MP Programme de colle n° 16

Cours:

Chapitre 11

Fonctions vectorielles

- 5. Particularités des fonctions à valeurs réelles (§ 5.1 à 5.4)
- 6. Quelques exemples d'arcs paramétrés

Chapitre 12

Intégration sur un intervalle I. Théorie

- 1. Intégrale généralisée
- 2. Cas de fonctions à valeurs réelles positives

Les démos à connaître (en rouge les plus conséquentes ou délicates)

Chapitre 11

5.3

Théorème : Soit
$$f \in \mathcal{C}([a,b],\mathbb{R}) \cap \mathcal{D}(]a,b[,\mathbb{R})$$
.
Alors $\exists c \in]a,b[\ /f(b)-f(a)=f'(c)(b-a)$.

• En supposant acquis le théorème de Rolle

5.4

$$\underline{\text{Lemme}} : \text{Soit} \quad f \in \mathcal{C}(I,\mathbb{R}) \cap \mathcal{D}(I - \{a\}, \mathbb{R}) \,.$$
 Si $\lim_{x \to a} f'(x)$ existe dans $\overline{\mathbb{R}}$ et est notée ℓ alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe et vaut ℓ .

Théorème 1: Soit
$$f \in \mathcal{C}(I,\mathbb{R}) \cap \mathcal{D}(I - \{a\},\mathbb{R})$$
.
Si $\lim_{x \to a} f'(x)$ existe dans \mathbb{R} : f est dérivable en a et $f'(a) = \lim_{x \to a} f'(x)$
Si $\lim_{x \to a} f'(x) = \pm \infty$: f n'est pas dérivable en a .

• La démonstration du théorème comprend la démonstration du lemme

Chapitre 12

1.4

Proposition 4: Soit $f \in \mathcal{C}([a, +\infty[, \mathbb{R}). \text{ Si l'intégrale } \int_a^{+\infty} f(t)dt \text{ converge,}$ alors $x \to \int_x^{+\infty} f(t)dt$ est dérivable sur $[a, +\infty[$ et a pour dérivée -f.

<u>2.1</u>

<u>Proposition</u>: Soit $f \in \mathcal{CM}([a,b[,\mathbb{R}_{+})])$.

f est intégrable si et seulement si $x \to \int_a^x f(t)dt$ est majorée.

2.2

<u>Théorème</u>: Soit $(f,g) \in \mathcal{CM}([a,b[,\mathbb{R}_+^*)^2]$.

 $\mbox{\em \$} \mbox{ Si } f \leqslant g \; , \; f \mathop{=}_{x \to b} o(g) \mbox{ ou } f \mathop{=}_{x \to b} O(g) \mbox{ alors} :$

 $[g \text{ est intégrable sur } I] \Rightarrow [f \text{ est intégrable sur } I]$

* Si $f \underset{x \to b}{\sim} g$, alors [g est intégrable sur $I] \Leftrightarrow [f$ est intégrable sur I]

<u>2.3</u>

<u>Théorème</u> : Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue et décroissante.

La série $\sum f(n)$ converge si et seulement si l'intégrale $\int_0^{+\infty} f(t)dt$

converge (autrement dit si f est intégrable).

2.4

<u>Proposition 1-2</u>: Soit $f: x \to \frac{1}{r^{\alpha}}$ où $\alpha \in \mathbb{R}$.

- * f est intégrable sur $[1,+\infty[$ si et seulement $\alpha>1$
- * f est intégrable sur]0,1] si et seulement $\alpha<1$.

<u>Proposition 3</u>: Soit $f: x \to \frac{1}{(x-a)^{\alpha}}$ où $\alpha \in \mathbb{R}$.

f est intégrable sur $\left]a,b\right]$ si et seulement $\alpha<1$.