

demo presentation

Open-vocabulary semantic segmentation

Train

person bicycle background Test

motorbike

w/o zero shot

with zero shot

Related works (ECCV2022)

A Simple Baseline for Open-Vocabulary Semantic Segmentation with Pre-trained Vision-language Model

Mengde Xu^{1,3*}, Zheng Zhang^{1,3*}, Fangyun Wei^{3*}, Yutong Lin^{2,3}, Yue Cao³, Han Hu³, and Xiang Bai^{1†}

¹ Huazhong University of Science and Technology

Xi'an Jiaotong University

³ Microsoft Research Asia

Images Mask proposal Clip Result

Related works

Related works

Prompt	hIoU	mIoU			
Tompt	moo	seen	unseen		
Preserving	9.3	8.9	9.5		
Zero	17.2	16.3	18.2		
Mean Values	18.3	17.3	19.5		
Pixel Prompts	Failed	-	-		
Mask Token	Failed	-	-		

Related works (Decoupling Zero-Shot Semantic Segmentation --CVPR 2022)

Related works

	preprocess	Seen	Unseen	Harmonic
ZegFormer-seg	-	37.4	21.4	27.2
	crop	36.6	19.7	25.6
ZegFormer	mask	36.0	31.0	33.3
	crop and mask	35.9	33.1	34.4

original image

crop

mask

mask and crop

Motivation

- model can generate class-agnostic mask proposals
- pre-trained CLIP can transfer its classification performance to masked image proposals.

Motivation

- Oracle masks + classification
- masks + Oracle classification

Motivation

- natural images <-> maksed proposals
- CLIP trained with minimal training augmentation

Contribution

- Our analysis reveals the pre-trained CLIP does not perform well on mask proposals, making it the performance bottleneck of two-stage approaches.
- We collect diverse mask category pairs from captions to adapt CLIP for masked images and retain its generalization ability.
- We propose mask prompt tuning specifically for masked image adaptation. This
 method does not change CLIP's weight, enabling multi-task weight sharing.
- For the first time, we show open-vocabulary generalist models can match the performance of supervised specialist models in 2017 without dataset specific adaptations.

Overview

segmentation model

- mask result: N * H * W
- classification result: N * C

$$p_{i,k} = \exp(\sigma(v_i, t_k)/\tau) / \sum_k (\exp(\sigma(v_i, t_k)/\tau))$$

segmentation model

	MaskFormer only	CLIP only	Ensemble
baseline OVSeg (Ours)	19.6 19.6	14.3 25.1	21.8 29.6
CONTROL 15 62 M		1000000-00 - 60v	

Training dataset: COCO STUFF (171 classes)

Adapt CLIP

- · A straight method
 - --- fine tune CLIP on COCO-stuff

- --- CLIP overfits in the closed set
- --- Lack generalization ability

Collecting diverse mask-category pairs from captions

Adapt CLIP

COCO-Stuff -> COCO-Caption

- A self-labeling strategy
- -- mask proposals
- -- potential classes (get nouns)
- -- matching (CLIP)

Mask Prompt Tuning

- Background is set to 0
- -- token not contain useful information
- -- domain shift

Mask Prompt Tuning

Dataset

Results

method	backbone training dataset		A-847	PC-459	A-150	PC-59	PAS-20
	(Open-vocabulary ge	neralist i	models			
SPNet [37]	R-101	PASCAL-15	8-8	-	-	24.3	18.3
ZS3Net [4]	R-101	PASCAL-15	-	=	-	19.4	38.3
LSeg [23]	R-101	PASCAL-15	1-3	-	-	-	47.4
LSeg+ [16]	R-101	COCO Panoptic	2.5	5.2	13.0	36.0	59.0
SimBaseline [40]	R-101c	COCO-Stuff-156	1=3	-	15.3	-	74.5
ZegFormer [11]	R-50	COCO-Stuff-156	-	=	16.4	=	80.7
OpenSeg [16]	R-101	COCO Panoptic	4.0	6.5	15.3	36.9	60.0
OVSeg (Ours)	R-101c	COCO-Stuff-156	7.0	10.4	24.0	51.7	89.2
OVSeg (Ours)	R-101c	COCO-Stuff-171	7.1	11.0	24.8	53.3	92.6
LSeg+ [16]	Eff-B7	COCO Panoptic	3.8	7.8	18.0	46.5	_
OpenSeg [16]	Eff-B7	COCO Panoptic	6.3	9.0	21.1	42.1	_
OVSeg (Ours)	Swin-B	COCO-Stuff-171	9.0	12.4	29.6	55.7	94.5
		Supervised speci	alist mod	lels			
FCN [29]	FCN-8s	Same as test	-	_	29.4	37.8	_
Deeplab [6]	R-101	Same as test	-	-		45.7	77.7
SelfTrain [45]	Eff-L2	Same as test	_	_		_	90.0
MaskFormer [9]	R-101c	Same as test	17.4	_	46.0	_	_

Results

method	backbone	training dataset	A-847	PC-459	A-150	PC-59	PAS-20			
	Open-vocabulary generalist models									
SPNet [37]	R-101	PASCAL-15	_	_		24.3	18.3			
ZS3Net [4]	R-101	PASCAL-15	-	-	-	19.4	38.3			
LSeg [23]	R-101	PASCAL-15		-	-	-	47.4			
LSeg+ [16]	R-101	COCO Panoptic	2.5	5.2	13.0	36.0	59.0			
SimBaseline [40]	R-101c	COCO-Stuff-156	1-0	-	15.3	-	74.5			
ZegFormer [11]	R-50	COCO-Stuff-156	-	=	16.4	-	80.7			
OpenSeg [16]	R-101	COCO Panoptic	4.0	6.5	15.3	36.9	60.0			
OVSeg (Ours)	R-101c	COCO-Stuff-156	7.0	10.4	24.0	51.7	89.2			
OVSeg (Ours)	R-101c	COCO-Stuff-171	7.1	11.0	24.8	53.3	92.6			
LSeg+ [16]	Eff-B7	COCO Panoptic	3.8	7.8	18.0	46.5	-			
OpenSeg [16]	Eff-B7	COCO Panoptic	6.3	9.0	21.1	42.1	-			
OVSeg (Ours)	Swin-B	COCO-Stuff-171	9.0	12.4	29.6	55.7	94.5			
	Supervised specialist models									
FCN [29]	FCN-8s	Same as test	-	_	29.4	37.8	_			
Deeplab [6]	R-101	Same as test	-	-		45.7	77.7			
SelfTrain [45]	Eff-L2	Same as test	_	-		-	90.0			
MaskFormer [9]	R-101c	Same as test	17.4	-	46.0	-	-			

Results

method	backbone	training dataset	A-847	PC-459	A-150	PC-59	PAS-20
	(Open-vocabulary ge	neralist	models			
SPNet [37]	R-101	PASCAL-15	1-1	-		24.3	18.3
ZS3Net [4]	R-101	PASCAL-15	-	=	-	19.4	38.3
LSeg [23]	R-101	PASCAL-15	1-5	-	-	-	47.4
LSeg+ [16]	R-101	COCO Panoptic	2.5	5.2	13.0	36.0	59.0
SimBaseline [40]	R-101c	COCO-Stuff-156	1-3	-	15.3	-	74.5
ZegFormer [11]	R-50	COCO-Stuff-156	-	-	16.4	=	80.7
OpenSeg [16]	R-101	COCO Panoptic	4.0	6.5	15.3	36.9	60.0
OVSeg (Ours)	R-101c	COCO-Stuff-156	7.0	10.4	24.0	51.7	89.2
OVSeg (Ours)	R-101c	COCO-Stuff-171	7.1	11.0	24.8	53.3	92.6
LSeg+ [16]	Eff-B7	COCO Panoptic	3.8	7.8	18.0	46.5	,
OpenSeg [16]	Eff-B7	COCO Panoptic	6.3	9.0	21.1	42.1	
OVSeg (Ours)	Swin-B	COCO-Stuff-171	9.0	12.4	29.6	55.7	94.5
		Supervised speci	alist mod	lels			
FCN [29]	FCN-8s	Same as test	_	-	29.4	37.8	
Deeplab [6]	R-101	Same as test	-	-	-	45.7	77.7
SelfTrain [45]	Eff-L2	Same as test	_	-	_	-	90.0
MaskFormer [9]	R-101c	Same as test	17.4	_	46.0	_	

Ablation studies

Case	Soi	urce		Statistics	_{A-847}	A-150	PC-59
Cusc	Mask	Category	Pairs	Unique nouns		11 130	100)
Baseline		-		- ₩	7.3	21.8	51.4
(1)	GT	GT	965K	171	5.3 (-2.0)	23.0 (+1.2)	57.3 (+5.9)
(2)	GT	1 caption	440K	12K	7.9 (+0.6)	24.2 (+2.4)	53.2 (+1.8)
(3)	proposals	1 caption	440K	12K	8.8 (+1.5)	28.8 (+7.0)	55.7 (+4.3)
(4)	proposals	5 captions	1.3M	27K	8.8 (+1.5)	28.6 (+6.8)	55.5 (+4.1)

Ablation on mask-category pairs

Ablation studies

case	FT me	thod	A-847	A-150	PC-59
cusc	MPT	full		77 150	100)
Baseline		-	7.3	21.8	51.4
(a)	✓		8.4 (+1.1)	26.5 (+4.7)	55.4 (+4.0)
(b)		✓	8.8 (+1.5)	28.8 (+7.0)	55.7 (+4.3)
(c)	✓	1	9.0 (+1.7)	29.6 (+7.8)	55.7 (+4.3)

combination	A-847	A-150
FT ->MPT (default)	9.0	29.6
MPT ->FT	8.5 (-0.5)	28.1 (-1.5)
FT + MPT sim.	8.8 (-0.2)	29.0 (-0.6)

Ablation on mask prompt tuning

Visualization

Query: saturn V, blossom

Query: Oculus, Ukulele

Query: golden gate, yacht

Visualization

GT: building Pred: skycraper

GT: rail Pred: road

conclusion

- □将Clip用到开放域任务中如何保持其泛化性? (利用caption构造)
- □Finetune Clip时候使用prompt方法不破坏其参数

