Intelligent Systems: Final Exam Block 2

ETSINF, Universitat Politècnica de València, January 20th, 2016

Surname(s):	Name:			
Group: $\Box 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F \Box F$	RE1 □RE2			
Tick only one choice among the given options.				
D Which of the following assertions is TRUE ?				

A)
$$P(x,y) = \sum_{z} P(x) P(y) P(z)$$
.

$$B) P(x,y) = \sum P(x) P(y \mid z).$$

C)
$$P(x,y) = \sum_{x} P(x \mid z) P(y \mid z) P(z)$$
.

D)
$$P(x,y) = \sum_{z}^{\infty} P(x,y \mid z) P(z)$$
. $P(x,y) = \sum_{z}^{\infty} P(x,y,z) = \sum_{z}^{\infty} P(x,y \mid z) P(z)$

$$P(x,y) = \sum_{z} P(x,y,z) = \sum_{z} P(x,y \mid z) P(z)$$

- 2 A An entomologist discovers a rare subspecies of beetle, due to the pattern of his back. In this rare subspecies, 98% of the specimen have this pattern. In the common subspecies, 5% of the specimen have this pattern. The rare subspecies represents 0.1% of the population. The probability P that a beetle with the pattern of his back belongs to the rare subspecies is:
 - A) $0.00 \le P < 0.05$. $P = P(r \mid p) = \frac{P(r)P(p|r)}{P(p)} = \frac{P(r)P(p|r)}{P(r)P(p|r) + P(c)P(p|c)} = \frac{1/1000 \cdot 98/100}{1/1000 \cdot 98/100 + 999/1000 \cdot 5/100} = \frac{1/1000 \cdot 98/100}{1/1000 \cdot 98/100 + 999/1000 \cdot 5/100} = \frac{1/1000 \cdot 98/100}{1/1000 \cdot 98/100} = \frac{1/1000 \cdot 98/100}{1/10000 \cdot 98/100} = \frac{1/1000 \cdot 98/100}{1/1000 \cdot 98/100} = \frac{1/1000 \cdot 98/100}{1/10000 \cdot 98/100} = \frac{1/1000 \cdot 98/100}{1/10000 \cdot 98/100} = \frac{1$ $\frac{98}{5093} = 0.0192$
 - B) $0.05 \le P \le 0.10$.
 - C) $0.10 \le P \le 0.20$.
 - D) 0.20 < P.
- 3 C Let x be an object (represented with a feature vector or string of symbols) that we want to classify in one among C possible classes. Indicate which of the following expressions **DOES NOT** classify x by minimum classification error:
 - A) $c(x) = \arg \max \log_2 p(c \mid x)$
 - B) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} \log_{10} p(c \mid x)$
 - C) $c(x) = \arg\max a p(c \mid x) + b$ being a and b two real constants
 - c=1,...,CD) $c(x) = \arg \max p(c \mid x)^3$
- 4 C We have three different classifiers for a two-class problem in \Re^2 . One classifier is formed by the linear functions: $g_1(y) = 2y_1 + y_2 + 3$ and $g_2(y) = y_1 + 2$. The second classifier is formed by: $g'_1(y) = -2y_1 + y_2 - 1$ and $g_2'(y) = -y_1 + 2y_2$. The third classifier is formed by: $g_1''(y) = -2y_1 - y_2 - 3$ and $g_2''(y) = -y_1 - 2$. Which assertion is TRUE?
 - A) (g_1, g_2) y (g'_1, g'_2) are equivalent, but (g_1, g_2) y (g''_1, g''_2) are not.
 - B) (g_1, g_2) y (g'_1, g'_2) are not equivalent, but (g_1, g_2) y (g''_1, g''_2) are equivalent.
 - C) (g_1,g_2) y (g_1',g_2') are not equivalent, but (g_1',g_2') y (g_1'',g_2'') are equivalent. Common boundary $y_2=$ $-y_1 - 1$ but $R \neq R' = R''$
 - D) The three classifiers are not equivalent to each other.

5 C The figure on the right shows two bi-dimensional samples in 2 classes: (x_1, \circ) and (x_2, \bullet) . Given the weight vectors $\mathbf{a}_{\circ} = (0, 1, -2)^{t}$ and $\mathbf{a}_{\bullet} = (0, 0, 1)^{t}$, if we apply the Perceptron algorithm only to the sample x_1 , we obtain the new weight vectors $\mathbf{a}_{\circ} = (1,1,-2)^t$ and $\mathbf{a}_{\bullet} = (-1, 0, 1)^t$. Which is the value of the learning factor α and margin b?

- A) $\alpha = 1.0$ y b = 0.0
- B) $\alpha = -1.0 \text{ y } b = 0.5$
- C) $\alpha = 1.0$ y b = 0.5

 $(4/3,2)^t \|^2 = 32/3$

- D) It is not possible to determine the value of α and b
- 6 A Consider the partition $\Pi = \{X_1 = \{(0,0)^t, (0,2)^t\}, X_2 = \{(2,0)^t, (2,4)^t\}\}$ for the points in the figure. The mean points of the clusters are $\mathbf{m}_1 = (0,1)^t$ and $\mathbf{m}_2 = (2,2)^t$. The Sum of Square 4 Errors (SSE) of the partition is 10. If the point $(0,2)^t$ is transferred to cluster X_2 , then:

- B) The new SSE value will be >8 and <10
- C) The new SSE value will be >6 and <8
- D) The new SSE value will be <6.

Intelligent Systems: Final Exam Block 2

ETSINF, Universitat Politècnica de València, January 20th, 2016

Problems (3 points; estimated time: 45 minutes)

1. (1 point) We have the 5 two-dimensional samples shown in the table to learn a classification tree. For each sample, we show its feature vector and the class it belongs to. The first *split* is (2,3); that is, $y_2 \leq 3$; and the second and last split is (1,3); that is, $y_1 \leq 3$.

y_1	2	2	2	4	6
y_2	2	4	6	6	2
c	A	В	B	A	A

a) Represent graphically the classification tree and classify the sample $(4,4)^t$

$$2 = 2 + 0$$

$$2 = 2 + 0$$

$$3 = 1 + 2$$

$$y_1 \le 3$$

$$2 = 0 + 2$$

$$1 = 1 + 0$$

$$A t_5$$

The sample $(4,4)^t$ goes through the tree until it reaches t_5 . Therefore, the classification hypothesis is class A.

- b) For each non-terminal node, t, calculate:
 - Probability of the classes, $P(c \mid t)$, $c \in \{A, B\}$ $P(A \mid t_1) = 3/5$, $P(B \mid t_1) = 2/5$; $P(A \mid t_3) = 1/3$, $P(B \mid t_3) = 2/3$
 - Probability of choosing the left node and the right node, $P_t(L)$, $P_t(R)$ $P_{t_1}(L) = 2/5$, $P_{t_1}(R) = 3/5$ $P_{t_3}(L) = 2/3$, $P_{t_3}(R) = 1/3$
- c) Calculate the number of bits of the impurity, $\mathcal{I}(t_1)$, of the root node, t_1 $\mathcal{I}(t_1) = -P(A \mid t_1) \log_2 P(A \mid t_1) P(B \mid t_1) \log_2 P(B \mid t_1)$ $\approx -0.6(-0.737) 0.4(-1.322) = 0.971 \text{ bits.}$
- d) For each terminal node, t, calculate:
 - Probability of the terminal node, P(t) $P(t_2) = 2/5, P(t_4) = 2/5, P(t_5) = 1/5$
 - Impurity in bits, $\mathcal{I}(t)$ $\mathcal{I}(t_2) = \mathcal{I}(t_4) = \mathcal{I}(t_5) = 0$ bits.
- e) Estimated resubstitution error (misclassification error) of the tree. Since the three terminal nodes are pure nodes, the estimated resubstitution error is 0.
- 2. (2 points) Let M be a Markov model with states $Q = \{1, 2, F\}$; alphabet $\Sigma = \{a, b, c\}$; initial probabilities $\pi_1 = \frac{6}{10}, \pi_2 = \frac{4}{10}$; and transition and emission probabilities:

A	1	2	F
1	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{5}{10}$
2	$\frac{4}{10}$	0	$\frac{6}{10}$

B	a	b	c
1	$\frac{5}{10}$	$\frac{2}{10}$	$\frac{3}{10}$
2	$\frac{7}{10}$	$\frac{2}{10}$	$\frac{1}{10}$

- a) Apply the Viterbi algorithm in model M to obtain the most probable state sequence for the string "bba".
- b) Calculate the model M' after ONE iteration of Viterbi re-estimation algorithm using the string in the previous question ("bba") and the strings "ac", "cacb" and "a". For this calculation, use the following data: $\tilde{P}(ac \mid M) = P(ac, q_1q_2 = 21 \mid M)$ (i.e.; the optimal state sequence for "ac" is 21); $\tilde{P}(cacb \mid M) = P(cacb, q_1q_2q_3q_4 = 1212 \mid M)$ and $\tilde{P}(a \mid M) = P(ac, q_1 = 2 \mid M)$.

