RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 2013 session Normale

Exercíce 1 (3points)

Une urne contient 4boules blanches et 2boules noires indiscernables au toucher.

On effectue au hasard un tirage de 2 boules simultanément de l'urne.

On note A_0 l'événement « on a obtenu aucune boule noire »

On note A_1 l'événement « on a obtenu une seule boule noire »

On note A_2 l'événement « on a obtenu deux boules noires »

Soit x la variable aléatoire qui, associe le nombre de boules noires tirées.

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N°	Question	Réponse A	Réponse B	Réponse C
1	Le nombre de tirages possibles est :	C_6^2	A_6^2	6 ²
2	La probabilité p (A_0) est :	$\frac{4}{6}$	6 15	$\left(\frac{4}{6}\right)^2$
3	La probabilité p (A ₁)est :	$\frac{8}{15}$	$\frac{1}{6}$	$\frac{2}{6}$
4	La probabilité p (A ₂)est :	$\frac{4}{6}$	$\frac{6}{15}$	$\frac{1}{15}$
5	L'espérance mathématique de X est :	$\frac{2}{3}$	$\frac{16}{15}$	4

Recopie et complète le tableau suivant en choisissant la bonne réponse.

Aucune justification n'est demandée :

Question	1	2	3	4	5			
Réponse								

Exercíce2 (5points)

Le plan complexe est rapporté à un repère orthonormé $(0; \vec{u}, \vec{v})$.

1.a) Résoudre dans \Box l'équation : (E_1) $z^2 + 2z + 10 = 0$

On notez₁et z_2 ses solutions avec $I_m(z_2) \leq 0$

b) Résoudre dans \Box l'équation : (E_2) $z^2 - 4z + 20 = 0$

On note z_3 et z_4 ses solutions avec $I_m(z_4) \leq 0$

2) on considère les points A, B, K, L et E d'affixes respectives ;

$$\mathbf{z}_A=\mathbf{z}_1\;;\mathbf{z}_B=\mathbf{z}_2\;,\mathbf{z}_K=\mathbf{z}_3\;,\;\mathbf{z}_L=\mathbf{z}_4\mathrm{et}\;\;\mathbf{z}_E=\mathbf{z}_3-2i$$

- a) Placer les points A, B, K, L et E dans le repère $(0; \vec{u}, \vec{v})$.
- b) Ecrire $z_E = z_3 2i$ sous forme algébrique et trigonométrique.
- c) Déterminer la nature du quadrilatère ABLE et du triangle AKE.
- 3) Pour tout nombre complexe z tel que $z \neq -1 + 3i$ on pose : $f(z) = \frac{z-2-4i}{z+1-3i}$

Déterminer et représenter dans le même repère les ensembles des points M du plan d'affixe z dans chacun des cas suivants :

*
$$\Gamma_1$$
 tel que $|f(z)| = 1$

*
$$\Gamma_2$$
 tel que $|f(z)-1|=\sqrt{10}$

Exercíce3 (4points)

On considère la suite numérique (u_n) définie par $u_0=6$ et pour tout $n\in \square$, $U_{n+1}=3U_n+10n-13$

- 1a) Calculer u_1 , u_2 et vérifier que $U_3 = 43$
- b) Justifier que la suite numérique (u_n) n'est ni géométrique ni arithmétique.
- 2) On définit la suite numérique (v_n) par : pour tout entier $n \in \square$, $V_n = U_n + 5n 4$
- a) Démontrer que la suite (v_n) est une suite géométrique dont on déterminera la raison et le premier terme. Exprimer v_n en fonction de n.
- b) A partir de quel terme a-t-on $V_n \ge 2013$
- c) En déduire que, pour tout $n \in \square$, $U_n = 2 \times 3^n 5n + 4$
- 3) Pour tout entier naturel n, on pose $S_n = U_0 + U_1 + \cdots + U_n$.

Déterminer l'expression de S_n en fonction de n.

Exercice 4 (8points)

Partie A

On considère la fonction g définie sur $]0, +\infty[par: g(x) = x^2 - 3 + 2lnx]$

- 1a) Calculer $\lim_{x\to 0^+} g(x)$, $\lim_{x\to +\infty} g(x)$
- b) Calculer la dérivée g'(x) et dresser le tableau de variation de g.
- 2a) Montrer que g réalise une bijection de]0, +∞[sur un intervalle J que l'on déterminera.
- b) Montrer que l'équation g(x) = 0 admet une unique solution α . Vérifier que 1, $34 \le \alpha \le 1$, 35.
- c) En déduire le signe de la fonction g sur l'intervalle $]0, +\infty[$.

Partie B

On considère la fonction f définie sur $]0, +\infty[par: f(x) = x - 2 + \frac{1-lnx}{x^2}]$

On note $\mathbb F$ sa courbe représentative dans le plan, muni d'un repère $(0;\vec{\imath},\vec{j})$ orthonormé

- 1a) Démontre que $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to +\infty} (f(x) (x-2)) = 0$
- b) Interpréter graphiquement les limites précédentes
- c) Étudier le signe de d(x) = f(x) (x 2), Résumer dans un tableau et interpréter graphiquement.
- 2a) Calculer f'(x)et justifier que f'(x) a même signe que g(x)
- b) Montrer que $f(\alpha) = \frac{3\alpha^3 4\alpha^2 1}{2\alpha^2}$ et donner une valeur approchée de $f(\alpha)$ à 10^{-1} prés
- c) En déduire le tableau de variation de f
- 3a) Donner l'équation de la tangente T à Γ au point A d'abscisse $x_0 = 1$
- b) Montrer que la courbe $\mathbb F$ coupe l'axe des abscisses en un deuxième point autre que A d'abscisse β telle que $1,9\leq \beta \leq 2$
- c) Tracer l'allure de la courbe dans le repère $(0; \vec{t}, \vec{j})$
- 4) Soit n un entier naturel $n \ge 3$, on considère l'aire du domaine E du plan compris entre la courbe et les droites d'équations respectives y = x 2, x = 3 et x = n
- a) Justifier que cette aire, exprimé en cm^2 , est donnée par : $I_n = \int_3^{n-1+lnx} dx$
- b) Calculer $J_0 = \int_3^n \frac{\ln x}{x^2} dx$ à l'aide d'une intégration par parties. En déduire I_n en fonction de n
- c) Calculer la limite de l'aire I_n du domaine E quand n tend vers $+\infty$