Machine Learning Models

Supervisado - Clasificación

ML Supervisado Clasificación

- ☐ 1. Preprocesado Previo
- ☐ 2. Introducción
- ☐ 3. Regresión Logística
- ☐ 4. Árbol de Decisión (Decision Tree)

1. Preprocesado Previo

Preprocesado previo

Los modelos de ML en general y los supervisados de clasificación en particular necesitan de todo el preprocesamiento que habéis estudiado hasta ahora. O sea:

- Data cleaning
 - ☐ Eliminación de duplicados
 - ☐ Eliminación o imputación de valores nulos
 - ☐ Tratamiento de Outliers
- ☐ Transformación
 - ☐ Conversión de variables categóricas a numéricas
 - Normalización de todas las variables numéricas (excepto la variable a predecir). OJO! LO HAREMOS DENTRO DEL ENTRENAMIENTO!!

2. Introducción

Introducción

Modelo supervisado:

- Hay una variable que queremos predecir
- Para generar el modelo necesitamos datos ya clasificados (Labeled data)

Modelo no supervisado:

- NO Hay una variable que queremos predecir
- No tenemos datos ya clasificados(Unlabeled data)

Modelo supervisado:

- ☐ Clasificación: La variable a predecir es categórica (nos centraremos en dicotómica, 2 categorías)
- Regresión: La variable a predecir es numérica (continua)

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Introducción

Ejemplo modelo supervisado de clasificación:

- ☐ Hay una variable que queremos predecir (Tumor Benigno / Tumor Maligno)
- ☐ Para generar el modelo necesitamos datos ya clasificados

Feature	Tumor Age and Tumor Size
Label	Tumor (Benign or Malignant)
Goal/ Aim	We want to predict whether a tumor is benign or malignant from the given age and tumor size

Introducción

PASOS PROCESO DE ML SUPERVISADO

1. Split. Separamos los datos en dos conjuntos
☐ Train (Conjunto para entrenar el modelo)
☐ Test (Conjunto para Evaluar el modelo)
2. Preprocesado de estandarización controlado. Lo fitamos en el train y lo aplicamos en el train y el test
3. Fit. Entrenamos el modelo
☐ Creamos el modelo que vamos a usar
☐ Entrenamos el modelo sobre el conjunto de Train y obtenemos el Modelo ya entrenado (preparado para hacer predicciones)
4. Evaluación. Predecimos sobre el conjunto de test para evaluar hasta qué punto nuestro modelo predice bien.
5. Uso del modelo. Creamos el modelo con todos los datos y lo usamos para predecir sobre nuevos datos

Función Logística: La regresión logística utiliza una función logística, también conocida como sigmoide, para transformar la salida del modelo en un rango entre 0 y 1. Esta función es fundamental y se expresa como:

$$\frac{1}{1+e^{-z}}$$

Donde z es la combinación lineal de las variables independientes.

Proceso de Funcionamiento:

Combinación Lineal: La regresión logística realiza una combinación lineal de las variables independientes ponderadas por los coeficientes del modelo.

$$z = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + \ldots + b_n \cdot x_n$$

Donde b0, b1, ...bn son los coeficientes del modelo y x1, x2,...xn son las variables independientes. La combinación lineal z se introduce en la función logística, que produce una salida en el rango de 0 a 1.

Umbral de Decisión: Se establece un umbral (generalmente 0.5) para decidir a qué clase pertenece la instancia. Si la probabilidad calculada es mayor que el umbral, la instancia se clasifica en la clase 1; de lo contrario, se clasifica en la clase 0.

- Objetivo: Modelizar la predicción de una variable dicotómica
 - ☐ Tumor Benigno / Tumor Maligno
 - ☐ Diabético / No diabético
 - ☐ Sobrevive / No sobrevive
- Resultado

Ecuación (Como en regresión lineal)

LOGISTIC REGRESSION

EJEMPLO. DATOS DE COMPRA

▼ Importar los datos

PASOS ML SUPERVISADO CON PYTHON. REGRESIÓN LOGÍSTICA

0. Separar la variable a predecir y las predictoras

```
[ ] X=df.drop(columns=['Purchased'],inplace=False)
    y=df['Purchased']
```

1. Split. Separar los datos en conjunto de entrenamiento (train) y conjunto de evaluación o test(test)

```
[ ] from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```

EJEMPLO. DATOS DE COMPRA

- 2. Estandarización controlada. Transformació a numéricas no hace falta
 - Fit en el train
 - · Transform en el train
 - Transform en el test

```
from sklearn.preprocessing import StandardScaler estandarizador = StandardScaler() estandarizador.fit(X_train)  
X_train_std=estandarizador.transform(X_train)  
X_test_std=estandarizador.transform(X_test)

print("Tamaño X_train",X_train.shape)  
print("Tamaño X_test",X_test.shape)  
print("Tamaño X_train std",X_train_std.shape)  
print("Tamaño X_train std",X_test_std.shape)

Tamaño X_train (300, 2)  
Tamaño X_train std (300, 2)
```

PASOS ML SUPERVISADO CON PYTHON. REGRESIÓN LOGÍSTICA

- → 3. Fit. Entrenar el modelo
 - Creamos el modelo
 - Entrenamos el modelo sobre los datos de train y obtenemos el modelo entrenado

```
# Cargamos el modelo y lo creamos
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression()
# Ahora LR ya es un modelo que se puede entrenar (fit)

# Entrenamos el modelo dtree
LR.fit(X_train_std,y_train)
# Ahora LR es un modelo entrenado capaz de hacer predicciones

* LogisticRegression
LogisticRegression()
```

PASOS ML SUPERVISADO CON PYTHON. REGRESIÓN LOGÍSTICA

4. Evaluar el Modelo

- Hacemos predicciones sobre el conjunto de test
- Comparamos esas predicciones con los valores reales. Calculamos la precisión (accuracy)

```
from sklearn.metrics import accuracy_score

# Hacemos predicciones sobre el conjunto de test
predictions = LR.predict(X_test_std)

# Calculamos la accuracy (porcentaje de observaciones con predicción correcta)
accuracy_score(y_test, predictions)
# Vemos que tenemos una accuracy del 89%. Es el porcentaje de observaciones con predicción correcta

0.89
```

• Hay otras métricas que podemos usar. Todas aparecen a partir de la matriz de confusión

```
cm=confusion_matrix(y_test, predictions)
( [63]
         import seaborn as sns
         sns.heatmap(cm, annot=True)
       <Axes: >
                                                                  60
                                                                  50
                      65
        0 -
                                                                  30
                                                                  20
                                                                  10
```


Las predicciones 0 1 están en columnas y la realidad 0 1 en filas. Por lo tanto, de la matriz de confusión podemos decir que:

- Hay 65 valores que se han clasificado bien como 0 y realmente eran cero (Verdaderos positivos)
- Hay 8 valores que se han clasificado mal como 0 y en realidad eran 1 (Falsos negativos)
- Hay 3 valores que se han clasificado mal como 1 y en realidad eran 0 (Falsos positivos)
- Hay 24 valores que se han clasificado bien como 1 y realmente eran 1 (Verdaderos positivos)

Conceptos importantes en modelos supervisados de clasificación

Predicted class

True Positives (FN)

False Positives (FN)

False Positives Negatives Negatives (FP) (TN)

Measure	formula
Accuracy	(TP+TN)/(TP+FP+FN+TN)
Precision	TP/ (TP+FP)
Recall	TP/ (TP+FN)
F-Measure	2*Precision*Recall/ (Precision+Recall)

```
# Para hacerlos en Python
from sklearn.metrics import precision_score
precision_score(y_test, predictions)
```

```
from sklearn.metrics import recall_score recall_score(y_test, predictions)
```

0.75

```
from sklearn.metrics import f1_score
f1_score(y_test, predictions)
```

0.8135593220338982

5. Creamos el modelo final

- Creamos una nueva estandarización con todos los datos
- · Creamos el modelo con todos los datos
- Guardamos el estandarizador y el modelo

```
# Creamos una nueva estandarización con todos los datos
estandarizador2 = StandardScaler()
estandarizador2.fit(X)
X_std=estandarizador2.transform(X)
#Creamos /fitamos el modelo con todos los datos
LR.fit(X_std,y)
```

▼ LogisticRegression ()

```
# Guardamos el estandarizador
from joblib import dump
dump(estandarizador2, 'estandarizador2.std') # Guardamos el estandarizador
# Guardamos el modelo
dump(LR, 'logistic_regression.joblib')

['logistic_regression.joblib']
```

6. Usamos el modelo

- Volvemos a cargar el estandarizador y el modelo simulando que lo recuperamos
- Creamos los nuevos datos sobre los que queremos usar / hacer predicciones
- Los estandarizamos con el estandarizador recuperado
- Predecimos la variable 'Purchased' para esos nuevos datos

```
# Recuperamos el estandarizador y el modelo
      from joblib import load
      estandarizador = load('estandarizador2.std')
      regression_model = load('logistic_regression.joblib')
     # Creamos unos datos nuevos para hacer predicción
      X new={'Age':[39,56],'EstimatedSalary':[20000,80000]}
     datos_nuevos=pd.DataFrame(X_new)
      datos nuevos
       Age EstimatedSalary
                      20000
        56
                      80000
      # Estandarizamos los nuevos datos
      datos nuevos std=estandarizador.transform(datos nuevos)
      datos_nuevos_std
→ array([[ 0.12846516, -1.46068138],
           [ 1.75218836, 0.30121002]])
     # Predecimos la variable 'Purchased' para esos valores
      new_predictions = regression_model.predict(datos_nuevos_std)
      print(new_predictions)
      # Nos predice que el primer caso no compran y el segundo si
    [0 1]
```

Conceptos Básicos:

- **1.Nodos y Ramas:** Un árbol de decisión consta de nodos y ramas. Cada nodo representa una característica o una pregunta sobre los datos, y cada rama representa una posible respuesta a esa pregunta.
- **2.Raíz y Hojas:** El nodo superior se llama la raíz, y los nodos finales sin ramas se llaman hojas. Cada hoja representa una decisión o una clasificación.
- **3.Características de Entrada:** En cada nodo, se realiza una pregunta sobre una característica específica de los datos.
- **4.División:** Los datos se dividen en subconjuntos en función de las respuestas a las preguntas. Esto se repite recursivamente para crear subárboles hasta que se alcanza una condición de parada.
- **5.Etiquetas y Predicciones:** Cada hoja tiene una etiqueta que representa la decisión o la clasificación que se asigna a las instancias de datos que llegan a esa hoja. Durante la predicción, una instancia de datos desciende por el árbol, siguiendo las ramas según sus características, hasta llegar a una hoja y recibir la etiqueta de esa hoja como la predicción final.

Proceso de Funcionamiento:

- **1.Selección de Características:** En cada nodo, se selecciona la característica que mejor separa los datos en función de algún criterio, como la ganancia de información o la impureza de Gini.
- **2.División de Datos:** Los datos se dividen en subconjuntos en función de los valores de la característica seleccionada.
- 3.Recursividad: Se repite el proceso para cada subconjunto, creando subárboles.
- **4.Condición de Parada:** Se define una condición de parada para detener la construcción del árbol, como alcanzar una profundidad máxima o tener un número mínimo de instancias en un nodo.
- **5.Predicción:** Durante la predicción, una instancia de datos desciende por el árbol según sus características hasta llegar a una hoja, donde se realiza la predicción.

Ventajas:

- •Fácil de entender y visualizar.
- •Puede manejar datos numéricos y categóricos.
- •No requiere normalización de datos.

En resumen, un árbol de decisión es como un conjunto de preguntas "si-sino" que se hacen sobre las características de los datos para llegar a una decisión final

- Objetivo: Modelizar la predicción de una variable dicotómica
 - ☐ Tumor Benigno / Tumor Maligno
 - ☐ Diabético / No diabético
 - ☐ Sobrevive / No sobrevive
- ResultadoÁrbol con reglas

- DECISION TREE. No usamos la estandarización
- 0. Separar la variable a predecir y las predictoras

```
X=df.drop(columns=['Purchased'],inplace=False)
y=df['Purchased']
```

1. Split. Separar los datos en conjunto de entrenamiento (train) y conjunto de evaluación o test(test)

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```

2. Estandarización

• En este caso no es necesario y no lo hacemos

→ 3. Fit. Entrenar el modelo

- · Creamos el modelo
- Entrenamos el modelo sobre los datos de train y obtenemos el modelo entrenado

```
(19)
         # Cargamos el modelo y lo creamos
         from sklearn.tree import DecisionTreeClassifier
         dtree = DecisionTreeClassifier(max_depth=3)
         # Ahora dtree ya es un modelo que se puede entrenar (fit)
(20)
        # Entrenamos el modelo dtree
         dtree.fit(X_train,y_train)
         # Ahora dtree es un modelo entrenado capaz de hacer predicciones
               DecisionTreeClassifier
        DecisionTreeClassifier(max depth=3)
         # Podemos ver diferentes aspectos de la configuración una vez el modelo está fitado
         print(dtree.criterion)
         print(dtree.classes_)
   \rightarrow
       gini
        [0 1]
```

4. Evaluar el Modelo

- Hacemos predicciones sobre el conjunto de test
- Comparamos esas predicciones con los valores reales. Calculamos la precisión (accuracy)

```
from sklearn.metrics import confusion_matrix, accuracy_score
# Hacemos predicciones sobre el conjunto de test
predictions = dtree.predict(X_test)

# Calculamos la accuracy (porcentaje de observaciones con predicción correcta)
accuracy_score(y_test, predictions)
# Vemos que tenemos una accuracy del 94%. Es el porcentaje de observaciones con predicción correcta

0.94
```

• Hay otras métricas que podemos usar. Todas aparecen a partir de la matriz de confusión

Las predicciones 0 1 están en columnas y la realidad 0 1 en filas. Por lo tanto, de la matriz de confusión podemos decir que:

- Hay 64 valores que se han clasificado como 0 y realmente eran cero (Verdaderos positivos)
- Hay 2 valores que se han clasificado como 0 y en realidad eran 1 (Falsos negativos)
- Hay 4 valores que se han clasificado como 1 y en realidad eran 0 (Falsos positivos)
- Hay 30 valores que se han clasificado como 1 y realmente eran 1 (Verdaderos positivos)

Conceptos importantes en modelos supervisados de clasificación

Predicted class

Actual class

True	False
ositives	Negatives
(TP)	(FN)

False Positives

(FP)

(FN)	1
	1
True	1
Negatives (TN)	1
(111)	

Measure	formula
Accuracy	(TP+TN)/(TP+FP+FN+TN)
Precision	TP/ (TP+FP)
Recall	TP/ (TP+FN)
F-Measure	2*Precision*Recall/ (Precision+Recall)

5. Creamos el modelo final

- Creamos el modelo con todos los datos
- Guardamos el modelo

6. Usamos el modelo

- Volvemos a cargar el modelo simulando que lo recuperamos
- Creamos los nuevos datos sobre los que queremos usar / hacer predicciones
- Predecimos la variable 'Purchased' para esos nuevos datos

```
✓ [101]
         # Recuperamos el modelo
         from joblib import load
         dt_model = load('decision_tree.joblib')
         # Creamos unos datos nuevos para hacer predicción
         X_new={'Age':[39,56],'EstimatedSalary':[20000,80000]}
         datos=pd.DataFrame(X_new)
         datos
   \Box
           Age EstimatedSalary
                          20000
            56
                          80000
         # Predecimos la variable 'Purchased' para esos valores
         new_predictions = dt_model.predict(datos)
         print(new_predictions)
         # Nos predice que el primer caso no compran y el segundo si
       [0 1]
```

