UMT Styroporschneider

Anleitung zum Betrieb, Installation und Funktion

- Anwendungen
- Styroporschneider
- PC, Arduino, Shield
- Das Prinzip
- Wie entsteht das Modell?
- Zeichnung
- Maschinen-Nullpunkt
- Lage der Koordinaten
- DXF in G-Code
- Lorry2.txt
- Arduino & G-Code-Interpreter
- G-Code übermitteln
- Zeichnung & G-Code
- Manuelle Steuerung
- Bresenham I & II
- Installation I & II

H39@email.de

Anwendungen	
Hobbymodellbau	Flugzeugmodelle, insbesondere Flügel, Rümpfe
	Landschaften
	Gebäudefassaden
	Geometrische Figuren
	Silhouetten

•••

Styroporschneider

Hersteller	Traudl Riess
	Bausatz
Material	UMT-Technik
	2 Schrittmotoren 3,6°/Schritt
	100 Schritte entsprechen 1 mm
Netzteil	Geeignet für Heißdraht, z.B. Batterieladegerät
Umbau	Arduino & Shield

PC, Arduino, Shield

Das Prinzip

Software GcodeSender	Sketch G-Code Interpreter	
G-Code	G-Code steuert Schrittmotor	

Wie entsteht das Modell? Schritt Software Aktion 1. Zeichnung Zeichnung als dxf-Datei erstellen QCAD von QCAD.org ∨ ☑ 器 Entities 0 2. DXF in G-Code dxf-Datei in G-Code konvertieren DXF2GCODE GCodeSender Connection File Generate Action 3. G-Code übermitteln GcodeSender G-Code-Datei an Arduino senden

Zeichnung

Maschinen-Nullpunkt & Werkstück-Nullpunkt

Lage der Koordinaten

Blickrichtung auf Cutter (Schrittmotor rechts)

X-Achse positiv

DXF in G-Code

- 1. Zeichnung Liegt im dxf-Format vor.
- 2. DXF2GCODE Freie Software von Damian Wrobel.

Download-Link siehe Installation.

- Öffnen der dxf-Datei
- Unter Options
 "Move Workspace Zero:
 hier "Offset Y-axis: +5",
 dann OK
- Unter Export
 "Optimize and Export Shapes"
 in eine Textdatei speichern.

Lorry2.txt

```
G21 (Einheiten in mm)
G90 (Absolute Maßangaben)
G92 X0 Y0 Z0 (Maschinen Nullpunkt)
G0 X 10 Y 5 F100
                                     G1 X110 Y 45
                                     G1 X110 Y 15
F50
G1 X 10 Y 15
                                     G1 X100 Y 15
G1 X 0 Y 15
                                     G1 X100 Y 5
G1 X 0 Y 35
                                     G1 X 80 Y 5
G1 X 30 Y 45
                                     G1 X 80 Y 15
G1 X 34 Y 45
                                     G1 X 30 Y 15
G1 X 50 Y 75
                                     G1 X 30 Y 5
G1 X 70 Y 75
                                     G1 X 10 Y 5
G1 X 70 Y 35
                                     G0 X 0 Y 0 F100
G1 X100 Y 35
                                     M18 (Steppermotoren entkoppeln)
G1 X100 Y 45
```

Arduino & G-Code-Interpreter

PC mit Programm, das Daten an den Arduino sendet

PC: Software **G-Code Sender**

(2) Empfängt Bereitschaft: ">"

(3)Sendet z.B. "G01 X0 Y0"

Arduino mit Sketch der über die USB-Verbindung (seriell) Daten vom PC erwartet

Arduino: G-Code Interpreter

Sendet ">" an PC (1)

Empfängt "G01 X0 Y0" (4)

Verarbeitet "G01 X0 Y0" 5

Sendet Meldungen an PC 6

7 Empfängt Meldungen und zeigt sie an

Wenn fertig, Sendet ">" an PC (8)

(9) Empfängt Bereitschaft: ">"

G-Code übermitteln

3. G-Code über- G-Code liegt im txt-Format vor. mitteln

GcodeSender Freie Software von Dan Royer.

Download-Link siehe Installation.

- 1. Unter "Connection Speed "57600" und den USB-Port einstellen.
- 2. Bei erfolgreicher Verbindung erscheint ein Hilfetext, s. rechts.
- 3. Öffnen der Datei unter File, Option File, Dateiname
- 4. Action Start

Zeichnung & G-Code

G-Code?	Steuerprogramm für NC-Maschinen (numerical controlled)		
	NC-Programme in G-Code, eine Art Programmiersprache		
Geometrie	X, Y, Z	absolute Koordinaten G-Befehle	
Wegbedingung	G00 X5 Y10	Eilgang	
	G01 X10 Y50	Geradeninterpolation	
	G02 X40 Y-60 I+10 J-20	Kreisinterpolation im Uhrzeigersinn	
	G03 X40 Y+60 I-10 J+20	Kreisinterpolation im Gegenuhrzeigersinn	
	G90	absolute Maßangaben	
	G91	inkrementelle Maßangaben	
Technologiedaten	Fxxx	Vorschub in mm/min	
Zusatzfunktionen	Mxxx	Schrittmotoren aus	

Manuelle Steuerung

GcodeSender	ist gestartet und Hilfetext erscheint.	
	In der Eingabezeile Steuerbefehle eingegeben und auf"Send" klicken.	GCode Sender Connection File Generate Action Send Connecting to COM8
Hilfetext	M100 [Send]	EBW Cutter Enno Version 12.2018 G00 [X(mm)] [Y(mm)] [Z(mm)] [F(feedrate)]; - line
Position	M114 [Send]	G01 [X(mm)] [Y(mm)] [Z(mm)] [F(feedrate)]; - line G02 [X(mm)] [Y(mm)] [I(mm)] [J(mm)] [F(feedrate)]; - clockwise arc G03 [X(mm)] [Y(mm)] [I(mm)] [J(mm)] [F(feedrate)]; - counter-clockwise arc
Position setzen	G91 X0 Y0 [Send]	G04 P[seconds]; - delay G28; Home-Position
Achtung	Der Maschinen-Nullpunkt ist rechts oben (Schrittmotor rechts).	G90; - absolute mode G91; - relative mode G92 [X(mm)] [Y(mm)] [Z(mm)]; - change logical position F50 or F75 or F100 or F125 or F150; - allowed values for feedrate
Schneidtisch, d.h. Schritte in x-Richtung	G90 [Send] G01 X100 [Send] also 100 mm in x-Richtung	M18; - disable motors M100; - this help message M114; - report position and feedrate All commands must end with a newline. new Feedrate= 100
Schneidedraht, d.h. Schritte in	G90 [Send] G01 Y100 [Send]	is and Cuttorsight mach unten reight
y-Richtung	also 100 mm in positiver-Richtung , d	ie aus Cuttersicht nach unten zeigt!

Bresenham I

Linien-Algorithmus im Sketch auf dem Arduino

Bresenham II

$$x_A = 0 y_A = 0$$

 $x_B = 10 y_B = 3$

Test für den Zeilenwechsel: G>0

$$C(=x_i)$$
 0 1 2 3 4 5 6 7 8 9 10 $R(=y_i)$ 0 0 1 1 1 1 1 2 2 2 3 3 3 G m -4 2 -12 -6 0 6 -8 -2 4 -10 -4

Test für den Zeilenwechsel: G>=0 $C(=x_i)$ 0 1 2 3 4 5 6 7 8 9 10 $R(=y_i)$ 0 0 1 1 1 2 2 2 2 3 3 G m -4 2 -12 -6 0 -14 -8 -2 4 -10 -4

- Punktauswahl beim Test G>0
- Punktauswahl beim Test G>=0

Installation I

Arduino-Sketch

Arduino-IDE starten

Sketch "Gcodeinterpreter.ino" öffnen, kompilieren, übertragen.

Shield

Den Shield (Adafruit Shield V1 kompatibel) auf den Arduino stecken.

Schrittmotor X-Achse

M3: blau rot M4: weiß

gelb

Schrittmotor Y-Achse

M2: blau rot

M1: weiß

gelb

Installation II	
QCAD	QCAD Windows Installer herunterladen, installieren und als "QCAD Community Edition" einrichten.
	https://qcad.org/archives/qcad/qcad-3.21.3-trial-win32-installer.msi
DXF2GCODE	 Herunterladen Installieren & Starten Die cfg-Dateien befinden sich im Ordner "C:\Users\DeinAccount\.config\dxf2gcode. Hierhin die von Enno bezogenen cfg-Konfigurations-Dateien kopieren
	https://sourceforge.net/projects/dxf2gcode/files/DXF2GCODE-2017.09.25-win32.msi/download?use_mirror=netcologne
GcodeSender	https://github.com/marginallyclever/gcodesender
Arduino G-Code Interpreter	Der Autor "Marginally Clever" hat eine Reihe von Arduino G-Code-Interpretern veröffentlich. Die Variante "GcodeCNCDemo4AxisV2" habe ich als Grundlage genommen.
	https://github.com/MarginallyClever/GcodeCNCDemo