Alternating voltage and current

This class
$$V(t) = V_m \sin(wt + \phi)$$

amplitude fine frequency

phase

\$ >0 leading

& < lagging

$$f = \frac{\omega}{2\pi}$$

Vm = \(\frac{V_2^2}{V_3} + \frac{V_y^2}{V_y} \)

Idea:
$$V = 2$$
 (impedance, can be complex number)

 $V = 2$ (impedance, can be complex number)

 $V = 2$ (impedance, can be complex in the complex number)

Inductor

$$V = L \frac{dI}{dt} \sim V = Z_L I$$

$$Let I = I_m e^{j(wt+\phi)}$$

$$Let I = I_m e^{j(wt+\phi)} \frac{d}{dt} \left[j(wt+\phi) \right]$$

$$Let I = I_m e^{j(wt+\phi)} \frac{d}{dt} \left[j(wt+\phi) \right]$$

$$Let I = I_m e^{j(wt+\phi)} \left[j(wt+\phi) \right]$$

$$Let I = I_m e^{j(wt+\phi)} \left[j(wt+\phi) \right]$$

$$V = (j \omega L) I$$

$$= Z_{L} I$$

If
$$w=0$$
 PC source; $z_{L}=0$ short circuit (o resistance)

 $V = constant (w=0)$

Capacitor

$$g = CV \sim V = t_C I$$
 $dg = C dV$
 $dt = C dV$
 $V = V_M e^{j(wt+\phi)}$
 $dV = V_M e^{j(wt+\phi)}$

V=
$$\frac{1}{j\omega c}$$
 = $\frac{1}{j^2}$ $\frac{1}{\omega c}$
 $j=\sqrt{1}$ = $j^2=-1$
V= $-\frac{1}{j\omega c}$ $\frac{1}{j^2}$ = -1
V= $-\frac{1}{j\omega c}$ $\frac{1}{j^2}$ = -1
 $\frac{1}{2}c = -\frac{1}{j\omega c}$ $\frac{1}{2}c = \frac{1}{2}c$
For a PC source $\omega = 0$ $\frac{1}{2}c = \frac{1}{2}c$
 $\frac{1}{2}c = \frac{1}{2}c$

V = AC source

Compute I, IL, IR.

$$\frac{z}{z_{R}+z_{L}}$$
 (z_{R} & z_{L} are in parallel)

$$I = \frac{V}{z} = \frac{V(z_R + z_L)}{z_R z_L}$$

$$T = \frac{V(R+jwl)}{jwlR}$$

$$I \bigvee I_{z} = \frac{R_{2}}{R_{1} + R_{2}} I$$

$$I_{z} = \frac{R_{2}}{R_{1} + R_{2}} I$$

$$I_{z} = \frac{R_{1}}{R_{1} + R_{2}} I$$

$$I_{z} = \frac{R_{1}}{R_{1} + R_{2}} I$$

$$I_{z} = \frac{R_{1}}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$

$$I_{z} = \frac{V}{R_{1} + R_{2}} I = \frac{V}{R_{2} + R_{2}} I$$