Cálculo numérico de autovalores e autovetores

Irineu Lopes Palhares Junior

FCT/UNESP, irineu.palhares@unesp.br

Conteúdos

Informações sobre os conteúdos

- 1 Métodos da potência e suas variações
- 2 Método QR

3 Casos especiais de matrizes tridiagonais

Método da potência

Theorem

Seja A uma matriz real de ordem n e sejam $\lambda_1, \lambda_2, ..., \lambda_n$ seus autovalores e u_1, u_2, u_n seus correspondentes autovetores. Suponha que os autovetores são linearmente independentes e que:

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n|. \tag{1}$$

Seja a sequência y_k definida por:

$$y_{k+1} = Ay_k, \ k = 0, 1, 2, \dots,$$
 (2)

onde y_0 é um vetor arbitrário que permite a expansão:

$$y_0 = \sum_{i=1}^{n} c_i u_i, (3)$$

com c_i escalares quaisquer e $c_1 \neq 0$, então:

Continuação do teorema

Theorem

$$\lim_{k \to \infty} \frac{(y_{k+1})_r}{(y_k)_r} = \lambda_1, \tag{4}$$

onde o índice r indica a r-ésima componente. Além disso, quando $k \to \infty$, y_k tende ao autovetor correspondente a λ_1 .

Introdução

- O método das potências é um algoritmo iterativo utilizado para calcular o maior autovalor (em magnitude) e o autovetor correspondente de uma matriz.
- Requer uma matriz quadrada A e um vetor inicial x_0 .
- Com uma escolha apropriada de x_0 , o método converge para o autovalor dominante.

Definição do Problema

• Dada uma matriz $A \in \mathbb{R}^{n \times n}$, o objetivo é encontrar o autovalor λ tal que:

$$Av = \lambda v$$

- O autovalor λ de maior magnitude é chamado de autovalor dominante.
- O vetor *v* correspondente é chamado de autovetor dominante.

Descrição do Método das Potências

- Começa com um vetor inicial x_0 .
- Iterativamente multiplica-se a matriz A por x_k e normaliza-se o resultado:

$$x_{k+1} = \frac{Ax_k}{\|Ax_k\|}$$

• O vetor x_k converge para o autovetor dominante, e o autovalor correspondente pode ser calculado como:

$$\lambda_k = \frac{x_k^T A x_k}{x_k^T x_k}$$

Algoritmo do Método das Potências

Algorithm 1 Método das Potências

- 1: Escolha um vetor inicial x_0 com $||x_0|| = 1$.
- 2: **for** $k = 1, 2, 3, \dots$ **do**
- 3: Calcule $x_{k+1} = Ax_k$.
- 4: Normalize x_{k+1} para $||x_{k+1}|| = 1$.
- 5: Calcule $\lambda_k = \frac{x_k^T A x_k}{x_k^T x_k}$.
- 6: end for
- 7: O vetor x_k converge para o autovetor dominante e λ_k para o autovalor dominante.

Exemplo Numérico

- Considere a matriz $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$.
- Iniciando com $x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, iteramos o método das potências.
- Após algumas iterações, obtemos o autovalor dominante $\lambda \approx 3.618$ e o autovetor correspondente $v \approx \begin{pmatrix} 0.5257 \\ 0.8507 \end{pmatrix}$.

Considerações Finais

- O método das potências é eficaz para encontrar o autovalor dominante de uma matriz.
- Convergência depende da escolha do vetor inicial e da diferença entre os autovalores.
- Não é apropriado para encontrar autovalores próximos em magnitude.

Perguntas?

Obrigado!

Método QR

Casos especiais de matrizes tridiagonais