| Company Name    | LoremIpsum   | Project Title | Fossee     |
|-----------------|--------------|---------------|------------|
| Group/Team Name | LoremIpsum   | Subtitle      |            |
| Designer        | LoremIpsum   | Job Number    | 123        |
| Date            | 18 /05 /2020 | Client        | LoremIpsum |

### 1 Input Parameters

| Mod                          | ule            |                |            | Fin Plate                                                         |
|------------------------------|----------------|----------------|------------|-------------------------------------------------------------------|
| MainMe                       | odule          |                |            | Shear Connection                                                  |
| Connec                       | tivity         |                |            | Column flange-Beam web                                            |
| Shear(l                      | kN)*           |                |            | 20.0                                                              |
| `                            | ,              | Supporting Se  | ection     |                                                                   |
|                              | Supportin      | ng Section     |            | HB 150                                                            |
|                              | Mate           | erial *        |            | E 250 (Fe 410 W)B                                                 |
| т Ү                          | Ultimate stren | ngth, fu (MPa) |            | 410                                                               |
|                              | Yield Streng   | th , fy (MPa)  |            | 250                                                               |
| $\alpha$                     | Mass           | 27.1           | Iz(cm4)    | 14600000.0                                                        |
| ZZ D                         | Area(cm2) - A  | 3450.0         | Iy(cm4)    | 4320000.0                                                         |
|                              | D(mm)          | 150.0          | rz(cm)     | 65.0                                                              |
| R <sub>1</sub>               | B(mm)          | 150.0          | ry(cm)     | 35.4                                                              |
| В В                          | t(mm)          | 5.4            | Zz(cm3)    | 194000.0                                                          |
| Y                            | T(mm)          | 9              | Zy(cm3)    | 57600.0                                                           |
| •                            | FlangeSlope    | 94             | Zpz(cm3)   | 210900.0                                                          |
|                              | R1(mm)         | 8.0            | Zpy(cm3)   | 57600.0                                                           |
|                              | R2(mm)         | 4.0            |            |                                                                   |
|                              | _              | Supported Se   | ction      |                                                                   |
|                              |                | ed Section     |            | JB 200                                                            |
| - Y                          |                | erial *        |            | E 250 (Fe 410 W)B                                                 |
|                              |                | ngth, fu (MPa) |            | 410                                                               |
|                              |                | th , fy (MPa)  | 7 ( 1)     | 250                                                               |
| $\frac{(B-t)}{A}$ t $\alpha$ | Mass           | 9.9            | Iz(cm4)    | 7810000.0                                                         |
| ZZ D                         | Area(cm2) -    | 1260.0         | Iy(cm4)    | 173000.0                                                          |
| R <sub>1</sub>               | D(mm)          | 200.0          | rz(cm)     | 78.60000000000001                                                 |
| -R <sub>2</sub>              | B(mm)          | 60.0           | ry(cm)     | 11.7                                                              |
| В                            | t(mm)          | 3.4            | Zz(cm3)    | 78100.0                                                           |
| ¥                            | T(mm)          | 5.0            | Zy(cm3)    | 5800.0                                                            |
|                              | FlangeSlope    | 91.5           | Zpz(cm3)   | 88000.0                                                           |
|                              | R1(mm)         | 5.0            | Zpy(cm3)   | 5800.0                                                            |
|                              | R2(mm)         | 1.5            | <u> </u>   |                                                                   |
| D:                           | ()*            | Bolt Deta      | us<br>     | [10.0.16.0.20.0]                                                  |
|                              | (IIIIII),      |                | [0.0.4.0   | [12.0, 16.0, 20.0]<br>, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] |
| Diameter                     | . *            |                |            | - / - a a a a a a a a a a a a a a a a a                           |
| Grad                         |                |                | [3.0, 4.0] |                                                                   |
| Grad<br>Туре                 | e *            |                | [3.0, 4.0] | Bearing Bolt                                                      |
| Grad                         | e type         |                | [5.0, 4.0  |                                                                   |

Type of edges

a - Sheared or hand flame cut

| Company Name    | LoremIpsum   | Project Title | Fossee     |
|-----------------|--------------|---------------|------------|
| Group/Team Name | LoremIpsum   | Subtitle      |            |
| Designer        | LoremIpsum   | Job Number    | 123        |
| Date            | 18 /05 /2020 | Client        | LoremIpsum |

| Gap between beam and<br>support (mm)               | 10.0                                                          |
|----------------------------------------------------|---------------------------------------------------------------|
| Are the members exposed to<br>corrosive influences | False                                                         |
| Plate Det                                          | ails                                                          |
| Thickness(mm)*                                     | [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0] |
| Material *                                         | E 250 (Fe 410 W)A                                             |
| Ultimate strength, fu (MPa)                        | 410                                                           |
| Yield Strength , fy (MPa)                          | 250                                                           |
| Weld Det                                           | ails                                                          |
| Weld Type                                          | Fillet                                                        |
| Type of weld fabrication                           | Shop Weld                                                     |
| Material grade overwrite (MPa) Fu                  | 410.0                                                         |

|   | Company Name    | LoremIpsum   | Project Title | Fossee     |
|---|-----------------|--------------|---------------|------------|
|   | Group/Team Name | LoremIpsum   | Subtitle      |            |
|   | Designer        | LoremIpsum   | Job Number    | 123        |
| ĺ | Date            | 18 /05 /2020 | Client        | LoremIpsum |

# 2 Design Checks

### 2.1 Bolt Design Checks

| Check                  | Required                                                                                                                              | Provided                                                                                                                | Remarks |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|
| Diameter (mm)*         |                                                                                                                                       | 16.0                                                                                                                    |         |
| Grade *                |                                                                                                                                       | 3.6                                                                                                                     |         |
| Shear Capacity (kN)    |                                                                                                                                       | $V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 21.75$ |         |
| Bearing Capacity (kN)  |                                                                                                                                       | $V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 3.4 * 410}{1.25}$ $= 21.86$      |         |
| Capacity (kN)          |                                                                                                                                       | $V_{db} = min (V_{dsb}, V_{dpb})$<br>= $min (21.75, 21.86)$<br>= 21.75                                                  |         |
| No of Bolts            | $R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{20.0^{2} + 30.0^{2}}}{21.75}$ $= 2$          | 3                                                                                                                       |         |
| No of Columns          |                                                                                                                                       | 1                                                                                                                       |         |
| No of Rows             |                                                                                                                                       | 3                                                                                                                       |         |
| Min. Pitch (mm)        | $p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$                                                                                             | 0.0                                                                                                                     | N/A     |
| Max. Pitch (mm)        | $p/g_{max} = \min(32 \ t, \ 300 \ mm)$<br>= $\min(32 * \ 3.4, \ 300 \ mm)$<br>= 300                                                   | 0.0                                                                                                                     | N/A     |
| Min. Gauge (mm)        | $p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$                                                                                             | 45                                                                                                                      | Pass    |
| Max. Gauge (mm)        | $p/g_{max} = \min(32 \ t, \ 300 \ mm)$<br>= $\min(32 * \ 3.4, \ 300 \ mm)$<br>= 300                                                   | 45                                                                                                                      | Pass    |
| Min. End Distance (mm) | $e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$<br>= 1.7 * 18.0 = 30.6                                                              | 35                                                                                                                      | Pass    |
| Max. End Distance (mm) | $e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$ | 35                                                                                                                      | Pass    |

| Company Name    | LoremIpsum   | Project Title | Fossee     |
|-----------------|--------------|---------------|------------|
| Group/Team Name | LoremIpsum   | Subtitle      |            |
| Designer        | LoremIpsum   | Job Number    | 123        |
| Date            | 18 /05 /2020 | Client        | LoremIpsum |

| Check                   | Required                                                                                                                         | Provided | Remarks |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| Min. Edge Distance (mm) | $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$<br>= 1.7 * 18.0 = 30.6                                                                | 35       | Pass    |
| Max. Edge Distance (mm) | $e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$ | 35       | Pass    |
| Capacity (kN)           | 21.08                                                                                                                            | 21.86    | Pass    |

|   | Company Name    | LoremIpsum   | Project Title | Fossee     |
|---|-----------------|--------------|---------------|------------|
|   | Group/Team Name | LoremIpsum   | Subtitle      |            |
|   | Designer        | LoremIpsum   | Job Number    | 123        |
| ĺ | Date            | 18 /05 /2020 | Client        | LoremIpsum |

#### 2.2 Plate Design Checks

| Check                                          | Required                                                                      | Provided                                                                                                                  | Remarks  |
|------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| Min. Plate Height (mm)                         | $0.6 * d_b = 0.6 * 200.0 = 120.0$                                             | 160                                                                                                                       | Pass     |
| Max. Plate Height (mm)                         | $d_b - 2(t_{bf} + r_{b1} + gap)$ $= 200.0 - 2 * (5.0 + 5.0 + 10)$ $= 180.0$   | 160                                                                                                                       | Pass     |
| Min. Plate Length (mm)                         | $2 * e_{min} + (n \ c - 1) * p_{min})$ $= 2 * 30.6 + (1 - 1) * 40.0$ $= 71.2$ | 80.0                                                                                                                      | Pass     |
| Min.Plate Thickness (mm)                       | $t_w = 3.4$                                                                   | 4.0                                                                                                                       | Pass     |
| Shear yielding Capacity (V_dy) (kN)            |                                                                               | $V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{160 * 4.0 * 250}{\sqrt{3} * 1.1}$ $= 83.98$                  |          |
| Shear Rupture Capacity (V_dn) (kN)             |                                                                               | $= 83.98$ $V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (160 - (3 * 18.0)) * 4.0 * 410$ $= 130.38$ | )        |
| Block Shear Capacity in Shear (V_db) (kN)      |                                                                               | 86.36                                                                                                                     |          |
| Shear Capacity (V_d) (kN)                      | 20.0                                                                          | $V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(83.98, 130.38, 86.36)$ $= 83.98$                                               | Pass     |
| Tension Yielding Capacity (kN)                 |                                                                               | $T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$ $= \frac{160 * 4.0 * 250}{1.1}$ $= 145.45$                                   |          |
| Tension Rupture Capacity (kN)                  |                                                                               | $T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (160 - 3 * 18.0) * 4.0 * 410}{1.25}$ $= 167.67$             | <u>)</u> |
| Block Shear Capacity in<br>Tension (T_db) (kN) |                                                                               | 108.64                                                                                                                    |          |
| Tension Capacity (kN)                          | 30.0                                                                          | $T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(145.45, 167.67, 108.64)$ $= 108.64$                                            | Pass     |
| Moment Capacity (kN-m)                         | 0.9                                                                           | 5.82                                                                                                                      | Pass     |
| Interaction Ratio                              | ≤ 1                                                                           | $\frac{0.9}{5.82} + \frac{30.0}{108.64} = 0.43$                                                                           | Pass     |

|   | Company Name    | LoremIpsum   | Project Title | Fossee     |
|---|-----------------|--------------|---------------|------------|
|   | Group/Team Name | LoremIpsum   | Subtitle      |            |
|   | Designer        | LoremIpsum   | Job Number    | 123        |
| ĺ | Date            | 18 /05 /2020 | Client        | LoremIpsum |

#### 2.3 Weld Checks

| Check                 | Required                                                                                                                                                                                                                                                                                                                                                                          | Provided                                                                                        | Remarks |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|
| Min Weld Size (mm)    | $Thickness of Thicker part$ $= max(9, 4.0)$ $= 9$ $IS800: 2007 cl.10.5.2.3 Table 21,$ $t_{w_{min}} = 3$                                                                                                                                                                                                                                                                           | 3                                                                                               | Pass    |
| Max Weld Size (mm)    | $Thickness of Thinner part \\ = Min(9, 4.0) = 4.0 \\ t_{w_{max}} = 4.0$                                                                                                                                                                                                                                                                                                           | 3                                                                                               | Pass    |
| Weld Strength (kN/mm) | $R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{900000.0 * 77.0}{608710.67}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{900000.0 * 0.0}{608710.67}$ $V_{wv} = \frac{V}{l_{w}} = \frac{20000.0}{308}$ $A_{wh} = \frac{A}{l_{w}} = \frac{30000.0}{308}$ $R_{w} = \sqrt{(113.85 + 97.4)^{2} + (0.0 + 64.94)^{2}}$ $= 203.59$ | $f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3} * 1.25}$ $= 568.11$ | Pass    |

| Company Name    | LoremIpsum   | Project Title | Fossee     |
|-----------------|--------------|---------------|------------|
| Group/Team Name | LoremIpsum   | Subtitle      |            |
| Designer        | LoremIpsum   | Job Number    | 123        |
| Date            | 18 /05 /2020 | Client        | LoremIpsum |

## 3 3D View



Figure 1: 3D View