Sanjivani College of Engineering, Kopargaon

Subject- Mathematics-III

Tutorial 1

Unit-1 Vector Differentiation

1) If
$$\bar{r}(t) = t^2 \bar{\iota} + t \bar{\jmath} - 2t^3 \bar{k}$$
 then evaluate $\int_1^2 \left(\bar{r} \times \frac{d^2 \bar{r}}{dt^2} \right) dt$

- 2) If $\bar{r}(t) = \sinh t\bar{a} + \cosh t\bar{b}$, then prove that $\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} = \text{constant}$.
- 3) If directional derivative of $\emptyset = ax^2y + by^2z + cz^2x$ at point (1,1,1) has maximum magnitude 15 in the direction parallel to $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$, hence find the values of a, b, c.
- 4) For a solenoidal vector field \overline{E} , show that $curl curl curl \overline{E} = \nabla^4 \overline{E}$.
- 5) If $\bar{F} = (x^2 y^2 + 2xz)\bar{\iota} + (xz xy + yz)\bar{\jmath} + (z^2 + x^2)\bar{k}$ then show that $curl\bar{E}$ at point (1, 2, -3) and (2, 3, 12) are orthogonal.
- 6) Verify whether the following field is irrotational, if so find corresponding scalar point function \emptyset such that $\bar{F} = \nabla \emptyset$ $\bar{F} = (y \sin z \sin x)\bar{\iota} + (x \sin z + 2yz)\bar{\jmath} + (xy \cos z + y^2)\bar{k}.$
- 7) Show that the vector field $f(r)\bar{r}$ is always irrotational and find f(r) such that $\nabla^2 f(r) = 0$.
- 8) Show that

i)
$$\nabla^4(r^2 log r) = \frac{6}{r^2}$$

ii)
$$\nabla \cdot \left[r \nabla \left(\frac{1}{r^n} \right) \right] = \frac{n(n-2)}{r^{n+2}}$$

iii)
$$\nabla^2 \left(\frac{\bar{a} \cdot \bar{b}}{r} \right) = 0$$