COPSILES LEEGO

IN THE CLAIMS

What is claimed is:

	1	1.	A mask identification circuit, comprising:
	2		a plurality of links arranged in series, each link having at least two
	3		inputs and at least two outputs, the inputs being directly coupled to the outputs
	4		in a first configuration, the inputs being cross coupled to the outputs in a
	5		second configuration.
- .			
	1	2.	The mask identification circuit of claim 1, wherein:
	2		each link includes at least two conductive lines, the two conductive
	3		lines of a link having a first orientation in the first configuration and a second
	4		orientation in the second configuration.
	5		
	1	3.	The mask identification circuit of claim 2, wherein:
	2		the two conductive lines of at least one link are parallel to one another
	3		in the first and second configuration.
	1	4.	The mask identification circuit of claim 1, wherein:
	2		each link is formed on a different integrated circuit layer.

1 5. The mask identification circuit of claim 1, w	herein
--	--------

- at least one link includes a first conductive line and a second conductive line, each conductive line having a downward contact to a link formed on a lower integrated circuit layer and an upward contact to a link formed on a higher integrated circuit layer.
- 1 **6.** The mask identification circuit of claim 5, wherein:
- 2 the upward contacts are diagonal to one another.
- 1 7. The mask identification circuit of claim 1, wherein:
- 2 the lower contacts are diagonal to one another.

1	8.	A mask identification code circuit, comprising:
2		n mask identification (ID) bit circuits that each provide one bit of a
3		mask identification code, where n is an integer greater than 1, and the mask ID
4		bit circuits can provide more than n different mask identification codes.
1	9.	The mask identification code circuit of claim 8, wherein:
2		each mask ID bit circuit includes a sense node that is coupled to one of
3		at least two different potentials by at least two signal paths.
1	10.	The mask identification code circuit of claim 8, wherein:
2		each mask ID bit circuit includes a sense node that is coupled to a first
3		potential to identify one mask, to a second potential to identify a second mask
4		and to the first potential to identify a third mask.
1	11.	The mask identification code circuit of claim 8, wherein:
2		each mask ID bit circuit includes a plurality of separate signal paths
3		cross coupled with one another to identify different masks.
1	12.	The mask identification code circuit of claim 8, wherein:
2		each mask identification circuit includes a plurality of links, each link
3		being formed on a different integrated circuit layer.

13.	The mask identification code circuit of claim 12, w	vherein
13.	The mask identification code circuit of claim 12, w	vherei

each link of a mask identification circuit switches the potential
supplied to the sense node when switched between configurations, each link
including two conductive lines that are each coupled to a conductive line of
another link by only one contact in both a first and second configuration.

14. The mask identification code circuit of claim 8, wherein:

the mask ID bit circuits can provide 2ⁿ different mask identification codes with any combination of mask layer revisions.

1	15.	A method for identifying integrated circuit masks, comprising the steps of:
2		forming mask bit identification (ID) circuits having interconnected
3		links on a plurality of integrated circuit layers that provide a signal path to a
4		sense node, each link being switchable between at least two configurations;
5		and
6		switching more than one link of a mask bit ID circuit from one
7		configuration to another to represent multiple mask changes.
1	16.	The method of claim 15, wherein:
2		forming interconnected links includes forming two conductive lines
3		for each link, each conductive line having an upward contact and a downward
4		contact, the upward contacts of the two conductive lines being essentially
5		diagonal to one another, the downward contacts of the two conductive lines
6		being essentially diagonal to one another.
1	17.	The method of claim 15, wherein:
2		switching a link from one configuration to another includes changing
3		the orientation of two conductive lines of the link.
1	18.	The method of claim 17, wherein:
2		changing the orientation of the two conductive lines includes placing
3		the two conductive lines essentially perpendicular to a previous orientation.

- 1 19. The method of claim 15, wherein:
- switching more than one link of a mask ID bit circuit includes
- 3 switching the configuration of one link for one mask change and switching the
- 4 configuration of a different link of the same mask ID bit circuit for another
- 5 mask change.
- 1 20. The method of claim 15, wherein:
- the links include one link comprising a polysilicon layer and another
- link comprising an interconnect layer formed over the polysilicon layer.

- 1 21. A mask revision identification (ID) code circuit, comprising:
- 2 means for cross coupling at least two signal lines according to changes
- in at least two integrated circuit masks to generate a mask ID code bit.