- (b) Hallar la ecuación de la recta que pasa por (0, 2, -1) y (-3, 1, 0).
- (c) Hallar la ecuación del plano perpendicular al vector (-2, 1, 2) y que pasa por el punto (-1, 1, 3).
- **4.** (a) Hallar la ecuación de la recta que pasa por (0, 1, 0) en la dirección de $3\mathbf{i} + \mathbf{k}$.
 - (b) Hallar la ecuación de la recta que pasa por (0, 1, 1) y (0, 1, 0).
 - (c) Hallar la ecuación del plano perpendicular al vector (-1,1,-1) y que pasa por el punto (1,1,1).
- **5.** Hallar una ecuación para el plano que contiene los puntos (2, 1, -1), (3, 0, 2) y (4, -3, 1).
- **6.** Hallar una ecuación para una recta que es paralela al plano 2x 3y + 5z 10 = 0 y pasa por el punto (-1, 7, 4). (Hay muchas soluciones posibles.)
- 7. Calcular $\mathbf{v} \cdot \mathbf{w}$ para los siguientes conjuntos de vectores:
 - (a) $\mathbf{v} = -\mathbf{i} + \mathbf{j}; \mathbf{w} = \mathbf{k}$
 - (b) $\mathbf{v} = \mathbf{i} + 2\mathbf{j} \mathbf{k}; \mathbf{w} = 3\mathbf{i} + \mathbf{j}$
 - (c) $\mathbf{v} = -2\mathbf{i} \mathbf{j} + \mathbf{k}; \mathbf{w} = 3\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$
- **8.** Calcular $\mathbf{v} \times \mathbf{w}$ para los vectores del Ejercicio 7.
- **9.** Hallar el coseno del ángulo que forman los vectores del Ejercicio 7.
- **10.** Hallar el área del paralelogramo generado por los vectores del Ejercicio 7.
- **11.** Utilizar notación vectorial para describir el triángulo en el espacio cuyos vértices son el origen y los extremos de los vectores **a** y **b**.
- **12.** Demostrar que los tres vectores **a**, **b**, **c** están en el mismo plano que pasa por el origen si y solo si existen tres escalares α, β, γ , no todos cero, tales que α **a** + β **b** + γ **c** = **0**.
- **13.** Para los números reales $a_1, a_2, a_3, b_1, b_2, b_3$, demostrar que
 - $(a_1b_1 + a_2b_2 + a_3b_3)^2 \le (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2).$
- **14.** Sean $\mathbf{u}, \mathbf{v}, \mathbf{w}$ vectores unitarios ortogonales entre sí. Si $\mathbf{a} = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$, demostrar que

$$\alpha = \mathbf{a} \cdot \mathbf{u}, \quad \beta = \mathbf{a} \cdot \mathbf{v}, \quad \gamma = \mathbf{a} \cdot \mathbf{w}.$$

Interpretar el resultado geométricamente.

15. Hallar los productos AB y BA donde

$$A = \begin{bmatrix} 1 & 5 & 2 \\ 0 & 2 & 3 \\ 1 & 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 2 & 4 & 1 \end{bmatrix}.$$

16. Hallar los productos AB y BA donde

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 0 & 1 \\ 1 & 3 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 0 & 5 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix}.$$

- 17. Sean \mathbf{a}, \mathbf{b} dos vectores en el plano, $\mathbf{a} = (a_1, a_2), \mathbf{b} = (b_1, b_2),$ y sea λ un número real. Demostrar que el área del paralelogramo determinado por \mathbf{a} y $\mathbf{b} + \lambda \mathbf{a}$ es la misma que la del paralelogramo determinado por \mathbf{a} y \mathbf{b} . Hacer un esquema. Relacionar este resultado con una propiedad conocida de los determinantes.
- **18.** Hallar el volumen del paralelepípedo determinado por los vértices (0, 1, 0), (1, 1, 1), (0, 2, 0), (3, 1, 2).
- **19.** Dados los vectores distintos de cero \mathbf{a} y \mathbf{b} en \mathbb{R}^3 , demostrar que el vector $\mathbf{v} = \|\mathbf{a}\|\mathbf{b} + \|\mathbf{b}\|\mathbf{a}$ biseca el ángulo que forman \mathbf{a} y \mathbf{b} .
- **20.** Demostrar que los vectores $\|\mathbf{b}\|\mathbf{a} + \|\mathbf{a}\|\mathbf{b}$ y $\|\mathbf{b}\|\mathbf{a} \|\mathbf{a}\|\mathbf{b}$ son ortogonales.
- **21.** Utilizar la desigualdad triangular para demostrar que $\|\mathbf{v} \mathbf{w}\| \ge \|\mathbf{v}\| \|\mathbf{w}\|$.
- **22.** Usar métodos vectoriales para probar que la distancia desde el punto (x_1, y_1) a la recta ax + by = c es

$$\frac{|ax_1+by_1-c|}{\sqrt{a^2+b^2}}.$$

- **23.** Comprobar que la dirección de $\mathbf{b} \times \mathbf{c}$ está dada por la regla de la mano derecha, seleccionando \mathbf{b}, \mathbf{c} entre los vectores \mathbf{i}, \mathbf{j} y \mathbf{k} .
- **24.** (a) Suponer que $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}' \cdot \mathbf{b}$ para todo \mathbf{b} . Demostrar que $\mathbf{a} = \mathbf{a}'$.
 - (b) Suponer que $\mathbf{a} \times \mathbf{b} = \mathbf{a}' \times \mathbf{b}$ para todo \mathbf{b} . ¿Es cierto que $\mathbf{a} = \mathbf{a}'$?
- **25.** (a) Utilizando métodos vectoriales, demostrar que la distancia entre dos rectas no paralelas l_1 y l_2 está dada por

$$d = \frac{|(\mathbf{v}_2 - \mathbf{v}_1) \cdot (\mathbf{a}_1 \times \mathbf{a}_2)|}{\|\mathbf{a}_1 \times \mathbf{a}_2\|},$$