Obliczenia Naukowe - Lista nr 2

Maksymilian Piotrowski

1 Zadanie 1

Opis problemu: Należy powtórzyć eksperyment z zadania 5, listy 1, polegający na obliczeniu iloczynu skalarnego różnymi algorytmami dla zmienionych danych.

Oryginalne dane:

- x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]
- $y = [1486.2497,\,878366.9879,\,-22.37492,\,4773714.647,\,0.000185049].$

Nowe dane:

- x = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]
- y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].

Rozwiązanie: Użyłem kodu z poprzedniej listy. Rozwiązanie znajduje się w pliku l2_z1.jl.

Wyniki i interpretacja:

Algorytm	Float32	Float64
W przód(a)	-0.4999443	1.0251881368296672e-10
W tył(b)	-0.4543457	-1.5643308870494366e-10
$\max \rightarrow \min(c)$	-0.5	0.0
$\min \rightarrow \max(d)$	-0.5	0.0

Tabela 1: Wyniki sumowania w zależności od algorytmu i używanego typu dla oryginalnych danych.

Algorytm	Float32	Float64
W przód(a)	-0.4999443	-0.004296342739891585
W tył(b)	-0.4543457	-0.004296342998713953
$\max \rightarrow \min(c)$	-0.5	-0.004296342842280865
$\min \rightarrow \max(d)$	-0.5	-0.004296342842280865

Tabela 2: Wyniki sumowania w zależności od algorytmu i używanego typu dla nowych danych.

Wyniki dla precyzji pojedynczej nie różnią się w zależności od danych. Dla podwójnej precyzji niewielka zmiana danych wpłynęła znacząco na wynik każdego algorytmu.

Wnioski: Względnie niewielka zmiana danych wpłynęła znacząco na wyniki niezależnie od użytego algorytmu, co sugeruje, że zadanie jest źle uwarunkowane dla danych. Z wykładu wiemy że zadanie obliczania iloczynu skalarnego jest dobrze uwarunkowane, kiedy x_i , y_i są tego samego znaku, co nie jest spełnione dla danych.

2 Zadanie 2

Opis problemu: Problem polega na przeanalizowaniu dokładności wykresów $f(x) = e^x * ln(1 + e^{-x})$ wygenerowanych przez wybrane programy do wizualizacji.

Rozwiązanie: Wygenerowałem wykresy funkcji używając matlab oraz geogebra.org. Obliczyłem $\lim_{x\to\infty} f(x)$ i sprawdziłem czy wynik jest spójny z wykresami.

Wyniki i interpretacja:

Rysunek 1: Wykres f(x) wygenerowany przez matlab

Rysunek 2: Wykres f(x) wygenerowany przez geogebra

Z wyliczeń wynika, że $\lim_{x\to\infty} f(x)=1$. Jednak oba programy naryowały wykresy dla których f(x) przyjmowało wartość 0 dla x>40. Wynik ten sugeruje, że e^{-x} osiągnęło wartość mniejszą niż macheps i $ln(1+e^{-x})$ zaczęło być traktowane jako ln(1.0)=0. Tłumaczy to dlaczego f(x) przyjmuje wartość 0 dla dużych x. Rzeczywiście dla wykresu geogebra przyjęcie wartości 0 wystąpiło po raz pierwszy dla $x\approx 36.737$, gdzie $e^{-36.737}\approx 1.11$ e- $16\approx \frac{1}{2}$ eps(Float64).

Wnioski: Wyniki zwracane przez programy obliczeniowe mogą być niedokładne, bo operują one na skończonej precyzji.

3 Zadanie 3

Opis problemu: Problem polega na przeanalizowaniu błędów względnych rozwiązań układu równań liniowych Ax = b, dla ustalych A będącymi macierzami Hilberta różnych stopni oraz losowymi macierzy o ustalonych stopniach i wskaźnikach uwarunkowania, oraz dla $b = A * [1..1]^T$. Rozwiązania mają być przeprowadzone przez eliminacje Gaussa oraz liczenie odwrotności dla A.

Rozwiązanie: Napisałem kody w Julii liczące błąd względny dla $\tilde{x}=A$ \b oraz $\tilde{x}=\text{inv}(A)*b$. Kod znajduje się w l2_z3.jl

Wyniki i interpretacja:

Macierze Hilberta maja duże wskaźniki uwarunkowania, które rosną wraz ze zwiększaniem stopnia macierzy.

Błędy względne \tilde{x} wzrosły wraz ze wzrostem cond(A) (przy cond(A) \geq 10) dla obu rodzajów macierzy i dla obu metod obliczania \tilde{x} (poza wyjątkiem dla macierzy Hilberta stopnia 3).

stopień A	cond(A)	rząd A	$\frac{ \tilde{x}-x }{ x }$ Gauss	$\frac{ \tilde{x}-x }{ x }$ Inverse
2	19.28147006790397	2	5.661048867003676e-16	1.4043333874306803e-15
3	524.0567775860644	3	8.022593772267726e-15	0.0
4	15513.738738928929	4	4.637277712035294e-13	7.542470546988852e-13
5	476607.25024224253	5	1.7697056701418277e-13	7.45602798259539e-12
6	1.495105864125091e7	6	3.496491467713994e-10	3.533151828962887e-10
7	4.7536735637688667e8	7	1.3175049864850338e-8	6.190844397992631e-9
8	1.5257575516147259e10	8	2.487433466002445e-7	3.775275483015941e-7
9	4.9315408927806335e11	9	9.643625435772316e-6	1.1659486044133412e-5
10	1.6024859712306152e13	10	0.00022035288727930986	0.0003357158826776558
12	1.7255427417341868e16	11	0.19509235225028912	0.16218620232347905
15	4.223311222761075e17	12	3.10349386243609	4.354299435453685
18	1.5639169583348145e18	12	4.7860299021083	5.7599951815224495
20	2.2777635596453635e18	13	19.122235961045973	17.030822563878868

Tabela 3: Błędy względne rozwiązania równania Ax = b, dla A będącymi macierzami Hilberta różnych stopni.

stopień A	cond(A)	rząd A	$\frac{ \tilde{x}-x }{ x }$ Gauss	$\frac{ \tilde{x}-x }{ x }$ Inverse
5	10^{0}	5	2.9790409838967276e-16	1.1102230246251565e-16
10	10^{0}	10	3.781283367737842e-16	3.020133145511626e-16
20	10^{0}	20	4.530199718267439e-16	3.339908118180928e-16
5	10^{1}	5	1.2161883888976234e-16	2.579925170969555e-16
10	10^{1}	10	2.8737410463596867e-16	2.895107444979072e-16
20	10^{1}	20	3.2840839953582974e-16	2.8522145930998397e-16
5	10^{3}	5	1.4969495679191856e-15	3.891802844472395e-15
10	10^{3}	10	3.865811876339767e-14	3.9448522250262935e-14
20	10^{3}	20	2.017822329811299e-14	2.3005149870223874e-14
5	10^{7}	5	4.4330558757907064e-10	4.897751837960125e-10
10	10^{7}	10	1.9443662803904693e-10	2.3082108305416014e-10
20	10^{7}	20	4.743057736303483e-11	1.0565024934088207e-10
5	10^{12}	5	3.599414270917511e-6	9.725607897935456e-6
10	10^{12}	10	1.2437891011991959e-5	1.4687822958510175e-5
20	10^{12}	20	3.1622777178275094e-5	4.010537844336372e-5
5	10^{16}	4	0.08928128953646186	0.05367363761661771
10	10^{16}	9	2.0833913007686893	2.037017053576749
20	10^{16}	19	0.11736391447706357	0.15872310380546564

Tabela 4: Błędy względne rozwiązania równania Ax=b, dla A będącymi losowymi macierzami o określonych stopniach i wskaźnikach uwarunkowania

Stopień macierzy i metody obliczania \tilde{x} nie wpłynęły znacząco na otrzymane wyniki.

Wnioski: Wskaźnik uwarunkowania macierzy odgrywa kluczową rolę dla dokładności rozwiązania układu równań liniowych.

4 Zadanie 4

Opis problemu: Problem polega na wyliczeniu pierwiastków wielomianu Wilkinsona podanego na liście na podstawie jego postaci naturalnej. Należy wyjaśnić rozbieżności wynikające z otrzymanych wynikiów. Następnie należy przeanalizować wyniki dla zmodyfikowanego współczynnika przy x^{19} o -2^{-23} .

Rozwiązanie: Napisałem funkcje obliczające wielomian używając postaci naturalnej i iloczynowej w Julii. Zastosowałem te funkcje na pierwiastkach wyliczonych z postaci naturalnej wielomianu funkcją roots z pakietu Polynomials. Kod znajduje się w 12_z4.jl.

Wyniki i interpretacja:

			1-7)	
k	z_k	$ z_k - k $	$ P(z_k) $	$ p(z_k) $
1	0.9999999999996989	3.0109248427834245e-13	36352.0	36626.425482422805
2	2.0000000000283182	2.8318236644508943e-11	181760.0	181303.93367257662
3	2.9999999995920965	4.0790348876384996e-10	209408.0	290172.2858891686
4	3.9999999837375317	1.626246826091915e-8	3.106816e6	2.0415372902750901e6
5	5.000000665769791	6.657697912970661e-7	2.4114688e7	2.0894625006962188e7
6	5.999989245824773	1.0754175226779239e-5	1.20152064e8	1.1250484577562995e8
7	7.000102002793008	0.00010200279300764947	4.80398336e8	4.572908642730946e8
8	7.999355829607762	0.0006441703922384079	1.682691072e9	1.5556459377357383e9
9	9.002915294362053	0.002915294362052734	4.465326592e9	4.687816175648389e9
10	9.990413042481725	0.009586957518274986	1.2707126784e10	1.2634601896949205e10
11	11.025022932909318	0.025022932909317674	3.5759895552e10	3.300128474498415e10
12	11.953283253846857	0.04671674615314281	7.216771584e10	7.388525665404988e10
13	13.07431403244734	0.07431403244734014	$2.15723629056\mathrm{e}{11}$	1.8476215093144193e11
14	13.914755591802127	0.08524440819787316	3.65383250944e11	3.5514277528420844e11
15	15.075493799699476	0.07549379969947623	6.13987753472e11	8.423201558964254e11
16	15.946286716607972	0.05371328339202819	1.555027751936e12	$1.570728736625802\mathrm{e}{12}$
17	17.025427146237412	0.025427146237412046	3.777623778304e12	3.3169782238892363e12
18	17.99092135271648	0.009078647283519814	7.199554861056e12	$6.34485314179128\mathrm{e}{12}$
19	19.00190981829944	0.0019098182994383706	1.0278376162816e13	$1.228571736671966\mathrm{e}{13}$
20	19.999809291236637	0.00019070876336257925	2.7462952745472e13	2.318309535271638e13

Tabela 5: Pierwiastki wielomianu p(x): k, obliczone funkcją "roots" pierwiastki P(x): z_k , oraz ich zależności.

k	z_k	$ z_k - k $	$ P(z_k) $	$ p(z_k) $
1	0.999999999998357 + 0.0im	1.6431300764452317e-13	20496.0	19987.87
2	2.000000000550373 + 0.0im	5.503730804434781e-11	339570.0	352369.4
3	2.99999999660342 + 0.0im	3.3965799062229962e-9	2.277746e6	2.416242e6
4	4.000000089724362 + 0.0im	8.972436216225788e-8	1.048802e7	1.12637e7
5	4.99999857388791 + 0.0im	1.4261120897529622e-6	4.123907e7	4.475744e7
6	6.000020476673031 + 0.0im	2.0476673030955794e-5	1.406329e8	2.142103e8
7	6.99960207042242 + 0.0im	0.00039792957757978087	4.122813e8	1.784617e9
8	8.007772029099446 + 0.0im	0.007772029099445632	1.03079e9	1.868697e10
9	8.915816367932559 + 0.0im	0.0841836320674414	2.157406e9	1.374631e11
10	10.095455630535774 - 0.6449328236240688im	0.6519586830380407	9.384148e9	1.49007e12
11	10.095455630535774 + 0.6449328236240688im	1.1109180272716561	9.384148e9	1.49007e12
12	11.793890586174369 - 1.6524771364075785im	1.665281290598479	3.001206e10	3.296279e13
13	11.793890586174369 + 1.6524771364075785im	2.0458202766784277	3.001206e10	3.296279e13
14	13.992406684487216 - 2.5188244257108443im	2.518835871190904	2.003092e11	9.546022e14
15	13.992406684487216 + 2.5188244257108443im	2.7128805312847097	2.003092e11	9.546022e14
16	16.73074487979267 - 2.812624896721978im	2.9060018735375106	1.158333e12	2.742106e16
17	16.73074487979267 + 2.812624896721978im	2.825483521349608	1.158333e12	2.742106e16
18	19.5024423688181 - 1.940331978642903im	2.4540214463129764	5.867382e12	4.252486e17
19	19.5024423688181 + 1.940331978642903im	2.0043294443099486	5.867382e12	4.252486e17
20	20.84691021519479 + 0.0im	0.8469102151947894	9.550552e12	1.374374e18

Tabela 6: Pierwiastki wielomianu p(x): k, oraz obliczone funkcją "roots" pierwiastki P(x): z_k , oraz ich zależności po wprowadzeniu zaburzenia -2^{-23} do czynnika stojącego przy x^{19}

- a) Mimo że pierwiastki obliczone funkcją roots są bliskie faktycznym pierwiastkom wielomianu, podstawienie ich do wzoru daje wartości bardzo odległe od faktycznego wyniku: 0. Dzieje się to niezaleźnie od użytego algorytmu.
- b) Niewielkie zaburzenie czynnika stojącego przy x^{19} , sprawiło że połowa z_k stała sie liczbami urojonymi. Odległość wyliczonych pierwiastków z_k od k zwiększyła się znacząco dla k>1. Wynika to z faktu udowodnionego na wykładzie, że zadanie wyliczenia w(x)=0, jest źle uwarunkowane ze względu na zaburzenia współczynników w, gdzie w to wielomian Wilkinsona.

Wnioski: Zadanie obliczenia wartości wielomianu Wilkinsona dla x jest źle uwarunkowane, kiedy x jest bliskie pierwiastkowi wielomianu.

5 Zadanie 5

Opis problemu: Problem polega na sprawdzeniu 40 pierwszych wartości dla równania rekurencyjnego $p_n+1:=p_n+rp_n(1-p_n)$, dla n = 0, 1, . . . , będącego modelem wzrostu populacji. Obliczenia mają być wykonane na trzy sposoby: używając Float32, Float64 i używając Float32 ale obcinając cyfry po trzecim miejscu po przecinku dla p_{10} . To wszystko dla $p_0=0.01$ (populacja początkowa), r = 3 (czynnik wzrostu populacji).

Rozwiązanie: Wykonałem obliczenia. Kod znajduje się w 12_z5.jl.

Wyniki i interpretacja:

n	p_n we Float32	p_n we Float64	p_n we Float32 + obcięcie p_{10}
0	0.01	0.01	0.01
5	0.1715188	0.17151914210917552	0.171518
10	0.7229306	0.72291430117957	0.722
15	1.2704837	1.2702617739350768	1.2572169
20	0.5799036	0.5965293124946907	1.3096911
25	1.0070806	1.315588346001072	1.0929108
30	0.7529209	0.37414648963928676	1.3191822
35	1.021099	0.9253821285571046	0.034241438
40	0.25860548	0.011611238029748606	1.093568

Tabela 7: Kolejne wartości równania rekurencyjnego p_n w zależności od algorytmu.

Zmiany w precyzji oraz obniżenie wartości p_{10} wpływają znacząco na wartość p_{40} . Dla mniejszych n zmiany nie mają tak dużego wpływu na p_n .

Wnioski: Model wzrostu populacji przy niewielkiej liczbie iteracji (w krótkim czasie) daje zbliżone wyniki niezależnie od dokładności obliczeń. Akumulacja błędu sprawia jednak, że zadanie przewidzenia populacji w odległym pokoleniu jest podatne na błędy obliczeniowe i niewystarczającą precyzję. Jest zadaniem źle uwarunkowanym.

6 Zadanie 6

Opis problemu: Problem polega na obserwowaniu zachowania ciągów $x_{n+1} := x_n^2 + c$ dla $n = 0, 1, \ldots,$ dla różnych $x_0, c.$

Rozwiązanie: Napisałem funkcję generującą pierwsze 40 elementów ciągu i użyłem jej na podanych na liście danych startowych. Kod znajduje się w l2_z6.jl.

Wyniki i interpretacja:

Rysunek 3: Iteracja graficzna $x_{n+1} = x_n - 1$ dla $x_0 = 1$

Rysunek 4: Iteracja graficzna $x_{n+1}=x_n-1$ dla $x_0=0.25$. Ciąg dąży do oscylacji miedzi 0 a 1, jak dla $x_0=1$ na Rysunku 3.

Dla wartości c = -1, ciąg zachowuje się stabilinie, oscylując między 0 a 1 dla późnych iteracji przy wielu różnych $x_0=1,\,-1,\,0.75,\,0.25.$

Wnioski: Mimo, że mogłoby się wydawać, że x_n^2 jest wyłączynym źródłem niestabilności ciągu, na jego stabilność, a więc i przewidywalność wyniku, dla różnych x_0 istotnie wpływa parametr kontrolny c.