Chapter 2 Arrays and Structures

Yi-Fen Liu
Department of IECS, FCU

References:

- E. Horowitz, S. Sahni and S. Anderson-Freed, *Fundamentals of Data Structures (2nd Edition)*
- Slides are credited from Prof. Chung, NTHU

Outline

- The array as an Abstract Data Type
- Structures and Unions
- The polynomial Abstract Data Type
- The Sparse Matrix Abstract Data Type
- The Representation of Multidimensional Arrays
- String Matching

THE ARRAY AS AN ADT

The array as an ADT (1)

Arrays

- A set of pairs, <index, value>
- Data structure
 - For each index, there is a value associated with that index.
- Representation (possible)
 - Implemented by using consecutive memory.
 - In mathematical terms, we call this a *correspondence* or a *mapping*.

The array as an ADT (2)

- When considering an ADT we are more concerned with the operations that can be performed on an array.
 - Aside from *creating* a new array, most languages provide only two standard operations for arrays, one that *retrieves* a value, and a second that *stores* a value.
 - The advantage of this ADT definition is that it clearly points out the fact that the array is a more general structure than "a consecutive set of memory locations."

The array as an ADT (3)

structure Array is

objects: A set of pairs < index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, $\{0, \dots, n-1\}$ for one dimension, $\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)\}$ for two dimensions, etc.

functions:

for all $A \in Array$, $i \in index$, $x \in item$, j, $size \in integer$

Array Create(j, list) ::= **return** an array of j dimensions where list

is a *j*-tuple whose *i*th element is the the size of

the ith dimension. Items are undefined.

Item Retrieve(A, i) ::= if $(i \in index)$ return the item associated

with index value i in array A

else return error

Array Store(A,i,x) ::= if (i in index)

return an array that is identical to array

A except the new pair $\langle i, x \rangle$ has been

inserted else return error.

end Array

Abstract Data Type Array

The array as an ADT (4)

- Arrays in C
 - int list[5], *plist[5];
 - list[5]: (five integers)
 - list[0], list[1], list[2], list[3], list[4]
 - *plist[5]: (five pointers to integers)
 - plist[0], plist[1], plist[2], plist[3], plist[4]
 - implementation of 1-D array

```
list[0] base address = \alpha
```

list[1] α + sizeof(int)

list[2] α + 2*sizeof(int)

list[3] $\alpha + 3*sizeof(int)$

list[4] $\alpha + 4*sizeof(int)$

The array as an ADT (5)

Compare int *list1 and int list2[5] in C.
 Same: list1 and list2 are pointers list1
 Difference: list2 reserves five locations
 Notations

Notations list2list2 — a pointer to list2[0]
(list2 + i) — a pointer to list2[i] (&list2[i])
*(list2 + i) — list2[i]

Example

- 1-dimension array addressing
 - $int one[] = {0, 1, 2, 3, 4};$
 - Goal: print out address and value

Address	Contents
1228	0
1230	1
1232	2
1234	3
1236	4

STRUCTURES AND UNIONS

Structures and Unions (1)

- Structures (Records)
 - Arrays are collections of data of the same type
 - In C there is an alternate way of grouping data that permit the data to vary in type
 - This mechanism is called the *struct*, short for structure
 - A structure is a collection of data items, where each item is identified as to its type and name

```
struct {
    char name[10];
    int age;
    float salary;
    } person;
```

```
strcpy(person.name,"james");
person.age = 10;
person.salary = 35000;
```

Structures and Unions (2)

- Create structure data type
 - We can create our own structure data types by using the typedef statement as below

 This says that human_being is the name of the type defined by the structure definition, and we may follow this definition with declarations of variables such as:

human_being person1, person2;

Structures and Unions (3)

We can also embed a structure within a structure.

 A person born on February 11, 1994, would have values for the date struct set as

```
person1.dob.month = 2;
person1.dob.day = 11;
person1.dob.year = 1944;
```

Structures and Unions (4)

Unions

- A union declaration is similar to a structure
- The fields of a union must share their memory space
- Only one field of the union is "active" at any given time

```
typedef struct sex_type {
         Memory Layout
                                                 enum tag_field {female, male} sex;
sex_type
                                                 union {
                                                  int children;
         enum tag_field
                                                    int beard ;
                                                    } u;
     int children
                 int beard
 u
                                                 };
                                         typedef struct human_being {
   person1.sex_info.sex = male;
                                                 char name[10];
                                                 int age;
person1.sex_info.u.beard = FALSE;
                                                 float salary;
               and
                                                 date dob;
  person2.sex_info.sex = female;
                                                 sex_type sex_info;
 person2.sex_info.u.children = 4;
                                         human_being person1, person2;
```

Structures and Unions (5)

- Internal implementation of structures
 - The fields of a structure in memory will be stored in the same way using increasing address locations in the order specified in the structure definition
 - Holes or padding may actually occur
 - Within a structure to permit two consecutive components to be properly aligned within memory
 - The size of an object of a struct or union type is the amount of storage necessary to represent the largest component, including any padding that may be required

Structures and Unions (6)

- Self-Referential Structures
 - One or more of its components is a pointer to itself

```
- typedef struct list {
    char data;
    list *link;
    }
```

– list item1, item2, item3; item1.data='a'; item2.data='b'; item3.data='c'; item1.link=&item2; item2.link=&item3; item3.link=NULL;

Construct a list with three nodes item1.link=&item2; item2.link=&item3; malloc: obtain a node (memory) free: release memory

THE POLYNOMIAL ADT

Ordered or Linear List

Examples

- Ordered (linear) list: (item₁, item₂, item₃, ..., item_n)
 - (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
 - (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)
 - (basement, lobby, mezzanine, first, second)
 - (1941, 1942, 1943, 1944, 1945)
 - $(a_1, a_2, a_3, ..., a_{n-1}, a_n)$

Operations on Ordered List

Operations

- Finding the length, n, of the list.
- Reading the items from left to right (or right to left).
- Retrieving the i'th element.
- Storing a new value into the i'th position.
- Inserting a new element at the position i, causing elements numbered i, i+1, ..., n to become numbered i+1, i+2, ..., n+1
- Deleting the element at position i, causing elements numbered i+1, ..., n to become numbered i, i+1, ..., n-1

The Polynomial

- Polynomial examples
 - Two example polynomials are
 - $A(x) = 3x^{20} + 2x^5 + 4$
 - $B(x) = x^4 + 10x^3 + 3x^2 + 1$
 - Assume that we have two polynomials, $A(x) = \sum a_i x^i$ and $B(x) = \sum b_i x^i$ where x is the variable, a_i is the coefficient, and i is the exponent, then
 - $A(x) + B(x) = \sum (a^i + b^i)x^i$
 - $A(x) \cdot B(x) = \sum (a^i x^i \cdot \sum (b^j x^j))$
 - Similarly, we can define subtraction and division on polynomials, as well as many other operations

```
An ADT
    Definition
    of a
    Polynomial
```

```
structure Polynomial is
   objects: p(x) = a_1 x^{e_1} + \cdots + a_n x^{e_n}; a set of ordered pairs of \langle e_i, a_i \rangle where a_i in
   Coefficients and e_i in Exponents, e_i are integers >= 0
  functions:
     for all poly, poly1, poly2 \in Polynomial, coef \in Coefficients, expon \in Exponents
     Polynomial Zero()
                                                           return the polynomial,
                                                           p(x) = 0
     Boolean IsZero(poly)
                                                           if (poly) return FALSE
                                                           else return TRUE
     Coefficient Coef(poly,expon)
                                                           if (expon \in poly) return its
                                                           coefficient else return zero
     Exponent Lead_Exp(poly)
                                                           return the largest exponent in
                                                          poly
     Polynomial Attach(poly, coef, expon)
                                                           if (expon \in poly) return error
                                                           else return the polynomial poly
                                                           with the term <coef, expon>
                                                           inserted
     Polynomial Remove(poly, expon)
                                                          if (expon \in poly)
                                                           return the polynomial poly with
                                                           the term whose exponent is
                                                          expon deleted
                                                          else return error
     Polynomial SingleMult(poly, coef, expon)
                                                          return the polynomial
                                                    ::=
                                                          poly \cdot coef \cdot x^{expon}
     Polynomial Add(poly1, poly2)
                                                          return the polynomial
                                                          poly1 + poly2
     Polynomial Mult(poly1, poly2)
                                                          return the polynomial
                                                          poly1 · poly2
end Polynomial
```

Abstract data type Polynomial

Polynomial Addition (1)

•
$$A(x) = 3x^{20}+2x^5+4$$
 and $B(x) = x^4+10x^3+3x^2+1$

$$\quad \mathsf{D}(\mathsf{x}) = \mathsf{A}(\mathsf{x}) + \mathsf{B}(\mathsf{x})$$

Polynomial Addition (2)

```
/* d =a + b, where a, b, and d are polynomials */
 d = Zero()
 while (! IsZero(a) &&! IsZero(b)) do {
   switch ( COMPARE (Lead_Exp(a), Lead_Exp(b) ) {
     case -1: d =
       Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
       b = Remove(b, Lead_Exp(b));
       break:
    case 0: sum = Coef (a, Lead Exp(a)) + Coef (b, Lead Exp(b));
      if (sum) {
        Attach (d, sum, Lead Exp(a));
         a = Remove(a , Lead Exp(a));
                                              advantage: easy implementation
         b = Remove(b, Lead Exp(b));
                                              disadvantage: waste space when sparse
       break;
    case 1: d =
       Attach(d, Coef (a, Lead Exp(a)), Lead Exp(a));
       a = Remove(a, Lead_Exp(a));
```

Insert any remaining terms of a or b into d

The Polynomial ADT (1)

- There are two ways to create the type polynomial in C
 - Representation I

```
* #define MAX_degree 101
/*MAX degree of polynomial+1*/
typedef struct{
    int degree;
    float coef[MAX_degree];
} polynomial;
```

Drawback: The first representation may waste space.

Representation II

```
• #define MAX_TERMS 100
/*size of terms array*/
typedef struct{
    float coef;
    int expon;
} polynomial;
polynomial terms[MAX_TERMS];
int avail = 0;
Use of
```

Use one global array to store all polynomials

The Polynomial ADT (2)

- Use one global array to store all polynomials
 - The figure shows how these polynomials are stored in the array terms.

The Polynomial ADT (3)

- A C function that adds two polynomials,
 A and B, represented as above to obtain
 D = A + B.
 - To produce D(x), padd adds
 A(x) and B(x) term by term.

Analysis: O(n+m) where n(m) is the number of nonzeros in A(B).

```
void padd(int starta, int finisha, int startb, int finishb,
                                  int *startd, int *finishd)
/* add A(x) and B(x) to obtain D(x) */
  float coefficient:
  *startd = avail:
  while (starta <= finisha && startb <= finishb)
     switch(COMPARE(terms[starta].expon,
                    terms[startb].expon)) {
       case -1: /* a expon < b expon */
             attach(terms[startb].coef,terms[startb].expon)
             startb++;
             break:
       case 0: /* equal exponents */
             coefficient = terms[starta].coef +
                            terms[startb].coef;
             if (coefficient)
                attach(coefficient,terms[starta].expon);
             starta++:
             startb++;
             break:
       case 1: /* a expon > b expon */
             attach(terms[starta].coef,terms[starta].expon)
             starta++;
  /* add in remaining terms of A(x) */
  for(; starta <= finisha; starta++)
     attach(terms[starta].coef,terms[starta].expon);
  /* add in remaining terms of B(x) */
  for( ; startb <= finishb; startb++)
     attach(terms[startb].coef, terms[startb].expon);
  *finishd = avail-1:
```

```
void padd(int starta, int finisha, int startb, int finishb,
                                  int *startd,int *finishd)
/* add A(x) and B(x) to obtain D(x) */
  float coefficient:
  *startd = avail;
  while (starta <= finisha && startb <= finishb)
     switch(COMPARE(terms[starta].expon,
                    terms[startb].expon)) {
       case -1: /* a expon < b expon */
              attach(terms[startb].coef,terms[startb].expon)
              startb++;
             break:
       case 0: /* equal exponents */
              coefficient = terms[starta].coef +
                            terms[startb].coef;
             if (coefficient)
                attach(coefficient,terms[starta].expon);
              starta++;
              startb++:
              break:
       case 1: /* a expon > b expon */
              attach(terms[starta].coef,terms[starta].expon)
              starta++:
  /* add in remaining terms of A(x) */
  for(; starta <= finisha; starta++)</pre>
     attach(terms[starta].coef,terms[starta].expon);
  /* add in remaining terms of B(x) */
  for( ; startb <= finishb; startb++)</pre>
     attach(terms[startb].coef, terms[startb].expon);
  *finishd = avail-1:
```

Function to add two polynomials

$$A(x) = 2x^{1000}+1$$

$$B(x) = x^4+10x^3+3x^2+1$$

$$starta = 2 \text{ finisha} = 1$$

$$startb = 6 \text{ finishb} = 5$$

$$starta <= \text{finisha} = \text{FALSE}$$

$$startb <= \text{finishb} = \text{FALSE}$$

Term

2x ¹⁰⁰⁰
1
X ⁴
10x ³
3x ²
1
2x ¹⁰⁰⁰
X^4
10x ³
3x ²
2

The Polynomial ADT (5)

Problem: Compaction is required

when polynomials that are no longer needed.

(data movement takes time)

```
void attach(float coefficient, int exponent)
{
/* add a new term to the polynomial */
   if (avail >= MAX_TERMS) {
     fprintf(stderr, "Too many terms in the polynomial\n");
     exit(1);
}
terms[avail].coef = coefficient;
terms[avail++].expon = exponent;
}
```

Function to add a new term

THE SPARSE MATRIX ADT

The Sparse Matrix (1)

 In mathematics, a matrix contains m rows and n columns of elements, we write m×n to designate a matrix with m rows and n columns.

The Sparse Matrix (2)

 The standard representation of a matrix is a two dimensional array defined as

— We can locate quickly any element by writing a[i][j]

Sparse matrix wastes space

- We must consider alternate forms of representation
- Our representation of sparse matrices should store only nonzero elements
- Each element is characterized by <row, col, value>

The Sparse Matrix ADT (1)

- A minimal set of operations
 - Matrix creation
 - Addition
 - Multiplication
 - Transpose

structure Sparse_Matrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and form a unique combination, and *value* comes from the set *item*.

functions:

for all $a, b \in Sparse_Matrix, x \in item, i, j, max_col, max_row \in index$

Sparse_Matrix Create(max_row, max_col) ::=

return a $Sparse_Matrix$ that can hold up to $max_items = max_row \times max_col$ and whose maximum row size is max_row and whose maximum column size is max_col .

 $Sparse_Matrix Transpose(a) ::=$

return the matrix produced by interchanging the row and column value of every triple.

 $Sparse_Matrix Add(a, b) ::=$

if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values.

else return error

 $Sparse_Matrix Multiply(a, b) ::=$

if number of columns in a equals number of rows in b

return the matrix d produced by multiplying a by b according to the formula: $d[i][j] = \sum (a[i][k] \cdot b[k][j])$ where d(i, j) is the (i, j)th element

else return error.

Abstract data type Sparse_Matrix

The Sparse Matrix ADT (2)

The Create operation

```
Sparse_Matrix Create(max_row, max_col) ::=

#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
    int col;
    int row;
    int value;
    } term;
term a[MAX_TERMS];
```

The Sparse Matrix ADT (3)

- Represented by a two-dimensional array
- Each element is characterized by <row, col, value>
- row, column in ascending order

of rows (columns) # of nonzero terms

	row	col	value		row	col	value
$\overline{a[0]}$	6	6	8	<i>b</i> [0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	- 11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	ranspose [5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
	(a))			(b)	

Sparse matrix and its transpose stored as triples

Transpose a Matrix

- For each row i
 - take element <i, j, value> and store it in element <j, i, value> of the transpose
 - difficulty: where to put <j, i, value>
 (0, 0, 15) ====> (0, 0, 15)
 (0, 3, 22) ====> (3, 0, 22)
 (0, 5, -15) ====> (5, 0, -15)
 (1, 1, 11) ====> (1, 1, 11)
 Move elements down very often
- For all elements in column j,
 - place element <i, i, value> in element <i, i, value>

Transpose a Matrix

```
col
                value
        row
                           void transpose(term a[], term b[])
                            /* b is set to the transpose of a */
  a[0]
  [1]
   [2]
                              int n,i,j, currentb;
   [3]
                 -15
                                                 /* total number of elements */
                              n = a[0].value;
   [4]
                  11
                              b[0].row = a[0].col; /* rows in b = columns in a */
   [5]
                              b[0].col = a[0].row; /* columns in b = rows in a */
            3
   [6]
                  91
   [7]
                              b[0].value = n;
                  28
   [8]
                              if (n > 0) { /* non zero matrix */
                                 currentb = 1;
                                 for (i = 0; i < a[0].col; i++)
                                 /* transpose by the columns in a */
For all column i in a
                                   for (j = 1; j \le n; j++)
 For all element j in a
                                   /* find elements from the current column */
                                      if (a[j].col == i) {
 b[0]
                                      /* element is in current column, add it to b */
  [1]
                 91 — 11 — 28 — 22 — -6 —
                                         b[currentb].row = a[j].col;
  [2]
  [3]
                                         b[currentb].col = a[j].row;
  [4]
                                         b[currentb].value = a[j].value;
  [5]
                                         currentb++;
  [6]
  [7]
  [8]
                                          ==> O(columns*elements)
```

Transpose of a sparse matrix

Discussion

- Compared with 2-D array representation
 - O(columns*elements) v.s. O(columns*rows)
 - elements --> columns * rows when non-sparse,
 O(columns²*rows)
- Problem: Scan the array "columns" times
 - In fact, we can transpose a matrix represented as a sequence of triples in O(columns + elements) time
- Solution
 - First, determine the number of elements in each column of the original matrix
 - Second, determine the starting positions of each row in the transpose matrix

Fast Transpose of a Sparse Matrix (1)

• How to predict the location?

- First, determine the number of elements in each column of the original matrix
- Second, determine the starting positions of each row in the transpose matrix

Fast Transpose of a Sparse Matrix (2)

Determine the number of elements in each column

```
for (i = 0; i < num_cols; i++)
  row_terms[i] = 0;
for (i = 1; i <= num_terms; i++)
  row_terms[a[i].col]++;</pre>
```

Determine the starting positions of each row

Fast Transpose of a Sparse Matrix (3)


```
for (i = 1; i <= num_terms; i++) {
    j = starting_pos[a[i].col]++;
    b[j].row = a[i].col;    b[j].col = a[i].row;
    b[j].value = a[i].value;
}</pre>
```

Fast Transpose of a Sparse Matrix (4)

```
void fast_transpose(term a[], term b[])
/* the transpose of a is placed in b */
  int row_terms[MAX_COL], starting_pos[MAX_COL];
  int i,j, num_cols = a[0].col, num_terms = a[0].value;
  b[0].row = num\_cols; b[0].col = a[0].row;
  b[0].value = num_terms;
  if (num_terms > 0) { /* nonzero matrix */
     for (i = 0; i < num\_cols; i++)
       row_terms[i] = 0;
     for (i = 1; i <= num_terms; i++)
       row_terms[a[i].col]++;
     starting_pos[0] = 1;
     for (i = 1; i < num\_cols; i++)
       starting_pos[i] =
                  starting_pos[i-1] + row_terms[i-1];
     for (i = 1; i <= num_terms; i++) {
       j = starting_pos[a[i].col]++;
       b[j].row = a[i].col; b[j].col = a[i].row;
       b[j].value = a[i].value;
```

Matrix Multiplication

Definition

- Given A and B where A is $m \times n$ and B is $n \times p$, the product matrix D has dimension $m \times p$. Its $\langle i, j \rangle$ element is

$$d_{ij} = \sum_{k=0}^{m-1} a_{ik} b_{kj}$$

for $0 \le i < m$ and $0 \le j < p$.

Example

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Multiplication of two sparse matrices

Sparse Matrix Multiplication (1)

Definition

$$- [D]_{m \times p} = [A]_{m \times n} \times [B]_{n \times p}$$

- Procedure
 - Fix a row of A and find all elements in column j of B for j = 0, 1, ..., p-1.
- Alternative 1
 - Scan all of B to find all elements in j
- Alternative 2
 - Compute the transpose of B
 (Put all column elements consecutively)
 - Once we have located the elements of row i of A and column j of B we
 just do a merge operation similar to that used in the polynomial
 addition

Sparse Matrix Multiplication (2)

General case

- $-d_{ij}=a_{i0}*b_{0j}+a_{i1}*b_{1j}+...+a_{i(n-1)}*b_{(n-1)j}$
- Array A is grouped by i, and after transpose, array B is also grouped by j

The multiply operation generate entries: a*d, a*e, a*f, a*g, b*d, b*e, b*f, b*g, c*d, c*e, c*f, c*g

Sparse Matrix Multiplication (3)

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 4 & 6 \end{bmatrix} \quad B^{T} = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 & 2 \\ -1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \quad A \times B = \begin{bmatrix} 3 & 0 & 12 \\ -7 & 0 & 28 \end{bmatrix}$$

	row	col	valu	е		row	col	value
A[0]	2	3	5		B ^T [0]	3	3	4
A[1]	0	0	1		B ^T [1]	0	0	3
A[2]	0	2	2		B ^T [2]	0	1	-1
A[3]	1	0	-1		B ^T [3]	2	0	2
A[4]	1	1	4		B ^T [4]	2	2	5
A[5]	1	2	6					

	row	col	value
D[0]	2	3	?
D[1]	0	0	3
D[2]	0	2	12
D[3]	1	0	-7
D[4]	1	2	28

Sparse Matrix Multiplication (4)

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 4 & 6 \end{bmatrix} \quad B^{T} = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 & 2 \\ -1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \quad A \times B = \begin{bmatrix} 3 & 0 & 12 \\ -7 & 0 & 28 \end{bmatrix}$$


```
if (A[i].col = B^{T}[j].col) i = 1, j = 1, sum += 1 \times 3 i = 2, j = 2, j ++; else if (A[i].col < B^{T}[j].col) i = 2, j = 3, B^{T}[j].row != column i ++; storesum() storesum() else i = 2, j = 3, B^{T}[j].row != column i ++; storesum()
```

Sparse Matrix Multiplication (5)

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 4 & 6 \end{bmatrix} \quad B^{T} = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 & 2 \\ -1 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \quad A \times B = \begin{bmatrix} 3 & 0 & 12 \\ -7 & 0 & 28 \end{bmatrix}$$

$$row = A[i].row \quad column = B^{T}[j].row \quad sum = 12$$

$$row \quad col \quad value \quad row \quad col \quad row \quad row$$

												v -			
			row	col	valu	е			rew	col	value	e		row	•
		A[0]	2	3	5			B ^T [0]	13	3	4		D[6]	?	
i	\rightarrow	A[1]	0	0	1			B ^T [1]	0	0	3	totald 	D[1]	0	I
i	\rightarrow	A[2]	0	2	2			B ^T [2]	0	1	-1		D[2]	0	I
i	\rightarrow	A[3]	1	0	-1	$m{j}$	\longrightarrow	B ^T [3]	2	0	2				
		A[4]	1	1	4	\boldsymbol{j}	\longrightarrow	B ^T [4]	2	2	5				
		A[5]	1	2	6	ig] j	\rightarrow	B ^T [5]	* ??						
	· (· (A F		DIT	•1					1						

$$if (A[i].col = B^{T}[j].col)$$

 $(sum += A[i++].value * B^{T}[j++].value);$
 $else if (A[i].col < B^{T}[j].col)$
 $i ++;$
 $else$
 $i = 1, j = 3, sum += 1 \times 2$
 $i = 2, j = 4, sum += 2 \times 5$
 $i = 3, j = 5, A[i].row != rown in the storesum in the stores$

$$i = 1, j = 3, sum += 1 \times 2$$

 $i = 2, j = 4, sum += 2 \times 5$
 $i = 3, j = 5, A[i].row != row$
 $storesum()$
 $Reset sum, i and column$

Sparse Matrix Multiplication (6)

```
/* multiply row of a by column of b */
                                                     if (a[i].row != row) {
                                                       storesum(d, &totald, row, column, &sum);
void mmult(term a[], term b[], term d[])
                                                       i = row_begin;
/* multiply two sparse matrices */
                                                       for (; new_b[j].row == column; j++)
  int i, j, column, totalb = b[0].value, totald = 0;
  int rows_a = a[0].row, cols_a = a[0].col,
                                                       column = new_b[j].row;
  totala = a[0].value; int cols_b = b[0].col,
  int row_begin = 1, row = a[1].row, sum = 0;
                                                     else if (new_b[j].row != column) {
  int new_b[MAX_TERMS][3];
                                                       storesum(d, &totald, row, column, &sum);
  if (cols_a != b[0].row) {
                                                       i = row_begin;
     fprintf(stderr, "Incompatible matrices\n");
                                                       column = new_b[j].row;
    exit(1);
                                                     else switch (COMPARE(a[i].col, new_b[j].col)) {
  fast_transpose(b,new_b);
                                                       case -1: /* go to next term in a */
  /* set boundary condition */
                                                             i++; break;
  a[totala+1].row = rows_a;
  new_b[totalb+1].row = cols_b;
                                                       case 0: /* add terms, go to next term in a and b*/
  new_b[totalb+1].col = 0;
                                                             sum += (a[i++].value * new_b[i++].value);
  for (i = 1; i <= totala; ) {
                                                             break:
    column = new_b[1].row;
                                                       case 1 : /* advance to next term in b */
    for (j = 1; j \le totalb+1;) {
                                                             j++;
                                                  } /* end of for j <= totalb+1 */</pre>
                                                  for (; a[i].row == row; i++)
                                                  row_begin = i; row = a[i].row;
                                               } /* end of for i<=totala */
                                               d[0].row = rows_a;
                                               d[0].col = cols_b; d[0].value = totald;
```

Sparse Matrix Multiplication (7)

```
void storesum(term d[], int *totald, int row, int column,
                                      int *sum)
/* if *sum != 0, then it along with its row and column
position is stored as the *totald+1 entry in d */
  if (*sum)
     if (*totald < MAX_TERMS) {
       d[++*totald].row = row;
       d[*totald].col = column;
       d[*totald].value = *sum;
       *sum = 0:
     else (
       fprintf(stderr, "Numbers of terms in product
                                exceeds %d\n", MAX_TERMS);
       exit(1):
```

Analyzing The Algorithm (1)

```
 cols b * termsrow1 + totalb +

  cols b * termsrow2 + totalb +
  ... +
  cols b * termsrowp + totalb
  = cols b * (termsrow1 + termsrow2 + ... + termsrowp)
  + rows a * totalb
  = cols b * totala + row a * totalb
  O(cols b * totala + rows a * totalb)
```

Analyzing The Algorithm (2)

Compared with matrix multiplication using array

```
- for (i =0; i < rows_a; i++)
    for (j=0; j < cols_b; j++) {
        sum =0;
        for (k=0; k < cols_a; k++)
            sum += (a[i][k] *b[k][j]);
        d[i][j] =sum;
}</pre>
```

— O(rows_a * cols_a * cols_b) v.s.
O(cols_b * total_a + rows_a * total_b)

Analyzing The Algorithm (3)

- Optimal case total_a < rows_a * cols_a total_b < cols_a * cols_b
- Worse case total_a --> rows_a * cols_a, or total b --> cols a * cols b

THE REPRESENTATION OF MULTIDIMENSIONAL ARRAYS

Multidimensional Arrays (1)

• If an array is declared $a[upper_0][upper_1]...[upper_{n-1}],$ then it is easy to see that the number of elements in the array is

$$\prod_{i=0}^{n-1} upper_i$$

- Where Π is the product of the upper,'s.
- Example
 - If we declare a as a[10][10][10], then we require 10*10*10 = 1000 units of storage to hold the array

Multidimensional Arrays (2)

- Represent multidimensional arrays
 - row major order and column major order
- Row major order stores multidimensional arrays by rows
 - $-A[upper_0][upper_1]$ as $upper_0$ rows: row_0 , row_1 , ..., row_{upper_0-1} , each row containing $upper_1$ elements

Multidimensional Arrays (3)

- Row major order: $A[i][j] : \alpha + i \times upper_1 + j$
- Column major order: $A[i][j] : \alpha + j \times upper_0 + i$

Multidimensional Arrays (4)

- To represent a three-dimensional array, $A[upper_0][upper_1][upper_2]$, we interpret the array as $upper_0$ two-dimensional arrays of dimension $upper_1 \times upper_2$
 - To locate a[i][j][k], we first obtain $\alpha + i \times upper_1 \times upper_2$ as the address of a[i][0][0] because there are i two dimensional arrays of size $upper_1 \times upper_2$ preceding this element

 $\alpha + i \times upper_1 \times upper_2 + j \times upper_2 + k$ as the address of a[i][j][k]

Multidimensional Arrays (5)

• Generalizing on the preceding discussion, we can obtain the addressing formula for any element $A[i_0][i_1]...[i_{n-1}]$ in an n-dimensional array declared as

$$A[upper_0][upper_1]...[upper_{n-1}]$$

– The address for $A[i_0][i_1]...[i_{n-1}]$ is

```
 \begin{array}{l} \alpha + i_{0}upper_{1}upper_{2}\dots upper_{n-1} \\ + i_{1}upper_{2}upper_{3}\dots upper_{n-1} \\ + i_{2}upper_{3}upper_{4}\dots upper_{n-1} \\ \vdots \\ + i_{n-2}upper_{n-1} \\ + i_{n-1} \end{array} \quad \text{where:} \quad \begin{cases} a_{j} = \prod_{k=j+1}^{n-1} upper_{k} & 0 \leq j < n-1 \\ a_{n-1} = 1 \end{cases} \\ \text{where:} \end{cases}
```

STRING MATCHING

Knuth, Morris, Pratt Pattern Matching Algorithm (1)

- Failure function
 - If $p = p_0 p_1 ... p_{n-1}$ is a pattern, then its failure function, f, is defined as:

$$f(j) = \begin{cases} \text{largest } i < j \text{ such that } p_0 p_1 ... p_i = p_{j-i} p_{j-i+1} ... p_j \text{ if such an } i \ge 0 \text{ exists} \\ -1 \text{ otherwise} \end{cases}$$

$$f(j) = \begin{cases} -1 & \text{if } j = 0 \\ f^m(j-1) + 1 & \text{where } m \text{ is the least integer } k \text{ for which } p_{f^k(j-1)+1} = p_j \\ -1 & \text{if there is no } k \text{ satisfying the above} \end{cases}$$

Knuth, Morris, Pratt Pattern Matching Algorithm (2)

i	0	1←	2	3←	4	5	6	7	8	9	10
	a	b	a	b	b	a	b	a	b	a	a
f	-1	-1	0	1	-1	0	1	2	3	2	
	•			1							

```
void fail(char *pat)
                                                               i = 9
     int n = strlen(pat);
                                                               i = failure[9-1] = 3
     failure[0] = -1;
                                                               pat[j] != pat[i+1]
     for (j = 1; j < n; j++) {
                                                               i = failure[3] = 1
           i = failure[j-1];
                                                                pat[j] = pat[i+1]
           while ((pat[j] != pat[i+1] && (i >= 0))
                                                               failure[j] = i+1=2
                 i = failure[i];
           if (pat[j] == pat[i+1])
                 failure[j] = i+1;
           else failure[j] = -1;
```

Knuth, Morris, Pratt Pattern Matching Algorithm (3)

i	0	1	2	3	4	5	6	7	8	9	10
	a	b	a	b	b	a	b	a	b	a	a
f	-1	-1	0	1	-1	0	1	2	3		

$$j = failure[j-1]+1=1+1=2$$

Knuth, Morris, Pratt Pattern Matching Algorithm (4)

```
int pmatch (char *string, char *pat)
    int i = 0, j = 0;
    int lens = strlen(string);
    int lenp = strlen(pat);
    while ( i < lens \&\& j < lenp ) {
        if (string[i] == pat[i]) {
            i++;
            j++;
        } else if (j == 0)
            i++;
        else
            i = failure[j-1]+1;
    return ( (j == lenp) ? (i-lenp) : -1);
```