### **Imports**

```
In [25]: import pandas as pd
import numpy as np
import cufflinks as cf
import chart_studio.plotly as py

# contains functions that can create entire figures at once
import plotly.express as px

import seaborn as sns
%matplotlib inline

# allows to create graph objects for making more customized plots
import plotly.graph_objects as go

# for plotly jupyter support
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)

# use plotly locally
cf.go_offline()
```

```
Basics
In [8]:
        arr1 = np.random.rand(50, 4)
         df1 = pd.DataFrame(arr1, columns=['A', 'B', 'C', 'D'])
         df1.head()
Out[8]:
                 Α
                          В
                                   С
                                            D
         0 0.304875 0.521779 0.505977 0.647796
         1 0.797821 0.901231 0.864594 0.869150
         2 0.618684
                    0.512591 0.162222 0.473959
         3 0.673614 0.645794 0.433572 0.603228
         4 0.221875 0.900300 0.046792 0.279910
In [9]:
        df1.plot()
        <AxesSubplot:>
Out[9]:
```







## Resources

ColorMaps -> https://plotly.com/python/builtin-colorscales/

Map Scatters available optios -> https://plotly.com/python-apireference/generated/plotly.express.scatter\_geo.html

### **Line Plots**

**4** 2018-01-29 1.008773

```
In [12]: df_stocks = px.data.stocks()
    df_stocks.head()
```

Out[12]: date GOOG AAPL **AMZN** FΒ **NFLX MSFT** 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561

0.917143

```
In [21]: px.line(df_stocks, x='date', y='GOOG', labels={"x": "Date", "y": "Price"},)
```

1.018357

1.273537

1.040708

1.163374





add\_trace allows to accept the plotly trace figure and add to it. It can even start a figure from empty and add it sequentially.

update\_traces used to update the current figures with the available graphical objects

```
In [120...
          # more customized
          fig = go.Figure()
          # pull individual columns of data from the dataset and use markers or not
          fig.add trace(go.Scatter(x=df stocks.date,
                                   y=df stocks.AAPL,
                                   mode="lines",
                                   name="Apple"))
          fig.add trace (go.Scatter (x=df stocks.date,
                                   y=df stocks.AMZN,
                                   mode="lines+markers",
                                   name="Amazon"))
          # Create custom lines (dashes: dash, dot, dashdot)
          fig.add trace(go.Scatter(x=df stocks.date,
                                   y=df stocks.GOOG,
                                   mode="lines+markers",
                                   name="Google",
                                   line=dict(color="firebrick", width=2, dash="dashdot")))
          fig.update_layout(
             title='Stock Price Data Jan'18 to Jan'20',
             xaxis title='Date',
              yaxis title='Price',
```

height=500

#### Stock Price Data Jan' 18 to Jan' 20



```
In [121...] fig = go.Figure()
          # pull individual columns of data from the dataset and use markers or not
          fig.add trace(go.Scatter(x=df stocks.date,
                                   y=df stocks.AAPL,
                                   mode="lines",
                                   name="Apple"))
          fig.add trace(go.Scatter(x=df stocks.date,
                                   y=df stocks.AMZN,
                                   mode="lines+markers",
                                   name="Amazon"))
          # Create custom lines (dashes: dash, dot, dashdot)
          fig.add trace(go.Scatter(x=df stocks.date,
                                   y=df stocks.GOOG,
                                   mode="lines+markers",
                                   name="Google",
                                   line=dict(color="firebrick", width=2, dash="dashdot")))
          fig.update layout(
             xaxis=dict(
                  showline=True,
                  showgrid=False,
                  showticklabels=True,
                  linecolor='rgb(204, 204, 204)',
                  linewidth=5,
                  ticks='outside',
                  tickfont=dict(
                      family='Arial',
```

```
size=14,
        color='rgb(82, 82, 82)',
   ),
yaxis=dict(
    showgrid=False,
    zeroline=False,
    showline=False,
    showticklabels=False,
),
    autosize=False,
    margin=dict(
        autoexpand=False,
        1=100,
        r=20,
        t=110,
    height=500,
    showlegend=False,
    plot_bgcolor='white',
```



### **Bar Charts**

```
In [51]: df_us = px.data.gapminder()
    df_us.head()
```

| Out[51]: |   | country     | continent | year | lifeExp | рор     | gdpPercap  | iso_alpha | iso_num |
|----------|---|-------------|-----------|------|---------|---------|------------|-----------|---------|
|          | 0 | Afghanistan | Asia      | 1952 | 28.801  | 8425333 | 779.445314 | AFG       | 4       |

| 1 | Afghanistan | Asia | 1957 | 30.332 | 9240934  | 820.853030 | AFG | 4 |
|---|-------------|------|------|--------|----------|------------|-----|---|
| 2 | Afghanistan | Asia | 1962 | 31.997 | 10267083 | 853.100710 | AFG | 4 |
| 3 | Afghanistan | Asia | 1967 | 34.020 | 11537966 | 836.197138 | AFG | 4 |
| 4 | Afghanistan | Asia | 1972 | 36.088 | 13079460 | 739.981106 | AFG | 4 |

```
In [53]: df_us = df_us.query("country == 'United States'")
```

In [54]: df\_us.head()

Out[54]:

|      | country       | continent | year | lifeExp | рор       | gdpPercap   | iso_alpha | iso_num |
|------|---------------|-----------|------|---------|-----------|-------------|-----------|---------|
| 1608 | United States | Americas  | 1952 | 68.44   | 157553000 | 13990.48208 | USA       | 840     |
| 1609 | United States | Americas  | 1957 | 69.49   | 171984000 | 14847.12712 | USA       | 840     |
| 1610 | United States | Americas  | 1962 | 70.21   | 186538000 | 16173.14586 | USA       | 840     |
| 1611 | United States | Americas  | 1967 | 70.76   | 198712000 | 19530.36557 | USA       | 840     |
| 1612 | United States | Americas  | 1972 | 71.34   | 209896000 | 21806.03594 | USA       | 840     |



```
In [60]: df_tips = px.data.tips()
    df_tips.head()
```

Out [60]: total\_bill tip sex smoker day time size

| 0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 |
|---|-------|------|--------|----|-----|--------|---|
| 1 | 10.34 | 1.66 | Male   | No | Sun | Dinner | 3 |
| 2 | 21.01 | 3.50 | Male   | No | Sun | Dinner | 3 |
| 3 | 23.68 | 3.31 | Male   | No | Sun | Dinner | 2 |
| 4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 |

### Tips by Sex on Each Day



```
In [123... # To stack two bars next to each other
px.bar(df_tips, x='sex', y='total_bill', color='smoker', barmode='group').update_layout(
```





```
In [82]: # pop > 2.e6 means greater than 2000000
df_europe = px.data.gapminder().query("continent == 'Europe' and year == 2007 and pop >
fig = px.bar(df_europe, y='pop', x='country', text='pop', color='country')
fig.update_layout(
    autosize=True,
    #width=1000,
    height=600
)
```



In [91]: fig.update\_traces(texttemplate='%{text:.2s}', textposition='outside')
# Set fontsize and uniformtext\_mode='hide' says to hide the text if it won't fit

```
# uniformtext_minsize is the minimum size that can be used to add the value above the ba
fig.update_layout(uniformtext_minsize=8)

# Rotate labels 45 degrees
fig.update_layout(xaxis_tickangle=-45, yaxis_tickangle=0)
```



### **Scatter Plots**

```
In [92]: df_iris = px.data.iris()
df_iris.head()
```

| Out[92]: |   | sepal_length | sepal_width | petal_length | petal_width | species | species_id |
|----------|---|--------------|-------------|--------------|-------------|---------|------------|
|          | 0 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  | 1          |
|          | 1 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  | 1          |
|          | 2 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  | 1          |
|          | 3 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  | 1          |
|          | 4 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  | 1          |

```
color='species',
size='petal_length',
hover_data=['petal_width']).update_layout(height=500)
```







```
In [119... # Working with a lot of data use Scattergl
fig = go.Figure(data=go.Scattergl(
    x = np.random.randn(100000),
    y = np.random.randn(100000),
    mode='markers',
    marker=dict(
        color=np.random.randn(100000),
        colorscale='Viridis',
        line_width=1
    )
))
fig.update_layout(height=700)
```



# Pie Charts

Out[157]:

|                 |            | country     | continent | year   | lifeExp   | pop         | gdpPercap    | iso_alpha | iso_num |
|-----------------|------------|-------------|-----------|--------|-----------|-------------|--------------|-----------|---------|
| 11<br>95<br>107 | 11         | Afghanistan | Asia      | 2007   | 43.828    | 31889923    | 974.580338   | AFG       | 4       |
|                 | 95         | Bahrain     | Asia      | 2007   | 75.635    | 708573      | 29796.048340 | BHR       | 48      |
|                 | Bangladesh | Asia        | 2007      | 64.062 | 150448339 | 1391.253792 | BGD          | 50        |         |
|                 | 227        | Cambodia    | Asia      | 2007   | 59.723    | 14131858    | 1713.778686  | KHM       | 116     |
|                 | 299        | China       | Asia      | 2007   | 72.961    | 1318683096  | 4959.114854  | CHN       | 156     |

### Population of Asian continent



size of it. But the graph objects are able to change it.









### Histograms

```
In [179... # Plot histogram based on rolling 2 dice

dice_1 = np.random.randint(1,7,5000)
dice_2 = np.random.randint(1,7,5000)
dice_sum = dice_1 + dice_2
```

### 5000 Dice Roll Histogram



### 5000 Dice Roll Histogram





```
In [182... df_tips = px.data.tips()
    px.histogram(df_tips, x="total_bill", color="sex").update_layout(height=400)
```



## **Box Plots**



the lines from the quartile are called as whiskers

```
In [189... df_tips = px.data.tips()
    px.box(df_tips, x='sex', y='tip', points='all', height=700)
```



```
Female Male Sex
```

In [191... px.box(df\_tips, x='day', y='tip', color='sex', height=500)







```
In [195... # Complex Styling
    df_stocks = px.data.stocks()
    df_stocks.head()
```

```
GOOG
                                       AAPL
                                                                    NFLX
                                                                              MSFT
Out[195]:
                    date
                                                AMZN
                                                             FB
            0 2018-01-01 1.000000 1.000000 1.000000
                                                       1.000000
                                                                1.000000 1.000000
            1 2018-01-08
                           1.018172
                                    1.011943
                                              1.061881
                                                       0.959968
                                                                 1.053526
                                                                           1.015988
              2018-01-15 1.032008
                                    1.019771
                                             1.053240
                                                       0.970243
                                                                 1.049860
                                                                           1.020524
             2018-01-22 1.066783
                                    0.980057
                                              1.140676
                                                        1.016858
                                                                  1.307681
                                                                           1.066561
            4 2018-01-29 1.008773 0.917143
                                             1.163374
                                                       1.018357
                                                                 1.273537 1.040708
```

```
Google vs. Apple

1.7

Google
Apple

1.5
```



## **Violin Plots**

Violin plot is a combination of a box plot and kernal distribution estimation (KDE) - estimation of the distribution of data

```
In [201... df_tips = px.data.tips()
    px.violin(df_tips, y="total_bill", box=True, points='all', height=500)
```







## **Density HeapMaps**

```
In [210... flights = sns.load_dataset("flights")
    flights.head()
```

#### Out[210]:

|   | year | month | passengers |
|---|------|-------|------------|
| 0 | 1949 | Jan   | 112        |
| 1 | 1949 | Feb   | 118        |
| 2 | 1949 | Mar   | 132        |
| 3 | 1949 | Apr   | 129        |
| 4 | 1949 | May   | 121        |









## **3D Scatter Plots**

### **3D Line Plots**

## **Scatter Matrix**

```
In [234... # With a scatter matrix it can compare changes when comparing column data
    fig = px.scatter_matrix(flights, color='month', height=600)
    fig
```



## **Map Scatter Plots**





## **Choropleth Maps**

```
In [249...
         # Allows to grab data from a supplied URL
         from urllib.request import urlopen
          # Used to decode JSON data
         import json
         # Grab US county geometry data
         with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-
             counties = json.load(response)
          # Grab unemployment data based on each counties Federal Information Processing number
         df = pd.read csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16
                             dtype={"fips": str})
          # Draw map using the county JSON data, color using unemployment values on a range of 12
         fig = px.choropleth(df, geojson=counties, locations='fips', color='unemp',
                                     color continuous scale="Viridis",
                                     range color=(0, 12),
                                     scope="usa",
                                     labels={'unemp':'unemployment rate'},
                                     height=600
         fig
```



### **Polar Charts**

```
In [250... df_wind = px.data.wind()
    df_wind.head()
```

#### Out[250]:

|   | direction | strength | frequency |
|---|-----------|----------|-----------|
| 0 | N         | 0-1      | 0.5       |
| 1 | NNE       | 0-1      | 0.6       |
| 2 | NE        | 0-1      | 0.5       |
| 3 | ENE       | 0-1      | 0.4       |
| 4 | Е         | 0-1      | 0.4       |





```
In [256... px.line polar(df wind,
                        r="frequency",
                        theta="direction",
                        color="strength",
                        line close=True,
                        template="plotly dark",
                        width=800, height=600)
```

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/ core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/\_core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio n. Use pandas.concat instead.

/Users/selva/enter/envs/mlenv/lib/python3.10/site-packages/plotly/express/\_core.py:271: FutureWarning:

The frame.append method is deprecated and will be removed from pandas in a future versio  ${\tt n}$ . Use pandas.concat instead.



### **Ternary Plots**

```
In [257... # Used to represent ratios of 3 variables
     df_exp = px.data.experiment()
     df_exp.head()
```

#### Out [257]: experiment\_1 experiment\_2 experiment\_3 gender group 0 96.876065 93.417942 73.033193 male control 87.301336 129.603395 66.056554 1 female control 97.691312 106.187916 103.422709 2 male treatment

```
3 102.978152 93.814682 56.995870 female treatment
4 87.106993 107.019985 72.140292 male control
```



### **Facets**

```
In [260... # You can create numerous subplots
    df_tips = px.data.tips()
    df_tips.head()
```

| Out[260]: |   | total_bill | tip  | sex    | smoker | day | time   | size |
|-----------|---|------------|------|--------|--------|-----|--------|------|
|           | 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
|           | 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
|           | 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
|           | 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
|           | 4 | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |







```
In [268... att_df = sns.load_dataset("attention")
att_df.head()

Out[268]: Unnamed: 0 subject attention solutions score
```

| 8]: |   | Unnamed: 0 | subject | attention | solutions | score |
|-----|---|------------|---------|-----------|-----------|-------|
|     | 0 | 0          | 1       | divided   | 1         | 2.0   |
|     | 1 | 1          | 2       | divided   | 1         | 3.0   |
|     | 2 | 2          | 3       | divided   | 1         | 3.0   |
|     | 3 | 3          | 4       | divided   | 1         | 5.0   |
|     | 4 | 4          | 5       | divided   | 1         | 4.0   |

### Scores Based on Attention



solutions solutions solutions solutions

## **Animated Plots**

```
In [270... df_cnt = px.data.gapminder()
    df_cnt.head()
```

Out[270]:

|   | country     | continent | year | lifeExp | pop      | gdpPercap  | iso_alpha | iso_num |
|---|-------------|-----------|------|---------|----------|------------|-----------|---------|
| 0 | Afghanistan | Asia      | 1952 | 28.801  | 8425333  | 779.445314 | AFG       | 4       |
| 1 | Afghanistan | Asia      | 1957 | 30.332  | 9240934  | 820.853030 | AFG       | 4       |
| 2 | Afghanistan | Asia      | 1962 | 31.997  | 10267083 | 853.100710 | AFG       | 4       |
| 3 | Afghanistan | Asia      | 1967 | 34.020  | 11537966 | 836.197138 | AFG       | 4       |
| 4 | Afghanistan | Asia      | 1972 | 36.088  | 13079460 | 739.981106 | AFG       | 4       |





