Compositional Relational Machines

Tirtharaj Dash University of Cambridge, UK

loint work with:

Ashwin Srinivasan, A. Baskar, Devanshu Shah Department of CS & IS and APPCAIR BITS Pilani, Goa Campus, India

November 14, 2023

CRM nodes as Gated nodes

Relational Features

A relational feature takes a clausal form:

$$C: \forall X (p(X) \leftarrow \exists Y \ Body(X, Y))$$

or,

$$C: (p(X) \leftarrow Body(X, \mathbf{Y}))$$

Here,

p(X): Head literal

Body(X, Y): Conjunction of body literals

Assumption: C is not self-recursive. We call C a "feature-clause".

Feature clauses

Let's look at the classic trains problem:

Some feature-clauses for trains:

$$C_1: p(X) \leftarrow (has_car(X, Y), short(Y))$$

$$\textit{C}_2:\textit{p}(\textit{X}) \leftarrow (\textit{has_car}(\textit{X},\textit{Y}),\textit{short}(\textit{Y}),\textit{closed}(\textit{Y}))$$

$$\textit{C}_{3}:\textit{p}(\textit{X}) \leftarrow (\textit{has_car}(\textit{X}, \textit{Y}), \textit{has_car}(\textit{X}, \textit{Z}), \textit{short}(\textit{Y}), \textit{closed}(\textit{Z}))$$

The predicates $has_car/2$, short/1, closed/1, etc. are defined as part of the background knowledge (B) about trains.

Feature functions

A feature function is defined, for X = a as:

$$f_{C,B}(a) = \begin{cases} 1 & \text{if } B \cup (C\{X/a\}) \models p(a) \\ 0 & \text{otherwise} \end{cases}$$

Simply, for a feature-clause C_i , we refer to the corresponding feature-function as $f_i(X)$.

Example:

Some feature functions are:

$$f_1(t_1) = 1, f_2(t_1) = 1, f_2(t_2) = 0.$$

Ordered Clause and Clause-dependency Graph

<u>Ordered Clause</u>: We impose an ordering of the literals in a clause. If C is a clause of the form $\lambda_1 \leftarrow \lambda_2, \ldots, \lambda_k$, then the ordered clause is: $\langle C \rangle = \langle \lambda_1, \lambda_2, \ldots, \lambda_k \rangle$.

Simple feature-clause: A feature-clause with a single sink literal [1].

ρ -derivation of feature-clauses (Composition)

Example 1:

$$p(X) \leftarrow has_car(X, Y), short(Y), \\ has_car(X, Z), closed(Z), \\ Y = Z$$

$$p(X) \leftarrow has_car(X, Y), short(Y), \\ has_car(X, Z), closed(Z)$$

$$p(X) \leftarrow has_car(X, Z), closed(Z)$$

$$p(X) \leftarrow has_car(X, Y), short(Y)$$

$$p(X) \leftarrow has_car(X, Y), short(Y)$$

$$p(X) \leftarrow has_car(X, Z), closed(Z)$$

ρ -derivation of feature-clauses (Composition)

Example 2:

$$p(X) \leftarrow has_car(X, \ U), \ has_car(X, \ V), \ smaller(U, \ V), \\ has_car(X, \ Y), short(Y), \ U = V, \ U = Y$$

$$p(X) \leftarrow has_car(X, \ U), \ has_car(X, \ V), \ smaller(U, \ V), \\ has_car(X, \ Y), short(Y), \ U = V$$

$$p(X) \leftarrow has_car(X, \ U), \ has_car(X, \ V), \ smaller(U, \ V), \\ has_car(X, \ Y), short(Y)$$

$$p(X) \leftarrow has_car(X, \ U), \ has_car(X, \ V), \ smaller(U, \ V), \\ has_car(X, \ Y), short(Y)$$

$$C1: p(X) \leftarrow has_car(X, \ V), \ smaller(U, \ V), \ smal$$

CRM

CRM

Relational instance 1:

Relational instance 2:

Experimental setup:

- Machine: 64GB RAM, 12 Intel Xeon CPUs
- ► Languages: Prolog (Aleph), PyTorch
- Feature-clauses:
 - ▶ No. of body literals: 2
 - Min. support: 10
 - Min. precision: 0.5
- Composition depth of CRMs: 3
- Activation function in CRM nodes: ReLU
- ▶ Optimiser: Adam (learning rate=0.001)
- Expl. Graph: Layer-wise Relevance Propagation (LRP)

Two aspects: (a) Predictive fidelity, (b) Explanatory fidelity

<u>Explanation</u>: Constructed by back-tracing the top activations in each layer of the deep neural network.

- (A) Synthetic datasets (Trains and Chess)
 - ► Target theory (model) known

► Results

Dataset	Fidelity						
	CRM		Baseline				
	Pred.	Expl.	Pred.	Expl.			
Trains	1.0	1.0	0.5	0.4			
Chess	1.0	0.9	0.7	0.7			

Some explanations generated by the CRM:

<u>Target theory:</u> Train X has a car Y and Y is short and closed.

<u>Target theory:</u> White Rook and Black King are on the same file (column).

➤ CRM also generates "buggy" explanations for the chess problems: Most of these are close to or more-specific than the correct theory.

- (B) Real datasets (drug design: NCI GI50; n = 10)
 - ▶ Target theory is NOT known. BotGNNs are used as the target models [Dash et al., MLJ, 2022].

Results: Predictive fidelity

Dataset	CRM	Baseline	
786_0	0.77	0.53	
A498	0.79	0.59	
A549_ATCC	0.85	0.63	
ACHN	0.73	0.58	
BT_549	0.78 0.51		
CAKI_1	0.81	0.69	
CCRF_CEM	0.82	0.68	
COLO_205	0.77	0.53	
DLD_1	0.90	1.00	
DMS_114	0.89	0.91	
Avg.	0.81 (0.05)	0.66 (0.17)	

► An explanation generated by CRM:

Some additional predictive comparisons:

Dataset	Predictive accuracy					
	CRM	GNN	DRM (500)	CILP++	Baseline	
786_0	0.66 (0.01)	0.69 (0.01)	0.69 (0.01)	0.67 (0.01)	0.55 (0.01)	
A498	0.67 (0.01)	0.72 (0.01)	0.70 (0.01)	0.66 (0.01)	0.52 (0.01)	
A549_ATCC	0.64 (0.01)	0.67 (0.01)	0.70 (0.01)	0.60 (0.01)	0.51 (0.01)	
ACHN	0.64 (0.01)	0.70 (0.01)	0.70 (0.01)	0.64 (0.01)	0.51 (0.01)	
BT_549	0.66 (0.01)	0.68 (0.01)	0.70 (0.01)	0.65 (0.01)	0.53 (0.01)	
CAKI_1	0.63 (0.01)	0.68 (0.01)	0.66 (0.01)	0.64 (0.01)	0.54 (0.01)	
CCRF_CEM	0.65 (0.01)	0.71 (0.01)	0.71 (0.01)	0.68 (0.01)	0.63 (0.01)	
COLO_205	0.60 (0.01)	0.69 (0.01)	0.67 (0.01)	0.66 (0.01)	0.56 (0.01)	
DLD_1	0.69 (0.02)	0.69 (0.02)	0.70 (0.02)	0.72 (0.02)	0.69 (0.02)	
DMS_114	0.68 (0.02)	0.74 (0.02)	0.75 (0.02)	0.75 (0.02)	0.76 (0.02)	

GNN: Dash et al., MLJ, 2022. DRM: Dash et al., ICANN, 2019. CILP++: Franca et al., MLJ, 2014.

Concluding Remarks

We make 3 contributions in this work:

- Conceptual: Provide conceptual basis of relational features, development of composition operators, and prove their completeness.
- Implementation: Use the concepts to construct a "explanable" deep neural network, called CRM in which each neuron has an associated logical concept.
- Application: Demonstrate predictive and explanatory potential of CRMs.

We are currently working on:

- CRMs as high-quality standalone predictors;
- ► Fast learning of large-CRMs for real-world problems.

Thank you!

Full Paper: Machine Learning, 2023

Code: https://github.com/tirtharajdash/CRM

E-mail: td522 [at] cam.ac.uk