MAC0343: Prova 1

20 de Setembro de 2016

Victor Sena Molero - 8941317

Problema 1

Seja $A \in \mathbb{R}^{m \times n}$ uma matriz. Prove que vale precisamente uma das seguintes alternativas:

i existe $x \in \mathbb{R}^n_+$ tal que Ax = 0 e $x \neq 0$;

ii existe $y \in \mathbb{R}^m$ tal que $A^T y < 0$.

Resposta. Queremos provar que vale exatamente um entre (i) e (ii). Para provar isso, vamos considerar um PL e seu dual.

min
$$c^T x$$

s.a. $Ax = b$
 $x \in \mathbb{R}^n_+$ (1)

$$\max \quad b^T y$$
s.a. $y \in \mathbb{R}^m$

$$A^T y < c$$
(2)

Vamos provar, primeiro que vale pelo menos um entre (i) e (ii). Assuma, para a matriz A de 1 e 2 que não vale (i), então, no programa 1, x = 0 é o único ponto viável. Temos, então, que para todo $c \in \mathbb{R}^n$, 1 é viável e tem solução ótima min $c^T x = 0$.

Pelo teorema 12 (Dualidade Forte de PL), segue que 2 é viável, portanto, existe $A^Ty \leq c$. Basta escolher c < 0 e temos que $A^Ty < 0$, ou seja, vale (ii).

Agora, vamos provar que vale no máximo 1 entre (i) e (ii). Assuma que vale (i) e (ii), então, existe $y \in \mathbb{R}^m$ tal que $A^Ty < 0$, escolhemos, nos programas 1 e 2, b = 0 e $c = A^Ty$, assim, temos que 2 é viável. Além disso, já que vale (i), existe $0 \neq x \in \mathbb{R}^n_+$.

Pelo teorema 7 (Dualidade Fraca de PL), $c^t x \ge b^T y = 0^T y = 0$, porém, já que c < 0 e $0 \ne x \ge 0$, $c^T x < 0$, uma contradição. Com isso, concluímos que vale exatamente 1 dentre (i) e (ii).

Problema 2

Sejam $X, S \in \mathbb{S}^n$. Prove que $0 \prec S \prec X \Rightarrow 0 \prec X^{-1} \prec S^{-1}$.

Problema 3

Sejam $X, S \in \mathbb{S}^n$. Prove que

i
$$X, S \in \mathbb{S}^n_+ \Longrightarrow X \circ S \succeq 0;$$

Resposta. Se $S \succeq 0$, pelo Teorema 20 (item (iii)), existe uma matriz $H \in \mathbb{R}^{m \times n}$ para algum m e um vetor $s \in \mathbb{R}^m_+$ tal que $S = \sum_{i=1}^m s_i (He_i) (He_i)^T$. Escolhemos tais H e s, assim, para todo $q \in \mathbb{R}^n$, temos que

$$q^{T}(X \circ S)q = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{i}q_{j}X_{i,j}S_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} (q_{i}q_{j}X_{i,j})\sum_{k=1}^{m} s_{k}H_{k,i}H_{k,j}$$
, que pode ser escrito como

$$\sum_{k=1}^{m} s_k \sum_{i=1}^{n} \sum_{j=1}^{n} (q \circ (He_k))_i (q \circ (He_k)_j X_{i,j},$$

Se definirmos a matriz $Q = q \mathbb{1}^T$, temos,

$$q^{T}(X \circ S)q = \sum_{k=1}^{m} s_{k}((Q \circ H)e_{k})^{T}X(Q \circ H)e_{k},$$

já que para todo $k \in [m],$ vale que $(Q \circ H)e_k \in \mathbb{R}^n$ e $s_k \geq 0,$ e, além disso, $X \succeq 0,$

$$q^T(X \circ S)q \ge \sum_{k=1}^m s_k 0 \ge 0.$$

Portanto, $(X \circ S) \succeq 0$.

ii $X, S \in \mathbb{S}^n_{++} \Longrightarrow X \circ S \succ 0;$

Resposta. Se $S \succ 0$, pelo Exercício 21 (item (iii)), existe uma matriz $H \in \mathbb{R}^{m \times n}$ para algum m e um vetor $s \in \mathbb{R}^m_{++}$ tal que $S = \sum_{i=1}^m s_i (He_i) (He_i)^T$ e o span($\{He_k \mid k \in [m]\}$) = \mathbb{R}^n . Escolhemos tais H e s, assim, para todo $g \in \mathbb{R}^n$, temos que

$$q^{T}(X \circ S)q = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{i}q_{j}X_{i,j}S_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} (q_{i}q_{j}X_{i,j})\sum_{k=1}^{m} s_{k}H_{k,i}H_{k,j}$$
, que pode ser escrito como

$$\sum_{k=1}^{m} s_k \sum_{i=1}^{n} \sum_{j=1}^{n} (q \circ (He_k))_i (q \circ (He_k)_j X_{i,j},$$

Se definirmos a matriz $Q = q \mathbb{1}^T$, temos

$$q^{T}(X \circ S)q = \sum_{k=1}^{m} s_{k}((Q \circ H)e_{k})^{T}X(Q \circ H)e_{k},$$

já que para todo $k \in [m],$ vale que $(Q \circ H)e_k \in \mathbb{R}^n$ e $s_k > 0,$ e, além disso, $X \succ 0,$

$$q^{T}(X \circ S)q > \sum_{k=1}^{m} s_{k}0 > 0.$$

Portanto, $(X \circ S) \succ 0$.

iii $X, S \in \mathbb{S}^n_{++} \Longrightarrow X \circ S \succeq (X^{-1} \circ S^{-1})^{-1};$

iv $X, S \in \mathbb{S}^n_{++} \Longrightarrow X \circ S \succeq (X \circ S)^{-1}$.

Problema 4

Seja n um inteiro positivo. Determine o valor ótimo do seguinte programa semidefinido:

$$\max \quad \mathbf{1}^{T} + 4z_{1}$$
s.a. $y \in \mathbb{R}^{n}$,
$$z \in \mathbb{R}^{n+1}$$
,
$$\begin{bmatrix} -y_{j} & -z_{j} \\ -z_{j} & 2z_{j+1} \end{bmatrix} \succeq a, \qquad \forall j \in [n],$$

$$z_{n+1} = \frac{1}{2}$$

Problema 5

Seja $\gamma \in \mathbb{R}_{++}$. Considere o programa semidefinido

$$\max \langle C, X \rangle$$
s.a. $\langle A_i, X \rangle$, $\forall i \in [m]$, (4)
$$x \in \mathbb{S}^n_+,$$

onde n := m := 3,

$$C := e_1 e_2^T + e_2 e_1^T, A_1 := e_2 e_2^T, A_2 := e_1 e_3^T + e_3 e_1^T, A_3 := -C + 2e_3 e_3^T \text{ e } b := 2\gamma e_3$$

Problema 6

Seja $\emptyset \neq K \subseteq \mathbb{E}$ um cone convexo e fechado num espaço euclidiano. Prove que $K^{**} = K$.

Problema 7

Seja $X \in \mathbb{S}^n$. Prove que $X \succ 0 \iff det(X[\{1, ..., k\}]) > 0$ para todo $k \in [n]$.

Resposta. Seja $X \in \mathbb{S}^n$, vamos provar a tese sugerida pelo enunciado por indução em n. Se n = 1, temos que $X \succ 0 \Leftrightarrow X > 0 \Leftrightarrow det(X) > 0$. Agora tome por hipótese de indução que a tese vale para n - 1. Seja, então, $X \in \mathbb{S}^n$. X pode ser decomposto da seguinte maneira:

$$X = \begin{bmatrix} \bar{X}y \\ y^T \alpha \end{bmatrix}.$$

Vamos provar a ida, ou seja, assuma que $X \succ 0$, para todo $h \in \mathbb{R}^n$, $h^T X h > 0$, podemos definir

$$h = \begin{bmatrix} \bar{h} \\ 0 \end{bmatrix},$$

temos que $h^TXh = \bar{h}^T\bar{X}\bar{h} > 0$ para todo $\bar{h} \in \mathbb{R}^{n-1}$, logo, $\bar{X} \succ 0$. Assim, $det(X[\{1,\ldots,k\}]) > 0$ para todo $k \in [n-1]$. Além disso, $det(X) = det(\bar{X})det(\alpha - y^T\bar{X}y)$. Pelo Ex. 18 (Complemento de Schur), $\alpha - y^T\bar{X}y > 0$, já que $X \succ 0$. Assim, det(X) > 0. Logo, provamos que $X \succ 0 \Longrightarrow det(X[\{1,\ldots,k\}]) > 0$ para todo $k \in [n]$.

Agora precisamos assumir que $det(X[\{1,\ldots,k\}])>0$ e provar que $X\succ 0$. Mais uma vez, usaremos a mesma decomposição que utilizamos na prova da ida. E chegamos, novamente, à fórmula $det(X)=det(\bar{X})det(\alpha-y^T\bar{X}y)$. Sabemos que det(X)>0 e $det(\bar{X})>0$, logo $det(\alpha-y^T\bar{X}y)>0$, porém, $\alpha-y^T\bar{X}y\in\mathbb{R}$, logo, só tem determinante positivo se for positivo, portanto, novamente pelo Ex. 18, $X\succ 0$.

Problema 8

Prove que $int(\mathbb{S}^n_+) = \mathbb{S}^n_{++}$.

Resposta. Primeiro, vamos provar $\mathbb{S}^n_{++} \subseteq \operatorname{int}(\mathbb{S}^n_+)$. Seja $x \in \mathbb{S}^n_{++}$ e $\epsilon = \max_{\substack{u \in \mathbb{B} \\ h^T u h \neq 0}} |\frac{h^T x h}{h^T u h}|$.

Temos que para todo $u \in \mathbb{B}$

$$h^T(x + \epsilon u)h = h^T x h + \epsilon h^T u h,$$

o que nos dá dois casos:

1. se
$$h^T u h \ge 0$$
, $h^T (x + \epsilon u) h \ge h^T x h > 0$;

2. se
$$h^T u h < 0$$
, $h^T (x + \epsilon u) h = h^T u h + \epsilon h^T u h > h^T x h - h^T x h = 0$.

Desta forma, em todos os casos possíveis, $h^T x h \ge 0$, logo, $x \in \mathbb{S}^n_+$.

Agora, vamos provar que $\operatorname{int}\mathbb{S}^n_+\subseteq\mathbb{S}^n_{++}$. Seja $x\in\operatorname{int}(\mathbb{S}^n_+)$. Então existe $\epsilon>0$ tal que para todo $h\in\mathbb{R}^n$ e $u\in\mathbb{B}$,

$$h^T(x + \epsilon u)h \ge 0$$
, portanto
 $h^Txh + \epsilon h^Tuh > 0$.

Escolha $u = -I/\sqrt(n)$ e qualquer $h \neq 0$.

$$h^Txh - \frac{\epsilon}{\sqrt{n}} \ge 0,$$
 $h^Txh \ge \frac{\epsilon}{\sqrt{n}} \ge 0,$ ou seja $x \in \mathbb{S}^n_{++}.$

Com isso, concluímos que $\operatorname{int}(\mathbb{S}^n_+) = \mathbb{S}^n_{++}$.