Deep Learning-Based End-to-End Wireless Communication Systems With Conditional GANs as Unknown Channels

Hao Ye[®], Student Member, IEEE, Le Liang[®], Member, IEEE, Geoffrey Ye Li, Fellow, IEEE, and Biing-Hwang Juang, Life Fellow, IEEE

Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang are with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: yehao@gatech.edu; liye@ece.gatech.edu; juang@ece.gatech.edu).

Le Liang was with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA. He is now with Intel Labs, Hillsboro, OR 97124 USA (e-mail: lliang@gatech.edu).

2021, 12, 11,

Hyunsoo, Yu

INDEX

- 1. Introduction
- 2. Related Works
 - 1. GANs and Conditional GANs
 - 2. DNN Based End-to-End Communications
 - 3. Learning Based Decoders
- 3. Modeling Channel with Conditional GAN
 - 1. Conditional GAN
 - 2. Modeling Channels
 - 3. Convolutional Layers Based Channel GAN
- 4. End-to-End Communication System
 - 1. System Overview
 - 2. Training Receiver
 - **3.** Training Transmitter
 - 4. Training Channel GAN

5. Experiments

- 1. Experimental Settings
 - 1. Implementation Details
 - 2. Channel Types
 - 3. Baselines
- 2. Modeling the channel effects
- 3. End-to-End Communication System
 - 1. AWGN Channel
 - 2. Rayleigh Fading Channel
 - 3. Frequency-Selective Fading Channel
- 6. Conclusion and Discussion

1. INTRODUCTION

- Conventional Wireless System
 - Transfer data with multiple signal processing blocks
 - Each block is developed and optimized individually
 - It is hard to measure total performance
 - Mathematical assumption on the channel propagation is not accurate => damage the system performance

3

the weight/parameter set of the transmit DNN. the weight/parameter set of the receiver DNN

the channel realization.

1. INTRODUCTION

- Deep learning method on communication
 - Feature & parameter can be learned from the data directly, (Data-driven methods)
 - Tx & Rx can be interpreted as an auto-encoder and auto-decoder
- Offline training
 - Loss $\mathbb{E}_{(\mathbf{h}\in\mathcal{H})}\{\mathcal{L}(oldsymbol{ heta_T},oldsymbol{ heta_R},\!\mathbf{h})\}$
 - h is unknown, only know it is from a sample space H
- Problem
 - We don't know $\mathbf{y} = f_{\mathbf{h}}(\mathbf{x})$
 - The curse of dimensionality; long codeword is not available

1. INTRODUCTION

- Wireless communication system with Conditional GAN is proposed to challenge those problems.
 - Learn the distributions of channel output
 - Condition: encoded signals from Tx and the received pilot information used for estimating the channel
 - Optimize the Tx loss, Rx loss, and the end-toend loss in a supervised way
 - CNN alleviates curse of dimensionality

2. RELATED WORKS2.1 GAN AND CONDITIONAL GAN

- GAN
 - Generator
 - Generate fake sample
 - Discriminator
 - Discriminate whether fake or real
- Conditional GAN
 - Context information(Label) is added to the generator and discriminator
- When generating the channel output, the received pilot information is used as a conditional information

2. RELATED WORKS 2.2 DNN BASED END-TO-END COMMUNICATIONS

- [1] propose the idea of end-to-end learning communication system
- In [2], CNNs are employed for modulation and demodulation
- In [3], Reinforcement learning is used to optimize the end-to-end communication system

^[1] T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer", IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.

^[2] B. Zhu, J. Wang, L. He and J. Song, "Joint transceiver optimization for wireless communication PHY with convolutional neural network", arXiv:1808.03242, 2018,

^[3] F. A. Aoudia and J. Hoydis, "End-to-end learning of communications systems without a channel model", arXiv:1804.02276, 2018,

2. RELATED WORKS2.3 LEARNING BASED DECODERS

- DNN has been utilized in decoding with a wide range of application
- RNN is used in [4] for decoding the convolutional and turbo codes(error correction code).
- The traditional belief-propagation decoding algorithm is extended as deep learning layers to decode linear codes in [5]

[4] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh and P. Viswanath, "Communication algorithms via deep learning", arXiv:1805.09317, 2018, [5] E. Nachmani, Y. Be'ery and D. Burshtein, "Learning to decode linear codes using deep learning", Proc. 54th Annu. Allerton Conf. Commun. Control Comput. (Allerton), pp. 341-346, Sep. 2016.

3. MODELING CHANNELS WITH CONDITIONAL GAN

- To make the back propagation algorithm available in the DNN end-to-end communication system,
 Conditional GAN is employed.
- The output distribution of the channel can be learned in a data-driven manner.

3. MODELING CHANNELS WITH CONDITIONAL GAN 3.1 CONDITIONAL GAN

GAN

$$\mathcal{L}_G = \min_{\boldsymbol{\theta}_G} \mathbb{E}_{\mathbf{z} \sim p_z} [\log(1 - D(G(\mathbf{z})))],$$

$$\mathcal{L}_{D} = \max_{\boldsymbol{\theta_{D}}} \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log(D(\mathbf{x}))] + \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log(1 - D(G(\mathbf{z})))],$$

Conditional GAN

$$\mathcal{L}_{G} = \min_{\boldsymbol{\theta_{G}}} \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log(1 - D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$$

$$\mathcal{L}_{D} = \max_{\boldsymbol{\theta_{D}}} \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log(D(\mathbf{x}, \mathbf{m}))]$$

$$+ \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log(1 - D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$$

Fig. 2. Structure of conditional GAN.

3. MODELING CHANNELS WITH CONDITIONAL GAN 3.2 MODELING CHANNELS

 X_n Channel GAN

- To obtain the Channel State Information (CSI), h,
 - some pilot information is sent to Rx
 - so that the channel information is inferred based on the received signal corresponding to the pilot symbols y_p .
- The received signal is added as a part of conditioning information
 - The output samples follow the distribution of y given the input x and the received pilot data y_n .
- With y_p as the conditional information, the output distribution of CGAN can stick to the current channel

Pilot Received pilot signals

3. MODELING CHANNELS WITH CONDITIONAL GAN 3.3 CONVOLUTIONAL LAYERS-BASED CHANNEL GAN

- Fully connected layer
 - Each neuron connect all neurons in previous layer
- Convolutional layer
 - Each neuron connect **a few nearby neurons** in previous layer
 - Same set of weights is shared by all neuron in a layer
- ※ Convolutional code
 - Encoding process is like convolutional transform
- In the channel GAN, 1D convolutional layer is used.
 - => Reduce complexity

Fully connected layer

$$u^{(i)}[n] = \sigma(\sum_{k} w_{nk}^{(i)} u^{i-1}[k]),$$

$$u^{(i)}[n]$$

 $\sigma(\cdot)$ Activation function

Convolutional layer $u^{(i)}[n] = \sigma(\sum_{k=1}^L w_k^{(i)} u^{(i-1)}[n-k])$

The number of weights: L: fewer connection than DNN

4. END-TO-END COMMUNICAT® 4.1 SYSTEM OVERVIEW

Receiver/

$$L = \sum_{n=1}^{N} (s_n \log(\hat{s}_n) + (1 - s_n) \log(1 - \hat{s}_n))$$

 $s_n : n_{th} element of s$

Training

Transmitter/

- Tx, Rx, and C-GAN is trained with same training data
- When train Tx & Rx, objective = minimizing 'End-to-End Loss'
- When Train C-GAN, $\mathcal{L}_G = \min_{\boldsymbol{\theta_G}} \mathbb{E}_{\mathbf{z} \sim p_z} [\log(1 D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$ are used $\mathcal{L}_D = \max_{\boldsymbol{\theta_D}} \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log(D(\mathbf{x}, \mathbf{m}))]$
- Test $+ \mathbb{E}_{\mathbf{z} \sim p_z}[\log(1 D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$
 - Evaluate 'end-to-end reconstruction performance with real channel

4. END-TO-END COMMUNICATION SYSTEM

4.2 TRAINING RECEIVER

- Based on loss, the receiver can be trained
- For the time-varying channels
 - Receiver can infer the channel condition
 - Perform the channel estimation and detection simultaneously
 - **By putting received signal(y)** & received pilot signal(y_p)

$$L = \sum_{n=1}^{N} (s_n \log(\hat{s}_n) + (1 - s_n) \log(1 - \hat{s}_n))$$

4. END-TO-END COMMUNICATION SYSTEM 4.3 TRAINING TRANSMITTER

- Tx, generator and Rx can be viewed as a whole DNN
- End-to-End cross-entropy loss is computed at the Rx
- Backpropagation
 - Weights of the Tx is updated based on SGD
 - While the weighs of C-GAN and Rx remain fixed
- Tx learn the constellation of the embedding x

$$L = \sum_{n=1}^{N} (s_n \log(\hat{s}_n) + (1 - s_n) \log(1 - \hat{s}_n))$$

4. END-TO-END COMMUNICATION SYSTEM 4.4 TRAINING CHANNEL GAN

$\mathcal{L}_{G} = \min_{\boldsymbol{\theta}_{G}} \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log(1 - D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$ $\mathcal{L}_{D} = \max_{\boldsymbol{\theta}_{D}} \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log(D(\mathbf{x}, \mathbf{m}))]$ $+ \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log(1 - D(G(\mathbf{z}, \mathbf{m}), \mathbf{m}))],$

Algorithm 1 Channel GAN Training Algorithm

- 1: **for** number of training iterations **do**
- 2: % Updating the Generator
- 3: Sample minibatch of transmit data $\{s\}$ and channel $\{h\}$.
- 4: Get the minibatch of condition information {m} from the output of the transmitter DNN and the received pilot signal from the channel {h}.
- 5: Sample minibatch of samples $\{z\}$.
- 6: Update the generator by ascending the stochastic gradient of the loss function (3).
- 7: % Updating the Discriminator
- 8: Sample minibatch of transmit data $\{s\}$ and channel $\{h\}$.
- 9: Get the minibatch of condition information {**m**} from the output of the transmitter DNN and the received pilot signal from the channel {**h**}.
- 10: Sample minibatch of examples real data by collecting the output of channel.
- 11: Sample minibatch of samples $\{z\}$.
- 12: Update the discriminator by descending the stochastic gradient of the loss function (4).
- **13: end for**

5. EXPERIMENTS

- Channel GAN has shown the ability to model the channel effects in a data-driven way
- End-to-End communication system achieved similar or better results even the channel information is unknown

17

5. EXPERIMENTS5.1 EXPERIMENTAL SETTINGS5.1.1 IMPLEMENTATION DETAILS

- FCN is used for a small block size
- CNN is used in the large block size to avoid the curse of dimensionality
- Weights are updated by Adam
- Batch size for training is 320

MODEL PARAMETERS OF FCN

Parameters	Values
Transmitter: Neurons in each hidden layers	32, 32
Learning rate	0.001
Receiver: Neurons in each hidden layers	32, 32
Learning rate	0.001
Generator: Neurons in each hidden layers	128, 128, 128
Discriminator: Neurons in each hidden layers	32, 32, 32
Learning rate	0.0001

MODEL PARAMETERS OF CNN

Type of layer	Kernel size/Annotation	Output size
Transmitter		
Input	Input layer	$K \times 1$
Conv+Relu	5	$K \times 256$
Conv+Relu	3	$K \times 128$
Conv+Relu	3	$K \times 64$
Conv	3	$K \times 2$
Normalization	Power normalization	$K \times 2$
Receiver		
Conv+Relu	5	$K \times 256$
Conv+Relu	5	$K \times 128$
Conv+Relu	5	$K \times 128$
Conv+Relu	5	$K \times 128$
Conv+Relu	5	$K \times 64$
Conv+Relu	5	$K \times 64$
Conv+Relu	5	$K \times 64$
Conv+Sigmoid	3	$K \times 1$
Generator		
Conv+Relu	5	$K \times 256$
Conv+Relu	3	$K \times 128$
Conv+Relu	3	$K \times 64$
Conv	3	$K \times 2$
Discrimator		
Conv+Relu	5	$K \times 256$
Conv+Relu	3	$K \times 128$
Conv+Relu	3	$K \times 64$
Conv+Relu	3	$K \times 16$
FC +Relu	100	100
FC+Sigmoid	1	1

5. EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

5.1.2 CHANNEL TYPES

- AWGN channels, Rayleigh channels, and frequency-selective multipath channels are considered in these experiments.
- AWGN channels
 - y = x + w(gaussian noise)
- Rayleigh channels
 - Rayleigh fading is a reasonable model for narrowband wireless channels when many objects scatter the radio signal before arriving at the receiver.
 - $y = h_n * x + w(gaussian noise)$
 - h_n: channel coefficient
 time varying & unknown
- Frequency-selective channels
 - Radio signal propagates via multiple paths which cause undesired frequency-selective fading and time dispersion of the received signal

 Baseband complex channel impulse response of frequency-selective channels

$$h(t) = \sum_{k=0}^{K_p} b_k e^{j\theta_k} p(t - \tau_k)$$

- K_p : # of paths
- b_k : path gain
- θ_k : phase shift
- au_k : time delay of the k-path
- p(t): shaping pulse in the communication system

19

5. EXPERIMENTS5.1 EXPERIMENTAL SETTINGS5.1.3 BASELINES

- Proposed system is compared with the conventional communication system
- BER(bit-error rate) and BLER(block-error rate) are compared under each type of channel
- Modulation
 - 4-QAM
- Channel Coding
 - Hamming code
 - Convolutional codes
 - Viterbi algorithm is used for maximum likelihood sequence decoding
 - Rate-1/2 RSC(Recursive systematic convolutional) code is used as common

5. EXPERIMENTS5.2 MODELING THE CHANNEL EFFECTS

- To model the effects of Rayleigh fading channels, FCN is used.
 - Rayleigh fading channels : Time-varying
 - => As conditional information, encoded signal and received pilot data are used.
 - The effectiveness of the C-GAN in learning the distribution of the channel with standard 16-QAM as the encoded symbol can be shown
- KL divergence of generated distribution and the real distribution $KL(G(z)||p_{data})$
 - The generated distribution converges to the target distribution

Fig. 4. Signal constellations at the output of a Rayleigh channel represented by a conditional GAN, where channel gains and phase rotations vary according to conditioning information y_D .

Fig. 5. KL divergence of the generated channel distribution and real channel distribution.

5. EXPERIMENTS

5.3 END-TO-END COMMUNICATION SYSTEM

5.3.1 AWGN CHANNEL

- FCN is used for small block size
 - 4 information bits are transmitted
 - Length of Transmitter output : 7
 - Performance
 - Similar to Hamming(7,4) code with maximumlikelihood decoding(MLD)
- CNN is used for large block size
 - 1. train CNN under AWGN channel (SNR : 3dB)
 - 2. test in different SNR
 - Performance
 - similar to RSC in the low SNR
 - Outperform RSC in the high SNR

Fig. 6. BER and BLER with a block size of 4 bits under a AWGN channel.

Fig. 7. BER and BLER with a block size of 128 bits under an AWGN channel.

10,0

12,5

15.0

17.5

5. EXPERIMENTS5.3 END-TO-END COMMUNICATION SYSTEM5.3.2 RAYLEIGH FADING CHANNEL

- CNN is used for large block
 - Channel encoding is included
 - Modulation : QAM / coding : RSC
- Performance
 - Similar to QAM+RSC & model-aware end-to-end system trained with Rayleigh channel

Fig. 8. BER and BLER under a Rayleigh channel.

5. EXPERIMENTS

5.3 END-TO-END COMMUNICATION SYSTEM 5.3.3 FREQUENCY-SELECTIVE FADING CHANNEL

- CNN is used
- OFDM system is used as the baseline
 - Orthogonal frequency-division multiplexing
- Modulation : 4 QAM / Channel coding : RSC
- Performance
 - Outperforms the OFDM system
 - With pilot information,
 - Rx can obtain information on a specific channel realization
 - Without pilot information
 - Channel generator learns to produce the mixture channel output distributions of all channel realizations
 - Performance degrades significantly

Fig. 9. BER and BLER under a frequency-selective multipath channel.

6. CONCLUSION AND DISCUSSION

- The end-to-end learning of a communication system without prior information of the channel is proposed
- By a C-GAN, the conditional distribution of the channel can be modeled
- C-GAN can generate data corresponding to the specific instaneous channel by adding pilot information
- The performance showed similar or better than traditional approaches