Point Set Topology

Lecture 4

Haoming Wang

05 April 2020

This is the Lecture note for the Point Set Topology.

Initial Topology

Given maps $X \xrightarrow{f_{\alpha}} Y_{\alpha}(\alpha \in A)$ from a set X to topology spaces $Y_{\alpha}(\alpha \in A)$. It is direct to see that if X is topoloized by discrete topology, the f_{α} are all continuous. Now the question is how coarse the topology \mathscr{T} on X could be to ensure $f_{\alpha}(\alpha \in A)$ to be continuous.

Let $S := \{f_{\alpha}^{-1}(V) | V \subseteq_{open} Y_{\alpha}, \alpha \in A\}$, then $\mathscr{T}(S)$ is the expected coarsest topology, called the **initial topology** induced by the family of maps $\{f_{\alpha} | \alpha \in A\}$.

Subspace Topology

Let (Y, \mathscr{T}_Y) be a topology space, for a subset $X \subseteq Y$. We want to define an natural topology \mathscr{T}_X on X from Y, such that keep **inclusion** map $X \xrightarrow{id_X} Y(x \mapsto x)$ be continuous.

As we said, \mathcal{I}_X is the arbitrary union of finite intersection of the pre-image of the open set in Y. We call this initial topology induced by the inclusion map the **subspace topology** on X inherited from Y.

Note that the arbitrary union of finite intersection of the pre-image of the open set in Y is just the pre-image of arbitrary union of finite intersection of the open set in Y, which is just the pre-image of the open set in Y. Thus $\mathscr{T}_X = \{id_X^{-1}(V)|V\subseteq_{open}Y\} = \{V\cap X|V\subseteq_{open}Y\}$.

Exercise 1 (The universal property of subspace topologies). Suppose *Y* is a topology space, *X* is a subspace (i.e. a subset equipped with the subspace topology from *Y*). Given a topology space *Z*, for \forall map $Z \xrightarrow{g} Y$, if $g(Z) \subseteq X$, show that $Z \xrightarrow{g} Y$ is conti. $\Leftrightarrow Z \xrightarrow{g|^X} X$ is conti.

Proof. ⇒: any open set in
$$X$$
 can be represented by $U \cap X$ where $U \subseteq_{open} Y$, thus $g^{-1}(U \cap X) = g^{-1}(U) \cap g^{-1}(X) = g^{-1}(U) \cap Z \subseteq_{open} Z \Rightarrow Z \xrightarrow{g|^X} X$ is conti. \Leftarrow : Trivial.

CONTENT:

- 1. Initial Topology
- 2. Subspace Topology
- 3. Product Space
- 4. Cartesian Product
- 5. Infinite Dimension Product Topology

Product Space

Let (Y_1, \mathcal{T}_1) and (Y_2, \mathcal{T}_2) be topology spaces, we want to create a natural topology $\mathcal{T}_{Y_1 \times Y_2}$ on $Y_1 \times Y_2$ which makes the projections $Y_1 \times Y_2 \xrightarrow{p_i} Y_i (i = 1, 2)$ be continuous.

Suppose $U_i(i=1,\cdots,k_U)\subseteq_{open}Y_1$ and $V_i(j=1,\cdots,k_V)\subseteq_{open}Y_2$,

$$\left(\cap_{i=1}^{k_U}f^{-1}(U_i)\right)\cap\left(\cap_{i=1}^{k_V}f^{-1}(V_i)\right)=f^{-1}\left(\cap_{i=1}^{k_U}U_i\right)\cap f^{-1}\left(\cap_{i=1}^{k_V}V_i\right)$$

where $\bigcap_{i=1}^{k_U} U_i \subseteq_{open} Y_1$ and $\bigcap_{i=1}^{k_V} V_i \subseteq_{open} Y_2$. Thus the desired initial topology can be represented as the arbitrary union of the intersection of the pre-image of an open set in Y_1 and the pre-image of an open set in Y_2 . (instead of the finite intersection of pre-image of open sets in Y_1 and Y_2 , it is subtle) Thus the basis of the expected initial topology is

$$\Pi = \{ p_1^{-1}(W_1) \cap p_2^{-1}(W_2) | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

$$= \{ (W_1 \times Y_2) \cap (Y_1 \times W_2) | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

$$= \{ W_1 \times W_2 | W_1 \subseteq_{open} Y_1, W_2 \subseteq_{open} Y_2 \}$$

Thus the topology desired is all unions of rectangle:

$$\mathscr{T}_{Y_1 \times Y_2} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \Pi \}.$$

We call such initial topology **product topology** of Y_1 and Y_2 , denote as $\mathcal{T}_1 \times \mathcal{T}_2$.

In particular, the open set O in $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ can be written by $O = \bigcup U \times V$ where $U, V \subseteq_{open} \mathbb{R}$.

Cartesian Product

Let's recall the definition of Cartesian product. Given two sets Y_1 , Y_2 , there exists a **bijection** between $Y_1 \times Y_2$ and the family of maps $\{\{1,2\} \xrightarrow{s} Y_1 \cup Y_2 | s(1) \in Y_1, s(2) \in Y_2\} =: \mathcal{M}_{Y_1 \times Y_2}$. First, there is an injection from left to right: for any $(s_1, s_2) \in Y_1 \times Y_2$, define s as $s(1) = s_1, s(2) = s_2$. Thus different points in $Y_1 \times Y_2$ reflect to different maps in $\mathcal{M}_{Y_1 \times Y_2}$.

On the other hand, there exists an injection from right to left as well: for any $s', s \in \mathcal{M}_{Y_1 \times Y_2}$, correspond to $(s(1), s(2)), (s'(1), s'(2)) \in$ $Y_1 \times Y_2$, and $(s(1), s(2)) \neq (s'(1), s'(2))$ if $s \neq s'$.

Furthermore, when we project a point $(y_1, y_2) \in Y_1 \times Y_2$ to $y_1 \in Y_1$ (using projection $Y_1 \times Y_1 \xrightarrow{p_1} Y_1$), it is equivalent with mapping the

Note 1. We call such a $W_1 \times W_2$ a rectangle.

corresponding map s to s(1).

Similarly, we can define infinite dimension Cartesian product as

$$\prod_{\alpha\in A}Y_{\alpha}:=\{A\xrightarrow{s}\cup_{\alpha\in A}Y_{\alpha}|\forall\alpha\in A,s(\alpha)\in Y_{\alpha}\}=:\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}},$$

according to the axiom of choice, if $Y_{\alpha} \neq \emptyset$ for any $\alpha \in A$, then such map *s* exists, then $\prod_{\alpha \in A} Y_{\alpha} \neq \emptyset$. For $\alpha \in A$, we often denote the value of s at α by s_{α} rather than $s(\alpha)$; we call it the α -th **coordinate** of s. And we often denote the function s itself by the symbol

$$(s_{\alpha})_{\alpha\in A}$$
,

which is as close as we can come to a "tuple notation" for an arbitrary index set A.

Corresponding, we can define the projection on infinite dimension cartesian product: for any $\beta \in A$,

$$\prod_{\alpha \in A} Y_{\alpha} \xrightarrow{p_{\beta}} Y_{\beta}$$

as a map

$$\mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}}\longrightarrow Y_{\beta}$$

with $s \mapsto s_{\beta}$.

Infinite Dimension Product Topology

Now we can define the product topology on infinite dimension. As we discussed, the topology is arbitrary union of finite intersection of pre-image of the open set in $Y_{\alpha}(\alpha \in A)$. Since the intersection is finite, we can still exchange the order of pre-image and intersection, and then represent the open sets from the same $Y_{\alpha}(\alpha \in A)$ as one open set. Note that the pre-image of $U_{\beta} \subseteq_{open} Y_{\beta}$ can be represented by

$$\{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\beta} \in U_{\beta}\}.$$

Thus finite intersection of the pre-image of open sets, i.e. the basis of the infinite dimension product topology is

$$\Pi_{\prod_{\alpha\in A}Y_{\alpha}}=\{s\in \mathcal{M}_{\prod_{\alpha\in A}Y_{\alpha}}|s_{\beta_{1}}\in U_{\beta_{1}},\cdots,s_{\beta_{k}}\in U_{\beta_{k}},k\in\mathbb{N}\}.$$

That the basis of infinite product topology is set of maps that only map finite points in domain to the open sets of codomain. Alternatively, we can represent it as

$$\Pi_{\prod_{\alpha\in A}Y_{\alpha}}=\left\{\prod_{\alpha\in A}V_{\alpha}|\forall\alpha\in A,V_{\alpha}\subseteq_{open}Y_{\alpha}\wedge\{\alpha\in A|V_{\alpha}\neq Y_{\alpha}\}\text{ is finite}\right\}.$$

And the topology is

$$\mathscr{T}_{\prod_{\alpha\in A}Y_{\alpha}}=\{\cup\mathcal{F}|\mathcal{F}\subseteq \prod_{\prod_{\alpha\in A}Y_{\alpha}}\}$$

Exercise 2 (The universal property of product topology). Let $Z, Y_{\alpha} (\alpha \in \mathbb{Z})$ *A*) are topology spaces, $\prod_{\alpha \in A} Y_{\alpha}$ is equipped with product topology, show that for any group of maps

$$Z \xrightarrow[conti.]{g_{\alpha}} Y_{\alpha}(\alpha \in A)$$

 $\exists ! Z \xrightarrow[conti.]{g} \prod_{\alpha \in A} Y_{\alpha}$, s.t. $p_{\alpha} \circ g = g_{\alpha}$ for $\forall \alpha \in A$. That is, such commutative diagram holds

$$Z \xrightarrow[\text{conti.}]{g_{\alpha}} \prod_{\alpha \in A} Y_{\alpha}$$

$$\downarrow p_{\alpha}$$

$$\downarrow p_{\alpha}$$

$$\downarrow p_{\alpha}$$

$$\downarrow p_{\alpha}$$

Proof. Existence: Select a group of $g_{\alpha}(\alpha \in A)$ such that for a given $z \in Z$ has

$$g_{\alpha}(z) = y_{\alpha} \in Y_{\alpha}$$
.

Define a map $Z \xrightarrow{g} \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}}$ with $z \mapsto s$ where $s_{\alpha} = y_{\alpha} (\alpha \in A)$. Thus for any $\beta \in A$, we have

$$p_{\beta} \circ g(z) = p_{\beta}(s) = s_{\beta} = y_{\beta} = g_{\beta}(z)$$

Thus $p_{\alpha} \circ g = g_{\alpha}$ for any $\alpha \in A$. We now show g is continuous.

Any open set U in $\mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}}$ can be written as $U = \cup \mathcal{F} = \cup_{V \in \mathcal{F}} V$, where $\mathcal{F} \subseteq \Pi_{\prod_{\alpha \in A} Y_{\alpha}}$. Thus

$$g^{-1}(U) = g^{-1}(\cup_{V \in \mathcal{F}} V) = \cup_{V \in \mathcal{F}} g^{-1}(V).$$

Here *V* is the element in the basis, and can be represented as

$$V = \{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha_1} \in U_{\alpha_1}, \cdots, s_{\alpha_k} \in U_{\alpha_k} \},$$

where $U_{\alpha_i} \subseteq_{open} Y_{\alpha_i} (i = 1, \cdot, k)$, thus

$$g^{-1}(V) = \{ z \in Z | g_{\alpha_1}(z) \in U_{\alpha_1}, \cdots, g_{\alpha_k}(z) \in U_{\alpha_k} \}$$
$$= \bigcap_{i=1}^k g_{\alpha_i}^{-1}(U_{\alpha_i})$$
$$\subseteq_{open} Z$$

There is a trap:

- $(U_1 \times Y_2) \cap (Y_1 \times U_2) = U_1 \times U_2;$ $(U_1 \times Y_2) \cup (Y_1 \times U_2) \neq Y_1 \times Y_2;$

Thus $g^{-1}(U) = \bigcup_{V \in \mathcal{F}} g^{-1}(V) \subseteq_{open} Z \Rightarrow g$ is continuous. Uniqueness: for any h such that $p_{\alpha} \circ h = g_{\alpha}$, given a $z \in Z$, we have $p_{\alpha}(h(z)) = g_{\alpha}(z)$ for $\forall \alpha \in A$. Thus

$$h(z) \in \bigcap_{\alpha \in A} p_{\alpha}^{-1}(g_{\alpha}(z))$$

$$= \bigcap_{\alpha \in A} \{ s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} = g_{\alpha}(z) \}$$

$$= \{ s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} = g_{\alpha}(z), \alpha \in A \}$$

Thus h(z) = s where $s_{\alpha} = g_{\alpha}(z)$, $\alpha \in A \Rightarrow h = g$.

The conclusion of the universal property of product topology is : for any group of maps $Z \xrightarrow{g_{\alpha}} Y_{\alpha}(\alpha \in A)$, if they can be substitute by another group of map $f_{\alpha} \circ g'$ where $Z \xrightarrow{g'} Z'$ and $Z' \xrightarrow{f_{\alpha}} Y_{\alpha}$, we say Z' is **closer** to $Y_{\alpha}(\alpha \in A)$ than Z.

Then $\prod_{\alpha \in A} Y_{\alpha}$ is the **closest** set to $Y_{\alpha}(\alpha \in A)$.

Exercise 3. Let $Z, Y_{\alpha}(\alpha \in A)$ are top. spaces. Show that $Z \xrightarrow{g} \prod_{\alpha \in A} Y_{\alpha}$ is continuous $\Leftrightarrow p_{\alpha} \circ g(\alpha \in A)$ are continuous.

Proof. \Rightarrow : Since $p_{\alpha} \circ g = g_{\alpha}$, we need to prove g is continuous $\Rightarrow g_{\alpha}$ is continuous.

For any open set $U_{\alpha} \subseteq_{open} Y_{\alpha}$. $p_{\alpha}^{-1}(U_{\alpha}) = \{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} | s_{\alpha} \in U_{\alpha}\} \subseteq_{open} \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}} = \prod_{\alpha \in A} Y_{\alpha}$. And $g^{-1}(\{s \in \mathcal{M}_{\prod_{\alpha \in A} Y_{\alpha}}) = \{z \in Z | g_{\alpha} \in U_{\alpha}\} = g_{\alpha}^{-1}(U_{\alpha}) \subseteq_{open} Z$, since g is continuous, thus g_{α} is continuous. \Leftarrow : has been given in Ex2.

