

1 WHAT IS CLAIMED IS:

1. (First Amended) A method for fabrication of
an enclosure device for a preselected set of speaker
drivers, said enclosure having any preselected external
shape and including internal cavities and channels formed
to enhance the ability of said drivers to reproduce sound
with preselected characteristics, the method comprising the
steps of:

10 selecting said external shape and forming an
11 outline of an (outline the) external circumferential edge
12 to create a base template;

13 placing (placement of) the outline of the
14 internal circumferential edges of said drivers within said
15 external circumferential edge outline of said base
16 template;

17 placing (placement of) a plurality of guide holes
18 within said internal circumferential edge;

19 calculating a (calculate the) volume for (the)
20 driver chambers and supporting ports;

21 Selecting a number of (select the number) said
22 base templates required to produce (the) a desired volume
23 of chambers and ports;

24 outlining (outline) said internal circumferential
25 edges of said drivers and said guide holes on each of said
26 base templates whereby said base template external on one
27 end has openings into which said preselected drivers may be
28 mounted, said base template external on the opposing side
29 terminates the driver chambers and said base templates
30 spaced (space) apart said external opposing base templates
31 thereby creating the desired chamber volume and ports;

32 outlining the (outline) circumferential edges of
33 internal supports to strengthen and stabilize said
34 enclosure, the placement of said internal supports being

1 selected whereby said drivers may be fully inserted within
2 said enclosure without being limited by said supports;
3 applying (apply) each template outline of external
4 circumferential edges and internal circumferential edges to
5 preselected sheet stock;
6 cutting (cut) each layer of sheet stock along said
7 circumferential edges;
8 calculating (calculate) the desired characteristics of
9 a (the) supporting crossover network for said drivers;
10 fabricating said (fabricate) crossover network
11 with said characteristics and terminating (terminate) said
12 network with connectors for each driver and for externally
13 applied user supplied input;
14 mounting (mount) said crossover network to a
15 selected layer whereby said driver connectors are
16 internally accessible to attach to said drivers upon the
17 condition of said drivers mounted within said enclosure and
18 said externally applied user supplied input is externally
19 accessible;
20 inserting (insert) a reinforcing rod having threaded
21 ends within each guide hole of an external layer;
22 applying (apply) adhesive to at least one side of each
23 adjacent layer between said external layer and inside of
24 opposing external layer;
25 assembling (assemble) layers in preselected order by
26 inserting said reinforcing rods through each successive
27 layer terminating with said opposing external layer;
28 applying (apply) a nut to each said threaded ends of
29 said reinforcing rods and tightening (tighten) each of said
30 nuts thereby compressing said layers without deforming said
31 layers or distorting the sound reproduction characteristics
32 of said enclosure;
33 mounting (mount) said selected drivers within said
34 enclosure, attaching the terminals of each driver to the

1 corresponding internal connections of said crossover
2 network;

3 applying(apply) a preselected veneer to the
4 external surface of said assembled enclosure; and,

5 applying(apply) a speaker cloth layer over said
6 speaker drivers.

7

8

9

10

11 2. The method of claim 1 further comprising the
12 steps of:

13 testing said assembled templates for sound
14 reproduction characteristics; and,

15 adjusting selected circumferential edges to
16 create desired response of enclosure and drivers.

17