SRM Institute of Science and Technology Department of Mathematics

18MAB302T-Discrete Mathematics2021-2022 Odd

$\begin{array}{c} Unit-IV\hbox{: Group codes, error correction and decoding group codes} \\ Tutorial\ Sheet\ -\ 12 \end{array}$

S. No	Questions	Answers
•	Part – A [3 Marks]	
1	What is meant by odd parity check? Explain giving example.	
2	Find the parity check matrix given the generator natrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} $ corresponding to the encoding function $e: B^4 \rightarrow B^7$.	
3	What are the possible weight of code word x if	
	$H \bullet x^{T} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \bullet x^{T} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}?$	
4	Using the parity check matrix H. Decode the following word 1100001 and find the original message. The matrix is given by $H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$	
5	Explain in detail how to construct a parity check matrix.	
	Part – B [6 Marks]	<u> </u>
6	Find the code words generated by the parity check matrix $H = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$	
	Where the encoding function is $e:B^2 \rightarrow B^5$.	
7	If the encoding function e:B ³ \to B ⁸ is given by e(000)=000000000 e(010)=01011100 e(011)=01101110	

	·
	e(110)=11011001
	e(001)=00110010
	e(100)=10000101
	e(101)=10110111
	e(111)=11101011 find the corresponding parity check matrix.
8	Decode each of the following received words corresponding to the
	encoding function e: $B^3 \rightarrow B^6$ given by
	e(000)=000000
	e(001)=001011
	e(010)=010101
	e(100)=100111
	e(011)=011110
	e(101)=101100
	e(110)=110010
	e(111)=111011 assuming that no signal error has occurred:
	011110, 110111, 110000.
9	Construct the decoding table for the group code given by the
	generator matrix
	$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$
10	Use the decoding table in the question 9 to decode the following
	received words:
	11110, 11101, 11011.
	L