تحليلية الجداء السلمي وتطبيقاته

1) تذكير وإضافات :

<u>ـ تعريف الحداء السلمي لمتحهتين :</u>

صبغة الحداء السلمي باستعمال الإسقاط العمودي :

A(AC) لتكن A و B و B ثلاث نقط في المستوى و B المسقط العمودي للنقطة و على المستقيم

: والذي يحقق $\overrightarrow{AB} \cdot \overrightarrow{AC}$ والذي يحقق الجداء السلمي للمتجهتين

- . و \overrightarrow{AC} لهما نفس المنحى $\overrightarrow{AB} \cdot \overrightarrow{AC} = AH \times AC$
- . و $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AH \times AC$ و $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AH \times AC$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AH \times AB$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AH \times AB$$

الصبغة المثلثية للحداء السلمي :

- . $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{AB}; \overrightarrow{AC})$: لتكن \overrightarrow{AB} و \overrightarrow{AC} متجهتين في المستوى لدينا
 - . $\vec{u}\cdot\vec{v}=\|\vec{u}\| imes\|\vec{v}\| imes\cos(\vec{u};\vec{v})$: لتكن \vec{v} و \vec{v} متجهتين في المستوى لدينا

<u>ب ـ المعلم المتعامد الممنظم المباشر ـ الأساس المتعامد الممنظم المباشر :</u>

<u>تعارىف :</u>

1. نقول إن متجهتين \vec{i} و \vec{i} تكونان أساسا في المستوى إذا كانت \vec{i} و \vec{i} غير مستقيميتين . ونكتب . $\left(\vec{i}\,;\vec{j}\right)$ أساس في المستوى . والمستوى مزود بأساس $\left(\vec{i}\,;\vec{j}\right)$

. نعتبر $(ec{i};ec{j})$ أساسا في المستوى و O نقطة من المستوى

- . $\|\vec{j}\| = 1$ و $\|\vec{i}\| = 1$ و $\vec{i} \cdot \vec{j} = 0$: نقول إن $(\vec{i}; \vec{j})$ أساس متعامد ممنظم إذا كان
- . نقول إن المعلم $\left(0;ec{i}\,;ec{j}
 ight)$ معلم متعامد ممنظم إذا كان $\left(ec{i}\,;ec{j}
 ight)$ أساسا متعامدا ممنظما
- 4. إذا كان $\left(0;\vec{i}\;;\vec{j}\right)$ أساس متعامد ممنظم و $\left[0;\vec{i}\;;\vec{j}\right]$ فإننا نقول إن $\left(\vec{i}\;;\vec{j}\right)$ معلم متعامد ممنظم و

2) الصغة التحليلية للحداء السلمي في معلم متعامد ممنظم :

نشاط تمهىدى :

 $\vec{v}=x'\vec{i}+y'\vec{j}$ و $\vec{u}=x\vec{i}+y\vec{j}$: لتكن \vec{v} و عن المستوى بحيث

- . $\vec{u}\cdot\vec{v}$: واستنتج $(x\vec{i}+y\vec{j})\cdot(x'\vec{i}+y'\vec{j})$ واستنتج (1
 - . $\|\vec{u}\| = \sqrt{x^2 + y^2}$: نين أن (2

<u>خاصىة 1 :</u>

. $\vec{u}\cdot\vec{v}=xx'+yy'$: أذا كانت $\vec{v}=x'\vec{i}+y'\vec{j}$ و $\vec{u}=x\vec{i}+y\vec{j}$ متجهتين في المستوى

 $\vec{w}=5\vec{i}+3\vec{j}$ و $\vec{v}=2\vec{i}-\vec{j}$ و $\vec{u}=\vec{i}+2\vec{j}$: أمثلة : نعتبر المتجهات : $\vec{v}\cdot\vec{w}$ و $\vec{u}\cdot\vec{v}$ و $\vec{u}\cdot\vec{v}$ و $\vec{u}\cdot\vec{v}$

<u>خاصىة 2 :</u>

xx'+yy'=0 : تكون المتجهتان إذا وفقط إذا كان $\vec{v}=x'\vec{i}+y'\vec{j}$ و $\vec{u}=x\vec{i}+y\vec{j}$ تكون المتجهتان

3) الصبغة التحليلية لمنظم متجهة ولمسافة نقطتين:

أ ـ منظم متحهة :

. $\|\vec{u}\| = \sqrt{x^2 + y^2}$: لتكن $\vec{u} = x\vec{i} + y\vec{j}$ متجهة في المستوى لدينا

<u>ب ـ المسافة بين نقطتين :</u>

. $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$: لتكن $B(x_B; y_B)$ و $B(x_B; y_B)$ نقطتين في المستوى ، لدينا

<u> 3 Cosθ صيغة</u> (4 <u>4</u>

<u>نشاط تمهیدی :</u>

 $\left(\vec{u};\vec{v}
ight)$ لتكن $\vec{v}=x'ec{i}+y'ec{j}$ و $\vec{v}=x'ec{i}+y'ec{j}$ و $\vec{u}=xec{i}+yec{j}$ الموجهة الموجهة

- . $\vec{u}\cdot\vec{v}$ بطريقتين مختلفتين الجداء السمي احسب بطريقتين مختلفتين الجداء السمي
 - . y' و x' و y و استنتج $\cos heta$ بدلالة x
 - . $\|\vec{u}\| = \|\vec{w}\|$ و $(\vec{u}; \vec{w}) = \frac{\pi}{2} [2\pi]$ و 3 نعتبر المتجهة \vec{w} بحيث (3
 - . $(\vec{v}; \vec{w}) = \frac{\pi}{2} \theta[2\pi]$: أ

y' ج _ تحقق أن (-y;x) ثم احسب $\sin\theta$ بدلالة (-y;x) ج

د _ تحقق أن :
$$\sin \theta = \frac{\det(\vec{u}; \vec{v})}{\|\vec{u}\| \cdot \|\vec{v}\|}$$
 : د

<u>خاصىة :</u>

لتكن $\vec{u} = x\vec{i} + y\vec{j}$ و $\vec{u} = x\vec{i} + y\vec{j}$ متجهتين غير منعدمتين في المستوى و $\vec{u} = x\vec{i} + y\vec{j}$ و $\vec{u} = x\vec{i} + y\vec{j}$. $Sin\theta = \frac{\det(\vec{u}; \vec{v})}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \cdot \sqrt{x'^2 + y'^2}}$ و $Cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \cdot \sqrt{x'^2 + y'^2}}$. $(\vec{u}; \vec{v})$

<u>تمارىن تطىيقية :</u>

- . حَدُد قيمة العدد الحقيقي m بحيث تكون المتجهتان $\vec{u}(2;m)$ و $\vec{u}(2;m)$ متعامدتين (1
 - . $\|\vec{v}\|=2$ و $\vec{u}\cdot\vec{v}=2$ و عتبر المتجهة $\vec{u}(z;-3)$ حدد المتجهات $\vec{v}(x;y)$ بحيث يكون $\vec{u}(z;-3)$
- A و الساقين في الساقين في ABC عتبر النقط ABC و الساقين في B(1;1) و B(1;1) و الساقين في ABC
 - . C(6;3) و B(2;1) و A(5;0) لنعتبر النقط
 - . $\sin\left(\overline{AB};\overline{AC}\right)$ $=\cos\left(\overline{AB};\overline{AC}\right)$
 - . $(\overrightarrow{AB};\overrightarrow{AC})$ ب _ استنتج ُقياسا للْزاوية الموجهة

<u>5) نتائج :</u>

نشاط تمهندی :

(AB) على C على المستوى و H المسقط العمودي ل على ABC

- (حيث \widehat{A} زاوية هندسية) $\sin\widehat{A}$ واحسب $\sin\widehat{A}$ واحسية) (عدد $\sin\overline{(AB;\overline{AC})}$
- . $\sin \widehat{A}$ و AC و AB بدلالة ABC احسب المساحة S للمثلث S احسب المساحة (2
 - $S = \frac{1}{2} \left| \det \left(\overrightarrow{AB}; \overrightarrow{AC} \right) \right|$: استنتج أن
- . \overrightarrow{AC} و \overrightarrow{AB} و محدد بالمتجهتين \overrightarrow{AB} و عتبر النقطة D انعتبر النقطة D و المناع ABDC . ABDC احسب مساحة متوازي الأضلاع

خاصية 1 :

: ليكن ABC مثلثا في المستوى و S مساحته ، لدينا

$$S = \frac{1}{2} \left| \det \left(\overrightarrow{AB}; \overrightarrow{AC} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{CA}; \overrightarrow{CB} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{BA}; \overrightarrow{BC} \right) \right|$$

<u>خاصىة 2 :</u>

. $S_{ABCD} = \left| \det \left(\overrightarrow{AB}; \overrightarrow{AC} \right) \right|$ هي : مساحة متوازي الأضلاع ABDC المحدد بالمتجهتين

<u>تمارىن تطىىقىة :</u>

- . C(6;3) و B(2;1) و A(5;0) بعتبر النقط
- أ ـ تحقق أن النقط A و B و C غير مستقيمية .
 - ب ـ احسب مساحة المثلث ـ ABC
- ج ـ نعتبر النقطة $\,D\,$ بحيث يكون $\,ABDC\,$ متوازي أضلاع . حدد زوج إحداثيتي النقطة $\,D\,$ ثم احسب مساحة متوازي الأضلاع $\,ABDC\,$.
 - . C(2;1) و B(-2;0) و A(0;6) و (2

. احسب مساحة المثلث ABC بطريقتين مختلتين

<u>II ـ المستقيم في المستوى (دراسة تحليلية) :</u>

1) المتحهة المنظمية على مستقيم:

نشاط تمهندی:

- . x + 2y + 1 = 0 : نعتبر المستقيم (D) ذي المعادلة (1
 - . (D) أـ حدد متجهة موجهة \vec{u} للمستقيم
- ب ـ نعتبر المتجهة $\vec{n}(1;2)$ احسب الجداء السلمى $\vec{n} \cdot \vec{u}$. ماذا تستنتج
 - . (D) المتجهة تسمى متجهة منظمية على المستقيم $ec{n}$
 - . ax + by + c = 0 : نعتبر المستقيم (Δ) ذي المعادلة (2
 - . (Δ) متجهة منظمية على المستقيم $ec{n}(a;b)$ أ ــ بين أن المتجهة
- x-y+2=0 : خدد متجهة منظمية على المستقيم (D) ذو المعادلة

<u>تعریف :</u>

. ليكن (D) مستقيما في المستوى و \vec{u} متجهة موجهة له

. $\vec{n} \cdot \vec{u} = 0$: نقول إن متجهة غير منعدمة \vec{n} منظمية على المستقيم

<u>خاصىة :</u>

. ax+by+c=0 مستقيما في المستوى معادلته (D) مستقيما في المستقيم المتجهة $\vec{n}(a;b)$

2) المعادلة الديكارتية لمستقيم معرف ينقطة ومتحهة منظمية عليه :

<u>نشاط تمهِندی :</u>

. نعتبر $\overline{n}(a;b)$ متج \overline{n} ة غير منعدمة و $\overline{n}(a;b)$ نقطة من المستوى

. حدد معادلة ديكارتية للمستقيم (D) المار من $A(x_A;y_A)$ و متجهة منظمية عليه

<u>خاصىة</u>

: معادلة المستقيم (D) المار من $A(x_A;y_A)$ و $A(x_A;y_A)$ معادلة المستقيم $a(x-x_A)+b(y-y_B)=0$

تمارين تطبيقية:

- . حدد معادلة ديكارتية للمستقيم (D) المار من A(1;1) و $ec{n}(2;3)$ متجهة منظمية عليه 1
 - . C(-2;2) و B(-1;5) و A(3;1) و المستوى بحيث (2) ABC
 - . C أ ـ حدد معادلة ديكارتية لارتفاع المثلث المار من الرأس
 - . [AB] ب $_{-}$ حدد معادلة ديكارتية لواسط القطعة

3) تعامد مستقیمین :

نعتبر مستقيمين (D') و a'x+b'y+c'=0 و ax+by+c=0 : متجهة $\vec{n}(a;b)$ معادلتهما على التوالي (D') و (D') متجهة $\vec{n}'(a';b')$ و (D) متجهة منظمية على (D')

aa'+bb'=0 : يكون $\vec{n}'(a';b')$ و $\vec{n}(a;b)$ كان $\vec{n}(a;b)$ كان يكون $\vec{n}(a';b')$ عامدين إذا وفقط إذا كان

<u>خاصىة :</u>

يكون المستقيمان (D') و (D') اللذان معادلتهما a'x+b'y+c'=0 و ax+by+c=0 على التوالي متعامدين . aa'+bb'=0 : إذا وفقط إذا كان

تمرين تطبيقي :

لتكن النقط A(7;4) و B(5;-2) و A(7;4) من المستوى

- (AB) تحقق أن 3x-y-17=0 هي معادلة ديكارتية للمستقيم (1
 - C من المار من (D) حدد معادلة ديكارتية للمستقيم (D

4) مسافة نقطة عن مستقيم :

تعریف :

. (D) و A نقطة لا تنتمي إلى (D) و H المسقط العمودي للنقطة A على d(A;(D))=AH : المسافة d(A;(D))=AH تسمى المسافة بين A و (D) ونرمز لها بالرمز

<u>نشاط تمهىدى :</u>

. (D) نقطة لا تنتمي إلى $A(x_A;y_A)$ و ax+by+c=0 : نعتبر مستقيما و معادلته الديكارتية $A(x_A;y_A)$ و ax+by+c=0 . (D) معادلته للنقطة A على (D)

. $\overrightarrow{AB} = \overrightarrow{n}$: متجهة منظمية على المستقيم (D) و (D) النقطة من المستوى بحيث (1

 $\overrightarrow{AM} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB}$: بين أن لكل نقطة M من

- . b و a و y_A و x_A و y و x بدلالة $\overrightarrow{AM} \cdot \overrightarrow{AB} \cdot \overrightarrow{AB}$ احسب (2
 - $AH \cdot AB = \left| ax_A + ay_B + c \right|$ بین أن (3
 - . $d(A;(D)) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$: استنتج أن

<u>خاصىة :</u>

ليكن (D) مستقيما معادلته الديكارتية (D) المستوى (D) عن المستقيم المستقيم (D) هي (D) هي (D) هي (D) هي (D) هي (D) هي (D)

تمارين تطبيقية :

. B(0;-2) و A(1;-1) و النقطتين x+y+2=0 الذي معادلته (D) الذي معادلته ((D) و النقطتين ((D)

. d(B;(D)) و d(A;(D))

- . B(3;2) و A(-1;-3) نعتبر النقطتين (2
- . (AB) معادلة المستقيم 5x-4y-7=0 أ_ تحقق أن
 - . (AB) عن المستقيم O ب ـ احسب مسافة النقطة

<u>III ــ الدائرة (دراسة تحليلية) :</u>

1) معادلة ديكارتية لدائرة:

نشاط تمهيدي :

. وشعاعها $\Omega(1;1)$ التي مركزها $\Omega(1;1)$ وشعاعها

- D(-1;-1) ؛ $C(\sqrt{3}+1;2)$ ؛ B(2;2) ؛ A(3;1) : (C) من بين النقط التالية حدد تلك التي تنتمي إلى الدائرة (C)
 - . نتكن M(x;y) نقطة من المستوى (2
 - x أ x المسافة ΩM بدلالة x

. $x^2 + y^2 - 2x - 2y - 2 = 0$: بين أن M تنتمي إلى الدائرة (C) إذا وفقط إذا كان M تنتمي إلى الدائرة

. 2 وشعاعها $\Omega(1;1)$ وشعاعها $\Omega(1;1)$ التي مركزها $\Omega(1;1)$ وشعاعها $\Omega(1;1)$ المعادلة

. $(R\succ 0)$ R وشعاعها $\Omega(a;b)$ وشعاعها) بإتباع نفس خطوات السؤال السابق حدد معادلة ديكارتية لدائرة مركزها

خاصىة :

معادلة الدائرة (C) التي مركزها $\Omega(a;b)$ وشعاعها $\Omega(a;b)$ هي : $c=a^2+b^2-R^2$ وشعاعها $x^2+y^2-2ax-2by+c=0$. $c=a^2+b^2-R^2$

تمارىن تطىيقية :

- . $\sqrt{2}$ وشعاعها $\Omega(1;-1)$ التي مركزها (C) وشعاعها (C
- . A(-1;1) وتمر من النقطة $\Omega(2;1)$ التي مركزها $\Omega(2;1)$ وتمر من النقطة $\Omega(2;1)$
- . C(7;4) و B(1;2) و A(-1;0) التي تمر من النقط A(-1;0) و (3

<u>2) معادلة دائرة معرفة بأحد أقطارها :</u>

نشاط تمهیدی :

. وشعاعها R و وشعاعها R و [AB] أحد أقطارها . ولتكن M نقطة من المستوى .

- . $\overrightarrow{MA} \cdot \overrightarrow{MB} = \Omega M^2 R^2$; بين أن (1
- . $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$: استنتج أن (C) هي مجوعة النقط (C) استنتج
- . (C) نعتبر A(2;3) و B(-4;5) و B(-4;5) عنطة من A(2;3) نعتبر (B(-4;5) عنطة من (B(-4;5)

<u>خاصىة :</u>

لتكن A و B نقطتين مختلفتين من المستوى .

 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$: مجموعة النقط لنقط M من المستوى التي تحقق $M \cdot \overrightarrow{MB} = 0$ هي الدائرة التي أحد أقطارها $M \cdot \overrightarrow{MB} = 0$. $(x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$ ومعادلتها هي $M \cdot \overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

<u>تمرىن تطىىقى :</u>

B(-1;1) و A(1;3) : حدد معادلة ديكارتية للدائرة (C) التي أحد أقطارها

<u>3) تمثىل ىرامىترى لدائرة :</u>

<u>نشاط تمهیدی :</u>

وشعاعها R وشعاعها $\Omega(a;b)$ التي مركزها

. $(\theta \in IR)$ $(\vec{i}; \overline{\Omega M}) = \theta[2\pi]$: حيث (C) حيث M

. $\vec{i}\cdot\overrightarrow{\Omega M}=R\cos heta$: أ ــ بين أن

. $\vec{j} \cdot \overrightarrow{\Omega M} = R \sin \theta$: ب ـ بین أن

. M زوج إحداثيتي النقطة (x; y) ليكن (2

أ ـ حدد زوج إحداثيتي المتجهة $\overrightarrow{\Omega M}$

b و a و y و x بدلالة x و $\overline{i}\cdot \overrightarrow{\Omega M}$ ب احسب

 $\begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases} / (\theta \in IR)$: ج _ استنتج أن

. R وشعاعها $\Omega(a;b)$ التي مركزها $\Omega(a;b)$ النظمة $\Omega(a;b)$ النظمة $\Omega(a;b)$ النظمة $\Omega(a;b)$ النظمة $\Omega(a;b)$ النظمة $\Omega(a;b)$ النظمة المائرة عامى تمثيلاً باراميترياً للدائرة المائرة المائرة

<u>خاصىة وتعرىف :</u>

الدائرة (C) التي مركزها $\Omega(a;b)$ وشعاعها $R \succ 0$ هي مجموعة النقط M(x;y) من المستوى التي الدائرة (C) . (S) $\begin{cases} x=a+R\cos\theta \\ y=b+R\sin\theta \end{cases} / (\theta \in IR)$: تحقق

تمارين تطبيقية :

. $x^2 + y^2 + 6x - 8y + 23 = 0$: حدد تمثيلا باراميتريا للدائرة (C) التي معادلتها الديكارتية (T

.
$$\begin{cases} x = -1 + 2\cos\theta \\ y = 3 + 2\sin\theta \end{cases} / (\theta \in IR)$$
 : حدد مجموعة النقط $M(x;y)$ من المستوى التي تحقق (2

 $x^2 + y^2 + ax + by + c = 0$: دراسة محموعة النقط M(x; y) التي تحقق (4

 $x^2 + y^2 + ax + by + c = 0$: التي تحقق M(x; y) مجموعة النقط M(x; y) مجموعة . (Γ)

$$M(x; y) \in (\Gamma) \Leftrightarrow x^2 + y^2 + ax + by + c = 0$$
 : ينا
$$\Leftrightarrow (x^2 + ax) + (y^2 + by) + c = 0$$

$$\Leftrightarrow \left(x + \frac{a}{2}\right)^2 - \frac{a^2}{4} + \left(y + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c = 0$$

$$\Leftrightarrow \left(x + \frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 = \frac{a^2 + b^2 - 4c}{4}$$

. $M(x;y) \in (\Gamma) \Leftrightarrow \Omega M^2 = \frac{a^2+b^2-4c}{4}$: نعتبر النقطة $\Omega\left(-\frac{a}{2};-\frac{b}{2}\right)$ نعتبر النقطة رائعتبر النقطة المناء بالمناء المناء المناء

- : فإن المتساوية $\Omega M^2 = \frac{a^2 + b^2 4c}{4}$ فإن المتساوية فإن المتساوية $\frac{a^2 + b^2 4c}{4} \prec 0$ غير صحية وفي هذه الحالة $(\Gamma) = \Phi$
 - $(\Gamma) = \{\Omega\}$: فإن $\Omega = M$ أي $\Omega = M$ ومنه فإن $\frac{a^2 + b^2 4c}{4} = 0$ ومنه فإن •
- : فإن $\Omega M^2 = \frac{a^2 + b^2 4c}{4} \Leftrightarrow \Omega M = \frac{\sqrt{a^2 + b^2 4c}}{2}$ فإن $\frac{a^2 + b^2 4c}{4} \succ 0$ وفي هذه الحالة
 - . $\dfrac{\sqrt{a^2+b^2-4c}}{2}$ هي الدائرة التي مركزها Ω وشعاعها Γ

<u>خاصىة :</u>

لتكن a و b و b و أعدادا حقيقية و (Γ) مجموعة النقط M(x;y) التي تحقق (Γ) مجموعة النقط

تكون $\left(\Gamma\right)$ دائرة إذا وفقط إذا كان Ω : كان $a^2+b^2-4c>0$ وشعاعها Γ

$$\frac{\sqrt{a^2+b^2-4c}}{2}$$

. $(\Gamma) = \Phi$ فإن $a^2 + b^2 - 4c < 0$ (خا كان أيا

. $\Omega\left(-\frac{a}{2};-\frac{b}{2}\right)$: حيث $\Gamma\left(\Gamma\right)=\left\{\Omega\right\}$ فإن $a^{2}+b^{2}-4c=0$: اذا كان •

<u>تمرىن تطىىقى :</u>

: مجموعة النقط M(x;y) التي تحقق المعادلات التالية

$$x^2 + y^2 - 4x + 6y - 3 = 0$$
 (1)

$$x^2 + y^2 - x - 10y + 25 = 0$$
 (2)

$$x^{2} + y^{2} + 4x - y + \frac{17}{4} = 0$$
 (3)

<u>5) داخل وخارج الدائرة :</u>

<u>تعارىف :</u>

. لتكن (C) دائرة مركزها Ω وشعاعها R و $(R\succ 0)$ و $(R\succ 0)$ و المستوى

- . $\Omega M=R$: تكون M نقطة من الدائرة C إذا وفقط إذا كان M
- . $\Omega M \prec R$: تكون M نقطة داخل الدائرة (C) إذا وفقط إذا كانM نقطة داخل الدائرة
- . $\Omega M \succ R$: تكون M نقطة خارج الدائرة (C) إذا وفقط إذا كانM نقطة خارج الدائرة

نتبحة

. لتكن (C) دائرة معادلتها الديكارتية $c=0: x^2+y^2+ax+by+c=0$ نقطة من المستوى (C)

- . $x_0^2 + y_0^2 + ax_0 + by_0 + c = 0$: تكون M نقطة من الدائرة (C) إذا وفقط إذا كان •
- . $x_0^2 + y_0^2 + ax_0 + by_0 + c < 0$: تكون M نقطة داخل الدائرة (C) إذا وفقط إذا كان •
- . $x_0^2 + y_0^2 + ax_0 + by_0 + c > 0$: تكون M نقطة خارج الدائرة (C) إذا وفقط إذا كان

<u>تمرىن تطىىقى :</u>

وشعاعها R=3 . حدد وضع النقطتين A(3;-1) و النسبة R=3 وشعاعها R=3 و $\Omega(-1;2)$ و النسبة $\Omega(-1;2)$ الدائرة $\Omega(C)$. للدائرة $\Omega(C)$

2) حل مبيانيا المتراجحات التالية :

$$x^2 + y^2 + 6x - 8y + 23 \ge 0 - 1$$

.
$$x^2 + y^2 - 6x < 0$$
 _ \rightarrow

<u>6) الأوضاع النسبية لدائرة ومستقيم :</u>

لدراسة الوضع النسبي لدائرة (C) مركزها Ω وشعاعها r مع مستقيم (D) ؛ يمكن حساب مسافة (D) عن . r ومقارنتها مع (D) . (D)

 $d(\Omega;(D)) = r$

المستقيم (D) يقطع الدائرة في نقطة واحد . نقول إن المستقيم (D) مماسا للدائرة .

المستقيم (D) يقطع الدائرة في نقطتين .

<u>تمرىن تطىىقى :</u>

ادرس الوضع النسبي للدائرة (C) التي مركزها $\Omega(-1;2)$ وشعاعها R=2 مع المستقيم الدائرة (C) في كل حالة (D): 2x+y+1=0 ($(D): x-y+3+2\sqrt{2}=0$ ((D): x+y+3=0 ((D): x+y+3=0) التي الحالات التالية

7) معادلة المماس لدائرة في نقطة :

نشاط تمهيدي:

(T) نقطة من الدائرة (C) التي مركزها $\Omega(a;b)$ وشعاعها R و R وشعاعها R و الدائرة R وليكن R وليكن R وليكن R المستقيم المماس للدائرة R في R في R

- . (T) حدد متجهة منظمية على (T)
- . $(x-x_0)(a-x_0)+(y-y_0)(b-y_0)=0$: هي (T) هي للمستقيم (2 الحواب :
- . $(A\Omega)$ مماسا للدائرة (C) في A إذا وفقط إذا كان (T) عموديا على المستقيم \overline{A} (\overline{A}) يكون المستقيم \overline{A} منظمية على المستقيم \overline{A} .
 - :(T) تحدید معادلة دیکارتیة ل (T

$$M(x; y) \in (T) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{A\Omega} = 0$$
 : لدينا
$$\Leftrightarrow (x - x_0)(a - x_0) + (y - y_0)(b - y_0) = 0$$

<u>خاصىة 1 :</u>

. (C) نقطة من الدائرة $A(x_0;y_0)$ و R وشعاعها $\Omega(a;b)$ وشعاعها $\Omega(a;b)$ التي مركزها $\Omega(a;b)$ التي مركزها $\Omega(a;b)$ في $\Omega(a;b)$

ملاحظة:

اذا کانت الدائرة معرفة بمعادلتها الدیکارتیة $\Omega\left(-\frac{a}{2};-\frac{b}{2}\right)$ في هذه $x^2+y^2+ax+by+c=0$ في هذه

. $(x-x_0)\left(\frac{a}{2}+x_0\right)+(y-y_0)\left(\frac{b}{2}+y_0\right)=0$: هي A هي (C) في A الحالة معادلة المماس للدائرة

<u>خاصىة 2 :</u>

.
$$(C)$$
 نقطة من الدائرة $A(x_0;y_0)$ و $x^2+y^2+ax+by+c=0$ نقطة من الدائرة (C) نقطة من الدائرة (C) معادلة المماس للدائرة (C) في A هي (C) هي (C) في (C) في (C) في (C)

<u>تمارىن تطىىقىة :</u>

- . R=2 وشعاعها $\Omega(-1;-2)$ التي مركزها $\overline{(C)}$ وشعاعها
 - . (C) أ تنتمي إلى الدائرة A(1;-2) تنتمي إلى الدائرة
 - . A في (C) في للدائرة في (C)
- . $x^2 + y^2 2x + 4y 11 = 0$: نعتبر الدائرة (C) التي معادلتها الديكارتية (2
 - . (C) تتحقق أن النقطة A(1;2) تنتمي إلى الدائرة
 - . A في (C) ب ـ حدد معادلة المماس للدائرة

