

1.5W 全集成隔离 DC-DC 转换器

1 产品特性

- 集成高效率的 DC-DC 转换器和片上变压器
 - 内置软启动电路来防止浪涌电流和输出过冲
 - 工作在 Hiccup 模式的短路保护
 - 过热关断保护功能
- 宽输入电压范围: 4.5 V~5.5 V
- 输出电压可选:
 - 3.3V 或 5.0V;
 - 3.7V 或 5.4V, 支持在 DC-DC 后接 LDO
- 输出典型功率: 1.5W (5V/300mA)
- 优异的负载瞬态响应
- 宽工作温度范围: -40°C~125°C
- 符合 CISPR32 Class-B 级 EMI 标准
- ESD: ±4kV HBM, ±2kV CDM
- 高 CMTI: ±150 kV/μs (典型)
- 优异的隔离性能:
 - UL 1577 标准下,长达 1 分钟的 5kV_{RMS} 隔离耐压(CA-IS3115AW)
 - UL 1577 标准下,长达 1 分钟的 2.5kV_{RMS} 隔离 耐压(CA-IS3115BW)
 - 符合 DIN V VDE V 0884-11:2017-01 标准的 7070VPK VIOTM 和 2121VPK VIORM (CA-IS3115AW)
 - 隔离栅寿命: >40年
- 符合 RoHS 标准封装
 - SOIC16-WB

2 应用

- 工业自动化控制系统
- 电机控制
- 储能
- 光伏逆变
- 电网基础设备
- 测试和测量仪器

3 概述

CA-IS3115X 是一款支持 2.5/5.0kV_{RMS} 隔离耐压的 DC-DC 转换器芯片,集成片上变压器,能够高效率传输 1.5W 功率到副边侧输出。该芯片采用特有控制架构,能够快速响应负载变化,并且精确调节输出电压。CA-IS3115X 可替代传统分立器件组建的隔离电源方案,该方案物理尺寸更小,且能够实现完全隔离。

CA-IS3115X 集成软启动、短路保护、过温保护等多种保护功能以更好地增强系统的可靠性。CA-IS3115X 具有EN 使能管脚,当 EN 为低电平时,输出电压为零,此时电源仅有微安级待机输入电流。

CA-IS3115X 可通过管脚 SEL 选择 4 种输出电压,分别为 5V、3.3V、5.4V、3.7V,支持输出端接 LDO,以方便用 户不同的电压需求。CA-IS3115X 器件采用 16 脚宽体 SOIC 封装,电气间隙&爬电距离大于8mm,最高绝缘耐压高达 5 kV_{RMS} ,支持宽工作温度范围-40 $^{\circ}$ C ~ 125 $^{\circ}$ C。

器件信息

零件号	封装	封装尺寸(标称值)
CA-IS3115X	SOIC16-WB(W)	10.30 mm × 7.50 mm

简化结构图

4 订购指南

表 4-1 可订购料号

型号	最大输出功率(W)	额定耐压(kV _{RMS})	封装
CA-IS3115AW	1.5	5.0	SOIC16-WB
CA-IS3115BW	1.5	2.5	SOIC16-WB

上海川土微电子有限公司

目录

1	产品	特性	1
2	应用		1
3	概述		1
4	订购	指南	2
5	修订	历史	3
6	引脚	功能描述	4
7	产品	规格	5
	7.1		
	7.2	ESD 额定值	5
	7.3	推荐工作条件	
	7.4	热量信息	6
	7.5	额定功率	6
	7.6	隔离特性	7
	7.7	安全相关认证	8

	7.8	电气特性	9
	7.9	潮敏等级	9
8	典型》	皮形和曲线图	
	8.1	电性波形及曲线	10
9	详细证	兑明	12
	9.1	工作原理	12
	9.2	功能框图	12
10	典型区	並用	13
11	PCB 有	市板建议	13
12	封装信	· 	14
13	焊接值	· 	15
14		··· 言息	
15		=	

修订历史

修订版本号	修订内容	页码
Preliminary Version	N/A	N/A

6 引脚功能描述

图 6-1 CA-IS3115X 顶部视图

表 6-1 CA-IS3115X 引脚功能描述

引脚名称	引脚编 号	类型	描述
EN	1	输入	使能管脚。接高电平,使能芯片,接低电平,关断芯片。
	_	104%	禁止 EN 引脚电压高于 VINP+0.3V。
			原边侧输入电源管脚。将 10μF 和 0.1μF 的陶瓷电容接至 PIN3(VINP)和
VINP	3	电源	PIN4(GNDP)之间,电容的摆放位置要尽量靠近芯片管脚,电容到管脚的
			距离小于 2mm。
GNDP	2,4,5,6,7,8	地	原边侧接地管脚。
GNDS	9,10,11,12,15,16	地	副边接地管脚。
			VISO 输出电压选择管脚。SEL 接至 VISO, VISO 输出 5V; SEL 通过 100K 电
SEL	13	输入	阻接至 VISO,VISO 输出 5.4V;SEL 接至 GNDS,VISO 输出 3.3V;SEL 通过
			100K 电阻接至 GNDS,VISO 输出 3.7V。应用时不推荐把 SEL 管脚悬空。
			隔离电压输出管脚。将 10μF 和 0.1μF 的陶瓷电容接至 PIN14(VISO)和
VISO	14	电源	PIN15(GNDS)之间,电容的摆放位置要尽量靠近芯片管脚,电容到管脚距
			离小于 2mm。

7 产品规格

7.1 绝对最大额定值 1,2

	参数	最小值	最大值	单位
VINP	电源电压	-0.5	6.0	V
VISO	隔离电源输出电压	-0.5	6.0	V
EN	EN 输入电压	-0.5	VINP+0.3 ³	V
SEL	SEL 输入电压	-0.5	VISO+0.3	V
T _J	结温	-40	150	°C
T _{STG}	存储温度	-65	150	°C

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏,长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 除差分 I/O 总线电压以外的所有电压值,均相对于本地接地端子(GNDP 或 GNDS),并且是峰值电压值。
- 3. 最大电压不得超过 6 V。

7.2 **ESD** 额定值

		数值	单位
V _{ESD} 静电放电	人体模型 (HBM),根据 ANSI/ESDA/JEDEC JS-001,所有引脚	±4000	V
	组件充电模式(CDM),根据 JEDEC specification JESD22-C101,所有引脚	±2000	V

7.3 推荐工作条件

	参数	最小值	典型值	最大值	単位
VINP	电源电压	4.5	5	5.5	V
V _{EN}	EN 输入电压	0		5.5	V
VISO	隔离输出电源电压	0		5.7	V
V_{SEL}	SEL 输入电压	0		5.7	V
T _A	环境温度	-40		125	°C
T _J	结温度	-40		150	°C

CA-IS3115X

Preliminary Version,2023/07/14

上海川土微电子有限公司

7.4 热量信息

按照 JESD51 标准测试得到

	热量表	CA-IS3115X	单位
$R_{\theta JA}$	IC 结至环境的热阻	TBD	°C/W
$R_{\theta JC}$	IC 结至表壳的热阻	TBD	°C/W

7.5 额定功率

参数	测试条件	最小值	典型值	最大值	単位
P _D 最大输入功率	VINP=5.5V, VISO=5.4V, 负载电流 300mA			3	W

LHIPANALUL

7.6 隔离特性

			数	:值	
	参数	测试条件	CA- IS3115AW	CA- IS3115BW	単位
CLR	外部气隙(间隙)1	测量输入端至输出端,隔空最短距离	8	8	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	8	mm
DTI	隔离距离	最小内部间隙(内部距离)	16	16	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	>400	V
	材料组	依据 IEC 60664-1	I	I	
		额定市电电压≤ 300 V _{RMS}	I-IV	I-IV	
	IEC 60664-1 过压类别	额定市电电压≤ 400 V _{RMS}	I-IV	I-IV	
		额定市电电压≤600 V _{RMS}	1-111	1-111	
DIN V VI	DE V 0884-11:2017-01 ²	·	•		
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	2121	848	V_{PK}
M	最大工作隔离电压	交流电压;时间相关的介质击穿 (TDDB) 测试	1500	600	V_{RMS}
V _{IOWM}	取入工行附內巴匹	直流电压	2121	848	V_{DC}
V _{ІОТМ}	最大瞬态隔离电压	V _{TEST} = V _{IOTM} , t = 60 s (认证); V _{TEST} = 1.2 × V _{IOTM} , t= 1 s (100% 产品测试)	7070	3535	V _{PK}
V _{IOSM}	最大浪涌隔离电压3	测试方法 依据 IEC 60065,1.2/50 μs 波形, V _{TEST} = 1.6 × V _{IOSM} (生产测试)	8000	4000	V _{PK}
	表征电荷 4	方法 a,输入/输出安全测试子类 2/3 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.2 × V _{IORM} , t _m = 10 s	≤5	≤5	
q _{pd}		方法 a, 环境测试子类 1 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.6 × V _{IORM} , t _m = 10 s	≤5	≤5	рC
		方法 b1, 常规测试 (100% 生产测试) 和前期预处理(抽样测试) V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1 s; V _{Pd(m)} = 1.875 × V _{IORM} , t _m = 1 s	≤5	≤5	
C _{IO}	栅电容,输入到输出5	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	3.5	3.5	рF
		V _{IO} = 500 V, T _A = 25°C	>1012	>1012	
R _{IO}	绝缘电阻 5	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>1011	>1011	Ω
		V _{IO} = 500 V at T _S = 150°C	>109	>109	1
	污染度		2	2	
UL 1577					
V _{ISO}	最大隔离电压	V _{TEST} = V _{ISO} , t = 60 s (认证) V _{TEST} = 1.2 × V _{ISO} , t = 1 s (100%生产测试)	5000	2500	V _{RMS}

备注:

- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙相等。在印刷电路板上插入凹槽的技术有助于提高这些指标。
- 2. 该标准仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷(pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

7.7 安全相关认证

VDE(申请中)	UL(申请中)
根据 DIN V VDE V 0884-11:2017-01 认证	UL1577 器件认证程序认证
证书编号: 认证中	证书编号: 认证中

7.8 电气特性

若无其他特殊说明,VINP=4.5V~5.5 V,T_A = -40 to 125°C,SEL 管脚短路到 VISO 管脚,C_{VINP}=C_{VISO}=10μF。所有典型值的条件为 T_J=25°C 和 VINP=5V。

	参数	测试条件	最小值	典型值	最大值	单位	
输入供电						•	
I _{VINP_SD}	EN 关断时输入静态电流	EN=LOW		0.5	30	μΑ	
		EN=HIGH,SEL 短路到 VISO (5V 输出)		4.9	20	mA	
	工人	EN=HIGH,SEL 通过 100kΩ 接到 VISO (5.4V 输出)		5.2	20	mA	
I_{VINP_O}	无负载时输入电流	EN=HIGH,SEL 短路到 GNDS (3.3V 输出)		4.1	20	mA	
		EN=HIGH,SEL 通过 100kΩ 接到 GNDS (3.7V 输出)		4.3	20	mA	
I _{VINP_SC}	VISO 输出短路时的输入电流平均值	VISO 脚短路到 GNDS		77	100	mA	
V _{UVLO+}	电源上升过程的欠压保护阈值			2.7	3	V	
V _{UVLO-}	电源下降过程的欠压保护阈值		2.1	2.3		V	
V _{HYS(UVLO)}	电源欠压保护阈值迟滞			0.4	0.6	V	
逻辑管脚特	寺性		•				
V _{IH_EN}	EN 输入高电平		0.7VINP			V	
V_{IL_EN}	EN 输入低电平				0.3VINP	V	
I _{EN}	EN 输入电流	VINP=5V, V _{EN} = 5V		10	20	μΑ	
隔离 DC-D	C 转换器						
		SEL 接至 VISO(5V 输出),I _{ISO} =150mA	4.75	5.0	5.25		
VISO	原该於山山田	SEL 通过 100kΩ 接至 VISO(5.4V 输出),I _{ISO} =150mA	5.13	5.4	5.67	V	
VISO	隔离输出电压	SEL 接至 GNDS(3.3V 输出),I _{ISO} =200mA	3.13	3.3	3.47		
		SEL 通过 100kΩ 接至 VISO(3.7V 输出),I _{ISO} =200mA	3.51	3.7	3.89		
		SEL 接至 VISO(5V 输出)	240	300			
		SEL 通过 100kΩ 接至 VISO(5.4V 输出)	240	300		ma 1	
I _{LOAD_MAX}	最大带载能力	SEL 接至 GNDS(3.3V 输出)	320	400		mA	
		SEL 通过 100kΩ 接至 VISO(3.7V 输出)	320	400			
		20MHz 带宽,SEL 短路到 VISO (5V 输入, 5V 或 5.4V		6E			
VICO	输出隔离电压纹波(峰峰值)	输出), I _{ISO} = 150 mA		65		\	
VISO _(RIP)		20MHz 带宽,SEL 短路到 GNDS (5V 输入, 3.3V 或		55		mV	
		3.7V 输出), I _{ISO} = 200 mA		55			
		SEL 短路到 VISO (5V 输入, 5V 或 5.4V 输出),I _{ISO} =		4	20		
VISO(LINE)	直流线性调整率	150 mA,VINP = 4.5 V to 5.5 V		4	20	mV/V	
VISO(LINE)	旦加戈江州走平	SEL 短路到 GNDS (5V 输入, 3.3V 或 3.7V 输出),I _{ISO}		4	20	111070	
		=200 mA, VINP = 4.5 V to 5.5 V					
	to No. de Un Sendo No.	SEL 短路到 VISO (5V 输入, 5V 或 5.4V 输出),I _{ISO} = 0mA to 300 mA		0.5%	2%		
VISO _(LOAD)	直流负载调整率	SEL 短路到 GNDS (5V 输入, 3.3V 或 3.7V 输出), I _{ISO}		0.5%	2%		
		= 0mA to 400 mA		600/			
	最大负载电流时的效率	$I_{ISO} = 300 \text{ mA}, C_{LOAD} = 0.1 \mu\text{F} \mid 10 \mu\text{F}; VISO = 5V, 5.4V$		60%			
EFF	以人人教电视时的双 学	I_{ISO} = 300 mA, C_{LOAD} = 0.1 μ F 10 μ F; VISO=3.3V, 3.7V		50%			
CMTI	共模瞬变抗扰度	GNDP VS GNDS 的斜率,V _{CM} =1200V _{RMS}	±150			kV/μs	
t _{RISE}	VISO 上升时间	10%-90% VISO=3.3V, 3.7V, 5.0V, 5.4V		1		ms	
动态负载过	寸冲	10%和 90%负载跳变,上升斜率 10mA/us;测量两		100		mV	
动太岛栽植	灰复时间	种负载下输出电压的波峰的差值。	5			us	

7.9 潮敏等级

参数	标准	等级
潮敏等级	IPC/JEDEC J-STD-020D.1	MSL 3

CHIPANALOG

8 典型波形和曲线图

8.1 电性波形及曲线

上海川土微电子有限公司

Preliminary Version,2023/07/14

9 详细说明

9.1 工作原理

CA-IS3115X 是一款支持 2.5/5.0kVrms 隔离耐压的 DC-DC 转换器芯片,集成片上变压器,能够高效率传输最大 1.5W 功率到副边侧 VISO 输出。CA-IS3115X 产品的功能框图如图 9-1 所示。

该芯片采用特有的隔离控制架构,能够快速响应负载变化,并且精确调节输出电压。VINP 电源供电给一个振荡电路,该电路将能量传输给一个高 Q 值的片上变压器,该变压器具有高效率和低辐射性能。根据 SEL 引脚的设置,传递到副边侧的能量被调节成 5V/5.4V/3.3V/3.7V 的输出电压。副边侧(VISO)控制器将 PWM 控制信号通过一个专用的隔离数据通道传递给原边,原边侧控制电路依据副边侧电路反馈的 PWM 信号调节传输能量。VINP 和 VISO 电源上都具备带迟滞的欠压锁定(UVLO)保护,保证了系统在噪声条件下的良好性能。内置的软启动电路确保了不会出现浪涌电流和输出电压过冲。

CA-IS3115X 内置短路保护功能。当输出电压 VISO 短路到地后,芯片进入 Hiccup (打嗝)模式,表现为芯片输出关闭后每隔一段时间尝试软起动上电,不断循环,直到短路故障解除,输出自动软起动恢复正常。

CA-IS3115X 内置过温保护功能。当芯片结温超过 175℃时,芯片会关闭 VISO 输出,直到温度降低到 150℃以下。

9.2 功能框图

图 9-2 芯片功能框图

通过 EN 管脚可以控制输出端是否有电压,当 EN 为低电平时,输出为 OV;当 EN 为高电平时,通过 SEL 管脚的接线方式,输出电压有 5V、5.4V、3.3V、3.7V 等 4 种选项。表 9-1 为 CA-IS3115X 输出电压真值表。

表 9-1 输出电源真值表

EN	SEL	VISO Output
HIGH	短接到 VISO	5V
HIGH	通过 100kΩ 电阻接至 VISO	5.4V
HIGH	短接到 GNDS	3.3V
HIGH	通过 100kΩ 电阻接至 GNDS	3.7V
HIGH	OPEN ¹	不支持
LOW	Х	0V

应用时不推荐把 SEL 管脚悬空。

10 典型应用

CA-IS3115X 芯片只需要在外部接上适当的储能电容就可以工作,电容放置在尽可能靠近芯片管脚的位置。图 10-1 显示了 CA-IS3115X 芯片的典型应用。

图 10-1 CA-IS3115X 典型应用电路

11 PCB 布板建议

芯片下方隔离带内建议不要有任何电源或信号走线,以免降低隔离强度。建议在 VINP 与 GNDP、VISO 与 GNDS 之间外接 10μF 和 0.1μF 的去耦电容,且电容应紧靠芯片 PIN 脚放置,距离控制在 2mm 以内。PCB 板上输入、输出电容和芯片必须放在同一层。所有 GNDP, GNDS 引脚相连且大面积铺铜以加强散热并缩小高频环路。条件允许建议采用 4 层板,增加内部地层加强散热同时能屏蔽电磁辐射有助于改善 EMI。部分 PCB 走线如图 11-1 所示。

图 11-1 推荐 PCB 电源部分走线

12 封装信息

下图说明了 CA-IS3115X 隔离 DC-DC 采用的 SOIC-16WB 宽体封装大小尺寸图和建议焊盘尺寸图,尺寸以毫米为单位。

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

LEFT-SIDE VIEW

13 焊接信息

图 13-1 焊接温度曲线

表 13-1 焊接温度参数

简要说明	无铅焊接
温升速率(T _L =217℃ 至峰值 T _P)	最大 3°C/s
T _{smin} =150°C 到 T _{smax} =200°C 预热时间 t _s	60~120 秒
温度保持 217℃ 以上时间 t _L	60~150 秒
峰值温度 Tp	260°C
小于峰值温度 5℃ 以内时间 t _P	最长 30 秒
降温速率(峰值 T₂至 Tι=217°C)	最大 6°C/s
常温 25℃ 到峰值温度 Tp时间	最长8分钟

CHIPANALOG

14 编带信息

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3115AW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1
CA-IS3115BW	SOIC	W	16	1000	330	16.4	10.8	10.7	2.9	12.0	24.0	Q1

15 重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。除此之外不得复制或展示所述资源,如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com