Práctica Nro. 4 Variables

Objetivo: Conocer el manejo de identificadores en memoria y como lo definen e implementan los diferentes lenguajes.

Ejercicio 1: a) Tome una de las variables de la línea 3 del siguiente código e indique y defina cuales son sus atributos:

- 1. Procedure Practica4();
- 2. var
- 3. a,i:integer
- 4. p:puntero
- 5. Begin
- 6. a:=0;
- new(p);
- 8. p:= ^i
- 9. for i:=1 to 9 do
- 10.a:=a+i:
- 11.end;
- 12....
- 13.p:= ^a;
- 14....
- 15.dispose(p);
- 16.end;
- **b)** Compare los atributos de la variable del punto a) con los atributos de la variable de la línea 4. Que dato contiene esta variable?,

Ejercicio 2:

- a. Indique cuales son las diferentes formas de inicializar una variable en el momento de la declaración de la misma.
- **b.** Analice en los lenguajes: Java, C, Phyton y Ruby las diferentes formas de inicialización de variables que poseen. Realice un cuadro comparativo de esta característica.

Ejercicio 3: Explique los siguientes conceptos asociados al atributo I-valor de una:

- a. Variable estática.
- **b.** Variable automática o semiestática.
- **c.** Variable dinámica.
- d. Variable semidinámica.

De al menos un ejemplo de cada uno.

Investigue sobre que tipos de variables respecto de su l-valor hay en los lenguajes C y Ada.

Ejercicio 4:

- a. ¿A qué se denomina variable local y a qué se denomina variable global?
- b. ¿Una variable local puede ser estática respecto de su l-valor? En caso afirmativo dé un ejemplo
- c. Una variable global ¿siempre es estática? Justifique la respuesta.
- d. Indique qué diferencia hay entre una variable estática respecto de su l-valor y una constante

Ejercicio 5:

- **a.** En Ada hay dos tipos de constantes, las numéricas y las comunes. Indique a que se debe dicha clasificación.
- **b.** En base a lo respondido en el punto **a)**, determine el momento de ligadura de las constantes del siguiente código:

```
H: constant Float:= 3,5;
I: constant:= 2;
K: constant float:= H*I;
```

Ejercicio 6: Sea el siguiente archivo con funciones de C:

Analice si llegaría a tener el mismo comportamiento en cuanto a alocación de memoria, sacar la declaración (1) y colocar dentro de func1() la declaración static int x = 1;

Ejercicio 7: Sea el siguiente segmento de código escrito en Java, indique para los identificadores si son globales o locales.

```
Clase Persona {
                                                       public int getEdad(){
       public long id
                                                                      public int edad=0;
       public string nombreApellido
                                                                      public string fN =
       public Domicilio domicilio
                                                       this.getFechaNac();
       private string dni;
       public string fechaNac;
       public static int cantTotalPersonas;
                                                                return edad;
                                                              }
       //Se tienen los getter y setter de cada una
de las variables
                                                       Clase Domicilio {
       //Este método calcula la edad de la persona
                                                              public long
                                                                             id;
a partir de la fecha de nacimiento
                                                               public static int nro
                                                              public string calle
                                                               public Localidad loc;
                                                              //Se tienen los getter y setter de cada una
                                                       de las variables
```

Ejercicio 8: Sea el siguiente ejercicio escrito en Pascal

- 1- Program Uno;
- **2-** type tpuntero= ^integer;
- **3-** var mipuntero: tpuntero;
- **4-** var i:integer;
- 5- var h:integer;
- 6- Begin
- **7-** i:=3;
- **8-** mipuntero:=nil;
- **9-** new(mipuntero);
- **10-** mipunterno^:=i;
- **11-** h:= mipuntero^+i;
- **12-** dispose(mipuntero);
- **13-** write(h);
- **14-** i:= h- mipuntero;
- 15- End.
 - a) Indique el rango de instrucciones que representa el tiempo de vida de las variables i, h y mipuntero.
 - b) Indique el rango de instrucciones que representa el alcance de las variables i, h y mipuntero.
 - c) Indique si el programa anterior presenta un error al intentar escribir el valor de h. Justifique
 - d) Indique si el programa anterior presenta un error al intentar asignar a i la resta de h con mipuntero.
 - e) Determine si existe otra entidad que necesite ligar los atributos de alcance y tiempo de vida para justificar las respuestas anteriores. En ese caso indique cuál es la entidad y especifique su tiempo de vida y alcance.
 - f) Especifique el tipo de variable de acuerdo a la ligadura con el l-valor de las variables que encontró en el ejercicio.

Ejercicio 9: Elija un lenguaje y escriba un ejemplo:

- a. En el cual el tiempo de vida de un identificador sea mayor que su alcance
- b. En el cual el tiempo de vida de un identificador sea menor que su alcance
- c. En el cual el tiempo de vida de un identificador sea igual que su alcance

Ejercicio 10: Si tengo la siguiente declaración al comienzo de un procedimiento:

int c; en C

var c:integer; en Pascal

c: integer; en ADA

Y ese procedimiento NO contiene definiciones de procedimientos internos. ¿Puedo asegurar que el alcance y el tiempo de vida de la variable "c" es siempre todo el procedimiento en donde se encuentra definida?. Analícelo y justifique la respuesta, para todos los casos.

Ejercicio 11: a) Responda Verdadero o Falso para cada opción. El tipo de dato de una variable es?

I) Un string de caracteres que se usa para referenciar a la variable y operaciones que se pueden realizar

- sobre ella.
- II) Conjunto de valores que puede tomar y un rango de instrucciones en el que se conoce el nombre.
- III) Conjunto de valores que puede tomar y lugar de memoria asociado con la variable.
- IV) Conjunto de valores que puede tomar y conjunto de operaciones que se pueden realizar sobre esos valores.
 - b) Escriba la definición correcta de tipo de dato de una variable.

Ejercicio 12: Sea el siguiente programa en ADA, completar el cuadro siguiente indicando para cada variable de que tipo es en cuanto al momento de ligadura de su l-valor, su r-valor al momento de alocación en memoria y para todos los identificadores cuál es su alcance y cual es su el tiempo de vida. Indicar para cada variable su r-valor al momento de alocación en memoria

1. with text_io; use text_io;					
2. Procedure Main is;	Ident.	Tipo	r-valor	Alcan	T.V.
3. type vector is array(integer range <>);		-		ce	
4. a, n, p:integer;	a (linea	automática	basura	4-14	1-14
v1:vector(1100);	4)				
6. c1: constant integer:=10;					
7. Procedure Uno is;					
 type puntero is access integer; 					
v2:vector(0n);					
3. c1, c2: character;					
4. p,q: puntero;					
5. begin					
7.5.1. n:=4;					
7.5.2. v2(n):= v2(1) + v1(5);	l 				
7.5.3. p:= new puntero;					
7.5.4. q:= p;					
7.5.5					
7.5.6. free p;					
7.5.7					
7.5.8. free q;					
7.5.9					
7.6. end ;					
8. begin					
9. n:=5;					
9. 11.–3, 10					
11. Uno;					
12. a:= n + 2;					
13					
14. end					

Aclaración:

Ident.= Identificador / Tipo es el tipo de la variable respecto del I-value

T.V. = Tiempo de Vida / **r-valor** debe ser tomado al momento de la alocación en memoria.

El alcance de los identificadores debe indicarse desde la línea siguiente a su declaración.

Ejercicio 13: El nombre de una variable puede condicionar:

- a) Su tiempo de vida.
- b) Su alcance.
- c) Su r-valor.
- d) Su tipo.

Justifique la respuesta

Ejercicio 14: Sean los siguientes archivos en C, los cuales se compilan juntos

Indicar para cada variable de que tipo es en cuanto al momento de ligadura de su l-valor. Indicar para cada identificador cuál es su alcance y cual es su el tiempo de vida. Indicar para cada variable su r-valor al momento de alocación en memoria

ARC	HIVO1.C					
1.	int v1;	Ident.	Tipo	r-valor	Alcance	T.
2.	int *a;		•			
3.	Int fun2 ()					
4.	{ int v1, y;					
5.	for(y=0; y<8; y++)					
6.	{ extern int v2;					
7.	}					
8.	}					
9.	main()					
10.	{static int var3;					
11.	extern int v2;					
12.	int v1, y;					
13.	for(y=0; y<10; y++)					
14.	{ char var1='C';					
15.	a=&v1}					
16.	}					
ARC	HIVO2.C					
17.	static int aux;					
18.	int v2;					
19.	static int fun2()					
20.	{ extern int v1;					
21.	aux=aux+1;					
22.						
23.	}					
24.	int fun3()			•		
25.	{ int aux;					
26.	aux=aux+1;					
27.						
28.	}					

Aclaración:

Ident.= Identificador

T.V. = Tiempo de Vida

r-valor debe ser tomado al momento de la alocación en memoria

El alcance de los identificadores debe indicarse desde la línea siguiente a su declaración.

Ejercicio 15: Para javascript investigue la diferencia semántica para declarar una variable utilizando los modificadores const, var, let y la ausencia de cualquiera de estos. Compárelo con un lenguaje de su preferencia.