Quantum Computing & Applications for Engineering

9/17/2024

Lecture 2: Making, Using, and Measuring Qubits

Today's Goals

- Learn:
 - What makes a qubit a qubit?
 - O How do we use them?
 - O How can we measure their properties?
- Do:
 - Go over common issues
 - Some simple Qiskit patterns
 - Basic qubit experiments

Announcements

Office Hours

- Thanks to everyone who came!
- Helps me understand where the gaps are, what to focus on.

Common Issues

- Conda and Jupyter Usage
- Command Prompt/Terminal Usage
- Programming practices and style
- Outputting lists, printing to PDF
- What the heck did I just run?

Anaconda Python

- Anaconda is a Python distribution.
 - Python itself is open source
 - Anaconda bundles it up with some common stuff to make life easier
- Main purpose is to manage environments.
 - Installing packages (conda/pip)
 - Maintaining consistency
- Possible to use different versions in different environments

Anaconda Python

- Each environment is a "box" with its own version of python, pip, and any other packages you want to install.
 - Environments are completely independent.
 - Package versions are cached/linked to avoid filling your hard drive with duplicates
- Bad idea to install in the base environment
 - Some packages are incompatible with each other and with certain versions of Python
 - Leave base alone, always try to make a new environment for different lines of work.
- For this class, we should only need the environment we created last time.

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Command Line Usage

- On Windows, Anaconda gives you a "navigator" interface.
 - o On Mac/Linux too, but it's less visible.
 - Let's you do everything graphically.
- Use what you prefer.
 - Powershell (Windows)
 - Bash/zsh/fish (Mac/Linux/WSL)
 - None! (although I recommend learning a bit)
- Using the command line can be simpler.
 - Navigator can hang or crash.
 - Activating environments is more intuitive.
 - More control and history tracking.
- You can send outputs to a file:
 - Use the ">" operator.
 - Fastest way to do problem 1 on the HW.

Jupyter

- Jupyter is a program (written in Python) that runs within a Python environment.
 - Starting Jupyter starts a server that runs locally in the background.
 - You launch "kernels" in Python or other languages.
- Need to start Jupyter before you can open notebooks.
- Each notebook is a completely isolated session.
- Can navigate deeper into folders, but you can't go higher than the one you started in.

Using Jupyter

- Each notebook consists of runnable "cells."
 - Code, Markdown and Raw cells
 - Can move, split, copy, paste cells
- Cells can execute out of order.
 - Look at the number along the side to see what ran last.
 - Variables you delete will still be in memory.
- Exporting notebooks
 - The raw notebook format is "readable" but unwieldy JSON.
 - Can save as HTML or PDF.
 - PDF export requires LaTeX
 - Can try printing to PDF.

Python Style

import qiskit
import qiskit as qs

One blank line ---

Imports

- Best practice is to put them at the top of the code/notebook.
- Use aliases or import individual objects to avoid retyping module names over and over.
- Don't pollute the namespace!

Reusing code

 If you are copying/pasting more than 2-3x, consider using functions, classes and loops

Formatting

Python standard (PEP8) recommends
 80-character line lengths

Comments

- Comment your code or use Markdown cells
- Helps with understanding and grading.
- I don't grade on style, but it will help with partial credit if I can understand what you're doing!

from qiskit import QuantumCircuit
-from--qiskit--import *

Danger!

QiskitRuntimeService(var1, var2,

Needs to side-scroll on small monitors.

QiskitRuntimeService(var1,

var2,

var3,

Line breaks make it easier to read. var4)

What the heck did I run?

- The Qiskit "Hello World" example:
 - Simple 2-qubit test.
 - Meant to be a sanity check on our computing environment.
- We blindly copied/pasted a bunch of magic and got a plot.
 - Something about a circuit
 - Some stuff with estimators/observables
- What did it actually do?
 - Something very important!
 - We'll spend this class and next working up to it.

The Bell State

- Theory developed by John Stewart Bell in 1964.
- The simplest demonstration of quantum phenomena:
 - Superposition
 - Entanglement
 - Ruling out "hidden variables"
- Won the 2022 Nobel Prize
 - Alain Aspect, John Clauser, Anton Zeilinger.
 - Experimental validation and theoretical development.
- This is the building block of all quantum technologies.

But first...

- ...you need some qubits.
 - ...and ways to operate on them.
 - ...and ways to entangle them.

...preferably stable ones.

- ...preferably with a Python API.
 - We want to make a computer after all.
 - ...and Python is the second best programming language for everything.

The DiVincenzo Criteria

We need a quantum system that:

- 1. Have two (or more) well-characterized quantum states.
- 2. Can be reliably initialized into a known state.
- 3. Can be controlled through a set of universal operations.
- 4. Can be measured through a controllable readout process.
- 5. Have long coherence times.

For networking, we also need:

- 6. The ability to convert stationary and flying qubits.
- 7. The ability to transmit flying qubits between locations.

Two-Level Systems

Initialization, Control, Readout

Isolation from environmental noise

Criterion 1: Two-Level Quantum Systems

Nuclear Magnetic Resonance

Superconducting Circuits

Crystal Spin Defects

Neutral Atoms

Trapped Ions

Single Photons

Trapped Ions

- Individual ions of Yb⁺ or Ba⁺
 - Trapped by electrostatic fields
 - Addressed and readout by lasers
- Scales to 100s of qubits per chip
 - Long coherence time (seconds to minutes)
 - All-to-all connections
 - Networking needed
 - Error correction has been demonstrated
- One of the first modalities tested
 - Spinoff of atomic clock technologies
 - Developed at NIST and Sandia

Neutral Atoms

- Atoms are cooled to nK temperatures with lasers
- Magentic fields and lasers are used to trap atoms in a grid
 - Nearest-neighbor connectivity
 - Atoms can be physically moved
- Very long coherence times
 - Several seconds
 - Error correction has been demonstrated
- Can also be used as quantum memory.

b Möbius strip (85 sites

Photons

- Photons can be used as qubits
 - Polarization
 - Resonant states in loops and cavities
- Integrated photonics can yield a high density of qubits
 - Millions of physical qubits
- Noise-resistance is a double-edged sword.
 - Reliable computations
 - Challenging to address and manipulate qubits.
- Necessary for networking.

 Ψ PsiQuantum

Crystal Defects

- Defects in crystals can create spin and energy structures in crystals
 - Wide-bandgap semiconductors
 - o Diamond, SiC, hBN, ...
- High temperature operation
 - Up to 800K for some devices!
 - Low temperature improves resolution.
- Mainly of interest for quantum sensing & networking.
 - Can make very tiny sensors
 - Can transduce light to RF and back

Superconducting Circuits

- Superconducting Josephson junctions coupled to a capacitor or inductor.
 - ~10mK temperatures
 - Resonant oscillation modes at microwave frequencies
- Well-rounded performance
 - Fast gate times (~100s of ns)
 - Moderate coherence times (~100s of μs)
 - 100s of qubits, various connectivity

What kind should I pick?

- Roughly a dozen competing methods
 - Different benefits and tradeoffs
 - Everyone thinks theirs is the "one true way."
- It's not clear yet which hardware will "win."
 - It took 20 years for silicon-based CMOS* devices to dominate classical hardware
 - It took another 20 years for x86 to become the dominant CPU architecture
- There may never be a winner.
 - Superconductors are fast, but require cryogenics and have finite connectivity.
 - lons are stable, but slow and require networking to scale.
 - Atoms can scale and are stable, but are very slow.
 - Photons are so stable they're challenging to control.
 - Crystal defects are moderately fast, but hard to manufacture.
 - 0 ...

All different, yet all (mostly) the same

- Regardless of the hardware implementation, the theory is the same.
- Schrodinger's equation
 - Apply a Hamiltonian to a quantum state
 - The energy values contain information on the state.
- The exact values for these will vary.

Energy (scalar)

Hamiltonian (matrix)

Qubits' State (vector)

Quantum States

- The state of any qubit (or group of qubits) is represented by a vector.
 - The elements of the vector are complex numbers.
 - The length of the vector is always 1.
- Single qubit states are plotted on the Bloch Sphere (unit sphere).
- The Z-axis is taken to be the computational basis.
 - The |0> and |1> values are the basis states
 - Qubits are measured with respect to the computational basis.

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \qquad |\alpha^2 + \beta^2| = 1$$

Criteria 2-4: Initialization, Control and Readout

- We use photons to interact with qubits
 - Radio/Microwave (RF) -Superconducting, spins
 - IR/Visible/UV (Laser) Ions, neutral atoms, crystal defects
- Carefully timed RF/Laser pulses cause qubits to change state.
 - Align a signal generator to the qubit's resonant frequency
 - Send the signal to a modulated RF or laser source
- Duration and phase of the pulses determine the resulting qubit state.

Pulses cause the qubit statevector to rotate

The pulse duration determines the new state

Quantum Gates

- Pulses act as single quantum computational instructions, or gates.
- A square 2ⁿx2ⁿ matrix
 - Sometime called an operator
 - Defines how probability amplitudes are exchanged.
- Unitary matrix
 - Measurement probability among all basis states is conserved.
 - Measurement is always a real number.
 - Self-adjoint.

$$\mathbf{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\mathbf{Z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1+i & 2 \end{pmatrix}$$

$$\mathbf{CX} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$U^{\dagger}U = I$$

$$UU^{\dagger} = I$$

$$A = \begin{pmatrix} 1+i & 2-i \\ 3i & 4 \end{pmatrix} \qquad A^{\dagger} = \begin{pmatrix} 1-i & -3i \\ 2+i & 4 \end{pmatrix}$$

Note: The above oversimplifies a semester-long math/physics course into a single slide.

Quantum Gates

- It can be shown that there is a universal gate set.
 - Any other gates can be built from a handful of single and two-qubit gates.
 - Classical analogy NAND gate
- Two-qubit gates that create entanglement cannot be decomposed into separate single-qubit operations.

$$\mathbf{U}(\theta, \phi, \lambda) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -e^{-i\lambda}\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)}\cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$

A general 1-qubit gate

$$\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{pi}{4}} \end{pmatrix}$$

Classical Universal Gates

Composing Things

- We (mathematically) assemble individual gates and qubits using the tensor product.
- Mechanically, you "tile" the elements onto each other.
- Entangled things cannot be decomposed.
 - Tensor product states need 2N storage elements
 - Entangled states require 2^N storage elements.
 - This is why classical representations of quantum states scale exponentially.

$$|0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ 0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |00\rangle$$

$$|0\rangle^{\otimes 2} = |00\rangle$$

This is a 4x4 that <u>cannot</u> be decomposed into two 2x2's!

Composing Things

- Recall matrix-vector multiplication
 - Tip the vector on its side.
 - Drop it through the matrix, multiplying the aligned elements.
 - Sum the results.
- Quantum circuits read left to right
 - Each qubit has a "wire" or world-line.
 - Time flows to the right.
 - Gates are applied at each step
- Equivalent math goes right to left

Generating Entanglement

- Entanglement is how we compose qubits into collective systems.
 - The multi qubit system acts as a collective, regardless of physical separation.
 - o Individual qubits participating in entanglement are correlated with their partners.
- Physically, we generate entanglement with a coupled pulse that acts on both qubits simultaneously.
- Mathematically, we represent entangling gates with "controlled gates"
- Entanglement is what enables us to represent more information

Transpilation

- The signal generators for quantum computers typically only support a few "native" operations.
- Entangling gates can only be applied on qubits that are physically near each other.
- The transpiler tries to find an optimum, mathematically-equivalent configuration.

Global Phase: 3π/4

Measurement

- Measurement is performed with respect to an "observable."
 - Observable is a unitary matrix
 - Measurement projects the qubit statevector onto the observable axis according to its probability amplitudes.
 - Matrix eigenvectors are the possible outcomes
- A qubit is a "3D-bit" so we may need to look at it a few different ways.
- Pauli Z, X operators are the most common observables.
 - Z-axis: Standard 0/1 basis
 - X-axis: "Hadamard basis"
- Many repeated measurements give us the <u>expectation value</u> of the observable.
- Measurement ends the quantum part of the computation.
 - The measured qubits can no longer participate.
 - They can be re-initialized and used for other things

Doing all of this on a real machine

- IBM launched their cloud devices in 2016
 - 5 qubits was a lot!
 - 14 was "premium"
 - Other vendors followed this model
- Composer Draw circuit diagrams by hand
 - Good for playing around and understanding
 - Cumbersome for big circuits
- Qiskit Write circuits in Python
 - Define qubits and gates using quantum circuits
 - Define measurement and experiment types using Primitives
 - Connect to hardware or backend simulators

Break

Activity: Making things in Qiskit

Services & Backends

- The *service* runs locally and manages interactions with *backends*
- A backend is a quantum device or a simulator
- Demo: Setup a service and a backend

Quantum Circuits

- Quantum circuits are the programs we run on the machine.
- Start by creating an empty circuit
 - Append Gates
 - Draw it (optional)
- Use the Statevector object for debugging small circuits.
- Demo

Transpilation

- We need to transpile the circuits we made so they can run on the native gates.
- Qiskit provides a "pass manager" that performs this step automatically.
 - You can write your own pass managers too

Running Stuff

- Qiskit IBM Runtime provides "Primitives" for running quantum circuits on the hardware.
 - Sampler Run the circuit and measure the qubits. Repeat for a predefined number of "shots"
 - Estimator Compute the expectation value of an observable in a quantum circuit. Runs on top
 of a sampler and implements its own post-processing to save you some steps.
- We will focus on samplers this week

Post-Processing Results

- After running a job, we need to do something with the results
 - Statistics
 - Plotting
 - 0 ...
- In this example, we plot a histogram of the counts of each state we measured.