A-Z Machine Learning Workflow

CHECKLIST

<u>OTTEOREIOT</u>		
	1. Analysis of the Problem Define problem Define project goal Frame the problem 2. Data Retrieval Find data and document where it has been	☐ Define performance metric☐ Look for approaches to similar problems☐ List assumptions made so far
	3. Exploratory Analysis Check size and type of data Sample a test set and don't snoop Create copy ± downsample Study of each variable Type, NaN, outliers, distribution	 □ Visualize data □ Select target attribute (supervised) □ Study correlations □ Identify possible transformations □ Document every step □ Get more data if necessary
	4. Data Wrangling Work on a copy of the dataframe Use functions for data transformation Pandas or sklearn Clean null values	 □ Clean outliers □ Feature selection □ Feature engineering □ Discretizing, encoding, decomposing, transforming, aggregating, etc. □ Feature scaling
	 5. Choosing a Model Choose a few different models to train using "standard" parameters Measure and compare their performance Analyze most significant attributes for each algorithm 	 Measure and compare performance Quick round of feature selection and/or engineering Iterate a few times over these steps Shortlist the top 3-5 most promising models
	6. Fine Tuning Use all training data RandomizedSearchCV or GridSearchCV Ensemble best models	 Only when you are happy with a model: measure performance on test set Do not modify model after measuring performance on test set Risk to overfit it
	7. Presenting Document every step of your process Highlight the big picture Interesting points you noticed along	 Make sure your key findings are communicated Use beautiful visualizations Use easy to remember statements

