The IS-LM Model - Part 1

EC 313, Macroeconomics

Alex Li

Overview

Overview

In the last four lectures, we studied the **goods market** and the **money** market:

- Goods Market Equilibrium:
 - Output (Y) is endogeneous.
 - Interest Rate (i) is exogeneous.
- Money Market:
 - Output (Y) is exogeneous.
 - Interest Rate (i) is endogeneous

Overview

Overview

Overview

In the last four lectures, we studied the **goods market** and the **money market**:

- Goods Market covers: Households, Firms, Government, RoW
- Money Market includes Financial Intermediaries.

Neither the model of Goods Market nor the model of Money Market gives us **the complete picture of the economy**.

This lecture: **IS-LM model** combining both Goods Market Model and Money Market Model.

Overview

IS-LM Meaning

- IS means "Investment-Saving"
- "Investment-Saving" is another way to solve for the **Goods Market Equilibrium** (Lecture 3)
- LM means "Liquidity Preference-Money Supply"
- "Liquidity Preference–Money Supply" solves the **Money Market Equilibrium** (Lecture 4-5)

Overview

Why IS-LM?

- Both Output (Y) and interest rate (i) are endogenous.
- The IS-LM model helps us study the **simultaneous determination** of output and the interest rate in the short-run equilibrium!
- A General Equilibrium Model that gives us a relatively realistic description of the behavior of the economy.

Overview

Overview

Question: What's the time scope IS-LM model falls into?

- Short Run?
- Medium Run?
- Long Run?

Overview

Overview

Question: What's the time scope IS-LM model falls into?

- Short Run!
- Medium Run?
- Long Run?

Because IS-LM is based on Money Market and Goods Market, and **Goods**Market is a short-run model.

Overview

Overview

Question: What are the variables of interest in the IS-LM model

• Output (Y) and Interest Rate (i)

History

Keynes - General Theory, 1936;

Hicks - summarized Keyens' contributions, 1937;

Joint description of Goods Market and Money Market

Hansen - extended Hicks Analysis, 1938.

Overview

Overview

The IS-LM model

- captures much of what happens in the economy in the **short run**
- helps us understand the intuition
- an **essential building block** for more advanced models

13 / 46

The Goods Market: IS Relation

Goods Market Review

Recall, Goods Market Equilibrium is given by (consider a closed-economy)

- Demand[†]: $Z = f^C(Y T) + \overline{I} + G$
- Supply: Y = Z

In the model of Goods Market, Investment (\bar{I}) is exogeneous because we made an simplifying assumption that investment is independent of the variable of interest, output (Y)

Now in the model of IS-LM, we **relax** this simplifying assumption.

† The consumption function could be linear but doesn't have to be linear, so here $f^C(Y-T)$ instead of $c_0 + c_1(Y-T)$ is used.

14 / 46

The Goods Market: IS Relation

Investment and Output

Relax this simplifying assumption:

Question: Does Investment depend on output (Y)?

- If sales are very high, firms will invest more in the capital.
- In the short run, the level of sales is equal to output Y.

Conclusion: Investment is **an increasing function** of output Y!

The Goods Market: IS Relation

Investment and Interest Rate

In the IS-LM model, there are two variables of interest:

both output Y and interest rate i

We have relaxed the assumption so that Investment I depends on Y

Does Investment depend on i?

The Goods Market: IS Relation

Investment and Interest Rate

Does Investment depend on i?

Question: If the interest rate (the price firms pay to borrow money) is low, will the firm invest more or less in the capital?

• Firms will invest more if the cost of borrowing (i) is low!

Conclusion: Investment is a decreasing function of the interest rate, i!

The Goods Market: IS Relation

Investment Function

In our IS-LM model,

Instead of assuming $I = \overline{I}$ as in the Goods Market Model,

We write $I = f^I(Y, i)$, which means investment I depends on both output Y and interest rate i.

Also $f(Y, i)^{\dagger}$, which means f increases in Y and decreases in i.

† Note f'(Y, i) could be but doesn't have to be a linear function.

The Goods Market: IS Relation

Consumption Function

From Goods Market Model, we already know consumption depends on Y:

$$C = f^{C}(Y - T)$$

Does consumption also depend on the interest rate, i?

When **interest rate** *i* **is higher**, households **save more and consume less** to earn more interest in the future.

 $C = f^{C}(\underline{Y} - T, \underline{i})$ which means consumption increases in disposable income

(Y-T) and decreases in interest rate i.

The Goods Market: IS Relation

Derive the IS Curve - Graphically

As mentioned at the beginning, the IS Curve is derived from **the Goods Market Equilibrium**.

Let's solve for the Goods Market Equilibrium again, but this time, with the modified consumption function and investment function.

Goods Demand:
$$Z = f^{C}(Y - T, i) + f^{I}(Y, i) + G$$

Goods Supply:
$$Y = Z$$

The Goods Market: IS Relation

Derive the IS Curve - Graphically

Two regularity assumptions:

- In Goods Market Model, the intercept of Z, c_0 is larger than 0.
- In the IS-LM Model, Z is larger than 0 when Y is 0.
- In Goods Market Model, the slope of Z, c_1 , is between 0 and 1.
- In the IS-LM model, the slope of Z at a given point is less than 1.

The Goods Market: IS Relation

Derive the IS Curve - Graphically

Goods Demand: $Z = f^{C}(Y - T, i) + f^{I}(Y, i) + G$

Goods Supply: Y = Z

The Goods Market: IS Relation

Derive the IS Curve - Graphically

Recall: the demand curve (Z) is drawn for some fixed interest rate.

- There are infinitely many demand curves we could have drawn, each corresponding to a different interest rate.
- Our goal is to derive the IS curve, which is a relationship between the interest rate and output implied by the Goods Market Equilibrium.

What should we do?

 We can draw the effect of increasing or decreasing the interest rate on goods market equilibrium output, and then map these changes to their own curve!

The Goods Market: IS Relation

Derive the IS Curve - Graphically

24 / 46

The Goods Market: IS Relation

Derive the IS Curve - Graphically

The Goods Market: IS Relation

Derive the IS Curve - Graphically

26 / 46

The Goods Market: IS Relation

Derive the IS Curve - Graphically

The Goods Market: IS Relation

Derive the IS Curve - Graphically

Every point on the IS curve represents an equilibrium in the Goods Market.

The Goods Market: IS Relation

Shift of IS Curve

We have just seen that the IS curve can be derived by varying i and graphing the corresponding change in equilibrium Y. This was all done for some fixed values of T and G.

Q: What if *T* or *G* change?

A: The IS curve Shifts!

- For a fixed level of i, if T increases, from Goods Market Equilibrium, Y
 decreases. Thus, the IS curve Shifts Left!.
- For a fixed level of i, if G increases, from Goods Market Equilibrium, Y increases. Thus, the IS curve Shifts Right!.

The Goods Market: IS Relation

Shift of IS Curve

- Any factor change (except for i or Y) that decreases equilibrium Y in the goods market will Shift the IS curve left.
- Any factor change (except for *i* or *Y*) that increases equilibrium Y in the goods market will **Shift** the IS curve right.

Question: Suppose consumer confidence increases, and households would consume more even if they had no disposable income. Would the iS curve shift left or right?

The Goods Market: IS Relation

IS Curve Recap

- The IS curve is the relationship between interest rates and output in the goods market.
- The IS curve shows the value of equilibrium output associated with ANY possible interest rate.
- Every point on the IS curve represents an equilibrium in the Goods Market.
- Changes in *i* and *Y* represent movements along the IS curve.
- Changes in G and T represent shifts in the IS curve.

32 / 46

The Money Market: LM Relation

Money Market Equilibrium

Recall, Money Market Equilibrium is given by †

• Demand:

$$M^D = \$YL(i)$$

• Supply:

$$M^S = M$$

The Money Market: LM Relation

Money Market Equilibrium

• Equilibrium:

$$M = \$YL(i)$$

• The IS curve relates the interest rate to **real income**, **Y** . **But** the money market relates the interest rate to **nomial income**, **\$Y**. What should we do?

[†] This Money Market Equilibrium comes from lecture 4 without financial intermediaries.

The Money Market: LM Relation

GDP Deflator

Definition: The GDP deflator is given by

$$P = \frac{\$Y}{Y}$$

or

$$\$Y = Y * P$$

NominalGDP RealGDP GDPDeflator

The Money Market: LM Relation

Derive LM Relation - Math

We can rewrite Money Market Equilibrium as:

$$M = \$YL(i)$$

$$M = Y * PL(i)$$

$$\frac{M}{P} = YL(i)$$

where $\frac{M}{P}$ is called the real money supply.

The Money Market: LM Relation

Derive LM Relation - Math

The following equation gives the LM relation:

$$\frac{M}{P} = YL(i)$$

Recall that L(i) is a decreasing function in i. Suppose M and P are held fixed and increase Y

- The left-hand side is fixed
- The right-hand side: Y increases. To make the right-hand side fixed, *L*(*i*) has to decrease, which means *i* has to increase.

Conclusion (LM Relation):

According to Money Market Equilibrium, *i* increases as *Y* increases.

The Money Market: LM Relation

Derive LM Relation - Graphically

Real Money Demand

$$M^D = YL(i)$$

Real Money Supply

$$M^S = \frac{M}{P}$$

The Money Market: LM Relation

Derive LM Relation - Graphically

Recall: the real demand curve M^D is drawn for some fixed output Y.

- There are infinitely many real demand curves we could have drawn, each corresponding to a different output.
- Our goal is to derive the LM curve, which is a relationship between the interest rate and output implied by the Money Market Equilibrium.

What should we do?

 We can draw the effect of increasing or decreasing the output Y on money market equilibrium output, and then map these changes to their own curve!

The Money Market: LM Relation

Derive LM Relation - Graphically

40 / 46

The Money Market: LM Relation

Derive LM Relation - Graphically

41 / 46

The Money Market: LM Relation

Derive LM Relation - Graphically

The Money Market: LM Relation

Derive LM Relation - Graphically

The Money Market: LM Relation

Derive LM Relation - Graphically

Every point on the LM curve represents an equilibrium in the Money Market.

The Money Market: LM Relation

Shift of LM Curve

We have just seen that the LM curve can be derived by varying Y and graphing the corresponding change in equilibrium i. This was all done for some fixed values of M and P.

Q: What if *M*, or *P* change?

A: The LM curve Shifts!

- For a fixed level of *Y*, if *M* increases, from Money Market Equilibrium, *i* decreases. Thus, the IS curve **Shifts** Down!.
- For a fixed level of i, if P increases, from Goods Market Equilibrium, i
 increases. Thus, the IS curve Shifts Up!.

The Money Market: LM Relation

Shift of LM Curve

