Consider the following Python dictionary data and Python list labels:

```
data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills', 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

In [29]:

```
import numpy as np
import pandas as pd
data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes',
'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.
5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'no']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

df = pd.DataFrame(data)
df1 = pd.DataFrame(data, index=labels)
df1
```

Out[29]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

In [30]:

df.describe()

Out[30]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

3. Print the first 2 rows of the birds dataframe

In [31]:

df[0:2]

Out[31]:

	birds	age	visits	priority
0	Cranes	3.5	2	yes
1	Cranes	4.0	4	yes

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

In [32]:

df[['birds','age']]

Out[32]:

	birds	age
0	Cranes	3.5
1	Cranes	4.0
2	plovers	1.5
3	spoonbills	NaN
4	spoonbills	6.0
5	Cranes	3.0
6	plovers	5.5
7	Cranes	NaN
8	spoonbills	8.0
9	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

In [33]:

Out[33]:

	birds	age	visits
2	plovers	1.5	3
3	spoonbills	NaN	4
7	Cranes	NaN	2

6. select the rows where the number of visits is less than 4

In [34]:

df[df.visits < 4]</pre>

Out[34]:

	birds	age	visits	priority
0	Cranes	3.5	2	yes
2	plovers	1.5	3	no
4	spoonbills	6.0	3	no
6	plovers	5.5	2	no
7	Cranes	NaN	2	yes
8	spoonbills	8.0	3	no
9	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

In [35]:

Out[35]:

	birds	age	visits	priority
3	spoonbills	NaN	4	yes
7	Cranes	NaN	2	yes

8. Select the rows where the birds is a Cranes and the age is less than 4

In [36]:

Out[36]:

	birds	age	visits	priority
0	Cranes	3.5	2	yes
5	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

In [37]:

```
df.loc[(df['age'] >= 2) & (df['age'] <=4)]</pre>
```

Out[37]:

	birds	age	visits	priority
0	Cranes	3.5	2	yes
1	Cranes	4.0	4	yes
5	Cranes	3.0	4	no
9	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

```
In [38]:
```

```
gr=df.groupby('birds')
cr=gr.get_group('Cranes')
cr['visits'].sum()
```

Out[38]:

12

11. Calculate the mean age for each different birds in dataframe.

```
In [39]:
```

```
gr['age'].mean()
```

Out[39]:

birds

Cranes 3.5 plovers 3.5 spoonbills 6.0

Name: age, dtype: float64

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

In [40]:

```
datak = {'birds': 'Parrot', 'age': 4, 'visits': 10, 'priority': 'no'}
app=df.append(datak, ignore_index=True)
print(app)
print("-"*36)
drp=df.drop([9])
print(drp)
```

	birds	age	visits	priority
0	Cranes	3.5	2	yes
1	Cranes	4.0	4	yes
2	plovers	1.5	3	no
3	spoonbills	NaN	4	yes
4	spoonbills	6.0	3	no
5	Cranes	3.0	4	no
6	plovers	5.5	2	no
7	Cranes	NaN	2	yes
8	spoonbills	8.0	3	no
9	spoonbills	4.0	2	. no
10	Parrot	4.0	10	no
	birds	age	visits	priority
0	Cranes	3.5	2	yes
1	Cranes	4.0	4	yes
2	plovers	1.5	3	no
3	spoonbills	NaN	4	yes
4	spoonbills	6.0	3	no
5	Cranes	3.0	4	no
6	plovers	5.5	2	no
7	Cranes	NaN	2	yes
8	spoonbills	8.0	3	no

13. Find the number of each type of birds in dataframe (Counts)

```
In [41]:
```

```
gr.count()
```

Out[41]:

	age	visits	priority
birds			
Cranes	3	4	4
plovers	2	2	2
spoonbills	3	4	4

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
In [42]:
```

```
age=df.sort_values('age', ascending =False)
print(age)
print("*"*35)
visits=df.sort_values('visits')
print(visits)
```

```
birds
              age visits priority
8
  spoonbills 8.0
                        3
                               no
   spoonbills 6.0
                        3
4
                               no
6
     plovers 5.5
                        2
                               no
1
      Cranes 4.0
                        4
                               yes
9
  spoonbills 4.0
                        2
                               no
0
      Cranes 3.5
                        2
                               yes
5
      Cranes 3.0
                        4
                               no
2
     plovers 1.5
                        3
                               no
3
  spoonbills NaN
                        4
                               yes
7
      Cranes NaN
                        2
                               yes
**********
       birds age visits priority
0
      Cranes 3.5
                        2
6
     plovers 5.5
                        2
                               no
                        2
7
      Cranes NaN
                               yes
9
  spoonbills 4.0
                        2
                               no
2
     plovers 1.5
                        3
                               no
                        3
4
  spoonbills 6.0
                               no
8
  spoonbills 8.0
                        3
                               no
1
                        4
      Cranes 4.0
                              yes
  spoonbills NaN
                        4
3
                               yes
5
      Cranes 3.0
                        4
                               no
```

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

In [43]:

```
df.priority.map(dict(yes=1, no=0))
```

```
Out[43]:
```

```
0 1
1 1
2 0
3 1
4 0
5 0
6 0
7 1
```

0

8

Name: priority, dtype: int64

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

In [44]:

```
df.birds.map(lambda x: 'trumpeters' if x =='Cranes' else x)
```

Out[44]:

- 0 trumpeters 1 trumpeters 2 plovers 3 spoonbills 4 spoonbills 5 trumpeters 6 plovers 7 trumpeters 8 spoonbills 9 spoonbills
- Name: birds, dtype: object

In [45]:

#Reference:

#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_value
s.html

#https://brohrer.github.io/dataframe_indexing.html

#https://www.geeksforgeeks.org/python-pandas-dataframe-append/

#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html