# EEE112 Integrated Electronics & Design: Exercise Problem

C. Z. Zhao/M. Leach

# **Contents**

- A. Semiconductor fundamentals
  - **B. PN junction**
  - C. MOS capacitors
  - D. MOSFETs and ICs
  - E. The bipolar transistor
  - F. Past exam papers of UoL

# Exercise problems

The copyright of these materials, which are used for educational purpose, remains as the property of the owners. The lecturer does not claim any ownership.

# **Semiconductor Fundamentals**

#### **Atomic Density**

- 1. What is the volume density of atoms for a face-centered cubic structure with lattice constant  $a_0 = 5 \text{ Å}?$
- 2. The lattice constant of a body-centered cubic structure is  $a_0 = 4.75 \ \text{Å}$ . What is the volume density of atoms?

#### **Crystal Lattice Plane**

- 1. What are the Miller Indices of the plane shown in figure 1?
- 2. A plane is described as a (123) plane. What are the intercepts on a Cartesian axes?
- 3. Describe the direction in Figure 2 and the plane perpendicular to it
- 4. Describe the lattice direction shown in Figure 3 and the corresponding perpendicular plane



#### **Energy Levels**

1. Determine the first 3 allowed electron energies in the hydrogen atom

$$E_n = -m_0 e^4 / (4\pi\epsilon_0)^2 2((h/2\pi)^2) n^2$$
 where

 $E_n = -m_0 e^4/(4\pi\epsilon_0)^2 2((h/2\pi)^2) n^2 \ \text{where}$   $m_0 = \text{mass of an electron} = 9.11 \times 10^{-31} \ \text{kg}$   $e = \text{electron charge} = 1.6 \times 10^{-19} \ \text{C}$   $h = \text{Planck Constant} = 6.625 \times 10^{-34} \ \text{J-s}$ 

 $\epsilon_0 \text{=Permittivity of free space} \text{=} 8.85 \text{x} 10^{\text{-}12} \, \text{F/m}$ 

n is the energy level

2. For a one electron atom, determine the value of n such that  $E_{n+1} - E_n < 0.2 eV$ 

#### **Energy Band**

1. Calculate the change in Kinetic Energy of an electron when the velocity increases from 10<sup>7</sup> cm/s by 1 cm/s

Kinetic energy = 
$$(1/2)$$
mv<sup>2</sup>

2. An electron travelling at  $v_0=2x10^7$  cm/s increases in speed so that the change in Kinetic Energy is  $10^{-8}$  eV. Determine the increase in electron speed

#### **Density of States and Probability**

1. Find the density of states for an electron per unit volume between 0 - 1 eV.

$$N = \int_{E_1}^{E_2} g(E)dE = \int_{E_1}^{E_2} \frac{4\pi (2m_p)^{3/2}}{h^3} \sqrt{E_v - E} dE$$

- 2. Find the density of states for an electron per unit volume between 1 eV 2 eV.
- 3. Determine the probability that an electron occupies a state 3kT above E<sub>F</sub> at T=300 K
- 4. If  $E_F$ =0.3 eV, determine the probability of a state being occupied by an electron at i)  $E=E_c+kT$  and ii)  $E=E_c+2kT$  at T=300 K

$$f_F(E) = \frac{1}{1 + e^{\left(\frac{E - E_F}{kT}\right)}}$$

- 5. The Fermi Energy for a material is 6.25 eV and electrons follow the Fermi-Dirac distribution, Calculate the temperature for a 1% probability that a state 0.3 eV below the Fermi energy is empty.
- 6. The Fermi Energy for a material is 5.5 eV and electrons follow the Fermi-Dirac distribution, Calculate the temperature for a 0.5 % probability that a state 0.2 eV above the Fermi energy has an electron.
- 7. Calculate the energy in terms of kT and  $E_F$  at which the Boltzman approximation and the Fermi-Dirac function is 5% of the Fermi function
- 8. Repeat question 5 for a 1% variation
- 9. Calculate the probability that an energy state in the conduction band at  $E=E_C+kT$  is occupied by an electron and calculate the thermal equilibrium electron concentration in silicon at T=300~K.  $E_F=E_C-0.2~eV$ , for silicon at  $T=300~K~N_c=2.8\times10^{19}~cm^{-3}$
- 10. Repeat question 9 when  $E_F$ = $E_C 0.25 \ eV$
- 11. Calculate the probability that an energy state in the valence band at  $E=E_V-kT$  is empty of an electron and calculate the thermal equilibrium hole concentration in silicon at T=300 K.  $E_F=E_V+0.25$  eV, for silicon at T=350 K  $N_v=1.04x10^{19}$  cm<sup>-3</sup>

- 12. Calculate the thermal equilibrium hole concentration in silicon at T=300 K, when  $E_F\!=\!E_v\!+\!0.2$  eV
- 13. Calculate the intrinsic carrier concentration in silicon at T=350 K and 400 K.N<sub>C</sub> and N<sub>V</sub> vary with  $T^{3/2}$ . Assume that  $E_G$ =1.12 eV
- 14. Calculate the intrinsic carrier concentration in GaAs at T=200 K and T=400 K
- 15. Determine the position of the intrinsic Fermi level with respect to the centre of the bandgap in silicon at  $T=300 \text{ K. } m_n^*=1.08m_0$  and  $m_p^*=0.56m_0$
- 16. Repeat question 15 for GaAs at T=300 K

#### **Carrier Concentration**

- 1. Find the thermal equilibrium carrier concentrations in silicon at T=300 K, assuming that  $E_F=E_V+0.25$  eV. If  $E_G=1.12$  eV, then  $E_F=E_C-0.87$  eV.
- 2. Repeat question 1 when the Fermi level is 0.2 eV below the conduction band
- 3. Determine the hole concentration in silicon at T=300 K if the electron concentration is  $n_0 = 1 \times 10^{16} \text{ cm}^{-3}$
- 4. Repeat question 3 when  $n_0=1 \times 10^5$  cm<sup>-3</sup>.
- 5.Determine the thermal equilibrium electron and hole concentrations in silicon doped with Phosphorus at a concentration of  $N_d=2x10^{16}~cm^{-3}$ , assuming  $N_a=0$
- 6. The concentration of majority carriers in n-type silicon at T=300 K is to be  $n_0=10^{15} \text{ cm}^{-3}$ . Determine the concentration of phosphorous atoms to be added and the concentration of minority carriers.
- 7. Calculate the thermal equilibrium electron and hole concentration in a Germanium sample at T=300 K in which  $N_d$ =5x10<sup>13</sup> and  $N_a$ =0. Assume  $n_i$ =2.4x10<sup>13</sup> cm<sup>-3</sup>
- 8. Germanium is doped with donors at a concentration of  $N_d=10^{14}~\text{cm}^{-3}$ . Calculate the thermal equilibrium concentration of electrons and holes.
- 9. Consider a compensated p-type doped silicon semiconductor at T=300 K with doping concentrations of  $N_a$ =2x10<sup>16</sup> cm<sup>-3</sup> and  $N_d$ =5x10<sup>15</sup> cm<sup>-3</sup>. Find the thermal equilibrium carrier concentrations
- 10. Consider a compensated germanium semiconductor at T=300 K doped at  $N_a$ =5x10<sup>13</sup> cm<sup>-3</sup>,  $N_d$ =1x10<sup>13</sup> cm<sup>-3</sup>. Find a thermal equilibrium electron and hole concentrations.

- 11. An n-type silicon device is to operate at T=450 K. At this temperature the intrinsic carrier concentration must contribute no more than 3% of the total electron concentration. Determine the minimum doping concentration required.
- 12. An n-type germanium device is to operate at T=400 K. At this temperature the intrinsic carrier concentration must not contribute more than 10% of the total electron concentration. Determine the minimum donor concentration required.
- 13. A silicon device operates at T=300 K, it contains an acceptor impurity concentration of  $N_d=10^{16} \text{ cm}^{-3}$ . Determine the donor concentration that must be added so that the silicon is n-type and the Fermi energy is 0.2 eV below the conduction band.
- 14. Determine the position of the Fermi level with respect to the valence band in p-type GaAs at T=300 K where the doping concentrations are  $N_a=5x10^{16}$  cm<sup>-3</sup> and  $N_d=4x10^{15}$  cm<sup>-3</sup>.
- 15. Consider p-type silicon at T=300 K doped with Boron. Assuming the limit at which the Boltzman approximation is  $E_F E_V = 3kT$ . Determine the Fermi level and the maximum doping at which the Boltzman approximation is true.
- 16. Consider n-type silicon at T=300~K doped with phosphorous. Determine the doping concentration such that  $E_d$ - $E_F$ =4.6kT.

#### **Drift and Diffusion of Carriers**

|                 | $\mu_{\rm n}  ({\rm cm}^2/{\rm V}{\text -}{\rm s})$ | $\mu_{\rm p}~({\rm cm}^2/{\rm V}{\rm -s})$ |
|-----------------|-----------------------------------------------------|--------------------------------------------|
| Silicon         | 1350                                                | 480                                        |
| Galium Arsenide | 8500                                                | 400                                        |
| Germanium       | 3900                                                | 1900                                       |

- 1. Consider a silicon semiconductor at T=300 K with an impurity doping concentration of  $N_d$ =10<sup>16</sup> cm<sup>-3</sup>,  $N_a$ =0. The electron and hole mobilities are given in the table. Calculate the drift current densities for an applied electric field of E=35 V/m
- 2. Consider a GaAs sample at T=300 K with doping concentrations  $N_a$ =0 and  $N_d$ = $10^{16}$  cm<sup>-3</sup>. The electron hole mobilities are shown in the table. Calculate the drift current density for an applied electric field E=10 V/m.



- 3. Find the electron mobility for i)  $N_d = 10^{17} \text{ cm}^{-3}$ , T = 150 K and for ii)  $N_d = 10^{16} \text{ cm}^{-3}$ , T = 0. Find the hole mobility for i)  $N_a = 10^{16} \text{ cm}^{-3}$ , T = 50 K and for ii)  $N_d = 10^{17} \text{ cm}^{-3}$ , T = 150 K.
- 4. Use the graphs above to find the electron and hole mobilities in silicon for i)  $N_d=10^{17}$  cm<sup>-3</sup>,  $N_a=5x10^{16}$  cm<sup>-3</sup> and ii) in GaAs for  $N_d=N_a=10^{17}$  cm<sup>-3</sup> T=150 K
- 5. Consider a bar of silicon at T=300 K uniformly doped with acceptors and geometry as shown. For an applied voltage of 5 V, a current of 2 mA is required. Current density must be no larger than  $J_{drf}$ =100 A/cm<sup>2</sup>. Find the required cross-sectional area, length and doping concentration.



6. For a semiconductor device at T=300 K, the required material is to be n-type with a resistivity  $\rho$ =0.1  $\Omega$ -cm. Determine the required impurity doping concentrations and the resulting electron mobility. Use the figures below.



- 7. A silicon semiconductor at T=300 K and with the geometry shown above is initially doped with donors at a concentration of  $N_d=5x10^{15}~cm^{-3}$ . Acceptors are added to form a p-type material. The resistance should be R=10 k $\Omega$  and handle a current density of  $J_{drf}=50~A/cm^2$  when 5 V is applied and have an E field of less than E=100~V/m. Design the semiconductor.
- 8. Consider compensated n-type silicon at T=300 K with a conductivity of  $\sigma$ =16 ( $\Omega$ -cm)<sup>-1</sup> and an acceptor doping concentration of  $N_a$ =10<sup>17</sup> cm<sup>-3</sup>.
- 9. Determine the carrier density gradient to produce a given diffusion current density. The hole concentration in silicon at T=300 K varies linearly from x=0 to x=0.01 cm. The hole diffusion coefficient is  $D_p=10~\text{cm}^2/\text{s}$ , the hole diffusion current density is  $J_{drf}=20~\text{A/cm}^2$  and the hole concentration at x=0 is  $\rho=4x10^{17}~\text{cm}^{-3}$ . Determine the hole concentration at x=0.01 cm
- 10. Assume that, in an n-type GaAs semiconductor at T=300~K, the electron concentration varies linearly from  $1x10^{18}$  to  $7x10^{17}~cm^{-3}$  over a distance of 0.1 cm. Calculate the magnitude of the diffusion current density if the difference coefficient is  $D_n=225~cm^2/s$
- 11. Determine the diffusion coefficient for a carrier mobility of  $\mu$ =1200 cm<sup>2</sup>/V-s at T=300 K
- 12. For a semiconductor with a diffusion coefficient of D=210 cm<sup>2</sup>/s, determine the carrier mobility.

#### **Problem 1: Intrinsic semiconductor**

Refer to the plot of intrinsic carrier concentration  $(n_i)$  vs. absolute temperature (T) in the Lecture Notes:

- a) Explain qualitatively the differences in intrinsic carrier concentrations for Ge, Si and GaAs. (Why is  $n_i$  highest for Ge? Why is it lowest for GaAs?)
- **b**) Explain qualitatively why  $n_i$  increases with increasing temperature.

#### **Problem 2: Doping**

a) Consider the two-dimensional representation of the semiconductor GaAs shown below:

```
:As : Ga : As :
:Ga : As : Ga :
```

If Si atoms are inserted as dopants and exclusively replace Ga atoms in the lattice, will the Si doped GaAs material be n-type or p-type? What if the Si atoms exclusively replace As atoms?

- **b**) Consider a Si sample under equilibrium conditions, doped with boron to a concentration  $10^{17}$  cm<sup>-3</sup>
- i) At T = 300K, is this material n-type or p-type? What are the majority and minority carrier concentrations?
- ii) As the temperature of this sample is increased,  $n_i$  will eventually increase to be higher than the dopant concentration, and the sample will become intrinsic ( $n \approx p \approx n_i$ ). Estimate the temperature at which this occurs, by finding the temperature at which  $n_i$  be much greater (at least  $10 \times$  higher) than n and p. (You can use the formula for  $n_i$  given in the Lecture Notes, or simply use the plot of  $n_i$  vs. T.)

#### **Problem 3: Carrier Concentrations and Energy Band Diagram**

- a) Consider a Si sample maintained at T = 300K under equilibrium conditions, doped with phosphorus to a concentration  $1 \times 10^{16}$  cm<sup>-3</sup>.
- i). What are the electron and hole concentrations (n and p) in this sample? Is the material n type or p-type?
- ii). Draw the energy band diagram for this sample. Indicate  $(E_c E_F)$  and  $(E_F E_i)$  to within 0.01 eV. (Numeric answer required.)
- **b**) Suppose the sample type is converted to the opposite type by counter-doping it with boron, such that  $E_i E_F = 0.30$  eV.
- i). What are n and p in the counter-doped sample?
- **ii).** What is the concentration of boron?

#### **Problem 4:** Temperature Dependence of carrier densities and Ef

Consider a Si sample doped with arsenic to a concentration 1×10<sup>15</sup> cm<sup>-3</sup>.

a) At T = 0K, what are the equilibrium hole and electron concentrations?

- **b**) At T = 300K, what are the equilibrium hole and electron concentrations? Where is the Fermi level located? (Numeric answer required.)
- c) At T = 600K, what are the equilibrium hole and electron concentrations? (Use Figure in the Lecture Nodes to determine  $n_i$  at 600K.) Where is the Fermi level located? (Numeric answer required.)
- **d**) Explain qualitatively the trend in  $E_F$ - $E_i$  with increasing temperature.

#### **Problem 5: Drift**

A n-type silicon sample is maintained at room temperature. When an electric field with a strength of 1000V/cm is applied to the sample, the hole velocity is  $2\times10^5$  cm/sec.

- a) What is the mobility of an electron in this sample?
- **b**) Calculate the electron and hole concentrations.
- c) Draw the energy band diagram, showing the position of  $E_F$  with respect to  $E_C$  and  $E_V$ .
- **d)** What is the resistivity of this sample?
- e) Suppose this sample is used to make an integrated-circuit resistor. The width and height of the sample are 10  $\mu$ m and 1.5  $\mu$ m, respectively, and the length of the sample is 20  $\mu$ m. Calculate the resistance of the sample.

#### **Problem 6: Miller indices**

The performance of a MOSFET depends upon the crystalline orientation of the channel surface, as well as the crystalline orientation of the current flow direction. These parameters must be precisely controlled in an integrated-circuit manufacturing process; therefore, silicon wafer substrates are carefully prepared by slicing along (001) planes, and are marked by a "flat" or notch at the edge of the wafer to indicate the [110] direction.

If a MOSFET is laid out on the surface of a (001) silicon wafer as shown in the figure below, what are the Miller indices for the direction of current flow?



Plan view of a MOSFET on a Si wafer

#### **Problem 7: Diamond lattice crystal structure**

Germanium (Ge) is a semiconductor material of renewed interest, because it can potentially yield higher MOSFET performance as compared with silicon (Si). Ge atoms are arranged in a diamond lattice structure, as are Si atoms. Given that the lattice constant of Ge is 5.65Å at room temperature (300K), calculate the atomic density of Ge (atoms/cm<sup>3</sup>).

#### **Problem 8: Semiconductor doping**

- (a) Explain why boron (B) is preferred over indium (In) as the dopant species to achieve highly conductive p-type silicon. (hints: The low ionization energy (IE) of boron is 45 meV, whereas that of indium is 160 meV)
- (b) At very high temperatures (e.g.  $>1000^{\circ}$ C), the conductivity of silicon is not significantly affected by moderate doping ( $N_A$  or  $N_D$  less than  $10^{18}/\text{cm}^3$ ), i.e. it is an intrinsic semiconductor. Explain why this is the case.

#### **Problem 9: Carrier concentrations**

Consider a silicon sample maintained at 300K. Calculate the electron density (n) and hole density (p) for the following cases:

- (a) the silicon is undoped
- (b) the silicon is doped with 10<sup>16</sup>/cm<sup>3</sup> boron atoms (all ionized)
   (c) the silicon is doped with 10<sup>16</sup>/cm<sup>3</sup> boron atoms (all ionized) and 10<sup>17</sup>/cm<sup>3</sup> arsenic atoms (all ionized)

#### **Problem 10: Energy Band Diagram**

Consider a Si sample in thermal equilibrium at T = 300K, with electron concentration  $n = 1 \times 10^{18}$ cm<sup>-3</sup>. Draw the energy band diagram for this sample. Indicate  $(E_c - E_F)$  and  $(E_F - E_i)$  to within 0.01 eV.

#### **Problem 11: Carrier Mobility and Drift Velocity**

A p-type (uncompensated) silicon sample is maintained at 300K. When an electric field with strength  $5\times10^3$  V/cm is applied to the sample, the electron drift velocity is  $4\times10^6$  cm/sec.

- **a)** What is the mobility of this sample?
- **b)** What is the resistivity of this sample?

#### **Problem 12: Fermi Levels**

The equilibrium and steady state conditions before and after illumination of a silicon sample maintained at T = 300K are characterized by the energy band diagrams shown below.



What are the equilibrium carrier concentrations  $n_0$  and  $p_0$ ? a)

# PN Junction

- 1. Calculate the built in potential barrier of a silicon pn junction at T=300 K with doping concentrations of  $N_a$ =2x10<sup>6</sup> cm<sup>-3</sup> and  $N_d$ =5x10<sup>15</sup> cm<sup>-3</sup>
- 2. Repeat question 1 for carrier concentrations of
  - i)  $N_a = 5x10^{17}$  cm<sup>-3</sup> and  $N_d = 10^{16}$  cm<sup>-3</sup> ii)  $N_a = 10^{15}$  cm<sup>-3</sup> and  $N_d = 2x10^{16}$  cm<sup>-3</sup>
- 3. Calculate the space charge widths and peak electric field in a silicon pn junction at T=300 K with uniform doping concentrations of  $N_a$ =2x10<sup>16</sup> cm<sup>-3</sup> and  $N_d$ =5x10<sup>15</sup> cm<sup>-3</sup>, find  $x_n$ ,  $x_p$ , W and  $|E_{max}|$
- 4. A silicon pn junction at T=300 K with zero applied bias has doping concentrations of  $N_a = 5 \times 10^{16} \text{ cm}^{-3}$  and  $N_d = 5 \times 10^{15} \text{ cm}^{-3}$ , find  $x_n, x_n, W$  and  $|\mathcal{E}_{max}|$ .
- 5. Calculate the width of the space charge region in a silicon pn junction with uniform doping concentrations  $N_a=2x10^{16}~\text{cm}^{-3}$  and  $N_d=5x10^{15}~\text{cm}^{-3}$ at T=300~K when a reverse-bias voltage of  $V_R=5$  V is applied
- 6. A silicon pn junction at T=300 K is reverse biased at  $V_R$ =8 V and has doping concentrations of  $N_a$ =5x10<sup>15</sup> cm<sup>-3</sup> and  $N_d$ =5x10<sup>16</sup> cm<sup>-3</sup>, find  $x_n$ ,  $x_p$ , W, repeat for  $V_R$ =12 V
- 7. Determine the n-type doping required in a silicon pn junction to operate at T=300~K with a p-type doping concentration of  $N_a=10^{18}~cm^{-3}$  such that the maximum electric field in the space charge region is  $|\mathcal{E}_{\text{max}}|=10^5$  V/cm at a reverse bias voltage of  $V_R=10$  V.
- 8. Determine the maximum electric field in a pn silicon with doping concentrations of  $N_a=5\times10^{15}$  cm<sup>-3</sup> and  $N_d=5\times10^{16}$  cm<sup>-3</sup>, for reverse bias voltages of  $V_R=8$  V and  $V_R=12$  V.
- 9. Calculate the junction capacitance of a pn junction at  $V_R=5$  V assuming the cross sectional area of the pn junction is  $A=10^{-4}$  cm<sup>2</sup>.
- 10. Consider a GaAs pn junction at T=300 K doped at concentrations of  $N_a$ =1x10<sup>15</sup> cm<sup>-3</sup> and  $N_d$ =2x10<sup>16</sup> cm<sup>-3</sup> and with a junction area of A=10<sup>-4</sup> cm<sup>2</sup> when the reverse bias voltage is  $V_R$ =0 V and  $V_R = 5 \text{ V}$ .

11. Determine the impurity concentrations in a p<sup>+</sup>n junction at T=300 K, assuming the intercept on the voltage axis of the curve below gives  $v_{bi}$ =0.742 V and that the slope is 3.92x10<sup>15</sup> (F/cm<sup>2</sup>)<sup>-2</sup>/V



12. The experimentally measured junction capacitance of a one sided  $p^+n$  silicon junction biased at  $V_R$ =4 V at T=300 K is C=1.10 pF. The built in potential barrier is found to be  $v_{bi}$ =0.782 V The cross-sectional area is A=10<sup>-4</sup> cm<sup>2</sup>. Find the doping concentrations.

## **Problem 1: pn Junction Electrostatics**

- a) A pn step junction is made in silicon with  $N_A = 5 \times 10^{16}$  cm<sup>-3</sup> and  $N_D = 1 \times 10^{16}$  cm<sup>-3</sup>. Assume T = 300K. Calculate the following:
- i) the built-in potential Vbi
- ii) the depletion layer width W at zero bias
- iii) the maximum electric field at zero bias
- iv) the maximum electric field at 5V reverse bias
- **b**) Sketch the energy band diagram, charge density distribution, electric field distribution, and potential distribution as a function of position x for both zero bias and 5V reverse bias.

# **Problem 2: pn Junction Electrostatics**

A silicon step junction maintained at T = 300K under equilibrium conditions has a p-side doping of  $N_{\rm A} = 1 \times 10^{16} \, {\rm cm}^{-3}$  and n-side doping of  $N_{\rm D} = 1 \times 10^{15} \, {\rm cm}^{-3}$ .

- a) Calculate the built-in voltage,  $V_{bi}$  (sometime it is called built-in potential  $V_0$  or  $\phi_B$ ).
- **b)** Calculate the depletion width, W. What are  $x_{po}$  and  $x_{no}$ ?

Note that 
$$x_{po} = \frac{N_D}{N_A + N_D} W$$
 and  $x_{no} = \frac{N_A}{N_A + N_D} W$ 

c) What is the electrostatic potential at x = 0, *i.e.* how much voltage is dropped across the p-side?

Note that 
$$V(0) = \frac{qN_A}{2\varepsilon_s} x_{po}^2 = V_{bi} - \frac{qN_D}{2\varepsilon_s} x_{no}^2$$

**d**) Calculate the peak electric field (at x = 0):  $E(0) = -\frac{2V_{bi}}{W}$ 

| e) Sketch (roughly to scale) the charge density distribution $\rho(x)$ , electric field distribution $\varepsilon(x)$ , and |
|-----------------------------------------------------------------------------------------------------------------------------|
| electrostatic potential $V(x)$ .                                                                                            |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |

## **MOS Fundamentals**

- 1. Determine the potential  $\phi_{Fp}$  in silicon at T=300 K for a)  $N_a$ =10<sup>15</sup> cm<sup>-3</sup> and b)  $N_a$ =10<sup>17</sup> cm<sup>-3</sup>
- 2. Consider p-type silicon at T=300 K. Determine the doping concentration if  $\phi_{Fp}$ =-0.34 V
- 3. Calculate the maximum space charge width for silicon at T=300 K doped to  $N_a$ = $10^{16}\,\text{cm}^{-3}$
- 4. Consider an oxide-to-p-type silicon junction at T=300 K. The impurity doping concentration in the silicon is  $N_a=3x10^{16}$  cm<sup>-3</sup>, calculate the maximum space charge width in the silicon. Repeat for an impurity concentration of  $N_a=10^{15}$  cm<sup>-3</sup>.
- 5. Calculate the metal semiconductor work function difference  $\phi_{ms}$ . For an aluminium-silicon dioxide junction  $\phi'_m = 3.2$  V and for a silicon-silicon dioxide junction  $\chi'=3.25$  V. Assume that  $E_G=1.12$  eV and let the p-type doping be  $N_a=10^{14}$  cm<sup>-3</sup>
- 6. Calculate the metal-semiconductor work function difference  $\phi_{ms}$  for an aluminium-silicon dioxide-silicon device if the silicon is doped to a concentration of  $N_a$ =10<sup>16</sup> cm<sup>-3</sup>. Assume T=300 K
- 7. Calculate  $C_{ox}$ ,  $C'_{min}$ ,  $C'_{FB}$  for an MOS capacitor. Consider a p-type silicon substrate at T=300 K doped to  $N_a$ = $10^{16}$  cm<sup>-3</sup>. The oxide is silicon dioxide with a thickness of 550Å and the gate is aluminium.
- 8. Consider an MOS device with the following parameters. Aluminium gate, p-type substrate,  $N_a=3x10^{16}~cm^{-3}$ ,  $t_{ox}=250$ Å and  $Q'_{ss}=10^{11}~cm^{-2}$ . Determine  $C'_{min}/C_{ox}$  and  $C'_{FB}/C_{ox}$ .

#### **Problem 1: MOS Fundamentals**

Consider an ideal MOS capacitor maintained at T = 300K with the following characteristics:

- Gate material is p+ polycrystalline-silicon (work function  $\Phi_{\rm M} = 5.15 {\rm eV}$ )
- Substrate is n-type Si, with doping concentration 10<sup>18</sup> cm<sup>-3</sup>
- Oxide thickness  $x_0 = 2 \text{ nm}$
- a) What is the flat-band voltage,  $V_{\rm FB}$ , of this capacitor?
- **b)** Sketch the energy-band diagrams, labeling  $qV_{\rm G}$ ,  $q\phi_{\rm S}$ ,  $qV_{\rm ox}$  (no numerical values required), for the following bias conditions:
- i) flat-band
- ii) accumulation
- iii) equilibrium
- iv) strong inversion

#### **Problem 2: MOS Capacitance**

The capacitance vs. gate voltage characteristic of a simple MOS capacitor of area  $1 \times 10^{-4}$  cm<sup>2</sup> is as shown:



- a) Is the semiconductor (silicon) substrate doped n-type or p-type? Explain briefly.
- **b**) Sketch the block charge density diagrams corresponding to points (1) and (2) on the *C-V* characteristic.
- c) What is the thickness of the gate oxide (SiO<sub>2</sub>),  $x_0$ ?
- **d)** What is the semiconductor doping concentration?
- e) Is the measurement frequency low or high? Explain briefly.
- **f**) Indicate qualitatively how the *C-V* characteristic would change if the semiconductor doping concentration were to be increased.

# **Problem 3: MOS Capacitance**

An MOS capacitor is made on uniformly doped p type material. With -20V on the gate with respect to the substrate it has a capacitance of 20pF. With +20V on the gate it has a capacitance of 10pF. What is the thickness of the depletion layer and the also the oxide if the capacitor has an area of 10<sup>-6</sup>m<sup>2</sup>.

## **MOSFETs and IC's**

- 1. Design the width of a MOSFET such that a specified current is induced for a given bias. Consider an ideal n-channel MOSFET with parameters L=1.25  $\mu$ m,  $\mu_n$ =650 cm²/V-s,  $C_{ox}$ =6.9x10<sup>-8</sup> F/cm² and V<sub>T</sub>=0.65 V. Design the channel W such that  $I_D(sat)$ =4 mA for  $V_{GS}$ =5 V
- 2. The parameters of an n-channel MOSFET are  $\mu_n$ =650 cm<sup>2</sup>/V-s,  $t_{ox}$ =200 Å, W/L=50 and  $V_T$ =0.4 V. If the transistor is biased in the saturation region find the drain current for  $V_{GS}$ =1, 2, 3 V
- 3. Consider an n-channel MOSFET with W=15  $\mu$ m, L=2  $\mu$ m, C<sub>ox</sub>=6.9x10<sup>-8</sup> F/cm<sup>2</sup>. Assume a drain current in the nonsaturation region for V<sub>DS</sub>=0.1 V is I<sub>D</sub>=35  $\mu$ A at V<sub>GS</sub>=1.5 V and I<sub>D</sub>=75  $\mu$ A at V<sub>GS</sub>=2.5 V. Determine the inversion carrier mobility from experimental results.
- 4. Consider the n-channel MOSFET in Question 3. Using the results in the example, determine the threshold voltage of the MOSFET.
- 5. Consider a p-channel MOSFET with parameters  $\mu_p$ =300 cm<sup>2</sup>/V-s,  $C_{ox}$ =6.9x10<sup>-8</sup> F/cm<sup>2</sup>, W/L=10 and  $V_{TP}$ =-0.65 V. Determine the conduction parameter  $\beta$  and find the maximum current at  $V_{SG}$ =3 V
- 6. The maximum current in a p-channel MOSFET must be  $I_D$ =0.85 mA at  $V_{SG}$ =3 V. If the transistor has the same electrical parameters as in question 5. Determine the required width to length ratio.

#### **Problem 1:** The MOSFET as a Resistor

Calculate the resistance of a load MOST with an aspect ratio of 1 when the mobility of the electrons is  $1000 \text{cm}^2 \text{V}^{-1} \text{sec}^{-1}$  and the gate capacitance per unit area is  $10^{-2} \text{Fm}^{-2}$ . The drain voltage is  $V_{DD} = 5V$  and the threshold voltage  $V_T = 0.5V$ . (Hints: In this case the gate and the drain are connected together so that  $V_G = V_D$ .)

#### **Problem 2: The nMOS logics**

Calculate W/L with the given specification (see two examples on lecture "nMOS logic IC design").

#### **Problem 3: The micro fabrication**

Describe the fabrication of an IC resistor, a pn junction, and an nMOSFET using planar technology.