Table 1: Average total running times (in s) and numbers of Bellman backups on each domain for each tested algorithms. The symbol '-' means that solving exceeded 5 min

	MDP characteristics			VI		LRTDP		ILAO*		TVI		eTVI		eiTVI	
D	S	K	$ k_{\text{max}} $	В	T_{tot}	В	T_{tot}	В	T_{tot}	В	T_{tot}	В	T_{tot}	В	T_{tot}
	(k)		(k)	(M)	(s)	(M)	(s)	(M)	(s)	(M)	(s)	(M)	(s)	(M)	(s)
Layered	100	10	10	5.46 ± 0.703	0.777 ± 0.102	$1.39 {\pm} 0.129$	0.595 ± 0.056	6.46 ± 1.03	$3.85{\pm}0.619$	1.43 ± 0.0962	0.328 ± 0.018	1.43 ± 0.0962	0.298 ± 0.012	0.552 ± 0.0073	30.253 ± 0.002
	200	10	20	15.7 ± 2.54	2.42 ± 0.389	$3.41 {\pm} 0.384$	1.76 ± 0.185	19 ± 3.96	12.7 ± 2.68	3.53 ± 0.301	0.964 ± 0.067	3.53 ± 0.301	0.74 ± 0.042	1.14 ± 0.0114	0.561 ± 0.009
	300	10	30	27.1 ± 5.86	4.37 ± 0.947	$5.61 {\pm} 0.83$	3.19 ± 0.475	36.4 ± 6.88	25.9 ± 4.96	$5.88 {\pm} 0.762$	1.74 ± 0.183	5.88 ± 0.762	1.25 ± 0.107	1.73 ± 0.0218	$0.886{\pm}0.005$
	400	10	40	39.6 ± 5.87	6.57 ± 0.972	8.78 ± 1.55	$5.35 {\pm} 0.974$	47 ± 11.5	35 ± 8.6	$8.18 {\pm} 0.701$	2.54 ± 0.193	8.18 ± 0.701	1.78 ± 0.097	$2.32{\pm}0.0432$	1.24 ± 0.009
	500	10	50	49.8 ± 9.06	8.33 ± 1.51	10.3 ± 1.13	$6.54 {\pm} 0.736$	71 ± 7.82	53.7 ± 6.05	$10.4{\pm}1.17$	3.33 ± 0.327	$10.4 {\pm} 1.17$	2.31 ± 0.17	$2.89 {\pm} 0.0418$	$1.62 {\pm} 0.014$
	600	10	60	67.3 ± 12.9	11.4 ± 2.21	13.4 ± 1.73	$8.66{\pm}1.09$	106 ± 24.9	82 ± 19.3	13.3 ± 1.55	4.38 ± 0.44	13.3 ± 1.55	2.97 ± 0.221	$3.52{\pm}0.0648$	2.08 ± 0.073
	700	10	70	66.7 ± 15.7	11.5 ± 2.73	$14.7 {\pm} 1.88$	$9.87{\pm}1.28$	133 ± 21.5	$106 {\pm} 17.1$	$14.1 {\pm} 1.87$	4.89 ± 0.544	$14.1 {\pm} 1.87$	3.36 ± 0.276	4.09 ± 0.0362	$2.47{\pm}0.028$
	800	10	80	93.7 ± 21.5	16.4 ± 3.81	18.6 ± 3.89	12.9 ± 2.76	-	-	$18.4 {\pm} 2.57$	$6.42 {\pm} 0.768$	$18.4 {\pm} 2.57$	4.27 ± 0.381	$4.68{\pm}0.0385$	$2.92 {\pm} 0.029$
	900	10	90	89±14	15.7 ± 2.51	19.8 ± 2.1	13.9 ± 1.46	_	-	$18.6 {\pm} 1.69$	$6.8 {\pm} 0.523$	18.6 ± 1.69	4.63 ± 0.277	5.29 ± 0.0891	$3.44 {\pm} 0.023$
	1000	10	100	96.7 ± 19.9	17.7 ± 3.64	$23.7 {\pm} 4.42$	17 ± 3.08	-	-	20.4 ± 2.31	7.74 ± 0.711	$20.4 {\pm} 2.31$	5.19 ± 0.358	$5.89 {\pm} 0.0825$	$3.9 {\pm} 0.029$
	1000	1	1000	201±36.6	39.3±7.24	_	_	_	-	197±36.2	98.8±17.9	197±36.2	37.7±6.39	191±33.4	37.3 ± 6.02
	1000	2	500	143 ± 24.3	29.3 ± 5.53	88 ± 9.32	76.9 ± 7.62	87.6±17.4	91.8 ± 19.3	$83.2 {\pm} 12.7$	33.9 ± 4.77	83.2 ± 12.7	17 ± 2.24	82 ± 12.2	17.7 ± 2.16
	1000	4	250	132 ± 22.5	25.4 ± 4.62	$48.4 {\pm} 5.18$	38.1 ± 4.28	179 ± 26.4	167 ± 25.9	$46.2 {\pm} 5.98$	17.4 ± 2.02	$46.2 {\pm} 5.98$	$9.94{\pm}1.01$	39.3 ± 9.68	$9.86{\pm}1.65$
	1000	8	125	112 ± 24.7	21 ± 4.43	27 ± 2.84	19.6 ± 2.18	221 ± 35.8	197 ± 41	25.8 ± 3.64	$9.54{\pm}1.11$	25.8 ± 3.64	6.13 ± 0.583	6.16 ± 0.104	4.01 ± 0.05
	1000	16	62.5	100 ± 18.7	18.1 ± 3.37	$15.5 {\pm} 2.52$	10.6 ± 1.87	178 ± 43.2	141 ± 34.6	$15.9 {\pm} 1.45$	5.87 ± 0.415	15.9 ± 1.45	4.24 ± 0.213	5.5 ± 0.0463	3.79 ± 0.048
	1000	32	31.3	84.6 ± 18.2	14.9 ± 3.12	$10.7 {\pm} 1.74$	7.08 ± 1.18	185 ± 30.2	140 ± 23.5	$9.52{\pm}0.794$	3.67 ± 0.198	$9.52 {\pm} 0.794$	3.22 ± 0.11	$4.17{\pm}0.0301$	$3.64{\pm}0.047$
Layered	1000	64	15.63	82.2 ± 15.4	14.4 ± 2.66	$7.97 {\pm} 1.72$	5.39 ± 1.16	165 ± 27.8	121 ± 20.7	$5.06 {\pm} 0.357$	2.44 ± 0.082	5.06 ± 0.357	2.59 ± 0.071	2.3 ± 0.0206	$3.47{\pm}0.051$
	1000	128	7.81	69.7 ± 11.9	12.1 ± 2.06	$15.5 {\pm} 2.58$	$8.26{\pm}1.35$	130 ± 20.9	96.1 ± 15.6	31.1 ± 5.38	$9.04{\pm}1.33$	31.1 ± 5.38	6.77 ± 0.876	$2.81 {\pm} 0.155$	3.37 ± 0.046
	1000	256	3.91	43.9 ± 7.39	$7.61 {\pm} 1.27$	6.08 ± 1.08	$3.38 {\pm} 0.655$	91.4 ± 22.8	$66.2 {\pm} 17$	10 ± 1.69	3.69 ± 0.384	10 ± 1.69	3.43 ± 0.262	$1.44 {\pm} 0.0316$	$3.45{\pm}0.122$
	1000	512	1.96	34.7 ± 4.48	5.99 ± 0.778	$3.43 {\pm} 0.67$	2.14 ± 0.397	79.8 ± 13.9	57.6 ± 10.2	$4.33{\pm}0.642$	2.39 ± 0.129	4.33 ± 0.642	2.57 ± 0.103	0.782 ± 0.0249	3.39 ± 0.036
	1000	1024	0.98	41.8 ± 7.58	7.28 ± 1.31	$3.65{\pm}0.575$	$2.31 {\pm} 0.341$	88.6 ± 13.9	$64.3 {\pm} 10.1$	6.13 ± 1.2	2.8 ± 0.243	6.13 ± 1.2	2.85 ± 0.161	0.878 ± 0.0315	3.42 ± 0.031
	1000	2048	0.49	33.3 ± 3.2	5.78 ± 0.551	$3.02 {\pm} 0.524$	2.02 ± 0.336	78.5 ± 12.8	57 ± 9.63	$3.37{\pm}0.369$	2.21 ± 0.076	3.37 ± 0.369	2.42 ± 0.063	0.602 ± 0.0155	3.42 ± 0.092
	1000	4096	0.25	29.3 ± 2.68	5.06 ± 0.464	$2.43{\pm}0.423$	$1.67 {\pm} 0.257$	68.9 ± 15	$49.5{\pm}10.9$	$2.48{\pm}0.212$	2.02 ± 0.06	$2.48{\pm}0.212$	2.28 ± 0.058	$0.54{\pm}0.0391$	$3.36{\pm}0.042$
	1000	8192	0.12	34.7 ± 3.21	6.02 ± 0.57	3.51 ± 2	$2.42{\pm}1.29$	77.6 ± 17.9	56 ± 13.2	$2.77{\pm}0.274$	2.09 ± 0.054	2.77 ± 0.274	2.35 ± 0.047	0.474 ± 0.0139	3.41 ± 0.064
	1000	1638	40.06	34.6 ± 4.9	5.97 ± 0.866	2.77 ± 0.617	$1.96 {\pm} 0.418$	85.6 ± 19	62.1 ± 14.3	$2.57{\pm}0.387$	2.04 ± 0.104	2.57 ± 0.387	2.32 ± 0.08	0.447 ± 0.0137	3.39 ± 0.067
	10	1	10	3.12	0.032±0	4.13 ± 0.109	0.165 ± 0.004	0.484	0.016	1.04	0.012	1.04	0.011 ± 0	0.81	0.009 ± 0
	40	1	40	22.2	0.232 ± 0.001	$86.6 {\pm} 1.58$	3.43 ± 0.059	4.42	0.159 ± 0.001	9.08	0.105 ± 0.001	9.08	0.098 ± 0	5.6	0.065 ± 0
	90	1	90	71.6	0.822 ± 0.001	258 ± 9.6	10.8 ± 0.394	12.8	$0.57 {\pm} 0.001$	32.2	0.438 ± 0.002	32.2	0.375 ± 0.001	18.6	0.23 ± 0.001
	160	1	160	155	1.81 ± 0.002	1220 ± 21.6	57.8 ± 1.2	35.8	1.91 ± 0.003	88.2	1.39 ± 0.004	88.2	1.04 ± 0.002	42.7	$0.526 {\pm} 0.001$
SAP	250	1	250	314	3.75 ± 0.003	3820 ± 153	207 ± 8.92	66.8	3.98 ± 0.006	165	2.81 ± 0.008	165	1.94 ± 0.001	95.2	1.15 ± 0.001
\mathbf{S}	360	1	360	482	5.72 ± 0.006	-	-	107	$6.58 {\pm} 0.013$	250	4.24 ± 0.004	250	2.92 ± 0.001	160	1.92 ± 0.001
	490	1	490	764	9.17 ± 0.013	-	-	166	10.5 ± 0.02	377	$6.5 {\pm} 0.012$	377	4.48 ± 0.008	241	2.92 ± 0.004
	640	1	640	1110	13.3 ± 0.014	-	-	241	15.7 ± 0.033	600	10.4 ± 0.011	600	7.14 ± 0.006	339	4.12 ± 0.006
	810	1	810	1510	18 ± 0.019	-	-	380	25.8 ± 0.056	813	13.8 ± 0.024	813	$9.56 {\pm} 0.01$	549	6.56 ± 0.01
	1000	1	1000	1850	21.9 ± 0.019	-	-	467	33 ± 0.131	1020	16.9 ± 0.031	1020	12.1 ± 0.028	718	8.63 ± 0.019
	500	1	500	433±61.9	9.76 ± 1.39	$19.1 {\pm} 10.4$	11.9 ± 4	73.4 ± 28.6	$11.9 {\pm} 4.85$	413 ± 27.8	$18.4 {\pm} 1.26$	413 ± 27.8	$9.48 {\pm} 0.63$	$180 {\pm} 13.8$	$4.22{\pm}0.313$
	500	2	250	459 ± 84.2	10.4 ± 1.9	90 ± 64.2	16.1 ± 5.87	72.3 ± 37	11.2 ± 5.99	372 ± 16.4	15.9 ± 0.698	372 ± 16.4	8.49 ± 0.382	161 ± 15	3.76 ± 0.339
Wetfloor	500	3	166	601 ± 72.8	13.5 ± 1.64	13.3 ± 12.3	12.6 ± 2.69	83.2±24.9	12.8 ± 3.85	$336{\pm}16.7$	14.1 ± 0.718	$336 {\pm} 16.7$	7.64 ± 0.374	160 ± 11.6	$3.74 {\pm} 0.257$
	500	4	125	706 ± 77.5	15.9 ± 1.74	$43.3 {\pm} 40.8$	$19.1 {\pm} 4.78$	117 ± 37.7	$18.1 {\pm} 6.09$	$314{\pm}11.3$	13 ± 0.48	314 ± 11.3	7.13 ± 0.252	157 ± 13.6	$3.67{\pm}0.307$
	500	5	100	732 ± 61.4	16.5 ± 1.39	$18.4 {\pm} 15.6$	16.7 ± 3.2	125 ± 26.7	$19.2 {\pm} 4.18$	303 ± 12	12.4 ± 0.489	303 ± 12	6.88 ± 0.271	157 ± 11.3	$3.64{\pm}0.253$
/eti	500	6	83.5	875 ± 67.3	19.7 ± 1.51	6.2 ± 3.81	20.9 ± 4.71	135 ± 50.8	21 ± 7.96	$304{\pm}15.7$	12.2 ± 0.628	$304 {\pm} 15.7$	6.88 ± 0.336	171 ± 14.5	$3.96 {\pm} 0.32$
\bowtie	500	7	71.3	957 ± 45.5	21.5 ± 1.03	24.2 ± 28.7	$24.5 {\pm} 5.76$	169 ± 40.7	$25.6 {\pm} 6.33$	289 ± 12	11.4 ± 0.469	289 ± 12	6.55 ± 0.253	$166 {\pm} 10.9$	$3.84{\pm}0.241$
	500	8	62.5	959 ± 68.7	21.6 ± 1.53	16.4 ± 10	22.3 ± 3.72	174 ± 37.9	26.5 ± 5.86	289 ± 12.9	11 ± 0.495	289 ± 12.9	6.52 ± 0.279	166 ± 12.7	3.83 ± 0.281
	500	9	55.7	1070 ± 77.5	24 ± 1.74	$4.22{\pm}1.61$	25.4 ± 5.07	220 ± 51.1	33.4 ± 7.9	299 ± 18.3	10.9 ± 0.692	299 ± 18.3	6.68 ± 0.399	181 ± 17.4	$4.13{\pm}0.385$
	500	10	50.2	1200 ± 67.2	27 ± 1.5	6.99 ± 3.17	31.7 ± 4.16	289 ± 36.3	43.9 ± 5.48	$316{\pm}12.8$	10.8 ± 0.453	316 ± 12.8	6.99 ± 0.279	201 ± 11.8	$4.52{\pm}0.257$

Table 2: Average running times of Tarjan, Relabeling (T_r) and VI sweeps (T_s) (in s) and numbers of Bellman backups on each domain for the TVI, eTVI and eiTVI algorithms.

						_	1					
MDP characteristics			Tarjan	_TV		_	eTVI _		_	eiTVI	_	
D	S	K	$ k_{\max} $		T_s	В	T_r	T_s	В	T_r	T_s	В
	(k)		(k)	(s)	(s)	(M)	(s)	(s)	(M)	(s)	(s)	(M)
	100	10	10	0.049 ± 0.001	$0.276 {\pm} 0.018$	$1.43 {\pm} 0.0962$	$0.052 {\pm} 0.001$	$0.194 {\pm} 0.013$	1.43 ± 0.0962	$0.125{\pm}0.001$	$0.077{\pm}0.001$	$0.552 {\pm} 0.0073$
	200	10	20	0.115 ± 0.001	$0.844 {\pm} 0.068$	$3.53 {\pm} 0.301$	0.111 ± 0.001	0.509 ± 0.041	3.53 ± 0.301	$0.266{\pm}0.006$	$0.172 {\pm} 0.002$	$1.14{\pm}0.0114$
Р	300	10	30	0.196 ± 0.007	1.53 ± 0.183	$5.88 {\pm} 0.762$	0.176 ± 0.002	$0.87 {\pm} 0.106$	$5.88 {\pm} 0.762$	0.410 ± 0.004	0.273 ± 0.003	1.73 ± 0.0218
	400	10	40	0.288 ± 0.004	2.24 ± 0.192	8.18 ± 0.701	$0.246 {\pm} 0.002$	1.23 ± 0.097	8.18 ± 0.701	0.559 ± 0.005	0.376 ± 0.007	$2.32 {\pm} 0.0432$
ere	500	10	50	0.391 ± 0.002	$2.92 {\pm} 0.327$	10.4 ± 1.17	0.320 ± 0.002	1.59 ± 0.168	10.4 ± 1.17	0.739 ± 0.007	0.479 ± 0.009	$2.89 {\pm} 0.0418$
Layered	600	10	60	0.509 ± 0.002	$3.85 {\pm} 0.44$	13.3 ± 1.55	0.399 ± 0.002	2.04 ± 0.219	13.3 ± 1.55	$0.945 {\pm} 0.040$	$0.592 {\pm} 0.015$	$3.52 {\pm} 0.0648$
П	700	10	70	0.632 ± 0.006	4.25 ± 0.544	14.1 ± 1.87	$0.483 {\pm} 0.006$	$2.22 {\pm} 0.274$	14.1 ± 1.87	1.129 ± 0.019	$0.689 {\pm} 0.009$	4.09 ± 0.0362
	800	10	80	0.760 ± 0.007	$5.64 {\pm} 0.768$	$18.4 {\pm} 2.57$	$0.562 {\pm} 0.004$	$2.92 {\pm} 0.381$	18.4 ± 2.57	1.335 ± 0.013	$0.804 {\pm} 0.013$	$4.68{\pm}0.0385$
	900	10	90	0.887 ± 0.006	5.89 ± 0.522	18.6 ± 1.69	0.652 ± 0.009	3.06 ± 0.267	18.6 ± 1.69	1.602 ± 0.013	0.923 ± 0.019	5.29 ± 0.0891
	1000	10	100	1.026 ± 0.008	6.69 ± 0.711	20.4 ± 2.31	0.736 ± 0.006	3.41 ± 0.356	20.4 ± 2.31	1.811 ± 0.013	$1.05 {\pm} 0.021$	5.89 ± 0.0825
	1000	1	1000	1.309±0.010	97.5±17.9	197±36.2	0.919 ± 0.004	35.5 ± 6.39	197±36.2	1.537 ± 0.006	34.5 ± 6.02	191±33.4
	1000	2	500	1.332 ± 0.003	32.5 ± 4.77	$83.2 {\pm} 12.7$	$0.853 {\pm} 0.006$	14.7 ± 2.24	83.2 ± 12.7	1.759 ± 0.024	14.6 ± 2.15	82 ± 12.2
	1000	4	250	1.201 ± 0.005	16.1 ± 2.01	$46.2 {\pm} 5.98$	$0.786 {\pm} 0.007$	7.93 ± 1.01	46.2 ± 5.98	1.819 ± 0.024	$6.81{\pm}1.65$	39.3 ± 9.68
	1000	8	125	1.062 ± 0.016	$8.46{\pm}1.12$	25.8 ± 3.64	0.750 ± 0.005	4.3 ± 0.583	25.8 ± 3.64	1.824 ± 0.010	1.11 ± 0.042	6.16 ± 0.104
	1000	16	62.5	$0.955 {\pm} 0.004$	4.89 ± 0.416	15.9 ± 1.45	0.716 ± 0.003	$2.54 {\pm} 0.212$	15.9 ± 1.45	$1.835 {\pm} 0.024$	$0.965 {\pm} 0.023$	5.5 ± 0.0463
	1000	32	31.3	0.899 ± 0.010	2.7 ± 0.201	$9.52 {\pm} 0.794$	$0.691 {\pm} 0.005$	1.56 ± 0.113	$9.52 {\pm} 0.794$	1.906 ± 0.035	$0.756 {\pm} 0.023$	$4.17{\pm}0.0301$
Layered	1000	64	15.63	0.836 ± 0.013	1.4 ± 0.079	5.06 ± 0.357	$0.687 {\pm} 0.011$	$0.875 {\pm} 0.059$	5.06 ± 0.357	1.963 ± 0.021	$0.485{\pm}0.028$	2.3 ± 0.0206
	1000	128	7.81	0.773 ± 0.010	8.04 ± 1.33	31.1 ± 5.38	$0.675 {\pm} 0.006$	5.11 ± 0.875	31.1 ± 5.38	1.822 ± 0.013	$0.58 {\pm} 0.036$	$2.81{\pm}0.155$
La	1000	256	3.91	$0.831 {\pm} 0.007$	$2.57 {\pm} 0.38$	10 ± 1.69	0.670 ± 0.006	$1.67 {\pm} 0.256$	10 ± 1.69	$1.955 {\pm} 0.073$	$0.37 {\pm} 0.029$	$1.44 {\pm} 0.0316$
	1000	512	1.96	$0.821 {\pm} 0.012$	1.25 ± 0.129	$4.33 {\pm} 0.642$	$0.680 {\pm} 0.007$	0.763 ± 0.098	4.33 ± 0.642	2.015 ± 0.021	$0.254{\pm}0.018$	$0.782 {\pm} 0.0249$
	1000	1024	0.98	0.837 ± 0.012	$1.64 {\pm} 0.245$	6.13 ± 1.2	$0.691 {\pm} 0.005$	1.02 ± 0.169	6.13 ± 1.2	2.001 ± 0.021	$0.286{\pm}0.021$	$0.878 {\pm} 0.0315$
	1000	2048	0.49	0.823 ± 0.010	1.05 ± 0.072	3.37 ± 0.369	$0.684 {\pm} 0.006$	$0.606 {\pm} 0.056$	3.37 ± 0.369	$2.048 {\pm} 0.057$	$0.233 {\pm} 0.016$	$0.602 {\pm} 0.0155$
	1000	4096	0.25	0.818 ± 0.019	$0.867 {\pm} 0.044$	$2.48 {\pm} 0.212$	$0.682 {\pm} 0.011$	$0.476 {\pm} 0.035$	$2.48 {\pm} 0.212$	$2.025 {\pm} 0.016$	0.211 ± 0.008	$0.54{\pm}0.0391$
	1000	8192	0.12	$0.826 {\pm} 0.015$	$0.92 {\pm} 0.053$	$2.77{\pm}0.274$	$0.686 {\pm} 0.006$	0.529 ± 0.041	2.77 ± 0.274	2.045 ± 0.035	0.207 ± 0.01	$0.474 {\pm} 0.0139$
	1000	16384	0.06	0.824 ± 0.022	0.879 ± 0.081	$2.57{\pm}0.387$	$0.684 {\pm} 0.011$	$0.497{\pm}0.058$	2.57 ± 0.387	$2.037{\pm}0.025$	$0.204{\pm}0.011$	$0.447{\pm}0.0137$
	10	1	10	0.001	0.011	1.04	0.001	0.01	1.04	0.001	0.008	0.81
	40	1	40	0.002	0.102 ± 0.001	9.08	0.002	0.092 ± 0	9.08	0.005	0.057 ± 0	5.6
	90	1	90	0.004	$0.431 {\pm} 0.002$	32.2	0.005	0.363 ± 0.001	32.2	0.012	0.211 ± 0.001	18.6
	160	1	160	0.008	1.37 ± 0.004	88.2	0.009	1.01 ± 0.002	88.2	0.022	$0.491{\pm}0.001$	42.7
ᅀ	250	1	250	0.013	2.79 ± 0.008	165	0.015	1.9 ± 0.001	165	0.036	1.1 ± 0.001	95.2
SAP	360	1	360	0.018	4.21 ± 0.004	250	0.021	2.87 ± 0.001	250	0.054	1.83 ± 0.001	160.0
	490	1	490	0.027	$6.46 {\pm} 0.012$	377	0.029	4.41 ± 0.008	377	0.075	2.8 ± 0.004	241.0
	640	1	640	0.037	10.3 ± 0.011	600	0.038	7.04 ± 0.006	600	0.100	3.97 ± 0.005	339.0
	810	1	810	0.045	13.8 ± 0.024	813	0.050	$9.44 {\pm} 0.01$	813	0.130	6.37 ± 0.01	549.0
	1000	1	1000	0.055	$16.8 {\pm} 0.031$	1020	0.061	11.9 ± 0.027	1020	0.162	8.39 ± 0.019	718.0
	500	1	500	0.053	18.4±1.26	413±27.8	0.054	9.36 ± 0.63	413±27.8	0.104 ± 0.005	4.04±0.31	180±13.8
	500	2	250	0.051	15.8 ± 0.698	372 ± 16.4	0.053	8.37 ± 0.382	372 ± 16.4	0.097 ± 0.003	3.6 ± 0.337	161 ± 15.0
	500	3	166	0.050	14.1 ± 0.717	336 ± 16.7	0.053	7.52 ± 0.374	336 ± 16.7	0.095 ± 0.002	3.58 ± 0.256	160 ± 11.6
Ħ	500	4	125	0.049	13 ± 0.48	314 ± 11.3	0.053	7.02 ± 0.252	314 ± 11.3	0.097 ± 0.002	$3.51 {\pm} 0.305$	157 ± 13.6
Wetfloor	500	5	100	0.048	12.4 ± 0.489	303 ± 12	0.053	6.77 ± 0.271	303 ± 12	0.093 ± 0.002	$3.49 {\pm} 0.252$	157 ± 11.3
etf	500	6	83.5	0.048	12.2 ± 0.627	304 ± 15.7	0.053	6.77 ± 0.336	304 ± 15.7	0.094 ± 0.001	3.81 ± 0.319	171 ± 14.5
\bowtie	500	7	71.3	0.046	11.4 ± 0.469	289 ± 12	0.052	$6.44 {\pm} 0.253$	289 ± 12	0.093 ± 0.001	3.69 ± 0.241	166 ± 10.9
	500	8	62.5	0.046	10.9 ± 0.495	289 ± 12.9	0.053	$6.4 {\pm} 0.279$	289 ± 12.9	0.092 ± 0.002	$3.68 {\pm} 0.28$	166 ± 12.7
	500	9	55.7	0.046	10.8 ± 0.691	299 ± 18.3	0.052	6.57 ± 0.399	299 ± 18.3	0.092 ± 0.002	3.97 ± 0.384	181 ± 17.4
	500	10	50.2	0.046	10.7 ± 0.453	316 ± 12.8	0.052	$6.88 {\pm} 0.279$	316 ± 12.8	0.093 ± 0.001	$4.36 {\pm} 0.256$	201 ± 11.8
				ı			l .		l			

Table 3: Cache metrics obtained with an Intel Core i5-7600k CPU on the Layered domain (instance with 1M states and 10 layers). Both the number of cache-refs and cache-misses decrease when we pass from TVI to eTVI as well as from eTVI to eiTVI. However, the percentage of cache-misses vs cache-refs decreases when we pass from TVI to eTVI, but increases when we pass from eTVI to eiTVI (because of the extra computation needed to perform the reversed BFS).

Solver	Cache-Refs	Cache-Misses	Percent (cache-miss/cache-ref)
TVI	2.87G	0.860G	29.96
eTVI	2.39G	0.413G	17.28
eiTVI	1.59G	0.328G	20.62

Table 4: Average speedup factors obtained on each tested domain.

Domain	TVI vs VI	eTVI vs TVI	eiTVI vs eTVI	eiTVI vs TVI
Layered (var. states)	2.4988	1.4306	1.3955	1.9965
Layered (var. layers)	1.8054	1.4549	0.9774	1.4220
SAP	1.3999	1.3725	1.7440	2.3937
Wetfloor	1.3810	1.7788	1.8635	3.3147
Average	1.6285	1.6018	1.3119	2.1014