

Procesamiento de Lenguaje Natural

Olivia Gutú y Julio Waissman

Maestría en Ciencia de Datos Semana 1: Análisis de sentimientos y regresión logística

ML: flujo de entrenamiento

Objetivo: predecir si un texto (e.g. un tuit) tiene un sentimiento negativo o positivo.

Tuit: Olas en Kino sonidos de la felicidad para compartir

regresión logística

Análisis de sentimiento

 $V = \{ \text{Olas, en, Kino, sonidos, de, la, felicidad, para, } \dots, \text{ triste, día, hoy} \}$

Olas en Kino sonidos de la felicidad para compartir

<i>V</i> :	Olas	en	Kino	sonidos	de	la	felicidad	para	 triste	día
	\downarrow	 \downarrow	\downarrow							
	1	1	1	1	1	1	1	1	0	0

¡demasiados ceros! (representación dispersa)

Problemas con la representación dispersa

- A cada tuit le asigno un vector en \mathbb{R}^n , n es la cardinalidad de V (*Quijote*: 23,000, el coreano: 1,100,373, en la red: !uf!).
- La regresión logística tendría que ajustar $\theta = (\theta_0, \theta_1, \dots \theta_n) \in \mathbb{R}^{n+1}$.
- Entrenamiento costoso y largo tiempo de predicción.

frec(w,c) frecuencia de la palabra en la clase

V	PosFrec(1)	NegFrec(0)
Olas	4	0
en	3	3
Kino	5	1
de	6	6
la	3	3
felicidad	5	0
:	:	:
triste	1	7
día	1	1
hoy	0	1

$$X^m$$
 = $\begin{bmatrix} 1, & \sum_w \operatorname{frec}(w,1), & \sum_w \operatorname{frec}(w,0) \end{bmatrix}$
 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow Carac. sesgo suma de suma de del tuit m . frec. pos frec. neg.

En las sumas w recorre las palabras que contiene el tuit m (una sola vez)

Tuit_m: Olas hoy felicidad hoy $X^m = [1, 9, 1]$

V	PosFrec(1)	NegFrec(0)
Olas	4	0
en	3	3
Kino	5	1
de	6	6
la	3	3
felicidad	5	0
:	:	:
triste	1	7
día	1	1
hoy	0	1

Pre-procesamiento de los datos

Universidad de Sonora

Tuit: Vista desde San Carlos Sonora el día de hoy @webcamsdemexico @VisitSonora http://visitsonora.mx/destinos/ playas/san-carlos/

- signos de puntuación y stop words (palabras vacías)
- borrar urls y handles
- steamming (lexematización) y lowecasing (todo en minúscula)

Tuit procesado: [vista, san, carlos, sonora, día, hoy]

Pre-procesamiento de los datos: stop words

- preposiciones
- conjunciones y disyunciones
- verbos copulativos y auxiliares
- palabras muy comunes

```
a
    acá
     ahí
     al
algún/a/o/s
    voy
vuestra/o/s
     ya
     yo
```

Pre-procesamiento de los datos: steamming

Universidad de Sonora

e.g. http://stemmer-es.sourceforge.net

che che checa chec checar chec checo chec checoslovaquia checoslovaqui chedraoui chedraoui chefs chefs cheliabinsk cheliabinsk chelo chel chía chi chiapaneca chiapanec chica chic chichimecas chichimec

$$\begin{bmatrix} X^{1} \\ X^{2} \\ \vdots \\ X^{m} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & X_{1}^{(1)} & X_{2}^{(1)} \\ 1 & X_{1}^{(2)} & X_{2}^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & X_{1}^{(m)} & X_{2}^{(m)} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 2 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 6 \end{bmatrix}$$

Regresión logística: función logística

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

¿Cómo decir a qué clase pertenece un nuevo tuit?

Regresión logística: entrenamiento

Regresión logística: entrenamiento

- X_{val} una matriz de tuits codificados previamente clasificados.
- Y_{val} un vector con las correspondientes clasificaciones.
- para cada renglón X_{val}^m de la matriz X_{val} calcular:

$$\operatorname{pred}(X_{\operatorname{val}}^m) = \begin{cases} 0 & \text{si } h(X_{\operatorname{val}}^m, \hat{\theta}) < 0.5; \\ 1 & \text{si } h(X_{\operatorname{val}}^m, \hat{\theta}) \geq 0.5. \end{cases}$$

■ se saca el porcentaje (accuracy) de casos para los cuales:

$$\operatorname{pred}(X_{\operatorname{val}}^m) = Y_{\operatorname{val}^m}$$

Si hay *n* tuits de entrenamiento, $J(\theta) = \sum_{m=1}^{n} J_m(\theta)$ donde:

$$J_m(\theta) = Y^m \log h(X^m, \theta) + (1 - Y^m) \log(1 - h(X^m, \theta))$$

