▶ ▶ 4 : ENSEMBLES DE NOMBRES

1▶

- * Compatibilités de \leq avec + et × : pour tous a, b et c naturels tels que $a \leq b$ on a $a + c \leq b + c$ et $ac \leq bc$.
- * On reverra les lois de composition plus en détails ultérieurement.
- * On admet qu'à bijection croissante près (autrement dit à changements de "noms" près respectant l'ordre des éléments), il existe un unique ensemble totalement ordonné et vérifiant les propriétés a, b et c (appelées "axiomes de Péano"), et cet ensemble est \mathbb{N} .
- * Le plus petit élément de \mathbb{N} , noté 0, est l'élément neutre pour +: pour tout n naturel, n+0=0+n=n. En revanche, il manque à chaque naturel n (sauf 0) un symétrique m tel que n+m=m+n=0. On va "agrandir" \mathbb{N} de ce point de vue, et créer \mathbb{Z} ...

2▶

* On prolonge la relation d'ordre de $\mathbb N$ comme suit : si $a \notin \mathbb N$, alors a < 0, et si $b \geqslant 0$, alors $a < 0 \leqslant b$; enfin si a et b sont négatifs, alors $a \leqslant b$ si $-b \leqslant -a$.

Les autres propriétés se déduisent alors de celles sur \mathbb{N} .

Attention à la "compatibilité" de \leqslant avec la multiplication :

Si $a \leq b$ et $c \geq 0$, alors $ac \leq bc$. Si c < 0, c'est $bc \leq ac$ qui est juste!

* Soit a, b et c des entiers relatifs quelconques.

Associativités : (a + b) + c = a + (b + c) pour +, et (ab)c = a(bc) pour la multiplication.

Commutativités : a + b = b + a pour +, et ab = ba pour la multiplication.

1 est l'élément neutre pour \times : pour tout a dans \mathbb{Z} , $a \times 1 = 1 \times a = a$.

Distributivité de \times par rapport à + : (a+b)c = ac + bc

* Relativement à la multiplication, 1 et -1 ont un inverse (eux-mêmes), mais ce sont les seuls. On va "agrandir" \mathbb{Z} de ce point de vue et créer \mathbb{Q} ...

3▶

- * Rigoureusement, il y a beaucoup à faire pour arriver à ce résultat! En effet, un rationnel admet plusieurs écritures ou représentations, il faut donc vérifier par exemple que les résultats donnés par les opérations ($\frac{p}{q} + \frac{r}{s} = \frac{ps + qr}{qs}$ et $\frac{p}{q} \times \frac{r}{s} = \frac{pr}{qs}$) ne dépendent pas de ces choix de représentations.
- * Dire que $\mathbb Q$ contient $\mathbb Z$ est un raccourci : $\mathbb Z$ est identifié aux fractions de dénominateur 1.
- * Noter que ($\mathbb{Q} \setminus \{0\}, \times$) forme un groupe commutatif!
- * Que manque-t-il ? Par exemple, il n'existe pas de rationnel $x=\frac{p}{q}$ tel que $x^2=2$, sans quoi on obtiendrait $p^2=2q^2$ avec un nombre pair de 2 à gauche et impair à droite dans les décompositions premières. Autrement dit, $\sqrt{2}$ (défini de manière abstraite...) n'est pas rationnel. On va "agrandir" $\mathbb Q$ de ce point de vue et créer $\mathbb R$...

4▶

- * Un sous-anneau d'un anneau $(E, +, \times)$ est une partie A de E qui, muni des lois de l'anneau, possède une structure d'anneau. Cela nécessite que les calculs effectués à partir d'éléments de la partie A aient pour résultats des élements de A (stabilité par + et par \times). Par convention, on impose en plus que l'élément neutre pour la deuxième loi appartienne aussi à A.
- * Par exemple, l'écriture décimale du nombre décimal $\frac{175}{10^2}$ est 1.75, on dit qu'elle est finie.

Les rationnels ne sont pas tous des décimaux, comme par exemple 1/3 dont le développement décimal (infini) est 0.3333.... On reviendra sur les développements décimaux des rationnels et même des réels en fin d'année.

* Si on choisit p premier plutôt que 10, on parle de l'ensemble des entiers p-adiques, de la forme a/p^n pour $a \in \mathbb{Z}$ et n naturel. Par exemple : 1/3 = 0.1 en écriture tri-adique.

Attention à la compatibilité avec \leq , même principe que dans \mathbb{Z} !

* Pour parler très rapidement, on obtient \mathbb{R} en "ajoutant" à \mathbb{Q} les limites de ses suites monotones de rationnels, ou encore les bornes supérieures de ses ensembles non vides et majorés.

Par exemple, la suite définie par $u_0 = 2$ et, pour tout n naturel, par $u_{n+1} = \frac{u_n^2 + 2}{2u_n}$ est une suite de rationnels décroissante et minorée par 1. Elle converge dans \mathbb{R} vers un l positif tel que $l^2 = 2$, on note alors $l = \sqrt{2}$. De même, l'ensemble de rationnels $\{x \in \mathbb{Q} \mid x^2 \leq 2\}$ est non vide et majoré par 2, de borne supérieure $\sqrt{2}$, nous allons y revenir.

* Il manque encore des solutions d'équations longtemps considérées comme insensées, comme : $x^2 = -1$ On va, dans le prochain chapitre, "agrandir" $\mathbb R$ de ce point de vue et créer $\mathbb C$...

6▶

- * Toutes ces propriétés s'obtiennent via les compatibilités de la relation d'ordre par rapport aux lois.
- $*ab \ge 0$ s'interprète par : a et b ont même signe. Ainsi, un carré de réel est toujours positif.

7▶

* Un intervalle I ouvert est voisinage de chacun de ses points : si $c \in I$, il existe $\varepsilon > 0$ tel que $|c - \varepsilon, c + \varepsilon| \subset I$.

En quelque sorte, aucun de ses éléments ne "ferme" I, comme le ferait 1 pour]0,1].

* Toute suite convergente d'un intervalle I fermé a sa limite dans I. En ce sens, on comprend mieux l'adjectif "fermé".

Pratique 1:

1.

On utilise des crochets ouverts ou fermés

2. Les intervalles majorés sont ceux dont l'écriture ne comporte pas $+\infty$, les minorés ceux dont l'écriture n'utilise pas $-\infty$, les bornés sont ceux qui sont minorés et majorés.

Les intervalles qui admettent un minimum sont ceux écrits avec un crochet fermant à gauche, ceux qui admettent un maximum sont ceux écrits avec un crochet fermant à droite.

8

* Preuve du théorème : Si x = 0, n = 0 convient.

Sinon, x > 0, et soit \mathcal{P} l'ensemble des naturels p tels que $p\varepsilon < x$. Cette partie \mathcal{P} de \mathbb{N} est non vide (elle contient 0) et majorée, elle admet donc un plus grand élément, qu'on peut noter n_0 . Alors $n = n_0 + 1$ est un naturel tel que $n\varepsilon \geqslant x$.

* La même preuve convient pour $\mathbb Q$ qui est aussi archimédien.

9▶

* Une distance d sur E est une application qui à un couple de points de E associe une valeur réelle positive et qui vérifie les propriétés de symétrie, de séparation, et l'inégalité triangulaire.

Il n'y a pas que la valeur absolue comme distance sur \mathbb{R} . Par exemple, $(x,y)\mapsto 2|x-y|$ convient ...

- * On vérifie aisément les propriétés 1, 2, 3 et 6.
- * Preuve de l'inégalité triangulaire : les deux membres étant positifs, l'inégalité à démontrer est équivalente à celle obtenue par passage aux carrés.

Or: $|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le x^2 + y^2 + 2|x||y| = (|x|+|y|)^2$, d'où le résultat. Il y a égalité si, et seulement si, xy = |x||y|, c'est-à-dire si, et seulement si, x et y sont de même signe. \square

- * Preuve de la deuxième inégalité triangulaire : D'une part $|x| = |(x+y) y| \le |x+y| + |y|$, d'autre part $|y| = |(y+x) x| \le |x+y| + |x|$. On en déduit $|x| |y| \le |x+y|$ et $|y| |x| \le |x+y|$, d'où le résultat. En changeant y en -y on obtient l'écriture avec \pm .
- * Par récurrence simple, on généralise l'inégalité triangulaire (et le cas d'égalité) aux cas de n points réels $x_i: |\sum_{i=1}^n x_i| \leqslant \sum_{i=1}^n |x_i|$ avec égalité si, et seulement si, les x_i sont tous de même signe.

Pratique 2:

- **1.** * Si $a \ge 0$, |a| = a; si $a \le 0$, |a| = -a donc $|a|^2 = (-a)^2 = a^2$.
- * $\sqrt{a^2}$ est le réel positif de carré a^2 , donc c'est |a| (compte tenu de l'égalité précédente).
- * Si $a \ge 0$, $a \le \hat{b} \iff -b \le a \le \hat{b}$ puisque $-\hat{b} \le 0$. Si $a \le 0$, $-a \le \hat{b} \iff a \ge -b \iff -b \le a \le b$ puisque $b \ge 0$.
- * Si $a \le b$, |a-b| = b-a, et si $a \ge b$, alors |a-b| = a-b, ce qui donne les résultats pour $\max(a,b)$ et pour $\min(a,b)$.
- **2.** $|a-b| \le r$ équivaut à $-r \le a-b \le r$ comme déjà vu, d'où le résultat, ce qui donne les descriptions d'intervalles qui suivent.

Ainsi, $]a,b[=\{x\in\mathbb{R}\mid |x-\frac{a+b}{2}|<\frac{|b-a|}{2}\}\ (\text{ce qu'on adapte à }[a,b] \text{ avec des inégalités larges}).$

- **3.** Le sens direct est immédiat. Montrons le sens réciproque par contraposée, en supposant x non nul, donc |x| > 0. Il suffit alors de choisir $\varepsilon = |x|/2$.
- **4.** Preuve par récurrence sur n, sans difficulté, à partir du cas n=2 vu en cours (cas n=1 immédiat).
- 5. Utiliser la généralisation de l'inégalité triangulaire au cas de n points puis que les valeurs prises par cos sont entre -1 et 1.

10▶

* On démontrera plus tard l'inégalité de Cauchy-Schwarz.

Pour la retrouver, pensez qu'elle se traduit par la chose suivante :

la valeur absolue du produit scalaire est inférieure au produit des normes!!

Par exemple avec n=2, si vous choisissez les deux vecteurs $u=\begin{pmatrix} x_1\\x_2 \end{pmatrix}$ et $v=\begin{pmatrix} y_1\\y_2 \end{pmatrix}$, alors $|(u\,|\,v)|=|x_1y_1+x_2y_2|$ alors que $||u||=\sqrt{x_1^2+x_2^2}$ et $||v||=\sqrt{y_1^2+y_2^2}...$

* Y penser !!! Quand une inégalité résiste, CS est tapi dans l'ombre...

Il n'y aura qu'un pas à généraliser cela avec des vecteurs à n composantes....

Pratique 3:

- **1.** Par compatibilité avec l'addition : $-1 \le a+b \le 3$. Utilisons la compatibilité avec la multiplication : pour $c \in [0,3]$, il vient $-3 \le (a+b)c \le 9$, et pour $c \in [-1,0]$ il vient : $-3 \le (a+b)c \le 1$. Finalement : $-3 \le (a+b)c \le 9$.
- **2.** Comme $x \ge 1$, $x^3 \ge x$ donc $x^3 x \ge 0$. Comme $x^2 + 1 \ge 0$, on a $0 \le \frac{x^3 x}{x^2 + 1}$.

D'une part $x^2 + 1 \ge 1 + 1 = 2$ et d'autre part $x^3 - x \le 8 - 1 = 7$, d'où l'inégalité de droite voulue.

- **3.** $f: x \mapsto x(1-x)$ est dérivable sur \mathbb{R} , de dérivée $x \mapsto 1-2x$. La fonction f est donc croissante sur $]-\infty, 1/2]$ et décroissante sur $[1/2, +\infty[$, donc f atteint son maximum en x = 1/2 avec f(1/2) = 1/4.
- 4. C'est un exemple d'utilisation de l'inégalité de Cauchy-Schwarz.

Autre méthode : l'inégalité, reliant deux quantités positives, est équivalente à celle entre leurs carrés, elle-même équivalente à $a^2 + b^2 - 2ab \ge 0$, ce qui est vrai (identité remarquable).

5. Utiliser l'inégalité de Cauchy-Schwarz ! Puis $\sum_{i=1}^{n} \cos^2(\theta_i) \leq n...$

11▶

- * On peut alors prolonger naturellement + et \times , sans toutefois définir $(-\infty) + (+\infty)$ ni $0 \times (\pm \infty)$.
- * Ces écritures permettront simplement d'écrire de façon plus confortable certaines propriétés (limites, suites, définitions...).

12▶

- * Ainsi, pour montrer que $\alpha = \operatorname{Sup} A$, on montre que :
 - a) $\forall x \in A, x \leq \alpha \ (\alpha \text{ est un majorant de } A)$
 - b) $\forall y \in E, \forall x \in A, x \leqslant y \Longrightarrow \alpha \leqslant y \ (\alpha \text{ est le plus petit des majorants de } A)$
- * De même, pour montrer que $\beta = \text{Inf } A$, on montre que :
 - a) $\forall x \in A, x \ge \beta$ (β est un minorant de A)
 - b) $\forall y \in E, \forall x \in A, y \leqslant x \Longrightarrow \beta \geqslant y \ (\beta \text{ est le plus grand des minorants de } A)$

13▶

- * Cette propriété est fondamentale au sens où elle est la base de la construction de \mathbb{R} .
- * Par exemple, l'ensemble E des éléments positifs et de carré inférieur strictement à 2 est non vide et majoré par 2, donc admet une borne supérieure M dans \mathbb{R} (mais pas dans \mathbb{Q} ...). Vérifions que $M^2 = 2$, et on posera alors $M = \sqrt{2}$.

Pour tout $\varepsilon > 0$, $M - \varepsilon$ n'est pas un majorant de E, donc il existe $x_{\varepsilon} \in E$ tel que $M - \varepsilon \leqslant x_{\varepsilon}$, d'où $(M - \varepsilon)^2 \leqslant x_{\varepsilon}^2$, ce qui donne $M^2 - 2\varepsilon M + \varepsilon^2 < 2$. En faisant tendre ε vers 0, on obtient $M^2 \leqslant 2$.

De même, pour tout $\varepsilon > 0$, $(M + \varepsilon)^2 > 2$ sinon $(M + \varepsilon/2)^2 < 2$ et M n'est donc pas un majorant de E. On a alors $M^2 + 2\varepsilon M + \varepsilon^2 > 2$, et en faisant tendre ε vers 0 on obtient $M^2 \ge 2$.

Pratique 4:

- 1. Sup I = b et Inf I = a = Min I. L'intervalle I n'a pas de maximum.
- **2.** Par définition d'un majorant et d'un minorant, comme Inf A et Sup A existent puisque A est bornée, il vient pour tout (ou un) x dans A: Inf $A \le x \le \text{Sup } A$, d'où le résultat.

L'égalité ne peut avoir lieu que si cette dernière en est une pour tout élément x de A; nécessairement tout élément x de A est égal à Inf $A = \operatorname{Sup} A$, et A est alors un singleton.

3. Pour tout t réel, $t^2 - 1 \le t^2 + 1$ et $t^2 + 1 > 0$, donc $\frac{t^2 - 1}{1 + t^2} \le 1$. La partie A est non vide (clair) et majorée par 1, donc admet une borne supérieure, inférieure à 1 comme plus petit majorant.

Pour tout t réel, $\frac{t^2-1}{t^2+1}\geqslant -1$ équivaut à $2t^2\geqslant 0$ toujours vrai, donc A est minorée par -1, non vide, donc admet une borne inférieure, qui, comme plus grand minorant de A, vérifie Inf $A\geqslant -1$. Comme enfin on obtient -1 pour la valeur t=0, ce minorant est dans A et c'est donc Min A.

14▶

- * Preuve pour la caractérisation en ε : On récrit que $b=\operatorname{Sup} A$ parce que b est un majorant et que c'est le plus petit, c'est-à-dire que pour tout $\varepsilon>0,\ b-\varepsilon$ ne majore pas A. Même chose pour $b=\operatorname{Inf} A$.
- * Preuve pour la caractérisation séquentielle : Montrons l'équivalence entre les deux caractérisations pour le cas : b borne supérieure de A.

La condition "b majorant" est présente littéralement dans les deux caractérisations. Voyons les deuxièmes conditions.

Supposons : $\forall \varepsilon > 0$, $\exists a \in A, b - \varepsilon < a \leq b$. Pour chaque $n \in \mathbb{N}^*$, choisissons $\varepsilon = 1/n$, on obtient un élément a_n de A tel que $b - 1/n < a_n \leq b$. On a ainsi construit une suite $(a_n)_{n \in \mathbb{N}^*}$ d'éléments de A et qui converge vers b.

Réciproquement, supposons qu'il existe une suite $(a_n)_{n \in \mathbb{N}^*}$ d'éléments de A et qui converge vers b. On a donc, pour tout n naturel non nul, que $a_n \leq b$. Comme de plus $(b-a_n)_{n \in \mathbb{N}^*}$ converge vers 0, pour tout $\varepsilon > 0$, il existe n_0 tel que la distance de a_{n_0} à b soit inférieure à ε , soit : $b-\varepsilon < a_{n_0} < b+\varepsilon$, et finalement : $b-\varepsilon < a_{n_0} \leq b$.

Pratique 5:

1. On a déjà vu que 1 est un majorant de A. Or la suite $\left(\frac{n^2-1}{1+n^2}\right)$ est une suite d'éléments de A qui

converge vers 1, car :
$$\frac{n^2 - 1}{1 + n^2} = \frac{1 - 1/n^2}{1 + 1/n^2}$$

D'après la caractérisation séquentielle de la borne supérieure, Sup A=1. En revanche, aucun t réel ne réalise : $\frac{t^2-1}{1+t^2}=1$ puisque cela conduit à 1=-1.

Donc A n'a pas de maximum.

2. D'une part A et B sont non vides et majorées, donc Sup A et Sup B existent.

Pour tout a de A et b de B : $a + b \leq \operatorname{Sup} A + \operatorname{Sup} B$, ce qui donne A + B majoré, non vide, donc $\operatorname{Sup}(A+B)$ existe et $\operatorname{Sup}(A+B) \leqslant \operatorname{Sup} A + \operatorname{Sup} B$.

Enfin, d'après la caractérisation séquentielle de la borne supérieure, il existe une suite (a_n) de points de A qui converge vers $\operatorname{Sup} A$, et une suite (b_n) de points de B qui converge vers $\operatorname{Sup} B$. Comme la suite $(a_n + b_n)$ est une suite de points de A + B qui converge vers $\sup A + \sup B$, il vient, toujours par la caractérisation séquentielle de la borne supérieure, que Sup(A + B) = Sup A + Sup B.

3. Pour tout m et tout n naturels non nuls, on a : $0 < \frac{1}{m} + \frac{1}{n} \le 2$. Comme le choix de m = n = 1 donne le majorant 2, on a $\sup A = \max A = 2$. 0 est un minorant, donc $\inf A$ existe et est positif. Or la suite $(\frac{1}{n} + \frac{1}{n})_{n \in \mathbb{N}^*}$ est une suite de points de A qui converge vers 0. Par la caractérisation séquentielle de la borne inférieure, on a $\inf A = 0$, et enfin An'admet pas d'élément minimum.

15▶

* Preuve: Le cas d'un intervalle vide ou d'un convexe vide est simple.

La sens réciproque et clair. En effet, un intervalle I non vide de \mathbb{R} peut se décrire sous la forme (c,d)avec $c \leq d$ dans \mathbb{R} , c pouvant être $-\infty$, d pouvant être $+\infty$, les parenthèses étant ouvertes ou fermantes. Si $c \le a \le b \le d$ avec a et b réels dans I, on a bien tout point de [a,b] dans I par définition.

Soit maintenant C un convexe non vide de \mathbb{R} . C admet une borne supérieure d dans $\mathbb{R} \cup \{+\infty\}$, et d est son maximum si d est réel et appartient à C. De même on définit c comme sa borne inférieure dans $\mathbb{R} \cup \{-\infty\}$. On a donc C = (c, d) où suivant les cas les parenthèses sont ouvrantes ou fermantes, à condition de montrer que tout u de [c, d] appartient à C.

Soit donc $u \in [c, d]$. Comme u < d, u n'est pas majorant de C, donc il existe $b \in [c, d]$ tel que $b \in C$, et de même il existe $a \in [c, u]$ tel que $a \in C$. Par hypothèse, $[a, b] \subset C$, donc $u \in C$, et on peut donc conclure que C = (c, d) est un intervalle de \mathbb{R} .

* Remarquer que : $[a,b] = \{ta + (1-t)b \mid t \in [0,1]\}$. On dit que [a,b] est l'ensemble des **barycentres** à coefficients positifs (t et 1-t de somme 1) des points a et b.

Plus généralement, un convexe (de \mathbb{R}^2 par exemple) est une partie qui contient tous les barycentres à coefficients positifs de ses points.

16▶

Z n'est pas minoré, ce qui assure la non vacuité de la partie considérée.

Pratique 6:

1.

Graphe de la fonction partie entière :

2. Pour tout x réel : $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$. On en déduit $(1) : -\lfloor x \rfloor - 1 < -x \leqslant -\lfloor x \rfloor$, avec les termes à gauche et à droite dans \mathbb{Z} . Le seul problème tient dans les inégalités strictes et larges... Si $x \in \mathbb{Z}$, alors $\lfloor x \rfloor = x$ donc $-\lfloor x \rfloor = -x$ donc $\lfloor -x \rfloor = -\lfloor x \rfloor$.

Sinon, les inégalités étant toutes strictes dans (1), on obtient : $\lfloor -x \rfloor = -\lfloor x \rfloor - 1$

3. Pour tout réel x, de $|x| \le x < |x| + 1$ on déduit : $x - 1 < |x| \le x$

17▶

* Preuve : On utilise : $\lfloor 10^n x \rfloor \leq 10^n x < \lfloor 10^n x \rfloor + 1$ et on divise par 10^n pour obtenir le premier encadrement, le deuxième étant alors immédiat.

Enfin : $0 < d_n^+ - x \le d_n^+ - d_n^-$ donne le troisième.

- * Les deux suites (d_n^-) et (d_n^+) sont donc adjacentes et de limite x.
- * Les décimaux sont caractérisés par le fait que ces deux suites qu'ils définissent sont stationnaires.

18▶

- * La phrase " $\mathbb Q$ est dense dans $\mathbb R$ " traduit le résultat du théorème, dont les deux assertions sont équivalentes.
- * Preuve : Pour x réel donné, il suffit de remarquer que les suites (d_n^+) et (d_n^-) sont à valeurs décimales donc rationnelles et convergent vers x pour obtenir la deuxième assertion du théorème.

Si maintenant x et y sont deux réels distincts tels que x < y, la suite (d_n^+) associée à x est une suite de rationnels qui converge par valeurs strictement supérieures vers x en décroissant. Pour n assez grand, ses termes, rationnels, sont compris strictement entre x et y.

* Pour la dernière partie, on peut aussi utiliser que $\mathbb R$ est archimédien : il existe un naturel n tel que $x < n\varepsilon < y$ où on aura choisi $\varepsilon = 1/q$ avec q naturel tel que q > 1/(y-x).

19▶

Preuve : Pour x réel donné, $x-\sqrt{2}$ est réel, limite d'une suite (q_n) de rationnels par densité de \mathbb{Q} dans \mathbb{R} . La suite d'irrationnels $(q_n+\sqrt{2})$ converge alors vers x.

Si maintenant x et y sont deux réels distincts tels que x < y, on adapte la preuve précédente en utilisant que $x - \sqrt{2} < y - \sqrt{2}$.

* On peut aussi utiliser que \mathbb{R} est archimédien : il existe un naturel n tel que $x < n\varepsilon < y$ où on aura choisi $\varepsilon = \sqrt{2}/q$ avec q naturel tel que $q > \sqrt{2}/(y-x)$.

Pratique 7:

Analyse:

Avec x = y = 0 vient f(0) = 0. Avec x réel et y = nx où $n \in \mathbb{N}$, f((n+1)x) = f(x) + f(nx) et par récurrence simple : f(nx) = nf(x).

Avec $x = \frac{1}{n}$ et $n \in \mathbb{N}^*$, cette dernière équation donne : f(1) = nf(1/n) donc f(1/n) = f(1)/n.

Avec x = q et $y = \frac{1}{p}$ pour p et q naturels non nuls, et en posant r = q/p, il vient f(r) = qf(1/p) = rf(1).

Avec x réel et y = -x, on obtient f(-x) = -f(x).

Pour résumer, on a obtenu jusqu'ici : f(x) = xf(1) si x est un rationnel.

Reste à étendre cette relation à x réel.

On va utiliser la densité de \mathbb{Q} dans \mathbb{R} : x réel est limite d'une suite (x_n) de rationnels.

Or, $|f(x) - f(x_n)| = |f(x) - x_n f(1)| = |f(x - x_n)| \le |x - x_n|$ de limite nulle quand n tend vers $+\infty$. Comme $x_n f(1)$ tend vers x f(1) quand n tend vers $+\infty$ il vient : f(x) = x f(1), x réel quelconque.

Synthèse:

Soit α un réel et f la fonction $x \mapsto \alpha x$.

Pour x et y réels : $f(x+y) = \alpha(x+y) = f(x) + f(y)$, et $|f(x)| = |\alpha||x| \leqslant |x|$ à la condition $|\alpha| \leqslant 1$.

Conclusion : les solutions sont les fonctions $x \mapsto \alpha x$ où α réel vérifie : $|\alpha| \leq 1$.