CS151 Intro to Data Structures

AVL Trees Splay Trees

Announcements

HW8 (last homework) due Dec 15th

Outline

Review: Tree Rotation and AVL Trees

Splay Trees

Review: AVL Trees

A self-balancing binary search tree where the height difference between the left and right subtrees is at most 1 for every node.

Guarantees **O(log n)** time for insertion, deletion, and search by maintaining height balance. Prevents degeneration into linked lists (common issue in unbalanced binary search trees).

Rotations

Right rotation:

- Performed when left side is heavier
- left child becomes root

Left rotation:

- Performed when right side is heavier
- right child becomes root

RotateRight Algorithm

- 1. a.left =
 Pivot.right
- 2. Pivot.right = a

RotateLeft Algorithm

1. a.right =
Pivot.left

2. Pivot.left = a

Double rotation

When do we need a double rotation?

Left subtree is too heavy on the right side rotateLeftRight

OR

Right subtree is too heavy on the left side rotateRightLeft

Examples - which way should I rotate?

rotateLeft

rotateRightLeft

rotateRight

rotateLeftRight

Which node do we "rebalance over"?

lowest subtree with diff(heights) > 1

AVL Deletion

Delete Example 1: 32

Delete Example 1: 32

rotateLeft

Delete Example 2: 88

Delete Example 2: 88

rotateLeftRight

Delete Example 3: 20

Cascading rotations!

Delete Example 3: 20

Deletion can cause more than one rotation

- Worst case requires O(logn) rotations
 - deleting from a deepest leaf node and rotating each subtree up to the root

Removal

Runtime Complexity?

```
 a. search + find node to rebalance + rotate
 b. O(logn) + O(1) = O(logn)
```

Still O(logn) even though we may need multiple rotations? Why?

-> Even though we may need to find multiple nodes to rebalance we only traverse the height of the tree once

Splay Trees

Splay Trees

No enforcement on height

- Instead, exploits principle of locality
 - items that have been recently accessed are more likely to be accessed again in the near future
- "Move to root" operation
 - When a node is accessed (searched, inserted, or deleted), it becomes the root of the tree by performing a series of rotations called "splays"

Splaying

Move to root operation requires a zig / zag restructuring

zig

- a. accessed node becomes root of subtree
- b. parent becomes child

before

after

Splaying - Zig

zig

- a. accessed node becomes root of subtree
- b. parent becomes child

Splaying: Zig-Zig

zig-zig:

- step 1: zig
 - a. accessed node's parent (y) becomes root
 - b. parent becomes child
- step 2: zig
 - a. accessed node (x) becomes root
 - b. parent becomes child

zig-zig:

- step 1: zig
 - a. accessed node's parent (4) becomes root
 - b. parent becomes child
- step 2: zig
 - a. accessed node (3) becomes root
 - b. parent becomes child

Splaying: Zig-Zag

zig-zag:

- step 1: zig
 - a. accessed node (x) becomes root of subtree
 - b. parent becomes child
- step 2: zag
 - a. accessed node (x) becomes root of tree
 - b. parent becomes child

Called zig-zag because the second step is a rotation in the **opposite direction**

before

Splaying: Zig-Zag

Splaying: Zig-Zag and Zig-Zig

- Analogous to a double rotation in AVLs

- Zig-Zag
 - Two rotations in opposite directions

- Zig-Zig
 - Two rotations in the same direction

Which Transformation to Perform

 Zig: accessed node does not have a grandparent. Only one rotation required

- 1. **Zig-Zig**: accessed node and its parent are both children on the same side
 - a. x is the left child of y and y is the left child of z OR
 - b. x is the right child of y and y is the right child of z
- 1. Zig-Zag: one of x and y is a right child and the other is a left child
 - b. Analogous to double rotations in AVLs

Splaying

Repeating restructurings until the accessed node x is at the root of the tree.

Series of zig, zig-zig, and zig-zag rotations

Example - insert(14)

When/what to Splay

on search for x: if x is found, splay x. else splay x's parent

on insert x: splay x after insertion

on remove x: splay parent of removed leaf node

Deletion: remove(8)

splay 6 (parent of removed node)

remove 8 and replace it with 7 (largest node on left)

Runtime of restructuring operations:

- zig
 a. O(1)
- 2. zig-zig
 - a. O(1)
- 3. zig-zag
 - a. O(1)

Splay trees do rotations after every operation (including search)

Each rotation is constant time..

What is the max number of rotations we may need to perform?

insert(0)

Each rotation is constant time...

What is the max number of rotations we may need to perform?

O(n)

Worst case:

- Search:
 - O(n)
- Remove:
 - O(n)
- Insert:
 - O(n)

High cost operations often balance the tree Amortized: O(logn)

Check your understanding

Which is more efficient? Splay tree or AVL

Inserting the numbers {100, 200, 300, 400, 500} in increasing order and removing them in decreasing order

Summary

1. AVL Trees - maintains logn height by rotating after any operations that cause imbalance

2. Splay Trees - moves accessed nodes to the root. Worst case O(n) operations, but amortized O(logn)