Characterization of queer super crystals

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Maria Gillespie, Graham Hawkes, Wencin Poh

preprint arXiv:1809.04647

Workshop on "Representation Theory, Combinatorics, and Geometry", University of Virginia, October 19, 2018

• Lie superalgebras:

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
 - ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
 - ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
 - ▶ In physics: unification of bosons and fermions
 - ▶ In mathematics: projective representations of the symmetric group

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
 - ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
 - ▶ In physics: unification of bosons and fermions
 - ▶ In mathematics: projective representations of the symmetric group
- Queer super Lie algebra

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
 - ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
 - ► In physics: unification of bosons and fermions
 - ▶ In mathematics: projective representations of the symmetric group
- Queer super Lie algebra
 - ▶ The Lie superalgebra $\mathfrak{q}(n) = \mathfrak{sl}(n) \oplus \mathfrak{sl}(n)$ is the natural analog to the Lie algebra $A_{n-1} = \mathfrak{sl}(n)$.

- Lie superalgebras:
 - ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
 - ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
 - ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
 - ▶ In physics: unification of bosons and fermions
 - ▶ In mathematics: projective representations of the symmetric group
- Queer super Lie algebra
 - ▶ The Lie superalgebra $\mathfrak{q}(n) = \mathfrak{sl}(n) \oplus \mathfrak{sl}(n)$ is the natural analog to the Lie algebra $A_{n-1} = \mathfrak{sl}(n)$.
 - ► Highest weight crystals for queer super Lie algebras (Grantcharov et al.)

• Lie superalgebras:

- ▶ A superalgebra is a \mathbb{Z}_2 -graded algebra $G_0 \oplus G_1$.
- ► A Lie superalgebra comes with a bracket operation satisfying "super" antisymmetry and the "super" Jacobi identity.
- ▶ These are identical to the usual ones up to a power of -1. Setting $G_1 = 0$ recovers the definition of Lie algebra.
- ▶ In physics: unification of bosons and fermions
- ▶ In mathematics: projective representations of the symmetric group
- Queer super Lie algebra
 - ▶ The Lie superalgebra $\mathfrak{q}(n) = \mathfrak{sl}(n) \oplus \mathfrak{sl}(n)$ is the natural analog to the Lie algebra $A_{n-1} = \mathfrak{sl}(n)$.
 - ► Highest weight crystals for queer super Lie algebras (Grantcharov et al.)

Goal

Characterization of queer super crystals

- 1 Crystals of type A_n
- Queer supercrystals
- 3 Stembridge axioms
- 4 Characterization of queer crystals

Abstract crystal of type A_n : nonempty set B together with the maps

$$e_i, f_i \colon B \to B \sqcup \{0\} \qquad (i \in I)$$

wt: $B \to \Lambda$

Abstract crystal of type A_n : nonempty set B together with the maps

$$e_i, f_i \colon B \to B \sqcup \{0\}$$
 $(i \in I)$
wt: $B \to \Lambda$

```
weight lattice \Lambda = \mathbb{Z}_{\geq 0}^{n+1} index set I = \{1, 2, ..., n\} simple root \alpha_i = \epsilon_i - \epsilon_{i+1}, \epsilon_i i-th standard basis vector of \mathbb{Z}^{n+1}
```

Abstract crystal of type A_n : nonempty set B together with the maps

$$e_i, f_i \colon B \to B \sqcup \{0\}$$
 $(i \in I)$
wt: $B \to \Lambda$

weight lattice $\Lambda = \mathbb{Z}_{\geq 0}^{n+1}$ index set $I = \{1, 2, ..., n\}$ simple root $\alpha_i = \epsilon_i - \epsilon_{i+1}$, ϵ_i *i*-th standard basis vector of \mathbb{Z}^{n+1} string lengths for $b \in B$

$$\varphi_i(b) = \max\{k \in \mathbb{Z}_{\geqslant 0} \mid f_i^k(b) \neq 0\}$$

$$\varepsilon_i(b) = \max\{k \in \mathbb{Z}_{\geqslant 0} \mid e_i^k(b) \neq 0\}$$

Abstract crystal of type A_n : nonempty set B together with the maps

$$e_i, f_i \colon B \to B \sqcup \{0\}$$
 $(i \in I)$
wt: $B \to \Lambda$

weight lattice $\Lambda = \mathbb{Z}_{>0}^{n+1}$ index set $I = \{1, 2, ..., n\}$ ϵ_i i-th standard basis vector of \mathbb{Z}^{n+1} simple root $\alpha_i = \epsilon_i - \epsilon_{i+1}$, string lengths for $b \in B$

$$\varphi_i(b) = \max\{k \in \mathbb{Z}_{\geqslant 0} \mid f_i^k(b) \neq 0\}$$

$$\varepsilon_i(b) = \max\{k \in \mathbb{Z}_{\geqslant 0} \mid e_i^k(b) \neq 0\}$$

We require:

A1.
$$f_ib = b'$$
 if and only if $b = e_ib'$ wt $(b') = \text{wt}(b) + \alpha_i$

Crystal: A_n example

Example

Standard crystal \mathcal{B} for type A_n :

Crystal: A_n example

Example

Standard crystal \mathcal{B} for type A_n :

- wt $(i) = \epsilon_i$
- Highest weight element: 1

B and C crystals of type A_n

Definition

Tensor product $B \otimes C$ has the following data:

B and C crystals of type A_n

Definition

Tensor product $B \otimes C$ has the following data:

• Elements: $b \otimes c := (b, c) \in B \times C$

B and C crystals of type A_n

Definition

Tensor product $B \otimes C$ has the following data:

- Elements: $b \otimes c := (b, c) \in B \times C$
- Weight map: $wt(b \otimes c) = wt(b) + wt(c)$

B and C crystals of type A_n

Definition

Tensor product $B \otimes C$ has the following data:

- Elements: $b \otimes c := (b, c) \in B \times C$
- Weight map: $wt(b \otimes c) = wt(b) + wt(c)$
- Crystal operators:

$$f_i(b \otimes c) = \begin{cases} f_i(b) \otimes c & \text{if } \varepsilon_i(b) \geqslant \varphi_i(c) \\ b \otimes f_i(c) & \text{if } \varepsilon_i(b) < \varphi_i(c) \end{cases}$$

$$e_i(b \otimes c) = egin{cases} e_i(b) \otimes c & ext{if } arepsilon_i(b) > arphi_i(c) \ b \otimes e_i(c) & ext{if } arepsilon_i(b) \leqslant arphi_i(c) \end{cases}$$

Example: Tensor product

Example

Components of crystal of words $\mathcal{B}^{\otimes 3} = \mathcal{B} \otimes \mathcal{B} \otimes \mathcal{B}$ of type A_2 :

Why are crystals interesting?

Why are crystals interesting?

• Characters: character of highest weight crystal $B(\lambda)$ is Schur function s_{λ}

Why are crystals interesting?

- Characters: character of highest weight crystal $B(\lambda)$ is Schur function s_{λ}
- Littlewood–Richardson rule:

$$s_{\lambda}s_{\mu}=\sum_{
u}c_{\lambda\mu}^{
u}s_{
u}$$

 $c_{\lambda\mu}^{\nu} = \text{number of highest weights of weight } \nu \text{ in } B(\lambda) \otimes B(\mu)$

- \bigcirc Crystals of type A_r
- Queer supercrystals
- 3 Stembridge axioms
- 4 Characterization of queer crystals

Queer crystal: Developments

• Queer Lie superalgebra q(n): a super analogue of $\mathfrak{sl}(n)$

Queer crystal: Developments

- Queer Lie superalgebra q(n): a super analogue of $\mathfrak{sl}(n)$
- [Grantcharov, Jung, Kang, Kashiwara, Kim, '10]: Crystal basis theory for queer Lie superalgebras using $U_q(\mathfrak{q}(n))$
 - ▶ Introduced queer crystals on words with tensor product rule.
 - Explicit combinatorial realization of queer crystals using semistandard decomposition tableaux.
 - Existence of fake highest (and lowest) weights on queer crystals.

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

Standard crystal and tensor product

Example

Standard queer crystal \mathcal{B} for $\mathfrak{q}(n+1)$

Tensor product: $b \otimes c \in B \otimes C$

$$f_{-1}(b\otimes c)=egin{cases} b\otimes f_{-1}(c) & ext{if } \operatorname{wt}(b)_1=\operatorname{wt}(b)_2=0 \ f_{-1}(b)\otimes c & ext{otherwise} \end{cases}$$
 $e_{-1}(b\otimes c)=egin{cases} b\otimes e_{-1}(c) & ext{if } \operatorname{wt}(b)_1=\operatorname{wt}(b)_2=0 \ e_{-1}(b)\otimes c & ext{otherwise} \end{cases}$

One connected component of $\mathcal{B}^{\otimes 4}$ for $\mathfrak{q}(3)$:

Why are queer crystals interesting?

• Characters: character of highest weight crystal $B(\lambda)$ (λ strict partition) is Schur P function P_{λ}

Why are queer crystals interesting?

- Characters: character of highest weight crystal $B(\lambda)$ (λ strict partition) is Schur P function P_{λ}
- Littlewood–Richardson rule:

$$P_{\lambda}P_{\mu}=\sum_{
u}g_{\lambda\mu}^{
u}P_{
u}$$

 $g_{\lambda\mu}^{\nu} = \text{number of highest weights of weight } \nu \text{ in } B(\lambda) \otimes B(\mu)$

(Fake) highest weight elements

In the queer crystal there exist fake highest weight elements. Question: How do we detect highest weight elements?

(Fake) highest weight elements

In the queer crystal there exist fake highest weight elements.

Question: How do we detect highest weight elements?

Definition

$$f_{-i} := s_{w_i^{-1}} f_{-1} s_{w_i}$$
 and $e_{-i} := s_{w_i^{-1}} e_{-1} s_{w_i}$

where $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$ and s_i is the reflection along the *i*-string

(Fake) highest weight elements

In the queer crystal there exist fake highest weight elements.

Question: How do we detect highest weight elements?

Definition

$$f_{-i} := s_{w_i}^{-1} f_{-1} s_{w_i}$$
 and $e_{-i} := s_{w_i}^{-1} e_{-1} s_{w_i}$

where $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$ and s_i is the reflection along the *i*-string

Theorem (Grantcharov et al. 2014)

Each connected component in $\mathcal{B}^{\otimes \ell}$ has a unique highest weight element with

$$e_i u = 0$$
 and $e_{-i} u = 0$ for all $i \in I_0 = \{1, 2, ..., n\}$

(Fake) highest weight elements

In the queer crystal there exist fake highest weight elements.

Question: How do we detect highest weight elements?

Definition

$$f_{-i} := s_{w_i^{-1}} f_{-1} s_{w_i}$$
 and $e_{-i} := s_{w_i^{-1}} e_{-1} s_{w_i}$

where $w_i = s_2 \cdots s_i s_1 \cdots s_{i-1}$ and s_i is the reflection along the *i*-string

Theorem (Grantcharov et al. 2014)

Each connected component in $\mathcal{B}^{\otimes \ell}$ has a unique highest weight element with

$$e_i u = 0$$
 and $e_{-i} u = 0$ for all $i \in I_0 = \{1, 2, ..., n\}$

Similarly

$$f_{-i'} := s_{w_0} e_{-(n+1-i)} s_{w_0}$$
 and $e_{-i'} := s_{w_0} f_{-(n+1-i)} s_{w_0}$

where w_0 is long word in S_{n+1} , give lowest weight elements

Queer crystal: Example revisited

Same connected component of $\mathcal{B}^{\otimes 4}$:

Outline

- Stembridge axioms

Question

Is there a local characterization of a crystal graph?

Question

Is there a local characterization of a crystal graph?

- [Stembridge '03] Yes, for crystals of simply-laced root systems (in particular type A_n)
- Local rules characterize Stembridge crystals: allows pure combinatorial analysis of these crystals

B crystal for a simply-laced root system with index set $I = \{1, 2, ..., n\}$. Axiom **S1**. For distinct $i, j \in I$ and $x, y \in B$ with $y = e_i x$, then either $\varepsilon_j(y) = \varepsilon_j(x) + 1$ or $\varepsilon_j(y) = \varepsilon_j(x)$.

Axiom **S2.** For distinct $i, j \in I$, if $x \in B$ with both $\varepsilon_i(x) > 0$ and $\varepsilon_j(x) = \varepsilon_j(e_i x) > 0$, then $e_i e_j x = e_j e_i x$ and $\varphi_i(e_j x) = \varphi_i(x)$.

Axiom **S3.** For distinct $i, j \in I$, if $x \in B$ with both $\varepsilon_j(e_ix) = \varepsilon_j(x) + 1 > 1$ and $\varepsilon_i(e_jx) = \varepsilon_i(x) + 1 > 1$, then $e_ie_j^2e_ix = e_je_i^2e_jx \neq 0$, $\varphi_i(e_jx) = \varphi_i(e_j^2e_ix)$ and $\varphi_j(e_ix) = \varphi_j(e_i^2e_jx)$.

Theorem (Stembridge 2003)

B, C Stembridge crystals $\Longrightarrow B \otimes C$ Stembridge crystal

Theorem (Stembridge 2003)

B, C Stembridge crystals $\Longrightarrow B \otimes C$ Stembridge crystal

Theorem (Stembridge 2003)

Every connected component of a Stembridge crystal has a unique highest weight element.

Theorem (Stembridge 2003)

B, C Stembridge crystals $\Longrightarrow B \otimes C$ Stembridge crystal

Theorem (Stembridge 2003)

Every connected component of a Stembridge crystal has a unique highest weight element.

Theorem (Stembridge 2003)

B, B' Stembridge crystals, $u \in B$, $u' \in B'$ highest weight elements If wt(u) = wt(u'), then B and B' are isomorphic.

Theorem (Stembridge 2003)

B, C Stembridge crystals $\Longrightarrow B \otimes C$ Stembridge crystal

Theorem (Stembridge 2003)

Every connected component of a Stembridge crystal has a unique highest weight element.

Theorem (Stembridge 2003)

B, B' Stembridge crystals, $u \in B$, $u' \in B'$ highest weight elements If wt(u) = wt(u'), then B and B' are isomorphic.

Stembridge crystals describe the representation theory of the corresponding Lie algebra.

Outline

- \bigcirc Crystals of type A_r
- Queer supercrystals
- Stembridge axioms
- 4 Characterization of queer crystals

Stembridge type axioms

Conjecture (Assaf, Oguz 2018)

In addition to the Stembridge axioms, the relations below uniquely characterize queer crystals.

Subcrystal example

For instance, the $\{-1,2\}$ -subcrystal of

Subcrystal Example Cont.

...is given by

Counterexample

[Gillespie, Hawkes, Poh, S. 2018]

Main theorem: characterization of queer supercrystals

Theorem (GHPS 2018)

 ${\cal C}$ connected component of a generic abstract queer crystal satisfying:

- ① C satisfies the local queer axioms.
- \circ C satisfies the connectivity axioms.
- **3** Component graph $G(\mathcal{C}) \cong G(\mathcal{D})$ \mathcal{D} some connected component of $\mathcal{B}^{\otimes \ell}$

Then the queer supercrystals $\mathcal{C} \cong \mathcal{D}$.

Question: How are the type A components glued together?

Question: How are the type A components glued together?

Definition

 ${\cal C}$ crystal with index set ${\it I}_0 \cup \{-1\}$, ${\it A}_n$ Stembridge crystal when restricted to ${\it I}_0$

Type A component graph $G(\mathcal{C})$ defined as follows:

Question: How are the type A components glued together?

Definition

 ${\cal C}$ crystal with index set ${\it I}_0 \cup \{-1\}$, ${\it A}_n$ Stembridge crystal when restricted to ${\it I}_0$

Type A component graph G(C) defined as follows:

• Vertices of G(C) are the type A components of C, labeled by highest weight elements

Question: How are the type A components glued together?

Definition

 ${\cal C}$ crystal with index set ${\it I}_0 \cup \{-1\}$, ${\it A}_n$ Stembridge crystal when restricted to ${\it I}_0$

Type A component graph $G(\mathcal{C})$ defined as follows:

- Vertices of $G(\mathcal{C})$ are the type A components of \mathcal{C} , labeled by highest weight elements
- Edge from vertex C_1 to vertex C_2 , if $\exists b_1 \in C_1$ and $b_2 \in C_2$ such that

$$f_{-1}b_1=b_2.$$

Graph on type A components: example

correct graph G(C)

Graph on type A components: example

correct graph G(C)

counterexample

Combinatorial description of G(C)

Goal

Give a combinatorial description of G(C).

Combinatorial description of G(C)

Goal

Give a combinatorial description of G(C).

• Edges described by e_{-i} :

Proposition (GHPS 2018)

 C_1 , C_2 distinct type A components in $\mathcal C$ Let $u_2 \in C_2$ be I_0 -highest weight element

Combinatorial description of G(C)

Goal

Give a combinatorial description of G(C).

• Edges described by e_{-i} :

Proposition (GHPS 2018)

 C_1 , C_2 distinct type A components in CLet $u_2 \in C_2$ be l_0 -highest weight element

There is an edge from C_1 to C_2 in G(C) $\Leftrightarrow e_{-i}u_2 \in C_1$ for some $i \in I_0$

Remove by-pass arrows:

• Combinatorial description of remaining arrows: Define $f_{(-i,h)} := f_{-i}f_{i+1}f_{i+2}\cdots f_{h-1}$.

• Combinatorial description of remaining arrows: Define $f_{(-i,h)} := f_{-i}f_{i+1}f_{i+2}\cdots f_{h-1}$.

Theorem (GHPS 2018)

Let $\mathcal C$ be a connected component in $\mathcal B^{\otimes \ell}$. Then each non by-pass edge in $G(\mathcal C)$ can be obtained by $f_{(-i,h)}$ for some i and h>i minimal such that $f_{(-i,h)}$ applies.

• $b_{q_i}, b_{q_{i-1}}, \dots, b_{q_1}$ leftmost sequence $i, i-1, \dots, 1$ from left to right

- $b_{q_i}, b_{q_{i-1}}, \dots, b_{q_1}$ leftmost sequence $i, i-1, \dots, 1$ from left to right
- Set $r_1 = q_1$

- $b_{a_i}, b_{a_{i-1}}, \dots, b_{a_1}$ leftmost sequence $i, i-1, \dots, 1$ from left to right
- Set $r_1 = q_1$
- Recursively $r_i < r_{i-1}$ for $1 < j \le i$ maximal such that $b_{r_i} = j$.

- ullet $b_{q_i}, b_{q_{i-1}}, \ldots, b_{q_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = q_1$
- Recursively $r_j < r_{j-1}$ for $1 < j \leqslant i$ maximal such that $b_{r_i} = j$.
- By definition $q_i \leqslant r_i$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

- $b_{a_i}, b_{a_{i-1}}, \ldots, b_{a_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = a_1$
- Recursively $r_i < r_{i-1}$ for $1 < j \le i$ maximal such that $b_{r_i} = j$.
- By definition $q_i \leqslant r_i$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

Example

b = 1331242312111 and i = 3

We overline b_{a}

$$b = 1\overline{3}31\overline{2}423\overline{1}2111$$

- $b_{a_i}, b_{a_{i-1}}, \ldots, b_{a_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = a_1$
- Recursively $r_i < r_{i-1}$ for $1 < j \le i$ maximal such that $b_{r_i} = j$.
- By definition $q_i \leqslant r_i$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

Example

b = 1331242312111 and i = 3

We overline b_{q_i}

$$b = 1\overline{3}31\overline{2}423\overline{1}2111$$

and underline b_{r_i}

$$b = 1\overline{3}31\overline{2}423\overline{1}2111$$

- $b_{q_i}, b_{q_{i-1}}, \ldots, b_{q_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = q_1$
- Recursively $r_j < r_{j-1}$ for $1 < j \leqslant i$ maximal such that $b_{r_i} = j$.
- By definition $q_j \leqslant r_j$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

Example

b = 1331242312111 and i = 3

We overline b_{q_i}

$$b = 1\overline{3}31\overline{2}423\overline{1}2111$$

and underline b_{r_i}

$$b = 1\overline{3}31\overline{2}423\overline{1}2111$$

Here k = 1.

Combinatorial description of f_{-i} (continued)

- ullet $b_{q_i}, b_{q_{i-1}}, \ldots, b_{q_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = q_1$
- Recursively $r_j < r_{j-1}$ for $1 < j \le i$ maximal such that $b_{r_i} = j$.
- By definition $q_j \leqslant r_j$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

Proposition

Let $b \in \mathcal{B}^{\otimes \ell}$ be $\{1, 2, ..., i\}$ -highest weight for $i \in I_0$ and $\varphi_{-i}(b) = 1$. Then $f_{-i}(b)$ is obtained from b by changing

- $b_{q_i} = j$ to j 1 for j = i, i 1, ..., k + 1
- $b_{r_i} = j$ to j + 1 for j = i, i 1, ..., k.

Combinatorial description of f_{-i} (continued)

- ullet $b_{q_i}, b_{q_{i-1}}, \ldots, b_{q_1}$ leftmost sequence $i, i-1, \ldots, 1$ from left to right
- Set $r_1 = q_1$
- Recursively $r_j < r_{j-1}$ for $1 < j \le i$ maximal such that $b_{r_j} = j$.
- By definition $q_j \leqslant r_j$. Let $1 \leqslant k \leqslant i$ be maximal such that $q_k = r_k$.

Proposition

Let $b \in \mathcal{B}^{\otimes \ell}$ be $\{1, 2, ..., i\}$ -highest weight for $i \in I_0$ and $\varphi_{-i}(b) = 1$. Then $f_{-i}(b)$ is obtained from b by changing

- $b_{q_i} = j$ to j 1 for j = i, i 1, ..., k + 1
 - $b_{r_i} = j$ to j + 1 for j = i, i 1, ..., k.

Example

$$b = 1\overline{3}\underline{3}1\overline{2}4\underline{2}3\overline{1}\underline{2}111$$
 $i = 3$
 $f_{-3}(b) = 1\underline{2}41143322111$

Almost lowest weight elements

Almost lowest weight elements:

$$\varphi_1(b) = 2$$
 and $\varphi_i(b) = 0$ for all $i \in I_0 \setminus \{1\}$

Almost lowest weight elements:

$$\varphi_1(b) = 2$$
 and $\varphi_i(b) = 0$ for all $i \in I_0 \setminus \{1\}$

Lemma

Almost lowest weight elements are $g_{j,k} := (e_1 \cdots e_j)(e_1 \cdots e_k)v$, where v is lowest weight and $1 \le j \le k \le n$.

Connectivity axioms

Definition (Connectivity axioms)

C0.
$$\varphi_{-1}(g_{j,k}) = 0$$
 implies that $\varphi_{-1}(e_1 \cdots e_k v) = 0$.

Connectivity axioms

Definition (Connectivity axioms)

- **C0.** $\varphi_{-1}(g_{j,k}) = 0$ implies that $\varphi_{-1}(e_1 \cdots e_k v) = 0$.
- **C1.** If $G(\mathcal{C})$ contains edge $u \to u'$ such that $\operatorname{wt}(u')$ is obtained from $\operatorname{wt}(u)$ by moving a box from row n+1-k to row n+1-h with h < k. Then for all $h < j \leqslant k$

$$f_{-1}g_{j,k}=(e_2\cdots e_j)(e_1\cdots e_h)v',$$

Stembridge axioms

where v' is I_0 -lowest weight with $\uparrow v' = u'$.

Connectivity axioms

Definition (Connectivity axioms)

- **C0.** $\varphi_{-1}(g_{i,k}) = 0$ implies that $\varphi_{-1}(e_1 \cdots e_k v) = 0$.
- **C1.** If $G(\mathcal{C})$ contains edge $u \to u'$ such that wt(u') is obtained from wt(u)by moving a box from row n+1-k to row n+1-h with h < k. Then for all $h < j \le k$

$$f_{-1}g_{j,k}=(e_2\cdots e_j)(e_1\cdots e_h)v',$$

Stembridge axioms

where v' is I_0 -lowest weight with $\uparrow v' = u'$.

C2. (a) G(C) contains edge $u \to u'$ such that wt(u') is obtained from wt(u) by moving a box from row n+1-k to row n+1-h with h < k or (b) no such edge exists in $G(\mathcal{C})$

Then for all $1 \le j \le h$ in case (a) and all $1 \le j \le k$ in case (b)

$$f_{-1}g_{i,k}=(e_2\cdots e_k)(e_1\cdots e_i)v.$$

Thank you!