š∆Московский государственный технический университет им. Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника»

Кафедра «Радиоэлектронные системы и устройства»

Лабораторная работа №1 «Исследование полевого транзистора»

по дисциплине

«Электроника»

Вариант № 12

Выполнил ст. группы РЛ6-41

Мухин Г.А.

Филимонов С.В.

Фамилия И.О.

Проверил доцент

Крайний В.И.

Оценка в баллах_____

Цель работы: исследование характеристик и параметров полевого транзистора, изучение методики измерения характеристик полевого транзистора, расчет параметров эквивалентной схемы.

Приборы и измерительные устройства: Два источника питания "Марс", два мультиметра М3900 (один, работающий в режиме миллиамперметра, другой, работающий в режиме вольтметра), вольтметр В7-58/2, резистор сопротивлением 2 кОм, полевой транзистор.

Справочные данные полевых транзисторов КП302АМ

Транзисторы кремниевые планарные полевые с затвором на основе рп-перехода с каналом п-типа. Предназначены для применения в широкополосных усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с гибкими выводами.

Крутизна характеристики при Ucu=7 B, Uзu=0 B - не менее 5 мА/В.

Начальный ток стока при Uзи=0 B - 3 - 24 MA.

Напряжение отсечки при Ucu=7 B – не более 5 B.

Входная ёмкость при Ucu=10 В, Ic=3 мА - не более 20 пФ.

Проходная ёмкость при Ucu=10 B, Ic=3 мА - не более 8 пФ.

Предельное напряжение затвор-исток – 10 В.

Предельное напряжение сток-исток – 20 В.

Предельный постоянный ток стока -24 мA.

Предельная постоянная рассеиваемая мощность – 300 мВт.

Начертим принципиальную схему для измерения BAX полевого транзистора в схеме с общим истоком с указанием полярности измерительных приборов и источников питания. Выпишем из приложения 4 тип и основные параметры исследуемого транзистора.

Снимем семейство выходных характеристик полевого транзистора.

Соберем схему измерения (рис. 1). На графике-заготовке для выходных характеристик построим кривую допустимой мощности. Экспериментально определим напряжение отсечки $U_{\text{отс}}$ т.е. такое напряжение на затворе, при котором $I_{\text{с}}=0$; напряжение сток-исток выставим равным 10 В. Снимем семейство выходных характеристик для значений $U_{\text{зи}}$ =0; 0,2 $U_{\text{отс}}$; 0,4 $U_{\text{отс}}$; 0,6 $U_{\text{отс}}$; 0,8 $U_{\text{отс}}$;

 $U_{\text{ore}} = 2.1 \text{ B}.$

U _{си} , В	I _c , MA
0,1	1,28
0,3	3,53
0,7	7,35
1	10,1
3	14,71
7	15,71
10	15,72

Таблица 1 - Зависимость тока стока от напряжения стока-истока при постоянном напряжении затвор-исток $U_{\scriptscriptstyle 3u}\!\!=\!\!0.$

U _{си} , В	I _c , MA
0,1	1,31
0,3	2,57
0,7	5,45
1	6,7
3	9,16
7	9,96
10	10,18

Таблица 2 - Зависимость тока стока от напряжения стока-истока при постоянном напряжении затвор-исток $U_{\scriptscriptstyle 3\text{H}}\!\!=\!\!0,\!2U_{\scriptscriptstyle \text{OTC}}.$

U _{си} , В	I _c , MA
0,1	0,69
0,3	2,1
0,7	3,18
1	4,37
3	5,51

7	6,1
10	6,12

Таблица 3 - Зависимость тока стока от напряжения стока-истока при постоянном напряжении затвор-исток $U_{\scriptscriptstyle 3\text{H}}\!\!=\!\!0,\!\!4U_{\scriptscriptstyle \text{OTC}}\!.$

U _{си} , В	I _c , MA
0,1	0,47
0,3	0,94
0,7	1,59
1	1,38
3	1,53
7	2,21
10	2,36

Таблица 4 - Зависимость тока стока от напряжения стока-истока при постоянном напряжении затвор-исток $U_{\text{зи}}$ =0,6 $U_{\text{отс}}$.

U _{си} , В	I _c , мА
0,1	0,09
0,3	0,18
0,7	0,23
1	0,25
3	0,33
7	0,41
10	0,46

Таблица 5 - Зависимость тока стока от напряжения стока-истока при постоянном напряжении затвор-исток $U_{\scriptscriptstyle 3\mu}\!\!=\!\!0,\!8U_{\scriptscriptstyle orc}.$

На основе полученных в ходе эксперементальных измерений таблиц для силы тока стока построим графики зависимости тока стока от напряжения стока-истока для определенных напряжений затвор-исток.

Рисунок 1 - Зависимость тока стока от напряжения стока-истока.

На рисунке 1 мы видим, что значение тока насыщения $I_{\text{с.нас}}$ =14,71 мA, напряжение насыщения $U_{\text{си.наc}}$ =3 B.

Снимем семейство проходных статистических характеристик для $U_{\text{си}}$ =0,5 B;1 B;2 B; $U_{\text{си.нас}}$; $U_{\text{си}}$ > $U_{\text{си.нас}}$.

U _{зи} , В	Ic, MA
0	5,5
0,42	4
0,84	2,7
1,26	1,29
1,68	0,19
2,1	0

Таблица 6 - зависимость тока стока от напряжения затвор-истока для напряжения стока-истока 0,5 B.

U _{зи} , В	I _c , MA
0	10,1
0,42	6,7
0,84	4,37
1,26	1,38
1,68	0,25
2,1	0

Таблица 7 - зависимость тока стока от напряжения затвор-истока для напряжения стока-истока 1 B.

U _{зи} , В	I _c , MA
0	12,2
0,42	7,95
0,84	5,1
1,26	1,75
1,68	0,25
2,1	0

Таблица 8 - зависимость тока стока от напряжения затвор-истока для напряжения стока-истока 2 B.

U _{зи} , В	Ic, MA
0	14,71

0,42	9,16
0,84	5,51
1,26	1,53
1,68	0,33
2,1	0

Таблица 9 - зависимость тока стока от напряжения затвор-истока для напряжения стока-истока 3 В, что представляет собой напряжение стока-истока для тока насыщения.

U _{зи} , В	I _c , MA
0	15,72
0,42	10,18
0,84	6,12
1,26	2,36
1,68	0,46
2,1	0

Таблица 10 - зависимость тока стока от напряжения затвор-истока для напряжения стока-истока 10 В, что представляет собой напряжение большее, чем напряжение стока-истока для тока насыщения.

На основе полученных таблиц 6-10 получим графики зависимости тока стока от напряжения затвора-истока.

Рисунок 2 - Зависимость тока стока от напряжения затвора-истока.

Обработка экспериментальных данных.

1. Определим крутизну S_{max} характеристики, снятой для $U_{\text{си.нас}}$ в точке $U_{\text{зи}}{=}0.$

 $S_{max} = \Delta I_c / \Delta U_{cи.нас}$.

 $S_{\text{max}} = 0.006/0.425 = 14.11 \text{ mA/B}$;

2. Определим напряжение отсечки, используя соотношение

 $U_{\text{otc}} \!\!=\!\! 2I_{\text{c.Hac}} \!/ S_{\text{make}}$

 $U_{\text{otc}}=2*0,01471/0,01411=2,085 \text{ B}.$

3. Определим крутизну и внутреннее сопротивление полевого транзистора при $U_{\text{си}} > U_{\text{си.нас}}$ и $U_{\text{зи}} = 0.4 U_{\text{отс}} = 0.84 \text{ B}$.

 $r_C = \Delta U_{3H} / \Delta I_c = 0.02 / 0.195 \cdot 10^{-3} = 102 \text{ Om.}$

 $S = \Delta I_c / \Delta U_{3H} = 0.195 / 0.02 = 9.8 \text{ MA/B}.$

при $U_{\text{си}} > U_{\text{си.нас}}$ можем записать

 $S = S_{\mbox{\tiny MAKC}}(1$ - $U_{\mbox{\tiny 3M}}/_{U\mbox{\tiny 3M}}\mbox{\ otc}) {=} 14,\!11 {\cdot} (1 {\cdot} 0,\!84/2,\!1) {=} 8,\!466 \mbox{\ mA/B}.$

Вывод: мы экспериментально проверили ВАХ полевого транзистора, сравнив их с теоретическими данными. Мы получили графики, которые некоторой погрешностью соответствуют теоретическим Погрешность связана с качеством экспериментальной цепи, с погрешностью измерительных приборов и с количеством проводимых измерений. Несмотря на погрешность и некоторую неточность экспериментально установленная крутизна S соответствует заявленной крутизне в характеристиках исследуемого полевого транзистора Ucu=7 В, Uзи=0 В - не менее 5 мА/В. Также мы получили с помощью теоретического расчета сопоставили расчетное напряжение отсечки 2,085 В и экспериментально полученное напряжение отсечки 2,1 В – они практически полностью совпадают. Также почти полностью совпадают экспериментально посчитанная крутизна при и $U_{3H}=0.4U_{orc}.=0.84$ В и теоретическая формула S = $S_{\text{макс}}(1 - U_{3H}/U_{3H \text{ orc}})$, что говорит о правильности выполненных измерений (погрешность связана с субъективными измерениями крутизны по графику ВАХ).