1

Control Systems

G V V Sharma*

CONTENTS

1	Stability	1
	1.1 Bode Plot	1
2	Routh Hurwitz Criterion	3
3	Compensators	3

4 Nyquist Plot 3

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

1 STABILITY

1.1 Bode Plot

1.1. The asymptotic Bode magnitude plot of minimum phase transfer function G(s) is show below.

Consider the following two statements.

Fig. 1.1

Statement 1: Transfer function G(s) has 3 poles and one zero

Statement 2: At very high frequency

$$(\omega \to \infty)$$
, the phase angle $\angle G(j\omega) = -3\pi/2$

Which of the following is correct?

- (A) Statement 1 is true and Statement 2 is false.
- (B) Statement 1 is false and Statement 2 is true.
- (C) Both the statements are true.
- (D) Both the statements are false.

Solution:

Since, each pole corresponds to -20 dB/decade and each zero corresponds to +20 dB/decade. Therefore, from the given Bode plot we can get the Transfer equation,

$$G(s) = \frac{k}{s(1+s)(20+s)}$$
(1.1.1)

Now, from the Transfer equation we can conclude that, there are three poles (0, -1 and -20) and no zeros.

:. Statement 1 is false(1)

Calculating phase:

Since we know that,

phase ϕ is the sum of all the phases corresponding to each pole and zero. phase corresponding to pole is =

$$-tan^{-1}(\frac{imaginary}{real}) (1.1.2)$$

phase corresponding to zero is =

$$tan^{-1}(\frac{imaginary}{real})$$
 (1.1.3)

Now take,

$$s = j\omega \tag{1.1.4}$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\Rightarrow G(j\omega) = \frac{k}{j\omega(1+j\omega)(20+j\omega)}$$
 (1.1.5)

Therefore,

$$\phi = -tan^{-1}(\frac{\omega}{0}) - tan^{-1}(\omega) - tan^{-1}(\frac{\omega}{20})$$
(1.1.6)

$$\phi = -90^{\circ} - tan^{-1}(\omega) - tan^{-1}(\frac{\omega}{20})$$
 (1.1.7)

$$: \omega \to \infty \tag{1.1.8}$$

$$\phi = -90^{\circ} - 90^{\circ} - 90^{\circ} \tag{1.1.9}$$

$$\phi = -270^{\circ} \tag{1.1.10}$$

$$\phi = -3\pi/2 \tag{1.1.11}$$

:. Statement 2 is true(2) thus, from (1) and (2) option (B) is correct.

1.2. For an LTI system, the Bode plot for its gain is as illustrated in the Fig.2.1 The number of system poles N_p and number of system zeros N_z in the frequency range 1 Hz \leq f \leq 10⁷ Hz is

Fig. 1.2

Solution: Let us consider a generalized transfer gain

$$H(s) = k \frac{(s - z_1)(s - z_2)...(s - z_{m-1})(s - z_m)}{(s - p_1)(s - p_2)....(s - p_{n-1})(s - p_n)}$$
(1.2.1)

$$Gain = 20 \log |H(s)| = 20 \log |k| + 20 \log |s - z_1|$$

+20 \log |s - z_2| + \cdots + 20 \log |s - z_m| - 20 \log |s - p_1|
- 20 \log |s - p_2| - \cdots - 20 \log |s - z_n| (1.2.2)

Let us consider a $20 \log |s - z_1|$ Let $s = j\omega$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| \quad (1.2.3)$$

Based on log scale plot approximations, to the left of z_1 $\omega \ll z_1$ and towards right $\omega \gg z_1$

For $\omega < z_1$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| = 20\log|z_1| = constan$$
(1.2.4)

i.e. S lope = 0For $\omega > z_1$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| = 20\log|\omega|$$
(1.2.5)

i.e Slope = 20

When a zero is encountered the slope always increases by 20 dB/decade

Doing similar analysis for $-20 \log |s - p_1|$ We conclude

When a pole is encountered the slope always decreases by 20 dB/decade

$$Slope = \frac{d(20\log H(f))}{df}$$
 (1.2.6)

$$Slope = \begin{cases} 0 & 0 < f < 10^{1} \\ -20 & 10 < f < 10^{2} \\ -60 & 10^{2} < f < 10^{3} \\ -40 & 10^{3} < f < 10^{4} \\ 0 & 10^{4} < f < 10^{5} \\ -40 & 10^{5} < f < 10^{6} \\ -60 & 10^{6} < f < 10^{7} \end{cases}$$

 Δ Slope = Change in slope at f

$$\Delta S \, lope = \begin{cases} -20 & f = 10^1 \\ -40 & f = 10^2 \\ +20 & f = 10^3 \\ +40 & f = 10^4 \\ -40 & f = 10^5 \\ -20 & f = 10^6 \end{cases} \tag{1.2.8}$$

Final Transfer function is

$$H(f) = \frac{K(f+10^3)(f+10^4)^2}{(f+10^1)(f+10^2)^2(f+10^5)^2(f+10^6)1}$$
(1.2.9)

$$N_p = 6 (1.2.10)$$

$$N_z = 3$$
 (1.2.11)

Python plot of the obtained transfer function is shown in fig 2.2

2 ROUTH HURWITZ CRITERION

- 3 Compensators
- 4 Nyquist Plot