Abstract

We will survey many results related to sequences and series of functions. The culmination of this document will be proving the Weierstrass M-test and Cauchy-Hadamard theorem.

Sequences of Functions

Definition 1. Let Ω be a set, (X, d) a metric space, and $(f_n)_n$ a sequence of functions in X^{Ω} .

(1) $(f_n)_n$ converges pointwise to $f \in X^{\Omega}$ if:

$$(\forall x \in \Omega)(\forall \varepsilon > 0)(\exists N_{x,\varepsilon} \in \mathbf{N}): (\forall n \in \mathbf{N})(n \geqslant N \implies d(f_n(x),f(x)) < \varepsilon).$$

(2) $(f_n)_n$ converges uniformly to $f \in X^{\Omega}$ if:

$$\begin{split} (\forall \varepsilon > 0) (\exists N_\varepsilon \in \mathbf{N}) \ : (\forall n \in \mathbf{N}) (\forall x \in \Omega) \big(n \geqslant N \implies d(f_n(x), f(x)) < \varepsilon \big) \\ &\equiv (\forall n \in \mathbf{N}) \big(n \geqslant N \implies \sup_{x \in \Omega} d(f_n(x), f(x)) < \varepsilon \big). \end{split}$$

Example 1. Let $(f_n)_n$ be a sequence in $\mathbf{R}^{[0,1]}$ defined by $f_n(x) = x^n$ for all $n \in \mathbf{N}$. If $x \in [0,1)$, then $(f_n(x))_n \to 0$. If x = 1, then $(f_n(x))_n \to 1$. Thus $(f_n)_n \to 1$ pointwise.

Example 2. Let $(f_n)_n$ be a sequence in $\mathbb{R}^{\mathbb{R}}$ defined by $f_n(x) = \frac{nx}{1+n^2x^2}$. If x = 0, then $(f_n(x))_n \to 0$. If $x \neq 0$, observe that:

$$|f_n(x)| = \left| \frac{nx}{1 + n^2 x^2} \right|$$

$$= \frac{n|x|}{1 + n^2 x^2}$$

$$\leq \frac{|x|}{nx^2}$$

$$= \frac{1}{n|x|}.$$

Since x is fixed, $(f_n(x))_n \to 0$. Thus $(f_n)_n \to 0_{\mathbb{R}^R}$ pointwise.

Example 3. Let $(h_n)_n$ be a sequence in $\mathbf{R}^{[0,\infty)}$ defined by $h_n(x) = x^{\frac{1}{n}}$. If x > 0, then $(h_n(x))_n \to 1$. If x = 0, then $(h_n(x))_n \to 0$. Thus $(h_n)_n \to \mathbf{1}_{(0,\infty)}$ pointwise.

Definition 2. Let Ω be a set and (X, d) a metric space.

(1) The set of all bounded functions from Ω to X is denoted Bd(Ω , X).

(2) The *uniform metric* between two bounded functions $f, g \in Bd(\Omega, X)$ is defined by $D_{\mathfrak{u}}(f, g) = \sup_{x \in \Omega} d(f(x), g(x))$.

Proposition 1. Let Ω be a set, (X, d) a metric space, and $(f_n)_n$ a sequence in X^{Ω} . The following are equivalent:

- (1) The sequence $(f_n)_n$ converges uniformly to f in X^{Ω} ;
- (2) The sequence $(D_u(f_n, f))_n$ converges to 0 in **R**.

Proof. (\Rightarrow) Let $\varepsilon > 0$. By assumption, find $N \in \mathbb{N}$ sufficiently large so that, for all $x \in X$, $n \ge N$ implies $d(f_n(x), f(x)) < \frac{\varepsilon}{2}$. It follows then that:

$$|D_{u}(f_{n}, f)| = \left| \sup_{x \in X} d(f_{n}(x), f(x)) \right|$$

$$\leq \frac{\epsilon}{2}$$

$$\leq \epsilon.$$

Thus $(D_{\mathfrak{u}}(f_{\mathfrak{n}},f))_{\mathfrak{n}} \to 0$.

(⇐) Let $\epsilon > 0$. Find $N \in \mathbb{N}$ large so that $n \ge N$ implies $D_{\mathfrak{u}}(f_{\mathfrak{n}}, f) < \epsilon$. If $n \ge N$ and $z \in X$, then:

$$d(f_n(z), f(z)) \le \sup_{x \in X} d(f_n(x), f(x))$$

 $< \epsilon.$

Since z was arbitrary, $(f_n)_n \to f$ uniformly.

Example 4. Let $(f_n)_n$ be a sequence in \mathbb{R}^R defined by $f_n = \mathbf{1}_{[n,n+1]}$. Claim: $(f_n)_n \to 0_{\mathbb{R}^R}$. Let $x \in \mathbb{R}$ and $\varepsilon > 0$. Find N large so N > x. If $n \ge N$, then $|f_n(x) - 0_{\mathbb{R}^R}(x)| = |f_n(x)| = |\mathbf{1}_{[n,n+1]}(x)| = 0$. Thus $(f_n)_n \to 0_{\mathbb{R}^R}$ pointwise.

Note that:

$$D_{u}(f_{n}, f) = \sup_{x \in R} |f_{n}(x) - 0_{R^{R}}(x)|$$
$$= \sup_{x \in R} |f_{n}(x)|$$
$$= 1$$

Thus $(f_n)_n$ does *not* converge uniformly to $0_{\mathbb{R}^R}$.

Proposition 2. Let (X, d) and (Y, ρ) be metric spaces. Suppose $(f_n)_n$ is a sequence in C(X, Y) which converges uniformly to $f: X \to Y$. Then $f \in C(X, Y)$.

Proof. Let $\epsilon > 0$. Since $(f_n)_n$ converges uniformly to f, choose $N \in \mathbb{N}$ large so that $D_u(f_N, f) < \frac{\epsilon}{3}$. Let $c \in X$. Since f_N is continuous, there exists $\delta > 0$ such that, for

all $x \in X$, $d(x, c) < \delta$ implies $\rho(f_N(x), f_N(c)) < \frac{\varepsilon}{3}$. For $c \in X$ and $d(x, c) < \delta$:

$$\begin{split} \rho(f(x),f(c)) & \leq \rho(f(x),f_N(x)) + \rho(f_N(x),f_N(c)) + \rho(f_N(c),f(c)) \\ & \leq 2D_u(f_N,f) + \rho(f_N(x),f_N(c)) \\ & < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} \\ & = \varepsilon. \end{split}$$

Thus f is continuous at c. Since c was arbitrary, $f \in C(X, Y)$.

Theorem 3. Let $J \subseteq \mathbf{R}$ be a bounded interval and let $(f_n)_n$ be a sequence of functions in \mathbf{R}^J . Suppose there exists $x_0 \in J$ such that $(f_n(x_0))_n$ converges, and that the sequence $(f'_n)_n$ of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence $(f_n)_n$ converges uniformly on J to a function f that has a derivative at every point of J and f' = g.

Lemma 1. Let (X, d) be a compact metric space. Suppose $(f_n)_n$ is a monotonically decreasing sequence in $C(X, \mathbf{R})$ which converges pointwise to 0. Then $(f_n)_n$ converges uniformly to 0.

Proof. Let $\epsilon > 0$. Since $(f_n)_n$ converges pointwise to 0, for each $x \in X$ there exists $N_x \in \mathbb{N}$ such that $n \ge N_x$ implies $f_n(x) < \frac{\epsilon}{2}$. Because f_{N_x} is continuous at x, there exists $\delta_x > 0$ such that, for every $z \in X$, $d(x,z) < \delta_x$ implies $|f_{N_x}(x) - f_{N_x}(z)| < \frac{\epsilon}{2}$. The collection $\{U(x,\delta_x)\}_{x\in X}$ covers X, so by compactness there is a finite set $F \subseteq X$ with $X = \bigcup_{x\in F} U(x,\delta_x)$. Set $N = \max_{x\in F} N_x$. Let $z\in X$ be arbitrary and locate $x\in F$ such that $z\in U(x,\delta_x)$. Notice that our choice of N does not depend on z. For $n\ge N$:

$$\begin{split} f_n(z) &\leqslant f_{N_x}(z) \\ &= f_{N_x}(z) - f_{N_x}(x) + f_{N_x}(x) \\ &\leqslant |f_{N_x}(z) - f_{N_x}(x)| + f_{N_x}(x) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

Thus for $n \ge N$, we have $||f_n||_u \le \epsilon$.

Theorem 4 (Dini's Theorem). Let (X, d) be compact. Suppose $(f_n)_n$ is a monotone sequence in $C(X, \mathbf{R})$ which converges pointwise to f. Then $(f_n)_n$ converges uniformly to f.

Proof. If $(f_n)_n$ is decreasing, apply Lemma 1 to $f_n - f$. If $(f_n)_n$ is increasing, apply Lemma 1 to $f - f_n$.

Series of Functions

Definition 3. Let Ω be any set and $(V, \|\cdot\|)$ a normed vector space.

(1) If $(f_n)_n$ is a sequence of functions in V^{Ω} , the sequence of *partial sums* $(s_n)_n$ is defined by:

$$s_{1}(x) := f_{1}(x),$$

$$s_{2}(x) := s_{1}(x) + f_{2}(x),$$

$$\vdots$$

$$s_{n+1}(x) := s_{n}(x) + f_{n+1}(x)$$

$$= \sum_{k=1}^{n+1} f_{k}(x).$$

- (2) If the sequence of functions $(s_n)_n$ converges to $f \in V^{\Omega}$, we say that the infinite series of functions $\sum f_n$ converges to f and write $\sum f_n = f$.
- (3) If the series $\sum \|f_n\|$ converges, we say that $\sum f_n$ is absolutely convergent.
- (4) If the sequence $(s_n)_n$ of partial sums converges uniformly to $f \in X^{\Omega}$, we say that $\sum f_n$ is *uniformly convergent*.

Proposition 5. *Let* $(V, ||\cdot||)$ *be a normed space. The following are equivalent:*

- (1) V is a Banach space;
- (2) If $(v_k)_k$ is a sequence in V with $\sum_{k=1}^{\infty} ||v_k||$ convergent, then $\sum_{k=1}^{\infty} v_k$ converges.

Proof. (\Rightarrow) Let $\varepsilon > 0$. Let $s_n = \sum_{k=1}^n \nu_k$ and $t_n = \sum_{k=1}^n \|\nu_k\|$. Since $(t_n)_n$ converges, it is Cauchy. Find N sufficiently large so that p, q > N implies $|t_p - t_q| < \varepsilon$. For p > q > N:

$$||s_p - s_q|| = ||\sum_{k=q+1}^p v_k||$$

$$\leq \sum_{k=q+1}^p ||v_k||$$

$$= |t_p - t_k|$$

$$< \epsilon.$$

Thus $(s_n)_n$ is $\|\cdot\|$ -Cauchy. Since V is complete, $\sum_{k=1}^{\infty} v_k$ converges.

 (\Leftarrow) Since $\sum_{k=1}^{\infty} \nu_k$ converges, the sequence $(\nu_n)_n$ also converges. In particular, the sequence $(\nu_n)_n$ is Cauchy, so find $N_1 \in \mathbf{N}$ sufficiently large such that

 $p,q\geqslant N_1$ implies $\left\|\nu_p-\nu_q\right\|<2^{-1}.$ Again, find $N_2>N_1$ large so that $p,q\geqslant N_2$ implies $\left\|\nu_p-\nu_q\right\|<2^{-2}.$ Inductively, find $N_k>N_{k-1}$ such that $p,q\geqslant N_k$ implies $\left\|\nu_p-\nu_q\right\|<2^{-k}.$ Now consider the sequence $(\nu_{n_{k+1}}-\nu_{n_k})_k.$ Note that:

$$\sum_{k=1}^{\infty} \| v_{n_{k+1}} - v_{n_k} \| \le \sum_{k=1}^{\infty} 2^{-k}$$
= 1.

By our hypothesis $\sum_{k=1}^{\infty} (\nu_{n_{k+1}} - \nu_{n_k})$ converges, so the sequence of partial sums:

$$w_{m} = \sum_{k=1}^{m} v_{n_{k+1}} - v_{n_{k}}$$
$$= v_{n_{m}} - v_{n_{1}}$$

also converges. Let $\lim_{m\to\infty} w_m := w$ and observe that:

$$\lim_{m \to \infty} v_{n_m} = \lim_{m \to \infty} (w_m + v_{n_1})$$
$$= w + v_{n_1}.$$

Since $(v_n)_n$ is a $\|\cdot\|$ -Cauchy sequence which admits a convergent subsequence, $(v_n)_n$ converges. Thus V is a Banach space.

Example 5. Note that Proposition 5 does not only apply to series in \mathbf{R} or \mathbf{C} . Given a metric space (X, d), it can be proven that the set of all continuous and bounded functions:

$$C_b(X) := C(X) \cap Bd(X)$$

is a $\|\cdot\|_{\mathfrak{u}}$ -Banach space, where $\|\cdot\|_{\mathfrak{u}}$ is the *uniform norm* defined as:

$$\|f\|_{\mathfrak{u}} := \sup_{x \in X} |f(x)|.$$

Thus, given a sequence of functions $(f_n)_n$ in $C_b(X)$, if $\sum \|f_n\|_u$ converges, then $\sum f_n$ converges.

Proposition 6. Let $(V, \|\cdot\|)$ and $(W, \|\cdot\|)$ be normed vector spaces. Suppose $(f_n)_n$ is a sequence in C(V, W) and $\sum f_n$ converges uniformly to $f: V \to W$. Then $f \in C(V, W)$.

Proof. The proof follows similarly to Proposition 2. As an exercise, one could verify that if $f_1, ..., f_N$ are continuous, then $\sum_{k=1}^{N} f_k$ is also continuous.

Theorem 7. Something about interchange of series and derivative

Lemma 2 (Cauchy's Criterion). Let Ω be a set and $(V, \|\cdot\|)$ a Banach space. Let $(f_n)_n$ be a sequence of functions in V^{Ω} . The infinite series $\sum f_n$ is uniformly convergent if and only if:

$$(\forall \varepsilon > 0)(\exists M > 0): (\forall x \in \Omega)(\forall m, n \in \mathbf{N}) \left(m > n \geqslant M \right. \implies \left\| \sum_{k=1}^m f_k(x) - \sum_{k=1}^n f_k(x) \right\| < \varepsilon \right).$$

Proof. (\Rightarrow) Let $\varepsilon > 0$. Since $\left(\sum_{k=1}^n f_k\right)_n \to f$ uniformly, there exists $N \in \mathbf{N}$ large so that $n \ge N$ implies $\left\|\sum_{k=1}^n f_k - f\right\|_u < \frac{\varepsilon}{2}$. For $m > n \ge N$, observe that:

$$\left\| \sum_{k=1}^{m} f_k - \sum_{k=1}^{n} f_k \right\|_{u} \le \left\| \sum_{k=1}^{m} f_k - f \right\|_{u} + \left\| f - \sum_{k=1}^{n} f_k \right\|_{u}$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon.$$

(⇐) Let $\epsilon > 0$. Let $\sum f_n$ be a series which satisfies the above hypothesis. Then there exists M > 0 such that... finish tomorrow I think I figured it out

Let $\sum f_n$ be a series which satisfies the above hypothesis. Observe that:

$$\left\| \sum_{k=1}^{m} f_k(x) - \sum_{k=1}^{n} f_k(x) \right\| \le \left\| \sum_{k=1}^{m} f_k - \sum_{k=1}^{n} f_k \right\|_{\mathcal{U}}$$

$$< \epsilon.$$

Thus $\left(\sum_{k=1}^{n} f_k(x)\right)_n$ is $\|\cdot\|$ -Cauchy.

Theorem 8 (Weierstrass M-test). Let Ω be a set and $(V, \|\cdot\|)$ a Banach space. Let $(f_n)_n$ be a sequence of functions on V^{Ω} and let $(M_n)_n$ be a sequence of positive real numbers such that $\sup_{x \in \Omega} \|f_n(x)\| \le M_n$ for all $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} M_n$ is convergent, then $\sum_{n=1}^{\infty} f_n$ is uniformly convergent.

Proof. Let $\epsilon > 0$. Since $\sum_{n=1}^{\infty} M_n$ is convergent, it is Cauchy. Find $N \in \mathbb{N}$ sufficiently large so $m > n \geqslant N$ implies $\left|\sum_{k=1}^{m} M_k - \sum_{k=1}^{n} M_k\right| < \epsilon$. It immediately follows that:

$$\sup_{x \in \Omega} \left\| \sum_{k=1}^{m} f_k - \sum_{k=1}^{n} f_k \right\| \le \left| \sum_{k=1}^{m} M_k - \sum_{k=1}^{n} M_k \right|$$

$$< \epsilon$$

By Lemma 2, $\sum_{n=1}^{\infty} f_n$ is uniformly convergent.