宁波市 2024學年期末九校联考 高三数学参考答案

一、单项选择题:本题共8小题,每小题5分,共40分

题号	1	2	3	4	5	6	7	8
答案	C	D	В	A	D	C	A	В

二、多项选择题:本题共3小题,每小题6分,共18分

题号	9	10	11
答案	ABC	BC	ACD

三、填空题:本题共3小题,每小题5分,共15分

12. 19

13. $\frac{1}{8}$

14.
$$\left(e, \frac{2}{\ln 2}\right)$$

四、解答题:本题共5小题,共77分

15. 解:

(1) 从甲箱中任取**2**个小球的事件数为 $C_8^2 = 28$,这 2 个球是同色的事件数为 $C_8^2 + C_8^2 = 13$,

-----2 分

-----5分

所以这 2 个小球同色的概率为 $P = \frac{13}{28}$.

(2)解:设事件A为"从乙箱中任取1个小球,取出的这个小球是白球",事件B₁为"从甲箱中取出的2个小球都是白球",事件B₂为"从甲箱中取出的2个小球是1个白球1个黑球",事件B₂为"从甲箱中取出的2个都是黑球",则事件B₁,B₂,B₃彼此互斥.

$$P(B_1) = \frac{C_5^2}{C_8^2} = \frac{5}{14}, \ P(B_2) = \frac{C_5^1 C_3^1}{C_8^2} = \frac{15}{28}, \ P(B_3) = \frac{C_3^2}{C_8^2} = \frac{3}{28},$$

-----8分

$$P(A|B_1) = \frac{2}{3}$$
, $P(A|B_2) = \frac{5}{9}$, $P(A|B_3) = \frac{4}{9}$

-----11 分

所以P(A) = P(B₁)P(A|B₁) + P(B₂)P(A|B₂) + P(B₃)P(A|B₃) = $\frac{5}{14} \times \frac{2}{3} + \frac{15}{28} \times \frac{5}{9} + \frac{3}{28} \times \frac{4}{9} = \frac{7}{12}$

所以从乙箱中取出的小球是白球的概率为-2.

-----13 分

16. 解:

-----1分

曲线 y = f(x) 在 $(x_n, f(x_n))$ 处的切线方程为

$$y - f(x_n) = f'(x_n)(x - x_n)$$

-----3 分

$$\Rightarrow y = 0, \ \text{Mat}_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 + x_n}{2x_n + 1} = \frac{x_n^2}{2x_n + 1},$$

-----5 分

所以
$$\frac{x_{n+1}}{x_{n+1}+1} = \frac{x_n^2}{(x_n+1)^2}$$
, --------7分

所以
$$\ln \frac{x_{n+1}}{x_{n+1}+1} = 2 \ln \frac{x_n}{x_n+1}$$
,由 $x_1 = \frac{e}{1-e}$,得 $\ln \frac{x_1}{x_1+1} = 1$ ------9 分

数列 $\left\{\ln \frac{x_n}{x_{n+1}}\right\}$ 是以 1 为首项, 2 为公比的等比数列.

(2) 由上式得
$$a_n = 2^{n-1}$$
, $n \cdot a_n = n \cdot 2^{n-1}$,
$$S_n = 1 \cdot 2^0 + 2 \cdot 2^1 + \dots + n \cdot 2^{n-1}$$
 ①

$$2S_n = 1 \cdot 2^1 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n$$
 ②

①
$$-2$$
, $4 - S_n = 2^0 + 2^1 + \cdots + 2^{n-1} - n \cdot 2^n = 2^n - 1 - n \cdot 2^n$

所以
$$S_n = (n-1)2^n + 1$$
.

(1) 法一: (几何法) 如图,取 BC 中点 O,由 AB=AC,得 $_{AO \perp BC}$,作 $_{CE \parallel BD,DE \parallel BC}$, 17.

连 AE,OE,因为 AC 与 BD 所成角的余弦值为 $\sqrt{2}$

所以
$$\cos \angle ACE = \pm \frac{\sqrt{2}}{4}$$
, ------2 分

由于∠
$$ACE$$
 ∈ $\left(\frac{5\pi}{12}, \frac{11\pi}{12}\right)$

若
$$\cos \angle ACE = \frac{\sqrt{2}}{4} > \frac{\sqrt{6} - \sqrt{2}}{4} = \cos \frac{5\pi}{12}$$
,不可能成立,舍去.

故 $\cos \angle ACE = -\frac{\sqrt{2}}{4}$,由余弦定理得 $AE = 2\sqrt{2}$,

又因为
$$BC = CD = BD = 2$$
, $AB = AC = \sqrt{2}$,

所以
$$OA = 1, OE = \sqrt{7}$$
,所以 $OA \perp OE$,

因为 $OA \perp BC$, $BC \cap OE = O$, $OE \subset$ 平面BCD, 所以 $OA \perp$ 平面BCD,

因为
$$OA \subset$$
平面 ABC ,所以平面 $ABC \perp$ 平面 BCD .

-----6分

----2 分

法二: (基底法) 如图, 取BC中点O, 由AB = AC, BD=CD,

得 $AO \perp BC$, $DO \perp BC$, 二面角A - BC - D 的平面角为 $\angle AOD$, 由题意, 得OA = 1, $OD = \sqrt{3}$,

 $\mathcal{V}_{\angle AOD} = \theta, \ \overrightarrow{OC} = \overrightarrow{a}, \ \overrightarrow{OD} = \overrightarrow{b}, \ \overrightarrow{OA} = \overrightarrow{c}.$

 $\mathbb{D}(\vec{a} \cdot \vec{b}) = 0, \ \vec{a} \cdot \vec{c} = 0, \ \vec{b} \cdot \vec{c} = \sqrt{3} \cos \angle AOD$

$$\overrightarrow{AC} = \overrightarrow{a} - \overrightarrow{c}, \ \overrightarrow{BD} = \overrightarrow{b} + \overrightarrow{a},$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{a} - \overrightarrow{c})(\overrightarrow{b} + \overrightarrow{a}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a}^2 - \overrightarrow{c} \cdot \overrightarrow{b} - \overrightarrow{c} \cdot \overrightarrow{a} = 1 - \sqrt{3}\cos\angle AOD$$

$$|\cos(\overrightarrow{AC}, \overrightarrow{BD})| = |\overrightarrow{\overrightarrow{AC} \cdot \overrightarrow{BD}}| = |\overrightarrow{\overrightarrow{AC} \cdot \overrightarrow{BD}}| = |\overrightarrow{\overrightarrow{AC} \cdot \overrightarrow{BD}}| = \frac{\sqrt{2}}{4}, \quad (\overrightarrow{AC} \cdot \overrightarrow{BD}) = \pm 1,$$
 -----4 \mathcal{H}

解得 \cos \angle AOD = 0或 \cos \angle AOD = $\frac{2\sqrt{3}}{3}$ > 1(舍去),

则B(1,0,0), $D(0,\sqrt{3},0)$, C(-1,0,0), A(0,0,1),

设F(x,y,z), $\overrightarrow{AF} = t \overrightarrow{AD} (t \in (0,1))$,

 $\overrightarrow{AD} = (0, \sqrt{3}, -1), \overrightarrow{AF} = (x, y, z - 1),$

所以 $(x,y,z-1)=t(0,\sqrt{3},-1),$

所以
$$\begin{cases} x = 0, \\ y = \sqrt{3}t, 得 F(0, \sqrt{3}t, 1-t), \\ z = 1-t, \end{cases}$$

因为 $\overrightarrow{BC} = (-2,0,0), \ \overrightarrow{OF} = (0,\sqrt{3}t,1-t),$

设平面BCF的法向量 $\overrightarrow{m} = (x_0, y_0, z_0),$

则
$$\left\{ \overrightarrow{BC} \cdot \overrightarrow{m} = -2x_0 = 0, \\ \overrightarrow{OF} \cdot \overrightarrow{m} = \sqrt{3}ty_0 + (1-t)z_0 = 0, \right\}$$

 $\phi y_0 = 1 - t$, $\theta z_0 = -\sqrt{3}t$, $x_0 = 0$,

故平面ACD的一个法向量为 $\overline{m} = (0.1 - t, -\sqrt{3}t)$,

 $\nabla \overrightarrow{AC} = (-1,0,-1), \ \overrightarrow{AD} = (0,\sqrt{3},-1),$

同理可求得平面BCF的一个法向量为 $\vec{n} = (-\sqrt{3}, 1, \sqrt{3}),$

设二面角B-CF-D的平面角为 α ,

所以
$$|\cos \alpha| = \left| \frac{|\vec{m} \cdot \vec{n}|}{|\vec{m}||\vec{n}|} \right| = \frac{|1-t-3t|}{\sqrt{(1-t)^2 + 3t^2} \cdot \sqrt{7}} = \frac{\sqrt{7}}{7} \sqrt{\frac{16t^2 - 8t + 1}{4t^2 - 2t + 1}} = \frac{4}{7}$$

得
$$t = \frac{4}{3}$$
 或 $t = -\frac{1}{4}$ (舍), $DF = \frac{1}{2}$. ------15 分

18. 解:

(1) C_1 的渐近线方程为 $y = \pm \sqrt{3}x$, 2c = 4 ,

 C_2 的渐近线方程为 $y = \pm \frac{a}{b}x$, $a^2 + b^2 = 4$, -----2 分

所以
$$\left\{ \frac{a}{b} = \sqrt{3} \atop a^2 + b^2 = 4 \right\}$$
, 得 $a = \sqrt{3}$, $b = 1$,

所以双曲线 C_2 的方程为 $\frac{y^2}{2} - x^2 = 1$.

(2) 已知 $P(x_0, y_0)$, 且满足 $3x_0^2 - y_0^2 = 3$, 设切点 $A(x_1, y_1)$, $B(x_2, y_2)$, $M(x_M, y_M)$,

根据题意得, 直线 AB 方程为 $\frac{y_0}{3}y - x_0x = 1$.

-----5 分

-----4 分

-----10 分

直线 AB 与 C_1 联立,得 $\begin{cases} \frac{y_0}{3} y - x_0 x = 1 \\ x^2 - \frac{y^2}{3} = 1 \end{cases}$ 化简得 $3x^2 + 6x_0x + 3 + y_0^2 = 0$, $\Delta = 36x_0^2 - 12(3 + y_0^2) = 12(3x_0^2 - 3 - y_0^2) = 0$, 所以直线 AB 与 C_1 切于点 M. 所以 $x_M = -x_0, y_M = -y_0$. 直线 AB 与 C_2 联立,得 $\begin{cases} \frac{y_0}{3} y - x_0 x = 1 \\ \frac{y^2}{3} - x^2 = 1 \end{cases}$,即 $\begin{cases} \frac{y_0}{3} y - x_0 x = 1 \\ x^2 - \frac{y^2}{3} = -1 \end{cases}$ 得 $3x^2 + 6x_0x + 3 - y_0^2 = 0$ 所以 $x_1 + x_2 = -2x_0 = 2x_M$, 所以 |AM| = |BM|. (3) 法一: 因为 $PM //BF_2$,则 $k_{PM} = k_{BF_2} = \frac{y_0}{x_1}$, 直线 $BF_2: y = \frac{y_0}{x}(x-2)$ 与直线 $AB: \frac{yy_0}{3} - xx_0 = 1$ 联立,得 $B\left(-\frac{2}{3}y_0^2-x_0,-2x_0y_0-y_0\right)$, $BPB\left(2-2x_0^2-x_0,-y_0\left(2x_0+1\right)\right)$ 将点 $B(2-2x_0^2-x_0,-y_0(2x_0+1))$ 代入 $\frac{y^2}{2}-x^2=1$, 得 $(x_0^2-1)(2x_0+1)^2-(2x_0^2+x_0-2)^2=1$, 化简得 $x_0^2 = \frac{6}{4}$, -----16 分 曲 $3x_0^2 - y_0^2 = 3$ 得, $|y_0| = \frac{\sqrt{6}}{2}$, 所以 $S_{\Delta MF_1F_2} = \frac{1}{2} \times 4 \times |y_0| = 2|y_0| = \sqrt{6}$ -----17 分 法二:因为 $P(x_0,y_0)$, $M(-x_0,-y_0)$,点P与点M关于原点对称,所以 $S_{\Delta MPF_2}=S_{\Delta MF_1F_2}$ 因为 $PM//BF_2$,所以 $S_{\Delta MPF_2} = S_{\Delta MPB}$,因为|AM| = |BM|,所以 $S_{\Delta MPB} = \frac{1}{2}S_{\Delta PAB}$, 所以 $S_{\Delta MF_1F_2} = \frac{1}{2}S_{\Delta PAB}$, -----13 分 $S_{\Delta MF_1F_2} = \frac{1}{2} \times 4 \times |y_0| = 2|y_0|$, -----14 分

$$S_{\Delta PAB} = \frac{1}{2} \times \left| AB \right| \times d_{P-AB} = \frac{1}{2} \times \sqrt{1 + \frac{9x_0^2}{y_0^2}} \cdot \frac{\sqrt{24y_0^2}}{3} \times \frac{\left| x_0^2 - \frac{y_0^2}{3} + 1 \right|}{\sqrt{x_0^2 + \frac{y_0^2}{9}}} = 2\sqrt{6} , \qquad -----16 \%$$

$$\text{FT } \bigcup S_{\Delta ME, F_2} = 2|y_0| = \sqrt{6} . \qquad ------17 \%$$

19. 解:

(1)
$$\sin \alpha = \sin(\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2}) = \sin\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2} + \cos\frac{\alpha + \beta}{2} \cdot \sin\frac{\alpha - \beta}{2}$$

 $\sin \beta = \sin(\frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2}) = \sin\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2} - \cos\frac{\alpha + \beta}{2} \cdot \sin\frac{\alpha - \beta}{2}$
两式相加,得 $\sin \alpha + \sin \beta = 2\sin\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2}$ ------4分

(2) 线段 AB 的中点 M 的坐标为 $(\frac{1}{2}(\cos\alpha+\cos\beta),\frac{1}{2}(\sin\alpha+\sin\beta))$. 过 M 作 MM₁垂直于 x 轴,交 x 轴于 M₁, 所以 $M_1M=\frac{1}{2}(\sin\alpha+\sin\beta)$ -----6分

 $\angle MOM_1 = \frac{1}{2}(\alpha + \beta)$. $\angle Rt\Delta OMA + OM = \cos\frac{\beta - \alpha}{2}$,

在
$$Rt\Delta OM_1M$$
 中, $M_1M = OM\sin \angle MOM_1 = \sin\frac{\beta + \alpha}{2}\cos\frac{\alpha - \beta}{2}$, ------9 分

则
$$\frac{1}{2}(\sin\alpha + \sin\beta) = \sin\frac{\beta + \alpha}{2}\cos\frac{\alpha - \beta}{2}$$
,

即
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$
. ------10 分

(3) 设
$$\angle BAC = \alpha, \angle ACB = \beta, \beta > \alpha,$$
则 $\angle ABD = \frac{\alpha + \beta}{2}, \angle ADB = \pi - \beta,$
所以 $\angle DAB = \frac{\beta - \alpha}{2},$ ------12 分

在 $\triangle ABC$ 中,由正弦定理,得 $BA+BC=2(\sin\alpha+\sin\beta)$

在
$$\triangle ABD$$
 中,由正弦定理,得 $AD = 2\sin \angle ABD = 2\sin \frac{\alpha + \beta}{2}$

所以
$$2AM = 2AD \cdot \cos \angle DAB = 4\sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\beta - \alpha}{2}$$
 ------16 分

由(1)式
$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$
,得 $2AM = BA + BC$. ------17 分