Sprawozdanie – Laboratorium nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona)

Marcin Urbanowicz 14.04.2021

1. Wstęp teoretyczny

Podczas laboratorium zajmowaliśmy się poszukiwaniem zer (miejsc zerowych) wielomianów.

1.1. Metoda Newtona

Jest to algorytm iteracyjny wyznaczania przybliżonej wartości pierwiastka funkcji. Jest metodą jednopunktową, w której przyjmujemy następujące założenia dla funkcji f:

- W przedziale [a, b] znajduje się dokładnie jeden pierwiastek
- Funkcja ma różne znaki na krańcach przedziału tj. $f(a) \cdot f(b) < 0$
- Pierwsze i druga pochodna funkcji mają stały znak w tym przedziale

Rysunek 1: Wykres ilustrujący metodę Newtona

Algorytm działania jest następujący:

- 1) Z końca przedziału [a, b], w którym funkcja ma ten sam znak co druga pochodna należy poprowadzić styczną do wykresu funkcji y = f(x). W ten sposób wykonujemy jedną iterację mniej, bo zbliżamy się od pierwiastka z jednej strony, jak pokazano na wykresie powyżej
- 2) Styczna przecina os OX w punkcie X, który stanowi pierwsze przybliżenie rozwiązania
- 3) Sprawdzamy czy $f(x_1) = 0$, jeśli nie to z tego punktu prowadzimy kolejną styczna
- 4) Druga styczna przecina oś OX w punkcie X₂, który stanowi drugie przybliżenie
- 5) Kroki 3 4 powtarzamy iteracyjnie aż spełniony będzie warunek:

$$|x_{k+1} - x_k| \le \varepsilon$$

Równanie stycznej poprowadzonej z punktu B:

$$y - f(b) = f'(b)(x - b)$$

Dla y = 0 otrzymujemy pierwsze przybliżenie:

$$x_1 = b - \frac{f(b)}{f'(b)}$$

Równanie stycznej w k – tym przybliżeniu:

$$y - f(x_k) = f'(x_k)(x - x_k)$$

Wzór iteracyjny na położenie k – tego przybliżenia pierwiastka równanie nieliniowego:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 1, 2, ...)$

Rząd zbieżności metody wynosi $\mathbf{p} = \mathbf{2}$

Generalnie w metodzie Newtona wykonujemy iteracje do momentu otrzymania satysfakcjonującego nas przybliżenia. W praktyce możemy przyjąć kilka różnych warunków zatrzymanie. My przyjęliśmy następujący:

$$|x_{j+1} - x_j| < 10^{-7}$$

2. Zadanie do wykonania

2.1. Opis problemu

Dany jest wielomian, którego zera chcemy znaleźć:

$$f(x) = a_n x^n + a_{n-1} x^n + \dots + a_1 x + a_0 = 0$$

Jeśli podzielimy wielomian, przez wyraz $(x - x_j)$ to otrzymamy:

$$f(x) = (x - x_i)(b_{n-1}x^{n-2} + b_{n-2}x^{n-3} + \dots + b_0) + R_i$$

Współczynniki nowego wielomianu (tego o współczynnikach b_i) wyznaczamy rekurencyjnie:

$$b_n = 0$$

 $b_k = a_{k+1} + x_j b_{k+1}, k = n - 1, n - 2, ..., 0$
 $R_i = a_0 + x_i b_0$

Czynność tą powtarzamy do czasu gdy znajdziemy wszystkie pierwiastki dla wielomianu, które wyznaczamy korzystając z poniższej formuły:

$$x_{j+i} = x_j - \frac{R_j}{R_i'}$$

Gdzie czynniki x_{j+1} to kolejne lepsze przybliżenia miejsca zerowego, a reszty R_j , R'_j wyznaczamy za pomocą opisanej wyżej metody rekurencyjnej.

W naszym przypadku otrzymaliśmy wielomian:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240$$

Wzór rekurencyjny realizowaliśmy za pomocą procedury:

$$licz_r(a, b, n, x0)$$

Współczynniki w tej procedurze zostały już opisane w sekcji 1). Posłużyła nam ona także do wyznaczenia wartości R_j w poszczególnych iteracjach. Gdy reszta R_j była równa (lub też bliska ze względu na niecałkowitą dokładność metody) zeru oznaczało to, że dane przybliżenie x_j jest miejscem zerowym.

2.2. Wyniki

Uzyskałem następujące wyniki (miejsca zerowe zaznaczone na pomarańczowo)

• Pierwsze miejsce zerowe

Numer iteracji	Przybliżenie <i>xj</i>	Reszta z dzielenia <i>R_j</i>	Reszta z dzielenia R'_i
1	1.22449	240	-196
2	0.952919	-43.1289	-158.813
3	0.999111	10.5714	-228.86
4	1	0.195695	-220.179
5	1	7.96468e-05	-220
6	1	1.32729e-11	-220

• Drugie miejsce zerowe

Numer iteracji	Przybliżenie <i>xj</i>	Reszta z dzielenia <i>R_i</i>	Reszta z dzielenia <i>R</i> ' _i
1	-5.45455	-240	-44
2	-4.46352	-120.975	122.071
3	-4.10825	-24.2755	68.3304
4	-4.00957	-4.31754	43.7539
5	-4.00009	-0.347977	36.6891
6	-4	-0.00323665	36.0065
7	-4	-2.90891e-07	36

• Trzecie miejsce zerowe

Numer iteracji	Przybliżenie <i>xj</i>	Reszta z	Reszta z
		dzielenia R _j	dzielenia R'_i
1	15	-60	4
2	9.20218	5850	1009
3	5.53752	1687.53	460.488
4	3.38316	469.259	217.818
5	2.33534	118.159	112.767
6	2.0277	22.07	71.739
7	2.00021	1.67505	60.9441
8	2	0.0128842	60.0073
9	2	7.83733e-07	60

• Czwarte miejsce zerowe

Numer iteracji	Przybliżenie <i>xj</i>	Reszta z	Reszta z
		dzielenia R _j	dzielenia R'_j
1	-2.30769	30	13
2	-2.94284	5.32544	8.38462
3	-2.99954	0.403409	7.11433
4	-3	0.00321531	7.00092
5	-3	2.10929e-07	7

• Piąte miejsce zerowe

Numer iteracji	Przybliżenie <i>xj</i>	Reszta z dzielenia <i>R_j</i>	Reszta z dzielenia R'_j
1	-10	10	1
2	-10	0	1

Miejsca zerowe tego wielomianu to: -10, -3, 2, -4, 1

3. Podsumowanie

Metoda Newtona jest bardzo wydajną metodą szukania miejsc zerowych funkcji. Znajdujemy rozwiązania w stosunkowo niewielkim czasie (jak na metodę iteracyjną) i po nie wielkiej ilości iteracji. Bardzo ważne jest odpowiednie dobranie punktu x_0 – początkowego przybliżenia, dzięki temu zmniejsza się prawdopodobieństwo wyjścia poza maksymalny zakres iteracyjny, a jednocześnie wyniki są dość dokładne.

Warto odnotować fakt niezwykle szybkiego i całkowicie dokładnego znalezienia ostatniego miejsca zerowego. Dzieje się tak, ponieważ nasz schemat uwzględnia dzielenie ostatniego wielomianu przez ostatnie znalezione miejsce zerowe. W ten sposób przy szukaniu ostatniego miejsca zerowego, funkcja, której zera szukamy to funkcja liniowa, której sieczną da się w pełni przybliżyć. Dzięki temu jest ono znajdowane niemalże natychmiast.