Sequential Monte Carlo Estimation of High Dimensional Latent Variable Models

Application to Stochastic Volatility Models

Han Xiao

Nov. 2018

Pennsylvania State Unversity

Motivation

• Estimate high-dimensional latent variable models

Stochastic volatility models: Widely used in practice and option

pricing.

Application Given asset returns, study the underlying volatility.

Motivation

Estimate high-dimensional latent variable models
 Stochastic volatility models: Widely used in practice and option pricing.
 Application
 Given asset returns, study the underlying volatility.

$$y_t = \exp\left(\frac{h_t}{2}\right)\varepsilon_t \tag{1}$$

$$h_{t+1} = \mu + \phi(h_t - \mu) + \sigma \eta_t \tag{2}$$

where ε and η are iid standard normal distribution.

- ullet y_t : asset return in reality ullet Observable
- ullet h_t : risk underlying the asset o Latent variable
- Parameter: $\Theta = \{\mu, \phi, \sigma^2\}$

1

Motivation

Estimate high-dimensional latent variable models

Stochastic volatility models: Widely used in practice and option pricing. Application Given asset returns, study the underlying volatility.

$$y_t = \exp\left(\frac{h_t}{2}\right)\varepsilon_t \tag{1}$$

$$h_{t+1} = \mu + \phi(h_t - \mu) + \sigma \eta_t \tag{2}$$

where ε and η are iid standard normal distribution.

- y_t : asset return in reality \rightarrow Observable
- h_t : risk underlying the asset \rightarrow Latent variable
- Parameter: $\Theta = \{\mu, \phi, \sigma^2\}$
- Goal: learn parameters and latent variables recursively
 - use real time data and estimate efficiently

1

The difficult part occurs in the latent variable (Equation (2)), i.e., likelihood function is not easily available:

$$f(h_t|y_t,\Theta) \propto \underbrace{f(y_t|h_t,\Theta)}_{observed\ return\ latent\ variable:\ volatility} \underbrace{f(h_t|y_{t-1},\Theta)}_{(3)}$$

The difficult part occurs in the latent variable (Equation (2)), i.e., likelihood function is not easily available:

$$f(h_t|y_t,\Theta) \propto \underbrace{f(y_t|h_t,\Theta)}_{observed\ return\ latent\ variable:\ volatility} \underbrace{f(h_t|y_{t-1},\Theta)}_{Observed\ return\ latent\ variable:\ volatility}$$
 (3)

$$f(h_t|y_{t-1},\Theta) = \int \underbrace{f(h_t|h_{t-1},\Theta)}_{proposed\ AR(1)} \underbrace{f(h_{t-1}|y_{t-1},\Theta)}_{hard\ closed\ form} dh_{t-1} \tag{4}$$

⇒ Difficult to evaluate the objective function

The difficult part occurs in the latent variable (Equation (2)), i.e., likelihood function is not easily available:

$$f(h_t|y_t,\Theta) \propto \underbrace{f(y_t|h_t,\Theta)}_{observed\ return\ latent\ variable:\ volatility} \underbrace{f(h_t|y_{t-1},\Theta)}_{observed\ return\ latent\ variable:\ volatility}$$
 (3)

$$f(h_t|y_{t-1},\Theta) = \int \underbrace{f(h_t|h_{t-1},\Theta)}_{proposed\ AR(1)} \underbrace{f(h_{t-1}|y_{t-1},\Theta)}_{hard\ closed\ form} dh_{t-1} \tag{4}$$

⇒ Difficult to evaluate the objective function

Challenge 1: Cannot directly draw sample from $f(h_t|y_{t-1},\Theta)$

The difficult part occurs in the latent variable (Equation (2)), i.e., likelihood function is not easily available:

$$f(h_t|y_t,\Theta) \propto \underbrace{f(y_t|h_t,\Theta)}_{observed\ return\ latent\ variable:\ volatility} \underbrace{f(h_t|y_{t-1},\Theta)}_{observed\ return\ latent\ variable:\ volatility}$$
 (3)

$$f(h_t|y_{t-1},\Theta) = \int \underbrace{f(h_t|h_{t-1},\Theta)}_{proposed\ AR(1)} \underbrace{f(h_{t-1}|y_{t-1},\Theta)}_{hard\ closed\ form} dh_{t-1} \tag{4}$$

⇒ Difficult to evaluate the objective function

Challenge 1: Cannot directly draw sample from $f(h_t|y_{t-1},\Theta)$

Challenge 2: Computational **complexity** of simulation increases with the number of time points in data

Intuition for sequential Monte Carlo Method

• Main Idea: draw particles $\{h_{t-1}^j\}$ from filtered distribution $f(h_{t-1}|y_{t-1})$, and derive $f(h_t|y_t)$ using Equation (2). Then sequentially draw particles $\{h_t^j\}$

- Main Idea: draw particles $\{h_{t-1}^j\}$ from filtered distribution $f(h_{t-1}|y_{t-1})$, and derive $f(h_t|y_t)$ using Equation (2). Then sequentially draw particles $\{h_t^j\}$
- Sequentially draw M particles at each time point t $\{h_{t-1}\}=\{h_{t-1}^1,\cdots,h_{t-1}^M\}$ from the filtered distributions: $f(h_{t-1}|y_{t-1})$, where M is the number of particles, then get

$$h_t = \mu + \phi(h_{t-1}^j - \mu)$$

- Main Idea: draw particles $\{h_{t-1}^j\}$ from filtered distribution $f(h_{t-1}|y_{t-1})$, and derive $f(h_t|y_t)$ using Equation (2). Then sequentially draw particles $\{h_t^j\}$
- Sequentially draw M particles at each time point t $\{h_{t-1}\}=\{h_{t-1}^1,\cdots,h_{t-1}^M\}$ from the filtered distributions: $f(h_{t-1}|y_{t-1})$, where M is the number of particles, then get

$$h_t = \mu + \phi(h_{t-1}^j - \mu)$$

This gives Monte Carlo approximations

$$f(h_t|y_{t-1},\Theta) \approx \frac{1}{M}\sum_{j=1}^M f(h_t|h_{t-1}^j,\Theta)$$
 (5)

$$f(h_t|y_t,\Theta) \propto f(y_t|h_t,\Theta)\frac{1}{M}\sum_{i=1}^M f(h_t|h_{t-1}^i,\Theta)$$
 (6)

- Main Idea: draw particles $\{h_{t-1}^j\}$ from filtered distribution $f(h_{t-1}|y_{t-1})$, and derive $f(h_t|y_t)$ using Equation (2). Then sequentially draw particles $\{h_t^i\}$
- Sequentially draw M particles at each time point t $\{h_{t-1}\}=\{h_{t-1}^1,\cdots,h_{t-1}^M\}$ from the filtered distributions: $f(h_{t-1}|y_{t-1})$, where M is the number of particles, then get

$$h_t = \mu + \phi(h_{t-1}^j - \mu)$$

This gives Monte Carlo approximations

$$f(h_t|y_{t-1},\Theta) \approx \frac{1}{M} \sum_{i=1}^{M} f(h_t|h_{t-1}^i,\Theta)$$
 (5)

$$f(h_t|y_t,\Theta) \propto f(y_t|h_t,\Theta)\frac{1}{M}\sum_{i=1}^M f(h_t|h_{t-1}^i,\Theta)$$
 (6)

 I explore different sampling methods: importance-sampling, bootstrap, auxiliary variable Reference

Methodology: compare with MCMC

MCMC Algorithm

- 1. Initialize h_1 and $\Theta^{(1)}$
- 2. Sample h_t from $h_t^{(k+1)}|h_{t-1}^{(k)},y,\Theta^{(k)}$ for $t=1,\cdots,n$
- 3. Sample $\sigma^{2(k+1)}|y, h^{(k+1)}, \phi^{(k)}, \mu^{(k)}$
- 4. Sample $\phi^{(k+1)}|h^{(k+1)}, \mu^{(k)}, \sigma^{2(k+1)}$
- 5. Sample $\mu^{(k+1)}|h^{(k+1)},\phi^{(k+1)},\sigma^{2(k+1)}$
- 6. Goto 2

Methodology: compare with MCMC

MCMC Algorithm

- 1. Initialize h_1 and $\Theta^{(1)}$
- 2. Sample h_t from $h_t^{(k+1)}|h_{t-1}^{(k)},y,\Theta^{(k)}$ for $t=1,\cdots,n$
- 3. Sample $\sigma^{2(k+1)}|y, h^{(k+1)}, \phi^{(k)}, \mu^{(k)}$
- 4. Sample $\phi^{(k+1)}|h^{(k+1)}, \mu^{(k)}, \sigma^{2(k+1)}$
- 5. Sample $\mu^{(k+1)}|h^{(k+1)},\phi^{(k+1)},\sigma^{2(k+1)}$
- 6. Goto 2

Computing is more expensive

- Need to sample from $h_t^{(k+1)}|h_{t-1}^{(k)},y,\Theta^{(k)}$ at each time point
- ullet $\{h_t\}, \Theta$ are highly correlated, resulting in slow convergence

Comparison: Efficiency and Accuracy

 \bullet Simulated data: $\mu_0=$ 0.5, $\phi_0=$ 0.985, $\sigma_0^2=$ 0.04

• Real data: Daily S&P 500 returns, 1950 - 2018

	Simulated Data				Real Data			
					11121 = 222			
	MCMC	SISR	Boot	APF	MCMC	SISR	Boot	APF
Computational Efficiency								
ESS	5302	724	902	964	1107	576	756	826
time	113.106	0.117	0.228	0.311	193.733	2.048	3.766	4.274
MSE for last latent variable h_N								
mean	0.013	0.098	0.100	0.097	1.174	0.134	0.134	0.132
std	0.315	0.041	0.045	0.043	0.047	2.096	2.082	2.003
MSE for parameters								
μ	0.200	0.010	0.000	0.090	_	_	_	_
ϕ	0.006	0.000	0.000	0.000	_	_	_	_
σ^2	0.004	0.001	0.005	0.003	_	_	-	_

Comparison: Latent Variable Estimates

Conclusion

- SMC Strength
 - Efficient: large sample and iteration, more parameters
 - The algorithm can be easily parallelized
 - The computational complexity does not increase with increase in time
 - As the number of particles *M* increases, the accuracy increases.

Conclusion

- SMC Strength
 - Efficient: large sample and iteration, more parameters
 - The algorithm can be easily parallelized
 - The computational complexity does not increase with increase in time
 - As the number of particles *M* increases, the accuracy increases.
- SMC Weakness
 - Sensitive to outliers
 - Poor approximation at tails
 - Inference is dominated by a few particles with high weight: Potential solution is auxiliary particle filter

Conclusion

- SMC Strength
 - Efficient: large sample and iteration, more parameters
 - The algorithm can be easily parallelized
 - The computational complexity does not increase with increase in time
 - As the number of particles *M* increases, the accuracy increases.
- SMC Weakness
 - Sensitive to outliers
 - Poor approximation at tails
 - Inference is dominated by a few particles with high weight: Potential solution is auxiliary particle filter
- Auxiliary particle filter may be better at handling outliers and heavy tails
 - I found some tentative evidence from simulation Density

Appendix

- Application
- Auxiliary particle filter algorithm
- MCMC simulation autocorrelation
- Sequence density

Application: Stochastic Volatility Models

- 1. Option price: Black-Scholes, Heston and Hull-White model
- 2. Long run risk model
- 3. Industry

Methodology: Sequential Monte Carlo

SMC Algorithm: auxiliary particle filter Back

1. Given $\{h_{t-1}^1, \cdots, h_{t-1}^M\}$ from $f(h_{t-1}|y_{t-1}, \Theta)$ calculate

$$\begin{array}{lcl} \widehat{h}_t^{*j} & = & \mu + \phi(h_{t-1}^j - \mu) \\ w_j & = & f_N(y_t|exp(\widehat{h}_t^{*j})), \quad j = 1, \cdots, M \end{array}$$

and sample R times with probability $\{w_j\}$. Let the sampled index be k_1, \dots, k_R , and associate these with $\widehat{h}_t^{*k_1}, \dots, \widehat{h}_t^{*k_R}$

2. For each value of k_i from Step 1 simulate

$$h_t^{*j} \sim \mathcal{N}(\mu + \phi(h_{t-1}^{*k_j} - \mu), \sigma^2), \quad j = 1, \dots, R$$

3. Resample $\{h_t^{*1}, \dots, h_t^{*R}\}$ with probability

$$\frac{\mathcal{N}(\mu + \phi(h_{t-1}^{*j} - \mu), \sigma^2)}{\mathcal{N}(\mu + \phi(h_{t-1}^{*k_j} - \mu), \sigma^2)}$$

to produce the filtered sample $\{h_t^1, \cdots, h_t^M\}$ from $f(h_t|y_t, \Theta)$

Slow convergence in MCMC: Autocorrelation

Density analysis: simulated and real data

Back

Reference

- Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993), Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE Proceedings Part F: Communications, Radar and Signal Processing, 140, 107–113.
- Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. The review of economic studies, 65(3), 361-393.
- Pitt, M. K. and Shephard, N. (1999), Filtering via simulation: auxiliary particle filters, Journal of the American Statistical Association, 94, 590–599.
- Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance. Econometric reviews, 31(3), 245-296.