Mod Two Homology and Cohomology

April 16, 2021

1 Simplicial Complexes

Definition 1.1. A simplicial complex *K* consists of

- A set V(K), the set of **vertices** of K.
- A set S(K) of finite nonempty subsets of V(K) which is closed under containment: if $\sigma \in S(K)$ and $\sigma \supset \tau$, then $\tau \in S(K)$. We require that $\{v\} \in S(K)$ for all $v \in V(K)$.

An element σ of S(K) is called a **simplex** of K. If $|\sigma| = m + 1$, we say that σ is of **dimension** m or that σ is an m-simplex. The set of m-simplexes of K is denoted $S_m(K)$. The set $S_0(K)$ of 0-simplexes is in bijection with V(K), and we usually identify $v \in V(K)$ with $\{v\} \in S_0(K)$. We say that K is of **dimension** $\leq n$ if $S_m(K) = \emptyset$ for m > n, and that K is of **dimension** n or (n-dimensional) if it is of dimension $\leq n$ but not of dimension $\leq n - 1$. A simplicial complex of dimension ≤ 1 is called a **simplicial graph**. A simplicial complex K is called **finite** if V(K) is a finite set.

If $\sigma \in S(K)$ and $\tau \subset \sigma$, we say that τ is a **face** of σ . As S(K) is closed under inclusion, it is determined by its subset $S(K)_{\max}$ of **maximal** simplexes (if K is finite dimensional). A **subcomplex** L of K is a simplicial complex such that $V(L) \subset V(K)$ and $S(L) \subset S(K)$. If $U \subset S(K)$, we denote by \overline{U} the subcomplex generated by U, i.e. the smallest subcomplex of K such that $U \subset S(\overline{U})$. The m-skeleton K^m of K is the subcomplex of K generated by the union of $S_k(K)$ for $k \leq m$.

Let $\sigma \in \mathcal{S}(K)$. We denote by $\overline{\sigma}$ (or \mathcal{K}_{σ}) the subcomplex of \mathcal{K} formed by σ and all its faces. The subcomplex $\dot{\sigma}$ of $\overline{\sigma}$ generated by the proper faces of σ is called the **boundary** of σ .

Example 1.1. Let \mathcal{K} be the simplical complex with $V(\mathcal{K}) = \{x_1, x_2, x_3, x_4, x_5\}$ and $S(\mathcal{K})_{\text{max}} = \{x_1x_2x_3, x_2x_4, x_3x_4, x_5\}$, where we use the monomial notation $x_{i_1}x_{i_2}\cdots x_{i_k}$ to mean $\{x_{i_1}, x_{i_2}, \dots, x_{i_k}\}$. We may visualize \mathcal{K} as

The subcomplex $K_{x_1x_2x_3}$ of K can be visualized as

1.1 Geometric Realization

Let \mathcal{K} be a simplicial complex. The **geometric realization** $|\mathcal{K}|$ of \mathcal{K} is, as a set, defined by

$$|\mathcal{K}| := \left\{ p : V(\mathcal{K}) \to [0,1] \mid \sum_{x \in V(\mathcal{K})} p(x) = 1 \text{ and } p^{-1}((0,1]) \in S(\mathcal{K}) \right\}$$

The condition $p^{-1}((0,1]) \in S(\mathcal{K})$ says that the set of all $x \in \mathcal{V}(K)$ such that $p(x) \neq 0$ must form a simplex of K. There is a distance on |K| defined by

$$d(p,q) = \sqrt{\sum_{x \in V(\mathcal{K})} (p(x) - q(x))^2},$$

which defined the metric topology on $|\mathcal{K}|$. The set $|\mathcal{K}|$ with the metric topology is denoted by $|\mathcal{K}|_d$. For instance, if $\sigma \in S_m(\mathcal{K})$, then $|\mathcal{K}_{\sigma}|_d$ is isometric to the standard Euclidean simplex $\Delta^m = \{(a_0, \ldots, a_m) \in \mathbb{R}^{m+1} \mid a_i \geq 0 \text{ and } \sum a_i = 1\}$.

Example 1.2. Let \mathcal{K} be the simplical complex as in Example (1.4). We can visualize a function $p \in |\mathcal{K}|$ by attaching a number in (0,1] to each vertex likeso:

We can actually think of p here as the vector $v = \frac{1}{2}e_1 + \frac{1}{6}e_2 + \frac{1}{3}e_3 \in \mathbb{R}^3$, where e_i denote the standard basis. The distance function then is just the normal euclidean distance function (d(v, w) = ||v - w||).

A more used topology for $|\mathcal{K}|$ is the **weak topology**, for which $A \subset |\mathcal{K}|$ is closed if and only if $A \cap |\mathcal{K}_{\sigma}|_d$ is closed in $|\mathcal{K}_{\sigma}|_d$ for all $\sigma \in S(\mathcal{K})$. The notation $|\mathcal{K}|$ stands for the set $|\mathcal{K}|$ endowed with the weak topology. A map f from $|\mathcal{K}|$ to a topological space X is then continuous if and only if its restriction to $|\mathcal{K}_{\sigma}|_d$ is continuous for each $\sigma \in S(\mathcal{K})$. In particular, the identity $|\mathcal{K}| \to |\mathcal{K}|_d$ is continuous, which implies that $|\mathcal{K}|$ is Hausdorff. The weak and the metric topology coincide if and only if \mathcal{K} is locally finite, that is, each vertex is contained in a finite number of simplexes. When \mathcal{K} is not locally finite, $|\mathcal{K}|$ is not metrizable.

1.2 Simplicial Join, Stars, and Links

1.2.1 Simplicial Join

Let K and L be simplicial complexes. Their **join** is the simplicial complex $K \star L$ defined by

$$V(\mathcal{K} \star \mathcal{L}) = V(\mathcal{K}) \uplus V(\mathcal{L})$$

$$S(\mathcal{K} \star \mathcal{L}) = S(\mathcal{K}) \cup S(\mathcal{L}) \cup \{\sigma \cup \tau \mid \sigma \in S(\mathcal{K}) \text{ and } \tau \in S(\mathcal{L})\}.$$

1.2.2 Stars and Links

Let \mathcal{K} be a simplicial complex and $\sigma \in S(\mathcal{K})$. The **star St**(σ) of σ is the subcomplex of \mathcal{K} generated by all the simplexes containing σ . The **link Lk**(σ) of σ is the subcomplex of \mathcal{K} formed by the simplexes $\tau \in S(\mathcal{K})$ such that $\tau \cap \sigma = \emptyset$ and $\tau \cup \sigma \in S(\mathcal{K})$. Thus, Lk(σ) is a subcomplex of St(σ) and

$$St(\sigma) = \mathcal{K}_{\sigma} \star Lk(\sigma).$$

Example 1.3. Let K be the simplical complex as in Example (1.4). Then

$$Lk(x_{1}x_{3})_{max} = \{x_{2}\}$$

$$Lk(x_{1})_{max} = \{x_{2}x_{3}\}$$

$$Lk(x_{2})_{max} = \{x_{1}x_{2}x_{3}\}$$

$$Lk(x_{2})_{max} = \{x_{1}x_{3}, x_{4}\}$$

$$Lk(x_{4})_{max} = \{x_{2}, x_{3}\}$$

$$Lk(x_{5})_{max} = \emptyset$$

$$St(x_{1})_{max} = \{x_{1}x_{2}x_{3}\}$$

$$St(x_{2})_{max} = \{x_{1}x_{2}x_{3}, x_{2}x_{4}\}$$

$$St(x_{4})_{max} = \{x_{3}x_{4}, x_{2}x_{4}\}$$

$$St(x_{5})_{max} = \emptyset$$

$$St(x_{5})_{max} = \emptyset$$

1.3 Simplicial Maps

Let K and L be two simplicial complexes. A **simplicial map** $f: K \to L$ is a map $f: V(K) \to V(L)$ such that the image of a simplex is a simplex: $\sigma \in S(K)$ implies $f(\sigma) \in S(L)$. Simplicial complexes and simplicial maps form a category, the **simplicial category**, denoted by **Simp**.

A simplicial map $f: \mathcal{K} \to \mathcal{L}$ induces a continuous map $|f|: |\mathcal{K}| \to |\mathcal{L}|$ defined, for $x \in V(\mathcal{L})$, by

$$|f|(p)(y) = \sum_{x \in f^{-1}(y)} p(x).$$

Example 1.4. Let \mathcal{K} be the simplical complex as in Example (1.4), \mathcal{L} be the simplical complex with $V(\mathcal{L}) = \{y_1, y_2, y_3\}$ and $S(\mathcal{L})_{\text{max}} = \{y_1y_3, y_2\}$, and \mathcal{M} be the simplicial complex with $V(\mathcal{M}) = \{z_1, z_2, z_3\}$ and $S(\mathcal{M})_{\text{max}} = \{z_1z_2, z_1z_3, z_2z_3\}$. Then the maps $f: \mathcal{K} \to \mathcal{L}$ and $g: \mathcal{K} \to \mathcal{M}$ induced by

$$f(x_1) = y_1$$
 $g(x_1) = z_1$
 $f(x_2) = y_3$ $g(x_2) = z_2$
 $f(x_3) = y_1$ and $g(x_3) = z_2$
 $f(x_4) = y_3$ $g(x_4) = z_3$
 $f(x_5) = y_1$ $g(x_5) = z_1$

are simplicial maps.

• Triangulations

A **triangulation** of a topological space X is a homeomorphism $h : |\mathcal{K}| \to X$, where \mathcal{K} is a simplicial complex. A topological space is **triangulable** if it admits a triangulation. A compact subspace A of \mathbb{R}^n is a **convex cell** if it is the set of solutions of families of affine equations and inequalities

$$f_i = 0$$
, $i = 1, ..., r$ and $g_j \ge 0$, $j = 1, ...s$

A face *B* of *A* is a convex cell obtained by repacing some of the inequalities $g_j \ge 0$ by the set equations $g_j = 0$. For example, the standard Euclidean simplex $\Delta^2 \subset \mathbb{R}^3$ is a convex cell with

$$f_1 = x + y + z - 1$$
, $g_1 = x$, $g_2 = y$, and $g_3 = z$

One face of Δ^2 is given by

$$f_1 = x + y + z - 1$$
, $f_2 = x$, $g_1 = y$, and $g_2 = z$

Example 1.5. The real projective plane \mathbb{RP}^2 admits the following triangulation: Let

$$\begin{array}{llll} \ell_1 &= x & \ell_4 = x - y & \ell_7 = x - y + z & a &= [1:0:0] & d = [0:1:1] \\ \ell_2 &= y & \ell_5 = x - z & \ell_8 = x + y - z & b &= [0:1:0] & e = [1:1:0] \\ \ell_3 &= z & \ell_6 = y - z & \ell_9 = -x + y + z & c &= [0:0:1] & f = [1:0:1] \end{array}$$

This gives us the following triangulation of \mathbb{RP}^2 .

RealProjectivePlane.jpg