

华中科技大学 2020 ~ 2021 学年第一学期

《微积分 (A)(上)》考试试卷 (A 卷)

考试方式	:闭卷,	考试日期	:2020/11	./28, 考	试时长: _	150 分钟	
院(系):专业班级:							
学	号:		姓	名:			
题 号	_	_	Ξ	四	五	总 分	
分 数							
		,					
阅卷/		│					
得 分	>			·	,		
$1.$ 设 $\{a_n\}$	$\{a_n\},\{b_n\},\{c_n\}$ 均为非负数列,且 $\lim_{n\to\infty}a_n=0,\lim_{n\to\infty}b_n=1,\lim_{n\to\infty}c_n=\infty$,下列让						
	的是()						
A. a_n	$< b_n$,对任意	n 都成立]	$B. b_n < c_n,$	对任意 n 都	邓成立	
C. 极限 $\lim_{n\to\infty} a_n c_n$ 不存在 D. 极限 $\lim_{n\to\infty} b_n c_n$ 不存在					Ē		
2. 极限 1	$\lim_{x \to \infty} \left(\frac{x}{x+3} \right)^x$	等于 ()				
A. 1	В.	e	$\mathrm{C.e^{-3}}$	D	$.e^3$		
3. 当 <i>x</i> —	→ 0 时, ln(1+	- x²) 是 ()				
A. 比 s	$\sin(x^2)$ 高阶的	无穷小	В.	比 1 - cos(2	2x) 低阶的ラ	无穷小	
C. 与 t	$\tan(3x^2)$ 同阶	的无穷小	D.	与 $\arcsin(43)$	x²) 等价的ラ	无穷小	
4. 函数 f	$f(x) = \lim_{n \to \infty} \frac{1}{n(x)}$	$\frac{n}{x^2 - 3x + 2)}$	$\frac{1}{1+\sqrt{n}}$ $(-\infty)$	$< x < +\infty$)	间断点的个	〉数为 (

Α.	0
Δ	- 1

B. 1

C. 2

D. 3

5. 设函数
$$y = y(x)$$
 由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} = ($
A. -1 B. 0 C. 1 D. e

- 6. 设函数 y = f(x) 在点 x_0 处可微,则下列结论中不正确的是 (
 - A. 极限 $\lim_{x \to x_0} f(x)$ 不一定存在 B. y = f(x) 在点 x_0 处连续 C. y = f(x) 在点 x_0 处可导 D. y = f(x) 在点 x_0 处有定义

阅卷人	
得 分	

— 二、填空题 (毎空 3 分, 共 15 分)

7. 设
$$E = \{\frac{n^2}{n^2 + 3} \mid n = 1, 2, ...\}$$
,则 $\sup E = _____$, $\inf E = _____$ 。

8. 数列极限
$$\lim_{n \to +\infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = \underline{\qquad}$$

- 9. 当 $x \to 0$ 时, $f(x) = x \sin(ax)$ 与 $g(x) = x^2 \ln(1 bx)$ 是等价无穷小,则 a, b 满 足的关系式为 ____。
- 10. 设函数 x = x(y) 由参数方程 $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$ 所确定,则 $\frac{dx}{dy} =$ _______.

11. 求极限
$$\lim_{x \to +\infty} \left(\frac{\sqrt[x]{a_1} + \sqrt[x]{a_2} + ... + \sqrt[x]{a_{2020}}}{2020} \right)^x$$
,其中 $a_1, a_2, ..., a_{2020}$ 是正常数。

13. 设函数 $y = (2+x)^{\sin x} + \frac{1}{x+1}$, 求函数在 x = 0 处的微分.

14. 设函数 f(x) 在 x=0 的某邻域内有界,满足

$$\lim_{x \to 0} \frac{\sqrt[m]{1 + f(x) \tan x} - 1}{e^{5x} - 1} = 4,$$

其中 m 为正整数,求 $\lim_{x\to 0} f(x)$.

15. 对数螺线的极坐标方程为 $\rho=\mathrm{e}^{\frac{\theta}{2}}$,在螺线上任取一点 $\mathrm{M}(\rho,\theta)$,求该点处的切线方程。

阅卷人	
得 分	

四、解答题 (共 9 分)

16. 设函数

$$f(x) = \begin{cases} \frac{g(x) - \cos x}{x}, & x \neq 0, \\ a, & x = 0, \end{cases}$$

其中 g(x) 具有二阶连续导函数,且 g(0) = 1.

- (1) 确定 a 的值, 使 f(x) 在 x = 0 处连续;
- (2) 求 f'(x);
- (3) 讨论 f'(x) 在 x=0 处的连续性。

阅卷人	
得 分	

五、证明题 (每题 7 分, 共 28 分)

17. 用函数极限的 $\epsilon - \delta$ 语言证明:

$$\lim_{x \to 3} \frac{x - 3}{x^2 - 9} = \frac{1}{6}.$$

18. 设 a, b, c, d 为三个实数且 a < 0,试问方程 $e^x = ax^3 + bx^2 + cx + d$ 的根有没有可能超过 3 个?请证明你的结论。

19. (1) 利用微分中值定理证明

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}, \quad \forall n = 1, 2, \dots$$

(2) 讨论数列极限 $\lim_{n\to+\infty} \left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n\right)$ 的存在性。

- 20. (1) 叙述 Heine-Borel 有限覆盖定理。
 - (2) 利用有限覆盖定理证明: 有界闭区间上的连续函数一定有界。