

เอเคา 10% มาใช้บ weight เมื่อให้ค่าที่ได้ใกล้เคียง

CNNs = Translating pixels to concepts

An image is just a matrix of numbers [0,255]. i.e., 1080x1080x3 for an RGB image.

Question: is this Lincoln? Washington? Jefferson? Obama?

How can the computer answer this question?

Can I just do classification on the I, I 66400-long image vector directly? No. Instead: exploit image spatial structure. Learn patches. Build them up

"Representations" Filters extract Features

Convolution operation is element wise multiply and add

1	0	1
0	1	0
1	0	1

Filter / Kernel

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Producing Feature Maps

Original

Sharpen

Edge Detect

"Strong" Edge
Detect

Filter คือ พราวที่มันเล็กกว่ารูป
ส่วที่ Filterทำคือ จะเอาค่าของมัน
ไปคุณกับค่าสีท้อยู่ตำแน่งเลี่ยวกัน

Fully Connected Neural Network

CNNs: Putting all their ingredients together

LeNet-5

- Gradient Based Learning Applied To Document Recognition Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998
- Helped establish how we use CNNs today
- Replaced manual feature extraction

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

CNNs for Classification

- I. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data.

Learn weights of filters in convolutional layers.

AlexNet

AlexNet


```
model.summary()
```

Model: "sequential_5"

Layer (type) Output Shape layer1 (Dense) (None, 2)	Param # 10
layer1 (Dense) (None, 2)	10
layer1 (Dense) (None, 2)	10
layer2 (Dense) (None, 3)	9
output (Dense) (None, 4)	16
Total params: 35	
Trainable params: 35	
Non-trainable params: 0	

Bias = 1

