To find following the machine learning regression method using in r_value

1. MULTIPLE LINEAR REGRESSION (R_value)=0.78947

2. SUPPORT VECTOR MACHINE:

SI.No	HYPER PARAMETER	Linear	rbf	Poly	sigmoid
1	C=1.0	-0.01010	-0.08338	-0.07569	-0.07542
2	C=10.0	0.46246	-0.03227	0.03871	0.03930
3	C=100.0	0.62887	0.32003	0.06179	0.52761
4	C=500.0	0.76105	0.66429	0.82636	0.44460
5	C=1000.0	0.76310	0.81020	0.85664	0.28747
6	C=2000.0	0.74404	0.85477	0.86055	-0.59395
7	C=3000.0	0.74142	0.86633	0.85989	-2.12441

The **SVM Regression** using hyper tuning parameter with **C = 3000.0** in **rbf** has 0.86633 **Highest Accuracy**.

3. DECISION TREE:

SI.NO	CRITERION	SPLITTER	MAX_FEAURES	R VALUE
1	friedman_mse	best	sqrt	0.60967
2	friedman_mse	random	sqrt	0.61316
3	friedman_mse	best	log2	0.65189
4	friedman_mse	random	log2	0.68463
5	friedman_mse	best	none	0.69332
6	friedman_mse	random	none	0.70127
7	squared_error	best	sqrt	0.70383
8	squared_error	random	sqrt	0.71077
9	squared_error	best	log2	0.62264
10	squared_error	random	log2	0.68136
11	squared_error	best	none	0.68010

12	squared_error	random	none	0.71077
13	absolute_error	best	sqrt	0.76355
14	absolute_error	random	sqrt	0.74423
15	absolute_error	best	log2	0.73536
16	absolute_error	random	log2	0.64685
17	absolute_error	best	none	0.66792
18	absolute_error	random	none	0.70688
19	Poisson	best	sqrt	0.75398
20	Poisson	random	sqrt	0.66874
21	Poisson	best	log2	0.70685
22	Poisson	random	log2	0.62464
23	Poisson	best	none	0.71623
24	Poisson	random	none	0.74130

The Decision Tree Regression use R value ($absolute_error$, best, sqrt) = 0.76355

4. RANDOM FOREST:

SI.NO	N_ESTIMATORS	CRITERION	MAX_FEATURES	R_VALUE
1	50	friedman_mse	sqrt	0.86966
2	100	friedman_mse	sqrt	0.87185
3	50	friedman_mse	log2	0.87033
4	100	friedman_mse	log2	0.87191
5	50	friedman_mse	none	0.84971
6	100	friedman_mse	none	0.85505
7	50	squared_error	sqrt	0.86720
8	100	squared_error	sqrt	0.87168
9	50	squared_error	log2	0.87072
10	100	squared_error	log2	0.86891
11	50	squared_error	none	0.85059

12	100	squared_error	none	0.85317
13	50	absolute_error	sqrt	0.86777
14	100	absolute_error	sqrt	0.87425
15	50	absolute_error	log2	0.86926
16	100	absolute_error	log2	0.86773
17	50	absolute_error	none	0.85032
18	100	absolute_error	none	0.85499
19	50	Poisson	sqrt	0.86733
20	100	Poisson	sqrt	0.86797
21	50	Poisson	log2	0.87112
22	100	Poisson	log2	0.86931
23	50	Poisson	none	0.85174
24	100	Poisson	none	0.85770

The Random Forest Regression use R_value (N_ESTIMATORS=100, CRITERION= absolute_error, MAX_FEATURES= sqrt)=0.87425