STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

DN1.2: LIMITS

The *limit* of a function describes the *behaviour* of a function as the variable approaches a particular value.

Examples

1. Find the limit of the function f(x) = x + 2 as x approaches 2

The behaviour of f(x) as $x \rightarrow 2$ is shown in the table:

Х	1.95	1.995	→2←	2.005	2.05
f(x)	3.95	3.995	→4←	4.005	4.05

The table shows that as x approaches 2, f(x) approaches 4

$$\therefore \lim_{x \to 2} x + 2 = 4$$

2. Find
$$\lim_{h\to 0} (5x^2 + 2xh + h)$$

The 2xh and h terms will approach zero as h approaches zero.

The limit can be found by substituting zero for h:.

$$\lim_{h \to 0} (5x^2 + 2xh + h) = 5x^2 + 2x.0 + 0$$
$$= 5x^2$$

3. Find
$$\lim_{h\to 0} \frac{\sin(h)}{h}$$

It is not possible to find the limit by substituting h = 0

But consider the behaviour of $f(h) = \frac{\sin(h)}{h}$ as $h \to 0$:

h	-0.5	-0.3	-0.2	-0.1	→0←	0.01	0.1	0.2	0.3	0.5
f(h)	0.959	0.985	0.993	0.998	→?←	0.99998	0.998	0.993	0.985	0.959

It appears that
$$\lim_{h \to 0} \frac{\sin(h)}{h} = 1$$

Exercises

Determine the limit of the following:

- 1) $\lim_{h\to 0} (4xh+3)$
- $2) \quad \lim_{x \to 0} \frac{9 x^2}{4}$
- 3) $\lim_{h \to 0} \frac{xh 2h}{h}$
- $4) \quad \lim_{x \to 0} \frac{\tan(x)}{x}$

Answers

- 1) 3
- 2) $\frac{9}{2}$
- 3) x 2
- 4) 1