MTH 100: Lecture 14

$$Z_{x}$$
: $Z_{z} = \begin{cases} 0, 1 \\ \text{is a field} \end{cases}$ $\begin{cases} 1 * 1 = 1 \\ 1^{-1} = 1 \text{ in } Z_{z} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2 \\ \text{is a field} \end{cases}$ $\begin{cases} 1 * 1 = 1 \\ 1^{-1} = 1 \text{ in } Z_{z} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2 \\ \text{is a field} \end{cases}$ $\begin{cases} 1 * 1 = 1 \\ 1^{-1} = 1 \text{ in } Z_{z} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2 \\ \text{is a field} \end{cases}$ $\begin{cases} 2 * 2 = 4 \\ \text{in } Z_{z} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$
 $\begin{cases} Z_{x} = \begin{cases} 0, 1, 2, 3 \\ \text{is a field} \end{cases}$

Zero divisor:

A zero divisor is a non zero element a (+0) such that there exists b (+0) satisfying a*b = 0

· A field cannot have a zero divisor

Proof: Let F be a field and a E F, a = 0 is a zero divisor in F.

So, there exists $b \in F$ $(b \neq 0)$ such that a * b = 0

Since $b \neq 0$ and $b \in F$, $b^{-1} \in F$ Now from the above, $(a \times b) \times b^{-1} = 0 \times b^{-1}$

 $\Rightarrow \alpha*(b*b^{-1}) = 0$ (By property of field)

 $\Rightarrow \alpha *(e) = 0$ (where e = multiplicative identity in F)

 \Rightarrow $\alpha = 0$, a contradiction

So, F doesnot have a zero divisor

Theorem: Zp is a field iff (if and only if)

| b is a frime.

(Note: will prove one fact of the theorem)

| Proof: (=>)': Given: Zp is a field.

| Want to show: p is a frime.

| Then p = Tk where 1< T</p>

| Then p = Tk where 1< T</p>

| TK

| TK

| TK = TK (mod p) = p (mod p) = 0

So, I and K are both divisors of zero in Zp.
Thus Zp can not be a field, a contradiction.
Hence b Ras to be a perime.

←: (This requires more of modulor arithmetic).)

Consequences of the Vector Space definition.

Proposition: Let V be a vector space over a field F.

Then (a) The Zero vector is unique.

(b) the additive inverse vector of any vector u is unique (we use the notation -u for the) inverse vector of u.

(e) 0. U= 0 + U E V

(d) c.o=0 HCEF

(e) - u = (-1) u + u ∈ V

(f) Cancellation Law:

If $u + v = u + \omega$ then $v = \omega + u, v, \omega \in V$

Proof: Exercise

1) Let \overline{O} and \overline{O}_1 be zero vectors in \overline{V} $\frac{\overline{O} + \mathcal{U} = \mathcal{U} + \overline{O} = \mathcal{U}}{\overline{O}_1 + \mathcal{U} = \mathcal{U} + \overline{O}_1 = \mathcal{U}} \quad \forall \, \mathcal{U} \in V \quad --- \boxed{2}$

Let $u=\overline{o}_1$ in $\underline{0}$. Then $\overline{0}+\overline{0}_1=\overline{0}_1$

Now let
$$u=\overline{0}$$
 in 2 . Then $\overline{0}+\overline{0}_1=\overline{0}$, Combining we get $\overline{\overline{0}}=\overline{0}_1$

2 Let $u \in V$, Let v and v_1 be two additive inverses of u

So,
$$u + v = v + u = 0$$
 (1)
and $u + v_1 = v_1 + u = 0$ (2)

From ②
$$(U+V_1)+V=\overline{0}+V=V$$

By ② $(V_1+U)+V=V$
 $\Rightarrow V_1+(U+V)=V$

$$\Rightarrow v_1 + (x + v) = v$$

$$\Rightarrow v_1 + \overline{0} = v (By \overline{0})$$

$$\Rightarrow v_1 = v$$

50, additive inverse is unique.

(f) given
$$24+24$$
 0
Now $-4 \in V$
and so, $(-4) + (2+2) = (-4) + (2+4)$

$$\Rightarrow (-2) + 2 = (-4) + 2 = (-4) + 2 = (-4) + 2 = 0$$

$$\Rightarrow 0 + 2 = 0 + 2 = 0$$

$$\Rightarrow 12 = 2 = 0$$

. When we gave examples of vector spaces, we noticed some subsets:

e.g. $C \subset \mathbb{R}^{\infty}$, $C^{1}[a,b] \subset C^{1}[a,b]$

 $R_0(t) \subset R_1(t) \subset R_2(t) \subset R_1(t) \subset R_1(t)$

Subspace:

Let V be a vector space over the field F.

A (vector) sombspace of V is a non empty subset of V which is also a vector space over F with the operations of vector addition and scalar multiplication taken from V.

Ex: If V is any vector space over F,

then $\{0\}$ (zero subspace) and V are always subspaces of V.

Subspaces other than V and $\{0\}$ are known as proper subspaces.

Ex: R is a Vector Space Over R.

 $\begin{cases} \{3\} : 3 \in \mathbb{R} \end{cases} : 3 = mx \text{ for some } m \in \mathbb{R} \end{cases}$ $\begin{cases} \{3\} : 3 \in \mathbb{R} \end{cases} : x \in \mathbb{R} \end{cases}$

The set $\{ \begin{pmatrix} \gamma \\ 0 \end{pmatrix} : \chi \in \mathbb{R} \}$ is a proper subspace of \mathbb{R}^2 .

The set {(g): 4 E IR} is a proper subspace of R2.

• The set $\{ (x) : y = mx \text{ for some } m \in \mathbb{R} \}$ is a proper subspace of \mathbb{R}^2 .

anestion: IIS R a Solesface of 12? R is not even a sonleset OF RL $\mathbb{R}^{2} = \{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \}$ (two tuble) $R = \left\{ x : x \in \mathbb{R} \right\}$ (one tuple) Now {(x): x \in R} is a substace of R2 It behaves very much like R, but is logically distinct R is a vector space over IR. anastion: Is R² a subspace of R³? R² is not even a subset of R³

The set $\{x, y \in \mathbb{R}\}$ is a snlestace of \mathbb{R}^3 which behaves

Very much like \mathbb{R}^2 , but is logically distinct from \mathbb{R}^2 .

Test for Subspaces

Proposition: Let V be a vector space over a field F.

A subset W of V is a subspace if and only if it satisfies the following three properties:

- (1) The Zero Vector O is in W
 - © W is closed under addition ie. U+V∈W + V, V∈W
- (3) W is closed render scalar multiplication

ie. CREW 7 CEF and 7 NEW

Note: (1) can be replaced by (1')

(1'): W is non empty.

then
$$\begin{pmatrix} x_1 \\ mx_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ mx_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ mx_1 + mx_2 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 + x_2 \\ m(x_1 + x_2) \end{pmatrix} \in W_2$$
(3) If $C \in \mathbb{R}$ and $\begin{pmatrix} x \\ mx \end{pmatrix} \in W_2$
then $C \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} cx \\ c(mx) \end{pmatrix} = \begin{pmatrix} cx \\ m(cx) \end{pmatrix} \in W_2$

Hence W, is a subspace of R2.

Show that W is a soluspace of IR3