This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

四公開特許公報 (A)

(11)特許出願公開委号

特開平8-125066

(43)公開日 平成8年(1996) 5月17日

(51) [n1, C1, * HOIL 23/12

單別記号 庁内整理番号

F I

技術表示箇所

(全7頁)

23/28

A 6921-4E

HOIL 23/12

(21)出旗番号

特願平6-284536

(22)出顧自

平成6年(1994)10月26日

(71)出版人 000002897

大日本印刷株式会社

春室請求 未請求 請求項の数4 FD

東京都新宿区市谷加賀町一丁目1番1号

(72) 発明者 八木 裕

東京都新宿区市谷加賀町一丁目1番1号

大日本印刷株式会社内。

(72) 発明者 森田 道彦

東京都新宿区市谷加賀町一丁目 1 1号

大日本印刷株式会社内

(74)代理人 弁理士 小西 淳美

(54) 【発明の名称】樹脂封止型半導体装置とそれに用いられるリードフレーム、及び樹脂封止型半導体装置の製造方法

(57) [要約]

【目的】 更なる樹脂封止型半導体装置の高集積化、高 **協能化が求められている中、半導体装置パッケージサイ** ズにおけるチップの占有率を上げ、半導体装置の小型化 に対応させ、同時に従来のTSOP等の小型パッケージ に困難であった更なる多ピン化を実現した樹脂針止型半 3年体装置を提供する。

【構成】 半導体祭子の親子側の面に、半導体業子の超 テと電気的に結構するための内部端子部と、半導体素子 の遵子側の面へ直交して外部へと向く外部回路への技統 のための外部端子部と、前記内部端子部と外部端子部と を運結する接続リード部とを一体とした複数のリード部 とを、絶象接着材層を介して、固着して設けており、且 つ、回路基板等への実装のための半田からなる外部電極 を前記複数の各リードの外部端子邸に連結させ、少なく とも前記半田からなる外部電極の一部は樹麝部より外部 に舞出させて及けている。

【特許請求の範囲】

【請求項1】 半導体素子の端子側の面に、半導体素子 の嫁子と電気的に結鎖するための内部端子部と、半導体 紫子の端子側の面へ直交して外部へと向く外部回路への 接続のための外部端子部と、前記内部端子部と外部端子 部とを連結する接続リード部とを一体としたリード部を 複数個、絶縁接着材層を介して、固着して設けており、 且つ、回路基底等への実装のための半田からなる外部電 極を前記複数の各リードの外部端子部に連結させ、少な くとも前記半田からなる外部電極の一部は樹脂部より外 10 外部端子部面に半田からなる外部電極を作数する工程、 部に森出させて設けていることを特徴とする歯細封止型 半導体装置。

【請求項2】 請求項1において、半導体素子の第子は 半導体素子の端子面の一対の辺の略中心部線上にそって 配置されており、リード郎は複数の端子を挟むように対 向し前記一対の辺に沿い設けられていることを特屈とす る樹脂封止型半導体装置。

【請求項3】 半導体系子の端子と電気的に結構するた めの内部端子部と、外部回路と接続するための外部編子 部と、前記内部選子部と外部端子部とを連結する接続り 20 ード邸とを一体とし、謀外郎端子部を、接続リード部を **介して、リードフレーム面から値交する一方向側に突出** きせ、対向し先端部同士で運結節を介して技統する一対 7内部端子部を複数設けており、且つ、各外部端子部の 小側で、接続リード邸と連結し、一体として全体を保持 「る外枠部を設けていることを特徴とするリードフレー

【請求項4】 半導体素子の結子側の面に、半導体素子)端子と電気的に結線するための内部端子部と、半導体 子の岩子側の面へ直交して外部へと向く外部回路への 10 疣のための外部端 子部と、前記内部端子部と外部端子 とを連結する接続リード部とを一体とした複数のリー 旣とを、趙禄接着材度を介して、固着して設けてお - 且つ、回路基板等への実装のための半田からなる外 竜優を前記複数の各リードの外部集子部に連結させ、 なくとも前記半田からなる外部電極の一郎は樹脂感よ 外部に毎出させて設けている樹脂封止型半導体装置の **き方法であって、少なくとも、(A)エッチング加工** て、半導体素子の帽子と電気的に結構するための内部 予部と、外部回路と接続するための外部編予部と、前 (0) 7郎漢子郎と外部雄子部とを連結する接続リード部と -体とし、該外部端子部を、接続リード部を介して、 - ドフレーム面から直交する一方向釟に突出させ、対 > 先親部両士で連絡部を介して接続する一対の内部端 『を複数設けており、且つ、各外邸資子部の外側で、 !リード部と連結し、一体として全体を保持する外枠 ・設けているリードフレームを作製する工程。 (8) :リードフレームの外部端子部側でない面(裏面)に : 材を設け、打ち抜き金型により、対向する内部電子

けられた始縁材とを打ち抜き、リードフレームの打ち抜 かれた部分が半導体素子の報子部にくるようにして、前 記接着材を介して、リードフレーム全体を半点は素子へ 搭載する工程。 (C) リードフレームの外降部を含む不 要の部分を打ち抜き金型により切断除去する工程、

(D) 半萬体素子の諸子郎と、切断されて、半郎体煮子 へ搭載された内部端子部の先端部とをワイヤボンディン グした後に、樹脂により外部競子部面のみを外部に戯出 ュサイを体を封止する工程。 (E) 前記外部に成出した とを含むことを特徴とする樹脂封止型半導体装置の製造 方位。

(発明の詳細な説明)

[0001]

【産業上の利用分計】本発明は、半導体素子を搭載する 樹脂封止型の半導体装置 (プラスチックバッケージ)に 関し、特に、実装密度を向上させ、且つ、多ピン化に対 応できる半導体装置とその製造方法に関する。 [0002]

【従来の技術】近年、半導体装置は、高島技化、小型化 技術の進歩と電子機器の高性能化と軽薄短小化の傾向 (時歳) から、LSIのASICに代表されるように、 ますます高兵侯化、高陵能化になってきている。これに 伴い、リードフレームを用いた封止型の半導体装置プラ スチックパッケージにおいても、その開発のトレンド N. SOJ (Small Outline)—Lead ed Package) PQFP (Quad Flat P.ackage)のような表面実装型のパッケージを 桂て、TSOP (Tin Small Outline Package)の開発による薄型化を主軸としたバ ッケージの小型化へ、さらにはパッケージ内部の3次元 化によるチップ収納効率向上を目的としたLOC(Le ad On Chip)の構造へと進展してきた。しか し、樹脂封止型半導体装置パッケージには、高集積化、 高機能化とともに、更に一層の多ピン化、荷型化、小型 化が求めらており、上記従来のパッケージにおいてもチ ップ外周部分のリードの引き回しがあるため、パッケー ジの小型化に限界が見えてきた。また、TSOP等の小 型パッケージにおいては、リードの引き回し、ピンピッ チから多ピン化に対しても収昇が見えてきた。 [0003]

【兒明が解決しようとする課題】上記のように、更なる 樹眉封止型半導体装置の高集積化、高機能化が求められ ており、樹脂封止型半導体装置パッケージの一層の多ピ ン化、母型化、小型化が求められている。本発明は、こ のような状況のもと、半導体装置パッケージサイズにお けるチップの占有事を上げ、半導体装置の小型化に対応 させ、回路基板への実装面積を低減できる、即ち、回路 士を接続する連絡郎と該連絡郎に対応する位置に投 50 半導体装置を提供しようとするものである。また、同時 基版への実装密度を向上させることができる階寫針止型

に従来のTSOP等の小型パッケージに困難であった更 なる多ピン化を実現しようとするものである。

[0004]

【護題を解決するための手段】本発明の樹脂封止型半導 体装置は、半導体素子の電子側の面に、半導体素子の端 子と電気的に結論するための内部端子部と、半導体素子 の親子側の面へ直交して外部へと向く外部回路への接続 のための外部線子部と、前記内部端子部と外部端子部と を連結する接続リード部とを一体とした複数のリード部 とを、絶象接着材層を介して、固着じて設けており、且 10 つ. 回路岳仮等への実装のための半田からなる外部電極 を前記復数の各リードの外部端子部に連結させ、少なく とも前記半田からなる外部電極の一部は樹脂部より外部 に貸出させて設けていることを特徴とするものである。 尚、上記において、内部着子部と外部編子部とを一体と した復数のリード部の配列を半導体素子の増予側面上に 二次元的に配列し、外部電極部を半田ポールにて形成す ることによりBGA(Ball Grid Arra y) タイプの樹脂封止型半導体装置とすることもでき る.

【0005】そして、上記において、半導体素子の標子 は半導体素子の超子服の一対の辺の時中心部線上にそっ て配置されており、リード部は複数の端子を挟むように 対向し前記一対の辺に沿い設けられていることを特徴と するものである。 また、本発明のリードフレームは、樹 **脂封止型半導体装置用のリードフレームであって、半導** 体素子の端子と電気的に結束するための内部潔子部と、 外部回路と接続するための外部資子部と、前記内部縮子 邸と外部城下郎とを連結する接続リード部とを一体と し、抜き部端子部を、接続リード部を介して、リードフ 10 レーム面から直交する一方向側に突出させ、対向し先端 既同士で連結部を介して技統する一対の内部媒子部を復 **紋 於けており、且つ、各外節線子部の外側で、接続リー** ド部と連結し、一体として全体を保持する外枠部を設け ていることを特徴とするものである。尚、上記リードフ レームにおいて、内部端子部と外部端子部とそれを連結 する接続リード部とを一体とした組みを複数リードフレ ーム面に二次元的に配列するして形成することによりB CA(Ball Grid Array)タイプの樹脂

【〇〇〇6】 本発明の謝庭封止型半導体装置の製造方法 は、半導体素子の健子側の面に、半導体素子の電子と電 気的に結構するための内部増予部と、半導体素子の領予 側の由へ直交して外部へと向く外部回路への接続のため の外部端子部と、前記内部編子部と外部線子部とを連結 する技球リード部とを一体とした複数のリード部とを、 絶縁接着材層を介して、固着して設けており、且つ、凶 **洛苗仮等への実装のための半田からなる外部電視を前記** 度数の各リードの外部端干部に連結させ、心力と上もお cn

紀半田からなる外部電極の一部は樹脂部より外部に蘇出 させて設けている樹脂封止型半導体装置の製造方法であ って、少なくとも、(A)エッチング加工にて、半導体 君子の君子と電気的に結線するための内部領子部と、外 部回路と接続するための外部潤子部と、 前紀内部端子部 と外部竣予部とを連結する技統リード部とを一体とし、 該外部端子部を、接続リード部を介して、リードフレー ム面から直交する一方向側に突出させ、対向し先端部局 士で運絡部を介して接続する一封の内部架子部を被放設 けており、且つ、各外部第子部の外側で、接続リード邸 と連結し、一体として全体を保持する外枠部を設けてい るリードフレームを作数する工程、(B)前にリードフ レームの外部媒子部側でない面(裏面)に絶縁材を設 け、打ち抜き金型により、対向する内部离子部同士を接 統する連結部と故連結部に対応する位置に設けられた絶 年前こを打ち抜き、リードフレームの打ち抜かれた部分 が半導体素子の端子部にくるようにして、前記接着材を 介して、リードフレーム全体を半導体素子へ搭載するエ 役、(C)リードフレームの外枠部を含む不裂の部分を 打ち抜き金型により切断除去する工程、(D) 半導体素 子の歳子郎と、切断されて、半導体素子へ搭載された内 85 韓子船の先韓部とをワイヤボンデイングした後に、樹 煌により外部端子部面のみも外部に叙出させて全体を封 止する工程。 (5) 前記外部に貫出した外部機子部面に 半田からなる外部電極を作製する工程、とを含むことを 特徴とするものである。

[0007]

【作用】本発明の樹脂封止型半導体装置は、上記のよう な構成にすることにより、半導体装置パッケージサイズ におけるチップの占有率を上げ、半導体装置の小型化に 対応できるものとしている。即ち、半導体装置の回路基 仮への実装面積を低減し、回路基板への実装密度の向上 を可能としている。詳しくは、内部帽子部、外部帽子部 とを一体とした複数のリード部を半導体素子面に絶縁接 ~ 4~~ マ介して固定し、前記外部資子部に半田からなる 外部電極部を運結させていることより、装置の小型化を 達成している。そして、上記半田からなる外部電極部 を、半導体素子面に略平行な面で二次元的に配列するこ 。 とにより、半導体装置の多ピン化を可能としている。半 針止型半導体装置用のリードフレームとすることもでき (0 田からなる外部電極部を半田ポールとし、二次元的に鉄 外部電極部を配剤した場合にはBGAタイプとなり、半 海体装置の多ピン化にも対応できる。また、上記におい 🍃 て、半導体素子の燐子が半導体素子の媒子面の一針の辺 の略中心部級上にそって配置され、リード部は複数の蜩 子を挟むように対向し前記一対の辺に沿い及けられてお り、簡単な構造とし、量産性に遭した構造としている。 本発明のリードフレームは、上記のような構成にするこ とにより、上記樹鷸封止型半導体装置の製造を可能とす るものであるが、過常のリードフレームと同様のエッチ

とができる。本発明の樹稲封止型半導体装置の製造方法 は、上記リードフレームを用いて、リードフレームの外 部第子部側でない面(田面)に絶様材を設け、打ち抜き 金型により、対向する内部端子部同士を接続する連絡部 と該連結部に対応する位置に設けられた絶縁材とを打ち 抜き、 リードフレームの打ち抜かれた部分が半導体第子 の端子部にくるようにして、前記接着材を介して、リー ドフレーム全体を半導体業子へ搭載し、リードフレーム の外枠部を含む不要の部分を打ち抜き金型により切断除 屋の小型化が可能な、且つ、多ピン化が可能な樹脂封止 型半導体装置の作製を可能としている。

(0008)

£

【実施例】本発明の樹脂封止型半導体装置の実施例を以 下、図にそって説明する。図 I (a) は本実施例樹脂封 止型半導体装置の断面概括図であり、図1(b)は異部 の斜視図である。図1中、100は樹脂封止型半導体鉄 履、101は半端体素子、102はリード部、102A は内部第子部、1028は外部減子部、102Cは接続 20 る。図2は実施例リードフレームの平面図を示すもの リード部、101Aは端子邢(パッド部)、103はワ イヤ、104は絶縁接着材、105は樹脂郎、106は 半田(ベースト)からなる外部電極である。本実施例樹 脂封止型半導体装置は、後述するリードフレームを用い たもので、内部竣子部102A、外部端子部102Bを 一体としたし字型のリード部102を多数半導体業子1 0 1上に絶縁接着材 1 0 4 を介して搭載し、且つ、外部 漢子部102B先に半田からなる外部電極を樹脂部10 5 より外部へ突出させて設けた、パッケージ面積が結半 導体装置の面積に相当する樹脂封止型半導体装置であ り、回路基板へ搭載される点には、半田(ベースト)を 俗解、固化して、外部選予部102Bが外部回路と電気 的に接続される。本実施例樹脂封止型半導体装置は、図 I(b)に示すように、半導体素子101の端子部(バ ッド邸) 101Aは半導体素子の中心線しはさみ対向し て2回づつ、中心線しに沿って配置されており、リード 班102も、内部減子郎102Aが前記線子郎(パッド 38) に沿った位置に半導体素子101の面の外側に中心 頃を挟み対向するように配置されている。外部収予部 1 を介して離れて位置し、ほぼ半導体素子の劇面までに遠 った位置で半導体素子面に庭交する方向に、接続リード 102CがL字に曲がり、外部罐子部102Bはその先 まに位伍し、 半導体票子の面に平行な面方向で一次元的 :配列をしている、即ち、中心練しを挟み2列の外部翼 - 部102日の配列を設けている。そして、各外部総子 3に連結させ、半田(ペースト)からなる外部電艦10 - を樹庭邸105より外部に貫出させて設けている。

)、 絶縁接着材 1 0 4 としては、 1 0 0 μ m 厚のポリイ

社製)を用いたが、他には、シリコン変成ポリイミド! TA1715 (住友ペークライト株式会社) や熱硬化型 接着剤HG5200 (巴川製紙株式会社株製)等がが坐 げられる。上記実施例では、半田ペーストからなる外部 愛媛であるが、この部分は半田ポールに代えても良い。 尚、本実施例樹起封止型半導体装置は、上記のように、 パッケージ面積が助半導体装置の面積に相当する。面積 的に小型化されたパッケージであるが、厚み方向につい 去することにより、内部端子と外部端子を一体とした組 10 時に違成できるものである。本実筋例においては外部電 医部を、半導体素子の端子部(パッド部)に沿い2列に 配列したが、半導体素子の端子の位置を二次元的に配置 し、内部第子部と外部線子部との一体となった組みを復 数、半導体素子の端子面側に二次元的に配列して搭載す ることにより、半導体素子の、一層の多ピン化に十分対 応できる。

【0009】 次いで、本発明のリードフレームの実施例 を単げ、図にもとづいて説明する。本実版例リードフレ ームは、上記実施餌半導体袋屋に用いられたものであ

で、図2中、200はリードフレーム、201は内部端 子部、202は外部端子部、203は抜映リード部、2 0.4は連結郎、2.0.5は外枠部である。リードフレーム は42合金(Ni42%のFe合金)からなり、リード フレームの厚さは、内部幾千郎のある禪肉部で0. 05 mm、外部領子部のある厚肉部でり、2mmである。内 部選子郎の対向する先端部同士を連結する連結師205 も77内(0.05mm厚)に形成されており、後述する 半導体装置を作製する際の打ち抜き金型にて打ち抜きし 30 易い構造となっている。本実統例では外部第子部202 は丸状であるが、これに限定はされない。また、リード フレーム素材として42合金を用いたがこれに限定され ない。耐采合金でも良い。

【0010】次に、上記実施例リードフレームの製造方 法を図を用いて簡単に説明する。図4は本実施例リード フレームを製造した工程を示したものである。先ず、 4 2 合金 (Ni 4 2 %のFe 合金) からなる。厚さ 0. 2 mmのリードフレーム素材300を準備し、仮の両面を 脱脂等を行い良く洗浄処理した(図3(a)) 使、リー 028は内部端子部102Aから接続リード部102C (0 ドフレーム素材300の両面に感光性のレジスト301 を堕布し、乾燥した。 (図3 (b)).

次いで、リードフレーム素材300の英面から所定のパ ターン版を用いてレジストの所定の部分のみに蘇光を行 った後、現像処理し、レジストパターン301Aを形成 した。 (図3 (c))

尚レジストとてしは東京応化株式会社製のネガ型底状レ ジスト (PMERレジスト) も使用した。次いで、レジ ストパターン301Aモ耐塩駐性膜として、57°C、 ド系の熱可塑性接着剤HMI22C(日立化成株式会 50 村300の両面からスプレイエッチングして、外形形状 48ポーメの塩化第二鉄水熔板にて、リードフレーム素

の平面図が図2に示されるリードフレームを作製した (図3 (d)) . 図2 (b) のは. 図2のAl-A2に おける断面図である。この後、レジストを穀膜した後、 洗浄処理を結した後、所定の箇所(内部解子部分を含む 領域)のみに金メッキ処理を行った。(図3(e)) 尚、上記リードフレームの製造工程においては、図2 (b) に示すように、厚肉部と屏肉部を形成するため、 外部端下形成面倒からのエッチング(腐蝕)を多く行 い、反対面側からは少なめにエッチング(腐蝕)を行っ た。また、金メッキに代え、銀メッキやパラジウムメッ 10 鼠の半田が得られれば良い。 キでも良い。 上記のリードフレームの製造方法は、1ケ の半導体装置を作製するために必要なリードフレーム1 ケの製造万住であるが、通常は生産性の面から、リード フレーム系材をエッチング加工する際、図2に栄すり一 ドフレームを複数個面付けした状態で作製し、上記のエ 程を行う。この場合は、図2に示す外枠部205の一部 に連結する枠部(図示していない)をリードフレームの 外側に設けて面付け状態とする。

【0011】次に、上記のようにして作製されたリード フレームを用いた、本発明の樹脂封止型半導体装置の製 20 型半導体装置の提供を可能としたものである。 造方比の実施例を図にそって説明する。図4は、本実施 所樹 船封止型 半導体装置の製造工程を示すものである。 図3に示すようにして作製されたリードフレーム400 の外部端子部402形成面(表面)と対向する裏面に、 ボリイミド系熱硬化型の絶象接着材(テープ)401 (日立化成株式会社製、HM122C) を、400° C. 6 Kg / m ' で 1. 0 秒熱圧着して貼りつけた(図 **1(a)). この伏然の平面図を図5に示す. この後打** ち抜き企型405A、405Bにて(図4(b)) . 対 向する内部減子部の先端部を連結する連結部403と、 その部分の絶縁接着材(テープ)401とを打ち抜い た。 (図1 (c))

次いで、外枠打ち抜きおよび圧着用金型406A、40 6 B を用い、外枠部404を含む不复の部分を切り離す (図4(d)) と四時に、絶縁接着材404を介して半 導体素子407上にリード第408の熱圧着を行った。 (図4 (e))

尚、この図4(d)に示す、接続リードと連結してリー ドフレーム全体を支えている外枠部204を含む不長の 部分を切り難しは、樹脂對止した後に行っても良い。こ 40 の場合には、通常の単層リードフレームを用いたQFP パッケージ等のようにダムバー(図示していない)を数 けると良い。 リード部410を半導体素子411へ搭載 した後、ワイヤー414により、半導体業子の端子(パ ッド)411Aとリード部410の内部端子410Aと を電気的に結雑した。 (図4 (1))

そのほ、所定の金型を用い、エポキシ系の樹脂415で リード郎410の外部端子郎410Bのみを貸出させ て、全体を封止した。 (図4 (g))

ここでは、専用の変型(図示していない) を用いたが

所定の面(外部端子部)を残し樹脂封止できれば、心ず しも金型は必要としない。次いで、韓出されている外部 解子部410B上に半田ペーストをスクリーン印刷によ り煙布し、半田(ベースト)からなる外部電極416を 作裂し、本発明の樹脂封入止型半導体装置を作製した。 (Ø4 (h))

尚、半田からなる外部竜極416の作製は、スクリーン 印刷に限定されるものではなく、リフローまたはポッテ イング等でも、回路基板と半導体装置との接続に必要な

[0012]

【兒明の効果】本発明は、上記のように、更なる街間封 止型半導体装置の高集積化、高機能化が求められる状況 のもと、半導体装置パッケージサイズにおけるチップの 占有 郡を上げ、半導体装置の小型化に対応させ、回路基 低への実装面積を低減できる。即ち、回路基板への実装 密度を向上させることができる巡体装置の提供を可能と したものであり、同時に従来のTSOP年の小型パッケ ージに困難であった更なる多ピン化を実現した樹脂封止

【図面の簡単な説明】

【図1】 実施例の樹脂封入夏半導体装置の概略断面図及 び要部機路図

【図2】 実施例のリードフレームの平面図

【図3】 実施例のリードフレームの製造工程図

【図4】実施例の樹脂封止型半導体装置の製造工程図

【図 5】 実筋例のリードフレームに絶景接着材を貼りつ けた状態の平面図

(符号の説明)

.....

		•
30	1 0 0	樹眉對止型半導体装置
	1 0 1	. 半導体素子
	101A	端子郎 (パッド部)
	102	リード部
	1 0 2 A	内部减子部
	1 0 2 B	外部第子部
	1 0 2 C	接続リード部
	1 0 3	フィヤ
	104	拍敲接着材
	105	樹棉飾
40	106	半田(ペースト)からなる外部
	乳腫	・ニ、・ハーノからなる方部
	2 0 0	リードプレーム
	2 0 1	内部端子部
	2 0 2	外部建于部
	203	接続リード部
	204	運結節
;	2 u 's	外份部
;	300	リードフレーム森材
;	3 0 1	レジスト

.

9 303A 内部溶子部 303B 外部減子部 遠結部 305 金メッキ部 外枠部 400 リードフレーム 絶縁接着材(テープ) 外部等子部 連結部	405A.405B 406A.406B 410 410A 410B 410C 411 411A	持備平8-125066 10 打ち抜き金型 外枠打ち抜きおよび圧者用金型 リード部 内部端子部 検続リード部 半導体素子 ワイヤー 樹脂
(⊠ 1)		(m
(a)	(a) A1 → 〇 混构的	

Japanese Patent Laid-Open Publication No. Heisei 8-125066

[TITLE OF THE INVENTION]

Resin Encapsulated Semiconductor Device, Lead Frame

5 Used Therein, and Fabrication Method for the Resin
Encapsulated Semiconductor Device

[CLAIMS]

- A resin encapsulated semiconductor device
 comprising:
 - a semiconductor chip;
- a plurality of leads fixedly attached to a terminalend surface of the semiconductor chip by an insulating
 adhesive interposed between the semiconductor chip and the

 leads, each of the leads including integral portions, that
 is, an inner terminal portion adapted to be electrically
 connected to an associated one of terminals of the
 semiconductor chip, an outer terminal portion extending
 outwardly in a direction orthogonal to the terminal-end
 surface of the semiconductor chip and adapted to be
 connected to an external circuit, and a connecting lead
 portion adapted to connect the inner and outer terminal
 portions to each other; and

outer electrodes each connected to the outer terminal portion of an associated one of the leads and made of

solder to allow the semiconductor device to be mounted on a circuit board, at least a part of the outer leads being externally exposed from a resin encapsulate.

2. The resin encapsulated semiconductor device according to claim 1, wherein the terminals of the semiconductor chip are arranged along a substantially center line between a pair of sides of the semiconductor chip on the terminal-end surface of the semiconductor chip, and the leads are arranged in two facing sets along the sides of the semiconductor chip, respectively, in such a fashion that the terminals of the semiconductor chip are interposed between the two facing lead sets.

3. A lead frame comprising:

15

20

a plurality of leads each including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of a semiconductor chip, an outer terminal portion adapted to be connected to an associated one of terminals of an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other;

each of the outer terminal portions of the leads
25 being protruded in a direction orthogonal to a lead frame

surface via an associated one of the connecting lead portions;

the inner lead portions of the leads being arranged in pair in such a fashion that the leads of each lead pair have facing tips, respectively;

5

connecting portions each adapted to connect the facing tips of the leads included in an associated one of the lead pairs; and

an outer frame portion arranged outside the outer

terminal portions and connected to the connecting lead

portions in such a fashion that they form an integral

structure together, thereby protecting the entire portion

of the lead frame.

15
4. A method for fabricating a semiconductor device including a semiconductor chip, a plurality of leads fixedly attached to a terminal-end surface of the semiconductor chip by an insulating adhesive interposed between the semiconductor chip and the leads, each of the leads including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of the semiconductor chip, an outer terminal portion extending outwardly in a direction orthogonal to the terminal-end surface of the semiconductor chip, and adapted to be connected to an external circuit,

and a connecting lead portion adapted to connect the inner and outer terminal portions to each other; and outer electrodes each connected to the outer terminal portion of an associated one of the leads and made of solder to allow the semiconductor device to be mounted on a circuit board, at least a part of the outer leads being externally exposed from a resin encapsulate, comprising the steps of:

5

10

15

20

25 ·

(A) fabricating a lead frame including a plurality of leads each including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of a semiconductor chip, an outer terminal portion adapted to be connected to an associated one of terminals of an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other, each of the outer terminal portions of the leads being protruded in a direction orthogonal to a lead frame surface via an associated one of the connecting lead portions, the inner lead portions of the leads being arranged in pair in such a fashion that the leads of each lead pair have facing tips, respectively, connecting portions each adapted to connect the facing tips of the leads included in an associated one of the lead pairs, and an outer frame portion arranged outside the outer terminal portions and connected to the connecting lead portions in such a fashion that they form

an integral structure together, thereby protecting the entire portion of the lead frame;

- (B) applying an insulating layer to a surface of the lead frame opposite to the outer terminal portions, punching out the connecting portions adapted to connect facing ones of the inner lead portions to each other along with portions of the insulating layer respectively arranged at regions corresponding to the connecting portions by use of punching dies, aligning the punched portions of the lead frame with the terminals of the semiconductor chip, and mounting the entire portion of the lead frame on the semiconductor chip by the adhesive interposed therebetween;
- (C) cutting off unnecessary portions of the lead frame including the outer frame portion by use of punching dies, thereby removing the cut-off portions;
- (D) wire-bonding the terminals of the semiconductor chip with tips of the inner terminal portions mounted on the semiconductor chip, and encapsulating the semiconductor chip and the lead frame by a resin while allowing a surface of the lead frame toward the outer terminal portions to be externally exposed; and
- (E) forming outer electrodes made of solder on the exposed lead frame surface toward the outer terminal portions.

20

5

10

15

[DETAILED DESCRIPTION OF THE INVENTION] [FIELD OF THE INVENTION]

The present invention relates to a resin encapsulated semiconductor device (plastic package) in which a semiconductor chip is packaged, and more particularly to a semiconductor device configured to achieve an improvement in mounting density or to have a multi-pinned structure and a method for manufacturing such a semiconductor device.

10 [DESCRIPTION OF THE PRIOR ART]

5

15

20

25

Recently, semiconductor devices have been developed to have a higher integration degree and a higher performance by virtue of developments of techniques associated with an increase in integration degree and miniaturization and in pace with the tendency of electronic appliances to have a high performance and a light, thin, simple, and miniature structure. A representative example of such semiconductor devices is an ASIC of LSI. For instance, developments of resin encapsulated semiconductor device plastic packages have been advanced from surface-mounting packages such as SOJs (Small Outlined-Leaded Packages) or QFPs (Quad Flat Packages) to packages having a miniature structure mainly achieved in accordance with a thinness obtained by virtue of developments of TSOPs (Tin Small Outline Packages) or to LOC (Lead On Chip) structures

adapted to achieve an improvement in the chip packaging efficiency by virtue of developments of an internal threedimensional package structure. In addition to an increase in integration degree and improvement in performance, there has also been growing demand for an increase in the number of pins, thickness, and miniaturization resin encapsulated semiconductor packages. In the above mentioned conventional packages, however, there limitation in miniaturization because those packages have a structure in which leads are arranged around a chip. Similarly, leads are arranged around a chip in the case of miniature packages such as TSOPs. In such packages, there is also a limitation in increasing the number of pins due to the pin pitch used.

15

20

25

10

5

1000

[SUBJECT MATTERS TO BE SOLVED BY THE INVENTION]

As mentioned above, there has been demand for an increase in integration degree and improvement in performance of resin encapsulated semiconductor devices. Also, there has also been growing demand for an increase in the number of pins, thickness, and miniaturization of resin encapsulated semiconductor packages. In such situations, the present invention makes it possible to increase the occupancy degree of a chip in a semiconductor package with a limited size while reducing the mounting area of the

semiconductor package on a circuit board to achieve a miniaturization of the resulting semiconductor device. That is, the present invention is adapted to provide a resin encapsulated semiconductor device capable of achieving an improvement in the mounting density thereof on a circuit board. Also, the present invention is adapted to achieve an increase in the number of pins which is difficult in miniature packages such as conventional TSOPs.

10 [MEANS FOR SOLVING THE SUBJECT HATTERS]

15

20

25

The resin encapsulated semiconductor device of the present invention is characterized in that it comprises: a semiconductor chip; a plurality of leads fixedly attached to a terminal-end surface of the semiconductor chip by an insulating adhesive interposed between the semiconductor chip and the leads, each of the leads including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of the semiconductor chip, an outer terminal portion extending outwardly in a direction orthogonal to the terminal-end surface of the semiconductor chip and adapted to be connected to an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other; and outer electrodes each connected to the outer terminal portion of an associated one of the

leads and made of solder to allow the semiconductor device to be mounted on a circuit board, at least a part of the outer leads being externally exposed from a resin encapsulate. The above semiconductor device can be into a (Ball Grid Array) type resin BGA encapsulated semiconductor device by arranging a plurality of leads each having an inner terminal portion and an outer terminal portion integral with each other in a twodimensional fashion on the terminal-end surface of the semiconductor chip and forming the outer electrodes in the form of solder balls.

磐.

5

10

25

The above semiconductor device is also characterized in that the terminals of the semiconductor chip are arranged along a substantially center line between a pair of sides of the semiconductor chip on the terminal-end 15 surface of the semiconductor chip, and the leads are arranged in two facing sets along the sides of semiconductor chip, respectively, in such a fashion that the terminals of the semiconductor chip are interposed 20 between the two facing lead sets. The lead frame of the present invention is characterized in that it comprises: a plurality of leads each including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals semiconductor chip, an outer terminal portion adapted to be

connected to an associated one of terminals of an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other; each of the outer terminal portions of the leads being protruded in a direction orthogonal to a lead frame surface via an associated one of the connecting lead portions; the inner lead portions of the leads being arranged in pair in such a fashion that the leads of each lead pair have facing tips, respectively; connecting portions each adapted to connect the facing tips of the leads included in an associated one of the lead pairs; and an outer frame portion arranged outside the outer terminal portions and connected to the connecting lead portions in such a fashion that they form an integral structure together, thereby protecting the entire portion of the lead frame. The above lead frame can be embodied into a lead frame for a BGA (Ball Grid Array) type resin encapsulated semiconductor device by arranging a plurality of leads each having an inner terminal portion and an outer terminal portion integral with each other in a two-dimensional fashion on the terminal-end surface of the semiconductor chip and forming the outer electrodes in the form of solder balls.

, ai >

5

10

15

20

25

The present invention is also characterized by a method for fabricating a semiconductor device including a semiconductor chip, a plurality of leads fixedly attached

to a terminal-end surface of the semiconductor chip by an insulating adhesive interposed between the semiconductor chip and the leads, each of the leads including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of the semiconductor chip, an outer terminal portion extending outwardly in a direction orthogonal to the terminal-end surface of the semiconductor chip and adapted to be connected to an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other; and outer electrodes each connected to the outer terminal portion of an associated one of the leads and made of solder to allow the semiconductor device to be mounted on a circuit board, at least a part of the leads being externally exposed from a resin outer encapsulate, comprising the steps of: (A) fabricating a lead frame including a plurality of leads each including integral portions, that is, an inner terminal portion adapted to be electrically connected to an associated one of terminals of a semiconductor chip, an outer terminal portion adapted to be connected to an associated one of terminals of an external circuit, and a connecting lead portion adapted to connect the inner and outer terminal portions to each other, each of the outer terminal portions of the leads being protruded in a direction orthogonal to a

S 46 >

10

15

20

25

lead frame surface via an associated one of the connecting lead portions, the inner lead portions of the leads being arranged in pair in such a fashion that the leads of each lead pair have facing tips, respectively, connecting portions each adapted to connect the facing tips of the leads included in an associated one of the lead pairs, and an outer frame portion arranged outside the outer terminal portions and connected to the connecting lead portions in such a fashion that they form an integral structure together, thereby protecting the entire portion of the lead frame; (B) applying an insulating layer to a surface of the lead frame opposite to the outer terminal portions, punching out the connecting portions adapted to connect facing ones of the inner lead portions to each other along with portions of the insulating layer respectively arranged at regions corresponding to the connecting portions by use of punching dies, aligning the punched portions of the lead frame with the terminals of the semiconductor chip, and mounting the entire portion of the lead frame on the semiconductor chip by the adhesive interposed therebetween; (C) cutting off unnecessary portions of the lead frame including the outer frame portion by use of punching dies, thereby removing the cut-off portions; (D) wire-bonding the terminals of the semiconductor chip with tips of the inner terminal portions mounted on the semiconductor chip, and

E . . St. L .

6 5

5

10

15

20

25

encapsulating the semiconductor chip and the lead frame by a resin while allowing a surface of the lead frame toward the outer terminal portions to be externally exposed; and (E) forming outer electrodes made of solder on the exposed lead frame surface toward the outer terminal portions.

[FUNCTIONS]

- 3 ×

5

10

15

20

25

With the above mentioned configuration, the resin encapsulated semiconductor device of the present invention can increase the occupancy degree of the chip while achieving a miniaturization thereof. That is, the resin encapsulated semiconductor device is capable of reducing the mounting area thereof on a circuit board and achieving an improvement in the mounting density thereof on the circuit board. In particular, the present invention achieves a miniaturization of the semiconductor device by fixedly attaching a plurality of leads each including an inner terminal portion and an outer terminal portion integral with each other to a surface of a semiconductor chip by an insulating adhesive layer interposed between the semiconductor chip and the leads, and connecting outer electrodes made of solder to the outer terminal portions, respectively. Also, the present invention achieves an increase in the number of pins in the semiconductor device by arranging the outer electrodes made of solder in a two-

10

15

20

25

dimensional fashion on a plane parallel to the surface of the semiconductor chip. Where the outer electrodes made of solder are formed in the form of solder balls and arranged in a two-dimensional fashion, a BGA type semiconductor device capable of achieving an increase in the number of pins can be obtained. In the above semiconductor device, the terminals of the semiconductor chip are arranged along a substantially center line between a pair of sides of the semiconductor chip on the terminal-end surface of the semiconductor chip, and the leads are arranged in two facing sets along the sides of the semiconductor chip, respectively, in such a fashion that the terminals of the semiconductor chip are interposed between the two facing lead sets. Thus, the semiconductor device has a simple structure suitable in regard to productivity. The lead of the present invention makes it possible to fabricate the above mentioned resin encapsulated semiconductor device by virtue of there above mentioned configuration thereof. However, this lead frame can be fabricated using a half etching method during an etching process as used for conventional lead frames. The method for fabricating a resin encapsulated semiconductor device in accordance with the present invention involves the steps of applying an insulating layer to a surface of the lead frame opposite to the outer terminal portions, punching out

the connecting portions adapted to connect facing ones of the inner lead portions to each other along with portions of the insulating layer respectively arranged at regions corresponding to the connecting portions by use of punching 5 dies, aligning the punched portions of the lead frame with the terminals of the semiconductor chip, and mounting the entire portion of the lead frame on the semiconductor chip by the adhesive interposed therebetween, and cutting off unnecessary portions of the lead frame including the outer 10 frame portion by use of punching dies, thereby removing the cut-off portions. Thus, a plurality of leads each including an inner terminal portion and an outer terminal portion integral with each other are mounted on a semiconductor chip. Accordingly, the present invention 15 makes it possible to achieve a miniaturization semiconductor devices. In accordance with the present invention, it is also possible to fabricate a resin encapsulated semiconductor device having an increased number of pins.

20

25

1 %

[EMBODIMENTS]

Hereinafter, embodiments of the present invention associated with resin encapsulated semiconductor devices will be described in conjunction with the annexed drawings. Fig. 1A is a cross-sectional view schematically

(%)

5

10

15

20

25

illustrating a resin encapsulated semiconductor device according to an embodiment of the present invention. Fig. 1B is a perspective view illustrating an essential part of the resin encapsulated semiconductor device. Figs. 1A and 1B. the reference numeral 100 denotes the, resin encapsulated semiconductor device, 101 a semiconductor chip, 102 leads, 102A inner terminal portions, 102B outer terminal portions, 102C connecting lead portions, 101A contacts (pads), 103 wires, 104 an insulating adhesive, 105 a resin encapsulate, 106 outer electrodes made of solder (paste), respectively. The resin encapsulated semiconductor device according to this embodiment fabricated using a lead frame which will be described hereinafter. In this resin encapsulated semiconductor device, a plurality of L-shaped leads 102, each of which has an inner terminal portion 102A and an outer terminal portion 102 integral with each other, are mounted on a semiconductor chip 101 by means of an insulating adhesive An outer electrode 106, which is made of solder, is attached to each outer terminal portion 102B. The outer electrode 106 is outwardly protruded from a encapsulate 105. The resin encapsulated semiconductor device configured as mentioned above has a package area substantially equal to the entire area thereof. When this semiconductor device is mounted on a circuit board, the

10

15

20

25

solder is melted and then solidified to allow the outer terminal portions 102B to be electrically connected to an external circuit. In the resin encapsulated semiconductor device according to the illustrated embodiment, contacts (pads) 101A provided at the semiconductor chip 101 are arranged in pairs along a center line L the semiconductor chip 101 at opposite sides of the center line L in such a fashion that contacts included in each contact pair face each other. The outer terminal portion 102B of each lead is spaced apart from the inner terminal portion 102A of the lead. Between the inner and outer terminal portions 102A and 102B, a connecting lead portion 102C is interposed. The connecting lead portion 102C of each lead is bent in a direction orthogonal to the major surface of the semiconductor chip at a position near an associated one of the side surfaces of the semiconductor chip 101, so that it has an L shape. In each lead, the outer terminal portion 102B is arranged at an end of the connecting lead portion 102C. The outer terminal portions 102B of the leads are arranged in a one-dimensional fashion on a plane parallel to the major surface of the semiconductor chip 101. That is, the outer terminal portions 102B are arranged in two lines at opposite sides of the center line As mentioned above, one outer electrode 106 made of solder is connected to the outer terminal portion 102B of

10

15

20

each lead and outwardly exposed from the resin encapsulate 105.

For the insulating adhesive 104, a polyimide-based thermoplastic adhesive having a thickness of 100 µm (HM122C manufactured by Hitachi Chemical Co., Ltd.) is preferably used. Alternatively, a silicon denaturalized polyimide adhesive (ITA1715 manufactured by Sumitomo Bakelite Co., Ltd.) or a thermosetting adhesive (HG5200 manufactured by Tomoekawa Papermaking Co., Ltd.) may be used. Although ou'er electrodes made of solder paste are used in the illustrated embodiment, solder balls may be used.

As mentioned above, the resin encapsulated semiconductor device according to the illustrated embodiment has a package area substantially equal to the entire area thereof. That is, the illustrated embodiment of the present invention provides a package having a compact structure in regard to area. In accordance with the present invention, a thinned package structure can also be provided in that it is also possible to reduce the package thickness to about 1.0 mm or less. Although the outer electrodes have been described as being arranged in two lines along the contacts (pads) of the semiconductor chip, they may be arranged in a two-dimensional fashion. This is achieved by arranging contacts of the semiconductor chip in a two-dimensional fashion. On the surface of the

10

15

20

25

semiconductor chip arranged with those contacts, a plurality of terminal sets each having an inner terminal and outer terminal integral with each other are arranged in a two-dimensional fashion. In this case, it is possible to fabricate a semiconductor device using a semiconductor chip with an increased number of pins.

An embodiment of the present invention associated with a lead frame will now be described. The lead frame according to this embodiment is adapted to be used in the above mentioned semiconductor device. Fig. 2 is a plan view of the lead frame according to this embodiment. Fig. 2, the reference numeral 200 denotes a lead frame, 201 inner terminal portions, 202 outer terminal portions, 203 connecting lead portions, 204 a connecting portion, and 205 an outer frame portion, respectively. The lead frame is made of 42 ALLOY (namely, an Fe alloy containing 42% Ni). The lead frame has a thickness of 0.05 mm at its thinner portion, that is, the inner terminal portions, and a thickness of 0.2 mm at its thicker portion, that is, the outer terminal portions. The connecting portion, which connects facing tips of the inner terminal portions to each other, has a thickness of 0.05 mm corresponding to that of the thinner portion. This connecting portion has a structure capable of allowing an easy punching thereof in the fabrication of the semiconductor device, as described

10

15

hereinafter. Although the outer terminal portions 202 have a ball shape in the illustrated embodiment, they are not limited to this shape. Also, although the lead frame has been described as being made of the 42 ALLOY, it is not limited to this material. For the lead frame, a copper-based alloy may be used.

Now, fabrication of the lead frame according to the illustrated embodiment will be described in brief. Fig. 4 illustrates a process for fabricating the lead frame according to the illustrated embodiment. First, a lead frame blank 300 having a thickness of 0.2 mm was prepared which is made of a 42 ALLOY (an Fe alloy containing 42% Ni). The prepared lead frame blank 300 was then subjected to a cleaning process, thereby removing grease from the surfaces thereof (Fig. 3a). Subsequently, photoresist films 301 were coated over both surfaces of the lead frame blank 300, respectively. The coated photoresist films 301 were then dried (Fig. 3b).

Using desired pattern plates, the photoresist films

301 on both surfaces of the lead frame blank 300 were
exposed to light at their desired portions. A developing
process was then conducted to the light-exposed photoresist
films 301, thereby forming photoresist patterns 301A.

For the photoreist films, a negative liquid-phase resist (PMER resist) manufactured by Tokyo Ohka Co., Ltd.

10

was used. Using the resist patterns 301A as anti-etch films, the lead frame blank 300 was subjected to a spray etching process at both surfaces thereof. The spray etching process was conducted using a ferric chloride solution of 48 BAUME at 57 °C. Thus, a lead frame having a structure of Fig. 2a was obtained (Fig. 3d). Fig. 2a is a plan view of the lead frame. Fig. 2b is a cross-sectional view taken along the line A1 - A2 of Fig. 2a. Thereafter, the remaining photoresist thin films were peeled off. The resulting structure was then subjected to a cleaning process. A gold plating process was subsequently conducted for desired portions of the lead frame, that is, regions including inner terminal portions (Fig. 3e).

In the fabrication process of the lead frame, the 15 etching process was conducted with a large etch depth at one major surface of the lead frame blank where outer terminal portions are to be formed, and with a small etch depth at the other major surface of the lead frame. place of the gold plating, silver or palladium plating may 20 be utilized. The above mentioned lead frame fabrication process is adapted to manufacture a single lead frame required for the manufacture of a single semiconductor device. In terms of productivity, however, the etching process is conducted for lead frame units each corresponding to the single lead frame shown in Fig. 2. To

10

15

20

this end, a frame member (not shown) is provided at a desired portion of the peripheral edge of the lead frame so as to connect a desired part of the outer frame portion 205 shown in Fig. 2 to a corresponding one of an adjacent lead frame.

Using the lead frame fabricated as mentioned above, the resin encapsulated semiconductor device according to the present invention was fabricated. Now, a method for fabricating the resin encapsulated semiconductor device in accordance with an embodiment of the present invention will described. Fig. 4 illustrates the method fabricating the resin encapsulated semiconductor device in accordance with the embodiment of the present invention. A polyimide-based thermosetting insulating adhesive (tape) 401 (HM122C manufactured by Hitachi Chemical Co., Ltd.) was applied to one surface, formed with the outer terminal portions 402, of the lead frame 400 fabricated as in Fig. 3 and the outer surface of the lead frame 400 using a hot pressing process conducted at 400 °C and 6 $\rm Kg/m^2$ for 1.0 second Fig. 4a). The resulting structure is shown in Fig. 5 which is a plan view. Thereafter, the connecting portions 403 connecting facing tips of the inner terminal portions were punched using punching dies 405A and 405B (Fig. 4b). Also, portions of the insulating adhesive

10

15

20

(tape) corresponding to those connecting portions 403 were punched (Fig. 4c)

Subsequently, unnecessary portions of the lead frame including the outer frame 404 were cut off using outer frame punching and pressing dies 406A and 406B (Fig. 4d). The lead frame was then bonded to a semiconductor chip 407 at its leads 410 under pressure while applying heat (Fig. 4e).

The process for cutting off the unnecessary portion of the lead frame including the outer frame 404 supporting the entire portion of the lead frame along with the connecting lead portion, as shown in Fig. 4d, may be carried out after an resin encapsulating process. In this case, dam bars (not shown) are preferably provided, as in QFP packages typically using a lead frame having a single layer structure. After the mounting of the leads 410 on the semiconductor chip 411, the inner terminal portion 410 of each lead 410 was electrically connected to associated one of terminals (pads) 411A the semiconductor chip 411 (Fig. 4f).

Subsequently, an epoxy-based resin 415 was molded to encapsulate the resulting structure while exposing the outer terminal portions 410B of the leads 410 using a desired mold (Fig. 4g).

10

15

Although a specific mold (not shown) was used for the above process in the illustrated case, use of such a die may be unnecessary in so far as the resin encapsulating process can be conducted under the condition in which desired portions (outer terminal portions) of the lead frame are left. Thereafter, a solder paste was coated on the exposed outer terminal portions 410B in accordance with a screen printing process, thereby forming outer electrodes 416 made of solder (paste). Thus, the fabrication of the resin encapsulated semiconductor device according to the present invention was achieved (Fig. 4h).

Although the formation of the outer electrodes 416 made of solder has been described as being achieved using a screen printing process, it may be achieved using a reflow or bonding process in so far as an amount of solder required for a connection of the semiconductor device to a circuit board is obtained.

[EFFECTS OF THE INVENTION]

As apparent from the above description, the present invention makes it possible to increase the occupancy degree of a semiconductor chip in a semiconductor package in situations requiring new resin encapsulated semiconductor devices having a highly integrated structure while exhibiting a high performance. The present invention

also makes it possible to reduce the area of the semiconductor device on a circuit board in order to cope with a compactness of the semiconductor device. That is, the present invention can provide a semiconductor device capable of achieving an improvement in the mounting density on a circuit board. At the same time, the present invention can provide a resin encapsulated semiconductor device having a new multipinned structure which could not be realized in compact packages such as conventional TSOPs.