Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1/1point

Diagnosing bias and variance

How do you tell if your algorithm has a bias or variance problem?

If the model's cross validation error J_{cv} is much higher than the training error J_{train} , this is an indication that the model has...

- O high bias
- O Low variance
- high variance
- O Low bias
- **⊘** Correct

When $J_{cv}>>J_{train}$ (whether J_{train} is also high or not, this is a sign that the model is overfitting to the training data and performing much worse on new examples.

2. 1/1point

Bias/variance examples

Baseline performance : 10.6% 0.2% 10.6%

Which of these is the best way to determine whether your model has high bias (has underfit the training data)?	
Compare the training error to the baseline level of performance	
See if the training error is high (above 15% or so)	
Ompare the training error to the cross validation error.	
See if the cross validation error is high compared to the baseline level of performance	
Correct Correct. If comparing your model's training error to a baseline level of performance (such as human level performance, or performance of other well-established models), if your model's training error is much higher, then this is a sign that the model has high bias (has underfit).	
3.	1/1 point
Debugging a learning algorithm	
You've implemented regularized linear regression on housing prices	
$J(\overrightarrow{w},b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$ But it makes unacceptably arge errors in predictions. What do you	
try next?	
→ Get more training examples → Try smaller sets of features x , x^2 , x	
You find that your algorithm has high bias. Which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct.	
Decrease the regularization parameter λ (lambda)	
 Correct Correct. Decreasing regularization can help the model better fit the training data. 	
Remove examples from the training set	
Collect more training examples	
Collect additional features or add polynomial features	
 Correct Correct. More features could potentially help the model better fit the training examples. 	
	1 / 1 point
4.	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct.	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct.	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct.	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct.	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct. ☐ Reduce the training set size ✓ Increase the regularization parameter λ ✓ Correct	
You find that your algorithm has a training error of 2%, and a cross validation error of 20% (much higher than the training error). Based on the conclusion you would draw about whether the algorithm has a high bias or high variance problem, which of these seem like good options for improving the algorithm's performance? Hint: two of these are correct. ☐ Reduce the training set size ☑ Increase the regularization parameter λ ☑ Correct Yes, the model appears to have high variance (overfit), and increasing regularization would help reduce high variance.	