UOS EEE Society LTSPICE Lectures

Introduction to LTSPICE

The University Of Sheffield.

Content

- 1. What is SPICE?
- 2. Software that uses SPICE
- 3. Why should I learn how to use SPICE?
- 4. Drawing Schematics
- 5. Keyboard Shortcuts
- 6. Component Models
- 7. Transient Analysis

What is SPICE?

What is SPICE?

Technical Jargon:

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose, open-source analogue electronic circuit simulator [1].

What does that actually mean?

SPICE is a piece of software that can simulate almost any analogue electronic circuit, even ones that have integrated circuits in!

Software that uses SPICE

- Analog Devices ⇒ ADICE, LTSPICE (Originally developed by Linear Technology)
- Freescale Semiconductor ⇒ MICA
- Texas Instruments ⇒ TINA-TI
- Open Source ⇒ ngspice

SPICE is still used by IC Designers today and a number of companies are still developing it!

Why should I learn how to use SPICE?

SPICE allows you to simulate circuits like this:

Why should I learn how to use SPICE?

Why should I learn how to use SPICE?

- Still used by Industry today.
- Allows quick simulation of complex analogue circuits.
- Gives you an immediate understanding of what a circuit does.
- Very useful for University reports and lab sessions.

We will be using LTSPICE because its free!

Drawing Schematics

- Similar method to many PCB Design tools.
- Involves placing components and connecting them using wires.
- Uses schematic symbols.

Keyboard Shortcuts

The following keyboard shortcuts can be used to speed things up:

- T ⇒ Text
- S ⇒ SPICE Directive
- R ⇒ Resistor
- C ⇒ Capacitor
- L ⇒ Inductor
- D ⇒ Diode
- $F2 \Rightarrow Component$
- F3 ⇒ Draw Wire

- F4 ⇒ Label Net (Wire)
- G ⇒ Place Ground
- F5 ⇒ Delete
- F6 ⇒ Duplicate
- $F7 \Rightarrow Move$
- F8 ⇒ Drag
- Ctrl+R ⇒ Rotate
- Ctrl+E ⇒ Mirror

Potential Divider Example

Component Models

Component Models

- Allow you to produce a much more accurate simulation based upon specific electronic components rather than generic models.
- Models can be produced for any active component.
- LTSPICE includes a set of preloaded models to use.
- You can also create your own models using information from the manufacturers datasheet.

Transient Analysis

- Essentially runs the circuit for a short period and simulates it's response.
- The run time can be specified (Stop Time).
- The timestep can be specified.
- The time to start saving data can be specified to reduce output from long computations.

Transient	AC Analysis	DC sweep	Noise	DC Transfer	DC op pnt	
	Perf	om a non-lin	ear, time	-domain simulat	ion.	
				Stop time:	20m	
		Time	e to start	saving data:		
			Maximu	ım Timestep:		
	Start e	external DC s	upply vo	tages at 0V:		
	Stop simulating if steady state is detected:					
	Don't reset T	=0 when stea	ady state	is detected:		
		Step the	load cu	ment source:]	
		Skip initial op	erating p	oint solution:		
yntax: .tra	an <tstop> [<o< td=""><td>ption> [<option< td=""><td>on>]]</td><td></td><td></td><td></td></option<></td></o<></tstop>	ption> [<option< td=""><td>on>]]</td><td></td><td></td><td></td></option<>	on>]]			
		- 11	11			
an 20m						

Power Amplifier Example

Quiz Time!

What does SPICE stand for?

Simulation Program with Impossible Circuit Emphasis

Simulation Program with Integrated Circuit Emphasis

Somersault Pizza with Interesting Cake Emphasis

What are components connected with on a schematic?

Wires

Traces

Magic

Is SPICE still used by Industry today?

Yes

No

Maybe???

What is the keyboard shortcut for an Inductor?

Component Models let you?

When poll is active, respond at **PollEv.com/sammaxwell637**Text **SAMMAXWELL637** to **020 3322 5822** once to join

More accurately simulate a circuit using specific component characteristics.

Have little figurines on your desk.

Less accurately simulate a circuit using specific component characteristics.

Transient Analysis allows you to?

Simulate the circuit running for a short period of time.

Simulate the circuits frequency response.

Generally feel unhappy that you have to do a transient simulation.

KiCAD Lectures

- First lecture starting next week on Monday 11th February from 5-6pm!
- Free sessions!
- Teaches you about circuit board design and schematic capture!
- DON'T MISS OUT!

Thanks for listening!

Next time we will be:

- 1. AC Analysis
- 2. DC Sweep Analysis
- 3. Noise Analysis
- MORE EXAMPLES!

Follow us on Social Media:

- https://www.facebook.com/uoseeesoc
- https://twitter.com/uoseeesoc
- Snapchat uoseeesoc
- Gmail eeesoc@sheffield.ac.uk

The Original SPICE Paper

[1] Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973