Substitution

• Variablen können substituiert werden

- y wird mit f(u,v) substituiert

Semantische Äquivalenz

- gegeben ist S-Modell $M=(,\omega)=(A,\Sigma,\omega)$ für $F_{V,\Sigma}$
 - x aus V
 - a aus A
- M[x/a] ist Modell mit Belegung $\omega_x^a(y) := a$, falls y=x ansonsten $\omega(y)$

–
$$M_x^a=(,\omega_x^a)=(A,\Sigma,\omega_x^a)$$

- Erfüllungsrelation für Formeln in $F_{V,\Sigma}$
 - für Primformeln gilt
 - * M=(s=t), falls $s^M=t^M$
 - * M|= $R(t_1,...,t_n)$, falls $R^M(t_1,...,t_n)$
 - für P, Q Formeln gilt
 - * $M| = \neg P$, falls M| = P nicht gilt

- P und Q sind semantisch äquivalent, falls
 - M: gilt M|=Q $\langle ==> M|=P$
 - P<==>O
- Umformungsregeln:

$$\neg \forall x \, P \iff \exists x \, \neg P \qquad \qquad \neg \exists x \, P \iff \forall x \, \neg P \\
(\forall x \, P) \land (\forall x \, Q) \iff \forall x \, (P \land Q) \quad (\exists x \, P) \lor (\exists x \, Q) \iff \exists x \, (P \lor Q) \\
\forall x \forall y \, P \iff \forall y \forall x \, P \qquad \exists x \exists y \, P \iff \exists y \exists x \, P$$

Wenn $x \notin FV(Q)$, dann gilt außerdem:

$$(\forall x \, P) \land Q \iff \forall x \, (P \land Q) \qquad (\exists x \, P) \land Q \iff \exists x \, (P \land Q)$$
$$(\forall x \, P) \lor Q \iff \forall x \, (P \lor Q) \qquad (\exists x \, P) \lor Q \iff \exists x \, (P \lor Q)$$

- P ist in pränexer Normalform, wenn
 - $-P = Q_1 x_1 Q_2 x_2 ... Q_k x_k R$
 - * Q...Quantoren
 - * x...Variablen
 - st R...quantorenfreie Formel aus $F_{V,\Sigma}$
 - Jede Formel besitzt äquivalente pränexe NF

(7.15) Beispiel. Wir bestimmen eine zur Formel

$$P = (\neg \exists x \, S(x, y) \lor \forall x \, R(f(x))) \land (\forall y \, \neg Q(x, g(y)))$$

äquivalente Formel in pränexer Normalform.

$$P \iff (\forall x \, \neg S(x, y) \vee \forall x \, R(f(x))) \wedge (\forall y \, \neg Q(x, g(y)))$$

$$\iff (\forall w \, \neg S(w, y) \vee \forall v \, R(f(v))) \wedge (\forall z \, \neg Q(x, g(z)))$$

$$\iff (\forall w \, (\neg S(w, y) \vee \forall v \, R(f(v)))) \wedge (\forall z \, \neg Q(x, g(z)))$$

$$\iff (\forall w \forall v \, (\neg S(w, y) \vee R(f(v)))) \wedge (\forall z \, \neg Q(x, g(z)))$$

$$\iff \forall w \forall v \, ((\neg S(w, y) \vee R(f(v))) \wedge (\forall z \, \neg Q(x, g(z))))$$

$$\iff \forall w \forall v \forall z \, ((\neg S(w, y) \vee R(f(v))) \wedge \neg Q(x, g(z)))$$

[[First Order Logic]]