Does Adam Converge and When?

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, Zhi-Quan Luo

School of Data Science, The Chinese University of Hong Kong, Shenzhen
Shenzhen Research Institute of Big Data

What to expect from this talk?

• For theorist:

- Convergence & divergence phase transition.
- Problem-dependent bound v.s. Problem-independent bound.
- A new method to analysis stochastic non-linear dynamic system.

For engineers:

- Is Adam a theoretically justified algorithm?
- Shall we use it confidently?
- How to tune hyperparameters?

Motivation

- Adam is one of the most popular algorithms in deep learning (DL). (It has received more than 110,000 citations)
- **Default** choice in many DL tasks:
 - NLP, GAN, RL, CV, GNN etc.
- Adam is also widely used in SRIBD projects:
 - Learning to Optimize (L2O);
 - Medical image segmentation;
 - 3D Reconstruction;
 - SRCON, etc.
- However, the behavior of Adam is poorly understood in theory.
- We aim to close the gap between theory and practice.

A Brief Introduction to Adam

- Consider $\min_{x} f(x) \coloneqq \sum_{i=1}^{n} f_i(x)$.
- In DL tasks, n often stands for sample size; x denotes trainable parameters.
- Initialization $\nabla f(x_0)$, $m_0 = \nabla f(x_0)$
- In the k-th iteration: Randomly sample τ_k from $\{1,2,...,n\}$
 - SGD:
 - $x_{k+1} = x_k \eta_k \nabla f_{\tau_k}(x_k)$
 - SGD with momentum (SGDM):
 - $m_k = (1 \beta_1) \nabla f_{\tau_k}(x_k) + \beta_1 m_{k-1}$
 - $x_{k+1} = x_k \eta_k m_k$

A Brief Introduction to Adam

- Consider $\min_{x} f(x) \coloneqq \sum_{i=1}^{n} f_i(x)$.
- In the k-th iteration: Randomly sample τ_k from $\{1,2,...,n\}$
 - Adam:
 - $m_k = (1 \beta_1) \nabla f_{\tau_k}(x_k) + \beta_1 m_{k-1}$
 - $v_k = (1 \beta_2) \nabla f_{\tau_k}(x_k) \circ \nabla f_{\tau_k}(x_k) + \beta_2 v_{k-1}$
 - $\bullet \quad x_{k+1} = x_k \eta_k \frac{m_k}{\sqrt{v_k}}$
- Notations: \circ , $\sqrt{\ }$, and division are all element-wise operations.
- β_1 : Controls the 1st-order momentum m_k . Default setting: $\beta_1 = 0.9$
- β_2 : Controls the 2nd-order momentum v_k . Default setting: $\beta_2 = 0.999$

For a long time, Adam is criticized for its divergence issue

• Reddi et al. 2018 (ICLR Best paper):

For any β_1 , β_2 s.t. $\beta_1 < \sqrt{\beta_2}$, there exists a problem such that Adam diverges.

Why would Adam fail?

■ Reddi et al. consider the toy problem $\min \sum_{i=1}^{3} f_i(x)$ where

•
$$f_i = \begin{cases} 100x, & if \ i = 1 \\ -x, & otherwise \end{cases}$$
, $x \in [-1,1]$

■ The movement of Adam is not consistent with negative gradient direction.

- Reasons of divergence: 1. About the function: f_i differs a lot from each other.
 - 2. About the algorithm: v_k distorts the update direction.

How to ensure convergence?

- A popular line of work: Modify the algorithm! For instance:
 - AMSGrad, AdaFom [Reddi et al. 18, Chen et al.18]: keep $v_k \geq v_{k-1}$
 - AdaBound [Luo et al. 19]: Impose constraint: $v_k \in [C_l, C_u]$
 - etc.
- Although these Adam-variants fix the divergence issue, they often bring new issues. For instance:
 - AMSGrad and AdaFom are reported to be slow [Zhou et al. 18].
 - AdaBound introduces 2 extra hyperparameters.
- On the other hand, Adam remains exceptionally popular. It works well in practice! (either under default setting, or after proper tuning).

Comparison: Adam vs its variants

• *Disclaimer: contribution is not proportional to citation. But citation might reflect the popularity among practitioners.

However, Adam remains overwhelmingly popular

- The attention Adam received is astonishing!
- Partially because many variants bring new issues (e.g., slow)

The divergence theory does not go well with practice

We find that the reported (β_1, β_2) in the successful applications actually satisfy the divergence condition $\beta_1 < \sqrt{\beta_2}$!

Most deep learning tasks (e.g. RL, NLP, CV, GAN, etc.): $\beta_1 = 0.9, \beta_2 = 0.999$

Is there any gap between theory and practice? Why is the divergence not observed? We want to understand why.

I, DCGAN, etc:

.999

uage models (e.g. GPT-3) .95

First-order GAN, MSG-GAN: $\beta_1 = 0, \beta_2 = 0.999$

Why is the divergence not observed?

• Reddi et al. 18 consider $\min_{\mathbf{x}} f(\mathbf{x}) \coloneqq \sum_{i=1}^{n} f_i(\mathbf{x})$

Proof(Reddi et al. 18):

For any fixed β_1 , β_2 s.t. $\beta_1 < \sqrt{\beta_2}$, we can find an n to construct the divergence example f(x)

- An important (but often ignored) feature: Reddi et al. fix β_1 , β_2 before picking the problem (n is changing).
- While in optimization field, parameters are often **problem-dependent** (e.g. the step size for GD). As such, the divergence is hardly surprising.
- Conjecture 1: Adam might converge under fixed problem (or fixed n.)

Why is the divergence not observed?

• Reddi et al. 18 consider $\min_{\mathbf{x}} f(\mathbf{x}) \coloneqq \sum_{i=1}^{n} f_i(\mathbf{x})$

$$f_i = \begin{cases} nx, & if \ i = 1 \\ -x, & otherwise \end{cases}, x \in [-1,1]$$

- In this example: f_i differs a lot from each other. In DL applications: all f_i come from a certain underlying non-linear groundtruth mapping (up to certain noise). As such, f_i are supposed to be "similar"!
- Conjecture 2: Adam can converge when f_i are "similar".
- We will verify Conjecture 1 and 2.

Assumptions

- Consider $\min_{x} f(x) := \sum_{i=1}^{n} f_i(x)$
- A1: Assume $\nabla f_i(x)$ are L-Lipschitz continuous.
- A2: $\sum_{i=1}^{n} || \nabla f_i(\mathbf{x}) ||_2^2 \le D_1 || \nabla f(\mathbf{x}) ||_2^2 + D_0$.
- A2 says that: ∇f_i are similar up to certain noise.
- This is motivated from practical DL tasks.
- **A2** is quite general. When $D_1 = \frac{1}{n}$, A2 becomes bounded variance:
- $\frac{1}{n}\sum_{i=1}^{n} || \nabla f_i(\mathbf{x}) \frac{1}{n}\sum_{i=1}^{n} \nabla f_i(\mathbf{x}) ||_2^2 \le \frac{D_0}{n}$.
- A2 allows $D_1 \neq \frac{1}{n}$ and thus it is weaker than bounded variance.
- When $D_0=0$, A2 becomes "Strong Growth Condition (SGC)" [Vaswani et al., 19]
- When $||\nabla f(\mathbf{x})||=0 \implies$ we have $||\nabla f_i(\mathbf{x})||=0$.

Related works

- [Zaheer et al. 18, De et al. 18, Shi et al. 20]: **RMSProp**(simplified version of Adam with $\beta_1 = 0$) can converge.
- It is important to study **Adam** rather than **RMSprop**:
 - Numerically: Adam outperforms RMSprop on complicated tasks:
 - On **Atari**, the mean rewarded is improved from 88% to 110% [Agarwal et al.20; Jiang 20]
 - Theoretically: CANNOT reveal the interaction between β_1 and β_2 .
- [Huang et al. 21] and [Guo et al. 22]: Under large β_1 , Adam can converge. They require:
- A3: Assume $||\nabla f(x)|| < C$.
- A4: Assume V
- This line of work is restricted to AdaBound.
- To our knowledge, A1+ A2 are the mildest assumption so far.

Convergence results for large β_2

• Theorem 1: Consider the previous setting.

When
$$\beta_2 \ge 1 - O\left(\frac{1 - \beta_1^n}{n^{3.5}}\right)$$
 and $\beta_1 < \sqrt{\beta_2} < 1$, Adam with stepsize $\eta_k = \frac{1}{\sqrt{k}}$ converges to the neighborhood of stationary points.

•
$$\min_{k \in [1,T]} \mathbb{E}||\nabla f(x_k)||_2^2 = O(\frac{\log T}{\sqrt{T}} + (1-\beta_2)D_0)$$

Remark: When $D_0 = 0$: Adam converges to stationary points.

Convergence results for large β_2

•
$$m_k = (1 - \beta_1) \nabla f_{\tau_k}(x_k) + \beta_1 m_{k-1}$$

• $v_k = (1 - \beta_2) \nabla f_{\tau_k}(x_k) \circ \nabla f_{\tau_k}(x_k) + \beta_2 v_{k-1}$
• $x_{k+1} = x_k - \eta_k \frac{m_k}{\sqrt{v_k}}$

Intuition: Large $\,eta_2\,$ weaken the movement of v_k

Previously, the majority of the region is claimed to be dangerous. (when fixing β_2 first) While we successfully identify a safe region (when choosing β_2 according to n).

Our result helps explain why Adam works well in practice (e.g. NLP, CV applications): They choose hyperparameters in the safe region.

Remark: Convergence to neighborhood.

- When $D_0 = 0$: converges to stationary points.
- When $D_0 > 0$: converges to the neighborhood of stationary points with size $O((1 \beta_2)D_0)$. (often called "ambiguity zone").
- This is common for constant-step SGD [Yan et al., 2018; Yu et al., 2019] and diminishing-step Adaptive gradient methods [Zaheer et al., 2018; Shi et al., 2020]:

$$x_{k+1} = x_k - \frac{\eta_k}{\sqrt{v_k}} m_k$$

Although η_k is diminishing, $\frac{\eta_k}{\sqrt{v_k}}$ may not decrease.

Remark: Convergence to neighborhood.

Left: An example with $D_0 > 0$

0.4

Epoch

0.6

0.0000

0.0

0.2

Right: An example with $D_0 = 0$

Setting: Consider Adam & SGD with stepsize $\eta_k = \frac{1}{\sqrt{k}}$

0.8

1.0

1e8

Techniques for proving convergence

To prove convergence, we want to show:

•
$$\mathbb{E}\left\langle \nabla f(x), \frac{m_k}{\sqrt{v_k}} \right\rangle = \left\langle \nabla f(x), \frac{(1-\beta_1)\nabla f_{\tau_k}(x_k) + \beta_1 m_{k-1}}{\sqrt{(1-\beta_2)\nabla f_{\tau_k}(x_k) \circ \nabla f_{\tau_k}(x_k) + \beta_2 v_{k-1}}} \right\rangle > 0$$

- We point out there are at least two challenges
- We Challenge 2: non-linear perturbation. v_k makes the whole system a non-linear
- Pros dynamics.

E v_k also contains heavy history signal. Further, v_k is statistically dependent with m_k . So $\mathbb{E}\left[\frac{m_k}{\sqrt{v_k}}\right] \neq \mathbb{E}[m_k]\mathbb{E}\left[\frac{1}{\sqrt{v_k}}\right]$

However, we are interested in any $\beta_1 \in [0,1)$

How does Adam behave in the rest of the region?

• When β_2 is large: we have shown a positive result.

• When β_2 is small: we will show that Adam can still diverge! (even if the problem class is fixed)

Divergence can happen when β_2 is small

• Thm 2: for any fixed n, there exists a function f(x) satisfying A1 and A2, s.t. when (β_1, β_2) are chosen in the orange region (size depends on n), Adam's iterates and function values diverge to infinity

The region is plotted by solving some analytic conditions.

Some remarks on the divergence theorem

- **Remark 1.1:** The size of the orange region depends on *n*
- Our bound is problem-dependent.
- This is which is drastically different from (Reddi et al., 2018) which established the **problem-independent** worst-case choice of β_1 and β_2 .
- Remark 1.2: The region expands to the whole region $[0,1]^2$ when n goes to infinity.
- When $n \to \infty$, our result recovers (actually stronger than) the problem-independent divergence result of (Reddi et al., 2018).
- We can view the divergence result of (Reddi et al., 2018) as **an asymptotic characterization** and our divergence result as a **non-asymptotic characterization** (for any fixed n).

Some remarks on the divergence theorem

- Remark 2: For Adam, it is important to remove the bounded gradient assumption!!!
- In practice, the gradient of iterates can be unbounded.

(d)
$$n=20$$

Intuition behind convergence and divergence

Our theory is consistent with experiments

Summary: the behavior of Adam changes dramatically under different hyperparameters

When increasing β_2 :

There is a phase transition from divergence to convergence.

Setting	Hyperparameters	Adam's behavior
$\forall f(x)$ under A1 and A2 with $D_0 = 0$	eta_2 is large and $eta_1 < \sqrt{eta_2}$	Converges to stationary points (Ours)
$\forall f(x)$ under A1 and A2 with $D_0 > 0$	eta_2 is large and $eta_1 < \sqrt{eta_2}$	Converges to the neighborhood of stationary points (Ours)
$\exists f(x)$ under A1 and A2	eta_2 is small and a wide range of eta_1	Diverges to infinity (Ours)

Implication to practitioners

- Case study: Bob is using Adam to train NNs. However, Adam with default hyperparamter fails in his tasks.
- Bob heard there is a well-known result that Adam can diverge.
- So he wonders: shall I keep tuning hyperparameter to make it work?
- Or shall I just give up and switch to other algorithms like AdaBound (which has 2 extra hyperparameters)?

Our suggestions:

- 1. Adam is still a theoretically justified algorithm. Please use it confidently!
- 2. Suggestions for hyperparameter tunning: First, tune up β_2 . Then, try different β_1 with $\beta_1 < \sqrt{\beta_2}$

Mainly based on:

[1] Adam Can Converge Without Any Modification on Update Rules (Under review).

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, Zhi-Quan Luo

Thanks to all the collaborators!

