Exercice d'application 1 : Les torseurs

Soient les trois vecteurs $\vec{V_1} = -\vec{i} + \vec{j} + \vec{k}$; $\vec{V_2} = \vec{j} + 2\vec{k}$, $\vec{V_3} = \vec{i} - \vec{j}$ définis dans un repère orthonormé $R(O, \vec{i}, \vec{j}, \vec{k})$ et liés respectivement au points A(0,1,2), B(1,0,2), C(1,2,0)

- 1) Construire le torseur $[T]_o$ associé au système de vecteurs $\vec{V}_1, \vec{V}_2, \vec{V}_3$;
- 2) En déduire l'automoment ;
- 3) Calculer le pas du torseur;
- 4) Déterminer l'axe central du torseur vectoriellement et analytiquement.

Solution:

1) Les éléments de réduction du torseur $[T]_O$ sont :

La résultante : $\overrightarrow{R} = \overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} = \overrightarrow{j} + 3\overrightarrow{k}$

Le moment au point $O: \overrightarrow{M}_O = \overrightarrow{OA} \wedge \overrightarrow{V}_1 + \overrightarrow{OB} \wedge \overrightarrow{V}_2 + \overrightarrow{OC} \wedge \overrightarrow{V}_3$

$$\overrightarrow{M_o} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \land \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \land \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \land \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$$

- 2) L'automoment : $A = \overrightarrow{R} \cdot \overrightarrow{M}_o = (\overrightarrow{j} + 3\overrightarrow{k}) \cdot (-\overrightarrow{i} 2\overrightarrow{j} \overrightarrow{k}) = -2 3 = -5$
- 3) Pas du torseur : $p = \frac{\overrightarrow{R} \cdot \overrightarrow{M}_o}{R^2} = \frac{-5}{\sqrt{1^2 + 3^2}} = -\frac{5}{\sqrt{10}}$
- 4) Equation vectorielle de l'axe central:

Si l'axe (Δ) est un axe central alors : $\forall P \in (\Delta) \implies \overrightarrow{M_P} = \lambda \overrightarrow{R}$

Son équation vectorielle est donnée par : $\overrightarrow{OP} = \frac{\overrightarrow{R} \wedge \overrightarrow{M_o}}{R^2} + \lambda \overrightarrow{R}$ avec $\lambda \in IR$

$$\overrightarrow{OP} = \frac{1}{10} \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \land \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = \frac{1}{2} \overrightarrow{i} + \left(-\frac{3}{10} + \lambda \right) \overrightarrow{j} + \left(\frac{1}{10} + 3\lambda \right) \overrightarrow{k}$$

Si
$$\overrightarrow{OP} = \begin{cases} x \\ y \\ z \end{cases}$$
 alors: $x = \frac{1}{2}$; $y = -\frac{3}{10} + \lambda$ et $z = \frac{1}{10} + 3\lambda$

D'où:
$$z = \frac{1}{10} + 3\left(y + \frac{3}{10}\right) = \frac{1}{10} + 3y + \frac{9}{10} = 3y + 1$$

L'axe central est une droite dans un plan parallèle au plan (yOz) situé à $x = \frac{1}{2}$ et d'équation : z = 3y + 1

Correction du TD-1 de la mécanique des solides indéformables

Exercice 1:

Soit le torseur $[T_1]_0$ défini par les trois vecteurs $\overrightarrow{V_1} = -2\overrightarrow{i} + 3\overrightarrow{j} - 7\overrightarrow{k}$, $\overrightarrow{V_2} = 3\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ et $\overrightarrow{V_3} = -\overrightarrow{i} - 2\overrightarrow{j} + 8\overrightarrow{k}$ définis dans un repère orthonormé $R(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ et liés respectivement aux points (1,0,0), B(0,1,0) et C(0,0,1) et le torseur $[T_2]_0$: $\begin{cases} \overrightarrow{R_2} \\ \overrightarrow{H_2} \end{cases}$ avec $\overrightarrow{R_2} = 2\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k}$ et $\overrightarrow{H_2} = -3\overrightarrow{i} + 2\overrightarrow{j} - 7\overrightarrow{k}$.

- 1- Déterminer les éléments de réduction du torseur $[T_1]_0$. Conclusion;
- 2- Déterminer le pas et l'axe central du torseur $[T_2]_0$;
- 3- Calculer la somme et le produit des deux torseurs;
- 4- Calculer l'automoment du torseur somme.

Solution:

1) Eléments de réduction du torseur:
$$[T_1]_o = \begin{cases} \overrightarrow{R_1} = \overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} \\ \overrightarrow{O} = \overrightarrow{OA} \wedge \overrightarrow{V_1} + \overrightarrow{OB} \wedge \overrightarrow{V_2} + \overrightarrow{OC} \wedge \overrightarrow{V_3} \end{cases}$$

$$\overrightarrow{R_1} = \overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} = \overrightarrow{0}$$

$$\overrightarrow{M}_{10} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} -2 \\ 3 \\ -7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ -2 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \\ 3 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix} = \overrightarrow{i} + 6 \overrightarrow{j}$$

$$[T_1]_o = \begin{cases} \overrightarrow{R}_1 = \overrightarrow{0} \\ \overrightarrow{M}_{10} = \overrightarrow{i} + 6 \overrightarrow{j} \end{cases}$$

2) Pas et axe central du torseur $[T_2]_{\alpha}$

Pas du torseur:
$$P_2 = \frac{\vec{R}_2 \cdot \vec{M}_2}{R_2^2} = \frac{\left(2\vec{i} + \vec{j} + 3\vec{k}\right) \cdot \left(-3\vec{i} + 2\vec{j} - 7\vec{k}\right)}{4 + 1 + 9} = \frac{-3 + 2 - 21}{14} = -\frac{11}{7}$$

Axe central du torseur : $\overrightarrow{OP} = \frac{\overrightarrow{R_2} \wedge \overrightarrow{M_2}}{R_2^2} + \lambda \overrightarrow{R_2}$

$$\vec{OP} = \frac{1}{14} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \land \begin{pmatrix} -3 \\ 2 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} -13 \\ 5 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -\frac{13}{14} + 2\lambda \\ \frac{5}{14} + \lambda \\ \frac{1}{2} + 3\lambda \end{pmatrix}$$

3) Somme et produit des deux torseurs

a) Somme des deux torseurs :

$$[T]_o = [T_1]_o + [T_2]_o = \begin{cases} \vec{R} = \vec{R_1} + \vec{R_2} = 2 \vec{i} + \vec{j} + 3 \vec{k} \\ \vec{A}_o = \vec{M}_{1o} + \vec{M}_{2o} = -2 \vec{i} + 8 \vec{j} - 7 \vec{k} \end{cases}$$

b) Produit des deux torseurs:

$$[T_1]_O \cdot [T_2]_O = \begin{cases} \overrightarrow{R_1} \\ \overrightarrow{M_{1O}} \\ \overrightarrow{M_{2O}} \end{cases} \cdot \begin{cases} \overrightarrow{R_2} \\ \overrightarrow{M_{2O}} \\ = \overrightarrow{R_1} \cdot \overrightarrow{M_{2O}} + \overrightarrow{R_2} \cdot \overrightarrow{M_{1O}} \\ = \left(2 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k}\right) \bullet \left(-3 \overrightarrow{i} + 2 \overrightarrow{j} - 7 \overrightarrow{k}\right) = -25$$

4) Automoment du torseur somme :

$$F = \overrightarrow{R} \cdot \overrightarrow{M}_{o} = \left(2\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k}\right) \cdot \left(-2\overrightarrow{i} + 8\overrightarrow{j} - 7\overrightarrow{k}\right) = -17$$

Exercice 2:

Soit A un point de l'espace dans un repère orthonormé $R(0,\vec{i},\vec{j},\vec{k})$ avec $\overrightarrow{OA} = -\frac{21}{9}\vec{i} - \frac{4}{9}\vec{j} - \frac{12}{9}\vec{k}$ et un vecteur $\overrightarrow{V_1} = -3\vec{i} + \vec{j} + 3\vec{k}$ dont l'axe passe par le point A.

Soit un torseur $[T_2]_0$ défini au point O par ses éléments de réduction $\overrightarrow{R_2}$ et $\overrightarrow{H_2}$ tel que :

$$[T_2]_0:\begin{cases} \overrightarrow{R_2} = (\alpha - 4)\overrightarrow{i} + \alpha \overrightarrow{j} + 3\alpha \overrightarrow{k} \\ \overrightarrow{H_2} = (2\alpha + 9)\overrightarrow{j} + \left(-3\alpha - \frac{2}{3}\right)\overrightarrow{k} \end{cases}$$

- 1- Déterminer les éléments de réduction du torseur $[T_1]_0$ dont la résultante est le vecteur $\overrightarrow{V_1}$;
- 2- Pour quelle valeur de α les deux torseurs sont égaux;
- 3- En déduire le pas et l'axe central du torseur $[T_2]_0$ pour cette valeur de α ;
- 4- Calculer le produit des deux torseurs pour $\alpha = 2$.

Solution:

1) Eléments de réduction du torseur $[T_1]_0$

$$[T_1]_0 = \begin{cases} \overrightarrow{V_1} = -3 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k} \\ \overrightarrow{M_{10}} = \overrightarrow{OA} \wedge \overrightarrow{V_1} \end{cases} ; \text{ d'où } \overrightarrow{M_{10}} = \overrightarrow{OA} \wedge \overrightarrow{V_1} = \begin{pmatrix} -21/9 \\ -4/9 \\ -12/9 \end{pmatrix} \wedge \begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 11 \\ -11/3 \end{pmatrix}$$

$$[T_1]_0 = \begin{cases} \overrightarrow{V_1} = -3 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k} \\ \overrightarrow{M_{10}} = 11 \overrightarrow{j} - (11/3) \overrightarrow{k} \end{cases}$$

3

2) Les deux torseurs sont égaux si leurs éléments de réductions sont égaux.

$$\begin{bmatrix} T_1 \end{bmatrix}_0 = \begin{bmatrix} T_2 \end{bmatrix}_0 \quad \Leftrightarrow \quad \begin{cases} \overrightarrow{V_1} = \overrightarrow{R_2} \\ \overrightarrow{O_{10}} = \overrightarrow{M_{20}} \end{cases} \quad \Rightarrow \begin{cases} -3 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k} = (\alpha - 4) \overrightarrow{i} + \alpha \overrightarrow{j} + 3 \alpha \overrightarrow{k} \\ 11 \overrightarrow{j} - \frac{11}{3} \overrightarrow{k} = (2\alpha + 9) \overrightarrow{j} + (-3\alpha - \frac{2}{3}) \overrightarrow{k} \end{cases}$$

Cette égalité est vérifiée pour : $\alpha = 1$

4) Pas et axe central du torseur $[T_2]_0$ pour $\alpha = 1$.

Le torseur s'écrit :
$$[T_2]_0 = \begin{cases} \overrightarrow{R_2} = -3 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k} \\ \overrightarrow{M}_{20} = 11 \overrightarrow{j} - (11/3) \overrightarrow{k} \end{cases}$$

Pas du torseur :
$$P_2 = \frac{\vec{R_2} \cdot \vec{M_{20}}}{R_2^2} = \frac{1}{19} \left(-3\vec{i} + \vec{j} + 3\vec{k} \right) \cdot \left(11\vec{j} - \frac{11}{3}\vec{k} \right) = 0$$

Axe central du torseur : C'est l'ensemble des point P tel que : $\overrightarrow{OP} = \frac{\overrightarrow{R_2} \wedge \overrightarrow{M_{20}}}{R_2^2} + \lambda \overrightarrow{R_2}$

$$\overrightarrow{OP} = \frac{1}{19} \begin{pmatrix} -3\\1\\3 \end{pmatrix} \land \begin{pmatrix} 0\\11\\-11/3 \end{pmatrix} + \lambda \begin{pmatrix} -3\\1\\3 \end{pmatrix} = \begin{pmatrix} -\frac{110}{57} - 3\lambda\\-\frac{11}{19} + \lambda\\-\frac{33}{19} + 3\lambda \end{pmatrix}$$

si (x, y, z) sont les coordonnées du point P alors : nous aurons les trois équations scalaires:

$$x = -\frac{110}{57} - 3\lambda$$
 , $y = -\frac{11}{19} + \lambda$, $z = -\frac{33}{19} + 3\lambda$

le point P décrit la courbe : $2x + 3y + z = -\frac{385}{57}$

5) Produit des deux torseurs pour $\alpha = 2$

Pour
$$\alpha = 2$$
 le torseur $\begin{bmatrix} T_2 \end{bmatrix}_0$ s'écrit : $\begin{bmatrix} T_2 \end{bmatrix}_0 = \begin{cases} \overrightarrow{R_2} = -2 \overrightarrow{i} + 2 \overrightarrow{j} + 6 \overrightarrow{k} \\ \overrightarrow{R_{20}} = 13 \overrightarrow{j} - \frac{20}{3} \overrightarrow{k} \end{cases}$

$$[T_1]_o \cdot [T_2]_o = \begin{cases} \overrightarrow{V_1} \\ \overrightarrow{M_{1O}} \\ \end{cases} \cdot \begin{cases} \overrightarrow{R_2} \\ \overrightarrow{M_{2O}} \\ \end{cases} = \overrightarrow{V_1} \cdot \overrightarrow{M_{2O}} + \overrightarrow{R_2} \cdot \overrightarrow{M_{1O}} = -7$$

Exercice 3:

Soient deux torseurs $[T_1]_A$ et $[T_2]_A$ définis au même point A par leurs éléments de réduction dans un repère orthonormé $R(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$:

$$[T_1]_A = \begin{cases} \overrightarrow{R}_1 = -3 \overrightarrow{i} + 2 \overrightarrow{j} + 2 \overrightarrow{k} \\ \overrightarrow{D}_{1A} = 4 \overrightarrow{i} - \overrightarrow{j} - 7 \overrightarrow{k} \end{cases}$$
 et
$$[T_2]_A = \begin{cases} \overrightarrow{R}_2 = 3 \overrightarrow{i} - 2 \overrightarrow{j} - 2 \overrightarrow{k} \\ \overrightarrow{D}_{2A} = 4 \overrightarrow{i} + \overrightarrow{j} + 7 \overrightarrow{k} \end{cases}$$

- 1) Déterminer l'axe central et le pas du torseur $[T_1]_A$;
- 2) Déterminer l'automoment du torseur $\left[T_1\right]_A$, montrer qu'il est indépendant du point A;
- 3) Construire le torseur $[T]_A = a[T_1]_A + b[T_2]_A$ avec a et $b \in IR$;
- 4) Quelle relation doivent vérifier a et b pour que le torseur $[T]_A$ soit un torseur couple ;
- 5) Montrer que le torseur couple est indépendant du point ou on le mesure ;
- 6) Déterminer le système le plus simple de vecteurs glissants associés au torseur somme : $[T_1]_A + [T_2]_A$

Solution:

1) Axe central et Pas du torseur $[T_1]_A$

Axe central: Il est défini par l'ensemble des points P tel que: $\overrightarrow{OP} = \frac{\overrightarrow{R_1} \wedge \overrightarrow{M_{1A}}}{R_1^2} + \lambda \overrightarrow{R}$

$$\overrightarrow{OP} = \frac{1}{17} \begin{pmatrix} -3\\2\\2\\2 \end{pmatrix} \land \begin{pmatrix} 4\\-1\\-7 \end{pmatrix} + \lambda \begin{pmatrix} -3\\2\\2\\2 \end{pmatrix} = \frac{1}{17} \begin{pmatrix} -12\\-13\\-5 \end{pmatrix} + \lambda \begin{pmatrix} -3\\2\\2\\2 \end{pmatrix} = \begin{pmatrix} -\frac{12}{17} - 3\lambda\\\frac{13}{17} + 2\lambda\\-\frac{5}{17} + 2\lambda \end{pmatrix}$$

 $Pas \ du \ torseur \ \left[T_{1}\right]_{A} : \quad P_{1} = \frac{\vec{R_{1}} \cdot \vec{M_{1A}}}{R_{1}^{2}} = \frac{1}{17} \left(-3\vec{i} + 2\vec{j} + 2\vec{k}\right) \cdot \left(4\vec{i} - \vec{j} - 7\vec{k}\right) = -\frac{28}{17} \cdot \left(-3\vec{i} + 2\vec{j} + 2\vec{k}\right) \cdot \left(4\vec{i} - \vec{j} - 7\vec{k}\right) = -\frac{28}{17} \cdot \left(-3\vec{i} + 2\vec{j} + 2\vec{k}\right) \cdot \left(4\vec{i} - \vec{j} - 7\vec{k}\right) = -\frac{28}{17} \cdot \left(-3\vec{i} + 2\vec{k}\right) \cdot \left(-3\vec{i} + 2\vec{k}\right) \cdot \left(-3\vec{k}\right) \cdot$

2) Automoment du torseur $[T_1]_A$: $\overrightarrow{R_1} \cdot \overrightarrow{M_{1A}} = \left(-3\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}\right) \cdot \left(4\overrightarrow{i} - \overrightarrow{j} - 7\overrightarrow{k}\right) = -28$

L'automoment est indépendant du point A. En effet, d'après la formule de transport nous pouvons écrire : $\overrightarrow{M}_A = \overrightarrow{M}_B + \overrightarrow{AB} \wedge \overrightarrow{R}_1 \implies \overrightarrow{R}_1 \cdot \overrightarrow{M}_A = \overrightarrow{R}_1 \cdot \overrightarrow{M}_B + \overrightarrow{R}_1 \cdot \left(\overrightarrow{AB} \wedge \overrightarrow{R}_1 \right)$

 $\overrightarrow{R_1} \cdot \overrightarrow{M_A} = \overrightarrow{R_1} \cdot \overrightarrow{M_B}$, on voit bien qu'il est indépendant du point A.

3)
$$[T]_A = a[T_1]_A + b[T_2]_A \Leftrightarrow [T]_A = \begin{cases} R = a \overrightarrow{R_1} + b \overrightarrow{R_2} \\ \overrightarrow{M_A} = a \overrightarrow{M_{1A}} + b \overrightarrow{M_{2A}} \end{cases}$$

$$[T]_{A} = \begin{cases} \overrightarrow{R} = -3(a-b) \overrightarrow{i} + 2(a-b) \overrightarrow{j} + 2(a-b) \overrightarrow{k} \\ \overrightarrow{-} \overrightarrow{M}_{1A} = 4(a+b) \overrightarrow{i} - (a-b) \overrightarrow{j} - 7(a-b) \overrightarrow{k} \end{cases}$$

4) Condition pour que $[T]_A$ soit un torseur couple :

il faut que la résultante soit nulle : $\overrightarrow{R} = \overrightarrow{0} \implies a = b$

Le moment dans ce cas sera égal à : $\overrightarrow{M}_{1A} = 4(a+b)\overrightarrow{i} = 8\overrightarrow{a}\overrightarrow{i}$

5) Le moment d'un torseur couple où les résultantes R_1 , R_2 ont le même module mais de sens opposées et appliquées aux points quelconque A et B s'écrit :

$$\begin{split} \overrightarrow{M}_{A} &= \overrightarrow{OA} \wedge \overrightarrow{R}_{1} + \overrightarrow{OB} \wedge \overrightarrow{R}_{2} &= \overrightarrow{OA} \wedge \overrightarrow{R}_{1} + \overrightarrow{OB} \wedge (-\overrightarrow{R}_{1}) \\ &= \overrightarrow{BA} \wedge \overrightarrow{R}_{1} = \left(\overrightarrow{BH} + \overrightarrow{HA} \right) \wedge \overrightarrow{R}_{1} \\ &= \overrightarrow{HA} \wedge \overrightarrow{R}_{1} = -\overrightarrow{AH} \wedge \overrightarrow{R}_{1} = \overrightarrow{AH} \wedge \overrightarrow{R}_{2} \end{split}$$

Le moment d'un couple est indépendant de la distance entre les points A et B , il dépend uniquement de la distance qui sépare les deux droites supports des résultantes. Cette distance est appelée bras de levier.

6) Système simple de vecteurs glissants associés au torseur somme : $[T_1]_A + [T_2]_A$

Le torseur somme
$$[T]_A$$
 est donné par : $[T]_A = \begin{cases} \overrightarrow{R} = \overrightarrow{0} \\ \overrightarrow{R} = 0 \\ \overrightarrow{M}_A = 8 \ \overrightarrow{i} \end{cases}$

La résultante peut être décomposées en deux vecteurs quelconque de même module et de sens opposé dont l'un des vecteurs est placé au point A, on obtient alors :

$$\overrightarrow{M}_A = \overrightarrow{AA} \wedge \overrightarrow{V} + \overrightarrow{AB} \wedge -\overrightarrow{V} = \overrightarrow{AB} \wedge -\overrightarrow{V} = 5 \overrightarrow{i}$$

système de deux vecteurs glissants : $\left(A, \stackrel{\rightarrow}{\mathrm{V}}\right)$

et
$$\left(B, -\overrightarrow{V}\right)$$
, tel que : $\overrightarrow{V} \cdot \overrightarrow{M}_A = 0$

