

Sheet 0 of 5

Code: DEE 4544

ASSIGNMENT (15%)

Faculty : ENGINEERING

Course : DIPLOMA ELECTRICAL AND ELECTRONICS ENGINEERING (ODL)

Module Title : DIGITAL ELECTRONICS

Date : 2nd MAY 2024

Instruction to candidates

1. Answer ALL the questions.

CO	Descriptions	Domain
CLO 2	Use DeMorgans Theorem to simplify a negated expression. (C3, PLO2)	C3
CLO 3	Formulate and employ a Karnaugh Map to reduce Boolean expressions and logic circuits to their simplest forms. (C2, PLO6)	C2

Do not open this question paper until instructed.

Figure 1

- a. List the types of gates used in the circuit shown in Figure 1. (3 Marks)
- b. Determine the number of input and output variables in the circuit (Figure 1). (4 Marks)
- c. Write the Boolean expression for Z in terms of A, B and C. (3 Marks)
- d. Convert the Boolean expression in (c) into Sum-of-products (SOP) form. (4 Marks)
- e. Construct the Truth Table for this circuit. (6 Marks)
- f. Simplify the Boolean expression in (c) using the K Map technique. (6 Marks)
- g. Sketch the simplified circuit based on question (f). (4 Marks)

(Total = 30 Marks)

a. Answer the question based on Figure 2.

Figure 2

Complete the truth table for the inputs that have been given.

(6 Marks)

Inputs								
Α	В	C	D	E	F	G	Н	K
0	0	1	1	0	0			
0	1	1	1	0	1			
1	0	1	1	1	0			
1	1	1	1	1	1			

b. Figure 3 below shows a logic circuit.

Figure 3

Based on Figure 3, write a Boolean expression for D and B.

(4 Marks)

(Total = 10 Marks)

a. Represent the Boolean expression $Q = \overline{A}.\overline{B}$ as a logic circuit by drawing a diagram in the space below using only the following symbols: (4 Marks)

b. Use the following truth tables to demonstrate that $A + B = \overline{A} \cdot \overline{B}$ (10 Marks)

A	В	A+B
0	0	
0	1	
1	0	
1	1	

A	В	Ā	B	A.B	Ā.B
0	0				
0	1				
1	0				
1	1				

c. Simplify the following Boolean expressions:

i.
$$x = AB + A(B + C) + B(B + C)$$

(3 Marks)

ii.
$$x = \overline{(A + \overline{B}).(\overline{C} + D)}$$

(3 Marks)

a. Complete the Boolean function that corresponds to the following truth table.

	OUTPUT		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$X = \bar{A}.B.C +$$
 ________(4 Marks)

The part to the right of the equal sign is known as the sum-of-product.

b. For the truth table above complete the Karnaugh Map (K-map) (4 Marks)

c. Simplify the Boolean expression by group(s) of 1's to produce an optimal SOP and write the simplified SOP Boolean expression. (6 Marks)

(Total = 14 Marks)

---- END OF PAPER ----