Properties of Fourier Transforms

September 29, 2020

1 Properties

- 1. Linearity
- 2. Conjugate
- 3. Area under f(x)
- 4. Area under F(s)
- 5. Time reversal (direction reversal)
- 6. Scaling (Similarity)
- 7. Shift
- 8. Frequency shift
- 9. Convolution in time (or space)
- 10. Multiplication in time (or space)
- 11. Differentiation in time (or space)
- 12. Integration in time (or space)

2 Linearity property

The Fourier transform of $f_1(x)$ is $F_1(s)$. ie

$$f_1(x) \leftrightharpoons F_1(s)$$

and

$$f_2(x) \leftrightharpoons F_2(s)$$

a and b are constants. The linearity theorem states that

$$af_1(x) \leftrightharpoons aF_1(s)$$

and

$$bf_2(x) \leftrightharpoons bF_2(s)$$

and

$$af_1(x) + bf_2(x) \leftrightharpoons aF_1(s) + bF_2(s)$$

Proof:

let
$$f(x) = af_1(x) + bf_2(x)$$
 and let $f(x) \leftrightharpoons F(s)$

From the formula for Fourier transform we have

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i sx} dx$$

$$F(s) = \int_{-\infty}^{\infty} [af_1(x) + bf_2(x)]e^{-2\pi i sx} dx$$

We distribute the exponetial and use the linear property of integrals to write

$$F(s) = a \int_{-\infty}^{\infty} f_1(x)e^{-2\pi i sx} dx + b \int_{-\infty}^{\infty} f_2(x)e^{-2\pi i sx} dx$$

We see that the 1st term on the right is the Fourier transform of $f_1(x)$ and the 2nd term on the right is Fourier transform of $f_2(x)$. So the Fourier transform is linear because the integration operation is linear.

$$F(s) = aF_1(s) + bF_2(s) \leftrightharpoons f(x) = af_1(x) + bf_2(x)$$

QED

3 Conjugation property

We begin with a quick review of the conjugate of a product of numbers.

Show that the conjugate of a product is the product of the conjugates

$$[(a+ib)(c+id)]^* = (a+ib)^*(c+id)^*$$

We expand the left side and take the conguate

$$[ac + iad + icb + i^{2}bd]^{*} = [(ac - bd) + i(ad + cb)]^{*} = (ac - bd) - i(ad + cb)$$

On the right side we take the conjugate of each factor and then expand

$$(a+ib)^*(c+id)^* = (a-ib)(c-id) = ac - iad - ibc + i^2bd = (ac - bd) - i(ad + bc)$$

comparing the results from the left and right show that they are the same. QED

The conjugation property states that if f(x) = F(s) then

$$f^*(x) \leftrightharpoons F^*(-s)$$

Proof:

$$f(x) \leftrightharpoons F(s)$$

$$F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi sx} dx$$

Recall that the conjugate of a product is the product of the conjugates. Therefore taking the conjugate of both sides yields.

$$F^*(s) = \int_{-\infty}^{\infty} f^*(x) \ e^{2\pi sx} \ dx$$

we now replace s with -s

$$s \rightarrow -s$$

$$F^*(-s) = \int_{-\infty}^{\infty} f^*(x) e^{-2\pi sx} dx$$

$$F^*(-s) \leftrightharpoons f^*(x)$$

QED

4 Area under f(x)

The area A_x under the curve f(x) is given by

$$A_x = \int\limits_{-\infty}^{\infty} f(x) \ dx$$

The Fourier transform of f(x) is given by

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi sx} dx$$

The Fourier transform evaluated at s = 0 is

$$F(0) = \int_{-\infty}^{\infty} f(x)e^{-2\pi(0)x} \ dx = \int_{-\infty}^{\infty} f(x) \ dx$$

$$A_x = F(s)\big|_{s=0}$$

QED

From this we see that the "DC" value of the signal is simply the area under the curve.

5 Area under F(s)

The area A_s under the curve in the frequency domain is given by

$$A_s = \int_{-\infty}^{\infty} F(s) \ ds$$

The inverse Fourier transform is given by

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)e^{2\pi sx} ds$$

Evaluating at x = 0 yields

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)e^{2\pi s(0)} ds = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) ds = \frac{1}{2\pi} A_s$$

Therefore

$$A_s = 2\pi f(x)\big|_{x=0}$$

From this we see that the area under the frequency domain curve is 2π times the signal evaluated at zero.

QED

6 Reversal

This property is usually referred to a time reversal, but since we are doing everything in the spatial domain we'll just call it reversal. Of course, there really is no mathematical difference, we are just using x instead of the t.

The reversal property states that if

$$f(x) \leftrightharpoons F(s)$$

then

$$f(-x) \leftrightharpoons F(-s)$$

Proof:

$$F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi sx} dx$$

We replace x with -x

$$x \to -x$$

and let

$$F'(s) \leftrightharpoons f(-x)$$

therefore

$$F'(s) = \int_{-\infty}^{\infty} f(-x) e^{-2\pi sx} dx$$

Notice that the x in the exponential does not change signs. We are taking the Fourier transform of a new function (with reversed x) but the formula for the Fourier transform does not itself change.

Now change the variables: $-x \to \tau$

$$-x = \tau \Rightarrow x = -\tau \Rightarrow dx = -d\tau$$

We change the limits of integration

$$x = -\infty \Rightarrow \tau = \infty$$

$$x = \infty \Rightarrow \tau = -\infty$$

Putting this together simplying, we have the following. Notice that the minus sign in front of $d\tau$ comes outside the integral and is then canceled by reversing the order of integration.

$$F'(s) = \int_{-\infty}^{-\infty} f(\tau) \ e^{-2\pi s(-\tau)} \ (-d\tau) = -\int_{-\infty}^{-\infty} f(\tau) \ e^{2\pi s\tau} \ d\tau = \int_{-\infty}^{\infty} f(\tau) \ e^{2\pi s\tau} \ d\tau$$

In order to have the Fourier transform we introduce a minus sign in the exponential but change the sign of s to maintain equality.

$$F'(s) = \int_{-\infty}^{\infty} f(\tau) e^{-2\pi(-s)\tau} d\tau$$

Therefore, from observation we have

$$F'(s) = F(-s)$$

and

$$f(-x) \leftrightharpoons F(-s)$$

QED

7 Similarity

The similarity theorem states that if

$$f(x) \leftrightharpoons F(s)$$

then

$$f(ax) \leftrightharpoons \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

where a is any real number except for zero.

Proof:

The formula for the Fourier transfrom is

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i sx} dx$$

We scale f(x) by a

$$f(x) \to f(ax)$$

Where a is a real, non zero number.

We would like to find

$$F'(s) \leftrightharpoons f(ax)$$

There are two cases: a > 0 and a < 0

Case I: a > 0

$$F'(s) = \int_{-\infty}^{\infty} f(ax) e^{-2\pi sx} dx$$

let $u = ax \Rightarrow x = \frac{u}{a} \Rightarrow dx = \frac{du}{a}$

The limits of integration do not change when we make the substitution

$$F'(s) = \int_{-\infty}^{\infty} f(u) e^{-2\pi s(\frac{u}{a})} \frac{du}{a}$$

Now we associate a with s and bring the constant $\frac{1}{a}$ outside the integral to get

$$F'(s) = \frac{1}{a} \int_{-\infty}^{\infty} f(u) e^{-2\pi (\frac{s}{a})u} du$$

Therefore, by observation,

$$F'(s) = \frac{1}{a}F\left(\frac{s}{a}\right)$$

Case II: a < 0

To account for the case where a < 0 we take the absolute value of a

$$F'(s) = \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

Therefore

$$f(ax) \leftrightharpoons \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

QED

8 Shift

The shift theorem states that if

$$f(x) \leftrightharpoons F(s)$$

then

$$f(x \pm x_o) \leftrightharpoons e^{\pm 2\pi i x_o} F(s)$$

Proof:

The Fourier transform of f(x) is given by

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ixs} dx$$

We shift the function to the right by replacing x with $(x - x_o)$.

$$x \to (x - x_0)$$

$$f(x) \to f(x-x_0)$$

We call the Fourier transform of the shifted function F'(s)

$$F'(s) = \int_{-\infty}^{\infty} f(x - x_o) e^{-2\pi i sx} dx$$

let $u = x - x_o \Rightarrow x = u + x_o \Rightarrow dx = du$

$$F'(s) = \int_{-\infty}^{\infty} f(u) e^{-2\pi i s(u+x_o)} du$$

We separate the exponential

$$F'(s) = \int_{-\infty}^{\infty} f(u) e^{-2\pi i s u} e^{-2\pi i s x_o} du$$

The exponential with x_o is a constant with respect to u so it comes out of the integral. We recognize that what remains in the integral is the Fourier transform of the signal.

$$F'(s) = e^{-2\pi s i x_o} \int_{-\infty}^{\infty} f(u) \ e^{-2\pi i s u} \ du = e^{-2\pi i s x_o} F(s)$$

Therefore

$$f(x \pm x_o) \leftrightharpoons e^{\pm 2\pi i s x_o} F(s)$$

QED

Notice that when the shift is to the right, ie $(x - x_o)$, the exponential has a negative sign and when the shift is to the left, ie $(x + x_o)$, the exponential has a positive sign.

9 Frequency shift

The frequency shift states that if $f(x) \leftrightharpoons F(s)$ then

$$e^{\pm 2\pi i s_o x} f(x) \leftrightharpoons F(s \mp s_o)$$

Proof:

The Fourier transform of f(x) is

$$F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i sx} dx$$

We refer to the Fourier transform of the phase shifted function F'(s)

$$e^{2\pi i s_o x} f(x) \leftrightharpoons F'(s)$$

We apply the Fourier transform formula to the phase shifted signal

$$F'(s) = \int_{-\infty}^{\infty} e^{2\pi i s_o x} f(x) e^{-2\pi i s x} dx$$

and combine the exponentials

$$F'(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i(s-s_o)x} dx$$

By observation

$$F'(s) = F(s - s_o) \leftrightharpoons e^{2\pi i s_o x} f(x)$$

Notice that if the frequency is shifted to the left the equation has the opposite sign. Therefore

$$F'(s) = F(s \mp s_o) \leftrightharpoons e^{\pm 2\pi i s_o x} f(x)$$

QED

10 Convolution in space (or time)

Before we show the convolution theorem we will state the definition of convolution. We will use * to indicate convolution. f(x) convolved with g(x) is written as

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau) d\tau$$

 τ is dummy variable that's used to keep things straight in the integral

Given two functions, each with it's corresponding Fourier transforms:

$$f(x) \leftrightharpoons F(s)$$

$$g(x) \leftrightharpoons G(s)$$

The convolution theorem states that

$$f(x) * q(x) \leftrightharpoons F(s) G(s)$$

That is, convolution in the spatial domain is equivalent to multiplication in the spatial frequency domain.

Proof:

$$let h(x) = f(x) * g(x)$$

$$h(x) \leftrightharpoons H(s)$$

The Fourier transform of h(x) is given by

$$H(s) = \int_{-\infty}^{\infty} h(x) e^{-2\pi sx} dx$$

Substituting the equation for h(x) into the formula yields

$$H(s) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau)g(x-\tau) d\tau \right] e^{-2\pi i sx} dx$$

let
$$x - \tau = \lambda \Rightarrow x = \lambda + \tau \Rightarrow dt = d\lambda$$
.

The range of integration is same after substitution

$$H(s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(\lambda) \ d\tau \ e^{-2\pi i s(\lambda + \tau)} \ d\lambda$$

We separate the exponential

$$H(s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(\lambda) \ d\tau \ e^{-2\pi i s \lambda} \ e^{-2\pi i s \tau} \ d\lambda$$

We rearrange by grouping factors with τ together and grouping factors with λ together to yield

$$H(s) = \int_{-\infty}^{\infty} f(\tau) e^{-2\pi i s \tau} d\tau \int_{-\infty}^{\infty} g(\lambda) e^{-2\pi i s \lambda} d\lambda$$

From this we see that the integral associated with τ is the Fourier transform of f(x) and the integral associated with λ is the Fourier transform of g(x).

$$H(s) = F(s)G(s) \leftrightharpoons f(x) * q(x)$$

QED

This property is useful in computing convolutions. We can multiply the Fourier transforms of two functions and take the inverse Fourier transform to find the convolution h(x)

11 Mulitplication in space

Also known as convolution in spatial frequency.

For two functions with their cooresponding Fourier transforms

$$f(x) \leftrightharpoons F(s)$$

$$g(x) \leftrightharpoons G(s)$$

The convolution in spatial frequency theorem states that

$$f(x)g(x) \leftrightharpoons \frac{1}{2\pi} \Big| F(s) * G(s) \Big|$$

To prove the theorm above we consider the Fourier transform (FT) of the product of functions in the spatial domain

$$FT\Big[f(x)g(x)\Big] = \frac{1}{2\pi}\Big[F(s) * G(s)\Big]$$

Taking the inverse Fourier transform (IFT) of both sides gives us

$$f(x)g(x) = IFT\left[\frac{1}{2\pi}\Big(F(s) * G(s)\Big)\right]$$

Therefore proving that this is true is the same as proving the theorem.

Let
$$H(s) = \frac{1}{2\pi} (F(s) * G(s)) \leftrightharpoons h(x) = f(x)g(x)$$

so

$$h(x) = IFT[H(s)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(s)e^{2\pi i sx} ds$$

We express the convolution directly from the defintion

$$H(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda)G(s - \lambda) \ d\lambda$$

We substitute this into the equation for h(x)

$$h(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) G(s - \lambda) \ d\lambda \right] e^{2\pi i s x} \ ds$$

Rearranging yields

$$h(x) = \left(\frac{1}{2\pi}\right)^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\lambda)G(s-\lambda) \ d\lambda \ e^{2\pi i s x} \ ds$$

Next we multiply by $\frac{e^{2\pi i\lambda x}}{e^{2\pi i\lambda x}}$

$$h(x) = \left(\frac{1}{2\pi}\right)^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\lambda)G(s-\lambda) \ d\lambda \ e^{2\pi i s x} \ ds \ \frac{e^{2\pi i \lambda x}}{e^{2\pi i \lambda x}}$$

We associate the exponential in the numerator with $F(\lambda)$ and the exponetial in the denominator with $G(s-\lambda)$.

$$h(x) = \left(\frac{1}{2\pi}\right)^2 \int_{-\infty}^{\infty} F(\lambda) \ e^{2\pi i \lambda x} \ d\lambda \int_{-\infty}^{\infty} G(s-\lambda) \ e^{2\pi i s x} \ e^{-2\pi i \lambda x} \ ds$$

We combine the two exponetials associated with $G(s - \lambda)$

$$h(x) = \left(\frac{1}{2\pi}\right)^2 \int_{-\infty}^{\infty} F(\lambda) \ e^{2\pi i \lambda x} \ d\lambda \int_{-\infty}^{\infty} G(s-\lambda) \ e^{2\pi i (s-\lambda)x} \ ds$$

now we let $u = s - \lambda \Rightarrow du = ds$. Substituing these into the equation and associating a $\frac{1}{2\pi}$ with each integral gives us

$$h(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) \ e^{2\pi i \lambda x} \ d\lambda \ \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u) \ e^{2\pi i u x} \ du$$

In this form we can see that the 1st integral is the IFT of F(s) and the 2nd is the IFT of G(s)

Therefore we have shown that a convolution in spatial frequency is equivilent to a multiplication in space

$$h(x) = f(x) \ g(x) \leftrightharpoons \frac{1}{2\pi} \left| F(s) * G(s) \right|$$

QED

12 Differentiation in space

For a function f(x) with a Fourier transform F(s)

$$f(x) \leftrightharpoons F(s)$$

$$\frac{d}{dx}f(x) \leftrightharpoons 2\pi i s F(s)$$

And in general

$$\frac{d^k}{dx^k}f(x) \leftrightharpoons (2\pi is)^k F(s)$$

Proof:

The signal function f(x) is expressed as an inverse Fourier transform:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{2\pi i s x} ds$$

Taking the derivative with respect to x of both sides yields

$$\frac{d}{dx}f(x) = \frac{d}{dx} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{2\pi i s x} ds \right]$$

Because only the exponetial is a function of x all else is treated as a constant. Applying the chain rule when taking the derivative gives us

$$\frac{d}{dx}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)(2\pi i s) \ e^{2\pi i s x} \ ds$$

Bringing the constant outside the integrals let's us see that the derivative of the inverse Fourier transform is simply the inverse Fourier transform multiplied by $2\pi is$

$$\frac{d}{dx}f(x) = (2\pi is)\frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{2\pi isx} ds$$

Therefore

$$\frac{d}{dx}f(x) \leftrightharpoons 2\pi i s F(s)$$

QED