Name:

Research Design & Analysis I

Exploratory Data Analysis

Unit 1 Assignment

Please complete the following exercises. Feel free to work with classmates, but each student must turn in **UNIQUE** work, not photocopies or identical replicates. When applicable, use **APA format** in communicating your results in text. **Show your work!** If any question involves any math at all, show your work. When it doubt, write it out. Always show more than you think you need.

1) WRITE-UP - Textbook Problems								
	Cohen Chap Exercises		Exercises	Pts	Off			
	A		1	1				
	Z	С	2, 3 (no output, tables, or plots need to be included)	2				
	3	Α	*1, 2, 3, 4, *5	5				
	4 A B		*1, 2, 4, 9a, 10a, 11, *12, 13, *14	11				
			3, 4, 5, 6, 7	5				

2) 5	2) SUMMARY – Your Journal Article								
	Increased arte	rial stiffness parameters in panic disorder patients	Pts	Off					
	Half Page	Re-read your article you selected for Unit 0 HW (do not re-submit it). Summarize any mention or use of the concepts in the above chapters.	10						

3) F	3) R SYNTAX - Section C: Ihno's data set - add to the skeleton R notebook and knit to .pdf & upload								
	Coher	n Chap	Exercises	Pts	Off				
	2	С	1, 2, 3, 4, 6, 9, 10	8					
	3	С	1, 2, 3, 4, 5, 6	6					
·	4	С	1,	2					

Gra	ding		Earned	Possible
	CORRECTNESS	a subset of spot-checked items: must show work, especially items from back of book or done in class		50
·	COMPLETENESS	more than one item is missing or skipped: 25/50 roughly half the assignment is completed: 10/50		50
•				100

2	Α	1.	Histograms

A psychotherapist has rated all 20 of her patients in terms of their progress in therapy, using a 7-point scale. The results are shown in the following table: (use only 1 decimal place)

	F	rf	cf	crf	cpf
Greatly improved	5				
Moderately improved	4				
Slightly improved	6				
Unchanged	2				
Slightly worse	2				
Moderately worse	1				
Greatly worse	0				

a) Draw a bar graph to represent the above results.

To answer the following questions, create columns for:

- relative frequency (rf)
- cumulative frequency (cf)
- cumulative relative frequency (crf), and
- cumulative percentage frequency (cpf)

b)	What proportion of the	patients was	grealy improve	ed?
~,		p a. c. c	0.00.7	

- c) How many patients did not improve?
- d) What is the **percentile rank** of a patient who improved slightly?

e) Which category of improvement corresponds to the third quartile

How many patients did not improve?	
What is the percentile rank of a patient who improved slightly?	
What is the percentile rank of a patient who becomes slightly worse?	
Which category of improvement corresponds to the third quartile?	
Which category of improvement corresponds to the first quartile?	

2 C	2. Distributions & Bar Plots	
Request a	frequency distribution and a bar chart for the <i>prevmath</i> and <i>phobia</i> variables.	
	write code in R syntax file	
	(no output, tables, or plots need to be included)	
	nake sense to request a histogram instead of a bar chart for <i>phobia</i> ?	
Discuss.		
		□ yes □ no
2 C	3. Distributions & Bar Plots	
	3. Distributions & Bar Plots frequency distribution and a histogram for the statquiz variables. write code in R syntax file	
	frequency distribution and a histogram for the <i>statquiz</i> variables.	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	
Request a	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)	

3	Α	*1.	Measures	of central	. tendency				
	Select the measure of central tendency that would be most appropriate for describing each of the following hypothetical sets of data:								
a.	Relig	ious pr	eferences of d	delegates to the	United Nations		■ Mean	■ Median	□ Mode
b.	b. Heart rates for a group of women before they start their first aerobics class								
c.	Туре	es of pl	nobias exhibi	ited by patients	s attending a phobia	a clinic	■ Mean	■ Median	□ Mode
d.			-	-	olving a classic cognics unable to solve it	itive	□ Mean	■ Median	□ Mode
e.	Heig	ht in ir	nches for a gr	roup of boys in	the first grade		■ Mean	■ Median	□ Mode
3	Α	2.	Distribut	ion descrip	otives				
Describ					expect to obtain each	of the fol	llowing:		
a)	A ne	gatively	skewed distr	ibution					
b)	A pos	sitively	skewed distri	bution					
	•	•							
c)	A bir	modal	distribution						
3	Α	*3.	Distribu	tion descri	ptives				
A midt	erm ex	kam wa	s given in a la	rge introductory	y psychology class. The	e median	score was 8	5, the mean w	as 81, and
the mo	ode wa	ıs 87.							
What k	kind of	distrib	ution would y	ou expect from	these exam scores?				

retrievers treated in her clinic. The ages were 12 , 9 , 11 , 10 , 8 , 14 , 12 , 1 , 9 , 12 .								
a) Calculate the mean, median, and mode of life span:								
Mean	Median	Mode						
After examining her records, th	e veterinarian determined that the dog	that had died at 1 year was killed by a						
		,						
Mean	Median	Mode						
Which measure of central tend	ency in part b changed the most , compa	red to the values originally calculated						
in part a? Explain.	☐ Mean ☐ Median ☐ Mod							
	After examining her records, th car. Recalculate the mean, median, and Mean Mean Mean Mean Mean Mean Mean Mean Mean	After examining her records, the veterinarian determined that the dog car. Recalculate the mean, median, and mode without that dog's data. Mean Median After examining her records, the veterinarian determined that the dog car. Recalculate the mean, median, and mode without that dog's data. Mean Median Median Wedian Median						

Measures of central tendency

3

Α

4.

3	Α	5. Measures of Variability					
Which	of the	three most popular measures of variability would you choose in ea	ach of the followin	g situations	?		
a.	a. The distribution is badly skewed with a few extreme outliers in one direction.						
b.	b. You are planning to perform advanced statistical procedures (e.g., draw inferences about population parameters).						
c.	c. You need to know the maximum width taken up by the distribution.						
d.	d. You need a statistic that takes into account every score in the population.						
e.	The h	nighest score in the distribution is "more than 10."	□ Range □	SIQ range	□ SD		
4	Α	*1. Z-scores					
If you o		t each score in a set of scores to a z score, which of the following w	vill be true about t	he resulting	set of z		
a.	The r	nean will equal 1.		□ т	RUE		
b.	The \	ariance will equal 1.		□ т	RUE		
C.	The o	listribution will be normal in shape.		□т	RUE		
d.	All of	the above.		□т	RUE		
e.	None	of the above.		□ TRUE			
4	Α	2. Z-scores					
	The distribution of body weights for adults is somewhat positively skewed — there is much more room for people to be above average than below.						
	If you take the mean weights for random groups of 10 adults each and form a new distribution, how will this new distribution compare to the distribution of individuals?						
a.	The r	new distribution will be more symmetrical than the distribution of i	ndividuals.	□т	RUE		
b.	The r	new distribution will more closely resemble the normal distribution	·	п т	RUE		
C.		new distribution will be narrower (i.e., have a smaller standard devibution of individuals.	ation) than the	□т	RUE		
d.	All of	the above.		□ т	RUE		
	None of the above						

4 A	4. Z-scores	
a) Calc	ulate μ and σ for the fo	ollowing set of scores and then convert each score to a z score: 64, 45, 58, 51, 53, 60, 52, 49.
	Mean: μ	Standard Deviation: σ
	μ=	σ=
		z-scores:
b) Calc	ulate the mean and sta	andard deviation of these z scores.
	Mean: μ	Standard Deviation:
	μ=	σ =
	ain the values you exp	ected?
Explain.		□ yes □ no
Did you obt Explain.	μ=	σ = ected?

4	Α	*9a. Z-scores & the z-table	
a) U	se Tabl	le A.1 to find the area of the normal distribution between the mean and z , when z equals 0.18	
4	Α	10a. Z-scores & the z-table	
a) U	se Tabl	le A.1 to find the area of the normal distribution beyond z , when z equals when z equals 0.09	
4	Α	11. Z-scores & the z-table	
	Assı	uming that IQ is normally distributed with a mean of 100 and a standard deviat	tion of 15
		scribe completely the sampling distribution of the mean for a sample size (n) o	
4	Α	*12. Standard error for the mean	
If the mean		tion standard deviation (σ) for some variable equals 17.5, what is the value of the sta	ndard error of the
a.	N = 5	j	SE_{μ} =
b.	N = 2	.5	SE _µ =
C.	N = 1	.25	$SE_{\mu} =$
d.	N = 6	25	$SE_{\mu} =$
	If the s	sample size is cut in half, what happens to the standard error of the mean for a particu	lar variable?

4	Α	13. Standard error for the mean	
a)	won	ne college, freshman English classes always contain exactly 20 students . An English tonders how much these classes are likely to vary in terms of their verbal scores on the uld you expect for the standard deviation (i.e., standard error) of class means on the	SAT. What
			SE _μ =
b)	aver	pose that a crew for the space shuttle consists of seven people , and we are intereste rage weights of all possible shuttle crews. If the standard deviation for weight is 30 p at is the standard deviation for the mean weights of shuttle crews (i.e., the standard an)?	ounds,
			SE _μ =
4	Α	*14. Standard error for the mean	
	-	cicular sampling distribution of the mean we know that the standard error is 4.6 , and σ = 32.2 , what is the sample size (n)?	we also
			n =

4 B 4. Area under a normal curve

Assume that the resting heart rate in humans is normally distributed with μ = 72 bpm (i.e., beats per minute) and σ = 8 bpm.

a) **Above** what heart rate do you find the upper 25% of the people? (That is, what heart rate is at the 75th percentile, or third quartile?)

b) **Below** what heart rate do you find the lowest 15% of the people? (That is, what heart rate is at the 15th percentile?)

c) **Between** which two heart rates do you find the middle 75% of the people?

4 B *5. Area under a normal curve

A new preparation course for the math SAT is open to those who have already taken the test once and scored in the **middle 90%** of the population.

In what **range** must a testtaker's previous score have fallen for the test-taker to be eligible for the new course?

a) What is the z score for this class? b) What percentage of classes (n = 36, randomly selected) would be even higher on IQ? 4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8		
f the population mean is 100 and σ = 15. a) What is the z score for this class? b) What percentage of classes (n = 36, randomly selected) would be even higher on IQ? 4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 ppm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than	4 B 6. Area under a normal curve	
b) What percentage of classes (n = 36, randomly selected) would be even higher on IQ? 4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 bpm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class?	A teacher thinks her class has an unusually high IQ, because her 36 students have an average IQ (X) of 108 If the population mean is 100 and σ = 15.	•
4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than	a) What is the z score for this class?	
4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
4 B *7. Area under a normal curve An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than)
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than	b) What percentage of classes (n = 36, randomly selected) would be even higher on IQ?	<u>ر</u>
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		7
An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 opm, and his class of 14 pupils has a mean heart rate (X) of 66, a) What is the z score for the aerobics class? b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than		<u>ر</u>
b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than	4 B *7. Area under a normal curve	
b) What is the probability of randomly selecting a group of 14 people with a mean resting heart rate lower than	An aerobics instructor thinks that his class has an unusually low resting heart rate. If μ = 72 bpm and σ = 8 bpm, and his class of 14 pupils has a mean heart rate (X) of 66,	
	a) What is the z score for the aerobics class?	
		1

APA	Your HW-Unit 0 article revisited
	Re-read your article you selected for Unit 0 HW (do not re-submit it). Summarize any mention or use of the concepts in the above chapters.
	(you may choose to type this summary and include a printed copy here instead of hand writing OR upload a typed document to CANVAS)