Clase teórica 2

La jerarquía de la computabilidad

Iniciamos el viaje imaginario

Repaso

- Modelo computacional: máquina de Turing (MT).
- Problemas que consideraremos en general: problemas de decisión o de tipo sí/no.
- problema "=" lenguaje (cadenas que representan las instancias positivas del problema).
- MT que acepta o reconoce un lenguaje.

Ejemplos que vimos

Problema de si un grafo tiene un camino del primero al último vértice.

Una MT M_1 que resuelve el problema acepta el siguiente lenguaje: $L(M_1) = \{G \mid G \text{ es un grafo que tiene un camino del primero al último vértice}\}.$

Problema de si una fórmula booleana es satisfactible.

Una MT M_2 que resuelve el problema acepta el siguiente lenguaje: $L(M_2) = \{ \phi \mid \phi \text{ es una fórmula booleana satisfactible} \}.$

Repaso y nuevas definiciones

Posibilidad 1. Lenguajes aceptados por MT que siempre paran.

- Si $w \in L(M)$, M acepta.
- Si w ∉ L(M), M rechaza.

Problema computable decidible.

L es recursivo.

R es el conjunto de estos lenguajes.

Posibilidad 2. Lenguajes aceptados por M que a partir de algunas instancias negativas no paran.

- Si $w \in L(M)$, M acepta.
- Si w ∉ L(M), M rechaza o loopea.

Problema computable no decidible.

L es recursivamente enumerable.

RE es el conjunto de estos lenguajes.

• Posibilidad 3. Lenguajes sin MT que los acepten (a partir de algunas instancias positivas no paran).

Problema no computable.

L no es recursivamente enumerable.

Primera versión de la jerarquía de la computabilidad

Formalizando las definiciones

- Σ es el alfabeto universal de todos los símbolos: $\Sigma = \{a, b, ..., 1, 2, ..., +, -, ...\}$
- Σ^* es el conjunto universal de todas las cadenas de símbolos de Σ : $\Sigma^* = \{\lambda, a, b, 1, ..., aa, ab, a1, ..., aaa, ...\}$
- \mathcal{L} es el conjunto universal de todos los lenguajes con alfabeto Σ : conjunto de todos los subconjuntos de Σ^* .
- Un lenguaje L es recursivo (L ∈ R) sii existe una MT M que lo acepta y siempre para (lo decide).

Es decir, para toda cadena w de Σ^* :

- Si w ∈ L, entonces M a partir de w para en su estado q_A
- Si w ∉ L, entonces M a partir de w para en su estado q_R
- Un lenguaje L es recursivamente enumerable (L ∈ RE) sii existe una MT M que lo acepta.

Es decir, para toda cadena w de Σ^* :

- Si w ∈ L, entonces M a partir de w para en su estado q_A
- Si w ∉ L, entonces M a partir de w para en su estado q_R o no para

Se cumple por definición que $R \subseteq RE \subseteq \Omega$ (ejercicio)

Las inclusiones son estrictas: $R \subset RE \subset \Omega$ (lo probamos en la próxima clase)

La clase R (lenguajes recursivos)

Propiedad 1. Si $L \in R$, entonces $L^C \in R$.

Es decir, si existe una MT M_1 que decide L, también existe una MT M_2 que decide L^C .

Prueba.

Idea general.

Construir una MT M₂ que responda al revés que la MT M₁.

M₁ decide L (hipótesis).

M₂ decide L^C (construcción).

Construcción de la MT M₂.

Si:
$$M_1 = (Q, \Gamma, \delta, q_0, q_A, q_R)$$

entonces:
$$M_2 = (Q, \Gamma, \delta', q_0, q_A, q_R)$$

donde las funciones de transición δ y δ ' de M_1 y M_2 son iguales salvo que los estados q_A y q_R están permutados.

Formalmente, para todos los estados q y q´, símbolos s y s´, y movimientos d de {L, R, S}:

• Si
$$\delta(q, s) = (q_A, s', d)$$
, entonces $\delta'(q, s) = (q_B, s', d)$

*** se cambia q_A por q_R

• Si
$$\delta(q, s) = (q_R, s', d)$$
, entonces $\delta'(q, s) = (q_A, s', d)$

*** se cambia q_R por q_A

• Si $\delta(q, s) = (q', s', d)$, con $q' \neq q_A$ y $q' \neq q_R$, entonces $\delta'(q, s) = (q', s', d)$

*** los otros casos quedan igual

Conclusión: si un problema es decidible, entonces también lo es el problema contrario.

Propiedad 2. Si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cap L_2 \in R$.

Es decir, si existe una MT M_1 que decide L_1 , y existe una MT M_2 que decide L_2 , también existe una MT M que decide $L_1 \cap L_2$.

Prueba.

Idea general.

Construir una MT M que ejecute secuencialmente las MT M₁ y M₂ y acepte sii M₁ y M₂ aceptan.

 M_1 decide L_1 (hipótesis).

M₂ decide L₂ (hipótesis).

M decide $L_1 \cap L_2$ (construcción).

Idea de la construcción de la MT M.

M tiene 2 cintas. Con w en la cinta 1, hace:

- 1. Copia w en la cinta 2.
- Ejecuta M₁ sobre w en la cinta 2.
 Si M₁ para en q_R,
 entonces M para en q_R.
- 3. Borra el contenido de la cinta 2 y copia de nuevo w en la cinta 2.
- 4. Ejecuta M_2 sobre w en la cinta 2. Si M_2 para en $q_A(q_R)$, entonces M para en $q_A(q_R)$.

Ejercicio: ¿cómo hace M para copiar w y borrar la cinta 2?

Las etapas 2 y 4 pueden verse como invocaciones a rutinas, que no son más que las funciones de transición de M_1 y M_2 . Es decir, el código de M puede verse de la siguiente manera: $\delta_M = \dots = \delta_{M1} \dots = \delta_{M2} \dots$

También se cumple que si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cup L_2 \in R$ (ejercicio).

La clase RE (lenguajes recursivamente enumerables)

Propiedad 3. Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cup L_2 \in RE$.

Es decir, si existe una MT M_1 que acepta L_1 , y existe una MT M_2 que acepta L_2 , también existe una MT M que acepta L_1 U L_2 .

Prueba.

<u>Idea general</u>. ¿Construir una MT M que ejecute secuencialmente las MT M₁ y M₂ y acepte sii M₁ o M₂ aceptan?

¿Es correcta esta solución?

¡No!

Si M₂ acepta w, y M₁ no para a partir de w, entonces M, que debe aceptar w, no lo hace.

• La forma correcta es ejecutar "en paralelo" M₁ y M₂, y aceptar w sii una de las dos MT acepta w.

"En paralelo" M_1 y M_2 = ejecutar un paso de M_1 y un paso de M_2 alternadamente.

Idea de la construcción de la MT M.

M tiene 3 cintas.

En la cinta 1 tiene la entrada w.

En las cintas 2 y 3 ejecuta M_1 y M_2 , respectivamente.

La MT M hace:

- 1. Copia w de la cinta 1 a las cintas 2 y 3.
- 2. Ejecuta 1 paso de M₁ en la cinta 2. Si M₁ acepta, acepta.
- 3. Ejecuta 1 paso de M₂ en la cinta 3. Si M₂ acepta, acepta.
- 4. Si M₁ y M₂ rechazan, rechaza.
- 5. Vuelve al paso 2.
- M acepta, rechaza o no para.
- En cada iteración memoriza los estados y posiciones de las 2 ejecuciones.

También se cumple que si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cap L_2 \in RE$ (ejercicio).

Segunda versión de la jerarquía de la computabilidad

El conjunto CO-RE tiene los complementos de los lenguajes del conjunto RE (L ∈ RE sii L^C ∈ CO-RE)

Claramente se cumple R ⊆ RE ∩ CO-RE:

 $R \subseteq RE$ por definición.

 $R \subseteq CO$ -RE porque:

si L \in R, entonces también L^C \in R, por lo que L^C \in RE, y así por definición: L \in CO-RE.

Veamos que también se cumple RE ∩ CO-RE ⊆ R, y por lo tanto la igualdad R = RE ∩ CO-RE.

Propiedad 4. RE \cap CO-RE = R. Sólo falta probar la inclusión RE \cap CO-RE \subseteq R:

Hay que probar:
si existe una MT M₁ que acepta L,
y existe una MT M₂ que acepta L^C,
también existe una MT M que
acepta L y siempre para (decide L).

Idea general:

M ejecuta en paralelo M₁ y M₂. Si M₁ acepta w, M acepta w. Si M₂ acepta w, M rechaza w.

Cualquiera sea w, M₁ la acepta o M₂ la acepta.

¿Por qué?

Porque toda cadena w pertenece a L o a L^C.

Conclusión: si un problema y el problema contrario son computables, entonces ambos son decidibles.

15

Las cuatro regiones de la jerarquía de la computabilidad

Región 1 (lenguajes con MT que siempre paran)

Conjunto R.

Si L está en R, entonces L^C está en R

Región 2 (lenguajes con MT)

Conjunto RE – R.

Si L está en RE, entonces L^C está en CO-RE

Región 3 (lenguajes sin MT, con complementos con MT)
Conjunto CO-RE – R.

Si L está en CO-RE, entonces L^C está en RE

Las cuatro regiones de la jerarquía, con grado de dificultad creciente.

Región 4 (lenguajes sin MT, con complementos sin MT)

Conjunto Ω – (RE U CO-RE).

Si L está en \mathfrak{L} – (RE U CO-RE), entonces L^C está en \mathfrak{L} – (RE U CO-RE)

Ejemplos clásicos de lenguajes no recursivos

Problema de la parada de una MT o halting problem

Dada una MT M y una cadena w, ¿M para a partir de w? El lenguaje que representa el problema es:

$$HP = \{(\langle M \rangle, w) \mid M \text{ para a partir de } w\}$$

tal que <M> es una codificación de la MT M.

Se prueba que $HP \in RE - R$ (A. Turing, 1936).

Ejercicio: ¿cómo funcionaría M'?

Nota: si p. ej. M sólo se mueve a la derecha, el problema es decidible.

Problema de la resolución de las ecuaciones diofánticas

Dada una ecuación algebraica con coeficientes enteros y variables enteras (*ecuación diofántica*), como por ejemplo $2x^3 + 5y^3 = 6z^3$, ¿la ecuación tiene solución? El lenguaje que representa el problema es:

 $L = {\Psi \mid \Psi \text{ es una ecuación diofántica y tiene solución}}$

Se prueba que L ∈ RE – R (Y. Matiyasevich, 1970).

Ejercicio: ¿cómo funcionaría M?

Nota: con p.ej. ecuaciones diofánticas de la forma $x^n + y^n = z^n$ con $n \ge 0$, el problema es decidible.

Problema de decisión en la lógica de predicados (LP)

¿Existe una prueba de la fórmula Φ en la LP? (¿Φ es un teorema?). El lenguaje que representa el problema es:

 $L = {\Phi \mid \text{existe una prueba de la fórmula } \Phi \text{ en la LP}}$

Se prueba que $L \in RE - R$ (A. Turing, 1936).

EJEMPLO DE PRUEBA EN LP

Axiomas y Reglas

 $K_1: A \to (B \to A)$

 $K_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $K_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

 $K_{\Delta}: (\forall x) A(x) \rightarrow A(x|t)$

 $K_5: (\forall x) (A \rightarrow B) \rightarrow (A \rightarrow (\forall x) B)$

Modus Ponens (MP): A y A \rightarrow B implican B

Generalización: A implica $(\forall x)$ A

M SÍ RE CO-RE R Lc Lc

Ejercicio: ¿cómo funcionaría M?

Prueba de $\Phi = \neg P \rightarrow (P \rightarrow Q)$

Nota: Con fórmulas de cierto tipo, el problema es decidible.

1. $\neg P \rightarrow (\neg Q \rightarrow \neg P)$	axioma K ₁
2. $(\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)$	axioma K ₃
$3. ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)) \rightarrow (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))) \dots$	axioma K₁
$4. \neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)) \dots$	MP 2 y 3
$5. \ (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))) \rightarrow ((\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q))) \$	axioma K ₂
6. $(\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q))$	MP 4 y 5
$7. \neg P \rightarrow (P \rightarrow Q)$	MP 1 y 6

Problema de pertenencia al Conjunto de Mandelbrot (CM)

El CM es un conjunto de números complejos del plano definido por la sucesión $z_0 = 0$ y $z_{n+1} = z_n^2 + c$, tal que c está en el conjunto sii la sucesión está acotada. El problema es: dado un número complejo c, ¿c está en el CM?

El lenguaje asociado es L = {c | c es un número complejo que está en el CM}

Se prueba que $L \in CO-RE - R$ (L. Blum, 1989).

Hay elementos del CM que una MT no puede reconocer: La dificultad está en el contorno del conjunto.

CONJUNTO DE MANDELBROT (es un fractal)

Pero al menos existe una MT M que acepta todos los números complejos que **NO** están en el CM:

Problema de decisión en la aritmética

¿La fórmula O es un enunciado aritmético verdadero? El lenguaje que representa el problema es:

$L = \{\Theta \mid \Theta \text{ es un enunciado aritmético verdadero}\}\$

Se prueba que $L \in \Omega$ – (RE U CO-RE) (K. Gödel, 1931).

EJEMPLO DE PRUEBA EN LA ARITMÉTICA

Axiomas y Reglas

$$K_1: A \rightarrow (B \rightarrow A)$$

$$\mathsf{K}_2 \colon (\mathsf{A} \to (\mathsf{B} \to \mathsf{C})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C}))$$

$$K_3^-: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$K_{\Delta}: (\forall x) A(x) \rightarrow A(x|t)$$

$$K_5: (\forall x) (A \rightarrow B) \rightarrow (A \rightarrow (\forall x) B)$$

K₆ a K₁₀: Axiomas de la Igualdad

$$N_1: (\forall x) \neg (s(x) = 0)$$

$$N_2: (\forall x)(\forall y)(x = y \rightarrow s(x) = s(y))$$

$$N_3$$
: $(\forall x)(x + 0 = x)$

$$N_4$$
: $(\forall x)(\forall y)(x + s(y) = s(x + y))$

$$N_5: (\forall x) (x \cdot 0 = 0)$$

$$N_6$$
: $(\forall x)(\forall y)(x \cdot s(y) = x \cdot y + x)$

$$N_7: P(0) \rightarrow ((\forall x)(P(x) \rightarrow P(s(x))) \rightarrow (\forall x) P(x))$$

Modus Ponens (MP): A y A \rightarrow B implican B

Generalización: A implica (∀x) A

Prueba de $\Theta = (1 + 1 = 2)$ (extracto)

1.
$$(\forall x)(x + 0 = x)$$

2.
$$(\forall x)(x + 0 = x) \rightarrow 1 + 0 = 1$$

$$3.1 + 0 = 1$$

.....

14.
$$s(1 + 0) = s(1) \rightarrow 1 + s(0) = s(1)$$

15.
$$1 + s(0) = s(1)$$

16. **1** + **1** = **2**

Hay enunciados verdaderos que una MT no puede reconocer.

Hay enunciados falsos que una MT no puede reconocer.

Nota: sin la multiplicación, el problema es decidible.

Problema del cubrimiento del plano con polígonos (teselación del plano)

Dado un conjunto finito C de figuras poligonales (conocidas como *teselas* o *mosaicos*), ¿C puede cubrir el plano sin dejar huecos ni producir solapamientos? El lenguaje que representa el problema es:

L = {C | C es un conjunto finito de figuras poligonales que cubren el plano}

Se prueba que $L \in \Omega$ – (RE U CO-RE) (R. Berger, 1966).

Hay conjuntos de polígonos que cubren el plano que una MT no puede reconocer.

Hay conjuntos de polígonos que no cubren el plano que una MT no puede reconocer.

Nota: si hay periodicidad, el problema es decidible.

Anexo

Problema del halting problem revisitado

 $HP = \{(\langle M \rangle, w) \mid M \text{ para a partir de } w\} \in RE - R$

- No existe ninguna MT M' que para toda MT M y toda cadena w, pueda decidir si M para a partir de w.
- Pero para algunas MT M y algunas cadenas w, existen MT M´ que SÍ pueden decidir el problema.
- Por ejemplo, si M va siempre a la derecha, si M se mueve en un espacio acotado de celdas, etc., se puede decidir (mediante MT M´ "ingeniosas").
- En general se considera el **peor caso**, es decir, todas las entradas posibles. En dicho caso, el único algoritmo posible para el *halting problem* es la **fuerza bruta** (ejecutar M y esperar a que eventualmente responda).

Problema de decisión en la aritmética revisitado

Teorema de Incompletitud (K. Gödel, 1931):

Existen enunciados aritméticos verdaderos que no se pueden probar.

Es decir, L = {Θ | Θ es un enunciado aritmético verdadero} ∉ RE.

Veamos que también L^C = {Θ | Θ es un enunciado aritmético falso} ∉ RE:

Supongamos lo contrario, que $L^C \in RE$. Así, existe la siguiente MT M_1 :

M acepta sii Θ es falso

De esta manera, también existe la siguiente MT M₂:

Se cumple:

- O es verdadero o falso.
- Si Θ es verdadero, M₂ acepta.
- Si Θ es falso, M_2 rechaza.

En consecuencia, M_2 acepta L y para siempre, lo que significa que L es recursivo (absurdo, y así no puede suceder que L^C \in RE).

Indecibilidad en la lógica de predicados y en la aritmética

- |- ⊖ es el conjunto de los teoremas de la lógica de predicados. Pertenece a RE R.
- N |− Θ es el conjunto de los teoremas de la aritmética. Pertenece a RE − R.
- N |= ⊖ es el conjunto de los enunciados verdaderos de la aritmética. No pertenece a RE.

Clase práctica 2

Ejercicio 1. Probar que la clase R es cerrada con respecto a la operación de concatenación. Es decir: si $L_1 \in R$ y $L_2 \in R$, entonces también $L_1 \cdot L_2 \in R$.

Idea general.

El lenguaje L_1 , L_2 contiene todas las cadenas $w = v_1v_2$, tales que la subcadena $v_1 \in L_1$ y la subcadena $v_2 \in L_2$.

Sea M_1 una MT que decide el lenguaje L_1 y M_2 una MT que decide el lenguaje L_2 . Hay que construir una MT M que decida el lenguaje L_1 , L_2 .

Dado un input w con n símbolos, M hace:

- 1. M ejecuta M₁ a partir de los primeros 0 símbolos de w, y M₂ a partir de los últimos n símbolos de w. Si en ambos casos se acepta, entonces M acepta.
- 2. Si no, M hace lo mismo que en (1) pero ahora con el 1er símbolo y los últimos (n 1) símbolos de w. Si en ambos casos se acepta, entonces M acepta.
- 3. Si no, M hace lo mismo que en (1) pero ahora con los primeros 2 y los últimos (n − 2) símbolos de w. Si en ambos casos se acepta, entonces M acepta.

Y así siguiendo, con 3 y (n - 3), 4 y (n - 4), ..., hasta llegar a n y 0 símbolos de w. Si en ninguno de los casos se acepta, entonces M rechaza.

Queda como ejercicio la construcción de M y la verificación de su correctitud.

Ejercicio 2. Probar que también la clase RE es cerrada con respecto a la operación de concatenación, es decir que si $L_1 \in RE$ y $L_2 \in RE$, entonces también $L_1 \cdot L_2 \in RE$.

Idea general.

Tal como se hizo con los lenguajes recursivos, se tiene que construir una MT M que acepte L_1 , L_2 ejecutando sobre un input w (de n símbolos) determinadas MT M_1 y M_2 (MT que aceptan L_1 y L_2 , respectivamente, las cuales ahora pueden loopear en casos negativos), primero a partir de 0 y n símbolos de w, después a partir de 1 y n – 1 símbolos de w, y así siguiendo hasta llegar a n y 0 símbolos de w, aceptando eventualmente.

La diferencia con el caso de los lenguajes recursivos está en que ahora, teniendo en cuenta los posibles loops de M₁ y M₂, M debe ejecutarlas "en paralelo":

M primero debe hacer ejecuciones de 1 paso de M_1 y M_2 con todas las posibles particiones de w, luego ejecuciones de 2 pasos con todas las particiones, luego ejecuciones de 3 pasos con todas las particiones, y así siguiendo hasta eventualmente aceptar.

Queda como ejercicio la construcción de M y la verificación de su correctitud.

Ejercicio 3. Probar que la clase RE es cerrada con respecto a la operación de unión, permitiendo como solución una MT no determinística (MTN).

Idea general y construcción.

Sean dos lenguajes L_1 y L_2 de RE, aceptados por MT M_1 y M_2 , con M_1 = (Q_1 , Γ_1 , δ_1 , q'_0 , q_A , q_R) y M_2 = (Q_2 , Γ_2 , δ_2 , q''_0 , q_A , q_R).

Vamos a construir una MTN M que acepta L₁ U L₂:

Sea q₀ un estado que no está en Q₁ ni en Q₂. La MTN M es:

$$M = (Q = Q_1 \cup Q_2 \cup \{q_0\}, \Gamma = \Gamma_1 \cup \Gamma_2, \Delta, q_0, q_A, q_B), \text{ tal que:}$$

 $\Delta = \delta_1 \cup \delta_2 \cup \{(q_0, s, q'_0, s, S), (q_0, s, q''_0, s, S)\},$ considerando todos los símbolos s de Γ .

Es decir, al comienzo la MTN M pasa no determinísticamente a la configuración inicial de M_1 o de M_2 , y después se comporta determinística como ellas.

Queda como ejercicio la verificación de la correctitud de la construcción de la MTN M.