Devoir à la maison 1

Premiers exercices

À rendre pour le lundi 7 septembre 2020

L'objectif de ce premier DM est de s'entraı̂ner :

- \rightarrow à l'autonomie;
- \rightarrow à la prise d'initiatives;
- \rightarrow à la recherche de questions difficiles.

L'identité de fusion

1. Soient $a, b, c, d \in \mathbb{R}$. On suppose que b, d et b+d sont non nuls et que $\frac{a}{b} = \frac{c}{d}$. Montrer que

$$\frac{a+c}{b+d} = \frac{a}{b} = \frac{c}{d}$$

Problèmes de coloriage

On se place dans le plan muni d'un repère orthonormal.

On colorie le plan en deux couleurs, rouge et vert.

 ${\bf 2.}~~$ On suppose dans cette première question que la propriété suivante est vérifiée :

Propriété 1. Pour tout couple de points du plan (A, B) dont on note $\begin{pmatrix} x_A \\ y_A \end{pmatrix}$ et $\begin{pmatrix} x_B \\ y_B \end{pmatrix}$ les coordonnées, si $x_A = y_B$ alors au moins l'un des deux points est vert.

- (a) Montrer qu'il existe une droite entièrement verte.
- (b) Montrer qu'il existe une droite parallèle à l'axe des ordonnées entièrement verte.
- 3. On suppose maintenant que la propriété suivante est vérifiée :

Propriété 2. Pour tout couple de points du plan (A, B) si la distance AB entre ces deux points vaut 1, alors A et B sont de la même couleur.

Montrer qu'il existe une droite unicolore.

Quelques inégalités

4. (a) Montrer que : $\forall a, b \in \mathbb{R}, \ a^2 + b^2 \geqslant 2ab$.

(b) Montrer que : $\forall a, b \in \mathbb{R}, \ a^2 + b^2 \geqslant ab$.

5. (a) Montrer que $\exists C \in \mathbb{R}_+ : \forall a > 0, \ a + \frac{1}{a} \geqslant C.$

(b) Quel est le plus grand réel $C_{\max} \in \mathbb{R}_+$ tel que $\forall a > 0, \ a + \frac{1}{a} \geqslant C_{\max}$?

Justifiez votre réponse.

6. Montrer que : $\forall a \in \mathbb{R}, \ 1 + a^2 + a^6 + a^8 \ge 4a^4$.

7. Montrer que : $\forall a, b, c \in \mathbb{R}, \ a^2 + b^2 + c^2 \geqslant ab + bc + ac$.

8. Montrer que : $\forall a, b, c \in \mathbb{R}, \ 2a^2 + 20b^2 + 5c^2 + 8ab - 4bc - 4ac \ge 0.$

9. (a) A-t-on : $\forall a, b \ge 0, 1 + ab \ge a + b$?

(b) A-t-on: $\forall a, b \ge 0, 1 + ab \le a + b$?

10. Montrer que : $\forall a, b \in \mathbb{R}, \ a+b < a^2+b^2+2$.

11. Montrer que : $\forall a, b \in \mathbb{R}, \ 8 \times (a^4 + b^4) \geqslant (a + b)^4$.

12. Montrer que : $\forall a, b, c \in \mathbb{R}_+, (a+b)(a+c)(b+c) \ge 8abc$.

Un problème de logarithmes

Si
$$a > 1$$
, on note, pour $x > 0$, $\log_a(x) := \frac{\ln(x)}{\ln(a)}$.

13. Soient x, y > 0 tels que

$$\log_9(x) = \log_{12}(y) = \log_{16}(x+y).$$

- (a) Calculer $\frac{x}{y}$.
- (b) Calculer x et y.