Deep Stereo Image Compression with Decoder Side Information using Wyner Common Information

Ezgi Özyılkan

Supervisor: Prof. Deniz Gündüz

June 23, 2021

Our System Model

Figure 1: System model for lossy source compression with decoder-only side information. Also known as *Wyner-Ziv* model.

Non-linear Transform Coding

Figure 2: Nonlinear transform coding framework proposed in [Ballé et al., 2016]. The loss function we aim to minimize in this setting is denoted as $R + \lambda D$. Figure provided is from [Ballé et al., 2017].

"Ballé2017" model

Figure 3: Proposed DNN-based image compression network architecture in [Ballé et al., 2017]. g_a and g_s blocks of layers in the figure refer to *analysis* and *synthesis* transforms from the data space, respectively.

"Ballé2018" model

Figure 4: Proposed DNN-based image compression network architecture in [Ballé et al., 2018]. **h**_a and **h**_s blocks of layers in the figure refer to synthesis and analysis transforms related to the *hyperprior*, introduced as an extension to [Ballé et al., 2017].

Loss Function in [Ballé et al., 2017]

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} D_{\mathrm{KL}} \left[q_{\phi}(\tilde{\mathbf{y}} \mid \mathbf{x}) \mid\mid p(\tilde{\mathbf{y}} \mid \mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \mathbb{E}_{\tilde{\mathbf{y}} \sim q_{\phi}(\tilde{\mathbf{y}} \mid \mathbf{x})} \left[\log q_{\phi}(\tilde{\mathbf{y}} \mid \mathbf{x}) - \log p(\tilde{\mathbf{y}} \mid \mathbf{x}) \right] \\
= \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \mathbb{E}_{\tilde{\mathbf{y}} \sim q_{\phi}(\tilde{\mathbf{y}} \mid \mathbf{x})} \left[\log q_{\phi}(\tilde{\mathbf{y}} \mid \mathbf{x}) - \left(\underbrace{\log p_{\theta}(\mathbf{x} \mid \tilde{\mathbf{y}})}_{\text{distortion}} + \underbrace{\log p(\tilde{\mathbf{y}})}_{\text{rate}} \right) \right] + const.$$
(1)

$$L(\mathbf{g}_a, \mathbf{g}_s) = R + \lambda D. \tag{2}$$

"DSIN" model [Ayzik and Avidan, 2020]

Figure 5: The DSC network architecture proposed in [Ayzik and Avidan, 2020].

$$L = (1 - \alpha) \cdot d(X, X_{dec}) + \alpha \cdot d(X, \hat{X}) + \beta \cdot H(\bar{Z})$$
(3)

Wyner Common Information

The concept of Wyner common information [Wyner, 1975] models the dependence between two random variables X and Y. It is defined as

$$C(X;Y) = \inf I(X,Y;W), \tag{4}$$

where the infimum is taken over all the auxiliary random variables W such that X - W - Y form a Markov chain.

This implies:

- $p(w \mid x, y) = p(w \mid y)$
- $\cdot I(X, Y \mid W) = 0$

Distributed Source Coding (DSC) Archictecture

Distributed source coding architecture.

Figure 6: Proposed probability model and NN architecture.

Proposed Loss Function

$$\mathbb{E}_{\mathbf{x},\mathbf{y} \sim p(\mathbf{x},\mathbf{y})} D_{\mathrm{KL}} \left[q_{\phi}(\tilde{\mathbf{v}}_{x},\mathbf{v}_{y},\mathbf{w} \mid \mathbf{x},\mathbf{y}) \mid \mid p(\tilde{\mathbf{v}}_{x},\mathbf{v}_{y},\mathbf{w} \mid \mathbf{x},\mathbf{y}) \right]$$

$$= \mathbb{E}_{\mathbf{x},\mathbf{y} \sim p(\mathbf{x},\mathbf{y})} \mathbb{E}_{\tilde{\mathbf{v}}_{x},\mathbf{v}_{y},\mathbf{w} \sim q_{\phi}} \left(\left(\log q_{\phi}(\tilde{\mathbf{v}}_{x} \mid \mathbf{x}; \phi_{x}) + \log q_{\phi}(\mathbf{v}_{y} \mid \mathbf{y}; \phi_{y}) + \log q_{\phi}(\mathbf{w} \mid \mathbf{y}; \phi_{f}) \right) - \left(\underbrace{\log p_{\theta}(\mathbf{x} \mid \mathbf{w}, \tilde{\mathbf{v}}_{x}; \theta_{x})}_{D_{x}} + \underbrace{\log p_{\theta}(\mathbf{y} \mid \mathbf{w}, \mathbf{v}_{y}; \theta_{y})}_{D_{y}} + \underbrace{\log p(\mathbf{w})}_{R_{w}} + \underbrace{\log p(\tilde{\mathbf{v}}_{x})}_{R_{x}} + \underbrace{\log p(\mathbf{v}_{y})}_{R_{y}} \right) \right]$$

$$(5)$$

Derivation is included in the Appendix.

Overall Proposed Network Architecture

Figure 7: The proposed network architecture for distributed source coding. Block Q corresponds to a uniform quantizer, while blocks AE and AD correspond to arithmetic encoder and arithmetic decoder, respectively.

Similarly, we write:

$$L(\mathbf{g}_{ax}, \mathbf{g}_{sx}, \mathbf{g}_{ay}, \mathbf{g}_{sy}, \mathbf{f}) = (R_x + \lambda D_x) + \alpha (R_y + \lambda D_y) + \beta R_w,$$
 (6)

Experimental Setup

Figure 8: Example image pair from KITTI Stereo.

Results

Figure 9: Comparison of different models in terms of MSE and MS-SSIM metrics.

Visual Comparisons i

Figure 10: Visual comparison of different models trained for the MS-SSIM metric. "Ours" in the figures above refers to the "Ours + Ballé2017" model.

Visual Comparisons ii

(a) DSIN, bpp=0.0449

(b) Ours, bpp=0.0431

Figure 11: Reconstruction comparison between DSIN (top) and ours (bottom) when evaluated on full-sized images from KITTI Stereo.

Conclusion and Final Words

- Addressing the gap in ML literature by offering information-theoretic foundation for the DSC problem
- · Future directions include:
 - · Two distributed encoders
 - Enhancing image quality at higher bpps
- Code publicly available at: https://github.com/ipc-lab/DWSIC

Acknowledgements¹

- · Dr. Nitish Mital, Imperial College
- · Ali Garjani, Sharif University of Technology
- · Prof. Deniz Gündüz, Imperial College

¹N. Mital*, E. Ozyilkan*, A. Garjani*, and D. Gunduz. Deep Stereo Image Compression with Decoder Side Information using Wyner Common Information. arXiv:2106.11723.

Questions?

Email: ezgi.ozyilkan17@imperial.ac.uk

Appendix i

$$p(x_y, w, v_x, v_y) = p(w)p(v_x)p(v_y)p_{\theta}(x \mid w, v_x; \theta_x)p_{\theta}(y \mid w, v_y; \theta_y),$$

Joint distribution of the random variables.

$$q_{\phi}(\mathbf{w}, \mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}} \mid \mathbf{x}, \mathbf{y}) = q_{\phi}(\mathbf{v}_{\mathbf{x}} \mid \mathbf{x}; \phi_{\mathbf{x}}) q_{\phi}(\mathbf{w} \mid \mathbf{y}; \phi_{\mathbf{w}}) q_{\phi}(\mathbf{v}_{\mathbf{y}} \mid \mathbf{y}; \phi_{\mathbf{y}}), \quad (7)$$

Factored variational approximation of the posterior distribution².

²Eq. (16) and (7) are similar to the ones proposed in [Wang et al., 2017].

Appendix ii

Derivation for Eq. (5).

$$\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\rho(\mathbf{x},\mathbf{y})}D_{\mathrm{KL}}\left[q_{\phi}(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\mid\mathbf{x},\mathbf{y})\mid|\rho(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\mid\mathbf{x},\mathbf{y})\right]$$

$$=\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\rho(\mathbf{x},\mathbf{y})}\mathbb{E}_{\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\sim q_{\phi}}\left[\log\left(\frac{q_{\phi}(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\mid\mathbf{x},\mathbf{y})}{\rho(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\mid\mathbf{x},\mathbf{y})}\right)\right]$$

$$=\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\rho(\mathbf{x},\mathbf{y})}\mathbb{E}_{\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\sim q_{\phi}}\left[\log\left(\frac{q_{\phi}(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\mid\mathbf{x},\mathbf{y})\rho(\mathbf{x},\mathbf{y})}{\rho(\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{y},\mathbf{y},\mathbf{x},\mathbf{y})}\right)\right]$$

$$=\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\rho(\mathbf{x},\mathbf{y})}\mathbb{E}_{\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\sim q_{\phi}}\left[\log\left(\frac{q_{\phi}(\tilde{\mathbf{v}}_{\mathbf{x}}\mid\mathbf{x};\phi_{\mathbf{x}})q_{\phi}(\mathbf{v}_{\mathbf{y}}\mid\mathbf{y};\phi_{\mathbf{y}})q_{\phi}(\mathbf{w}\mid\mathbf{y};\phi_{\mathbf{y}})\rho(\mathbf{x},\mathbf{y})}{\rho(\mathbf{x}\mid\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{w};\theta_{\mathbf{x}})\rho(\mathbf{y}\mid\mathbf{v}_{\mathbf{y}},\mathbf{w};\theta_{\mathbf{y}})\rho(\mathbf{w})\rho(\tilde{\mathbf{v}}_{\mathbf{x}})\rho(\mathbf{v}_{\mathbf{y}})}\right)\right]$$

$$=\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\rho(\mathbf{x},\mathbf{y})}\mathbb{E}_{\tilde{\mathbf{v}}_{\mathbf{x}},\mathbf{v}_{\mathbf{y}},\mathbf{w}\sim q_{\phi}}\left(\left(\log q_{\phi}(\tilde{\mathbf{v}}_{\mathbf{x}}\mid\mathbf{x};\phi_{\mathbf{x}})+\log q_{\phi}(\mathbf{v}_{\mathbf{y}}\mid\mathbf{y};\phi_{\mathbf{y}})+\log q_{\phi}(\mathbf{w}\mid\mathbf{y};\phi_{\mathbf{y}})+\log q_{\phi}(\mathbf{w}\mid\mathbf{y};\phi_{\mathbf{y}})\right)\right)$$

$$-\left(\underbrace{\log p_{\theta}(\mathbf{x}\mid\mathbf{w},\tilde{\mathbf{v}}_{\mathbf{x}};\theta_{\mathbf{x}})}_{D_{\mathbf{x}}}+\underbrace{\log p_{\theta}(\mathbf{y}\mid\mathbf{w},\mathbf{v}_{\mathbf{y}};\theta_{\mathbf{y}})}_{D_{\mathbf{y}}}+\underbrace{\log p_{\mathbf{w}}(\mathbf{w}\mid\mathbf{y};\phi_{\mathbf{y}})}_{R_{\mathbf{y}}}+\underbrace{\log p_{\mathbf{v}}(\mathbf{v}_{\mathbf{y}})}_{R_{\mathbf{y}}}+\underbrace{\log p_{\mathbf{v}}(\mathbf{v}_{\mathbf{y}})}_{R_{\mathbf{y}}}\right)\right)$$

$$+const,$$
(11)

where Eq. (10) follows from Eq. (16) and (7).

References i

References

- Ayzik, S., & Avidan, S. (2020). Deep image compression using decoder side information. *European Conf. on Computer Vision ECCV*, 699–714.
- Ballé, J., Laparra, V., & Simoncelli, E. P. (2017). End-to-end optimized image compression. *Int'l Conf on Learning Representations* (*ICLR*).
- Ballé, J., Minnen, D., Singh, S., Hwang, S. J., & Johnston, N. (2018).

 Variational image compression with a scale hyperprior.

 International Conference on Learning Representations.
- Ballé, J., Laparra, V., & Simoncelli, E. P. (2016). End-to-end optimization of nonlinear transform codes for perceptual quality.

References ii

Wang, W., Yan, X., Lee, H., & Livescu, K. (2017). Deep variational canonical correlation analysis.

Wyner, A. (1975). The common information of two dependent random variables. *IEEE Transactions on Information Theory*, 21(2), 163–179.