

## Teste de Matemática 10.º ANO

2023

## CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A prova é formada por itens de escolha múltipla e de resposta restrita. Os critérios de classificação dos itens de resposta restrita estão organizados por etapas, atribuindo-se uma pontuação a cada uma delas.

Caso os alunos adotem um processo não previsto nos critérios específicos, cabe ao professor corretor adaptar a distribuição da cotação atribuída.

Deve ser atribuída a classificação de zero pontos nas seguintes situações:

- Caso um aluno apresente apenas o resultado final de um item ou de uma etapa,
  quando é pedida a apresentação de cálculos ou justificações;
- Caso o aluno utilize de forma inequívoca a calculadora, uma vez que tal não é solicitado nesta prova.

Nas seguintes situações deve descontar-se um ponto às cotações estabelecidas para a etapa respetiva:

- Ocorrência de um erro de cálculo;
- Apresentação de uma resposta com o formato que não esteja de acordo com o que foi solicitado;
- Apresentação de expressões com erros do ponto de vista formal.

Caso ocorram erros que revelem desconhecimento de conceitos, de regras ou de propriedades ou o aluno apresente uma resolução incompleta de uma etapa, deve descontar-se até metade da cotação dessa etapa.

## CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

| Questão | 1.1 | 1.2 | 2. | 3.1 | 3.2 | 3.3 | 4. | 5. | 6. | 7.1 | 7.2 | 8.1 | 8.2 | 9.1 | 9.2 | 10.1 | 10.2 | TOTAL |
|---------|-----|-----|----|-----|-----|-----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|-------|
| Cotação | 14  | 13  | 8  | 14  | 13  | 8   | 8  | 8  | 14 | 14  | 14  | 8   | 14  | 14  | 8   | 14   | 14   | 200   |

| QUESTÃO |                                                                                | DESCRIÇÃO                                                                                 |       |    |  |  |  |  |
|---------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|----|--|--|--|--|
| 1       |                                                                                |                                                                                           | •     | 27 |  |  |  |  |
|         | 1.1                                                                            |                                                                                           | 14    |    |  |  |  |  |
|         |                                                                                | • Escrever $3x^2 - 6x + 4 = 3(x^2 - 2x) + 4$                                              | S     |    |  |  |  |  |
|         |                                                                                | • Escrever $3(x^2 - 2x) + 4 = 3(x^2 - 2x + 1) - 3 + 4$ <b>6 ponto</b>                     | 5     |    |  |  |  |  |
|         |                                                                                | • Escrever $3(x^2 - 2x + 1) - 3 + 4 = 3(x - 1)^2 + 1$ 4 ponto                             | s     |    |  |  |  |  |
|         | 1.2                                                                            |                                                                                           | 13    |    |  |  |  |  |
|         |                                                                                | • Calcular $f(\sqrt{2})$ e concluir que A $(\sqrt{2}, 10 - 6\sqrt{2})$ 3 ponto            | 5     |    |  |  |  |  |
|         |                                                                                | • Calcular $f(-\sqrt{2})$ e concluir que B $(-\sqrt{2}, 10 + 6\sqrt{2})$ 3 ponto          | s     |    |  |  |  |  |
|         |                                                                                | Determinar o declive da reta AB 4 ponto                                                   | s     |    |  |  |  |  |
|         |                                                                                | • Obter a equação reduzida $y = -6x + 10$ 3 ponto                                         | s     |    |  |  |  |  |
| 2       |                                                                                |                                                                                           |       | 8  |  |  |  |  |
| 3       |                                                                                |                                                                                           |       | 35 |  |  |  |  |
|         | 3.1.                                                                           |                                                                                           | 14    |    |  |  |  |  |
|         |                                                                                | • Substituir, na equação $(x-1)^2 + (y-2)^2 = 9$ , y por $2 + 2\sqrt{2}$ <b>2 pontos</b>  |       |    |  |  |  |  |
|         |                                                                                | • Resolver a equação $(x-1)^2 + (2+2\sqrt{2}-2)^2 = 9$ <b>10 ponto</b> s                  | 5     |    |  |  |  |  |
|         |                                                                                | • Resposta ( $x = 0 \lor x = 2$ ) <b>2 ponto</b> s                                        | 5     |    |  |  |  |  |
|         | 3.2                                                                            |                                                                                           | 13    |    |  |  |  |  |
|         |                                                                                | • Obter as coordenadas do ponto $T$ de tangência da reta $AB$ , $T(4,2)$ <b>3 ponto</b> s | 6     |    |  |  |  |  |
|         |                                                                                | ullet Identificar $T$ como ponto médio de $[AB]$ 2 ponto                                  | s     |    |  |  |  |  |
|         |                                                                                | $ullet$ Obter $\overline{CT}$ e $\overline{TA}$ ou $\overline{TB}$                        | 3     |    |  |  |  |  |
|         |                                                                                | • Determinar $\overline{CA}$ ou $\overline{CB}$ (5)                                       | 5     |    |  |  |  |  |
|         |                                                                                | Escrever uma equação cartesiana da circunferência                                         |       |    |  |  |  |  |
|         | 3.3                                                                            | Versão 1 (B); Versão 2 (A)                                                                | 8     |    |  |  |  |  |
| 4       |                                                                                | Versão 1 (C); Versão 2 (B)                                                                |       | 8  |  |  |  |  |
| 5       |                                                                                | Versão 1 (A); Versão 2 (B)                                                                |       | 8  |  |  |  |  |
| 6       |                                                                                |                                                                                           |       | 14 |  |  |  |  |
|         | Identificar as coordenadas do vértice da parábola V (1,3)                      |                                                                                           |       |    |  |  |  |  |
|         | • Escrever a expressão analítica da função como $f(x) = a(x-1)^2 + 3$ 2 pontos |                                                                                           |       |    |  |  |  |  |
|         | • Us                                                                           | • Usar $f(0) = 2$ para obter o valor de $a(-1)$                                           |       |    |  |  |  |  |
|         | • Ve                                                                           | rificar que $f(2,5)=0.75$ e concluir que $f(2,5)$ é inferior a 15                         | ontos |    |  |  |  |  |
| 7       |                                                                                |                                                                                           | 1 -   | 28 |  |  |  |  |
|         | 7.1.                                                                           |                                                                                           | 14    |    |  |  |  |  |

|      | Varifican and a condend do north D/O 4\ v~ continference a conservation                          |                                                   |                                    |
|------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|
|      |                                                                                                  |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
| 7 2  | da reta s                                                                                        | 14                                                |                                    |
| 7.2. | • Identificar as coordenadas de B como $(x, 2x + 1)$ 3 nontos                                    |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      | • Escrever $(x, 2x - 3) = k(3,7) \Leftrightarrow \begin{cases} x & \text{if } x \in \mathbb{R} $ |                                                   |                                    |
|      | • Obter as coordenadas do ponto $B(-9, -17)$ <b>3 pontos</b>                                     |                                                   |                                    |
|      | • Indicar o valor de $k$ ( $-3$ ) <b>2 pontos</b>                                                |                                                   |                                    |
|      |                                                                                                  |                                                   | 22                                 |
| 8.1. | Versão 1 (C); Versão 2 (B)                                                                       | 8                                                 |                                    |
| 8.2. |                                                                                                  | 14                                                |                                    |
|      | • Escrever $(x, y, 0) = (1,4,1,) + k(2,-3,1), k \in \mathbb{R}$ e obter as coordenadas do        |                                                   |                                    |
|      | ponto $B(-1,7,0)$ <b>8 pontos</b>                                                                |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      | • Determinar as coordenadas do ponto médio de $[AC]$ $(1,\frac{11}{2},\frac{5}{2})$ e            |                                                   |                                    |
|      | identificá-lo como o centro da face [ABCD]                                                       |                                                   |                                    |
|      |                                                                                                  |                                                   | 22                                 |
| 9.1. |                                                                                                  | 14                                                |                                    |
|      |                                                                                                  |                                                   |                                    |
|      | •                                                                                                |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      | · · · · · · · · · · · · · · · · · · ·                                                            |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
| 0.2  |                                                                                                  | 0                                                 |                                    |
| 5.2. | Versão I (A), Versão Z (D)                                                                       | 0                                                 | 28                                 |
| 10 1 |                                                                                                  | 14                                                | 20                                 |
| 10.1 | • Substituir $h(x) = 0$ nor $ x + 2  - 2 = 0$                                                    |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
| 10 2 | $\lambda$ indical as soluções $(\lambda - 0) \lambda = -4$                                       | 14                                                |                                    |
| 10.2 | • Identificar as coordenadas do ponto $B(-2, -2)$ 6 pontos                                       |                                                   |                                    |
|      |                                                                                                  |                                                   |                                    |
|      | • Identificar hase do triângulo como $AO = A$                                                    |                                                   |                                    |
|      | • Identificar base do triângulo como $\overline{AO}=4$                                           |                                                   |                                    |
|      | • Identificar base do triângulo como $AO=4$                                                      |                                                   |                                    |
|      |                                                                                                  | • Identificar as coordenadas de B como $(x,2x+1)$ | reta $s$ nem a equação da reta $t$ |