1182 - Parity

Given an integer n, first we represent it in binary. Then we count the number of ones. We say n has odd parity if the number of one's is odd. Otherwise we say n has even parity. $21 = (10101)_2$ has odd parity since the number of one's is $3.6 = (110)_2$ has even parity.

Now you are given **n**, we have to say whether **n** has even or odd parity.

Input

Input starts with an integer $T (\leq 1000)$, denoting the number of test cases.

Each case contains an integer n ($1 \le n < 2^{31}$).

Output

For each case, print the case number and 'odd' if n has odd parity, otherwise print 'even'.

Sample Input	Output for Sample Input
2	Case 1: odd
21	Case 2: even
6	