Chapitre 8

Limites et asymptotes

Limites de fonctions usuelles

Carré, cube, racine carrée 1)

Limite infinie

Définition:

Soit f une fonction définie sur un intervalle [a ; $+\infty$ [.

On dit que « f a pour limite $+\infty$ en $+\infty$ », lorsque les valeurs de f(x) sont aussi grandes que l'on veut dès que x est assez grand.

On écrit
$$\lim_{x \to +\infty} f(x) = +\infty$$

et on lit « la limite de f(x) quand x tend vers $+\infty$ est $+\infty$ ».

ou « f(x) tend vers $+\infty$ quand x tend vers $+\infty$ »

Interprétation graphique:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Si l'abscisse de M devient très grande, alors son ordonnée sera très grande.

Propriétés:

Les fonctions carré, cube et racine carrée ont pour limites, lorsque x tend vers :

•
$$+\infty$$
: $\lim_{x\to +\infty} x^2 = +\infty$,

$$\lim_{x \to +\infty} x^2 = +\infty , \qquad \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

•
$$-\infty$$
: $\lim_{n \to \infty} x^2 = +\infty$,

$$\lim_{x \to \infty} x^3 = -\infty$$

Remarques:

• Interprétation graphique :

 \mathcal{C}_f , la courbe représentative de $f(x)=x^2$, finit par se situer au-dessus de n'importe quelle droite horizontale.

Lorsque *x* tend vers un nombre, il suffit de faire le calcul :

$$\lim_{x \to 3} -x^2 = -3^2 = -9$$

$$\lim_{x \to 8} \sqrt{x} = \sqrt{8} = 2\sqrt{2}$$

$$\lim_{x \to 3} -x^2 = -3^2 = -9 \quad ; \qquad \lim_{x \to 8} \sqrt{x} = \sqrt{8} = 2\sqrt{2} \quad ; \qquad \lim_{x \to -2} x^3 = (-2)^3 = -8$$

2) *Inverse*

Limite infinie

Définition:

Soit f une fonction définie sur un intervalle [a ; $+\infty$ [.

On dit que f a pour limite $+\infty$ en 0, lorsque les valeurs de f(x) sont aussi grandes que l'on veut dès que x est assez petit.

On écrit $\lim_{x \to \infty} f(x) = +\infty$ et on lit « la limite de f(x) quand x tend vers 0 est $+\infty$ ».

Interprétation graphique :

$$\lim_{x\to 0} f(x) = +\infty$$

Si l'abscisse de M devient très grande, alors son ordonnée sera très grande.

Limite finie

Définition:

On dit que f a pour limite 0 en $+\infty$, lorsque les valeurs de f(x) sont aussi proches de 0 que l'on veut, dès que x est assez grand.

On écrit $\lim_{x \to +\infty} f(x) = 0$.

Interprétation graphique:

$$\lim_{x \to +\infty} f(x) = 0$$

Si l'abscisse de M devient très grande, alors son ordonnée sera proche de 0.

Propriétés:

•
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to -\infty} \frac{1}{x} = 0$

•
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$
 et $\lim_{x \to -\infty} \frac{1}{x^2} = 0$

•
$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \text{ et } \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

•
$$\lim_{\substack{x \to 0 \ x > 0}} \frac{1}{x^2} = +\infty$$
 et $\lim_{\substack{x \to 0 \ x < 0}} \frac{1}{x^2} = +\infty$

Remarques:

- On dit que l'axe des abscisses est asymptote horizontale à la courbe $\mathscr C$ au voisinage de $+\infty$.
- On dit que l'axe des ordonnées est asymptote verticale à la courbe $\mathscr C$ au voisinage de 0.

Diviser par un très grand nombre, qu'il soit positif ou négatif, donne presque zéro.

Diviser par un nombre presque égal à zéro donne un très grand nombre.

II. Opérations sur les limites

 α désigne un nombre ou $+\infty$ ou $-\infty$, et L et L' sont des nombres.

Somme de fonctions

Propriétés:

$\operatorname{Si} \lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$ \operatorname{et} \lim_{x \to \alpha} g(x) = $	L'	+∞	-∞	+∞	-∞	-∞
alors $\lim_{x \to \alpha} f(x) + g(x) =$	L+L'	+∞	-∞	+∞	-∞	?

Exemple:

Soit $f(x)=x+3-\frac{1}{x}$ définie sur $]0;+\infty[$.

•
$$\lim_{x \to +\infty} (x+3) = +\infty$$
 et $\lim_{x \to +\infty} -\frac{1}{x} = 0$. Donc par somme, $\lim_{x \to +\infty} \left(x+3 - \frac{1}{x}\right) = +\infty$.

•
$$\lim_{x \to 0} (x+3) = 0 + 3 = 3$$
 et $\lim_{x \to 0 \atop x > 0} -\frac{1}{x} = -\infty$. Donc par somme, $\lim_{x \to 0 \atop x > 0} \left(x + 3 - \frac{1}{x}\right) = -\infty$.

2) Produit de fonctions

Propriétés:

$\operatorname{Si} \lim_{x \to \alpha} f(x) =$	L	L non nul	0	+∞ ou −∞
$ \operatorname{et} \lim_{x \to \alpha} g(x) = $	L'	+∞ ou −∞	+∞ ou -∞	+∞ ou -∞
alors $\lim_{x \to \alpha} f(x) \times g(x) =$	$L \times L'$	<u>+</u> ∞	?	±∞

Remarque: Multiplication par un nombre k non nul

• Si
$$\lim_{x \to a} f(x) = L$$
, alors $\lim_{x \to a} k.f(x) = k.L$.

• Si
$$\lim_{x \to \alpha} f(x) = L$$
, alors $\lim_{x \to \alpha} k.f(x) = k.L$.
• Si $\lim_{x \to \alpha} f(x) = \pm \infty$, alors $\lim_{x \to \alpha} k.f(x) = \pm \infty$

Le signe de l'infini s'obtient simplement par la règle des signes du produit.

Propriétés:

Pour tout entier
$$n \ge 1$$
,

$$\lim_{x \to +\infty} x^n = +\infty ; \qquad \lim_{x \to +\infty} (ax^n) = +\infty \text{ si } a > 0 ; \qquad \lim_{x \to +\infty} (ax^n) = -\infty \text{ si } a < 0$$

Exemple:

Soit
$$\overline{f}(x) = \sqrt{x}(3-x)$$
 définie sur $[0; +\infty[$.

$$\lim_{x \to +\infty} (3-x) = -\infty \text{ et } \lim_{x \to +\infty} \sqrt{x} = +\infty \text{ . Donc par produit, } \lim_{x \to +\infty} \sqrt{x} (3-x) = -\infty \text{ .}$$
En 0, la fonction existe, on calcule donc $f(0) = \sqrt{0}(3-0) = 0$.

3) Quotient de fonctions

Propriétés:

$\operatorname{Si} \lim_{x \to \alpha} f(x) =$	L	L≠0	L	$\pm \infty$	0	<u>±</u> ∞
$ \begin{array}{c c} \text{et } \lim_{x \to \alpha} g(x) = \\ \end{array} $	L' non nul	0	±8	L'	0	$\pm \infty$
alors $\lim_{x \to \alpha} \frac{f(x)}{g(x)} =$	$\frac{L}{L}$,	$\pm \infty$	0	<u>#</u>	?	?

Remarque: inverse d'une fonction

• Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
, alors $\lim_{x \to +\infty} \frac{1}{f(x)} = 0$ et si $\lim_{x \to -\infty} f(x) = \pm \infty$, alors $\lim_{x \to -\infty} \frac{1}{f(x)} = 0$.

• Au voisinage d'un point
$$a$$
 où $f(a)=0$.

Si
$$f(x) > 0$$
 pour $x \ne a$, $\lim_{x \to a} \frac{1}{f(x)} = +\infty$ et si $f(x) < 0$ pour $x \ne a$, $\lim_{x \to a} \frac{1}{f(x)} = -\infty$.

La droite d'équation x = a est **asymptote** (verticale) à la courbe \mathcal{C}_f .

Propriété:

Pour tout entier $n \ge 1$ et $k \in \mathbb{R}$.

$$\lim_{x \to +\infty} \frac{k}{x^n} = 0 \text{ et } \lim_{x \to -\infty} \frac{k}{x^n} = 0$$

Exemple:

Soit $f(x) = \frac{-x^2 + x + 3}{x + 2}$ définie sur $]-2;+\infty[$.

•
$$\lim_{\substack{x \to -2 \ x > -2}} (-x^2 + x + 3) = -(-2)^2 - 2 + 3 = -3$$
 et $\lim_{\substack{x \to -2 \ x > -2}} (x + 2) = 0$, avec $x + 2 > 0$.

On a donc:
$$\lim_{\substack{x \to -2 \\ x > -2}} \frac{-x^2 + x + 3}{x + 2} = -\infty$$

•
$$\lim_{x \to +\infty} \frac{-x^2 + x + 3}{x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(-1 + \frac{1}{x} + \frac{3}{x^2}\right)}{x \left(1 + \frac{2}{x}\right)} = \lim_{x \to +\infty} \frac{x^2}{x} \times \lim_{x \to +\infty} \frac{-1 + \frac{1}{x} + \frac{3}{x^2}}{1 + \frac{2}{x}} = \lim_{x \to +\infty} x \times -1 = -\infty$$

5

III. Droites asymptotes

La recherche de limites pour une fonction f définie sur un intervalle I conduit parfois à considérer des droites asymptotes Δ à la courbe \mathcal{C}_f représentant la fonction f.

nature de Δ	conditions	exemples graphiques
asymptote verticale d'équation $x = c$	$I =]c; \dots \text{ ou } \dots; c[$ $c \text{ est une valeur interdite}$ $\lim_{x \to c} f(x) = +\infty (ou - \infty)$ si la limite de f en c est infinie	Δ asymptote à \mathscr{C}_f
asymptote horizontale d'équation $y=b$	$I =; +\infty[\text{ ou }]-\infty;$ $\lim_{\substack{x \to +\infty \\ \text{ou } \\ \lim_{x \to -\infty} f(x) = b}} f(x) = b$ si la limite de f à l'infinie est b	Δ asymptote à \mathcal{C}_f en $+\infty$
asymptote oblique d'équation y=ax+b	$I = \dots; +\infty[\text{ ou }] -\infty; \dots$ $\lim_{x \to +\infty} (f(x) - (ax+b)) = 0$ $\lim_{x \to -\infty} (f(x) - (ax+b)) = 0$ si la limite à l'infini de $f(x) - (ax+b) \text{ est nulle}$	Δ asymptote à \mathcal{C}_f en $+\infty$

Remarque:

Si la fonction f peut s'écrire $f(x)=ax+b+\epsilon(x)$, avec $\lim_{x\to +\infty} \epsilon(x)=0$, alors la droite Δ d'équation y=ax+b est asymptote oblique à la courbe \mathcal{C}_f en $+\infty$.

Exemple:

Soit $f(x) = -x + 2 + \frac{3}{1-x}$ définie sur]1;+ ∞ [, représentée par la courbe \mathcal{C}_f .

Or $\lim_{x\to +\infty} \frac{3}{1-x} = 0$, on en déduit donc que la droite Δ , d'équation y=-x+2, est asymptote oblique à la courbe \mathscr{C}_f en $+\infty$.

On remarque, par ailleurs, qu'il existe une asymptote verticale...

Pour étudier la **position de la courbe** \mathcal{C}_f par rapport à son asymptote oblique (ou horizontale), on étudie le signe de la différence f(x)-(ax+b).

• Si f(x)-(ax+b) est positif

On a f(x)>ax+b, la courbe \mathcal{C}_f est au dessus de l'asymptote Δ .

• Si f(x)-(ax+b) est négatif

On a f(x) < ax + b, la courbe \mathcal{C}_f est au dessous de l'asymptote Δ .