CSCI 6339 Theoretical Foundations of Computer Science Homework 2 Due is 10/14/2020 23:59

Ulvi Bajarani Student ID 20539914

E-mail: ulvi.bajarani01@utrgv.edu

Questions and Answers:

Problem 1. Let $N = \{1, 2, 3, ...\}$ be the set of all natural numbers. Prove $N \times N \times N = \{(x, y, z) \mid x, y, \text{ and } z \text{ are all in } N\}$ is countable.

Answer 1.

The easiest way to prove the countability is to find the one-to-one function. Here, the possible solution for $N \times N \times N \longrightarrow N$:

$$f(x, y, z) = 2^x 3^y 5^z$$

Since that for each tuple (x, y, z) the answer is unique prime factorisation, we get the one-to-one representation, which proves the countability

Problem 2. Prove that the set of irrational numbers in [0,1] is not countable.

Answer 2.

To understand if the set of irrational numbers in [0,1] is not countable, we should know that the set of real numbers between [0,1] is not countable. Knowing that the real numbers contains both rational and irrational numbers, let's start to prove that the set of rational numbers in [0,1] is countable. It might be done by mapping, for example, $\frac{a}{b} \longrightarrow 2^a 3^b$ where $0 \le \frac{a}{b} \le 1$ and $b \ne 0$.

Now, we can prove that if the set of irrational numbers in [0,1] is not countable. If it were countable, the set of real numbers between [0,1] would be countable, because the union of countable sets is the countable set. Since it is not, the set of irrational numbers in [0,1] is not countable.

Problem 3. Show that there is a correspondence between the two intervals [0,1) and [0,1].

Answer 3.

Let's create one-to-one function $R \longrightarrow (0,1)$ with the function $f(x) = \frac{e^x}{1+e^x}$ where $x \in R$. In this case, |R| = |(0,1)|. Let's create the inverse map $(0,1) \longrightarrow R$ with the function $-\log\left(-\frac{x-1}{x}\right)$ where $x \neq 0$ and $x \neq 1$. According to the Schröder–Bernstein theorem, if there exist two one-to-one function $f: A \longrightarrow B$ and $g: B \longrightarrow A$ between the sets A and B, there is a correspondence function $h: A \longrightarrow B$. Since that $(0,1) \subset [0,1) \subset [0,1] \subset R$, we can define that there is the correspondence function between [0,1) and [0,1], since all sets have the same cardinality.

Problem 4. Show that the language $\{M: M \text{ is a Turing machine with } L(M) \text{ to be}$

a finite set } is undecidable. You need to establish its connection to

$$A_{TM} = \{ < M, w > | \text{ Turing machine } M \text{ accepts input } w \}$$

Answer 4.

Let's define that M is decidable. In this case, there is the Turing machine M_2 such that

- accepts $\{0^n 1^n, n \ge 0\}$ if M does not accept some string w;
- accepts w if M results accept on w;

Then, define the Turing machine R such checks if $L(M_2)$ is regular or not; it is done if M accepts w. Finally, design the Turing machine A_{TM} such that accepts < M, w > and

- gives "M accept w" if R accepts M_2 ;
- gives "M reject w" if R rejects M_2 ;

In this case, R will say if M_2 is a regular language if M accepts w and A_{TM} says "M accept w" if R decides M_2 is regular, which is contradiction.