به نام خدا مهدی فقهی تمرین سوم دادهکاوی

## Problem 1)

Trace the results of using the Apriori algorithm on the grocery store example with support threshold s=33.34% and confidence threshold c=60%. Show the candidate and frequent itemsets for each database scan. Enumerate all the final frequent itemsets. Also indicate the association rules that are generated and highlight the strong ones, sort them by confidence

| Transaction ID | Items                  |
|----------------|------------------------|
| T1             | HotDogs, Buns, Ketchup |
| T2             | HotDogs, Buns          |
| Т3             | HotDogs, Coke, Chips   |
| T4             | Chips, Coke            |
| T5             | Chips, Ketchup         |
| Т6             | HotDogs, Coke, Chips   |

## سوال اول)

| item    | count | support percent |
|---------|-------|-----------------|
| Hotdogs | 4     | 4/6 = 0.66      |
| Buns    | 2     | 2/6 = 0.33      |
| Ketchup | 2     | 2/6 = 0.33      |
| Coke    | 3     | 3/6 = 0.5       |
| Chips   | 4     | 4/6 = 0.66      |

| item           | count | support percent |
|----------------|-------|-----------------|
| Hotdogs,coke   | 2     | 2/6 = 0.33      |
| Hot Dogs,chips | 2     | 2/6 = 0.33      |
| coke,chips     | 2     | 2/6 = 0.33      |
|                |       |                 |

## با این نوع حساب کتاب به قانونی نمی رسیم بیاییم 0.34 در نظر بگیرم و به بالا گرد کنیم .

| item    | count | support percent |
|---------|-------|-----------------|
| Hotdogs | 4     | 4/6 = 0.66      |
| Buns    | 2     | 2/6 = 0.34      |
| Ketchup | 2     | 2/6 = 0.34      |
| Coke    | 3     | 3/6 = 0.5       |
| Chips   | 4     | 4/6 = 0.66      |

| Item            | count | support percent |
|-----------------|-------|-----------------|
| Hotdogs,Buns    | 2     | 0.34            |
| Hotdogs,ketchup | 1     | 0.16            |
| Hotdogs,coke    | 2     | 0.34            |
| Hotdogs,chips   | 2     | 0.34            |
| ketchup,coke    | 0     | 0               |
| ketchup,Buns    | 1     | 0.16            |
| ketchup,chips   | 1     | 0.16            |

| Buns,coke  | 0 | 0    |
|------------|---|------|
| Buns,chips | 0 | 0    |
| coke,chips | 3 | 0.50 |

| Item               | count | support percent |
|--------------------|-------|-----------------|
| Hotdogs,coke,chips | 2     | 0.34            |
|                    |       |                 |

قوانين چهارتايي نيز نداريم .

حال confidence قوانین دوتایی را حساب می کنیم .

Hotdogs -> Buns (conf = 2/4 = 0.50)

Buns -> Hotdogs (conf = 2/2 = 1)

Hotdogs -> coke (conf = 2/4 = 0.50)

Coke -> Hotdogs (conf = 2/3 = 0.67)

Hotdogs -> Chips (conf = 2/4 = 0.5)

Chips -> Hotdogs (conf = 2/4 = 0.5)

 $cock \rightarrow chips (conf = 3/3 = 1)$ 

chips -> cock (conf = 3/4 = 0.75)

سوال دوم)

# a) Use the transactional database from the previous exercise with same support threshold and build a frequent pattern tree (FP-Tree). Show for each transaction how the tree evolves

| Item    | support sort |
|---------|--------------|
| Hotdogs | 4            |
| Chips   | 4            |
| coke    | 3            |
| Buns    | 2            |
| Ketchup | 2            |









## b) Use Fp-Growth to discover the frequent itemsets from this FP-tree.

ما باید یک conditional tree برای هر آیتم frequent بسازیم که از کمترین تعداد شروع می شود . برای سس کچاپ، ما دو شاخه HotDogs-Buns-Ketchup و Chips-Koce داریم، اما از آنجایی که Ketchup دارای پشتیبانی 1 در هر شاخه است،این همه موارد را حذف می کند (زیرا آستانه پشتیبانی 2 است) فقط <2:Ketchup> باقی می ماند.

این منجر به کشف(2: Ketchup) به عنوان آیتم مکرر می شود.

برای (Buns (B) ما فقط یک شاخه HotDogs-Buns داریم. معامله فرعی {HotDogs, Buns} دو بار ظاهر می شود. بنابراین الگوهای <2:Buns:2، HotDogs> و <2:Buns> را داریم.

این منجر به کشف(HotDogs, Buns) و (Buns) و (Buns) به عنوان مجموعه موارد مکرر می شود.

برای (Coke)، ما دو شاخه داریم: HotDogs-Chips-Coke و Chips-Coke که منجر به درخت

coke(3)-> Chips(3)-> HotDogs عي شود،

بنابراین ما 3 الگو داریم: <Coke:3، Chips:2، HotDogs:2>، <Coke:3، Chips> و <3:Coke:2، Chips:2، HotDogs این منجر به کشف بخوعه های اقلام مکرر زیر می شود: (Coke, Chips) (2) (Coke, Chips, HotDogs) (3) (Coke, Chips, HotDogs) و HotDogs-Chips و Chips داریم که درخت زیر را نشان می دهد (Chips (4)->H) یو مسیر Chips (4)->H) داریم که درخت زیر را نشان می دهد الگوهای <2:Chips:2، HotDogs> و <4:Chips> بنابراین، مجموعه اقلام (Chips, HotDogs) و (4) (Chips) مکرر هستند.

پس آیتم های مکرر یا همان frequent برابر است با :

HotDogs}, {Buns}, {Ketchup}, {Coke}, {Chips}

{HotDogs, Buns}, {HotDogs, Coke}, {HotDogs, Chips}, {Coke, Chips}, {HotDogs, Coke, Chips}

سوال سوم)

In this section we have a paper Model Ensemble for Click Prediction in Bing Search Ads, that is an important part of data mining, explain how the ensemble learning technique is utilized in the paper.

در این مقاله از ensemble learning به دو شکل استفاده شده است .

در حالت اول ما یک GBDT (Gradient-Boosted Decision Tree) داریم که یک مدل ensemble از درخت تصمیم است که به صورت گرادیان کاهشی و با اضافه کردن درخت تصمیم های مختلف سعی می کند خطا مسئله را کاهش دهد و به عنوان یکی از مدلهای پایه ما استفاده می شود .

در حالت دوم ما از ensemble learning برای ترکیب مدل پایه خود استفاده می کنیم .

این کار را به دو شکل مختلف در مقاله انجام داده که حاصل آن ۷ مدل مختلف شده است .

روش اول به صورت stacking ensemble و روش دوم به صورت stacking ensemble و روش سوم که همان boosting ensemble hsj.

در روش اول ما چند مدل را به صورت مجزا روی دادههای آموزش، آموزش می دهیم سپس یک meta model به کمک حاصل مدلهای قبل پیش بینی انجام می دهد .

همانند مدل : GBDT+DNN که ابتدا یک شبکه عمیق و یک gradient boosted Decision tree به صورت مجزا بر روی داده ها آموزش داده شده اند و سپس میانگین نتایج حاصل از آنان به عنوان پیش بینی نهایی استفاده شده است. در روش cascading یک مدل پیش بینی انجام می دهد و مدل بعد از پیش بینی مدل قبلی به عنوان یک داده ویژگی به اضافه ویژگی دادهای موجود استفاده می کند و دوباره سعی می کند پیش بینی کند .

همانند مدل : Cascading GBDT to DNN و Cascading LR to GBDT و Cascading GBDT to LR و Cascading GBDT to LR

برای مثال در Cascading DNN to GBDT ابتدا شبکه عمیق ما به صورت کامل بر روی داد آموزش می بینید سپس مدل GBDT ما به کمک حاصل بدست آمده از شبکه عمیق و ویژگی های موجود و دادگان دوباره بر روی مدل آموزش می بییند و پیش بینی نهایی را انجام می دهند .

در روش Boosting با مدل کم برازش که دارای بایاس بالا و واریانس کم است کار می کند، یعنی مدل نمی تواند رابطه ذاتی در داده ها را به طور کامل توصیف کند. با این بینش که باقیمانده های مدل هنوز حاوی اطلاعات مفیدی هستند، تقویت در قلب آن به طور مکرر با مدل جدید بر روی باقیمانده ها مطابقت دارد. نتیجه نهایی با جمع کردن همه مدل ها با هم پیش بینی می شود. GBDT پرکاربرد ترین مدل تقویت کننده است .

• Boosting LR with GBDT و boosting DNN with GBDT

کلا در روش ensemble ما سعی داریم با ترکیب مدل به شکلهای مختلفی که در بالا مشاهده می کنید دقت پایه مدل را افزایش بدیم و همانطور که در قسمت ارزیابی مشاهده می کنید سعی کرده است دقت تمامی این حالتها را بدست آورد و آن را گزارش کند تا در نهایت بهترین مدل با دقت را از این حالتهای مختلف برگزیند .

Using the hash function

 $h(x) = x \mod 3$ 

construct a hash tree with maximum number of itemsets in inner nodes equal to 4 given the following set of candidates

| (1, 9, 11)  | (2, 5, 10) | (3, 6, 8)   | (4, 7, 9)  | (6, 12, 13) | (9, 12, 14)  |
|-------------|------------|-------------|------------|-------------|--------------|
| (1, 10, 12) | (2, 5, 12) | (3, 7, 10)  | (4, 7, 13) | (6, 12, 14) | (10, 11, 15) |
| (2, 4, 7)   | (2, 9, 10) | (3, 12, 14) | (5, 7, 9)  | (8, 11, 11) | (12, 12, 15) |
| (2, 5, 8)   | (3, 3, 5)  | (4, 5, 8)   | (5, 7, 13) | (8, 11, 15) | (14, 14, 15) |

در گره ریشه، مجموعه آیتم ها بر اساس مقدار هش اولین آیتم در مجموعه آیتم ها تقسیم می شوند. بنابراین، پس از گره ریشه، 3 گره فرزند با محتوا داریم: البته محتوای هر ستون را مرتب می کنیم .اول برحسب عنصر اول بعد دو

| No       | N1       | N2       |
|----------|----------|----------|
| 3,3,5    | 1,9,11   | 2,4,7    |
| 3,6,8    | 1,10,12  | 2,5,8    |
| 3,7,10   | 4,5,8    | 2,5,10   |
| 3,12,14  | 4,7,9    | 2,5,12   |
| 6,12,13  | 4,7,13   | 2,9,10   |
| 6,12,14  | 10,11,15 | 5,7,9    |
| 9,12,14  |          | 5,7,13   |
| 12,12,15 |          | 8,11,11  |
|          |          | 8,11,15  |
|          |          | 14,14,15 |

از آنجایی که درجه پر شدن همه گره ها 4 بزرگتر است، اکنون طبق مورد دوم، همه باید تقسیم شوند.

| N00      | N01    | N10    | N11     | N12      | N20    | N21    | N22      |
|----------|--------|--------|---------|----------|--------|--------|----------|
| 3,3,5    | 3,7,10 | 1,9,11 | 1,10,12 | 4,5,8    | 2,9,10 | 2,4,7  | 2,5,8    |
| 3,6,8    |        |        | 4,7,9   | 10,11,15 |        | 5,7,9  | 2,5,10   |
| 3,12,14  |        |        | 4,7,13  |          |        | 5,7,13 | 2,5,12   |
| 6,12,13  |        |        |         |          |        |        | 8,11,11  |
| 6,12,14  |        |        |         |          |        |        | 8,11,15  |
| 9,12,14  |        |        |         |          |        |        | 14,14,15 |
| 12,12,15 |        |        |         |          |        |        |          |
|          |        |        |         |          |        |        |          |

در اینجا فقط 00N و 22N درجه پر شدن بالاتر از حد مجاز دارند (گره های برگ با \* مشخص می شوند). از این رو، آنها دوباره تقسیم می شوند، این بار با استفاده از آیتم سوم. در اینجا، فقط 00N و 2N درجه پر شدن بالاتر از حد مجاز دارند (گره های برگ با \* مشخص می شوند). از این رو، آنها دوباره تقسیم می شوند، این بار با استفاده از مورد سوم.

| N000     | N001    | N002    | N220     | N221   | N222  |
|----------|---------|---------|----------|--------|-------|
| 12,12,15 | 6,12,13 | 3,3,5   | 2,5,12   | 2,5,10 | 2,5,8 |
|          |         | 3,6,8   | 8,11,15  |        |       |
|          |         | 3,12,14 | 14,14,15 |        |       |
|          |         | 6,12,14 |          |        |       |
|          |         | 9,12,14 |          |        |       |

اگرچه درجه پر شدن 002N بزرگتر از 4 است، هیچ موردی باقی نمانده که برای تقسیم بیشتر استفاده شود. از این رو، ساخت و ساز درخت هش به پایان می رسد. درخت هش نهایی در زیر نشان داده شده است:



Given the lattice structure shown in Figure and the transactions given in Table, label each node with the following letter(s

M if the node is a maximal frequent itemset,

C if it is a closed frequent itemset,

N if it is frequent but neither maximal nor closed, and

I if it is infrequent.

Assume that the support threshold is equal to 30%.



| Transaction ID | Items Bought     |
|----------------|------------------|
| 1              | $\{a, b, d, e\}$ |
| 2              | $\{b, c, d\}$    |
| 3              | $\{a, b, d, e\}$ |
| 4              | $\{a, c, d, e\}$ |
| 5              | $\{b, c, d, e\}$ |
| 6              | $\{b,d,e\}$      |
| 7              | $\{c,d\}$        |
| 8              | $\{a, b, c\}$    |
| 9              | $\{a, d, e\}$    |
| 10             | $\{b,d\}$        |







Subject. Date JABC 189 BCD trio) B= {1,50,00 } BD しいいといういう イリナ、カラう BC = Obje frequet | BED BDE close frogent ACTUAY JABCE YEY ACD YEY C= 17, E, d, BCD Kiny BCE

PAPCO

Description of the fragent

1,5,5,5,5, 2 and the fragent

1,5,5,5,5, 2 and the fragent

1,5,5,5,5,7

1,5,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7

1,5,5,7 E - 1, 4, 2,0,9,93 JAE 41,0,2,99 CE 4209 DE 41,7,0, 6,0,4,99 DE = E C/2

DE | ADE MC 41,0, E, 93

Project = DE | BDE MC 4.1,0,0,93

CDE I

#### Problem 6)\* (Project)

We want to implement the apriori algorithm with python.

In this section, you are going to apply frequent pattern mining on a market transaction dataset via the apriori algorithm. The dataset is available in the assignment folder. First, generate all frequent itemsets in a table (e.g., Figure 1), then print all possible association rules as shown in Figure 2. Write your code in an ipynb notebook format, then answer the following questions:

#### 1. How did you handle Nan values in the dataset?

با تبدیل کردن دیتاست به آرایهای از خریدها و در نظر نگرفتن دادههای nan به هدفم رسیدم . البته جزئیات را در پایین توضیح دادهام .

## 2. In what aspect is this similar to the Naïve Bayes algorithm? Why?

به طور کلی، هم الگوریتم های بیز و هم الگوریتم های قانون انجمن در یادگیری ماشین برای طبقه بندی و مدلسازی روابط بین متغیرها یا ویژگی های مختلف در یک مجموعه داده استفاده می شوند. آنها هر دو شامل محاسبات احتمال و گروه بندی داده ها بر اساس معیارهای خاص هستند. بنابراین، شباهت بین این الگوریتم ها در کاربرد آن ها برای تحلیل و مدلسازی داده ها و استفاده از روش های آماری برای نتیجه گیری در مورد روابط و الگوهای موجود در داده ها است.

همچنین معیار confidence در اینجا همان معیار مورد استفاده احتمالاتی در بیز است .به طوری که در هر دو ما از معیار

$$p(C_k \mid \mathbf{x}) = rac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
 posterior  $= rac{ ext{prior} imes ext{likelihood}}{ ext{evidence}}$ 

می کنیم در یکی برای پیدا کردن بالاترین مقدار آن برای محاسبه و تقسیم بندی یک داده بین کلاسهای موجود . و در یکی برای اینکه ببینیم قانون بدست آمده چقدر ارزشمند است .

## 3. How do min\_sup and min\_conf parameters affect your results?

به کمک min sup ما بسیاری از تراکنش هایی که میدانیم برای استخراج قوانین به کمک ما نمیآیند را حذف می کنیم و به کمک min confidence میتوانیم بر روی قوانینی که از لحاظ احتمالاتی نظر ما جلب نمی کنند را راحت کنار بگذاریم تا بتوانیم نظر و توجه خود را بر روی قوانین با ارزش بالاتر بگذاریم .

In the final part, you are used to support and confidence all the time and maybe the gini index. There are lots of measures proposed in the literature of the class. Some measures are good for certain applications, but not for others.

In this part What about Apriori-style support based pruning? How does it affect these measures?

استفاده از هرس مبتنی بر حمایت به سبک Apriori می تواند تأثیر قابل توجهی بر میزان confidence و Apriori داشته باشد. با حذف مجموعههای اقلام نادر از بررسی، support به معیار معناداری برای قدرت ارتباط بین اقلام تبدیل می شود. confidence نیز تحت تأثیر قرار می گیرد، زیرا هرس مجموعههای اقلام نادر، تعداد ارتباطهای مثبت کاذب را کاهش می دهد و در نتیجه مقادیر confidence بالا تری برای پیوندهای باقی مانده ایجاد می کند. تأثیر هرس مبتنی بر حمایت به سبک Apriori بر شاخص جینی کمتر واضح است، زیرا این معیار معمولاً در استخراج قوانین انجمن استفاده نمی شود. با این حال، ممکن است هرس مجموعههای اقلام نادر می تواند توزیع فرکانس اقلام را تغییر دهد و در نتیجه بر شاخص جینی تأثیر بگذارد. به طور کلی، استفاده از هرس مبتنی بر حمایت به سبک Apriori یک تکنیک مهم برای استخراج قوانین تداعی کارآمد است و می تواند تأثیر قابل توجهی بر تفسیر میزان support و confidence داشته باشد.

So you should use this three important measurements and after results, compare together, which one was better and if you can say why, you can have bonus scores

Interest

Kappa

Gini Index

از نظر من و با توجه به بررسی که بر روی قوانین بدست آمده، معیار interest به نسبت دو تا معیار دیگر قوانین جذاب تر ومعنادار تری را حتی نسبت به confidence پیدا می کند .

همانطور که در انتها و در نتایج آخر برحسب confidence آمده است با بالا بردن میزان confidence و رساندن آن به 0.5 تنها و تقریبا قوانینی باقی می مانند که طرف سمت راست آن آب معدنی هست اما خوب این قوانین قوانین منطقی و خوبی نیستند زیرا به طور معمول در تمامی سبدهای خرید آب معدنی بود و وجود این آیتم ها به معنی اینکه آب معدنی به دلیل برداشتن آیتم های قبلی برداشته شده است بی معنی است .

اماً اگر به جدول زیر که بر حسب معیار interest ساخته شده است می توان به قوانین بهتری دست یافت .علت نیز تقسیم شدن حاصل confidence بر احتمال رخداد سمت راست است که عملا به کمک این تقسیم برای مثال اگر آب معدنی را در نظر بگیریم به دلیل اینکه احتمال رخداد آن در تمامی ترکنش ها بالا است پس با این تقسیم این اثر کاهش پیدا می کند .

| pasta pasta pasta herb & pepper,spaghetti herb & pepper,mineral water tomato sauce mushroom cream sauce |                                                                              |                                                                                                         | 0.099787<br>0.092816<br>0.086256<br>0.089120 | 4.700812<br>4.506672<br>4.004360                                                                                                                        | 0.993460<br>0.994646<br>0.990082                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| herb & pepper,spaghetti<br>herb & pepper,mineral water<br>tomato sauce                                  | 0.393443                                                                     | 0.006399<br>0.006666                                                                                    | 0.086256                                     | 4.004360                                                                                                                                                |                                                                                                                                                                                    |
| herb & pepper,mineral water<br>tomato sauce                                                             | 0.390625                                                                     | 0.006666                                                                                                |                                              |                                                                                                                                                         | 0.990082                                                                                                                                                                           |
| tomato sauce                                                                                            |                                                                              |                                                                                                         | 0.089120                                     |                                                                                                                                                         |                                                                                                                                                                                    |
|                                                                                                         | 0.377358                                                                     |                                                                                                         |                                              | 3.975683                                                                                                                                                | 0.990055                                                                                                                                                                           |
| mushmom cream sauce                                                                                     |                                                                              | 0.005333                                                                                                | 0.071968                                     | 3,840659                                                                                                                                                | 0.990147                                                                                                                                                                           |
| mosmodili tremii sauce                                                                                  | 0.300699                                                                     | 0.005733                                                                                                | 0.088512                                     | 3.790833                                                                                                                                                | 0.993344                                                                                                                                                                           |
| tomatoes.spaghetti                                                                                      | 0.318471                                                                     | 0.006666                                                                                                | 0.083211                                     | 3.341054                                                                                                                                                | 0.990476                                                                                                                                                                           |
| herb & pepper                                                                                           | 0.323450                                                                     | 0.015998                                                                                                | 0.161430                                     | 3.291994                                                                                                                                                | 0.987900                                                                                                                                                                           |
| grated cheese.spaghetti                                                                                 | 0.322581                                                                     | 0.005333                                                                                                | 0.066496                                     | 3.283144                                                                                                                                                | 0.990073                                                                                                                                                                           |
| ground beef,cooking oil                                                                                 | 0.571429                                                                     | 0.004799                                                                                                | 0.037164                                     | 3.281995                                                                                                                                                | 0.969615                                                                                                                                                                           |
| olive oil,frozen vegetables                                                                             | 0.423529                                                                     | 0.004799                                                                                                | 0.048282                                     | 3.268410                                                                                                                                                | 0.983080                                                                                                                                                                           |
| mineral water, shrimp                                                                                   | 0.305085                                                                     | 0.007199                                                                                                | 0.086520                                     | 3.200616                                                                                                                                                | 0.990357                                                                                                                                                                           |
| spaghetti,frozen vegetables                                                                             | 0.311005                                                                     | 0.008666                                                                                                | 0.098273                                     | 3.165328                                                                                                                                                | 0.989570                                                                                                                                                                           |
| cooking oil,spaghetti                                                                                   | 0.302521                                                                     | 0.004799                                                                                                | 0.058389                                     | 3,078982                                                                                                                                                | 0.990095                                                                                                                                                                           |
| around heef shrimn                                                                                      | 0.523256                                                                     | 0.005999                                                                                                | 0.044090                                     | 3.005315                                                                                                                                                | 0.969554                                                                                                                                                                           |
|                                                                                                         | mineral water,shrimp<br>spaghetti,frozen vegetables<br>cooking oil,spaghetti | mineral water,shrimp 0.305085<br>spaghetti,frozen vegetables 0.311005<br>cooking oil,spaghetti 0.302521 |                                              | mineral water,shrimp 0.305085 0.007199 0.086520 spaghetti,frozen vegetables 0.311005 0.008666 0.098273 cooking oil.spaghetti 0.302521 0.004799 0.058389 | mineral water,shrimp 0.305085 0.007199 0.086520 3.200616 spaghetti,frozen vegetables 0.311005 0.008666 0.098273 3.165328 cooking oil,spaghetti 0.302521 0.004799 0.058389 3,078982 |

## توضیحات مربوط به کد:

برای حذف دادههای null من دیتافریم را تبدیل به یک آرایه از آرایهها کردم، که هر کدام از این آرایهها یک transaction است که توی این آرایهها هیچ داده null وجود ندارد .

```
# assume you have a 2D numpy array named "numpay_market_data" containing NaN values
         transcations market = []
          for transaction in numpay market data :
           # create a boolean mask marking the NaN values as True and non-NaN values as False
           # print(transaction)
           mask = transaction!= 'nan'
            # filter the array by selecting only the non-NaN values
           clear transation = transaction[mask]
           transcations_market.append(clear_transation)
          # print the resulting filtered array
         transcations market = np.array(transcations market)
         print(transcations market)
       'spinach', 'olive oil'], dtype=object)
array(['burgers', 'meatballs', 'eggs'], dtype=object)
          array(['chutney'], dtype=object) ... array(['chicken'], dtype=object)
          array(['escalope', 'green tea'], dtype=object)
array(['eggs', 'frozen smoothie', 'yogurt cake', 'low fat yogurt'],
                dtype=object)
سپس شروع می کنیم به پیدا کردن frequent item ها که برای این کار تعداد هر آیتم را بدست آوریم و سپس حاصل را بر
                                                                                   تعداد ترنزكشنها تقسيم كنيم .
    dic of frequent item = {}
        number of transaction = transcations market.shape[0]
        for transaction in transcations_market :
            for item in transaction :
                if item in dic of frequent item.keys():
                    dic_of_frequent_item[item] += 1
                else :
                   dic of frequent item[item] = 1
        print(number of transaction, dic of frequent item)
    7501 {'shrimp': 536, 'almonds': 153, 'avocado': 250, 'vegetables mix': 193, 'green grapes': 68, 'whole
    [ ] data_show_list = []
        list_of_name = dic_of_frequent_item.keys()
        for key in list of name:
            data_show_list.append({'itemsets':key,'support':dic_of_frequent_item[key]/number_of_transaction})
        df = pd.DataFrame.from_dict(data_show_list)
                  itemsets support
          0
                    shrimp 0.071457
                   almonds 0.020397
          1
                   avocado 0.033329
          2
              vegetables mix 0.025730
          3
          4
               green grapes 0.009065
          ...
               burger sauce 0.005866
         115
                   oatmeal 0.004399
         116
                  asparagus 0.000133
         117
         118
                    cream 0.000933
                    panking 0 000667
```

سپس تابع زیر را مینویسیم که frequent آیتم ها را در هر نوع را پیدا می کند یعنی اینکه ابتدا frequent آیتم های قوانین یک آیتمی، سپس بر اساس آن قوانین دو آیتمی و ... تا در انتها هیچ قانونی وجود نداشته باشد. حال ما به ازای هر دسته از قوانین دوتایی، سه تایی و چهارتایی تمامی frequent ها را داریم .

```
def generate_frequent_itemsets(transactions, min_support):
     # Initialize the frequent itemsets of length 1
    frequent_itemsets = []
    infrequent_itemsets_k = []
    candidate_itemsets = []
    for transaction in transactions:
        for item in transaction:
            if not {item} in candidate itemsets:
                candidate itemsets.append({item})
    candidate_itemsets = list(map(frozenset, candidate_itemsets))
    candidate itemsets.sort()
    frequent\_itemsets\_k, infrequent\_itemsets\_k = count\_frequent\_itemsets (candidate\_itemsets, transactions, min\_support)
    print(frequent itemsets k)
    print(infrequent_itemsets_k)
    frequent_itemsets.append(frequent_itemsets_k)
    # Generate frequent itemsets of length k+1 until no new frequent itemsets are identified
    while True:
        candidate_itemsets = generate_candidate_itemsets(frequent_itemsets, k,infrequent_itemsets_k)
        if len(candidate itemsets) == 0:
            break
        frequent itemsets k, infrequent itemsets k = count frequent itemsets (candidate itemsets, transactions, min support)
        if len(frequent_itemsets_k) == 0:
        frequent_itemsets.append(frequent_itemsets_k)
    # Return the frequent itemsets
    return frequent_itemsets
```

سپس براساس frequent آیتم ها سعی می کنیم قوانین را بسازیم .

```
def generate_rules(items):
    rules = {}
    for i in range(1, len(items)):
        for antecedent_items in itertools.combinations(items, i):
            # print(antecedent_items)
            # print(antecedent)
            consequent = items.difference(antecedent_items)
            antecedent = ','.join(antecedent_items)

            consequent = ','.join(consequent)
            # print(consequent)
            rules[antecedent] = consequent
            return rules
```

تابع بالا یک لیست از آیتم ها را می گیرد و سپس تمامی قوانینی که میشود با آن لیست ساخت را برمی گرداند . سپس براساس این تابع تابع زیر را تعریف می کنیم .

```
def find all possible_rule(frequent_item_can_make_rule) :
    return generate_rules(frequent_item_can_make_rule)
def find problit on transaction(left, right, transactions):
  left set = set(left.split(','))
  right_set = set(right.split(','))
  set main = left set.union(right set)
  left sum = 0
  right sum = 0
  main sum = 0
  not sum =0
  for transaction in transactions:
      set transaction = set(transaction)
      if set_main.issubset(set_transaction):
          main_sum += 1
      if left_set.issubset(set_transaction):
          left_sum += 1
      if right_set.issubset(set_transaction):
          right sum += 1
      if not right set.issubset(set transaction) and not left set.issubset(set transaction):
          not sum += 1
 return (left_sum/len(transactions), right_sum/len(transactions), main_sum/len(transactions), not_sum/len(transactions))
```

سپس بر اساس سمت چپ و سمت راست قوانین به ترتیب احتمال رخداد سمت چپ، احتمال سمت راست، اشتراک رخداد هم سمت چپ و هم سمت ، احتمال اینکه کلا نه سمت چپ اتفاق بیفتد و نه سمت راست را حساب می کنیم .

سپس به کمک تابع بالا تمامی قوانین را به کمک تمامی احتمالاتی که دارند در یک دیکشنری ذخیره می کنیم .

```
dic for make_dataframe = {'rule':[], 'left':[], 'conf':[], 'support':[], 'Kappa':[], 'interest':[], 'gini_index':[]}
for key in dic_of_rule.keys():
    for item in dic_of_rule!key]:
        dic_for_make_dataframe['rule'].append(f'{key} -> {item[0]}')
        dic_for_make_dataframe['conf'].append(key)
        dic_for_make_dataframe['conf'].append(item[3]/item[1])
        dic_for_make_dataframe['support'].append(item[3]/(item[1]*item[2]))
        kappa = (item[3]*item[4] - item[1]*item[2] - ((1-item[1])*(1-item[2])))/(3-item[1]*item[2] - ((1-item[1])*(1-item[2])))
        dic_for_make_dataframe['Kappa'].append(kappa)

        gini_index = 1 - ((item[1])**2+(item[2])**2)
        dic_for_make_dataframe['gini_index'].append(gini_index)

df = pd.DataFrame(dic_for_make_dataframe)
```

سپس یک دیتا فریم بر اساس اطلاعات جدید برحسب آن دیکشنری که در بالا ساختیم میسازیم و برحسب احتمالاتی که داریم و gini index ، support ، interest ، kappa را بدست میآوریم . که حاصل یک جدول مانند زیر خواهد شد که براساس support مرتب شده است .

|      | rule                              | left                 | conf     | support  | Карра    | interest | gini_inde |
|------|-----------------------------------|----------------------|----------|----------|----------|----------|-----------|
| 161  | mineral water -> spaghetti        | mineral water        | 0.250559 | 0.059725 | 0.110619 | 1.439085 | 0.91286   |
| 894  | spaghetti -> mineral water        | spaghetti            | 0.343032 | 0.059725 | 0.110619 | 1.439085 | 0.91286   |
| 1066 | chocolate -> mineral water        | chocolate            | 0.321400 | 0.052660 | 0.083950 | 1.348332 | 0.91633   |
| 165  | mineral water -> chocolate        | mineral water        | 0.220917 | 0.052660 | 0.083950 | 1.348332 | 0.91633   |
| 467  | eggs -> mineral water             | eggs                 | 0.283383 | 0.050927 | 0.048673 | 1.188845 | 0.91088   |
| ***  | ***                               | ***                  | ***      | ***      | ***      | 380      |           |
| 2099 | salmon,mineral water -> chocolate | salmon,mineral water | 0.265625 | 0.004533 | 0.019813 | 1.621199 | 0.97286   |
| 55   | shrimp -> olive oil,mineral water | shrimp               | 0.063433 | 0.004533 | 0.053849 | 2.298598 | 0.99413   |
| 2100 | salmon,chocolate -> mineral water | salmon,chocolate     | 0.425000 | 0.004533 | 0.016319 | 1.782956 | 0.94306   |
| 552  | eggs -> cooking oil,chocolate     | eggs                 | 0.025223 | 0.004533 | 0.022174 | 1.854847 | 0.96752   |
| 925  | spaghetti -> white wine           | spaghetti            | 0.026034 | 0.004533 | 0.017898 | 1.574828 | 0.96941   |
|      |                                   |                      |          |          |          |          |           |

سپس برحسب confidence بالای 0.3 و 0.5، قوانین را بدست میآوریم.

```
thershold_conf = 0.3

mask = df['conf'] <= thershold_conf # Create a boolean mask for the rows that need to be removed new_df = df[-mask] # Select only the rows that don't match the mask

new_df.sort_values(by=['conf'],ascending = False)
```

|      | rule                                         | left                           | conf     | support  | Карра    | interest | gini_index |
|------|----------------------------------------------|--------------------------------|----------|----------|----------|----------|------------|
| 2261 | frozen vegetables,soup -> mineral water      | frozen vegetables.soup         | 0.633333 | 0.005066 | 0.026050 | 2.656954 | 0.943117   |
| 2297 | pancakes, cooking oil -> mineral water       | pancakes.cooking oil           | 0.593220 | 0.004666 | 0.023021 | 2.488672 | 0.943119   |
| 2118 | soup,olive oil -> mineral water              | soup,alive oil                 | 0.582090 | 0.005199 | 0.025264 | 2.441976 | 0.943101   |
| 2126 | frozen vegetables,olive oil -> mineral water | frozen vegetables.olive oil    | 0.576471 | 0.006532 | 0.031366 | 2.418404 | 0.943052   |
| 2353 | cooking oil,ground beef -> spaghetti         | cooking all,ground beef        | 0.571429 | 0.004799 | 0.037164 | 3.281995 | 0.969615   |
| ***  |                                              |                                |          |          |          |          | ***        |
| 2004 | green tea,pancakes -> spaghetti              | green tea,pancakes             | 0.300813 | 0.004933 | 0.022486 | 1.727717 | 0.969417   |
| 799  | soup -> milk                                 | soup                           | 0.300792 | 0.015198 | 0.103591 | 2.321232 | 0.980655   |
| 1688 | mushroom cream sauce -> escalope             | mushroom cream sauce           | 0.300699 | 0.005733 | 0.088512 | 3.790833 | 0.993344   |
| 2253 | frozen vegetables,french fries -> milk       | frozen vegetables,french fries | 0.300699 | 0.005733 | 0.045401 | 2.320520 | 0.982845   |
| 1983 | mineral water, french fries -> spaghetti     | mineral water, french fries    | 0.300395 | 0.010132 | 0.043443 | 1.725318 | 0.968548   |

311 rows × 7 columns

2368 rows × 7 columns

thershold\_conf = 0.5

mask = df['conf'] <= thershold\_conf # Create a boolean mask for the rows that need to be removed new\_df 50 = df(-mask) # Select only the rows that don't match the mask new\_df\_50.sort\_values(by=['conf'],ascending = False)

|      | rule                                              | left                             | conf     | support  | Карра    | interest | gini_index |
|------|---------------------------------------------------|----------------------------------|----------|----------|----------|----------|------------|
| 2261 | frozen vegetables,soup -> mineral water           | frozen vegetables,soup           | 0.633333 | 0.005066 | 0.026050 | 2.656954 | 0.943117   |
| 2297 | pancakes,cooking oil -> mineral water             | pancakes,cooking oil             | 0.593220 | 0.004666 | 0.023021 | 2.488672 | 0.943119   |
| 2118 | soup,olive oil -> mineral water                   | soup,ofive oil                   | 0.582090 | 0.005199 | 0.025264 | 2.441976 | 0.943101   |
| 2126 | frozen vegetables,olive oil -> mineral water      | frozen vegetables.olive oil      | 0.576471 | 0.006532 | 0.031366 | 2.418404 | 0.943052   |
| 2353 | cooking oil.ground beef -> spaghetti              | cooking oil.ground beef          | 0.571429 | 0.004799 | 0.037164 | 3.281995 | 0.969615   |
| 2233 | soup,milk -> mineral water                        | soup.milk                        | 0.561404 | 0.008532 | 0.039863 | 2.355194 | 0.942950   |
| 1699 | olive oil,shrimp -> mineral water                 | olive oil,shrimp                 | 0.557377 | 0.004533 | 0.021385 | 2.338303 | 0.943114   |
| 2264 | soup.chocolate -> mineral water                   | soup,chocolate                   | 0.552632 | 0.005599 | 0.026135 | 2.318395 | 0.943078   |
| 2361 | frozen vegetables,spaghetti,milk -> mineral water | frozen vegetables.spaghetti.milk | 0.548387 | 0.004533 | 0.021117 | 2.300588 | 0.943112   |
| 2183 | cooking oil,eggs -> mineral water                 | cooking oil,eggs                 | 0.545455 | 0.006399 | 0.029469 | 2.288286 | 0.943043   |
| 2178 | soup.eggs -> mineral water                        | soup,eggs                        | 0.544118 | 0.004933 | 0.022802 | 2.282677 | 0.943098   |
| 2269 | frozen vegetables,ground beef -> mineral water    | frozen vegetables,ground beef    | 0.543307 | 0.009199 | 0.041767 | 2.279277 | 0.942894   |
| 2219 | turkey,milk -> mineral water                      | turkey.milk                      | 0.541176 | 0.006133 | 0.028092 | 2.270338 | 0.943052   |
| 2316 | pancakes,chicken -> mineral water                 | pancakes.chicken                 | 0.529412 | 0.004799 | 0.021706 | 2.220983 | 0.943098   |
| 2262 | soup.spaghetti -> mineral water                   | soup.spaghetti                   | 0.523364 | 0.007466 | 0.033075 | 2.195614 | 0.942977   |
| 1864 | ground beef,shrimp -> spaghetti                   | ground beef,shrimp               | 0.523256 | 0.005999 | 0.044090 | 3.005315 | 0.969554   |
| 2265 | soup,ground beef -> mineral water                 | soup,ground beef                 | 0.520548 | 0.005066 | 0.022560 | 2.183798 | 0.943086   |
| 2298 | chicken,chocolate -> mineral water                | chicken,chocolate                | 0.518182 | 0.007599 | 0.033355 | 2.173871 | 0.942966   |
| 2320 | pancakes,ground beef -> mineral water             | pancakes,ground beef             | 0.513761 | 0.007466 | 0.032539 | 2.155327 | 0.942969   |
| 2271 | frozen vegetables,ground beef -> spaghetti        | frozen vegetables,ground beef    | 0.511811 | 0.008666 | 0.061764 | 2.939582 | 0.969399   |
| 2355 | chicken,ground beef -> spaghetti                  | chicken,ground beef              | 0.507042 | 0.004799 | 0.034961 | 2.912193 | 0.969596   |
| 2207 | eggs.ground beef -> mirieral water                | eggs.ground beef                 | 0.506667 | 0.010132 | 0.043123 | 2.125563 | 0.942781   |
| 2128 | frozen vegetables,olive oil -> spaghetti          | frozen vegetables.olive oil      | 0.505882 | 0.005733 | 0.041429 | 2.905531 | 0.969557   |
| 2097 | salmon.spaghetti -> mineral water                 | salmon.spaghetti                 | 0.504950 | 0.006799 | 0.029253 | 2.118363 | 0.942999   |
| 2130 | olive oil.chocolate -> mineral water              | plive oil,chocolate              | 0.504065 | 0.008266 | 0.035285 | 2.114649 | 0.942912   |

#### Problem 7

In this part, you have to know that a data analyzer has to learn how to use data mining toolkits. One of the most important toolkits is RapidMiner. According to the previous part, you have to deal with dataset of previous problem. There is an introduction to RapidMiner in link below that you can use to do this problem (https://docs.rapidminer.com/latest/studio/getting-started/), and you can download the software in this link (https://my.rapidminer.com).

In this project, you will use RapidMiner to perform customer segmentation on a dataset. The goal of the project is to segment customers based on their purchasing behavior, demographics, and other relevant variables. You will need to perform the following tasks:

- 1. Data preparation: You will need to clean and preprocess the dataset, handle missing values, and convert categorical variables to numerical ones.
- 2. Exploratory Data Analysis: You will explore the dataset to gain insights into the variables, perform statistical analysis, and visualize the data using different charts and graphs.
- 3. Feature Engineering: You will create new features based on the existing variables or domain knowledge to improve the model performance.
- 4. Model Selection and Evaluation: You will choose appropriate clustering algorithms.
- 5. Interpretation: Finally, students will interpret the results of the clustering algorithm and create customer profiles based on the segments identified.

After learning these parts and a brief document about that, you have to create association rules and compare it with your previous results.

خوب من در ابتدا یک کد پایتون را اجرا کردم که توسط آن preprocese اولیه انجام می شود و به یک csv تبدیل می شود که فقط در آن transaction ها وجود دارند .

سپس در مرحله بعد از این csv جدید میخوانم و به بخش clustering حاصل را میدهم و در ادامه کمک csv سپس در مرحله بعد از این visualisation حاصل مدل را نشان میدهیم که به توصیف پذیری مدل کمک می کند که در ادامه خواهید دید .



در ادامه حاصل را به ازای تعداد تقسیم بندیهای مختلف مشاهده می کنیم که باید براساس این نگاه بدست آمده بهترین k را انتخاب کنیم .

## k means (k = 3):



Cluster 0 mm Cluster 1 mm Cluster 2 mm



## Cluster Model

Cluster 0: 1178 items Cluster 1: 4577 items Cluster 2: 1646 items Total number of items: 7501

Number of Clusters: 3

Cluster 0 1,178

french fries is on average 485.10% larger, body spray is on average 114.72% larger, shallot is on average 108.59% larger

Cluster 1 4,677

mineral water is on average 100.00% smaller, french fries is on average 100.00% smaller, asparagus(1) is on average 60.38% larger

Cluster 2 (1,646)

mineral water is on average 317.73% larger, mayonnaise is on average 127.86% larger, nonfat milk is on average 122.01% larger



## k means (k = 5):



#### Cluster Model

Cluster 0: 3639 items Cluster 1: 818 items Cluster 2: 1585 items Cluster 3: 515 items Cluster 4: 944 items Total number of items: 7501

Number of Clusters: 5

Cluster 4

944



french fries is on average 485.10% larger, shallot is on average 132.90% larger, body spray is on average 121.75% larger



## k means (k = 7):



#### Cluster Model

Cluster 0: 495 items
Cluster 1: 798 items
Cluster 2: 447 items
Cluster 3: 867 items
Cluster 4: 879 items
Cluster 5: 2886 items
Cluster 6: 1129 items
Total number of items: 7501

Number of Clusters: 7



spaghetti is on average 474.35% larger, strong cheese is on average 209.29% larger, tomato sauce is on average 163.25% larger





## k means (k = 9):





#### **Cluster Model**

Cluster 0: 877 items
Cluster 1: 2247 items
Cluster 2: 897 items
Cluster 3: 447 items
Cluster 4: 786 items
Cluster 5: 577 items
Cluster 6: 392 items
Cluster 7: 607 items
Cluster 8: 671 items
Total number of items: 7501



Number of Clusters: 9

Cluster 8

Cluster 0 877
mineral water is on average 319.52% larger, green tea is on average 100.00% smaller, frozen smoothie is on average 100.00% smaller

Cluster 1 2,247
water spray is on average 122.55% larger, green tea is on average 100.00% smaller, mineral water is on average 100.00% smaller

Cluster 2 897
asparagus(1) is on average 736.23% larger, french fries is on average 282.24% larger, chocolate is on average 212.99% larger

Cluster 3 449
cream is on average 619.18% larger, spaghetti is on average 474.35% larger, mineral water is on average 319.52% larger

Cluster 4 786
spaghetti is on average 474.35% larger, strong cheese is on average 130.35% larger, tea is on average 130.35% larger

Cluster 5 577
eggs is on average 456.45% larger, barbecue sauce is on average 108.64% larger, green tea is on average 100.00% smaller

Cluster 6 392
frozen smoothie is on average 1,479.16% larger, sparkling water is on average 307.13% larger, tea is on average 229.92% larger

green tea is on average 656.91% larger, pickles is on average 198.10% larger, flax seed is on average 195.91% larger

milk is on average 671.71% larger, mint green tea is on average 164.80% larger, soup is on average 151.06% larger

## k means (k = 11):

## **Cluster Model**

Cluster 0: 361 items
Cluster 1: 543 items
Cluster 2: 587 items
Cluster 3: 706 items
Cluster 4: 2350 items
Cluster 5: 684 items
Cluster 6: 560 items
Cluster 7: 279 items
Cluster 8: 353 items
Cluster 9: 425 items
Cluster 10: 653 items
Total number of items: 7501





Chaster 6 Chaster 2 Chaster 2 Chaster 3 Chaster 4 Chaster 5 Chaster 6 Chaster 7 Chaster 6 Chaster 5 Chaster 10



Number of Clusters: 11

#### Cluster 0

milk is on average 671.71% larger, strong cheese is on average 365.72% larger, mineral water is on average 318.36% larger

#### Cluster 1 543

milk is on average 671.71% larger, cider is on average 197.26% larger, mint green tea is on average 196.01% larger

#### Cluster 2 587

eggs is on average 456.45% larger, barbecue sauce is on average 105.09% larger, antioxydant juice is on average 100.00% smaller

#### Cluster 3 706

french fries is on average 485.10% larger, body spray is on average 110.02% larger, chutney is on average 100.00% smaller

#### Cluster 4 (2,350

mineral water is on average 100.00% smaller, olive oil is on average 100.00% smaller, eggs is on average 100.00% smaller

#### Cluster 5 684

spaghetti is on average 474.35% larger, cream is on average 369.99% larger, napkins is on average 338.65% larger

#### Cluster 6 560

mineral water is on average 319.52% larger, eggplant is on average 102.95% larger, olive oil is on average 100.00% smaller

## Cluster 7 279

cooking oil is on average 1,858.49% larger, toothpaste is on average 428.89% larger, hand protein bar is on average 313.62% larger

#### Cluster 8

olive oil is on average 1,418.42% larger, whole wheat pasta is on average 342.29% larger, extra dark chocolate is on average 254.15% larger

Cluster 9 42

frozen vegetables is on average 949.09% larger, water spray is on average 488.31% larger, tea is on average 265.16% larger

Cluster 10 653

asparagus(1) is on average 1,048.70% larger, chocolate is on average 510.33% larger, water spray is on average 282.90% larger

#### Association Rule:

After learning these parts and a brief document about that, you have to create association rules and compare it with your previous results.



حاصل csv بدست آمده از قسمت قبل را ابتدا به کمک Numerical to binary به صورت لیستی از boolean ها می کنیم که هر true یا false نشان دهنده وجود یک آیتم در سبد خرید در آن تراکنش خاص هست سپس به کمک سلول growth حاصل را به ازای تمامی حالتهای ممکن پیدا می کنیم و سپس به کمک growth توانین مربوطه را پیدا می کنیم که در پایین مشاهده می نمایید همانطور که مشاهده می کنید حاصل شبیه به حاصل بدست آمده از قسمت قبل است با در نظر گرفتن confidence بزرگتر از 0.5 که البته به صورت از کوچک به بزرگ مرتب شده است حاصل در ایخا.

و سپس گراف ارتباط را به شکل زیرین نشان خواهیم داد .

|      |         |               | ر یم ۱۰            | ٠٠ ال ريدين - ال  |                   |  |  |
|------|---------|---------------|--------------------|-------------------|-------------------|--|--|
| itre | Support | Rem 1         | tion 2             | Hem 3             | item t            |  |  |
|      | 0.006   | French frees  | chocolete          | Trozen vegetables |                   |  |  |
| 2    | 0.005   | french frees  | shocolate          | pancakes          |                   |  |  |
| 9    | 0.005   | french fries  | chocolate          | burgers           |                   |  |  |
| 2    | 0.005   | franch free   | shocslete          | estalope          |                   |  |  |
|      | 0.005   | trench fries  | greentea           | pancakes          |                   |  |  |
|      | 0.005   | tranch from   | green tea          | burgers           |                   |  |  |
|      | 0.005   | french from   | green tea          | cookies           |                   |  |  |
|      | 0.006   | trench fries  | 160                | Nozen vegetables  |                   |  |  |
| i    | 0.006   | franch free   | esk                | burgers           |                   |  |  |
|      | 0.005   | chocolote     | green toa          | mik               |                   |  |  |
|      | 0.006   | chocoliele    | mik                | ground beef       |                   |  |  |
| i    | 0.008   | chocolate     | mik                | frazen vegetablea |                   |  |  |
| 3    | 0.005   | chocolota     | mik                | pancakes          |                   |  |  |
| 1    | 0.005   | chocolate     | mik                | burgens           |                   |  |  |
|      | 0.005   | chosolate     | mik                | shring            |                   |  |  |
| 1    | 0.005   | chocolete     | mik                | alter of          |                   |  |  |
|      | 0.005   | chocolete     | nik                | chicken           |                   |  |  |
| 3    | 0.006   | shorolete     | ground beef        | Prozen wegetables |                   |  |  |
| 1    | 0.005   | chocolate     | from vegetables.   | shring            |                   |  |  |
|      | 0.006   | mik           | ground beef        | frozen wegetables |                   |  |  |
| i    | 0.005   | mit.          | ground beef        | silve of          |                   |  |  |
|      | 0.005   | mik.          | frozen vegetalzies | shring            |                   |  |  |
| 3    | 0.005   | milk.         | frozen vegetaldes  | other oil.        |                   |  |  |
|      | 0.005   | reneral water | eggs               | epaghetti         | chocolate         |  |  |
|      | 0.005   | moneral water | spagfietti         | chocolate         | nek               |  |  |
|      | 0.005   | mineral water | spaghetts          | mile              | frozen vegetables |  |  |

| No. | Premises                          | Conclusion    | Support | Confidence | LaPlace | Gain   | p-s   | Lift  | Convi |
|-----|-----------------------------------|---------------|---------|------------|---------|--------|-------|-------|-------|
| 10  | ground beef, pancakes             | mineral water | 0,007   | 0.514      | 0.993   | -0.022 | 6.004 | 2:155 | 1.566 |
| 11  | chocolate, chicken                | mineral water | 0,008   | 0.518      | 0.993   | 0.022  | 0.004 | 2.174 | 1,581 |
| 12: | ground beef, soup                 | mineral water | 0.005   | 0.521      | 0.995   | 0.014  | 0.003 | 2.184 | 1,589 |
| 13  | ground beef, shrimp               | spaghetti     | 0.006   | 0.923      | 0.995   | 0.017  | 0.004 | 3,005 | 1.732 |
| 14  | spaghetti, soup                   | mineral water | 0,007   | 0.923      | 0.993   | 0.021  | 0.004 | 2.196 | 1,598 |
| 15  | pancakes, chicken                 | mineral water | 0.005   | 0.529      | 0.996   | 0.013  | 0.003 | 2.221 | 1.618 |
| 16  | mik, turkey                       | mineral water | 0.006   | 0.541      | 0.995   | 0.017  | 0.003 | 2.270 | 1.660 |
| 17  | ground beef, frozen vegetables    | mineral water | 0.009   | 0.543      | 0.992   | 0.025  | 0.005 | 2,279 | 1.668 |
| 18  | eggs, saup                        | mineral water | 0,005   | 0.544      | 0.996   | 0.013  | E00.0 | 2.283 | 1.671 |
| 19  | eggs, cooking oil                 | mineral water | 0,006   | 0.545      | 0.995   | -0.017 | 0.004 | 2.288 | 1,676 |
| 20  | spaghetti, mik, frozen vegetables | mineral water | 0.005   | 0.548      | 0.996   | -0.012 | 0.003 | 2.301 | 1,686 |
| 21  | chocolate, soup                   | mineral water | 0.006   | 0.553      | 0.996   | 0.015  | 0,003 | 2.318 | 1.702 |
| 22  | shrimp, olive oil                 | mineral water | 0.005   | 0.557      | 0.996   | -0.012 | 0.003 | 2.338 | 1,721 |
| 23  | mik, soup                         | mineral water | 0.009   | 0.561      | 0.993   | -0.022 | 0.005 | 2.355 | 1.737 |
| 24  | ground beef, cooking all          | spaghetti     | 0.005   | 0.571      | 0.996   | -0.012 | 0.003 | 3.282 | 1.927 |
| 25  | frozen vegetables, olive oil      | mineral water | 0.007   | 9.576      | 0.995   | -0.016 | 0.004 | 2.418 | 1.798 |
| 26  | olive oil, soup                   | mineral water | 0.005   | 0.582      | 0.996   | -0.013 | 0.003 | 2.442 | 1.822 |
| 27  | pancakes, cooking oil             | mineral water | 0.005   | 0.593      | 0.997   | -0.011 | 0.003 | 2.489 | 1,872 |
| 28  | frozen vegetables, soup           | mineral water | 0.005   | 0.633      | 0.997   | -0.011 | 0.003 | 2.657 | 2,077 |

