Přednáška 10, 5. prosince 2014

Tvrzení (limita funkce a uspořádání). Funce f, g, h buďte definované na nějakém prstencovém okolí prvku $a \in \mathbb{R}^*$.

- 1. $Kdy\check{z} \lim_{x\to a} f(x) > \lim_{x\to a} g(x)$, pak existuje $\delta > 0$, že pro každé $x \in P(a,\delta)$ je f(x) > g(x).
- 2. $Kdy\check{z}$ existuje $\delta > 0$, že pro každé $x \in P(a, \delta)$ je $f(x) \geq g(x)$, pak $\lim_{x\to a} f(x) \geq \lim_{x\to a} g(x)$, $kdy\check{z}$ obě limity existují.
- 3. $(dva\ str\'azn\'aci)\ Kdy\'a\ \lim_{x\to a} f(x) = \lim_{x\to a} h(x) = A \in \mathbb{R}^*\ a\ existuje\ \delta > 0$, že pro každé $x\in P(a,\delta)$ je $f(x)\leq g(x)\leq h(x)$, pak i $\lim_{x\to a} g(x) = A$.

 $D\mathring{u}kaz.$ Pomineme, velmi podobný důkazu analogických tvrzení pro limity posloupností. $\hfill\Box$

Následující tvrzení pracuje se skládáním funkcí, což je operace, která pro posloupnosti nemá obdobu.

Tvrzení (limita složené funkce). Nechť $a, A, B \in \mathbb{R}^*$, funkce f je definovaná alespoň na prstencovém okolí prvku A, $\lim_{x\to A} f(x) = B$, funkce g je definovaná na prstencovém okolí prvku a, $\lim_{x\to a} g(x) = A$. Když je splněna jedna z podmínek, že

- 1. $A, B \in \mathbb{R}$, f je v A definovaná a f(A) = B (takže je f v A spojitá) nebo
- 2. existuje $\delta > 0$, že $g(x) \neq A$ pro každé $x \in P(a, \delta)$, pak

$$\lim_{x \to a} f(g(x)) = B .$$

 $D\mathring{u}kaz$. Buď dáno $\varepsilon > 0$. Podle předpokladů (zatím bez podmínek 1 a 2) existuje $\delta > 0$, že $f(P(A,\delta)) \subset U(B,\varepsilon)$. Pro toto $\delta > 0$ existuje $\theta > 0$, že $g(P(a,\theta)) \subset U(A,\delta)$. Platí-li první podmínka, je dokonce $f(U(A,\delta)) \subset U(B,\varepsilon)$. Tedy $f(g(P(a,\theta))) \subset f(U(A,\delta)) \subset U(B,\varepsilon)$ a $\lim_{x\to a} f(g(x)) = B$. Platí-li druhá podmínka, po případném zmenšení θ je $g(P(a,\theta)) \subset P(A,\delta)$. Tedy $f(g(P(a,\theta))) \subset f(P(A,\delta)) \subset U(B,\varepsilon)$ a zase $\lim_{x\to a} f(g(x)) = B$. \square

<mark>Úloha</mark>. Co se stane, když ani jedna z obou podmínek věty není splněna?

Definice (spojitost na intervalu). Nechť $f: I \to \mathbb{R}$, $kde\ I \subset \mathbb{R}$ je interval (čili neprázdná podmnožina \mathbb{R} , která s každými dvěma prvky obsahuje i každý třetí ležící mezi nimi). Řekneme, že f je na I spojitá, když je f spojitá v každém bodu $a \in I$.

Věta (Darbouxova o mezihodnotě). Nechť $a, b, y \in \mathbb{R}, a < b,$

$$f: [a,b] \to \mathbb{R}$$

je na [a,b] spojitá a f(a) < y < f(b). Pak existuje $\alpha \in [a,b]$, že $f(\alpha) = y$. Důkaz. Nechť

$$\alpha = \sup(M) = \sup(\{x \in [a, b] \mid f(x) < y\}) .$$

Jistě $a \in M$ a b je horní mezí M, takže definice α je korektní. Ze spojitosti f v a a b plyne, že pro nějaké $\delta > 0$ je f(x) < y na $[a, a + \delta)$ a f(x) > y na $(b - \delta, b]$. Takže $\alpha \neq a, b$ a α je vnitřní bod intervalu [a, b].

Nechť $f(\alpha) \neq y$. Ze spojitosti f v α plyne, že pro nějaké malé $\delta > 0$, $(\alpha - \delta, \alpha + \delta) \subset [a, b]$, na celém intervalu $(\alpha - \delta, \alpha + \delta)$ je buď f(x) < y nebo f(x) > y. Což je spor s definicí α jakožto suprema — v prvním případě $(\alpha - \delta, \alpha + \delta) \subset M$ čili M obsahuje čísla větší než α a ve druhém je $(\alpha - \delta, \alpha + \delta) \cap M = \emptyset$ čili není splněna aproximační vlastnost suprema. Tedy $f(\alpha) = y$.

Totéž samozřejmě platí, když přepokládáme, že f(a) > y > f(b). Věta nese jméno francouzského matematika Gastona Darbouxe (1842–1917).

Důsledek (obraz intervalu spojitou funkcí). $Kdy\check{z}$ je $I \subset \mathbb{R}$ interval a $f: I \to \mathbb{R}$ je na I spojitá, pak je obraz $f(I) \subset \mathbb{R}$ též interval.

Důkaz. Z věty plyne, že když $u, v \in f(I), u < v$ a u < w < v, potom $w \in f(I)$. Takže f(I) je interval.

Věta (princip maxima). Nechť $a, b \in \mathbb{R}, \ a < b \ a$

$$f: [a,b] \to \mathbb{R}$$

je na [a,b] spojitá. Pak existuje $\alpha \in [a,b]$, že pro každé $x \in [a,b]$ je $f(x) \leq f(\alpha)$ — funkce f na [a,b] nabývá v bodě α svou největší hodnotu.

 $D\mathring{u}kaz$. Nejprve ukážeme, že množina f([a,b]) je shora omezená. Kdyby nebyla, měli bychom posloupnost $(x_n) \subset [a,b]$, že $\lim f(x_n) = +\infty$. Podle

B.-W. věty má (x_n) konvergentní podposloupnost. Pro jednoduchost značení ji označíme také (x_n) . Tedy $\lim x_n = \alpha \in [a,b]$ (podle Tvrzení o limitě a uspořádání). Protože je ale f v α spojitá, podle Heineho definice limity je $+\infty = \lim f(x_n) = f(\lim x_n) = f(\alpha) \in \mathbb{R}$ — spor. Takže je f([a,b]) shora omezená a můžeme definovat

$$c = \sup(f([a,b])) \in \mathbb{R}$$
.

Z vlastností suprema plyne, že existuje posloupnost $(x_n) \subset [a, b]$ (označíme ji stejně), že pro každé n je

$$c - 1/n < f(x_n) \le c.$$

Tato posloupnost má opět podle B.-W. věty konvergentní podposloupnost, kterou opět pro jednoduchost značení označíme stejně, $\lim x_n = \alpha \in [a, b]$. Ze spojitosti $f \vee \alpha$ a Heineho definice limity je zas

$$c = \lim f(x_n) = f(\lim x_n) = f(\alpha)$$
.

Teď nemáme spor, ale ukázali jsme, že funkční hodnota $f(\alpha)$ je c, jež je největší ze všech (c je horní mezí množiny f([a,b])).

Podobně se ukáže, že když je f na [a,b] spojitá, nabývá tam svou nejmenší hodnotu. Intervaly typu [a,b] se nazývají kompaktní. Pro jiné intervaly princip maxima neplatí, např. $f(x) = 1/x: (0,1] \to \mathbb{R}$ je na intervalu (0,1] spojitá, ale nenabývá na něm největší hodnotu. Snadno se na příkladu ukáže, že spojitost je podstatná, funkce $f: [0,1] \to \mathbb{R}$ daná jako f(x) = x pro $0 \le x < 1$ a f(1) = 0, která na intervalu [0,1] není spojitá, na [0,1] nenabývá největší hodnotu, i když to je kompaktní interval.

Je-li $f: M \to \mathbb{R}$ prostá funkce, je definovaná její inverzní funkce $f^{-1}: f(M) \to M$, $f(x) = y \Leftrightarrow f^{-1}(y) = x$. Připomeňme si, že $f: M \to \mathbb{R}$ je rostoucí, resp. klesající (na množině M), když $x,y \in M, x < y \Rightarrow f(x) < f(y)$, resp. $x,y \in M, x < y \Rightarrow f(x) > f(y)$. Při neostrých nerovnostech dostáváme neklesající, resp. nerostoucí funkci.

Tvrzení (spojitost inverzní funkce). Nechť $J \subset \mathbb{R}$ je interval, $f: J \to \mathbb{R}$ je rostoucí (resp. klesající) funkce, jež je na J spojitá. Pak je inverzní funkce

$$f^{-1}: K = f(J) \to \mathbb{R}$$

na intervalu K spojitá a rostoucí (resp. klesající).

Důkaz. Z časových důvodů pomineme.

Operace zachovávající spojitost funkce tedy jsou: aritmetické operace $+,-,\times,/$, skládání funkcí a invertování funkcí. Přesněji: když jsou funkce f,g definované na okolí bodu $a\in\mathbb{R}$ a jsou v a spojité, pak jsou v okolí bodu a definované a v a spojité i funkce $f(x)\pm g(x), \ f(x)g(x)$ a, pokud $g(a)\neq 0$, i f(x)/g(x). To plyne z Tvrzení o aritmetice limit funkcí. Dále, je-li g definovaná na okolí bodu $a\in\mathbb{R}$, f na okolí bodu g(a), g je spojitá v a a f v g(a), pak je složená funkce f(g(x)) definovaná na okolí bodu $a\in\mathbb{R}$ a v a spojitá. To plyne z Tvrzení o limitě složené funkce. O spojitosti inverzní funkce hovoří předchozí tvrzení.

Tvrzení (třídy spojitých funkcí). Následující funkce jsou spojité v každém bodě svého definičního oboru: polynomy, racionální funkce (podíly polynomů), e^x , $\sin x$, $\cos x$, $\log x$.

 $D\mathring{u}kaz$. Polynomy a racionální funkce se dostanou z konstantní funkce $f(x) = c \in \mathbb{R}$ a identické funkce f(x) = x, jež jsou zjevně spojité na \mathbb{R} , aritmetickými operacemi. Exponenciála je spojitá v bodě $a \in \mathbb{R}$, protože

$$|e^x - e^a| = e^a |e^{x-a} - 1| < 2e^a |x - a|, \text{ když } |x - a| < 1/2,$$

jak plyne z rozvoje e^{x-a} do řady. Funkce $\log x : (0, +\infty) \to \mathbb{R}$ je na $(0, +\infty)$ spojitá podle Tvrzení o spojitost inverzní funkce. Spojitost funkcí $\sin x$ a $\cos x$ plyne podobně z rozvoje do řady.

Aplikací aritmetických operací, skládání a invertování vyrobíme z těchto funkcí spoustu dalších spojitých funkcí. Třeba

$$\sqrt{1-x^2} = e^{(1/2)\log(1-x^2)}$$

je spojitá na svém definičním oboru [-1,1] atd.