Основные понятия минимизации булевых функций (БФ)

Задача: найти аналитическое выражение заданной булевой функции в форме, содержащей минимально возможное число букв.

МДНФ (минимальная ДНФ) – ДНФ, содержащая наименьшее число букв. **ЖКНФ** (минимальная КНФ)

 Φ g (x1, x2, ..., xn) называется импликантой Φ f (x1, x2, ..., xn), если для любого набора переменных, на котором g=1, справедливо f=1.

Пример.

a	b	С	f	g_1	g ₂	g ₃	g ₄	g ₅	g ₆	g ₇
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
1	1	0	1	0	1	1	0	0	1	1
1	1	1	1	1	0	1	0	1	0	1

Записываем функцию f и её импликанты в СДНФ: $f = g_7 = \overline{abc} \lor ab\overline{c} \lor abc \qquad \qquad g_4 = \overline{abc}$

$$f = g_7 = abc \lor abc \lor abc$$

$$g_A = abc$$

$$g_1 = abc$$

$$g_5 = \overline{abc} \lor abc$$

$$g_2 = ab\overline{c}$$

$$g_6 = abc \lor abc$$

$$g_3 = ab\bar{c} \vee abc$$

Пример (продолжение).

Импликанта д БФ f, являющаяся ЭК, называется простой, если никакая часть импликанты д не является импликантой фнукции f.

а	b	С	f	g_1	g ₂	g ₃	g ₄	g ₅	g ₆	g ₇
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
1	1	0	1	0	1	1	0	0	1	1
1	1	1	1	1	0	1	0	1	0	1
						1		1		

Записываем функцию f и её импликанты в СДНФ:

$$f = g_7 = abc \lor abc \lor abc$$

$$g_4 = abc$$

$$g_1 \neq abc$$

$$g_5 = \overline{abc} \lor abc = \overline{bc}$$

$$g_6 = \overline{abc} \lor ab\overline{c}$$

$$g_4 = \overline{g_4}$$

$$g_2 = abc$$

$$g_6 = \overline{abc} \vee \overline{abc}$$

$$g_2 = ab\overline{c}$$

$$g_3 = ab\overline{c} \lor abc = ab$$

Простые импликанты f: ??? Яз> \$5

Не простые импликанты f: ???

91, 92,

Полезные утверждения для получения МДНФ:

- 1. Дизъюнкция любого числа импликант булевой функции f также является импликантой этой функции. 96 = 94 + 92. Любая БФ f эквивалентна дизъюнкции всех своих простых импликант.

$$f = g_3 \lor g_5 = ab \lor bc$$

а	b	С	f	g ₃	g 5
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	1	0
1	1	1	1	1	1

СкДНФ – дизъюнкции всех простых импликант функции: СкДНФ = $ab \lor bc$ — \updownarrow

СкДНФ =
$$ab \lor bc$$

Первый этап минимизации – построение СкДНФ.

Второй этап минимизации – исключение лишних простых импликант из СкДНФ.

ТДНФ (тупиковая ДНФ) – СкДНФ функции без лишних простых импликант.

МДНФ – ТДНФ функции с минимальным числом букв