Inhaltsverzeichnis

1	Top	ologische Grundlagen				
	1.1	Normierte Vektorräume	5			
		1.1.1 Offene Mengen	5			
		1.1.2 Konvergente Folgen	ç			
		1.1.3 Abgeschlossene und kompakte Mengen	12			
	1.2	Stetige Abbildungen	18			
2	Diff	Differenziation in \mathbb{R}^n				
	2.1	Rechnen mit Ableitungen	25			
		2.1.1 Partielle und totale Differenzierbarkeit	25			
		2.1.2 Höhere Ableitungen	34			
		2.1.3 Taylorentwicklung	36			
		2.1.4 Lokale Extrema	42			
	2.2	Lokale Inverse und implizite Funktionen	46			
		2.2.1 Lokale Inverse	46			
		2.2.2 Sätze über implizite Funktionen	48			
3	Diff	ferentialgleichungen	51			
	3.1	Definitionen und Beispiele	51			
	3.2	Lineare Differentialgleichungen erster Ordnung	51			
	3.3	Lösungsmethoden für spezielle Differentialgleichungen erster Ordnung	51			
		3.3.1 Bernoulli-Differentialgleichung	51			
		3.3.2 Die Riccati-Differentialgleichung	53			
		3.3.3 Differentialgleichungen mit trennbaren Variablen	57			
		3.3.4 Differentialgleichungen vom Typ $y' = f(at + by + c), a, b, c \in \mathbb{R}, f \in C^0(\mathbb{R})$.	58			
		3.3.5 Differentialgleichungen vom Typ $y' = f(\frac{y}{t}), f \in C^0(\mathbb{R}^+)$	58			
		3.3.6 Differentialgleichungen vom Typ $y' = f\left(\frac{a_1t + b_1y + c_1}{a_2t + b_yt + c_2}\right), a_k, b_k, c_k \in \mathbb{R}, k = 1, 2$	59			
3.4 Systeme linearer Differentialgleichhungen erster Ordnung			61			
		3.4.1 Exponential funktion einer Matrix	64			

Differentialgleichungen

3.1 Definitionen und Beispiele

3.2 Lineare Differentialgleichungen erster Ordnung

Beispiel Logistische Differentialgleichung

$$P' = \lambda K P - \lambda P^2$$

$$u := -\frac{1}{P} \text{ löst } u' = \frac{P'}{P^2} = -\lambda K u - \lambda.$$

$$u(t) = u(0)e^{-\lambda K t} - \frac{1}{k} \left(1 - e^{-\lambda K t} \right)$$

$$P(t) = -\frac{1}{u(t)} = \frac{KP(0)}{(K - P(0))e^{-\lambda K t} + P(0)} \le K \text{ wenn } P(0) \le K$$
 Für $P(0) > K$, ist
$$P(t) = \frac{KP(0)}{Ke^{-\lambda K t} + (1 - e^{-\lambda K t})P(0)} \le P(0).$$

3.3 Lösungsmethoden für spezielle Differentialgleichungen erster Ordnung

3.3.1 Bernoulli-Differentialgleichung

Seien $a, b \in C^0(I)$, $\rho \in \mathbb{R} \setminus \{0, 1\}$. Die DGL

(B)
$$u' = au + bu^{\rho}$$

heißt Die Bernoulli-Differentialgleichung.

Im Allgemeinen ist (B) nur für positive Funktionen u erklärt.

Beispiel

Die Logistische DGL: $\rho = 2$. //

Lemma 3.3.1.1

i) Ist $z \in C^1(I)$ positiv und löst

$$(L) z' = (1 - \rho)(az + b)$$

, so ist $u = \frac{1}{z^{1-\rho}}$ Lösung zu (B).

- ii) Ist $u \in C^1(I)$ positiv und löst (B), so ist $z = u^{1-\rho}$ Lösung zu (L).
- iii) Sind u_1, u_2 positive Lösungen zu (B) und gibt es ein $t_0 \in I$ mit $u_1(t_0) = u_2(t_0)$, so ist schon $u_1 = u_2$.

Beweis:

i) Sei $u = \frac{1}{z^{1-\rho}}$. Dann

$$u' = \frac{1}{1-\rho} z^{\frac{1}{1-\rho}-1} z' = z^{\frac{\rho}{1-\rho}} (az+b) = az^{\frac{\rho}{1-\rho}+1} + bz^{\frac{1}{1-\rho}\rho} = au + bu^{\rho}.$$

ii) $z' = (u^{1-\rho})' = (1-\rho)u^{-\rho}u' = (1-\rho)u^{-\rho}(au + bu^{\rho}) = (1-\rho)(az + b)$

iii) $z_k \coloneqq u_k^{1-\rho}$ lösen beide $z_k' = (1-\rho)(az_k+b)$; $w \coloneqq z_1-z_2$ löst $w' = (1-\rho)aw$ und $w(t_0) = 0$. Also w = 0, $z_1 = z_2$ und somit $u_1 = u_2$.

Lemma 3.3.1.2

Sei $\rho \in \mathbb{Z}$, $\rho \ge 2$ und w eine beliebige Lösung zu (B) (also nur $w \in C^1(I)$), so gilt: Ist $t_0 \in I$, $w(t_0) = 0$, so w = 0.

Beweis: Sei $\delta > 0$, $I_{\delta} := [t_0 - \delta, t_0 + \delta] \subset I$; $M_{\delta} := \max_{I_{\delta}} |w|$, $L_{\delta} := \max_{I_{\delta}} |a| + M_{\delta}^{\rho-1} \max_{I_{\delta}} |b|$. Wir zeigen: $\forall n \geq 0$ ist

$$|w(t)| \leq \frac{M_{\delta}L_{\delta}^n}{n!}|t-t_0|^n, \quad t \in I_{\delta}.$$

Induktion nach n: $n = 0\sqrt{}$; $n-1 \rightarrow n$:

$$w(t) = \int_{t_0}^{t} w'(s) ds$$

$$= \int_{t_0}^{t} aw(s) - bw(s)^{\rho} ds$$

$$= \int_{t_0}^{t} w(s)(a(s) + b(s)w(s)^{\rho - 1}) ds$$

$$|w(t)| \le L_{\delta} \int_{t_0}^{t} |w(s)| ds \le L_{\delta} \frac{M_{\delta} L_{\delta}^{n - 1}}{(n - 1)!} \int_{t_0}^{t} (s - t_0)^{n - 1} ds = \frac{M_{\delta} L_{\delta}^{n}}{n!} (t - t_0)^{n}$$

für $t \ge t_0$. Analog für $t \le t_0$.

Also w = 0 auf I_{δ} . Genauso zeige: Ist $t_* \in I$, $w(t_*) = 0$, so $\exists \delta_* > 0$: w = 0 auf $[t_* - \delta_*, t_* + \delta_*]$. Dann ist $\{t \in I \mid w(t) = 0\}$ offen und abgeschlossen und $\neq \emptyset$, stimmt also mit I überein.

3.3.2 Die Riccati-Differentialgleichung

Sind $a, b, f \in C^0(I)$, so heißt die DGL

$$(R) \qquad u' = au + bu^2 + f$$

Riccatische Differentialgleichung.

Lemma 3.3.2.1

Sei $u_p \in C^1(I)$ eine Lösung zu (R).

i) Dann ist eine Funktion $u \in C^1(I)$ Lösung zuz (R), wenn $w = u - u_D$ Lösung zu

$$(B^*)$$
 $w' = (a + 2bu_p)w + bw^2$

ist.

ii) Lösen u_1, u_2 die DGL (R) und $u_1(t_0) = u_2(t_0)$ für ein $t_0 \in I$, so $u_1 = u_2$.

Beweis:

$$\begin{split} w' &= u' - u_p' = au + bu^2 + f - au_p - bu_p - f = aw + bw(u + u_p) = aw + bw(w + 2u_p) = (a + 2bu_p)w + bw^2 \\ &\text{Umgekehrt sei } w \text{ L\"osung zu } (B^*); \ u \coloneqq w + u_p. \text{ Dann} \\ &u' &= w' + u_p' = (a + 2bu_p)w + bw^2 + au_p + bu_p^2 + f = au + b(w^2 + 2u_pw + u_p^2) + f = au + bu^2 + f \end{split}$$

ii) $w = u_1 - u_2 \text{ löst } (B^*) \text{ mit } w(t_0) = 0 \Rightarrow w \equiv 0.$

Beispiel Grenzgeschwindigkeit eines Autos

Die Geschwindigkeit v eines Autos erfüllt $v'=f-\rho v^2$ (mit $f,\rho>0$). Die DGL ist vom Typ (R) mit $a=0,\ b=-\rho.\ v_p\coloneqq\sqrt{\frac{f}{\rho}}$ löst (R); löse (R) unter v(0)=0.

Löse dazu

$$w' = -2\rho\sqrt{\frac{f}{\rho}}w - \rho w^2 = -2\sqrt{\rho f}w - \rho w^2$$

 $u := \frac{1}{w}$ löst $u' = \frac{-w'}{w^2} = 2\sqrt{\rho f}u + \rho$. Es folgt:

$$\begin{split} u(t) &= e^{2\sqrt{\rho f}t} \left(\int_{0}^{t} \rho e^{-2\sqrt{\rho f}s} \mathrm{d}s + u(0) \right) \\ &= e^{2\sqrt{\rho f}t} \left(-\frac{\rho}{2\sqrt{\rho f}} \left(e^{-2\sqrt{\rho f}t} - 1 \right) + u(0) \right) \\ &= -\frac{1}{2} \sqrt{\frac{\rho}{f}} + \frac{1}{2} \sqrt{\frac{\rho}{f}} e^{2\sqrt{\rho f}t} + u(0) e^{2\sqrt{\rho f}t} \\ w(t) &= \frac{1}{u(t)} = \frac{1}{-\frac{1}{2} \sqrt{\frac{\rho}{f}} e^{2\sqrt{\rho f}t} \left(u(0) + \frac{1}{2} \sqrt{\frac{\rho}{f}} \right)} \\ v(t) &= \sqrt{\frac{f}{\rho}} + w(t) = \sqrt{\frac{f}{\rho}} - \frac{1}{\frac{1}{2} \sqrt{\frac{\rho}{f}} \left(1 - e^{-2\sqrt{\rho f}t} \right) + u(0) e^{2\sqrt{\rho f}t}}; \end{split}$$

mit $u(0) = \sqrt{\frac{f}{\rho}}$ wird v(0) = 0.

$$v(t) = \sqrt{\frac{f}{\rho}} \tanh(\sqrt{f\rho}t) \le \sqrt{\frac{f}{\rho}}$$
 $\tanh = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

 $/\!\!/$

Beispiel

$$y' = e^{-x}y^2 + y - e^x$$

hat die Form (R) mit a = 1, $b = e^{-x}$ und $f = -e^{x}$; $y_p(x) := e^{x}$. $w = y - e^{x}$ löst

$$w' = (1 + 2e^{-x}e^x)w + e^{-x}w^2 = 3w + e^{-x}w^2.$$

$$v = \frac{1}{w}$$
 löst $v' = -3ve^{-x}$.

$$v(x) = \left(v(0) - \frac{1}{2} \left(e^{2x} - 1\right)\right) e^{-3x}$$

$$w(x) = \frac{w(0)e^{3x}}{1 - \frac{w(0)}{2} \left(e^{2x} - 1\right)}$$

$$y(x) = \frac{Ce^{3x}}{1 - \frac{1}{2} \left(e^{2x} - 1\right)C} - e^{x}, \quad C \neq 0$$

//

Lemma 3.3.2.2

Angenommen, $a, b \in C^1(I)$, b habe keine Nullstelle;

$$F\coloneqq bf+\frac{1}{2}\left(a+\frac{b'}{b}\right)'-\left(\frac{1}{2}\left(a+\frac{b'}{b}\right)\right)^2.$$

Dann gilt:

i) Ist z Lösung zu

$$(R') z' = z^2 + F$$

so ist

$$y := \frac{1}{b} \left(z - \frac{1}{2} \left(a + \frac{b'}{b} \right) \right)$$

Lösung zu (R).

ii) Löst w die (lineare DGL) w'' + Fw = 0 und hat keine Nullstelle, so ist $z := -\frac{w'}{w}$ eine Lösung zu (R').

Beweis:

i) Es gilt

$$z' - z^{2} - F = b'y + by' + \frac{1}{2} \left(a + \frac{b'}{b} \right)' - b^{2}y^{2} - b \left(a + \frac{b'}{b} \right) y - \left(\frac{1}{2} \left(a + \frac{b}{b'} \right) \right)^{2} - bf - \frac{1}{2} \left(a + \frac{b'}{b} \right)' + \left(\frac{1}{2} \left(a + \frac{b'}{b} \right) \right)^{2}$$

$$= b'y + by' - b^{2}y^{2} - aby - b'y - bf$$

$$= b(y' - (ay + by^{2} + f)).$$

Also z löst $(R') \Leftrightarrow y$ löst (R).

ii)
$$z = -\frac{w'}{w}$$

$$z' - z^2 - F = -\frac{w''}{w} + \frac{w'^2}{w^2} - \left(\frac{w'}{w}\right)^2 - F = -\frac{1}{w}(w'' + Fw).$$

Hieraus folgt schon die Behauptung.

Beispiel

Was sind die Lösungen zu

$$y' = -\left(2 + \frac{1}{t}\right)y + \frac{1}{t}y^2 + t + 2?$$

Das ist (R) mit $a=-2-\frac{1}{t},\,b=\frac{1}{t}$ und f=t+2 auf $I\subset]0,\infty[$. Berechne F :

$$F = bf + \frac{1}{2} \left(a + \frac{b'}{b} \right)' - \frac{1}{4} \left(a + \frac{b'}{b} \right)^2$$
$$= 1 + \frac{2}{t} + \frac{1}{t^2} - \left(1 + \frac{1}{t} \right)^2$$
$$= 0$$

Also lautet (R') $z'=z^2$, also $-\frac{z'}{z^2}=-1$, also $\left(\frac{1}{z}\right)'=-1$; wähle $z(t)=-\frac{1}{t}$, also Lösung zu (R').

$$y_p(t) := \frac{1}{b} \left(z - \frac{1}{2} \left(\alpha + \frac{b'}{b} \right) \right) = t \left(-\frac{1}{t} + 1 + \frac{1}{t} \right) = t$$

löst (R).

Zu den weiteren Lösungen: Löse

(B)
$$v' = (a + 2by_p)v + bv^2$$

d.h.

$$v' = \left(-2 - \frac{1}{t} + 2\frac{1}{t}t\right)v + \frac{1}{t}v^2 = -\frac{1}{t}(v - v^2)$$

also

$$\frac{v'}{v^2 - v} = -\frac{1}{t},$$

nun ist

$$\frac{1}{v^2-v} = -\left(\frac{1}{v} - \frac{1}{v-1}\right) \Rightarrow \frac{v'}{v^2-v} = \left(\log\frac{v-1}{v}\right)' \Rightarrow \log\frac{v-1}{v} = -\log t + C_1 \Rightarrow \frac{v-1}{v} = \frac{C}{t}, C = e^{C_1}, v(t) = \frac{C}{C-t}$$

vist auf]0,C[definiert, ebenso jede Lösung $y(t)=t+\frac{C}{C-t}$ zu (R). $/\!\!/$

3.3.3 Differentialgleichungen mit trennbaren Variablen

Sei $I \subseteq \mathbb{R}$ ein Intervall, $h: \hat{I} \to]0, \infty[$ stetig.

Satz 3.3.3.1

Sei $g \in C^0(I)$, $I' \subset I$, $a \in I'$. Ist dann $u \in C^1(I')$ eine Lösung zur DGL

$$(S) y' = g \cdot h(y)$$

(also $u'(t) = g(t)h(u(t)) \forall t \in I'$), so gilt

$$u = H_*^{-1}(H_*(u(\alpha)) + G)$$

wobei H_* Stammfunktion zu $\frac{1}{h}$ und G Stammfunktion zu g mit G(a) = 0 ist.

Beweis:

$$\frac{u'}{h \circ u} = g = G' \Rightarrow (H_* \circ u)' = G'$$

$$H_*(u(t)) - H_*(u(a)) = \int_a^t (H_* \circ u(s))' ds = G(t), \quad H_*(x) = \int_c^x \frac{dz}{h(z)},$$

wenn $\hat{I} = [c, d]$.

$$H_*(u(t)) = H_*(u(a)) + G(t)$$

nach u(t) auflösen. Hieraus folgt dann die Behauptung.

Beispiel

Lösung zu

$$u'\sqrt{1-t^2} + \sqrt{1-u^2} = 0$$
, $u(0) = \frac{1}{2}$.

$$\begin{split} u' &= -\frac{\sqrt{1-u^2}}{\sqrt{1-t^2}} \\ \Rightarrow \frac{u'}{\sqrt{1-u^2}} &= -\frac{1}{\sqrt{1-t^2}} \\ \Rightarrow (\arcsin u)'(t) &= -(\arcsin t)' \\ \Rightarrow \arcsin u(t) - \arcsin \frac{1}{2} &= -\arcsin t \\ \Rightarrow \arcsin u(t) &= \frac{\pi}{6} - \arcsin t \\ \Rightarrow u(t) &= -\sin \left(\arcsin t - \frac{\pi}{6}\right) = -t\cos \frac{\pi}{6} - \frac{1}{2}\cos(\arcsin t) = \frac{-\sqrt{3}}{2}t - \frac{1}{2}\sqrt{1-t^2} \end{split}$$

//

3.3.4 Differentialgleichungen vom Typ y' = f(at + by + c), $a, b, c \in \mathbb{R}$, $f \in C^0(\mathbb{R})$

 $v(t) = by(t) + at + c \text{ muss } v'(t) = by' + a = bf(v(t)) + a \text{ ((S) mit } g \equiv 1) \text{ lösen.}$

Beispiel

$$y' = (2t + 3y + 1)^2, \quad f(z) = z^2, a = 2, b = 3, c = 1.$$

$$v(t) = 3y(t) + 2t + 1 \text{ löst}$$

$$v'(t) = 3v(t)^{2} + 2 = 3\left(v^{2} + \frac{2}{3}\right)$$

$$\Rightarrow \frac{v'}{v^{2} + \frac{2}{3}} = 3$$

$$\Rightarrow \frac{v'}{\left(\sqrt{\frac{3}{2}}v\right)^{2} + 1} = 2$$

$$\Rightarrow \frac{\sqrt{\frac{3}{2}}v'}{1 + \left(\sqrt{\frac{3}{2}}v\right)^{2}} = \sqrt{6}$$

$$\Rightarrow \left(\arctan\left(\sqrt{\frac{e}{2}}v\right)\right)' = \sqrt{6}$$

$$\Rightarrow \arctan\left(\sqrt{\frac{3}{2}}v\right) = \sqrt{6}t + C, \quad C = \arctan\sqrt{\frac{3}{2}}v(0)$$

$$v(t) = \sqrt{\frac{2}{3}}\tan(\sqrt{6}t + C),$$

wenn $-\frac{\pi}{2} < \sqrt{6}t + C < \frac{\pi}{2}$.

$$y(t) = \frac{1}{3}(v(t) - 2t - 1)$$

ist Lösung. $/\!\!/$

3.3.5 Differentialgleichungen vom Typ $y' = f(\frac{y}{t}), f \in C^0(\mathbb{R}^+)$

$$u(t) := \frac{y(t)}{t}$$
 muss

$$u' = \frac{y'}{t} - \frac{y}{t^2}$$

$$\begin{split} &= \frac{1}{t} \left(y' - \frac{y}{t} \right) \\ &= \frac{1}{t} (f(u(t)) - u(t)) \\ &= g(t)h(u(t)), \quad g(t) = \frac{1}{t}, h(\tilde{x}) = f(\tilde{x}) - \tilde{x} \end{split}$$

lösen.

Beispiel Scheinwerfer

$$\left(y' + \frac{x}{y}\right)^2 = 1 + \left(\frac{x}{y}\right)^2$$

$$y' = -\frac{x}{y} + \sqrt{1 + \left(\frac{x}{y}\right)^2} = \frac{1}{\frac{x}{y} + \sqrt{1 + \left(\frac{x}{y}\right)^2}} = f\left(\frac{y}{x}\right),$$
mit $f(s) = \frac{s}{1 + \sqrt{1 + s^2}}$; $u(x) = \frac{y(x)}{x}$ löst $\frac{u'}{f(u) - u} = \frac{1}{x}$; $U(s) := \log \frac{s^2}{1 + \sqrt{1 + s^2}}$ löst $U' = \frac{1}{f(s) - s}$. Also
$$(U \circ u)' = \frac{1}{x} = (\log x)'$$

$$\Rightarrow U(u(x)) = \log x + C_1$$

$$\Rightarrow \frac{u(x)^2}{1 + \sqrt{1 + u(x)^2}} = Cx, \quad C = e^{C_1}$$

$$\Rightarrow \frac{y(x)^2}{x^2 + x\sqrt{x^2 + y(x)^2}} = Cx$$

$$\Rightarrow y(x)^2 = 2C_2x + C_2^2 \quad (C_2 > 0 \text{ passend})$$

//

3.3.6 Differentialgleichungen vom Typ $y' = f\left(\frac{a_1t + b_1y + c_1}{a_2t + b_yt + c_2}\right)$, $a_k, b_k, c_k \in \mathbb{R}$, k = 1, 2

1. Fall: $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$; wähle $\begin{pmatrix} \zeta \\ \eta \end{pmatrix} \in \mathbb{R}^2$ mit

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} \zeta \\ \eta \end{pmatrix} = - \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Dann ist $w(s) = y(s + \zeta) - \eta$ Lösung zu

$$w'(s) = f\left(\frac{a_1s + a_1\zeta + b_1w + b_1\eta + c_1}{a_2s + a_2\zeta + b_2w + b_2\eta + c_2}\right) = f\left(\frac{a_1s + b_1w}{a_2s + b_2w}\right) = F\left(\frac{w(s)}{s}\right), \quad F(z) = f\left(\frac{a_1 + b_1z}{a_2 + b_2z}\right).$$

w löst eine DGL vom Typ 3.3.5.

2. Fall: $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ ist nicht invertierbar. Wenn $a_2 = b_2 = 0$, so $y' = f\left(\frac{a_1}{c_1}t + \frac{b_1}{c_2}y + \frac{c_1}{c_2}\right)$ fällt unter Fall 3.3.4

Sei $(a_2,b_2)\neq (0,0)$, dann $(a_1,b_1)=\lambda(a_2,b_2)$, $\lambda\in\mathbb{R}$. $u:=a_2t+b_2y$ löst

$$u' = a_2 + b_2 y' = a_2 + b_2 f\left(\frac{\lambda u + c_1}{u + c_2}\right).$$

Keine Variable t tritt rechts auf. F sei Stammfunktion zu $\frac{1}{a_2+b_2f\left(\frac{\lambda x+c_1}{x+c_2}\right)}$. Dann $\frac{u'}{a_2+b_2f\left(\frac{\lambda u+c_1}{u+c_2}\right)}=1, (F\circ u)'=1, F(u(t))=t+C.$

Beispiel

i)

$$y' = -\frac{4t + 3y - 1}{3t + 4y + 1}, \quad f(x) := -x$$

 $\begin{array}{l} a_1=4,\,b_1=3,\,c_1=-1,\,b_2=4,\,c_2=1,\,\left|\frac{4}{3}\frac{3}{4}\right|=7;\,\left(\frac{4}{3}\frac{3}{4}\right)\left(\frac{\zeta}{\eta}\right)=\left(\frac{1}{-1}\right)\text{ l\"osen: }\zeta=1,\eta=-1.\\ w(s)=y(s+1)+1\text{ l\"ost }w'=-\frac{4s+3w}{3s+4w},\,v=\frac{w}{s}\text{ l\"ost} \end{array}$

$$v' = -\frac{1}{s} \left(v + \frac{4+3v}{3+4v} \right) = -\frac{1}{s} \frac{4v^2 + 6v + 4}{4v + 3} \Rightarrow \frac{4v + 3}{4v^2 + 6v + 4} v' = -\frac{1}{s}$$

$$\log(4v^2 + 6v + 4)' = (-2\log s)'$$

$$\log(4v^2(s) + 6v(s) + 4) = -2\log s + \log(4v(1)^2 + 6v(1) + 4)$$

nahe s = 1.

$$4v(s)^{2} + 6v(s) + 4 = \underbrace{(4v(1)^{2} + 6v(1) + 4)}_{=:C} \frac{1}{s^{2}}$$

$$v(s)^{2} + \frac{3}{2}v(s) = \frac{C}{4s^{2}} - 1$$

$$\left(v(s) + \frac{3}{4}\right)^{2} = \frac{C}{4s^{2}} - \frac{7}{16} = \frac{4c - 7s^{2}}{16s^{2}}, \quad |s| < \frac{4C}{7}$$

$$v(s) = -\frac{3}{4} + \frac{1}{4s}\sqrt{4C - 7s^{2}}$$

$$w(s) = -\frac{3}{4}s + \sqrt{4C - 7s^{2}}$$

$$y(t) = w(t - 1) - 1 = -\frac{3}{4}(t - 1) + \sqrt{4C - 7(t - 1)^{2}}, \quad w(1) = v(1), y(2) = w(1) - 1$$

ii)

$$y' = \frac{4t + 2y + 3}{2t + y + 1}$$

 $\begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = 0$. u(t) = 2t + y löst

$$u' = 2 + y' = 2 + \frac{2u + 3}{u + 1} = \frac{4u + 5}{u + 1} \Rightarrow \frac{u + 1}{4u + 5}u' = 1$$

$$\left(\frac{u + \frac{5}{4}}{4u + 5} - \frac{1}{4} \frac{1}{4u + 5}\right) u' = 1$$

$$\left(1 - \frac{1}{4u + 5}\right) u' = 4 \Rightarrow \left(u - \frac{1}{4} \log(4u + 5)\right)' = 4$$

$$u(t) = \frac{1}{4} \log(4u(t) + 5) = 4t + C$$

$$2t + y(t) - \frac{1}{4} \log(8t + 5 + 4y(t)) = 4t + C$$

Geben wir vor: y(0) = 0, so $C = -\frac{1}{4}\log 5$. Differenziere und werte in t = 0 aus: Taylorpolynome für y(t) von beliebiger Ordnung berechenbar. y(0) = 0, y'(0) = 3; aus $2 + y'(t) - \frac{y'(t) + 8}{8t + 5 + 4y(t)} = 4$, nochmaliges Ableiten: y''(0).

//

3.4 Systeme linearer Differentialgleichhungen erster Ordnung

 $I \subset \mathbb{R}$ sei ein Intervall, $t_0 \in I$; $A : I \to \mathbb{K}^{n \times n}$ sei stetig. Studiere $u' = A \cdot u$ für $u : I \to \mathbb{K}^n$ (dabei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$).

Satz 3.4.1

Ist $u_0 \in \mathbb{K}^n$, so hat das AWP

$$\begin{cases} y' = Ay \\ y(t_0) = u_0 \end{cases}$$

genau eine Lösung $u: I \to \mathbb{K}^n$.

Beweis:

Existenz:

$$u_1(t) := u_0 + \int_{t_0}^t A(s)u_0 \mathrm{d}s, \quad t \in I$$

Ist $u_k: I \to \mathbb{K}^n$ schon definiert, so setze

$$u_{k+1}(t) = u_0 + \int_{t_0}^t A(s)u_k(s)ds.$$
 (+)

Behauptung: Auf jedem kompakten Intervall $J \subset I$, $t_0 \in J$, konvergiert die Folge $(u_k)_k$ gleichmäßig.

Dazu: Für j > l ist

$$u_j(t) - u_l(t) = \sum_{k=l}^{j-1} (u_{k+1}(t) - u_k(t)).$$

Also

$$|u_j(t) - u_l(t)| \leq \sum_{k=l}^{j-1} |u_{k+1}(t) - u_k(t)|$$

 $M := \sup_{x \in J} ||A(x)||$:

$$|u_{k+1}(t) - u_k(t)| \le \frac{M^{k+1}}{(k+1)!} |u_0| |t - t_0|^{k+1}$$

Induktion nach k: k = 0:

$$|u_1(t) - u_0| = \left| \int_{t_0}^t A(s) u_0 ds \right| \le M|u_0||t - t_0|$$

Gilt die Ungleichung für k-1, so auch für k:

$$\begin{aligned} u_{k+1}(t) - u_k(t) &= \int_{t_0}^t A(s) u_k(s) \mathrm{d}s - \int_{t_0}^t A(s) u_{k-1}(s) \mathrm{d}s \\ &= \int_{t_0}^t A(s) (u_k(s) - u_{k-1}(s)) \mathrm{d}s \end{aligned}$$

$$\begin{split} |u_{k+1}(t) - u_k(t)| &\leq \int_{t_0}^t \|A(s)\| \, |u_k(s) - u_{k-1}(s)| \mathrm{d}s \\ &\leq M \int_{t_0}^t \frac{M^k}{k!} |u_0| (s - t_0)^k \mathrm{d}s \\ &= \frac{M^{k+1}}{(k+1)!} |u_0| |t - t_0|^{k+1} \end{split}$$

Ist $J \subset [t_0 - R, t_0 + R]$, so

$$\max_{t \in J} |u_{k+1}(t) - u_k(t)| \le \frac{(MR)^{k+1}}{(k+1)!} |u_0|.$$

Also

$$\max_{t \in J} |u_j(t) - u_l(t)| \leq |u_0| \sum_{k=l}^{j-1} \frac{(MR)^{k+1}}{(k+1)!}.$$

 $(u_j)_j$ erfüllt das Cauchykriterium in der gleichmäßigen Konvergenz auf J. Sei $u(t) \coloneqq \lim_{j \to \infty} u_j(t)$. Dann ist u stetig auf J. Aus (+) folgt: $u(t) = u_0 \int_{t_0}^t A(s)u(s) ds$ ist stetig differenzierbar. Weiter u'(t) = A(t)u(t), $u(t_0) = u_0$, auf J. Eindeutigkeit auf J: Sei $w: J \to \mathbb{K}^n$ eine Lösung zu w' = Aw mit $w(t_0) = 0$. Behauptung: w = 0. Sei $\delta := \frac{1}{2M} > 0$. Wir zeigen $w|_{[t_0,t_0+\delta]} = 0$, analog $w|_{[t_0-\delta,t_0]} = 0$. Für $t_0 \le t \le t_0 + \delta$ gilt

$$w(t) = \int_{t_0}^t w'(s) ds = \int_{t_0}^t A(s)w(s) ds.$$

Also

$$|w(t)| \le \delta M \max_{[t_0, t_0 + \delta]} |w| \Rightarrow \max_{[t_0, t_0 + \delta]} |w| \le \frac{1}{2} \max_{[t_0, t_0 + \delta]} |w|.$$

Hieraus folgt die Behauptung.

Somit: $\begin{cases} y' = Ay \\ y(t_0) = u_0 \end{cases}$ hat auf jedem kompakten Intervall $J \subset I$, $t_0 \in J$, genau eine Lösung u_J .

Wähle Intervallfolge $(J_k)_k$, $t_0 \in J_k$, $J_k \subset J_{k+1}$, $I = \bigcup_{k=1}^{\infty} J_k$. $u_{J_{k+1}}$ und u_{J_k} lösen auf J_k dasselbe AWP. Hieraus folgt $u_{J_{k+1}}|_{J_k} = u_{J_k}$. Setze also $u(t) = u_{J_k}(t)$, wenn $t \in J_k$.

Beispiel

$$A = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix}, B(t) = \begin{pmatrix} e^t \\ 2 \end{pmatrix}, u_0 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, t_0 = 0.$$

1. Schritt: W bestimmen:

$$\begin{split} \chi_A(x) &= \left| \begin{smallmatrix} x+5 & 6 \\ -3 & x-4 \end{smallmatrix} \right| = x^2 + x - 2 = (x-1)(x+2). \\ A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}; \, \begin{smallmatrix} -5x_1 - 6x_2 = -x_1 \\ x_1 = -x_2 \end{smallmatrix} \Rightarrow A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}; \, \begin{smallmatrix} -5x_1 - 6x_2 = -2x_1 \\ x_1 = -2x_2 \end{smallmatrix} \Rightarrow A \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \\ W(t) = \begin{pmatrix} e^t & -2e^{-2t} \\ -e^t & e^{-2t} \end{pmatrix}, \quad W' = \begin{pmatrix} e^t & 4e^{-2t} \\ -e^t & -2e^{-2t} \end{pmatrix}, \quad AW = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} e^t & -2e^{-2t} \\ -e^t & e^{-2t} \end{pmatrix} = \begin{pmatrix} e^t & 4e^{-2t} \\ -e^t & -2e^{-2t} \end{pmatrix} = W' \end{split}$$

2. Schritt:

$$\begin{split} W(s)^{-1} &= \frac{1}{-e^{-s}} \begin{pmatrix} e^{-2s} & 2e^{-2s} \\ e^{s} & e^{s} \end{pmatrix} = -\begin{pmatrix} e^{-s} & 2e^{-s} \\ e^{2s} & e^{2s} \end{pmatrix} \\ W(0)^{-1} &= -\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad W(0)^{-1} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = -\begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ W(s)^{-1}B(s) &= -\begin{pmatrix} e^{-s} & 2e^{-s} \\ e^{2s} & e^{2s} \end{pmatrix} \begin{pmatrix} e^{s} \\ 2 \end{pmatrix} = \begin{pmatrix} 1+4e^{-s} \\ e^{3s}+2e^{2s} \end{pmatrix} \\ \int_{0}^{t} W(s)^{-1}B(s)\mathrm{d}s &= \int_{0}^{t} \begin{pmatrix} 1+4e^{-s} \\ e^{3s}+2e^{2s} \end{pmatrix} \mathrm{d}s = \begin{pmatrix} t-4e^{t}+4 \\ \frac{1}{3}(e^{3t}-1)+e^{2t}-1 \end{pmatrix} \end{split}$$

Also haben wir:

$$u(t) = \begin{pmatrix} e^t & -2e^{-2t} \\ -e^t & e^{-2t} \end{pmatrix} \left(\begin{pmatrix} -5 \\ -4 \end{pmatrix} - \begin{pmatrix} t - 4e^{-t} + 4 \\ \frac{1}{3}e^{3t} + e^{2t} - \frac{4}{3} \end{pmatrix} \right)$$

//

3.4.1 Exponentialfunktion einer Matrix

Sei $A \in \mathbb{K}^{n \times n}$; ist e^A wohldefiniert? Versuche

$$e^A := \sum_{m=0}^{\infty} \frac{A^m}{m!}.$$

 $\text{Auf } \mathbb{K}^{n \times n} \text{ hat man die Norm } \|B\| \coloneqq \sqrt{\sum_{k,l=1}^n |b_{kl}|^2}. \text{ Es gilt } \|B_1B_2\| \le \|B_1\| \, \|B_2\|. \text{ Hieraus folgt } \|A^m\| \le \|A\|^m. \left(\sum_{m=0}^p \frac{A^m}{m!}\right)_p \text{ ist also eine Cauchyfolge und konvergiert somit.}$

Lemma 3.4.1.1

i) $A, B \in \mathbb{K}^{n \times n}$, AB = BA. Dann

$$e^{A+B} = e^A e^B = e^B e^A$$

Insbesondere ist $e^{-A}e^A = E_n$ ($n \times n$ -Einheitsmatrix).

ii) Ist $A \in \mathbb{K}^{n \times n}$, $S \in GL(n, \mathbb{K})$, so $S^{-1}e^AS = e^{S^{-1}AS}$.

iii) Ist
$$D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$
 mit $\lambda_1, \dots, \lambda_n \in \mathbb{K}$, so

$$e^D = \begin{pmatrix} e^{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n} \end{pmatrix}.$$

iv) $A \in \mathbb{K}^{n \times n}$, so ist $W(t) = e^{At}$ Wronskimatrix zu y' = Ay.

Beweis:

i)
$$\frac{(A+B)^m}{m!} = \frac{1}{m!} \sum_{\mu=0}^m \binom{m}{\mu} A^{\mu} B^{m-\mu} = \sum_{\mu=0}^m \frac{A^{\mu}}{\mu!} \frac{B^{m-\mu}}{(m-\mu)!}$$

Summiere über alle $m \in \mathbb{N}_0$ und benutze Cauchy-Produkt-Regel.

ii) $S^{-1}\frac{A^m}{m!}S=\frac{(S^{-1}AS)^m}{m!}$ induktiv nach m. Summiere über alle $m\in\mathbb{N}_0.$

iii) Betrachte $\frac{D^m}{m!}$. Die Behauptung folgt direkt.

iv)

$$e^{At} = \sum_{m=0}^{\infty} \frac{A^m}{m!} t^m, \quad \left(e^{At} \right)' = \sum_{m=1}^{\infty} \frac{A^m}{(m-1)!} t^{m-1} = A \sum_{m=1}^{\infty} \frac{(At)^{m-1}}{(m-1)!} = A e^{At}$$

Sei A diagonalisierbar, also $\exists S \in GL(n, \mathbb{K})$ mit

$$S^{-1}AS = D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}, \quad S^{-1}e^AS = e^D.$$

Also $e^A = Se^DS^{-1}$.

Beispiel

$$A = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix}, S = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, S^{-1} = \begin{pmatrix} -1-2 \\ 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, e^D = \begin{pmatrix} e & 0 \\ 0 & e^{-2} \end{pmatrix}. \text{ Also:}$$

$$e^A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & e^{-2} \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} e & 2e^{-2} \\ -e & -e^{-2} \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -e+2e^{-2} & -2e+2e^{-2} \\ -e-e^{-2} & 2e-e^{-2} \end{pmatrix}$$

$$e^{At} = S \begin{pmatrix} e^t & 0 \\ 0 & e^{-2t} \end{pmatrix} S^{-1} = \begin{pmatrix} -e^t+2e^{-2t} & -2e^t+2e^{-2t} \\ -e^t-e^{-2t} & 2e^t-e^{-2t} \end{pmatrix}$$

//

Ist *A* allgemein und $\mathbb{K} = \mathbb{C}$, so wähle $S \in GL(n,\mathbb{C})$ mit

$$S^{-1}AS = A^{J} = \begin{pmatrix} A_{1} & & \\ & \ddots & \\ & & A_{r} \end{pmatrix}, \quad A_{l} = \begin{pmatrix} \lambda_{l} & n_{l,1} & \\ & \ddots & \\ & & \lambda_{l} \end{pmatrix} \in \mathbb{C}^{k_{l} \times k_{l}}, n_{l,1}, ..., n_{l,k_{l}} \in \{0,1\}$$

 $A_l = \lambda_l E_{k_l} + N_l$, N_l nilpotent: $N_l^{k_l} = 0$.

$$e^{At} = Se^{A^Jt}S^{-1}, \quad e^{A^Jt} = \begin{pmatrix} a^{A_1t} & & & \\ & \ddots & & \\ & & e^{A_rt} \end{pmatrix}$$

$$e^{A_l t} = e^{\lambda_l E_{k_l} + N_l t} = e^{\lambda_l E_{k_l} t} e^{N_l t} = e^{\lambda_l t} \sum_{\lambda=0}^{k_l - 1} \frac{N_l^{\lambda}}{\lambda!} t^{\lambda}$$

Beispiel

$$A = \begin{pmatrix} 0 & 0 & 0 & -8 \\ 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & -14 \\ 0 & 0 & 1 & 6 \end{pmatrix}, \quad \chi_A(x) = |xE_4 - A| = x^4 - 6x^3 + 14x^2 - 16x + 8 = (x - 2)^2(x^2 - 2x + 2)$$

$$\operatorname{Eig}(A,s) = \mathbb{C} \begin{pmatrix} -4\\6\\-4\\1 \end{pmatrix}$$

$$\operatorname{Eig}(A,1+i) = \mathbb{C} \begin{pmatrix} -4+4i\\8-4i\\-5+i\\1 \end{pmatrix}$$

$$\operatorname{Eig}(A,1-i) = \mathbb{C} \begin{pmatrix} -4-4i\\8+4i\\-5-i\\1 \end{pmatrix}$$

$$(A-2e_4)^2 = \begin{pmatrix} 4&0&-8&-16\\-4&4&16&24\\1&-4&-10&-12\\0&1&2&2 \end{pmatrix}, \quad v_4 := \begin{pmatrix} 2\\-2\\1\\0 \end{pmatrix} \in \mathcal{H}(A,2)$$

$$v_2 = (A-2E_4)v_4 = Av_4 - 2v_4, \quad Av_4 = v_2 + 2v_4$$

 $v_3 = (A - 2E_4)v_4 = Av_4 - 2v_4, \quad Av_4 = v_3 + 2v_4$

 $S := (v_1, \bar{v}_1, v_3, v_4)$ erfüllt

$$S^{-1}AS = A^{J} := \begin{pmatrix} 1+i & 0 & 0 & 0 \\ 0 & 1-i & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

$$e^{At} = S \begin{pmatrix} e^{(1+i)t} & 0 & 0 & 0 \\ 0 & e^{(1-i)t} & 0 & 0 \\ 0 & 0 & e^{2t} & te^{2t} \\ 0 & 0 & 0 & e^{2t} \end{pmatrix} S^{-1}$$

//