Covid-19 Infection Rate & Hospitalization Rate Analysis

Results of Analysis

Based on the descriptive statistics below, I would suggest addressing the gap between the amount of infections in high-density areas and how few are hospitalized. Is this due to hospital capacity not meeting the needs of the population? Or is there a reason that high-density populations are not getting hit hard enough to require hospitalization? Further analysis is required, and additional measures might need to be taken to expand healthcare access in high-density areas.

Additionally, the Spanish-speaking population seems to have a high correlation to testing positive. This might be because they live in areas that got hit harder, or perhaps their weaker grasp of English means they missed out on early warnings or proper precautions to avoid covid-19. Their poverty correlation means they likely live in high-density groups, allowing easier spread of disease.

Correlation data suggests high Spanish population has a strong correlation to poverty, having no health insurance, and being on public healthcare programs. This suggests healthcare officials need to prioritize the uninsured or underinsured, making sure they don't get left behind.

Either way, the state needs to offer more Spanish-speaking support in hospitals and in health-related communications.

Descriptive Data Exploration

Variable	N	Mean	Std Dev	Minimum	Maximum
Pct_POSITIVE	800	25.5359203	4.8082086	9.3154552	50.7261411
Pct_HOSP_POSITIVE	800	4.1239758	1.6916608	0	11.4832536
Pct_DEATH	800	0.1950850	0.1619079	0	2.2821577
GEOID	800	55075600791	39438429.36	55001950201	55141011600
POPULATION	800	4139.07	1764.25	958.0000000	19084.00
SIZE_CLASS	800	1.9487500	0.7206057	1.0000000	3.0000000

Mean Percentage of Confirmed Cases (Top 5 Counties)

Obs	COUNTY	_TYPE_	_FREQ_	pos_mean
1	Brown	1	30	31.0681
2	Forest	1	2	29.1975
3	Fond du L	1	15	29.1847
4	Chippewa	1	6	28.8990
5	Barron	1	7	28.7104

Mean Percentage of Hospitalized (Top 5 Counties)

Obs	COUNTY	_TYPE_	_FREQ_	hosp_mean
1	Clark	1	4	7.66400
2	Marquette	1	3	6.75515
3	Burnett	1	3	6.44873
4	Rusk	1	2	6.04747
5	Green Lak	1	2	5.97553

Mean Percentage of Deaths (Top 5 Counties)

Obs	COUNTY	$_TYPE_$	$_{\mathbf{FREQ}}_{}$	death_mean
1	Forest	1	2	0.46732
2	Iron	1	2	0.43553
3	Green Lak	1	2	0.35947
4	Kenosha	1	18	0.35250
5	Waupaca	1	8	0.33676

2)

Tha	Q1	INAN	$I \land D \lor$	Dro	cadura

		i ne S	UMIMA	RY Procedure			
SIZE_ CLASS	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
1	229	Pct_POSITIVE	229	24.9036784	5.6006044	9.3154552	50.7261411
		Pct_HOSP_POSITIVE	229	4.7553398	1.9973605	0	11.4832536
		Pct_DEATH	229	0.1961914	0.2071032	0	2.2821577
2	383	Pct_POSITIVE	383	25.6348910	4.5160305	11.3748764	42.3578363
		Pct_HOSP_POSITIVE	383	4.1035701	1.5357857	0.1533742	9.3808630
		Pct_DEATH	383	0.2021873	0.1450072	0	0.8529997
3	188	Pct_POSITIVE	188	26.1044183	4.2474235	11.1092577	39.4440874
		Pct_HOSP_POSITIVE	188	3.3964919	1.2344825	0.1288660	7.3170732
		Pct_DEATH	188	0.1792685	0.1280631	0	0.7717157

Pct_Positive Graphs

Correlations with Pct_POSITIVE

	TCC_TOSTITVE
Pct_POSITIVE	1.00000
	800
ADULT_LIMITED_ENGLISH	0.23936
	800
ADULT_SPANISH_LENG	0.29167
	800
POP_LT18	0.09119
	800
POP_65P	-0.18114
	800
POP_BELOWPOV	0.13652
	799
POP_DISABILITY	0.19314
	799
POP_HEALTHINS	0.12168
	799
POP_MEDICAD	0.17582
	799
POP_MEDICARE	0.00304
	799
SIZE_CLASS	0.09091
	800
HOUS_NOINTERNET	0.11399
	799
HOUS_NOSMARTPHN	0.00138
	799
HOUS_NO_VEH	0.10040

Pct_POSITIVE

Hierarchal Clustering

Cluster History

Number of Clusters	Clusters	s Joined	Freq	Semipartial R-Square	R-Square	Approximate Expected R-Square	Cubic Clustering Criterion	Pseudo F Statistic	Pseudo t-Squared	Tie
16	OB1	CL31	19	0.0053	.895	.905	-3.6	447	24.6	
15	CL21	CL23	104	0.0070	.888	.900	-4.4	446	54.3	
14	CL32	CL37	15	0.0074	.881	.895	-5.0	448	25.9	
13	CL16	CL26	53	0.0074	.874	.890	-5.4	453	22.6	
12	CL24	CL36	30	0.0075	.866	.883	-5.5	463	31.0	
11	CL25	CL33	91	0.0099	.856	.876	-6.0	469	73.4	
10	CL18	CL11	159	0.0113	.845	.868	-6.5	478	55.3	
9	CL20	CL28	233	0.0126	.832	.858	-6.8	490	183	
8	CL15	CL53	114	0.0143	.818	.846	-6.9	508	75.0	
7	CL10	CL12	189	0.0170	.801	.831	-7.0	531	55.0	
6	CL13	CL17	72	0.0181	.783	.812	-6.3	572	37.1	
5	CL9	CL19	409	0.0201	.763	.787	-4.9	639	189	
4	CL5	CL8	523	0.0614	.702	.752	-7.3	623	323	
3	CL6	CL14	87	0.0715	.630	.694	-8.3	678	96.1	
2	CL4	CL7	712	0.1216	.508	.576	-5.7	824	367	
1	CL3	CL2	799	0.5084	.000	.000	0.00		824	

Hierarchal Clustering

K-means Clustering

The K-cluster in this case seems to do a solid job of creating clear regions across all three graphs, whereas the hierarchal cluster still intermingles significantly.

So we'll use the non-hierarchal clustering to define groups, and need to remember Pop_healthins represents the *uninsured*.

Using Correlation data to support the assumptions of wealth, the groups are:

- Cluster 1— Mid poverty, high elderly, low % of uninsured.
 - Retired mid
- Cluster 2— Low poverty, low elderly, low % of uninsured.
 - Working_wealthy
- Cluster 3— Low poverty, low elderly, large % of uninsured.
 - Working mid
- Cluster 4— Mid poverty, low elderly, all ranges of health insurance.
 - Working poor
- Cluster 5— High poverty, low elderly, low % of uninsured.
 - Young_poor
- Cluster 6— Low poverty, high elderly, low % of uninsured.
 - Retired_wealthy

All clusters appear to be significant to positive confirmations.

Only clusters 1 (retired, midincome), 2(working wealthy), and 5(Young poor) appear to be significant to hospitalization rates.

Hospitalization Cluster Data

The GLM Procedure - Pct_POSITIVE

Class Level Information

Class Levels Values
CLUSTER 6 123456

Number of Observations Read 800 Number of Observations Used 800

The GLM Procedure

Dependent Variable: Pct_POSITIVE								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	5	753.11263	150.62253	6.75	<.0001			
Error	794	17718.86479	22.31595					
Corrected Total	799	18471.97742						

R-Square	Coeff Var	Root MSE	Pct_POSITIVE Mean
0.040771	18.49934	4.723976	25.53592

Source	DF	Type I SS	Mean Square	F Value	Pr > F
CLUSTER	5	753.1126314	150.6225263	6.75	<.0001

Source	DF	Type III SS	Mean Square	F Value	Pr > F
CLUSTER	5	753.1126314	150.6225263	6.75	<.0001

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	22.91886007	В	0.56869990	40.30	<.0001
CLUSTER 1	5.64117908	В	1.87387634	3.01	0.0027
CLUSTER 2	2.65105283	В	0.60260076	4.40	<.0001
CLUSTER 3	2.57528936	В	0.85391108	3.02	0.0026
CLUSTER 4	3.75182222	В	0.75231925	4.99	<.0001
CLUSTER 5	5.16397891	В	1.34578959	3.84	0.0001
CLUSTER 6	0.00000000	В			

The GLM Procedure—Pct_HOSP_POSITIVE

Class Level Information

Class Levels Values
CLUSTER 6 123456

Number of Observations Read 800 Number of Observations Used 800

	Dependent Variable: Pct_HOSP_POSITIVE					
Source	DF	Sum of Squares	Mean Square	F Value Pr > I	7	
Model	5	342.427771	68.485554	27.97 < .000	1	
Error	794	1944.083611	2.448468			
Corrected Tota	1 799	2286.511382				
R-Square (Coeff V	ar Root MSE P	et_HOSP_POS	SITIVE Mean		

Source	DF	Type I SS	Mean Square	F Value	Pr > F
CLUSTER	5	342.4277710	68.4855542	27.97	<.0001

4.123976

0.149760 37.94295 1.564758

Source	DF	Type III SS	Mean Square	F Value	Pr > F
CLUSTER	5	342.4277710	68.4855542	27.97	<.0001

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	5.074678206	В	0.18837474	26.94	<.0001
CLUSTER 1	-1.266949348	В	0.62069815	-2.04	0.0416
CLUSTER 2	-1.316076939	В	0.19960398	-6.59	<.0001
CLUSTER 3	-0.363434094	В	0.28284739	-1.28	0.1992
CLUSTER 4	0.407617380	В	0.24919636	1.64	0.1023
CLUSTER 5	-1.971331459	В	0.44577600	-4.42	<.0001
CLUSTER 6	0.000000000	В			

1) Training Data Models

R² Comparisons

Model	R ²	Adj. R ²	Model
1	.023	.022	POP_HEALTHINS
2	.265	.255	Custom
3	.277	.252	All
4	.273	.261	Stepwise
5	.276	.262	Adj. R2

Custom Model 2=

Log(pct_positive) = b0 + b1(ADULT_LIMITED_ENGLISH) +b2(ADULT_SPANISH_LENG) +b3(POP_MEDICARE) +b4(POP_65P) +b5(POP_DISABILITY) +b6(AREA_LAND) +b7(cluster2) +b8(sizeclass1) +b9(sizeclass2) +e

The MEANS Procedure

Variable	N	Mean
rmse1	159	0.1452
rmse2	159	0.1265
rmse3	159	0.1291
rmse4	159	0.1282
rmse5	159	0.1283
mse1	159	0.0419
mse2	159	0.0332
mse3	159	0.0338
mse4	159	0.0341
mse5	159	0.0335
mae1	159	0.1452
mae2	159	0.1265
mae3	159	0.1291
mae4	159	0.1282
mae5	159	0.1283
mpe1	159	0.0472
mpe2	159	0.0409

Variable	N	Mean
mpe3	159	0.0416
mpe4	159	0.0414
mpe5	159	0.0414

Test Data Models

The MEA	The MEANS Procedure					
Variable	N	Mean				
rmse1	640	0.1502				
rmse2	640	0.1344				
rmse3	640	0.1401				
rmse4	640	0.1415				
rmse5	640	0.1372				
mse1	640	0.0395				
mse2	640	0.0323				
mse3	640	0.0351				
mse4	640	0.0360				
mse5	640	0.0336				
mae1	640	0.1502				
mae2	640	0.1344				
mae3	640	0.1401				
mae4	640	0.1415				
mae5	640	0.1372				
mpe1	640	0.0475				
mpe2	640	0.0426				
mpe3	640	0.0444				
mpe4	640	0.0447				
mpe5	640	0.0435				

According to the means procedure of the testing data, the best model is Model 2, the custom model.

Training Data

R² Comparisons

Model	R ²	Adj. R ²	Model
1	.011	.012	POP_BELOWPOV
2	.484	.477	Custom
3	.5	.483	All
4	.495	.486	Stepwise
5	.487	.499	Adj. R2

Custom Model =

log(pct_hosp) = b0 + b1(POP_MEDICARE) +b2(POP_DISABILITY) +b3(cluster1) +b4(HOUS_NOINTERNET) +b5(HOUS_NOSMARTPHN) b6(HOUS_NO_VEH) +b7(POP_BELOWPOV) +b8(POP_MEDICAD) + e

Model 5

Variable	N	Mean
rmse1	159	0.1452
rmse2	159	0.1265
rmse3	159	0.1291
rmse4	159	0.1282
rmse5	159	0.1283
mse1	159	0.0419
mse2	159	0.0332
mse3	159	0.0338
mse4	159	0.0341
mse5	159	0.0335
mae1	159	0.1452
mae2	159	0.1265
mae3	159	0.1291
mae4	159	0.1282
mae5	159	0.1283
mpe1	159	0.0472
mpe2	159	0.0409
mpe3	159	0.0416
mpe4	159	0.0414
mpe5	159	0.0414

Testing Data

Model	R ²	Adj. R ²	Model
1	.035	.029	POP_BELOWPOV
2	.632	.613	Custom
3	.695	.649	All
4	.672	.652	Stepwise
5	.686	.661	Adj. R2

The MEANS Procedure

Variable	N	Mean
rmse1	639	1.9198
rmse2	639	1.9009
rmse3	639	1.8728
rmse4	639	1.8946
rmse5	639	1.8784
mse1	639	3.7375
mse2	639	3.7758
mse3	639	3.6814
mse4	639	3.7424
mse5	639	3.7042
mae1	639	1.9198
mae2	639	1.9009
mae3	639	1.8728
mae4	639	1.8946
mae5	639	1.8784
mpe1	639	0.5942
mpe2	639	0.5897
mpe3	639	0.5814
mpe4	639	0.5881
mpe5	639	0.5832

According to the means procedure on the test data, model 3 (all variables) is the best fit.