SÉANCE 3

Estimation et élimination du trend et des composantes saisonnières - suite

Les séries temporelle se décomposent généralement comme suit

$$X_t = m_t + s_t + Y_t$$

où m_t est une composante variant lentement, appélée trend, s_t une fonction de période d ($s_{t+d} = s_d$) vérifiant aussi $\sum_{j=1}^{d} s_j = 0$ appellée composante saisonnière et Y_t un bruit aléatoire stationnaire. Dans le cas où la composante saisonnière est absente il y a différentes techniques **d'estimation** du trend.

• Lissage à l'aide d'un filtre à moyenne mobile

$$W_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t-j} \cong m_t$$

si m_t est linéaire. Ce filtre rend la variance de la composante aléatoire très petite pour q grand. On peut aussi construire des filtres qui laissent inchangés des polynômes pas seulement les fonctions linéaires en choisissant convenablement les poids a_i

$$\sum_{j=-q}^{q} a_j X_{t-j}$$

• Lissage exponentiel Pour un $\alpha \in [0,1]$ on peut construire

$$\hat{m}_t = \sum_{j=0}^{t-2} \alpha (1-\alpha)^j X_{t-j} + (1-\alpha)^{t-1} X_1$$

• Fitting polynômial. Un trend de la forme $m_t = a_0 + a_1 t + a_2 t^2$ peut être ajusté aux données en choisissant a_0, a_1, a_2 qui minimisent l'erreur au sens des moindres carrées: $\sum_{t=1}^{n} (x_t - m_t)^2.$

Il existent aussi des techniques d'élimination à l'aide des opérateurs aux différences

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t, BX_t = X_{t-1}$$

Ainsi, si m_t est un polynôme de degré k alors

$$\nabla^k X_t = k! c_k + \nabla^k Y_t.$$

Si on veut éliminer la composante saisonnière de période d on peut utiliser l'opérateur suivant:

$$\nabla_d X_t = X_t - X_{t-d} = (1 - B^d) X_t = m_t - m_{t-d} + Y_t - Y_{t-d}$$

la composante de trend restante pouvant être éliminée par les techniques habituelles.

Exercices

1. Montrer qu'un filtre linéaire $\{a_j\}$ est sans distorsion pour un polynôme m_t de degré k c'est à dire

$$m_t = \sum_{j=-q}^{q} a_j m_{t-j}$$

si et seulement si les coéfficients $\{a_i\}$ vérifient

$$\begin{cases} \sum_{j} a_{j} = 1, \\ \sum_{j} j^{r} a_{j} = 0, r = 1, ..., k. \end{cases}$$

2. Trouver un filtre de la forme

$$1 + \alpha B + \beta B^2 + \gamma B^3$$

(autrement dit trouver α, β, γ) qui fait passer les trends linéaires sans distorsion et élimine les composantes saisonnières arbitraires de période 2.

3. Montrer que le filtre avec les coéfficients

$$[a_{-2}, a_{-1}, a_0, a_1, a_2] = \frac{1}{9}[-1, 4, 3, 4, -1]$$

fait passer les polynômes de degré 3 sans distorsion tout en éliminant les composantes saisonnières de période 3.

4. Soit $\{Y_t\}$ un processus stationnaire de moyenne nulle et soit a, b des constantes.

a) Si $X_t = a + bt + s_t + Y_t$, où s_t est une composante saisonnière de période 12, montrer que

$$\nabla \nabla_{12} X_t = (1 - B)(1 - B^{12}) X_t$$

est stationnaire et exprimer sa fonction d'autocovariance en fonction de celle de $\{Y_t\}$.

b) Si $X_t = (a+bt)s_t + Y_t$, où s_t est une composante saisonnière de période 12, montrer que

$$\nabla_{12}^2 X_t = (1 - B^{12})^2 X_t$$

est stationnaire et exprimer sa fonction d'autocovariance en fonction de celle de $\{Yt\}$.