Dilation of regular polygons Algorithmic aspects

Damien Galant

UMONS - Erasmus Université Paris-Sud

September 24, 2019

Introduction and notations

- focus on regular n-gons
- S: set of vertices of a regular n-gon
- triangulation on S: maximal set of segments whose endpoints are in S and which only intersect at points of S
- \bullet \mathcal{T} : set of triangulations of S
- dilation of $T \in \mathcal{T}$: $dil(T) \geq 1$

Example of a triangulation

A triangulation T of a 10-gon. Corresponding dilation: dil(T) = 1.42705098

000

Example of a triangulation

The path between a critical pair for this triangulation is shown in red. $\operatorname{dil}(T) = \frac{\text{total length of the red path}}{\text{euclidean distance between the endpoints}}$

000

Computing the dilation of regular *n*-gons, i.e.

$$\min_{T \in \mathcal{T}} \operatorname{dil}(T)$$

For a given $T \in \mathcal{T}$:

- Computing shortest paths in the graph: $O(n^3)$ using Floyd-Warshall's algorithm.
- Iterate over all pairs of points in $O(n^2)$ to get dil(T).
- $\rightarrow O(n^3)$ overall

- Straightforward algorithm: iterate over all possible triangulations T (see e.g. Mulzer (2004)).
- Impossible for $n \ge 25$: the number of triangulations of a *n*-gon is equal to the Catalan number C_{n-2} , where

$$C_k = \frac{1}{k+1} \cdot \binom{2k}{k}$$

$$(C_{23} = 343.059.613.650)$$

 \rightarrow combinatorial explosion

Proposed solution

- "Branch-and-bound-like" approach.
- Lower bound method: inspired by Dumitrescu and Ghosh (2016).

Lower bound: what are we looking for?

- We want a *proven* lower bound for the dilation of regular *n*-gons.
- If the found lower bound can be realized as $\operatorname{dil}(T)$ for some $T \in \mathcal{T}$, we are done.

Partial triangulations

- Partial triangulation: set of segments whose endpoints are in S and which only intersect at points of S (no maximality condition).
- We consider that the edges of the polygon are always present.
- P: set of (possibly) partial triangulations.
- Natural notion of inclusion $P_1 \subset P_2$ for $P_1, P_2 \in \mathcal{P}$.

Graphs with cliques

- Given P, we are interested in all triangulations containing P.
- The graph GCP is obtained by taking all segments between points of S which do not intersect segments of P.
- "Duality": for $T \in \mathcal{T}$, $P \subseteq T \Leftrightarrow T \subseteq GC_P$

A graph with cliques GC_P

10-gon, three segments in P (shown in green), GC_P : green and red segments $\mathrm{nlb}(P)=1.42705098$

• Given P, "naive" lower bound on the dilation of all triangulations containing P given by

$$\mathrm{nlb}(P) := \max_{\substack{p,q \in S \\ p \neq q}} \frac{d_{GC_P}(p,q)}{d_{\mathsf{Euclidean}}(p,q)}$$

Monotonicity:

$$P \subseteq P' \Rightarrow \text{nlb}(P) \le \text{nlb}(P')$$

• If $T \in \mathcal{T}$ is a triangulation,

$$nlb(T) = dil(T)$$

Summary of the "naive" lower bound technique

```
P 
ightarrow partial triangulation \begin{picture}{l} $\emptyset$ $C_P$ & <math>\to$ add all segments which don't intersect $P$ <math>\begin{picture}{l} $\emptyset$ $G_{C_P}$ & <math>\to$ distance using only segments in $G_P$ <math>\begin{picture}{l} $\emptyset$ $\mathbb{C}_P$ & <math>\mathbb{C}_P$ & <math>\mathbb{C}_P$ & \mathbb{C}_P$ & \mathbb{
```


• We want a better bound lb(P) with

$$\mathrm{nlb}(P) \leq \mathrm{lb}(P) \leq \min_{\substack{T \in \mathcal{T} \\ P \subseteq T}} \mathrm{dil}(T)$$

• We use GC_P (as for nlb).

Pairs of pairs of points

Idea of nlb: use the inequality

$$d_{GC_P}(p,q) \leq d_{Graph of T}(p,q)$$

for a fixed pair of points $p, q \in S, p \neq q$.

- Problem: pairs of points are considered independently.
- Solution (inspired by Dumitrescu and Ghosh (2016)): consider two pairs of points at once.

Simple observation: if $s_1, s_2, e_1, e_2 \in S$ are distinct points in clockwise order, then the paths from s_1 to e_1 and from s_2 to e_2 must intersect at some point $p \in S$.

Pairs of pairs of points

- We have no idea of which p is optimal → take the one which gives the lowest bound.
- The bound $\mathrm{lb}(s_1,s_2,e_1,e_2)$ associated to $s_1,s_2,e_1,e_2\in\mathcal{S}$ is

$$\min_{p \in \mathcal{S}} \max \left\{ \frac{d_{GC_P}(s_1, p) + d_{GC_P}(p, e_1)}{d_{\mathsf{Euclidean}}(s_1, e_1)}, \frac{d_{GC_P}(s_2, p) + d_{GC_P}(p, e_2)}{d_{\mathsf{Euclidean}}(s_2, e_2)} \right\}$$

We obtain our better bound

$$\operatorname{lb}(P) = \max_{\substack{s_1, s_2, e_1, e_2 \in S \\ \text{distinct and} \\ \text{in clockwise order}}} \operatorname{lb}(s_1, s_2, e_1, e_2)$$

- Lower bound technique: lower bound lb(P) on the dilation of triangulations which contain P.
- Our goal: find a global lower bound glb with

$$\operatorname{glb} \leq \min_{T \in \mathcal{T}} \operatorname{dil}(T)$$

and a sharp inequality ("=" \rightarrow dil computed).

Algorithm to find a global lower bound

Algorithm for glb: take

$$glb = \min_{P \in \mathcal{C}} lb(P)$$

where $C \subseteq P$ is a set of partial configurations.

• Exhaustive method: case C = T!

Global lower bound: which configurations should we consider?

- How does the algorithm choose C?
- Key point: good tradeoff between $\mathcal C$ small (fast algo, possibly poor bound) and $\mathcal C$ large (slower, better bound).

- Abstract "search tree" of partial configurations $P \in \mathcal{P}$.
- For each P, we have a bound lb(P).
- Monotonicity is important: if $P_0 \subseteq P_1 \subseteq \cdots \subseteq P_n = T \in \mathcal{T}$, then

$$\mathrm{lb}(P_0) \leq \mathrm{lb}(P_1) \leq \cdots \leq \mathrm{lb}(P_k) = \mathrm{dil}(T)$$

Pruning the search tree

Pruning is very efficient for optimisation problems on search trees \rightarrow need a "target value"

Lower bound, with a "target value" c

Given a constant

$$c \geq \min_{T \in \mathcal{T}} \operatorname{dil}(T)$$

return a proven lower bound

$$\operatorname{glb} \leq \min_{T \in \mathcal{T}} \operatorname{dil}(T)$$

In practice, $c = \operatorname{dil}(T_{candidate}) \in \mathcal{T}$ for a very good triangulation T.

- c is only used for pruning purposes
 - → "cut" branches of the search tree
- c, given as input to the lower bound algorithm, does not change the result returned by the algorithm (!)
- The speed of the proposed method depends crucially on the "quality" of c.
- Hope: prove that c is in fact equal to the dilation, i.e.

$$glb = c = dil(T_{candidate})$$

Important edges first

- The order in which partial configurations are considered matters.
- Important to first put some edges that will cause lb(P) to be big, to cut early.
- Our program puts the edges of the triangle which contains the center first.
- It then puts three smaller triangles on the 3 zones delimitated by the central triangle.

Central triangle

A possible central triangle in a 10-gon.

Putting it all together

Lower bound algorithm

- Take a positive integer n and a "target value" c as input.
- Go through the search tree of partial triangulations, considering important edges first (adding triangles gradually).
- Prune while going through the search tree.
- Stop at a specified depth.
- **5** Return the global lower bound glb.

As we saw before, we need a good target constant $c = \operatorname{dil}(T_{good})$ if we want our lower bound algorithm to run fast enough, and we can only conclude if

$$c = \min_{T \in \mathcal{T}} \operatorname{dil}(T)$$

Classical techniques

• Most articles only focus on the upper bound part: find T_{good} ,

$$\min_{T \in \mathcal{T}} \operatorname{dil}(T) \lessapprox \operatorname{dil}(T_{good})$$

- Two typical steps:
 - Describe a class of "seemingly good" triangulations (classes with 4 and 6 parameters in Sattari and Izadi (2019)).
 - Find the optimal triangulation among the members of the class.

Discussion of such techniques

Two main advantages:

- The number of considered configurations is polynomial in *n*.
- Finding the best configuration
 - \rightarrow doable either with a computer or by hand.

Intrinsic issues:

- No formal justification regarding why these classes are considered, only heuristic motivations.
- (!) No control on the sharpness of the inequality

$$\min_{T \in \mathcal{T}} \operatorname{dil}(T) \leq \operatorname{dil}(T_{good})$$

- Second issue: due to the nature of the methods, i.e. living in $\mathcal{S} \subseteq \mathcal{T}$ and forgetting about the rest of \mathcal{T} .
- Lower bound algorithm \rightarrow response to the second issue.
- To avoid these issues, we will use metaheuristics instead to find good configurations.

Metaheuristics

- ullet Goal: explore the search space ${\mathcal T}$ and find good configurations.
- Metaheuristics: generic methods to solve optimization problems.
- Here: hill climbing.

Hill climbing

Given "neighbourhood operations" on the search space:

Hill climbing

- **1** Start from some initial state s_0 in the configuration space.
- 2 Consider all neighbours of s_0 .
- Go to the neighbour which corresponds to the highest value.
- When all neighbours produce a lower value, stop the algorithm and return the current state and the current value.

From local maxima to candidates of global maxima

Hill climbing \rightarrow *local* maxima.

Source: https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-intelligence/

Solution \rightarrow "randomized multistart" strategy.

An example of neighbourhood operation

Example of 42-gons

Let's do it live!

Known values for the dilation before our work

n	$\operatorname{dil}(S_n)$	n	$dil(S_n)$	n	$dil(S_n)$	
4	1.4142	12	1.3836	20	1.4142	
5	1.2360	13	1.3912	21	1.4161	
6	1.3660	14	1.4053	22	1.4047	
7	1.3351	15	1.4089	23	1.4308	
8	1.4142	16	1.4092	24	1.4013	
9	1.3472	17	1.4084	25	< 1.4296	
10	1.3968	18	1.3816	26	< 1.4202	
11	1.3770	19	1.4098			

The values of $dil(S_n)$ for n = 4, ..., 26, from Dumitrescu and Ghosh (2016).

00000

New exact values computed by our algorithm

n	$dil(S_n)$	time	n	$dil(S_n)$	time	n	$dil(S_n)$	time
20	1.4142	< 5s	28	1.4147	20s	36	?	_
21	1.4161	< 5s	29	1.4198	< 10s	37	?	_
22	1.4047	< 5s	30	1.4236	2min	38	1.4130	1min
23	1.4308	< 5s	31	1.4119	1min	39	?	_
24	1.4013	< 5s	32	1.4160	20s	40	?	_
25	1.4049	15s	33	1.4184	2min	41	?	_
26	1.4169	15s	34	1.4167	1min	42	1.4222	15s
27	1.4185	15s	35	1.4212	3min	43	1.4307	3min

The values of $dil(S_n)$ computed by our programs, with the associated total runtime (upper bound + lower bound).

Our method gives (after approximately 30min)

$$dil(53-gons) \ge 1.4336$$

• This improves the bound of dil(23-gons) ≈ 1.4308 obtained in Dumitrescu and Ghosh (2016) for the "worst-case dilation of plane spanners":

$$\sup_{\substack{S \subseteq \mathbb{R}^2 \\ S \text{ finite}}} \operatorname{dil}(S)$$

Further goals

- Study the asymptotic case, i.e. the dilation of the circle.
- Find "small" classes containing optimal configurations.
- Finer information about small configurations: all good configurations, their symmetries, . . .
- Perhaps a "real branch-and-bound" instead of our "two-steps" method.

Bibliography

Adrian Dumitrescu and Anirban Ghosh. "Lower Bounds on the Dilation of Plane Spanners". In: *Algorithms and Discrete Applied Mathematics*. Ed. by Sathish Govindarajan and Anil Maheshwari. Cham: Springer International Publishing, 2016, pp. 139–151. ISBN: 978-3-319-29221-2.

Wolfgang Mulzer. "Minimum dilation triangulations for the regular n-gon" . MA thesis. 2004. URL:

https://page.mi.fu-berlin.de/mulzer/pubs/diplom.pdf.

Sattar Sattari and Mohammad Izadi. "An improved upper bound on dilation of regular polygons". In: *Computational Geometry* 80 (2019), pp. 53–68. ISSN: 0925-7721. DOI: https://doi.org/10.1016/j.comgeo.2019.01.009.