CS5542 Big Data Apps and Analytics

In Class Programming –4 Report (Jongkook Son)

Project Overview:

Use the same data (that we obtained by in source code in ICP3 Data = pd.read_csv('https://raw.githubusercontent.com/dD2405/Twitter_Sentiment_An alysis/master/train.csv')) and perform the sentiment analysis task on this data using one of the Deep Learning Classifier (Keras Sequantial model) for text.

Requirements/Task(s):

- 1) Data cleaning and preprocessing (at minimum have the following: Removing unnecessary columns or data, Removing Twitter Handles(@user), Removing punctuation, numbers, special characters, Removing stop words, Tokenization, and Stemming, TFIDF vectors, POS tagging, checking for missing values, train/test split of data). (40 points)
- 2) Deep Learning Model building, adding right combination of layers, and successfully executing the model to make prediction. (50 points)
- 3) Code quality, Pdf Report quality, video explanation (10 points)

What I learned in ICP:

I could have learned the basics of deep learning model and data preprocessing with keras. First of all, I could have learned how to make deep learning model with keras. In this ICP4, I made a sequential model. Also, I could have learned basic structure of the model. I keep thinking about which layer should I add and which activation fuction should I use to maximize accuracy for model. Still I am confused and do not have intuitive about this concept. I can build some basic structure of model. Finally, using the module in keras I learned how to tokenize, which was very meaningful to me.

ICP description what was the task you were performing and Screen shots that shows the successful execution of each required step of your code

1. Data cleaning and preprocessing

Remove unnecessary column in this case id column is not necessary

Remove Twitter handler by using re module

₽

label		Cleaned_Tweets		
0	0	when a father is dysfunctional and is so sel		
1	0	thanks for #lyft credit i can't use cause th		
2	0	bihday your majesty		
3	0	#model i love u take with u all the time in		
4	0	factsguide: society now #motivation		
31957	O a	ate isz that youuu?ŏ□□□ŏ□□□ŏ□□□ŏ□□□ŏ□□□ŏ□		
31958	0	to see nina turner on the airwaves trying to		
31959	0	listening to sad songs on a monday morning otw		
31960	1	#sikh #temple vandalised in in #calgary, #wso		
31961	0	thank you for you follow		
1962 rows	x 2 colu	imps		

Remove punctuation, numbers, special characters simply using Series.str

Removing punctuation, numbers, special characters

Remove stopwords which are loaded from nltk

▼ Tokenization, and Stemming

```
[15] #Tokenize the text by word
Data["Cleaned_Tweets"] = Data["Cleaned_Tweets"].apply(lambda x: word_tokenize(x))
```

[15] Data

C→		label	Cleaned_Tweets
	0	0	[father, dysfunctional, selfish, drags, kids,
	1	0	[thanks, lyft, credit, use, cause, offer, whee
	2	0	[bihday, majesty]
	3	0	[model, love, u, take, u, time, ur]
	4	0	[factsguide, society, motivation]
	31957	0	[ate, isz, youuu]
	31958	0	[see, nina, turner, airwaves, trying, wrap, ma
	31959	0	[listening, sad, songs, monday, morning, otw,
	31960	1	[sikh, temple, vandalised, calgary, wso, conde
	31961	0	[thank, follow]

31962 rows × 2 columns

```
#Import stemming library
from nltk.stem import PorterStemmer
porter = PorterStemmer()
#Stemming for each Series values
Data["Cleaned_Tweets"] = Data["Cleaned_Tweets"].apply(lambda x: [porter.stem(word) for word in x])
```

Data

 \geq

label Cleaned_	Tweets
0 [father, dysfunct, selfish, drag, kid, c	dysfunc
0 [thank, lyft, credit, use, caus, offer,	wheelc
0 [bihday,	majesti]
0 [model, love, u, take, u,	time, ur]
0 [factsguid, societ	ti, motiv]
7 0 [ate, isz	z, youuu]
8 0 [see, nina, turner, airwav, tri, wrap,	mantl,
9 0 [listen, sad, song, monday, morn, otw, w	ork, sad]
0 1 [sikh, templ, vandalis, calgari, wso, cor	ndemn,
1 0 [thank	c, follow]

31962 rows × 2 columns

POS tagging

Visualization of postag(Using yellowbrick)

```
[19] # list for contain postagged words
    tagged_words = []

#Pos tagging eac
    for words in Data["Cleaned_Tweets"]:
        tagged_words.append(nltk.pos_tag(words))

#Change the form to use in yellowbrick
    tagged_words = [tagged_words]
```

- #library to visualizae postag from yellowbrick.text import PosTagVisualizer
- # Create the visualizer, fit, score, and show it viz = PosTagVisualizer() viz.fit(tagged_words) viz.show()

<matplotlib.axes._subplots.AxesSubplot at 0x7effe85c4ac8>

Tokenization by keras

Train/Test split for data

Simple deep learning model

Simple deeplearning model

```
embedding_dim = 50
   model = Sequential()
   # embeding layer
   model.add(layers.Embedding(input_dim=vocab_size,
                           output_dim=embedding_dim,
                           input_length=maxlen))
   # flattening
   model.add(layers.Flatten())
   # Add a Dense layer with 10 units.
   model.add(layers.Dense(10, activation='relu'))
   model.add(layers.Dropout(0.2))
   # Add a Dense layer with 5 units.
model.add(layers.Dense(5, activation='relu'))
   model.add(layers.Dropout(0.2))
   model.add(layers.Dense(1, activation='sigmoid'))
   # compile the model with chosen parameters
   model.compile(optimizer='adam',
                loss='binary_crossentropy',
               metrics=['accuracy'])
   # print summary of the model
   model.summary()
        Model: "sequential"
        Laver (type)
                                                   Output Shape
                                                                                         Param #
        embedding (Embedding)
                                                             100, 50)
                                                                                         1566300
                                                   (None.
        flatten (Flatten)
                                                             5000)
                                                                                         0
                                                   (None,
        dense (Dense)
                                                   (None,
                                                             10)
                                                                                         50010
        dropout (Dropout)
                                                   (None,
                                                             10)
                                                                                         0
        dense_1 (Dense)
                                                   (None,
                                                                                         55
                                                             5)
                                                                                         ō
        dropout_1 (Dropout)
                                                   (None,
                                                             5)
        dense_2 (Dense)
                                                   (None, 1)
                                                                                         6
        Total params: 1,616,371
        Trainable params: 1,616,371
       Non-trainable params: O
model.fit(x_train, y_train,
                   epochs=10,
                   verbose=True,
                   validation_data=(x_test, y_test), batch_size=30)
Epoch 1/10
746/746 [==
                                       - 14s 18ms/step - loss: 0.2202 - accuracy: 0.9306 - val_loss: 0.1467 - val_accuracy: 0.9280
Epoch 2/10
                                       - 13s 18ms/step - loss: 0.1219 - accuracy: 0.9361 - val_loss: 0.1472 - val_accuracy: 0.9547
746/746 [==
Epoch 3/10
746/746 [==
                                       - 13s 18ms/step - loss: 0.0919 - accuracy: 0.9729 - val_loss: 0.1725 - val_accuracy: 0.9567
Epoch 4/10
746/746 [==
                                       - 13s 18ms/step - loss: 0.0720 - accuracy: 0.9810 - val_loss: 0.2061 - val_accuracy: 0.9543
Epoch 5/10
746/746 [==
                                       - 14s 18ms/step - loss: 0.0528 - accuracy: 0.9864 - val_loss: 0.2318 - val_accuracy: 0.9531
Epoch 6/10
746/746 [==
                                       - 13s 18ms/step - loss: 0.0424 - accuracy: 0.9898 - val_loss: 0.3121 - val_accuracy: 0.9563
Epoch 7/10
746/746 [==
                                       - 14s 18ms/step - loss: 0.0339 - accuracy: 0.9918 - val_loss: 0.3821 - val_accuracy: 0.9549
Epoch 8/10
746/746 [=
                                   ===] - 14s 18ms/step - Ioss: 0.0291 - accuracy: 0.9929 - val_loss: 0.4712 - val_accuracy: 0.9564
Epoch 9/10
746/746 [=
                                    :==] - 14s 19ms/step - loss: 0.0262 - accuracy: 0.9934 - val_loss: 0.5225 - val_accuracy: 0.9563
Epoch 10/10
```

Model evaluation

```
# Model evaluation
scores = model.evaluate(x_test, y_test, verbose=2)
print("Accuracy: %.2f%%" % (scores[1]*100))

300/300 - 0s - loss: 0.5697 - accuracy: 0.9554
Accuracy: 95.54%
```

RNN model with LSTM layer

Recurrent Neural Networks (RNN) with Keras

```
[35] model2 = Sequential()
[36] model2.add(layers.Embedding(input_dim=vocab_size,
                                output_dim=128,
                                input_length=X.shape[1]))
[37] model2.add(layers.SpatialDropout1D(0.5))
[38] #Add a LSTM layer with 185 internal units.
     model2.add(layers.LSTM(185, dropout=0.4, recurrent_dropout=0.4))
[39] # Add a Dense layer with 2 units, using softmax activation and using categorical_crossentropy
     modeI2.add(layers.Dense(2,activation='softmax'))
     model2.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy'])
[39]
    # To adjust the shape to the
     Y = pd.get_dummies(Data['label']).values
     # train test split for the changed value
     x_train, x_test, y_train, y_test = train_test_split(X,Y,train_size=0.7, test_size=0.3,random_state=15)
[41] model2.summary()
```

Model summary and evaluation

Model: "sequential"

```
Layer (type)
                             Output Shape
                                                       Param #
embedding (Embedding)
                             (None, 100, 128)
                                                       4009728
spatial_dropout1d (SpatialDr (None, 100, 128)
                                                       0
Istm (LSTM)
                             (None, 185)
                                                       232360
dense (Dense)
                             (None, 2)
                                                       372
Total params: 4,242,460
Trainable params: 4,242,460
Non-trainable params: O
```

```
[42] print(X_train.shape, Y_train.shape)
```

```
(21414, 100) (21414, 2)
```

```
[43] model2.fit(X_train, Y_train, epochs = 3, batch_size=30, verbose=True)
```

```
[45] # Model evaluation
    scores = model2.evaluate(X_test, Y_test, verbose=2)
    print("Accuracy: %.2f%%" % (scores[1]*100))
```

```
330/330 - 20s - loss: 0.2549 - accuracy: 0.9297
Accuracy: 92.97%
```

Challenges that I faced:

The most difficult challenge that I faced was that I was not used to building model deep learning. But I overcame this problem by exploring many materials that explain model building. Keras and tensorflow documentation was espescially helpful for me.

Video link

https://www.youtube.com/watch?v= PJs6zGnpr4