MATLAB 在数据包络分析中的应用

彭育威¹, 徐小湛², 吴守宪¹

(1. 西南民族学院计算机科学与技术学院,成都 610041; 2. 四川大学数学学院,成都 610064)

摘要: 用数学软件 MATLAB 编写了方便、适用的 DEA 应用程序,较好地解了 DEA 计算量大的问题。本文建立的程序为 DEA 理论研究和实际应用提供了方便、有效的计算工具。

关键词:数据包络分析(DEA);线性规划;MATLAB

1. DEA 模型简介

数据包络分析,简称 DEA (Data Envelopment Analysis),是以相对效率概念为基础,根据多指标投入(输入)和多指标产出(输出),对同类型的部门或单位(称为决策单元(DMU))进行相对有效性或效益评价的一种方法 $^{[1,2]}$ 。

DEA 是由 Charnes 等人于 1978 年提出的^[3]。该方法最初主要用于对一些非盈利部门(如教育、卫生、政府机构)的运转的有效性的评价;后来,DEA 被用于更广泛的领域(如金融、经济、项目评估等等)。

一个部门的运转往往需要多项投入,也会有多项产出。例如,对大学的一个系的投入包括:教师、教师的工资、办公经费、文献资料费等等;而这个系的产出包括:培养的本科生和研究生、发表的论文、完成的科研项目等等。DEA 可以对若干个同类型的这种部门或单位(它们有相同的目标和任务、有相同的输入和输出指标、有相同的外部环境)进行相对有效性的评价。

设有 n 个决策单元 DMU_i ($1 \le i \le n$)。每一个单元 DMU_i 有 m 项输入 x_{1i} , x_{2i} , …, x_{mi} 和 s 项输出 y_{1i} , y_{2i} , …, y_{si} (其中 x_{ii} , $y_{ii} > 0$)。则有以下输入一输出矩阵:

作者简介: 彭育威, 教授, 研究方向: 模糊数学、应用数学;徐小湛, 副教授, 研究方向: 决策分析、运筹学;吴守宪, 副教授, 研究方向: 应用数学。

	DMU_1	•••	DMU_i	•••	DMU_n	
输入1	x_{11}	•••	x_{1i}	•••	x_{1n}	
输入2	x_{21}	•••	x_{2i}	•••	x_{2n}	
•••	•••	•••	•••	•••	•••	
输入 m	x_{m1}	•••	x_{mi}	•••	\mathcal{X}_{mn}	
输出1	y ₁₁	•••	y_{1i}	•••	y_{1n}	
输出 2	<i>y</i> ₂₁	•••	y_{2i}	•••	y_{2n}	
•••	•••	•••	•••	•••	•••	
输出 s	y_{s1}	•••	y_{si}	•••	y_{sn}	

将 DMU, 的输入和输出记为向量形式:

$$x_i = (x_{1i}, x_{2i}, \dots, x_{mi})^T, y_i = (y_{1i}, y_{2i}, \dots, y_{si})^T$$

则以上矩阵可简记为:

	DMU_1 ···	DMU_i	•••	DMU_n
输入	<i>x</i> ₁	x_i	•••	\mathcal{X}_n
输出	<i>y</i> ₁	y_i	•••	y_n

记

$$X = [x_1 \quad x_2 \quad \cdots \quad x_n], \qquad Y = [y_1 \quad y_2 \quad \cdots \quad y_n]$$

并称 X 为多指标输入矩阵, Y 为多指标输出矩阵。

设

$$v = (v_1, v_2, \dots, v_m)^{\mathrm{T}}$$
 π $u = (u_1, u_2, \dots, u_s)^{\mathrm{T}}$

分别是输入和输出的权向量,则 DMU_i 的总输入 I_i 和总输出 O_i 分别为:

显然,总输入 I_i 越小,总输出 O_i 越大,则 DMU_i 的效率越高。为此,DEA 用总输出与总输入之比的大小来衡量 DMU_i 的有效性。令

$$E_{ii} = \frac{O_i}{I_i} = \frac{y_i^T u}{x_i^T v}$$

 E_{ii} 称为 DMU_i 的效率评价指数。在上式中,权向量 u 和 v 都是待定的,它们的每一个分量都是非负的(记作 $u \ge 0, v \ge 0$)。对每一个 DMU_i ,我们求使 E_{ii} 达到最大值的权向量。因此,得到 DEA的 C^2R 模型(\overline{P}):对每一个 DMU_i ,解以下极大化问题:

$$\begin{cases} \max \frac{y_i^T u}{x_i^T v} = E_{ii} \\ \text{s.t. } \frac{y_j^T u}{x_i^T v} \le 1 \ (1 \le j \le n), \ u \ge 0, v \ge 0 \end{cases}$$

这是一个分式规划问题。若令

$$t = \frac{1}{x_i^T v}$$
, $\omega = t v$, $\mu = t u$

则(\overline{P})可化为等价的线性规划问题:

$$\begin{cases} \max y_i^T \ \mu = E_{ii} \\ \text{s.t. } y_j^T \ \mu \le x_j^T \ \omega \quad (1 \le j \le n), \quad x_i^T \ \omega = 1, \quad \omega \ge 0, \quad \mu \ge 0 \end{cases}$$
 (P)

线性规划 (P) 的解 ω_i * 和 μ_i * 称为 DMU_i 的最佳权向量,它们是使 DMU_i 的效率值 E_{ii} 达到最大值的权向量。注意:作为线性规划的解, ω_i * 和 μ_i * 不是唯一的。

定义^[2] (1) 若线性规划 (*P*) 的解 ω_i^* , μ_i^* 满足: $E_{ii} = y_i^T \mu_i^* = 1$, 则称 DMU_i 为弱 DEA 有效(C²R)的; (2) 若线性规划 (*P*) 的解中存在解 $\omega_i^*>0$, $\mu_i^*>0$ 并且 $E_{ii} = y_i^T \mu_i^* = 1$, 则称 DMU_i 为 DEA 有效(C²R)的。

为了便于检验 DEA 的有效性,一般考虑(P)的对偶模型的等式形式(带有松弛变量且具有非阿基米德无穷小 ε):

$$\begin{cases} \min\left(\theta - \mathcal{E}(e_1^T s^- + e_2^T s^+)\right) \\ \text{s.t. } \sum_{j=1}^n \lambda_j x_j + s^- = \theta x_i , \sum_{j=1}^n \lambda_j y_j - s^+ = y_i \end{cases}$$

$$\lambda \ge 0, \quad s^- \ge 0, \quad s^+ \ge 0$$

其中, $s^-=(s_1^-,\ s_2^-,\ \cdots,\ s_m^-)$ 是m项输入的松弛变量; $s^+=(s_1^+,\ s_2^+,\ \cdots,\ s_s^+)$ 是s项输出的松弛变量; $\lambda=(\lambda_1,\lambda_2,...,\lambda_n)$ 是n个DMU的组合系数; $e_1^T=(1,1,\cdots,1)_{1\times m},\ e_2^T=(1,1,\cdots,1)_{1\times m}$, $e_2^T=(1,1,\cdots,1)_{1\times s},\ \varepsilon$ 是一个很小的正数(一般取 $\varepsilon=10^{-6}$)。

定理^[2] 设线性规划(D_{ϵ})的最优解为 λ^* , s^{*-} , s^{*+} , θ^* , 则

- (1) 若 $\theta^* = 1$,则 DMU_i为弱 DEA 有效(C^2R)的;
- (2) 若 $\theta^* = 1$ 且 $s^{*-}=0$, $s^{*+}=0$, 则 DMU; 为 DEA 有效(C^2R)的。

2. MATLAB 程序

由上一节知,要计算一个 DMU_i 的相对效率值并讨论其(弱)有效性,须解一个线性规划;若要计算所有 DMU_i ($1 \le i \le n$) 的相对效率值,则须解 n 个线性规划,其计算量比较大,一般须利用计算机进行计算。我们利用数学软件 MATLAB 编写了解模型(P)和(D_{ε})的程序,比较方便地解决了 DEA 的计算量大和计算复杂的问题。

MATLAB 是由 Mathworks 公司用 C 语言编写的著名的工程数学应用软件。它自 1984 年推向市场以来,历经十几年的发展和竞争,现已成为国际认可的最优化的科技应用软件。目前,MATLAB 已经成为世界上诸多科技领域的基本应用软件。在国内、外的很多高等院校和科研机构,MATLAB 已经十分普及。熟练地运用 MATLAB 已成为高校师生及科研人员的基本技能^[4]。

MATLAB 强大的矩阵运算能力和方便、直观的编程功能是我们选择它作为编写 DEA 应用程序的原因。诚然,LINDO 或 LINGO 是解线性规划问题的专业软件,但它们缺乏方便的编程功能和矩阵输入功能,在解一系列线性规划时,它们不如 MATLAB 方便。此外,它们的普及程度远不如 MATLAB。因此,我们认为 MATLAB 是编写 DEA 应用程序的最佳软件之一。

MATLAB 所解的线性规划的标准形式是极小化问题:

$$\begin{cases} \min f^*w \\ s.t. A^*w \le b, Aeq^*w = beq, LB \le w \le UB \end{cases}$$
 (1)

其中,w是变量,f是目标函数的系数向量,A是不等式约束的系数矩阵,Aeq是等式约束的系数矩阵,LB和UB分别是变量的下界和上界。

MATLAB 解线性规划(1)的语句为:

w = LINPROG(f, A, b, Aeq, beq, LB, UB)

如果要解极大化问题 max f*w, 只须解极小化问题 min (-f)*w。

下面, 我们给出模型 (P) 和 (D_{c})的 MATLAB 程序。

```
程序 I (模型 (P) 的 MATLAB 程序)
clear
                   %用户输入多指标输入矩阵 X
X=[ ...
          ];
                   %用户输入多指标输出矩阵 Y
Y=[ ... ];
n=size(X',1); m=size(X,1); s=size(Y,1);
A=[-X']
        Y'];
b=zeros(n,1);
LB=zeros(m+s,1);UB=[];
for i=1:n:
 f=[zeros(1,m) - Y(:,i)'];
 Aeq=[X(:,i)' zeros(1,s)];beq=1;
 w(:,i)=LINPROG(f,A,b,Aeq,beq,LB,UB);
                                         %解线性规划,得DMUi的最佳权向量wi
   E(i, i)=Y(:,i)'*w(m+1:m+s,i);
                                        %求出 DMU; 的相对效率值 E;;
end
                  %输出最佳权向量
\mathbf{w}
                  %输出相对效率值 Eii
\mathbf{E}
                  %输出投入权向量\omega
omega=w(1:m,:)
                  %输出产出权向量μ
mu=w(m+1:m+s,:)
程序 II (模型 (D<sub>c</sub>)的 MATLAB 程序)
clear
X=[ ...
         ];
                   %用户输入多指标输入矩阵 X
Y=[ ...
          1:
                   %用户输入多指标输出矩阵 Y
n=size(X',1); m=size(X,1); s=size(Y,1);
                   %定义非阿基米德无穷小\varepsilon=10^{-10}
epsilon=10^-10;
f=[zeros(1,n) -epsilon*ones(1,m+s) 1];
A=zeros(1,n+m+s+1); b=0;
LB=zeros(n+m+s+1,1);UB=[];
LB(n+m+s+1)=-Inf;
for i=1:n;
     Aeq=[X eye(m)]
                        zeros(m,s)
                                    -X(:,i)
          Y zeros(s,m)
                         -eye(s)
                                    zeros(s,1)];
     beq=[zeros(m,1)]
           Y(:,i)];
      w(:,i)= LINPROG (f,A,b,Aeq,beq,LB,UB); %解线性规划,得 DMU<sub>i</sub> 的最佳权向量 w<sub>i</sub>
end
                        %输出最佳权向量
w
```

lambda=w(1:n,:) %输出 λ^*

s_minus=w(n+1:n+m,:) %输出 s*-

s_plus=w(n+m+1:n+m+s,:) %输出 s*⁺

theta=w(n+m+s+1,:) %输出 θ^*

以上两个程序十分便于使用。用户只须输入多指标输入矩阵 X 和输出矩阵 Y,即可得到所需的结果。

3. 程序的应用

设有某大学的同类型的五个系 DMU_i ($1 \le i \le 5$)在一学年内的投入和产出的数据如下

•	
•	

		DMU_1	DMU_2	DMU_3	DMU_4	DMU ₅	
投	教职工(人)	60	70	85	106	35	
	教职工工资 (万元)	156	200	157	263	105	
入	运转经费 (万元)	50	180	100	86	30	
产	毕业的本科生(人)	80	60	90	96	30	
	毕业的研究生(人)	12	13	20	17	8	
出	发表的论文(篇)	27	25	15	28	3	
	完成的科研项目(项)	4	2	5	5	1	

其中,运转经费指一学年内维持该系正常运转的各种费用,如行政办公费、图书资料费、差旅费等等。

由程序 I, 得到各系的相对效率值:

$$E_{11} = 1.0000$$
 $E_{22} = 0.8982$ $E_{33} = 1.0000$ $E_{44} = 0.8206$ $E_{55} = 1.0000$

以及各项投入和产出的权向量:

	DMU_1	DMU_2	DMU_3	DMU_4	DMU_5
1	0.0003	0.0143	0.0001	0.0000	0.0019
θ \prec	0.0002	0.0000	0.0063	0.0014	0.0015
	0.0191	0.0000	0.0001	0.0073	0.0257
	0.0027	0.0000	0.0007	0.0000	0.0012
μ	0.0116	0.0554	0.0203	0.0442	0.1177
	0.0155	0.0071	0.0079	0.0000	0.0011
,	0.0563	0.0000	0.0819	0.0138	0.0186

由定义, DMU_1 , DMU_3 和 DMU_5 至少是弱有效的; DMU_2 和 DMU_4 是非弱有效的。为了确认 DMU_1 , DMU_3 和 DMU_5 的有效性并分析 DMU_2 和 DMU_4 非有效的原因,须利用模型(D_{ϵ})。由程序 II,得本问题的解:

	DMU_1	DMU_2	DMU_3	DMU_4	DMU_5
(1.0000	0.8472	0.0000	1.0964	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000
λ^*	0.0000	0.1417	1.0000	0.0536	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000
Ĺ	0.0000	0.0000	0.0000	0.3464	1.0000
۲	0.0000	0.0000	0.0000	4.5215	0.0000
s^{*-}	0.0000	25.2345	0.0000	0.0000	0.0000
Ĺ	0.0000	105.1508	0.0000	0.0000	0.0000
ſ	0.0000	20.5278	0.0000	6.9272	0.0000
s*+ \	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	3.4454	0.0000
	0.0000	2.0972	0.0000	0.0000	0.0000
$oldsymbol{ heta}^*$	1.0000	0.8982	1.0000	0.8206	1.0000

由以上解可看出: DMU_1 , DMU_3 和 DMU_5 的解中 $\theta^*=1$ 且松弛变量 $s^{*-}=0$, $s^{*+}=0$,故由定理 知,这几个系是相对有效的。 DMU_2 和 DMU_4 的非有效性也可以在以上解中看得一清二楚。以 DMU_2 为例,根据有效性的经济意义^[2],在不减少各项输出的前提下,构造一个新的 DMU_2 :

$$DMU_2 = 0.8472*DMU_1 + 0.1417*DMU_3$$

$$= \begin{bmatrix} 62.8750, & 154.4083, & 56.5278, & 80.5278, & 13.0000, & 25.0000, & 4.0972 \end{bmatrix}^T$$
投入

可使 DMU_2 的投入按比例减少到原投入的 0.8982 ($=\theta_2^*$) 倍,并且(由非零的松弛变量可知)还可以进一步减少教职工工资 25.2345 万元、减少运转费用 105.1508 万元、多培养本科生 20 人、多完成 2 项科研项目。对 DMU_4 的非有效性可作类似的经济解释。

4. 结束语

本文利用数学软件 MATLAB 编写了便于使用的 DEA 的计算程序,使 DEA 计算量大和计算 复杂的问题得到较好的解决。本文只对 DEA 的 C^2R 模型进行了讨论。对于 DEA 的另一个重要模型— C^2GS^2 模型,只须在模型 (D_ε) 中增加约束条件 $\sum_{j=1}^n \lambda_j = 1$,程序 II 作相应的修改即可。本文的 MATLAB 程序为 DEA 的理论研究和实际应用提供了方便、快捷的计算工具。

参考文献:

- [1] 魏权龄. 评价相对有效性的 DEA 方法[M]. 北京: 中国人民大学出版社, 1988.
- [2] 盛昭瀚 等. DEA 理论、方法与应用[M]. 北京: 科学出版社, 1996.
- [3] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units [J]. Eur. J. Opl. Res., 1978, 2(6), 429~444.
- [4] 许波,刘征. MatLab 工程数学应用[M]. 北京:清华大学出版社,2000.

MATLAB Programs for DEA

Peng Yuwei ¹, Xu Xiaozhan ², Wu Shouxian ¹

(1. College of Computer Science and Technology, Southwest Nationalities Institute, Chengdu, Sichuan 610041; 2. College of Mathematics, Sichuan University, Chengdu, Sichuan 610064)

Abstract: DEA models are programmed with MATLAB. These programs offer convenient and efficient tools for DEA theories and applications.

Key words: Data Envelopment Analysis (DEA); linear programming; MATLAB