次元削減•行列分解

Fukuta Keisuke

Agenda

1. 線形代数復習

2. PCA • SVD

3. NMF

次元削減

「高次元データを低次元空間に射影すること」

目的

- 次元の呪いを回避する
- 。 データ構造を理解する、可視化する
- 。 汎化性能を上げる

次元削減 (機械学習的には)

• 機械学習では基本すべての特徴を等価に扱う

- 例:製品の複数の特徴から製造所を予想
 - 特徴の中にはいくつも相関があるものがある。
 - 。 Ex. 長さと重さは恐らく相関がある
 - -> 長さ、密度なら相関なさそう
 - 。 こういうのを機械に自動的にやってほしい

長さ	幅	重さ	•••	製造所ID
3.0	5.1	100.2	•••	Α
2.9	5.3	100.1	•••	Α
3.4	5.2	98.2	•••	В
2.9	4.8	101.0	•••	С
:	•	•	:	•

次元削減としての行列分解

- 行列を二つ以上の行列の積に分解して近似すること(行列の低ランク近似)
 - PCA, SVD
 - NMF

ここに元の特徴が現れるようにすれば、次元削減としても使える

• 行列
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
をベクトル $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ に作用させる操作 $f(\mathbf{v}) = \mathbf{A}\mathbf{v}$

→ ベクトルの線形変換

ベクトルの線形性 (平行と比率) の保たれる変換

$Av = \lambda v$ となるような λ を固有値、xを固有べクトルと呼ぶ

- 。 線形変換Aに対して向きが変わらないベクトルが固有ベクトル
- 固有ベクトルが何倍されるっていうのが、固有値

• 基底変換

普通
$$\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$$
って言うときは $\mathbf{v} = \mathbf{x} \cdot e_1 + y \cdot e_2$ のことを指していた

このとき e_1 , e_2 を基底と呼ぶ

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• 基底変換

 e_1 , e_2 を基底に使わないといけないわけじゃなくて、こんな回転された基底のほうが考えやすいことがある

新しい基底をそれぞれ u_1 , u_2 とすると

$$\binom{x}{y} = X \cdot u_1 + Y \cdot u_2$$

$$\binom{x}{y} = U \binom{X}{Y} \quad (U = (u_1 \ u_2)$$
と置く)

$$\binom{X}{Y} = U^{-1} \binom{x}{y} < -$$
 基底変換の基本式

(例1) 直線 y = x/2 への正射影

この変換Aを求めてみたい

x軸への射影だったら超簡単だけど、これはどうすれば?

XY座標系での f の行列表示は $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ で、

$$f(\vec{a}) = f(\vec{y})_{xy} = (A(\vec{y}))_{xy} - y \text{ park ration}$$

$$= f((\vec{y})_{xy}) = (B((\vec{y}))_{xy} - xy \text{ park ration}$$

$$= (B((\vec{y}))_{xy})_{xy} - xy \text{ park ration}$$

$$= (B((\vec{y}))_{xy})_{xy} - xy \text{ park ration}$$

より、xy 座標系での f の行列表示は、 $A=UBU^{-1}$

$$\begin{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} & \xrightarrow{B \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 1 \\ 1$$

• 行列の対角化

いい感じの
$$U$$
という行列を取ると $U^{-1}AU = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ 対角行列にすることができる

変形すれば、 $A = UBU^{-1}$

実は、、

- Uは固有ベクトルによる基底行列 Ex. $U=(u_1 u_2)$
- 。 Bは対角成分に固有値が並んだ対角行列 Ex. $B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

$$A = UBU^{-1}$$

解釈すると、

固有ベクトルを基底とする基底変換を施すと、行列Aによる変換は、それぞれのそれぞれの方向に固有値倍したものだとみなせる。

更にその後また元の基底に戻せば行列Aの変換と同じ。

$$\begin{pmatrix} \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \end{pmatrix} \xrightarrow{B \cdot \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}} B\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \xrightarrow{B \cdot \begin{pmatrix} \lambda & \lambda \\ 1 & \lambda \end{pmatrix}} B\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \xrightarrow{A} A\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \xrightarrow{B \cdot \begin{pmatrix} \lambda & \lambda \\ 1 & \lambda \end{pmatrix}} A\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \xrightarrow{B \cdot \begin{pmatrix} \lambda & \lambda \\ 1 & \lambda \end{pmatrix}} A\begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$$

何が言いたいか.. -> うまく基底を変換すれば見やすくできることがある!

$$\begin{pmatrix} \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} & \xrightarrow{B \leftarrow \begin{pmatrix} \lambda \\ 0 \end{pmatrix} & 0 \end{pmatrix}} B\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} & \xrightarrow{A} A\begin{pmatrix} \lambda \\ \lambda$$

- 可視化、次元削減によく使われる!
- データ間に含まれる相関をなくしたい。
- できるだけ情報を落とさずにより小さい次元で表現したい

• データを行列Xで表現 $(X \in \mathbb{R}^{n \times m})$

• 元の特徴量の線形結合によって新しい、いい感じの軸を作る

→ 基底変換

- ・ 基底変換は $\binom{X}{Y} = U^T \binom{x}{y}$ で表せた。
- いい感じの*U* = (u₁ u₂)を求めたい!!

- Idea:「共分散行列の非対角成分が0になるような変換を施せばいいのでは?」
- 共分散行列 $\Sigma = XX^T$
- ・ 基底変換後のYの共分散行列 $\to U^T \sum U$

・結局、 $U^T \sum U$ が対角行列になればよい。

- さっき、行列の対角化やりましたよね!
- → 行列は固有値ベクトルを並べた行列によって対角化できた!!

• 結局データ行列Xの共分散行列 $\sum = XX^T$ の固有ベクトルを求める問題に帰着

n

- どうやって次元削減するか
- 求めた基底変換 $Y = U^T X$ だと次元が減ってない

- 嬉しいことに、各固有値が、その軸の分散を表す
- → 分散が小さい軸は使いたくない
- → 固有値が大きい順に数個使えば良い

どうやって次元削減するか

特異值分解 (Singular Value Decomposition)

特異値って何??

- 固有値は正方行列じゃないと定義できない
- → 正方でない場合にも拡張
- $\sigma(A) = \sqrt{\lambda(A \cdot A^T)}$ (行列Aの特異値 = 行列 $A \cdot A^T$ の固有値の平方根)

特異値分解 (Singular Value Decomposition)

行列 $M \in R^{m \times n}$ に対して

$$M = U \Sigma V^T$$
 と分解すること

U、Vはユニタリ行列(直交行列の複素数版)

。 Σは右図のように、対角成分に特異値が並びそれ以外0

特異値分解 (Singular Value Decomposition)

- SVDによる低ランク近似
 - 。 さっきのPCAのように、大きい特異値しか使わずに行列を表現
 - 特徴抽出だけでなく省メモリという意味合いも

SVDZPCA

- 実はPCAとSVDはほぼ等価
- どちらも行列Xに対し TXX^T の固有値問題を解いている

- SVDの $M = U \Sigma V^T$ のU, Vは XX^T, X^TX のそれぞれの固有ベクトル
- ちょっと固有ベクトルのところが違う(たぶん)

SVDZPCA

意義

- 特徵抽出
 - 。 特徴選択となるだけの場合も
- ・情報を落とさずに次元削減
 - 次元の呪いを回避、高速に動作させる
 - 。 可視化 (t-sneと同じ、併用されることもある)

- 行列Xの要素が全部非負となるようなデータ
 - 。 Ex. 勾配データ、遺伝子発現の有無など

- ・ 分解後(近似後)も非負のまま扱いたい
 - 解釈しやすい
 - 。 また、負の数が使えない場合0を表現するには0しかないこともポイント (sparseになる)

NMFとは...

要素が全て非負の行列Vに対して、

 $V \approx W \cdot H$ と分解すること (W, Hともに非負)

PCA、SVDのように厳密解ではなく数値解析的に解く 解くべき問題は

$$\min |V - WH|_F^2$$
 s.t.W, $H \ge 0$

いくつか解法があるが、よく使われるのは乗法更新式と呼ばれるもの 適当にW, Hを初期化して、W, Hが収束するまで以下の更新式によって更新

$$W \leftarrow W \times \frac{VH^T}{WHH^T}$$
, $H \leftarrow \frac{W^TV}{W^TWH}$

Learning the parts of objects by non-negative matrix factorization

- W, Hは何を表すのかの例
- m人の顔画像を表現する行列(V: N×M)を(W: N × K, H: K × M)分解.

Wの各列は、基底画像 Hの各列は、それぞれの人は基底画像をどれだけの重みで結合して作られるか

Learning the parts of objects by non-negative matrix factorization

- 特徴
 - 基底が単純なものに(引き算ができないので)
 - 因子行列の方はスパースに
 - 。 結果として、解釈しやすい
 - 。 データに欠損があっても使用できる
 - 欠損がないところだけ更新すれば良いので
 - 。 SVDなどでは無理

遺伝子発現データをNMF

- · N個の遺伝子表現
- Mサンプルのデータ

- NMFで二つの行列(rank 2)
- ・ 因子行列の要素が明らかに 二分された
- このとき、基底はなんらかの表現パターンを表すことがわかる

まとめ

• PCAはデータの共分散行列が対角になるように基底変換を行い 分散の大きい軸だけ残す

• SVDはPCAとほぼ等価の行列の低ランク近似のための手法

・ NMFは非負データの解析に利用される。 解き方が単純なので欠損データがあっても柔軟に対応できる