More mgcViz tools

Matteo Fasiolo

Joint work with:

Simon N. Wood (University of Bristol, UK) Yannig Goude (EDF R&D) Margaux Zaffran (ENSTA Paris) Raphaël Nedellec (Talend, formerly EDF R&D)

Material available at:

 $https://github.com/mfasiolo/workshop_EDF19$

More tools mgcViz: talk structure

These slides cover:

- Quantile GAMs
 - What are quantile GAMs (QGAMs)
 - Using QGAMs with qgam and mgcViz
- 2 Loss-based checks
 - Loss-based vs goodness-of-fit checks
 - Future developments
- 3 Hands-on session

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for $p(y|\mathbf{x})$.

Model is $p_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are parameters.

Matteo Fasiolo More mgcViz tools 3 / 22

Lots of options for $p_m(y|\mathbf{x})$: binomial, gamma, Poisson, Tweedie...

We consider continuous (not discrete) y.

Define $F(y|\mathbf{x}) = \text{Prob}(Y \leq y|\mathbf{x})$.

The τ -th $(\tau \in (0,1))$ quantile is $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Matteo Fasiolo More mgcViz tools 4 / 22

Given $p_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for $p(y|\mathbf{x})$.

Quantile GAM estimation

In parametric GAMs $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Key fact: $\mu_{\tau}(\mathbf{x})$ is the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(y-\mu) \,|\, \mathbf{x} \},\,$$

where ρ_{τ} is the "pinball" loss (Koenker, 2005):

In additive modelling context $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x}) = \mu_{\tau}(\boldsymbol{\beta})$.

Matteo Fasiolo More mgcViz tools 7 / 22

Quantile GAM estimation

Problem: how to perform Bayesian update $p(\beta|y) \propto p(y|\beta)p(\beta)$?

A coherent approach is the Gibbs posterior (Bissiri et al., 2016)

$$p(eta|y) \propto \underbrace{\mathrm{e}^{-rac{1}{\sigma}
ho_{ au}\{y-\mu(eta)\}}}_{ ext{pseudo} \ p(y|eta)} p(eta),$$

where $1/\sigma > 0$ is the "learning rate".

Recall that $p(\beta) = p(\beta|\gamma)$, hence we need to:

- select learning rate $1/\sigma$
- ullet select smoothing parameters γ
- ullet estimate regression coefficients $oldsymbol{eta}$

Technical challenges

σ controls width of credible intervals:

Selecting the learning rate

We select σ so that the model-based uncertainty estimates match the sampling uncertainty, that is σ minimizes

$$\mathsf{CalibrLoss}(\sigma) = \int \mathsf{Dist}\{\mathsf{var}_m(\mathbf{x}), \mathsf{var}_{\mathbb{P}}(\mathbf{x})\} p(\mathbf{x}) d\mathbf{x},$$

Matteo Fasiolo More mgcViz tools 10 / 22

Quantile GAM estimation

We use a hierarchical fitting framework:

 $\ \, \textbf{ Select} \,\, \sigma \,\, \textbf{to optimise coverage} \\$

$$\hat{\sigma} = \underset{\sigma}{\operatorname{argmin}} \operatorname{CalibrLoss}(\sigma).$$

2 For fixed σ , select γ to determine smoothness

$$\hat{\gamma} = \mathop{\mathsf{argmax}}_{\gamma} \mathsf{LAML}(\gamma)$$

where LAML
$$(\gamma) \approx p(y|\gamma) = \int p(y,\beta|\gamma) = \int p(y|\beta)p(\beta|\gamma)d\beta$$
.

3 For fixed γ and σ , estimate β

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{oldsymbol{eta}} \ \sum_{i}
ho_{ au}\{y_i - \mu(oldsymbol{eta})\} + \mathsf{Pen}(oldsymbol{eta}|oldsymbol{\gamma}).$$

Matteo Fasiolo More mgcViz tools 11 / 22

Quantile GAM estimation

qgam uses a modified loss which we call Extended log-F (ELF) loss.

This is smooth and convex and, as $h \to 0$, we have recover pinball loss.

Since qgam 1.3.0, h (err parameter) is selected automatically.

Matteo Fasiolo More mgcViz tools 12 / 22

Selecting the learning rate

Motivation for using ELF:

pinball loss becomes very asymmetric on extreme quantiles.

Smoothing the pinball loss

h (called err in qgam) selected to balance variance and bias.

Matteo Fasiolo More mgcViz tools 14 / 22

Estimating quantile GAMs

Let h be the smoothness of loss, we derive

$$\begin{aligned} \mathsf{AMSE}(h) = & n \mathbb{E}\{(\hat{\beta} - \beta_0)(\hat{\beta} - \beta_0)^{\mathsf{T}}\} \\ = & \mathbf{V}\mathbf{V}^{\mathsf{T}} + \mathbf{V}[\underbrace{nh^4\mathbf{B}}_{bias} - \underbrace{h\mathbf{A}}_{variance}]\mathbf{V}^{\mathsf{T}} + \cdots. \end{aligned}$$

We let h = h(x) and assume location-scale model

$$y_i = \alpha(\mathbf{x}_i) + \kappa(\mathbf{x}_i)z_i,$$

where z_i are iid errors.

Under this model

$$h^*(\mathbf{x}) = \underset{h}{\operatorname{argmin}} \operatorname{Trace}(nh^4\mathbf{B} - h\mathbf{A}) = \left[\frac{d}{n} \frac{9}{\pi^4} \frac{f_z(\mu_\tau)}{f_z'(\mu_\tau)^2}\right]^{\frac{1}{3}} \kappa(\mathbf{x}).$$

Matteo Fasiolo More mgcViz tools 15 / 22

Estimating quantile GAMs

A practical procedure:

- **1** estimate $\alpha(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$ and $\kappa(\mathbf{x}) = \text{var}(y|\mathbf{x})$
- 2 normalize $z = \{y \alpha(\mathbf{x})\}/\kappa(\mathbf{x})$
- \odot estimate f_z and f_z'

Matteo Fasiolo More mgcViz tools 16 / 22

More tools mgcViz: talk structure

These slides cover:

- Quantile GAMs
 - What are quantile GAMs (QGAMs)
 - Using QGAMs with qgam and mgcViz
- 2 Loss-based checks
 - Loss-based vs goodness-of-fit checks
 - Future developments
- 3 Hands-on session

Loss-based checks

Visual checks in first session were looking at goodness-of-fit.

In a forecasting context we might be interested in predictive accuracy.

Accuracy quantified using loss function (MSE, pinball, ...).

check1D, check2D can be adapted to visualize **custom losses on training or training test set**.

Loss-based checks

```
check1D(o, x, type = "auto", trans = NULL, ...)
```

Here:

- if type = "y" we are looking at responses y, not residuals r
- trans is function used to transform y

Example of loss-based check:

Now we move to "qgam_demonstration.html".

Future work

For predictive applications, it would be useful to be able to compare losses across models:

```
pl1 <- check1D(m1, function = pinball) + geom_smooth()
pl2 <- check1D(m2, function = pinball) + geom_smooth()
pl3 <- check1D(m3, function = pinball) + geom_smooth()
compare(pl1, pl2, pl3)</pre>
```


Matteo Fasiolo More mgcViz tools 20 / 22

Future work

Focussing on the losses would be useful in the context of stacking

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \operatorname{Loss} \left\{ y_i - \sum_{j=1}^m w_j \hat{\mu}_j(\mathbf{x}_i) \right\}$$

where

- $\hat{\mu}_j(\mathbf{x}_i)$ is prediction of *j*-th expert;
- $\mathbf{w} = \{w_1, \dots, w_m\} > 0$ are model weights.

References I

- Bissiri, P. G., C. Holmes, and S. G. Walker (2016). A general framework for updating belief distributions. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*.
- Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. arXiv preprint arXiv:1707.03307.
- Fasiolo, M., R. Nedellec, Y. Goude, and S. N. Wood (2018). Scalable visualisation methods for modern generalized additive models. arXiv preprint arXiv:1809.10632.
- Hastie, T. and R. Tibshirani (1990). *Generalized Additive Models*, Volume 43. CRC Press
- Koenker, R. (2005). Quantile regression. Number 38. Cambridge university press.
- Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale and shape. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 54(3), 507–554.
- Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general smooth models. *Journal of the American Statistical Association* 111(516), 1548–1575

Matteo Fasiolo More mgcViz tools 22 / 22