

National College of Ireland

Project Submission Sheet – 2019/2020

Student Name	:	Antonio Caruso
Student ID:		19203608
Programme:		Higher Diploma in Science in Data Analytics Year: 2020
Module:		Advanced Business Data Analysis
Lecturer:		Theo Mendonca
Submission	Due	26/07/2020
Date:		
Project Title:		
Word Count: 2	003	
I hereby certify	that th	e information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than m
own contributio	n will b	be fully referenced and listed in the relevant bibliography section at the rear of the project.
ALL internet ma	terial n	nust be referenced in the references section. Students are encouraged to use the Harvard Referencing Standard supplied by the Library. To use
other author's v	vritten	or electronic work is illegal (plagiarism) and may result in disciplinary action. Students may be required to undergo a viva (oral examination) i
there is suspicio	n abou	t the validity of their submitted work.
Signature:		
Date:		

PLEASE READ THE FOLLOWING INSTRUCTIONS:

- 1. Please attach a completed copy of this sheet to each project (including multiple copies).
- 2. Projects should be submitted to your Programme Coordinator.
- 3. You must ensure that you retain a HARD COPY of ALL projects, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer. Please do not bind projects or place in covers unless specifically requested.
- 4. You must ensure that all projects are submitted to your Programme Coordinator on or before the required submission date. Late submissions will incur penalties.
- 5. All projects must be submitted and passed in order to successfully complete the year. Any project/assignment not submitted will be marked as a fail.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Table of Contents

1	Intr	oduction	3
2	Firs	t Report- Comparison of methods of transports to work in County Dublin	3
	2.1	Research Question: Is there any statistical difference between the two groups of commuters?	4
	2.2	Specification of the null and alternate hypotheses and Alpha level	4
	2.3	Test for normality	4
	2.4	New Hypothesis	
	2.5	Interpretation	
3	Sec	ond Report – Comparison of presence of three Ethnical races in county Carlow and Cavan	9
	3.1	Specification of the initial 3 hypotheses and alpha level	9
	3.2	Test for normality	10
	3.3	New hypothesis and question	12
	3.4	Interpretation of results and Post Hoc test	12
4	Thir	rd Report- Comparison of Leaving time to work, school or college	14
	4.1	Specification of the null and alternate hypothesis and Alpha level	15
	4.2	Test for normality	15
	4.3	Test Execution	17
	4.4	Interpretation of the output	18
5	Fou	orth Report – Comparison of three different Journey times to work in the small area of Ardee (County Louth)	18
	5.1	Specification of the null and alternate hypothesis and Alpha level	19
	5.2	Test for Normality	20

	5.3	One way Anova test execution	22
6	Fiftl	n Report – Difference between two samples of people owning a car living in two neighbour urban areas	25
6	5.1	Specification of the null and alternate hypothesis and Alpha level	26
6	5.2	Test for normality	26
6	5.3	Interpretation of the test	28
7	Refe	erences	30

1 Introduction

This paper is a report on parametric and non parametric statistical tests applied to a dataset collected from the Central Statistical office of Ireland (Central Statistics Office, 2016)

2 First Report- Comparison of methods of transports to work in County Dublin

The first reports analyses a comparison of transports to work in county Dublin. For this test, one independent variable (County Dublin) and two dependent variables corresponding to the number of people who either commuted by public transport or by car (Central Statistics Office, 2016)

2.1 Research Question: Is there any statistical difference between the two groups of commuters?

In order to respond to the question, the T-test was initially considered to compare the means of the two independent groups (commuters and car drivers to work).

2.2 Specification of the null and alternate hypotheses and Alpha level

 H_0 : $\mu_{(transport)} = \mu_{(car)}$ There is no difference between the means of the two groups

H1: $\mu_{(Transport)} \neq \mu_{(car)}$ There is difference between the means of the two groups

 $\alpha = 0.05$

2.3 Test for normality

in order to understand whether to use a parametric or non-parametric test, the two distributions were tested for normality. The initial assumption was that the dependent variables are normally distributed and that a parametric variable should be applied.

Statistics

		Train, DART or				
		LUAS - Work	Car driver - Work			
N	Valid	2223	2223			
	Missing	1	1			
Mean		7.71	37.12			
Std. Error of Me	an	.205	.463			
Median		4.00	36.00			
Mode		0	44			
Std. Deviation		9.684	21.830			
Variance		93.773	476.555			
Skewness		2.861	.763			
Std. Error of Ske	wness	.052	.052			
Kurtosis		13.749	.942			
Std. Error of Kur	tosis	.104	.104			
Range		107	143			
Sum		17139	82516			
Percentiles	25	2.00	21.00			
	50	4.00	36.00			
	75	10.00	50.00			

		Test	s of Norm	ality			
		Kolm	ogorov-Smir	nov ^a		Shapiro-Wilk	
	Transport Method	Statistic	df	Sig.	Statistic	df	Sig.
Commuters	Car driv	.048	2223	.000	.962	2223	.000
	Train, D	.213	2223	.000	.723	2223	.000
a Lilliofore	Significance Correct	ion					

The above histograms obtained from the frequency distribution of the two variables of commuters to works and Car drivers to work shows a positively skewed distribution with a skewness of 2.86 for commuters and a normal distribution for Car Driver-Work. The Shapiro-Wilk test for normality (McClave & Sincich, 2017) resulted in 0,0001 < p-value 0.05, therefore the null hypothesis that data are normally distributed was rejected. A non-parametric test was then necessary to be applied, thus Man-Whitney U test (McClave & Sincich, 2017) was chosen to determine whether there is a significant difference between the two variables since the commuters are not normally distributed.

2.4 New Hypothesis

■ Null Hypothesis (*H*₀)

The distribution of commuters is the same across those who take transports and those who drive

■ Alternate Hypothesis (H_1)

The distribution of commuters is not the same across those who take transports and those who drive

α: 0.05

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision						
1	The distribution of Commuters is the same across categories of Transport Method.	Independent-Samples Mann- Whitney U Test	.000	Reject the null hypothesis.						
Asym	Asymptotic significances are displayed. The significance level is .050.									

Independent-Samples Mann-Whitney U Test

2.5 Interpretation

The first column on the summary table expressed the null hypothesis in terms of distribution of commuters for both transports and car. The Sig. displays the statistical significance of the Mann-Whitney U test as the p-value (McClave & Sincich, 2017). Because the obtained p-value 0.000001 < 0.5 significance level chose in the beginning, The Null Hypothesis was rejected with conclusion that the distribution of commuters is the same across transport commuters and car drivers.

3 Second Report – Comparison of presence of three Ethnical races in county Carlow and Cavan

Would a particular county affect the decision of living there of three different ethnical groups?"

The second reports refers to a comparison of three ethnical races in county Carlow and Cavan. Initial plan was to apply a two- way ANOVA (reference) to compare the presence of three difference ethnical races as dependent variable in two counties. Carlow and Cavan as independent variable (Central Statistics Office, 2016).

- 3.1 Specification of the initial 3 hypotheses and alpha level
 - 1. H₁: All the ethnic groups have equal presence across the counties
 - 2. H₂: Both the county groups affect presence of ethnic groups
 - 3. **H3:** The ethnicity and County factors are independent or interaction effect is not presence

α**: 0.05**

3.2 Test for normality

The Shapiro-Wilk test was used to test the data for normality (McClave & Sincich, 2017)

Tests of Normality

]	Kolmogorov	-Smirnov ^a	Shapiro-Wilk					
	County	Statistic	df	Sig.	Statistic	Sig.			
Population	Carlow	.288	639	.000	.589	639	.000		
	Cavan	.286	969	.000	.608	969	.000		

a. Lilliefors Significance Correction

The result shoed clearly that the points of the two sets of quantiles for the distribution of Carlow and Cavan created against one another with the QQ plot did not form a straight line that should be expected. As the level of Significance obtained from the Shapiro-Wilk was 0.001 < 0.05, the null hypothesis that the values are normally distributed was rejected.

Since the three groups are were normally distributed, it was necessary to apply a non parametric test. Not knowing a non-parametric version of the two-way anova, The Kruskas Wallis H test (McClave & Sincich, 2017) was applied to test new hypotheses as below;

3.3 New hypothesis and question

Is there a significant difference between the groups of white non Irish, black/black Irish and Asian/Asian Irish located between County Carlow and Navan?

- \blacksquare H_0 : population medians are equal.
- \blacksquare H_1 : population medians are not equal.
- \rightarrow α : 0.05

3.4 Interpretation of results and Post Hoc test

```
Kruskal-Wallis rank sum test

data: Groups
Kruskal-Wallis chi-squared = 800.63, df = 2, p-value
< 2.2e-16
```

The very High chi-squared shows that there is not relationships among the three groups and that the data do not fit very well. A p value obtained of 0.0000000000000022 < 0.05 meant that significant difference between the groups exists. The post hoc testing was conducted to understand which groups are different from the others.

	Pairwise Comparisons of Ethnicity											
	Sample 1-Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ^a						
	Black or Black Irish-Asian or Asian Irish	62.638	27.674	2.263	.024	.071						
·	Black or Black Irish-Other White	-707.282	27.674	-25.558	.000	.000						
	Asian or Asian Irish-Other White	-644.644	27.674	-23.294	.000	.000						

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided tests) are displayed. The significance level is .05.

a. Significance values have been adjusted by the Bonferroni correction for multiple tests.

After running the post hoc test with a level of significance adjusted by the Bonferroni correction, we can see that the presence the Black or black Irish and other white non Irish is significantly different from each other, as well as the Asian or Asian Irish and white non Irish are significantly different from each other, whereas black or black Irish and Asian or Asian Irish are not. Then HO Hypothesis that the population medians are equal was rejected in favour of the alternative hypothesis.

4 Third Report- Comparison of Leaving time to work, school or college

The third report analyses a comparison of leaving time to work, school or college between southern and eastern midland areas (Central Statistics Office, 2016) with the goal of answering the following research question;

Research question: Do Southern people leaving time to work, school or college in southern area differ significantly from people from eastern midland areas?

In order to answer to the research question, the non-parametric test of Chi-Squared of independence (McClave & Sincich, 2017)was considered to conduct a statistical test to answer the research question.

4.1 Specification of the null and alternate hypotheses and Alpha level

Hypothesis

H0: Leaving time and areas are independent

H1: Leaving time and areas are not independent

α: 0.05

4.2 Test for normality

Tests of Normality

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk					
	Statistic	df	Sig.	Statistic	df	Sig.			
Southern	.336	3		.856	3	.256			
eastern midlands	.362	3		.804	3	.123			

a. Lilliefors Significance Correction

The Chi squared test of independence would apply only in case of non normal distribution. To verify that, Shapiro Test was applied to check whether the distribution was normal. Both the distribution of data for Southern and eastern midlands resulted not normal, and the null hypothesis that p > 0.05 is rejected as Southern presents a sig. level of 0.2 and eastern midlands 0.12. As the data are not normally distributed, the Chi test squared for independence can be applied as planned.

4.3 Test Execution

	LEAVING	TIME BY AREA	Α																	
	before 6.30	7:31 - 8:00	after 9:30	Row Total		_	$\frac{(n_r * n_r)}{n_r}$	2)												
southern	99	507	158	764		$E_{rc} =$	+	_												
Eastern Midland	93	312	76	481		1,0	n													
Column Total	192	819	234	1245					8											
	before 6.30	7:31 - 8:00	after 9:30																	
southern(exp)	117.8216867	-																		
(O-E)	-18.82168675		14.40481928																	
(O-E)2		19.5087182	207.4988184																	
(O-E)2/E	3.006712107			4.490555345																
									DF	0.995	0.975	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.002	0.001
									1	.0004	.00016	1.642	2.706	3.841	5.024	5.412		7.879	9.55	
	before 6.30	7:31 - 8:00	after 9:30	row total					2	0.01	and the second second	3.219	4.605			7.824	9.21	10.597	12.429	
Eastern Midland(exp)	74.17831325	316.416867	90.40481928						3	0.0717	0.216	4.642 5.989	6.251 7.779	7.815 9.488		9.837 11.668	The second second	12.838	14.796	
(O-E)	18.82168675	-4.4168675	-14.40481928						5	0.207	0.484	7.289	9.236	11.07	12.833	13.388			18.907	20.515
(O-E)2	354.255892	19.5087182	207.4988184						6	0.676	1.237	8.558	10.645	12.592		15.033			20.791	
(O-E)2/E	4.775733991	0.06165511	2.295218552	7.132607658					_ 7	0.989	1.69	9.803	12.017	14.067	16.013	16.622			22,601	24.322
						V (0.	$\frac{c - E_{r,c})^2}{E_{r,c}}$		8	1.344	2.18	11.03	13.362 14.684	15.507 16.919	17.535	18.168	20.09	21.955	24.352 26.056	
					χ^2	$=$ $\rightarrow \frac{\langle \sigma_{I,i} \rangle}{\langle \sigma_{I,i} \rangle}$			10		3.247	13.442	15.987	18.307	20.483	21.161			27.722	
			Chi	11.623163	,,	_	$E_{r,c}$		11		3.816	14.631	17.275	19.675	21.92	22.618			29,354	
							70.670		12		4.404	15.812	18.549	21.026		24.054			30,957	
									13		5.009	16.985	19.812	22.362		-		29.819	32.535	
D	F = (r - 1) * (c - 1))	DF	2					14		5.629 6.262	18.151	21.064	23.685 24.996		26.873 28.259		31.319 32.801	34.091 35.628	
			Crit	5.991					16	-	6.908	20.465	23.542	26.296	28.845	29.633	32		37.146	
									17		7.564	21.615	24,769	27.587		30.995	manufacture before being		38,648	
			Chi stat > Chi crit	Reject H0					18		8.231	22.76	25.989	28.869		32.346		37.156	40.136	
				CONTRACTOR OF THE PROPERTY OF					19	_	8.907 9.591	23.9 25.038	27.204	30.144		33.687 35.02		38.582 39.997	41.61	43.82
									20	7,434	2,331	25.030	20.912	21.41	34:17	33.02	37.300	35.337	43.072	43.313

The test was conducted at an alpha value of 0.05. The first step involved the calculation of two expected frequency counts for the two different areas in each of the three groups of leaving time. The formula used referred to the total number of the rows multiplied by the total number of columns divided by the grand total. As the Chi Square formula equals to the sum of total observed values minus the expected values squared, divided by the expected values, the O-E, O-E and O-E2/E were calculated. The total for the two areas resulted in 4.49 for Southern area and 7.13 for Eastern Midland. The final Chi value corresponding to the sum of the two numbers, resulted in CHI = 11.62.

In order to determine if this was a significant chi statistics, the Chi distribution table was observed. The degree of freedom DF corresponded to 2 based on the formula. For two degrees of freedom at alpha level of 0.5, the Critical value corresponds to 5.991

4.4 Interpretation of the output

As the Chi stat 11.63 > Chi Crit 5.991, the null hypothesis H0 that the leaving time and the areas are independent was rejected favour of the alternative hypothesis, which states that there is a relationship between the time when people leave their home and the area from which they leave in the morning to go either to work, school or college. This answers the research question in regards to difference in the two areas about the time leaving home.

5 Fourth Report – Comparison of three different Journey times to work in the small area of Ardee (County Louth)

The fourth report represents a comparison of journey times to work in the small area of Ardee located in County Louth (Central Statistics Office, 2016).

The research question is: is there a significant difference in journey times to work experienced by people that live in the small area of Ardee?

In order to answer the research question, the parametric test One-way Anova was considered the best to compare the means of two or more groups (McClave & Sincich, 2017). For this test, three different journey times were analysed;

- 1- Under 15 minutes
- 2- ¼ hour under ½ hour
- 3- 1 hour under ½ hour

The interest in this test lies in whether the difference between the travelled journey of people in Ardee is significantly different than expected in random variation within groups.

5.1 Specification of the null and alternate hypothesis and Alpha level

$$H_0$$
: μ und15 = $\mu_{1/4\text{-und}1/2}$ = μ 1h-und1/2 There is no difference between the means of the three groups

$$H1 = \mu \text{ und} 15 \neq \mu_{1/4-\text{und}1/2} \neq \mu_{1/4-\text{und}1/2} \neq \mu_{1/4-\text{und}1/2}$$
 There is difference between the means of the three groups

α: 0.05

5.2 Test for Normality

The Shapiro test (McClave & Sincich, 2017)was applied to evaluate the normal distribution of the three groups. The H0 shows that the data are normally distributed across the three independent groups. The "under 15 minutes group" presents a p-value of 0.80 > 0.05, the second group displays a p value of 0.776 > 0.05, and the third group has 0.89 > 0.05. The null hypothesis that the data are normally distributed can be accepted and the one-way Anova test could be applied.

As all the points form a line that is straight, it can be visually confirmed what expressed by the shapiro test that the three distributions are normal.

5.3 One way Anova test execution

The boxplot below helped understand the data before executing the test;

Boxplot of people travelling at different journey times

The box plot doesn't show a perfect symmetry and displays the max number of people that travelled at the identified times is around 122, and the median around 30 people that travelled across those journey time

Boxplot comparing People travelling at three journey times

Each group presented 27 observations. The more clustered the value are, the smaller the standard deviation would be (McClave & Sincich, 2017). According to the plot, Under 15 minutes seems to be the most common journey time for people in Ardee, with a median of 75 people travelling within that short timeframe. As the outlier is far from the range, it might be an error and should not happen very often. The lowest median refer to the people that travel for 1hr/under 1h ½ hours with 15 people, as potentially expected in a small area.

```
> tapply(Ardee_Anova$`People Travelling`, Ardee_Anova$Time, var)

1 hour - under 1 1/2 hours 1/4 hour - under 1/2 hour under 15 minutes

39.66952 293.78063 675.99430
```

With the lowest variance square of the standard deviation, Under 15 minutes has the highest uncertainty and 1 hour or less than 1:30 has the lowest.

The ANOVA formula shows an F (2,79) = 67.93, with 2 and 79 being within groups. As the p value obtained is 0.000000000000000000022 < 0.05, the Null hypothesis was rejected in favour of alternative hypothesis $H1 = \mu$ und15 \neq μ 1/4-und1/2 that there is a statistical different in at least one journey time. A Post Hoc test was conducted with the following to adjust the p values. Having the same number of observations per group and being less conservative than Bonferroni (Chen, et al., 2017), the Tukey Post hoc test was chosen and delivered the results;

```
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = `People Travelling` ~ Time, data = Ardee_Anova)

$Time

diff lwr upr p adj
1/4 hour - under 1/2 hour - under 1 1/2 hours 25.77778 13.84951 37.70604 5.4e-06
under 15 minutes-1 hour - under 1 1/2 hours 58.07407 46.14581 70.00234 0.0e+00
under 15 minutes-1/4 hour - under 1/2 hour 32.29630 20.36803 44.22456 0.0e+00
```

The conclusion is that all the times are statistically different as the p adjusted values is < 0.5 for all the possible combinations

6 Fifth Report – Difference between two samples of people owning a car living in two neighbour urban areas

Research question: Is there any difference between the two urban areas that determine the number of people owning 1 car?

The final report is about a difference of two related samples of people owning a car in the urban area 1 and urban area 1 of the small area of Dungarvan in county Waterford (Central Statistics Office, 2016). The scope was to understand whether there was a statistical difference between the two samples. A potential Two-sample T test (McClave & Sincich, 2017) could be applied

6.1 Specification of the null and alternate hypothesis and Alpha level

H0 :
$$\mu$$
 urb1 = μ_{urb2}

H1:
$$\mu$$
 urb1 $\neq \mu_{urb2}$

 $\alpha:0.05$

6.2 Test for normality

Tests of Normality

	Kolmogoi	rov-Smirn	10V ^a	Shapiro-Wilk					
	Statistic	df	Sig.	Statistic	df	Sig.			
Dungarvan Urban 1	.189	12	.200*	.914	12	.237			
Dungarvan Urban 2	.132	12	.200*	.938	12	.479			

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

With a level of significance for both urban areas of 0.2 and 0.4 < 0.5, the null hypothesis that both data were normally distributed was rejected. Therefore, the non parametric test of Wilcoxon Rank could be applied with the new hypothesis referring to the median rather than mean being a non parametric test as following;

- H0 = the median difference between the pair of observation is zero H_0 : $M_{urb1} = M_{urb2}$
- ► H1 =The median difference between the pair of observations is not zero H₁: M_{urb1} ≠ M_{urb2}
- \rightarrow $\alpha:0.05$

6.3 Interpretation of the test

Dungarvan Urban 1	Dungarvan Urban 2	Differences	differences	Sorted Differences	Rank	RANK Sum of the Positive Diff	Rank Sum of the Negative Diff
52	30	22	22	3	1	189	21
33	52	-19	19	4	2		
58	36	22	22	6	3		
36	55	-19	19	8	4		
62	47	15	15	15	5		
37	40	-3	3	19	6		
66	58	8	8	19	7		
71	46	25	25	20	8		
37	57	-20	20	22	<u></u>		
70	19	51	51	22	10		
49	43	6	6	23	11		
49	45	4	4	25	12		
44		44	44	27	13		
55		55	55	30	14		
30		30	30	37	15		
37		37	37	40	16		
40		40	40	44	17		
23		23	23	44	18		
27		27	27	51	19		
44		44	44	55	20		

The first step consisted in calculating the difference between the sample Urban 1 and Urban 1. Once determined the absolute differences, they were sorted from the smallest to the largest. Subsequently, a rank from the smallest to the largest was created. Finally, the rank for all positive differences (T+) of the highlighted figures, and negative (T-) circled figures were added.

The Rank Sums as follows:

Wstat = 21 (The smallest was chosen)

		Two-Ta	iled Test	One-Tailed Test	
n		$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$
5	П			0	
6	П	0		2	
7	Г	2		3	0
8	Г	3	0	5	1
9		5	1	8	3
10		8	3	10	5
11	1	10	5	13	7
12	I	13	7	17	9
13	I	17	9	21	12
14	ı	21	12	25	15
15	Г	25	15	30	19
16	Г	29	19	35	23
17		34	23	41	27
18		40	27	47	32
19	C	_46	32	53	37
20		52	37	60	43
21		58	42	67	49
22		65	48	75	55
23		73	54	83	62
24		81	61	91	69
25	89		68	100	76
26	98		75	110	84
27	107		83	119	92
28	116		91	130	101
29	29 126		100	140	110
30		137	109	151	120

By comparing the value of Wilxocon test statistic to the critical value in the table, considering 20 observations, the obtained value of 21 is statically significant being 21 < 52 of the value in the table;

 $W_{\text{stat}} = 21$

 $\alpha = 0.05$

n = 20

 $W_{crit} = 52$

$W_{stat} < W_{crit}$

As a conclusion, Rejecting H₀, it can be stated that there is a difference between the two urban areas regarding their condition of owning one cars and it was unlikely to have occurred by chance.

7 References

Central Statistics Office, 2016. *Census 2016 Small Area Population Statistics*. [Online] Available at: https://www.cso.ie/en/census/census2016reports/census2016smallareapopulationstatistics/ [Accessed 24 July 2020].

Chen, S.-Y., Feng, Z. & Yi, X., 2017. A general introduction to adjustment for multiple comparisons. *Journal of Theoracic Disease*, Volume 9, p. 1725–1729.

McClave, J. & Sincich, T., 2017. Statistics, Global Edition.. 13th ed. Harlow: Person.