Atividade Prática

CIN0208 - Ciência de Dados

Objetivo

Explorar a codificação de variáveis categóricas e o uso de técnicas de normalização/padronização no desempenho do algoritmo KNN (K-Nearest Neighbors).

Conjunto de Dados

- Cada grupo deve acessar a planilha compartilhada e **escolher um dataset disponível** para trabalhar.
- Cada grupo deve registrar na planilha qual dataset escolheu, para evitar duplicidade.

Encoding e Scaling

- (a) Se o dataset possuir colunas nominais, criar versões codificadas:
 - One-hot encoding
 - Dummy coding
 - Effect coding
- (b) Aplicar diferentes técnicas de normalização/padronização nas features numéricas:
 - StandardScaler
 - Min-Max Scaler
 - MaxAbs Scaler
 - Robust Scaler
 - QuantileTransformer (uniforme e normal)
- (c) Separar os dados em treino e teste (70% treino / 30% teste) utilizando train_test_split.
- (d) Treinar e avaliar o KNN em cada cenário utilizando o **valor padrão de** *k* **do** scikit-learn (n_neighbors=5), sem alterar o hiperparâmetro.
 - Para classificação: acurácia e F1-score
 - Para regressão: MAE e RMSE
- (e) Gerar gráficos para interpretar os resultados do KNN:
 - Para classificação: gráfico de barras comparando acurácia e F1-score entre os diferentes scalings e codificações

- Para regressão: gráfico de barras comparando MAE e RMSE entre os diferentes scalings e codificações
- Os gráficos devem permitir identificar facilmente qual técnica de scaling proporcionou melhor desempenho do KNN
- Discutir possíveis motivos para as diferenças observadas entre os scalings

Entrega e Estrutura do Relatório

Cada grupo deve entregar um relatório e o link para o notebook Python utilizado na atividade. O relatório deve seguir a estrutura abaixo:

1. Capa:

- Nome dos integrantes
- Dataset utilizado
- Link para o notebook Python

2. Introdução:

- Breve descrição do objetivo da atividade
- Características do dataset escolhido
- Explicação sobre o tipo de problema (classificação ou regressão)

3. Encoding e Scaling:

- Descrever as colunas nominais e as codificações aplicadas
- Apresentar tabelas separadas de resultados do KNN para cada métrica. Exemplo:

Classificação – Acurácia

Dataset	Encoding	Scaling	Acurácia KNN
Nome_DS	One-hot	Standard	0.72
Nome_DS	Dummy	Min-Max	0.75
Nome_DS	Effect	Robust	0.79

- Gerar gráficos comparativos de desempenho do KNN para diferentes scalings e codificações, permitindo identificar qual combinação apresentou melhor resultado
- Discutir observações sobre o comportamento do KNN frente às diferentes técnicas

4. Conclusão:

- Resumo dos principais achados
- Lições aprendidas sobre encoding, scaling e KNN

5. Anexos:

• Inserir gráficos adicionais ou observações importantes