Team Number	1
Customer	Analog Devices

Type-C PPS (Programmable Power Supply) with Parallel Battery Management Evaluation Board

Team 1

Antonio Alonso, David Liu, Eric Cho, Harry Katsaros, Sunwoo Park

Геат Numbe	r1
Customer	Analog Devices

Problem Statement

Design a PCB with Type-C PPS input and software to showcase the parallel battery management functionality of the MAX17330 (charger, fuel gauge, and protector for lithium ion batteries) for customer technology demonstrations and trade shows.

eam Number	· 1
Customer	Analog Devices

Visualization

Геат Numbe	r1
Customer	Analog Devices

Deliverables

- Functional PCB with straightforward display of key information for two batteries:
 - Charging/discharging state
 - Charging/discharging current
 - Battery capacity
 - Power flow diagram from Type-C port, batteries and to system load (input/output)
- Software to control each component on board via MCU

Геат Numbe	r1
Customer	Analog Devices

Requirements (Functions)

- Parallel Battery Management:
 - Manage initialization of gauge and alerts for parallel battery charging
 - Manage when to request increase or decrease voltage from switch cap
 - Report state of each battery to display
- Display
 - Receive data from battery and power systems
 - Display power flow from Type-C port, batteries and to system load
- PPS Negotiation
 - Interface with MAX77958 to detect available power on Type-C port and set adapter voltage to appropriate levels
 - Respond to voltage adjustments from battery charger
 - Report power levels to display

Геат Numbe	r1
Customer	Analog Devices

Objectives

- Report clear, accurate current and voltage readings gained from chips to LCD
- Cableless design (except for USB Type-C input)
- Use ADI chips for DC-DC converter/charger, USB Type-C power delivery controller, and switch-capacitor converter
- Software controls components from onboard MCU
- User-friendly interface
- Portable and durable

Team Number	1
Customer	Analog Devices

Constraints

- Time
 - Fabrication and assembly of PCB takes ~5 weeks
 - Shipping of EV kits and parts take up to a week
- USB Type-C PPS protocols
- Limited MCU memory
- Limited physical size of PCB
- Cableless design
- Unable to use I2C libraries owned by ADI that facilitate communication between MCU and IC
- Must use ADI chips for DC-DC converter/charger, USB type-C power delivery controller, and switch-capacitor converter
- Only get 2 EV kits per ADI IC on the board
- Distance/Time Zones
 - 3-hour time difference between Boston and San Jose
 - Far from ADI's Battery Management Team

Team Number	· <u> </u>
Customer	Analog Devices

Competing Technologies / Patents / Other Products

- None
- ADI has the ability to show off the chip in separate parts (i.e. not every component on one board)