ASSIGNMENT-3

For the flow in a 2D lid-driven square cavity, the governing equations in non-dimensional form is given by

Stream function equation:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = -\omega$$

Applying the finite difference discretization to replace all derivatives with the corresponding central difference expressions, we get the discretized equations as

$$\psi_{i,j}^{l+1} = \frac{1}{2(1+\beta^2)} \{ \psi_{i+1,j}^{l} + \psi_{i-1,j}^{l+1} + \beta^2 (\psi_{i,j+1}^{l} + \psi_{i,j-1}^{l+1}) + \Delta x^2 \omega_{i,j} \}$$

Vorticity equation:

$$u\frac{\partial \omega}{\partial x} + v\frac{\partial \omega}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} \right)$$

where
$$u = \frac{\partial \omega}{\partial y}$$
 and $v = -\frac{\partial \omega}{\partial x}$

Applying the finite difference discretization to replace all derivatives with the corresponding central difference expressions, we get the discretized equations as

$$\begin{split} \omega_{i,j} = & \frac{1}{2(1+\beta^2)} \big[\{ 1 - \left(\Psi_{i,j+1} - \Psi_{i,j-1} \right) \frac{\beta Re}{4} \} \omega_{i+1,j}^l \right. \\ & + \{ 1 + \left(\Psi_{i,j+1} - \Psi_{i,j-1} \right) \frac{\beta Re}{4} \} \omega_{i-1,j}^{l+1} + \\ & \{ 1 + \left(\Psi_{i+1,j} - \Psi_{i-1,j} \right) \frac{Re}{4\beta} \} \beta^2 \omega_{i,j+1}^l + \{ 1 - \left(\Psi_{i+1,j} - \Psi_{i-1,j} \right) \frac{Re}{4\beta} \} \omega_{i,j-1}^{l+1} \big] \end{split}$$

B.C. for Ψ : Ψ is constant for all four boundaries. So, take $\psi = 0$ on all the walls.

B.C. for ω (Grid: $1 \le i \le i_{max}$, $1 \le j \le j_{max}$):

Left Wall:
$$\omega_{1,j} = \frac{-2}{\Delta x^2} (\Psi_{2,j} - \Psi_{1,j})$$
 for $2 \le j \le j_{max-1}$

Right Wall:
$$\omega_{i_{max},j} = \frac{-2}{\Delta x^2} (\Psi_{m-1,j} - \Psi_{m,j})$$
 for $2 \le j \le j_{max-1}$

Bottom Wall:
$$\omega_{i,1} = \frac{-2}{\Delta y^2} (\Psi_{i,2} - \Psi_{i,1})$$
 for $2 \le j \le i_{max-1}$

Top wall:
$$\omega_{i,j_{max}} = \frac{-2}{\Delta y^2} (\Psi_{i,n-1} - \Psi_{i,n} + u \Delta y)$$
 for $2 \le j \le i_{max-1}$

RESULTS:

Streamlines Contour:

Re = 100

Re = 400

velocity vectors:

Re = 100

Re = 400

u-velocity profile along the vertical centreline of the square cavity

v-velocity profile along the horizontal centreline of the square cavity

