Module – 2 Decision Trees VTUPulse.com

Prof. Mahesh G Huddar

Dept. of Computer Science and Engineering

- 3.1 Give decision trees to represent the following boolean functions:
- (a) $A \wedge \neg B$
- (b) $A \vee [B \wedge C]$
- (c) A XOR B
- (d) $[A \land B] \lor [C \land D]$

VTUPulse.com

(a) A \ ¬B (b) A \ [B \ C] (c) A XOR B (d) [A \ B] \ [C \ D]

- Every Variable in Boolean function such as A, B, C etc. has two possibilities that is True and False
- Every Boolean function is either True or False
- If the Boolean function is true we write YES (Y)
- If the Boolean function is False we write NO (N)

(c) A XOR B

VTUPulse.com

(d) $[A \land B] \lor [C \land D]$

VTUPulse.com

(a) $A \wedge \neg B$

- 3.1 Give decision trees to represent the following boolean functions:
- (a) $A \wedge \neg B$
- (b) $A \vee [B \wedge C]$
- (c) A XOR B
- (d) $[A \land B] \lor [C \land D]$

VTUPulse.com

- 3.1 Give decision trees to represent the following boolean functions:
- (a) $A \wedge \neg B$
- (b) $A \vee [B \wedge C]$
- (c) A XOR B
- (d) $[A \land B] \lor [C \land D]$

3.1 Give decision trees to represent the following boolean functions:

- (b) $A \vee [B \wedge C]$
- (c) A XOR B
- (d) $[A \land B] \lor [C \land D]$

Decision Trees

Decision Trees is one of the most widely used Classification Algorithm

Features

- Method for approximating discrete-valued functions (including boolean)
- Learned functions are represented as decision trees (or if-then-else rules)
- Expressive hypotheses space, including disjunction
- Robust to noisy data

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree Representation (PlayTennis)

⟨Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong⟩

No

Decision trees expressivity

 Decision trees represent a disjunction of conjunctions on constraints on the value of attributes:

Decision tree representation (PlayTennis)

- Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance.
- Each node in the tree specifies a test of some attribute of the instance, and each branch descending from that node corresponds to one of the possible values for this attribute.
- An instance is classified by starting at the root node of the tree, testing the
 attribute specified by this node, then moving down the tree branch
 corresponding to the value of the attribute in the given example.
- This process is then repeated for the subtree rooted at the new node.

Decision tree representation (PlayTennis)

- In general, decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.
- Each path from the tree root to a leaf corresponds to a conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions.

```
(Outlook = Sunny \land Humidity = Normal)

(Outlook = Overcast)

(Outlook = Rain \land Wind = Weak)
```

LUPulse.com

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Although a variety of decision tree learning methods have been developed with somewhat differing capabilities and requirements, decision tree learning is generally best suited to problems with the following characteristics:

1. Instances are represented by attribute-value pairs. Instances are described by a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for decision tree learning is when each attribute takes on a small number of disjoint possible values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm allow handling real-valued attributes as well (e.g., representing Temperature numerically).

- 2. The target function has discrete output values. The decision tree is usually used for Boolean classification (e.g., yes or no) kind of example. Decision tree methods easily extend to learning functions with more than two possible output values. A more substantial extension allows learning target functions with real-valued outputs, though the application of decision trees in this setting is less common.
- **3. Disjunctive descriptions may be required.** Decision trees naturally represent disjunctive expressions.

- 4. The training data may contain errors. Decision tree learning methods are robust to errors, both errors in classifications of the training examples and errors in the attribute values that describe these examples.
- The training data may contain missing attribute values. Decision tree methods can be used even when some training examples have unknown values (e.g., if the *Humidity* of the day is known for only some of the training examples).

- Many practical problems have been found to fit these characteristics.
- Decision tree learning has therefore been applied to problems such as learning to classify medical patients by their disease, equipment malfunctions by their cause, and loan applicants by their likelihood of defaulting on payments.
- Such problems, in which the task is to classify examples into one of a discrete set of possible categories, are often referred to as classification problems.

THE BASIC DECISION TREE LEARNING ALGORITHM

- Most algorithms that have been developed for learning decision trees are variations on a core algorithm that employs a top-down, greedy search through the space of possible decision trees.
- This approach is exemplified by the ID3 algorithm (Quinlan 1986) and its successor C4.5 (Quinlan 1993), which form the primary focus of our discussion here.
- The basic algorithm for decision tree learning, corresponding approximately to the ID3 algorithm.
- Next, we consider a number of extensions to this basic algorithm, including extensions incorporated into C4.5 and other more recent algorithms for decision tree learning.

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which Attribute Is the Best Classifier?

- The central choice in the ID3 algorithm is selecting which attribute to test at each node in the tree.
- We would like to select the attribute that is most useful for classifying examples.
- What is a good quantitative measure of the worth of an attribute? We will define a statistical property, called *information gain*, that measures how well a given attribute separates the training examples according to their target classification.
- ID3 uses this information gain measure to select among the candidate attributes at each step while growing the tree.

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

- Entropy, characterizes the (im)purity of an arbitrary collection of examples.
- Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to this boolean classification is

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- where p+, is the proportion of positive examples in S and p-, is the proportion of negative examples in S.
- In all calculations involving entropy we define 0 log 0 to be 0.

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

- Entropy measures the (*im*)purity of a collection of examples. It depends from the distribution of the random variable p.
 - S is a collection of training examples

$$Entropy(S) \equiv \sum_{i} -p_i \log_2 p_i$$

Examples

Figure examples in S p_{-} the proportion of negative examples in SExamples $Entropy(S) = \sum_{i=1}^{c} -p_{i} \log_{2} p_{i}$

Entropy
$$(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$
 [0 $\log_{2} 0 = 0$]
Entropy $([14+, 0-]) = -14/14 \log_{2} (14/14) - 0 \log_{2} (0) = 0$
Entropy $([9+, 5-]) = -9/14 \log_{2} (9/14) - 5/14 \log_{2} (5/14) = 0,94$
Entropy $([7+, 7-]) = -7/14 \log_{2} (7/14) - 7/14 \log_{2} (7/14) = 1/2 + 1/2 = 1$

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Entropy

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

- Given entropy as a measure of the impurity in a collection of training examples, we can now define a measure of the effectiveness of an attribute in classifying the training data.
- Now, the *information gain*, is simply the expected reduction in entropy caused by partitioning the examples according to this attribute.
- More precisely, the information gain, **Gain(S, A)** of **an** attribute **A**, relative to a collection of examples **S**, is defined as,

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

• where Values(A) is the set of all possible values for attribute A, and S, is the subset of S for which attribute A has value v (i.e., $S_v = \{s \in S | A(s) = v\}$)

• For example, suppose **S** is a collection of training-example days described by attributes including **Wind**, which can have the values **Weak** or **Strong**.

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Entropy(S) = \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

- Information gain is precisely the measure used by ID3 to select the best attribute at
- each step in growing the tree.
- The use of information gain to evaluate the relevance of attributes.
- Here the information gain of two different attributes, Humidity and Wind, is computed in order to determine which is the better attribute for classifying the training examples.

Gain (S, Wind) = .940 - (8/14).811 - (6/14)1.0 = .048

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - \bullet A \leftarrow the attribute from Attributes that best* classifies Examples
 - The decision attribute for Root ← A
 For each possible value, v_i, of A,
 - Add a new tree branch below Root, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A

 - If $Examples_{v_i}$ is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree $ID3(Examples_{v_i}, Target_attribute, Attributes - \{A\}))$

- End
- Return Root

VTUPulse.com

DECISION TREE – ID3 ALGORITHM NUMERICAL EXAMPLE

Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Tomp	Humidity	Wind	Play
Day	Outlook	Temp	пинницу	willa	Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Outlook

Values(Outlook) = Sunny, Overcast, Rain

$$S = [9+, 5-] Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Sunny} \leftarrow [2+,3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$

$$S_{Overcast} \leftarrow [4+,0-]$$

$$Entropy(S_{Overcast}) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$$

$$S_{Rain} \leftarrow [3+,2-]$$
 $Entropy(S_{Rain}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.971$

$$Gain(S, Outlook) = Entropy(S) - \sum_{v \in \{Sunny, Overcast, Rain\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Outlook)

$$= Entropy(S) - \frac{5}{14}Entropy(S_{Sunny}) - \frac{4}{14}Entropy(S_{Overcast})$$
$$-\frac{5}{14}Entropy(S_{Rain})$$

$$Gain(S, Outlook) = 0.94 - \frac{5}{14}0.971 - \frac{4}{14}0 - \frac{5}{14}0.971 = 0.2464$$

D2	Sunny	Hot	High	Strong	No	$S = [9+, 5-] \qquad Ent$	$ropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$
D3	Overcast	Hot	High	Weak	Yes	2 [2.1,0]	14 14 14 14 14
D4	Rain	Mild	High	Weak	Yes	$S_{Hot} \leftarrow [2+,2-]$ Ent	$ropy(S_{Hot}) = -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1.0$
D5	Rain	Cool	Normal	Weak	Yes		4 - 4 4 - 4
D6	Rain	Cool	Normal	Strong	No	$S_{Mild} \leftarrow [4+,2-]$ Ent	$ropy(S_{Mild}) = -\frac{4}{6}log_2\frac{4}{6} - \frac{2}{6}log_2\frac{2}{6} = 0.9183$
D7	Overcast	Cool	Normal	Strong	Yes		
D8	Sunny	Mild	High	Weak	No	$S_{Cool} \leftarrow [3+, 1-]$ Ent	$ropy(S_{Cool}) = -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.8113$
D9	Sunny	Cool	Normal	Weak	Yes		
D10	Rain	Mild	Normal	Weak	Yes	Gain (S Temp) = Entrop	$y(S) - \sum_{v \in \{Hot Mild Cool\}} \frac{ S_v }{ S } Entropy(S_v)$
D11	Sunny	Mild	Normal	Strong	Yes		$v \in \{Hot, Mild, Cool\} $ S
D12	Overcast	Mild	High	Strong	Yes	Gain(S, Temp)	
D13	Overcast	Hot	Normal	Weak	Yes		4 6
D14	Rain	Mild	High	Strong	No	= Entropy(S)	$-\frac{4}{14}Entropy(S_{Hot}) - \frac{6}{14}Entropy(S_{Mild})$
						$-rac{4}{14}Entropy(.$	
						$Gain(S, Temp) = 0.94 - \frac{14}{14}$	$\frac{1}{4} \cdot 1.0 - \frac{6}{14} \cdot 0.9183 - \frac{4}{14} \cdot 0.8113 = 0.0289$

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

Play

Tennis

No

Wind

Weak

Outlook | Temp |

Hot

Sunny

Day

D1

Humidity

High

ıy	Temp Hot	Humidity	Wind	Tennis
- +	Hot	⊔iah		
ıv 📗		High	Weak	No
'	Hot	High	Strong	No
ast	Hot	High	Weak	Yes
ا ا	Mild	High	Weak	Yes
າ (Cool	Normal	Weak	Yes
n (Cool	Normal	Strong	No
ast	Cool	Normal	Strong	Yes
ıy l	Mild	High	Weak	No
ıy (Cool	Normal	Weak	Yes
ו ו	Mild	Normal	Weak	Yes
ıy l	Mild	Normal	Strong	Yes
ast I	Mild	High	Strong	Yes
ast	Hot	Normal	Weak	Yes
ا ۱	Mild	High	Strong	No
	n ast ast ast	Cool ast Cool ay Mild ay Cool Mild Mild Mild Mild Mild Mild Mild Mil	Mild High Cool Normal Cool Normal ast Cool Normal Mild High My Mild High My Cool Normal My Mild Normal My Mild Normal My Mild Normal My Mild High My Mild Normal	Mild High Weak Cool Normal Weak Cool Normal Strong ast Cool Normal Strong Mild High Weak My Cool Normal Weak My Mild Normal Weak My Mild Normal Weak My Mild Normal Strong My Mild Normal Strong My Mild Normal Strong My Mild High Strong My Mild High Strong My Mild Normal Weak My Mild High Strong My Mild Normal Weak My Mild High Strong My M

Attribute: Humidity

Values(Humidity) = High, Normal

$$S = [9+, 5-]$$
 $Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$

$$S = [9+,5-] \qquad Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{High} \leftarrow [3+,4-] \qquad Entropy(S_{High}) = -\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} = 0.9852$$

$$S_{Normal} \leftarrow [6+,1-] \qquad Entropy(S_{Normal}) = -\frac{6}{7}log_2\frac{6}{7} - \frac{1}{7}log_2\frac{1}{7} = 0.5916$$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, Humidity)$$

$$= Entropy(S) - \frac{7}{14}Entropy(S_{High}) - \frac{7}{14}Entropy(S_{Normal})$$

$$Gain(S, Humidity) = 0.94 - \frac{7}{14}0.9852 - \frac{7}{14}0.5916 = 0.1516$$

Day	Outlook	Toma	I I mai alita	Wind	Play
Day	Outlook	Temp	Humidity	wind	Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
		-	<u> </u>		

Attribute: Wind

$Values\ (Wind) = Strong, Weak$

$$S = [9+, 5-]$$
 $Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$

$$Entropy(S) = -\frac{1}{2}$$

$$S_{Strong} \leftarrow [3+,3-] \qquad Entropy(S_{Strong}) = 1.0$$

$$(g)=1.0$$

$$J = \mathbf{1}.\mathbf{0}$$

$$(1) - 1.0$$

$$\frac{2}{10a_2}$$

$$-\frac{6}{10}$$

$$S_{Weak} \leftarrow [6+, 2-]$$
 $Entropy(S_{Weak}) = -\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} = 0.8113$

$$(S, Wind) = Entropy(S) - \sum_{|S|} \frac{|S_v|}{|S|} Entropy(S_v)$$

 $Gain(S, Wind) = Entropy(S) - \frac{6}{14}Entropy(S_{Strong}) - \frac{8}{14}Entropy(S_{Weak})$

$$Gain(S,Wind) = Entropy(S) - \sum_{v \in \{Strong,Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, Wind) = 0.94 - \frac{6}{14} \cdot 1.0 - \frac{8}{14} \cdot 0.8113 = 0.0478$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis	
D1	Sunny	Hot	High	Weak	No	Gain(S, Outlook) = 0.2464
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	Gain(S, Temp) = 0.0289
D4	Rain	Mild	High	Weak	Yes	(aun(5,10mp)
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	Gain(S, Humidity) = 0.1516
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	Gain(S, Wind) = 0.0478
D10	Rain	Mild	Normal	Weak	Yes	Pilica com
D11	Sunny	Mild	Normal	Strong	Yes	Puise.com
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Day	Outlook	Tomp	Llumidity	Wind	Play	
Day	Outlook	Temp	Humidity	willa	Tennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	100
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Day	Tem	Humidity	Wind	Play
Day	р	Hullilaity	vviiiu	Tenni
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Sunny} = [2+, 3-]$$

$$Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} =$$

$$S_{Hot} \leftarrow [0+, 2-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [1+, 1-]$$
 $Entropy(S_{Mild}) = 1.0$

$$S_{Cool} \leftarrow [1+, 0-]$$
 $Entropy(S_{Cool}) = 0.0$

$$Gain(S_{Sunny}, Temp) = Entropy(S_{Sunny}) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Sunny}, Temp)$$

$$= Entropy(S_{Sunny}) - \frac{2}{5}Entropy(S_{Hot}) - \frac{2}{5}Entropy(S_{Mild})$$
$$-\frac{1}{5}Entropy(S_{Cool})$$

$$Gain(S_{sunny}, Temp) = 0.97 - \frac{2}{5}0.0 - \frac{2}{5}1 - \frac{1}{5}0.0 = 0.570$$

Day	Tem	Tem Humidity		Play
Day	р	Humble	Wind	Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
Dl1	Mild	Normal	Strong	Yes

Attribute: Humidity

 $S_{Sunny} = [2+, 3-]$ $S_{high} \leftarrow [0+, 3-]$ $S_{Normal} \leftarrow [2+, 0-]$

$$S_{Sunny} = [2+, 3-]$$

$$Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$$

$$S_{high} \leftarrow [0+,3-]$$

$$Entropy(S_{High}) = 0.0$$

$$S_{Normal} \leftarrow [2+, 0-]$$

$$Entropy(S_{Normal}) = 0.0$$

$$Gain(S_{Sunny}, Humidity) = Entropy(S_{Sunny}) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Sunny}, Humidity)$$

$$= Entropy(S_{Sunny}) - \frac{3}{5}Entropy(S_{High}) - \frac{2}{5}Entropy(S_{Normal})$$

$$Gain(S_{sunny}, Humidity) = 0.97 - \frac{3}{5} 0.0 - \frac{2}{5} 0.0 = 0.97$$

Day	Tem	Tem Humidity		Play
Day	р	Hullilaity	Wind	Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
Dl1	Mild	Normal	Strong	Yes

Attribute: Wind

Values(Wind) = Strong, Weak

$$S_{Sunny} = [2+, 3-]$$

$$S_{Strong} \leftarrow [1+, 1-]$$

$$S_{Weak} \leftarrow [1+, 2-]$$

$$Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$$

$$S_{Strong} \leftarrow [1+, 1-]$$

$$Entropy(S_{Strong}) = 1.0$$

$$S_{Weak} \leftarrow [1+, 2-]$$

$$Entropy(S_{Weak}) = -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} =$$

0.9183

$$Gain(S_{Sunny}, Wind) = Entropy(S_{Sunny}) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

 $Gain(S_{Sunny}, Wind)$

$$= Entropy(S_{Sunny}) - \frac{2}{5}Entropy(S_{Strong}) - \frac{3}{5}Entropy(S_{Weak})$$

$$Gain(S_{sunny}, Wind) = 0.97 - \frac{2}{5}1.0 - \frac{3}{5}0.918 = 0.0192$$

D	Tem	Tem		Play
Day	р	Humidity	Wind	Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

$$Gain(S_{sunny}, Temp) = 0.570$$

$$Gain(S_{sunny}, Humidity) = 0.97$$

Day	Outlook	Tomp	Llumidity	Wind	Play	
Day	Outlook	Temp	Humidity	willa	Tennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	100
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Day	Tem	Humidity	Wind	Play
Day	р	Humidity Wind -		Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
D10	Mild	Normal	Weak	Yes
D14	Mild	High	Strong	No

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Rain} = [3+, 2-]$$

$$Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$$

$$S_{Hot} \leftarrow [0+,0-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [2+, 1-]$$
 $Entropy(S_{Mild}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} =$

0.9183

$$S_{Cool} \leftarrow [1+, 1-]$$
 $Entropy(S_{Cool}) = 1.0$

$$Gain(S_{Rain}, Temp) = Entropy(S_{Rain}) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Temp)$$

$$= Entropy(S_{Rain}) - \frac{0}{5}Entropy(S_{Hot}) - \frac{3}{5}Entropy(S_{Mild})$$
$$-\frac{2}{5}Entropy(S_{Cool})$$

$$Gain(S_{Rain}, Temp) = 0.97 - \frac{0}{5}0.0 - \frac{3}{5}0.918 - \frac{2}{5}1.0 = 0.0192$$

Day	Tem	Humidity	Wind	Play
Day	р	Hailliaity Willa Te		Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DI0	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

Attribute: Humidity

Values(Humidity) = High, Normal

$$S_{Rain} = [3+, 2-]$$
 0.97
 $S_{High} \leftarrow [1+, 1-]$

$$Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} =$$

$$S_{High} \leftarrow [1+, 1-]$$

$$Entropy(S_{High}) = 1.0$$

$$S_{Normal} \leftarrow [2+, 1-]$$

$$Entropy(S_{Normal}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} =$$

0.9183

TUPUSE COMBAND Services S_{Rain} , S_{R

 $Gain(S_{Rain}, Humidity)$

$$= Entropy(S_{Rain}) - \frac{2}{5}Entropy(S_{High}) - \frac{3}{5}Entropy(S_{Normal})$$

$$Gain(S_{Rain}, Humidity) = 0.97 - \frac{2}{5} \cdot 1.0 - \frac{3}{5} \cdot 0.918 = 0.0192$$

Day	ay Tem Humidity Wir		Wind	Play
Day	р	Hullilaity	vviiiu	Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DI0	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No
		-	-	

Values(wind) = Strong, Weak

$$S_{Rain} = [3+, 2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{Strong} \leftarrow [0+,2-]$$
 $Entropy(S_{Strong}) = 0.0$

$$S_{Weak} \leftarrow [3+, 0-]$$
 $Entropy(S_{weak}) = 0.0$

$$Gain(S_{Rain}, Wind) = Entropy(S_{Rain}) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Wind) = Entropy(S_{Rain}) - \frac{2}{5}Entropy(S_{Strong}) - \frac{3}{5}Entropy(S_{Weak})$$

$$Gain(S_{Rain}, Wind) = 0.97 - \frac{2}{5} \cdot 0.0 - \frac{3}{5} \cdot 0.0 = 0.97$$

Day	Tem Humidity Wind		Wind	Play
Day	р	Hullilaity	vviiiu	Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DI0	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No
DI4	Mild	High	Strong	No

 $Gain(S_{Rain}, Temp) = 0.0192$

 $Gain(S_{Rain}, Humidity) = 0.0192$

VTUPulse.com

DECISION TREE EXAMPLE - 2

Instance	Classification	a1	a2
1	+	Т	T
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	1116	F	

- 1. What is the entropy of this collection of training examples with respect to the target function classification?
- 2. What is the information gain of a2 relative to these training examples?
- 3. Draw decision tree for the given dataset.

Decision Tree Algorithm – ID3 Solved Example

- 1. What is the entropy of this collection of training examples with respect to the target function classification?
- 2. What is the information gain of a1 and a2 relative to these training examples?
- 3. Draw decision tree for the given dataset.

\ / _	Instance	Classification	a1	a2	
\/ 	1	711+56		T	m
V	2		T	T	
	3	1	Т	F	
	4	+	F	F	
	5	1	F	Т	
	6	-	F	T	

Subscribe to Mahesh Huddar

Instance	Classification	a1	a2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

$$S = [3+, 3-$$

$$S_T = [2+, 1-]$$

Attribute: a1

Values
$$(a1) = T, F$$
 $S = [3+, 3-]$
 $Entropy(S) = 1.0$
 $S_T = [2+, 1-]$
 $Entropy(S_T) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.9183$
 $S_F \leftarrow [1+, 2-]$
 $Entropy(S_F) = -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} = 0.9183$

$$S_F \leftarrow [1+, 2-]$$

$$Entropy(S_F) = -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} = 0.9183$$

$Gain(S,a1) = Entropy(S) - \sum \frac{|S_v|}{|S|} Entropy(S_v)$

$$Gain(S, a1) = Entropy(S) - \frac{3}{6}Entropy(S_T) - \frac{3}{6}Entropy(S_F)$$

$$Gain(S, a1) = 1.0 - \frac{3}{6} * 0.9183 - \frac{3}{6} * 0.9183 = 0.0817$$

Instance	Classification	a1	a2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

$$Values(a2) = T, F$$

$$S = [3+, 3-]$$
 Entrop

$$S_T = [2+, 2-]$$
 Entropy $(S_T) = 1.6$

Attribute: a2

Values (a2) = T, F

$$S = [3+, 3-]$$
 $Entropy(S) = 1.0$
 $S_T = [2+, 2-]$
 $Entropy(S_T) = 1.0$
 $S_F \leftarrow [1+, 1-]$
 $Entropy(S_F) = 1.0$

$$Gain(S,a2) = Entropy(S) - \sum_{v \in \{T,F\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, a2) = Entropy(S) - \frac{4}{6}Entropy(S_T) - \frac{2}{6}Entropy(S_F)$$

$$Gain(S, a2) = 1.0 - \frac{4}{6} * 1.0 - \frac{2}{6} * 1.0 = 0.0$$

Instance	Classification	a1	a2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

Gain(S, a1) = 0.0817 - Maximum Gain

Example - 2

Decision Tree Algorithm – ID3
Solved Example

DECISION TREE EXAMPLE - 3

Instance	a1	a2	a3	Classification	
1	True	Hot	High	No	
2	True	Hot	High	No	
3	False	Hot	High	Yes	
4	False	Cool	Normal	Yes	
5	False	Cool	Normal	Yes	
6	True	Cool	High	No	
1	True	Hot	High	No	
8	True	Hot	Normal	Yes	
9	False	Cool	Normal	Yes	
10	False	Cool	High	Yes	

1. Construct the decision tree for the following tree using ID3 Algorithm

Decision Tree Algorithm – ID3 Solved Example

Instance	a1	a2	a3	Classification
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5/ 🕇	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Instance	a1	a2	a3	Classification
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Attribute: a1

Values(a1) = True, False

$$S = [6+, 4-]$$

$$Entropy(S) = -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} = 0.9709$$

$$S_{True} = [1+,4-]$$

$$S = [6+, 4-]$$
 $Entropy(S) = -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} = 0.9709$ $S_{True} = [1+, 4-]$ $Entropy(S_{True}) = -\frac{1}{5}log_2\frac{1}{5} - \frac{4}{5}log_2\frac{4}{5} = 0.7219$ $S_{Flase} \leftarrow [5+, 0-]$ $Entropy(S_{False}) = 0.0$

$$S_{Flase} \leftarrow [5+, 0-]$$

$$Entropy(S_{False}) = 0.0$$

$$Gain(S,a1) = Entropy(S) - \sum_{v \in \{True,False\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, a1) = Entropy(S) - \frac{5}{10}Entropy(S_{True}) - \frac{5}{10}Entropy(S_{False})$$

$$Gain(S, a1) = 0.9709 - \frac{5}{10} * 0.7219 - \frac{5}{10} * 1 = 0.6099$$

Instance	a1	a2	a3	Classification
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Attribute: a2

Values(a2) = Hot, Cool

$$S = [6+, 4-]$$

$$S = [6+, 4-]$$
 $Entropy(S) = -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} = 0.9709$

$$S_{Hot} = [2+,3-]$$

$$S_{Hot} = [2+, 3-]$$
 $Entropy(S_{Hot}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.9709$

$$S_{Cool} \leftarrow [4+, 1-]$$

$$S_{cool} \leftarrow [4+, 1-]$$
 $Entropy(S_{cool}) = -\frac{4}{5}log_2\frac{4}{5} - \frac{1}{5}log_2\frac{1}{5} = 0.7219$

$$Gain(S,a2) = Entropy(S) - \sum_{v \in \{Hot,Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,a2) = Entropy(S) - \frac{5}{10}Entropy(S_{Hot}) - \frac{5}{10}Entropy(S_{Cool})$$

$$Gain(S, a2) = 0.9709 - \frac{5}{10} * 0.9709 - \frac{5}{10} * 0.7219 = 0.1245$$

Instance	a1	a2	a3	Classification
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Values (a3) = High, Normal

$$S = [6+, 4-]$$

$$Entropy(S) = -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} = 0.9709$$

$$S_{High} = [2+,4-]$$

Values (a3) = High, Normal
$$S = [6+, 4-] \qquad Entropy(S) = -\frac{6}{10}log_2\frac{6}{10} - \frac{4}{10}log_2\frac{4}{10} = 0.9709$$

$$S_{High} = [2+, 4-] \qquad Entropy(S_{High}) = -\frac{2}{6}log_2\frac{2}{6} - \frac{4}{6}log_2\frac{4}{6} = 0.9183$$

$$S_{Normal} \leftarrow [4+, 0-] \qquad Entropy(S_{Normal}) = 0.0$$

$$Gain(S, a3) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$S_{Normal} \leftarrow [4+, 0-]$$

$$Entropy(S_{Normal}) = 0.0$$

$$Gain(S, a3) = Entropy$$

$$\sum_{\{High,Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, a3) = Entropy(S) - \frac{6}{10}Entropy(S_{High}) - \frac{4}{10}Entropy(S_{Normal})$$

$$Gain(S, a3) = 0.9709 - \frac{6}{10} * 0.9183 - \frac{4}{10} * 0.0 = 0.4199$$

Instance	a1	a2	a3	Classification
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

$$Gain(S, a1) = 0.6099 - Maximum Gain$$
 $Gain(S, a2) = 0.1245$
 $Gain(S, a3) = 0.4199$

Instance	a2	a3	Classification
1	Hot	High	No
2	Hot	High	No
6	Cool	High	No
7	Hot	High	No
8	Hot	Normal	Yes

Attribute: a2

$$Values(a2) = Hot, Cool$$

$$S_{a1} = [1+, 4-]$$
 $Entropy(S_{a1}) = -\frac{1}{5}log_2\frac{1}{5} - \frac{4}{5}log_2\frac{4}{5} = 0.7219$

$$S_{Hot} = [1+, 3-]$$
 $Entropy(S_{Hot}) = -\frac{1}{4}log_2\frac{1}{4} - \frac{3}{4}log_2\frac{3}{4} = 0.8112$

$$S_{Cool} \leftarrow [0+, 1-]$$
 $Entropy(S_{Cool}) = 0.0$

$$Gain(S,a2) = Entropy(S) - \sum_{v \in \{Hot,Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,a2) = Entropy(S) - \frac{4}{5}Entropy(S_{Hot}) - \frac{1}{5}Entropy(S_{Cool})$$

$$Gain(S, a2) = 0.9709 - \frac{4}{5} * 0.8112 - \frac{1}{5} * 0.0 = 0.3219$$

Instance	a2	a3	Classification
1	Hot	High	No
2	Hot	High	No
6	Cool	High	No
7	Hot	High	No
8	Hot	Normal	Yes

Attribute: a3

Values(a3) = High, Normal

$$S_{a1} = [1+, 4-]$$
 $Entropy(S_{a1}) = -\frac{1}{5}log_2\frac{1}{5} - \frac{4}{5}log_2\frac{4}{5} = 0.7219$

$$S_{High} = [0+, 4-]$$
 $Entropy(S_{High}) = 0.0$

$$S_{Normal} \leftarrow [1+, 0-]$$
 $Entropy(S_{Normal}) = 0.0$

$$Gain(S, a3) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,a3) = Entropy(S) - \frac{4}{5}Entropy(S_{High}) - \frac{1}{5}Entropy(S_{Normal})$$

$$Gain(S, a3) = 0.9709 - \frac{4}{5} * 0.0 - \frac{1}{5} * 0.0 = 0.7219$$

Instance	a2	a3	Classification
1	Hot	High	No
2	Hot	High	No
6	Cool	High	No
7	Hot	High	No

Normal

8

Hot

Yes

$Gain(S_{a1}, a2) =$	= 0.3219
----------------------	----------

 $Gain(S_{a1}, a3) = 0.7219 - Maximum Gain$

VTUPulse.com

When to use Decision Trees

- Problem characteristics:
 - Instances can be described by attribute value pairs
 - Target function is discrete valued
 - Disjunctive hypothesis may be required
 - Possibly noisy training data samples
 - Robust to errors in training data
 Missing attribute values
- Different classification problems:
 - Equipment classification
 - Medical diagnosis
 - Credit risk analysis
 - Several tasks in natural language processing

Issues in decision trees learning

- Overfitting
 - Reduced error pruning
 - Rule post-pruning
- Extensions

 - Continuous valued attributes
 Alternative measures for selecting attributes
 - Handling training examples with missing attribute values
 - Handling attributes with different costs
 - Improving computational efficiency
 - Most of these improvements in C4.5 (Quinlan, 1993)

Overfitting: definition

- Building trees that "adapt too much" to the training examples may lead to "overfitting".
- Consider error of hypothesis h over
 - training data: $error_D(h)$ empirical error
 - entire distribution X of data: $error_X(h)$ expected error
- Hypothesis h overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_D(h) < error_D(h')$$
 and $error_X(h') < error_X(h)$

i.e. h' behaves better over unseen data

Overfitting in decision tree learning

Avoid overfitting in Decision Trees

Two strategies:

- 1. Stop growing the tree earlier, before perfect classification
- 2. Allow the tree to *overfit* the data, and then *post-prune* the tree
 - -Training and validation set: split the training in two parts (training and validation) and use validation to assess the utility of *post-pruning*
 - Reduced error pruning

Reduced-error pruning (Quinlan 1987)

- Each node is a candidate for pruning
- Pruning consists in removing a subtree rooted in a node: the node becomes a leaf and is assigned the most common classification
- Nodes are removed only if the resulting tree performs no worse on the validation set.
- Nodes are pruned iteratively: at each iteration the node whose removal most increases accuracy on the validation set is pruned.
- Pruning stops when no pruning increases accuracy

Effect of reduced error pruning

Rule post-pruning

- 1. Create the decision tree from the training set
- 2. Convert the tree into an equivalent set of rules
 - Each path corresponds to a rule
 - Each node along a path corresponds to a pre-condition
 - Each leaf classification to the post-condition
- 3. Prune (generalize) each rule by removing those preconditions whose removal improves accuracy over validation set
- 4. Sort the rules in estimated order of accuracy, and consider them in sequence when classifying new instances

Converting to rules

Rule Post-Pruning

- Convert tree to rules (one for each path from root to a leaf)
- For each antecedent in a rule, remove it if error rate on validation set does not decrease
- Sort final rule set by accuracy Se. Com

```
Outlook=sunny ^ humidity=high -> No
Outlook=sunny ^ humidity=normal -> Yes
Outlook=overcast -> Yes
Outlook=rain ^ wind=strong -> No
Outlook=rain ^ wind=weak -> Yes
```

Compare first rule to:
Outlook=sunny>No
Humidity=high>No

Why converting to rules?

- Each distinct path produces a different rule: a condition removal may be based on a local (contextual) criterion. Node pruning is global and affects all the rules
- In rule form, tests are not ordered and there is no book-keeping involved when conditions (nodes) are removed
- Converting to rules improves readability for humans

Dealing with continuous-valued attributes

- So far discrete values for attributes and for outcome.
- lacktriangle Given a continuous-valued attribute A_c dynamically create a new attribute A_c

$$A_c$$
 = True *if* $A < c$, False *otherwise*

- How to determine threshold value c?
- Example. *Temperature* in the *PlayTennis* example
 - Sort the examples according to *Temperature*Temperature 40 48 60 72 80 90

 PlayTennis No No Yes Yes Yes No
 - Determine candidate thresholds by averaging consecutive values where there is a change in classification: (48+60)/2=54 and (80+90)/2=85
 - Evaluate candidate thresholds (attributes) according to information gain. The best is
 Temperature_{>54}. The new attribute competes with the other ones

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K C	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Handling incomplete training data

- How to cope with the problem that the value of some attribute may be missing?
 - Example: Blood-Test-Result in a medical diagnosis problem
- The strategy: use other examples to guess attribute
 - 1. Assign the value that is most common among the training examples at the node
 - 2. Assign a probability to each value, based on frequencies, and assign values to missing attribute, according to this probability distribution
- Missing values in new instances to be classified are treated accordingly, and the most probable classification is chosen (C4.5)

Handling attributes with different costs

- Instance attributes may have an associated cost: we would prefer decision trees that use low-cost attributes
- ID3 can be modified to take into account costs:
 - 1. Tan and Schlimmer (1990)

2. Nunez (1988)

$$\frac{2^{Gain(S,A)} - 1}{(Cost(A) + 1)^w} \quad w \in [0,1]$$

Search space in Decision Tree learning

- The search space is made by partial decision trees
- The algorithm is *hill-climbing*
- The evaluation function is *information gain*
 - The hypotheses space is complete (represents all discrete-valued functions)
- No backtracking; no guarantee of optimality
- It uses all the available examples (not incremental)

Inductive bias in decision tree learning

What is the inductive bias of DT learning?

- Shorter trees are preferred over longer trees
 Not enough. This is the bias exhibited by a simple breadth first algorithm generating all DT's e selecting the shorter one
- 2. Prefer trees that place high information gain attributes close to the root

Prefer shorter hypotheses: Occam's razor

- Why prefer shorter hypotheses?
- Arguments in favor:
 - There are fewer short hypotheses than long ones
 - If a short hypothesis fits data unlikely to be a coincidence
- Arguments against:
 - Not every short hypothesis is a reasonable one.
- Occam's razor: "The simplest explanation is usually the best one."
 - a principle usually (though incorrectly) attributed14th-century English logician and Franciscan friar, William of Ockham.
 - The term razor refers to the act of shaving away unnecessary assumptions to get to the simplest explanation.

Two kinds of biases

- Preference or search biases
 - ID3 searches through incompletely through complete
 hypotheses space; from simple to complex hypotheses, until termination condition is reached.
- Restriction or language biases
 - It searches the hypotheses space completely
 - Candidate-Elimination search is complete

References

 Machine Learning, Tom Mitchell, Mc Graw-Hill International Editions, 2013, India Edition.

VTUPulse.com