Model Selection (2)

Evaluating and selecting algorithms and hyperparameters.

Evaluation Metrics and scoring

Keep the end-goal in mind

Evaluation vs Optimization

- Each algorithm optimizes a given objective function (on the training data)
 - E.g. remember L2 loss in Ridge regression

$$L_{ridge} = \sum_{i} (y_i - \sum_{j} x_{i,j} w_j)^2 + \alpha \sum_{i} w_i^2$$

- The choice of function is limited by what can be efficiently optimized
 - E.g. gradient descent requires a differentiable loss function
- We *evaluate* the resulting model with a score that makes sense in the real world
 - E.g. percentage of correct predictions (on a test set)
- We also tune the algorithm's hyperparameters to maximize that score

Binary classification

- We have a positive and a negative class
- 2 different kind of errors:
 - False Positive (type I error): model predicts positive while the true label is negative
 - False Negative (type II error): model predicts negative while the true label is positive
- They are not always equally important
 - Which side do you want to err on for a medical test?

Confusion matrices

- We can represent all predictions (correct and incorrect) in a confusion matrix
 - n by n array (n is the number of classes)
 - Rows correspond to true classes, columns to predicted classes
 - Each entry counts how often a sample that belongs to the class corresponding to the row was classified as the class corresponding to the column.
 - For binary classification, we label these true negative (TN), true positive (TP), false negative (FN), false positive (FP)

Predictive accuracy

• Accuracy is one of the measures we can compute based on the confusion matrix:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- In sklearn: use confusion_matrix and accuracy_score from sklearn.metrics.
- Accuracy is also the default evaluation measure for classification

```
confusion_matrix(y_test, y_pred):
  [[49  4]
  [ 5 85]]
accuracy_score(y_test, y_pred): 0.9370629370629371
model.score(X_test, y_test): 0.9370629370629371
```

The problem with accuracy: imbalanced datasets

- The type of error plays an even larger role if the dataset is imbalanced
 - One class is much more frequent than the other, e.g. credit fraud
 - Is a 99.99% accuracy good enough?
- Are these three models really equally good?

Precision is used when the goal is to limit FPs

- Clinical trails: you only want to test drugs that really work
- Search engines: you want to avoid bad search results

$$Precision = \frac{TP}{TP + FP}$$

Recall is used when the goal is to limit FNs

- Cancer diagnosis: you don't want to miss a serious disease
- Search engines: You don't want to omit important hits
- Also know as sensitivity, hit rate, true positive rate (TPR)

$$Recall = \frac{TP}{TP + FN}$$

Comparison

F1-score or F1-measure trades off precision and recall:

$$F1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Classification measure Zoo

		True con	dition		
	Total population	Condition positive	Condition negative	$\frac{\sum Condition\ positive}{\sum Total\ population}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Total population}}$
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma}{\Sigma}$ True positive	$\begin{aligned} & \text{False positive rate (FPR), Fall-out,} \\ & \text{probability of false alarm} = \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}} \end{aligned}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$ $\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$

https://en.wikipedia.org/wiki/Precision and recall (https://en.wikipedia.org/wiki/Precision and recall)"

- To study the scores by class, use classification_report
 - One class viewed as positive, other(s) als negative
 - Support: number of samples in each class
 - Last line: weighted average over the classes (weighted by number of samples in each class)
- Averaging for scoring measure R across C classes (also for multiclass):
 - micro: count total number of TP, FP, TN, FN
 - macro

$$\frac{1}{C} \sum_{c \in C} R(y_c, \hat{y_c})$$

• weighted (w_c : ratio of examples of class c)

$$\sum_{c \in C} w_c R(y_c, \hat{y_c})$$

Example

Matrix 1					
		precision	recall	f1-score	support
	0	0 00	1 00	0.05	0.0
	0	0.90	1.00	0.95	90
	1	0.00	0.00	0.00	10
micro	ava	0.90	0.90	0.90	100
macro	_	0.45	0.50	0.47	100
weighted	_	0.81	0.90	0.85	100
wergheed	avg	0.01	0.50	0.03	100
Matrix 2					
		precision	recall	f1-score	support
	0	1.00	0.89	0.94	90
	1	0.50	1.00	0.67	10
micro	avg	0.90	0.90	0.90	100
macro	avg	0.75	0.94	0.80	100
weighted	avg	0.95	0.90	0.91	100
J	J				
Matrix 3					
		precision	recall	f1-score	support
	_				
	0	0.94	0.94	0.94	90
	1	0.50	0.50	0.50	10
miass	2176	0 00	0.90	0 00	100
micro	_	0.90		0.90	
macro	_	0.72	0.72	0.72	100
weighted	avg	0.90	0.90	0.90	100

Taking uncertainty into account

- Remember that many classifiers actually return a probability per class
 - We can retrieve it with decision_function and predict_proba
- For binary classification, we threshold at 0 for decision_function and 0.5 for predict_proba by default
- However, depending on the evaluation measure, you may want to threshold differently to fit your goals
 - For instance, when a FP is much worse than a FN
 - This is called *threshold calibration*

- Imagine that we want to avoid misclassifying a positive (red) point
- Points within decision boundary (black line) are classified positive
- Lowering the decision treshold (bottom figure): fewer FN, more FP

- Studying the classification report, we see that lowering the threshold yields:
 - higher recall for class 1 (we risk more FPs in exchange for more TP)
 - lower precision for class 1
- We can often trade off precision for recall

Threshold 0				
	precision	recall	f1-score	support
(0.91	0.96	0.93	96
1	0.67	0.47	0.55	17
micro avo	g 0.88	0.88	0.88	113
macro avo	g 0.79	0.71	0.74	113
weighted avo	g 0.87	0.88	0.88	113
Threshold -(0.8			
	precision	recall	f1-score	support
	_			
(0.98	0.92	0.95	96
1	0.65	0.88	0.75	17
micro avo	0.91	0.91	0.91	113
macro avo		0.90	0.85	113
macro av				

Precision-Recall curves

- The best threshold depends on your application, should be driven by real-world goals.
- You can have arbitrary high recall, but you often want reasonable precision, too.
- It is not clear beforehand where the optimale trade-off (or *operating point*) will be, so it is useful to look at all possible thresholds
- Plotting precision against recall for all thresholds yields a **precision- recall curve**

- In scikit-learn, this is included in the sklearn.metrics module
- Returns all precision and recall values for all thresholds
 - Vary threshold from lowest to highest decision function score in the predictions
 - Or from highest to lowest class probability

- The default tradeoff (chosen by the predict method) is shown as *threshold zero*.
 - Higher threshold, more precision (move left)
 - Lower threshold, more recall (move right)
- The closer the curve stays to the upper-right corner, the better
 - High precision and high recall
- Here, it is possible to still get a precision of 0.5 with high recall

Model selection

- Different classifiers work best in different parts of the curve (at different operating points)
- RandomForest (in red) performs better at the extremes, SVM better in center
- The area under the precision-recall curve (AUPRC) is often used as a general evaluation measure

Note that the F1-measure completely misses these subtleties

```
f1_score of random forest: 0.610
f1_score of svc: 0.656
```

- The area under the precision-recall curve is returned by the average_precision_score measure
 - It's actually a close approximation of the actual area
- This is a good automatic measure, but also hides the subtleties

Average precision of random forest: 0.660 Average precision of svc: 0.666

Receiver Operating Characteristics (ROC) and AUC

- There is another trade-off between recall (true positive rate, TPR) and the false positive rate (FPR).
- The 2D space created by TPR and FPR is called the Receiver Operating Characteristics (ROC) space
- A model will be at one point in this ROC space

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

- Varying the decision threshold yields the ROC curve
- It can be computed with the roc_curve function
 - Lower threshold, more recall/TPR, move right
 - High threshold, fewer FPs, move left
- Ideal is close to the top left: high recall, low FPR
- Inspect the curve to find the preferred calibration
 - Here, we can get much higher recall with slightly worse FPR

Visualization

- The blue probability density shows the probability p(x) that the model predicts blue if a data point has a certain predicted probability x to be blue. Same for red.
- In a random classifier the probability densities completely overlap.
- All points with a predicted probability higher than the threshold are predicted positive, others negative
- As we increase the threshold, we'll get fewer FPs, more FNs. We move from right to left along the ROC curve.

TP	FP	
FN	TN	
1	1	

ROC Isometrics

- Different costs can be involved for FP and FN
- This yields different *isometrics* (lines of equal cost) in ROC space
- The optimal threshold is the point on the ROC curve where the cost in minimal
 - If a FP and FN are weighted equally, cost lines follow the diagonal (blue line)
 - If a FP is 10 times worse than a FN: pink line
 - IF a FN is 10 times worse than a FP: red line

Model selection

- Again, we can compare multiple models by looking at the ROC curves
- We can calibrate the threshold depending on whether we need high recall or low FPR
- We can select between algorithms (or hyperparameters) depending on the involved costs.

Area under the ROC curve

- A good summary measure is the area under the ROC curve (AUROC or AUC)
- Compute using the roc_auc_score
 - Don't use auc (uses less accurate trapezoidal rule)

```
rf_auc = roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1])
svc_auc = roc_auc_score(y_test, svc.decision_function(X_test))
AUC for Random Forest: 0.937
AUC for SVC: 0.916
```

Imbalanced classes

- AUC is popular because it is insensitive to class imbalance
 - Random guessing always yields TPR=FPR
 - All points are on the diagonal line, hence an AUC of 0.5
 - Hint: use the visualization of TPR,FPR to see this

- Example: unbalanced digits
 - 3 models, ACC is the same, AUC not
 - If we optimize for ACC, our model could be just random guessing

```
gamma = 1.000 accuracy = 0.90 AUC = 0.5000
gamma = 0.100 accuracy = 0.90 AUC = 0.9582
gamma = 0.010 accuracy = 0.90 AUC = 0.9995
```


Take home message

- AUC is highly recommended, especially on imbalanced data
- Remember to calibrate the threshold to your needs

Multi-class classification

- Multiclass metrics are derived from binary metrics, averaged over all classes
- Let's consider the full (10-class) handwritten digit recognition data

Confusion matrix

```
Accuracy: 0.953
Confusion matrix:

[[37  0  0  0  0  0  0  0  0  0  0]

[ 0  39  0  0  0  0  0  0  0  0  0]

[ 0  0  41  3  0  0  0  0  0  0]

[ 0  0  1  43  0  0  0  0  0  0]

[ 0  0  0  0  38  0  0  0  0  0]

[ 0  1  0  0  0  47  0  0  0]

[ 0  1  0  1  1  0  0  45  0  0]

[ 0  3  1  0  0  0  0  0  43  1]

[ 0  0  0  1  0  1  0  0  1  44]
```

Visualized as a heatmap

• Which digits are easy to predict? Which ones are confused?

Precision, recall, F1-score now yield 10 per-class scores

	precision	recall	f1-score	support
0	1.00	1.00	1.00	37
1	0.89	0.91	0.90	43
2	0.95	0.93	0.94	44
3	0.90	0.96	0.92	45
4	0.97	1.00	0.99	38
5	0.98	0.98	0.98	48
6	0.96	1.00	0.98	52
7	1.00	0.94	0.97	48
8	0.93	0.90	0.91	48
9	0.96	0.94	0.95	47
micro avg	0.95	0.95	0.95	450
macro avg	0.95	0.95	0.95	450
weighted avg	0.95	0.95	0.95	450

Different ways to compute average

- macro-averaging: computes unweighted per-class scores: $\frac{\sum_{i=0}^{n} score_{i}}{n}$
 - Use when you care about each class equally much
- weighted averaging: scores are weighted by the relative size of the classes (support): $\frac{\sum_{i=0}^{n} score_{i}weight_{i}}{n}$
 - Use when data is imbalanced
- micro-averaging: computes total number of FP, FN, TP over all classes, then computes scores using these counts: $recall = \frac{\sum_{i=0}^{n} TP_i}{\sum_{i=0}^{n} TP_i + \sum_{i=0}^{n} FN_i}$
 - Use when you care about each sample equally much

Micro average f1 score: 0.953 Weighted average f1 score: 0.953 Macro average f1 score: 0.954

Regression metrics

Most commonly used are

- (root) mean squared error: $\frac{\sum_{i}(y_{pred_i} y_{actual_i})^2}{n}$
- mean absolute error: $\frac{\sum_{i} |y_{pred_i} y_{actual_i}|}{n}$
 - Less sensitive to outliers and large errors
- R squared (r2): $1 \frac{\sum_{i} (y_{pred_i} y_{actual_i})^2}{\sum_{i} (y_{mean} y_{actual_i})^2}$
 - Ratio of variation explained by the model / total variation
 - Between 0 and 1, but *negative* if the model is worse than just predicting the mean
 - Easier to interpret (higher is better).

• R squared: 1 - ratio of $\sum_{i} (y_{pred_i} - y_{actual_i})^2$ (blue) and $\sum_{i} (y_{mean} - y_{actual_i})^2$ (red)

Visualizing errors

- Prediction plot (left): predicted vs actual target values
- Residual plot (right): residuals vs actual target values
 - Over- and underpredictions can be given different costs

Using evaluation metrics in model selection

- You typically want to use AUC or other relevant measures in cross_val_score and GridSearchCV instead of the default accuracy.
- scikit-learn makes this easy through the scoring argument
 - But, you need to need to look the <u>mapping between the scorer</u> and the metric (http://scikit-learn.org/stable/modules/model evaluation.html#model-evaluation)

Scoring	Function	Comment	
Classification			
'accuracy'	metrics.accuracy_score		
'average_precision'	metrics.average_precision_score		
'f1'	metrics.f1_score	for binary targets	
'f1_micro'	metrics.f1_score	micro-averaged	
'f1_macro'	metrics.f1_score	macro-averaged	
'f1_weighted'	metrics.f1_score	weighted average	
'f1_samples'	metrics.f1_score	by multilabel sample	
'neg_log_loss'	metrics.log_loss	requires predict_proba support	
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'	
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'	
'roc_auc'	metrics.roc_auc_score		
Clustering			
'adjusted_rand_score'	metrics.adjusted_rand_score		
Regression			
'neg_mean_absolute_error'	metrics.mean_absolute_error		
'neg_mean_squared_error'	metrics.mean_squared_error		
'neg_median_absolute_error'	metrics.median_absolute_error		
'r2'	metrics.r2_score		

Or simply look up like this:

Available scorers:

['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average _precision', 'balanced_accuracy', 'brier_score_loss', 'completeness_scor e', 'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score', 'mutual_info_scor e', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_median_absolute_error', 'normalized_mut ual_info_score', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc', 'v_measure_scor e']

Cross-validation with AUC

Grid Search with accuracy and AUC

- With accuracy, gamma=0.0001 is selected
- With AUC, gamma=0.01 is selected
 - Actually has better accuracy on the test set

```
Grid-Search with accuracy
Best parameters: {'gamma': 0.0001}
Best cross-validation score (accuracy)): 0.970
Test set AUC: 0.992
Test set accuracy: 0.973

Grid-Search with AUC
Best parameters: {'gamma': 0.01}
Best cross-validation score (AUC): 0.997
Test set AUC: 1.000
Test set accuracy: 1.000
```

Final thoughts

- There exist techniques to correct label imbalance
 - Undersample the majority class, or oversample the minority class
 - SMOTE (Synthetic Minority Oversampling TEchnique) adds articifial *training* points by interpolating existing minority class points
 - Think twice before creating 'artificial' training data
- Cost-sensitive classification (not in sklearn)
 - Cost matrix: a confusion matrix with a costs associated to every possible type of error
 - Some algorithms allow optimizing on these costs instead of their usual loss function
 - Meta-cost: builds ensemble of models by relabeling training sets to match a given cost matrix
 - Black-box: can make any algorithm cost sensitive (but slower and less accurate)

Final thoughts

- There are many more metrics to choose from
 - Cohen's Kappa: accuracy, taking into account the possibility of predicting the right class by chance
 - 1: perfect prediction, 0: random prediction, negative: worse than random
 - With p_0 = accuracy, and p_e = accuracy of random classifier:

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

- Balanced accuracy: accuracy where each sample is weighted according to the inverse prevalence of its true class
 - Identical to macro-averaged recall
- Matthews correlation coefficient: another measure that can be used on imbalanced data
 - 1: perfect prediction, 0: random prediction, -1: inverse prediction

$$MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}$$

Summary

- Real-world data is often imbalanced
- False positives may be much worse than false negatives (or vise-versa)
- Binary classification
 - Select metrics that can distinguish different types of errors (precision, recall, f1-score, AUC,...)
 - Calibrate decision thresholds to the task at hand
 - Precision-Recall and ROC curves: choose the best threshold or take area under the curve
- Multiclass classification
 - Macro/Micro/weighted average of per-class scores (one-vs-all)
- Regression
 - (Root) mean squared/absolute error from 0..Inf
 - R2 easier to interpret
- All measures can be used in cross-validation or grid/random search
- Cost-sensitive classification: optimize for any cost matrix or cost function