A Generalization of The Chinese Remainder Theorem

Klaus Crusius

June 28, 2019

Contents

1	Theorems and Proofs	•
2	Algorithms	8

Abstract

It is well known, that the Chinese Remainder Theorem is valid under the condition of mutual co-prime multiple modules. This paper gives a generalization to the case of non-co-prime modules. The constructive proof allows to derive an efficient algorithm, which can be easily parallelized.

1 Theorems and Proofs

It is well known that the following Theorem is valid.

Theorem 1. Chinese Remainder Theorem

Given $n \ge 1$ and a set of mutual co-prime positive integers m_i and corresponding remainders a_i with $0 \le a_i < m_i$ for i = 1, 2, ... n. Then there exists exactly one x with $0 \le x < m_1 m_2 \cdots m_n$ which solves the equations $x \equiv a_i \mod m_i$ for all $i = 1 \cdots n$. [2, ch. 4.3.2, p. 286]

This theorem becomes invalid, if we drop the condition of mutual co-primeness. For example there is no solution for $x \equiv 0 \mod 20$; $x \equiv 1 \mod 50$, while for $x \equiv 1 \mod 20$; $x \equiv 11 \mod 50$ we have 10 solutions $\{61, 161, \ldots, 961\}$.

At first, we will proof a necessary condition on the remainders, if a solution is to exist.

Theorem 2. Necessary condition on remainders

Let m_1, m_2, \ldots, m_n be positive and x, a_1, a_2, \ldots, a_n be integers, which solve the equations

$$\forall_{i \in 1 \cdots n} \ x \equiv a_i \mod m_i. \tag{2.1}$$

Then we have

$$\forall_{i,j \in 1 \dots n} \ a_i \equiv a_j \mod \gcd(m_i, m_j)$$
 (2.2)

Proof. From (2.1) and because $gcd(m_i, m_j) | m_i$ we conclude, that $x \equiv a_i \mod gcd(m_i, m_j)$ for all i, j. By eliminating x for each pair of i, j the assertion follows immediately.

We will give a generalization of Theorem 1, which replaces the co-primeness condition on m_i by the necessary condition (2.1). We restrict in a first step to the case n = 2 and prove the following:

Theorem 3. Generalized Chinese Remainder Theorem - two modules

Let $p, q, a, b \in \mathbb{Z}$ integers with $0 \le a < p$ and $0 \le b < q$. If

$$a \equiv b \mod \gcd(p, q),$$
 (3.1)

then there exists a unique $x \in \mathbb{Z}$ with

$$x \equiv a \mod p \text{ and } x \equiv b \mod q.$$
 (3.2)

$$0 \le x < \operatorname{lcm}(p, q) \quad and \tag{3.3}$$

The solution is given by formula

$$x = a + p \mod\left(u\left(\frac{b-a}{c}\right), \frac{q}{c}\right)$$
with $c = \gcd(p, q)$ and $u = \left(\frac{p}{c}\right)^{-1} \mod\frac{q}{c}$. (3.4)

Proof. Uniqueness: Assume x and y solve equations (3.2). Then by subtracting we obtain $x \equiv y \mod p$ and $x \equiv y \mod q$. Then $x \equiv y \mod \operatorname{lcm}(p,q)$ by equation (L2) of Lemma 1. Because of (3.3) x = y.

Construction of solution: We give a closed formula for an x solving (3.2) and (3.3) under condition (3.1).

Let $c := \gcd(p,q)$. We can write $a = a_2 + ca_1$ and $b = a_2 + cb_1$ with $0 \le a_2 < c$, because $a \equiv b \mod c$. The equations become $x = a_2 + ca_1 + cp_1r$ and $x = a_2 + cb_1 + cq_1$. Here $p_1 := p/c$ and $q_1 := q/c$. p_1 and q_1 are co-prime. By introducing a new variable y, substituting

$$x = cy + a_2$$
, and dividing by c, we obtain (1)

$$y = a_1 + p_1 r$$
 and $y = b_1 + q_1 s$. (2)

Theorem 1 asserts the existence and uniqueness of y with $0 \le y < p_1q_1$. We try to calculate y, r, and s.

There is a unique inverse u of p_1 modulo q_1 , i.e. $up_1 = 1 + q_1v$ with $0 \le u < q_1$, which can be calculated by a the Extended Euclid's algorithm [2, ch. 4.5.2, Theorem X, p.342]. We subtract equations (2) and multiply with u to obtain

$$u(b_1 - a_1) = up_1r - uq_1s$$

= $r + q_1vr - uq_1s$
= $r + (vr - us) q_1$, hence
 $p_1r = p_1 [u(b_1 - a_1)] + (us - vr) p_1q_1$,

thus (2) becomes

$$y = a_1 + p_1 [u (b_1 - a_1)] + (us - vr) p_1 q_1.$$

If we perform the calculation of $u(b_1 - a_1)$ modulo q_1 , we get $u(b_1 - a_1) = \text{mod}(u(b_1 - a_1), q_1) + kq_1$ for some k, to obtain finally the solution in terms of y:

$$y = a_1 + p_1 \mod (u(b_1 - a_1), q_1) + (us - vr + k) p_1 q_1.$$

Because $0 \le a_1 < p_1$ and $0 \le \operatorname{mod}(\cdot, q_1) \le q_1 - 1$, we have

$$0 \le a_1 + p_1 \mod (u(b_1 - a_1), q_1) \le a_1 + p_1(q_1 - 1) < p_1 q_1.$$

Therefore

$$y = a_1 + p_1 \mod (u (b_1 - a_1), q_1)$$

is the unique solution of (2), with $0 \le y < p_1q_1$. Re-substituting x in (1) gives $x = a_2 + ca_1 + p \mod(u(b_1 - a_1), q_1)$ and using the original values

$$x = a + p \operatorname{mod} (u((b-a)/c), q/c)$$
with $c = \operatorname{gcd}(p, q)$ and $u = \operatorname{mod}(p/c, q/c)$.
$$(3.4)$$

П

We claim that x of (3.4) is the unique solution of (3.2) and (3.3). First part of (3.2) is obvious. For the second we have to prove $a + p(u(b-a)/c - kq/c) \equiv b \mod q$. That is equivalent to $a - b + p_1u(b-a) - p_1kq \equiv 0 \mod q$. Since $p_1u = 1 + q_1v$, that reduces further to $a - b + b - a + q_1v(b-a) \equiv 0 \mod q$, or $qv(b_1 - a_1) \equiv 0 \mod q$, which is valid.

To prove (3.3), we use $0 \le a < p$ and $0 \le \text{mod}(\cdot, q/c) \le q/c - 1$ to conclude $0 \le x .$

We can now formulate the main theorem of this article.

Theorem 4. Generalized Chinese Remainder Theorem

Let m_1, m_2, \ldots, m_n be positive and a_1, a_2, \ldots, a_n be integers with $0 \le a_i < m_i$ satisfying for all $i, j \in \{1 \cdots n\}$ the conditions

$$a_i \equiv a_i \mod \gcd(m_i, m_i)$$

Then there is exactly one integer x with $0 \le x < \text{lcm}(m_i \mid i \in \{1 \cdots n\})$, which satisfies

$$x \equiv a_i \mod m_i \text{ for } i \in \{1 \cdots n\}$$
.

5

Proof.

For the purpose of this proof, we define $lcm_I := lcm(\{m_i \mid i \in I\})$

The theorem is valid independent of the chosen finite index set. So we can write m_i for $i \in I$ with $|I| < \infty$ without changing the proof.

If n = 1 the assertion is trivially true with $x = a_1$.

If n > 1 we conduct a proof by induction on n.

Assume, the assertion of the theorem was true for all index sets I with |I| < n. Then we can derive the assertion using previous Theorem 3. We split the complete index set into two non-empty subsets $I, J \neq \emptyset$ with $I \cup J = \{1 \cdots n\}$. Because of the induction assumption, for $K \in \{I, J\}$ there is a x_K with

$$0 \le x_K < \text{lcm}_K \text{ and } \forall_{i \in K} x_K \equiv a_i \mod m_i.$$
 (3)

We want to apply Theorem 3 with $a = x_I, b = x_J, p = \text{lcm}_I, q = \text{lcm}_J$. The necessary condition (3.1) reads now

$$x_I \equiv x_J \mod \gcd(\operatorname{lcm}_I, \operatorname{lcm}_J)$$
.

Because of (3) $\forall_{i \in I} \forall_{j \in J} \ x_I \equiv a_i \mod \gcd(m_i, m_j)$ and $x_J \equiv a_j \mod \gcd(m_i, m_j)$, using conclusion (L1) of Lemma 1.

Hence $\forall_{i \in I} \forall_{j \in J} \ x_I - x_J \equiv a_i - a_j \equiv 0 \mod \gcd(m_i, m_j)$, which is equivalent by Lemma 1 (L2) to

$$x_I \equiv x_J \mod \operatorname{lcm} (\{ \operatorname{gcd} (m_i, m_j) \mid i \in I, j \in J \}).$$

Then the necessary condition follows, because of Lemma 1 (L3) and (L1).

Theorem 3 delivers a unique $0 \le x < \text{lcm}(\text{lcm}_I, \text{lcm}_J)$ with $x \equiv x_I \mod \text{lcm}_I \land x \equiv x_J \mod \text{lcm}_J$. Because of Lemma 1 (L1) and $m_i \mid \text{lcm}_I$ we have $\forall_{i \in I} \ x \equiv x_I \mod m_i$. So $x \equiv a_i \mod m_i$ because of (3). The same is true $\forall_{i \in J}$.

The proofs need some auxiliary facts from elementary number theory, which are noted in the following:

Lemma 1. In all statements below let

$$x, y, a, u \in \mathbb{Z}, I, J \text{ finite index sets, and } \forall_{i \in I \cup J} m_i \in \mathbb{N}$$

$$\operatorname{lcm}_I := \operatorname{lcm} (\{m_i \mid i \in I\})$$

then

6

$$x \equiv y \mod u \implies \forall_{a \mid u} \ x \equiv y \mod a$$
 (L1)

$$\forall_{i \in I} \ x \equiv y \mod m_i \iff x \equiv y \mod \operatorname{lcm}_I \tag{L2}$$

$$\operatorname{lcm}\left(\operatorname{lcm}_{I},\operatorname{lcm}_{i}\right) = \operatorname{lcm}_{I \cup J} \tag{L3}$$

$$\gcd(\operatorname{lcm}_I, \operatorname{lcm}_J) \ divides \ \operatorname{lcm}(\{\gcd(m_i, m_j) \mid i \in I, j \in J\})$$
 (L4)

Proof.

(L1): If u = ka and x = y + vu for some $k, v \in \mathbb{Z}$, then x = y + (vk) a, hence $x \equiv y \mod a$.

(L2): \iff is clear because $\forall_{i \in I} m_i | \text{lcm}_I \text{ and (L1)}$.

 \Longrightarrow : To see that we assume $x-y=k \mod \operatorname{lcm}_I$ with $0 \le k < \operatorname{lcm}_I$ and show, that k=0. Because $\forall_i m_i \mid \operatorname{lcm}_I$, we have $x-y=k+\operatorname{lcm}_I u=k+m_i u_i$ for some u,u_i . Because $\forall_i x-y\equiv 0 \mod m_i$, $\exists_{v_i} x-y=m_i v_i$, hence $k=m_i (v_i-u_i)$. That means k is a multiple of all m_i , hence of lcm_I , by the definition of lcm . The only k with $0 \le k < \operatorname{lcm}_I$ is k=0.

(L3)" \geq ": because lcm (lcm_I, lcm_J) = lcm_I k_I and $lcm_I = m_i k_{iI}$ for some $k_I, k_{iI} \forall_{i \in I}$, we have lcm (lcm_I, lcm_J) = $m_i k_I k_i I$, that means the left-hand side is a multiple of $m_i \forall_{i \in I}$. Accordingly, it is a multiple of $m_j \forall_{j \in J}$. Then, by definition of lcm it is $\geq \text{lcm}_{I \cup J}$.

" \leq ": $\operatorname{lcm}_{I \cup J}$ is a multiple of $m_i \forall_{i \in I}$, hence of lcm_I by definition of lcm_I ; accordingly also of lcm_J . Then it is also a multiple of $\operatorname{lcm}(lcm_I, lcm_J)$. So the right-hand side is \geq the left-hand side.

(L4): We make use of the Fundamental Theorem of Arithmetic [1, chapter 1.2.4, exercise 21], which proves the unique prime-factorization of the natural numbers. For each number $n \in \mathbb{N}$ and each prime number p there is a unique exponent $u_p(n) \in \mathbb{N} \cup \{0\}$, such that

$$n = \prod_{p \text{ prime}} p^{u_p(n)}.$$

where only a finite amount of the $u_p(n) \neq 0$. Then we have

$$\gcd(m, n) = \prod_{p \text{ prime}} p^{\min(u_p(m), u_p(n))}$$
$$\operatorname{lcm}(m, n) = \prod_{p \text{ prime}} p^{\max(u_p(m), u_p(n))}$$

or for each prime p

$$m \mid n \iff \forall_{p} \ u_{p} (m) \le u_{p} (n)$$
$$u_{p} (\gcd (m, n)) = \min (u_{p} (m), u_{p} (n))$$
$$u_{p} (\operatorname{lcm} (m, n)) = \max (u_{p} (m), u_{p} (n))$$

Then (L4) (we set $u_{pi} := u_p(m_i)$) is equivalent to

$$\forall_{p} \min (\max (\{u_{pi} \mid i \in I\}), \max (\{u_{pj} \mid j \in J\}))$$

$$\leq \max (\{\min (u_{pi}, u_{pj}) \mid i \in I, j \in J\})$$
(4)

There is an $i_{max} \in I$ with $u_{pi_{max}} = \max(\{u_{pi} \mid i \in I\})$; as well as an $j_{max} \in J$. Inserting these into the left-hand side of (4) gives

$$\min\left(u_{pi_{max}}, u_{pj_{max}}\right) \le \max\left(\left\{\min\left(u_{pi}, u_{pj}\right) \mid i \in I, j \in J\right\}\right)$$

which is obviously true for all prime numbers p.

2 Algorithms

From Theorem 3 we can straightforward derive the following procedure:

Algorithm 1.

procedure crt2(a, b, p, q)

Input: a, b, p, q: integers p, q > 0

Output: x, lcm: solution, least common multiple of p and q

Errors: fail if $a \neq b \mod \gcd(p,q)$

External: gcdx: calculate greatest common divisor

and inverse of co-prime pair

$$\begin{split} c, u &:= gcdx(p,q) \\ p_1, q_1 &:= p/c, q/c \\ u &:= \operatorname{mod}(u,q_1) \\ if & mod(b-a,c) \neq 0 \; Error("remainders' condition") \\ bac &:= (b-a)/c \\ x &:= a+p*mod(u*bac,q_1) \\ lcm &:= p*q_1 \\ return \; x, lcm \end{split}$$

Theorem 4 provides some freedom in partitioning the original set. If n = 1 we return the trivial solution or we apply Algorithm 1. Otherwise, we split $\{1 \cdots n\}$ two partitions and apply Theorem 4.

Algorithm 2.

```
procedure crtg(a, m)
Input: a, m: integer vectors of same lengths, m > 0
Output: x, lcm: solution, least common multiple of m
Errors: fail if a_i \neq a_j \mod \gcd(m_i, m_j) for any i, j
External: crt2: see above
```

```
\begin{split} n &:= length(a) \\ x_I, lcm_I &:= 1, \ 1 \\ for \ i &:= 1 \dots n \\ x_I, lcm_I &:= crt2(x_I, a[i], lcm_I, m[i]) \\ end \\ return \ x_I, lcm_I \end{split}
```

References

- [1] Donald E. Knuth, *The Art of Computer Programming Volume 1* Addison-Wesley, New York, 3rd edition, 1998.
- [2] Donald E. Knuth, *The Art of Computer Programming Volume 2* Addison-Wesley, New York, 3rd edition, 1998.