Геометрия и Топология

Мастера конспектов 11 января 2021 г.

Билет 1

Метрические пространства, произведение метрических пространств, пространство \mathbb{R}^n .

Функция $d: X \times X \to \mathbb{R}_+ = \{x \in \mathbb{R}: x \geq 0\}$ называется метрикой (или расстоянием) в множестве X, если

- 1. $d(x,y) = 0 \Leftrightarrow x = y$;
- 2. d(x,y) = d(y,x) для любых $x,y \in X$;
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Пара (X, d), где d - метрика в X, называется метрическим пространством.

Теорема 1. (Прямое произведение матриц). Пусть (X, d_X) и (Y, d_Y) - метрические пространства. Тогда функция

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_y(y_1, y_2)^2}$$

задаёт метрику на $X \times Y$.

Доказательство. 1 и 2 аксиомы очевидны. Проверим выполнение третьей. Сделать это несложно, нужно всего лишь написать неравенство и дважды возвести в квадрат. Можно как-нибудь поиспользовать Коши или КБШ, на ваш вкус. □

Пространство $X = \mathbb{R}^n, x = (x_1, \dots, x_n), y = (y_1, \dots, y + n)$, на котором задана метрика

$$d(x,y) = \sqrt{(x_1 - y_2)^2 + \dots + (x_n - y_n)^2}$$

(которая называется $e \varepsilon \kappa n u \partial o \varepsilon o \check{u}$), есть \mathbb{R}^n .

Билет 2

Шары и сферы. Открытые множества в метрическом пространстве. Объединения и пересечения открытых множеств.

• Пусть (X,d) — метрическое пространство, $a\in X, r\in \mathbb{R}, r>0$.

Множества

$$B_r(a) = \{x \in X : d(a,x) < r\},\$$

 $\overline{B_r}(a) = D_r(a) = \{x \in X : d(a,x) \le r\}.$

называются, соответственно, открытым шаром (или просто шаром) и замкнутым шаром пространства (X,d) с центром в точке a и радиусом r.

• Пусть (X,d) — метрическое пространство, $A \subseteq X$. Множество A называется открытым в метрическом пространстве, если

$$\forall a \in A \exists r > 0 : B_r(a) \subseteq A.$$

Примеры:

- $-\varnothing, X$ и $B_r(a)$ открыты в произвольном метрическом пространстве X.
- В пространстве с дискретной метрикой любое множество открыто.

Теорема 2. В произвольном метрическом пространстве X

- 1. объединение любого набора открытых множеств открыто;
- 2. пересечение конечного набора открытых множеств открыто.

Доказательство.

1. Пусть $\{U_i\}_{i\in I}$ — семейство открытых множеств в X. Хотим доказать, что $U=\bigcup_{i\in I}U_i$ — открыто.

$$x \in U \Rightarrow \exists j \in I : x \in U_j \Rightarrow \exists r > 0 : B_r(x) \subseteq U_j \subseteq U.$$

2. Пусть семейство $\{U_i\}_{i=1}^n$ — семейство открытых множеств в X. Хотим доказать, что $U=\bigcap_{i=1}^n U_i$ — открыто.

$$x \in U \Rightarrow \forall i : x \in U_i \Rightarrow \exists r_i : B_{r_i}(x) \subseteq U_i;$$

$$r := \min\{r_i\} \Rightarrow B_r \subseteq U.$$

Билет 4

Внутренность, замыкание и граница множества: определение и свойства включения, объединения, пересечения.

Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Внутренностью множества A называется объединение всех открытых множество, содержащихся в A, т. е.:

$$Int A = \bigcup_{U \in \Omega, U \subseteq A} U.$$

Свойства:

- Int A открытое множество;
- $\operatorname{Int} A \subseteq A$;
- B открыто, $B \subseteq A \Rightarrow B \subseteq Int A$;
- $A = Int A \Leftrightarrow A$ открыто;
- Int(IntA) = IntA;
- $A \subseteq B \Rightarrow \text{Int} A \subseteq \text{Int} B$;
- $Int(A \cap B) = IntA \cap IntB;$ $\mathcal{L}okasameascmeo:$

 $\subseteq: A \cap B \subseteq A \Rightarrow \operatorname{Int}(A \cap B) \subseteq \operatorname{Int}A \dots;$

 \supseteq : Int $A \cap$ Int $B \subseteq A \cap B \Rightarrow$ Int $A \cap$ Int $B \subseteq$ Int $(A \cap B)$.

• $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}A \cup \operatorname{Int}B;$ $\mathcal{A}o\kappa asame \land bcm 6o \neq :$ $X = \mathbb{R}, A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q},$

 $X = \mathbb{R}, A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q},$ $\operatorname{Int} A = \operatorname{Int} B = \emptyset, \operatorname{Int} (A \cup B) = \operatorname{Int} \mathbb{R} = \mathbb{R}$ Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Замыканием множества A называется пересечение всех замкнутых множество, содержащих A, т. е.:

$$ClA = \bigcap_{X \setminus V \in \Omega, V \supseteq A} V.$$

Свойства:

- ClA замкнутое множество;
- $A \subseteq ClA$;
- B замкнуто, $B \supseteq A \to B \supseteq ClA$;
- $A = ClA \Leftrightarrow A$ замкнуто;
- Cl(ClA) = ClA;
- $A \subseteq B \to \text{Cl}A \subseteq \text{Cl}B$;
- $Cl(A \cup B) = ClA \cup ClB$;
- $Cl(A \cap B) \subseteq ClA \cap ClB$ (на самом деле, даже \neq);
- $ClA = X \setminus Int(X \setminus (X \setminus A))$.

Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Тогда границей множества A называется разность его замыкания и внутренности: $\operatorname{Fr} A=\operatorname{Cl} A\backslash \operatorname{Int} A$.

Свойства:

- FrA замкнутое множество;
- $\operatorname{Fr} A = \operatorname{Fr}(X \backslash A);$
- A замкнуто $\Leftrightarrow A \supseteq \operatorname{Fr} A$;
- A открыто $\Leftrightarrow A \cap \operatorname{Fr} A = \emptyset$.

Билет 5

Расположение точки относительно множества: внутренние и граничные точки, точки прикосновения, предельные и изолированные точки. Внутренность, замыкание и граница множества: из каких точек они состоят.

- Определения (A множество в топологическом пространстве):
 - 1. Окрестностью точки топологического пространства называется любое открытое множество, содержащее эту точку.
 - 2. Точка называется внутренней для A, если некоторая её окрестность содержится в A.
 - 3. Точка называется точкой прикосновения для A, если любая её окрестность пересекается с A.
 - 4. Точка называется граничной для A, если любая её окрестность пересекается с A и с дополнением A

- 5. Точка называется изолированной для A, если она лежит в A и некоторая её окрестность пересекается по A ровно по этой точке.
- 6. Точка называется предельной для A, если любая её выколотая окрестность пересекается с A.

Примеры...:(

- 1. Внутренность множества есть множество его внутренних точек:
 - $-\ b$ внутр. точка для $A\Rightarrow\exists U_{(b)}\subseteq A\Rightarrow U_{(b)}\subseteq IntA\Rightarrow b\in IntA;$
 - $-\ b\in IntA\Rightarrow b$ лежит в Aвместе с окрестностью $IntA\Rightarrow b$ внутренняя точка для A.
 - 2. Замыкание множества есть множество его точек прикосновения: b точка прикосновения для $A \iff b \notin Int(X \setminus A) \iff b \in ClA$
 - 3. Граница множества есть множество его граничных точек: b- граничная точка множества $A\iff (b\in ClA)\land (b\in Cl(X\setminus A))\iff (b\in ClA)\land (b\notin IntA)\iff b\in FrA.$
 - 4. Замыкание множества есть объединение множеств предельных и изолированных точек:

TBC...

5. Замыкание множества есть объединение граничных и внутренних точек: ТВС...