Bias-variance decomposition Gradient boosting

Radoslav Neychev

Outline

- 1. Intuitions
- 2. Gradient boosting theory
- 3. Examples
- 4. Libraries
- 5. Feature importances
- 6. Hyperparameter optimization

Ensembling recap

girafe ai

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.

girafe

Boosting intuition

girafe

Boosting: intuition

Binary classification

Use decision stumps.

Boosting: intuition

Binary classification

Use decision stumps.

Ensembles computation comparison 🏌

	Training	Inference
Bagging	parallel	parallel
Boosting	sequential	parallel

girafe ai

Denote dataset $\{(x_i,y_i)\}_{i=1,\ldots,n}$, loss function L(y,f)

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg\,min}} L(y, f(x)) = \underset{f(x)}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x))]$$

Let it be from parametric family:

$$\hat{f}(x) = f(x, \hat{\theta}),$$

$$\hat{\theta} = \arg\min \mathbb{E}_{x,y}[L(y, f(x, \theta))]$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

What if we could use gradient descent in space of our models?

What if we could use gradient descent in space of our models?

$$\hat{f}(x) = \sum_{i=1}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

GB examples

girafe ai

Beautiful demo

One tree

Boosting

Gradient boosting

What we need:

- Data
- Loss function and its gradient
- Family of algorithms (with constraints if necessary)
- Number of iterations M
- Initial value (GBM by Friedman): constant

Gradient boosting: example

What we need:

- Data: toy dataset $y = cos(x) + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{5}), x \in [-5, 5]$
- Loss function: MSF
- Family of algorithms: decision trees with depth 2
- Number of iterations M = 3
- Initial value: just mean valu

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions

Spam Data

California Housing Data

Parallelization

Which of the ensembling methods could be parallelized?

- Random Forest: parallel on the forest level (all trees are independent)
- Gradient boosting: parallel on one tree level

Libraries for GB

girafe ai

Main contemporary instruments

- 1. Catboost by Yandex
 - https://catboost.ai/
 - a. Explained by core developer for girafe-ai slides
- 2. LightGBM by Microsoft
 - https://lightgbm.readthedocs.io/en/latest/index.html
- 3. XGboost by the community https://xqboost.readthedocs.io/en/stable/

<u>Definitely not sklearn!</u>

Boosting explained in verse!

- 1. <u>Boosting explained</u>
- 2. XGBoost expained

Gradient Boost Part 1...

Predicted Drug Effectiveness 0.5

5	-5	-5.5
10	-7	-7.5
21	7	6.5
25	8	7.5

Dosage	Drug Effectiveness	Residuals
???	-3	-3.5
???	-2	-2.5

The first **Gain** value, which we will call **Gain**_{Left}, is calculated by putting all of the **Residuals** with missing **Dosage** values into the leaf on the left.

...Regression Main Ideas!!!

More on boosting

- https://habr.com/ru/companies/ods/articles/645887/
- https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgb
 m
- https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40
 662924
- https://www.springboard.com/blog/data-science/xgboost-random-forest-c atboost-lightgbm/
- https://towardsdatascience.com/performance-comparison-catboost-vs-xg boost-and-catboost-vs-lightgbm-886c1c96db64

Peak at feature importances!

girafe

Shap values

Explanation

Hyperparameter optimization

girafe ai

Optimization note

In optimization theory methods are associated with the order of derivatives they use. Main ones are:

- first order optimization
 - o use gradient of optimized function e.g. SGD which we discussed
- second order optimization
 - o use Hessian matrix. They are qute slow
- zero order
 - o don't need gradient, only values of optimized function
 - that's what we are interested in today

0-order optimization approaches

- 1. Manual trials
- 2. Grid search
- 3. Random search

In theory

0-order optimization approaches

- Manual trials
- 2. Grid search
- 3. Random search

0-order optimization approaches

- 1. Manual trials
- 2. Grid search
- 3. Random search
- 4. Bayesian methods
- 5. Evolutionary methods

Main libraries

*

- <u>Hyperopt</u>
- <u>Optuna</u>

Black box or 0 order optimization

Revise

- 1. Intuitions
- 2. Gradient boosting theory
- 3. Examples
- 4. Libraries
- 5. Feature importances
- 6. Hyperparameter optimization

Thanks for attention!

Questions?

