

R V College of Engineering Department of Computer Science and Engineering CIE - I: Scheme

Course: (Code)

IOT & Embedded Computing (CS344AI)

4th semester **Semester:**

PART B

	Criteria	General Purpose Computing System	Embedded System			
	Contents	A system which is a combination of a generic hardware and a General Purpose Operating System for executing a variety of applications.	A system which is a combination of special purpose hardware and embedded OS for executing a specific set of applications.			
	os	It contains a general purpose operating system (GPOS).	It may or not contain an operating system for functioning.			
	Alterations	Applications are alterable (programmable) by the user. (It is possible for the end user to re-install the OS and also add or remove user applications.)	The firmware of the embedded system is pre- programmed and it is non-alterable by the end-user.			
	Key factor	Performance is the key deciding factor in the selection of the system. Faster is better.	Application specific requirements (like performance, power requirements, memory usage, etc.) are key deciding factors.			
	Power Consumption	More	Less			
	Response Time	Not critical	Critical for some applications			
	Execution	Need not be deterministic	Deterministic for certain types of ES like 'Hard Real Time' systems.			
	77 78 79 710 711 712 713 sp 714 lr 715 pc	Fast sterrupt request 8_fiq 9_fiq 10_fiq 11_fiq 12_fiq 12_fiq 13_fiq 14_fiq 14_fiq 14_fiq 14_r14_irq 18_r14_irq 19_r14_r14_r14				
		psr_fiq spsr_irq spsr_	_svc spsr_undef spsr_abt			
3	//P0.19 Data p //P0.20 Clock //P0.30 Strobe #include <lpc2 #define LED_ #define LED_ #define PLOC void delay_ms void SystemIn</lpc2 	OFF (IOOSET = 1U << 31) ON (IOOCLR = 1U << 31) EK 0x00000400 s(unsigned int j);		10	L3	CO3

```
void alphadisp7SEG(char *buf);
int main()
IOODIR |= 1U << 31 | 1U << 19 | 1U << 20 | 1U << 30 ; // to set as o/ps
LED ON; // make D7 Led on .. just indicate the program is running
while(1)
alphadisp7SEG("fire ");
delay ms(500);
alphadisp7SEG("help ");
delay ms(500);
unsigned char getAlphaCode(unsigned char alphachar)
switch (alphachar)
// dp g f e d c b a - common anode: 0 segment on, 1 segment off
case 'I': return 0xf9;
case 'O': return 0xc0:
case 'T': return 0x93;
case 'B':return ox80:
case 'O':return 0xc0:
case 'A': return 0xf7;
case 'R':return 0xf7;
case 'D':return 0xa1;
case ' ': return 0xff;
//simmilarly add for other digit/characters
default : break;
return 0xff;
void alphadisp7SEG(char *buf)
unsigned char i,j;
unsigned char seg7 data,temp=0;
for(i=0;i<5;i++) // because only 5 seven segment digits are present
seg7 data = getAlphaCode(*(buf+i));
// instead of this look up table can be used
// to shift the segment data(8bits)to the hardware (shift registers) using
Data, Clock, Strobe
for (j=0; j<8; j++)
//get one bit of data for serial sending
temp = seg7 data & 0x80; // shift data from Most significan bit (D7)
if(temp == 0x80)
IOSET0 |= 1 << 19; //IOSET0 | 0x00080000;
IOCLR0 = 1 << 19; //IOCLR0 = 0x00080000;
//send one clock pulse
IOSET0 |= 1 << 20; //IOSET0 | 0x001000000;
```

```
delay_ms(1);
IOCLR0 |= 1 << 20; //IOCLR0 | 0x00100000;
seg7_data = seg7_data << 1; // get next bit into D7 position
}

// send the strobe signal
IOSET0 |= 1 << 30; //IOSET0 | 0x40000000;
delay_ms(1); //nop();
IOCLR0 |= 1 << 30; //IOCLR0 | 0x40000000;
return;
}
void delay_ms(unsigned int j)
{
unsigned int x,i;
for(i=0;i<j;i++)
{
for(x=0; x<10000; x++);
}
}</pre>
```

selecting Rows P0.20 O 0 0 0 P0.21 Vss XTAL1 X P0.16 ROW0 000 P0.22 P0.17 P0.23 ROW1 LPC 2148 P0.18 ENTER ROW2 P0.19 ROW3 OUTPUT P1.19 P1.18 P1.17 P1.16 P1.19 P1.18 P1.17 P1.16 COLO COLI COL2 COL3 INPUT +12V Columns data Stepper Metor COM IN1 OUT1 IN2 OUT2 IN3 OUT3 IN4 OUT4 **ULN2803**

10

L4

CO₃

4

```
#include <string.h>
#define COL0 (IO1PIN & 1<<19)
#define COL1 (IO1PIN & 1<<18)
#define COL2 (IO1PIN & 1<<17)
#define COL3 (IO1PIN & 1<<16)
#define LED ON (IO0CLR = 1U<<31)
#define LED_OFF (IO0SET = 1U<<31)
#define ENTER 10
void delay_ms(unsigned int);
char getKey(void);
void open(void); // to open the door
void close(void); // to close the door
char ch, keys[5], password[5] = "0123";
unsigned char len = 0;
unsigned int i = 0;
int main () {
       char ch;
       IOODIR = 0x0f < 16;
       do
        {
           i = 0;
           // read the password
           while (1)
              if ((ch = getKey()) == ENTER) break;
              keys[i++]=ch;
           keys[i] ='\0';; // null character, to make it string
           if (strcmp (keys, password) ==0)
               open(); // rotate clockwise for 90 degree, open the door
                //Wait for a key 'b' to close the door
               While ( ( ch = getKey ( ) ) != 'a') { };
                 close();// rotate anticlockwise for 90 degree, close the
       door
              }
        }while(1);
}
void delay_ms(unsigned int ms){
       unsigned int x, i;
       for(x = 0; x < ms; x++)
              for(i = 0; i < 10000; i++);
```

```
}
char getKey() {
unsigned char lookup_table[4][4]={ ('0', '1', '2','3'},
                                    {'4', '5', '6', '7'},
                                    {'8', '9', 'a', 10},
                                    {'c', 'd', 'e', 'f'}};
unsigned char rowsel=0,colsel=0;
while(1)
 //check for keypress in row0,make row0 '0',row1=row2=row3='1'
       rowsel=0;IO0SET = 0X000F0000;IO0CLR = 1 << 16;
       if(COL0==0){colsel=0;break;};if(COL1==0){colsel=1;break;};
       if(COL2==0){colsel=2;break;};if(COL3==0){colsel=3;break;};
 //check for keypress in other rows
       delay_ms(50); // debouncing delay
      // wait for a kev release
       while(COL0==0 | COL1==0 | COL2==0 | COL3==0);
       delay ms(50); // debouncing delay
       return lookup table[rowsel][colsel];
}
void open (){
       for (int i = 0; i < 20; i++)
                        IOOCLR = 0X000F0000; IOOSET = 0X00080000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IOOSET
                                                           0X00040000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IOOSET
                                                           0X00020000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IO0SET
                                                           0X00010000:
       delay_ms(15);
              IOOCLR = 0x00ff0000;
void close () {
       for (int i = 0; i < 20; i++)
                        IOOCLR = 0X000F0000; IOOSET = 0X00010000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IOOSET
                                                           0X00020000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IOOSET
                                                           0X00040000;
       delay_ms(15);
              IO0CLR
                             0X000F0000;
                                            IOOSET
                                                           0X00080000;
                         =
       delay_ms(15);
              IOOCLR = 0x00ff0000;
}
```



```
{
    DACR = ( (1<<16) | (value<<6) );
    value++;
}
while ( value != 0 )
{
    DACR = ( (1<<16) | (value<<6) );
    value--;
}
}

void delay_ms(unsigned int j)
{
    unsigned int x,i;
    for(i=0;i<j;i++)
    {
    for(x=0; x<10000; x++);
    }
}
```

Course	Outcomes: After completing the course, the students will be able to:-							
CO 1	Apply Embedded System and IoT fundamentals and formulate sustainable societal relevan							
	effective solutions.							
CO 2	Demonstrate the development of software programs using Embedded C, using Microcontrollers and							
	different sensors and peripherals to build embedded system applications.							
CO3	Design smart systems using various I/O peripherals, Sensors, embedded protocols like UART,I2C,SPI							
	using modern tools like Keil IDE software for various domains like Healthcare, automation,							
	agriculture, smart cities and others.							
CO 4	Indulge in developing Novel multi-disciplinary IoT projects using prototype boards, with effective or							
	& written communication skills and working in teams.							
CO 5	Engage in Lifelong Learning by investigating and executing real world societal problems using							
	engineering tools - Cross compilers, debuggers and simulators, emerging processor and controller-							
	based hardware platforms, IOT cloud infrastructure & protocols.							

BT LEVELS	L1	L2	L3	L4	L5	L6	COS	CO1	CO2	CO3	CO4
MARKS		10	30	10					20	30	