BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-122874

(43)Date of publication of application: 06.05.1994

(51)Int.CI,

C09K 11/06 C09K 9/02

// H05B 33/14

(21)Application number: 05-209660 (22)Date of filing:

24.08.1993

(71)Applicant:

KONICA CORP

(72)Inventor:

SHIBATA TOYOKO

SUZUKI SHINICHI TAKEUCHI SHIGEKI

(30)Priority

Priority number: 04226010

Priority date : 25.08.1992

Priority country: JP

(54) ORGANIC ELECTROLUMINESCENT ELEMENT

(57)Abstract:

PURPOSE: To obtain the subject element, having a higher luminous intensity and high durability at a practical level and useful as a planar light source, a flat display, etc., by forming a layer containing a specific organic compound.

CONSTITUTION: The objective element is obtained by forming a layer containing an organic compound of formula I [R1 is (substituted)phenyl, biphenyl, benzyl, etc.; R2 and R3 are (substituted)alkyl, aryl, nitro, etc.], e.g. a compound of formula II. Although an element having a construction of, e.g. substrate/anode/ luminous layer/cathode, substrate/anode/positive hole injecting layer/luminous layer/cathode or substrate/anode/luminous layer/electron injecting layer/cathode is cited as the element, this compound of formula I is preferably used in the luminous layer or the electron injecting layer. Furthermore, the luminous layer is preferably formed into a film having 20-150nm thickness thereof by a vacuum deposition, a casting methods, etc. The electron injecting layer is preferably formed into a film having 30-200nm thickness thereof according to the similar method.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

FΙ

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-122874

(43)公開日 平成6年(1994)5月6日

(51) Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

C09K 11/06

Z 9159-4H

9/02

A 7188-4H

// H05B 33/14

審査請求 未請求 請求項の数2(全 15 頁)

(21)出顧番号

特額平5-209660

(22)出願日

平成5年(1993)8月24日

(32)優先日

(31)優先権主張番号 特願平4-226010 平4 (1992) 8 月25日

(33)優先権主張国

日本(JP)

(71)出願人 000001270

コニカ株式会社

東京都新宿区西新宿1丁目26番2号

(72)発明者 芝田 豊子

東京都日野市さくら町1番地コニカ株式会

(72)発明者 鈴木 眞一

東京都日野市さくら町1番地コニカ株式会

社内

(72)発明者 竹内 茂樹

東京都八王子市石川町2970番地コニカ株式

会社内

(54)【発明の名称】 有機エレクトロルミネッセンス素子

(57)【要約】

【目的】 発光強度が強くかつ高耐久性が実用レベルの エレクトロルミネッセンス素子の提供。

【構成】 一対の対向電極とこれらによって挟持された 一層または複数層の有機化合物層から構成されているエ レクトロルミネッセンス素子において、下記一般式 [1], [2]を含有することを特徴とする。 【化1】

一般式[1]

一般式[2]

【特許請求の範囲】

下記一般式[1]で示される有機化合物 【請求項1】 を含有する層を、少なくとも一層以上設けたことを特徴 とする有機エレクトロルミネッセンス素子。

【化1】

一般式[1]

(R1は、置換、無置換のフェニル基、ピフェニル基、 ベンジル基、アルキル基、アルコキシ基を表し、R₂、 R3は、置換、無置換のアルキル基、アルコキシ基、ア ラルキル基、アリール基、置換、無置換のアルキルアミ ン基、ハロゲン化アルキル基、水素原子、ハロゲン原 子、ニトロ基、シアノ基、置換、無置換の複素環基など を表し、 $R_2 = R_3$, $R_2 \neq R_3$ いずれでもかまわない。) 【請求項2】 下記一般式[2]で示される有機化合物 を含有する層を、少なくとも一層以上設けたことを特徴

【化2】

一般式[2]

とする有機エレクトロルミネッセンス素子。

$$R \leftarrow 0 \quad 0$$

(R1, R2は、置換, 無置換のアルキル基, アルコキシ 基、アラルキル基、アリール基、置換、無置換のアルキ ルアミノ基、ハロゲン化アルキル基、水素原子、ハロゲ ン原子、ニトロ基、シアノ基、置換、無置換の複素環基 などを表し、 $R_1 = R_2$, $R_1 \neq R_2$ いずれでもかまわな (,,,)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機エレクトロルミネ ッセンス素子に関し、特に平面光源及びフラットディス プレィなどに用いられる有機エレクトロルミネッセンス 素子に関する。

[0002]

【従来の技術】有機エレクトロルミネッセンス素子は、 有機発光層及び該層をはさんだ一対の対抗電極から構成 されており、その発光は一方の電極から注入された電 子、もう一方の電極から注入された正孔により、発光層 内で再結合が起り発光体がより高いエネルギー準位に励 50 環基などを表し、 $R_2=R_3$, $R_2\neq R_3$ いずれでもかまわ

起され、励起された発光体が元の基底状態に戻る際にエ ネルギーを光として放出する事により発生する。このよ うにキャリア注入型エレクトロルミネッセンス素子は、 有機化合物薄膜を用いるようになってから、発光強度の 強いものが得られるようになってきた。例えば、米国特 許3,530,325号には発光体として単結晶アントラセン等 を用いたもの、特開昭59-194393号には正孔注入層と有 機発光体層を組合せたもの、特開昭63-295695号には正 孔注入輸送層と有機電子注入輸送層を組合せたもの及び 10 Jpn. Journal of Applied Physics, vol. 27, No 2, P26

9~271には正孔移動層と発光層と電子移動層を組合せた ものが開示されており、これらにより発光強度は改良さ

【0003】しかしながら、上述した構成の従来の有機 エレクトロルミネッセンス素子においては、発光強度は 改良されてきてはいるが、耐久性に問題があり、まだ実 用レベルの発光強度及び耐久性に達していなかった。従 って、より発光強度が強くかつ高耐久の有機エレクトロ ルミネッセンス素子の開発が望まれていた。

20 [0004]

れてきた。

【発明が解決しようとする課題】本発明は上記の実状に 鑑みてなされたもので、その目的は、より発光強度が強 くかつ高耐久性の実用レベルの有機エレクトロルミネッ センス素子を提供することにある。

[0005]

【課題を解決するための手段】本発明者らは上記の目的 を達成するため鋭意努力研究を重ねた結果、一対の対抗 電極とこれらによって挟持された一層又は複数層の有機 化合物層から構成されているエレクトロルミネッセンス 30 素子に於いて、下記一般式 [1] または [2] で表され る有機化合物を含有する層を、少なくとも一層以上設け た事を特徴とする有機エレクトロルミネッセンス素子に より、達成される事を見いだした。

[0006]

(化3)

一般式[1]

【0007】 (R1は、置換、無置換のフェニル基, ビ フェニル基、ベンジル基、アルキル基、アルコキシ基を 表し、R2, R3は、置換, 無置換のアルキル基, アルコ キシ基、アラルキル基、アリール基、置換、無置換のア ルキルアミン基、ハロゲン化アルキル基、水素原子、ハ ロゲン原子、ニトロ基、シアノ基、置換、無置換の複素

-630-

ない。) 【0008】 【化4】

一般式 [2]

$$R = \begin{bmatrix} 0 & 0 \\ & & \\ &$$

【0009】 (R1, R2は、置換, 無置換のアルキル 基, アルコキシ基, アラルキル基, アリール基、置換. 無置換のアルキルアミノ基、ハロゲン化アルキル基、水 素原子、ハロゲン原子、ニトロ基、シアノ基、置換、無 置換の複素環基などを表し、 $R_1 = R_2$, $R_1 \neq R_2$ いずれ でもかまわない。) 一般式 [1] に於けるR1の表すフ ェニル基、ピフェニル基、ペンジル基の置換基として は、メチル基、エチル基、プロピル基、プチル基などの アルキル基:メトキシ基、エトキシ基、プロポキシ基、 プトキシ基などのアルコキシ基;アミノ基、ジメチルア ミノ基、ジエチルアミノ基、ジーtープチルアミノ基な どの置換、無置換アミノ基、又、水素原子や、塩素原 子、臭素原子、沃素原子、フッ素原子などのハロゲン原 子が挙げられる。又、R1の表すアルキル基としては、 メチル基、エチル基、プロピル基、プチル基などの置 換, 無置換のアルキル基; アルコキシ基としてはメトキ シ基、エトキシ基、プロポキシ基、プトキシ基などの置 換、無置換のアルコキシ基:アルキルアミノ基として 4

は、ジメチルアミノ基、ジエチルアミノ基、ジーtープ チルアミノ基などの置換、無置換のアルキルアミノ基; カルポン酸及びその誘導体としては、カルボキシル基や メトキシカルボニル基、エトキシカルボニル基などの置 換、無置換のアルコキシカルボニル基;ハロゲン原子と しては、塩素原子、臭素原子、沃素原子、フッ素原子が 挙げられる。このR1の特に好ましい置換基としては、 アルキル基、フェニル基、ピフェニル基が挙げられる。 更に、一般式 [1] に於けるR2, R3及び一般式 [2] 10 に於けるR1, R2の表すアルキル基としては、メチル 基、エチル基、プロピル基、プチル基などの置換、無置 換のアルキル基;アルコキシ基としてはメトキシ基、エ トキシ基、プロポキシ基、プトキシ基などの置換、無置 換のアルコキシ基; アラルキル基としては、ペンジル基 など置換, 無置換のアラルキル基; アリール基として は、フェニル基、ナフチル基、ビフェニル基などの置 換、無置換のアリール基;複素環基としては、ピリジル 基、トリアゾリル基、チアゾリル基、ピロリル基、フリ ル基、オキサゾリル基、ペンゾイミダゾリルキ、ペンゾ 20 チアゾリル基などの置換、無置換の複素環基;ハロゲン 原子としては、塩素原子、臭素原子、沃素原子、フッ素 原子が挙げられる。

【0010】次に一般式[1]及び[2]で示される化合物の具体例を示す。但し、これらはあくまでも具体例であり、本発明はこれらによって限定されるものではない

【0011】 【化5】

化合物例 9	10 1	6 2 }
化合物例No.	R_1	
1	3-N(CH ₃) ₂	H

化合物例No.	$\frac{R_1}{3-N(CH_3)_2}$	R ₂	R ₃
11	$3-N(CH_3)_2$	H	H
3	3-CH ₃	Н	Н
3	3-CH ₃ 4-C1	H	H
4	3-C ₂ H ₅	Н	H
5	4-0CH ₃	Н	Н
66	3-COOCH ₃	Н	H
7	3-NH ₂	Н	Ĥ
8	4-CH ₃	6-C1	H
4 5 6 7 8 9 10 11 12 13 14 15 16 17	3-0CH ₃	5-CF ₃	H
10	3-C1	7-Ph	Н
11	4-CH ₃	6-C1	H
12	3-0CH ₃	5-0CH ₃	Н
13	H	5-C2H5	H
14	H	6-Br	H
15	H	7-0CH ₃	H
16	H	8-Ph	Н
17	H -	7-CF ₃	H
18	H	7-CF ₃ 6-C1	9-CF ₃
19	H	7-CH ₃	10-CH ₃
20	H	6-C1	9-CH ₃
21	H	8-Ph	10-0CR
22	H	7-СН _з Н	9-C1
23	3-N(CH ₃) ₂	H	9-C1
24	4-C1	H	9-C1 9-C1 10-Ph 9-CH ₃
25	3-CH ₃	H	9-CH ₃
26	3-COOC ₂ H ₅	7-СН а	9-CH ₅ (
19 20 21 22 23 24 25 26 27 28 29	4-0CH ₃	6-C1	10-0CH ₃
28	$3-N(C_2H_5)_2$	8-CH ₃ 5-C1 H	10-CH ₃
29	3-C1	5-C1	9-C1
30	H	H	9-Ph
31	H	H	10-CH ₃
32	H	H	10-C ₂ H ₅
33	H	H	10-C ₂ H ₅ 9-C1
34	H	H	9-0CH ₃
31 32 33 34 35	H	H	9-CN
36	Н	H	10-CF ₃

[0012] 40 [化6]

No. 37

No. 38

8

No. 39

No. 40

No. 41

N(CH₃)₂ No. 44

No.45

No.46

No. 47

No. 48

[0013]

【化7】

No. 49 CH₃

No. 50

10

No.51

C(CH³)³

No. 52

OC₂H₅

No. 54

No. 56

No. 58

[0014]

【化8】

No. 60

$$\bigcup_{\mathsf{N}(\mathsf{C}_2\mathsf{H}_5)_2}^{\mathsf{O}_0}$$

12

No. 61

No. 62

No. 63

No. 64

No. 66

No. 67

No. 68

[0015]

[化9] 40

13

No. 69

No. 70

No. 71 $N(C_2H_5)_2$ $N(C_2H_5)_3$

No. 72

No. 73

No. 74

No. 75

No. 76

DCII₃

6 CH₃

No. 77

No. 77

N(CH₃)₂

No. 78

No. 78

N(C₂H₅)₂

[0016]

40 【化10】

No.80

OC 2 H 5

16

No. 81

No. 83

No. 85

No. 86

[0017]

No. 89

【0018】 【化12】 化合物例

$$9 \times 10^{-1} \times$$

化合物例No.	R ₁	R₂
91	H	H
92	H	7-CH ₃
93	H	8-C1
92 93 94	Н	9-Ph
95	H	8-N(CH ₃) ₂
95 96	H	10-CF ₃
97	H	7-CN
98	H	9-0CH ₃
99	H	10-C ₂ H ₅
100	3-CH ₃	H
101	4-C1	H
102	5-Ph	H
103	6-N(CH ₃) ₂	H H
104	3-CF ₃	Н
104 105	4-N(CH ₃) ₂	H
106	5-0CH ₃	Н
107	6-C ₂ H ₅	Н
109	3-NO.	H
110	3-NO ₂ 4-0CH ₃	9-C1
111	5-CH ₃	8-Ph
112	6-CN	7-CH ₃
113	4-N(CH ₃) ₂	7-CH ₃ 9-N(CH ₃) ₂
111 112 113 114 115	3-0CH ₃	9-CH₃
115	5-Br	8-CF ₃
116	4-CH ₃	9-CH ₃
116 117	3-CN	8-0CH ₃
118	4-Ph	9-Ph
1 119	5-CN	8-CN
120	5-C(CH ₃) ₃	8-C(CH ₃) ₃
121	3-C1	10-C1
122	4-NO ₂	9-C1
123	3-CN	10-NO ₂
124	4-N(CH ₃) ₂	9-C(CH ₃) ₃
125	4-Ph	10-NO ₂
126	4-NO ₂	8-0CH ₃
127	4-NO ₂	9-NH ₂
120 121 122 123 124 125 126 127 128	$4-N(C_2H_5)_2$	$9-N(C_2H_6)_2$

【0019】本発明の有機エレクトロルミネッセンス素子の構成には各種態様が有るが、基本的には有機発光層及び該層を挟んだ一対の対抗電極から構成されており、具体的には、(1)基板/陽極/発光層/陰極(図1(1))、(2)基板/陽極/正孔注入層/発光層/陰極(図1(2))、(3)基板/陽極/発光層/電子注入層/陰極(図1(3))、(4)基板/陽極/正孔注入層/発光層/電子注入層/陰極(図1(4))などが挙げられるが、本発明は必ずしもこの構成に限定される

18

ものでなく、それぞれにおいて発光層、正孔注入層、電子注入層を複数層設けたり、またそれぞれにおいて正孔注入層/発光層、発光層/電子注入層、正孔注入層/発光層を繰返し積層した構成にしたり、発光層と電子注入層との間に電子注入材と発光材との混合層、正孔注入層と発光層との間に正孔注入材と発光材の混合層をもうけたりまたそれぞれにおいて他の層を設けてもかまわない。本発明の化合物一般式[1]及び[2]は、電子注入層もしくは発光層に用いるのが望ましい。

0 【0020】発光層は蒸着法、スピンコート法、キャスト法などにより形成してその膜厚は10~1000nmが好ましく、より好ましくは20~150nmである。正孔注入層は蒸着法、スピンコート法、キャスト法などにより形成してその膜厚は10~1000nmが好ましく、より好ましくは40~200nmである。電子注入層は蒸着法、スピンコート法、キャスト法などにより形成してその膜厚は10~1000nmが好ましく、より好ましぐは30~200nmである。

【0021】基板1は、ソーダガラス、無蛍光ガラス、 燐酸系ガラス、珪酸系ガラスなどのガラス板、石英、ア クリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シ リコーン系樹脂などのプラスチック板およびプラスチッ クフィルム、アルミナなどの金属板及び金属ホイルなど が用いられる。

【0022】陽極2は4eVより大きい仕事関数を持つものが好ましく、炭素、アルミニウム、パナジウム、鉄、コパルト、ニッケル、クロム、銅、亜鉛、タングステン、銀、錫、白金、金などの金属及びこれらの合金、酸化亜鉛、酸化インジュウム、ITO、NESA等の酸化錫もしくは酸化錫インジュウム等の複合化合物、沃化銅などの化合物、Zn0:Al, Sn02:Sbなどの酸化物と金属の混合物、さらには、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの誘導体ポリマーなどが用いられる。膜厚は10~1000nmが好ましく、より好ましくは10~200nmである。

【0023】陰極3は4eVより大きい仕事関数を持つものが好ましく、マグネシウム、カルシウム、ナトリウム、カリウム、チタニウム、インジウム、イットリウム、リチウム、ガドリニウム、イッテルピウム、ルテニ40ウム、マンガン、アルミニウム、銀、錫、鉛などの金属及びこれらの合金、アルミニウム/酸化アルミニウム複合体などが用いられる。膜厚は10~1000nmが好ましく、より好ましくは10~900nmである。

【0024】電極より光を取出す場合は、陽極2、陰極3のうち少なくともどちらか一方は、透過率10%以上の透明又は半透明であり、陽極2のみが透過率10%以上の透明又は半透明である場合は基板1も透明又は半透明である事が望ましい。

入層/発光層/電子注入層/陰極(図1(4))などが 【0025】発光層4に用いられる発光物質の具体例と 挙げられるが、本発明は必ずしもこの構成に限定される 50 しては、前記一般式に表される有機化合物以外にオキシ

ノイド化合物 (特開昭63-295695号、特開平2-15595号、 同2-66873号などに記載のもの)、ペリレン化合物(「S oluble Perylen Fluorenscent Dyes with Photostabil ity, vol. 115, P 2927 (1982) J, [Jpn. Journal of App lied Phyisics, vol. 27, No 2, P 269 (1988)], 「Bul I. Chem. Soc. Jpn. vol. 25, P411(1952)」, 欧州特許553, 353A1号, 特開昭55-36849号, 特開平2-66873号などに記 載のもの)、クマリン化合物(特開昭57-51781号,特開 平2-66873号などに記載されたもの)、アザクマリン化 合物 (特開平3-792号などに記載されたもの)、オキサ ゾール化合物 (米国特許3,257,203号,特開平3-193763 号などに記載されたもの)、オキサジアゾール化合物 (米国特許3,189,447号,特開平2-216791号などに記載 されたもの)、ペリノン化合物(特開平2-88689号,同2 -289676号, などに記載されたもの)、ピロロピロール 化合物(特開平2-296891号などに記載されたもの)、ナ フタレン化合物 (特開昭57-51781号, 特開平2-255789号 などに記載されたもの)、アントラセン化合物(特開昭 56-46234号、特開平2-66873号などに記載されたも の)、フルオレン化合物(特開昭54-110837号,特開平3 -162485号などに記載されたもの)、ピレン化合物(特 開昭57-51781号, 特開平3-162485号などに記載されたも の)、コロネン化合物(特開平3-162485号などに記載さ れたもの)、キノロン化合物及びアザキノロン化合物 (特開平3-162483号などに記載されたもの)、ピラゾリ ン及びピラゾロン誘導体 (米国特許3,180,729 号, 同4, 278,746号, 特開昭55-88064号, 特開平2-220394号同3-1 62486号などに記載されたもの)、スチルベン化合物 (米国特許4,356,429号,特開昭57-51781号,同61-2103 63号, 同61-228451号, 同61-14642号、同61-72255号、 同62-47646号, 同62-30255号, 同60-94462号, 同63-149 652号, 特開平1-173034号, 同1-245087号などに記載さ れたもの)、ジフェノキノン化合物 (「Polymer Prepri nts, Japan, vol. 37, p681(1988)」, 特開平3-152184号 などに記載されたもの)、スチリル化合物(特開平1-24 5087号,同2-222484号などに記載されたもの)、プタジ エン化合物 (米国特許4,356,429号,特開昭57-51781号 などに記載されたもの)、アンスラセン化合物(特開平 3-178942号に記載されたもの)、シアニン化合物(特開 平2-66873号に記載されたもの)、アクリジン化合物 (特開昭57-51781号などに記載されたもの)、8-ヒドロ キシキノリン化合物の金属錯体(特開平2-8287号,同2-8290号などに記載されたもの),、シッフ塩とIII族金属 との錯体(特開平1-297490号などに記載されたもの)、 オキシン金属錯体(特開平3-176993号などに記載された もの)、希土類錯体(特開平1-256584号などに記載され たもの) などの蛍光物質を使用する事が出来る。

【0026】正孔注入層5に用いられる正孔輸送能を有する正孔注入化合物の具体例としては、トリアゾール化合物(米国特許3,112,197号などに記載されたもの)、

20

オキサジアゾール誘導体(米国特許3,189,447号などに 記載されたもの)、イミダソール誘導体(特公昭37-160 96号などに記載されたもの)、ポリアリールアルカン誘 導体 (米国特許3,615,402号,特公昭45-555号,特開昭5 1-93224号, 同56-36656号などに記載されたもの)、ピ ラゾリン誘導体及びピラゾロン誘導体(米国特許3,180, 729号, 特開昭55-88064号, 同57-45545号などに記載さ れたもの)、フェニレンジアミン誘導体(米国特許3,61 5,404号、特公昭51-10105号、特開昭54-53435号などに 記載されたもの)、アリールアミン誘導体(米国特許4, 175,961号, 特公昭49-65702号, 特開昭56-223437号, 西 ドイツ特許1,110,518号などに記載されたもの)、オキ サゾール誘導体 (米国特許3,257,203号などに記載され たもの)、スチリルアントラセン誘導体(特開昭56-462 34号などに記載されたもの)、フルオレノン誘導体(特 開昭54-110837号などに記載されたもの)、ヒドラゾン 誘導体 (米国特許3,717,462号,特開昭54-59143号,特 開平3-138654号などに記載されたもの)、スチルベン誘 導体(特開昭61-210363号,特開平1-200262号などに記 載されたもの)、ポリフィリン化合物(特開昭63-29569 5号, 特開平2-1295号などに記載されたもの)、芳香族 第3級アミン化合物及びスチリルアミン化合物(米国特 許4,127,412号,特開昭53-27033号,同63-295695号,特 開平1-274154号,同3-111485号などに記載されたも の), ブタジエン化合物 (特開平3-111484号などに記載 されたもの), ポリスチレン誘導体(特開平3-95291号 などに記載されたもの)、ヒドラゾン誘導体(特開平3-137187号などに記載されたもの)、トリフェニルメタン 誘導体、テトラフェニルベンジジン誘導体(特開平3-54 30 289 号などに記載されたもの) などを使用する事ができ る。特に好ましくは、ポリフィリン化合物、芳香族第3 級アミン化合物及びスチリルアミン化合物である。

【0027】電子注入層6に用いられる電子輸送能を有 する電子注入化合物の具体例としては、前記一般式に表 される有機化合物の他にニトロ置換フルオレノン誘導チ オピランジオキサイド誘導体、ジフェノキノン誘導体 ([Polymer Preprints, Japan, vol. 37, No 3, P681, (1 988)」、特開平3-152184号などに記載されたもの)、ペ リレンテトラカルボキシル誘導体(「Jpn. Journal of A pplied Physics, vol. 27, No 2, P 269(1988) J 「Bull. C hem. Soc. Jpn., vol. 25, P411(1952)」などに記載され たもの)、アントラキノジメタン誘導体(特開昭57-149 259号、同63-104061号などに記載されたもの)、フルオ ロニリデンメタン誘導体(特開昭60-69657号、 同61-148159号などに記載されたもの)、アン トロン誘導体(特開昭61-225151号, 同61-233750号など に記載されたもの)、オキサジアゾール誘導体(特開平 3-79692号などに記載されたもの)、ペリノン誘導体 (特開平2-289676号などに記載されたもの)、キノリン 50 錯体誘導体などの化合物を使用する事が出来る。

[0028]

【実施例】次に実施例によって本発明を具体的に説明す

【0029】実施例1

陽極としてガラス上にITOを150mm成膜した基板(日本板 硝子株式会社製P110E-H-PS) を所望の形にパターニング を行った後、アルミナ研磨剤にて水と共に研磨を行っ た。水洗後、水超音波洗浄10分間2回行い、さらに90℃ にて熱風乾燥を行った。

物(A-1)をタングステンポード(日本パックスメタ ル株式会社SF208) に入れ、8.0×10⁷ Torrの真空条件下 で0.2nm/secの成膜速度で約80nmの正孔注入層を形成し た。

【0031】次いで、真空を保ったまま化合物例NO.36 をモリブデンポート (日本パックスメタル株式会社SS-1 -9) に入れ、8.0×10⁻⁷Torrの真空条件下で0.2nm/secの 成膜速度で約60mの電子注入層を形成した。

【0032】更にこの上に真空条件を変ること無くMg:*

*Ag (10:1原子比合金)を50m真空蒸着し、陰極を形成 した。

【0033】このようにして得られた有機エレクトロル ミネッセンス素子に外部電源を接続し18 V直流電圧を印 可し、そのときの最大輝度を測定した。また温度23℃乾 燥窒素ガス雰囲気下で18V直流電圧印可による連続点灯 を行い、輝度の半減する時間を測定した。この結果を表

【0034】実施例2~6

【0030】次にこの基板に、下記「化13」に示す化合 10 電子注入層に用いる化合物を、表1に示した化合物に代 えて、実施例1と同様にして有機エレクトロルミネッセ ンス素子を得た。その特性を表1に示す。

【0035】比較例(1)

電子注入層に「化13」に記載した化合物(B-1)を用 いた以外は、実施例1と同様にして素子を作成し、測定 を行った。この結果を表1に示す。

[0036] 【表1】

	電子注入	最高輝度	輝度半減時間
	化合物	(cd/m^2)	(時間)
実施例1	36	300	126
実施例2	1	340	122
実施例3	4	320	138
実施例 4	53	490	143
実施例5	71	420	129
実施例6	113	350	128
比較例1	<u> </u>	110	42

【0037】実施例7~12

正孔注入層に「化13」に記載した化合物(A-2)を用 い、電子注入層に表2に示した化合物を用いた他は、実 施例1と同様にして有機エレクトロルミネッセンス素子 を作成し、測定を行った。結果は、表2に示す。

【0038】比較例(2)

電子注入層に「化13」に記載した化合物(B-2)を用 いた以外は、実施例7と同様にして素子を作成し、測定 を行った。この結果を表2に示す。

[0039]

【表2】

23

	電子注入	最高輝度	輝度半減時間
	化合物	(cd/m²)	(時間)
実施例7	14	220	128
実施例8	24	280	118
実施例9	37	390	148
実施例10	78	410	159
実施例11	84	450	130
実施例12	103	420	134
比較例2	<u> </u>	150	33

[0040]

* *【化13】

(A - 1)

(B - 1)

(A - 2)

(B - 2)

【0041】実施例13~23

(日本板硝子株式会社製P110E-H-PS) を所望の

陽極としてガラス上にITOを150nm成膜した基板 50 形にパターニングを行った後、アルミナ研磨剤にて水と

共に研磨を行った。水洗後、水超音波洗浄10分間2回行 い、さらに90℃にて熱風乾燥を行った。

【0042】次に、正孔注入物質として前記化合物(A-2)を0.03g、電子注入物質として表3に示した化合物を0.045g、2回再沈精製を行ったポリメタアクリレートをパインダー樹脂として0.045g、これらを1,2-ジクロロエタン10mlに溶解し塗布液を調製した。この塗布液を上記の基板にスピンコーター(ミカサ(株)社製1H-D3型)にて1000rpm/15sec.の条件で塗布を行い約100nmの塗膜を得た。

*で、0.2mm/secの成膜速度でMg:Ag(10:1原子比合金)を50mm真空蒸着し、陰極を形成した。

26

【0044】このようにして得られた有機エレクトロルミネッセンス素子に外部電源を接続し18V直流電圧を印加し、そのときの最大輝度を測定した。また温度23℃乾燥窒素ガス雰囲気下で18V直流電圧印加による連続点灯を行い、輝度の半減する時間を測定した。この結果を表3に示す。

[0045]

10 【表3】

【0043】更にこの上に8.0×10-4Torrの真空条件下*

	電子注入	最高輝度	輝度半減時間
	化合物	(cd/m²)	(時間)
実施例13	6	220	132
実施例14	23	320	139
実施例15	26	310	125
実施例16	37	400	142
実施例17	41	610	151
実施例18	60	560	144
実施例19	76	250	142
実施例20	86	425	133
実施例21	91	365	128
実施例22	98	315	108
実施例23	124	330	132

[0046]

【発明の効果】本発明に係る特定の有機化合物を用いる ことにより、発光強度、耐久性に於いて十分に実用に耐 える有機エレクトロルミネッセンス素子が得られる。

【図面の簡単な説明】

【図1】本発明の態様例を示す有機薄膜エレクトロルミネッセンス素子の断面図。

30 【符号の説明】

- 1 基板
- 2 陽極
- 3 陰極
- 4 発光層
- 5 正孔注入層
- 6 電子注入層

【図1】

(1) 陰 極 З. 発光層 4. 陽極 2.

基 板

1.

(2) 3. 陰 極 発光層 4. 5. 正孔注入層 陽極 2. 1. 基 板

(3) 陰 極 З. 電子注入層 6. 発光層 4. 2. 陽 極 基 板 1.

(4)

3.	陰 極
6.	電子注入層
4.	発光層
5.	正孔注入層
2.	陽極
1.	基板

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY