ECE 538

VLSI System Testing

Krish Chakrabarty

Test Generation: 2

ECE 538

Krish Chakrabarty

Outline

- Problem with D-Algorithm
- PODEM
- FAN
- Fault-independent ATPG
 - Critical path tracing
- Random test generation
- Redundancy identification

ECE 538

Krish Chakrabarty

2

ECE 538 Krish Chakrabarty 11

Inconsistent

- d = 0 and m = 1 cannot justify r = 1 (equivalence)
 - Backtrack

ECE 538

- Remove B = 0 assignment

ECE 538 Krish Chakrabarty

Krish Chakrabarty

ECE 538 Krish Chakrabarty 2

Problem with D-Algorithm

Excessive backtracking occurs in certain types of circuits

Causes "ripple effect" in many circuits, e.g. adders, parity circuits, error correcting circuits

PODEM: "Path-Oriented Decision Making"

- Similarity with D-algorithm: circuit-based, fault-oriented
- *Difference*: Signal values explicitly assigned only at primary outputs, others computed by implication
- Justification not needed!
- Backtracking means reassigning primary inputs when contradiction occurs: "implicit enumeration"
- Simple "backtrace" heuristic used to select primary input

ECE 538 Krish Chakrabarty 2

Branch and Bound Search

- Efficiently searches binary search tree
- *Branching* At each tree level, selects which input variable to set to what value
- *Bounding* Avoids exploring large tree portions by artificially restricting search decision choices
 - Complete exploration is impractical
 - Uses heuristics

PODEM Steps

- Input Assignment
 - Unassigned PIs are selected and assigned new values systematically
 - All implications of each assignment are determined
 - If D/D is implied on a primary output, a test has been found; otherwise a new assignment or a new primary input line is selected

ECE 538 Krish Chakrabarty

PODEM Steps

- Primary inputs selection:
 - INITIAL OBJECTIVE: A series of "initial" objectives of the form $IO_j = (l, v)$ are determined. The first IO_0 is to apply $v = D/\overline{D}$ to the fault site.
 - BACKTRACING: For each initial objective IO_j, a path is traced backwards through the circuit to a primary input via a series of "current" objectives
 - Current objectives are selected by heuristics

PODEM Procedures

```
Procedure Backtrace(k, v_k)
/* Map objective into PI assignment */
                                            Procedure Objective()
begin
                                            begin
v = v_k
                                             /* the target is l/v */
  while k is a gate input
                                            if (value of l is X) then return (l, v);
    begin
                                            select a gate (G) from the D-frontier;
     i = inversion value of k;
                                            select an input (j) of G with value X;
     select an input (j) of k with value x; c = controlling value of <math>G;
     v = v \oplus i;
                                            return (j,c);
     k = j;
                                            end
    end
/* k is a PI */
return (k, v);
end
```

ECE 538 Krish Chakrabarty

PODEM Procedures

```
PODEM()

begin

if (error at PO) then return SUCCESS

if (test not possible) then return FAILURE

(k,v_k) = Objective();

(j,v_j) = Backtrace(k,v_k);

Imply(j,v_j);

if PODEM() = SUCCESS then return SUCCESS

/* reverse decision */

Imply(j,v_j);

if PODEM() = SUCCESS then return SUCCESS;

Imply(j,v_j);

if PODEM() = SUCCESS then return SUCCESS;

Imply(j,X);

return FAILURE
```

FAN: "Fanout-Oriented Test Generation"

- Two major extensions to PODEM
 - Backtracing may stop at internal lines
 - Multiple backtrace-procedures attempts to simultaneously satisfy a set of objectives
- Backtracing can stop at head lines

ECE 538 Krish Chakrabarty

Selection Criteria

- Controllability (CC0 and CC1) and observability measures (CO)
 - Exact values can only be determined by exhaustive simulation
 - Estimates are useful for guiding test generation (more controllable ⇔ low values, more observable ⇔ low values)

Critical Path Test Generation

• Recursively determine critical paths

ECE 538 Krish Chakrabarty 33

Critical Path Test Generation

Redundancy Removal Using ATPG

- Redundancy identification
- · Redundancy removal

ECE 538 Krish Chakrabarty

Irredundant Faults

• Combinational ATPG can find redundant (unnecessary) hardware

- Fault Test $a ext{ sa1, } b ext{ sa0}$ A = 1 $a ext{ sa0, } b ext{ sa1}$ A = 0
- Therefore, these faults are not redundant

Intentional Redundant Implicant BC

• Eliminates hazards in circuit output

ECE 538 Krish Chakrabarty 41

Fault Cone and D-Frontier

- Fault Cone -- Set of hardware affected by fault
- *D-frontier* Set of gates closest to POs with fault effect(s) at input(s)

Redundancy Removal

```
Repeat until there are no more redundant faults:

{
    Use ATPG to find all redundant faults;
    Remove all redundant faults with non-
    overlapping fault cone areas;
}
```

ECE 538

Krish Chakrabarty

43

Forward Implication

- Results in logic gate inputs that are significantly labeled so that output is uniquely determined
- AND gate forward implication table:

λ^b	0	1	Χ	D	D
0	0	0	0	0	0
1	0	1	X	D	Ы
X	0	X	Х	X	Х
D	0	D	Х	D	0
$\overline{\mathbf{D}}$	0	D	X	0	D

ECE 538

Krish Chakrabarty

44

Backward Implication

• Unique determination of all gate inputs when the gate output and some of the inputs are given

ECE 538 Krish Chakrabarty 45

Implication Stack

- Push-down stack. Records:
 - Each signal set in circuit by ATPG
 - Whether alternate signal value already tried
 - Portion of binary search tree already searched

