21.03.2022

Yauheni Zviazdou a Ivan Oryshchenko

Vlastnosti optických vláken a WDM přenos

Schéma k měření

Závislost útlumu na podélném vychýlení optických konektorů

X, mm	dBm	uW	
0	-16.72	5.5	
1	-18.46	3.7	
2	-19.24	3.1	
3	-20.39	2.37	
4	-21.44	1.87	
5	-22.35	1.51	
6	-23.11	1.27	
7	-24.16	1.0	
8	-24.88	0.84	
9	-25.56	0.72	
10	-26.36	0.60	
15	-29.02	0.32	
20	-31.01	205 nW	
25	-32.70	139 nW	
30	-34.15	100 nW	
35	-35.39	75 nW	

Závislost útlumu na podélném vychýlení optických konektorů

$$P_{dBm} = 10 * log_{10}(1000 * P_w)$$

$$P(5.5) = 10 * log_{10}(1000 * 5.5) = 37.4 dBm != -16.72 dBm$$

 $P(1.51) = 10 * log_{10}(1000 * 1.51) = 31.8 dBm != -22.35 dBm$
 $P(0.32) = 10 * log_{10}(1000 * 0.32) = 25 dBm != -29.02 dBm$

Střední abs. odchylka = ((37.4 - 16.72) + (31.8 - 22.35) + (25 - 29.02)) / 3 ~= 8.7 dBm. V průměru jsou tedy teoretické hodnoty o 8.7 dBm vyšší než naměřené hodnoty.

Závislost útlumu na úhlovém vychýlení optických konektorů

Schéma zapojení

X, °	uW
-25	0.65
-20	0.86
-15	1.02
-10	1.21
-5	1.35
0	1.33
5	1.20
10	1.02
15	0.82
20	0.59
25	0.34

Závislost útlumu na úhlovém vychýlení optických konektorů

Tady maximální hodnota na grafu odpovídá 1,35 uW.

Stanovení numerické apertury

NA₁ = sqrt(1.49² - 1.41²) = 0.48 0.05 * 1.33 uW = 0.0665 uW = 66.5 nW $\alpha \sim 40^{\circ}$, NA₂ = sin(40°) = 0.64

Závislost útlumu na příčném vychýlení optických konektorů

X, mm	dBm pro 5 mm	dBm pro 10 mm	
-5.0	-39.51	-32.28	
-4.5	-36.82	-32.31	
-4.0	-33.45	-31.76	
-3.5	-31.30	-31.00	
-3.0	-29.69	-30.37	
-2.5	-29.06	-29.69	
-2.0	-28.21	-29.30	
-1.5	-27.56	-28.98	
-1.0	-26.84	-28.79	
-0.5	-26.60	-28.76	
0.0	-26.06	28.83	
0.5	-26.37	-29.17	
1.0	-26.89	-29.65	
1.5	-28.21	-30.39	
2.0	-29.17	-31.24	
2.5	-30.05	-31.97	
3.0	-30.99	-32.73	
3.5	-32.45	-33.50	
4.0	-33.51	-34.01	
4.5	-35.27	-34.77	
5.0	-37.62	-35.31	

Závislost útlumu na příčném vychýlení optických konektorů

Využití střídavého optického signálu

Pro oddělení světelného efektu od okolí jsme použili střídavý optický signál.

Závislost útlumu na ohnutí optického vlákna

R, cm	dBm
1.5	-2.50
2.0	-2.17
2.5	-2.05

Spektrální závislost útlumu optických vláken

Útlumy pro jednotlivé vlnové délky v jednotkách dB/km

Λ _{max} , nm	dBm pro 1 m	dBm pro 50 m	dBm/km
526	-17.40	-27.07	197.34
590	-20.48	-31.09	216.53
660	-25.00	-6.08	336.73
850	-25.50	-28.21	2710

Barevný posun světla

Došlo k tomu, že barva na druhém konci vlakna byla světle zelená, protože některé barevné světelné složky byly slabší.