- 1. Merupakan suatu sistem untuk mengontrol sesuatu tanpa atau sedikit peran manusia.
- 2. Merupakan perpindahan sistem kontrol, dari main kontrol ke sistem kontrol yanglain untuk mengatasi error pada system kontrol utama.
- 3. Perbedaan DCS & PLC

DCS	PLC	
Data Yang diolah lebih banyak, banyak IO	Lebih sedikit data IO	
Terdapat histori dan hmi	Butuh prangkat eksternal	
Response lebih lambat karena io yang di olah	Response cepat	
lebih banyak		
System pararel, ketika satu sistem rusak tidak	System pararel, ketika satu sistem rusak tidak	
mempengaruhi sistem lain	mempengaruhi sistem lain	

4. NO=Kondisi normalnya Terputus, ketika di beri tagangan menjadi NC atau terhubung, sedangkan NC kebalikannya dari NO.

1. Arsitektur sistem otomasi elektronika yang dimaksud adalah DDC (Direct Digital Control) dan DCS (Distributed Control System) yang diperlihatkan pada gambar 1-3 dan 1-4. Sistem akan semakin kompleks dengan semakin besarnya jumlah variabel proses dan jumlah input / output (I/O) yang digunakan dalam melayani kebutuhan produksi dalam industri.

Unit yang ada pada DDC (Direct Digital Control) seperti gambar disamping, merupakan unit peralatan elektronik meliputi : Peralatan Kontrol Proses (analog dan diskrit) Peralatan Input dan Output (sensor, aktuator) Peralatan Instrumentasi Peralatan Komunikasi Data Disamping itu pada DDC juga dilengkapi dengan unit perangkat lunak: Operating System Software Communication Protocol DDC Application Software Distributed Control System (DCS)

: Distributed Contro. System (DCS) [2]

DCS dilengkapi dengan unit Sistem DCS, yaitu, Unit Peralatan Elektronik : Peralatan Kontrol Proses Peralatan Input dan Output Peralatan Akuisisi Data Peralatan Instrumentasi Peralatan Interkoneksi Unit Peralatan Jaringan Komputer (LAN): Client & Server Computer Peralatan Interkoneksi (NIC, Konektor, Saluran Transmisi, HUB, Modem) Unit Perangkat Lunak : Operating System Software (Computer & LAN) Communication Protocol DCS Application Software Database & Information System Di atas adalah contoh arsitektur Sistem Otomasi berbasis DDC dan DCS, dalam merancang arsitektur tergantung dari jenis sistem yang dipakai, selain itu banyak digunakan HMI (human Machine Interface) dan SCADA

2. Menggunakan FO

3.

Topologi	Kelebihan	Kekurangan
Star	Lebih aman dan fleksible	Ketergantungan terhadap
		prangkat pusat
ring	Mudah melakukan perbaikan	Apabila ada kerusakan node, maka akan berdampak pada yang lain, seperti rangkaian seri
Daisy chain	Instalasi dan pemeliharaannya murah	Jika satu rusak akan menggangu yang lain
Daisy chain loop	Instalasi dan pemeliharaannya murah	Jika satu rusak akan menggangu yang lain

4. FDT dan DTM

- 5. 1. Tentukan system apa yang akan dikontrol
 - 2. Hitung jumlah input output dan diberi alamatnya

- 3. Membuat ladder diagram
- 4. Test dan check program
- 6. Perbedaan utama antara SCADA dan HMI adalah ruang lingkup mereka. HMI sebenarnya hanya bagian dari sistem SCADA yang lebih besar. Tanpa SCADA, HMI akan menjadi sangat tidak berguna. Perbedaanya SCADA bisa d control jarak jauh, dengan beberapa HMI, sedangkan HMI, membutuhkan operator setiap mesin
- 7. Mengunakan PI cocok untuk Pengaturan suhu, seperti analog input, tetapi menyabatkan oksilasi atau stady state yang lambat, sedangkan kondisi PID mempermudah proses PI dengan response turunan, atau posisi stady state lebih cepat