

Formación para la Investigación Escuela de Física, Facultad de Ciencias Universidad Industrial de Santander Construimos Futuro

ECUACIÓN DE ONDA POR MEDIO DE DIFERENCIAS FINITAS

Angela Sofía Barajas Ochoa - 2200018 Brayan Rodolfo Barajas Ochoa - 2170688 Julian Guillermo Adarme Rodriguez - 2170789

> Escuela de Física Universidad Industrial de Santander Bucaramanga, Colombia

> > 2 de agosto de $2022\,$

Índice

1.	Esquema Forward Time Centered Space	1
	1.1. Criterio estabilidad	2
	1.2. Solución con Boundary Conditions	4
2.	Esquema Lax-Friedrichs	5
	2.1. Criterio estabilidad	6
	2.2. Solución con Boundary Conditions	7
3.	Esquema Leapfrog	8
	3.1. Criterio estabilidad	9
	3.2. Solución con Boundary Conditions	10
4.	Esquema Lax-Wendroff	11
	4.1. Criterio estabilidad	13
	4.2. Solución con Boundary Conditions	14
5.		15
	5.1. Criterio estabilidad	18
	5.2. Solución con Boundary Conditions	19

1. Esquema Forward Time Centered Space

Ecuación de onda

$$\vec{u} = (\pi, \psi)^T$$
 \rightarrow $\partial_t \pi = v \partial_x \psi$ $\partial_t \psi = v \partial_x \pi$ $\partial_t \phi = \pi$

$$\phi \to Ae^{-(x-x_0)2/\sigma^2}$$

$$\psi \to \partial_x \phi$$

$$\pi = 0$$

Figura 1: Malla con un nivel temporal para esquema FTCS

$$\mathbf{I} \ \partial_t \pi = v \ \partial_x \ \psi \ ; \quad v > 0$$

$$\frac{\pi_j^{n+1} - \pi_j^n}{\Delta t} = v \left(\frac{\psi_{j+1}^n - \psi_{j-1}^n}{2\Delta x} \right) + \mathcal{O}(\Delta t, \Delta x^2)$$

$$\pi_j^{n+1} = \pi_j^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^n - \psi_{j-1}^n \right) + \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t) \tag{1}$$

II
$$\partial_t \psi = v \, \partial_x \, \pi \; ; \; v > 0$$

$$\frac{\psi_j^{n+1} - \psi_j^n}{\Delta t} = v \left(\frac{\pi_{j+1}^n - \pi_{j-1}^n}{2\Delta x} \right) + \mathcal{O}(\Delta t, \Delta x^2)$$

$$\psi_j^{n+1} = \psi_j^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right) + \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t) \tag{2}$$

III $\partial_t \phi = \pi$

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} = \pi_j^n + \mathcal{O}(\Delta t)$$

$$\phi_j^{n+1} = \phi_j^n + \Delta t \, \pi_j^n + \mathcal{O}(\Delta t^2) \tag{3}$$

1.1. Criterio estabilidad

A continuación se va a determinar qué tan estable es este esquema analizando para cada una de las ecuaciones halladas. Para esto hay que tener en cuenta que si $|\xi|^2 > 1$ el sistema es inestable, y si $|\xi|^2 \le 1$, el sistema es estable.

1.
$$\pi_j^n = \xi_1^n e^{ikx_j} \ y \ \psi_j^n = \xi_2^n e^{ikx_j}$$

$$\xi_1^{n+1} e^{ikx_j} = \xi_1^n e^{ikx_j} + \frac{\alpha}{2} \left(\xi_2^n e^{ikx_{j+1}} - \xi_2^n e^{ikx_{j-1}} \right)$$

$$\xi_1 = 1 + \frac{\alpha}{2} (e^{ik\Delta x} - e^{-ik\Delta x}) \left(\frac{\xi_2}{\xi_1} \right)^n$$

$$\xi_1 = 1 + i\alpha sin(k\Delta x) \left(\frac{\xi_2}{\xi_1} \right)^n$$

Primero se tiene que (se mostrarán formas de demostrar que ambos ξ son iguales)

$$\xi_1 - 1 = i\alpha sin(k\Delta x) \left(\frac{\xi_2}{\xi_1}\right)^n$$

$$\xi_2 - 1 = i\alpha sin(k\Delta x) \left(\frac{\xi_1}{\xi_2}\right)^n$$

 $\xi_2 = 1 - i\alpha con(n \Delta x) \left(\xi_2 \right)$

$$\frac{\xi_1 - 1}{\xi_2 - 1} = \frac{\xi_2^{2n}}{\xi_2^{2n}}$$

si
$$n = 0$$
 entonces $\xi_1 - 1 = \xi_2 - 1 \to \xi_1 = \xi_2$

Se dividen ambas expresiones de la forma:

también
$$\frac{d}{dn}\left[\frac{\xi_1-1}{\xi_2-1}=\left(\frac{\xi_2}{\xi_1}\right)^{2n}\right] \Rightarrow 0=\underbrace{\left(\frac{\xi_2}{\xi_1}\right)^{2n}}_{(2)}\ln\frac{\xi_2^2}{\xi_1^2}=0 \Rightarrow \frac{\xi_2^2}{\xi_1^2}=1 \Rightarrow \xi_1^2=\xi_2^2$$

$$(a+bi)^2=(c+di)^2\Rightarrow a^2+2abi-b^2=c^2+2cdi-d^2$$
 donde $a^2-b^2=c^2-d^2\wedge 2ab=2cd\Rightarrow a=\frac{cd}{b}, b\neq 0$

$$\frac{c^2d^2}{b^2} - b^2 = c^2 - d^2$$

$$c^2d^2 - b^4 = b^2c^2 - b^2d^2$$

$$c^2d^2 - c^2b^2 = b^4 - b^2d^2$$

$$c^2(d^2 - b^2) = b^2(b^2 - d^2)$$

$$c^2(d^2 - b^2) + b^2(d^2 - b^2) = 0$$

$$(c^2 + b^2)(d^2 - b^2) = 0$$

Tiene sentido que $d^2=b^2$, de esta forma $a^2-b^2=c^2-d^2\to a^2=c^2$ $|a+bi|^2=a^2+b^2=c^2+d^2=|c+di|$ con lo que |a+bi|=|c+di| como ya se pudo demostrar que son iguales entonces:

$$|\xi|^2 = 1 + [\alpha sin(k\Delta x)]^2 \ > 1$$

2.
$$\psi_j^n = \xi_1^n e^{ikx_j}$$
 y $\pi_j^n = \xi_2^n e^{ikx_j}$

$$\xi_1^{n+1}e^{ikx_j} = \xi_1^n e^{ikx_j} + \frac{\alpha}{2} \left(\xi_2^n e^{ikx_{j+1}} - \xi_2^n e^{ikx_{j-1}} \right)$$
$$\xi_1 = 1 + \frac{\alpha}{2} \left(e^{ik\Delta x} - e^{-ik\Delta x} \right) \left(\frac{\xi_2}{\xi_1} \right)^n$$
$$\xi_1 = 1 + i\alpha sin(k\Delta x) \left(\frac{\xi_2}{\xi_1} \right)^n$$

Realizando el mismo procedimiento anterior se demuestra que ξ_1 y ξ_2 son iguales, asi:

$$|\xi|^2 = 1 + [\alpha sin(k\Delta x)]^2 > 1$$

3.
$$\phi_i^n = \xi_1^n e^{ikx_j} \text{ y } \pi_i^n = \xi_2^n e^{ikx_j}$$

$$\xi_{1}^{n+1}e^{ikx_{j}} = \xi_{1}^{n}e^{ikx_{j}} + \xi_{2}^{n}e^{ikx_{j}}\Delta x$$

$$\xi_{1} = 1 + \left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}\Delta t$$

$$\xi_{1} - 1 = \left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}\Delta t$$

$$\xi_{2} - 1 = \left(\frac{\xi_{1}}{\xi_{2}}\right)^{n}\Delta t$$

$$\frac{\xi_{1} - 1}{\xi_{2} - 1} = \left(\frac{\xi_{2}}{\xi_{1}} \cdot \frac{\xi_{1}}{\xi_{2}}\right)^{n} = \frac{\xi_{2}^{2n}}{\xi_{1}^{2n}}$$

si n=0 entonces $\xi_1-1=\xi_2-1\to \xi_1=\xi_2$

y se realiza el mismo procedimiento anterior para demostrar que son iguales los xi. Se debe tener en cuenta que el criterio relaciona a ξ con su conjugado pero este ξ solo cuenta con parte real, por eso:

$$|\xi|^2 = 1 + 2\Delta t + (\Delta t)^2 > 1$$

1.2. Solución con Boundary Conditions

A este esquema y a todos los esquemas que serán descritos en este ensayo se le aplicaron tres condiciones de frontera, las cuales se definen de la siguiente manera

- La primera condición de frontera se denomina **PERIODIC** debido a que cuando la solución numérica llega a los extremos, estos se vuelven a encontrar; esto se puede entender con el hecho de que se está en una región topológicamente conectada.
- La segunda condición se denomina **OUTGOING** debido a que cuando la solución numérica llega a los extremos la onda correspondiente se disipa, por lo que a diferencia del periódico, aquí los extremos no se vuelven a encontrar.
- Finalmente se tiene la condición **INGOING**, en este caso al llegar a los extremos la onda se refleja tanto en el eje x como en el eje y, por lo que se puede observar como si la onda volteada se estuviera devolviendo al punto inicial.

Figura 2: Gráficas de FTCS con condición de frontera periódica

Figura 3: Gráficas de FTCS con condición de frontera outgoing

Figura 4: Gráficas de FTCS con condición de frontera ingoing

2. Esquema Lax-Friedrichs

Recordando que Lax-Friedrichs es igual a Forward Time Centered Space, con la única diferencia de que el primer término (es decir u_j^n) es igual a $\frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right)$.

 $\mathbf{I} \ \partial_t \pi = v \ \partial_x \ \psi \ ; \quad v > 0$

Aquí tomamos en cuenta la ecuación 1 y reemplazamos $\pi_j^n = \frac{1}{2} \left(\pi_{j+1}^n + \pi_{j-1}^n \right)$, entonces finalmente nos queda

$$\pi_j^{n+1} = \frac{1}{2} \left(\pi_{j+1}^n + \pi_{j-1}^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^n - \psi_{j-1}^n \right) \tag{4}$$

II $\partial_t \psi = v \; \partial_x \; \pi \; ; \; v > 0$

Aquí tomamos en cuenta la ecuación 2 y reemplazamos $\psi_j^n = \frac{1}{2} \left(\psi_{j+1}^n + \psi_{j-1}^n \right)$, entonces finalmente nos queda

$$\psi_j^{n+1} = \frac{1}{2} \left(\psi_{j+1}^n + \psi_{j-1}^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right)$$
 (5)

III $\partial_t \phi = \pi$

Aquí tomamos en cuenta la ecuación 3 y reemplazamos $\phi_j^n = \frac{1}{2} \left(\phi_{j+1}^n + \phi_{j-1}^n \right)$ y $\pi_j^n = \frac{1}{2} \left(\pi_{j+1}^n + \pi_{j-1}^n \right)$, entonces finalmente nos queda

$$\phi_j^{n+1} = \frac{1}{2} \left(\phi_{j+1}^n + \phi_{j-1}^n \right) + \frac{\Delta t}{2} \left(\pi_{j+1}^n + \pi_{j-1}^n \right) \tag{6}$$

2.1. Criterio estabilidad

Repetimos el proceso para hallar la estabilidad del sistema de manera similar al caso anterior

1.
$$\pi_j^n = \xi_1^n e^{ikx_j} \text{ y } \psi_j^n = \xi_2^n e^{ikx_j}$$
:

$$\xi_{1}^{n+1}e^{ikx_{j}} = \frac{1}{2} \left(\xi_{1}^{n}e^{ikx_{j+1}} + \xi_{1}^{n}e^{ikx_{j-1}} \right) + \frac{\alpha}{2} \left(\xi_{2}^{n}e^{ikx_{j+1}} - \xi_{2}^{n}e^{ikx_{j-1}} \right)$$

$$\xi_{1} = \frac{1}{2} \left(e^{ik\Delta x} + e^{-ik\Delta x} \right) + \frac{\alpha}{2} \frac{\xi_{2}^{n}}{\xi_{1}^{n}} \left(e^{ik\Delta x} - e^{-ik\Delta x} \right)$$

$$\xi_{1} = \cos(k\Delta x) + i\alpha \left(\frac{\xi_{2}}{\xi_{1}} \right)^{n} \sin(k\Delta x)$$

se obtienen las siguientes expresiones

$$\xi_1 - \cos(k\Delta x) = i\alpha \left(\frac{\xi_2}{\xi_1}\right)^n \sin(k\Delta x)$$

$$\xi_2 - \cos(k\Delta x) = i\alpha \left(\frac{\xi_1}{\xi_2}\right)^n \sin(k\Delta x)$$

se dividen

$$\frac{\xi_1 - \cos(k\Delta x)}{\xi_2 - \cos(k\Delta x)} = \left(\frac{\xi_2}{\xi_1}\right)^{2n}$$

se derivada

$$\frac{d}{dn} \left(\frac{\xi_1 - \cos(k\Delta x)}{\xi_2 - \cos(k\Delta x)} \right) = \frac{d}{dn} \left(\frac{\xi_2}{\xi_1} \right)^{2n}$$
$$0 = \underbrace{\left(\frac{\xi_2}{\xi_1} \right)^{2n}}_{2n} ln \frac{\xi_2^2}{\xi_1^2} \Rightarrow \frac{\xi_2^2}{\xi_1^2} = 1 \Rightarrow \xi_2 = \xi_{11}$$

ya que se demostro que ambos son iguales se tiene que:

$$|\xi|^2=1-\sin^2(k\Delta x)[1-\alpha^2]\leq 1$$

2.
$$\psi_{j}^{n} = \xi_{1}^{n} e^{ikx_{j}} \text{ y } \pi_{j}^{n} = \xi_{2}^{n} e^{ikx_{j}}$$

$$\xi_{1}^{n+1} e^{ikx_{j}} = \frac{1}{2} \left(\xi_{1}^{n} e^{ikx_{j+1}} + \xi_{1}^{n} e^{ikx_{j-1}} \right) + \frac{\alpha}{2} \left(\xi_{2}^{n} e^{ikx_{j+1}} - \xi_{2}^{n} e^{ikx_{j-1}} \right)$$

$$\xi_{1} = \frac{1}{2} \left(e^{ik\Delta x} + e^{-ik\Delta x} \right) + \frac{\alpha}{2} \frac{\xi_{2}^{n}}{\xi_{1}^{n}} \left(e^{ik\Delta x} - e^{-ik\Delta x} \right)$$

$$\xi_{1} = \cos(k\Delta x) + i\alpha \left(\frac{\xi_{2}}{\xi_{1}} \right)^{n} \sin(k\Delta x)$$

mismo proceso anterior y

$$|\xi|^2 = 1 - \sin^2(k\Delta x)[1 - \alpha^2] \le 1$$

3. finalmente si $\phi_j^n=\xi_1^n e^{ikx_j}$ y $\pi_j^n=\xi_2^n e^{ikx_j}$ tenemos que

$$\xi_1^{n+1}e^{ikx_j} = \frac{\xi_1^n}{2} \left(e^{ikx_{j+1}} + e^{ikx_{j-1}} \right) + \frac{\Delta t}{2} \xi_2^n,$$

$$\xi_1 = \cos k\Delta x + \Delta t \cos k\Delta x \left(\frac{\xi_2}{\xi_1} \right)^2,$$

$$\xi_2 = \cos k\Delta x + \Delta t \cos k\Delta x \left(\frac{\xi_1}{\xi_2} \right)^2.$$

Y siguiendo el proceso de siempre obtenemos que

$$|\xi|^2 = \cos^2(k\Delta x) + 2\cos(k\Delta x)\Delta t + (\Delta t)^2 \le 1$$

2.2. Solución con Boundary Conditions

Figura 5: Gráficas de Lax-Friedrichs con condición de frontera periódica

Figura 6: Gráficas de Lax-Friedrichs con condición de frontera outgoing

Figura 7: Gráficas de Lax-Friedrichs con condición de frontera ingoing

3. Esquema Leapfrog

Figura 8: Malla con tres niveles temporales para esquema Leapfrog

$$\frac{\pi_{j}^{n+1} - \pi_{j}^{n-1}}{2\Delta t} = v \left(\frac{\psi_{j+1}^{n} - \psi_{j-1}^{n}}{2\Delta x} \right)
\pi_{j}^{n+1} = \pi_{j}^{n-1} + v \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n} \right)$$
(7)

II
$$\partial_t \psi = v \; \partial_x \; \pi \; ; \; v > 0$$

$$\frac{\psi_j^{n+1} - \psi_j^{n-1}}{2\Delta t} = v \left(\frac{\pi_{j+1}^n - \pi_{j-1}^n}{2\Delta x} \right)$$

$$\psi_j^{n+1} = \psi_j^{n-1} + v \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right)$$
(8)

III
$$\partial_t \phi = \pi$$

$$\frac{\phi_j^{n+1} - \phi_j^{n-1}}{2\Delta t} = \pi_j^n$$

$$\phi_j^{n+1} = \phi_j^{n-1} + 2 \, \Delta t \, \pi_j^n \tag{9}$$

Criterio estabilidad 3.1.

1.
$$\pi_i^n = \xi_1^n e^{ikx_j} \ y \ \psi_i^n = \xi_2^n e^{ikx_j}$$

$$\xi_1^{n+1}e^{ikx_j} = \xi_1^{n-1}e^{ikx_j} + \alpha \left(\xi_2^n e^{ikx_{j+1}} - \xi_2^n e^{ik_{j-1}}\right)$$

$$\xi_1 = \xi_1^{-1} + \alpha \left(\frac{\xi_2}{\xi_1}\right)^n \left(e^{ik\Delta x} - e^{-ik\Delta x}\right)$$

$$\xi_1 = \xi_1^{-1} + i\alpha \left(\frac{\xi_2}{\xi_1}\right)^n \sin(k\Delta x)$$

$$\xi_1^2 = 1 + i\alpha \left(\frac{\xi_2}{\xi_1}\right)^n \xi_1 \sin(k\Delta x)$$

$$\Delta x) \text{ y } \xi_2^2 - 1 = i\alpha \left(\frac{\xi_1}{\xi_2}\right)^n \xi_2 \sin(k\Delta x)$$

 $\xi_1^2 - 1 = i\alpha \left(\frac{\xi_2}{\xi_1}\right)^n \xi_1 \sin(k\Delta x) \text{ y } \xi_2^2 - 1 = i\alpha \left(\frac{\xi_1}{\xi_2}\right)^n \xi_2 \sin(k\Delta x)$

se divide

$$\frac{\xi_1^2 - 1}{\xi_2^2 - 1} = \frac{\xi_1}{\xi_2} \left(\frac{\xi_2}{\xi_1}\right)^{2n}$$

se deriva

$$\frac{d}{dn} \left(\frac{\xi_1^2 - 1}{\xi_2^2 - 1} \right) = \frac{\xi_1}{\xi_2} \frac{d}{dn} \left(\frac{\xi_2}{\xi_1} \right)^{2n}$$

$$0 = \underbrace{\left(\frac{\xi_2}{\xi_1} \right)^{2n+1}}_{\neq 0} ln \frac{\xi_2^2}{\xi_1^2} \Rightarrow \frac{\xi_2^2}{\xi_1^2} = 1 \Rightarrow \xi_2 = \xi_1$$

ya se demostró que son iguales ahora:

$$\xi = i\alpha sin(k\Delta x) \pm \sqrt{1 - \alpha^2 sen^2(k\Delta x)}$$

$$|\xi|^2 = 1\tag{10}$$

2. $\psi_{i}^{n} = \xi_{1}^{n} e^{ikx_{j}} \text{ y } \pi_{i}^{n} = \xi_{2}^{n} e^{ikx_{j}}$

$$\begin{split} \xi_1^{n+1} e^{ikx_j} &= \xi_1^{n-1} e^{ikx_j} + \alpha \left(\xi_2^n e^{ikx_{j+1}} - \xi_2^n e^{ik_{j-1}} \right) \\ \xi_1 &= \xi_1^{-1} + \alpha \left(\frac{\xi_2}{\xi_1} \right)^n \left(e^{ik\Delta x} - e^{-ik\Delta x} \right) \\ \xi_1 &= \xi_1^{-1} + i\alpha \left(\frac{\xi_2}{\xi_1} \right)^n \sin(k\Delta x) \\ \xi_1^2 &= 1 + i\alpha \left(\frac{\xi_2}{\xi_1} \right)^n \xi_1 \sin(k\Delta x) \\ \xi &= i\alpha \sin(k\Delta x) \pm \sqrt{1 - \alpha^2 sen^2(k\Delta x)} \end{split}$$

$$|\xi|^2 = 1\tag{11}$$

3.
$$\phi_{j}^{n} = \xi_{1}^{n} e^{ikx_{j}} \text{ y } \pi_{j}^{n} = \xi_{2}^{n} e^{ikx_{j}}$$

$$\xi_{1}^{n+1} e^{ikx_{j}} = \xi_{1}^{n-1} e^{ikx_{j}} + 2\Delta t \xi_{2}^{n} e^{ikx_{j}}$$

$$\xi_{1} = \xi_{1}^{-1} + 2\Delta t \left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}$$

$$\xi_{1}^{2} = 1 + 2\Delta t \xi_{1} \left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}$$

$$\xi_{1}^{2} - 1 = 2\Delta t \xi_{1} \left(\frac{\xi_{2}}{\xi_{1}}\right)^{n} \text{ y } \xi_{2}^{2} - 1 = 2\Delta t \xi_{2} \left(\frac{\xi_{1}}{\xi_{2}}\right)^{n}$$

$$\frac{\xi_{1}^{2} - 1}{\xi_{2}^{2} - 1} = \left(\frac{\xi_{2}}{\xi_{1}}\right)^{2n} \frac{\xi_{1}}{\xi_{2}}$$

$$\frac{d}{dn} \left(\frac{\xi_{1}^{2} - 1}{\xi_{2}^{2} - 1}\right) = \frac{d}{dn} \left(\frac{\xi_{2}}{\xi_{1}}\right)^{2n} \frac{\xi_{1}}{\xi_{2}}$$

$$0 = \underbrace{\left(\frac{\xi_{2}}{\xi_{1}}\right)^{2n+1}}_{\neq 0} ln \underbrace{\frac{\xi_{2}^{2}}{\xi_{1}^{2}}} \Rightarrow \underbrace{\frac{\xi_{2}^{2}}{\xi_{1}^{2}}} = 1 \Rightarrow \xi_{2} = \xi_{1}$$

$$\xi^{2} - \xi 2\Delta t - 1 = 0 \Rightarrow \xi = \underbrace{\frac{2\Delta t \pm \sqrt{(2\Delta t)^{2} - 4}}{2}}$$

$$\xi = \Delta t \pm \sqrt{(\Delta t)^{2} - 1}$$

3.2. Solución con Boundary Conditions

Figura 9: Gráficas de leapfrog con condición de frontera periódica

Figura 10: Gráficas de leapfrog con condición de frontera outgoing

Figura 11: Gráficas de leapfrog con condición de frontera ingoing

4. Esquema Lax-Wendroff

Figura 12: Malla con dos niveles temporales para esquema Lax-Wendroff

Primero tomando en cuenta las ecuaciones de Lax-Friedrichs (2), pero con $(\Delta t/2)$, tenemos lo siguiente

I
$$\partial_t \pi = v \; \partial_x \; \psi \; ; \quad v > 0$$

$$\pi_{j-1/2}^{n+1/2} = \pi_{j-1/2}^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_j^n - \psi_{j-1}^n \right)$$

$$\pi_{j-1/2}^{n+1/2} = \frac{1}{2} \left(\pi_j^n + \pi_{j-1}^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_j^n - \psi_{j-1}^n \right)$$
 (12)

$$\frac{\pi_{j+1/2}^{n+1/2} - \pi_{j+1/2}^n}{\Delta t/2} = v \left(\frac{\psi_{j+1}^n - \psi_j^n}{\Delta x} \right)$$

$$\pi_{j+1/2}^{n+1/2} = \pi_{j+1/2}^{n} + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j}^{n} \right)$$

$$\pi_{j+1/2}^{n+1/2} = \frac{1}{2} \left(\pi_{j+1}^n + \pi_j^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^n - \psi_j^n \right)$$
 (13)

II $\partial_t \psi = v \; \partial_x \; \pi \; \; ; \; \; v > 0$

$$\psi_{j-1/2}^{n+1/2} = \frac{1}{2} \left(\psi_j^n + \psi_{j-1}^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_j^n - \pi_{j-1}^n \right)$$
 (14)

$$\psi_{j+1/2}^{n+1/2} = \frac{1}{2} \left(\psi_{j+1}^n + \psi_j^n \right) + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_j^n \right)$$
 (15)

III $\partial_t \phi = \pi$

$$\bullet \frac{\phi_{j-1/2}^{n+1/2} - \phi_{j-1/2}^n}{\Delta t/2} = \pi_j^n$$

$$\phi_{j-1/2}^{n+1/2} = \phi_{j-1/2}^{n} + \frac{\Delta t}{2} \pi_{j}^{n}$$

$$= \frac{1}{2} (\phi_{j}^{n} + \phi_{j-1}^{n}) + \frac{\Delta t}{2} \pi_{j}^{n}$$
(16)

$$\bullet \frac{\phi_{j+1/2}^{n+1/2} - \phi_{j+1/2}^n}{\Delta t/2} = \pi_j^n$$

$$\phi_{j-1/2}^{n+1/2} = \phi_{j+1/2}^{n} + \frac{\Delta t}{2} \pi_{j}^{n}$$

$$= \frac{1}{2} (\phi_{j}^{n} + \phi_{j+1}^{n}) + \frac{\Delta t}{2} \pi_{j}^{n}$$
(17)

Ahora aplicando Leapfrog, y reemplazando, tenemos

I
$$\partial_t \pi = v \; \partial_x \; \psi \; ; \quad v > 0$$

$$\frac{\pi_j^{n+1} - \pi_j^n}{\Delta t} = v \left(\frac{\psi_{j+1/2}^{n+1/2} - \psi_{j-1/2}^{n+1/2}}{\Delta x} \right)$$

$$\pi_j^{n+1} = \pi_j^n + v \frac{\Delta t}{\Delta x} \left(\psi_{j+1/2}^{n+1/2} - \psi_{j-1/2}^{n+1/2} \right)$$

$$=\pi_j^n+v\ \frac{\Delta t}{\Delta x}\left[\frac{1}{2}\psi_{j+1}^n+\frac{1}{2}\cancel{\psi_j^n}+\frac{v}{2}\frac{\Delta t}{\Delta x}\pi_{j+1}^n-\frac{v}{2}\frac{\Delta t}{\Delta x}\pi_j^n-\frac{1}{2}\cancel{\psi_j^n}-\frac{1}{2}\psi_{j-1}^n-\frac{v}{2}\frac{\Delta t}{\Delta x}\pi_j^n+\frac{v}{2}\frac{\Delta t}{\Delta x}\pi_{j-1}^n\right]$$

$$\pi_j^{n+1} = \pi_j^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^n - \psi_{j-1}^n \right) + \frac{v^2}{2} \frac{\Delta t^2}{\Delta x^2} \left(\pi_{j+1}^n + \pi_{j-1}^n - 2\pi_j^n \right)$$
 (18)

II $\partial_t \psi = v \, \partial_x \, \pi \; ; \; v > 0$

$$\frac{\psi_j^{n+1} - \psi_j^n}{\Delta t} = v \left(\frac{\pi_{j+1/2}^{n+1/2} - \pi_{j-1/2}^{n+1/2}}{\Delta x} \right)$$

$$\psi_j^{n+1} = \psi_j^n + v \, \frac{\Delta t}{\Delta x} \left(\pi_{j+1/2}^{n+1/2} - \pi_{j-1/2}^{n+1/2} \right)$$

$$=\psi_j^n+v\ \frac{\Delta t}{\Delta x}\left[\frac{1}{2}\pi_{j+1}^n+\frac{1}{2}\pi_j^n+\frac{v}{2}\frac{\Delta t}{\Delta x}\psi_{j+1}^n-\frac{v}{2}\frac{\Delta t}{\Delta x}\psi_j^n-\frac{1}{2}\pi_j^n-\frac{1}{2}\pi_{j-1}^n-\frac{v}{2}\frac{\Delta t}{\Delta x}\psi_j^n+\frac{v}{2}\frac{\Delta t}{\Delta x}\psi_{j-1}^n\right]$$

$$\psi_j^{n+1} = \psi_j^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right) + \frac{v^2}{2} \frac{\Delta t^2}{\Delta x^2} \left(\psi_{j+1}^n + \psi_{j-1}^n - 2\psi_j^n \right)$$
(19)

III $\partial_t \phi = \pi$

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} = \pi_j^n$$

$$\phi_j^{n+1} = \phi_j^n + \Delta t \, \pi_j^n \tag{20}$$

4.1. Criterio estabilidad

1.
$$\pi_j^n = \xi_1^n e^{ikx_j} \ y \ \psi_j^n = \xi_2^n e^{ikx_j}$$

$$\xi^{n+1}e^{ikx_{j}} = \xi_{1}^{n}e^{ikx_{j}} + \frac{\alpha}{2}\xi_{2}^{n}\left(e^{ikx_{j+1}} - e^{ikx_{j-1}}\right) + \frac{\alpha^{2}}{2}\left(e^{ikx_{j+1}} + e^{ikx_{j-1}} - 2e^{ikx_{j}}\right)$$

$$\xi_{1} = 1 + \frac{\alpha}{2}\left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}\left(e^{ik\Delta x} - e^{-ik\Delta x}\right)\frac{\alpha^{2}}{2}\left(e^{ik\Delta x} + e^{ik\Delta x}\right)$$

$$\xi_{1} - 1 = \alpha^{2}(\cos k\Delta x - 1) + i\alpha\sin k\Delta x\left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}$$

$$\xi_{2} - 1 = \alpha^{2}(\cos k\Delta x - 1) + i\alpha\sin k\Delta x\left(\frac{\xi_{1}}{\xi_{2}}\right)^{n}$$

Teniendo presente que $\xi_1 = \xi_2$ entonces podemos concluir que:

$$|\xi|^2 = \left[\alpha^2 \left(\cos k\Delta x - 1\right) + 1\right]^2 + \alpha^2 \sin k\Delta x \le 1$$

Que es fácil deducir que es menor o igual a 1 pero es mas visual con una gráfica.

2. Ahora al emplear $\psi_j^n = \xi_1^n e^{ikx_j}$ y $\pi_j^n = \xi_2^n e^{ikx_j}$ y segun la ecuacion de III de esta seccion obtenemos lo mismo que en el procedimiento anterior:

$$\xi^{n+1}e^{ikx_{j}} = \xi_{1}^{n}e^{ikx_{j}} + \frac{\alpha}{2}\xi_{2}^{n}\left(e^{ikx_{j+1}} - e^{ikx_{j-1}}\right) + \frac{\alpha^{2}}{2}\left(e^{ikx_{j+1}} + e^{ikx_{j-1}} - 2e^{ikx_{j}}\right)$$

$$\xi_{1} = 1 + \frac{\alpha}{2}\left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}\left(e^{ik\Delta x} - e^{-ik\Delta x}\right)\frac{\alpha^{2}}{2}\left(e^{ik\Delta x} + e^{ik\Delta x}\right)$$

$$\xi_{1} - 1 = \alpha^{2}(\cos k\Delta x - 1) + i\alpha\sin k\Delta x\left(\frac{\xi_{2}}{\xi_{1}}\right)^{n}$$

$$\xi_{2} - 1 = \alpha^{2}(\cos k\Delta x - 1) + i\alpha\sin k\Delta x\left(\frac{\xi_{1}}{\xi_{2}}\right)^{n}$$

De donde se obtiene un criterio de estabilidad idéntico

$$|\xi|^2 = \left[\alpha^2 \left(\cos k\Delta x - 1\right) + 1\right]^2 + \alpha^2 \sin k\Delta x \le 1$$

3.
$$\phi_j^n = \xi_1^n e^{ikx_j} \ \text{y} \ \pi_j^n = \xi_2^n e^{ikx_j}$$

$$\xi^{n+1}e^{ikx_j} = \xi^n e^{ikx_j} + \Delta t \xi_2^n e^{ikx_j}$$
$$\xi_1 = 1 + \Delta t \left(\frac{\xi_2}{\xi_1}\right)^n$$
$$\xi_2 = 1 + \Delta t \left(\frac{\xi_1}{\xi_2}\right)^n.$$

Permitiéndonos concluir que:

$$|\xi|^2 = (1 + \Delta t)^2 > 1$$

4.2. Solución con Boundary Conditions

Figura 13: Gráficas de Lax-Wendroff con condición de frontera periódica

Figura 14: Gráficas de Lax-Wendroff con condición de frontera outgoing

Figura 15: Gráficas de Lax-Wendroff con condición de frontera ingoing

5. Runge-Kutta Cash-Karp

Tener en cuenta $y_{n+1} = y_n + h \sum_{i=1}^s b_i k_i$, donde $k_i = f\left(t_n + hc_i, y_n + h \sum_{j=1}^s a_{ij} k_j\right)$ y la tabla de Butcher correspondiente al método (ver tabla 16)

Figura 16: Tabla butcher correspondiente al método Cash-Karp [1]

$$\mathbf{I} \ \partial_t \pi = v \ \partial_x \ \psi \ ; \quad v > 0$$

Teniendo en cuenta método de líneas, tenemos lo siguiente

$$\partial_t \pi_j = v \frac{\left(\psi_{j+1}^n - \psi_{j-1}^n\right)}{2\Delta x}$$

Esto es como si tuvieramos $f(t_n)$, por lo tanto $k_i = f(t_n + hc_i)$ y para esto los t_{n+c} se deben hallar con el método descrito en la sección 1

$$\frac{\psi_j^{n+c} - \psi_j^n}{c\Delta t} = v \left(\frac{\pi_{j+1}^n - \pi_{j-1}^n}{2\Delta x} \right)$$

$$\psi_j^{n+c} = \psi_j^n + c \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right)$$

$$k_1 = f(t_n)$$

$$k_1 = \frac{v}{2\Delta x} \left(\psi_{j+1}^n - \psi_{j-1}^n \right)$$

•
$$k_2 = f\left(t_n + \frac{1}{5}h\right) = f(t_{n+1/5})$$

$$k_2 = \frac{v}{2\Delta x} \left(\psi_{j+1}^{n+1/5} - \psi_{j-1}^{n+1/5} \right)$$

$$k_2 = \frac{v}{2\Delta x} \left[\psi_{j+1}^n - \psi_{j-1}^n + \frac{v}{2(5)} \frac{\Delta t}{\Delta x} \left(\pi_{j+2}^n - 2\pi_j^n + \pi_{j-2}^n \right) \right]$$

$$k_3 = f\left(t_n + \frac{3}{10}h\right) = f(t_{n+3/10})$$

$$k_2 = \frac{v}{2\Delta x} \left[\psi_{j+1}^n - \psi_{j-1}^n + \frac{3v}{2(10)} \frac{\Delta t}{\Delta x} \left(\pi_{j+2}^n - 2\pi_j^n + \pi_{j-2}^n \right) \right]$$

•
$$k_4 = f\left(t_n + \frac{3}{5}h\right) = f(t_{n+3/10})$$

$$k_2 = \frac{v}{2\Delta x} \left[\psi_{j+1}^n - \psi_{j-1}^n + \frac{3v}{2(5)} \frac{\Delta t}{\Delta x} \left(\pi_{j+2}^n - 2\pi_j^n + \pi_{j-2}^n \right) \right]$$

•
$$k_5 = f(t_n + h) = f(t_{n+1})$$

$$k_2 = \frac{v}{2\Delta x} \left[\psi_{j+1}^n - \psi_{j-1}^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+2}^n - 2\pi_j^n + \pi_{j-2}^n \right) \right]$$

•
$$k_6 = f\left(t_n + \frac{7}{8}h\right) = f(t_{n+7/8})$$

$$k_2 = \frac{v}{2\Delta x} \left[\psi_{j+1}^n - \psi_{j-1}^n + \frac{7v}{2(8)} \frac{\Delta t}{\Delta x} \left(\pi_{j+2}^n - 2\pi_j^n + \pi_{j-2}^n \right) \right]$$

Ahora tenemos que calcular $y_{n+1} = y_n + h \sum_{i=1}^s b_i k_i$, donde $y_{n+1} = \pi_j^{n+1}$ y por ahora $h = \Delta t$

$$\left| \pi_j^{n+1} = \pi_j^n + \Delta t \left[\frac{37}{378} k_1 + (0)k_2 + \frac{250}{621} k_3 + \frac{125}{594} k_4 + (0)k_5 + \frac{512}{1771} k_6 \right] \right|$$
 (21)

$$\tilde{\pi}_j^{n+1} = \pi_j^n + \Delta t \left[\frac{2825}{27648} k_1 + (0)k_2 + \frac{18575}{48384} k_3 + \frac{13525}{55296} k_4 + \frac{277}{14336} k_5 + \frac{1}{4} k_6 \right]$$
 (22)

II
$$\partial_t \psi = v \, \partial_x \, \pi \; ; \; v > 0$$

Aquí se calculan los k_i de manera similar al item anterior

•
$$k_1 = f(t_n)$$

$$k_1 = \frac{v}{2\Delta x} \left(\pi_{j+1}^n - \pi_{j-1}^n \right)$$

•
$$k_2 = f\left(t_n + \frac{1}{5}h\right) = f(t_{n+1/5})$$

$$k_2 = \frac{v}{2\Delta x} \left[\pi_{j+1}^n - \pi_{j-1}^n + \frac{v}{2(5)} \frac{\Delta t}{\Delta x} \left(\psi_{j+2}^n - 2\psi_j^n + \psi_{j-2}^n\right)\right]$$

•
$$k_3 = f\left(t_n + \frac{3}{10}h\right) = f(t_{n+3/10})$$

$$k_2 = \frac{v}{2\Delta x} \left[\pi_{j+1}^n - \pi_{j-1}^n + \frac{3v}{2(10)} \frac{\Delta t}{\Delta x} \left(\psi_{j+2}^n - 2\psi_j^n + \psi_{j-2}^n\right)\right]$$

•
$$k_4 = f\left(t_n + \frac{3}{5}h\right) = f(t_{n+3/10})$$

$$k_2 = \frac{v}{2\Delta x} \left[\pi_{j+1}^n - \pi_{j-1}^n + \frac{3v}{2(5)} \frac{\Delta t}{\Delta x} \left(\psi_{j+2}^n - 2\psi_j^n + \psi_{j-2}^n\right)\right]$$

•
$$k_5 = f(t_n + h) = f(t_{n+1})$$

$$k_2 = \frac{v}{2\Delta x} \left[\pi_{j+1}^n - \pi_{j-1}^n + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+2}^n - 2\psi_j^n + \psi_{j-2}^n \right) \right]$$

•
$$k_6 = f\left(t_n + \frac{7}{8}h\right) = f(t_{n+7/8})$$

$$k_2 = \frac{v}{2\Delta x} \left[\pi_{j+1}^n - \pi_{j-1}^n + \frac{7v}{2(8)} \frac{\Delta t}{\Delta x} \left(\psi_{j+2}^n - 2\pi_j^n + \psi_{j-2}^n\right)\right]$$

Ahora tenemos que calcular $y_{n+1}=y_n+h\sum_{i=1}^s b_i k_i$, donde $y_{n+1}=\psi_j^{n+1}$ y por ahora $h=\Delta t$

$$\psi_j^{n+1} = \psi_j^n + \Delta t \left[\frac{37}{378} k_1 + (0)k_2 + \frac{250}{621} k_3 + \frac{125}{594} k_4 + (0)k_5 + \frac{512}{1771} k_6 \right]$$
 (23)

$$\tilde{\psi}_{j}^{n+1} = \psi_{j}^{n} + \Delta t \left[\frac{2825}{27648} k_{1} + (0)k_{2} + \frac{18575}{48384} k_{3} + \frac{13525}{55296} k_{4} + \frac{277}{14336} k_{5} + \frac{1}{4} k_{6} \right]$$
(24)

III
$$\partial_t \phi = \pi$$

En este caso la ecuación general que se usa, es la siguiente

$$\frac{\pi_j^{n+c} - \pi_j^n}{c\Delta t} = v \left(\frac{\psi_{j+1}^n - \psi_{j-1}^n}{2\Delta x} \right)$$

$$\psi_{j}^{n+c} = \psi_{j}^{n} + c \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\pi_{j+1}^{n} - \pi_{j-1}^{n} \right)$$

Teniendo esto en cuenta, los k_2 quedan de la siguiente forma

$$k_{1} = \pi_{j}^{n}$$

$$k_{2} = f\left(t_{n} + \frac{1}{5}h\right) = f(t_{n+1/5})$$

$$k_{2} = \pi_{j}^{n} + \frac{v}{2(5)} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n}\right)$$

$$k_{3} = f\left(t_{n} + \frac{3}{10}h\right) = f(t_{n+3/10})$$

$$k_{3} = \pi_{j}^{n} + \frac{3v}{2(10)} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n}\right)$$

$$k_{4} = f\left(t_{n} + \frac{3}{5}h\right) = f(t_{n+3/10})$$

$$k_{4} = \pi_{j}^{n} + \frac{3v}{2(5)} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n}\right)$$

$$k_{5} = f(t_{n} + h) = f(t_{n+1})$$

$$k_{5} = \pi_{j}^{n} + \frac{v}{2} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n}\right)$$

$$k_{6} = f\left(t_{n} + \frac{7}{8}h\right) = f(t_{n+7/8})$$

$$k_{6} = \pi_{j}^{n} + \frac{7v}{2(8)} \frac{\Delta t}{\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n}\right)$$

$$\phi_j^{n+1} = \phi_j^n + \Delta t \left[\frac{37}{378} k_1 + (0)k_2 + \frac{250}{621} k_3 + \frac{125}{594} k_4 + (0)k_5 + \frac{512}{1771} k_6 \right]$$
 (25)

$$\tilde{\phi}_{j}^{n+1} = \phi_{j}^{n} + \Delta t \left[\frac{2825}{27648} k_{1} + (0)k_{2} + \frac{18575}{48384} k_{3} + \frac{13525}{55296} k_{4} + \frac{277}{14336} k_{5} + \frac{1}{4} k_{6} \right]$$
(26)

5.1. Criterio estabilidad

Por medio de una expansión en series de Taylor se demuestra que el método de Runge-Kutta es consistente sí y solo sí $\sum_{i=1}^{s} b_i = 1$, en nuestro caso estas sumatorias se desarrollan de la siguiente manera

$$\sum_{i=1}^{s} b_i = \frac{37}{378} + 0 + \frac{250}{621} + \frac{125}{594} + 0 + \frac{512}{1771} = 1$$

$$\sum_{i=1}^{s} \tilde{b_i} = \frac{2825}{27648} + 0 + \frac{18575}{48384} + \frac{13525}{55296} + \frac{277}{14336} + \frac{1}{4} = 1$$

Como ambas sumatorias son igual a 1, podemos concluir que el método de Runge-Kutta es consistente, y por consiguiente, estable.

5.2. Solución con Boundary Conditions

Figura 17: Gráficas de Runge-kutta Cash-Karp con condición de frontera periódica

Figura 18: Gráficas de Runge-kutta Cash-karp con condición de frontera outgoing

Figura 19: Gráficas de Runge-kutta Cash-karp con condición de frontera ingoing

Referencias

[1] Wikipedia contributors. Cash–karp method — Wikipedia, the free encyclopedia, 2021. [Online; accessed 2-August-2022].