Image formation, light, color

CS330 Image Understanding Chapter 1

Image Formation

Digital Camera

The Eye

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole camera

f = focal length

c = center of the camera

The reason for lenses

Adding a lens

• A lens focuses light onto the film

Dimensionality Reduction Machine (3D to 2D)

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Image Formation

Digital Camera

The Eye

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction

Lambertian Reflectance

• In computer vision, surfaces are often assumed to be ideal diffuse reflectors.

Digital camera

- A digital camera replaces film with a sensor array
 - Each cell in the array is light-sensitive diode that converts photons to electrons
 - http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and Quantization

- In order to become suitable for computer processing, an image function f(x, y) must be digitized both spatially and in amplitude. This can be done using two steps:
 - **Sampling**: Image digitization means that the function f(x, y) is sampled into a matrix with M rows and N columns.
 - Quantization: The image quantization assigns to each sample an integer value. The continuous range of the image function f(x, y) is split into k intervals.

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

. . .

- Most digital image processing devices use quantization into k equal intervals.
- If b bits are used ... the number of brightness levels is $k=2^b$
 - 1 bit: k=2 colors; for example: black and white
 - 2 bits: k= 4 colors.
 - 8 bits: k = 256 colors; for example: grey level image (0: black, 255: white)
- The number of quantization levels should be high enough for human perception of fine shading details in the image.

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

a b c d e f

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

The Resolution of an Image Source

The resolution of an image can be specified in terms of 2 quantities:

- **Spatial resolution** The column (C) by row (R) dimensions of the image define the number of pixels used to cover the visual space captured by the image.
- **Bit resolution** This defines the number of possible intensity/color values that a pixel may .
 - The bit resolution is commonly quoted as the number of binary bits required for storage at a given quantization level, e.g., binary is 2 bit, grey-scale is 8 bit and color (most commonly) is 24 bit.

8-bit Greyscale Images (Intensity Images)

column

Gray-level: 8 bits or 1 byte per pixel

Raw image data

No header information, just pack the pixel values in a rastering scanning order

The size of a raw image file is HW bytes (H,W are the height and width of the image)

The Eye

- The human eye is a camera!
 - **Iris** colored annulus with radial muscles
 - **Pupil** the hole (aperture) whose size is controlled by the iris
 - What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Electromagnetic Spectrum

Human Luminance Sensitivity Function

- Humans have 3 types of cone sensors (cones):
 - Cones that absorb long-wavelength light (L)
 - Cones that absorb middle-wavelength light (M)
 - Cones that absorb short-wavelength light (S)
- Colors are perceived by the interaction of at least 2 types of cones

- Are in the retina of the eye
- Are sensitive to less intense light than the others
- Concentrated on the outer edges
- Used in peripheral vision and in low light

Color Image

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - -im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

	col	um	n -									\Rightarrow				
OW	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	1 G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91	-		
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	-	i	J
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	
V	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.42	0.69	0.79	0.73	0.93	0.97	0.49	0.74	,
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	,
			0.51	0.5	0.03	0.75	0.50	0.00	0.75	0.72	0.03	0.75	0.71	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

Color spaces

How can we represent color?

RGB Color Space

Absolute

Normalized

Normalized red r = R/(R+G+B)

Normalized green g = G/(R+G+B)

Normalized blue b = B/(R+G+B)

Color spaces: RGB

Default color space

Color hexagon for HSI (HSV)

- **Hue** is encoded as an angle (0 to 2π).
- **Saturation** is the distance to the vertical axis (0 to 1).
- Intensity/Value is the height along the vertical axis (0 to 1).

Figure 6.8: Color hexacone for HSI representation. At the left is a projection of the RGB cube perpendicular to the diagonal from (0, 0, 0) to (1, 1, 1): color names now appear at the vertices of a hexagon. At the right is a hexacone representing colors in HSI coordinates: intensity (I) is the vertical axis; hue (H) is an angle from 0 to 2π with RED at 0.0; saturation (S) ranges from 0 to 1 according to how pure, or unlike white, the color is with S=0.0 corresponding to the I-axis.

Color spaces: HSV (or HSI)

Intuitive color space

S (H=1,V=1)

V (H=1,S=0)

CIELAB, Lab, L*a*b

- One luminance channel (L) and two color channels (a and b).
- In this model, the color differences which you perceive correspond to Euclidian distances in CIELab.
- The a axis extends from green (-a) to red (+a) and the b axis from blue (-b) to yellow (+b). The brightness (L) increases from the bottom to the top of the three-dimensional model.

Color spaces: L*a*b*

"Perceptually uniform" color space

b (L=65,a=0)

YIQ (for TV)

- The NTSC television standard is an encoding that uses one luminance value Y and two chromaticity values I and Q
- only luminance (i.e., Y) is used by black and white TVs, while all three (i.e., Y, I, and Q) are used by color TVs.
- the Y value is encoded using more bits than used for the values of I and Q because the human visual system is more sensitive to luminance (intensity) than to the chromaticity values.

An approximate transformation from RGB to YIQ:

YUV (JPEG and MPEG)

- YUV encoding is used in some digital video products and compression algorithms such as JPEG and MPEG.
- The conversion of RGB to YUV is as follows.

$$Y = 0.30R + 0.59G + 0.11B$$

$$U = 0.493*(B - Y)$$

$$V = 0.877*(R - Y)$$

Color Spaces (summary)

RGB

HSI/HSV

CIE L*a*b

YIQ

and more

standard for cameras

hue, saturation, intensity

intensity plus 2 color channels

color TVs, Y is intensity

STILL IMAGES

- Pixels (Picture Element) are samples of the original image
- Each pixel is expressed in a color space

• Describes how the width of a pixel compares to the height

1:1