МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

М.А.Тынкевич

Система МАТLAВ

Справочное пособие к курсу "ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА"

для студентов специальности «Прикладная информатика в экономике»

Введение в MatLab (происхождение и возможности)

Электронные вычислительные машины (ЭВМ) первого поколения, в основном, были востребованы именно для выполнения вычислений при расчете баллистических таблиц, оболочек ядерных реакторов, траекторий вывода на орбиту космических аппаратов и в других, более скромных, научных и инженерных расчетах. Программист того времени должен был искать взаимопонимание с заказчиком в математической постановке задачи, быть специалистом в области вычислительной математики, способным найти или создать численный метод решения задачи и, зная систему команд ЭВМ и основные приемы программирования, составить машинную программу.

Система команд первых ЭВМ (для каждого типа машин своя) включала достаточно ограниченный набор элементарных операций (арифметических и логических, пересылки между ячейками памяти, перехода по условию) и лишь избранные ЭВМ (например, первая наша серийная машина "Стрела" с памятью в 2048 43-разрядных ячеек и быстродействием 2000-4000 операций/сек) имели в этом наборе более сложные операции (перевод числа из двоично-десятичной системы в двоичную и обратно, вычисления синуса, натурального логарифма, экспоненты, обратной величины и квадратного корня). Построение из этих "кирпичиков" программ для реальных задач в условиях ограниченной емкости памяти и невысокого (по современным меркам) быстродействия было достаточно трудоемким процессом и не случайно возникло понятие искусства программирования.

Естественно, что уже на первых этапах практического программирования появилась идея *подпрограммы* как программного блока, допускающего многократное обращение к себе из различных участков программы. Так появились сборники текстов подпрограмм для вычисления элементарных функций и основных численных методов (интегрирования, решения обыкновенных дифференциальных уравнений и пр.), позднее эти сборники стали хранить во внешней памяти машины (как правило, на магнитных лентах или барабанах). Наконец, были созданы системы, позволяющие по номеру подпрограммы вызывать ее из внешней памяти в оперативную с настройкой по месту вызова и при наличии определенных договоренностей передавать входную и выходную информацию. В отечественной практике наиболее совершенной была интерпретирующая система ИС-2 (позднее ИС-22) для семейства машин типа М-20 с уникальной по качеству и разнообразию библиотекой стандартных подпрограмм.

Переход от программирования в кодах ЭВМ к универсальным

языкам программирования — в первую очередь, к Алголу-60 - породил *библиотеки алгоритмов*, которые и составили базу для построения 30 лет спустя систем для решения математических задач, возникающих в разнообразных научных исследованиях и технических разработках — Maple, Mathematica, MathCad, MatLab и др. Для этих систем характерны простота подготовки данных, удобные формы вывода результатов вычислений, встроенные средства помощи, диагностики ошибок — т.н. *дружественный интерфейс*.

Рассматриваемая ниже система MatLab (Matrix Laboratory) является интерактивной системой для выполнения инженерных и научных расчетов, ориентированная на работу с массивами данных. Она допускает написание на специальном языке программ, оформляемых в виде т.н. М-файлов, поддерживает работу в программном и интерактивном режиме с векторами и матрицами, позволяет решать системы уравнений, выполнять численное интегрирование, строить графики и пр. Система допускает использование пакетов прикладных программ (ППП) символьной математики, статистики, оптимизации, анализа и синтеза систем управления, обработки сигналов и изображений, финансов, картографии и др. Система позволяет с легкостью обмениваться информацией с текстовым редактором Microsoft Word, в частности переносить любые тексты и рисунки в буфер или читать текстовые строки из буфера как исполняемые команды.

Опыт показывает, что студенты, владеющие программированием в Pascal'e или Visual Basic'e, улавливают технологию программирования и работы в MatLab'e в течение 2-3 часов (с фантастическими возможностями системы можно знакомиться месяцами).

Ниже мы излагаем информацию лишь о небольшой части этой системы, полезную при изучении численных методов решения основных задач вычислительной математики студентами, основные интересы которых ограничены областью экономико-математического моделирования.

1. Режим командной строки. Форматы данных

При вызове MatLab на дисплей выводится заставка, которая сменяется командным окном, в верхней части которого размещено окно управления - меню с пунктами Файл, Правка, Окно и Помощь и панель инструментов. Ниже выводится командная строка (начинается символом "»") с предварительными предложениями вызвать перечень разделов, войти в справочник, открыть окно помощи, приступить к демонстрации и др.

В командной строке в режиме диалога можно *набрать команду* (оператор) или выражение и, нажав Enter, получить ответ (answer). Например, после набора команды (оператора присваивания) $\mathbf{a}=3.2$ в последующих строках появится $\mathbf{a}=3.2000000000000$ (переменной \mathbf{a} присвоено значение 3.2), после набора выражения $\sin(\mathbf{a})/\mathbf{a}$ увидим его значение $\sin(\mathbf{a})$ а увидим

Сразу же учтите, что в именах переменных (последовательностях латинских букв и цифр, начинающихся с буквы; знак _ относится к буквам) строчные и заглавные буквы отнюдь не тождественны!

Если вы хотите выполнить команду без вывода результата, в конце команды ставьте символ точки с запятой.

Кстати, если команда не помещается полностью в видимой части одной строки экрана, поставьте многоточие (хотя бы две точки), нажмите Enter и продолжайте в следующей строке.

Для *очистки командного окна* достаточно выполнить команду **clr**.

Заметим, что всегда можно обратиться к помощи, выбрать интересующий раздел (например, **matlab/elfun** — элементарные математические функции) и воспользоваться полученной информацией. Имейте в виду, что любой фрагмент окна командной строки можно выделить и копировать в буфер, например, для переноса в Word. Возможен перенос в командную строку текстовых фрагментов из других систем.

Полезно сразу обратить внимание на подпункт *Свойства (Preference)* пункта Φ айл (File) окна управления.

В первом его окне (*General*) предусматривается установка Numeric Format формата представления чисел: Short — короткое 5-значное, Long — длинное 15-значное, Hex — шестнадцатеричное, Bank — доллары и центы, ShortE и LongE — экспоненциальное, Rational — отношение целых чисел (обратите внимание на эту форму — такой нет ни в одной универсальной среде программирования), межстрочного интервала (с пробелом между строками Loose или без такового Compact), а также вывод на экран панели инструментов и поддержка возможности отладки графики.

Во втором окне (*Command Window Font*) имеются 6 полей: Font (шрифт), Style (Light-светлый, Regular - нормальный, Bold – жирный), Size (размер 10, 12 или 15), BackGround Color (цвет фона), Color (цвет символа) и др.

Как и в любой системе, в MatLab'e присутствует понятие *переменной* величины, но в роли ее значения выступает *массив* (*array*).

В системе определены 6 встроенных типов данных (массивов):

- числа удвоенной точности (double);
- массивы символов строки (**char**), при задании строковой константы ее символы заключают в апострофы;
- двумерные разреженные матрицы (**sparse**), массивы ячеек (**cell**), массивы записей (**struct**) и специальные массивы целых чисел от 0 до 255 (uint8).

Здесь мы ограничимся рассмотрением лишь обычных числовых массивов и строк.

Для задания массива (в частности, скалярной величины) используется команда присваивания. Например, командой » $\mathbf{a}=[1\ 2\ 3;\ 4\ 5\ 6]$ формируется матрица размерности 2×3 с соответствующими элементами; командой » $\mathbf{b}=[1\ 2\ 3]$ – вектор-строка; командой » $\mathbf{b}=[1;\ 2;\ 3]$ - вектор-столбец; $\mathbf{d}=\mathbf{zeros}(\mathbf{4},\mathbf{7})$ - матрица размерности 4×7 с нулевыми элементами. Для выборки отдельных элементов массивов можно пользоваться индексами, например, $\mathbf{a}(\mathbf{k},3)$ определяет третий элемент \mathbf{k} -ой строки, $\mathbf{a}(:,3)$ – весь третий столбец. Встроенная система контроля отлавливает типичные ошибки при задании массивов: например, при попытке выполнения команды » $\mathbf{a}=[1\ 2\ 3;\ 4\ 5\]$ получаем:

Number of elements in each row must be the same.

(Число элементов в каждой строке должно быть тем же)

Обратите внимание на то, что следует :

- при задании массива значениями заключать их в квадратные скобки;
- элементы в строке массива разделять пробелами или запятыми;
- при указании списка индексов использовать <u>круглые</u> скобки и разделительные запятые (указание индекса символом двоеточия соответствует заданию всех значений по соответствующему индексу).

При работе с массивами можно пользоваться списками **i:k** и **i:j:k**: в первом варианте понимаем "от **i** до **k** с шагом **1**" и во втором — то же с шагом **j**, например t=-pi:0.01:pi или p=0:8 (некоторые сочетания дают пустое множество, например q=3:1).

В библиотеке предусмотрен ряд функций для формирования массивов простейшей структуры, например:

- нулей zeros(n), zeros(m,n), zeros(m,n,p,...), zeros(size(A)) (одномерный, двумерный, многомерный, соразмерный с массивом A);
 - единиц ones(n), ones (m,n), ones (size(A)) и др.

Естественно, что к числовым переменным применимы все арифметические операции, но при выполнении ряда операций приходится различать поэлементные операции с массивами и операции над матрицами по правилам линейной алгебры (для массивов перед знаком операции ставят точку):

+A		A B	Решение системы т уравнений
-A			АХ=В с несколькими правыми
A+B	Предполагается одинако-		частями: В –матрица m×k {то-
A-B	вая размерность или один		ждественно (В'/А')' }
A .*B	из операндов – скаляр		
A.\ B	Левое деление (В на А)		
A ./B	Правое деление (А на В)		
A .^B	Поэлементное возведение	A^k	Степень матрицы (при k=0 –
	в степень		единичная матрица, при целом
			k<0 – умножение обратной и
			при целом k>0 исходной мат-
			риц; для других к вычисляются
			собственные числа R и векторы
			D и $A^k = R^T D^k R$
A.'	Транспонирование масси-	A'	Транспонирование матрицы
	ва		(для комплексных дополняется
			комплексным сопряжением)

Система работает не только с действительными, но и с комплексными числами и роль мнимой единицы играют символы i, j:

```
a = 1+2i a = 1.0000 + 2.0000i

b = 1.0000 - 3.0000i

a = 7.0000 - 1.0000i

a = 7.0000 - 1.0000i

a = 592.51 - 922.78 i
```

Над массивами можно выполнять *операции поэлементного отношения*: A < B, A <= B, A > B, A >= B (только для действительных частей), A == B, $A \sim= B$ (равно/не равно - для действительных и мнимых частей), которые порождают массив с единицами (*истина*) и нулями (*пожь*) той же размерности. Аналогично реализуются и *погические операции*: отрицания $\sim A$, конъюнкции (логического умножения - И) A & B, дизъюнкции (логического сложения — ИЛИ) A | B.

Все переменные системы размещаются в т.н. **рабочей области**, содержимое которой (имена, размерность, тип) можно просмотреть командами **who** и **whos**:

```
who
Your variables are:
i r t
whos
Name Size Bytes Class
i 1x1 8 double array
r 4x629 20128 double array
t 1x629 5032 double array
Grand total is 3146 elements using 25168 bytes
```

Рабочую область можно сохранять (save) как МАТ-файл и вызывать (load). Так командой save myfile v1 v2 сохраняем в файле с именем myfile переменные v1и v2, а командой save myfile du*rak — переменные, имена которых начинаются на du и заканчиваются на rak.

Можно очищать рабочую область полностью командой **clear** или частично - **clear** < список имен>.

2. Элементарные математические функции

Из многообразия т.н. элементарных встроенных математических функций отметим лишь некоторые наиболее известные или оригинальные. Аргументами большинства из приведенных ниже функций являются не только скаляры, но и массивы.

```
pi = 4*atan(1)=imag(log(-1))=3.1415926535897...;
```

abs(X) — абсолютная величина: для комплексного числа a+bi его модуль равен $\sqrt{a^2+b}$ / abs(3-4i)=5 , abs(-13)=13;

angle(X) — аргумент комплексного числа (из диапазона $[-\pi,\pi]$): комплексное X=a+bi представимо как $re^{i\varphi}$, где $a=r\cos\varphi$, $b=r\sin\varphi$:

$$\text{ angle}(3+4i) \quad \text{ans} = 0.9273 ; \quad \text{angle}(1) \quad \text{ans} = 0;$$

 \Rightarrow angle(4+3i) ans = 0.6435;

real(X), imag(X) — действительная и мнимая часть числа;

 $\mathbf{conj}(\mathbf{X})$ – комплексно-сопряженное:

$$\Rightarrow$$
 conj(2+3i) ans = 2.0000 - 3.0000i;

 $\mathbf{ceil}(X)$, $\mathbf{fix}(X)$, $\mathbf{floor}(X)$, $\mathbf{round}(X)$ - округления (до ближайшего целого, не меньшего X; отбрасывание дробной части; до ближайшего целого, не большего X; до ближайшего целого);

 $\boldsymbol{mod}(X,Y)$ - остаток от деления X на Y;

sign(X) – знак числа (для комплексных X / |X|);

gcd(m,n) —наибольший общий делитель для целых чисел; если использовать оператор [g,c,d]=gcd(m,n), то дает указанный делитель и множители c,d такие , что g==m*c+n*d:

$$\Rightarrow$$
 f=gcd(18,27) f = 9

$$[g,c,d]=\gcd(18,27)$$
 $g=9$ $c=-1$ $d=1$;

lcm(m,n) – наименьшее общее кратное:

$$> lcm(34,51)$$
 ans = 102;

 ${\bf rat}({\rm X})$, ${\bf rat}({\rm X},k)$ — представление цепной дробью с точностью $|{\rm X}|{\cdot}10^{\text{-k/2}}$ (по умолчанию $|{\rm X}|{\cdot}10^{\text{-6}}$):

$$\Rightarrow$$
 rat(12.5) ans =13 + 1/(-2)

»
$$rat(12.546)$$
 ans =13 + 1/(-2 + 1/(-5 + 1/(15)));

 ${f rats}(X), \quad {f rats}(X,k)$ — представление отношением целых чисел :

log(X) – натуральный логарифм;

log2(X), log10(X) –логарифм по основанию 2 и основанию 10;

sin(X) cos(X) tan(X) cot(X) csc(X) sec(X) — тригонометрические функции (синус, косинус, тангенс, котангенс, косеканс, секанс):

$$sin(x+iy)=sin(x)$$
 $ch(y) + i$ $cos(x)$ $sh(y)$; $cos(x+iy)=cos(x)$ $ch(y)$ - i $sin(x)$ $sh(y)$, $tg(X)=sin(X)/cos(X)$; $ctg(X)=cos(X)/sin(X)$; $cosec(X)=1/sin(X)$; $sec(X)=1/cos(X)$:

 $\Rightarrow \sin(3+4i)$ ans = 3.8537 -27.0168i; $\Rightarrow \sin(pi/2)$ ans = 1;

asin(X) acos(X) atan(X) acot(X) acsc(X) asec(X) – обратные тригонометрические функции (арксинус, арккосинус и т.д.):

 $\Rightarrow a\sin(1/sqrt(2))$ ans = 0.7854; $\Rightarrow a\sin(3+4i)$ ans = 0.6340 + 2.3055i;

atan2(Y,X) - круговой арктангенс Arctg (только для действительных частей аргументов), берется в интервале $[-\pi,\pi]$;

sinh(X) cosh(X) tanh(X) coth(X) csch(X) sech(X) – гиперболические функции (синус, косинус, тангенс, котангенс, косеканс, секанс): $sh(X) = (e^X - e^{-X})/2$, $ch(X) = (e^X + e^{-X})/2$ и др.:

asinh(X) acosh(X) atanh(X) acoth(X) acsch(X) asech(X) - ofратные гиперболические функции:

$$arsh(X) = ln(X + \sqrt{X^2 + 1}), arch(X) = ln(X + \sqrt{X^2 - 1})$$

$$arth(X) = \frac{1}{2}ln\frac{l+X}{l-X}, \quad arcth(X) = \frac{1}{2}ln\frac{l-X}{l+X},$$

 $arcsch(X) = arsh(1/X), \ arsech(X) = arch(1/X);$

erf (X)- интеграл вероятностей (функция Гаусса, функция ошибок)

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

и родственные функции:

 $\mathbf{erfc}(\mathbf{x}) = 1 - \mathbf{erf}(\mathbf{x})$ (дополнительный интеграл вероятностей);

 $\mathbf{erfcx}(\mathbf{x}) = exp(\mathbf{x}^2) \cdot erfc(\mathbf{x})$ (нормированный дополнительный интеграл вероятностей);

erfinv(x) (аргумент, для которого интеграл вероятностей равен x);

gamma(x) -гамма-функция
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-l} dt$$
 (при целочислен-

ных x $\Gamma(1+x)=x!$

 \Rightarrow gamma(5) ans = 24

» gamma(0) Warning: Divide by zero (деление на нуль).

ans = Inf (неопределенное значение)

 \Rightarrow gamma(0.5) ans = 1.7725

 \Rightarrow gamma(-0.5) ans = -3.5449

 \Rightarrow gamma(0.1) ans = 9.5135

и родственные функции:

gammainc(x,a)= $P(x,a) = \frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} dt$ (неполная гаммафункция);

gammaln(x)= $ln \Gamma(x)$ (логарифмическая гамма-функция);

beta(x,y) - бета-функция
$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

и родственные ей неполная и логарифмическая бета-функции;

функции преобразования координат:

из декартовых (X,Y) в полярные (r, ϕ): $r=(X^2+Y^2)^{1/2}$, $\varphi=Arctg(Y/X)$ – [φ , \mathbf{r}]= $\mathbf{cart2pol}(\mathbf{X},\mathbf{Y})$;

из декартовой системы (X,Y,Z) в цилиндрическую (r,ϕ,Z) - $[\phi,r,Z]$ =cart2pol(X,Y,Z);

из декартовой системы в сферическую (r,φ,θ) : $r=(X^2+Y^2+Z^2)^{1/2}$, $\varphi=Arctg(Z/(X^2+Y^2)^{1/2})$, $\theta=Arctg(Y,X)$ - $[\theta,\varphi,r]=cart2sph(X,Y,Z)$;

из полярной и цилиндрической в декартову (pol2cart): $X=r\cdot\cos(\phi),\ Y=r\cdot\sin(\phi)$; из сферической в декартову(sph2cart): $Z=r\cdot\sin(\phi),\ X=r\cdot\cos(\phi)\cdot\cos(\theta),\ X=r\cdot\cos(\phi)\cdot\sin(\theta)$ (эти функции незаменимы при графических отображениях результатов анализа, хотя многое из их графики уже предлагается среди готовых библиотечных средств);

специальные функции (цилиндрические функции Бесселя, Неймана, Ханкеля; функции Эйри, эллиптические функции Якоби и эллиптические интегралы, интегральная показательная функция, присоединенные функции Лежандра и много других функций, полезных при изучении физических процессов),

функции линейной алгебры, аппроксимации данных, численного интегрирования, поиска корней уравнений, обслуживания графики, обработки дат, множеств и др.

Если вы имеете намерение познакомиться с поведением какой-

то из функций, поступите по аналогии с примитивным примером:

» t=-pi:0.01:pi; % значения аргумента

от $-\pi$ до π с шагом 0.01

(без вывода на экран);

» e=sin(t); % массива значений

функции;

» plot(t,e) % построение графика

функции.

3. Режим программирования

Для перехода в режим программирования в окне управления выбираем пункт File и входим в редактор MatLab'a: *New* (создать новый М-файл) или *Open*(открыть существующий файл с расширением .m). В дальнейшем может производиться обычный набор текста программы или его корректура и действия в соответствии с меню (сохранение под текущим или другим именем, запуск на исполнение в обычном и отладочном режимах и др.).

Различают два вида М-файлов: М-сценарии и М-функции.

M-сценарий — это файл, содержащий последовательность команд и комментариев (строк, начинающихся символом %) и пользующийся данными из рабочей области. Заголовок его начинается командой script или может отсутствовать.

Для М-функции допускаются входные и выходные аргументы, локализация внутренних ее переменных и возможность обращения к ней из других программ. М-функции включаются в библиотеку функций системы в виде текстовых файлов.

Заголовок М-функции имеет вид:

function [<список выходных переменных>]=

<имя функции> (<список входных переменных>)

например, функция вычисления факториала положительного числа и его обратной величины может быть описана файлом fact.m:

function [f, g]=fact(n) % факториал и обратная величина f=prod (1:n); g=1/f;

Кроме использованных выше операторов присваивания, программирование в MatLab'е допускает и ряд других традиционных для прогрммных сред операторов.

Условный оператор выступает в одной из следующих форм:

```
      if <ycловие>
      if <ycловие>

      <команды>
      <команды>

      end
      else
      elseif <ycловие>

      <команды>
      <команды>

      end
      else

      <команды>
      <команды>

      end
      end
```

В роли условия может использоваться любое логическое выражение, построенное на основе операций отношения и логических. Если значение этого выражения является массивом, то условие считается истинным, если все его элементы истинны (истина -1, ложь -0).

Оператор цикла с заданным числом повторений, в основном используемый в форме:

$$for V=A : H:B$$
 $for V=A:B$ $< komahdi >$ end end

(V –переменная/параметр цикла, A,B – начальное и конечные значения; H – приращение, по умолчанию 1). Допускаются и вложенные циклы, например:

```
\begin{array}{lll} & & & & & & \text{for i=1:n-1} \\ & & & & & \text{for k=i+1:n} \\ & & & & & \text{if a(i)} < a(k) \\ & & & & & m=a(i) \\ & & & & a(k)=m \\ & & & & end \\ & & & end \\ & & & & end \\ & & & & end \\ & & & & & end \\ \end{array}
```

В заголовке цикла можно использовать одномерный массив. Так цикл k=1:

```
for i=[0 5 7]

x(k)=2^i;

k=k+1;

end
```

формирует массив X=[1 32 128].

Оператор цикла с предусловием имеет традиционную конструкцию:

```
while <условие> <команды> end
```

и обеспечивает выполнение команд тела цикла, пока истинно проверяемое условие. Заметим, что работа цикла может быть прервана (вы-

ход из внутреннего цикла) оператором **break**:

```
while a<1
n=n+1
if n>250
break
end ...
```

Оператор переключения обобщает условный оператор на случай более двух условий и имеет конструкцию:

```
      switch
      <ase <3начение 1>

      <команды>
      <ase <3начение 2>

      <команды>
      <a>команды>

      <a>команды></a>

      <команды>
      % может отсутствовать

      <команды>
      <a>команды></a>

      end
      <a>команды></a>
```

Контрольные значения проверяются на равенство и могут задаваться и списком:

Выход из функции в вызывающую программу обеспечивается выполнением последнего ее оператора или командой **return**.

Кроме упомянутых основных операторов, традиционных для любой системы программирования, остановимся на ряде операторов обеспечения пользовательского интерфейса.

Приостановка выполнения программы может быть предусмотрена включением в текст команды **pause** (приостановка до нажатия любой клавиши), **pause** (**n**) (приостановка на n сек), **keyboard** (приостановка с возможностью выполнять практически любые команды и последующим возвратом в программу командой **return**).

Можно построить выбор варианта с клавиатуры созданием меню:

```
<переменная>=menu('заголовок', 'выбор1', 'выбор2',...)
Например, команда:
```

k=menu('Использовать метод', 'Гаусса', 'Краута', 'простой итерации') создаст на экране всплывающее меню с указанными пунктами-клавишами и щелчок по клавише задаст значение переменной k, равное 1, 2 или 3.

Мы не останавливаемся на многообразии операторов, связанных с выводом на экран (вывод значения **disp**, форматированный вывод **fprint**), отладкой и сигнализацией об ошибках, анализом списка аргументов и др.

Приведем несколько простейших примеров использования программного режима.

Пример 1. Анализ скорости убывания элементов числовой последовательности

$$y_n = \frac{(-1)^{n+1}}{n^n}$$

до значений, меньших 0.0001)

Чтобы с легкостью отыскивать значения элементов последовательности, опишем ϕ ункцию (файл y.m):

```
function f=y(n)
                 if mod(n,2)==0
                       f=-1:
                 else
                       f=1:
                 end
                 f=f/n^n;
           end
и сценарий (файл limit1.m):
     n=1;
      while abs(y(n))>1e-4
           n=n+1;
      end
     disp('Число элементов последовательности равно')
     k=n
      for x=1:k
           Y(x)=y(x);
      end
     disp('Значения элементов последовательности')
     plot(1:k,Y, 'r-*') %Линия -сплошная(-)красная ®, маркеры(*)
```


Теперь можно в командной строке набрать вызов *limit1*, получая на экране число элементов последовательности k, значения элементов последовательности $Y(n=1 \div k)$ и "график" функции:

```
Число элементов последовательности равно k=6 Значения элементов последовательности Y=1.0000 -0.2500 0.0370 -0.0039 0.0003 -0.0000
```

Пример 2. Поиск оценки суммы ряда.

```
\sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{(2m-1)\cdot(2m-1)!} с точностью 10^{-6}.

Файл limit2.m (сценарий):
    y=1;
    s=y;
    m=1;
    while abs(y)>1e-6
        y=-y*(2*m-1)/(2*m+1).^2;
        s=s+y;
        m=m+1;
    end
    disp('Число слагаемых')
    disp( m-1)
    disp('Оценка суммы')
    disp(s)
```

В командной строке набираем *limit2* , получая на экране число элементов отрезка суммы, превышающих 10^{-6} и саму оценку суммы:

```
        Число слагаемых
        6

        Оценка суммы
        0.90097107966794
```

4. Операции над массивами

Формирование массива, как было показано выше, осуществляется прямым (построчным) перечислением его элементов подобно A=[1 3 5 7; 4 5 6 7] (2 строки и 4 столбца), B=[1; 3; 5; 7] (столбец с 4

элементами) или заданием диапазона значений с заданным (или умалчиваемым единичным) шагом [1:2:7], [4:7], [[1:2:7]; [4:7]] и т.п.

Доступ к элементам или блокам элементов массива производится указанием индексов или массива индексов:

А(2,k) – элемент второй строки и k-го столбца;

A(:,k) - k-й столбец;

A(1:3; 1:4) – подматрица из первых 3 строк и 4 столбцов матрицы;

C(:,:,12) –12-я страница трехмерного массива.

Следует учесть, что хранение массивов в памяти ведется по столбцам. Поэтому возможна работа с созданным многомерным массивом как с одномерным, например, A(:) — вектор-столбец из всех элементов массива A, A(13:17) — столбец из элементов с номерами от 13 до 17.

Имеется возможность **объединять массивы "по горизонтали"**-[A, B, C] или [A B C] (массивы с одинаковым числом строк) и **"по вертикали"** -[A; B;C] (массивы с одинаковым числом столбцов).

Из вектора можно удалить одинаковые элементы функцией unique(X). Существует возможность объединения множеств - union(X,Y), пересечения - intersect(X,Y), разности - setdiff(X,Y):

» a=[1 2 3 6];	» u	nion	(a,b)			<pre>»intersect(a,b)</pre>	<pre>» setdiff(a,b)</pre>
» b=[1 3 7];	ans =				ans =	ans =	
	1	2	3	6	7	1 3	2 6

Функция **find** дает поиск по условию элементов одно- или двух-мерного массива в формате команд k=find(X < ycловие>), [i,j]=find(A < ycловие>) (если условия нет, отыскиваются ненулевые элементы):

» X=[1 0 -3 6 7 13]	» k=find(X==0 X<0)	»[i,j]=find(A>0& A<5)
X =	k =	i = 1
1 0 -3 6 7 13	2 3	2
» A=[1 4 7 ; 2 0 -2]		1
A =	» k=find(X)	j=1
1 4 7	k =	1
2 0 -2	1 3 4 5 6	2

Для определение **длины вектора** используется функция **length** :

	Aumin Bentropa memour	bejoren wynnegen i engen :
» k=length('Это строка')	» X=[1 0 -3 6 7 13];	» k=length([1 4 7; 2 0 -2])
k = 10	» k=length(X)	k = 3
	k = 6	

и для размеров массива – функцию size:

» X =[1 0 -3 ; 6 7 13]	» [m, n]=size(X)	» size([2 4 7])
» k=size(X)	m = 1	ans = 1 3
k = 2 3	n = 6	

Суммирование и умножение элементов массива можно реализовать функциями sum(A) и prod(A) (для двумерного массива выполняется поиск сумм и произведений по столбцам). С помощью функций sum(A,dim) и prod(A,dim) можно выполнить операции по измерению dim. Функцию sum часто используют для поиска **скаляр**-

ного произведения векторов
$$(A \cdot B) = \sum_{i=1}^{n} A_{i}B_{i}$$
 в форме sum $(A.*B)$:

» a=[1 2 3; 4 7 -1];	» t=sum(a)	» p=prod(a)	» a=[1 2 3];
» sum(a,2)	t = 5 9 2	p = 4 14 -3	» b=[3 5 7];
ans = 6	» tt=sum(t)	» p=prod([1:5])	» sum(a.*b)
10	tt = 16	p = 120	ans = 34

Сортировку элементов массива по возрастанию можно выполнить функцией sort(A,dim), причем команда [B,I]= sort(A) выдает и список индексов. Сортировку по убыванию можно выполнить аналогичной функцией sortrows.

Среди других следует отметить и ряд функций комбинаторики: perms(V) —перестановки всех элементов вектора V размерности $n \times n$:

```
» perms (3:2:7)
ans =[ 7 5 3; 5 7 3; 7 3 5; 3 7 5; 5 3 7; 3 5 7]
» perms([3 2 7])
ans =[ 7 2 3; 2 7 3; 7 3 2; 3 7 2; 2 3 7; 3 2 7];
nchoosek (n,k) – число сочетаний из n по k =n!/(k! (n-k)!):
» nchoosek(7,2) ans = 21;
nchoosek (V,k) – массив всех сочетаний элементов вектора V:
» nchoosek([3 2 7],2) ans =[ 3 2; 3 7; 2 7];
```

zeros(n), **zeros(m,n)**, **zeros(size(A))** — формирование массива нулей (одномерного, двумерного, соразмерного с массивом A); допустимо формирование массива и большей размерности zeros(m,n,p,...);

Иногда могут быть полезными функции начального задания:

ones(n), ones(m,n), ones(size(A)) - формирование массива единиц;

rand(n), rand(m,n), rand(size(A)) - формирование массива чисел с равномерным законом распределения в (0,1);

randn(n), randn(m,n), randn(size(A)) -формирование массива чисел с нормальным законом распределения (Mx=0, Dx=1);

eye(n), eye(m,n), eye(size(A)) - формирование единичной матрицы (n×n, m×n, соразмерной с матрицей A):

$$\text{seye}(2,3) \\
 \text{ans} = 1 \quad 0 \quad 0 \\
 0 \quad 1 \quad 0$$
 $\text{seye}(2) \\
 \text{ans} = 1 \quad 0 \\
 0 \quad 1 \quad 0$

Отметим также и некоторые полезные конструкции:

cross(X,Y) – векторное произведение (X,Y-трехмерные векторы):

$$X \times Y = [(X_2Y_3 - X_3Y_2), (X_3Y_1 - X_1Y_3), (X_1Y_2 - X_2Y_1)];$$

kron(X,Y) – тензорное произведение (произведение Кронекера):

meshgrid(X,Y), meshgrid(X,Y,Z) —формирование двумерной (трехмерной) сетки (обычно используется при реализации графики):

$$[x,y]$$
=meshgrid(-2:0.1:2, -10:0.5:10)

Ряд других функций, связанных с обработкой массивов, рассмотрен ниже.

5. Решение основных задач линейной алгебры

При реализации многих задач, связанных с матричной алгеброй, полезными могут оказаться функции для оценок основных характеристик:

det(A) – определитель квадратной матрицы;

rank(A) — ранг матрицы;

trace(A) — след матрицы (сумма элементов главной диагонали);

» A=[1 2 3; 5 4 3; 3 4 3]	» det(A)	» rank(A)	<pre>» trace(A)</pre>
A = 1 2 3	ans =12	ans = 3	ans = 8
5 4 3			
3 4 3			

Выше среди операций системы мы уже упоминали операцию транспонирования матрицы:

» A=[1 2 3 ; 23 11 0]	» B=A'
A =	B = 1 23
1 2 3	2 11
23 11 0	3 0

и возведения в степень (матричного умножения на себя или инверсии):

	<i>)</i> ·					
» A=[123	3; 5 4 3; 3 4 3]	» D=A^(-1)	» A^0		
A =			D =	ans =		
1	2	3	-0.0000 0.5000 -0.5000	1	0	0
5	4	3	-0.5000 -0.5000 1.0000	0	1	0
3	4	3	0.6667 0.1667 -0.5000	0	0	1

При решении многих задач (например, при оценке сходимости методов) используется понятие **нормы** вектора (матрицы). В рассматриваемой системе для поиска нормы предлагается функции $\mathbf{norm}(\mathbf{A})$ и $\mathbf{norm}(\mathbf{A},\mathbf{k})$.

Если A – вектор, то норма определяется (по умолчанию k=2)

$$||A|| = \sqrt[k]{\sum_{i=1}^k |A_i|^k} ;$$

при k=inf и k=-inf соответственно $||A|| = \max(|A_i|)$ и $||A|| = \min(|A_i|)$; v=[3 4 - 10]» norm(v) \rightarrow norm(v,2) » norm(v,inf) » norm(v,-inf) ans = 11.1803v = 3 4 -10 | ans = 11.1803 ans =10 ans = » norm(v,'fro') \gg norm(v,1) \gg norm(v,-1) \rightarrow norm(v,3) ans = 1.4634 | ans = 10.2946 | ans = 11.1803ans = 17

Если A – матрица, то норма определяется только для k=1, 2, inf и fro (по умолчанию k=2):

$$k=1$$
 - $||A|| = \max_{j} \sum_{i=1}^{m} |A_{ij}|_{j}$

k=2 - $\|A\|=\max(\text{svd}(A))$ - максимальное из сингулярных чисел матрицы (значений квадратных корней из собственных чисел матрицы A'A);

$$k=\inf - \|A\| = \max_{i} \sum_{j=1}^{n} |A_{ij}|; \quad k=\text{'fro'} - \|A\| = \sqrt{\sum_{i=1}^{n} B_{ii}}, \quad B=A\text{'*}A:$$

A =	1	2	3	» norm(A,1)	» norm(A)	<pre>» norm(A,inf)</pre>	» norm(A,'fro')
	5	4	3	ans =	ans =	ans =	ans =
	3	4	3	10	9.6871	12	9.8995

Для задачи *решения системы линейных алгебраических урав- нений*, одной из популярнейших в вычислительной математике, предусмотрены даже "элементарные" операции для подобной задачи.

Так для решения системы AX=B (A –матрица коэффициентов размерности $m\times n$, B- матрица правых частей размерности $n\times k$, X – матрица из k векторов-столбцов решений) можно использовать κ о-манду обратного деления "\". Например, для решения системы

$$x_1+2$$
 x_2+3 $x_3=3$ (или 3)
5 x_1+4 x_2+3 $x_3=9$ (или 9)
3 x_1+4 x_2+3 $x_3=6$ (или 7)

задаем (построчно) матрицу коэффициентов и векторов правой части

» A=[1 2 3; 5 4 3; 3 4 3]	» B=[3 3; 9 9; 6 7]
A = 1 2 3	B = 3 3
5 4 3	9 9
3 4 3	6 7

и выполнить

При решении системы XA=B можно воспользоваться *операцией* обычного деления. Так решение той же системы

(обратите внимание на строчное представление решений).

Под кажущейся простотой решения скрывается достаточно серьезный анализ структуры матрицы и использование лучшего по точности и быстродействию алгоритма (метод Гаусса, разложение Холецкого и др.)

Для прямоугольной матрицы A (m≠n) решение строится по минимуму квадрата ошибки (используется QR-разложение на основе преобразований Хаусхолдера) и не сопровождается сообщениями о множественности решений или переопределенности системы:

	1 1
одно уравнение с 3 неизвестными:	три уравнения с 2 неизвестными:
» a=[1 2 3];	» c=[1 2; 3 7; 2 5];
» b=6;	» d=[3; 10; 9];
» x=a\b	» x=c\d
$\mathbf{x} = 0$	x = -5.000000000000000000000000000000000000
0	3.6666666666667
2	

Естественно, что квадратная матрица коэффициентов должна быть невырожденной (определитель отличен от нуля) и в противном случае выдается сообщение *Matrix is singular to working precision* и элементы решения принимают значения *inf* (не определено).

Особого упоминания заслуживает **обращение (инверсия) матрицы**, для которого предусмотрена операция возведения в степень -1 и функция **inv(A)**:

» A=[1 2 3; 5 4 3; 3 4 3]			\rightarrow C=inv(A) \rightarrow D=A^(-1)
A =			C = D =
1	2	3	-0.0000 0.5000 -0.5000 -0.0000 0.5000 -0.5000
5	4	3	-0.5000 -0.5000 1.0000 -0.5000 -0.5000 1.0000
3	4	3	0.6667 0.1667 -0.5000 0.6667 0.1667 -0.5000

Напомним, что обращение матрицы может оказаться полезным при решении системы AX=B в виде $X=A^{-1}B$:

» B=[3 3; 9 9; 6 7]	» X=inv(A)*B
B = 3 3	X = 1.5000 1.0000
9 9	0 1.0000
6 7	0.5000 0.0000

При решении линейных систем и других задач интересно представление матрицы разложением на матрицы упрощенной структуры.

[L,U]=lu(A) — дает т.н. LU-разложение произвольной квадратной матицы в виде *произведения нижней и верхней треугольных матриц* A=LU (в матрице L возможны перестановки); такое представление позволяет, в частности, решение системы AX=B свести к двум простым системам LZ=B, UX=Z.

[L,U,P]=lu(A) — дает LU-разложение с выводом матрицы перестановок Р такой, что PA=LU.

			,		_	
A =			» [L,U]=lu(A)			
1	2	3	L =	U =		
5	4	3	0.2000 0.7500 1.0000	5.0000 4.0000 3.0000		
3	4	3	1.0000 0 0	0 1.6000 1.2000		
			0.6000 1.0000 0	0 0 1.5000		
			» [L,U,P]=lu(A)			
			L =	U = P	=	
			1.0000 0 0	5.0000 4.0000 3.0000 0) 1	0
			0.6000 1.0000 0	0 1.6000 1.2000 0	0	1
			0.2000 0.7500 1.0000	0 0 1.5000 1	. 0	0

R=chol(A), [R,p] =chol(A) - дает разложение Холецкого для положительно определенной симметрической матрицы A=R'R, где R — верхняя треугольная матрица. Если матрица A не является положительно определенной, то в первом варианте возникает сообщение об ошибке и во втором R — матрица порядка q=p-1:

C =				» [R,p]]=ch	ol(C)
1	2	3	??? Error using ==> chol	R =	1	2
2	5	5	Matrix must be positive definite		0	1
3	5	7	-	p =	3	

В приведенном примере лишь первые два главных минора положительны $(\det(C)=-3)$ и, соответственно, q=2 и R'R дает второй главный минор матрицы C.

 $[Q,R]=qr(A), \quad [Q,R,P]=qr(A), \quad [Q,R]=qr(A,0)$ находит QR-**разложение** для прямоугольной матрицы размерности $m \times n$:

[Q,R]=qr(A) – в виде A=QR произведения унитарной матрицы Q (Q*Q'=E) и верхней треугольной матрицы R :

C =			» [Q,R]=qr(C)	
1	2	3	Q = -0.2672 - 0.0514 - 0.9622	R = -3.7416 - 7.2160 - 9.0868
2	5	5	-0.5345 -0.8229 0.1924	0 -1.3887 -0.3086
3	5	7	-0.8017 0.5657 0.1924	0 0 -0.5773
t =			» [Q,R]=qr(t)	R =
1	3	5	Q = -0.1961 -0.9805	-5.0990 -3.5301 -1.9611
5	3	1	-0.9805 0.1961	0 -2.3534 -4.7068

[Q,R,P]=qr(A) отличается от предыдущего упорядочением по убыванию модулей диагональных элементов R и наличием соответствующей матрицы перестановок P (A*P'=Q*R);

[Q,R]=qr(A,0) при m>n отличается тем, что вычисляются лишь n столбцов матрицы Q.

Если после выполнения QR-разложения выполнить команду [Q1,R1]=qrdelete(Q,R,k), то будет выполнен пересчет матриц для варианта, когда в матрице A удален k-й столбец. Если после QR-разложения выполнить команду [Q1,R1]=qrdelete(Q,R,k,X), то будут пересчитаны матрицы для варианта, когда в матрице A перед столбцом k вставлен столбец X.

X=nnis(A,B), X=nnis(A,B,t) позволяют искать **решение системы** AX=B **методом наименьших квадратов**, где отыскиваются *неотрицательные решения* X, минимизирующие norm(A*X-B) или гарантирующие точность ε при задании $t=max(m,n)*norm(A,1)*\varepsilon$.

Особое место в библиотеке занимают средства для вычисления собственных чисел и векторов.

В простейшем варианте отыскиваются ненулевые решения системы $AX=\lambda X$ командами $\mathbf{d}=\mathbf{eig}(\mathbf{A})$ или $[\mathbf{X},\mathbf{d}]=\mathbf{eig}(\mathbf{A})$ (d- диагональная матрица собственных чисел, X –матрица из нормированных собственных векторов):

a=			» d=eig(a)	» [R,d]=eig(a)	
1	2	3	d =	R =	d =
1	4	9	0.2179	0.8484 0.7163 -0.1198	0.2179 0 0
1	8	27	1.8393	-0.5150 0.6563 -0.3295	0 1.8393 0
			29.9428	0.1222 -0.2371 -0.9365	0 0 29.9428

Для проверки качества поиска (при значительных размерностях и многочисленных особых случаях такая проверка весьма желательна) достаточно проверить на близость к нулю значений A*X=R*D:

Функции **d=eig(A,B)** и **[V,D]= eig(A,B)** позволяют решать полную (обобщенную) проблему собственных значений $AX=\lambda BX$.

Решение задачи осуществляется на основе QR-алгоритма и его модификаций и при числе итераций, превышающем $30 \cdot n$, может быть прервано с сообщением *Solution will not converge* (решение не сходится).

Проблему собственных значений можно решать и для матрич-

ного полинома $(A_0+\lambda A_1+\lambda^2 A_2+...+\lambda^p A_p)X=0$ командой $[\textbf{R,d}]=\textbf{polyeig}(\textbf{A_0,A_1,...,A_p})$, где R- матрица размера $n\times(n\times p)$ собственных векторов. При p=0 эта функция тождественна $eig(A_0)$, при $p=1-eig(A_0,-A_1)$ и в случае матриц с n=1 (скаляров) - $\textbf{roots}(A_p,...,A_1,A_0)$, то есть ищет корни уравнения $A_p\lambda^p+...+A_2\lambda^2+A_1\lambda+A_0=0$.

Для решения ряда задач используется функция **сингулярного разложения матрицы** в формах **s=svd(A)**, [U,S,V]=svd(A), [U,S,V]=svd(A), [U,S,V]=svd(A,0) - матрица A размерности $m \times n$ ($m \ge n$) представляется в виде A=U*S*V', где U'*U=V*V'=E, $S=diag(s_1,s_2,...,s_n)$. Здесь U состоит из n собственных векторов для n наибольших собственных значений матрицы AA', а V- из ортонормированных собственных векторов матрицы A'A; на диагонали матрицы A'A (сингулярные числа).

6. Операции над полиномами

Рассмотрим полином вида $P_n(x) = p_1 x^n + p_2 x^{n-1} + ... + p_n x + a_{n+1}$. Соответственно будем обозначать P - n + 1-мерный вектор коэффициентов, X – массив значений аргумента.

При **вычислении значений полинома** для элементов массива можно использовать функцию **polyval(P,X)**:

» polyval([1 2 5],[0 3 1])	» polyval([1 2 5],[0 3 1; 1 1 1])			
ans =	ans = $5 \ 20 \ 8$			
5 20 8	8 8 8			

C помощью функции **polyvalm(P,X)** можно вычислять **значения матричного полинома** для квадратной матрицы X :

Умножение полиномов $C_{m+n}(x) = P_m(x) \times Q_n(x)$ выполняется командой $C=\mathbf{conv}(\mathbf{P},\mathbf{Q})$ –

$$C_k = \sum_{j=\max(l,k+l-n)}^{\min(k,m)} A_j B_{k+l-j}.$$

Деление полиномов можно реализовать командой [C,R]=deconv(A,B), где C_-частное и R – остаток от деления A на B.

» conv([1 2 3],[5 6])	» [c,r]=deconv([1 2 3],[5 6])
ans =	c = 0.2000 0.1600
5 16 27 18	r = 0 0 2.0400

Вычисление производных от полинома, произведения и отношения полиномов производится соответственно командами dp=polyder(P), dc=polyder(A,B) и [f,g]=polyder(A,B):

» polyder([1 -2 3 4 5])	» polyder([1 2 3],[5 6])	» [f,g]=polyder([1 2 3],[5 6])
ans =	ans =	f = 5 12 -3
4 -6 6 4	15 32 27	g = 25 60 36

Вычисление корней полинома реализуется функцией roots(P),

а построение полинома по его корням – функцией poly(R).

» r=roots([1 3 5 7])	» poly(r)
r = -2.1795	ans =
-0.4102 + 1.7445 i	1.0000 3.0000 5.0000 7.0000
-0.4102 - 1.7445 i	

Функция **poly(A)** обеспечивает **построение характеристиче- ского полинома** $|\lambda E-A|=0$ (см. проблему собственных значений):

В приложениях, особенно связанных с преобразованием Лапласа при решении дифференциальных уравнений, оперируют с отношениями полиномов и представлениями их в виде простых дробей:

$$\frac{P_m(s)}{Q_n(s)} = \sum_{k=1}^n \frac{r_k}{s - s_k} + f(s),$$

где s_k - простые корни полинома $Q_n(s)$; если некоторый корень s_j имеет кратность m, то соответствующее слагаемое представляется в виде

$$\sum_{i=1}^{m} \frac{r_{j+i-1}}{(s-s_j)^i}$$

Команда [**r**,**s**,**f**] =**residue**(**P**,**Q**) дает **разложение отношения полиномов на простые дроби** (в случае близких корней возможна значительная погрешность). В случае кратного корня пользуются функцией **rj=resi2**(**P**,**Q**,**sj**,**m**,**j**), где **j** –номер вычисляемого коэффициента (по умолчанию **j=m**); по умолчанию m=1 (простой корень).

Команда **[P,Q] =residue(r,s,f)** выполняет обратное действие свертки разложения в отношение полиномов.

Выполнив действия

видим, что

$$\frac{s^3 - 6s^2 + 11s - 6}{s^3 - 5s^2 + 4s} = \frac{0.5}{s - 4} + \frac{0}{s - 1} - \frac{1.5}{s} + 1$$

В случае кратного корня

видим разложение:

$$\frac{s^3 - 6s^2 + 11s - 6}{s^4 - 6s^3} = \frac{0.2778}{s - 6} + \frac{0.7222}{s} - \frac{1.667}{s^2} + \frac{1}{s^3}$$

7. Коллекция тестовых матриц

Предлагаемая ниже небольшая часть коллекции тестовых матриц интересна как с позиций хотя бы дилетантского знакомства с итогами многовекового математического творчества, так и тестирования элементов собственных программных разработок.

hadamard (n) — матрица Адамара (ортогональная матрица из 1 и −1); п должно быть целым и п, п/12 или п/20 должны быть степенью 2:
» hadamard (4)

hilb (n), invhilb(n) — матрица Гильберта $h_{ij}=1/(i+j-1)$ и ей обратная (пример матрицы, плохо обусловленной :к обращению):

»A=hilb(3)		» B=invhilb(3)	» det(A)
A = 1.0000	0.5000 0.3333	B = 9 -36 -30	ans =
0.5000	0.3333 0.2500	-36 192 -180	4.6296e-004
0.3333	0.2500 0.2000	30 -180 180	

magic(n) — магический квадрат (квадратная матрица с элементами от 1 до n^2 с равными суммами элементов по строкам и столбцам):

<pre>» magic(2)</pre>		» magi	c(3)			
ans = 1	3	ans =	8	1	6	
4	2		3	5	7	
			4	9	2	

pascal(n) — матрица Паскаля - симметрическая матрица из коэффициентов разложения бинома $(1+x)^j$ (треугольника Паскаля)

» pascal(3)						» pascal(5)							
ans =	1	1	1				ans =	1	1	1	1	1	
	1	2	3					1	2	3	4	5	
	1	3	6					1	3	6	10	15	
								1	4	10	20	35	
								1	5	15	35	70	

rosser - матрица Рессера (матрица 8-го порядка, служащая тестом для алгоритмов решения симметричной проблемы собственных значений):

имеет два кратных значения, три близких, нулевое и малое ненулевое):

 $1000 \quad 1000 \quad 1020.049 \quad 1020.000 \quad 1019.902 \quad 0.098 \quad 0 \quad -1020.049$

toepliz(X) — симметрическая матрица Теплица, определяющая перестановки элементов вектора X;

toepliz(**X**,**Y**) — несимметрическая матрица Теплица, первый столбец которой совпадает с вектором X и первая строка с вектором Y (если $x_1 \neq y_1$, возникает конфликт на главной диагонали с предпочтением для X):

пнем для ж.										
» x=[1 3 :		» x=[1 3 5 7];				» x=[1 3 5 7];				
<pre>» toeplitz(x)</pre>				» y=[1 11 21 31];				» y=[-1 -11 -21 -31];		
ans = 1	3	5	7	» toeplitz	(x,y))		» toeplitz(x,y)		
3	1	3	5	ans = 1	11	21	31	Column wins diagonal conflict.		
5	3	1	3	3	1	11	21	ans = $1 - 11 - 21 - 31$		
7	5	3	1	5	3	1	11	3 1 -11 -21		
				7	5	3	1	5 3 1 -11		
								7 5 3 1		

wilkinson(n) - матрица Уилкинсона (трехдиагональная симметрическая матрица n-го порядка, служащая тестом для алгоритмов решения проблемы собственных значений; обычно берут n=21, где возникают кратные и близкие значения);

vander(X) — матрица Вандермонда (размерность совпадает с числом n элементов вектора X $V_{ii}=x_i^{n-j}$):

THE STOWN 7	031CMCIII	TOB BURT	opa 11	\mathcal{H}_{l}
» wilkinso	on(4)			$x = [1 \ 2 \ 3 \ 5]$
ans =				<pre>» vander(x)</pre>
1.5000	1.0000	0	0	ans = 1 1 1 1
1.0000	0.5000	1.0000	0	8 4 2 1
0	1.0000	0.5000	1.0000	27 9 3 1
0	0	1.0000	1.5000	125 25 5 1

Ряд тестовых матриц упакован в специальный подкаталог, вызываемый командой:

[<выходные параметры>]= **gallery**('имя матрицы', <входные параметры>) К их числу относятся -

cauchy(X,Y), cauchy(X) — матрица Коши с элементами $C_{ij}=1/(x_i+y_j)$: при монотонно возрастающих последовательностях X и Y матрица положительно определенная;

circul(X) — циркулянтная матрица, получается из вектора X построчно циклической перестановкой его элементов; если X скаляр, то берется вектор [1:X]; ее собственное значение равно скалярному произведению X и вектора [$1 \ t^2 \ ... \ t^{n-1}$], где t — корень n-й степени из -1:

) F1-					
» x=[1	» gallery('circul',[1 3 6 9])									
» y=[1	ans =									
<pre>» gallery('cauchy',x,y)</pre>							3	6	9	
ans =	0.5000	0.3333	0.0099	0.00	50	9	1	3	6	
	0.3333	0.2500	0.0098	0.00	50	6	9	1	3	
	0.2500	0.2000	0.0097	0.00	49	3	6	9	1	
	0.1667	0.1429	0.0095	0.00	49					

clement(n,sym) — трехдиагональная n-мерная матрица Клемента с нулями на главной диагонали с собственными значениями из последовательности [n1, n-3, n-5...] с плюсом и минусом (при нечетном n добавляется 0 или 1); sym=1 определяет симметричность матрицы:

	goodsine for o fishe 1), sym if on pegesine i eminime ipi moets marphigs.									
»gallery('clem	ent',4)	» gallery('clement',4,1) » gallery('clement',3,1)							
ans =			ans = ans =							
0 1	0	0	0 1.7320 0 0 0 1.4142 0							
3 0	2	0	1.7320 0 2.0000 0 1.4142 0 1.4142							
0 2	0	3	0 2.0000 0 1.7320 0 1.4142 0							
0 0	1	0	0 0 1.7320 0 » eig(ans)							
» eig(ans)		\Rightarrow eig(ans) ans = 2 0 -2							
ans = 3	-3	1 -1	ans = 3 -3 1 -1							

Кроме упомянутых в подкаталог входят еще свыше 40 тестовых матриц, связанных с проблемой собственных значений, обращением, полиномами Чебышева и др.

8. Анализ и обработка данных

8.1. Обработка статистических данных

Никакой анализ статистических данных не может обойтись без предварительной их обработки:

 $\max (A)$, $\min (A)$ — поиск экстремальных элементов по столбцам массива A;

max(A,B), min(A,B) — формирование массива с элементами, равными экстремальным из соответствующих элементов массивов;

 $\max(A,[],\dim)$, $\min(A,[],\dim)$ — вектор экстремальных элементов по измерению dim;

[C,I]=max(...), [C,I]=min(...) - дополнительно выводится строка индексов экстремальных элементов;

median(X), median (X,dim) – медианы массива;

mean(X), mean(X,dim) —средние значения;

std(X), std(X,flag), std(X,flag,dim) — стандартное отклонение (flag=0 —несмещенная оценка σ ; flag=1 — смещенная оценка s):

$$\sigma = \sqrt{\frac{1}{n-l} \sum_{i=1}^{n} (x_i - \bar{x})^2} \; ; \; s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \; ;$$

 ${\bf cov}({\bf X},{\bf Y})$, ${\bf cov}({\bf X},{\bf Y},{\bf flag})$ – ковариация для массивов X и Y (каждый столбец – переменная, строка – наблюдение)

$$cov_{ij}(X,Y) = \frac{1}{f}X_i^TY_j$$
, $f=n$ или $n-1$;

cov(X), cov(X,flag) — ковариация для столбцов массива X; corrcoef(X), corrcoef(X,Y) —коэффициенты корреляции:

$$R_{ij} = \frac{cov_{ij}}{\sqrt{cov_{ii}\ cov_{jj}}}.$$

8.2. Численное дифференцирование

Как известно, численное дифференцирование строится на использовании аппарата конечных разностей и соответствующего многообразия аппроксимаций. Здесь полезны функции:

diff(X), diff(X, n), diff(X, n, dim) — вычисление конечных разностей (первых, n-го порядка или по указанному измерению); если X

-массив, берутся разности между столбцами:

```
» F= [ 0 0.0998 0.1987 0.2955 0.3894 0.4794]
```

 \rightarrow D=diff(F)

 $D = 0.0998 \ 0.0988 \ 0.0969 \ 0.0939 \ 0.0900$

 \rightarrow D2=diff(F,2)

D2 = -0.0010 -0.0020 -0.0030 -0.0039

Для задач оптимизации градиентными методами полезны функции:

gradient(F), gradient(F,h), gradient(F,h1,h2,...) —приближенная оценка градиента функции n переменных с автоматическим выбором шага или с указанным шагом (одинаковым или разным по переменным):

» [x,y]=meshgrid(-2:0.2:2, -2:0.2:2); % выбор сетки узлов

» z=x.*exp(-x.^2-y.^2); % вычисление значений на сетке

» [px,py]=gradient(z,.2,.2); % поиск градиента в узлах сетки

» contour(z), hold on, quiver(px, py), hold off % рис. 8.1

8.3. Аппроксимация и интерполяция

polifit(X,Y,n) — аппроксимация функции Y=Y(X) полиномом n-й степени:

» X=0:0.1:0.5;

 $F=X.*\sin(X);$

» P=polyfit(X,F,1)

P = 0.4814 - 0.0314 % $P(x) = 0.4814 \times -0.0314$

» FF=polyval(P,X)

 $FF = -0.0314 \quad 0.0168 \quad 0.0649 \quad 0.1130 \quad 0.1612 \quad 0.2093$

interpft(Y,n,dim) -аппроксимация периодической функции на основе быстрого преобразования Фурье (Y – одномерный массив

значений функции; п — число узлов в массиве значений):

- X=0:10;
- $Y=\sin(X).^2.*\exp(-0.1.*X);$
- » YP=interpft(Y,21);
- xp=0:0.5:10;
- » plot(X,Y,'ob', xp,YP) % Рис. 8.3

Заметим, что в библиотеке имеется богатый ассортимент средств для преобразования Фурье.

spline(X,Y,Z) — интерполяция Y=Y(X) кубическим сплайном и вывод соответствующих значений в точках Z. Для получения большей информации используется конструкция **pp=spline(X,Y)**: здесь командой V=ppval(pp,Z) можно найти значения в точках Z, а командой [Xs, Coef, m,L]=unmkpp(pp) получить данные о векторе разбиений аргумента Xs, коэффициентах Coef, m=length(Xs), L=length(Coef)/m.

interp1(X,Y,Z), interp1(X,Y,Z,'method') — одномерная табличная интерполяция (если Y двумерный массив, интерполяция ведется по каждому столбцу; значения Z должны входить в диапазон значений X). Можно указать метод интерполяции — кусочно-линейной (linear, по умолчанию), ступенчатой (nearest), кубической (cubic), кубическими сплайнами (spline). Функция interp1q(X,Y,Z) реализует быструю линейную интерполяцию на неравномерной сетке.

interp2(X1,X2,Y,Z1,Z2), interp1(X1,X2,Y,Z1,Z2,'method') – двумерная табличная интерполяция Y=Y(X1,X2), аргументы должны

Рис. 8.4

меняться монотонно и заданы в формате функции meshgrid.

```
» [X1,X2]=meshgrid(-1:0.1:1);

» Y=exp(-X1.^2-X2.^2).*(1+X1+X2);
```

» [Z1,Z2]=meshgrid(-1:0.05:1);

» Y2=interp2(X1,X2,Y,Z1,Z2);

 \gg mesh(X1,X2,Y),hold on,mesh(Z1,Z2,Y2+2),hold off % Рис. 8.4

interp3(X1,X2,X3,Y,Z1,Z2,Z3), interp3(..., 'method') – трехмерная табличная интерполяция Y=Y(X1,X2,X3);

interpn(X1,X2,...,Y,Z1,Z2,...), interp3(..., 'method') – многомерная табличная интерполяция Y=Y(X1,X2,...);

griddata(X1,X2,Y,Z1,Z2), griddata(X1,X2,Y,Z1,Z2, 'method') - двумерная табличная интерполяция на неравномерной сетке.

8.4. Численное интегрирование

polyarea (X,Y), polyarea (X,Y, dim) -площадь многоугольника с координатами вершин (X,Y):

```
» polyarea ([1 2 3 4 5],[0 3 6 3 0])
ans = 12
```

trapz(X,Y), trapz(X,Y,dim) — вычисление интеграла по формуле трапеций ; функции cumtrapz(X,Y), cumtrapz(X,Y,dim) вычисляют к тому же промежуточные результаты;

quad('имя', a,b), quad('имя', a,b, eps), quad('имя', a,b, eps, trace), quad('имя', a,b, eps, trace,P1,P2,...), quad8(...) - вычисление определенного интеграла: a,b — пределы интегрирования; eps — относительная погрешность (по умолчанию 10⁻³); trace —построение точечного графика функции; 'имя' — имя подинтегральной функции (встроенной или М-файла); P1,P2,... — передаваемые параметры функции; quad использует квадратуру Симпсона, quad8 — Ньютона-Котеса 8-го порядка). Используется рекурсия до глубины 10 и может появиться сообщение — подозрение о сингулярности функции (наличии особенностей).

dblquad('имя', a1,b1, a2,b2), dblquad('имя', a1,b1, a2,b2, eps), dblquad('имя', a1,b1, a2,b2, eps, <метод>) - вычисление двойного интеграла от функции <имя>(X1,X2); <метод> - quad или quad8.

8.5. Нули и экстремумы функций

Как известно, решение уравнений и поиск экстремумов функций – родственные задачи. Так решение системы $f_i(X)=0,\ i=1,...,n$ можно заменить поиском минимума $F(X)=\sum_{i=1}^n f_i^{\ 2}(X)$, заведомо равного нулю, если система имеет решение. С другой стороны, поиск экстремумов функции можно свести к решению системы уравнений относительно нулевых значений ее производных.

Для некоторых классов функций имеются вполне универсальные методы решения: так для полиномов поиск корней реализуется без каких-то условий обобщенным методом Ньютона - функцией roots(...). В общем случае при великом многообразии методов решение подобных задач отнюдь нетривиально. В системе реализованы функции лишь для простейших задач без гарантий получения решения.

xmin=fmin('имя',**a,b**), **xmin=fmin(**'имя',**a,b**,<опции>), **xmin=fmin (**'имя', **a,b**,<опции>, **p1,...,p10)**, [**xmin,options]=fmin(...)** – поиск минимума функции одной переменной на интервале [a,b]; в списке <опции> можно указать option(1)=1 (вывод промежуточных результатов), option(2)- погрешность итераций для аргумента (разница между смежными приближениями; по умолчанию 10^{-4}) и option(14)- максимальное число итераций (по умолчанию 500). Используется метод золотого сечения и параболической интерполяции.

```
function r=m1(x)
r=x^2-x-3;
xm = fmin('m1', -2, 3, [1, 1e-6])
                            f(x)
                                      Procedure
      Func evals
                    X
                           -2.9017
         1
             -0.0901699
                                        initial
                1.09017
                           -2.9017
                                        golden
        3
                1.81966
                           -1.5085
                                        golden
        4
                 0.5
                             -3.25
                                       parabolic
        5
                 0.5
                             -3.25
                                       parabolic
                 0.5
        6
                             -3.25
                                       parabolic
     xm =
        0.5000
```

xmin=fmins('имя',**x0**), **xmin=fmins(**'имя',**x0**,<опции>), **xmin=fmins (**'имя', **x0**,<опции> или [], **p1**,...,**p10**), [**xmin,options]=fmins(...) – поиск минимума функции нескольких переменных: x0 – начальное приближение; p1,...,p10 – дополнительные параметры; в списке <опции> можно указать option(1)=1 (вывод промежуточных результа-**

тов), option(2)- погрешность итераций для аргумента (разница между смежными приближениями; по умолчанию 10^{-4}), option(3)- итерационная погрешность для функции и option(14)- максимальное число итераций (по умолчанию $200 \times n$).

```
function r=m2(x)

r=(x(1)-1)^2+(x(2)-3)^2;

» [xmin,opt]=fmins('m2',[0.5 2.5])

xmin =

1.0000 3.0000

opt =

0 0.0001 0.0001 0.0000 0
```

72 0 0 0 400 0 0.0000 0.1000 0 (возвращаемые здесь опции 8 и 10 определяют минимум функции и число итераций). Используется метод Нелдера-Мида (строится симплекс из n+1 вершины в n —мерном пространстве, берется новая точка внутри или вблизи симплекса и может заменить одну из вершин; процесс повторяется до малого диаметра симплекса).

0

0

0.0000 0

fzero ('имя', x0), fzero ('имя', x0, eps), fzero ('имя', x0, eps, trace), fzero ('имя', x0, eps, trace,p1,...,p10) — поиск действительных корней функции одной переменной при начальном приближении x0 (можно взять и в форме [a,b] при условии $f(a) \times f(b) < 0$) с заданной относительной погрешностью; trace=1 — вывод промежуточных результатов. Используется метод дихотомии, хорд и обратной квадратической интерполяции. При поиске корней полинома см. roots.

Процесс поиска корня виден из примера:

» fzero('sin',6,[],1)

Func evals	X	f(x) Pro	cedure
1	6	-0.279415	initial
2	5.83029	-0.437567	search
3	6.16971	-0.113236	search
4	5.76	-0.499642	search
5	6.24	-0.0431719	search
6	5.66059	-0.583146	search
7	6.33941	0.0561963	search
Looking for	a zero in t	he interval [5.66	506, 6.3394]
8	6.27974	-0.00344052	interpolation
9	6.28319	1.70244e-006	interpolation
10	6.28319	-3.35667e-012	2 interpolation
11	6.28319	-2.44921e-016	interpolation
12	6.28319	2.41961e-015	interpolation
ans = 6.283	18530717	959	
» 2*pi			
ans = 6.283	18530717	959	

Заметим, что в случае двух переменных существенную помощь для выбора начального приближения может оказать функция gradient (см. 8.2) и contour(...), которая будет рассмотрена при ознакомлении с функциями графики.

8.6. Обыкновенные дифференциальные уравнения

В системе MatLab предусмотрены специальные средства решения задачи Коши для систем обыкновенных дифференциальных уравнений, заданных как в явной форме $\frac{dx}{dt} = F(t,x)$, так и в неявной $M\frac{dx}{dt} = F(t,x)$, где M- матрица, - т.н. pewamenb ODE (solver ODE), обеспечивающий пользователю возможность выбора метода, задания начальных условий и др.

В простейшем варианте достаточно воспользоваться командой [T,X]=solver('F', [DT], X0, ...), где DT - диапазон интегрирования, X0 – вектор начальных значений, F – имя функции вычисления правых частей системы, solver – имя используемой функции (ode45 - метод Рунге-Кутта 4 и 5-го порядков, **ode23** – тот же метод 2 и 3-го порядков, ode113 – метод Адамса - для нежестких систем, ode23s, ode15s – для жестких систем и др.). Версии решателя различаются используемыми методами (по умолчанию относительная погрешность 10-3 и абсолютная 10⁻⁶) и соответственно временем и успешностью решения. Под жесткостью здесь понимается повышенное требование к точности – использование минимального шага во всей области интегрирования. При отсутствии информации о жесткости рекомендуется попытаться получить решение посредством ode45 и затем ode15s. Если диапазон DT задан начальным и конечным значением $[t_0, t_k]$, то количество элементов в массиве Т (и в массиве решений Х) определяется необходимым для обеспечения точности шагом; при задании DT в виде $[t_0, t_1, t_2, ..., t_k]$ или $[t_0 : \Delta t : t_k]$ - указанными значениями.

Например, в простейшем варианте решение уравнения $\frac{dx}{dt} = t \cdot e^{-t}$ в интервале $t \in [0, 0.5]$ с начальным условием x(t=0)=1 :

```
function f = odu1(t,x)
             f=t*exp(-t);
     » [T,X]=ode45 ('odu1', [0, 0.5], 1)
              0.0125
T =
      0
                     0.0250 0.0375
                                      0.0500 \quad 0.0625
                                                        0.0750
                                                                 0.0875
     0.1000
             0.1125
                      0.1250 0.1375
                                      0.1500
                                              0.1625
                                                        0.1750 ...
     1.0000
X =
             1.0000
                     1.0003 1.0006
                                       1.0012
                                               1.0018
                                                        1.0027 1.0036
     1.0046
                                                        1.0136 ....
             1.0058
                     1.0072
                             1.0086
                                      1.0102
                                               1.0118
```

Для иллюстрации решения системы и ряда нестандартных возможностей рассмотрим *задачу выравнивания цен* по уровню актива в следующей постановке.

Предположим, что изменение уровня актива y пропорционально разности между предложением s и спросом p, т.е. y'=k(s-d), k>0, и что изменение цены z пропорционально отклонению актива y от некоторого уровня y_0 , т.е. $z'=-m(y-y_0)$, m>0. Естественно, что предложение и спрос зависят от цены, например, $s(z)=az+s_0$, $d(z)=d_0-cz$. Соответственно возникает система дифференциальных уравнений

$$y' = k \cdot (s(z) - d(z))$$

 $z' = -m \cdot (y - y_0)$.

Вычисление правых частей оформляем функцией:

```
function f=odu2(t,X)
y=X(1); z=X(2);
a=20; c=10; s0=10; d0=50; k=0.3; m=0.1;
s=a*z+s0; d= d0-c*z; y0=19;
f(1)=k*(s-d); f(2)=-m*(y-y0);
f=f'; % вектор-столбец
```

Если выполнить решение при y_0 = 19, z_0 =2

```
» [T,Y]=ode45('odu2', [0:0.3:9],[19 2]);
» [T Y]
» plot(T,Y)
```

будет выведена таблица значений искомых функций:

```
19.0000
                          2.0000
ans =
         0.3000
                 20.7757
                           1.9731
         0.6000 22.4101
                           1.8949
         0.9000
                 23.7686
                           1.7714
         1.2000 24.7427
                           1.6126
         1.5000
                           1.4313 ...
                 25.2569
```

и их графики (рис. 8.6).

Эта система уравнений относится к числу т.н. автономных (или динамических), ибо независимая переменная в нее явно не входит; соответственно может быть установлена связь между найденными решениями: в параметрическом задании линия y=y(t), z=z(t) определяет фазовую кривую (траекторию) системы - гладкую кривую без самопересечений, замкнутую кривую или точку, которая позволяет судить об устойчивости системы.

Так, установив опции к построению двумерного фазового портрета (функция odephas2) и номера переменных состояния:

```
» opt=odeset('OutputSel',[1 2], 'OutputFcn','odephas2');
» [T,Y]=ode45('odu2', [0:0.3:9],[19 2],opt);
```

получаем фазовый портрет системы, свидетельствующий о ее устойчивости – гармонии между активом и ценами (рис. 8.7).

В качестве другого примера подобных задач рассмотрим известную задачу динамики популяций, где рассматривается модель взаимодействия "жертв" и "хищников", в которой учитывается уменьшение численности представителей одной стороны с ростом численности другой. Модель была создана для биологических систем, но с определенными корректурами применима к конкуренции фирм, строительству финансовых пирамид, росту народонаселения, экологической проблематике и др.

Эта модель Вольтерра-Лотка с логистической поправкой описывается системой уравнений

$$\frac{dx_1}{dt} = (a - bx_2)x_1 - \alpha x_1^2$$

$$\frac{dx_2}{dt} = (-c + dx_1)x_2 - \alpha x_2^2$$

с условиями заданной численности "жертв" и "хищников" в начальный момент t=0.

Решая эту задачу при различных значениях α , получаем различные фазовые портреты (обычный колебательный процесс и постепенная гибель популяций).

```
function f=VolterraLog(t,x)
a=4;
b=2.5;
c=2;
d=1;
alpha=0.1;
f(1)= (a-b*x(2))*x(1)-alpha*x(1)^2;
f(2)= (-c+d*x(1))*x(2)-alpha*x(2)^2;
f=f';
```

» opt=odeset('OutputSel',[1 2], 'OutputFcn', 'odephas2');
» [T,X]=ode45('VolterraLog', [0 10],[3 1],opt);

Имеется возможность построения и трехмерного фазового портрета с помощью функции odephas3. Например, решение задачи Эйлера свободного движения твердого тела:

$$\frac{dx_1}{dt} = x_2 x_3, \quad \frac{dx_2}{dt} = -x_1 x_3, \quad \frac{dx_3}{dt} = -0.51 \cdot x_1 x_2;$$
$$x_1(0) = x_2(0) = x_3(0) = 0$$

выступает в виде:

Рис.8.10

Рис.8.11

9. Элементарная графика

Здесь мы рассмотрим лишь небольшую часть графических команд высокого уровня, не затрагивая их базу - графические объекты (Axes, Line, Patch, Surface, Text).

9.1. Двумерная графика

Графика в линейном масштабе

plot (y) - построение графика одномерного массива в зависимости от номера элемента (для двумерного массива строятся графики для столбцов);

plot (**x,y**) - построение графика функции y=y(x); при двумерном x строятся графики x=x(y); если оба массива двумерные, строятся зависимости для соответствующих столбцов;

plot (x,y, LineSpec) – заданием строки LineSpec (до 3 символов) определяет стиль линий, форму маркера точек и цвет линий и маркера:

Символ стиля линии	Цвет	Цвет
Непрерывная -	Желтый у	Зеленый д
Штриховая	Фиолетовый m	Синий b
Двойной пунктир :	Голубой с	Белый w
Штрихпунктирная	Красный r	Черный k

Маркер может определяться символами:

По умолчанию выбирается непрерывная линия с точечным маркером и чередованием цветов с желтого по синий.

plot (x1,y1, LineSpec1, x1,y1, LineSpec2,...) – строит на одном графике несколько линий (диапазон по аргументу - объединение x1 и x2;

plot (..., 'PropertyName', PropertyValue,...) —задает значения свойств графического объекта Line (толщину линий LineWidth, размер маркера MarcerSize, цвет маркера MarcerFaceColor и др.).

Построение графиков функций

fplot(<имя функции>,limits) строит график функции (функций) в интервале limits=[xmin,xmax]. В качестве имени функции может использоваться М-файл или строка типа ' $\sin(x)$ ', '[$\sin(x)\cos(x)$]', '[$\sin(x)$, myfun1(x), myfun2(x)]'. Можно установить размеры графика по оси значений функ-

ции limits=[xmin,xmax ymin ymax].

fplot(<имя функции>,**limits, eps)** строит график с относительной погрешностью eps (по умолчанию 0.002) и максимальное число шагов (1/eps)+1. Эту конструкцию можно дополнить четвертым параметром \mathbf{n} ($\mathbf{n}+1$ – минимальное число точек) и параметром LineSpec:

» fplot('[besselj(0,x) besselj(1,x) 0]',[0 10],[],20) & рис.9.2

ezplot('f(x)') строит график f(x), заданной символьным выражением (например, ezplot('x^2-2*x+1')), на интервале $[-2\pi \ 2\pi]$ с выводом выражения в качестве заголовка графика.

ezplot('f(x)', limits) и ezplot('f(x)', limits, fig) строят график f(x) на указанном интервале и в заданном окне.

График в полярных координатах определяется функциями **polar(f,r)** и **polar(f,r, LineSpec)**, где **f** – массив значений угла и **r** – соответствующие значения радиуса : $x=r \cdot cos(\varphi)$, $y=r \cdot sin(\varphi)$:

» set(hp,'LineWidth',4) % puc.9.3 » set(hp,'LineWidth',2) % puc.9.4

Рис.9.3 Рис.9.4

График в логарифмическом масштабе задается функцией **loglog** с тем же набором параметров, что и **plot**, с той лишь разницей, что проводится масштабирование десятичным логарифмированием по обеим координатам.

График в полулогарифмическом масштабе задается функциями **semilogx** и **semilogy** с тем же набором параметров, что и **plot** (проводится масштабирование логарифмированием по одной из координат).

График с двумя осями ординат (одна отображается слева, другая справа) реализуется функцией **plotyy(x1,y1,x2,y2)** и той же функцией с добавлением параметров масштабирования 'f1' или 'f1','f2', в роли которых могут выступать plot, semilogx, semilogx, loglog:

x=0:0.01:12*pi;

» plotyy(x,sin(x).*exp(-0.1.*x),x, 10*exp(-0.1.*x)) % Рис.9.5

9.2. Трехмерная графика

В трехмерной графике выполняются представления функции z=z(x,y), отличающиеся способом соединения точек: линия, сечения, сетчатая или сплошная поверхность.

plot3(**x**,**y**,**z**) в тех же вариациях, что и plot, предполагает задание одномерных и двумерных массивов (строятся точки с координатами x(i,:),y(i,:),z(i,:) для каждого столбца и соединяются прямыми линиями. Если используется [**x**,**y**]=**meshgrid**(...), то строятся сечения.

mesh(x,y,z,c), mesh(z), mesh(z) определяют задание сетчатой поверхности (массив c определяет цвета узлов поверхности; если x,y не указаны, то x=1:n, y=1:m, rge[m,n]=size(z).

- » [x,y]=meshgrid(-8:0.5:8);
- $= sqrt(x.^2+y.^2)+0.001;$
- \Rightarrow z=sin(t)./t;
- mesh(x,y,z) % Pис. 9.8

Аналогичная функция **meshc** в дополнение к поверхности строит проекции линий уровня, а **meshz** делает срез поверхности до нулевого уровня (своеобразный пьедестал).

surf(x,y,z,c), surf(z,c), surf(z) определяют задание сплошной поверхности, отличаясь от mesh системой окраски; аналогичная функция surfc(...) задает проекции линий уровня.

Реализация трехмерной графики может сопровождаться множеством вспомогательных команд, например:

hidden on/off включает или выключает режим удаления невидимых линий (по умолчанию on);

shading faceted / flat / interp устанавливает затенение поверхностей (по умолчанию faceted дает равномерную окраску ячеек с черными гранями, flat — цветами узлов сетки, interp — интерполяцией цветов.

9.3. Задание осей координат

Создание графического объекта исходит автоматически при обращении к командам, порождающим объекты Line и Surface, но может выполняться и командой **axec**('<имя свойства>',<значение>, ...). Есть и команды более высокого уровня:

axis([xmin xmax ymin ymax]), axis([xmin xmax ymin ymax zmin zmax]) устанавливает масштаб по осям;

axes off / on выключает (включает) вывод на координатные оси обозначений и маркеров;

grid on/off, **grid** включает (выключает) или переключает режим нанесения координатной сетки на осях;

box on/off, box включает (выключает) или переключает режим рисования контура параллелепипеда, трехмерный объект;

zoom on/off включает (выключает) режим интерактивного масштабирования графиков (левая мышь около точки увеличивает масштаб вдвое, правая — уменьшает; удержанием левой мыши можно выделить прямоугольную область для детального просмотра; **zoom out** восстанавливает исходный график.

9.4. Линии уровня

В отличие от **meshc** (...) и **surfc**(...) функция **contour** рисует только линии уровня соответствующих поверхностей и выступает в многообразии синтаксических форм: **contour**(\mathbf{X} , \mathbf{Y} , \mathbf{Z}) - для массива $\mathbf{Z} = \mathbf{Z}(\mathbf{X},\mathbf{Y})$, **contour**(\mathbf{X} , \mathbf{Y} , \mathbf{Z} , \mathbf{n}) - то же с указанием числа линий уровня (по умолчанию 10), **contour**(\mathbf{X} , \mathbf{Y} , \mathbf{Z} , \mathbf{v}) - то же для массива указанных значений ; **contour**(\mathbf{Z}), **contour**(\mathbf{Z} , \mathbf{n}), **contour**(\mathbf{Z} , \mathbf{v}) - аналогичные функции без указания диапазонов для аргументов и **contour**(...,**LineSpec**) - аналогичные функции с указанием типа и цвета линий (см. plot); [\mathbf{C} , \mathbf{h}]=**contour** (...) возвращает массив \mathbf{C} и вектор дескрипторов, позволяя тем самым продолжить работу с рисунком (давать оцифровку линий, заголовки и др.).

Функция **contourf(...)** закрашивает области между линиями уровня, аналогична contourf(...) с разницей в формате[\mathbf{C} , \mathbf{h} , \mathbf{cf}]= $\mathbf{contour}$ (...), где \mathbf{cf} определяет матрицу раскраски.

```
» [x,y]=meshgrid(-8:0.5:8);
» t=sqrt(x.^2+y.^2)+0.001;
```

 \Rightarrow z=sin(t).^3./t;

> [c,h]=contour(x,y,z,20);

$$x = [x,y] = meshgrid(-2:0.25:2);$$

- \Rightarrow t=sqrt(x.^2+y.^2)+0.001;
- \Rightarrow z=sin(t).^3./t;
- » [c,h,cf]=contourf(x,y,z,4);

Рис.9.11

Рис.9.12

Рис. 9.13

Функция **contour3(...)** по синтаксису полностью аналогична contour(...), но изображает не проекции линий уровня, а рисует их в пространственной интерпретации; так команда [c,h]=contour3(x,y,z,20); дает фигуру (рис.9.13).

9.5. Дополнительные возможности

<u>Создание нового графического окна</u> **figure**; командой **figure(n)** можно выбирать некоторое из созданных окон в качестве текущего.

<u>Включение</u> (выключение) режима сохранения текущего графика : **hold on/off, hold** .

Вывод заголовков для графиков (в текущем окне):

title('текст'), title(<имя функции-строки>'), title(..., 'Property-Name','PropertyValue',...), h=title(...).

 $\underline{\text{Вывод}}$ графиков в нескольких окнах рисунка: **subplot(m,n,k), subplot(mnk)** – m – число окон по горизонтали, n – по вертикали, k – номер окна:

```
» subplot(121)
```

- » plot([1:0.3:4])
- » subplot(122)
- » plot([4:-0.3:1])
- \Rightarrow title ('y=4-0.3(x-1)')

Рис.9.14

<u>Вывод текста для обозначения координатной оси</u> : **xlabel(...)**, **ylabel(...)**, **zlabel(...)** – синтаксис аналогичен title(...).

Вывод текста в указанной позиции графика: text(x,y,'текст'), text(x,y,z,'текст'), text(...'PropertyName','PropertyValue',...), h=text(...).) - x,y,z -координаты начала текста.

Вывод текста под управлением мыши: gtext('текст'), h= gtext('текст') – выведенный текст можно перемещать мышью.

Вывод легенды legend('текст1', 'текст2',...), legend(M), legend(h,M), legend off, legend(...,pos), h= legend(...) — здесь М — строковый массив (длина строк одинакова), off удаляет пояснения к графику, роз определяет позицию легенды (-1 - справа от графика, 0 — в одном из 4 углов с минимумом потерь точек графика, 1-4 — в указанном углу, $[x \ y]$ — в указанном месте); можно перетаскивать легенду мышью.

```
» subplot(111)
```

- = [0:pi/30:2*pi];
- \Rightarrow a=sin(t); b=cos(t);
- x=0:60;
- » plot(x,a+b),hold on
- » hp=plot(x,a', 'g', x,b','r'); set(hp,'LineWidth',2)
- \Rightarrow legend('a+b','a=sin(t)','b=cos(t)')
- » title('y=sin(t)+cos(t)','FontSize',12,'FontWeight','bold')

Маркировка линий уровня, создаваемых функциями contour, contour3, contourf: clabel(C,h), clabel(C,h,v), clabel(C,h,'manual'), clabel(C), clabel(C,v), clabel(C,'manual') – при наличии h маркировка на линиях, при наличии 'manual' - принудительная маркировка нажатием левой мыши или пробела (правая мышь или Return завершает маркировку).

9.6. Специальная графика

Раздел специальной графики включает команды для построения диаграмм, гистограмм и прочих дискретных графиков.

<u>Столбцовые диаграммы</u> реализуются функциями bar и barh:

bar(y), bar(x,y), **h=bar(...)** – здесь **y** –массив (одно- или двумерный), **x** – одномерный, упорядоченный по возрастанию массив (число смежных по горизонтали столбцов диаграммы равно числу столбцов массива **y**); можно указать параметры относительной ширины столбцов (1 - касание, >1 - перекрытиe, <1 - с промежутками), или стиля ('group', 'stack'):

$$y_1=\sin(x)$$
; $y_2=\cos(x)$; $y_3=\exp(-x./2)$; $y_4=\sin(x)$; $y_2=\cos(x)$; $y_3=\exp(-x./2)$; $y_4=\sin(x)$; $y_4=\sin(x)$; $y_5=\cos(x)$

Рис.9.16

Рис.9.17

$$\Rightarrow$$
 bar(x,y') \Rightarrow bar(x,y', 'stack')

barh(...) отличается лишь размещением столбцов не по вертикали, а по горизонтали.

<u>Секторная диаграмма</u> реализуется функцией pie(x), pi(x,v), h=pie(...) – здесь v – вектор из 0 и 1 для отделения от диаграммы отдельных секторов:

Рис.9.19

<u>Построение гистограммы</u> **hist(y), hist(y,x), hist(y,n), [p,x]=hist(y,...)** реализует подсчет числа элементов по столбцам массива **y** в **n** (по умолчанию 10) интервалах:

- x=-3:0.1:3
- \Rightarrow t=randn(500,1);
- » hist(t,x) % Рис.9.19

<u>Дискретный график</u> stem(y), stem(x,y), stem(...,'fill'), stem(...,LineSpec), h=stem(...) аналогичен столбцовой диаграмме и выводит значения в виде отрезков с маркером ('fill' —закраска маркера):

- x=-3:0.1:3;
- \Rightarrow f=exp(-x.^2/2);
- » stem(x,f) %Рис.9.20

Рис.9.20

Рис.9.21

<u>Вывод поля точек</u> выполняется функцией **scatter(x,y,...)** с возможностью указывать размер, цвет и заполненность маркера:

```
» x=-3:0.1:3;
» f=exp(-x.^2/2);
» scatter(x,f,'filled') % Рис.9.21
```

Среди многообразия функций специальной графики существенный интерес представляют функции <u>поворота графического объекта</u> **rotate** : например,

» h=surf(...);

» rotate (h,[1 0 0],90) & поворот по оси \mathbf{x} на 90° и функции поворота графического объекта с помощью мыши **rotate3d on**|**ON**|**off** (on – режим включен, off-выключен, ON – подавляет информацию о текущих углах).

СОДЕРЖАНИЕ

	Введение в MatLab (происхождение и возможности)	1
1.	Режим командной строки. Форматы данных	2
2.	Элементарные математические функции	6
3.	Режим программирования	9
4.	Операции над массивами	13
5.	Решение основных задач линейной алгебры	16
6.	Операции над полиномами	21
7.	Коллекция тестовых матриц	23
8.	Анализ данных	26
8	.1. Обработка статистических данных	26
8	.2. Численное дифференцирование	26
	.3. Аппроксимация и интерполяция	27
8	.4. Численное интегрирование	29
8	.5. Нули и экстремумы функций	30
8	.6. Обыкновенные дифференциальные уравнения	32
9.	Элементарная графика	36
9	9.1. Двумерная графика	36
9	9.2. Трехмерная графика	38
9	9.3. Задание осей координат	40
	9.4. Линии уровня	41
	9.5. Дополнительные возможности	42
9	9.6. Специальная графика	43

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. *В.Г.Потемкин*. Система инженерных и научных расчетов МАТLAB 5.х. В 2-х т. –М.: ДИАЛОГ-МИФИ. 1999. 670 с.
- 2. *М.А.Тынкевич.* Численные методы. Кемерово: КузГТУ. 1997. 122 с.
- 3. А.И. Плис, Н.А. Сливина. МАТНСАD 2000. Практикум для экономистов и инженеров. -М.: Финансы и статистика. 2000. 656 с.

Учебно-справочное издание

Тынкевич Моисей Аронович

Система MATLAB: справочное пособие к курсу

"Численные методы анализа"

ЛР № 020313 от 23.12.96 Подписано к печати 29.10.2001. Формат 60×84 /16. Бумага офсетная. Уч.-изд. л. 3.0 . Тираж 150 экз. Заказ 438. Отпечатано на ризографе.

Кузбасский государственный технический университет. 650026, Кемерово, ул. Весенняя, 28.

Типография Кузбасского государственного технического университета. 650026, Кемерово, ул. Д.Бедного, 4а