Team Id: PNT2022TMID38677 Team Leader:E.L vincy rashitha

Team Title: fertilizers recommendation system for disease prediction Members List: 4

INTRO	DUCTION		SURVE	EY BODY OF REV	IEW		CONCLUSION			
Year	Title	Keywords	Problem Definition	Methodology (Algorithm, ProtocolEtc)	Input Parameters	Result	Advantages	Disadvantages/ Drawbacks	Research Gap/Research Question	
		1.soil	For soil	chemical	То	overall	1.avoid risk	1.It cover limit	Requirement of best	
	soil -	analysis	disease	analysis and	implement	averag		environment	indicator of local soil	
	based,field	2.laborator	prediction	sampling error	Single soil	e	2.long term			
	-specific	у	by using	two components	sample	cv	historical			
1.	fertilizer	3. errors,	Quantitativ	soil ph,soil	needed	values				
2022	recommen	quefts,	e	organic carbon		for				
	dation are	4.soil	evaluation			sample				
	a pipe-	nutrients	of fertility			s for				
	dream	agronemic	of tropical			ph				
		efficiency	soil							
		1.circular	For	Electrochemical	the nitrogen	separat	1.crop	1.most cost	To research growth	
	application	economy	nitrogen is	Used to reject	into waste	ion of	growth	associated	of cultivation	
	of	2.sustainabi	essential	first ammonium	water have	acid	2.reduce		underlying this work	
2.	ammonium	lity	for crop	And remove	been broken	ordere	nitrogen		is available	
2022	fertilizers	3.ammonia	growth	Water		d	growth		cooperation	
	recovered	4.re-using				accordi				
	by an	nutrients				ng				
						total				

	electroche mical system	5.nitrogen recovery				nitroge n concetr ation			
3. 2022	nutrient manageme nt may reduce global warming potential of rice cultivation in subtropical india	1.global warming potential 2.greenhou se gas,crop modeling, 3.food security	For indicated better nutrient manageme nt practice in rice cultivation	crop models, cultivatuion and validation gas sampling	rice production	land use of eco system	1.better nutrient 2.rice cultivation	1.rising contration	To find the atmospheric methane,co2 productivity
4. 2022	soil health and its relationshi p with food security and human health to meet the sustainable developme nt goals in india	1.soil function 2.sustainabl e 3.developm ent goals 3.soil quality 4.critical zone 5.soil education	For abilities to contribute global food security	soil nutrient status organic carbon health	basic soil properties	soil reasear ch	1.clean water 2.secure food 3.livehoods	1.shift of cultivation 2.poor soil quality	To targeted nutrients available in soil
5. 2021	impacts of soil fertility	1.rice based intercroppi ng system,	optimum conditions	soils fertility status	fertility parameters	soil groups in	1.reduce toxicity	1.stimulate soil 2.biological activity	this research did not receive

manageme	2.fodder	for plants	across soils	differe		any specific grant
nt on	cultivation,	growth	groups	nt		from funding
product	3.nutrient			tombel		agencies
and	manageme			area		
economics	nt,					
of rice and	4.rice and					
folder	cowpea					
intercroppi	fodder					
ng systems	5.intercropi					
under	ng system					
rainfed						
conditions						
in						
odisha,indi						
a						

INTRO	DUCTION		SURVE		Conclusion						
Ms. Dhatchayani .S											
Year	Title	Keywords	Problem Definition	Methodology (Algorithm, ProtocolEtc.)	Input Parameters	Result	Advantages	Disadvantages/ Drawbacks	Research Gap/Research Question		
	A smartphon	1.Smartpho ne	martpho Plant capture the Image, Smartp 1.Using 1.Already fixed Recommend the								
	e based plant	2. Plant diseases	identified by current	image then classified the image	CNN, ANN+CNN,	hone base plant	smartphone taking the image select	particular diseases only	classified disease using content base		

6. 2022	disease detection and treatment recommen dation system using machine learning	3.Recomm ender system 4.Treatmen t 5.Machine learning 6.Classifica tion	technology by implemente d user's friendly smartphone based plant disease treatment recommend	recommended treatment for the plant disease	classified the image, recommende d system model	disease s treatm ent recom mende d using ML techniq ues	particular part of image identify the disease and recommende d the treatment	can recommended	filtering recommender system technique
7. 2022	An Artificial intelligenc e solution for crop recommen dation	1.Deep learning 2.Deep neural network 3.Machine learning 4.classifiers NPK Predictions	er by using machine learning techniques It To predicting the fertility of the soil and also to predict the right crops to be grown in soil	classifying multiple crop AI prediction module to predict the best crop	classifier crop, collect the data set, fertilizer data set, predict the right crop for the disease	Minim um level of accura cy will predict base on the soil propert ies	1.Self learning 2.Ability 3.Robustness 4.Flexibility And many more things	1.It Show the maximum level of crop yield	predicting the right crops and help out the farmers to choose the most appropriate crop for his land based on the soil properties.
8. 2021	Soil Analysis and crop fertility prediction using	1.fertility 2.crop yield prediction 3.soil chemical feature	They are different type of soil properties know the characterist	 Soil dataset Crop dataset Yield dataset 	collection of dataset, known properties at characteristi	Predicting the soil fertility@cropyield	1.This completes the one epoch multiple epoch are	1.Predicting the Crop sow certain soil type	Providing fertilizer and also data from another region will be addedto make this model more reliable

	machine learning	4.ANN 5.machine learning	ics @propertie s for various soil type understand it which crop sow in certain soil type using machine learning	4. Training dataset 5. testing dataset	cs of soil type, identity crop sow in certain soil type	with type of the crop can grown on fertile soil	running accuracy reached the optimal value		and more efficient usage
9. 2019	Crop suitability /fertilizers recommen dation using data mining technique	1.NPK 2.K-Means Clustering 3.Fertilizer Recommen dation 4.Random Forest Algorithm 5.Ontology	Predict the suitable crop for the field under the base on the regions and climate	Crop recommendation Fertilizer recommendation	farmer, Server, Fertilizer recommenda tion system, ontology	Recommendations of suitable crops in the field for crops to data stored in ontology	1.Changes of climate base on disease will occur recommende dtreatment by using two data mining technique for it and store the data in ontology	1.Approximate fertilizer quantity and type of crop will grown or planted	Android application will be developed in regional language
10. 2019	Fertilizer Recommen dation system for disease prediction	1.Disease Prediction 2.Graph Cut Algorithm 3.Guided Active	For Testing the leave issues for quality and quantity of the food crops using	The digital camera(or) are take image of different types & identify the	Segment of leaf boundary,	Base on SVM to classif y tree leave	1.It gives better result when compared to existing	1.It takes more time consumption	To identify the disease that affect the various plant

in	tree	Contour	SVM	affected area in	classificatio	identif	CNN yield	organs such as stems
lea	ave	method,	approach	leaves especially	n affected	y the	more	& fruits
		4.Leaf		need to predict	part,	disease	productivity	
		segmentati		both quality	image	and		
		on		&quantity of leaf	acquisition	sugges		
		5.Leaf		model	testing	t the		
		Feature			diseases	fertiliz		
		Identificati			suggested	er		
		on.			the fertilizer			

INTRO	ODUCTION		SURVE	Y/BODY OF RE	VIEW		Conclusion			
Ms.Saraswathi.K										
Year	Title	Keywords	Problem Definition	Methodology (Algorithm, ProtocolEtc)	Input Parameters	Result	Advantages	Disadvantages/ Drawbacks	Research Gap/Research Question	
	Intelligent	1. Artificial	То	Temporal Pos	Plant leaf	Based on	1.Gain	1.It does not	In this work, they	
11.	insecticide	Intelligence	enhance	Feature-	Image,	soil	maximum farm	save any data	have not consider	
2022	and	2.Mathemati	agricultura	Convetional	Soil	nutrients	yield.	on the system	pH, temperature,	
2022	fertilizer	cal	1	Neural	nutrients	level,	2 Northiant migh	or cloud	humidity, and	
	recommen	model3.Preci	production	Network		fertilizer	2.Nutrient-rich	database.	moisture for open	
	dation	sion	and	(TPF-CNN)		recomme	soil.	So we will not	and indoor farming	
	system	Farming	productivit	model,		ndation		do any on		

	based on	4.Sensor	y by			would be	3. It does not	demand	
	TPF-CNN	technology	offering	Support Vector		done	require an	fertilizer	
	for smart		smart	Machine(SVM			internet	recommendati	
	farming		technolog),			connection	on system.	
			y which						
			will	ArtificalNeural					
			recommen	Network(ANN					
			d)and, K-					
			insecticide	Nearest					
			s and	Neighbour					
			fertilizers	(KNN)					
			for crops						
			and in the						
			soil using						
			TPF CNN						
			dual						
			operator						
			approch						
	Compariso	1.ArtificalInt	To predict	Conventional	Type of	Identifyi	1.Accurate	1. Plant diseae	It does not consider
	n	elligence	plant	Neural	Climate,	ng of	prediction	prediction is	the Ph parameters
	of	2.Machinele	disease in	Network	Specific	pathogen	2. It Minimizes	based on	and it can use other
	Artificial	arning	a specific	(CNN),	crop,	s causing	the loss of crop	weather	algorithms.
12.	Intelligenc	3.Deep	area	Artificial	disease,	disease&	due to disease	condition.	
2022	e	learning	based on	Neural	Trainingdat	recomme	attacks.		
	algorithm		the	Network	a,	nding	3.This Grows		
	in plant		forecastin	(ANN),Suppor	Test data,	fertilizer	crop in desert		
	disease		g model of	t Vector			regions		
	prediction		weather.	Machine(SVM					

),K-Nearest Neighbour(KN N)			4. The amount of spraying time of fungicide sprays avoid the growth of disease.		
13. 2021	Soil based Fertilizer recommend ation system for crop disease prediction system	1.Soil nutrients 2.Fertilizer3. Sensors	The type soil nutrient and of leaf disease occurring the crop	Long or short term memory algorithm	Soil type, soil analysis report	Analyzin g soil nutrient type for crop yield	1.Highly Efficient	1.Alogrithm requires a lot of resource and time	Does'not use any valid parameter regarding soil type and it does't recommend fertilizer to diversified crops.
14. 2021	Anutrient recommen dation system for soil fertilizatio n based on evolutionar y computatio n	1.Sensor data 2.Evolutiona ry computation 3.Soil nutrients 4,Agriculture	The exploration of nutrients to develop a knowledge -based system for the ICT environme nt.	Improved Genetic Algorithm (IGA)	Sensor, Threshold values, Extract patterns from the time-series data of Nitrogen, Phosphorus and Potassium(NPK)	Reduce the computat ion resources and improve the recomme ndation to maintain crops for	1.Thismethod performs better against the standard recommendati on. 2. It optimizes the crop yield ant maintain the soil nutrient.	1.Its does not uses the multi- objective optimization models tosolve optimization issue for more efficiently.	The optimization search strategy and individual repair methods to extract valuable paramaters will reduce the computation resources and improve the recommendation to maintain crops for soil fertilization.

						soil fertilizati on.			
	Prediction	1.Agricultur	To detect	SupportVector	Soil	The	1.There is a	1.Takes a	In this work, they
	of crop	2.Yield	Crop	Machine	nutrients,	predictio	higher crop	more time to	have not consider
	yield and	Prediction3.	diseases	(SVM),	Location	n of crop	yield of	predict the	pH, humidity, and
	fertilizer	Machine	and	Crop Image.	data,	yield	productivity	disease in the	moisture for disease
	recommen	learning4.Ra	recommen		Plant image.	based on		crop.	prediction.
15.	dation	ndom Forest	d			location			
	using	5.Soil	pesticides			and the			
2019	Machine	Nutrients.	for disease			higher			
	Learning		based on			crop			
	Algorithm		Support			yield is			
	_		Vector			achieved			
			Machine(S						
			VM).						

INTRO	DUCTION		SURV	EY/BODY OF	REVIEW			Conclusio	n
Year	Title	Keywords	Problem Definition	Methodolog y (Algorithm, ProtocolE tc)	Input Parameters	Result	Advantag es	Disadvantages/ Drawbacks	Research Gap/Research Question
Ms.Divy	a.K								
16. 2021	Crop yield prediction and fertilizer recommen dation using voting based Ensemble classifier	Crop,SVM, KNN,rando m forest, nitrogen, phosphoro us,CNN	The proposed can be used to determine the ideal planting season ,plant developme nt , and plant harvesting	Random forest is a supervised learning algorithm	Nitrogen ,ph , potassium etc	The information they need to earn a high return and as a result increase benefits lowering self destruction rates	Predicting the better crop is the ultimate aim of the project	Problem is to have the better crop yield	Base on the voting prediction the fertilizer recommendation is possible?
17. 2021	Machine Learning Strategy for Soil Nutrients Prediction Using Spectrosco pic Method	machine learning; nutrients prediction; soil spectra; soil analysis; soil	Based on UV-VIS and VIS - NIR spectra without selection of spectral variable	RF for OC, LS-VM for N, P and K, GRNN for nutrients	Soil,Joined fiber optic,lightbox ,spectromotor	The presented results confirm our initial hypothesis that the Machine Learning signifi-	Low computati on time Performs well with large datasets Reduce data	Do not deal with nonlinear problems over-fitting may occur	What Chemical characterization of the samples was performed in a certified laboratory?

		category; precision farming	selection, provided the ability to distinguish between high and low values			cantly improves the accuracy of soil property prediction.	dimension ality Provide a feature selection Easy to implement		
18. 2021	Optimized fertilizer recommen dation method for nitrate residue control in a wheat—maize double cropping system in dryland framing.	Nitrogen Phosphate Nitrogen requiremen t Nitrate nitrogen Fertilizer recommend ation.	Nitrogen Phosphate Nitrogen requiremen t Nitrate nitrogen Fertilizer recommend ation.	Winter wheat— summer maize is the major local cropping system in this area.	The local production level limits the target yield, and if the relationship between the amount of fertilizer applied and grain yield is established by collecting field data for a specific region, the estimation of this parameter will be accurate.	The yields were further improved by 81.9 %, 79.8 %, and 75.7 % at P rates of P1, P2, and P3, respectively, compared with P0.	These results indicate that the crop yields were increased by N application and they increased further when combined with P fertilizer.	Thus, insufficient or excessive N and P fertilizer decreased HI, which was not conducive to enhancing the crop yield.	Developed a convenient method to optimize the fertilizer recommendation method for the winter wheat—summer maize cropping system.

19. 2020 sp	eview on plication of drones for crop health conitoring and praying esticides and ertilizer	Unmanned aerial vehicle, camera, GPS,crop monitoring, spraying system ESC,	To measure the speed of wind the indicator is used to measure the moisture in the air	Digital temperature , humidity indicator ,water sensitive sensors, anemometer, filter papers.	Training process,RGB, HSV,YUV, accuracy	performance of this method will increase by quadcopter	Implemen tation of the agricultur e technique to enhance the productivi ty	Sometime show the different color in the training process	How to find the color of the plant?
Var Fer Rec dat Ima bas Gra 20. Gro	rtiable rtilizer ecommen tion by age- sed	Precision, Sensors, Image processing, Variability, Automatic control.	production fields and calibration relationship s were obtained between the sensor measureme nts and grass growth levels.	1.Sensing grase growth information 2.Image aquisation 3.Processing of the images *VRF Recommend ation *Prescriptio n *Variable rate applicator	Sodium,Potas sium, phosporous,n itrogen	Variations in the growth levels of the zoysiagrass were found for the same field, therefore, different levels of fertilizations were recommende d.	1.Simple methodolo gy 2.Easy to predict	1.More resources ne 9eded	This study would contribute greatly to increase fertilizer use efficiency and reduce environmental contamination, if the recommended fertilizers were variably applied.