Chest X-ray Abnormalities Detection

수학과 오서영

Overview

Introduction

Chest radiograph is difficult task for radiologist.

The interpretation of chest X-rays can lead to medical misdiagnosis, even for the best practicing doctor.

Computer-aided detection and diagnosis systems would help reduce the pressure on doctors at metropolitan hospitals and improve diagnostic quality in rural areas.

1. Data Exploration and Visualization

```
print("Number of rows in train dataframe: {}".format(train.shape[0]))
print("Number of Unique images in train set: {}".format(train.image_id.nunique()))
print("Number of Classes: {}\munimer.format(train.class_name.nunique()))
print("Class Names: {}".format(list(train.class_name.unique()))

Number of rows in train dataframe: 67914
Number of Unique images in train set: 15000
Number of Classes: 15

Class Names: ['No finding', 'Cardiomegaly', 'Aortic enlargement', 'Pleural thickening',
'ILD', 'Nodule/Mass', 'Pulmonary fibrosis', 'Lung Opacity', 'Atelectasis', 'Other lesion',
'Infiltration', 'Pleural effusion', 'Calcification', 'Consolidation', 'Pneumothorax']
```

14 critical radiographic findings + 'No finding'

- 0 Aortic enlargement
- 1 Atelectasis
- 2 Calcification
- 3 Cardiomegaly
- 4 Consolidation
- 5 ILD
- 6 Infiltration
- 7 Lung Opacity
- 8 Nodule/Mass
- 9 Other lesion
- 10 Pleural effusion
- 11 Pleural thickening
- 12 Pneumothorax
- 13 Pulmonary fibrosis

1. Data Exploration and Visualization

tra	train.head()								
	image_id	class_name	class_id	rad_id	x_min	y_min	x_max	y_max	
0	50a418190bc3fb1ef1633bf9678929b3	No finding	14	R11	NaN	NaN	NaN	NaN	
1	21a10246a5ec7af151081d0cd6d65dc9	No finding	14	R7	NaN	NaN	NaN	NaN	
2	9a5094b2563a1ef3ff50dc5c7ff71345	Cardiomegaly	3	R10	691.0	1375.0	1653.0	1831.0	
3	051132a778e61a86eb147c7c6f564dfe	Aortic enlargement	0	R10	1264.0	743.0	1611.0	1019.0	
4	063319de25ce7edb9b1c6b8881290140	No finding	14	R10	NaN	NaN	NaN	NaN	

(x_min, y_min, x_max, y_max) : **bounding box**We have to predict (class, confidence, x_min, y_min, x_max, y_max)

1. Data Exploration and Visualization

Original

Bounding Box

2. Data Preprocessing

Original

Invert: 255 - img

2. Data Preprocessing

Histogram Equalization

The contrast increases.

Details of the dark regions appear clearly.

2. Data Preprocessing

Contrast Limited Adaptive Histogram Equalization

Image is divided into small blocks called "tiles"

3. Modeling – Baseline CNN

```
in1 = layer.Input(shape=(256,256,1))
out1 = layer.Conv2D(32,(3,3),activation="relu")(in1)
out1 = layer.Conv2D(32,(3,3),activation="relu")(out1)
out1 = layer.MaxPooling2D((2,2))(out1)
out1 = layer.Conv2D(64,(3,3),activation="relu")(out1)
out1 = layer.Conv2D(64,(3,3),activation="relu")(out1)
out1 = layer.MaxPooling2D((2,2))(out1)
out1 = layer.Conv2D(128,(3,3),activation="relu")(out1)
out1 = Tayer.Conv2D(128,(3,3),activation="relu")(out1)
out1 = layer.MaxPooling2D((2,2))(out1)
out1 = layer.Flatten()(out1)
out2 = layer.Dense(50,activation="relu",kernel initializer="lecun normal")(out1)
out2 = layer.Dense(30,activation="relu",kernel initializer="lecun normal")(out2)
out2 = layer.Dense(15,activation="sigmoid",kernel initializer="lecun normal",name='class out')(out2)
out3 = layer.Dense(50,activation="relu",kernel initializer="lecun normal")(out1)
out3 = layer.Dense(30,activation="relu",kernel_initializer="lecun_normal")(out3)
out3 = layer.Dense(56,activation="relu",kernel_initializer="lecun_normal",name="box out")(out3)
model = tf.keras.Model(inputs=in1,outputs=[out2,out3])
model.compile(loss={'class_out':'categorical_crossentropy','box_out':'mse'},optimizer="adam")
```

Class, Confidence

Bounding Box

mean average precision 0.05

Infographic

인공지능 흉부 X선 진단

Kaggle Competition

[1] VinBigData Chest X-ray Abnormalities Detection,

https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/data

References

[1] Chest X-ray abnormalities: Baseline[TF.Keras],

https://www.kaggle.com/bibhash123/chest-x-ray-abnormalities-baseline-tf-keras/comments

[2] x-ray image Enhancement test,

https://www.kaggle.com/kuuuuub/x-ray-image-enhancement-test