

# Telecommunication Basics (CDMA Network)

Software Engineering Lab - 김영기 책임

### Remember Again !!!



### **CDMA Evolution**

### **❖** IS-95A (2G)

- First CDMA protocol, published in May'99
- 14.4/9.6 kbps circuit/packet data

### **❖** IS-95B (2.5G)

- Most analog information is removed
- Some technical corrections
- New Capabilities, such as higher data rate
- 64 kbps packet data

#### **❖ CDMA 2000 1X**

- High speed data (144 kbps packet data with Mobile IP)
- Coding (Turbo) and Modulation (Hybrid QPSK)
- Enhanced Power Control
- Reverse link detection
- Forward link modulation

### **CDMA 2000 Roadmap with Next Generation**



### **CDMA Network**



IWF: Inter Working Function
GAN: Global ATM Network
HLR: Home Location Register
DCN: Data Core Network

PSDN: Packet Data Serving Node

PDGN: Packet Data Gateway Node

R: Router

SCE: Service Creation Environment SMS: Service Management System

SCP: Service Control Point

Voice Path

Data Path

Signaling + Traffic

### **CDMA 2000 Architecture**



- CDMA System = Access Network + Core Network + Packet Network
  - Access Network : BTS-BSC-MSC 중 MSC 앞까지를 말함
  - 🤎 Core Network : MSC 이후, 음성 Network
  - Packet Network: Packet 망, 인터넷을 통한 망

### PN Code (Pseudo random noise Code)

### 3 Types

- Walsh code : 단말이 채널을 구분
- Long code : 기지국이 단말을 구분
- Short code : 단말이 기지국을 구분

#### Walsh Code



기지국의 숫자는 제한적이고 정해져 있으므로 short code로 구분이 가능하지만, 단말기는 그 수가 훨씬 많기 때문에 서로를 구분하기 위해서는 더 연장된 long code가 필요하다.

짧은 코드는 기지국에서 사용하는  $2^{15}$  길이를 가지는 PN 코드이다. 만일 기지국 마다 다른 PN 코드를 사용하면, 이동국이 기지국의 PN 코드를 일일이 재생하거나 모두 기억하기가 곤란하므로, 이동국이 기지국에 쉽게 접근할 수 있도록 하기 위하여 기지국에 사용하는 PN 코드는 모두 같은 코드를 사용한다. 현재 IS-95 방식에서는 이 PN 코드를 각 기지국 마다 발생하여 전송하는데, 각 기지국은 동일한 코드를 사용하지만 서로를 구별하기 위해 기지국 마다 일정한 간격으로 time shift 되어 발생시킨다. 즉 이동국에서는 각 기지국에서 오는 이 time shift 를 가지고 각각의 기지국을 구별한다. 이로서 이동국은 모든 위상에 대해서 한 번의 검색으로 가장 유력한 기지국과 시스템 동기를 맞출 수 있다.

서로 다른 코드를 곱하면(Exclusive-OR), 0 (또는 -1) 과 1 이 섞여서 나오고, 이를 모두 평균하면 0 이 되도록 되어 있고, 같은 코드를 곱하면 모두 1 이 나옴 코드 간에 비교하면, 같은 비트와 다른 비트의 수가 같게됨

- <u>동기식</u> CDMA(IS-95) 방식에서는 `왈쉬 코드`라고 부르며 <u>비동기식</u> CDMA(WCDMA) 방식에서는 `<u>채널화 코드</u>`라고 부름

### Call Processing - Pilot (1/2)

#### Pilot

- First MS monitors Pilot channel for
  - ✓ Initial acquisition
  - ✓ Channel estimation
  - ✓ Detection of multi-paths for rake receiver
  - ✓ Handoffs



### Sync

- Pilot channel is transmitted at all times by the base station. MS uses it to lock to Synch Channel to
  - ✓ Synchronize to CDMA system time
  - ✓ Obtain configuration parameters such as
    - Protocol Revision (P-REV)
    - Network Identifier (NID)
    - Pilot PN offset long-code state
    - Paging channel data rate



## Call Processing (2/2)

### Paging

- MS decodes the Paging Channel with the information received from the Sync Channel.
- Paging channel provides
  - ✓ Overhead messages: systems parameter, access parameter, neighbor list, channel list
  - ✓ Mobile directed messages: page request, SMS

# Pilot Ch

#### Access

- MS uses Access channel to originate a call or to respond to a page request
- Access Channel is used in a random access fashion



### **Mobile Station States**



End of call

### **Mobile Originated Voice Call Flow**



# CDMA 채널



순방향 링크 (Forward Link)

역방향 링크 (Reverse Link)





| Forward Link | Pilot Channel   | ■ 단말기에 시간 및 위상 기준 제공<br>■ 기지국을 구분하는 정보 (PN offset) 제공                     |
|--------------|-----------------|---------------------------------------------------------------------------|
|              | Sync Channel    | ■ 기지국 초기 동기에 필요한 타이밍 정보를 제공                                               |
|              | Paging Channel  | <ul> <li>전체 시스템 구성 관련 정보</li> <li>단말기 호출 및 단말기 요구에 대한 응답 동의 정보</li> </ul> |
|              | Traffic Channel | ■ 통화자의 음성과 데이터 송신<br>■ 통화 중 빈 프레임을 이용해 신호 메시지 송수신                         |
| Reverse Link | Access Channel  | ■ 기지국과의 정보 교환 채널 (통화중 제외)                                                 |
|              | Traffic Channel | <ul><li>통화자의 음성과 데이터 송신</li><li>통화 중 기지국과의 제어 신호 송수신</li></ul>            |

### CDMA 2000 Channel Mapping

### Logical / Physical Channel Mapping



F/R-DSCH for Signaling
F/R-DTCH for Data/Voice
F-BTCH for Broadcast

Mapping in Forward link and Reverse Link

### IS-95 Channel 구조

### ❖ 순방향 채널 구조

Overhead Channel, Control Channel, Signaling Channel: 기지국으로 부터 송신



\* 각 Channel은 할당된 Walsh Code에 의해 구분

### ❖ 역방향 채널 구조



# Forward Channel 구조 (1/2)

#### ❖ IS-95A



#### **❖** IS-95B



# Forward Channel 구조 (2/2)

#### **❖** IS-2000





# Forward Channel Description (1/2)

| Channel                                               | Description                                                                                                                                                                                                                                                         |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>F-CPCCH</b> (Forward Common Power Control Channel) | <ul> <li>단말기로부터 전송되는 RCCCH (Reverse Common Control Channel)와 EACH (Enhanced Access Channel)의 Closed Loop Power Control 전담 채널</li> <li>여러 개의 타임 슬롯으로 나뉘어 있으며, 단말기에 할당되는 타임 슬롯의 위치는 F-CACH를 통하여 알려준다</li> </ul>                                                       |
| <b>F-CACH</b> (Forward Common Assignment Channel)     | ■ 단말기가 Packet 데이터를 전송하기 위하여 기지국에 접속할 때 그에 대한 결과를<br>응답하는데 사용된다. 또한 이 채널은 역방향의 EACH의 예약 모드에서 R-CCCH로<br>어떤 것을 사용할 지와 이 채널에 대한 전력제어를 수행하기 위하여 F-CPCCH의 몇<br>번째 슬롯을 할당할 것인지를 알려주는 역할을 한다                                                                               |
| <b>BCCH</b><br>(Broadcast Control Channel)            | <ul> <li>시스템 Overhead 메시지와 방송 메시지를 전달하는 데 사용되는 채널로서 최대 전송 속도는 19.2 Kbps이다.</li> <li>IS-95에서의 Paging Channel은 시스템 Overhead 메시지와 Page 메시지 모두를 전송하는 반면, IS-2000에서는 시스템 Overhead 메시지는 BCCH로 전송하고 Page 메시지는 F-CCCH로 전송할 수 있도록 하였다</li> </ul>                             |
| <b>F-CCCH</b><br>(Forward Common Control Channel)     | <ul> <li>기지국과 단말기 사이에 전용 Signaling 채널이 할당되기 전에, 시스템이 특정 단말기를 지목하여 제어 메시지를 전송하는데 사용된다.</li> <li>이 채널로 전송되는 메시지로는 Page 메시지 (General Page Message, Universal Page Message), Extended Channel Assignment Message, SMS 메시지 그리고 응답처리 메시지 (또는 Order 메시지) 등이 있다.</li> </ul> |
| <b>QPCH</b><br>(Quick Paging Channel)                 | ■ 단말기가 대기 상태에 있을 때 배터리 전원 소모를 줄이기 위한 방안으로 IS-2000부터 도입된 채널로서 특정 단말기에 대한 호출 메시지의 유무를 미리 알려주는 Indicator를 전송한다.                                                                                                                                                        |

# Forward Channel Description (2/2)

| Channel                                              | Description                                                                                                                                                                                                                                                   |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>F-DCCH</b> (Forward Dedicated Control Channel)    | <ul> <li>Signaling 메시지를 전송하기 위한 별도의 전용 채널로서 각각의 Traffic 채널에 대하여 한 개씩 할당되어 사용될 수 있다</li> <li>IS-95A, B에서는 Signaling 메시지와 전력제어 정보가 Traffic 채널에 다중화되어 송신되었으나, IS-2000에서는 이것들을 서로 분리하여 Service Option에 따라 Signaling 메시지만 전송하는 별도의 전용 채널을 사용할 수 있도록 하였다</li> </ul> |
| <b>F-FCH</b> (Forward Fundamental Channel)           | ■ IS-95A, B와 호환을 유지하기 위한 Traffic 채널로서 음성 데이터 및 14.4 Kbps 이하<br>의 저속 데이터와 Signaling 메시지, 전력 제어 정보 등을 다중화하여 RC (Radio<br>Configuration) 및 음성 부호화율에 따라 1.2Kbps~14.4Kpbs의 전송 속도로 전송한다                                                                             |
| <b>F-PCS</b> (Forward Power Control Subchannel)      | ■ 역방향 Traffic 채널에 대한 Closed Loop Power Control을 위한 채널로서 FFCH나 F-DCCH를 통하여 1.25msec(800bps)마다 전력제어 정보를 전송한다.                                                                                                                                                   |
| <b>F-SCCH</b><br>(Forward Supplemental Code Channel) | ■ IS-95B와 호환을 유지하기 위한 Traffic 채널로서 Traffic 데이터만 전송할 수 있으며<br>동시에 7개까지 할당하여 사용할 수 있다.<br>■ 전송 속도는 F-FCH와 동일                                                                                                                                                    |
| <b>F-SCH</b><br>(Forward Supplemental Channel)       | <ul> <li>IS-2000에서 추가된 Traffic 채널로서 Traffic 데이터만 전송할 수 있으며 동시에 2개까지 할당하여 사용할 수 있다</li> <li>RC에 따라 다양한 전송 속도를 지원</li> </ul>                                                                                                                                    |

# Reverse Channel 구조 (1/2)

#### ❖ IS-95A



#### **❖** IS-95B



# Reverse Channel 구조 (2/2)

#### **❖** IS-2000



# **Reverse Channel Description**

| Channel                                           | Description                                                                                                                                                                                                                                                                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACH (Access Channel)                              | ■ IS-95와 호환성 유지<br>■ IS-95A, B에서와 구조 및 역할이 동일                                                                                                                                                                                                                              |
| <b>EACH</b> (Forward Common Assignment Channel)   | <ul> <li>IS-2000에서 도입</li> <li>역방향 Pilot 채널과 함께 기지국으로 송신</li> <li>개선 사항         <ul> <li>전송 속도 개선 (4.8 Kbps → 9.6, 19.2, 38.4 Kbps)</li> <li>기지국 접속 시간 단축</li> <li>기지국에 의한 Closed Loop Power Control 가능</li> <li>예약 모드에 의한 R-CCCH 지정으로 패킷 데이터 전송 가능</li> </ul> </li> </ul> |
| <b>R-CCCH</b><br>(Reverse Common Control Channel) | <ul> <li>■ 단말기가 통화 채널이 설정되지 않은 상태에서 여러 가지 Signaling 메시지 및 EACH의 예약 모드에 의한 SMS 메시지 등을 전송하는 역할을 한다. 단말기가 이 채널을 사용하면 기지국은 이에 대응되는 F-CCC를 항상 할당하여야 한다.</li> <li>■ 이 채널은 EACH와 동시에 사용하지 않으므로 EACH와 동일한 Walsh Code를 사용한다.</li> </ul>                                             |
| <b>R-PICH</b> (Reverse Pilot Channel)             | ■ EACH, R-CCCH, Traffic Channel(R-FCH 및 RSCH)과 함께 송신되어 기지국에서 역방향<br>신호를 IS-95보다 신속하고 정확하게 찾을 수 있도록 해준다.                                                                                                                                                                    |
| <b>R-PCS</b> (Reverse Power Control Subchannel)   | <ul> <li>순방향 전력 제어를 위한 채널로 R-PICH에 1.25 msec 마다 전력제어 정보를 삽입하여<br/>순방향 전력제어가 1.25msec 단위로 수행하도록 한다.</li> <li>IS-95에서는 20msec 프레임 단위로 역방향 Traffic Channel의 EIB (Erasure Indicator<br/>Bit)를 이용하여 순방향 전력제어를 수행한다.</li> </ul>                                                  |

