Generalized Linear Regression and Classification

Johanni Brea

Einführung Machine Learning

GYMINF 2022

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Multiple Linear Classification
- 4. Evaluating Binary Classification
- 5. Poisson Regression

Wind Speed Prediction

- ► Training Set: Hourly data 2015-2018
- ► Training Loss (rmse): 10.0 km/h
- ► **Test Set**: Hourly data 2019-2020
- ► Test Loss (rmse): 11.5 km/h

root-mean-squared error:

rmse =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
.

Multiple Linear Regression

$$\hat{y} = f(x_1, x_2, \dots, x_p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}}_{\mathbf{X}} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

Often the output correlates with multiple factors.

For example:

x₁: pressure in Luzern

x₂: temperature in Luzern

x₃: pressure in Basel

x₄: pressure in Lugano

etc.

Multiple Linear Regression Example: p = 2, n = 20

Multiple Linear Regression finds the plane closest to the data.

Multiple Linear Regression for Wind Speed Prediction

predictor name	fitted parameter			
LUZ_pressure	-2.79 (km/h)/hPa			
PUY_pressure	-2.39 (km/h)/hPa			
BAS_precipitation	-0.66 (km/(h)/mm			
:	<u>:</u>			
LUZ_temperature	0.87 (km/h)/C			
GVE_pressure	3.95 (km/h)/hPa			

Interpretation

An increase of one hPa of LUZ_pressure correlates with a decrease of the expected wind speed by 2.79 km/h, if all other measurements remain the same.

Evaluation

- Training Set: Hourly data 2015-2018
- Training Loss (rmse): 8.1 km/h
- ► **Test Set**: Hourly data 2019-2020
- ► Test Loss (rmse): 8.9 km/h

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Multiple Linear Classification
- 4. Evaluating Binary Classification
- 5. Poisson Regression

Error Decomposition for Regression

Conditional Data Generating Process: $Y = f(X) + \epsilon$

noise (or error term) ϵ , with expectation $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$ f represents **systematic** information that X provides about Y.

E.g.
$$f(X) = \sin(2X) + 2(X - 0.5)^3 - 0.5X$$

 $x_1 \approx 0.2$ $f(0.2) \approx 0.23$ $\epsilon_1 \approx -0.03$ $y_1 \approx 0.2$

Supervised Learning:
$$\hat{Y} = \hat{f}(X)$$

$$\hat{f}$$
 = estimate of f , \hat{Y} = predicted outcome

E.g.
$$\hat{f}(X) = 0.1 + X$$
 $\hat{y}_1 = \hat{f}(x_1) = 0.3$

residual
$$y_1 - \hat{y}_1$$

prediction error $(y_1 - \hat{y}_1)^2 = 0.1^2 = 0.01$

Blackboard: Error Decomposition for Regression

$$\mathsf{E}_{Y|X}(Y-\hat{Y})^2 = \underbrace{\left(f(X) - \hat{f}(X)\right)^2}_{\mathsf{Reducible}} + \underbrace{\mathsf{Var}(\epsilon)}_{\mathsf{Irreducible}}$$

Quiz

- Let us assume the red data points in this figure were generated with the help of a function whose graph is shown in blue. What is correct?
 - A. A linear fit has a non-zero reducible error.
 - B. The irreducible error is zero.
 - C. A method with zero prediction error on the red data has a reducible error of zero.
- Assume we perform linear regression on the red data points and compute the residuals $\hat{\epsilon}_i = v_i - \hat{v}_i$ and the empirical variance $\frac{1}{n-1}\sum_{i=1}^{n}\hat{\epsilon}^{2}$. The irreducible error is

B. smaller A. larger than this empirical variance.

What is the irreducible error. for the following data generating process?

$$p(y|x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(y-2x)^2}{2}}$$

A.1 B.2 C.4

Summary

- ▶ The true systematic information f that X provides about Y is usually unknown.
- Our goal: find the function \hat{f} that minimizes the reducible error.
- ▶ The test error of \hat{f} is never lower than the irreducible error.

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Multiple Linear Classification
- 4. Evaluating Binary Classification
- 5. Poisson Regression

Spam Classification

spam

Subject: follow up here 's a question i've been wanting to ask you, are you feeling down but too embarrassed to go to the doc to get your m / ed 's?

here 's the answer, forget about your local p harm. acy and the long waits, visits and embarassments. do it all in the privacy of your own home, right now. http://chopin.manilamana.com/p/test/duetit's simply the best and most private way to obtain the stuff you need without all the red tape.

Feature Representation

There are many ways to extract useful features from text. Here we use a very simple "bag of words" approach: word counts for a lexicon of size *p*.

E.g.
$$X_1$$
 (your) X_2 (need) X_3 (pay) \cdots X_p (red) 3 1 0 \cdots 1

All n emails get such a representation.

Multiple Logistic Regression

$$\Pr(Y = \text{spam}|X) = \sigma(\theta_0 + \theta_1 X_1 + \dots + \theta_p X_p)$$

$$\sigma(X) = \frac{1}{1 + e^{-X}} \quad \sigma(0) = 0.5 \quad \sigma(-\infty) = 0 \quad \sigma(\infty) = 1$$

Find $\hat{\theta}_0$, $\hat{\theta}_1$, ..., $\hat{\theta}_p$ that maximize the likelihood function.

Predictions (at **decision threshold** 0.5):

A new email is classified as spam, if its feature representation x leads to

$$\sigma(\hat{\theta}_{\mathsf{O}} + \hat{\theta}_{\mathsf{1}} x_{\mathsf{1}} + \dots + \hat{\theta}_{\mathsf{d}} x_{\mathsf{d}}) \geq 0.5.$$

The corresponding **decision boundary** is linear:

$$\hat{\theta}_0 + \hat{\theta}_1 x_1 + \dots + \hat{\theta}_d x_d = 0$$

Multiple Logistic Regression Example: p = 2

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Multiple Linear Classification
- 4. Evaluating Binary Classification
- 5. Poisson Regression

Confusion Matrix

At decision threshold 0.5					
	true class label				
		false	true	Total	
predicted class label	false	42	4	46	
	true	7	47	54	
	Total	49	51	100	

At decision throughold OF

At decision threshold $\sigma(x) = 0.1$

true class label				
	false	true	Total	
false	25	1	26	
true	24	50	74	
Total	49	51	100	
	true	false false 25 true 24	false true false 25 1 true 24 50	

...... $Pr(Y = true | X = x) = \sigma(x/2)$

Confusion Matrix & Error Rates

		true class label					
		Neg.		Pos.		Total	
predicted	Neg.	True Neg. (TN)		(TN) False Neg. (FN)		\mathcal{N}^*	
class label	el Pos.	s. False Pos. (FP)		True Pos. (TP)		P^*	
	Total	Ν			P		
Name	Definition	Definition		Synonyms			
False Pos. rate	FP/N		Type I error, 1-Specificity				
True Pos. rate	TP/P		1-Type II error, Power, Sensitivity, Recall				call
False Neg. rate	FN/P	•					
Pos. Pred. value	TP/P^*		Precision, 1-false discovery, Proportion				
Error Rate	(FP+FN)/(P+N)		Misclassification rate				
Accuracy	1 - Error F	Rate					
Multiple Linear Regression	Error Decomposition	n Multiple	Linear Clas	sification	Evaluating Bina	ry Classification	Poiss

Decision Thresholds and Error Rates

Finding the right threshold value depends on domain knowledge: which error do we most care about?

E.g. disease detection: do we want a small false negative rate?

ROC curve and AUC

- measure True Pos. rate and False Pos. rate for different thresholds on test data to obtain the receiver operating characteristics ROC curve.
- Random classification would be on diagonal.
- Area under the ROC curve AUC assesses the classifier.
- Random classifier has AUC = 0.5, perfect classifier has AUC = 1.

Quiz

- 1. Multiplying all parameters of logistic regression by a factor larger than 1 leaves the decision boundary unchanged.
- 2. If it is possible to perfectly classify the data, there exists a classifier with AUC = 1.
- 3. If we classify according to the worst classifier (class A if $p_{\Delta} < 0.5$ and class B otherwise), the AUC is expected to be smaller than 0.5.
- Typically we expect the AUC on the training set to be higher than on the test set.
- 5. No matter what classifier we use, the ROC curve always starts at (0, 0) and ends at (1, 1).

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Multiple Linear Classification
- 4. Evaluating Binary Classification
- 5. Poisson Regression

Poisson Regression

When the response is a non-negative count variable, e.g. number of bicycles rented, it can be problematic to use the normal distribution to model the noise, because the support of the normal distribution is not restricted to positive numbers and the variance is independent of the mean.

The Poisson distribution can be better suited in this case (see bike sharing example in the notebook).

Take-home message

Always ask yourself: which distribution is best to model the noise.