Probability 2 - Notes

Dom Hutchinson

May 1, 2019

Contents

T	Inti	itroduction						
	1.1	The Probability Triple	3					
	1.2	The Sigma Field	3					
	1.3	Definitions of Stochastic Processes	5					
	1.4	Markov Property	6					
	1.5	Increasing & Decreasing Sequences of Events	7					
2	Rar	ndom Walks	9					
	2.1	Absorbing Barriers	9					
	2.2	Transience and Recurrence	11					
	2.3	Applications of Random Walks	14					
	2.4	Stopping Time & Wald's Lemma	15					
3	Ma	rkov Chains in Discrete Time	18					
	3.1	Analysis by Class	19					
	3.2	Stationary Distributions	22					
	3.3	Existence & Uniqueness of Stationary Distributions	23					
	3.4	Periodicity	24					
4	Ma	rkov Chains in Continuous Time	25					
	4.1	Poisson Process	26					
	4.2	Birth Death Process	27					
		4.2.1 Linear Birth Processes	27					
		4.2.2 Linear Birth & Death Processes	28					
		4.2.3 Generalised Birth & Death Processes	28					
	4.3	General Markov Chains in Continuous Time	30					
	4.4	Class Structure, Recurrence & Stationary Distributions	33					
5 Brownian Motion								
	5.1	Basic Notions	35					
	5.2	Definition & Construction of Brownian Motion	36					
	5.3	Properties of Brownian Motion	37					
		•						
	5.4	The Reflection Principle & First Passage Time	39					
	$5.4 \\ 5.5$	The Reflection Principle & First Passage Time	39 40					
	-							
	5.5	Martingales	40					

0	Reference			
	0.1	Notation	48	
	0.2	Definitions	48	
	0.3	Theorems	49	
	0.4	Probability Distributions	50	

1 Introduction

1.1 The Probability Triple

Definition 1.1 - Sample Space, Ω

A Sample Space, Ω , is the set of all possible outcomes.

Definition 1.2 - Sigma Field, σ - Field

A Sigma Field, \mathcal{F} , of subsets of a sample space Ω satisfies the following conditions

- i) $\emptyset \in \mathcal{F}$;
- ii) If $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$; And,
- iii) If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ where $A^c := \Omega \setminus A$.

Definition 1.3 - Probability Space

A Probability Space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$.

1.2 The Sigma Field

Definition 1.4 - \mathcal{F} -measurable

Events in \mathcal{F} are said to be \mathcal{F} -measurable.

If an event A is \mathcal{F} -measurable then the information in \mathcal{F} is enough to determine whether, or not, A has occurred.

If a function f is \mathcal{F} -measurable then then the information in \mathcal{F} is enough to determine to value of f.

N.B. Occasionally this is referred to simply as measurable.

Remark 1.1 - Sigma Fields from Collection of Events

The σ -field generated by a collection of events \mathcal{C} , $\sigma(\mathcal{C})$, is the smallest σ -field that contains \mathcal{C} . N.B. This is the intersection of all σ -fields containing events of \mathcal{C} .

Definition 1.5 - Power Set

The Power Set of set S, 2^S , is a set that consist of all subsets of S.

Remark 1.2 - Binary Representation of Power Set

A *Power Set* can be represented by a binary table where there is a unique column for each element and then each row reads as a different binary value.

If the value in $A_{ij} = 1$ then a_i is in subset j.

Else, if the value in $A_{ij} = 0$ then a_i is not in subset j.

Example 1.1 - Binary Representation of Power Set

Here is a binary representation of the power set of $\Omega = \{\omega_1, \omega_2, \omega_3\}$.

ω_1	ω_2	ω_1	_
0	0	0	Ø
0	0	1	$\{\omega_3\}$
0	1	0	$\{\omega_2\}$
0	1	1	$\{\omega_2,\omega_3\}$
1	0	0	$\{\omega_1\}$
1	0	1	$\{\omega_1,\omega_3\}$
1	1	0	$\{\omega_1,\omega_2\}$
1	1	1	$\{\omega_1,\omega_2,\omega_3\}$

Remark 1.3 - Individual Events in \mathcal{F}

Let $\omega_1, \omega_2 \in \Omega$ be different events & \mathcal{F} be a σ -field on Ω .

We can only distinguish between ω_1 & ω_2 in \mathcal{F} if they are in distinct elements of \mathcal{F} .

N.B. The converse does not hold.

Remark 1.4 - All σ -Fields have a disjoint subset that form the Population

If Ω is a finite set, then given any σ -field \mathcal{F} on Ω there exists a finest partition \mathcal{P} of Ω under \mathcal{F} .

N.B.
$$\mathcal{P} = \{A_1, \dots, A_n\}$$
 st $\bigcup_{i=1}^n A_i = \Omega \& A_i \cap A_j = \emptyset \ \forall i, j \in \mathbb{N}$. Example 1.2 - ω -Field

Consider the scenario in which two coins are tossed and each value is recorded.

We have that $\Omega = \{HH, HT, TH, TT\}.$

Here are some possible ω -fields.

Definition 1.6 - Borel σ -Field

The Borel σ -Field is used for the uncountable set $\Omega = [0, 1]$. It is generated by all possible open subintervals of form $(a, b) \subset [0, 1], 0 \le a < b \le 1$.

Theorem 1.1 - Subsets of σ -Fields

Here are three similar theorems about the subset of a σ -field.

- i) Arbitrary intersections of a σ -field are σ -field.
- ii) For any \mathcal{C} consisting of subsets of Ω , $\sigma(\mathcal{C})$ is a σ -field.
- iii) The power set of Ω is a σ -field.

Proof 1.1 - *Theorem 1.1*

Let \mathcal{F}_n be a collection of σ -fields for n in some indexing set.

We need to verify the three defining axioms of a σ -field for $\bigcap \mathcal{F}_n$.

i) Since
$$\mathcal{F}_n$$
 is a σ – field, $\emptyset \in \mathcal{F}_n$
Hence $\emptyset \in \bigcap_n \mathcal{F}_n$
ii) Take $A_1, A_2, \dots \in \bigcap_n \mathcal{F}_n$

ii) Take
$$A_1, A_2, \dots \in \bigcap_n \mathcal{F}_n$$

Then $\forall i, n$ we have $A_i \in \mathcal{F}_n$
By second axiom $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_n$
Hence $\bigcup_{i=1}^{\infty} A_i \in \bigcap_n \mathcal{F}_n$
iii) Take $A \in \bigcap_n \mathcal{F}_n$

Hence
$$\bigcup_{i=1}^{\infty} A_i \in \bigcap_n \mathcal{F}_n$$

iii) Take
$$A \in \bigcap_{n} \mathcal{F}_{n}$$
Then $\forall n$ we have $A \in \mathcal{F}_{n}$
Since \mathcal{F}_{n} is a σ – field then $A^{c} \in \mathcal{F}_{n}$
Hence $A^{c} \in \bigcap_{n} \mathcal{F}_{n}$

Since all axioms hold then $\bigcap \mathcal{F}_n$ is a σ -field.

So theorem i) holds.

Theorem ii) is a direct consequence of i) so holds.

For Theorem *iii*) we need to check all axioms hold.

- i) $\emptyset \in 2^{\Omega}$ since $\emptyset \in \Omega$
- ii) Take $A_1, A_2 \in 2^{\Omega}$ then $A_i \subset \Omega \ \forall i$. Since $\bigcup_{i=1}^{\infty} A_i \subset \Omega \implies \bigcup_{i=1}^{\infty} A_i \in 2^{\Omega}$. Take $A \in 2^{\Omega}$ then $A \subset \Omega$.

Since all three axioms hold we conclude that 2^{Ω} is a σ -field.

Definition 1.7 - Probability Measure

A Probability Measure \mathbb{P} is a function $\mathbb{P}: \mathcal{F} \to [0,1]$ which satisfies the following axioms

- i) $\mathbb{P}(\emptyset) = 0$;
- ii) $\mathbb{P}(\Omega) = 1$; And,
- iii) If $A_1, A_2, \dots \in \mathcal{F}$ are pair-wise disjoint then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$. This is called σ -additivity.

1.3 **Definitions of Stochastic Processes**

Definition 1.8 - Filtration

A Filtration is a family of σ -fields, $\{\mathcal{F}_t : t \geq 0\}$, such that $\mathcal{F}_{t_1} \subset \mathcal{F}_{t_2}$.

Definition 1.9 - Stochastic Process

For any set $\Delta \subseteq \mathbb{R}$, a collection $\{X_t\}_{t \in \Delta}$ of random variables is called a *Stochastic Process*. N.B. This indexing set may be continuous or discrete. Typically X_n denotes a discrete time process & X_t a continuous time process.

Definition 1.10 - Adapted Stochastic Processes

An Adapted Stochastic Process is a Stochastic Process that cannot see into the future.

Each Stochastic process, X, is associated with a filtration \mathcal{F}_n such that X_n is \mathcal{F}_n -measurable $\forall n \in \mathbb{N} \text{ (or } X_t \text{ is } \mathcal{F}_t\text{-measurable } \forall t \in \mathbb{R}^+ \text{ if continuous)}.$

The process X is said to be adapted to the filtration \mathcal{F}_n or \mathcal{F}_t .

Definition 1.11 - State Space

The State Space, S, of a stochastic process is the set of all values that a quantity can take at a specific time.

Remark 1.5 - Sample Space of Stochastic Processes

For a discrete-time stochastic process Ω is typically taken to be $S^{\mathbb{N}} = \{(x_0, x_1, \dots) : x_i \in S\}.$ For a continuous-time stochastic process Ω is typically taken to be the space of all functions $f:[0\infty)\to\mathbb{R}$ and/or right continuous functions with left limits.

Example 1.3 - Discrete-Time Stochastic Process

Consider a guy who tosses a coin infinitely main times. Let the sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ encode the outcomes by mapping heads to 0 and tail to 1.

$$\begin{array}{rcl} S & = & \{0,1\} \\ \Omega & = & \{H,T\} \\ \Delta & = & \mathbb{N} \end{array}$$

Example 1.4 - Continuous-Time Stochastic Process

Packets arrive at a router and need to be stored until they can be pass on. The router has a finite capacity buffer (with capacity C), and packets arrive and depart in continuous time.

$$S \ = \ \{0,\dots,C\} \text{ Discrete}$$

$$\Omega = \text{All right} - \text{continuous paths taking values in } [0, C]$$

$$\Delta = \mathbb{R}^+$$

1.4 Markov Property

Definition 1.12 - *Markov Property*

A Stochastic Process has the Markov Property if future values only depend upon the present value, and no previous values.

i.e.
$$X_{n+1} = f(X_n)$$
.

Definition 1.13 - Markov Chain

A Markov Chain in discrete time is a discrete state space process with the Markov Property. Formally.

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be a discrete time, discrete space stochastic process & $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$ be the filtration generate by the process.

X is a Markov Chain if for each fixed n and each $i_0, \ldots, i_{n+1} \in S$ the following holds

$$\mathbb{P}(X_{n+1} = i_{n+1} | X_n = i_n, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} = i_{n+1} | X_n = i_n)$$
 Equivalently
$$\mathbb{P}(X_{n+1} = i_{n+1} | \mathcal{F}_n) = \mathbb{P}(X_{n+1} = i_{n+1} | X_n)$$

Definition 1.14 - Time-Homogeneous Markov Chain

A Markov Chain $X = \{X_n\}_{n \in \mathbb{N}}$ is Time-Homogeneous if

$$\forall i, j \in S, \mathbb{P}(X_{m_1+1} = j | X_{m_1} = i) = \mathbb{P}(X_{m_2+1} = j | X_{m_2} = i) \ \forall \ m_1, m_2 \in [0, n-1]$$

Definition 1.15 - Markov Process

A Markov Process is a continuous-time stochastic process X with filtration \mathcal{F}_t where $\forall \ 0 \le s < t$ and $A \subset S$

$$\mathbb{P}(X_t \in A | \mathcal{F}_s) = \mathbb{P}(X_t \in A | X_s)$$

Example 1.5 - Not Markov Process

Consider a particle moving on a line, that is constantly bombarded by other particles that change its velocity.

Let X_n be its position & U_n be its velocity at time $n \in \mathbb{N}$.

We simplify its motion to

$$X_{n+1} = X_n + U_n$$

$$U_{n+1} = U_n + \eta_n$$

where $\eta_n = Bin(2, \frac{1}{2}) - 1$.

Consider $\mathbb{P}(X_{n+1} = x | X_n = x, X_{n-1} = x - 1)$.

Then $U_{n-1} = 1 \& U_n = 0 \implies \eta_n = -1$.

Since $\mathbb{P}(\eta_n = -1) = \frac{1}{4} \implies \mathbb{P}(X_{n+1} = x | X_n = x, X_{n-1} = x - 1) = \frac{1}{4}$.

Now consider $\mathbb{P}(X_{n+1} = x | X_n = x, X_{n-1} = x)$.

Then $U_{n-1} = 0 \& U_n = 0 \implies \nu_n = 0.$

Since $\mathbb{P}(\eta_n = 0) = \frac{1}{2} \implies \mathbb{P}(X_{n+1} = x | X_n = x, X_{n-1} = x) = \frac{1}{2}$.

Hence $\{X_n\}$ is not a Markov Process.

Example 1.6 - Fixed Time v Fixed Realisation

Consider tossing a coin 100 times.

Let $|_{n}(\omega)$ encode the outcome of the n^{th} toss with 0 for heads. & 1 for tails.

Let $X_0 = 0$ and for $x \in \mathbb{N}^{\leq 100}$ $X_n(\omega) = \sum_{i=1}^n |n(\omega)|$. Then $\{|n|\}_{n=1,\dots,100}$ and $\{X_n\}_{n=1,\dots,100}$ are stochastic processes.

Take $\Omega = \{(\omega_1, \dots, \omega_{100} : \omega_i \in \{H, T\}, i \in [1, 100]\}.$

There are two views of the stochastic process X

i) With Fixed n

We have a random variables $X_n(\cdot)$ that depends on ω . If the coin is fair then X_n $Bin(n, \frac{1}{2})$.

ii) With Fixed ω

We have a function $X_{\cdot}(\omega)$, which is deterministic, called a sample path or realisation of the process X.

In the case of continuous-time process

i) With Fixed t.

For each $t, X_t(\cdot)$ is a random variable. $X_s \& X t$ are usually not independent for $s \neq t$. For a finite collection of times $\{t_1, t_2, \dots, t_n\}$, the joint distribution of the random vector $(X_{t_1}, X_{t_2}, \dots, X_{t_m})$ is called a finite-dimensional distribution.

The collection of all fdd's contain all information about the process X.

ii) With fixed ω .

Each $X_{\cdot}(\omega)$ is a function that maps $[0,\infty) \to \mathbb{R}$.

For any fixed $\omega \in \Omega$ there is a corresponding path $\{X_t(\omega) : t \geq 0\}$. This is called a sample path or realisation of X at ω .

Increasing & Decreasing Sequences of Events 1.5

Definition 1.16 - *Increasing Sequence*

Let A_1, A_2, \ldots be a sequence of events.

This sequence is said to be increasing if $A_n \subseteq A_{n+1} \ \forall \ n \in \mathbb{N}$.

Proposition 1.1 - Union of Increasing Sequence

Let $A = \bigcup_{n=1}^{\infty} A_n$ be the event at least one of the A_n occurred. Then $A_n = \bigcup i = 1^n A_i$ and we can think if A as a limit of the A_i .

Example 1.7 - Increasing Sequence

Let $A_n = \{\text{From } n^{th} \text{ toss onwards, all tosses yield heads}\}$. Then

$$\forall \ \omega \in A_n \quad \Leftrightarrow \quad \text{toss } n, n+1, \dots \text{ are heads.}$$

$$\implies \quad \text{toss } n+1, n+2, \dots \text{ are heads} = A_{n+1}$$

$$\Leftrightarrow \quad \omega \in A_{n+1}$$

Hence $A_n \subset A_{n+1}$.

Let $A = \bigcup_{n=1}^{\infty} A_n$ be the event that at least one of A_n occurs. Then exists N st \forall $n \geq N$ A_n occurs.

Theorem 1.2 - Continuity of Probability, Increasing

Suppose A_1, A_2, \ldots is an increasing sequence of events and let $A = \bigcup_{n=1}^{\infty} A_n$. Then

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

Proof 1.2 - Continuity of Probability, Increasing

Let
$$D_1 = A_1 \& D_n = A_n \backslash A_{n-1}$$
 for $n \geq 2$.

Then
$$D_i \subset D_j = \emptyset \ \forall i \neq j \text{ and } A_n = \bigcup_{i=1}^n D_i$$
.

Thus
$$A = \bigcup_{i=1}^{\infty} D_i$$
.

By σ -additivity of probability measures we have

$$\mathbb{P}(A_n) = \sum_{i=1}^n \mathbb{P}(D_i) \ \& \ \mathbb{P}(A) = \sum_{i=1}^\infty \mathbb{P}(D_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

The result follows by the definition of infinite sums.

Definition 1.17 - Decreasing Sequence

Let B_1, B_2, \ldots be a sequence of events.

This sequence is said to be increasing if $B_{n+1} \subseteq B_n \ \forall \ n \in \mathbb{N}$.

Theorem 1.3 - Continuity of Probability, Decreasing

Suppose B_1, B_2, \ldots is a decreasing sequence of events and let $B = \bigcap_{n=1}^{\infty} B_n$. Then

$$\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(B_n)$$

Proof 1.3 - Continuity of Probability, Decreasing

Let $A_n = B_n^c$ be the complement of B_n .

Then the A_n 's are an increasing sequence. Also

$$A := \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} = \left(\bigcap_{n=1}^{\infty} B_n\right)^c = B^c$$

By the previous theorem

$$\mathbb{P}(B^c) = \mathbb{P}(A_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \mathbb{P}(B_n^c)$$

Since
$$\mathbb{P}(B^c) = 1 - \mathbb{P}(B) \& \mathbb{P}(B_n^c) = 1 - \mathbb{P}(B_n)$$
, then

$$1 - \mathbb{P}(B) = 1 - \lim_{n \to \infty} \mathbb{P}(B_n)$$

Then the result follows.

Example 1.8 - Continuity of Probability

Initially in an urn there is one white and one red ball. A ball is chosen at random and returned to the urn alongside an extra red ball. Thus when the n^{th} ball is chosen there are n red balls and 1 white ball. Hence

$$\mathbb{P}(n^{th} \text{ ball chosen is red}) = \frac{n}{n+1}$$

What is the probability that a white ball is never chosen?

Let B_n {The first n balls are all red }

This is a decreasing sequence $\implies B_{n+1} \subseteq B_n$.

Then $B = \bigcap_{i=1}^{\infty} B_i = \{\text{All balls chosen are red}\}.$

$$\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(B_n)
= \lim_{n \to \infty} \frac{1}{2} \times \frac{2}{3} \times \cdots \times \frac{n}{n+1}
= \lim_{n \to \infty} \frac{1}{n+1}
= 0$$

Example 1.9 - Continuity of Probability

Let $X:\Omega\to\mathbb{R}$ be a continuous random variable and F_X be its cumulative density function.

- i) Show $\lim_{n\to\infty} F_X(x+\frac{1}{n}) = F_X(x) \ \forall \ x \in \mathbb{R}$. We have $F_X(x) = \mathbb{P}(X \le x) \& F_X(x+\frac{1}{n}) = \mathbb{P}(X \le x+\frac{1}{n})$. Let $B_n = \{X \le x+\frac{1}{n}\}$ a decreasing sequence. Let $B = \bigcap_{n=1}^{\infty} B_n = \{X \le x\}$. Hence $F_X(x) = \mathbb{P}(B) = \lim_{n\to\infty} \mathbb{P}(B_n) = \lim_{n\to\infty} F_X(x+\frac{1}{n})$.
- ii) Show $\lim_{n\to\infty} F_X(-n) = 0$. Let $B_n = \{X \le -n\}$ a decreasing sequence. Then $\lim_{n\to\infty} F_X(-n_= \lim_{n\to\infty} \mathbb{P}(B_n) = \mathbb{P}(\bigcap_{n=1}^{\infty} B_n) = \mathbb{P}(\emptyset) = 0$.
- iii) Show $\lim_{n\to\infty} F_X(n) = 1$. Let $A_n = \{X \le n\}$ an increasing sequence. Then $\lim_{n\to\infty} F_X(n) = \lim_{n\to\infty} (A_n) = \mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \mathbb{P}(\Omega) = 1$.

2 Random Walks

Definition 2.1 - Random Walk

A Random Walk is a process which at each discrete time step the value either increases or decrease by 1, only.

2.1 Absorbing Barriers

Definition 2.2 - Absorbing Barriers

Absorbing Barriers are values which if a random walk reaches it never leaves.

Theorem 2.1 - One-Step Conditioning Argument

Let X, Y, A be events where A is dependent of X, Y. Then

$$\mathbb{P}(A) = \mathbb{P}(A|X)\mathbb{P}(X) + \mathbb{P}(A|Y)\mathbb{P}(Y)$$

Example 2.1 - Gambler's Ruin

A gambler has £k. Her opponent has £(N-k).

Each time a game is player a £is placed. The gambler wins with probability p & her opponent with probability q = 1 - p.

Successive players of the game are independent. The game ends when one player has no money left.

What is the probability the gambler is ruined?

Let X_n be the gambler's capital in sterling after n bets.

There are absorbing barriers at 0 and N, the gambler is ruined if $X_n = 0$.

The process $X = \{X_n\}_{n \in \mathbb{N}_0}$ is a Markov Chain with the following transitions

- i) Interior Points, for $k \in [1, N-1]$.
 - (a) $p_{k,k+1} = \mathbb{P}(X_{n+1} = k+1 | X_n = k) = p$.
 - (b) $p_{k,k-1} = \mathbb{P}(X_{n+1} = k 1 | X_n = k) = q = 1 p.$
- ii) Boundary points, for all other values of k.

(a)
$$p_{0,0} = \mathbb{P}(X_{n+1} = 0 | X_n = 0) = 1.$$

(b)
$$p_{N,N} = \mathbb{P}(X_{n+1} = N | X_n = N) = 1.$$

By the one-step conditioning argument we see can derive that $p_k = p_{k+1}p + p_{k-1}q$ for $k \in [1, N-1]$.

We have boundary conditions $p_0 = 1 \& p_N = 0$.

We now solve these as difference equations.

Let $p_k = \theta^k$ for $\theta \in \mathbb{R}$.

Then $\theta^k = \theta^{k=1}p + \theta^{k=1}q$.

Set
$$k = 1 \implies \theta = \theta^2 p + q \implies 0 = p\theta^2 - \theta + q = (p\theta - q)(\theta - 1)$$
.

If $p \neq q$ then there are two distinct solutions $\theta = \frac{p}{q} \ \& \ \theta = 1$.

Hence the general solution is $p_k = A(\frac{q}{p})^k + B(1)^k = A(\frac{q}{p})^k + B$ for $k \in [0, n]$.

Plugging in the boundary conditions we get

$$p_0 = 1, p_0 = A + B \quad p_N = 0, p_N = A(\frac{q}{p})^n + B$$

$$\implies A = \frac{1}{1 - (\frac{q}{p})^N} \qquad B = \frac{-(\frac{q}{p})^N}{1 - (\frac{q}{p})^N}$$

Hence

$$p_k = \frac{\left(\frac{q}{p}\right)^k - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^N}$$

If $p = q = \frac{1}{2}$ then the only solution to the equation $p\theta^2 - \theta + q = 0$ is $\theta = 1$.

In this case we try $p_k = (A + Bk)\theta^k = A + Bk$.

Plugging in boundary conditions we get

$$p_0 = 1 \& p_0 = A \implies A = 1p_n = 0 \& p_1 + NB \implies B = \frac{1}{N}$$

Hence the probability of ruin is $p_k = 1 - \frac{k}{N}$.

Theorem 2.2 - Probability of Ruin with Absorbing Barrier at 0

Let $k \ge 1$ be fixed.

Let p_k be the probability of ruin in the random walk with absorbing barrier at 0, and $p_k^{(N)}$ be the probability of ruin in the gambler's ruin problem with upper barrier at N, in both cases starting at $X_0 = k$. Then

$$\lim_{N \to \infty} p_k^{(N)} = p_k$$

Proof 2.1 - Probability of Ruin with Absorbing Barrier at 0

Let $A_n = \{ \omega \in \Omega : \exists n \ge 1 \text{ st } X_n(\omega) = 0; X_m(\omega) \le N_1 \ \forall \ m \in [0, n-1] \}.$

This is the event where X gets absorbed at 0 and never reaches n.

Then $\mathbb{P}(A_n) = p_K^{(N)}$. Now

$$\omega \in A_n \iff \exists n \ge 1 \text{ st } X_n(\omega) = 0 \& X_m(\omega) \le N - 1 \forall m \in [0, n - 1]$$
$$\implies \exists n \ge 1 \text{ st } X_n(\omega) = 0 \& X_m(\omega) \le N \forall m \in [0, n - 1]$$

. So $A_n \subset A_{n+1}$, an increasing sequence of events.

Take $A = \bigcup_{N=1}^{\infty} A_N$ then $A = \{ \omega \in \Omega : X_n(\omega) = 0; n \ge 1 \}.$

By the continuity of probability

$$p_k = \mathbb{P}(A) = \lim_{N \to \infty} \mathbb{P}(A_N) = \lim_{N \to \infty} p_k^{(N)}$$

Theorem 2.3 -

For the random walk with an absorbing barrier at 0 but no upper barrier

$$\mathbb{P}(ruin|X_0 = k) = \mathbb{P}(random \ walk \ hits \ eventually | X_0 = k) = \begin{cases} (\frac{q}{p})^k & if \ q$$

Proof 2.2 -

Here k is fixed.

In the cases $p \neq q$ we have

$$p_k^{(N)} = \frac{\left(\frac{q}{p}\right)^k - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^N} \xrightarrow{N \to \infty} \begin{cases} 1 & q > p \\ 0 & q$$

For $p = q = \frac{1}{2}$ we have

$$p_k^{(N)} = 1 - \frac{k}{N} \xrightarrow{N \to \infty} 1$$

Proposition 2.1 - No Absorbing Barriers

Suppose there are no absorbing barriers. We get that the probability of a process reaching 0 is given as

 $\mathbb{P}(unrestricty\ random\ walk\ hits\ 0\ eventually|X_0=k)=\mathbb{P}(random\ walk\ with\ absorption\ at\ 0\ gets\ absorbed|X_0=k)$

The solution to this can be seen in the previous theorem.

We get that if q < p then there is a positive probability of $1 - (\frac{p}{q})^k$ that a random walk starting at k will never reach 0.

If p = q then the random walk will always, eventually reach 0.

2.2 Transience and Recurrence

Notation 2.1 -

Consider a general time-homogeneous Markov chain $X = \{X_n\}_{n \in \mathbb{N}}$ starting in state $X_0 = i \in S$. We denote the following questions as follows

- i) Will X ever return to i? f_{ii} .
- ii) Will X ever visit a given state j? f_{ij} .
- iii) If so, how long will it take? m_{ij} .
- iv) And how often will it happen?

Theorem 2.4 - n-step Transition Probability

The probability of transitioning from initial state i to state j in $n \in \mathbb{N}$ steps is given by

$$p_{ij}(n) = \mathbb{P}(X_n = j | X_0 = i)$$

We also define

$$p_{ij}(0) = \begin{cases} 1 & if \ i = j \\ 0 & otherwise \end{cases}$$

Theorem 2.5 - Probability of Transition

For $n \ge 1$

$$p_{ij}(n) = \sum_{m=1}^{n} p_{jj}(n-m)f_{ij}(m)$$

Proof 2.3 - Probability of Transition

Let $A = \{X_n = j\}$ & $B_m = \{\text{First visit to state } j \text{ at step } m\} = \{X_1 \neq j, \dots, X_{m-1} \neq j, X_m = j\}$. Then B_1, B_2, \dots are pairwise disjoint & $A \subset (B_1 \bigcup \dots \bigcup B_n)$.

Then $A = A \cap (B_1 \cup \cdots \cup B_n) = (A \cap B_1) \cup \cdots \cup (A \cap B_n)$.

Hence

$$\begin{array}{rcl} p_{ij}(n) & = & \mathbb{P}(X_n = j | X_0 = i) \\ & = & \mathbb{P}(A | X_0 = i) \\ & = & \sum_{m=1}^n \mathbb{P}(A \bigcap B_m | X_0 = i) \\ & = & \sum_{m=1}^n \mathbb{P}(A | B_m, X_0 = i) \mathbb{P}(B_m | X_0 = i) \\ & - & \end{array}$$

Definition 2.3 - Transient & Recurrent

A state $j \in S$ is transient if $f_{ij} < 1$.

A state $j \in S$ is recurrent if $f_{jj} = 1$. This means the chain will definitely return to its origin in the future.

Proposition 2.2 - First Passage Probabilities, f_{ij}

We define T_{ij} be the time at which a chain reaches j for the first time, after starting at i. T_{ij} is a random variable with for $n \ge 1$

$$\mathbb{P}(T_{ij} = n) = \mathbb{P}(First \ visit \ to \ j \ is \ after \ n \ steps | X_0 = i)
f_{ij}(n) = \mathbb{P}(First \ visit \ to \ j \ is \ after \ n \ steps | X_0 = i)
= \mathbb{P}(X_1 \neq j, \dots X_{n-1} \neq j, X_n = j | X_0 = i)
\in [0, 1]$$

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)
= \mathbb{P}(X \ ever \ visits \ j | X_0 = i)
\in [0, 1]$$

Definition 2.4 - Expected First Passage

We define m_{ij} be the expected time for first passage from i to j.

$$m_{ij} = \mathbb{E}(\text{Time of first return of } i|X_0 = i) = \mathbb{E}(T_{ij}) = \sum_{n=1}^{\infty} n f_{ij}(n)$$

N.B. If $f_{ij} < 1$ then $m_{ij} = \infty$.

Theorem 2.6 - Number of Visits

$$\sum_{n=1}^{\infty} p_{ij}(n) = \sum_{n=0}^{\infty} \mathbb{P}(X_n = j | X_0 = i)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}(1_{\{X_n = j\}} | X_0 = i)$$

$$= \mathbb{E}\left(\sum_{n=0}^{\infty} 1_{\{X_n = j\}} | X_0 = i\right)$$

$$= \mathbb{E}(Number\ Visits\ to\ j | X_0 = i)$$

Proposition 2.3 - Generating Functions

We can define the following generating functions for first passage probabilities & n-step transition probabilities

$$P_{ij}(s) = \sum_{n=0}^{\infty} p_{ij}(n)s^n$$
 $F_{ij}(s) = \sum_{n=1}^{\infty} f_{ij}(n)s^n$

with the conventions $p_{ij} = 1_{i=j}$ and $f_{ij}(0) = 0 \ \forall i, j$.

Remark 2.1 - Generating Functions

The generating functions defined in **Proposition 2.3** are well-defined for |s| < 1. If we take s = 1 then

$$F_{ij}(1) = \sum_{n=1}^{\infty} f_{ij}(n) = f_{ij}$$

Now consider

$$F'_{ij}(s) = \frac{d}{ds} \sum_{n=1}^{\infty} f_{ij}(n) s^{n}$$

$$= \sum_{n=1}^{\infty} \frac{d}{df} (f_{ij}(n) s^{n})$$

$$= \sum_{n=1}^{\infty} f_{ij}(n) n s^{n-1}$$

$$F'_{ij}(1) = \sum_{n=1}^{\infty} f_{ij}(n) n$$

$$= m_{ij}$$

$$= \mathbb{E}(T_{ij})$$

Similarly

$$P_{ij}(1) = \sum_{n=1}^{\infty} p_{ij}(n) = \mathbb{E}(Number\ Visits\ to\ j|X_0 = i)$$

Theorem 2.7 -

For $n \geq 1$

$$p_{ij}(n) = \sum_{m=1}^{n} p_{jj}(n-m)f_{ij}(m)$$

Proof 2.4 -

Let $A = \{X_n = j\}$ the events that at step n we are at state jAnd $B_m = \{\text{First visit to state } j \text{ at step } m\} = X_1 \neq j, \dots, X_{m-1} \neq j, X_m = j\}.$ Then B_1, \dots are pairwise disjoint and $A \subset (B_1 \bigcup \dots \bigcup B_n)$. So $A = (A \cap B_1) \bigcup \dots \bigcup (A \cap B_n) = A \cap (B_1 \bigcup \dots \bigcup B_n)$. Hence

$$p_{ij}(n) = \mathbb{P}(X_n = j|X_0 = i)$$

$$= \mathbb{P}(A|X_0 = i)$$

$$= \sum_{m=1}^{n} \mathbb{P}(A \cap B_m|X_0 = i)$$

$$= \sum_{m=1}^{n} \mathbb{P}(A|B_m, X_0 = i)\mathbb{P}(B_m|X_0 = i)$$
By Markov Property
$$= \sum_{m=1}^{n} \mathbb{P}(A|X_m = j)f_{ij} = m$$

$$= \sum_{m=1}^{n} \mathbb{P}(X_n = j|X_m = j)f_{ij}(m)$$
By time homegenity
$$= \sum_{m=1}^{n} \mathbb{P}(X_{n-m} = j|X_0 = j)f_{ij}(m)$$

$$= \sum_{m=1}^{n} p_{jj}(n-m)f_{ij}(m)$$

Theorem 2.8 -

$$P_{ij}(s) = \mathbf{1}_{i=j} + F_{ij}(s)P_{jj}(s)$$

Proof 2.5 -

By definition

$$P_{ij}(s) = \sum_{n=0}^{\infty} p_{ij}(n)s^{n}$$

$$= p_{ij}(0) + \sum_{n=1}^{\infty} p_{ij}(n)s^{n}$$

$$= p_{ij}(0) + \sum_{n=1}^{\infty} \sum_{m=1}^{n} p_{ij}(n-m)f_{ij}(m)s^{n}$$

$$= \mathbf{1}_{i=j} + \sum_{n=1}^{\infty} \sum_{m=1}^{n} p_{ij}(n-m)f_{ij}(m)s^{n}$$

$$= \mathbf{1}_{i=j} + \sum_{n=1}^{\infty} \sum_{m=m}^{\infty} p_{ij}(n-m)f_{ij}(m)s^{n}$$

$$= \mathbf{1}_{i=j} + \sum_{m=1}^{\infty} f_{ij}(m)s^{m} \sum_{n'=0}^{\infty} p_{jj}(n')s^{n'}$$

$$= \mathbf{1}_{i=j} + F_{ij}(s)P_{jj}(s)$$

Theorem 2.9 -

For arbitrary state $i, j \in S$ j is recurrent iff $P_{ij}(1) = \sum_{n=0}^{\infty} p_{ij}(n) = \infty$. $N.B. \sum_{n=1}^{\infty} p_{ij}(n)$ is the expected number of visits to j if the chain starts at i.

Proof 2.6 -

Recall

- j is recurrent iff $f_{ij} = 1$.
- $f_{jj} = \sum_{n=1}^{\infty} f_{jj}(n) = F_{jj}(1)$.

Proof

i) Suppose i = j.

By **Theorem 2.7**
$$F_{jj}(s) = \frac{P_{jj}(s) - 1}{P_{jj}(s)}$$
.

So
$$F_{jj}(1) = 1 \implies P_{jj}(1) = \infty$$
.

This meets the requirement and hence the result holds for i = j.

ii) Suppose $i \neq j$.

Since $F_{ij}(1) = f_{ij} = \mathbb{P}(\text{The random variable ever visits } j|X_0 = i) > 0 \text{ for random walks.}$

And
$$P_{ij}(1) = F_{ij}(1)P_{jj}(1)$$
.

We conclude $P_{ij} = 0$ iff $P_{jj} = \infty$.

Theorem 2.10 -

If j is transient then $p_{ij}(n) \leftarrow 0$ as $n \leftarrow \infty \ \forall i$.

Proof 2.7 -

Since j is transient then $\sum_{n=0}^{\infty} p_{ij}(n) < \infty$ be **Theorem 2.8**.

Hence $p_{ij}(n) \leftarrow 0$ as $n \leftarrow \infty$.

2.3 Applications of Random Walks

Proposition 2.4 - Spatial Homogeneity

The *Spatial Homogeneity* of a random walk means that whatever we say about the recurrence and return times for state 0 also holds for all any state i.

Theorem 2.11 - P_{00}

Note that if n is odd then $X_n \neq 0$ since an even number of movements is required to return to the origin.

Let n = 2m, if $X_m = 0$ then there were exactly m upward movements & m downward movements. The number of upwards movements is modelled by Binomial(2m, p), so

$$p_{00}(2m) = \mathbb{P}(X_{2m} = 0|X_0 = 0)$$

$$= \mathbb{P}(\text{mupwards stepsin a total of } 2m \text{ steps}$$

$$= p^m q^m \binom{2m}{m}$$

$$P_{00}(s) = \sum_{i=0}^{\infty} p_{00}(i)s^i$$

$$= \sum_{i=0}^{\infty} p_{00}(2i)s^{2i}$$

$$= \sum_{i=0}^{\infty} 6\infty \binom{2i}{i} p^i q^i s^{2i}$$

$$= \sum_{i=0}^{\infty} 6\infty \binom{2i}{i} \left(\frac{4pqs^2}{4}\right)$$

$$= (1 - 4pqs^2)^{-1/2}$$

N.B. See Page 25 of Booklet 2 for the identity used at the end here.

Theorem 2.12 -

Consider an unrestricted random walk starting at 0.

- i) The probability that the walk returns to 0 eventually is 1 |p q|.
- ii) If $p=q=\frac{1}{2}$ then return is certain, but the expected time till first return is ∞

Proof 2.8 -

i) The probability of eventual return is $f_{00} = F_{00}(1)$. **Theorem 2.7** implies

$$P_{00}(s) = 1 + F_{00}(s) + P_{00}(s)$$

$$\Rightarrow F_{00}(s) = 1 - \frac{1}{P_{00}(s)}$$

$$= 1 - \sqrt{1 - 4pqs^2}$$

$$\Rightarrow F_{00}(1) = 1 - \sqrt{1 - 4pq}$$

$$= 10\sqrt{(p+q)^2 - 4pq} \text{ Since } p + q = 1$$

$$= 1 - \sqrt{p^2 - 2pq + q^2}$$

$$= 1 - \sqrt{(p-q)^2}$$

$$= 1 - |p-q|$$

ii) If $p = q = \frac{1}{2} \implies f_{00} = F_{00}(1) = 1$. recall T_{00} us the time of first return to 0 if the walk starts at 0. Then T_{00} is almost surely finite.

$$m_{00} = \mathbb{E}(T_{00})$$

$$= \sum_{n=1}^{\infty} n f_{00}(n)$$

$$= \lim_{s \uparrow 1} \sum_{n=1}^{\infty} n s^{n-1} f_{00}(n)$$

$$= \lim_{s \uparrow 1} F'_{00}(s)$$

Since
$$p = \frac{1}{2} = q$$
 we have $F_{00} = 1 - \sqrt{1 - s^2}$
 $\implies F'_{00}(s) = \frac{s}{\sqrt{1 - s^2}}$
 $\implies \lim_{s \uparrow 1} \frac{s}{\sqrt{1 - s^2}} = \infty$

Definition 2.5 - Null Recurrent

A recurrent state i is called Null Recurrent if $m_{ii} = \infty$.

By the previous theorem all states in a simple random walk are null recurrent.

Definition 2.6 - Positive Recurrent

A recurrent state i is called *Positive Recurrent* if $m_{ii} < \infty$.

2.4 Stopping Time & Wald's Lemma

Definition 2.7 -

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be a stochastic process & T be a non-negative inter-valued random variable. T is said to be a *Stopping Time* for X if \forall n the event $\{T \leq n\}$ is completely determined by the values of X_0, X_1, \ldots, X_n .

Example 2.2 - Stopping Time

Consider a simple unconstrained random walk starting at 0.

Let $T = min\{n : X_n = 5\}$ (i.e. The first time $X_n = 5$.

By looking at all the values of X_M for $m \leq n$ you can see if X_m has been equal to 5 and hence if $T \leq n$.

T is a stopping time.

Example 2.3 - Not Stopping Time

Consider the sample simple unconstrained random walk starting at 0.

Let $T = max\{n : X_n = 5\}$ then we cannot know whether $T \leq n$ without knowing all future values of X as well.

T is not a stopping time.

Theorem 2.13 - Wald's Lemma

Let $Z_1, Z_2, ...$ be a sequence of independent, identically distributed random variables with $\mathbb{E}(|Z_n|) < \infty$ and $X_n = \sum_{m=1}^n Z_m$.

Let T be a stopping time for the process $X = \{X_n\}_{n \in \mathbb{N}}$ with $\mathbb{E}(T) < \infty$. Then

$$\mathbb{E}(X_T) = \mathbb{E}(Z_1)\mathbb{E}(T)$$

N.B. The fact that $\{T \leq \}$ depends only on X_0, X_1, \ldots, X_n is equivalent to $\{T \leq n\}$ depending only on Z_1, \ldots, Z_n so we could say instead that T is a stopping time for $\{Z_n\}$.

Proof 2.9 - Wald's Lemma

Since $X_T = \sum_{m=1}^T Z_m = \sum_{m=1}^\infty Z_m \mathbf{1}_{m \le T}$ then

$$\begin{array}{rcl} \mathbb{E}(X_T) & = & \mathbb{E}\left(\sum_{m=1}^{\infty} Z_m \mathbf{1}_{m \leq T}\right) \\ & = & \sum_{m=1}^{\infty} \mathbb{E}(Z_m \mathbf{1}_{m \leq T}) \\ \text{By Smooting Property} & = & \sum_{m=1}^{\infty} \mathbb{E}(\mathbb{E}(Z_m \mathbf{1}_{m \leq T} | \mathcal{F}_{m-1})) \end{array}$$

Notice that $\{M \leq T\}^C = \{T \geq m\}^C = \{T \leq m-1\}$ is \mathcal{F}_{m-1} -measurable. Hence by 'take out what is know'

$$\mathbb{E}(X_T) = \sum_{m=1}^{\infty} \mathbb{E}(\mathbf{1}_{m \leq T} \mathbb{E}(|_m|\mathcal{F}_{m-1}))$$

$$= \sum_{m=1}^{\infty} \mathbb{E}(\mathbf{1}_{m \leq T} \mathbb{E}(Z_1))$$

$$= \mathbb{E}(Z_1) \sum_{m=1}^{\infty} \mathbb{E}(\mathbf{1}_{m \leq T})$$

$$= \mathbb{E}(Z_1) \sum_{m=1}^{\infty} \mathbb{P}(T \geq m)$$

$$= \mathbb{E}(Z_1) \mathbb{E}(T)$$

Example 2.4 - Simple Random Walk

Let $\mathbb{P}(Z_n=1)=2/3$ and $\mathbb{P}(Z_n=-1)=1/3$, so that we have a simple random walk.

Assume $X_0 = 0$, and let $T = min\{n : X_n = 5\}$.

It can be shown that $\mathbb{E}(T) < \infty$ and also it is clear that $\mathbb{E}(|_n) = 1/3$.

Wald's Lemma tells us that

$$\mathbb{E}(X_T) = \mathbb{E}(Z_1)\mathbb{E}(T) = \frac{1}{3}\mathbb{E}(T)$$

But we know that $X_T = 5$, by the definition of T. So we see that

$$\mathbb{E}(T) = 15$$

Remark 2.2 - Alternative Method of Establishing Transience/Recurrence of Random Walks We look at random walks in \mathbb{Z}^d with d = 1, 2.

In the case when d=1 we have $p_{00}(2m)=\binom{2m}{m}p^mq^m=\frac{(2m)!}{m!m!}p^mq^m$. By Stirling's Formula

$$(2m)! \sim \sqrt{4\pi m} \left(\frac{2m}{e}\right)^{2m} \text{ as } m \to \infty$$

$$(m!)^2 \sim \sqrt{2\pi m} \left(\frac{m}{e}\right)^{2m} \text{ as } m \to \infty$$

$$\Rightarrow p_{00}(2m) \sim \frac{1}{\sqrt{\pi m}} 2^{2m} p^m q^m$$

$$= \frac{1}{\sqrt{\pi m}} (4pq)^m$$
If
$$p = q = \frac{1}{2}$$

$$\Rightarrow p_{00}(2m) \sim \frac{1}{\sqrt{\pi m}} \text{ as } m \to \infty$$
Then
$$\sum_{m=M}^{\infty} p_{00}(2m) > \sum_{m=M}^{\infty} 0.99 \frac{1}{\sqrt{\pi m}}$$

$$= \frac{0.99}{\sqrt{\pi}} \sum_{m=M}^{\infty} \frac{1}{\sqrt{m}}$$

$$= \infty$$

$$State 0 \text{ is recurrent.}$$
If
$$p \neq q$$

$$\Rightarrow 4pq < 1$$

$$\Rightarrow 4pq < 1$$

$$\Rightarrow p_{00}(2m) \sim \frac{(4pq)^m}{\sqrt{\pi m}}$$

$$\Rightarrow \sum_{m=M}^{\infty} p_{00}(2m) < \sum_{m=M}^{\infty} 1.01 \frac{(4pq)^m}{\sqrt{\pi m}}$$

$$< \sum_{m=M}^{\infty} (4pq)^m$$

$$< \sum_{m=M}^{\infty} (4pq)^m$$

$$< \infty$$

 $State\ 0$ is transcient.

In the case when d=2 we have $p_{ij}=\begin{cases} \frac{1}{4} & \text{if } |i-j|=1\\ 0 & \text{otherwise} \end{cases}$.

Let $X_n = (X_n^{(1)}, X_n^{(2)})$ where each coordinate is a random walk.

These random walks are not simple since steps of size 0 are allowed.

Let X_n^+ be the projection of X_n onto $y = x \& X_m^-$ be the projection of X_n onto y = -x. Then X_n^+ & X_n^- are simple symmetric random walks on $\frac{\mathbb{Z}}{\sqrt{2}}$ since whenever X_n moves both X_n^+

& X_n^- also move, but with size $\sqrt{2}$.

Since r < 1

$$\begin{split} \mathbb{P}(X_{n+1}^+ &= \tfrac{1}{\sqrt{2}}, X_{n+1}^- = \tfrac{1}{\sqrt{2}}) = \mathbb{P}(\text{Moving Right}) = \tfrac{1}{4}. \\ \mathbb{P}(X_{n+1}^+ &= \tfrac{1}{\sqrt{2}}) \mathbb{P}(X_{n+1}^- = \tfrac{1}{\sqrt{2}}) = \tfrac{1}{2} \tfrac{1}{2} = \tfrac{1}{4}. \end{split}$$

By considering the other 3 cardinal directions we can prove that $X_n^+ \& X_n^-$ are independent.

Then
$$p_{\mathbf{00}}(2m) = \mathbb{P}(X_{2m}^+ = \mathbf{0}, X_{2m}^- = \mathbf{0}|X_0^+ = \mathbf{0}, X_0^- = \mathbf{0})$$

$$= \mathbb{P}(X_{2m}^+ = \mathbf{0}|X_0^+ = \mathbf{0})\mathbb{P}(X_{2m}^- = \mathbf{0}|X_0^- = \mathbf{0})$$

$$= \left(\frac{(2m)!}{(m!)^2} \frac{1}{4^m}\right)^2$$
By Stirling's Formula
$$\sim \frac{1}{2m} \text{ as } m \to \infty$$

$$\Rightarrow \sum_{m=M}^{\infty} p_{\mathbf{00}}(2m) > \frac{0.99}{\pi} \sum_{m=M}^{\infty} \frac{1}{m} \text{ for sufficiently large } M$$

$$= \infty$$

$$\Rightarrow \mathbf{0} \text{ is recurrent}$$

3 Markov Chains in Discrete Time

Definition 3.1 - Transition Matrix

The Transition Matrix of a Markov Chain is the matrix P where $(P)_{ij} = p_{ij}$.

$$P = \begin{pmatrix} p_{00} & p_{01} & \dots & p_{0n} \\ p_{10} & p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \dots & p_{nn} \end{pmatrix}$$

N.B. We can draw automata to represent Transition Matrices.

Proposition 3.1 - Properties of Transition Matrix

Since p_{ij} are probabilities and since the process must be in some state at time 1, P is a Transition Matrix iff

- i) $1 \le p_{ij} \le 0 \ \forall \ i, j \in S$; and,
- ii) $\sum_{i \in S} p_{ij} = 1 \ \forall \ i \in S$.

Example 3.1 - Gambler's Ruin

Let X_n be the capital of the gambler, so that $S = \{0, ..., N\}$. Recall that

$$p_{ij} = \mathbb{P}(X_{n+1} = j | X_n = i) = \begin{cases} p & \text{if } i \notin \{0, N\} \& j = i + 1 \\ 1 & \text{if } i \notin \{0, N\} \& j = i + 1 \\ 1 & \text{if } i \in \{0, N\} \& j = i \\ 0 & \text{otherwise} \end{cases}$$

Therefore the transition matrix of the chain is

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ q & 0 & p & 0 & \dots & 0 & 0 \\ 0 & q & 0 & p & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & p \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Example 3.2 - Transition Matrix Automata

The following are a transition matrix P and its automata representation

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\frac{1}{2} \qquad \frac{1}{6} \qquad \frac{1}{3} \qquad \frac{1}{2}$$

$$0 \qquad \frac{1}{2} \qquad \frac{1}{3} \qquad 2$$

Theorem 3.1 - Chapman-Kolmogorov Equations

 $\forall i, j \in S, n \in \mathbb{N}, r \in [0, b]$

$$p_{ij}(n) = \sum_{k \in S} p_{ik}(r) p_{kj}(n-r)$$

Proof 3.1 - Chapman-Kolmogorov Equations

$$\begin{array}{lll} p_{ij}(n) & = & \mathbb{P}(X_n=j|X_0=i) \\ & = & \sum_{k \in S} \mathbb{P}(X_n=j|X_r=k,\ X_0=i) \mathbb{P}(X_r=k|X_0=i) & \text{By Partition Theorem} \\ & = & \sum_{k \in S} \mathbb{P}(X_n=j|X_r=k) p_{ik}(r) & \text{Markov Property} \\ & = & \sum_{k \in S} \mathbb{P}(X_{n-r}=j|X_0=k) p_{ik}(r) & \text{Time Homogeneity} \\ & = & \sum_{k \in S} p_{kj}(n-r) p_{ik}(r) & \end{array}$$

Proposition 3.2 - Implication of Chapman-Kolmogorov Equations

Let P_n be the matrix with $(P_n)_{ij} = p_{ij}(n)$.

The Chapman-Kolmogorov Equations says

$$(P_n)_{ij} = \sum_{k \in S} (P_r)_{ik} (P_{n-r})_{kj} = (P_r P_{n-r})_{ij} \implies P_n = P_r P_{n-r}$$

By considering r = 1 we see that

$$P_n = PP_{n-1} = \dots = P^n$$

3.1 Analysis by Class

Definition 3.2 - Communication

Let $i, j \in S$. Then we can define the following relationships

- i) i communicates with j if $\exists n \geq 0 \text{ st } p_{ij}(n) > 0$. (Denoted $i \rightarrow j$).
- ii) i intercommunicates with j if $i \to j \& j \to i$. (Denoted $i \leftrightarrow j$).

Proof 3.2 - Intercommunication is an Equivalence Relation

Reflexive

Since $P_{ii}(0) = 1$ then $i \to i \equiv i \leftrightarrow i$.

Symmetric

let $i \leftrightarrow j$. Then

$$\implies i \rightarrow j \& j \rightarrow i \implies j \leftrightarrow i$$

Transitive Let $i \to j \& j \to k$.

Then $\exists n, m, \in \mathbb{N} \text{ st } p_{ij}(n) > 0 \& p_{jk}(m).0.$

Thus $p_{ik}(n+m) \ge p_{ij}(n)p_{jk}(m) > 0$ by Chapman-Kolmogorov Equations.

 $\implies i \rightarrow k$.

Similarly $k \to i \implies i \leftrightarrow j$.

Definition 3.3 - Communicating Classes

Communicating Classes are partitions of the state set $S(E_1, E_2, ...)$ st

$$\forall i, j \in E_r, i \leftrightarrow j$$

Proposition 3.3 - States & Communicating Classes

All states in the *same* communicating class intercommunicate with each other.

Any pair of states in *different* communicating classes do not intercommunicate with each other.

Theorem 3.2 - Recurrency & Intercommunication

Let $i \leftrightarrow j$.

Then i is recurrent iff j is recurrent.

Proof 3.3 - Recurrency & Intercommunication

Recall that state j is recurrent iff $\sum_{k=0}^{\infty} p_{jj}(k) = \infty$.

Assume j is recurrent & $i \leftrightarrow j$.

Then $\exists m, n \geq 0 \text{ st } p_{ii}(m) > 0 \& p_{ii}(n) > 0.$

By the Chapman-Kolmogorov equations $p_{ii}(m+r+n) \ge p_{ij}(m)p_{jj}(r)p_{ji}(n)$.

Thus

$$\sum_{m,r,n}^{\infty} p_{ij}(m)p_{jj}(r)p_{ji}(n) = \sum_{m=0}^{\infty} p_{ij}(m)\sum_{r=0}^{\infty} p_{jj}\sum_{n=0}^{\infty} p_{ij}(n) > \infty$$

Thus $\sum_{n=0}^{\infty} p_{ii}(n) = \infty \implies i$ is recurrent.

Remark 3.1 - Recurrent & Transient Communicating Class

We describe a communicating class as begin recurrent if the states in it are recurrent.

N.B. We define Transient Communicating Classes similarly.

Definition 3.4 - Closed States

A set of states C is Closed if $p_{ij} = 0 \ \forall \ i \in C, j \notin C$.

Definition 3.5 - Irreducible States

A set of states C is Irreducible if $i \leftrightarrow j \ \forall \ i, j \in C$.

Definition 3.6 - Absorbing State

A state i for which the singleton set $\{i\}$ is a closed set is called an Absorbing state. N.B. $p_{ii} = 1$.

Remark 3.2 - Closed Communicating Class

A set E is closed & irreducible iff E is a closed communicating class.

Remark 3.3 - Closed State Space

The state space S is always closed.

Remark 3.4 - Irreducible Markov Chain

If the state space S is irreducible then we say the $Markov\ Chain$ is irreducible.

Example 3.3 - Closed, Irreducible & Absorbing States

In the following state space the set of inter-communication is $\{1 \leftrightarrow 1, 2 \leftrightarrow 2, 3 \leftrightarrow 3, 3 \leftrightarrow 4, 4 \leftrightarrow 4\}$.

Hence the communicating classes are $E_1 = \{1\}$, $E_2 = \{2\}$ & $E_3 = \{3,4\}$.

 E_1 is closed & an absorbing state.

 $E_2 \& E_3$ are not closed, nor absorbing states, they are irreducible.

Theorem 3.3 - Non-Closed Communicating Classes are Transient

If C is a Communicating Class & C is not closed, then all the states in C are transient.

Proof 3.4 - Non-Closed Communicating Classes are Transient

Since C is not closed $\exists i \in C \& k \in C^c \text{ st } p_{ik} > 0.$

Furthermore, since C is a communicating classes and $k \notin C$ we have $i \nleftrightarrow k$.

But $i \to k$ so $k \not\to i$. So, $f_{ki} = \mathbb{P}(\text{The chain } X \text{ is in state } i \text{ eventually} | X_0 = k) = 0$.

We compute f_{ii}

$$f_{ii} = \mathbb{P}(X \text{ is in state } i \text{ eventually} | X_0 = i)$$

$$= \mathbb{P}(X \text{ is in state } i \text{ eventually} | X_0 = i, X_1 = j) \mathbb{P}(X_1 = j | X_0 = i)$$

$$= \sum_{j \in S} \mathbb{P}(X \text{ is in state } i \text{ eventually} | X_1 = j) p_{ij}$$

$$= \sum_{j \in S} f_{ji} p_{ij}$$

$$= f_{ki} p_{ik} + \sum_{j \in S/\{k\}} f_{ji} p_{ij}$$
Since $f_{ki} = 0$

$$= \sum_{k \in S/\{k\}} f_{ji} p_{ij}$$

$$= \sum_{j \in S/\{k\}} p_{ij}$$

$$= 1 - p_{ik}$$

$$= 1$$

Hence i is transient.

So all states in C are transient since C is a communicating class.

Theorem 3.4 - State Spaces can be Partitioned into Transient & Recurrent States

The state space S can be uniquely partitioned into $S = T \cup C_1 \cup \ldots$ where T is a set of transient states & each C_k is an irreducible closed set of recurrent states.

Proof 3.5 - State Spaces can be Partitioned into Transient & Recurrent States

We can partition S into communicating classes.

These classes are either recurrent or transient.

Let C_k for $k \in \mathbb{N}$ be the recurrent communicated classes & T be the union of all transient communicating classes.

By **Theorem 3.3** C_k must be closed.

Thus each C_k is irreducible since it is a communicating class.

Example 3.4 - Gambler's Ruin

Consider the following diagram for the Gambler's Ruin

Here we have communicating classes $\{0\}, \{1, \dots, N-1\} \& \{N\}.$

 $\{0\}$ & $\{N\}$ are closed & are absorbing states. They are recurrent.

 $\{1,\ldots,N-1\}$ is not closed since $1\to 0$ & $N-1\to N$, hence it is transient.

Example 3.5 - Random Walk with Reflecting Barrier at 0

Consider the following random walk which has a reflecting barrier at 0

Here the only communicating class is $\{0, 1, ...\}$. It is closed.

All the states must be of the same recurrent type but which type they are depends on the values of p & q.

We shall consider computing $\mathbb{P}(A|X_0=0)$ where $A=\{X \text{ hits } 0 \text{ eventually}\}$. There are three cases

i)
$$p = q = \frac{1}{2}$$
.

$$\mathbb{P}(A|X_0 = 0) = \mathbb{P}(A|X_0 = 0, X_1 = 0)\mathbb{P}(X_1 = 0|X_0 = 0) + \mathbb{P}(A|X_0 = 0, X_1 = 1)\mathbb{P}(X_1 = 1|X_0 = 0) \\
= 1 \times q + 1 \times p \\
= p + q \\
= 1$$

Here state 0 is recurrent.

ii) p < q.

$$\mathbb{P}(A|X_0=0) = 1 \times q + 1 \times p = 1$$

Here state 0 is recurrent.

iii) q > p.

$$\mathbb{P}(A|X_0 = 0) = 1 \times q + \mathbb{P}(A|X_1 = 1)p < 1$$

Here state 0 is transient.

3.2 Stationary Distributions

Definition 3.7 - Stationary Distribution

Let π denote a horizontal vector with a component for each state, $\pi = (\pi_1, \dots, \pi_i)$.

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be a Markov chain with transition matrix P.

We say π is a Stationary Distribution of the chain if

- i) $\pi_j \ge 0 \ \forall \ j \in S \ \& \ \sum_{j \in S} \pi_j = 1 \ (\pi \text{ is a mass function for } S).$
- ii) $\pi = \pi P$, note that this is matrix multiplication.

N.B. Further $\pi = \pi P^n \ \forall \ n \in \mathbb{N}$.

Example 3.6 - Stationary Distribution

Consider a Markov chain with states $S = \{0, 1, 2\}$ & transition matrix $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Find a Stationary Distribution for this chain.

Set
$$(\pi_0, \pi_1, \pi_2) = (\pi_0, \pi_1, \pi_2) \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$= (\frac{\pi_0}{2} + \frac{\pi_1}{6}, \frac{\pi_0}{2} + \frac{\pi_1}{2} + \frac{\pi_2}{2}, \frac{\pi_1}{3} + \frac{\pi_2}{2})$$

$$\Rightarrow \qquad \pi_0 = \frac{\pi_0}{2} + \frac{\pi_1}{6}$$

$$\Rightarrow \qquad \pi_0 = \frac{\pi_1}{3}$$
& $\pi_0 = \frac{\pi_1}{3}$
& $\pi_0 = \frac{\pi_1}{3} + \frac{\pi_2}{2}$

$$\Rightarrow \qquad \pi_2 = \frac{2\pi_1}{3}$$
Since $\pi_0 + \pi_1 + \pi_2 = 1$

$$\Rightarrow \qquad \pi_0 + \pi_1 + \frac{2\pi_1}{3} = 1$$

$$\Rightarrow \qquad \pi_1 = \frac{1}{2}$$

Example 3.7 - Random Walk with Reflecting Barrier at 0

Consider the diagram in **Example 3.5**.

We are going to try and find a Stationary Distribution for this situation.

Thus π is a stationary distribution (finite) iff p < q.

3.3 Existence & Uniqueness of Stationary Distributions

Definition 3.8 - Positive Recurrent

A state *i* is positive recurrent if the mean time of first return is finite $(m_{ii} < \infty)$. *N.B.* This is a class property.

Theorem 3.5 - Stationary Distributions in Irreducible Chains

An Irreducible Chain has a Stationary Distribution π iff all of the states are positive recurrent. Here π is unique and given by $\pi_i = \frac{1}{m_{ii}}$.

Theorem 3.6 -

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be an irreducible aperiodic *Markov Chain* with a stationary distribution π . Then

$$\forall i, j \in S \ p_{ij}(n) \xrightarrow{n \to \infty} \pi_j$$

N.B. The existence of the π means all states are positive recurrent with $m_{ii} = \frac{1}{\pi_i}$

3.4 Periodicity

Definition 3.9 - Period

Let $j \in S$ be such that $p_{ij}(n) > 0$ for some integers $n \ge 1$.

Let
$$\mathcal{N}_{i} = \{ n \geq 1 : p_{ij}(n) > 0 \}.$$

Then the *Period* of j is given by $d_i = gcd(\mathcal{N}_i)$.

Definition 3.10 - Aperiodic

If the period of a state, d_j , equals 1 then state j is aperiodic.

Remark 3.5 -

If $p_{ij} > 0$ then J is aperiodic since $1 \in \mathcal{N}_i$.

Remark 3.6 -

if $d_j \geq 2$ then $p_{jj}(n)$ cannot possibly converge, except occasionally to 0.

Theorem 3.7 - Period within a Communicating Class

Let $C \subseteq S$ be a communicating class of states.

Let $i, j \in C$.

Then $d_i = d_j$.

Proof 3.6 - Period within a Communicating Class

Suppose $d_i \neq d_j$, and without loss of generality assume $d_i < d_j$.

Since C is a communicating class, $i \leftrightarrow j$, and there exists $m \geq 0$, $n \geq 0$ st $p_{ij}(m) > 0$ and $p_{ji}(n) > 0$.

Suppose $p_{ii}(s) > 0$.

Then $p_{ii}(rs) \geq r.p_{ii}(s) > 0$ for $r \in \mathbb{N}$.

Therefore $p_{jj}(n+rs+m) \ge p_{ji}(n)p_{ii}(rs)p_{ij}(m) > 0$ so $(n+rs+m) \in \mathcal{N}_j$.

In particular, both (n+s+m) and (n+2s+m) are multiples of d_j , so s=(n+2s+m)-(n+s+m)=s is a multiple of d_j .

We have shown that d_i is a divisor of all the values of s such that $p_{ii}(s) > 0$.

 d_i is defined to be the gcd of the same set of s values, so $d_i \geq d_i$.

But we started by assuming $d_i < d_i$.

This is a contradiction.

So we must have $d_i = d_j$.

Example 3.8 - Period

Let $S = \{0, 1\}$ and with transition matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

So
$$p_{00}(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$$

Since $p_{00}(n) > 0$ only when n is event, the period must be a multiple of 2.

And, since $p_{00}(2) > 0$, the period must be no more than 2.

Therefore $d_0 = 2$.

4 Markov Chains in Continuous Time

Definition 4.1 - Lack of Memory Property

Let X be a random variable.

X is said to have the Lack of Memory Property if

$$\mathbb{P}(X > t + h|T > h) = \mathbb{P}(T > h)$$

Remark 4.1 - Distributions with Lack of Memory Property
The Exponential Distribution has the Lack of Memory Property.

Proposition 4.1 - Modelling Wait Times

LET T be a random variable that models wait times between events.

Then T should have the following property

$$\begin{array}{cccc} \mathbb{P}(T \in (t,t+h]|T>t) & = & \lambda h + o(h) \\ \Longrightarrow & \mathbb{P}(T>t+h|T>t) & = & 1-\lambda h + o(h) \end{array}$$

N.B.
$$\lim_{h\to 0} \frac{0(h)}{h} = 0.$$

Proposition 4.2 - Distribution for Modelling Wait Times

Consider the T defined in **Proposition 4.1**.

Let $g(t) = \mathbb{P}(T > t)$. Then

Since $g(0) = 1 \implies 1 = ce^0 \implies c = 1 \implies g(t) = e^{-lambdat}$. So $T \sim Exp(\lambda)$.

Example 4.1 - Who arrives first?

Consider having arranged to meet with n friends.

Let T_i be the length of time you wait for the i^{th} first to arrived.

Assume the T_i s are independent and identically distributed with $T_i \sim Exp(\lambda_i)$.

i) Derive the distribution of the length of time until the first friend turns up.

$$\mathbb{P}(min(T_1, ..., T_n) > t) = \mathbb{P}(t_1 > t, ..., T_n > T)$$

$$= \prod_i \mathbb{P}(T_i > t) \text{ by indepdence}$$

$$= \prod_i e^{-\lambda_i t}$$

$$= e^{-t \sum_i \lambda_i}$$

$$\implies min(T_1, ..., T_n) \sim Exp\left(\sum_{i=1}^n \lambda_i\right)$$

ii) Derive the probability that the first friend to turn up is friend i.

$$\mathbb{P}(i^{th} \ friend \ is \ first) = \mathbb{P}(T_i = min(T_1, \dots, T_n))$$

$$= \mathbb{P}(T_i < T_j, j \neq i)$$

$$= \int_0^\infty \mathbb{P}(T_j > T_i, j \neq i | T_i = t) dt$$

$$= \int_0^\infty \mathbb{P}(T_j > t, j \neq i) \lambda e^{-\lambda_i t} dt$$

$$= \int_0^\infty \prod_{j=1, j \neq i}^n \mathbb{P}(T_j > t) \lambda_i e^{-\lambda_i t} dt \text{ by independee}$$

$$= \int_0^\infty e^{-t \sum_{j \neq i} \lambda_j} \lambda_i e^{-\lambda_i t} dt$$

$$= \lambda_i \int_0^\infty e^{-t \sum_{i=1}^n \lambda_i} dt$$

$$= \lambda_i \left[\frac{exp(-t \sum_{i=1}^n \lambda_i)}{-\lambda_{i=1}^n \lambda_i} \right]_0^\infty$$

$$= \frac{\lambda_i}{\sum_{i=1}^n \lambda_i}$$

Proposition 4.3 - Link Exponential & Binomial Distribution

Consider the time till occurrence of an event is modelled by $Exp(\mu)$.

So the probability of the event occurring before time t is $1 - e^{-\mu t} \approx \mu t$ if μt is small.

If there are n independent events with the same distribution we can model the number of events that occur by time t with $Bi(n, \mu t)$

4.1 Poisson Process

Definition 4.2 - Poisson Process

Let $\{N_t\}_{t\geq 0}$ be a continuous time stochastic process where N_t counts the number of events to have occurred by time t.

 $\{N_t\}_{t>0}$ is a Poisson Process with rate λ if

- i) $N_t \in \mathbb{N} \ \forall \ t \geq 0$;
- ii) $N_0 = 0$;
- iii) It has stationary increments i.e. $N_{t+s} N_t$ depends only on s;
- iv) It has independent increments i.e. $N_{t_2} N_{t_1}, \dots, N_{t_n} N_{t_{n-1}}$ are independent;
- v) If t > 0 and h > 0 then

$$\mathbb{P}(N_{t+h} - N_t < 0) = 0
\mathbb{P}(N_{t+h} - N_t = 0) = 1 - \lambda h + o(h)
\mathbb{P}(N_{t+h} - N_t = 1) = \lambda h + o(h)
\mathbb{P}(N_{t+h} - N_t > 1) = o(h)$$

as $h \to 0$.

N.B.
$$\lim_{h\to 0} \frac{o(h)}{h} = 0$$
.

Theorem 4.1 - Distribution of Poisson Process

for $t \geq 0$

$$N_t \sim Po(\lambda t)$$

Proof 4.1 - *Theorem 4.1*

Proposition 4.4 - Implications of Theorem 4.1

From **Theorem 4.1** it follows that $\mathbb{E}(N_t) = Var(N_t) = \lambda t$.

Since $N_0 = 0$ we have stationary increments

$$N_{t+s} - N_t \sim N_s - N_0 = N_S - 0 \sim N_S \sim Po(\lambda s)$$

Thus the number of events in any interval of width s is distributed by $Po(\lambda s)$.

Proposition 4.5 - Distribution of Initial Arrival Time

Let S_1 be the time of the first arrival, so $S_1 = \inf\{t \ge 0 : N_t > 0\}$.

Consider the event $\{S_1 > t\}$.

We have that $\{S_1 > t\} \equiv \{N_t = 0\}.$

Hence $\mathbb{P}(S_1 > t) = \mathbb{P}(N_t = 0) = e^{-\lambda t}$ since $N_t \sim Po(\lambda t)$.

Thus $S_1 \sim Exp(\lambda)$.

Proposition 4.6 - Distribution of General Arrival Time

Let S_n be the time of the n^{th} arrival, so $S_n = \inf\{t \ge 0 : N_t = n\}$.

Consider the event $\{S_n > t\}$.

We have that $\{S_n > t\} \equiv \{N_t < n\}.$

Let T_i be the inter-arrival times st $T_1 = S_1$, $T_2 = S_2 - S_1, \ldots, T_n = S_n - S_{n-1}$.

Note that $S_n = \prod_{i=1}^n T_i$.

$$\begin{split} \mathbb{P}(T_n > t | S_{n-1} = s_{n-1}, \dots, S_1 = s_1) &= \mathbb{P}(N_{t+s_{n-1}} - N_{s_{n-1}} = 0 | S_{n-1} = s_{n-1}, \dots, S_1 = s_1) \\ &= \mathbb{P}(N_{t+s_{n-1}} - N_{s_{n-1}} = 0) \text{ by indepdent increments} \\ &= \mathbb{P}(N_t - N_0 = 0) \text{ by stationary increments} \\ &= \mathbb{P}(N_t = 0) \\ &= e^{-\lambda t} \end{split}$$

Since $e^{-\lambda t}$ is independent of $s_1, \ldots, s_{n-1} \implies T_n$ is independent of S_1, \ldots, S_{n-1} .

Hence T_n is independent of T_1, \ldots, T_{n-1} be definition.

So $T_i \sim Exp(\lambda) \ \forall \ i$.

Hence $S_n = \sum_{i=1}^n T_i \sim \Gamma(n, \lambda)$.

4.2 Birth Death Process

4.2.1 Linear Birth Processes

Definition 4.3 - Linear Birth Process

Consider a population of individuals.

In the *Linear Birth Process* each individual present at time t splits into 2 during the interval (t, t + h) with probability $\lambda h + o(h)$.

We have that all individuals act independently of each other.

N.B. The birth rate is independent of the population size.

N.B. This is also known as a Yule Process.

Proposition 4.7 - Distribution of Time between Arrivals

Let N_t be the population size at time t, assume $N_0 = 1$.

For $n \ge 1$ let S_n be the time until the population reaches size n, so $S_n = \inf\{t \ge 0 : N_t = n\}$. Let T_j be the time to grow from size j to j + 1, so $T_j = S_{j+1} - S_j$.

Consider a population of size j.

Let Y_i be hte waiting time until i^{th} individual splits.

then, by definition & **Proposition 4.2**, we have that Y_1, \ldots, Y_j are iid with distribution $Exp(\lambda)$.

We have that $T_j = min\{Y_1, \dots, Y_j\}$.

Since $T_j \sim Exp(k\lambda) \implies \mathbb{E}(T_j) = \frac{1}{j\lambda}$.

Using $S_n = T_1 + \cdots + T_{n-1}$ we have that

$$\mathbb{E}(S_n) = \mathbb{E}(T_1 + \dots + T_{n-1}) = \frac{1}{\lambda} (1 + \frac{1}{2} + \dots + \frac{1}{n-1})$$

This is not convergent but can be approximated to $\frac{1}{\lambda} \int_1^n \frac{1}{x} dx = \frac{1}{\lambda} \log_n$.

Proposition 4.8 - Distribution of Number of Births

For a population of size n each has an independent probability of $\lambda h + o(h)$ for giving birth in interval (t, t + h).

The distribution of number of births in time period (t, t + h) is

$$Bi(n, \lambda h + o(h))$$

Proposition 4.9 - Distribution of Population Size, N_t

Let N_t denote the size of the population at time t with birth rate λ , then

$$N_T \sim Geo(e^{-\lambda t})$$

N.B. $\mathbb{E}(N_t) = e^{\lambda t}$.

4.2.2 Linear Birth & Death Processes

Definition 4.4 - Linear Birth & Death Process

Consider an individual in a population & the possible events that can occur to them in (t, t+h). In a *Linear Birth & Death Process* these are

- i) Gives birth, splits in two, with probability $\lambda h + o(h)$;
- ii) Dies with probability $\mu h + o(h)$; or,
- iii) Neither event, with probability $1 (\lambda + \mu)h + o(h)$.

N.B. We can consider the random variables $B \sim Exp(\lambda) \& D \sim Exp(\mu)$.

N.B. The birth & death rates are independent of the population size.

Proposition 4.10 - Probability of Birth or Death

Given an event has occurred:

- i) The probability it was a birth is $\frac{\lambda}{\lambda + \mu}$
- ii) The probability it was a death is $\frac{\mu}{\lambda + \mu}$

4.2.3 Generalised Birth & Death Processes

Definition 4.5 - Generalised Birth & Death Process

A continuous time stochastic process $\{N_t\}_{t\geq 0}$ is a Generalised Birth & Death Process if

- $N_t \in \mathbb{N}_0$:
- $\mathbb{P}(N_{t+h} N_t = 1 | N_t = n) = \lambda_n h + o(h)$
- $\mathbb{P}(N_{t+h} N_t = -1|N_t = n) = \mu_n h + o(h)$
- $\mathbb{P}(N_{t+h} N_t = 0 | N_t = n) = 1 (\lambda_n + \mu_n)h + o(h)$
- $\lambda_n, \mu_n \geq 0 \ \forall \ n;$
- $-\mu_0 = 0.$

N.B. The birth and death rate depends upon the size of the population.

Proposition 4.11 - General Rate of Change

Let
$$p_n(t) = \mathbb{P}(N_t = n)$$
.

Then

$$p'_n(t) = \lambda_{n-1}p_{n-1}(t) - (\lambda_n + \mu_n)p_n(t) + \mu_{n-1}p_{n+1}(t) \ \forall \ n \ge 1$$

and

$$p_0'(t) = -\lambda_0 p_0 * t) + \mu_1 p_1(t)$$

Example 4.2 - Stationary Distribution - Constant Birth Rate & Increasing Death Rate Consider a situation where $\lambda_n = \lambda > 0 \ \forall \ n \in \mathbb{N} \ \& \ \mu_n = \mu n \forall \ n \in \mathbb{N}$.

Derive the stationary distribution for this process Let $p_n(t) = \mathbb{P}(N_t = n)$. From the general formula in **Proposition 4.11** we have

$$p'_n(t) = \lambda p_{n-1}(t) - (\lambda + \mu n)p_n(t) + \mu(n+1)p_{n+1}(t)$$

Consider the case that n = 0

$$\begin{array}{rcl} p_0(t+h) & = & \mathbb{P}(N_{t+h}=0) \\ & = & \mathbb{P}(N_{t+h}=0|N_t=0)\mathbb{P}(N_t=0) + \mathbb{P}(N_{t+h}=0|N_t=1)\mathbb{P}(N_t=1) + o(h) \\ & = & (1-\lambda h)p_0(t) + \mu h p_1(t) + o(h) \\ \Longrightarrow & \frac{p_0(t+h)-p_0(t)}{h} & = & -\lambda p_0(t) + \mu p_1(t) \end{array}$$

Let $h \to 0 \implies p'_0(t) = -\lambda p_0(t) + \mu p_1(t)$.

We assume the process reaches a steady space where it no longer changes, this occurs at large t. Then means $\exists \hat{p}_n$ where

$$p_n(t) \xrightarrow{t \to \infty} \hat{p}_n \& \hat{p}'_n(t) \to 0$$

By the general formula & derivative of \hat{p}_0 we have that

$$0 = \lambda \hat{p}_{n-1} - (\lambda + \mu n) p_n + \mu (n+1) \hat{p}_{n+1}$$

$$0 = -\lambda \hat{p}_0 + \mu \hat{p}_1$$

Rearranging gives

$$\mu(n+1)\hat{p}_{n+1} - \lambda \hat{p}_n = \mu_n \hat{p}_n - \lambda \hat{p}_{n+2}$$

$$\vdots$$

$$= \mu \hat{p}_1 - \lambda \hat{p}_0 = 0$$

Hence $\mu n \hat{p}_n - \lambda \hat{p}_{n-1} = 0 \ \forall \ n \in \mathbb{N}.$

$$\implies \hat{p}_n = \frac{\lambda}{\mu n} \hat{p}_{n-1} = \dots = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n \hat{p}_0$$

Normalising

$$1 = \sum_{n=0}^{\infty} \hat{p}_n \\
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right) \hat{p}_0 \\
= \hat{p}_0 e^{\lambda/\mu} \\
\implies \hat{p}_0 = e^{-\lambda/\mu}$$

Thus $\hat{p}_n = \frac{1}{n!} \left(\frac{\lambda}{\mu} \right) e^{-\lambda/\mu} \ \forall \ n \in \mathbb{N}^0$.

This stationary distribution is distributed $\sim Po\left(\frac{\lambda}{\mu}\right)$.

4.3 General Markov Chains in Continuous Time

Definition 4.6 - Generator

G is the Generator of a Markov Chain where G satisfies

- i) $g_{ij} \geq 0$ for $j \neq i$;
- ii) $q_{ii} < 0$; and
- iii) $\sum_{i \in S} = 0$.

N.B. $g_{ii} = -\sum_{i \neq i} g_{ij}$.

Proposition 4.12 - Chains & Their Generator

For reasonable chains it can be shown that

$$p_{ij}(h) = g_{ij}h + o(h) \text{ for } i \neq j$$

$$p_{ii}(h) = 1 - \sum_{j \neq i} p_{ij}(h)$$

$$= 1 - \sum_{j \neq i} g_{ij}h + o(h)$$

$$= 1 + g_{ii}h + o(h)$$

Example 4.3 - Linear Birth & Death Process

We know that

$$\mathbb{P}(N_{t+h} = j | N_t = i) = p_{ij}(h) = \begin{cases} \mu i h + o(h) & \text{if } j = i - 1\\ \lambda i h + o(h) & \text{if } j = i + 1\\ 1 - (\lambda + \mu) h i + o(h) & \text{if } j = i\\ o(h) & \text{otherwise} \end{cases}$$

Using $p_{ij}(h) = g_{ij}h + o(h) \& p_{ii}(h) = g_{ii}h + 1 + o(h)$

$$g_{ij} = \begin{cases} \mu & \text{j} = \text{i} - 1\\ \lambda & \text{j} = \text{i} + 1\\ -(\lambda + \mu)i & \text{j} = \text{i}\\ 0 & \text{otherwise} \end{cases}$$

Definition 4.7 - Forward Equations

The Forward Equations is given as

$$(P_t')_{ij} = (P_t G)_{ij}$$

Since this holds $\forall i, j$ we have $P'_t = P_t G \& P_0 = I$.

Proposition 4.13 - Deriving Forward Equations

Consider the probability of being in state j at time t+h if the chain started in i at time 0,

 $p_{ij}(t+h)$.

Conditioning on the state of the chain at time t we get

$$p_{ij}(t+h) = \mathbb{P}(X_{t+h} = j|X_0 = i)$$

$$= \sum_{k \in S} \mathbb{P}(X_{t+h} = j|X_t = k, X_0 = i) \mathbb{P}(X_t = k|X_0 = i)$$

$$= \sum_{k \in S} \mathbb{P}(X_t = k, X_0 = i) \mathbb{P}(X_t = k|X_0 = i) \text{ by Markov Property}$$

$$= \sum_{k \in S} p_{kj}(h) p_{ik}(t)$$

$$= p_{jj}(h) p_{ij}(t) + \sum_{k \in S/\{s\}} p_{kj}(h) p_{ik}(t)$$

$$= (1 + g_{jj}h + o(h)) p_{ij}(t) + \sum_{k \in S/\{j\}} (g_{kj}h + o(h)) p_{ik}(t)$$

$$= p_{ij}(t) + \sum_{k \in S} g_{kj} h p_{ik}(t) + o(h)$$

$$\implies \frac{p_{ij}(t+h) - p_{ij}(t)}{h} = \sum_{k \in S} g_{kj} p_{ik}(t) + \frac{o(h)}{h}$$

$$\implies p'_{ij}(t) = \sum_{k \in S} g_{kj} p_{ik}(t)$$

$$\implies (P'_t)_{ij} = (P_tG)_{ij}$$

Proposition 4.14 - Solving Forward Equations

We can solve the Forward Equations as ordinary differential equations

$$P'_t - P_t G = 0$$

$$\Rightarrow I(t) = e^{-\int G dt} = e^{-Gt}$$

$$\Rightarrow \frac{d}{dt} (e^{-Gt} P_t) = 0$$

$$\Rightarrow e^{-G} P_t = C \text{ some matrix}$$

$$\Rightarrow e_0 P_0 = C$$

$$\Rightarrow 1I = C$$

$$\Rightarrow C = I$$

$$\Rightarrow P_t = e^{Gt}$$

Theorem 4.2 -

$$\left. \frac{d^k}{dt^k} \right|_{t=0} P_t = G_k \ \forall \ k \ge 0$$

Proof 4.2 - *Theorem 4.2*

$$\begin{vmatrix} \frac{d^k}{dt^k} \Big|_{t=0} P_t & = & \frac{d^k}{dt^k} \Big|_{t=0} \sum_{n=0}^{\infty} \frac{t^n}{n!} G^n \\ & = & \sum_{n=0}^{\infty} \frac{d^k}{dt^k} \Big|_{t=0} \frac{t^n}{n!} G^n \\ & = & \sum_{n=0}^{\infty} \frac{t^{n-k}}{(n-k)!} \Big|_{t=0} G^n \\ & = & G^k \end{vmatrix}$$

Example 4.4 - Computing P_t from G

Consider the state space $S = \{1, 2, 3\}$ with $G = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix}$.

We partially diagonalise G.

Setting $|G - \lambda I| = 0$ we get $\lambda_1 = 0, \lambda_2 = -2 \& \lambda_3 = -4$.

Since the eigenvalues are distinct $\exists U \in M_3$ st

$$G = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix} U^{-1}$$

$$\implies G^{n} = U \begin{pmatrix} 0^{n} & 0 & 0 \\ 0 & (-2)^{n} & 0 \\ 0 & 0 & (-4)^{n} \end{pmatrix} U^{-1}$$

We know that $P_t = e^{tG}$ so

$$P_{t} = \sum_{n=0}^{\infty} \frac{t^{n} G^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{t^{n}}{n!} U \begin{pmatrix} 0^{t} & 0 & 0 \\ 0 & (-2)^{t} & 0 \\ 0 & 0 & (-4)^{t} \end{pmatrix} U^{-1}$$

$$= U \begin{pmatrix} \sum_{n=0}^{\infty} \frac{0^{n}}{n!} & 0 & 0 \\ 0 & \sum_{n=0}^{\infty} \frac{(-2t)^{n}}{n!} & 0 \\ 0 & 0 & \sum_{n=0}^{\infty} \frac{(-4t)^{n}}{n!} \end{pmatrix} U^{-1}$$

$$= U \begin{pmatrix} e^{0} & 0 & 0 \\ 0 & e^{-2t} & 0 \\ 0 & 0 & e^{-4t} \end{pmatrix} U^{-1}$$

Hence $P_{ij}(t) = a_{ij} + b_{ij}e^{-2t} + c_{ij}e^{-4t} \ \forall i, j \in S$. Using **Theorem 4.2** & considering i = j = 1 we have

$$P_{11}(t) = a_{11} + b_{11}e^{-2t} + c_{11}e^{-4t},$$

$$P'_{11}(t) = -2b_{11}e^{-2t} - 4c_{11}e^{-4t},$$

& $P''_{11}(t) = 4b_{11}e^{-2t} + 16c_{11}e^{-4t},$

Setting t = 0

$$P_{11}(0) = (G^{0})_{11}$$

$$= a_{11} + b_{11} + c_{11}$$

$$P'_{11}(0) = (G^{1})_{11} = -2$$

$$= -2b_{11} - 4c_{11}$$

$$P''_{11}(0) = (G^{2})_{11}$$

$$= (-2)^{2} + (1 \times 1) + (2 \times 1) = 7$$

$$= 4b_{11} + 16c_{11}$$

Solving this series of simultaneous equations we get

$$a_{11} = \frac{3}{8}, \ b_{11} = \frac{1}{4} \& c_{11} = \frac{3}{8}$$

Example 4.5 - Exponential Holding Times

Assume at time t the chain enters state i & then stays in i for some random time $U = \inf\{s \ge 0 : X_{t+s} \ne i\}$. It the jumps to a new state.

Let h_{ij} be the probability it jumps from state i to state j, with $h_{ii} = 0$.

We have that

$$\mathbb{P}(U > u + v | U > v) = \mathbb{P}(U > v + u | X_{t+u} = i \text{ and further information about the past})$$

= $\mathbb{P}(U > v)$ by Markov property

Since U has last of memory property & is on continuous time it must have an exponential distribution.

Let $U \sim Exp(\lambda_i)$. We shall relate the values of λ_i & h_{ij} to the generator matrix G. For $i \neq j$. Since $g_{ij} = p'_{ij}(0)$ then

$$\begin{array}{lll} g_{ij} & = & \lim_{\delta \to 0} \frac{p_{ij}(\operatorname{delta}) - p_{ij}(0)}{\delta} \\ & = & \lim_{\delta \to 0} \frac{p_{ij}(\operatorname{delta}) - 0(0)}{\delta} \\ & = & \lim_{\delta \to 0} \frac{\mathbb{P}(\operatorname{in time}(0,\delta),\operatorname{leave state } i,\operatorname{jump to } j, \text{ and nothing else}) + o(\delta)}{\delta} \\ & = & \lim_{\delta \to 0} \frac{\mathbb{P}(U < \delta)h_{ij} + o(\delta)}{\delta} \\ & = & \lim_{\delta \to 0} \frac{(1 - e^{-\lambda_i \delta})h_{ij} + o(\delta)}{\delta} \\ & = & \lambda_i h_{ij} \text{ by l'Hôpital's rule} \end{array}$$

For i = j

$$\begin{array}{rcl} g_{ii} & = & \lim_{\delta \to 0} \frac{p_{ii}(delta) - p_{ii}(0)}{\delta} \\ & = & \lim_{\delta \to 0} \frac{e^{-\lambda_i \delta} + o(\delta) - 1}{\delta} \\ = & -\lambda_i \text{ by l'Hôpital's rule} \end{array}$$

Rearranging this we see that

$$\begin{array}{rcl} \lambda_i & = & -g_{ii} \\ h_{ij} & = & \frac{g_{ij}}{\lambda_i} \\ & = & -\frac{g_{ij}}{g_{ii}} > 0 \\ \Longrightarrow & \sum_{j \in S} h_{ij} & = & \sum_{j \neq i} -\frac{g_{ij}}{g_{ii}} + h_{ii} \\ & = & \sum_{j \neq i} -\frac{g_{ij}}{g_{ii}} \\ & = & 1 \end{array}$$

Thus the matrix H is a stochastic matrix.

The chain X_t proceeds with a sequence of jumps around the state space.

Definition 4.8 - Jump Chain

Let $S_1 < S_2 < \ldots$ denote the times when the continuous-time Markov Chain X jumps. The discrete-time Markov Chain formed by $(X_{S_1}, X_{S_2}, \ldots)$ is called the *Jump Chain*. N.B. This is AKA *Embedded Markov Chain*.

Example 4.6 - Jump Chain for Linear Births & Deaths Define

$$p_{ij}(h) = \begin{cases} o(h) & j < i - 1 \text{ or } j > i + 1 \\ \mu i h + o(h) & j = i - 1 \\ 1 - (\lambda + \mu) i j + o(h) & j = i \\ \lambda i h + o(h) & j = i + 1 \end{cases}$$

and

$$g_{ij} = \begin{cases} 0 & j < i - 1 \text{ or } j > i + 1 \\ \mu i & j = i - 1 \\ -(\lambda + \mu)i & j = i \\ \lambda i & j = i + 1 \end{cases}$$

Note that $U \sim Exp(-g_{ii}) \sim Exp((\lambda + \mu)i)$.

Hence, the jump chain transition probabilities are

$$h_{ij} = \begin{cases} 0 & j < i - 1 \text{ or } j > i + 1 \\ \frac{\mu}{\lambda + \mu} & j = i - 1 \\ \frac{\lambda}{\lambda + \mu} & j = i + 1 \\ 0 & j = i \end{cases}$$

4.4 Class Structure, Recurrence & Stationary Distributions

Definition 4.9 - Equivalent Definitions of Communication If $i \neq j$ the following are equivalent

- i) $i \rightarrow j$;
- ii) $i \rightarrow j$ in the jump chain;

iii)
$$\exists i \neq i_1 \neq \dots \neq i_n \neq j \text{ st } g_{ii_1} g_{i_1 i_2} \dot{g}_{i_n j} > 0;$$

iv)
$$p_{ij}(t) > 0 \ \forall \ t$$

Definition 4.10 - Continuous Time Recurrence

A state i is called Recurrent in continuous time if $\mathbb{P}(\{t \geq 0 : X_t = i\} \text{ is } unbounded | X_0 = i) = 1.$

Definition 4.11 - Continuous Time Transience

A state i is called Transient in continuous time if $\mathbb{P}(\{t \geq 0 : X_t = i\} \text{ is unbounded} | X_0 = i) = 0.$

Theorem 4.3 -

A state i is recurrent for the continuous time Markov Chain X_t iff it is recurrent for the jump chain Y_n .

Proof 4.3 - *Theorem 4.3*

Suppose $X_0 = Y_0 = i$ and let n be the n^{th} jump time of X_t .

Suppose i is recurrent for Y_n so that $Y_n = i$ for infinitely many n with probability 1.

Hence $X_{T_n} = Y_n = i$ for infinitely many n, and the set $\{t : X_t = i\}$ is unbounded with probability 1.

So i is recurrent for X_t .

Conversely, suppose that i is transient for Y_n .

So $\mathbb{P}(Y_n = i \text{ infinitely often}) = 0$ and with probability 1 there xists a maximal n st $Y_n = i$.

Therefore $X_t \neq i \ \forall \ t > T_{n+1}$.

Thus i is transient for X_t .

Theorem 4.4 - Stationary Distribution & Generator

If P_t has generator G then π is stationary iff $\pi G = 0$.

Proof 4.4 - *Theorem 4.4*

We have

$$\pi$$
 is stationary $\Leftrightarrow \pi P_t = \pi \text{ for all } t \geq 0$
 $\Leftrightarrow \frac{d}{dt}\pi P_t = \frac{d}{dt}\pi$
 $\Leftrightarrow \pi P'_t = 0$
 $\Leftrightarrow \pi GP_t = 0$ by backwards equations

But for t = 0, $P_0 = I \implies \pi G P_0 = \pi G = 0$.

Theorem 4.5 -

Let G be the generator of a chain whose jump chain has transition matrix H. Then π is stationary for G iff vH = v where $([v]_i = \pi_i g_{ii})$.

Proof 4.5 - *Theorem 4.5*

$$vH = v$$

$$vH - vI = 0$$

$$[v(H - I)]_j = \sum_{i \in S} v_i (h_{ij} - \delta ij)$$

$$= v_j (h_{jj} - \delta_{jj} \sum_{i \neq j} v_i (h_{ij} - 0)$$

$$= (-\pi_j g_{jj})(-1) + \sum_{i \neq j} -\pi_i g_{ii} \left(\frac{-g_{ij}}{g_{ii}}\right)$$

$$= \sum_{i \in S} \pi_i g_{ij}$$

$$= [\pi G]_g$$

$$\Rightarrow (\pi G) = 0 \Leftrightarrow vH = v$$

$$\Leftrightarrow \pi \text{ stationary}$$

Theorem 4.6 -

For an irreducible continuous time Markov chain

$$p_{ij} \xrightarrow{t \to \infty} \pi_j$$

5 Brownian Motion

5.1 Basic Notions

Remark 5.1 - Brownian Motion Intuition

Brownian Motion can be though of as the motion of a particle suspended in fluid, moving randomly but continuously about \mathbb{R}^n with $n \in \mathbb{N}$.

Definition 5.1 - Multivariate Normal Distribution

An $n \times 1$ random vector $\boldsymbol{X} = (X_1, \dots, X_n)^t$ has Multivariate Normal Distribution if its joint density is

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^t \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

where Σ is a symmetric positive-definite matrix of size $n \times n$ and μ is a $n \times 1$ vector.

N.B. - This distribution is denoted $N(\boldsymbol{\mu}, \Sigma)$.

N.B. - This is also known as Multinormal Distribution.

Remark 5.2 - Positive-Definite Matrix

Let A be a symmetric positive-definite matrix of size $n \times n$.

Then A has n eigenvalues which are all positive.

Furthermore, we can define $A = P^{-1}DP$ where D is a diagonal matrix of the eigenvalues & P is a unitary matrix.

Theorem 5.1 - Properties of Multivariate Normal Distribution

If $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then

- i) $\mathbb{E}(\boldsymbol{X}) = \mu$ (i.e. $\mathbb{E}(X_i) = \mu_i$;
- ii) The i, j^{th} entry of Σ is the $Cov(X_i, X_j)$.

Theorem 5.2 - Distribution of Linear Transformation of Multinormal Distribution

Let $m \leq n$.

Define $X \sim N(\boldsymbol{\mu}, \Sigma)$ to be a $n \times 1$ random vector, $\boldsymbol{c} \in \mathbb{R}^m$ & $B \in \mathbb{R}^{m \times n}$ with Rank(B) = m. Then

$$Y = c + BX \implies Y \sim N(c + B\mu, B\Sigma B^t)$$

Remark 5.3 - MultiNormal Distribution of Independent Variables

Let $\boldsymbol{X} = (X_1, \dots, X_n)^t$ with X_1, \dots, X_n be independent with distributions $X_i \sim N(\mu_i, \sigma_i^2)$

Then
$$\boldsymbol{X} \sim N(\boldsymbol{\mu}, Diag_n(\sigma_i^2))$$
 where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^t$ and $Diag_n(\sigma_i^2) = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$.

Theorem 5.3 - Central Limit Theorem

Let $X_1, X_2, ...$ be independent identically distribution random variables with $\mathbb{E}(X_i) = \mu \& Var(X_i) = \sigma^2 \neq 0$.

Define
$$Z_n = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu).$$

Then as $n \to \infty$ distribution of Z_n converges to $Z_n \sim N(0,1)$.

$$\lim_{n \to \infty} \mathbb{P}(|_n \le x) = \Phi(x)$$

5.2 Definition & Construction of Brownian Motion

Definition 5.2 - Simple Symmetric Random Walk, SSRW

Let Y_1, Y_2, \ldots be independent random variables taking values of ± 1 with probability of 1/2. Then $S_n = \sum_{i=1}^n Y_i$ is known as a *Simple Symmetric Random Walk*.

Example 5.1 - Simple Symmetric Random Walk in \mathbb{R}

Example 5.2 - Simple Symmetric Random Walk in \mathbb{R}^2

Definition 5.3 - Brownian Motion - 1D

Let \mathcal{F}_t be a filtration.

Brownian Motion is an adapted stochastic process $W = \{W_t\}_{t\geq 0}$ where

- i) $W_0 = x$ for some $x \in \mathbb{R}$.
- ii) W has independent and stationary Normal increments:
 - (a) $W_{y+u} W_t$ is independent of $\mathcal{F}_t \ \forall \ t, u \geq 0$;
 - (b) $W_{y+u} W_t \& W_{s+u} W_s$ has the same distribution $\forall s, t, u \ge 0$ with $s \le s + u \le t + u$;
 - (c) $W_{t+u} W_t \sim N(0, u)$.
- iii) W has continuous paths i.e. $t \mapsto W_t(\omega)$ is a continuous function of $t \ \forall \ \omega \in \Omega$.

Definition 5.4 - Standard Brownian Motion

 $W = \{W_t\}_{t\geq 0}$ is said to be a Standard Brownian Motion if $W_0 = 0$.

Proposition 5.1 - Distribution of Increments of General Brownian Motion Let W_t be Brownian Motion with $W_t = x$ then

$$(W_t|W_0=x) \sim N(x,t)$$

Proposition 5.2 - Distribution of Increments of Standard Brownian Motion Let W_t be Standard Brownian Motion then

$$W_t = W_t - W_0 \sim N(0, t)$$

Remark 5.4 - Transition Density

Brownian Motion has Transition Density

$$p(t, x, y) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{1}{2t}(x-y)^2}$$

where $\mathbb{P}(W_t \in (y, y + \Delta y) | W_0 = x) = p(t, x, y) \Delta y + o(\Delta y)$.

i.e - The probability that a Brownian Motion starting at x ends up in interval $(y, y + \Delta y)$ at time t is $\approx p(t, x, y) \Delta y$.

Proposition 5.3 - Constructing the Brownian Motion of a Simple Symmetric Random Walk Let Y_t be a simple symmetric random walk & $S_n = \sum_{i=0}^n Y_i$, assuming $S_0 = 0$.

Each step Y_i has mean 0 & variance 1 thus by the central limit theorem $\frac{1}{\sqrt{n}}S_n$ converges to N(0,1) distribution.

Compressing both time & space results in a process that converges to Brownian Motion.

Define $X^n = \{X_t^n\}_{t \in [0,1]}$ by setting $X_t^n = \frac{1}{\sqrt{n}} S_{nt} \ \forall \ t = \frac{j}{n}$ and use linear interpolation in between. Then X^n converges to Brownian Motion.

Example 5.3 - Expected Position of Brownian Motion

Suppose a particle is at position 1.7 at time t=2. What is the expected position at time t=4?

$$\mathbb{E}(W_4|W_2 = 1.7) = \mathbb{E}(W_4 - W_2 + W_2 - W_0|W_2 = 1.7)$$

$$= \mathbb{E}(W_4 - W_2|W_2 = 1.7) + \mathbb{E}(W_2 - W_0|W_2 = 1.7)$$

$$= \mathbb{E}(W_4 - W_2) + 1.7$$

$$= 0 + 1.7 = 1.7$$

Example 5.4 - Probability of Position of Brownian Motion

Suppose the price of a produce moves according to $X_t = \sigma W_t + \mu t$ with $\sigma^2 = 4 \& \mu = -5$. Given that $X_8 = 4$ what is the probability that the price is below 1 at time 9?

$$\mathbb{P}(X_9 < 1 | X_8 = 4) = \mathbb{P}(X_9 - X_8 < -3 | X_8 = 4)
= \mathbb{P}(X_9 - X_8 < -3)
= \mathbb{P}(X_1 = X_0 < -3)
= \mathbb{P}(X_1 < -3)
= \mathbb{P}(2W_1 - 5 \times 1 < -3)
= \mathbb{P}(W_1 < 1)
= \Phi(1)
= 0.8413$$

5.3 Properties of Brownian Motion

Proposition 5.4 - Properties of Standard Brownian Motion Let W be a Standard Brownian Motion then

i)
$$\forall t \geq 0, \ \mathbb{E}(W_t) = 0 \ \& \ Var(W_t) = t;$$

ii)
$$\forall 0 \leq s \leq t$$
, $Cov(W_s, W_t) = s$;

iii) $-W_t$ is a Standard Brownian Motion;

- iv) For a fixed s > 0 the process $X = \{X_t\}_{t \ge 0}$ defined by $X_t = W_{t+s} W_s$ is also a Standard Brownian Motion;
- v) For any $\alpha > 0$ the process $Y = \{Y_t\}_{t \geq 0}$ defined by $Y_t = \frac{1}{\sqrt{\alpha}} W_{\alpha t}$ is a Standard Brownian Motion.

N.B. - v) is known as the Scaling Property.

Proof 5.1 - Proposition 5.4

- i) Since $W_t \sim N(0,t)$ then $\mathbb{E}(W_t) = 0 \& Var(W_t) = t$;
- ii) Let $0 \le s \le t$ then

$$Cov(W_s, W_t) = Cov(W_s, W_t - W_s + W_s)$$

$$= Cov(W_s, W_t - W_s) + Cov(W_s, W_s)$$

$$= 0 + Var(W_s)$$

$$= s$$

- iii) We check $-W_t$ has the properties of *Standard Brownian Motion* as defined in **Definition** 5.3 & **Definition** 5.4
 - (a) $-W_0 = -0 = 0$;
 - (b) $-W_{t+u} (-W_t) = -(W_{t+u} W_t)$ we know $W_{t+u} W_t \sim N(0, u)$. So $-(W_{t+u} - W_t) \sim N(0, u)$ by symmetry of the normal distribution & it is independent of \mathcal{F}_t .
 - (c) $-W_t$ is continuous if W_t is continuous.
- iv) We check $X_t = W_{t+s} W_s$ has the properties of *Standard Brownian Motion* as defined in **Definition 5.3** & **Definition 5.4**
 - (a) $X_0 = W_s W_s = 0$;
 - (b) $X_{t+u} X_t = (W_{t+u+s} W_s) + (W_{t+s} W_s) = W_{t+u+s} W_{t+s} \sim N(0, u)$. This is independent of \mathcal{F}_{t+s} .
 - (c) X_t is the difference of two continuous functions, so is continuous.
- v) We check $Y_t = \frac{1}{\sqrt{\alpha}}W_{\alpha t}$ has the properties of *Standard Brownian Motion* as defined in **Definition 5.3** & **Definition 5.4**
 - (a) $Y_0 = \frac{1}{\sqrt{\alpha}} W_0 = \frac{1}{\sqrt{\alpha}} \times 0 = 0;$
 - (b) $Y_{t+u} Y_t = \frac{1}{\sqrt{\alpha}}(W_{\alpha(t+u)} W_{\alpha t})$ We know $W_{\alpha t + \alpha u} - W_{\alpha t} \sim N(0, au)$ so $Y_{y+\alpha} - Y_t \sim N(0, u)$. For $t_1 \le t_2 \le t_3 \le t_4 \implies \alpha t_1 \le \alpha t_2 \le \alpha t_3 \le \alpha t_4$. $Y_{t_2} - Y_{t_1} = \frac{1}{\sqrt{\alpha}}(W_{\alpha t_2} - W_{\alpha t_1})$ $Y_{t_4} - Y_{t_3} = \frac{1}{\sqrt{\alpha}}(W_{\alpha t_4} - W_{\alpha t_4})$.

These are independent of each other as W_t is a Brownian Motion & the time gaps don't overlap.

(c) Y_t is continuous, since W_t is continuous.

Remark 5.5 - Brownian Motion is not differentiable

Definition 5.5 - Gaussian Process

A Gaussian Process is a Continuous-Time Stochastic Process with continuous sample paths & finite dimensional distributions that are multivariable normal.

A Gaussian Process is completely determined by its mean function & auto-covariance function.

Theorem 5.4 - All States are Recurrent in Standard Brownian Motion For a Standard Brownian Motion W we have

$$\mathbb{P}\left(\sup_{t>0} W_t = \infty, \inf_{t\geq 0} W_t = -\infty\right) = 1$$

N.B. This implies that Brownian Motion is recurrent.

5.4 The Reflection Principle & First Passage Time

Theorem 5.5 - The Reflection Principle

Let τ_a be the first passage time of a Standard Brownian Motion, W_t and define

$$\widetilde{W}_{t} = \begin{cases} W_{T} & for \ t \leq \tau \\ a - (W_{t} - a) = 2a - W_{t} & for \ t > \tau \end{cases}$$

Then \widetilde{W}_t is also a Standard Brownian Motion.

Theorem 5.6 - Density of First Passage Time

The density of τ_a is given by

$$\frac{|a|}{\sqrt{2\pi t^3}}e^{-\frac{a^2}{2t}}, \ t \ge 0$$

Proof 5.2 - *Theorem 5.6*

Let 0.

First, observe that $\{\tau_a \leq T\} = \{\sup_{0 \leq t \leq T} W_t \geq a\}.$

Indeed, if $\tau_a \leq T$, this means the process hit a by time T.

This implies that $\sup_{0 \le t \le T} W_t$ is at least a by continuity of the process.

On the other hand, if $\sup_{0 \le t \le T} W_t \ge a$, this implies that the process hit a for the first time by T.

By continuity

$$\mathbb{P}(\tau_{a} \geq T) = \mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a) \\
= \mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a, W_{t} > a) + \mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a, W_{t} < a) \\
= \mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a, W_{t} > a) + \mathbb{P}(\sup_{0 \leq t \leq T} \widetilde{W}_{t} \geq a, \widetilde{W}_{t} > a) \\
= \mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a, W_{t} > a) + \mathbb{P}(\sup_{0 \leq t \leq T} \widetilde{W}_{t} \geq a, W_{t} > a) \text{Since } \widetilde{W}_{t} \text{ is S. Brownian Motion} \\
= 2\mathbb{P}(\sup_{0 \leq t \leq T} W_{t} \geq a, W_{t} > a) \\
= 2\mathbb{P}(W_{t} > a) \\
[1] = 2\int_{a}^{\infty} \frac{1}{\sqrt{2\pi T}} e^{-\frac{a^{2}}{2t}} dx \\
= \int_{a}^{T} \sqrt{\frac{a^{2}}{2\pi T}} e^{-\frac{a^{2}}{2t}} dx$$

$$= \int_0^T \sqrt{\frac{a^2}{2\pi u^3}} e^{-\frac{a^2}{2u}} du$$

$$\implies f_{\tau_a}(T) = \sqrt{\frac{a^2}{2\pi T^3}} e^{-\frac{a^2}{2t}}$$

[1] consider the following substitution

Set
$$u = \frac{a^2T}{x^2}$$

 $\implies du = -\frac{2a^2T}{x^3}dx$
& $x^6 = \frac{a^6T^3}{u^3}$

Theorem 5.7 - For any fixed $a \neq 0$ we have $\mathbb{E}(\tau_a) = \infty$

Proof 5.3 - *Theorem 5.7*

We only prove this for a > 0.

We compute $\mathbb{E}(\tau_a)$ using the standard trick of integrating the tail

$$\mathbb{E}(\tau_a) = \int_0^\infty \mathbb{P}(\tau_a > t) dt = \int_0^\infty \left(1 - \frac{2}{\sqrt{2\pi t}} \int_a^\infty ext(-x^2/2t) dx \right) dt$$

Using the formula for $\mathbb{P}(\tau_a > t)$ we have found in the previous truth.

But

$$1 - \frac{2}{\sqrt{2\pi t}} \int_{a}^{\infty} ext(-x^{2}/2t)dx = \frac{2}{\sqrt{2\pi t}} \int_{0}^{a} exp(-x^{2}/2t)dx$$

Let $y = x/\sqrt{t} \implies = \frac{2}{\sqrt{2\pi}} \int_{0}^{a/\sqrt{t}} exp(-y^{2}/2)dy$

Plugging into the formula for $\mathbb{E}(\tau_a)$ we obtain

$$\mathbb{E}(\tau_{a}) = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{0}^{a/\sqrt{t}} e^{-y^{2}/2} dy \ dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{0}^{a^{2}/y^{2}} e^{-y^{2}/2} dy \ dy$$

$$= \frac{2a^{2}}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{y^{2}} e^{-y^{2}/2} dy$$

$$\geq \frac{2a^{2}}{\sqrt{2\pi}} \int_{0}^{1} \frac{1}{y^{2}} e^{-y^{2}/2} dy$$

$$\geq c \frac{2a^{2}}{\sqrt{2\pi}} \int_{0}^{1} \frac{1}{y^{2}} dy$$

$$= \infty$$

5.5 Martingales

Definition 5.6 - Discrete-Time Martingale

A stochastic process $Y = \{Y_n\}_{n \in \mathbb{N}}$ is called a *Discrete-Time Martingale* with respect to a filtration \mathcal{F}_n if $\forall n \in \mathbb{N}$

- i) $\mathbb{E}(|Y_n|) < \infty$;
- ii) $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = Y_n$.

Definition 5.7 - Continuous-Time Martingale

A stochastic process $Y = \{Y_t\}_{t\geq 0}$ is called a *Continuous-Time Martingale* with respect to a filtration \mathcal{F}_n if $\forall t \geq s \geq 0$

- i) $\mathbb{E}(|Y_t|) < \infty$;
- ii) $\mathbb{E}(Y_t|\mathcal{F}_s) = Y_s$.

Definition 5.8 - Supermartingale

 $Y = \{Y_n\}_{n \in \mathbb{N}}$ is called a Supermartingale with respect to a filtration \mathcal{F}_n if $\forall n$

- i) $\mathbb{E}(|Y_n|) < \infty$;
- ii) $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) \leq Y_n$.

 $Y = \{Y_t\}_{t>0}$ is called a Supermartingale with respect to a filtration \mathcal{F}_n if $\forall n$

- i) $\mathbb{E}(|Y_n|) < \infty$;
- ii) $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) \geq Y_n$.

Remark 5.6 - Common Filtrations

Often \mathcal{F}_n or \mathcal{F}_t are taken to be the filtration generated by the process itself, $\{Y_n : n \in \mathbb{N}\}$ or $\{Y_s : 0 \le s \le t\}$.

Remark 5.7 - Iterated Expectation of Martingale

By the Law of Iterated Expectation

$$\mathbb{E}(Y_{n+1}) = \mathbb{E}(\mathbb{E}(Y_{n+1}|\mathcal{F}_n)) = \mathbb{E}(Y_n) \ \forall \ n \in \mathbb{N}$$

N.B. For supermartingales replace = with $\leq \& \geq$ respectively.

Example 5.5 - Simple Symmetric Random Walk is a Martingale

Let X_1, X_2, \ldots be IID random variables with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$.

Fixing k let $Y_0 = k$ and for $n \ge 1$ define $Y_n = k + X_1 + \cdots + X_n$.

Then $\{Y_n\}_{n\in\mathbb{N}}$ is a simple symmetric random walk which starts at k.

Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$.

$$\mathbb{E}(|Y_n|) = \mathbb{E}(|k+X_1+\cdots+X_n|)$$

$$\leq \mathbb{E}(|k|) + \mathbb{E}(|X_1|) + \cdots + \mathbb{E}(|X_n|)$$

$$= |k| + n\mathbb{E}(X_1)$$

$$= |k| + n$$

$$< \infty \forall n \in \mathbb{N}$$

$$\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = \mathbb{E}(Y_n + Y_{n+1}|\mathcal{F}_n)$$

$$= \mathbb{E}(Y_n|\mathcal{F}_n) + \mathbb{E}(X_{n+1}|\mathcal{F}_n)$$

$$= Y_n + \mathbb{E}(X_{n+1})$$

$$= Y_n$$

Thus Y_n is a martingale.

Definition 5.9 - Stopping Time of Filtration

Let X be a stochastic process with the associated filtration \mathcal{F}_n (or \mathcal{F}_t).

Then T is said to be a Stopping Time of \mathcal{F}_n (or \mathcal{F}_t) if for every k (or s) the event $\{T \leq k\}$ (or $\{T \leq s\}$) if \mathcal{F}_k -measurable (or \mathcal{F}_s -measurable).

N.B. Stopped martingales are still martingales.

Theorem 5.8 - Stopped Discrete-Time Martingale

Let $Y = \{T_n\}_{n \in \mathbb{N}}$ be a super-martingale with respect to \mathcal{F}_n and let T be a stopped time.

Then
$$Z = \{Z_n\}_{n \in \mathbb{N}}$$
 is defined as $Z_n = Y_{T \wedge n} = \begin{cases} Y_n & n \leq t \\ Y_T & n > t \end{cases}$.

Proof 5.4 - *Theorem 5.8*

Notice that $Y_n = Y_0 + \sum_{i=1}^n (Y_i - Y_{i-1})$ and $Z_n = Y_0 + \sum_{i=1}^n \mathbb{1}_{\{i \le T\}} (Y_i - Y_{i-1})$. Then

$$\mathbb{E}(Z_{n+1}|\mathcal{F}_n) - Z_n = \mathbb{E}(Z_{n+1} - Z_n|\mathcal{F}_n)
= \mathbb{E}(\mathbb{1}_{\{n+1 \le T\}}(Y_{n+1} - Y_n)|\mathcal{F}_n)
= \mathbb{1}_{\{n < T\}} \mathbb{E}(Y_{n+1} - Y_n|\mathcal{F}_n)$$

Thus Z_n is a supermartingale.

Theorem 5.9 - Optional Stopping Theorem - Discrete Time

Let $Y = \{Y_n\}_{n \in \mathbb{N}}$ be a discrete-time martingale with respect to \mathcal{F}_n and let T be a stopping time of \mathcal{F}_n .

If any of the following holds then $\mathbb{E}(Y_T) = \mathbb{E}(Y_0)$.

- i) T is (almost surely) bounded $\exists K \in \mathbb{R}^+ \text{ st } \mathbb{P}(T < K) = 1.$
- ii) T is (almost surely) finite and $\exists K > 0 \text{ st } |Y_{T \wedge n}| < K \ \forall n \geq 0.$
- iii) $\mathbb{E}(T) < \infty \& \exists K \in \mathbb{R}^+ \text{ st } |Y_n Y_{n-1}| \le K \ \forall \ n < T.$
- iv) T is (almost surely) finite and $\mathbb{E}(|Y_T|) < \infty \& \mathbb{E}(Y_n \mathbb{1}_{\{T > n\}} \to 0 \text{ as } n \to \infty.$

Theorem 5.10 - Martingale Convergence Theorem - Discrete Time

Let $Y = \{Y_n\}_{n \in \mathbb{N}}$ be a supermartingale wrt \mathcal{F}_n .

Suppose $\exists A > 0 \text{ st } \mathbb{E}(|Y_n|) \leq A \ \forall \ n \in \mathbb{N}.$

Then \exists a random variable Y_{∞} st

$$\mathbb{P}\left(\lim_{n \in \infty} Y_n = Y_{\infty}\right) = 1$$

i.e For almost every ω , $\lim_{n\to\infty} Y_n(\omega) = Y_\infty(\omega)$ or $\lim_{n\to\infty} Y + n = Y_\infty$.

Theorem 5.11 - Existence of Z_{∞}

If Z_n is a non-negative supermartingale wrt \mathcal{F}_n then \exists a random variable Z_∞ st $Z_n \to Z_\infty$.

Proof 5.5 - *Theorem 5.11*

$$\begin{split} \mathbb{E}(|Z_n|) &= \mathbb{E}(Z_n) \text{ as } Z_n \geq 0 \\ &= \mathbb{E}(\mathbb{E}(Z_n|\mathcal{F}_{n-1})) \\ &\leq \mathbb{E}(Z_{n-1}) \text{ since } Z_n \text{ } mathrmis \text{ } a \text{ } supermartingale \\ &\leq \mathbb{E}(Z_0) \\ &< \infty \text{ as } \mathbb{E}(|Z_nZ|) < \infty \ \forall \text{ } n \text{ } \text{by } \text{definition } \text{of } \text{martingale} \end{split}$$

It follows from Martingale Convergence Theorem that $\exists Z_0 \text{ st } Z_n \to Z_{\infty}$.

Remark 5.8 -

Standard Brownian Motion does not satisfy the assumption in the Martingale Convergence Theorem.

It may, or may not, satisfy the assumption in the Optional Stopping Theorem.

5.6 Application of Gambler's Ruin

Proposition 5.5 -

Let X_1, X_2, \ldots be iid random variables st $\mathbb{P}(X_i = 1) = p \& \mathbb{P}(X_i = -1) = 1 - p =: q$. Let $S_0 = k$ where $1 \le k \le N - 1$ and for $n \ge 1$ set $S_n = k + X_1 + \cdots + X_n$. Thus $\{S_n\}_{n \in \mathbb{N}}$ is an unrestricted random walk starting at k. Let $T = \min\{n : S_n = 0 \text{ or } S_n = N\}$ with T taken to be ∞ if $1 \le S_n \le N - 1 \ \forall \ n \in \mathbb{N}$. Let $Y_n = S_{T \wedge n}$.

Then $\{Y_n\}_{n\in\mathbb{N}}$ is a random walk with absorbing barriers at 0 and N.

In particular before stopping (i.e $1 \le i \le N-1$)

$$\mathbb{P}(Y_{n+1} = i - 1 | Y_n = i) = q \ \mathbb{P}(Y_{n+1} = i + 1 | Y_n = i) = p$$

Also

$$\mathbb{P}(Y_{n+1} = 0 | Y_n = 0) = 1 \ \mathbb{P}(Y_{n+1} = N | Y_n = N) = 1$$

Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.

We check that Y_n is a martingale wrt \mathcal{F}_n if $p = q = \frac{1}{2}$. Since $p = q = \frac{1}{2}$

$$\implies \quad \mathbb{E}(Y_{n+1}|Y_n=i) = i \ \forall \ i \in [1,N) \\ , \quad \mathbb{E}(Y_{n+1}|Y_n=0) = 0 \\ \& \quad \mathbb{E}(Y_{n+1}|Y_n=N) = 1$$

Hence $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = \mathbb{E}(Y_{n+1}|Y_n) \ \forall \ n \text{ by } Markov \ Property \& \mathbb{E}(|Y_n|) \leq N < \infty.$ So Y_n is a martingale.

Theorem 5.12 - Properties of Gambler's Ruin Martingale Suppose $p = \frac{1}{2} = q$. then

- i) $\mathbb{P}(T < \infty) = 1$
- ii) $\mathbb{P}(Y_T = N) = \frac{Y_0}{N} = \frac{k}{N}$; and,
- iii) $\mathbb{E}(T) = Y_0(N Y_0) = k(N k)$.

Proof 5.6 - Theorem 5.12

- i) We know that $Y_n = S_{T \wedge n}$ is a Martingale & $Y_n \in [0, N] \, \forall \, n \in \mathbb{N}$. Hence $\mathbb{E}(|Y_n|) < N+1$ so by Martingale Converge Theory $\exists Y_\infty \text{ st } Y_n \to Y_\infty \text{ almost surely.}$ if $T(\omega) = \infty$ then $Y_n(\omega) \in [1, N-1] \, \forall \, n \in \mathbb{N}$ and $|Y_{n+1}(\omega) - Y_n(\omega)| = 1$. This violates the Cauchy Criterion for convergence, so the process Y_n does not converge. So $\mathbb{P}(T=\infty) \leq \mathbb{P}(Y_n \text{ does not converge}) = 0$ by the Martingale Converge Theorem. $\Longrightarrow \mathbb{P}(T<\infty) = 1$.
- ii) We know that $T < \infty$ as $|Y_n < N+1 \ \forall \ n > 0$. Hence assumption ii) of the Optional Stopping Theorem holds $(expect(Y_t) = \mathbb{E}(Y_0) = k)$. $\implies 0.\mathbb{P}(Y_t = 0) + N.\mathbb{P}(Y_t = N) = k$ $\implies \mathbb{P}(Y_T = N) = \frac{k}{N}$.
- iii) Define $Z_n := S_n^2 n$. We have already proved this to be a Martingale. We have

$$\begin{array}{lcl} \mathbb{E}(T) & = & \sum_{k=1}^n \mathbb{P}(T>k) \\ & = & \sum_{r=0}^\infty \left(\mathbb{P}(T>rN) + \mathbb{P}(T>rN12) + \dots + \mathbb{P}(T>rN+n) \right) \\ & \leq & \sum_{r=0}^\infty n.\mathbb{P}(T>rN) \end{array}$$

For
$$r = 1$$
 $\mathbb{P}(T > N) = \mathbb{P}(S_n \in [1, N-1], n \le N)$
 $= 1 - \mathbb{P}(T \le N)$
 $\le 1 - \mathbb{P}(A) \text{ where } A = \{-1, +1, \dots, -1\} \subset \{T \le N\}$
 $= 1 - \frac{1}{2^N}$
For $r = 2$ $\mathbb{P}(T > 2N) = \mathbb{P}(S_n \in [1, n-1], n \le 2N)$
 $= \mathbb{P}(S_n \in [1, N-1], n \in [1, N])$
 $\times \mathbb{P}(S_n \in [1, N-1], n \in [N+1, 2N] | S_n \in [1, N-1])$
 $\le \mathbb{P}(T > N) \mathbb{P}(T' > N)$
 $= (1 - \frac{1}{2^N})^2$
So $\mathbb{P}(T > rN) \le (1 - \frac{1}{2^N})^r \ \forall \ r \in [1, N]$

Since $\left|1 - \frac{1}{2^N}\right| < 1 \implies \mathbb{E}(T) < \infty$.

Since T is bounded, by the first assumption, the $Optional\ Stopping\ Theorem\ holds.$ Thus

$$\mathbb{E}(Z_T) = \mathbb{E}(Z_0) = S_0^2 = k^2$$

$$\Rightarrow k^2 = \mathbb{E}(S_T^2 - T)$$

$$= \mathbb{E}(S_T^2) - \mathbb{E}(T)$$

$$= 0^2 \cdot \mathbb{P}(S_T = 0) + N^2 \cdot \mathbb{P}(S_T = N) - \mathbb{E}(T)$$

$$= N^2 \cdot \frac{k}{N} - \mathbb{E}(T)$$

$$\Rightarrow \mathbb{E}(T) = k(N - k)$$

$$\& |Z_n - Z_{n-1}| = |S_n^2 - S_{n-1}^2 + 1|$$

$$\leq |S_n^2| + |S_{n-1}^2| + 1$$

$$\leq 2N^2 + 1 \ \forall \ n$$

Theorem 5.13 - Special Martingale

Let $Y = \{Y_n\}_{n \in \mathbb{N}}$ defined by $Y_n = k + X_0 + \cdots + X_n$, be the absorbed random walk on [0, N] with $p \neq q$, $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$.

Let $V_n = (q/p)^{Y_n}$, then $\{V_n\}_{n \in \mathbb{N}}$ is a Martingale wrt \mathcal{F}_n .

Proof 5.7 - *Theorem 5.13*

Since $Y_n \in [0, N]$ then

$$\mathbb{E}(|V_n|) = \mathbb{E}(V_n) = \mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_n}\right) \le \max\left\{\left(\frac{q}{p}\right)^0, \left(\frac{q}{p}\right)^N\right\} < \infty$$

$$\mathbb{E}(V_{n+1}|\mathcal{F}_n) = \mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_{n+1}}|\mathcal{F}_n\right)$$

$$= \mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_{n+1}}|Y_n\right) \text{ by Markov Property}$$

$$\mathbb{E}(V_{n+1}|Y_n = 0) = \left(\frac{q}{p}\right)^0 = \left(\frac{q}{p}\right)^{Y_1} = V_n$$

$$\mathbb{E}(V_{n+1}|Y_n = N) = \left(\frac{q}{p}\right)^N = \left(\frac{q}{p}\right)^{Y_n} = V_n$$
For $i \in [1, N-1]$

$$\mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_{n+1}}|Y_n = i\right) = \left(\frac{q}{p}\right)^{i=1}p + \left(\frac{q}{p}\right)^{i-1}q$$

$$= \left(\frac{q}{p}\right)^i[q+p]$$

$$= \left(\frac{q}{p}\right)^i \times 1$$

$$= V$$

 V_n is a martingale.

Theorem 5.14 - Properties from Theorem 5.13

Let Y be as in previous lemma. Let T be the first time Y hits 0 or N. Then

- i) $\mathbb{P}(T < \infty) = 1$; and,
- ii) $\mathbb{P}(Y_T = N) = \frac{1 (q/p)^k}{1 (q/p)^N}$

Proof 5.8 - *Theorem 5.14*

i) Let $V_n = V_n = \left(\frac{q}{p}\right)^{Y_n}$.

Then V_n is a martingale & $V_n \leq \max\left\{\left(\frac{q}{p}\right)^0, \left(\frac{q}{p}\right)^N\right\}$. By the Martingale Convergence Theorem we know V_n converges, almost surely, to some

Now, $\{T = \infty\} = \left\{ V_n \subset \left\{ \left(\frac{q}{p} \right)^1, \dots, \left(\frac{q}{p} \right)^{N-1} \right\} \ \forall \ n > 0 \right\}.$

So $\exists \ \delta > 0 \text{ st } |V_{n+1} - V_n| > \delta \ \forall \ n \text{ which implies that } V_n \text{ does not converge.}$ So $P(T = \infty) = \mathbb{P}\left(V_n \subset \left\{ \begin{pmatrix} q \\ p \end{pmatrix}^1, \dots, \begin{pmatrix} q \\ p \end{pmatrix}^{N-1} \right\} \ \forall \ n > 0 \right) \leq \mathbb{P}(V_n \text{ does not converge}) = 0$ by $Martingale\ Convergence\ Theorem.$

ii) Since $T < \infty$ almost surely, by 1), and $\forall n \leq \max \left\{ \left(\frac{q}{p} \right)^0, \left(\frac{q}{p} \right)^N \right\}$ then condition *iii*) of Optional Stopping Distance holds.

$$\Rightarrow \qquad \mathbb{E}(V_t) = \mathbb{E}(V_0) = \left(\frac{q}{p}\right)^k$$

$$\Rightarrow \qquad \left(\frac{q}{p}\right)^0 \mathbb{P}(Y_t = 0) + \left(\frac{q}{p}\right)^N \mathbb{P}(Y_T = N) = \left(\frac{q}{p}\right)^k$$

$$\Rightarrow \qquad 1 \times (1 - \mathbb{P}(Y_T = N)) + \left(\frac{q}{p}\right)^N \mathbb{P}(Y_T = N) =$$

$$\Rightarrow \qquad \mathbb{P}(Y_T = n) = \frac{1 - \left(\frac{q}{p}\right)^k}{1 - \left(\frac{q}{p}\right)^N}$$

5.7Brownian Motion as a Martingale

Theorem 5.15 - Standard Brownian Motion as a Martingale

Let $\{W_t\}_{t\geq 0}$ is Standard Brownian Motion with filtration \mathcal{F}_t generated by the process itself, then

- 1) W_t is a martingale.
- 2) $W_t^2 t$ is a martingale.
- 3) $X_t = at + \sigma W_t$ is a martingale iff a = 0.
- 4) $Y_t = e^{at + \sigma W_t}$ is a martingale iff $a = -\frac{\sigma^2}{2}$.

Proof 5.9 - Theorem 5.15

3) Let $X_t = at + \sigma W_t$.

$$\mathbb{E}(|X_t|) = \mathbb{E}(|at + \sigma W_t|)$$

$$\leq \mathbb{E}(|at|) + \mathbb{E}(|\sigma W_t|)$$

$$= |at| + \sigma \mathbb{E}(|W_t|)$$

$$\leq t|a| + \sigma \mathbb{E}(W_t^2)^{1/2}$$

$$= t|a| + \sigma t$$

$$< \infty \ \forall \ t > 0$$
Let $0 \leq s \leq t$

$$\mathbb{E}(X_t|\mathcal{F}_s) = \mathbb{E}(at + \sigma W_t|\mathcal{F}_s)$$

$$= at + \sigma \mathbb{E}(W_t - W_s + W_s|\mathcal{F}_s)$$

$$= at + \sigma \mathbb{E}(W_t - W_s) + \sigma W_s$$

$$= at + \sigma \times 0 + \sigma W_s$$

$$= at + \sigma W_s$$

We want $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$. Set

$$\begin{array}{rcl} & as + \sigma W_s & = & at + \sigma W_s \\ \Longrightarrow & a(s-t) & = & 0 \\ \Longrightarrow & a & = & 0 \end{array}$$

4) Let $Y_t = e^{at + \sigma W_t}$.

$$\mathbb{E}(|Y_t|) = \mathbb{E}(e^{at+\sigma W_t})$$

$$= e^{at}\mathbb{E}(e^{\sigma W_t})$$

$$= e^{at}e^{0\times\sigma+\frac{1}{2}t^2\sigma^2} \text{ by moment } - \text{ generating funciton}$$

$$= e^{at+\frac{1}{2}\sigma^2t^2}$$

$$< \infty \ \forall \ t > 0$$
Let $0 \le s \le t$

$$\mathbb{E}(Y_t|\mathcal{F}_s) = \mathbb{E}(e^{at+\sigma W_t}|\mathcal{F}_s)$$

$$= e^{at}\mathbb{E}(e^{\sigma W_t}|\mathcal{F}_s)$$

$$= e^{at}\mathbb{E}(e^{\sigma W_t-W_s+W_s})|\mathcal{F}_s|$$

$$= e^{at+\sigma W_s}\mathbb{E}(e^{\sigma(W_t-W_s)})$$

$$= e^{at+\sigma W_s}e^{0+\frac{1}{2}\sigma^2(t-s)}$$

$$= e^{at+\sigma W_s+\frac{1}{2}\sigma^2(t-s)}$$

$$= e^{at+\sigma W_s+\frac{1}{2}\sigma^2(t-s)}$$

Setting $\mathbb{E}(Y_t|\mathcal{F}_s)$ yields that $a = -\frac{\sigma^2}{2}$.

Proposition 5.6 - Stopping Time of Brownian Motion Let a, b > 0 and $\tau = \min\{t \ge 0 : W_t \in \{a, -b\}\}$. Then

$$\mathbb{P}(W_{\tau} = a) = \frac{b}{a+b}$$
 and $\mathbb{E}(\tau) = ab$

Proof 5.10 - Proposition 5.6

We know that $\mathbb{E}(\tau) < \infty$, almost surely.

If we define $Z := \max\{a, b\}$ then $|W_{t \wedge \tau}| \leq Z$.

Then the Optional Stopping Theorem holds (i.e. $\mathbb{E}(W_{\tau}) = \mathbb{E}(W_0) = 0$.

$$\implies a\mathbb{P}(W_{\tau} = a) + (-b)\mathbb{P}(W_{\tau} = -b) = 0$$

$$\implies a\mathbb{P}(W_{\tau} = a) + (-b)(1 - \mathbb{P}(W_{\tau} = a)) = 0$$

$$\implies \mathbb{P}(W_{\tau} = a) = \frac{b}{a+b}$$

Proposition 5.7 - Which Absorbing Barrier is Hit

Let
$$X_t = \mu t + \sigma W_t$$
 with $\mu < 0 \& M = \max\{X_t : t \ge 0\}$.

For a, b > 0

$$\mathbb{P}(\tau_a > \tau_{-b}) = \frac{1 - e^{-\alpha b}}{e^{\alpha a} - e^{-\alpha b}} \text{ with } \alpha = -\frac{2\mu}{\sigma^2}$$

Thus

$$\mathbb{P}(M \ge a) = e^{-\alpha a}$$

Proof 5.11 - Proposition 5.7

First we prove that $e^{\alpha X_t}$ is a Martingale.

$$\mathbb{E}(|e^{alphaX_t}|) = \mathbb{E}(e^{\alpha X_t})$$

$$= \mathbb{E}(e^{\alpha\mu t + \sigma \alpha W_t})$$

$$= e^{\alpha\mu t} \mathbb{E}(e^{\sigma \alpha W_t})$$

$$= e^{\alpha\mu t} e^{0 + \frac{1}{2}\sigma^2 \alpha^2 t}$$

$$< \infty \forall t > 0$$
Let $0 \le s < t$

$$\mathbb{E}(e^{\alpha X_t}|\mathcal{F}_s) = \mathbb{E}(e^{\alpha\mu t + \alpha\sigma W_t}|\mathcal{F}_s)$$

$$= e^{\alpha\mu t} \mathbb{E})e^{\alpha\sigma(W_t - W_s + W_s)}|\mathcal{F}_s)$$

$$= e^{\alpha\mu t + \alpha\sigma W_s} \mathbb{E}(e^{\alpha\sigma(W_t - W_s)})$$

$$= e^{\alpha\mu t + \alpha\sigma W_s} \mathbb{E}(e^{\alpha\sigma(W_t - W_s)})$$

$$= e^{\alpha\mu t + \alpha\sigma W_s} e^{\frac{1}{2}\alpha^2\sigma^2(t - s)}$$
Setting $\alpha = -\frac{2\mu}{\sigma^2}$

$$\mathbb{E}(e^{\alpha W_t}|\mathcal{F}_s) = e^{-2\frac{\mu^2 t}{\sigma^2} - 2\frac{\mu W_s}{\sigma} + \left(4\frac{\mu^2}{\sigma^2}\right)\left(\frac{t - s}{2}\right)}$$

$$= e^{-2\frac{\mu}{\sigma^2}(\mu s + \sigma W_s)}$$

$$= e^{\alpha X_s}$$

0 Reference

0.1 Notation

Notation 0.1 - Collection of Events

A collection of events are denoted by C.

Notation 0.2 - Infimum

Let S be a subset of an ordered set T.

The Infimum of S is the greatest element in T that is less of equal to all elements of S.

This is denoted by

 $\inf(A)$

Notation 0.3 - Minimum

$$x \wedge y := \min(x, y)$$

Notation 0.4 - Poisson Process

A Poisson Process is denoted by $\{N_t\}_{t\geq 0}$.

Individual events in this sequence are denoted by N_i .

Notation 0.5 - Power Set

The power set of set S is denoted by 2^S or $\{0,1\}^S$.

Notation 0.6 - Sample Space

The Sample Space of a variable is denoted by Ω .

Notation 0.7 - Transition

A transition between state x & y is generally denoted by p_{xy} .

0.2 Definitions

Definition 0.1 - Convex & Concave Functions

A Convex Function is a continuous function whose value at the midpoint of every interval in its domain does not exceed the arithmetic mean of its values at the ends of the interval.

A Concave Function whose value at the midpoint of every interval in its domain exceeds teh arithmetic mean of its values at the ends of the interval.

Definition 0.2 - Co-Variance

Co-Variance is a measure of the joint variability of two random variables.

A greater magnitude of *Co-Variance* corresponds to the two variables having similar behaviour.

A positive Co-Variance means that as one variable increases when the other tends to.

A negative Co-Variance means that as one variable decreases when the other tends to increase.

$$Cov(X, Y) = \mathbb{E}\left((X - \mathbb{E}(X)(Y - \mathbb{E}(Y))\right)$$

Definition 0.3 - *Index Set*

An Index Set is a set whose members are used to index members of another set.

Definition 0.4 - Indicator Function

The Indicator Function of an event returns 1 or 0 to denote whether a given event event occurs

$$1_A(\omega) = \begin{cases} 1 & w \in A \\ 0 & \omega \notin A \end{cases}$$

Definition 0.5 - Moment Generating Function

For random variable X with probability mass function $p_X(k)$ has a Moment Generating Function

$$m_X(\theta) = \mathbb{E}(e^{\theta X}) = \sum_k p_x(k)e^{\theta k}$$

Definition 0.6 - Probability Generating Function

For random variable X with probability mass function $p_X(k)$ has a Probability Generating Function

$$P_X(s) = \mathbb{E}(s^X) = \sum_K p_X(k)s^k$$

Definition 0.7 - Right-Continuous Function

A Right-Continuous Function is one in which no jump occurs when the limit point is approached from the right hand size.

Definition 0.8 - Unitary Matrix

P is a Unitary Matrix if $P^{-1} = P^*$ where P^* is the hermitian matrix of P.

0.3 Theorems

Theorem 0.1 - Cauchy Criterion for Convergence

A sequence $\{a_n\}$ converges iff

$$\forall \ \varepsilon > 0 \ \exists N \in \mathbb{N} \ st \ \forall \ m, n \in \mathbb{N} \ \text{with} \ m, n > N \ |a_m - a_n| < \varepsilon$$

Theorem 0.2 - Cauchy-Schwarz Inequality

Let X & Y be random variables with finite variance, then

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Theorem 0.3 - Conditional Probability

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Theorem 0.4 - Covariance Identities

The following are identities concerning the Covariance

$$\begin{array}{rcl} Cov(X+Y) & = & \mathbb{E}(XY) - \mathbb{E}(X) + \mathbb{E}(Y) \\ Cov(X,a) & = & 0 \\ Cov(X,aY) & = & aCov(X,Y) \\ Cov(X,Y+Z) & = & Cov(X,Y) + Cov(X,Z) \end{array}$$

Theorem 0.5 - Expectation of Expectation of Conditional

$$\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$$

Theorem 0.6 - Expected Value of Indicator Function

$$\mathbb{E}(1_A) = \mathbb{P}(A)$$

Theorem 0.7 - Jensen's Inequality

If g is a convex function, then

$$\mathbb{E}(g(X)) \ge g(\mathbb{E}(X))$$

If g is a concave function, then

$$\mathbb{E}(g(X)) \le g(\mathbb{E}(X))$$

Theorem 0.8 - L'Hôpitals Rule

If $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $=\frac{\infty}{\infty}$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Theorem 0.9 - Markov's Inequality

Let X be a non-negative random variable, then $\forall c > 0$

$$\mathbb{P}(X > c) \le \frac{\mathbb{E}(X)}{c}$$

Theorem 0.10 - Probability of Event as Integral

$$\mathbb{P}(x \in A) = \int_{y} \mathbb{P}(x \in A|Y = y)F_{Y}(y)dy$$

Theorem 0.11 - Stirling's Formula

For $n \in \mathbb{N}$

$$n! \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{ as } n \to \infty$$

Theorem 0.12 - Sum of Exponentials

Let $X_1, \ldots, N_n \sim Exp(\lambda)$. Then

$$X_1 + \cdots + X_n \sim \Gamma(b, \lambda)$$

0.4 Probability Distributions

Definition 0.9 - Binomial Distribution

Let X be a discrete random variable modelled by a $Binomial\ Distribution$ with n events and rate of success p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}(X)np = \& Var(X) = np(1-p)$$

Definition 0.10 - Gamma Distribution

Let T be a continuous randmo variable modelled by a Gamma Distribution with shape parameter α & scale parameter λ . Then

$$f_T(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 for $x > 0$
 $\mathbb{E}(T) = \frac{\alpha}{\lambda}$ & $Var(T) = \frac{\alpha}{\lambda^2}$

N.B. $\alpha, \lambda > 0$.

Definition 0.11 - Exponential Distribution

Let T be a continuous random variable modelled by a *Exponential Distribution* with parameter λ . Then

$$f_T(t) = \lambda e^{-\lambda t} & \text{for } t > 0$$

$$F_T(t) = 1 - e^{-\lambda t} & \text{for } t > 0$$

$$\mathbb{E}(X) = \frac{1}{\lambda} & \& Var(X) = \frac{1}{\lambda^2}$$

N.B. Exponential Distribution is used to model the wait time between decays of a radioactive source.

Definition 0.12 - Normal Distribution

Let X be a continuous random variable modelled by a Normal Distribution with mean μ & variance σ^2 .

Then

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

$$M_X(\theta) = e^{\mu\theta + \sigma^2\theta^2(1/2)}$$

$$\mathbb{E}(X) = \mu \quad \& \quad Var(X) = \sigma^2$$

Definition 0.13 - Poisson Distribution

Let X be a discrete random variable modelled by a Poisson Distribution with parameter λ . Then

$$\begin{array}{rcl} p_X(k) & = & \frac{e^{-\lambda}\lambda^k}{k!} & \text{For } k \in \mathbb{N}_0 \\ \mathbb{E}(X) = \lambda & \& & Var(X) = \lambda \end{array}$$

N.B. Poisson Distribution is used to model the number of radioactive decays in a time period.