Katedra informatiky Přírodovědecká fakulta Univerzita Palackého v Olomouci

Matematická analýza 1: řešené příklady ke cvičením (!pracovní verze!)

DOC. RNDR. MIROSLAV KOLAŘÍK, PH.D., ELIŠKA FOLTASOVÁ

OLOMOUC 2020

Toto skriptum je určeno zejména studentům Katedry informatiky Přírodovědecké fakulty Univerzity Palackého. Text sestává z řešených příkladů, které se obsahově shodují se sylabem předmětu Matematická analýza 1. Všem čtenářům přejeme, ať je jim text ku prospěchu.

V Olomouci, xx. května 2020

Miroslav Kolařík, Eliška Foltasová

Poznámka.

Chyby a překlepy, kterých si všimnete, pošlete prosím na e-mail: miroslav.kolarik@upol.cz

Obsah

1 Číselná osa, vlastnosti číselných množin. Supremum a infimum. Reálná čísla. Klasifikace bodů vzhledem k množině.

 $\bf P \check{r} \acute{r} k lad \ 1 \quad V$ oboru reálných čísel řešte následující nerovnice s absolutní hodnotou:

- a) |x-2| < 5
- b) $|x-3| \ge |x+1|$
- c) $\left| \frac{x+1}{x-1} \right| \le 1$.

Řešení.

- a) Z rovnice x-2=0 určíme nulový bod: x=2. Tento nulový bod rozdělí řešení na dva případy:
 - x < 2: $-(x-2) < 5 \Rightarrow x > -3 \Rightarrow x \in (-3,2)$
 - $x \ge 2$: $(x-2) < 5 \Rightarrow x < 7 \Rightarrow x \in (2,7)$.

Výsledkem je sjednocení obou intervalů: $x \in (-3, 7)$.

- b) Začneme určením nulových bodů.
 - Z rovnice x-3=0 získáme první nulový bod: x=3.
 - Z rovnice x + 1 = 0 dostaneme druhý nulový bod: x = -1.

Nalezené nulové body rozdělí obor řešení nerovnice na tři reálné intervaly: $(-\infty, -1)$, (-1, 3) a $(3, +\infty)$. Dále se postupně zabýváme těmito třemi případy:

- x < -1: $-(x-3) > -(x+1) \Rightarrow x \in (-\infty, -1)$
- $-1 \le x \le 3$: $-(x-3) \ge (x+1) \Rightarrow x \in \langle -1, 1 \rangle$
- 3 < x: $x 3 \ge x + 1 \Rightarrow x \in \emptyset$.

Výsledkem je sjednocení všech intervalů: $x \in (-\infty, 1)$.

c) Pro odstraňování absolutní hodnoty určíme dva nulové body. První bod x=-1 získáme ihned z rovnice x+1=0, druhým nulovým bodem je x=1, který dostaneme triviálně z rovnice x-1=0. Obor řešení nerovnice se tak opět rozdělí na tři reálné intervaly, přičemž požadujeme, aby $x\neq 1$ (abychom se vyhnuli dělení nulou). Máme: $x\in (-\infty,-1), \ x\in \langle -1,1\rangle, x\in (1,+\infty)$. Dále se postupně zabýváme těmito třemi případy:

- x < -1: $\frac{-(x+1)}{-(x-1)} \le 1 \Rightarrow x \in (-\infty, -1)$
- $-1 \le x < 1$: $\frac{x+1}{-(x-1)} \le 1 \Rightarrow x+1 \le 1-x \Rightarrow x \in \langle -1, 0 \rangle$
- 1 < x: $\frac{x+1}{x-1} \le 1 \Rightarrow x+1 \le x-1 \Rightarrow x \in \emptyset$.

Výsledkem je opět sjednocení všech intervalů: $x \in (-\infty, 0)$.

Příklad 2 Vypište alespoň pět prvků každé z následujících množin. Dále najděte u každé množiny její nejmenší a největší prvek, pokud tyto prvky obsahuje, supremum a infimum. Také určete, je-li množina (shora, zdola) omezená.

- a) $K = \{\frac{1}{n}; n \in \mathbb{N}\}$
- b) $L = \{n^{(-1)^n}; n \in \mathbb{N}\}$
- c) $M = \{\frac{n}{n+1}; n \in \mathbb{N}\}$
- d) $N = \left\{ \frac{(-1)^n}{n}; n \in \mathbb{N} \right\}$
- e) $O = \{(-1)^{n+1} \cdot n^3; n \in \mathbb{N}\}.$

Řešení.

- a) $K=\{1,\frac12,\frac13,\frac14,\frac15,\dots\}$, nejmenší prvek ne
existuje, největší prvek je 1, sup K=1, inf K=0. Množin
aKje omezená.
- b) $L=\{1,2,\frac{1}{3},4,\frac{1}{5},\dots\}$, nejmenší prvek neexistuje, největší prvek neexistuje, sup $L=+\infty$, inf L=0. Množina L je zdola omezená a není omezená shora.
- c) $M=\{\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{5}{6},\dots\}$, nejmenší prvek je $\frac{1}{2}$, největší prvek neexistuje, sup M=1, inf $M=\frac{1}{2}$. Množina M je omezená.
- d) $N=\{-1,\frac12,-\frac13,\frac14,-\frac15,\dots\}$, nejmenší prvek je -1, největší prvek je $\frac12$, sup $N=\frac12$, inf N=-1. Množina N je omezená.
- e) $O=\{1,-8,27,-64,125,\dots\}$, nejmenší ani největší prvek neexistuje, sup $O=+\infty$, inf $O=-\infty$. Množina O není omezená ani zdola, ani shora.

Příklad 3 Číslo $1,7\overline{28}$ převeďte na zlomek bez periody.

Řešení. Nabízejí se dva možné postupy.

1) Periodickou část desetinného rozvoje přepíšeme pomocí jednoduché geometrické řady:

$$1,7\overline{28} = 1,7 + \frac{28}{10^3} + \frac{28}{10^5} + \frac{28}{10^7} + \dots = 1,7 + \frac{28}{10^3} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{1711}{990}$$

2) Vytvoříme rovnici a vyřešíme ji:

$$x = 1,7\overline{28}$$

$$100x = 172,8\overline{28}$$

$$99x = 171,1$$

$$x = \frac{1711}{990}.$$

Poznamenejme, že třetí rovnice vznikla odečtením první rovnice od jejího stonásobku (od druhé rovnice).

Příklad 4 Napište desetinný rozvoj dvou iracionálních čísel p, q tak, aby bylo možné určit číslici na libovolném místě jejich desetinného rozvoje. Přitom, ať desetinný rozvoj čísla p obsahuje všechny číslice desítkové soustavy a číslo q, nechť obsahuje pouze dvě číslice.

Řešení. Řešením jsou třeba čísla

$$p = 0,12345678910111213141516171819202122...$$

 $q = 1,10100100010000100000100000100000001...$

Obě čísla mají nekonečný neperiodický desetinný rozvoj a jsou proto iracionální.

Příklad 5 Dokažte Bernoulliovu nerovnost: $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x > -1$ platí

$$(1+x)^n \ge 1 + nx.$$

Řešení. Důkaz provedeme matematickou indukcí. Nejprve ověříme platnost vztahu pro n=1. To je triviálně splněno, neboť $(1+x)^1 \geq 1+1x$. Dále předpokládejme, že platí $(1+x)^n \geq 1+nx$ a dokažme, že za tohoto předpokladu je $(1+x)^{n+1} \geq 1+(n+1)x$. Máme:

$$(1+x)^{n+1} \geq 1 + (n+1)x$$

$$(1+x)^n \cdot (1+x) \geq 1 + nx + x$$

$$(1+nx) \cdot (1+x) \geq 1 + nx + x$$

$$1+nx+x+nx^2 \geq 1 + nx + x$$

$$nx^2 \geq 0.$$

Poslední nerovnost evidentně platí, čímž je důkaz indukcí dokončen.

Příklad 6 Dokažte, že $\sqrt{2}$ není racionální číslo.

Řešení. Důkaz provedeme sporem. Předpokládejme tedy pro spor, že $\sqrt{2}$ lze napsat ve tvaru zlomku v základním tvaru, kde v čitateli i ve jmenovateli jsou přirozená čísla. Následujícími jednoduchými algebraickými úpravami dojdeme k tomu, že hledaný zlomek v základním tvaru neexistuje.

$$\sqrt{2} = \frac{p}{q}$$

$$2q^2 = p^2.$$

Odsud nutně vyplývá, že p^2 je sudé číslo, což nastane jen v případě, že přirozené číslo p je sudé. Je-li p sudé, musí se rovnat dvojnásobku nějakého jiného přirozeného čísla, řekněme r. Platí tudíž, že p=2r. Tuto rovnost dále využijeme a dosadíme ji do rovnice $2q^2=p^2$. Dostaneme tak:

$$2q^2 = (2r)^2$$
$$q^2 = 2r^2.$$

Z poslední rovnice vyplývá, že q^2 je sudé, odkud nutně i přirozené číslo q musí být sudé. Vypočítali jsme, že čísla p i q musí být sudá, což je spor s naším předpokladem. Proto musí platit opak, neboli $\sqrt{2}$ nemůže být racionálním číslem. Doplňme, že toto číslo je reálné, iracionální, podobně jako libovolná druhá odmocnina z daného prvočísla.

Příklad 7

- a) Dokažte, že množina celých čísel Z je spočetná.
- b) Dokažte, že množina racionálních čísel Q je spočetná.

Řešení. Podle definice je potřeba najít bijektivní zobrazení mezi množinou přirozených čísel N a zadanými množinami.

- a) Množina celých čísel lze zapsat takto: $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4 4, \dots\}$. Nyní již snadno hledanou bijekci $f: \mathbb{N} \to \mathbb{Z}$ zkonstruujeme. Stačí položit $f(1) = 0, \ f(2) = 1, \ f(3) = -1, \ f(4) = 2, \ f(5) = -2, \ f(6) = 3, \ f(7) = -3, \ f(8) = 4, \ f(9) = -4, \dots$
- b) Nejprve si ukážeme, jak bijektivně zobrazit množinu přirozených čísel $\mathbb N$ na množinu kladných racionálních čísel $\mathbb Q^+$. K tomu si pro názornost pomůžeme následující tabulkou:

	1	2	3	4	5	6	
1	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	
2	$\frac{2}{1}$	$\frac{2}{2}$	$\frac{2}{3}$	$\frac{2}{4}$	$\frac{2}{5}$	$\frac{2}{6}$	
3	$\frac{3}{1}$ $\frac{4}{1}$	$\frac{3}{2}$	$\frac{3}{3}$	$\frac{3}{4}$	$\frac{3}{5}$	$\frac{3}{6}$	
4		$\frac{4}{2}$	$\frac{4}{3}$	$\frac{4}{4}$	$\frac{4}{5}$	$\frac{4}{6}$	
5	$\frac{5}{1}$	$\frac{5}{2}$	$\frac{5}{3}$	$\frac{5}{4}$	$\frac{5}{5}$	$\frac{5}{6}$	
6	$\frac{6}{1}$	$\frac{6}{2}$	$\frac{6}{3}$	$\frac{6}{4}$	$\frac{6}{5}$	$\frac{6}{6}$	
:	:	÷	÷	÷	÷	:	٠٠.

Tabulka zachycuje možnost, jak vytvořit všechna kladná racionální čísla, tedy čísla ve tvaru zlomku, kde v čitateli je přirozené číslo a ve jmenovateli je také přirozené číslo. Jde o to, jak najít bijekci přirozených čísel na všechna čísla v tabulce. Pokud bychom vzali jen jeden řádek, tak bijekci najdeme, ale nekonečně mnoho řádků vynecháme. Podobně bychom dopadli, kdybychom vzali jen jeden sloupec. Musíme postupovat jinak. Jednou z možností správného postupu je metoda rámování. Na začátku vezmeme jen číslo $1=\frac{1}{1}$, poté přidáme další tři čísla $2=\frac{2}{1},\ 1=\frac{2}{2},\ \frac{1}{2}$, následně přidáme pět čísel $3=\frac{3}{1},\ \frac{3}{2},\ 1=\frac{3}{3},\ \frac{2}{3},\ \frac{1}{3}$ a tak dále. Tímto postupem nevynecháme ani jedno číslo z tabulky. Samozřejmě nám stačí brát jen zlomky v základním tvaru, tedy například jen $\frac{1}{2}$ z čísel $\frac{1}{2},\ \frac{2}{4},\ \frac{3}{6},\ \dots$ S nulou a zápornými racionálními čísly se vypořádáme analogicky jako u množiny celých čísel. Hledanou bijekcí $f:\mathbb{N}\to\mathbb{Q}$ je tedy toto zobrazení: $f(1)=0,\ f(2)=1,\ f(3)=-1,\ f(4)=2,\ f(5)=-2,\ f(6)=\frac{1}{2},\ f(7)=-\frac{1}{2},\ f(8)=3,\ f(9)=-3,\ f(10)=\frac{3}{2},\ f(11)=-\frac{3}{2},\ f(12)=\frac{2}{3},\ f(13)=-\frac{2}{3},\ f(14)=\frac{1}{3},\ f(15)=-\frac{1}{3},\dots$

Příklad 8

- a) Dokažte, že otevřený interval reálných čísel (0, 1) je nespočetnou množinou.
- b) Dokažte, že množina iracionálních čísel I je nespočetná.

Řešení.

a) Důkaz provedeme sporem, tak zvanou Cantorovou diagonální metodou. Pro spor budeme předpokládat, že všechna reálná čísla z intervalu (0,1) lze seřadit do posloupnosti. Pro názornost si možný začátek takové posloupnosti

vypíšeme:

```
\begin{array}{rcl} x_1 & = & 0,23789022144\ldots \\ x_2 & = & 0,11298755003\ldots \\ x_3 & = & 0,00010199992\ldots \\ x_4 & = & 0,14159265358\ldots \\ x_5 & = & 0,97932384626\ldots \\ x_6 & = & 0,33337732210\ldots \\ x_7 & = & 0,8888888888\ldots \\ x_8 & = & 0,90654432001\ldots \\ \vdots \end{array}
```

Na tomto konkrétním příkladě ukážeme obecný postup, jak dokázat, že daná posloupnost je neúplná. Vždy totiž budeme schopni elegantně zkonstruovat číslo, které se liší od všech čísel v dané nekonečné posloupnosti. Stačí vytvořit číslo, které se na prvním desetinném místě bude lišit od prvního čísla posloupnosti, tedy od x_1 , na druhém desetinném místě se bude lišit od druhého čísla posloupnosti, tedy od x_2 , na třetím desetinném místě se bude lišit od čísla x_n a tak dále. Takto zkonstruované číslo se nutně liší od všech čísel v dané posloupnosti. V našem konkrétním (výše uvedeném) případě bychom mohli vytvořit třeba číslo $\alpha=0,32163893\ldots$ Důsledkem toho, že všechna reálná čísla z intervalu (0,1) nelze zapsat do posloupnosti je, že bijektivní zobrazení intervalu (0,1) na množinu $\mathbb N$ neexistuje. A proto je reálný interval (0,1) nespočetnou množinou.

b) Vzhledem k tomu, že interval (0,1) je nespočetnou množinou, která je podmnožinou reálných čísel, musí nutně být i množina všech reálných čísel $\mathbb R$ nespočetná. Víme, že $\mathbb R=\mathbb Q\cup\mathbb I$. S ohledem na to, že množina všech racionálních čísel $\mathbb Q$ je spočetná z toho ihned plyne, že množina všech iracionálních čísel $\mathbb I$ musí být nespočetná.

Příklad 9 Dokažte dvě vlastnosti ϵ -okolí bodu.

- i) Jsou-li $U(a, \epsilon_1), U(a, \epsilon_2)$ dvě ϵ -okolí bodu $a \in \mathbb{R}$, pak také $U(a, \epsilon_1) \cap U(a, \epsilon_2)$ je ϵ -okolí bodu a.
- ii) Jsou-li $a,b\in\mathbb{R}$ různé, tedy $a\neq b$, pak existují ϵ -okolí $U(a,\epsilon_1),\,U(b,\epsilon_2)$ tak, že $U(a,\epsilon_1)\cap U(b,\epsilon_2)=\emptyset$.

Řešení.

i) Zřejmě $U(a, \epsilon_1) \cap U(a, \epsilon_2) = U(a, \epsilon)$, kde $\epsilon = \min\{\epsilon_1, \epsilon_2\}$.

ii) Platí, že |a-b|>0. Pro řešení příkladu stačí vybrat libovolná kladná ϵ_1 , ϵ_2 tak, aby $\epsilon_1+\epsilon_2<|a-b|$.

Příklad 10 Pro níže uvedené množiny určete jejich vnitřek, hranici, uzávěr, derivaci, množinu všech izolovaných bodů a jejich supremum a infimum.

- a) $M = \{-\frac{1}{n}; n \in \mathbb{N}\} \cup (0, 1)$
- b) $N = (-4, 4) \cup \{\frac{100}{n^2}; n \in \mathbb{N}; n \le 10\}$
- c) $O = \{\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{4}, \dots\} \cup (10, 20)$
- d) $P = \{0, 27; 0, 72; 0, 227; 0, 722; 0, 2227; 0, 7222; \dots\}.$

Řešení.

- a) vnitřek M: (0,1)
 - hranice $M: \{-\frac{1}{n}; n \in \mathbb{N}\} \cup \{0; 1\}$
 - uzávěr $M \colon \overline{M} = M \cup \{0\}$
 - derivace $M: M' = \langle 0, 1 \rangle$
 - množina izolovaných bodů $M: \{-\frac{1}{n}; n \in \mathbb{N}\}$
 - $\sup M = 1$, $\inf M = -1$
- b) vnitřek N: (-4,4)
 - hranice $N: \{-4; 4\} \cup \{\frac{100}{n^2}; n \in \mathbb{N}; n \le 10\}$
 - uzávěr $N : \overline{N} = N \cup \{-4\}$
 - derivace N: N' = (-4, 4)
 - množina izolovaných bodů $N{:}~\{100;25;\frac{100}{9};\frac{100}{16}\}$
 - $\sup N = 100$, $\inf N = -4$
- c) vnitřek O: (10, 20)
 - hranice $O: \{\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{4}, \dots\} \cup \{0, 10, 20\}$
 - uzávěr $O: \overline{O} = O \cup \{0, 20\}$
 - derivace $O: O' = \langle 10, 20 \rangle \cup \{0\}$
 - množina izolovaných bodů $O: \{\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{4}, \dots\}$
 - $\sup O = 20$, $\inf O = -\frac{1}{2}$
- d) vnitřek $P: \emptyset$
 - \bullet hranice P: celá množina P
 - \bullet uzávěr P: celá množina P
 - derivace $P: P' = \{0, \overline{2}; 0, 7\overline{2}\}$
 - $\bullet\,$ množina izolovaných bodů P: celá množina P
 - $\sup P = 0, 7\overline{2}, \inf P = 0, \overline{2}.$

Příklad 11 Určete, zda dané výrazy mají smysl, případně vypočítejte jejich hodnotu:

a)
$$\frac{1000!}{-\infty} + (-\infty)^5 \cdot (1000^{1000} - \infty) + \sqrt{3} \cdot (+\infty) \cdot 10$$

b)
$$\frac{-\infty}{-73} \cdot (-\infty)^{12} + 3^{+\infty} \cdot (e - \pi)$$

c) $\sin(+\infty)$

d)
$$\frac{100}{-\infty} + \frac{0}{+\infty} + \frac{333}{12^4} \cdot 0^7 + 3 \cdot (2^{-\infty} - 1) - \frac{5005}{2^{+\infty}}$$

e)
$$\left(\frac{3}{-\infty}\right)^{\left(\frac{-5}{\ln(+\infty)}\right)}$$
.

Řešení.

a)
$$\frac{1000!}{-\infty} + (-\infty)^5 \cdot (1000^{1000} - \infty) + \sqrt{3} \cdot (+\infty) \cdot 10 = 0 + (-\infty) \cdot (-\infty) + \infty = +\infty$$

b)
$$\frac{-\infty}{-73}\cdot(-\infty)^{12}+3^{+\infty}\cdot(e-\pi)=+\infty+(-\infty)$$
 ... není definováno

c) $\sin(+\infty)$... není definováno

d)
$$\frac{100}{-\infty} + \frac{0}{+\infty} + \frac{333}{12^4} \cdot 0^7 + 3 \cdot (2^{-\infty} - 1) - \frac{5005}{2^{+\infty}} = 0 + 0 + 0 + 3 \cdot (-1) - 0 = -3$$

e)
$$(\frac{3}{-\infty})^{\left(\frac{-5}{\ln(+\infty)}\right)}=0^0$$
 ... není definováno.

2 Číselné posloupnosti, aritmetická a geometrická posloupnost. Limita posloupnosti.

 $\mathbf{P} \check{\mathbf{r}} \check{\mathbf{k}} \mathbf{l} \mathbf{d} \ \mathbf{12} \ \mathbf{U}$ následujících posloupností určete podle prvních několika členů jejich $n\text{-}\mathsf{t} \acute{\mathbf{y}}$ člen:

- a) $\{1, -3, 5, -7, 9, \dots\}$
- b) $\{27, 57, 87, 117, 147, \dots\}$
- c) $\{0, 1, 0, 1, 0, \dots\}$
- d) $\{\frac{1}{9}, \frac{3}{10}, \frac{9}{11}, \frac{27}{12}, \frac{81}{13}, \dots\}$.

Řešení.

a)
$$a_n = (-1)^{n+1} \cdot (2n-1)$$

b)
$$a_n = 30n - 3$$

c)
$$a_n = \frac{1 + (-1)^n}{2}$$

d)
$$a_n = \frac{3^{n-1}}{n+8}$$
.

Příklad 13 U následujících posloupností vypočítejte jejich členy a_1, a_2, a_3, a_4 :

a)
$$\{(-1)^n \cdot 2n\}_{n=1}^{+\infty}$$

b)
$$\{(1+\frac{1}{n})^n\}_{n=1}^{+\infty}$$

c)
$$\left\{\sin\left(\frac{1}{n}\cdot\pi\right)\right\}_{n=1}^{+\infty}$$

d)
$$\left\{\frac{n^2-n-12}{n+3}\right\}_{n=1}^{+\infty}$$
.

Řešení. Pro získání řešení stačí do vzorce definujícího danou posloupnost postupně za číslo n dosadit hodnoty 1, 2, 3, 4.

a)
$$a_1 = -2$$
; $a_2 = 4$; $a_3 = -6$; $a_4 = 8$

b)
$$a_1 = 2; a_2 = \frac{9}{4}; a_3 = \frac{64}{27}; a_4 = \frac{625}{256}$$

c)
$$a_1 = 0; a_2 = 1; a_3 = \frac{\sqrt{3}}{2}; a_4 = \frac{\sqrt{2}}{2}$$

d) $a_1=-3; a_2=-2; a_3=-1; a_4=0$. U tohoto příkladu se dá předpis pro posloupnost zjednodušit krácením. Platí totiž, že

$$\frac{n^2 - n - 12}{n+3} = \frac{(n+3) \cdot (n-4)}{n+3} = n - 4.$$

Jelikož je n přirozené číslo, při krácení jsme nulou nedělili. Jak nyní jasně vidíme, tato posloupnost je aritmetická, její první člen je $a_1 = -3$ a diference d = 1.

Příklad 14 Dokažte, že posloupnost $\{\frac{2n-3}{n+1}\}_{n=1}^{+\infty}$ je rostoucí a shora omezená.

Řešení. Víme, že posloupnost je rostoucí, pokud pro každé n přirozené platí: $a_n < a_{n+1}$. Ověřme tuto nerovnost pro zadanou posloupnost:

$$\begin{array}{rcl} \frac{2n-3}{n+1} & < & \frac{2(n+1)-3}{(n+1)+1} \\ (2n-3)\cdot (n+2) & < & (2n-1)\cdot (n+1) \\ 2n^2+n-6 & < & 2n^2+n-1 \\ -6 & < & -1. \end{array}$$

Tyto čtyři navzájem ekvivalentní nerovnosti platí, což znamená, že naše posloupnost $\{\frac{2n-3}{n+1}\}_{n=1}^{+\infty}$ je rostoucí. Zbývá dokázat její omezenost shora. Ukážeme, že je shora omezená číslem 2, tedy, že pro každé n přirozené platí: $a_n < 2$:

$$\begin{array}{rcl} \frac{2n-3}{n+1} & < & 2 \\ 2n-3 & < & 2n+2 \\ -3 & < & 2. \end{array}$$

Tyto tři navzájem ekvivalentní nerovnosti dokazují, že je posloupnost $\{\frac{2n-3}{n+1}\}_{n=1}^{+\infty}$ shora omezená.

Příklad 15 U následujících číselných posloupností určete jejich monotónnost:

- a) $\left\{\frac{n!}{2^n}\right\}_{n=1}^{+\infty}$
- b) $\left\{\frac{n+1}{n-1}\right\}_{n=2}^{+\infty}$
- c) $\{(-1)^n \cdot 10n\}_{n=1}^{+\infty}$
- d) $\frac{a_n}{a_{n+1}} = 1; \forall n \in \mathbb{N}; a_{n+1} > 0$
- e) $a_n a_{n+1} = 2; \forall n \in \mathbb{N}$
- f) $\frac{a_n}{a_{n+1}} = \frac{1}{8}; \forall n \in \mathbb{N}; a_n > 0$

Řešení.

- a) Posloupnost je neklesající. Poznamenejme, že posloupnost $\{\frac{n!}{2^n}\}_{n=1}^{+\infty}$ (stejná jako v zadání, ale začínající od n=2) by byla dokonce rostoucí.
- b) Posloupnost je klesající.
- c) Posloupnost osciluje, není tedy monotónní.
- d) Posloupnost je konstantní (je nerostoucí a zároveň neklesající).
- e) Posloupnost je klesající.
- f) Posloupnost je rostoucí.

Příklad 16 Je dána posloupnost $\{a_n\} = \{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{7}{16}, \dots\}$. Najděte z ní vybrané posloupnosti $\{b_n\}, \{c_n\}, \{d_n\}$ tak, aby

$$\lim_{n \to +\infty} b_n = \frac{1}{2}, \quad \lim_{n \to +\infty} c_n = \frac{3}{4}, \quad \lim_{n \to +\infty} d_n = 1.$$

Řešení. Řešením jsou například následující posloupnosti:

$$\begin{cases}
b_n \} &= \left\{ \frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{9}{16}, \frac{17}{32}, \dots \right\} \\
\{c_n \} &= \left\{ \frac{3}{4}, \frac{7}{8}, \frac{11}{16}, \frac{23}{32}, \frac{47}{64}, \dots \right\} \\
\{d_n \} &= \left\{ \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}, \dots \right\}.
\end{cases}$$

Příklad 17 Vypočítejte limity následujících číselných posloupností:

a)
$$\lim_{n \to +\infty} -(n^6) + 16n^4 + 3n^2 + 1000!$$

b)
$$\lim_{n \to +\infty} \frac{3n^2 + 5n + 10}{n^3 - 9n + 150}$$

c)
$$\lim_{n \to +\infty} \frac{n}{(-1)^n}$$

d)
$$\lim_{n \to +\infty} \frac{-4n^2 + 19}{8n^2 + 6n + 12}$$

e)
$$\lim_{n \to +\infty} \sqrt[n]{9} - \sqrt[3n]{3} + 1$$

f)
$$\lim_{n \to +\infty} \frac{3 \cdot 2^{n+1} + 18}{6 \cdot 2^n - 9}$$

g)
$$\lim_{n \to +\infty} \cos \left(\frac{n+3}{\pi} \right).$$

Řešení.

a)

$$\lim_{n \to +\infty} -(n^6) + 16n^4 + 3n^2 + 1000! = \lim_{n \to +\infty} n^6 \cdot \left(-1 + \frac{16n^4}{n^6} + \frac{3n^2}{n^6} + \frac{1000!}{n^6}\right) =$$

$$= +\infty \cdot \left(-1 + 0 + 0 + 0\right) = -\infty$$

b)

$$\lim_{n \to +\infty} \frac{3n^2 + 5n + 10}{4n^3 - 9n + 150} = \lim_{n \to +\infty} \frac{\frac{3n^2}{n^3} + \frac{5n}{n^3} + \frac{10}{n^3}}{\frac{4n^3}{n^3} + \frac{-9n}{n^3} + \frac{150}{n^3}} = \frac{0 + 0 + 0}{-4 + 0 + 0} = 0$$

c) $\lim_{n \to +\infty} \frac{n}{(-1)^n} \quad \dots \quad \text{neexistuje}$

d)
$$\lim_{n \to +\infty} \frac{-4n^2 + 19}{8n^2 + 6n + 12} = \lim_{n \to +\infty} \frac{\frac{-4n^2}{n^2} + \frac{19}{n^2}}{\frac{8n^2}{n^2} + \frac{6n}{n^2} + \frac{12}{n^2}} = \frac{-4+0}{8+0+0} = -\frac{1}{2}$$

e)
$$\lim_{n \to +\infty} \sqrt[n]{9} - \sqrt[3n]{3} + 1 = 1 - 1 + 1 = 1$$

f)
$$\lim_{n \to +\infty} \frac{3 \cdot 2^{n+1} + 18}{6 \cdot 2^n - 9} = \lim_{n \to +\infty} \frac{\frac{3 \cdot 2^{n+1} + 18}{2^{n+1}}}{\frac{6 \cdot 2^n - 9}{2^{n+1}}} = \frac{3 + 0}{(6 \cdot \frac{1}{2}) - 0} = \frac{3}{3} = 1$$

g)
$$\lim_{n \to +\infty} \cos \left(\frac{n+3}{\pi}\right) \quad \dots \quad \text{neexistuje}.$$

Příklad 18 Najděte dvě konkrétní posloupnosti $\{a_n\}_{n=1}^{+\infty}$, $\{b_n\}_{n=1}^{+\infty}$ tak, aby

$$\lim_{n \to +\infty} a_n = 0, \quad \lim_{n \to +\infty} b_n = 0 \quad \text{ a p\'ritom}$$

a)
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{5}{3}$$

b)
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = -\infty.$$

Řešení.

a) Řešením je třeba $\{a_n\}_{n=1}^{+\infty}=\{\frac{5}{n}\}_{n=1}^{+\infty}$ a $\{b_n\}_{n=1}^{+\infty}=\{\frac{3}{n}\}_{n=1}^{+\infty},$ neboť

$$\lim_{n \to +\infty} \frac{\frac{5}{n}}{\frac{3}{n}} = \frac{5}{3}.$$

b) Řešení získáme například tak, že a_n nahradíme zlomkem $-\frac{1}{n}$ a b_n nahradíme zlomkem $\frac{1}{n^2}.$ Pak totiž

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = \lim_{n\to +\infty} \frac{-\frac{1}{n}}{\frac{1}{n^2}} = \lim_{n\to +\infty} -n = -\infty.$$

Příklad 19 Vypočítejte následující limity:

a)
$$\lim_{n \to +\infty} n \cdot \left(\sqrt{7 + n^2} - n\right)$$

b)
$$\lim_{n \to +\infty} \frac{\sin(n^2 + \pi)}{n} \cdot \frac{\cos n - \pi n}{\sin n + 2n}$$

c)
$$\lim_{n \to +\infty} \frac{2+5+8+11+\dots+(3n-1)}{1+3+5+7+\dots+(2n-1)}$$

d)
$$\lim_{n \to +\infty} \left[\frac{n^8}{1, 2^n} + \frac{\ln 4n}{n} + \frac{15^n}{n!} - \frac{n^{13}}{n!} + \left(\frac{n+1}{n} \right)^n - \sqrt[n]{n} \right].$$

Řešení.

a) Přímo za n hodnotu $+\infty$ dosadit nelze, protože by vznikl nedefinovaný výraz typu $+\infty - \infty$. Proto výraz za limitou nejprve algebraicky upravíme tak, abychom přešli na výpočet limity, který již definován bude. Tedy:

$$\lim_{n \to +\infty} n \cdot \left(\sqrt{7 + n^2} - n\right) = \lim_{n \to +\infty} \frac{n \cdot \left(\sqrt{7 + n^2} - n\right) \cdot \left(\sqrt{7 + n^2} + n\right)}{\sqrt{7 + n^2} + n} = \lim_{n \to +\infty} n \cdot \frac{(7 + n^2) - n^2}{\sqrt{7 + n^2} + n} = \lim_{n \to +\infty} \frac{7}{\sqrt{\frac{7}{n^2} + 1} + 1} = \frac{7}{2}.$$

b)
$$\lim_{n \to +\infty} \frac{\sin(n^2 + \pi)}{n} \cdot \frac{\cos n - \pi n}{\sin n + 2n} = 0 \cdot \left(-\frac{\pi}{2}\right) = 0$$

c) Všimneme si, že čitatel je součtem s_n prvních n členů aritmetické posloupnosti s diferencí d=3 a prvním členem $a_1=2$. Platí, že $s_n=\frac{n}{2}\cdot(2+(3n-1))=\frac{3n^2+n}{2}$. Podobně i jmenovatel je součtem s'_n prvních n členů aritmetické posloupnosti s prvním členem $a_1=1$ a s diferencí d=2, přičemž $s'_n=\frac{n}{2}\cdot(1+(2n-1))=n^2$. Nyní již zadanou limitu snadno vypočítáme:

$$\lim_{n \to +\infty} \frac{2+5+8+11+\dots+(3n-1)}{1+3+5+7+\dots+(2n-1)} = \lim_{n \to +\infty} \frac{s_n}{s_n'} = \lim_{n \to +\infty} \frac{\frac{3n^2+n}{2}}{n^2} = \frac{3}{2}$$

$$\lim_{n \to +\infty} \left[\frac{n^8}{1.2^n} + \frac{\ln 4n}{n} + \frac{15^n}{n!} - \frac{n^{13}}{n!} + \left(\frac{n+1}{n} \right)^n - \sqrt[n]{n} \right] = 0 + 0 + 0 - 0 + e - 1 = e - 1.$$

Příklad 20 Ve skladu jsou na sobě naskládány krabice tak, že v každé řadě je o jednu krabici méně než v řadě pod ní. Vypočítejte, kolik je ve skladu celkem krabic, pokud spodní řada obsahuje 25 krabic a vrchní řada 7 krabic.

Řešení. K řešení příkladu využijeme vzorec pro výpočet součtu prvních n členů aritmetické posloupnosti. Víme, že $a_1=30,\ n=(25-7)+1=19,\ a_{19}=7.$ Dosazením těchto hodnot do obecného vzorce $s_n=\frac{n\cdot(a_1+a_n)}{2}$ získáme hodnotu $s_{19}=\frac{19\cdot(25+7)}{2}=304.$ Ve skladu je tedy celkem 304 krabic.

Příklad 21 Určete prvních pět členů aritmetické posloupnosti, je-li známo, že součet prvního a šestého členu je 29 a odečteme-li druhý člen od pátého bude výsledkem číslo 15. Dále vypočítejte součet prvních šedesáti členů této posloupnosti.

Řešení. Ze zadání snadno sestavíme dvě výchozí rovnice:

$$a_1 + a_6 = 29$$

 $a_5 - a_2 = 15.$

U aritmetické posloupnosti je známo, že $a_n = a_1 + (n-1)d$. Dvě výše uvedené rovnice tak můžeme ekvivalentně přepsat na tvar:

$$a_1 + (a_1 + 5d) = 29$$

 $(a_1 + 4d) - (a_1 + d) = 15.$

Z poslední rovnice vyplývá, že 3d=15, odkud diference d=5. Dosazením této hodnoty do rovnice $a_1+(a_1+5d)=29$, obdržíme (po jednoduchých úpravách), že $2a_1=29-25$, odkud $a_1=2$. Ze znalosti diference a prvního členu již snadno dopočítáme prvních pět členů: $a_1=2,\ a_2=7,\ a_3=12,\ a_4=17,\ a_5=22.$

Zbývá zjistit součet prvních šedesáti členů aritmetické posloupnosti s diferencí d=5 a prvním členem $a_1=2$. K tomu využijeme obecný vzorec pro součet prvních n členů aritmetické posloupnosti: $s_n=\frac{n}{2}(a_1+a_n)$. V našem případě potřebujeme vypočítat hodnotu s_{60} , k čemuž potřebujeme znát hodnotu a_{60} , kterou snadno vypočítáme: $a_{60}=a_1+59\cdot d=2+59\cdot 5=297$. Nyní již rychle získáme chtěný výsledek: $s_{60}=\frac{60}{2}(2+297)=8970$.

Příklad 22 Vypočtěte prvních šest členů geometrické posloupnosti a určete jejich součet, víte-li, že $a_3 = 8$ a $a_7 = 128$.

Řešení. Platí, že $a_7=a_3\cdot q^4$. Proto $q^4=\frac{128}{8}=16$, odkud $|q|=\sqrt[4]{16}=2$. Kvocient q tak může být buď roven 2 nebo -2.

- Je-li q=2, pak $a_1=2$, $a_2=4$, $a_3=8$, $a_4=16$, $a_5=32$ a $a_6=64$. Součet těchto členů můžeme získat jejich sečtením, nebo s využitím známého vzorce: $s_6=a_1\cdot \frac{q^n-1}{q-1}=2\cdot \frac{2^6-1}{2-1}=2\cdot 63=126$.
- Je-li q=-2, pak $a_1=2$, $a_2=-4$, $a_3=8$, $a_4=-16$, $a_5=32$ a $a_6=-64$. Součet těchto členů je roven $s_6=2\cdot\frac{(-2)^6-1}{-2-1}=\frac{126}{-3}=-42$.

Příklad 23 Na spořicím účtu je uloženo 50 000 Kč. Vypočítejte, jaká částka bude na účtu přesně po pěti letech, připisuje-li se měsíčně na konto 1,5% úrok.

Řešení. Využijeme vzorec pro výpočet n-tého členu geometrické posloupnosti: $a_n = a_1 \cdot q^{n-1}$. Víme, že $a_1 = 50000$; q = 1,015; $n = 5 \cdot 12 = 60$. Po dosazení máme: $a_{60} = 50000 \cdot 1,015^{59} \doteq 120355,65$. Částka se tedy po pěti letech zvýší na 120355,65 Kč (po zaokrouhlení na dvě desetinná místa).

3 Pojem funkce. Elementární funkce a jejich vlastnosti.

Příklad 24 Pro následující funkce určete jejich definiční obory.

a)
$$f_1: y = \frac{12}{x^2 + x - 6}$$

b)
$$f_2: y = \sqrt[6]{\frac{x+5}{4-x}}$$

c)
$$f_3: y = \sqrt[3]{5x^2 - 9x + 18}$$

d)
$$f_4: y = \ln \frac{x-3}{x+3}$$

e)
$$f_5: y = \log \sin x + \log \cos x$$

f)
$$f_6: y = \arcsin(1-x) + \arctan\frac{1}{x}$$

g)
$$f_7: y = \arccos(x^2 - 5)$$
.

Řešení.

- a) Jmenovatel zlomku nesmí být roven 0. Musíme tedy vyřešit kvadratickou rovnici: $x^2 + x 6 = 0$. Ta je ekvivalentní s rovnicí: $(x + 3) \cdot (x 2) = 0$, která má za kořeny hodnoty x = -3 a x = 2. Proto $D(f_1) = \mathbb{R} \setminus \{-3; 2\}$.
- b) Opět musíme zajistit, aby jmenovatel výrazu nebyl roven 0, tedy doplníme podmínku: $x \neq 4$. Zároveň musí být výraz pod sudou odmocninou nezáporný, řešíme tedy nerovnice:

•
$$(x+5 \ge 0) \land (4-x>0) \implies x \in \langle -5, 4 \rangle$$

•
$$(x+5<0) \land (4-x<0) \implies x \in \emptyset$$
.

Definičním oborem funkce f_2 je interval $\langle -5, 4 \rangle$, neboli $D(f_2) = \langle -5, 4 \rangle$.

- c) Odmocninné funkce s lichou odmocninou jsou definovány pro všechna reálná čísla, stejně tak i každý polynom. Nemusíme tak ověřovat žádnou podmínku, odkud $D(f_3)=\mathbb{R}.$
- d) V argumentu logaritmu se musí vyskytovat kladné číslo. Jmenovatel zlomku zároveň nesmí být roven nule. Řešíme nerovnici $\frac{x-3}{x+3}>0$:

$$\bullet \ (x-3>0) \wedge (x+3>0) \implies x \in (3,+\infty)$$

•
$$(x-3<0) \land (x+3<0) \implies x \in (-\infty, -3).$$

Tedy
$$D(f_4) = (-\infty, -3) \cup (3, +\infty)$$
.

- e) V obou argumentech logaritmů musí být kladné číslo, což vede k dvěma podmínkám, které musí být současně splněny: $\sin x > 0$, $\cos x > 0$. Odtud dostáváme, že $D(f_5) = (2k\pi; \frac{\pi}{2} + 2k\pi)$, kde $k \in \mathbb{Z}$.
- f) Funkce arkus tangens je definována pro všechna reálná čísla. Avšak kvůli zlomku $\frac{1}{x}$ nemůže být v definičním oboru funkce f_6 číslo 0. Dále víme, že funkce arkus sinus je definována jen pro reálná čísla z uzavřeného intervalu $\langle -1,1\rangle$. Proto musí současně platit, že $-1 \leq 1-x$ a $1-x \leq 1$, což splňují všechna $x \in \langle 0,2\rangle$. Dohromady máme: $D(f_6) = (0,2)$.
- g) Argumentem funkce arkus kosinus musí být číslo z uzavřeného intervalu $\langle -1,1\rangle$. Z toho plyne, že musí současně platit následující dvě nerovnosti:
 - $-1 \le x^2 5$
 - $x^2 5 \le 1$.

Tyto nerovnosti jsou ekvivalentní následujícím dvěma nerovnostem:

- $2 \le |x|$
- $|x| \leq \sqrt{6}$.

Odtud již snadno zjistíme, že $D(f_7) = \langle -\sqrt{6}, -2 \rangle \cup \langle 2, \sqrt{6} \rangle$.

Příklad 25 Určete nulové body následujících funkcí a intervaly, na nichž jsou tyto funkce kladné a záporné.

- a) $g_1: y = 3x^2 + 12x 63$
- b) $g_2: y = \frac{24x-8}{16-4x}$
- c) $q_3: y = -|x+6| + 5$.

Řešení.

- a) Pro určení nulových bodů vyřešíme následující kvadratickou rovnici: $3x^2 + 12x 63 = 0$. Obě strany této rovnice můžeme vydělit třemi a řešit tak jednodušší kvadratickou rovnici ve tvaru $x^2 + 4x 21 = 0$. Ta je ekvivalentní s rovnicí $(x-3) \cdot (x+7) = 0$, jejíž dva kořeny x=3 a x=-7 jsou hledanými nulovými body funkce g_1 . Snadno zjistíme, že na intervalu (-7,3) je tato funkce záporná. Kladných hodnot pak nabývá na množině $(-\infty, -7) \cup (3, +\infty)$.
- b) Pro usnadnění výpočtu předpis pro funkci g_2 vykrátíme čtyřmi. Dostaneme tak ekvivalentní funkci $y=\frac{6x-2}{4-x}$. Nulový bod získáme z podmínky, že čitatel lomeného výrazu musí být roven 0, tedy 6x-2=0. Jediným nulovým bodem funkce g_2 je tak hodnota $\frac{1}{3}$. Pro nalezení intervalu, na němž je funkce kladná, řešíme následující nerovnice:

- $(6x 2 > 0) \land (4 x > 0) \implies x \in (\frac{1}{3}, 4)$
- $(6x 2 < 0) \land (4 x < 0) \implies x \in \emptyset$.

Jak vidíme, funkce g_2 je kladná na intervalu $(\frac{1}{3}, 4)$. Odtud plyne, že záporná je na intervalu $(-\infty, \frac{1}{3})$ a na intervalu $(4, +\infty)$.

- c) Nejprve určíme nulový bod absolutní hodnoty: $|x+6|=0 \implies x=-6$. Nyní odstraníme absolutní hodnotu (dle toho, je-li záporná, nebo není) a vyřešením příslušných rovnic nalezneme nulové body funkce g_3 :
 - $x < -6: -(-(x+6)) + 5 = 0 \implies x = -11$
 - $x \ge 6 : -(x+6) + 5 = 0 \implies x = -1$.

Nulovými body funkce g_3 jsou tedy body -11 a -1. Zvolíme-li libovolnou hodnotu z intervalu (-11,-1) a dosadíme ji do předpisu funkce zjistíme, že funkce pro ni nabývá kladných hodnot. Proto je funkce g_3 na intervalu (-11,-1) kladná. Z toho okamžitě vyplývá, že je záporná na množině $(-\infty,-11)\cup(-1,+\infty)$.

Příklad 26 Dokažte, že funkce

- a) f: y = 3x + 2 je rostoucí
- b) g: y = -2x + 1 je klesající
- c) $h: y = \operatorname{sgn} x$ je neklesající
- d) rostoucí je prostá.

Řešení.

- a) Nechť $x_1 < x_2$. Pak zřejmě i $f(x_1) = 3x_1 + 2 < 3x_2 + 2 = f(x_2)$, čímž je podle definice ověřeno, že f je rostoucí funkce.
- b) Nechť $x_1 < x_2$. Pak zřejmě $g(x_1) = -2x_1 + 1 > -2x_2 + 1 = g(x_2)$, čímž je podle definice ověřeno, že g je klesající funkce.
- c) Pro libovolné záporné reálné číslo z a libovolné kladné reálné číslo k je funkce signum definována tak, že $\operatorname{sgn} z = -1$, $\operatorname{sgn} 0 = 0$ a $\operatorname{sgn} k = 1$. Tato funkce tedy není klesající v žádném svém bodě (a je rostoucí pouze v bodě nula). Nutně proto platí, že pro $x_1 < x_2$ je $\operatorname{sgn} x_1 \leq \operatorname{sgn} x_2$, což je v souladu s definicí každé neklesající funkce.
- d) Je-li funkce f rostoucí, pak pro každé $x_1, x_2 \in D(f)$ takové, že $x_1 < x_2$ platí $f(x_1) < f(x_2)$. To ale mimo jiné znamená, že pro $x_1 \neq x_2$ je $f(x_1) \neq f(x_2)$, tedy f je prostá.

Příklad 27 Nalezněte průsečík funkcí $y_1 = x^2 + 10x + 40$ a $y_2 = 16 - x$.

Řešení. Pro stanovení x-ové souřadnice průsečíku položíme $y_1 = y_2$ a vyřešíme příslušnou kvadratickou rovnici: $x^2 + 10x + 40 = 16 - x$, neboli rovnici ve tvaru: $x^2 + 11x + 24 = 0$. Tato rovnice je ekvivalentní s rovnicí $(x+3) \cdot (x+8) = 0$, jejímž řešením získáváme hodnoty $x_1 = -3$ a $x_2 = -8$. Dosazením těchto hodnot do libovolného z předpisů zadaných funkcí získáme hledané průsečíky $A_1 = [-3, 19]$ a $A_2 = [-8, 24]$.

Příklad 28

- a) Nechť f je reálná funkce, která vznikne součinem dvou funkcí se stejnou paritou. Dokažte, že f je sudá.
- b) Nechť g je reálná funkce, která vznikne součinem dvou funkcí s různou paritou. Dokažte, že g je lichá.
- c) Nechť h je reálná funkce, která vznikne součtem dvou funkcí se stejnou paritou. Dokažte, že h bude mít stejnou paritu, jako obě funkce, jejichž sečtením vznikne.
- d) Uveďte příklad reálné funkce, která je součtem liché a sudé funkce a sama není ani sudá, ani lichá.
- e) Předokládejme, že funkce l je lichá. Jaká bude funkce |l| a proč?

Řešení.

- a) Předpokládejme, že funkce f vznikne součinem dvou funkcí f_1 a f_2 . Jejím definičním oborem bude zřejmě množina $D(f_1) \cap D(f_2)$. Uvažujme následující dva případy.
 - $\bullet\,$ Funkce f_1 a f_2 jsou obě sudé. Pak i funkce f je sudá, neboť

$$f(-x) = f_1(-x) \cdot f_2(-x) = f_1(x) \cdot f_2(x) = f(x).$$

• Funkce f_1 a f_2 jsou obě liché. Pak funkce f je opět sudá, neboť

$$f(-x) = f_1(-x) \cdot f_2(-x) = -f_1(x) \cdot (-f_2(x)) = f(x).$$

b) Předpokládejme, že funkce g vznikne součinem dvou funkcí g_1 a g_2 . Jejím definičním oborem bude zřejmě množina $D(g_1) \cap D(g_2)$. Nechť funkce g_1 je lichá a funkce g_2 je sudá. Pak

$$g(-x) = g_1(-x) \cdot g_2(-x) = -g_1(x) \cdot g_2(x) = -g(x),$$

což dokončuje důkaz toho, že funkce g je lichá. Případ, kdy funkce g_1 je sudá a funkce g_2 je lichá se řeší analogicky.

- c) Předpokládejme, že funkce h vznikne součtem funkcí h_1 a h_2 . Jejím definičním oborem bude zřejmě množina $D(h_1) \cap D(h_2)$. Uvažujme následující dva případy.
 - \bullet Funkce h_1 a h_2 jsou obě sudé. Pak i funkce hje sudá, jelikož

$$h(-x) = h_1(-x) + h_2(-x) = h_1(x) + h_2(x) = h(x).$$

 \bullet Funkce h_1 a h_2 jsou obě liché. Pak i funkce h je lichá, protože

$$h(-x) = h_1(-x) + h_2(-x) = -h_1(x) - h_2(x) = -h(x).$$

- d) Zřejmě funkce x^2 je sudá a funkce x^3 je lichá. Přitom funkce $f: y = x^2 + x^3$, definována pro každé reálné číslo, není ani lichá, ani sudá. Totiž $f(-x) = (-x)^2 + (-x)^3 = x^2 x^3$, přičemž $x^2 x^3$ je různé od -f(x) i od f(x).
- e) Je-li funkce l lichá, tak pro každé $x \in D(l)$ je i $-x \in D(l)$ a l(-x) = -l(x). Dáme-li funkci l do absolutní hodnoty, její definiční obor se nezmění. Změní se však její parita, protože se z ní stane sudá funkce. Totiž |l(-x)| = |-l(x)| = |l(x)|.

Příklad 29 U následujících funkcí určete jejich paritu.

- a) $h_1: y = (x+4) \cdot (x-4)$
- b) $h_2: y = x^7 + 9x^3 + 6x$
- c) $h_3: y = \sin\left(x \frac{3\pi}{2}\right) + 1$
- d) $h_4: y = |x+1|$
- e) $h_5: y = \frac{x^3 \cdot \sin x \cdot \cos x}{(1+x^2) \cdot \tan 2x}$
- f) $h_6: y = \operatorname{sgn} x \cdot \chi(x)$
- g) $h_7: y = \ln\left(\frac{3-x}{3+x}\right)$.

Řešení.

- a) Roznásobením získáváme předpis $y=x^2-16$. Víme, že polynomická funkce obsahující pouze sudé mocniny je vždy sudá. Pro kontrolu ověříme, zda jsou splněny nutné podmínky sudé parity funkce:
 - Zřejmě platí, že $x \in D(h_1) \implies -x \in D(h_1)$, nebot $D(h_1) = \mathbb{R}$.
 - Také platí, že $h_1(-x) = h_1(x)$, jelikož $(-x)^2 16 = x^2 16$.
- b) Funkce je polynomická a obsahuje pouze liché mocniny (bez absolutního členu), je tedy lichá. Opět provedeme kontrolu ověřením podmínek liché parity funkce:

- Zřejmě platí, že $x \in D(h_2) \implies -x \in D(h_2)$, jelikož $D(h_2) = \mathbb{R}$.
- Rovněž platí, že $h_2(-x) = -h_2(x)$, neboť $(-x)^7 + 9(-x)^3 + 6(-x) = -(x^7 + 9x^3 + 6x)$.
- c) Funkce je sudá, jelikož $\sin{(x-\frac{3\pi}{2})}=\cos{x}$ a víme, že \cos{x} je sudá funkce. Vertikální posun neovlivňuje sudou paritu funkce, proto i $y=\sin{(x-\frac{3\pi}{2})}+1$ je sudou funkcí.
- d) Funkce není ani sudá, ani lichá, jelikož $|(-x)+1| \neq |x+1|$ a zároveň $|(-x)+1| \neq -|x+1|$.
- e) Definičním oborem funkce h_5 jsou všechna reálná čísla splňující podmínku $\tan 2x \neq 0$, odkud $D(h_5) = \mathbb{R} \setminus \{\frac{k\pi}{4}; k \in \mathbb{Z}\}$. S využitím toho, že funkce x^3 , sinus a tangens jsou liché a funkce x^2 a kosinus jsou sudé platí, že:

$$h_5(-x) = \frac{(-x)^3 \cdot \sin(-x) \cdot \cos(-x)}{(1 + (-x)^2) \cdot \tan 2(-x)} = \frac{-x^3 \cdot (-\sin x) \cdot \cos x}{(1 + x^2) \cdot (-\tan 2x)} = -h_5(x).$$

Ověřili jsme podle definice, že funkce h_5 je lichá.

- f) Vzhledem k tomu, že funkce signum je lichá a Dirichletova funkce je sudá, bude zřejmě funkce h_6 lichá. Pro každé reálné číslo x totiž platí $h_6(-x) = \operatorname{sgn}(-x) \cdot \chi(-x) = -\operatorname{sgn} x \cdot \chi(x) = -h_6(x)$.
- g) Určeme nejprve definiční obor. Zřejmě $x \neq -3$ a dále je nutné, aby argumentem logaritmu bylo kladné číslo. To vede na následující dvě podmínky:
 - 3-x>0 a $3+x>0 \implies x \in (-3,3)$
 - 3-x < 0 a $3+x < 0 \implies x \in \emptyset$.

Zjistili jsme, že $D(h_7) = (-3,3)$, má tedy smysl zabývat se dále zjišťováním parity. Platí:

$$h_7(-x) = \ln\left(\frac{3 - (-x)}{3 + (-x)}\right) = \ln\left(\frac{3 - x}{3 + x}\right)^{-1} = -\ln\left(\frac{3 - x}{3 + x}\right) = -h_7(x).$$

Ověřili jsme, že funkce h_7 je lichá.

Příklad 30 Existují funkce, které jsou zároveň sudé a liché? Kolik takových funkcí f můžeme nalézt za předpokladu, že

- a) $D(f) = \mathbb{R}$
- b) $D(f) \subseteq \mathbb{R}$?

Řešení. Z definice plyne, že graf sudé funkce je vždy souměrný podle osy y a graf liché funkce musí být souměrný podle počátku souřadnic.

- a) Na definičním oboru $\mathbb R$ existuje právě jedna funkce, která vyhovuje oběma výše uvedeným podmínkám. Je to osa x, která má rovnici y=0.
- b) Existuje nekonečně mnoho takových funkcí, například funkce $f_1: y=\frac{0}{x}$ s definičním oborem $\mathbb{R}\setminus\{0\}$, nebo třeba funkce $f_2: y=0$ s definičním oborem (-3,3) a podobně. Všechny funkční hodnoty těchto funkcí musí nutně ležet na ose x.

Příklad 31 Určete, zda je daná funkce periodická, v kladném případě určete její základní periodu (pokud existuje):

- a) $f_1: y = \sin x^2$
- b) $f_2: y = \sin \frac{x}{3} + \tan \frac{x}{4}$
- c) $f_3: y = x [x]$
- d) $f_4: y = \ln|\cos x|$
- e) Dirichletova funkce $\chi(x)$.

Řešení.

- a) Funkce f_1 není periodická na \mathbb{R} .
- b) Funkce $\sin \frac{x}{3}$ je periodická, se základní periodou $p_1 = 6\pi$. Také funkce $\tan \frac{x}{4}$ je periodická, přičemž její základní perioda je $p_2 = 4\pi$. Součtem těchto dvou funkcí je periodická funkce f_2 se základní periodou 12π (což je nejmenší společný násobek čísel p_1 a p_2).
- c) Připomeňme nejprve, že [x] značí celou část čísla x. Funkce celá část vrací jako výsledek nejbližší nižší celé číslo, například [1] = 1, [4,7] = 4, [-0,3] = -1 a podobně. Nyní již snadno nahlédneme, že funkce f_3 je periodická a její základní perioda je 1.
- d) Funkce f_4 je definována pro hodnoty, kdy je funkce $\cos x$ nenulová. V ostatních případech je argumentem logaritmu kladné číslo (přesněji reálné číslo z intervalu $(0,1\rangle)$, což je v pořádku. Je tedy $D(f_4) = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi\}$, kde $k \in \mathbb{Z}$. Funkce $|\cos x|$ je sudá a periodická, se základní periodou π . Stejně tak je i funkce f_4 sudá a periodická, se základní periodou $p = \pi$.
- e) Dirichletova funkce $\chi(x)$ není periodická na \mathbb{R} .

Příklad 32 Rozhodněte, které z následujících funkcí jsou prosté (injektivní) na celém svém definičním oboru, případně určete nejdelší možné intervaly, na kterých prosté jsou:

- a) $g_1: y = |4x 6|$
- b) $g_2: y = \frac{1}{4}(x^{-2} + 8)$
- c) $g_3: y = 3x^5 + 11$
- d) $g_4: y = 6 \tan(x \frac{\pi}{2}).$

Řešení.

- a) Funkce g_1 není kvůli absolutní hodnotě prostá na celém svém definičním oboru. Můžeme nalézt například hodnotu $6 = g_1(0) = g_1(3)$, která porušuje podmínku prostoty. Nicméně, funkce g_1 je prostá na intervalu $(-\infty, \frac{3}{2})$ nebo na intervalu $(\frac{3}{2}, +\infty)$.
- b) Funkce g_2 je funkce sudá, definovaná pro každé nenulové reálné číslo. Dá se na ni nahlížet i jako na funkci mocninnou se záporným sudým mocnitelem. Taková funkce není prostá na svém definičním oboru, například je $3 = g_2(-\frac{1}{2}) = g_2(\frac{1}{2})$. Tato funkce je prostá na intervalu $(-\infty, 0)$, nebo na intervalu $(0, +\infty)$.
- c) Funkce g_3 je rostoucí a tedy i prostá na celém svém definičním oboru.
- d) Funkce tangens je periodická, odkud vyplývá, že zadaná funkce g_4 prostá být nemůže. Je ale prostá na každém intervalu $(k\pi, (k+1)\pi)$, kde $k \in \mathbb{Z}$.

Příklad 33 Pro následující funkce nalezněte funkce k nim inverzní a těm určete jejich definiční obor a obor hodnot:

- a) $f_1: y = 3$
- b) $f_2: y = 5^x$
- c) $f_4: y = \frac{3x+2}{5x+3}$
- d) $f_3: y = (x+1)^2$.

Řešení.

a) Inverzní funkce pro konstantní funkci f_1 neexistuje, protože tato funkce není prostá.

- b) Inverzní funkcí k funkci exponenciální je funkce logaritmická. V našem případě je to funkce $f_2^{-1}: y = \log_5 x$, jejíž definiční obor $D(f_2^{-1}) = (0, +\infty)$ a obor hodnot $H(f_2^{-1}) = \mathbb{R}$.
- c) Inverzní funkcí k funkci lineární lomenné je funkce lineární lomenná. Vypočítejme nejprve předpis pro funkci inverzní. Provedeme to standardně tak, že u funkce f_4 vzájemně zaměníme proměnnou x za proměnnou y a poté vyjádříme proměnou y:

$$x = \frac{3y+2}{5y+3}$$

$$5xy+3x = 3y+2$$

$$y(5x-3) = 2-3x$$

$$y = \frac{2-3x}{5x-3}$$

Zjistili jsme, že $f_4^{-1}:y=\frac{2-3x}{5x-3}$, přičemž $D(f_4^{-1})=\mathbb{R}\setminus\{\frac35\}$ a $H(f_4^{-1})=\mathbb{R}\setminus\{-\frac35\}$.

d) Inverzní funkcí k funkci mocninné je funkce odmocninná. Konkrétně máme $f_3^{-1}:y=\sqrt{x}-1$, přičemž $D(f_3^{-1})=\langle 0,+\infty\rangle$ a $H(f_3^{-1})=\langle -1,+\infty\rangle$.

Příklad 34 Zjednodušte výraz:

- a) $(5\sqrt{2} + 2\sqrt{5}) \cdot (2\sqrt{2} 5\sqrt{5})$
- b) $\frac{\sqrt{6}a^{\frac{3}{2}}b^{\frac{7}{3}}}{\sqrt{54a}\sqrt[3]{b}}$.

Řešení.

a) V zadaném výrazu roznásobíme závorky a vzniklé výrazy sečteme:

$$(5\sqrt{2} + 2\sqrt{5}) \cdot (2\sqrt{2} - 5\sqrt{5}) = 10(\sqrt{2})^2 - 25\sqrt{2 \cdot 5} + 4\sqrt{2 \cdot 5} - 10(\sqrt{5})^2$$
$$= 20 - 21\sqrt{10} - 50$$
$$= -30 - 21\sqrt{10}.$$

b)
$$\frac{\sqrt{6}a^{\frac{3}{2}}b^{\frac{7}{3}}}{\sqrt{54a}\sqrt[3]{b}} = \frac{\sqrt{6}a^{\frac{3}{2}}b^{\frac{7}{3}}}{3\sqrt{6}a^{\frac{1}{2}}b^{\frac{1}{3}}} = \frac{ab^2}{3}.$$

Příklad 35 Následující zlomky usměrněte:

- a) $\frac{10}{3\sqrt{5}}$
- b) $\frac{6}{\sqrt{18}}$
- c) $\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}$.

Řešení. Jak je požadováno v zadání, ekvivalentním způsobem, odstraníme odmocniny ze jmenovatelů zadaných zlomků.

a) $\frac{10}{3\sqrt{5}} = \frac{10}{3\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{10\sqrt{5}}{3 \cdot (\sqrt{5})^2} = \frac{10\sqrt{5}}{15} = \frac{2\sqrt{5}}{3}$

b) Před usměrňováním zlomek zjednodušíme:

$$\frac{6}{\sqrt{18}} = \frac{6}{\sqrt{2 \cdot 9}} = \frac{3 \cdot 2}{3\sqrt{2}} = \frac{2}{\sqrt{2}}.$$

Upravený zlomek již usměrníme:

$$\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}.$$

c) Pro usměrnění zlomku využijeme známý vzorec $(a+b)\cdot (a-b)=a^2-b^2$:

$$\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}} \cdot \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} = \frac{\sqrt{2\cdot3}-(\sqrt{3})^2}{(\sqrt{2})^2-(\sqrt{3})^2} = \frac{\sqrt{6}-3}{-1} = 3-\sqrt{6}.$$

Příklad 36 U funkce f jsou známy dvě tabulkové hodnoty: f(7,31) = 1,4563 a f(7,25) = 1,4559. Pomocí lineární interpolace určete hodnotu f(7,28).

Řešení. Dvěma zadanými body vedeme přímku, jejíž obecný vzorec je:

$$y = y_0 + (x - x_0) \cdot \frac{y_1 - y_0}{x_1 - x_0}.$$

Dosazením známých hodnot do vzorce dostaneme:

$$y = 1,4559 + (x - 7,25) \cdot \frac{1,4563 - 1,4559}{7,31 - 7,25} = 1,4559 + (x - 7,25) \cdot \frac{0,0004}{0,06}.$$

Odtud pro hodnotu x=7,28 vypočítáme, že

$$y = 1,4559 + \left(0,03 \cdot \frac{0,0004}{0,06}\right) = 1,4561.$$

Tedy f(7, 28) = 1,4561.

Příklad 37 U následujících lomených výrazů snižte stupeň (polynomu) čitatele pod stupeň (polynomu) jmenovatele:

a)
$$\frac{2x^3 - x^2 + x + 2}{2x + 1}$$

b)
$$\frac{x^4+2x^2+1}{x^2-1}$$

c)
$$\frac{x^3 + 3x^2 - x}{x+1}$$
.

Řešení.

a) Provedeme klasické dělení polynomů:

$$(2x^3 - x^2 + x + 2) : (2x + 1) = x^2 - x + 1 + \frac{1}{2x + 1}.$$

b) Stupeň čitatele můžeme opět snížit vydělením polynomů. Ukážeme si jiný postup, s jehož pomocí získáme stejný výsledek. Zadaný zlomek můžeme výhodně rozdělit na dva:

$$\frac{x^4 + 2x^2 + 1}{x^2 - 1} = \frac{x^4 - x^2}{x^2 - 1} + \frac{3x^2 + 1}{x^2 - 1}.$$

První zlomek jsme schopni vydělit výrazem x^2-1 , získáváme tedy výraz $x^2+\frac{3x^2+1}{x^2-1}$. Obdobně dokážeme zlomek $\frac{3x^2+1}{x^2-1}$ upravit takto:

$$\frac{3x^2-3}{x^2-1}+\frac{4}{x^2-1}=\frac{3(x^2-1)}{x^2-1}+\frac{4}{x^2-1}.$$

Dohromady tak po zkrácení získáme výraz $x^2+3+\frac{4}{x^2-1},$ který je hledaným výsledkem.

c) Nyní již stručněji zopakujeme postup, který jsme použili výše:

$$\begin{array}{rcl} \frac{x^3+3x^2-x}{x+1} & = & \frac{x^3+x^2}{x+1} + \frac{2x^2-x}{x+1} = \frac{x^2(x+1)}{x+1} + \frac{2x^2-x}{x+1} \\ & = & x^2 + \frac{2x^2+2x}{x+1} + \frac{-3x}{x+1} = x^2 + 2x + \frac{-3x-3}{x+1} + \frac{3}{x+1} \\ & = & x^2 + 2x - 3 + \frac{3}{x+1}. \end{array}$$

Příklad 38 Do jednoho obrázku načrtněte grafy funkcí $f_1:y=\sin x,\,f_2:y=2\sin x$ a $f_3:y=\sin 2x.$

Řešení.

Vidíme, že funkce $y=2\sin x$ má oproti výchozí funkci $y=\sin x$ dvojnásobně velký obor hodnot a stejnou periodu, funkce $y=\sin 2x$ má naopak poloviční periodu a stejný obor hodnot. U všech tří zadaných (periodických) funkcí je definičním oborem množina všech reálných čísel.

Příklad 39 Do jednoho obrázku načrtněte grafy funkcí $f_1:y=2^x,\,f_2:y=e^x$ a $f_3:y=3^x.$

Řešení.

U všech tří zadaných exponenciálních funkcí je definičním oborem množina všech reálných čísel a oborem hodnot množina všech kladných reálných čísel. Samozřejmě zadané funkce prochází bodem [0,1] na ose y. Všimněme si ještě, že s rostoucí velikostí základu stoupá křivka exponenciální funkce prudčeji.

Příklad 40 Do jednoho obrázku načrtněte grafy funkcí $f_1:y=\log_2 x,\ f_2:y=\ln x$ a $f_3:y=\log_3 x.$

Řešení.

U všech tří zadaných logaritmických funkcí je definičním oborem množina všech kladných reálných čísel a oborem hodnot množina všech reálných čísel. Samozřejmě zadané funkce prochází bodem [1,0] na ose x. Všimněme si, že na rozdíl od exponenciální funkce roste křivka logaritmické funkce prudčeji se zmenšujícím se základem. To se dá očekávat, jelikož víme, že exponenciální a logaritmické funkce o stejném základu jsou si vzájemně inverzní.

Příklad 41 Na množině reálných čísel řešte rovnice:

a)
$$\frac{1+\cos x}{1-\cos x} = \sqrt{9}\cos^2 x - \sqrt[3]{-27}\sin^2 x$$

- b) $4\sin x + 3\cos x = 5$
- c) $2^{2x} + 2^{x+2} = 3 \cdot 2^{x+1}$
- d) $\ln(3x-5) \ln(x-2) = \ln 2$.

Řešení.

a) Jmenovatel zlomku musí být nenulový, tedy $x \neq 2k\pi$, kde $k \in \mathbb{Z}$. Zadanou rovnici postupně upravíme:

$$\frac{1 + \cos x}{1 - \cos x} = \sqrt{9}\cos^2 x - \sqrt[3]{-27}\sin^2 x
\frac{1 + \cos x}{1 - \cos x} = 3(\cos^2 x + \sin^2 x)
1 + \cos x = 3 - 3\cos x
\cos x = \frac{1}{2}.$$

Řešením je množina všech reálných čísel ve tvaru $\pm \frac{\pi}{3} + 2k\pi$, kde $k \in \mathbb{Z}$.

b) Zavedením substitucí $u=\sin x$ a $v=\cos x$ přejde rovnice ze zadání na tvar: 4u+3v=5. Odtud vyjádříme, že $u=\frac{5-3v}{4}$. Takto vyjádřené u dosadíme do obecně platného vztahu $u^2+v^2=1$, tedy do známého vzorce: $\sin^2 x + \cos^2 x = 1$. Dostaneme tak kvadratickou rovnici s neznámou v, kterou postupně vyřešíme:

$$\left(\frac{5-3v}{4}\right)^2 + v^2 = 1$$

$$25 - 30v + 9v^2 + 16v^2 = 16$$

$$25v^2 - 30v + 9 = 0$$

$$(5v - 3)^2 = 0.$$

Kvadratická rovnice má jako řešení dvojnásobný kořen $v=\frac{3}{5}$. Zpětným dosazením do zavedené substituce obdržíme rovnici pro neznámou x ve tvaru: $\cos x = \frac{3}{5}$. Řešením jsou proto všechna reálná čísla $x = 2k\pi \pm \cos^{-1}(\frac{3}{5})$, $k \in \mathbb{Z}$.

c) Zavedeme substituci $t=2^x$. S touto substitucí přejde zadaná rovnice na rovnici kvadratickou, kterou snadno vyřešíme:

$$t^2 + 4t = 6t$$
$$t(t-2) = 0.$$

Kvadratická rovnice má dvě řešení: $t_1 = 0$ a $t_2 = 2$. Nyní se vrátíme zpět k počáteční substituci a vypočítáme neznámou x. V prvním případě obdržíme rovnici $0 = 2^x$, která nemá řešení. Ve druhém případě dostaneme rovnici $2 = 2^x$ s jediným řešením: x = 1, které je hledaným výsledkem.

- d) Nejprve určíme, pro která x je rovnice definována. Argument logaritmu musí být kladné číslo, odkud dostáváme dvě podmínky, které musí současně platit:
 - $3x 5 > 0 \implies x > \frac{5}{3}$
 - $\bullet \ x-2>0 \implies x>2.$

Z podmínek plyne, že $x \in (2, +\infty)$. Nyní zadanou logaritmickou rovnici vyřešíme:

$$\ln \frac{3x-5}{x-2} = \ln 2$$

$$\frac{3x-5}{x-2} = 2$$

$$3x-5 = 2x-4$$

$$x = 1.$$

Z rovnice nám vyšlo řešení, které nevyhovuje podmínce, že $x \in (2, +\infty)$. To znamená, že daná rovnice nemá řešení.

4 Limita funkce. Spojitost funkce.

Příklad 42 Vypočítejte limity následujících funkcí:

$$\lim_{x \to -2} \frac{x+2}{x^2-4}$$

$$\lim_{x \to 3} \frac{x-3}{x^2 - 6 - x}$$

$$\lim_{x \to -\infty} \frac{x^4 + 5x^3 - x^2 + 6}{3x^4 - 6x^3 + 4x - 8}$$

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right)$$

$$\lim_{x \to 0} x^2 \cos \frac{1}{x^2}.$$

Řešení.

a) Limitu nelze vypočítat přímým dosazením – získali bychom nedefinovaný výraz $\frac{0}{0}$. Výraz ve jmenovateli zlomku lze rozložit na součin pomocí vzorce $a^2-b^2=(a+b)\cdot(a-b)$. Následně můžeme zlomek výkrátit výrazem x+2. Tato úprava již umožní přímé dosazení hodnoty -2.

$$\lim_{x \to -2} \frac{x+2}{x^2-4} = \lim_{x \to -2} \frac{x+2}{(x+2) \cdot (x-2)} = \lim_{x \to -2} \frac{1}{x-2} = \frac{1}{-2-2} = -\frac{1}{4}.$$

b) Přímým dosazením hodnoty do zlomku bychom opět získali výraz $\frac{0}{0}.$ Jmenovatel zlomku proto rozložíme na součin činitelů: $x^2-x-6=(x+2)\cdot(x-3).$ Poté můžeme krátit výrazem x-3a následně přímo dosadit hodnotu 3.

$$\lim_{x \to 3} \frac{x-3}{x^2 - x - 6} = \lim_{x \to 3} \frac{x-3}{(x+2) \cdot (x-3)} = \lim_{x \to 3} \frac{1}{x+2} = \frac{1}{3+2} = \frac{1}{5}.$$

c) Po přímém dosazení hodnoty $-\infty$ za x dostaneme nedefinovaný výraz. Je tedy třeba opět provést určité algebraické úpravy. V předpisu lomené funkce

nalezneme výraz obsahující nejvyšší mocninu (tedy x^4) a vytkneme jej v čitateli i ve jmenovateli a následně jím zlomek vykrátíme. Poté dosadíme hodnotu $-\infty$ a obdržíme výsledek.

$$\lim_{x \to -\infty} \frac{x^4 + 5x^3 - x^2 + 6}{3x^4 - 6x^3 + 4x - 8} = \lim_{x \to -\infty} \frac{x^4}{x^4} \cdot \frac{\frac{x^4}{x^4} + \frac{5x^3}{x^4} + \frac{-x^2}{x^4} + \frac{6}{x^4}}{\frac{3x^4}{x^4} + \frac{-6x^3}{x^4} + \frac{4x}{x^4} + \frac{-8}{x^4}}$$
$$= 1 \cdot \frac{1 + 0 + 0 + 0}{3 + 0 + 0 + 0} = \frac{1}{3}.$$

d) Po přímém dosazení hodnoty $+\infty$ za x obdržíme nedefinovaný výraz typu $\infty - \infty$. Proto výraz vhodně rozšíříme (vynásobíme zlomkem $\frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}+x}$) a využijeme vzorec $(a+b)\cdot(a-b)=a^2-b^2$. Po těchto úpravách již lze hodnotu $+\infty$ za x dosadit a dostat se k výsledku.

$$\lim_{x \to +\infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to +\infty} (\sqrt{x^2 + 1} - x) \cdot \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to +\infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

$$= \frac{1}{\sqrt{(+\infty)^2 + 1} + \infty} = \frac{1}{+\infty} = 0.$$

e) Zde využijeme toho, že funkce $\cos\frac{1}{x^2}$ je omezená (jejím oborem hodnot je interval $\langle -1;1\rangle)$ a toho, že

$$\lim_{x \to 0} x^2 = 0.$$

Víme, že nulová funkce vynásobena omezenou funkcí zůstává funkcí nulovou. Odtud plyne:

$$\lim_{x \to 0} x^2 \cos \frac{1}{x^2} = 0 \cdot \lim_{x \to 0} \cos \frac{1}{x^2} = 0.$$

Všimněme si, že jsme byli schopni příklad vypočítat, přestože

$$\lim_{x \to 0} \cos \frac{1}{x^2} = \text{neexistuje}.$$

Příklad 43 Vypočítejte limity následujících funkcí:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{5x}$$

b)
$$\lim_{x \to 0} \frac{\sin 5x}{15x}$$

c)
$$\lim_{x \to 0} -\frac{\sin x}{x^3}$$

$$\lim_{x \to +\infty} \left(\frac{x+4}{x+3}\right)^x$$

e)
$$\lim_{x\to +\infty} \left(1+\frac{c}{x}\right)^x, \quad \text{ je-li } c\in \mathbb{R}, c>0$$

f)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 3x}$$

g)
$$\lim_{x \to 0} \frac{1 - \cos 5x}{3x^2}.$$

Řešení. Při řešení tohoto příkladu několikrát využijeme dvou speciálních limit:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e, \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{5x} = \lim_{x \to +\infty} \left(\left(1 + \frac{1}{x}\right)^x\right)^5 = e^5$$

b)
$$\lim_{x \to 0} \frac{\sin 5x}{15x} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{\sin 5x}{5x} = \frac{1}{3} \cdot 1 = \frac{1}{3}$$

c)
$$\lim_{x \to 0} -\frac{\sin x}{x^3} = \lim_{x \to 0} \frac{-1}{x^2} \cdot \frac{\sin x}{x} = \lim_{x \to 0} \frac{-1}{x^2} \cdot 1 = -\infty$$

d)
$$\lim_{x \to +\infty} \left(\frac{x+4}{x+3}\right)^x = \lim_{x \to +\infty} \left(\frac{x+3}{x+3} + \frac{1}{x+3}\right)^x$$
$$= \lim_{x \to +\infty} \left(1 + \frac{1}{x+3}\right)^{x+3} \cdot \lim_{x \to +\infty} \left(1 + \frac{1}{x+3}\right)^{-3}$$
$$= e \cdot 1^{-3} = e \cdot 1 = e$$

e)
$$\lim_{x\to +\infty} \left(1+\frac{c}{x}\right)^x = \lim_{x\to +\infty} \left(\left(1+\frac{1}{\frac{x}{c}}\right)^{\frac{x}{c}}\right)^c = e^c$$

f)
$$\lim_{x\to 0}\frac{\sin 5x}{\sin 3x}=\lim_{x\to 0}\frac{5}{3}\cdot\frac{\frac{\sin 5x}{5x}}{\frac{\sin 3x}{\sin 3x}}=\frac{5}{3}$$

g)

$$\lim_{x \to 0} \frac{1 - \cos 5x}{3x^2} = \lim_{x \to 0} \frac{(1 - \cos 5x) \cdot (1 + \cos 5x)}{3x^2 \cdot (1 + \cos 5x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2 5x}{3x^2 \cdot (1 + \cos 5x)} = \lim_{x \to 0} \frac{\sin^2 5x}{3x^2 \cdot (1 + \cos 5x)} \cdot \frac{25}{25}$$

$$= \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \lim_{x \to 0} \frac{25}{3 \cdot (1 + \cos 5x)}$$

$$= 1 \cdot 1 \cdot \frac{25}{3 \cdot 2} = \frac{25}{6}.$$

Příklad 44 Zjistěte, zda jsou následující funkce spojité v zadaném bodě:

a)
$$f_1: y = \frac{x^2-4}{x-2}$$
 v bodě $x = 2$

b)
$$f_2: y = x^2 + 2x - 15$$
 v bodě $x = -3$

c)
$$f_3: y = \cos(x - \frac{\pi}{4})$$
 v bodě $x = \frac{\pi}{2}$

d)
$$f_4: y = \log_2 x \text{ v bodě } x = 0.$$

Řešení.

- a) Ne, bod x=2 není součástí definičního oboru funkce f_1 .
- b) Ano, funkce f_2 je spojitá na celém svém definičním oboru, na \mathbb{R} .
- c) Ano, funkce f_3 je spojitá na celém svém definičním oboru, na \mathbb{R} .
- d) Ne, bod x = 0 není součástí definičního oboru funkce f_4 .

Příklad 45 Zjistěte, zda jsou v daném bodě následující funkce spojité. V opačném případě rozhodněte, o jaký druh nespojitosti se jedná.

a) V bodě
$$x = 4$$
 funkce $g_1 : y = \begin{cases} x^2 - 4 & \text{pro} \quad x < 4 \\ 3x & \text{pro} \quad x \ge 4. \end{cases}$

b) V bodě x = 0 funkce $g_2 : y = \operatorname{sgn} x$.

c) V bodě
$$x = 8$$
 funkce $g_3 : y = \begin{cases} 2^{\frac{x}{4}} & \text{pro} \quad x < 8 \\ \sqrt{2x} & \text{pro} \quad x > 8. \end{cases}$

d) V bodě
$$x = -5$$
 funkce $g_4: y = \frac{-3}{x+5}$.

e) V bodě
$$x = 1$$
 funkce $g_5 : y = \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1}$.

f) V bodě
$$x = 0$$
 funkce $g_6 : y = e^{\frac{1}{x}}$.

Řešení.

a) Zajímá nás chování funkce v bodě x=4. Vidíme, že funkce je v tomto bodě definována a obě jednostranné limity jsou si rovny:

$$\lim_{x \to 4^{-}} x^{2} - 4 = 12, \qquad \lim_{x \to 4^{+}} 3x = 12.$$

Funkce g_1 je tedy v bodě x=4 spojitá.

b) Funkce g_2 není spojitá v bodě x = 0, protože v něm má dvě vlastní jednostranné limity, které se vzájemně nerovnají:

$$\lim_{x \to 0^{-}} \operatorname{sgn} x = -1, \qquad \lim_{x \to 0^{+}} \operatorname{sgn} x = 1.$$

V bodě x=0má funkce g_2 neodstranitelnou nespojitost 1. druhu se skokem 2.

c) Funkce g_3 není spojitá v bodě x=8, jelikož v něm není definována. Obě jednostranné limity jsou si však v tomto bodě rovny:

$$\lim_{x \to 8^{-}} 2^{\frac{x}{4}} = 4, \qquad \lim_{x \to 8^{+}} \sqrt{2x} = 4.$$

Jedná se tedy o odstranitelnou nespojitost. Snadno bychom ji odstranili dodefinováním funkční hodnoty $g_3(8)=4$.

d) Funkce g_4 není spojitá, bodem nespojitosti je x=-5. V tomto bodě má funkce dvě nevlastní jednostranné limity:

$$\lim_{x \to -5^{-}} \frac{-3}{x+5} = +\infty, \qquad \lim_{x \to -5^{+}} \frac{-3}{x+5} = -\infty.$$

Jedná se tedy o neodstranitelnou nespojitost 2. druhu.

e) Definičním oborem funkce g_5 je množina $D(g_5) = (-\infty, 2) \setminus \{1\}$. Funkce g_5 tak nemůže být spojitá v bodě x = 1, protože v tomto bodě není definována. Spočítejme limitu pro x jdoucí k jedné:

$$\lim_{x \to 1} \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1} = \lim_{x \to 1} \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1} \cdot \frac{\sqrt{5-x}+2}{\sqrt{5-x}+2} \cdot \frac{\sqrt{2-x}+1}{\sqrt{2-x}+1}$$

$$= \lim_{x \to 1} \frac{5-x-4}{2-x-1} \cdot \lim_{x \to 1} \frac{\sqrt{2-x}+1}{\sqrt{5-x}+2}$$

$$= 1 \cdot \frac{2}{4} = \frac{1}{2}.$$

Z existence vlastní oboustranné limity vidíme, že jde v tomto případě o odstranitelnou nespojitost. Dodefinováním funkční hodnoty $g_5(1) = \frac{1}{2}$ by se funkce $g_5(x)$ stala spojitou na intervalu $(-\infty, 2)$.

f) Funkce g_6 je nespojitá pouze v bodě x=0, který jako jediný nepatří do jejího definičního oboru. V tomto bodě má funkce dvě různé jednostranné limity, z nichž jedna z nich je nevlastní:

$$\lim_{x \to 0^{-}} e^{\frac{1}{x}} = 0, \qquad \lim_{x \to 0^{+}} e^{\frac{1}{x}} = +\infty.$$

Jedná se tedy o neodstranitelnou nespojitost 2. druhu.

Příklad 46 Uveďte jednu konkrétní funkci, která bude

- a) mít v bodě x=-2 neodstranitelnou nespojitost 2. druhu, přičemž limita pro x jdoucí k hodnotě -2 zleva, ani zprava nebude existovat.
- b) definována a nespojitá v každém bodě $x \in \mathbb{R}$, přičemž její absolutní hodnota bude funkcí spojitou na \mathbb{R} .

Řešení.

a) Chytře využijeme toho, že pro $x=\pm\infty$ neexistuje limita funkce $\sin x$. Řešením je pak například funkce $\sin\frac{1}{x+2}$, která evidentně není v bodě x=-2 definována a navíc:

$$\lim_{x\to -2^-}\sin\frac{1}{x+2}=\sin\left(-\infty\right)=\text{neexistuje},$$

$$\lim_{x \to -2^+} \sin \frac{1}{x+2} = \sin (+\infty) = \text{neexistuje}.$$

b) Víme, že Dirichletova funkce $\chi(x)$ je nespojitá v každém bodě $x \in \mathbb{R}$. Tuto funkci snadno modifikujeme na funkci $\psi(x)$, která bude splňovat podmínky v zadání. Stačí položit $\psi(x) = 1$ pro libovolné racionální číslo a $\psi(x) = -1$ pro libovolné číslo iracionální. Absolutní hodnota $|\psi(x)|$ je funkcí konstantní (spojitou) s oborem hodnot $\{1\}$.

Příklad 47 Dodefinujte funkci $f: y = \frac{x^4 + x^3 - x - 1}{1 - x^2}$ tak, aby byla spojitá na \mathbb{R} .

Řešení. Funkce f je zřejmě spojitá na celém svém definičním oboru, tedy na $\mathbb{R} \setminus \{-1;1\}$. Potřebujeme odstranit nespojitost v bodech -1 a 1. Předtím, za předpokladu, že $x \neq \pm 1$ výraz $\frac{x^4 + x^3 - x - 1}{1 - x^2}$ zjednodušíme:

$$\frac{x^4 + x^3 - x - 1}{1 - x^2} = \frac{(x - 1) \cdot (1 + x) \cdot (x^2 + x + 1)}{(1 - x) \cdot (1 + x)} = -x^2 - x - 1.$$

Odtud plyne:

$$\lim_{x \to -1} \frac{x^4 + x^3 - x - 1}{1 - x^2} = \lim_{x \to -1} (-x^2 - x - 1) = -1,$$

$$\lim_{x \to 1} \frac{x^4 + x^3 - x - 1}{1 - x^2} = \lim_{x \to 1} (-x^2 - x - 1) = -3.$$

Aby se funkce f stala spojitou, je nutné dodefinovat f(-1) = -1 a f(1) = -3.

Příklad 48 Víme, že platí tvrzení (T): je-li funkce spojitá na intervalu $\langle a,b\rangle$ $(a,b\in\mathbb{R})$, pak je na tomto intervalu omezená. Na příkladech ukažte, že oba předpoklady (spojitost funkce a uzavřenost intervalu) jsou pro platnost tohoto tvrzení podstatné.

Řešení.

- 1. Na uzavřeném intervalu $\langle -1,1\rangle$ je funkce $y=\frac{1}{x^2}$ nespojitá a není na něm omezená. Ukázali jsme tak, že při porušení předpokladu spojitosti funkce tvrzení (T) nemusí platit.
- 2. Funkce $y=\frac{1}{x}$ je spojitá na otevřeném intervalu (0,1), ale není na něm omezená. Zjistili jsme tak, že při porušení předpokladu uzavřenosti intervalu tvrzení (T) obecně neplatí.

Příklad 49 Víme, že platí věta Weierstrassova: je-li funkce f spojitá na uzavřeném ohraničeném reálném intervalu $\langle a,b\rangle$, pak na tomto intervalu nabývá svého maxima a minima. Na příkladech ukažte, že oba předpoklady (spojitost funkce a uzavřenost intervalu) jsou pro platnost věty Weierstrassovy podstatné.

Řešení.

- 1. Na uzavřeném intervalu $\langle 0,1 \rangle$ není funkce $y=x-\lfloor x \rfloor$ spojitá. Přestože je na tomto intervalu omezená, nenabývá na něm své největší hodnoty. Ukázali jsme tak, že při porušení předpokladu spojitosti funkce věta Weierstrassova obecně neplatí.
- 2. Funkce y=x je spojitá na otevřeném intervalu (-2,2), Přestože je na tomto intervalu omezená, nenabývá na něm své největší a ani své nejmenší hodnoty. Odtud ihned vyplývá, že při porušení předpokladu uzavřenosti intervalu nemusí věta Weierstrassova platit.

Příklad 50

- a) Dokažte, že rovnice $\cos(x+1) x = 0$ má alespoň jedno řešení.
- b) Dokažte, že funkce $f: y = x^4 3x^3 + 2x^2 x$ protíná na otevřeném intervalu (2,3) osu x.

Řešení. U řešení obou příkladů využijeme Bolzanovu větu: je-li funkce f spojitá na reálném intervalu $\langle a,b\rangle$ a platí-li $f(a)\cdot f(b)<0$, pak existuje bod $x\in(a,b)$ tak, že f(x)=0.

- a) Dosadíme-li do funkce $f: y = \cos(x+1) x$ hodnotu -1, zjistíme, že f(-1) = 1 (-1) = 2 > 0. Víme, že $-1 \le \cos(x+1) \le 1$. Proto, dosadíme-li za x hodnotu 3, bude zřejmě f(3) < 0. Z Bolzanovy věty odtud vyplývá, že rovnice $\cos(x+1) x = 0$ má na intervalu (-1,3) alespoň jedno řešení.
- b) Určíme hodnoty funkce f v bodech 2 a 3. Zřejmě

$$f(2) = 2^4 - 3 \cdot 2^3 + 2 \cdot 2^2 - 2 = 16 - 24 + 8 - 2 = -2 < 0,$$

$$f(3) = 3^4 - 3 \cdot 3^3 + 2 \cdot 3^2 - 3 = 81 - 81 + 18 - 3 = 15 > 0.$$

Platí tedy $f(2) \cdot f(3) < 0$, odkud z Bolzanovy věty plyne, že funkce f protíná osu x na intervalu (2,3).

5 Derivace funkce. Diferenciál funkce.

Příklad 51 S využitím definice derivace funkce vypočítejte derivaci spojité funkce

- a) $f_1: y = x^2 + 3$ v bodě $x_0 = 4$
- b) $f_2: y = |x| \text{ v bodě } x_0 = 0$
- c) $f_3: y = x^3$ v libovolném bodě x
- d) $f_4: y = \sin x$ v libovolném bodě x.

Řešení. Derivace funkce f v bodě x_0 je obecně definována jako vlastní limita

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

pokud je f v okolí bodu x_0 definována.

a) Dosazením zadaných hodnot do předpisu získáme výraz

$$(x^2+3)'_{x_0=4} = \lim_{\Delta x \to 0} \frac{((4+\Delta x)^2+3) - (4^2+3)}{\Delta x},$$

který dále upravíme:

$$\lim_{\Delta x \to 0} \frac{16 + 8 \cdot \Delta x + (\Delta x)^2 + 3 - 16 - 3}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 + 8\Delta x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \Delta x + 8 = 8.$$

Všimněme si, že výsledkem derivace funkce v konkrétním bodě je číslo.

b) S využitím vzorce definujícího derivaci funkce v daném bodě máme:

$$(|x|)'_{x_0=0} = \lim_{\Delta x \to 0} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} = \text{neexistuje}.$$

To, že tato limita neexistuje si můžeme ověřit výpočtem jednostranných limit:

$$\lim_{\Delta x \to 0^-} \frac{|\Delta x|}{\Delta x} = -1, \qquad \lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = 1.$$

Jednostranné limity vyšly různě, tudíž funkce f_2 v bodě 0 derivaci nemá.

c) Opět dosadíme do vzorce. Dostaneme

$$(x^{3})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{3} - x^{3}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^{3} + 3x^{2}\Delta x + 3x(\Delta x)^{2} + (\Delta x)^{3} - x^{3}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3x^{2}\Delta x + 3x(\Delta x)^{2} + (\Delta x)^{3}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^{2} + 3x\Delta x + (\Delta x)^{2}) = 3x^{2}.$$

Všimněme si, že výsledkem derivace funkce v libovolném bodě je funkce.

d) U tohoto příkladu použijeme goniometrický vzorec ve tvaru:

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cdot \cos \frac{\alpha + \beta}{2}.$$

Podle vzorce definujícího derivaci dostaneme:

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\sin(\frac{\Delta x}{2}) \cdot \cos(x + \frac{\Delta x}{2})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right)$$

$$= 1 \cdot \cos(x + 0) = \cos x.$$

Příklad 52 Víme, že platí tvrzení: má-li funkce v bodě x_0 derivaci, pak je v tomto bodě spojitá. Najděte příklad ukazující, že obrácené tvrzení neplatí, tedy, že ze spojitosti funkce v bodě x_0 neplyne existence derivace v tomto bodě.

Řešení. Hledaným příkladem je třeba funkce f:y=|x| v bodě 0. Tato funkce je spojitá v každém bodě $x\in\mathbb{R}$, neboť

$$\lim_{x \to x_0} |x| = |x_0|.$$

Je tedy spojitá i v bodě $x_0=0$. V tomto bodě však nemá derivaci, jak jsme se přesvědčili v předchozím příkladě.

Příklad 53 Stanovte derivace následujících funkcí:

a)
$$f_1: y = 7x^4 - 6x^3 + 5x^2 - 4x + 3$$

b)
$$f_2: y = 3\sqrt[6]{x} + 8\sqrt[4]{x} + \sqrt{x}$$

c)
$$f_3: y = 2x^{-5} - 3x^{-2} + 5x^{-1}$$

d)
$$f_4: y = 6^x + e^6 - e^x + \log_5 x + \ln x + \ln 5$$
.

Řešení.

a) Několikrát využijeme obecný vzorec pro derivaci reálného násobku mocninné funkce: $(cx^n)' = c \cdot n \cdot x^{n-1}$ a také faktu, že derivace konstanty je nula: c' = 0. Dostaneme tak:

$$y' = 4 \cdot 7x^{(4-1)} - 3 \cdot 6x^{(3-1)} + 2 \cdot 5x^{(2-1)} - 4x^{(1-1)} + 0$$
$$= 28x^3 - 18x^2 + 10x - 4.$$

b) Zadaný výraz si nejprve upravíme, aby se nám snadněji derivoval:

$$3\sqrt[6]{x} + 8\sqrt[4]{x} + \sqrt{x} = 3x^{\frac{1}{6}} + 8x^{\frac{1}{4}} + x^{\frac{1}{2}}.$$

Máme:

$$y' = 3 \cdot \frac{1}{6} x^{(\frac{1}{6} - 1)} + 8 \cdot \frac{1}{4} x^{(\frac{1}{4} - 1)} + \frac{1}{2} x^{(\frac{1}{2} - 1)}$$
$$= \frac{1}{2} x^{-\frac{5}{6}} + 2x^{-\frac{3}{4}} + \frac{1}{2} x^{-\frac{1}{2}}$$
$$= \frac{1}{2^{\frac{6}{\sqrt{x^5}}}} + \frac{2}{\sqrt[4]{x^3}} + \frac{1}{2\sqrt{x}}.$$

c)

$$y' = -5 \cdot 2x^{(-5-1)} - (-2 \cdot 3x^{(-2-1)}) + (-1 \cdot 5x^{(-1-1)})$$
$$= -10x^{-6} + 6x^{-3} - 5x^{-2}.$$

d)

$$y' = 6^x \cdot \ln 6 + 0 - e^x + \frac{1}{x \cdot \ln 5} + \frac{1}{x} + 0 = 6^x \cdot \ln 6 - e^x + \frac{1}{x \cdot \ln 5} + \frac{1}{x}.$$

Příklad 54 Stanovte derivace následujících funkcí:

- a) $g_1: y = x^5 \cdot 5^x$
- b) $g_2: y = \frac{3x+7}{8x-2}$
- c) $g_3: y = \sin x \cdot \cos x$
- d) $g_4: y = \frac{x^4}{\log_4 x}$.

Řešení. Při řešení tohoto příkladu využijeme vzorec pro derivaci součinu dvou funkcí a také vzorec pro derivaci podílu dvou funkcí:

$$(u \cdot v)' = u'v + uv',$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

a)
$$y' = 5x^4 \cdot 5^x + x^5 \cdot 5^x \cdot \ln 5$$

b)
$$y' = \frac{3 \cdot (8x-2) - (3x+7) \cdot 8}{(8x-2)^2} = \frac{24x - 6 - 24x - 56}{64x^2 - 32x + 4} = -\frac{31}{32x^2 - 16x + 2}$$

c)
$$y' = \cos x \cdot \cos x + \sin x \cdot (-\sin x) = \cos^2 x - \sin^2 x$$

d)
$$y' = \frac{4x^3 \cdot \log_4 x - x^4 \cdot \frac{1}{x \cdot \ln 4}}{\log_4^2 x} = \frac{x^3 (4 \log_4 x - \frac{1}{\ln 4})}{\log_4^2 x}.$$

Příklad 55 Vypočítejte derivace složených funkcí:

a)
$$h_1: y = 4^{(x^3)}$$

b)
$$h_2: y = \cos 5x$$

c)
$$h_3: y = e^{\log_{10} x}$$

d)
$$h_4: y = 7^{\sin^6 x}$$
.

Řešení. Připomeňme, že složenou funkci derivujeme jako součin derivace vnější funkce s derivací funkce vnitřní, a že podobně je možné derivovat i více do sebe vnořených funkcí.

a)
$$y' = 4^{(x^3)} \cdot \ln 4 \cdot 3x^2$$

b)
$$y' = -\sin 5x \cdot 5$$

c)
$$y' = e^{\log_{10} x} \cdot \frac{1}{x \cdot \ln 10}$$

d)
$$y' = 7^{\sin^6 x} \cdot \ln 7 \cdot 6 \sin^5 x \cdot \cos x$$
.

Příklad 56 Následující funkce zderivujte podle x. Poté určete hodnotu derivace v zadaném bodě x_0 .

a)
$$f_1: y = (x^3 - 5x - 10) \cdot \sqrt{3x}, x_0 = 3$$

b)
$$f_2: y = \frac{e^x \cdot \sin x}{3x^2 + 2}, x_0 = 0$$

c)
$$f_3: y = \ln \frac{9+x^2}{9-x^2}, x_0 = 1$$

d)
$$f_4: y = x^{\sqrt{x}}, x_0 = 1$$

e)
$$f_5: y = \cos x^{\sin x}, x_0 = \frac{\pi}{2}$$
.

Řešení.

a) Derivujeme jako součin dvou funkcí, přičemž víme, že druhá z nich, tedy $\sqrt{3x}$, je funkce složená. Máme

$$y' = (3x^2 - 5) \cdot \sqrt{3x} + (x^3 - 5x - 10) \cdot \frac{3}{2\sqrt{3x}}.$$

Dosazením hodnoty 3 za x získáme derivaci v bodě $x_0 = 3$

$$y'(3) = (27 - 5) \cdot 3 + (27 - 15 - 10) \cdot \frac{3}{6} = 66 + 1 = 67.$$

b) Derivujeme podle vzorce pro podíl dvou funkcí s tím, že při derivaci čitatele použijeme vzorec pro derivaci součinu dvou funkcí. Tedy

$$y' = \frac{(e^x \cdot \sin x + e^x \cdot \cos x) \cdot (3x^2 + 2) - (e^x \cdot \sin x) \cdot 6x}{(3x^2 + 2)^2}$$

Tato derivace má v bodě $x_0 = 0$ hodnotu

$$y'(0) = \frac{(0+1)\cdot 2 - 0}{2^2} = \frac{1}{2}.$$

c) Derivujeme jako složenou funkci, přičemž vnější funkcí je logaritmus a vnitřní jeho argument. Protože je vnitřní funkce podílem dvou funkcí, využijeme opět vzorec pro derivaci podílu dvou funkcí. Dostaneme tak

$$y' = \frac{9 - x^2}{9 + x^2} \cdot \frac{2x \cdot (9 - x^2) - (9 + x^2) \cdot (-2x)}{(9 - x^2)^2}$$
$$= \frac{18x - 2x^3 + 18x + 2x^3}{(9 + x^2) \cdot (9 - x^2)} = \frac{36x}{81 - x^4}.$$

Odtud již snadno vypočítáme derivaci v bodě $x_0 = 1$. Je totiž

$$y'(1) = \frac{36}{80} = \frac{9}{20}.$$

d) V tomto příkladě se musíme vypořádat se situací, jak zderivovat funkci umocněnou na funkci. Poslouží nám k tomu rovnost

$$A = e^{\ln A}$$
.

kde Amůže být libovolná funkce, kterou lze zlogaritmovat. Pokud si za Adosadíme $x^{\sqrt{x}}$ zjistíme, že

$$x^{\sqrt{x}} = e^{\ln x^{\sqrt{x}}} = e^{\sqrt{x} \cdot \ln x}.$$

Platnost poslední rovnosti plyne ze známého vztahu: $\ln B^C = C \cdot \ln B$. Použili jsme pro B = x a $C = \sqrt{x}$.

Místo $x^{\sqrt{x}}$ (funkce umocněné na funkci) budeme tedy derivovat $e^{\sqrt{x}\cdot \ln x}$ (konstantu umocněnou na součin dvou funkcí), což pomocí známých vzorců pro derivaci umíme. Obdržíme

$$y' = e^{\sqrt{x} \cdot \ln x} \cdot \left(\frac{1}{2\sqrt{x}} \cdot \ln x + \sqrt{x} \cdot \frac{1}{x}\right) = x^{\sqrt{x}} \cdot \left(\frac{\ln x}{2\sqrt{x}} + \frac{1}{\sqrt{x}}\right).$$

Dopočítání funkční hodnoty pro bod $x_0 = 1$ je jednoduché

$$y'(1) = 1 \cdot (0+1) = 1.$$

e) Funkci $y = \cos x^{\sin x}$ převedeme do ekvivalentní podoby $y = e^{\sin x \cdot \ln \cos x}$. Tuto funkci zderivujeme jako funkci složenou, přičemž si uvědomíme, že vnitřní funkce je součinem dvou funkcí: $\sin x$ a složené funkce $\ln \cos x$. Platí

$$y' = e^{\sin x \cdot \ln \cos x} \cdot \left(\cos x \cdot \ln \cos x + \sin x \cdot \frac{1}{\cos x} \cdot (-\sin x)\right).$$

Hodnotu $x_0 = \frac{\pi}{2}$ do funkce y' nelze dosadit, protože nepatří do jejího definičního oboru. Totiž $\cos \frac{\pi}{2} = 0$, tedy $\ln \cos \frac{\pi}{2}$ a $\frac{1}{\cos \frac{\pi}{2}}$ není definováno. Závěr zní: $y'(\frac{\pi}{2}) =$ neexistuje (není definováno).

Příklad 57 S využitím diferenciálu funkce určete přibližnou hodnotu

- a) $\sqrt{0.994}$
- b) $\sin 46^{\circ}$.

Řešení.

a) Při hledání přibližné hodnoty využijeme znalost následující přibližné rovnosti:

$$f(x_0 + \Delta x) = f(x_0) + \Delta y \approx f(x_0) + dy$$
.

Hodnotu x_0 si zvolíme v blízkosti zadané hodnoty 0,994 tak, abychom byli schopni bez výpočtu určit hodnotu funkce \sqrt{x} v tomto bodě, tedy $x_0 = 1$. Máme: $\Delta x = 0,994 - 1 = -0,006$. Derivace funkce $y = \sqrt{x}$ má tvar $y' = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$. Nyní určíme diferenciál funkce:

$$dy = f'(x_0) \cdot dx = \frac{1}{2} \cdot \frac{1}{\sqrt{1}} \cdot (-0,006) = -0,003.$$

Vypočtené hodnoty dosadíme do výše uvedeného vzorce:

$$f(0,994) = \sqrt{1 - 0,006} \approx \sqrt{1} + dy = 1 + (-0,003) = 0,997.$$

Přibližná hodnota $\sqrt{0,994}$ je tedy 0,997.

b) Opět budeme dosazovat odpovídající hodnoty do vzorce

$$f(x_0 + \Delta x) = f(x_0) + \Delta y \approx f(x_0) + dy.$$

Tentokrát volíme $x_0 = \frac{\pi}{4} = 45^\circ$, odtud $\Delta x = (46-45)^\circ = 1^\circ = \frac{\pi}{180}$. Víme, že $(\sin x)' = \cos x$. Dostáváme tak:

$$\sin 46^{\circ} = \sin(45+1)^{\circ} \approx \sin \frac{\pi}{4} + \left(\cos \frac{\pi}{4}\right) \cdot \frac{\pi}{180} \approx 0,719448.$$

Přibližná hodnota $\sin 46^{\circ}$ je tedy 0,719448.

Příklad 58 Určete první, druhou, třetí derivaci následujících funkcí:

a)
$$y = 3x^5 + 2x^4 - 6x^3 + 7x^2 - 20x + 72$$

- b) $y = \cos x + e^{-x}$
- c) $y = \sqrt{x}$
- d) $y = \arctan x$.

Řešení.

a)

$$y' = 15x^4 + 8x^3 - 18x^2 + 14x - 20$$

$$y'' = 60x^3 + 24x^2 - 36x + 14$$

$$y''' = 180x^2 + 48x - 36$$

b)

$$y' = -\sin x - e^{-x}$$

$$y'' = -\cos x + e^{-x}$$

$$y''' = \sin x - e^{-x}$$

c)

$$\begin{split} y' &=& \frac{1}{2}x^{(\frac{1}{2}-1)} = \frac{1}{2\sqrt{x}} \\ y'' &=& \frac{1}{2}\cdot(-\frac{1}{2})\cdot x^{(-\frac{1}{2}-1)} = -\frac{1}{4}\cdot x^{-\frac{3}{2}} = \frac{-1}{4\sqrt{x^3}} \\ y''' &=& -\frac{1}{4}\cdot(-\frac{3}{2})\cdot x^{(-\frac{3}{2}-1)} = \frac{3}{8}\cdot x^{-\frac{5}{2}} = \frac{3}{8\sqrt{x^5}} \end{split}$$

d)

$$y' = \frac{1}{1+x^2}$$

$$y'' = \frac{-2x}{(1+x^2)^2}$$

$$y''' = \frac{-2 \cdot (1+x^2)^2 - (-2x) \cdot 2 \cdot (1+x^2) \cdot 2x}{(1+x^2)^4}$$

$$= \frac{-2(1+x^2) + 8x^2}{(1+x^2)^3} = \frac{6x^2 - 2}{(1+x^2)^3}.$$

Příklad 59 Určete stou derivaci funkce

- a) $y = x \cdot e^x$
- b) $y = \sin x + \cos x$.

Řešení.

a) S využitím vzorce pro derivaci součinu dvou funkcí vypočítáme několik prvních derivací funkce y:

$$y' = e^{x} + x \cdot e^{x}$$

$$y'' = e^{x} + e^{x} + x \cdot e^{x} = 2e^{x} + x \cdot e^{x}$$

$$y''' = 2e^{x} + e^{x} + x \cdot e^{x} = 3e^{x} + x \cdot e^{x}.$$

Nyní již vidíme, jak bude vypadat n-tá derivace funkce y:

$$y^{(n)} = n \cdot e^x + x \cdot e^x.$$

Odtud ihned plyne, že $y^{(100)} = 100 \cdot e^x + x \cdot e^x$.

b) Opět spočítáme několik prvních derivací funkce y dostatečných k tomu, abychom odvodili, jak bude vypadat stá derivace:

$$y' = \cos x - \sin x$$

$$y'' = -\sin x - \cos x$$

$$y''' = -\cos x + \sin x$$

$$y^{(4)} = \sin x + \cos x.$$

Vidíme, že čtvrtá derivace je stejná jako funkce y, platí tedy $y^{(4)}=y$ a také $y^{(8)}=y$ a podobně. Vzhledem k tomu, že číslo sto je násobkem čísla 4, dostáváme tak $y^{(100)}=y=\sin x+\cos x$.

6 L'Hospitalovo pravidlo. Taylorův a Maclaurinův rozvoj.

Příklad 60 Pomocí L'Hospitalova pravidla vypočítejte limity následujících funkcí:

$$\lim_{x \to 0} \frac{\sin x}{x}$$

b)
$$\lim_{x \to -1} \frac{3x^3 + x^2 - 5x - 3}{x^2 - 1}$$

c)
$$\lim_{x \to 0} \frac{3^x - 1}{x^2 + 2x}$$

d)
$$\lim_{x \to -3} \frac{\arctan(x+3)}{x^2 - 9}$$

e)
$$\lim_{x \to 0} \frac{\sin 5x}{e^x - e^{-x}}.$$

Řešení. U všech příkladů jde zde o výpočet limit typu $\begin{bmatrix} 0\\0 \end{bmatrix}$, neboť jsou ve tvaru $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, kde $f(x_0)=g(x_0)=0$. Snadno ověříme, že u každého příkladu můžeme použít L'Hospitalovo pravidlo a tudíž limity počítat s využitím derivací:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{(f(x))'}{(g(x))'}.$$

Po zderivování čitatele a jmenovatele už lze dosadit konkrétní hodnotu x_0 , čímž obdržíme hledaný výsledek.

a)
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

b)
$$\lim_{x \to -1} \frac{3x^3 + x^2 - 5x - 3}{x^2 - 1} = \lim_{x \to -1} \frac{(3x^3 + x^2 - 5x - 3)'}{(x^2 - 1)'}$$
$$= \lim_{x \to -1} \frac{9x^2 + 2x - 5}{2x} = -1.$$

c)
$$\lim_{x \to 0} \frac{3^x - 1}{x^2 + 2x} = \lim_{x \to 0} \frac{(3^x - 1)'}{(x^2 + 2x)'} = \lim_{x \to 0} \frac{3^x \cdot \ln 3}{2x + 2} = \frac{\ln 3}{2}.$$

d)

$$\lim_{x \to -3} \frac{\arctan(x+3)}{x^2 - 9} = \lim_{x \to -3} \frac{(\arctan(x+3))'}{(x^2 - 9)'} = \lim_{x \to -3} \frac{\frac{1}{1 + (x+3)^2}}{2x} = -\frac{1}{6}.$$

e)
$$\lim_{x \to 0} \frac{\sin 5x}{e^x - e^{-x}} = \lim_{x \to 0} \frac{(\sin 5x)'}{(e^x - e^{-x})'} = \lim_{x \to 0} \frac{5 \cdot \cos 5x}{e^x - (-e^{-x})} = \frac{5}{2}.$$

Příklad 61 Vypočítejte limity následujících funkcí:

a)

$$\lim_{x \to 0} \frac{\cos 8x - 1}{\sin^2 x}$$

b)

$$\lim_{x \to 0} \frac{1 - \cos x}{e^{4x} - 4x - 1}$$

c)

$$\lim_{x \to 0^+} \frac{\ln x}{\cot x}$$

d)

$$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x - \sin x}.$$

Řešení. Při řešení těchto příkladů budeme opakovaně používat L'Hospitalovo pravidlo a vhodné algebraické úpravy.

a) Jedná se o limitu typu $\left[\frac{0}{6}\right]$. Můžeme použít L'Hospitalovo pravidlo:

$$\lim_{x \to 0} \frac{\cos 8x - 1}{\sin^2 x} = \lim_{x \to 0} \frac{(\cos 8x - 1)'}{(\sin^2 x)'} = \lim_{x \to 0} \frac{8 \cdot (-\sin 8x)}{2 \sin x \cdot \cos x}.$$

V tomto případě nám jedno použití L'Hospitalova pravidla nestačilo, ale jelikož jsme získali výraz typu $\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right]$, můžeme pravidlo využít znovu. Předtím než čitatele a jmenovatele opět zvlášť zderivujeme, využijeme známý vzorec: $2\sin x \cdot \cos x = \sin 2x$. Obdržíme tak

$$\lim_{x \to 0} \frac{8 \cdot (-\sin 8x)}{2\sin x \cdot \cos x} = \lim_{x \to 0} \frac{(-8\sin 8x)'}{(\sin 2x)'} = \lim_{x \to 0} \frac{-64\cos 8x}{2\cos 2x} = -32.$$

b) Opět jsou splněny předpoklady pro použití L'Hospitalova pravidla, znovu pro limitu typu $[\frac{0}{0}]$. Máme:

$$\lim_{x \to 0} \frac{1 - \cos x}{e^{4x} - 4x - 1} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(e^{4x} - 4x - 1)'} = \lim_{x \to 0} \frac{\sin x}{4e^{4x} - 4}.$$

Stejně jako v předchozím příkladě aplikujeme L'Hospitalovo pravidlo podruhé:

$$\lim_{x \to 0} \frac{\sin x}{4e^{4x} - 4} = \lim_{x \to 0} \frac{(\sin x)'}{(4e^{4x} - 4)'} = \lim_{x \to 0} \frac{\cos x}{16e^{4x}} = \frac{1}{16}.$$

c) Uplatníme L'Hospitalovo pravidlo na limitu typu $\left[\frac{-\infty}{+\infty}\right]$. Dále výraz upravíme a použijeme L'Hospitalovo pravidlo podruhé, tentokrát pro limitu typu $\left[\frac{0}{0}\right]$. Dohromady máme:

$$\lim_{x \to 0^+} \frac{\ln x}{\cot x} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{\sin^2 x}} = \lim_{x \to 0^+} \frac{-\sin^2 x}{x} = \lim_{x \to 0^+} \frac{-2\sin x \cdot \cos x}{1} = 0.$$

d) Třikrát po sobě aplikujeme L'Hospitalovo pravidlo na limity typu $\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}$:

$$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x - \sin x} = \lim_{x \to 0} \frac{2\cos x - 2\cos 2x}{1 - \cos x}$$
$$= \lim_{x \to 0} \frac{-2\sin x + 4\sin 2x}{\sin x}$$
$$= \lim_{x \to 0} \frac{-2\cos x + 8\cos 2x}{\cos x} = 6.$$

Příklad 62 S využitím L'Hospitalova pravidla vypočítejte limity následujících funkcí:

a)
$$\lim_{x \to 0^+} x \cdot \ln x$$

b)
$$\lim_{x\to +\infty} x^n \cdot e^{-x}, \ \text{kde} \ n \in \mathbb{N}$$

c)
$$\lim_{x \to 0^+} \left(\frac{10}{\sin x} - \frac{7}{\tan x} \right)$$

d)
$$\lim_{x \to 0^+} x^{\sin x}.$$

Řešení.

a) Danou limitu typu $[0 \cdot (-\infty)]$ jednoduše upravíme na výpočet limity typu $[\frac{-\infty}{+\infty}]$, na kterou lze aplikovat L'Hospitalovo pravidlo:

$$\lim_{x \to 0^+} x \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to 0^+} -x = 0.$$

b) Danou limitu typu $[(+\infty)\cdot 0]$ převedeme na výpočet limity typu $[+\infty]$. Poté již můžeme nkrát po sobě uplatnit L'Hospitalovo pravidlo:

$$\lim_{x \to +\infty} x^n \cdot e^{-x} = \lim_{x \to +\infty} \frac{x^n}{e^x} = \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{e^x}$$
$$= \lim_{x \to +\infty} \frac{n \cdot (n-1) \cdot x^{n-2}}{e^x} = \dots = \lim_{x \to +\infty} \frac{n! \cdot x^0}{e^x} = 0.$$

c) Jedná se o limitu typu $[+\infty - \infty]$, kterou vhodnými úpravami převedeme na limitu typu $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ a následně použijeme L'Hospitalovo pravidlo:

$$\lim_{x \to 0^+} \left(\frac{10}{\sin x} - \frac{7}{\tan x} \right) = \lim_{x \to 0^+} \left(\frac{10 - 7\cos x}{\sin x} \right) = \lim_{x \to 0^+} \frac{7\sin x}{\cos x} = 0.$$

d) Limitu typu $[0^0]$ převedeme nejprve na limitu typu $[0\cdot (-\infty)]$ a tu pak na limitu typu $[\frac{-\infty}{+\infty}]$, na kterou aplikujeme L'Hospitalovo pravidlo. S využitím spojitosti exponenciální funkce zapíšeme první krok následujícím způsobem:

$$\lim_{x\to 0^+} x^{\sin x} = \lim_{x\to 0^+} e^{\sin x \cdot \ln x} = e^{\lim_{x\to 0^+} \sin x \cdot \ln x}.$$

Výsledkem tedy bude hodnota e^A , kde

$$A = \lim_{x \to 0^{+}} \sin x \cdot \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\sin x} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{\frac{-\cos x}{\sin^{2} x}}$$
$$= -\lim_{x \to 0^{+}} \frac{\sin x}{x} \cdot \lim_{x \to 0^{+}} \tan x = (-1) \cdot 0 = 0.$$

Odtud

$$\lim_{x \to 0^+} x^{\sin x} = e^A = e^0 = 1.$$

Příklad 63 Necht $f(x) = 2\cos x + 3x$ a $g(x) = 5x + \sin x$. Ověřte, že neexistuje

$$\lim_{x \to +\infty} \frac{(f(x))'}{(g(x))'},$$

přestože limita typu $\left[\frac{+\infty}{+\infty}\right]$ ve tvaru

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

je vlastní. Určete její hodnotu.

Řešení. Nejprve ověříme, že limita

$$\lim_{x \to +\infty} \frac{(f(x))'}{(g(x))'}$$

neexistuje. Dosadíme odpovídající funkce ze zadání a zderivujeme je. Obdržíme

$$\lim_{x \to +\infty} \frac{(f(x))'}{(g(x))'} = \lim_{x \to +\infty} \frac{(2\cos x + 3x)'}{(5x + \sin x)'} = \lim_{x \to +\infty} \frac{-2\sin x + 3}{5 + \cos x}.$$

Tato limita zřejmě neexistuje. Dále určíme hodnotu limity

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

Z čitatele i ze jmenovatele zlomku vytkneme x, kterým zlomek zkrátíme. Potom zbyde výraz, u kterého je již snadné limitu vypočítat. Máme:

$$\lim_{x\to +\infty}\frac{f(x)}{g(x)}=\lim_{x\to +\infty}\frac{x\cdot \left(\frac{2\cos}{x}+3\right)}{x\cdot \left(5+\frac{\sin x}{x}\right)}=\frac{0+3}{5+0}=\frac{3}{5}.$$

Tímto příkladem jsme připomenuli, že L'Hospitalovo pravidlo není všemocné. Existují příklady (jako tento), kdy je třeba postupovat jinak, abychom se dopočítali ke správnému výsledku.

Příklad 64 Nalezněte Maclaurinův rozvoj následujících funkcí pro obecné n:

- a) $f_1: y = e^{-x}$
- b) $f_2 : y = \sin x$
- c) $f_3: y = \cos x$
- d) $f_4: y = \ln(1-x)$.

Řešení. Víme, že Maclaurinův vzorec má podobu:

$$f(x) = f(0) + \frac{f'(0)}{1!} \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n + R_n(x).$$

- a) Zjistíme funkční hodnotu $f_1(0)$. Určíme několik prvních derivací funkce f_1 a jejich funkční hodnoty v bodě 0. Podle nich už budeme schopni stanovit obecný Maclaurinův rozvoj:
 - $f_1(x) = e^{-x} \Rightarrow f_1(0) = e^0 = 1$
 - $f_1'(x) = -e^{-x} \Rightarrow f_1'(0) = -e^0 = -1$
 - $f_1''(x) = e^{-x} \Rightarrow f_1''(0) = e^0 = 1.$

Zřejmě pro $k\in\mathbb{N}$ platí, že $f_1^{(2k)}(0)=1$ a $f_1^{(2k+1)}(0)=-1$. Vypočtené koeficienty dosadíme do Maclaurinova vzorce. Dostaneme tak:

$$f_1(x) = e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + R_n(x).$$

- b) Zřejmě $f_2(0)=\sin 0=0$. Opět vypočítáme několik prvních derivací funkce $f_2(x)$ v bodě 0:
 - $f_2'(x) = \cos x \Rightarrow f_2'(0) = \cos 0 = 1$
 - $f_2''(x) = -\sin x \Rightarrow f_2''(0) = -\sin 0 = 0$
 - $f_2'''(x) = -\cos x \Rightarrow f_2'''(0) = -\cos 0 = -1$
 - $f_2^{(4)}(x) = \sin x \Rightarrow f_2^{(4)}(0) = \sin 0 = 0.$

Nyní již dokážeme určit, jak vypadají derivace v bodě 0 obecně pro $k \in \mathbb{N}$:

- $f_2^{(2k)}(0) = 0$
- $f_2^{(2k-1)}(0) = (-1)^{k+1}$.

Vypočtené koeficienty opět dosadíme do Maclaurinova obecného vzorce:

$$f_2(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + R_{2n-1}(x).$$

- c) Podobně jako v předchozím příkladu jsme (pro $k \in \mathbb{N}$) schopni obecně určit hodnotu k-tých derivací v bodě 0 a ty dosadit do Maclaurinova vzorce:
 - $f_3^{(2k)}(0) = (-1)^k$
 - $f_3^{(2k-1)}(0) = 0.$

Odtud máme:

$$f_3(x) = \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \frac{x^{2n}}{2n!} + R_{2n}(x).$$

- d) Vypočítáme koeficienty potřebné pro dosazení do Maclaurinova vzorce:
 - $f_4(x) = \ln(1-x) \Rightarrow f_4(0) = 0$
 - $f_4'(x) = \frac{-1}{1-x} \Rightarrow f_4'(0) = -1$
 - $f_4''(x) = \frac{-1}{(1-x)^2} \Rightarrow f_4''(0) = -1$
 - $f_4'''(x) = \frac{-2}{(1-x)^3} \Rightarrow f_4'''(0) = -2$
 - $f_4^{(4)}(x) = \frac{-6}{(1-x)^4} \Rightarrow f_4^{(4)}(0) = -6.$

Získané koeficienty dosadíme do Maclaurinova vzorce a po zkrácení obdržíme výsledek:

$$f_4(x) = \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n} + R_n(x).$$

Příklad 65 U funkce $f: y = \sqrt{1+x}$ určete Taylorův polynom 4. stupně v bodech 3 a 1.

Řešení. Víme, že Taylorův vzorec má tvar:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x - x_0).$$

Podle zadání nám stačí určit Taylorův polynom dané funkce po členy s x^4 , tedy:

$$f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \frac{f^{(4)}(x_0)}{4!}(x - x_0)^4,$$

kde x_0 je rovno 3, respektive 1. K tomu si vypočítáme první čtyři derivace funkce $f(x) = \sqrt{1+x}$. Platí:

- $f'(x) = \frac{1}{2} \cdot (1+x)^{-\frac{1}{2}}$
- $f''(x) = -\frac{1}{4} \cdot (1+x)^{-\frac{3}{2}}$
- $f'''(x) = \frac{3}{8} \cdot (1+x)^{-\frac{5}{2}}$
- $f^{(4)}(x) = -\frac{15}{16} \cdot (1+x)^{-\frac{7}{2}}$.

Dosazením hodnoty $x_0=3$ do výše uvedeného vzorce (a po jednoduchém zkrácení) obdržíme:

$$\sqrt{1+x} = 2 + \frac{x-3}{4} - \frac{(x-3)^2}{64} + \frac{(x-3)^3}{512} - \frac{5(x-3)^4}{16384}.$$

Zcela analogicky získáme výsledek i pro hodnotu $x_0 = 1$:

$$\sqrt{1+x} = \sqrt{2} + \frac{x-1}{2\sqrt{2}} - \frac{(x-1)^2}{16\sqrt{2}} + \frac{(x-1)^3}{64\sqrt{2}} - \frac{5(x-1)^4}{1024\sqrt{2}}.$$

Příklad 66 Pomocí Taylorova polynomu 3. stupně určete přibližně hodnotu $\sqrt[3]{66}$.

Řešení. Zvolíme funkci $g: y = \sqrt[3]{x}$ a bod $x_0 = 64$, což je hodnota blízká 66, u níž jsme bez počítání schopni zjistit 3. odmocninu. Zřejmě je $x - x_0 = 2$. V bodě $x_0 = 64$ určíme potřebné funkční hodnoty:

- $q(x) = x^{\frac{1}{3}} \Rightarrow q(64) = 4$
- $g'(x) = \frac{1}{3} \cdot x^{-\frac{2}{3}} \Rightarrow g'(64) = \frac{1}{48}$

•
$$g''(x) = -\frac{2}{9} \cdot x^{-\frac{5}{3}} \Rightarrow g''(64) = -\frac{1}{4608}$$

•
$$g'''(x) = \frac{10}{27} \cdot x^{-\frac{8}{3}} \Rightarrow g'''(64) = \frac{5}{884736}$$
.

Nyní jsme schopni určit přibližnou hodnotu g(66) dosazením získaných hodnot do Taylorova polynomu 3. stupně:

$$\sqrt[3]{66} = \sqrt[3]{64+2} \doteq 4 + \frac{1}{48} \cdot 2 + \frac{-\frac{1}{4608}}{2!} \cdot 2^2 + \frac{\frac{5}{884736}}{3!} \cdot 2^3 \doteq 4{,}0412401741.$$

Pro srovnání ještě uvedeme přesnou hodnotu výrazu $\sqrt[3]{66}$ zaokrouhlenou na stejný počet číslic za desetinnou čárkou: $\sqrt[3]{66} \doteq 4,0412400206$.

7 Užití diferenciálního počtu. Průběh funkce.

Příklad 67 U následujících funkcí nalezněte stacionární body (pokud existují) a vyšetřete intervaly monotónnosti.

- a) $f_1(x) = -5x^3 + 3x^2 + 9x 7$
- b) $f_2(x) = \frac{4x}{x^2+1}$
- c) $f_3(x) = \frac{x}{\ln x}$
- d) $f_4(x) = x^2 \cdot e^{\frac{1}{x}}$.

Řešení.

a) Určíme první derivaci funkce a její definiční obor:

$$f_1'(x) = -15x^2 + 6x + 9,$$
 $D(f_1') = \mathbb{R}.$

Pro nalezení stacionárních bodů budeme řešit rovnici $f_1'(x) = 0$, tedy rovnici $-15x^2 + 6x + 9 = 0$. Pro usnadnění výpočtu tuto kvadratickou rovnici vydělíme třemi: $-5x^2 + 2x + 3 = 0$. Rovnice má kořeny $x_1 = -\frac{3}{5}$; $x_2 = 1$, což jsou hledané stacionární body funkce f_1 .

Nyní určíme znaménka 1. derivace funkce na intervalech $(-\infty, -\frac{3}{5}), (-\frac{3}{5}, 1)$ a $(1, +\infty)$. Do předpisu $f_1'(x)$ si postupně dosadíme vhodné hodnoty z těchto intervalů. Přitom víme, že kladná hodnota první derivace značí funkci rostoucí na daném intervalu, záporná hodnota značí funkci klesající. Máme:

$$f_1'(-1) = -15 \cdot (-1)^2 + 6 \cdot (-1) + 9 = -12 < 0$$

$$f_1'(0) = -15 \cdot 0^2 + 6 \cdot 0 + 9 = 9 > 0$$

$$f_1'(2) = -15 \cdot 2^2 + 6 \cdot 2 + 9 = -39 < 0.$$

Zjistili jsme tak, že daná funkce je rostoucí na intervalu $(-\frac{3}{5},1)$ a klesající na intervalech $(-\infty,-\frac{3}{5})$ a $(1,+\infty)$.

b) Určíme první derivaci funkce f_2 a její definiční obor:

$$f_2'(x) = \frac{4(x^2+1) - 4x \cdot 2x}{(x^2+1)^2} = \frac{4(1-x^2)}{(x^2+1)^2}, \qquad D(f_2') = \mathbb{R}.$$

Řešíme rovnici $f_2'(x) = 0$, tedy rovnici $4(1 - x^2) = 0$, jejímiž kořeny jsou zřejmě body $x_1 = -1$ a $x_2 = 1$. To jsou hledané stacionární body funkce.

Dále určíme znaménko derivace funkce na intervalech $(-\infty, -1)$, (-1, 1) a $(1, +\infty)$. Do předpisu funkce $f_2'(x)$ postupně dosadíme vhodné hodnoty

z těchto intervalů:

$$f_2'(-2) = -\frac{12}{25} < 0$$

$$f_2'(0) = 4 > 0$$

$$f_2'(2) = -\frac{12}{25} < 0.$$

Funkce je tedy rostoucí na intervalu (-1,1) a klesající na intervalech $(-\infty,-1)$ a $(1,+\infty)$.

c) Určíme první derivaci funkce f_3 :

$$f_3'(x) = \frac{(1 \cdot \ln x) - (x \cdot \frac{1}{x})}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x}.$$

Dále určíme definiční obor funkce $f_3'(x)$. Víme, že argument logaritmu musí být kladný, platí tedy x>0. Zároveň musí platit $\ln x\neq 0$, odkud $x\neq 1$. Tedy $D(f_3')=(0,1)\cup(1,+\infty)$.

Stacionární bod(y) nalezneme vyřešením rovnice $f_3'(x) = 0$, tedy rovnice $\ln x - 1 = 0$. Odtud ihned vyplývá, že stacionárním bodem je bod $x_0 = e$. Vzhledem k definičnímu oboru 1. derivace funkce a s tím, že konstanta e je stacionárním bodem, budeme vyšetřovat monotónnost na intervalech (0,1), (1,e) a $(e,+\infty)$. Dosazením vhodných hodnot z těchto intervalů dostaneme:

$$f_3'(\frac{1}{e}) = -2 < 0$$

$$f_3'(2) = \frac{\ln 2 - 1}{\ln^2 2} \doteq -0,64 < 0$$

$$f_3(e^2) = \frac{1}{4} > 0.$$

Odtud plyne, že funkce f_3 je klesající na intervalech (0,1) a (1,e) a rostoucí na intervalu $(e,+\infty)$.

d) Nejprve funkci f_4 zderivujeme:

$$f_4'(x) = 2x \cdot e^{\frac{1}{x}} + x^2 \cdot \left(-\frac{e^{\frac{1}{x}}}{r^2}\right) = e^{\frac{1}{x}} \cdot (2x - 1).$$

Zřejmě $D(f_4') = \mathbb{R} \setminus \{0\}$. Vyřešením rovnice $f_4'(x) = 0$ určíme stacionární bod(y):

$$e^{\frac{1}{x}} \cdot (2x - 1) = 0$$

$$(2x - 1) = 0$$

$$x = \frac{1}{2}.$$

Stacionárním bodem je tedy bod $x_0 = \frac{1}{2}$. S ohledem na $D(f_4')$ a bod x_0 vyšetříme monotónnost na intervalech $(-\infty, 0)$, $(0, \frac{1}{2})$ a $(\frac{1}{2}, +\infty)$. Dosazením

vhodných hodnot určíme znaménka první derivace na těchto třech intervalech:

$$f_4'(-1) = e^{\frac{1}{-1}} \cdot (2 \cdot (-1) - 1) = -\frac{3}{e} < 0$$

$$f_4'\left(\frac{1}{4}\right) = e^4 \cdot \left(2 \cdot \frac{1}{4} - 1\right) = -\frac{e^4}{2} < 0$$

$$f_4'(1) = e^{\frac{1}{1}} \cdot (2 \cdot 1 - 1) = e > 0.$$

Zjistili jsme tak, že funkce je rostoucí na intervalu $(\frac{1}{2},+\infty)$ a klesající na intervalech $(-\infty,0)$ a $(0,\frac{1}{2})$.

Příklad 68 Nalezněte lokální extrémy následujících funkcí.

- a) $q_1(x) = x^3 5x^2 + 3x 7$
- b) $q_2(x) = x \cdot \ln x$
- c) $q_3(x) = e^{-x^2}$
- d) $g_4(x) = x^7$.

Řešení.

a) Podezřelé z extrému jsou takové body, v nichž první derivace funkce neexistuje nebo je v nich nulová. Určíme první derivaci: $g_1'(x)=3x^2-10x+3$, položíme ji rovnu nule a vyřešíme vzniklou kvadratickou rovnici:

$$3x^2 - 10x + 3 = 0 \implies x_1 = \frac{1}{3}; x_2 = 3.$$

Zřejmě $D(g_1') = \mathbb{R}$. Funkce má derivaci na celém svém definičním oboru, extrémy tedy hledáme pouze ve stacionárních bodech x_1, x_2 . Vypočítáme druhou derivaci funkce:

$$g_1''(x) = 6x - 10$$

a dosadíme do ní stacionární body:

$$g_1''\left(\frac{1}{3}\right) = 6 \cdot \frac{1}{3} - 10 = -8 < 0$$

 $g_1''(3) = 6 \cdot 3 - 10 = 8 > 0.$

Zjistili jsme, že v bodě $x_1 = \frac{1}{3}$ je druhá derivace funkce záporná, a proto se v něm nachází lokální minimum. V bodě $x_2 = 3$ je druhá derivace kladná, takže se v něm nachází lokální maximum. Bodům ještě dopočítáme chybějící souřadnice. Máme:

$$g_1\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^3 - 5 \cdot \left(\frac{1}{3}\right)^2 + 3 \cdot \frac{1}{3} - 7 = -\frac{176}{27}$$

$$g_1(3) = 3^3 - 5 \cdot 3^2 + 3 \cdot 3 - 7 = -16.$$

Lokální minimum funkce g_1 se tedy nachází v bodě $\left[\frac{1}{3}; -\frac{176}{27}\right]$ a lokální maximum má g_1 v bodě $\left[3; -16\right]$.

b) Nejprve vypočítáme první derivaci funkce $g_2(x)$ a určíme její definiční obor:

$$g_2'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1, \qquad D(g_2') = (0, +\infty).$$

Nalezneme stacionární bod(y):

$$\ln x + 1 = 0
x_0 = \frac{1}{e}.$$

Určíme druhou derivaci a dosadíme do ní vypočtený stacionární bod x_0 :

$$g_2''(x) = \frac{1}{x}, \qquad g_2''(\frac{1}{e}) = \frac{1}{\frac{1}{e}} = e > 0.$$

Odtud plyne, že v bodě $x_0=\frac{1}{e}$ se nachází lokální minimum. Dopočítáme druhou souřadnici: $g_2(\frac{1}{e})=\frac{1}{e}\cdot \ln\frac{1}{e}=-\frac{1}{e}$. Lokální minimum funkce g_2 se nachází v bodě $[\frac{1}{e};-\frac{1}{e}]$. Funkce nemá žádné lokální maximum.

c) Vypočítáme první derivaci funkce $g_3(x)$ a určíme její definiční obor:

$$g_3'(x) = (-2x) \cdot e^{-x^2}, \qquad D(g_3') = \mathbb{R}.$$

Nalezneme stacionární bod(y):

$$(-2x) \cdot e^{-x^2} = 0$$
$$x = 0.$$

Nyní určíme druhou derivaci funkce g_3 :

$$g_3''(x) = (-2) \cdot e^{-x^2} + (-2x) \cdot (e^{-x^2}) \cdot (-2x) = e^{-x^2} \cdot (4x^2 - 2)$$

a dosadíme do ní vypočtený stacionární bod $x_0 = 0$:

$$g_3''(0) = e^0 \cdot (4 \cdot 0^2 - 2) = -2 < 0.$$

V bodě $x_0 = 0$ se nachází lokální maximum dané funkce. Dopočítáme druhou souřadnici: $g_3(0) = e^0 = 1$. Zjistili jsme, že funkce g_3 má lokální maximum v bodě [0;1] a nemá žádné lokální minimum.

d) Vypočítáme první derivaci funkce $g_4(x)$ a určíme její definiční obor.

$$g_4'(x) = 7x^6, \qquad D(f_4') = \mathbb{R}.$$

Z rovnice $7x^6 = 0$ přímočaře vyplývá, že jediným stacionárním bodem je bod

 $x_0=0$. Druhou derivací funkce g_4 je zřejmě funkce $g_4''(x)=42x^5$. Dosadímeli do ní stacionární bod x_0 obdržíme: $g_4''(0)=42\cdot 0^5=0$. Nulová druhá derivace neznamená, že lokální extrém v daném bodě neexistuje. Jeho existenci musíme ověřit jinak. Víme, že pro sudou n-tou derivaci funkce g_4 v bodě x_0 platí, že pokud $g_4'(x_0)=g_4''(x_0)=\cdots=g_4^{(n-1)}(x_0)=0$ a $g_4^{(n)}(x_0)\neq 0$, pak v tomto bodě lokální extrém existuje, přičemž bylo-li by toto n liché, funkce g_4 by v bodě x_0 extrém neměla. Pokračujeme tedy v derivování:

$$\begin{array}{lcl} g_4'''(x) & = & 210x^4 \, \Rightarrow g_4'''(0) = 210 \cdot 0^4 = 0 \\ g_4^{(4)}(x) & = & 840x^3 \, \Rightarrow g_4^{(4)}(0) = 840 \cdot 0^3 = 0 \\ g_4^{(5)}(x) & = & 2520x^2 \, \Rightarrow g_4^{(5)}(0) = 2520 \cdot 0^2 = 0 \\ g_4^{(6)}(x) & = & 5040x \, \Rightarrow g_4^{(6)}(0) = 5040 \cdot 0 = 0 \\ g_4^{(7)}(x) & = & 5040 \neq 0. \end{array}$$

Sedmá derivace funkce g_4 je nenulová, což znamená, že funkce nemá v bodě $x_0=0$ lokální extrém. Funkce g_4 tedy nemá žádné lokální minimum ani žádné lokální maximum.

Příklad 69 U následujících funkcí nalezněte inflexní body (pokud existují) a určete intervaly konvexnosti/konkávnosti.

a)
$$h_1(x) = -x^3 + 2x^2 - x + 12$$

b)
$$h_2(x) = x \cdot e^{\frac{1}{x}}$$

c)
$$h_3(x) = \frac{x^2}{x^2 - 9}$$
.

Řešení.

a) Vypočítáme první a druhou derivaci funkce h_1 :

$$h'_1(x) = -3x^2 + 4x - 1,$$
 $h''_1(x) = -6x + 4.$

Zjistíme, kdy je druhá derivace rovna 0:

$$\begin{array}{rcl}
-6x + 4 & = & 0 \\
x & = & \frac{2}{3}.
\end{array}$$

Bod $x_0 = \frac{2}{3}$ je podezřelý z inflexe. Třetí derivace funkce h_1 je nenulová, neboť $h_1'''(x) = -6$. Zjistili jsme, že funkce h_1 má v bodě $x_0 = \frac{2}{3}$ inflexi. Dopočítáme druhou souřadnici:

$$h_1\left(\frac{2}{3}\right) = -\left(\frac{2}{3}\right)^3 + 2\cdot\left(\frac{2}{3}\right)^2 - \frac{2}{3} + 12 = \frac{322}{27}.$$

Konvexnost a konkávnost budeme vyšetřovat na dvou intervalech: $(-\infty, \frac{2}{3})$ a $(\frac{2}{3}, +\infty)$. K tomu určíme hodnotu druhé derivace funkce h_1 pro vhodné body z těchto intervalů. Víme, že kladná hodnota druhé derivace v daném intervalu značí konvexnost, záporná pak konkávnost. Máme:

$$h_1''(0) = -6 \cdot 0 + 4 = 4 > 0$$

 $h_1''(1) = -6 \cdot 1 + 4 = -2 < 0$

Zjistili jsme, že funkce h_1 je konvexní na intervalu $(-\infty, \frac{2}{3})$ a konkávní na intervalu $(\frac{2}{3}, +\infty)$, přičemž inflexi má v bodě $[\frac{2}{3}; \frac{322}{27}]$.

b) Opět vypočítáme první a druhou derivaci a nalezneme body podezřelé z inflexe:

$$\begin{array}{lcl} h_2'(x) & = & 1 \cdot e^{\frac{1}{x}} + x \cdot \left(-\frac{e^{\frac{1}{x}}}{x^2} \right) = e^{\frac{1}{x}} \cdot \left(1 - \frac{1}{x} \right) \\ h_2''(x) & = & e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2} \right) \cdot \left(1 - \frac{1}{x} \right) + e^{\frac{1}{x}} \cdot \left(\frac{1}{x^2} \right) = \frac{e^{\frac{1}{x}}}{x^3}. \end{array}$$

Jelikož $e^{\frac{1}{x}}$ je kladná funkce, nemůže mít funkce h_2 žádný inflexní bod. Vzhledem k tomu, že $D(h_2'') = \mathbb{R} \setminus \{0\}$ budeme určovat konvexnost a konkávnost na intervalech $(-\infty,0)$ a $(0,+\infty)$. Zvolme bod $-1 \in (-\infty,0)$ a bod $1 \in (0,+\infty)$ a podívejme se na příslušné funkční hodnoty druhých derivací:

$$h_2''(-1) = \frac{e^{\frac{1}{-1}}}{(-1)^3} = -\frac{1}{e} < 0$$

 $h_2''(1) = \frac{e^{\frac{1}{1}}}{1^3} = e > 0.$

Odtud plyne, že funkce h_2 je konvexní na intervalu $(0, +\infty)$ a konkávní na intervalu $(-\infty, 0)$.

c) Určíme první a druhou derivaci funkce h_3 :

$$h_3'(x) = \frac{2x \cdot (x^2 - 9) - x^2 \cdot 2x}{(x^2 - 9)^2} = -\frac{18x}{(x^2 - 9)^2}$$

$$h_3''(x) = \frac{(-18) \cdot (x^2 - 9)^2 + 18x \cdot 2 \cdot (x^2 - 9) \cdot 2x}{(x^2 - 9)^4} = \frac{54 \cdot (3 + x^2)}{(x^2 - 9)^3}.$$

Zřejmě $D(h_3'') = \mathbb{R} \setminus \{-3; 3\}$. Nyní hledáme body podezřelé z inflexe. Řešíme proto rovnici $\frac{54 \cdot (3+x^2)}{(x^2-9)^3} = 0$, ekvivalentně rovnici $54 \cdot (3+x^2) = 0$. Tato rovnice nemá na množině reálných čísel řešení, tedy funkce h_3 nemá žádný inflexní bod. Konvexnost a konkávnost budeme, s ohledem na $D(h_3'')$, vyšetřovat na intervalech $(-\infty, -3)$, (-3, 3) a $(3, +\infty)$. Pro každý z těchto tří intervalů

vypočítáme hodnotu druhé derivace funkce ve vhodně zvoleném bodě:

$$h_3''(-4) = \frac{54 \cdot (3 + (-4)^2)}{((-4)^2 - 9)^3} = \frac{1026}{343} > 0$$

$$h_3''(0) = \frac{54 \cdot (3 + 0^2)}{(0^2 - 9)^3} = -\frac{162}{729} < 0$$

$$h_3''(4) = \frac{54 \cdot (3 + 4^2)}{(4^2 - 9)^3} = \frac{1026}{343} > 0.$$

Funkce h_3 je tedy konvexní na intervalech $(-\infty, 3)$ a $(3, +\infty)$ a konkávní na intervalu (-3, 3).

Příklad 70 Nalezněte vertikální asymptoty a asymptoty se směrnicí ke grafům následujících funkcí:

- a) $f_1(x) = \frac{x}{x-2}$
- b) $f_2(x) = \frac{4x^2 3x + 6}{x + 3}$
- c) $f_3(x) = \frac{x}{\ln x}$.

Řešení.

a) Zřejmě $D(f_1) = \mathbb{R} \setminus \{2\}$. Jediným možným bodem, jímž může procházet vertikální asymptota, je bod x = 2. Existenci této asymptoty ověříme výpočtem příslušných jednostranných limit:

$$\lim_{x \to 2^+} \frac{x}{x - 2} = \frac{2}{0^+} = +\infty$$

$$\lim_{x \to 2^-} \frac{x}{x - 2} = \frac{2}{0^-} = -\infty.$$

Funkce má tedy vertikální asymptotu procházející bodem x=2 (a rovnoběžnou s osou y). Jelikož $-\infty$ a $+\infty$ jsou hromadnými body definičního oboru funkce f_1 , má smysl počítat asymptoty se směrnicí dané rovnicí y=kx+q. Pro nalezení asymptot vypočítáme koeficienty k a q:

$$k = \lim_{x \to \pm \infty} \frac{f_1(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{x}{x-2}}{x} = \lim_{x \to \pm \infty} \frac{1}{x-2} = 0$$

$$q = \lim_{x \to \pm \infty} (f_1(x) - kx) = \lim_{x \to \pm \infty} (\frac{x}{x-2} - 0 \cdot x) = 1.$$

Limity pro výpočet k a q jsou obě vlastní, tudíž funkce f_1 má i asymptotu se směrnicí, jejíž rovnice je y=0x+1. Zjistili jsme, že funkce f_1 má jednu vertikální asymptotu danou rovnicí x=2 a jednu asymptotu se směrnicí danou rovnicí y=1.

b) Zřejmě $D(f_2) = \mathbb{R} \setminus \{-3\}$. Vypočítáme proto jednostranné limity v bodě x = -3:

$$\lim_{x \to -3^{+}} \frac{4x^{2} - 3x + 6}{x + 3} = \frac{36 + 9 + 6}{0^{+}} = +\infty$$

$$\lim_{x \to -3^{-}} \frac{4x^{2} - 3x + 6}{x + 3} = \frac{36 + 9 + 6}{0^{-}} = -\infty.$$

Limity jsou nevlastní, takže funkce f_2 má vertikální asymptotu procházející bodem x=-3. Dále budeme zjišťovat, zda existují asymptoty se směrnicí dané rovnicí ve tvaru y=kx+q. Podle známých vzorců k tomu vypočítáme koeficienty k a q:

$$k = \lim_{x \to \pm \infty} \frac{f_2(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{4x^2 - 3x + 6}{x + 3}}{x} = \lim_{x \to \pm \infty} \frac{4x^2 - 3x + 6}{x^2 + 3x} = 4$$

$$q = \lim_{x \to \pm \infty} (f_2(x) - kx) = \lim_{x \to \pm \infty} \left(\frac{4x^2 - 3x + 6}{x + 3} - 4x\right)$$

$$= \lim_{x \to \pm \infty} \frac{4x^2 - 3x + 6 - 4x^2 - 12x}{x + 3} = \lim_{x \to \pm \infty} \left(\frac{-15x + 6}{x + 3}\right) = -15.$$

Po dosazení obdržíme: y=4x-15. Funkce f_2 má vertikální asymptotu danou rovnicí x=-3 a asymptotu se směrnicí ve tvaru y=4x-15.

c) Určíme definiční obor funkce f_3 . Argument logaritmu musí být kladný, odkud x>0 a zároveň musí být jmenovatel zlomku nenulový, odkud $x\neq 1$. Tedy $D(f_3)=(0,1)\cup(1,+\infty)$. Vyšetříme jednostranné limity zadané funkce v bodě x=1 a v bodě 0 zprava:

$$\lim_{x \to 1^{+}} \frac{x}{\ln x} = \frac{1}{0^{+}} = +\infty$$

$$\lim_{x \to 1^{-}} \frac{x}{\ln x} = \frac{1}{0^{-}} = -\infty$$

$$\lim_{x \to 0^{+}} \frac{x}{\ln x} = \lim_{x \to 0^{+}} \frac{1}{\frac{1}{x}} = 0.$$

Z výpočtů vyplývá, že funkce f_3 má pouze jednu vertikální asymptotu, která je dána rovnicí x=1. Dále, pro určení asymptot se směrnicí (ve tvaru y=kx+q) zjistíme hodnoty koeficentů k a q. Jelikož $-\infty$ není hromadným bodem definičního oboru funkce f_3 , zabýváme se pouze hodnotou $+\infty$:

$$k = \lim_{x \to +\infty} \frac{f_3(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x}{\ln x}}{x} = \lim_{x \to +\infty} \frac{1}{\ln x} = \frac{1}{+\infty} = 0$$

$$q = \lim_{x \to +\infty} (f_3(x) - kx) = \lim_{x \to +\infty} \frac{x}{\ln x} - 0x = +\infty.$$

Hodnota q je nevlastní číslo, a proto asymptota se směrnicí neexistuje. Funkce f_3 má pouze vertikální asymptotu danou rovnicí x=1.

Příklad 71 Vyšetřete průběh následujících funkcí a načrtněte jejich grafy:

- a) $g_1: y = -2x^4 + 8x^2 + 11$
- b) $g_2: y = \frac{x^2 1}{x}$
- c) $g_3: y = \frac{x}{\ln x}$
- d) $g_4: y = \frac{e^x}{(x+1)^2}$
- e) $g_5: y = \ln(\cos x)$
- f) $g_6: y = \frac{x^3}{x^2 2}$.

Řešení. Vlastnosti funkce budeme zjišťovat v následujícím pořadí:

- 1) Určíme definiční obor funkce a body nespojitosti.
- 2) Určíme paritu funkce a zjistíme, zda je periodická. To nám umožní zaměřit se při dalším postupu pouze na část definičního oboru. U sudé a liché funkce na polovinu definičního oboru u funkce periodické pak na vhodně zvolenou část definičního oboru o délce základní periody.
- 3) Určíme 1. derivaci funkce, stacionární body a body, v nichž 1. derivace neexistuje. Víme, že pouze v těchto bodech mohou nastat lokální extrémy.
- 4) Nalezneme intervaly, v nichž je 1. derivace kladná (záporná), tedy funkce je na nich rostoucí (klesající).
- Na základě předchozího bodu určíme lokální extrémy a jejich funkční hodnoty.
- 6) Vypočítáme 2. derivaci funkce a nalezneme body, v nichž je rovna nule a body, v nichž neexistuje. Víme, že pouze v těchto bodech může nastat inflexe.
- 7) Nalezneme intervaly, v nichž je 2. derivace kladná (záporná), tedy funkce je na nich konvexní (konkávní).
- 8) Stanovíme inflexní body a jejich funkční hodnoty.
- 9) Určíme vertikální asymptoty a asymptoty se směrnicí, popřípadě limity v bodech, kde daná funkce není definovaná a také v krajních bodech definičního oboru.
- 10) Stanovíme obor hodnot, nulové body a zjistíme, kdy je funkce kladná (má kladné funkční hodnoty) a kdy je záporná (má záporné funkční hodnoty).
- 11) Vypočítáme průsečík grafu funkce s osou y, případně další body, které nám pomohou se sestrojováním náčrtku grafu.

12) Na základě všech výše zjištěných údajů načrtneme graf funkce.

řešení a)

- 1) Zřejmě $D(g_1) = \mathbb{R}$. Tedy funkce nemá žádné body nespojitosti.
- 2) Víme, že $D(g_1) = \mathbb{R}$ a pro každé $x \in \mathbb{R}$ platí, že $g_1(-x) = g_1(x)$. Funkce je tedy sudá její graf bude souměrný podle osy y. Tato znalost nám umožní zaměřit se při zjišťování dalších vlastností pouze na část definičního oboru, vybereme si interval $(0, +\infty)$. Funkce zřejmě není periodická.
- 3) $g_1' = -8x^3 + 16x.$

Řešíme rovnici $-8x^3+16x=0$, kterou upravíme na $-8x\cdot(x^2-2)=0$. Řešením této rovnice získáme tři stacionární body: $x_0=0$; $x_{1,2}=\pm\sqrt{2}$. Na intervalu $(0,+\infty)$ nás zajímají body $x_0=0$ a $x_1=\sqrt{2}$.

- 4) Stacionární body rozdělí definiční obor na čtyři intervaly. Jelikož je funkce sudá, stačí nám zjistit znaménka pouze u dvou z nich:
 - Na intervalu $(0, \sqrt{2})$ je 1. derivace kladná, funkce je zde rostoucí.
 - Na intervalu $(\sqrt{2}, +\infty)$ je 1. derivace záporná, funkce je zde klesající.
- 5) Body podezřelé z extrému jsou v nezáporné části definičního oboru 0 a $\sqrt{2}$. V bodě 0 se zřejmě nachází lokální minimum. Snadno dopočítáme $g_1(0)=11$. Lokální minimum g_1 je tedy v bodě A=[0;11]. Na základě předchozího bodu víme, že v bodě $\sqrt{2}$ se nachází lokální maximum. Vypočítáme $g_1(\sqrt{2})=-2(\sqrt{2})^4+8(\sqrt{2})^2+11=-8+16+11=19$. Lokální maximum funkce se nachází v bodě $B=[\sqrt{2};19]$.
- $g_1'' = -24x^2 + 16.$

Vyřešením rovnice $g_1''=0$ získáme body podezřelé z inflexe: $x_{3,4}=\pm\sqrt{\frac{2}{3}}$. Na intervalu $(0,+\infty)$ nás zajímá bod $x_3=\frac{2}{3}$.

- 7) Určíme znaménko 2. derivace na kladných intervalech rozdělených bodem $\sqrt{\frac{2}{3}} \colon$
 - Na intervalu $\left(0,\sqrt{\frac{2}{3}}\right)$ je 2. derivace kladná, g_1 je zde konvexní.
 - Na intervalu $\left(\sqrt{\frac{2}{3}},+\infty\right)$ je 2. derivace záporná, g_1 je zde konkávní.
- 8) V předchozím kroku jsem zjistili, že znaménko 2. derivace se v okolí bodu $\sqrt{\frac{2}{3}}$ mění z kladného na záporné, jedná se tedy o inflexní bod. Vypočítáme funkční hodnotu bodu: $g_1\left(\sqrt{\frac{2}{3}}\right) = -2\left(\sqrt{\frac{2}{3}}\right)^4 + 8\left(\sqrt{\frac{2}{3}}\right)^2 + 11 = \frac{139}{9}$. Funkce má tedy inflexní bod $C = \left[\sqrt{\frac{2}{3}}; \frac{139}{9}\right]$.

9) Vzhledem k definičnímu oboru g_1 vidíme, že funkce nemá žádné vertikální asymptoty – neexistuje žádný vlastní bod, v němž by měla nevlastní limitu. Zřejmě neexistuje ani asymptota se směrnicí. Nyní vypočítáme limity funkce v nevlastních bodech (s využitím sudosti funkce stačí počítat pouze pro $+\infty$):

$$\lim_{x \to +\infty} (-2x^4 + 8x^2 + 11) = \lim_{x \to +\infty} x^4 \cdot \left(-2 + \frac{8}{x^2} + \frac{11}{x^4} \right) = +\infty \cdot (-2 + 0 + 0) = -\infty.$$

- 10) Na základě získaných poznatků určíme obor hodnot funkce. Víme, že g_1 není zdola omezená a shora je omezena lokálním (v tomto případě i globálním) maximem v bodě $B = [\sqrt{2};19]$. Proto $H(g_1) = (-\infty,19)$. Nulové body určíme vyřešením bikvadratické rovnice $-2x^4 + 8x^2 + 11 = 0$. Rovnici řešíme substituční metodou tak, že položíme $s := x^2$, odkud $s^2 = x^4$. Dostaneme tak kvadratickou rovnici s neznámou s ve tvaru $-2s^2 + 8s + 11 = 0$, kterou vyřešíme standardně pomocí diskriminantu. Platí $D = 8^2 4 \cdot (-2) \cdot 11 = 152 > 0$. Po úpravách pak dostaneme, že $s_{1,2} = 2 \pm \sqrt{\frac{19}{2}}$, odkud hledané (kladné) $x_5 = \sqrt{2 + \sqrt{\frac{19}{2}}} \doteq 2,254$. Průsečíkem g_1 s osou x je proto bod $X = \left[\sqrt{2 + \sqrt{\frac{19}{2}}};0\right]$. Odtud plyne, že funkce je kladná na intervalu $\left(0;\sqrt{2 + \sqrt{\frac{19}{2}}}\right)$ a záporná na intervalu $\left(\sqrt{2 + \sqrt{\frac{19}{2}}}, +\infty\right)$.
- 11) Průsečík funkce s osou y jsme již vypočítali výše, jedná se o bod A = [0; 11].
- 12) Nyní již sestrojíme náčrt grafu funkce g_1 :

řešení b)

- 1) Zřejmě $D(g_2) = \mathbb{R} \setminus \{0\}$. Bodem nespojitosti je bod $x_0 = 0$.
- 2) Platí, že $x \in D(g_2) \implies -x \in D(g_2)$. Zároveň snadno ověříme, že pro $\forall x \in D(g_2)$ platí: $g_2(-x) = -g_2(x)$. Funkce je tedy lichá její graf bude středově souměrný podle počátku souřadnic. Nadále se proto budeme zabývat pouze intervalem $(0, +\infty)$. Funkce není periodická.

3)
$$g_2' = \frac{2x^2 - (x^2 - 1)}{x^2} = \frac{x^2 + 1}{x^2}.$$

Funkce zřejmě nemá stacionární body. Bodem, ve kterém není 1. derivace definovaná, je bod $x_0=0.\,$

4) Na intervalu $(0, +\infty)$ je 1. derivace kladná, funkce je na něm rostoucí. (Z lichosti plyne, že na intervalu $(-\infty, 0)$ je funkce klesající.)

5) Extrém se může nacházet pouze v bodě $x_0=0$. Jelikož v něm ale není funkce definována, znamená to, že funkce g_2 nemá minimum ani maximum.

6)
$$g_2'' = \frac{2x \cdot x^2 - (x^2 + 1) \cdot 2x}{x^4} = -\frac{2}{x^3}.$$

Funkce nemá body podezřelé z inflexe, jelikož rovnice $-\frac{2}{x^3}=0$ nemá řešení v oboru \mathbb{R} .

- 7) Na intervalu $(0, +\infty)$ je 2. derivace záporná, funkce je na něm konkávní. (Z lichosti víme, že na intervalu $(-\infty, 0)$ je funkce konvexní.)
- 8) Inflexní bod g_2 nemá.
- 9) Vertikální asymptota se může nacházet jen v bodě $x_0 = 0$. Její existenci ověříme výpočtem příslušných jednostranných limit:

$$\lim_{x \to 0^+} \frac{x^2 - 1}{x} = -\infty$$

$$\lim_{x \to 0^-} \frac{x^2 - 1}{x} = +\infty.$$

Zjistili jsme, že vertikální asymptota je dána rovnicí x=0 (je to osa y). Pokusíme se nalézt asymptotu se směrnicí danou rovnicí y=kx+q. Máme:

$$k = \lim_{x \to +\infty} \frac{g_2(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 1}{x^2} = 1$$

$$q = \lim_{x \to +\infty} (g_2(x) - kx) = \lim_{x \to +\infty} \left(\frac{x^2 - 1 - x^2}{x}\right) = \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Z výpočtu vyplývá, že asymptota se směrnicí existuje, je jí přímka y=x.

- 10) Z již získaných údajů víme, že funkce není omezená shora ani zdola a není definována v bodě $x_0=0$. Odtud $H(g_2)=\mathbb{R}$. Vyřešením rovnice $\frac{x^2-1}{x}=0$ snadno nalezneme nulové body: $x_{1,2}=\pm 1$. Určíme znaménka funkce (opět stačí pouze pro interval $(0,+\infty)$, který bod $x_1=1$ rozdělí na dva intervaly). Jednoduše zjistíme, že na intervalu (0,1) je funkce záporná a na intervalu $(1,+\infty)$ je kladná.
- 11) Víme, že průsečík funkce s osou y neexistuje. Pro větší přesnost náčrtku je vhodné vypočítat funkční hodnotu alespoň v jednom dalším bodě. Zvolme třeba x=10, pak $g_2(10)=\frac{10^2-1}{10}=\frac{99}{10}$. Graf funkce bude tedy procházet bodem o souřadnicích $[10;\frac{99}{10}]$. Podobně je $g_2(2)=\frac{2^2-1}{2}=\frac{3}{2}$, a proto musí graf procházet i bodem $[2;\frac{3}{2}]$.
- 12) Na základě všech výše získaných údajů jsme schopni sestrojit náčrt grafu g_2 :

řešení c)

- 1) Víme, že argumentem logaritmu musí být kladné číslo a zároveň nesmí být $\ln x = 0$. Platí tedy: $x > 0 \land x \neq 1 \implies D(g_3) = (0,1) \cup (1,+\infty)$. Bodem nespojitosti je bod $x_0 = 1$.
- 2) Očividně funkce není ani sudá, ani lichá a ani periodická.

3)

$$g_3' = \frac{\ln x - x \cdot \frac{1}{x}}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x}.$$

Z rovnice $g_3'=0$ získáme stacionární bod $x_1=e,$ přičemž 1. derivace není definována v bodě $x_0=1.$

4) Zjistíme znaménka 1. derivace na intervalech, které vzniknou rozdělením $D(g_3)$ pomocí bodů $x_0=1$ a $x_1=e$:

- Na intervalu (0,1) je 1. derivace záporná, funkce je zde klesající.
- \bullet Na intervalu (1, e) je 1. derivace také záporná, funkce je na něm klesající.
- Na intervalu $(e, +\infty)$ je 1. derivace kladná, funkce je zde rostoucí.
- 5) Ověříme, zda se v jediném stacionárním bodě $x_1=e$ nachází lokální extrém. Vzhledem k tomu, že je funkce v tomto bodě spojitá a mění se zde znaménko 1. derivace (ze záporného na kladné), má v tomto bodě g_3 lokální minimum. Dopočítáme jeho funkční hodnotu: $g_3(e)=\frac{e}{\ln e}=e$. Lokální minimum se nachází v bodě A=[e;e].

6)
$$g_3'' = \frac{\frac{1}{x} \cdot \ln^2 x - (\ln x - 1) \cdot \frac{2}{x} \cdot \ln x}{\ln^4 x} = \frac{2 - \ln x}{x \cdot \ln^3 x}.$$

Podezřelým z inflexe je bod $x_2 = e^2$, přičemž 2. derivace není definována opět v bodě $x_0 = 1$.

- 7) Zjistíme znaménka 2. derivace na intervalech, které vzniknou rozdělením $D(g_3)$ pomocí bodů $x_0=1$ a $x_2=e^2$:
 - Na intervalu (0,1) je 2. derivace záporná, funkce je na něm konkávní.
 - Na intervalu $(1, e^2)$ je 2. derivace kladná, funkce je na něm konvexní.
 - Na intervalu $(e^2, +\infty)$ je 2. derivace záporná, funkce je zde konkávní.
- 8) Podezřelý z inflexe je pouze bod $x_2 = e^2$. Jelikož je v tomto bodě funkce spojitá a mění se v něm znaménka 2. derivace, jedná se o inflexní bod. Dopočítáme jeho funkční hodnotu: $g_3(e^2) = \frac{e^2}{\ln e^2} = \frac{e^2}{2}$. Jedná se tedy o bod $B = [e^2; \frac{e^2}{2}]$.
- 9) Vertikální asymptotu hledáme v bodě nespojitosti $x_0=1\!:$

$$\lim_{x \to 1^+} \frac{x}{\ln x} = +\infty$$

$$\lim_{x \to 1^-} \frac{x}{\ln x} = -\infty.$$

Zjistili jsme, že přímka x=1 je vertikální asymptotou. Dále vypočítáme koeficienty k a q pro asymptotu se směrnicí (danou rovnicí y=kx+q):

$$k = \lim_{x \to +\infty} \frac{g_3(x)}{x} = \lim_{x \to +\infty} \frac{1}{\ln x} = 0$$

$$q = \lim_{x \to +\infty} (g_3(x) - kx) = \lim_{x \to +\infty} \left(\frac{x}{\ln x}\right) = +\infty.$$

Jedná se o nevlastní limitu (q vyšlo $+\infty$), funkce tedy nemá asymptotu se směrnicí.

10) Pro určení oboru hodnot funkce vypočítáme limitu zprava pro hraniční bod definičního oboru:

$$\lim_{x \to 0^+} \frac{x}{\ln x} = 0.$$

Funkce není omezená shora ani zdola, má lokální minimum v bodě A=[e;e] a pro bod $x_0=0$ se funkční hodnota limitně blíží 0. Proto $H(g_3)=(-\infty,0)\cup \langle e,+\infty\rangle$. Funkce nemá nulové body, jelikož rovnice $\frac{x}{\ln x}=0$ nemá na $D(g_3)$ řešení. Snadno zjistíme, že na intervalu (0,1) je funkce záporná a na intervalu $(1,+\infty)$ kladná.

- 11) Funkce neprotíná osu y, pouze se k ní limitně blíží (konkrétně k bodu [0;0]).
- 12) Nyní sestrojíme náčrt grafu funkce g_3 :

řešení d)

1)
$$(x+1)^2 \neq 0 \implies D(g_4) = \mathbb{R} \setminus \{-1\}$$
. Bodem nespojitosti je $x_0 = -1$.

2) Daná funkce není očividně ani sudá, ani lichá a ani periodická.

3)

$$g_4' = \frac{e^x \cdot (x+1)^2 - e^x \cdot 2 \cdot (x+1)}{(x+1)^4} = \frac{(x-1) \cdot e^x}{(x+1)^3}.$$

Vypočtený zlomek položíme roven 0 a získáme stacionární bod $x_1 = 1$, přičemž si poznačíme, že 1. derivace funkce není definována v bodě $x_0 = -1$.

- 4) Určíme monotónnost funkce g_4 na intervalech vzniklých rozdělením $\mathbb R$ pomocí bodů $x_0=-1$ a $x_1=1$:
 - Na intervalu $(-\infty, -1)$ je 1. derivace kladná, funkce je proto na něm rostoucí.
 - $\bullet\,$ Na intervalu (-1,1) je 1. derivace záporná, funkce je na něm klesající.
 - Na intervalu $(1, +\infty)$ je 1. derivace kladná, funkce je zde rostoucí.
- 5) Funkce je ve stacionárním bodě $x_1 = 1$ spojitá a v jeho okolí se mění znaménko 1. derivace ze záporného na kladné, a proto se jedná o lokální minimum. Dopočítáme $g_4(1) = \frac{e^1}{(1+1)^2} = \frac{e}{4}$. Lokální minimum se tedy nachází v bodě $A = [1; \frac{e}{4}]$.

6)

$$g_4'' = \frac{(e^x + (x-1) \cdot e^x) \cdot (x+1)^3 - (x-1) \cdot e^x \cdot 3 \cdot (x+1)^2}{(x+1)^6}$$
$$= \frac{x \cdot e^x \cdot (x+1) - 3 \cdot (x-1) \cdot e^x}{(x+1)^4} = \frac{(x^2 - 2x + 3) \cdot e^x}{(x+1)^4}.$$

K tomu, abychom nalezli bod podezřelý z inflexe, potřebujeme vyřešit kvadratickou rovnici $x^2-2x+3=0$. Jelikož tato rovnice nemá v $\mathbb R$ řešení, funkce nemá žádný bod podezřelý z inflexe. Poznačíme si, že 2. derivace není definována v bodě $x_0=-1$.

- 7) Na příslušných intervalech (určených bodem nespojitosti 2. derivace) stanovíme konvexnost a konkávnost funkce g_4 :
 - Na intervalu $(-\infty, -1)$ je 2. derivace kladná, odkud plyne, že je na něm funkce konvexní.
 - \bullet I na intervalu $(-1,+\infty)$ je 2. derivace kladná, a proto je zde g_4 také konvexní.
- 8) Funkce nemá žádný inflexní bod. Nemá totiž ani bod podezřelý z inflexe a navíc se v žádném bodě nemění znaménko 2. derivace.

9) Vertikální asymptotu hledáme pouze v bodě $x_0 = -1$. Abychom existenci asymptoty potvrdili, vypočítáme si odpovídající jednostranné limity:

$$\lim_{x \to -1^+} \frac{e^x}{(x+1)^2} = +\infty$$

$$\lim_{x \to -1^-} \frac{e^x}{(x+1)^2} = +\infty.$$

Funkce má skutečně vertikální asymptotu danou rovnicí x = -1. Nyní hledáme asymptoty se směrnicí dané rovnicí y = kx + q. Počítat je budeme standardně v nevlastních bodech definičního oboru (nejprve v $+\infty$):

$$k = \lim_{x \to +\infty} \frac{g_4(x)}{x} = \lim_{x \to +\infty} \frac{e^x}{x \cdot (x+1)^2} = +\infty.$$

Jedná se o nevlastní limitu, funkce tedy v bodě $+\infty$ nemůže mít asymptotu se směrnicí. Pro nevlastní bod $-\infty$ máme:

$$k = \lim_{x \to -\infty} \frac{g_4(x)}{x} = \lim_{x \to -\infty} \frac{e^x}{x \cdot (x+1)^2} = 0$$

$$q = \lim_{x \to -\infty} (g_4(x) - kx) = \lim_{x \to -\infty} \left(\frac{e^x}{(x+1)^2} - 0x\right) = 0.$$

Odtud y = 0x + 0 = 0. Zjistili jsme, že funkce g_4 má (v bodě $-\infty$) asymptotu se směrnicí danou rovnicí y = 0 (což je osa x).

- 10) Funkce je zdola omezena přímkou y=0 a není shora omezená. Proto $H(g_4)=(0,+\infty)$. Funkce zřejmě nemá nulové body a je kladná na celém svém definičním oboru.
- 11) Určíme průsečík grafu g_4 s osou y: $g_4(0) = \frac{e^0}{(0+1)^2} = \frac{1}{1^2} = 1$. Průsečíkem je bod B = [0; 1].
- 12) Načrtneme graf funkce q_4 :

řešení e)

1) Jedná se o složenou funkci, přičemž vnitřní funkce $\cos x$ je definována pro každé reálné číslo. Definičním oborem vnější funkce $\ln x$ je interval $(0,+\infty)$. Víme, že vnitřní funkce $\cos x$ nabývá kladných hodnot na intervalech $(-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi)$, kde $k\in\mathbb{Z}$. Proto

$$D(g_5) = \bigcup_{k \in \mathbb{Z}} \left(-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right).$$

Přestože je funkce g_5 očividně nespojitá, na svém definičním oboru body nespojitosti nemá.

2) Platí, že pro $\forall x \in D(g_5)$ je i $-x \in D(g_5)$ a zároveň $g_5(-x) = g_5(x)$. Jedná se tedy o sudou funkci. Tato funkce je zároveň periodická, se základní periodou 2π . Vzhledem k definičnímu oboru, sudosti a periodičnosti, omezíme vyšetřování průběhu funkce na interval $\langle 0, \frac{\pi}{2} \rangle$, což nám značně sníží počet výpočtů.

3)
$$g_5' = -\frac{\sin x}{\cos x} = -\tan x.$$

Na intervalu $(0, \frac{\pi}{2})$ je 1. derivace funkce všude definována, přičemž jediným stacionárním bodem je bod $x_0 = 0$.

- 4) Na intervalu $(0, \frac{\pi}{2})$ je 1. derivace záporná a tudíž je na něm funkce klesající.
- 5) Ve stacionárním bodě $x_0 = 0$ se zřejmě nachází lokální maximum. Vypočítáme funkční hodnotu: $\ln(\cos 0) = \ln 1 = 0$. Lokální maximum se tedy na intervalu $(0, \frac{\pi}{2})$ nachází v bodě A = [0; 0].

6)

$$g_5'' = -\frac{1}{\cos^2 x}.$$

Vzhledem k tomu, že 2. derivace je definována pro každé $x \in (0, \frac{\pi}{2})$ a rovnice $-\frac{1}{\cos^2 x} = 0$ nemá řešení, nemá funkce g_5 žádné body podezřelé z inflexe.

- 7) Na intervalu $(0, \frac{\pi}{2})$ je 2. derivace záporná a tudíž je na něm funkce konkávní.
- 8) Funkce zřejmě nemá žádný inflexní bod, neboť (jak víme) nemá ani jeden bod podezřelý z inflexe.
- 9) Hledáme vertikální asymptotu v hraničním bodě definičního oboru, v bodě $\frac{\pi}{2}$ zleva:

$$\lim_{x \to \frac{\pi}{2}^{-}} \ln(\cos x) = -\infty.$$

Na intervalu $(0, \frac{\pi}{2})$ je právě jedna vertikální asymptota. Jedná se o přímku určenou rovnicí $x = \frac{\pi}{2}$. Nemá smysl hledat asymptotu se směrnicí, jelikož ani nedokážeme určit, jestli $\pm \infty$ jsou hromadné body funkce g_5 .

- 10) Při určování oboru hodnot g_5 si uvědomíme, že je tato funkce shora omezená přímkou y=0 a že zdola omezená není. Proto $\mathbb{H}(g_5)=(-\infty,0\rangle$. Jediný nulový bod A=[0;0] jsme již na intervalu $(0,\frac{\pi}{2})$ určili. Jednalo se zároveň o lokální maximum funkce. Funkce je nekladná na celém svém definičním oboru.
- 11) Průsečík s osou y je očividně bod A = [0; 0].
- 12) Na základě všech výše uvedených informací sestrojíme graf funkce. Využijeme samozřejmě toho, že je funkce sudá a periodická.

řešení f)

- 1) Musí být splněna podmínka $x^2-2\neq 0$. Odkud $D(g_6)=\mathbb{R}\setminus\{\pm\sqrt{2}\}$, přičemž body nespojitosti jsou $-\sqrt{2}$ a $\sqrt{2}$.
- 2) Pro každé $x \in D(g_6)$ je i $-x \in D(g_6)$. Má tak smysl ověřit, zda se jedná o sudou či lichou funkci. Máme $g_6(-x) = \frac{(-x)^3}{(-x)^2 2} = -\frac{x^3}{x^2 2} = -g_6(x)$. Funkce je tedy lichá a graf tak bude středově souměrný podle bodu [0;0]. Tuto symetrii využijeme a budeme se zabývat dále jen intervalem $(0, +\infty)$. Funkce zřejmě není periodická.

3)
$$g_6' = \frac{3x^2 \cdot (x^2 - 2) - x^3 \cdot 2x}{(x^2 - 2)^2} = \frac{x^4 - 6x^2}{(x^2 - 2)^2}.$$

Stacionární body funkce nalezneme vyřešením rovnice $x^4 - 6x^2 = 0$, tedy rovnice $x^2 \cdot (x^2 - 6)$. Na intervalu $(0, +\infty)$ se jedná o body $x_0 = 0$ a $x_1 = \sqrt{6}$, přičemž 1. derivace funkce není definována v bodě $x_2 = \sqrt{2}$.

- 4) Určíme intervaly monotónnosti podle znaménka 1. derivace s tím, že opět využijeme lichosti funkce a budeme se zabývat pouze intervalem $(0, +\infty)$. Tento interval rozdělí body $x_2 = \sqrt{2}$ a $x_1 = \sqrt{6}$ na tři podintervaly:
 - Na intervalu $(0,\sqrt{2})$ je 1. derivace záporná, funkce je proto na něm klesající.

- Na intervalu $(\sqrt{2}, \sqrt{6})$ je 1. derivace záporná, funkce je zde klesající.
- Na intervalu $(\sqrt{6}, +\infty)$ je 1. derivace kladná, funkce je na něm rostoucí.
- 5) Lokální extrém se na $(0, +\infty)$ nachází v bodě $\sqrt{6}$. Podle výše uvedených změn znaménka 1. derivace snadno stanovíme, že se jedná o lokální minimum. Dopočítáme příslušnou funkční hodnotu: $g_6(\sqrt{6}) = \frac{(\sqrt{6})^3}{(\sqrt{6})^2 2} = \frac{3\sqrt{6}}{2}$. Lokální minimum se nachází v bodě $A = [\sqrt{6}; \frac{3\sqrt{6}}{2}]$.

6)

$$g_6'' = \frac{(4x^3 - 12x) \cdot ((x^2 - 2)^2) - (x^4 - 6x^2) \cdot 4x \cdot (x^2 - 2)}{(x^2 - 2)^4}$$

$$= \frac{4x^5 - 12x^3 - 8x^3 + 24x - 4x^5 + 24x^3}{(x^2 - 2)^3}$$

$$= \frac{4x^3 + 24x}{(x^2 - 2)^3}.$$

Bod podezřelý z inflexe je jen $x_0 = 0$, přičemž bod $x_2 = \sqrt{2}$ je jediný, pro který není 2. derivace funkce na intervalu $(0, +\infty)$ definována.

- 7) Podle znamének 2. derivace určíme intervaly konvexnosti a konkávnosti. Opět se zaměříme pouze na polovinu definičního oboru, na interval $(0, +\infty)$. Bod $x_2 = \sqrt{2}$ rozdělí tento interval na dva podintervaly:
 - Na intervalu $(0,\sqrt{2})$ je 2. derivace záporná a tedy funkce je zde konkévní
 - Na intervalu $(\sqrt{2},+\infty)$ je 2. derivace kladná, a proto je na něm funkce konvexní.
- 8) Z lichosti funkce vyplyne, že inflexním bodem je bod $x_0=0$. Dopočítáme pro něj funkční hodnotu: $g_6(0)=\frac{0^3}{0^2-2}=0$. Inflexní je tedy bod B=[0;0]. Žádný jiný inflexní bod funkce nemá a to i přesto, že se v bodě $\sqrt{2}$ znaménko 2. derivace mění. Tento bod není součástí definičního oboru g_6 a záhy uvidíme, že je v něm neodstranitelná nespojitost 2. druhu
- 9) Pro nalezení vertikálních asymptot na intervalu $(0, +\infty)$ zkoumáme chování funkce právě v okolí bodu $\sqrt{2}$:

$$\lim_{x \to \sqrt{2}^+} \frac{x^3}{x^2 - 2} = +\infty$$

$$\lim_{x \to \sqrt{2}^-} \frac{x^3}{x^2 - 2} = -\infty.$$

Z výpočtů vyplývá, že existuje vertikální asymptota a je určena rovnicí $x=\sqrt{2}$. Dále vypočítáme koeficienty asymptoty se směrnicí, danou rovnicí y=kx+q. S využitím lichosti funkce se zaměříme jen na limity jdoucí

k nevlastnímu bodu $+\infty$. Máme:

$$k = \lim_{x \to +\infty} \frac{g_6(x)}{x} = \lim_{x \to +\infty} \frac{x^3}{x \cdot (x^2 - 2)} = \lim_{x \to +\infty} \frac{x^2}{x^2} \cdot \frac{1}{1 - \frac{2}{x^2}} = 1$$

$$q = \lim_{x \to +\infty} (g_6(x) - kx) = \lim_{x \to +\infty} \frac{x^3}{x^2 - 2} - x = \lim_{x \to +\infty} \frac{2x}{x^2 - 2} = 0.$$

Funkce má tedy asymptotu se směrnicí danou rovnicí y = x.

- 10) Funkce není omezená shora ani zdola, $H(g_6) = \mathbb{R}$. Určíme nulové body funkce. Rovnice $\frac{x^3}{x^2-2} = 0$ má jediné řešení, a to $x_0 = 0$. Nulovým bodem je tedy bod B = [0; 0]. Snadno nahlédneme, že na intervalu $(0, \sqrt{2})$ je funkce g_6 záporná a na intervalu $(\sqrt{2}, +\infty)$ je kladná.
- 11) Průsečíkem grafu funkce s osou y je bod B = [0; 0].
- 12) Ze všech výše získaných informací sestrojíme graf:

Příklad 72 Máme k dispozici pletivo o délce 48 metrů. Jakou (obsahem) největší obdélníkovou plochu jím můžeme vymezit? Určete rozměry tohoto pozemku.

Řešení. Vzorec pro obvod obdélníka je o = 2x + 2y, kde x > 0 a y > 0. V našem případě je o = 48 a tedy x + y = 24, přičemž x < 24 a y < 24. Zřejmě y = 24 - x. Obsah hledaného obdélníka je $S = x \cdot y$. Hledáme tedy maximum funkce $f : x \cdot (24 - x) = 24x - x^2$. Určíme první derivaci funkce:

$$f'(x) = 24 - 2x$$
.

Stacionární bod(y) funkce nalezneme vyřešením rovnice 24-2x=0, odkud x=12. Nyní ověříme, zda se v tomto bodě skutečně nachází lokální maximum. Jelikož je 2. derivace funkce: f''(x)=-2<0, nachází se v bodě x=12 lokální maximum funkce f. Dosazením této hodnoty jednoduše vypočítáme, že y=24-12=12. Pro obsah platí: $S=12\cdot 12=144$ m².

Délky stran obdélníku (s maximálním obsahem 144 m²) jsou obě rovny 12 metrům, pozemkem je tedy čtvercový.

Příklad 73 V továrně se vyrábějí konzervy ve tvaru válce a o objemu 216 cm³. Vypočítejte rozměry tohoto válce tak, aby na výrobu konzervy bylo spotřebováno co nejmenší množství materiálu.

Řešení. Povrch válce vypočítáme pomocí vzorce:

$$S = 2\pi r^2 + 2\pi r v,$$

kde v značí výšku a r poloměr válce. Ze známého vzorce pro objem válce:

$$V = \pi r^2 v$$
,

plyne, že $v=\frac{216}{\pi r^2}.$ Takto vyjádřenou proměnnou v dosadíme do rovnice pro výpočet obsahu:

$$S = 2\pi r^2 + 2\pi r \cdot \frac{216}{\pi r^2} = 2\pi r^2 + \frac{432}{r}.$$

Získanou funkci pro výpočet obsahu zderivujeme podle proměnné r:

$$S'(r) = 4\pi r - \frac{432}{r^2}.$$

Hledáme stacionární bod(y): $4\pi r - \frac{432}{r^2} = 0 \implies r = \sqrt[3]{\frac{108}{\pi}} \doteq 3,25156$. Nyní zkontrolujeme, zda se v tomto bodě vyskytuje lokální minimum. K tomu vypočítáme druhou derivaci funkce:

$$S''(r) = 4\pi + \frac{864}{r^3}.$$

Jelikož $S''\left(\sqrt[3]{\frac{108}{\pi}}\right)=4\pi+8\pi=12\pi>0$, nachází se v bodě $\sqrt[3]{\frac{108}{\pi}}$ skutečně lokální minimum. Zjistíme ještě výšku válce:

$$v = \frac{216}{\pi r^2} = \frac{216}{\pi \cdot (\frac{108}{\pi})^{\frac{2}{3}}} \doteq 6,50311.$$

Vidíme, že aby bylo spotřebováno nejmenší možné množství materiálu, měly by se vyrábět konzervy o stejné velikosti výšky a poloměru podstavy. V našem případě je výška konzervy přibližně rovna 6,5 cm a poloměr její podstavy má cca 3,25 cm.

Příklad 74 V chráněné dílně na ruční výrobu mýdel lze vyjádřit výnos z výroby jako funkci $g_1: y=6x+8$ a náklady na výrobu jako funkci $g_2: y=x^3-4x^2+10x$, kde proměnná x reprezentuje sto vyrobených mýdel denně. Určete hodnotu proměnné x tak, aby měla dílna co největší zisk.

Řešení. Jako první krok je nutné si uvědomit, že zisk z výroby vypočítáme jako výnos po odečtení nákladů. Zajímá nás tedy maximum funkce

$$g(x) = g_1(x) - g_2(x) = 6x + 8 - (x^3 - 4x^2 + 10x) = -x^3 + 4x^2 - 4x + 8.$$

Vypočítáme 1. derivaci: $g'(x) = -3x^2 + 8x - 4$ a pro nalezení stacionárních bodů ji položíme rovnu nule:

$$-3x^2 + 8x - 4 = 0.$$

Snadno zjistíme, že tato kvadratická rovnice (s diskriminantem D=16) má dva kořeny: $x_1=\frac{2}{3}$ a $x_2=2$. Dále určíme 2. derivaci funkce a její hodnotu ve stacionárních bodech: g''(x)=-6x+8, přičemž $g''(\frac{2}{3})=\frac{-12}{3}+8=4>0$ a g''(2)=-12+8=-4<0. Funkce g má tedy v bodě $x_1=\frac{2}{3}$ lokální minimum a v bodě $x_2=2$ lokální maximum, což je bod, který jsme hledali. Dílna dosáhne nejvyššího zisku při výrobě 200 mýdel denně.

Příklad 75 Města A a B jsou od sebe vzdálena 17 kilometrů vzdušnou čarou. Městem A vede silnice ve tvaru přímky, jejíž nejkratší vzdálenost od města B je 8 kilometrů. Určete, v jaké vzdálenosti od města A je potřeba začít budovat novou silnici do města B tak, aby trvala přeprava mezi oběma městy co nejkratší dobu. Po staré silnici je maximální možná rychlost jízdy 80 km/h a po nové silnici to bude jen 60 km/h.

Řešení. Výchozí situaci znázorníme obrázkem. Při hledání řešení využijeme starou silnici, protože je na ní větší maximální možná rychlost než na nové silnici. Z města A se do města B dostaneme přes místo X, které leží na staré silnici mezi městem A a bodem C (tj. místem, které je nejblíže ze staré silnice k městu B).

Nejdříve vypočítáme délku třetí strany pravoúhlého trojúhelníka ABC. To dokážeme snadno pomocí Pythagorovy věty:

$$8^2 + |AC|^2 = 17^2 \implies |AC| = \sqrt{289 - 64} = 15 \text{ km}.$$

Označíme-li délku úsečky CX jako x, pak velikost úsečky AX je 15-x. Velikost úsečky XB získáme opět pomocí Pythagorovy věty:

$$8^2 + x^2 = |XB|^2 \implies |XB| = \sqrt{x^2 + 64}.$$

Označíme zadané rychlosti: $v_1 = 80$ km/h, $v_2 = 60$ km/h. Nejkratší dobu jízdy t určí minimum následující funkce proměnné x, kde 0 < x < 15:

$$t(x) = t_1 + t_2 = \frac{|AX|}{v_1} + \frac{|XB|}{v_2} = \frac{15 - x}{80} + \frac{\sqrt{x^2 + 64}}{60}.$$

Vypočítáme 1. derivaci funkce t(x):

$$t'(x) = -\frac{1}{80} + \frac{1}{60} \cdot \frac{1}{2} (x^2 + 64)^{-\frac{1}{2}} \cdot 2x = -\frac{1}{80} + \frac{x}{60\sqrt{x^2 + 64}}.$$

Stacionární body nalezneme vyřešením rovnice

$$-\frac{1}{80} + \frac{x}{60\sqrt{x^2 + 64}} = 0.$$

Snadnou úpravou získáváme rovnici $4x = 3\sqrt{x^2 + 64}$, kterou můžeme umocnit:

$$16x^2 = 9x^2 + 9 \cdot 64 \implies x^2 = \frac{576}{7}.$$

Odtud získáváme výsledek $x \doteq \pm 9,071$. Zajímá nás pouze kladný kořen rovnice, neboť řešení hledáme v intervalu (0,15). Z praktické povahy úlohy se zřejmě jedná o lokální minimum funkce. Pomocí x již jen dopočítáme přibližnou velikost úsečky AX, což je náš hledaný výsledek: $|AX| = 15 - x \doteq 5,929$. Novou silnici je tedy nejvýhodnější začít stavět ve vzdálenosti přibližně 5,929 kilometrů od města A (dle obrázku v bodě X).

8 Číselné řady. Kritéria konvergence. Mocninné řady.

Příklad 76 Číslo $0,\overline{8}$ převeďte na zlomek s celočíselným čitatelem i jmenovatelem.

Řešení. Dané periodické číslo vyjádříme jako (nekonečnou) číselnou řadu:

$$0, \overline{8} = \frac{8}{10} + \frac{8}{100} + \frac{8}{1000} + \frac{8}{10000} + \dots$$

Pro $a_1=\frac{8}{10}$ a $q=\frac{1}{10}$ vypočítáme součet stéto geometrické řady. Máme:

$$s = \frac{a_1}{1 - q} = \frac{\frac{8}{10}}{1 - \frac{1}{10}} = \frac{8}{9}.$$

Číslo $0, \overline{8}$ lze zapsat jako zlomek $\frac{8}{9}$.

Příklad 77 Pro každou z následujících číselných řad určete její součet (v případě, že existuje) a rozhodněte, zda je konvergentní nebo divergentní:

a)
$$\sum_{n=1}^{+\infty} \frac{n}{n+1}$$

b)
$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)\cdot (n+2)}$$

c)
$$\sum_{n=1}^{+\infty} (-1)^n \cdot n$$

d)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

e)
$$\sum_{n=1}^{+\infty} \frac{2^{n-1}}{(-3)^{n-1}}.$$

Řešení.

a) Víme, že nutnou (nikoliv však postačující) podmínkou konvergence řady $\sum a_n$ je, že se a_n pro n jdoucí k $+\infty$ limitně blíží 0. Podmínku ověříme:

$$\lim_{n\to +\infty}\frac{n}{n+1}=\lim_{n\to +\infty}\frac{n}{n}\cdot\frac{1}{1+\frac{1}{n}}=\frac{1}{1+0}\neq 0.$$

Řada tedy diverguje. To znamená, že buď je její součet nevlastní, nebo vůbec neexistuje. Jelikož se jedná o řadu s kladnými členy, její součet je $+\infty$.

b) Řadu nejprve vhodně upravíme:

$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)\cdot (n+2)} = \sum_{n=1}^{+\infty} \frac{(n+2) - (n+1)}{(n+1)\cdot (n+2)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right).$$

Dosazením do upravené řady získáme její n-tý částečný součet:

$$s_n = \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) = \frac{1}{2} - \frac{1}{n+2}.$$

Odtud již snadno zjistíme součet řady s, neboť

$$s = \lim_{n \to +\infty} \left(\frac{1}{2} - \frac{1}{n+2} \right) = \frac{1}{2}.$$

Jedná se o vlastní číslo, řada je tedy konvergentní.

c) Ověříme nutnou podmínku konvergence:

$$\lim_{n \to +\infty} (-1)^n \cdot n = \text{ neexistuje.}$$

Řada tedy diverguje a zřejmě nemá součet (neznáme ani hodnotu výrazu $(-1)^n \cdot n$ v nekonečnu).

d) Opět ověříme nutnou podmínku konvergence:

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0.$$

Podmínka platí – řada může a nemusí konvergovat. Víme ovšem, že pokud vybraná posloupnost diverguje, diverguje i posloupnost částečných součtů. Platí:

$$s_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{n}} > n \cdot \frac{1}{\sqrt{n}} = \sqrt{n},$$

přičemž $\lim_{n\to+\infty} \sqrt{n} = +\infty$. Řada tedy diverguje a má součet $s = +\infty$.

e) Jedná se o geometrickou řadu, kde $a_1 = 1$ a $q = -\frac{2}{3}$. Vidíme, že |q| < 1; řada tedy konverguje a můžeme snadno vypočítat její součet. Hodnoty dosadíme do vzorce:

$$s = \frac{a_1}{1 - q} = \frac{1}{1 - (-\frac{2}{3})} = \frac{1}{\frac{5}{3}} = \frac{3}{5}.$$

Řada je konvergentní a má součet $s = \frac{3}{5}$.

Příklad 78 Rozhodněte o chování následujících nekonečných řad. Při řešení použijte srovnávací kritéria.

$$\sum_{n=1}^{+\infty} \frac{1}{(3n+5)^2}$$

$$\sum_{n=1}^{+\infty} \frac{1}{8n^2 - 6n + 10}$$

$$\sum_{n=1}^{+\infty} \frac{1}{2n+17}$$

$$\sum_{n=1}^{+\infty} \frac{1}{3^{2n+1}}$$

$$\sum_{n=1}^{+\infty} \frac{1}{4n-2}.$$

Řešení.

- a) Využijeme 1. srovnávací kritérium, které říká, že pokud máme dvě kladné řady $\sum a_n$, $\sum b_n$ a pro skoro všechna n platí $a_n < b_n$, pak z konvergence $\sum b_n$ plyne konvergence $\sum a_n$ a z divergence $\sum a_n$ plyne divergence $\sum b_n$. V tomto příkladu použijeme pro srovnání konvergentní řadu $\sum \frac{1}{n^2}$. Jelikož pro všechna $n \in \mathbb{N}$ platí, že $\frac{1}{(3n+5)^2} < \frac{1}{n^2}$, řada $\sum \frac{1}{(3n+5)^2}$ (dle 1. srovnávacího kritéria) také konverguje.
- b) Využijeme 2. srovnávací kritérium, které říká, že pokud máme dvě kladné řady $\sum a_n, \sum b_n$ a platí, že

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = K \text{ a } K \in (0, +\infty),$$

pak obě tyto řady mají stejné chování. Opět využijeme konvergující řadu $\frac{1}{n^2}$ a hledáme limitu podílu těchto dvou řad pro $n \to +\infty$:

$$\lim_{n \to +\infty} \frac{\frac{1}{8n^2 - 6n + 10}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{n^2}{n^2} \cdot \frac{1}{8 - \frac{6}{n} + \frac{10}{n^2}} = \frac{1}{8 - 0 + 0} = \frac{1}{8}.$$

Zjistili jsme, že řady mají stejné chování, řada $\sum \frac{1}{8n^2-6n+10}$ tedy také konverguje. Poznamenejme, že nezáleží na tom, která řada bude v čitateli a která ve jmenovateli, jelikož pokud $K \in (0, +\infty)$, pak i $K^{-1} \in (0, +\infty)$.

c) Opět využijeme 1. srovnávací kritérium. Můžeme si povšimnout podobnosti řady se základní harmonickou řadou, o níž víme, že diverguje. Jelikož pro všechna $n \in \mathbb{N}, \ n > 16$ platí, že $\frac{1}{2n+17} \geq \frac{1}{3n}$ a zároveň řada $\sum \frac{1}{3n} = \frac{1}{3} \sum \frac{1}{n}$ má zřejmě stejné chování jako základní harmonická řada $\sum \frac{1}{n}$, řada $\sum \frac{1}{2n+17}$ diverguje.

Při použití 2. srovnávacího kritéria dostaneme stejný výsledek rychleji:

$$\lim_{n \to +\infty} \frac{\frac{1}{2n+17}}{\frac{1}{n}} = \lim_{n \to +\infty} \frac{n}{2n+17} = \frac{1}{2} \in (0, +\infty).$$

d) Využijeme 3. srovnávací kritérium. Opět jsou dány dvě kladné řady $\sum a_n$, $\sum b_n$. Pokud pro téměř všechna n platí, že $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, pak z divergence $\sum a_n$ plyne divergence $\sum b_n$ a z konvergence $\sum b_n$ plyne konvergence $\sum a_n$. V našem případě použijeme pro srovnání řadu $\sum \frac{1}{3^n}$, o níž víme, že je konvergující geometrickou řadu s kvocientem $q = \frac{1}{3}$. Pro každé $n \in \mathbb{N}$ platí:

$$\frac{\frac{1}{3^{2(n+1)+1}}}{\frac{1}{3^{2n+1}}} \leq \frac{\frac{1}{3^{n+1}}}{\frac{1}{2^n}} \quad \Leftrightarrow \quad \frac{3^{2n+1}}{3^{2n+3}} \leq \frac{3^n}{3^{n+1}} \quad \Leftrightarrow \quad \frac{1}{9} \leq \frac{1}{3}.$$

Všechny uvedené nerovnice platí. Můžeme tedy použít 3. srovnávací kritérium a z konvergence řady $\sum \frac{1}{3^n}$ vyvodit konvergenci zadané řady: $\sum \frac{1}{3^{2n+1}}$.

e) Použijeme 2. srovnávací kritérium. Opět se nabízí využít podobnost zadané řady se základní harmonickou řadou:

$$\lim_{n \to +\infty} \frac{\frac{1}{n}}{\frac{1}{4n-2}} = \lim_{n \to +\infty} \frac{4n-2}{n} = \lim_{n \to +\infty} \frac{n}{n} \cdot \frac{4-\frac{2}{n}}{1} = \frac{4-0}{1} = 4.$$

Vidíme, že výsledek limity leží v intervalu $(0, +\infty)$. Obě řady mají stejné chování, zadaná řada tedy diverguje.

Příklad 79 Rozhodněte o chování následujících nekonečných řad. K řešení využijte limitní podílové kritérium.

a)
$$\sum_{n=1}^{+\infty} \frac{n!}{2^n}$$

b)
$$\sum_{n=1}^{+\infty} \frac{n}{e^n}$$

c)
$$\sum_{n=1}^{+\infty} \frac{5^n \cdot n!}{n^n}.$$

Řešení. Máme-li kladnou řadu $\sum a_n$ a

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = A,$$

pak podle limitního podílového kritéria pro A<1 řada konverguje, pro A>1 řada diverguje. (Pro A=1 je nutné použít jiné kritérium.)

a)
$$\lim_{n \to +\infty} \frac{\frac{(n+1)!}{2^{n+1}}}{\frac{n!}{2^n}} = \lim_{n \to +\infty} \frac{(n+1) \cdot n! \cdot 2^n}{n! \cdot 2^{n+1}} = \lim_{n \to +\infty} \frac{n+1}{2} > 1.$$

Řada diverguje.

b)
$$\lim_{n\to+\infty}\frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}}=\lim_{n\to+\infty}\frac{(n+1)\cdot e^n}{e^{n+1}\cdot n}=\frac{1}{e}\cdot\lim_{n\to+\infty}\frac{n+1}{n}=\frac{1}{e}<1.$$

Řada konverguje.

c)

$$\begin{split} \lim_{n \to +\infty} \frac{\frac{5^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}}{\frac{5^n \cdot n!}{n^n}} &= \lim_{n \to +\infty} \frac{5^{n+1} \cdot (n+1) \cdot n! \cdot n^n}{5^n \cdot (n+1)^{n+1} \cdot n!} = 5 \cdot \lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^n \\ &= 5 \cdot \lim_{n \to +\infty} \left(1 - \frac{1}{n+1}\right)^{n+1} \cdot \left(1 - \frac{1}{n+1}\right)^{-1} \\ &= 5 \cdot e^{-1} \cdot 1 = \frac{5}{e} > 1. \end{split}$$

Řada diverguje. Poznamenejme, že k výpočtu jsme využili znalost speciální limity

$$\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}.$$

Příklad 80 Rozhodněte o chování následujících nekonečných řad. K řešení využijte limitní odmocninové kritérium.

a)
$$\sum_{n=1}^{+\infty} \frac{6^n}{n^6}$$

b)
$$\sum_{n=1}^{+\infty} \frac{1}{\log^n n}$$

c)
$$\sum_{n=1}^{+\infty} \left(\frac{n+5}{4n-2}\right)^{2n}$$

d)
$$\sum_{n=1}^{+\infty} \frac{(4+\frac{1}{n})^n}{n^3}.$$

Řešení. Využíváme limitní odmocninové kritérium. Máme-li řadu s nezápornými členy $\sum a_n$ a

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = A,$$

pak pro A<1tato řada konverguje a pro A>1 diverguje. (Pro A=1je třeba postupovat jinak.)

a)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{6^n}{n^6}} = \lim_{n \to +\infty} \frac{6}{(\sqrt[n]{n})^6} = \frac{6}{1^6} = 6 > 1.$$

Zadaná řada diverguje. Pro výpočet je důležitá znalost limity

$$\lim_{n \to +\infty} \sqrt[n]{n} = 1.$$

b)
$$\lim_{n\to +\infty} \sqrt[n]{\left(\frac{1}{\log n}\right)^n} = \lim_{n\to +\infty} \frac{1}{\log n} = 0 < 1.$$

Řada konverguje.

c)
$$\lim_{n \to +\infty} \sqrt[n]{\left(\frac{n+5}{3n-2}\right)^{2n}} = \lim_{n \to +\infty} \left(\frac{n}{n} \cdot \frac{1+\frac{5}{n}}{3-\frac{2}{n}}\right)^2 = \left(\frac{1+0}{3-0}\right)^2 = \frac{1}{9} < 1.$$

Řada konverguje.

d)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{(4+\frac{1}{n})^n}{n^3}} = \lim_{n \to +\infty} \frac{4+\frac{1}{n}}{(\sqrt[n]{n})^3} = \frac{4}{1^3} = 4 > 1.$$

Řada diverguje.

Příklad 81 Rozhodněte o absolutní konvergenci, neabsolutní konvergenci či divergenci následujících alernujících řad. K řešení využijte Leibnizovo kritérium.

a)
$$\sum_{n=1}^{+\infty} (-1)^{n+1} \cdot \frac{1}{n^3}$$

b)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{\ln n}$$

c)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt[n]{n}}$$

d)
$$\sum_{n=2}^{+\infty} (-1)^n \cdot \frac{4n}{n^2 - 2}.$$

Řešení. Leibnizovo kritérium používáme pro alternující řady, tedy pro řady ve tvaru

$$\sum_{n=1}^{+\infty} (-1)^n \cdot a_n,$$

kde $a_n \geq 0$. Podle tohoto kritéria uvedená alternující řada konverguje tehdy, jestliže existuje $n_0 \in \mathbb{N}$ takové, že $a_{n_0} > a_{n_0+1} > a_{n_0+2} > \dots$ (posloupnost $\{a_n\}$ je od určitého indexu klesající) a zároveň $\lim_{n \to +\infty} a_n = 0$.

Připomeňme ještě, že řada $\sum a_n$ konverguje neabsolutně, pokud je konvergentní, přičemž řada $\sum |a_n|$ diverguje. Řada $\sum a_n$ konverguje tzv. absolutně, pokud je konvergentní a konverguje i řada $\sum |a_n|$.

- a) Posloupnost $\{\frac{1}{n^3}\}$ je klesající a zdola omezená nulou. Podle Leibnizova kritéria tedy řada $\sum (-1)^{n+1} \cdot \frac{1}{n^3}$ konverguje. Zřejmě konverguje i absolutně, neboť řada $\sum |(-1)^{n+1} \cdot \frac{1}{n^3}| = \sum \frac{1}{n^3}$ je konvergentní.
- b) Posloupnost $\{\frac{1}{\ln n}\}$ je klesající a $\lim_{n\to +\infty}\frac{1}{\ln n}=0$. Zadaná řada tedy konverguje dle Leibnizova kritéria. Zbývá nám zjistit, zda konverguje i řada jejích členů v absolutní hodnotě. K tomu využijeme 1. srovnávací kritérium. Pro n>2 platí, že $|\frac{(-1)^n}{\ln n}|=\frac{1}{\ln n}>\frac{1}{n}$. Z divergence základní harmonické řady plyne divergence řady $\sum |\frac{(-1)^n}{\ln n}|$. Zadaná řada tedy konverguje neabsolutně.
- c) Zřejmě

$$\lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1.$$

Zadaná řada tedy diverguje a zřejmě nemá smysl ověřovat konvergenci řady jejích členů v absolutní hodnotě.

d) Platí:

$$\lim_{n \to +\infty} \frac{4n}{n^2 - 2} = \lim_{n \to +\infty} \frac{n^2}{n^2} \cdot \frac{\frac{4}{n}}{1 - \frac{2}{n^2}} = \frac{0}{1 - 0} = 0,$$

přičemž posloupnost $\{\frac{4n}{n^2-2}\}$ je (pro $n>1) klesající. Zadaná řada tedy dle Leibnizova kritéria konverguje. Dále prozkoumáme chování řady jejích členů v absolutní hodnotě. Řadu <math display="inline">\sum |(-1)^n \cdot \frac{4n}{n^2-2}| = \sum \frac{4n}{n^2-2}$ jsme (pro n>1) schopni zdola omezit divergentní harmonickou řadou: $\sum \frac{4n}{n^2-2} > \sum \frac{1}{n}$. Odtud (dle 1. srovnávacího kritéria) ihned plyne, že řada $\sum_{n=2}^{+\infty} (-1)^n \cdot \frac{4n}{n^2-2}$ konverguje neabsolutně.