Tipología y ciclo de vida de los datos

Práctica 2: Limpieza y validación de los datos

Daniel Mato Regueira e Iago Veiras Lens Junio de 2019

Índice

De	etalles de la actividad	2
1.	Descripción del dataset	3
	1.1. Variables del dataset	. 3
	1.2. Importancia y objetivo del análisis	. 3
2.	Integración y selección de los datos	4
3.	Limpieza de los datos	8
	3.1. Elementos vacíos	. 8
	3.2. Valores extremos	. 10
4.	Análisis de los datos	12
	4.1. Selección de grupos a analizar	. 12
	4.2. Comprobación de normalidad y homocedasticidad $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$. 12
	4.3. Aplicación de pruebas estadísticas	. 13
	4.3.1. Estudio de correlación	. 13
	4.3.2. Prueba de contraste de hipótesis	. 14
	4.3.3. Modelo de regresión logística	. 15
5.	Conclusiones	18

Detalles de la actividad

- 1. Descripción del dataset
- 1.1. Variables del dataset
- 1.2. Importancia y objetivo del análisis

2. Integración y selección de los datos

Cargamos los dos conjuntos de datos

```
data <- read.csv2(
   file = "https://archive.ics.uci.edu/ml/machine-learning-databases/horse-colic/horse-colic.data",
   header = F, sep = "")
data <- rbind(
   data,
   read.csv(
   file = "https://archive.ics.uci.edu/ml/machine-learning-databases/horse-colic/horse-colic.test",
   header = F, sep = ""))</pre>
```

Damos nombre a las columnas según el repositorio (enlace al documento con la descripción de variables)

Convertimos los ? a NaN

```
data[data == '?'] <- NaN
```

Descartamos las variables inútiles

```
data <- data[-c(3, 6, 16, 28)]
```

Refactorizamos las variables categóricas

```
labels = c("< 3s", "> 3s"), levels = c(1, 2))
data$pain <- factor(data$pain,</pre>
                     labels = c("alert", "depressed", "intermittent mild pain",
                                "intermittent severe pain", "continuous severe pain"),
                     levels = c(1, 2, 3, 4, 5)
data$peristalsis <- factor(data$peristalsis,</pre>
                            labels = c("hypermotile", "normal", "hypomotile", "absent"),
                            levels = c(1, 2, 3, 4))
data$abdominal_distension <- factor(data$abdominal_distension,</pre>
                                     labels = c("none", "slight", "moderate", "severe"),
                                     levels = c(1, 2, 3, 4))
data$nasogastric_tube <- factor(data$nasogastric_tube,</pre>
                                 labels = c("none", "slight", "significant"),
                                 levels = c(1, 2, 3))
data$nasogastric_reflux <- factor(data$nasogastric_reflux,</pre>
                                   labels = c("none", "> 11", "< 11"),
                                   levels = c(1, 2, 3))
data$rectal_examination <- factor(data$rectal_examination,</pre>
                                   labels = c("normal", "increased", "decreased",
                                               "absent"),
                                   levels = c(1, 2, 3, 4))
data$abdomen <- factor(data$abdomen,
                        labels = c("normal", "other", "firm feces li", "distended si",
                                   "distended li"),
                        levels = c(1, 2, 3, 4, 5))
data$abdominocentesis_appearance <- factor(data$abdominocentesis_appearance,</pre>
                                             labels = c("clear", "cloudy",
                                                         "serosanguineous"),
                                             levels = c(1, 2, 3))
data$outcome <- factor(data$outcome,</pre>
                        labels = c("lived", "died", "euthanized"), levels = c(1, 2, 3))
data$surgical_lesion <- factor(data$surgical_lesion,</pre>
                                labels = c("yes", "no"), levels = c(1, 2))
```

Convertimos a continuas las variables numéricas

```
data$rectal_temperature <- as.numeric(levels(data$rectal_temperature))[
  data$rectal_temperature]
data$pulse <- as.numeric(levels(data$pulse))[data$pulse]
data$packed_cell_volume <- as.numeric(levels(data$packed_cell_volume))[
  data$packed_cell_volume]
data$total_protein <- as.numeric(levels(data$total_protein))[data$total_protein]
data$abdomcentesis_total_protein <-
  as.numeric(levels(data$abdomcentesis_total_protein))[data$abdomcentesis_total_protein]</pre>
```

Nos interesa el número de lesiones, no el tipo. Convertimos las 3 variables en una única

```
data$type_lesion_1[data$type_lesion_1 > 0] <- 1
data$type_lesion_2[data$type_lesion_2 > 0] <- 1
data$type_lesion_3[data$type_lesion_3 > 0] <- 1
data$num_lesion <- data$type_lesion_1 + data$type_lesion_2 + data$type_lesion_3
data <- data[-c(22, 23, 24)]</pre>
```

summary(data)

```
rectal_temperature
                                                   pulse
##
    surgery
                  age
                                                      : 30.00
##
    yes :214
               adult:340
                            Min.
                                   :35.40
                                               Min.
##
                            1st Qu.:37.80
                                               1st Qu.: 48.00
    no :152
               young: 28
    NA's: 2
                            Median :38.10
                                               Median : 60.00
                                                     : 70.76
##
                            Mean
                                   :38.13
                                               Mean
##
                            3rd Qu.:38.50
                                               3rd Qu.: 88.00
##
                                   :40.80
                                                       :184.00
                            Max.
                                               Max.
##
                            NA's
                                   :69
                                               NA's
                                                       :26
##
    temperature_of_extremities peripheral_pulse
                                                       mucous_membranes
##
    normal: 95
                                normal
                                         :151
                                                  normal pink
                                                                :98
##
    warm : 39
                                increased: 6
                                                  bright pink
##
    cool :135
                                reduced :116
                                                  pale pink
                                                                :81
##
    cold : 34
                                absent
                                         : 12
                                                  pale cyanotic:50
   NA's : 65
                                                  bright red
##
                                NA's
                                         : 83
                                                                :28
##
                                                   dark cyanotic:25
##
                                                  NA's
                                                                :48
    capillary_refill_time
                                                               peristalsis
##
                                                 pain
##
   < 3s:232
                                                    :49
                                                          hypermotile: 49
                           alert
   > 3s: 96
##
                           depressed
                                                    :77
                                                          normal
                                                                     : 22
   NA's: 40
                           intermittent mild pain :82
##
                                                          hypomotile: 154
##
                           intermittent severe pain:47
                                                          absent
                                                                     : 91
##
                           continuous severe pain
                                                          NA's
                                                                     : 52
##
                          NA's
                                                    :63
##
##
    abdominal_distension
                             nasogastric_tube nasogastric_reflux
##
    none
            :101
                         none
                                     : 89
                                              none:141
##
    slight: 75
                         slight
                                     :121
                                              > 11: 45
##
    moderate: 85
                         significant: 27
                                              < 11: 49
                         NA's
                                              NA's:133
##
    severe : 42
                                     :131
##
    NA's
            : 65
##
##
##
   rectal examination
                                 abdomen
                                            packed cell volume total protein
   normal
                                            Min. : 4.00
           : 68
                       normal
                                     : 31
                                                                Min. : 3.30
    increased: 14
                        other
                                     : 24
                                            1st Qu.:37.25
                                                                1st Qu.: 6.50
##
                        firm feces li: 19
                                            Median :44.00
##
    decreased: 61
                                                                Median : 7.50
##
    absent : 97
                       distended si : 55
                                            Mean
                                                   :45.66
                                                                Mean
                                                                       :24.77
##
    NA's
             :128
                        distended li : 96
                                            3rd Qu.:52.00
                                                                3rd Qu.:58.00
##
                       NA's
                                     :143
                                            Max.
                                                    :75.00
                                                                Max.
                                                                        :89.00
##
                                            NA's
                                                    :37
                                                                NA's
                                                                       :43
##
     abdominocentesis_appearance abdomcentesis_total_protein
                                                                     outcome
   clear
##
                   : 52
                                  Min.
                                       : 0.100
                                                                         :225
                                                               lived
##
    cloudy
                   : 62
                                  1st Qu.: 2.000
                                                               died
                                                                         : 89
                                  Median : 2.100
                                                               euthanized: 52
##
    serosanguineous: 60
##
    NA's
                   :194
                                  Mean
                                        : 2.948
                                                               NA's
                                                                         : 2
##
                                  3rd Qu.: 3.900
##
                                  Max.
                                         :10.100
##
                                         :235
                                  NA's
    surgical_lesion
                      num_lesion
##
    yes:232
                    Min. :0.0000
```

##	no :136	1st Qu.:1.0000
##		Median :1.0000
##		Mean :0.8478
##		3rd Qu.:1.0000
##		Max. :3.0000
##		

3. Limpieza de los datos

3.1. Elementos vacíos

Eliminamos la filas que tenga más de un $50\,\%$ de variables faltantes

```
filas_nan <- apply(data, 1, function(y) sum(is.na(y))) < dim(data)[2]/2
data <- data[filas_nan,]</pre>
```

Cargamos la librería "VIM" para estudiar los patrones de datos faltantes

```
if (!require("VIM")) install.packages("VIM")
library(VIM)
```

Representamos los patrones de datos faltantes y el conteo de variables con mayor número de datos faltantes


```
##
    Variables sorted by number of missings:
##
                        Variable
##
##
    abdomcentesis_total_protein 0.61538462
##
    abdominocentesis_appearance 0.49112426
                         abdomen 0.34023669
##
##
             nasogastric_reflux 0.30473373
##
               nasogastric_tube 0.29881657
             rectal_examination 0.28994083
##
##
             rectal_temperature 0.17159763
##
               peripheral_pulse 0.16568047
##
           abdominal_distension 0.10946746
##
     temperature_of_extremities 0.10650888
##
                            pain 0.10355030
##
                  total_protein 0.08579882
##
               mucous_membranes 0.07100592
                    peristalsis 0.06804734
##
##
             packed_cell_volume 0.06804734
##
          capillary_refill_time 0.05917160
##
                           pulse 0.05029586
##
                         surgery 0.00295858
##
                         outcome 0.00295858
##
                             age 0.00000000
##
                surgical lesion 0.00000000
##
                      num_lesion 0.00000000
```

Cargamos la librería "MICE" para imputar datos faltantes

```
if (!require("mice")) install.packages("mice")
library(mice)
```

Eliminamos las variables con más de un $50\,\%$ de valores faltantes

```
data <- data[-c(18, 19)]
```

Generamos varias capas de imputación para los datos faltantes y los representamos

```
#temp_data <- mice(data, printFlag = F)
temp_data <- mice(data, printFlag = F, m= 1, maxiter=1)
stripplot(temp_data, pch=20, cex = 1.2)</pre>
```


Imputamos los datos en el conjunto original

```
data <- complete(temp_data)</pre>
```

3.2. Valores extremos

Estudiamos los outliers de "rectal_temperature". Los valores son extremos pero plausibles

```
boxplot.stats(data$rectal_temperature)$out
```

```
## [1] 39.9 36.4 35.4 36.4 40.3 39.9 39.7 36.4 36.4 40.3 36.5 39.9 35.4 36.1 ## [15] 40.8 36.4 40.0 36.5 39.7 36.0 40.0
```

Estudiamos los outliers de "pulse". Eliminamos los valores extremos, ya que no son valores alcanzables por caballos

```
boxplot.stats(data$pulse)$out
```

```
## [1] 164 160 184 184 150 150
```

```
out_pulse <- boxplot.stats(data$pulse)$out
data <- data[-which(data$pulse %in% out_pulse), ]</pre>
```

Estudiamos los outliers de "packed_cell_volume". Eliminamos los valores extremos, ya que no son valores plausibles

```
boxplot.stats(data$packed_cell_volume)$out
```

```
## [1] 75 75 4 74
```

```
out_cells <- boxplot.stats(data$packed_cell_volume)$out
data <- data[-which(data$packed_cell_volume %in% out_cells), ]</pre>
```

Estudiamos los outliers de "total_protein". No hay ninguno

```
boxplot.stats(data$total_protein)$out
```

```
## numeric(0)
```

Estudiamos los outliers de "num_lesion". No los eliminamos, ya que son valores calculados anteriormente y estos eran plausibles

```
boxplot.stats(data$num_lesion)$out
```

Generamos un fichero con los datos filtrados y tratados.

```
write.csv(data, file = "clean_data_horse_colic.csv", row.names = F)
```

4. Análisis de los datos

4.1. Selección de grupos a analizar

4.2. Comprobación de normalidad y homocedasticidad

Aplicamos el test de Shapiro-Wilk a las cuatro variables numéricas

```
shapiro.test(data$rectal_temperature)
##
##
    Shapiro-Wilk normality test
##
## data: data$rectal_temperature
## W = 0.96797, p-value = 1.213e-06
shapiro.test(data$pulse)
##
##
    Shapiro-Wilk normality test
## data: data$pulse
## W = 0.91651, p-value = 1.557e-12
shapiro.test(data$packed_cell_volume)
##
    Shapiro-Wilk normality test
##
## data: data$packed_cell_volume
## W = 0.95931, p-value = 6.517e-08
shapiro.test(data$total_protein)
##
##
   Shapiro-Wilk normality test
## data: data$total_protein
## W = 0.67577, p-value < 2.2e-16
Cargamos la librería "car" para estudiar la homocedasticidad de los dos grupos de datos generados
if (!require("car")) install.packages("car")
library(car)
```

Realizamos el test de Levene para comprobar la homocedasticidad

```
leveneTest(total_protein ~ surgical_lesion, data)
```

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.8167 0.3668
## 326
```

4.3. Aplicación de pruebas estadísticas

4.3.1. Estudio de correlación

Cargamos la librería "dummies" para convertir en numéricas las variables categóricas

```
if (!require("dummies")) install.packages("dummies")
library(dummies)
```

Extendemos la variable "abdominal distension"

Asumimos que los caballos a los que se les practica la eutanasias mueren.

```
levels(data$outcome) <- c(0, 1, 1)
data$outcome <- as.numeric(data$outcome) - 1</pre>
```

Seleccionamos únicamente las variables numéricas

```
nums <- unlist(lapply(data, is.numeric))
data_nums <- data[ , nums]</pre>
```

Cargamos las librerías "corrplot" y "RColorBrewer" para representar la correlación entre las variables continuas

```
if (!require("corrplot")) install.packages("corrplot")
library(corrplot)
if (!require("RColorBrewer")) install.packages("RColorBrewer")
library(RColorBrewer)
```

Representamos la correlación entre las diferentes variables continuas, haciendo especial hincapié en los resultados para la variable "outcome"

4.3.2. Prueba de contraste de hipótesis

Creamos dos subconjuntos de datos de "total_protein" en función de si fueron operados o no

```
data_oper <- data[data$surgery == "yes", ]$total_protein
data_noper <- data[data$surgery == "no", ]$total_protein</pre>
```

Realizamos un contraste de hipótesis con hipótesis nula que las medias de los dos subconjuntos sn iguales. No se puede rechazar

```
t.test(data_noper, data_oper)
```

```
##
## Welch Two Sample t-test
##
## data: data_noper and data_oper
## t = -2.0594, df = 308.31, p-value = 0.04029
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -12.4643801 -0.2839655
## sample estimates:
## mean of x mean of y
## 22.41176 28.78594
```

4.3.3. Modelo de regresión logística

Creamos dos conjuntos a partir de los datos originales, uno para estimar el modelo y otro para testearlo

```
train_ind <- sample(seq_len(nrow(data)), size = 0.8*dim(data)[1])
train <- data[train_ind, ]
test <- data[-train_ind, ]</pre>
```

Estimamos el modelo de regresión logística y representamos sus características más reseñables

```
##
## Call:
## glm(formula = outcome ~ pulse + packed_cell_volume + num_lesion +
       abdominal_distension_moderate, family = "binomial", data = train)
##
##
## Deviance Residuals:
      Min
                 1Q
                     Median
                                   30
                                           Max
## -2.1493 -0.8218 -0.3259
                               0.8653
                                        2.2506
##
## Coefficients:
##
                                  Estimate Std. Error z value Pr(>|z|)
                                             0.918160 -6.898 5.28e-12 ***
## (Intercept)
                                 -6.333254
## pulse
                                  0.020803
                                             0.007131
                                                        2.917 0.003531 **
## packed_cell_volume
                                  0.053235
                                             0.017251
                                                        3.086 0.002030 **
## num_lesion
                                  1.887981
                                             0.550541
                                                        3.429 0.000605 ***
## abdominal distension moderate 0.693821
                                             0.330624
                                                        2.099 0.035859 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 349.35 on 261 degrees of freedom
## Residual deviance: 265.59 on 257 degrees of freedom
## AIC: 275.59
##
## Number of Fisher Scoring iterations: 5
```

Cargamos la librería "caret" para calcular la matriz de confusión de los resultados

```
if (!require("caret")) install.packages("caret")
library(caret)
```

Calculamos la matriz de confusión sobre los datos de test

```
test_pred <- predict.glm(out_model, test, type="response")
confusionMatrix(factor(round(test_pred)), factor(test$outcome))</pre>
```

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 0 1
            0 36 3
##
##
            1 12 15
##
                  Accuracy: 0.7727
##
##
                    95% CI: (0.653, 0.8669)
       No Information Rate : 0.7273
##
##
       P-Value [Acc > NIR] : 0.24844
##
##
                     Kappa : 0.5045
   Mcnemar's Test P-Value: 0.03887
##
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.8333
            Pos Pred Value: 0.9231
##
##
            Neg Pred Value: 0.5556
                Prevalence: 0.7273
##
##
            Detection Rate: 0.5455
##
      Detection Prevalence: 0.5909
##
         Balanced Accuracy: 0.7917
##
##
          'Positive' Class: 0
##
```

Cargamos la librería "pROC" para dibjuar la curva ROC del modelo estimado

```
if (!require("pROC")) install.packages("pROC")
library(pROC)
```

Representamos la curva ROC del modelo estimado

```
curva_roc <- roc(outcome ~ predict.glm(out_model, data, type = "response"), data)
plot(curva_roc)</pre>
```


5. Conclusiones