GitHub

https://github.com/lizzy-miller/Lab3

a

```
In [1]: import pandas as pd
import numpy as np
import requests
import os
import psycopg2
import zipfile
import io
from sqlalchemy import create_engine
In [2]: POSTGRES_PASSWORD = os.getenv('POSTGRES_PASSWORD')
```

b

```
In [3]: url ='https://databank.worldbank.org/data/download/ESG_CSV.zip'
    r = requests.get(url)
    z = zipfile.ZipFile(io.BytesIO(r.content))
    z.extractall()

In [4]: url = 'https://v-dem.net/media/datasets/V-Dem-CY-Core_csv_v13.zip'
    r = requests.get(url)
    z = zipfile.ZipFile(io.BytesIO(r.content))
    z.extractall()

In [5]: vdem = pd.read_csv('V-Dem-CY-Core-v13.csv')
    wb = pd.read_csv('ESGData.csv')
    country = pd.read_csv('ESGCountry.csv')
```

C. V-Dem

Out[10]:		country_code	country_name_vdem	year	democracy
	5433	AFG	Afghanistan	1960	0.080
	5434	AFG	Afghanistan	1961	0.083
	5435	AFG	Afghanistan	1962	0.082
	5436	AFG	Afghanistan	1963	0.085
	5437	AFG	Afghanistan	1964	0.137
	5438	AFG	Afghanistan	1965	0.150
	5439	AFG	Afghanistan	1966	0.161
	5440	AFG	Afghanistan	1967	0.163
	5441	AFG	Afghanistan	1968	0.163
	5442	AFG	Afghanistan	1969	0.162

D. ESG Country

```
In [11]: country_clean = country[['Country Code', 'Table Name', 'Long Name', 'Currence
In [12]: country_clean = country_clean.rename({'Country Code': 'country_code',
                                               'Table Name': 'country_name_wb',
                                               'Long Name': 'country_longname',
                                                'Currency Unit': 'currency unit',
                                                'Region': 'region',
                                                'Income Group': 'income_group'}, axis
         noncountries = ["Arab World", "Central Europe and the Baltics",
In [13]:
          "Caribbean small states",
          "East Asia & Pacific (excluding high income)",
          "Early-demographic dividend", "East Asia & Pacific",
          "Europe & Central Asia (excluding high income)",
          "Europe & Central Asia", "Euro area",
          "European Union", "Fragile and conflict affected situations",
          "High income",
          "Heavily indebted poor countries (HIPC)", "IBRD only",
          "IDA & IBRD total",
          "IDA total", "IDA blend", "IDA only",
          "Latin America & Caribbean (excluding high income)",
          "Latin America & Caribbean",
          "Least developed countries: UN classification",
          "Low income", "Lower middle income", "Low & middle income",
          "Late-demographic dividend", "Middle East & North Africa",
          "Middle income".
          "Middle East & North Africa (excluding high income)",
          "North America", "OECD members",
          "Other small states", "Pre-demographic dividend",
          "Pacific island small states",
          "Post-demographic dividend",
          "Sub-Saharan Africa (excluding high income)",
```

```
"Sub-Saharan Africa",
"Small states", "East Asia & Pacific (IDA & IBRD)",
"Europe & Central Asia (IDA & IBRD)",
"Latin America & Caribbean (IDA & IBRD)",
"Middle East & North Africa (IDA & IBRD)", "South Asia",
"South Asia (IDA & IBRD)",
"Sub-Saharan Africa (IDA & IBRD)",
"Upper middle income", "World"]
```

In [14]: country_clean = country_clean.query('country_name_wb not in @noncountries')

In [15]: country_clean.head(10)

inc	region	currency_unit	country_longname	country_name_wb	country_code	[15]:
	South Asia	Afghan afghani	Islamic State of Afghanistan	Afghanistan	AFG	0
L	Sub- Saharan Africa	Angolan kwanza	People's Republic of Angola	Angola	AGO	1
L	Europe & Central Asia	Albanian lek	Republic of Albania	Albania	ALB	2
	Europe & Central Asia	Euro	Principality of Andorra	Andorra	AND	3
	Middle East & North Africa	U.A.E. dirham	United Arab Emirates	United Arab Emirates	ARE	5
L	Latin America & Caribbean	Argentine peso	Argentine Republic	Argentina	ARG	6
L	Europe & Central Asia	Armenian dram	Republic of Armenia	Armenia	ARM	7
	Latin America & Caribbean	East Caribbean dollar	Antigua and Barbuda	Antigua and Barbuda	ATG	8
	East Asia & Pacific	Australian dollar	Commonwealth of Australia	Australia	AUS	9
	Europe & Central Asia	Euro	Republic of Austria	Austria	AUT	10

E. World Bank ESG Data

```
In [16]: wb_clean = wb[['Country Code', 'Country Name', 'Indicator Code'] + [col for
In [17]: wb_clean = wb_clean.rename({'Country Code': 'country_code',
                                     'Country Name': 'country_name_wb',
                                     'Indicator Code': 'feature'}, axis = 1)
In [18]: noncountries.remove('World')
In [19]: wb clean = wb_clean.query('country_name_wb not in @noncountries')
In [20]:
         replace_map = {
          "AG.LND.AGRI.ZS": "agricultural_land",
          "AG.LND.FRST.ZS": "forest area",
          "AG.PRD.FOOD.XD": "food_production_index",
          "CC.EST": "control of corruption",
          "EG.CFT.ACCS.ZS": "access_to_clean_fuels_and_technologies_for_cooking",
          "EG.EGY.PRIM.PP.KD": "energy_intensity_level_of_primary_energy",
          "EG.ELC.ACCS.ZS": "access to electricity",
          "EG.ELC.COAL.ZS": "electricity production from coal sources",
          "EG.ELC.RNEW.ZS": "renewable electricity output",
          "EG.FEC.RNEW.ZS": "renewable_energy_consumption",
          "EG.IMP.CONS.ZS": "energy_imports",
          "EG.USE.COMM.FO.ZS": "fossil_fuel_energy_consumption",
          "EG.USE.PCAP.KG.OE": "energy_use",
          "EN.ATM.CO2E.PC": "co2 emissions",
          "EN.ATM.METH.PC": "methane_emissions",
          "EN.ATM.NOXE.PC": "nitrous_oxide_emissions",
          "EN.ATM.PM25.MC.M3": "pm2 5 air pollution",
          "EN.CLC.CDDY.XD": "cooling_degree_days",
          "EN.CLC.GHGR.MT.CE": "ghg_net_emissions",
          "EN.CLC.HEAT.XD": "heat_index_35",
          "EN.CLC.MDAT.ZS": "droughts",
          "EN.CLC.PRCP.XD": "maximum_5-day_rainfall",
          "EN.CLC.SPEI.XD": "mean drought index", "EN.MAM.THRD.NO": "mammal species",
          "EN.POP.DNST": "population_density",
          "ER.H20.FWTL.ZS": "annual_freshwater_withdrawals",
          "ER.PTD.TOTL.ZS": "terrestrial and marine protected areas",
          "GB.XPD.RSDV.GD.ZS": "research and development expenditure",
          "GE.EST": "government_effectiveness",
          "IC.BUS.EASE.XQ": "ease_of_doing_business_rank",
          "IC.LGL.CRED.XQ": "strength_of_legal_rights_index",
          "IP.JRN.ARTC.SC": "scientific and technical journal articles",
          "IP.PAT.RESD": "patent_applications",
          "IT.NET.USER.ZS": "individuals using the internet",
          "NV.AGR.TOTL.ZS": "agriculture",
          "NY.ADJ.DFOR.GN.ZS": "net_forest_depletion",
          "NY.ADJ.DRES.GN.ZS": "natural resources depletion",
          "NY.GDP.MKTP.KD.ZG": "gdp_growth",
          "PV.EST": "political_stability_and_absence_of_violence",
          "RL.EST": "rule of law",
          "RQ.EST": "regulatory_quality",
```

```
"SE.ADT.LITR.ZS": "literacy_rate",
          "SE.ENR.PRSC.FM.ZS": "gross_school_enrollment",
          "SE.PRM.ENRR": "primary school enrollment",
          "SE.XPD.TOTL.GB.ZS": "government expenditure on education",
          "SG.GEN.PARL.ZS": "proportion_of_seats_held_by_women_in_national_parliament
          "SH.DTH.COMM.ZS": "cause_of_death",
          "SH.DYN.MORT": "mortality rate",
          "SH.H20.SMDW.ZS": "people using safely managed drinking water services",
          "SH.MED.BEDS.ZS": "hospital beds",
          "SH.STA.OWAD.ZS": "prevalence_of_overweight",
          "SH.STA.SMSS.ZS": "people_using_safely_managed_sanitation_services",
          "SI.DST.FRST.20": "income share held by lowest 20pct",
          "SI.POV.GINI": "gini_index",
          "SI.POV.NAHC": "poverty headcount ratio at national poverty lines",
          "SI.SPR.PCAP.ZG": "annualized average growth rate in per capita real surve"
          "SL.TLF.0714.ZS": "children_in_employment",
          "SL.TLF.ACTI.ZS": "labor_force_participation_rate",
          "SL.TLF.CACT.FM.ZS": "ratio_of_female_to_male_labor_force_participation_ra"
          "SL.UEM.TOTL.ZS": "unemployment",
          "SM.POP.NETM": "net_migration",
          "SN.ITK.DEFC.ZS": "prevalence_of_undernourishment",
          "SP.DYN.LE00.IN": "life expectancy at birth",
          "SP.DYN.TFRT.IN": "fertility_rate",
          "SP.POP.65UP.TO.ZS": "population_ages_65_and_above",
          "SP.UWT.TFRT": "unmet_need_for_contraception",
          "VA.EST": "voice and accountability",
          "EN.CLC.CSTP.ZS": "coastal_protection",
          "SD.ESR.PERF.XQ": "economic and social rights performance score",
          "EN.CLC.HDDY.XD": "heating_degree_days",
          "EN.LND.LTMP.DC": "land_surface_temperature",
          "ER.H20.FWST.ZS": "freshwater withdrawal",
          "EN.H20.BDYS.ZS": "water_quality",
          "AG.LND.FRLS.HA": "tree_cover_loss",
In [21]: wb clean['feature'] = wb clean['feature'].map(replace map)
In [22]: wb_clean = pd.melt(wb_clean, id_vars = ['country_code', 'country_name_wb',
In [23]: wb clean = wb clean.rename({'variable' : 'year'}, axis = 1)
In [24]: wb_clean = wb_clean.pivot(index=['country_code', 'country_name_wb', 'year'],
                                           columns='feature', values='value').reset_i
         G
In [25]: wb clean['year'] = wb clean['year'].astype(int)
         wb clean
```

Out[25]:	feature	country_code	country_name_wb	year	access_to_clean_fuels_and_technolog
	0	AFG	Afghanistan	1960	
	1	AFG	Afghanistan	1961	
	2	AFG	Afghanistan	1962	
	3	AFG	Afghanistan	1963	
	4	AFG	Afghanistan	1964	
	•••	•••			
	12217	ZWE	Zimbabwe	2018	
	12218	ZWE	Zimbabwe	2019	
	12219	ZWE	Zimbabwe	2020	
	12220	ZWE	Zimbabwe	2021	
	12221	ZWE	Zimbabwe	2022	

12222 rows × 74 columns

Н.

In [26]: whole_world_data = wb_clean[wb_clean['country_name_wb'] == 'World'].copy()

In [27]: whole_world_data.head(10).T

Out [27]: 11844 11845 11846 11847 11

£	_	_	•			
т	e	а	т	u	re	ż

country_code	WLD	WLD	WLD	WLD	
country_name_wb	World	World	World	World	V
year	1960	1961	1962	1963	1
access_to_clean_fuels_and_technologies_for_cooking	NaN	NaN	NaN	NaN	
access_to_electricity	NaN	NaN	NaN	NaN	
		•••		•••	
tree_cover_loss	NaN	NaN	NaN	NaN	
unemployment	NaN	NaN	NaN	NaN	
unmet_need_for_contraception	NaN	NaN	NaN	NaN	
voice_and_accountability	NaN	NaN	NaN	NaN	
water_quality	NaN	NaN	NaN	NaN	

74 rows × 10 columns

In [28]: wb_clean = wb_clean.query("country_name_wb != 'World'")
wb_clean.head(10)

Out [28]: feature country_code country_name_wb year access_to_clean_fuels_and_technologi 0 **AFG** Afghanistan 1960 **AFG** Afghanistan 1961 2 **AFG** Afghanistan 1962 **AFG** Afghanistan 1963 4 AFG Afghanistan 1964 5 **AFG** Afghanistan 1965 6 **AFG** Afghanistan 1966 7 **AFG** Afghanistan 1967 8 Afghanistan 1968 **AFG** 9 **AFG** Afghanistan 1969

10 rows × 74 columns

In [29]: whole_world_data = whole_world_data.drop(['country_code', 'country_name_wb']

```
In [30]:
         whole world data columns
Out[30]: Index(['year', 'access_to_clean_fuels_and_technologies_for_cooking',
                  'access_to_electricity', 'agricultural_land', 'agriculture',
                  'annual_freshwater_withdrawals',
                  'annualized_average_growth_rate_in_per_capita_real_surve',
                  'cause_of_death', 'children_in_employment', 'co2_emissions',
                  'coastal protection', 'control of corruption', 'cooling degree day
          s',
                  'economic_and_social_rights_performance_score',
                  'electricity_production_from_coal_sources', 'energy_imports',
'energy_intensity_level_of_primary_energy', 'energy_use',
'fertility_rate', 'food_production_index', 'forest_area',
                  'fossil fuel energy consumption', 'freshwater withdrawal', 'gdp grow
          th',
                  'ghg_net_emissions', 'gini_index', 'government_effectiveness',
                  'government_expenditure_on_education', 'gross_school_enrollment',
                  'heat_index_35', 'heating_degree_days', 'hospital_beds',
                  'income_share_held_by_lowest_20pct', 'individuals_using_the_interne
          t',
                  'labor force participation rate', 'land surface temperature',
                  'life_expectancy_at_birth', 'literacy_rate', 'mammal_species',
                  'mean_drought_index', 'methane_emissions', 'mortality_rate',
                  'natural_resources_depletion', 'net_forest_depletion', 'net_migratio
          n',
                  'nitrous oxide_emissions', 'patent_applications',
                  'people using safely managed drinking water services',
                  'people_using_safely_managed_sanitation_services',
                  'pm2_5_air_pollution', 'political_stability_and_absence_of_violenc
          e',
                  'population_ages_65_and_above', 'population_density',
                  'poverty_headcount_ratio_at_national_poverty_lines',
                  'prevalence_of_overweight', 'prevalence_of_undernourishment',
                  'primary school enrollment',
                  'proportion_of_seats_held_by_women_in_national_parliament',
                  'ratio of female to male labor force participation ra',
                  'regulatory_quality', 'renewable_electricity_output',
                  'renewable_energy_consumption', 'research_and_development_expenditur
          е',
                  'rule_of_law', 'scientific_and_technical_journal_articles',
                  'strength_of_legal_rights_index',
                  'terrestrial and marine protected areas', 'tree cover loss',
                  'unemployment', 'unmet_need_for_contraception',
                  'voice_and_accountability', 'water_quality'],
                dtype='object', name='feature')
In [31]: new_column_names = {col: f"world_{col}" for col in whole_world_data.columns
          whole_world_data_clean = whole_world_data.rename(columns=new_column_names)
          whole world data clean['year'] = whole world data clean['year'].astype(int)
          whole_world_data_clean
```

ut[31]:	feature	year	world_access_to_clean_fuels_and_technologies_for_cooking	world_acce
	11844	1960	NaN	
	11845	1961	NaN	
	11846	1962	NaN	
	11847	1963	NaN	
	11848	1964	NaN	
	•••			
	11902	2018	67.696517	
	11903	2019	68.921601	
	11904	2020	70.184805	
	11905	2021	71.331487	
	11906	2022	NaN	
	63 rows >	< 72 co	lumns	

i

In [32]: vdem_clean

Out[32]:

	country_code	country_name_vdem	year	democracy
5433	AFG	Afghanistan	1960	0.080
5434	AFG	Afghanistan	1961	0.083
5435	AFG	Afghanistan	1962	0.082
5436	AFG	Afghanistan	1963	0.085
5437	AFG	Afghanistan	1964	0.137
•••				
26150	ZZB	Zanzibar	2017	0.267
26151	ZZB	Zanzibar	2018	0.268
26152	ZZB	Zanzibar	2019	0.266
26153	ZZB	Zanzibar	2020	0.258
26154	ZZB	Zanzibar	2021	0.276

10371 rows × 4 columns

In [33]: wb_clean.head(10)

Out[33]:	feature	country_code	country_name_wb	year	access_to_clean_fuels_and_technologi
	0	AFG	Afghanistan	1960	
	1	AFG	Afghanistan	1961	
	2	AFG	Afghanistan	1962	
	3	AFG	Afghanistan	1963	
	4	AFG	Afghanistan	1964	
	5	AFG	Afghanistan	1965	
	6	AFG	Afghanistan	1966	
	7	AFG	Afghanistan	1967	
	8	AFG	Afghanistan	1968	
	9	AFG	Afghanistan	1969	

10 rows × 74 columns

I.

Originally, I thought that this would a one-to-one merge because it seems that both data frames contain the same information with regard to country_code and year. To test this, I did an outer-merge and tested it with the 'indicator' to see how many are left-only, how many are right-only, and how many are one-to-one. I saw that there were numerous rows that were right only and numerous that were left only.

```
In [34]: merged_df = pd.merge(wb_clean, vdem_clean, on=['country_code', 'year'], how=
merged_df
```

Out[34]:	c	country_code	country_name_wb	year	access_to_clean_fuels_and_technologic
	0	AFG	Afghanistan	1960	
	1	AFG	Afghanistan	1961	
	2	AFG	Afghanistan	1962	
	3	AFG	Afghanistan	1963	
	4	AFG	Afghanistan	1964	
	•••			•••	
	12549	ZZB	NaN	2017	
	12550	ZZB	NaN	2018	
	12551	ZZB	NaN	2019	
	12552	ZZB	NaN	2020	
	12553	ZZB	NaN	2021	
	12554 row	vs × 77 columr	ns		
In [35]:	print(me	erged_df[' <mark>_m</mark>	erge'].value_coun	ts())	
k - !	_merge ooth left_only right_onl Name: cou		int64		
In [36]:	left_onl				eft_only'") htry_code', 'country_name_wb'])['ye

Out[36]: min max

			IIIGA
country_code	country_name_wb		
SEN	Senegal	2022	2022
SGP	Singapore	2022	2022
SLB	Solomon Islands	2022	2022
SLE	Sierra Leone	2022	2022
SLV	El Salvador	2022	2022
SMR	San Marino	1960	2022
SOM	Somalia	2022	2022
SRB	Serbia	2022	2022
SSD	South Sudan	1960	2022
STP	Sao Tome and Principe	2022	2022
SUR	Suriname	2022	2022
SVK	Slovak Republic	1960	2022
SVN	Slovenia	1960	2022
SWE	Sweden	2022	2022
swz	Eswatini	2022	2022
SYC	Seychelles	2022	2022
SYR	Syrian Arab Republic	2022	2022
TCD	Chad	2022	2022
TGO	Togo	2022	2022
THA	Thailand	2022	2022
TJK	Tajikistan	1960	2022
ТКМ	Turkmenistan	1960	2022
TLS	Timor-Leste	2022	2022
TON	Tonga	1960	2022
тто	Trinidad and Tobago	2022	2022
TUN	Tunisia	2022	2022
TUR	Turkiye	2022	2022
TUV	Tuvalu	1960	2022
TZA	Tanzania	2022	2022
	Uganda	2022	2022
UGA	Oganida		

country_code	country_name_wb		
URY	Uruguay	2022	2022
USA	United States	2022	2022
UZB	Uzbekistan	1960	2022
VCT	St. Vincent and the Grenadines	1960	2022
VEN	Venezuela, RB	2022	2022
VNM	Vietnam	2022	2022
VUT	Vanuatu	2022	2022
WSM	Samoa	1960	2022
YEM	Yemen, Rep.	2022	2022
ZAF	South Africa	2022	2022

min

Zambia 2022 2022

Zimbabwe 2022 2022

max

In [37]: left_only['country_name_wb'].unique()

ZMB

ZWE

```
Out[37]: array(['Afghanistan', 'Angola', 'Albania', 'Andorra',
                    'United Arab Emirates', 'Argentina', 'Armenia',
                    'Antigua and Barbuda', 'Australia', 'Austria', 'Azerbaijan',
                    'Burundi', 'Belgium', 'Benin', 'Burkina Faso', 'Bangladesh',
                    'Bulgaria', 'Bahrain', 'Bahamas, The', 'Bosnia and Herzegovina',
                    'Belarus', 'Belize', 'Bolivia', 'Brazil', 'Barbados', 'Brunei Darussalam', 'Bhutan', 'Botswana',
                    'Central African Republic', 'Canada', 'Switzerland', 'Chile',
                    'China', "Cote d'Ivoire", 'Cameroon', 'Congo, Dem. Rep.', 'Congo, Rep.', 'Colombia', 'Comoros', 'Cabo Verde', 'Costa Rica',
                    'Cuba', 'Cyprus', 'Czechia', 'Germany', 'Djibouti', 'Dominica',
                    'Denmark', 'Dominican Republic', 'Algeria', 'Ecuador',
                    'Egypt, Arab Rep.', 'Eritrea', 'Spain', 'Estonia', 'Ethiopia',
                    'Finland', 'Fiji', 'France', 'Micronesia, Fed. Sts.', 'Gabon', 'United Kingdom', 'Georgia', 'Ghana', 'Guinea', 'Gambia, The',
                    'Guinea-Bissau', 'Equatorial Guinea', 'Greece', 'Grenada',
                    'Guatemala', 'Guyana', 'Honduras', 'Croatia', 'Haiti', 'Hungary',
                    'Indonesia', 'India', 'Ireland', 'Iran, Islamic Rep.', 'Iraq', 'Iceland', 'Israel', 'Italy', 'Jamaica', 'Jordan', 'Japan',
                    'Kazakhstan', 'Kenya', 'Kyrgyz Republic', 'Cambodia', 'Kiribati',
                    'St. Kitts and Nevis', 'Korea, Rep.', 'Kuwait', 'Lao PDR', 'Lebanon', 'Liberia', 'Libya', 'St. Lucia', 'Liechtenstein',
                    'Sri Lanka', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia',
                    'Morocco', 'Monaco', 'Moldova', 'Madagascar', 'Maldives', 'Mexico',
                    'Marshall Islands', 'North Macedonia', 'Mali', 'Malta', 'Myanmar', 'Montenegro', 'Mongolia', 'Mozambique', 'Mauritania', 'Mauritius',
                    'Malawi', 'Malaysia', 'Namibia', 'Niger', 'Nigeria', 'Nicaragua', 'Netherlands', 'Norway', 'Nepal', 'Nauru', 'New Zealand', 'Oman',
                    'Pakistan', 'Panama', 'Peru', 'Philippines', 'Palau',
                    'Papua New Guinea', 'Poland', "Korea, Dem. People's Rep.",
                    'Portugal', 'Paraguay', 'Qatar', 'Romania', 'Russian Federation',
                    'Rwanda', 'Saudi Arabia', 'Sudan', 'Senegal', 'Singapore',
                    'Solomon Islands', 'Sierra Leone', 'El Salvador', 'San Marino',
                    'Somalia', 'Serbia', 'South Sudan', 'Sao Tome and Principe',
                    'Suriname', 'Slovak Republic', 'Slovenia', 'Sweden', 'Eswatini',
                    'Seychelles', 'Syrian Arab Republic', 'Chad', 'Togo', 'Thailand',
                    'Tajikistan', 'Turkmenistan', 'Timor-Leste', 'Tonga',
                    'Trinidad and Tobago', 'Tunisia', 'Turkiye', 'Tuvalu', 'Tanzania',
                    'Uganda', 'Ukraine', 'Uruguay', 'United States', 'Uzbekistan',
                    'St. Vincent and the Grenadines', 'Venezuela, RB', 'Vietnam',
                    'Vanuatu', 'Samoa', 'Yemen, Rep.', 'South Africa', 'Zambia',
                    'Zimbabwe'], dtype=object)
```

```
in [38]: right_only = merged_df.query("_merge == 'right_only'")
right_only_years = right_only.groupby(['country_code', 'country_name_vdem'])
right only years
```

Out [38]: min max

country_code	country_name_vdem		
DDR	German Democratic Republic	1960	1990
HKG	Hong Kong	1960	2021
PSE	Palestine/West Bank	1967	2021
PSG	Palestine/Gaza	1960	2021
SML	Somaliland	1991	2021
TWN	Taiwan	1960	2021
VDR	Republic of Vietnam	1960	1975
XKX	Kosovo	1999	2021
YMD	South Yemen	1960	1990
ZZB	Zanzibar	1960	2021

K.

- There are some countries that have different spellings between data sets. For example, South Yemen in Vdem and Republic of Yemen could refer to the same country, although there are political reasons as to why this may not be true.
- Many of the countries present in the vdem data set that are not present in the wb
 data set are countries that no longer exist, such as East Germany (German
 Democratic Republic) or the Republic of Vietnam. In addition, the vdem dataset
 recognizes Hong Kong, Taiwan, Somolialand while the wb data set does not.
- It appears that the wb_clean data set has more up-to-date statistics than the vdem_clean data set (going up to 2022 as opposed to 2021).

```
In [39]: timeseries = pd.merge(wb_clean, vdem_clean, on=['country_code', 'year'], how
timeseries
```

Out[39]

:		country_code	country_name_wb	year	access_to_clean_fuels_and_technologies	
	0	AFG	Afghanistan	1960		
	1	AFG	Afghanistan	1961		
	2	AFG	Afghanistan	1962		
	3	AFG	Afghanistan	1963		
	4	AFG	Afghanistan	1964		
	•••					
	9971	ZWE	Zimbabwe	2017		
	9972	ZWE	Zimbabwe	2018		
	9973	ZWE	Zimbabwe	2019		
	9974	ZWE	Zimbabwe	2020		
	9975	ZWE	Zimbabwe	2021		
9976 rows × 76 columns						

Part 3: 1NF, 2NF, 3NF

In [40]: country = country_clean
 country.head(10)

i	region	currency_unit	country_longname	country_name_wb	country_code	:
	South Asia	Afghan afghani	Islamic State of Afghanistan	Afghanistan	AFG	0
	Sub- Saharan Africa	Angolan kwanza	People's Republic of Angola	Angola	AGO	1
	Europe & Central Asia	Albanian lek	Republic of Albania	Albania	. ALB	2
	Europe & Central Asia	Euro	Principality of Andorra	Andorra	s AND	3
	Middle East & North Africa	U.A.E. dirham	United Arab Emirates	United Arab Emirates	S ARE	5
	Latin America & Caribbean	Argentine peso	Argentine Republic	Argentina	S ARG	6
	Europe & Central Asia	Armenian dram	Republic of Armenia	Armenia	' ARM	7
	Latin America & Caribbean	East Caribbean dollar	Antigua and Barbuda	Antigua and Barbuda	aTG	8
	East Asia & Pacific	Australian dollar	Commonwealth of Australia	Australia	AUS	9
	Europe & Central Asia	Euro	Republic of Austria	Austria	AUT	10

In [41]: world = whole_world_data_clean
world.tail(10)

Out[41]:	feature	year	world_access_to_clean_fuels_and_technologies_for_cooking	world_acce
	11897	2013	61.095607	
	11898	2014	62.372600	
	11899	2015	63.662869	
	11900	2016	65.005668	
	11901	2017	66.321819	
	11902	2018	67.696517	
	11903	2019	68.921601	
	11904	2020	70.184805	
	11905	2021	71.331487	
	11906	2022	NaN	
	10 rows ×	: 72 col	umns	

In [42]: world.tail(20)

Out[42]:	feature	year	world_access_to_clean_fuels_and_technologies_for_cooking	world_acce
	11887	2003	51.040051	
	11888	2004	51.769412	
	11889	2005	52.495195	
	11890	2006	53.344280	
	11891	2007	54.374873	
	11892	2008	55.310321	
	11893	2009	56.413537	
	11894	2010	57.446700	
	11895	2011	58.688718	
	11896	2012	59.843821	
	11897	2013	61.095607	
	11898	2014	62.372600	
	11899	2015	63.662869	
	11900	2016	65.005668	
	11901	2017	66.321819	
	11902	2018	67.696517	
	11903	2019	68.921601	
	11904	2020	70.184805	
	11905	2021	71.331487	
	11906	2022	NaN	

20 rows × 72 columns

In [43]: timeseries.head(10)

Out[43]:		country_code	country_name_wb	year	${\tt access_to_clean_fuels_and_technologies_fo}$
	0	AFG	Afghanistan	1960	
	1	AFG	Afghanistan	1961	
	2	AFG	Afghanistan	1962	
	3	AFG	Afghanistan	1963	
	4	AFG	Afghanistan	1964	
	5	AFG	Afghanistan	1965	
	6	AFG	Afghanistan	1966	
	7	AFG	Afghanistan	1967	
	8	AFG	Afghanistan	1968	
	9	AFG	Afghanistan	1969	

10 rows × 76 columns

Country Dataframe This data frame appears to be in the 1NF because each column has atomic values, there are no repeating groups, and each column has a unique name. Since 'country_code' is a primary key the country data frame also appears to be in 2NF since all other columns (such as 'region') are functionally dependent on the 'country_code'. Finally, this data frame appears to be in 3NF because there does not appear to be any transitive dependency.

Timeseries Dataframe This data frame appears to be in the 1NF because each column has atomic values, there are no repeating groups, and each column has a unique name. There are two primary keys in this data frame, that being 'country_code' and "year". For similar reasons above, this data frame appears to be in 2N and 3N. However, in order for all three dataframes to be in the 3N, then we do not need the country_name_wb nor the country_name_vdem column as this is repeated in the country dataframe.

World Dataframe The world data frame is in 1NF because each column has atomic values, there are no repeating groups, and each column has a unique name. The primary key is the year and the other columns are functionally dependent on the 'year'. Hence, it is in 2NF. Finally, there does not appear to be any transitive dependency.

```
In [44]: # Dropping the 'country_names_wb' column from Timeseries dataframe.
    timeseries = timeseries.drop(['country_name_wb', 'country_name_vdem'], axis=
In [45]: timeseries.head(2)
```

```
Out [45]:

country_code year access_to_clean_fuels_and_technologies_for_cooking access_t

AFG 1960
NaN

access_to_clean_fuels_and_technologies_for_cooking access_t

NaN

access_to_clean_fuels_and_technologies_for_cooking access_t

NaN
```

Task Four

```
In [46]: lab3network = psycopg2.connect(
             host = 'postgres',
             user = 'postgres',
             password = POSTGRES_PASSWORD,
             port = 5432
         lab3network.autocommit = True
In [47]: | cursor = lab3network.cursor()
In [48]: try:
             cursor.execute('CREATE DATABASE cardib')
         except:
             cursor.execute ('DROP DATABASE cardib')
             cursor.execute ( 'CREATE DATABASE cardib')
In [60]: engine = create_engine ('postgresql+psycopg2://{user}:{password}@{host}:{por
         user = 'postgres',
         password = POSTGRES_PASSWORD,
         host = 'postgres',
         port = 5432,
         db = 'cardib'
         ))
In [50]: print(country.shape[0])
         country.to_sql('country', con=engine, index=False, chunksize=1000,
                         if_exists = 'replace')
        193
Out[50]: 193
In [51]:
         print(timeseries.shape[0])
         timeseries.to_sql('timeseries', con=engine, index=False, chunksize=100,
                         if_exists = 'replace')
        9976
Out[51]: 9976
In [52]: print(world.shape[0])
         world.to_sql('world', con=engine, index=False, chunksize=1000,
```

```
if_exists = 'replace')
        63
Out[52]: 63
In [53]: timeseries.head(10)
Out[53]:
            country_code year access_to_clean_fuels_and_technologies_for_cooking access_t
          0
                     AFG 1960
                                                                            NaN
          1
                     AFG 1961
                                                                            NaN
          2
                     AFG 1962
                                                                            NaN
                     AFG 1963
          3
                                                                            NaN
          4
                     AFG 1964
                                                                            NaN
                     AFG 1965
                                                                            NaN
          5
          6
                     AFG 1966
                                                                            NaN
          7
                     AFG 1967
                                                                            NaN
          8
                     AFG 1968
                                                                            NaN
                     AFG 1969
                                                                            NaN
         10 rows × 74 columns
```

Task Five

see cardibdb.dbml

https://dbdocs.io/elizabethmillerwc/Cardibi

6.

Out[63]:

	country	democracy
0	Denmark	0.915
1	Sweden	0.903
2	Norway	0.901
3	Costa Rica	0.898
4	Switzerland	0.898
•••		
167	Qatar	0.090
168	Korea, Dem. People's Rep.	0.086
169	China	0.077
170	Eritrea	0.072
171	Saudi Arabia	0.016

172 rows × 2 columns

```
In [64]: #b. How does the life expectancy at birth for Chile compare to the glbal ave
myquery = '''
SELECT ts.year, c.country_code, ts.life_expectancy_at_birth, w.world_life_ex
FROM timeseries ts
INNER JOIN country c
ON ts.country_code = c.country_code
INNER JOIN world w
ON ts.year = w.year
WHERE c.country_code = 'CHL'
'''
pd.read_sql_query(myquery, con=engine)
```

Out[64]:		year	country_code	life_expectancy_at_birth	world_life_expectancy_at_birth
	0	1960	CHL	57.015	50.894180
	1	1961	CHL	57.537	52.846336
	2	1962	CHL	57.771	55.208684
	3	1963	CHL	57.150	55.542341
	4	1964	CHL	58.738	56.034875
	•••		•••		
	57	2017	CHL	80.350	72.542776
	58	2018	CHL	80.133	72.784090
	59	2019	CHL	80.326	72.979716
	60	2020	CHL	79.377	72.243822
	61	2021	CHL	NaN	NaN

62 rows × 4 columns

Out[65]:

	region	co2_emissions
0	Europe & Central Asia	273.807274
1	Middle East & North Africa	176.008097
2	East Asia & Pacific	94.256987
3	Latin America & Caribbean	68.692584
4	Sub-Saharan Africa	43.318399
5	North America	29.726128
6	South Asia	10.820011

In [69]: #d. What countries expereinced the greatest increases in democratic quality
myquery = '''
SELECT c.country_name_wb AS country_name, d.democracy_1960, d.democracy_2021

Out[69]:

	country_name	democracy_1960	democracy_2021	democracy_diff
0	Spain	0.070	0.854	0.784
1	Portugal	0.128	0.888	0.760
2	Cabo Verde	0.023	0.773	0.750
3	Vanuatu	0.080	0.771	0.691
4	Timor-Leste	0.018	0.680	0.662
•••				
143	Lao PDR	0.276	0.135	-0.141
144	Somalia	0.373	0.169	-0.204
145	India	0.669	0.420	-0.249
146	Myanmar	0.421	0.107	-0.314
147	Venezuela, RB	0.648	0.218	-0.430

148 rows x 4 columns

Out[70]:

	currency_unit	num_of_countries
0	Euro	24
1	West African CFA franc	8
2	U.S. dollar	7
3	Central African CFA franc	6
4	East Caribbean dollar	6
5	Australian dollar	4
6	Swiss franc	2
7	Sierra Leonean leone	1
8	New Zambian kwacha	1
9	Lao kip	1

```
In [75]: #f. How does the average GINI index compare across income groups in 2019?
         myquery = '''
         SELECT
             c.income_group,
             AVG(t.gini_index) as average_gini_index
         FROM
             timeseries t
         JOIN
             country c ON t.country_code = c.country_code
         WHERE
             t.year = 2019
         GROUP BY
             c.income_group
         ORDER BY
             average_gini_index DESC;
         pd.read_sql_query(myquery, con=engine)
```

Out[75]:

	income_group	average_gini_index
0	None	NaN
1	Low income	43.900000
2	Upper middle income	38.145833
3	Lower middle income	37.420000
4	High income	31.731250