HDLC

High Level Data Link Control

HDLC: High-level Data Link Control

- ☐ It is a bit-oriented data link protocol
- ☐ Designed to support both half duplex and full duplex communication over point-to-point and multipoint links.
- ☐ It implements the ARQ mechanisms.
- ☐ The HDLC protocol embeds information in a data <u>frame</u> that allows devices to control data flow and correct errors

HDLC: High-level Data Link Control

- **→** Each piece of data is <u>encapsulated</u> in an HDLC frame by adding a trailer and a header.
- The header contains an HDLC address and an HDLC control field.
- The trailer is found at the end of the frame, and contains a (CRC) which detects any errors which may occur during transmission.
- → The frames are separated by <u>HDLC flag</u> sequences which are transmitted between each frame and whenever there is no data to be transmitted.

HDLC Station Types

- Primary station
 - Controls operation of link
 - Frames issued are called commands
 - Maintains separate logical link to each secondary station
- Secondary station
 - Under control of primary station
 - Frames issued called responses
- Combined station
 - May issue commands and responses

HDLC Link Configurations

- Unbalanced
 - One primary and one or more secondary stations
 - Supports full duplex and half duplex
- Balanced
 - Two combined stations
 - Supports full duplex and half duplex

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - Unbalanced configuration
 - Primary initiates transfer to secondary
 - Secondary may only transmit data in response to command from primary

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - Balanced configuration
 - Either station may initiate transmission without receiving permission
 - Most widely used

HDLC Transfer Modes (3)

- Asynchronous Response Mode (ARM)
 - Unbalanced configuration
 - Secondary may initiate transmission without permission form primary
 - Primary responsible for line

HDLC Frame Fields

Flag field

- is 8 bits of a fixed pattern (0111 1110).
- There is one flag at the beginning and one at the end frame.
- The ending flag of one Frame can be used as the beginning flag of the next frame.
- To guarantee that the flag does not appear anywhere else in the frame
- HDLC uses a process called Bit Stuffing.
- Every time a sender wants to transmit a bit sequence having more than 6 consecutive 1's, it inserts 1 redundant 0 after the 5_{th} 1

Bit Stuffing

• the process of adding one extra zero whenever there are 5 consecutive 1's in the data, so that the receiver doesn't mistake the data for a flag.

A frame before bit stuffing:

01111110 01111100 101101111 110010

After

011111010 0111111000 101101111 1010010

How does the receiver identify a stuffed bit?

- Receiver reads incoming bits and counts 1's.
- When number of consecutive 1s <u>after</u> a zero is 5, it checks the next bit (7th bit).
- If 7th bit = zero > receiver recognizes it as a stuffed bit, discard it and resets the counter.
- If the 7th bit = 1 → then the receiver checks the 8th bit; If the 8th bit = 0, the sequence is recognized as a flag.

01111010 0111111000 101101111 1010010

Address Field

- Identifies secondary station that sent or will receive frame
- Usually 8 bits long
- May be extended to multiples of 7 bits
 - LSB of each octet indicates that it is the last octet (1) or not (0)
- All ones (11111111) is broadcast

(b) Extended Address Field

HDLC Control Field

Control Field

all three types contain a bit called (Poll/Final) P/F bit

I-Frame

- N(S): sequence # of the sent frame
- N(R): sequence # of frame expected in return
 - → N(R) is ACK field
- If last frame received is error free
- N(R) number will be the next frame in sequence
- If the frame was not received correctly
- → N(R) number will be the number of damaged frame indicating the need for retransmission

Control Field Diagram

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

(c) 8-bit control field format

(d) 16-bit control field format

Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

I frame

Information Field

Information Field

- Contains user data in I-frame and network management information in a U-frame.
- It is possible to include flow and error control information in an I-frame that also contains data.
- In 2-way exchange of data (full-duplex), the 2nd station can ACK receipt of data from the 1st station in the control field of its own data frame rather than sending a separate frame just for ACK.
- Combining data to be sent & ACK of the frame received in one single frame is called PIGGYBACKING.

Poll/Final Bit

- Use depends on context
- Command frame
 - P bit
 - 1 to solicit (poll) response from peer
- Response frame
 - F bit
 - 1 indicates response to soliciting command

Poll/Final

- P/F = 1 \rightarrow POLL or Final
 - Poll if frame is sent by the primary
 - Final if frame is sent by the secondary

Frame Check Sequence Field

- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC FCS Field

S-frame control field in HDLC

S-Frame

Code	Command
00	RR Receive ready
01	REJ Reject
10	RNR Receive not ready
11	SREJ Selective-reject

Receive Ready (RR)

Positive ACK of a received I- frame

Receive Not Ready (RNR)

- Is RR frame with additional duties
- It Ack the receipt of a frame and announces that the receiver is busy

Reject (REJ)

- This is a NAK frame that can be used in Go-back-n
- Selective reject (SREJ)
 - This is a NAK frame used in Selective Repeat ARQ

HDLC Operation

- Exchange of information, supervisory and unnumbered frames
- Three phases
 - Initialization
 - Data transfer
 - Disconnect

Examples of Operation (1)

Examples of Operation (2)

Name	Command/ Response	Description
Information (I)	C/R	Exchange user data
Supervisory (S)		
Receive ready (RR)	C/R	Positive acknowledgment; ready to receive I-frame
Receive not ready (RNR)	C/R	Positive acknowledgment; not ready to receive
Reject (REJ)	C/R	Negative acknowledgment; go back N
Selective reject (SREJ)	C/R	Negative acknowledgment; selective reject
Unnumbered (U)		
Set normal response/extended mode (SNRM/SNRME)	С	Set mode; extended = 7-bit sequence numbers
Set asynchronous response/ extended mode (SARM/SARME)	С	Set mode; extended = 7-bit sequence numbers
Set asynchronous balanced/ extended mode (SABM, SABME)	С	Set mode; extended = 7-bit sequence numbers
Set initialization mode (SIM)	С	Initialize link control functions in addressed station
Disconnect (DISC)	C	Terminate logical link connection
Unnumbered Acknowledgment (UA)	R	Acknowledge acceptance of one of the set-mode commands
Disconnected mode (DM)	R	Responder is in disconnected mode
Request disconnect (RD)	R	Request for DISC command
Request initialization mode (RIM)	R	Initialization needed; request for SIM command
Unnumbered information (UI)	C/R	Used to exchange control information
Unnumbered poll (UP)	C	Used to solicit control information
Reset (RSET)	C	Used for recovery; resets N(R), N(S)
Exchange identification (XID)	C/R	Used to request/report status
Test (TEST)	C/R	Exchange identical information fields for testing
Frame reject (FRMR)	R	Report receipt of unacceptable frame