Assignment – 4

Sagar Kulkarni

20767929

Q) Report your classification accuracy results in a table with three different activation functions in the hidden layer (ReLu, tanh, sigmoid). What effects do different activation functions have on your results? What effect does addition of I2-norm regularization have on your results? What effect does dropout have on results? Explain your intuition briefly.

	Dropout		
	0.0	0.2	0.4
Sigmoid	0.76045	0.7448375	0.746
Tanh	0.7757375	0.770075	0.7661625
ReLu	0.7805125	0.7815125	0.780775

Table-1: Test accuracy with L2-norm(0.001)

	Dropout		
	0.0	0.2	0.4
ReLu	0.8025375	0.8003	0.8011375

Table-2: Test accuracy without L2-norm

It seems that ReLu activation function preforms the best with an average accuracy of ~78%, followed by Tanh activation function with an average accuracy of ~77% and sigmoid function performs the worst with an average accuracy of ~75%. Also, ReLu activation functions seems to be less computationally expensive.

Running the model without I2-normalization seems to improve the overall accuracy of the model for ReLu.

Having a dropout layer (0.0 - 0.4) does not seem to show any clear affect of the accuracy results for this dataset. Higher dropout rate with I2-norm seems to indicate worse performance however, this is not very clear.