Geometry of curved Yang-Mills-Higgs gauge theories

Simon-Raphael Fischer

30 June 2021

Table of contents

- Curved Yang-Mills-Higgs gauge theory
 - Motivation
 - Mathematical basics
 - Curved Yang-Mills-Higgs gauge theory
- 2 Infinitesimal gauge transformation
 - Sketch of definition
 - Curvature
- Field Redefinition
 - General definition
 - Lie algebra bundles
 - Tangent bundles

Infinitesimal gauge theory

Motivation

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of E & E -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of $\nabla^0,$ and ∇ may not be flat.

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T}N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{E} = f[\mu, \nu]_{E} + \mathcal{L}_{\rho(\mu)}(f) \nu$$
 (1)

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

• E = TN, $\rho = 1_{TN}$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T} N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{\mathcal{E}} = f[\mu, \nu]_{\mathcal{E}} + \mathcal{L}_{\rho(\mu)}(f) \ \nu \tag{1}$$

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = 1_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

Definition (Lie algebroids)

Let $E \to N$ be a vector bundle. Then E is a Lie algebroid, if there is a bundle map $\rho: E \to \mathrm{T} N$, called the **anchor**, and a Lie algebra structure on $\Gamma(E)$ with Lie bracket $[\cdot,\cdot]_E$ satisfying

$$[\mu, f\nu]_{E} = f[\mu, \nu]_{E} + \mathcal{L}_{\rho(\mu)}(f) \nu$$
 (1)

for all $f \in C^{\infty}(N)$ and $\mu, \nu \in \Gamma(E)$.

Example

- E = TN, $\rho = 1_{TN}$
- E a bundle of Lie algebras, $\rho = 0$

Mathematical basics

As for an action $\gamma: \mathfrak{g} \to \mathfrak{X}(N)$ we have:

Proposition (Anchor as homomorphism)

 $\rho: \Gamma(E) \to \mathfrak{X}(N)$ is a homomorphism of Lie algebras.

The classical formalism will correspond to:

Proposition (Action Lie algebroids)

Let $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$ be a Lie algebra with a \mathfrak{g} -action γ on N. Then there is a **unique** Lie algebroid structure on $E := N \times \mathfrak{g}$ as a vector bundle over N such that

$$\rho(\nu) = \gamma(\nu),\tag{2}$$

$$[\mu,\nu]_{\mathcal{E}} = [\mu,\nu]_{\mathfrak{g}} \tag{3}$$

for all constant sections $\mu, \nu \in \Gamma(E)$.

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections as lift of $ ho$
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

 \leadsto E-connections similar to vector bundle connections but Leibniz rule along $\rho,$ i.e. only lifting vector fields in the image of ρ

 \leadsto E--connections similar to vector bundle connections but Leibniz rule along $\rho\text{, }\textit{i.e.}$ only lifting vector fields in the image of ρ

Mathematical basics

Example (*E*-connection ${}^{E}\nabla$ on V)

 ∇' a vector bundle connection on $V \to N$, then

$${}^{E}\nabla_{\nu}v := \nabla'_{\rho(\nu)}v \tag{4}$$

for all $\nu \in \Gamma(E)$ and $\nu \in \Gamma(V)$. In short denoted by ∇'_{ρ} .

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_{X} \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Test this with trivial bundles and canonical flat connection ∇^0 . i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

For ∇ a connection on E we have the **basic connection** given as a pair of E-connections on E and on TN by

$$\nabla_{\nu}^{\text{bas}} \mu := [\nu, \mu]_{\mathcal{E}} + \nabla_{\rho(\mu)} \nu, \tag{5}$$

$$\nabla_{\nu}^{\text{bas}} X := [\rho(\nu), X] + \rho(\nabla_{X} \nu) \tag{6}$$

for all $X \in \mathfrak{X}(N)$ and $\nu, \mu \in \Gamma(E)$.

Remarks (Encoding of Lie algebra representations)

Test this with trivial bundles and canonical flat connection ∇^0 . i.e. $E = N \times \mathfrak{q}$ and $\nabla^0 \nu = 0$ for constant sections ν .

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** $R^{\mathrm{bas}}_{\nabla}$ is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* \mathcal{N} \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

Proposition

We recover the curvature of the basic connection.

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
 (8)

Definition (Basic curvature)

Let ∇ be a connection on E. The **basic curvature** $R^{\mathrm{bas}}_{\nabla}$ is defined as an element of $\Gamma\left(\bigwedge^2 E^* \otimes \mathrm{T}^* \mathcal{N} \otimes E\right)$ by

$$R_{\nabla}^{\text{bas}}(\mu,\nu)X := \nabla_X([\mu,\nu]_E) - [\nabla_X\mu,\nu]_E - [\mu,\nabla_X\nu]_E - \nabla_{\nabla_{\nu}^{\text{bas}}X}\mu + \nabla_{\nabla_{\mu}^{\text{bas}}X}\nu, \tag{7}$$

where $\mu, \nu \in \Gamma(E)$ and $X \in \mathfrak{X}(N)$.

Proposition

We recover the curvature of the basic connection:

$$R_{\nabla^{\text{bas}}} = \begin{cases} -R_{\nabla}^{\text{bas}}(\cdot, \cdot) \circ \rho, & \text{on } E, \\ -\rho \circ R_{\nabla}^{\text{bas}}, & \text{on } TN. \end{cases}$$
 (8)

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Curved Yang-Mills-Higgs gauge theory

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Minimal coupling)

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := D\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Definition (Space of fields)

Fields are a pair consisting of:

- Higgs field $\Phi \in C^{\infty}(M; N)$
- Field of gauge bosons $A \in \Omega^1(M; \Phi^*E)$

Definition (Minimal coupling)

Minimal coupling \mathfrak{D} , $(\Phi, A) \mapsto \mathfrak{D}(\Phi, A) \in \Omega^1(M; \Phi^*TN)$, by

$$\mathfrak{D}(\Phi, A) := \mathfrak{D}^A \Phi := \mathrm{D}\Phi - (\Phi^* \rho)(A), \tag{9}$$

where $D\Phi : TM \to TN$ is the tangent map.

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \, \hat{,} \, A), \tag{10}$$

where $t_{\nabla^{\text{bas}}}$ is the torsion of ∇^{bas} on E and $d^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Definition (Field strength)

Let ∇ be a connection on E. We define the **field strength** F, $(\Phi, A) \mapsto F(\Phi, A) \in \Omega^2(M; \Phi^*E)$, by

$$F(\Phi, A) := \mathrm{d}^{\Phi^* \nabla} A + \frac{1}{2} (\Phi^* t_{\nabla^{\mathrm{bas}}}) (A \stackrel{\wedge}{,} A), \tag{10}$$

where $t_{\nabla^{\text{bas}}}$ is the torsion of ∇^{bas} on E and $d^{\Phi^*\nabla}$ the exterior covariant derivative of $\Phi^*\nabla$.

Definition (Generalised field strength)

Let ζ be an element of $\Omega^2(N; E)$, then we define the **generalised field strength** G by

$$G(\Phi, A) := F(\Phi, A) + \frac{1}{2} (\Phi^* \zeta) \Big(\mathfrak{D}^A \Phi \, \hat{,} \, \mathfrak{D}^A \Phi \Big). \tag{11}$$

Definition (Curved Yang-Mills-Higgs (CYMH) Lagrangian)

Let κ be a fibre metric on E, then the **curved Yang-Mills-Higgs** Lagrangian $\mathfrak{L}_{\mathrm{CYMH}}$, $(\Phi, A) \mapsto \mathfrak{L}_{\mathrm{CYMH}}(\Phi, A) \in \Omega^{\dim(M)}(M)$, is defined by

$$\mathfrak{L}_{\text{CYMH}}(\Phi, A) := -\frac{1}{2} (\Phi^* \kappa) (G(\Phi, A) \, \hat{\,} \, *G(\Phi, A)) \\
+ (\Phi^* g) \Big(\mathfrak{D}^A \Phi \, \hat{\,} \, *\mathfrak{D}^A \Phi \Big) - *(\Phi^* \mathcal{V}), \quad (12)$$

where * is the Hodge star operator related to the spacetime metric η .

Definition (CYMH GT)

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathcal{L}_{\rho}\mathcal{V}=0,\tag{17}$$

then we say that we have a **curved Yang-Mills-Higgs gauge theory**.

We say that we have a **pre-classical gauge theory**, if ∇ is flat.

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\rm bas} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathcal{L}_{\rho}\mathcal{V}=0,\tag{17}$$

then we say that we have a curved Yang-Mills-Higgs gauge theory.

We say that we have a **pre-classical gauge theory**, if ∇ is flat.

If we have additionally $\zeta \equiv 0$, then we say that we have a classical gauge theory.

Assume we have additionally the compatibility conditions

$$R_{\nabla} + \mathrm{d}^{\nabla^{\mathrm{bas}}} \zeta = 0, \tag{13}$$

$$R_{\nabla}^{\text{bas}} = 0, \tag{14}$$

$$\nabla^{\rm bas} \kappa = 0, \tag{15}$$

$$\nabla^{\rm bas} g = 0, \tag{16}$$

$$\mathcal{L}_{\rho}\mathcal{V}=0,\tag{17}$$

then we say that we have a curved Yang-Mills-Higgs gauge theory.

We say that we have a **pre-classical gauge theory**, if ∇ is flat. If we have additionally $\zeta \equiv 0$, then we say that we have a **classical** gauge theory.

Curved Yang-Mills-Higgs gauge theory

$\Phi^*E \qquad (E, [\cdot, \cdot]_E, \kappa, \nabla) \leftarrow \zeta \in \Omega^2$

→ Together with the compatibility conditions we will have gauge invariance, that is,

$$\delta_{\varepsilon} \mathfrak{L}_{\text{CYMH}} = 0,$$
 (18)

but how to define the infinitesimal gauge transformation δ_{ε} ?

Curved Yang-Mills-Higgs gauge theory

Summary

→ Together with the compatibility conditions we will have gauge invariance, that is,

$$\delta_{\varepsilon} \mathfrak{L}_{\text{CYMH}} = 0,$$
 (18)

but how to define the infinitesimal gauge transformation δ_{ε} ?

Definition of infinitesimal gauge transformation $\delta_{\varepsilon}L$ for functionals L, where W is a vector space and $V \to N$ a vector bundle:

	Classical	CYMH GT
ε	$\varepsilon\in C^{\infty}(M;\mathfrak{g})$	$(\Phi, A) \mapsto \varepsilon(\Phi, A) \in \Gamma(\Phi^*E)$
$(\delta_{\varepsilon}\Phi,\delta_{\varepsilon}A)$	Vector fiel	d $\Psi_arepsilon$ on $\{(\Phi,A)\}$
L	$L(\Phi, A) \in \Omega^{\bullet}(M; W)$	$L(\Phi, A) \in \Omega^{\bullet}(M; \Phi^*V)$
$\delta_{arepsilon}$	Derivation	as lift of $\Psi_{arepsilon}$ with:
	canon. flat conn. ∇^0	E -connection ${}^E abla$
	on $M \times W$	on V

Definition of infinitesimal gauge transformation $\delta_{\varepsilon}L$ for functionals L, where W is a vector space and $V \to N$ a vector bundle:

	Classical	CYMH GT
ε	$\varepsilon\in C^{\infty}(M;\mathfrak{g})$	$(\Phi,A)\mapsto \varepsilon(\Phi,A)\in\Gamma(\Phi^*E)$
$(\delta_{arepsilon}\Phi,\delta_{arepsilon}A)$	Vector fie	Id $\Psi_{arepsilon}$ on $\{(\Phi,A)\}$
L	$L(\Phi, A) \in \Omega^{\bullet}(M; W)$	$L(\Phi,A)\in\Omega^{ullet}(M;\Phi^*V)$
$\delta_arepsilon$	Derivation	as lift of $\Psi_arepsilon$ with:
	canon. flat conn. $ abla^0$	E -connection ${}^E abla$
	on $M \times W$	on V

Definition of infinitesimal gauge transformation $\delta_{\varepsilon}L$ for functionals L, where W is a vector space and $V \to N$ a vector bundle:

	Classical	CYMH GT
ε	$\varepsilon\in C^{\infty}(M;\mathfrak{g})$	$(\Phi,A)\mapsto \varepsilon(\Phi,A)\in\Gamma(\Phi^*E)$
$(\delta_{arepsilon}\Phi,\delta_{arepsilon}A)$	Vector fie	Id $\Psi_{arepsilon}$ on $\{(\Phi,A)\}$
L	$L(\Phi, A) \in \Omega^{\bullet}(M; W)$	$L(\Phi,A)\in\Omega^{ullet}(M;\Phi^*V)$
$\delta_arepsilon$	Derivation	as lift of $\Psi_arepsilon$ with:
	canon. flat conn. $ abla^0$	E -connection ${}^E abla$
	on $M \times W$	on V

- We also write $\delta_{\varepsilon}^{E\nabla} := \delta_{\varepsilon}$.
- What about: $[\delta_{\varepsilon}, \delta_{\vartheta}] = \delta_{\varepsilon} \delta_{\vartheta} \delta_{\vartheta} \delta_{\varepsilon}$?

Definition of infinitesimal gauge transformation $\delta_{\varepsilon}L$ for functionals L, where W is a vector space and $V \to N$ a vector bundle:

	Classical	CYMH GT
ε	$\varepsilon\in C^{\infty}(M;\mathfrak{g})$	$(\Phi, A) \mapsto \varepsilon(\Phi, A) \in \Gamma(\Phi^*E)$
$(\delta_{arepsilon}\Phi,\delta_{arepsilon}A)$	Vector fie	ld $\Psi_arepsilon$ on $\{(\Phi,A)\}$
L	$L(\Phi, A) \in \Omega^{\bullet}(M; W)$	$L(\Phi, A) \in \Omega^{ullet}(M; \Phi^*V)$
$\delta_arepsilon$	Derivation	as lift of $\Psi_{arepsilon}$ with:
	canon. flat conn. $ abla^0$	E -connection ${}^E abla$
	on $M \times W$	on V

- We also write $\delta_{\varepsilon}^{^{E}\nabla} \coloneqq \delta_{\varepsilon}$.
- What about: $[\delta_{\varepsilon}, \delta_{\vartheta}] = \delta_{\varepsilon} \delta_{\vartheta} \delta_{\vartheta} \delta_{\varepsilon}$?

Theorem (Curvature of δ , [S.-R. F.])

Let ${}^E\nabla$ be a flat E-connection on V, and ∇ a connection on E such that $R^{\rm bas}_{\nabla}=0$. Then

$$\left[\delta_{\varepsilon}^{\mathsf{E}\nabla}, \delta_{\vartheta}^{\mathsf{E}\nabla}\right] = -\delta_{\llbracket\varepsilon, \vartheta\rrbracket}^{\mathsf{E}\nabla} \tag{19}$$

where $\llbracket \cdot, \cdot
rbracket$ is a Lie bracket given by

$$\begin{split}
\llbracket \varepsilon, \vartheta \rrbracket |_{(\Phi, A)} &:= \left. \left(\delta_{\vartheta}^{\nabla^{\text{bas}}} \varepsilon - \delta_{\varepsilon}^{\nabla^{\text{bas}}} \vartheta \right) \right|_{(\Phi, A)} \\
&- \left. \left(\Phi^* t_{\nabla^{\text{bas}}} \right) \left(\varepsilon(\Phi, A), \vartheta(\Phi, A) \right).
\end{split} \tag{20}$$

Motivation

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Motivation

- Are there CYMH GTs which are neither pre-classical nor classical?
- Difficulty: There is an equivalence relation of CYMH GTs keeping the same Lagrangian and preserving the physics, possibly turning theories into (pre-)classical ones.

This was provided by Edward Witten in a private communication with Thomas Strobl about a specific example of a CYMH GT.

Definition (Field redefinition, [S.-R. F.])

Let $\lambda \in \Omega^1(N; E)$ such that $\Lambda := \mathbb{1}_E - \lambda \circ \rho$ is an automorphism of E. We then define the **field redefinitions** by

$$\widetilde{A}^{\lambda} := (\Phi^* \Lambda)(A) + \Phi^! \lambda,$$
 (21)

$$\widetilde{\nabla}^{\lambda} := \nabla + \left(\Lambda \circ d^{\nabla^{\text{bas}}} \circ \Lambda^{-1} \right) \lambda,$$
 (22)

$$\widetilde{\kappa}^{\lambda} := \kappa \circ \left(\Lambda^{-1}, \Lambda^{-1} \right),$$
(23)

$$\widetilde{g}^{\lambda} := g \circ (\widehat{\Lambda}^{-1}, \widehat{\Lambda}^{-1}),$$
(24)

where $\widehat{\Lambda} := \mathbb{1}_{TN} - \rho \circ \lambda$, and for all $X, Y \in \mathfrak{X}(N)$ we have

$$\widetilde{\zeta}^{\lambda}(\widehat{\Lambda}(X), \widehat{\Lambda}(Y))
= \Lambda(\zeta(X, Y)) - \left(d^{\widetilde{\nabla}^{\lambda}}\lambda\right)(X, Y) + t_{\widetilde{\nabla}^{\lambda}_{\rho}}(\lambda(X), \lambda(Y)).$$
(25)

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\bullet \ \widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\bullet \ \widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Example (Lie algebra bundles (LABs))

• E=K an LAB $(\rho\equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_K\in \Gamma\left(\bigwedge^2K^*\otimes K\right)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Example (Lie algebra bundles (LABs))

• E = K an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_K \in \Gamma(\bigwedge^2 K^* \otimes K)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities

 \bullet κ needs to be ad-invariant

Example (Lie algebra bundles (LABs))

• E = K an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_K \in \Gamma(\bigwedge^2 K^* \otimes K)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_Y([\mu,\nu]_K) = [\nabla_Y\mu,\nu]_K + [\mu,\nabla_Y\nu]_K, \qquad (26)$$

$$R_\nabla(Y,Z)\mu = [\zeta(Y,Z),\mu]_K \qquad (27)$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(K)$.

Example (Lie algebra bundles (LABs))

• E = K an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_K \in \Gamma(\bigwedge^2 K^* \otimes K)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{K}) = [\nabla_{Y}\mu,\nu]_{K} + [\mu,\nabla_{Y}\nu]_{K}, \tag{26}$$

$$R_{\nabla}(Y,Z)\mu = [\zeta(Y,Z),\mu]_{K} \tag{27}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(K)$.

Lie algebra bundles

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta, \tag{28}$$

and $d^{\nabla}\zeta$ has values in the centre of K.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\tilde{\zeta}^{\lambda} = 0$.

Infinitesimal gauge transformation

Starting with a classical theory:

If $\dim(N) > 3$ and if Lie algebra g has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $d^{\nabla}\zeta \neq 0$.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{K} \circ \zeta$ it may still be that ∇ becomes flat.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{K} \circ \zeta$ it may still be that ∇ becomes flat.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of K and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof

Recal

$$\nabla_{Y}([\mu,\nu]_{K}) = [\nabla_{Y}\mu,\nu]_{K} + [\mu,\nabla_{Y}\nu]_{K},$$

$$R_{\nabla}(Y,Z)\mu = [\zeta(Y,Z),\mu]_{K},$$

$$\tilde{\nabla}_{Y}^{\lambda}\mu = \nabla_{Y}\mu - [\lambda(Y),\mu]_{K},$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(K)$. Then insert μ with values in the centre.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of K and induces a differential d^Ξ on centre-valued forms. Moreover, d^Ξ is independent of the field redefinitions.

Sketch of proof.

Recall

$$\nabla_{Y}([\mu,\nu]_{K}) = [\nabla_{Y}\mu,\nu]_{K} + [\mu,\nabla_{Y}\nu]_{K},$$

$$R_{\nabla}(Y,Z)\mu = [\zeta(Y,Z),\mu]_{K},$$

$$\tilde{\nabla}_{Y}^{\lambda}\mu = \nabla_{Y}\mu - [\lambda(Y),\mu]_{K},$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(K)$. Then insert μ with values in the centre.

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (29)$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (30)

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (29)$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (30)

Proposition ([S.-R. F.])

An invariant of the field redefinitions

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (29)$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (30)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (29)$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (30)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $Obs(\Xi) = 0$.

Lie algebra bundles

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Lie algebra bundles

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. *London Mathematical Society Lecture Note Series*, 213, 2005). Mackenzie derived $\mathrm{Obs}(\Xi)$ in the context of extending Lie algebroids by LABs.

Example (Zero obstruction class not necessarily pre-classical)

Let P be the Hopf fibration

$$SU(2) \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Then for the adjoint bundle

$$K := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2) := \left(\mathbb{S}^7 \times \mathfrak{su}(2)\right) / \mathrm{SU}(2)$$

we have a non-flat ∇ satisfying the compatibility conditions such that all of its field redefinitions are not flat either, but $\mathrm{Obs}(\Xi) = 0$.

Lie algebra bundles

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $\mathrm{Obs}(\Xi)=0$ does not imply a flat connection.

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {
 m Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {\sf Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {\sf Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Compatibilities:

 Compatibility conditions just impose a flat metric connection \(\nabla^{\text{bas}}\).

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {\sf Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Compatibilities:

• Compatibility conditions just impose a flat metric connection $\nabla^{\rm bas}$.

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {\sf Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Compatibilities:

• Compatibility conditions just impose a flat metric connection $\nabla^{\rm bas}$.

Remarks

Here

$$\nabla_X^{\text{bas}} Y = [X, Y] + \nabla_Y X$$

for all $X, Y \in \mathfrak{X}(N)$.

Example (Tangent bundles)

- E = TN, $\rho = \mathbb{1}_E$, $\kappa = g$
- ullet $R_
 abla =
 abla^{
 m bas} t_{
 abla^{
 m bas}} \Rightarrow {\sf Canonically} \; \zeta \coloneqq -t_{
 abla^{
 m bas}}$

Compatibilities:

• Compatibility conditions just impose a **flat metric** connection $\nabla^{\rm bas}$.

Remarks

Here

$$\nabla_X^{\text{bas}} Y = [X, Y] + \nabla_Y X$$

for all $X, Y \in \mathfrak{X}(N)$.

Tangent bundles

Theorem (Tangent bundles are locally pre-classical, [S.-R. F.])

Let $N = \mathbb{R}^n$ $(n \in \mathbb{N}_0)$ be an Euclidean space as smooth manifold. Then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

Sketch of the proof

• Flat ∇ & simply connected: Global trivialization of TN

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- 2 & Flat ∇^{bas} : $TN \cong N \times \mathfrak{g}$, \mathfrak{g} a Lie algebra

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- f 2 & Flat $abla^{
 m bas}$: $T \it N \cong \it N imes rak g$, rak g a Lie algebra
- 3 Defines a form satisfying the Maurer-Cartan equation

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- f 2 & Flat $abla^{
 m bas}$: $T \it N \cong \it N imes rak g$, rak g a Lie algebra
- 3 Defines a form satisfying the Maurer-Cartan equation
- Using compactness: N a Lie group

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- f 2 & Flat $abla^{
 m bas}$: $T \it N \cong \it N imes rak g$, rak g a Lie algebra
- 3 Defines a form satisfying the Maurer-Cartan equation
- Using compactness: N a Lie group

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

Sketch of the proof.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- ② & Flat ∇^{bas} : $T N \cong N \times \mathfrak{g}$, \mathfrak{g} a Lie algebra
- Opening a form satisfying the Maurer-Cartan equation
- Using compactness: N a Lie group

 \leadsto Hence, to avoid flatness of ∇ we need to avoid a Lie group structure on N.

Theorem

Let N be a smooth compact and simply connected manifold, and assume we have a connection ∇ on $E:=\mathrm{T} N$ such that ∇ and ∇^{bas} are flat. Then N is diffeomorphic to a Lie group.

- **1** Flat ∇ & simply connected: Global trivialization of TN
- f 2 & Flat $abla^{
 m bas}$: $T \it N \cong \it N imes rak g$, rak g a Lie algebra
- Opening a form satisfying the Maurer-Cartan equation
- Using compactness: N a Lie group
- \leadsto Hence, to avoid flatness of ∇ we need to avoid a Lie group structure on N.

Theorem (Global example: Unit octonions, [S.-R. F.])

 \mathbb{S}^7 admits a CYMH gauge theory such that the related connection ∇ on $E := T\mathbb{S}^7$ is not flat. Moreover, there is no field redefinition $\widetilde{\nabla}^{\lambda}$ of ∇ such that $\widetilde{\nabla}^{\lambda}$ is flat.

Sketch of the proof.

Use the canonical trivialization $(Y_i)_{i=1}^7$ of TS^7 : S^7 are the unit octonions, and we have seven imaginary numbers $(e_i)_{i=1}^7$, $e_i^2 = -1$. Then

$$Y_i|_z := e_i \cdot z \tag{31}$$

for all $z \in \mathbb{S}^7$.

Theorem (Global example: Unit octonions, [S.-R. F.])

 \mathbb{S}^7 admits a CYMH gauge theory such that the related connection ∇ on $E:=\mathrm{T}\mathbb{S}^7$ is not flat. Moreover, there is no field redefinition $\widetilde{\nabla}^\lambda$ of ∇ such that $\widetilde{\nabla}^\lambda$ is flat.

Sketch of the proof.

Use the canonical trivialization $(Y_i)_{i=1}^7$ of TS^7 : S^7 are the unit octonions, and we have seven imaginary numbers $(e_i)_{i=1}^7$, $e_i^2 = -1$. Then

$$Y_i|_z := e_i \cdot z$$
 (31)

for all $z \in \mathbb{S}^7$.

Tangent bundles

Summary: When are theories flat?

	Locally	Globally
LABs	Pre-classical	$\operatorname{ad}(\mathbb{S}^7 o \mathbb{S}^4)$ curved
Tangent bundles	Pre-classical	$\mathrm{T}\mathbb{S}^7$ curved

Remarks

What about general Lie algebroids? Find an invariant like $\mathrm{d}^\nabla \zeta$ $\leadsto \mathrm{d}^\nabla \zeta$ measures the failure of the Bianchi identity of G \leadsto Generalised Bianchi identity?

Thank you!