Numerical analysis of superconducting phases in the extended Hubbard model with non-local pairing

University of Pisa, a.y. 2025-2026

Alessandro Gori*

Thesis for the Master's degree in Physics

Abstract

[To be continued. . .]

Contents

1	Theoretical introduction					
	1.1	Antiferromagnetic ordering in the Hubbard model	3			
	1.2	The Extended Fermi-Hubbard model	3			
Bi	ibliog	graphy	F			

List of symbols and abbreviations

AF	Anti-Ferromagnetic
SC	Superconductor
T_c	Critical temperature

Introduction

This thesis project is about my favorite ice cream flavor. [To be continued...]

Chapter 1

Theoretical introduction

[To be continued...]

1.1 Antiferromagnetic ordering in the Hubbard model

Consider the ordinary Hubbard model:

$$\hat{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \qquad t, U > 0$$
(1.1)

The two competing mechanisms are site-hopping of amplitude t and local repulsion of amplitude U. For this model defined **on a bipartite lattice at half filling** and fixed electron number, it is well known [3] that, below a certain critical temperature T_c and above some (small) critical repulsion U_c/t , the ground-state acquires antiferromagnetic (AF) long-range ordering, schematically depicted in Fig. 1.1a. The mechanism for the formation of the AF phase takes advantage of virtual hopping, as described in App. ??; the Mean-Field Theory treatment of ferromagneticantiferromagnetic orderings in 2D Hubbard lattices is rapidly discussed in App. ??.

1.2 The Extended Fermi-Hubbard model

The Extended Fermi-Hubbard model is defined by:

$$\hat{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - V \sum_{\langle ij \rangle} \sum_{\sigma\sigma'} \hat{n}_{i\sigma} \hat{n}_{j\sigma'}$$
(1.2)

The last term represents an effective attraction between neighboring electrons, of amplitude V. Such an interaction is believed [1] necessary to describe the insurgence of high- T_c superconductivity in cuprate SCs. [To be continued...]

Figure 1.1 Schematic representation of the AF phase. Fig. 1.1a shows a portion of the square lattice with explicit representation of the spin for each site. Fig. 1.1b divides the square lattice S in two polarized sublattices S_{\uparrow} , S_{\downarrow} . The AF phase results from the interaction of two inversely polarized "ferromagnetic" square lattices.

Figure 1.2 Schematic representation of the four NNs of a given site i for a planar square lattice.

Mean-Field effective hamiltonian

[Why has this subsection no number?]

Consider the non-local term,

$$\hat{H}_V \equiv -V \sum_{\langle ij \rangle} \sum_{\sigma\sigma'} \hat{n}_{i\sigma} \hat{n}_{j\sigma'}$$

Since the relevant values for V are $\mathcal{O}(t)$, in this model $V \ll U$. The ground-state leading contribution will be antiferromagnetic, with the square lattice decomposed in two oppositely polarized square lattices with spacing increased by a factor $\sqrt{2}$. The non-local interaction can be written as a sum of local terms on one of the two sublattices, say, the one up-polarized:

$$\hat{H}_V = \sum_{i \in \mathcal{S}_{\uparrow}} \hat{h}_V^{(i)} \qquad \hat{h}_V^{(i)} = -V \sum_{\ell = x, y} (\hat{n}_{i\uparrow} \hat{n}_{i+\delta_{\ell}\downarrow} + \hat{n}_{i\uparrow} \hat{n}_{i-\delta_{\ell}\downarrow})$$

Here the notation of Fig. 1.1b is used. The two-dimensional lattice is regular-square. For each site i, the nearest neighbors sites are four. The notation used is $i \pm \delta_x$, $i \pm \delta_y$ as in Fig. 1.2; all of these sites are part of \mathcal{S}_{\downarrow} . Note finally that, using $i \in \mathcal{S}_{\uparrow}$, the sum $\sum_{\sigma\sigma'}$ has been omitted: this is because operators resulting from $(\sigma, \sigma') \neq \uparrow \downarrow$ are suppressed in a ground-state with antiferromagnetic leading contribution.

Consider a single bond, say, the one connecting sites i and $i + \delta_x$. Wick's Theorem states that, if the expectation value is performed onto a coherent state,

$$\begin{split} \langle \hat{n}_{i\uparrow} \hat{n}_{i+\delta_x \downarrow} \rangle &= \langle \hat{c}^{\dagger}_{i\uparrow} \hat{c}^{\dagger}_{i+\delta_x \downarrow} \hat{c}_{i+\delta_x \downarrow} \hat{c}_{i\uparrow} \rangle \\ &= \langle \hat{c}^{\dagger}_{i\uparrow} \hat{c}^{\dagger}_{i+\delta_x \downarrow} \rangle \langle \hat{c}_{i+\delta_x \downarrow} \hat{c}_{i\uparrow} \rangle - \langle \hat{c}^{\dagger}_{i\uparrow} \hat{c}_{i+\delta_x \downarrow} \rangle \langle \hat{c}^{\dagger}_{i+\delta_x \downarrow} \hat{c}_{i\uparrow} \rangle + \langle \hat{c}^{\dagger}_{i\uparrow} \hat{c}_{i\uparrow} \rangle \langle \hat{c}^{\dagger}_{i+\delta_x \downarrow} \hat{c}_{i+\delta_x \downarrow} \rangle \end{split}$$

[To be continued...]

Bibliography

- [1] Zhangkai Cao et al. p-wave superconductivity induced by nearest-neighbor attraction in the square-lattice extended Hubbard model. en. arXiv:2408.01113 [cond-mat]. Jan. 2025. DOI: 10. 48550/arXiv.2408.01113. URL: http://arxiv.org/abs/2408.01113 (visited on 03/15/2025).
- [2] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press, 2015.
- [3] J. E. Hirsch. "Two-dimensional Hubbard model: Numerical simulation study". In: *Phys. Rev. B* 31 (7 Apr. 1985), pp. 4403-4419. DOI: 10.1103/PhysRevB.31.4403. URL: https://link.aps.org/doi/10.1103/PhysRevB.31.4403.