Nipun Batra

IIT Gandhinagar

August 2, 2025

Another optimisation method (akin to gradient descent)

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- ..., but, easy for each coordinate

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- · ..., but, easy for each coordinate
- turns into a one-dimensional optimisation problem

Picking next coordinate:

Picking next coordinate:

- Picking next coordinate: random, round-robin
- No step-size to choose!

- Picking next coordinate: random, round-robin
- No step-size to choose!
- · Converges for Lasso objective

Coordinate Descent: Example

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using coordinate descent where initially $(\theta_0, \theta_1) = (2, 3)$ for 2 iterations.

-/ -/	
X	У
1	1
2	2
3	3

Coordinate Descent: Example

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$\mathsf{MSE} = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

$$\mathsf{MSE} = \frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

Coordinate Descent : Example

Iteration 1

INIT: $\theta_0 = 2$ and $\theta_1 = 3$

 $\theta_1=3$ optimize for θ_0

Coordinate Descent : Example

Iteration 1

INIT: $\theta_0 = 2$ and $\theta_1 = 3$

 $\theta_1=3$ optimize for θ_0

$$\frac{\partial \, \mathrm{MSE}}{\partial \theta_0} = 6\theta_0 + 24 = 0$$

$$\theta_0 = -4$$

$$\mathsf{MSE} = \frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

Coordinate Descent : Example

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$\theta_0 = -4$$
 optimize for θ_1

Coordinate Descent: Example

Iteration 2

INIT: $\theta_0 = -4$ and $\theta_1 = 3$

 $\theta_0 = -4$ optimize for θ_1

 $\theta_1 = 2.7$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

$$MSE = \frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

Coordinate Descent : Example

Iteration 3

INIT: $\theta_0 = -4$ and $\theta_1 = 2.7$

 $\theta_1=2.7$ optimize for θ_0

Coordinate Descent : Example

Iteration 3

INIT: $\theta_0 = -4$ and $\theta_1 = 2.7$

 $\theta_1=2.7$ optimize for θ_0

$$\theta_0 = -3.4$$

$$\mathsf{MSE} = \frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

$$MSE = \frac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

