Проверочная работа по МАТЕМАТИКЕ

8 класс

Вариант 1

Инструкция по выполнению работы

На выполнение работы по математике даётся 90 минут. Работа содержит 19 заданий.

В заданиях, после которых есть поле со словом «Ответ», запишите ответ в указанном месте.

В заданиях, после которых есть поле со словами «Решение» и «Ответ», запишите решение и ответ в указанном месте.

В заданиях 4 и 8 нужно отметить точки на числовой прямой.

Если Вы хотите изменить ответ, зачеркните его и запишите рядом другой.

При выполнении работы можно пользоваться таблицей умножения и таблицей квадратов двузначных чисел. Запрещено пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Баллы															

16(1)	16(2)	17	18	19	Сумма баллов	Отметка за работу

Найдите значение выражения (1,68+1,82)⋅1,8.

2 Решите уравнение $19x + 4 - 5x^2 = 0$.

На кружок по шахматам записались шестиклассники, семиклассники и восьмиклассники, всего 36 человек. Среди записавшихся на кружок 8 шестиклассников, а количество семиклассников относится к количеству восьмиклассников как 4:3 соответственно. Сколько семиклассников записалось на кружок по шахматам?

На координатной прямой отмечены числа a, b и c. Отметьте на этой прямой какое-нибудь число x так, чтобы при этом выполнялись три условия: a - x < 0, b - x < 0, -x + c > 0.

5 Дана функция $y = -\frac{9}{2}x + 7$. Найдите значение функции при x = 3.

(6)

Загруженность автомобильных дорог измеряется в баллах по десятибалльной шкале. Для каждого значимого маршрута в городе определяется эталонное время, за которое его можно проехать по свободной дороге, не нарушая правил дорожного движения. Сравнивая время проезда по тем же улицам при текущей дорожной ситуации и эталонное время, компьютер вычисляет загруженность дороги в баллах. Загруженность автомобильных дорог в 1–2 балла означает, что дороги практически свободны, а если загруженность выше 7 баллов, то пользоваться автомобилем нецелесообразно. На графике показана средняя загруженность дорог в Москве в некоторый будний день.

На графике видны два «всплеска» в течение суток. Чем их можно объяснить? Второй «всплеск» шире первого. Какими причинами это может быть вызвано? Напишите несколько предложений, в которых обоснуйте своё мнение по этим вопросам.

7

На соревнованиях по синхронным прыжкам в воду в жюри входят девять судей. Пятеро оценивают синхронность выполнения прыжка. Двое судей оценивают исполнение прыжка первой спортсменкой, ещё двое — исполнение прыжка второй спортсменкой. Итоговая оценка за прыжок выставляется с помощью следующего алгоритма.

- 1. Из четырёх оценок за исполнение отбрасываются две наибольшая и наименьшая.
- 2. Из пяти оценок за синхронность отбрасываются две наибольшая и наименьшая.
- 3. Сумму оставшихся пяти оценок умножают на 0,6 и на коэффициент сложности прыжка.

В таблице указаны оценки за выступление пары спортсменок. Определите итоговую оценку, которую они получили за четвёртый прыжок.

		Оценки судей									
Прыжки	Коэффициент сложности	си	нхронн п	ость вы ірыжко		пер	нение вой менкой	исполнение второй спортсменкой			
1	1,7	8,1	7,5	7	8	6,5	8,3	7,2	7,3	7	
2	2,8	5,4	7	7,6	6,4	7,8	6,5	7	7,5	7	
3	2,3	7,5	8	8,5	7,5	6,5	7,5	7	6,2	7,5	
4	1,4	7	8,7	8	8,5	6,8	7	6,5	7,3	7	
5	2,5	7,5	7,5	8,5	8	7	6,4	7,5	7,8	6,5	

Ответ:

(8)

Отметьте на координатной прямой число $2\sqrt{21}$.

Ответ:

9

Найдите значение выражения $\left(\frac{1}{2a} - \frac{1}{3b}\right) : \left(\frac{b}{2} - \frac{a}{3}\right)$ при $a = \sqrt{12}$ и $b = \frac{1}{\sqrt{3}}$.

10

В театральной студии 30 учеников, среди них 5 человек занимаются актёрским мастерством, а 7 — вокалом. При этом нет никого, кто бы занимался и тем, и другим. Найдите вероятность того, что случайно выбранный ученик театральной студии занимается актёрским мастерством или вокалом.

Стоимость проезда в электричке составляет 180 рублей. Школьникам предоставляется скидка 50%. Сколько рублей будет стоить билет на электричку для школьника после подорожания проезда на 10%?

12 На клетчатой бумаге с размером клетки 1× изображён острый угол. Найдите тангенс этого угла.

(13) В треугольнике *ABC* угол *C* равен 90°, AC = 3, $BC = \sqrt{91}$. Найдите $\cos A$.

- Выберите верное утверждение и запишите в ответе его номер.
 - 1) Сумма углов выпуклого четырёхугольника равна 360° .
 - 2) Если при пересечении двух прямых третьей односторонние углы равны, то прямые параллельны.
 - 3) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

(15)

Велосипед приводится в движение с помощью двух звёздочек и цепи, натянутой между ними (см. рис.). Велосипедист вращает педали, которые закреплены на передней звёздочке, далее усилие с помощью цепи передаётся на заднюю звёздочку, которая вращает заднее колесо. На передней звёздочке велосипеда 36 зубьев, на задней — 9. Диаметр заднего колеса равен 56 см. Какое расстояние проедет велосипед за один полный оборот педалей? При расчёте округлите π до 3,14. Результат округлите до десятых долей метра.

(16)

Самым известным и престижным турниром по автомобильным гонкам считается чемпионат мира «Формула-1». В этих соревнованиях ежегодно принимают участие 10 команд, за каждую из которых выступают два пилота (гонщика). В течение спортивного сезона проводится несколько этапов (соревнований) «Формулы-1». Эти этапы проводятся в разных странах и называются Гран-при (франц. Grand Prix — большая, главная премия), например, Гран-при Австрии, Гран-при Бельгии.

В зависимости от места, которое занял пилот на очередном этапе, он получает некоторое количество очков. Чем выше место, тем больше очков. В течение сезона ведётся подсчёт суммы очков каждого спортсмена. Чемпионом мира становится спортсмен, набравший наибольшую сумму очков за все гонки сезона.

С 17 сентября по 26 ноября состоялось семь этапов «Формулы-1» сезона 2017 года. Во всех этих гонках принимали участие Валттери Боттас, Даниэль Риккардо и Себастьян Феттель. В таблице показано, какое место занял каждый из этих трёх спортсменов на каждом этапе. Прочтите фрагмент сопровождающей статьи.

Этап	Спортемен							
Jian	A	Б	В					
Гран-при Сингапура	18	2	3					
Гран-при Малайзии	4	3	5					
Гран-при Японии	19	3	4					
Гран-при США	2	18	5					
Гран-при Мексики	4	20	2					
Гран-при Бразилии	1	6	2					
Гран-при Абу-Даби	3	20	1					

На последних семи этапах «Формулы-1» 2017 года Риккардо и Феттель по три раза попали в тройку лучших. Лучший результат, который смог показать Риккардо на этих этапах, — призовое 2-е место. Боттас один раз смог занять 1-е место.

Макс Ферстаппен тоже принимал участие во всех этих семи гонках. На Гран-при Сингапура он занял одно из последних, 19-е место. На Гран-при Японии Ферстаппен обогнал и Боттаса, и Риккардо, и Феттеля, но не смог занять первое место, которое он сумел отвоевать на гонках в Малайзии и в Мексике. На Гран-при США Ферстаппен опередил Валттери Боттаса на одно место. На Гран-при Бразилии он отстал от Себастьяна Феттеля на четыре места, заняв то же место и в следующей гонке.

ВПР. Математика.	8 кпасс	Вапиант 1	

КОД

1)	На основании прочитанного с	определите, н	какому спортсмену	соответствует	столбец Б.
		· F - / 1 - · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	J -	

Ответ:

2) По имеющемуся описанию заполните таблицу, показывающую места, занятые Максом Ферстаппеном на последних семи этапах «Формулы-1» в 2017 году.

Ответ:

Этап	Место, занятое Максом Ферстаппеном
Гран-при Сингапура	
Гран-при Малайзии	
Гран-при Японии	
Гран-при США	
Гран-при Мексики	
Гран-при Бразилии	
Гран-при Абу-Даби	

В треугольнике ABC стороны AB и BC равны, $\angle ACB = 75^\circ$. На стороне BC взяли точки X и Y так, что точка X лежит между точками B и Y, AX = BX и $\angle BAX = \angle YAX$. Найдите длину отрезка AY, если AX = 20.

(18)

Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч. Ответ дайте в км/ч.

Дима написал пять натуральных (необязательно различных) чисел, а потом Ксюша вычислила все возможные попарные суммы этих чисел. Получилось всего три различных значения: 65, 80 и 95. Посмотрев на полученные Ксюшей значения, Боря смог точно назвать наибольшее из написанных Димой чисел. Какое это число?

Система оценивания проверочной работы

Оценивание отдельных заданий

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Итого
Баллы	1	1	1	1	1	2	1	2	1	1	1	1	1	1	2	2	1	2	2	25

Ответы

Номер задания	Правильный ответ
1	6,3
2	-0,2; 4
3	16
5	-6,5
7	31,5
9	0,5
10	0,4
11	99
13	0,3
14	1

Решения и указания к оцениванию

Ответ:

В качестве верного следует засчитать любой ответ, где число x лежит между числами b и c.

/		í
/	-	
	4	
(w	
\	~	

Решение и указания к оцениванию	Баллы
Решение.	
Утром люди едут на общественном и личном транспорте на работу. Видимо,	
большинство едет к 9 утра, поэтому в районе 8 утра «пробки» на дорогах	
значительные. Вечером люди возвращаются с работы, и снова загруженность	
дорог возрастает. Обычно именно после работы они заезжают по делам	
или в магазин, и на это уходит некоторое время. Поэтому вечерний «всплеск»	
шире.	
Следует принять в качестве верного любое рассуждение с правдоподобными	
объяснениями особенностей диаграммы	
Имеется рассуждение, в котором делаются правдоподобные предположения	
о причинах двух «всплесков», дано правдоподобное объяснение того, почему	2
второй «всплеск» шире	
В решении присутствует утверждение о том, что утренний и вечерний	
«всплески» связаны с поездками на работу и с работы, но отсутствует	1
объяснение того, почему вечерний «всплеск» шире утреннего	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

8

Ответ и указания к оцениванию				Баллы				
Ответ:								
		$2\sqrt{21}$						
7	8	9	10	11	12	13	14	
Точка распол				ке с целі	ыми конц	ами, учт	ено положение	2
Точка располотносительно		-	_		ми концам	ии, но по	ложение точки	1
Решение не с	соответств	вует ни од	ному из і	критериев	в, перечисл	іенных вы	ише	0
						Макс	симальный балл	2

12 Ответ: $\frac{7}{8}$ или 0,875.

15)

Решение и указания к оцениванию	Баллы
Решение.	
Длина окружности заднего колеса равна $\pi \cdot d = 3,14 \cdot 56 \approx 175,84$ см.	
Передаточное число равно $\frac{36}{9}$ = 4. Значит, за один полный оборот педалей	
велосипед проедет $175,84 \cdot 4 = 703,36 \approx 703$ см.	
Возможен другой расчёт: длина окружности заднего колеса приблизительно равна 176 см, тогда за полный оборот педалей велосипед проедет приблизительно 704 см.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 7,0 м или 7 м	
Проведены все необходимые рассуждения, получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая	
ошибка, или обоснованно полученный верный результат не округлён до десятых долей метра	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

16)

	Ответ и	указания к оцениванию	Баллы
Ответ	:	•	
1) Дан	ниэль Риккардо;		
2)			
	Этап	Место, занятое Максом Ферстаппеном	
	Гран-при Сингапура	19	
	Гран-при Малайзии	1	
	Гран-при Японии	2	
	Гран-при США	4	
	Гран-при Мексики	1	
	Гран-при Бразилии	5	
	Гран-при Абу-Даби	5	
Верно	выполнено задание 1, в зад	дании 2 таблица заполнена с учётом всех сведений,	2.
получ	енных из текста		
Верно	выполнено одно из заданий	Í	1
Решен	ние не соответствует ни одн	ому из критериев, перечисленных выше	0
		Максимальный балл	2

/		_
(1	7
\	_	•

Решение и указания к оцениванию	Баллы
Решение. Треугольник ABC равнобедренный, поэтому $ABC = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$. В равнобедренном треугольнике $ABX \\ \angle AXB = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$. По теореме о внешнем угле треугольника $\angle AXY = \angle XAB + \angle XBA$, откуда $\angle AXY = 60^{\circ}$. Значит, в треугольнике $AXY \ \angle XAY = BAX = 30^{\circ}$, $\angle AXY = 60^{\circ}$, $\angle AYX = 90^{\circ}$, то есть треугольник AXY прямоугольный с углом XAY , равным 30° , поэтому $XY = \frac{AX}{2} = 10$, тогда по теореме Пифагора $AY = \sqrt{AX^2 - XY^2} = 10\sqrt{3}$.	
Проведены необходимые рассуждения, получен верный ответ	1
	0
Решение неверно или отсутствует	<u>U</u>
Максимальный балл	1

18

Решение и указания к оцениванию	Баллы
Решение.	
Пусть скорость моторной лодки в неподвижной воде равна у км/ч. Получаем	
уравнение:	
$\frac{208}{v-5} - \frac{208}{v+5} = 5,$	
$208v + 1040 - 208v + 1040 = 5v^2 - 125,$	
$v^2 = 441$,	
откуда $v_1 = 21$, $v_2 = -21$.	
Условию задачи удовлетворяет $v_1 = 21$.	
Допускается другая последовательность действий и рассуждений, обоснованно приводящая к верному ответу.	
Ответ: 21 км/ч	
Обоснованно получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая ошибка	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

(19)

Решение и указания к оцениванию	Баллы
Решение.	
Докажем, что среди написанных чисел есть одинаковые. Действительно, если все	
написанные числа разные, то различных попарных сумм должно быть не менее	
четырёх, например, суммы одного числа с четырьмя остальными. Значит, среди	
попарных сумм есть суммы двух одинаковых натуральных чисел. Такая сумма	
должна быть чётной, в нашем списке это число 80. Отсюда следует, что среди	
написанных есть число 40 и оно написано не меньше двух раз.	
Одинаковых чисел, отличных от 40, быть не может, иначе среди попарных сумм	
было бы ещё одно чётное число.	
Обозначим одно из трёх оставшихся чисел буквой x , тогда среди попарных сумм	
есть число $40+x$, значит, x равно либо $95-40=55$, либо $65-40=25$.	
Наборы 40, 40, 40, 40, 55 и 40, 40, 40, 40, 25 нам не подходят, так как в них всего	
две различные попарные суммы. Значит, был написан набор 40, 40, 40, 25, 55.	
Таким образом, наибольшее число — это 55.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 55	
Обоснованно получен верный ответ	2
Найден верный набор пяти натуральных чисел, но при этом ответ	
	1
на поставленный вопрос неверный или отсутствует	1
на поставленный вопрос неверный или отсутствует Решение не соответствует ни одному из критериев, перечисленных выше	0

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы — 25.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–7	8–14	15-20	21–25