Řešení vybraných úloh grafických algoritmů

Autor Adam Malíř **Vedoucí práce** Mgr. Josef Horálek, Ph.D.

DELTA – Střední škola informatiky a ekonomie Pardubice, Ke Kamenci 151, 530 03 Pardubice I Informační technologie 18-20-M/01 2022/2023

Zadání maturitního projektu z informatických předmětů

Téma práce: Řešení vybraných úloh grafických algoritmů

Způsob zpracování, cíle práce, pokyny k obsahu a rozsahu práce:

Cílem maturitního projektu je vytvořit sadu implementaci grafických algoritmů v objektově orientovaném jazyce. Autor práce podrobně popíše vybrané grafické algoritmy (zejména rasterizaci úsečky, Flood fill, seed seed a mandelbrotovu množinu). Navrhne OOP model pro implementaci vybraných algoritmů a realizuje jejich implementaci.

Anotace

Cílem a výsledkem práce je implementace některých základních algoritmů počítačové grafiky v jazce C. U některých problémů jsem navrhl vlastní postup (řádkování, generování polygonu).

Klíčová slova/keywords

line, polygon, circle, polygon-filling, SDL, polygon-intersection, rotation úsečka, polygon, kružnice, vyplňování, SDL, průnik, rotace

Prohlašuji, že jsem uvedené literatury.	maturitní projekt	vypracoval(a)	$samo statn\check{e},$	výhradně s použitír	n
Pardubicích dne 31.3.2	023				

Obsah

1	Projekce scény	\mathbf{v}
2	Rasterizace	\mathbf{v}
	2.1 Úsečka	v
	2.2 DDA	vi
	2.3 Bresenham	vi
	2.4 Zrcadlení	vii
	2.5 Kružnice	vii
	2.6 Kruh	vii
	2.7 Vyplňování	
	2.8 Řádkovací metoda	
	2.9 Rozbití do trojúhelníků	
	2.10 Flood fill	X
3. 3. 3.	Analýza	xi
	3.1 Bod v polygonu	xi
	3.2 Konvexní/konkávní polygon	xii
	3.3 Průnik tvarů	xii
	3.4 Sutherland–Hodgman a Vattiho algoritmus	xii
	3.5 Obsah polygonu	xiii
4	Rotace	xiv
	4.1 2D	xiv
	4.2 3D	XV
	4.3 Posunutí středu a osy otáčení	XV
5	Generování tvarů	xvi
6	Praktická část	xvii
	6.1 Syntax, ovládání, funkce	xvii
	6.2 Požadavky, omezení	
	6.3 Struktura programu	xvii
7	Závěr	xix

Kapitola 1

Projekce scény

Projekcí scény je v této práci myšleno perspektivní vidění. Paprsek jdoucí od promítaného bodu do oka pozorovatele se promítá na určenou rovinu v prostoru, tz. tvoří průnik s touto rovinou. Výsledné 2 souřadnice jsou souřadnicemi bodu v 2D, 3. se ignoruje.

Kapitola 2

Rasterizace

Rasterizace je proces převodu vektorově definované grafiky do tzv. rastru, tedy mřížky skládající se z bodů (pixelů). Takový rastr je základem obrazového výstupu na digitálních zařízení. V následujícíh kapitolách jsou představeny algoritmy rasterizace 2 objektů: úsečky a kruhu.

2.1 Úsečka

./MP line A:x:<int>,y:<int>B:x:<int>,y:<int>

Úsečka je část přímky definovaná dvěma body: b_1 a b_2 . Pro následující algoritmy platí, že souřadnice x bodu b_1 je menší než x bodu b_2 , aby se mohly algoritmy posouvat o jeden dílek doprava, tj x+1. Směrnice úsečky je a=dy/dx. Počítá se s vstupem $a\subset<0;1>$, takže úsečka svírá s osou x úhel $0-45^\circ$ a b_2 je v 1. kvadrantu. Opět pro omezení na jedinou podmínku, zda je nutné přičíst 1 k y či nikoli při přičítání 1 k x.

Tyto nároky umožňují zvolit efektivní algoritmus, ale současně vyžadují převod vstupu a výsledných souřadnic.

Obrázek 2.1: Převod souřadnic podle směrnice úsečky.

2.2 DDA

DDA využívá zaokrouhlované hodnoty n*a pro výpočet y_{new} , je to prostý přístup. Současně ale zbytečně používá funkci zaokrouhlování či přetypování, kterou lze pro optimalizaci nahradit podmínkou s použitím proměnné, protože jsou pouze 2 možnosti pro y_{next} : $y_{next} = y$, nebo $y_{next} = y + 1$.

Proměnnou vyjadřuje $error(n) = ((n * a) \mod 1) - 1/2$, kde n je krok iterace, takže error(0) = -1/2. Pokud platí zmíněná podmínka error(n) >= 0, platí současně $y_{next} = y + 1$ a error(n + 1) = error(n) + a - 1, jinak platí error(n + 1) = error(n) + a.

2.3 Bresenham

$$error(n+1) = error(n) + 2 * dy$$

$$error(n+1) = error(n) + 2 * dy - 2 * dx$$

Nerovnice podmínky se nemění, protože po vynásobení pravé strany 2*dx: error(n+1) >= 0*2*dx zůstává stejná. Tím jsme se zbavili nutnosti použití desetinné čárky.

Algorithm 1 Bresenhamův algoritmus $x \leftarrow x_1$ $y \leftarrow y_1$ while $x <= x_2$ do vykresli bod[x,y] $x \leftarrow x + 1$ $error \leftarrow error + 2d_y$ if $error \geq 0$ then $y \leftarrow y + 1$ $error \leftarrow error - 2d_x$ end if end while

2.4 Zrcadlení

1 ./MP

Zrcadlení je často využívaná operace, například pro rasterizaci kružnice. Využívá bod \overrightarrow{B} a vektor \overrightarrow{v} , přes který B zrcadlíme. Výstupem je zrcadlený bod B_z . Platí, že vektor $\overrightarrow{BB_z}$ je kolmý na \overrightarrow{v} a jeho délka je dvojnásobná vzdálenosti B od \overrightarrow{v} .

```
\frac{1}{2}\overrightarrow{BB_z'} = (k*x + P_x; k*y + P_y) - (b_x; b_y), \text{ skalární součin tedy:}
(k*x + P_x - b_x; k*y + P_y - b_y)*(x; y) = 0.
Úpravou rovnice vyjde k = -\frac{x(B_x - P_x) + y(B_y - P_y)}{x^2 + y^2}, \text{ bod získám jako: } B_z = 2(k*\vec{v} + P) - B) = [(2(k*x + P_x) - B_x; 2(k*y + P_y) - B_y)]
```

2.5 Kružnice

1 ./MP ring S:<point> r:<int>

```
Algorithm 2 Kružnice
d \leftarrow x^2 + y^2 - r^2
x \leftarrow r
y \leftarrow 0
d \leftarrow 0
while x >= y do
vykresli bod[x,y]
y \leftarrow y + 1
d \leftarrow d + d_y
if d \ge 0 then
x \leftarrow x - 1
d \leftarrow d - d_x
end if
end while
```

Pro kužnici rovněž existuje Bresenhamův algoritmus. Algoritmus vykreslí 1/8 kružnice. V podmínce je tedy ze znalosti přímky svírající s osou x 45 stupnu: x >= y. K vykreslení této části víme, že iterativně zvětšujeme y. x dekrementujeme, pokud je hodnota d kladná, tj. zajímají nás pouze 2 pixely. Pro vykreslení celku stačí díky symetrii kružnice tuto část 3x zrcadlit. Drobná modifikace se může zakládat na výběru z 3 sousedících pixelů podle toho, který je nejblíž středu. Takové řešení je ale neefektivní, implementací se zde nezabývám.

2.6 Kruh

1 ./MP circle S:<point> r:<int>

Kruh se vykresluje tak, že se prochází body o souřadnicích od S - r do S + r pro x a y, jakoby byl kruh vepsán do čtverce. Bod se přidá, pokud je jeho vzdálenost od středu $\leq r$.

Algorithm 3 Kruh

```
1: x \leftarrow 0

2: y \leftarrow 0

3: for x = -r to r do

4: for y = -r to r do

5: if x^2 + y^2 \le r^2 then

6: vykresli bod[sx + x,sy + y]

7: end if

8: end for

9: end for
```

2.7 Vyplňování

2.8 Řádkovací metoda

```
1 ./MP polygon-fill point:<point>*
```

Pokud si představíme vodorovnou přímku, která protíná libovolný polygon. Pak řádkovací metoda vyplňuje $[row, x_i] - > [row, x_{i+1}]...[row, x_{i+2}] - > [row, x_{i+3}]...$ atd., kde x_i je x souřadnice i-tého bodu, když je vzestupně seřadíme podle x souřadnice.

Obrázek 2.2: Vyplňování řádkováním ze shora dolů. Červené vrcholy nejsou součástí žádné další nezpracované hrany, zelené vedou na 2 hrany k zpracování a modré vedou na právě jednu vedlejší/přiléhající nezpracovanou hranu.

¹Pokud dx > 1, může docházet k nespojeným oblastem (vynechaný jeden pixel na řádku).

Algorithm 4 Řádkovací metoda

```
row \leftarrow maxY(points)
points[], init[], arr\_a[], lines\_points[] \leftarrow []
points[] \leftarrow [points[...], points[0]]
for n\_points\_in\_row = 0; n\_points\_in\_row < init[i]; n\_points\_in\_row + + do
    for b_{-i}dx = 1; b_{-i}dx < \text{len(init[i])}; b_{-i}dx + + \mathbf{do}
        b\_val \leftarrow \text{converted\_points[b\_idx+n\_points\_in\_row].pos}
        next \leftarrow (b\_val + 1) \mod n\_points
        prev \leftarrow (b\_val == 0)?n\_points - 1 : b\_val - 1
         found \leftarrow \text{false}
        for b_{-}tmp = 0; b_{-}tmp < \text{len(tmp)}; b_{-}tmp + + do
             if b_val=tmp[b_tmp] then
                 found \leftarrow true
                 if y(points[b\_val-1]) < y(points[b\_val]) then
                     tmp[b_tmp] \leftarrow b_val - 1
                     \operatorname{arr_a[b\_tmp]} \leftarrow \operatorname{qet\_dx}(b\_val, b\_val - 1)
                 else if y(points[b\_val + 1]) < y(points[b\_val]) then
                     tmp[b\_tmp] \leftarrow b\_val + 1
                     \operatorname{arr_a[b\_tmp]} \leftarrow \operatorname{qet\_dx}(b\_val, b\_val + 1)
                 else if y(points[b\_val + 1]) == y(points[b\_val]) || y(points[b\_val + 1]) =
y(points[b\_val]) then
                     remove(tmp[b_tmp],arr_a[b_tmp],lines_points[b_tmp])
                 else
                     remove(tmp[b_tmp],arr_a[b_tmp],lines_points[b_tmp])
                     remove(tmp[b_tmp],arr_a[b_tmp],lines_points[b_tmp])
                 end if
                 break
             end if
        end for
        if not found then
             insert\_pos \leftarrow 0
             while points[b\_val].x > lines\_points[insert\_pos] and insert\_pos < arr\_size
do
                 insert\_pos \leftarrow insert\_pos + 1
             end while
             a1 \leftarrow get\_dx(b\_val, prev)
             a2 \leftarrow get\_dx(b\_val, next)
             tmp1 \leftarrow prev
             if a1 > a2 then
                 prev \leftarrow next
                 next \leftarrow tmp1
                 tmp2 \leftarrow a1
                 a1 \leftarrow a2
                 a2 \leftarrow tmp2
             end if
             if points[prev].y \neq points[b\_val].y then
                 insert(tmp, insert\_pos, prev)
                 insert(arr\_a, insert\_pos, a1)
                 insert(lines\_points, insert\_pos, points[b\_val].x)
                 arr\_size \leftarrow arr\_size + 1
                 insert\_pos \leftarrow insert\_pos + 1
             end if
             if points[next].y \neq points[b\_val].y then
```

2.9 Rozbití do trojúhelníků

Metoda rozbije libovolný konkávní polygon do trojúhelníků, které už stačí vyplnit úspornou metodou vyplňování trojúhelníka. Algoritmus omezuju na vstup konkávního polygonu, protože konvexní polygon vyžaduje odlišný přístup - zejména ověření úhlu, který hrany svírají (konkávní/konvexní?). Podoba algoritmu by v intencích původní myšlenky nutně zahrnovala komplexnější přístup.

```
Algorithm 5 Vyplňování rozbitím do
                                                       Algorithm 5 Vyplnění trojúhelníka
trojúhelníků
                                                           function FILLTRIANGLE(A,B,C)
  points[] \leftarrow []
                                                               P_1 \leftarrow maxY(A, B, C)
                                                               P_2 \leftarrow middleY(A, B, C)
  function Solve
       nB \leftarrow len(points)
                                                               P_3 \leftarrow minY(A, B, C)
                                                               a_1 \leftarrow get\_dx(P_1, minX(P_2, P_3))
       b_i \leftarrow 0
       C \leftarrow 0
                                                               a_2 \leftarrow qet_dx(P_1, maxX(P_2, P_3))
       while nB > 3 do
                                                               f \leftarrow P_1
           A \leftarrow C
                                                               s \leftarrow P_1
                                                               for row = P_1; row > P_2; row - - \mathbf{do}
           while !arr[(++b_{-i})\%len(points)]
  do
                                                                   f \leftarrow f + a_1
           end while
                                                                   s \leftarrow s + a_2
           B \leftarrow b_{-}i
                                                                   x \leftarrow f
           arr[B] \leftarrow false
                                                                   while + + x < s do
           while !arr[(++b_{-}i)\%len(points)]
                                                                                     ▷ přidej bod [x,row]
  do
                                                                   end while
           end while
                                                               end for
                                                               if X(P_2) < X(P_3) then
           C \leftarrow b_{-i}
           nB \leftarrow nB - 1
                                                                   a_1 \leftarrow get_{-}dx(P_2, P_3)
           fillTriangle(A, B, C)
                                                               else
       end while
                                                                   a_2 \leftarrow get\_dx(P_2, P_3)
       B \leftarrow C
                                                               end if
       while !arr[(+ + C\%len(points))] do
                                                               for row > P_3; row - - do
       end while
                                                                   f \leftarrow f + a_1
       fillTriangle(A, B, C)
                                                                   s \leftarrow s + a_2
  end function
                                                                   x \leftarrow f
  function GET_DX(A_idx, B_idx)
                                                                   while + + x < s do
       pointA \leftarrow points[A\_idx]
                                                                                     ⊳ přidej bod [x,row]
       pointB \leftarrow points[B\_idx]
                                                                   end while
       return \frac{x(pointB) - x(pointA)}{y(pointB) - y(pointA)}
                                                               end for
                                                          end function
  end function
```

2.10 Flood fill

Narozdíl od výše zmíněných algoritmů, algoritmus flood fill počítá s vstupem jednoho bodu, který je součástí oblasti, kterou vyplňujeme. Sousední body potom přidáme do fronty, pokud nejsou vyplněné nebo nemají barvu ohraničení. Postup se opakuje dokud není fronta prázdná. Vhodnější použití algoritmu je však v úpravě obrázku než vyplnění polygonů.

Algorithm 6 Flood Fill

```
procedure FLOODFILL(x, y)
                                                      \triangleright Vstupem je výchozí bod (x,y)
                                                 ⊳ Fronta sousedních bodů k vyplnění
   q \leftarrow \text{prázdná fronta}
   add(q,(x,y))
                                                  ⊳ Přidání výchozího bodu do fronty
   while q není prázdná do
                                                Dokud fronta není prázdná, opakuj:
                                                         ▷ Odebere první bod z fronty
      (a,b) \leftarrow \text{první bod z } q
      změň barvu bodu (a, b) na požadovanou
      if (a-1,b) není vyplněný a nemá barvu ohraničení then
          add(q,(a-1,b))
                                                       ▶ Přidá sousední bod do fronty
      end if
      if (a+1,b) není vyplněný a nemá barvu ohraničení then
                                                       ▶ Přidá sousední bod do fronty
          add(q,(a+1,b))
      end if
      if (a, b-1) není vyplněný a nemá barvu ohraničení then
          add(q,(a,b-1))
                                                       ▶ Přidá sousední bod do fronty
      end if
      if (a, b + 1) není vyplněný a nemá barvu ohraničení then
          add(q,(a,b+1))
                                                       ▶ Přidá sousední bod do fronty
      end if
   end while
end procedure
```

Kapitola 3

Analýza

3.1 Bod v polygonu

Pokud je polygon otevřený, žádný bod by správně neměl ležet v polygonu. V takovém případě stačí buď ověřit, zda je polygon úplný a neprůnikuje se. V programu k tomu však prakticky nedojde. Problém je možné řešit pomocí představy .tzv winding číslabod leží mimo polygon, pokud je 0, pro 1 leží uvnitř, jinak neurčujeme.

Obrázek 3.1: Rozhodnout, zda se bod nachází v polygonu, můžeme toutou vizualizací. Podle počtu průniků vodorvné přímky $x = B_x$ s hranami polygonu v nějakém směru. Lichý počet znamená, že leží uvnitř.

3.2 Konvexní/konkávní polygon

./MP polygon-convex? A:<polygon> B:<polygon>

```
Algorithm 7 Určení konvexnosti polygonu
  p \leftarrow minX(...points) \triangleright p je index bodu v
  points[]
  if Y(p+1) > Y(p-1) then
      p_{-}u \leftarrow 1
  else
      p_{-}u \leftarrow -1
  end if
  k \leftarrow p + p_u
  while x(points[k + p_-u]) > x(k) do
      if is\_above(line(k - p\_u, k), point(k +
  p_{-}u)) then
          return 0
      end if
  end while
  while x(points[k+p_{-}u]) < x(k) do
      if !is\_above(line(k - p\_u, k), point(k +
  p_{-}u)) then
          return 0
      end if
  end while
  if k = p then
      return 1
  end if
  return 0
```

Konvexnost se nedá určit pouze z matematického výpočtů úhlů mezi každou dvojicí sousedících hran a ověřením, zda jsou všechny < 180°, protože výpočet nezohledňuje podobu celého polygonu čili výstupem výpočtu může být vnější úhel.

Obrázek 3.2: Identifikace konvexního/konkávního polygonu

3.3 Průnik tvarů

Pro jasnost uvádím, že polygon A je polygon, který průnikuje polygon B. Výsledný průnik (polygon) označuju C.

3.4 Sutherland–Hodgman a Vattiho algoritmus

```
1 ./MP polygon-shutherland-hodgman A:<polygon> B:<polygon>
```

```
1 ./MP polygon-vatti A:<polygon> B:<polygon>
```

Pokud pomyslně prodloužíme hrany A, můžeme dělit strany této hrany na stranu, kde se nachází zbytek A a tedy i na stranu, v které se nenachází ani jeden vrchol A. Jakýkoli bod na druhé straně polygonu není určitě uvnitř A, takže ho nepoužijeme pro C. Pokud je tomu naopak, bod necháme. Postup se totiž opakuje pro každou další stranu A, tz. že na konci zbydou pouze body (vrcholy B), které uvnitř A leží. Mezi body se

navíc při procházení zjištuje, jestli průnikují B, v takovém případě se přidává navíc i bod jako průsečík hran. Algoritmus je omezen pouze na konvexní A. V opačném případě nemusí fungovat koncept (nebo by nutně vyžadoval zbytečně náročnou modifikaci), protože bychom mohli vyloučit body, které jinak v polygonu leží. Současně B je nutně konvexní. V opačném případě může dojít k překrytí (tz. overlaping) hran C - v tomto případě by vzniklo výsledků víc jako víc polygonů/samostatných průnikových oblastí. Problém řeší Vattiho algoritmus, který zaznamenává body při vstupu B do A končí při výstupu B z A. Potom přidá body na A mezi I_{vstup} a I_{vystup} ve směru procházení, kterým procházíme vrcholy B. Pokud žádný vrchol nepřidáme, ověříme, pokud nějaký bod B leží uvnitř A či nikoli, tedy jestli A leží uvnitř B.

Obrázek 3.3: Shutherland-hodgman algoritmus

3.5 Obsah polygonu

| |./MP polygon-S? A:<polygon> B:<polygon>

Obsah polygonu je $S = |\sum_{i=1}^{n} (x_i - x_{i+1})^{\frac{y_i + y_{i+1}}{2}}|$. Pokud se prohodí x_i s x_{i+1} , prochází se defacto opačným směrem, takže výsledek je taky opačný, proto je třeba absolutní hodnoty.

Obrázek 3.4: Vizualizace vzorce obsahu polygonu.

Kapitola 4

Rotace

1 ./MP cube-example

Obrázek 4.1: 3D rotace a projekce funguje v programu jako na obrázku. Pozorovatel (ohnisko) se pohybuje na sféře (převod souřadnic z jedné báze do druhé a rotace) a současně se dívá do středu souřadnic. 2D souřadnice se promítají na rovinu kolmou k spojnici střed-pozorovatel, která je posunuta dál od středu.

Otáčet bod vůči středu soustavy souřadné je jako nanášet ho na otočenou soustavu souřadnou, tedy násobit vektory udávájící osy $x,\,y,\,$ atd. takové soustavy. Tyto vektory mají délku 1. Lze zapsat takto:

$$p_n = \begin{pmatrix} X_1 & Y_1 \\ X_2 & Y_2 \end{pmatrix} \vec{p}$$

4.1 2D

Otočené souřadnice můžeme vyjádřit takto:

$$X_1 = \cos(-\alpha) = \cos(\alpha)$$

$$X_2 = \sin(2\pi - \alpha) = -\sin(\alpha)$$

$$Y_1 = \cos(\pi/2 - \alpha) = \sin(\alpha)$$

$$Y_2 = \sin(\pi/2 - \alpha) = \cos(-\alpha) = \cos(\alpha)$$

$$\begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

4.2 3D

Rotace bodu vůči ose Z ve směru hodinových ručiček:

$$\begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Rotace bodu vůči zvolené ose:[3]

Máme vstup osu o a úhel α .

Mějme 2 soustavy souřadné A a B popsané jednotkovými vektory. Přitom A je naše výchozí, na které vykreslujeme:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matice B má tvar:

$$\begin{pmatrix}
a_x & b_x & o_x \\
a_y & b_y & o_y \\
a_z & b_z & o_z
\end{pmatrix}$$

3. řádek B tvoří souřadnice osy o, takže 3. souřadnice p_b je právě vzhledem k o.

Čili je z následující rovnice zaručeno, že získáme přesně takový bod p_b , kde jeho 3. souřadnice je vzhledem k o. To potřebujeme, protože jsme zvolili matici rotace podle osy Z (respektive 3. osy...), kterou chceme bod násobit. Takže tato souřadnice bodu v B po rotaci bude stejná.

Z rovnice
$$p_a = p_b B$$
 vyjádříme tedy p_b vynasobením B^{-1} : $p_b = p_a B^{-1}$

Zbývající vektory a a b v B musí být jednotkové a vzájemně kolmé. takový a dostaneme třeba ignorováním z a přehozením souřadnic následovně: $\vec{a} = \{-y, x, 0\}$, kde x a y jsou souřadnice o. b je už jen vektorovým součinem a a b.

To je tedy převod relativních souřadnic ze soustavy A do soustavy B.

Rotace probíhá následovně:

Vstup: osa otáčení o, úhel α

- 1 převedeme souřadnice z A do B
- 2 zrotujeme (například přes matici 1.1, tj. vůči 3. ose)
- 3 vykreslujeme v A, takže převedeme z B do A

4.3 Posunutí středu a osy otáčení

Pro posunutý střed v 2D platí, že vektor \vec{XS} , kde S je střed a X bod, má fakticky souřadnice bodu \vec{p} . K výpočtu stačí potom přičíst S.

Stejně u posunuté osy v 3D, je takový vektor vlastně bod $p_a - S$. V praxi, grafickém editoru, určujeme osu typicky dvěma body. Právě jeden z nich (třeba pro intuici první určený) je totiž tento střed S. Nakonec stačí opět přičíst S.

Kapitola 5

Generování tvarů

1 ./MP polygon|polygon-fill polygon-rnd:n:<int>

Obrázek 5.1: Metody generování polygonu

Generování náhodných polygonů není to samé co pouhé generování náhodných bodů strany se mohou protínat či svírat úhel 180 stupňů, což bývá v praxi nežádoucí. Metoda (a) je generování bodů na kružnici a následně vyběr náhodné pozice na pomyslné úsečce střed-bod. První a poslední bod na kružnici zúžuje úhlový rozsah, v kterém další bod generujeme. Posledním bodem se pak stává generovaný bod a situace se opakuje. Hrany se nemohou protnout, protože se vždy nová hrana nachází celá ve zmíněné oblasti, kde žádný jiný bod neleží. Metoda může generovat konkávní polygony. Metoda (b) generuje na postupně procházených hranách trojúhelníku 1-2 náhodných bodů, v případné další iterace algoritmu se generuje nad výsledným tvarem atd. Následující iterací se dá generovat až dvojnásobný počet vrcholů tvaru z předchozí iterace. Výsledkem je konvexní polygon. Metoda (c) itereativně generuje body v určeném kvadrantu kartézských souřadnic, kde středem se následně stává generovaný bod. Díky tomu má generovaný bod ze všech nejmenší x souřadnici. První bod má nejmenší y. Pro spojení prvního a posledního bodu se urči bod [x,y], kde x < min X a y < min Y.

Metoda (a):

- $\mathbf{1}$ generuj n náhodných úhlů
- 2 seřaď tyto úhly
- ${\bf 3}$ konečnou pozici bodu urči jako $random_cislo*\vec{B-S}$

Kapitola 6

Praktická část

Výstupem programu je okno a text v terminálu, v kterém program běží. Program je psán v jazyce C, tedy je před spuštěním kompilován následovně.

```
git clone https://github.com/malirl/MP.git && cd resources/program; sudo make MP
```

6.1 Syntax, ovládání, funkce

Program běží ve dvou módech - první příkazový (PM), druhý vývojářský (VM). Rozdíl mezi nimi je však jen v datech, které zpracovává. Pro uvedení programu do PM je následující syntax:

```
1 ./MP nazev_obejktu parametr:hodnota parametr:hodnota ...
```

Pro uvedení programu do VM stačí čistě spustit:

```
1 \mid ./MP
```

PM zpracovává jeden objekt/problém z příkazu, avšak VM jen volá soubor devtest.c, zdrojový kód, v kterým je možné nastavit příslušné vstupy a volat příslušné funkce.

- Parametrem může být objekt, jehož parametr:hodnota jsou odděleny čárkami.
- Pořadí parametrů může být libovolné.
- Nadbytečné parametry program ignoruje.
- Nevalidní vstup program vyrozumí a skončí.
- Posouvání šipkami, zoom kolečkem myši/touchpadem.

¹_.

Speciální objekt example slouží stejně jako VM, ale vstup podobjektů nastavuje přes
pomocné funkce. Nakonec libovolný výstup podobjektů zabaluje do vlastního čili
výstupu jednoho objektu.

6.2 Požadavky, omezení

Pro úspěšnou kompilaci je nutná instalace překladače gcc a multimediální knohovny SDL2 na Linuxu (X-window system/Wayland). Jiné platformy nebyly testovány (stačí pouze přepsat Makefile).

6.3 Struktura programu

SDL2 řeší v programu pouze vytvoření okna, vykreslení bodů na něm a zachytávání uživatelského vstupu.[2] Zpracování regulárních výrazů řeší knihovna (modul) tiny-regex.

Klíčové vlastnosti

- Projekt se skládá z kontroleru, který validuje typ vstupu, nastavuje scénu, volá jednotlivá řešení v podsložkách jako /polygon ap.
- Dílčí řešení zapisuje do objektu body nebo podobjekty pro vykreslení. V případě, že je objekt součástí řešení a nevykresluje se, zapisuje do výstupu skládajícího se z dalších možných výstupů.
- Správně nastavený vstup objektu pro vykreslení je v syntaxi PM prostého/úplného tvaru vypsán před zpracováním.
- Vstup je předán main.c v podsložce dané úlohy, kde je případně upraven pro účely daného algoritmu.

Kapitola 7

Závěr

Literatura

- [1] Tom Carter. The bresenham line algorithm, computer science csu stanislaus. 2014.
- [2] Benedict HENSHAW. Intro to software rendering with sdl2. 2023.
- [3] Rostislav HORCIK. Výpočet matice rotace, http://uivty.cs.cas.sz. 2009.