1. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 15

Total points: 15

Teilaufg	Teilaufgabe und Antwort	
Subtask	and solution	Points
1.1.	+ hohe Leistungsdichte / high power density	0,5
	+ einfache Realisierung von Linearbewegungen / simple realization of linear movement	0,5
	+ gute Steuer- und Regelbarkeit / good controllability	
	+ gutes Zeitverhalten durch niedrige Massenträgheiten / good time response due to low mass inertia	
	+ gute Schmierung und Abfuhr der Verlustwärme durch das Fluid / good lubrication and removal of heat losses via the fluid	
	+ einfache und zuverlässige Absicherung gegen Überlast / simple and dependable overload protection	
	- Energieverbrauch (Verluste durch Reibung und interne Leckage) / power consumption (losses due to friction and internal leakage)	0,5
	- Wartung des Druckmediums (Schmutzempfindlichkeit und Verschleiß der Komponenten) / preventive maintenance of the pressurizing medium (Sensitivity of the components towards contamination and wear)	0,5
	- Umwelt (Geräuschabstrahlung, Leckage,) / environmental pollution/damage (noise emission, leakage, fire hazard)	
1.2.	A: Blende / Orifice B: Drossel / Throttle (0.5 je Pkt / 0.5 Pts. each)	2
	Blende $Q = \alpha_D \cdot A \cdot \sqrt{\frac{2}{p}} \cdot \sqrt{\Delta p}$ Korrekte Formel mit Kennzeichnung und korrekter Verlauf 0,5 Pkt. / correct formular and correct course indication each	
	Druckdifferenz Δp $\Delta p = p_1 - p_2$	
1.3.	Blende / Orifice	1,0
	Temperaturunabhängig / Temperature independent	

`	gabe und Antwort and solution	Punkte Points
1.4.	$p_{Kolben} = \frac{F}{\frac{d_k^2}{4}\pi} = \frac{10kN}{\frac{30^2mm^2}{4}\pi} = 141.47 \ bar$ $m \ 30^2mm^2$	0,5
	$Q = \dot{x}A = 1.5 \frac{m}{s} \frac{30^2 mm^2}{4} \pi = 63.61 \ l/min$ $Q = K\sqrt{\Delta p} \iff p_{Versorgung} = p_{Kolben} + (Q/K)^2$	0,5
	$p_{Versorgung} = 141.47 \ bar + \left(63.61 \frac{l}{min} / 50 \ \frac{l}{min} \sqrt{bar}\right)^2 = 142.91$	0,5
1.5.	Kinematisch bedingte Pulsation / Kinematically induced pulsation	0,5
	Kompressionsbedingte Pulsation / Compression induced pulsation	0,5
1.6.	Kreiselpumpe / Centrifugal pump	0,5
1.7.	Primär/primary: Übertragung von Leistung vom Druckerzeuger auf die Verbraucher Transfer of power from the pressure generator to the actuators Sekundär:	0,5
	Schmierung / Lubrication	0,5
	Wärmetransport / heat transfer	
	Chemischer Korrosionsschutz / Chemical protection against corrosion	
	(0.5 je Pkt / 0.5 Pts. each)	
1.8.	10000 1000 1000 HLP 46 VI-Add tiv	
	-20 0 20 40 60 80 Temperatur [°C]	
	Stützpunkt @ 40°C und Verlauf (sinkt linear mit steigender Temperatur)	0,5
	0,5 Pkt. / support point @ 40°C and course (linear decrease with rising	0,5
	temperature) 0.5 Pts. HLP + Vi-Verbesserer Verlauf flacher als HLP (linear) / HLP + VI-Improver course flatter than HLP (linear)	0,5

Blatt/Page: 3	
---------------	--

Teilaufg	gabe und Antwort	Punkte
Subtask	and solution	Points
1.9.	$F_G = A_3 p_2$	0,5
	$p_T A_1 + p_V \left(A_2 - \frac{\pi}{4} d_S^2 \right) - p_V \left(A_1 - \frac{\pi}{4} d_S^2 \right) - p_2 A_2 = 0$	0,5
	$p_V = \frac{70000 \ mm^2 \cdot 300000 \ N}{40000 \ mm^2 \cdot (70000 \ mm^2 - 2000 \ mm^2)} = 77.2 \ bar$	0,5
1.10.	Punkte werden nur mit korrekten Indizes gegeben / Points are only awarded with correct use of indices $\dot{p_1} = \frac{Q_R - Q_M}{C_H} \ (1)$	0,5
	$L_H = \frac{\Delta p}{\dot{Q_M}} \Leftrightarrow \dot{Q}_M = \frac{p_1 - p_U}{L_H} \tag{2}$	0,5
	$R_{H} = \frac{\Delta p}{Q_{R}} \iff Q_{R} = \frac{p_{0} - p_{1}}{R_{H}}$ $\dot{p}_{1} (2)$	
	$\dot{Q}_R = -\frac{\dot{p}_1}{R_H}(3)$	0,5
	$\ddot{p}_1 = \frac{\dot{Q}_R - \dot{Q}_M}{C_H} (4)$	0,5
	(2)&(3) in (4)	
	$\ddot{p}_1 + \frac{\dot{p}_1}{R_H C_H} + \frac{p_1}{L_H C_H} = 0$	1

2. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

Teilau	Teilaufgabe und Antwort	
Subtas	Subtask and solution	
2.1	0,5 Punkte pro Nennung (insgesamt max. 2 Punkte)	2,0
	A: Druckminderventil, B: 2-Wege-SRV mit vorgeschalteter Druckwaage,	
	C: DBV, Drosselrückschlagventil (einstellbar)	
	A: Pressure reducing valve, B:2-way flow control valve pressure	
	compensator upstream, C: Pressure relief valve, D: Flow control valve	
	(adjustable)	
2.2	5/3-Wege Proportionalventil (0,5 Punkte)	1,0
	5/3-way proportional valve	
	Mit Federzentrierung und Spulenbetätigung (0,5 Punkte)	
	Spring centered with solenoid actuation	
2.3	$M = \frac{\Delta p \cdot V}{2 \cdot \pi} $ (0,5 Punkte)	1,0
	$\Delta p = \frac{M \cdot 2 \cdot \pi}{V} = \frac{50 \text{ Nm} \cdot 2 \cdot \pi}{100 \text{ cm}^3} = 31,42 \text{ bar} $ (0,5 Punkte)	
2.4	$Q = \alpha_D \cdot \pi \cdot d \cdot x \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}} $ (0,5 Punkte)	2,0
	$Q = V \cdot n \tag{0,5 Punkte}$	
	$\Delta p = \frac{p_{DBV} - 20 \ bar}{2} = 5,71 \ bar \tag{0,5 Punkte}$	
	$x = \frac{V \cdot n \cdot \sqrt{\rho}}{\alpha_D \cdot \pi \cdot d \cdot \sqrt{2 \cdot \Delta p}}$	
	$x = \frac{\alpha_D \cdot \pi \cdot d \cdot \sqrt{2 \cdot \Delta p}}{\alpha_D \cdot m \cdot \sqrt{2 \cdot \Delta p}}$ $x = \frac{100 \text{ cm}^3 \cdot 60 \frac{U}{\text{min}} \cdot \sqrt{850 \text{ kg/m}^3}}{0.6 \cdot \pi \cdot 5 \text{ mm} \cdot \sqrt{2 \cdot 5.71 \text{ bar}}} = 0,29 \text{ mm} $ $(0,5 \text{ Punkte})$ $F = \frac{\rho \cdot Q^2}{\pi \cdot d \cdot x} \cdot \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_2)}$ $(0,5 \text{ Punkte})$	
2.5	$n u \lambda \sin(\epsilon_1)$	1,0
	$F = \frac{850 \frac{kg}{m^3} \cdot (10 \frac{l}{\text{min}})^2}{\pi \cdot 5 \ mm \cdot 0.29 \ mm} \cdot \frac{\cos(60^\circ)}{\sin(60^\circ)} = 3,00 \ N $ (0,5 Punkte)	

Blatt/	Page:	5
--------	-------	---

abe und Antwort	Punkte
and solution	Points
Druckwaage $p_E = p_0$ p_T p_T p_1 Dämpfungs- blende p_A Verstellbare Messblende	2,0
Feder, Steuerleitung, Dämpfungsblende, Messblende (verstellbar) (0,5 Punkte jeweils)	
PLast Nutz- anteil QSRV PDBV Eckleistung der Pumpe CQSRV QPumpe	1,0
	Dämpfungs- blende Peder, Steuerleitung, Dämpfungsblende, Messblende (verstellbar) (0,5 Punkte jeweils) Punkte jeweils

Musterlösung zur Aufgabe: 3 Gesamtpunktzahl: 10

Teilaufgabe und Antwort		Punkte	
Subtas	k and solution		Points
3.1	Schrägscheibenbauart, Schrägachsenbauart (je 0,5 Pur	nkte)	1
	Swash plate design, bend achsis design (0.5 points ea	ch)	
3.2	Verstellbare Axialkolbenmaschine in Schrägscheiben	bauweise	0,5
	Adjustabile axial piston machine in swash plate desig	n	
3.3	1. Steuerspiegel; valve plate	(0,5 Punkte)	2,5
	2. Kolben; <i>piston</i>	(0,5 Punkte)	
	3. Schrägscheibe; swash plate	(0,5 Punkte)	
	4. Gleitschuh; <i>slipper</i>	(0,5 Punkte)	
	5. Kolbentrommel; <i>cylinder block</i>	(0,5 Punkte)	
3.4	$V = \frac{\pi}{4} \cdot d_k^2 \cdot 2 \cdot e \cdot z$	(0,5 Punkte)	1
	V: Fördervolumen [cm³]		
	d_K : Kolbendurchmesser [cm]		
	e: Exzentrizität [cm]		
	z: Kolbenanzahl [-] (fi	ür alles 0,5 Punkte)	
3.5	Die kompressionsbedingte Pulsation ist üblicherweis	se eine Zehnerpotenz	0,5
	größer als die kinematische Pulsation. The compressi	on conditioned ripple	
	is typically one order of magnitude larger than the kin	nematic ripple.	
3.6	Da das Totvolumen durch die kleine Schraube v	erringert wird, muss	0,5
	weniger Fluid beim Einsteuern in den Hochdruck	komprimiert werden.	
	Daher ist die Rückströmung geringer und	somit auch die	
	kompressionsbedingte Pulsation. Since the dead spa		
	small screw, there is less fluid to be compressed whe	·	
	·	•	
	to high pressure. Therefore the flow back is reduced	ana consequently the	
	compression conditioned pulsation as well.		

Punkte	cilaufgabe und Antwort
Points	btask and solution
2	F = pA
	$\frac{dV}{V_{UT}} = \frac{Adx}{V_{UT}} = \frac{dp}{E_{Fl}'}$
	$\Leftrightarrow dx = \frac{V_{UT}}{AE'_{Fl}} dp \tag{0.5 Punkte}$
	$W_K = \frac{V_{UT}}{E'_{Fl}} \int p dp = \frac{1}{2} \frac{V_{UT}}{E'_{Fl}} p^2$ (0,5 Punkte)
	$V_{UT} = V_K + V_{tot} - V_{Schraube} = 9.11cm^3 $ (0,5 Punkte)
	$W_A = \frac{1}{2} \frac{V_{UT}}{E'_{Fl}} p^2 = \frac{1}{2} \frac{9.11cm^3}{16.000bar} 400bar = 4.556Nm $ (0,5 Punkte)
en 1	Das Verhältnis Kompressionsarbeit zu Nutzarbeit wird ohne Schrauben
en	größer (0,5 Punkte), da das Verhältnis von Fördervolumen zum Volumen
ur	im unteren Totpunkt kleiner wird. Dadurch wird der Divisor zur
nis	Berechnung des gesuchten Verhältnisses kleiner und somit das Verhältnis
rk	größer.(0,5 Punkte) The relation of compression work and usable work
rry	increases without the screws (0,5 Points), since the relation of delivery
he	volume to the total volume decreases. Because of that the devisor of the
	relation decreases, therefore increasing the relation overall. (0,5 Points)
1	$L_H = \frac{I_M}{(z \cdot V_K / 2\pi)^2} $ (0,5 Punkte)
	$L_H = \frac{35,81 kgm^2}{(9.8cm^3/2\pi)^2} = 42 \frac{bar}{\frac{l/min}{s}} $ (0,5 Punkte)
ttr	$W_A = \frac{1}{2} \frac{V_{UT}}{E_{Fl}'} p^2 = \frac{1}{2} \frac{9.11 cm^3}{16.000 bar} 400 bar = 4.556 Nm$ (0,5 Punkte) Bas Verhältnis Kompressionsarbeit zu Nutzarbeit wird ohne Schrau größer (0,5 Punkte), da das Verhältnis von Fördervolumen zum Volur im unteren Totpunkt kleiner wird. Dadurch wird der Divisor Berechnung des gesuchten Verhältnisses kleiner und somit das Verhältnisses without the screws (0,5 Points), since the relation of deliving volume to the total volume decreases. Because of that the devisor of relation decreases, therefore increasing the relation overall. (0,5 Points) $L_H = \frac{I_M}{(z \cdot V_K/2\pi)^2}$ (0,5 Punkte)

Musterlösung zur Aufgabe: 4 Gesamtpunktzahl: 10

Unter- punkt	Kürzel Aufgabensteller: Di	Punkte
4.1	Das rechte System schaltet bei erreichen eines maximalen Drucks in	0,5
	drucklosen Umlauf / The right system switches into unloaded pump	
	operation, when a certain pressure is reached	
	Pressure control, power control, flow control	
4.2		0,5 pro
		komplett
		richtige
		m
	n_{Motor}/n_{Pump} n_{Motor}/n_{Pump}	Diagram
	1 \	/ per
		complete
	1	diagram
	$lpha_{Pump}$ $lpha_{Motor}$	
4.3	0,5 jeweils für / each for:	
	-Konstant-motor (2 mal) / Fixed displacemend motor (2 times)	0,5
	-Stromregelventile vorhanden / flow control valves present	0,5
	-Stromregelventil/Stromteiler komplett korrekt / flow control valves/flow	0,5
	divider valve correct	ŕ
	-Verstellpumpe mit Verbrennungsmotor / variable displacement pump	0,5
	with combustion engine	
	-Offener Kreis / open loop	0,5
	-DBVs wo nötig / PRVs where necessary	0,5
	-Filter und Kühler sinnvoll / Filter and cooler	0,5

Blatt/ <i>Page</i> : !	9
------------------------	---

	Summe:	
Unter- punkt		Punkte
4.4	$A_{Kolben} = \frac{\pi}{4}D^2$	
	$p_{Pumpe} = (F_{Prozess} + F_{Friction}) / A_{Kolben}$	0,5
	$P_{Benutzer} = p_{Pumpe} v_{pumpen} V_{Hub,Pumpe} / (\eta_{hm,Pumpe}) = 157 W$	0,5 0,5
4.5	$Q_{gepumpt} = v_{pumpen} V_{Hub,Pumpe} \eta_{vol,Pumpe}$	0,5
	$v_{Zylinder} = (Q_{gepumpt} - Q_{Leckage})/A_{Kolben} = 0,94167 \text{ mm/s}$	0,5+0,5
4.6	$Z = ((V_{Schlauch} + V_{Zylinder,Start})p_{Pumpe})/(E_{System}V_{Hub,Pumpe})$	0,5
	= 13,26 Hübe	0,5
4.7	Im Falle der Beschädigung einer Leitung kann der Zylinder auch bei Last	1,0
	nicht plötzlich einfahren. Nur wenn die andere Leitung druckbeaufschlagt	
	ist, ist eine Bewegung möglich (Senkbrems- oder Lasthalteventil) / In case	
	of damage at a hose the cylinder does not extend or retract suddenly, when	
	loaded. Only when pressurizing the other pipe, a valve can open, enabling	
	a motion (brake valve)	
	Summe:	10

Musterlösung zur Aufgabe: 5 Gesamtpunktzahl: 15

Unter- punkt	St			Pun kte
5.1		Vorteil Advantage	Nachteil Disadvantage	2
	Schieberventil Spool valve	geringe Betätigungskräfte small actuation forces einfache Realisierung komplizierter Schaltbilder easy implementation of complex circuit schemes	hohe Fertigungstoleranzen erforderlich tight clearances necessary Leckage unvermeidbar certain leakage inevitable	
	Sitzventil Seat valve	hohe Funktionssicherheit high functional reliability unempfindlich gegen Verschmutzung immune against contamination leckagefreie Abdichtung leakage-free sealing	Aufwendige Druckentlastung des Dichtelements pressure relief of sealing is costly große Betätigungskräfte high actuation forces aufwendige Konstruktion für mehr als zwei Schaltstellungen more than two switching positions require costly design	

5.4 1 2 Bezeichnung: (manuell einstellbares) Drosselrückschlagventil Denomination: (Manually adjustable) one-way flow control valve Symbol: 5.5 Besserer Wirkungsgrad, da die Verdichtung näher am idealen, isothermen 1 Prozess verläuft Higher efficiency, because compression is closer to ideal, isothermal process

5.6	$Q(200 \text{ bar}) = \frac{V_{\text{bottle}}}{t_{\text{max}}} = 6 \frac{1}{\text{min}}$ $Q_{\text{N}} = Q(200 \text{ bar}) \cdot \frac{p}{p_{\text{N}}} = 1200 \frac{\text{Nl}}{\text{min}}$	2
5.7	polytropic Zustandsänderung $polytropic change of change$ $\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\frac{n}{n-1}}$ $\Rightarrow T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$ $T_2 = 293,15 \text{ K} \cdot \left(\frac{20 \text{ bar}}{1 \text{ bar}}\right)^{\frac{1,2-1}{1,2}} = 482,98 \text{ K} \stackrel{?}{=} 209,8 \text{ °C}$	1
5.8	polytropic Zustandsänderung $\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$ $\frac{p_2}{p_1} = \left(\frac{493,15 \text{ K}}{293,15 \text{ K}}\right)^{\frac{1,2}{0,2}}$ $\frac{p_2}{p_2} = 22,66$ notwendige Zahl an Stufen: $number\ of\ stages:$ $p_{\max} = \left(\frac{p_2}{p_1}\right)^{z_{\text{stage}}}$ $z_{\text{stage}} = \log_{\left(\frac{p_2}{p_1}\right)} p_{\max} = 1,698$ zwei Stufen notwendig two stages necessary	1

5.9	$ \dot{Q}_{ab} = \dot{m} \cdot \left(h(T_{max}) - h(T_0) \right) \dot{Q}_{ab} = Q_N \cdot \rho_N \cdot c_{p,L}(T_{max} - T_0) = Q_N \cdot \frac{p_N}{R_{Luft} \cdot T_N} c_{p,Luft}(T_{max} - T_0) = \frac{1200 \frac{Nl}{min}}{60000} \cdot \frac{10^5 Pa}{287 \frac{J}{kgK} \cdot 293,15 K} \cdot 1000 \frac{J}{kgK} \cdot 200 K = 4754 W $ $ Q_{ab} \left(250 \frac{Nl}{min} \right) = 990 W $	2
5.10	$P_{t} = \dot{m} \cdot w_{12}$ $P_{t} = \dot{m} \cdot \frac{nR}{n-1} (T_{2} - T_{1})$ $= \frac{1200 \frac{Nl}{min}}{60000} \cdot \frac{10^{5} Pa}{287 \frac{J}{kgK} \cdot 293,15 K} \cdot \frac{1,2 \cdot 287 \frac{J}{kgK}}{1,2-1} \cdot (200 K) = 8167 W$ $P_{t} \left(250 \frac{Nl}{min}\right) = 1706 W$	2
	Summe/Sum:	15

Musterlösung zur Aufgabe: 6 Gesamtpunktzahl: 10

g Y Zylinder nach Tastrolle vorhanden / g Y Zylinder nach Tastrolle vorhanden / g durch UND-Ventil oder 3/2-Wegeventil / AND-valve or 3/2 ways valve rrekt eingezeichnet /	0,5
g Y Zylinder nach Tastrolle vorhanden / setuator Y after actuation of lever-roll g durch UND-Ventil oder 3/2-Wegeventil / AND-valve or 3/2 ways valve	1
g Y Zylinder nach Tastrolle vorhanden / setuator Y after actuation of lever-roll g durch UND-Ventil oder 3/2-Wegeventil / AND-valve or 3/2 ways valve	1
g Y Zylinder nach Tastrolle vorhanden / setuator Y after actuation of lever-roll g durch UND-Ventil oder 3/2-Wegeventil / AND-valve or 3/2 ways valve	1
g Y Zylinder nach Tastrolle vorhanden / sectuator Y after actuation of lever-roll g durch UND-Ventil oder 3/2-Wegeventil /	
g Y Zylinder nach Tastrolle vorhanden / sectuator Y after actuation of lever-roll g durch UND-Ventil oder 3/2-Wegeventil /	
g Y Zylinder nach Tastrolle vorhanden / ectuator Y after actuation of lever-roll	
g Y Zylinder nach Tastrolle vorhanden / ectuator Y after actuation of lever-roll	
g Y Zylinder nach Tastrolle vorhanden /	0,5
·	0,5
·	0.5
ctuator Z after actuation of St	
	0,5
g Z Zylinder nach man Betätigung vorhanden /	0,5
x 7 7 vlindar nach man Batätigung varhandan /	
tangenseite / Installation rod-sided	0,5
es Rückschlagventil / Piloted non-return valve	1
Abluftdrosselung / Circuit: Exhaust Air Throttling	0,5
-	·
rchflussrichtung / Correct flow direction	0,5
seitig / Installation both ways	0,5
schlagventilsymbol / One-way flow control valve symbol	0,5
S ROTTEREY THE POSITION CONTECT	0,5
korrekt / Valve position correct	0,5 0,5
	ol korrekt / Valve symbol correct g korrekt / Valve position correct schlagventilsymbol / One-way flow control valve symbol lseitig / Installation both ways