

Mean-Field Study of Kondo Phase Diagram

Elis Roberts - *supervised by* Claudio Castelnovo & Garry Goldstein April 30, 2018

University of Cambridge

Plan

- 1. Introduction
- 2. Finite Temperature Study
- 3. Conclusion

Introduction

Kondo Model

Single localised spin interacting with conduction electrons $c_{k,\sigma}$

Model Hamiltonian

$$H_{\mathsf{Kondo}} = \sum_{k,\sigma} \epsilon_k c_{k,\sigma}^{\dagger} c_{k,\sigma} + J \vec{\mathsf{S}} \cdot \vec{\mathsf{s}}(0)$$

- \cdot Can map impurity spin DOF to fermions f_{σ}
- · Think of it as describing interacting fermions $c_{k,\sigma}$ and f_{σ}

Goal

Describe phase diagram for this model using mean-field theory

Path Integral \rightarrow Mean-Field Theory

- Project framed in terms of path integral
- Treats Boltzmann sum as a functional integral over field configurations

Many-Body Path Integral

$$Z = \operatorname{Tr} e^{-\beta H} = \int \mathcal{D}[c^{\dagger}, c] e^{-\int_0^{\beta} d\tau L}$$

• Similar to Feynman path integral approach, but with imaginary time $\tau=it/\hbar$ and associated Lagrangian L

Mean-Field Theory

Avoid this difficult integral by making stationary phase approximation i.e. *minimise*

New Fields

- Lagrangian similar to original Hamiltonian, with extra dynamical terms: $L = H_{Kondo} + c^{\dagger} \partial_{\tau} c$
- But, interaction introduces difficult non-quadratic terms

Resolution

Introduce a new field V that mediates this interaction:

Constraints

 Making such variable changes sometimes requires constraints

e.g. Spin-1/2 → Fermion Mapping

$$s_Z = \tfrac{1}{2} (f_\uparrow^\dagger f_\uparrow - f_\downarrow^\dagger f_\downarrow), \quad s_+ = f_\uparrow^\dagger f_\downarrow, \quad s_- = f_\downarrow^\dagger f_\uparrow$$

Unfaithful representation unless constraint imposed:

$$f_{\uparrow}^{\dagger}f_{\uparrow} + f_{\downarrow}^{\dagger}f_{\downarrow} = 1$$

• Implement constraints by adding Lagrange multipliers $\{\lambda_i\}$ and extremesing wrt these too:

$$L = \dots + \lambda_{RN}(f^{\dagger}_{\uparrow}f_{\uparrow} + f^{\dagger}_{\downarrow}f_{\downarrow} - 1)$$

5

Soft-Constraint Approach

Now consider rewriting the same constraint:

$$(1 - n_{\uparrow} - n_{\downarrow})^2 = n_{\uparrow} n_{\downarrow} + (1 - n_{\uparrow})(1 - n_{\downarrow}) = 0$$

· Equivalent but can't be done at mean-field level since

$$\langle (1 - n_{\uparrow} - n_{\downarrow})^2 \rangle \neq 0$$

Soft-Constraint

How about introducing a new fermion h obeying $h^{\dagger}h=0$, but combining these constraints by instead imposing

$$(1 - n_{\uparrow} - n_{\downarrow})^2 - Kh^{\dagger}h = 0 \quad ?$$

6

Soft-Constraint Approach

- How could $(1 n_{\uparrow} n_{\downarrow})^2 Kh^{\dagger}h = 0$ be any better?
- · Have introduced a new free parameter K into description
- Provided K > 0 and $K \neq 1$, constraint operator now has positive *and* negative eigenvalues:

$$\{ 1, (1-K), 0, -K \}$$

Consequence

New composite constraint picks out both constraints, while still being possible at mean-field level

Finite Temperature Study

Solving Mean-Field Equations

Obtaining MF Equations

Minimise free energy $F_{\rm MF} = -k_{\rm B}T \ln Z$ wrt all variables:

$$\frac{\partial F_{\text{MF}}}{\partial \Delta} = 0, \qquad \frac{\partial F_{\text{MF}}}{\partial \lambda_{\text{SC}}} = 0, \qquad \dots$$

- Restricting search to reals leads to 9 equations
- Isotropy of B = 0 case \implies 7 unique variables / equations

How does this relate to a phase diagram?

Defining an Order Parameter Δ

 Recall the (now constant) bosonic field V mediating the interaction

Now Define Δ

$$\Delta \propto |V|^2$$

- $\Delta \to 0$ implies $c_{k,\sigma}$ and f_{σ} fermions no longer interact
- \cdot Value of Δ characterises different phases

Expected Phase Diagram (Approximate)

Classifying Phase Transitions

 Phase transitions classified by discontinuities in successive derivatives of F wrt thermodynamic variables

Limitation of Mean-Field Theory

- · As usual, mean-field theory predicts a phase transition
- · But, more advanced treatments show a smooth crossover
- Can study nature of PT by looking at form of F(T)

e.g. Heat Capacity

$$C = \frac{\partial E}{\partial T} = -T \frac{\partial^2 F}{\partial T^2}$$

Behaviour of Order Parameter Δ

Unavoidable Phase Transition?

Crucially, $\Delta < 0$ unphysical $\implies \Delta$ assumes piecewise form

- Q: Can a piecewise function have all derivatives match?
- · A: Not if it has a Taylor expansion.

What about non-analytic functions?

$$f(T) \approx \begin{cases} e^{-1/(T-T_c)^2} & T < T_c \\ 0 & T \geqslant T_c \end{cases}$$

Could we promote $K \to K(T)$ to remove discontinuities in $\partial^n F$?

Conclusion

Take Home Points

- Path integrals can describe many-body systems at finite T
- · MF theory considers optimal solution only much easier
- Soft-Constraint is an alternative approach to implementing constraints in the Lagrangian
- SC introduces a new free parameter into description, but is seemingly not enough to remove second-order PT

Backup

Final Lagrangian

$$\begin{split} L &= \sum_{k,\sigma} c_{k,\sigma}^{\dagger} \left(\frac{d}{d\tau} + \varepsilon_k - \mu \right) c_{k,\sigma} + \sum_{\sigma} f_{\sigma}^{\dagger} \frac{d}{d\tau} f_{\sigma} + h^{\dagger} \frac{d}{d\tau} h \\ &+ e^{\dagger} \frac{d}{d\tau} e + \sum_{\sigma} p_{\sigma}^{\dagger} \frac{d}{d\tau} p_{\sigma} + d^{\dagger} \frac{d}{d\tau} d \\ &+ \sum_{\sigma} \lambda_{\sigma} (f_{\sigma}^{\dagger} f_{\sigma} - p_{\sigma}^{\dagger} p_{\sigma} - d^{\dagger} d) \\ &+ \lambda_{\mathrm{KR}} (e^{\dagger} e + \sum_{\sigma} p_{\sigma}^{\dagger} p_{\sigma} + d^{\dagger} d - 1) + \lambda_{\mathrm{SC}} (e^{\dagger} e + d^{\dagger} d - K h^{\dagger} h) \\ &+ 2 \frac{V V^*}{J} + \sum_{k,\sigma} \left(V^* c_{k,\sigma}^{\dagger} z_{\sigma} f_{\sigma} + V f_{\sigma}^{\dagger} z_{\sigma}^{\dagger} c_{k,\sigma} \right) \end{split}$$