algorithme de Huffman

avec pour chaque lettre I_i une fréquence f_{l_i}

Résultat: un arbre de codage préfixe optimal de ${\mathcal L}$

si alors

sinon

avec pour chaque lettre I_i une fréquence f_{l_i}

Résultat: un arbre de codage préfixe optimal de ${\mathcal L}$

si \mathcal{L} a deux lettres alors

sinon

Données: un alphabet \mathcal{L} , avec pour chaque lettre l_i une fréquence f_{l_i} Résultat: un arbre de codage préfixe optimal de \mathcal{L} si \mathcal{L} a deux lettres alors encoder une des lettres avec 0 et l'autre avec 1; sinon

```
Données: un alphabet \mathcal{L}, avec pour chaque lettre l_i une fréquence f_{l_i} Résultat: un arbre de codage préfixe optimal de \mathcal{L} si \mathcal{L} a deux lettres alors encoder une des lettres avec 0 et l'autre avec 1; sinon soient l_1 et l_2 les deux lettres de plus basses fréquences;
```

```
Données: un alphabet \mathcal{L}, avec pour chaque lettre l_i une fréquence f_{l_i} Résultat: un arbre de codage préfixe optimal de \mathcal{L} si \mathcal{L} a deux lettres alors encoder une des lettres avec 0 et l'autre avec 1; sinon soient l_1 et l_2 les deux lettres de plus basses fréquences; fabriquer un nouvel alphabet \mathcal{M} en supprimant de \mathcal{L} l_1 et l_2 et en les remplaçant par la lettre l_{12} de fréquence f_{l_1} + f_{l_2};
```

```
Données: un alphabet \mathcal{L}, avec pour chaque lettre l_i une fréquence f_{l_i} Résultat: un arbre de codage préfixe optimal de \mathcal{L} si \mathcal{L} a deux lettres alors encoder une des lettres avec 0 et l'autre avec 1; sinon soient l_1 et l_2 les deux lettres de plus basses fréquences; fabriquer un nouvel alphabet \mathcal{M} en supprimant de \mathcal{L} l_1 et l_2 et en les remplaçant par la lettre l_{12} de fréquence f_{l_1} + f_{l_2}; Construire récursivement un code prèfixe \delta optimal pour \mathcal{M}
```

d'arbre de code *U*:

```
Données: un alphabet \mathcal{L},
avec pour chaque lettre l_i une fréquence f_{li}
Résultat: un arbre de codage préfixe optimal de \mathcal{L}
si f. a deux lettres alors
    encoder une des lettres avec 0 et l'autre avec 1;
sinon
    soient l_1 et l_2 les deux lettres de plus basses fréquences;
    fabriquer un nouvel alphabet \mathcal{M} en supprimant de \mathcal{L} l_1 et l_2 et
    en les remplaçant par la lettre l_{12} de fréquence f_{l_1} + f_{l_2};
    Construire récursivement un code prèfixe \delta optimal pour \mathcal{M}
    d'arbre de code U:
    Définir l'arbre de code préfixe pour \mathcal{L}
```

```
Données: un alphabet \mathcal{L}, avec pour chaque lettre l_i une fréquence f_{l_i} Résultat: un arbre de codage préfixe optimal de \mathcal{L} si \mathcal{L} a deux lettres alors encoder une des lettres avec 0 et l'autre avec 1; sinon soient l_1 et l_2 les deux lettres de plus basses fréquences; fabriquer un nouvel alphabet \mathcal{M} en supprimant de \mathcal{L} l_1 et l_2 et
```

en les remplaçant par la lettre l_{12} de fréquence $f_{l_1}+f_{l_2}$; Construire récursivement un code prèfixe δ optimal pour $\mathcal M$ d'arbre de code U; Définir l'arbre de code préfixe pour $\mathcal L$ en remplaçant la feuille de

Définir l'arbre de code préfixe pour $\mathcal L$ en remplaçant la feuille de U correspondant à la lettre

avec pour chaque lettre I_i une fréquence f_{l_i}

Résultat: un arbre de codage préfixe optimal de $\mathcal L$

 $si \mathcal{L}$ a deux lettres alors

encoder une des lettres avec 0 et l'autre avec 1;

sinon

soient I_1 et I_2 les deux lettres de plus basses fréquences; fabriquer un nouvel alphabet $\mathcal M$ en supprimant de $\mathcal L$ I_1 et I_2 et en les remplaçant par la lettre I_{12} de fréquence $f_{I_1}+f_{I_2}$; Construire récursivement un code prèfixe δ optimal pour $\mathcal M$ d'arbre de code U:

Définir l'arbre de code préfixe pour \mathcal{L} en remplaçant la feuille de U correspondant à la lettre I_{12} par un neud interne d'où partent deux feuilles correspondant à

avec pour chaque lettre l_i une fréquence f_{l_i}

Résultat: un arbre de codage préfixe optimal de $\mathcal L$

 $si \mathcal{L}$ a deux lettres alors

encoder une des lettres avec 0 et l'autre avec 1;

sinon

soient l_1 et l_2 les deux lettres de plus basses fréquences; fabriquer un nouvel alphabet $\mathcal M$ en supprimant de $\mathcal L$ l_1 et l_2 et en les remplaçant par la lettre l_{12} de fréquence $f_{l_1}+f_{l_2}$; Construire récursivement un code prèfixe δ optimal pour $\mathcal M$ d'arbre de code U;

Définir l'arbre de code préfixe pour \mathcal{L} en remplaçant la feuille de U correspondant à la lettre l_{12} par un neud interne d'où partent deux feuilles correspondant à l_1 et l_2 ;