BOOSTIN 6

COMBINE WEAR LEARNERS THAT WERE TRAINED SEQUEN-TIALLY AND PREDICTS BASED ON THE WETGHTS OF GACH MODEL (WEIGHT CALCULATED BASED ON MODEL PERFORMANCE).

GRADIENT BOOSTING

dy (0) = Y - MEAN (Y)

for K=1: (# OF TREES / # OF 175/14/10WS):

LOMPINER (K) = TRAIN-REGRESSOR (X, dY(K-1))

dy(k) = dy(k-1) - K(k) * PREDICT (LEARNER (K), X)

"TRAIN OVER THE RESIDUAL"

BAGGIN 6

* CONCRATE N DIFFERENT BOOTS TRAP TRAINING SAMPLE WITH REPLACEMENT

* TRAIN ALGORITHM ON FACH BOOTS TRAPPEN GAMPLE

* COMBINE THOM ALL USING MAJORITY VOTE / MEAN

RELATIVE VARIABLE IMPORTANCE

THE MEASURE IS MADE BASED ON # TIMES A VARIABLE 15 SELECTED FOR SPLITTING AND WETGHTED BY THE IMPROvoment to the moder As A RESULT of EACH SPLIT, THOM AVERAGED OVER ALL TREES.

POSITIVE CLASS = 0 CONFUSION MATRIX SONSIPIVITY = TP = RECALL OBSERVED TPIFN SPECIFICITY = TN TP TN+FP P Replet PRECISION = TP TN N FN TP+ FP " Lyppe Manic MOAN" = 2. PRICISION * RECALL = FI SCORE PRECISION + RECORL PROCISION + ACCURACY = CURVE ROC AUC (AREA UNDER THE CURVE) Conny 3 7 HRUSHOLD FOR ROC PROBABILITY FOR = FP EN EVENT GINI COEFFICIENT (INEQUALITY COEFFICIENT) + ROC WRE HIGHER A => BETTER MODEL COINI = A HIGHER INEQUALITY JPR A+B ROOL - WORLD EXAMPLE: "perfect DISTRI-1. (4come FPR or manoy BUTION OVER POPULATION" 50 -> ./. POP. 80

INFORMATION GAIN USING FOR ALL GOATURES TESTS

ENTROPY:

$$IG = -\sum_{i=1}^{3} P_i \cdot log P_i$$

Pi = PROBORTION of class: on NODE

FOR FORTURE A THE INFORMATION GAIN WILL BE THE SUM OF IG. + IG

REGRESSION TREES

AT EACH ITERATION FOR EACH FEATURE XXX FIND OPTIMAL S:

MIN [MSE (y 12k <s) + MSE (y 1xx >s)]

THE CONSIDERATION CUT OFF)

* FOR BOTH METHODS: VARIABLE IMPORTANCE GENERALLY BE COMPUTED BASED ON CORRESPONDING REDUCTION OF PRE-DICTIVE ACCURACY WHON THE PREDICTOR OF INTEREST IS PROMOVED OR SOME MEASURE OF DECREASE OF NODE IMPURITY.

LINEAR REGRESSION

LINOAR APPROACH TO MODELLING RELATIONSHIP BETWEEN SCALAR RESPONSE TO EXPLANATORY VARIABLES 1 Y = Bo + B, X, + -.. + Bn - Xn

"ORDINARY LOAST SQUARES"

LOGISTIC RECORESSION

hob-odds of probability of AN EVENT IS A LINDAM COMBINATION OF EXPLANATORY VARIABLES TP(Y=1) = 1 1+e-x "MAXIMUM LIKELIHOOD ESTIMATION"

* VARIABLE IMPORTANCE FOR RETORESSION CAN BE SET BASED ON THE COEFFICION'S ONLY. IF THE GEATURES ARE NORMALIZED (CONTINUOUS) OR THEY ARE DISCRETE.

NAIVE BAYES CHASSIFICATION

BASED ON BAYES THEOREM WITH CONDITIONAL PROBABILITY OF EVANT TO PREDICT. ASSUMES X: CONDITIONALLY INDEPEN-DENT OF EVERY OTHER REATURE Xy (i = 1) GIVEN CATEGO. RY Ck => | P(Ck | 21,..., 2h) of P(Ck). # P(x: | Ck)

EXAMPLE: (SPAM) P(C) = 0.9

TP (x, | C) = 0,3 0.001 VIAGRA

(UDARITY

[P(x, 1c)= 0.0001 0.1

P(x2 c) = 0.2 0.1 $\mathbb{P}(c \mid x_1 = T, x_2 = F, x_3 = F) \propto \mathbb{P}(x_1 = T \mid c) \cdot \mathbb{P}(x_2 = F \mid c) \cdot \mathbb{P}(x_3 = F \mid c) \cdot \mathbb{P}(c)$

RANDOM FOREST

SELECTING BAGGING SAMPLES FOR KACH TREE CHOOSE * REDUCES VARIANCE BUT RANGE (AS ALL TREE MODELS) IS RANDOM FORTURES (VD). LIMITED.

NEURAL NETWORKS (ARTIFICIAL NEURAL NETWORKS)

INPUT
$$W_1$$
 b_1 W_3 b_3 $\sigma(z) := SIGNOID, TANH, RELU, W_2 W_4 W_4 $W_4$$

SIGNOID :=
$$\sigma(z) = \frac{1}{1+e^{-\frac{1}{2}}}$$
; $\sigma(z) \in (0,1)$

$$TANH := \sigma(z) = \frac{e^{z} - e^{z}}{e^{z} + e^{-z}} = tANH(z) ; \sigma(z) \in (-1, 1)$$

RELU :=
$$\sigma(z) = \max(0, z)$$
; $\sigma(z) \in [0, \infty)$.

$$\frac{\text{RELU} := \sigma(\vec{z}) = MAX}{\text{Soft MAX}} = \sigma(\vec{z}) = \frac{e^{2i}}{\sum_{j=1}^{2} e^{2j}}, i = 1, ..., J; \sigma(\vec{z}) \in (0, 1)$$

K-NN (K-NEAREST NEIGHBORS)

REGRESSION OR CLASSIFICATION OF K NEAREST NEIGHBORS BASED ON DISTANCE FUNCTIONS:

K-MEANS

- O. PLACE CENTROIDS AT RANDOM WOCATIONS (K CENTROIDS) 1. FIND NEAREST CONTROLS TO GACH OBSCRUATION

 2. ASSIGN OBSCRUATION TO CLOSER CLUSTER

 - 3. CALCULATE NION CONTROIS
 - REPEAT UNTILL DIFF. FROM PROVIOUS CONTROID IS MINIMUM (DIFFERENCE FRON DISTANCES)
- > K-MEANS ONLY USES EUCLIDEAN DISTANCE

HIERARCHICAL CLUSTERING

DISTANCES TO BE USED:

EUCLIDEAN, MANHATTAN, MINKOWSKI, MAHALANOBIS:= (a-b) 5-1(a-b)

- \$ 5 IS THE COVARIANCE MATRIX
- -> SINGHE LIMIUS: D(CI, CZ) = MIN D(XI, XZ) DISTANCE BETWEEN CLOSEST ELLONONTS IN CLUSTERS 00-
- -> COMPLETE LINKS: D(C1, C2) = MAX D(x1, X2) DISTANCE BETWEEN FARTHEST ELEMENTS IN CLUSTOPS OF
- -> AVORAGE LINKS: D(c1, c2)= 1 1 [1] [] [D(x1, x1) 0= AVERAGE OF ALL PAIRWISE DISTANCES
- DISTANLE BETWEEN CONTROLLE (ICI ZI) (ICI ZZ) DISTANCE BUTWEEN CONTROLOS (MEANS) OF TWO CLUSTERS

BIAS - VARIANCE DE COMPOSITION

· BIAS IS THE ERROR FROM GURONEOUS ASSUMPTIONS IN

THE MODEL

· VARIANCE IS THE ERROR FROM SENSITIVITY TO SMALL FWTUATIONS IN THE TRAINING SET.

CROSS- VALIDATION

PREVIONTS ONCE FITTING BECAUSE MODEL THAT FITS RANDOM NOISE ON TRAINING DATA WON'T PERFORM GOOD ON VALIDA-TION DATASET.

K-FOLD: SEPARATES DATA ON R FOLDS, TRAINING WILL BE K-1 FOLDS AND VALIDATION WILL BE 1

LOCCY: LETNE-ONE-OUT CROSS-VALIDATION IS THE SAME AS

SMOTE (SYNTHETIC MINORITY QUER-SAMPLING TECHNIQUE)

- -> CREATES NOW "SYNTHETIC" OBSORVATIONS · IDENTIFY FORTURE VECTOR AND NEARLST NETGH.

 - . TAKE THE DIFF. BETWEEN TWO
 - · MULTIPLY DIFF. BY REANDOM BETWOOD O AND I
 - · I DONTIFY NEW POINT ON LINE EXCEMENT BY ADDING RANDOM NUMBER TO GERTURE VECTOR
 - · PROPERT @

P-VALUE IS THE PROBABILITY FOR A GIVEN MODEL THAT HYPHOPHESIS IS TRUE, THE STATISTICAL WHON THE NULL SUMMARY WOULD BE GREATER OR EQUAL TO THE STATIS-TICAL SUMMARY FOR THE OBSTRUED RESULTS.

39 ALIGE BOY | NAT | 2000 ST 190 AligE 2012 WAS 1 1 1 1 1 1 1 1

LANGE OF MENTER PROPERTY OF THE STATE OF THE

THE TOP PROBLEM STORY OF THE ST

(Supplied ST) well 19 Mass - Special Conference of the Conferenc