Матрицы

Маляр Дарья, ИВТ(1)

Чтобы находить сумму, разность, уметь умножать матрицы на число и друг на друга, а также находить транспонированные матрицы, достаточно уметь лишь оперировать с лишь с элементами. Но всегда ли для нахождения достаточно знать лишь действия с элементами?

Примеры матриц, где вам понадобится знание

других тем:

Ортогональная матрица

Ортогональная матрица – матрица, для которой выполняется условие

$$AA^T = A^T A = E,$$

Т. е. для того, чтобы найти ортогональную матрицу, нужно знать, как находить транспонированную матрицу и иметь представление о единичной матрице

Примечание:

Это значит, что

$$A^{-1} = A^{T}$$
.

Следовательно, надо знать, что такое обратная матрица. Также можно сделаит вывод, что ортогональную матрицу можно находить двумя способами.

Обратная матрица

Обратная матрица - это такая матрица, что

$$AA^{-1} = A^{-1}A = E$$

Помимо единичной матрицы необходимо уметь находить определитель. Если определитель не равен 0, то матрица называется невырожденной и имеет обратную матрицу. Для нахождения обратной матрицы нужно знать, что такое транспонированная матрица.

Ранг матрицы

Ранг матрицы - это количество ненулевых строк.

Один из способов нахождения ранга - с помощью миноров, поэтому нужно иметь представление об этой теме.

Вторым способом решения является метод Гаусса.

Ступенчатая матрица

Для нахождения ступенчатой матрицы нужно лишь знать, как выполняются элементарные преобразования. Но чтобы привести матрицу к ступенчатому виду, можно воспользоваться одним из 2-х методов:

- метод Гаусса (этим методом мы пользовались на ЛАТМ)
- метод Барейса

Метод Гаусса в информатике

Обобщенно алгоритм метода Гаусса можно представить следующим образом:

For
$$j = 0, ..., N - 2$$

For $i = j + 1, ..., N - 1$
 $\vec{a_i} \leftarrow \vec{a_i} - \frac{a_{ij}}{a_{ji}} \vec{a_j}$

где N — число строк,

 $\vec{a_i}$ — і-тая строка,

 a_{ij} – элемент, находящийся в і-той строке, ј-том столбце

Метод Байреса

Алгоритм Барейса можно представить следующим образом: $a_{-1,-1}=1$ $For \ j=0,...,N-2$ $For \ i=j+1,...,N-1$ $\vec{a_i} \leftarrow \frac{a_{jj}\vec{a_i}-a_{ij}\vec{a_j}}{a_{j-1,j-1}}$

Спасибо за внимание!