Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – 2017/2018 1º Semestre – RECURSO GLOBAL – 23 Janeiro 2018

Duração da prova : 2h

. 201

ATENÇÃO: Entregar o ENUNCIADO com a folha de prova.

Teste sem consulta. Não é permitida a utilização de tabelas, formulários ou máquina de calcular com capacidade gráfica. Durante a realização da prova não é permitida a saída da sala.

A desistência só é possível 30 minutos após o início do teste.

GRUPO I

1. Usando o conceito de derivada da inversa e a regra da cadeia calcule $\frac{dy}{dx}$ para

$$y = arctg \left[\frac{x + \ln(x)}{2} \right]$$

2. Calcule os seguintes integrais usando técnicas apropriadas:

a)
$$\int \frac{1}{x \ln^2 x} dx$$

b)
$$\int \frac{3}{x\sqrt{1-x^2}} dx$$

c)
$$\int x \ arctg \sqrt{x} \ dx$$

d)
$$\int \frac{1}{x+\sqrt{x}} dx$$

3. Considere as curvas de equações polares C1: $r = 1 + 2 \cos\theta$ e C2: r = 1.

a) Determine o domínio, eixos de simetria em θ e esboce o gráfico das curvas usando coordenadas polares.

b) Identifique e calcule a área da região do plano comum ao interior das duas curvas.

GRUPO II

4. Seja f uma função contínua para todo o $x \in \mathbf{R}$ e que satisfaz a equação

$$\int_0^x f(t)dt = \frac{1}{2} + x^2 + sen(2x) + \frac{1}{2}\cos(2x)$$

Usando os Teoremas Fundamentais do Cálculo, calcule $f\left(\frac{\pi}{2}\right)$ e $f'\left(\frac{\pi}{4}\right)$. Justifique convenientemente todos os passos que efetuar.

5. Justificando de forma conveniente, analise a convergência ou divergência da série:

$$\sum_{n=0}^{\infty} \left(\frac{n!-1}{(n+1)!} \right)$$

6. Calcule a solução geral da equação diferencial:

$$y' + \frac{2}{x}y = \frac{y^3}{x^2}$$

GRUPO III

7. a) Calcule a transformada de Laplace, $\mathcal{L}{f(t)}$, da função

$$f(t) = \begin{cases} 2, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \\ sen(t), & t > 2\pi \end{cases}$$

b) Utilizando as técnicas das transformadas de Laplace, resolva o seguinte problema de valores iniciais:

$$y'' - 3y' + 2y = 12e^{-2t}$$
 , $y(0) = 1$ e $y'(0) = 6$.

8. Considere a função f(x) de período 4,

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 1 < x < 4 \end{cases}$$

- a) Esboce o gráfico da função no intervalo -4 < x < +8.
- **b**) Calcule os coeficientes da série de Fourier de f(x): a_0 , a_n e b_n .
- c) Escreva a fórmula geral da série de Fourier para f(x).

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio		7 00	s	
1	1	$\frac{1}{s}$	s > 0	7	$\cos(wt)$	$\overline{s^2 + w^2}$	s > 0
_				8	$\sin(wt)$	$\frac{w}{s^2 + w^2}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0		1 7 1	$\frac{s^2 + w^2}{s}$	2 111
0	t^2	13 (0.00)	->-0	9	$\cosh\left(at\right)$	$\overline{s^2 - a^2}$	s > a
3	<i>t</i> -	$\frac{2}{s^3}$	s > 0	10	$\sinh\left(at\right)$	$\frac{a}{s^2 - a^2}$	s > a
4	$t^n, n \in \mathbf{N}_0$	$\frac{n!}{n!}$	s > 0			$\frac{s^2 - a^2}{n!}$	
		s^{n+1}	2)	11	$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	s > a
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$	12	$e^{at}\cos(wt)$	$\frac{s-a}{(s-a)^2 + w^2}$	s > a
6	e^{at}	$\frac{1}{s-a}$	s > a	13	$e^{at}\sin(wt)$	$\frac{w}{(s-a)^2 + w^2}$	s > a

$$\mathcal{L}[t^n f(t)] = (-1)^n [F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0) \qquad \qquad \mathcal{L}[f''(t)] = s^2\mathcal{L}[f(t)] - sf(0) - f'(0)$$