Betting Against Beta: A State-Space Approach An Alternative to Frazzini and Pederson (2014)

David Puelz and Long Zhao

UT McCombs

October 7, 2015

Overview

Background

Frazzini and Pederson (2014)

A State-Space Model

- ▶ Investors care about portfolio Return and Risk
- ▶ Objective: Maximize Sharpe Ratio $= \frac{\text{Excess Return}}{\text{Risk}}$
- ► Maximum Sharpe Ratio portfolio called **Tangency Portfolio**

Let's derive the CAPM!

- ▶ Portfolio of N assets defined by weights: $\{x_{im}\}_{i=1}^{N}$
- ▶ Covariance between returns i and j: $\sigma_{ij} = cov(r_i, r_j)$
- Standard deviation of portfolio return:

$$\sigma(r_m) = \sum_{i=1}^{N} x_{im} \frac{cov(r_i, r_m)}{\sigma(r_m)}$$
 (1)

Maximizing Portfolio Return

- ► Choosing efficient portfolio \implies maximizes expected return for a given risk: $\sigma(r_p)$
- ► Choose $\{x_{im}\}_{i=1}^{N}$ to maximize:

$$\mathbb{E}[r_m] = \sum_{i=1}^{N} x_{im} \mathbb{E}[r_i]$$
 (2)

with constraints: $\sigma(r_m) = \sigma(r_p)$ and $\sum_{i=1}^{N} x_{im} = 1$

What does this imply? (I)

The Lagrangian:

$$\mathcal{L}(x_{im}, \lambda, \mu) = \sum_{i=1}^{N} x_{im} \mathbb{E}[r_i] + \lambda \left(\sigma(r_p) - \sigma(r_m)\right) + \mu \left(\sum_{i=1}^{N} x_{im} - 1\right)$$
(3)

Taking derivatives, setting equal to zero:

$$\mathbb{E}[r_i] - \lambda \frac{cov(r_i, r_m^*)}{\sigma(r_m^*)} + \mu = 0 \quad \forall i$$
 (4)

What does this imply? (II)

From 4, we have:

$$\mathbb{E}[r_i] - \lambda \frac{cov(r_i, r_m^*)}{\sigma(r_m^*)} = \mathbb{E}[r_j] - \lambda \frac{cov(r_j, r_m^*)}{\sigma(r_m^*)} \quad \forall i, j$$
 (5)

Assume $\exists r_0$ that is uncorrelated with portfolio r_m . From 5, we have:

$$\frac{\mathbb{E}[r_m^*] - \mathbb{E}[r_0]}{\sigma(r_m^*)} = \lambda \tag{6}$$

$$\mathbb{E}[r_i] - \mathbb{E}[r_m^*] = -\lambda \sigma(r_m^*) + \lambda \frac{cov(r_i, r_m^*)}{\sigma(r_m^*)}$$
 (7)

Bringing it all together

6 and 7 \Longrightarrow

$$\mathbb{E}[r_i] = \mathbb{E}[r_0] + \left[\mathbb{E}[r_m^*] - \mathbb{E}[r_0]\right]\beta_i \tag{8}$$

where

$$\beta_i = \frac{cov(r_i, r_m^*)}{\sigma^2(r_m^*)} \tag{9}$$

Linear relationship between expected returns of asset and $r_m!$

Capital Asset Pricing Model (CAPM)

- $ightharpoonup r_m^* = Market Portfolio$
- ► For asset *i*:

$$\mathbb{E}[r_i] = r_f + \beta_i \left[\mathbb{E}[r_m^*] - r_f \right] \tag{10}$$

Capital Asset Pricing Model (CAPM)

► For portfolio of assets:

$$\mathbb{E}[r] = r_f + \beta_P \left[\mathbb{E}[r_m^*] - r_f \right] \tag{11}$$

"Lever up" to increase return ...

$$\mathbb{E}[r] = r_f + \beta_P [\mathbb{E}[r_m^*] - r_f]$$

Risk / Return Space

▶ Investors constrained on amount of leverage they can take

Due to leverage constraints, overweight high- $\!\beta$ assets instead

$$\mathbb{E}[r] = r_f + \frac{\beta_P}{\beta_P} \left[\mathbb{E}[r_m^*] - r_f \right]$$

Market demand for high- β

 \Longrightarrow

 $\mathsf{high}\text{-}\beta$ assets require a lower expected return than $\mathsf{low}\text{-}\beta$ assets

Can we bet against β ?

Monthly Data

- ▶ 4,950 CRSP US Stock Returns from 1926-2013
- ► Fama-French Factors from 1926-2013

Frazzini and Pederson (2014)

- 1. For each time t and each stock i, estimate β_{it}
- 2. Sort β_{it} from smallest to largest
- 3. **Buy** low- β stocks and **Sell** high- β stocks

F&P (2014) BAB Factor

Buy top half of sort (low- β stocks) and **Sell** bottom half of sort (high- β stocks) $\forall t$

$$r_{t+1}^{BAB} = \frac{1}{\beta_t^L} (r_{t+1}^L - r_f) - \frac{1}{\beta_t^H} (r_{t+1}^H - r_f)$$
 (12)

$$\beta_t^L = \vec{\beta}_t^T \vec{w}_L$$

$$\beta_t^H = \vec{\beta}_t^T \vec{w}_H$$

$$\vec{w}_H = \kappa (z - \bar{z})^+$$

$$\vec{w}_L = \kappa (z - \bar{z})^-$$

F&P (2014) BAB Factor

 β_{it} estimated as:

$$\hat{\beta}_{it} = \hat{\rho} \frac{\hat{\sigma}_i}{\hat{\sigma}_m} \tag{13}$$

- \triangleright $\hat{\rho}$ from rolling 5-year window
- $\hat{\sigma}$'s from rolling 1-year window
- $ightharpoonup \hat{\beta}_{it}$'s shrunk towards cross-sectional mean

Decile Portfolio α 's

Low, High- β and BAB α 's

Sharpe Ratios

Decile Portfolios (low to high β):

P1									
0.74	0.67	0.63	0.63	0.59	0.58	0.52	0.5	0.47	0.44

Low, High- β and BAB Portfolios:

Low- β	$High ext{-}eta$	BAB	Market
0.71	0.48	0.76	0.41

Motivation

Motivation

Our Model

$$R_{it}^{e} = \beta_{it}R_{mt}^{e} + \exp\left(\frac{\lambda_{t}}{2}\right)\epsilon_{t}$$
 (14)

$$\beta_{it} = a + b\beta_{it-1} + w_t \tag{15}$$

$$\lambda_{it} = c + d\lambda_{it-1} + u_t \tag{16}$$

$$\epsilon_t \sim N[0, 1]$$
 $w_t \sim N[0, \sigma_{\beta}^2]$
 $u_t \sim N[0, \sigma_{\lambda}^2]$

Our Model

$$R_{it}^{e} = \beta_{it}R_{mt}^{e} + \exp\left(\frac{\lambda_{t}}{2}\right)\epsilon_{t} \tag{17}$$

$$\beta_{it} = a + b\beta_{it-1} + w_t \tag{18}$$

$$\lambda_{it} = c + d\lambda_{it-1} + u_t \tag{19}$$

$$\epsilon_t \sim N[0, 1]$$
 $w_t \sim N[0, \sigma_{\beta}^2]$
 $u_t \sim N[0, \sigma_{\lambda}^2]$

The Algorithm

```
1. \mathbb{P}(\beta_{1:T}|\Theta, \lambda_{1:T}, D_T) (FFBS)

2. \mathbb{P}(\lambda_{1:T}|\Theta, \beta_{1:T}, D_T) (Mixed Normal FFBS)

3. \mathbb{P}(\Theta|\beta_{1:T}, \lambda_{1:T}, D_T) (AR(1))

\beta_t|\Theta, \lambda_{1:T}, D_t
```

Comparison: Decile Portfolio α 's

Comparison: With β Shrinkage

Comparison: Without β Shrinkage

Comparison: Sharpe Ratios and α 's

Shrinkage?	Method	BAB Sharpe	BAB α
Yes	BAB Paper	0.76	0.75
	SS Approach	0.42	0.58
No	BAB Paper	0.04	0.75
	SS Approach	0.43	1.73

High Frequency Estimation

High Frequency Estimation

High Frequency Estimation

