# Notes and exercises from Set Theory

### John Peloquin

### Introduction

This document contains notes and exercises from [1].

# Chapter 1

**Exercise** (1.2). There is no set *X* such that  $P(X) \subset X$ .

*Proof.* By the axiom of regularity (1.8), X is  $\in$ -minimal in  $\{X\}$ , so  $X \notin X$  and hence  $P(X) \notin X$ .

**Exercise** (1.3). If *X* is inductive, then the set  $\{x \in X \mid x \subset X\}$  is inductive. Hence *N* is transitive and for each  $n \in N$ ,  $n = \{m \in N \mid m < n\}$ .

*Proof.* Let  $S = \{x \in X \mid x \subset X\}$ . By inductivity of X,  $\emptyset \in S$ , and if  $x \in S$ , then  $x \cup \{x\} \in S$ , so S is inductive. Taking X = N, it follows that S = N since N is the smallest inductive set. Hence  $n \in N$  implies  $n \subset N$ , so N is transitive and  $n = \{m \in N \mid m < n\}$ . □

*Remark.* We proved transitivity of N "by induction" on N:  $0 \subseteq N$  and if  $n \subseteq N$  then  $n+1 \subseteq N$ , so  $n \subseteq N$  for all  $n \in N$ . The following exercises are similar.

**Exercise** (1.4). If X is inductive, then the set  $\{x \in X \mid x \text{ is transitive}\}$  is inductive. Hence every  $n \in N$  is transitive.

*Proof.* The class C of transitive sets is inductive. Indeed,  $\emptyset$  is transitive, and if x is transitive then  $x \cup \{x\}$  is transitive since  $y \in x \cup \{x\}$  implies  $y \subset x \subset x \cup \{x\}$ . It follows that  $\{x \in X \mid x \text{ is transitive}\} = X \cap C$  is inductive since the intersection of two inductive classes is inductive. Taking X = N, it follows as above that every  $n \in N$  is transitive.

**Exercise** (1.5). If *X* is inductive, then the set  $\{x \in X \mid x \text{ is transitive and } x \notin x\}$  is inductive. Hence  $n \notin n$  and  $n \neq n+1$  for all  $n \in N$ .

*Proof.* The class  $C = \{x \mid x \text{ is transitive and } x \notin x\}$  is inductive. Indeed,  $\emptyset \in C$ . If  $x \in C$ , then  $x \cup \{x\}$  is transitive (by inductivity of the class of transitive sets). Also  $x \cup \{x\} \notin x$ , lest  $x \cup \{x\} \subset x$  by transitivity of x and hence  $x \in x$ —contradicting  $x \notin x$ . Similarly  $x \cup \{x\} \neq x$ . Therefore  $x \cup \{x\} \notin x \cup \{x\}$ . So  $x \cup \{x\} \in C$ , and C is inductive. It follows as above that  $X \cap C$  is inductive, and taking X = N that  $n \notin n$  and hence  $n \neq n+1$  for all  $n \in N$ . □

*Remark.* In order to prove that  $n \notin n$  for all  $n \in N$  by induction on N, we "loaded the induction hypothesis" with transitivity.

**Exercise** (1.6). If X is inductive, then the set  $\{x \in X \mid x \text{ is transitive and regular}\}$  is inductive, where a set x is called *regular* if every nonempty subset of x has an  $\epsilon$ -minimal element.

*Proof.* The class  $C = \{x \mid x \text{ is transitive and regular}\}$  is inductive. Indeed,  $\emptyset \in C$ . If  $x \in C$ , then  $x \cup \{x\}$  is transitive. If  $y \subset x \cup \{x\}$  is nonempty, let  $z = y - \{x\} \subset x$ . If  $z = \emptyset$ , then  $y = \{x\}$ , and x is ∈-minimal in y by regularity of x. If  $z \neq \emptyset$  and t is ∈-minimal in x, then  $x \notin t$  by transitivity and regularity of x, so t is ∈-minimal in y. Therefore  $x \cup \{x\}$  is regular. So  $x \cup \{x\} \in C$ , and C is inductive. It follows as above that  $X \cap C$  is inductive. □

*Remark.* Taking X = N it follows as above that every  $n \in N$  is regular.

**Exercise** (1.7). Every nonempty  $X \subset N$  has an  $\epsilon$ -minimal element.

*Proof.* Choose  $n \in X$ . If n is not  $\epsilon$ -minimal in X, then  $n \cap X$  is a nonempty subset of n, which has an  $\epsilon$ -minimal element m (Exercise 1.6). By transitivity of n (Exercise 1.4), m is  $\epsilon$ -minimal in X.

**Exercise** (1.8). If *X* is inductive, then the set  $\{x \in X \mid x = \emptyset \text{ or } \exists y(x = y \cup \{y\})\}$  is inductive. Hence for all  $n \in \mathbb{N}$ , n = 0 or n = m + 1 for some  $m \in \mathbb{N}$ .

*Proof.* The class  $C = \{x \mid x = \emptyset \text{ or } \exists y(x = y \cup \{y\})\}$  is obviously inductive, so  $X \cap C$  is inductive. Taking X = N, the rest follows, with  $m \in N$  by transitivity of N (Exercise 1.3). □

**Exercise** (1.9). Let  $A \subset N$  be such that  $0 \in A$ , and if  $n \in A$  then  $n + 1 \in A$ . Then A = N.

*Proof.* A is inductive, so A = N since N is the smallest inductive set.

Alternately, if  $A \neq N$ , let m be  $\in$ -minimal in N-A (Exercise 1.7). Then  $m \neq 0$ , and  $m \neq n+1$  for any  $n \in N$ , which is impossible (Exercise 1.8).

**Exercise** (1.10). Each  $n \in N$  is T-finite.

*Proof.* By induction on N. First, n = 0 is T-finite since  $P(\emptyset) = \{\emptyset\}$  and  $\emptyset$  is  $\subseteq$  maximal in  $\{\emptyset\}$ . If n is T-finite, suppose  $X \subseteq P(n \cup \{n\})$  is nonempty. Let

$$X' = \{ u - \{ n \} \mid u \in X \}$$

Then  $X' \subset P(n)$  is nonempty and has a  $\subset$ -maximal element  $u - \{n\}$  for some  $u \in X$  by T-finiteness of n, where we may assume  $n \in u$  if  $u \cup \{n\} \in X$ . We claim u is  $\subset$ -maximal in X. Indeed, if  $v \in X$  and  $u \subset v$ , then  $u - \{n\} \subset v - \{n\}$ , so  $u - \{n\} = v - \{n\}$  by  $\subset$ -maximality of  $u - \{n\}$  in X', so u = v by the assumption about u. Therefore n + 1 is T-finite.

**Exercise** (1.11). *N* is T-infinite. In fact,  $N \subset P(N)$  has no  $\subset$ -maximal element.

*Proof.* We know  $N \subset P(N)$  by transitivity of N (Exercise 1.3), and for all  $n \in N$  we have  $n \subset n+1 \in N$  but  $n \neq n+1$  (Exercise 1.5).

*Remark.* If A is T-finite and  $\pi: A \to B$  is surjective (onto), then B is T-finite.

*Proof.* By pullback. If  $X \subset P(B)$  is nonempty, let

$$X_{-1} = \pi_{-1}(X) = \{ u_{-1} = \pi_{-1}(u) \mid u \in X \}$$

Then  $X_{-1} \subset P(A)$  is nonempty and has a  $\subset$ -maximal element  $u_{-1}$  for some  $u \in X$  by T-finiteness of A. We claim u is  $\subset$ -maximal in X. Indeed, if  $v \in X$  and  $u \subset v$ , then  $u_{-1} \subset v_{-1}$ , so  $u_{-1} = v_{-1}$  by  $\subset$ -maximality of  $u_{-1}$  in  $u_{-1}$ , so u = v by surjectivity of u. Therefore u is T-finite.

**Exercise** (1.12). Every finite set is T-finite.

*Proof.* By definition, every finite set is the image of a T-finite natural number (Exercise 1.10), so is T-finite by the previous remark.

Alternately, if S is T-infinite, choose  $X \subset P(S)$  nonempty with no  $\subset$ -maximal element. By induction on N, for each  $n \in N$  there is a properly ascending chain  $u_0 \subset \cdots \subset u_n \subset S$  of length n+1 in X, and hence an injection  $n \to S$  sending  $m \in n$  into  $u_{m+1} - u_m$ . If S had k elements for some  $k \in N$ , there would then be an injection  $k+1 \to k$ , which is impossible by an easy induction on k. Therefore S is infinite.

**Exercise** (1.13). Every infinite set is T-infinite.

*Proof.* If *S* is infinite, let *X* be the set of finite subsets of *S*. Clearly *X* is nonempty since  $\emptyset \in X$ . Also *X* has no ⊂-maximal element. Indeed, if  $u \in X$  then there is  $s \in S - u$  since *S* is infinite, and  $u \cup \{s\}$  is finite (if *u* has *k* elements, then  $u \cup \{s\}$  has k + 1 elements), so  $u \subset u \cup \{s\} \in X$  where the inclusion is proper. Therefore *S* is T-infinite.

*Remark.* The previous two exercises show that (Cantor) finiteness is equivalent to Tarski finiteness in ZF.

# Chapter 2

*Remark.* In (2.1), < is actually a *well-ordering* on *Ord.* Indeed, if  $C \subset Ord$  is a nonempty class of ordinals and  $\alpha \in C$  is not  $\in$ -minimal in C, then  $\alpha \cap C$  is a nonempty subset of  $\alpha$  which has an  $\in$ -minimal element  $\beta$ . By transitivity of  $\alpha$ ,  $\beta$  is  $\in$ -minimal in C.

This observation provides an alternative proof that Ord is a proper class: if Ord were a set, then because it is transitive and strictly well-ordered by  $\in$ , it would be an ordinal, and hence  $Ord \in Ord$ —contradicting strictness.

*Remark.* In Definition 2.13, an ordinal is "finite" if and only if it is a "finite ordinal". In fact, if  $\alpha$  is not a "finite ordinal" then  $\omega \subset \alpha$ , and it follows by induction on n that there is no surjection  $n \to \omega$  (every function  $n \to \omega$  is bounded), hence there is no surjection  $n \to \alpha$ , so  $\alpha$  is not "finite". The converse is trivial.

*Remark.* In Theorem 2.27, the height of a well-ordering is just its order-type (ordinal), and the rank of an element in a well-ordering is just the order-type of the initial segment given by that element.

*Proof.* If *P* is a well-ordering and  $P(x) = \{y \in P \mid y < x\}$ , then

$$type P = \sup_{x \in P} \{type P(x) + 1\} = \{type P(x) \mid x \in P\}$$

Indeed, if  $x \in P$  then type P(x) < type P (Theorem 2.8), so type  $P(x) + 1 \le$  type P. Conversely, if  $\alpha <$  type P, then  $\alpha =$  type P(x) for some  $x \in P$ , so  $\alpha <$  type P(x) + 1. Taking P = P(x) yields

$$type P(x) = \sup_{y < x} \{type P(y) + 1\}$$

The result now follows by uniqueness of rank.

*Remark.* If *P* is a well-ordering and  $S \subset P$ , then type  $S \leq$  type *P*.

*Proof.* By induction using the previous remark,

$$type S = \sup_{x \in S} \{type S(x) + 1\} \le \sup_{x \in P} \{type P(x) + 1\} = type P \qquad \Box$$

**Exercise** (2.2).  $\alpha$  is a limit ordinal if and only if  $\beta < \alpha$  implies  $\beta + 1 < \alpha$  for all  $\beta$ .

*Proof.* If  $\alpha$  is a limit ordinal and  $\beta < \alpha$ , then  $\beta + 1 \le \alpha$  (2.5) and  $\beta + 1 \ne \alpha$ , so  $\beta + 1 < \alpha$ . If  $\alpha$  is not a limit ordinal, then  $\beta + 1 = \alpha$  for some  $\beta < \alpha$ .

*Remark.* It follows that  $\alpha$  is a nonzero limit ordinal if and only if it is inductive.

**Exercise** (2.3). If *X* is inductive, then  $X \cap Ord$  is inductive. *N* is the least nonzero limit ordinal, where  $N = \bigcap \{X \mid X \text{ inductive}\}.$ 

*Proof.* Clearly Ord is inductive, so  $X \cap Ord$  is inductive since the intersection of two inductive classes is inductive. Taking X = N, it follows that  $N \subset Ord$ , and since N is also transitive, N is an ordinal. By the previous remark, N is the least nonzero limit ordinal.

**Exercise** (2.4). (Without the axiom of infinity.) Let  $\omega$  be the least nonzero limit ordinal, if it exists, or *Ord* otherwise. The following are equivalent:

- (i) There exists an inductive set.
- (ii) There exists an infinite<sup>1</sup> set.
- (iii)  $\omega$  is a set.

*Proof.* (i)  $\iff$  (iii): The smallest inductive set is the least nonzero limit ordinal (Exercise 2.3).

- (iii)  $\Longrightarrow$  (ii):  $\omega$  is infinite (Exercises 1.11–2).
- (ii)  $\implies$  (i): For any finite set A, let |A| denote the least  $n \in \omega$  in bijective correspondence with A (the "number of elements" in A). If X is infinite, let

$$S = \{ |A| \mid A \subset X \text{ finite} \}$$

Note *S* is a set by replacement, and *S* is inductive. Indeed,  $0 \in S$  since  $\emptyset \subset X$  and  $|\emptyset| = 0$ . If  $n \in S$  and  $A \subset X$  with |A| = n, then there must exist  $x \in X - A$  since *X* is infinite, and  $|A \cup \{x\}| = n + 1 \in S$ .

<sup>&</sup>lt;sup>1</sup>In this exercise, a set is *finite* if it is in bijective correspondence with some  $n \in \omega$  and *infinite* otherwise, even if  $\omega = Ord$ .

*Remark.* This exercise shows that (i)–(iii) are equivalent forms of the axiom of infinity in ZF.

**Exercise** (2.5). If W is a well-ordered set, then there is no sequence  $\langle a_n \mid n \in \mathbb{N} \rangle$  in W such that  $a_0 > a_1 > \cdots$ .

*Proof.* If there were such a sequence, then  $\{a_n \mid n \in N\}$  would be a nonempty subset of W with no least element, contradicting well-ordering.

**Exercise** (2.6). There are arbitrarily large limit ordinals.

*Proof.* Given  $\alpha$ , let  $\beta = \alpha + \omega$ . Clearly  $\beta > \alpha$ . If  $\gamma < \beta$ , then either  $\gamma < \alpha$ , in which case  $\gamma + 1 < \alpha + 1 < \beta$ , or  $\gamma \ge \alpha$ , in which case  $\gamma = \alpha + n$  for some  $n \in \omega$  (Lemma 2.25), so  $\gamma + 1 = \alpha + n + 1 < \beta$ . Thus  $\beta$  is a limit ordinal (Exercise 2.2).  $\square$ 

*Remark* (Chain rule). If  $f, g : Ord \rightarrow Ord$  are nondecreasing and continuous, then so is  $f \circ g$ . If f and g are normal, then so is  $f \circ g$ .

*Proof.* If  $\alpha < \beta$ , then  $g(\alpha) \le g(\beta)$ , so  $f(g(\alpha)) \le f(g(\beta))$ . Let  $\alpha$  be a nonzero limit ordinal. Clearly  $f(g(\alpha)) \ge \lim_{\xi \to \alpha} f(g(\xi))$ . If  $g(\alpha) = g(\xi')$  for some  $\xi' < \alpha$ , then  $f(g(\alpha)) = f(g(\xi')) \le \lim_{\xi \to \alpha} f(g(\xi))$ . Otherwise,  $g(\alpha)$  is a limit ordinal. Indeed,  $g(\alpha) = \lim_{\xi \to \alpha} g(\xi)$  by continuity of g, so if  $\beta < g(\alpha)$ , then  $\beta < g(\xi)$  for some  $\xi < \alpha$ , and hence  $\beta + 1 \le g(\xi) < g(\alpha)$ . But then  $f(g(\alpha)) = \lim_{\xi \to g(\alpha)} f(\xi)$  by continuity of g. If  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$  by continuity of  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$ . Therefore again  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$  and  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$ . Therefore again  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$  and  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$  and  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$  and  $g(\alpha) = \lim_{\xi \to g(\alpha)} f(\xi)$ .

If f and g are also increasing, then  $f \circ g$  is increasing and hence normal.  $\Box$ 

**Exercise** (2.7). Every normal sequence  $\langle \gamma_{\alpha} \mid \alpha \in Ord \rangle$  has arbitrarily large fixed points (that is,  $\beta$  such that  $\gamma_{\beta} = \beta$ ).

*Proof.* Given  $\alpha$ , let  $\beta_0 = \gamma_\alpha$  and  $\beta_{n+1} = \gamma_{\beta_n}$  for all  $n \in \omega$ . Note  $\beta_{n+1} \ge \beta_n \ge \alpha$  for all  $n \in \omega$  since  $\gamma$  is increasing (Lemma 2.4). Let  $\beta = \lim_{n \to \omega} \beta_n$ . Then

$$\gamma_{\beta} = \lim_{n \to \omega} \gamma_{\beta_n} = \lim_{n \to \omega} \beta_{n+1} = \beta$$

by the chain rule above (taking  $\beta_{\alpha} = \beta$  for all  $\alpha \ge \omega$ ).

**Exercise** (2.8). For all  $\alpha$ ,  $\beta$ ,  $\gamma$ :

(i) 
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

(ii) 
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

(iii) 
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$$

*Proof.* By induction on  $\gamma$ .

(i) If  $\gamma = 0$ ,

$$\alpha \cdot (\beta + \gamma) = \alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0 = \alpha \cdot \beta + \alpha \cdot \gamma$$

If the result holds for  $\gamma$ , then

$$\alpha \cdot (\beta + (\gamma + 1)) = \alpha \cdot ((\beta + \gamma) + 1)$$
 by associativity of + 
$$= \alpha \cdot (\beta + \gamma) + \alpha$$
 by definition of \cdot 
$$= (\alpha \cdot \beta + \alpha \cdot \gamma) + \alpha$$
 by hypothesis 
$$= \alpha \cdot \beta + (\alpha \cdot \gamma + \alpha)$$
 by associativity of + 
$$= \alpha \cdot \beta + \alpha \cdot (\gamma + 1)$$
 by definition of \cdot

so the result holds for  $\gamma + 1$ . If  $\gamma$  is a nonzero limit ordinal and the result holds for all  $\xi < \gamma$ , then

$$\alpha \cdot (\beta + \gamma) = \lim_{\xi \to \gamma} \alpha \cdot (\beta + \xi)$$
 by continuity of  $\xi \mapsto \alpha \cdot (\beta + \xi)$   
=  $\lim_{\xi \to \gamma} (\alpha \cdot \beta + \alpha \cdot \xi)$  by hypothesis  
=  $\alpha \cdot \beta + \alpha \cdot \gamma$  by continuity of  $\xi \mapsto \alpha \cdot \beta + \alpha \cdot \xi$ 

so the result holds for  $\gamma$ . Note that continuity of the composite mappings involved follows from continuity of addition and multiplication and the chain rule above.

(ii) Similar.

Exercise (2.9).

(i) 
$$(\omega + 1) \cdot 2 = \omega + 1 + \omega + 1 = \omega + \omega + 1 = \omega \cdot 2 + 1 < \omega \cdot 2 + 2 = \omega \cdot 2 + 1 \cdot 2$$

(ii) 
$$(\omega \cdot 2)^2 = \omega \cdot 2 \cdot \omega \cdot 2 = \omega \cdot \omega \cdot 2 = \omega^2 \cdot 2 < \omega^2 \cdot 4 = \omega^2 \cdot 2^2$$

*Remark.* This result shows that  $(\alpha + \beta) \cdot \gamma$  does not in general equal  $\alpha \cdot \gamma + \beta \cdot \gamma$ , and  $(\alpha \cdot \beta)^{\gamma}$  does not in general equal  $\alpha^{\gamma} \cdot \beta^{\gamma}$ .

**Exercise** (2.10). If  $\alpha < \beta$ , then  $\alpha + \gamma \le \beta + \gamma$ ,  $\alpha \cdot \gamma \le \beta \cdot \gamma$ , and  $\alpha^{\gamma} \le \beta^{\gamma}$  for all  $\gamma$ .

*Proof.* By induction on  $\gamma$ .

**Exercise** (2.11)**.** 2 < 3 but

- (i)  $2 + \omega = \omega = 3 + \omega$
- (ii)  $2 \cdot \omega = \omega = 3 \cdot \omega$
- (iii)  $2^{\omega} = \omega = 3^{\omega}$

**Exercise** (2.12). Let  $\epsilon_0 = \lim_{n \to \omega} \alpha_n$  where  $\alpha_0 = \omega$  and  $\alpha_{n+1} = \omega^{\alpha_n}$ . Then  $\epsilon_0$  is the least ordinal  $\epsilon$  such that  $\omega^{\epsilon} = \epsilon$ .

*Proof.* By continuity of exponentiation and the chain rule above (taking  $\alpha_{\beta} = \epsilon_0$  for all  $\beta \ge \omega$ ),

$$\omega^{\epsilon_0} = \lim_{n \to \omega} \omega^{\alpha_n} = \lim_{n \to \omega} \alpha_{n+1} = \epsilon_0$$

If  $\omega^{\epsilon} = \epsilon$ , we prove by induction that  $\alpha_n \le \epsilon$  for all  $n \in \omega$ , from which it follows that  $\epsilon_0 \le \epsilon$ . Indeed, since  $\omega^0 = 1 \ne 0$ , we have  $\epsilon \ne 0$  and hence  $\alpha_0 = \omega \le \omega^{\epsilon} = \epsilon$ . If  $\alpha_n \le \epsilon$ , then  $\alpha_{n+1} = \omega^{\alpha_n} \le \omega^{\epsilon} = \epsilon$ .

**Exercise** (2.13). A limit ordinal  $\gamma > 0$  is indecomposable if and only if  $\alpha + \gamma = \gamma$  for all  $\alpha < \gamma$  if and only if  $\gamma = \omega^{\alpha}$  for some  $\alpha > 0$ .

*Proof.* If  $\gamma = \alpha + \beta$  with  $\alpha, \beta < \gamma$ , then  $\alpha + \gamma > \alpha + \beta = \gamma$ . Conversely, if  $\alpha < \gamma$  and  $\alpha + \gamma > \gamma$ , fix  $\beta$  such that  $\alpha + \beta = \gamma$  (Lemma 2.25). If  $\beta \ge \gamma$ , then  $\gamma = \alpha + \beta \ge \alpha + \gamma > \gamma$ , which is impossible, so  $\beta < \gamma$ .

The forward direction of the second equivalence follows from the Cantor normal form (Theorem 2.26). For the reverse direction, we prove by induction on  $\alpha > 0$  that  $\omega^{\alpha}$  is indecomposable. The result holds for  $\alpha = 1$  since  $n + \omega = \omega$  for all  $n \in \omega$ . If  $\omega^{\alpha}$  is indecomposable and  $\beta < \omega^{\alpha+1} = \omega^{\alpha} \cdot \omega$ , then  $\beta < \omega^{\alpha} \cdot n$  for some  $n \in \omega$ , so (Exercises 2.10 and 2.8)

$$\beta + \omega^{\alpha+1} \leq \omega^{\alpha} \cdot n + \omega^{\alpha} \cdot \omega = \omega^{\alpha} \cdot (n+\omega) = \omega^{\alpha} \cdot \omega = \omega^{\alpha+1}$$

and hence  $\omega^{\alpha+1}$  is indecomposable. Finally if  $\alpha > 0$  is a limit ordinal,  $\omega^{\xi}$  is indecomposable for all  $\xi < \alpha$ , and  $\beta < \omega^{\alpha}$ , then by continuity

$$\beta + \omega^{\alpha} = \lim_{\xi \to \alpha} (\beta + \omega^{\xi}) = \lim_{\xi \to \alpha} \omega^{\xi} = \omega^{\alpha}$$

and hence  $\omega^{\alpha}$  is indecomposable.

# Chapter 3

*Remark.* If  $\kappa$  and  $\lambda$  are ordinals which are cardinals, then  $\kappa \leq \lambda$  in the *ordinal* ordering if and only if  $\kappa \leq \lambda$  in the *cardinal* ordering (3.2). Indeed, if  $\kappa \leq \lambda$  in the ordinals, then  $\kappa \subset \lambda$ , so  $\kappa \leq \lambda$  in the cardinals. Conversely, if  $\kappa \leq \lambda$  in the cardinals, then we cannot have  $\lambda < \kappa$  in the ordinals since  $\kappa$  is a cardinal.

*Remark.* An ordinal is a "finite" cardinal if and only if it is a "finite cardinal". In fact, if an ordinal is a "finite" cardinal, then it is a "finite ordinal" by the remark above, and hence it is a "finite cardinal". The converse is just the *pigeonhole principle*, which is proved by induction on  $\omega$ .

*Remark.* The arithmetic operations for finite cardinals in (3.3) agree with the corresponding operations for finite ordinals.

#### Exercise (3.1).

- (i) A subset of a finite set is finite.
- (ii) A finite union of finite sets is finite.
- (iii) The power set of a finite set is finite.
- (iv) An image (projection) of a finite set is finite.

#### Proof.

- (i) By an easy induction on  $n \in \mathbb{N}$ , every subset of n has m elements for some  $m \in \mathbb{N}$  with  $m \le n$ , from which the result follows.
  - Alternately, if  $B \subset A$ , then  $P(B) \subset P(A)$ , so  $X \subset P(B)$  implies  $X \subset P(A)$ . If A is finite, then A is T-finite (Exercise 1.12), so B is T-finite and hence B is finite (Exercise 1.13).
- (ii) If |A| = m and |B| = n and  $A \cap B = \emptyset$ , then  $|A \cup B| = m + n$ . If  $A \cap B \neq \emptyset$ , then  $A \cup B$  is a subset of the disjoint union, so  $|A \cup B| \le m + n$  by (i). Therefore the union of two finite sets is finite, and the union of any finite set of finite sets is finite by induction.
- (iii) If |A| = n, then  $|P(A)| = 2^n$  (Lemma 3.3).
- (iv) If  $f: n \to B$  is surjective, define  $g: B \to n$  by letting g(b) be the least  $m \in n$  such that f(m) = b. Then g is injective, so B has the same cardinality as a subset of n, and hence  $|B| \le n$  by (i). The result follows.

<sup>&</sup>lt;sup>2</sup>Technically,  $A \cup B$  has the same cardinality as a subset of  $(A \times \{0\}) \cup (B \times \{1\})$ .

#### Exercise (3.2).

- (i) A subset of a countable set is at most countable.
- (ii) A finite union of countable sets is countable.
- (iii) An image (projection) of a countable set is at most countable.

Proof.

(i) If  $B \subset N$  is infinite, let

$$b_0$$
 = least in  $B$   
 $b_{n+1}$  = least in  $B - \{b_0, ..., b_n\}$  (nonempty since  $B$  is infinite)

Let  $C = \{b_n \mid n \in \mathbb{N}\}$ , which is countable since  $n \mapsto b_n$  is a bijection. If  $B \neq C$ , let b be least in B - C. There are only finitely many elements of B less than b (Exercise 3.1(i)), which must be  $b_0, \ldots, b_k$  for some  $k \in \mathbb{N}$  by hypothesis. But then b is least in  $B - \{b_0, \ldots, b_k\}$ , so  $b = b_{k+1} \in C$ , which contradicts  $b \notin C$ . Therefore B = C. The result follows.

- (ii) Similar to the proof of Exercise 3.1(ii), replacing m and n with  $\aleph_0$  and using the fact that  $\aleph_0 \le |A \cup B| \le \aleph_0 + \aleph_0 = \aleph_0$  (Theorem 3.5).
- (iii) Similar to the proof of Exercise 3.1(iv), replacing n with N.

**Exercise** (3.3).  $N \times N$  is countable.

*Proof.* The mapping  $(m, n) \mapsto 2^m (2n+1) - 1$  is a bijection from  $N \times N$  to N. In fact, it is injective by uniqueness of prime factorizations. If  $k \in N$ , let  $m \in N$  be the highest power of 2 dividing k+1. Then  $k+1=2^m (2n+1)$  for some  $n \in N$ , so k is the image of (m, n).

#### Exercise (3.4).

- (i) The set of all finite sequences in *N* is countable.
- (ii) The set of all finite subsets of a countable set is countable.

Proof.

(i) The set is at least countable since there are countably many sequences of length one, and it is at most countable since the mapping

$$(m_1,\ldots,m_n)\mapsto p_1^{m_1+1}\cdots p_n^{m_n+1}$$

is injective, where  $p_k$  is the k-th prime.

(ii) The set of all finite subsets of N is at least countable since there are countably many singletons, and it is at most countable since it is the image of the mapping which takes each finite sequence in N to its underlying set (part (i) and Exercise 3.2(iii)). The result follows.

**Exercise** (3.7). If *B* is a projection of  $\omega_{\alpha}$ , then  $|B| \leq \aleph_{\alpha}$ .

*Proof.* If  $f: \omega_{\alpha} \to B$  is surjective, define  $g: B \to \omega_{\alpha}$  by letting g(b) be the least  $\beta \in \omega_{\alpha}$  such that  $f(\beta) = b$ . Then g is injective, so  $|B| \le \aleph_{\alpha}$ .

**Exercise** (3.9). If *B* is a projection of *A*, then  $|P(B)| \le |P(A)|$ .

*Proof.* If  $f: A \to B$  is surjective, define  $g: P(B) \to P(A)$  by  $g(X) = f_{-1}(X)$ . If g(X) = g(Y), then

$$X = f(g(X)) = f(g(Y)) = Y$$

by surjectivity of f, so g is injective.

**Exercise** (3.10).  $\omega_{\alpha+1}$  is a projection of  $P(\omega_{\alpha})$ .

*Proof.* If  $X \subset \omega_{\alpha}$ , then type  $X \leq \omega_{\alpha}$  by a remark about well-orderings above, so we can define  $f: P(\omega_{\alpha}) \to \omega_{\alpha+1}$  by f(X) = type X. If  $\beta \in \omega_{\alpha+1}$ , then  $\beta \subset \omega_{\alpha}$  with  $f(\beta) = \beta$ , so f is surjective.

**Exercise** (3.11).  $\aleph_{\alpha+1} < 2^{2^{\aleph_{\alpha}}}$ 

*Proof.*  $\aleph_{\alpha+1} < 2^{\aleph_{\alpha+1}} \le 2^{2^{\aleph_{\alpha}}}$ , where the first inequality follows from Theorem 3.1 and the second inequality follows from Exercises 3.9–10.

**Exercise** (3.12). If  $\aleph_{\alpha}$  is an uncountable limit cardinal, then  $\operatorname{cf}\omega_{\alpha}=\operatorname{cf}\alpha$ ; also,  $\omega_{\alpha}$  is the limit of a cofinal sequence  $\langle \omega_{\alpha_{\xi}} | \xi < \operatorname{cf}\alpha \rangle$  of cardinals.<sup>3</sup>

*Proof.* By Lemma 3.7(ii) and its proof, since  $\omega_{\alpha} = \lim_{\xi \to \alpha} \omega_{\xi}$ .

**Exercise** (3.13). (ZF)  $\omega_2$  is not a countable union of countable sets.

*Proof.* If  $\omega_2 = \bigcup_{n < \omega} S_n$  where each  $S_n$  is countable, let  $\alpha_n = \operatorname{type} S_n < \omega_1$ . Then  $\alpha = \sup_n \alpha_n \le \omega_1$ . For  $(n, \xi) \in \omega \times \alpha$ , let  $f(n, \xi)$  be the  $\xi$ -th element of  $S_n$  if  $\xi \in \alpha_n$  or the first element of  $S_n$  if  $\xi \notin \alpha_n$ . Then  $f : \omega \times \alpha \to \omega_2$  is surjective. But  $0 < |\omega \times \alpha| \le \aleph_0 \cdot \aleph_1 = \aleph_1$ , so  $\omega_2$  is a projection of  $\omega_1$  and  $\aleph_2 \le \aleph_1$ —contradicting  $\aleph_1 < \aleph_2$ . Therefore  $\omega_2$  is not a countable union of countable sets.

<sup>&</sup>lt;sup>3</sup>The second part of the exercise in the book is incorrect. For example,  $\omega_{\omega+\omega}$  is not the limit of a cofinal sequence  $\langle \omega_n \mid n < \omega \rangle$ .

**Exercise** (3.14). *S* is D-infinite if and only if *S* has a countable subset.

*Proof.* If *S* is D-infinite, let  $f: S \to X$  be a bijection with  $X \subset S$  and  $X \neq S$ . Let  $s_0 \in S - X$  and  $s_{n+1} = f(s_n)$  for all  $n \in \mathbb{N}$ . By induction on n,  $s_n \neq s_m$  for all m < n, so  $n \mapsto s_n$  is injective and  $\{s_n \mid n \in \mathbb{N}\}$  is a countable subset of *S*.

Conversely, if  $n \mapsto s_n \in S$  is injective, define  $f: S \to S$  by

$$f(s) = \begin{cases} s_{n+1} & \text{if } s = s_n \\ s & \text{if } s \neq s_n \text{ for all } n \end{cases}$$

Then f is a bijection from S to  $S - \{s_0\}$ , so S is D-infinite.

*Remark.* It follows that a D-finite subset of a countable set must be finite, since an infinite subset of a countable set is countable (Exercise 3.2(i)).

#### **Exercise** (3.15).

- (i) If *A* and *B* are D-finite, then  $A \cup B$  and  $A \times B$  are D-finite.
- (ii) The set of all finite injective sequences in a D-finite set is D-finite.
- (iii) The union of a disjoint D-finite family of D-finite sets is D-finite.

*Proof.* In all cases we use the fact that a set is D-infinite if and only if it has a countable subset (Exercise 3.14).

(i) If  $A \cup B$  is not D-finite, let  $n \mapsto s_n \in A \cup B$  be injective. If A is D-finite, there must be N such that for all  $n \ge N$ ,  $s_n \notin A$ , so  $s_n \in B$ . But then  $n \mapsto s_{N+n} \in B$  is injective, so B is not D-finite.

If  $A \times B$  is not D-finite, let  $R \subset A \times B$  be countable. If dom R is infinite, then we can enumerate a countable subset of A using an enumeration of R, so A is not D-finite. If dom R is finite, then ran R must be infinite, so we can enumerate a countable subset of B using an enumeration of R, and hence B is not D-finite.

(ii) Let *S* be a set. If  $n \mapsto f_n$  is injective with  $f_n : l_n \to S$  injective and  $l_n \in \mathbb{N}$  for all  $n \in \mathbb{N}$ , choose  $k_0$  least with  $l_{k_0} \neq 0$  and define

$$s_0 = f_{k_0}(0)$$
  
 $s_{n+1} = f_k(m)$   $k$  least such that ran  $f_k \not\subset \{s_0, \dots, s_n\}$   
 $m$  least such that  $f_k(m) \not\in \{s_0, \dots, s_n\}$ 

Note k must exist since there are only finitely many injective sequences in a finite set. Clearly  $n \mapsto s_n$  is injective, so S is D-infinite.

(iii) Let *S* be a set of disjoint D-finite sets. If  $n \mapsto s_n \in \bigcup S$  is injective, define

 $x_0$  = the unique set in S containing  $s_0$  $x_{n+1}$  = the unique set in S containing  $s_k$ k least such that  $s_k \not\in \bigcup \{x_0, ..., x_n\}$ 

Note k must exist since for each  $x \in S$  there is N with  $s_n \notin x$  for all  $n \ge N$ . Clearly  $n \mapsto x_n$  is injective, so S is D-infinite.

**Exercise** (3.16). If A is infinite, then P(P(A)) is D-infinite.

*Proof.* The mapping  $n \mapsto \{X \subset A \mid |X| = n\}$  is injective (Exercise 3.14).

### **Chapter 4**

*Remark.* In Definition 4.2, a "dense subset" of a linear ordering is a subset that is "dense" (as a linear ordering itself), but the converse is not true. For example, the positive rationals form a subset of the reals that is "dense" (between any two positive rationals is another positive rational) but is not a "dense subset" (between two negative reals there is no positive rational).

*Remark.* In Theorem 4.4, property (iii) of a Dedekind cut is not needed for this purely order-theoretic construction.<sup>4</sup>

### References

- [1] Jech, Thomas. Set Theory, 3rd ed. Springer, 2002.
- [2] Rudin, Walter. *Principles of Mathematical Analysis*, 3rd ed. McGraw-Hill, 1976.

<sup>&</sup>lt;sup>4</sup>See [2], Chapter 1, Exercise 20.