CHAPTER 5

Programming in Assembly Part 1: Computer Organization

Separate Memory & I/O Busses

Memory Data Transfers

I/O Transfers

Memory-Mapped Peripherals

Memory and I/O Data

Memory

Memory (Little Endian Ordering)

Single Accumulator Architecture

The Fetch-Execute Cycle

Instruction Fetch

Address Bus

The Fetch Phase

- Memory_Address_Bus ← Program_Counter
- Start Memory Read Operation
- 3. Increment Program_Counter
- 4. Wait for Memory Read to Complete
- 5. Instruction_Register \leftarrow
- Memory_Data_Bus
- 6. Go to execute phase.

Execution Phase: Load ACC

Execution Phase: ADD

Execution Phase: Store ACC

Address Bus

Execution Phase: Branch

Address Bus

result \leftarrow op1 + op2

Single Accumulator Machine:

```
ACC ← MEM[adrs_of_op1]
ACC ← ACC + MEM[adrs_of_op2]
MEM[adrs_of_result] ← ACC
```

Register Machine:

```
\begin{split} REG[r] \leftarrow MEM[adrs\_of\_op1] \\ REG[r] \leftarrow REG[r] + MEM[adrs\_of\_op2] \\ MEM[adrs\_of\_result] \leftarrow REG[r] \end{split}
```

The ARM Processor Family

Three Instruction Sets

- ARM Instruction Set
 - Instructions are 32 bits wide
 - Original RISC (lots of parallelism)
 - "Load/Store" Architecture
- Thumb Instruction Set
 - Subset of ARM instructions, some restrictions
 - Instructions are 16 bits wide (more like CISC)
 - Intended for compilers
 - Less parallelism, longer instruction sequences
 - but total code size is 30% smaller
- Jazelle Instruction Set
 - Java byte codes

Three Instruction Sets

	ARM	Thumb*	Jazelle
Instruction Size	32 bits	16 bits	8 bits
Core instructions	ons 58 30		> 60% of Java byte codes in hardware; rest in software
Conditional Execution	most	Only branch instructions or in an IT block	N/A
Data processing instructions	Access to barrel shifter and ALU	Separate barrel shifter and ALU instructions	N/A
Program status register	Read/write in privileged mode	No direct access	N/A
Register usage	15 general purpose registers + pc	8 general purpose registers + 7 high registers + pc	N/A

Code Density vs. Performance

The ARMv7-M "Cortex-M3" Architecture used in LM3S811

ARM Cortex-M3 CPU

Data Bus

ARM Registers

ARM Mode:

15 general purpose registers

R0					
R1					
R2					
R3					
R4					
R5					
R6					
R7					
R8					
R9					
R10					
R11					
R12					
R13: Stack Pointer (SP)					
R14: Link Register (LR)					
R15: Program Counter (PC)					

Thumb Mode:

8 general purpose register s

7 "high" registers
r8-R12 only accessible with MOV, ADD, or CMP

Processor Status Register (xPSR)

Bits	Name	Description		
31	N	Negative (or less than)		
30	Z	Zero (or Equal)		Most
29	С	Carry or Borrow Out		important for application
28	V	Overflow (2's complement)	J	programming
27	Q	Sticky Saturation Flag		programming

Pipelined Instruction Processing

Pipelined Instruction Processing

ARM Cortex-M3 Bus Structure

Vendor Specific (511 MB) E0100000-FFFFFFFF System Devices, such as Private Peripherals (External) the Nested Vectored E0040000-E00FFFFF Interrupt Controller Private Peripherals (Internal) E0000000-E003FFFF General-purpose I/O ports, UARTs, Timers, Analog-to-External Devices (1 GB) Digital Converters, etc. A0000000-DFFFFFF External R/W Memory (1 GB) 60000000-9FFFFFF Bit-band Alias (32 MB) 42000000-43FFFFFF Peripherals (512 KB) Bit-band Region (1 MB) 40000000-5FFFFFFF 40000000-40100000 Read/Write Memory (512 KB) 20000000-3FFFFFFF Bit-band Alias (32 MB) 22000000-23FFFFFF Program Code (512 KB) 00000000-1FFFFFF Bit-band Region (1 MB) 20000000-20100000

ARM Cortex-M3 Memory

Bit-Banding

- 1 word (4 bytes) of address space in the bit-band area
 = 1 bit in the corresponding primary area.
- bit-band alias = bit-band base + 128 × word offset + 4 ×
 bit number
- For example, if bit 3 at address 20001000₁₆ is to be modified, the bit-band alias is calculated as:

$$22000000_{16} + 128_{10} \times 1000_{16} + 4_{10} \times 3_{10} = 2208000C_{16}$$

Address 2208000C allows direct access to <u>only</u> bit 3 of the byte at address 20001000:

- Read from 2208000C: All other bits will be 0's
- Write to 2208000C: All other data bits are ignored; hardware performs a read-modify-write.

ARM Cortex-M3 Bit-Banding

Assembler Syntax

Two-Pass Assembler

