Послідовності

Поняття числової послідовності

Якщо кожному натуральному числу $n \in \mathbb{N}$ поставити у відповідність за деяким правилом дійсне число x_n , то одержимо множину чисел $x_1, x_2, ..., x_n, ...$, яка називається **числовою послідовністю** і позначається $\{x_n\}$. Числа $x_1, x_2, ..., x_n, ...$ називаються членами послідовності, число x_n називається загальним членом послідовності.

Числову послідовність можна задати **рекурентним** способом, тобто задають один або декілька перших членів послідовності і правило, за яким можна знайти решта членів послідовності через задані.

Дії з послідовностями

Дано дві послідовності: $\{x_n\}$ та $\{y_n\}$.

Означення. **Сумою послідовностей** $\{x_n\}$ та $\{y_n\}$ називається послідовність $\{x_n+y_n\}$ з членами $x_1+y_1,\ x_2+y_2,\ x_3+y_3,\ldots,\ x_n+y_n,\ldots$

Означення. **Різницею послідовностей** $\{x_n\}$ та $\{y_n\}$ називається послідовність $\{x_n-y_n\}$ з членами $x_1-y_1,\ x_2-y_2,\ x_3-y_3,...,\ x_n-y_n,....$

Означення. Добутком послідовності $\{x_n\}$ на число c називається послідовність $\{cx_n\}$ з членами $cx_1, cx_2, cx_3, \ldots, cx_n, \ldots$

Означення. Добутком послідовностей $\{x_n\}$ та $\{y_n\}$ називається послідовність $\{x_n\cdot y_n\}$ з членами $x_1y_1,\ x_2y_2,\ x_3y_3,\ldots,\ x_ny_n,\ldots$

Означення. **Часткою послідовностей** $\{x_n\}$ та $\{y_n\}$, $y_n \neq 0$ називається послідовність $\left\{\frac{x_n}{y_n}\right\}$ з членами $\frac{x_1}{y_1}$, $\frac{x_2}{y_2}$, $\frac{x_3}{y_3}$,..., $\frac{x_n}{y_n}$,....

Обмежені послідовності

Означення. Послідовність $\{x_n\}$ називається **обмеженою зверху**, якщо існує таке число M , що кожен член послідовності $\{x_n\}$ задовольняє умову $x_n \leq M$.

Означення. Послідовність $\{x_n\}$ називається *обмеженою знизу*, якщо існує таке число m, що кожен член послідовності $\{x_n\}$ задовольняє умову $x_n \ge m$.

Означення. Послідовність $\{x_n\}$ називається *обмеженою*, якщо вона обмежена і зверху, і знизу, тобто, якщо існують такі числа m та M, що кожен член послідовності $\{x_n\}$ задовольняє умову $m \le x_n \le M$.

Нехай $A = \max\{|m|, |M|\}$, тоді умову обмеженості можна записати у вигляді $|x_n| \le A$.

Означення. Якщо існує таке число A, що кожен член послідовності $\{x_n\}$ задовольняє умову $|x_n| \le A$, то послідовність називається обмеженою.

Означення. Послідовність $\{x_n\}$ називається **необмеженою**, якщо для довільного числа A>0 існує такий член послідовності x_n , що $|x_n|>A$.

Монотонні послідовності

Означення. Послідовність $\{x_n\}$ називається **зростаючою**, якщо кожний наступний член послідовності більший, ніж попередній, тобто $x_{n+1} > x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **спадною**, якщо кожний наступний член послідовності менший, ніж попередній, тобто $x_{n+1} < x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **незростаючою**, якщо кожний наступний член послідовності не більший, ніж попередній, тобто $x_{n+1} \le x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **неспадною**, якщо кожний наступний член послідовності не менший, ніж попередній, тобто $x_{n+1} \ge x_n$ для всіх $n \in \mathbb{N}$.

Означення. Зростаючі та спадні послідовності називаються строго монотонними.

Означення. Незростаючі та неспадні послідовності називаються монотонними.

Границя послідовності

Розглянемо послідовність $\{x_n\}$, $x_n = \frac{n}{n+1}$. Тоді $x_1 = \frac{1}{2}$, $x_2 = \frac{2}{3}$, $x_3 = \frac{3}{4}$, $x_4 = \frac{4}{5}$,..., $x_{100} = \frac{100}{101}$,.... Зобразимо члени послідовності на числовій осі.

Бачимо, що при збільшенні номера n члени послідовності дедалі ближче до одиниці. Це прийнято писати так: $\lim_{n\to\infty}\frac{n}{n+1}=1$.

Означення. Число a називається границею послідовності $\{x_n\}$ ($\lim_{n\to\infty} x_n=a$), якщо для будьякого як завгодно малого числа $\varepsilon>0$ існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n-a|<\varepsilon$.

Означення. Послідовність, яка має границю, називається збіжною.

Розглянемо геометричну інтерпретацію границі числової послідовності. Нерівність $|x_n-a|<\varepsilon$ можна записати так: $-\varepsilon< x_n-a<\varepsilon$, або $a-\varepsilon< x_n< a+\varepsilon$, або $x_n\in (a-\varepsilon,a+\varepsilon)$. Інтервал $(a-\varepsilon,a+\varepsilon)$ називають ε -околом точки a. Якщо a ε границею послідовності $\{x_n\}$, то для будь-якого ε -околу точки a знайдеться номер n_0 , що всі члени послідовності з номерами $n>n_0$ належать цьому ε -околу.

Нескінченно малі та нескінченно великі послідовності

Означення. Послідовність $\{x_n\}$ називається **нескінченно малою**, якщо $\lim_{n\to\infty} x_n = 0$, тобто для будь-якого $\varepsilon > 0$ існує такий номер n_0 , що для всіх $n > n_0$ виконується умова $|x_n| < \varepsilon$.

Прикладами нескінченно малих послідовностей є $x_n = \frac{1}{n}$, $y_n = \frac{3}{2^n}$, оскільки границі цих послідовностей дорівнюють нулю. Послідовність $x_n = \frac{n}{n+1}$ не є нескінченно малою, оскільки $\lim_{n \to \infty} x_n = 1 \neq 0$.

Твердження 1. Якщо послідовність $\{x_n\}$ збіжна і $\lim_{n\to\infty} x_n = a$, то послідовність $\{\alpha_n\} = \{x_n - a\}$ нескінченно мала.

Доведення. Нехай $\lim_{n\to\infty} x_n = a$. Тоді, за означенням границі,

$$\forall \varepsilon > 0 \exists \mathbf{n}_0(\varepsilon) : |x_n - a| = |(x_n - a) - 0| < \alpha \forall \mathbf{n} > \mathbf{n}_0(\varepsilon).$$

Звідси випливає, що послідовність $\alpha_n = x_n - a$ збігається до нуля, тобто є нескінченно малою.

Твердження 2. Якщо послідовність $\{\alpha_n\} = \{x_n - a\}$ нескінченно мала, то послідовність $\{x_n\}$ збіжна і $\lim_{n \to \infty} x_n = a$.

Доведення. Нехай послідовність з загальним членом $\alpha_n = x_n - a$ є нескінченно малою. Тоді $\forall \varepsilon > 0 \ \exists \mathbf{n}_0 (\varepsilon) \colon \left| (x_n - a) - 0 \right| = \left| x_n - a \right| < \alpha \ \forall \mathbf{n} > \mathbf{n}_{_0} (\varepsilon)$, тобто за означенням границі послідовності маємо: $\lim_{n \to \infty} x_n = a$.

Твердження 3. Якщо послідовності $\{\alpha_n\}$ і $\{\beta_n\}$ нескінченно малі, то послідовність $\{\alpha_n+\beta_n\}$ нескінченно мала.

Доведення. Нехай ε — довільне додатне число. Оскільки $\{\alpha_n\}$ та $\{\beta_n\}$ ϵ нескінченно малими, то знайдуться такі номери $n_1\bigg(\frac{\varepsilon}{2}\bigg)$ та $n_2\bigg(\frac{\varepsilon}{2}\bigg)$, що виконуються нерівності:

$$\left|\alpha_{n}\right| < \frac{\varepsilon}{2} \ \forall n > n_{1}\left(\frac{\varepsilon}{2}\right), \qquad \left|\beta_{n}\right| < \frac{\varepsilon}{2} \ \forall n > n_{2}\left(\frac{\varepsilon}{2}\right).$$

Отримуємо співвідношення:

$$|\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

Воно виконується для всіх номерів n, які перевищують найбільше з чисел $n_1 \bigg(\frac{\varepsilon}{2} \bigg)$ та $n_2 \bigg(\frac{\varepsilon}{2} \bigg)$. Таким чином, $\Big\{ \alpha_n + \beta_n \Big\}$ є нескінченно малою послідовністю.

Твердження 4. Якщо послідовності $\{\alpha_n\}$ і $\{\beta_n\}$ нескінченно малі, то послідовність $\{\alpha_n \cdot \beta_n\}$ нескінченно мала.

Твердження 5. Якщо послідовність $\{\alpha_n\}$ нескінченно мала і послідовність $\{c_n\}$ обмежена, то послідовність $\{c_n\cdot\alpha_n\}$ нескінченно мала.

Доведення. За умовою, послідовність $\{c_n\}$ обмежена, тобто $\exists M>0 \ |c_n| < M \ \forall n \in \square$.

Оскільки $\{\alpha_n\}$ є нескінченно малою послідовністю, то існує номер $n_0\bigg(\frac{\mathcal{E}}{M}\bigg)$, такий, що для всіх

$$n>n_0 \left(rac{\mathcal{E}}{M}
ight) \ \left|lpha_n
ight|<rac{\mathcal{E}}{M}$$
 . Тоді для цих n виконується нерівність:

$$|c_n \cdot \alpha_n| = |c_n| \cdot |\alpha_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon$$
.

Ця нерівність означає, що послідовність $\{c_n\cdot lpha_n\}$ є нескінченно малою.

Означення. Послідовність $\{x_n\}$ називається нескінченно великою, якщо для будь-якого числа A>0 існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n|>A$. ($\lim_{n\to\infty}x_n=\infty$)

Прикладами нескінченно великих послідовностей є $x_n = 3n$, $x_n = 5^n$.

Твердження.

- 1. Якщо послідовність $\{x_n\}$ нескінченно велика і $x_n \neq 0$ для всіх $n \in \mathbb{N}$, то послідовність $\{y_n\} = \left\{\frac{1}{x_n}\right\}$ нескінченно мала.
- 2. Якщо послідовність $\{x_n\}$ нескінченно мала і $x_n \neq 0$ для всіх $n \in \mathbb{N}$, то послідовність $\{y_n\} = \left\{\frac{1}{x_n}\right\}$ нескінченно велика.

Властивості збіжних послідовностей

Твердження 1.

Збіжна послідовність ϵ обмеженою.

Доведення. Нехай послідовність $\{x_n\}$ збіжна і $\lim_{n\to\infty}x_n=a$. Тоді для будь-якого $\varepsilon>0$ існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n-a|<\varepsilon$.

Нехай $\varepsilon = 1$. Тоді | $x_n - a < 1$.

Оскільки | x_n | - | a | \leq | x_n - a |, то | x_n | - | a |< 1, тоді | x_n |< | a | + 1 для всіх $n > n_0$.

Нехай $M = \max\{|x_1|, |x_2|, ..., |x_n|, |a|+1\}.$

Тоді $|x_n| < M$ для всіх $n \in \mathbb{N}$. Отже, послідовність $\{x_n\}$ обмежена.

Твердження 2.

Збіжна послідовність має тільки одну границю.

Доведення. Від супротивного. Припустимо, що $\lim_{n\to\infty} x_n = a$ і $\lim_{n\to\infty} x_n = b$ і $a \neq b$.

Якщо $\lim_{n\to\infty} x_n = a$, то для довільного $\varepsilon > 0$ існує такий номер n_0^1 , що для всіх $n > n_0^1$ виконується умова $|x_n - a| < \varepsilon$.

Якщо $\lim_{n\to\infty}x_n=b$, то для довільного $\varepsilon>0$ існує такий номер n_0^2 , що для всіх $n>n_0^2$ виконується умова $|x_n-b|<\varepsilon$..

Нехай $n_0 = \max\{n_0^1, n_0^2\}$.

Тоді для всіх $n>n_0$ $\mid a-b\mid=\mid a-x_n+x_n-b\mid\leq\mid a-x_n\mid+\mid x_n-b\mid=\mid x_n-a\mid+\mid x_n-b\mid<\varepsilon=\varepsilon=2\varepsilon$. Отже, $\mid a-b\mid<\varepsilon$.

Оскільки ε — довільне додатне число, то нехай $\varepsilon = \frac{1}{3} |a-b|$.

Тоді
$$|a-b| < \frac{2}{3} |a-b|$$
, тобто $1 < \frac{2}{3}$.

Отримали суперечність. Отже, збіжна послідовність має тільки одну границю.

Твердження 3. (про проміжну послідовність)

Нехай елементи послідовностей $\{x_n\}, \{y_n\}, \{z_n\}$ задовольняють умову $x_n \le y_n \le z_n$ і $\lim_{n\to\infty} x_n = a$ та $\lim_{n\to\infty} z_n = a$. Тоді послідовність $\{y_n\}$ збіжна і $\lim_{n\to\infty} y_n = a$.

Твердження 4.

Якщо послідовності $\{x_n\}$ та $\{y_n\}$ збіжні, і для довільного n $x_n \leq y_n$, то $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.

Твердження 5.

- 1. Якщо послідовності $\{x_n\}$ та $\{y_n\}$ збіжні, то послідовність $\{x_n+y_n\}$ збіжна і $\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n.$
- 2. Якщо послідовності $\{x_n\}$ та $\{y_n\}$ збіжні, то послідовність $\{x_n-y_n\}$ збіжна і $\lim_{n\to\infty}(x_n-y_n)=\lim_{n\to\infty}x_n-\lim_{n\to\infty}y_n$.
- 3. Якщо послідовності $\{x_n\}$ та $\{y_n\}$ збіжні, то послідовність $\{x_n\cdot y_n\}$ збіжна і $\lim_{n\to\infty}(x_n\cdot y_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$.
 - 4. Якщо послідовність $\{x_n\}$ збіжна, то послідовність $\{cx_n\}$ збіжна і $\lim_{n\to\infty}(cx_n)=c\cdot\lim_{n\to\infty}x_n$.
 - 5. Якщо послідовності $\{x_n\}$ та $\{y_n\}$ збіжні, $y_n \neq 0$ і $\lim_{n \to \infty} y_n \neq 0$, то послідовність $\left\{\frac{x_n}{y_n}\right\}$

збіжна і
$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$$
.

Число е.

Твердження.

Якщо послідовність $\{x_n\}$ монотонно неспадна (незростаюча) і обмежена зверху (знизу), то вона збіжна.

Розглянемо послідовність $\{x_n\}$ $x_n = \left(1 + \frac{1}{n}\right)^n$. Можна показати, що ця послідовність зростаюча і обмежена і $1 < \left(1 + \frac{1}{n}\right)^n < 3$. Тому ця послідовність збіжна і її границя дорівнює e.

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$