FUNDAMENTOS DE CÁLCULO

PRIMERA PRÁCTICA DIRIGIDA - SOLUCIONES PROPUESTAS SEMESTRE ACADÉMICO 2021-1

Problemas Obligatorios

1. Resuelva las siguientes inecuaciones en \mathbb{R} :

a)
$$\frac{(x^2 - 2x - 3)(2x - 5)}{x - 3} \ge 0.$$

Solución:

Factorizando

$$\frac{(x^2 - 2x - 3)(2x - 5)}{x - 3} \ge 0 \iff \frac{(x - 3)(x + 1)(2x - 5)}{x - 3} \ge 0.$$

$$C.S. =]-\infty, -1] \cup \left[\frac{5}{2}, +\infty\right[-\{3\}.\right]$$

b)
$$x-1 < \sqrt{x^2-4}$$
.

Solución:

Restricción por la raíz cuadrada: $x^2 - 4 \ge 0 \iff x \in C.Rest =]-\infty, -2] \cup [2, +\infty[.$

Para los valores en el *C.Rest*, analizamos:

i)
$$x-1 < 0$$
: Cumplen todos los valores en $]-\infty,1[\cap C.Rest.$ $C.S_i =]-\infty,-2]$

ii)
$$x-1=0$$
: No cumple. $C.S_{ii}=\emptyset$

iii) x-1>0: Para los valores en $[2,+\infty[$, podemos elevar al cuadrado y resolver: $x^2-2x+1< x^2-4 \iff x>\frac{5}{2}.$ $C.S_{iii}=]5/2,+\infty[.$

Finalmente

$$C.S =]-\infty, -2] \cup]5/2, +\infty[.$$

2. Sean $x, y \in \mathbb{R}$. Justifique la veracidad de la siguiente proposición:

Es necesario que x < y para que $x^3 + x < y^3 + y$.

Solución:

Se pide demostrar $x^3 + x < y^3 + y \Rightarrow x < y$.

Podemos demostrar la contrarrecíproca: $x \ge y \Rightarrow x^3 + x \ge y^3 + y$.

Como $x \ge y \Rightarrow x^3 \ge y^3$; al sumar $x^3 + x \ge y^3 + y$.

Obs: También pudo usar demostración directa:

$$x^3 + x < y^3 + y \Leftrightarrow (x - y)(x^2 + xy + y^2 + 1) < 0, \text{ pero } x^2 + xy + y^2 + 1 = (x + y/2)^2 + 3/4 > 0, \text{ luego } x < y.$$

Problemas Complementarios

1. Resuelva las siguientes inecuaciones en \mathbb{R} :

a)
$$\left(\frac{x^2 - x + 4}{2 - x} + x\right) \sqrt{\frac{|x| - 1}{x^2 - 9}} \ge 0.$$

Solución:

Restricción por la raíz cuadrada: $\frac{|x|-1}{x^2-9} \ge 0$. Para resolver analizamos por zonas:

I)
$$x < 0$$
: Resolver $\frac{-x-1}{x^2-9} = -\frac{(x+1)}{(x+3)(x-3)} \ge 0 \land x < 0$. $C.R._I =]-\infty, -3[\cup]$

I)
$$x < 0$$
: Resolver $\frac{-x-1}{x^2-9} = -\frac{(x+1)}{(x+3)(x-3)} \ge 0 \land x < 0$. $C.R._I =]-\infty, -3[\cup [-1,0[.1]]$
II) $x \ge 0$: Resolver $\frac{x-1}{x^2-9} = \frac{(x-1)}{(x+3)(x-3)} \ge 0 \land x \ge 0$. $C.R._{II} = [0,1] \cup [3,+\infty[.1]]$

Luego, para cumplir la restricción debemos trabajar en $C.Rest =]-\infty, -3[\cup[-1,1]\cup]3, +\infty[$.

Analizamos:

i) Valores donde
$$\sqrt{} = 0$$
: $x = -1, x = 1$ son soluciones. $C.S._i = \{-1, 1\}.$

ii) Para x en $]-\infty, -3[\cup]-1, 1[\cup]3, +\infty[$ se tiene $\sqrt{-}>0$, luego el problema se reduce a

$$\frac{x^2 - x + 4}{2 - x} + x \ge 0 \iff -\frac{(x + 4)}{x - 2} \ge 0 \iff -4 \le x < 2.$$

Intersectando con el caso analizado

$$C.S_{ii} = [-4, 3[\,\cup\,] - 1, 1[.$$

Finalmente $C.S = [-4, 3[\cup [-1, 1]].$

b)
$$\frac{1}{|x-4|} < \frac{1}{2|x|-4}$$
.

Solución:

Analizamos en casos o zonas por el Valor Absoluto:

I)
$$\underline{x < 0}$$
: Resolver $\frac{1}{(-x+4)} < \frac{1}{(-2x-4)} \land x < 0$.

$$-\frac{1}{(x-4)} + \frac{1}{2(x+2)} < 0 \iff \frac{x+8}{2(x-4)(x+2)} > 0$$

$$C.S._I =]-8, -2[.$$

II)
$$0 \le x < 4$$
: Resolver $\frac{1}{(-x+4)} < \frac{1}{(2x-4)} \land 0 \le x < 4$.

$$-\frac{1}{(x-4)} - \frac{1}{2(x-2)} < 0 \iff \frac{3x-8}{2(x-4)(x-2)} > 0$$

 $C.S._{II} =]2,8/3[.$

III)
$$\underline{x \ge 4}$$
: Resolver $\frac{1}{(x-4)} < \frac{1}{(2x-4)} \land x \ge 4$.

$$\frac{1}{(x-4)} - \frac{1}{2(x-2)} < 0 \iff \frac{3x}{2(x-4)(x-2)} < 0$$

 $C.S._{III} = \emptyset$.

Finalmente

$$C.S. =]-8, -2[\ \cup \]2, \frac{8}{3}[\ .$$

c)
$$3-x \ge \sqrt{x^2 - \frac{x}{2} + 2}$$
.

Solución:

 $\frac{\text{Restricción por la raíz cuadrada}\colon x^2 - \frac{x}{2} + 2 \ge 0, \text{ se cumple para todo } x, \text{ luego} \qquad C.Rest = \mathbb{R}.}{\text{Para que tenga sentido la desigualdad}} \text{ necesitamos que } 3 - x \ge 0. \qquad Rest_2 =] - \infty, 3].}$

Para $x \in]-\infty,3]$ podemos elevar al cuadrado y resolver: $(3-x)^2 \ge x^2 - \frac{x}{2} + 2 \iff x \le \frac{14}{11}$.

$$C.S =]-\infty,3] \cap]-\infty,\frac{14}{11}].$$

Finalmente
$$C.S = \left] -\infty, \frac{14}{11} \right]$$
.

d)
$$(2\sqrt{4x^2-25}+5-4x)(x^4-6x^3+9x^2) \ge 0$$
.

Solución:

- Para x = 3 se cumple la desigualdad. Para x = 0 no, por la restricción.
- Para $x \neq 3$, $x \neq 0$, se tiene $x^2(x-3)^2 > 0$, luego basta analizar $(2\sqrt{4x^2-25}+5-4x) \ge 0$.

$$2\sqrt{4x^2 - 25} + 5 - 4x \ge 0 \iff 2\sqrt{4x^2 - 25} \ge 4x - 5.$$

Analizamos

- i) 4x-5<0: Cumplen todos los valores con $x<\frac{5}{4}$ en C.Rest. $C.S_i=]-\infty,-5/2$]
- ii) $4x-5 \ge 0$: Para los valores en $\left[\frac{5}{4}, +\infty\right[\cap C.Rest$, puede elevar al cuadrado y resolver: $4(4x^2-5) < (4x-5)^2 \iff x \ge \frac{25}{8}$. $C.S_{ii} = \left[\frac{25}{8}, +\infty\right[$.

2. Encuentre los valores de la constante real a que hacen que el conjunto solución de

$$x^3 + (a-1)x - a \le 0$$

sea un intervalo.

Solución:

Factorizando se llega a la inecuación $(x-1)(x^2+x+a) \le 0$.

Analicemos cuántas raíces reales tiene el factor cuadrático según los valores de a:

- Si $a > \frac{1}{4}$, tenemos $x^2 + x + a > 0$ para todo x real. Se reduce a $x 1 \le 0$. $C.S. =]-\infty, 1]$.
- Si $a = \frac{1}{4}$, tenemos $x^2 + x + a = \left(x + \frac{1}{2}\right)^2$, queda la inecuación $(x 1)\left(x + \frac{1}{2}\right)^2 \le 0$. $C.S. =] \infty, 1]$.
- Si $a < \frac{1}{4}$, la cuadrática tiene dos raíces reales diferentes: $x_1 = -\frac{1}{2} \frac{\sqrt{1-4a}}{2}$, $x_2 = -\frac{1}{2} \frac{\sqrt{1-4a}}{2}$. Cuando a = -2: $x_1 = -2$, $x_2 = 1$, la inecuación queda $(x-1)^2(x+2) \le 0$. $C.S. =]-\infty, -2] \cup \{1\}$. Cuando $a \ne -2$ la inecuación tiene 3 raíces reales diferentes y el C.S. será la unión de intervalos disjuntos.

Finalmente podemos ver que el C.S. es un solo intervalo sólo para todos los $a \ge \frac{1}{4}$.

3. En cada caso, halle el dominio implícito de la función f dada su regla de correspondencia:

a)
$$f(x) = \frac{1}{\sqrt{mx^2 - m^2x + m - x}}$$
, donde $m < -1$ es una constante real.

Solución:

Por la raíz y el denominador $Dom(f) = \{x \in \mathbb{R} : mx^2 - m^2x + m - x > 0\}.$ $mx^2 - m^2x + m - x > 0 \iff (mx - 1)(x - m) > 0 \iff \left(x - \frac{1}{m}\right)(x - m) < 0 \text{ pues } m < 0.$

$$\boxed{Dom(f) = \left] m, \frac{1}{m} \right[.}$$

b)
$$f(x) = \frac{\sqrt{k-x}}{x + \sqrt{x-k^2}}$$
, donde k es una constante real con $\frac{1}{2} < k < 1$.

Solución:

Tenemos las restricciones

$$k-x \ge 0$$
 \wedge $x-k^2 \ge 0$ \wedge $x+\sqrt{x-k^2} \ne 0$.

$$(x \le k \land x \ge k^2) - \{x \in \mathbb{R} : x + \sqrt{x - k^2} = 0\}.$$

Notamos que para que $x + \sqrt{x - k^2} = 0$ tendría que cumplirse que $x \le 0$ y $(\sqrt{x - k^2})^2 = (-x)^2$, lo que nos lleva a la cuadrática $x^2 - x + k^2 = 0$ pero por ser $\frac{1}{2} < k < 1$ esta cuadrática nunca se hace 0.

Además como $\frac{1}{2} < k < 1,$ se tiene $k^2 < k,$ de donde el dominio resulta:

$$\boxed{Dom(f) = \left[k^2, k\right].}$$

4. Se muestra la gráfica de una función f.

a) Encuentre el dominio y rango de la función f.

Respuesta: $Dom(f) =]-6, -2[\cup[-1, 9]; Ran(f) = [-5, 3[\cup\{4\}]]$.

b) Determine, si existen, el valor máximo de f y el valor mínimo de f e indique para qué valores de x se obtienen.

Respuesta:

Valor máximo es 4 y se obtiene para todo $x \in [5, 9] - \{7\}$.

Valor mínimo es -5 y se obtiene para x = 7.

c) Halle los valores de x tales que $-2 \le f(x) < 4$.

Respuesta: $]-6,-4] \cup [-1,5[.$

- 5. Justifique la veracidad o falsedad de las siguientes proposiciones:
 - a) Existe $a \in \mathbb{R}$ con |a| < 2, tal que $x^2 3x + a > 0$ para todo $x \in \mathbb{R}$.

Solución: Falso.

Para todo a con -2 < a < 2, el discriminante de la cuadrática en x es 9-4a > 0 y el coeficiente de x^2 es positivo, luego $x^2-3x+a \le 0$ para $x \in \left[\frac{3}{2}-\frac{\sqrt{9-4a}}{2},\frac{3}{2}+\frac{\sqrt{9-4a}}{2}\right]$.

b) Existe $x \in \mathbb{R}$ tal que para todo $y \in \mathbb{R}$ se cumple que $y^2 > xy - x$.

Solución: Verdadero.

Existe x = 1 tal que para todo $y \in \mathbb{R}$ se cumple $y^2 - (1)y + (1) > 0$, luego $y^2 > (1)y - (1)$.

Obs: En general cumple cualquier $x \in]0, 4[$.

c) Una condición necesaria para $1 \le x^2 + x$ es que $x \ge 1$ o $x \le -1$.

Solución: Falso.

En primer lugar lo que se pedía analizar es: Si $1 \le x^2 + x$ entonces $x \ge 1$ o $x \le -1$.

Puede dar un contraejemplo como: $x = \frac{\sqrt{2}}{2}$ entonces cumple $x^2 + x = \frac{1 + \sqrt{2}}{2} \ge 1$ pero $-1 < \frac{\sqrt{2}}{2} < 1$.

d) Para todo x < 0 existe y < 0 tal que xy > 1.

Solución: Verdadero.

Para todo x < 0 existe $y = \frac{2}{x} < 0$ tal que xy = 2 > 1.

6. Demuestre que la siguiente proposición es verdadera:

Es suficiente que $5x^2 \le y + 1$ para que $10|x| \le y + 6$.

Solución:

Usando contradicción o reducción al absurdo: Si asumimos $5x^2 \le y+1 \land 10|x| > y+6$. Tendríamos $5x^2 \le y+1 \land y+1 < 10|x|-5$, entonces $5x^2 < 10|x|-5$, de donde $5x^2 - 10|x|+5 < 0$ pero esto es $5(|x|-1)^2 < 0$ que es absurdo en $\mathbb R$.

San Miguel, 22 de abril de 2021.