Applications

Image directe / réciproque

Exercice 1 (Des fonctions numériques)

Déterminer les images directes et les préimages demandées. On pourra au préalable établir un tableau de variation et/ou tracer un graphe.

1)
$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto \sqrt{x+2}$
 $f(\mathbb{R}_+), f^{-1}(\mathbb{R}_+), f([0,1]), f^{-1}([0,1]), f^{-1}([3,4])$

2)
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2x^2 - x - 1$
 $g(\mathbb{R}), g([1,3]), g([-1,1]), g^{-1}(\mathbb{R}_+^*), g^{-1}(\{1\})$

3)
$$h: \mathbb{R} \setminus \{-1,1\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x}{1-x^2}$$

$$h(]-\infty,-1[), h(]-1,1[), h(]1,+\infty[) h(]2,3]),$$

$$h^{-1}(\{0\}), h^{-1}(\mathbb{R}_+)$$

Exercice 2 (Antécédents multiples)

Soit
$$f: \mathbb{N} \to \mathbb{R}$$

 $n \mapsto \frac{1+(-1)^n}{2}$

- 1) Quel est l'ensemble image de f?
- 2) Pour chaque $m \in f(\mathbb{N})$, déterminer les antécédents de m, c'est à dire $f^{-1}(\{m\})$.

Injections / surjections / bijection

Exercice 3 (Étude d'injectivité/surjectivité)

Étudier l'injectivité et la surjectivité.

3)
$$h: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ k & \mapsto & k+1 \end{array}$$

Exercice 4 (Calcul de réciproques)

Montrer que les applications suivantes sont bijectives et déterminer la réciproque.

1)
$$f: \begin{array}{ccc}]1, +\infty[& \to & \mathbb{R} \\ x & \mapsto & \ln(x^2 - 1) \end{array}$$

2)
$$g: \begin{array}{ccc} \mathbb{R} \setminus \{-1\} & \longrightarrow & \mathbb{R} \setminus \{1\} \\ x & \longmapsto & \frac{x+2}{x+1} \end{array}$$

3)
$$h: \begin{bmatrix} 1, +\infty[& \longrightarrow & [0, +\infty[\\ x & \longmapsto & \sqrt{x(x-1)} \end{bmatrix} \\ 4) \varphi: \begin{bmatrix} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y, x-y) \end{bmatrix}$$

4)
$$\varphi: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,x-y) \end{array}$$

Composition

Exercice 5 (Calcul de composées)

Déterminer $f \circ g$ et $g \circ f$ (on déterminera bien-sûr les domaines où ces composées ont du sens)

$$f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}$$

$$x \mapsto \frac{1}{1-x^2} \quad g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \cos(x)$$

Exercice 6 (Composition et bijections)

1. Montrer que $f: t \longrightarrow t + \frac{1}{t}$

est bijective et calculer sa réciproque.

On pourra admettre (ou démontrer!) que :

$$\forall y \geqslant 1, \ y - \sqrt{y^2 - 1} \leqslant 1.$$

2. En utilisant une composition bien choisie, $\mathbb{R}_+ \longrightarrow [1, +\infty[$ en déduire que h: est bijective et calculer sa réciproque.

Un peu d'abstraction!

Exercice 7 (Interprétation graphique)

Tracer le graphe d'une application de [0, 1] dans [2, 3] qui soit:

- a) bijective.
- b) surjective et non injective.
- c) injective et non surjective.
- d) ni injective, ni surjective.
- e) bijective, ni croissante ni décroissante
- f) croissante, surjective, non injective.

Exercice 8 (Vrai ou faux?)

Les affirmations suivantes sont-elles vraies ou fausses? Démontrez-le ou donnez un contre-exemple.

- 1) La restriction d'une injection est injective.
- 2) Le prolongement d'une injection est injectif.
- 3) La restriction d'une surjection est surjective.
- 4) Le prolongement d'une surjection est surjectif.

Exercice 9 (Injectivité/surjectivité d'une composée)

Soient E, F, G trois ensembles. Soient $f: E \to F$ et $g: F \to G$.

- 1) Montrer que si $g \circ f$ est injective, f est injective.
- 2) Montrer que si $g\circ f$ est surjective, g est surjective.

Exercice 10 (Application unipotente)

Soit E un ensemble non vide et une application $f: E \to E$ telle que $f \circ f = f$.

- 1) Montrer que si f est injective, alors $f = Id_E$.
- 2) Montrer que si f est surjective, alors $f = Id_E$.
- 3) Donner un exemple d'application f telle que $f\circ f=f,$ différente de l'identité.