# COMPSCI 589 Lecture 21: Kernel Principal Components Analysis and Spectral Clustering

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu).

Created with support from National Science Foundation Award# IIS-1350522.



#### Outline

- 1 Kernel PCA
- 2 Spectral Clustering

#### Limitations of LDR

All the dimensionality reduction methods we've seen so far find optimal linear sub-spaces under different constraints.

#### Limitations of LDR

- All the dimensionality reduction methods we've seen so far find optimal linear sub-spaces under different constraints.
- **Question:** How can we move beyond linear sub-spaces?

#### Basis Expansion

One way to move beyond linear dimensionality reduction is to first apply a non-linear basis expansion to the data vectors, and then apply linear dimensionality reduction.

#### **Basis Expansion**

- One way to move beyond linear dimensionality reduction is to first apply a non-linear basis expansion to the data vectors, and then apply linear dimensionality reduction.
- Any basis expansion can be applied including polynomials, etc., just as in the case of classification and regression.

#### Basis Expansion + SVD

#### Basis Expansion + SVD

Given a data set  $\mathbf{X} \in \mathbb{R}^{N \times D}$  and a basis expansion function  $\phi : \mathbb{R}^D \to \mathbb{R}^{D'}$  for D' > D, we obtain the following SVD-based algorithm:

#### Basis Expansion + SVD

- 2 Return Z = US

Compute 
$$\Sigma = (\phi(\mathbf{X}) - \mu)^T (\phi(\mathbf{X}) - \mu)$$
 where  $\mu = 1/N \sum \phi(\mathbf{X}_i)$ .

- Compute  $\Sigma = (\phi(\mathbf{X}) \mu)^T (\phi(\mathbf{X}) \mu)$  where  $\mu = 1/N \sum \phi(\mathbf{X}_i)$ .
- **2** Compute the *K* leading eigenvectors  $w_1, ..., w_K$  of  $\Sigma$  where  $\mathbf{w}_k \in \mathbb{R}^{D'}$ .

- Compute  $\Sigma = (\phi(\mathbf{X}) \mu)^T (\phi(\mathbf{X}) \mu)$  where  $\mu = 1/N \sum \phi(\mathbf{X}_i)$ .
- **2** Compute the *K* leading eigenvectors  $w_1, ..., w_K$  of  $\Sigma$  where  $\mathbf{w}_k \in \mathbb{R}^{D'}$ .
- 3 Stack the eigenvectors together into a  $D' \times K$  matrix **W** where each column k of **W** corresponds to  $\mathbf{w}_k$ .

- Compute  $\Sigma = (\phi(\mathbf{X}) \mu)^T (\phi(\mathbf{X}) \mu)$  where  $\mu = 1/N \sum \phi(\mathbf{X}_i)$ .
- **2** Compute the *K* leading eigenvectors  $w_1, ..., w_K$  of  $\Sigma$  where  $\mathbf{w}_k \in \mathbb{R}^{D'}$ .
- 3 Stack the eigenvectors together into a  $D' \times K$  matrix **W** where each column k of **W** corresponds to  $\mathbf{w}_k$ .
- 4 Project the matrix  $\phi(\mathbf{X})$  into the rank-K sub-space of maximum variance by computing the matrix product  $\mathbf{Z} = \phi(\mathbf{X})\mathbf{W}$ .

As in the classification case, it becomes very expensive to use an explicit basis function expansion that maps data into a high-dimensional space.

- As in the classification case, it becomes very expensive to use an explicit basis function expansion that maps data into a high-dimensional space.
- In the basic SVD-based algorithm, there's no way to avoid this problem.

- As in the classification case, it becomes very expensive to use an explicit basis function expansion that maps data into a high-dimensional space.
- In the basic SVD-based algorithm, there's no way to avoid this problem.
- In the PCA-based algorithm, it's not hard to show that the sample covariance matrix obtained after the basis expansion depends only on inner products of the form  $\langle \phi(\mathbf{X}_i), \phi(\mathbf{X}_i) \rangle$ .

- As in the classification case, it becomes very expensive to use an explicit basis function expansion that maps data into a high-dimensional space.
- In the basic SVD-based algorithm, there's no way to avoid this problem.
- In the PCA-based algorithm, it's not hard to show that the sample covariance matrix obtained after the basis expansion depends only on inner products of the form  $\langle \phi(\mathbf{X}_i), \phi(\mathbf{X}_j) \rangle$ .
- Kernel functions can often provide a much more efficient computation of these inner products without explicitly computing the basis expansion:  $\mathcal{K}(\mathbf{X}_i, \mathbf{X}_j) = \langle \phi(\mathbf{X}_i), \phi(\mathbf{X}_j) \rangle$

Given a data set  $\mathbf{X} \in \mathbb{R}^{N \times D}$  and a kernel function  $\mathcal{K}$ , Kernel PCA can be computed as follows:

**1** Compute  $\mathbf{K}_{ij} = \mathcal{K}(\mathbf{X}_i, \mathbf{X}_j)$  for all i, j

- **1** Compute  $\mathbf{K}_{ij} = \mathcal{K}(\mathbf{X}_i, \mathbf{X}_j)$  for all i, j
- 2 Compute  $\Sigma = (I 1_N) \mathbf{K} (I 1_N)$  where  $1_N$  is an NxN matrix where every entry is 1/N.

- **1** Compute  $\mathbf{K}_{ij} = \mathcal{K}(\mathbf{X}_i, \mathbf{X}_j)$  for all i, j
- 2 Compute  $\Sigma = (I 1_N)\mathbf{K}(I 1_N)$  where  $1_N$  is an NxN matrix where every entry is 1/N.
- 3 Compute the K leading eigenvectors  $w_1, ..., w_K$  of  $\Sigma$  where  $\mathbf{w}_k \in \mathbb{R}^N$  along with their eigenvalues  $\lambda_1, ..., \lambda_K$

- **1** Compute  $\mathbf{K}_{ij} = \mathcal{K}(\mathbf{X}_i, \mathbf{X}_j)$  for all i, j
- 2 Compute  $\Sigma = (I 1_N) \mathbf{K} (I 1_N)$  where  $1_N$  is an NxN matrix where every entry is 1/N.
- 3 Compute the K leading eigenvectors  $w_1, ..., w_K$  of  $\Sigma$  where  $\mathbf{w}_k \in \mathbb{R}^N$  along with their eigenvalues  $\lambda_1, ..., \lambda_K$
- 4 Compute the elements of the matrix of projected data vectors using

$$\mathbf{Z}_{nk} = \sum_{i=1}^{N} \frac{\mathbf{w}_{ik}}{\lambda_k} \mathcal{K}(\mathbf{X}_n, \mathbf{X}_i)$$



#### Example

Consider the case of using the radial basis function kernel

$$\mathcal{K}(\mathbf{x}, \mathbf{y}) = \exp(-\frac{1}{c}||\mathbf{x} - \mathbf{y}||_2^2).$$



Kernel PCA provides a non-linear dimensionality reduction method that can be used to extract directions of variation after applying high-dimensional basis function expansions, without explicitly performing the basis expansion.

- Kernel PCA provides a non-linear dimensionality reduction method that can be used to extract directions of variation after applying high-dimensional basis function expansions, without explicitly performing the basis expansion.
- Kernel PCA can be thought of as looking for directions of variation in the space of similarities between data cases, and can extract components that correspond to fairly complex structures.

- Kernel PCA provides a non-linear dimensionality reduction method that can be used to extract directions of variation after applying high-dimensional basis function expansions, without explicitly performing the basis expansion.
- Kernel PCA can be thought of as looking for directions of variation in the space of similarities between data cases, and can extract components that correspond to fairly complex structures.
- When a good kernel is known a priori, kernel PCA can provide an effective pre-processing step for clustering methods as well as linear classification and regression methods.

- Kernel PCA provides a non-linear dimensionality reduction method that can be used to extract directions of variation after applying high-dimensional basis function expansions, without explicitly performing the basis expansion.
- Kernel PCA can be thought of as looking for directions of variation in the space of similarities between data cases, and can extract components that correspond to fairly complex structures.
- When a good kernel is known a priori, kernel PCA can provide an effective pre-processing step for clustering methods as well as linear classification and regression methods.
- However, exact computation of kernel PCA can be expensive because the size of the matrix that is decomposed is *NxN*.



#### Outline

- 1 Kernel PCA
- 2 Spectral Clustering

■ Applying kernel PCA followed by K-means clustering is closely related to a clustering method called spectral clustering.

- Applying kernel PCA followed by K-means clustering is closely related to a clustering method called spectral clustering.
- Spectral clustering works by defining a weighted similarity graph on the data cases.

- Applying kernel PCA followed by K-means clustering is closely related to a clustering method called spectral clustering.
- Spectral clustering works by defining a weighted similarity graph on the data cases.
- It's very common to use  $\mathcal{K}(\mathbf{x}, \mathbf{y}) = \exp(-\frac{1}{c}||\mathbf{x} \mathbf{y}||_2^2)$  as the weighting function and to include edges corresponding to the K nearest neighbors of each point.

- Applying kernel PCA followed by K-means clustering is closely related to a clustering method called spectral clustering.
- Spectral clustering works by defining a weighted similarity graph on the data cases.
- It's very common to use  $\mathcal{K}(\mathbf{x}, \mathbf{y}) = \exp(-\frac{1}{c}||\mathbf{x} \mathbf{y}||_2^2)$  as the weighting function and to include edges corresponding to the K nearest neighbors of each point.
- Unlike the kernel PCA case, the similarity values for edges not included in the graph are set to 0. The matrix of edge weights is denoted by **W**.

## **Connected Components**

In the simple case, the resulting graph has multiple connected components, and we can create one cluster for each connected component.



# Minimum Weight Balanced Cut

In the more complex case, the graph has only one connected component, and the goal is to identify a minimum weight balanced cut:



■ Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .

- Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .
- Define the graph laplacian  $\mathbf{L} = \mathbf{D} \mathbf{W}$ .

- Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .
- Define the graph laplacian  $\mathbf{L} = \mathbf{D} \mathbf{W}$ .
- Compute the eigendecomposition of **L** and extract the *M* eigenvectors corresponding to the *M* smallest eigenvalues.

- Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .
- Define the graph laplacian  $\mathbf{L} = \mathbf{D} \mathbf{W}$ .
- Compute the eigendecomposition of **L** and extract the *M* eigenvectors corresponding to the *M* smallest eigenvalues.
- Just like in kernel PCA, each eigenvector is length *N*. The collection of *M* of them forms an alternative dimensionality reduced representation for **X**, which we can call **Z**.

- Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .
- Define the graph laplacian  $\mathbf{L} = \mathbf{D} \mathbf{W}$ .
- Compute the eigendecomposition of **L** and extract the *M* eigenvectors corresponding to the *M* smallest eigenvalues.
- Just like in kernel PCA, each eigenvector is length *N*. The collection of *M* of them forms an alternative dimensionality reduced representation for **X**, which we can call **Z**.
- Run K-means on **Z** to extract *K* clusters.

- Define the weighted node degree matrix **D** such that  $\mathbf{D}_{ii} = \sum_{n} \mathbf{W}_{in}$ .
- Define the graph laplacian  $\mathbf{L} = \mathbf{D} \mathbf{W}$ .
- Compute the eigendecomposition of **L** and extract the *M* eigenvectors corresponding to the *M* smallest eigenvalues.
- Just like in kernel PCA, each eigenvector is length *N*. The collection of *M* of them forms an alternative dimensionality reduced representation for **X**, which we can call **Z**.
- Run K-means on **Z** to extract *K* clusters.
- This algorithm is an approximation to the exact *K*-way min-cut in the graph, which has exponential complexity to compute.