Data Analytics CS40003

Churn Prediction

Assignment #3

Submitted by Manish Agrawal 15IM10032

Customer Churn Prediction

Variable Name Type

Account_length : number of months active user Total eve charge : total charge of evening calls

area_code: area code of customer

total_night_minutes: total minutes of night calls

international_plan : local/international call
total_night_calls : total number of night calls
voice_mail_plan : voice mail or normal

total_night_charge: total charge of night calls

Number_vmail_messages: number of voice-mail messages

total_intl_minutes : total minutes of international calls

total_day_minutes: total minutes of day calls **total_intl_calls**: total number of international calls

total_day_calls: total number of day calls

total_intl_charge: total charge of international calls

total_day_charge : total charge of day calls

Derivable variables

Using the above features following derivable features were derived:

total_minutes = total_day_minutes + total_eve_minutes + total_night_minutes

total_charge = total_day charge + total_eve_charge + total_night_charge

day_rate = total_day_charge / total_day_minutes

eve_rate = total_eve_charge / total_eve_minutes

night_rate = total_night_charge / total_night_minutes

intl_rate = total_intl_charge / total_intl_minutes

Given dataset was split into training(80%) and testing set(20%) using **createDataPartition()** of R Caret package. createDataPartition() does a stratified split of the data. **churnTrain** and **churnTest** were the new training and testing dataset which were then used to perform further tests.

Naive Bayes model was developed using the library : e1071

Decision Trees model was developed using the library : rpart

Support Vector Machine model was developed using the library: e1071

Confusion Matrix was also tabulated with predicted values in the columns and true values in the rows.

For Naive Bayes, confusion matrix is as:

True Values

0 1

Predicted Values	0	803	72
	1	52	73

For Decision Trees, confusion matrix is as:

True Values

		0	1
Predicted Values	0	835	41
	1	20	104

For SVM, confusion matrix is as:

True Values

Predicted Values		0	1
	0	843	67
	1	12	78

Classification Report on used models:

Models	Precision	Recall	Accuracy
Naive Bayes	91.8%	93.9%	91.67%
Decision Trees	97.3%	97.66%	88.9%
SVM	92.6%	98.60 %	92.1%

The accuracy of the given classification models are improved by selecting the variables having highest importance among them. With the following step, we can compare and conclude with the classification models with highest accuracy.