Capítulo 1

Métodos Térmicos - Injeção de Água Quente

A formulação matemática para o Injeção de água quente é definida como:

$$\begin{cases} \frac{\partial S_1}{\partial t} + \frac{u_t}{\phi} \frac{\partial f_1(S_1, T)}{\partial x} = 0\\ \frac{\partial}{\partial t} \left[\phi \left(\rho_1 S_1 H_1 + \rho_2 S_2 H_2 \right) + (1 - \phi) \rho_s H_s \right] + \frac{\partial}{\partial x} \left(\rho_1 \overrightarrow{u_1} H_1 + \rho_2 \overrightarrow{u_2} H_2 \right) = 0 \end{cases}$$

$$\tag{1.1}$$

onde, S_j é a saturação, f_j é o fluxo fracionário, H_j é a enthalpia, u_j a velocidade da fase, ρ_j é a massa específica e ϕ a porosidade. Escrevendo na forma matricial:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\partial S_1}{\partial t} \\ \frac{\partial f}{\partial t} \end{pmatrix} + \begin{pmatrix} \frac{u_t}{\phi} \frac{\partial f_1}{\partial S_1} & \frac{u_t}{\phi} \frac{\partial f_1}{\partial T} \\ 0 & \frac{u_t}{\phi} \frac{(M_{t_1} f_1 + M_{t_2} f_2)}{\left[(M_{t_1} S_1 + M_{t_2} S_2) + \frac{(1 - \phi)}{\phi} M_{t_s} \right]} \end{pmatrix} \begin{pmatrix} \frac{\partial S_1}{\partial x} \\ \frac{\partial f}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
onde, $M_{T_j} = \rho_j C_{P_j}$. (1.2)

1.1 Autovalores:

$$\lambda_1 = \frac{u_t}{\phi} \frac{\partial f_1}{\partial S_1} \tag{1.3}$$

$$\lambda_2 = \frac{u_t}{\phi} \frac{(M_{t_1} f_1 + M_{t_2} f_2)}{\left[(M_{t_1} S_1 + M_{t_2} S_2) + \frac{(1 - \phi)}{\phi} M_{t_s} \right]}$$
(1.4)

1.2 Autovetor:

$$\overrightarrow{r_1} = \left[\begin{array}{c} r_1^{(1)} \\ r_1^{(2)} \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

CAPÍTULO 1. MÉTODOS TÉRMICOS - INJEÇÃO DE ÁGUA QUENTE 2

$$\overrightarrow{r_2} = \begin{bmatrix} r_2^{(1)} \\ r_2^{(2)} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial T} \\ \frac{(M_{t_1} f_1 + M_{t_2} f_2)}{\left[(M_{t_1} S_1 + M_{t_2} S_2) + \frac{(1 - \phi)}{\phi} M_{t_s} \right]} - \frac{\partial f_1}{\partial S_1} \end{bmatrix}$$
(1.5)

1.3 Condições de choque:

$$D = \frac{u_t}{\phi} \frac{(f_1^+ - f_1^-)}{(S_1^+ - S_1^-)}$$

$$D = \frac{u_t}{\phi} \frac{\left((M_{t_1} - M_{t_2})(f_1^+ T^+ - f_1^- T^-) + M_{t_2}(T^+ - T^-) \right)}{\left(\left((M_{t_1} - M_{t_2})(f_1^+ T^+ - f_1^- T^-) + M_{t_2}(T^+ - T^-) \right) + \frac{(1 - \phi)}{\phi} M_{ts}(T^+ - T^-) \right)}$$

1.4 Famílias de Rarefação:

$$\alpha_1 = \frac{1}{\frac{u_t}{\phi} \frac{\partial^2 f_1}{\partial S_1^2}}$$

$$\alpha_2 = \frac{1}{\left(\frac{\left[\left(\frac{\partial f_1}{\partial S_1}(M_{t_1} - M_{t_2})\right)\left(S_1(M_{t_1} - M_{t_2}) + M_{t_2} + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left[\left(f_1(M_{t_1} - M_{t_2}) + M_{t_2}\right)(M_{t_1} - M_{t_2})\right]}\right) \frac{u_t}{\phi} + \left(\frac{u_t}{\phi} \frac{\left[\left(\frac{\partial f_1}{\partial T}(M_{t_1} - M_{t_2})\right)\left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right]}{\left[\left(S_1(M_{t_1} - M_{t_2}) + M_{t_2}\right) + \frac{(1 - \phi)}{\phi}M_{t_s}\right]^2}\right) \frac{u_t}{\phi} + \left(\frac{u_t}{\phi} \frac{\left[\left(\frac{\partial f_1}{\partial T}(M_{t_1} - M_{t_2}) + M_{t_2} + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left[\left(S_1(M_{t_1} - M_{t_2}) + M_{t_2}\right) + \frac{(1 - \phi)}{\phi}M_{t_s}\right]^2}\right) \frac{u_t}{\phi} + \left(\frac{u_t}{\phi} \frac{\left[\left(\frac{\partial f_1}{\partial T}(M_{t_1} - M_{t_2}) + M_{t_2} + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left[\left(S_1(M_{t_1} - M_{t_2}) + M_{t_2}\right) + \frac{(1 - \phi)}{\phi}M_{t_s}\right]^2}\right) \frac{u_t}{\phi} + \left(\frac{u_t}{\phi} \frac{\left[\left(\frac{\partial f_1}{\partial T}(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left[\left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right) - \left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right] - \left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right) - \left(S_1(M_{t_1} - M_{t_2}) + \frac{(1 - \phi)}{\phi}M_{t_s}\right)\right]$$

1.5 Relações Constitutivas

1. Viscosidade

A equação de Andrade (1930):

$$\mu_2 = Ae^{B/T},\tag{1.6}$$

onde T está em graus absolutos. A e B são parâmetros empíricos para os quais os valores são determinados a partir de duas medições de viscosidade em diferentes temperaturas. Para extrapolação ou interpolação, a Eq. 1.6 indica que um gráfico semi-logarítmico de viscosidade vs T^{-1} deve ser uma linha reta.

1. Calor Específico

Várias outras propriedades do petróleo bruto, como calor específico, capacidade volumétrica de calor e condutividade térmica, são funções da temperatura. Equações empíricas para prever essas propriedades incluem a equação de Gambill (1957) para calor específico,

$$C_{p2} = \frac{0.7 + 0.0032T}{\rho_2^{0.5}} \tag{1.7}$$

Onde C_{p2} está em kJ/kg.K, T em K, e ρ_2 em g/cm_3 .

CAPÍTULO 1. MÉTODOS TÉRMICOS - INJEÇÃO DE ÁGUA QUENTE 3

1. Enthalpia

$$dH_i = C_{pj}dT$$

onde C_{pj} é o calor específico da fase j.

1. Fluxo fracionário

$$f_1(S_1, T) = \frac{\frac{k_{r_1}}{u_1}}{\frac{k_{r_1}}{u_1} + \frac{k_{r_2}}{u_2}}$$

1. Velocidade

$$u_1(S_1, T) = -k \frac{k_{r_1}(S_1)}{u_1(T)} \frac{\partial P}{\partial x}$$

1. Permeabilidade relativa

$$k_{r1}(S_1) = (k_{r1})_{s_{orw}} \left(\frac{S_w - S_{wi}}{1 - S_{wi} - S_{orw}} \right)^{ew}$$
(1.8)

 A derivada da permeabilidade relativa da água em relação a saturação de água:

$$\frac{d\left(k_{rw}(S_w)\right)}{dS_w} = (k_{rw})_{s_{orw}} \frac{d\left(\frac{S_w - S_{wi}}{1 - S_{wi} - S_{orw}}\right)^{ew}}{dS_w}$$

$$(1.9)$$

sendo k_{rw} =permeabilidade relativa na água, k_{ro} =permeabilidade relativa na óleo, $(k_{rw})_{s_{orw}}$ =permeabilidade relativa na água na saturação de óleo residual , $(k_{rw})_{s_{wi}}$ =permeabilidade relativa da água na saturação de agua irredutivel , S_w =Saturação de água, S_{wi} =Saturação de água irredutível, S_{orw} =Saturação de óleo residual, ew,eow e epcow= constantes experimentais de Corey-Brooks .

Tabela 1 - Condiq	ões de contorn	o sobre as fronteira	as do reservatório.

Tabeta 1 - Condições de contorno sobre as ironnen as do reservatorio.		
Propriedades físicas	Unidade	Descrição
Pressão estática / psi	2000	Poço produtor
Vazão mássica de água / kg/s	0,577	Entrada do poço injetor
Fração volumétrica	1	Água – Entrada do poço injetor
Fração volumétrica	0	Óleo – Entrada do poco injetor
Pressão do reservatório / psi	3441,9	Oleo - Emilada do poço injecol
Temperatura / °F	233,24	Óleo no reservatório
Fração volumétrica inicial	0	Água
Fração volumétrica inicial	1	Óleo leve

Tabela 2 - Propriedades do óleo e da água

Propriedades físicas	Fase contínua (petróleo)	Fase contínua (água)	
Massa molar / kg/kmol	105,47	18,02	
Densidade / kg/m²	876,16	997,0	
Viscosidade dinâmica / cp	2	0,0008899	
Condutividade térmica / W/m.K	0,143	0,6069	
Calor específico / J/kg.K	2092	4181,7	
Pressão	constante	1	

Tabela 3 - Propriedades do meio por oso.

Propriedades físicas	Rocha
Permeabilidade / m²	1.10 ⁻¹²
Porosidade	0,20
Coeficiente de perda de resistência (Kloss)	0

Características |Parâmetros

Tabela 1.1: Características

Propriedades físicas	Unidade	Descrição	
Pressão estática / psi	2000	Poço produtor	
Vazão mássica de água / kg/s	0,577	Entrada do poço injetor	
Fração volumétrica	1	Água – Entrada do poço injetor	
Fração volumétrica	0	Óleo – Entrada do poco injetor	
Pressão do reservatório / psi	3441,9	Oleo - Entrada do poço inj	
Temperatura / °F	233,24	Óleo no reservatório	
Fração volumétrica inicial	Ó	Água	
Fração volumétrica inicial	1	Óleo leve	

Propriedades físicas	Fase contínua (petróleo)	Fase contínua (água)
Massa molar / kg/kmol	105,47	18,02
Densidade / kg/m³	876,16	997,0
Viscosidade dinâmica / cp	2	0,0008899
Condutividade térmica / W/m.K	0,143	0,6069
Calor específico / J/kg.K	2092	4181,7
Pressão	constante	1

Tabela 3 - Propriedades do meio por oso.		
Propriedades fisicas	Rocha	
Permeabilidade / m²	1.10-13	
Porosidade	0,20	
Coeficiente de perda de resistência (Kloss)	0	

Tabela 1.2: Parâmetros defaults utilizados

TABLE 11.4—SUMMARY OF RESERVOIR DATA AS OF 1968, KERN RIVER FIELD STEAMFLOOD INTERVAL (BLEVINS AND BILLINGSLEY 1975)		
Depth	700-770 ft	213-235 m
Estimated original reservoir pressure	225 psig	1.53 mPa
Current reservoir pressure	60 psig	0.41 mPa
Average net sand thickness	70 ft	21 m
Reservoir temperature	80°F	300 K
Oil viscosity at 85°F	2,710 cp	2710 mPa·s
Oil viscosity at 350°F	4 cp	4710 mPa·s
Average permeability to air	7,600 md	7.6 µm²
Average porosity	35%	35%
Average oil content	1,437 bbl/ac-ft	0.185 m ³ /m ³
Average oil saturation	52%	52%

Tabela 1.3: propriedsades de injeção

S^I	0,4
T^{I}	300 K
S^{J}	0,8
T^{J}	600K