Exam in Optimization I - Winter 2014/2015

Instructions: Answer the following 5 questions. Please start each question on a separate page and give **detailed explanations**.

Good Luck!!!

Question 1 (22 pts.) Consider the following convex optimization problem:

min
$$\sqrt{2x_1^2 + 4x_1x_2 + 3x_2^2 + 1} + 7$$

s.t. $((x_1^2 + x_2^2)^2 + 1)^2 \le 10x_1$
 $\frac{x_1^2 + 4x_2^2 + 4x_1x_2}{2x_1 + x_2 + x_3} \le 10$
 $1 \le x_1, x_2, x_3 \le 10$.

- (a) Prove that the problem is convex.
- (b) Write a CVX problem for solving the problem.

Question 2. (22 pts.) Consider the following convex optimization problem:

(P)
$$\min_{\mathbf{s.t.}} \|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2 + \|\mathbf{L}\mathbf{x}\|_1 + \|\mathbf{M}\mathbf{x}\|_2^2 - \sum_{i=1}^n x_i \log x_i$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{L} \in \mathbb{R}^{p \times n}$, $\mathbf{M} \in \mathbb{R}^{q \times n}$. Write a dual problem of (P). Do not make any transformations that ruin the convexity of the problem.

Question 3. (22 pts.) Consider the set

$$S = \left\{ \mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n w_i x_i^2 \le 1 \right\},\,$$

where $w_1, w_2, \ldots, w_n \in \mathbb{R}_{++}$.

- (a) Write the problem of finding the orthogonal projection of a vector $\mathbf{y} \in \mathbb{R}^n$ onto S (that is, computing $P_S(\mathbf{y})$) as a convex optimization problem.
- (b) Describe an algorithm for computing $P_S(\mathbf{y})$ that relies on a one-dimensional root search procedure.

Question 4. (22 pts.) Consider the problem

$$\max x_1^3 + x_2^3 + x_3^3$$

s.t.
$$x_1^2 + x_2^2 + x_3^2 = 1.$$

- (a) Is the problem convex?
- (b) Prove that all the local maximum points of the problem are also KKT points.
- (c) Find all the KKT points of the problem.
- (d) Find the optimal solution of the problem.

Question 5. (22 pts.) Let $A \in \mathbb{R}^{m \times n}$. Prove that the following two claims are equivalent.

(A) the system

$$Ax = 0, x > 0$$

has no solution.

(B) There exists a vector $\mathbf{y} \in \mathbb{R}^n$ for which $\mathbf{A}^T \mathbf{y} \leq \mathbf{0}$ and $\mathbf{A}^T \mathbf{y}$ is not the zeros vector.