

수포자도 도전해 볼 만한

Mathematics in DeepLearning

Lecture6. Probability and Statistics

Juhee Lee Ph.D. Research Professor @ ewha womans university

Last time

Based on Set theory

- Set, universal set, element
- Power set, partition,

Probability

Definition Sample space (or State space) Ω is the collection of all possible outcomes under consideration.

<u>Definition</u> An **Event** is a subset $A \subset \Omega$ of the sample space

Probability

Definition A set function **P** defined on the set of subsets of Ω is called a probability measure If it satisfies these 3 conditions for A, B $\subset \Omega$

(i)
$$P(A) \ge 0$$

(ii)
$$P(\emptyset) = 0, P(\Omega) = 1$$

(iii)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

set function: assigning a number of a set Ex. Cardinality, length

Review of Real analysis

<u>Definition</u> A collection $\mathcal F$ of subsets of a set Ω is called an **algebra**

(finite union, finite intersection)

If

(i)
$$A^{c} = \Omega \setminus A \in \mathcal{F}$$
 for any $A \in \mathcal{F}$

(ii)
$$A_1, A_2 \in \mathcal{F}$$
, $\Rightarrow \bigcup_{n=1}^2 A_n \in \mathcal{F}$

(iii)
$$A_1, A_2 \in \mathcal{F}$$
, $\Rightarrow \bigcap_{n=1}^2 A_n \in \mathcal{F}$

Review of Real analysis

Definition A collection \mathcal{F} of subsets of a sample space Ω is called a σ -algebra

(i)
$$A^{c} = \Omega \setminus A \in \mathcal{F} \text{ for any } A \in \mathcal{F}$$

(ii) $A_{n} \in \mathcal{F}, n = 1, 2, \ldots \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$
(iii) $A_{n} \in \mathcal{F}, n = 1, 2, \ldots \Rightarrow \bigcap_{n=1}^{\infty} A_{n} \in \mathcal{F}$

A pair (Ω, \mathcal{F}) is called a **measurable space**

- Algebras (or σ -algebra) are the natural domain of definition of finitely-additive (σ -additive) measure.
- The Lebesgue measurable sets of R form a σ -algebra

 $\mathcal{B}(\mathbb{R}^n)$: Borel set in \mathbb{R}^n

- the smallest σ -algebra generated by the open sets in \mathbb{R}^n

• Let T be an arbitrary set. $X = R^T$ $A = \{w \in R^T : (w(t_1), \dots, w(t_n)) \in E\}$ n is an arbitrary natural number E an arbitrary Borel set of R^n

 t_1, \dots, t_n an arbitrary collection of distinct elements of T

A an arbitrary subsets in R^T

In the random processes a **probability measure** is defined only on an algebra of this type and extended to the σ -algebra generated by A

Probability space

<u>Definition</u> Let (Ω, \mathcal{F}) be a measurable space A mapping $\mu : \mathcal{F} \to R \cup \{\infty\}$ is called a **measure** If

- (i) $\mu(A) \geq 0$
- (ii) $\mu(\emptyset) = 0, P(\Omega) = 1$

(iii) For any
$$A_1, \dots, A_n$$
 of mutually disjoint sets in \mathcal{F} ,
$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n)$$

 $(\mu, \Omega, \mathcal{F})$: measure space

Probability is a measure $\mu(\Omega) = 1$, normalized measure

Random Variable

```
Definition Let (\mu, \Omega, \mathcal{F}): measure space.
A function X : \Omega \to R^n is said to be measurable if X^{-1}(B) = \{w \in \Omega : X(w) \in B\} \in \mathcal{F} for any B \in \mathcal{B}(R^n)
```

 (Ω, \mathcal{F}, P) : probability space <u>Definition</u> A real measurable function X: $(\Omega, \mathcal{F}) \rightarrow (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is called a **random** variable

$F \colon U \to V$

Bayesian Deep Neural Networks (Elementary mathematics by Sungjoon choi, slide)

Random Variable

Discrete random variable:

a set
$$\{x_1: i = 1, ...\}$$
 with $\sum P(X = x_i) = 1$

Probability mass function

$$P_X(x) = P(X = x)$$
 with

- $1. \qquad 0 \le P_X(x) \le 1$
- $2. \quad \sum P_X(x) = 1$
- 3. $P(X \in B) = \sum_{x \in B} P_X(x)$

Random Variable

Continuous random variable :

an integral function $f_X(x)$ with

$$P(X \in B) = \int_{B} f_{x}(x) dx.$$

Probability density function

$$f_x(x) = \lim_{\Delta x \to 0} \frac{P(x < X < x + \Delta x)}{\Delta x}$$

with

1.
$$f_x(x) \ge 1$$

2.
$$\int f_x(x)dx = 1$$

3.
$$P(X \in B) = \int_B f_x(x) dx$$
.

 (Ω, \mathcal{F}, P) : probability space

<u>Definition</u> The **conditional probability** P(A|B) of A given B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 for $\forall A \in \mathcal{F}$

If A and B are independent

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

Bayes' Theorem

 (Ω, \mathcal{F}, P) : probability space

$$A, B \in \mathcal{F}, P(B) \neq 0$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

 (Ω, \mathcal{F}, P) : probability space

$$\Omega = \{w_1, w_2, ..., w_n\}, P(w_i) = P_i, i = 1, ..., n$$

Definition $X: \Omega \to R$ a random
vector, $P(\Omega) = \sum_{i=1}^{\infty} P_i = 1$

The expectation of X is defined by

$$E(X) = \sum_{i=1}^{n} P_i X(w_i) = \sum_{i=1}^{n} P_i x_i$$
.
 $X(w_i) = x_i$ for $i = 1, ..., n$

Ex. Two coin, X: the number of heads E(X)=?

Expectation is a linear functional

$$E(aX + bY) = aE(X) + bE(Y)$$

We may assume that x_1, \dots, x_n for random variable X such that $x_1 < \dots < x_n$

The distribution function F_X is the given by

$$F_X(x_i) = P_1 + \dots + P_{i-1} \quad \text{for } x_{i-1} < x < x_i$$
with $F_X(x) = \begin{cases} 0, x < x_1 \\ 1, x \ge x_0 \end{cases}$

In particular, $P_i = F_X(x_i) - F_X(x_{i-1}), i = 2, \dots n, P_1 = F_X(x_1)$

$$E(X) = \sum_{i=1}^{\infty} P_i x_i = x_1 F_x(x_1) + x_2 (F_x(x_2) - F(x_1)) + \cdots$$

$$E(X) = \sum_{i=1}^{n} P_i x_i = x_1 F_x(x_1) + x_2 (F_x(x_2) - F(x_1))$$

$$+\cdots + x_n(F_x(x_n) - F_x(x_{n-1}))$$

Take,
$$x_0 < x_1$$
 and let F_X : $[x_0, X_n] \to R$ with $f_X(x_i) = \frac{F_X(x_n) - F_X(x_{n-1})}{x_i - x_{i-1}}$, $F_X(x_0) = 0$

$$E(X)$$

$$= x_1 F_X(x_1) + \sum_{i=2}^n x_i \frac{F_X(x_n) - F_X(x_{n-1})}{x_i - x_{i-1}} (x_i - x_i)$$

$$= \int x f_X(x) dx$$

Density function

 (Ω, \mathcal{F}, P) : probability space, random variable X Definition If the distribution function F_X is differentiable, then the expectation of X can be

$$E(X) = \int_{-\infty}^{\infty} x f_x(x) dx$$
 where $f_x(x) = \frac{d}{dx} F_X(x)$

We call f_x the **density function** for X

$$f_{x}(x)$$
: non-negatitive, $\int_{-\infty}^{\infty} x f_{x}(x) dx = 1$

$$F_X(x) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Consider indep. Rv X and Y with finitely many values x_1, \dots, x_n and y_1, \dots, y_m Then

$$E(XY) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j P(X = x_i, Y = y_j) = E(X)E(Y)$$

$$Var(X) = E(X - E(X))^{2} = E(X^{2}) - E(X)^{2}$$

$$Cov(X,Y) = E(X - E(X))(X - E(X))$$
$$E(X), E(Y) < \infty$$

Moments

<u>Definition</u> For a random variable X with density function f_x

$$E(x^n) = \int_{-\infty}^{\infty} x^n f_x(x) dx$$
 where $n \in N$

Is called the **n-th moment of** x about θ ,

n = 3: skewness

n = 4: kurtosis

<u>Definition</u> Let *X* be a random variable.

Suppose that $\exp(tX) = e^{tX}$ has finite mean for every t in an open interval I with $0 \in I$.

We then define

$$\psi(t) = E(e^{tX}), t \in I$$

and call ψ the moment generating function (m.g.f) of X

$$\psi(0) = E(1) = 1$$

For
$$\psi(t) = E(e^{tX})$$
, $t \in I$

$$\psi'(t) = E\left(\frac{d}{dt}e^{tX}\right) = E(Xe^{tX}), t \in I$$

$$\psi'(0) = E(X),$$

$$\psi''(t) = E(X^2e^{tX})$$

$$\psi''(0) = E(X^2),$$

$$E(X^n) = \psi^{(n)}(0), \quad n = 1, 2, 3, \cdots$$

Theorem Two distributions are identical If they have m.g.fs coinciding in an open interval around $0 \ (t \in I)$

Proof) Suppose that X and Y are random variables both taking only possible values in $\{0,1,2,\cdots,n\}$ (range of X,Y).

Further, suppose that X and Y have the same m.g.f for all t.

$$\sum_{x=0}^{n} e^{tx} P(X = x) = \sum_{y=0}^{n} e^{ty} P(Y = y)$$

$$= \sum_{x=0}^{n} e^{tx} P(Y = x)$$

$$\sum_{x=0}^{n} e^{tx} P(X = x) - \sum_{x=0}^{n} e^{tx} P(Y = x) = 0$$

$$\sum_{x=0}^{n} e^{tx} (P(X = x) - P(Y = x)) = 0$$

let
$$e^t = s$$
, $c_x = P(X = x) - P(Y = x)$

$$\sum_{x=0}^{n} c_x s^x = 0 \Rightarrow \forall x, \quad c_x = 0$$
$$\Rightarrow \forall x, \quad P(X = x) = P(Y = x)$$

X, Y have the same distribution

Theorem X_1, \dots, X_n independent random variables with m.g.f ψ_1, \dots, ψ_n define in open intervals I_1, \dots, I_n containing 0.

The m.g.f of
$$X = a_1X_1 + \cdots + a_nX_n$$
 is
$$\psi_X(t) = \psi_1(a_1t) \cdots \psi_n(a_nt)$$
$$t \in a_1^{-1}I_1 \cap \cdots \cap a_n^{-1}I_n$$

Proof) Lecture note.

Theorem X, Y independent random variables f, g: Borel measurable function (i.e., $f, g : R \rightarrow R$ measurable function)

 $\Rightarrow f(X), g(Y)$: independent

Exponential distribution

<u>Definition</u> A random variable $X: \Omega \to R$ is said to be **exponentially distributed** with parameter $\lambda > 0$ if it has a density function f_X given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

i.e.,
$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x}\right]_{0}^{\infty} = 1$$

$$P(X \le x) = \int_0^x \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_0^x = 1 - e^{-\lambda x}$$

$$\psi(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

$$= \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} dx,$$

$$= \lambda \int_{0}^{\infty} e^{(t-\lambda)x} dx,$$

$$= \frac{\lambda}{t-\lambda} \left[e^{(t-\lambda)x} \right]_{0}^{\infty}$$

$$= \frac{\lambda}{\lambda-t} \qquad \text{if } -\infty < t < \lambda$$

$$\psi'(t) = \frac{\lambda}{(\lambda - t)^2}, \ \psi''(t) = \frac{2\lambda}{(\lambda - t)^3},$$

$$\psi^{(n)}(t) = \frac{\lambda n!}{(\lambda - t)^{n+1}}$$

$$E(X) = \psi'(0) = \frac{1}{\lambda}, \ E(X^n) = \frac{n!}{\lambda^n},$$

$$Var(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

$$E(X) = \int_0^\infty \lambda x e^{-\lambda x} dx$$

i.e. 함수에 따른 E(X) 보다 m.g.f로 구하면 좀 더 편하다.

Binomial distribution

Definition A random variable $X: \Omega \to R$ is said to have the **Bernoulli distributed** with parameter p for $0 \le p \le 1$ if it only takes the values 0 and 1 and P(X = 1) = p and P(X = 0) = 1 - p

$$\psi(t) = E(e^{tX}) = e^t P(X = 1) + e^0 P(X = 0)$$

= $pe^t + 1 - p$

The binomial distribution with parameter (\mathbf{n}, p) is the distribution of the sum $\mathbf{X} = \mathbf{X_1} + \cdots + \mathbf{X_n}$, $\mathbf{X_i}$: Bernoulli distribution with parameter p for $0 \le p \le 1$

The random variable X takes integer values from 0 to n

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0,1,\dots, n$$

```
m.g.f
\psi(t) = (pe^t + 1 - p)^n
\psi'(t) = npe^t(pe^t + 1 - p)^{n-1}
\psi''^{(t)} = n(n-1)p^2e^{2t}(pe^t + 1 - p)^{n-2}
                   + npe^{t}(pe^{t} + 1 - p)^{n-2}
  \psi'^{(0)} = np = E(X),
 \psi''(0) = n(n-1)p^2 + np = E(X^2)
  Var(X) = \psi''(0) - \{\psi'(0)\}^2
           = np - np^2 = np(1-p)
```

Poisson distribution

<u>Definition</u> A random variable X that takes integer values $x = 0,1,\cdots$ is Poisson distribution With parameter $\lambda > 0$ if

$$P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, x = 0,1,2,...$$

Poisson distribution

$$\psi(t) = E(e^{tX}) = \sum_{x=0}^{\infty} e^{tx} P(X = x)$$

$$= \sum_{x=0}^{\infty} e^{tx} e^{-\lambda} \frac{\lambda^{x}}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{t})^{x}}{x!}$$

$$= e^{-\lambda} \exp(\lambda e^{t})$$

$$\psi'(t) = e^{-\lambda} \exp(\lambda e^t) \lambda e^t$$

Poisson distribution

$$\psi'(t) = e^{-\lambda} \exp(\lambda e^t) \lambda e^t$$

$$\psi''(t) = e^{-\lambda} \exp(\lambda e^t) \lambda^2 e^{2t} + \lambda e^{-\lambda} \exp(\lambda e^t) e^t$$

$$\psi'(0) = \lambda = E(X), \ \psi''(0) = \lambda^2 + \lambda = E(X^2)$$

$$Var(X) = \lambda$$

Characterization of the Poisson distribution

 X_1, \dots, X_n : independent random variable

 X_i : Poisson distribution with λ_i

 $X = \sum X_i$ Poisson distribution with $\lambda = \sum \lambda_i$

Normal (Gaussian) distribution

<u>Definition</u> A random variable $X: \Omega \to R$ is said to be **normally distributed** with parameter (m, σ) if it has a density function f_x given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-m)^2}{2\sigma^2})$$

where $\sigma > 0$ and $m \in R$

Quiz. Is $f_X(x)$ a pdf?

Check.
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
,

Normal (Gaussian) distribution

<u>Definition</u> A random variable $X: \Omega \to R$ is said to be **normally distributed** with parameter (m, σ) if it has a density function f_x given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-m)^2}{2\sigma^2})$$

where $\sigma > 0$ and $m \in R$

$$(m, \sigma) = (0,1) \Rightarrow \psi(t) = \exp(\frac{t^2}{2})$$

$$\psi'(0) = m = E(X), \psi''(0) - \psi'(0)^2 = \sigma^2 = Var(X),$$

Note.

 X_1, \dots, X_n : independent random variable X_i is normally distributed with parameter (m_i, σ_i) , $i = 1, \dots, n$

$$put X = a_1 X_1 + \dots + a_n X_n$$

The random variable **X** is normally distributed with (m, σ) ,

where
$$m = \sum a_i m_i$$
, $\sigma^2 = \sum a_i^2 \sigma_i^2$

<u>Definition</u> X_1, \dots, X_n : independent random variable with $N(m, \sigma)$

$$\overline{X_n}$$
: = $\frac{X_1 + \dots + X_n}{n} \approx E(X)$

The sample mean $\overline{X_n}$ is normally distributed with $(m, \frac{\sigma}{\sqrt{n}})$,

* $X \sim B(n, p)$, n is large $\Rightarrow X \approx N(np, npq)$,

Note.

Boole's Inequality for $A_i \subset \Omega$

$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$

Jensen's Inequality

for f: convex function, $E(X) < \infty$, $E(f(X)) < \infty$

$$E(f(X)) \ge f(E(X))$$

Note.
$$\mu = E(X_1) < \infty, \sigma^2 = Var(X_1) < \infty$$

Markov's Inequality $X \ge 0, \forall a > 0$

$$P(X \ge a) \le \frac{E(X)}{a}$$

Chebyshev's Inequality

$$P(|X - E(x)| \ge a) = P(|X - E(x)|^2 \ge a^2) \le \frac{Var(X)}{a^2}$$

Law of large numbers

```
Suppose X_1, \dots, X_n: independent random
variable with same distribution, \mu = E(X_1) < \infty
For n \to \infty
(weak)
         \forall \epsilon > 0.
                  P(|\frac{X_1+\cdots+X_n}{n}-\mu|<\epsilon)\to 1
(Strong)
                     P(\frac{X_1 + \dots + X_n}{n} \to \mu) = 1
```

Law of large numbers

큰 수의 법칙 또는 대수의 법칙, 라플라스의 정리

- 큰 모집단에서 무작위로 뽑은 표본의 평균이 전체 모집단의 평균과 가까울 가능성이 높다.
- 독립적인 시행 횟수 n 이 한없이 증가할때, 표본 평균은 E(X) 로 수렴하며 사건 A 가 발생할 빈도는 P(A)로 수렴한다.

Convergence in distribution

확률변수 X_1, X_2, \dots , 와 각각의 확률분포함수 F_1, F_2, \dots 에 대하여 어떤 확률변수 X 와 확률분포함수 F 가 존재하여,

$$\forall x \in R$$
, $\lim_{n \to \infty} F_n(x) = F(x)$.

즉, 확률분포함수의 수렴을 의미하고, 확률변수들이 같은 확률공간에 있을 필요가 없으며, 분포만 고려된다.

Ex. X is normally distributed $\Rightarrow X_n \sim N(0,1)$

Convergence in distribution

CLT (Central limit theorem)

Suppose X_1, \dots, X_n : independent random variable with same distribution, $\mu = E(X_1) < \infty$, $\sigma^2 = Var(X_1) < \infty$

For $n \to \infty$

$$S_{n} = \frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sigma\sqrt{n}} \Rightarrow X_{n} \sim N(0,1)$$

Convergence in Probability

확률변수 X_1, X_2, \cdots , 와 $\forall \epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0.$$

같은 확률 공간에 있는 확률 변수들의 수렴을 의 미한다.

cf. almost convergence (pointwise), sure convergence

Theorem If a random variable X has a binomial distribution with parameters (n, p), $X \sim B(n, p)$, then for sufficiently large n, the distribution of the variable $Y \coloneqq \frac{x-m}{\sigma} \sim N(0,1)$ where m = np, $\sigma^2 = npq$.

Stochastic processes

Consider a (Ω, \mathcal{F}, P) : probability space and a time frame T

We only consider the cases where $T = \{0,1,2,...\}$ or $T = [0,\infty)$.

<u>Definition</u> A stochastic process *X* is a map

$$X: T \times \Omega \to R$$
 s.t $X_t(w) = X(t, w)$

is a random variable on Ω for every $t \in T$.

A stochastic process X is **stationary** if random vectors $(X_{t_1}, \dots, X_{t_n})$ and $(X_{t_{1+h}}, \dots, X_{t_n+h})$ have identical distributions $\forall t_1 < t_2 < \dots < t_n$ and h.

X has **stationary increments** if the random variable $X_t - X_s$ and $X_{t+h} - X_{s+h}$ have identical distribution $\forall t > s \ge 0$ and h.

X has **independent increments** if the random variable $X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}}$ are independed $\forall \ 0 \le t_1 < t_2 < \dots < t_n \ \text{and} \ n \in \mathbb{N}$.

The homogeneous Poisson process

Let
$$T = [0, \infty)$$
.

A stochastic process $X : T \times \Omega \to \Omega$ is called the **homogenous** poisson process with intensity X > 0 if

- (i) $X_0 = 0$ (The process begins in 0)
- (ii) $X_t X_s$ and $X_{t+h} X_{s+h}$ have identical distributions for stationary increment
- $(iii)X_{t_2} X_{t_1}, \cdots, X_{t_n} X_{t_{n-1}} \text{ are independent}$ $0 < t_1 < t_2 < \cdots < t_n \text{ and } \forall n \geq 1$

The homogeneous Poisson process

(iv) The distribution of
$$X_t$$
 is for $t > 0$ given by $P(X_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$, $k = 0,1,2,\cdots$ (X_t : Poissson)

Remark.

$$X_{t+h} - X_{s+h} \sim X_t - X_s$$

$$\sim X_{t-s} - X_0$$

$$\sim X_{t-s}$$

The first jumps of the Poisson process

Let Y_1 denote the first time t_1 at which $X_{t_1} \ge 1$ Let Y_2 denote the second time t_1 at which $X_{t_2} \ge 2$

The probability that *X* has not jumped before time *t* is given by.

$$P(Y_1 > t) = P(X_t = 0) = e^{-\lambda t}$$

 $P(Y_1 \le t) = 1 - e^{-\lambda t}$: exponential distribution with λ

Let Y_2 denote the time interval between the first and the second jump of the poisson $Y_1 + Y_2$; the 1st time when the process $X \ge 2$

Quiz. Show that Y_1, Y_2 independent and exponential distributed random variable.

Entropy

To measure the uncertainty associated with random variable

In general, X has a certain number of outcome x_i , $P(X = X_i) = p_i$. A random variable X has discrete values $\{X_1, \dots, X_n\}$

<u>Definition</u> **Entropy** is a mapping from the space of probability function to the (non-negative) reals givens by $H_s(X) \coloneqq -\sum_{x \in A} p(x) \log_s p(x)$

where A is the range of X, s = 2 or e

Entropy

 $Ex. x \in A$

$$p(X = a) = \{ egin{array}{ll} 1, & if \ x = a \\ 0, & otherwise \ \end{array} \}$$

Sol) $H_S(X) \coloneqq -log1 = 0$

Q & A