<u>Chapitre 11</u>: Évolution spontanée et équilibre d'un système chimique Activité expérimentale : La pile

Les réactions d'oxydo-réductions mettent en jeu des échanges d'électrons entre un oxydant et un réducteur. En exploitant ces transferts, il est possible d'en tirer de l'électricité L Cette conversion d'énergie chimique en énergie électrique est au cœur du fonctionnement des piles. L'activité expérimentale portera sur une pile particulière : la pile Daniell.

<u>Protocole 1 :</u> Transfert d'électron spontané par contact direct des réactifs

- Dans un bécher, verser environ 10 mL de sulfate de cuivre (II) et 10 mL de sulfate de zinc (II).
- Plonger une lame de zinc et de cuivre en solution
- Après un certain temps, retirer les plaques et les mettre dans une coupole.

Utilisation du voltmètre

La mesure de la tension à vide permet de déterminer la **polarité** de la pile.

Tension affichée	Electrode reliée à la borne V du voltmètre
Positive	Positive
Négative	Négative

Matériel:

- Sulfate de cuivre (II) de concentration [Cu²⁺] = 1,0 mol/L
- Sulfate de zinc (II) de concentration [Zn²+]= 1,0 mol/L
- 3 béchers de 50 mL
- Une électrode de zinc et une électrode de cuivre.
- Papier de verre
- Un pont salin constitué d'une bandelette de papier que l'on trempera dans du KCI.
- Coupole + pince
- Fils de connexions
- Multimètre
- Résistance de 10 Ω
- Balance

Données :

Les ions cuivre (II) Cu²⁺(aq) donnent une coloration bleue à la solution qui les contient.

Couple oxydant/réducteur : $Cu^{2+}(aq)/Cu(s)$ et $Zn^{2+}(aq)/Zn(s)$

Masse molaire : $M(Cu) = 63.5 \text{ g.mol}^{-1}$ et $M(Zn) = 65.4 \text{ g.mol}^{-1}$

Protocole 2: Transfert d'électron spontané par l'intermédiaire d'un circuit extérieur

- Verser 50 mL de sulfate de zinc $(Zn^{2+}(aq); SO_4^{2-}(aq))$ dans le bécher nommé « Zn »
- Verser 50 mL de sulfate de cuivre (Cu²⁺(aq); SO₄²⁻(aq)) dans le bécher nommé « Cu »
- Placer la lame de cuivre Cu (s) dans le bécher « Cu »
- Placer la lame de zinc Zn (s) dans le bécher « Zn »
- Relier les deux béchers à l'aide du pont salin.
 - Brancher le voltmètre comme indiqué sur le schéma.

COMPLÉMENTS SCIENTIFIQUES

1. Sens d'évolution spontanée

Évolution dans le sens direct de l'équation

Évolution dans le sens inverse de l'équation

2. Capacité d'une pile

La capacité électrique Q_{max} d'une pile est la charge électrique maximale (en coulomb C) que la pile peut débiter durant toute sa durée de vie :

Quantité maximale d'électrons échangés en mol Constante d'Avogadro : 6,02 × 10²³ mol⁻¹

Charge élémentaire : 1,6 × 10⁻¹⁹ C

Partie I: Réaction d'oxydo-réduction

- Mettre en œuvre le protocole 1. Notez vos observations.
- 2) En déduire l'équation de la réaction modélisant la transformation chimique.
- 3) En calculant le quotient de réaction Q_r et sachant que la constante d'équilibre associée à l'équation est de K = 10³⁷, montrez que le sens d'évolution spontané prévu est compatible avec les observations expérimentales.

Partie II: La pile Daniell

- 4) Bien décaper la lame de zinc. Peser les lames de zinc et de cuivre et noter leurs masses.
- 5) Appliquer le protocole 2 et noter la tension à vide de votre pile avec son incertitude.
- 6) D'après le signe de la tension mesurée, préciser sur le schéma quelle est la borne + et quelle est la borne -. Précisez alors quel serait le sens de circulation des électrons et le sens conventionnel du courant électrique I si la pile débitait.
- 7) D'après le sens de circulation des électrons, quelle électrode correspond à l'anode ? Et à la cathode ?
- 8) Ecrire les deux demi-équations qui ont lieu aux bornes en précisant à chaque fois qui est l'oxydant et qui est le réducteur.
- 9) Ecrire l'équation d'oxydo-réduction globale.
- 10) Qu'est-ce qui distingue principalement le protocole 1 du protocole 2 ?
- 11) Au fur et à mesure que la pile débite, que va-t-il arriver aux lames de zinc et de cuivre ?
- 12) Qui des deux réactifs de l'équation bilan sera le réactif limitant ? Remarque : on considère la réaction totale, car K >> 1.
- 13) Déterminer la quantité de matière d'électrons ne susceptible d'être libérée par cette pile. En déduire la capacité Q de la pile.

Partie III : Utilisation de la pile Daniell

- 14) En remplaçant le voltmètre du montage précédent par un ampèremètre et une résistance de 10 Ω en série, déterminer combien de temps la pile sera susceptible de fournir un tel débit. [On donne Q = I x Δt]
- 15) Enlever le pont salin du montage précédent (toujours avec l'ampèremètre et la résistance) et notez les observations. Formuler une hypothèse sur le rôle de celui-ci.