```
import numpy as np
import pandas as pd
import datetime as dt

#pd.options.display.float_format = "{:,.2f}".format
```

For calculations of mortgage 1 and 2

```
In [159...
          def fixed_rate_mortgage(r_mort, T_mort, D_mort):
              # monthly payment (inclusive of interest)
              M_{mort} = D_{mort*r_mort/(1-(1+r_mort)**(-T_mort))}
              # print(f"Monthly payment: ${round(M_mort1, 2)}")
              #month
              # creating the data frame
              installments = list(range(T_mort+1))
              balance = [M_mort*(1-(1+r_mort)**(inst-T_mort))/r_mort for inst in installments]
              df_mort = pd.DataFrame(balance, columns =['UPB (Million $)'])
              # calculating the interest and principal
              df_mort['Interest ($)'] = df_mort['UPB (Million $)'].shift(1) * r_mort
              df_mort['Principal ($)'] = M_mort - df_mort['Interest ($)']
              df_mort['Installment Amount($)'] = M_mort
              #df_mort['Month of Installment'] = month
              df_mort = df_mort[['Installment Amount($)', 'Principal ($)', 'UPB (Million $)']].round(2).fillna(0) # reorder columns
              df_mort.loc[:0,'Installment Amount($)'] = 0
              return df_mort
```

Mortgage 1

```
In [160... r_mort1 = 0.04/12 # monthly interest rate
T_mort1 = 30*12 # number of installments
D_mort1 = 1000000 # initial debt/loan

df_mort_1 = fixed_rate_mortgage(r_mort1, T_mort1, D_mort1)
In [161... df_mort_1
```

Out[161]: Installment Amount(\$) Principal (\$) UPB (Million \$)

	installment Amount(\$)	Principal (\$)	OPB (Willion \$)
0	0.00	0.00	1,000,000.00
1	4,774.15	1,440.82	998,559.18
2	4,774.15	1,445.62	997,113.56
3	4,774.15	1,450.44	995,663.12
4	4,774.15	1,455.28	994,207.84
356	4,774.15	4,695.37	18,938.53
357	4,774.15	4,711.02	14,227.50
358	4,774.15	4,726.73	9,500.78
359	4,774.15	4,742.48	4,758.29
360	4,774.15	4,758.29	0.00

361 rows × 3 columns

Mortgage 2

```
In [162... r_mort2 = (2.5/100)/12 # monthly interest rate #fixed rate of 2.5%
    T_mort2 = 20*12 # number of installments
    D_mort2 = 1000000 # initial debt/loan

df_mort_2 = fixed_rate_mortgage(r_mort2, T_mort2, D_mort2)
In [163... df_mort_2
```

Out[163]:		Installment Amount(\$)	Principal (\$)	UPB (Million \$)
	0	0.00	0.00	1,000,000.00
	1	5,299.03	3,215.70	996,784.30
	2	5,299.03	3,222.39	993,561.91
	3	5,299.03	3,229.11	990,332.80
	4	5,299.03	3,235.84	987,096.97
	236	5,299.03	5,244.17	21,086.18
	237	5,299.03	5,255.10	15,831.08
	238	5,299.03	5,266.05	10,565.03
	239	5,299.03	5,277.02	5,288.01
	240	5,299.03	5,288.01	0.00

241 rows × 3 columns

Mortgage 3

```
In [146...
          def create_date_column():
              start = dt.date(1983, 1, 1)
               end = dt.date(2012, 12, 1)
               datex = pd.date_range(start, end, freq='MS')
               date_list = datex.astype(str).tolist()
               date_list.insert(0, '000000000')
               return date_list
          date_list = create_date_column()
In [147...
          # change the file path here
          file = r'reference_data.csv'
          file_x = pd.read_csv(file)
          file_x
Out[147]:
               Months
                          Date Annual interest rate
```

	iviontns	Date	Annual Interest rate
0	0	NaN	0.00
1	1	1-Jan-83	0.03
2	2	1-Feb-83	0.03
3	3	1-Mar-83	0.03
4	4	1-Apr-83	0.03
356	356	1-Aug-12	0.05
357	357	1-Sep-12	0.05
358	358	1-Oct-12	0.05
359	359	1-Nov-12	0.05
360	360	1-Dec-12	0.05

361 rows × 3 columns

```
In [148... df_mort_3 = pd.DataFrame()
    air_list = file_x['Annual interest rate'].tolist()
    mir_list = [i/12 for i in air_list]
    mir_list_ = mir_list
```

```
initial_list = [t1, 360-fsy]
               second_value = 360-fsy
               while oy < second_value:</pre>
                   second_value = second_value - oy
                   initial_list.append(second_value)
               return initial_list
           def ubi_(fsy, oy):
               z = int((((360-12) - fsy)/oy)+1)
               ubilist = [fsy + (oy * i) for i in range(0,z)]
               ubilist.insert(0, 0)
               return ubilist
           def final_values(input_list):
               list_2 = []
               list_1 = [input_list[0]]*84
               for i in input_list:
                   if i==input_list[0]:
                       pass
                   else:
                       for e in range(12):
                           list_2.append(i)
               final_ = list_1 + list_2
               return final_
           final_n_values = final_values(indices_for_final_values(12*7, 12, 360))
In [150...
           final_n_values.insert(0, 0)
           ubi_final_values = final_values(ubi_(12*7, 12))
           ubi_final_values.insert(0, 0)
In [151...
           def mortgage_3_calculations(arm_mir, nl, il):
               unpaid_bal, principal_x, initial_bal, interest_x, installments_y = [1000000], [0], [1000000], [0], [0]
               ub_m = unpaid_bal[0]
               iter_value = 1
               while ub_m > 0 and iter_value < 361 :</pre>
                   initial_bal.insert(iter_value, unpaid_bal[iter_value-1])
                   interest_x.insert(iter_value, initial_bal[iter_value] * arm_mir[iter_value])
                   a = arm_mir[iter_value]
                   b = nl[iter_value]
                   installments_y.insert(iter_value, initial_bal[il[iter_value]+1] * arm_mir[iter_value] / (1-pow(1+a,-b)))
                   principal_x.insert(iter_value, installments_y[iter_value] - interest_x[iter_value])
                   unpaid_bal.insert(iter_value, initial_bal[iter_value] - principal_x[iter_value])
                   iter_value = iter_value+1
               ub_end = abs(round(unpaid_bal[360]))
               unpaid_bal[360] = 0
               return unpaid_bal, principal_x, interest_x, installments_y
In [152...
         ub, pp, ip, ia = mortgage_3_calculations(mir_list, final_n_values, ubi_final_values)
In [153...
           m3_data_frame = {'Date': date_list, 'Annual interest rate': air_list, 'Installment Amount': ia, 'Interest': ip, 'Principal':pp,
           df_mort_3 = pd.DataFrame(m3_data_frame)
In [154...
           df_mort_3
Out[154]:
                     Date Annual interest rate
                                            Installment Amount Interest Principal UPB - Million $
             000000000
                                        0.00
                                                          0.00
                                                                   0.00
                                                                            0.00
                                                                                    1,000,000.00
             1 1983-01-01
                                        0.03
                                                       4,216.04 2,500.00 1,716.04
                                                                                     998,283.96
             2 1983-02-01
                                        0.03
                                                       4,216.04 2,495.71 1,720.33
                                                                                     996,563.63
             3 1983-03-01
                                        0.03
                                                       4,216.04 2,491.41 1,724.63
                                                                                     994,839.00
                                                       4,216.04 2,487.10 1,728.94
             4 1983-04-01
           356 2012-08-01
                                        0.05
                                                       6,298.33
                                                                130.87 6,167.46
                                                                                      24,930.47
           357 2012-09-01
                                                       6,298.33
                                                                                      18,737.06
                                        0.05
                                                                 104.92 6,193.41
           358 2012-10-01
                                        0.05
                                                       6,298.33
                                                                 78.85 6,219.48
                                                                                      12,517.58
           359 2012-11-01
                                        0.05
                                                       6,298.33
                                                                  52.68 6,245.65
                                                                                       6,271.93
           360 2012-12-01
                                        0.05
                                                       6,298.33
                                                                 26.39 6,271.93
                                                                                          0.00
          361 rows × 6 columns
```

In [149...

def indices_for_final_values(fsy, oy, t1):