Обратные тригонометрические функции

«Функция, как правило, определяется для тех значений аргумента, какие для данной задачи представляют реальное значение»

Хинчин А.Я.

Обратные тригонометрические функции

Φ ункция y = sinx

Область определения функции — множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная.

Функция нечетная: $\sin(-x) = -\sin x$ для всех $x \in \mathbb{R}$.

График функции симметричен относительно начала координат.

Функция периодическая с наименьшим положительным периодом 2π :

Φ ункция y = cosx

Область определения функции — множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — **ограниченная**.

Функция четная: cos(-x) = cos x для всех $x \in \mathbb{R}$.

График функции симметричен относительно оси ОҮ.

Функция периодическая с наименьшим положительным периодом 2π :

$$\underline{arcsin\ t} = a$$

$$1) - \frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

- 2) $\sin \alpha = t$
- $3) -1 \le t \le 1$
- 4) arcsin(-x) = arcsinx

$$arccos t = a$$

1)
$$0 \le a \le \pi$$

$$2)\cos a = t$$

$$3) -1 \le t \le 1$$

4)
$$arccos(-x) = \pi - arccosx$$

arctg t = a

$$1) - \frac{\pi}{2} < a < \frac{\pi}{2}$$

$$2) tga = t$$

3)
$$arctg(-x) = - arctg x$$

arcctg t = a

1)
$$0 < a < \pi$$

$$2)$$
 $ctga = t$

3)
$$arcctg(-x) = \pi - arcctgx$$

Графики тригонометрических функций

- 1)Область определения: отрезок [-1; 1];
- 2)Область значений: отрезок $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$
- 3)Функция y = arcsin x нечетная: arcsin (-x) = arcsin x;
- 4) Функция у = arcsin x монотонно возрастающая;

y = arcsinx

y=arccos x

1)Область определения: отрезок [-1; 1];

2) Область значений: отрезок $[0,\pi]$

3)Функция $y = \arccos x$ четная: $\arccos (-x) = \pi - \arccos x$

4) Функция y = arccosx монотонно убывающая;

y=arctgx

- 1)Область определения: R множество действительных чисел
- 2)Область значений: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- 3)Функция $y = \arcsin x$ нечетная: arctg(-x) = arctg x;
- 4)Функция у = arctg x монотонно возрастающая;

- 1)Область определения: R -
- 2)Область значений: $(0,\pi)$
- 3)Функция у = arcctgx ни четная ни нечетная $arcctg(-x) = \pi arcctgx$
- 4) Функция y = arcctgx монотонно убывающая;

Вычислить:

arcsin1 arcsin0 arcsin
$$\frac{1}{2}$$
 arcsin $(-\frac{1}{2})$
arccosl arccos $\frac{1}{2}$ arccos $(-\frac{1}{2})$
arcsin $\frac{\sqrt{2}}{2}$ arccos $\frac{1}{\sqrt{3}}$ arcsin $(-\frac{\sqrt{3}}{2})$ arccos $(-\frac{\sqrt{2}}{2})$

arcsin(-x) = - arcsinx $arccos(-x) = \pi - arccosx$

arcsin(-x) = - arcsinx $arccos(-x) = \pi - arccosx$ arctg(-x) = - arctgx

 $arcctg(-x) = \pi - arcctgx$

Работаем устно

Имеет ли смысл выражение?

 $\arcsin 2$ $\arccos 3\pi$ $\arctan 100$

Может ли arcsint и arccost принимать значение равное

$$5, -\frac{5}{9}, \pi, -10, \frac{3}{7}$$

Содержание

Вычислить:

$$arctg1 arctg\sqrt{3} arctg(-\frac{\sqrt{3}}{3})$$

$$arcctg1 arcctg\sqrt{3} arcctg(-\frac{\sqrt{3}}{3})$$

$$arctg(-x) = - arctgx$$

$$arcctg(-x) = \pi - arcctgx$$

Свойства аркфункций

cos(arccos x) = x, $arccos(cos x) = x, x \in [-1;1]$ sin(arcsin x) = x, $arcsin(sin x) = x, x \in [-1;1]$ tg(arctgx) = x arctg(tgx) = x,ctg(arcctgx) = x arcctg(ctgx) = x.

Работаем устно

Найдите значения выражений:

$$arccos(cos\frac{\pi}{3})$$
 $ctg(arcctg(-\frac{7}{8}))$ $sin(arcsin\frac{5}{13})$ $arcsin(sin\frac{5\pi}{2})$ $tg(arctg15)$ $cos(arcsin\frac{3\pi}{2})$

Спасибо за урок!

Успехов в дальнейшем изучении тригонометрии!