# 《生物实验设计》 第四章 统计推断

#### 王超

#### 广东药科大学

Email: wangchao@gdpu.edu.cn

2022-09-26





# 第七章 直线回归与相关分析

#### **Check In**



### 第一节 回归和相关的概念

- 变量间的相互关系:
  - 因果关系
    - 一个变量的变化受另一个变量或几个变量的制约
  - 平行关系
    - 两个以上变量之间共同受到另外因素的影响
- 两个变量的成对观测值可表示为  $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$
- 每对观测值在平面直角坐标系中表示成一个点。作成散点图

# **第一节 回归和相关的概念** 一、散点图

#### 散点图



- 从散点图可以看到:
  - 变量间关系的性质和程度
  - 变量间关系的类型
  - 是否有异常值干扰

# 第一节 回归和相关的概念 一、散点图



### 第一节 回归和相关的概念 二、因果关系

- 因果关系
  - 用回归分析研究
  - 自变量 x, 因变量 y
  - 因变量随着自变量的变化而变化, 具有随机误差
  - 回归关系
- 一元回归分析
  - 一个自变量与一个因变量
  - 直线回归
  - 曲线回归
- 多元回归分析
  - 多个自变量与一个因变量
- 揭示因果关系的变量之间的联系形式,建立回归方程,利用回归 方程预测和控制因变量

#### 第一节 回归和相关的概念 三、平行关系

- 平行关系
  - 用相关分析研究
  - 变量 x 和变量 y 无自变量和因变量之分,都具有随机误差
  - 相关关系
- 直线相关分析
  - 两个变量的直线关系
- 复相关分析
  - 一个变量与多个变量间的线性相关
- 偏相关分析
  - 其余变量保持不变的情况下两个变量间的线性相关
- 研究两个变量之间相关的程度和性质或一个变量与多个变量之间 相关的程度

- 对于自变量 x 的每一个取值  $x_i$ ,都有因变量 y 的一个分布与之对应
- 条件平均数
  - 当  $x = x_i$  时,  $y_i$  的平均数  $\mu_{y_i}$  与之对应
- 利用直线回归方程描述这种关系:
  - $\hat{y} = a + bx$
  - ullet a 为截距,b 为系数, $\hat{y}$  为因变量 y 的点估计

- 两个变量呈线性关系, 可以用直线回归来描述
- 最小二乘法
  - 解决曲线拟合问题最常用的方法
  - 基本思路是求 a,b, 令因变量的观测值与回归估计值的离均差平方和 Q 值最小

$$min(Q) = \sum_{1}^{n} (y - \hat{y})^{2} = \sum_{1}^{n} (y - a - bx)^{2}$$

- 天体运动论,1809,高斯
- 计算谷神星轨道
- 通过最小化误差的平方和寻找数据的最佳函数匹配

用五把不同颜色的尺子分别测量一线段的长度,得到的数值分别为:

| 红    | 蓝    | 橙   | 黄   | 绿   |
|------|------|-----|-----|-----|
| 10.2 | 10.3 | 9.8 | 9.9 | 9.8 |

#### 一般用平均值来作为线段长度:

$$\bar{x} = \frac{10.2 + 10.3 + 9.8 + 9.9 + 9.8}{5} = 10$$



把测试得到的值画在坐标系中,分别记作  $y_i$ 



把要猜测的线段长度的真实值用平行于横轴的直线来表示,分别记作 y



每个点都向 y 做垂线,垂线的长度就是  $y-y_i$ ,也可以理解为测量值和真实值之间的误差:



因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来 代表误差:

$$|y - y_i| \Rightarrow (y - y_i)^2$$

• 总的误差平方就是

$$\sigma = \sum (y - y_i)^2$$

- 因为 y 是猜测的,所以可以上下不断变换
- 方差不断变化

- 勒让德(Adrien-Marie Legendre)提出让总的误差的平方最小的 y
   就是真值,这是基于:
  - 如果误差是随机的,应该围绕真值上下波动
  - 无偏估计

$$\sigma = \min \sum (y - y_i)^2$$

对二次函数求导:

$$\frac{d}{dy}\sigma = \frac{d}{dy}\sum (y-y_i)^2 = 2\sum (y-y_i) = 2((y-y_1)+(y-y_2)+\ldots+(y-y_5)) = 0$$

$$5y = y_1 + y_2 + \ldots + y_5 \Rightarrow y = \frac{y_1 + y_2 + \ldots + y_5}{5}$$

• 求真值的最小二乘法

$$\sigma = \min \sum (y - y_i)^2$$

• 求自变量和因变量关系的最小二乘法

$$min(Q) = \sum_{1}^{n} (y - \hat{y})^2 = \sum_{1}^{n} (y - a - bx)^2$$

● 根据极值定理,对 a 和 b 分别求导:

$$\frac{\partial Q}{\partial a} = -2\sum (y-a-bx) = 0, \frac{\partial Q}{\partial b} = -2\sum (y-a-bx)x = 0$$

• 整理得到:

$$\begin{cases} an + b \sum x = \sum y \\ a \sum x + b \sum x^2 = \sum xy \end{cases}$$



最后得到:

$$\begin{cases} a = \bar{y} - b\bar{x} \\ b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} \end{cases}$$

- a > 0,回归直线在第一象限与 y 轴相交
- a < 0,回归直线在第一象限与  $\times$  轴相交
- b > 0, y 随 x 的增加而增加
- a < 0, y 随 x 的增加而减小

