Practicum Numerieke Wiskunde

Benadering van functies door veeltermen

Sarah Crombez Zimcke Van de Staey

Inhoudsopgave

1	Achtergrond	3
2	Deel 1: Drie veeltermbasissen	4
3	Deel 2: Veelterminterpolatie 3.1 Equidistante punten en het Runge fenomeen	
4	Deel 3: Methode van Newton-Raphson	7

1 Achtergrond

De Chebyshev veeltermen van de eerst soort $T_k(x)$ worden gedefinieerd op basis van de volgende recursiebetrekking:

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$

Stelling 1 Op het interval [-1,1] voldoen de Chebyshev veeltermen aan volgende vergelijking:

$$T_k(x) = \cos(k\arccos(x)) \tag{1}$$

Bewijs: We zullen deze stelling aantonen met behulp van volledige inductie.

Basisstap:

voor k = 0 geldt: $T_0 = \cos(0 * \arccos(x)) = \cos(0) = 1$

voor k = 1 geldt: $T_1 = \cos(\arccos(x)) = x$ op het interval [-1, 1] want de arccos-functie is enkel gedefinieerd op het interval [-1, 1].

Inductiestap:

We nemen aan dat voor alle $j \leq n$ geldt: $T_n(x) = \cos(n \arccos(x))$. Nu moet aangetoond worden dat dit ook geldt voor n+1. Volgens de recursiebetrekking voor de Chebyshev veeltermen geldt: $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. Nu kunnen we de inductiehypothese toepassen, dit geeft: $T_{n+1}(x) = 2x\cos(n\arccos(x)) - \cos((n-1)\arccos(x))$. Met behulp van de som-en verschilformules voor de cosinus kunnen we dit schrijven als: $T_{n+1} = 2x\cos(n\arccos(x)) - \cos(n\arccos(x))\cos(\arccos(x)) - \sin(n\arccos(x))\sin(\arccos(x))$

 $=\cos(n\arccos(x)\cos(\arccos(x)))-\sin(n\arccos(x))\sin(\arccos(x))$ Hierop kunnen we dan opnieuw de som-en verschil formules voor de cosinus op toepassen en dit geeft: $T_{n+1}(x)=\cos((n+1)\arccos(x))$. De veronderstelling geldt dus ook voor n+1.

Conclusie:

Uit de basisstap, de inductiestap en het principe van volledige inductie volgt het te bewijzen. \Box

2 Deel 1: Drie veeltermbasissen

Figuur 1: De Runge functie en de betreffende Lagrange interpolaties

3 Deel 2: Veelterminterpolatie

3.1 Equidistante punten en het Runge fenomeen

3.2 Verschillende basissen

Figuur 3: De Runge functie en de betreffende Lagrange interpolaties

4 Deel 3: Methode van Newton-Raphson