YM2151

FM Operator Type-M (OPM)

概要

YM2151 は 8 ビット・バス・ラインを持ち、マイクロプロセッサを介して、卓越した音質を再現する能力のある FM 音源です。特別に開発された D/A コンバータである YM3012 を合わせてお使いいただくことで、8 音を左右 2 チャンネルの音声信号を得ることが出来ます。

さらに、このデバイスはノイズ、ビブラート、及び、トレモロの音声効果回路、及び、タイマーを持っています。

外形は24ピン・デュアル・インライン・パッケージです。

特徴

最大発音数 8 音

ノイズ発生器

一時的に音色を変化させることが出来る

基本波から高調波を発生

数オクターブに渡って変調

1.6 セント毎にインターバルを設定可能

ビブラート、トレモロを追加

基本波からの極端な高調波変調、及び、ビブラートとトレモロによりバラエティーに富んだ 音声を再生

目 次

昦	l 直	機能と特徴の概略説明	
	1.1	機能の概略	3ページ
	1.2	特徴	3ページ
	1.3	FM 音源の発音原理	3ページ
第	2章	構造と特徴	
	2.1	レジスタ構成	4ページ
	2.	1.1アドレス・マップ	4ページ
	2.	1.2 レジスタ説明	5ページ
	2.2	スロット構成	11 ページ
	2.3	端子接続	12 ページ
	2.	3.1 端子機能	12 ページ
第	3 章	デバイス仕様	
	3.1	基本回路	13 ページ
	2 2	電气的特性	12 % - 3

1.機能と特徴の概略

1.1 機能の概略

YM2151 は 8 ビット・バス・ラインを持ち、マイクロプロセッサを介して、卓越した音質を再現する能力のある FM 音源です。特別に開発された D/A コンバータである YM3012 を合わせてお使いいただくことで、8 音を左右 2 チャンネルの音声信号を得ることが出来ます。

さらに、このデバイスはノイズ、ビブラート、及び、トレモロの音声効果回路、及び、タイマーを 持っています。

外形は24ピン・デュアル・インライン・パッケージです。

1.2 特徴

最大発音数8音

ノイズ発生器

一時的に音色を変化させることが出来る

基本波から高調波を発生

数オクターブに渡って変調

1.6 セント毎にインターバルを設定可能

ビブラート、トレモロを追加

基本波からの極端な高調波変調、及び、ビブラートとトレモロによりバラエティーに富んだ 音声を再生

1.3 FM 音源の発音原理

FM 音源は図 1.1 に示される様な、簡単な構成により言い表すことが出来ます。数式的に表すならば以下の様になります。

 $E(t) = A(t)*\sin[(Nc+Dc)*wt + B(t)*\sin(Nm+Dm)*wt)]$

A(t) : Volume envelopeB(t) : Timbre envelope

Nx : 基本周波数の 1/2、または、倍数

Dx: 基本周波数の倍音

2.構造と特徴

2.1 レジスタ構成

2.1.1 アドレスマップ

アドレスマップ (リード・モード)

HEX	D7	D6	D5	D4	D3	D2	D1	D0	
XX	В	\nearrow	><	><	><	>	18	1ST	

アドレスマップ (ライト・モード)

HEX	D7	D6	D5	D4	D3	D2	D1	D0
00	\setminus	><	><	><	><	><	><	><
01				TE	ST			
02	\nearrow	> <	> <	> <	><	><	><	><
	X	><	><	><	><	><	><	><
07	\setminus	><	><	><				
08				K(DΝ			
09	\setminus	><	><	><				
	\searrow							
0E	\times	><	><	><				><
0F	NE					NFRQ		
10				CLF	KA1			
11	\setminus	><	><	><	><	><	CLI	KA2
12				CL	KB			
13	\langle	><	><	><	><	><	><	><
14	CSM	\times	F RE	SET	IRÇ	EN	LO	AD
15	\langle	><	><	><	><	><	><	><
	X	><	><	><	><	><		><
17	\langle	><	><	><	><	><	><	><
18				LF]	RQ			
19				PMD/	AMD			
1A	$>\!\!<$	><	><	$\geq <$	$\geq <$	$\geq <$	><	><
1B	C	Γ	\langle	><	><		V	V
1C	\nearrow	><	><	><				
	\setminus	><	><	><	><	><	><	><
1F	\geq	$\geq <$	$\geq \overline{}$					
20 - 27	L	R		FB			CON	
28 – 2F	><				KC			
30 - 37			K	F			> <	
38 – 3F	><		PMS		><	><	AN	1S
40 – 5F	\geq		DT1			MU	JL	
60 - 7F					TL			
80 – 9F	K	S	><			AR		
A0 – BF	AMS EN	>	> <			D1R		
C0 – DF	D	2	\nearrow			D2R		
E0 - FF		D1	L			R	R	

2.1.2 レジスタ説明

B: WRITE BUSY FLAG (#XX)

書き込み動作中である事を示すフラグ。書き込み動作中は"1"を返す。連続して書き込みを行う場合には、このフラグが"0"である事を確認する必要がある。

D7: WRITE BUSY FLAG

IST #XX

IRQ が Low になった時、タイマーA、又は、タイマーB のどちらがオーバーフローしたかを"1"で示す。

- X X X X X D1 D0

D0: Timer A FLAG

D1: Timer B FLAG

TEST* LFO RESET (#01)

LFO 出力を"1"を書き込む事によりリセットする。

D1: LFO RESET

KON: KEY ON (#08)

3bit のチャンネル番号と 4bit のスロット番号でキーの ON/OFF を行う。

X D6 D5 D4 D3 D2 D1 D0

D0 - D2: CH No.

D3: M1

D4: C1

D5: M2

D6: C2

NOISE: Noise Generator (#0F)

NOISE を有効にすると、32 番スロット(CH7、C2)はノイズ。スロットに変更される。ノイズの周波数は外部からノイズ・下練れー多のクロックを操作することにより変更できる。また、32 番スロットのエンベロープ機能を使うこともできるが、この場合、対数変化ではなく、アタックは指数、ディケイは直線となる。

D0 – D4: NFRQ (NOISE FREQUENCY)

D7: NE (NOISE ENABLE)

$$f_{\text{noise}} = \frac{M}{32 * NFRQ}$$

CLKA: TIMER A (#10, #11)

CLKA1 は、CLKA2 (#11) と合わせて 10bit のタイマーを構成する。CLKA1 は TIMER A の上位 8 ビットを表す。

								D0 – D7: CLKA1
X	X	X	X	X	X	D1	D0	D0 – D1: CLKA2

$$T_{A} (ms) = \frac{64*(1024-NA)}{M (kHz)}$$

CLKB: TIMER B (#12)

CLKB は合わせて 10bit のタイマーを構成する。CLKA1 は TIMER A の上位 8 ビットを表す。

CSM (#14)

CSM に"1"をセットすると、TIMER A がオーバーフローしたときに、全音 Key ON した状態となる。

	D7	X	X	X	X	X	X	X
--	----	---	---	---	---	---	---	---

D7: CSM

F RESET (#14)

この 2bit が TIMER A、TIMER B のどちらのタイマーがオーバーフローしたかを"1"で表す。

- X D5 D4

D4 – D5: F RESET (D4: TIMER A, D5: TIMER B)

IRQ EN (#14)

この 2bit が TIMER A、TIMER B それぞれのオーバーフローに対して、割り込みの許可を行う。

D2 - D3: IRQ EN (D2: TIMER A, D3: TIMER B)

LOAD (#14)

TIMER A、TIMER B をそれぞれ"1"でスタート、"0"でストップさせる。

- X - - - - DI DU

D0 - D1: LOAD (D0: TIMER A, D1: TIMER B)

LFREQ: LOW FREQUENCY (#18) 下記 8bit で発振器の周波数を設定する。

D7 D6 D5 D4 D3 D2 D1 D0

D0 - D7: LFREQ

PMD/AMD: PHASE MODULATION DEPTH/AMPLITUDE MODULATIN DIPTH (#19) 上位 1bit で機能を設定し、残る 7bit でモジュレーションの深さを設定。

D7 D6 D5 D4 D3 D2 D1 D0

D0 - D6: PMD 又は AMD

D7: 機能選択 (PMD: "1"、AMD: "0")

CT: CONTROL OUTPUT (#1B)

CT1、CT2 の各端子を設定する。また、イニシャル・クリアー時は CT1、CT2 とも"0"となる。

- 1								
	D7	D6	X	X	X	X	_	_

D6: CT1 D7: CT2

W: WAVE FORM (#1B)

2bit で LFO の波形を選択。

- - X X X X D1 D0

D0 - D1: WAVE FORM

D1	D0	PM	AM
0	0	鋸形波(UP)	鋸形波(DOWN)
0	1	矩形波	矩形波
1	0	三角波	三角波
1	1	ノイズ	ノイズ

LR: LEFT CHANNEL ENABLE/RIGHT CHANNEL ENABLE (#20 – #27) 左右どちらの信号ラインに出力するかを設定。

		D7	D6	_	_	_	_	_	-
--	--	----	----	---	---	---	---	---	---

D6: LEFT CH.

D7: RIGHT CH.

FB: SLEF FEED BACK LEVEL (#20 – #27) FEED BACK 量を設定。

D5 D4 D3	_	_	_
----------	---	---	---

D3 – D5: SELF FEED BACK LEVEL

FB	0	1	2	3	4	5	6	7
LEVEL	0	/16	/8	/4	/2		2	4

CON: CONNECTION (#20 - #27)

各チャンネル毎にアルゴリズムを選択する。

		_	ı	-	D2	D1	D0
--	--	---	---	---	----	----	----

D0 - D2: ARGORITHM NUMBER

KC: KEY CODE (OCT, NOTE) (#28 - #2F)

ノート毎の音程を設定。7bit 中 3bit でオクターブ、4bit でノート番号ほ表現する。

X D6 D5 D4 D3 D2 D1 D0

D0 - D3: NOTE

D4 - D7: OCT

KF: KEY FRACTION (#30 - #37)

半音(100 セント)を 1.6 セント毎に分割する。

D7 D6 D5	D4 D3	D2	
----------	-------	----	--

D2 - D7: KEY FRACTION

PMS: PHASE MODULATION SENSITIVITY (#38 – #3F)

LFO の出力レベルが最大に設定さている時、このレジスタによって LFO の深さを 8 段階に設定できる。

X D6 D5 D4	X	X	_	
------------	---	---	---	--

D4 - D6: PMS

AMS: AMPLITUDE MODULATION SENSITIVITY (#38 – #3F)

LFO の出力レベルが最大に設定さている時、このレジスタによって LFO の深さを 4 段階に設定できる。また、後述の AMS EN によって、オペレータ毎にモジュレーションを使用するか否かえお設定できる。

X	-	_	_	X	X	D1	D0

D0 - D2: AMS

DT1: DETUNE 1 (#40 - #5F)

各オペレータを±3の幅でデチューンする。

X	D6	D4	D3	_	_	_	_
---	----	----	----	---	---	---	---

D3 - D6: DT1

MUL: PHASE MULTIPLY (#40 - #5F)

各オペレータの KC、KF の値を掛け算する。

X D6 D5 D4 - - - -

D4 - D6: DT(1)

MUL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0.5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

TL: TOTAL LEVEL (#60 - #7F)

EG の最大値を設定する。最小分解能は 0.75dB であり、各ビットの重み付けは下表の通りである。

d B

X	D6	D5	D4	D3	D2	D1	D0
---	----	----	----	----	----	----	----

D0 - D6: TL

D6	D5	D4	D3	D2	D1	D0
48	24	12	6	3	1.5	0.75

KS: KEY SCALING (#80 - #9F)

KEY CODE (音程)によって、AR、D1R、D2R、RR のレートを変える。

D7	D6	X	_	_	_	_	_
----	----	---	---	---	---	---	---

D6 - D7: KS

AR: ATTACK RATE (#80 - #9F)

ATTACK RATE を設定する。

_	-	X	D4	D3	D2	D1	D0

D0 - D4: AR

AMS EN: AMS ENABLE (#A0 - #BF)

上述の AMS を各オペレータ毎で使用するか否かえお設定す。

D0 - D2: AMS

D1R: FIRST DECAY RATE (#A0 - #BF)

FIRST DECAY RATE を設定する。

	X	D4	D3	D2	D1	D0
--	---	----	----	----	----	----

D0 - D4: AR

DT2: DETUNE 2ATTACK RATE (#C0 – #DF)

各オペレータを 0、+600、+781、+950 セント、デチューンする

D7	D6	X	_	_	_	_	_
----	----	---	---	---	---	---	---

D6 - D7: DT2

D2R: SECOND DECAY RATE (#C0 - #DF) SECOND DECAY RATE を設定する。

_	_	X	D4	D3	D2	D1	D0

D0 - D4: D2R

D1L: FIRST DECAY LEVEL (#E0 – #FF) FIST DECAY LEVEL を設定する。

D7 D6 D5 D4	_	_	_	_
-------------	---	---	---	---

D4 - D7: D1L

RR: RELEASE RATE (#E0 - #FF) RELEASE RATE を設定する。

_	_	_	_	D3	D2	D1	D0

D0 - D3: RR

2.2 スロット構成

FUNCTION		M1 Modulator 1							M2							
			M	[odu]	lator	1					M	lodul	ator	2		
SLOT No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CH No.	1	2	3	4	5	6	7	8	Modulator 2 9 10 11 12 13 14 1		7	8				

FUNCTION				C	1				C2							
				Carr	ier 1							Carr	ier 2			
SLOT No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
CH No.	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8

ノイズを選択すると、このスロットルはノイズ CH になる。

2.3 端子接続

YM2151 は 24 ピン DIP 形状をしており、各端子のレイアウトは下図の通りである。

2.3.1 端子機能

D0~D7:アドレス/データ・バス(INPUT/OUTPUT HIGH IMPEDANCE)

外部機器と内部レジスタのアドレス、及び、データのやり取りをこの 8bit パラレル・バスを用いて行う。

A0:アドレス / データ選択 (INPUT)

A0~ii"0"のとき、D0~D7~itアドレス・バスとして機能し、A0~ii"1"のとき、D0~D7~itデータ・バスとして機能する。

WR: ライト(INPUT)

ライト信号が入力されたとき、バス上の信号が取り込まれる。

RD: リード (INPUT)

リード信号が入力されたとき、バスを介して内部データが読み出される。

 \overline{CS} : $\mathcal{F} \cup \mathcal{I} \cup \mathcal{I}$

チップ・セレクト信号が入力されたとき、A0、 \overline{WR} 及び \overline{RD} 信号がアクティヴであれば、データの受け渡しが行われる。

IC:内部クリア (INPUT)

内部クリア信号が入力されたとき、内部のレジスタが全て"0"にクリアされる。

IRQ:割り込み要求(OUTPUT:オープン・ドレイン)

2種類のタイマーのいずれかがオーバーフローした時、割り込み要求を発生させる。

CT1、CT2:コントロール1、コントロール2 (OUTPUT)

外部機器をコントロールするための出力端子。

SO: シリアル・出力(OUTPUT)

LR、2 チャンネルの出力はシリアルであり、専用の YM3012 D/A コンバータに送られる。

SH1、SH2: サンプル・アンド・ホールド(OUTPUT)

シリアル・データ取り込み用のサンプル・アンド。ホールド信号を YM3012 用に生成する。

M:システム・クロック(INPUT)

YM2151 をドライブするためのクロックを入力する。内部で 1/2 に分周され使われる。また、M は信号発生の基準信号となる。

1: D/A 用クロック(OUTPUT)

D/A コンバータ用のクロックであると共に、 \overline{IRQ} 、CT1、CT2、SH1、SH2、及び、SO の同期の基準となる。

 $V_{ ext{DD}}$:電源(INPUT)

通常+5Vを供給する。

V_{SS}: グランド (INPUT)

システム・グランドに接続する。

3.デバイスの仕様

3.1 基本回路

3.2 電気的特性

最大絶対定格

項目	規格	単位
電圧範囲	-0.3 ~ +7	V
動作温度	0 ~ +70	
保存温度	-50 ~ +125	

推奨動作条件

項目	記号	MIN.	TYP.	MAX.	単位
供給電圧	$V_{\scriptscriptstyle m DD}$	4.75		5.25	V
供給電流	I_{DD}			120	mA
消費電力 (at V _{DD} = 5.25V)	P_{D}			630	mW

クロック

項目	記号	条件	MIN.	TYP.	MAX.	単位
Voltage Level	"0"		-0.3		0.8	V
Voltage Level	"1"		20		$V_{ m DD}$	V
Rise Time	Tr	図 - 1			50	ns
Fall Time	Tf	図 - 1			50	ns
ON Time	T_{ON}	図 - 1	100			ns
Frequency	M		3.0	3.58	4.0	MHz
Input Capacitance	См				10	pF

1

項目	記号	条件	MIN.	TYP.	MAX.	単位
Raise Time	Tr_1	図 - 3			180	ns
Fall Time	Tf_1	図 - 3			120	ns
Load Capacitance	CL				100	pF

$\overline{\text{IRQ}}$, CT1, CT2, SO, SH1, SH2

項目	記号	条件	MIN.	TYP.	MAX.	単位
Raise Time	Tr_2	図 - 4			250	ns
Fall Time	Tf_2	図 - 4			250	ns
Load Capacitance	CL				100	pF

書き込み / 読み出しタイミング

項目	記号	条件	MIN.	TYP.	MAX.	単位
Address Set-up Timing	T_{AS}	図 - 2	10			ns
Address Hold Timing	T_{AH}	図 - 2	10			ns
CS Write Width	T_{cw}	図 - 2	100			ns
WR Write Width	T_{WW}	図 - 2-1	100			ns
Write Data Set-up Time	T_{DS}	図 - 2-1	50			ns
Write Data Hold Time	T_{DHW}	図 - 2-2	10			ns
Read Data Access Time	T_{ACC}	図 - 2-2			180	ns
Read Data Hold Time	$T_{ m FHR}$	図 - 2-2	10			ns

入力端子

項目	記号	条件	MIN.	TYP.	MAX.	単位
Voltage Level	"0"		-0.3		0.4	V
Voltage Level	"1"		2.4		$V_{ m DD}$	V

A0, \overline{WR} , \overline{RD} , \overline{CS} , M

項目	記号	条件	MIN.	TYP.	MAX.	単位
Input Leak Current	IL	at 25 Vi=10V			0.1	uA

 $\overline{\rm IC}$

項目	記号	条件	MIN.	TYP.	MAX.	単位
Input Current	Iio	$V_{\rm DD} = 5V$			60	uA

ĪRQ^{*}、CT1、CT2、D0~D7、SH1、SH2、SO、 1

項目	記号	条件	MIN.	TYP.	MAX.	単位
Load Current	I_D	$V_{LO}=0.4V$			2.1	mA

^{*}オープン・ドレイン

図 - 2-1 Write Timing

NOTE: T_{DS} と T_{DHW} は共に、 \overline{CS} 、または、 \overline{WR} が High に達した事を参照する。

図 - 2-2 READ TIMING

NOTE: T_{ACC} は、 \overline{CS} 、または、 \overline{RD} が Low に達した事を参照する。

 T_{DHR} は、 \overline{CS} 、または、 \overline{RD} が High に達した事を参照する。

