Market	ol-C	Manage Control
MA	वर्णमु क्रीवासम्	S
FUN	IVERSI	Y

Duration: 3 Hrs.

Enrollment No.....

Faculty of Science

End Sem (Even) Examination May-2018

BC3CO06 Digital Electronics and Computer Architecture

Programme: B.Sc.(CS) Branch/Specialisation: Computer Science

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

i.	Decimal equivalent of the binary 001100 is:			1	
	(a) 12	(b) 13	(c) 14	(d) 15	
ii.	The radix of the	he hexadecimal	l number system is:		1
	(a) 10	(b) 8	(c) 2	(d) 16	
iii.	i. If the input to a NOT gate is LOW, what is the output:			tput:	1
	(a) HIGH	(b) LOW	(c) MIDDLE	(d) UNDEFINED	
iv.	The Boolean e	expression for a	a 3-input OR gate is:		1
	(a) ABC	(b) A+B+C	(c) A+BC	(d) AB+C	
v.	The single bit	storage is calle	ed:		1
	(a) Register	(b) Counter	(c) Flip-Flop	(d) Memory	
vi.	The group of	equal-sized reg	isters form:		1
	(a) Counter	(b) Latch	(c) Memory	(d) Bus	
vii.	. The group of parallel wires is called:			1	
	(a) Bus	(b) Flip-Flop	(c) Latch	(d) CPU	
viii.	. The bus carrying instruction codes is:			1	
	(a) Address Bus		(b) Data Bus		
	(c) Control Bu	ıs	(d) None of these		
ix.	The single-chip CPU is called:				1
	(a) Microcont	roller	(b) Microcomputer		
	(c) Supercomp	puter	(d) Microprocessor		
х.	A program wl	hich converts h	igh level language p	rogram into machine	1
	language program:				
	(a) Assembler	(b) Compiler	(c) Linker	(d) Loader	

Q.2	i.	Convert the Gray code 101010 into its binary equivalent.	2
	ii.	What is Excess-3 Code? Give examples. Show how it is useful for	3
		BCD addition.	
	iii.	Convert following:	5
		(a) $(237)_8 \rightarrow ()_{16}$	
		(b) $(23.85)_{10} \rightarrow ()_8$	
OR	iv.	Convert following:	5
		(a) $(2A7)_{16} \rightarrow ()_{10}$	
		(b) $(13.75)_8 \rightarrow ()_2$	
Q.3		Attempt any two:	
	i.	What is De Morgan's Theorems? Explain.	5
	ii.	Explain half adder in detail.	5
	iii.	Explain Encoders giving examples.	5
Q.4	i.	What is meant by D-Flip flop? Explain.	2
	ii.	Draw and explain a Mod-10 Synchronous Counter.	8
OR	iii.	What is shift register? Explain different types of shift registers. How	8
		Ring Counters are made using shift registers?	
Q.5	i.	Draw block diagram of a computer showing its basic functional units.	3
		Also explain the functions of each unit.	
	ii.	What is register transfer language? What are Micro-operations?	7
OD		Explain different types of Micro-operations giving suitable examples.	7
OR	iii.	Evaluate $X = A*B+C*(D+E)$ using zero, one, two, and three address	7
		instruction machines.	
Q.6	i.	What is assembly language programming? Explain instruction format	4
		and addressing modes.	
	ii.	What are branching instructions in assembly language? Describe any	6
		five branching assembly language instructions.	
OR	iii.	What are logical instructions in assembly language? Describe any five	6
		logical assembly language instructions.	

Marking Scheme

BC3CO06 Digital Electronics and Computer Architecture

Q.1	i.	Decimal equivalent of the binary 001100 is:		1			
		(a) 12					
	ii.	The radix of the hexadecimal number system is:		1			
		(d) 16					
	iii.	If the input to a NOT gate is LOW, what is the output: (a) HIGH		1			
	iv.	The Boolean expression for a 3-input OR gate is:		1			
		(b) $A+B+C$					
	V.	The single bit storage is called:					
		(c) Flip-Flop					
	vi.	The group of equal-sized registers form:					
		(c) Memory					
	vii.	The group of parallel wires is called:		1			
		(a) Bus					
	viii.	The bus carrying instruction codes is:		1			
		(b) Data Bus					
	ix.	The single-chip CPU is called:		1			
		(d) Microprocessor					
	х.	A program which converts high level language program in	ito machine	1			
		language program:					
		(b) Compiler					
Q.2	i.	Full marks for complete conversion		2			
	ii.	Definition Excess-3 Code	1 mark	3			
		Examples	1 mark				
		Explanation	1 mark				
	iii.	Convert following:		5			
		(a) $(237)_8 \rightarrow ()_{16}$	2.5 marks				
		(b) $(23.85)_{10} \rightarrow ()_8$	2.5 marks				
OR	iv.	Convert following:		5			
		(a) $(2A7)_{16} \rightarrow ()_{10}$	2.5 marks				
		(b) $(13.75)_8 \rightarrow ()_2$	2.5 marks				
Q.3		Attempt any two:					
	i.	Statement of De Morgan's Theorems	2 marks	5			
		Explanation	3 marks				

	ii.	Blok diagram & description	2 marks	5
		Truth table	1 mark	
		Logical expression & logical diagram	2 marks	
	iii.	Blok diagram & description	3 marks	5
		Examples	2 marks	
Q.4	i.	D-Flip flop		2
Q.T	1,	Blok diagram	1 mark	_
		Characteristic table	1 mark	
	ii.	Mod-10 Synchronous Counter	1 mark	8
	11.	State diagram	2 marks	U
		Truth table	2 marks	
		Logical expression	2 marks	
		Logical diagram	2 marks	
OR	iii.	Definition of shift register	1 mark	8
		Types of shift registers with diagram	4 marks	
		Ring Counters with truth table	3 mark	
Q.5	i.	Blok diagram	1 mark	3
		Examples	2 marks	
	ii.	Register transfer language	2 marks	7
		Micro-operations	2 marks	
		Types of Micro-operations	3 marks	
OR	iii.	Evaluate $X = A*B+C*(D+E)$ using zero, one, two, and the	hree address	7
		instruction machines. 1.75 marks for each evaluation		
		(1.75 marks * 4)		
Q.6	i.	Assembly language programming	1 mark	4
		Instruction format	1 mark	
		Addressing modes	2 marks	
	ii.	Branching instructions in assembly language	1 mark	6
		Any five types with examples(1 mark * 5)	5 marks	
OR	iii.	Logical instructions in assembly language	1 mark	6
		Any five logical assembly language instructions	5 marks	
