Entrega Clase 2 - Estadística

Alejandro Uribe

Octubre 2022

Enunciado

Sea X una variable aleatoria con la siguiente función de distribución:

$$F_X(x) = \begin{cases} 0 & x < 1 \\ 0.4 & 1 \le x < 2 \\ 0.7 & 2 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

1. Graficar $F_X(x)$

2. Hallar el rango R_x y la función de probabilidad de X, $p_x(x)$.

 R_x está dado por el conjunto de puntos para los cuales la función de probabilidad puntual es diferente de cero, es decir,

$$R_x = \{x \in \mathbf{R} : p_x(x) \neq 0\}$$

$$R_x = \{1, 2, 3, 4, 5\}$$

La función de probabilidad de X se define como: $p_x(x) = P(X = x) = F_X(x) - F_X(x^-)$. Notar que para el intervalo $2 \le x < 5$ la probabilidad es la misma.

$$p_x(1) = P(X = 1) = F_X(1) - F_X(1^-) = 0.4 - 0.0 = 0.4$$

$$p_x(2) = P(X=2) = F_X(2) - F_X(2^-) = 0.7 - 0.4 = 0.3$$

$$p_x(3) = P(X=2) = 0.3$$

$$p_x(4) = P(X=2) = 0.3$$

$$p_x(5) = P(X = 5) = F_X(5) - F_X(5^-) = 1.0 - 0.7 = 0.3$$

Los resultados anteriores se muestran en la siguiente tabla:

X	1	2	3	4	5
$p_x(x)$	0.4		0.3		0.3

3. Calcular

■ $P(1.5 < X \le 5)$

La probabilidad se puede rescribir como:

$$P(1.5 < X \le 5) = P(2 \le X \le 5)$$

Se aplican las propiedades $P(a < X \le b) = F_X(b) - F_X(a)$ y $P(X = x) = F_X(x) - F_X(x^-)$

$$\begin{split} &P(1.5 < X \le 5) = P(X = 2) + P(2 < X \le 5) \\ &P(1.5 < X \le 5) = (F_X(2) - F_X(2^-)) + (F_X(5) - F_X(2)) \\ &P(1.5 < X \le 5) = F_X(5) - F_X(2^-) \\ &P(1.5 < X \le 5) = 1.0 - 0.4 \\ &P(1.5 < X \le 5) = 0.6 \end{split}$$

■ P(1 < X < 5)

La probabilidad se puede rescribir como:

$$P(1 < X < 5) = P(1 < X \le 4)$$

Se aplican la propiedad $P(a < X \le b) = F_X(b) - F_X(a)$

$$P(1 < X < 5) = F_X(4) - F_X(1)$$

 $P(1 < X < 5) = 0.7 - 0.4$
 $P(1 < X < 5) = 0.3$

■ $P(X \ge 2)$

La probabilidad se puede rescribir como:

$$P(X \ge 2) = P(X = 2) + P(X > 2)$$

Se aplican la propiedad $P(X > x) = 1 - F_X(x)$ y $P(X = x) = F_X(x) - F_X(x^-)$

$$P(X \ge 2) = (F_X(2) - F_X(2^-)) + (1 - F_X(2))$$

$$P(X \ge 2) = 1.0 - F_X(2^-)$$

$$P(X \ge 2) = 1.0 - 0.4$$

$$P(X \ge 2) = 0.6$$

$$F_{x}(x) = \begin{cases} 0 & x < 1 \\ 0.4 & 1 \leq x < 2 \\ 0.7 & 2 \leq x < 5 \end{cases}$$

b)
$$R_{x} = \begin{cases} x \in \mathbb{R} / P_{x}(x) \neq 0 \end{cases}$$

 $R_{x} = \begin{cases} x \geq 1 \end{cases}$

 $P_{x}(x) = P(x = x) = F_{x}(x) - F_{x}(x).$ $P_{x}(1) = P(x = 1) = 0.4 - 0 = 0.4$ $P_{x}(2) = P(x = 2) = 0.7 - 0.4 = 0.3$ $P_{x}(3) = P(x = 3) = 0.7 - 0.4 = 0.3$ $P_{x}(4) = P(x = 4) = 0.7 - 0.4 = 0.3$ $P_{x}(5) = P(x = 5) = 1 - 0.7 = 0.3$

(1) - $P(1.54 \times 45) = P(24 \times 45)$ $P(1.54 \times 45) = P(x=2) + P(24 \times 45)$ $P(1.54 \times 45) = P(x=2) + F(5) - F(2)$

 $P(1.54 \times 4.5) = F_{x}(2/-F_{x}(2^{-1}) + F(5)-F_{x}(2))$ $P(1.54 \times 4.5) = F_{x}(5) - F_{x}(2^{-1})$ $P(1.5) = F_{x}(5) = 0.4 = 0.6$

 $P(12 \times 25) = P(12 \times 24)$ $P(12 \times 25) = F_{\times}(4) - F_{\times}(1)$ $P(12 \times 25) = 0.7 - 0.4$ $P(12 \times 25) = 0.3$

 $P(X \ge 2) = P(X = 2) + P(X \ge 2)$ $P(X \ge 2) = F_{X}(2) - F_{X}(2^{-}) + (1 - F_{X}(2))$ $P(X \ge 2) = 1 - F_{X}(2^{-})$ $P(X \ge 2) = 1 - 0.4 = 0.6$