Due: 8 Mar 2019

Full Name:	Alpha:	
Circle Your Section: Aviv	/1001 Aviv/2001 Aviv/4001 Choi/50	01 Missler/5002
Total Points: 80		
Preliminary: Carefully do	the assigned reading for Chapter 2 (2.1-2.3,2.5-2.10,2.12)
1. Convert the given decima	l numbers to their binary representa	tion
(a) [5 points]		
	5 (4-bits)	-7 (4-bits)
Unsigned		
Sign Magnitude		
One's Compliment		
Two's Compliment		
(b) [5 points]		
	-3 (4-bits)	-3 (6-bits)
Sign Magnitude		
One's Compliment		
Two's Compliment		

2.	Assume the following is in binary two's complement form: (a) [1 point] 001011
	(b) [2 points] 111011
3.	Apply the negation operator to the binary values, and show the resulting binary value, in two's complement. (a) [1 point] -(001011)
	(b) [1 point] -(111011)
4.	Suppose we use 8-bits to represent a two's complement binary number. (a) [5 points] What is the largest number that can be presented? (Give answer in binary and decimal)
	(b) [5 points] What is the smalles number that can be presented? (Give answer in binary and decimal)

5. [10 points] Complete the following 6-bit, two's complement additions. Indicate if there is an overflow or not.

(a)

010101 + 001101

(b)

111111 + 111101

(c)

010011 + 001110

(d)

010011 + 111110

6.	[10 points]	Complete the following 6-bit,	two's complement	${\bf subtraction}.$	Indicate if	$_{\rm there}$	is an	over
	flow or not.							

(a)

011101 - 100101

(b)

111111 - 111101

(c)

010011 - 001110

(d)

010011 + 111110

Τ/	വവസ	\cap	LIX	7 5	
ш	C220	O	HW	/ :	a

7.	[5 points] Convert the (decimal) 269 into a 32-bit two's complement binary number. (Note, you can use a calculator for this, but you'd be expected to do this by hand, without a calculator, on a exam.)
8.	[5 points] Convert the (decimal) -45 into a 32-bit two's complement binary number. (Note, you can use a calculator for this, but you'd be expected to do this by hand, without a calculator, on a exam.)
9.	Convert the following 32-bit binary, two's complement number into decimal. (Note, you can use a calculator for this, but you'd be expected to do this by hand, without a calculator, on a exam.) (a) [5 points] 1111 1111 1111 1111 1111 1111 1000 0110
	(b) [5 points] 0000 0000 0000 0000 0101 0110

10. [5 points] Multiply the following binary numbers together. (Assume unsigned).

(a)

010011 x 110

(b)

10101 x 101

11. [5 points] Convert the following C code to MIPS. Note: use integers not floats here! Also, use mult instruction that we learned in class that takes just 2 arguments.

```
int cube(int x){
  return x*x*x;
}
```

12. **[5 points]** Convert the following C code to MIPS. Note: use **integers** not floats here! Also, use **mult** instruction that we learned in class that takes just 2 arguments.

```
int log(int x, int b){
   int r = 0;
   while (x < b){
      x = x*x;
      r+=1;
   }
   return r;
}</pre>
```