NASA/TM-2007-214912

The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments

Timothy P. Gabb and John Gayda Glenn Research Center, Cleveland, Ohio

Peter Kantzos Ohio Aerospace Institute, Brook Park, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Telephone the NASA STI Help Desk at 301–621–0390
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

NASA/TM-2007-214912

The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments

Timothy P. Gabb and John Gayda Glenn Research Center, Cleveland, Ohio

Peter Kantzos Ohio Aerospace Institute, Brook Park, Ohio

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Acknowledgments

The authors acknowledge the support of the High Operating Temperature Propulsion Components, Ultra Efficient Engine Technologies, and Ultrasafe programs. Rob Kwalik and Gil London of the Naval Air Warfare Center Aircraft Division, Ken Bain of General Electric Aircraft Engines, and Rick Montero of Pratt & Whitney Engine Company are acknowledged for providing NF3 powder.

Document History

This research was originally published internally as HSR 079 in February 2002.

This work was sponsored by the Fundamental Aeronautics Program at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments

Timothy P. Gabb and John Gayda National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

> Peter Kantzos Ohio Aerospace Institute Brook Park, Ohio 44142

Introduction

The advanced powder metallurgy disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 600 to 700 °C in large disks. This was achieved by designing a disk alloy with moderately high refractory element levels optimized with rapid cooling supersolvus heat treatments to produce balanced monotonic, cyclic, and time-dependent mechanical properties. The resulting baseline alloy, processing, and supersolvus heat treatment has been demonstrated to have robust processing and manufacturing characteristics, and is projected to have extended durability capabilities (ref. 1).

The advanced disk alloy Alloy 10 was designed by Honeywell Engines and Systems through several programs to allow maximum regional engine performance at higher temperatures of 700 °C and above in smaller disks. This was achieved by using higher aluminum and titanium content for higher γ' content, combined with higher levels of refractory elements for enhanced γ' strength. This alloy was optimized with rapid cooling subsolvus heat treatments to produce maximum tensile and creep strength. However, the application of supersolvus heat treatments with rapid cooling rates to Alloy 10 has produced cracks during quenching of disks (ref. 2).

There is a long-term need for disks with higher rim temperature capabilities of 760 °C or more. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. An approach being considered to meet this goal for disks consists of exploring paths which modify the processing and chemistry of ME3 and Alloy 10, to possibly improve high temperature properties while preserving rapid cooling supersolvus heat treatment capabilities. An important initial step in this effort is to understand the key variations in the grain size response versus solution heat treat temperature, as a function of composition for these alloys. At relatively low solution temperatures, the undissolved large primary γ' particles pin the grain boundaries to constrain grain growth (ref. 3) to a grain size of ASTM 11–12. However, at a relatively specific temperature, the pinning process breaks down, and grain size can increase to ASTM 6–8. This temperature approximately coincides with the solvus temperature of the γ' particles. The associated grain size transition temperature (T_g) is an important parameter that dictates the heat treatment temperatures of an alloy. It sets the subsolvus (ASTM 11–12) and supersolvus (ASTM 6–8) heat treatment temperature ranges, and can influence the propensities for quench cracking and thermally induced porosity produced during the supersolvus heat treatment step (ref. 4).

The objective of this study was to determine and compare the grain size-temperature response of a series of experimental alloys with compositions around and spanning two disk superalloys, ME3 and Alloy 10. Coupons of extruded material from each alloy were soaked at various temperatures for 1 hr. They were then metallographically prepared and evaluated for grain size response. The responses were compared and related to the chemistries of these alloys.

Materials and Procedure

The chemistries in measured weight percent of the five experimental ME3 alloys identified by extrusion numbers and six experimental Alloy 10 alloys identified by extrusion letters are given in table 1 along with the base alloy chemistries. Powder of the Navy alloy NF3 was also provided courtesy of the Navy (ref. 5) from a production-scale atomization run at Homogeneous Metals. The five experimental ME3 alloys were atomized in the pilot-scale atomizer at Special Metals Corp. while the six experimental Alloy 10 compositions and baseline composition were atomized in the pilot-scale atomizer at Homogeneous Metals, Inc. All powder was screened to –270 mesh, then canned, hot compacted and extruded at Wyman-Gordon Forgings. A coupon of base ME3 was obtained from a scaled-up forging previously heat treated to 1135 °C. Specimens approximately 12 mm square and 20 mm long were prepared near the leading end of each extrusion.

Specimens of each alloy were tied into bundles and heated treated in resistance heating furnaces. For each soaking temperature, the furnace containing a bundle of alloy specimens was ramped up to temperature in 3 hr then held at temperature for 1 hr. The furnace was then turned off and the specimens were slow cooled in the furnace. Specimens were sectioned in half, metallographically prepared, and swab etched with Kallings reagent. Grain size was measured according to ASTM E–112 using linear intercept procedures with circular grid overlays, while γ' content was rated for each specimen. Statistical analyses were performed using RS/Client software. Chemistry variables were evaluated in weight percent, and were orthogonally scaled to standardized form in all cases using the relationship $v_i' = (v_i - v_{mid})/(0.5*(v_{max} - v_{min}))$.

TABLE 1.—ACTUAL ALLOY COMPOSITIONS (WT%) AND GRAIN SIZE TRANSITION TEMPERATURES (Tg)

Alloy	Al	В	C	Co	Cr	Mo	Nb	Ta	Ti	W	Zr	Ni	$T_g - C$
ME3	3.41	0.024	0.050	20.56	12.96	3.71	0.88	2.28	3.64	2.06	0.047	50.38	1153
77	3.24	0.024	0.040	20.51	13.3	2.86	0.91	2.33	3.61	2.08	0.050	51.05	1154
78	3.42	0.027	0.035	20.44	13.16	2.83	0.90	2.42	3.63	2.98	0.050	50.11	1153
79	3.35	0.026	0.036	20.38	13.18	3.27	0.89	2.62	3.52	3.67	0.048	49.01	1153
80	3.41	0.028	0.038	20.50	13.17	2.87	0.89	2.12	3.58	4.10	0.048	49.25	1153
81	3.30	0.028	0.036	20.60	13.03	3.71	0.90	2.32	3.61	2.98	0.048	49.44	1153
NF3													1179
A	3.80	0.030	0.042	17.00	11.00	2.50	0.90	1.00	3.80	5.60	0.100	54.23	1176
В	3.90	0.030	0.045	19.20	11.20	2.60	0.90	1.00	3.80	5.80	0.100	51.43	1171
C	3.90	0.030	0.042	15.20	11.20	2.60	0.80	1.80	3.80	5.90	0.100	54.63	1186
D	3.90	0.030	0.034	15.30	11.20	2.60	0.01	1.80	3.80	5.70	0.100	55.53	1185
E	4.00	0.030	0.042	17.10	11.30	2.60	0.90	1.90	3.80	5.60	0.100	52.63	1186
F	3.90	0.030	0.045	15.70	11.20	2.60	1.70	1.00	3.80	5.80	0.100	54.13	1186
Alloy 10	3.90	0.030	0.036	15.20	11.00	2.60	0.80	1.00	3.80	5.60	0.100	55.93	1182

Results and Discussion

Comparison of Microstructure Versus Temperature

The typical grain microstructures are compared as a function of several temperatures for a typical alloy in figure 1. Grain size versus temperature is shown for all the alloys in figure 2. Grain size increased and undissolved γ' phase content gradually decreased with increasing temperature. Grain size increased from about ASTM 11–12 (5 to 8 μ m nominal diameter) to ASTM 7–8 (22 to 32 μ m). Undissolved γ'

Figure 1.—Grain structure versus temperature, ASTM grain sizes for alloy 78.

Figure 2.—ASTM grain size versus temperature for the experimental alloys.

Figure 3.—Grain boundary microstructure versus temperature for alloy 78, primary γ' particles pinning grain boundaries indicated by arrows.

phase precipitate content was decreased to negligible levels in the latter coarse grain microstructures, figure 3. This can be attributed to the less constrained grain growth possible when large undissolved γ' precipitates no longer pin the grain boundaries (ref. 3). The mean temperature at which the increase in grain size occurred was identified as the grain size transition temperature, T_g , for each alloy. This temperature was taken from the response curves as the temperature at a transitional grain size of ASTM 9.5 (13 μ m). T_g could be estimated within ± 3 °C for the ME3-based alloys and NF3, and within ± 5 °C for the Alloy 10-based samples. For practical considerations, this T_g temperature is a most usable parameter for heat treatment design. Bearing in mind typical furnace tolerances of ± 6 °C, supersolvus and subsolvus heat treatments can be specified at sufficiently lower and higher temperatures than this transition temperature, to insure the attainment of consistent grain sizes near ASTM 11–12 and ASTM 7–8, respectively. This temperature could also be used as a practical approximation of the γ' phase solvus temperature. The grain size transition temperature generally occurred at a higher temperature for Alloy 10 alloys and NF3 than ME3 alloys. However, the grain size transition was more gradual for Alloy 10 alloys than for ME3 and NF3 alloys. The grain size transition temperatures are included versus alloy chemistry in table 1.

Figure 4.—Regressed versus measured T_g temperatures.

Regression of Grain Size Response

Forward and reverse stepwise linear regression was performed on the grain size transition temperatures versus alloy chemistry, using an F-to-enter of 4. The following regression equation was derived:

$$T_g = 1172.5 + 6.6$$
Al' $- 7.7$ Co' $- 10.5$ Cr' $+ 3.6$ Ta'

where elements are expressed in wt% and Al' = (Al - 3.62)/0.38; Co' = (Co - 17.9)/2.7; Cr' = (Cr - 11.5)/1.8; Ta' = (Ta - 1.81)/0.81, and grain size transition temperature T_g is given in degrees C. This equation had an adjusted correlation coefficient $R^2_{adj} = 0.97$ and root mean square error of 2.6 °C, indicating acceptable predictive capability. A plot of regressed versus measured T_g temperatures is shown in figure 4.

The full statistical output is given in the appendix. The adjusted effects plots in the appendix show the effects of each of these variables on T_g temperature. For each variable, the T_g temperature has been adjusted to take out the effects of all other significant variables using the above equation. This allows clear inspection of the effect of each variable alone on T_g . These plots clearly show that increasing Al and Ta increased T_g , while increasing Co and Cr decreased T_g .

Summary and Conclusions

A series of experimental alloys based on ME3 and Alloy 10 were consolidated, extruded, and heat treated to determine the grain size-temperature responses. The findings can be summarized as follows:

- (1) Grain size of disk alloys could be predictably controlled by proper selection of solution heat treatment temperatures.
- (2) ME3-based alloys had generally sharper grain size transition curves, while Alloy 10-based compositions had more gradual transition curves. This could be related to a very sluggish dissolution rate of primary γ' particles in alloys containing higher Al, Ti, and W.
- (3) Alloy 10 compositions generally had higher grain size transition temperatures than ME3 compositions.
- (4) Regression analysis indicated the grain size transition temperature was increased with increasing Al and Ta levels, and decreased with increasing Co and Cr levels.

Appendix

Least Squares Coefficients, Response TG, Model DESIGN_COPY

Term	Coeff.	Std. Error	T-val ue	Signif.
1 1 2 ~AL 3 ~CO 4 ~CR 5 ~TA	1172.454563 6.628042 -7.749442 -10.452189 3.599960	0.835768 2.402410 1.826000 1.580244 1.572661	2.76 -4.24 -6.61 2.29	0.0222 0.0022 0.0001 0.0478

	2	Obey HIERARCH'
	3	KEEP In
•	4	Display DATA
	5	All SUBSETS
•	6	Show COEFFICIENT
	7	HISTORY/PRESS
	8	POOL Mixture
	9	COLLINEARITY

10 RESPONSE/MODEI

11 NEXT 12 MAIN

Term		Transformed Term			
1	1				
2	~AL	((AL-3.62)/3.8e-01)			
3	~CO	((CO-1.79e+01)/2.7)			
.4	~CR	((CR-1.15e+01)/1.8)			
5	~TA	((TA-1.81)/8.1e-01)			

No. cases = 14 R-sq. = 0.9791No. cases = 14 R-sq. = 0.9791 RMS Error = 2.616 Resid. df = 9 R-sq-adj. = 0.9698 Cond. No. = 5.583 - indicates factors are transformed.

Least Squares Summary ANOVA, Response TG Model DESIGN_COPY

Source	df	Sum Sq.	Mean Sq.	F-Ratio	Signif.
<pre>1 Total(Corr.) 2 Regression 3 Residual</pre>	13 4 9	2948.857 2887.288 61.569	721.822 6.841	105.50	0.0000

R-sq. = 0.9791R-sq-adj. = 0.9698

Model obeys hierarchy. The sum of squares for each term is computed assuming higher order terms are first removed.

Least Squares Components ANOVA, Response TG Model DESIGN__COP 1 SUMMARY Anova

Source	df	Sum Sq.	Mean Sq.	F-Ratio	Signif.		VARIANCES
						4	FIXED Effects
1 Constant	1	19141207				5	RANDOM Effects
2 ~AL	1	52.071	52.071	7.61	0.0222	6	MIXTURE Pooling
3 ~CO	1	123.213	123.213	18.01	0.0022	7	FULL Factorial
4 ~CR	1	299.285	299.285	43.75	0.0001	8	INTERPRETATION
5 ~TA	1	35.846	35.846	5.24	0.0479	9	RESPONSE/MODEL
6 Residual	9	61.569	6.841			10	OPTIONS
						11	NEXT
- indicates	s fact	ors R-s	q. = 0.979	1		12	MAIN

indicates factors R-sq. = 0.9791 are transformed. R-sq-adj. = 0.9698

Default sum of squares.

Model obeys hierarchy. The sum of squares for each term is computed assuming higher order terms are first removed.

Case Order Graph of Residuals of TG Using Studentized Residuals in Model DESIGN__COPY

Residuals of TG vs Fitted Values Using Studentized Residuals in Model DESIGN__COPY

Normal Probability Plot of Residuals of TG Using Studentized Residuals in Model DESIGN__COPY (Sample size = 14)

Histogram of Residuals of TG
Using Studentized Residuals in Model DESIGN__COPY
(Sample size = 14)

Mulreg @EXPME3A10MODS@MULREG, Model DESIGN_COPY Main Effects on Response GS_TRANSITION_TEMPC (with 95% Confidence Intervals)

Increase in TG

Factor, Response or Formula	Range	Initial Setting	Optimal Value	1 SELECT 2 MIN/MAX
3 Parks				3 FACTOR Ranges
1 Factors				4 CONSTRAINTS
2 AL	3.24 to 4	3.62	3.2401	5 INITIAL Settings
3 CO	15.2 to 20.6	17.9	20.6	6 TOLERANCE
4 CR	9.7 to 13.3	11.5	13.299	7 STEP Limit
5 TA	1 to 2.62	1.81	1.1157	8 PERFORM
6				> 9 STORE
7 Responses				10 RECALL
8 GS_TRANSITION_T	MIN		1144.5	11 NEXT
				12 MAIN

Converged to a tolerance of 0.0033 after 118 steps.

References

- 1. T.P. Gabb, K. O'Connor, J. Telesman, P. Kantzos, "Ultra Efficient Engine Technologies Quarterly Review, UEET Large Disk," July 2000.
- 2. S.K. Jain, <u>High OPR Core Materials (Area of Interest 4.0) Regional Engine Disk Process Development</u>, <u>NASA Contract NAS3–27720</u>, <u>Final Report</u>, September 1999, p. 8.
- 3. J.L. Bartos, P.S. Mathur, "Development of Hot Isostatically Pressed (As-HIP) Powder Metallurgy Rene' 95 Turbine Hardware," <u>Superalloys: Metallurgy and Manufacture, Proceedings of the 3rd International Symposium</u>, ed. B.H. Kear, D.R. Muzyka, J.K. Tien, S.T. Wlodek, Claitor's Publishing Division, Baton Rouge, LA, 1976, pp. 495–508.
- 4. E.J. Huron, R.L. Casey, M.F. Henry, D.P. Mourer, "The Influence of Alloy Chemistry and Powder Production Methods on Porosity in a P/M Nickel-Base Superalloy," Superalloys 1996, ed. by R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, The Minerals, Metals, and Materials Society, Warrendale, PA, 1996, pp. 667–676.
- 5. K.R. Bain, R. Montero, M. Parks, NAWC High Temperature Turbine Disk Program, Contract No. N68335–94–C–0161, Naval Air Warfare Center Aircraft Division, Patuxent, MD.

data needed, and compl burden, to Department of Respondents should be control number.	eting and reviewing the collect f Defense, Washington Heado	tion of information. Sen quarters Services, Directly y other provision of law	d comments regarding this burden esti- ctorate for Information Operations and F	mate or any other aspect of t Reports (0704-0188), 1215 J	tions, searching existing data sources, gathering and maintaining the this collection of information, including suggestions for reducing this efferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. a collection of information if it does not display a currently valid OMB		
1. REPORT DATE		2. REPORT TY			3. DATES COVERED (From - To)		
	Temperature Respon	Technical Me	ed Nickel-Base Disk Super	ralloys During	5a. CONTRACT NUMBER		
Solution Heat T	reatments				5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Gabb, Timothy,	P.; Gayda, John; Ka	antzos, Peter			5d. PROJECT NUMBER		
					5e. TASK NUMBER		
7 DEDEODMINO	ODCANIZATION NAM	AE(C) AND ADD	DE00/E0)		5f. WORK UNIT NUMBER WBS 984754.02.07.03.11.03		
National Aerona	ORGANIZATION NAM nutics and Space Ad- Research Center at L 44135-3191	ministration	RE33(E3)		8. PERFORMING ORGANIZATION REPORT NUMBER E-16075		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001					10. SPONSORING/MONITORS ACRONYM(S) NASA		
					11. SPONSORING/MONITORING REPORT NUMBER NASA/TM-2007-214912		
Unclassified-Un Subject Categor							
This publication is a	vailable from the NASA		pace Information, 301-621-0390				
13. SUPPLEMEN	TARY NOTES						
to the chemistrie	es of these alloys.	was measured	for a series of experiment	tal disk superalloys	. The responses were compared and related		
15. SUBJECT TE Superalloy; Gra	-						
	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email:help@sti.nasa.gov)		
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	PAGES 19	19b. TELEPHONE NUMBER (include area code) 301-621-0390		

REPORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-0188