1. Fie $x_n = \frac{1}{n} + n \in \mathbb{N}^*$. trototi, follosind door definiția, că $\lim_{n\to\infty} x_n = 0.$ $\frac{\text{Yol}}{\text{Normal sin}} = 0 \iff \forall \xi > 0, \exists n_{\xi} \in \mathbb{N} \text{ a.i. } \forall n \geq n_{\xi},$ aven | xn-0/< E. Fie EDO. Coutan ne EN a.c. + no ne, aven 13~0/cE.

$$|\mathcal{X}_{n}-0| \leq \epsilon \Rightarrow \left|\frac{1}{n}-0\right| \leq \epsilon \Rightarrow \frac{1}{n} \leq \epsilon \Rightarrow n > \frac{1}{\epsilon}$$
.
Hegin $n_{\epsilon} = \left[\frac{1}{\epsilon}\right] + 1 \in \mathbb{N}$.

Dei, $\forall n \geq n_{\varepsilon} = \left[\frac{1}{\varepsilon}\right] + 1 > \frac{1}{\varepsilon}$, avem

 $n > \frac{1}{\xi}$.

Bin urnare $\lim_{n \to \infty} x_n = 0$.

2. Fil (*n)n CZ si leR a.r. lim *n=l. Aratati cà leZ. Lol: lim tn=l => + €>0, 3 ne EH a.î. + N≥ne, aven $| \mathcal{X}_n - \ell | < \epsilon$. in acet exercition stim ca lim x_n=l, deci stim ca +ε-D, ∃ n∈H a.î. + n≥nε, aven | x_n-l|<ε.

| tn-l/28 (=> -8 < *n- L < 8 (=> -8+12 *n < 8+1 (=> Dei tero, Ingertair. Insne, aven L-E<*n< ltE.

Resuperem pin absurd så l\$ZZ.

[R] l-E l+1

thegen $\varepsilon > 0$ a. $\varepsilon < 1-\varepsilon$ si $1+\varepsilon < [e]+1$, de in $\varepsilon < 1-[e]$ si $0<\varepsilon < [e]+1-1$. Furth luch este position devared [e]<1 (perton each $\varepsilon < 1-[e]$ si 1<[e]+1.

De læmplu putem alege $\varepsilon \in (0, \min\{\ell-\lceil \ell \rceil, \lceil \ell \rceil + 1 - \ell \rceil)$. Jentru acest ε excistà $n_{\varepsilon} \in \mathbb{N}$ e.2. pentru srice $M \ni M_{\varepsilon}$, arem $f_{n} \in (l-\varepsilon, l+\varepsilon)$. $f_{n} \in M \ni M_{\varepsilon}$ [L] L-E L+E [P]+1

Dar, $(l-\epsilon, l+\epsilon) \wedge \mathbb{Z} = \emptyset$, contradictie en $\Re n \in \{l-\epsilon, l+\epsilon\} \wedge \mathbb{Z} \quad \forall n \geq n_{\epsilon}$.

Juin remare leZ. []

Ei (\$\frac{1}{2}n\) = (0,0) a.c. 3 lim \frac{\frac{1}{2}n+1}{2}not. l \in [0,0] \text{up.} [0,0] \text{up.} \text{up.}

2) Doca l>1, atunci lim En= 2. (3) Deca l=1, atunci acest criteriu un decide. 3. Fie a>0. Det. lim n.a. Id: Fie th=nan thet. Aplicam brit. rap. pt. juni cu termeni strict positivi.

1) Daca 2<1, atunci lim z=0.

lim
$$\frac{\mathcal{X}_{n+1}}{\mathcal{X}_n} = \lim_{n \to \infty} \frac{(n+1) \frac{a}{n}}{n n} = \lim_{n \to \infty} \frac{n+1}{n} = a$$
.

1) Daria $a < 1$ (i.e. $a \in (\rho, 1)$), attendi $\lim_{n \to \infty} \mathcal{X}_n = 0$.

2) Daria $a > 1$ (i.e. $a \in (1, \infty)$), attendi $\lim_{n \to \infty} \mathcal{X}_n = \infty$.

3) Doca a=1, atunci acut eriteriu nu decide, dar, în acut cotz, $x_n = n \cdot 1^n = n + n \in \mathbb{N}^*$, deci lim $x_n = \infty$.

2) Daca l-1, atunci lim En=1.

3) Daca l=1, atunci acust -crittiin mu decide.

4. Fix $a_{1}b_{1} \in (0, \infty)$, Det. $\lim_{n \to \infty} \left(\frac{a_{1}n_{1}^{2} + 3n_{1} + 5}{b_{1}n_{1}^{2} + 2n_{1} + 3} \right)$.

Id.: Fix $a_{1}b_{2} = \left(\frac{a_{1}n_{1}^{2} + 3n_{1} + 5}{b_{1}n_{1}^{2} + 2n_{1} + 3} \right) + n \in \mathbb{N}^{*}$.

 $\lim_{N\to\infty} \sqrt{\frac{x_n}{x_n}} = \lim_{N\to\infty} \frac{an^2 + 3n + 5}{4n^2 + 2n + 3} = \frac{a}{b}.$ 1) Daca de <1 (i.e. a < b), atunci lim = 0. 2) Dara $\frac{a}{h} > 1$ (i.e. a > h), other is $\lim_{n \to \infty} x_n = \infty$. 3) Doca &=1 (i.e. a=b), atunci auxt suitiu m

Aplicam brit. rad. pt. siruri cu turmeni pozitivi.

decide, dar, în acest cate,
$$x_n = \left(\frac{an^2 + 3n + 5}{an^2 + 2n + 3}\right)^n + net!^*$$

$$\lim_{n\to\infty} \left(\frac{a_n^2 + 3n + 5}{a_n^2 + 2n + 3} \right) = \lim_{n\to\infty} \left(1 + \frac{a_n^2 + 3n + 5}{a_n^2 + 2n + 3} - 1 \right) =$$

 $= \lim_{n\to\infty} \left(1 + \frac{an^2 + 3n + 5 - an^2 - 2n - 3}{an^2 + 2n + 3} \right)^n =$

$$= \lim_{n \to \infty} \left(1 + \frac{n+2}{2n^2+2n+3} \right)^n = \frac{n+2}{2n^2+2n+3} \cdot n$$

$$= \lim_{n \to \infty} \left(1 + \frac{n+2}{2n^2+2n+3} \right)^n = \frac{n+2}{2n^2+2n+3} \cdot n$$

$$= \lim_{n \to \infty} \left(1 + \frac{n+2}{2n^2+2n+3} \right)^n = \frac{n+2}{2n^2+2n+3} \cdot n$$

5. Det. lim In. Id: Fix In= n +nEN*. bondom propositier de mai sus lim TEn = 1, i.e. $\lim_{n\to\infty} \sqrt{n} = 1.$

5'. Det. lim Vn. . Let: Buzalvati-l voi! [6. Tie zn=1+ 1/22+122+...+ 1/2 + nE Al*, dratati ca (zn)n este convergent. Sol: Folorion Teruma lui Weinstrass.

$$\mathcal{L}_{N+1} - \mathcal{L}_{N} = \left(1 + \frac{1}{2^{2}} + \dots + \frac{1}{N^{2}} + \frac{1}{(N+1)^{2}}\right) - \left(1 + \frac{1}{2^{2}} + \dots + \frac{1}{N^{2}}\right) = 0$$

 $=\frac{1}{(N+1)^2}>0.$ Dei (En) ute strict erwater. (1)

1.2.
$$(31)$$
 este marginit inferior.
 $2^2 > 1 \cdot 2 \implies \frac{1}{2^2} < \frac{1}{1 \cdot 2} = \frac{1}{1} - \frac{1}{2}$
 $3^2 > 2 \cdot 3 \implies \frac{1}{3^2} < \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3}$

Jun 1/2 resultà, confirm Torenai lui Weinstrans, ca (±n)n este convergent.