倒立振子の安定化制御

渡部僚太

2018年7月2日

目 次

第1章	TODO リスト	1
1.1	TODO リスト	1
第2章	はじめに	3
2.1	実験目的	3
2.2	制御対象	4
	2.2.1 倒立振子系	4
	2.2.2 観測出力と操作入力	5
第3章	モデリング	7
3.1	倒立振子のモデリング	7
	3.1.1 状態方程式	7
	3.1.2 観測方程式	12
3.2	倒立振子のパラメータの同定	12
	3.2.1 m と l の測定	12
	3.2.2 a の測定	13
	3.2.3 Jとcの測定	13
	3.2.4 Mとfの測定	15
	$3.2.5$ c_1 と c_2 の測定 \ldots	19
	3.2.6 同定結果	19
3.3	パラメータの検証	20
	3.3.1 振子の自由振動シミュレーション	20
	3.3.2 台車のステップ応答による方法のシミュレーション	21
	3.3.3 台車のフィードバック応答シミュレーション	21
3.4	設計 (線形) モデルの決定	22
第4章	制御系設計	23
4.1	システム解析	23
	4.1.1 安定性	
	4.1.2 可制御性	
	4.1.3 可制御性	
4.2	状態フィードバックの設計	

4.3	最小次元オブザーバの設計	25
4.4	コントローラの離散化	26
4.5	振り上げ制御及び安定化の実現	27
第5章	シミュレーション	29
5.1	重み行列の変更による制御性能評価	29
5.2	オブザーバの極の変更による制御性能評価	31
5.3	サンプリング周期の変更による制御性能評価	34
5.4	振り上げ制御及び安定化に対する制御性能評価	36
第6章	実験	39
6.1	安定化制御実験	39
6.2	目標値の変更実験	40
6.3		40
第7章	おわりに	41
付録A	プログラム	45
A.1	非線形モデル	45
A.2	線形モデル	45
A.3	システム解析	46
A.4	状態フィードバック	46
A.5	最小次元オブザーバ	47
A.6	コントローラの離散化	47
A.7	シミュレーション	47
A.8	安定化制御及び目標値変更実験	49
A.9	振り上げ制御及び安定化実験	51

図目次

2.1	倒立振子系	4
3.1	数式モデル導出のための参考図	7
3.2	パラメータ a の決定	13
3.3	J と c の測定 \ldots	14
3.4	台車のステップ応答	16
3.5	台車のフィードバック応答	17
3.6	フィードバック制御系のブロック線図	18
3.7	飽和器の有無によるフィードバック入力の比較	19
3.8	振子の自由振動シミュレーション	20
3.9	台車のステップ応答シミュレーションと実験結果の比較	21
3.10	フィードバックによる方法のシミュレーションと実験結果の比較	22
4.1	状態フィードバックを含めたブロック線図	25
4.2	最小次元オブザーバーを含めたブロック線図	26
4.3	離散器 (0 次ホールド) を含めたブロック線図	26
4.4	振り上げ制御及び安定化制御を行うためのブロック線図	28
5.1	重み行列での比較結果(台車位置)	30
5.1	重み行列での比較結果(振子角度)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
5.3	オブザーバーの極での比較結果(台車位置)	32
5.3	オブザーバーの極での比較結果(振子角度)	$\frac{32}{32}$
5.5	オブザーバーの極での推定誤差の比較(台車の速度)	33
5.6	オブザーバーの極での推定誤差の比較(振子の角速度)	33
5.7	サンプリング周期での比較結果(台車位置)	34
5.8	サンプリング周期での比較結果(振子角度)	35
5.9	サンプリング周期での比較紀米(孤子角度)	35
5.10	サンプリング周期での推定誤差の比較(后半の速度)	
5.10	リンプリング周期での推足誤左の比較(孤丁の台还及)	36
6.1	安定化制御実験結果(台車位置)	39
6.2	安定化制御実験結果(振子角度)	40

表目次

3.1	同定したパラメータの一覧	20
5.1	重み行列の変更パターン	29
5.2	オブザーバの極の変更パターン	31
5.3	サンプリング周期の変更パターン	34
5.4	振り上げ後の安定化制御の際に用いるパラメータの組	36
5.5	振り上げ制御に用いるパラメータの組	37
6.1	安定化制御実験で使用したパラメータの組	39

第1章 TODOリスト

1.1 TODO リスト

- 振り上げ制御を行うことができるパラメータ (シミュレーション)
- 振り上げ制御を行う(実験データの取得)
- 実験データとシミュレーションデータを重ね合わせる(目標値変更)
- 実験データとシミュレーションデータを重ね合わせる(振り上げ制御)
- シミュレーションの振り上げ制御のレポートを完成させる
- プログラムリストの完成
- 終わりにを完成させる
- 体裁などを整える

第2章 はじめに

2.1 実験目的

本実験の目的は、倒立振子の安定化制御の制御系の設計を状態空間法を用いて行うことにより、線形時不変システムを設計することである。具体的には以下の

- 振子を垂直上向きに配置した状態から実験を開始し、安定化制御を行う。また、このとき十数度角度を傾けても安定化制御を行えるようにする。(不安定平衡点の安定化)
- 安定化制御を行っている状態でパルス入力を加え、台車の位置が変わっても安定化 制御を行えるようにする。
- 振子を下向きに配置した状態から振り上げ、安定化制御を行えるようにする。

を達成することが目的である。[1]

不安定平衡点とは、倒立振子系における平衡点の1つである。今回実験で使用する倒立 振子系には平衡点が2つ存在する。1つは棒が鉛直線に沿って垂れ下がった状態、もう1 つは棒が鉛直線に沿って倒立した状態である。前者は振子を揺らした場合、時間が立てば 止まる安定平衡点である。後者は振子を揺らした場合、そのまま振子が真っ逆さまに落ち ていく不安定平衡点である。 4 第2章 はじめに

2.2 制御対象

2.2.1 倒立振子系

本実験で用いる倒立振子系を以下に載せる。

図 2.1: 倒立振子系

図 2.1 は倒立振子系を表す図である。モノレールの上に台車が置かれ、台車上のモノレールと直角な軸に一本の棒が取り付けられ、棒はその軸まわりに自由に回転できる。台車はベルトとプーリを介して、モータにより駆動され、モノレール上を走行できる。すなわち、棒(振子)は鉛直線とモノレールにより定まる平面に拘束されて、台車によって動かされるようになっている。

2.2. 制御対象 5

2.2.2 観測出力と操作入力

倒立振子系の観測出力として、エンコーダにより、つぎの2つが測定できる。

- 台車の基準位置から変位 r に比例する電圧 y₁
- 棒の鉛直線となす角度 θ に比例する電圧 y₂
- 一方、操作入力は、つぎのものである。
 - モータの駆動アンプの入力電圧 *u*

ここで、モータにより駆動される台車には、uに比例した駆動力が働くものとする。

第3章 モデリング

3.1 倒立振子のモデリング

実験目的を達成する制御システムを設計するためにまず、倒立振子系について、状態方程式と観測方程式から成る数式モデルを導出する。

3.1.1 状態方程式

図 3.1: 数式モデル導出のための参考図

図 3.1 を参考に各運動方程式を導出すると、 台車の運動方程式は

$$M\ddot{r} = au - F_H - f\dot{r} \tag{3.1}$$

倒立振子の回転の運動方程式は

$$J\ddot{\theta} = lF_V \sin \theta - lF_H \cos \theta - c\dot{\theta} \tag{3.2}$$

倒立振子の水平方向の運動方程式は

$$m\frac{d^2}{dt^2}(r+l\sin\theta) = F_H \tag{3.3}$$

倒立振子の垂直方向の運動方程式は

$$m\frac{d^2}{dt^2}(l\cos\theta) = F_V - mg\tag{3.4}$$

となる。

ここで各式の導出過程を述べる。図 3.1 より台車の運動方程式は、振り子からの水平抗力 F_H を考慮してニュートンの第二法則より (3.1) 式を導くことができる。ただし、M は台車の質量、f は台車の摩擦係数、a は駆動アンプへの入力電圧から台車への駆動までのゲイン、u はモータの駆動アンプへの入力電圧、r は台車の基準位置からの変位である。同様にニュートンの第二法則を用いることで (3.3), (3.4) 式の運動方程式を導くことができる。ただし、m は振り子の質量、l は回転軸・重心間の距離、g は重力加速度、 F_V は振り子が台車から受ける垂直抗力である。また、 θ は鉛直上向きを $\theta=0$ としたときの角度である。最後に (3.2) 式は回転に対する運動方程式を考えることで上記と同様に求めることができる。ただし、J は重心回りの慣性モーメント、c は回転軸摩擦係数である。

いま、4つの状態変数から成るベクトル、すなわち状態xを

$$x = \begin{bmatrix} r \\ \theta \\ \dot{r} \\ \dot{\theta} \end{bmatrix} \tag{3.5}$$

のように定義し、(3.1),(3.2), (3.3),(3.4) 式から倒立振子系の非線形状態方程式を求める。

$$\dot{x} = f(x, u) = \begin{bmatrix} \dot{r} \\ \dot{\theta} \\ \ddot{r} \\ \ddot{\theta} \end{bmatrix}$$
(3.6)

ここで (3.3) 式より F_H を、(3.4) 式より F_V を求めると

$$F_H = m\frac{d^2}{dt^2}r + ml\frac{d^2}{dt^2}\sin\theta$$
$$= m\ddot{r} + ml(-\dot{\theta}^2\sin\theta + \ddot{\theta}\cos\theta)$$
(3.7)

$$F_V = mg + m\frac{d^2}{dt^2}(l\cos\theta)$$

$$= mg + ml(-\dot{\theta}^2\cos\theta - \ddot{\theta}\sin\theta)$$
(3.8)

である。

(3.7) 式を (3.1) 式に代入すると

$$(M+m)\ddot{r} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^2\sin\theta + f\dot{r} = au$$
(3.9)

である。

(3.7) 式、(3.8) 式を(3.2) 式に代入すると

$$(J+ml^2)\ddot{\theta} + ml\ddot{r}\cos\theta - mgl\sin\theta + c\dot{\theta} = 0$$
(3.10)

である。

(3.9) 式、(3.16) 式を行列表現すると

$$\begin{bmatrix} (M+m)\ddot{r} + (ml\cos\theta)\ddot{\theta} + (-ml\sin\theta) + f\dot{r} = au\\ (ml\cos\theta)\ddot{r} + (J+ml^2)\ddot{\theta} - mgl\sin\theta + c\dot{\theta} = 0 \end{bmatrix}$$
(3.11)

$$\begin{bmatrix} M+m & ml\cos\theta \\ ml\cos\theta & J+ml^2 \end{bmatrix} \begin{bmatrix} \ddot{r} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} -ml\ddot{\theta}^2\sin\theta + f\dot{r} \\ mgl\sin\theta + c\dot{\theta} \end{bmatrix} = \begin{bmatrix} au \\ 0 \end{bmatrix}$$
(3.12)

 $egin{pmatrix} M+m & ml\cos heta \ ml\cos heta \end{pmatrix}$ をKと置いて右辺に逆行列としてかけると

$$\begin{bmatrix} \ddot{r} \\ \ddot{\theta} \end{bmatrix} = K^{-1} \begin{bmatrix} au - f\dot{r} + ml\ddot{\theta}\sin\theta \\ mgl\sin\theta - c\dot{\theta} \end{bmatrix}$$
(3.13)

よって以上から (3.6) 式は

$$\dot{x} = f(x, u) = \begin{bmatrix} \dot{r} \\ \dot{\theta} \\ K^{-1} \begin{bmatrix} -f\dot{r} + ml\ddot{\theta}\sin\theta + au \\ mgl\sin\theta - c\dot{\theta} \end{bmatrix} \end{bmatrix}$$
(3.14)

となる。ただし、Kは

$$K = \begin{bmatrix} M+m & ml\cos\theta\\ ml\cos\theta & J+ml^2 \end{bmatrix}$$
(3.15)

である。

よって倒立振子系の非線形状態方程式は3.14のように得られる。

ところで、倒立振子系については、その制御目的から、不安定平衡点x=0の近傍での 挙動を表す状態方程式を知れば十分である。そこで、この基準状態まわりで一時近似され た状態方程式を求めることを考える。

(3.14) 式に一次近似のテイラー展開を施すと、

$$f(x,u) = f(0,0) + \frac{\partial f}{\partial x} \bigg|_{x=0,u=0} (x-0) + \frac{\partial f}{\partial u} \bigg|_{x=0,u=0} (u-0)$$
 (3.16)

また、 $A=\frac{\partial f}{\partial x}\Big|_{x=0,u=0}$, $B=\frac{\partial f}{\partial u}\Big|_{x=0,u=0}$ とする。 ここで、一時近似を施したので、 θ を微小範囲と考えることができ、 $\sin\theta\simeq\theta,\cos\theta\simeq$ $1,\dot{\theta}^2 \simeq 0$ のように近似できる。

以上の近似から (3.14),(3.15) 式は

$$f(x,u) = \begin{bmatrix} \dot{r} \\ \dot{\theta} \\ K'^{-1} \begin{bmatrix} au - f\dot{r} \\ mlg\theta - c\dot{\theta} \end{bmatrix} \end{bmatrix}$$
(3.17)

$$K' = \begin{bmatrix} M+m & ml \\ ml & J+ml^2 \end{bmatrix}$$
 (3.18)

となる。

(3.17)、(3.18) 式を用いて A、B を計算する

ここで、(3.17) 式の3行目を a_1 と置き、4行目を a_2 と置く。

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial \dot{r}}{\partial r} & \frac{\partial \dot{r}}{\partial \theta} & \frac{\partial \dot{r}}{\partial \dot{r}} & \frac{\partial \dot{r}}{\partial \dot{\theta}} \\ \frac{\partial \dot{\theta}}{\partial r} & \frac{\partial \dot{\theta}}{\partial \theta} & \frac{\partial \dot{\theta}}{\partial \dot{r}} & \frac{\partial \dot{\theta}}{\partial \dot{\theta}} \\ \frac{\partial a_1}{\partial r} & \frac{\partial a_1}{\partial \theta} & \frac{\partial a_1}{\partial \dot{r}} & \frac{\partial a_1}{\partial \dot{\theta}} \\ \frac{\partial a_2}{\partial r} & \frac{\partial a_2}{\partial \theta} & \frac{\partial a_2}{\partial \dot{r}} & \frac{\partial a_2}{\partial \dot{\theta}} \end{bmatrix}$$
(3.19)

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & K'^{-1}(-f) & 0 \\ 0 & K'^{-1}(mgl) & 0 & K'^{-1}(-c) \end{bmatrix}$$
(3.20)

$$B = \frac{\partial f}{\partial u} = \begin{bmatrix} \frac{\partial \dot{r}}{\partial u} \\ \frac{\partial \dot{\theta}}{\partial u} \\ \frac{\partial a_1}{\partial u} \\ \frac{\partial a_2}{\partial u} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ K'^{-1}a \\ 0 \end{bmatrix}$$
(3.21)

以上から線形状態方程式は

$$\dot{x} = Ax + Bu$$

$$= \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & K'^{-1}(-f) & 0 \\
0 & K'^{-1}(mql) & 0 & K'^{-1}(-c)
\end{bmatrix} \begin{bmatrix} r \\ \theta \\ \dot{r} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K'^{-1}au \\ 0 \end{bmatrix} \tag{3.22}$$

となる。また、鉛直下向きを $\theta=0$ としたときの非線形状態方程式は (3.15) 式の三角関数内の θ に $+\pi$ すればよいので

$$\dot{x} = f(x, u) = \begin{bmatrix} \dot{r} \\ \dot{\theta} \\ K^{-1} \begin{bmatrix} -f\dot{r} - ml\ddot{\theta}\sin\theta + au \\ -mgl\sin\theta - c\dot{\theta} \end{bmatrix} \end{bmatrix}$$
(3.23)

となる。ただし、Kは

$$K = \begin{bmatrix} M+m & -ml\cos\theta\\ -ml\cos\theta & J+ml^2 \end{bmatrix}$$
 (3.24)

である。

振子の角度を鉛直上向きを $\theta=0$ としたときの状態方程式を線形化したときと同様に (3.23),(3.24) 式を線形化すると線形状態方程式は

$$\dot{x} = Ax + Bu$$

$$= \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & K'^{-1}(-f) & 0 \\
0 & K'^{-1}(-mgl) & 0 & K'^{-1}(-c)
\end{bmatrix} \begin{bmatrix} r \\ \theta \\ \dot{r} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K'^{-1}au \\ 0 \end{bmatrix} \tag{3.25}$$

となる。ただし、Kは、

$$K = \begin{bmatrix} M+m & -ml \\ -ml & J+ml^2 \end{bmatrix}$$
 (3.26)

である。

今後、(3.22) 式を鉛直上向き基準の線形状態上程式とし、(3.25) 式を鉛直下向き基準の線 形状態方程式とする。

3.1.2 観測方程式

2つの観測出力は

$$y_1 = c_1 r \tag{3.27}$$

$$y_2 = c_2 \theta \tag{3.28}$$

のように表される。ここで、 c_1 は変位・電圧変換係数、 c_2 は角度・電圧変換係数である。これから成るベクトル出力 y を

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \tag{3.29}$$

のように定義すると、倒立振子系に対する観測方程式として

$$y = Cx (3.30)$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c_1 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ \theta \\ \dot{r} \\ \dot{\theta} \end{bmatrix}$$
(3.31)

を得ることができる。

なお、鉛直上向きを基準とした場合でも鉛直下向きを基準とした場合でも出力方程式は変化しない。

3.2 倒立振子のパラメータの同定

数式モデル (3.18),(3.21) に含まれる物理パラメータを実際の倒立振子系で実験を行い同定する。

3.2.1 mと1の測定

倒立振子系から振子を取り外し、バネ秤で振子の質量mを測定する。つぎに、振子を鋼尺のエッジ上でバランスさせて、重心の位置を定め、lを測定する。以下に測定した結果を示す。

$$m = 0.031[kg]$$

 $l = 0.15[m]$

3.2.2 aの測定

モータに一定電圧を加え、ばねばかりで台車を引き、台車が正の方向に動き出すときの力 (au+ 摩擦力)を f_{max} 、負の方向に動き出すときの力 (au- 摩擦力)を f_{min} とする。 図 3.2 に示すように u と f_{max} , F_{min} の関係をいくつかの電圧について調べ、最小 2 乗法によって 1 次関数を求め、この傾きを a とする。

図 3.2: パラメータ a の決定

以下に測定した結果を示す。

$$a = 0.062[Kg/V] = 6.1E - 1[N/V]$$

3.2.3 Jとcの測定

振子を自由振動させることにより、Jと c を測定できる。その数式モデルは鉛直下向きを基準として

$$(J+ml^2)\ddot{\theta} - mgl\sin\theta + c\dot{\theta} = 0 \tag{3.32}$$

$$y_2 = c_2 \theta \tag{3.33}$$

で与えられる。 θ を微小範囲で考えると、(3.32),(3.33) 式は

$$\ddot{y}_2 + 2\zeta \omega_n \dot{y}_2 + \omega_n^2 y_2 = 0 \tag{3.34}$$

ただし、

$$\zeta = \frac{c}{2\sqrt{mgl(J+ml^2)}}, \quad \omega_n = \sqrt{\frac{mgl}{J+ml^2}}$$
 (3.35)

のように書くことができる。この解は

$$0 < \zeta < 1$$

のとき、減衰振動となり

$$y_2(t) = \frac{y_2(0)}{\sqrt{1-\zeta^2}} \exp(-\omega_n \zeta t) \sin(\omega_n \sqrt{1-\zeta^2} t + \phi)$$

ただし

$$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$$

で与えられる。

図 3.3: Jと cの測定

いま、減衰振動の周期を T_2 とし、時刻 t_1 と時刻 $t_2=t_1+T_2$ において波形 $y_2(t)$ の山が 隣合うものとする。このときの振幅の減衰比は

$$\frac{|y_2(t_2)|}{|y_2(t_1)|} = \exp\left(-\lambda\right)$$

ただし

$$\lambda = \frac{2\pi\zeta}{\omega_n\sqrt{1-\zeta^2}}\tag{3.36}$$

となる。この λ は対数減衰比と呼ばれる。また

$$T_2 = \frac{2\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

が成り立つ。したがって、Jとcは

$$J = \frac{mglT_2^2}{4\pi^2 + \lambda^2} - ml^2, \quad c = \frac{2\lambda(J + ml^2)}{T_2}$$
(3.37)

のように与えられる。

以下に測定した結果を示す。

$$J = 2.5E - 4[\text{khm}^2]$$

 $c = 5.4E - 5[\text{kgm}^2/\text{s}]$

3.2.4 Mとfの測定

Mとfの測定方法には二通りがある。

ステップ応答による測定法

ここでは、台車をアンプ・モータプーリ・ベルト・台車系の等価質量と等価摩擦係数とし、台車のステップ応答を測定することで M と f を決定する。ただし、振り子は台車から取り外した状態で測定を行う。このときの運動方程式は

$$M\ddot{r} = au - f\dot{r}$$

であり、uからrまでの伝達関数Gは

$$G(s) = \frac{K}{s(Ts+1)}$$

となる。ただし、

$$K = \frac{a}{f}, \quad T = \frac{M}{f} \tag{3.38}$$

である。初期状態を0とするとき、このシステムのステップ応答は

$$r(t) = KU_0 \left(Te^{\frac{-t}{T} + t - T} \right) \tag{3.39}$$

である。

図 3.4: 台車のステップ応答

ただし、 U_0 はステップの高さである。(3.39) において $t \to \infty$ とすれば

$$r(t) = KU_0(t - T)$$

となり、図 3.4 を参考に T と K をもとめ、(3.38) 式より M と f を決定することができる。以下にこの方法を用いて同定したパラメータを示す。

$$M = 6.9E - 1(kg)$$

$$f = 7.6 (kg/s)$$

フィードバック入力による測定法

ここでは、入力にステップ応答ではなく、以下に示すようなフィードバック入力を加える。

$$u = k_c(y_c - y) \tag{3.40}$$

ただし、 y_c は目標値、y は出力、 k_c はフィードバックゲインである。このようにすることで不足制動の 2 次系 ($\zeta < 1$) を実現させる。

図 3.5: 台車のフィードバック応答

図 (3.5) を参考にして M と f を同定する。この方法は J と c の同定の際に用いた方法 とほぼ同じであるため、詳しい説明はそちらに譲る。

同定したJとcから以下の式を用いて ζ と ω_n を計算し求める。

$$\lambda = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}}\tag{3.41}$$

$$T_2 = \frac{2\pi}{\omega_n \sqrt{1 - \zeta^2}} \tag{3.42}$$

上の式を式変形して ζ と ω_n イコールの式にすると

$$\zeta = \frac{\lambda}{\sqrt{4\pi^2 + \lambda^2}} \tag{3.43}$$

$$\omega_n = \frac{2\pi}{T_2\sqrt{1-\zeta^2}}\tag{3.44}$$

以上の式から求めた ζ と ω_n は以下の二次系の伝達関数の基本形に代入することで実験で得られたデータから伝達関数を求めることができる

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{3.45}$$

また、今回のフィードバック制御系におけるブロック線図は以下のようになる。

図 3.6: フィードバック制御系のブロック線図

ここで、台車の伝達関数は以下の式である。

$$P(s) = \frac{K}{s(Ts+1)} \tag{3.46}$$

ただし、T は M/f、K は a/f である。上のブロック線図から伝達関数を求める。しかし、飽和システムを含んでいると伝達関数を求めることができないので、ここでは飽和システムがなくても台車は問題なく動作するもとして仮定する。以上の仮定から伝達関数は

$$G(s) = \frac{AK/T}{s^2 + (1/T)s + (AK/T)}$$
(3.47)

となる。ただし A はゲインである。(3.46) 式と(3.47) 式を係数比較し、M,f= の式にすると以下のようになる。

$$\begin{cases}
M = \frac{aA}{\omega_n^2} \\
f = 2\zeta\omega_n^2 M
\end{cases}$$
(3.48)

よって、(3.48) 式から Mとfは以下のように求まる。

$$M = 1.59(kg)$$

$$f = 13.2 (kg/s)$$

M と f の決定

パラメータMとfについてはステップ応答による方法とフィードバックによる方法の2通りから同定を行った。しかし、それぞれの方法で求めたパラメータを比較するとまるで違うことがわかる。これはフィードバックによる方法では飽和システムを含めずに考えたことが原因であるといえる。シミュレーションにおいては入力にどのような値を加えても倒立振子系に何ら影響はないが実際の倒立振子においてはその入力できる値には制限がある。この制限を考えるか否かで結果が変わってくるということである。

図 (3.7) より飽和器がない場合 (non sturation) 、入力は最大 500(V) まで加えられることがわかる。本実験で用いる倒立振子系の入力限界は -15 < u < 15 であるので、その範囲を大きく超えてしまっている。つまり、フィードバックによる方法で同定したパラメータは現実に即していないといえる。以上から本実験においてフィードバックを行う場合必ず飽和システムが必要であるといえる。なので、飽和システムが存在する限り伝達関数を求めることができないので、正確なパラメータの計算を行うことができないといえる。以降、パラメータ M, f はステップ応答による方法で同定した値を用いる。

3.2.5 c_1 と c_2 の測定

 c_1 と c_2 に関しては

 $c_1 = 1.0 [V/m]$

 $c_2 = 1.0 [V/rad]$

というようにソフトウェアに設定してあるものを用いた。

3.2.6 同定結果

同定実験において同定したパラメータを表にまとめる。

パラメータ	日ウ) 北店
ハラメータ	同定した値
m[kg]	0.031
l[m]	0.15
M[kg]	0.69
f[kg/s]	7.6
$J[kgm^2]$	2.5E-4
$c[kgm^2/s]$	5.4E-5
a[N/V]	0.61
$c_1[V/m]$	1.0
$c_2[{ m V/m}]$	1.0

表 3.1: 同定したパラメータの一覧

3.3 パラメータの検証

前節では、実験によって倒立振子のパラメータを同定した。しかし、その同定したパラメータがどれほど有効性があるか現時点では全く分からない状況である。そこで、本節では同定したパラメータの有効性をがどれほどなのかシミュレーションを用いて検証を行う。シミュレーションに用いたツールは M_ATX である。ただし、直接同定を行った m,l や最初から設定してあった c_1,c_2 については検証は行わない。

3.3.1 振子の自由振動シミュレーション

ここでは、J,cの検証を行う。以下にシミュレーションと実験データを描画したグラフを示す。

図 (3.8 よりシミュレーションと実験結果に少し差異はあるが大きな違いはないといえる。よって同定したパラメータ J,c は有効な値であるといえる。

3.3.2 台車のステップ応答による方法のシミュレーション

ここでは、M, f, aの検証を行う。M, f はステップ応答による方法で求めた値を用いる。以下にシミュレーションと実験データを描画したグラフを示す。

図 (3.9) よりシミュレーションと実験結果に少し差異はあるが大きな違いはないといえ

る。0.5 秒以降のグラフが大幅に異なっているが、これはシミュレーションの場合は台車の可動範囲に制限がないためずっと台車が移動し続けるが、実験の場合は台車の可動範囲に制限があるため、ある時間を境に移動が止まっている。また、このときの入力電圧は 8[V] である。以上から同定したパラメータ M,f,a は有効な値といえる。

3.3.3 台車のフィードバック応答シミュレーション

ここでは、M, f, a の検証を行う。M, f はフィードバックによる方法で求めた値を用いる。以下にシミュレーションと実験データを描画したグラフを示す。

図 (3.10) よりシミュレーションと実験結果には大きな差異があることが確認できる。上述した通りこの方法で同定したパラメータは現実に即しておらず、結果飽和器を加えたシミュレーションとの比較において大きな違いが出てきてしまう。よってこの方法で同定したパラメータ M,f には有効性がないといえる。

3.4 設計(線形)モデルの決定

ここまでで、パラメータを同定し、その有効性についても確かめた。よって、同定すべきパラメータを決定できたのでシステム行列 A、入力行列 B、出力行列 C を M_ATX を用いて計算し、倒立振子の線形モデルを確定する。 M_ATX で計算した各行列を以下に示す。

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -0.32 & -10.9 & 0.00038 \\ 0 & 50 & 53 & -0.059 \end{bmatrix}$$
(3.49)

$$B = \begin{bmatrix} 0 \\ 0 \\ 0.87 \\ -4.3 \end{bmatrix} \tag{3.50}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \tag{3.51}$$

ただし、倒立振子を立たせることを目的とするので、上向きを基準としたときの線形状態 方程式である。

第4章 制御系設計

4.1 システム解析

前章で確定した線形モデルについてシステム解析を行う。これにより今回用いるモデルが安定化制御可能か判定することができる。具体的には可制御性と可観測性を調べ、それらが存在すれば安定化制御可能であるといえる。以下で行う計算はすべて MATX を用いた。

4.1.1 安定性

システムの極(Aの固有値)を計算した結果 Dを以下に示す。

$$D = \begin{bmatrix} 7.0 + 0i \\ 0 + 0i \\ -6.8 - 0i \\ -11 + 0i \end{bmatrix}$$

$$(4.1)$$

(5.1) 式より 1 行目が不安定であり、2 行目が安定限界であるので、今回用いるモデルは不安定であるといえる。

4.1.2 可制御性

可制御性行列は以下のようになる。

$$N_c = \left[\begin{array}{ccc} C & CA & CA^2 & CA^3 \end{array} \right] \tag{4.2}$$

上の行列よりランクは4になれば可制御性があるといえる。ランクを計算したところ

$$rank = 4 (4.3)$$

となった。よって可制御性を確認できる。

4.1.3 可制御性

可観測性行列は以下のようになる。

$$N_o = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \end{bmatrix} \tag{4.4}$$

上の行列よりランクは4になれば可観測性があるといえる。ランクを計算したところ

$$rank = 4 (4.5)$$

となった。よって、可観測性を確認できる。

以上から倒立振子系の上向き基準の線形モデルは不安定なシステムであるが、4つの状態を観測することができ、制御することが可能なシステムといえる。次の節では倒立振子を立たせるための制御器を設計していく。その際にここで計算したシステム行列 A と入力行列 B を用いる。

4.2 状態フィードバックの設計

制御器を設計していく第一段階として、状態フィードバックFの設計を行う。Fは、システムを安定化する状態フィードバック

$$u = -Fx$$

として求めればよい。また、本実験においては台車が目標値へ移動を行う場合があるので、目標値 x_{ref} として以下を設計することになる。

$$u(t) = F(x_{ref} - x) \tag{4.6}$$

この状態フィードバックの設計法には、極配置に基づく状態フィードバック測と LQ 最適制御に基づく状態フィードバック測の 2 通りがあるが今回は後者の方法を用いて設計を行う。 さて、(4.6) 式を LQ 問題の解として得るために、2 次形式評価関数

$$J = \int_0^\infty (x^T Q x + R u^2) dt \tag{4.7}$$

$$Q = diag(q_1^2, q_2^2, q_3^2, q_4^2), \quad R = 1$$
 (4.8)

を考える。ただし、 diag(...) は、対角行列を表す。これは

$$J = \int_0^\infty (q_1^2 r^2 + q_2^2 \theta^2 + q_3^2 \dot{r}^2 + q_4^2 \dot{\theta}^2) dt$$
 (4.9)

のように表されることから、 q_1,q_2,q_3,q_4 は台車位置 r、振り子角度 θ 、台車速度 $\dot{\theta}$ 、振子角速度 $\dot{\theta}$ の間のバランスをとる重み係数である。

(4.7)、(4.8) 式を最小にする (4.6) 式における F は、リカッチの方程式

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

の解P > 0を求めて

$$F = R^{-1}B^TP$$

のように与えられる。

図 4.1: 状態フィードバックを含めたブロック線図

4.3 最小次元オブザーバの設計

第二段階として、

$$\hat{x} \to x \quad (t \to \infty) \tag{4.10}$$

を満足させる状態を推定する状態観測器(最小次元オブザーバ)

$$\dot{z}(t) = \hat{A}z(t) + \hat{B}y(t) + \hat{J}u(t) \tag{4.11}$$

$$\hat{x}(t) = \hat{C}z(t) + \hat{D}y(t) \tag{4.12}$$

をゴピナスの方法で設計する。この方法は、ある行列 $U(1 \times 4)$ が存在して

$$UA = \hat{A}U + \hat{B}C$$

$$UB = \hat{J}I = \hat{C}U + \hat{D}C$$

かつ \hat{A} が安定行列であることを満足する方法であり、オブザーバ (4.11)、(4.12) が (4.10) 式を満足するための十分条件でもある。なお、本実験で用いる倒立振子系は r,θ はセンサーを用いて計測できるが、 $\dot{r},\dot{\theta}$ においては計測するためのセンサーが存在しないため、推測でしかこれらを得ることができない。その推測を行うのに、最小次元オブザーバーを用いる。

具体的には、オブザーバの係数行列 $\hat{A},\hat{B},\hat{J},\hat{C},\hat{D}$ を設計する。これらはオブザーバの極ともいえるので、以下これらの係数行列をオブザーバの極と呼ぶ。また、オブザーバの極を決める際に、状態フィードバック制御

$$u(t) = F(x_{ref}(t) - x(t))$$

による閉ループ系

$$\dot{x}(t) = (A - BF)x(t) + BFx_{ref}(t)$$

の極との位置関係を考慮する必要がある。

図 4.2: 最小次元オブザーバーを含めたブロック線図

4.4 コントローラの離散化

コントローラは連続時間で記述された (4.6)、(4.11)、(4.12) 式で与えられるが、計算機制御のためにはこれらを離散時間で記述しなければならない。これらを離散化したものを離散時間コントローラと呼ぶ。離散時間コントローラはサンプリング周期を Δ とすると、以下の式で与えられる。

$$z[k+1] = \hat{A}_d z[k] + \hat{B}_d y[k] + \hat{J}_d u[k]$$
(4.13)

$$\hat{x}[k] = \hat{C}_d z[k] + \hat{D}_d y[k] \tag{4.14}$$

$$u[k] = F(x_{ref}[k] - \hat{x}[k])$$
 (4.15)

ただし、k=0,1 … であり

$$\begin{pmatrix} \hat{A}_d & [\hat{B}_d \ \hat{J}_d] \\ 0_{3 \times 2} & I_3 \end{pmatrix} = \exp \left(\Delta \begin{pmatrix} \hat{A} & [\hat{B} \ \hat{J}] \\ 0_{3 \times 2} & I_3 \end{pmatrix} \right)$$

である。具体的には、サンプリング周期を Δ を調整する。

図 4.3: 離散器 (0次ホールド) を含めたブロック線図

4.5 振り上げ制御及び安定化の実現

ここでは振子の振り上げ制御を行うためのコントローラを設計する。振り上げ制御とは、振り子を下向きにしたままで台車を動かすことで振り子を上向きに立たせようという制御のことである。この制御には振り子を振り上げる制御と振り子の安定化制御を使い分けることで実現させる。具体的には下向きの振り子を振り上げ制御により徐々に上に持っていく(θ を 0 に近づけていく)このときある一定の角度を境界値と定め、その境界値まで振り子の角度がちいさくなったところで制御を安定化制御に切り替えるというものである。振り子の安定化制御についてはこれまでのコントローラを用いるので、ここでは振り子の振り上げ制御の理論とその実現方法について述べる

台車と振り子の運動方程式は

$$(M+m)\ddot{r} + ml\cos\theta\ddot{\theta} = -f\dot{r} + ml\sin\theta\dot{\theta}^2 + au \tag{4.16}$$

$$ml\cos\theta\ddot{r} + (J+ml^2)\ddot{\theta} = mgl\sin\theta - c\dot{\theta}$$
 (4.17)

で与えられる。振り子が垂直上向きのときを基準とする振り子の力学的エネルギーは

$$E = \frac{1}{2}(J + ml^2)\dot{\theta}^2 + mgl(\cos\theta - 1)$$
 (4.18)

で与えられる。第一項が回転に関するエネルギーであり、第二項が傾きを考慮した位置エネルギーである。なお、基準において静止しているとき、力学的エネルギーは E=0 である。このとき、力学的エネルギーの時間微分は

$$\frac{dE}{dt} = (J + ml)\dot{\theta}\ddot{\theta} - mgl\dot{\theta}\sin\theta \tag{4.19}$$

となる。振り上げ制御のために、次の制御則を用いる。

$$u = \frac{1}{a} \left(f\dot{r} - ml\sin\theta \dot{\theta}^2 + ml\cos\theta \ddot{\theta} + (M+m)v \right) \tag{4.20}$$

$$v = -\frac{c\dot{\theta}}{ml\cos\theta} + k(E - E_0)sign(\dot{\theta}\cos\theta)$$
 (4.21)

ただし、sign は符合関数であり、引数の値が負のとき-1、正のとき1、0のとき0となる。(4.20) 式を(4.16) 式に代入すると、

$$\ddot{r} = v \tag{4.22}$$

を得る。(4.22) 式と(4.21) 式を(4.17) 式に代入すると

$$(J+ml^2)\ddot{\theta} = mgl\sin\theta - ml\cos\theta(k(E-E_0)sign(theta\cos\theta))$$
 (4.23)

を得る。この式を (4.19) 式に代入すると

$$\frac{dE}{dt} = -ml\dot{\theta}(k(E - E_0)sign(\dot{\theta}\cos\theta))
= -mlk(E - E_0)sign(\dot{\theta}\cos\theta)(\dot{\theta}\cos\theta)$$
(4.24)

となる。リアプノフ関数の候補として、

$$V = \frac{(E - E_0)^2}{2} \ge 0 \tag{4.25}$$

を考える。Vの時間微分を求めると、

$$\frac{dV}{dt} = (E - E_0) \frac{dE}{dt}
= -mlk(E - E_0)^2 sign(\dot{\theta}\cos\theta)(\dot{\theta}\cos\theta) \le 0$$
(4.26)

これより、 $\dot{\theta}\cos\theta\neq0$ のとき、 $\dot{V}<0$ であるので V は減少して 0 に収束し、E は E_0 に収束する。なお、k を大きくすると、早く E が E_0 に収束する。実際の制御では、台車の加速度目標 V を制限し、

$$\begin{cases} u = \frac{1}{a} \left(f \dot{r} - m l \sin \theta \dot{\theta}^2 + m l \cos \theta \ddot{\theta} + (M+m) v \right) \\ v = -\frac{c \dot{\theta}}{m l \cos \theta} + s a t_{ng} (k(E-E_0) sign(\dot{\theta} \cos \theta) \end{cases}$$

$$(4.27)$$

とする。ただし、sat は最小値が-ng, 最大値が ng の飽和関数である。 n は、重力加速度 (鉛直下向き)と台車の加速度(水平方向)の比である。

具体的には、kと重力加速度と台車の加速度の比であるnを調整し、振り上げ制御を実現させる。

図 4.4: 振り上げ制御及び安定化制御を行うためのブロック線図

第5章 シミュレーション

目標値変更のシミュレーションによって制御器に関する各パラメータの有効な値を探索する。 シミュレーションには JAMOX を用いた。

5.1 重み行列の変更による制御性能評価

LQ 最適制御に基づく状態フィードバック F を設計するために連続時間線形二次レギュレーターを用いる。この時、連続時間線形二次レギュレーターにはシステム行列 A と入力行列 B と重み行列 Q, R が必要である。重み行列は、(4.6) 式で与え、この重み行列を調整することで倒立振子の安定化制御の性能を高めることができる。そこで、シミュレーションを用いて重み行列を変更させたときの制御性能について考察していく。

今回は行列 R の値は変更しないので、行列 Q のみ値を変更してシミュレーション結果を考察する。便宜上、重み行列 Q の対角成分を左から第 1 成分、第 2 成分、第 3 成分、第 4 成分と呼ぶことにする。以下にシミュレーションを行う異なるパターンのパラメータをまとめた表とその時のシミュレーション結果を示す。

表 5.1: 重み行列の変更パターン

	重み行列 Q	オブザーバの極 <i>P</i>	サンプリング周期 Δ[s]
パターン1	$Q_1: diag(1E5, 1E5, 1, 1)$	$P_1:((-60,0),(-60,0))'$	$\Delta_1:0.005$
パターン 2	Q_2 :diag(1E6, 1E5, 1, 1)	$P_1:((-60,0),(-60,0))'$	$\Delta_1:0.005$
パターン3	$Q_3: diag(1E5, 1E6, 1, 1)$	$P_1:((-60,0),(-60,0))'$	$\Delta_1:0.005$

図 5.1: 重み行列での比較結果(台車位置)

図 5.2: 重み行列での比較結果(振子角度)

図 (5.1) より Q_2 の応答が一番早く、 Q_3 の応答が一番遅いことが確認できる。このことから台車の位置 r の応答をよくするには重み行列 Q の第 1 成分を大きくすればよいとわかる。また、 Q_1 と Q_3 の第 1 成分は同じであるのにもかかわらず、 Q_1 の方が応答が早いことが確認できる。これは振子の角度 θ の応答をよくする第 2 成分を大きくした分、バランスが第 2 成分のほうに偏ってしまい、台車の位置の応答が悪くなったといえる。

図 (5.2) より、振子の角度についても同じことが言え、第 2 成分を大きくしている Q_3 の 応答が一番よく、 Q_2 の応答が一番悪い結果となっている。

以上から重み行列の調整については以下のことが言える。

• 重み行列 Q の各成分は $r, \theta, \dot{r}, \dot{\theta}$ に対応している

- 応答をよくしたい状態があれば、その状態に対応する成分の値を大きくすればよい
- その場合、大きくした成分に対応する状態にバランスが偏る (つまり、ほかの状態の 応答が悪くなる)

5.2 オブザーバの極の変更による制御性能評価

前章で述べたように、最小次元オブザーバを設計するためにゴピナスの方法を用いる。この時、システム行列 A、入力行列 B、出力行列 C、オブザーバの極 P が必要である。オブザーバの極 P を調整することで倒立振子の安定化制御の性能を高めることができる。同様にシミュレーションによって制御性能を考察していく。

1つ考慮しなければならないのは、オブザーバの極と閉ループ系の極(つまり、(A-BF)の固有値) との位置関係である。閉ループ系の極のうち虚軸に最も近い極を λ_{max} としたとき、オブザーバーの極 P は

$$Re(P) < 5Re(\lambda_{max})$$

を満たす考慮して設定する必要がある。表 (5.3) の Q_2 を用いて設計した状態フィードバック F における閉ループ系の極は

$$D = \begin{bmatrix} -0.08 \\ -6.3 + 1.3i \\ -6.3 + 1.3i \\ -13 \end{bmatrix}$$
 (5.1)

である。この中で一番虚軸に近い極は-0.08である。よって、少なくともオブザーバーの極Pは-0.4より小さい値をとればよいとわかる。

以下にシミュレーションを行う異なるパターンのパラメータをまとめた表とその時のシミュレーション結果を示す。

	重み行列 Q	オブザーバの極 <i>P</i>	サンプリング周期 Δ[s]
パターン1	$Q_1: diag(1E5, 1E5, 1, 1)$	$P_1:((-60,0),(-60,0))'$	$\Delta_1:0.005$
パターソク	Oxiding(1F5 1F5 1 1)	$P_{2} \cdot ((-30,0),(-30,0))'$	A - : 0 005

表 5.2: オブザーバの極の変更パターン

図 5.3: オブザーバーの極での比較結果(台車位置)

図 5.4: オブザーバーの極での比較結果(振子角度)

図 5.3 と図 5.4 よりオブザーバの極の違いによる大きな違いは確認できない。ここで、倒立振子の状態 x(t) (台車の速度と振り子の角速度) とオブザーバで推定した値 $\hat{x}[k\cdot T]$ (台車の速度と振り子の角速度) との差である推定誤差 $(x(t)-\hat{x}[K\cdot T])$ の応答波形からオブザーバの極の違いによる考察をする。以下に台車の速度と振り子の角速度の推定誤差の図を示す。

図 5.5: オブザーバーの極での推定誤差の比較(台車の速度)

図 5.6: オブザーバーの極での推定誤差の比較(振子の角速度)

図 5.5 と図 5.6 よりオブザーバの極が虚軸から遠いパターン 2 のほうが推定誤差の収束が若干遅いことがわかる。また、その大きさもパターン 2 のほうが大きいこともわかる。 以上からオブザーバの極配置の調整については以下のことが言える。

- オブザーバの極は虚軸に近いほうが推定誤差が小さくなり応答はよくなるといえる。
- ただし、閉ループ系の極との位置関係を考慮するひつようがある。

5.3 サンプリング周期の変更による制御性能評価

離散化を行うサンプリング周期 Δ を調整することで倒立振子の安定化制御の性能を高めることができる。同様にシミュレーションによって制御性能を考察していく。ただし、サンプリング周期が短すぎると実験で用いる倒立振子系においてシステム全体がハングアップする恐れがあるため、そのような値においてはシミュレーションを行わない。

以下にシミュレーションを行う異なるパターンのパラメータをまとめた表とその時のシ ミュレーション結果を示す。

重み行列 Q オブザーバの極 P サンプリング周期 $\Delta[s]$ パターン 1 Q_1 :diag(1E5, 1E5, 1, 1) P_1 :((-60, 0), (-60, 0)) Δ_1 :0.005 パターン 2 Q_1 :diag(1E5, 1E5, 1, 1) P_1 :((-60, 0), (-60, 0)) Δ_2 :0.01

表 5.3: サンプリング周期の変更パターン

図 5.7: サンプリング周期での比較結果(台車位置)

図 5.8: サンプリング周期での比較結果(振子角度)

図 5.7 から、パターン 1 のほうが若干応答が早いといえる。しかし、図 5.7 と図 5.8 からは大きな違いを確認することはできない。先ほどと同様に推定誤差の応答波形からサンプリング周期の違いによる考察をする。以下に台車の速度と振り子の角速度の推定誤差の図を示す。

図 5.9: サンプリング周期での推定誤差の比較(台車の速度)

図 5.10: サンプリング周期での推定誤差の比較(振子の各速度)

図 5.9 と図 5.10 よりサンプリング周期の短いほうが推定誤差が小さいことが確認できる。 以上からサンプリング周期の調整については以下のことが言える。

- サンプリング周期は短いほうが推定誤差が小さくなり、応答がよくなる。
- ただし、あまり小さくしすぎるのはよくない。

5.4 振り上げ制御及び安定化に対する制御性能評価

前節までにおいて、安定化制御における有効なパラメータを考察してきた。ここでは、振り上げ制御におけるパラメータ k,n を調整することで振り上げ制御の制御性能を考察する。

この時、安定化制御に用いるパラメータは以下の表の通りである。安定化制御の際に使用するパラメータについてはこれまでの考察に基づいて決定した。振り上げ制御に用い

表 5.4: 振り上げ後の安定化制御の際に用いるパラメータの組

重み行列 Q	オブザーバの極 <i>P</i>	サンプリング周期 Δ[s]
$Q_1: diag(1E5, 1E5, 1, 1)$	$P_1:((-30,0),(-30,0))'$	$\Delta_1:0.005$

るパラメータは以下の表の通りである。以上の表のパラメータを用いて行ったシミュレーションの結果を示す。

表 5.5: 振り上げ制御に用いるパラメータの組

	n	k
パターン1	0.4	1.0×10^{3}
パターン 2	0.4	1.0×10^{4}
パターン3	0.48	1.0×10^4

第6章 実験

6.1 安定化制御実験

振子を上向きに配置したときに安定化制御が可能か実験を行う。(実験目的の第一項目) その際に、振子を真上に配置するのではなく、幾分か角度をつけてから実験を始める。実 験に用いたパラメータを以下の表に示す。以下に実験結果とシミュレーション結果の比較

表 6.1: 安定化制御実験で使用したパラメータの組

重み行列 Q	オブザーバの極 <i>P</i>	サンプリング周期 Δ[s]
$Q_1: diag(1E5, 1E5, 1, 1)$	$P_1:((-30,0),(-30,0))'$	$\Delta_1:0.005$

図を示す。

図 6.1: 安定化制御実験結果(台車位置)

40 第6章 実験

図 6.2: 安定化制御実験結果(振子角度)

図 6.1 と図 6.2 より一番最初の山は実験のほうが大幅に大きくなっているのと、ノイズが乗っている点を除いてシミュレーションと実験結果は概ね一致しているといえる。これは、実験のほうではデータの計測を開始して振子から手を離したためその影響が出たといえる。この時の初期角度は 0.1979である。よって、初期角度がある程度ある中で実験を開始し、安定化制御を行うことができたため、実験目的の第一項目を達成できたといえる。

6.2 目標値の変更実験

台車に目標値を与えて、その目標値に台車が移動しても安定化制御可能か実験を行う。 (実験項目の第二項目) なお、目標値は5 秒ごとに $0 \rightarrow 0.1 \rightarrow 0$ のように変更される。以下 にその結果とシミュレーション結果との比較を行った図を示す。

6.3 振り上げ制御及び安定化実験

振子を真下に配置し、そこから台車の動きだけで振子を振り上げ、安定化制御が可能か 実験を行う。(実験項目の第三項目)以下にその結果とシミュレーション結果との比較を 行った図を示す。

第7章 おわりに

本実験を通して当初の目的である、「倒立振子の安定化制御の制御系の設計を状態空間法を用いて行うことにより、線形時不変システムを設計すること」を達成できたといえる。また、制御系のツールや数値計算ツールなどの使い方も習得することができた。

関連図書

[1] B. 倒立振子の安定化制御.

付 録 A プログラム

A.1 非線形モデル

倒立振子の非線形モデルのコードを載せる。下向きを基準としている。

```
- diff_eqs -
Func Matrix diff_eqs(t,x,u)
Real t;
Matrix x,u;
    Real r,th,dr,dth;
Matrix xp,dxp;
Matrix K,KZ;
    r=x(1,1);
th=x(2,1);
dr=x(3,1);
    dth=x(4,1);
    K=[[M + m , m *l*cos(th)]
        [m*l*cos(th), J + m*l*l]];
    KZ = [[-f*dr + m*l*sin(th)*dth*dth + a * u(1,1)]
         [ m*g*l*sin(th) - c*dth ]];
    dxp=[[x(3:4,1)][K\KZ]]; // 倒立振子の状態の微分(非線形モデル)
    cnt = cnt+1;
XX(1,cnt) = dxp(1,1)-Xh(1,1);
    // 出力を更新
    return dxp;//X は6行の行列になる
}
```

A.2 線形モデル

倒立振子の線形モデルのコードを載せる。下向きを基準としている。

```
- main.
Func void diff_eqs(DX,t,X,UY)
Real t;
Matrix X,DX,UY;
{
     Real M,m,l,J,f,a,c,g;
     Matrix xp,up,dxp;
Matrix A,B,A21,A22,B2,K;
      //物理パラメータの設定
     M=1.49; m=0.038; l=0.13; J=4.5E-4; f=15.10; a=0.73; c=2.1E-4; g=9.8;
     K = [[M+m,m*1][m*1,J+m*1^2]];
     A21 = K^* * [[0,0][0,m*g*1]];
     A22 = K^* [[-f, 0][0, -c]];

A=[[Z(2), I(2)][A21, A22]];
     B2 = K^*[[a][0]];
     B = [[Z(2,1)][B2]];
     xp = X;
     up = UY;
     dxp = A*xp+B*up;
     DX = [dxp];
}
```

A.3 システム解析

第4章4.1節のシステム解析に用いたコードを載せる。ただし、行列A,B,Cについては別の部分で計算している。

```
main.c

//システムの極 (Aの固有値)を計算
D=eigval(A);

//可制御性行列のランクを計算し、可制御性を調べる
Nc=[B,A*B,A*A*B,A*A*A*B];

//可観測性行列もランクを計算し、可観測性を調べる。
No=[[C][C*A][C*A*A][C*A*A*A]];
```

A.4 状態フィードバック

状態フィードバックを設計算するのに用いたコードを載せる。ただし、LQ 最適制御に基づくフィードバック則とする。

```
lqr
Matrix A, B, Q, R, F, P;
Q = diag(1, 1, 1, 1);
R = [1];
{F,P} = lqr(A, B, Q, R);
```

A.5 最小次元オブザーバ

最小次元オブザーバをゴピナスの方法で計算するのに用いたコードを載せる。

```
obsg

CoMatrix obs_p;

obs_p = trans([(-2,0), (-2,0)]);

{Ah, Bh, Ch, Dh, Jh} = obsg(A, B, C, obs_p);
```

A.6 コントローラの離散化

連続時間オブザーバを離散化するたために用いたコードを載せる。

```
c2d
// ここは関数の先頭
Real dt;
Matrix Ah, Bh, Jh;
Matrix Ahd, Bhd, Jhd, Hhd;
//ここはオブザーバの設計の後
dt = 0.005;
{Ahd, Hhd} = c2d(Ah, [Bh Jh], dt);
Bhd = Hhd(:,1:2);
Jhd = Hhd(:,3);
```

A.7 シミュレーション

第5章でシミュレーションを行ったコードを載せる。

```
- In Pe Above Non Liner Design 3.mm -
Matrix A; //システム行列
Matrix B; //入力行列
Matrix C; //出力行列
Matrix F; //状態フィードバック行列
Matrix z; // オブザーバの状態
Matrix Ah,Bh,Ch,Dh,Jh; //オブザーバに関する行列
Matrix Ahd,Bhd,Jhd;
Matrix Xh,XX,Xtest; //推定值
Real M,m,l,J,f,a,c,g,c1,c2; //パラメータ
Func void main()
   Real t0,t1,r0,th0,tol;
    Real dt, dtsav; //離散化に用いる変数
    Matrix x0,z0,xp0,TC,XC,UC;
    void calcParameter();
   Matrix diff_eqs(),link_eqs();
    t0 = 0.0; //シミュレーション開始時刻
   t1 = 18.0; //シミュレーション終了時刻
r0 = 0; //位置の初期値
    th0 = 10.0; //角度の初期値
   x0 = [r0, th0/180*PI,0,0]'; //倒立振子の初期状態'z = [0,0]'; //オブザーバーの初期状態'
   dt = 0.005; //サンプリング周期
    tol=1.0E-9;//許容誤差
    dtsav = 0.05; //データ保存間隔
   print "Now simulating\n";
    cnt=0; // 初期化
    calcParameter(); //シミュレーションに必要なパラメータを計算 // Ode() によってシミュレーションを行う
    \{TC, XC, UC\} =
    Ode45HybridAuto(t0,t1,dt,x0,diff_eqs,link_eqs,tol,dtsav);
    // diff_eqs() は微分方程式を記述する関数
    // link_eqs() は複数の微分方程式の関係を記述する関数。
    // TC:時間の時系列
    // XC:状態 x(t) の時系列
    // UC:入出力ベクトルの時系列
   //数値回を表示する。横軸 t, 縦軸 x(t) mgreplot(1,TC,XC(1,*),{"r"});
   mgreplot(2,TC,XC(2,*),{"Theta"});
   print TC >> "TC.mat";
print XC >> "XC.mat";
   print UC >> "UC.mat";
}
// diff_eqs() は微分方程式を記述する関数
Func Matrix diff_eqs(t,x,u)
// t は時間
Real t;
Matrix x,u;
    Real r,th,dr,dth;
   Matrix xp,dxp;
   Matrix K,KZ;
    r=x(1,1);
    th=x(2,1);
    dr=x(3,1);
   dth=x(4,1);
    K=[[M + m , m *l*cos(th)]
       [m*l*cos(th), J+m*l*l]];
    KZ = [[-f*dr + m*l*sin(th)*dth*dth + a * u(1,1)]
        [ m*g*l*sin(th) - c*dth ]];
    dxp=[[x(3:4,1)][K\KZ]]; // 倒立振子の状態の微分(非線形モデル)
    cnt = cnt+1;
                I_{VD}(1, 1) - Vh(1, 1)
```

A.8 安定化制御及び目標値変更実験

安定化制御及び目標値変更実験を行うために使用したコードを載せる。

```
- sample.mm -
#define LOGMAX 10000
Integer cmd, count;
Real smtime;
Matrix u, y;
Array data;
Matrix Ahd, Bhd, Chd, Dhd, Jhd, F;
Matrix z;
Integer qrr,qth,oprh,opthh;
Real ref;
// センサとアクチュエータ関連の変数 (hardware.mm で使用される)
Matrix mp_data, PtoMR;
// メイン関数
Func void main()
    void para_init(), var_init();
   void on_task(), break_task(), off_task_loop();
   void machine_ready(), machine_stop(), data_save();
    void calcParameter();
                          // パラメータの初期化
   para_init();
                          // 変数の初期化
// 実験装置の準備
    var_init();
   machine_ready();
    calcParameter();
                          // サンプリング周期の設定
   rtSetClock(smtime);
                          // オンライン関数の設定 (制御)
   rtSetTask(on_task);
   rtSetBreak(break_task); // 割り込みキーに対応する関数の設定
                          // リアルタイム制御開始
// オフライン関数
   rtStart();
   off_task_loop();
                          // リアルタイム制御終了
   rtStop();
                          // 実験装置を停止
   machine_stop();
                          // データを保存する
   data_save();
}
// パラメータの初期化
Func void para_init()
{
}
// 変数の初期化
Func void var_init()
                      // サンプリング周期 [s]
    smtime = 0.01;
                      // 制御出力を抑制
    cmd = 0;
                      // ロギングデータの数
    count = 0;
   data = Z(4,LOGMAX); // ロギングデータを保存する場所
                         // オブザーバの初期値
   z = [0 \ 0]';
    qrr = 0;
   qth = 0;
    oprh = 0;
    opthh = 0;
ref = -0;
// オンライン関数
Func void on_task()
   Matrix xh, xref;
   Matrix sensor();
   void actuator();
                              // センサから入力
   y = sensor();
   xh = Chd*z + Dhd*y; // 状態の推定値
    if(count * smtime< 5){</pre>
       ref = 0;
    } else if(count * smtime < 10){</pre>
       ref = 0.1;
   } else if (count * smtime < 15){
    ref = 0;</pre>
    }
```

A.9 振り上げ制御及び安定化実験

振り上げ制御及び安定化実験を行うために使用したコードを載せる。

```
- sample.mm –
#define LOGMAX 10000
Integer cmd, count;
Real smtime;
Matrix u, y;
Array data;
Matrix Aod, Bod, Cod, Dod, F;
Matrix z, yw;
Matrix zde, zdo;
Integer qrr,qth,oprh,opthh;
Integer swinging, cnt;
Real M,m,l,J,f,a,c,g,c1,c2; //パラメータ
Real pre_r,pre_th,pre_dr,pre_dth,pre_ddth;
// センサとアクチュエータ関連の変数 (hardware.mm で使用される)
Matrix mp_data, PtoMR;
// メイン関数
Func void main()
    void para_init(), var_init();
    void on_task(), break_task(), off_task_loop();
    void machine_ready(), machine_stop(), data_save();
   void calcParameter();
                           // パラメータの初期化
   para_init();
                          // 変数の初期化
   var_init();
                          // 実験装置の準備
   machine_ready();
   calcParameter();
                           // サンプリング周期の設定
   rtSetClock(smtime);
                          // オンライン関数の設定 (制御)
   rtSetTask(on_task);
   rtSetBreak(break_task); // 割り込みキーに対応する関数の設定
                           // リアルタイム制御開始
// オフライン関数
   rtStart();
   off_task_loop();
                           // リアルタイム制御終了
   rtStop();
                          // 実験装置を停止
   machine_stop();
                           // データを保存する
   data_save();
// パラメータの初期化
Func void para_init()
   zde = [0,PI]'; //'
zdo = [0,0]';//'
    swinging = 1;
    //物理パラメータの設定
   M=0.69; m=0.031; l=0.15;
J=2.5E-4; f=7.6; a=0.61;
c=5.4E-5; g=9.8; c1=1.0;
    c2=1.0;
   pre_r = 0;
   pre_th = PI;
   pre_dr = 0;
   pre_dth = 0;
   pre_ddth = 0;
    //ここで u を初期化すればよいのではないか
}
// 変数の初期化
Func void var_init()
   Matrix Swinging();
                       // サンプリング周期 [s]
    smtime = 0.005;
                       // 制御出力を抑制
    cmd = 0;
                       // ロギングデータの数
    count = 0;
   data = Z(3,LOGMAX); // ロギングデータを保存する場所
                         // オブザーバの初期値,
    z = [0 \ 0]';
    qrr = 0;
```