

生物统计与试验设计

Biostatistics and Experimental Design

主讲: 杨泽峰

扬州大学农学院

第二章 描述性统计数

- ▶2.1 变量与次数分布
- ▶2.2 次数分布表
- ▶2.3 次数分布图
- ▶2.4 集中趋势的统计数
- ▶2.5 离散趋势的统计数

2.5 离散趋势的统计数

变异数: 描述变量离散特性的统计数。

常用的变异数主要有:

- ① 极差
- ② 方差
- ③ 标准差
- ④ 变异系数

(1) 总体的方差和标准差

方差 (variance) 和标准差 (standard deviation) 都是反应变量的变异程度的。

设有一具有 N 个个体 y_1 , y_2 , ..., y_N , 且平均数为 μ 的有限总体,其总体方差 σ^2 为:

$$\sigma^{2} = \frac{1}{N} (y_{1} - \mu)^{2} + \frac{1}{N} (y_{2} - \mu)^{2} + \dots + \frac{1}{N} (y_{n} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} (y_{i} - \mu)^{2}$$

总体标准差 σ 定义为:

$$\sigma = \sqrt{\frac{\sum (y - \mu)^2}{N}}$$

(2) 样本的方差和标准差

设有一具有 n 个观察值 y_1 , y_2 , ..., y_n , 且平均数为 \overline{y} 的样本,其对总体方差 σ^2 和总体

标准差 σ 的相应估计值分别为样本方差 s^2 和样本标准差s 分别为:

$$s^{2} = \frac{\sum (y - \overline{y})^{2}}{n - 1} \quad s = \sqrt{\frac{\sum (y - \overline{y})^{2}}{n - 1}}$$

其中: $\sum (y-\bar{y})^2$ 是离均差的平方和,简称平方和 (sum of squares),记作 SS; (n-1)称

为自由度 (degree of freedom),在统计上指的是独立观察值的数目,记作 df 或V 。

平方和在计算中可以用恒等式:
$$SS = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

(2) 样本的方差和标准差

【例2-8】测得某品种10个玉米果穗质量 (g) 分别为: 170, 160, 172, 162, 165, 175, 171, 168, 160, 151, 试计算其标准差。

表 2-7 玉米果穗质量数据资料整理

编号	\mathcal{Y}_i	y_i^2	$y_i - \overline{y}$	$\left(y_i - \overline{y}\right)^2$
1	170	28900	4.6	21.16
2	160	25600	-5.4	29.16
3	172	29584	6.6	43.56
4	162	26244	-3.4	11.56
5	165	27225	-0.4	0.16
6	175	30625	9.6	92.16
7	171	29241	5.6	31.36
8	168	28224	2.6	6.76
9	160	25600	-5.4	29.16
10	151	22801	-14.4	207.36
求和	1654	274044	0	472.4

样本平均数:
$$\overline{y} = \frac{\sum y}{n} = \frac{1654}{10} = 165.4$$

平方和:
$$SS = \sum (y_i - \overline{y})^2 = 472.4$$

$$SS = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n} = 274044 - \frac{1654^2}{10} = 472.4$$

标准差:
$$s = \sqrt{\frac{SS}{v}} = \sqrt{\frac{472.4}{10-1}} \approx 7.24$$
 (g)

该品种玉米果穗重量的标准差为 7.24g。

(3) 标准差的特性

- ① 标准差的大小受每个观察值的影响,如观察值间变异大,求得的标准差也大,反之则小。
- ② 各观察值加上或减去一个常数,标准差不变。
- ③ 每个观察值乘以或除以一个常数 a (a>0),则所得的标准差是原来标准差的 a 倍或 1/a 倍。

2.5.2 变异系数

标准差是变量的平均变异量。

变量的相对变异量叫做变异系数 (coefficient of variation), 记作 CV. $CV = \frac{s}{\overline{v}} \times 100\%$

【例 2-9】某品种水稻在大田种植时,其每穗粒数的平均数为 45.0,标准差为 17.8;而在丰 产田种植时,其每穗粒数的平均数为 65.0,标准差为 18.4。试问哪种水稻田种植 的水稻每穗粒数的变异程度较大?

大田种植变异系数:
$$CV_1 = \frac{S_1}{\overline{y}_1} \times 100\% = \frac{17.8}{45.0} \times 100\% = 39.56\%$$

丰产田种植变异系数:
$$CV_2 = \frac{s_2}{\overline{y}_2} \times 100\% = \frac{18.4}{65.0} \times 100\% = 28.31\%$$

丰产田种植的水稻每穗粒数变异系数较小,整齐度由于大田种植。