Solutions to some exercises from Walter Rudin's $Functional\ Analysis$

gitcordier

January 24, 2022

Contents

N	otati	ons and Conventions	ii
	1.1	Logic	ii
1	Top	pological Vector Spaces	1
	1.1	Exercise 7. Metrizability & number theory	2
	1.2	Exercise 9. Quotient map	4
	1.3	Exercise 10. An open mapping theorem	5
	1.4	Exercise 14. \mathscr{D}_K equipped with other seminorms	6
	1.5	Exercise 16. Uniqueness of topology for test functions	7
	1.6	Exercise 17. Derivation in some non normed space	9
2	Completeness		10
	2.1	Exercise 3. An equicontinous sequence of measures	10
	2.2	Exercise 6. Fourier series may diverge at 0	17
	2.3	Exercise 9. Boundedness without closedness	18
	2.4	Exercise 10. Continuousness of bilinear mappings	19
	2.5	Exercise 12. A bilinear mapping that is not continuous	20
	2.6	Exercise 15. Baire cut	
	2.7	Exercise 16. An elementary closed graph theorem	22
3	Convexity		23
	3.1	Exercise 3	23
	3.2	Exercise 11. Meagerness of the polar	25
4	Banach Spaces		
	4.1	Exercise 1. Basic results	27
Ribliography			30

Notations and Conventions

1.1 Logic

- 1. Halmos' iff: iff is a short for "if and only if".
- 2. **Definitions (of values) with** \triangleq : Given a variables a and b, a \triangleq b means that a is defined as equal to b.
- 3. **Definitions (formulæ)**: Definitions come from **iff** . In other words, both parts (the "if ..." part and the "only if ..." part) are explicitly stated.
- 4. **Iverson notation**: Given a boolean expression Φ ,

(1.1)
$$[\Phi] \triangleq \begin{cases} 0 & \text{if } \Phi \text{ is false;} \\ 1 & \text{if } \Phi \text{ is true.} \end{cases}$$

For example, [1 > 0] = 1 but $[\sqrt{2} \in \mathbf{Q}] = 0$

Chapter 1

Topological Vector Spaces

1.1 Exercise 7. Metrizability & number theory

Let be X the vector space of all complex functions on the unit interval [0,1], topologized by the family of seminorms

$$p_x(f) = |f(x)| \qquad (0 \le x \le 1).$$

This topology is called the topology of pointwise convergence. Justify this terminology. Show that there is a sequence $\{f_n\}$ in X such that (a) $\{f_n\}$ converges to 0 as $n \to \infty$, but (b) if $\{\gamma_n\}$ is any sequence of scalars such that $\gamma_n \to \infty$ then $\{\gamma_n f_n\}$ does not converge to 0. (Use the fact that the collection of all complex sequences converging to 0 has the same cardinality as [0,1].) This shows that metrizability cannot be omitted in (b) of Theorem 1.28.

Proof. The family of the seminorms p_x is separating: By 1.37 of [3], the collection \mathscr{B} of all finite intersections of the sets

(1.1)
$$V(x,k) \triangleq \{p_x < 2^{-k}\} \qquad (x \in [0,1], k \in \mathbf{N})$$

is therefore a local base for a topology τ on X. So,

$$(1.2) \qquad \sum_{n=1}^{\infty} \left[\, f_n \notin \cap_{i=1}^m U_i \, \right] \leq \sum_{n=1}^{\infty} \sum_{i=1}^m \left[\, f_n \notin U_i \, \right] = \sum_{i=1}^m \sum_{n=1}^{\infty} \left[\, f_n \notin U_i \, \right] \qquad (f_n \in X, U_i \in \tau).$$

Now assume that $\{f_n\}$ τ -converges to some f, *i.e.*

(1.3)
$$\sum_{n=1}^{\infty} [f_n \notin f + W] < \infty \qquad (W \in \mathscr{B}).$$

The special case W = V(x, k) means that $|f_n(x) - f(x)| < 2^{-k}$ for almost all n, *i.e.* $\{f_n(x)\}$ converges to f(x). Conversely, assume that $\{f_n\}$ does not τ -converges in X, *i.e.*

$$(1.4) \qquad \forall f \in X, \exists W \in \mathscr{B} : \sum_{n=1}^{\infty} [f_n \notin f + W] = \infty.$$

W is now the intersection of finitely many V(x, k), say $V(x_1, k_1), \dots, V(x_m, k_m)$. Thus,

$$(1.5) \qquad \qquad \sum_{i=1}^{m} \sum_{n=1}^{\infty} \left[f_n \notin f + V(x_i, k_i) \right] \overset{(1.2)}{\geq} \sum_{n=1}^{\infty} \left[f_n \notin f + W \right] \overset{(1.4)}{=} \infty.$$

We can now conclude that, for some index i,

(1.6)
$$\sum_{n=1}^{\infty} \left[f_n \notin f + V(x_i, k_i) \right] = \infty.$$

In other word, $\{f_n(x_i)\}$ fails to converge to $f(x_i)$. We have so proved that τ -convergence is a rewording of pointwise convergence. We now establish the second part.

To do so, we split x into two variables: r if x is rational, a otherwise. The proof is based on the following well-known result: Each a has a unique binary expansion. More precisely,

there exists a bijection b : $[0,1] \setminus \mathbf{Q} \to \{\beta \in \{0,1\}^{\mathbf{N}_+} : \beta \text{ is not eventually periodic}\}$ where $\mathbf{b}(a) = (\beta_1, \beta_2, \dots)$ is the only bit stream such that

$$(1.7) a = \sum_{k=1}^{\infty} \beta_k \cdot 2^{-k}.$$

Remark that $b(a)_1 + \cdots + b(a)_n \longrightarrow \infty$, since b(a) has infinite support, then fix

(1.8)
$$f_{n}(a) \triangleq \frac{1}{b(a)_{1} + \dots + b(a)_{n}} \xrightarrow{n \to \infty} 0.$$

The actual values $f_n(r)$ are of no interest, as long as every sequence $\{f_n(r): n=1,2,3,\dots\}$ converges to 0. For example, put $f_n(r) = r/n$, or just $f_n(r) = 0$. We also take $\gamma_n \longrightarrow \infty$, i.e. given any counting number p, γ_n is greater than p for almost all n. Next, we choose n_p among those almost all n that are large enough to satisfy

$$(1.9) n_p - n_{p-1} > p$$

(start with $n_0 = 0$). So, every list $n_p, n_{p'}, n_{p''}, \dots$ that satisfies $n_{p'} - n_p = n_{p''} - n_{p'} = \dots$ is finite (otherwise, $n_{p'} - n_p \ge n_{p+1} - n_p > p \to \infty$ would hold from; see (1.9)). In other words, the distribution of n_1, n_2, \ldots displays no periodic pattern. As a consequence, the characteristic function $\chi: k \mapsto [k \in \{n_1, n_2, \dots\}]$ is not eventually periodic. Combined with (1.7), this establishes that

$$a_{\gamma} \triangleq \sum_{k=1}^{\infty} \chi_k 2^{-k}$$

is irrational. Conversely, still with (1.7),

$$(1.11) b(a_{\gamma})_{\mathbf{k}} = \chi_{\mathbf{k}}.$$

Now remark that

$$\chi_1 + \dots + \chi_{n_1} = 1$$

(1.13)
$$\chi_1 + \dots + \chi_{n_1} + \dots + \chi_{n_2} = 2$$

$$\chi_1 + \dots + \chi_{n_1} + \dots + \chi_{n_2} + \dots + \chi_{n_p} = p.$$

Combined with (1.8), this yields

(1.15)
$$\gamma_{n_{p}} f_{n_{p}}(a_{\gamma}) = \frac{\gamma_{n_{p}}}{p} > 1.$$

There so exists a subsequence $\{\gamma_{n_p}\}$ such that $\{\gamma_{n_p}f_{\gamma_{n_p}}\}$ fails to converge pointwise to 0. In other words, (b) holds, which is in violent contrast with 1.28 of [3]: X is therefore not metrizable. So ends the proof.

1.2 Exercise 9. Quotient map

Suppose

- 1. X and Y are topological vector spaces,
- 2. $\Lambda: X \to Y$ is linear.
- 3. N is a closed subspace of X,
- 4. $\pi: X \to X/N$ is the quotient map, and
- 5. $\Lambda x = 0$ for every $x \in N$.

Prove that there is a unique $f: X/N \to Y$ which satisfies $\Lambda = f \circ \pi$, that is, $\Lambda x = f(\pi(x))$ for all $x \in X$. Prove that f is linear and that Λ is continuous if and only if f is continuous. Also, Λ is open if and only if f is open.

Proof. Bear in mind that π continuously maps X onto the topological (Hausdorff) space X/N, since N is closed (see 1.41 of [3]). Moreover, the equation $\Lambda = f \circ \pi$ has necessarily a unique solution, which is the binary relation

$$(1.16) f \triangleq \{(\pi x, \Lambda x) : x \in X\} \subset X/N \times Y.$$

To ensure that f is actually a mapping, simply remark that the linearity of Λ implies

(1.17)
$$\Lambda x \neq \Lambda x' \Rightarrow \pi x' \neq \pi x'.$$

It straightforwardly derives from (1.16) that f inherits linearity from π and Λ .

Remark. The special case $N = \{\Lambda = 0\}$, *i.e.* $\Lambda x = 0$ **iff** $x \in N$ (*cf.*(e)), is the first isomorphism theorem in the topological spaces context. To see this, remark that this strenghtening of (e) yields

(1.18)
$$f(\pi x) = 0 \stackrel{(1.16)}{\Rightarrow} \Lambda x = 0 \Rightarrow x \in N \Rightarrow \pi x = N$$

and so conclude that f is also one-to-one.

Now assume f to be continuous. Then so is $\Lambda = f \circ \pi$, by 1.41 (a) of [3]. Conversely, if Λ is continuous, then for each neighborhood V of 0_Y there exists a neighborhood U of 0_X such that

(1.19)
$$\Lambda(\mathbf{U}) = f(\pi(\mathbf{U})) \subset \mathbf{V}.$$

Since π is open (1.41 (a) of [3]), $\pi(U)$ is a neighborhood of $N = 0_{X/N}$: This is sufficient to establish that the linear mapping f is continuous. If f is open, so is $\Lambda = f \circ \pi$, by 1.41 (a) of [3]. To prove the converse, remark that every neighborhood W of $0_{X/N}$ satisfies

$$(1.20) W = \pi(V)$$

for some neighborhood V of 0_X . So,

(1.21)
$$f(W) = f(\pi(V)) = \Lambda(V).$$

As a consequence, if Λ is open, then f(W) is a neighborhood of 0_Y . So ends the proof. \square

1.3 Exercise 10. An open mapping theorem

Suppose that X and Y are topological vector spaces, dim $Y < \infty$, $\Lambda : X \to Y$ is linear, and $\Lambda(X) = Y$.

- 1. Prove that Λ is an open mapping.
- 2. Assume, in addition, that the null space of Λ is closed, and prove that Λ is continuous.

Proof. Discard the trivial case $\Lambda=0$ then assume that dim Y=n for some positive n. Let e range over a base of B of Y. Pick W an arbitrary neighborhood of the origin: There so exists V a balanced neighborhood of the origin such that

(1.22)
$$\underbrace{V + \cdots + V}_{\text{Put } V \text{ exactly } n \text{ time(s)}} \subset W,$$

since addition is continuous. Moreover, for each e, there exists x_e in X such that $\Lambda(x_e) = e$, simply because Λ is onto. So,

$$y = \sum_{e} y_e \cdot \Lambda x_e,$$

given any element $y = \sum_e y_e \cdot e$ of Y. As a finite set, $\{x_e : e \in B\}$ is bounded: In particular, there exists a positive scalar s such that

$$(1.24) \forall e \in B, x_e \in s \cdot V.$$

Combining this with (1.23) shows that

$$(1.25) y \in \sum_{e} y_e \cdot s \cdot \Lambda(V).$$

We now come back to (1.22) and so conclude that

$$(1.26) y \in \sum_{e} \Lambda(V) \subset \Lambda(W)$$

whether $|y_e| < 1/s$; which proves (a).

To prove (b), assume that the null space $\{\Lambda = 0\}$ is closed and let f, π be as in Exercise 1.9, $\{\Lambda = 0\}$ playing the role of N. Since Λ is onto, the first isomorphism theorem (see Exercise 1.9) asserts that f is an isomorphism of X/N onto Y. Consequently,

$$\dim X/N = n.$$

f is then an homeomorphism of $X/N \equiv \mathbb{C}^n$ onto Y; see 1.21 of [3]. We have thus established that f is continuous: So is $\Lambda = f \circ \pi$.

1.4 Exercise 14. \mathcal{D}_{K} equipped with other seminorms

Put K = [0,1] and define \mathcal{D}_K as in Section 1.46. Show that the following three families of seminorms (where n = 0, 1, 2, ...) define the same topology on \mathcal{D}_K . If D = d/dx:

1.
$$\|D^n f\|_{\infty} = \sup\{|D^n f(x)| : \infty < x < \infty\}$$

2.
$$\|D^n f\|_1 = \int_0^1 |D^n f(x)| dx$$

3.
$$\|\mathbf{D}^{\mathbf{n}}\mathbf{f}\|_{2} = \left\{ \int_{0}^{1} |\mathbf{D}^{\mathbf{n}}\mathbf{f}(x)|^{2} dx \right\}^{1/2}$$
.

Proof. First, remark that

$$\|D^{n}f\|_{1} \leq \|D^{n}f\|_{2} \leq \|D^{n}f\|_{\infty} < \infty$$

holds, since K has length 1 (the inequality on the left is a Cauchy-Schwarz one). Next, that the support of Dⁿf lies in K; which yields

$$(1.29) |D^n f(x)| = \left| \int_0^x D^{n+1} f \right| \le \int_0^x |D^{n+1} f| \le ||D^{n+1} f||_1.$$

So,

We now combine (1.28) with (1.30) and so obtain

Put

$$(1.32) \hspace{1cm} V_n^{(i)} \triangleq \{f \in \mathscr{D}_K : \|\,f\,\|_i < 2^{\text{-}n}\} \quad (i=1,2,\infty)$$

$$(1.33) \hspace{1cm} \mathscr{B}^{(i)} \triangleq \{V_n^{(i)} : n = 0, 1, 2, \dots\},$$

so that (1.31) is mirrored in terms of neighborhood inclusions, as follows,

$$(1.34) \hspace{1cm} V_n^{(1)}\supset V_n^{(2)}\supset V_n^{(\infty)}\supset V_{n+1}^{(1)}\supset\cdots.$$

Since $V_n^{(i)} \supset V_{n+1}^{(i)}$, $\mathscr{B}^{(i)}$ is a local base of a topology τ_i . But the chain (1.34) forces

To see that, choose a set S that is τ_1 -open at f, i.e. $V_n^{(1)} \subset S - f$ for some n. Next, concatenate this with $V_n^{(2)} \subset V_n^{(1)}$ (see (1.34)) and so obtain $V_n^{(2)} \subset S - f$; which implies that S is τ_2 -open at f. Similarly, we deduce, still from (1.34), that

(1.36)
$$\tau_2$$
-open $\Rightarrow \tau_\infty$ -open $\Rightarrow \tau_1$ -open.

So ends the proof. \Box

1.5 Exercise 16. Uniqueness of topology for test functions

Prove that the topology of $C(\Omega)$ does not depend on the particular choice of $\{K_n\}$, as long as this sequence satisfies the conditions specified in section 1.44. Do the same for $C^{\infty}(\Omega)$ (Section 1.46).

Comment This is an invariance property: The function test topology only depends on the existence of the supremum-seminorms p_n , then, eventually, only on the ambient space itself. This should be regarded as a very part of the textbook [3] The proof consists in combining trivial consequences of the local base definition with a well-known result (e.g. [2.6] in [2]) about intersection of nonempty compact sets.

Lemma 1 Let X be a topological space with a countable local base $\{V_n : n = 1, 2, 3, ...\}$. If $\tilde{V}_n = V_1 \cap \cdots \cap V_n$, then every subsequence $\{\tilde{V}_{\varrho(n)}\}$ is a decreasing $(i.e.\ \tilde{V}_{\varrho(n)} \supset \tilde{V}_{\varrho(n+1)})$ local base of X.

Proof. The decreasing property is trivial. Now remark that $V_n \supset \tilde{V}_n$: This shows that $\{\tilde{V}_n\}$ is a local base of X. Then so is $\{\tilde{V}_{\varrho(n)}\}$, since $\tilde{V}_n \supset \tilde{V}_{\varrho(n)}$.

The following special case $V_n = \tilde{V}_n$ is one of the key ingredients:

Corollary 1 (special case $V_n = \tilde{V}_n$) Under the same notations of Lemma 1, if $\{V_n\}$ is a decreasing local base, then so is $\{V_{\varrho(n)}\}$.

Corollary 2 If $\{Q_n\}$ is a sequence of compact sets that satisfies the conditions specified in section 1.44, then every subsequence $\{Q_{\varrho(n)}\}$ also satisfies theses conditions. Furthermore, if τ_Q is the $C(\Omega)$'s (respectively $C^{\infty}(\Omega)$'s) topology of the seminorms p_n , as defined in section 1.44 (respectively 1.46), then the seminorms $p_{\varrho(n)}$ define the same topology τ_Q .

Proof. Let X be $C(\Omega)$ topologized by the seminorms p_n (the case $X = C^{\infty}(\Omega)$ is proved the same way). If $V_n = \{p_n < 1/n\}$, then $\{V_n\}$ is a decreasing local base of X. Moreover,

$$(1.37) Q_{\varrho(n)} \subset \overset{\circ}{Q}_{\varrho(n)+1} \subset Q_{\varrho(n)+1} \subset Q_{\varrho(n+1)}.$$

Thus,

$$(1.38) Q_{\varrho(n)} \subset \overset{\circ}{Q}_{\varrho(n+1)}.$$

In other words, $Q_{\varrho(n)}$ satisfies the conditions specified in section 1.44. $\{p_{\varrho(n)}\}$ then defines a topology $\tau_{Q_{\varrho}}$ for which $\{V_{\varrho(n)}\}$ is a local base. So, $\tau_{Q_{\varrho}} \subset \tau_{Q}$. Conversely, the above corollary asserts that $\{V_{\varrho(n)}\}$ is a local base of τ_{Q} , which yields $\tau_{Q} \subset \tau_{Q_{\varrho}}$.

Lemma 2 If a sequence of compact sets $\{Q_n\}$ satisfies the conditions specified in section 1.44, then every compact set K lies in allmost all Q_n° , *i.e.* there exists m such that

(1.39)
$$K \subset \overset{\circ}{Q}_{m} \subset \overset{\circ}{Q}_{m+1} \subset \overset{\circ}{Q}_{m+2} \subset \cdots.$$

Proof. The following definition

(1.40)
$$C_n \triangleq K \setminus \overset{\circ}{Q}_n \quad (n = 1, 2, 3, \dots)$$

shapes $\{C_n\}$ as a decreasing sequence of compact¹ sets. We now suppose (to reach a contradiction) that no C_n is empty and so conclude² that the C_n 's intersection contains a point that is not in any Q_n° . On the other hand, the conditions specified in [1.44] force the Q_n° 's collection to be an open cover. This contradiction reveals that $C_m = \emptyset$, *i.e.* $K \subset Q_m^{\circ}$, for some m. Finally,

$$(1.41) K \subset \overset{\circ}{Q}_{m} \subset Q_{m} \subset \overset{\circ}{Q}_{m+1} \subset Q_{m+1} \subset \overset{\circ}{Q}_{m+2} \subset \cdots.$$

We are now in a fair position to establish the following:

Theorem The topology of $C(\Omega)$ does not depend on the particular choice of $\{K_n\}$, as long as this sequence satisfies the conditions specified in section 1.44. Neither does the topology of $C^{\infty}(\Omega)$, as long as this sequence satisfies the conditions specified in section 1.44.

Proof. With the second corollary's notations, $\tau_K = \tau_{K_{\lambda}}$, for every subsequence $\{K_{\lambda(n)}\}$. Similarly, let $\{L_n\}$ be another sequence of compact subsets of Ω that satisfies the condition specified in [1.44], so that $\tau_L = \tau_{L_{\varkappa}}$ for every subsequence $\{L_{\varkappa(n)}\}$. Now apply the above Lemma 2 with K_i ($i = 1, 2, 3, \ldots$) and so conclude that $K_i \subset L_{m_i}^{\circ} \subset L_{m_i+1}^{\circ} \subset \cdots$ for some m_i . In particular, the special case $\varkappa_i = m_i + i$ is

$$(1.42) \hspace{3.1em} K_i \subset \overset{\circ}{L}_{\varkappa_i}.$$

Let us reiterate the above proof with K_n and L_n in exchanged roles then similarly find a subsequence $\{\lambda_j: j=1,2,3,\dots\}$ such that

Combine (1.42) with (1.43) and so obtain

which means that the sequence $Q = (K_1, L_{\varkappa_1}, K_{\lambda_{\varkappa_1}}, \dots)$ satisfies the conditions specified in section 1.44. It now follows from the corollary 2 that

$$\tau_{\mathrm{K}} = \tau_{\mathrm{K}_{\lambda}} = \tau_{\mathrm{Q}} = \tau_{\mathrm{L}_{\varkappa}} = \tau_{\mathrm{L}}.$$

So ends the proof \Box

¹ See (b) of 2.5 of [2].

² In every Hausdorff space, the intersection of a decreasing sequence of nomempty compact sets is nonempty. This is a corollary of 2.6 of [2].

1.6 Exercise 17. Derivation in some non normed space

In the setting of Section 1.46, prove that $f \mapsto D^a f$ is a continuous mapping of $C^{\infty}(\Omega)$ into $C^{\infty}(\Omega)$ and also of \mathscr{D}_K into \mathscr{D}_K , for every multi-index a.

Proof. In both cases, D^a is a linear mapping. It is then sufficient to establish continuousness at the origin. We begin with the $C^{\infty}(\Omega)$ case.

Let U be an aribtray neighborhood of the origin. There so exists N such that U contains

$$(1.46) \hspace{1cm} V_N = \left\{ \varphi \in C^{\infty}\left(\Omega\right) : \max\{|D^{\beta}\varphi(x)| : |\beta| \leq N, x \in K_N \} < 1/N \right\}.$$

Now pick g in $V_{N+|a|}$, so that

(1.47)
$$\max\{|D^{\gamma}g(x)|: |\gamma| \le N + |a|, x \in K_N\} < \frac{1}{N+|a|}.$$

(the fact that $K_N \subset K_{N+|a|}$ was tacitely used). The special case $\gamma = \beta + a$ yields

(1.48)
$$\max\{|D^{\beta}D^{\alpha}g(x)|: |\beta| \le N, x \in K_N\} < \frac{1}{N}.$$

We have just proved that

$$(1.49) g \in V_{N+|a|} \Rightarrow D^{a}g \in V_{N}, i.e. D^{a}\left(V_{N+|a|}\right) \subset V_{N},$$

which establishes the continuity of $D^a: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$.

To prove the continuousness of the restriction $D^a|_{\mathscr{D}_K}: \mathscr{D}_K \to \mathscr{D}_K$, we first remark that the collection of the $V_N \cap \mathscr{D}_K$ is a local base of the subspace topology of \mathscr{D}_K . $V_{N+|a|} \cap \mathscr{D}_K$ is then a neighborhood of 0 in this topology. Furthermore,

(1.50)
$$D^{a}|_{\mathscr{D}_{K}}(V_{N+|a|} \cap \mathscr{D}_{K}) = D^{a}(V_{N+|a|} \cap \mathscr{D}_{K})$$

$$(1.51) \subset \mathrm{D}^{a}\left(\mathrm{V}_{\mathrm{N}+|a|}\right) \cap \mathrm{D}^{a}\left(\mathscr{D}_{\mathrm{K}}\right)$$

$$(1.52) \subset V_{N} \cap \mathscr{D}_{K} (see (1.49))$$

So ends the proof.

Chapter 2

Completeness

2.1 Exercise 3. An equicontinous sequence of measures

Put K=[-1,1]; define \mathscr{D}_K as in section 1.46 (with \mathbf{R} in place of \mathbf{R}^n). Supose $\{f_n\}$ is a sequence of Lebesgue integrable functions such that $\Lambda \varphi = \lim_{n \to \infty} \int_{-1}^1 f_n(t) \varphi(t) dt$ exists for every $\varphi \in \mathscr{D}_K$. Show that Λ is a continuous linear functional on \mathscr{D}_K . Show that there is a positive integer p and a number $M < \infty$ such that

$$\left| \int_{-1}^{1} f_n(t) \varphi(t) dt \right| \leq M \|D^p\|_{\infty}$$

for all n. For example, if $f_n(t) = n^3t$ on [-1/n, 1/n] and 0 elsewhere, show that this can be done with p = 1. Construct an example where it can be done with p = 2 but not with p = 1.

We will also consider the case p = 0. Since all supports of $\varphi, \varphi', \varphi'', \ldots$, are in K, we make a specialization of the mean value theorem:

Lemma If $\varphi \in \mathcal{D}_{[a,b]}$, then

(2.1)
$$\|D^{a}\varphi\|_{\infty} \leq \|D^{p}\varphi\|_{\infty} \left(\frac{\lambda}{2}\right)^{p-a} \quad (a=0,1,\ldots,p)$$

at every order p = 0, 1, 2, ...; where λ is the length |b - a|.

Proof. Let x_0 be in (a,b). We first consider the case $x_0 \le c = (a+b)/2$: The mean value theorem asserts that there exists x_1 $(a < x_1 < x_0)$, such that

(2.2)
$$\varphi(x_0) = \varphi(x_0) - \varphi(a) = D\varphi(x_1)(x_0 - a).$$

Since every $D^p \varphi$ lies in $\mathscr{D}_{[a,b]}$, a straightforward proof by induction shows that there exists a partition $a < \cdots < x_p < \cdots < x_0$ such that

$$\varphi(\mathbf{x}_0) = \mathbf{D}^0 \varphi(\mathbf{x}_0)$$

(2.4)
$$= D^1 \varphi(x_1)(x_0 - a)$$

– . . .

$$= D^p \phi(x_p)(x_0 - a) \cdots (x_{p-1} - a),$$

for all p. More compactly,

$$(2.6) \qquad \qquad D^{\alpha} \phi(x_0) = D^p \phi(x_p) \prod_{k=a}^{p-1} (x_k - a);$$

which yields,

$$|D^{a}\varphi(x)| \leq \|D^{p}\varphi\|_{\infty} \left(\frac{\lambda}{2}\right)^{p-a} \quad (x \in [a,c])$$

The case $x_0 \ge c$ outputs a "reversed" result, with $b > \cdots > x_p > \cdots > x_0$ and $x_k - b$ playing the role of $x_k - a$: So,

(2.8)
$$|D^{a}\varphi(x)| \leq \|D^{p}\varphi\|_{\infty} \left(\frac{\lambda}{2}\right)^{p-a}$$

Finally, we combine (2.7) with (2.8) and so obtain

(2.9)
$$\|D^a \varphi\|_{\infty} \le \|D^p \varphi\|_{\infty} \left(\frac{\lambda}{2}\right)^{p-a}.$$

Proof. We first consider $C_0(\mathbf{R})$ topologized by the supremum norm. Given a Lebesgue integrable function u, we put

(2.10)
$$\langle \mathbf{u} | \varphi \rangle \triangleq \int_{\mathbf{R}} \mathbf{u} \varphi \quad (\varphi \in C_0(\mathbf{R})).$$

The following inequalities

$$(2.11) |\langle \mathbf{u} | \varphi \rangle| \le \int_{\mathbf{R}} |\mathbf{u} \varphi| \le ||\mathbf{u}||_{\mathbf{L}^1} \quad (||\varphi||_{\infty} \le 1)$$

imply that every linear functional

(2.12)
$$\langle \mathbf{u} | : \mathbf{C}_0(\mathbf{R}) \to \mathbf{C}$$
 $\varphi \mapsto \langle \mathbf{u} | \varphi \rangle$

is bounded on the open unit ball. It is therefore continuous; see 1.18 of [3]. Conversely, u can be identified with $\langle \mathbf{u}|$, since u is determined (a.e) by the integrals $\langle \mathbf{u}|\varphi\rangle$. In the Banach spaces terminology, u is then (identified with) a linear bounded ¹ operator $\langle \mathbf{u}|$, of norm

(2.13)
$$\sup\{|\langle \mathbf{u}|\varphi\rangle|: \|\varphi\|_{\infty} = 1\} = \|\mathbf{u}\|_{L^{1}}.$$

Note that, in the latter equality, $\leq \|u\|_{L^1}$ comes from (2.11), as the converse comes from the Stone-Weierstrass theorem². We now consider the special cases $u=g_n$, where g_n is

(2.14)
$$g_n : \mathbf{R} \to \mathbf{R}$$

$$x \mapsto \begin{cases} n^3 x & \left(x \in \left[-\frac{1}{n}, \frac{1}{n} \right] \right) \\ 0 & \left(x \notin \left[-\frac{1}{n}, \frac{1}{n} \right] \right) \end{cases}.$$

¹ see 1.32, 4.1 of [3]

² See 7.26 of [1].

First, remark that $g_n(x) \xrightarrow[n \to \infty]{} 0$ $(x \in \mathbf{R})$, as the sequence $\{g_n\}$ fails to converge in $C_0(\mathbf{R})$ (since $g_n(1/n) = n^2 \ge 1$), and also in L^1 (since $\int_{\mathbf{R}} |g_n| = n^2 \longrightarrow \infty$). Nevertheless, we will show that the $\langle g_n|$ converge pointwise³ on \mathscr{D}_K *i.e.* there exists a τ_K -continuous linear form Λ such that

$$\langle g_{n} | \varphi \rangle \xrightarrow[n \to \infty]{} \Lambda \varphi,$$

where φ ranges over \mathscr{D}_K . We now prove (2.13) in the special cases $u = g_n$. To do so, we fetch $\varphi_1^+, \ldots, \varphi_i^+, \ldots$, from $C_K^{\infty}(\mathbf{R})$. More specifically,

- (i) $\varphi_i^+ = 1$ on $[e^{-j}, 1 e^{-j}];$
- (ii) $\varphi_{i}^{+} = 0 \text{ on } \mathbf{R} \setminus [-1, 1];$
- (iii) $0 \le \varphi_i^+ \le 1$ on \mathbf{R} ;

see [1.46] of [3] for a possible construction of those φ_j^+ . Let $\varphi_1^-, \ldots, \varphi_j^-, \ldots$, mirror the φ_j^+ , in the sense that $\varphi_j^-(x) = \varphi_j^+(-x)$, so that

- (iv) $\varphi_{j} \triangleq \varphi_{j}^{+} \varphi_{j}^{-}$ is odd, as g_{n} is;
- (v) every φ_i is in $C_K^{\infty}(\mathbf{R})$;
- (vi) The sequence $\{\varphi_i\}$ converges (pointwise) to $1_{[0,1]} 1_{[-1,0]}$, and $\|\varphi_i\|_{\infty} = 1$.

Thus, with the help of the Lebesgue's convergence theorem,

$$(2.16) \langle g_n | \varphi_j \rangle = 2 \int_0^1 g_n(t) \varphi_j^+(t) dt \xrightarrow[j \to \infty]{} 2 \int_0^1 g_n(t) dt = \|g_n\|_{L^1} = n.$$

Finally,

$$\|g_n\|_{L^1} \stackrel{(2.16)}{\leq} \sup\{|\langle g_n|\varphi\rangle|: \|\varphi\|_{\infty} = 1\} \stackrel{(2.13)}{\leq} \|g_n\|_{L^1};$$

which is the desired result. So, in terms of boundedness constants: Given n, there exists $C_n < \infty$ such that

$$(2.18) |\langle g_n | \varphi \rangle| \leq C_n (|| \varphi ||_{\infty} = 1);$$

see (2.11). Furthermore, $\|\mathbf{g}_n\|_{L^1}$ is actually the best, *i.e.* lowest, possible C_n ; see (2.17). But, on the other hand, (2.16) shows that there exists a subsequence $\{\langle \mathbf{g}_n | \varphi_{\varrho(n)} \rangle\}$ such that $\langle \mathbf{g}_n | \varphi_{\varrho(n)} \rangle$ is greater than, say, n - 0.01, as $\|\varphi_{\varrho(n)}\|_{\infty} = 1$. Consequently, there is no bound M such that

(2.19)
$$|\langle g_n | \varphi \rangle| \leq M \quad (\|\varphi\|_{\infty} = 1; n = 1, 2, 3, ...).$$

In other words, the g_n have no uniform bound in L^1 , i.e. the collection of all continous linear mappings $\langle g_n |$ is not equicontinous (see discussion in 2.6 of [3]). As a consequence, the $\langle g_n |$ do not converge pointwise (or "vaguely", in Radon measure context): A vague (i.e. pointwise) convergence would be (by definition)

$$(2.20) \langle g_n | \varphi \rangle \xrightarrow[n \to \infty]{} \Lambda \varphi \quad (\varphi \in C_0(\mathbf{R}))$$

³ See 3.14 of [3] for a definition of the related topology.

for some $\Lambda \in C_0(\mathbf{R})^*$, which would make (2.19) hold; see 2.6, 2.8 of [3]. This by no means says that the $\langle g_n |$ do not converge pointwise, in a relevant space, to some Λ (see (2.15).

From now on, unless the contrary is explicitly stated, we asume that φ only denotes an element of $C_K^{\infty}(\mathbf{R})$. Let f_n be a Lebesgue integrable function such that

(2.21)
$$\Lambda \varphi = \lim_{n \to \infty} \int_{K} f_{n} \varphi \quad (\varphi \in C_{K}^{\infty}(\mathbf{R})).$$

for some linear form Λ . Since φ vanishes outside K, we can suppose without loss of generality that the support of f_n lies in K. So, (2.21) can be restated as follows,

(2.22)
$$\Lambda \varphi = \lim_{n \to \infty} \langle f_n | \varphi \rangle \quad (\varphi \in C_K^{\infty}(\mathbf{R})).$$

Let K_1, K_2, \ldots , be compact sets that satisfy the conditions specified in 1.44 of [3]. \mathscr{D}_K is $C_K^{\infty}(\mathbf{R})$ topologized by the related seminorms p_1, p_2, \ldots ; see 1.46, 6.2 of [3] and Exercise 1.16. We know that $K \subset K_m$ for some index m (see Lemma 2 of Exercise 1.16): From now on, we only consider the indices $N \geq m$, so that

- (a) $p_N(\varphi) = \|\varphi\|_N \triangleq \max\{|D^a\varphi(x)| : a \leq N, x \in \mathbf{R}\}, \text{ for } \varphi \in \mathscr{D}_K;$
- (b) The collection of the sets $V_N = \{ \varphi \in \mathscr{D}_K : \| \varphi \|_N < 2^{-N} \}$ is a (decreasing) local base of τ_K , the subspace topology of \mathscr{D}_K ; see 6.2 of [3] for a more complete discussion.

Let us specialize (2.11) with $u = f_n$ and $\varphi \in V_m$ then conclude that $\langle f_n |$ is bounded by $\| f_n \|_{L^1}$ on V_m : Every linear functional $\langle f_n |$ is therefore τ_K -continuous; see 1.18 of [3].

To sum it up:

- (i) \mathscr{D}_{K} , equipped the topology τ_{K} , is a Fréchet space (see section 1.46 of [3]);
- (ii) Every linear functional $\langle f_n |$ is continuous with respect to this topology;

(iii)
$$\langle f_n | \varphi \rangle \xrightarrow[n \to \infty]{} \Lambda \varphi$$
 for all φ , i.e. $\Lambda - \langle f_n | \xrightarrow[n \to \infty]{} 0$.

With the help of [2.6] and [2.8] of [3], we conclude that Λ is continuous and that the sequence $\{\langle f_n|\}$ is equicontinuous. So is the sequence $\{\Lambda - \langle f_n|\}$, since addition is continuous. There so exists i, j such that, for all n,

$$(2.23) |\Lambda \varphi| < 1/2 if \varphi \in V_i,$$

(2.24)
$$|\Lambda \varphi - \langle f_n | \varphi \rangle| < 1/2 \quad \text{if } \varphi \in V_i.$$

Choose $p = \max\{i, j\}$, so that $V_p = V_i \cap V_j$: The latter inequalities imply that

$$(2.25) |\langle f_n | \varphi \rangle| \le |\Lambda \varphi - \langle f_n | \varphi \rangle| + |\Lambda \varphi| < 1 if \varphi \in V_p.$$

Now remark that every $\psi = \psi[\mu, \varphi]$, where

(2.26)
$$\psi[\mu, \varphi] \triangleq \begin{cases} (1/\mu \cdot 2^{\mathbf{p}} \| \varphi \|_{\mathbf{p}}) \varphi & (\varphi \neq 0, \mu > 1) \\ 0 & (\varphi = 0, \mu > 1), \end{cases}$$

keeps in V_p. Finally, it is clear that each below statement implies the following one.

$$(2.27) |\langle f_n | \psi \rangle| < 1$$

$$|\langle f_n | \varphi \rangle| < 2^p \| \varphi \|_p \cdot \mu$$

$$(2.29) |\langle f_n | \varphi \rangle| \leq 2^p ||\varphi||_p$$

(2.30)
$$|\langle f_n | \varphi \rangle| \le 2^p \{ ||D^0 \varphi||_{\infty} + \dots + ||D^p \varphi||_{\infty} \}.$$

Finally, with the help of (2.1),

$$|\langle f_n | \varphi \rangle| \le 2^p (p+1) \|D^p \varphi\|_{\infty}.$$

The first part is so proved, with *some* p and $M = 2^{p}(p+1)$.

We now come back to the special case $f_n = g_n$ (see the first part). From now on, $f_n(x) = n^3x$ on [-1/n, 1/n], 0 elsewhere. Actually, we will prove that

(a)
$$\Lambda \varphi = \lim_{n \to \infty} \int_{-1}^{1} f_n(t) \varphi(t) dt$$
 exists for every $\varphi \in \mathscr{D}_K$;

(b) A uniform bound $|\langle f_n | \varphi \rangle| \leq M \|D^p \varphi\|_{\infty}$ (n = 1, 2, 3, ...) exists for all those f_n , with p = 1 as the smallest possible p.

Bear in mind that $K \subset K_m$ and shift the K_N 's indices, so that K_{m+1} becomes K_1 , K_{m+2} becomes K_2 , and so on. The resulting topology τ_K remains unchanged (see Exercise 1.16). We let φ keep running on \mathscr{D}_K and so define

$$(2.32) B_n(\varphi) \triangleq \max\{|\varphi(x)| : x \in [-1/n, 1/n]\},$$

(2.33)
$$\Delta_{\mathbf{n}}(\varphi) \triangleq \max\{|\varphi(\mathbf{x}) - \varphi(0)| : \mathbf{x} \in [-1/\mathbf{n}, 1/\mathbf{n}]\}.$$

The mean value asserts that

(2.34)
$$|\varphi(1/n) - \varphi(-1/n)| \le B_n(\varphi') |1/n - (-1/n)| = \frac{2}{n} B_n(\varphi').$$

Independently, an integration by parts shows that

(2.35)
$$\langle f_{n} | \varphi \rangle = \left[\frac{n^{3}t^{2}}{2} \varphi(t) \right]_{-1/n}^{1/n} - \frac{n^{3}}{2} \int_{-1/n}^{1/n} t^{2} \varphi'(t) dt$$

(2.36)
$$= \frac{n}{2} \left(\varphi(1/n) - \varphi(-1/n) \right) - \frac{n^3}{2} \int_{-1/n}^{1/n} t^2 \varphi'(t) dt.$$

Combine (2.34) with (2.36) and so obtain

(2.37)
$$|\langle f_n | \varphi \rangle| \leq \frac{n}{2} |\varphi(1/n) - \varphi(-1/n)| + \frac{n^3}{2} \int_{-1/n}^{1/n} t^2 |\varphi'(t)| dt$$

(2.38)
$$\leq B_{n}(\varphi') + \frac{n^{3}}{2} B_{n}(\varphi') \int_{-1/n}^{1/n} t^{2} dt$$

$$(2.39) \leq \frac{4}{3} B_{n}(\varphi')$$

$$(2.40) \leq \frac{4}{3} \| \varphi' \|_{\infty}.$$

Futhermore, (2.39) gives a hint about the convergence of f_n : Since $B_n(\varphi')$ tends to $|\varphi'(0)|$, we may expect that f_n tends to $\frac{4}{3}\varphi'(0)$. This is actually true: A straightforward computation shows that

$$(2.41) \qquad \langle f_n | \varphi \rangle - \frac{4}{3} \varphi'(0) \stackrel{(2.36)}{=} \frac{\varphi(1/n) - \varphi(-1/n)}{1/n - (-1/n)} - \varphi'(0) - \frac{n^3}{2} \int_{-1/n}^{1/n} (\varphi' - \varphi'(0)) t^2 dt.$$

So,

$$\left| \langle f_n | \phi \rangle - \frac{4}{3} \phi'(0) \right| \leq \left| \frac{\phi(1/n) - \phi(\text{-}1/n)}{1/n - (\text{-}1/n)} - \phi'(0) \right| + \frac{1}{3} \Delta_n(\phi') \underset{n \to \infty}{\longrightarrow} 0.$$

We have just proved that

(2.43)
$$\langle f_n | \varphi \rangle \xrightarrow[n \to \infty]{} \frac{4}{3} \varphi'(0) \quad (\varphi \in \mathscr{D}_K).$$

In other words,

$$\langle f_{n} | \underset{n \to \infty}{\longrightarrow} -\frac{4}{3} \delta',$$

where δ is the *Dirac measure* and $\delta', \delta'', \ldots$, its *derivatives*; see 6.1 and 6.9 of [3].

It follows from the previous part that $-\frac{4}{3}\delta'$ is $\tau_{\rm K}$ -continuous, and from (2.40) that

$$|\langle f_n | \varphi \rangle| \le \frac{4}{3} \| \varphi' \|_{\infty} \quad (n = 1, 2, 3, \dots)$$

(which is a constructive version of (2.31)). Furthermore, we have already spotlighted a sequence

(2.46)
$$\{ \langle f_n | \varphi_{o(n)} \rangle : || \varphi_{o(n)} ||_{\infty} = 1; n = 1, 2, 3, \ldots \}$$

that is not bounded. We then restate (2.19) in a more precise fashion: There is no constant M such that

(2.47)
$$|\langle f_n | \varphi \rangle| \leq M \| \varphi \|_{\infty} \quad (\varphi \in C_K^{\infty}(\mathbf{R})).$$

The previous bound of $\langle f_n |$ - see (2.40), is therefore the best possible one, *i.e.* p = 1 is the smallest possible p and, given p = 1, $M = \frac{4}{3}$ is the smallest possible M (to see that, compare (2.39) with (2.43)); which is (b).

In order to construct the second requested example, we give f_n a derivative f_n , as follows

(2.48)
$$\begin{aligned} f_n' : \mathscr{D}_K \to \mathbf{C} \\ \varphi \mapsto -\left\langle f_n \middle| \varphi' \right\rangle. \end{aligned}$$

It has been proved that every $\langle f_n |$ is continuous. So is

(2.49)
$$D: \mathcal{D}_{K} \to \mathcal{D}_{K}$$
$$\varphi \mapsto \varphi';$$

⁴ See 6.1 of [3] for a further discussion.

see Exercise 1.17. f_n' is therefore continuous. Now apply (2.43) with φ' and so obtain

$$\label{eq:continuity} \text{-} \left\langle f_n \middle| \phi' \right\rangle \underset{n \to \infty}{\longrightarrow} \frac{4}{3} \phi''(0) \quad (\phi \in \mathscr{D}_K),$$

i.e.

$$(2.50) f_n' \underset{n \to \infty}{\longrightarrow} \frac{4}{3} \delta''.$$

It follows from (2.40) that,

$$|\langle f_n \big| \phi' \rangle| \leq \frac{4}{3} \| \phi'' \|_{\infty} \quad (n = 1, 2, 3, \dots).$$

It is therefore possible to uniformly bound f_n' with respect to a norm $\|D^p \cdot\|_{\infty}$, namely $\|D^2 \cdot\|_{\infty}$. Then arises a question: Is 2 the smallest p? The answer is: Yes. To show this, we first assume, to reach a contradiction, that there exists a positive constant M such that

(2.52)
$$|\langle f_n | \varphi' \rangle| \le M \| \varphi' \|_{\infty} \quad (n = 1, 2, 3, ...).$$

Define

$$\Phi_{\mathbf{j}}(\mathbf{x}) = \int_{-1}^{\mathbf{x}} \varphi_{\mathbf{j}}.$$

The oddness of φ_j forces Φ_j to vanish outside [-1, 1]: φ_j is therefore in \mathcal{D}_K . So, under our assumption,

(2.54)
$$|\langle f_n | \Phi'_i \rangle| \leq M \| \Phi'_i \|_{\infty} \quad (n = 1, 2, 3, ...);$$

which is

$$|\langle f_n | \phi_j \rangle| \leq M \quad (n=1,2,3,\dots).$$

We have thus reached a contradiction (again with the sequence $\{\langle f_n | \varphi_{\varrho(n)} \rangle\}$) and so conclude that there is no constant M such that

$$|\langle |f_n \varphi' \rangle| \le M \| \varphi' \|_{\infty} \quad (n = 1, 2, 3, \dots).$$

Finally, assume, to reach a contradicton, that there exists a constant M such that

$$|\langle f_n | \varphi' \rangle| \leq M \| \varphi \|_{\infty}.$$

The mean value theorem (see (2.1)) asserts that

which is, again, a desired contradiction. So ends the proof.

2.2 Exercise 6. Fourier series may diverge at 0

Define the Fourier coefficient $\hat{f}(n)$ of a function $f \in L^2(T)$ (T is the unit circle) by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} d\theta$$

for all $n \in \mathbf{Z}$ (the integers). Put

$$\Lambda_n f = \sum_{k=-n}^n \hat{f}(k).$$

Prove that $\{f \in L^2(T) : \lim_{n \to \infty} \Lambda_n f \text{ exists}\}\ is\ a\ dense\ subspace\ of\ L^2(T)\ of\ the\ first\ category.$

Proof. Let $f(\theta)$ stand for $f(e^{i\theta})$, so that $L^2(T)$ is identified with a closed subset of $L^2([-\pi, \pi])$, hence the inner product

(2.59)
$$\hat{f}(n) = (f, e_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\vartheta) e^{-in\vartheta} d\vartheta.$$

We believe it is customary to write

(2.60)
$$\Lambda_{n}(f) = (f, e_{-n}) + \dots + (f, e_{n}).$$

Moreover, a well known (and easy to prove) result is

$$(2.61) (e_n, e_{n'}) = [n = n'], i.e. \{e_n : n \in \mathbf{Z}\} \text{ is an orthormal subset of } L^2(T).$$

For the sake of brevity, we assume the isometric (\equiv) identification $L^2 \equiv (L^2)^*$. So,

$$\|\Lambda_n\|^2 \stackrel{(2.60)}{=} \|e_{-n} + \dots + e_n\|^2 \stackrel{(2.61)}{=} \|e_{-n}\|^2 + \dots + \|e_n\|^2 \stackrel{(2.61)}{=} 2n + 1.$$

We now assume, to reach a contradiction, that

(2.63)
$$B \triangleq \{ f \in L^2(T) : \sup\{ |\Lambda_n f| : n = 1, 2, 3, \ldots \} < \infty \}$$

is of the second category. So, the Banach-Steinhaus theorem 2.5 of [3] asserts that the sequence $\{\Lambda_n\}$ is norm-bounded; which is a desired contradiction, since

(2.64)
$$\| \Lambda_n \| \stackrel{(2.62)}{=} \sqrt{2n+1} \longrightarrow \infty.$$

We have just established that B is actually of the first category; and so is its subset $L=\{f\in L^2(T): \lim_{n\longrightarrow\infty}\Lambda_n f \text{ exists}\}$. We now prove that L is nevertheless dense in $L^2(T)$. To do so, we let P be $\text{span}\{e_k: k\in Z\}$, the collection of the trignometric polynomials $p(\vartheta)=\sum \lambda_k e^{ik\vartheta}$: Combining (2.60) with (2.61) shows that $\Lambda_n(p)=\sum \lambda_k$ for almost all n. Thus,

$$(2.65) P \subset L \subset L^2(T).$$

We know from the Fejér theorem (the Lebesgue variant) that P is dense in $L^2(T)$. We then conclude, with the help of (2.65), that

(2.66)
$$L^{2}(T) = \overline{P} = \overline{L}.$$

So ends the proof \Box

2.3 Exercise 9. Boundedness without closedness

Suppose X, Y, Z are Banach spaces and

$$B: X \times Y \to Z$$

is bilinear and continuous. Prove that there exists $M < \infty$ such that

$$\|B(x,y)\| \le M\|x\|\|y\|$$
 $(x \in X, y \in Y).$

Is completeness needed here?

Proof. The answer is: No. To prove this, we only assume that X, Y, Z are normed spaces. Let (x, y) range over $X \times Y$. B is continous at the origin; thus, there exists a positive r such that

Given (x, y), we choose two scalars a, β such that ra > ||x|| and $r\beta > ||y||$. Thus,

(2.68)
$$\| \mathbf{B}(\mathbf{x}, \mathbf{y}) \| = a\beta \| \mathbf{B} \left(a^{-1}\mathbf{x}, \beta^{-1}\mathbf{y} \right) \|$$

$$(2.69) < a\beta.$$

We now conclude that

$$(2.70) B(x, y) \le r^{-2} ||x|| ||y||.$$

So ends the proof.

As a concrete example, choose $X = Y = Z = C_c(\mathbf{R})$, topologized by the supremum norm. $C_c(\mathbf{R})$ is not complete⁵, nevertheless the bilinear product

(2.71)
$$B(f,g) = f \times g \quad ((f,g) \in C_c(\mathbf{R})^2)$$

is bounded, (since $\|B(f,g)\|_{\infty} = \|f\|_{\infty} \|g\|_{\infty}$) and continuous. To see that, pick (u,v) in $C_c(\mathbf{R})^2$: Given any positive scalar ε , there exists another positive scalar r such that $r(r + \|u\| + \|v\|) < \varepsilon$. So, under the following assumption

$$\max\{\|f - u\|_{\infty}, \|g - v\|_{\infty}\} < r,$$

we reach

$$(2.74)$$
 $< r(r + ||v||) + ||u||r$

$$(2.75) < r(r + ||u|| + ||v||)$$

$$(2.76) < \varepsilon;$$

which establishes the continuousness of B.

⁵ See 5.4.4 [4]

2.4 Exercise 10. Continuousness of bilinear mappings

Prove that a bilinear mapping is continuous if it is continuous at the origin (0,0).

Proof. Let (X_1, X_2, Z) be topological spaces and B a bilinear mapping

$$(2.77) B: X_1 \times X_2 \to Z$$

From now on, $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ denotes an arbitrary element of $\mathbf{X}_1 \times \mathbf{X}_2$. We henceforth assume that B is continuous at the origin (0,0) of $\mathbf{X}_1 \times \mathbf{X}_2$, *i.e.* given an arbitrary balanced open subset W of Z, there exists in \mathbf{X}_i (i=1,2) a balanced open subset \mathbf{U}_i such that

$$(2.78) B(U_1 \times U_2) \subset W.$$

Let $\nu_i(x)$ denote any scalar that is greater than $\mu_i(x_i) = \inf\{r > 0 : x_i \in r \cdot U_i\}$. So,

(2.79)
$$B(x_1, x_2) = \nu_1(x)\nu_2(x) \cdot B(\nu_1(x)^{-1}x_1, \nu_2(x)^{-1}x_2)$$

$$(2.80) \qquad \qquad \in \nu_1(\mathbf{x})\nu_2(\mathbf{x}) \cdot \mathbf{B}(\mathbf{U}_1 \times \mathbf{U}_2)$$

Now pick $p = (p_1, p_2)$ in $X_1 \times X_2$: It directly follows from (2.81) that

$$(2.82) B(p_1, p_2) - B(x_1, x_2) = B(p_1, p_2 - x_2) + B(p_1 - x_1, x_2 - p_2) + B(p_1 - x_1, p_2)$$

$$(2.83) \qquad \in \nu_1(p)\nu_2(p-x) \cdot W + \nu_1(p-x)\nu_2(x-p) \cdot W + \nu_1(p-x)\nu_2(p) \cdot W.$$

Let us henceforth assume that

$$(2.84) p_i - x_i \in [\mu_1(p) + \mu_2(p) + 2]^{-1} \cdot U_i;$$

which yields

(2.85)
$$\mu_{i}(p_{i} - x_{i}) \leq [\mu_{1}(p) + \mu_{2}(p) + 2]^{-1}.$$

Finally, combine the special case

(2.86)
$$\nu_{i}(p-x) = [\mu_{1}(p) + \mu_{2}(p) + 1]^{-1},$$

(2.87)
$$\nu_{i}(p) = \mu_{1}(p) + \mu_{2}(p) + 1$$

with (2.83) and so obtain

(2.88)
$$B(p_1, p_2) - B(x_1, x_2) \in W + W + W.$$

W being arbitrary, we have so established the continuousness of B at (p_1, p_2) . Since (p_1, p_2) is also arbitrary, the proof is complete.

2.5 Exercise 12. A bilinear mapping that is not continuous

Let X be the normed space of all real polynomials in one variable, with

$$\|f\| = \int_0^1 |f(t)| dt.$$

Put $B(f,g) = \int_0^1 f(t)g(t)dt$, and show that B is a bilinear continuous functional on $X \times X$ which is separately but not continuous.

Proof. Let f denote the first variable, g the second one. Remark that

$$|\,B(f,g)\,| < \|\,f\,\| \cdot \max_{[0,1]} |\,g\,|\,;$$

which is sufficient (1.18 of [3]) to assert that any $f \mapsto B(f,g)$ is continuous. The continuity of all $g \mapsto B(f,g)$ follows (Put C(g,f) = B(f,g) and proceed as above). Suppose, to reach a contradiction, that B is continuous. There so exists a positive M such that,

$$(2.90) |B(f,g)| \le M ||f|| ||g||.$$

Put

$$(2.91) \hspace{1cm} f_n(X) \triangleq 2\sqrt{n} \cdot X^n \in \mathbf{R}[X] \hspace{3mm} (n=1,2,3,\dots),$$

so that

$$\|f_n\| = \frac{2\sqrt{n}}{n+1} \underset{n \to \infty}{\longrightarrow} 0.$$

On the other hand,

$$(2.93) B(f_n,f_n) = \frac{4n}{2n+1} > 1.$$

Finally, we combine (2.92) and (2.93) with (2.90) and so obtain

$$(2.94) 1 < B(f_n, f_n) \le M \|f_n\|^2 \underset{n \to \infty}{\longrightarrow} 0.$$

Our continuousness assumption is then contradicted. So ends the proof.

2.6 Exercise 15. Baire cut

Suppose X is an F-space and Y is a subspace of X whose complement is of the first category. Prove that Y = X. Hint: Y must intersect x + Y for every $x \in X$.

Proof. Assume Y is a subgroup of X. Under our assumptions, there exists a sequence $\{E_n: n=1,2,3,\ldots\}$ of X such that

(i)
$$(\overline{E}_n)^{\circ} = \emptyset$$
;

$$(ii)\ X\setminus Y=\bigcup_{n=1}^\infty E_n.$$

By (i), the complement V_n of \overline{E}_n is a dense open set. Since X is an F-space, it follows from the Baire's theorem that the intersection S of the V_n 's is dense in X: So is x+S ($x \in X$). To see that, remark that

$$(2.95) X = x + \overline{S} \subset \overline{x + S}$$

follows from 1.3 (b) of [3]. Since S and x + S are both dense open subsets of X, the Baire's theorem asserts that

$$(2.96) \overline{(x+S) \cap S} = X.$$

Thus,

$$(2.97) (x+S) \cap S \neq \emptyset.$$

Moreover, it follows from (ii) that $X \setminus Y \subset \bigcup_n \overline{E}_n$, *i.e.* $Y \supset S$. Combined with (2.97), this shows that x + Y cuts Y. Therefore, our arbitrary x is an element of the subgroup Y. We have thus established that $X \subset Y$, which achieves the proof.

2.7 Exercise 16. An elementary closed graph theorem

Suppose that X and K are metric spaces, that K is compact, and that the graph of $f: X \to K$ is a closed subset of $X \times K$. Prove that f is continuous (This is an analogue of Theorem 2.15 but much easier.) Show that compactness of K cannot be omitted from the hypothese, even when X is compact.

Proof. Choose a sequence $\{x_n : n = 1, 2, 3, \dots\}$ whose limit is an arbitrary a. By compactness of K, the graph G of f contains a subsequence $\{(x_{\varrho(n)}, f(x_{\varrho(n)}))\}$ of $\{(x_n, f(x_n))\}$ that converges to some (a, b) of $X \times K$. G is closed; therefore, $\{(x_{\varrho(n)}, f(x_{\varrho(n)}))\}$ converges in G. So, b = f(a); which establishes that f is sequentially continuous. Since X is metrizable, f is also continuous; see [A6] of [3]. So ends the proof.

To show that compactness cannot be omitted from the hypotheses, we showcase the following counterexample,

(2.98)
$$f: [0, \infty) \to [0, \infty)$$
$$x \mapsto \begin{cases} 1/x & (x > 0) \\ 0 & (x = 0). \end{cases}$$

Clearly, f has a discontinuity at 0. Nevertheless the graph G of f is closed. To see that, first remark that

$$(2.99) G = \{(x, 1/x) : x > 0\} \cup \{(0, 0)\}.$$

Next, let $\{(x_n, 1/x_n)\}$ be a sequence in $G_+ = \{(x, 1/x) : x > 0\}$ that converges to (a, b). To be more specific: a = 0 contradicts the boundedness of $\{(x_n, 1/x_n)\}$: a is necessarily positive and b = 1/a, since $x \mapsto 1/x$ is continuous on R_+ . This establishes that $(a, b) \in G_+$, hence the closedness G_+ . Finally, we conclude that G is closed, as a finite union of closed sets.

Chapter 3

Convexity

3.1 Exercise 3.

Suppose X is a real vector space (without topology). Call a point $x_0 \in A \subset X$ an internal point of A if $A - x_0$ is an absorbing set.

- (a) Suppose A and B are disjoint convex sets in X, and A has an internal point. Prove that there is a nonconstant linear functional Λ such that $\Lambda(A) \cap \Lambda(B)$ contains at most one point. (The proof is similar to that of Theorem 3.4)
- (b) Show (with $X = \mathbb{R}^2$, for example) that it may not possible to have $\Lambda(A)$ and $\Lambda(B)$ disjoint, under the hypotheses of (a).

Proof. Take A and B as in (a); the trivial case $B = \emptyset$ is discarded. Since $A - x_0$ is absorbing, so is its convex superset $C = A - B - x_0 + b_0$ ($b_0 \in B$). Note that C contains the origin. Let p be the Minkowski functional of C. Since A and B are disjoint, $b_0 - x_0$ is not in C, hence $p(b_0 - x_0) \ge 1$. We now proceed as in the proof of the Hahn-Banach theorem 3.4 of [3] to establish the existence of a linear functional $\Lambda : X \to \mathbf{R}$ such that

$$(3.1) \Lambda \le p$$

and

$$\Lambda(\mathbf{b}_0 - \mathbf{x}_0) = 1.$$

Then

$$(3.3) \quad \Lambda a - \Lambda b + 1 = \Lambda (a - b + b_0 - x_0) \le p(a - b + b_0 - x_0) \le 1 \quad (a \in A, b \in B).$$

Hence

$$(3.4) \Lambda a \leq \Lambda b.$$

We now prove that $\Lambda(A) \cap \Lambda(B)$ contains at most one point. Suppose, to reach a contradiction, that this intersection contains y_1 and y_2 . There so exists (a_i, b_i) in $A \times B$ (i = 1, 2) such that

$$\Lambda a_i = \Lambda b_i = y_i.$$

Assume without loss of generality that $y_1 < y_2$. Then,

$$(3.6) 2 \cdot y_1 = \Lambda b_1 + \Lambda b_1 < \Lambda (a_1 + a_2) = (y_1 + y_2) .$$

Remark that $a_3 = \frac{1}{2}(a_1 + a_2)$ lies in the convex set A. This implies

(3.7)
$$\Lambda b_1 \stackrel{(3.6)}{<} \Lambda a_3 \stackrel{(3.4)}{\leq} \Lambda b_1$$
;

which is a desired contradiction. (a) is so proved and we now deal with (b).

From now on, the space X is \mathbb{R}^2 . Fetch

(3.8)
$$S_1 \triangleq \{(x, y) \in \mathbf{R}^2 : x \le 0, y \ge 0\},\$$

(3.9)
$$S_2 \triangleq \{(x, y) \in \mathbf{R}^2 : x > 0, y > 0\},\$$

$$(3.10) A \triangleq S_1 \cup S_2,$$

$$(3.11) B \triangleq X \setminus A.$$

Pick (x_i, y_i) in S_i . Let t range over the unit interval, and so obtain

$$(3.12) \qquad t \cdot \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) + (1-t) \cdot \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) = \left(\begin{array}{c} t \cdot x_1 + (1-t) \cdot x_2 \\ t \cdot y_1 + (1-t) \cdot y_2 \end{array} \right) \in \mathbf{R} \times \mathbf{R}_+ \subset A.$$

Thus, every segment that has an extremity in S_1 and the other one in S_2 lies in A. Moreover, each S_i is convex. We can now conclude that A is so. The convexity of B is proved in the same manner. Furthermore, A hosts a non degenerate triangle, *i.e.* A° is nonempty¹: A contains an internal point.

Let L be a vector line of \mathbf{R}^2 . In other words, L is the null space of a linear functional $\Lambda: \mathbf{R}^2 \to \mathbf{R}$ (to see this, take some nonzero u in L^{\perp} and set $\Lambda x = (x, u)$ for all x in \mathbf{R}^2). One easily checks that both A and B cut L. Hence

(3.13)
$$\Lambda(L) = \{0\} \subset \Lambda(A) \cap \Lambda(B) \neq \emptyset .$$

So ends the proof.

 $^{^{1}}$ For a immediate proof of this, remark that a triangle boundary is compact/closed and apply [1.10] or 2.5 of [2].

3.2 Exercise 11. Meagerness of the polar

Let X be an infinite-dimensional Fréchet space. Prove that X*, with its weak*-topology, is of the first category in itself.

This is actually a consequence of the below lemma, which we prove first. The proof that X^* is of the first category in itself comes right after, as a corollary.

Lemma. If X is an infinite dimensional topological vector space whose dual X^* separates points on X, then the polar

(3.14)
$$K_A \triangleq \{ \Lambda \in X^* : |\Lambda| \le 1 \text{ on } A \}$$

of any absorbing subset A is a weak*-closed set that has empty interior.

Proof. Let x range over X. The linear form $\Lambda \mapsto \Lambda x$ is weak*-continuous; see 3.14 of [3]. Therefore, $P_x = \{\Lambda \in X^* : |\Lambda x| \leq 1\}$ is weak*- closed: As the intersection of $\{P_a : a \in A\}$, K_A is also a weak*-closed set. We now prove the second half of the statement.

From now on, X is assumed to be endowed with its weak topology: X is then locally convex, but its dual space is still X^* (see 3.11 of [3]). Put

$$(3.15) \hspace{3cm} W \triangleq \bigcap_{x \in F} \{\Lambda \in X^* : |\Lambda x| < r_x\},$$

where r_x runs on \mathbf{R}_+ , as F runs through the nonempty finite subsets of X. Clearly, the collection of all such W is a local base of X^* . Pick one of those W and remark that the following subspace

$$(3.16) M \triangleq \operatorname{span}(F)$$

is finite dimensional. Assume, to reach a contradiction, that $A \subset M$. So, every x lies in $t_xM = M$ for some $t_x > 0$, since A is absorbing. As a consequence, X = M is finite dimensional, which is a desired contradiction. We have just established that $A \not\subset M$: Now pick a in $A \setminus M$ and so conclude that

$$(3.17) b \triangleq \frac{a}{t_a} \in A$$

Remark that $b \notin M$ (otherwise, $a = t_ab \in t_aM = M$ would hold) and that M is closed (see 1.21 (b) of [3]): By the Hahn-Banach theorem 3.5 of [3], there exists Λ_a in X^* such that

$$\Lambda_{a}b > 2$$

and

$$\Lambda_{\mathbf{a}}(\mathbf{M}) = \{0\}.$$

The latter equality implies that Λ_a vanishes on F; hence Λ_a is an element of W. On the other hand, given an arbitrary $\Lambda \in K_A$, the following inequalities

$$(3.20) |\Lambda_a b + \Lambda b| \ge 2 - |\Lambda b| > 1.$$

show that $\Lambda + \Lambda_a$ is not in K_A . We have thus proved that

$$(3.21) \Lambda + W \not\subset K_A.$$

Since W and Λ are both arbitrary, this achieves the proof.

We now give a proof of the original statement.

Corollary. If X is an infinite-dimensional Fréchet space, then X* is meager in itself.

Proof. From now on, X* is only endowed with its weak*-topology. Let d be an invariant distance that is compatible with the topology of X, so that the following sets

(3.22)
$$B_n \triangleq \{x \in X : d(0,x) < 1/n\} \quad (n = 1, 2, 3, ...)$$

form a local base of X. If Λ is in X*, then

$$(3.23) |\Lambda| \le m \text{ on } B_n$$

for some $(n, m) \in \{1, 2, 3, \dots\}^2$; see 1.18 of [3]. Hence, X^* is the countable union of all

(3.24)
$$m \cdot K_n \quad (m, n = 1, 2, 3, ...),$$

where K_n is the polar of B_n . Clearly, showing that every $m \cdot K_n$ is nowhere dense is now sufficient. To do so, we use the fact that X^* separates points; see 3.4 of [3]. As a consequence, the above lemma implies

$$(\overline{K}_n)^\circ = (K_n)^\circ = \emptyset.$$

Since the multiplication by m is an homeomorphism (see 1.7 of [3]), this is equivalent to

$$(3.26) \qquad (\overline{m \cdot K_n})^{\circ} = m \cdot (K_n)^{\circ} = \emptyset.$$

So ends the proof. \Box

Chapter 4

Banach Spaces

Throughout this set of exercises, X and Y denote Banach spaces, unless the contrary is explicitly stated.

4.1 Exercise 1. Basic results

Let φ be the embedding of X into X^{**} decribed in Section 4.5. Let τ be the weak topology of X, and let σ be the weak*- topology of X^{**}- the one induced by X^{*}.

- (a) Prove that φ is an homeomorphism of (X, τ) onto a dense subspace of (X^{**}, σ) .
- (b) If B is the closed unit ball of X, prove that $\varphi(B)$ is σ -dense in the closed unit ball of X**. (Use the Hahn-Banach separation theorem.)
- (c) Use (a), (b), and the Banach-Alaoglu theorem to prove that X is reflexive if and only if B is weakly compact.
- (d) Deduce from (c) that every norm-closed subspace of a reflexive space is reflexive.
- (e) If X is reflexive and Y is a closed subspace of X, prove that X/Y is reflexive.
- (f) Prove that X is reflexive if and only X* if reflexive.
 Suggestion: One half follows from (c); for the other half, apply (d) to the subspace φ(X) of X**.

Proof. Let ψ be the isometric embedding of X^* into X^{***} . The dual space of (X^{**}, σ) is then $\psi(X^*)$.

It is sufficient to prove that

$$(4.1) \varphi^{-1}: \varphi(X) \to X$$

$$(4.2) \varphi(x) \mapsto x$$

is an homeomorphism (with respect to τ and σ). We first consider

$$(4.3) V \triangleq \{x^{**} \in X^{**} : |\langle x^{**} | \psi x^* \rangle| < r\} (x^* \in X^*, r > 0);$$

$$(4.4) U \triangleq \{x \in X : |\langle x|x^*\rangle| < r\} (x^* \in X^*, r > 0).$$

and remark that the so defined V's (respectively U's) shape a local subbase \mathscr{S}_{σ} (respectively \mathscr{S}_{τ}) of σ (respectively τ). We now observe that

$$(4.5) U = \varphi^{-1}(V \cap \varphi(X)) = \varphi^{-1}(V) \cap X \quad (V \in \mathscr{S}_{\sigma}, \ U \in \mathscr{S}_{\tau}) \quad ,$$

since φ^{-1} is one-to-one. This remains true whether we enrich each subbase $\mathscr S$ with all finite intersections of its own elements, for the same reason. It then follows from the very definition of a local base of a weak / weak*-topology that φ^{-1} and its inverse φ are continuous.

The second part of (a) is a special case of [3.5] and is so proved. First, it is evident that

$$(4.6) \overline{\varphi(X)}_{\sigma} \subset X^{**} .$$

and we now assume- to reach a contradiction- that (X^{**}, σ) contains a point z^{**} outside the σ -closure of $\varphi(X)$. By [3.5], there so exists y^* in X^* such that

(4.7)
$$\langle \varphi x, \psi y^* \rangle = \langle y^*, \varphi x \rangle = \langle x, y^* \rangle = 0 \quad (x \in X)$$
;

$$\langle z^{**}, \psi y^* \rangle = 1$$

(4.7) forces y^* to be a the zero of X^* . The functional ψy^* is then the zero of X^{***} : (4.8) is contradicted. Statement (a) is so proved; we next deal with (b).

The unit ball B^{**} of X^{**} is weak*-closed, by (c) of [4.3]. On the other hand,

$$\varphi(B) \subset B^{**} \quad ,$$

since φ is isometric. Hence

$$(4.10) \overline{\varphi(B)}_{\sigma} \subset \overline{(B^{**})}_{\sigma} = B^{**} .$$

Now suppose, to reach a contradiction, that $B^{**} \setminus \overline{\varphi(B)}_{\sigma}$ contains a vector z^{**} . By [3.7], there exists y^* in X^* such that

(4.11)
$$|\psi y^*| \le 1 \quad \text{on } \overline{\varphi(B)}_{\sigma} \quad ;$$
(4.12)
$$\langle z^{**}, \psi y^* \rangle > 1 \quad .$$

$$\langle z^{**}, \psi y^* \rangle > 1 .$$

It follows from (4.11) that

(4.13)
$$|\psi y^*| \le 1 \text{ on } \varphi(B), i.e. |y^*| \le 1 \text{ on } B$$
.

We have so proved that

$$(4.14) y^* \in B^* .$$

Since z** lies in B**, it is now clear that

$$(4.15) \qquad |\langle z^{**}, \psi v^{*} \rangle| < 1 \quad ;$$

what it contradicts (4.12), and thus proves (b). We now aim at (c).

It follows from (a) that

(4.16)B is weakly compact if and only if $\varphi(B)$ is weak*-compact.

If B is weakly compact, then $\varphi(B)$ is weak*-closed. So,

(4.17)
$$\varphi(B) = \overline{\varphi(B)}_{\sigma} \stackrel{\text{(b)}}{=} B^{**} .$$

 φ is therefore onto, *i.e.* X is reflexive.

Conversely, keep φ as onto: one easily checks that $\varphi(B) = B^{**}$. The image $\varphi(B)$ is then weak*-compact by (c) of [4.3]. The conclusion now follows from (4.16).

Next, let X be a reflexive space X, whose closed unit ball is B. Let Y be a norm-closed subspace of X: Y is then weakly closed (cf. [3.12]). On the other hand, it follows from (c) that B is weakly compact. We now conclude that the closed unit ball $B \cap Y$ of Y is weakly compact. We again use (c) to conclude that Y is reflexive. (d) is therefore established. Now proceed to (e).

Let \equiv stand for "isometrically isomorphic" and apply twice [4.9] to obtain, first

$$(4.18) (X/Y)^* \equiv Y^{\perp} ,$$

next,

(4.19)
$$(X/Y)^{**} \equiv (Y^{\perp})^* \equiv X^{**}/(Y^{\perp})^{\perp} \equiv X/Y .$$

Combining (4.18) with (4.19) makes (e) to hold.

It remains to prove (f). To do so, we state the following trivial lemma (L)

Given a reflexive Banach space Z, the weak*-topology of Z* is its weak one.

Assume first that X is reflexive. Since B* is weak* compact, by (c) of [4.3], (L) implies that B* is also weakly compact. Then (c) turns X* into a reflexive space.

Conversely, let X^* be reflexive. What we have just proved that makes X^{**} reflexive. On the other hand, $\varphi(X)$ is a norm-closed subspace of X^{**} ; cf. [4.5]. Hence $\varphi(X)$ is reflexive, by (d). It now follows from (c) that $B^{**} \cap \varphi(X)$ is weakly compact, *i.e.* weak*-compact (to see this, apply (L) with $Z = X^*$).

By (a), B is therefore weakly compact, *i.e.* X is reflexive; see (c). So ends the proof. \Box

Bibliography

- [1] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.
- [2] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1986.
- [3] Walter Rudin. Functional Analysis. McGraw-Hill, 1991.
- [4] Laurent Schwartz. Analyse, volume III (in French). Hermann, 1997.