Introduction
The vanishing gradient problem
Solutions
Open issues

Recurrent neural networks

Giulio Galvan

The model

Def: RNN

Given an input sequence $\{u\}_{t=1,...,T}$, with $u_t \in \mathbb{R}^p$, the output sequence of a RNN $\{y\}_{t=1,...,T}$, with $y_t \in \mathbb{R}^o$, is defined by the following:

$$\mathbf{y}^t \triangleq F(W^{out} \cdot \mathbf{a}^t + \mathbf{b}^{out}) \tag{1}$$

$$\boldsymbol{a}^t \triangleq W^{rec} \cdot \boldsymbol{h}^{t-1} + W^{in} \cdot \boldsymbol{u}^t + \boldsymbol{b}^{rec} \tag{2}$$

$$\boldsymbol{h}^t \triangleq \sigma(\boldsymbol{a}^t) \tag{3}$$

$$\mathbf{h}^0 \triangleq \overrightarrow{0},$$
 (4)

where $\sigma(\cdot): \mathbb{R} \to \mathbb{R}$ is a non linear function applied element-wise called activation function.

Figure: $RNN \; \text{model}.$

The optimization problem

Given a dataset D:

$$D \triangleq \{\{\overline{\boldsymbol{u}}^{(i)}\}_{t=1,...,T}, \overline{\boldsymbol{u}}_t^{(i)} \in \mathbb{R}^p, \{\overline{\boldsymbol{y}}^{(i)}\}_{t=1,...,T}, \overline{\boldsymbol{y}}_t^{(i)} \in \mathbb{R}^o; i = 1,...,N\}$$
(5)

we define a loss function $L_D(x)$ over D as

$$L_D(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} L_t(\overline{\mathbf{y}}_t^{(i)}, \mathbf{y}_t^{(i)}(\mathbf{x})), \tag{6}$$

where $L_t(\cdot, \cdot)$ is an arbitrary loss function for the time step t and x represents all the parameters of the network. The problem is

$$\min_{\mathbf{x}} L_D(\mathbf{x}) \tag{7}$$

Examples of loss functions

mean squared error (for regression tasks)

$$L(\mathbf{y}, \mathbf{t}) = \frac{1}{M} \sum_{i=1}^{M} (y_i - t_i)^2$$
 (8)

hinge loss (for binary classification)

$$L(y,t) = \max(0,1-t\cdot y) \tag{9}$$

cross entropy (for multi-class classification)

$$L(\mathbf{y}, \mathbf{t}) = -\frac{1}{M} \sum_{i=1}^{M} \log(y_i) \cdot t_i$$
 (10)

Stochastic gradient descent (SGD)

Algorithm 1: Stochastic gradient descent

Data:

```
D = \{\langle \boldsymbol{u}^{(i)}, \boldsymbol{y}^{(i)} \rangle\}: training set
```

 x_0 : candidate solution

m: size of each minibatch

Result:

x: solution

- $\mathbf{1} \ \mathbf{x} \leftarrow \mathbf{x}_0$
- 2 while stop criterion do
- 3 $I \leftarrow \text{select } m \text{ training example } \in D$
- 4 $\alpha \leftarrow$ compute learning rate
- 5 $\mathbf{x} \leftarrow \mathbf{x} \alpha \sum_{i \in I} \nabla_{\mathbf{x}} L(\mathbf{x}; \langle \mathbf{u}^{(i)}, \mathbf{y}^{(i)} \rangle)$

6 end

Stochastic gradient descent (SGD)

- ▶ Nemirovski (2009)[3]: proof of convergence in the convex case
- ▶ there are no theoretical guarantees in the non-convex case
- in practice it always works: SGD is the standard framework in most of neural networks applications.

A pathological problem example

An input sequence:

marker	0	1	0	 0	1	0	0
value	0.3	0.7	0.1	 0.2	0.4	0.6	0.9

The predicted output should be the sum of the two one-marked positions (1.1).

Why is this a difficult problem?

Because of it's long time dependencies

A pathological problem example

An input sequence:

marker	0	1		 0	1	0	0
value	0.3	0.7	0.1	 0.2	0.4	0.6	0.9

The predicted output should be the sum of the two one-marked positions (1.1).

Why is this a difficult problem?

Because of it's long time dependencies.

Gradient

Let $L_t(\bar{u}, \bar{y})$ the loss function for the time step t and $g_t(x)$: \mathbb{R} be the function defined by

$$g_t(\boldsymbol{x}) \triangleq L_t(F(\boldsymbol{y}^t(\bar{\boldsymbol{u}};\boldsymbol{x}),\bar{\boldsymbol{y}}_t))$$

and

$$g(\mathbf{x}) \triangleq \sum_{t=1}^{T} g_t(\mathbf{x})$$

$$\frac{\partial g}{\partial W^{rec}} = \sum_{t=1}^{T} \nabla L_t^T \cdot J(F) \cdot \frac{\partial \mathbf{y}^t}{\partial \mathbf{a}^t} \cdot \frac{\partial \mathbf{a}^t}{\partial W^{rec}}$$
(11)

$$=\sum_{t=1}^{T}\frac{\partial g_{t}}{\partial \mathbf{a}^{t}}\cdot\frac{\partial \mathbf{a}^{t}}{\partial W^{rec}}$$
(12)

Let's consider a single output unit u, and a weight w_{lj} , we have

$$\frac{\partial a_u^t}{\partial w_{lj}} = \sum_{k=1}^t \frac{\partial a_u^t}{\partial a_l^k} \cdot \frac{\partial a_l^k}{\partial w_{lj}} \tag{13}$$

$$=\sum_{k=1}^{t} \delta_{lu}^{tk} \cdot \phi_j^{t-1} \tag{14}$$

where

$$\delta_{lu}^{tk} \triangleq \frac{\partial a_u^t}{\partial a_l^k}.\tag{15}$$

Let P(I) be the set of parents of neuron I, defined as the set of parents in the unfolded network.

$$\delta_{lu}^{tk} = \sum_{h \in P(l)} \delta_{hu}^{tk} \cdot \sigma'(a_h^{t-1}) \cdot w_{hl}$$
 (16)

Figure: Nodes involved in $\frac{\partial a_{u}^{t}}{\partial a_{l}^{k}}$.

In matrix notation we have:

$$\frac{\partial \mathbf{a}^{t}}{\partial W^{rec}} = \sum_{k=1}^{t} \frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} \cdot \frac{\partial^{+} \mathbf{a}^{k}}{\partial W^{rec}}$$
(17)

$$\frac{\partial^{+} a^{k}}{\partial W_{j}^{rec}} = \begin{bmatrix} \phi_{j}^{k} & 0 & \cdots & \cdots & 0 \\ 0 & \phi_{j}^{k} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \phi_{j}^{k} \end{bmatrix}$$
(18)

$$\frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} = \frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k+1}} \cdot diag(\sigma'(\mathbf{a}^{k})) \cdot W^{rec}$$

$$= \prod_{k=1}^{k} diag(\sigma'(\mathbf{a}^{i})) \cdot W^{rec}.$$
(20)

$$= \prod_{i=t-1}^{\kappa} diag(\sigma'(\mathbf{a}^i)) \cdot W^{rec}. \tag{20}$$

The derivatives with respect to the other variables are computed in a similar fashion.

Vanishing gradient: a sufficient condition

$$\frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} = \prod_{i=t-1}^{k} diag(\sigma'(\mathbf{a}^{i})) \cdot W^{rec}. \tag{21}$$

Taking the singular value decomposition of W^{rec} :

$$W^{rec} = S \cdot D \cdot V^T \tag{22}$$

where S, V^T are squared orthogonal matrices and $D \triangleq diag(\mu_1, \mu_2, ..., \mu_r)$ is the diagonal matrix containing the singular values of W^{rec} . Hence:

$$\frac{\partial \mathbf{a}^t}{\partial \mathbf{a}^k} = \prod_{i=t-1}^k diag(\sigma'(\mathbf{a}^i)) \cdot S \cdot D \cdot V^T$$
 (23)

Since U and V are orthogonal matrix, hence

$$||U||_2 = ||V^T||_2 = 1,$$

and

$$\|diag(\lambda_1, \lambda_2, ..., \lambda_r)\|_2 \leq \lambda_{max},$$

we get

$$\left\| \frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} \right\|_{2} = \left\| \left(\prod_{i=t-1}^{k} diag(\sigma'(\mathbf{a}^{i})) \cdot S \cdot D \cdot V^{T} \right) \right\|_{2}$$
 (24)

$$\leq (\sigma'_{\max} \cdot \mu_{\max})^{t-k-1} \tag{25}$$

Existent solutions

- ► Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)[1]
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed (but works also without it)
- ▶ Hessian-Free optimization (HF). Martens (2010) [2]
 - ▶ a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013) [4]
 - ▶ a first order method
 - uses a penalty to deal with the vanishing gradient problem

Existent solutions

- ► Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)[1]
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed (but works also without it)
- ▶ Hessian-Free optimization (HF). Martens (2010) [2]
 - a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013) [4]
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

Existent solutions

- ► Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)[1]
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed (but works also without it)
- ▶ Hessian-Free optimization (HF). Martens (2010) [2]
 - a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013) [4]
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

Understanding the gradient structure: unfolding

Understanding the gradient structure

It's easy to see that

$$\nabla L(\mathbf{x}) = \sum_{t=1}^{T} \nabla L_{|t}(\mathbf{x}), \tag{26}$$

where $\nabla L_{|t}$ is the gradient computed imagining to replicate all variables for each time step and taking the derivatives w.r.t the variables for the th-step

Temporal gradient norms: an illustration

A new proposal

The idea is to use the structure of the gradient to compute a "descent" direction which does not suffer from the vanishing problem.

normalize the temporal components:

$$g_t(\mathbf{x}) = \frac{\nabla L_{|t}(\mathbf{x})}{\|\nabla L_{|t}(\mathbf{x})\|}.$$
 (27)

combine the normalized gradients in a simplex:

$$g(\mathbf{x}) = \sum_{t=1}^{T} \beta_t \cdot g_t(\mathbf{x}). \tag{28}$$

with $\sum_{t=1}^{T} \beta_t = 1, \beta_t > 0$ (randomly picked at each iteration).

exploit the gradient norm:

$$d(\mathbf{x}) = \|\nabla L(\mathbf{x})\| \frac{g(\mathbf{x})}{\|g(\mathbf{x})\|}.$$
 (29)

Open Issues: Initialization

- ► Some tasks, like the XOR one, are still "unresolved" (even for the other approaches). They cannot be solved with most of the seeds used for the initialization
- it seems to be an initialization matter

Popular strategies for initialization are:

- "small random weights", usually drawn from gaussian or uniform distribution with zero mean (Pascanu).
- sparse initialization: only some weights are actually sampled from a distribution, the other are set to zero (HF).
- ESN-like initialization.

Open Issues: Learning rate

- the learning rate is usually tuned by hand, there is no convergence theory for SGD in the non convex case
- ▶ a gradient clipping technique is often employed:

Algorithm 2: Gradient clipping

- 1 $\mathbf{g} \leftarrow \nabla_{\mathbf{x}} L$ 2 if $\|\mathbf{g}\| \geq threshold$ then 3 $\mathbf{g} \leftarrow \frac{threshold}{\|\mathbf{g}\|} \mathbf{g}$
- 4 end
- some momentum or averaging technique often yield better convergence time, again tuned by hand

References I

S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735-1780, Nov. 1997.

J. Martens and I. Sutskever.

Training deep and recurrent networks with hessian-free optimization. In G. Montavon, G. B. Orr, and K. Müller, editors, *Neural Networks: Tricks of the Trade - Second Edition*, volume 7700 of *Lecture Notes in Computer Science*, pages 479–535. Springer, 2012.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574-1609, 2009.

References II

R. Pascanu, T. Mikolov, and Y. Bengio.
On the difficulty of training recurrent neural networks.
In *Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013*, pages 1310–1318, 2013.