Question	Answer	Marks	Guidance			
(a)	Express general point of l or m in component form, i.e. $\left(-1+2\lambda,3-\lambda,4-\lambda\right)$ or $\left(5+a\mu,4+b\mu,3+\mu\right)$	B1				
	Equate components and eliminate either λ or μ	M1	e.g. $\mu = \frac{2}{1-b}$, $\lambda = \frac{-1-b}{1-b}$, $\mu = \frac{-4}{2+a}$, $\lambda = \frac{a+6}{a+2}$			
	Eliminate the other parameter or obtain a second expression in the first	M1	λ and μ are not required to be the subject of the equations.			
	Show intermediate steps to obtain $2b - a = 4$	A1	AG			
	Alternative method for question (a)					
	Express general point of l or m in component form, i.e. $(-1+2\lambda, 3-\lambda, 4-\lambda)$ or $(5+a\mu, 4+b\mu, 3+\mu)$	B1				
	Express a or b in terms of λ and μ	M1	$a = \frac{2\lambda - 6}{\mu}, \ b = \frac{-1 - \lambda}{\mu}$			
	Use $\lambda = 1 - \mu$	M1				
	Obtain $2b - a = 4$	A1	AG			
		4				
(b)	Using the correct process equate the scalar product of the direction vectors to zero	*M1	$(2\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot (a\mathbf{i} + b\mathbf{j} + \mathbf{k}) = 0$ SOI.			
	Obtain $2a-b-1=0$	A1	OE e.g. $2(2b-4)-b-1=0$			
	Solve simultaneous equations for a or for b	DM1				
	Obtain $a = 2, b = 3$	A1				
		4				

Question	Answer	Marks	Guidance	
(c)	Substitute found values in component equations and solve for λ or for μ	M1		
	Obtain answer $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ from either $\lambda = 2$ or $\mu = -1$	A1	Accept as coordinates or equivalent.	
		2		