Let $S = \{s_1, s_2, \dots, s_k\}$ be a set of k integers ≥ 2 . We say the integers in S are **semi-relative primes** if there exist k **distinct** prime numbers p_1, p_2, \dots, p_k so that p_i divides s_i for each $i \in [1, k]$. Given a set T of n integers, find the subset R of T so that the integers in R are semi-relative primes and |R| is maximized.

Hint. Construct an **undirected** bipartite graph $G=(U\cup V,E)$, where U contains all possible prime divisors and V contains all integers in T, if a prime $u\in U$ divides an integer $v\in V$, then connect u and v with an edge (u,v). Observe that: G has a bipartite matching of ℓ edges iff S has an ℓ -size subset R so that the integers in R are semi-relative primes.

To find the maximum bipartite matching, we can appeal to the algorithm of the maximum flow problem. Construct a **directed** graph $H=(\{s,t\}\cup U\cup V,E')$. Initially, $E'=\emptyset$. For each node $u\in U$, add a directed edge (s,u) to E' with capacity c(s,u)=1. For each node $v\in V$, add a directed edge (v,t) to E' with capacity c(v,t)=1. For each undirected edge (u,v) in G where $u\in U$ and $v\in V$, add a directed edge (u,v) to E' with capacity c(u,v)=1. Observe that: H has an ℓ units of flow from s to t iff G has a bipartite matching of size ℓ .

G has a matching M of size ℓ iff H has an s-t flow of ℓ units.

Input

The first line contains n, an integer in [1, 100]. The second line contains the n integers t_1, t_2, \ldots, t_n in T, where each t_i is an integer in [2, 200].

Output

Output the maximized |R|.

Sample Input

5

2 3 6 5 10

Sample Output

3