CORRIGÉ DU DS n°2

Première partie:

- 1°) a) C'est facile si on connaît la définition:
 - $I(u) \neq \emptyset$ car le polynôme nul appartient à I(u);
 - Si P et Q appartiennent à I(u), P(u) = Q(u) = 0 d'où (P+Q)(u) = P(u) + Q(u) = 0 donc $P+Q \in I(u)$.
 - Soit deux polynômes $P = \sum_{k=0}^{+\infty} a_k X^k$ et $Q = \sum_{l=0}^{+\infty} b_l X^l$ (les suites (a_k) et (b_l) sont nulles à

partir d'un certain rang). Alors $PQ = \sum_{n=0}^{+\infty} c_n X^n$ où $c_n = \sum_{k+l=n} a_k b_l$. D'autre part,

$$P(u) = \sum_{k=0}^{+\infty} a_k u^k$$
 et $Q = \sum_{l=0}^{+\infty} b_l u^l$, donc, $\mathcal{L}(E)$ étant un anneau, on a:

$$Q(u)\mathbf{o}P(u) = P(u)\mathbf{o}Q(u) = \sum_{k,l} a_k b_l u^{k+l} = \sum_n \sum_{k+l=n} a_k b_l u^n = \sum_n c_n u^n = (PQ)(u).$$

On en déduit immédiatement que, si P(u) = 0, c'est-à-dire si $P \in I(u)$, alors, pour tout polynôme $Q \in \mathbb{C}[X]$, (QP)(u) = 0, c'est-à-dire $QP \in I(u)$. En conclusion, I(u) est bien un idéal de $\mathbb{C}[X]$.

- b) La famille $(\mathrm{Id}_E, u, u^2, \dots, u^{n^2})$ possède $n^2 + 1$ éléments dans $\mathcal{L}(E)$ de dimension n^2 , donc est liée: il existe des scalaires $(\lambda_i)_{0 \leqslant i \leqslant n^2}$, non tous nuls, tels que $\sum_{i=0}^{n^2} \lambda_i u^i = 0$. Le polynôme
 - $P = \sum_{i=0}^{n^2} \lambda_i X^i$ est donc un élément non nul de I(u).
- c) C'est directement un théorème du cours: $\mathbb{C}[X]$ est un anneau principal, donc I(u), non réduit à $\{0\}$, est engendré par un polynôme normalisé et un seul.
- d) Si u est un projecteur, $u^2 = u$ donc le polynôme $X^2 X$ appartient à I(u). Π_u est donc un diviseur de $X^2 X$, et on a trois cas possibles:
 - \diamond Si $u=0, \Pi_u=X.$
 - \diamond Si $u = \mathrm{Id}_E$, $\Pi_u = X 1$.
 - \diamond Sinon, $\Pi_u = X^2 X$.
 - Si u est une symétrie, $u^2 = \mathrm{Id}_E$ donc le polynôme $X^2 1$ appartient à I(u). Π_u est donc un diviseur de $X^2 1$, et on a trois cas possibles :
 - \diamond Si $u = \mathrm{Id}_E$, $\Pi_u = X 1$.
 - \diamond Si $u = -\mathrm{Id}_E$, $\Pi_u = X + 1$.
 - \diamond Sinon, $\Pi_u = X^2 1$.
- e) Déjà, si deg $(\Pi_u)=1$, on a $\Pi_u=X-\lambda$, d'où $u-\lambda \mathrm{Id}_E=0$!
 - Sinon, Π_u s'écrit: $\Pi_u = (X \lambda)Q$, où Q est un polynôme de degré strictement inférieur à celui de Π_u et supérieur ou égal à 1. On aura donc: $(u \lambda \operatorname{Id}_E)\mathbf{o}Q(u) = 0$. Si, par l'absurde, $u \lambda \operatorname{Id}_E$ était injectif, il serait bijectif (on a supposé E de dimension finie), et, en composant l'égalité précédente avec $(u \lambda \operatorname{Id}_E)^{-1}$, on aurait Q(u) = 0, soit $Q \in I(u)$; or Q divise strictement Π_u , et n'est pas constant, cela est donc impossible.

- f) i. Il suffit de considérer une racine λ de Π_u (il en existe dans \mathbb{C} !), et un vecteur x non nul de $\operatorname{Ker}(u \lambda \operatorname{Id}_E)$ (c'est possible d'après la question précédente).
 - ii. Considérer l'endomorphisme φ de $\mathbb{C}[X],$ qui, à tout polynôme P, associe le polynôme XP...

 $XP=\lambda P$ n'est possible que si P=0...

- iii. Considérer l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est : $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Alors, si $X = \begin{pmatrix} x \\ y \end{pmatrix}$ est non nul, on vérifie aisément que le système $AX = \lambda X$ conduit à $\lambda^2 + 1 = 0$, ce qui est impossible dans \mathbb{R} .
- g) Supposons $u \lambda \operatorname{Id}_E$ non injectif. Il existe alors x non nul appartenant à $\operatorname{Ker}(u \lambda \operatorname{Id}_E)$, c'est-à-dire tel que $u(x) = \lambda x$. Il est facile de vérifier par récurrence que l'on a alors, pour tout $k \in \mathbb{N}$, $u^k(x) = \lambda^k x$. Si $\Pi_u = \sum_{k=0}^d a_k X^k$, alors $\Pi_u(u) = \sum_{k=0}^d a_k u^k$ d'où $\Pi_u(u)(x) = \sum_{k=0}^d a_k u^k(x) = \left(\sum_{k=0}^d a_k \lambda^k\right) x = \Pi_u(\lambda) x$. Puisque $\Pi_u(u) = 0$ et $x \neq 0$, on en déduit $\Pi_u(\lambda) = 0$, c'est-à-dire λ racine de Π_u .
- 2°) FAIT EN CLASSE, à savoir refaire...
- 3°) a) Démontrons d'abord l'indication de l'énoncé: soit $x \in \text{Ker}(v \lambda \text{Id}_E)$, alors $v(x) = \lambda x$ d'où $u_i[v(x)] = \lambda u_i(x)$ soit $v[u_i(x)] = \lambda u_i(x)$ donc $u_i(x) \in \text{Ker}(v \lambda \text{Id}_E)$. Ainsi, $\text{Ker}(v \lambda \text{Id}_E)$ est stable par u_i .
 - Choisissons alors $\lambda \in \mathbb{C}$ racine de Π_v . Dans ce cas, d'après la question I.1.e, $\operatorname{Ker}(v \lambda \operatorname{Id}_E)$ n'est pas réduit à $\{0\}$ et est stable par les u_i , donc est égal à E. Mais $\operatorname{Ker}(v \lambda \operatorname{Id}_E) = E$ signifie justement $v = \lambda \operatorname{Id}_E$.
 - b) D'après le cours, il est toujours possible de définir un endomorphisme par l'image d'une base, donc les définitions de u_1 et u_2 ont bien un sens (en effet (x_1,x_3) et (x_2,x_3) sont bien des bases de \mathbb{C}^2 par hypothèse).
 - D'après I.2, puisque les matrices de u_1 dans la base (x_1,x_3) et de u_2 dans la base (x_2,x_3) sont diagonales à éléments diagonaux distincts, on en deduit que, si v commute avec u_1 et u_2 , alors les matrices de v dans ces deux bases sont toutes deux diagonales. Il existe donc $\lambda_1,\lambda_2,\lambda_3$ tels que $v(x_i) = \lambda_i x_i$ pur i = 1,2,3. Or, il existe α,β non nuls tels que $x_1 = \alpha x_2 + \beta x_3$, d'où $v(x_1) = \alpha \lambda_2 x_2 + \beta \lambda_3 x_3 = \lambda_1(\alpha x_2 + \beta x_3)$ implique $\lambda_1 = \lambda_2 = \lambda_3$, donc v est une homothétie.
 - Facilement, les sous-espaces vectoriels stables par u_1 sont $\{0\}, \mathbb{C}^2$ et les droites vectorielles engendrées par x_1 et x_3 , et ceux stables par u_2 sont $\{0\}, \mathbb{C}^2$ et les droites vectorielles engendrées par x_2 et x_3 . Par conséquent, les sous-espaces vectoriels stables par u_1 et u_2 sont $\{0\}, \mathbb{C}^2$ et la droite vectorielle engendrée par x_3 .
 - c) On a bien montré ici que: tout endomorphisme qui commute avec u_1 et u_2 est une homothétie; cependant, il existe des sous-espaces vectoriels stables par u_1 et u_2 autres que $\{0\}$ et \mathbb{C}^2 , donc la réciproque de l'implication du I.3.a est fausse.

Seconde partie:

1°) On trouve $w_0 \mathbf{o} v_0 - q^{-2} v_0 \mathbf{o} w_0 = 0$, en calculant les images des e_p .

- **2°)** Posons, pour $1 \le k \le n$, $E_k = \text{Vect}(\{e_k, e_{k+1}, \dots, e_n\})$ et $E_{n+1} = \{0\}$. On a facilement, pour tout $k \in [1,n]$: $w_0(E_k) = E_k$ et $v_0(E_k) = E_{k+1} \subset E_k$, donc les E_k sont stables par w_0 et v_0 .
 - Réciproquement, si F est un sous-espace vectoriel de E stable par v_0 , de dimension p, alors l'endomorphisme induit par v_0 sur F est nilpotent (car v_0 l'est); on aura donc $v_0^p = 0$ sur F, donc $F \subset \text{Ker}(v_0^p) = E_{n-p+1}$. Par égalité des dimensions, on conclut que $F = E_{n-p+1}$. Les sous-espaces vectoriels stables par v_0 sont donc les E_k pour $1 \le k \le n+1$, et ils sont évidemment stables aussi par w_0 .
- **3°)** On trouve $w_0\mathbf{o}u_0 q^2u_0\mathbf{o}w0 = 0$, en calculant les images des e_p .
- 4°) Là encore, il suffit de vérifier l'égalité pour les images de e_p ...
- 5°) Les sous-espaces vectoriels de E stables par u_0,v_0 et w_0 sont, parmi les sous-espaces vectoriels E_k trouvés en II.2, ceux qui sont également stables par u_0 . Il est facile de voir que seuls $E_1 = E$ et $E_{n+1} = \{0\}$ conviennent.

Troisième partie:

- 1°) Si $x \in W_{\lambda}$, alors $w(x) = \lambda x$ d'où $w[u(x)] = q^2 u[w(x)] = q^2 \lambda u(x)$ donc $u(x) \in W_{q^2 \lambda}$. Ainsi $u(W_{\lambda}) \subset W_{q^2 \lambda}$, et de même pour la seconde inclusion.
- 2°) a) Démontrons le résultat demandé par récurrence sur p.
 - \diamond le résultat est immédiat pour p=1.
 - \diamond supposons-le démontré à l'ordre p-1, et soient $\lambda_1, \ldots, \lambda_p$ des complexes deux à deux distincts. Si $x_1 + \cdots + x_p = 0$ (*)avec $x_i \in U_{\lambda_i}$, alors, en appliquant u:

$$\sum_{i=1}^{p} u(x_i) = \sum_{i=1}^{p} \lambda_i x_i = 0.$$
 En retranchant à cette égalité p fois (*), on obtient
$$\sum_{i=1}^{p-1} (\lambda_i - \lambda_p) x_i = 0, \text{ d'où } (\lambda_i - \lambda_p) x_i = 0 \text{ pour tout } i \in [1, p-1] \text{ d'après l'hypothèse de récurrence, puis } x_i = 0 \text{ pour tout } i \in [1, p-1] \text{ puisque } \lambda_i \neq \lambda_p, \text{ et enfin } x_p = 0 \text{ d'après (*)}.$$
 Cela démontre le résultat à l'ordre p , et achève la récurrence.

- b) Si U_{λ} n'est pas réduit à $\{0\}$, c'est un sous-espace vectoriel de dimension ≥ 1 ; w étant bijective, la dimension du sous-espace vectoriel $w(U_{\lambda})$ est égale à celle de U_{λ} , donc, d'après les inclusions précédentes, $U_{q^{-2}\lambda}$ n'est pas non plus réduit à $\{0\}$. Si λ était non nul, on aurait donc une infinité (car on ne peut avoir $q^m = 1$ pour aucun $m \neq 0$ d'après l'énpncé!) de sous-espaces vectoriels U_{λ_i} , de dimension ≥ 1 et en somme directe, alors que E est de dimension finie: c'est impossible! Donc $U_{\lambda} \neq \{0\}$ implique $\lambda = 0$, d'où le résultat par contraposition.
- **3°)** Ainsi, si $\lambda \neq 0$, $u \lambda \operatorname{Id}_E$ est injectif; d'après I.1, la seule racine de Π_u dans \mathbb{C} est donc 0, donc $\Pi_u = X^r$ pour un certain entier r. r > 1 puisque u n'est pas nul. Puisque $\Pi_u(u) = 0$ par définition, il en résulte que u est nilpotent.
- 4°) D'après III.1, w laisse stable $U_0 = \text{Ker} u$. Il suffit donc d'appliquer le résultat de la question I.1.f à l'endomorphisme induit par w sur Ker u.
- **5°)** a) On prend λ comme dans la question précédente et $e'_1 \in W_\lambda \cap \text{Ker} u$.
 - b) $u^2 = 0$ donc $\operatorname{Im} u \subset \operatorname{Ker} u$, et, u n'étant pas nul, $\dim \operatorname{Ker} u = 1$ puis $\operatorname{Ker} u = \operatorname{Im} u = \operatorname{Vect}(e'_1)$. Donc $u(e'_2)$, qui appartient à $\operatorname{Im} u$, est colinéaire à e'_1 , et est non nul car sinon e'_2 serait dans $\operatorname{Ker} u$ donc colinéaire à e'_1 !

- c) (e_1,e_2') est une base de E, donc il existe des complexes β,γ tels que: $w(e_2') = \beta e_1 + \gamma e_2'$. On a alors $u[w(e_2')] = \gamma u(e_2') = \gamma e_1$ d'où $w[u(e_2')] = q^2 \gamma e_1 = w(e_1) = \lambda e_1$ ce qui donne $\gamma = q^{-2}\lambda$, ce qui est le résultat demandé.
- d) $\alpha = \frac{\beta q^2}{\lambda(1-q^2)}$ convient (en effet, $q^2 \neq 1$ d'après l'énoncé, et λ ne peut être nul puisque w est bijective).

Quatrième partie:

- 1°) Vérification facile par récurrence sur m, en écrivant que $u\mathbf{o}v^{m+1} v^{m+1}\mathbf{o}u = (u\mathbf{o}v^m v^m\mathbf{o}u)\mathbf{o}v + v^m\mathbf{o}(u\mathbf{o}v v\mathbf{o}u)$, et en utilisant aussi la relation $w^{-1}\mathbf{o}v = q^2v\mathbf{o}w^{-1}$, obtenue à partir de iii) en composant à droite et à gauche par w^{-1} .
- 2°) u est non nul, sinon $w-w^{-1}$ serait nul d'après iv), ce qui contredirait i). On peut donc appliquer les résultats de la partie III, et il suffit de choisir ν_1 non nul dans $W_\lambda \cap \mathrm{Ker} u$, où λ est comme dans III.4.
- **3**°) Par une récurrence facile, à l'aide de iii), on a : $w(\nu_m) = \lambda q^{2-2m} \nu_m$.
- 4°) Découle de la relation précédente et de celle trouvée en IV.1.
- 5°) a) On a $w(\nu_m) = \lambda_m \nu_m$ avec $\lambda_m = q^{2-2m}$. Les ν_m appartiennent donc aux sous-espaces vectoriels W_{λ_m} qui sont en somme directe d'après II.2.a (puisque les λ_m sont distincts). Le résultat demandé en découle.
 - b) E étant de dimension finie, il existe m_0 maximal tel que la famille $(\nu_1, \ldots, \nu_{m_0})$ soit libre, et l'on a $m_0 \ge 1$ puisque $\nu_1 \ne 0$. D'après ce choix, ν_{m_0+1} est combinaison linéaire de $(\nu_1, \ldots, \nu_{m_0})$, il est donc forcément nul d'après la question précédente. Les vecteurs ν_m pour $m \ge m_0 + 1$ le sont aussi, puisque ce sont des images itérées de ν_{m_0+1} par ν .
 - c) Vect($\{\nu_1, \ldots, \nu_{m_0}\}$) est non nul, et stable par w d'après IV.3 et par u d'après IV.4. Il est aussi stable par v par construction des ν_k et parce que $v(\nu_{m_0}) = 0$. D'après l'hypothèse v), ce sous-espace vectoriel est égal à E, d'où en particulier $m_0 = n$.
 - d) On a $u(\nu_{n+1}) = u(\nu_{m_0+1}) = 0 = (q-q^{-1})^{-2}(q^n-q^{-n})(q^{1-n}\lambda-q^{n-1}\lambda^{-1})\nu_n$, d'où $(q^{1-n}\lambda-q^{n-1}\lambda^{-1})=0$ (les autres facteurs ne peuvent pas être nuls). Cela donne l'égalité voulue.
- **6°)** Pour $\lambda = q^{n-1}$, on retrouve le triplet (w_0, u_0, v_0) de la deuxième partie, avec la base (e_1, \ldots, e_n) égale à (ν_1, \ldots, ν_n) .
 - Pour $\lambda = -q^{n-1}$, on obtient le triplet $(-w_0, -u_0, -v_0)$ où w_0, v_0, u_0 sont définis comme dans la deuxième partie, avec la base (e_1, \ldots, e_n) égale à $(\nu_1, -\nu_2, \nu_3, \ldots, (-1)^{n-1}\nu_n)$.

* * *

7 7

*