Seminar W10- 974

Def:
$$V, V' \times - u.x$$
, $f \cdot V \rightarrow V \times - line may$
 $B = (u_1, ..., u_m) \quad basis \quad of V \quad || Source \quad liss!||$
 $B' = (u_1', --, u_m') \quad basis \quad of V \quad || farget \quad basis || farget || farget || farget || basis || farget || farget || farget || basis || farget || far$

$$=) \forall \omega \in \bigvee \left[f(\omega) \right]_{\overline{S}} = \left[f \right]_{\overline{S}, \underline{L}_{\overline{S}}} \cdot \left[\omega \right]_{\overline{B}}$$

2. Let $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^2)$ be defined by

$$f(x, y, z) = (y, -x)$$

E=(l1,l2,l3) and consider the bases $B = (v_1, v_2, v_3) = ((1, 1, 0), (0, 1, 1), (1, 0, 1))$ of \mathbb{R}^3 , $B' = (v'_1, v'_2) =$ ((1,1),(1,-2)) of \mathbb{R}^2 and let $E'=(e'_1,e'_2)$ be the canonical basis of \mathbb{R}^2 . Determine the matrices $[f]_{BE'}$ and $[f]_{BB'}$. (1,0,0) 19,70) (0,97) (0,1)

$$\frac{Sd. - \left[\left(1 \right) \right]_{B}}{\left((l_{1}) \right)}_{B} = \left[\left[\left((l_{1}) \right) \right]_{B}} \left[\left((l_{2}) \right) \right]_{B}, \left[\left((l_{2}) \right)$$

$$\begin{cases} \langle x_{1} \rangle = \langle x_{1} \rangle \\ \beta = -1 \end{cases}$$

$$\begin{cases} \langle (u_{1}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle \\ (u_{2}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle \\ \langle (u_{2}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle = \langle (x_{1}) \rangle \\ \langle (u_{2}) \rangle = \langle (x_{1}) \rangle = \langle$$

4. Let $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ with the following matrix in the canonical basis E of \mathbb{R}^4 :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

- (i) Show that $v = (1, 4, 1, -1) \in Ker f$ and $v' = (2, -2, 4, 2) \in Im f$.
- (ii) Determine a basis and the dimension of Ker f and Im f.
- (iii) Define f.

$$\frac{P_{top}}{B} = V, V = K - u.s., \qquad f = V = V$$

$$\Rightarrow \forall u \in V : \qquad f(u) = 0 \quad f(u$$

$$[1]_{E} \cdot [4]_{E} = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 7 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\omega' \in \mathcal{I}_{m}$$
 (=) \mathcal{I}_{m} (=)