Introducerende Statistik og Dataanalyse med R

Gruppespecifik regression

Jens Ledet Jensen

I dag

Formulering af generel lineær model

Flere regressionslinjer (gruppespecifik regression)

Teori: uafhængighed og χ^2 -fordeling

Generel model

n observationer:
$$x_1, x_2, \ldots, x_n$$
, uafhængige

alle normalfordelte alle samme varians
$$X_i \sim N(ullet, \sigma^2)$$

$$E(X_i) = \xi_i$$
: Model for ξ_i -erne

$$M: \xi_i = \text{sum af led}$$

Led: faktor deler ind i grupper, hver gruppe får sit eget bidrag

Led: regression, $\beta \cdot t_i$

Model i dag: β afhænger af gruppe defineret ved faktor

Generel model: underrum

Den formelle definition af en generel lineær model:

$$\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^{\mathsf{T}} \in L$$
 L lineært underrum af R^n

Eksempel 1: $X_i \sim N(\mu, \sigma^2)$

$$\boldsymbol{\xi} = (\mu, \dots, \mu)^{\mathsf{T}} = \mu \mathbf{e} \in \mathsf{Span}(\mathbf{e}), \quad \mathbf{e} = (1, 1, \dots, 1)^{\mathsf{T}}$$

$$\mathsf{Span}(\mathbf{v}_1,\ldots,\mathbf{v}_k)=\{\boldsymbol{\xi}=z_1\mathbf{v}_1+\cdots+z_k\mathbf{v}_k|z_j\in R,\ j=1,\ldots,k\}$$

Eksempel 2:
$$X_i \sim N(\mu_{G_i}, \sigma^2)$$
, $G = (1, ..., 1, 2, ..., 2)$, $n = n_1 + n_2$

$$\boldsymbol{\xi} = (\mu_1, \dots, \mu_1, \mu_2, \dots, \mu_2)^\mathsf{T} = \mu_1 \mathbf{e}_1 + \mu_2 \mathbf{e}_2 \in \mathsf{Span}(\mathbf{e}_1, \mathbf{e}_2)$$

$$\mathbf{e}_1 = (1, \dots, 1, 0, \dots, 0)^{\mathsf{T}}, \ \mathbf{e}_2 = (0, \dots, 0, 1, \dots, 1)^{\mathsf{T}}$$

Generel model: underrum

Eksempel 3: $X_i \sim N(\alpha + \beta t_i, \sigma^2)$

$$\boldsymbol{\xi} = (\alpha + \beta t_1, \dots, \alpha + \beta t_n)^{\mathsf{T}} = \alpha \mathbf{e} + \beta \mathbf{t} \in \mathsf{Span}(\mathbf{e}, \mathbf{t})$$

$$e = (1, ..., 1)^{\mathsf{T}}, t = (t_1, ..., t_n)^{\mathsf{T}}$$

Generelt: en faktor G, der deler op i k grupper, giver k vektorer $\mathbf{e}_1, \ldots, \mathbf{e}_k$, hvor den j'te har 1 for de observationsnumre, der ligger i gruppe j, og nul ellers

En regressionsvariabel t giver en vektor t

$$L = \mathsf{Span}(\ldots)$$

"plus" i modelformel giver ekstra vektorer i Span(...)

Faktor G deler ind i g grupper: vektorer $\mathbf{e}_1(G), \dots, \mathbf{e}_g(G)$

Faktor D deler ind i d grupper: vektorer $\mathbf{e}_1(D), \dots, \mathbf{e}_d(D)$

Underrum L_G og L_D har ikke-trivielt snit:

$$\mathbf{e}_1(G) + \cdots + \mathbf{e}_g(G) = \mathbf{e}_1(D) + \cdots + \mathbf{e}_d(D)$$

$$\mathsf{dim}(\mathsf{Span}(\mathsf{e}_1(G),\ldots,\mathsf{e}_g(G),\mathsf{e}_1(D),\ldots,\mathsf{e}_d(D))) = g+d-1$$

Estimation = projektion

Estimere parametre i middelværdimodel = finde $oldsymbol{\xi} \in L$

Minimere $\sum_{i} (x_i - \xi_i(M))^2$ samme som at finde projektion af $\mathbf{x} = (x_1, \dots, x_n)^\mathsf{T}$ på L:

$$\sum_{i} (x_{i} - \xi_{i})^{2} = \|\mathbf{x} - \boldsymbol{\xi}\|^{2} = \|\mathbf{x} - \mathbf{P}\mathbf{x} + \mathbf{P}\mathbf{x} - \boldsymbol{\xi}\|^{2} = \|\mathbf{x} - \mathbf{P}\mathbf{x}\|^{2} + \|\mathbf{P}\mathbf{x} - \boldsymbol{\xi}\|^{2}$$

 ${f P}$ er projektionsmatricen, ${f x}-{f P}{f x}$ er vinkelret på alt i L, $\hat{m \xi}={f P}{f x}$

$$L = \mathsf{Span}(\mathsf{h}_1, \dots, \mathsf{h}_k)$$
, $\mathsf{h}_1, \dots, \mathsf{h}_k$ lineært uafhængige

$$\mathbf{P} = \mathbf{H}(\mathbf{H}^\mathsf{T}\mathbf{H})^{-1}\mathbf{H}^\mathsf{T}$$

 $\mathbf{h}_1, \dots, \mathbf{h}_k$ er søjlerne i \mathbf{H}

Projektion

Vise at
$$P = H(H^TH)^{-1}H^T$$
 er projektionsmatricen:

Typisk vektor i
$$L$$
: $oldsymbol{\xi} = Holdsymbol{ heta}, \, oldsymbol{ heta} \in \mathsf{R}^k$ vise vinkelret på $\mathbf{x} - \mathbf{P}\mathbf{x}$

$$(\mathbf{x} - \mathbf{P}\mathbf{x})^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta} = \mathbf{x}^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta} - \mathbf{x}^{\mathsf{T}}\mathbf{H}(\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta}$$

= $\mathbf{x}^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta} - \mathbf{x}^{\mathsf{T}}\mathbf{H}\boldsymbol{\theta} = 0$

Eksempel: projektion på 1.aksen i
$$\mathbf{R}^2$$
, $\mathbf{H}=\left(egin{array}{c}1\\0\end{array}\right)$
$$\binom{1}{0}((1,0)\binom{1}{0})^{-1}(1,0)=\left(egin{array}{c}1&0\\0&0\end{array}\right)$$

Første resultat

 M_2 er en undermodel af M_1 : $L_2 \subset L_1$

Vise:
$$SSD(M_2) = SSD(M_1) + SSD(M_1, M_2)$$

$$SSD(M_1, M_2) = \sum_i (\hat{\xi_i} M_1) - \hat{\xi_i} (M_2)^2$$

P₁, P₂ er projektionsmatricerne

$$\begin{split} \mathsf{SSD}(M_2) &= \|\mathbf{x} - \mathbf{P}_2 \mathbf{x}\|^2 = \|\mathbf{x} - \mathbf{P}_1 \mathbf{x} + \mathbf{P}_1 \mathbf{x} - \mathbf{P}_2 \mathbf{x}\|^2 \\ &= \|\mathbf{x} - \mathbf{P}_1 \mathbf{x}\|^2 + \|\mathbf{P}_1 \mathbf{x} - \mathbf{P}_2 \mathbf{x}\|^2 \\ &\quad \mathsf{idet} \ \mathbf{P}_1 \mathbf{x} - \mathbf{P}_2 \mathbf{x} \in \mathit{L}_1 \end{split}$$

Sceneskift

Den generelle lineære model er indført via underrum af \mathbb{R}^n

Næste: Model for gruppespecifik regression

Sort: Gruppe 1; rød: Gruppe 2

Berkeley data

Fitts lov: Tid til at flytte mus er lineær i ID = $\log_2\left(\frac{A+W}{W}\right)$

Rød: cirkeldesign, sort: rektangeldesign

Data

Afstand	Bredde	Tid
370	50	625
370	50	625
370	50	547
370	50	531
370	50	469
370	50	609
370	50	532
370	50	687
240	10	703
240	10	922
278	11	860
283	37	718
40	32	531
233	10	1047
191	50	625
179	18	734
	370 370 370 370 370 370 370 370 240 240 278 283 40 233 191	370 50 370 50 370 50 370 50 370 50 370 50 370 50 370 50 370 50 240 10 240 10 278 11 283 37 40 32 233 10 191 50

Normal Q-Q Plot

- 1) Teste lineær sammenhæng for Rektangel-data (sort) (sidste uge)
- 2) Teste samme varians omkring de to linjer
- 3) Teste samme hældning i de to linjer

Data

TidCirc, IdCirc: målinger fra Cirkeldata

Tid = (TidRekt, TidCirc)

Id = (IdRekt, IdCirc)

Design=factor(rep(c("Rekt", "Circ"), c(24,25)), levels=c("Rekt", "Circ"))

levels=c("Rekt", "Circ") for at undgå lexikografisk ordning

TidRekt, IdRekt: målinger fra Rektangeldata

Teste samme varians

Model:

$$\mathsf{TidRekt}_i \sim \mathcal{N}(\alpha_1 + \beta_1 \cdot \mathsf{IdRekt}_i, \sigma_1^2)$$

$$\mathsf{TidCirc}_i \sim N(\alpha_2 + \beta_2 \cdot \mathsf{IdCirc}_i, \sigma_2^2)$$

$$(\alpha_1, \alpha_2, \beta_1, \beta_2, \sigma_1^2, \sigma_2^2)$$
 kan variere frit

Teste
$$\sigma_1^2=\sigma_2^2$$

$$\label{eq:lmud1} \begin{split} &\text{ImUD1} = \text{Im}(\text{TidRekt} \sim \text{IdRekt}); \quad \text{ImUD2} = \text{Im}(\text{TidCirc} \sim \text{IdCirc}) \\ &s_{\text{Rekt}} = 85, \quad s_{\text{Circ}} = 122 \end{split}$$

var.test(lmUD1,lmUD2) (bartlett.test(list(lmUD1,lmUD2))

Resultat: p-værdi = 0.10

Konklusion: data strider ikke mod samme varians i de to eksperimenter

Prøv selv i R: mtcars

Undersøg om der er samme varians omkring linje for 4, 6 eller 8 cylindre Model: mpg $\sim N(\alpha_{D_i} + \beta_{D_i} \text{vaegt}_i, \sigma_{D_i}^2)$, hypotese: $\sigma_4^2 = \sigma_6^2 = \sigma_8^2$

```
mpg=mtcars[,1]
vaegt=mtcars[,6]
Design=factor(mtcars[,2])
```

ImUD1=Im(mpg[Design=="4"]~vaegt[Design=="4"])
ImUD2=Im(mpg[Design=="6"]~vaegt[Design=="6"])
ImUD3=Im(mpg[Design=="8"]~vaegt[Design=="8"])

$$\label{local_model_model} \begin{split} & Modelkontrol: \ plot(vaegt[Design=="4"], lmUD1\$residuals) \ og \\ & qqnorm(lmUD1\$residuals, datax=TRUE) \end{split}$$

bartlett.test(list(lmUD1,lmUD2,lmUD3))

Konklusion: Data strider ikke mod samme varians omkring linjen da ...

Gruppespecifik regressionskoefficient

Tid: alle tidsmålinger

ld: alle ld-værdier

Design: factor med værdier Rekt og Circ

Model: Tid_i $\sim N(\alpha_{\mathsf{Design}_i} + \beta_{\mathsf{Design}_i} \cdot \mathsf{Id}_i, \sigma^2)$

Model hvor hvert eksperiment har sin egen lineære sammenhæng

Modelformel, R: Tid \sim Design*Id samme som Tid \sim Design+Design*Id

Design giver α_{Rekt} og α_{Circ}

Design*Id giver $\beta_{Rekt} \cdot Id_i$ og $\beta_{Circ} \cdot Id_i$

Vektoren af middelværdier kan skrives som $\xi = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \beta_1 \mathbf{t}_1 + \beta_2 \mathbf{t}_2$

$$\mathbf{e}_1 = egin{cases} 1 & exttt{på gruppe 1} \ 0 & exttt{på gruppe 2} \end{cases} \quad \mathbf{e}_2 = egin{cases} 0 & exttt{på gruppe 1} \ 1 & exttt{på gruppe 2} \end{cases}$$

$$\mathbf{t}_1 = egin{cases} t_i & ext{på gruppe 1} \ 0 & ext{på gruppe 2} \end{cases} \quad \mathbf{t}_2 = egin{cases} 0 & ext{på gruppe 1} \ t_i & ext{på gruppe 2} \end{cases}$$

Generelt: underrum L udspændes af søjlerne i H, $oldsymbol{\xi} = Holdsymbol{ heta}$

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^\mathsf{T}\mathbf{H})^{-1}\mathbf{H}^\mathsf{T}\mathbf{x}$$

Antag $\sum_{l}t_{i}=\sum_{ll}t_{i}=0$, hvor log ll refererer til gruppe 1 og gruppe 2 Lad $\mathbf{H}=(\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{t}_{1},\mathbf{t}_{2})$

$$\mathbf{H}^{\mathsf{T}}\mathbf{H} = \begin{pmatrix} n_1 & 0 & 0 & 0 \\ 0 & n_2 & 0 & 0 \\ 0 & 0 & \mathsf{SS}_1 & 0 \\ 0 & 0 & 0 & \mathsf{SS}_2 \end{pmatrix}, \quad \mathsf{SS}_1 = \sum_{\mathsf{I}} t_i^2, \; \mathsf{SS}_2 = \sum_{\mathsf{II}} t_i^2$$

$$\mathbf{H}^{\mathsf{T}}\mathbf{x} = (\sum_{i} x_{i}, \sum_{i} x_{i}, \sum_{i} t_{i}x_{i}, \sum_{i} t_{i}x_{i})^{\mathsf{T}}$$

Dette giver estimaterne

$$\hat{\alpha}_1 = \frac{\sum_{\mathbf{i}} \mathbf{x_i}}{\mathbf{n_1}}, \ \hat{\alpha}_2 = \frac{\sum_{\mathbf{i}} \mathbf{x_i}}{\mathbf{n_2}}, \ \hat{\beta}_1 = \frac{\sum_{\mathbf{i}} \mathbf{t_i} \mathbf{x_i}}{\mathbf{SS}_1}, \ \hat{\beta}_2 = \frac{\sum_{\mathbf{i}} \mathbf{t_i} \mathbf{x_i}}{\mathbf{SS}_2}$$

Kørsel i R

Parametrisering i R af modellen: Design+Design*Id

$$\label{eq:local_$$

Id 173.62 18.71 9.280 5.12e-12
DesignCirc:Id -27.82 27.03 -1.029 0.30888

(Intercept) 37.10 63.32 0.586 0.56089 DesignCirc 315.89 91.46 3.454 0.00122

Residual standard error: 105.3 on 45 degrees of freedom

Bemærk levels=... for at undgå lexikografisk ordning

Teste samme hældning

Stiger Tid med index of diffculty på samme måde i de to eksperimenter?

Hypotese:
$$\beta_{Circ} = \beta_{Rekt}$$

Teste reduktion fra model
$$Tid_i \sim N(\alpha_{Design_i} + \beta_{Design_i} \cdot Id_i, \sigma^2)$$

til $Tid_i \sim N(\alpha_{Design_i} + \beta \cdot Id_i, \sigma^2)$

fra model Tid~Design*ld til model Tid~Design+ld

Fortolkning af model:

Additivitet: uanset eksperiment er der samme forskel i middelværdi mellem to værdier af *Id*

uanset værdien af *Id* er der samme forskel i middelværdi mellem de to eksperimenter

Teste samme hældning

Generelle F-test:

$$F = \frac{\left(\mathit{SSD}(M_2) - \mathit{SSD}(M_1)\right) / \left(\mathit{df}(M_2) - \mathit{df}(M_1)\right)}{\mathit{SSD}(M_1) / \mathit{df}(M_1)} \sim F(\mathit{df}(M_2) - \mathit{df}(M_1), \mathit{df}(M_1))$$

anova(lm(Tid~Design+Id),lm(Tid~Design*Id))

```
Model 1: Tid ~ Design + Id

Model 2: Tid ~ Design * Id

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 510747.7

2 45 499001.3 1 11746.4 1.0593 0.3089
```

Konklusion: data strider ikke mod hypotesen om samme hældning $\beta_{\text{Rekt}} = \beta_{\text{Circ}}$ (p-værdi = 0.31)

Gå tilbage til parametertabel og find p-værdi der

Teste samme skæring

Vi beskriver data med modellen $Tid_i \sim N(\alpha_{Design_i} + \beta \cdot Id_i, \sigma^2)$

teste reduktion til model $N(\alpha + \beta \cdot \operatorname{Id}_i, \sigma^2)$

fortolkning: samme lineære sammenhæng i de to eksperimenter anova(lm(Tid~Id),lm(Tid~Design+Id))

```
Model 1: Tid ~ Id

Model 2: Tid ~ Design + Id

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 1141624.8

2 46 510747.7 1 630877.1 56.8193 0.0000 ***
```

Konklusion: data strider kraftigt mod hypotesen om samme skæring $\alpha_{\rm Rekt} = \alpha_{\rm Circ}$

(Teste samme skæring i fulde model: p-værdi = 0.0012)

Parametertabel

F-test for at fjerne 1 parameter = t-test kvadreret

Fulde model: Residual standard error: 105.3 on 45 degrees of freedom

Konfidensintervaller

Konfidensintervaller i model Tid_i $\sim N(\alpha_{\mathsf{Design}_i} + \beta \cdot \mathsf{Id}_i, \sigma^2)$

l cirkel-eksperiment er tidsforbruget cirka 200 (ms) over rektangel-eksperiment

Fordobling af sværhedsgrad: stigning på cirka 160 ms

Konfidensinterval for spredning omkring linjen:

Webbog afsnit 2.6 med $s^2 = 105.4^2$ og df = 46: [88, 132]

Prøv selv i R: mtcars

Model: ..., Hypotese: ...

Design = factor(mtcars[,2])

Vores model er nu ...

denne er under 0.05, siger vi, at ...

mpg=mtcars[,1] vaegt=mtcars[,6]

Undersøg om der er samme hældning for de tre designs

```
Vi bruger det generelle F-test fra afsnit 4.7 anova(lm(mpg\simDesign+vaegt),lm(mpg\simDesign*vaegt)) F=... \text{ som vurderes i en } F(..,..)\text{-fordeling, og } p\text{-værdien for testet er }... \text{ Da}
```

Skift til webbog afsnit 5.1

Samme model kan parametriseres på flere måder, for eksempel

$$\alpha_1, \ \alpha_2 - \alpha_1, \ \alpha_3 - \alpha_1, \ldots, \ \alpha_k - \alpha_1$$

eller: $\alpha_1, \ \alpha_2, \ \alpha_3, \ldots, \ \alpha_k$

Opskrevet med vektorer svarer dette til:

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_k \mathbf{e}_k$$

$$= \alpha_1 (\mathbf{e}_1 + \dots + \mathbf{e}_k) + (\alpha_2 - \alpha_1) \mathbf{e}_2 + \dots + (\alpha_k - \alpha_1) \mathbf{e}_k$$

Sceneskift

Model med gruppebestemt regressionkoefficient er omtalt

Næste: Forstå fordelingsudsagn og uafhængighedsudsagn

Først: vektor af normalfordelte stokastiske variable

Fitts law for thumbs

Vektor af stokastiske variable: $\mathbf{Z} = (Z_1, \dots, Z_n)^{\mathsf{T}}$

$$\mathrm{E}(\mathbf{Z}) = (E(Z_1), \ldots, E(Z_n))^{\mathsf{T}}$$

$$\operatorname{Var}(\mathbf{Z}) = \begin{pmatrix} \operatorname{Var}(Z_1) & \operatorname{Cov}(Z_1, Z_2) & \cdots & \operatorname{Cov}(Z_1, Z_n) \\ \operatorname{Cov}(Z_2, Z_1) & \operatorname{Var}(Z_2) & \cdots & \operatorname{Cov}(Z_2, Z_n) \\ \vdots & \vdots & & \vdots \\ \operatorname{Cov}(Z_n, Z_1) & \operatorname{Cov}(Z_n, Z_2) & \cdots & \operatorname{Var}(Z_n) \end{pmatrix}$$

$$\operatorname{Var}(Z) = E(Z - E(Z))^2, \quad \operatorname{Cov}(Z_1, Z_2) = E(Z_1 - E(Z_1))(Z_2 - E(Z_2))$$

$$Var(Z) = E(Z - E(Z))^2$$
, $Cov(Z_1, Z_2) = E(Z_1 - E(Z_1))(Z_2 - E(Z_2))$

Kendte regneregler:

Dette giver
$$E(BZ) = BE(Z)$$
 og $Var(BZ) = BVar(Z)B^T$, $B: k \times n$

Bevis:

$$(\mathsf{BZ})_i = \sum_j B_{ij} Z_j \to E(\mathsf{BZ})_i = \sum_j B_{ij} E(Z_j) = (\mathsf{BE}(\mathsf{Z}))_i$$

$$Cov\left(\sum_{i} B_{ui} Z_{i}, \sum_{j} B_{vj} Z_{j}\right) = \sum_{i,j} B_{ui} B_{vj} Cov(Z_{i}, Z_{j})$$

$$= \sum_{i,j} B_{ui} Var(\mathbf{Z})_{ij} \mathbf{B}_{jv}^{\mathsf{T}}$$

$$= (\mathbf{B} Var(\mathbf{Z}) \mathbf{B}^{\mathsf{T}})_{uv}$$

Normalfordelt vektor

$$Z_i \sim N(\mu_i, \sigma^2)$$
, $i=1,\ldots,n$, uafhængige, skrives som

$$\mathbf{Z} \sim N_n(oldsymbol{\mu}, \sigma^2 \mathbf{I})$$
, I diagonal med 1 i diagonalen

Da
$$E(BZ) = BE(Z)$$
 og $Var(BZ) = BVar(Z)B^{T}$ skriver vi

$$\mathbf{W} = \mathbf{BZ} \sim N_n(\mathbf{B}\boldsymbol{\mu}, \sigma^2 \mathbf{BB}^{\mathsf{T}}),$$

Vi skriver nu
$$\mathbf{W} \sim N_n(m{\xi}, m{\Sigma})$$
, $m{\xi} = \mathbf{B}m{\mu}$, $m{\Sigma} = \sigma^2\mathbf{B}\mathbf{B}^{\mathsf{T}}$ og får

$$AW \sim N_n(A\xi, A\Sigma A^{\mathsf{T}})$$

idet
$$AW = (AB)Z \sim N_n((AB)\mu, \sigma^2(AB)(AB)^T)$$

$$= N_n(\mathbf{A}\boldsymbol{\xi}, \mathbf{A}(\sigma^2 \mathbf{B} \mathbf{B}^{\mathsf{T}}) \mathbf{A}^{\mathsf{T}})$$

Sceneskift

Vi har etableret notation for vektor med normalfordelte variable

Næste: fundamentale spaltningssætning (uden bevis)

Spaltningssætningen

Opsætning:

$$\mathbf{Y} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}), \quad \mathbf{B}_1: k_1 \times n, \quad \mathbf{B}_2: k_2 \times n$$

$$\mathbf{Z}_1 = (Z_{11}, \dots, Z_{1,k_1})^{\mathsf{T}} = B_1 \mathbf{Y} \quad \text{og} \quad \mathbf{Z}_2 = (Z_{21}, \dots, Z_{2,k_2})^{\mathsf{T}} = B_2 \mathbf{Y}$$

Hvis $B_1B_2^\intercal=0$ så er Z_1 og Z_2 stokastisk uafhængige

Spaltningssætningen

En $n \times n$ matrice **B** er en ortogonal projektionsmatrice hvis og kun hvis

$$BB = B \text{ og } B^T = B$$

Definer
$$\mathbf{Z} = (Z_1, \dots, Z_n)^\mathsf{T} = \mathbf{BY}$$
. Så gælder

$$\sum_{i=1}^{n} Z_i^2 = \|\mathbf{BY}\|^2 = (\mathbf{BY})^{\mathsf{T}}(\mathbf{BY}) \sim \sigma^2 \chi^2(k)$$

k: rang af B = dimensionen af rum der projektieres ned på

Sceneskift

Spaltningssætningen er omtalt

Bruge sætningen

Et normalfordelt observationssæt

$$X_i \sim N(\mu, \sigma^2), i = 1, \dots, n, \quad Y_i = X_i - \mu \sim N(0, \sigma^2)$$

$$ar{X} = rac{X_1}{n} + \ldots + rac{X_n}{n} = ar{Y} + \mu = \mathbf{B}_1 \mathbf{Y} + \mu$$
 $\mathbf{B}_1 = \mathbf{e}^{\mathsf{T}} = (rac{1}{n}, rac{1}{n}, \ldots, rac{1}{n})$

$$SSD = \sum_{i} (X_{i} - \bar{X}_{i})^{2} = \sum_{i} (Y_{i} - \bar{Y})^{2} = \|(\mathbf{I} - \mathbf{E})\mathbf{Y}\|^{2} = \|\mathbf{B}_{2}\mathbf{Y}\|^{2}$$

$$\mathbf{E}$$
, $n \times n$, alle søjler lig med \mathbf{e} , $\mathbf{B}_2 = \mathbf{I} - \mathbf{E}$

Betingelse fra spaltningssætningen:

$$\mathsf{B}_1 \mathsf{B}_2^{\mathsf{T}} = \mathsf{e}^{\mathsf{T}} (\mathsf{I} - \mathsf{E}) = (\frac{1}{n} - \frac{1}{n})(1, 1, \dots, 1) = \mathbf{0}$$

 $ar{X}$ og SSD er uafhængige og SSD $\sim \sigma^2 \chi^2 (n-1)$ idet

$$B_2B_2 = (I - E)(I - E) = I - 2E + EE = I - E = B_2$$

Uafhængighed generelt

Uafhængighed mellem skøn over parametre i middelværdi og variansskøn: webbog afsnit 6.2

Model: $\boldsymbol{\xi} \in \mathit{L}$, L udspændt af søjlerne i \mathbf{H} : $\boldsymbol{\xi} = \mathbf{H}\boldsymbol{\theta}$

$$\hat{\boldsymbol{\theta}} = \mathbf{B}_1 \mathbf{Y} + \boldsymbol{\theta}, \ \mathbf{B}_1 = (\mathbf{H}^\mathsf{T} \mathbf{H})^{-1} \mathbf{H}^\mathsf{T}, \ \mathbf{Y} = \mathbf{X} - \boldsymbol{\xi}$$

Projektionsmatrix: $P = H(H^TH)^{-1}H^T$

$$SSD(M) = \|\mathbf{B}_{2}\mathbf{Y}\|^{2}, \ \mathbf{B}_{2} = \mathbf{I} - \mathbf{P}$$

Betingelse i spaltningssætningen:

$$B_1B_2^T = P(I - P) = P - PP = P - P = 0$$

Sceneskift

Spaltningssætningen har givet os de resultater vi har brugt tidligere

Slut for i dag - efter en meget teoritung dag