Алгебра.

B. A. Петров lektorium.tv

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных". Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M, 0 \in M)$ с аксиомами:

- A_1) $\forall a, b, c \in M : (a + b) + c = a + (b + c)$ ассоциативность сложения
- A_2) $\forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент
- A_3) $\forall a,b \in M: a+b=b+a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M,+:M^2\to M,\cdot:M^2\to M,0\in M,1\in M)$:

- D) $\forall a, b, k \in M : k(a+b) = ka + kb, (a+b)k = ak + bk$ дистрибутивность
- M_1) $\forall a,b,c \in M: (a\cdot b)\cdot c = a\cdot (b\cdot c)$ ассоциативность умножения
- M_2) $\forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- M_3) $\forall a,b \in M: a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M \setminus \{0\} : \exists a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

Кольцо — набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.

Ассоциативное кольцо — кольцо с M_1 .

Кольцо с единицей — кольцо с M_2 .

Тело — кольцо с M_1, M_2 .

Поле — кольцо с M_1, M_2, M_3, M_4 .

 $\mathbf{\Pi}$ олукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u\cdot v;av+bu+u\times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

Утверждение 1. $0 \cdot a = 0$

Определение 4. Коммутативное кольцо без делителей нуля называетсся *областью* (*целостности*).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. *Подкольцо* — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость соглассуются автоматически.

Утверждение 2. Если R-noдкольцо области целостности S, mo R-oбласть целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b\in\mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

Замечание 1. Замкнутое относительно сложения **И** умножения подмножество — подкольцо. Пример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

1 Теория делимости

Пусть R — область целостности.

Определение 9. " $a \ deлum \ b$ " или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 3. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b accoulumuвны*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 4. " \sim " — отношение эквивалентности.

Утверждение 5. $a \sim b \Leftrightarrow \exists \ \textit{обратимый } \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c, d : ac = b, bd = a$. Тогда a(1-cd) = a - acd = a - bd = a - a = 0, значит либо a = 0, либо cd = 1. В первом случае b = ac = 0c = 0, значит можно просто взять $\varepsilon = 1$. Во втором случае, cd = 1, значит c и d обратимы, тогда можно взять $\varepsilon = d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \mid a$;
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \mid b$.

Таким образом $a \sim b$.

 $\Pi pumep \ 4. \ B \ \mathbb{Z}[i]$ есть только следующие обратимые элементы: 1, -1, i и -i. Поэтому все ассоциативные элементы получаются друг из друга домножением на один из 1, -1, i, -i и вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 6. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 7. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 8. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

Замечание 2. То же верно и в некоммутативном R.

 $\Pi pumep$ 5. В поле есть только 0R и 1R.

 $\Pi pumep 6. \ B \ \mathbb{Z} \ ecть только <math>m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}.$

Определение 12. Пусть P — кольцо. $I \subseteq P$ называется *правым идеалом*, если

- 1. $0 \in I$;
- 2. $a, b \in I \Rightarrow a + b \in I$;
- 3. $a \in I \Rightarrow -a \in I$;
- $4. \ a \in I, r \in R \Rightarrow ar \in I.$

I называется левым идеалом, ессли аксиому 4 заменить на " $a \in I, r \in R \Rightarrow ra \in I$ ". Также I называется двухсторонним идеалом, если является левым и правым идеалом, и обозначается как $I \triangleleft P$.

Замечание 3. В коммутативном кольце (и в частности в области целостности) все идеалы двухсторонние.

 $\Pi p u м e p 7.$ Пусть дано кольцо P и фиксированы $a_1, \ldots, a_n \in P$. Тогда $a_1 P + \cdots + a_n P = \{a_1 x_1 + \cdots + a_n x_n \mid x_1, \ldots, x_n \in P\}$ есть правый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n . Аналогично $Pa_1 + \cdots + Pa_n = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in P\}$ — левый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n .

Определение 13. Область главных идеалов $(O\Gamma U)$ — область целостности, где все идеалы главные.

Определение 14. Область целостности R называется Eвклидовой, если существует функция ("Евклидова норма") $N: R \setminus \{0\} \to \mathbb{N}$, что

$$\forall a, b \neq 0 \ \exists q, r : a = bq + r \land (r = 0 \lor N(r) < N(b))$$

Теорема 9. Eвклидово кольцо — область главных идеалов.

Доказательство. Пусть наше кольцо — R. Если $I = \{0\}$, то I = 0R. Иначе возьмём $d \in I \setminus \{0\}$ с минимальной Евклидовой нормой. Тогда $\forall a \in I$ либо $d \mid a$, либо $\exists q, r : a = dq - r$. Во втором случае $dq \in I$, $r = a - dq \in I$, но N(r) < N(d) — противоречие. Значит I = dR.

Определение 15. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 10 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\phi(a) \geqslant \phi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\phi(r) < \phi(b) \leqslant \phi(a)$, значит $\phi(a) + \phi(b) > \phi(r) + \phi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\phi(a) + \phi(b)$ не может бесконечно уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Теорема 11 (линейное представление НОД). $\forall a, b \in R \exists p, q \in R : ap + bq = (a, b)$.

Доказательство. Докажем по индукции по N(a) + N(b).

База. N(a) + N(b) = 0. Значит N(a) = N(b) = 0, а тогда a и b не могут не делиться друг на друга, значит НОД — любой из них. А в этом случае разложение очевидно.

Шаг. WLOG $N(a)\geqslant N(b)$. Если $b\mid a$, то b — НОД, а тогда разложение очевидно. Иначе по аксиоме Евклида $\exists q,r: a=bq+r$. Заметим, что (a,b)=(b,r)=d, но $N(a)+N(b)\geqslant N(b)+N(b)>N(b)+N(r)$. Таким образом по предположению индукции для b и r получаем, что d=bk+rl для некоторых k и l, значит d=bk+(a-bq)l=al+b(k-ql).

Определение 16. Элемент p области целостности R назвывается nenpusodumыm, если $\forall d \mid p$ либо $d \sim 1$, либо $d \sim p$.

Определение 17. Элемент p области целостности R назвывается npocmum, если из условия $p \mid ab$ следует, что $p \mid a$ или $p \mid b$.

Утверждение 12. Любое простое неприводимо.

Доказательство. Предположим противное, т.е. некоторое простое p представляется в виде произведения неделителей единицы a и b. Тогда WLOG $p \mid a$. Значит $p \sim a$, а $b \sim 1$ — противоречие.

Утверждение 13. В области главных идеалов неприводимые просты.

Доказательство. Пусть неприводимое p делит ab. Пусть тогда pR + aR = dR. В таком случае $d \sim p$, значит либо $d \sim p$, либо $d \sim 1$. Если $d \sim p$, то $p \mid a$. Иначе px + ay = 1, значит pxb + aby = b. Но $p \mid pxb$ и $p \mid aby$, значит $p \mid b$. Поскольку рассуждение не зависит от a и b, то p просто. \square

Определение 18. Область целостности R удовлетворяет условию обрыва возрастающих цепей главных идеалов (APCC), если не существует последовательности $d_0R \subsetneq d_1R \subsetneq \ldots$ Такое кольцо область целостности называют нётеровой.

Теорема 14. ОГИ нётерова.

Доказательство. Пусть наша область — R. Предположим противное, т.е. существует последовательность $\{a_n\}_{n=0}^{\infty}$, что a_{n+1} — собственный делитель a_n (т.е. $a_{n+1} \mid a_n \wedge a_n \nsim a_{n+1}$). Тогда $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \ldots$ Тогда $\exists x : xR = \bigcup_{n=0}^{\infty} a_nR$, так как это объединение — идеал. Но тогда $x \in a_jR$ для некоторого j, а значит $xR \subseteq a_jR$, а тогда $a_{j+1}R \subseteq a_jR$ — противоречие.

Определение 19. Область целостности называется факториальной областью, если в нём все неприводимые просты и оно нётерово.

Пример 8. ОГИ факториальна.

Теорема 15 (основная теорема арифметики). Пусть R факториально. Тогда любое число представимо единственным образом в виде произведения простых с точностью до перестановки множителей и ассоциированности.

Доказательство.

Лемма 15.1. У каждого числа есть неприводимый делитель.

Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = a_1b_1$, $a_1 = a_2b_2$ и т.д., значит $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \ldots$ — противоречие.

Лемма 15.2. Каждое число представимо в виде произведения простых.

Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = p_1 a_1$, где p_1 прост, $a_1 = p_2 a_2$, где p_2 прост, и т.д., значит $a_0 R \subsetneq a_1 R \subsetneq a_2 R \subsetneq \ldots$ — противоречие.

Это доказывает существование разложения.

Лемма 15.3. Если $p_1 \cdot \ldots \cdot p_n = q_1 \cdot \cdots \cdot q_m$ для простых $p_1, \ldots, p_n, q_1, \ldots, q_m$, то эти два набора совпадают с точностью до перестановки и ассоциированности.

Доказательство. Докажем индукцией по n.

База: Для n=0 утверждение очевидно, так как тогда $1=q_1 \cdot \dots \cdot q_m$, значит m=0.

Шаг: Несложно видеть, что $p_n \mid q_1 \cdot \dots \cdot q_m$, значит $p_n \mid q_i$ для некоторого i, значит $p_n \sim q_i$. Переставим q_k , что $q'_m = q_i$. Значит $p_1 \cdot \dots \cdot p_{n-1} = q'_1 \cdot \dots \cdot q'_{m-1}$. По предположению индукции эти два набора совпадают с точностью до перестановки и ассоциированности, значит таковы и начальные наборы.

Это доказывает единственность разложения.

2 Идеалы и морфизмы

Теорема 16. Пусть даны $I \triangleleft R$ и $a \sim b \Leftrightarrow a - b \in I$. Тогда $\sim -$ отношение эквивалентности, $a \ R/I := R/\sim -$ кольцо.

Доказательство. Проверим, что \sim — отношение эквивалентности:

- $a-a=0 \in I$, значит $a \sim a$;
- $a \sim b$, значит $a b \in I$, значит $b a = -(a b) \in I$, значит $a \sim a$;
- $a \sim b, b \sim c$, значит $a b \in I, b c \in I$, значит $a c = (a b) + (b c) \in I$, значит $a \sim c$.

Определим на R/I операции сложения и умножения, нуля, противоположного, единицы и обратного:

- [a] + [b] := [a + b];
- $[a] \cdot [b] := [a \cdot b];$
- 0 := [0] = I;

- $\bullet \ -[a]:=[-a];$
- 1 := [1];
- $[a]^{-1} := [a^{-1}].$

Покажем, что R/I — кольцо:

$$A_1$$
) $\forall a, b, c \in R : ([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])$

$$A_2$$
) $\forall a \in R : [a] + [0] = [a+0] = a = [0+a] = [0] + [a]$

$$A_3$$
) $\forall a, b \in R : [a] + [b] = [a+b] = [b+a] = [b] + [a]$

$$A_4$$
) $\forall a \in \mathbb{R} : [a] + -[a] = [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a] = -[a] + [a]$

D)
$$\forall a, b, k \in R : [k]([a] + [b]) = [k][a + b] = [k(a + b)] = [ka + kb] = [ka] + [kb] = [k][a] + [k][b],$$
 $([a] + [b])[k] = [a + b][k] = [(a + b)k] = [ak + bk] = [ak] + [bk] = [a][k] + [b][k]$

$$M_1) \ \forall a,b,c \in R : ([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = [(a \cdot b) \cdot c] = [a \cdot (b \cdot c)] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c]) = [a] \cdot ([a] \cdot [b]) \cdot [c] = [a] \cdot ([a] \cdot [b]) \cdot [$$

$$M_2$$
) $\forall a \in R : [a] \cdot [1] = [a \cdot 1] = [a] = [1 \cdot a] = [1] \cdot [a]$

$$M_3$$
) $\forall a, b \in R : [a] \cdot [b] = [a \cdot b] = [b \cdot a] = [b] \cdot [a]$

$$M_4) \ \forall a \in R \setminus \{0\} : [a] \cdot [a]^{-1} = [a] \cdot [a^{-1}] = [a \cdot a^{-1}] = [1] = [a^{-1} \cdot a] = [a^{-1}] \cdot [a] = [a]^{-1} \cdot [a]$$

Замечание 4. Доказательство для классов эквивалентности каждой аксиомы основывалось только на соответсвующей аксиоме и определениях ранее.

Определение 20. Гомоморфизм — такое отображение $\phi: R \to S$ — это отображение, сохраняющее операции:

- $\phi(a+b) = \phi(a) + \phi(b)$;
- $\phi(a \cdot b) = \phi(a) \cdot \phi(b);$
- $\phi(0) = 0;$
- $\bullet \ \phi(-a) = -\phi(a).$

Гомоморфизм кольца с 1 — гомоморфизм, что $\phi(1) = 1$.

Утверждение 17. Композиция гомоморфизмов — гомоморфизм.

Определение 21. Пусть $f: X \to Y$. Несложно видеть, что f раскладывается в композицию сюръекции $f: X \to f(X)$ и инъекции $id: f(X) \to Y$. Тогда $\mathrm{Im}(f) = \{f(x) \mid x \in X\} -$ множеество значений f, а классы значений X, переходящих в один $y \in Y$ суть слои — $f^{-1}(y) = \{x \mid f(x) = y\}$ для некоторого y.

Определение 22. Пусть $\phi: R \to S$ — гомоморфизм. Тогда ядром ϕ называется $\mathrm{Ker}(\phi) := \{r \in R \mid \phi(r) = 0\}.$

Утверждение 18. Ядро гомоморфизма — двусторонний идеал.

Определение 23. $\phi: S \to R - u$ зоморфизм, если это биективный гомоморфизм.

Определение 24. Два кольца называются изоморфными, если между ними есть изоморфизм. Обозначение: $R \cong S$.

Утверждение 19. Пусть $R \cong S$. Тогда

- \bullet Если R коммутативно, то и S коммутативно.
- ullet Если R облассть целостности, то и S область целостности.
- $Ecnu R O\Gamma M$, mo $u S O\Gamma M$.

Утверждение 20.

- 1. $R \cong R$.
- 2. $R \cong S \Leftrightarrow S \cong R$.
- 3. $R \cong S \cong T \Rightarrow R \cong T$

Теорема 21 (теорема о гомоморфизме). Пусть $\phi: R \to S$ — гомоморфизм. (Вспомним, что $\operatorname{Ker}(\phi) \triangleleft R$, $a \operatorname{Im}(\phi) = \phi(R)$.) Тогда $R/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$, где изоморфизм переводит $[a] \mapsto \phi(a)$.

$$R \xrightarrow{\phi} S$$

$$r \mapsto [r] \downarrow \qquad \qquad \downarrow id$$

$$R / \operatorname{Ker}(\phi) \xrightarrow{\sim} \operatorname{Im}(\phi)$$

Доказательство.

- 1. Корректность. $[a] = [a'] \Leftrightarrow a a' \in \mathrm{Ker}(\phi) \Leftrightarrow \phi(a a') = 0 \Leftrightarrow \phi(a) = \phi(a')$. Замечание 5. Классы экввивалентности по $\mathrm{Ker}(\phi)$ как раз слои ϕ .
- 2. Заметим, что работают следующие операции:
 - $[a] + [b] = [a+b] \mapsto \phi(a) + \phi(b) = \phi(a+b);$
 - $[a] \cdot [b] = [a \cdot b] \mapsto \phi(a) \cdot \phi(b) = \phi(a \cdot b).$
- 3. Сюръективность следует из того, что $\phi(a) = \phi(b) \Leftrightarrow [a] = [b]$.
- 4. Инъективность следует из того, что каждый элемент в $\text{Im}(\phi)$ имеет прообраз.

Теорема 22 (китайская теорема об остатках (КТО) для двух чисел). *Пусть т и п взаимно просты. Тогда* $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Доказательство. Рассмотрим $\phi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}, [a]_{mn} \mapsto ([a]_m; [a]_n)$. Несложно заметить, что ядро ϕ тривиально, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/mn\mathbb{Z}/\ker(\phi) \cong \operatorname{Im}(\phi)$. Но в последнем элементов не менее mn, так как $\operatorname{Im}(\phi) \cong \mathbb{Z}/mn\mathbb{Z}$, но и не более, так как $|\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}| = mn$, поэтому $\operatorname{Im}(\phi) = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Теорема 23 (KTO). Пусть m_1, \ldots, m_k — попарно взаимно простые числа. Тогда

$$\mathbb{Z}/m_1 \dots m_k \cong \mathbb{Z}/m_1\mathbb{Z} \times \dots \times \mathbb{Z}/m_k\mathbb{Z}$$

Доказательство. По индукции по k с помощью КТО для двух чисел.

Теорема 24 (Универсальное свойтсво фактор-кольца). Пусть есть $I \triangleleft R$ и гомоморфизми $\pi: R \to R/I$ — нативный гомоморфизм, и $\pi: R \to S$, что $\pi(I) = \{0\}$. Тогда существует и единственен гомоморфизм $\phi': R/I \to S$, что $\phi' \circ \pi = \phi$.

Доказательство. $\phi'([a]) = (\phi' \circ \pi)(a) = \phi(a)$ — это означает единственность; так функцию и определим. Осталось показать корректность.

Несложно заметить, что если [a]=[b], то $a-b\in I$, значит $\phi(a-b)=0$, значит $\phi(a)=\phi(b)$. Теперь проверим операции:

- $\phi'([a] + [b]) = \phi'([a+b]) = \phi(a+b) = \phi(a) + \phi(b) = \phi'([a]) + \phi'([b]).$
- $\phi'([a] \cdot [b]) = \phi'([a \cdot b]) = \phi(a \cdot b) = \phi(a) \cdot \phi(b) = \phi'([a]) \cdot \phi'([b])$

Определение 25. Пусть R — область целостности. Тогда рассмотрим $Q = R \times (R \setminus \{0\})$ и отношение \sim на Q, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Несложно видеть, что \sim — отношение эквивалентности. Тогда *полем частных* области целостности R называется $\operatorname{Frac}(R) = Q/\sim$, где операции:

- [(a;b)] + [(c;d)] := [(ad + bc;bd)];
- $\bullet \ [(a;b)]\cdot [(c;d)]:=[(ac;bd)];$
- 0 := [(0;1)];
- -[(a;b)] := [(-a;b)];
- 1 := [(1;1)];
- $[(a;b)]^{-1} = [(b;a)].$

Несложно видеть, что все операции корректны, а поле частных — поле.

3амечание 6. Есть нативный инъективный гомоморфизм из R в Frac(R):

$$\phi: R \to \operatorname{Frac}(R), r \mapsto [(r; 1)]$$

Теорема 25 (Уникальное свойтсво поля частных). Пусть R- область целостности, F- поле, $\phi:R\to F-$ интективный гомоморфизм, сохраняющий $1,\ \pi:R\to \operatorname{Frac}(R)-$ нативный гомоморфизм. Тогда существует единственный гомоморфизм $\phi':\operatorname{Frac}(R)\to F,\$ что $\phi'\circ\pi=\phi.$

Замечание 7. Если $\phi: E \to F$ — гомоморфизм полей, сохраняющий 1, то он инъективен. Действительно, $\operatorname{Ker}(\phi)$ — идеал, значит 0 или E, так как E поле, но случай E не подходит, так как не сохраняется 0, значит $\operatorname{Ker}(\phi) = 0$, значит ϕ инъективно.

Доказательство.

Лемма **25.1.** $\phi'(1/b) = 1/\phi'(b)$

Лемма 25.2. $\phi'(a/b) = \phi'(a)/\phi'(b)$.

Заметим, что $\phi'(a) = \phi'(\pi(a)) = \phi(a)$, поэтому $\phi'(a/b) = \phi(a)/\phi(b)$ — это означает единственность ϕ' .

Теперь рассмотрим соответсвующую $\phi': a/b \mapsto \phi(a)/\phi(b)$. Проверим корректность:

$$\frac{a}{b} = \frac{c}{d} \qquad \Rightarrow \qquad ad = bc \qquad \Rightarrow \qquad \phi(ad) = \phi(bc) \qquad \Rightarrow$$

$$\phi(a)\phi(d) = \phi(b)\phi(c) \qquad \Rightarrow \qquad \frac{\phi(a)}{\phi(b)} = \frac{\phi(c)}{\phi(d)} \qquad \Rightarrow \qquad \phi'\left(\frac{a}{b}\right) = \phi'\left(\frac{c}{d}\right)$$

Теперь проверим согласованность с операциями:

$$\phi'\left(\frac{a}{b}\cdot\frac{c}{d}\right) = \frac{\phi(ac)}{\phi(bd)} = \frac{\phi(a)}{\phi(b)}\cdot\frac{\phi(c)}{\phi(d)} = \phi'\left(\frac{a}{b}\right)\cdot\phi'\left(\frac{c}{d}\right);$$

$$\phi'\left(\frac{a}{b} + \frac{c}{d}\right) = \phi'\left(\frac{ad + bc}{bd}\right) = \frac{\phi(ad + bc)}{\phi(bd)} = \frac{\phi(a)\phi(d) + \phi(b)\phi(c)}{\phi(b)\phi(d)} = \frac{\phi(a)}{\phi(b)} + \frac{\phi(c)}{\phi(d)} = \phi'\left(\frac{a}{b}\right) + \phi'\left(\frac{c}{d}\right)$$