Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Different programming languages support different styles of programming (called programming paradigms). Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Different programming languages support different styles of programming (called programming paradigms). By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Unreadable code often leads to bugs, inefficiencies, and duplicated code. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly.