Linear Dependence and Independence of Functions or Solutions:

Let (y_1, y_2, y_3) be the given set of functions or solutions.

Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}$$

- (I) If W = 0, then functions (y_1, y_2, y_3) are said to be Linearly Dependent.
- (II) If $W \neq 0$, then functions (y_1, y_2, y_3) are said to be Linearly Independent.

Fundamental Solutions or Basis:

The solutions which are linearly independent are called as Fundamental solutions or Basis.

Problem 1: Show that the functions: $(1, \sin x, \cos x)$ are linearly independent.

Solution: Let $(y_1, y_2, y_3) = (1, \sin x, \cos x)$

Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} 1 & \sin x & \cos x \\ 0 & \cos x & -\sin x \\ 0 & -\sin x & -\cos x \end{vmatrix}$$

Expanding by first column:

$$W = 1(-\cos^2 x - \sin^2 x) - 0 + 0 = -1(\cos^2 x + \sin^2 x) = -1$$

Since $W \neq 0$, so the given functions are linearly independent.

Problem 2: Show that the functions: (x, x^2, x^3) are linearly independent on an interval which does not contain zero.

Solution: Let $(y_1, y_2, y_3) = (x, x^2, x^3)$

Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix}$$

Expanding by first column:

$$W = x(12x^2 - 6x^2) - 1(6x^3 - 2x^3) + 0 = 2x^3 \neq 0$$
 (because $x \neq 0$)

Since $W \neq 0$, so the given functions are linearly independent.

Problem 3: Show that the functions: (2x, 6x + 3, 3x + 2) are linearly dependent.

Solution: Let $(y_1, y_2, y_3) = (2x, 6x + 3, 3x + 2)$

Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} 2x & 6x + 3 & 3x + 2 \\ 2 & 6 & 3 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

(If one row of a determinant is zero, then value of determinant is always zero.)

Since W = 0, so the given functions are linearly dependent.

Polling Question

The functions (y_1, y_2, y_3) are said to be Linearly Dependent if:

(A)Wronskian $W \neq 0$

(B)Wronskian W = 0

Principle of Superposition:

If functions $(y_1, y_2, ---, y_n)$ are the solutions of homogeneous LDE:

$$a_0 y^n + a_1 y^{n-1} + --- + a_{n-1} y' + a_n y = 0 (1)$$

Then, their linear combination: $(c_1y_1 + c_2y_2 + --- + c_ny_n)$ is also a solution of LDE (1).

Note: Principle of superposition is not applicable to non-homogeneous LDE.

Problem 1: Show that (e^x, e^{-x}) and their linear combination $(c_1e^x + c_2e^{-x})$ are the solutions of homogeneous equation: y'' - y = 0. Also show that (e^x, e^{-x}) form basis or Fundamental solution.

Solution: The given homogeneous LDE: y'' - y = 0 (1)

Let $(y_1, y_2) = (e^x, e^{-x})$ be the given set of functions.

Part 1: Now they will be solutions of equation (1) if they satisfy equation (1).

i.e.
$$y_1$$
 will be solution of equation (1) if $y_1'' - y_1 = 0$ (2)

Here
$$y_1 = e^x$$
 $\Rightarrow y_1' = e^x$ $\Rightarrow y_1'' = e^x$

Substitute these values of y_1 and y_1'' in equation (2), we get:

$$e^x - e^x = 0$$
 which is true.

So, y_1 is a solution of equation (1)

Now y_2 will be solution of equation (1) if $y_2'' - y_2 = 0$ (3)

Here
$$y_2 = e^{-x}$$
 $\Rightarrow y_2' = -e^{-x}$ $\Rightarrow y_2'' = e^{-x}$

Substitute these values of y_2 and y_2'' in equation (3), we get:

$$e^{-x} - e^{-x} = 0$$
 which is true.

So, y_2 is a solution of equation (1)

Part 2:By principle of superposition, if y_1 and y_2 are solutions, then their linear combination $(c_1e^x + c_2e^{-x})$ will also be a solution.

Let us verify it:

Let
$$y_3 = (c_1 e^x + c_2 e^{-x}) \implies y_3' = (c_1 e^x - c_2 e^{-x}) \implies y_3'' = (c_1 e^x + c_2 e^{-x})$$

Now y_3 will be solution of equation (1) if $y_3'' - y_3 = 0$

i.e.
$$(c_1e^x + c_2e^{-x}) - (c_1e^x + c_2e^{-x}) = 0$$
 which is true.

Part 3:

Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

$$= \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix}$$

$$= -e^x \cdot e^{-x} - e^x \cdot e^{-x}$$

$$= -2e^x \cdot e^{-x} = -2e^{x-x}$$

$$= -2e^0 = -2(1)$$

$$= -2 \neq 0$$

Since W \neq 0, So, Solutions (y_1, y_2) are linearly independent.

Hence (e^x, e^{-x}) form basis or fundamental solutions of equation (1).

Problem 2: Show that $(1, x^2)$ form a set of fundamental solutions (basis) of homogeneous equation: $x^2y'' - xy' = 0$.

Solution: The given homogeneous LDE:
$$x^2y'' - xy' = 0$$
 (1)

Let $(y_1, y_2) = (1, x^2)$ be the given set of functions.

Part 1:Now they will be solutions of equation (1) if they satisfy equation (1).

i.e.
$$y_1$$
 will be solution of equation (1) if $x^2y_1'' - xy_1' = 0$ (2)

Here
$$y_1 = 1$$
 $\Rightarrow y_1' = 0$ $\Rightarrow y_1'' = 0$

Substitute these values of y_1 and y_1'' in equation (2), we get:

$$x^{2}(0) - x(0) = 0$$
 which is true.

So, y_1 is a solution of equation (1)

Now y_2 will be solution of equation (1) if $x^2y_2'' - xy_2' = 0$ (3)

Here
$$y_2 = x^2$$
 $\Rightarrow y_2' = 2x$ $\Rightarrow y_2'' = 2$

Substitute these values of y_2 and y_2'' in equation (3), we get:

$$x^2(2) - x(2x) = 0$$
 which is true.

So, y_2 is a solution of equation (1)

Part 2: Wronskian,
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} 1 & x^2 \\ 0 & 2x \end{vmatrix} = 2x \neq 0$$

Since W \neq 0, So, Solutions (y_1, y_2) are linearly independent.

Hence $(1, x^2)$ form basis or fundamental solutions of equation (1).

