REGNO-RA1911026010119 NAME-SANKALP JAIN

Graph Coloring problem

Lab 2
RA19110 26 0/0/19 Sankalf Juin
5
Sim > To Solve & perform Vertex & edge coloring
Alagarith -
Slogorithn-
D Vertex coloring
- Add rist of wolors.
Hen gire but of graph edges & modes and Create
function to built graph from edges
15 convert edges to uniderected graph
Check for 1st color and assign all others
- Cloop West Virter and color it will round mumbered
color That Was been colored on any Vertices
Aljaunt to it.
- Print.
(2) Creaph edge coloring
Define graph by Number of Vertex & edge connected by
Luch other. then create function to determine edge colors. Traverse all edges one by one & heck them.
I color Vector found to be vegetise then assign
1 color and in rement color i'l change rolor for Next.
Ald it to the let
Repeat until all edges of graph are wholed
regul wines are wanted of frage or was

Code:

```
VERTEX COLORING
class Graph:
  def __init__(self, edges, n):
    self.adjList = [[] for _ in range(n)]
    # add edges to the undirected graph
    for (src, dest) in edges:
      self.adjList[src].append(dest)
      self.adjList[dest].append(src)
def colorGraph(graph, n):
  result = {}
  for u in range(n):
```

```
assigned = set([result.get(i) for i in graph.adjList[u] if i in
result])
     color = 1
    for c in assigned:
       if color != c:
         break
       color = color + 1
    result[u] = color
  for v in range(n):
    print(f'Color assigned to vertex {v} is {colors[result[v]]}')
if __name__ == '__main__':
    colors = [", 'GREEN', 'ORANGE', 'RED', 'CYAN', 'PURPLE',
'PINK',
       'PINK', 'BLACK', 'GREEN', 'CYAN', 'BLUE']
   edges = [(0, 1), (0, 2), (1, 5), (2, 5), (2, 4), (2, 3), (0, 3), (1, 4)]
```

```
n = 6

# build a graph from the given edges
graph = Graph(edges, n)
colorGraph(graph, n)
```

EDGE COLORING

```
from queue import Queue

def colorEdges(ptr, gra, edgeColors, isVisited):
    q=Queue()
    c = 0

    colored=set()

    if (isVisited[ptr]):
        return

# Mark the current node visited
    isVisited[ptr] = True
```

```
for i in range(len(gra[ptr])) :
     if (edgeColors[gra[ptr][i][1]] != -1):
          colored.add(edgeColors[gra[ptr][i][1]])
for i in range(len(gra[ptr])) :
     if not isVisited[gra[ptr][i][0]]:
          q.put(gra[ptr][i][0])
     if (edgeColors[gra[ptr][i][1]] == -1) :
          while c in colored:
                # increment the color
                c+=1
```

```
# copy it in the vector
          edgeColors[gra[ptr][i][1]] = c
          # then add it to the set
          colored.add(c)
          c+=1
while not q.empty():
     temp = q.get()
     colorEdges(temp, gra, edgeColors, isVisited)
return
```

Driver Function

```
if __name__=='__main__':
    empty=set()
         gra=[]
    edgeColors=[]
    isVisited=[False]*100000
    # Enter the Number of Vertices
    # and the number of edges
    ver = 4
    edge = 4
    gra=[[] for _ in range(ver)]
    edgeColors=[-1]*edge
    gra[0].append((1, 0))
    gra[1].append((0, 0))
```

```
gra[1].append((2, 0))
     gra[2].append((1, 1))
     gra[2].append((1, 2))
     gra[3].append((2, 2))
     gra[0].append((0, 3))
     gra[3].append((0, 3))
     colorEdges(0, gra, edgeColors, isVisited)
     # printing all the edge colors
     for i in range(edge):
          print("Edge {} is of color {}".format(i + 1,edgeColors[i]
+ 1))
Output:
```

Vertex coloring:

Edge coloring:

Result:

Hence Graph Coloring problem for both vertex coloring and Edge coloring were studied and solved.