Aufgabe 1. (Bestimmtheit der Jordan-Normalform)

Man gebe gebe jeweils die größte Zahl $n \ge 1$ an, so dass die Jordan-Normalform aller komplexen $(n \times n)$ -Matrizen durch die folgenden Informationen bis auf Permutation der Jordanblöcke eindeutig bestimmt ist:

- 1. Das charakteristische Polynom $p_A(t)$.
- 2. Das Minimalpolynom $p_A(t)$.
- 3. Die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A), \lambda \in \mathbb{C}$.
- 4. Das Minimalpolynom $m_A(t)$ und die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A)$.

Aufgabe 2. (Ähnlichkeitsklassen nilpotenter Matrizen)

Bestimmen Sie die Anzahl der Ähnlichkeitsklassen nilpotenter Matrizen in $M_6(K)$.

Aufgabe 3. (Jordan-Chevalley-Zerlegung reeller Matrizen)

- 1. Es sei A = D + N mit $D, N \in M_n(\mathbb{C})$ die Jordan-Chevalley-Zerlegung einer Matrix $A \in M_n(\mathbb{R})$. Zeigen Sie, dass bereits $D, N \in M_n(\mathbb{R})$ gilt. (*Tipp*: Nutzen Sie komplexe Konjugation.)
- 2. Über $\mathbb R$ besitzt nicht jede Matrix eine Jordan-Normalform, und somit auch nicht jede Matrix eine Jordan-Chevalley-Zerlegung. Wieso steht dies nicht im Widerspruch zu der obigen Aussage?

Aufgabe 4. (Implizites Bestimmen von Jordan-Normalformen)

Bestimmen Sie für eine Matrix $A \in \mathcal{M}_n(\mathbb{C})$, $n \geq 1$ mit den angegebenen Eigenschaften jeweils alle möglichen Jordan-Normalformen bis auf Permutation der Jordanblöcke.

- 1. Es gelten $p_A(t) = (t-4)^3(t+3)^2$ und $m_A(t) = (t-4)(t+3)^2$.
- 2. $A \in M_2(\mathbb{C})$ ist nicht diagonalisierbar mit Spur A = 0.
- 3. Es gilt $A^3 = 0$ und alle nicht-trivialen Eigenräume von A sind eindimensional.
- 4. Es gelten $p_A(t) = (t-2)(t+2)^3$ und (A-21)(A+21) = 0.
- 5. Es gilt $p_A(t) = t^3 t$.
- 6. Es gilt $p_A(t) = (t^2 5t + 6)^2$ und alle Eigenräume von A sind entweder null- oder eindimensional.
- 7. Es gilt $A^2 = A$ und alle nicht-trivialen Eigenräume von A sind zweidimensional.
- 8. Es gilt $p_A(t) = (t+3)^3 t^2$ und A hat keine zweidimensionalen Eigenräume.
- 9. Es gilt $p_A(t) = t^5 2t^4$ und alle nicht-trivialen Eigenräume von A haben die gleiche Dimension.

10. $A \in M_3(\mathbb{C})$ mit Spur $A = \det A = 0$.

11.
$$A \in \mathcal{M}_8(\mathbb{C})$$
 mit $(A - 1)(A^5 - A^4) = 0$, Spur $A = 2$ und rg $A = 6$.

Aufgabe 5. (Jordan-Normalform in Abhängigkeit von einem Parameter)

Bestimmen Sie für jedes $a\in\mathbb{R}$ die Jordan-Normalform und das Minimalpolynom der Matrix

$$A_a := \begin{pmatrix} 2 & a+1 & 0 \\ 0 & 2 & a-2 \\ 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Lösungen

Lösung 5.

Da A_a eine obere Dreiecksmatrix ist, ergibt sich durch direktes Ablesen das charakteristische Polynom

$$p_{A_a}(t) = -(t-2)^2$$
 für alle $a \in \mathbb{R}$.

Da das charakteristische Polynom von A_a in Linearfaktoren zerfällt, gibt es eine Jordan-Normalform für A_a über \mathbb{R} . Aus dem charakteristischen Polynom $p_{A_a}(t)$ erhalten wir, dass 2 der einzige Eigenwert von A ist; es kommen also nur Jordanblöcke zum Eigenwert 2 vor. Dabei ist die Jordan-Normalform von A_a bereits eindeutig dadurch bestimmt, wie viele Jordanblöcke vorkommen, da A_a eine (3×3) -Matrix ist. Diese Anzahl an Jordanblöcken ist dabei genau dim ker $(A_a - 21)$.

Es gilt

$$A_a - 2\mathbb{1} = \begin{pmatrix} 0 & a+1 & 0 \\ 0 & 0 & a-2 \\ 0 & 0 & 0 \end{pmatrix}.$$

und somit

$$\ker(A_a - 2\mathbb{1}) = \begin{cases} \langle e_1 \rangle & \text{falls } a \neq -1, 2, \\ \langle e_1, e_2 \rangle & \text{falls } a = -1, \\ \langle e_1, e_3 \rangle & \text{falls } a = 2, \end{cases}$$

also

$$\dim \ker (A_a - 2\mathbb{1}) = \begin{cases} 2 & \text{falls } a = -1 \text{ oder } a = 2, \\ 1 & \text{sonst.} \end{cases}$$

In den Fällen a=-1 und a=2 gibt es also zwei Jordanblöcke, einen von Größe 2 und einen von Größe 1. Die Jordan-Normalform ist in diesen Fällen durch

$$\begin{pmatrix} 2 & & \\ 1 & 2 & \\ & & 2 \end{pmatrix}$$

gegeben. Das zugehörige Minimalpolynom ist $m_{A_{-1}}(t) = m_{A_2}(t) = (t-2)^2$ (denn die Vielfachheit des Linearfaktors t-2 im Minimalpolynom $m_{A_a}(t)$ entspricht der maximalen auftretenden Blockgröße zum Eigenwert 2).

In allen anderen Fällen gibt es genau einen Jordanblock, notwendigerweise von Größe 3. Die Jordan-Normalform ist in diesen Fällen durch

$$\begin{pmatrix} 2 & & \\ 1 & 2 & \\ & 1 & 2 \end{pmatrix}$$

gegeben. Das zugehörige Minimalpolynom ist $m_{A_a}(t)=(t-2)^3$ (für $a\neq -1,2$).