(12)公開特許公報(A)

(11)特許出願公開番号

特開2006-22245 (P2006-22245A)

(43) 公開日 平成18年1月26日(2006, 1, 26)

(51) Int.Cl.	FI			テーマコー	ド(参考)
CO8L 9/00	(2006.01) CO	BL 9/00		4J002	
B60C 1/00	(2006.01) B60	OC 1/00	A	4 J 1 0 0	
CO8F 4/70	(2006.01) COS	3 F 4/70		4J128	
COBF 136/06	(2006,01) CO	BF 136/06			
CO8K 3/04	(2006,01) COS	3 K 3/04			
	審査請	求 未請求 請求	マ項の数 5 ○L	(全 14 頁)	最終頁に続く
(21) 出願番号	特願2004-202752 (P2004-20275	2) (71) 出願/	000000206		
(22) 出願日	平成16年7月9日 (2004.7.9)	, , , , , , , ,	宇部興産株式	会社	
		1	山口県宇部市	大字小串197	8番地の96
		(72) 発明者	永久 光春		
		1	千葉県市原市:	五井南海岸8番	の1 宇部興
		l	産株式会社千	集石油化学工 块	内
		(72) 発明者	一 岡本 尚美		
			千葉県市原市:	五井南海岸8番	の1 宇部興
				紫石油化学工 坝	
		Fターム(参考) 4J002 AC01		
		1		BX ACO9X AC11	
				36 DE236 DJ006	
			4J100 AS02		DA01 DA09
			FA08	FA19 FA30	FA34 JA29
				-	終百に締く

(54) 【発明の名称】ベーストレッド用ゴム組成物

(57) 【要約】

【課題】 加硫物が低発熱性で、ダイスウェルの小さいベーストレッド用ゴム組成物を得ることを目的としている。

【解決手段】 1, 2 - ポリプタジエン結晶繊維とゴム分とからなるビニル・シスポリプタジエンゴム組成物(a) $20 \sim 80 重量% と、$

(a) 以外のジエン系ゴム(b) 80~20重量%とからなるゴム成分(a) + (b) 100重量部とゴム補強剤(c) 25~55重量部とからなるゴム組成物であって、

咳ビニル・シスポリプタジエンゴム (a) に含有される1, 2 -ポリプタジエン結晶繊維の平均の単分散繊維 結晶の短輪長が0.2μm以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短繊維 状であり、かつ融点が170で以上であることを特徴とするペーストレッド用ゴム組成物。

【選択図】 なし

【特許請求の範囲】

【請求項1】

- 1,2-ポリプタジエン結晶繊維とゴム分とからなるビニル・シスポリプタジエンゴム (a)20~80重量%と、
- (a) 以外のジエン系ゴム(b) 80~20重量%とからなるゴム成分(a) + (b) 100重量部。 ゴム補強剤(c) 22~55車量部とからなるゴム組成物であって。

該ビニル・シスポリプタジエンゴム (a) に含有される1, 2 -ポリプタジエン結晶繊維の平均の単分散繊維結晶の 短輪長が0.2 μ m 以下であり、アスペクト比が10以下であり、平均の単分散繊維結晶数が10以上の短繊維状であり、か つ離点が170で以上であること

を特徴とするベーストレッド用ゴム組成物。

【請求項2】

該ピニル・シスポリプタジエンゴム (a) が

(I) 1、3 -ブタジエンと溶解度パラメーターが8. 5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を関節し、

(2)次いで、シスー1、4重合の触媒として、一般式A1Rn(但し、Rは淡寒数1~6のアルキル基、フェニル 基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1、5~2である。)で表されるハロゲン合有有機ア ルミニウム化合物と可溶性ロバルト化合物とと前記混合物に添加して1、3 ープタジエンをシスー1、4重合し、

(3) 炊いで、得られた重合反応混合物中に可溶性コパルト化合物と一般式AIR3個し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1、3 - ブタジエンを1、2重合させて

製造されていることを特徴とする請求項1に記載の乗用車タイヤ用ゴム組成物。

【請求項3】

該ピニル・シスポリプタジエンゴム (a) が下記の特性を有することを特徴とする請求項 $1\sim 2$ に記載のベーストレッド用ゴム組成物。

(1) 該ビニル・シスーポリブタジエンゴムの沸騰 n ー ヘキサン不溶分の分子量指標 η s p / c が 0 . 5 \sim 4 の範囲にあること。

(2) 該ビニル・シスーポリプタジエンゴムの沸騰 n - ヘキサン可溶分のポリスチレン換算重量平均分子量が30万~80万の範囲にあること。

(3) 該ビニル・シスーポリブタジエンゴムの沸騰 n ーヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上であること。

(4) 該ビニル・シスーポリブタジエンゴムの沸騰 n - ヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係がT-cp/ML≥1であること。

(5) 該ビニル・シスーポリプタジエンゴムの沸騰 $n-\Lambda$ キサン可溶分の $[\eta]$ の値が $1.0\sim5.0$ の範囲にあること。 【請求項 4 】

(a) 以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソプレンであることを特徴とする請求項1~3に記載のベーストレッド用ゴム組成物。

【請求項5】

ゴム補強剤がカーボンプラックであることを特徴とする請求項1~4に記載のベーストレッド用ゴム組成物。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、ベーストレッド用ゴム組成物に関するものであり、さらに詳しくは、タイヤの内部発熱性と押出し加工 性をパランス良く両立させた頻度なビニル・シスポリブタジエンによるベーストレッド用ゴム組成物に関するもので ある。また、本発明は、タイヤにおけるキャップトレッド、サイドウォール、カーカス、ベルト、チェーファー、ビ ード等の タイヤ部材や、ホース、ベルト、ゴムロール、ゴムクーラー、靴底ゴムなどの工業製品にも用いる事ができる。

【背景技術】

[0002]

ポリプタジエンは、いわゆるミクロ構造として、1,4-位での重合で生成した結合部分(1,4-構造)と1,2-位での重合で生成した結合部分(1,2-構造)とが分子鎖中に共存する。1,4-構造は、更にシス構造とトランス構造の二種に分けられる。一方、1,2-構造は、ビニル基を側鎖とする構造をとる。

[0003]

従来、ビニル・シスポリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キシレンなどの汚香族炭化水 素系溶媒で行われてきた。これらの溶媒を用いると蛋合溶液の粘度が減、撹拌、伝熱、移送などに問題があり、溶媒 の回収には過大なエネルギーが必要であった。又、前配溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性 のあるものであった。

[0004]

[0005]

また、例えば、特公昭62-171号公報(特許文献3),特公昭63-36324号公報(特許文献4),特公平2-37927号公報(特許文献5),特公平2-38081号公報(特許文献6),特公平3-63566号公報(特許文献7)には、二硫化炭素の存在下又は不在下に1,3-ブタジエンをシス1,4 信合して製造したり、製造した後に1,3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3-ブタジエンと一硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3-ブタジエンや前記の不括性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報(特許文献8)には配合物のダイスウェル比が小さく。その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀製成長性に優れたゴム組成物が配載されている。

[0006]

また、特開 2000-4463 号公報 (特許文献 2) には、n $ext{-}$ プタン、シス2 $ext{-}$ プラン、トランス-2 $ext{-}$ フ、及びプテン-1 などのC4個分を主成分とする不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有する1,2 $ext{-}$ ポポポリプタジエンは短纖維結晶であり、短纖維結晶の長伸長との分布が繊維長之の9 8% 以上が0.6 $ext{-}$ μπ未満であり、70 %以上が0.2 $ext{-}$ μπ未満であることが記載され、得られたゴム組成物はシス1,4 ポリプタジエンゴム(以下、12 $ext{-}$ 1 $ext{-}$ 2 の成形性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良されることが記載されている。

[0007]

一般にタイヤは、操縦性、耐久性等に優れることが要求され、特に安全面では湿潤路面でのウェットスキッド性に優れることが要求される。また、近年の省資源化の社会的要求に基づき、タイヤにおいては転がり抵抗のかさいタイヤ、即ちエネルギー損失の小さいタイヤの研究開発が行われている。自由回転のタイヤで消費されるエネルギー損失は、タイヤ構造などによっても変化するが、トレッド部で全体の約1/2が消費される。従って、トレッドゴムのエネルギー損失を減少させれば、転がり時のエネルギー損失が小さいタイ

ヤが得られる。

[0008]

そこで、トレッドゴムのエネルギー損失が小さくなるように改質することが試みられている。しかし、かかるゴム の改質はウェットスキッド性を低下させる傾向にある。転がり抵抗の改良とウェットスキッド性の改良は一般的に相 反する事項なので、これらを両立するため、タイヤ構造に種々の改良工夫が試みられている。その工夫の一つとして 、トレッドをキャップトレッドとベーストレッドとの二層化することが挙げられる。即ち、ウェットスキッド性に優 れるキャップトレッドとエネルギー損失の小さいベーストレッドとにトレッドを二層化して、全体としてのタイヤの ウェットスキッド性を高め、且つエネルギー損失を低下させようというものである。 「0 0 0 9 1

ベーストレッド用ゴムとしては、低発熱性のゴムが要求される。低発熱性のゴムとしては、天然ゴム、イソプレンゴム、 c i s 1, 4 ーポリブタジェンゴムが挙げられ、これらのゴムにカーボンブラックを配合したものが用いられる。ゴム以外で低発熱性を引き出すには、粒子径の大きい低補強性のカーボンブラックを使用したりカーボンブラックの配合量の低減が考えられるが、これらの方法はゴムの弾性率や耐疲労性を低下させたり、ダイスウェルが大きくなるという問題が発生してしまう。また、ナイロンやビニルの短載練を配合してゴムを高弾性化することで低発熱性を引き出す方法もあるが、これらの短載練はゴムとの接着が不十分なので疲労寿命が遅いという欠点を有している

[0010]

一方、乗用車用タイヤにおいてキャッブ/ベース方式を採用する際は、キャップトレッドとベーストレッドの共押出時において、両部材間のダイスウェルが異なることで押出物が反り返るという問題が生じる。この問題はベーストレッドゴムのダイスウェルがいるくなれば解消する方向にあり、高補強性のカーボンブラックを多量配合すればダイスウェルは小さくなるが、発熱が大きくなるので、ダイスウェルと低発験を同時に満定する方法が望まれている。

[0011]

[参考特許文献] 特公昭 4 9 - 1 7 6 6 6 号公報 [参考特許文献] 特公昭 4 9 - 1 7 6 6 7 号公報 [参考特許文献] 特公昭 6 2 - 1 7 1 号公報

【参考特許文献】特公昭63-36324号公報

【参考特許文献】特公平2-37927号公報

【参考特許文献】特公平2-38081号公報 【参考特許文献】特公平3-63566号公報

【参考特許文献】特公平3-63566号公報【参考特許文献】特公平4-48815号公報

【参考特許文献】特開2000-44633号公報

【発明の開示】

【発明が解決しようとする課題】

[0012]

本発明は、加硫物が低発熱性で、ダイスウェルの小さいベーストレッド用ゴム組成物を得ることを目的としている

【課題を解決するための手段】

[0013]

本発明は、 1, 2 ーポリプタジエン結晶繊維とゴム分とからなるビニル・シスポリプタジエンゴム組成物 (a) 20 \sim 80 重量%と、

(a) 以外のジエン系ゴム (b) 80~20重量%とからなるゴム成分 (a) + (b) 100重量部と

ゴム補強剤(c)25~55重量部とからなるゴム組成物であって、

該ビニル・シスポリブタジエンゴム (a) に含有される1, 2 - ポリブタジエン結晶繊維の平均の単分散繊維結晶の 短軸長が0.2μm以下であり、アスペクト比が10以下であり、平 均の単分散繊維結晶数が10以上の短繊維状であり、かつ融点が170℃以上であることを特徴とするペーストレッド用ゴム組成物に関する。

[0014]

また、本発明は、該ビニル・シスポリブタジエンゴム(a)が

(1) 1, 3 - ブタジエンと溶解度パラメーターが8. 5以下である炭化水素系有機溶剤を主成分としてなる混合物の水分の濃度を調節し、

(2) 炊いで、シスー1、4重合の触媒として、一般式AIRnX3-n(但し、Rは炭素数1~6のアルキル基、フェニル 基又はシクロアルキル基であり、Xはハロゲン元素であり、nは1、5~2である。)で表されるハロゲン合有有機ア ルミニウム化合物と可溶性コバルト化合物とと前応混合物に添加して1、3 ープタシエンをシスー1、4 重合し、

(3) 次いで、得られた重合反応混合物中に可溶性コパルト化合物と一般式A1R3(但し、Rは炭素数1~6のアルキル基、フェニル基又はシウロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1、3-ブタジエンを1、2重合させて

製造されていることを特徴とするベーストレッド用ゴム組成物に関する。

[0015]

また、本発明は、該ビニル・シスポリブタジエンゴム (a) が

(1) 該ピニル・シスーポリブタジエンゴムの沸騰n-ヘキサン不溶分の分子量指標 $\eta s p / c が 0$. $5 \sim 4$ の範囲にあること。

(2) 該ビニル・シスーポリブタジエンゴムの沸騰n-ヘキサン可溶分のポリスチレン換算重量平均分子量が30万~80万の範囲にあること。

0万の範囲にあること。(3) 該ビニル・シスーポリプタジエンゴムの沸騰n-ヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上で

(4) 該ビニル・シスーポリブタジエンゴムの沸騰 n - ヘキサン可溶分のトルエン溶液粘度とムーニー粘度の関係がT - c p / M L ≥ 1 であること。

(5) 該ビニル・シスーポリブタジエンゴムの沸騰 n ーヘキサン可溶分の [n] の値が1.0~5.0の範囲にあること。の特性を有することを特徴とするペーストレッド用ゴム組成物に関する。

[0016]

あること。

また、本発明は、(a) 以外のジエン系ゴム(b) が、天然ゴム及び/又はポリイソプレンであることを特徴とするペーストレッド用ゴム組成物に関する。

[0017]

また、本発明は、ゴム補強剤がカーボンブラックであることを特徴とするベーストレッド用ゴム組成物に関する。

【発明の効果】

[0018]

本発明におけるペーストレッド用ゴム組成物は、平均の単分散繊維結晶の短輪長が0.2 μ m以下であり、アスペクト 比が10以下であり、平均の単分散繊維結晶数が10以上の短纖維状であり、かつ融点が170で以上である1,2 ーポリブ タジエン結晶繊維を含有しているビニル・シスポリブタジエンを含んでいるので、ダイスウェルと発熱特性を同時に 改善し、両性能をパランス食。両立することができる。

【発明を実施するための最良の形態】

[0019]

本発明の (a) 特定の1、2 ーポリプタジエン結晶繊維とゴム分とからなるビニル・シスポリプタジエンゴムは、(1) 1、2 ーポリプタジエン結晶繊維の平均の単分散繊維結晶の短軸長が0.2 μ = 以下、アスペクト比が10以下であり、且一平均の単分散繊維結晶数が10以上の短線維状であり、かつ極度が10以上である1、2 ーポリプタジエン結晶繊維 1 $^{\circ}$ 5 0 重量部、および (2) ゴム分1 0 0 重産部からなる。

[0020]

上紅の(川成分の1,2 - ボリブタジエン結晶機能は、平均の単分散機維結晶の短軸長が0.2 μ=以下、好ましくは、 0.1 μ=以下であり、また、アスペクト比が10以下、好ましくは、8以下であり、且つ平均の単分散機維結晶数が10以上、 好ましくは、15以上の短線絶状であり、かつ、融点が170で以上、好ましくは、190~220である。

[0021]

(2) ゴム分としては、下記の特性を有するシス1, 4-ポリプタジエンが好ましい。

シス1. 4 一構造含有率が一般に90%以上、特に95%以上で、ムーニー粘度 $10\sim130$, 好ましくは $15\sim80$ であり、トルエン溶液粘度は $30\sim200$ 、 好ましくは $30\sim100$ であり、実質的にゲル分を含有しない。 $\{0022\}$

(1) 成分の1, 2 -ポリプタジエン結晶繊維と(2) ゴム分の割合は、(2) ゴム分100 重量部に対して(1) 成分の1, 2 -ポリプタジエン結晶繊維が $1\sim 50$ 重量部、好ましくは、 $1\sim 30$ 重量部である。上配範囲外であると B R中の1, 2 -ポリプタジエン結晶繊維の短線維結晶が大きくなり、特長となる弾性率等が発現し難く、また加工性の悪化などの問題がある。

[0023]

また、本発明のビニル・シスーポリプタジエンゴム(a)は、下記の特性を有する。

(1) 該ピニル・シスーポリプタジエンゴム (a) の沸騰 $n-\Lambda$ キサン不溶分の分子量指標 $(\eta s p/c)$ が0. $5\sim 4$ 、好ましくは、0. $5\sim 3$ の範囲にあること。

[0024]

上記範囲外であると、特長となる高弾性率や優れた加工性等の諸物性バランスが崩れる場合があり好ましくない。

(2) 該ビニル・シスーポリプタジエンゴム (a) の沸騰n-ヘキサン可溶分のポリスチレン換算重量平均分子量が 3 0 万~8 0 万好ましくは、 3 0 万~6 0 万の範囲にあること。

[0025]

上記範囲外であると、単分散繊維結晶化が困難の場合があり好ましくない。

(3) 該ビニル・シスーポリプタジエンゴム (a) の沸騰n-ヘキサン可溶分のミクロ構造中のシス構造含有量が90%以上、好ましくは、95%以上であること。

[0026]

上記範囲外であると、 単分散繊維結晶化が困難の場合があり好ましくない。

(4)該ピニル・シスーポリプタジエンゴム (a) の沸騰 $n-\Lambda$ キサン可溶分のトルエン溶液粘度 (T-cp) とムーニー粘度 (ML) の関係がT-cp/ML \ge 1、好ましくは、 $1\sim4$ の範囲であること。

(5) 該ビニル・シスーポリプタジエンゴム (a) の沸騰n - ヘキサン可溶分の [η] の値が1.0~5.0、好ましくは、1.0~4.0の範囲にあること。

[0027]

上記範囲外であると、特長となる高弾性率や優れた加工性等の諸物性バランスが崩れる場合があり好ましくない。

[0028]

また上記のビニル・シスポリプタジエンは、例えば以下の製造方法で好適に得られる。

[0029]

溶解度パラメーター (以下、SP値と略)が8.5以下である炭化水素系溶媒を用いた重合により製造される。溶解度パラメーターが8.5以下である炭化水素系溶媒としては、

[0030]

[0031]

これらの溶媒のSP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、平成6年1

月 2 0 日発行 ; page7 2 1) などの文献で公知である。

[0032]

SP値が8.5よりも大きい溶媒を使用すると、ポリプタジエンゴム中への1,2ポリプタジエンの短纖維結晶の 分散状態が本発明の如く形成され難いので、優れたダイスウェル特性や高弾性率、高耐摩耗性能を発現しないので好ましくない。 ましくない。

[0033]

次に1、3ープタジエンと前記答葉とを混合して得られた混合媒体中の水分の濃度を調飾する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは0.1~1.0モル、特に好ましくは0.2~1.0モルの範囲である。この範囲以外では触媒活性が低下したり、シス1、4構造合有率が低下したり、分子量が異常に低下又は高くなったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調節する方法は公知の方法が適用できる。多れ質識過材を通して添加・分散させる方法、特開平4-85304等公装)も有効である。

[0034]

水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式 $A \ 1 \ R_1 X_3 - n$ で表される 有機アルミニウムクロライドの具体例としては、ジエチルアルミニウムモノクロライド、ジェチルアルミニウムモノクロライド、ジンチルアルミニウムモノクロライド、ジンケロペキシルアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモスクロライドの使用量の具体例としては、1、3 - ブタジェンの全量 1 モル当たり 0. 1 ミリモル以上、特に 0. 5 \sim 5 0 ミリモルが好ましい。

[0035]

[0036]

シス1、4重合する温度は0℃を超える温度~100℃、好ましくは10~100℃、更に好ましくは20~100℃での温度範囲で1、3~ブタジエンをシス1、4重合する。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。シス1、4重合後のポリマー濃度は5~26重量をとなるようにシス1、4重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を提拌混合して行う。重合作用いる重合槽としては高粘度液提拌装置付きの重合槽。例えば特公昭40~2645号に記載された装置を用いることができる。

[0037]

本発明のシス1, 4重合時に公知の分子量額節剤、例えばシクロオクタジエン,アレン,メチルアレン (1, 2 ー ブタジエン) などの非共役ジエン類,又はエチレン,プロビレン,プテンー1 などの α ーオレフィン類を使用することができる。又重合時のゲルの生成

を更に抑制するために公知のゲル化防止剤を使用することができる。シス1、4 - 構造含有率が一般に90%以上、特に95%以上で、ムーニー粘度10~130、好ましくは15~80であり、実質的にゲル分を含有しない。

[0038]

[0039]

[0040]

重合反応が所党の重合率に達した後、常法に従って公知の老化助に剤を添加することができる。老化防止剤の代表 としてはフェノール系の2, 6-ジョ t - ブチル- p - クレゾール (BHT), リン系のトリノニルフェニルフォス ファイト (TNP), 硫黄系の4,6-ビス(オクチルチオメチル)- o - クレゾール、ジラウリル-3,3

- チオジプロビオネート (TPL) などが挙げられる、単独でも2種以上組み合わせて用いてもよく、老化防止剤の 添加はビニル・シスポリブタジエンゴム100重量部に対して00、01~5重量部である。次に重合停止剤を 乗に加えて停止する。例えば重合反応執了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどの アルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩 化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したビニル ・シスポリプタジエンゴムを分離、洗浄、乾燥する。

[0041]

このようにして得られたビニル・シスポリブタジェンはムーニー粘度が20~150、好ましくは25~100であり、(1)1、2ポリブタジェンが1~50重量部、融点が170~220℃であり、(2)ゴム分が100重量部でそのミクロ構造がシス90%以上のシス1、4ーポリブタジエンである。

[0042]

ビニル・シスポリブタジエン中に分散した1,2 - ポリブタジエン結晶繊維はビニル・シスポリブタジエンのマトリックスゴム中に微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大きな繊維結晶と共存している。そして、この単分散化した微細な繊維結晶はマトリックスゴム成分との界面観和性を向上させる。この単分散繊維結晶の平均短軸長は0,2 mu以下、アスペクトとは10以下であり、且つ平均の単分散繊維結晶

数が10以上の短纖維状である。一方、従来のビニル・シスポリブタジエンは大きな凝集構造を有する纖維結晶が殆どで、単分散繊維結晶数は5以下であった。

[0043]

このようにして得られたビニル・シスポリブタジエンゴムを分離取得した残部の未反応の1,3-ブタジエン,不活性媒体及び二硫化炭素を含有する混合物から蒸留により1,3-ブタジエン,不活性媒体として分離して,一方、二硫化炭素を受益分離処理。あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し、こ為化炭素を実質的に含有しない1,3-ブタジエンと不活性媒体とを回収する。また、前記の混合物から蒸留によって3成分を回収して,この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても,二硫化炭素を実質的に含有しない1,3-ブタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1,3-ブタジエンを混合して使用される。「00441

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にビニル・シスポリ ブタジエンゴムを連続的に長時間製造することができる。特に、重合情内の内壁や操弁翼、その他提弁が緩慢な部分 に付着することもなく、高い転化率で工業的に本利に連絡製造できる。

【0045】 但し、重合 【0046】

但し、重合方法は特に制限はなく、連続重合、または回分重合でも製造できる。

〜 次に、本発明に使用されるベーストレッド用ゴム組成物は、前配のビニル・シスポリブタジエン (a)、(a)以外のジエン系ゴム(b)、ゴム補強剤(c)を配合してなる。

[0047]

前紀のジエン系ゴム(b) としては、ハイシスポリブタジエンゴム、ローシスポリブタジエンゴム(BR)、天然ゴム、ポリイソブレンゴム、乳化重合若しくは溶液重合スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、ブチルゴム(IIR)、クロロブレンゴム(CR)などが挙げられる。

[0048]

また、これらゴムの誘導体、例えば錫化合物で変性されたポリブタジエンゴムやエポキシ変性、シラン変性、マレイン酸変性された上記ゴムなども用いることができ、これらのゴムは単独でも、二種以上組み合わせて用いても良い

[0049]

本発明の(c)成分のゴム精整剤としては、各種のカーボンブラック以外に、ホワイトカーボン、活性化炭酸カルシウム、窓微粒子珪酸マグネシウム等の無機補強剤やシンジオタクチック1。2 ポリプタジエン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマインインデン樹脂及び石油樹脂等の有機補強剤があり、特に好ましくは、粒子径が90nm以下、ジブチルフタレート (DBP) 吸油量が70ml/100g以上のカーボンブラックで、例えば、FBF、FF、GFF、SAF、ISAF、SRF、HAF等が挙げられる。

[0050]

前記各成分を、ビニル・シスポリプタジエン (a) 20~80 重量をと、(a) 以外のジエン系ゴム (b) 80~ 20 重量をとからなるゴム成分 (a) + (b) 100 重量部と、ゴム補強剤 (c) 25~55 重量部の条件を換足す べく配合する。

[0051]

前記ピニル・シスポリブタジエンの量が前記下限より少ないと、ダイスウェルが大きくて加蔵物の発熱性が低いゴム組成物が得られず、ピニル・シスポリブタジエンの量が前記上限より多いと、組成物のムーニー粘度が大きくなりすぎて成形性が悪くなる。前記ゴム補強剤の量が前記下限より少ないとダイスウェルが大きくなり、逆に前記上限より多いとムーニー粘度が大きくなりすぎて混構りが困難となり、好ましくない。

[0052]

本発明のベーストレッド用ゴム組成物は、前配各成分を適常行われているパンパリー、オープンロール、ニーダー、二輪混練り機などを用いて混練りすることで得られる。 混練温度は、当該ビニル・シスポリブタジエンに含有される1、2ポリブタジエン結晶繊維の融点より低い必要がある。この1、2ポリブタジエン結晶繊維の融点より低い必要がある。この1、2ポリブタジエン結晶繊維の融点より低い必要がある。この1、2ポリブタジエン結晶繊維の融点より高い温度で混練すると、ビニル・シスポリブタジエン中の微細な短繊維が溶けて球状の粒子等に変形してしまうから好ましくない。

[0053]

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練してもよい。

00541

加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。

[0055]

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーパメイト類、キサンテート類などが用いられる。

[0056]

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。

[0057]

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土等の無機充填剤、再生 ゴム、粉末ゴム等の有機充填剤が挙げられる。

[0058]

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。 【0059】

本発明のベーストレッド用ゴム組成物は、ダイスウェルが小さく、加硫物が低発熱特性のため、従来公知のベーストレッド用ゴム組成物に代えて、乗用車、バス、トラック、飛行機等のタイヤ部材として他のタイヤ部材 (キャップトレッド、サイドウォール、カーカス、ベルト、ビード等) と組み合わせて使用することができる。 [0060]

以下、実施例及び比較例を示して、本発明について具体的に説明する。実施例及び比較例において、ビニル・シスポリプタジェンの素ゴムの物性、及び得られたペーストレッド用ゴム組成物の配合物の物性と加硫物の物性は以下のようにして測定した。 (1) 1.2 ボリブタジェン結晶繊維合有量;2gのビニル・シスポリブタジェンを2gのの10mmのイナサンにて4時間ソックスレー抽出想によって沸騰抽出した抽出残酷を重量整で示した。 (2) 1.2 ボリブタジェン経品繊維の融点;沸騰 nーヘキサン抽出残部を示差走査熱量計 (DSC) による吸熱曲線のビーク温度により決定した。 (3) nsp/C; 1,2 ボリブタジェン結晶繊維の分子量の目安として、オルトジクロルベンゼル溶液から135℃で還元粘度を測定した。 (4) 結晶繊維形態;ビニル・シスポリブタジェンを一堆化積安上で化炭素で加減し、加減物を超薄切外で切り出して四塩化オスミウム素気でビニル・シスポリブタジェンを一堆化積安上で化炭素で加減し、加減物を超薄切外で切り出して四塩化オスミウム素気でビニル・シスポリブタジェンのゴム分の二重結合を染色して、透過型電子顕微鏡で観察して求めた。 (5) ビニル・シスポリブタジェン中のゴム分のミクロ機造:赤外板収スペクトル分析によって行った。シス740cm-1、トランス967cm-1、ビニル910cm-1の吸収強度比からミクロ構造を算出した。 (6) ビニル・シスポリブタジェン中のゴム分のトルエン溶液粘度;25℃における5隻

量条トルエン溶液の粘度を測定してセンチボイズ(cp)で示した。 (7) ビニル・シスポリブタジエンゴム中のゴム分の [n]: 海摩n − ヘキサシ可溶分を乾燥採取し、トルエン溶液にて30℃の温度で測定した。 (8) ビニル・シスポリブタジエンゴム中のゴム分の重量平均分子量;沸酸n − ヘキサシ可溶分を乾燥採取し、テトラヒドロフラン溶液にしてゲル浸透クロマトグラフィー(GPC、東ソー社製、HCL−802A)により、40℃、標準ポリスチレンを使用した検量線により重量平均分子量(Mw)を求めた。 (9) ムーニー粘度:JIS K6300に準じて100℃にて測定した値である。 (10) ダイ・スウェル: 加工性測定装置(モンサント社、MPT)を用いて配合物の押出加工性の目安として100℃、100sec−1のせん修道度で押出時の配合物の径とダイオリフィス径(但し、L/D=1.5mm/1.5mm/0比を測定して求めた。 (11) 引張弾性率:JIS K6301に従い、引張弾性率M300を測定した。 (12) 発熱性:JIS K6265に準じて、試験温度100℃で25分間試験し、試験前後の温度差を測定した。指数の小さい方が発熱特性が良好になる。

【実施例】

[0061]

(ビニル・シスポリブタジエンサンプル1の製造)

窒素ガスで置換した内容301の機幹機付ステンレス製反応槽中に、脱水シクロヘキサン18kgに1.3ープタジエン1.6kgを溶解した溶液を入れ、コパルトオクトエート4mmo1、ジエチルアルミニウムクロライド84mmol及び1.5ーシクロオクタジエン70mmolを混入、25℃で30分間機件し、シス重合を行った。シス重合後、直ちに重合液にトリエチルアルミニウム90mmol及び二硫化炭素50mmolを加え、25℃で60分間機件し、1。運合を行った。重合後7後、重合生成液を4,6ービス(オクチルチオメチル) −0ークレゾール1重量を含むメタノール18Lに加えて、ゴム状重合体を析出沈設させ、このゴム状重合体を分離し、メタノールで洗浄した後、常温で真空乾燥した。この様にして得られたビニル・シスポリプタジエンゴムの収率は28%であった。

(ビニル・シスポリプタジエンサンプル2の製造)

重合溶媒を脱水ペンゼンを用いること以外はサンブル1の製造方法と同様にしてビニル・シスポリブタジエンを得た。この様にして得られたビニル・シスポリブタジエンゴムの収率は80%であった。

前記サンプル1とサンプル2の物性を表1に示した。

[0062]

【表1】

サンプル名	サンプル 1	サンプル2			
重合溶媒の種類	シクロヘキサン	ベンゼン			
溶媒のSP値			8. 1	9. 1	
ピニル・シスポリア・ダシン 中のゴム分の特性					
	4-二-粘度		33	←	
	[η]		1.4	1.4	
	重量平均分子量 (Mw)×10 ⁴		42	42	
	トルエン溶液粘度 (cp)		59	←	
	シクロ構造	Cis	98. 2	←	
	(%)	Trans	0.9	←	
		Viny1	0.9	←	
1, 2ポリプタジエン	2ボリブタジエン 繊維結晶の		202	←	
結晶繊維の特性	η sp/c		1.5	←	
	単分散繊維結晶数 短軸長0.2μ以下の数 400μ ⁸ 当り		>100	3	
	単分散繊維結晶の アスペクト比		7	15	
, 2ポリプタジエン結晶繊維 の重量部数			13.6	←	
備考			単分散繊維 結晶数多い	単分散繊維 結晶数少い	

[0063]

(実施例1~5) (比較例1~5)

前記サンブル1及びサンブル2を用い、表2に示す配合処方のうち、加硫促進剤、硫費を除く配合剤を1.7Lの試験用バンパリーミキサーを使用して選練し、キャップトレッド用ゴム組成物である混雑物を得た。この際、最高提練温度を170~180℃に開節した。次いで、この混練物を10インチロール上で加硫促進剤、硫黄を混練し、これをシート状にロール出しした後、金型に入れて加硫し、加硫物を得た。加硫は150℃、30分で行った。結果をまとめて表2に示す。

[0064]

実施例の組成物は、弾性率が大幅に改善されて、且つダイスウェルと発熱特性が高度にパランスしている。一方、 比較例の組成物においては、 市販のBRを用いるとダイスウェルが大きくなり、 カーボンブラックの配合量が多いと 発熱特性が悪化する。また、本発明を満たさないビニル・シスポリブタジエンを使用したり、本発明のビニル・シス ポリブタジエンの使用量が少ないと改善効果は期待するレベルに到達しなかった。

[0065]

【表2】

94 A #	PER	I em dia Imia	eta de feu a	unter de la fest a	Turn differ Print	11 84 84 .	111 44 441			
配合表		実施例2				比較例1	比較例2	比較例3	比較例4	比較例
ピニル・シスポリプタジエン 種類	サンプル1	サンプル1	サンプル1	サンフ・ル1	サンプル1	-	サンフル2	サンフ ル1	サンフル1	サンプル1
量(部数)		70	30	_ 50 _	_ 50	-	50	50	50	10
NR(注1)	50	30	70	50	50	50	50	50	50	90
BR(注2)	-		-	-	- 1	50	-	-	-	-
カーホ・ンプ・ラック N330	40	40	40	50	35	40	40	60	20	40
アロマティックオイル	10	10	10	10	10	10	10	10	10	10
酸化亜鉛	5	5	5	5	5	5	5	5	5	5
ステアリン酸	2	2	2	2	2	2	2	2	2	2
老化防止剤(注3)	1	1	1	1	1	1	1	1	1	1
加硫促進剤(注4)	1.0	0.9	8.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7
硫黄	1.5	1.7	2.0	1.5	1.5	1.5	1.5	1.5	1.5	2.2
配合物物性										
ダイ・スウェル指数	74	67	87	65	81	100	87	58	105	96
加硫物物性										
300%引張弾性率(指数)	200	230	157	230	183	100	140	257	110	118
発熱特性 (指数)	85	80	90	98	78	100	105	113	89	100

⁽注1) NR; RSS#1

⁽注2) BR; ポリブタジエン (UBEPOL-BR150、宇部興産(株) 製)

⁽注3) 老化防止剤; アンテージAS (アミンとケトンの反応物)

⁽注4) 加硫促進剤; ノクセラーCZ (N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド

フロントページの続き

(51) Int. Cl. C 0 8 L 21/00 FΙ

テーマコード (参考)

F ターム (参考) 4J128 AA01 AC47 BA01B BB01B BC15B BC16B BC19B CA48C EA02 EB13 EC01 ED06 ED08 EF02 FA02 GA01 GA04 GA11 GA12