19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 No de publication :

2 853 953

(à n'utiliser que pour les commandes de reproduction)

21 No d'enregistrement national :

03 04867

(51) Int Cl7: F 23 D 11/00

(12)

DEMANDE DE BREVET D'INVENTION

A1

- **Date de dépôt**: 18.04.03.
- 30) Priorité :

- (71) Demandeur(s): L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCE-DES GEORGES CLAUDE — FR.
- Date de mise à la disposition du public de la demande : 22.10.04 Bulletin 04/43.
- 66 Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- Inventeur(s): LEROUX BERTRAND, TSIAVA REMI, DUPERRAY PASCAL, GRAND BENOIT et RECOURT PATRICK.
- 73) Titulaire(s) :
- (74) Mandataire(s) :

(54)

PROCEDE DE COMBUSTION ETAGEE D'UN COMBUSTIBLE LIQUIDE ET D'UN OXYDANT DANS UN FOUR.

L'invention concerne un procédé de combustion d'un combustible liquide et d'un oxydant dans lequel on injecte au moins un jet du combustible liquide sous forme atomisée et au moins un jet d'oxydant, le jet d'oxydant comportant un jet d'oxydant primaire et un jet d'oxydant secondaire, le jet d'oxydant primaire étant injecté à proximité du jet de combustible liquide de manière à engendrer une première combustion incomplète, les gaz issus de cette première combustion comportant encore au moins une partie du combustible, tandis que le jet d'oxydant secondaire est injecté à une distance l₂ du jet de combustible liquide qui est supérieure à la distance entre le jet de combustible liquide et le jet d'oxydant primaire le plus proche du jet de combustible liquide, de manière à entrer en combustion avec la partie du combustible présent dans les gaz issus de la première combustion

dans lequel le jet d'oxydant primaire est divisé en au moins deux jets primaires:

- au moins un premier jet d'oxydant primaire de gainage qui est injecté de manière coaxiale autour du jet du combustible liquide sous forme atomisée, et
- au moins un second jet d'oxydant primaire injecté à une distance l₁ du jet du combustible liquide.

:R 2 853 953 - A1

La présente invention concerne un procédé de combustion étagée d'un combustible liquide et d'un oxydant dans un four.

Les performances d'un procédé de combustion dans un four industriel doivent répondre à deux critères :

- limiter les rejets de polluants atmosphériques (NOx, poussières, ...) qui doivent être en quantité inférieure à la limité fixée par la législation,

5

10

15

20

25

30

35

- contrôler la température des parois du four et de la charge à chauffer de manière à répondre, à la fois aux contraintes relatives à la qualité du produit soumis à la combustion et à la consommation énergétique.

L'évolution de la législation sur les émissions de polluants atmosphériques, notamment les oxydes d'azote, ont conduit à une évolution importante de technologies de combustion. Un premier procédé de combustion limitant l'émission des NOx est la combustion oscillante (EP-A1-0 524 880) qui consiste à faire osciller le débit de combustible et/ou de comburant. La stœchiométrie s'écartant de 1, la température locale diminue, ce qui conduit à une réduction des NOx. Une autre solution est la combustion étagée qui prévoit la dilution des réactifs dans les zones principales de la réaction : ceci permet de s'éloigner des proportions stœchiométriques et d'éviter les pics de température propices à la formation des NOx (WO02/081967)

Ces mises en œuvre de l'art antérieur sont des solutions essentiellement adaptées à la combustion d'un combustible gazeux. Lors d'une combustion diphasique à l'aide d'un combustible liquide et d'un oxydant gazeux, le procédé de combustion comprend les étapes supplémentaires d'atomisation du liquide, puis de vaporisation des gouttes de liquide pour que le combustible devenu gazeux puisse réagir avec l'oxydant gazeux. Divers paramètres supplémentaires vont donc influencer la combustion : le type d'atomiseur utilisé, par exemple, mais également pour un injecteur à atomisation assistée la vitesse de l'écoulement du gaz d'atomisation qui va jouer sur la taille des gouttes et la qualité de l'atomisation. Outre les paramètres directement liés à l'étape d'atomisation, le procédé de combustion va être influencé par le mélange des réactifs car celui-ci influe sur le mode de combustion ainsi que sur la formation d'émissions polluantes. Ainsi, le rapport de la longueur de vaporisation et de la longueur de mélange est un paramètre important. La longueur de vaporisation est la distance nécessaire à l'évaporation des gouttes de combustible liquide, elle est liée à la taille des gouttes, à leur vitesse et à la nature du liquide. La longueur du mélange est la distance nécessaire pour que les réactifs, qui sont injectés séparément, se retrouvent mélangés dans un rapport stoechiométrique. Si la longueur de vaporisation est trop grande par rapport à la longueur de mélange, la combustion est incomplète; on parle de régime de combustion incomplète: "brush" en anglais. Au contraire, si la longueur de vaporisation est trop faible par rapport à la longueur de mélange, le mélange trop rapide conduit à des niveaux élevés d'oxyde d'azote; on parle de régime de "vaporisation". Il est donc préférable de se situer à la transition entre ces deux régimes (rapport de la longueur de vaporisation sur la longueur de mélange proche de 1).

EP-B1-0 687 853 propose un procédé de combustion étagée d'un combustible liquide. Ce procédé consiste à injecter le combustible liquide sous forme d'une pulvérisation divergente ayant un angle à la périphérie extérieure inférieur à 15° et d'injecter l'oxydant sous forme de deux écoulements: un écoulement primaire et un écoulement secondaire, l'écoulement primaire devant présenter une faible vitesse, inférieure à 61 m/s. Ce procédé présente plusieurs inconvénients. Tout d'abord, la mise en œuvre d'un angle aussi faible impose la mise en œuvre d'une vitesse de gaz d'atomisation élevée, ce qui crée des pertes de charge importantes et peut nuire à la stabilité de flamme. Ensuite, du fait de la faible valeur de l'angle de pulvérisation, le mode de combustion est de type "vaporisation" et ne permet pas d'optimiser la diminution des NOx. Enfin, cette faible valeur de l'angle de pulvérisation ne permet pas de faire varier de façon continue les paramètres géométriques de la flamme. Or, il peut être utile selon la charge de modifier la géométrie de la flamme de manière à éviter notamment la formation locale d'un point chaud.

Le but de la présente invention est donc de proposer un procédé de combustion étagée mettant en œuvre un combustible liquide permettant de limiter la formation des NOx tout en conservant une flamme stable.

Un autre but est de proposer un procédé de combustion étagée mettant en œuvre un combustible liquide permettant de limiter la formation des NOx et d'avoir une grande flexibilité du brûleur.

Dans ce but, l'invention concerne un procédé de combustion d'un combustible liquide et d'un oxydant dans lequel on injecte au moins un jet du combustible liquide sous forme atomisée et au moins un jet d'oxydant, le jet d'oxydant comportant un jet d'oxydant primaire et un jet d'oxydant secondaire, le jet d'oxydant primaire étant injecté à proximité du jet de combustible liquide de manière à engendrer une première combustion incomplète, les gaz issus de cette première combustion comportant encore au moins une partie du combustible, tandis que le jet d'oxydant secondaire est injecté à une distance l_2 du jet de combustible liquide qui est supérieure à la distance entre le jet de combustible liquide, de liquide et le jet d'oxydant primaire le plus proche du jet de combustible liquide, de

manière à entrer en combustion avec la partie du combustible présent dans les gaz issus de la première combustion,

dans lequel le jet d'oxydant primaire est divisé en au moins deux jets primaires :

5

10

15

20

25

30

35

- au moins un premier jet d'oxydant primaire de gainage qui est injecté de manière coaxiale autour du jet du combustible liquide sous forme, et
- au moins un second jet d'oxydant primaire injecté à une distance l_1 du jet du combustible liquide atomisé.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre. Des formes et des modes de réalisation de l'invention sont donnés à titre d'exemples non limitatifs, illustrés par les figures 1 et 2 qui sont des vues schématiques d'un dispositif permettant la mise en œuvre du procédé selon l'invention.

L'invention concerne donc un procédé de combustion d'un combustible liquide et d'un oxydant dans lequel on injecte au moins un jet du combustible liquide sous forme atomisée et au moins un jet d'oxydant, le jet d'oxydant comportant un jet d'oxydant primaire et un jet d'oxydant secondaire, le jet d'oxydant primaire étant injecté à proximité du jet de combustible liquide de manière à engendrer une première combustion incomplète, les gaz issus de cette première combustion comportant encore au moins une partie du combustible, tandis que le jet d'oxydant secondaire est injecté à une distance lujet de combustible liquide qui est supérieure à la distance entre le jet de combustible liquide et le jet d'oxydant primaire le plus proche du jet de combustible liquide, de manière à entrer en combustion avec la partie du combustible présent dans les gaz issus de la première combustion,

dans lequel le jet d'oxydant primaire est divisé en au moins deux jets primaires :

- au moins un premier jet d'oxydant primaire de gainage qui est injecté de manière coaxiale autour du jet du combustible liquide sous forme atomisée, et
- au moins un second jet d'oxydant primaire injecté à une distance l_1 du jet du combustible liquide.

Une des caractéristiques essentielles du procédé selon l'invention est qu'il concerne un procédé de combustion d'un combustible liquide, qui est éjecté de la lance du brûleur sous forme atomisée. Ce jet du combustible liquide sous forme atomisée peut être obtenu par toute méthode d'atomisation telle que l'éjection sous pression du combustible liquide ou le mélange du combustible avec un gaz d'atomisation avant ou lors de son éjection. Ainsi, selon un mode préféré, le jet du combustible liquide sous forme atomisée peut être obtenu par injection coaxiale d'un jet de gaz d'atomisation autour d'un jet du combustible liquide. Le gaz d 'atomisation peut être choisi parmi un

gaz oxydant tel que l'air ou l'oxygène ou un gaz inerte tel que l'azote ou la vapeur d'eau. Selon ce mode préféré, le débit massique du jet de gaz d'atomisation est avantageusement compris entre 5 et 40 % de la valeur du débit massique du jet de combustible liquide, encore plus préférentiellement entre 15 et 30 %.

5

10

15

20

25

30

35

Selon une autre caractéristique essentielle de l'invention, le jet d'oxydant primaire est divisé en au moins deux jets dont l'un au moins est un jet d'oxydant primaire de gainage. Ce jet d'oxydant primaire de gainage est injecté de manière coaxiale autour du jet du combustible liquide sous forme atomisée. Le second jet d'oxydant primaire est injecté à une distance l₁ du jet du combustible liquide atomisé. De préférence, cette distance l₁ entre le second jet d'oxydant primaire et le jet de combustible liquide est comprise entre 1,5 D_g et l₂/2, D_G représentant le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel le premier jet d'oxydant primaire de gainage est injecté. A titre d'exemple, la valeur de D_G peut être comprise entre 30 et 60 mm.

La distance I_2 entre le jet d'oxydant secondaire et le jet de combustible peut être comprise en 8 D_2 et 40 D_2 , D_2 représentant le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel l'oxydant secondaire est injecté. Ce diamètre D_2 peut être compris entre 10 et 60 mm.

Le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel le second jet d'oxydant primaire est injecté, D_1 , peut être compris entre 15 et 70 mm. De préférence, le diamètre D_1 est supérieur au diamètre D_2 .

Selon une variante de l'invention, le jet d'oxydant secondaire et le jet d'oxydant primaire situé à une distance l₁ du jet de combustible liquide sont constitués d'une pluralité de jets. Ainsi, le jet d'oxydant primaire situé à une distance l₁ du jet de combustible liquide peut être constitué de deux jets identiques situés à la même distance l₁ du jet de combustible liquide, les trois jets étant sensiblement situés dans le même plan, et le jet d'oxydant secondaire peut être constitué de deux jets identiques situés à la même distance l₂ du jet de combustible liquide, les trois jets étant sensiblement situés dans le même plan ; de préférence les cinq jets sont sensiblement situés dans le même plan.

La quantité d'oxydant secondaire représente généralement au plus 90 % de la quantité totale d'oxydant injecté, de préférence 10 à 90 %. Plus préférentiellement, la quantité d'oxydant secondaire est comprise entre 50 et 90 %, voire entre 60 et 80 %, de la quantité totale d'oxydant injectée, l'oxydant primaire (qui correspond à la fois l'oxydant primaire de gainage et le deuxième jet d'oxydant primaire) représentant une quantité comprise entre 10 et 50 %, voire entre 20 et 40 %, de la quantité totale d'oxydant.

De préférence, le débit massique du premier jet d'oxydant primaire de gainage est compris entre 10 et 20 % de la valeur du débit massique du jet d'oxydant total (oxydant primaire + oxydant secondaire).

L'oxydant primaire et l'oxydant secondaire peuvent présenter la même composition; cela présente notamment l'avantage de n'avoir qu'une seule source d'oxydant à diviser entre les différents points d'injection d'oxydant primaire ou secondaire. Mais, de préférence, la concentration en oxygène dans l'oxydant primaire est plus élevée que la concentration en oxygène dans l'oxydant secondaire.

La composition de l'oxydant peut être variable et selon les conditions ou les résultats souhaités. D'une manière générale, l'oxydant peut être constitué d'un mélange de gaz comportant :

- de 5 à 100 % en volume d'oxygène, de préférence 10 à 100 %,
- de 0 à 95 % en volume de CO₂, de préférence 0 à 90 %,
- de 0 à 80 % en volume de N_2 , de préférence 0 à 70 %,
- de 0 à 90 % en volume d'Ar.

5

10

15

20

25

30

35

Le mélange pourra également contenir d'autres constituants et notamment de la vapeur d'eau et/ou des NOx et/ou SOx. Généralement, l'air apporte 5 à 85 % en volume du débit d'oxygène total de l'oxydant, le complément étant apporté par de l'air enrichi en oxygène ou de l'oxygène substantiellement pur. De préférence, l'air représente 15 à 40 % en volume de l'oxydant total.

Selon une mise en oeuvre avantageuse, les vitesses d'injection du second jet d'oxydant primaire et du jet d'oxydant secondaire sont inférieures ou égales à 200 m/s, et lorsque le procédé selon l'invention est mis en œuvre pour la combustion d'une charge de verre, les vitesses d'injection du second jet d'oxydant primaire et du jet d'oxydant secondaire sont préférentiellement inférieures ou égales à 100 m/s. En outre, il est préférable que la vitesse du jet d'oxydant secondaire soit supérieure à la vitesse du second jet d'oxydant primaire.

La figure 1 est une vue schématique partielle de dessus d'un exemple d'un ensemble d'un ensemble de combustion pour la mise en œuvre du procédé selon l'invention et la figure 2 est la vue schématique en coupe correspondante. L'ensemble de combustion est placé dans un bloc réfractaire 1 présentant trois alésages cylindriques 2, 3 et 4, dans lesquelles ont été respectivement glissés trois blocs 21, 31 et 41.

Le bloc 21 comporte :

- une canalisation (ou injecteur) 211 qui débouche en 22. Cette canalisation 211 reçoit le combustible liquide 212.

- une canalisation (ou injecteur) 221 qui débouche en 22 et disposée de manière concentrique autour de la canalisation 211 dans laquelle le combustible liquide 212 est injecté. Cette canalisation 221 reçoit le gaz d'atomisation 222.

- une canalisation (ou injecteur) 231 qui débouche en 22 et disposée de manière concentrique autour de la canalisation 221 dans laquelle le gaz d'atomisation 222 est injecté. Cette canalisation a un diamètre D_G en 22. Elle reçoit l'oxydant primaire de gainage 232.

Le bloc 31, de préférence cylindrique, est percé d'une canalisation (ou injecteur) 32 dont l'orifice débouche en 33 du bloc. Cette canalisation (ou injecteur) 32 a un diamètre en 33 égal à D₁ et le centre de cette canalisation 32 est située à une distance l₁ du centre de la canalisation 211. La canalisation 32 reçoit l'oxydant primaire (34) différent de l'oxydant primaire de gainage.

Le bloc 41, de préférence cylindrique, est percé d'une canalisation (ou injecteur) 42 dont l'orifice débouche en 43 du bloc. Cette canalisation (ou injecteur) 42 a un diamètre en 43 égal à D_2 et le centre de cette canalisation 42 est située à une distance I_2 du centre de la canalisation 211. La canalisation 42 reçoit l'oxydant dit secondaire (44).

Pour le fonctionnement de ce système, il est possible d'utiliser la même source d'oxydant pour l'oxydant primaire (34 et 232) et l'oxydant secondaire (44), les diamètres des canalisations correspondantes (32, 231 et 42) étant choisis de manière à fixer des vitesses d'injection différentes ou identiques selon le type de combustion désirée.

Selon un mode avantageux, les extrémités des canalisations permettant l'injection d'oxydants sont en retrait dans le port réfractaire.

Par la mise en œuvre du procédé selon l'invention, il est possible de réaliser la combustion d'un combustible liquide tout en limitant la formation des NOx. En outre, le procédé selon l'invention présente l'avantage de permettre un contrôle de la stabilité de la flamme et de la flexibilité thermique du procédé. En effet, selon la nature de la charge, la géométrie du four, il peut être préférable de mettre en œuvre une flamme de petit ou de grand volume, ou de contrôler le transfert thermique en certains points du four ou d'homogénéiser le température de la voûte, ... Selon l'invention, cette flexibilité est obtenue par le contrôle de la répartition du débit d'oxydant total entre le jet d'oxygène secondaire et les jets d'oxydant primaire, et de préférence entre le jet d'oxygène secondaire et le second jet d'oxydant primaire qui est différent du jet d'oxydant primaire de gainage. Ce contrôle de la répartition du débit d'oxydant total est également appelé étagement.

30

5

10

15

20

25

EXEMPLE

5

10

25

30

35

On a utilisé un brûleur présentant la configuration des figures 1 et 2 et comprenant en outre :

- un deuxième injecteur d'oxydant primaire situé à une distance I₁ du jet de combustible liquide 211 et symétrique du premier injecteur d'oxydant primaire 31 par rapport à l'injecteur de combustible 211, et
- un deuxième injecteur d'oxydant secondaire situé à une distance l₂ de l'injecteur de combustible liquide 211 et symétrique du premier injecteur d'oxydant secondaire 42 par rapport à l'injecteur de combustible 211.

Les cinq jets étaient tous dans le même plan. La puissance du brûleur était de 2 MW. Le brûleur a été installé sur un four de 6 m de long et de section transversale de 1,5 m sur 2 m. Le rapport l_2/D_2 était de 14,6, le rapport l_1/D_G était de 2 et le rapport l_1/l_2 était de 0.26.

Le combustible injecté était un fuel lourd présentant la composition suivante :

- C 87,9 % en masse
- H 10,02 % en masse
- O 0,67 % en masse
- N 0,39 % en masse
- 20 S 0,98 % en masse

Sa viscosité dynamique était de 39 mm²/s à 100°C, sa masse volumique était de 980 kg/m³ et son pouvoir calorifique inférieure à 9631 kcal/kg.

Le gaz d'atomisation était soit de l'oxygène, soit de l'air.

Par la mise en œuvre du procédé selon l'invention, il a été possible de modifier la géométrie de la flamme en contrôlant la répartition du débit d'oxydant total entre les différents injecteurs primaires et secondaires. Ainsi, par l'injection de 75 % du débit d'oxydant total dans les injecteurs d'oxydant secondaire, on obtient une flamme de large volume. De même, par l'injection en modifiant ce pourcentage, il est possible de diminuer le volume de la flamme. Ainsi, selon la nature de la charge et le lieu où le brûleur est installé dans le four, il est possible avec le procédé de l'invention d'ajuster le volume de la flamme.

La figure 3 représente la puissance transférée par la flamme à la sole du four en fonction de la distance au brûleur pour différentes proportions du débit d'oxydant total injecté dans les injecteurs secondaires (50, 65 et 75 % du débit d'oxydant total injecté dans les injecteurs secondaires). On observe qu'un étagement important (injection d'une

plus grande quantité d'oxydant dans les injecteurs secondaires que dans les injecteurs primaires) permet de réduire la puissance à proximité du brûleur et d'augmenter le transfert loin des injecteurs. Par le procédé selon l'invention, il est ainsi possible de modifier le profil de transfert thermique. C'est un avantage du procédé de l'invention : en effet, ce procédé est adaptable à différents types de géométrie de four. Dans le cas des exemples de la figure 3, le gaz d'atomisation est de l'oxygène.

La figure 4 représente la température de la voûte du four le long de l'axe longitudinal du four en fonction de la distance au brûleur pour différentes proportions du débit d'oxydant total injecté dans les injecteurs secondaires (50, 65 et 75 % du débit d'oxydant total injecté dans les injecteurs secondaires). On observe qu'un étagement important peut permettre d'assurer l'homogénéité de la température de la voûte. Dans le cas des exemples de la figure 4, le gaz d'atomisation est de l'air.

La figure 5 représente la quantité de NOx émise en fonction de la proportion d'oxydant total injecté dans les injecteurs secondaires (étagement) et pour deux types de gaz d'atomisation : l'oxygène et l'air. La courbe relative à l'utilisation de l'oxygène comme gaz d'atomisation est repérée par des losanges blancs et la courbe relative à l'utilisation de l'air comme gaz d'atomisation est repérée par des carrés noirs. On observe qu'avec un étagement important, l'émission de NOx est de 200 ppm si le gaz d'atomisation est de l'oxygène et de 300 ppm si le gaz d'atomisation est de l'air.

REVENDICATIONS

1. Procédé de combustion d'un combustible liquide et d'un oxydant dans lequel on injecte au moins un jet du combustible liquide sous forme atomisée et au moins un jet d'oxydant, le jet d'oxydant comportant un jet d'oxydant primaire et un jet d'oxydant secondaire, le jet d'oxydant primaire étant injecté à proximité du jet de combustible liquide de manière à engendrer une première combustion incomplète, les gaz issus de cette première combustion comportant encore au moins une partie du combustible, tandis que le jet d'oxydant secondaire est injecté à une distance l₂ du jet de combustible liquide qui est supérieure à la distance entre le jet de combustible liquide et le jet d'oxydant primaire le plus proche du jet de combustible liquide, de manière à entrer en combustion avec la partie du combustible présent dans les gaz issus de la première combustion,

10

15

20

25

35

caractérisé en ce que le jet d'oxydant primaire est divisé en au moins deux jets primaires :

- au moins un premier jet d'oxydant primaire de gainage qui est injecté de manière coaxiale autour du jet du combustible liquide sous forme atomisée, et
- au moins un second jet d'oxydant primaire injecté à une distance I_1 du jet du combustible liquide.
- 2. Procédé selon la revendication précédente, caractérisé en ce que le jet du combustible liquide sous forme atomisée est obtenu par injection coaxiale d'un jet de gaz d'atomisation autour d'un jet du combustible liquide.
- 3. Procédé selon la revendication précédente, caractérisé en ce que gaz de vaporisation est choisi parmi un gaz oxydant tel que l'air ou l'oxygène ou un gaz inerte tel que l'azote ou la vapeur d'eau
- 4. Procédé selon la revendication 2 ou 3, caractérisé en ce que le débit massique du jet de gaz d'atomisation est compris entre 5 et 40 % de la valeur du débit massique du jet de combustible liquide.
- 5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la distance l₂ entre le jet d'oxydant secondaire et le jet de combustible est comprise en 8 D₂ et 40 D₂, D₂ représentant le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel l'oxydant secondaire est injecté.
 - 6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la distance l₁ entre le second jet d'oxydant primaire et le jet de combustible liquide est comprise entre 1,5 D_g et l₂/2, D_G représentant le diamètre du cercle de même surface

que la surface de l'injecteur à travers lequel le premier jet d'oxydant primaire de gainage est injecté.

- 7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel l'oxydant secondaire est injecté, D₂, est compris entre 10 et 60 mm.
- 8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le diamètre du cercle de même surface que la surface de l'injecteur à travers lequel le second jet d'oxydant primaire est injecté, D₁, est compris entre 15 et 70 mm.
- Procédé selon l'une des revendications précédentes, caractérisé en ce
 que la quantité totale d'oxydant secondaire est comprise entre 50 et 90 % de la quantité totale d'oxydant injectée.
 - 10. Procédé selon l'une des revendications précédentes, caractérisé en ce que les vitesses d'injection du second jet d'oxydant primaire et du jet d'oxydant secondaire sont inférieures ou égales à 200 m/s.
 - 11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est mis en œuvre pour la combustion d'une charge de verre et en ce que les vitesses d'injection du second jet d'oxydant primaire et du jet d'oxydant secondaire sont inférieures ou égales à 100 m/s.
- 12. Procédé selon l'une des revendications précédentes, caractérisé en ce 20 que le débit massique du premier jet d'oxydant primaire de gainage est compris entre 10 et 20 % de la valeur du débit massique du jet d'oxydant total (oxydant primaire + oxydant secondaire).

15

5

1/3

FIG.5

1

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

N° d'enregistrement national

FA 634822 FR 0304867

DOCU	IMENTS CONSIDÉRÉS COMME PER	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI	
atégorie	Citation du document avec indication, en cas de besoir des parties pertinentes			·
D,Y A	WO 02 081967 A (L AIR LIQUIDE S DIRECTOIRE ;DUGUE JACQUES (FR); THIERRY) 17 octobre 2002 (2002-	LEGIRET 10-17)	1-5,7-12 6	F23D11/00
	* figure 3 * * page 5, ligne 4 - page 7, lig * page 8, ligne 15 - ligne 19 * * page 10, ligne 28 - page 11, * page 15, ligne 31 - page 16, * page 18, ligne 20 - ligne 23 * revendication 9 *	ligne 26 * ligne 26 *		
D,Y	EP 0 687 853 A (PRAXAIR TECHNOI 20 décembre 1995 (1995-12-20) * page 3, ligne 31 - ligne 45 * * page 4, ligne 30 - ligne 37 * * colonne 6, ligne 41 - ligne 4 * colonne 6, ligne 59 - colonne 13 *	16 *	1-5,7-12	
	* page 4, ligne 51 - page 5, l' * revendication 2 *	igne 16 *		DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
X A	US 4 842 509 A (HASENACK HENDR 27 juin 1989 (1989-06-27) * colonne 3, ligne 1 - colonne	•	1-3,10, 11 9,12	F23C C03B
	* colonne 6, ligne 41 - ligne 4 * colonne 6, ligne 59 - colonne 13 * * figure 1 *	46 * e 7, ligne		
		-/		
		,		
		nent de la recherche		Examinateur
	7 ja	nvier 2004	Mou	gey, M
X : par Y : par autr A : arri O : div	ATÉGORIE DES DOCUMENTS CITÉS ticulièrement pertinent à lui seul ticulièrement pertinent en combinaison avec un re document de la même catégorie rère-plan technologique ulgation non-écrite sument intercalaire	de dépôt ou qu'à u D : cité dans la dema L : cité pour d'autres r	et bénéficiant d' et qui n'a été pul ne date postérie nde raisons	une date antérieure blié qu'à cette date

1

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N° d'enregistrement national

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 634822 FR 0304867

DOCU	IMENTS CONSIDÉRÉS COMM	E PERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
atégorie	Citation du document avec indication, en ca des parties pertinentes	s de besoin,		,
	EP 0 639 742 A (SAACKE GM 22 février 1995 (1995-02- * figure 1 * * colonne 1, ligne 1 - li * colonne 3, ligne 24 - l * colonne 5, ligne 47 - c 14 * * colonne 6, ligne 42 - c 14 *	22) gne 11 * igne 29 * olonne 4, ligne 3 olonne 6, ligne	1	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
	Dat	e d'achèvement de la recherche		Examinateur
		7 janvier 2004	Mou	gey, M
CATÉGORIE DES DOCUMENTS CITÉS X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie A: arrière-plan technologique O: divulgation non-écrite P: document intercalaire		de dépôt ou qu ['] à D : cité dans la dema L : cité pour d'autres	vet bénéficiant d'u t et qui n'a été pub une date postérieu ande raisons	ine date antérieure ilié qu'à cette date

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0304867 FA 634822

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 07-01-2004 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche		Date de publication	-	Membre(s) de la famille de brevet(s)	Date de publication
WO 02081967	Α	17-10-2002	FR WO	2823290 A1 02081967 A1	11-10-2002 17-10-2002
EP 0687853	А	20-12-1995	US BR CA CN DE DE EP ES JP JP KR PT	5601425 A 9502780 A 2151540 A1 1121156 A 69518952 D1 69518952 T2 0687853 A2 2151006 T3 3017048 B2 7332616 A 234573 B1 687853 T	11-02-1997 09-01-1996 14-12-1995 24-04-1996 02-11-2000 05-04-2001 20-12-1995 16-12-2000 06-03-2000 22-12-1995 15-12-1999 31-01-2001
US 4842509	Α	27-06-1989	DK EP JP	170284 A 0124146 A1 59185909 A	01-10-1984 07-11-1984 22-10-1984
EP 0639742	А	22-02-1995	DE EP	4328130 A1 0639742 A2	23-02-1995 22-02-1995

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 4 novembre 2004 (04.11.2004)

PCT

(10) Numéro de publication internationale WO 2004/094902 A1

- (51) Classification internationale des brevets⁷: F23C 6/04, C03B 5/235
- (21) Numéro de la demande internationale :

PCT/FR2004/050149

- (22) Date de dépôt international: 7 avril 2004 (07.04.2004)
- (25) Langue de dépôt :

PARIS (FR).

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 0304867 18 avril 2003 (18.04.2003) FR
- (71) Déposant (pour tous les États désignés sauf US): L'AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE [FR/FR]; 75 quai d'Orsay, F-75321 CEDEX 07

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): DUPER-RAY, Pascal [FR/FR]; 15 rue Ronsard, F-78180 MON-TIGNY LE BRETONNEUX (FR). GRAND, Benoît [FR/FR]; 30 Promenade Monalisa, F-78000 VER-SAILLES (FR). LEROUX, Bertrand [FR/FR]; 35 avenue de Breteuil, F-75007 PARIS (FR). RECOURT, Patrick [FR/FR]; 5 rue Toulouse Lautrec, F-91460 MARCOUS-SIS (FR). TSIAVA, Rémi [FR/FR]; 71 rue André Breton, F-91250 SAINT GERMAIN LES CORBEIL (FR).
- (74) Mandataire: CONAN, Philippe; 75 quai d'Orsay, F-75321 CEDEX 07 PARIS (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG,

[Suite sur la page suivante]

- (54) Title: STAGED COMBUSTION METHOD FOR A LIQUID FUEL AND AN OXIDANT IN A FURNACE
- (54) Titre: PROCEDE DE COMBUSTION ETAGEE D'UN COMBUSTIBLE LIQUIDE ET D'UN OXYDANT DANS UN FOUR

(57) Abstract: The invention relates to a method for combusting a liquid fuel and an oxidant, wherein at least one jet of liquid fuel in an atomized form and at least one jet of oxidant are injected. The jet of oxidant consists of a primary oxidant jet and a secondary oxidant jet. The primary oxidant jet is injected close to the liquid fuel jet in order to produce a first incomplete combustion, whereby the gases emanating from said first combustion still comprise at least one part of the fuel, while the secondary oxidant jet is inserted at a distance I₂ from the liquid combustible jet, said distance being greater than the distance between the liquid fuel jet and the primary oxidant jet which is the closest to the liquid fuel jet, so that it can enter into combustion with the part of the fuel present in the gases emanating from the first combustion, wherein the primary oxidant jet is divided into at least two primary jets: at least one canning first primary oxidant jet which is injected in a coaxial manner around the jet of liquid fuel in an atomized form, and at least one second primary oxidant jet injected at a distance I₁ from the liquid fuel jet.