Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Probability Theory

Denis Helic

KTI, TU Graz

Oct 9, 2014

Big picture: KDDM

Outline

- Introduction
- 2 Conditional Probability and Independence
- Random Variables
- Discrete Random Variables
- Continuous Random Variables

Random experiments

- In random experiments we can not predict the output in advance
- We can observe some "regularity" if we repeat the experiment a large number of times
- E.g. when tossing a coin we can not predict the result of a single toss
- If we toss many times we get an average of 50% of "heads" (fair coin)
- Probability theory is a mathematical theory which describes such phenomena

The state space

- It is the set of all possible outcomes of the experiment
- ullet We denote the state space by Ω
- Coin toss: $\Omega = \{t, h\}$
- Two successive coin tosses: $\Omega = \{tt, th, ht, hh\}$
- Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- ullet The lifetime of a light-bulb: $\Omega=\mathbb{R}_+$

- An event is a property that either holds or does not hold after the experiment is done
- ullet Mathematically, an event is a subset of Ω
- We denote the events by capital letters: A, B, C, ...
- E.g. rolling at least one heads in two successive coin tosses
- $A = \{th, ht, hh\}$

Some basic properties of events

If A and B are two events, then:

- The contrary event of A is the complement set A^c
- The event "A or B" is the union $A \cup B$
- The event "A and B" is the intersection $A \cap B$

Some basic properties of events

If A and B are two events, then:

- ullet The sure event is Ω
- ullet The impossible event is the empty set \emptyset
- An elementary (atomic) event is a subset of Ω containing a single element, e.g. $\{\omega\}$

- ullet We denote by ${\mathcal A}$ the family of all events
- ullet Very often $\mathcal{A}=2^{\Omega}$, the set of all subsets of Ω
- ullet The family ${\mathcal A}$ should be closed under the operations from above
- If $A, B \in \mathcal{A}$, then we must have: $A^c \in \mathcal{A}$, $A \cap B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$
- Also: $\Omega \in \mathcal{A}$ and $\emptyset \in \mathcal{A}$

The probability

- With each event we associate a number P(A) called the probability of A
- P(A) is between 0 and 1
- "Frequency" interpretation
- \bullet P(A) is a limit of the "frequency" with which A is realized
- $P(A) = \text{limit of } \frac{f(A)}{n} \text{ as } n \text{ goes to positive infinity}$

The probability

Basic properties of the probabilities

- (i) $0 \le P(A) \le 1$
- (ii) $P(\Omega) = 1$
- (iii) $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

The probability

- The model is a triple (Ω, \mathcal{A}, P)
- \bullet Ω is the state space
- A is the collection of all events
- P(A) is the collection of all probabilities for $A \in \mathcal{A}$
- P is a mapping from $\mathcal A$ into [0,1] which satisfies at least properties (ii) and (iii) ($Kolmogorov\ axioms$)

Venn diagrams

Probability measure

- The probability P(A) of the event A is the area of the set in the diagram
- The area of Ω is 1
- E.g. radius of the event A is r = 0.2
- P(A) = 0.1257

Properties of probability measures

Properties

If P is a probability measure on (Ω, A) , then:

- (i) $P(\emptyset) = 0$
- (ii) For every finite sequence A_n of pairwise disjoint (whenever $i \neq j$, $A_i \cap A_i = \emptyset$) elements of \mathcal{A} we have:

$$P(\cup_{n=1}^m) = \sum_{n=1}^m P(A_n)$$

• Property (ii) is called additivity

Additivity

Probability measure

- The probability of $P(A \cup B)$ of the event $A \cup B$ is the sum of areas of the sets A and B in the diagram
- P(A) = 0.1257
- P(A) = 0.1257
- $P(A \cup B) = 0.2514$

Properties of probability measures

Properties

If P is a probability measure on (Ω, A) , then:

- (i) For $A, B \in \mathcal{A}, A \subset B \implies P(A) < P(B)$
- (ii) For $A, B \in \mathcal{A}, P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (iii) For $A \in \mathcal{A}$, $P(A) = 1 P(A^c)$

Subsets

Union

Complement

- We always have the triple (Ω, \mathcal{A}, P)
- ullet Typically we suppress (Ω, \mathcal{A}) and talk only about P
- Nevertheless, they are always present!
- Conditional probability and independence are crucial for application of probability theory in data mining!

Definition

If P(B) > 0 then we define the conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- P(B) = 0.16
- P(A) = 0.12
- $P(A \cap B) = 0.04$
- $P(A|B) = \frac{P(A \cap B)}{P(B)} = 0.25$

- One intuitive explanation is that B occurred first and then we ask what is the probability that now A occurs as well
- Time dimension
- Another intuitive explanation is that our knowledge about the world increased
- We have more information and know that B already occurred
- Technically, B restricts the state space (makes it smaller)

- We throw two dies
- Event $A = \{\text{snake eyes}\}$
- Event $B = \{double\}$
- $\Omega = \{(1,1), (1,2), \ldots, (6,5), (6,6)\}$
- $A = \{(1,1)\}, B = \{(1,1),(2,2),\ldots,(6,6)\}$

- $P(A) = \frac{1}{36}$
- $P(B) = \sum_{i=1}^{6} \frac{1}{36}$ by final additivity and because events are pairwise disjoint $\implies P(B) = \frac{1}{6}$
- $A \cap B = A$
- $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$
- $A = \{(1,1)\}, B = \{(1,1),(2,2),\ldots,(6,6)\}$

- We have two boxes: red and blue
- Each box contains apples and oranges
- We first pick box at random
- Then we pick a fruit from that box again at random
- We are interested in the conditional probabilities of picking a specific fruit if a specific box was selected

Figure: From the book "Pattern Recognition and Machine Learning" by Bishop

•
$$P(A|B) = \frac{3}{4}$$

•
$$P(O|B) = \frac{1}{4}$$

•
$$P(A|R) = \frac{1}{4}$$

•
$$P(O|R) = \frac{3}{4}$$

Definition

Event A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$

- Events A and B are not related to each other
- We flip coin once: event A
- Second flip is the event B
- The outcome of the second flip is not dependent on the outcome of the first flip
- Intuitively, A and B are independent

- P(A) = 0.5
- P(B) = 0.5
- $P(A \cap B) = 0.25$
- P(A)P(B) = 0.25

Definition

Suppose P(C) > 0. Event A and B are conditionally independent given C if:

$$P(A \cap B|C) = P(A|C)P(B|C)$$

•
$$P(A) = \frac{1}{8}$$
, $P(B) = \frac{1}{8}$, $P(C) = \frac{1}{4}$

•
$$P(A|C) = \frac{1}{2}$$
, $P(B|C) = \frac{1}{2}$

•
$$P(A \cap B|C) = \frac{1}{4}, P(A|C)P(B|C) = \frac{1}{4}$$

•
$$P(A \cap B) = \frac{1}{16}$$
, $P(A)P(B) = \frac{1}{64}$

Remark

- (i) Independence ⇒ conditional independence
- (ii) Conditional independence ⇒ independence

Remark

Suppose P(B) > 0. Events A and B are independent if and only if P(A|B) = P(A).

Independence: Example

- Pick a card at random from a deck of 52 cards
- $A = \{ \text{the card is a heart} \}, B = \{ \text{the card is Queen} \}$
- $P(i) = \frac{1}{52}$
- By additivity, $P(A) = \frac{13}{52}$, $P(B) = \frac{4}{52}$
- $P(A \cap B) = \frac{1}{52}$ (Queen heart), $P(A)P(B) = \frac{1}{52}$
- A and B are independent

Bayes rule

Remark

Suppose P(A) > 0 and P(B) > 0. Then,

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Theorem

Suppose P(A) > 0 and P(B) > 0. Then,

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bayes rule

- One of the most important concepts in statistical inference
- Bayesian statistics
- You start with a probabilistic model with parameters B
- You observe data A and you are interested in the probability of parameters given the data

Chain & partition rule

Theorem

If A_1, A_2, \ldots, A_n are events and $P(A_1 \cap \cdots \cap A_{n-1}) > 0$, then

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

Definition

A partition of Ω is a finite or countable collection (B_n) if $B_n \in \mathcal{A}$ and:

- (i) $P(B_n) > 0, \forall n$
- (ii) $B_i \cap B_j = \emptyset, \forall i \neq j$ (pairwise disjoint)
- (iii) $\cup_i B_i = \Omega$

Partition rule

Partition rule

Theorem

Let B_n , $n \ge 1$ a finite or countable partition of Ω . Then if $A \in \mathcal{A}$:

$$P(A) = \sum_{n} P(A|B_n)P(B_n)$$

$$P(A) = \sum_{n} P(A \cap B_n)$$

Partition rule

Bayes rule revisited

Theorem

Let B_n , $n \ge 1$ a finite or countable partition of Ω and suppose P(A) > 0. Then

$$P(B_n|A) = \frac{P(A|B_n)P(B_n)}{\sum_m P(A|B_m)P(B_m)}$$

Medical tests

Donated blood is screened for AIDS. Suppose that if the blood is HIV positive the test will be positive in 99% of cases. The test has also 5% false positive rating. In this age group one in ten thousand people are HIV positive.

Suppose that a person is screened as positive. What is the probability that this person has AIDS?

•
$$P(A) =$$

- P(A) = 0.0001
- $P(A^c) =$

- P(A) = 0.0001
- $P(A^c) = 0.9999$
- P(P|A) =

- P(A) = 0.0001
- $P(A^c) = 0.9999$
- P(P|A) = 0.99
- P(N|A) =

- P(A) = 0.0001
- $P(A^c) = 0.9999$
- P(P|A) = 0.99
- P(N|A) = 0.01
- $P(P|A^c) =$

- P(A) = 0.0001
- $P(A^c) = 0.9999$
- P(P|A) = 0.99
- P(N|A) = 0.01
- $P(P|A^c) = 0.05$
- $P(N|A^c) =$

•
$$P(A) = 0.0001$$

•
$$P(A^c) = 0.9999$$

•
$$P(P|A) = 0.99$$

•
$$P(N|A) = 0.01$$

•
$$P(P|A^c) = 0.05$$

•
$$P(N|A^c) = 0.95$$

•
$$P(A|P) = ?$$

$$P(A|P) = \frac{P(P|A)P(A)}{P(P)}$$

$$= \frac{P(P|A)P(A)}{P(P|A)P(A) + P(P|A^c)P(A^c)}$$

$$= 0.00198$$

- The disease is so rare that the number of false positives outnumbers the people who have the disease
- E.g. what can we expect in a population of 1 million
- 100 will have the disease and 99 will be correctly diagnosed
- 999,900 will not have the disease but 49,995(!) will be falsely diagnosed
- If your test is positive the likelihood that you have the disease is $\frac{99}{99+49995} = 0.00198$

Figure: From the book "Pattern Recognition and Machine Learning" by Bishop

•
$$P(R) = \frac{2}{5}$$

•
$$P(B) = \frac{3}{5}$$

•
$$P(A|B) = \frac{3}{4}$$

•
$$P(O|B) = \frac{1}{4}$$

•
$$P(A|R) = \frac{1}{4}$$

•
$$P(O|R) = \frac{3}{4}$$

Fruits

We select orange. What is the probability the box was red? P(R|O) = ?

$$P(R|O) = \frac{P(O|R)P(R)}{P(O)}$$

$$= \frac{P(O|R)P(R)}{P(O|R)P(R) + P(O|B)P(B)}$$

$$= \frac{2}{3}$$

Random variables

- We use random variables to refer to "random quantities"
- E.g. we flip a coin 5 times and are interested in the number of heads
- E.g. the lifetime of the bulb
- E.g. the number of occurrences of a word in a text document

Random variables

Definition

Given a probability measure space (Ω, \mathcal{A}, P) a random variable is a **function** $X : \Omega \to \mathbb{R}$ such that $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{A}, \forall x \in \mathbb{R}$

Remark

The condition is a technicality ensuring that the set is measurable. We just need to know that a random variable is a function that maps events onto numbers.

Random variables: example

- We transmit 10 data packets over a communication channel
- Events are of the form (S, S, S, F, F, S, S, S, S, S)
- ullet State space Ω contains all possible 2^{10} sequences
- What is the probability that we will observe *n* successful transmissions
- We associate a r.v. with the number of successful transmissions
- The r.v. takes on the values $0, 1, \ldots, 10$

Discrete random variables

Definition

A r.v. X is discrete if $X(\Omega)$ is countable (finite or countably infinite).

Remark

- E.g. $X(\Omega) = \{x_1, x_2, \dots\}$
- Ω is countable $\implies X(\Omega)$ is countable and X is discrete
- These r.v. are called discrete random variables

Discrete random variables

• A discrete r.v. is characterized by its **probability mass function** (PMF)

$$p_X(x) = P(X = x)$$

$$p_X(x) = \sum_{\{\omega: X(\omega) = x\}} P(\{\omega\})$$

• We will shorten the notation and write p(x)

Discrete random variables: example

Die rolls

Let X be the sum of two die rolls.

- $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$
- $X(\Omega) = \{2, 3, \dots, 12\}$
- E.g. X((1,2)) = 3, X((2,1)) = 3, X((3,5)) = 8, ...
- E.g. p(3) = ?

$$p(3) = \sum_{\{\omega: X(\omega) = 3\}} P(\{\omega\}) = P((1,2)) + P((2,1)) = \frac{2}{36}$$

Discrete random variables: example

• E.g. p(4) = ?

$$p(4) = \sum_{\{\omega: X(\omega)=4\}} P(\{\omega\}) = P((1,3)) + P((3,1)) + P((2,2)) = \frac{3}{36}$$

$$p(x) = \frac{x-1}{36}, 2 \le x \le 7$$

Joint probability mass function

- We can introduce multiple r.v. on the same probability measure space (Ω, \mathcal{A}, P)
- Let X and Y be r.v. on that space, then the probability that X and Y take on values x and y is given by:

$$P(\{\omega \in \Omega | X(\omega) = x, Y(\omega) = y\})$$

Shortly, we write:

$$P(X = x, Y = y)$$

Joint probability mass function

• We define joint PMF as:

$$p_{XY}(x,y) = P(X = x, Y = y)$$

Shortly, we write:

Joint PMF: example

Text classification

Suppose we have a collection of documents that are either about China or Japan (document topics). We model a word occurrence as an event ω in a probability space. Let $\Omega = \{\text{all word occurrences}\}$. Let X be a r.v. that maps those occurrences to an enumeration of words and let Y be a r.v. that maps an occurrence to an enumeration of topics (either China or Japan). What is the joint PMF p(x,y).

Document	Class
Chinese Beijing Chinese	China
Chinese Chinese Shanghai	China
Chinese Macao	China
Tokyo Japan Chinese	Japan

Joint PMF: example

Word	Class
Chinese	China
Beijing	China
Chinese	China
Chinese	China
Chinese	China
Shanghai	China
Chinese	China
Масао	China
Tokyo	Japan
Japan	Japan
Chinese	Japan

Joint PMF: example

Y	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan
China	5	1	1	1	0	0
Japan	1	0	0	0	1	1

Joint PMF: example

Y	Chinese	Beijing	Shanghai	Масао	Tokyo	Japan
China	5/11	1/11	1/11	1/11	0	0
Japan	1/11	0	0	0	1/11	1/11

Marginal PMF

• p(x) and p(y) are called marginal probability mass functions

Remark

$$p(x) = \sum_{y} p(x, y)$$

$$p(y) = \sum_{x} p(x, y)$$

Marginal PMF: example

Y	Chinese	Beijing	Shanghai	Масао	Tokyo	Japan	p(y)
China	5/11	1/11	1/11	1/11	0	0	8/11
Japan	1/11	0	0	0	1/11	1/11	3/11
p(x)	6/11	1/11	1/11	1/11	1/11	1/11	

Conditional PMF

Definition

A conditional probability mass function is defined as:

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

 Again, we can easily establish connection to the underlaying probability space and events

Conditional PMF: example

p(x C)	Chinese	Beijing	Shanghai	Масао	Tokyo	Japan
p(x China)	5/8	1/8	1/8	1/8	0	0

p(x J)	Chinese	Beijing	Shanghai	Масао	Tokyo	Japan
p(x Japan)	1/3	0	0	0	1/3	1/3

Independence

Definition

Two r.v. X and Y are independent if:

$$p(x, y) = p(x)p(y), \forall x, y \in \mathbb{R}$$

 All rules are equivalent to the rules for events, we just work with PMFs instead.

Joint PMF

- In general we can have many r.v. defined on the same probability measure space Ω
- $\bullet X_1,\ldots,X_n$
- We define the joint PMF as:

$$p(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

Common discrete random variables

- Certain random variables commonly appear in nature and applications
- Bernoulli random variable
- Binomial random variable
- Geometric random variable
- Poisson random variable
- Power-law random variable

Common discrete random variables

- IPython Notebook examples
- http: //kti.tugraz.at/staff/denis/courses/kddm1/pmf.ipynb

Command Line

ipython notebook -pylab=inline pmf.ipynb

Bernoulli random variable

PMF

$$p(x) = \begin{cases} 1 - p \text{ if } x = 0\\ p \text{ if } x = 1 \end{cases}$$

- Bernoulli r.v. with parameter p
- Models situations with two outcomes
- E.g. we start a task on a cluster node. Does the node fail (X = 0) or successfully finish the task (X = 1)?

Bernoulli random variable

- Suppose X_1, \ldots, X_n are independent and identical Bernoulli r.v.
- The Binomial r.v. with parameters (p, n) is

$$Y = X_1 + \cdots + X_n$$

Models the number of successes in n Bernoulli trials

Cluster nodes

We start tasks on *n* cluster nodes. How many nodes successfully finish their task?

• Probability of a single cluster configuration with *k* successes.

$$p(\omega) = (1 - p)^{n - k} p^k$$

Denis Helic (KTI, TU Graz)

• How many successful configurations exist?

$$p(k) = N(k)(1-p)^{n-k}p^k$$

$$N(k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

PMF

$$p(k) = \binom{n}{k} (1-p)^{n-k} p^k$$

- E.g. how many heads we get in n coin flips
- E.g. how many packets we transmit over *n* communication channels

Denis Helic (KTI, TU Graz)

- Power-law distribution is a very commonly occurring distribution
- Word occurences in natural language
- Friendships in a social network
- Links on the web
- PageRank, etc.

PMF

$$p(k) = \frac{k^{-\alpha}}{\zeta(\alpha)}$$

- $k \in \mathbb{N}$, $k \ge 1$, $\alpha > 1$
- $\zeta(\alpha)$ is the Riemann zeta function

$$\zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha}$$

Expectation

Definition

The expectation of a discrete r.v. X with PMF p is

$$E[X] = \sum_{x \in X(\Omega)} x p(x)$$

when this sum is "well-defined", otherwise the expectation does not exist.

Remark

- (i) "Well-defined": it could be infinite, but it should not alternate between $-\infty$ and ∞
- (ii) Expectation is the average value of a r.v.

4日ト4団ト4章ト4章ト 章 り9○

Expectation: example

Gambling game

We play repeatedly a gambling game. Each time we play we either win 10€ or lose 10€. What are our average winnings?

• Let w_k be our winning for game k. Then the average winning in n games is:

$$W=\frac{w_1+\cdots+w_n}{n}$$

Expectation: example

• Let n_W be the number of wins and n_I the number of losses. Then,

$$W = \frac{10n_W - 10n_L}{n} = 10\frac{n_W}{n} - 10\frac{n_L}{n}$$

• If we approximate $P(\{win\}) \approx \frac{n_W}{n}$ and $P(\{loss\}) \approx \frac{n_L}{n}$. Then,

$$W = 10P(\{win\}) - 10P(\{loss\}) = \sum_{x \in X(\Omega)} xp(x)$$

Linearity of expectation

Theorem

Suppose X and Y are discrete r.v. such that $E[X] < \infty$ and $E[Y] < \infty$. Then,

- $E[aX] = aE[X], \forall a \in \mathbb{R}$
- E[X + Y] = E[X] + E[Y]

Variance

Definition

The variance $\sigma^2(X)$, var(X) of a discrete r.v. X is the expectation of the r.v. $(X - E[X])^2$

$$var(X) = E[(X - E[X])^2]$$

Remark

Variance indicates how close X typically is to E[X]

$$var(X) = E[X^2] - (E[X])^2$$

Definition

The covariance cov(X, Y) of two discrete r.v. X and Y is the expectation of the r.v. (X - E[X])(Y - E[Y])

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

Remark

Covariance measures how much two r.v. change together, i.e. do X and Y tend to be small together, or is X large when Y is small (or vice versa), or do they change independently of each other

- If greater values of X correspond with greater values of Y, and same holds for small values then cov(X,Y)>0
- In the opposite case cov(X, Y) < 0

- If X and Y are independent then cov(X, Y) = 0
- This follows because E[XY] = E[X]E[Y] in the case of independence
- Is the opposite true?
- If cov(X, Y) = 0 are X and Y independent?

Covariance and independence

Suppose X takes on values $\{-2, -1, 1, 2\}$ with equal probability. Suppose $Y = X^2$.

$$cov(X, Y) = E[XY] - E[X]E[Y] = E[X^3] = 0$$

- Clearly X and Y are not independent
- They are linearly independent, but not independent in general

Remark

- (i) Independence of X and $Y \implies cov(X, Y) = 0$
- (ii) $cov(X, Y) = 0 \implies$ Independence of X and Y

Continuous random variables

Definition

A r.v. X is continuous (general) if $X(\Omega)$ is uncountable.

- A general description is given by $P(X \in (-\infty, x])$
- We define the cumulative distribution function (CDF) of *X* as:

$$F_X(x) = P(X \in (-\infty, x])$$

• We will write shortly F(x) and $P(X \le x)$

Cumulative distribution function (CDF)

Definition

A cumulative distribution function (CDF) is a function $F : \mathbb{R} \to \mathbb{R}$ such that

- (i) F is non-decreasing $(x \le y \implies F(x) \le F(y))$
- (ii) F is right-continuous $(\lim_{x \searrow a} = F(a))$
- (iii) $\lim_{x\to\infty} F(x) = 1$
- (iv) $\lim_{x\to-\infty} F(x) = 0$

CDF: non-decreasing

CDF: right-continuous

CDF: infinity limits

Probability density function (PDF)

Suppose that CDF is continuous and differentiable

Definition

A probability density function (PDF) of a r.v. X is defined as:

$$f(x) = \frac{dF(x)}{dx}$$

Definition

A joint PDF of two r.v. X and Y is defined as:

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

Denis Helic (KTI, TU Graz)

Probability density function (PDF)

Definition

Suppose X and Y are two r.v. defined on the same probability measure space. Conditional PDF of X given Y is defined as:

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

Expectation

Definition

Expectation E[X] of a r.v. X with a PDF f(x) is defined as:

$$E[X] = \int_{-\infty}^{\infty} x p(x) dx$$

• In a similar way we define variance and covariance for a joint PDF

Common continuous random variables

- Certain random variables commonly appear in nature and applications
- Exponential random variable
- Normal (Gaussian) random variable
- Power-law random variable

Common continuous random variables

- IPython Notebook examples
- http:
 //kti.tugraz.at/staff/denis/courses/kddm1/pdf.ipynb

Command Line

ipython notebook -pylab=inline pdf.ipynb

Normal (Gaussian) random variable

- Normal distribution is a very commonly occurring distribution
- Continuous approximate to the binomial for large n and p not too close to neither 0 nor 1
- Continuous approximate to the Poisson dist. with $n\lambda$ large
- Measurement errors
- Student grades
- Measures of sizes of living organisms

Normal random variable

PDF

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• μ is the mean (expectation) and σ^2 is the variance of a normally distributed r.v.

CDF

$$F(x) = \Phi(\frac{x - \mu}{\sigma}), \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x'^2}{2}} dx'$$

Normal random variable

