Spectral State Compression - Algorithm 1

Annie Ye, yuhanye

Key Points:

- Rank Reduction: This method focuses on rank reduction by using the largest singular values, allowing the transition matrix to be low-rank, even if the empirical matrix isn't.
- Data Compression: The method still performs data compression, which is particularly important when dealing with high-dimensional transition matrices.
- Projection to the Simplex: The method projects the frequency estimates onto the probability simplex, ensuring that the rows of \hat{P} remain valid probability distributions.
- 1. **Input:** A trajectory of observed states $\{X_1, \ldots, X_n\}$ and the known rank r, which is the target rank for the low-rank transition matrix.
- 2. Construct Empirical Matrices: From the observed trajectory, the empirical frequency matrix \hat{F} is constructed. This matrix encodes the frequency with which transitions between different states occur, based on the sample path. \hat{P} is the normalized version of this matrix, representing transition probabilities between states.
- 3. Singular Value Decomposition (SVD): Apply SVD to \hat{F} , decomposing it into three matrices:

$$\hat{F} = U_{\Sigma} \Sigma_F V_F^{\top}$$

where U_{Σ} and V_F are orthogonal matrices and Σ_F is a diagonal matrix of singular values.

- 4. **Frequency Estimation:** The next step is to compute \hat{F}_0 , which is the top-r rank approximation of \hat{F} . This is done by selecting the largest r singular values and the corresponding singular vectors. This helps in reducing the dimensionality while preserving the most significant transitions.
- 5. Estimating the Transition Matrix: Using the frequency matrix \hat{F}_0 , the estimated transition matrix \hat{P} is derived. Specifically, the entries of \hat{P} are calculated as:

$$\hat{P}_{i,\cdot} = \frac{\hat{F}_{i,\cdot}}{\sum_{j=1}^{p} \hat{F}_{i,j}} \quad \text{if } \sum_{j=1}^{p} \hat{F}_{i,j} > 0$$

and

$$\hat{P}_{i,\cdot} = \frac{1}{p} \mathbf{1}_p^{\top} \quad \text{if } \sum_{j=1}^p \hat{F}_{i,j} = 0$$

This normalization ensures that each row of \hat{P} sums to 1, preserving the properties of a Markov transition matrix.

The output of the algorithm consists of \hat{P} , the estimated low-rank transition matrix, and \hat{F} , the empirical frequency matrix.