

Universitatea Tehnică Cluj-Napoca Facultatea de Automatică și Calculatoare Identificarea Sistemelor 2020-2021

Prezentare Proiect 2

PIDX: 39/11

Profesor:

Bușoniu Ion-Lucian

Studenți:

Ciurean Alexandru-Teodor

Cureștiuc Bogdan-Valentin

Deac Cosmin-Alexandru

Cuprins

Scurtă descriere a problemei	3
Scurtă descriere a structurii aproximatorului și a procedurii de găsire a parametrilor	3
Caracteristici esențiale ale soluției	3
Rezultate de reglare	4
Grafice reprezentative pentru cele mai bune modele	6
Raportarea erorii de predicție și erorii de simulare pentru seturile de date de identificare și	_
validare	7
Discutia rezultatelor si concluzia generală	7

Scurtă descriere a problemei

- generare ARX neliniar configurabil (grad & ordin)
- modelul se aplică pe setul de identificare & validare
- obiectivul: găsirea unui model cât mai apropiat de funcția reală
- aplicarea algoritmului în două moduri: predicție & simulare

Scurtă descriere a structurii aproximatorului și a procedurii de găsire a parametrilor

- 1. Generarea puterilor [p1, p2, ..., pn] din formula x1^p1*x2^p2*...*xn^pn
- 2. Generarea matricei de regresori PHI
- 3. Găsirea parametrilor prin rezolvarea regresiei liniare
- 4. Validarea modelului găsit

Caracteristici esențiale ale soluției

- utilizarea unei funcții separate de generare a puterilor din expresia x1^p1*x2^p2*...*xn^pn
- modul de calcul al matricei PHI
- particularitate a algoritmului: utilizarea aceleiași bucle de repetare pentru mai multe obiective

Rezultate de reglare

TABELUL PENTRU SETUL DE DATE VALIDARE ORTINUT PRIN METODA PREDICTIEI

OBȚINUI PRIN METODA PREDICȚIEI			
GRAD_POLINOM	Ordin	MSE1valpred	
1	2	4.9154e-06	
1	4	4.0091e-06	
1	6	3.9792e-06	
2	2	7.6787e-07	
2	4	2.5062e-06	
2	6	1.2636e-05	
3	2	9.0411e-07	
3	4	4.132e-07	
3	6	0.00019986	

Tabel 1

TABELUL PENTRU SETUL DE DATE DE VALIDARE OBȚINUT PRIN METODA SIMULĂRII

OBŢĪNUT PRIN METODA SIMULĀRII				
GRAD_POLINOM	Ordin	MSE2valsim		
1	2	2.4108e+240		
1	4	Inf		
1	6	Inf		
2	2	8.6717e-06		
2	4	NaN		
2	6	NaN		
3	2	1.574e-05		
3	4	NaN		
3	6	NaN		

Tabel 2

TABELUL PENTRU SETUL DE DATE DE IDENTIFICARE OBȚINUT PRIN METODA PREDICȚIEI

GRAD_POLINOM	Ordin	MSE1idpred
1	2	3.3265e-06
1	4	2.9084e-06
1	6	2.9061e-06
2	2	2.2574e-07
2	4	7.664e-10
2	6	1.0928e-10
3	2	2.1901e-07
3	4	1.264e-10
3	6	5.7734e-11

Tabel 3

TABELUL PENTRU SETUL DE DATE DE IDENTIFICARE OBȚINUT PRIN METODA DE SIMULĂRII

GRAD_POLINOM	Ordin	MSE2idsim
1	2	Inf
1	4	Inf
1	6	Inf
2	2	2.2783e-06
2	4	2.8038e-08
2	6	1.3695e-08
3	2	2.3169e-06
3	4	7.3047e-09
3	6	4.6868e-09

Tabel 4

Grafice reprezentative pentru cele mai bune modele

Raportarea erorii de predicție și erorii de simulare pentru seturile de date de identificare și validare

- pentru predicție-validare: MSE minim = 4.132e-07, m = 3 și n = 4
- pentru simulare-validare: MSE minim = 8.6717e-06, m = $2 \sin n = 2$
- pentru predicție-identificare: MSE minim = 5.7734e-11, m = 3 și n = 6
- pentru simulare-identificare: MSE minim = 4.6868e-09, m = 3 şi n = 6

Discuția rezultatelor și concluzia generală

- pe setul de identificare am obținut un model mult mai bun decât cel obținut pentru datele de validare
- modelul aproximează mult mai bine prin metoda predicției decât prin metoda simulării

Concluzie

- găsirea unui model ARX neliniar
- găsirea funcției optime (identificare & simulare)

^{*}n = na + nb