Optimization and Data Science

Lecture 15: Statistical Estimators

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

Contents

- Statistical Estimators
 - Estimators for Parameters of Random Variables
 - Important Probability Distributions
 - Distribution of Estimators for Normal-distributed Random Variables
 - Confidence Intervals

Statistic Estimators

• What is it?

Estimation of statistic properties of the distribution of data

- Why are we studying this?
 Important tools in data analysis taking uncertainty into account
- How does it work?

Definition of estimator functions

Analysis of their properties (expectation, variance)

Often: assumption of normal distribution of data

• What if we can use it?

Analyze data

Detect "typical" behavior and outliers in data

Quantify uncertainties

Contents

- Statistical Estimators
 - Estimators for Parameters of Random Variables
 - Important Probability Distributions
 - Distribution of Estimators for Normal-distributed Random Variables
 - Confidence Intervals

Random samples and estimators

- We regard given sets of data as sets of realizations of random variables X_i with the same probability distribution.
- We call this a (random) sample.

Definition (Estimator)

- A function e of a sample $\{X_i, i = 1, ..., n\}$ is called a **(point) estimator** (or also a **statistic**).
- For given realizations x_i of the X_i , i = 1, ..., n, the realization or value of the estimator is called **estimate**.
- An estimator is a random variable itself.
- Since the X_i in a sample have the same distribution (they are independent and identically distributed: iid), estimators are used for parameters p of the underlying distribution, e.g., expectation, variance.

Estimators: Examples

• For a random sample $\{X_i, i = 1, \dots, n\}$, the **mean value**, defined as

$$e(n, X_i, \dots, X_n) := \bar{X} := \frac{1}{n} \sum_{i=1}^n X_i,$$
 (1)

is an estimator for the expected value $\mathbb{E}(X_i)$.

An estimator for the variance is given by

$$e(n, X_i, \dots, X_n) := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 (2)

with \bar{X} as in (1).

- Why $\frac{1}{n-1}$ (and not $\frac{1}{n}$) in the last estimator?
- → We want to have special properties of estimators.

Properties of estimators

Definition (Bias)

• An estimator e is called **unbiased** if, for all lengths n of the sample, its expectation equals the estimated parameter p of the underlying distribution, i.e.,

$$\mathbb{E}(e(n,X_1,\ldots,X_n))=p$$
 for all $n\geq 1$.

• It is called asymptotically unbiased if the above property holds in the limit, i.e.,

$$\lim_{n\to\infty}\mathbb{E}(e(n,X_1,\ldots,X_n))=p.$$

The difference

$$\mathbb{E}(e(n, X_1, \ldots, X_n) - p)$$

is called **bias** of the estimator.

Estimator for the expectation

Theorem

For a random sample $\{X_i, i=1,\ldots,n\}$, the mean value \bar{X} defined in (1) is an unbiased estimator for the expectation $\mathbb{E}(X_i)$ with variance $\mathbb{V}(\bar{X}) = \frac{1}{n}\mathbb{V}(X_i)$.

Proof.

Using linearity of the expectation, we get:

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n \mathbb{E}(X_i) = \frac{1}{n}n\mathbb{E}(X_i) = \mathbb{E}(X_i) \text{ for all } n \geq 1.$$

Using the rules $\mathbb{V}(\alpha X) = \alpha^2 \mathbb{V}(X)$, $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ for independent X, Y, we get

$$\mathbb{V}(\bar{X}) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\mathbb{V}\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{V}(X_{i}) = \frac{1}{n}\mathbb{V}(X_{i}). \tag{3}$$

Unbiased estimator for the variance

Theorem

For a random sample $\{X_i, i = 1, ..., n\}$, the estimator (2)

$$e(n, X_1, \ldots, X_n) := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

is an unbiased estimator for the variance $\mathbb{V}(X_i)$.

Proof.

We note that for any random variable X we have

$$(X - \mathbb{E}(X))^2 = X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2,$$

and using linearity of the expectation:

$$\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X)^2\right) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + \mathbb{E}(X)^2 = \mathbb{E}(X^2) - \mathbb{E}(X)^2,$$

or

$$\mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2. \tag{4}$$

Unbiased estimator for the variance

We compute

Ve compute
$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i^2 - 2\bar{X}X_i + \bar{X}^2) = \sum_{i=1}^{n} X_i^2 - 2\bar{X}\sum_{i=1}^{n} X_i + n\bar{X}^2 = \sum_{i=1}^{n} X_i^2 - n\bar{X}^2.$$

• Using linearity of the expectation and (4) for $X := X_i$ and $X := \bar{X}$, we get

$$\mathbb{E}\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) = \frac{1}{n-1}\sum_{i=1}^{n}\mathbb{E}(X_{i}^{2}) - n\mathbb{E}(\bar{X}^{2})$$

$$= \frac{1}{n-1}\sum_{i=1}^{n}\left(\mathbb{V}(X_{i}) + \mathbb{E}(X_{i})^{2}\right) - n\left(\mathbb{V}(\bar{X}) + \mathbb{E}(\bar{X})^{2}\right)$$

$$= \frac{1}{n-1}\left(n\mathbb{V}(X_{i}) + n\mathbb{E}(X_{i})^{2} - \mathbb{V}(X_{i}) - n\mathbb{E}(X_{i})^{2}\right) = \mathbb{V}(X_{i}). \quad \Box$$

• With n instead of n-1 in the denominator of the estimator (2), there would be a bias.

Contents

- Statistical Estimators
 - Estimators for Parameters of Random Variables
 - Important Probability Distributions
 - Distribution of Estimators for Normal-distributed Random Variables
 - Confidence Intervals

Discrete distributions

• Uniform distribution (e.g., rolling dice, n = 6):

$$P(X=k)=\frac{1}{n}, \quad k=1,\ldots,n.$$

• Geometric distribution (coin toss, success in k-th toss, $p = \frac{1}{2}$):

$$P(X=k)=(1-p)^{k-1}p, \quad k\in\mathbb{N}_{\geq 1}.$$

• Binomial distribution (exactly k times success in n tries, probability in every try: p):

$$P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}, \quad k=0,\ldots,n.$$

• Poisson distribution, parameter λ (number of occurrences in a given time interval, distribution of fish in a lake):

$$P_{\lambda}(X=k)=e^{-\lambda}\frac{\lambda^{k}}{k!}, \quad k\in\mathbb{N}.$$

Discrete distributions

Continuous distributions

• Uniform distribution on [a, b], see random number generator:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & \text{else.} \end{cases}$$

Logistic distribution:

$$f_X(x) = \frac{e^{-x}}{(1+e^{-x})^2}$$

Normal (Gaussian) distribution:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad \mathbb{E}(X) = \mu, \mathbb{V}(X) = \sigma^2.$$

- Standard normal distribution: $\mu = 0, \sigma^2 = 1$.
- Central limit theorem: $n \to \infty \leadsto Gauss$ is good approximation for many distributions.

Continuous distributions

Multi-variate Gauss/normal distribution: $X \sim \mathcal{N}(\mu, \Sigma)$

• Random vector: $X = (X_i)_{i=1}^n$. Probability density function:

$$f_X(x) = rac{1}{\sqrt{(2\pi)^n\det\Sigma}}\exp\left(-rac{1}{2}(x-\mu)^{ op}\Sigma^{-1}(x-\mu)
ight), \quad x\in\mathbb{R}^n.$$

• Expectation: $\mathbb{E}(X) = \mu \in \mathbb{R}^n$, covariance matrix $Cov(X) = \Sigma \in \mathbb{R}^{n \times n}$.

5'000 samples of 2-d standard-normal distributed random vector

Log-normal distribution: $\log X \sim \mathcal{N}(\mu, \sigma^2)$

- \bullet Normal distribution has non-zero probabilities for negative values of X.
- If X > 0: consider $X := \exp(Y)$ with $Y \sim \mathcal{N}(\mu, \sigma^2) \rightsquigarrow X \sim \log \mathcal{N}(\mu, \sigma^2)$.
- Probability density function:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{x} \exp\left(-\frac{(\log x - \mu)^2}{2\sigma^2}\right), \mathbb{E}(X) = e^{\mu + \frac{\sigma^2}{2}}, \mathbb{V}(X) = e^{2(\mu + \sigma^2)} - e^{2\mu + \sigma^2}.$$

Contents

- Statistical Estimators
 - Estimators for Parameters of Random Variables
 - Important Probability Distributions
 - Distribution of Estimators for Normal-distributed Random Variables
 - Confidence Intervals

Distribution of estimators of random variables with normal distribution

Theorem

Let a sample $X_i \sim \mathcal{N}(\mu, \sigma^2)$, i = 1, ..., n, be given. Then, the mean value (1) taken as estimator for the expectation $\mu = \mathbb{E}(X_i)$, satisfies

$$e_{\mu}(n; X_1, \ldots, X_n) := \bar{X} := \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right),$$

and the estimator (2) for the variance $\sigma^2 = \mathbb{V}(X_i)$ satisfies

$$e_{\sigma^2}(n; X_1, \ldots, X_n) := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}) \sim \frac{\sigma^2}{n-1} \chi^2(n-1).$$

χ^2 distribution

Definition (χ^2 -distribution)

For $k \in \mathbb{N}$ the probability distribution with density function

$$f_k(x) = \frac{1}{\Gamma(\frac{k}{2})2^{\frac{k}{2}}} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, \quad x \in \mathbb{R}_{>0}, k \in \mathbb{N}.$$

is called χ^2 -distribution of dimension k or $\chi^2(k)$.

• Gamma function (interpolates the factorial: $x\Gamma(x) = \Gamma(x+1), x \in \mathbb{R}_{\geq 0}$):

$$\Gamma: \mathbb{R}_{>0} \to \mathbb{R}_{>0}, \quad \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

- Values of the χ^2 -distribution can be found in tables or in numerical libraries.
- Important for the computation of confidence intervals.

Prof. Dr. Thomas Slawig

χ^2 distribution

Contents

- Statistical Estimators
 - Estimators for Parameters of Random Variables
 - Important Probability Distributions
 - Distribution of Estimators for Normal-distributed Random Variables
 - Confidence Intervals

Confidence intervals

A confidence interval of a random variable is an interval in which the value of the variable lies with a given probability:

Definition

Let X be a random variable and $\gamma \in (0,1)$. Then we call the intervals

$$(-\infty, b)$$
 such that $P(X \le b) = \gamma$, (a, ∞) such that $P(X \ge a) = \gamma$,

the **one-sided** γ -confidence intervals and

$$(a, b)$$
 such that $P(a \le X \le b) = \gamma$

a two-sided γ -confidence interval.

a two-sided 0.95-confidence interval

Interval estimators

• Often, we consider symmetric both-sided confidence intervals centered at the expectation, i.e., we are looking for c > 0 such that

$$P(\mathbb{E}(X) - c \le X \le \mathbb{E}(X) + c) = \gamma.$$

- For a given sample, a confidence interval can only be estimated.
- These estimators are called interval estimators.
- To estimate the interval bounds, we need estimates for expectation and variance ...
- ... and we need to know their distributions.

the symmetric centered two-sided 0.95-confidence interval

- We assume that a given sample $X_i \sim \mathcal{N}(\mu, \sigma^2), i = 1..., n$, is normal-distributed.
- ullet By the Theorem on page 19, the mean $ar{X}$ as estimator for the expectation $\mathbb{E}(X_i)$ satisfies

$$ar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right), \quad ext{which gives} \quad ar{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

- \leadsto Deviation of the mean $ar{X}$ from the true, but unknown expectation μ , is normal-distributed.
- By the rule for the variance, $\mathbb{V}(\alpha X) = \alpha^2 \mathbb{V}(X), \alpha \in \mathbb{R}$, we get

$$\bar{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right) \iff (\bar{X} - \mu) \frac{\sqrt{n}}{\sigma} \sim \mathcal{N}(0, 1).$$
 (5)

- The deviation (scaled with the factor \sqrt{n}/σ) of the mean \bar{X} from the true expectation μ , is standard-normal-distributed. Here, σ^2 is the (as well unknown) variance.
 - We would like to have the distribution of this deviation, but using the estimate e_{σ^2} from (2) instead of σ^2 itself.

- We want the distribution of the deviation (scaled with the factor $\sqrt{n/e_{\sigma^2}}$) of the mean \bar{X} from the true expectation μ , using the estimate e_{σ^2} from (2).
- We see that

$$(\bar{X} - \mu)\sqrt{\frac{n}{e_{\sigma^2}}} = \underbrace{(\bar{X} - \mu)\frac{\sqrt{n}}{\sigma}}_{\sim \mathcal{N}(0,1)} \sqrt{\frac{n-1}{\frac{n-1}{\sigma^2}}e_{\sigma^2}}.$$

• Again by the Theorem on page 19, we have for the estimator of the variance:

$$e_{\sigma^2}\sim rac{\sigma^2}{n-1}\chi^2(n-1) \quad ext{ or } \quad rac{n-1}{\sigma^2}e_{\sigma^2}\sim \chi^2(n-1).$$

Thus, the desired distribution is a combination of two distributions, which is known ...:

$$(\bar{X} - \mu)\sqrt{\frac{n}{e_{\sigma^2}}} = \underbrace{(\bar{X} - \mu)\frac{\sqrt{n}}{\sigma}}_{\sim \mathcal{N}(0,1)} \sqrt{\frac{\frac{n-1}{\sigma^2}e_{\sigma^2}}{\frac{n-1}{\sigma^2}e_{\sigma^2}}}.$$

Theorem

For $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(k), k \in \mathbb{N}$, the random variable $X\sqrt{\frac{k}{Y}}$ is student-t(k)-distributed, or short:

$$X\sqrt{\frac{k}{Y}}\sim t(k).$$

Definition (Student-*t*-distribution)

For $k \in \mathbb{N}$ the probability distribution with density function

$$f_k(x) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)\sqrt{k\pi}} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}, x \in \mathbb{R},\tag{6}$$

is called **student-** or t-distribution of dimension k.

• Values of the cdf and pdf of the *t*-distribution can be found in tables or library functions.

Student-*t*-distribution

Corollary

Let a sample $X_i \sim \mathcal{N}(\mu, \sigma^2)$, i = 1, ..., n, be given. Let \bar{X} from (1) be the estimator for the expectation and e_{σ^2} from (2) the estimator for the variance. Then we have

$$(\bar{X}-\mu)\sqrt{\frac{n}{e_{\sigma^2}}}\sim t(n-1).$$

The deviation (scaled with the factor $\sqrt{n/e_{\sigma^2}}$) of the mean \bar{X} from the true expectation μ , is student-t(n-1)-distributed:

$$P\left(-c \leq \frac{(\bar{X} - \mu)\sqrt{\frac{n}{e_{\sigma^2}}}}{\leq c}\right) = \int_{-c}^{c} f_{n-1}(x)dx = 2\int_{0}^{c} f_{n-1}(x)dx,$$

... where we used that the student-t-pdf is symmetric w.r.t. x = 0.

 $\sim \gamma$ -confidence intervals for the deviation of \bar{X} from the true, unknown expectation μ :

$$P\left(-c\sqrt{\frac{e_{\sigma^2}}{n}} \le \bar{X} - \mu \le c\sqrt{\frac{e_{\sigma^2}}{n}}\right) = P\left(-c \le (\bar{X} - \mu)\sqrt{\frac{n}{e_{\sigma^2}}} \le c\right)$$
$$= 2\int_0^c f_{n-1}(x)dx = 2(F_{n-1}(c) - F_{n-1}(0)) = \gamma,$$

- F_{n-1} is the student-t-cumulative distribution function.
- For given γ , we have to find c > 0 with

$$F_{n-1}(c) = \frac{1}{2}(\gamma + F_{n-1}(0)).$$

- We need the inverse cumulative distribution function (quantile function).
 - Then, $\pm c \frac{e_{\sigma^2}}{\sqrt{n}}$ are the bounds of the two-sided centered γ -confidence interval for the deviation of \bar{X} from μ .

What is important

- Estimators are used to estimate parameters like expectation and variance for given samples.
- Estimators are also random variables.
- We can compute the expectation and variance of estimators.
- An estimator is (asymptotically) unbiased, if its expectation equals the estimated parameter (in the limit).
- Most important probability distributions are the uniform, the normal and log-normal distributions.
- We often assume that data and samples are normal-distributed.
- For those, we can compute confidence intervals.
- For this purpose, we need χ^2 and student-t-distributions, whose values can be found in tables or by using software libraries.