

# Where do you typically check the map during your navigation route?

Zhengfang Xu



 Not optimal for pedestrian navigation.

Turn-by-turn guidance have made users **overly reliant on such guidance** and impaired their independent wayfinding ability. [1]

Turn-by-turn navigation system **negates route learning** and impairs scene recognition. [2]

. . . . .

Useful paradigm for **assisting people with visual impairments** during mobility. [3]



 Pedestrian tend to use Map Based navigation

#### Question:

Where do you typically check the map during your navigation route?

.....

Turn by turn navigation

Map Based navigation

Decision points not sufficient for the more complex domain of pedestrians. [7]

#### **Decision Points**

Knowledge of routes is represented as a sequence of intersection-based choice points where procedural decisions must be made. [4]

People consistently implicate **intersections** as critical decision points. [5]

Path segments between intersections are distinctly nondecision-related. [6]

(Argue: It may be non-decision-related, but there are many interactions between pedestrian and map in this process.)



Source: Medium\_Written by Joseph Mackereth

### **Decision Senses** [7]



Figure 4: The final graph representation of the wayfinding model.

Deciding whether to continue straight or turn involves a dynamic distributed decision-making process. People tended to make the request within path segments, not intersections.[5]



#### Back to Question:

## Where do you typically check the map during your navigation route?

- Decision Senses Still not sufficient
- If people are unsure whether the current route is correct, pedestrians must frequently **confirm their current walking route** with the planed route during the process of navigation.[8]
- People require information between those decision points in order to maintain his trust in the information source and his confidence and orientation throughout the route.[9]



Environment (Route) Learning from spatial perspectives



Environment Learning(EI) from spatial perspectives [10]:

Environment learning can be achieved through map study or through direct experience with the environment.

Map Study(check map in navigation)



Metacognition
Monitor&Control

**Route Experience(without map checking)** 



El is Goal-directed manner. Focus on Navigating Goal. (In our case)



## • El Research Gap [10]:

Explored the nature of EL within spatial perspectives independently.

Less studies on switching or combining Map Study and Route Experience.

EL research limited participants' ability to choose and/or switch between spatial perspectives freely. Hard to examine how metacognition affects how participants switch between different perspectives in EL.

#### Back to Question:

# Where do you typically check the map during your navigation route?

Understanding the spatial distribution of **Map Study** and **Route Experience** during the navigation process can be very effective in helping us answer this question.



#### Potential Research Questions

- 1. How are the two spatial perspectives learning, **map study** and **route experience**, **distributed** in a navigation route?
- 2. What are the factors that affect perspective switching in a navigation process? (e.g. environment complexity, metacognitive monitoring, individual differences in spatial skills).
- 3. How effective is **predicting the distribution** of the two spatial perspectives in a route using machine learning methods for individuals? (Each participant has 16 navigation routes, when give a new navigation route, could we predict where is map study and route experience segments for this individual?)
- 4. How do monitoring and control in metacognition interact during navigation route learning? (Spatial Cognition, Psychology)



How to apply our data to research question (Interactive Visualization):

Map Study(check map in navigation)

Route Experience(without map checking)

 $\bigwedge_{}^{}$ 

**Duration of screen unlocked** 

**Duration of screen locked** 

1. How are the two spatial perspectives learning, map study and route experience, distributed in a navigation route? (Spatial Science)



Locked screen(Route experience)



## How to apply our data to research question (<u>Interactive Visualization</u>):

2. What are the factors that affect perspective switching in a navigation process? (e.g. environment complexity, metacognitive monitoring, individual differences in spatial skills)





#### Potential Limitations:

Is it rigorous to consider two spatial perspective learning by distinguish the screen lock or unlock?

Map Study(check map in navigation)

**Route Experience(without map checking)** 

 $\iint$ 

**Duration of screen unlocked** 

**Duration of screen locked** 

#### Alternative:

Only focus on the process of screenlocked. Because people may have undetected map check while screenunlocked, but we can definitely say they do not check map while screenlocked.



#### Reference:

- [1]:Ishikawa T, Fujiwara H, Imai O, et al. Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience[J]. Journal of environmental psychology, 2008, 28(1): 74-82.
- [2]:Fenech, E. P., Drews, F. A., & Bakdash, J. Z. (2010). The Effects of Acoustic Turn-by-turn Navigation on Wayfinding. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(23), 1926-1930.
- [3]:Dragan Ahmetovic, Cole Gleason, Chengxiong Ruan, Kris Kitani, Hironobu Takagi, and Chieko Asakawa. 2016. NavCog: a navigational cognitive assistant for the blind. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI '16). Association for Computing Machinery, New York, NY, USA, 90–99. https://doi.org/10.1145/2935334.2935361.
- [4]:Spatial Cognition VI Learning Reasoning and Talking about Space, 2,22–38. Kim, H., & Hirtle, S. C. (1995). Spatial metaphors and disorientation in hypertext.
- [5]:Brunyé, T. T., Gardony, A. L., Holmes, A., & Taylor, H. A. (2018). Spatial decision dynamics during wayfinding: Intersections prompt the decision-making process. Cognitive Research: Principles and Implications, 3(1), 1-19.
- [6]:Klippel, A. (2003). Wayfinding choremes. In Spatial Information Theory: Foundations of Geographic Information Science (Kuhn W, Worboys MF, TimpfS, Eds.) (pp. 320–334). New York, NY: Springer, Inc.
- [7]:Gaisbauer C, Frank A U. Wayfinding model for pedestrian navigation[C]//AGILE 2008 Conference-Taking geo-information science one step further, University of Girona, Spain. 2008, 9.
- [8]: Millonig, A., Schechtner, K. (2007). Decision Loads and Route Qualities for Pedestrians Key Requirements for the Design of Pedestrian Navigation Services. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, Heidelberg. <a href="https://doi.org/10.1007/978-3-540-47064-9">https://doi.org/10.1007/978-3-540-47064-9</a>
- [9]:May A J, Ross T, Bayer S H, et al. Pedestrian navigation aids: information requirements and design implications[J]. Personal and [9]: Ubiquitous Computing, 2003, 7: 331-338.
- [10]: Dai R, Thomas A K, Taylor H A. When to look at maps in navigation: metacognitive control in environment learning[J]. Cognitive Research: Principles and Implications, 2018, 3: 1-12.