COGNOMS:															
NOM:								D	NI/N	IIE:					

IMPORTANTE leer atentamente antes de empezar el examen: Escriba los apellidos, el nombre y el DNI/NIE antes de empezar el examen. Escriba un solo carácter por recuadro, en mayúsculas y lo más claramente posible. Es importante que no haya tachones ni borrones y que cada carácter quede enmarcado dentro de su recuadro sin llegar a tocar los bordes. Use un único cuadro en blanco para separar los apellidos y nombres compuestos si es el caso. No escriba fuera de los recuadros, todo lo que haya fuera de ellos es ignorado. La identificación del alumno se realiza de forma automática, no seguir correctamente estas instrucciones puede comportar no tener nota.

Problema 1. (3 puntos)

Se dispone de la siguiente definición de estructura de un programa (izquierda) y del siguiente fragmento de código (derecha), escrito en C, que compilamos para un sistema linux de 32 bits:

a) **Dibuja** cómo quedaría almacenada en memoria la estructura **s1**, indicando claramente los desplazamientos respecto al inicio, el tamaño de todos los campos y el tamaño y alineamiento del struct.

b) Suponiendo que el vector V de la subrutina examen se encuentra almacenado a partir de la dirección simbólica @V, y que la matriz M se encuentra almacenada a partir de la dirección simbólica @M, **escribe** las expresiones aritméticas para calcular las direcciones del elemento V[i] del vector V y el elemento M[k][j] de la matriz M. .

@V[i] =			
@M[k][j]=			

c)	Dibuja el bloque de activación de la rutina examen, indicando claramente los desplazamientos respecto a %ebp y el tamaño de todos los campos.
d)	
	examen, usando el mínimo número de instrucciones, suponiendo que la variable k está almacenada en el registro %edx y la variable j está almacenada en el registro %ecx. Existe una solución con 4 instrucciones.

COGNOMS:															
NOM:								D	NI/N	IE:					

Problema 2. (3,8 puntos)

Dado el siguiente código escrito en ensamblador del x86:

```
movl $0, %ebx
movl $0, %esi

for: cmpl $256*1024, %esi
    jge end

(a) movl (%ebx, %esi, 4), %eax
    shll $2, %eax

(b) addl %eax, 4*1024(%ebx, %esi, 4)
(c) addl 8*1024(%ebx, %esi, 4), %eax
    addl $1024, %esi
    jmp for
```

end:

a) Indica el número de iteraciones ejecutadas del bucle

Número iteraciones	

Sabemos que para los accesos a memoria de la instrucción (a), se accede a las siguientes páginas de la memoria virtual en la iteración indicada en la tabla siguiente.

Iteración	0	1	2	3	4	5	6	7	8
а	0	0	1	1	2	2	3	3	4

b) Indica el tamaño de la página del sistema

```
Tamaño de página
```

Suponiendo que el sistema dispone de un TLB de 4 entradas completamente asociativo con reemplazo FIFO, responde a las siguientes preguntas:

c) Para cada uno de los accesos (etiquetas (a), (b) y (c)), **indica** a qué página de la memoria virtual se accede en cada una de las 16 primeras iteraciones del bucle

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	0	0	1	1	2	2	3	3	4							
b																
С																

d) Indica el contenido del TLB después de ejecutar la instrucción (c) en las 16 primeras iteraciones del bucle (si la entrada está vacía, indícalo con una X)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TLB 0																
TLB 1																
TLB 2																
TLB 3																

e) Calcula la cantidad de fal	los y acierto	s de T	LB en TODO el	bucle
Si cambiamos el TLB, a ur	no do 2 ontr	adac c	omplotamente	asociativo con reemplazo FIFO, indica para cada una c
	valor se incr		-	á o quedará igual respecto al TLB de 4 entradas utilizac
	Aumentará	Igual	Decrementará	Justificación
Número de accesos al TLB				
Número de fallos de TLB				
Tamaño de la tabla de páginas				
	valor se incr			el TLB de 4 entradas utilizado, indica para cada una d á o quedará igual respecto al TLB de 4 entradas utilizad
	Aumentará	Igual	Decrementará	Justificación
Número de accesos al TLB				
Número de fallos de TLB				
El número de entradas de la tabla de páginas si				
mantenemos el tamaño de la memoria virtual y de la memoria física				
El número de entradas de la tabla de páginas si				
mantenemos el tamaño de la memoria virtual y				
aumentamos la memoria física				
El número de entradas de la tabla de páginas si				
mantenemos el tamaño de la memoria virtual y reducimos				
la memoria física				

COGNOMS:															
NOM:								С	NI/N	IE:					

Problema 3. (3,2 puntos)

Dado el siguiente fragmento de código escrito en lenguaje C:

```
#define N 3
#define M 100
double a[N][M], b[M+1][N]; // recuerda: un double ocupa 8 bytes

main() {
    int i,j;
    . . .
    for (i = 0; i < N; i++) {
        for (j = 0; j < M; j++) {
            a[i][j] = b[j][0] * b[j+1][0];
        }
    }
    . . .
}</pre>
```

Disponemos de una cache de Datos de 8KB de mapeo directo con bloques de 16 bytes y políticas de escritura **copy-back** + **write-allocate**. Las matrices a y b no se encuentran en cache al comienzo de la ejecución del código. Ambas matrices se almacenan consecutivamente en memoria y su tamaño total es inferior al de la cache, por lo que no habrá fallos de conflicto.

a)	Indica si los accesos a las matrices a y b están aprovechando o no el tipo de Localidad Espacial y porqué.
b)	Indica cuáles son las 2 ocasiones en las que los accesos a la matriz b están aprovechando el tipo de Localidad

b) Indica cuáles son las 2 ocasiones en las que los accesos a la matriz b están aprovechando el tipo de Localidad Temporal y porqué.

c) Rellena la siguiente tabla indicando para cada uno de los accesos a las matrices a y b, si es acierto (AC) ó fallo (FA) en cada una de las 5 primeras iteraciones del for más interior (j) y para las iteraciones con los valores i=0 e i=2 del for más exterior.

	iteración i = 0					iteración i = 2				
iteración j	0	1	2	3	4	0	1	2	3	4
а										
bj										
b _{j+1}						·				

d)	Calcula la cantidad de aciertos y de fallos de cache en todo el código.
	odos los accesos a memoria fuesen acierto en cache, cada iteración del bucle interno tardaría 7 ciclos en ejecutarse ciclos consumidos en el externo son despreciables). Un fallo de añade una penalización de 100 ciclos.
e)	Calcula cuántos ciclos tarda en ejecutarse el código anterior, teniendo en cuenta los fallos de cache.
Tras	s optimizar el código (insertando instrucciones de prefetch), hemos conseguido reducir en un 92.4% los fallos de
	he. En este caso, si todos los accesos a memoria fuesen acierto en cache, el código optimizado se ejecutaría en 2500
ciclo	OS.
f)	Calcula cuántos ciclos en total tarda en ejecutarse el código optimizado, teniendo en cuenta los fallos de cache.
Sab	emos que la frecuencia del procesador es de 667 MHz.
g)	Calcula a cuántos MFLOPs se ejecutan el código original y el código optimizado.
<u>, , , , , , , , , , , , , , , , , , , </u>	, , , , , , , , , , , , , , , , , , , ,
h)	Calcula cuál es la ganancia que obtenemos con esta optimización.
1	