When is aggregation enough? Aggregation and Projection with the Master Equation WORK IN PROGRESS

Thomas Bourany
The University of Chicago

Economic Dynamics & Financial Markets

April 2024

Limitation of current methods for Heterogeneous Agents models

- ➤ Since Krusell-Smith (1998) a large array of methods have been developed to tackle Heterogeneous Agent models with Aggregate Shocks
 - Perturbation methods
 - Reiter (2009, 2010), Den Haan et al (2008)
 - Ahn, Kaplan, Moll, Wolf, Winberry (2018)
 - Bilal (2023)
 - Bhandari, Bourany, Evans, Golosov (2023)
 - Sequence space methods
 - Auclert, Bardoczy, Rognlie, Straub (2021)
 - Truncation methods
 - Legrand-Ragot (2018-)
 - Machine Learning based methods
 - Fernandez-Villaverde, Hurtado, Nuno (2023) [FVHN]
 - Han, Jentzen, E. (2018)
 - Gu, Lauriere, Merkel, Payne (2023) [GLMP]

Limitation of current methods for Heterogeneous Agents models

- ➤ Since Krusell-Smith (1998) a large array of methods have been developed to tackle *Heterogeneous Agent models with Aggregate Shocks*
- Most of the recent operational methods are based on Perturbation and rely on certainty equivalence

Limitation of current methods for Heterogeneous Agents models

- ➤ Since Krusell-Smith (1998) a large array of methods have been developed to tackle *Heterogeneous Agent models with Aggregate Shocks*
- Most of the recent operational methods are based on Perturbation and rely on certainty equivalence
- By design they can not speak about aggregate risk and decisions under aggregate uncertainty
- Some exceptions:
 - Second order perturbations ⇒ still local approximation around a stationary point
 - Machine Learning based methods ⇒ can be a bit opaque / case specific

This project

- ➤ Since Krusell-Smith (1998) a large array of methods have been developed to tackle Heterogeneous Agent models with Aggregate Shocks
- ► New approaches to aggregate risk have been developed by mathematician, using the Master equation
 - Cardaliaguet, Delarue, Lions, Lasry (2019)
 - Also used in economics by Schaab (2021), Bilal (2023)
- ► This project is proposing a new method to talk about risk in H.A. models
 - Relying solely on "projection" to characterize the distribution of agents
 - Come back to the original idea by Krusell-Smith
 - Extend it to more generic models of macro-finance

General idea with familiar notations

- Take Krusell Smith (1998) Consumption-saving model, c, a, with (i) idiosyncratic income risk z, (ii) incomplete market,

 - (iii) credit constraints $a \ge a$
 - (iv) aggregate shock on aggregate TFP Z.

General idea with familiar notations

- Take Krusell Smith (1998) Consumption-saving model, c, a, with (i) idiosyncratic income risk z, (ii) incomplete market, (iii) credit constraints a ≥ a
 (iv) aggregate shock on aggregate TFP Z.
- Firm side:

$$Y = ZK^{\alpha}$$
 \Rightarrow $r = \alpha K^{\alpha - 1} - \delta$ $w = (1 - \alpha)K^{\alpha}$

- Distribution of households g(a, z) over wealth and income
- Household decision (KS98)

$$V(a, z, g, Z) = \max_{c, a'} u(c) + \beta \mathbb{E}^{z', Z'} \left[V(a', z', g', Z') \mid z, Z \right]$$

$$s.t. \qquad c + a' = zw + (1+r)a$$

$$g' = H(g, Z, Z')$$

Equilibrium

$$K = \int_{a,z} a \, dg(a,z)$$

General idea and KS98 global solution

- \triangleright Difficulty: Value function V(a, z, g, Z) depends on the whole distribution g(!)
- ▶ Need to forecast the evolution of $g \Rightarrow$ very difficult with aggregate risk
 - Need to follow the distribution g_t on every path of $\{Z_t\}_t$
 - Brute force: computationally intensive, c.f. Bourany (2018)
- ▶ Krusell-Smith solution: two assumptions related to *bounded-rationality*
 - 1. Assume the Household only care about aggregate capital / First-moment $K = \int a \, dg(a, z)$
 - 2. Assume Linear forecasting-rule for future capital

$$K' = a_1^Z K + a_2^Z$$

April 2024

6/25

- Choose parameters (a_1^Z, a_2^Z) to match the *realized* path of $\{K_t\}_t$
- ► Proposal today:
 - remove assumption $2 \Rightarrow$ bypass the linearity assumpt $^{\circ}$ (in that sense close to FVHN)
 - test robustness to 1 and 2, using methods based on the Master equation

Primer on the Mean Field Games and the Master Equation

- Rewriting the Aiyagari model as a Mean Field Game involves a system of PDEs:
 - States dynamics:

$$da_t = [z_t w_t + r_t a_t - c_t] dt$$
 $z_j \sim \text{Markov jump process } \lambda_j$

1. Hamilton Jacobi Bellman Equation:

$$-\partial_t v(t,a,z) + \rho v(t,a,z) = \max_c u(c) + \mathcal{L}[v](t,a,z)$$

Transport/Jump-Operator

$$\mathcal{L}[v|c^{\star}]_{(t,a,z_j)} = \partial_a v_{(t,a,z_j)}[z_j w + r a - c^{\star}] + \lambda_i (v_{(t,a,z_{-j})} - v_{(t,a,z_j)})$$

2. Kolmogorov forward Equation:

$$\partial_t g(t,a,z) = \mathcal{L}^*[g|c^*](t,a,z)$$

• Equilibrium:

$$\iint_{z,a>a} a \, dg(t,a,z_j) = K_t \qquad r_t = \alpha K_t^{\alpha-1} - \delta$$

Primer on the Master Equation

- The master equation combines in *one equation* both the HJB and the KFE
 - Case without aggregate risk, c.f. Cardaliaguet et al (2019), Bilal (2023)

$$-\partial_{t}v(t,a,z,\mathbf{g}) + \rho v(t,a,z,\mathbf{g}) = \underbrace{\max_{c} u(c) + \mathcal{L}[v \mid c^{\star}](t,a,z)}_{\text{standard HJB continuation value}} + \underbrace{\int_{c} \frac{dv(t,a,z,\mathbf{g})}{dg}[(\tilde{a},\tilde{z})] \, \mathcal{L}^{\star}[g \mid c^{\star}](t,\tilde{a},\tilde{z}) dg(t,\tilde{a},\tilde{z})}_{\text{evolution of the distribution}}$$

- Novelty: dependence on how the distribution g changes notice the forecast for all other agents (\tilde{a}, \tilde{z})
- Requires to defines the derivative in the space of distribution $\frac{dv(g)[\tilde{x}]}{dg}$: Lions' derivative

Lions-derivative

Primer on the Lions derivative

Derivative in the space of distribution: how the value v(a, z, g) changes when the distribution of agents g moves?

$$dv(a, z, \mathbf{g}) \approx v(a, z, \tilde{\mathbf{g}}) - v(a, z, \mathbf{g})$$

$$\approx \iint_{\tilde{a}, \tilde{z}} \underbrace{\frac{\partial v(a, z, \mathbf{g})}{\partial \mathbf{g}} [\tilde{a}, \tilde{z}]}_{\text{=Fréchet}} \underbrace{\left(\tilde{\mathbf{g}}(\tilde{a}, \tilde{z}) - \mathbf{g}(\tilde{a}, \tilde{z})\right)}_{\text{=Fréchet}}$$

$$\approx \iint\limits_{\tilde{a},\tilde{z}} \underbrace{\frac{d}{d\tilde{a}} \frac{\partial v(a,z,\mathbf{g})}{\partial g} [\tilde{a},\tilde{z}]}_{\text{=Lions}} \underbrace{\frac{d\tilde{a}}{\text{echange in decision}}}_{\text{decision}} g(\tilde{a},\tilde{z})$$

- $\frac{\partial v(a,z,\mathbf{g})}{\partial g}[\tilde{x}]$ Fréchet Derivative, for a change of g in \tilde{x}
- $\frac{dv(a,z,g)}{dg}[\tilde{x}] = \frac{d}{dx} \frac{\partial v(a,z,g)}{\partial g}[\tilde{x}]$ Lions Derivative, for a change of \tilde{x} , i.e. a *shift* in $g(\tilde{x})$

Lions derivative and agent decision: toward aggregation?

- Derivative in the space of distribution
 - Change in value $v(a, z, \mathbf{g})$ with moves in the distribution of agents \mathbf{g}
 - Lions-derivative: what causes the change in the agents' distribution g? \Rightarrow change in states $(d\tilde{a}, d\tilde{z})$
 - What causes the change in states? ⇒ the change in agents' decisions
 - States dynamics $(d\tilde{a}, d\tilde{z})$ change with small change in decision, i.e. consumption-saving: operator $\mathcal{L}^*[g|c^*]$ (!)
- ► Can we aggregate?
 - Aggregate the distribution?
 - Aggregate the change in agents' decision?
 - ⇒ Goal/method of this project!
 - Before, back to the original question: aggregate risk

Adding Aggregate Risk to the Master Equation (ARME?)

- Consider aggregate risk
 - Agg. TFP follows a AR(1) Ornstein-Uhlenbeck process

$$dZ_t = -\theta(Z - \bar{Z})dt + \widehat{\sigma}dB_t^0$$

• The master equation doesn't change much: value $v = v(t,a,z,\mathbf{g},Z)$

standard HJB continuation value
$$-\partial_{t}v + \rho v = \max_{c} u(c) + \mathcal{L}[v \mid c](t, a, \bar{z}) \qquad \underbrace{-\theta(Z - \bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}}_{\text{dg}}$$

$$+ \iint_{z, a} \frac{dv(t, a, z, g, Z)}{dg} [(\tilde{a}, \tilde{z})] \mathcal{L}^{*}[g \mid c^{*}](t, \tilde{a}, \tilde{z}) dg(t, \tilde{a}, \tilde{z})$$

evolution of the distribution

11/25

- Why?
 - Aggregate shocks don't have *direct effects* on the distribution!
 - Is that the reason why KS98 model is "boring"?
 - \Rightarrow linear in Z / can aggregate capital K easily / doesn't have important implication of risk $\hat{\sigma}$?

 \triangleright Consider aggregate risk with *direct effects* on household income, portfolio share θ

$$dR_t = \overline{\sigma}dB_t^0$$
 $da = (ra + zw - c)dt + \theta a(dR - r)$

• The master equation now becomes **second order**! value v = v(t,a,z,g,Z) changes a lot!

$$-\partial_{t}v + \rho v = \underbrace{\max_{c} u(c) + \mathcal{L}[v|c]_{(t,a,\bar{z})}^{\text{standard HJB continuation value}}}_{c} \underbrace{-\theta(Z-\bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}}_{\text{deterministic evolution of the distribution}} \underbrace{-\theta(Z-\bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}}_{\text{deterministic evolution of the distribution}} \underbrace{-\theta(Z-\bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}}_{\text{deterministic evolution of the distribution}} \underbrace{-\theta(Z-\bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}}_{\text{deterministic evolution of the distribution}}$$

 \triangleright Consider aggregate risk with *direct effects* on household income, portfolio share θ

$$dR_t = \overline{\sigma}dB_t^0$$
 $da = (ra + zw - c)dt + \theta a(dR - r)$

• The master equation now becomes **second order!** value v = v(t,a,z,g,z) changes a lot!

Thomas Bourany (UChicago)

 \triangleright Consider aggregate risk with *direct effects* on household income, portfolio share θ

$$dR_t = \overline{\sigma}dB_t^0$$
 $da = (ra + zw - c)dt + \theta a (dR - r)$

The master equation now becomes **second order!** value v = v(t,a,z,g,Z) changes a lot!

$$-\partial_{t}v + \rho v = \underbrace{\max_{c} u(c) + \mathcal{L}[v|c]_{(t,a,z)}}_{\text{diffusion of the distribution } \underbrace{\det(z-\bar{z})_{v_{Z}} + \frac{\widehat{\sigma}^{2}}{2}_{v_{ZZ}}^{2}}_{\text{diffusion of the distribution due to risk}} \underbrace{\det(z-\bar{z})_{v_{Z}} + \frac{\widehat{\sigma}^{2}}{2}_{v_{ZZ}}^{2}}_{\text{evertices of own state } a \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] dg(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] dg(t,\tilde{a},\tilde{z})}_{\text{covariance of distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})} dg(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and distribution } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})] \mathcal{L}^{*}[g|c^{*}]_{(t,\tilde{a},\tilde{z})}_{\text{covariance of agg, state } Z \text{ and } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,g,z)}{dg}[(\tilde{a},\tilde{z})]}_{\text{covariance of agg, state } Z \text{ and } \underbrace{\det(z,\tilde{z})_{v_{Z}}^{2} + \underbrace{\int_{z,a}^{z} \frac{dv(t,a,z,z)$$

covariance of distribution \tilde{a} and \tilde{a}'

12 / 25

- Include controlled drift, diffusion, jump on individual states
 + mean-field interaction on drift, diffusion and jump on aggregate states
- Encompass most macro-finance models. Exception: Impulse control, fixed cost (yet!)

Projection and Bounded-rationality in KS98

Back to KS98. What do Households need for decisions?

- Require only changes in prices $(r, w) \Rightarrow$ don't care of the distribution per se
- Neoclassical model: only need some moments, the mean, of the distribution for asset prices!

$$K = \iint_{a,z} a \, dg(a,z) \qquad \qquad r = \alpha K^{\alpha - 1} - \delta$$

Bounded rationality assumption:s

$$V(a, z, \boldsymbol{g}, Z) \equiv \overline{V}(a, z, K^h, Z)$$

Nice property in Lions-derivative:

with
$$K^h = \int_x h(x) dg(x)$$

$$\frac{d}{dg} V(x, g; y) \equiv \frac{d}{dK^h} \overline{V}(x, K^h) h'(y)$$

Projection in the Master equation

Can rewrite the Master Equation with this projection on the first-moment:

$$v = v(a, z, \boldsymbol{g}, Z) \equiv \overline{v}(a, z, K, Z)$$

$$\rho \overline{v} = \underbrace{\max_{c} \ u(c) + \mathcal{L}\big[\,\overline{v}\,|c^{\star}\big](a,z)}_{\text{change in agents }(\tilde{a},\tilde{z}) \text{ decisions}} \underbrace{\frac{\text{direct effect of risk of } Z \text{ on } \overline{v}}{-\theta(Z-\overline{Z})\overline{v}_{Z} + \frac{\widehat{\sigma}^{2}}{2}\overline{v}_{ZZ}}}_{\text{change in agents }(\tilde{a},\tilde{z}) \text{ decisions}}$$

- ► Still dependence on g, how to "get rid of it"? Not easy!
- ► Aggregation:

$$\begin{split} dK &= \iint\limits_{z,a} [r\tilde{a} + w\tilde{z} - c^{\star}(\tilde{a}, \tilde{z}, K, Z)] dg(\tilde{a}, \tilde{z}) \\ dK &= rK + w\bar{L} - \mathcal{C}(K, Z|g) \end{split}$$

with aggregate consumption function $C(K, Z|g) = \iint_{Z_a} c^*(\tilde{a}, \tilde{z}, K, Z) dg(\tilde{a}, \tilde{z})$

Back to familiar models

► The Master Equation becomes a "standard" HJB (!), $v = v(a, z, \mathbf{g}, Z) \equiv \overline{v}(a, z, K, Z)$

$$\rho \, \bar{v} = \max_{c} \, u(c) + \left[wz + ra - c \right] \bar{v}_{a} + \lambda \left(\bar{v}_{(a,z',\cdot)} - \bar{v}_{(a,z,\cdot)} \right)$$
$$- \theta \left(Z - \bar{Z} \right) \bar{v}_{Z} + \underbrace{\frac{\hat{\sigma}^{2}}{2} \bar{v}_{ZZ}}_{=dK} + \underbrace{\left[ZK^{\alpha} - \delta K - \mathcal{C}(K, Z|g) \right]}_{=dK} \bar{v}_{K}$$

Back to familiar models

▶ The Master Equation becomes a "standard" HJB (!), $v = v(a, z, \mathbf{g}, Z) \equiv \overline{v}(a, z, K, Z)$

$$\rho \, \bar{v} = \max_{c} \, u(c) + \left[wz + ra - c \right] \bar{v}_{a} + \lambda \left(\bar{v}_{(a,z',\cdot)} - \bar{v}_{(a,z,\cdot)} \right)$$
$$- \theta \left(Z - \bar{Z} \right) \bar{v}_{Z} + \underbrace{ \left[ZK^{\alpha} - \delta K - C(K, Z|g) \right]}_{=dK} \, \bar{v}_{K}$$

- Only issue: C(t, K, Z|g) still depends on g
- Looks exactly like the standard models (!!)
 - RBC: v = v(K, Z)

$$\rho v = \max_{C} u(C) + [ZK^{\alpha} - \delta K - C]v_{K} - \theta(Z - \bar{Z})v_{Z} + \frac{\hat{\sigma}^{2}}{2}v_{ZZ}$$

- Aiyagari:
$$v = v(a, z)$$

$$\rho v = \max_{a} u(c) + [wz + ra - c]v_a + \lambda (v(a,z',\cdot) - v(a,z,\cdot))$$

Agents' decision and global dynamical system

▶ With the Master equation and $v = \bar{v}(a, z, K, Z)$ we obtain the individual decision,

$$c^{\star}(\tilde{a},\tilde{z},K,Z)=u'^{-1}(\bar{v}_a(a,z,K,Z))$$

▶ Hence we get the dynamical system:

$$\begin{cases}
da &= \left[z(1-\alpha)ZK^{\alpha} + \overbrace{(\alpha ZK^{\alpha-1} - \delta)}^{=r} a - c^{\star}(a, z, K, Z)\right]dt \\
dz &= \gamma(z)dJ_{t} & \text{intensity} \qquad \lambda(z) \\
dK &= \left(ZK^{\alpha} - \delta K - C(K, Z|g)\right)dt \\
dZ &= \mu(Z)dt + \widehat{\sigma}dB_{t}^{0}
\end{cases}$$

- ► For a guess of g(a,z) and $C(K,Z|g) = \iint_{a,z} c^*(a,z,K,Z)g(a,z)$ we have a complete characterization of the system
 - \Rightarrow Can get a Kolmogorov forward equation for the system (a, z, K, Z) (!!)

"Master-" Kolmogorov Forward for the global system

► For a guess of g(a, z) and $C(K, Z|g) = \iint_{a,z} c^*(a, z, K, z) g(a, z)$, the Master-KFE for states $x = (a, z, K, Z) \in \mathbb{X}$ writes:

$$0 = -\partial_a \left[s(x, \overline{v}_a) \widetilde{g}(x) \right] + \sum_n \lambda(z^n) \widetilde{g}(x^n) - \lambda(z) \widetilde{g}(x)$$
$$- \partial_K \left[\left(ZK^{\alpha} - \delta K - C(K, Z|g) \right) \widetilde{g}(t, \widetilde{x}) \right] - \partial_Z \left[\mu(Z) \widetilde{g}(x) \right] + \widehat{\sigma} \partial_{ZZ}^2 \widetilde{g}(x)$$

- Easy to get from the operator of the Master-HJB! standard methods
- ► Consistency condition for rational-expectation equilibrium:

$$dg(a,z)\big|_{K,Z} = \int_{\widetilde{\mathbb{X}}} \delta_{\{\widetilde{K}=K,\widetilde{Z}=Z\}} d\widetilde{g}_{(a,z,\widetilde{K},\widetilde{Z})}$$

• Consistency for the first moment: $\iint_{a,z} adg(a,z^n) = \int_{\widetilde{\mathbb{X}}} \delta_{\{\widetilde{K}=K,\widetilde{Z}=Z\}} ad\widetilde{g}(a,z^n,\widetilde{K},\widetilde{Z}) = K$

18 / 25

Summary and numerical methods

- 1. General Master equation
 - Summarize MFG systems with one equation: v(a, z, g, Z)
- 2. Master HJB for "bounded-rational" agents: $v = \bar{v}(a, z, K, Z)$
 - Start from guess g(a, z) and C(K, Z|g)
 - Solve Master-HJB: standard finite difference methods
 - Get individual decisions $c^*(a,z,K,Z)$ and operator $\mathcal{A}[\bar{v}]$ for (a,z,K,Z)
- 3. Master-Kolmogorov forward for (a, z, K, Z)
 - Obtain distribution \widetilde{g} over all states (a, z, K, Z) for "free" with $\mathcal{A}^*[\widetilde{g}]$
 - Update g thanks to \widetilde{g} and update $\mathcal{C}(K, Z|g)$
 - Obtain Capital dynamics: potentially very non-linear!!

$$dK = ZK^{\alpha} - \delta K - \mathcal{C}(K, Z|g)$$

- Procedure standard and general
 - No need for deep-learning/splines/polynomials: use standard finite difference methods
 - Method robust to higher-order moments (in the paper!) $K_2 = \iint_{a_z} (a-K)^2 dg(a,z)... \Rightarrow \text{imply additional terms in HJB (+ larger state-space)}$

Master-Equation with higher moments:

► HJB with 2nd-order moments:

$$v = v(a, z, \boldsymbol{g}, Z) \equiv \overline{v}(a, z, K, K_2, L_2, KL, Z) = \overline{v}(a, z, K, K_2, Z)$$

- $K_2 = \mathbb{V}ar(a), L_2 = \mathbb{V}ar(z), KL = \mathbb{C}ov(a, z)$
- In KS98, you don't need all of them!

$$\rho \, \bar{v} = \max_{c} \, u(c) + \left[wz + ra - c \right] \bar{v}_{a} + \lambda \left(\bar{v}_{(a,z',\cdot)} - \bar{v}_{(a,z,\cdot)} \right) - \theta \left(Z - \bar{Z} \right) \bar{v}_{Z} + \frac{\widehat{\sigma}^{2}}{2} \bar{v}_{ZZ}$$
$$+ \underbrace{\left[ZK^{\alpha} - \delta K - \mathbb{E}^{g}[c^{\star}] \right]}_{-dK} \, \bar{v}_{K} + \underbrace{\left[-\mathbb{C}\text{ov}^{g}(a, c^{\star}) \right]}_{dK} \bar{v}_{K_{2}}$$

• Similarly, solve for dynamical system (a, z, K, K_2, Z) , the "master" KFE and then plug g back into $\mathbb{E}^g[c^*]$ and $\mathbb{C}\text{ov}^g(a, c^*)$

Numerical experiment - Aiyagari model

Numerical experiment - Brock-Mirman / RBC

Numerical experiment - Brock-Mirman / RBC

Numerical experiment - Master equation, Krusell-Smith

Conclusion

- ► In this project, I propose a new method to solve Heterogeneous Agent Models with aggregate risk
- Next steps:
 - Properties of KS98: is the model Markovian in capital? i.e. is the consumption function C(K, Z|g) robust to change in g (e.g. to change in $K_2 = Var(a)$).
 - Comparison with Krusell-Smith's linearity in capital flow
 - Overidentification test for SMM: do agents need second-order (or higher-order) moments when making their decision?
 - Solving a "more interesting" macro-finance model:
 Model with meaningful distribution of portfolios, exposure and impact of aggregate risk