

图神经网络在金融领域的应用

汇报人: 石逢钊(2018级直博生)

指导老师: 尚燕敏

导师:曹亚男

目录

- 背景
- 欺诈检测
 - 问题介绍
 - 类别不平衡-PC-GNN: WWW21
 - 类被不平衡-AO-GNN: WWW22
 - 异配性-AMNet:IJCA122
 - 异配性-GHRN: WWW23
- 股票预测-STHAN-SR: AAA I 21

背景

- 当前金融行业已经逐渐开始数字化进程,大量金融交易和金融事件 发生在互联网中,同时大量的传统业务被迁移到线上。由此产生了 比之前更多的金融问题。另外,随着机器学习的发展,相关技术也 被应用于金融领域之中。
- 金融行业中不同个体之间产生了大量交互信息,这些交互信息将不同个体互相关联,形成了一个个图结构,利用这些图结构能够很好的解决金融领域中的重要问题,同时图神经网络的大力发展也为解决这些问题带来了可能。

例子

欺诈检测-主要问题

- 类别不平衡。
- ●连边的异配性。
- ●数据的多元异质性。

数据的多元异质性

类别不平衡

连边的异配性

- 主要问题
 - 类别不平衡。
 - ●欺诈者伪装造成的异配边影响聚合效果。

● 模型设计

- ●任务整体被抽象为在多关系图中进行二分类的任务。
- ●包含三个部分,进行训练节点下采样的 Pick 部分,进行邻居选择的 Choose 部分,和最终实现卷积的表示学习部分

Pick

● 该部分的思想是利用下采样的方法,将训练集中的欺诈样例和正常样例通 过采样的方法使得数目相等,其采样概率为:

$$P(v) \propto \frac{\|\hat{A}(:,v)\|^2}{\mathrm{LF}(C(v))}$$

Choose

- 该部分通过下采样和上采样的方式来添加同配邻居,减少异配邻居。
- 设计邻居判别器对邻居进行判别:

$$\begin{split} \mathcal{D}_{r}^{(\ell)}(v,u) &= \left\| \mathbf{D}_{r}^{(\ell)} \left(\mathbf{h}_{v,r}^{(\ell)} \right) - \mathbf{D}_{r}^{(\ell)} \left(\mathbf{h}_{u,r}^{(\ell)} \right) \right\|_{1} \\ \mathcal{L}_{\text{dist}} &= -\sum_{\ell=1}^{L} \sum_{r=1}^{R} \sum_{v \in \mathcal{V}} \left[y_{v} \log p_{v,r}^{(\ell)} + (1 - y_{v}) \log \left(1 - p_{v,r}^{(\ell)} \right) \right] \\ p_{v,r}^{(\ell)} &= \mathbf{D}_{r}^{(\ell)} \left(\mathbf{h}_{v,r}^{(\ell)} \right) \end{split}$$

● 然后按照阈值进行下采样和上采样(上采样仅仅训练时采用):

$$\underline{\mathcal{N}_r^{(\ell)}}(v) = \left\{ u \in \mathcal{V} | A_r(v,u) > 0 \text{ and } \mathcal{D}_r^{(\ell)}(v,u) < \rho_- \right\} \quad \overline{\mathcal{N}_r^{(\ell)}}(v) = \left\{ u \in \mathcal{V} | C(u) = C(v) \text{ and } \mathcal{D}_r^{(\ell)}(v,u) < \rho_+ \right\}$$

● 聚合:采用单层GraphSage完成聚合操作

●实验结果

Method	Dataset		YelpChi		Amazon				
	Metric	F1-macro	AUC	GMean	F1-macro	AUC	GMean		
Baselines	GCN GAT DR-GCN	0.5620±0.0067 0.4879±0.0230 0.5523±0.0231	0.5983±0.0049 0.5715±0.0029 0.5921±0.0195	0.4365 ± 0.0262 0.1659 ± 0.0789 0.4038 ± 0.0742	0.6486±0.0694 0.6464±0.0387 0.6488±0.0364	0.8369±0.0125 0.8102±0.0179 0.8295±0.0079	0.5718±0.1951 0.6675±0.1345 0.5357±0.1077		
	GraphSAGE GraphSAINT	0.4405±0.1066 0.5960±0.0038	0.5439±0.0025 0.6999±0.0029	0.2589±0.1864 0.5908±0.0298	0.6416±0.0079 0.7626±0.0032	0.7589±0.0046 0.8701±0.0025	0.5949±0.0349 0.7963±0.0091		
	GraphConsis CARE-GNN	0.5870±0.0200 0.6332±0.0094	0.6983 ± 0.0302 0.7619 ± 0.0292	0.5857±0.0385 0.6791±0.0359	0.7512±0.0325 0.8990±0.0073	0.8741±0.0334 0.9067±0.1115	0.7677±0.0486 0.8962±0.0018		
Ablation	$\operatorname{PC-GNN}_{\backslash P}$ $\operatorname{PC-GNN}_{\backslash C}$	0.5136±0.0147 0.6634±0.0058	0.7844±0.0013 0.7847±0.0021	0.2336 ± 0.0356 0.6258 ± 0.0378	0.9158±0.0024 0.8929±0.0171	0.9469 ± 0.0018 0.9529 ± 0.0035	0.8782±0.0068 0.9006±0.0045		
Ours	PC-GNN	0.6300±0.0230	0.7987 ± 0.0014	0.7160 ± 0.0130	0.8956±0.0077	$0.9586 {\pm} 0.0014$	0.9030±0.0044		

- 主要问题
 - 类别不平衡。
 - ●欺诈者伪装造成的异配边影响聚合效果。

● 模型结构

- 仍将问题作为多关系图上的二分类来做。
- ●模型分为两部分:一部分是用于分类的GNN模型,另一部分则是边切除策略器。

- 基本分类模型
 - 本文采用了类GraphSage的模型作为基本模型进行节点嵌入的生成:

$$\begin{aligned} \mathbf{H}_{\mathbf{v},k}^{(l+1)} &= \frac{1}{|N_k(\mathbf{v})|} \sum_{u \in N_k(\mathbf{v})} \mathbf{H}_u^{(l)}, \\ \mathbf{H}_{\mathbf{v}}^{(l+1)} &= \sigma(W^{(l)}(\mathbf{H}_{\mathbf{v}}^{(l)} \oplus \mathbf{H}_{\mathbf{v},1}^{(l+1)} \oplus \cdots \oplus \mathbf{H}_{\mathbf{v},r}^{(l+1)})). \end{aligned}$$

●本文对不平衡训练的修改主要是修改了训练的loss,不再使用交叉熵,而 是最大化AOC值:

$$\max_{\boldsymbol{\omega},\boldsymbol{\Pi}} \; \mathbb{E}_{\mathbf{v},\mathbf{v}'}(\mathbb{I}(\mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega};\mathbf{v}|\boldsymbol{\Pi}) \geq \mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega};\mathbf{v}'|\boldsymbol{\Pi}))|y_{\mathbf{v}} = 1, \, y_{\mathbf{v}'} = 0)$$

$$\min_{\boldsymbol{\omega} \in \mathbb{R}^d, \{a,b\} \in \mathbb{R}^2} \max_{\alpha \in \mathbb{R}} E_{\mathbf{v}}[\mathcal{L}_{AUC}(\boldsymbol{\omega}, a, b, \alpha, \mathbf{v}|\boldsymbol{\Pi}|p)], \tag{9}$$

where p is the ratio of fraud nodes, and

$$\mathcal{L}_{AUC}(\boldsymbol{\omega}, a, b, \alpha, \mathbf{v}|\boldsymbol{\Pi}, p) = \mathbb{I}(y = 1)[(1 - p)(\mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega}; \mathbf{v}|\boldsymbol{\Pi}) - a)^{2}$$

$$+ 2(p - 1)(1 + \alpha)\mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega}; \mathbf{v}|\boldsymbol{\Pi})]$$

$$+ \mathbb{I}(y = 0)[p(\mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega}; \mathbf{v}|\boldsymbol{\Pi}) - b)^{2}$$

$$+ 2p(1 + \alpha)\mathcal{M}_{\mathcal{G}}(\boldsymbol{\omega}; \mathbf{v}|\boldsymbol{\Pi})] + p(1 - p)\alpha^{2}.$$

●边切除策略器

- 该部分将连边的剪除当作是一个马尔可夫决策过程(MDP), 然后每次针对某个节点的某条边来判定该条连边是否保留。显然这是个强化学习过程。
- 在整个过程中,模型使用一个训练一个策略选择器来判断是否保留某条边, 采用已训练的GNN模型来给出每次判断的reward。

$$\mathbf{H}_{v,i}^{\Phi_{\mathbf{v}_c}} = \frac{1}{|\phi_i^{\mathbf{v}_c}|} \sum_{u \in |\phi_i^{\mathbf{v}_c}|} X_u,$$

$$\mathbf{E}_s = X_{\mathbf{v}_p} \oplus \mathbf{H}_{\mathbf{v}_c}^{(l)} \oplus \mathbf{H}_{\mathbf{v}_p}^{(l)} \oplus \mathbf{H}_{\mathbf{v},1}^{\Phi_{\mathbf{v}_c}} \oplus \cdots \oplus \mathbf{H}_{\mathbf{v},r}^{\Phi_{\mathbf{v}_c}}$$

$$\boldsymbol{\pi}_i(a = 1|s) = \operatorname{Sigmoid}(\operatorname{MLP}(\mathbf{E}_s))$$

●实验结果

Method	Dataset		YelpChi			Amazon		Books			
Method	Metric	AUC	F1-macro	GMean	AUC	F1-macro	GMean	AUC	F1-macro	GMean	
	GCN	0.5983±0.0049	0.5620±0.0067	0.4365±0.0262	0.8369±0.0125	0.6408±0.0694	0.5718±0.1951	0.4538±0.1977	0.2374±0.2065	0.0000±0.0000	
	GAT	0.5715±0.0029	0.4879±0.0230	0.1659±0.0789	0.8102±0.0179	0.6464±0.0387	0.6675±0.1345	0.4006±0.2023	0.2058±0.1623	0.0000±0.0000	
	GraphSAGE	0.5439±0.0025	0.4405±0.1066	0.2589±0.1864	0.7589±0.0046	0.6416±0.0079	0.5949±0.0349	0.4761±0.1508	0.2464±0.2004	0.0000±0.0000	
Baselines	DR-GCN	0.5921±0.0195	0.5523±0.0231	0.4038±0.0742	0.8295±0.0079	0.6488±0.0364	0.7963±0.0091	0.5131±0.1579	0.3048±0.2454	0.0000±0.0000	
	GraphConsis	0.6983±0.0302	0.5870±0.0200	0.5857±0.0385	0.8741±0.0334	0.7512±0.0325	0.7677±0.0486	0.5647±0.1281	0.2912±0.1325	0.0000±0.0000	
	CARE-GNN	0.7619±0.0292	0.6332±0.0094	0.6791±0.0359	0.9067±0.0112	0.8990±0.0073	0.8962±0.0018	0.6267±0.0462	0.4050±0.0996	0.4861±0.0811	
	PC-GNN	0.8178±0.0014	0.6400±0.0230	0.7395±0.0130	0.9586±0.0014	0.8956±0.0077	0.9030±0.0044	0.6431±0.0189	0.4951±0.0037	0.5244±0.1012	
	AO-GNN _{woP}	0.8680±0.0020	0.7182±0.0177	0.7484±0.0125	0.9588±0.0008	0.8956±0.0026	0.8740±0.0137	0.6720±0.0111	0.4131±0.0102	0.4829±0.0519	
Ablation	AO-GNN _{woC}	0.8545±0.0177	0.7063±0.0129	0.7305±0.0241	0.9392±0.0166	0.8914±0.0041	0.8828±0.0267	0.5821±0.1397	0.2901±0.2102	0.3711±0.1919	
	AO - GNN_{R-P}	0.8302±0.0286	0.6936±0.0351	0.7192±0.0586	0.9197±0.0238	0.8827±0.0135	0.8602±0.0164	0.5604±0.1733	0.2845±0.2329	0.3068±0.1240	
Ours	AO-GNN	0.8805±0.0008	0.7042±0.0051	0.8134±0.0232	0.9640±0.0020	0.8921±0.0045	0.9096±0.0105	0.7174±0.0158	0.5503±0.0141	0.6127±0.0252	

- 主要问题
 - ●欺诈用户与正常用户在图上所表现的特征频率是不同的。
 - 能否通过自适应地融合不同频率的特征来识别欺诈者

- 模型设计
 - 模型是在一张图上做的二分类任务。
 - ●模型包括两个部分:一部分是频率学习器,一部分是频率信号融合。

- 频率学习器
 - ●该部分利用Bernstein多项式来分别学习欺诈节点和正常节点的频谱信号:

$$Z_{k} = \sum_{m=0}^{M} \theta_{m} \frac{1}{2^{m}} {M \choose m} (2 - L)^{M-m} L^{m} f(X)$$

● 为了使得模型学到对应的频率,添加loss:

$$\mathcal{L}_{a} = \sum_{i} max \left(0, r_{i} \left(\alpha_{L}^{i} - \alpha_{H}^{i} \right) + \zeta \right)$$

● 频率特征融合

$$\omega_k^i = \mathbf{q}^T \cdot \tanh\left(\mathbf{W}^Z \mathbf{z}_k^{iT} + \mathbf{W}^X \mathbf{x}_i\right)$$

$$\alpha_k^i = \operatorname{softmax}\left(\omega_k^i\right) = \frac{\exp\left(\omega_k^i\right)}{\sum_k \exp\left(\omega_k^i\right)}$$

$$\mathbf{Z} = \sum_k \alpha_k \mathbf{Z}_k$$

●实验结果

	Dataset	aset Yelp		Elli	ptic	Fir	nV	TeleCom		
Methods		AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	
Graph Neural Networks										
GCN		$ 70.97 \pm 0.8 $	29.93 ± 0.6	84.57 ± 0.4	33.17 ± 0.3	64.64 ± 1.1	9.04 ± 0.3	76.69 ± 1.2	59.85 ± 1.2	
GAT		74.68 ± 1.3	35.44 ± 1.1	86.03 ± 1.5	56.81 ± 0.9	65.97 ± 1.5	9.44 ± 0.2	79.15 ± 1.8	64.43 ± 0.5	
GraphSAGE	3	73.65 ± 0.8	36.11 ±0.7	85.28 ± 2.1	55.29 ± 1.3	72.13 ± 1.9	16.54 ± 0.9	76.02 ± 1.2	64.07 ± 0.7	
GIN		68.50 ± 1.3	31.22 ± 1.3	85.11 ± 1.3	37.34 ± 1.3	67.44 ± 1.3	20.02 ± 1.3	76.51 ± 1.3	59.48 ± 1.3	
			GNN-b	ased Graph Aı	nomaly Detect	ion Models				
DOMINAN	T	49.32 ± 0.8	15.58 ± 0.3	16.21 ± 0.3	5.48 ± 0.1	64.59 ± 1.1	8.28 ± 0.3	55.43 ± 0.7	15.68 ± 0.3	
GeniePath		75.89 ± 1.8	35.86 ± 0.5	83.14 ± 1.3	44.37 ± 0.8	72.27 ± 1.2	18.43 ± 0.7	83.73 ± 0.7	64.25 ± 0.3	
GraphConsi	s	70.40 ± 1.3	27.02 ± 0.8	86.14 ± 1.1	62.04 ± 1.2	72.82 ± 1.2	27.07 ± 1.0	77.91 ± 1.5	61.82 ± 0.5	
CARE-GNN	1	78.41 ± 1.5	38.90 ± 1.1	85.84 ± 1.2	49.81 ± 1.2	70.31 ± 1.8	23.61 ± 0.3	81.02 ± 0.7	68.06 ± 1.6	
AMNet		85.85 ± 1.1	57.77 ± 0.9	88.52 ± 1.0	74.62 ± 1.4	78.38 ± 1.8	29.31 ± 0.8	87.62 ± 1.3	75.18 ± 0.9	

- 主要问题
 - ●本文期望能够消除类间的连边从而实现更好地欺诈检测

● 模型设计

- ●本文核心即是设计一个删除类间连边的方法,尽可能减少异配边,从而在 生成的新图上面重新训练模型,从而实现更好地分类。
- 其删除连边的基准便是: 正常节点的类间连边往往很少, 而欺诈节点的类间连边往往很多, 依据与邻居的差异性既可以判别是否为类间连边

	normal	anomaly	heterophily of the graph
YelpChi	0.1317	0.8144	0.2268
Amazon	0.0234	0.9254	0.0456
T-Finance	0.0150	0.5280	0.0292
T-Social	0.2366	0.9161	0.3761

- 邻居差异性计算公式
 - Post-aggregation (PA) score: $S = \hat{L}Y$ $\mathbb{P}: S_i = SIGN * [\frac{d_i}{d_i+1}hetero(i), -\frac{d_i}{d_i+1}hetero(i)]$
 - 由上式可得:

$$S_{v \in \mathcal{V}_a} \cdot S_{v \in \mathcal{V}_a} > S_{v \in \mathcal{V}_n} \cdot S_{v \in \mathcal{V}_n} > 0 > S_{v \in \mathcal{V}_a} \cdot S_{v \in \mathcal{V}_n}$$

● 由于测试集合是不知道标签的,因此用伪标签代替:

$$\hat{\mathbf{Y}}_v = \begin{cases} [1 - \triangle_v, \triangle_v], y_v = 0\\ [\triangle_v, 1 - \triangle_v], y_v = 1 \end{cases}$$

- 最后可得到计算的整体方法: $E = L\hat{Y}\hat{Y}^TL^T$
- 类间边删除
 - 在得到E之后按照E中的值删除其最小的K个得到新的图。
 - 然后让模型在新图中重新运行,得到最终结果。

●实验结果

Method	Dataset	YelpC	Chi	Amazon		T-finance		T-Social	
Method	Metric	F1-Macro	AUC	F1-Macro	AUC	F1-Macro	AUC	F1-Macro	AUC
	MLP	0.4614	0.7366	0.9010	0.9082	0.4883	0.8609	0.4406	0.4923
	GCN [17]	0.5157	0.5413	0.5098	0.5083	0.5254	0.8203	0.6550	0.7012
Homophilous GNNs	GAT [36]	0.4614	0.5459	0.5675	0.7731	0.8816	0.9388	0.4921	0.4923
	JKNet [43]	0.5805	0.7736	0.8270	0.8970	0.8971	0.9554	0.4923	0.7226
	JK-GHRN (Ours)	0.6145	0.7765	0.8756	0.9206	0.9015	0.9559	0.4923	0.7016
	CARE-GNN [12]	0.5015	0.7300	0.6313	0.8832	0.6115	0.8731	0.4868	0.7939
GAD Models	PC-GNN [23]	0.6925	0.8118	0.8367	0.9555	0.5322	0.9182	0.4536	0.8917
	PC-GHRN (Ours)	0.7082	0.8230	0.8855	0.9519	0.6177	0.9238	0.6218	0.9035
	H2GCN [49]	0.6575	0.8406	0.9213	0.9693	0.8824	0.9553	-	-
	MixHop [1]	0.6534	0.8796	0.8093	0.9723	0.4880	0.9569	0.6471	0.9597
Heterophilious GNNs	GPRGNN [8]	0.6423	0.8355	0.8059	0.9358	0.8507	0.9642	0.5976	0.9722
	BWGNN(Homo) [35]	0.6935	0.8255	0.9194	0.9395	0.8899	0.9599	0.9145	0.9630
	BHomo-GHRN (Ours)	0.7532	0.8631	0.9203	0.9609	0.8975	0.9609	0.9118	0.9637
	BWGNN(Hetero) [35]	0.7568	0.8967	0.9204	0.9706	-	-	-	-
	BHetero-GHRN (Ours)	0.7789	0.9073	0.9282	0.9728	-	-	-	-

● 主要问题

- 现有的股票预测方法未能将收益作为直接的评价标准
- 现有方法未能考虑股票之间的关联性对股票整体的影响。

Stocks:	S_1	S_2	S_3	S_4	Daufauman an	Profit(\$)		
Returns Ground Truth	+50 🕇	+30 🕇	-10 🖊	-35 ₹	Performance	Top-1 Stock buy-hold-sell		
Predicted return / R1	60	10	10	-45	250 s	<i>50</i> ↑		
(Regression Methods) R ₂	25	35	-10	-40	168↓ ਨੂੰ	30		
Probability of change in return C1	↓ 0.6	↑0.85	↓ 0.55	₹0.8	75%↑ ខ្ពុំ	30		
(Classification Methods) C2	10.8 ♦	↓ 0.7	↑0.65	↓ 0.75	50% racy	<i>50</i> ↑		

● 模型架构

- ●模型整体分为两部分:一是特征提取部分,而是超图卷积生成节点表示部分。
- ●模型按照每次交易的收益大小来最终输出每支股票的rank排名,从而得出 推荐的股票。

- 特征提取部分
 - 首先模型提取了T次交易的特征作为初始特征,每个特征有五维,分别是股票在该时刻1天,5天,10天,20天,1个月的回报率。
 - ●然后使用LSTM进行特征提取。
 - ●之后采用时序attention+Hawkes Attention的方式将T次的交易特征融合为1.

$$\zeta(\overline{h}_t) = \sum_{\tau} \lambda_{\tau}, \ \lambda_{\tau} = \beta_{\tau} h_{\tau}, \ \beta_{\tau} = \frac{\exp\left(h_{\tau}^T W \overline{h}_t\right)}{\sum_{\tau} \exp\left(h_{\tau}^T W \overline{h}_t\right)}$$

$$z_t = \sum_{\tau=0, \Delta t_{\tau} > 0} \left(\lambda_{\tau} + \epsilon \max(\lambda_{\tau}, 0) e^{-\gamma \Delta t_{\tau}} \right)$$

●超图卷积

- ●在这里模型设计了两类超图,一是如果两只股票属于统一企业就构成一条超边,由此构造第一个超图,二是通过Wiki中的数据来构造超图,即Wiki中显示两只股票有1-hop或2-hop关系则分别构造超图,这样就构造了三张超图。
- 然后分别在三张超图上做超图卷积生成表示,最后将其拼接融合,与传统的超图卷积不同的是它在进行节点特征生成时采用了attention机制。

●实验结果

	Model	Description	NASDAQ		NYSE		TSE	
	Model	Description		IRR↑	SR↑	IRR↑	SR↑	IRR↑
	ARIMA (Wang and Leu 1996)	Non-stationary time series modeling of prices	0.55	0.10	0.33	0.10	0.47	0.13
	A-LSTM (Feng et al. 2019a)	Adversarial training to enhance stock prediction	0.97	0.23	0.81	0.14	1.10	0.43
CLF	HGCluster (Luo et al. 2014)	Graph coarsening on price correlation hypergraph	0.06	0.10	0.10	0.11	0.20	0.10
	GCN (Li et al. 2020)	LSTM+GCN for modelling stock relation graph	0.75	0.13	0.70	0.10	0.90	0.28
HATS (Kim et al. 2019)		Hierarchical graph attention on stock multigraphs		0.15	0.73	0.12	0.96	0.31
REG	SFM (Zhang et al. 2017)	Frequency-aware LSTM on price data	0.16	0.09	0.19	0.11	0.08	0.07
KEG	LSTM (Bao et al. 2017)	Vanilla LSTM on temporal price data	0.48	0.13	0.13	0.09	0.63	0.20
DI	DQN (Carta et al. 2020)	Ensemble of deep Q-learning agents on price data	0.93	0.20	0.72	0.12	1.08	0.31
RL	iRDPG (Liu et al. 2020)	Imitative RDPG algorithm on temporal price data	1.32	0.28	0.85	0.18	1.10^{\dagger}	0.55^\dagger
	LSTM (Bao et al. 2017)	Vanilla LSTM on temporal price data for ranking	0.95	0.22	0.79	0.12	0.73	0.21
DAN	GCN (Kipf et al. 2016)	LSTM+GCN for modelling stock relation graph	0.46	0.13	0.72	0.16	0.81	0.27
RAN	RSR-E (Feng et al. 2019b)	Temporal GCN using similarity as relation weight	1.12	0.26	0.88	0.20	1.07	0.50
	RSR-I (Feng et al. 2019b)	Temporal GCN with neural net for relation weight	1.34*	0.39^{*}	0.95^*	0.21^*	1.08	0.53
	STHAN-SR (Ours)	Hawkes Attention, HG Attention, HG Convolution	$1.42^{*\dagger}$	$0.44^{*\dagger}$	$1.12^{*\dagger}$	$0.33^{*\dagger}$	$\boldsymbol{1.19^{*\dagger}}$	$0.62^{*\dagger}$

后续讨论班介绍

- ●第一周:图神经网络在金融领域的应用-石逢钊
- ●第二周:图神经网络赋能的知识图谱研究与应用-刘 瑜
- ●第三周:图网络在生物化学领域的应用-周玉晨
- ●第四周:图网络在社会网络中的应用-宋传承
- ●第五周:图神经网络在推荐系统中的应用-吴咏萱