Fundamentals of fMRI data analysis

Karolina Finc

Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń

COURSE #2: fMRI data manipulation and plotting in python

Functional Study plan connectivity fMRI data preprocessing / AFTER Open science & neuroimaging Machine Learning General on fMRI data Linear Model fMRI data manipulation **BEFORE** in python

Functional Study plan connectivity fMRI data preprocessing / AFTER Open science & neuroimaging Machine Learning General on fMRI data Linear Model fMRI data manipulation **BEFORE** in python

Structural

Structural

Functional

Structural

Functional

Spatial resolution - determines our ability to distinguish changes in an image across spatial location.

Structural

Functional

Spatial resolution - determines our ability to distinguish changes in an image across spatial location.

Structural

Functional

Spatial resolution - determines our ability to distinguish changes in an image across spatial location.

Temporal resolution - determines our ability to separate events in time (**TR**; r.g. TR = 2000 ms).

Structural

Functional

Spatial resolution - determines our ability to distinguish changes in an image across spatial location.

Temporal resolution - determines our ability to separate events in time (**TR**; r.g. TR = 2000 ms).

Frequency - number of measurements per second (Hz)

spatial resolution

Structural

Functional

Spatial resolution - determines our ability to distinguish changes in an image across spatial location.

Temporal resolution - determines our ability to separate events in time (**TR**; r.g. TR = 2000 ms).

Frequency - number of measurements per second (Hz)

spatial resolution

Structural

Functional

TR = 2000 ms).

Frequency - number of mea

Frequency - number of measurements per second (Hz)

Spatial resolution - determines our ability to distinguish changes in an image across

Temporal resolution - determines our ability to separate events in time (**TR**; r.g.

EEG: ~ 1000 Hz **fMRI**: ~ 0.5 Hz

spatial location.

Neuroimaging techniques resolution

Voxel

Voxel

Field of view

Brain sections

http://homepage.smc.edu/russell richar d/Psych2/Graphics/human brain direct ions.htm

Structural data

Structural data

Functional data

Structural data

Functional data

Structural data

Time series - is a series of data points listed in time order.

10

Structural data

Time series - is a series of data points listed in time order.

Every voxel has its own time-series.

10

Time-series example - COVID-19

DICOM & NIfTI formats

DICOM (Digital Imaging and Communications in Medicine) format:

- Raw data format for storing and transmitting medical images
- Extension: .dcm
- One slice, one file

NIfTI (Neuroimaging Informatics Technology Initiative) format:

- Extensions: .nii, nii.gz
- Standardized representation of brain images
- Developed to facilitate cross-platform, cross-software interpretability
- 3-dimensional (3D) or 4-dimensional (4D) array: stacking individual slices on top of each other

Nilearn:

learn Statistics for Neurolmaging in Python

Ward clustering ICA

Searchlight Nifti IO Datasets

ENHANCED BY Google

Nilearn Home | User Guide | Examples | Reference | Glossary | Bibliography | Nilearn: Statistical Analysis for NeuroImaging in Python

Nipy ecosystem

This is the stable documentation for the latest release of Nilearn, the current development version is available

Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive documentation & open community.

It supports general linear model (GLM) based analysis and leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

Nilearn now includes the functionality of Nistats. Here's a guide to replacing Nistats imports to work in Nilearn.

First Steps

Get started with nilearn

Examples

Visit our example gallery

User Guide

Browse the full documentation

News

January 2022: Nilearn 0.9.0

released

September 2021: Nilearn 0.8.1

released

June 2021: Nilearn 0.8.0 released

Ongoing: What's new.

Software

Development

Nilearn on GitHub

All material Free Software: BSD

license (3 clause).

Authors

Contributing

Giving credit

Please consider citing the papers.

https://nilearn.github.io/stable/index.html

Python exercises

https://github.com/fMRIAnalysisCourse/fmri-analysis-course

Homework

Logo contest!

1. GitHub Classroom

Data manipulation in Python

2. Data Camp Classroom

Introduction to Data Visualization with Matplotlib

Next

Preprocessing