Total No. of Printed Pages:02

F.E. Semester-II (Revised Course 2016-17) EXAMINATION OCTOBER 2020 Engineering Mathematics –II

[Duration: Two Hours] [Total Marks: 60] **Instructions:** 1) Answer THREE FULL QUESTIONS with ONE OUESTION FROM EACH PART. 2) Assume suitable data, if necessary. 3) Figures to the right indicate full marks. Part- A a) Evaluate $\int_0^{\pi} \sec x \log_e (1 + \alpha \cos x) dx$ by applying differentiation under the integral 7 Q.1 b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \frac{dxdy}{1-x^2+y^2}$ 6 c) Find the perimeter of the asteroid $x = aCos^3t$, $y = aSin^3t$ 7 a) Show that $\bar{r}(t) = Ate^{-2t} \bar{\iota} + Be^{3t} \bar{\jmath}$, satisfies $\frac{d\bar{r}^2}{dt^2} + \frac{d\bar{r}}{dt} - 6\bar{r} = 0$. where A and B are Q.2 any constants. b) Change the order of integration and evaluate $\int_1^3 \int_{x-1}^{(2x-2)} x + 3 \, dx \, dy$ 8 c) Define Curvature. Show that the curvature of a circle is the same at every point. 6 Q.3 a) Evaluate $\int \int 2r \sin\theta + 4drd\theta$ over the region $1 + \cos\theta \le r \le 1$ 6 b) Evaluate the cylindrical coordinate integral $\int_0^{\pi} \int_0^1 \int_{2r}^{\sqrt{5-r^2}} 2z Sin\theta dz dr d\theta$ 6 c) Find the volume of the region $\{(x, y, z)/x^2 + y^2 \le 4, 0 \le z \le 3\}$ 8 Part-B a) Solve the following differential equations i) $x \frac{dy}{dx} + y = y^2 \log_e x$ ii) $\frac{dy}{dx} = \frac{y-x-1}{2y-3x+3}$ Q.4 10 b) Verify Green theorem in the plane for $\oint (y^2 + 2x) dx + (5 + xy) dy$ where C is the 10 boundary of the region enclosed by $y^2 = 4x$ and y = 2xa) Solve the following differential equations Q.5 10 $(D^2 + 4D - 5)y = 3e^{-2x} + 5x$

Paper / Subject Code: FE201 / Engineering Mathematics - II

FE201

- $(D^3 4D + 3)v = 3Sinx$ ii)
- b) If $r = \sqrt{x^2 + y^2 + z^2}$ and $\bar{r} = x\bar{\imath} + y\bar{\jmath} + z\bar{k}$ then show that $Curl(r^n\bar{r}) = 0$
- c) Find the direction along which the directional derivative of $F(x, y, z) = x^2 + 2yx + 2xx + 2yx + 2xx +$ z^2 at (2,0,-1) is maximum. What is the magnitude of the maximum?
- Q.6 a) Define divergence of a vector field. If $\bar{r} = x\bar{\imath} + y\bar{\imath} + z\bar{k}$ and \bar{a} is a constant vector. Then show that div $(\bar{a}x\bar{r}) = 0$
 - b) Use Stoke's theorem to evaluate $\int_{S} \int \nabla \times F \cdot \bar{n} ds$ where $F = xy\bar{t} + 3y^2\bar{j} 2yx^2\bar{k}$, \bar{n} 8 is the unit normal vector to S, the surface of the region boundary by x=0, y=0, 2x+y+z=2 and z=0 which is not included in the xy plane.
 - c) Solve the second order homogeneous linear differential equation 6 $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^{2x}$

Part- C

- Q.7 a) The ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is revolved about the x-axis find the volume area of the object 6
 - b) Evaluate the integral $\int_0^\infty \int_x^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates c) Solve the first order differential equation $y(xy+2x^2y^2)dx+x(yx-x^2y^2)dy=6$
- a) Find the work done in moving a particle in a force field **Q.8** $\bar{F} = (2x+3)\bar{\imath} + (xz+y)\bar{\jmath} + z\bar{k}$ along the curve x = t, $y = 2t^2$, z = t + 2 from t = 0 to t = 3.
 - b) Find the area of the surface generated by the revolution of the curve 7 $y = \sqrt{x+2}$ $0 \le x \le 4$ about the x-axis
 - c) Solve the first order differential equation $\frac{dy}{dx} + \frac{xy}{1-x^2} = xy^{1/2}$