Отчет по лабораторной работе №5

Построение графиков

Легиньких Галина Андреевна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Вывод	43

Список иллюстраций

3.1	Способ 1	8
3.2	Способ 2	9
3.3	Способ 3	9
3.4	Код для графика исходной функции и её разложения в ряд Тейлора	
	сопциями	10
3.5	Графики исходной функции и её разложения в ряд Тейлора с опциями	10
3.6	График пятидесяти случайных значений на плоскости с различны-	
	ми опциями отображения	11
3.7	График пятидесяти случайных значений в пространстве с различ-	
	ными опциями отображения	12
3.8	Пример аппроксимации исходной функции полиномом 5-й степени	13
3.9	Пример двух траекторий на одном графике с двумя осями ординат	14
3.10	График функции, заданной в полярных координатах	15
	Параметрический график кривой на плоскости	15
	Параметрический график кривой в пространстве	16
	График поверхности (использована функция surface())	16
	График поверхности (использована функция plot())	17
	Сглаженный график поверхности	17
	График поверхности с изменённым углом зрения	18
	График поверхности, заданной функцией	19
	Линии уровня с заполнением	19
	График функции	20
3.20	Векторное поле функции	21
	Код для статичного графика и анимации	21
	Анимированный график поверхности	22
	Код малая окружность гипоциклоиды с добавлением радиуса	23
	Малая окружность гипоциклоиды с добавлением радиуса	23
	Анимация гипоциклоиды	24
3.26	График исходных значений с отклонениями	25
	Поворот графика	25
3.28	Заполнение цветом	26
3.29	График ошибок по двум осям	27
3.30	График асимметричных ошибок по двум осям	28
	Гистограмма, построенная по массиву случайных чисел	29
	Гистограмма нормального распределения	29
	Гистограмма распределения людей по возрастам	30
	Серия из 4-х графиков в ряд	31

3.35	Серия из 4-	ΧI	р	аф	И	KO	В	В	ce'	ТK	e																					31
3.36	Объединен	ие	Н	ec	KC	ЛΙ	ЬΚ	ИΣ	ζГ	pa	аф	И	KO	В	В	ОД	Ή	οй	C	ет	'K(e										32
3.37	Разнообраз	HE	ье	В	ap	иа	н	ТЬ	ΙI	тр	еĮ	ĮC	га	ВЛ	eı	ΗИ	Я	Да	н	HI	ιХ	K										33
3.38	Демонстра	ЦИ	Я	пр	И	мє	H	ен	IИ	Я	СЛ	KO	KH	[0]	О	M	ан	œ'	га	Д,	ΠЯ	ΙΓ	Ю	СТ	po	oe:	НΙ	Я	Гļ	рa	-	
	фиков																															33
3.39	Задание 1.																															34
3.40	Задание 2.													•																		35
3.41	Задание 3.																															36
3.42	Задание 4.																															37
3.43	Задание 5.1																															37
3.44	Задание 5.2																															38
3.45	Задание 6.																															39
3.46	Задание 7.																															40
3.47	Задание 8.																															40
3.48	Задание 9.																															41
3.49	Задание 10																															41
3.50	Задание 11																															42

Список таблиц

1 Цель работы

Основная цель работы — освоить синтаксис языка Julia для построения графиков.

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 5.2. При этом дополните графики обозначениями осей координат, легендой с названиями траекторий, названиями графиков и т.п.
- 2. Выполните задания для самостоятельной работы (раздел 5.4).

3 Выполнение лабораторной работы

1. Для начала я повторила примеры и дробавила, где это было необходимо, обозначения осей координат, легенду с названиями траекторий, названия графиков и т.п. Больше я это нигде прописывать не буду.

Julia поддерживает несколько пакетов для работы с графиками. Использование того или иного пакета зависит от целей, преследуемых пользователем при построении. Стандартным для Julia является пакет Plots.jl.

2. Далее рассмотрела построение графика функции f(x) = (3x2 + 6x - 9)exp(-0,3x) разными способами. Фактически для построения графика функции требуется иметь массив соответствующих значений x и y.

(рис. 3.1) (рис. 3.2) (рис. 3.3)

Рис. 3.1: Способ 1

Рис. 3.2: Способ 2

Рис. 3.3: Способ 3

3. Далее на примере графика функции sin(x) и графика разложения этой функции в ряд Тейлора рассмотрела дополнительные возможности пакетов для работы с графикой. В примерах рассматривается поэтапное улучшение графика. Добавлю скриншот конечного результата. (рис. 3.4) (рис. 3.5)

```
[32]: pyplot()
        sin\_theor(x) = sin(x)
         # задание функции разложения исходной функции в ряд Тейлора:
        \label{eq:sin_taylor} sin\_taylor(x) = [(-1)^i*x^(2*i+1)/factorial(2*i+1) \ for \ i \ in \ 0:4] \ |> \ sum
        plot(sin theor)
        plot!(sin_taylor)
        plot(sin_taylor,
        # подпись в легенде, цвет и тип линии:
label = "sin(x), разложение в ряд Тейлора",
line=(:blue, 0.3, 6, :solid),
        # размер графика:
        size=(800, 500).
        # параметры отображения значений по осям
        xticks = (-5:0.5:5),
        yticks = (-1:0.1:1),
xtickfont = font(12, "Times New Roman"),
        ytickfont = font(12, "Times New Roman"),
        ylabel = "y",
xlabel = "x",
        # название графика:
        title = "Разложение в ряд Тейлора",
        # поворот значений, заданный по оси х:
        xrotation = rad2deg(pi/4),
         # заливка области графика цветом:
        fillrange = 0,
        fillalpha = 0.5,
        fillcolor = :lightgoldenrod,
        # задание цвета фона:
background_color = :ivory
        plot!(
         # функция sin_theor:
        sin_theor,
# подпись в легенде, цвет и тип линии:
        label = "sin(x), теоретическое значение",
        line=(:black, 1.0, 2, :dash))
```

Рис. 3.4: Код для графика исходной функции и её разложения в ряд Тейлора с опциями

Рис. 3.5: Графики исходной функции и её разложения в ряд Тейлора с опциями

4. Как и построении обычного графика для точечного графика необходимо задать массив значений х, посчитать или задать значения **⋈**, задать опции по-

строения графика. Примеры 2-мерного и 3-мерного графиков. (рис. 3.6) (рис. 3.7)

Рис. 3.6: График пятидесяти случайных значений на плоскости с различными опциями отображения

Рис. 3.7: График пятидесяти случайных значений в пространстве с различными опциями отображения

5. Аппроксимация — научный метод, состоящий в замене объектов их более простыми аналогами, сходными по своим свойствам. (рис. 3.8)

```
[80]: # массив данных от 0 до 10 с шагом 0.01:
    x = collect(0:0.01:9.99)
    # экспоненциальная функция со случайным сдвигом значений:
    y = exp.(ones(1000)+x) + 4000*randn(1000)
    # построение графика:
    scatter(x,y,markersize=3,alpha=.8,
    ylabel = "y", xlabel = "x", title = "Аппроксимация данных", label = "Экспоненциальная функция")
    # определение массива для нахождения коэффициентов полинома:
    A = [ones(1000) x x.^2 x.^3 x.^4 x.^5]
    # решение матричного уравнения:
    c = A\y
    # построение полинома:
    f_approx = c[1]*ones(1000) + c[2]*x + c[3]*x.^2 + c[4]*x.^3 + c[5]*x.^4 + c[6]*x.^5
    # построение графика аппроксимирующей функции:
    plot!(x,f_approx, linewidth=3, color=:red, label = "Апроксимация")

Аппроксимация данных
```


Рис. 3.8: Пример аппроксимации исходной функции полиномом 5-й степени

6. Иногда требуется на один график вывести несколько траекторий с существенными отличиями в значениях по оси ординат. (рис. 3.9)

Рис. 3.9: Пример двух траекторий на одном графике с двумя осями ординат

7. Повторила пример построения графика функции в полярных координатах. (рис. 3.10)

Рис. 3.10: График функции, заданной в полярных координатах

8. Повторила пример построения графика параметрически заданной кривой на плоскости. (рис. 3.11)

Рис. 3.11: Параметрический график кривой на плоскости

9. Приведём пример построения графика параметрически заданной кривой в

пространстве. (рис. 3.12)

Рис. 3.12: Параметрический график кривой в пространстве

10. Перешла к графикам поверхности. (рис. 3.13) (рис. 3.14) (рис. 3.15) (рис. 3.16)

Рис. 3.13: График поверхности (использована функция surface())

Рис. 3.14: График поверхности (использована функция plot())

Рис. 3.15: Сглаженный график поверхности

Рис. 3.16: График поверхности с изменённым углом зрения

11. Линией уровня некоторой функции от двух переменных называется множество точек на координатной плоскости, в которых функция принимает одинаковые значения. Линий уровня бесконечно много, и через каждую точку области определения можно провести линию уровня. Рассмотрела поверхность, заданную функцией(рис. 3.17)

Рис. 3.17: График поверхности, заданной функцией

Линии уровня можно построить, используя проекцию значений исходной функции на плоскость. Можно дополнительно добавить заливку цветом. (рис. 3.18)

Рис. 3.18: Линии уровня с заполнением

12. Если каждой точке некоторой области пространства поставлен в соответствие вектор с началом в данной точке, то говорят, что в этой области задано векторное поле. (рис. 3.19) (рис. 3.20)

Рис. 3.19: График функции

Рис. 3.20: Векторное поле функции

13. В Julia рекомендуется использовать gif-анимацию в pyplot(). (рис. 3.21) (рис. 3.22)

Рис. 3.21: Код для статичного графика и анимации

Рис. 3.22: Анимированный график поверхности

14. Гипоциклоида — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения. Дано поэтапное создания графика. Приложу конечный вариант. (рис. 3.23) (рис. 3.24)

Рис. 3.23: Код малая окружность гипоциклоиды с добавлением радиуса

Рис. 3.24: Малая окружность гипоциклоиды с добавлением радиуса

В конце сделаем анимацию получившегося изображения. (рис. 3.25)

Рис. 3.25: Анимация гипоциклоиды

15. В исследованиях часто требуется изобразить графики погрешностей измерения. Подключила пакет Statistics. (рис. 3.26) (рис. 3.27) (рис. 3.28)

Рис. 3.26: График исходных значений с отклонениями

Рис. 3.27: Поворот графика

Рис. 3.28: Заполнение цветом

```
[284]: n = 10
x = [(rand()+1) .* randn(n) .+ 2i for i in 1:5]
y = [(rand()+1) .* randn(n) .+ i for i in 1:5]
f(v) = 1.96std(v) / sqrt(n)
xerr = map(f, x)
yerr = map(f, y)
x = map(mean, x)
y = map(mean, y)
plot(x, y,
xerr = xerr,
yerr = yerr,
marker = stroke(2, :orange), title = "График ошибок по двум осям",
ylabel = "y", xlabel = "x", label = "Значения"
)
```


Рис. 3.29: График ошибок по двум осям

Рис. 3.30: График асимметричных ошибок по двум осям

16. Использование пакета Distributions. (рис. 3.31) (рис. 3.32) (рис. 3.33)

Рис. 3.31: Гистограмма, построенная по массиву случайных чисел

Рис. 3.32: Гистограмма нормального распределения

```
[298]: plotly()
         d1=Normal(10.0,5.0);
        d2=Normal(35.0,10.0);
         d3=Normal(60.0,5.0);
         ages = (float64)[];
ages = append!(ages,rand(d1,Int64(ceil(N/2))));
ages = append!(ages,rand(d2,N));
         ages = append!(ages,rand(d3,Int64(ceil(N/3))));
         histogram(
         ages,
         bins=50,
        label="Распределение по возрастам (года)",
         xlabel = "Возраст (лет)",
         ylabel= "Количество",
title = "Распределение по возрастам (года)"
[298]:
                                 Распределение по возрастам (года) в по возрастам (года)
        Количество
                                                     Возраст (лет)
```

Рис. 3.33: Гистограмма распределения людей по возрастам

17. Определим макет расположения графиков. Команда layout принимает кортеж layout = (N, M), который строит сетку графиков NxM. Например, если задать layout = (4,1) на графике четыре серии, то получим четыре ряда графиков. (рис. 3.34) (рис. 3.35) (рис. 3.36) (рис. 3.37) (рис. 3.38)

Рис. 3.34: Серия из 4-х графиков в ряд

Рис. 3.35: Серия из 4-х графиков в сетке

Рис. 3.36: Объединение нескольких графиков в одной сетке

Рис. 3.37: Разнообразные варианты представления данных

Рис. 3.38: Демонстрация применения сложного макета для построения графиков

18. Перешла к заданиям для самостоятельной работы. Нумерация соответствует.

• Задание 1 (рис. 3.39)

```
[12]: x = 0:0.1:2π
                                                 sin_y = sin_x(x)
                                               plot( # Графики в одном окне
plot(x, sin_y, title="Линия", lw=2), # Линейный график
scatter(x, sin_y, title="Точки"), # Точечный график
bar(x, abs.(sin_y), title="Гистограмма"), # Гистограмма (модули значений)
histogram(sin_y, bins=10, title="Гистограмма значений"), # Гистограмма значений з
                                                                                                                                                                                           Линия
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Точки
                                                                                 1.0
                                                                                                                                                                                                                                                                                                                                                                                               1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     О График
                                                                                                                                                                                                                                                                     —График
                                                                                                                                                                                                                                                                                                                                                                                                 0.5
                                               > 0.0
                                                                                                                                                                                                                                                                                                                                                                                               0.0
                                                                        -0.5
                                                                                                                                                                                                                                                                                                                                                                                          -0.5
                                                                      -1.0
                                                                                                                                                                                                                                                                                                                                                                                          -1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3
                                                                                                                                                     Гистограмма
                                                                                                                                                                                                                                                                                                                                                                                                              Гистограмма значений
                                                                               0.8
                                                                                                                                                                                                                                                                                                                                                                                                   12
10
                                                                              0.6
                                                                               0.4
                                                                                 0.2
                                                                                 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                            -1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.0
```

Рис. 3.39: Задание 1

• Задание 2 (рис. 3.40)

```
[20]: x = 0:0.1:2π
           y = sin.(x)
           # Создание сетки с графиками разных стилей линий
                  plot(x, y, label="Сплошная линия", color=:blue, linestyle=:solid, linewidth=2), # Сплошная л
                 plot(x, y, label="Сплошная линия", color=:blue, linestyle=:solid, linewidth=2), # Сплошная л
plot(x, y, label="Пунктирная линия", color=:red, linestyle=:dot, linewidth=2), # Пунктирная
plot(x, y, label="Штриховая линия", color=:green, linestyle=:dash, linewidth=2), # Штриховая
plot(x, y, label="Линия с маркерами", color=:purple, marker=:circle, markersize=4,
linewidth=2), # Линия с маркерами
layout=(2, 2), # Макет 2x2
xlabel="x", ylabel="y", title="y = sin(x)"
                                        y = \sin(x)
                                                                                                                  y = \sin(x)
[20]:
                  1.0
                                                                                            1.0
                                                    -Сплошная линия
                                                                                                                           •Пунктирная линия
                                                                                            0.5
           > 0.0
                                                                                           0.0
                                                                                           -0.5
                                                                                          -1.0
                 -1.0
                                        y = \sin(x)
                                                                                                                  y = \sin(x)
                  1.0
                                                                                            1.0
                                                 --Штриховая линия
                                                                                                                       ←Линия с маркерами
                   0.5
                                                                                            0.5
                  0.0
                                                                                           0.0
                 -0.5
                                                                                           -0.5
                                                                                          -1.0
```

Рис. 3.40: Задание 2

• Задание 3 (рис. 3.41)

```
[22]: x_vals = 0.1:0.1:5

y_vals = \pi .* x_vals.^2 .* log.(x_vals)

plot(
                x_vals, y_vals,
label="y = πx²ln(x)",
xlabel="x",
ylabel="y",
framestyle=:box,
                legend=:topright,
grid=false,
                 color=:red,
                 foreground_color_border=:green # Задание зелёной рамки
          //
# Настройка расстояний до осей и шрифта
xaxis!(font(12, "Arial"))
yaxis!(font(12, "Arial"))
                                                                                                                      y = \pi x^2 ln(x)
                120
                100
                  80
                 60
                  40
                  20
                    0
                        0
                                                                    2
                                                                                          3
                                                                                                                                      5
```

Рис. 3.41: Задание 3

• Задание 4 (рис. 3.42)

Рис. 3.42: Задание 4

• Задание 5 (рис. 3.43) (рис. 3.44)

Рис. 3.43: Задание 5.1

```
[46]: x = 3:0.1:6
           # Функции у1 и у2

y1(x) = \pi * x

y2(x) = \exp(x) * \cos(x)
           # Построение графикоб с дбумя осями ординат
p1 = plot(x, y1.(x), label="y1(x) = πx", color=:blue, xlabel="x", ylabel="y1(x)",
    grid=true)
p2 = plot(x, y2.(x), label="y2(x) = exp(x)cos(x)", color=:red, xlabel="x", ylabel="y2(x)",
    secondary = true)
           # Отображаем оба графика
plot(p1, p2, title="Графики")
                                        Графики
                                                                                                                    Графики
[46]:
                                                                                           400
                             -y1(x) = πx
                                                                                                     -y2(x) = exp(x)cos(x)
                                                                                           300
                 16
           ₹ 14
                                                                                     y2(x)
                                                                                            100
                  12
```

Рис. 3.44: Задание 5.2

• Задание 6 (рис. 3.45)

Рис. 3.45: Задание 6

• Задание 7 (рис. 3.46)

Рис. 3.46: Задание 7

• Задание 8 (рис. 3.47)

[56]:

```
[56]: random_x3 = rand(50) * 10
random_y3 = rand(50) * 10
random_z3 = rand(50) * 10
plot(
    random_x3, random_y3, random_z3,
    seriestype=:scatter, marker=:circle, color=:red,
    xlabel="X", ylabel="Y", zlabel="Z",
    label="Случайные данные",
    title="3D точечный график случайных данных",
    legend=false
)
```

3D точечный график случайных данных

Рис. 3.47: Задание 8

• Задание 9 (рис. 3.48)

Рис. 3.48: Задание 9

• Задание 10 (рис. 3.49)

Рис. 3.49: Задание 10

• Задание 11 (рис. 3.50)

Рис. 3.50: Задание 11

4 Вывод

Освоила синтаксис языка Julia для построения графиков.