ROBEM I Solve this equation: $1215x \equiv 560 \mod 2755$.

SOLTION. Easily $1215x \equiv 560 \mod 2755 \iff 243x \equiv 112 \mod 551$. Obviously x = 200 is a solution, and $\gcd(243,551) = 1$, so all the solutions are x = 200 + 551t, $t \in \mathbb{Z}$.

ROBEM II Find the solution of
$$\begin{cases} x+4y-29\equiv 0 \mod 143\\ 2x-9y+84\equiv 0 \mod 143 \end{cases}$$

SPETION. Double the first equation then minus the second, we get $17y - 142 \equiv 0 \mod 143$. Then $y \equiv 42 \mod 143$. Substitute it in the first equation, we get $x \equiv 4 \mod 143$.

ROBEM III

- 1. Assume $m \in \mathbb{N}^+$, $\gcd(a, m) = 1$, prove that $x \equiv ba^{\phi(n)-1} \mod m$ is the solution of $ax \equiv b \mod m$.
- 2. Assume p is prime and 0 < a < p. Prove that $x = b(-1)^{a-1} \frac{\binom{p}{a}}{p} \mod p$ is solution of $ax \equiv b \mod p$.
- SOUTION. 1. Only need to check $aba^{\phi(m)-1} \equiv b \mod m$. Since $\gcd(a,m) = 1$, easily $a^{\phi(m)} \equiv 1 \mod m$, so it's obvious.
 - 2. We multiply a! to the equation, we get $a!x \equiv b(-1)^{a-1} \prod_{k=1}^{a-1} (-k) \equiv b(a-1)! \mod p$. Since 0 < a < p, we get $\gcd((a-1)!, p) = 1$, so $ax \equiv b \mod p$.

BOBEM IV Solve the equation:

$$\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 5 \\ x \equiv 3 \mod 7 \\ x \equiv 4 \mod 9 \end{cases}$$

SOUTION .