

University of Engineering & Management, Kolkata Odd Semester Term- II Examination, October-November, 2021 **Programme Name: B.Tech in Computer Science** Semester: 3rd **Course Name: Digital Electronics** Course Code: ESC302

Full Marks: 100 Time: 3 Hours

TERM - II QUESTION PAPER

GROUP - A (20 marks) Answer the following questions. Each question is of 2 marks

1.	i)	If J=K=0 and PRESET=0, what will be the output of the JK flip flop? Why?		
	ii)	Draw the state diagram of a JK flip flop	2	
	iii)	State the difference between positive and negative edge triggering of clock i sequential circuit.	n 2	
	iv)	Define duty cycle. What is the duty cycle for clock signal.	2	
	v)	Show how JK flip flop can be operated as a toggle flip flop. What do you mean by modulus of a counter? Give example. Draw the block diagram of a 4 bit SISO.	2	
	vi)		2	
	vii)		2	
	viii)	Prove that, $(A+B) (A'C'+C) (B'+AC)' = A'B$		
	ix)	Construct the block diagram of a 4:2 priority encoder. Write the logic family integration levels along with the number of gates per chip.	2	
	x)			
		GROUP – B (30 marks) Answer the following questions. Each question is of 5 marks		
2.	i)	What do you mean by the race around condition?	2	
	ii)	How a race around condition in JK Flip flop can be resolved?	3	
3.	i)	Implement and design a D flip flop from a JK flip flop given.	5	
4.	i)	Explain, with the help of a neat diagram, the functionality of a MOD-8 asynchronous UP counter.	5	
5.	A. i)	What is the significance of parity checker circuit? Construct a 4-bit parity checker circuit and explain its working.	5	
		OR		

OR

B. i) A state diagram of a logic gate that exhibits a delay in the output is shown in the figure, where X is the don't care condition, and Q is the output representing the state. Analyze which logic circuit is this?

7. A. i) Design a MOD-3 synchronous UP counter with all necessary steps involved.

5

5

OR

B. i) Explain the operation of a 4-bit ring counter with the help of suitable tables and diagrams.

GROUP - C (50 Marks) Answer the following questions. Each question is of 10 marks

- 8. i) Obtain the minimal SOP for the Boolean expression, $F(A,B,C,D) = \sum_{m} (4,6,9,10,11,13) + \sum_{m} d(2,12,15) \text{ using Quine-McCluskey} \qquad 10$ Method.
- 9. i) Design a synchronous counter with count sequence 4->6->7->3->1->4.
 Avoid data lockout conditions. 10
 [Use any Flip-flop of your choice]
- 10. A. i) Draw and explain the 3 to 8 line decoder using basic gates only.
 5
 ii) Construct and implement a comparator that can compare between two 3-bit

binary numbers.

	В.	i)	Construct a 3-to-8 decoder using two 2-to-4 decoders with enable inputs	5
		ii)	Implement a full subtractor using 4:1 MUX.	5
11.	A.	i)	Explain how a counter circuit can be treated as a frequency divider circuit.	3
		ii)	Design an asynchronous 4-bit up-down counter and it will count up when a signal line $M=0$ and count down when the signal line $M=1$. Use only JK flip flop for the design.	7
			OR	
	В.	i)	Can you design a MOD-6 counter using a MOD-8 counter? If yes, how the design is to be implemented, explain that with all necessary steps involved?	10
12.	Α.	i)	Write short note on TTL - include characteristics, circuit diagram, advantages and disadvantages	10
			OR	
	В.	i)	Write short note on CMOS - include characteristics, one circuit diagram using CMOS, advantages and disadvantages	10
