Literature review and Implementation of Style Transfer

UIC 统计系 李杰

1730005024

What's style transfer?

• Computer version-Image transfer-**Style-transfer**

A method of object recognition:

"Bag of feature"

The object we want to recognition

Local feature (select by human)

How to do the object recognition better?

AlexNet(2012)

conv1_1 · convolution
convolution param
num output: 64
pad: 1
kernel size: 3
analysis
in: 3ch · 224×224 (×10)
out: 64ch · 224×224 (×10)
ops: 867041280·macc
mem: 32112640·activation, 1792·param

conv1_2
relu1_2
relu1_2
relu1_2
relu1_2
relu1_2

conv1_2
relu1_2
relu1_2

conv1_2
relu1_2
relu1_2

conv1_2
relu1_2
relu1_2
relu1_2

conv1_2
relu1_2

VGG16(2014)

How to use small kernel(VGG16) to replace large kernel(Alex-net)?

Figure 1. Mini-network replacing the 5×5 convolutions.

• 2015: The first model

A Neural Algorithm of Artistic Style

Leon A. Gatys, 1,2,3* Alexander S. Ecker, 1,2,4,5 Matthias Bethge 1,2,4

Use VGG16 to extract the feature of **Content** and **Style** from two pictures

陈淑環[†],韦玉科,徐 乐,董晓华,温坤哲 (广东工业大学 计算机学院, 广州 510006)

Literature review of Style-Transfer

Other important model

Two assumption:

Image = Content+Style Style = Texture

$$\mathcal{L}_{total} = \alpha \mathcal{L}_{content} + \beta \mathcal{L}_{style}$$

Measure the content:

$$\mathcal{L}_{\text{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l \right)^2 . \tag{1}$$

Represent the respond of content in Layer I ($I=1\sim NI$), Filter i($I=1\sim MI$), Position j

The derivative of this loss with respect to the activations in layer l equals

$$\frac{\partial \mathcal{L}_{\text{content}}}{\partial F_{ij}^l} = \begin{cases} (F^l - P^l)_{ij} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l < 0 \end{cases}, \tag{2}$$

Measure the style: suppose that the texture of image can represent the style

Gram matrix: used to capture the texture information of Image $\ G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$$

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l,$$

$$\frac{\partial E_l}{\partial F_{ij}^l} = \begin{cases} \frac{1}{N_l^2 M_l^2} \left((F^l)^{\mathrm{T}} \left(G^l - A^l \right) \right)_{ji} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l < 0 \end{cases}$$

Implementation of Gaty's Model (Base on Pytorch)

Style Transfer base on Cycle GANs

Generate Model

Given training data, generate new samples from same distribution

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair! Aaron Courville, Yoshua Bengio!
Département d'informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

GANs (lan J.Goodfellow 2014)

Z noise G

Adversarial Nets Framework

(Goodfellow 2016)

lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair! Aaron Courville, Yoshua Bengio[‡] Département d'informatique et de recherche opérationnelle Université de Montréal Montréal, QC H3C 317

GANs (lan J.Goodfellow 2014)

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

(对抗生成网络)

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

$$\nabla C \approx \frac{1}{m} \sum_{j=1}^{m} \nabla C_{X_j},$$

DCGAN(Deep Convolutional GAN): Use two CNN as D&G

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz

indico Research Boston, MA {alec,luke}@indico.io

Soumith Chintala Facebook AI Research

New York, NY

Why cycle-GANs?

Reason 1: Input for GANs is white noise

Recall the **Purpose of Style transfer** and **GANs**

Why cycle-GANs?

Reason 2: Lack of pair data, the output will be not contain the same content

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Cycle GAN

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

Cycle GAN

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Cycle GAN

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

$$L_{\operatorname{GAN}}(F, D_Y, X, Y) = E_{y \sim p_{\operatorname{data}}(y)}[\log D_Y(y)] + E_{x \sim p_{\operatorname{data}}(x)}[\log (1 - D_Y(F(x)))]$$

Original Lost function of GANs

$$\begin{array}{lcl} L_{cyc}(G_{A2B},G_{B2A},A,B) & = & \mathbb{E}_{x\sim A}[\|G_{B2A}(G_{A2B}(x))-x\|_1] \\ & + & \mathbb{E}_{y\sim B}[\|G_{A2B}(G_{B2A}(y))-y\|_1] \end{array}$$

$$G_{B2A}(G_{A2B}(x)) \simeq x \ G_{A2B}(G_{B2A}(y)) \simeq y$$

Consider "Consistency Loss"

$$L(G_{A2B}, G_{B2A}, D_A, D_B) = L_G(G_{A2B}, D_B, A, B) + L_G(G_{B2A}, D_A, B, A) + \lambda L_{cyc}(G_{A2B}, G_{B2A}, A, B)$$

Lost function of Cycle-GANs

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Result from the paper

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

Thank you!

• More reference in:

O PyTorch

知乎

arXiv.org