1 Die 16 zweistelligen Booleschen Funktionen

Zweistellige Boolsche Funktionen haben die Form $f:B^2\to B$. Hierbei können die beiden Argumente auf $2^2=4$ verschiedene Arten mit 0 oder 1 belegt werden. Es gibt also insgesamt $2^4=16$ zweistellige Boolesche Funktionen.

Die nachfolgende Tabelle gibt Ihnen einen Überblick über diese zweistelligen Booleschen Funktionen.

(1)		$x \cdot \overline{x}$	$x \cdot y$	$x \cdot \overline{y}$	x	$\overline{x} \cdot x$	y	\oplus	x+y
(2)			V	$\not\rightarrow$	\boldsymbol{x}	4	y	XOR	^
x	y	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

(1)		$\overline{x+y}$		\overline{y}	$x + \overline{y}$	\overline{x}	$\overline{x} + y$	$\overline{x \cdot y}$	$x + \overline{x}$
(2)		+	\leftrightarrow	$\neg y$	\leftarrow	$\neg x$	\rightarrow		
x	y	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Einige der oben aufgeführten Funktionen haben auch einen Namen:

- f_1 Konjunktion (AND)
- f_6 Antivalenz (Exclusive <u>OR</u>, XOR, manchmal auch \oplus)
- f₇ Disjunktion (OR)
- f_8 Peircescher Pfeil (Not OR, NOR, \downarrow)
- f_9 Äquivalenz
- f_{13} Implikation
- f_{14} Shefferscher Strich (Not AND, NAND, \uparrow)