Материалы для подготовки к промежуточному экзамену по математическому анализу

группы ИМ12-05Б, ИМ12-06Б, ИМ12-07Б

Теоретические вопросы

- 1. Понятие плоской кривой. Способы задания. Длина кривой.
- 2. Определение криволинейного интеграла 1 рода.
- 3. Формула для вычисления криволинейного интеграла 1 рода (с доказательством).
- 4. Свойства криволинейного интеграла 1 рода.
- 5. Определение криволинейного интеграла 2 рода.
- 6. Физический смысл криволинейного интеграла 2 рода.
- 7. Формула для вычисления криволинейного интеграла 2 рода (с доказательством).
- 8. Формула Грина.
- 9. Условия независимости криволинейного интеграла 2 рода от пути интегрирования.
- 10. Понятие поверхности. Определение гладкой поверхности.
- 11. Касательная плоскость к поверхности.
- 12.Площадь поверхности.
- 13. Определение поверхностного интеграла первого рода, формула для его вычисления, физический смысл.
- 14. Ориентация поверхности.
- 15. Определение поверхностного интеграла второго рода и формула для его вычисления.

<u>Типовые задания по практике</u> (Л.Д. Кутасов и др. Сборник задач по математическому анализу. Функции нескольких переменных.-М.:ФИЗМАТЛИТ, 2000.)

тема	задания
Интегралы, зависящие от	13.2, 13.14,14.1, 14,3
параметра	
Эйлеровы интегралы	16.6,16.7,
Криволинейные интегралы	10.1,10.21, 10.22, 10.45, 10.52,
	10.56, 10.69,10,101, 10.117
Поверхностные интегралы	6.1, 11.1, 11.12
первого рода	

Образец экзаменационного билета

- 1. Дать определение гладкой поверхности. (5баллов)
- 2. Доказать формулу Грина.(15 баллов)
- 3. Исследовать интеграл $\int_0^{+\infty} \frac{dx}{1+x^{\alpha}}$ на равномерную сходимость на множестве $E=(2,+\infty)$. (10 баллов)
- 4. Найти работу поля $F = (\frac{x^2}{y}, \frac{y}{x}, \cos z)$ вдоль контура L, где L виток винтовой линии $x = a \cos t$, $y = a \sin t$, z = bt от точки (a; 0; 0) до точки $(0; 0; 2\pi b)$. (10 баллов)
- 5. Вычислить интеграл $\iint_S (x+y+z)dS$, где S-часть плоскости x+2y+4z=4, выделяемая условиями $x\geq 0, y\geq 0, z\geq 0$. (10 баллов)