Sprawozdanie

Spis treści:

1.	Treść zadania	2
2.	Struktury danych	2
3.	Wykorzystane wzory i metody	2
4.	Obsługa programu	3
5.	Format danych wejściowych	5
6.	Ważniejsze zmienne	6
7.	Opisy funkcji	6

1. Treść zadania

Zad 2.

Zaimplementować program zawierający GUI w środowisku WinAPI, który wczytuje, przetwarza i wizualizuje sygnał z akcelerometru umieszczonego na sprężynie robota (ruch w pionie). Program ma wyznaczyć i wyświetlać (w GUI) przyspieszenie, prędkość, położenie sprężyny oraz współczynnik tłumienia drgań sprężyny (można przybliżyć funkcją e^(-k), gdzie k jest współczynnikiem tłumienia). W GUI należy dodać przyciski odpowiedzialne za wyświetlanie tych sygnałów na wykresie (należy umożliwić wyświetlanie wszystkich sygnałów jednocześnie).
Zad 2a: outputSpring01.log
Zad 2b: outputSpring02.log
Zad 2c: outputSpring03.log

2. Struktury danych

Program wykorzystuje tablicę tab typu *double* zadeklarowaną globalnie o rozmiarze 1250. Liczba ta jest dopasowana do wielkości układu współrzędnych. double tab[1250]- przechowuje informacje wczytane z pliku

Ponadto zawiera tablice dynamiczne:

double przysp[ile]- przechowuje wartości przyspieszenia double predkosc[ile]- przechowuje wartości prędkości double polozenie[ile]- przechowuje wartości położenia double wtlum[ile]- przechowuje wartości współczynnika tłumienia drgań sprężyny

int ile-ilość danych wczytanych z pliku (maksymalna wartość to 1250)

3. Wykorzystane wzory i metody

a) Wzory

$$1 G = 9.81 \text{ m/s}^2$$

Wzór na prędkość:

$$v = v_0 + \int_{t_0}^{t_1} a(t)dt$$

Wzór na położenie:

$$d = d_0 + \int_{t_0}^{t_1} v(t)dt$$

Metoda lewych prostokątów do przybliżenia wartości całek:

$$\int_{x_0}^{x_n} f(x) dx = h \sum_{i=0}^{n-1} f(x_i)$$

$$h = \frac{x_n - x_0}{n} = 0.04s$$

n- liczba prostokątów

Sposób liczenia współczynnika tłumienia drgań sprężyny:

$$\frac{a(t)}{x(t)} = \frac{-A\omega^2 \sin(\omega t + \varphi)}{A\sin(\omega t + \varphi)} = -\omega^2$$
$$-\omega^2 = -\frac{b}{m}$$
$$-k = \frac{-b}{2m} = \frac{-\omega^2}{2}$$
$$e^{-k} = \exp\left(\frac{a(t)}{x(t)} * \frac{1}{2}\right)$$

- b) Rysowanie
 - Wartość podziałki na osi X można obliczyć ze wzoru $x_0 = 0.04 * \frac{1}{t} * 10$ (10 to liczba pikseli w podziałce; 0,04 to okres pomiędzy pomiarami).
 - Następnie, rysujemy punkty pomnożone przez y (współczynnik amplitudy) i odjęte od 500 (to wysokość osi Y). Wartość podziałki na osi Y można obliczyć ze wzoru $y_0=\frac{10}{\nu}$ (10 to liczba pikseli w podziałce).
- 4. Obsługa programu

Wygląd po uruchomieniu:

draw		_	- O >
			C Plik 1
			○ Plik 2
			C Plik 3
○ y=0.2 ○ y=2	∩ t=0,2s	e^[-k] v d	a Clear
∩ y=0.2	C t=0,2s C t=0,4s	e^(-k) v d	a Clear

Rysunek 2

Program posiada 4 kategorie przycisków:

- a) Wybór amplitudy
 - y=2 -> oznacza, że jedna podziałka na pionowej osi wynosi 2 danej jednostki (m/s dla prędkości, m dla położenia, m/s² dla przyspieszenia)
 - y=0,2 -> oznacza, że jedna podziałka na pionowej osi wynosi 0,2 danej jednostki (m/s dla prędkości, m dla drogi, m/s² dla przyspieszenia)
- b) Wybór przedziału czasowego
 - t=0,4s -> oznacza, że jedna podziałka na poziomej osi wynosi 0,4 sekundy
 - t=0,2s -> oznacza, że jedna podziałka na poziomej osi wynosi 0,2 sekundy
- c) Wybór pliku
 - Plik 1 -> otwiera plik outputSpring01.log
 - Plik 2 -> otwiera plik outputSpringB02.log
 - Plik 3 -> otwiera plik outputSpring03.log
- d) Wybór rysowania funkcji
 - e^(-k) -> rysuje wykres współczynnika tłumienia drgań sprężyny
 - v -> rysuje wykres prędkości kolorem czerwonym
 - d -> rysuje wykres położenia kolorem niebieskim
 - a -> rysuje wykres przyspieszenia kolorem zielonym
 - Clear -> czyści ekran, pozostawia sam układ współrzędnych

Na początku należy wybrać amplitudę, czas i plik, by móc narysować wykres. Każda zmiana amplitudy, czasu lub pliku (a także użycie przycisku Clear) zmienia wygląd okna na ten z rysunku 2. Zaleca się używanie programu w trybie pełnoekranowym.

Wykresy prędkości, drogi i czasu mogą się na siebie nakładać.

Rysunek 3

5. Format danych wejściowych

Program wczytuje dane z pliku tekstowego, który zawiera 12 kolumn liczb typu *double*. Program ten używa tylko kolumny 5, która musi zawierać przyspieszenie z akcelerometru w pionie w G odczytywane co 0,04 sekundy.

Rysunek 4

Program jest w stanie zwizualizować plik zawierający do 1250 wierszy. W przypadku większej ilości danych wczytane zostanie jedynie 1250 początkowych wierszy.

Pliki z danymi znajdują się w folderze draw.

6. Ważniejsze zmienne

a) Zmienne globalne

fstream plik-służy do otwarcia i odczytania danych z wybranego pliku

int ile-przechowuje liczbę danych

double *przysp- wskaźnik na tablicę dynamiczną przechowującą dane o przyspieszeniu

double *predkosc- wskaźnik na tablicę dynamiczną przechowującą dane o prędkości

double *droga- wskaźnik na tablicę dynamiczną przechowującą dane o drodze

double *wtlum- wskaźnik na tablicę dynamiczną przechowującą dane o wartości współczynnika tłumienia drgań sprężyny

b) Zmienne lokalne

double pred, poloz-suma poprzednich policzonych wartości- odpowiednio prędkości i położenia, wykorzystywana w funkcji wpis2()

UINT a, b, c, d-służą do sprawdzania, który przycisk radiowy jest wciśnięty, wykorzystywane w funkcji WndProc()

7. Opisy funkcji

void rysuj(HDC hdc)

Funkcja, która rysuje układ współrzędnych.

Parametry:

hdc- uchwyt do kontekstu urządzenia

void wpis(int ktory)

Odczytuje dane z pliku i zapisuje je do tablicy tab i liczy ilość wierszy w pliku, jeżeli liczba wierszy przekracza 1250 to pomija resztę danych.

Parametry:

ktory- określa, który plik należy wczytać

void wpis2()

Zamienia jednostkę z G na m/s², a następnie zapisuje wyniki w tablicy przysp. Następnie liczy wartości przyspieszenia, prędkości, położenia i wartości współczynnika tłumienia drgań sprężyny i zapisuje je kolejno do tablic przysp, predkosc, polozenie, wtlum.

Parametry:

brak

void RysPredkosc(HDC hdc, int y, int t)

Rysuje wykres prędkości od czasu.

Parametry:

hdc- uchwyt do kontekstu urządzenia

y- odpowiada za skalę amplitudy wykresu

t- odpowiada za zmianę wartości podziałki czasowej

void RysPolozenie(HDC hdc, int y, int t)

Rysuje wykres położenia od czasu.

Parametry:

hdc- uchwyt do kontekstu urządzenia

y- odpowiada za skalę amplitudy wykresu

t- odpowiada za zmianę wartości podziałki czasowej

void RysTlum(HDC hdc, int y, int t)

Rysuje wykres współczynnika tłumienia drgań sprężyny od czasu.

Parametry:

hdc- uchwyt do kontekstu urządzenia

y- odpowiada za skalę amplitudy wykresu

t- odpowiada za zmianę wartości podziałki czasowej

void RysPrzysp(HDC hdc, int y, int t)

Rysuje wykres przyspieszenia od czasu.

Parametry:

hdc- uchwyt do kontekstu urządzenia

y- odpowiada za skalę amplitudy wykresu

t- odpowiada za zmianę wartości podziałki czasowej

void czysc(HWND hWnd, HDC& hdc, PAINTSTRUCT& ps, RECT* drawArea)

Czyści ekran, a następnie rysuje układ współrzędnych.

Parametry:

hWnd- uchwyt okna

hdc- uchwyt do kontekstu urządzenia

ps- struktura używana przez aplikację do rysowania w programie

drawArea- wskaźnik na współrzędne lewego górnego i prawego dolnego narożnika prostokąta

void repaintWindow(HWND hWnd, HDC &hdc, PAINTSTRUCT &ps, RECT *drawArea , int y, int t, int ktorywykres)

Wywołuje funkcje rysujące wykresy (RysPrzysp, RysPredkosc, RysPolozenie, RysTlum).

Parametry:

hWnd- uchwyt okna

hdc- uchwyt do kontekstu urządzenia

ps- struktura używana przez aplikację do rysowania w programie

drawArea- wskaźnik na współrzędne lewego górnego i prawego dolnego narożnika prostokata

y- odpowiada za skalę amplitudy wykresu

t- odpowiada za zmianę wartości podziałki czasowej

ktorywykres-decyduje, który wykres ma być narysowany

int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow)

Funkcja główna.

Parametry:

hInstance- uchwyt aplikacji

hPrevInstance- uchwyt do poprzedniego wystąpienia aplikacji

1pCmdLine- zawiera linię poleceń, z jakiej został uruchomiony program

nCmdShow- określa stan okna programu

ATOM MyRegisterClass(HINSTANCE hInstance)

Zawiera informacje o klasie okna.

Parametry:

hInstance- uchwyt aplikacji

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)

Tworzy przyciski.

Parametry:

hInstance- uchwyt aplikacji

nCmdShow- określa stan okna programu

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM 1Param)

Definiuje, co program ma wykonać w przypadku naciśnięcia przycisków. Wywołuje funkcje odpowiedzialne za wczytanie danych z pliku(wpis, wpis2), rysowanie wykresów (repaintWindow) i czyszczenie ekranu (czysc). Tworzy tablice dynamiczne.

Parametry:

hWnd- uchwyt okna

message- kod komunikatu