مل تحرین مری جهارم منطق

- 2 Prove that the following are theorems of $K_{\mathcal{L}}$.
 - $(a) \qquad (\exists x_i)(\mathscr{A} \to \mathscr{B}) \to ((\forall x_i)\mathscr{A} \to \mathscr{B}),$
 - (b) $((\exists x_i) \mathscr{A} \to \mathscr{B}) \to (\forall x_i) (\mathscr{A} \to \mathscr{B})$, provided that x_i does not occur free in \mathscr{B} .
 - (c) $(\sim(\forall x_i)\mathcal{A} \to (\exists x_i) \sim \mathcal{A}).$

(a)
$$\left\{ AB, \forall x; A \right\} \vdash_{K} \forall x; \sim (A \rightarrow B)$$
:

1 -13

Y Yn; A

۲ A

$$\forall \forall n; \neg (A \rightarrow B)$$

$$\left\{ \sim \mathcal{B} \right\} \stackrel{K}{\vdash} \exists \sim (A \rightarrow B) \rightarrow \sim \forall \sim A$$

(b)
$$\left\{ \begin{array}{llll} & \left\{ -B_{3}\left(\exists\,n_{1}\,A\rightarrow B\right) \right\} & \left[\begin{array}{llll} & \neg\,A \end{array} \right] \\ & & \left[\begin{array}{lllll} & \left\{ -B_{3}\left(\exists\,n_{1}\,A\rightarrow B\right) \right\} & \left[\begin{array}{lllll} & \neg\,A \end{array} \right] \\ & & \left[\begin{array}{lllll} & \left\{ A \end{array} \right] \end{array} \right] & \left[\begin{array}{lllll} & \left\{ A \end{array} \right] \\ & & \left[\begin{array}{lllll} & \left\{ A \end{array} \right] & \left\{ A \end{array} \right] \\ & & \left\{ \begin{array}{lllll} & \left\{ A \end{array} \right\} & \left[\begin{array}{lllll} & \left\{ A \end{array} \right] & \left\{ A \end{array} \right] \\ & \left\{ \begin{array}{llllll} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{lllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right] \\ & \left\{ \begin{array}{llllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{llllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{lllllll} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{llllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{llllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{llllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{llllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{llllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{lllllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ \begin{array}{lllllllll} & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{lllllllll} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{lllllllll} & \left\{ A \end{array} \right\} & \left\{ A \right\} & \left\{ A \end{array} \right\} \\ & \left\{ \begin{array}{llllllllll} & \left\{ A \end{array} \right\} \\ & \left\{ A \end{array} \right\} & \left\{ A \end{array} \right\} & \left\{ A \right\} & \left\{ A \end{array} \right\} & \left\{ A \right\} & \left\{$$

3(a) What is wrong with the following?

- $(1) \qquad (\exists x_2) A_1^2(x_1, x_2)$
- (2) $(\forall x_1)(\exists x_2)A_1^2(x_1, x_2)$ (1), Generalisation

assumption

- (3) $(\forall x_1)(\exists x_2)A_1^2(x_1, x_2) \rightarrow (\exists x_2)A_1^2(x_2, x_2)$ (K5)
- (4) $(\exists x_2)A_1^2(x_2, x_2)$ (2), (3), MP.

Therefore, $(\exists x_2)A_1^2(x_1, x_2) \vdash_K (\exists x_2)A_1^2(x_2, x_2)$, and hence by the Deduction Theorem,

$$\vdash_{K} (\exists x_2) A_1^2(x_1, x_2) \rightarrow (\exists x_2) A_1^2(x_2, x_2).$$

(b) Show, by finding a suitable interpretation, that the formula $((\exists x_2)A_1^2(x_1, x_2) \rightarrow (\exists x_2)A_1^2(x_2, x_2))$ is not logically valid, and is therefore not a theorem of K.

$$I = \langle D = IN_2 A_1^2 = \langle \rangle$$

$$\exists m_r (m_1 < n_r) \rightarrow \exists m_r (m_r < n_r)$$

8 For each of the following formulas, find a formula in prenex form which is provably equivalent to it.

$$(a) \qquad (\forall x_1) A_1^1(x_1) \rightarrow (\forall x_2) A_1^2(x_1, x_2)$$

$$\exists x_{\psi} \left[A_1^1(x_1) \rightarrow \forall x_2 A_1^2(x_1, x_2) \right]$$

$$\exists x_{\psi} \forall x_{\psi} \left[A_1^1(x_{\psi}) \rightarrow A_1^1(x_1, x_2) \right]$$

$$(b) \qquad (\forall x_1)(A_1^2(x_1, x_2) \rightarrow (\forall x_2)A_1^2(x_1, x_2))$$

$$\forall x_1 \forall x_2 \in [A_1^{r}(x_1, x_2) \rightarrow A_1^{r}(x_1, x_2)]$$

(c)
$$(\forall x_1)(A_1^1(x_1) \rightarrow A_1^2(x_1, x_2)) \rightarrow ((\exists x_2)A_1^1(x_2) \rightarrow (\exists x_3)A_1^2(x_2, x_3))$$

$$\begin{bmatrix} \left(A_{1}^{l}(A_{1}) \rightarrow A_{1}^{r}(A_{1}, A_{r}) \right) \rightarrow \forall x_{\xi} \exists x_{\psi} \left(A_{1}^{l}(A_{\xi}) \rightarrow A_{1}^{r}(A_{\xi}, A_{r}) \right) \end{bmatrix} \\ A_{1}^{r}(A_{\xi}, A_{r}) \rightarrow A_{1}^{r}(A_{\xi}, A_{r}) \rightarrow A_{1}^{r}(A_{\xi}, A_{r})$$

$$(d) \qquad (\exists x_1) A_1^2(x_1, x_2) \rightarrow (A_1^1(x_1) \rightarrow \sim (\exists x_3) A_1^2(x_1, x_3))$$

$$\forall x_{\varepsilon} \qquad \forall x_{\varepsilon} \qquad (A_1^{\varepsilon}(x_{\varepsilon}, x_{\varepsilon}) \rightarrow \forall x_{\varepsilon} \qquad (A_1^{\varepsilon}(x_1) \rightarrow \sim A_1^{\varepsilon}(x_1, x_{\varepsilon})))$$

$$\forall x_{\varepsilon} \forall x_{\varepsilon} \qquad (A_1^{\varepsilon}(x_{\varepsilon}, x_{\varepsilon}) \rightarrow (A_1^{\varepsilon}(x_1) \rightarrow \sim A_1^{\varepsilon}(x_1, x_{\varepsilon})))$$

9 Let $\mathcal{A}(x_1)$ be a wf. in which x_2 does not occur, and let $\mathcal{B}(x_2)$ be a wf. in which x_1 does not occur. Show that the formula

$$((\exists x_1) \mathcal{A}(x_1) \rightarrow (\exists x_2) \mathcal{B}(x_2))$$

is provably equivalent to formulas in prenex form of both Π_2 and Σ_2 forms.

$$\Pi_{\gamma}: \quad \forall \pi_{1} \left[A(\pi_{1}) \rightarrow \exists \pi_{\gamma} B(\pi_{\gamma}) \right] \\
\forall \pi_{1} \exists \pi_{\gamma} \left[A(\pi_{1}) \rightarrow B(\pi_{\gamma}) \right]$$

$$\begin{bmatrix} \Sigma_{\tau} : & \exists \pi_{\tau} \left(\exists \pi_{l} A(\pi_{l}) \rightarrow B(\pi_{\tau}) \right) \\ & \exists \pi_{\tau} \forall \pi_{l} \left[A(\pi_{l}) \rightarrow B(\pi_{\tau}) \right] \end{bmatrix}$$

Find a formula in Π_3 form which is provably equivalent to a formula in Σ_2 form.

$$\exists x_{i} A_{i}^{t}(x_{i}) \Rightarrow \exists x_{i} \forall x_{i} A_{i}^{t}(x_{i}, x_{i})$$

$$\Pi_{r}: \forall x_{i} \exists x_{i} \forall x_{i}$$

$$\Sigma_{r}: \exists x_{i} \forall x_{i} \forall x_{i}$$

11 Show that an extension S of $K_{\mathscr{L}}$ is inconsistent if and only if every wf. of \mathscr{L} is a theorem of S.

$$(\forall x \ A(m))$$
 سن $(\forall x \ A(m))$ سن $(\forall x \ A($

Let S be a consistent first order system such that, for every closed wf. \mathcal{A} of S, if the system obtained by including \mathcal{A} as an additional axiom is consistent then \mathcal{A} is a theorem of S. Prove that S is complete.

 Let S be a consistent complete extension of $K_{\mathcal{L}}$. Prove that any two models of S are elementarily equivalent, i.e. every closed wf. which is true in one model is true in the other.

Let S be a consistent extension of $K_{\mathcal{L}}$, and let M be a model of S. Define an extension S^+ of S as follows: include as additional axioms all atomic formulas of \mathcal{L} which are true in M. Prove that S^+ is consistent. Is S^+ necessarily complete?

St لزوم کی ل نے . مثل آئد کا لے کہ کبیریم و اج کے الطبی دلنواہ از مے باشی

= 1 color 2 4 false 1, true 1

استرات و نافقه این منطقا حترات و نافقه ای منطقا حترات منطقا حترات.

Let S be a consistent extension of $K_{\mathcal{L}}$, and let M be a model of S. Define an extension \hat{S} of S as follows: include as additional axioms all *closed* atomic formulas of \mathcal{L} which are true in M and the negations of all *closed* atomic formulas of \mathcal{L} which are not true in M. Prove that \hat{S} is consistent. Is \hat{S} necessarily complete?

\$ لنرد کا کامل نے .

Let S be a consistent extension of $K_{\mathcal{L}}$, where \mathcal{L} is the first order language containing variables, individual constants a_1, a_2, \ldots , only one predicate letter A_1^1 , and no function letters. An interpretation I of \mathcal{L} can be thought of as a set D_I with a distinguished subset A_I consisting of all those $x \in D_I$ such that $\bar{A}_1^1(x)$ holds in I. Suppose that for each $n \ge 1$ there is a model M_n of S in which $\bar{a}_i \in A_{M_n}$ for $1 \le i \le n$. Prove that there is a model M of S in which $\bar{a}_i \in A_M$ for every i.

ار عبومی الله علی (۱) A'(۹) میرمد ندهی کن کا زیر محبومی ساهی دلخواهی از ۱ با یک.

ملی بای ۲ اے۔ یی طبق تھنے ی فاعدانی ، کا بیز مدل دارد.