Lecture: Distributed Algorithms for General Consensus

Shaoshuai Mou

Review of Consensus Algorithms

Consensus:

iust a constant

- Objective: $x_1(t) = x_2(t) = \cdots = x_m(t) \neq x^*$

• Update:
$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t)$$
 Local Weighted Average (convex combination)
$$w_{ij} = \begin{cases} >0, \ j \in \mathcal{N}_i & \sum\limits_{j=1}^m w_{ij} = 1 \\ 0, \ \text{otherwise}. \end{cases}$$

 w_{ij} : the weight assigned by agent i to agent j

agent's dynamics: $x_i(t+1) = u_i$

control input: $u_i = f_i(x_j(t), j \in \mathcal{N}_i)$

distributed

• Compact Form:
$$x(t+1) = Ax(t)$$

$$A \in \mathbb{R}^{m imes m}$$
 with entries: $\,A_{ij} =$

$$w_{ij}$$
 if $j \in \Lambda$

Analysis:

$$q \in \mathbb{R}^m$$
 (unknown)

$$A^t \quad o \quad \mathbf{1} \ q'$$

Consensus is reached.

$$x(t) \rightarrow \mathbf{1} \underbrace{q' x(0)}_{x^*} = \begin{bmatrix} x^* \\ x^* \\ \vdots \\ x^* \end{bmatrix}$$

Consensus to the Global Average

• Objective:
$$x_1(t) = x_2(t) = \dots = x_m(t) = x^*$$

Objective:
$$x_1(t) = x_2(t) = \cdots = x_m(t) = x^*$$
 $x^* = \frac{1}{m} \sum_{i=1}^m x_i(0) = \frac{1}{m} \mathbf{1}' x(0)$ $\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ consensus to a specific value (the global average)

to a specific value (the global average)

Distributed Update 1: Local weighted average

Metropolis Weights

$$w_{ij} = \begin{cases} > 0, \ j \in \mathcal{N}_i \\ 0, \text{ otherwise.} \end{cases}$$
$$\sum_{i=1}^{m} w_{ij} = 1$$

$$w_{ij} = \begin{cases} > 0, \ j \in \mathcal{N}_i \\ 0, \ \text{otherwise.} \end{cases}$$

$$\sum_{j=1}^{m} w_{ij} = 1$$

$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t)$$

$$w_{ij} = \begin{cases} \min\{\frac{1}{d_i}, \frac{1}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \end{cases}$$

Periodic Gossiping. **Distributed Update 2:**

$$(1,2), (3,4), (2,3), (2,4)$$
 $(1,2), (3,4), (2,3), (2,4),$

$$x(4) = M_{24}M_{23}M_{34}M_{12}x(0)$$
 $x(4(t+1)) = Ax(4t)$

$$A^t \rightarrow \frac{1}{m} \mathbf{1} \mathbf{1}'$$

Consensus to the global average is reached.

$$\gamma_i > 0, \ \sum_{i=1}^m \gamma_i = 1$$

• Objective:
$$x_1(t) = x_2(t) = \cdots = x_m(t) = x^*$$

Consensus to a more general value to a specific convex combination
$$x_1(t) = x_2(t) = \dots = x_m(t) = x^* \qquad x^* = \sum_{i=1}^m \gamma_i x_i(0) = \gamma' x(0)$$
 Objective: $x_1(t) = x_2(t) = \dots = x_m(t) = x^*$
$$x^* = \sum_{i=1}^m \gamma_i x_i(0) = \gamma' x(0)$$

Why do we care about such specific convex combination?

$$\gamma = egin{bmatrix} \gamma_1 \ \gamma_2 \ dots \ \gamma_m \end{bmatrix}, \; \mathbf{1} = egin{bmatrix} 1 \ 1 \ dots \ 1 \end{bmatrix}$$

When we fuse data in a large sensor network, accurate (inaccurate) measurements should be with higher (lower) weights.

The global average $\frac{1}{m}\sum_{i=1}^{m}x_{i}(0)$ give equal weights to all sensors' measurements. (works for heterogeneous networks)

Let each sensor $\,i\,$ be additionally assigned with a parameter $\,\gamma_i\,$

(The larger γ_i is, the more accurate the sensor is)

For consensus, we need

$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t)$$

$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t) \qquad w_{ij} = \begin{cases} > 0, \ j \in \mathcal{N}_i \\ 0, \text{ otherwise.} \end{cases} \qquad \sum_{j=1}^m w_{ij} = 1$$

For consensus to the global average, we **further** need Metroplolis weights:
$$w_{ij} = \begin{cases} \min\{\frac{1}{d_i}, \ \frac{1}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \end{cases}$$
 How to achieve
$$\sum_{i=1}^m \gamma_i x_i(0)$$
? Any ideas?

How to choose w_{ij} to achieve a specific convex combination $\gamma'x(0)$?

A Distributed Update to achieve $\gamma'x(0)$:

$$\begin{array}{ll} \text{Consensus:} & x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t) & \sum_{j \in \mathcal{N}_i} w_{ij} = 1 & w_{ij} > 0, j \in \mathcal{N}_i \\ \\ \frac{1}{\gamma_i} \min\{\frac{\gamma_i}{d_i}, \frac{\gamma_j}{d_j}\} & \text{bi-directional Networks} \\ j \in \mathcal{N}_i, \ j \neq i; & d_i = |\mathcal{N}_i| \\ \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \\ \end{array}$$

L. Coduti, M. Corless. A decentralized algorithm for assigning the weight parameters in a general synchronous consensus network. IEEE Conference on Decision and Control. 2012.

$$x_1(t+1) = (1 - \frac{0.05}{0.44})x_1(t) + \frac{1}{0.44} \cdot \min\{0.05, 0.22\} \cdot x_2(t)$$

$$x_2(t+1) = \frac{1}{0.2} \cdot 0.05 \cdot x_1(t) + (1 - \frac{0.14}{0.2})x_2(t) + \frac{1}{0.2} \cdot 0.05 \cdot x_3(t) + \frac{1}{0.2} \cdot 0.04 \cdot x_4(t)$$

$$x_3(t+1) = \frac{1}{0.12} \cdot 0.05 \cdot x_2(t) + (1 - \frac{1}{0.24} \cdot 0.09)x_3(t) + \frac{1}{0.24} \cdot 0.04 \cdot x_4(t)$$

$$x_4(t+1) = \frac{1}{0.12} \cdot 0.04 \cdot x_2(t) + \frac{1}{0.12} \cdot 0.04 \cdot x_3(t) + (1 - \frac{0.08}{0.12})x_4(t)$$

$$\frac{\gamma_3}{d_3} = \frac{0.24}{3} = 0.08 \quad \frac{\gamma_4}{d_4} = \frac{0.12}{3} = 0.04$$

$$\gamma_3 = 0.24 \quad \gamma_4 = 0.12$$

$$\gamma_2 = 0.2 \quad \gamma_1 = 0.44$$

• Compact Form:

$$x(t+1) = Ax(t)$$

All entries are non-negative.

Row sum is 1.

$$A\mathbf{1} = \mathbf{1}$$
 $\mathbf{1} = \begin{bmatrix} 1 & 1 \end{bmatrix}$

$$\gamma' A = \gamma'$$
 $_{\gamma}$ $_{\gamma}$

$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$1 = \begin{bmatrix} \frac{0.39}{0.44} & \frac{0.05}{0.44} & 0 & 0 \\ \frac{0.05}{0.2} & \frac{0.06}{0.2} & \frac{0.05}{0.2} & \frac{0.04}{0.2} \\ 0 & \frac{0.05}{0.24} & \frac{0.15}{0.24} & \frac{0.04}{0.24} \\ 0 & \frac{0.04}{0.12} & \frac{0.04}{0.12} & \frac{0.04}{0.12} \end{bmatrix}$$

• Analysis:

Observations on A

$$A^t \rightarrow \mathbf{1} \ \gamma' =$$

$$x(t) \rightarrow \mathbf{1}(\gamma' x(0)) =$$

Consensus to a specific convex

combination $\sum_{i=1}^{m} \gamma_i x_i(0)$ is reached.

Summary of Distributed Consensus

✓ Objective:
$$x_1(t) = x_2(t) = \cdots = x_m(t) = x^*$$

✓ Update:
$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t)$$

 w_{ij} : the weight assigned by agent i to agent j

agent's dynamics: $x_i(t+1) = u_i$

distributed control: $u_i = f_i(x_j(t), j \in \mathcal{N}_i)$

Consensus Goals	Choices of Weights
x^st is an unknown constant	$w_{ij} = \begin{cases} > 0, \ j \in \mathcal{N}_i \\ 0, \ \text{otherwise.} \end{cases} \sum_{j=1}^m w_{ij} = 1$
x^* is the global average $\frac{1}{m}\sum_{i=1}^m x_i(0)$	$w_{ij} = \begin{cases} \min\{\frac{1}{d_i}, \frac{1}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \\ 0, \text{ otherwise.} \end{cases}$
x^* is a specific convex combination $\sum_{i=1}^m \gamma_i x_i(0)$	$w_{ij} = \begin{cases} \frac{1}{\gamma_i} \min\{\frac{\gamma_i}{d_i}, \frac{\gamma_j}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \\ 0, \ \text{otherwise.} \end{cases}$

🗸 Analysis:
$$x(t+1) = Ax(t)$$
 $A \in \mathbb{R}^{m imes m}$ with entries $A_{ij} = w_{ij}$ $x(t) o A^t x(0)$

Stochastic Matrices

Consensus

$$A_1 = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/3 & 1/3 & 1/2 \\ 0 & 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 3/4 & 1/4 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/4 & 5/12 & 1/3 \\ 0 & 1/4 & 1/3 & 5/12 \end{bmatrix}$$

Consensus Consensus for global average Consensus for convex combination
$$A_1 = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/3 & 1/3 & 1/2 \\ 0 & 1/3 & 1/3 & 1/3 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 3/4 & 1/4 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/4 & 5/12 & 1/3 \\ 0 & 1/4 & 1/3 & 5/12 \end{bmatrix} \qquad A = \begin{bmatrix} \frac{0.39}{0.44} & \frac{0.05}{0.44} & 0 & 0 \\ \frac{0.05}{0.2} & \frac{0.06}{0.2} & \frac{0.05}{0.2} & \frac{0.04}{0.2} \\ 0 & \frac{0.05}{0.24} & \frac{0.15}{0.24} & \frac{0.04}{0.24} \\ 0 & \frac{0.04}{0.12} & \frac{0.04}{0.12} & \frac{0.04}{0.12} \end{bmatrix}$$

$$\text{What do you observe something in common among these matrices??}$$

- > All entries are **non-negative**
- All matrices are **row stochastic**. A1 = 1
 - A row stochastic matrix P describes a **Markov chain** with the *ii*th entry as the transition probability, namely, probability of moving from state *i* to *j* in one-time step.

$$P = \begin{bmatrix} P_{1,1} & P_{1,2} & \dots & P_{1,j} & \dots & P_{1,S} \\ P_{2,1} & P_{2,2} & \dots & P_{2,j} & \dots & P_{2,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i,1} & P_{i,2} & \dots & P_{i,j} & \dots & P_{i,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{S,1} & P_{S,2} & \dots & P_{S,j} & \dots & P_{S,S} \end{bmatrix}. \qquad \begin{array}{c} \sum_{j=1}^n P_{ij} = 1 \\ \text{Long-time probability distribution} \\ \text{Stationary probability vector} \text{ is a row vector such that } \pi P = \pi \\ \end{array}$$

 A_2 is doubly stochastic. $A\mathbf{1}=\mathbf{1}, \quad \mathbf{1}'A=\mathbf{1}'$

Summary by Exercise

Write a distributed update for:

Consensus:

$$x_i(t+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j(t)$$

- Consensus to global average:
 - · Distributed Update with Metropolis Weights:

$$w_{ij} = \begin{cases} \min\{\frac{1}{d_i}, \ \frac{1}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \\ 0, \text{ otherwise.} \end{cases}$$

Periodic Gossiping:

> Consensus to
$$\gamma' x(0)$$
 $\gamma = \begin{bmatrix} 1/2 \\ 1/4 \\ 1/4 \end{bmatrix}$

Distributed Update with Metropolis Weights:

$$w_{ij} = \begin{cases} \frac{1}{\gamma_i} \min\{\frac{\gamma_i}{d_i}, \frac{\gamma_j}{d_j}\} & j \in \mathcal{N}_i, \ j \neq i; \\ 1 - \sum_{j \in \mathcal{N}_i, \ j \neq i} w_{ij} & j = i \\ 0, \ \text{otherwise.} \end{cases}$$

