Tumor recognition using CNN

Zexi Yu, zexi.yu@usask.ca

Overview

- General Summary:
 - Objective
 - Audience and benefit
 - General Structure
- Data Wrangling
- Learning Model:
 - CNN introduction
 - Structure used in this project
- Result and Future works

General Summary

Objective:

Build a model that will detect whether a lung cancer occurred.

Audience and benefit:

- Audience: hospitals/governmental health/cancer departments
- Benefit:
 - reduce the false positive rate that plagues the current detection technology
 - get patients earlier access to life-saving interventions
 - give radiologists more time to spend with their patients.

General Summary

General Structure:

- Data Wranglings
 - HU transformation
 - Morphology operations
- Down-sampling
- CNN

DW: DICOM Reading& HU transform

Hounsfield Unit / CT numbers:

Image from wiki

Substance		ни
Air		-1000
Fat		-120 to -90 ^[2]
Soft Tissue, Contrast		+100 to +300
Bone		 +200 in craniofacial bone +700 in cancellous bone +3000 in cortical bone
Fluids	Chyle	-30 ^[3]
	Water	0
	Urine	-5 to +15 ^[2]
	Bile	-5 to +15 ^[2]
	CSF	+15
	Blood	+13 ^[4] to +50 ^[5]
	Clotted blood	+50 ^[6] to +75 ^{[4][6]}
	Mucus	$0^{[7]}$ - 130 ^[8] ("high attenuating" at over 70 HU) ^{[9][10]}
	Lung	-700 to -600 ^[11]
	Kidney	+20 to +45 ^[2]
	Liver	$60 \pm 6^{[12]}$
	Lymph nodes	+10 to +20 ^[13]
Parenchyma	Muscle	+35 to +55 ^[2]

DW: DICOM Reading& HU transform

- DICOM Reading:
 - Dicom.read_file
- HU transform:
 - Dicom.RescaleIntercept
 - Dicom.RescaleSlope

- Goal: Segmentation of nodes in lung
- Six Steps
- Original Image

Step 1: Convert the image into a binary one

- Step 2: Remove the blobs connected to the border of the image
- Step 3: Label the image and keep 2 largest areas

- Step 4: Erosion operation with a disk of radius
 2 separate the lung nodules
- Step 5: Closure operation with a disk of radius
 12 keep nodules attached to lung wall

- Step 6: Fill in the holes
- Superimpose

DW: Down-sampling

- Sacrifices due to time and computation limit:
 - No further node segment
 - Only 1/5 of training set is used
 - Down-sampling

Learning Method: CNN Intro

CNN - Convolutional Neural Networks

- Suitable for recognition task in Image processing
- Use convolutinoal layer to identify image characteristics
- Fully connected layer for classification
- Maxpool layer and dropout layer to prevent overfitting

Learning Method: CNN structure

General Structure:

Result

- Kaggle score 0.63856, beat the benchmark 0.69314
- Tend to predict the non-cancer, may have high false negative rate

Future Work

- Train the CNN using all the training set instead of 1/5 of them and see if the performance improves.
- Manually label the nodes in the training set, perform node segmentation and train and change CNN structure according to the single node images.