}}{4} \end{pmatrix}$$
 (2.1.3.26)

By performing row reductions on augmented

matrix

$$\begin{pmatrix} \frac{15-2\sqrt{3}}{4} & \frac{-14+3\sqrt{3}}{4} & -5\\ 3 & -\sqrt{3} & \frac{(-9-2\sqrt{3})}{4}\\ -\sqrt{3} & 1 & \frac{2+3\sqrt{3}}{4} \end{pmatrix} R_2 \longleftrightarrow R_1$$

$$\begin{pmatrix} 3 & -\sqrt{3} & \frac{(-9-2\sqrt{3})}{4}\\ \frac{15-2\sqrt{3}}{4} & \frac{-14+3\sqrt{3}}{4} & -5\\ -\sqrt{3} & 1 & \frac{2+3\sqrt{3}}{4} \end{pmatrix} (2.1.3.27)$$

$$\begin{pmatrix} 3 & -\sqrt{3} & \frac{(-9-2\sqrt{3})}{4} \\ \frac{15-2\sqrt{3}}{4} & \frac{-14+3\sqrt{3}}{4} & -5 \\ -\sqrt{3} & 1 & \frac{2+3\sqrt{3}}{4} \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - \frac{15-2\sqrt{3}}{12}R_1} \longleftrightarrow \begin{pmatrix} 3 & -\sqrt{3} & \frac{(-9-2\sqrt{3})}{4} \\ 0 & 2(\sqrt{3}-2) & \frac{(4\sqrt{3}-39)}{16} \\ \sqrt{3} & 1 & \frac{2+3\sqrt{3}}{4} \end{pmatrix} (2.1.3.28)$$

Therefore,

$$\begin{pmatrix} 3 & -\sqrt{3} & \frac{(-9-2\sqrt{3})}{4} \\ 0 & 2(\sqrt{3}-2) & \frac{(4\sqrt{3}-39)}{16} \\ -\sqrt{3} & 1 & \frac{(2+3\sqrt{3})}{4} \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + \frac{1}{\sqrt{3}}R_1} \xrightarrow{R_3 \leftarrow R_3 + \frac{1}{\sqrt{3}}R_1}$$

$$\begin{pmatrix} 3 & -\frac{433}{250} & -\frac{311}{100} \\ 0 & -\frac{107}{200} & -2 \\ 0 & 0 & 0 \end{pmatrix} (2.1.3.29)$$

Fig. 2.1.3.1: Parabola with the center c

$$\begin{pmatrix}
3 & -\frac{433}{250} & -\frac{311}{100} \\
0 & -\frac{107}{200} & -2 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_1 \leftarrow \frac{R_1}{3}}$$

$$\begin{pmatrix}
1 & -\frac{433}{750} & -\frac{311}{300} \\
0 & -\frac{107}{200} & -2 \\
0 & 0 & 0
\end{pmatrix} (2.1.3.30)$$

$$\begin{pmatrix}
1 & -\frac{433}{750} & -\frac{311}{300} \\
0 & -\frac{107}{200} & -2 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow \frac{-200}{107} R_2}$$

$$\begin{pmatrix}
1 & -\frac{433}{750} & -\frac{311}{300} \\
0 & 1 & \frac{400}{107} \\
0 & 0 & 0
\end{pmatrix} (2.1.3.31)$$

$$\begin{pmatrix}
1 & -\frac{433}{750} & -\frac{311}{300} \\
0 & 1 & \frac{400}{107} \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_1 \leftarrow R_1 + \frac{433}{750}R_2}$$

$$\begin{pmatrix}
1 & 0 & \frac{12001}{10700} \\
0 & 1 & \frac{400}{107} \\
0 & 0 & 0
\end{pmatrix} (2.1.3.32)$$

On solving for values of **c** from (2.1.3.32) The vertex of parabola is $\mathbf{c} = \begin{pmatrix} \frac{12001}{10700} \\ \frac{400}{107} \end{pmatrix}$.

2.1.4. What conics do the following equation repre-

2.1.4. What conics do the following equation represent? When possible, find the centres and also their equations referred to the centre.

$$2x^{2} - 72xy + 23y^{2} - 4x - 2y - 48 = 0$$
(2.1.4.1)

Solution:

2.1.5. What conic does the given equations represent?

$$6x^2 - 5xy - 6y^2 + 14x + 5y + 4 = 0 \quad (2.1.5.1)$$

Solution: The above equation can be expressed in the form

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.5.2}$$

Comparing equation we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 6 & \frac{-5}{2} \\ \frac{-5}{2} & -6 \end{pmatrix}$$
 (2.1.5.3)

$$\mathbf{u} = \begin{pmatrix} 7 \\ \frac{5}{2} \end{pmatrix} \tag{2.1.5.4}$$

$$f = 4 (2.1.5.5)$$

The above equation (2.1.5.2) represents a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = 0 \tag{2.1.5.6}$$

Verify the given equation as if it is pair of straight lines

$$\Delta = \begin{vmatrix} 6 & \frac{-3}{2} & 7 \\ \frac{-5}{2} & -6 & \frac{5}{2} \\ 7 & \frac{5}{2} & 4 \end{vmatrix} \qquad (2.1.5.7)$$

$$\implies 6 \begin{vmatrix} -6 & \frac{5}{2} \\ \frac{5}{2} & 4 \end{vmatrix} - \frac{-5}{2} \begin{vmatrix} -\frac{5}{2} & \frac{5}{2} \\ 7 & 4 \end{vmatrix} + 7 \begin{vmatrix} -\frac{5}{2} & -6 \\ 7 & \frac{5}{2} \end{vmatrix} = 0$$

$$(2.1.5.8)$$

$$\implies \Delta = 0 \qquad (2.1.5.9)$$

Since equation (2.1.5.6) is satisfied, we could say that the given equation represents two straight lines

$$\Delta_V = \begin{vmatrix} 6 & \frac{-5}{2} \\ \frac{-5}{2} & -6 \end{vmatrix} < 0 \tag{2.1.5.10}$$

Let the equations of lines be,

$$\left(\mathbf{n_1}^T \mathbf{x} - c_1\right) \left(\mathbf{n_1}^T \mathbf{x} - c_1\right) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$
(2.1.5.11)

$$(\mathbf{n_1}^T \mathbf{x} - c_1) (\mathbf{n_2}^T \mathbf{x} - c_2) = \mathbf{x}^T \begin{pmatrix} 6 & \frac{-5}{2} \\ \frac{-5}{2} & -6 \end{pmatrix} \mathbf{x}$$

$$+ 2 \begin{pmatrix} 7 & \frac{5}{2} \end{pmatrix} \mathbf{x} + 4$$

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \\ -6 \end{pmatrix}$$

$$(2.1.5.13)$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2 \begin{pmatrix} 7 \\ \frac{5}{2} \end{pmatrix}$$
 (2.1.5.14)
 $c_1 c_2 = 4$ (2.1.5.15)

The slopes of the lines are given by the roots of the polynomial

$$cm^2 + 2bm + a = 0 (2.1.5.16)$$

$$\implies m_i = \frac{-b \pm \sqrt{-\Delta_V}}{c} \tag{2.1.5.17}$$

$$\mathbf{n_i} = k \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{2.1.5.18}$$

Substituting the given data in above equations

(2.1.5.16) we get,

$$-6m^{2} - 5m + 6 = 0 \quad (2.1.5.19)$$

$$\implies m_{i} = \frac{\frac{-5}{2} \pm \sqrt{-(\frac{-169}{4})}}{-6}$$

$$(2.1.5.20)$$

Solving equation (2.1.5.20) we get,

$$m_1 = -\frac{3}{2}, m_2 = \frac{2}{3}$$
 (2.1.5.21)
= $\mathbf{n_1} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}, \mathbf{n_2} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ (2.1.5.22)

We know that,

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{2.1.5.23}$$

Verification using Toeplitz matrix, From equation (2.1.5.22)

$$\mathbf{n_1} = \begin{pmatrix} -3 & 0 \\ -2 & -3 \\ 0 & -2 \end{pmatrix} \mathbf{n_2} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$(2.1.5.24)$$

$$\implies \begin{pmatrix} -3 & 0 \\ -2 & -3 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \\ -6 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix}$$

$$(2.1.5.25)$$

 \implies Equation (2.1.5.22) satisfies (2.1.5.23) c_1 and c_2 can be obtained as,

$$(\mathbf{n_1} \quad \mathbf{n_2}) \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2\mathbf{u}$$
 (2.1.5.26)

Substituting (2.1.5.22) in (2.1.5.26), the augmented matrix is,

$$\begin{pmatrix} -3 & -2 & 14 \\ -2 & 3 & 5 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1/3} \begin{pmatrix} 1 & \frac{2}{3} & -\frac{14}{3} \\ 0 & \frac{13}{3} & -\frac{13}{3} \end{pmatrix}$$

$$(2.1.5.27)$$

$$\stackrel{R_2 \leftarrow \frac{3}{13}R_2}{\underset{R_1 \leftarrow R_1 - \frac{2}{3}R_2}{\longleftrightarrow}} \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & -1 \end{pmatrix}$$

$$(2.1.5.28)$$

$$\implies c_1 = -4, c_2 = -1$$

$$(2.1.5.29)$$

Equations (2.1.5.11), can be modified as, from

(2.1.5.22) and (2.1.5.29) in we get,

$$(-3 -2)\mathbf{x} = -4 \qquad (2.1.5.30)$$

$$(-2 \ 3)\mathbf{x} = -1$$
 (2.1.5.31)

$$\implies (-3x - 2y + 4)(-2x + 3y + 1) = 0$$

$$\implies [(3x + 2y - 4)(2x - 3y - 1) = 0]$$
(2.1.5.32)

The angle between the lines can be expressed as,

$$\mathbf{n_1} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}, \quad \mathbf{n_2} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} \quad (2.1.5.33)$$

$$\cos \theta = \frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|} \quad (2.1.5.34)$$

$$\cos \theta = \frac{\mathbf{n_1}^T \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \quad (2.1.5.34)$$

$$\implies \theta = \cos^{-1}(\frac{0}{\sqrt{169}}) = 90^{\circ}. \quad (2.1.5.35)$$

Fig. 2.1.5.1: Pair of straight lines

2.1.6. What conic does the following equation represent? Find its equation and centre.

$$3x^2 - 8xy - 3y^2 + 10x - 13y + 8 = 0$$

Solution: The general equation of second degree can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.6.1}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.1.6.2}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.1.6.3}$$

From (2.1.6.2) and (2.1.6.3)

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 3 & -4 \\ -4 & -3 \end{pmatrix} \tag{2.1.6.4}$$

$$\mathbf{u} = \begin{pmatrix} 5\\ -\frac{13}{2} \end{pmatrix} \tag{2.1.6.5}$$

$$\left|\mathbf{V}\right| = \begin{vmatrix} 3 & -4 \\ -4 & 3 \end{vmatrix} = -25 \tag{2.1.6.6}$$

$$\implies |\mathbf{V}| < 0 \tag{2.1.6.7}$$

Since $V = V^T$, there exists an orthogonal matrix **P** such that

$$\mathbf{PVP}^T = \mathbf{D} = diag(\lambda_1 \quad \lambda_2) \tag{2.1.6.8}$$

or equivalently

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.6.9}$$

Eigen vectors of real symmetric matrix V are orthogonal. The characteristic equation of V is obtained by evaluating the determinant

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda - 3 & 4 \\ 4 & \lambda + 3 \end{vmatrix} = 0 \qquad (2.1.6.10)$$

$$\implies \lambda^2 - 25 = 0$$
 (2.1.6.11)

$$\implies \lambda_1 = -5, \lambda_2 = 5$$
 (2.1.6.12)

From (2.1.6.7) and (2.1.6.12) the equation represents a hyperbola. The eigen vector \mathbf{p} is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.6.13}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{2.1.6.14}$$

For $\lambda_1 = -5$:

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} -8 & 4\\ 4 & -2 \end{pmatrix} \stackrel{R_{1} \leftarrow -\frac{R_{1}}{4}}{\underset{R_{2} \leftarrow \frac{R_{2}}{2}}{\stackrel{R_{2}}{\longrightarrow}}} \begin{pmatrix} 2 & -1\\ 2 & -1 \end{pmatrix}$$

$$\stackrel{R_{2} \leftarrow R_{2} - R_{1}}{\longleftrightarrow} \begin{pmatrix} 2 & -1\\ 0 & 0 \end{pmatrix}$$

$$\stackrel{R_{2} \leftarrow R_{2} - R_{1}}{\longleftrightarrow} \begin{pmatrix} 2 & -1\\ 0 & 0 \end{pmatrix}$$

$$\stackrel{(2.1.6.16)}{\longleftrightarrow}$$

$$\implies \mathbf{p_{1}} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

Similarly, the eigenvector corresponding to λ_2

can be obtained as

$$\mathbf{p_2} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1\\2 \end{pmatrix} \tag{2.1.6.18}$$

The orthogonal eigen-vector matrix

$$\mathbf{P} = (\mathbf{p_1} \quad \mathbf{p_2}) = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$
 (2.1.6.19)

$$\mathbf{D} = \begin{pmatrix} -5 & 0\\ 0 & 5 \end{pmatrix} \qquad (2.1.6.20)$$

Let $\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c}$ with $\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u}$. Substituting in (2.1.6.1)

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.1.6.21}$$

with centre

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = \begin{pmatrix} -\frac{41}{25} \\ \frac{5}{50} \end{pmatrix}$$
 (2.1.6.22)

and minor and major axes parameters as

$$\sqrt{\frac{\lambda_1}{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}} = \sqrt{\frac{500}{33}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}} = \sqrt{\frac{500}{33}}$$
(2.1.6.23)

The equation of hyperbola is

$$\frac{y_2^2}{\frac{33}{500}} - \frac{y_1^2}{\frac{33}{500}} = 1 \tag{2.1.6.24}$$

Fig. 2.1.6.1

2.1.7. Find the asymptotes of the hyperbola given below and also the equations to their conjugate hyperbolas.

$$8x^{2} + 10xy - 3y^{2} - 2x + 4y - 2 = 0$$
 Solution: The

above equation can be expressed in the form

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.7.1}$$

Comparing equation we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 8 & 5 \\ 5 & -3 \end{pmatrix} \tag{2.1.7.2}$$

$$\mathbf{u} = \begin{pmatrix} -1\\2 \end{pmatrix} \tag{2.1.7.3}$$

$$f = -2 \tag{2.1.7.4}$$

Expanding the Determinant of V.

$$\Delta_V = \begin{vmatrix} 8 & 5 \\ 5 & -3 \end{vmatrix} < 0 \tag{2.1.7.5}$$

Hence from (2.1.7.5) given equation represents the hyperbola The characteristic equation of **V** is obtained by evaluating the determinant

$$\mid V - \lambda \mathbf{I} \mid = 0 \qquad (2.1.7.6)$$

$$\begin{vmatrix} 8 - \lambda & 5 \\ 5 & -3 - \lambda \end{vmatrix} = 0 \qquad (2.1.7.7)$$

$$(8 - \lambda)(-3 - \lambda) - 25 = 0 (2.1.7.8)$$

$$\lambda_1 = \frac{5 + \sqrt{221}}{2} \tag{2.1.7.9}$$

$$\lambda_2 = \frac{5 - \sqrt{221}}{2} \tag{2.1.7.10}$$

The eigenvector **p** is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.7.11}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.1.7.12}$$

For $\lambda_1 = \frac{5 + \sqrt{221}}{2}$

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} \frac{11 - \sqrt{221}}{2} & 5\\ 5 & \frac{-11 - \sqrt{221}}{2} \end{pmatrix} \quad (2.1.7.13)$$

By row reduction,

$$\begin{pmatrix} \frac{11-\sqrt{221}}{2} & 5\\ 5 & \frac{-11-\sqrt{221}}{2} \end{pmatrix} \tag{2.1.7.14}$$

$$\stackrel{R_1 \leftarrow R_2}{\longleftrightarrow} \begin{pmatrix} \frac{-11 - \sqrt{221}}{2} & 5\\ \frac{11 - \sqrt{221}}{2} & 5 \end{pmatrix} \tag{2.1.7.15}$$

$$\stackrel{R_2 \leftarrow R_2 - \frac{11 - \sqrt{221}}{10}}{\longleftrightarrow} \begin{pmatrix} 5 & \frac{-11 - \sqrt{221}}{2} \\ 0 & 0 \end{pmatrix} \qquad (2.1.7.16)$$

$$\stackrel{R_1 \leftarrow R_1/5}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-11 - \sqrt{221}}{10} \\ 0 & 0 \end{pmatrix} \tag{2.1.7.17}$$

Substituting equation 2.1.7.17 in equation

2.1.7.12 we get

$$\begin{pmatrix} 1 & \frac{-11 - \sqrt{221}}{10} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.7.18)

Where,
$$\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 Let $v_2 = t$

$$v_1 = \frac{t(11 + \sqrt{221})}{10} \tag{2.1.7.19}$$

Eigen vector $\mathbf{p_1}$ is given by

$$\mathbf{p_1} = \begin{pmatrix} \frac{t(11+\sqrt{221})}{10} \\ t \end{pmatrix} \tag{2.1.7.20}$$

Let t = 1, we get

$$\mathbf{p_1} = \begin{pmatrix} \frac{11 + \sqrt{221}}{10} \\ 1 \end{pmatrix} \tag{2.1.7.21}$$

For $\lambda_2 = \frac{5-\sqrt{221}}{2}$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} \frac{11 + \sqrt{221}}{2} & 5\\ 5 & \frac{-11 + \sqrt{221}}{2} \end{pmatrix} \quad (2.1.7.22)$$

By row reduction,

$$\begin{pmatrix} \frac{11+\sqrt{221}}{2} & 5\\ 5 & \frac{-11+\sqrt{221}}{2} \end{pmatrix} \stackrel{R_1 \leftarrow R_2 + \frac{11-\sqrt{221}}{10}}{\longleftrightarrow} \begin{pmatrix} \frac{11+\sqrt{221}}{2} & 5\\ 0 & 0 \end{pmatrix}$$
(2.1.7.23)

$$\stackrel{R_1 \leftarrow \frac{R_1}{11+\sqrt{221}}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{10}{11+\sqrt{221}} \\ 0 & 0 \end{pmatrix}$$

$$(2.1.7.24)$$

Substituting equation 2.1.7.24 in equation 2.1.7.12 we get

$$\begin{pmatrix} 1 & \frac{10}{11 + \sqrt{221}} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.7.25)

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Let $v_2 = t$

$$v_1 = \frac{-t(10)}{11 + \sqrt{221}} \tag{2.1.7.26}$$

Eigen vector $\mathbf{p_2}$ is given by

$$\mathbf{p_2} = \begin{pmatrix} \frac{-t(10)}{11 + \sqrt{221}} \\ t \end{pmatrix} \tag{2.1.7.27}$$

Let t = 1, we get

$$\mathbf{p_2} = \begin{pmatrix} \frac{(-10)}{11 + \sqrt{221}} \\ 1 \end{pmatrix} \tag{2.1.7.28}$$

By eigen decompostion V can be represented by

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.7.29}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} \tag{2.1.7.30}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{2.1.7.31}$$

Substituting equations 2.1.7.21, 2.1.7.28 in equation 2.1.7.30 we get

$$\mathbf{P} = \begin{pmatrix} \frac{11+\sqrt{221}}{10} & \frac{-10}{11+\sqrt{221}} \\ 1 & 1 \end{pmatrix}$$
 (2.1.7.32)

Substituting equations 2.1.7.9, 2.1.7.10 in 2.1.7.31 we get

$$\mathbf{D} = \begin{pmatrix} \frac{5+\sqrt{221}}{2} & 0\\ 0 & \frac{5-\sqrt{221}}{2} \end{pmatrix}$$
 (2.1.7.33)

Centre of the hyperbola is given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \tag{2.1.7.34}$$

$$\implies \mathbf{c} = -\begin{pmatrix} \frac{3}{49} & \frac{5}{49} \\ \frac{5}{49} & \frac{-8}{49} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad (2.1.7.35)$$

$$\implies \mathbf{c} = \begin{pmatrix} \frac{-3}{49} & \frac{-5}{49} \\ \frac{-5}{49} & \frac{8}{49} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 (2.1.7.36)

$$\implies \mathbf{c} = \begin{pmatrix} \frac{-1}{7} \\ \frac{3}{7} \end{pmatrix} \tag{2.1.7.37}$$

Since,

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 1 > 0 (2.1.7.38)$$

there isn't a need to swap axes In hyperbola,

$$axes = \begin{cases} \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} \\ \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} \end{cases}$$
 (2.1.7.39)

From above equations we can say that,

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{\frac{2}{5 + \sqrt{221}}} \quad (2.1.7.40)$$

$$\sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \sqrt{\frac{2}{5 - \sqrt{221}}} \quad (2.1.7.41)$$

Now we have,

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.1.7.42}$$

where,

$$\mathbf{y} = \mathbf{P}^T (\mathbf{x} - \mathbf{c}) \tag{2.1.7.43}$$

To get y,

$$\mathbf{y} = \mathbf{P}^T \mathbf{x} - \mathbf{P}^T \mathbf{c} \tag{2.1.7.44}$$

$$\mathbf{y} = \begin{pmatrix} \frac{11+\sqrt{221}}{10} & 1\\ \frac{-10}{11+\sqrt{221}} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{11+\sqrt{221}}{10} & 1\\ \frac{-10}{11+\sqrt{221}} & 1 \end{pmatrix} \begin{pmatrix} \frac{-1}{7}\\ \frac{3}{7} \end{pmatrix}$$
(2.1.7.45)

$$\mathbf{y} = \begin{pmatrix} \frac{11+\sqrt{221}}{10} & 1\\ \frac{-10}{11+\sqrt{221}} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{-11-\sqrt{221}}{70} + \frac{3}{7}\\ \frac{10}{(7)11+(7)\sqrt{221}} + \frac{3}{7} \end{pmatrix}$$
(2.1.7.46)

Substituting the equations (2.1.7.38), (2.1.7.33) in equation (2.1.7.42)

$$\implies \mathbf{y}^T \begin{pmatrix} \frac{5+\sqrt{221}}{2} & 0\\ 0 & \frac{5-\sqrt{221}}{2} \end{pmatrix} \mathbf{y} + 2 = 0$$
(2.1.7.47)

Asymptotes of hyperbola Equation of a hyperbola and the combined equation of the Asymptotes differ only in the constant term.

$$8x^2 + 10xy - 3y^2 - 2x + 4y + K = 0$$
(2.1.7.48)

The above equation can be expressed in the form

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.7.49}$$

Comparing equation we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 8 & 5 \\ 5 & -3 \end{pmatrix} \qquad (2.1.7.50)$$

$$\mathbf{u} = \begin{pmatrix} -1\\2 \end{pmatrix} \tag{2.1.7.51}$$

$$f = K (2.1.7.52)$$

$$\Delta = \begin{vmatrix} 8 & 5 & -1 \\ 5 & -3 & 2 \\ -1 & 2 & K \end{vmatrix}$$
 (2.1.7.53)

$$\implies K = -1 \tag{2.1.7.54}$$

Similar way expanding the Determinant of V.

$$\Delta_V = \begin{vmatrix} 8 & 5 \\ 5 & -3 \end{vmatrix} < 0 \tag{2.1.7.55}$$

From (2.1.7.55) we could say that the given equation represents two straight lines Let the equations of lines be,

$$\left(\mathbf{n_1}^T \mathbf{x} - c_1\right) \left(\mathbf{n_1}^T \mathbf{x} - c_1\right) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$
(2.1.7.56)

$$(\mathbf{n_1}^T \mathbf{x} - c_1) (\mathbf{n_2}^T \mathbf{x} - c_2) = \mathbf{x}^T \begin{pmatrix} 8 & 5 \\ 5 & -3 \end{pmatrix} \mathbf{x}$$

$$+2 \begin{pmatrix} -1 & 2 \end{pmatrix} \mathbf{x} - 1 \qquad (2.1.7.57)$$

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \\ -3 \end{pmatrix} \qquad (2.1.7.58)$$

$$c_2 \mathbf{n_1} + c_1 \mathbf{n_2} = -2 \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad (2.1.7.59)$$

$$c_1 c_2 = -1 \qquad (2.1.7.60)$$

The slopes of the lines are given by the roots of the polynomial

$$cm^2 + 2bm + a = 0 (2.1.7.61)$$

(2.1.7.60)

$$\implies m_i = \frac{-b \pm \sqrt{-\Delta_V}}{c} \tag{2.1.7.62}$$

$$\mathbf{n_i} = k \begin{pmatrix} -m_i \\ 1 \end{pmatrix} \tag{2.1.7.63}$$

Substituting the given data in above equations (2.1.7.61) we get,

$$-3m^2 + 10m + 8 = 0 (2.1.7.64)$$

$$m_1 = 4, m_2 = \frac{-2}{3}$$
 (2.1.7.65)

$$= \mathbf{n_1} = \begin{pmatrix} -4\\1 \end{pmatrix}, \mathbf{n_2} = \begin{pmatrix} -2\\-3 \end{pmatrix}$$
 (2.1.7.66)

We know that,

$$\mathbf{n_1} * \mathbf{n_2} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix} \tag{2.1.7.67}$$

Verification using Toeplitz matrix, From equa-

tion (2.1.7.66)

$$\mathbf{n_1} = \begin{pmatrix} -4 & 0 \\ 1 & -4 \\ 0 & -1 \end{pmatrix} \mathbf{n_2} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$(2.1.7.68)$$

$$\implies \begin{pmatrix} -4 & 0 \\ 1 & -4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \\ -3 \end{pmatrix} = \begin{pmatrix} a \\ 2b \\ c \end{pmatrix}$$
(2.1.7.69)

 \implies Equation (2.1.7.66) satisfies (2.1.7.67) c_1 and c_2 can be obtained as,

$$\begin{pmatrix} \mathbf{n_1} & \mathbf{n_2} \end{pmatrix} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} = -2\mathbf{u} \tag{2.1.7.70}$$

Substituting (2.1.7.66) in (2.1.7.70), the augmented matrix is,

$$\begin{pmatrix} -4 & -2 & -2 \\ 1 & -3 & 4 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1/4} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{7}{2} & \frac{7}{2} \end{pmatrix}$$

$$(2.1.7.71)$$

$$\xrightarrow{R_2 \leftarrow -\frac{7}{2}R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$(2.1.7.72)$$

$$\implies c_1 = 1, c_2 = -1$$

$$(2.1.7.73)$$

Equations (2.1.7.56), can be modified as, from (2.1.7.66) and (2.1.7.73) in we get,

$$(-4 \ 1)\mathbf{x} = 1$$
 (2.1.7.74)

$$(-2 -3)\mathbf{x} = -1$$
 (2.1.7.75)

$$\implies (-4x + y - 1)(-2x - 3y + 1) = 0$$

$$\implies [(4x - y + 1)(2x + 3y - 1) = 0]$$
(2.1.7.76)

The angle between the lines can be expressed as,

$$\mathbf{n_1} = \begin{pmatrix} -4\\1 \end{pmatrix}, \quad \mathbf{n_2} = \begin{pmatrix} -2\\-3 \end{pmatrix} \quad (2.1.7.77)$$

$$\cos \theta = \frac{{\mathbf{n_1}}^T {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|} \quad (2.1.7.78)$$

$$\implies \theta = \cos^{-1}(\frac{0}{\sqrt{221}}) = 90^{\circ}.$$
 (2.1.7.79)

Equation of Asymptotes: The characteristic equation of V is obtained by evaluating the determinant (2.1.7.50)

$$\mid V - \lambda \mathbf{I} \mid = 0 \qquad (2.1.7.80)$$

$$\begin{vmatrix} 8 - \lambda & 5 \\ 5 & -3 - \lambda \end{vmatrix} = 0 \quad (2.1.7.81)$$

$$(8 - \lambda)(-3 - \lambda) - 25 = 0 (2.1.7.82)$$

$$\lambda_1 = \frac{5 + \sqrt{221}}{2} \tag{2.1.7.83}$$

$$\lambda_2 = \frac{5 - \sqrt{221}}{2} \tag{2.1.7.84}$$

The eigenvector **p** is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.7.85}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.1.7.86}$$

For $\lambda_1 = \frac{5 + \sqrt{221}}{2}$

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} \frac{11 - \sqrt{221}}{2} & 5\\ 5 & \frac{-11 - \sqrt{221}}{2} \end{pmatrix} \quad (2.1.7.87)$$

By row reduction,

$$\begin{pmatrix} \frac{11-\sqrt{221}}{2} & 5\\ 5 & \frac{-11-\sqrt{221}}{2} \end{pmatrix} \tag{2.1.7.88}$$

$$\stackrel{R_1 \leftarrow R_2}{\longleftrightarrow} \begin{pmatrix} \frac{-11 - \sqrt{221}}{2} & 5\\ \frac{11 - \sqrt{221}}{2} & 5 \end{pmatrix} \tag{2.1.7.89}$$

$$\stackrel{R_2 \leftarrow R_2 - \frac{11 - \sqrt{221}}{10}}{\longleftrightarrow} \begin{pmatrix} 5 & \frac{-11 - \sqrt{221}}{0} \\ 0 & 0 \end{pmatrix} \qquad (2.1.7.90)$$

$$\stackrel{R_1 \leftarrow R_1/5}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-11 - \sqrt{221}}{10} \\ 0 & 0 \end{pmatrix} \tag{2.1.7.91}$$

Substituting equation 2.1.7.91 in equation 2.1.7.86 we get

$$\begin{pmatrix} 1 & \frac{-11 - \sqrt{221}}{10} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.7.92)

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Let $v_2 = t$

$$v_1 = \frac{t(11 + \sqrt{221})}{10} \tag{2.1.7.93}$$

Eigen vector $\mathbf{p_1}$ is given by

$$\mathbf{p_1} = \begin{pmatrix} \frac{t(11+\sqrt{221})}{10} \\ t \end{pmatrix} \tag{2.1.7.94}$$

Let t = 1, we get

$$\mathbf{p_1} = \begin{pmatrix} \frac{11 + \sqrt{221}}{10} \\ 1 \end{pmatrix} \tag{2.1.7.95}$$

For $\lambda_2 = \frac{5 - \sqrt{221}}{2}$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} \frac{11 + \sqrt{221}}{2} & 5\\ 5 & \frac{-11 + \sqrt{221}}{2} \end{pmatrix} \quad (2.1.7.96)$$

By row reduction,

$$\begin{pmatrix} \frac{11+\sqrt{221}}{2} & 5\\ 5 & \frac{-11+\sqrt{221}}{2} \end{pmatrix} \longleftrightarrow \begin{pmatrix} \frac{11+\sqrt{221}}{10}R_1 \\ 0 & 0 \end{pmatrix}$$

$$(2.1.7.97)$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{11+\sqrt{221}}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{10}{11+\sqrt{221}} \\ 0 & 0 \end{pmatrix} \\
(2.1.7.98)$$

Substituting equation 2.1.7.98 in equation 2.1.7.86 we get

$$\begin{pmatrix} 1 & \frac{10}{11 + \sqrt{221}} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.1.7.99)

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Let $v_2 = t$

$$v_1 = \frac{-t(10)}{11 + \sqrt{221}} \tag{2.1.7.100}$$

Eigen vector $\mathbf{p_2}$ is given by

$$\mathbf{p_2} = \begin{pmatrix} \frac{-t(10)}{11 + \sqrt{221}} \\ t \end{pmatrix} \tag{2.1.7.101}$$

Let t = 1, we get

$$\mathbf{p_2} = \begin{pmatrix} \frac{(-10)}{11 + \sqrt{221}} \\ 1 \end{pmatrix} \tag{2.1.7.102}$$

By eigen decompostion V can be represented by

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.7.103}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} \tag{2.1.7.104}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{2.1.7.105}$$

Substituting equations 2.1.7.95, 2.1.7.102 in

equation 2.1.7.104 we get

$$\mathbf{P} = \begin{pmatrix} \frac{11+\sqrt{221}}{10} & \frac{-10}{11+\sqrt{221}} \\ 1 & 1 \end{pmatrix}$$
 (2.1.7.106)

$$\mathbf{D} = \begin{pmatrix} \frac{5+\sqrt{221}}{2} & 0\\ 0 & \frac{5-\sqrt{221}}{2} \end{pmatrix}$$
 (2.1.7.107)

Centre of the hyperbola is given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \tag{2.1.7.108}$$

$$\implies \mathbf{c} = -\begin{pmatrix} \frac{3}{49} & \frac{5}{49} \\ \frac{5}{49} & \frac{-8}{49} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad (2.1.7.109)$$

$$\implies \mathbf{c} = \begin{pmatrix} \frac{-3}{49} & \frac{-5}{49} \\ \frac{-5}{49} & \frac{8}{49} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 (2.1.7.110)

$$\implies \mathbf{c} = \begin{pmatrix} \frac{-1}{7} \\ \frac{3}{7} \end{pmatrix} \tag{2.1.7.111}$$

Since,

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 0 \tag{2.1.7.112}$$

Now,

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.1.7.113}$$

where,

$$\mathbf{v} = \mathbf{P}^T (\mathbf{x} - \mathbf{c}) \tag{2.1.7.114} 2.1$$

To get y,

$$\mathbf{y} = \mathbf{P}^{T} \mathbf{x} - \mathbf{P}^{T} \mathbf{c}$$

$$\mathbf{y} = \begin{pmatrix} \frac{11 + \sqrt{221}}{10} & 1 \\ \frac{-10}{11 + \sqrt{221}} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{11 + \sqrt{221}}{10} & 1 \\ \frac{-10}{11 + \sqrt{221}} & 1 \end{pmatrix} \begin{pmatrix} \frac{-1}{7} \\ \frac{3}{7} \end{pmatrix}$$

$$(2.1.7.116)$$

$$\mathbf{y} = \begin{pmatrix} \frac{11 + \sqrt{221}}{10} & 1 \\ \frac{-10}{11 + \sqrt{221}} & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} \frac{-11 - \sqrt{221}}{70} + \frac{3}{7} \\ \frac{70}{(7)11 + (7)\sqrt{221}} + \frac{3}{7} \end{pmatrix}$$

$$(2.1.7.117)$$

Substituting the equations (2.1.7.112), (2.1.7.107) in equation (2.1.7.113) Equation of asymptotes is

$$\implies \mathbf{y}^T \begin{pmatrix} \frac{5+\sqrt{221}}{2} & 0\\ 0 & \frac{5-\sqrt{221}}{2} \end{pmatrix} \mathbf{y} + 1 = 0$$
(2.1.7.118)

And the Equations of Conjugate hyperbola is 2(Equation of Asymptotes)- Equation of hyper-

bola.

$$\implies \mathbf{y}^T \begin{pmatrix} \frac{5+\sqrt{221}}{2} & 0\\ 0 & \frac{5-\sqrt{221}}{2} \end{pmatrix} \mathbf{y} = 0 \quad (2.1.7.119)$$

Fig. 2.1.7.1: Hyperbola with assymptotes and its conjugate

(2.1.7.114) 2.1.8. What conics do the following equation represents? When possible, find the center and the equation reffered to the center.

$$55x^2 - 120xy + 20y^2 + 64x - 48y = 0$$
(2.1.8.1)

Solution: The general equation of second degree can be represented as:

$$\mathbf{X}^T \mathbf{V} \mathbf{X} + 2\mathbf{u}^T \mathbf{X} + f = 0 \tag{2.1.8.2}$$

The above 2.1.8.1 can also be written as:

$$\mathbf{X}^{T} \begin{pmatrix} 55 & -60 \\ -60 & 20 \end{pmatrix} \mathbf{X} + 2 (32 & -24) \mathbf{X} + 0 = 0$$
(2.1.8.3)

So,

$$\mathbf{V} = \begin{pmatrix} 55 & -60 \\ -60 & 20 \end{pmatrix} \tag{2.1.8.4}$$

and

$$\mathbf{u} = \begin{pmatrix} 32 \\ -24 \end{pmatrix} \tag{2.1.8.5}$$

$$f = 0 (2.1.8.6)$$

Now,

$$\det \mathbf{V} = \begin{vmatrix} 55 & -60 \\ -60 & 20 \end{vmatrix} \tag{2.1.8.7}$$

$$\implies \det \mathbf{V} = -2500 < 0 \tag{2.1.8.8}$$

As $\det \mathbf{V} < 0$, so we can say that the above conic section 2.1.8.1 is hyperbola. Now,

$$\mathbf{V}^{-1} = \frac{1}{-2500} \begin{pmatrix} 20 & 60\\ 60 & 55 \end{pmatrix} \tag{2.1.8.9}$$

The center of this hyperbola will be:

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u}$$
 (2.1.8.10)

$$\implies$$
 c = $\frac{1}{2500} \begin{pmatrix} 20 & 60 \\ 60 & 55 \end{pmatrix} \begin{pmatrix} 32 \\ -24 \end{pmatrix}$ (2.1.8.11)

$$\implies \mathbf{c} = \begin{pmatrix} -\frac{8}{25} \\ \frac{6}{25} \end{pmatrix} \quad (2.1.8.12)$$

(2.1.8.13)

Now the characteristic equation of V is obtained as:

$$|\mathbf{V} - \lambda \mathbf{I}| = 0 \qquad (2.1.8.14)$$

$$\implies \begin{vmatrix} 55 - \lambda & -60 \\ -60 & 20 - \lambda \end{vmatrix} = 0 \qquad (2.1.8.15)$$

$$\implies \lambda^2 - 75\lambda - 2500 = 0 \qquad (2.1.8.16)$$

The eigen values are given by:

$$\lambda_1 = 100 \tag{2.1.8.17}$$

$$\lambda_2 = -25 \tag{2.1.8.18}$$

The eigen vector **P** is defined as:

$$\mathbf{VP} = \lambda \mathbf{P} \tag{2.1.8.19}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{P} = \mathbf{0} \tag{2.1.8.20}$$

For $\lambda_1 = 100$,

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} -45 & -60 \\ -60 & -80 \end{pmatrix}$$
 (2.1.8.21)

By row reduction,

$$\begin{pmatrix} -45 & -60 \\ -60 & -80 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/(-5)} (2.1.8.22)$$

$$\begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/4} (2.1.8.23)$$

$$\begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix} \xleftarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} \tag{2.1.8.24}$$

So,

$$(\mathbf{V} - \lambda_1 \mathbf{I}) \mathbf{P_1} = \mathbf{0} \tag{2.1.8.25}$$

$$\implies \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1.8.26}$$

$$\implies \mathbf{P_1} = \begin{pmatrix} -\frac{4}{3} \\ 1 \end{pmatrix} \tag{2.1.8.27}$$

Similarly, For $\lambda_2 = 100$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} 80 & -60 \\ -60 & 45 \end{pmatrix} \tag{2.1.8.28}$$

By row reduction,

$$\begin{pmatrix} 80 & -60 \\ -60 & 45 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/5} \qquad (2.1.8.29)$$

$$\begin{pmatrix} 16 & -12 \\ -12 & 9 \end{pmatrix} \stackrel{R_2 \leftarrow R_2/(-3)}{\longleftarrow R_1 \leftarrow R_1/4} \qquad (2.1.8.30)$$

$$\begin{pmatrix} 4 & -3 \\ 4 & -3 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 4 & -3 \\ 0 & 0 \end{pmatrix} \tag{2.1.8.31}$$

So,

$$(V - \lambda_2 I)P_2 = 0$$
 (2.1.8.32)

$$\implies \begin{pmatrix} 4 & -3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1.8.33}$$

$$\implies \mathbf{P_2} = \begin{pmatrix} 1 \\ \frac{4}{3} \end{pmatrix} \qquad (2.1.8.34)$$

By eigen decomposition **V** can also be written as:

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.8.35}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{P_1} & \mathbf{P_2} \end{pmatrix} \tag{2.1.8.36}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{2.1.8.37}$$

So,

$$\mathbf{P} = \begin{pmatrix} -\frac{4}{3} & 1\\ 1 & \frac{4}{3} \end{pmatrix} \tag{2.1.8.38}$$

$$\mathbf{D} = \begin{pmatrix} 100 & 0 \\ 0 & -25 \end{pmatrix} \tag{2.1.8.39}$$

and

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 16 > 0 \tag{2.1.8.40}$$

So, the axes are:

$$a = \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \frac{2}{5}$$
 (2.1.8.41)

$$b = \sqrt{\frac{f - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u}}{\lambda_2}} = \frac{4}{5}$$
 (2.1.8.42)

Now, the equation 2.1.8.1 can be written as:

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \tag{2.1.8.43}$$

where,

$$\mathbf{y} = \mathbf{P}^T (\mathbf{x} - \mathbf{c}) \tag{2.1.8.44}$$

So,

$$\mathbf{y}^{T} \begin{pmatrix} 100 & 0 \\ 0 & -25 \end{pmatrix} \mathbf{y} = 16 \quad (2.1.8.45)$$

$$\implies \mathbf{y}^{T} \begin{pmatrix} 100 & 0 \\ 0 & -25 \end{pmatrix} \mathbf{y} - 16 = 0 \quad (2.1.8.46)$$

Fig. 2.1.8.1: Comparison of the Standard and Actual Hyperbola

2.1.9. Find the asymptotes of the given hyperbola and also the equation to its conjugate hyperbola

$$19x^2 + 24xy + y^2 - 22x - 6y = 0 (2.1.9.1)$$

Solution: The general equation of second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(2.1.9.2)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.9.3}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.1.9.4}$$

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} \tag{2.1.9.5}$$

Comparing equations 2.1.9.1 and 2.1.9.3 we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 19 & 12 \\ 12 & 1 \end{pmatrix} \tag{2.1.9.6}$$

$$\mathbf{u} = \begin{pmatrix} -11 \\ -3 \end{pmatrix} \tag{2.1.9.7}$$

$$f = 0 (2.1.9.8)$$

Expanding the Determinant of **V**.

$$\Delta_V = \begin{vmatrix} 19 & 12 \\ 12 & 1 \end{vmatrix} < 0 \tag{2.1.9.9}$$

Hence from 2.1.9.9 given equation represents the hyperbola.

The characteristic equation of V is obtained by evaluating the determinant

$$|V - \lambda \mathbf{I}| = 0$$
 (2.1.9.10)

$$\begin{vmatrix} 19 - \lambda & 12 \\ 12 & 1 - \lambda \end{vmatrix} = 0 \quad (2.1.9.11)$$

$$(19 - \lambda)(1 - \lambda) - 144 = 0 (2.1.9.12)$$

$$\lambda_1 = -5, \lambda_2 = 25 \tag{2.1.9.13}$$

The eigenvector \mathbf{p} is defined as

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.1.9.14}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.1.9.15}$$

For $\lambda_1 = -5$,

$$(\mathbf{V} - \lambda_1 \mathbf{I}) = \begin{pmatrix} 19 + 5 & 12 \\ 12 & 1 + 5 \end{pmatrix}$$
 (2.1.9.16)

By row reduction,

$$\begin{pmatrix} 24 & 12 \\ 12 & 6 \end{pmatrix} \tag{2.1.9.17}$$

$$\stackrel{R_2 \leftarrow 2R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 24 & 12 \\ 0 & 0 \end{pmatrix} \tag{2.1.9.18}$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{12}}{\longleftrightarrow} \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \tag{2.1.9.19}$$

Substituting equation 2.1.9.19 in equation

2.1.9.15 we get

$$\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1.9.20}$$

Where,
$$\mathbf{p} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 Let $u_1 = t$

$$u_2 = -2t \tag{2.1.9.21}$$

Eigen vector $\mathbf{p_1}$ is given by

$$\mathbf{p_1} = \begin{pmatrix} t \\ -2t \end{pmatrix} \tag{2.1.9.22}$$

Let t = 1, we get

$$\mathbf{p_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{2.1.9.23}$$

For $\lambda_2 = 25$,

$$(\mathbf{V} - \lambda_2 \mathbf{I}) = \begin{pmatrix} 19 - 25 & 12 \\ 12 & 1 - 25 \end{pmatrix} \quad (2.1.9.24)$$

By row reduction,

$$\begin{pmatrix} -6 & 12 \\ 12 & -24 \end{pmatrix} \tag{2.1.9.25}$$

$$\stackrel{R_2 \leftarrow R_2 + 2R_1}{\longleftrightarrow} \begin{pmatrix} -6 & 12\\ 0 & 0 \end{pmatrix} \tag{2.1.9.26}$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{6}}{\longleftrightarrow} \begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix} \tag{2.1.9.27}$$

Substituting equation 2.1.9.27 in equation 2.1.9.15 we get

$$\begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1.9.28}$$

Where, $\mathbf{p} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Let $v_1 = t$

$$v_2 = \frac{t}{2} \tag{2.1.9.29}$$

Eigen vector $\mathbf{p_2}$ is given by

$$\mathbf{p_2} = \begin{pmatrix} t \\ \frac{t}{2} \end{pmatrix} \tag{2.1.9.30}$$

Let t = 1, we get

$$\mathbf{p_2} = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \tag{2.1.9.31}$$

By eigen decompostion V can be represented

by

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.1.9.32}$$

where

$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} \tag{2.1.9.33}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{2.1.9.34}$$

Substituting equations 2.1.9.23, 2.1.9.31 in equation 2.1.9.33 we get

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ -2 & \frac{1}{2} \end{pmatrix} \tag{2.1.9.35}$$

Substituting equation 2.1.9.13 in 2.1.9.34 we get

$$\mathbf{D} = \begin{pmatrix} -5 & 0\\ 0 & 25 \end{pmatrix} \tag{2.1.9.36}$$

Equation of a hyperbola and the combined equation of the Asymptotes differ only in the constant term.

$$19x^{2} + 24xy + y^{2} - 22x - 6y + K = 0$$
(2.1.9.37)

The above equation can be expressed in the form

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.9.38}$$

Comparing equation we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 19 & 12 \\ 12 & 1 \end{pmatrix} \qquad (2.1.9.39)$$

$$\mathbf{u} = \begin{pmatrix} -11 \\ -3 \end{pmatrix} \tag{2.1.9.40}$$

$$f = K (2.1.9.41)$$

$$\Delta = \begin{vmatrix} 19 & 12 & -11 \\ 12 & 1 & -3 \\ -11 & -3 & K \end{vmatrix}$$
 (2.1.9.42)

Since the equations represent pair of straight lines, equating the determinant to zero, we can get the value of K

$$\implies K = 4 \tag{2.1.9.43}$$

Let (α, β) be their point of intersection, then

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -d \\ -e \end{pmatrix}$$
 (2.1.9.44)

Substituting the values, we obtain,

$$\begin{pmatrix} 19 & 12 \\ 12 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 11 \\ 3 \end{pmatrix} \tag{2.1.9.45}$$

We get,
$$\alpha = \frac{1}{5}, \beta = \frac{3}{5}$$
 (2.1.9.46)

Using Affine transformation and Spectral decomposition, we get

$$X' = \pm \sqrt{-\frac{\lambda_2}{\lambda_1}} Y' \qquad (2.1.9.47)$$

where
$$X' = Xu_1 + Yu_2$$
 (2.1.9.48)
 $Y' = Xv_1 + Yv_2$ (2.1.9.49)
 $= x - \alpha$ and $Y = y - \beta$ (2.1.9.50)

$$Y' = Xv_1 + Yv_2 \tag{2.1.9.49}$$

$$X = x - \alpha$$
 and $Y = y - \beta$ (2.1.9.50)

Therefore,

$$u_1(x - \alpha) + u_2(y - \beta) =$$

$$\pm \sqrt{-\frac{\lambda_2}{\lambda_1}} (v_1(x - \alpha) + v_2(y - \beta)) \quad (2.1.9.51)$$

Substituting values, we get

$$(x - \frac{1}{5}) - 2(y - \frac{3}{5}) =$$

$$\pm \sqrt{\frac{25}{5}}(x - \frac{1}{5}) + \frac{1}{2}(y - \frac{3}{5}) \quad (2.1.9.52)$$

Simplifying above equation

$$8x + 9y - 7 = 0$$

$$(2.1.9.53)$$

$$12x + y + 7 = 0$$

$$(2.1.9.54)$$

$$\implies (8x + 9y - 7)(12x + y + 7) = 0$$

$$(2.1.9.55)$$

Thus the equation of lines are

$$(8 \ 9) \mathbf{x} = 7$$
 (2.1.9.56) 2.2 41
 $(12 \ 1) \mathbf{x} = -7$ (2.1.9.57) 2.2.1. Trace the curve

The Equation of Conjugate hyperbola is given by:

2(Equation of Asymptotes)- Equation of hyperbola.

From Eq 2.1.9.1 and 2.1.9.37, we obtain

equation of Conjugate hyperbola as:-

$$19x^{2} + 24xy + y^{2} - 22x - 6y + 8 = 0$$
(2.1.9.58)

The general equation of second degree is given by

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$
 (2.1.9.59)

comparing equation 2.1.9.58 with the general equation of second degree given at 2.1.9.59, it can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.1.9.60}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.1.9.61}$$

$$\mathbf{u} = \begin{pmatrix} d \\ e \end{pmatrix} \tag{2.1.9.62}$$

Comparing equations 2.1.9.58 and 2.1.9.60 we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 19 & 12 \\ 12 & 1 \end{pmatrix} \tag{2.1.9.63}$$

$$\mathbf{u} = \begin{pmatrix} -11 \\ -3 \end{pmatrix} \tag{2.1.9.64}$$

$$f = 8 (2.1.9.65)$$

Therefore, the equation of the conjugate hyperbola is as given below:-

$$\mathbf{x}^{T} \begin{pmatrix} 19 & 12 \\ 12 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -11 & -3 \end{pmatrix} \mathbf{x} + 8 = 0$$
(2.1.9.66)

$$(x - y)^2 = x + y + 1$$
 (2.2.1.1)

Solution:

We have given equation as:

$$(x - y)^2 = x + y + 1$$
 (2.2.1.2)

$$\implies x^2 - 2xy + y^2 - x - y - 1 = 0$$
 (2.2.1.3)

The general equation of second degree is given

Fig. 2.1.9.1: Hyperbola, Conjugate Hyperbola and Asymptotes

by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(2.2.1.4)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.2.1.5}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.2.1.6}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.2.1.7}$$

Comparing (2.2.1.3) with (2.2.1.4), we get

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \tag{2.2.1.8}$$

$$\mathbf{u}^T = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \tag{2.2.1.9}$$

$$f = -1 \tag{2.2.1.10}$$

Expanding the determinant of V we observe,

$$|\mathbf{V}| = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0 \tag{2.2.1.11}$$

Also

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = \begin{vmatrix} 1 & -1 & -\frac{1}{2} \\ -1 & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -1 \end{vmatrix} \neq 0 \qquad (2.2.1.12)$$

Hence from (2.2.1.11) and (2.2.1.12) we conclude that given equation is an parabola. The characteristic equation of V is given as follows,

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = 0$$
 (2.2.1.13)

$$\implies (\lambda - 1)^2 - 1 = 0$$
 (2.2.1.14)

The eigenvalues are the roots of (2.2.1.14) given by

$$\lambda_1 = 0, \lambda_2 = 2 \tag{2.2.1.15}$$

The eigenvector **p** is defined as:

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{2.2.1.16}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \mathbf{p} = 0 \tag{2.2.1.17}$$

where λ is the eigenvalue. For $\lambda_1 = 0$,

$$Vp = 0$$
 (2.2.1.18)

Row reducing V yields,

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + R_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \qquad (2.2.1.19)$$

Similarly, the eigenvector corresponding to λ_2 can be obtained as

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \xleftarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
(2.2.1.20)

It is easy to verify that

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad :: \mathbf{P}^{-1} = \mathbf{P}^{T}$$
(2.2.1.21)

or,
$$\mathbf{D} = \mathbf{P}^T \mathbf{V} \mathbf{P}$$
 (2.2.1.22)

From equation (2.2.1.19) and (2.2.1.20), we have

$$\mathbf{p_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and, } \mathbf{p_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad (2.2.1.23)$$

Thus, the eigenvector rotation matrix and the eigenvalue matrix are

$$\mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 (2.2.1.24)

$$\mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \tag{2.2.1.25}$$

The focal length of the parabola is given by

$$\frac{\left|2\mathbf{u}^{T}\mathbf{p}_{1}\right|}{\lambda_{2}} = \frac{\sqrt{2}}{2} = \sqrt{2}$$
 (2.2.1.26)

Fig. 2.2.1.1: Parabola with the center c

and its equation is

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -2\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{2.2.1.27}$$

where,

$$\eta = \mathbf{u}^T \mathbf{p_1} = -\frac{1}{\sqrt{2}} \tag{2.2.1.28}$$

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p_1}^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p_1} - \mathbf{u} \end{pmatrix}$$
 (2.2.1.29)

$$\implies \begin{pmatrix} -1 & -1 \\ 1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \tag{2.2.1.30}$$

Forming the augmented matrix and row reducing it:

$$\begin{pmatrix}
-1 & -1 & 1 \\
1 & -1 & 1 \\
-1 & 1 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 + R_1}
\begin{pmatrix}
-1 & -1 & 1 \\
0 & -2 & 1 \\
-1 & 1 & 0
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - R_1}$$

$$\begin{pmatrix}
1 & 1 & -1 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 + R_2}
\begin{pmatrix}
1 & 1 & -1 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow \frac{R_1}{-2}}
\begin{pmatrix}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.1.31)$$

So,

$$\mathbf{c} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \tag{2.2.1.32}$$

2.2.2. Trace the parabola

$$(4x + 3y + 15)^2 = 5(3x - 4y) (2.2.2.1)$$

Solution: The given equation can be rewritten as

$$16x^{2} + 24xy + 9y^{2} + 105x + 110y + 225 = 0$$
(2.2.2.2)

Comparing this to the standard equation,

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 16 & 12 \\ 12 & 9 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \frac{105}{2} \\ 55 \end{pmatrix}, \quad f = 225$$
(2.2.2.3)

The characteristic equation of V is given as

$$|\lambda \mathbf{I} - \mathbf{V}| = 0 \tag{2.2.2.4}$$

$$\implies \begin{vmatrix} \lambda - 16 & -12 \\ -12 & \lambda - 9 \end{vmatrix} = 0 \qquad (2.2.2.5)$$

$$\implies \lambda^2 - 25\lambda = 0 \qquad (2.2.2.6)$$

The eigenvalues are the roots of the equation (2.2.2.6), which are as follows:

$$\lambda_1 = 0, \quad \lambda_2 = 25$$
 (2.2.2.7)

The eigen vector **p** is defined as,

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.2.2.8}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{2.2.2.9}$$

For $\lambda_1 = 0$

$$(\lambda_1 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} -16 & -12 \\ -12 & -9 \end{pmatrix} \stackrel{R_1 \leftarrow \frac{1}{4}R_1}{\stackrel{R_2 \leftarrow R_2 - 3R_1}{\leftarrow R_1}} \begin{pmatrix} -4 & -3 \\ 0 & 0 \end{pmatrix}$$

$$(2.2, 2.10)$$

$$\implies \mathbf{p_1} = \frac{1}{5} \begin{pmatrix} -3\\4 \end{pmatrix} \tag{2.2.2.11}$$

For $\lambda_2 = 25$

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} 9 & -12 \\ -12 & 16 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{3}R_1} \begin{pmatrix} 3 & -4 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.2.12)$$

$$\implies \mathbf{p_2} = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{2.2.2.13}$$

So, using Eigenvalue decomposition, $\mathbf{P}^T \mathbf{V} \mathbf{P} =$

D, where

$$\mathbf{P} = \frac{1}{5} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \tag{2.2.2.14}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix} \tag{2.2.2.15}$$

Then, for the parabola

focal length =
$$\left| \frac{2\eta}{\lambda_2} \right|$$
 (2.2.2.16)

$$\eta = \mathbf{p}_1^T \mathbf{u} = \frac{25}{2} \tag{2.2.2.17}$$

Substituting values from (2.2.2.17) and (2.2.2.7) in (2.2.2.16), we get

focal length = 1
$$(2.2.2.18)$$

The standard equation of the parabola is given by

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -2\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{2.2.2.19}$$

And the vertex \mathbf{c} is given by

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p}_1^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_1 - \mathbf{u} \end{pmatrix}$$
 (2.2.2.20)

Substituting values from (2.2.2.3),(2.2.2.17),(2.2.2.11) in (2.2.2.20),

$$\begin{pmatrix} 45 & 65 \\ 16 & 12 \\ 12 & 9 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -225 \\ -60 \\ -45 \end{pmatrix}$$
 (2.2.2.21)

To find c, performing row reduction on the

augmented matrix as follows:

$$\begin{pmatrix}
45 & 65 & -225 \\
16 & 12 & -60 \\
12 & 9 & -45
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - \frac{3}{4}R_2}
\xrightarrow{R_1 \leftarrow \frac{1}{45}R_1}
\begin{pmatrix}
1 & \frac{13}{9} & -5 \\
16 & 12 & -60 \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.22)$$

$$\xrightarrow{R_2 \leftarrow R_2 - 16R_1}
\begin{pmatrix}
1 & \frac{13}{9} & -5 \\
0 & -\frac{100}{9} & 20 \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.23)$$

$$\xrightarrow{R_2 \leftarrow \frac{-9}{100}R_2}
\begin{pmatrix}
1 & \frac{13}{9} & -5 \\
0 & -\frac{100}{9} & 20 \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.23)$$

$$\xrightarrow{R_1 \leftarrow R_1 - \frac{13}{9}R_2}
\begin{pmatrix}
1 & 0 & \frac{-12}{5} \\
0 & 1 & \frac{-9}{5} \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.24)$$

$$\xrightarrow{R_1 \leftarrow R_1 - \frac{13}{9}R_2}
\begin{pmatrix}
1 & 0 & \frac{-12}{5} \\
0 & 1 & \frac{-9}{5} \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.25)$$

Thus,

$$\mathbf{c} = \begin{pmatrix} \frac{-12}{5} \\ \frac{-9}{5} \end{pmatrix} = \begin{pmatrix} -2.4 \\ -1.8 \end{pmatrix} \tag{2.2.2.26}$$

Fig. 2.2.2.1: Parabola with vertex c

2.2.3. Trace the parabola

$$16x^2 + 24xy + 9y^2 - 5x - 10y + 1 = 0$$

Solution: Compare the given equation with the standard form

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(2.2.3.1)

Write the values Of V and u as follows

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 16 & 12 \\ 12 & 9 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} -\frac{5}{2} \\ -5 \end{pmatrix} \quad f = 1$$
(2.2.3.2)

The characteristic equation of V is given as

$$|\lambda \mathbf{I} - \mathbf{V}| = 0 \tag{2.2.3.3}$$

$$\implies \begin{vmatrix} \lambda - 16 & -12 \\ -12 & \lambda - 9 \end{vmatrix} = 0 \qquad (2.2.3.4)$$

$$\implies \lambda^2 - 25\lambda = 0 \tag{2.2.3.5}$$

The eigenvalues are the roots of the equation (2.2.3.5) are

$$\lambda_1 = 0, \quad \lambda_2 = 25$$
 (2.2.3.6)

The eigen vector \mathbf{p} is defined as,

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.2.3.7}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0 \tag{2.2.3.8}$$

For $\lambda_1 = 0$

$$(\lambda_1 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} -16 & -12 \\ -12 & -9 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{4}R_1} \begin{pmatrix} -4 & -3 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.3.9)$$

$$\implies \mathbf{p_1} = \frac{1}{5} \begin{pmatrix} -3\\4 \end{pmatrix} \tag{2.2.3.10}$$

For $\lambda_2 = 25$

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} 9 & -12 \\ -12 & 16 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{3}R_1} \begin{pmatrix} 3 & -4 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.3.11)$$

$$\implies \mathbf{p_2} = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{2.2.3.12}$$

Use Eigenvalue decomposition, $P^TVP = D$, where

$$\mathbf{P} = \frac{1}{5} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \tag{2.2.3.13}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix}$$
 (2.2.3.14)
2.2.4. Trace the parabola

Focal length of the parabola is given as

focal length =
$$\left| \frac{2\eta}{\lambda_2} \right|$$
 (2.2.3.15)

$$\eta = \mathbf{p}_1^T \mathbf{u} = -\frac{5}{2}$$
 (2.2.3.16)

Substituting values from (2.2.3.16) (2.2.3.6) in (2.2.3.15), we get

focal length =
$$\frac{1}{5}$$
 (2.2.3.17)

The standard equation of the parabola is given

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -2\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{2.2.3.18}$$

And the vertex \mathbf{c} is given by

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p}_1^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_1 - \mathbf{u} \end{pmatrix}$$
 (2.2.3.19)

Substituting from (2.2.3.2),(2.2.3.16),(2.2.3.10) in (2.2.3.19),

$$\begin{pmatrix} -1 & -7 \\ 16 & 12 \\ 12 & 9 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}$$
 (2.2.3.20)

To find c, performing row reduction on the augmented matrix as follows:

$$\begin{pmatrix} -1 & -7 & -1 \\ 16 & 12 & 4 \\ 12 & 9 & 3 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - \frac{3}{4}R_2} \begin{pmatrix} 1 & 7 & 1 \\ 16 & 12 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$
(2.2.3.21)

$$\stackrel{R_2 \leftarrow R_2 - 16R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 7 & 1 \\ 0 & -100 & -12 \\ 0 & 0 & 0 \end{pmatrix}$$
(2.2.3.2)

$$\stackrel{R_2 \leftarrow \frac{-1}{100} R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 7 & 1 \\ 0 & 1 & \frac{3}{25} \\ 0 & 0 & 0 \end{pmatrix}$$
(2.2.3.23)

$$\stackrel{R_1 \leftarrow R_1 - 7R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{4}{25} \\ 0 & 1 & \frac{3}{25} \\ 0 & 0 & 0 \end{pmatrix} \\
(2.2.3.24)$$

Thus,

$$\mathbf{c} = \begin{pmatrix} \frac{4}{25} \\ \frac{3}{25} \end{pmatrix} \tag{2.2.3.25}$$

$$9x^2 + 24xy + 16y^2 - 4y - x + 7 = 0$$
 (2.2.4.1)

Solution: The general second degree equation can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.2.4.2}$$

Fig. 2.2.3.1: Parabola with vertex c

Comparing (2.2.4.1) and (2.2.4.2) we get

$$\mathbf{V} = \begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix} \tag{2.2.4.3}$$

$$\mathbf{u} = \begin{pmatrix} \frac{-1}{2} \\ -2 \end{pmatrix} \tag{2.2.4.4}$$

$$f = 7 (2.2.4.5)$$

The characteristic equation of V is given as

$$\left|\mathbf{V} - \lambda \mathbf{I}\right| = 0 \tag{2.2.4.6}$$

$$\implies \begin{vmatrix} 9 - \lambda & 12 \\ 12 & 16 - \lambda \end{vmatrix} = 0 \qquad (2.2.4.7)$$

$$\implies \lambda^2 - 25\lambda = 0 \tag{2.2.4.8}$$

The roots of (2.2.4.8) are eigenvalue of **V** and are given by

$$\lambda_1 = 0, \lambda_2 = 25$$

The eigenvector \mathbf{p} is defined as

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{2.2.4.9}$$

$$\implies (\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.2.4.10}$$

For $\lambda_1 = 0$

$$(\mathbf{V} - \lambda \mathbf{I}) = \begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix} \xrightarrow{R_2 = R_2 - \frac{4}{3}R_1} \begin{pmatrix} 9 & 12 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.4.11)$$

Substituting equation (2.2.4.11) in equation (2.2.4.10) and upon normalization we get

$$\mathbf{p_1} = \frac{1}{5} \begin{pmatrix} -4\\3 \end{pmatrix} \tag{2.2.4.12}$$

For $\lambda_2 = 25$

$$(\mathbf{V} - \lambda \mathbf{I}) = \begin{pmatrix} -16 & 12 \\ 12 & -9 \end{pmatrix} \xrightarrow{R_2 = R_2 + \frac{3}{4}R_1} \begin{pmatrix} -16 & 12 \\ 0 & 0 \end{pmatrix}$$
(2.2.4.13)

Substituting equation (2.2.4.13) in equation (2.2.4.10) and upon normalization we get

$$\mathbf{p}_2 = \frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix} \tag{2.2.4.14}$$

The matrix P and D are

$$\mathbf{P} = (\mathbf{p1} \quad \mathbf{p2}) = \frac{1}{5} \begin{pmatrix} -4 & 3\\ 3 & 4 \end{pmatrix}$$
 (2.2.4.15)

and

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix} \tag{2.2.4.16}$$

Then for the parabola

$$\eta = 2\mathbf{p_1}^T \mathbf{u} = -\frac{8}{5}$$
 (2.2.4.17)

focal length =
$$\left| \frac{\eta}{\lambda_2} \right| = \frac{8}{125}$$
 (2.2.4.18)

For parabola |V| = 0, so equation (2.2.4.2) can be written as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{2.2.4.19}$$

And the vertex \mathbf{c} is given by

$$\begin{pmatrix} \mathbf{u}^T + \frac{\eta}{2} \mathbf{p_1}^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \frac{\eta}{2} \mathbf{p_1} - \mathbf{u} \end{pmatrix}$$
 (2.2.4.20)

Substituting values from (2.2.4.3), (2.2.4.4), (2.2.4.5), (2.2.4.12), (2.2.4.17) in (2.2.4.20)

$$\begin{pmatrix} \frac{7}{50} & -\frac{124}{50} \\ 9 & 12 \\ 12 & 16 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -7 \\ \frac{57}{50} \\ \frac{76}{50} \end{pmatrix}$$
 (2.2.4.21)

To find c,performing row reduction in aug-

mented matrix as follows

$$\begin{pmatrix}
\frac{7}{50} & -\frac{124}{50} & -7\\
9 & 12 & \frac{57}{50}\\
12 & 16 & \frac{76}{50}
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - \frac{4}{3}R_2}
\begin{pmatrix}
1 & -\frac{124}{7} & -50\\
9 & 12 & \frac{57}{50}\\
0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2 - 9R_1}
\begin{pmatrix}
1 & -\frac{124}{7} & -50\\
0 & \frac{1200}{7} & \frac{22557}{50}\\
0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow \frac{7}{1200}R_2}
\begin{pmatrix}
1 & -\frac{124}{7} & -50\\
0 & 1 & \frac{52633}{20000}\\
0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 \leftarrow R_1 + \frac{124}{7}R_2}
\begin{pmatrix}
1 & 0 & -\frac{16911}{5000}\\
0 & 1 & \frac{52633}{20000}\\
0 & 0 & 0
\end{pmatrix}$$

Thus

$$\mathbf{c} = \begin{pmatrix} -\frac{16911}{52000} \\ \frac{52633}{20000} \end{pmatrix} \tag{2.2.4.22}$$

Fig. 2.2.4.1: Graph of $9x^2+24xy+16y^2-4y-x+7=0$

2.2.5. Trace the parabola

$$16x^{2} - 24xy + 9y^{2} + 32x + 86y - 39 = 0$$
(2.2.5.1)

Solution: The general equation of a second degree can be expressed as:

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.2.5.2}$$

Comparing (2.2.5.1) and (2.2.5.2)

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} 16 & -12 \\ -12 & 9 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 16 \\ 43 \end{pmatrix}, \quad f = -39$$
(2.2.5.3)

Eigen Values: The characteristic equation of **V** is given as

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = 0 \tag{2.2.5.4}$$

$$\implies \begin{vmatrix} \lambda - 16 & 12 \\ 12 & \lambda - 9 \end{vmatrix} = 0 \qquad (2.2.5.5)$$

$$\implies \lambda^2 - 25\lambda = 0 \tag{2.2.5.6}$$

The eigenvalues are the roots of the equation (2.2.5.6), which are as follows:

$$\lambda_1 = 0, \quad \lambda_2 = 25$$
 (2.2.5.7)

Eigen Vectors: The eigen vector \mathbf{p} is defined

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{2.2.5.8}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V})\mathbf{p} = 0$$
 (2.2.5.9)

For $\lambda_1 = 0$

$$(\lambda_1 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} -16 & 12 \\ 12 & -9 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{4}R_1} \begin{pmatrix} -4 & 3 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.5.10)$$

$$\implies \mathbf{p_1} = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \tag{2.2.5.11}$$

For $\lambda_2 = 25$

$$(\lambda_2 \mathbf{I} - \mathbf{V}) = \begin{pmatrix} 9 & 12 \\ 12 & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{3}R_1} \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.5.12)$$

$$\implies \mathbf{p_2} = \frac{1}{5} \begin{pmatrix} -4\\3 \end{pmatrix} \tag{2.2.5.13}$$

Eigen Value Decomposition: Using EVD, we can write

$$\mathbf{D} = \mathbf{P}\mathbf{V}\mathbf{P}^T \tag{2.2.5.14}$$

From (2.2.5.11) and (2.2.5.13)

$$\mathbf{P} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \tag{2.2.5.15}$$

From (2.2.5.7)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix} \tag{2.2.5.16}$$

Parabola

Focal Length =
$$\left| \frac{2\eta}{\lambda_2} \right|$$
 (2.2.5.17)

From (2.2.5.11) and (2.2.5.3)

$$\eta = \mathbf{p}_1^T \mathbf{u} = 44 \qquad (2.2.5.18)$$

Substituting values of (2.2.5.18) and (2.2.5.7) in (2.2.5.17), we get

Focal Length =
$$\left| \frac{88}{25} \right| = 3.52$$
 (2.2.5.19)

The standard equation of parabola is given by:

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -2\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad (2.2.5.20)$$

And the vertex **c** is:

$$\begin{pmatrix} \mathbf{u}^T + \eta \mathbf{p_1}^T \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p_1} - \mathbf{u} \end{pmatrix}$$
 (2.2.5.21)

From (2.2.5.3) (2.2.5.18) and (2.2.5.11),

$$\begin{pmatrix} \frac{212}{5} & \frac{391}{5} \\ 16 & -12 \\ -12 & 9 \end{pmatrix} \mathbf{c} = \begin{pmatrix} 39 \\ \frac{52}{5} \\ \frac{-39}{5} \end{pmatrix}$$
 (2.2.5.22)

To find **c**, perform row reduction on the augmented matrix as follows:

$$\begin{pmatrix} \frac{212}{5} & \frac{391}{5} & 39\\ 16 & -12 & \frac{52}{5}\\ -12 & 9 & \frac{-39}{5} \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + \frac{3}{4}R_2} \begin{pmatrix} 1 & \frac{391}{212} & \frac{195}{212}\\ 16 & -12 & \frac{52}{5}\\ 0 & 0 & 0 \end{pmatrix}$$

$$(2.2.5.23)$$

$$\stackrel{R_2 \leftarrow R_2 - 16R_1}{\longleftrightarrow} \begin{pmatrix}
1 & \frac{391}{212} & \frac{195}{212} \\
0 & -\frac{2200}{53} & \frac{-1144}{265} \\
0 & 0 & 0
\end{pmatrix}$$
(2.2,5,24)

$$\stackrel{R_2 \leftarrow \frac{-53}{2200}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{391}{212} & \frac{195}{212} \\ 0 & 1 & \frac{13}{125} \\ 0 & 0 & 0 \end{pmatrix} \\
(2.2.5.25)$$

$$\stackrel{R_1 \leftarrow R_1 - \frac{391}{212}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{4823}{6625} \\ 0 & 1 & \frac{13}{125} \\ 0 & 0 & 0 \end{pmatrix} \\
(2.2.5.26)$$

Hence,

$$\mathbf{c} = \begin{pmatrix} \frac{4823}{6625} \\ \frac{13}{125} \end{pmatrix} = \begin{pmatrix} 0.728 \\ 0.104 \end{pmatrix} \tag{2.2.5.27}$$

Fig. 2.2.5.1: Parabola with vertex c

2.2.6. Trace the following parabola

$$4x^2 - 4xy + y^2 - 12x + 6y + 9 = 0$$
 (2.2.6.1)

Solution: The given quadratic equation can be written in the matrix form as

$$\mathbf{x}^{T} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -6 & 3 \end{pmatrix} \mathbf{x} + 9 = 0 \quad (2.2.6.2)$$

Calculating the parameters, we get

$$\left|\mathbf{V}\right| = \begin{vmatrix} 4 & -2 \\ -2 & 1 \end{vmatrix} = 0 \qquad (2.2.6.3)$$

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^T & f \end{vmatrix} = \begin{vmatrix} 4 & -2 & -6 \\ -2 & 1 & 3 \\ -6 & 3 & 9 \end{vmatrix} = 0 \qquad (2.2.6.4)$$

Therefore the given parabola equation is a degenerate. The quadratic equation corresponds to a pair of coincident straight lines.

The characteristic equation of V will be

$$\begin{vmatrix} \mathbf{V} - \lambda \mathbf{I} \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -2 \\ -2 & 1 - \lambda \end{vmatrix}$$
 (2.2.6.5)

$$= \lambda^2 - 5\lambda \tag{2.2.6.6}$$

$$\lambda_1 = 0, \lambda_2 = 5$$
 (2.2.6.7)

The eigen vectors are the nullspace of the matrix $\mathbf{V} - \lambda \mathbf{I}$. For $\lambda_1 = 0$

$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \xrightarrow{R_2 = 2R_2 + R_1} \begin{pmatrix} 4 & -2 \\ 0 & 0 \end{pmatrix} \qquad (2.2.6.8)$$

$$p_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad (2.2.6.9)$$

Therefore the normalized eigen vector will be

$$p_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \tag{2.2.6.10}$$

For $\lambda_2 = 5$

$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} -1 & -2 \\ 0 & 0 \end{pmatrix} \qquad (2.2.6.11)$$
$$p_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \qquad (2.2.6.12)$$

Therefore the normalized eigen vector will be

$$p_2 = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
 (2.2.6.13)

Therefore the transformation matrix will be

$$\mathbf{P} = \begin{pmatrix} p_1 & p_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$
 (2.2.6.14)

The value of η will be

$$\eta = 2p_1^T \mathbf{u} \tag{2.2.6.15}$$

$$= 2\left(\frac{1}{\sqrt{5}} \quad \frac{2}{\sqrt{5}}\right) \begin{pmatrix} -6\\3 \end{pmatrix} \tag{2.2.6.16}$$

$$=0$$
 (2.2.6.17)

A point on the line can be found by using to following formula

$$\begin{pmatrix} \mathbf{u}^T + \frac{\eta}{2}p_1^T \\ \mathbf{V} \end{pmatrix} c = \begin{pmatrix} -f \\ \frac{\eta}{2}p_1 - \mathbf{u} \end{pmatrix}$$
 (2.2.6.18) Therefore the equation
$$\begin{pmatrix} \mathbf{u}^T \\ \mathbf{V} \end{pmatrix} c = \begin{pmatrix} -f \\ -\mathbf{u} \end{pmatrix}$$
 (2.2.6.19) 2.2.7. Trace the curve
$$\begin{pmatrix} -6 & 3 \\ 4 & -2 \\ -2 & 1 \end{pmatrix} c = \begin{pmatrix} -9 \\ 6 \\ -3 \end{pmatrix}$$
 (2.2.6.20) Solution: The equation is the equation of the e

Writing it in augmented form, we get

$$\begin{pmatrix}
-6 & 3 & -9 \\
4 & -2 & 6 \\
-2 & 1 & -3
\end{pmatrix}
\xrightarrow{R_3 = R_3 - \frac{R_1}{3}}
\begin{pmatrix}
-6 & 3 & -9 \\
4 & -2 & 6 \\
0 & 0 & 0
\end{pmatrix}$$

$$(2.2.6.21)$$

$$\xrightarrow{R_2 = \frac{3}{2}R_2 + R_1}
\begin{pmatrix}
-6 & 3 & -9 \\
0 & 0 & 0
\end{pmatrix}$$

$$\stackrel{R_2 = \frac{3}{2}R_2 + R_1}{\longleftrightarrow} \begin{pmatrix} -6 & 3 & -9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(2.2.6.22)

Therefore we can see that the point $c = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ lies on the line. Equation of the straight line Applying affine transformation we get

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \tag{2.2.6.23}$$

$$\mathbf{y}^T \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix} \mathbf{y} = 0 \tag{2.2.6.24}$$

$$5y^2 = 0 (2.2.6.25)$$

Therefore the transformed line is y = 0, which in vector form will be $(0 1)\mathbf{y} = 0$.

Taking the Inverse affine transformation we get

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} P^T \left(\mathbf{x} - c \right) \end{pmatrix} = 0$$

(2.2.6.26)

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} (\mathbf{x} - c) = 0$$
(2.2.6.27)

$$(2.2.6.27)$$

$$\left(-\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right) (\mathbf{x} - c) = 0$$
(2.2.6.28)

$$\left(-\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right) \mathbf{x} - \left(-\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right) \begin{pmatrix} 1\\-1 \end{pmatrix} = 0$$
(2.2.6.29)

$$\left(-\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right)\mathbf{x} + \frac{3}{\sqrt{5}} = 0$$
(2.2.6.30)

$$(2 -1)\mathbf{x} = 3$$

(2.2.6.31)

Therefore the equation of coincident lines is (2x - y - 3) = 0.

$$35x^2 + 30y^2 + 32x - 108y - 12xy + 59 = 0$$
(2.2.7.1)

Solution: The general equation of second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(2.2.7.2)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.2.7.3}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.2.7.4}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.2.7.5}$$

Comparing (2.2.7.1) with (2.2.7.2), we get

$$\mathbf{V} = \begin{pmatrix} 35 & -6 \\ -6 & 30 \end{pmatrix} \tag{2.2.7.6}$$

$$\mathbf{u}^T = \begin{pmatrix} 16 & -54 \end{pmatrix} \tag{2.2.7.7}$$

If $|\mathbf{V}| > 0$, then (2.2.7.3) is an ellipse.

$$|V| = \begin{vmatrix} 35 & -6 \\ -6 & 30 \end{vmatrix} = 1014 > 0 \tag{2.2.7.8}$$

(2.2.7.3) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |V| \neq 0 \qquad (2.2.7.9)$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad |V| = 0 \qquad (2.2.7.10)$$

with center as

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u}$$
 $|V| \neq 0$ (2.2.7.11)

Calculating the center for given curve we get,

$$\mathbf{c} = -\frac{1}{|35 * 30 - 6 * 6|} \begin{pmatrix} 30 & 6 \\ 6 & 35 \end{pmatrix} \begin{pmatrix} 16 \\ -54 \end{pmatrix}$$
(2.2.7.12)

$$=\frac{1}{1014} \begin{pmatrix} 156\\ -1794 \end{pmatrix} \tag{2.2.7.13}$$

$$= \begin{pmatrix} \frac{2}{13} \\ \frac{-23}{13} \end{pmatrix} \tag{2.2.7.14}$$

For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0$, $\lambda_2 > 0$ (2.2.7.15)

(2.2.7.9) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f$$
 (2.2.7.16)

which is the equation of an ellipse with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}$$
 (2.2.7.17)

The characteristic equation of V is obtained by evaluating the determinant

$$|\lambda \mathbf{I} - \mathbf{V}| = \begin{vmatrix} \lambda - 35 & 6 \\ 6 & \lambda - 30 \end{vmatrix} = 0$$
 (2.2.7.18)
 $\implies \lambda^2 - 65\lambda + 1014 = 0$ (2.2.7.19)

The eigenvalues are the roots of (2.2.7.19) given by

$$\lambda_1 = 39, \lambda_2 = 26 \tag{2.2.7.20}$$

Calculating the major and minor axes lengths using (2.2.7.17), we get

$$\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} =$$

$$= (16 - 54) \frac{1}{1014} \begin{pmatrix} 30 & 6 \\ 6 & 35 \end{pmatrix} \begin{pmatrix} 16 \\ -54 \end{pmatrix}$$

$$= \frac{1}{1014} \begin{pmatrix} 16 & -54 \end{pmatrix} \begin{pmatrix} 156 \\ -1794 \end{pmatrix}$$

$$= 98$$

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 98 - 59 = 39$$
 (2.2.7.21)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{\frac{39}{39}} = 1$$
 (2.2.7.22)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} = \sqrt{\frac{39}{26}} = \frac{\sqrt{6}}{2}$$
 (2.2.7.23)

Fig. 2.2.7.1: Ellipse with center $\left(\frac{2}{13} - \frac{-23}{13}\right)$ and having the axes lengths as 1 and $\frac{\sqrt{6}}{2}$

2.2.8. Trace the curve

$$14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$$
(2.2.8.1)

Solution: The general equation of second degree is given by

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(2.2.8.2)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.2.8.3}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.2.8.4}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.2.8.5}$$

Comparing (2.2.8.1) with (2.2.8.2), we get

$$\mathbf{V} = \begin{pmatrix} 14 & -2 \\ -2 & 11 \end{pmatrix} \tag{2.2.8.6}$$

$$\mathbf{u}^T = \begin{pmatrix} -22 & -29 \end{pmatrix} \tag{2.2.8.7}$$

If $|\mathbf{V}| > 0$, then (2.2.8.3) is an ellipse.

$$|V| = \begin{vmatrix} 14 & -2 \\ -2 & 11 \end{vmatrix} = 150 > 0 \tag{2.2.8.8}$$

(2.2.8.3) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |V| \neq 0 \qquad (2.2.8.9)$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad |V| = 0 \qquad (2.2.8.10)$$

with center as

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u}$$
 $|V| \neq 0$ (2.2.8.11)

Calculating the center for given curve we get,

$$\mathbf{c} = -\frac{1}{|14 \times 11 - (-2 \times -2)|} \begin{pmatrix} 11 & 2 \\ 2 & 14 \end{pmatrix} \begin{pmatrix} -22 \\ -29 \end{pmatrix}$$
(2.2.8.12)

$$=\frac{1}{150} \binom{300}{450} \tag{2.2.8.13}$$

$$= \binom{2}{3} \tag{2.2.8.14}$$

For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0, \lambda_2 > 0$ (2.2.8.15)

(2.2.8.9) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f$$
 (2.2.8.16)

which is the equation of an ellipse with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}$$
 (2.2.8.17)

The characteristic equation of V is obtained by

evaluating the determinant

$$\left| \lambda \mathbf{I} - \mathbf{V} \right| = \begin{vmatrix} \lambda - 14 & 2 \\ 2 & \lambda - 11 \end{vmatrix} = 0 \quad (2.2.8.18)$$

$$\implies \lambda^2 - 25\lambda + 150 = 0$$
 (2.2.8.19)

The eigenvalues are the roots of (2.2.8.19) given by

$$\lambda_1 = 15, \lambda_2 = 10$$
 (2.2.8.20)

The eigenvector \mathbf{p} is defined as

$$\mathbf{V}\mathbf{p} = \lambda \mathbf{p} \tag{2.2.8.21}$$

$$\implies (\lambda \mathbf{I} - \mathbf{V}) \,\mathbf{p} = 0 \tag{2.2.8.22}$$

where λ is the eigenvalue. For $\lambda_1 = 15$,

$$(\lambda_{1}\mathbf{I} - \mathbf{V}) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \xrightarrow{R_{2} \leftarrow R_{2} - 2R_{1}} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

$$(2.2.8.23)$$

$$\implies \mathbf{p}_{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$(2.2.8.24)$$

such that $\|\mathbf{p}_1\| = 1$. Similarly, the eigenvector corresponding to λ_2 can be obtained as

$$\mathbf{p}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2 \end{pmatrix} \tag{2.2.8.25}$$

It is easy to verify that

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad :: \mathbf{P}^{-1} = \mathbf{P}^{T}$$
(2.2.8.26)

or,
$$\mathbf{D} = \mathbf{P}^T \mathbf{V} \mathbf{P}$$
 (2.2.8.27)

where

$$\mathbf{P} = (\mathbf{p}_1 \ \mathbf{p}_2) = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
 (2.2.8.28)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 15 & 0 \\ 0 & 10 \end{pmatrix} \tag{2.2.8.29}$$

Calculating the ellipse parameters using

(2.2.8.17), we get

$$\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} =$$

$$= (-22 - 29) \frac{1}{150} \begin{pmatrix} 11 & 2 \\ 2 & 14 \end{pmatrix} \begin{pmatrix} -22 \\ -29 \end{pmatrix}$$

$$= \frac{1}{150} \begin{pmatrix} 300 & 450 \end{pmatrix} \begin{pmatrix} 22 \\ 29 \end{pmatrix}$$

$$= 131$$

$$\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} - f = 131 - 71 = 60 \qquad (2.2, 8.30)$$

$$\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f = 131 - 71 = 60 \qquad (2.2.8.30)$$

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}} = \sqrt{\frac{60}{15}} = 2$$
 (2.2.8.31)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2}} = \sqrt{\frac{60}{10}} = \sqrt{6}$$
 (2.2.8.32)

Thus, the given curve is found to be an ellipse from (2.2.8.8) with center at (2 3) and the major and minor axes lengths are calculated as $\sqrt{6}$, 2. An ellipse with these parameters along with one having center as origin are plotted as shown.

Fig. 2.2.8.1: Ellipse with center (2 3) and having the axes lengths as $\sqrt{6}$ and 2 along with an ellipse with center as origin

2.2.9. Trace the following

$$x^2 - 3xy + y^2 + 10x - 10y + 21 = 0$$
 (2.2.9.1)

Solution: The given quadratic equation can be written in the matrix form as

$$\mathbf{x}^{T} \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 5 & -5 \end{pmatrix} \mathbf{x} + 21 = 0$$
(2.2.9.2)

Calculating the parameters, we get

$$\left| \mathbf{V} \right| = \begin{vmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 1 \end{vmatrix} = -\frac{5}{4}$$
 (2.2.9.3)

Since, $|\mathbf{V}| < 0$, therefore the given equation represents a hyperbola.

The characteristic equation of V will be

$$\left|\mathbf{V} - \lambda \mathbf{I}\right| = \begin{vmatrix} 1 - \lambda & -\frac{3}{2} \\ -\frac{3}{2} & 1 - \lambda \end{vmatrix} = 0 \tag{2.2.9.4}$$

$$\implies 4\lambda^2 - 8\lambda - 5 = 0 \qquad (2.2.9.5)$$

$$\implies \lambda_1 = \frac{5}{2}, \lambda_2 = -\frac{1}{2}$$
 (2.2.9.6)

The eigen vector **p** is given by

$$\mathbf{Vp} = \lambda \mathbf{p} \tag{2.2.9.7}$$

$$\implies \mathbf{V} - \lambda \mathbf{Ip} = 0 \tag{2.2.9.8}$$

For $\lambda_1 = \frac{5}{2}$

$$\mathbf{V} - \lambda \mathbf{I} = \begin{pmatrix} 1 - \frac{5}{2} & -\frac{3}{2} \\ -\frac{3}{2} & 1 - \frac{5}{2} \end{pmatrix}$$
 (2.2.9.9)

$$= \begin{pmatrix} -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \tag{2.2.9.10}$$

$$\begin{pmatrix} -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} -\frac{3}{2} & -\frac{3}{2} \\ 0 & 0 \end{pmatrix} \qquad (2.2.9.11)$$

$$\stackrel{R_1=R_1/-\frac{3}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \tag{2.2.9.12}$$

Substituting (2.2.9.12) in (2.2.9.8) we get

$$\mathbf{p_1} = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{2.2.9.13}$$

Therefore the normalized eigen vector will be

$$\mathbf{p_1} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \tag{2.2.9.14}$$

For $\lambda_2 = -\frac{1}{2}$

$$\mathbf{V} - \lambda \mathbf{I} = \begin{pmatrix} 1 + \frac{1}{2} & -\frac{3}{2} \\ -\frac{3}{2} & 1 + \frac{1}{2} \end{pmatrix}$$
 (2.2.9.15)

$$= \begin{pmatrix} \frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix}$$
 (2.2.9.16)

$$\begin{pmatrix} -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \xrightarrow{R_2 = R_2 + R_1} \begin{pmatrix} -\frac{3}{2} & -\frac{3}{2} \\ 0 & 0 \end{pmatrix} \qquad (2.2.9.17)$$

$$\stackrel{R_1=R_1/\frac{3}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \tag{2.2.9.18}$$

Substituting (2.2.9.18) in (2.2.9.8) we get

$$\mathbf{p_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.2.9.19}$$

Therefore the normalized eigen vector will be

$$\mathbf{p_2} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \tag{2.2.9.20}$$

Eigen decomposition

Since $V = V^T$ there exists an orthogonal matrix P such that

$$\mathbf{P}\mathbf{P}^T = \mathbf{I} \tag{2.2.9.21}$$

$$\mathbf{PVP}^T = \mathbf{D} = diag(\lambda_1 \lambda_2) \qquad (2.2.9.22)$$

or equivalently

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.2.9.23}$$

As

$$\mathbf{P} = \begin{pmatrix} p_1 & p_2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 (2.2.9.24)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad (2.2.9.25)$$

$$\implies \mathbf{D} = \begin{pmatrix} \frac{5}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix} \qquad (2.2.9.26)$$

$$C = -V^{-1}u$$
 (2.2.9.27)

$$\mathbf{C} = -\mathbf{V}^{-1}\mathbf{u} \qquad (2.2.9.27)$$

$$\implies \mathbf{C} = \begin{pmatrix} -\frac{4}{5} & -\frac{6}{5} \\ -\frac{6}{5} & -\frac{4}{5} \end{pmatrix} \begin{pmatrix} -5 \\ 5 \end{pmatrix} \qquad (2.2.9.28)$$

$$= \begin{pmatrix} -2\\2 \end{pmatrix} \qquad (2.2.9.29)$$

:. Centre C is given by:

$$\begin{pmatrix} -2\\2 \end{pmatrix} \qquad (2.2.9.30)$$

Now Equation (2.2.9.1) can be written as

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} = \mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} - \mathbf{f}$$
 (2.2.9.31)
(2.2.9.32)

where y is given by:

$$\mathbf{y} = \mathbf{P}^T \left(\mathbf{x} - \mathbf{c} \right) \tag{2.2.9.33}$$

So

$$\mathbf{y}^T \begin{pmatrix} \frac{5}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix} \mathbf{y} = -1$$
 (2.2.9.34)

$$\implies \mathbf{y}^T \begin{pmatrix} \frac{5}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix} \mathbf{y} + 1 = 0 \qquad (2.2.9.35)$$

Fig. 2.2.9.1: Hyperbola plot when origin is shifted