Model-Driven Decision Procedures for Arithmetic

SYNASC 2013

Leonardo de Moura Microsoft Research

Logic Engines as a Service

VeriFast

 $Scala^{Z3}$

TERMINATOR

Satisfiability

Solution/Model

$$x^{2} + y^{2} < 1 \text{ and } xy > 0.1$$
 \implies sat, $x = \frac{1}{8}, y = \frac{7}{8}$ $x^{2} + y^{2} < 1 \text{ and } xy > 1$ \implies unsat, Proof

Is execution path *P* feasible?

Is assertion X violated?

Is Formula F Satisfiable?

The RISE of Model-Driven Techniques

Saturation x Search

Proof-finding

Model-finding

SAT

$$p_1 \lor \neg p_2$$
, $\neg p_1 \lor p_2 \lor p_3$, p_3 $p_1 = true$, $p_2 = true$, $p_3 = true$

CNF is a set (conjunction) set of clauses Clause is a disjunction of literals Literal is an atom or the negation of an atom

Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

Resolution

$$C \vee l$$
, $D \vee \neg l \Rightarrow C \vee D$

$$l, \neg l \Rightarrow \mathsf{unsat}$$

C subsumes $C \lor D$

Improvements

Delete tautologies $l \lor \neg l \lor C$ Ordered Resolution Subsumption (delete redundant clauses)

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ r \rightarrow r, \$$

unsat

Resolution: Problem

Exponential time and space

Unit Resolution

$$C \vee l, \neg l \Rightarrow C$$

$$C \vee l, \neg l \Rightarrow C$$
subsumes
$$C \vee l$$

DPLL = Unit Resolution + Split rule

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$, $\neg x \lor y$, $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$, $\neg x \lor y$, $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 y , $\neg y$, x , x , x , x , x

CDCL: Conflict Driven Clause Learning

Linear Arithmetic

Fourier-Motzkin	Simplex
Proof-finder	Model-finder
Saturation	Search

Fourier-Motzkin

$$t_1 \le ax$$
, $bx \le t_2$

$$bt_1 \le abx$$
, $abx \le at_2$

$$bt_1 \le at_2$$

Very similar to Resolution

Exponential time and space

Polynomial Constraints

AKA
Existential Theory of the Reals

3R

$$x^{2} - 4x + y^{2} - y + 8 < 1$$
$$xy - 2x - 2y + 4 > 1$$

Applications

- 1. Project/Saturate set of polynomials
- 2. Lift/Search: Incrementally build assignment $v: x_k \to \alpha_k$ Isolate roots of polynomials $f_i(\alpha, x)$ Select a feasible cell C, and assign x_k some $\alpha_k \in C$ If there is no feasible cell, then backtrack

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$ 1. Saturate $x^{2} - 1$

2. Search

	(-∞, -1)	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
X	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x = x^{2} + y^{2} - 1$
 $x = x^{2} + 1$
 $x = x^{2} - 1$
 $x = x^{2} -$

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
\boldsymbol{x}	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$
1. Saturate
 $x^{2} - 1$
 $x^{2} - 1$
 $x^{2} - 1$
 $x^{3} - 1$
 $x^{4} - x^{2} + 1$
 $x^{2} - 1$
 $x^{2} - 1$

CONFLICT

$$x \rightarrow -2$$
 2. Search

 $4+y^2-1$

-2y - 1

	(-∞, -1)	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
x	-	-	-	0	+	+	+

0

NLSAT: Model-Based Search

Static x Dynamic

Optimistic approach

Key ideas

Start the Search before Saturate/Project

We saturate on demand

Model guides the saturation

NLSAT (1)

Two kinds of decision

1. case-analysis (Boolean)

$$x^2 + y^2 < 1 \lor x < 0 \lor x y > 1$$

2. model construction (CAD lifting)

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
\boldsymbol{x}	-	_	-	0	+	+	+

NLSAT (1)

Two kinds of decision

- 1. case-analysis (Boolean)
- 2. model construction (CAD lifting)

Parametric calculus: explain(F, M)

Finite basis explanation function

Explanations may contain new literals

They evaluate to false in the current state

NLSAT (2)

Key ideas: Use partial solution to guide the search

NLSAT (2)

Key ideas: Use partial solution to guide the search

NLSAT (3)

Key ideas: Solution based Project/Saturate

$$\bigcup_{f \in A} \operatorname{coeff}(f,x) \cup \bigcup_{\substack{f \in A \\ g \in \mathsf{R}(f,x)}} \operatorname{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \mathsf{R}(f_i,x) \\ g_j \in \mathsf{R}(f_j,x)}} \operatorname{psc}(g_i,g_j,x)$$

Standard project operators are pessimistic.

Coefficients can vanish!

NLSAT (4)

Key ideas: Lemma Learning

Prevent a Conflict from happening again.

Current assignment

$$x \rightarrow 0.75$$

$$y \rightarrow 0.75$$

Conflict

$$x^2 + y^2 + z^2 < 1$$

Lemma

$$-1 < x < 1 \land y > root_2(1 - \tilde{y}^2 - x^2) \Rightarrow \bot$$

-0.5

0.0

0.5

1.0

NLSAT (5)

Key ideas: Nonchronological Backtracking

Machinery

Multivariate & univariate Polynomials

Basic operations, Pseudo-division,

GCD, Resultant, PSC, Factorization,

Root isolation algorithms, Sturm sequences

Binary rationals $\frac{a}{2^k}$

Real Algebraic Numbers

Experimental Results (1)

OUR NEW ENGINE

	meti-tarski	(1006)	keymaera	(421)	zankl	(166)	hong	(20)	kissin	g (45)	all (1	1658)
solver	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849
Mathematica	1006	7 96	420	171	50	366	9	208	6	29	1491	1572
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613
z3	266	83	379	1216	21	0	1	0	0	0	667	1299
iSAT	203	122	291	16	21	24	20	822	0	0	535	986
cvc3	150	13	361	5	12	3	0	0	0	0	523	22
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112

Experimental Results (2)

Other examples

(for linear arithmetic)

Fourier-Motzkin

X

Generalizing DPLL to richer logics

[McMillan et al 2009]

Conflict Resolution [Korovin et al 2009]

Other examples

Array Theory by Axiom Instantiation

X

Lemmas on Demand For Theory of Array [Brummayer-Biere 2009]

```
\forall a, i, v: a[i \coloneqq v][i] = v
\forall a, i, j, v: i = j \lor a[i \coloneqq v][j] = a[j]
```

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

Model-Driven SMT

Lift ideas from CDCL to SMT

Generalize ideas found in model-driven approaches

Easier to implement

Model construction is explicit

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

Propagations

Propagations

Propagations

Boolean Decisions

Semantic Decisions

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Conflict

We can't find a value for y s.t. $4 + y^2 \le 1$

Conflict

We can't find a value for
$$y$$
 s.t. $4 + y^2 \le 1$

Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$$
 is not productive

We can't find a value for y s.t. $9 + y^2 \le 1$

Learning that $\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$ is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1 \quad x^2 + y^2 \le 1 \quad x \to 2$$

$$\neg(x^2 + y^2 \le 1) \lor x \le 1$$

Learned by resolution

$$\neg(x \ge 2) \lor \neg(x^2 + y^2 \le 1)$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1$ $\neg (x^2 + y^2 \le 1)$
 $\neg (x \ge 2) \lor \neg (x^2 + y^2 \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad y \to 0$$

$$-x + z + 1 \le 0$$
, $x - y \le 0$ $z \to 0$, $y \to 0$

$$\equiv$$

$$z + 1 \le x$$
, $x \le y$

$$1 \le x, \quad x \le 0$$

We can't find a value of x

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad y \to 0$$

$$-x + z + 1 \le 0, \quad x - y \le 0 \qquad z \to 0, \qquad y \to 0$$

$$\exists x: -x + z + 1 \le 0 \ \land \ x - y \le 0$$

$$z + 1 - y \le 0$$

Fourier-Motzkin

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \quad z + 1 - y \le 0 \quad y \to 1$$

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0$$
, $x - y \le 0$ $z \to 0$, $y \to 1$

$$\equiv$$

$$z + 1 \le x$$
, $x \le y$

$$1 \le x$$
, $x \le 1$

$$-x + z + 1 \le 0 \quad z \to 0 \quad x - y \le 0 \longrightarrow z + 1 - y \le 0 \quad y \to 1 \quad x \to 1$$

$$\neg(-x + z + 1 \le 0) \lor \neg(x - y \le 0) \lor z + 1 - y \le 0$$

$$-x + z + 1 \le 0$$
, $x - y \le 0$ $z \to 0$, $y \to 1$
 \equiv
 $z + 1 \le x$, $x \le y$

$$1 \le x$$
, $x \le 1$

Every theory that admits quantifier elimination has a finite basis (given a fixed assignment order)

$$F[x, y_1, ..., y_m]$$

$$\exists x: F[x, y_1, ..., y_m]$$

$$C_1[y_1, ..., y_m] \land \cdots \land C_k[y_1, ..., y_m]$$

$$\neg F[x, y_1, ..., y_m] \lor C_k[y_1, ..., y_m]$$

MCSat - Finite Basis

Every "finite" theory has a finite basis

Example: Fixed size Bit-vectors

$$F[x, y_1, \dots, y_m]$$
 $y_1 \to \alpha_1, \dots, y_m \to \alpha_m$

$$\neg F[x, y_1, \dots, y_m] \lor \neg (y_1 = \alpha_1) \lor \dots \lor \neg (y_m = \alpha_m)$$

MCSat – Finite Basis

Theory of uninterpreted functions has a finite basis

Theory of arrays has a finite basis [Brummayer- Biere 2009]

In both cases the Finite Basis is essentially composed of equalities between existing terms.

$$a = b + 1, f(a - 1) < c, f(b) > a$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

Treat f(k) and f(b) as variables

Generalized variables

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$k \to 0$$
 $b \to 0$ $f(k) \to 0$ $f(b) \to 2$

Conflict: f(k) and f(b) must be equal

$$\neg(k=b) \lor f(k) = f(b)$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

(Semantic) Propagation

$$\neg(k=b) \lor f(k) = f(b)$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

$$a = b + 1, f(k) < c, f(b) > a, k = a - 1$$

MCSat – Finite Basis

We can also use literals from the finite basis in decisions.

Application: simulate branch&bound for bounded linear integer arithmetic

MCSat: Termination

Propagations

Boolean Decisions

Semantic Decisions

Propagations

Boolean Decisions

Semantic Decisions

Maximal Elements

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$

$$x \ge 2, \qquad (\neg x \ge 1 \lor y \ge 1), \qquad (x^2 + y^2 \le 1 \lor xy > 1)$$

$$x^2 \qquad \le 1$$
Conflict
$$\neg (x \ge 2) \lor \neg (x \le 1) \qquad \neg (x^2 + y^2 \le 1) \lor x \le 1$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1)$
 $x \ge 2$, $(x^2 + y^2 \le 1)$

$$x < 1 \lor p$$
, $\neg p \lor x = 2$

 $x \rightarrow 1$

$$x < 1 \lor p, \qquad \neg p \lor x = 2$$

$$x \to 1 \qquad p$$

Conflict (evaluates to false)

New clause

$$x < 1 \lor x = 2$$

New clause

$$x < 1 \lor x = 2$$

x < 1

New clause

$$x < 1 \lor x = 2$$

MCSat: Architecture

MCSat prototype: 7k lines of code

Deduction Rules

$$\frac{C \vee L \qquad \neg L \vee D}{C \vee D}$$
 Boolean Resolution

$$\overline{\neg (p_L < x) \lor \neg (x < p_U) \lor (p_L < p_U)}$$
 Fourier-Motzkin

$$(p = q) \lor (q < p) \lor (p < q)$$
 Equality Split

$$x_1 \neq y_1 \vee \cdots \vee x_k \neq y_k \vee f(x_1, \dots, x_k) = f(y_1, \dots, y_k)$$

Ackermann expansion aka Congruence

$$\neg (p < q) \lor x \lor x$$
 Normalization

MCSat: preliminary results

prototype: 7k lines of code

QF_LRA

	n	mcsat cvc4		z3		mathsat5		yices		
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
clocksynchro (36)	36	123.11	36	1166.55	36	1828.74	36	1732.59	36	1093.80
DTPScheduling (91)	91	31.33	91	72.92	91	100.55	89	1980.96	91	926.22
miplib (42)	8	97.16	27	3359.40	23	3307.92	19	5447.46	23	466.44
sal (107)	107	12.68	107	13.46	107	6.37	107	7.99	107	2.45
sc (144)	144	1655.06	144	1389.72	144	954.42	144	880.27	144	401.64
spiderbenchmarks (42)	42	2.38	42	2.47	42	1.66	42	1.22	42	0.44
TM (25)	25	1125.21	25	82.12	25	51.64	25	1142.98	25	55.32
ttastartup (72)	70	4443.72	72	1305.93	72	1647.94	72	2607.49	72	1218.68
uart (73)	73	5244.70	73	1439.89	73	1379.90	73	1481.86	73	679.54
	596	12735.35	617	8832.46	613	9279.14	607	15282.82	613	4844.53

MCSat: preliminary results

prototype: 7k lines of code

QF_UFLRA and QF_UFLIA

	mcsat		cvc4		z3		mathsat5		yices	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
EufLaArithmetic (33)	33	39.57	33	49.11	33	2.53	33	20.18	33	4.61
Hash (198)	198	34.81	198	10.60	198	7.18	198	1330.88	198	2.64
RandomCoupled (400)	400	68.04	400	35.90	400	31.44	400	18.56	384	39903.78
RandomDecoupled (500)	500	34.95	500	40.63	500	30.98	500	21.86	500	3863.79
Wisa (223)	223	9.18	223	87.35	223	10.80	223	65.27	223	2.80
wisas (108)	108	40.17	108	5221.37	108	443.36	106	1737.41	108	736.98
	1462	226.72	1462	5444.96	1462	526.29	1460	3194.16	1446	44514.60

Conclusion

Logic as a Service

Model-Based techniques are very promising

MCSat

http://z3.codeplex.com

http://rise4fun.com/z3