Hugo Marquerie March 14, 2025

Linealidad de la integral

Teorema 1 (Linealidad de la integral). Sea (X, Σ, μ) un espacio de medida, $E \in \Sigma$ y $f, g: X \longrightarrow \mathbb{R}$ funciones integrables en E (es decir, $f, g \in \mathcal{L}^1(\mu, E)$)

$$\implies \forall a, b \in \mathbb{R} : \int_{E} (af + bg) d\mu = a \int_{E} f d\mu + b \int_{E} g d\mu$$

Demostración: Veamos primero que $\forall a \in \mathbb{R} : \int af \, d\mu = a \int f \, d\mu$.

por definición
$$\int af d\mu = \int (af)^+ d\mu - \int (af)^- d\mu$$

Observamos que
$$\begin{cases} a \ge 0 \implies (af)^+ = af^+ \wedge (af)^- = af^- \\ a < 0 \implies (af)^+ = -af^- \wedge (af)^- = -af^+ \end{cases}$$
$$\implies \int (af)^+ d\mu - \int (af)^- d\mu = \begin{cases} a \int f^+ d\mu - a \int f^- d\mu & \text{si } a \ge 0 \\ -a \int f^- d\mu + a \int f^+ d\mu & \text{si } a < 0 \end{cases} = a \int f d\mu$$
$$\implies \int (af + bg) d\mu \stackrel{??}{=} \int af d\mu + \int bg d\mu = a \int f d\mu + b \int g d\mu$$

Referenciado en

- Teo-convergencia-dominada
- Desigualdad-minkowski
- Prop-esperanza-fn