Topology I

Ji, Yong-hyeon

November 25, 2024

We cover the following topics in this note.

• Topology

Topology

Definition. Let *S* be a non-empty set. A **topology** on *S* is a subset

$$\mathcal{T} = \{E : E \subseteq S\} \subseteq 2^S$$

that satisfies the open set axioms:

- (O1) \emptyset and S are elements of \mathcal{T} : $\{\emptyset, S\} \subseteq \mathcal{T}$.
- $(O2)^a$ The union of an arbitrary subset of \mathcal{T} is an element of \mathcal{T} :

$$\{E_\alpha\}_{\alpha\in\Lambda}\subseteq\mathcal{T}\implies\bigcup_{\alpha\in\Lambda}E_\alpha\in\mathcal{T}.$$

 $(O3)^b$ The intersection of any finite subset of \mathcal{T} is an element of \mathcal{T} :

$$\{E_i\}_{i=1}^n\subseteq\mathcal{T}\implies\bigcap_{i=1}^nE_i\in\mathcal{T}.$$

 $^{{}^{}a}\mathcal{T}$ is closed under arbitrary unions

 $^{{}^}b\mathcal{T}$ is closed under *finite* intersection

Remark. By mathematical induction, we have

O3
$$\iff$$
 $[\{E_1, E_2\} \subseteq \mathcal{T} \Rightarrow E_1 \cap E_2 \in \mathcal{T}].$

Example 1 (Cofinite Topology). Let *S* be a set. Define a subset $\mathcal{T}_C \subseteq 2^S$ by

$$\mathcal{T}_C := \left\{ T \subseteq S : T^C \subseteq S \text{ is a finite set} \right\} \cup \{\emptyset\}$$

We claim that \mathcal{T}_C be a topology on S:

- (i) Clearly $\subseteq \in \mathcal{T}_C$. Since $S^C = \emptyset$ and \emptyset is finite, $S \in \mathcal{T}$.
- (ii) Let $\{E_{\alpha}\}_{{\alpha}\in\Lambda}\subseteq\mathcal{T}_{C}$. Then

$$\left(\bigcup_{\alpha \in \Lambda} E_{\alpha}\right)^{C} = \bigcap_{\alpha \in \Lambda} E_{\alpha}^{C}$$

and so

(iii)

Topological Space

Definition. Let *S* be a set. Let \mathcal{T} be a topology on *S*. Then the ordered pair (S, \mathcal{T}) is called a **topological space**.

Open Set

Definition. Let (S, \mathcal{T}) be a topological space. $E \subseteq S$ is an **open set**, or **open** (in S) iff $E \in \mathcal{T}$.

Remark. A subset $\mathcal{T} \subseteq 2^S$ is a topology on S if and only if

- (i) \emptyset and S are open;
- (ii) Let $\{E_{\alpha}\}_{{\alpha}\in\Lambda}\subseteq \mathcal{T}$. Then $\bigcup_{{\alpha}\in\Lambda}E_{\alpha}$ is open.
- (iii) Let $\{E_i\}_{i=1}^n \subseteq \mathcal{T}$. Then $\bigcap_{i=1}^n E_i$ is open.

References

[1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 8. 위상수학 (a) 위상공간의 정의." YouTube Video, 41:25. Published September 27, 2019. URL: https://www.youtube.com/watch?v=q8BtXIFzo2Q.

A Complement of Family

Note.

$$\left(\bigcup_{i\in\Lambda}E_i\right)^C=\bigcap_{i\in\Lambda}\left(E_i\right)^C$$

Proof. content...