Package 'mlsauce'

July 7, 2020

Title Miscellaneous Statistical/Machine Learning stuff
Version 0.4.0
Author T. Moudiki
Maintainer T. Moudiki <thierry.moudiki@pm.me></thierry.moudiki@pm.me>
Description Miscellaneous Statistical/Machine Learning stuff.
License BSD_3_clause Clear + file LICENSE
Imports reticulate, R6, Rcpp
Suggests reticulate, R6, Rcpp
Collate 'zzz.R' 'adaopt.R' 'lsboost.R' 'stump.R'
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
NeedsCompilation no
R topics documented:
AdaOpt 2
LSBoostClassifier
LSBoostRegressor
StumpClassifier
Index 8

2 AdaOpt

AdaOpt

AdaOpt classifier

Description

AdaOpt classifier

Usage

```
AdaOpt(
  n_{iterations} = 50L,
  learning_rate = 0.3,
  reg_lambda = 0.1,
  reg_alpha = 0.5,
  eta = 0.01,
  gamma = 0.01,
  k = 3L
  tolerance = 0,
  n_clusters = 0,
  batch_size = 100L,
  row_sample = 1,
  type_dist = "euclidean-f",
  cache = TRUE,
  seed = 123L
)
```

Arguments

n_iterations	number of iterations of the optimizer at training time
learning_rate	controls the speed of the optimizer at training time
reg_lambda	L2 regularization parameter for successive errors in the optimizer (at training time)
reg_alpha	L1 regularization parameter for successive errors in the optimizer (at training time)
eta	controls the slope in gradient descent (at training time)
gamma	controls the step size in gradient descent (at training time)
k	number of nearest neighbors selected at test time for classification
tolerance	controls early stopping in gradient descent (at training time)
n_clusters	number of clusters, if MiniBatch k-means is used at test time (for faster prediction)
batch_size	size of the batch, if MiniBatch k-means is used at test time (for faster prediction)
row_sample	percentage of rows chosen from training set (by stratified subsampling, for faster prediction)

LSBoostClassifier 3

type_dist distance used for finding the nearest neighbors; currently euclidean-f (eu-

clidean distances calculated as whole), euclidean (euclidean distances calcu-

lated row by row), cosine (cosine distance)

cache if the nearest neighbors are cached or not, for faster retrieval in subsequent calls

seed reproducibility seed for initial weak learner and clustering

Value

An object of class AdaOpt

Examples

```
library(datasets)
X <- as.matrix(iris[, 1:4])</pre>
y <- as.integer(iris[, 5]) - 1L</pre>
n \leftarrow dim(X)[1]
p \leftarrow dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(iris[train_index, 1:4])</pre>
y_train <- as.integer(iris[train_index, 5]) - 1L</pre>
X_test <- as.matrix(iris[test_index, 1:4])</pre>
y_test <- as.integer(iris[test_index, 5]) - 1L</pre>
obj <- mlsauce::AdaOpt()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

LSBoostClassifier

LSBoost classifier

Description

LSBoost classifier

Usage

```
LSBoostClassifier(
n_estimators = 100L,
learning_rate = 0.1,
```

4 LSBoostClassifier

```
n_hidden_features = 5L,
reg_lambda = 0.1,
row_sample = 1,
col_sample = 1,
dropout = 0,
tolerance = 1e-04,
direct_link = 1L,
verbose = 1L,
seed = 123L
)
```

Arguments

n_estimators: int, number of boosting iterations.

learning_rate: float, controls the learning speed at training time.

n_hidden_features:

int

number of nodes in successive hidden layers.

reg_lambda: float, L2 regularization parameter for successive errors in the optimizer (at train-

ing time).

row_sample: float, percentage of rows chosen from the training set.

col_sample: float, percentage of columns chosen from the training set.

dropout: float, percentage of nodes dropped from the training set.

tolerance: float, controls early stopping in gradient descent (at training time).

direct_link: bool, indicates whether the original features are included (True) in model's fit-

ting or not (False).

verbose: int, progress bar (yes = 1) or not (no = 0) (currently).

seed: int, reproducibility seed for nodes_sim=='uniform', clustering and dropout.

Value

An object of class LSBoostClassifier

Examples

```
library(datasets)

X <- as.matrix(iris[, 1:4])
y <- as.integer(iris[, 5]) - 1L

n <- dim(X)[1]
p <- dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index
X_train <- as.matrix(X[train_index, ])</pre>
```

LSBoostRegressor 5

```
y_train <- as.integer(y[train_index])
X_test <- as.matrix(X[test_index, ])
y_test <- as.integer(y[test_index])
obj <- mlsauce::LSBoostClassifier()
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))</pre>
```

LSBoostRegressor

LSBoost Regressor

Description

LSBoost Regressor

Usage

```
LSBoostRegressor(
    n_estimators = 100L,
    learning_rate = 0.1,
    n_hidden_features = 5L,
    reg_lambda = 0.1,
    row_sample = 1,
    col_sample = 1,
    dropout = 0,
    tolerance = 1e-04,
    direct_link = 1L,
    verbose = 1L,
    seed = 123L
)
```

Arguments

 ${\tt n_estimators:} \quad int, number of boosting iterations.$

learning_rate: float, controls the learning speed at training time.

n_hidden_features:

int

number of nodes in successive hidden layers.

reg_lambda: float, L2 regularization parameter for successive errors in the optimizer (at train-

ing time).

row_sample: float, percentage of rows chosen from the training set.

6 StumpClassifier

col_sample: float, percentage of columns chosen from the training set. dropout: float, percentage of nodes dropped from the training set.

tolerance: float, controls early stopping in gradient descent (at training time).

direct_link: bool, indicates whether the original features are included (True) in model's fit-

ting or not (False).

verbose: int, progress bar (yes = 1) or not (no = 0) (currently).

seed: int, reproducibility seed for nodes_sim=='uniform', clustering and dropout.

Value

An object of class LSBoostRegressor

Examples

```
library(datasets)
X <- as.matrix(datasets::mtcars[, -1])</pre>
y <- as.integer(datasets::mtcars[, 1])</pre>
n \leftarrow dim(X)[1]
p \leftarrow dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(X[train_index, ])</pre>
y_train <- as.double(y[train_index])</pre>
X_test <- as.matrix(X[test_index, ])</pre>
y_test <- as.double(y[test_index])</pre>
obj <- mlsauce::LSBoostRegressor()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

StumpClassifier

Stump classifier

Description

Stump classifier

Usage

```
StumpClassifier(bins = "auto")
```

StumpClassifier 7

Arguments

bins: int, number of histogram bins.

Value

An object of class StumpClassifier

Examples

```
library(datasets)
X <- as.matrix(iris[, 1:4])</pre>
y <- as.integer(iris[, 5]) - 1L</pre>
n \leftarrow dim(X)[1]
p \leftarrow dim(X)[2]
set.seed(21341)
train_index <- sample(x = 1:n, size = floor(0.8*n), replace = TRUE)
test_index <- -train_index</pre>
X_train <- as.matrix(iris[train_index, 1:4])</pre>
y_train <- as.integer(iris[train_index, 5]) - 1L</pre>
X_test <- as.matrix(iris[test_index, 1:4])</pre>
y_test <- as.integer(iris[test_index, 5]) - 1L</pre>
obj <- mlsauce::StumpClassifier()</pre>
print(obj$get_params())
obj$fit(X_train, y_train)
print(obj$score(X_test, y_test))
```

Index

```
AdaOpt, 2
LSBoostClassifier, 3
LSBoostRegressor, 5
StumpClassifier, 6
```