Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3213</u>	К работе допущен	
Студент Султанов Артур Радикович	Работа выполнена	•
Преподаватель Хвастунов Н.Н.	Отчет принят	

Отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы

Исследование распределения случайной величины на примере многократных измерений определенного интервала времени.

2. Задачи

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования

Случайная величина - результат измерения времени исполнения программы, находящей все делители чисел в диапазоне от 1 до $3*10^6$

4. Метод экспериментального исследования

Измерение определенного интервала времени определенное количество раз и проверка наличия закономерностей распределения этой величины.

5. Рабочие формулы и исходные данные

$$\left< t \right>_N = rac{1}{N} \left(t_1 + t_2 + ... + t_N \right) = rac{1}{N} \sum_{i=1}^N t_i$$
 - среднее арифметическое всех результатов измерений

$$\sigma_N = \sqrt{\frac{1}{N-1}\sum\limits_{i=1}^N (t_i - \left< t \right>_N)^2}$$
 - выборочное среднеквадратичное отклонение

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)}\sum\limits_{i=1}^{N} (t_i - \left< t \right>_N)^2}$$
 - среднеквадратичное отклонение среднего значения

$$\Delta t = t_{lpha,N} \cdot \sigma_{\langle t
angle}$$
 - доверительный интервал

$$ho(t)=rac{1}{\sigma\sqrt{2\pi}}exp(-rac{(t-\langle t
angle)^2}{2\sigma^2})$$
 - нормальное распределение (формула Гаусса)

$$ho_{max} = rac{1}{\sigma\sqrt{2\pi}}$$
 - максимальное значение плотности распределения

6. Измерительные приборы

№ π/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0-10 с	0.001 c

7. Схема установки

Программа на C, находящая делители чисел в диапазоне от 1 до 3 * 10⁶. Время работы программы измеряется предоставляемым ОС секундомером. Для удобства написан скрипт, который последовательно запускает программу и записывает время исполнения в файл.

8. Результаты прямых измерений

Таблица 1 Результаты прямых измерений.

Nº	t _i , c	$t_i^{} - \langle t \rangle_{N}^{}$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	8,48	-0,1298	0,01684804
2	8,17	-0,4398	0,19342404
3	8,45	-0,1598	0,02553604
4	8,13	-0,4798	0,23020804

5	8,84	0,2302	0,05299204
6	9,32	0,7102	0,50438404
7	9,14	0,5302	0,28111204
8	8,35	-0,2598	0,06749604
9	9,04	0,4302	0,18507204
10	9,08	0,4702	0,22108804
11	9,15	0,5402	0,29181604
12	8,31	-0,2998	0,08988004
13	9	0,3902	0,15225604
14	8,83	0,2202	0,04848804
15	8,89	0,2802	0,07851204
16	8,69	0,0802	0,00643204
17	9,02	0,4102	0,16826404
18	8,76	0,1502	0,02256004
19	8,34	-0,2698	0,07279204
20	8,68	0,0702	0,00492804
21	8,64	0,0302	0,00091204
22	8,77	0,1602	0,02566404
23	8,69	0,0802	0,00643204
24	8,42	-0,1898	0,03602404
25	8,19	-0,4198	0,17623204
26	8,82	0,2102	0,04418404
27	8,44	-0,1698	0,02883204
28	8,28	-0,3298	0,10876804
29	8,28	-0,3298	0,10876804
30	8,63	0,0202	0,00040804
31	8,68	0,0702	0,00492804
32	8,53	-0,0798	0,00636804
33	8,65	0,0402	0,00161604
	•		•

34	8,18	-0,4298	0,18472804
35	8,63	0,0202	0,00040804
36	8,43	-0,1798	0,03232804
37	8,82	0,2102	0,04418404
38	8,17	-0,4398	0,19342404
39	8,49	-0,1198	0,01435204
40	8,41	-0,1998	0,03992004
41	8,76	0,1502	0,02256004
42	8,66	0,0502	0,00252004
43	8,79	0,1802	0,03247204
44	8,47	-0,1398	0,01954404
45	8,49	-0,1198	0,01435204
46	8,23	-0,3798	0,14424804
47	8,86	0,2502	0,06260004
48	8,22	-0,3898	0,15194404
49	8,8	0,1902	0,03617604
50	8,39	-0,2198	0,04831204
			$\sigma_{N} = 0,2965 c$
	$\langle t \rangle_N = 8,6098 \mathrm{c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0$	$\rho_{max} = 1,3455 c^{-1}$

9. Расчет результатов косвенных измерений

$$\langle t \rangle_{N} = \frac{1}{50} \sum_{i=1}^{50} t_{i} = 8,6098 \text{ c}$$

$$\sigma_N = \sqrt{\frac{1}{50-1} \sum_{i=1}^{50} (t_i - 8,6098)^2} = 0,2965 \text{ c}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{50(50-1)} \sum_{i=1}^{50} (t_i - 8,6098)^2} = 0,0419 \text{ c}$$

$$\rho_{max} = \frac{1}{0,2965\sqrt{2\pi}} = 1,3455 \text{ c}^{-1}$$

$$\alpha = 0,95 \Rightarrow \Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2,0086 * 0,0419 = 0,0842 \text{ c}$$

$$t_{min} = 8,13 \text{ c}, t_{max} = 9,32 \text{ c}$$

 $\sqrt{N} \approx 7$, для построения гистограммы возьмем 7 интервалов по $\Delta T = 0$, 170 с

Таблица 2. Данные для построения гистограммы

Группы интервалов, с	ΔN	$\frac{\Delta N}{N \cdot \Delta t}$, c ⁻¹	t, c	ρ , c ⁻¹
8,130				
8,300	9	1,058824	8,215	0,554602
8,300				
8,470	10	1,176471	8,385	1,009672
8,470				
8,640	8	0,941176	8,555	1,323114
8,640				
8,810	12	1,411765	8,725	1,248052
8,810				
8,980	6	0,705882	8,895	0,847395
8,980				
9,150	6	0,705882	9,065	0,414150
9,150				
9,320	2	0,235294	9,235	0,145696

Опытное значение плотности вероятности (для первого интервала): $\frac{\Delta N}{N\cdot\Delta t}=\frac{9}{50^*0,170}=1,058824$ с

Нормальное распределение (функция Гаусса):
$$\rho(8,215) = \frac{1}{0.2965\sqrt{2\pi}} exp(-\frac{(8,215-8,6098)^2}{2*0.2965^2}) \approx 0,554602 \text{ c}^{-1}$$

Таблица 3. Стандартные доверительные интервалы

	Интервал, с			ANI	
	ОТ	до	ΔN	$\frac{\Delta N}{N}$	P
$\left\langle t\right\rangle _{N}\pm\ \sigma$	8,313	8,906	33	0,66	0,683
$\langle t \rangle_N \pm 2\sigma$	8,017	9,203	49	0,98	0,954
$\langle t \rangle_N \pm 3\sigma$	7,720	9,499	50	1	0,997

10. Графики

График 1. Гистограмма.

11. Результаты

- Среднеквадратичное отклонение среднего значения: $\sigma_{\langle t \rangle} = 0,0419 \ \mathrm{c}$
- Табличное значение коэффициента Стьюдента для доверительной вероятности: $t_{\alpha,N}=2$, 0086
- Доверительный интервал: $\Delta t = 0$, 0842 с
- ullet Среднее арифметическое всех результатов измерений: $\left\langle t \right\rangle_{_N} = 8,6098~\mathrm{c}$
- Выборочное среднеквадратичное отклонение: $\sigma_{_{N}} = 0$, 2965 с
- Максимальное значение плотности распределения:
 $\rho_{max} = 1,3455 \, \text{c}^{-1}$

12. Выводы и анализ результатов работы.

Для исследования распределения случайной величины, был произведен замер временного отрезка, в выборку вошло 50 из них (таблица 1). Таблицы были заполнены соответствующими данными: стандартные доверительные интервалы (таблица 3) и данные для построения гистограммы (таблица 2). На основе таблиц были построены гистограмма и график функции Гаусса.

Несмотря на наличие расхождений (интервал 1, 3 на графике 1), в получившейся комбинированной диаграмме можно заметить некоторое сходство теоретического "предположения" в виде графика функции Гаусса с реальными результатами, выражающимися в виде гистограммы.

Погрешности и неточности в данном случае могли быть вызваны тем, что в рамках многократного запуска программы, в некоторые моменты времени на компьютере были запущены другие фоновые процессы, что могло сказаться на скорости выполнения.

Работа позволила на практике ознакомиться с распределением случайной величины.