Thapar Institute of Engineering & Technology, Patiala

Department of Electronics and Communication Engineering

UEC639 – Digital Communication

B. E. (Third Year): Semester-V (ENC)

Tutorial-2

Q1	If a continuous signal with highest frequency component 15 kHz is sampled and transmitted
	using PCM system at a transmission rate of 1.5 Mbps (Data Rate = R_b =1.5 Mega bit per sec)
	then determine the values of sampling rate fs, the quantizing level L, and the binary digits.
Q2	Explain the quantization process with the help of an example. Also do the classification of quantization.
Q3	Derive the expression of mean square quantization error for a sinusoidal input signal. Also, determine this expression in terms of quantization level. Assume uniform distribution for quantization error.
Q4	In a binary PCM system, the output signal to quantization noise ration is required to be held to a minimum value of 40 dB. Determine the value of quantization level and mean square value of quantization error.
Q5	Explain aperture effect and aliasing error in a sampling process.
Q6	Draw the transfer characteristics of mid-tread and mid-rise type of quantizer.
Q7	For a full-scale sinusoidal modulating signal with amplitude A, show that signal-to-
	quantizing-noise ratio in a PCM system is given as
	$(SNR)_o = \left(\frac{S}{N_q}\right)_o = \frac{3}{2}L^2$
	$\left(\frac{S}{N_q}\right)_{0 \text{ dB}} = 1.76 + 6.02n \text{ dB}$