UNCLASSIFIED

AD NUMBER

AD361833

CLASSIFICATION CHANGES

TO: unclassified

FROM: secret

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution: DoD only others to Director, Defense Nuclear Agency, Attn: STTI. Washington, DC 20305.

AUTHORITY

DSWA ltr. 10 Sep 97-RD/FRD removed; DSWA ltr. 10 Sep 97

THIS PAGE IS UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

*This document centains information affecting the National Defense of the United States within the meaning of the Espionage Laws, Title 18, U. S. C., Section 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

EXCLUDED FROM AUTOMATIC REGRADING; DOD DIR 5200.10 DOES NOT APPLY

" one half original size "

attachment A

②

cotion

PROVING GROUNDS

3 1954

TON OF AFRODNE LOW-FREQUENCY
NO FROM NUCLEAR EXPLOSIONS

RESTRICTO DAM

to a fine ment of the property of the control of th

MENTO, ART OF FIELD & MMAND ARMED FORCES SPECIAL WEAPON TO SERVICE FALL NEED QUERQUE, NEW MEXICO

SECRE

(4)

produced Intest from Man () ript () p. b.;
 Al C. Teebra and Element in Sorver ()
 On the man, Tenressee

Inquiries — and a to the region may be made.

Charf, Area disorders Species Weapens Project.

Washington, D. C.

The first section of the section of

FORMEREY RESTRICTED DATA WT-93

MANDLE AS RESTRICTED DATA IN FOREIGN DISSEMINATION

This document consists of 63 pages

No. 51 copies, Series A

OPERATION CASTLE

Project 7.2

DETECTION OF AIRBORNE LOW-FREQUENCY SOUND FROM NUCLEAR EXPLOSIONS

REPORT TO THE TEST DIRECTOR

U. B. MILITARY ACTUATION THE CONTROL CONTROL OF THIS REPORT DIRECTLY CONTROL THROUGH Sponsoing

by

G. B. Olmsted Director

Director Defense Atomic Co. 20301 Washington, D. C. 20301

May 1955

Post with a second seco

That is Make garag

4)

RESTRICTED DATA

The transmission of the feet leading as

The transmission of the feet leading as

Contents in any princes of the marginal red
person is prohibited.

Headquarters United States Air Force
Office for Atomic Energy, DCS/O
AFOAT-1

SECOL

GR JOPA

Excluded from entrumete

downers of the state of

SECROBMERLY RESTRICTED DATA 5.5

NANDLE AS RESTRICTED DATA IN FOREIGN DISSEMINATION
SECTION 1448, ATOMIC ENERGY ACT, 1954

(4)

SECRET - RESTRICTED DATA

(*)

②

(8)

(4)

SECRET - RESTRICTED DATA

GENERAL SHOT INFORMATION

	Shot 1	Sho1 2	Shut 3	Shot 4	Shot 5	Shot 6
DATE	l Morch	27 March	7 April	26 April	5 May	14 May
CODE NAME (Unclassified)	Bravo	Romeo	Koen	Caion	Yankee	Nector
THE	06:40	92:90	06:15	\$0:90	06:05	90:15
LOCATION	Bikini, West of Charbe (Namu) on Reef	Bikıni, Shot 1 Croter	Bikini, Tare (Eninman)	Bitini, on Barge at Intersection of Arcs with Radii of 6900 from Dog (Yurochi) and 3 Statute Liles from Fax (Aomoen)	at Intersection or 6900' from d 3 Statute Giles	Enwerch, IVY Mike Srater, Flora (Ewgelab)
TYPE	Land	Barge	Poug	Borge	Barge	Borge
HOLMES & NARVER COORDINATES	N 170,617.17 E 76,163.98	N 170,635.05 E 75,950.46	N 100, 154.50 E 109, 799 00	N 161,698 83 E 116,800 27	N 161, 424 43 E 116,688,15	N 147,750.00 E 67,790.00

. APPROXIMATE

*

SECRET - RESTRICTED DATA

ABSTRACT

(*)

Measurements of the airborne low-frequency sound from the Operation CASTLE nuclear explosions were made at 15 remote locations, covering a variety of distances and directions from the Pacific Proving Grounds, with the objective of studying the relation between signal characteristics and the energy released over the range of yields from 1 to 15 megatoms equivalent. Both standard and very low-frequency sound recording equipment responsive to small atmospheric pressure variations in the frequency range from 1.0 to 0.002 cycles/second were employed. Signals were detected at ranges exceeding 45,000 km for explosions larger than 5 MT, 30,000 km for the 1.7 MT shot, and 10,000 km for the 0.13 MT shot. All megatom shots produced the initial dispersive wave train of very low-frequency previously noted for IVI MIKE.

PREFACE

Conclusions given in this report are those of AFOAT-1, Headquarters U. S. Air Force, and do not necessarily reflect the opinions of agencies participating in the project.

FOREWORD

This report is one of the reports presenting the results of the 34 projects participating in the Military Effects Tests Program of Operation CASTIE, which included six test detonations. For readers interested in other pertinent test information, reference is made to WT-934, Summary Report of the Commander, Task Unit 13, Programs 1 - 9, Military Effects Program. This summary report includes the following information of possible general interest.

- a. An over-all description of each detonation, including yield, height of burst, ground zero location, time of detonation, ambient atmospheric conditions at detonation, etc., for the six shots.
- b. Discussion of all project results.
- c. A summary of each project, including objectives and results.
- d. A complete listing of all reports covering the Military Effects Tests Program.

ACKNOWLEDGMENTS

The data presented in this report were the result of measurements and analyses by the National Bureau of Standards, the Navy Electronics Laboratory, and the Signal Corps Engineering Laboratories. Credit for the success of Project 7.2 is due each of the participants listed below.

National Bureau of Standards

Peter Chrsanowski, Project Leader	Irving Swine
R. P. Brown, Jr.	Harry Matheson
F. Cordero	H. B. Mead
H. W. Frey	C. S. Rice, Jr.
D. P. Johnson	H. A. Schmidt, Jr.
P. E. Johnson	C. C. Walker
B. M. King	Mrs. E. M. Legate
K. T. Taymon	

Navy Electronics Laboratory

E. W. Thatcher, Project Supervisor	A. M. Cargile	R. C. McLoughlin
C. T. Johnson, Project Leader	J. R. Chiles, Jr.	J. I. Morgan
H. C. Silent, Consultant	D. D. Crowell	C. A. Potter
Lt (jg) D.A.Hamlin, Mil.Proj.Off.	V. E. Klms	J. E. Rasconi
J. P. Bennett	F. C. Foushes	J.N. Shellabarger
A. E. Berndes, Jr.	W. T. Hedrick	L. C. Thompson
L. Board	D. E. Holcomb, Jr.	R. A. Wassted

Signal Corps Engineering Laboratories

C. h. Crenshaw, Project Director	Maj L. R. Tipton
W. P. Lonnie, Asst. Project Director	Capt W. R. Martin
E. J. W. Leinonen, Project Engl. er	Capt R. M. Rich
Walter Pressman, Consultant	Capt A. S. Montasser
S. E. Benia	Capt W. B. Sullivan
R. B. Fishman	Capt R. E. Kelly
Salvatore Oliva	Capt C. B. Sameon
Miss B. D. Ulrich	Capt G. E. Summers
Mre. M. A. Tate	Capt S. S. Wolfeld
John Ward	Capt C. A. Haycock
	Capt N. A. Lecklikner
Maj R. M. Herrera, CO Military Personnel	Capt W. R. King
Maj Owen Blankenship	Capt J. W. Wall

Office of the Chief Signal Officer

Normand Stulman, Project Coordinator Capt Paul Mertr, Liaison Off. T. E. Hedman, Asat. Project Coordinator

Office of Naval Besearch

J. W. Saith

J. J. Kane

In addition, the assistance of Major E. H. Nowak, Jr., Mrs. Elsie Morrow, and A/IC D. F. Baumann of the AFOAT-1 staff is gratefully acknowledged.

CONTENTS

ABSTRACT		>
PREFACE		5
POREWORD		7
ACKNOWLE	EDGMENTS	9
ILLUSTRA	ATIONS	13
TABLES		13
CHAPTER :	1 INTROLUCTION	15
1.1 1.2	Objectives	15 15
	2 EXPERIMENT DESIGN	17
2.1	Participating Agencies	•
	Chandra land	
2	Station List	- 4 (5 m
2.3	Shot Data	17
2.4	Station Layout	18
2.5	Instrumentation	18
	2.5.1 General	18
	2.5.2 SCEL Instrumentation	18
	2.5.3 NEL Instrumentation	19
	2.5.4 NBS Instrumentation	
		20
		20
	2.5.6 Timing	20
CHAPTER :	3 RESULTS AND DISCUSSION	21
3.1	General	21
3.2		
3.3	Signal Characteristics	22
J• J	3.3.1 General	22
	3.3.2 Horisontal Phase Velocities	22
		23
	3.3.3 Signal Amplitudes	
	3.3.4 Signal Duration	23
	3.3.5 Signal Periods	24
3.4	Travel Speeds	24
3.5	Asimuth Errors	25
3.6	Yield	25

11

SECRET - RESTRICTED DATA

Hapter	4 CONC	LUSIONS AND RÉCOMMENDATIONS	:7
4.1	Conclu	sions	:7
		Detection Range	
	4.1.2	Signel Characteristics	7
	4.1.3	Travel Speeds	. 7
		Asimuth Errors	
		Meld	
		Directional Effects	
		Equipment	
4.2		endations	

ILLUSTRATIONS

1	Acoustic Stations, Operation CASTLE	29
3.1	Characteristic Very Low-Frequency Recordings, NEL, California-Arisona Region, CASTLE and IVI	30
3.2	Relation of Signal Period at Maximum Amplitude to Yield of Nuclear Shots, Standard Equipment	31

TABLES

2.1	CASTLE Remote Acoustic Station List
2.2	CASTLE Shot Data
3.1- 3.11	Acoustic Data for CASTLE Shots 1 - 6, Inclusive 34-53
3.12	Travel Speeds for First Acoustic Arrivals, Standard Equipment, Operation CASTLE
3.13	Travel Speeds for First Acoustic Arrivals, Yery Low-Frequency Equipment, Operation CASTLE
2.14	Agineth Europe Standard Eminment Oceantics Cigns

SECRET

CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES

The primary objective of Project 7.2, Operation CASTLE, was to record and analyse the airborne accustic waves generated by the thermonuclear explosions in order to provide calibration data for use in the interpretation of accustic signals from foreign nuclear amplosions. Additional important objectives included a delineation of the capabilities and limitations of standard detection equipment and a study of the relation of various signal characteristics to the total energy released in the explosion. A secondary objective was the collection of data on the propagation of dispersive waves from a very large atmospheric pressure pulse with the hope of eventual interpretation in terms of the temperature and wind structure in the upper atmosphere.

1.2 BACKGROUND

Hemote acoustic measurements have been made during all previous United States nuclear tests except THINITY (July 1945). The purpose of participation in CROSSROADS (July 1946), SANDSTONE (April and May 1948), and GREENHOUSE (April and May 1951) was to establish the feasibility of acoustic detection of nuclear explosions of moderate yield at distances in excess of 4000 km, since at least that range was necessary if a reasonably efficient acoustic monitoring system for foreign explosions was to be established. Results from CROSS-ROADSLAZ/* and from SANDSTONES/ were discouraging since the maximum distance for positive detection was only 1900 km. The use of improved detection equipment and techniques, however, resulted in detection of each nuclear explosion of GREENHOUSE4-7/ at a range of at least 4500 km.

13

SECRET RESTRICTED DATA

^{*} Mumbers refer to the reference list at the end of the report.

Continued participation in subsequent nuclear tests was required in order to delineate the capabilities and limitations of accustic detection techniques for explosions of a wide range of yields detonated in the air, on the ground, and shallow underground during different seasons of the year. Results from Operation BUSTER-JANGLE (October and November 1951), 9 Operation TUMBLER-SNAPPER (April to June 1952), 2 and Operation UPSHOT-KNOTHOLE (March to June 1953)10/ indicated a limited but usable detection range for shots of small yield even though detonated shallow underground. Seasonal shifts in propagation, originally noted during tests using small TNT charges, le were confirmed. Amplitudes were found to depend markedly on propagation conditions and correlation between signal period and yield proved quite variable. Results from Operation IVY (November 1952)12/ showed that acoustic signals from large kiloton and megaton explosions were distinguished from signals from smaller explosions by longer range of detection, generally increased amplitudes, longer periods, and generally longer durations. In addition, the megaton explosion produced a characteristic dispersive train of acoustic waves not previously observed for man-made explosions. These waves were similar to the waves produced by the Great Siberian Meteor (June 1908).13/

Operation CASTLE provided an excellent opportunity to study the acoustic waves from explosions ranging from yields of the order of the larger GRENHOUSE shots to yields larger than the IVY shots. In particular, it offered the possibility of setting a lower limit of explosion size required to generate dispersive waves in the atmosphere.

No adequate theory of the propagation of a pressure pulse in the atmosphere is available. Pekerially and Scorerley have developed the theory for simplified atmospheric models but experimental results give only qualitative resemblance to the theoretical results.

CHAITER 2

EXPERIMENT DESIGN

2.1 PARTICIPATING AGENCIES

Project 7.2 was conducted jointly by the Signal Corps Engineering Laboratories (SCEL), the National Bureau of Standards (NES), and the Navy Electronics Laboratory (NEL), under the sponsorship of AFOAT-1, Headquarters U. S. Air Force. The Office of the Chief Signal Officer coordinated the Army effort and the Office of Naval Research coordinated the Navy effort.

The Geophysics Research Directorate of the Air Force Cambridge Research Center (AFCRC) conducted additional measurements during CASTLE under a program separate from the weapons effects program. Although detailed results will be presented in a special AFCRC report, brief reference will be made here to significant high-lights of this work.

2.2 STATION LIST

Table 2.1 lists the stations making up the network for CASTLE and Fig. 2.1 shows the geographical distribution of those stations. Stations operated by AFCRC under the separate program mentioned above are also included in the table for informational purposes. The table gives the geographic coordinates of each station, the average great circle distance from the station to the Rikini and Eniwetok test gites, and the average aximuth from the station to the test sites measured elockwise from true north. Actual distances and aximuths to the individual shot locations differ slightly from values listed in the table.

2.3 SHOT DATA

Information regarding the date, unclassified code name, location, time, condition, and yield of each CASTLE shot is listed in Table 2.2. Figures showing the relative positions of shot locations in Eniwetok and Bikini Atolla may be found on pages 2 and 3.

17

SECRET - RESTRICTED DATA

2.4 STATION LAYOUT

Each station operated by the Signal Corps consisted of four microphone outposts, one at each corner of a quadrilateral, approximately square, 4 to 10 miles on a side. Each outpost was connected by wire lines to a recording central.

The NEL operated arrays of two to five microphone outposts spaced from 3 to 15 miles apart at San Diego, Twenty-Nine Palms, and Gila Bend. In most instances the microphone outposts were connected to a recording central at each station by wire lines or radio link. In a few cases, microphone output was recorded in the immediate vicinity of the microphone. A single microphone was operated at Los Angeles.

The NBS station consisted of six microphone outposts located at the corners of two roughly equilateral triangles, one having 2½-mile sides and the other 14-mile sides. The small triangle was roughly centered inside the larger triangle. Each outpost was connected by wire lines to a recording central.

AFCRC stations were similar to those of the Signal Corps except that individual recordings were made in the immediate vicinity of each microphone outpost.

2.5 INSTRUMENTATION

2.5.1 General

The equipment operated for CASTLE was practically identical with that used during IVIL2/ except that attempts were made to improve the stability and reliability. Two main types of equipment were used during CASTLE: (1) standard detection equipment most responsive to atmospheric pressure changes having periods ranging roughly from 1 to 60 sec, and (2) very 1 frequency equipment responsive to change in pressure or to rate-o.od of pressure for signal periods ranging approximately from 5 to 300 sec.

2.5.2 SCEL Instrumentation

Standard detection equipment was employed at all SCEL stations. Data Recording System M-2 h2 was operated at Kyoto and Hachinohe and NBS Infrasonic Microphone Systemh2 was operated at Cahu, Thule, Hanau, Zelmar, and Fairbanks throughout the tests. The Zweibrucken and Clark Field Stations became operational starting with Shot 2 and employed the latter equipment. An improved version of the M-2 system was operated at Ft. Lewis. Both types of equipment utilised condenser microphones as the pressure-sensitive transdroers, wire lines for transmission of the electrical signal from the outpests to the recording central, and Esterline-Angus C-1 or O-3 ma graphic recorders. The M-2 employed a capacitance bridge and a phase-sensitive discriminator to produce a voltage of the same frequencies as the pressure fluctuations. This slowly varying voltage was transmitted over the wire lines and was amplified at the recording central.

18

The NBS system used the microphone as the frequency-controlling element in a Wien-bridge oscillator to produce a frequency-modulated signal for transmission over the wire lines to the recording central where the signal was demodulated by a pulse-count type discriminator and then amplified. The M-2 equipment responded mainly to pressure changes in the range of periods from 1 to 50 sec and the NBS from 1 to 35 sec. The maximum sensitivity for the M-2 was of the order of 15-mm deflection for a pressure change of 1 dyne/cm², that for the improved M-2 was about 45-mm/dyne/cm², and that for the NBS was approximately 30-mm/dyne/cm² during CASTLE. The recording speed for these instruments was 3 in./min.

Very low-frequency equipment, covering periods from 5 to 300 sec, was operated at Belmar for the entire test series; at Cahu, Fairbanks, and Ft. Lewis for all shots except Shot 1; and at Kyoto for all shots except 1 and 2. This equipment consisted of a special condenser microphone designed for low-frequency response through use of a very large reference volume, a high-resistance acoustic leak, and elaborate thermal insulation. The electronic and control circuits were similar to that employed in the improved M-2 equipment and the maximum sensitivity was approximately the same as that for the improved M-2 equipment. The Esterline-Angus graphic recorders were operated at a tape speed of 1.5 in./min.

Each standard microphone was equipped with a linear, multiple-inlet pipe array, 1000 ft in length, designed to reduce the noise background from atmospheric turbulence. No effective array was available for use at very low-frequencies.

2.5.3 NEL Instrumentation

Two types of very low-frequency equipment were operated by the NEL. The first type, employed at San Diego and Gila Bend, consisted of a Rieber vibrotron microphonel? modified for response mainly to periods from 8 to 265 see by use of appropriate acoustic leaks, low-frequency amplifiers, and thermal insulation. Output was recorded on a six-channel Brush graphic recorder, using a paper speed of 0.2 in./min. at San Diego and 0.5 in./min. at Gila Bend.

The other type of equipment, operated at all NEL stations, consisted of a Signal Corps T-21-B condenser microphone modified to respond mainly to periods from 6 to 300 sec by use of appropriate acoustic leaks, special low-frequency amplifiers, and elaborate thermal insulation. The output of each microphone was recorded on an Esterline-Angus graphic recorder at 0.75 in./min. In addition, the output of one microphone each at San Diego, Twenty-Nine Palms, and Gila Bend was recorded on magnetic tape for the purpose of studying the frequency spectrum of recorded signals. At maximum a maintivity, the modified Rieber equipment gave a deflection of approximately 0.2-mm for a pressure change of 1 dyne/cm² and the modified T-21-B equipment gave approximately 0.7-mm/dyne/cm².

No effective noise-reducing arrays were available for use at very low frequencies.

2.5.4 NBS Instrumentation

All six outposts at the NBS station in Washington, D. C., were equipped with standard NBS equipment16/ similar to that described in section 2.5.2. The microphone was madified by increasing the reference volume and increasing the resistance of the acoustic leak so that the sensitivity was increased but the frequency response remained the same. At maximum sensitivity, the equipment gave a deflection of approximately 50 mm for a pressure change of 1 dyne/cm². A standard linear pressure-averaging pipe array of Signal Corpe design, approximately 1000 ft in length, was connected to each microphone. Normal tape speed of the Esterline-Angus graphic recorders was 3 in./min.

The three microphones making up the large triangle (see section 2.4) and one of the microphones from the small triangle were also connected to special multivibrator-type discriminators and low-pass filter-amplifiers to produce a response to rate-of-change of pressure down to very low frequencies. This equipment was operated at a sensitivity which gave approximately 50-cm deflection on an Esterline-Angus graphic recorder for a rate-of-change of pressure of 1 dyne/cm²/sec. This means that a sinusoidal pressure change of 1 dyne/cm² at a period of 300 sec would produce a deflection of 1 mm. A tape speed of 0.75 in./min. was employed.

Five of the standard channels and five of the very low frequency channels were recorded directly on magnetic tape for use in correlation and spectrum studies.

2.5.5 AFCRC Instrumentation

AFCRC operated the modified T-21-B equipment developed by NEL. (See section 2.5.3) Tape speeds and sensitivities were approximately the same as that used by NEL.

2.5.6 Timing

Absolute timing was obtained by reference to radio signals from WWV and WWVH. Interval timing was accomplished through use of uniform rate devices: chronometers, flasher motors, and direct marking from WWV interval signals.

CHAPTER 3

RESULTS AND DISCUSSION

3.1 GENERAL

The results of analysis of graphic records from both standard and very low-frequency instrumentation are listed in Tables 3.1 to 3.11, inclusive. Data include the time of arrival of the first detectable signal or, in the case of some very low-frequency recordings, the time of arrival of the maximum amplitude; the average aximuth of the incoming accountic wave measured in degrees alockies from true north; the range of horisontal phase velocity or the average velocity observed throughout the wave train; the maximum signal amplitude; the total duration of the wave train; the observed signal periods; and the average noise amplitude just before and just after the arrival of the accountic signal. The "first wave" or "direct wave" refers to the signal arriving by the most direct great circle path from the explosion site, the "second wave" or "antipodes wave" refers to the arrival via the antipodes of the explosion site, etc.

Results of analysis of magnetic-tape recordings are presented in pertinent sections throughout this chapter.

3.2 DETECTION RANGE

Each CASTLE shot of equivalent yield in the megaton range was a fected on standard equipment at very great distances from the expesion. Every operative station detected the direct wave from these five shots (1, 2, 4, 5, and 6). Four of the nine operational stations detected the wave via the antipodes for Shot 1, 7 of 11 for Shot 2, 4 of 11 for Shot 4, 8 of 11 for Shot 5, and 2 of 11 for Shot 6. In addition, 4 stations detected the second passage of the direct wave

21

^{*} All amplitudes are uncorrected for equipment response except those reported by NBS.

for Shot 1, 3 for Shot 2, 2 for Shot 4, 2 for Shot 5, and none for Shot 6. The Clark Field station detected possible second antipodes arrivals from Shots 4 and 5. Maximum detection ranges were 51,470 km for Shot 1; 46,940 km for Shot 2; 75,200 km for Shots 4 and 5; and 32,080 km for Shot 6. It should be noted that some of the recordings from extreme ranges are of somewhat doubtful validity.

()

Only four stations detected the direct wave from Shot 3 and the maximum detection range was 11,470 km. None of the stations to the west of the explosion detected the acoustic waves from Shot 3 although three stations were arrayed between 3960 and 4860 km from the explosion.

As has been noted during previous tests, detection ranges were generally less for very low-frequency (VLF) equipment than for the standard equipment due to the greater noise recorded on the lower frequency equipment. However, every operational VLF station detected the direct wave from the four largest shots (1, 2, 4 and 5), most detected Shot 6, but only Cahu detected Shot 3. Maximum detection ranges were 31,890 km for Shot 1; 25,140 km for Shots 2, 4, and 5; 4040 km for Shot 3; and 18,100 km for Shot 6.

3.3 SIGNAL CHARACTERISTICS

3.3.1 General

Character of the direct wave from the four largest CASTLE shots is illustrated in Fig. 3.1 which shows greatly reduced-scale tracings of recordings at San Diego. Somewhat larger-scale tracings from IVI Mike and CASTLE Shot 1 are included for the purpose of comparison. All very low-frequency recordings from megatom shots showed the dispersive train of waves noted for IVI Mike. However, each shot produced significant differences in the variations in period and amplitude with time. Significant changes in the dispersive train with distance and direction were also noted, but it will be necessary to await the AFCRC report for greater detail. No dispersive train was observed on recordings from Shot 3.

Host recordings on standard equipment also showed definite evidence of at least a portion of the dispersive train for the four largest shots although the amplitudes were greatly reduced by lack of low-frequency response.

Antipodes and second direct arrivals on VIF equipment also showed marked evidence of the dispersive train in cases of high mignal-to-noise ratio.

3.3.2 Horisontal Phase Velocities

An accurate measurement of the horisontal phase velocities for the long signal periods (and correspondingly long wave-lengths) observed in the initial part of the dispersive "rain was believed possible only by using the very large triangles operated by NEL in the California-Arisona region. These triangles consisted of Loe Angeles - San Diego - Twenty-Nine Palms and San Diego - Twenty-Nine Palms - Gila Bend. The first of these triangles was about 200 km on a side while the latter was composed of 200-, 350-, and 400-km legs. Phase velocities reported by NEL ranged from 315 to 325 meters per second for Shot 1, 322 to 327 for Shot 2, 317 to 325 for Shot 4, and 315 to 325 for Shot 5. These values were slightly lower than the Lormal velocity of sound at ground level (about 335) and are nearly equal to the travel speeds for first arrivals at these locations. Theoretical studies predicted phase velocities equal to the speed of sound at ground level — i.e., vertical wave-fronts.

Horisontal phase velocities obtained from standard equipment at stations where the microphone spacing was, in general, small compared to the wave-length of the acoustic signal showed a considerable range of values. However, practically every first-wave signal gave phase velocities covering some portion of the range from 318 to 360 meters per second. Second, third, and fourth-wave arrivals gave greater spreads in phase velocities than did first-wave arrivals. This may be attributable, at least partially, to the generally lower signal-to-noise ratios for the late: wave arrivals.

3.3.3 Signal Amplitudes

Note on signal amplitudes are subject, in many cases, to considerable error due to the fact that the signal periods lay outside the pass-band of the equipment. Only the data from the NES Mashington station have been corrected for response. In general, amplitudes reported for very low-frequency equipment should be of greater accuracy for the longer periods them amplitudes reported for standard equipment. Difficulties in calibrating the very low-frequency instrumentation and in maintaining an accurate calibration under field conditions throw econsiderable doubt on the accuracy of these measurements.

As expected, the high-sensitivity of the standard equipment resulted in many off-scale signals. As noted in previous terts, amplitudes generally decreased with distance from the explosion site. However, very large variations in amplitude prevent more than a qualitative statement of this relationship.

A detailed study of the amplitudes recorded by very low-frequency equipment is being undertaken by AFCRC. Results will be reported separately by that organisation at a later date.

3.3.4 Stemal Duration

Detectable signal for direct wave arrivals on standard equipment persisted for a minimum of 8 min and a maximum of 369 min, the average being 74. Antipodes and later arrivals persisted for a minimum of 3, a maximum of 530, and an average of 140 min.

For very low-frequency equipment, the direct wave signals persisted for a minimum of 9, a maximum of 240, and an average of 79 min. Antipodes and later arrivals gave a minimum of 63, a maximum of 339, and an average of 192 min.

The duration of the signal depended greatly upon the noise level at the recording station.

23

SECRET - RESTRICTED DATA

3.3.5 Signal Periods

The frequency content of the signal was studied both by visual analysis of graphic records and by machine analysis of magnetic tape recordings. VLF recordings were used usinly to reveal the long periods occurring in the dispersive train and the standard recordings were used in the study of the shorter periods in the later arrivals.

×

*

In general, signals from the megatom shots started with an increase of pressure followed by a larger negative pulse. The first measurable periods generally ranged from 200 to 450 sec and were followed by decreasing periods at later times, at least for the first 30 min. Many of the recordings showed later arrivals of non-dispersive character.

Short period arrivals characteristic of waves trapped by texperature and wind gradients in the first few thousand feet of the atmosphere were observed at the beginning of some recordings at stations within 5000 km of the explosion. Such waves had occasionally been observed at stations within 1000 km of previous U. S. explosions, but never at such long ranges. Periods in these arrivals were of the order of 3 to 5 sec and persisted for as long as 5 min.

3.4 TRAVEL SPEEDS

The speed of travel of the acoustic wave, computed by dividing the great circle distance from source to station by the total elapsed time required for that travel, is presented in Tables 3.12 and 3.13.

The average speed of travel of the first recognisable signal from the direct wave on standard equipment was 310 meters per second for Shot 1, 308 for Shots 4 and 5, 307 for Shot 2, and 288 for Shot 3. Average speeds for stations to the east and northeast of the explesion site were sommulat higher than average speeds to the west and northwest of the site for Shots 1 and 2 but the reverse was true for Shots 4, 5, and 6. This is apparent from the following eastward versus westward speed: 316 vs. 307 for Shot 1, 309 vs. 305 for Shot 2, 288 vs. 289 for Shot 3, 306 vs. 315 for Shot 4, 309 vs. 311 for Shot 5, and 294 vs. 315 for Shot 6.

Comparing speeds to Cahu toward the east and to Clark Field toward the west since these stations were at approximately equal distances from the site, note that Cahu gave a speed of 318 for Shot 2 compared to 306 for Clark Field, 312 against 289 for Shot 3, 303 compared to 319 for Shot 4, 318 to 314 for Shot 5, and 292 compared to 320 for Shot 6. Clark Field was not in operation for Shot 1, but Cahu reported a high speed of 335 m/see. Except for Shot 5 data, the general trend was toward decreasing speeds eastward and increasing speeds westward as the CASTLE series progressed from 28 February to 13 May.

The average travel speed for first arrivals from the direct wave on VLP equipment ranged scannthat higher than speeds obtained from standard recordings. Over-all average speeds for all VLP recordings from direct waves were 319 for 3hot 1, 321 for Shot 2, 310 for Shot 3, 317 for Shot 4, 315 for 3hot 5, and 302 for Shot 6. These higher speeds were due to the earlier arrival of the long-period dispersive train recorded on VLP equipment. Frequently, noise obscured some of

these long periods on standard equipment. Directional trends in VIF speeds were not immediately apparent. However, more detailed studies of these effects will be undertaken by AFCRC.

3.5 AZIMUTH ERRORS

The difference between the true azimuth from the station to the explosion site and the observed azimuth of the incoming accustic wave is given in Table 3.14 for standard recordings. Normally, the azimuth measurements were restricted to signal periods less than about 100 sec in order to obtain accuracies approximately equivalent to that obtained for smaller explosions. For distances less than 12,000 km from the explosion site, the maximum observed azimuth error was 11.50 and the average error was 3.20. At longer distances, much larger errors were reported. No consistent pattern of azimuth errors was observed which could be related to the direction the accustic wave traveled from the source. In many instances, stations within a few hundred miles of each other reported large differences in azimuth errors. For example, errors at Kyoto and Hachinohe differed by 4.6, 2.6, 3.5, 11.5, and 0.2 degrees for shots 1, 2, 4, 5, and 6 respectively.

Asimuth errors for the dispersive wave could not be accurately determined at most stations because the separation between microphones was small compared to the wave-lengths of the acoustic wave. However, reasonable accuracies were possible for the large NEL station arrays in the California-Arisona region. The average errors observed by NEL were 10° for Shot 1, 4° for Shot 2, 6° for Shot 4, and 2° for Shot 5.

3.6 YIELD

Attempts have been made to relate various characteristics of acoustic signals at great distances to the total energy released by the nuclear explosion. Critical dependence of signal amplitude on the variable temperature and wind structure in the upper atmosphere coupled with difficulties in the accurate measurement of amplitude led to a search for more reliable indicators of yield. Dr. A. B. Focks* suggested a possible connection between signal frequency and yield, postulating a cube-law relationship based upon general scaling considerations. Maynard Command of the Sandia Corporation verified this cube-law relationship between the duration of the first negative pulse and yield for acoustic records at ranges of 7 to 600 miles from explosions at the Nevada Test Site.

A critical examination of a great many acoustic recordings at distances greater than 1000 km from explosions in the yield range from 1 to 500 KT equivalent led to use of the visually observed signal periods in the vicinity of maximum amplitude (uncorrected for response) for standard recordings as the best indicator of yield. Figure 3.2

^{*} Formerly of the Wavy Electronics Laboratory; now with the Marine Geophysical Laboratory, Scripps Institution of Oceanography.

shows a log-log plot of yield against observed period. Periods were selected from downwind or cross wind stations in the northern hemisphere for summer and winter propagation conditions and from all stations during spring and fall conditions. For each shot, the periods from these selected stations were averaged and these averages were plotted as shown in the figure. Stations exhibiting very low signal-to-noise ratio or very confused frequency patterns were eliminated.

Similar periods were selected from standard recordings of the direct wave from the megaton shots of IVI and CASTLE. These data are also plotted in Fig. 3.2. Care was taken to eliminate the dispersive train from consideration as far as possible in selecting the appropriate signal period since it was believed that this train depended mainly on the structure of the atmosphere rather than the size of the source.

A best power-law curve was computed by the method of least-squares for data up to and including yields of 500 kT. This curve indicated the yield to be equal to a constant times the period raised to roughly the third power. The standard error of estimate was also computed and the 3-standard error lines were plotted on Fig. 3.2.

It was noted that data for yields above about 100 RT fell along a curve of different alope from that at lower yields. The best curve in this region indicated the yield to be equal to a constant times the period raised to roughly the fourth power.

Very large errors are inherent in this method of determining yield from acoustic measurements. For yields up to about 100 KT, 3 standard errors of estimate cover yields as small as one-fifth and as large as five times the correct value. Errors at yields above roughly 100 KT seem slightly smaller although a correction for the small sample has been applied. Three standard errors cover yields as small as one-third and as large as three times the correct value at these nigher yields.

Studies of the accuracy of yield determinations from the VLF recordings are being made by AFCRC and will be reported in a separate report at a later date. Effort is being centered on measurement of amplitude for these recordings.

Many other general indicators of yield were apparent. For instance, the existence of a dispersive train was apparent on graphic records only for shots with yields of 1.7 MT and greater. Also, the greater detection ranges, larger numbers of stations recording, and the generally higher amplitudes all were indicative of larger shots.

CHAPTER A

CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

4.1.1 Detection Range

Results from CASTIE confirm results obtained from IVY and from previous nuclear detonations regarding the range of detection. With standard equipment it was possible to detect megatom shots at very great distances (usually at least 25,000 km). Ranges for VIF equipment, while still considerable, were generally appreciably less than for standard equipment. Range for the low kiloton shot was greatly reduced but was greater than the 4000 km normally considered desirable for effective detection net operations.

4.1.2 Signal Characteristics

The characteristics of acoustic signals from the CASTLE detonations were similar to that observed for previous tests. All megaton
shots showed dispersive waves while the kiloton shot did not; horisoutal phase velocities showed considerable spread but covered the
same range of values previously observed; amplitudes ranged from a
tenth of a dyne/cm² to several hundred dynes/cm² depending on the
equipment, size of shot, distance from source, and noise level; signals persisted for a very long time; and signal periods spread over
more than 8 octaves, from 3 to 450 sec.

CASTLE data definitely proved that dispersive waves may be generated by shots having a yield as low as 1.7 MT. These dispersive waves seemed to be modified by the atmospheric structure along the path from the source to the station.

4.1.3 Travel Speeds

Greatest travel speeds were normally observed for the longperiod dispersive waves, but in a few instances much shorter-period waves were propagated over a few thousand kilometers at these same

27

SECRET - RESTRICTED DATA

speeds. The maximum speed of travel, 335 meters/second, was roughly equal to the speed of sound at ground level.

Travel speeds for direct waves on standard equipment showed scannial greater variability than did the speeds for IVI.

4.1.4 Asimuth Errore

Azimuth errors observed for CASTE were consistent with those observed on previous tests. Errors in the azimuths computed for the dispersive train were roughly the same as the errors for later portions of the wave train.

4.1.5 <u>Held</u>

For megatom shots, the yield is given very approximately as a constant times the fourth power of the period at maximum amplitude for standard equipment. The method of measuring the period is somewhat subjective and the relationship between yield and period is very inaccurate. In addition, it should be noted that the method requires measurements at a number of stations for each shot in order to achieve even the semi-quantitative results reported here.

4.1.6 Directional Effects

The shift noted in travel speeds (speeds toward the east greater than it toward the west in March shifting to the opposite in May) were consistent with previous observations. This indicates that April was the change-over month for stratosphere winds.

4.1.7 Equipment

Standard equipment was superior to VIF equipment for detection purposes and provided a convenient, though inaccurate, means of estimating yield. In addition, most standard recordings showed some evidence of the dispersive train though with greatly reduced amplitude at the longer periods. It remains to be seen whether VIF recordings of the longer periods will give an accurate estimate of yield.

4.2 RECOMMENDATIONS

Recommendations for future participation in tests of megaton weapons must await the results of studies by AFCRC.

Fig. 2.1 Acoustic Stations, Operation CASTLE

29

SECRET - RESTRICTED DATA

Mg. 3.1 Characteristic Very Low-Proquency Recordings, NEL, California-Arisona Region, CASTLE and IVI

②

8

رزه

Fig. 3.2 Relation of Signal Period at Maximum Amplitude to Yield of Nuclear Shots, Standard Equipment

TABLE 2.1 CASTLE Remote Acoustic Station List

		100	ation		th from lon to		ce from
Agency	Station		Longitude		Phiwetok	Stat1	Eniwatek
							34444
SCEL*	Kroto,			Į.	[İ	<u> </u>
	Japan	34°55'N	135°45'E	128	1240	3950	3720
SCEL	Hachinohe,	1002518	3130000	3 300			
SCEL	Japan Omhu,	40°35'N	141°25'B	137°	1420	3980	3800
	T. H.	21°31'W	158-05'W	260•	2620	4040	4380
SCEL	Clark Field,					-	4,500
	P. I.	15°11'N	120°34'B	999	090*	4860	4520
SCEL	Fairbanks,	1.			·		
o <i>c</i>	Alaska	64.20 N	147°40'W	234•	237"	6920	7030
SCEL	Pt. Lewis, Wash.	47°05'¥	3 222 25 14	26.50	0/50		
NEL#	Los Angeles,		122°35'W	265°	267°	7720	7950
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Calif.	34°07'N	118°17'W	272.30	•	8040	8320
NEL	San Diego,	, , , ,		-,,	_	0040	0,20
	Calif.	32°42'N	317°15'W	273.30	•	8150	8430
NEL	29 Palme,						
ACT .	Calif.	34°14'N	116°02'W	273.5°	•	8250	8530
NEL	Cila Bend, Arisona	32°52'N	77701712	205 62		400	2000
SCEL.	Trule,	32,35,1	112°47'W	275.6°	•	8550	8830
	Greenland	76°32'N	068°40'W	307.50	3110	9620	9670
nb9=	Washington,	, , ,		,,,,	<i></i>	,020	7010
	D. C.	38-57'N	077°04'W	297	2990	11,460	11,700
SCEL	Belmar,						
	N. J.	40°12'W	074-05'W	2990	302*	ग,ध०।	18,840
SCEL	Hanau,	50°07'#	00005617	~~<-			20 (00
SCEL	Gormany Zweitrucken,	ווייןטיטכן	008°56'E	0260	029*	12,780	12,670
	Germany	49°14'W	007°28'E	024.	0280	12,910	12,600
		7,,				, 7.0	12,000
POPOL	Domester					T t	
u wit-	Dermin, Australia	12°30'8	130°50'B	. 1	ł		4000
VFCRC	Miami,	וטיעלים	150.20.7		-	4640	4370
	Florida	25°50'N	W.CZ-080	_	_	11,780	
urcirc	Puerto					,,,	
		ווי 20 15	066°15'W	-	- :	13,380	13,670
UFCRC	Durban,			ŀ	1		# # · · ·
FCRC		29*30'5	030.5C.2	-	-	4,890	•
# WW	Recise, Brazil	08-00-3	0350/0012	_	_ [,	12 m	30300
SCEL	- Signal Corp	s Enginee	ring Labor	tories		M. Jol	18,100
MAL.	- MANY Electr	onics Lab	oratory		KBS - Nat	donal !	hiranii
18000	- Air Force C						

TAL S 2.2 CASTIE Shot Date

	Shot 1	Shot 2	Rot 3	Shot 4	Shot 5	Shot 6
Date* (Gn.)	28 Peb	26 Nar	06 Apr	25 Apr	Of May	13 Nay
Unclassified Code Hame	BRATO	30.0 0	KOOM	UNITOR	ZYNICE	MECTAR
Time (Off) Hrs Min Ses	18145100	18:30:00	18:20:00	18:10:01	18:10:00	18:20:20
Location Latitude	M-6°92,17011	16-ft N of BRAVO	11°29'48.0"W	11.39'58.5"	11-39'58.5"	11-40:13.9"
Longitude	165°16'24.8"	165°16'24.8" 204-ft W of BRATO 165°22'03.4" 165°23'13.7" 165°23'13.7" 162°11'46.8"	165-22103.4 "	165-23'13.7"	165°23'13.7"E	162-11'46.8"
Type (All essentially surface abots)	, Feb	Barge	Lend	Berge	Barge	Barge
Majdes (Magatons Equivalent)	15.0 ± 0.5	n ± 0.5	0.137 ± 0.020	7.0 ± 0.3	13.5 ± 1.0	1.7 ± 0.3

* All shot dates were in 1954.

Contained in letter from CG, AFSHP Field Command, FCHET 12-4-6556, dated 10 December 1954.

(3)

TABLE 3.1 - Acoustic Data for CASTLE Shot 1, Standard Equipment

(Source Time: 28 February 1954, 1845:00 GHT)

Station	The of Arrival (GRT) Start Max Ampl (Date, hr, (Hr, min) (Next val	Average Computed Asimuth (degrees)	Horizontal Phase Velocities (meters/sec)	Max Signal Amplitude O-peak (dynes/cm²)	Stgnal Duration (adn)	Stgnal Periods (sec)	Average Notes O-peak (dynes/cm²)
				Pirst Mave	(Direct)			
Kroto	282220	2235	821	315 - 402	* ^	8	250-40	2.8
Hachinobe	282231	27/72	137	294 - 347	77	%	205-20	1.2
Oaba	282306	2233	263	305 - 430	> 39	108	100-03	2.6
Fai rbanks	010048	9170	य	325 - 375	27	R	140-07	6.0
Pt. Lends	721010	\$ 6770	569	332 - 370	> 33	877	\$0-082	1.5
Thule	010330	0338	8	304 - 325	67	æ	50-64	30.5
Mesh., D.C.	212010	0512	305	9 7 6	••	17	107	(*-)
Belmar	010525	0527	295	343 - 402	6.0	13	45-20	€¥• 1
Heneu	@0653	क्राप्त	352	288 - 352	8.0	<i>L</i> 9	11 2-1 C	9,0
Not in Operation: Clark Pield and Zeelbrucken	tion: Clar	k Meld an	d Zesibruc	000				

③

(3)

TABLE 3.1 - Accustic Data for CASTLE Shot 1, Standard Equipment (Cented) 28 Pebruary 1954. 1845:00 GRT) (Source Time:

	Time of Arrival	Irrival	Paracy	Horiscotal	Nex Signal	Street	M mal	Average
Station	Start Max A (Dete, hr, (Hr, mdn)	Max Ampl (Hr, min)	Arimuth (degrees)	Asimith Velocities (degrees) (maters/sec)	O-pask (dynes/oz²)	-	Periods (sec)	0-yeak (4710-1/cm²)
				Second Many	(Antirodes)			
Kenas	011951	20/72	203	320 - 389	2.0	208	105-20	6.0
Thule	020007	1000	109	306 - 352	2.3	ጱ	60-13	1.0
Onthi	020304	04.27	r _z	302 - 393	3.3	101	205-50	
Kachinobe	020325	areo	303	32	~ •	17	210-170	4.2
Washington, and the second			The	Third Mare (Second Direct)	Direct)			
Kroto	02139	1111	ಸ್ಟ	396 - 021	4.5	16	80-50	60
R. Lods	627720	1559	278	570 - 489	6.5	35.	190-25	1.6
Thale	02776	27.2	289	292 - 344	1.5	8	50-17	0.7
Mach., D.C.	02200	202	298	\$	2.2	덟	3	2.0
Not in Open	Not in Connection: Clark Pield and Smithmeten	Pield en	4 Zeet brain	293				

•

TABLE 3.2 - Accustic Data for CASTLE Shot 1, Very Low-Frequency Equipment

(Source Time: 28 Pebruary 1954, 1845:00 Grf.)

<u> </u>		The of Arrive	Arrival	Average	Horisontal	Nex Signal	St mal	St mal	An. age
1	Hatla	Start (Date, hr. ()	(Hr, adn)	Computed Aximuth (degrees)	Computed Phase Aximith Velocities (degrees) (moters/sec)	Amplitude O-posk (dynes/cg ²)	Duration (mdn)	Periods (see)	Notes O-peak (dynes/cm²)
					Pirst Name	(Breet)			
	Loc Angeles	971010	9225			381	8	3%, 150, 125	ន្ត
	Sen Mego	क्रावार	***************************************	£ % 2	315 - 325	82	95	350, 160, 115	93
	29 Palms	010157	77.70			8	٤	3%, 135, 120	w
	Olla Bend	රැදහ	offico			001	330	360, 150, 115, 70	~
	Mach., D.C.	010445	6250	162	23	34,5	3	109	~25
	Belmar	64.0000	αgo	762	395 - 800	3	3	420-35	1.7
Ш	Not in Operations	1 1	3. Oahu, P.	af rbanks, F	Myto, Oahu, Peirtenks, Pt. Lewis, and Hanau	Hanau		J	

*

•

(8)

ري

36

TABLE 3.2 - Accustic Data for CASTLE Shot 1, Very Low-Frequency Equipment (Contd)

_
8
1845:00
19%,
Pobruery
8
i s
(Source

ш		П							
	-	H	of Aminal	Average	Horisontal	Max Stgnal	St.mel.	St.me1	Average
اليسيسياسية	Station	Start Max (Date, hr, (Hr,	Hex Ampl (Hr, mtn)	Astanth (degrees)	degrees) (meters/sec)	(2)	Duration (min)	Periods (sec)	O-peak (dynes/cm²)
				गुन्ना	Third New (Second Direct)	Direct)			
	ros kageles	021256	306			£ 9	0 77~	120, 220, 175, 120	8
37	San Diego	021301	1308	1 2	345 - 355	#~	~ 240	100, 200, 170, 120	a
	29 Palus	021307	1307			~121	m~	150, 180	ಸ
	Not in Operat	ion: Kyote	2. Pt. Lor	is, Olls Be	Not in Operation: Kyoto, Ft. Lends, Oils Bend, and Hanau				

•

*

TABLE 3.3 - Acoustic Date for CASTLE Shot 2, Stemlard Equipment

(Source Time: 26 March 1954, 1930:00 (BC)

	The of Arrival	rrival	Amerago	Hortsontal	Nex Mgmal		ā	Amrage
Station	Start	Ken Len	Serputed Actuarts	Phase Velocition	Amplitude	Duretton	Pariode a	Notes
	Date, hr,		ر:	(meters/sec)	(dynae/am2)	(ada)	98	(dynes/cm²)
				Mrst Kim	(Direct.)			
Kroto	262204	2218	126	268 - 366	%	ដា	275-15	1.3
Hachtnobe	262209	2227 ?	137	302 - 338	3 ^	4	165-30	6.5
Oe bu	202292	223 7	78	311 - 338	>54	R	200-15	2.5
Clark Nold	262254	2316	760	309 - 358	π^	ま	110-20	0.2
Patrbeaks	270075	6500	237	327 - 352	0.9	103	145-10	4.0
Pt. Londs	2701.32	9338	265	329 - 369	ຊ	8	105-25	n.5
State	270309	1200	æ	288 - 335	ភ	됞	120-08	1.5
Mach., D.C.	2704.56	0503	***	3%	ភ	Ŕ	ដ	5.6
Polanz	2705072	0250	293	323 - 389	2.0	ಸ	95-15	6.0
Hanse	270611	7290	8	279 - 572	0.9 <	102	105-15	0.7
2md breaten	71902	327 90	ğ	305 - 324	2	4.5	22-017	1.3

*

9

TABLE 3.3 - Acoustic Data for CASTLE Shot 2, Standard Equipment (Contd)

(Source Time: 26 March 1954, 1830:00 GHT)

		Of Arrival		Horisontal	Nex Mgnel	St.me1	St mal	PRIMA
Station	Start Max Ampl (Date, hr, (hr,min) min)	Kax Ampl (hr, mdn)	Actauth (degrees)	Velocities (meters/sec)	O-peak (dynes/cz²)	Duration (mdn)		O-peak (dynes/ca²)
				S-cond Mare	(Antipodes)			
Zwei brucken	27.1830	2022	205	280 - 392	97	597	220-20	6.0
Keneu	271916	2030	303	291 - 316	6.5	4	125-15	7.0
tech., D.C.	272130	2310	132	374	2.5	530	75, 60	0.8
Thule	272254	2349	শ	301 - 337	2.0	847	80 - 67	1.2
Ped rbanks	280134	0225	750	288 - 346	3.0	119	95-21	7.0
Oahu	2804.34	7250	260	275 - 373	3.5	133	95-35	0.8
Hachinobe	2804,51	04.53	308	327 - 377	0.4	ส	65-18	1.2
			Third Mare	Maye (Second Direct)	Dreet)			
Hachtnobe	281.345	Tr'T	111	zn - 352	4.2	છ	76-55	2.4
Clark Meld	281434	1740	%	311 - 384	1.2	356	60-20	8.0
Pat roanics	281.357	1358	160	295 - 324	2.0	01	06-07	7.0

ŋ

TABLE 3.4 - Acoustic Date for CASTLE Shot 2, Very Low-Prequency Equipment (Source Time: 26 March 1954, 1830:00 GMT)

	Time of Arrival	Irrival		Horismtel	Max Signal	Signal	94.gne1	Average
Station	Stert Max Ampl (Date, hr, (Hr, mdn)	Max Ampl (Hr, mdn)	-	Aximuth Velocities (degries) (meters/sec)	O-peak (dynes/cm²)	Duratina (min)	Perfods (sec)	O-peak (dynes/oz²)
				Piret Mare	(Pirect)			
Oahu	262203	7022	268	306 - 338	84	ຄ	180-15	ន
Fairbanks	270035	7500	238	326 - 499	07 <	121	275-30	1.0
Pt. Londs	270106	00.26	2/2	375	ឧ	33	300-50	9.0
Los Angeles	270125	2420			9	\$.021 .034 88	10
San Diego	270130	9410	692	322 - 327	85	977	130° 140°	15
29 Palms	270135	828			90	~ no	4∞, 130, 85	10
Gis Bend	2701.52	1220			~ 100	0772	100°, 140°, ξξ	25
Mach., D.C.	270416	04.57	286	340	25	Z	448, 112	8
Belmar	270158	6050	8	352 - 36ī	Я	*	125-24	ជ
	7	Toron.						
AOF IN OPSICIONS AFOCO, NAME	cront Ayoro	THE COMME						

TABLE 3.4 - Acoustic Data for CASTLE Shot 2, Very Low-Proquency Equipment (Contd)

	(te
	1830,00 GC)
	b 1954.
	28 Xarch
	Thee
,	(Source

	Time of Arrive	Arrival	-	Horisontal	Kar Stepal	Lam H	3	Average
Station	(Date, hr, (Hr, and n)	Max Ampl (Hr, min)		Actuath Velocities (degrees) (meters/sec)	O-peak (4mes/cm²)	æ	Periods (sec)	Notee O-peak (dynes/cm²)
				Second Mers (Antapodes)	(Antipodes)			
Patrbanks	270030	0055	30	288 - 366	ជ	173	265-40	0.5
Oahu	2805112	1130	%	285 - 312	-	ಚ	100-50	1.0
Not in Operations	1	Lyoto, Hangu						

②

8

*)

SECRET - RESTRICTED DATA

TABLE 3.5 - Accustic Data for CASTLE Shot 3

(Source Time: 06 April 1954, 1820:00 Geff)

	The of A	of Arrival	Average	Hortsontel	Nex Stgnel	# W	3	Amingo
Station	Start Date, hr. (lax Ampl Hr, min)	Actanth (degrees)	Asimuth Welcoities (degrees) (meters/sec)	O-peak (dynes/om²)	Duration (win)	Periods (sec)	Notes O-pest: (dynes/on?)
		Piret	Nave	(Drect)	Standard	Standard Eoutoment		
Os Par	062156	2300	262	320 - 317	6.5	3	45-15	1.2
Clark Nold	0062390	2305	960	312 - 375	2.1	র	40-15	0.3
Pedrbenks	2,0070	6500	234	325 - 366	1.4	×	8-8	0.7
Mash., D.C.	070652	0935	297	350	0.7	3%	30° 40	9.0
	Tiret.	27.44	(Breet)	Ver Lox -	Premence	Equipment		
Onlin	062157	220	\$\$	371 - 364	7.0	33	50-15	1.0

②

TABLE 3.6 - Acoustic Date for CASTLE Shot 4, Standard Equipment

(Source Time: 25 April 1954, 1810:01 Geff)

	The of Arrival (Gef.)	Languar	Average	Hortsontel	Nex Mgnel	Hemel	Remai	Average
Station	Start (Date, br, mdn)	Max Amol (Hr, edo)	Ardenth (degrees)	Arimith (meters/sec)	O-park (dynes/cm²)	Duration (min)	Pertods (sec)	0-peak (dynes/cm²)
				Plrst Kave	(Drect)			
Kyoto	25237	22.50	क्टा	536 - 429	>33	ದ	290-30	1.6
Hechtnobe	2522.45	21.55	T.	322 - 326	37	33	195-20	1.1
Oehn	252152	2202	560	349 - 350	15	17	85-08	3.3
Clark Pield	252224	2221	680	329 - 416	8.5	78	125-16	4.0
Patrbanks	260024	0033	233	295 - 343	5.5	3	71-021	4.0
Pt. Lords	560109	6010	566	336 - 358	8.0	84	145-11	3.1
Thule	260257	7750	a	284 - 316	4.2	8	105-15	0.7
Mach., D.C.	2604,32	04.39	ğ	भू	•	363	101	~
Bolmer	24CU16	05SI	8	316 - 348	2.6	8	95-35	1.0
Hanau	260557	7130	920	326 - 369	# ^	8	125-15	0.5
Zweibrucken	260554	0623	88	309 - 346	8	ಡ	215-30	1.0

②

TABLE 3.6 - Accusate Data for CASTLE Shet 4, Standard Equipment (Contd) (Source Times 25 April 1954, 1810:01 Gaff)

	The of Arrival	Lenns	Average	Hord sontal	Max Stgnal	9	3	Average
Station	Start (Date, hr,	Max Ampl (Hr, mdn)	Computed Actuath (degrees)	Computed Phase Asimuth Velocities (degrees) (meters/sec)	Amplitude O-peak (dynes/cm²)	Duration (adn)	Periods (sec)	Notes O-peak (dynes/am²)
				Second Maye	(Antipodes)			
Belmer	262256	234.7	125	268 - 399	3.7	191	95-15	1.9
Mach., D.C.	20002	8000	123	376	3.1	7	33	1.7
a jagi	262333	200	201	316 - 360	1.5	109	%-30	7. 0
Pt. Leads	270246	0360	985	274 - 351	2.0	323	0E-07T	0.5
			Third	Mare (Second	Direct.			
Clark Mald	20,327	1608	88	263 - 369	1.3	358	85-25	0.7
Patropairs	27700	1,00	192	289 - 323	3.0	ส	60-30	4.0
			Fourth	Fourth Mare (Second	Antipodes			
Clark Pield	262135	88	282	346 - 369	0.5	8	9	0.2

(*)

•

(8)

ري

11

TABLE 3.7 - Ascustic Date for CASTLE Shot 4, Very Low-Frequency Equipment

(Source Time: 25 April 1954, 1810:01 (367)

Carrolled Phone Carrolled Phone Amplitude			The of Arrival	erdval	!nerage	Horisontal	Max Stgnel		•	Average
252136 2155 1256 234 24 24 24 24 25 25211 2202 266 315 - 377 446 24 24 24 24 25 25211 2202 266 315 - 377 446 25 30 30 314 251 325 - 355 30 30 314 251 325 - 355 30 30 314 251 325 - 355 30 30 314 251 325 - 355 30 30 315 251 317 - 325 50 315 315 315 315 315 315 315 315 315 315			Start Date, hr.	Er.		Phase Velocities	Amplitude O-post	Paretion (ata)	Periods (sec)	Motes O-pesk
25236 2155 126 276 344 252141 2202 266 315 - 327 252141 2202 266 315 - 327 250103 0114 261 347 - 416 250103 0125 267 347 - 416 250115 0150 267 347 - 416 250115 0150 267 347 - 325 250115 0150 267 347 - 325 250115 0150 267 347 - 325 250115 0150 267 347 - 325 250115 0150 267 347 - 325 250115 0150 267 347 - 325 250115 0150 267 347 - 325			(apa			Paret Haye	(Direct)			
252141 2202 246 315 - 327 10004 25004 279 325 - 365 1004 26010 0014 261 347 - 416 1006 26011 0125 267 347 - 416 1006 26011 0150 267 347 - 325 1006 26013 0202 367 347 - 325 1006 26043 0542 305 333 1006 26043 0542 305 333		Lyote	. 2236	255	87	78 - 27	র	3	455-34	0.2
2600.16 0034 239 325 - 365 2601.03 01.14 261 347 - 416 2601.13 01.50 267 317 - 325 2601.15 01.50 267 317 - 325 2601.15 02.62 305 2601.15 02.42 305 2601.15 02.42 305 2601.15 02.42 305		Oabn	उध्या	2322	266	32 - 327	3	æ	235-26	4.8
260105 0114 261 347 - 416 260105 0125 267 317 - 325 260115 0150 267 317 - 325 260115 0242 305 333		Patrbanks	25002.8	7 600	\$	325 - 365	8	8	250-30	9.0
26a11 0150 267 317 - 325 26a11 0150 267 317 - 325 26a115 0150 267 317 - 325 26a115 0242 305 333		Pt. Lords	260003	कार	ऋ	347 - 416	57	ತ	210-18	4.4
260111 0150 267 317 - 325 260115 0150 267 317 - 325 260115 0208 267 317 26015 0542 305 333		Los Angeles	260105	82.8			8	82	240, 160, 75	8
260115 0150 260132 0206 6. 260133 0542 305 333		Sen Diego	260111	828	267	22 - 725	8	ន	240, 160,	8
6. 2604.53 054.2 305 333		29 Palms	26015	9			*	25	330, '.O, 150, 75	3
D.G. 260433 0542 305		Olla Beat	260032	80			× ~	8	36, 160, 78	8
7170 017076		Mash., D.C.	2604.33	2750	×	333	~	\$	101	•
		Belmer	2604.10	9770	反	302 - 303	•	8	120-50	77
Hanan 260544 0604 027 274 - 334 7		Henen	775092	090	223	274 - 334	4	67	250-50	4

9

45

TABLE 3.7 - Acoustic Data for CASTLE Shot 4, Very Low-Frequency Equipment (Contd.)

(Source Time: 25 April 1954, 1810:01 GHT)

1		The of	rrival	Average	Hortgontal	Max Stenal			Average
		(BE)		Computed	Phase	Amplitude	Signal	St gnal	Not se
	Station	Start	Kex Ampl	-	Velocities	Asset O.	Deration	Perlode	O-peak
		(cate) (nr. ann)	(urc)		(degrees) (meters/sec)	(danss/cart)		(2041)	(cynes/cm²)
					Second Mare (Antipodee)	(Antipodee)			
	Belmer	262254	234.7	125	268 - 327	<u>ه</u> >	Ť	125-30	2.3
	Pt. Londs	270130	0530	760	१६३ - ३य	٥	339	285-30	2,0
46									
Ш						· · · · · · · · · · · · · · · · · · ·			

TABLE 3.8 - Acoustic Data for CASTLE Shot 5, Standard Equipment

(Source These Of May 1954, 1810:00 GAT)

	The of Arrival	Arrival (Average	Horisontal	Max Signal	61 10		AFTERRO
Station	Star. (Date, hr,	Hex Armi (Hr, ada)	Astauth (degrees)	Phase Velocities (maters/sec)	Amplitude O-posk (dynes/cm²)	Duretion (ada)	Periods (sec)	N 4 se 0-peak (dynes/cm²)
				Plrst Hare	(Mrect)			
Lyoto	042143	2200	भग	310 - 352	>=	æ	210-35	1.0
Kachinobe	०,या,	2159	143	264 - 389	× ×	8	205-30	3.8
Oahu	क्यम	250	258	320 - 331	3 ×	**	130-20	2
Clark Pield	04,2228	67772	960	329 - 395	ជ	108	235-12	0.3
Pad manks	050032	1700	240	315 - 326	ភ	ส	120-12	1.6
Pt. Lends	621050	0139	266	अर - अर	2	59	135-15	7.7
Thule	050300	ταο	319	23	**	60	35-20	オ
Mach., D.C.	050438	04.38	%	%	A	192	87	
Belmer	0504.37	6150	284	300 - 348	8.0	101	185-25	9.0
Hanau	050517	0090	8	310 - 398	7.5	219	120-20	0.3
2mtbrucken	875050	\$090	8	317 - 343	5.0	3	125-20	0.3

*****;

47

TABLE 3.8 - Accustic Data for CASTLE Shot 5, Standard Equipment (Centd)

(Source Time: O4 May 1954, 1810:00 Geff)

	The of Arrival	Lerdval	Average	Horisontal	Nax Mgral	St.gne1	Stonel	Ave age
Station	Start Max Ampl (Date, hr, (Hr, min) min)	Max Ampl (Hr, adn)	Astanth (degrees)	F 3	O-peak (dynes/cm²)	Duration (adn)	Periods (sec)	O-peak (dynes/cm²)
2ned bruchen	021850	192	82	3ecapd Mare 296 - 377	(Antipodes)	67	22-011	3.5
Henen	758120	2002	88	26t - 338	2.7	2	63-25	9.0
Belmer	052316	ιτω	1115	312 - 377	> 5.0	391	150-35	6.0
Mah., D.C.	052255	1 000	116	a A	3.5	067	55, 35	7.0
thate	052340	7100	%	300 - 359	3.2	भ्र	8-2	1.2
Pt. Lords	πεο90	0334	83	324 - 373	8.0	ដ	85-32	1.7
Fairbenks	060217	0237	g	302 - 338	2.1	7.7	75-40	0.5
Clark Pield	00000	1 30	5	ğ	3.4	•	45	2.2
Clark Nold	061410	75	E CO	Mare (3econd 305 - 406	Breet)	335	90-15	0.3
Hersen	050290	2055	353	289 - 351	2.0	33	35-16	9.0
Clark Pield	26100	1935	Yourth 32	16 - 379	(Second Antipodes) - 379 0.5	€0	52-07	0.2

•

43

TABLE 3.9 - Accustic Data for CASTLE Shot 5, Very Low-Prequency Equipment

(Source Time: 04 May 1954, 1810:00 GAT)

	7 7	TAKE	Average	Hortsontal	Max Stgnel	Steal	Stemal	Average
Station	Start (Date,hr, mdn)	(Kr, adn)	(degrees)	Velocities (meters/sec)	O-peak (dynes/cm²)	Duration (min)	Periods (sec)	O-peak (dynes/cm²)
Kroto	מיבותצ	2200	77.1	<u>Piret Nave</u> 294 - 358	(Direct)	8	215-30	0.2
Oehu	04.214.5	2155	252	287 - 310	8 ×	×	370-60	র
Petrbenks	050021	1700	22	315 - 355	&	B	230-30	7.0
R. Lede	050053	00.39	255	372 - 375	\ \ \	m	320-30	7.0
Los Angelos	1700%	g 25			135	110	345, 130, 85	15
Sen Mego	60000	9570	E.	315 - 325	001	370	360, 130, %	9
29 Palms	0501.25	2770			> 100	STI	330, 135,	15
Olla Bend	050141	0300			~100	OTT.	36, 130, 20,	ង
Mach., D.C.	050422	OULL	232	321	33	192	260, 132	97
Solmar	050630	0230	282	325 - 360	ជ	ਡੈ	240-36	9.0
Haneu	050531	8420	920	331	•	33	240-40	•

رج

TABLE 3.9 - Acoustic Data for CASTLE Shot 5, Very Low Frequency Equipment (Contd)

(Source Time: 04 May 1954, 1810:00 Geff)

	Time of Arriv	- AFE	trenage	Horisontal	1		9	Average
Station	Start Date, hr, min)	Max Amp1 (Hr, adn)	Actually (degrees)	Asimuth Velocities (degrees) (meters/sec)	O-peak (dynes/cm²)	Duration (ata)	Perfods (sec)	Modes O-peak (dynes/cm²)
				Second Mare	(Antipodes)			
Bolmer	052310	1K00	on	291 - 332	8.5	170	155-45	2.9
Mash., D. C.	052225	2225	87	339	19	80.	83	ខ្ព
Pt. Londo	060313	9160	88 2	315 - 362	81	83	205-40	7.5
Petrbenks	060214	0237	252	288 - 426	ង	r v	120-40	0.2
						•		

(*)

رځ.

50

TABLE 3.10 - Acoustic Data for CASTLE Shot 6, Standard Equipment

(Source Time: 13 May 1954, 1820:00 GMT)

	The of Arrival	Learn	Average	Horf zontal	Way Stone			Average
Hation	Start (Date, hr,	Max Ampl (Hr, mdn)	Computed Asimuth (degrees)	_	Amplitude O-peak (dynes/cm²)	Stgnal Curation (mdn)	Stgnal Periods (sec)	Notes 0-peak (dynes/cm²)
				First Mave	(Direct)			
Kyoto	132138	2747	129	342 - 362	> 35	29	220-14	2.2
Hechlnohe	132144	ळत	143	315 - 342	ส <	31	170-10	2.6
Oahu	132229	224.1	792	336 - 355	ជ	コ	100-22	0.4
Clark Pteld	132215	2230	%	343 - 421	ጎ ^	7.4	75-05	0.3
Fairbanks	14,0053	9500	237	320 - 334	3.0	6	80-15	1.6
Pt. Lends	170124	0203	268	323 - 424	0.9	97	80-25	3.4
Trule	1,0312	0328	710	292 - 347	3.0	128	21-511	0.8
Mash., D.C.	140518	0545	303	318	3.6	8	8	3.6
Belmar	125071	0533	88	321 - 347	2.2	3	100-30	1.0
Hanau	140550	0557	щo	313 - 375	2.7	9,6	75-25	0.3
Zeel brucken	140559	2090	8	278 - 337	5.5	ជ	85-30	1.5

②

TABLE 3.10 - Assustic Date for CASTLE Shot 6, Standard Equipment (Contd)

(Source Time: 13 May 1954, 1820:00 GRT)

	The of (Arrival	Average	Horisontal	Nax Stgnal	Stenal	St grad	Average
Stati en	(Date, hr, (Hr, and and n)	Max dept (Hr, ada)	Actuals (degrees)	Asimuth (meters/see)	O-peak (dynes/cm²)		Periods (sec)	O-peak (dynes/car ²)
				Second Maye (Antipodes)	(Antipodes)			
7	1500(3	8500	%	294 - 336	1.0	%	\$0-30	1.0
Pt. Londs	150243	9333	73	206 - 358	2.2	354	140-35	1.3
								•

•

(8)

(4)

52

TABLE 3.11 - Acoustic Data for CASTLE Shot 6, Very Low-Prequency Equipment

(He
1820:00
1954,
13 Kay
អ
T.
Source

December Park Appl		fine of Arrival (Geff.)	Lerival		Horisontal	Max Stgnal	St. enal	Stenal	Average
132138 2144 127 358 - 391 13 70 215-10 132227 259 255 245 317 - 358 7 24 7 33 7 164-60 7 1 140057 0056 240 314 7 11 9 175-60 140153 0200 251 347 ~ 10 45 80-30 140550 0555 031 4,39 - 4,78 7 25 65-30	Station	Start (Date, hr,	Hax Ampl (Frymdn)		Velocities (moters/sec)	O-peak (dynes/c=²)	Duration (mtn)	Periods (sec)	O-peak (dynes/cm²)
13228 2144 127 358 - 391 13 70 215-10 132277 2259 265 1 317 - 358 2 24 7 33 7 144-60 7 11 140059 0250 251 314 7 11 9 175-60 140550 0555 031 243 - 478 7 25 65-30 140550 0555 031 439 - 478 7 25 65-30					Pirst Wave	(Mrect)			
13227 7 2259 7 265 7 317 - 358 7 24 7 33 7 164-60 7 11 bends 140055 0056 240 314 7 11 9 175-60 bends 140153 0200 251 347 ~10 45 80-30 bends 140153 0200 251 326 - 374 3.2 45 80-40 bends 140550 0555 031 439 - 478 7 25 65-30	Kyoto	132138	27,44	121	358 - 391	13	20	215-10	0.3
mds 14,005.7 0056 24,0 314.7 11 9 175-60 mds 14,0153 0200 251 347 ~10 45 80-30 r 14,0550 0555 031 439 - 478 7 25 65-30	Oshu	132227 1	2259	265 1	317 - 358 7	2 77	33 7	164-60 ?	7
r 14,0153 0200 251 347 ~10 45 80-30 r 14,0530 0533 292 326 − 374 3.2 45 80-40 14,0550 0555 031 4,39 − 4,78 7 25 65-30	Ped reents	1,005.1	9500	240	374.3	ជ	6	175-60	4.8
F 14,0530 0533 292 326 - 374 3.2 4.5 80-40 14,0550 0555 031 4,39 - 4,78 7 25 65-30	Pt. Londs	140153	0200	221	347	~ 10	57	80-30	3.9
14,0550 0555 031 4,39 - 4,78 7 25 65-30	Belmer	240530	0533	292	326 - 374	3.2	4.5	07-08	1.7
	Heman	140550	0555	150	439 - 478	~	22	65-30	64

TABLE 3.12 Travel Speeds for First Acoustic Arrivals, Standard Equipment, Operation CASTLE

	1	Travel Spe				
Station	Shot 1	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6
V	204				200	33.0
Kyoto	306	307	-	318	309	313
Hachinobe	307	302	-	308	311	311
Oahu	335	318	312	303	318	292
Clark Field	MIO	306	289	319	314	320
Fairbanks	317	315	298	306	301	296
Ft. Louis	320	305	-	307	307	292
Thule	305	309	-	304	298	303
Wash., D.C.	305	302	254	307	304	293
Belmar	302	306	-	304	315	296
Hanau	292	304	•	300	308	306
Zweibrucken	NIO	305		306	308	305
	[Second	Mayo (Ant	d podes)		
Zweibrucken	MIO	324	-		305	-
Hanau	302	306	-	-	306	-
Belmar	-	-	•	274	271	-
Wash., D.C.	-	286	•	26.5	268	-
Thule	288	298	•	288	286	278
Pt. Lends	-	-	-	276	272	275
Fairbanks	-	296	-	-	286	-
Clark Field	-	-	•	-	270	-
Oahu	309	293	CDD	-	-	-
Hachinobe	307	292	-	-	•	-
Kyote	•	•	•	-	•	•

TABLE 3.12 Travel Speeds for First Acoustic Arrivals, Standard Equipment, Operation CASTLE (Contd)

	·	Travel So	ed (Meter	-/ma)		
Station	Shot 1	Shot 2	Shot 3		Shot 5	Shot 6
		Third Wave	(Second	Direct)		
Kyoto	299	-	-	-	-	-
Hachinohe	-	283	-	-	_	-
Clark Field	-	283	-	288	283	-
Fairbanks	-	300	-	297	_	_
Pt. Lenis	303	-	-	_	-	-
Thule	296	-		4 7	-	-
Wash., D.C.	288	•	-	-	-	-
Ranau	-	•	-	-	289	-
	1	ourth Way	re (Second	Antipode	•)	
Clark Field	-	-	-	277	285	-

TABLE 3.13 Travel Speeds for First Acoustic Arrivals, Very Low-Frequency Equipment, Operation CASTLE

	Travel Speed (Meters/sec)					
Station	Shot	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6
		Pire	t Wave (Di			
Kyoto	MIO	MIO	-	320	306	313
Oahu	МІО	316	310	318	313	294
Fairbanks	27K	316	-	31.3	310	301
Ft. Lords	MIO	325	-	313	319	292
los Angeles#	31.8	323	-	322	316	-
Sea Diegos	318	323	-	322	316	-
29 Palms*	318	323	-	322	316	-
Qila Bend*	31.8	322	•	322	316	-
Wash., D.C.	31.8	326	-	307	31.2	293
Belmar	316	308	-	307	318	295
Hanau	MIO	NIO	•	307	313	306
Darredn*	318	325	-	316	318	314
M.and*	324	328	-	323	318	-
Puerto Rico*	325	326	-	322	317	307
Durban*	жо	314	-	312	311	-
Recife®	320	320	-	319	316	310

^{*} Speed computed for arrival of first positive peak.

56 SECRET - RESTRICTED DATA

TABLE 3.13 Travel Speeds for First Acoustic Arrivals, Very Low-Frequency Equipment, Operation CASTLE (Contd)

	Travel Speed (Meters/sec)						
Station	Shot 1	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6	
		Second	Wave (Ant				
Belmar	-	-	-	275	272	-	
Wash., D.C.	-	-	-	-	281	-	
Pt. Lends	NTO	-	_	287	272	-	
Pairbanks	-	307	-	-	287	-	
Oahu	-	288	•	-		-	
Reci.fe*	321	321	•	319	317	•	
Durban#	-	328	-	326	322	-	
		Third W					
Los Angeles#	316	-	-	-		-	
San Diege*	316	-	•	•	-	-	
29 Palms*	316	•	-	-	~	MIO	
Cila Bend*	NIO	-	-	-	-	-	

^{*} Speed computed for arrival of first positive peak.

TABLE 3.14 Azimuth Errors*, Standard Equipment Operation CASTLE

_	Azimuth Errors (Degrees)						
Station	Shot 1	Shot 2	Shot 3	Shot 4	Shot 5	Shot	
		First Wave (Direct)					
Kyoto	4.3 SW	2.3 SW	-	0.4 54	5.6 NE	1.4 5	
Hachinobe	0.3 NE	0.3 NE	-	3.9 SW	5.9 SW	1.2 5	
Oahu	2.7 N	3.7 N	2.0 N	0.2 \$	2.2 S	2.0 N	
Clark Pield	NIO	5.1 5	5.8 8	0.1 3	7.1 S	0.3 S	
Fai.rbanks	3.1 SE	2.9 NW	0.1 NW	1.0 SE	6.0 NW	0.3 5	
Ft. Lords	4.0 NW	0.0	-	1.1 NW	1.1 NW	0.7 N	
Thule	7.6 B	5.4 W	-	6.5 W	11.5 W	3.5 W	
Wash., D.C.	5.0 NW	11.0 SE	0.1 NW	5.0 NW	1.0 SE	3.8 M	
Belmar	4.5 SE	6.5 SE	-	0.6 NW	2.4 SE	1.8 SE	
Hanau	33.7 E	5.7 E	•	0.4 W	4.4 W	2.2 W	
Zweibrucken	NIO	20.3 E	-	4.2 E	3.2 E	4.5 E	

^{*} Difference between true aximuth and measured azimuth. "E" means indicated source is east of the true source; "N" means indicated source is north of true source; etc.

TABLE 3.14 Azimuth Errors, Standard Equipment, Operation CASTLE (Contd)

	Azimuth Errors (Degrees)						
Station	Shot 1	Azimut		·			
Station	Shot I	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6	
	1	Second	WAYO (A	ntipodes	1	1	
Zweibrucken	-	0.7 W	-	} -	13.8 W	-	
Hanau	2.7 E	3.7 E	-	-	5.6 E	_	
Belmar	-	-	-	5.6 NW	4.4 SE	-	
Wash., D.C.	-	14.9 SE	-	10.0 SE	1.0 NW	-	
Thule	18.6 E	13.6 E	~	25.5 E	28.5 E	31.5 E	
Ft. Lewis	-	-	-	0.1 SE	1.9 SE	25.3 SE	
Fairbanks	-	0.1 NW	-	-	29.0 SE	-	
Clark Field	-	-	-	-	12.1 S	-	
Oahu	40.7 N	16.7 N	-	-	-	-	
Hachinohe	14.3 NE	8.7 SW	-	-	-	-	
Kyoto		-	 	_	_	-	
1	1	Third Wa	ve (Seco	nd Direct)		
			10 1000	110 211000			
Kyoto	110.3 SW	-	-	_	-	-	
Hachinohe	-	20.3 NE	-	-	-	-	
Clark Field	-	1.1 5	-	0.9 h	14.1 5	-	
Pairbanks	-	74.1 SB	-	42.0 SE	-	-	
Ft. Lewis	14.0 NW	-	-	-	-	-	
Thule	18.6 E	-	-			-	
Wash., D.C.	0.9 SE	-	-	-	-	-	
Hanau	-	- 1	~	-	32.6 E	- [
1	Fourth Wave (Second Antipodes)						
Clark Field	-	-			55.1 8	-	
				<u> </u>			

REFERENCES

(4)

- Evans Signal Laboratory, Report of Operation FITZWILLIAM, Tab D to Volume VI, 1949.
- Naval Ordnance Laboratory, Remote Microbarometric Measurements (Inductiphone, Kwajalein; Washington, D. C.), CROSSROADS Technical Instrumentation Report, Project No. II-28.
- U. S. Air Force, Acoustic and Seismic Detection, Report of Operation FITZWILLIAM, Volume VI.
- Signal Corps Engineering Laboratories, Signal Corps Portion, 7.2 Program, Operation GREENHOUSE, Final Report, 15 February 1952.
- Navy Electronics Laboratory, Airborne Low-Frequency Sound at Bikini, Kwajalein, and Guam from Atomic Explosions of Operation GREENHOUSE, Final Report, 30 September 1951.
- Naval Ordnance Laboratory, Report on Microbarometric Data Taken During Project GREENHOUSE, NAVORD Report 2153, 17 August 1951.
- National Bureau of Standards, Detection of Airborne Low-Frequency Sound from Atomic Explosions of Operation GREENHOUSE, NBS Report 1ClO4, 15 September 1952.
- U. S. Air Force (AFOAT-1), Detection of Airborne Low-Frequency Sound from the Atomic Explosions of BUSTER and JANGLE, AFSWP Report WT-322, 15 March 1952.
- U. S. Air Force (AFOAT-1), Detection of Airborne Low-Frequency Sound from Atomic Explosions, AFSWP Report WT-539, 15 September 1952.
- U. S. Air Force (AFOAT-1), Detection of Airborne Low-Frequency Sound from Nuclear Explosions, AFSWP Report WT-763, 15 February 1954.
- Navy Electronics Laboratory, Experimental Study of Explosion-Generated Acoustic Waves Propagated in the Atmosphere, NEL Report 290, 1 May 1952.
- U. S. Air Force (AFOAT-1), Detection of Airborne Low-Frequency Sound from Nuclear Explosions, JTF 132 Report WT-632, September 1953.

- C. L. Pekeris, The Propagation of a Pulse in the Atmosphere, Phys. Rev., 73:145-154.
- R. S. Scorer, The Dispersion of a Pressure Pulse in the Atmosphere, Proc. Roy. Soc. London, 201: 138-157.
- Signal Corps Engineering Laboratories, Technical Instructions for Operation, Installation, and Maintenance of Equipment for Data Recording System M-2, 23 February 1953.
- National Bureau of Standards, Instructions for Installation, Operation, and Maintenance of NBS Infrasonic Instrumentation (In Field Use as of January 1954), NBS Report 10114, 25 February 1954.
- Sandia Corporation, Negative-Phase Duration as a Measure of Blast Yield, Sandia Report SC-3170 (TR), 1 September 1953.

Defense Special Weapons Agency 6801 Telegraph Road Alexandria, Virginia 22310-3398

TRC

10 September 1997

MEMORANDUM FOR DEFENSE TECHNICAL INFORMATION CENTER ATTENTION: OMI/Mr. William Bush

SUBJECT: Declassification of AD-361833L and Removal of

AD-A995117 -

S-FRD

The Defense Special Weapons Agency Security Office (OPSSI) has reviewed and declassified the following report:

AD-361833D MT-931
Operation CASTLE, Pacific Proving Grounds,
March - May 1954, Project 7.2, Detection of
Airborne Low-Frequency Sound From Nuclear
Explosions, Report to the Test Director,
dated May 1955.

Distribution statement "A" (approved for public release) now applies.

Since AD-36T833L (WT-931) is declassified and approved for public release, this office requests the removal of AD-A995117 (WT-931-EX) from distribution. This document is obsolete and should no longer be sold.

elledith Janeth ARDITH JARRETT

Chief, Technical Resource Center

copy furn: FC/DSWA DASIAC

KSC

Completed 2-9-2000 B.W.