- 0.1 Physics for Smart Systems, 1st week
 - 1. (a) Write the angle $\theta = 15^{\circ}$ in radians.
 - (b) Write the angle $\theta = \frac{5\pi}{2}$ in degrees.
 - 2. (a) Sketch the graphs of the functions $y_1 = \sin(\theta)$ and $y_2 = \sin(\theta + \frac{\pi}{2})$,
 - (b) Sketch the graphs of the functions $y_1 = \cos(\theta)$ and $y_2 = \cos(\theta \frac{\pi}{2})$.
 - 3. (a) Sketch the graph of the function $y_1 = \sin(2\theta)$,
 - (b) Sketch the graph of the function $y_2 = \cos(\frac{1}{2}\theta)$.
 - 4. (a) Sketch the graph of the function $y_1 = \sin(\omega t)$, when $\omega = 2\pi/1s$. Where s now is the unit seconds and t is the time in seconds. The variable on the horizontal axis is now the time.
 - (b) Sketch the graph of the function $y_2 = \cos(\omega t + \frac{\pi}{2})$, when $\omega = 2\pi/1s$.
 - 5. State the amplitude, angular frequency, frequency, phase angle and the time displacement of the following waves:
 - (a) $3\sin(2t)$, (b) $4\cos(\pi t 20)$.
 - 6. A voltage source produces a time-varying voltage, v(t), given by

$$v(t) = 15\sin(20\pi t + 4), \quad t \ge 0.$$

- (a) State the amplitude of v(t).
- (b) State the angular frequency of v(t).
- (c) State the period of v(t).
- (d) State the phase of v(t).
- (e) State the time displacement of v(t).
- (f) State the minimum value of v(t).
- 7. Find 1st and 2nd derivatives for the functions:
 - (a) $f_1(t) = e^{-t}$ and $f_2(t) = \sin(t)$,
 - (b) $g_1(t) = A\sin(\omega t)$ and $g_2(t) = A\cos(\omega t)$.
- 8. Show that if $y(t) = A\sin(\omega t) + B\cos(\omega t)$, where ω is a constant, then

$$y''(t) + \omega^2 y(t) = 0.$$

This means that $y(t) = A\sin(\omega t) + B\cos(\omega t)$ is a solution to the differential equation (Simple Harmonic Motion).