Introduzione alla Teoria dei Grafi – appendice

ver 2.0.0

Fabrizio Marinelli

<u>fabrizio.marinelli@univpm.it</u>

tel. 071 - 2204823

Sommario

Esempi abbinamento

Clique e insieme dominante

Qual è il massimo numero di torri che si possono disporre su una scacchiera senza che si diano scacco reciproco?

Due torri si danno scacco se si trovano sulla medesima riga o colonna

Banalmente, 4 torri sulla diagonale principale rappresentano una soluzione al problema. Ma cosa succede se alcune caselle non possono essere utilizzate, o se ci sono altri pezzi sulla scacchiera?

[Esercizio] Risolvere il problema sulla scacchiera seguente

[Problema] Data la struttura <u>parziale</u> di una molecola di un idrocarburo, quale composto può essere sintetizzato?

Definiamo un grafo in cui i nodi rappresentano gli atomi di idrogeno e carbonio e gli archi i legami conosciuti tra atomi.

L'idrogeno ha valenza 1 e il carbonio ha valenza 4. Nella struttura parziale, ogni atomo di idrogeno ha un legame e quindi soddisfa la sua valenza mentre tutti gli atomi di carbonio hanno solo 3 legami. Come si può completare la struttura in modo da soddisfare tutte le valenze chimiche?

Data la particolare struttura, ogni atomo di carbonio necessita di <u>uno e</u> <u>un solo</u> legame aggiuntivo verso un altro atomo di carbonio.

Quindi, un assegnamento di cardinalità massima sul grafo ottenuto rimuovendo tutti gli atomi di idrogeno corrisponde a un modo per completare la molecola.

Data la particolare struttura, ogni atomo di carbonio necessita di <u>uno e</u> <u>un solo</u> legame aggiuntivo verso un altro atomo di carbonio.

Quindi, un assegnamento di cardinalità massima sul grafo ottenuto rimuovendo tutti gli atomi di idrogeno corrisponde a un modo per completare la molecola.

Altre applicazioni

Il ballo (Berge)

In una festa sono presenti n ragazzi e n ragazze. Ogni ragazzo nutre una simpatia per k ragazze e allo stesso tempo ogni ragazza ha una simpatia per k ragazzi $(1 \le k \le n)$

E' possibile far ballare tutti, e in modo che ogni coppia sia di persone «in simpatia reciproca»?

Altre applicazioni

La battaglia d'Inghilterra (Berge)

Nel 1941 le squadriglie inglesi erano composte da aerei biposto, ma certi piloti non potevano volare in coppia per problemi di lingua o di abitudini.

Dati i vincoli di incompatibilità tra coppie di piloti, quale sarebbe stata la squadriglia con il massimo numero di aerei?

torna al sommario

Sommario

Clique e insieme dominante

Altri problemi notevoli su grafi

[Definizione] Una <u>clique</u> di un grafo non orientato G = (V, E) è un insieme Q di **nodi** a due a diacenti $(u \in Q, v \in Q \text{ implica } \{u,v\} \in E)$.

[Problema] Massima clique: Qual è una clique di G di massima cardinalità?

Applicazioni: clique

[Problema] In un gruppo di persone, qual è la *cricca* più grande di amici? Cioè qual è il massimo numero di persone che non hanno bisogno di presentazione reciproca?

Definiamo un grafo G = (V, E) in cui i nodi rappresentano le persone e gli archi la relazione di conoscenza, cioè esiste l'arco (u,v) se le persone u e v non devono presentarsi.

Applicazioni: clique

Angelo, Ugo e Elisa non hanno bisogno di presentazione reciproca, quindi formano una cricca. Francesco non può far parte della cricca perché non conosce Angelo. Esiste una cricca più numerosa?

Applicazioni: clique

La clique di massima cardinalità è quella formata da *Ugo, Aurelio, Fabrizio* e *Francesco*. Nota che ogni coppia di nodi adiacenti è una clique.

Esempi: clique

$$U = V$$

$$\mathfrak{I} = \{Q \subseteq U : Q \text{ è una clique}\}$$

$$f(Q) = w(Q) = \Sigma_{i \in Q} w(i)$$

$$x_i = \begin{cases} 1 \text{ se } i \in Q \\ 0 \text{ altrimenti} \end{cases}$$

$$\max \sum_{i \in V} w(i)x_i$$

$$x_i + x_j \le 1 \qquad \forall (ij) \notin E$$

$$0 \le x_i \le 1, \text{intero} \quad i \in V$$

Esempi: insieme dominante

- ▶ Dato un grafo G = (V, E) e una funzione peso $w : V \rightarrow \mathbb{R}$
- Problema combinatorio: determinare un insieme D di nodi tale che ogni nodo di V-D è adiacente ad almeno un nodo di D (insieme dominante).
- Problema di ottimizzazione combinatoria: determinare un insieme dominante di peso minimo

$$U = V$$

$$\mathfrak{I} = \{D \subseteq U : D \text{ domina } V\}$$

$$f(D) = w(D) = \sum_{i \in D} w(i)$$

Esempi: insieme dominante

$$U = V$$

$$\mathfrak{I} = \{D \subseteq U : D \text{ domina } V\}$$

$$f(D) = w(D) = \sum_{i \in D} w(i)$$

$$x_i = \begin{cases} 1 \text{ se } i \in D \\ 0 \text{ altrimenti} \end{cases}$$

$$\min \sum_{i \in V} w(i)x_i$$

$$x_i + \sum_{j:(ij) \in E} x_j \ge 1 \quad \forall i \in V$$

$$0 \le x_i \le 1, \text{ intero} \quad i \in V$$

torna al sommario