Name: Minjie Shen NetID: ms10733

Email: ms10733@nyu.edu

Homework 3 - Q7 to Q11

Question 7:

a) Exercise 3.1.1, sections a-g

1.a $27 \in A$: True

1.b $27 \in B$: Flase

1.c 100 ∈ B : True

1.d since $E \subseteq C$ is false, $C \subseteq E$ is false, $E \subseteq C$ or $C \subseteq E$ is False.

1.e $E \subseteq A$: True

1.f $A \subset E$: False

1.g $E \in A$: False

- b) Exercise 3.1.2, sections a-e
- **2.a** $15 \subset A$ False
- **2.b** $\{15\} \subset A$ True
- **2.c** $\varnothing \subset A$ True
- **2.d** $A \subseteq A$ True
- **2.e** $\varnothing \in B$ False
- c) Exercise 3.1.5, sections b, d
- **5.b** let $A = \{3, 6, 9, 12...\}$ $A = \{x \in Z : x \text{ is an integer multiply of } 3 \text{ and } x \ge 3\}$

the set is infinite.

5.d *let*
$$B = \{0, 10, 20, ..., 1000\}$$
 $B = \{x \in Z : x \text{ is an integer multiply of } 10 \text{ and } 0 \le x \le 1000\}$ this set is finite, $|B| = 101$

- d) Exercise 3.2.1, sections a-k
- **1.a** $2 \in X$ True
- **1.b** $\{2\} \subseteq X$ True
- **1.c** $\{2\} \in X$ False
- **1.d** $3 \in X$ False
- **1.e** $\{1,2\} \in X$ True
- **1.f** $\{1,2\} \subseteq X$ True
- **1.g** $\{2,4\} \subseteq X$ True
- **1.h** $\{2,4\} \in X$ False
- **1.i** $\{2,3\} \subseteq X$ False
- **1.j** $\{2,3\} \in X$ False
- **1.k** |X| = 7 False

Question 8:

Exercise 3.2.4, section b

```
4.b since A={1,2,3} , P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} let B = \{X \in P(A): 2 \in X\} B = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}
```

Question 9:

a) Exercise 3.3.1, sections c-e

1.c
$$A \cap C = \{-3, 1, 17\}$$

1.d
$$A \cup (B \cap C) = A \cup (\{-5, 1\}) = \{-3, -5, 0, 1, 4, 17\}$$

1.e
$$A \cap B \cap C = \{1, 4\} \cap C = \{1\}$$

b) Exercise 3.3.3, sections a, b, e, f

3.a
$$\bigcap_{i=2}^{5} A_i = A_2 \cap A_3 \cap A_4 \cap A_5$$

 $A_2 = \{1, 2, 4\}$
 $A_3 = \{1, 3, 9\}$
 $A_4 = \{1, 4, 16\}$
 $A_5 = \{1, 5, 25\}$
 $\therefore \bigcap_{i=2}^{5} A_i = A_2 \cap A_3 \cap A_4 \cap A_5 = \{1\}$

3.b
$$\bigcup_{i=2}^{5} A_i = A_2 \cup A_3 \cup A_4 \cup A_5$$

 $A_2 = \{1, 2, 4\}$
 $A_3 = \{1, 3, 9\}$
 $A_4 = \{1, 4, 16\}$
 $A_5 = \{1, 5, 25\}$
 $\therefore \bigcup_{i=2}^{5} A_i = A_2 \cup A_3 \cup A_4 \cup A_5 = \{1, 2, 3, 4, 5, 9, 16, 25\}$

c) Exercise 3.3.4, sections b, d

4.b $P(A \cup B)$

$$A \cup B = \{a, b, c\}$$

 $\therefore P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$

4.d
$$P(A) \cup P(B)$$

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

$$P(B) = \{\emptyset, \{c\}, \{b\}, \{c, b\}\}\$$

$$P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c\}, \{c, b\}\}\$$

Question 10:

a) Exercise 3.5.1, sections b, c

1.b
$$B \times A \times C = (foam, tall, non - fat)$$

1.c
$$B \times C = \{(b, c) \mid b \in B \land c \in C\}$$

$$= \{(foam, non - fat), (foam, whole), (no - foam, non - fat), (no - foam, whole)\}$$

- b) Exercise 3.5.3, sections b, c, e
- **3.b** $Z^2 \subseteq R^2$ True

3.c
$$Z^2 \cap Z^3 = \emptyset$$
 True

3.e prove that
$$A \subseteq B \to A \times C \subseteq B \times C$$

$$A \times C = \{(a, c) : a \in A \land c \in C\}$$

$$B \times C = \{(b, c) : b \in B \land c \in C\}$$

$$\therefore A \subseteq B \therefore a \in A \text{ and } a \in B$$

$$\therefore A \times C \subseteq B \times C$$
 is True

- c) Exercise 3.5.6, sections d, e
- **6.d** $x \in \{0\} \cup \{0\}^2$

$$\{0\}^2 = \{0\} \times \{0\} = \{00\}$$

$$\{0\} \cup \{0\}^2 = \{0, 00\}$$

$$x \in \{0, 00\}$$

$$y \in \{1\} \cup \{1\}^2$$

$$\{1\}^2 = \{1\} \times \{1\} = \{11\}$$

$$\{1\} \cup \{1\}^2 = \{1, 11\}$$

$$y\in\{1,\ 11\}$$

let
$$A = \left\{ xy : where \ x \in \{0\} \cup \{0\}^2 \ and \ y \in \{1\} \cup \{1\}^2 \right\}$$

= $\{01, 011, 001, 0011\}$

6.e

$$y \in \{a\} \cup \{a\}^2$$

$${a}^2 = {a} \times {a} = {aa}$$

 ${a} \cup {a}^2 = {a, aa}$
 $y \in {a, aa}$
let $A = {xy : where x \in {aa, ab} and y \in {a} \cup {a}^2}$
 $= {aaa, aaaa, aba, abaa}$

d) Exercise 3.5.7, sections c, f, g

7.c
$$(A \times B) \cup (A \times C)$$

 $A \times B = \{ab, ac\}$
 $A \times C = \{aa, ab, ad\}$
 $(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$

7.f
$$P(A \times B)$$

 $A \times B = \{ab, ac\}$
 $P(A \times B) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}$

7.g
$$P(A) \times P(B)$$

 $P(A) = \{\emptyset, \{a\}\}$
 $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\}$
 $P(A) \times P(B) = \{(\emptyset, \emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\}), (\{a\}, \emptyset)\}$

Question 11:

a) Exercise 3.6.2, sections b, c

2.b
$$(B \cup A) \cap (\overline{B} \cup A) = A$$

$(B \cup A) \cap (\overline{B} \cup A)$	Hypothesis
$(A \cup B) \cap (A \cup \overline{B})$	Commutative laws
$A \cup (B \cap \overline{B})$	Distributive laws
$A \cup \emptyset$	Complement laws
A	Identity law

$$2.c \ \overline{A \cap \overline{B}} = \overline{A} \cup B$$

$\overline{A \cap \overline{B}}$	Hypothesis
$\overline{A} \cup \overline{\overline{B}}$	De Morgan's laws
$\overline{A} \cup B$	Double complement laws

b) Exercise 3.6.3, sections b, d

3.b
$$A - (B \cap A) = A$$

let
$$A = \{1, 2, 3, 4, 5\}$$

let
$$B = \{3, 4\}$$

$$\therefore B \cap A = \{3,4\}$$

$$\therefore A - (B \cap A) = \{1, 2, 5\}$$
 which is not equal to $A = \{1, 2, 3, 4, 5\}$

so, the set equation is not identical.

3.d
$$(B - A) \cup A = A$$

let
$$A = \{3, 4, 6\}$$

$$let \ B = \{1, 2, 3, 4, 5\}$$

$$B - A = \{1, 2, 5\}$$

$$\therefore (B-A) \cup A = \{1, 2, 5, 3, 4, 6\}$$
 which is not equal to $A = \{3, 4, 6\}$

so, the set equation is not identical.

4.b $A \cap (B-A) = \emptyset$

$A\cap (B-A)$	Hypothesis
$A \cap (B \cap \overline{A})$	Subtraction laws
$A \cap (\overline{A} \cap B)$	Commutative laws
$(A \cap \overline{A}) \cap B$	Associative laws
$\varnothing \cap B$	Complement laws
$B \cap \varnothing$	Commutative laws
Ø	Domination laws

4.c $A \cup (B - A) = A \cup B$

$A \cup (B-A)$	Hypothesis
$A \cup (B \cap \overline{A})$	Subtraction laws
$(A \cup B) \cap (A \cup \overline{A})$	Distributive laws
$(A \cup B) \cap U$	Complement laws
$A \cup B$	Identity laws