STRATIFICATION FOR FINITE GROUPOIDS

XU GAO

Abstract. We apply methods of [2] to solve the (co)stratification problem for finite groupoids.

Contents

1.	Representations of finite groupoids	1
2.	The triangulated categories	3
3.	Rigidly-compactly generation	6
4.	Tensor triangulated decomposition	7
5.	BIK-(co)stratifications and Balmer spectra	8
6.	Conclusion	11
References		11

1. Representations of finite groupoids

In this section, we introduce the notion of representations of a finite groupoid and construct a Frobenius category of them.

- 1.1. Notation. Let R be a commutative noetherian ring. We adopt the following notations for various cateogries.
- $\operatorname{\mathsf{Mod}} R$: the category of R-modules;
- mod R: the category of noetherian R-modules;
- Proj R: the category of projective R-modules;
- lnj R: the category of injective R-modules;
- $\mathbf{D}(R)$: the derived category of R.
- 1.2. Definition. Let \mathfrak{G} be an essentially finite groupoid: that is to say, both $\pi_0(\mathfrak{G})$ and every hom-set are finite. By an R-representation of \mathfrak{G} , we mean a functor from \mathfrak{G} to $\mathsf{Mod}\,R$. We adopt the following notations for various cateogries.
- Mod \mathfrak{G} : the category Fun(\mathfrak{G} , Mod R);
- Proj \mathfrak{G} : the full subcategory of projective objects in Mod \mathfrak{G} ;
- $Mod(\mathfrak{G}; R)$: the category $Fun(\mathfrak{G}, Proj R)$;
- $mod(\mathfrak{G};R)$: the category $Fun(\mathfrak{G},\operatorname{Proj} R\cap\operatorname{mod} R)$.

Given an R-representation F, we use $\mathsf{Add}(F)$ for the full subcategory of $\mathsf{Mod}\,\mathfrak{G}$ consisting of direct summands of direct sums of (infinitely many) copies of F and $\mathsf{add}(F)$ the corresponding subcategory where only finite copies are allowed.

1.3. Remark. There is an obvious tensor structure on $\mathsf{Mod}\, \mathcal G$ induced from the one on $\mathsf{Mod}\, R$. The tensor unit is the constant representation $\underline R\colon \mathcal G\to \mathsf{Mod}\, R$ mapping

all objects to R and all arrows to id_R . However, \underline{R} is not a generator of the category Mod \mathfrak{G} : since any morphism $\underline{R}^I \to F$ factors through the limit $\lim_{\mathfrak{G}} F$, saying $\underline{R}^I \to F$ is an epimorphism forces the canonical morphism $\lim_{\mathfrak{G}} F \to F$ being surjective.

Frobenius categories. An exact category is *Frobenius* if it has enough projective and enough injective objects, where the class of projective objects coincides with the class of injective objects.

1.4. Example. The exact category $\operatorname{\mathsf{Proj}} R$ is Frobenius: its projective and injective objects are all the objects.

We mimic [2, Lemma 2.3] to show the following lemmas.

1.5. **Lemma.** The exact category $Mod(\mathfrak{G}; R)$ has enough projective objects and enough injective objects.

Proof. For each object x of \mathfrak{G} , let $u_x \colon \mathsf{Mod}(\mathfrak{G};R) \to \mathsf{Proj}\,R$ be the functor mapping each R-representation F to the R-module F(x). The functor u_x is clearly exact. Hence, its left adjoint u_x^l preserves projectivity and its right adjoint u_x^r preserves injectivity (their existence follows from the adjoint functor theorem). Since all the objects of $\mathsf{Proj}\,R$ are both projective and injective, we see that the essential images of the endofunctors $u_x^l u_x$ and $u_x^r u_x$ are projective and injective objects respectively. However, unlike in [2, Lemma 2.3], the counit $\epsilon_x \colon u_x^l u_x \to \mathrm{id}$ needs not to be an epimorphism, and likewise, the unit $\eta_x \colon \mathrm{id} \to u_x^r u_x$ needs not to be a monomorphism.

To resolve this issue, note that there are natural transformations $u_f \colon u_x \to u_y$ for morphisms $f \colon x \to y$ in $\mathcal G$. By adjunctions, we also have natural transformations $u_f^l \colon u_y^l \to u_x^l$ and $u_f^r \colon u_y^r \to u_x^r$ respectively. We thus obtain two $\mathcal G$ -shape diagrams in $\mathsf{End}(\mathsf{Mod}(\mathcal G;R))$:

$$u^l\colon x\mapsto u^l_xu_x, f\mapsto u^l_{f^{-1}}u_f\quad\text{and}\quad u^r\colon x\mapsto u^r_xu_x, f\mapsto u^r_{f^{-1}}u_f.$$

Consider the functor $[-]: \mathcal{G} \to \pi_0(\mathcal{G})$ taking any object x of \mathcal{G} to its isomorphism class [x]. We pick a section of [-], saying $\varsigma: \pi_0(\mathcal{G}) \to \mathcal{G}$. Then, it induces a functor

$$\varsigma^* \colon \operatorname{Fun}(\mathfrak{G},\operatorname{End}(\operatorname{\mathsf{Mod}}(\mathfrak{G};R))) \to \operatorname{\mathsf{Fun}}(\pi_0(\mathfrak{G}),\operatorname{\mathsf{End}}(\operatorname{\mathsf{Mod}}(\mathfrak{G};R))).$$

Now, consider the $\pi_0(\mathcal{G})$ -shape diagrams $\varsigma^*(u^l)$ and $\varsigma^*(u^r)$. Since $\pi_0(\mathcal{G})$ is a finite discrete category, taking limits and colimits of shape $\pi_0(\mathcal{G})$ in $\operatorname{End}(\operatorname{\mathsf{Mod}}(\mathcal{G};R))$ are precisely taking finite products and coproducts respectively. Hence, the essential images of the endofunctors $\varsigma^l \coloneqq \operatorname{colim} \varsigma^*(u^l)$ and $\varsigma^r \coloneqq \operatorname{lim} \varsigma^*(u^r)$ are projective and injective objects respectively, and they are canonically isomorphic.

Now, the induced morphisms $\epsilon_{\varsigma} : \varsigma^l \to \operatorname{id}$ and $\eta_{\varsigma} : \operatorname{id} \to \varsigma^r$ provides a projective cover and an injective hull respectively. Indeed, for any object x of \mathfrak{G} , we can see that $u_x \epsilon_{\varsigma} = u_x \epsilon_{\varsigma[x]}$ and is thus (since $\varsigma[x] \cong x$) isomorphic to $u_x \epsilon_x$, which is an epimorphism by the adjunction. As $u_x \epsilon_{\varsigma}$ is an epimorphism for all $x \in \mathfrak{G}$, we conclude that ϵ_{ς} is an epimorphism. Likewise, η_{ς} is a monomorphism. This finishes the proof.

1.6. **Proposition.** We have

$$\mathsf{Proj}(\mathsf{Mod}(\mathcal{G};R)) = \mathsf{Add}(\varsigma^l R) = \mathsf{Proj}\,\mathcal{G} \quad and \quad \mathsf{Inj}(\mathsf{Mod}(\mathcal{G};R)) = \mathsf{Add}(\varsigma^r R).$$

In particular, $Mod(\mathfrak{G}; R)$ is a Frobenius category.

Proof. First, we show that $\varsigma^l \underline{R}$ is a generator of Mod \mathfrak{G} . Indeed, we have

$$\operatorname{Hom}_{\operatorname{\mathsf{Mod}}\nolimits \, \mathcal{G}} \left(\varsigma^l \underline{R}, - \right) = \prod_{x \in \varsigma \pi_0(\mathcal{G})} \operatorname{Hom}_{\operatorname{\mathsf{Mod}}\nolimits \, \mathcal{G}} \left(u^l_x u_x \underline{R}, - \right) = \prod_{x \in \varsigma \pi_0(\mathcal{G})} \operatorname{Hom}_R (R, u_x(-)),$$

which is conservative. By a similar reasoning, $\varsigma^r R$ is a cogenerator of Mod 9.

Since $\varsigma^l \underline{R}$ is a generator of Mod \mathfrak{G} , we must have $\operatorname{\mathsf{Proj}} \mathfrak{G} \subset \operatorname{\mathsf{Add}}(\varsigma^l \underline{R})$. On the other hand, $\varsigma^l \underline{R}$ itself is projective in both $\operatorname{\mathsf{Mod}}(\mathfrak{G};R)$ and $\operatorname{\mathsf{Mod}} \mathfrak{G}$ (since R is projective in both $\operatorname{\mathsf{Proj}} R$ and $\operatorname{\mathsf{Mod}} R$). We thus conclude that $\operatorname{\mathsf{Proj}}(\operatorname{\mathsf{Mod}}(\mathfrak{G};R)) = \operatorname{\mathsf{Add}}(\varsigma^l \underline{R}) = \operatorname{\mathsf{Proj}} \mathfrak{G}$.

Likewise, since $\varsigma^r \underline{R}$ is a cogenerator of Mod \mathcal{G} , and hence of Mod (\mathcal{G}, R) , we must have $\operatorname{Inj}(\operatorname{Mod}(\mathcal{G}; R)) \subset \operatorname{Add}(\varsigma^r \underline{R})$. Since $\varsigma^r \underline{R}$ itself is injective in $\operatorname{Mod}(\mathcal{G}, R)$, we conclude that $\operatorname{Inj}(\operatorname{Mod}(\mathcal{G}; R)) = \operatorname{Add}(\varsigma^r \underline{R})$.

Now, since
$$\varsigma^l \underline{R} \cong \varsigma^r \underline{R}$$
, we have $\mathsf{Proj}(\mathsf{Mod}(\mathfrak{G};R)) = \mathsf{Inj}(\mathsf{Mod}(\mathfrak{G};R))$. Then, by Lemma 1.5, $\mathsf{Mod}(\mathfrak{G};R)$ is Frobenius.

1.7. Notation. For any R-representation F in $\mathsf{Mod}(\mathfrak{G};R)$, repeating applying the projective cover ϵ_{ς} yields a projective resolution of F, denoted by $\mathbf{p}_{\varsigma}F$. Likewise, the injective hull η_{ς} yields an injective resolution $\mathbf{i}_{\varsigma}F$.

In what follows, we fix a choice of ς and omit it if there is no ambiguity.

2. The triangulated categories

In this section, following methods in [2, §2], we construct a compactly generated triangulated category $\text{Rep}(\mathcal{G}, R)$ whose compact objects identify with the bounded derived category of the Frobenius category $\text{mod}(\mathcal{G}; R)$.

The stable category. For a Frobenius exact category \mathcal{A} , its stable category $\mathsf{St}\mathcal{A}$ is the category whose objects are the same as \mathcal{A} and whose morphisms are given by

$$\operatorname{Hom}_{\operatorname{St} \mathcal{A}}(M, N) := \operatorname{Hom}_{\mathcal{A}}(M, N) / \sim,$$

where two morphisms are equivalent if their difference factors through a projective object. This category carries a natural triangulated structure [6, Section 3.3]. In our case, we set

$$\mathsf{stmod}(\mathfrak{G},R) \coloneqq \mathsf{St}(\mathsf{mod}(\mathfrak{G};R)) \quad \text{and} \quad \mathsf{StMod}(\mathfrak{G},R) \coloneqq \mathsf{St}(\mathsf{Mod}(\mathfrak{G};R)).$$

The homotopy category of projectives. Let \mathcal{A} be an abelian category with enough projective objects and $\mathbf{K}(\mathsf{Proj}\,\mathcal{A})$ be homotopy category of complexes of projective objects in \mathcal{A} . Then taking projective resolution $X \mapsto \mathbf{p}X$ yields a left adjoint to the canonical functor $\mathbf{q} \colon \mathbf{K}(\mathsf{Proj}\,\mathcal{A}) \to \mathbf{D}(\mathcal{A})$ and identifies the derived category $\mathbf{D}(\mathcal{A})$ with the full subcategory of K-projective complexes in $\mathbf{K}(\mathsf{Proj}\,\mathcal{A})$.

- 2.1. Definition. Note that a complex of R-representations of $\mathfrak G$ can also be viewed as a functor from $\mathfrak G$ to the category of complexes of R-modules. We say such a complex has K-projective values if it, as a functor, lands in the category of K-projective complexes of R-modules. We write $\mathbf K(\mathsf{Proj}\,\mathfrak G,R)$ for the full subcategory of complexes in $\mathbf K(\mathsf{Proj}\,\mathfrak G)$ that have K-projective values and $\mathbf A\mathbf c(\mathsf{Proj}\,\mathfrak G,R)$ for the full subcategory consisting of acyclic complexes in $\mathbf K(\mathsf{Proj}\,\mathfrak G,R)$.
- 2.2. Remark. If a complex F of R-representations is acyclic and has K-projective values, its each value F(x) is an acyclic K-projective complex of R-modules and is therefore contractible. Hence, F is a complex in $\mathsf{Mod}(\mathfrak{G};R)$.

2.3. Definition. Recall (1.7) that, for any R-representation F in $\mathsf{Mod}(\mathcal{G}; R)$, we have a projective resolution $\mathbf{p}F$ and an injective resolution $\mathbf{i}F$. Completing the canonical morphism $\mathbf{p}F \to \mathbf{i}F$ to an exact triangle

$$\mathbf{p}F \longrightarrow \mathbf{i}F \longrightarrow \mathbf{t}F \longrightarrow$$

yields an acyclic complex $\mathbf{t}F$ of objectives in $\mathsf{Mod}(\mathfrak{G};R)$ satisfying $\mathsf{Z}^0(\mathbf{t}F)=F,$ where Z^0 denotes the module of 0-cocycle in the complex. The complex $\mathbf{t}F$ is called the *Tate resolution* of F.

2.4. **Lemma.** The assignment $Z^0(-)$ induces an R-linear triangle equivalence

$$\mathbf{A}c(\mathsf{Proj}\,\mathfrak{G},R) \stackrel{\sim}{\longrightarrow} \mathsf{StMod}(\mathfrak{G},R).$$

Proof. By Remark 2.2, the functor is well-defined. Taking Tate resolution gives its quasi-inverse. \Box

We write $\mathbf{D}(\mathfrak{G})$ for the derived category of the Grothendieck category $\mathsf{Mod}\,\mathfrak{G}$.

2.5. **Proposition.** The canonical functor $\mathbf{q} \colon \mathbf{K}(\mathsf{Proj}\,\mathfrak{G}) \to \mathbf{D}(\mathfrak{G})$ induces a localisation sequence

$$\mathbf{A}c(\mathsf{Proj}\,\mathfrak{G},R) \overset{\mathbf{t}}{\longleftarrow} \mathbf{K}(\mathsf{Proj}\,\mathfrak{G},R) \overset{\mathbf{p}}{\longleftarrow} \mathbf{D}(\mathfrak{G})$$

Proof. The functorial projective resolution \mathbf{p} defines a left adjoint of the canonical functor \mathbf{q} . By the exact triangles $\mathbf{p}X \to X \to \mathbf{t}X \to$, the Tate resolution functor \mathbf{t} gives the left adjoint of the inclusion of $\mathbf{Ac}(\mathsf{Proj}\,\mathcal{G},R)$.

Compact generation. Compact objects in $\mathsf{Mod}\, \mathfrak{G}$ are those in $\mathsf{mod}(\mathfrak{G},R)$. Let $\mathsf{Mod}^{\mathrm{lf}}(\mathfrak{G},R)$ be the *localising* subcategory of $\mathsf{Mod}(\mathfrak{G},R)$ generated by $\mathsf{mod}(\mathfrak{G},R)$. That is to say, $\mathsf{Mod}^{\mathrm{lf}}(\mathfrak{G},R)$ is a full subcategory of $\mathsf{Mod}(\mathfrak{G},R)$ containing $\mathsf{mod}(\mathfrak{G},R)$, closed under all coproducts, and satisfying the *two-out-of-three property*: for any short exact sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$
,

if any two of the terms are in the subcategory so is the third. By Proposition 1.6, the exact category $\mathsf{Mod}^{\mathrm{lf}}(\mathfrak{G},R)$ is Frobenius. Set

$$\mathsf{StMod}^{\mathrm{lf}}(\mathfrak{G},R) \coloneqq \mathsf{St}\Big(\mathsf{Mod}^{\mathrm{lf}}(\mathfrak{G};R)\Big).$$

2.6. **Proposition.** The triangulated category $Stmod^{lf}(\mathfrak{S}, R)$ is compactly generated and its subcategory of compact objects identifies with the idempotent completion of $stmod(\mathfrak{S}, R)$.

Proof. The canonical functor from a Frobenius category to its stable category preserves coproducts. Then, the statement follows by [6, Proposition 3.4.15].

2.7. **Lemma.** For any $x \in \mathcal{G}$, the right adjoint u_x^r of u_x preserves coproducts.

Proof. Note that, for any $F \in \mathsf{Mod}\,\mathfrak{G}$ and any $x \in \mathfrak{G}$, we have

$$F(x) = \operatorname{Hom}_{R}(R, u_{x}F) = \operatorname{Nat}(u_{x}^{l}R, F).$$

Hence, by the Yoneda lemma, $u_x^l R$ is precisely $R[h_x]$, the composite of the free R-module functor R[-] with the representable functor $h_x := hom(x, -)$.

To show u_x^r preserves coproducts, it suffices to show each $u_y u_x^r$ $(y \in \mathcal{G})$ preserves coproducts. Indeed, we have

$$\begin{split} u_y u_x^r(-) &= \operatorname{Hom}_R(R, u_y u_x^r -) = \operatorname{Hom}_R\left(u_x u_y^l R, -\right) \\ &= \operatorname{Hom}_R(R[\operatorname{hom}(x, y)], -) = (-)^{\operatorname{hom}(x, y)}, \end{split}$$

which preserves coproducts since hom(x, y) is finite.

- 2.8. Notation. We write $\mathbf{K}^{lf}(\mathsf{Proj}\,\mathfrak{G},R)$ for the localising subcategory of $\mathbf{K}(\mathsf{Proj}\,\mathfrak{G})$ generated by the objects satisfying the following equivalent conditions:
 - (a) X is compact in $\mathbf{K}(\mathsf{Proj}\,\mathcal{G})$ and has K-projective values;
 - (b) X fits into an extension $0 \to X'' \to X \to X' \to 0$ such that $X' = \mathbf{i}F$ for some $F \in \mathsf{mod}(\mathcal{G}, R)$ and X'' is perfect¹;
 - (c) X is in $\mathbf{K}^{+,b}(\operatorname{proj} \mathfrak{G})$: it is a complex in $\operatorname{proj} \mathfrak{G} := \operatorname{Proj} \mathfrak{G} \cap \operatorname{mod}(\mathfrak{G},R)$ that is bounded from below (i.e. $X^n = 0$ for $n \ll 0$) and cohomologically bounded from above (i.e $\operatorname{H}^n(X) = 0$ for $n \gg 0$), where the cohomology is defined in the ambient exact category $\operatorname{mod}(\mathfrak{G},R)$.

Proof. (of the equivalence) (a) \Rightarrow (c): Suppose X is compact in $\mathbf{K}(\mathsf{Proj}\,\mathcal{G})$ and has K-projective values. Since each u_x^r preserves coproducts, the valuation functor u_x : $\mathbf{K}(\mathsf{Proj}\,\mathcal{G}) \to \mathbf{K}(\mathsf{Proj}\,R)$ preserves compactness. Then, each value X(x) is a compact object in $\mathbf{K}(\mathsf{Proj}\,R)$ and, by [7, Proposition 7.6], belongs to $\mathbf{K}^{+,b}(\mathsf{proj}\,R)$. Therefore, X is in $\mathbf{K}^{+,b}(\mathsf{proj}\,\mathcal{G})$.

- (b) \Rightarrow (a): It suffices to verify that both $X' = \mathbf{i}F$ and X'' are compact and have K-projective values. Clearly, X'' is compact, and the later statement is evident. Since $F \in \mathsf{mod}(\mathcal{G}, R)$ is noetherian, by [5, Lemma 2.1], $X' = \mathbf{i}F$ is compact.
- (b) \Leftrightarrow (c): For a complex X in $\mathbf{K}^{+,b}(\mathsf{proj}\,\mathfrak{G})$, truncating it at degree n for sufficiently large n yields the extension.
- 2.9. Remark. If F is a complex in $\mathbf{K}^{lf}(\mathsf{Proj}\,\mathfrak{G},R)$, its each value F(x) is then perfect, since F(x) is both compact and K-projective.

We write $\mathbf{D}^{\mathrm{perf}}(\mathfrak{G})$ for the full subcategory $\mathbf{D}(\mathfrak{G})$ consisting of perfect complexes.

2.10. **Proposition.** The triangulated category $\mathbf{K}^{lf}(\mathsf{Proj}\,\mathfrak{G},R)$ is compactly generated and the canonical functor from it to $\mathbf{D}(\mathfrak{G})$ induces a triangle equivalence from its subcategory $\mathbf{K}^{lf}(\mathsf{Proj}\,\mathfrak{G},R)^c$ of compact objects to $\mathbf{D}^b(\mathsf{mod}(\mathfrak{G},R))$.

Proof. The compact generation follows from the construction. The equivalence of descriptions of objects in $\mathbf{K}^{+,b}(\mathsf{proj}\,\mathfrak{G})$ shows that $\mathbf{K}^{\mathrm{lf}}(\mathsf{Proj}\,\mathfrak{G},R)^c = \mathbf{K}^{+,b}(\mathsf{proj}\,\mathfrak{G})$. The canonical functor $\mathbf{K}^{+,b}(\mathsf{proj}\,\mathfrak{G}) \to \mathbf{D}^b(\mathsf{mod}(\mathfrak{G},R))$ is a triangle equivalence since $\mathsf{mod}(\mathfrak{G},R)$ has enough injective objects.

2.11. Corollary. The canonical functor induces a recollement

$$\mathsf{StMod}^{\mathrm{lf}}(\mathfrak{G},R) \xleftarrow{\qquad \qquad \mathbf{t}} \mathbf{K}^{\mathrm{lf}}(\mathsf{Proj}\,\mathfrak{G},R) \xleftarrow{\qquad \mathbf{p}} \mathbf{D}(\mathfrak{G})$$

and the pair of left adjoints (\mathbf{p}, \mathbf{t}) induces (when restricted to compact objects) a triangle equivalence

$$\mathbf{D}^b(\mathsf{mod}(\mathfrak{G},R))/\,\mathbf{D}^{\mathrm{perf}}(\mathfrak{G}) \stackrel{\sim}{\longrightarrow} \mathsf{stmod}(\mathfrak{G},R).$$

 $^{^{1}}$ Recall that a complex is *perfect* if it is quasi-isomorphic to a bounded complex of notherian projective objects.

Proof. The functorial injective resolution **i** defines a right adjoint of the canonical functor **q**. This yields the right half of the recollement; the left half is a consequence, where we identify $\mathsf{StMod}^{\mathsf{lf}}(\mathcal{G},R)$ with $\mathsf{Ac}(\mathsf{Proj}\,\mathcal{G},R)$ by Lemma 2.4.

The description of compact objects follows from Propositions 2.6 and 2.10. The last statement follows from [6, Proposition 4.4.18]: for any Frobenius category \mathcal{A} with full subcategory of projective objects \mathcal{P} , we have $\mathbf{D}^b(\mathcal{A})/\mathbf{D}^b(\mathcal{P}) \simeq \operatorname{St} \mathcal{A}$. \square

2.12. Notation. We write $\mathsf{Rep}(\mathfrak{G},R)$ for the triangulated category $\mathbf{K}^{\mathsf{lf}}(\mathsf{Proj}\,\mathfrak{G},R)$ and $\mathsf{rep}(\mathfrak{G},R)$ for $\mathbf{D}^b(\mathsf{mod}(\mathfrak{G},R))$. Recall that $\mathsf{Rep}(\mathfrak{G},R)^c \simeq \mathsf{rep}(\mathfrak{G},R)$.

Note that, for the *delooping groupoid* $\mathcal{B}G$ of G (the one-object groupoid with G as its only hom-set), our catefories $\mathsf{Rep}(\mathcal{B}G,R)$ and $\mathsf{rep}(\mathcal{B}G,R)$ are the same as the categories $\mathsf{Rep}(G,R)$ and $\mathsf{rep}(G,R)$ in [2]. In what follows, we will drop the letter \mathcal{B} in the notation $\mathcal{B}G$ when it appears in a notation of category such as $\mathsf{Rep}(\mathcal{B}G,R)$.

3. RIGIDLY-COMPACTLY GENERATION

In this section, we show that the tensor structure (Remark 1.3) on the abelian tensor category Mod \mathcal{G} induces one on the triangulated category Rep(\mathcal{G} , R) making it a rigidly-compactly generated tensor triangulated category.

3.1. **Lemma.** The tensor structure on $Mod \mathcal{G}$ induces one on $Rep(\mathcal{G}, R)$. The tensor unit is given by the injective resolution iR of the constant representation R.

Proof. If F and G are two projective R-representations, then so is $F \otimes G$ by the characterization of projectivity in Proposition 1.6. Hence, the tensor product on Mod \mathcal{G} descends to $\mathbf{K}(\mathsf{Proj}\,\mathcal{G})$. On the other hand, the entire tensor structure restricts to $\mathsf{mod}(\mathcal{G},R)$, which induces one on $\mathsf{rep}(\mathcal{G},R) = \mathbf{D}^b(\mathsf{mod}(\mathcal{G},R))$. Since the $\mathsf{Rep}(\mathcal{G},R)^c$ is equivalent to $\mathsf{rep}(\mathcal{G},R)$, where a triangle equivalence is given by the functorial injective resolution \mathbf{i} (cf. Notation 2.8), we conclude that: 1, the tensor product restricts to $\mathsf{Rep}(\mathcal{G},R)^c$ and induces the derived tensor product on $\mathsf{rep}(\mathcal{G},R)$; and 2, the injective resolution $\mathbf{i}\underline{R}$ is the tensor unit in $\mathsf{Rep}(\mathcal{G},R)^c$. Now, since $\mathsf{Rep}(\mathcal{G},R)$ is compactly generated, we conclude that the tensor structure on $\mathsf{Mod}\,\mathcal{G}$ induces one on $\mathsf{Rep}(\mathcal{G},R)$ with the tensor unit $\mathbf{i}\underline{R}$.

Rigidity. A tensor category \mathcal{T} is *closed* if it has *internal Hom objects* $\underline{\mathrm{Hom}}(-,-)$ characterized by the *tensor-Hom adjunction*

$$\operatorname{Hom}_{\mathfrak{T}}(X \otimes Y, Z) \cong \operatorname{Hom}_{\mathfrak{T}}(X, \operatorname{Hom}(Y, Z)).$$

For any objects $X, Y \in \mathcal{T}$, the above adjunction provides a natural map

$$(3.2) \qquad \underline{\operatorname{Hom}}(X, \mathbf{1}) \otimes Y \longrightarrow \underline{\operatorname{Hom}}(X, Y),$$

and X is rigid if this map is an isomorphism for all Y. If all objects are rigid, one says that \mathcal{T} is rigid.

3.3. Example. The tensor category $\mathsf{Mod}\, \mathcal{G}$ is closed, where the internal Hom object $\underline{\mathsf{Hom}}(F,G)$ is given by $x \mapsto \mathsf{Hom}_R(F(x),G(x))$ and $f \mapsto F(f^{-1})^* \circ G(f)_*$. Clearly, a R-representation F is rigid if and only if each R-module F(x) is rigid, namely, finitely generated and projective.

The subcategory $\mathsf{mod}(\mathcal{G}, R)$ is rigid. Indeed, if $F, G \in \mathsf{mod}(\mathcal{G}, R)$, then it is evident that $\mathsf{Hom}(F, G) \in \mathsf{mod}(\mathcal{G}, R)$. Now, the natural map Eq. (3.2) becomes

$$\underline{\operatorname{Hom}}(F,\underline{R})\otimes G\longrightarrow \underline{\operatorname{Hom}}(F,G),$$

which is an isomorphism if and only if the natural maps

$$\operatorname{Hom}_R(F(x),R)\otimes G(x)\longrightarrow \operatorname{\underline{Hom}}(F(x),G(x))$$

are isomorphisms, which is true since the R-modules F(x) are finitely generated and projective.

Let \mathcal{T} be a compactly generated tensor triangulated category. Then, \mathcal{T} admits a closed structure $\underline{\mathrm{Hom}}(-,-)$ since the tensor product preserves coproducts and hence admits a right adjoint. Assume that $\mathbf{1}$ is compact. Then, every rigid object is compact. If the converse is true, then one says that \mathcal{T} is is rigidly-compactly generated.

3.4. **Proposition.** The tensor triangulated category $Rep(\mathfrak{G}, R)$ is rigidly-compactly generated.

Proof. Since $\operatorname{Rep}(\mathfrak{G}, R)$ is compactly generated and it has been shown in Lemma 3.1 that $\operatorname{Rep}(\mathfrak{G}, R)^c$ is a tensor subcategory, it suffices to show that $\operatorname{Rep}(\mathfrak{G}, R)^c$ is rigid. The latter is tensor triangulated equivalent to $\mathbf{D}^b(\operatorname{\mathsf{mod}}(\mathfrak{G}, R))$, whose rigidity follows from the rigidity of $\operatorname{\mathsf{mod}}(\mathfrak{G}, R)$, which has been shown in Example 3.3.

4. Tensor triangulated decomposition

In this section, we show that $Rep(\mathcal{G}, R)$ is tensor triangulated equivalent to a product of several rigidly-compactly generated tensor triangulated categories.

- 4.1. Notation. For any object x of \mathfrak{G} , let \mathfrak{G}_x denote its automorphism group. Note that, for members in a given isomorphism class $[x] \in \pi_0(\mathfrak{G})$, their automorphism groups are conjugated to each other by the involved isomorphism. As in Section 1, we fix a choice \mathfrak{G} of representatives of the isomorphism classes in $\pi_0(\mathfrak{G})$ and write $\mathfrak{G}_{[x]}$ for the automorphism group $\mathfrak{G}_{\mathfrak{G}[x]}$. Then the skeleton of \mathfrak{G} , denoted as \mathfrak{sk} \mathfrak{G} , can be constructed as follows: its objects are $\pi_0(\mathfrak{G})$ and the only hom-sets are $hom([x],[x]) := \mathfrak{G}_{[x]}$.
- 4.2. **Lemma.** The abelian tensor category $Mod \mathfrak{G}$ is equivalent to

$$\prod_{[x]\in\pi_0(\mathfrak{G})}\operatorname{Mod}\mathfrak{G}_{[x]}.$$

Proof. Let $\mathsf{sk}\,\mathcal{G}$ denote the skeleton of \mathcal{G} . Then, it is clear that the abelian tensor category $\mathsf{Mod}\,\mathcal{G}$ is tensor equivalent to $\mathsf{Fun}(\mathsf{sk}\,\mathcal{G},\mathsf{Mod}\,R)$. Note that $\mathsf{ob}(\mathsf{sk}\,\mathcal{G}) = \pi_0(\mathcal{G})$ and the only hom-sets in $\mathsf{sk}\,\mathcal{G}$ are the automorphism groups $\mathcal{G}_{[x]}$. Hence, $\mathsf{sk}\,\mathcal{G}$ is the disjoint union $\coprod_{[x]\in\pi_0(\mathcal{G})}\mathcal{B}\,\mathcal{G}_{[x]}$ of the delooping groupoids of $\mathcal{G}_{[x]}$. The statement then follows.

Replacing $\mathsf{Mod}(R)$ by $\mathsf{Proj}(R)$ and $\mathsf{Proj}(R)\cap\mathsf{mod}(R)$ in the above argument, we conclude that:

4.3. Corollary. We have the following tensor equivalence:

$$\operatorname{Mod}(\mathfrak{G},R) \simeq \prod_{[x] \in \pi_0(\mathfrak{G})} \operatorname{Mod} \big(\mathfrak{G}_{[x]},R\big) \quad and \quad \operatorname{mod}(\mathfrak{G},R) \simeq \prod_{[x] \in \pi_0(\mathfrak{G})} \operatorname{mod} \big(\mathfrak{G}_{[x]},R\big).$$

4.4. **Lemma.** Let $\{A_i\}_{i\in I}$ be a finite family of exact cateogries, and let A be their product category. Then, we have triangle equivalence:

$$\mathbf{D}(\mathcal{A}) \simeq \prod_{i \in I} \mathbf{D}(\mathcal{A}_i).$$

Proof. The similar statements for the homotopy categories of chain complexes are evident. To show the desired equivalence, note that $\mathbf{D}(-)$ is a localisation of $\mathbf{K}(-)$, which is a 2-colimit in the 2-category of categories, while taking product $(-) \times \mathcal{C}$ with a category \mathcal{C} is a left 2-adjoint and hence preserving 2-colimits.

4.5. **Proposition.** We have tensor triangle equivalences:

$$\mathsf{Rep}(\mathfrak{G},R) \simeq \prod_{[x] \in \pi_0(\mathfrak{G})} \mathsf{Rep}\big(\mathfrak{G}_{[x]},R\big) \quad and \quad \mathsf{rep}(\mathfrak{G},R) \simeq \prod_{[x] \in \pi_0(\mathfrak{G})} \mathsf{rep}\big(\mathfrak{G}_{[x]},R\big).$$

Proof. Recall that $rep(\mathfrak{G}, R) = \mathbf{D}^b(mod(\mathfrak{G}, R))$. Hence, the second triangle equivalence follows from Corollary 4.3 and Lemma 4.4. As for the first one, note that

$$\mathbf{K}(\operatorname{Proj} \mathfrak{G}) \simeq \prod_{[x] \in \pi_0(\mathfrak{G})} \mathbf{K} \big(\operatorname{Proj} \mathfrak{G}_{[x]} \big).$$

Since $\operatorname{Rep}(\mathfrak{G},R)$ (resp. $\operatorname{Rep}(\mathfrak{G}_{[x]},R)$) is generated by $\operatorname{Rep}(\mathfrak{G},R)^c \simeq \operatorname{rep}(\mathfrak{G},R)$ (resp. $\operatorname{Rep}(\mathfrak{G}_{[x]},R) \simeq \operatorname{rep}(\mathfrak{G}_{[x]},R)$) as a subcategory of $\mathbf{K}(\operatorname{Proj}\mathfrak{G})$ (resp. $\mathbf{K}(\operatorname{Proj}\mathfrak{G}_{[x]})$), the first triangle equivalence follows from the second one. They are tensor triangle equivalence by discussion of the tensor structures in Section 3.

Groupoid cohomology. The *groupoid cohomology* of an R-representation F of \mathcal{G} is defined to be

$$\mathsf{H}^*(\mathfrak{G},F) \coloneqq \operatorname{Ext}_{\mathfrak{G}}^*(\underline{R},F).$$

As a corollary of Proposition 4.5, we show that the groupoid cohomology decomposes into group cohomologies.

4.6. Corollary. For any R-representation F of \mathfrak{G} , the tensor triangle equivalences in <u>Proposition 4.5</u> induces the following decomposition

$$\mathsf{H}^*(\mathfrak{G},F)\cong\prod_{[x]\in\pi_0(\mathfrak{G})}\mathsf{H}^*\big(\mathfrak{G}_{[x]},F([x])\big),$$

where F([x]) is viewed as a $\mathfrak{G}_{[x]}$ -module in the evident way. In particular, we have the following decomposition of graded commutative R-algebras

$$\mathsf{H}^*(\mathfrak{G}, \underline{R}) \cong \prod_{[x] \in \pi_0(\mathfrak{G})} \mathsf{H}^*(\mathfrak{G}_{[x]}, R),$$

and the aforementioned decomposition respects their actions on each side.

Proof. The tensor triangle equivalences in Proposition 4.5 provides

$$\operatorname{Hom}_{\mathsf{Rep}(\mathfrak{G},R)}^*(X,Y) \cong \prod_{[x] \in \pi_0(\mathfrak{G})} \operatorname{Hom}_{\mathsf{Rep}\left(\mathfrak{G}_{[x]},R\right)}^*(X([x]),Y([x])).$$

Applying this to $i\underline{R}$ and F yields the first statement. The second statement follows from the first one plus the naturality.

5. BIK-(co)stratifications and Balmer spectra

In this section, we recall the notions of (co) stratification in the sense of Benson-Iyengar-Krause [3, 4]. Their basic setup is a rigidly-compactly generated tensor triangulated category $\mathfrak T$ with a graded-commutative noetherian ring S acting on it. The mechanism there produces a support map

$$\operatorname{supp}_{\mathcal{T}^{\circlearrowleft S}} \colon \{ \text{localising ideals of } \mathcal{T} \} \longrightarrow \left\{ \text{subsets of Spec}^{\mathbf{h}}(S) \right\}$$

and a cosupport map

$$\operatorname{cosupp}_{\mathfrak{T}^{\bigcirc S}} \colon \{ \operatorname{colocalising coideals of } \mathfrak{T} \} \longrightarrow \Big\{ \operatorname{subsets of Spec}^{\operatorname{h}}(S) \Big\},$$

where $\operatorname{Spec}^{h}(S)$ denote the homogeneous spectrum of S, i.e. the topological space of homogeneous prime ideals of S. Then, saying tensor triangulated category \mathfrak{T} is stratified by S (resp. costratified by S) is amount to say that the map $\operatorname{supp}_{\mathfrak{T}^{\odot S}}$ (resp. $\operatorname{cosupp}_{\mathfrak{T}^{\odot S}}$) is bijective.

5.1. Example. The stratification and costratification of Rep(G, R), where G is a finite group scheme and R is a commutative noetherian ring, is demonstrated in [2, Theorem A].

Local (co)homology and (co)support. Recall that, in the Zariski topology on $\operatorname{Spec}^{h}(S)$, the closed sets are

$$\mathcal{V}(I) \coloneqq \Big\{ \mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S) \ \Big| \ \mathfrak{p} \supset I \Big\},$$

where I is any homogeneous ideal of S. On the other hand, For any $\mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S)$, there is a specialization closed subset

$$\mathcal{Z}(\mathfrak{p}) := \Big\{ \mathfrak{q} \in \operatorname{Spec^h}(S) \ \Big| \ \mathfrak{q} \not\subset \mathfrak{p} \Big\}.$$

Let \mathcal{W} be a specialization closed subsets of $\operatorname{Spec}^{\mathrm{h}}(S)$. Recall that an S-module M is said to be \mathcal{W} -torsion if $M_{\mathfrak{p}}=0$ for all $\mathfrak{p}\notin\mathcal{W}$. Then, an object $X\in\mathcal{T}$ is said to be \mathcal{W} -torsion if the S-modules $\operatorname{Hom}_{\mathcal{T}}(C,X)$ are \mathcal{W} -torsion for all $C\in\mathcal{T}^c$. The \mathcal{W} -torsion objects form a localising subcategory $\mathcal{T}(\mathcal{W})$. Hence, the inclusion functor admits a right adjoint $\Gamma_{\mathcal{W}}$ fitting into the exact triangle

$$\Gamma_{\mathcal{W}} \longrightarrow \mathrm{id} \longrightarrow L_{\mathcal{W}} \longrightarrow$$

where $L_{\mathcal{W}}$ is the corresponding localisation functor. Both $\Gamma_{\mathcal{W}}$ and $L_{\mathcal{W}}$ admits right adjoints (denoted by $\Lambda^{\mathcal{W}}$ and $V^{\mathcal{W}}$ respectively) fitting into the exact triangle

$$V^{\mathcal{W}} \longrightarrow \mathrm{id} \longrightarrow \Lambda^{\mathcal{W}} \longrightarrow$$

For any $\mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S)$, recall that an S-module M is said to be \mathfrak{p} -local if the localisation map $M \to M_{\mathfrak{p}}$ is invertible. On the other hand, a $\mathcal{V}(\mathfrak{p})$ -torsion module is commonly called a \mathfrak{p} -torsion module. An object X of \mathfrak{T} is said to be \mathfrak{p} -local (resp. \mathfrak{p} -torsion) if the S-modules $\operatorname{Hom}_{\mathfrak{T}}(C,X)$ are \mathfrak{p} -local (resp. \mathfrak{p} -torsion) for all $C \in \mathfrak{T}^c$. Consider the full subcategories

$$\mathcal{T}_{\mathfrak{p}} := \{ X \in \mathcal{T} \mid X \text{ is } \mathfrak{p}\text{-local} \},$$

$$\Gamma_{\mathfrak{p}} \, \mathcal{T} := \{ X \in \mathcal{T} \mid X \text{ is } \mathfrak{p}\text{-local and } \mathfrak{p}\text{-torsion} \}.$$

Note that $\Gamma_{\mathfrak{p}} \mathfrak{T} \subset \mathfrak{T}_{\mathfrak{p}} \subset \mathfrak{T}$ are localising subcategories. In fact, $\mathfrak{T}_{\mathfrak{p}} = L_{\mathcal{Z}(\mathfrak{p})} \mathfrak{T}$ and $\Gamma_{\mathfrak{p}} \mathfrak{T} = \Gamma_{\mathcal{V}(\mathfrak{p})} \mathfrak{T}_{\mathfrak{p}}$ (cf. [3, Corollaries 4.9, 5.10]). The composition

$$\Gamma_{\mathcal{V}(\mathfrak{p})}L_{\mathcal{Z}(\mathfrak{p})}\colon \mathfrak{I}\longrightarrow \Gamma_{\mathfrak{p}}\mathfrak{I}$$

is called the local cohomology functor respect to \mathfrak{p} and is denoted by $\Gamma_{\mathfrak{p}}$. Then, the BIK support of an object X is

$$\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S}}(X) \coloneqq \Big\{ \mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S) \ \Big| \ \Gamma_{\mathfrak{p}}X \neq 0 \Big\}.$$

An object X of T is said to be \mathfrak{p} -complete if the natural map $X \to \Lambda^{\mathcal{V}(\mathfrak{p})}X$ is an isomorphism. Consider the full subcategory

$$\Lambda^{\mathfrak{p}} \mathfrak{T} := \{ X \in \mathfrak{T} \mid X \text{ is } \mathfrak{p}\text{-local and } \mathfrak{p}\text{-complete} \}.$$

Note that $\Lambda^{\mathfrak{p}} \mathfrak{T} \subset \mathfrak{T}_{\mathfrak{p}} \subset \mathfrak{T}$ are colocalising subcategories. In fact, $\mathfrak{T}_{\mathfrak{p}} = V^{\mathcal{Z}(\mathfrak{p})} \mathfrak{T}$ and $\Lambda^{\mathfrak{p}} \mathfrak{T} = \Lambda^{\mathcal{V}(\mathfrak{p})} \mathfrak{T}_{\mathfrak{p}}$ (cf. [4, Corollaries 4.8, 4.9]). The composition

$$\Lambda^{\mathcal{V}(\mathfrak{p})}V^{\mathcal{Z}(\mathfrak{p})}\colon\thinspace \mathfrak{T}\longrightarrow \Lambda^{\mathfrak{p}}\,\mathfrak{T}$$

is called the local homology functor respect to \mathfrak{p} and is denoted by $\Lambda^{\mathfrak{p}}$. Then, the BIK cosupport of an object X is

$$\operatorname{cosupp}_{\mathfrak{T}^{\circlearrowleft S}}(X) \coloneqq \Big\{ \mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S) \ \Big| \ \Lambda^{\mathfrak{p}}X \neq 0 \Big\}.$$

5.2. Definition. The tensor triangulated category \mathcal{T} is said to be stratified by S (resp. costratified by S) if for each $\mathfrak{p} \in \operatorname{Spec}^{\mathrm{h}}(S)$, the localising subcategory $\Gamma_{\mathfrak{p}} \mathcal{T}$ (resp. the colocalising subcategory $\Lambda^{\mathfrak{p}} \mathcal{T}$) is either zero or minimal.

Zariski descent. The notions of BIK-(co)stratification are Zariski-local.

5.3. **Proposition.** Let $\{\mathcal{T}_i^{\circlearrowleft S_i}\}_{i\in I}$ be a finite faimly of rigidly-compactly generated tensor triangulated categories \mathcal{T}_i equipped with graded-commutative noetherian rings S_i acting on each of them respectively. Let $\mathcal{T} = \prod_{i \in I} \mathcal{T}_i$, $S = \prod_{i \in I} S_i$, and S acts on \mathcal{T} in the evident way. By abuse of notation, we write π_i for the i-th projection of either categories or rings. Then, \mathcal{T} is stratified by S if and only if each \mathcal{T}_i is stratified by S_i . In particular, we have

$$\operatorname{supp}_{\mathfrak{I}^{\circlearrowleft S}} = \bigcup_{i \in I} \pi_i^* \operatorname{supp}_{\mathfrak{I}_i^{\circlearrowleft S_i}} \pi_i \quad and \quad \operatorname{cosupp}_{\mathfrak{I}^{\circlearrowleft S}} = \bigcup_{i \in I} \pi_i^* \operatorname{cosupp}_{\mathfrak{I}_i^{\circlearrowleft S_i}} \pi_i.$$

Proof. We first show the identities on supports and cosupports. Indeed, for any object X of each \mathcal{T}_i , by [4, Corollary 7.8], we have

$$\pi_i^*\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S_i}}(X)\subset\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S}}(X)\quad\text{and}\quad\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S}}(X)\subset\pi_i^*\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S_i}}(X).$$

Hence, $\operatorname{supp}_{\mathfrak{T}^{\circlearrowleft S}}(X) = \pi_i^* \operatorname{supp}_{\mathfrak{T}_i^{\circlearrowleft S_i}}(X)$. Since $\operatorname{id} = \sum_{i \in I} \pi_i$ on \mathfrak{T} , The identity on supports then follows. The identity on cosupports is shown in a similar way.

From the identities on supports and cosupports, the only if part is evident. Indeed, we have $\Gamma_{\mathfrak{p}} \, \mathfrak{T}_i = \pi_i \Gamma_{\mathfrak{p}} \, \mathfrak{T}$ and $\Lambda^{\mathfrak{p}} \, \mathfrak{T}_i = \Lambda^{\mathfrak{p}} \, \mathfrak{T} \cap \mathfrak{T}_i$.

As for the if part, first note that for any prime $\mathfrak{p} \in \operatorname{Spec}^{h} S$, we have $\mathfrak{p} = \pi_{i}^{*} \pi_{i} \mathfrak{p}$ for some i. Hence,

$$\mathcal{V}(\mathfrak{p}) = \pi_i^* \, \mathcal{V}(\pi_i \mathfrak{p}) \quad ext{and} \quad \mathcal{Z}(\mathfrak{p}) = \pi_i^* \, \mathcal{Z}(\pi_i \mathfrak{p}) \cup \bigsqcup_{j \neq i} \operatorname{Spec}^{\operatorname{h}} R_j.$$

By [3, Proposition 6.1], this gives us

$$\Gamma_{\mathfrak{p}} = \Gamma_{\mathcal{V}(\mathfrak{p})} L_{\mathcal{Z}(\mathfrak{p})} = \Gamma_{\pi_i^* \, \mathcal{V}(\pi_i \mathfrak{p})} L_{\pi_i^* \, \mathcal{Z}(\pi_i \mathfrak{p})} L_{\bigsqcup_{j \neq i} \operatorname{Spec}^{\operatorname{h}} R_j},$$

$$\Lambda^{\mathfrak{p}} = V^{\mathcal{Z}(\mathfrak{p})} \Lambda^{\mathcal{V}(\mathfrak{p})} = V^{\pi_i^* \, \mathcal{Z}(\pi_i \mathfrak{p})} \Lambda^{\pi_i^* \, \mathcal{V}(\pi_i \mathfrak{p})} V^{\bigsqcup_{j \neq i} \operatorname{Spec}^{\operatorname{h}} R_j}$$

Note that, since $\operatorname{Spec}^{\mathrm{h}}(R) \setminus \bigsqcup_{j \neq i} \operatorname{Spec}^{\mathrm{h}}(R_j) = \operatorname{Spec}^{\mathrm{h}}(R_i)$, by [3, Theorem 5.6] and [4, Proposition 4.7], the functors $L_{\bigsqcup_{j \neq i} \operatorname{Spec}^{\mathrm{h}}(R_j)}$ and $V^{\bigsqcup_{j \neq i} \operatorname{Spec}^{\mathrm{h}}(R_j)}$ vanish on \mathfrak{T}_j

whenever $j \neq i$ and acts as the identity on \mathcal{T}_i . Therefore, by [4, Theorem 7.7],

$$\Gamma_{\mathfrak{p}} = \Gamma_{\mathcal{V}(\pi_{i}\mathfrak{p})} L_{\mathcal{Z}(\pi_{i}\mathfrak{p})} \pi_{i} = \Gamma_{\pi_{i}\mathfrak{p}} \pi_{i},$$

$$\Lambda^{\mathfrak{p}} = V^{\mathcal{Z}(\pi_{i}\mathfrak{p})} \Lambda^{\mathcal{V}(\pi_{i}\mathfrak{p})} \pi_{i} = \Lambda^{\pi_{i}\mathfrak{p}} \pi_{i}.$$

Now, suppose S is a proper localizing (resp. colocalizing) subcategory of $\Gamma_{\mathfrak{p}} \mathfrak{T}$ (resp. $\Lambda^{\mathfrak{p}} \mathfrak{T}$). Then, the above formulas show that $S = S_i$ for a proper localizing (resp. colocalizing) subcategory S_i of $\Gamma_{\pi_i \mathfrak{p}} \mathfrak{T}_i$ (resp. $\Lambda^{\pi_i \mathfrak{p}} \mathfrak{T}_i$). Since \mathfrak{T}_i is stratified (resp. costratified) by S_i , we must have $S_i = 0$. Consequently $\Gamma_{\mathfrak{p}} \mathfrak{T}$ (resp. $\Lambda^{\mathfrak{p}} \mathfrak{T}$) is either zero or minimal. Namely, \mathfrak{T} is stratified (resp. costratified) by S.

Balmer spectra. The Balmer spectrum [1] of a tensor triangulated category is a crucial notion in its geometric study.

5.4. Definition. For a tensor triangulated category \mathcal{T} , its Balmer spectrum $\operatorname{Spc}(\mathcal{T})$ is the set of prime tensor ideals of \mathcal{T} with the topology whose closed sets are

$$\mathcal{Z}(S) := \{ \mathcal{P} \in \operatorname{Spc}(\mathcal{T}) \mid S \cap \mathcal{P} = \emptyset \},$$

where \mathcal{S} is any set of objects.

For a rigidly-compactly generated tensor triangulated category \mathfrak{T} stratified by a raded-commutative noetherian ring S, restricting the support map to the tensor ideals in the subcategory \mathfrak{T}^c of compact objects yields a computation of the Balmer spectrum $\operatorname{Spc}(\mathfrak{T}^c)$.

5.5. Example. As a consequence of [2, Theorem A], one gets a computation of the Balmer spectrum:

$$\operatorname{Spc}(\operatorname{rep}(G,R)) \cong \operatorname{Spec}^{\operatorname{h}} \operatorname{H}^*(G,R).$$

6. Conclusion

We are now ready to state the main result of this paper.

6.1. **Theorem.** Let R be a commutative noetherian ring and $\mathfrak G$ an essentially finite groupoid. The tensor triangulated category $\mathsf{Rep}(\mathfrak G,R)$ is stratified and costratified by the action of $\mathsf{H}^*(\mathfrak G,\underline R)$, with (co)support equal to $\mathsf{Spec}^{\mathsf{h}}\,\mathsf{H}^*(\mathfrak G,\underline R)$. In particular one gets a computation of the Balmer spectrum of the derived category:

$$\operatorname{Spc}(\operatorname{\mathsf{rep}}(\mathfrak{G},R)) \cong \operatorname{Spec}^{\operatorname{h}} \mathsf{H}^*(\mathfrak{G},\underline{R}).$$

Proof. By Proposition 4.5, the rigidly-compactly generated tensor triangulated category $\mathfrak{T}:=\mathsf{Rep}(\mathfrak{G},R)$ decomposes into $\mathfrak{T}_{[x]}:=\mathsf{Rep}(\mathfrak{G}_{[x]},R)$. By Corollary 4.6, the groupoid cohomology ring $S:=\mathsf{H}^*(\mathfrak{G},\underline{R})$ decomposes into group cohomology rings $S_{[x]}:=\mathsf{H}^*(\mathfrak{G}_{[x]},R)$. Hence, we are in the situation of Proposition 5.3. By Example 5.1, each $\mathfrak{T}_{[x]}$ is stratified and costratified by $S_{[x]}$. Therefore, \mathfrak{T} is stratified and costratified by S. The computation of the Balmer spectrum then follows. \square

References

- [1] P. Balmer. The spectrum of prime ideals in tensor triangulated categories. *J. Reine Angew. Math.*, 588:149–168, 2005. 11
- [2] T. Barthel, D. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova. Lattices over finite group schemes and stratification, 2023. 1, 2, 3, 6, 9, 11
- [3] D. Benson, S. B. Iyengar, and H. Krause. Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4), 41(4):575–621, 2008. 8, 9, 10

- [4] D. J. Benson, S. B. Iyengar, and H. Krause. Colocalizing subcategories and cosupport. J. Reine Angew. Math., 673:161–207, 2012. 8, 10, 11
- [5] H. Krause. The stable derived category of a noetherian scheme. Compos. Math., 141(5):1128–1162, 2005.
- [6] H. Krause. Homological theory of representations, volume 195 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2022. 3, 4, 6
- [7] A. Neeman. The homotopy category of flat modules, and Grothendieck duality. Invent. Math., $174(2):255-308,\ 2008.\ 5$