File: Feb. 6, 1987

Priority:

Disclos.: Aug. 10, '88 Examination: Not req

Assign. : OKI

2 Claims

Title: Semiconductor Laser • Optical Fiber Coupler

look at the Fig. 1 and Fig. 3.

11: submount substrate

12:plateau for chip mount

13:plateau for optical fiber mount

14: heat sink for radiation

15: semiconductor laser chip

16: through hole

17:hole for solder in

18:solder

19: optical fiber

20: solder ball (before fixing of the o.f.)

Before the fixing, laser is on, and the optical fiber is positioned at most eff ficient position. Then, for example, the solder ball is irradiated by YAG laser from 22, and the solder is melted and get into the through hole 16. Then the YAG laser is stopped and the solder gets solidified and the optical fiber is firm ly supported by solidified solder at most efficient position.

特開昭63-193113(5)

11: サブマウント基板 12: チップロだ台 13: 光ファイバ固定台 15: 半導体レーザチップ 16: 貫通孔 17: 導入孔 17-1: 面取部 18: 半田 19: 光ファイバ

本発明の半導体レーザ・光ファイバ 結合装置の斜視図第一 図

第1回の半導体レーザ・光ファイバ結合設置の半田充填が断面図 第3回

⑩ 日本国特許庁(JP)

⑩ 特 許 出 顋 公 閉

⑩ 公 開 特 許 公 報 (A)

昭63-193113

MInt Cl.4

識別記号

庁内黎理番号

. 43公開 昭和63年(1988)8月10日

G 02 B 6/42 7529-2H

審査請求 未請求 発明の数 1 (全5頁)

半導体レーザ・光フアイバ結合装置 ②発明の名称

> 願 昭62-26074 创特

昭62(1987) 2月6日 四出

宏 79発明 者 楠 本 茂 清 明 井 ②発 者 長 久 の発 明 者 馬 楊 隆 敬 介 明 者 渡 辺 沖電気工業株式会社 ①出 願 人 弁理士 柿本 恭成 30代 理

東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 東京都港区虎ノ門1丁目7番12号 東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内

沖電気工業株式会社内

東京都港区虎ノ門1丁目7番12号

1. 発明の名称

半導体レーザ・光ファイバ結合装置

2. 特許請求の範囲

1. チップ固定台上に固定された半導体レーザチ ップと、前記チップ固定台に対向して設けられ前 記半導体レーザチップの対向位置に貸通孔を有す る光ファイバ固定台と、前記舞通孔に充塡された 低融点金属によって該翼通孔に固定された光ファ イバとを備えた半導体レーザ・光ファイバ結合装 置において、

前記光ファイバ固定台の上部に前記貫通孔に達 して形成され溶融された光ファイバ固定用の低融 点金属を該貨通孔内に導入する導入孔を設けたこ とを特徴とする半導体レーザ・光ファイバ結合装 置。

2. 前記導入孔は、その上端部が面取りされてい る特許請求の範囲第1項記載の半導体レーザ・光

ファイバ結合装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、半導体レーザチップからの出射光を 光ファイバに結合する半導体レーザ・光ファイバ 結合装置に関するものである。

(従来の技術)

従来、このような分野の技術としては、実開昭 61-143111 月公報に記載されるものがあった。以 下、その構成を図を用いて説明する。

第2図は前記文献に記載された従来の半導体レ ーザ・光ファイバ結合装置の一構成例を示す断面 図である。

図において、チップキャリア1は両端部に互い に対向するチップ固定台2と光ファイバ固定台3 を一体構造として有するもので、チップ固定台2 上には半導体レーザチップ4が固定されている。 光ファイバ固定台3の半導体レーザチップ4に対 向する位置には貫通孔5が設けられており、この

貫通孔5内部には低融点金属である半田6が充頃されている。さらに、半田6のほぼ中心部を貫通して光ファイバ7が固定されており、光ファイバ7の先端部7-1が半導体レーザチップ4の発光部4-1に対向するように配設されている。光ファイバ7の先端部7-1は、半導体レーザ出射光8に効率良く結合させるために球面状に加工されている。

以上のように構成される半導体レーザ・光ファ イバ結合装置の組立て方法について説明する。

先ず、光ファイバ7を貫通孔5に挿入した後に、 半田ごて9を光ファイバ固定台3の上面に接触させ、貫通孔5付近が半田の融点以上の温度となるように加熱する。この加熱された状態で、固体状の半田を貫通孔5と光ファイバ7の問験部に挿入すれば、半田6は順次溶融し、間隙部は充填される。

この状態において、半導体レーザ出射光8の光 ファイバ7への入力が最大となるように光ファイ パ7の位置を調整し、最大結合効率位置にて光フ

- (2) 半導体レーザ出射光8に対する光ファイバ7の位置合わせを半田6の溶験状態で行なうため、 半導体レーザチップ4に熱が伝わって発光量が変 化するので、正確な位置合わせが難しい。即ち、 半導体レーザは温度により発光量が変化するので、 温度変化があれば、光ファイバ7の最大結合効率 位置を精度良く見出だすのは困難である。
- (3) チップキャリア1に半田ごて9を接触させて加熱するため、加熱後半田ごて9をチップキャリア1から離す際に、チップキャリア1が動き易い。このとき、光ファイバ7はチップキャリア1から独立した支持体により保持されており、光ファイバ7はチップキャリア1と一体となって動かないので、光ファイバ7の位置ずれを生じ易い。

本発明は、前記従来技術がもっていた問題点として、光ファイバフが位置すれを生じ易い点及び 光ファイバフの最大結合効率位置に対する位置合 わせが難しい点について解決した半導体レーザ・ 光ファイバ結合装置を提供するものである。

(問題点を解決するための手段)

アイバアを保持する。次に、半田ごて9を光ファイバ固定台3から離せば、光ファイバ固定台の冷却に伴い半田6も融点以下に冷却され、やがて遊園する。この半田6の凝固により、光ファイバ7は貫通孔5に固定される。

上記のような半導体レーザ・光ファイバ結合装置においては、半田6と半田ごて9は直接には接触しないので、半田ごて9引き難し時に半田6が引きずられて光ファイバ7の最大結合効率位置を狂わせることがない等の利点を有する。

(発明が解決しようとする問題点)

しかしながら、上記構成の半導体レーザ・光ファイバ結合装置においては、次のような問題点が あった。

(1) 貫通孔5と光ファイバ7の間隙部に固体状の 半田を順次挿入して溶融するので、半田を供給す るタイミングやその溶け込み量等を適切に制御す ることは難しく、溶け込み量にばらつきを生じた り、光ファイバ7の周囲に半田6が均等に分布せ ず、光ファイバ7の位置ずれを起こし易い。

本発明は、前記問題点を解決するために、チップ固定台上に固定された半導体レーザチップと、前記チップ固定台に対向して設けられ前記半導体レーザチップの対向位置に貫通孔を有する光ファイバ固定台と、前記数通孔に充塡された低融点金属によって該貫通孔に固定された光ファイバとを備えた半導体レーザ・光ファイバ結合装置において、前記光ファイバ固定台の上部に前記資通孔に達して形成され、溶融された光ファイバ固定用の低融点金属を該貫通孔内に導入する導入孔を設けたものである。

(作用)

本発明によれば、以上のように半導体レーザ・光ファイバ結合装置を構成したので、光ファイバ 固定台の上部に設けられた導入孔は、所定量に秤量された低融点金属塊をその上に截置することを可能にすると共に、この低融点金属塊に対する均一な加熱、溶融を可能とする働きをする。また、前記導入孔は、溶融した低融点金属を他の介在物を必要とせずに速やかに導入孔へ導き、均等に分

特開昭63-193113(3)

布させる働きをし、光ファイバに位置ずれを生じさせない。この働きにより、低融点金属を貫通孔に充塡する前に、光ファイバの位置合わせを行なうことが可能となり、半導体レーザに対する温度影響が除去される。さらに、導入孔は、低融点金属が溶融される場所と充塡される質通孔とを分離するので、低融点金属の溶融に係わる機械的外力が直接貫通孔に伝わるのを防止する働きをする。

したがって、前記問題点を除去できるのである。 (実施例)

第1図は本発明の実施例を示す半導体レーザ・ 光ファイバ結合装置の斜視図であり、第3図は半 田充塡前における第1図の半導体レーザ・光ファ イバ結合装置の断面図である。

図において、サブマウント基板11上の互いに対向する位置に、チップ固定台12と光ファイバ固定台13が設けられている。チップ固定台12には、放熱用のヒートシンク14を介して半導体レーザチップ15が固定されており、この半導体レーザチップ15はその前面に発光部15-1を有している。

ル20を載置する。この半田ボール20は所定選に秤 量された球状を成すもので、その球面が面取部 17-1の斜面に当接することにより、所定位置に載 置される。

次に、光ファイバ19を貫通孔16のほぼ中心位置に挿入、貫通させ、図示しない保持装置を用いて 光ファイバ19を保持する。その後、半導体レーザ チップ15を発光させ、その出射光21に対する光ファイバ19の位置合わせを行なって、その入力が最 大となる位置に光ファイバ19を調整の上、保持する

光ファイバ19が最大結合効率位置に保持された状態において、半田ボール20に例えばヤグ(YAG:イットリウム・アルミニウム・ガーネットY2 AI2O₁₅の略称)レーザ等を矢印22の如く照射し、溶融した半田を導入孔17を経て質通孔16に流入させる。質通孔16に流入した半田は、質通孔16充頃後にレーザの照射を停止すれば、凝固して光ファイバ19を翼通孔16内に固定する。

上記の本実施例においては、次のような利点を

光ファイバ固定台13の半導体レーザチップ15に対向する位置には、光ファイバ固定台13を貫通する質通孔16が形成されており、その中心軸は発光の質通孔16の中心軸にほぼ垂直な方向には、湯入17が形成されている。導入17が形成されている。導入17が形成されている。導入17は光ファイバ固定台13の上面から質通孔16へ質通して設けられており、その取りが施されて面取的17-1が形成で面取りが施されて面取の場入れ17及び面では、、近極点金属である例えば半田18が配のでは、近極点金属である例えば半田18が配ったは、近極点金属である円18のほぼ中心光ファイバ19の発光部15-1に対する位置は、半導体レーザと最大結合効率が得られるように調整されている。

以上のように構成される半導体レーザ・光ファイバ結合装置の組立て方法について、第3図を用いて説明する。

先ず、導入孔17上部の面取部17-1上に半田ボー

有する。

- ① 所定量に秤量された半田ボール20を安定した一定熱量のヤグレーザ等で加熱、溶融するので、一定時間に一定量の安定した溶け込みを得ることができる。それ故、半田18は光ファイバ19の周囲に均等に分布し、位置ずれの少ない高精度な固定を行なうことができる。
- ② 半田18を充塡する前に光ファイバ19の位置合わせを行なうので、加熱による半導体レーザチップ15の塩度変化はなく、その発光量は一定であり、最大結合効率位置に正確に位置合わせすることが可能である。
- ③ 半田ボール20の溶融に際し、機械的な接触に よる加熱を必要としないので、光ファイバ固定台 13や光ファイバ19に機械的外力は作用せず、位置 ずれを生じることはない。
- ④ 半田ボール20は、その球面が面収部17-1の斜面に当接することにより、容易に所定位置に截置されるので、ヤグレーザ等による加熱を所定位置に精度良く受けることができる。また、面取部

17-1は半田ボール20との接触面積を大きくし、半田ボール20の熱を効率良く光ファイバ固定台13に伝えるという利点も有している。

なお、本発明は図示の実施例に限定されず、 種々の変形が可能であり、例えば次のような変形 例が挙げられる。

- (イ) 本実施例においては、導入孔17に面取りを施すものとしたが、これに限定されず、必ずしも施さなくてもよい。また、面取部17-1を導入孔17の下端部に達するように、深く形成することも可能である。
- (ロ) 本実施例では半田ボール20加熱用にヤグレーザを使用することとしたが、これに限らず他のレーザを使用してもよい。また、機械的な接触を必要とする加熱装羅、例えば半田ごてを使用することもできる。この場合、本発明の半導体レーザ・光ファイバ結合装置においては、加熱を終えた半田ごてを導入孔17の溶融半田から引き離す際に、半田が引きずられたとしても、貫通孔16内の半田にまでその影響が及ぶことはない。また、半

設けたので、所定量に秤量された低融点金属を均一に加熱、溶融し、貫通孔に低融点金属を均等かつ速やかに充填することが可能となり、光ファイバを精度良く固定することができる。また、低融点金属を貫通孔に充填する前に光ファイバの位置合わせをするので、温度変化の影響を受けることが高さらに、低融点金属の加熱、溶融ににする、となる。さらに、低融点金属の加熱、溶融に作用するのを防ぎ、光ファイバの位置ずれを防止する、カスティバの位置ずれを防止する、カスティバの位置がないにする、の結合を密結度かつ迅速に行なうことができる。

4. 図面の簡単な説明

第1図は本発明の実施例を示す半導体レーザ・ 光ファイバ結合装置の斜視図、第2図は従来の半 導体レーザ・光ファイバ結合装置の一構成例を示す断面図、第3図は半田充塡前における第1図の 半導体レーザ・光ファイバ結合装置の断面図であ 田ごてを溶脱半田から引き離す際に、光ファイバ 固定台13が動くおそれはない。

- (ハ) 球状の半田ポール20に限定されず、他の 形状の低触点金属を用いることもできる。例えば、 立方体や多面体の低触点金属を使用することも可 能であり、面取部17-1の形状はこれらに適したも のとすればよい。
- (二) 貫通孔16及び導入孔17の断面形状は円形以外のもの、例えば四辺形や多角形とすることもできる。
- (ホ) 半導体レーザ・光ファイバ結合装置の形式、構造等は図示のものに限定されず、例えばサプマウント基台11、チップ固定台12及び光ファイバ固定台13は一体構造とすることも可能である。
- (へ) 本実施例は、半導体レーザの代りに他の 発光素子、例えば発光ダイオードと光ファイバと の粘合装置に対しても適用可能である。

(発明の効果)

以上詳細に説明したように本発明によれば、光 ファイバ固定台の上部に貫通孔に達する導入孔を

11……サブマウント基板、12……チップ固定台、13……光ファイバ固定台、15……半導体レーザチップ、15-1……発光部、16……貫通孔、17……導入孔、17-1……面取部、18……半田、19……光ファイバ、20……半田ボール、21……出射光。

"出願人代理人 柿 本 恭 成

特開昭63-193113(5)

11: サブマウント基板 12: チップ面定台 13: 光ファイバ固定台 15: 半導体レーザチップ 16: 貫通孔 17: 導入孔 17-1: 面取部 18: 半田 19: 光ファイバ

本発明の半導体レーザ・光ファイバ結合装置の料視図 第 | 図

第1回の半導体レーザ・光ファイバ結合設置の半田充填前断面図 第3回