

Моделирование сетей и систем связи

Лекция 7

Анализ обслуживания трафика реального времени в мультисервисных сетях

Степанов С. Н.

Московский технический университет связи и информатики кафедра Сети связи и системы коммутации

Содержание

-	тупкциональные составилющие мультисервисной сети
2.	Популярные сетевые технологии
3.	Математическое описание модели сети
4.	Маршрутная матрица7
5.	Пример сети кольцевой структуры9
6.	Марковский процесс и его характеристики
7.	Свойство мультипликативности
8.	Альтернативная формула для оценки доли потерянных заявок
9.	Альтернативная формула для оценки средней величины занятого ресурса
10.	Иерархические сети доступа
11.	Алгоритм расчета иерархической сети доступа
12.	Мультисервисная модель узла с ограниченным доступом
13.	Пример расчета иерархической сети доступа
14.	Аналитическое и имитационное моделирование сетей
15.	Мультипликативная граница
16.	Пример использования мультипликативной границы
17.	Метод просеивания заявок: моносервисная сеть
18.	Решение системы неявных уравнений
19.	Пример реализации метода просеивания заявок
20.	Метод просеивания заявок: мультисервисная сеть
21.	Оценка канального ресурса сети
22.	Задания для усвоения материала

Общие положения

- По определению мультисервисная сеть:
 - обладает функциональными возможностями предоставления существующих и перспективных услуг связи с заданными параметрами качества и необходимой степенью персонализации;
 - использует для передачи информации универсальную транспортную пакетную сеть с распределённой коммутацией.
- В целях упрощения последующих выкладок предполагается, что узлы и линии (звенья сети) обладают идеальными характеристиками работы, т.е. узел имеет неограниченную производительность, а в линиях не допускаются ошибки в процессе передачи информации.
- Соединение устанавливается после поступления заявки от абонента сети на выделение канального ресурса на всех звеньях маршрута следования информационного потока, связанного с обслуживанием рассматриваемой заявки.
- Поток представляет из себя последовательность пакетов, ограниченных по длине и двигающихся по маршруту, определяемому узлами сети, в виде независимых информационных блоков на основе адреса, хранящегося в заголовке пакета.
- Для передачи пакетов используются упрощённые технологии коммутации на основе меток (например, такие как MPLS), позволяющие унифицировать и ускорить процесс пересылки информации в заданном направлении.

Функциональные составляющие мультисервисной сети

• Узлы сети связаны соединительными линиями. Способ их размещения определяет топологию сети. Выбор сетевых топологий зависит от функциональной роли рассматриваемого сегмента в организации процесса передачи информации

Популярные сетевые топологии

 Примеры топологий ядра сети (левая часть рисунка) и сети доступа (правая часть рисунка)

Свойства сетевых топологий

- В топологии сети в большей степени нежели географическое расстояние имеет значение так называемое сетевое расстояние, которое измеряется числом узлов, проходимых информационным потоком от источника к потребителю информации
- Поскольку передаточные возможности линий связи ограничены, то каждое переключение с линии на линию может быть причиной отказа в установлении соединения

Математическое описание сети

- lacktriangle Обозначим через J общее число соединительных линий сети, а через v_j обозначим скорость передачи j-й линии, выраженную в выбранных единицах ресурса (виртуальных каналах) передачи информации, $j=1,\ldots,J$.
- ightharpoonup Пусть n общее число потоков заявок. Поступление и обслуживание заявок k-го потока на передачу трафика реального времени определяется параметрами:
 - интенсивностью поступления заявок λ_k ;
 - числом единиц ресурса, требуемого для обслуживания одной заявки b_k ;
 - средним временем обслуживания заявки $1/\mu_k$;
 - маршрутом следования информации R_k , состоящим из номеров линий, занимаемых при передаче трафика, ассоциированного с обслуживанием заявки k-го потока.
- Предполагается, что времена между поступлениями заявок всех потоков и времена обслуживания имеют экспоненциальное распределение и не зависят друг от друга.
- Графически топология сети представлена в виде ненаправленного графа, состоящего из узлов, соединённых линиями. Потоки будут показаны стрелками и обозначаться перечислением узлов, если поток направлен, и списком используемых звеньев, если поток двунаправленный (дуплексный).

Маршрутная матрица (1/2)

- lacktriangle Заявка k-го потока принимается к обслуживанию, когда в каждой линии k-го маршрута имеются свободными не менее b_k единиц канального ресурса. В противном случае заявка получает отказ и не возобновляется.
- lacktriangle Обозначим через N_j множество номеров потоков заявок, при обслуживании которых используется i-я линия.
- Для формализованного описания топологии сети используется понятие маршрутной матрицы R. Она имеет вид:

$$R = ||r_{j,k}|| = \begin{vmatrix} 1 & 2 & \dots & n \\ \hline 1 & r_{1,1} & r_{1,2} & \dots & r_{1,n} \\ 2 & r_{2,1} & r_{2,2} & \dots & r_{2,n} \\ \vdots & \vdots & \vdots & & \vdots \\ J & r_{J,1} & r_{J,2} & \dots & r_{J,n} \end{vmatrix}.$$

lacktriangle Значение $r_{j,k},\; j=1,\ldots,J;\;\; k=1,\ldots,n$, определяется из соотношения

$$r_{j,k} = \left\{ egin{array}{ll} b_k, & j$$
-я линия используется при обслуживании заявки k -го потока; $0, & j$ -я линия не используется при обслуживании заявки k -го потока.

Маршрутная матрица (2/2)

• На рисунке показаны структура матрицы R и схема образования множеств $N_j,\ j=1,\ldots,J$ и множеств $R_k,\ k=1,\ldots,n$

Пример сети кольцевой структуры (1/2)

- На сети из 5 узлов рассмотрено 10 маршрутов следования информационных потоков: (1,2), (1,2,3), (2,3), (2,3,4), (3,4), (3,4,5), (4,5), (4,5,1), (5,1), (5,1,2).
- Узел помечен цифрой, соответствующей его номеру: 1, 2, 3, 4, 5.

Пример сети кольцевой структуры (2/2)

- ightharpoonup Занумеруем потоки в соответствии с приведенным перечнем, т.е. $\{1,2\}$ первый, $\{1,2,3\}$ второй, . . . , $\{5,1,2\}$ десятый.
- Маршрутная матрица R имеет 5 строк (по числу линий) и 10 столбцов (по числу анализируемых потоков заявок).
- ightharpoonup Структура и значения элементов матрицы R для рассматриваемой в качестве примера кольцевой сети выглядят следующим образом:

В исследуемой системе связи не предполагается использование обходных путей или какое-либо иное изменение маршрутной матрицы в процессе установления соединения или передачи информации. Если в сети имеются несколько вариантов движения трафика от одного узла сети к другому, то создаются дополнительные маршруты.

Показатели качества обслуживания заявок

Мнформационные потоки, имеющие доступ к j-й линии, не могут занять более, чем v_j канальных единиц j-й линии. Обозначим через i_k число заявок k-го потока, $k=1,\ldots,n$, находящихся на обслуживании, а через S обозначим пространство состояний модели

$$(i_1,\ldots,i_n)\in S,$$
 если $\sum_{k\in N_j}i_k\,b_k\leq v_j,$ $j=1,\ldots,J.$

lacktriangledown Обозначим через U_k множество состояний модели, когда приём поступившей заявки невозможен из-за нехватки свободного канального ресурса хотя бы в одной из линий, входящих в состав k-го маршрута

$$U_k = \{(i_1, \dots, i_n) \in S \mid (i_1, \dots, i_{k-1}, i_k + 1, i_{k+1}, \dots, i_n) \notin S \}.$$

- Мзменение состояний модели описывается многомерным марковским процессом $r(t)=\left(i_1(t),\ldots,i_n(t)\right)$, определённым на конечном пространстве состояний S. Здесь $i_k(t)$ число заявок k-го потока, находящихся в момент времени t на обслуживании. Обозначим через $p(i_1,\ldots,i_n)$ стационарные вероятности состояния $(i_1,\ldots,i_n)\in S$.
- ightharpoonup Качество обслуживания заявок k-го потока оценим значениями π_k доли потерянных заявок и m_k среднего числа единиц ресурса, занятых на их обслуживание:

$$\pi_k = \sum_{(i_1, \dots, i_n) \in U_k} p(i_1, \dots, i_n); \quad m_k = \sum_{(i_1, \dots, i_n) \in S} p(i_1, \dots, i_n) i_k b_k.$$

Свойство мультипликативности

- ightharpoonup Одной из важнейших характеристик построенной модели является наличие свойства мультипликативного представления значений $p(i_1,\ldots,i_n)$.
- Мультипликативное соотношение не зависит от вида функции распределения времени обслуживания заявки. Это значительно расширяет область использования полученных далее результатов.
- ightharpoonup Выполнение данного свойства позволяет представить $p(i_1,\ldots,i_n)$ в виде следующего соотношения:

$$p(i_1, \dots, i_n) = \frac{1}{N} \frac{a_1^{i_1}}{i_1!} \cdots \frac{a_n^{i_n}}{i_n!}, \qquad (i_1, \dots, i_n) \in S,$$

где $a_k = \lambda_k/\mu_k$ — потенциальное число соединений при обслуживании заявок k-го потока, а N — нормировочная константа, определяемая из соотношения

$$N = \sum_{(i_1, \dots, i_n) \in S} \frac{a_1^{i_1}}{i_1!} \cdots \frac{a_n^{i_n}}{i_n!}.$$

- ightharpoonup Далее предполагается, что среднее время обслуживания заявки k-го потока равно единице и за это время поступает в среднем a_k заявок k-го потока.
- Доказательство свойства мультипликативности аналогично доказательству, использованному для мультисервисной модели Эрланга и основано на рассмотрении модели сети с неограниченным ресурсом передачи информации в каждом звене, последующем урезании пространства состояний до размеров S и применении свойств обратимых марковских процессов.

Альтернативная формула для оценки потерь заявок

lacktriangledown Пусть I_k — множество состояний сети, где заявка k-го потока принимается к обслуживанию. Структуру I_k можно определить двумя эквивалентными способами

$$I_k = \left\{ (i_1, \dots, i_n) \in S \mid (i_1, \dots, i_{k-1}, i_k + 1, i_{k+1}, \dots, i_n) \in S \right\} =$$

$$= \left\{ (i_1, \dots, i_n) \in S \mid \sum_{\ell \in N_i} i_\ell \, b_\ell \le v_j - b_k, \quad j \in R_k \right\}.$$

Множество I_k совпадает с множеством состояний исследуемой сети, но с уменьшенным на b_k числом каналов во всех звеньях k-го маршрута. Тогда

$$S = I_k \bigcup U_k, \qquad k = 1, \dots, n.$$

Пусть N(S) — нормировочная константа, использованная в мультипликативном представлении $p(i_1,\ldots,i_n)$, а N(B) — аналогичная сумма, рассчитанная для произвольного подмножества B множества S. Тогда, используя определение π_k и свойство мультипликативности, получаем

$$\pi_k = \frac{N(U_k)}{N(S)} = \frac{N(S) - N(I_k)}{N(S)} = 1 - \frac{N(I_k)}{N(S)}.$$

Р Для оценки π_k достаточно найти нормировочные константы для исследуемой модели сети и аналогичной модели сети, но с уменьшенным на b_k числом каналов в линиях k-го маршрута. В обоих случаях ненормированные вероятности состояний сетей выражаются через вероятность одного состояния, принятого за единицу. Обычно это состояние, когда на обслуживании нет заявок.

Альтернативная формула для оценки занятого ресурса

lacktriangledown Процесс r(t) обратим. Это свойство следует из соотношения детального баланса

$$p(i_1,\ldots,i_k,\ldots,i_n) i_k = p(i_1,\ldots,i_k-1,\ldots,i_n) a_k, \quad i_k > 0.$$

 Суммирование этого равенства по всем состояниям из области его определения приводит к соотношению

$$\sum_{(i_1,...,i_n)\in S} p(i_1,...,i_n) i_k = \sum_{(i_1,...,i_n)\in I_k} p(i_1,...,i_n) a_k.$$

lacktriangle Воспользовавшись определением I_k , получаем формулу для оценки m_k через значение π_k

$$m_k = a_k b_k (1 - \pi_k), \qquad k = 1, \dots, n.$$

• Этот результат можно также доказать с помощью формулы Литтла $W=\frac{L}{\lambda}$. Применив формулу к процессу обслуживания заявок k-го потока получаем: среднее время пребывания заявки k-го потока на обслуживании, принятое ранее за единицу (см. слайд 12), равно отношению среднего числа заявок k-го потока, находящихся на обслуживании, m_k/b_k к интенсивности приёма на обслуживание заявок k-го потока $a_k \, (1-\pi_k)$. Последнее соотношение основано на свойстве PASTA. В результате получаем требуемое соотношение $1=\frac{m_k}{a_1b_1(1-\pi_k)}$.

Иерархические сети доступа (1/2)

- Иерархические сети доступа используются для концентрации возникающего трафика. В теории графов они называются древовидными.
- Достоинства иерархических сетей легкость управления и наращивания аналогичными сегментами. Недостатки — излишняя централизация и связанные с этим проблемы надёжности.
- Маршруты передачи трафика начинаются в одном из концевых узлов и заканчиваются в корневом узле. Максимальное число узлов в маршруте задаёт число уровней иерархии сети.
- Линии сети, исходящие из узлов одного уровня иерархии, будем называть линиями одного этапа соединения. Номер этапа совпадает с номером уровня иерархии узла. Число этапов q на единицу меньше, чем число уровней иерархии. Для сети на рисунке q = 3.

Потоки заявок поступают в концевые узлы доступа

Иерархические сети доступа (2/2)

- Далее в качестве иерархической сети доступа будем понимать сеть построенную в соответствии с принципами, показанными на слайде 15.
- В исследуемой модели мультисервисной иерархической сети доступа обслуживается n потоков заявок на передачу трафика реального времени от концевого узла до корневого узла. Потенциальное число соединений для k-го потока заявок a_k . На концевой узел поступает не менее одного потока заявок.
- ightharpoonup Ранее было показано, что для оценки доли потерянных заявок k-го потока можно использовать соотношение

$$\pi_k = 1 - \frac{N(I_k)}{N(S)}, \qquad k = 1, \dots, n.$$

lacktriangle Построим рекурсивный алгоритм оценки N(S) и $N(I_k)$.

Алгоритм расчета иерархической сети (1/6)

 \blacktriangleright По определению N(S) представляет из себя ограниченную используемым пространством состояний сумму произведений

$$N(S) = \sum_{(i_1, \dots, i_n) \in S} \frac{a_1^{i_1}}{i_1!} \cdots \frac{a_n^{i_n}}{i_n!}.$$

lacktriangledown Пусть P(i) — ненормированная вероятность занятости i каналов в исследуемой модели сети, а v — максимальное значение числа занятых каналов. Тогда

$$N(S) = \sum_{i=0}^{v} P(i) = \sum_{i=0}^{v} \sum_{\{(i_1, i_2, \dots, i_n) \in S \mid i_1 b_1 + \dots + i_n b_n = i\}} \frac{a_1^{i_1}}{i_1!} \cdots \frac{a_n^{i_n}}{i_n!}.$$

- В иерархической сети информационная нагрузка всех потоков проходит через корневой узел. Поэтому P(i) можно рассчитать рассчитав величину $g_{J,q}(i)$ ненормированной вероятности занятости i каналов в J-й линии q-го этапа соединения, исходящей из корневого узла.
- Используя специальный вид топологии сети (см. слайд 15), получим значение $g_{J,q}(i)$ ограничивая пропускную способность линий сети в соответствии с этапом установления соединения. Важно отметить, что на каждой линии рассматриваемого этапа это делается независимо от других линий этого этапа и линий последующих этапов. Реализацию расчетной процедуры покажем с помощью модели иерархической сети, рассмотренной на слайде 15.

Алгоритм расчета иерархической сети (2/6)

<u>Шаг 1.</u> Рекурсия ведётся по номеру этапа соединения.

- На первом шаге вычислительной процедуры ограничим пропускную способность линий 1-го этапа установления соединения в соответствии с изначально заданными значениями. При этом пропускная способность линий 2-го и последующих этапов остаётся равной бесконечности.
- Найдём распределение вероятностей числа каналов, занятых во всех линиях 1-го этапа установления соединения. Для каждой линии эта задача решается независимо от других линий 1-го и последующих этапов соединения. Это свойство следует из вида топологии иерархических сетей (см. слайд 15).
- Обозначим через P_k вектор индивидуального распределения вероятностей числа каналов занятых на соответствующей линии доступа только заявками k-го потока $P_k = (P_k(0), P_k(1), \dots, P_k(c_k b_k))$. Здесь $c_k = \lfloor \frac{v_k}{b_k} \rfloor$ максимальное число заявок k-го потока, которые могут одновременно обслуживаться на линии. Компоненты вектора имеют вид

$$P_k(i) = \left\{ \begin{array}{ll} \frac{a_k^{i_k}}{i_k!}, & \quad i=i_kb_k, \quad i_k=0,1,\dots,c_k, \\ \\ 0, & \quad \text{в противном случае}. \end{array} \right.$$

Алгоритм расчета иерархической сети (3/6)

<u>Шаг 1.</u> (Продолжение)

- Обозначим через $g_{j,1}$ распределение вероятностей числа каналов занятых на j-й линии 1-го этапа. Компоненты функции $g_{j,1}$ определяются в результате свёртки индивидуальных распределений числа каналов, занятых потоками заявок, использующих j-ю линию с последующим урезанием количества состояний из-за ограниченности пропускной способности j-й линии. Обозначим оператор свертки символом \otimes .
- Для модели, использованной в качестве примера (см. слайд 15), результаты выполнения 1-го шага алгоритма имеют вид:

$$g_{1,1} = P_1 \otimes P_2;$$
 $g_{2,1} = P_3 \otimes P_4;$ $g_{3,1} = P_5 \otimes P_6;$ $g_{4,1} = P_9 \otimes P_{10};$ $g_{5,1} = P_{11} \otimes P_{12}$

Алгоритм расчета иерархической сети (4/6)

Шаг 2.

- На втором шаге алгоритма ограничивается пропускная способность линий 2-го этапа установления соединения. При этом линии последующих этапов по-прежнему имеют бесконечную пропускную способность.
- Найдём распределение числа каналов, занятых во всех линиях 2-го этапа установления соединения. В силу принятых предположений для каждой линии эта задача решается независимо от других линий 2-го и последующих этапов.
- Обозначим через $g_{j,2}$ распределение вероятностей числа занятых каналов на j-й линии 2-го этапа. Компоненты функции $g_{j,2}$ определяются в результате свёртки распределений числа каналов, занятых на линиях 1-го этапа, входящих в j-ю линию и найденных на предыдущем шаге реализации алгоритма, или индивидуальных распределений входных потоков, использующих j-ю линию, если заявки начинают обслуживание со 2-го этапа.
- Далее выполняется урезание числа состояний, связанное с ограниченностью пропускной способности j-й линии. Для модели, использованной в качестве примера (см. слайд 15), результаты выполнения 2-го этапа имеют вид:

$$g_{6,2} = g_{1,1} \otimes g_{2,1} \otimes g_{3,1}; \quad g_{7,2} = P_7 \otimes P_8; \quad g_{8,2} = g_{4,1} \otimes g_{5,1}.$$

Алгоритм расчета иерархической сети (5/6)

Шаг 3.

- ullet Третий и последующие шаги алгоритма вплоть до q-го совершаются по аналогии с рассмотренными выше первым и вторым шагами.
- $g_{J,q}(i)$ ненормированных вероятностей занятости i виртуальных каналов в J-й линии сети, $i=0,1,\dots,v_J$. Для рассматриваемой модели (см. слайд 15) результаты выполнения q-го этапа имеют вид: $g_{J,q}=g_{6,2}\otimes g_{7,2}\otimes g_{8,2}$.

• В результате выполнения завершающего шага алгоритма находится распределение

• Просуммировав значения $g_{J,q}(i)$ по i от 0 до v_J , находим значение нормировочной константы

$$N(S) = g_{J,q}(0) + g_{J,q}(1) + \ldots + g_{J,q}(v_J).$$

Алгоритм расчета иерархической сети (6/6)

Шаг 4.

• На завершающем шаге определяются показатели обслуживания заявок k-го потока. В качестве расчётного выражения для π_k используется соотношение

$$\pi_k = 1 - \frac{N(I_k)}{N(S)}.$$

- Значение N(S) находится из соотношения, приведенного на предыдущем слайде, а для определения $N(I_k)$ достаточно воспользоваться разработанной выше вычислительной процедурой и найти нормировочную константу для иерархической сети с уменьшенным на b_k числом каналов во всех линиях, доступных заявкам k-го потока.
- Для вычисления m_k используется соотношение

$$m_k = a_k b_k (1 - \pi_k).$$

• Для оценки характеристик обслуживания заявок для всех потоков необходимо рассчитать нормировочную константу N(S) для анализируемой модели иерархической сети и нормировочные константы $N(I_k),\ k=1,\ldots,n$ для иерархических сетей с изменениями в пропускной способности звеньев, отмеченными на слайде 13.

Мультисервисная модель узла с ограниченным доступом

- Линия доступа с номером k обслуживает пуассоновский поток заявок с интенсивностью предложенного трафика a_k эрланг. Для обслуживания заявки k-го потока требуется зарезервировать в k-й линии доступа и общей линии ресурс передачи информации в размере b_k канальных единиц, $k=1,\ldots,n$.
- Построенная модель является частным случаем иерархической сети доступа и может рассчитываться введённым выше алгоритмом. Ранее она была рассмотрена как одно из обобщений мультисервисной модели Эрланга.

Пример расчета иерархической сети доступа (1/4)

- В иерархической сети доступа обслуживаются 4 потока заявок со следующими значениями входных параметров: $a_1=1$ Эрл; $b_1=1$ к.е.; $a_2=0,5$ Эрл; $b_2=2$ к.е.; $a_3=0,5$; $b_3=2$ к.е.; $a_4=0,1$ Эрл; $b_4=4$ к.е.
- Интенсивности поступления заявок выражены в эрлангах. Число каналов в линиях доступа: $v_1=5$ к.е.; $v_2=7$ к.е.; $v_3=10$ к.е.
- Рассчитаем для 2-го потока долю потерянных заявок π_2 и среднее число занятых канальных единиц m_2 .

Пример расчета иерархической сети доступа (2/4)

Шаг 1,2

• Начнём с вычисления индивидуальных распределений 1-го и 2-го потоков заявок, поступающих на 1-ю линию. Исходя из определения, получаем следующие значения компонент векторов P_1 и P_2 :

$$P_1 = (1; 1; 0.5; 0.1667; 0.0417; 0.0083);$$

 $P_2 = (1; 0; 0.5; 0; 0.125; 0).$

• Результатом выполнения 1-го шага алгоритма будет вектор $g_{1,1} = P_1 \otimes P_2$ с компонентами

$$g_{1,1} = (1; 1; 1; 0,6667; 0,4167; 0,2167).$$

- На 2-м шаге производится свёртка индивидуального распределения P_3 с компонентами $P_3=\left(1;\ 0;\ 0.5;\ 0;\ 0.125;\ 0;\ 0.0208;\ 0\right)$ и вектора $g_{1,1}$.
- ullet Результатом 2-го шага алгоритма будет вектор $g_{2,2}=P_3\otimes g_{1,1}$ с компонентами

$$g_{2,2} = \begin{pmatrix} 1; \ 1; \ 1,5; \ 1,1667; \ 1,0417; \ 0,675; \ 0,3542; \ 0,2125 \end{pmatrix}.$$

Пример расчета иерархической сети доступа (3/4)

Шаг 3

- На 3-м шаге выполняется свёртка индивидуального распределения P_4 с компонентами $P_4=\begin{pmatrix}1;&0;&0;&0;&0,1;&0;&0;&0,005;&0;&0\end{pmatrix}$ и вектора $g_{2,2}$.
- ullet Результатом 3-го шага алгоритма будет вектор $g_{3,3} = P_4 \otimes g_{2,2}$ с компонентами

$$g_{3,3} = (1; 1; 1,5; 1,1667; 1,1417; 0,775; 0,5042; 0,3292; 0,1092; 0,0725; 0,0429).$$

• Находим нормировочную константу. Для этого необходимо просуммировать компоненты вектора $q_{3,3}$. Получаем

$$N(S) = q_{3,3}(0) + \ldots + q_{3,3}(10) = 7,64125.$$

• Переходим к оценке π_2 . Для этого требуется рассчитать нормировочную константу для аналогичной модели иерархической сети только с уменьшенными на b_2 значениями v_1,v_2,v_3 . Новые пропускные способности каналов: $v_1=3$ к.е.; $v_2=5$ к.е.; $v_3=8$ к.е.

Пример расчета иерархической сети доступа (4/4)

Шаг 4

• Поскольку последовательность расчётов повторяется, приведём только окончательные результаты:

```
P_{1} = (1; 1; 0.5; 0.1667);
P_{2} = (1; 0; 0.5; 0);
g_{1,1} = (1; 1; 1; 0.6667);
P_{3} = (1; 0; 0.5; 0; 0.125; 0);
g_{2,2} = (1; 1; 1.5; 1.1667; 0.625; 0.4583);
P_{4} = (1; 0; 0; 0; 0.1; 0; 0; 0.005);
g_{3,3} = (1; 1; 1.5; 1.1667; 0.725; 0.5583; 0.15; 0.1167; 0.0675).
```

- Нормировочная константа $N(I_2) = 6{,}2842.$
- Воспользовавшись полученными ранее альтернативными формулами, находим характеристики обслуживания заявок 2-го потока $\pi_2=0.1776$ и $m_2=0.8224$.
- Выполнив эти действия для всех потоков, находим оставшиеся характеристики:

$$\pi_1 = 0.0646;$$
 $m_1 = 0.9354;$
 $\pi_3 = 0.0893;$ $m_3 = 0.9107;$
 $\pi_4 = 0.0725;$ $m_4 = 0.3710.$

Аналитическое и имитационное моделирование сетей

- Аналитическое моделирование основано на поиске функциональных зависимостей, связывающих показатели качества обслуживания абонентов и входные параметры модели. В дальнейшем эти зависимости преобразуются алгебраическими или численными методами в расчётные выражения для оценки характеристик.
- Имитационное моделирование основано на анализе средствами вычислительной техники процесса изменения состояний случайного процесса, являющегося математическим образом системы связи. Интервалы времени между событиями, меняющими состояние модели, рассчитываются с помощью датчиков случайных чисел. Значения характеристик оцениваются в результате анализа показаний счетчиков рассматриваемых событий методами математической статистики.
- Сложность реализации аналитических методов зависит от числа потоков, узлов и линий. Чем больше значения этих параметров, тем сложнее анализируемый случайный процесс и труднее вести численное исследование модели.
- Сложность реализации имитационных алгоритмов в слабой степени зависит от числа компонент в моделируемом случайном процессе и от типа функций распределения интервалов времени между событиями. Положительной чертой данного подхода является его ориентация на возможности вычислительной техники. К недостаткам имитационных методов следует отнести большое время счёта, особенно при решении разного рода оптимизационных задач, основанных на переборе вариантов.

Мультипликативная граница: моносервисный трафик

- Предположим, что сеть обслуживает только моносервисный трафик, т.е. $b_k=b,$ $k=1,\dots,n.$ Для простоты также будем считать, что b=1.
- ightharpoonup Обозначим через $\overline{a_j}$ суммарную интенсивность потока заявок, выраженную в эрлангах, при обслуживании которых используется j-е звено сети

$$\overline{a_j} = \sum_{\ell \in N_j} a_\ell.$$

- lacktriangle Интуитивно понятно и можно доказать строго, что значение $E(v_j,\overline{a_j})$, полученное без учёта потерь на этапах установления соединения до и после j-го звена, является оценкой сверху для доли потерянных заявок на j-ом звене
- Полученная оценка потерь заявок на отдельных звеньях сети может быть использована для приближённого вычисления доли потерянных заявок на k-ом маршруте. Расчетное выражение носит название мультипликативная граница:

$$\pi_k \le 1 - \prod_{j \in R_k} \left(1 - E(v_j, \overline{a_j}) \right), \quad k = 1, \dots, n.$$

Для мультисервисных сетей это неравенство уже не выполняется, поскольку для потоков заявок с разными значениями b_k отсутствует свойство монотонного увеличения доли потерянных заявок с увеличением интенсивности их поступления.

Пример использования мультипликативной границы

- В иерархической сети доступа обслуживаются 3 потока заявок со следующими значениями входных параметров: $a_1=1$ Эрл; $a_2=0.5$ Эрл; $a_3=0.5$ Эрл; $v_1=3$ к.е.; $v_2=4$ к.е.; $v_3=5$ к.е.
- Приведем результаты точного (алгоритм свертки, см. слайд 18) и приближенного (мультипликативная граница, см. слайд 29) вычисления доли потерянных заявок

$$\pi_1 = 0.08428 \le 1 - (1 - E(3, 1)) (1 - E(4, 3/2)) (1 - E(5, 2)) = 0.14022;$$

 $\pi_2 = 0.04927 \le 1 - (1 - E(4, 3/2)) (1 - E(5, 2)) = 0.08290;$
 $\pi_3 = 0.02556 \le 1 - (1 - E(5, 2)) = E(5, 2) = 0.03670.$

 Приведённые данные подтверждают характер оценок и показывают их недостаточно высокую точность

Анализ использования мультипликативной границы

Результаты численного исследования показали, что мультипликативная граница имеет приемлемую точность только в области малых потерь и небольшого числа звеньев в маршруте следования трафика. В этой ситуации для приближённого вычисления доли потерянных заявок используется асимптотическое соотношение:

$$\pi_k \approx \sum_{j \in R_k} E(v_j, \overline{a_j}).$$

- С ростом числа звеньев сети и уровня ожидаемых потерь точность оценки падает.
 Данный факт иллюстрируется следующим простым примером.
- Иллюстрация погрешности мультипликативной границы.
 - Пусть в сети имеется только один маршрут передачи информации пользователя и он проходит через все её линии. Отсюда $\overline{a_j}=a$ для всех $j=1,\dots,J$. Будем также предполагать, что $v_j=v,\ j=1,\dots,J$.
 - В рассматриваемом случае правая часть мультипликативной границы имеет вид $1-\left(1-E(v,a)\right)^J$ и для любой интенсивности предложенного трафика a может быть сделана как угодно близкой к единице с увеличением числа звеньев сети.
- Понятно, что уточнение способа оценки потерь должно идти по пути учёта потерь на этапах соединений до и после анализируемой линией.

Метод просеивания заявок: моносервисный трафик (1/3)

- В основе расчетного алгоритма лежит предположение о независимости отказов в выделении ресурса передачи информации на звеньях сети, составляющих маршрут движения трафика, относящегося к обслуживанию каждого потока заявок.
- Реализация этого положения позволяет свести расчет доли потерянных заявок к оценке потерь на отдельных звеньях сети. Вычисление потерь выполняется с помощью формулы Эрланга.
- Рассмотрим ℓ -й маршрут сети, в состав которого входит j-е звено, $\ell \in N_j$. Обозначим через $B_{\ell,j}$ и B_j соответственно долю заявок ℓ -го потока, потерянных из-за нехватки ресурса передачи j-го звена сети, и долю времени его занятости.
- В приближённой модели моменты поступления заявок ℓ -го потока, требующие ресурс j-го звена, формируются в результате просеивания моментов поступления заявок исходного потока на каждом звене ℓ -го маршрута кроме j-го. Обозначим через $\sigma_{\ell,j}$ интенсивность просеянного потока.
- ▶ По предположению ℓ -й поток заявок пуассоновский, поэтому просеянный поток также будет пуассоновским. Из свойства PASTA следует, что значение $B_{\ell,j}$ не зависит от ℓ и совпадает со значением B_i , рассчитываемым по формуле Эрланга.

Метод просеивания заявок: моносервисный трафик (2/3)

lacktriangle Построим процедуру оценки $\sigma_{\ell,j}.$ Обозначим через m_ℓ среднее число единиц ресурса сети, занятого обслуживанием заявок ℓ -го потока. Из формулы Литтла и предположения о независимости отказов на отдельных звеньях сети следует

$$m_{\ell} = a_{\ell} \prod_{u \in R_{\ell}} (1 - B_u).$$

ightharpoonup Этот объём канального ресурса занимается на j-м звене, рассмотренном отдельно, пуассоновским потоком заявок интенсивности $\sigma_{\ell,j}$. Отсюда

$$m_\ell = \sigma_{\ell,j} \ (1-B_j) = a_\ell \prod_{u \in R_\ell} (1-B_u) \quad \text{ или} \quad \sigma_{\ell,j} = a_\ell \prod_{u \in R_\ell \backslash \{j\}} (1-B_u) \,.$$

ightharpoonup Каждый из просеянных потоков заявок, использующих j-е звено сети в процессе передачи трафика, связанного с их обслуживанием, является пуассоновским и они не зависят друг от друга, поэтому суммарный поток также будет пуассоновским. Обозначим через σ_j его интенсивность

$$\sigma_j = \sum_{\ell \in N_j} a_\ell \prod_{u \in R_\ell \setminus \{j\}} (1 - B_u).$$

Метод просеивания заявок: моносервисный трафик (3/3)

ullet Для оценки B_i используется формула Эрланга с найденным значением σ_i

$$B_j = E(v_j, \sigma_j), \quad j = 1, \dots, J.$$

• Если величины B_j известны, то из предположения о независимости потерь заявок на отдельных звеньях получаем соотношение для оценки π_k

$$\pi_k \approx 1 - \prod_{j \in B_1} (1 - B_j), \quad k = 1, \dots, n.$$

Решение системы неявных уравнений (1/3)

lacktriangledown Интенсивности σ_j зависят от неизвестных вероятностей B_j . После подстановки соответствующих зависимостей в выражения для B_j , получаем систему неявных уравнений для оценки значений B_j

$$B_j = E\left(v_j, \sum_{\ell \in N_j} a_\ell \prod_{u \in R_\ell \setminus \{j\}} (1 - B_u)\right), \quad j = 1, \dots, J.$$

 Можно показать, что эта система имеет решение и оно единственно. Наиболее простым способом его определения является метод последовательных подстановок.
 Приведем все уравнения полученной системы

$$B_{1} = E\left(v_{1}, \sum_{\ell \in N_{1}} a_{\ell} \prod_{u \in R_{\ell} \setminus \{1\}} (1 - B_{u})\right);$$

$$B_{2} = E\left(v_{2}, \sum_{\ell \in N_{2}} a_{\ell} \prod_{u \in R_{\ell} \setminus \{2\}} (1 - B_{u})\right);$$

$$\vdots$$

$$B_{J} = E\left(v_{J}, \sum_{\ell \in N_{1}} a_{\ell} \prod_{u \in R_{\ell} \setminus \{1\}} (1 - B_{u})\right).$$

Решение системы неявных уравнений (2/3)

• Обозначим через $B_j,\ j=1,\dots,J$, решение системы уравнений, а через $B_j^{(s)},\ j=1,\dots,J$, обозначим s-е приближение к искомому решению, полученное с использованием процедуры последовательных подстановок. Значения $B_j^{(s)},\ j=1,\dots,J$, находятся из системы рекурсивных выражений:

lacktriangledown Запись $B_u^{(s,s-1)}$ означает, что при вычислении правой части системы рекурсивных выражений используются найденные на s-м шаге значения $B_u^{(s)}$, а если их нет, то применяются значения $B_u^{(s-1)}$, рассчитанные на предыдущем (s-1)-м шаге. Начальное приближение можно взять равным нулю: $B_j^{(0)}=0, \quad j=1,\ldots,J$.

Решение системы неявных уравнений (3/3)

 Реализация рекурсии останавливается, когда последовательные приближения к решению становятся достаточно близки друг к другу

$$\sum_{j=1}^{J} \frac{|B_{j}^{(s)} - B_{j}^{(s-1)}|}{B_{j}^{(s)}} \le \varepsilon$$

• На практике ε берется из интервала $10^{-8}\dots 10^{-10}$. Если при каком-то s указанное неравенство достигнуто, то решение выбирается из соотношений

$$B_1 = B_1^{(s)}, \ B_2 = B_2^{(s)}, \dots, B_J = B_J^{(s)}.$$

- Для достижения приемлемой с точки зрения практики точности достаточно выполнения нескольких десятков итераций. Сложность применения алгоритма оценивается сложностью многократного использования формулы Эрланга.
- Далее находятся оценки доли потерянных заявок

$$\pi_1 \approx 1 - \prod_{j \in R_1} (1 - B_j);$$

$$\pi_2 \approx 1 - \prod_{j \in R_2} (1 - B_j);$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\pi_n \approx 1 - \prod_{j \in R_2} (1 - B_j).$$

Пример реализации метода просеивания заявок (1/3)

• Выпишем для рассмотренной иерархической сети систему неявных уравнений:

$$B_1 = E(v_1, a_1 (1 - B_2) (1 - B_3));$$

$$B_2 = E(v_2, a_1 (1 - B_1) (1 - B_3) + a_2 (1 - B_3));$$

$$B_3 = E(v_3, a_1 (1 - B_1) (1 - B_2) + a_2 (1 - B_2) + a_3).$$

Пример реализации метода просеивания заявок (2/3)

• Для решения системы уравнений будем использовать рекурсивный алгоритм

$$B_{1}^{(s)} = E(v_{1}, a_{1} (1 - B_{2}^{(s-1)}) (1 - B_{3}^{(s-1)}));$$

$$B_{2}^{(s)} = E(v_{2}, a_{1} (1 - B_{1}^{(s)}) (1 - B_{3}^{(s-1)}) + a_{2} (1 - B_{3}^{(s-1)}));$$

$$B_{3}^{(s)} = E(v_{3}, a_{1} (1 - B_{1}^{(s)}) (1 - B_{2}^{(s)}) + a_{2} (1 - B_{2}^{(s)}) + a_{3}).$$

• Начальное приближение возьмём равным нулю:

$$B_1^{(0)} = 0; \ B_2^{(0)} = 0; \ B_3^{(0)} = 0.$$

• Положим $s=1\,$ и, воспользовавшись калькулятором Эрланга, проведём необходимые расчёты

$$B_1^{(1)} = E(3;1) = 0,06250;$$

 $B_2^{(1)} = E(4;1,4375) = 0,04294;$
 $B_3^{(1)} = E(5;1,87577) = 0,03003.$

Пример реализации метода просеивания заявок (3/3)

ullet Результаты вычисления $B_j^{(s)}$, j=1,2,3 для s=2,3,4,5

s	2	3	4	5
$B_1^{(s)}$	0,053494	0,053734	0,053746	0,053746
$B_2^{(s)}$	0,040276	0,040188	0,040188	0,040188
$B_3^{(s)}$	0,030668	0,030662	0,030662	0,030662

• Приведённые данные показывают быструю сходимость итерационного метода. Процесс вычисления останавливается уже при s=8, если величина относительной ошибки $\varepsilon=10^{-10}$. Потери заявок оцениваются из следующих соотношений:

$$\pi_1 \approx 1 - (1 - B_1) (1 - B_2) (1 - B_3) = 0.11962;$$

 $\pi_2 \approx 1 - (1 - B_2) (1 - B_3) = 0.06962;$
 $\pi_3 \approx B_3 = 0.03066.$

• Точные значения этих характеристик были найдены с помощью алгоритма свёртки:

$$\pi_1 = 0.08428$$
; $\pi_2 = 0.04927$; $\pi_3 = 0.02556$.

Численные данные показывают неплохую точность предложенного расчётного метода. Она выше, чем у метода мультипликативной границы (см. слайд 30).

Метод просеивания заявок: мультисервисный трафик (1/4)

Теперь построим модификацию метода просеивания заявок, в которой учтём зависимость b_k от k. Обобщённый метод также основан на предположении о независимости потерь заявок на отдельных звеньях сети. Тогда

$$\pi_k \approx 1 - \prod_{j \in R_k} (1 - B_{k,j}), \quad k = 1, \dots, n,$$

где π_k — доля потерянных заявок k-го потока, а $B_{k,j}$ — доля потерянных заявок k-го потока на j-ом звене сети.

- lacktriangle Для оценки $B_{k,j}$ применяется мультисервисная модель Эрланга с параметрами:
 - ullet число канальных единиц v_j ;
 - ullet интенсивности поступления заявок, выраженные в эрлангах, $-\sigma_{\ell,j}$;
 - число единиц ресурса для обслуживания одной заявки b_{ℓ} ;
 - параметр $\ell \in N_i$ номер потока заявок, использующих j-е звено сети;
 - ullet число потоков равно числу элементов в множестве N_i .
- lacktriangle Для вычисления $B_{k,j}$ используется формула

$$B_{k,j} = \sum_{i=v_i-b_k+1}^{v_j} p(i), \quad k \in N_j,$$

где p(i) — вероятность занятости i единиц ресурса на j-ом звене, рассчитываемая для мультисервисной модели звена с помощью полученных ранее рекурсий.

Мультисервисная модель Эрланга с числом потоков, определяемым множеством $\,N_i\,,\,$ используется для

Метод просеивания заявок: мультисервисный трафик (2/4)

• Значение $B_{k,j}$ является функцией скорости передачи информации j-го звена сети v_j и параметров семейства потоков, проходящих через j-е звено: $\sigma_{\ell,j}$ и b_ℓ , где $\ell \in N_j$. Обозначим эту зависимость в виде $F_{k,j}(v_j;\sigma_{\ell,j};b_\ell,\ell \in N_j)$.

Метод просеивания заявок: мультисервисный трафик (3/4)

lacktriangle Для оценки потерь необходимо найти интенсивности входных потоков $\sigma_{\ell,j},\ \ell\in N_j$. Из предположения о независимости отказов на отдельных звеньях сети и формулы Литтла получаем соотношение для оценки y_ℓ

$$y_{\ell} = a_{\ell} \prod_{j \in R_{\ell}} \left(1 - B_{\ell,j} \right).$$

▶ По условиям реализации метода просеивания заявок j-е звено сети, рассмотренное отдельно, обслуживает в среднем y_ℓ заявок, если к обслуживанию предлагается поток заявок интенсивности $\sigma_{\ell,j}$. Отсюда $y_\ell = \sigma_{\ell,j}(1-B_{\ell,j})$. Из этого и предыдущего соотношений находим

$$\sigma_{\ell,j} = \frac{y_\ell}{1 - B_{\ell,j}} = a_\ell \prod_{u \in R_\ell \setminus \{j\}} \left(1 - B_{\ell,u}\right).$$

▶ Подставив найденное выражение для $\sigma_{\ell,j}$ в $F_{k,j}(v_j;\sigma_{\ell,j};b_\ell,\ell\in N_j)$, получаем систему неявных уравнений для нахождения значений $B_{k,j}$

$$B_{k,j} = F_{k,j}(v_j; a_\ell \prod_{u \in R_\ell \setminus \{j\}} (1 - B_{\ell,u}); b_\ell, \ell \in N_j), \quad j = 1, \dots, J; \quad k \in N_j.$$

▶ Система уравнений всегда имеет решение, но оно может быть и не единственным.

Метод просеивания заявок: мультисервисный трафик (4/4)

ightharpoonup Для оценки $B_{k,j}$ можно использовать метод подстановок

Начальное приближение обычно берётся равным нулю:

$$B_{k,j}^{(0)} = 0, \quad j = 1, 2, \dots, J; \quad k \in N_j.$$

ightharpoonup Если при каком-то s сходимость алгоритма достигнута, то решение определяется из равенств:

$$B_{k,j} = B_{k,j}^{(s)}, \quad j = 1, 2, \dots, J; \quad k \in N_j.$$

lacktriangle Далее рассчитываются $\pi_k,\ k=1,2,\ldots,n$. Теоретически сходимость итерационной процедуры не доказана, но для большинства практически интересных случаев она имеет место.

Оценка канального ресурса сети (1/6)

- Шаг 0. Решение будет получено методом перебора. Для его реализации необходимо
 - указать способ выбора начальных значений ресурса $v_j,\,j=1,\ldots,J$,
 - сформулировать правило перехода к следующему шагу,
 - определить критерий остановки итерационного цикла.
- Шаг 1. Задаются исходные параметры задачи. К ним относятся значения a_k и b_k , $k=1,\dots,n$, а также компоненты маршрутной матрицы R.
 - Формулируется критерий завершения итерационного цикла решения поставленной задачи, например такой

$$\max_{1 \le k \le n} \pi_k \le \pi_{\mathsf{norm}}.$$

• Задаются начальные значения скорости соединительных линий сети $v_j^{(0)},\ j=1,\ldots,J$. Они могут быть известны заранее или, как это обычно происходит на практике, находятся как целая часть интенсивности предложенного трафика, проходящего через рассматриваемое звено сети:

$$v_j^{(0)} = \lfloor \sum_{\ell \in N_j} a_\ell b_\ell \rfloor, \quad j = 1, \dots, J.$$

Оценка канального ресурса сети (2/6)

Шаг 2.

- Выбирается алгоритм оценки характеристик, участвующих в формировании критерия завершения итерационного цикла. Одним из самых простых способов является метод просеивания заявок, основанный на использовании мультисервисной модели звена.
- При реализации данного алгоритма значения π_k рассчитываются с помощью соотношений

$$\pi_k \approx 1 - \prod_{j \in R_k} (1 - B_{k,j}), \quad k = 1, \dots, n.$$

- Величины $B_{k,j}$ представляют из себя долю потерянных заявок k-го потока на j-м звене сети. Они определяются с помощью мультисервисной модели j-го звена сети, функционирующей независимо от всех звеньев сети.
- Если условие достаточности ресурса не выполняется, то определяется номер потока k с максимальными потерями заявок.
- Далее анализируются значения $B_{k,j}$ потерь заявок k-го потока на отдельных звеньях $j \in R_k$ анализируемого маршрута следования трафика. На звене с максимальными потерями скорость передачи информации увеличивается. Значение добавочного ресурса зависит от исходных параметров сети.

Оценка канального ресурса сети (3/6)

Шаг 3.

- Предполагается, что увеличение канального ресурса отдельных линий сети ведёт к уменьшению потерь поступающих заявок. Для мультисервисных сетей это предположение выполняется в большинстве практически интересных случаев. Вместе с тем имеются и противоположные примеры.
 - мости от условий обслуживании могут получить либо ограничение по доступу к канальному ресурсу, либо некий приоритет в его занятии. Эта особенность совместного обслуживания заявок обсуждалась при рассмотрении моделей отдельных звеньев сети.

• Заявки с разными требованиями к ресурсу передачи информации в зависи-

- Тогда через некоторое число шагов рассмотренной выше процедуры будут найдены скорости звеньев сети, обеспечивающие требуемые ограничения на качество обслуживания заявок. Это и будет искомым решением поставленной задачи с теми оговорками, которые обсуждались при её формулировке.
- Поскольку используемые методы относятся к классу приближённых алгоритмов, то погрешность оценки значений канального ресурса следует оценить имитационным моделированием.

Оценка канального ресурса сети (4/6)

- Пример оценки скорости звеньев. В сети имеются 5 узлов и 4 звена
- Компоненты маршрутной матрицы R определяются следующим образом:

$$R = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & b_1 & b_2 & b_3 & 0 & 0 & 0 \\ 2 & b_1 & 0 & 0 & b_4 & b_5 & 0 \\ 3 & 0 & b_2 & 0 & b_4 & 0 & b_6 \\ 4 & 0 & 0 & b_3 & 0 & b_5 & b_6 \end{vmatrix}$$

- Как видно из структуры матрицы R, в сети выделено 6 маршрутов движения трафика.
- $lack \Phi$ иксированные параметры трафика: $a_k = rac{30}{b_k}$ Эрл.; $b_k = k; \; k = 1, \dots, 6$.
- ▶ Нормативные потери заявок $\pi_{\text{norm}} = 0.03$.

Оценка канального ресурса сети (5/6)

- ullet Значения π_k , $k=1,\ldots,6$, в зависимости от номера шага итерационного цикла.
- Добавочный ресурс равен 5, и на это значение увеличивалась скорость передачи информации всех звеньев маршрута с максимальным уровнем потерь.
- Величины $B_{k,j}$ дают возможность увеличивать ресурс только на звене с максимальным уровнем потерь.

Оценка канального ресурса сети (6/6)

В соответствии с описанием алгоритма начальные значения канального ресурса звеньев сети (в к.е.) определялись из соотношений:

$$v_1^{(0)} = 90; \ v_2^{(0)} = 90; \ v_3^{(0)} = 90; \ v_4^{(0)} = 90.$$

При таком выборе скоростей потери заявок, рассчитанные с использованием метода их просеивания, принимают значения:

$$\pi_1 \approx 0.0719; \ \pi_2 \approx 0.1316; \ \pi_3 \approx 0.1870; \ \pi_4 \approx 0.2107; \ \pi_5 \approx 0.2469; \ \pi_6 \approx 0.2626.$$

Решение, полученное на 17-м шаге итерационного алгоритма, имеет вид:

$$v_1 = 115; \ v_2 = 125; \ v_3 = 130; \ v_4 = 150.$$

При данном выборе ресурса линий сети доли потерянных заявок, полученные с использованием метода их просеивания, имеют следующие значения:

$$\pi_1 \approx 0,0084; \ \pi_2 \approx 0,0159; \ \pi_3 \approx 0,0193; \ \pi_4 \approx 0,0245; \ \pi_5 \approx 0,0211; \ \pi_6 \approx 0,0198.$$

▶ Имитационное моделирование даёт такие результаты:

$$\pi_1 = 0.0080; \ \pi_2 = 0.015; \ \pi_3 = 0.019; \ \pi_4 = 0.023; \ \pi_5 = 0.020; \ \pi_6 = 0.018.$$

► Точность оценки требуемой по нагрузке скорости звеньев мультисервисной сети приемлема для практических приложений.

- 1. Построить маршрутную матрицу для сети, изображенной на слайде 9
- Построить примеры сетей с топологиями, перечисленными на слайде 5. Указать маршруты движения трафика и построить маршрутные матрицы (см. слайд 7).
- 3. Пояснить наличие марковского свойства у процесса r(t) (см. слайд ${f 11}$).
- Доказать свойство мультипликативности (см. слайд 12) для модели сети с бесконечным ресурсом передачи
- 5. Доказать альтернативное выражение для π_k (см. слайд 13)
- 6. Доказать альтернативное выражение для m_k (см. слайд 14)
- Используя алгоритм свертки, рассчитать характеристики обслуживания заявок на модели сети, показанной на слайде 24.
- Используя мультипликативную границу, рассчитать характеристики обслуживания заявок на модели сети, показанной на слайде 30.
- Получить выражение, иллюстрирующее погрешность использования мультипликативной границы (см. слайд 31).
- Используя слайд 34, пояснить реализацию метода просеянной нагрузки для сети с моносервисным трафиком.
- Используя слайд 42, пояснить реализацию метода просеянной нагрузки для сети с мультисервисным трафиком.
- Используя метод просеивания нагрузки, рассчитать характеристики обслуживания заявок на модели сети, показанной на слайде 38.
- 13. Пояснить вид зависимостей потерь заявок от номера итерации, показанный на слайде 49.

14. На слайде показаны топологии и маршруты следования информационных потоков для двух сетей. На слайде 53 перечислены задания по исследованию иерархической сети доступа, представленной рисунком а, а на слайде 54 формулируются задания по исследованию мультисервисной сети, представленной рисунком 6.

- 14. Рассмотрим иерархическую сеть доступа, структура которой показана на слайде 52 (рисунок а). В сети обслуживаются 4 потока заявок со следующими значениями входных параметров: $a_1=1;\ b_1=1;\ a_2=1;\ b_2=2;\ a_3=1;\ b_3=1;\ a_4=0,5;\ b_4=3.$ Интенсивности поступления заявок выражены в эрлангах. Число каналов в линиях сети определяется из соотношений: $v_1=5;\ v_2=6;\ v_3=8.$ Выполнить следующие задания, относящиеся к анализу модели сети.
 - 14.1 Определить состояние и компоненты случайного марковского процесса r(t), который даст возможность оценить для каждого потока долю потерянных заявок и среднее число занятых канальных единиц. Пояснить наличие марковского свойства у процесса r(t). Построить маршрутную матрицу R, а также множества R_b , k=1,2,3,4, и N_d , j=1,2,3.
 - 14.2 Составить систему уравнений равновесия r(t) и ответить на вопрос о наличии или отсутствии свойства мультипликативности у стационарных вероятностей анализируемого процесса.
 - 14.3 Найти долю потерянных заявок для каждого из поступающих потоков.
 - 14.4 Найти долю времени, в течение которой сеть свободна от обслуживания поступающих заявок, если времена обслуживания заявок 1-го и 2-го потоков имеют постоянное значение равное единице.
 - 14.5 Пусть $a_2=2;\ b_2=1;\ a_4=1,5;\ b_4=1.$ Найти оценку доли потерянных заявок, используя метод мультипликативной границы.
 - 14.6 Пусть $a_2=2;\ b_2=1;\ a_4=1.5;\ b_4=1.$ Найти оценку доли потерянных заявок, используя метод просеивания заявок, основанный на моносервисной модели Эрланга.
 - 14.7 Найти оценку доли потерянных заявок, используя метод просеивания заявок, основанный на мультисервисной модели Эрланга.
 - 14.8 На любом алгоритмическом языке составить программу имитационного моделирования сети и численно проверить устойчивость вероятностных характеристик к изменению функции распределения времени обслуживания заявок при его фиксированном среднем значений.
 - 14.9 На любом алгоритмическом языке составить программу расчёта показателей обслуживания заявок и найти число каналов в линиях сети, при которых максимальное значение потерь заявок не превосходит 1 %.

 $^{^{1}}$ Курсивом набраны задачи повышенной сложности.

- 15. Рассмотрим мультисервисную сеть, структура которой показана на слайде 52 (рисунок 6). В сети обслуживаются 4 потока заявок со следующими значениями входных параметров: $a_1=2;\ b_1=1;\ a_2=1;\ b_2=2;\ a_3=\frac{1}{3};\ b_3=3;\ a_4=0,25;\ b_4=4$. Интенсивности поступления заявок выражены в эрлангах. Число каналов в линиях сети определяется из соотношений: $v_1=5;\ v_2=6;\ v_3=8$. Выполнить следующие задания, относящиеся к анализу введённой модели.
 - 15.1 Определить состояние и компоненты случайного марковского процесса r(t), который даст возможность оценить для каждого потока долю потерянных заявок и среднее число занятых канальных единиц. Пояснить наличие марковского свойства у процесса r(t). Построить маршрутную матрицу R, а также множества R_k , k=1,2,3,4, и N_j , j=1,2,3.
 - 15.2 Составить систему уравнений равновесия r(t) и ответить на вопрос о наличии или отсутствии свойства мультипликативности у стационарных вероятностей исследуемого процесса.
 - 15.3 Пусть $a_2=2;\ b_2=1;\ a_3=1;\ b_3=1;\ a_4=1;\ b_4=1.$ Найти оценку доли потерянных заявок, используя метод мультипликативной границы.
 - 15.4 Пусть $a_2=2;\ b_2=1;\ a_3=1;\ b_3=1;\ a_4=1;\ b_4=1.$ Найти оценку доли потерянных заявок, используя метод просеивания заявок, основанный на моносервисной модели Эрланга.
 - 15.5 Найти оценку доли потерянных заявок, используя метод просеивания заявок, основанный на мультисервисной модели Эрланга.
 - 15.6 На любом алгоритмическом языке составить программу имитационного моделирования сети и численно проверить устойчивость вероятностных характеристик к изменению функции распределения в воемени обслуживания заявок при его фиксированном среднем значении.
 - 15.7 На любом алгоритмическом языке составить программу расчёта показателей обслуживания заявок и найти число каналов в линиях сети, при которых максимальное значение потерь заявок не превосходит 1 %.