

Prof. Márcio Senhorinha

E-mail

marcio.senhorinha@edu.sc.senai.br

Algoritmos

Introdução

Algoritmos E Programação de Computadores

- O estudo de algoritmos está ligado intimamente com a programação de computadores
- Mas antes de falarmos sobre programação, será que sabemos como funciona um computador ?

Duas palavras para dizer do que um computador é composto.

Um computador é composto por:

HARDWARE

SOFTWARE

Software e Hardware são conceitos que se complementam.

Estrutura Lógica de um Computador

Curiosidade

Entradas USB, muito usadas em computadores, podem ser considerados tanto como unidades de entrada como de saída de dados, já que o computador pode ler e gravar dados em Pen drives ou outro dispositivo conectado

Quem interage com o Computador?

Programador

a pessoa que constrói programas para serem executados em um computador

Usuário

a pessoa que utiliza os programas construídos pelo programador

Programação de Computadores

Quando elaboramos um programa, no fundo queremos ensinar a máquina a resolver um problema

Programação de Computadores

Mas antes de ensinar a máquina, nós, na maioria das vezes, precisamos buscar a solução do problema;

Programação de Computadores

Uma forma prática de buscarmos a solução de um problema é por meio do conceito de:

ALGORITMOS.

ALGORITMO

Um algoritmo é uma sequência ordenada e finita de etapas,

cuja execução passo a passo resolve um determinado problema

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

1) Compreender completamente o problema a ser resolvido, destacando os pontos mais importantes e os objetos que o compõem.

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

2) Definir os dados de entrada, ou seja, quais dados serão fornecidos e quais objetos fazem parte desse cenário problema.

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

3) Definir o processamento, ou seja, quais cálculos serão efetuados e quais as restrições para esses cálculos.

OBSERVAÇÃO

O processamento é responsável pela transformação dos dados de entrada em dados de saída. Além disso, deve-se verificar quais objetos são responsáveis pelas atividades.

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

4) Definir os dados de saída, ou seja, quais dados serão gerados depois do processamento.

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

5) Construir o algoritmo utilizando um dos tipos descritos na próxima seção.

Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:

6) Testar o algoritmo realizando simulações.

Os três tipos mais utilizados de algoritmos são:

- Descrição narrativa,
- Fluxograma e
- Pseudocódigo ou portugol. Descrevemos a seguir.

Descrição narrativa

Consiste em analisar o enunciado do problema e escrever, utilizando uma linguagem natural (por exemplo, a língua portuguesa), os passos a serem seguidos para sua resolução.

Descrição narrativa

Vantagem

Não é necessário aprender nenhum conceito novo, pois uma língua natural, neste ponto, já é bem conhecida.

Desvantagem

A língua natural abre espaço para várias interpretações, o que posteriormente dificultará a transcrição desse algoritmo para programa.

> Fluxograma

Consiste em analisar o enunciado do problema e escrever, utilizando símbolos gráficos predefinidos, (conforme veremos adiante), os passos a serem seguidos para sua resolução.

> Fluxograma

Vantagem

O entendimento de elementos gráficos é mais simples que o entendimento de textos.

Desvantagem

é necessário aprender a simbologia dos fluxogramas e, além disso, o algoritmo resultante não apresenta muitos detalhes, dificultando sua transcrição para um programa.

Pseudocódigo ou Portugol

O pseudocódigo ou portugol consiste em analisar o enunciado do problema e escrever, por meio de regras predefinidas, os passos a serem seguidos para sua resolução.

Pseudocódigo ou Portugol

Vantagem

A passagem do algoritmo para qualquer linguagem de programação é quase imediata, bastando conhecer as palavras reservadas da linguagem que será utilizada.

Desvantagem

É necessário aprender as regras do pseudocódigo, que serão apresentadas nos próximos capítulos.

Exemplos de Algoritmos descrição Narrativa

Problema:

Retirar dinheiro em um caixa eletrônico.

Exemplos de Algoritmos

descrição Narrativa

SOLUÇÃO

Algoritmo para resolver o problema

- 1. Chega ao caixa
- 2. Passa o cartão
- 3. Escolhe a opção de retirada
- 4. Digita o valor
- 5. Digita a senha
- 6. Confirma a retirada
- 7. Aguarda a saída do dinheiro

Exemplos de Algoritmos descrição Narrativa

Problema:

Beber um copo d'água

Exemplos de Algoritmos

descrição Narrativa

SOLUÇÃO

Algoritmo para resolver o problema

- 1. Pegar um copo vazio
- 2. Despejar água no copo
- 3. Erguer o copo até os lábios
- 4. Tomar a água aos goles

Exercício

Algoritmos descrição Narrativa

Construa um algoritmo para trocar uma lâmpada

SOLUÇÃO

- 1. Providenciar uma nova lâmpada e escada/banqueta
- 2. Subir na escada/banqueta
- 3. Retirar a Lâmpada queimada
- 4. Descer da escada/banqueta com a lâmpada queimada
- 5. Pegar a lâmpada nova
- 6. Subir na escada/banqueta com a a lâmpada nova
- 7. Colocar a lâmpada nova
- 8. Descer da escada/banqueta

Quando construímos um algoritmo, fixamos um padrão de comportamento a ser seguido passo a passo, e que poderia, inclusive, ser executado por outra pessoa (ou por uma máquina)

Veja o exemplo do caixa eletrônico. Suponha que você tenha um novo cliente para seu banco.

O algoritmo poderá instruir ele na retirada de dinheiro.

Exercícios — 01 e 02

Algoritmo descrição Narrativa

001 - Exercício

Construa um algoritmo para encontrar o resultado da divisão de dois números.

002 - Exercício

Escutar o ditado de 10 números e ao final informar qual foi o maior número falado (apenas a audição e visão podem ser usadas como ferramentas)

REFERENCIAS

Slide Lógica de Programação – Carlos Iran Chiarello chiarello@spei.br

Fundamentos da Programação de Computadores /

ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene aparecida Veneruchi; 3ª. ed. – São Paulo: Pearson Addison Wesley, 2011.