- 5.26 On rappelle que l'angle φ entre deux droites de pentes respectives m_1 et m_2 s'obtient par la formule $\tan(\varphi) = \left| \frac{m_2 m_1}{1 + m_1 m_2} \right|$.
 - 1) Posons $f(x) = x^2$ et $g(x) = x^3$. On a f'(x) = 2x et $g'(x) = 3x^2$.

Calculons l'intersection entre les deux courbes :

$$f(x) = g(x)$$

 $x^2 = x^3$
 $0 = x^3 - x^2 = x^2(x - 1)$
 $x = 0$ ou $x = 1$

(a)
$$x = 0$$
 implique $y = f(0) = g(0) = 0$
 $m_1 = f'(0) = 2 \cdot 0 = 0$
 $m_2 = g'(0) = 3 \cdot 0^2 = 0$
 $\tan(\varphi) = \left| \frac{0 - 0}{1 + 0 \cdot 0} \right| = 0$ entraı̂ne $\varphi = 0^\circ$

(b)
$$x = 1$$
 donne $y = f(1) = g(1) = 1$
 $m_1 = f'(1) = 2 \cdot 1 = 2$
 $m_2 = g'(1) = 3 \cdot 1^2 = 3$
 $\tan(\varphi) = \left| \frac{3-2}{1+2\cdot 3} \right| = \frac{1}{7}$ fournit $\varphi \approx 8, 13^\circ$

2) Posons $f(x) = x^2$ et $g(x) = \frac{1}{4}x^2 + 3$ Alors f'(x) = 2x et $g'(x) = \frac{1}{2}x$

Calculons l'intersection entre les deux courbes :

$$f(x) = g(x)$$

$$x^{2} = \frac{1}{4}x^{2} + 3$$

$$\frac{3}{4}x^{2} - 3 = 0$$

$$x^{2} - 4 = (x+2)(x-2) = 0$$

$$x = -2 \quad \text{ou} \quad x = 2$$

(a)
$$x = -2$$
 implique $y = f(-2) = g(-2) = 4$
 $m_1 = f'(-2) = 2 \cdot (-2) = -4$
 $m_2 = g'(-2) = \frac{1}{2}(-2) = -1$
 $\tan(\varphi) = \left| \frac{-1 - (-4)}{1 + (-1) \cdot (-4)} \right| = \frac{3}{5}$ délivre $\varphi \approx 30, 96^\circ$

(b)
$$x = 2$$
 entraı̂ne $y = f(2) = g(2) = 4$
 $m_1 = f'(2) = 2 \cdot 2 = 4$
 $m_2 = g'(2) = \frac{1}{2} \cdot 2 = 1$
 $\tan(\varphi) = \left| \frac{1-4}{1+1\cdot 4} \right| = \frac{3}{5}$ implique $\varphi \approx 30,96^{\circ}$

3) Posons
$$f(x) = \frac{1}{4}x^2$$
 et $g(x) = -x^2 + 10x - 15$
Alors $f'(x) = \frac{1}{2}x$ et $g'(x) = -2x + 10$

Calculons l'intersection entre les deux courbes :

$$f(x) = g(x)$$

$$\frac{1}{4}x^2 = -x^2 + 10x - 15$$

$$\frac{5}{4}x^2 - 10x + 15 = 0$$

$$x^2 - 8x + 12 = (x - 2)(x - 6) = 0$$

$$x = 2 \quad \text{on} \quad x = 6$$

(a)
$$x = 2$$
 donne $y = f(2) = g(2) = 1$
 $m_1 = f'(2) = \frac{1}{2} \cdot 2 = 1$
 $m_2 = g'(2) = -2 \cdot 2 + 10 = 6$
 $\tan(\varphi) = \left| \frac{6-1}{1+1\cdot 6} \right| = \frac{5}{7}$ délivre $\varphi \approx 35, 54^\circ$

(b)
$$x = 6$$
 implique $y = f(6) = g(6) = 9$
 $m_1 = f'(6) = \frac{1}{2} \cdot 6 = 3$
 $m_2 = g'(6) = -2 \cdot 6 + 10 = -2$
 $\tan(\varphi) = \left| \frac{-2 - 3}{1 + 3 \cdot (-2)} \right| = 1$ fournit $\varphi = 45^\circ$

4) Posons
$$f(x) = x^3 - 4x$$
 et $g(x) = x^3 - 2x^2$
Alors $f'(x) = 3x^2 - 4$ et $g'(x) = 3x^2 - 4x$

Calculons l'intersection entre les deux courbes :

$$f(x) = g(x)$$

$$x^{3} - 4x = x^{3} - 2x^{2}$$

$$2x^{2} - 4x = 2x(x - 2) = 0$$

$$x = 0 \text{ ou } x = 2$$

(a)
$$x = 0$$
 implique $y = f(0) = g(0) = 0$
 $m_1 = f'(0) = 3 \cdot 0^2 - 4 = -4$
 $m_2 = g'(0) = 3 \cdot 0^2 - 4 \cdot 0 = 0$
 $\tan(\varphi) = \left| \frac{0 - (-4)}{1 + (-4) \cdot 0} \right| = 4$ conduit à $\varphi \approx 75,96^\circ$

(b)
$$x = 2$$
 fournit $y = f(2) = g(2) = 0$
 $m_1 = f'(2) = 3 \cdot 2^2 - 4 = 8$
 $m_2 = g'(2) = 3 \cdot 2^2 - 4 \cdot 2 = 4$
 $\tan(\varphi) = \left| \frac{4 - 8}{1 + 8 \cdot 4} \right| = \frac{4}{33}$ donne $\varphi \approx 6,91^\circ$

Analyse : dérivées Corrigé 5.26